Evolution 2014

Jeremy Berg and Graham Coop

University of California, Davis

June 20, 2014

Background Slide(s)

► We want to know whether a particular trait is adaptively differentiated among populations

Background Slide(s)

- ► We want to know whether a particular trait is adaptively differentiated among populations
 - ▶ Put them in a common garden and measure them

Phenotype

$$Q_{ST} = \frac{V_B}{V_B + V_W} = \frac{V_B}{V_T}$$

$$Q_{ST} = \frac{V_B}{V_B + V_W} = \frac{V_B}{V_T}$$
$$F_{ST} = \mathbb{E}\left[\frac{V_B}{V_B + V_W}\right]$$

$$Q_{ST} = \frac{V_B}{V_B + V_W} = \frac{V_B}{V_T}$$

$$F_{ST} = \mathbb{E} \left[\frac{V_B}{V_B + V_W} \right]$$

$$\mathbb{E}[V_B] = (V_B + V_W) F_{ST}$$

$$Q_{ST} = \frac{V_B}{V_B + V_W} = \frac{V_B}{V_T}$$

$$F_{ST} = \mathbb{E}\left[\frac{V_B}{V_B + V_W}\right]$$

$$\mathbb{E}[V_B] = (V_B + V_W) F_{ST}$$

$$\frac{Q_{ST}}{F_{ST}} = \frac{V_B}{\mathbb{E}[V_B]} \sim \chi^2$$

Generalizing Q_{ST}/F_{ST}

Q_{ST}/F_{ST} with hierarchical relatedness

$$\vec{Z} \sim MVN\left(\vec{\mu}, V_T \mathbf{F}\right)$$

$$\frac{\vec{Z}^T \mathbf{F}^{-1} \vec{Z}}{V_T} \sim \chi^2$$

- Ovaskainen et al 2011, Berg and Coop 2014
- lacksquare \propto to negative log likelihood of the data under the null model
- ▶ Reduces to $\frac{Q_{ST}}{F_{ST}}$ when all populations equally related

Using GWAS hits to estimate genetic values

LETTER

doi:10.1038/nature09410

Hundreds of variants clustered in genomic loci and biological pathways affect human height

$$Z_m = \sum_{\ell=1}^{L} \alpha_{\ell} p_{m\ell}$$

$$\alpha = \mathsf{effect} \,\, \mathsf{size}$$

$$p={\sf allele}$$
 frequency

Using GWAS hits to estimate genetic values

Evidence of widespread selection on standing variation in Europe at height-associated SNPs

Michael C Turchin^{1–5,8}, Charleston WK Chiang^{1–6,8}, Cameron D Palmer^{1–5}, Sriram Sankararaman^{5,6}, David Reich^{5,6}, Genetic Investigation of ANthropometric Traits (GIANT) Consortium⁷ & Joel N Hirschhorn^{1–6}

$$Z_m = \sum_{\ell=1}^L \alpha_\ell p_{m\ell}$$

$$\alpha = {\it effect size}$$
 $p = {\it allele frequency}$

What about continuously sampled populations?

Q_{ST}

$$Q_{ST} = \frac{V_B}{V_B + V_W}$$

$$F_{ST} = \mathbb{E}\left[\frac{V_B}{V_B + V_W}\right]$$

$$\mathbf{F} = egin{bmatrix} \mathbf{F_1} & \mathbf{0} \ \mathbf{0} & \mathbf{F_2} \end{bmatrix}$$

Q_{ST}

$$Q_{ST} = \frac{V_B}{V_B + V_W}$$

$$F_{ST} = \mathbb{E}\left[\frac{V_B}{V_B + V_W}\right]$$

$$\mathbf{F} = egin{bmatrix} \mathbf{F_1} & \mathbf{0} \ \mathbf{0} & \mathbf{F_2} \end{bmatrix}$$

$$Q_{ST}$$

$$Q_{ST} = \frac{(\vec{U}_1 \cdot \vec{Z})^2}{(\vec{U}_1 \cdot \vec{Z})^2 + \sum_{j=2}^K (\vec{U}_j \cdot \vec{Z})^2}$$

$$F_{ST} = \frac{\lambda_1}{\lambda_1 + \sum_{j=2}^K \lambda_j}$$

$$\mathbf{F} = \begin{bmatrix} \vec{U}_1 & \vec{U}_2 & \dots & \vec{U}_K \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_K \end{bmatrix} \begin{bmatrix} \vec{U}_1^T \\ \vec{U}_2^T \\ \dots \\ \vec{U}_K^T \end{bmatrix}$$

Positive result if population predicts phenotype better than expected

Positive result if population predicts phenotype better than expected

$$Q_{ST}$$

$$Q_{ST} = \frac{(\vec{U}_1 \cdot \vec{Z})^2}{(\vec{U}_i \cdot \vec{Z})^2 + \sum_{j=2}^{K-1} (\vec{U}_j \cdot \vec{Z})^2}$$

$$F_{ST} = \frac{\lambda_1}{\lambda_1 + \sum_{j=2}^{K-1} \lambda_j}$$

$$\mathbf{F} = \begin{bmatrix} \vec{U}_1 & \vec{U}_2 & \dots & \vec{U}_{K-1} \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_{K-1} \end{bmatrix} \begin{bmatrix} \vec{U}_1^T \\ \vec{U}_2^T \\ \dots \\ \vec{U}_{K-1}^T \end{bmatrix}$$

$$\begin{bmatrix} \vec{U}_1^T \\ \vec{U}_2^T \\ \dots \\ \vec{U}_{K-1}^T \end{bmatrix}$$

Q_{ST}

$$Q_{PC1:2} = \frac{V_{PC1:2}}{V_{PC1:2} + V_{PC3:K-1}}$$

$$F_{PC1:2} = \mathbb{E}\left[\frac{V_{PC1:2}}{V_{PC1:2} + V_{PC3:K-1}}\right]$$

$$\mathbf{F} = \begin{bmatrix} \vec{U}_1 & \vec{U}_2 & \dots & \vec{U}_{K-1} \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_{K-1} \end{bmatrix} \begin{bmatrix} \vec{U}_1^T \\ \vec{U}_2^T \\ \dots \\ \vec{U}_{K-1}^T \end{bmatrix}$$

Q_{ST}

$$Q_{PC1} = \frac{\sum_{i=1}^{2} (\vec{U}_{i} \cdot \vec{Z})^{2}}{\sum_{i=1}^{2} (\vec{U}_{i} \cdot \vec{Z})^{2} + \sum_{j=3}^{K-1} (\vec{U}_{j} \cdot \vec{Z})^{2}}$$
$$F_{PC1} = \frac{\sum_{i=1}^{2} \lambda_{i}}{\sum_{i=1}^{2} \lambda_{i} + \sum_{j=3}^{K-1} \lambda_{j}}$$

$$\mathbf{F} = \begin{bmatrix} \vec{U}_1 & \vec{U}_2 & \dots & \vec{U}_{K-1} \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_{K-1} \end{bmatrix} \begin{bmatrix} \vec{U}_1^T \\ \vec{U}_2^T \\ \dots \\ \vec{U}_{K-1}^T \end{bmatrix}$$

$$\begin{vmatrix} \vec{U}_1^T \\ \vec{U}_2^T \\ \dots \\ \vec{U}^T \end{vmatrix}$$

Genetic Divergence for Height in Europe

Genetic Divergence for Height in Europe

Genetic Divergence in Height Along PC1 in Europe

Genetic Divergence in Height Along PC1 in Europe

Genetic Divergence in Height Along PC1 in Europe

Take Aways

► Height associated SNPs significantly correlated with PC1/N-S axis in Europe (but we already knew that)

Take Aways

- ► Height associated SNPs significantly correlated with PC1/N-S axis in Europe (but we already knew that)
- $ightharpoonup Q_{ST}/F_{ST}$ can be formulated in terms of reduced rank factorizations of the individual-by-individual kinship matrix
 - ▶ Direct relationship to PCA, *structure*, Sparse Factor Analysis
 - Engelhardt and Stephens 2010

Things I Didn't Mention

- Can add include multiple correlated traits, but interpretation potentially trickier
 - Chenoweth and Blows (2008)
 - Martin et al (2008)
- In species where it's possible to set up breeding designs, continuous sampling is not a barrier

Acknowledgements