Life of extremophiles: Database and Knowledge Graph of microbes living in extreme conditions(Alkaline)

Progress Report

Week 1:-

INTRODUCTION:-

The database and knowledge graph focusing on extremophiles, particularly those thriving in alkaline environments, provide a comprehensive understanding of these remarkable microbes. Extremophiles are organisms capable of surviving and even thriving in environments considered extreme by human standards, such as elevated temperatures, acidity, salinity, or alkalinity. Alkaline environments, characterized by high pH levels, pose significant challenges to most life forms due to their harsh conditions. However, extremophiles adapted to alkaline conditions have evolved unique biochemical and physiological mechanisms to withstand and use these environments to their advantage. The database and knowledge graph contain information on various aspects of alkaline extremophiles, including their taxonomy, habitat preferences, metabolic pathways, molecular adaptations, and potential applications. Researchers can use this resource to explore the diversity, evolution, and ecological roles of alkaline extremophiles, as well as to discover novel enzymes, biomolecules, and biotechnological applications associated with these organisms.

In summary, the database and knowledge graph serve as valuable tools for researchers interested in unravelling the secrets of extremophiles living in alkaline environments, offering insights that could have implications for fields ranging from biotechnology and bioengineering to astrobiology and environmental science.

So before dive into the next step in this weak I have gathered all the information regarding the Alkaline and also fetch the csv files from PubMed and EuroPMC. Specifically, I obtained 806 data entries from Europe PMC and 409 data entries from PubMed.

Snippets to demonstrate the data forms

So, this is the file that I obtain while downloading from the PubMed.

Week 2: -

In the second week, I focused on PubMed .csv files to extract relevant data based on the PubMed ID (PMID). The process involves searching for the corresponding abstract using the PMID. If an abstract is found, I systematically create a new column and populate it with the abstract text. In cases where no abstract is found, the entry is marked as NULL.

Output file snippets are:-

Week 3:-

In this weak I was working on the task 2 where I am using Pubtator function to generate Genes Disease, Mutations, Chemicals And Species

- 1. Genes: PubTator finds mentions of genes within the text and provides annotations linking them to specific gene identifiers or symbols, allowing researchers to quickly find genes associated with topics or diseases.
- 2. Diseases: PubTator annotates mentions of diseases or medical conditions in the text, providing links to standardized disease names or identifiers from biomedical ontologies or databases.
- 3. Mutations: PubTator can detect references to genetic mutations or variations within the text, providing annotations that link these mutations to specific genes or diseases when applicable.
- 4. Chemicals: PubTator finds references to chemicals, drugs, or other chemical compounds mentioned in the text, providing annotations that link them to standardized chemical identifiers or names.
- 5. Species: PubTator recognizes mentions of species within the text, providing annotations that specify the species mentioned, which is particularly useful in biomedical research where species-specific information is important.

The PubTator tool typically provides a web-based interface or an API (Application Programming Interface) that allows users to programmatically access its functionalities. With the API, users can send text documents or PubMed article identifiers and retrieve annotations for genes, diseases, mutations, chemicals, and species mentioned in those documents.

So, how does I proceeds with the Input and the output files

Input Data:

we would provide PubMed IDs or text from biomedical literature as input to PubTator. PubMed IDs uniquely find articles in the PubMed database.

Output Entities:

PubTator outputs the recognized entities (genes, diseases, mutations, chemicals, and species) along with their respective annotations in the provided text.

Week 4:-

Steps to demonstrate the functionality

- 1. Obtaining Input Files: i obtained files from PubTator holding annotations for genes, diseases, mutations, chemicals, and species mentioned in PubMed csv or other
- 2. Parsing Input Files: i parsed the input files to extract the relevant information, focusing on the columns for genes, diseases, mutations, chemicals, and species.

- 3. Creating Separate Files: i created four separate output files, each holding information related to one of the following categories:
 - Genes
 - Diseases
 - Species
 - Chemicals
- 4. Saving Output Files: Finally, i saved each of the four output files separately, making them available for further processing or analysis as needed.

By following these steps, I was able to extract and organize the information obtained from PubTator into four distinct files, each focusing on a specific aspect of the annotations: genes, diseases, mutations, and chemicals/species. This process facilitated further analysis or research tasks related to the identified biomedical entities.

Outputs are:-For Gene

Outputs are:-For Disease

Outputs are:-For Chemical

```
df = df[['Chemicals', 'RightPart', 'PMID']]
print(df)
df.to csv('chemical updated.csv', index=False)
                Chemicals RightPart
                                              PMID
0
                   No Data
                                  None
                                         30796503
                 glycerol
                               D005990
                                         37118007
      dimethyl sulfoxide
1
                               D004121
                                        37118007
2
                   No Data
                                  None
                                         15046570
           phospholipids
4
                               D010743
                                        28007654
409
                               D007930
                                         17673945
409
              lanthanides
                              D028581
                                         17673945
409
                     metal
                               D008670 17673945
409
                               D007501 17673945
409
                               D007930
                                        17673945
[1527 rows x 3 columns]
<ipython-input-13-f6acb6597148>:14: FutureWarning: In a future version of par
    df[['Chemicals'. 'ChemicalID']] = df['Chemicals'].str.split('>'. 1. expand=
```

Outputs are:-For Species

Week 5:-

So baaically what I did in this week is that I just updated the files like there are few entreis in the both file which has no PMID and there were few entries like there were no specific

domain name like Diseases and Species and Gene and chemical there were just PMID so I just remove them from the entries.

Week 6:-

So in this week I tranform the data in the forms of group the reason there were some chemical which hade similar PMID and there were few Diseases and species also which hade similar PMID and the difrent name so I basically merege them based on the names and applied group by on it and

	В	С	D	E F
Diseases	DiseasesI	Length	PMID	
Alcolapia	D011507	1	[36250323]	
Alcolapia	D018457	1	[36250323]	
Alkaliphili	D000881	1	[9783168]	
Alkaliphili	D006934	1	[37367588]	
Alkaliphili	C537702	1	[26090360]	
Alkaliphili	D019965	1	[30457468]	
Alkaliphili	D006934	1	[37367588]	
Antarctic I	D003424	1	[34228196]	
Antarctic I	C537702	1	[33255932]	
Antarctic I	D018459	1	[30282060]	
C3 extrem	C565169	1	[37667571]	
CVDs	D002318	1	[33208066]	
Cancer	D009369	2	[22295871,	16808526]
Cardiovas	D002318	1	[33208066]	
Chromobl	D002862	1	[29538737]	
Cold	D00006739	3	[27900683,	32833498, 27209
CotB anch	C537277	1	[26026992]	
Death	D003643	1	[26543264]	
Extremoph	D00007922	1	[28418707]	
Extremoph	D000193	1	[33977442]	
Extremoph	D054882	1	[34458243]	
Extremoph	D002181	1	[26859958]	
Extremoph	D000193	1	[33977442]	
Evtramont	61/1025	1	[35688350]	

A	В	C	ı	D E
species	SpeciesID	Length		PMID
A. alcalica	40169		1	[36250323]
A. caviae	648		1	[27737605]
A. gerrard	875634		1	[38035483]
A. glaucus	40226		1	[29681022]
A. gottsch	108328		1	[18957864]
A. graham	87886		1	[36250323]
A. halimu:	240028		1	[27010414]
A. littorali	110874		1	[26476701]
A. penicill	41959		1	[27871132]
A. pullular	5580		1	[17298474]
A. thalian:	3702		1	[25308761]
AM-001	1418		1	[15999223]
AMnr1	622665		1	[19779762]
AO1	340959		1	[30105570]
ATCC 4309	13769		1	[22559199]
ATCC BAA-	159292		1	[12728359]
Acacia gei	875634		1	[38035483]
Acinetoba	466088		1	[26647770]
Acinetoba	470		1	[36094301]
Acinetoba	472		1	[33645540]
Acinetoba	466088		2	[33645540, 30485446]
Aeluropus	110874		1	[26476701]
Aeromona	648		1	[27737605]
Agarivora	1872412		1	[19002649]

Week 7:-

Task Summary: Extracting and Mapping Gene and Species Information with Corresponding Sentences from PubTator Data

Objective:

The primary objective this week was to enhance the extracted information from the PubTator output by fetching specific sentences related to genes and species from the corresponding PubMed articles. This involved mapping PubMed IDs (PMIDs) to PubMed Central IDs (PMCIDs) and extracting relevant sentences from the articles.

Process:

1. Input Files Preparation:

The previous week's output consisted of a CSV file with columns: Gene, GeneID, Length, and PMID.

This file needed to be processed further to include the corresponding sentences from PubMed articles that mention the specific genes and species.

2. Mapping PMIDs to PMCIDs:

Using the initial CSV file, each PMID was mapped to its corresponding PMCID. This mapping is crucial as PMCIDs are required to fetch full-text articles from PubMed Central, which contain the sentences of interest.

3. Fetching Sentences:

A custom function, `give_sentence`, was employed to extract sentences from full-text articles that mention the particular genes and species. This function likely utilized the mapped PMCIDs to access the articles and retrieve the relevant text.

The sentences were then associated with the specific Gene and Species entries.

4. Creating the Output CSV:

The final output was structured into a new CSV file that included the Gene, GeneID, Length, PMID, PMCID, and the extracted sentences.

This new CSV file provided a comprehensive dataset linking gene and species mentions to specific sentences in the corresponding PubMed articles, facilitating further analysis and research.

Outcome:

The resultant CSV file now contains detailed information, including the original Gene, GeneID, Length, PMID, and the newly added PMCID and relevant sentences.

		· J		
А	В	С	D	Е
species	SpeciesID	PMID	PMCID	
A. alcalica	40169	36250323	PMC96728	58
A. graham	87886	36250323	PMC96728	58
Alcolapia	87886	36250323	PMC96728	58
AMnr1	622665	19779762	PMC27974	08
Bacillus a	85682	19779762	PMC27974	08
Bacillus s	622665	19779762	PMC27974	08
enrichmer	1566338	19779762	PMC27974	08
enrichmer	1566338	19779762	PMC27974	08
ATCC 4309	13769	22559199	PMC34039	18
Natrialba	13769	22559199	PMC34039	18
Natrialba	547559	22559199	PMC34039	18
Acinetoba	470	36094301	PMC96025	19
Clostridiu	1294142	36094301	PMC96025	19
Pseudomo	208964	36094301	PMC96025	19
mammali	9606	36094301	PMC96025	19
Alkalibaci	1193119	22887673	PMC34155	26
Anditales	10/18083	26171770	DMC//5018	10

Week 8:-

Week 8 Summary: Extracting Sentences for Genes and Species Using PMCID Mapping

Objective:

The goal for this week was to enhance the dataset by including specific sentences from PubMed articles that mention particular genes and species. This required mapping PMIDs to PMCIDs and using these IDs to extract relevant sentences.

Process:

1. Input File Preparation:

The input file contained columns for the name, PMID, and corresponding PMCID.

This file served as the basis for retrieving specific sentences related to the genes and species of interest.

2. Mapping PMIDs to PMCIDs:

Each PMID in the input file was mapped to its corresponding PMCID, enabling access to the full-text articles available in PubMed Central.

This mapping was essential to facilitate the extraction of detailed textual information from the articles.

3. Sentence Extraction Using give sentences Function:

The give_sentences function was utilized to extract sentences from the full-text articles based on the PMCID.

This function scanned the articles for mentions of the specific genes and species, extracting and compiling relevant sentences.

4. Creating the Enhanced Output File:

The output file was generated to include the original columns (name, PMID, PMCID) along with the extracted sentences.

This new CSV file provided a comprehensive dataset with contextual information, linking each gene and species to specific sentences in the articles.

Outcome:

The final output file now includes detailed sentences from PubMed articles, providing valuable context for each gene and species mention.

		<i>∨ Jx</i>	Diseases	
Α	В	С	D	E
iseases	DiseasesI	PMID	PMCID	Sentences
ryness	D014987	26733008	4679917	HAAL proved t
lkaliphili	D006934	37367588	10301932	
lkaliphili	D006934	37367588	10301932	Alkaliphilic ar
oxicity	D064420	37317247	10223213	This review pr
tress	D00007922	33643258	7902512	These organis
xtremoph	D015163	37839067	10577106	
oxicity	D064420	28737704	5532675	
paralytic	D007418	28737704	5532675	Cyanotoxins
xtremoph	D054882	34458243	8387880	
ow toxici	D009800	34458243	8387880	Compared to
extremop	D054882	34458243	8387880	In this article
alo-alka	D055882	37982082	10651602	
extremop	D00007106	37982082	10651602	
ryness	D014987	36414646	9681764	Salt-in strateg
Alkaliphil	C537702	26090360	4453477	Alkaliphilic ba
ılkaliphil	C537702	26090360	4453477	Each of these
new alkal	C00065724	36581887	9798632	A set of new al

Week 9:-

Week 9 Summary: Research on Alkaline-Adapted Extremophiles

Objective:

The task for this week involved conducting research to gather detailed information about alkaline-adapted extremophiles. The goal was to compile a comprehensive dataset that includes the names, descriptions, publication links, and year of publication of relevant studies.

Process:

1. Literature Search:

Conducted an extensive search of scientific databases to identify research articles and publications related to alkaline-adapted extremophiles.

Utilized keywords such as "alkaline extremophiles," "alkaline environments," and "alkaliphilic organisms" to find relevant studies.

2. Data Compilation:

Collected the names of identified alkaline-adapted extremophiles.

Summarized the descriptions of these extremophiles, focusing on their unique adaptations and ecological significance.

Recorded the publication links for each study, ensuring easy access to the full text of the articles.

Noted the year of publication for each study to provide a temporal context for the research.

3. Creating the Output File:

Compiled the gathered information into a structured format, creating a comprehensive dataset.

The output file included the following columns: Name, Description, Publication Link, and Year of Publication.

Ensured accuracy and completeness of the data, providing a reliable resource for further research.

Outcome:

The resulting dataset offers a detailed overview of alkaline-adapted extremophiles, including their names, descriptions, publication links, and years of publication

Week 10:-

Week 10 Summary: Examination of UniProt Data for Insights into Genes and Proteins**

Objective:

The task for this week focused on examining UniProt data to gain crucial insights into the genes and proteins relevant to the study of alkaline-adapted extremophiles. The goal was to understand their potential roles in viral assembly, replication, and the infection process.

Process:

1. Data Retrieval from UniProt:

Accessed the UniProt database to retrieve detailed information about genes and proteins associated with alkaline-adapted extremophiles.

Utilized specific search criteria and filters to identify relevant entries within the UniProt database.

2. Data Analysis:

Analyzed the retrieved UniProt data to identify genes and proteins with potential roles in viral assembly, replication, and the infection process.

- Examined protein functions, domains, and interactions to understand their involvement in these processes.

3. Compilation of Insights:

Compiled comprehensive insights regarding the roles of identified genes and proteins.

Highlighted key findings about their contributions to molecular mechanisms and pathogenicity associated with alkaline environments.

4. Documentation and Reporting:

Documented the findings in a structured report, detailing the potential roles of each gene and protein.

Provided a clear and concise summary of the insights gained from the UniProt data, emphasizing their relevance to further research.

Outcome:

The examination of UniProt data has furnished crucial insights into the genes and proteins pertinent to the study of alkaline-adapted extremophiles. This data offers valuable understanding regarding their possible roles in viral assembly, replication, and the infection process.

Α	B C D	E	F G H I J	K L	М	N	0	P	Q	R	S	T
Entry	Entry Nam Gene Nam GenelD	Length	ubMed ID Protein names									
O28523	APGM1_AF apgM1 AF_ 2479549	5; 408	889475; 12,3-bisphosphoglycerate-independent phosph	oglycerate mutase	1 (BPG-inde	ependent PG	AM 1) (Pho	sphoglycer	romutase 1)	(aPGAM 1)	(EC 5.4.2.:	12)
Q5WD76	Q5WD76_5 prs ABC31	317	632397; § Ribose-phosphate pyrophosphokinase (RPPK)	(EC 2.7.6.1) (5-phos	pho-D-ribo	syl alpha-1-	diphospha	te synthase	(Phosphor	ibosyl dipho	sphate syr	nthase) (Pho
Q5WFG5	Q5WFG5_! murE ABC2	485	632397; § UDP-N-acetylmuramoyl-L-alanyl-D-glutamate	2,6-diaminopimel	ate ligase (l	EC 6.3.2.13)	(Meso-A2)	om-adding	enzyme) (Me	so-diamino	pimelate-	adding enzyn
Q5WFJ2	Q5WFJ2_S pyrAB carE	1062	632397; § Carbamoyl phosphate synthase large chain (E	C 6.3.4.16) (EC 6.3.5	.5) (Carbar	noyl phosph	ate synthet	tase ammo	nia chain)			
Q5WFK5	Q5WFK5_\$ coaBC ABC	401	632397; § Coenzyme A biosynthesis bifunctional protein	CoaBC (DNA/pantot	henate me	tabo <mark>lism f</mark> lav	oprotein) (Phosphopa	intothenoylo	ysteine syn	thetase/de	carboxylase
Q5WFV4	Q5WFV4_5 asd ABC22	350	632397; § Aspartate-semialdehyde dehydrogenase (ASA	dehydrogenase) (AS	ADH) (EC 1	.2.1.11) (As	partate-be	ta-semialde	ehyde dehyd	rogenase)		
Q5WL63	Q5WL63_S hmp ABC0	411	632397; § Flavohemoprotein (Flavohemoglobin) (Hemog	obin-like protein) (N	litric oxide	dioxygenase	(NO oxyge	nase) (NOI	O) (EC 1.14.1	2.17)		
Q5WLC1	Q5WLC1_5 nnrE nnrD	511	632397; § Bifunctional NAD(P)H-hydrate repair enzyme (Nicotinamide nucle	otide repair	protein)[Ind	ludes: AD	P-depender	nt (S)-NAD(F)H-hydrate	dehydrata	se (EC 4.2.1.
Q5WLV6	Q5WLV6_5 ftsH ABC0:	662	332397; \$ ATP-dependent zinc metalloprotease FtsH (EC	3.4.24)								
A0A430Q	V A0A430QV deoB CSW	380	0536130 Phosphopentomutase (EC 5.4.2.7) (Phosphod	eoxyribomutase)								
A0A430R0	0 A0A430R0 deoB CSW	380	0536130 Phosphopentomutase (EC 5.4.2.7) (Phosphod	eoxyribomutase)								
A0A430RH	H A0A430RH deoB CSW	380	0536130 Phosphopentomutase (EC 5.4.2.7) (Phosphod	eoxyribomutase)								
A0A430RH	K A0A430RK deoB CSW	380	0536130 Phosphopentomutase (EC 5.4.2.7) (Phosphod	eoxyribomutase)								
A0A430S5	5 A0A430S5 deoB CSW	380	0536130 Phosphopentomutase (EC 5.4.2.7) (Phosphod	eoxyribomutase)								
A0A430U	E A0A430UE deoB CSW	380	0536130 Phosphopentomutase (EC 5.4.2.7) (Phosphod	eoxyribomutase)								
A0A430U	K A0A430UK deoB CSW	380	0536130 Phosphopentomutase (EC 5.4.2.7) (Phosphod	eoxyribomutase)								
A0A430U	T A0A430UT deoB CSW	380	0536130 Phosphopentomutase (EC 5.4.2.7) (Phosphod	eoxyribomutase)								
A0A430U\	V A0A430UV deoB CSW	380	0536130 Phosphopentomutase (EC 5.4.2.7) (Phosphod	eoxyribomutase)								
A0A430V9	9 A0A430V9 deoB CSW	380	0536130 Phosphopentomutase (EC 5.4.2.7) (Phosphod	eoxyribomutase)								
A0A7R6P	X A0A7R6PX gpml TTHT	505	2212657 2,3-bisphosphoglycerate-independent phospl	oglycerate mutase	BPG-indep	endent PGA	M) (Phospl	hoglycerom	utase) (iPGI	M) (EC 5.4.2	2.12)	
A0A7R6S	X A0A7R6SX deoBTTHT	391	2212657 Phosphopentomutase (EC 5.4.2.7) (Phosphod	eoxyribomutase)								
A0A7Z0LS	A0A7Z0LS/ deoB HZS8	414	2579380 Phosphopentomutase (EC 5.4.2.7) (Phosphod	eoxyribomutase)								
A0A7Z0LT	A0A7Z0LT\ gpml HZS8	525	2579380 2,3-bisphosphoglycerate-independent phosph	oglycerate mutase	BPG-Indep	endent PGA	M) (Phospi	hoglycerom	utase) (IPGI	M) (EC 5.4.2	2.12)	
A0A838CI	N A0A838CN deoB H026	392	5064986 Phosphopentomutase (EC 5.4.2.7) (Phosphod	eoxyribomutase)								
A0A838CI	U A0A838CU gpml H026	512	5064986 2,3-bisphosphoglycerate-independent phospl	oglycerate mutase	BPG-indep	endent PGA	M) (Phospl	hoglycerom	utase) (iPGI	M) (EC 5.4.2	2.12)	
B1YLD9	B1YLD9_E) gpml Exig_:	515	5489412; 2,3-bisphosphoglycerate-independent phospl	oglycerate mutase	BPG-indep	endent PGA	M) (Phospl	hoglycerom	utase) (iPGI	M) (EC 5.4.2	2.12)	
C6X5T7	C6X5T7_FL gpml FIC_0	509	3622572 2,3-bisphosphoglycerate-independent phospl	oglycerate mutase	BPG-indep	endent PGA	M) (Phospl	hoglycerom	utase) (iPGI	M) (EC 5.4.2	2.12)	
F5L4L9	F5L4L9_C/ gpml Cath1	512	1685297; 2,3-bisphosphoglycerate-independent phospl	oglycerate mutase	BPG-indep	endent PGA	M) (Phospl	hoglycerom	utase) (iPGI	M) (EC 5.4.2	2.12)	
F5L874	F5L874_C/ deoB Cath	400	1685297; Phosphopentomutase (EC 5.4.2.7) (Phosphod	eoxyribomutase)								
F7PLH2	F7PLH2_9I gpml HLRT 2379998	1; 505	1705593; 2,3-bisphosphoglycerate-independent phospl	oglycerate mutase	BPG-indep	endent PGA	M) (Phospi	hoglycerom	utase) (iPGI	M) (EC 5.4.2	2.12)	

Week 11:-

Week 11 Summary: Research on the Prevalence and Geographic Spread of Extremophiles

Objective:

The task for this week focused on gathering and analyzing data on the prevalence and geographic distribution of extremophiles across various regions and historical epochs. The aim was to uncover the narrative of their adaptation to challenging environments, particularly in relation to varying radiation exposures.

Process:

1. Data Collection:Collected information on the geographic locations and time periods where extremophiles have been identified.

2. Analysis of Adaptation:

Analyzed the collected data to understand how extremophiles have adapted to different environmental challenges, with a focus on varying levels of radiation exposure.

Investigated the mechanisms that enable these organisms to survive and thrive in high-radiation environments.

3. Geographic and Temporal Mapping:

Mapped the prevalence and distribution of extremophiles across diverse regions and historical epochs.

Identified patterns and trends in their geographic spread and adaptation over time.

4. Narrative Construction:

Highlighted key findings related to their resilience and survival strategies in the face of varying radiation exposures.

Outcome:

The gathered data on the prevalence and geographic spread of extremophiles across diverse regions and historical epochs reveals a captivating narrative of adaptation to challenging environments shaped by varying radiation exposures. This research provides valuable insights into the evolutionary processes and survival mechanisms of extremophiles, contributing to a deeper understanding of their ecological and biological significance.

Week 12:- Task8

Summary of Findings: Proteins and Genes Vital for Alkaline Extremophiles

Objective:

To identify proteins and genes critical for the survival of extremophiles in alkaline environments.

Process:

Collected and analyzed data on proteins and genes that enable extremophiles to thrive in highly alkaline conditions.

Focused on adaptations that facilitate survival in these extreme environments

Outcome:

The gathered information highlights key proteins and genes that are pivotal for survival in alkaline environments, detailing specific adaptations that allow extremophiles to endure and thrive under such demanding conditions.

Week 13:-

Summary of Findings: Chemicals and Pharmaceutical Compounds

Objective:

To compile a comprehensive dataset of chemicals and pharmaceutical compounds, including their names, IDs, references, stages of clinical trials, and other pertinent information.

Process:

Gathered data on various pharmaceutical compounds from relevant sources.

Collected detailed information including names, unique IDs, references, and clinical trial stages.

Outcome:

The dataset encompasses a variety of pharmaceutical compounds, providing comprehensive details such as names, IDs, references, and stages of clinical trials. This dataset serves as a valuable resource for further research and analysis in the pharmaceutical field.

· · · · ·	/ · · · · · · · · · · · · · · · · · · ·			
1 A	В	С	D	Е
Chemical Name	Chemical ID	Refrence	Phase Of Trial	
Strontium	DB13987	https://go.drugbank	Approved	
Magnesium cation	DB01378	https://go.drugbank	Approved, Nutraceutical	
Barium sulfate	DB11150	https://go.drugbank	Approved	
Magnesium hydroxide	DB09104	https://go.drugbank	Approved, Investigation	al
Magnesium trisilicate	DB09281	https://go.drugbank	Approved	
Potassium citrate	DB09125	https://go.drugbank	Approved, Investigational, Vet	
Potassium bicarbonate	DB11098	https://go.drugbank	Approved	
Methenamine	DB06799	https://go.drugbank	Approved, Vet approved	
Morphine	DB00295	https://go.drugbank	Approved, Investigational	
Sulfametopyrazin e	DB00664	https://go.drugbank	Approved, Withdrawn	
Δlginic acid	DR13518	httns://on drughank	Approved,	

Week 14:-

Week 14 Summary: Synonym Clubbing for Gene, Species, Disease, and Chemical IDs

Objective:

To create a script that consolidates synonyms for Gene, Species, Disease, and Chemical IDs, organizing them into lists for each respective ID.

Process:

Developed a script to identify and compile synonyms associated with each Gene, Species, Disease, and Chemical ID.

Processed the data to ensure that all synonyms are accurately listed in front of their corresponding IDs.

Submitted Files:

- 1. Task10_Clubbed_Species.csv: Contains Species IDs and their respective synonyms.
- 2. Task10 Clubbed Gene.csv: Contains Gene IDs and their respective synonyms.
- 3. Task10_Clubbed_Disease.csv: Contains Disease IDs and their respective synonyms.
- 4. Task10_Clubbed_Chemicals.csv: Contains Chemical IDs and their respective synonyms.

Outcome:

The script successfully created comprehensive lists of synonyms for each Gene, Species, Disease, and Chemical ID. The resultant files provide a consolidated view of all relevant synonyms, facilitating easier reference and analysis.

А	R	C	D	E	F	G	Н		J	K	
species	SpeciesID	Length	PMID								
A. alcalica	40169	2	36250323	26547282							
A. caviae, I	648	2	27737605	27737605							
A. gerrardi	875634	2	38035483	38035483							
A. glaucus	40226	1	29681022								
A. gottscha	108328	2	18957864	18957864							
A. grahami	87886	2	36250323	36250323							
A. halimus	240028	3	27010414	27010414	27010414						
A. littoralis	110874	2	26476701	26476701							
A. penicilli	41959	2	27871132	27871132							
A. pullulan	5580	3	17298474	17298474	30400922						
A. thaliana	3702	9	25308761	31338597	, 24214268	34256694	25496221	31781937	33030592	25308761	, 313
AM-001, B	1418	3	15999223	15999223	17429572						
AMnr1	622665	1	19779762								
AO1, Bacil	340959	2	30105570	30105570							
ATCC 4309	13769	4	22559199	21894491	21894491	22559199					
ATCC BAA-	159292	6	12728359	12728359	16932842	12728359	12728359	16932842			
Acinetoba	466088	3	26647770	33645540	30485446						
Acinetobac	470	1	36094301								
Acinetobac	472	1	33645540								
Agarivoran	1872412	1	19002649								
Agarivoran	507618	1	19002649								
Agromyces	758919	1	24817611								
Alicycloba	61169	2	30656425	30656425							
Alkalibacil	1193119	1	22887673								
Alkalibacte	235931	1	15127306								
Alkalibacte	1581170	1	27362528								
انهمماناهمالله	400507	-	22227000	22207000							

		$\bigvee Jx$				
A	В	C	D	Е	F	G
Genes	GenelDs	Length	PMID			
AP, alkalin	13916924	3	12072958,	22212656,	12072958	
Caspase-1	834	2	22295871,	22295871		
Chl	91851	1	31679078			
lkka	1147	2	16770690,	27900683		
L-1, mL-1	16728	2	28045976,	28045976		
NapB	63908	1	19050822			
Ndh-2	1660	1	37577439			
ORF-1	1115973	1	11057908			
ORF-4	1115988	1	11057908			
PEP	828706	1	31338597			
PH, pH	5053	2	27276261,	26025020		
PIP1	856754	1	34256694			
PRB, prote	10536	2	36916005,	36916005		
Rhbg	57127	1	36250323			
TAK	1025	1	34093984			
acid 1	81857	1	16808526			
fog	161882	1	24927538			
hMDH	4191	1	12382117			
interleukin	3553	1	22295871			
neuraminio	4758	1	33977442			
osteocalci	12097	1	30400922			
sea	6395	1	20091326			
spa	653509	1	24430481			
tap	10482	1	32533304			
vma3	856686	1	9783169			

		С	D				н			K		М	N
iseases	Diseases	Length	PMID										
lcolapia a	D011507		36250323										
lcolapia r	D018457		1 36250323										
lkaliphilic	D000881		9783168,	9783164, 96	80303, 10	805564, 194	111423, 118	378564, 109	972188, 967	72682, 1105	7913		
lkaliphilic	D006934	;	37367588	, 35661272,	27737605								
lkaliphilic	C537702		4 26090360	, 33255932,	28478604	37847305							
lkaliphilic	D019965	;	30457468	, 37490857,	15046570								
lkaliphilic	D006934	;	37367588	, 20703955,	33538376								
ntarctic F	D003424		34228196										
ntarctic li	D018459		30282060										
3 extremo	C565169		37667571										
VDs, Car	D002318	:	33208066	, 33208066									
ancer, ca	D009369	;	3 22295871	, 16808526,	31734456								
hromobla	D002862		1 29538737										
old, cold,	D0000673	10	27900683	, 32833498,	27209523	, 27900683,	33925342,	22297696,	20373120,	35688350,	16770690,	16642262	
otB anch	C537277		1 26026992										
eath	D003643		1 26543264										
xtremoph	D0000792	2	2 28418707	, 37490857,	28087527	26909467,	34681129,	34256694,	31722266,	35190857,	38252174,	25308761,	35742848
xtremoph	D000193	;	33977442	, 22327111,	33404954								
xtremoph	D054882		34458243										
xtremoph	D002181		1 26859958										
xtremoph	D000193	;	33977442	, 30863668,	22327111								
xtremoph	614025	;	35688350	, 35688350,	35688350								
xtremoph	D015163	:	2 37839067	, 30796504									
(1)F	102510		1 21600188										
PD	D003922		36094301										
ebsiella.	D007710		15064989	. 19002649									

⊿ A	В	С	D	E	F	
Chemical	Chemicall	length	PMID			
(S)-(+)-1-p	C033198	1	32418069			
(S)-amine,	D000588	2	32418069,	32418069		
1-10-phen	C025205	1	12910392			
1-aminocy	D002264	1	37474779			
1-butanol	D020001	1	12382117			
1-butyl-3-r	C502841	2	27142029,	27142029		
1-butyl-3-r	C532403	1	27142029			
1-ethyl-3-r	C556629	1	27142029			
1-hydroxyb	C011852	1	32617733			
1 12-methyl	C069642	1	10972188			
2 2-2'-azino-	C002502	2	12892493,	24915287		
2-2'-bipyrio	D015082	1	12910392			
4 2-3-butane	C026978	1	28425950			
5 2-4-D, 2-4-	D015084	2	11778838,	11778838		
6 2-4-diamir	C005959	1	28737704			
7 2-methyl-4	D008456	1	11778838			
8 2-propano	D019840	1	32617734			
9 20-60 C, 3	C069837	2	37847305,	38010865		
3-amino-1	D000640	1	12892493			
1 3-chlorobe	C036427	1	11778838			
2 5'-GMP	D006157	1	28764042			
5'-IMP	D007291	1	28764042			
4 5-HT	D012701	1	12932132			
5 -hydroxyd	C052853	1	28425950			
6-carboxyf	C024098	1	9783169			
6-methoxy	C080190	1	38035483			
0	OE1 CEOA	1	20702055			

Week 15:-

Week 15 Summary: Interaction Analysis Between Genes and Chemicals

Objective:

To analyze and identify interactions between genes and chemicals, and determine their regulation and interaction linked to specific PMIDs.

Process:

Combined two CSV files containing data on genes and chemicals.

Matched interactions between genes and chemicals using the data.

Extracted information on the regulation and interaction associated with specific PubMed IDs (PMIDs).

Outcome:

The analysis successfully identified and documented interactions between genes and chemicals, including details on their regulation. The results were linked to specific PMIDs, providing a clear reference for further research and validation.

Week 16:-

Week 16 Summary: 3D Graph Representation of Gene and Chemical Interactions

Objective:

To visually represent the interactions between genes and chemicals using a 3D graph, indicating the nature of each interaction (inhibition, exhibition, or other).

Process:

Mapped the interactions between genes and chemicals from the dataset.

Developed a 3D graph to illustrate these interactions.

Used edges in the graph to indicate the type of interaction (inhibition, exhibition, or other).

Outcome:

The 3D graph effectively represents the interactions between genes and chemicals. Each edge in the graph clearly indicates whether the interaction is inhibitory, exhibitory, or of another type, providing an intuitive visual tool for analyzing these relationships.

Week 17:-

Updating in a graph show with the different colour like gene with the particular colour and then chemical with the particular colour