Directional Derivatives

Useful Information. For a function f(x, y, z) the gradient vector is

$$\nabla f = \langle f_x, f_y, f_z \rangle$$
$$= \left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right\rangle$$

and the directional derivative in the direction of a unit vector u is given by

$$D_{\boldsymbol{u}}f(x,y,z) = \nabla f(x,y,z) \cdot \boldsymbol{u}$$

1. Let $f(x,y) = \sin(2x+3y)$. Find the gradient of f and evaluate the gradient at the point P(-6,4). Find the rate of change of f at P in the direction of the vector $u = \langle \sqrt{3}/2, -1/2 \rangle$.

Solution:

$$\nabla f = \langle 2\cos(2x+3y), 3\cos(2x+3y) \rangle$$

So at P the gradient is

$$\nabla f(-6,4) = \langle 2\cos(0), 3\cos(0) \rangle = \langle 2, 3 \rangle.$$

Since \boldsymbol{u} is a unit vector, we have

$$D_{\mathbf{u}}f(-6,4) = \langle 2,3 \rangle \cdot \langle \sqrt{3}/2, -1/2 \rangle = \sqrt{3} - \frac{3}{2}.$$

2. Find the directional derivative of $f(x,y) = e^x \cos y$ at the point (0,0) in the direction given by the angle $\theta = \pi/4$.

Solution: The unit vector in the direction of $\theta = \pi/4$ is $\mathbf{u} = \langle \cos(\pi/4), \sin \pi/4 \rangle = \langle \sqrt{2}/2, \sqrt{2}/2 \rangle$. From $\nabla f = \langle e^x \cos y, -e^x \sin y \rangle$,

$$D_{\mathbf{u}}f(0,0) = \langle e^0 \cos(0), -e^0 \sin(0) \rangle \cdot \langle \sqrt{2}/2, \sqrt{2}/2 \rangle = \sqrt{2}/2.$$

3. Find the gradient of $f(x, y, z) = x^2yz - xyz^3$. What is the rate of change of f at the point P(2, -1, 1) in the direction of the point (2, 3, -2)?

Solution: The gradient is

$$\nabla f = \left\langle 2xyz - yz^3, x^2z - xz^3, x^2y - 3xyz \right\rangle$$

The direction from P to Q is given by $\langle 2-2, 3-(-1), -2-1 \rangle = \langle 0, 4, -3 \rangle$. A unit vector in that direction is $\langle 0, 4/5, -3/5 \rangle$. So the rate of change is given by

$$\left\langle 2^2(-1)(1) - (-1)(1)^3, (2)^2(1) - (2)(1), 2^2(-1) - 3(2)(-1)(1) \right\rangle \cdot \left\langle 0, 4/5, -3/5 \right\rangle = \left\langle -3, 2, 2 \right\rangle \cdot \left\langle 0, 4/5, -3/5 \right\rangle = \frac{2}{5} \cdot \left\langle -3, 2, 2 \right\rangle \cdot \left\langle 0, 4/5, -3/5 \right\rangle = \frac{2}{5} \cdot \left\langle -3, 2, 2 \right\rangle \cdot \left\langle 0, 4/5, -3/5 \right\rangle = \frac{2}{5} \cdot \left\langle -3, 2, 2 \right\rangle \cdot \left\langle 0, 4/5, -3/5 \right\rangle = \frac{2}{5} \cdot \left\langle -3, 2, 2 \right\rangle \cdot \left\langle 0, 4/5, -3/5 \right\rangle = \frac{2}{5} \cdot \left\langle -3, 2, 2 \right\rangle \cdot \left\langle -3, 2 \right\rangle \cdot \left\langle -$$

4. (a) How do you find the maximum rate of change for a function f at a given point (x_0, y_0, z_0) ?

Solution: The maximum rate of change occurs in the direction ∇f and is equal to $|\nabla f|$.

(b) Let $f(x,y) = xe^y$. Show that at the point P(2,0), the direction in which f is increasing the fastest is in the direction $\langle 1,2 \rangle$.

Solution: $\nabla f = \langle e^y, xe^y \rangle$. At 2,0 this is $\langle 1, 2 \rangle$.

(c) What is the largest possible rate of change of f at the point P?

Solution: The largest possible rate of change is $|\nabla f| = \sqrt{5}$.

5. Recall that for a differtiable function f and any unit vector \boldsymbol{u}

$$D_u f = \nabla f \cdot \boldsymbol{u} = |\nabla f||\boldsymbol{u}||\cos(\theta) = |\nabla f|\cos(\theta)$$

where θ is the angle between ∇f and u.

(a) Explain why the largest value of $D_{\boldsymbol{u}}f$ occurs when \boldsymbol{u} is in the same direction as ∇f .

Solution: Since $|\nabla f| \ge 0$ and $-1 \le \cos(\theta) \le 1$, the largest value occurs when $\cos(\theta) = 1$, i.e. $\theta = 0$. Which means the rate of change is maximized when the angle between \boldsymbol{u} and ∇f is 0 (i.e they are the same direction).

(b) In what direction is the rate of change of f minimized? Why?

Solution: Similar to above the rate is minimized $\cos \theta = -1$ which occurs when $\theta = \pi$, i.e. when \boldsymbol{u} points in opposite direction of ∇f .

- 6. Find the maximum and minimum rates of change for f at the given point and the direction in which they occur
 - (a) $f(x,y) = 4y\sqrt{x}$ at (4,1).

Solution: $\nabla f = \langle 2y/\sqrt{x}, 4\sqrt{x} \rangle$, so at (4,1) $\nabla f(4,1) = \langle 1, 8 \rangle$.

The maximum rate of change occurs in the direction $\langle 1, 8 \rangle$ and has rate of change equal to $\sqrt{65}$. The minimum rate of change occurs in the direction $\langle -1, -8 \rangle$ and has rate of change $-\sqrt{65}$.

(b) $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$ at (3, 6, -2).

Minimum: -1 in direction $\left\langle -\frac{3}{7}, -\frac{6}{7}, \frac{2}{7} \right\rangle$

Solution:

$$\nabla f = \left\langle \frac{x}{\sqrt{x^2 + y^2 + z^2}}, \frac{y}{\sqrt{x^2 + y^2 + z^2}} \right\rangle, \frac{z}{\sqrt{x^2 + y^2 + z^2}}$$

and

$$\nabla f(3, 6, -2) = \left\langle \frac{3}{7}, \frac{6}{7}, -\frac{2}{7} \right\rangle$$

Maximum: 1 in direction $\left\langle \frac{3}{7}, \frac{6}{7}, -\frac{2}{7} \right\rangle$,

7. Show that at every point on the line y = x + 1 the fastest rate of change for $f(x,y) = x^2 + y^2 - 2x - 4y$ is in the direction $\langle 1, 1 \rangle$ and that this does not occur at any other point.

Solution: We need to find all points at which ∇f points in the direction of $\langle 1, 1 \rangle$. First,

$$\nabla f = \langle 2x - 2, 2y - 4 \rangle$$

Then ∇f points in the direction $\langle 1,1 \rangle$ if 2x-2=2y-4 which is equivalent to y=x+1.