Matemática Discreta

Números Combinatórios

Universidade de Aveiro 2016/2017

http://moodle.ua.pt

Matemática Discreta

Factoriais e números binomiais

Números de Fibonacci e número de ouro

Factorial

- $n! = n \cdot (n-1) \cdots 2 \cdot 1 = n \cdot (n-1)!$.
- Esta fórmula recursiva ⇒ elevado esforço de cálculo!
- Por convenção, 0! = 1.

Teorema (fórmula de Stirling)

Para cada $n \in \mathbb{N}$ tem-se

$$\sqrt{2\pi n} \ n^n e^{-n} < n! < \sqrt{2\pi n} \ n^n e^{-n + \frac{1}{12n}}.$$

Factorial duplo

• Para $n \in \mathbb{N}_0$,

$$n!! = \left\{ \begin{array}{ll} 1, & \text{se } n \in \{0, 1\} \\ n(n-2)!!, & \text{se } n \geq 2 \end{array} \right.$$

- Observações:
 - n!! é o produto de todos os números naturais não superiores a n e com a paridade de n.
 - ▶ Para todo o $n \in \mathbb{N}$,

$$n!!(n-1)!! = n!$$

Exemplo e exercício

Exemplo

Vamos mostrar que para $n = 2k \ (k \in \mathbb{N}) \ n!! = 2^k k!$

Solução.

$$n!! = 2 \cdot 4 \cdot 6 \dots (n-2) \cdot n$$

= $(2 \cdot 1)(2 \cdot 2)(2 \cdot 3) \dots 2(k-1)(2k)$
= $2^k k!$

Exercício

Mostrar que para n = 2k + 1, com $k \in \mathbb{N}_0$, $n!! = \frac{n!}{2^k k!}$.

Números binomiais e números binomiais generalizados

• Uma vez que para $1 \le k \le n$,

$$\binom{n}{k} = \frac{A_{n,k}}{k!} = \frac{n!}{k!(n-k)!},$$

obtém-se a fórmula recursiva para a de terminação de $\binom{n}{k}$:

•
$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$
, para $0 < k < n \text{ e } n > 2$.

Definição (de número binomial generalizado)

Dado $x \in \mathbb{R}$ e $k \in \mathbb{N}_0$,

$$\begin{pmatrix} x \\ k \end{pmatrix} = \frac{(x)_k}{k!}$$

$$= \begin{cases} 1, & \text{se } k = 0 \\ \frac{x(x-1)...(x-k+1)}{k!}, & \text{se } k > 0. \end{cases}$$

Exemplo e exercício

Exemplo

Vamos determinar $\binom{-1}{k}$.

• Solução.

Exercício

Determinar $\binom{-1/2}{k}$.

Números de Fibonacci e número de ouro

Números de Fibonacci

• Os números de Fibonacci foram definidos pela seguinte fórmula recursiva:

$$f_n = f_{n-1} + f_{n-2}, n \ge 3$$

 $f_1 = f_2 = 1$

Raízes características da fórmula recursiva:

$$\Phi = \frac{1+\sqrt{5}}{2} = 1.618033988749894...$$
 (Número de ouro).

$$\hat{\Phi} = \frac{1-\sqrt{5}}{2} = \frac{-1}{\Phi} = -0.61803988749...$$

$$f_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right)$$

$$= \frac{1}{\sqrt{5}} (\Phi^n - \hat{\Phi}^n), \ n \in \mathbb{N}$$
(1)

└Números de Fibonacci e número de ouro

Função geradora dos números de Fibonacci

$$\bullet \mathcal{F}(x) = \sum_{n=1}^{+\infty} f_n x^n = \frac{x}{1-x-x^2} .$$

Exemplo

Determinar a soma dos *n* primeiros números de Fibonacci.

Solução. Da igualdade $f_n = f_{n+1} - f_{n-1}$, $n \ge 2$, vem

$$f_{2} = f_{3} - f_{1}$$

$$f_{3} = f_{4} - f_{2}$$

$$\vdots$$

$$f_{n-1} = f_{n} - f_{n-2}$$

$$f_{n} = f_{n+1} - f_{n-1}$$

$$f_{n} = f_{n+1} - f_{n-1}$$

$$\sum_{k=2}^{n} f_{k} = f_{n} + f_{n+1} - f_{1} - f_{2} \Rightarrow \sum_{k=1}^{n} f_{k} = f_{n+2} - 1$$

Exercício

Exercício

Determinar a soma dos *n* primeiros números de Fibonacci com índice par e com índice ímpar, ou seja,

$$P_n = f_2 + f_4 + \cdots + f_{2n} = \sum_{k=1}^n f_{2k},$$

е

$$I_n = f_1 + f_3 + \cdots + f_{2n-1} = \sum_{k=1}^n f_{2k-1}.$$

Exemplo

Exemplo

Vamos determinar uma fórmula não recursiva para os números de Lucas definidos por:

$$L_n = f_{n+1} + f_{n-1}, (2)$$

onde f_k denota o $k^{-\text{\'esimo}}$ número de Fibonacci e $f_0 = 0$. Solução. Dado que

$$L_{n-1} + L_{n-2} =^{(2)} f_n + f_{n-2} + f_{n-1} + f_{n-3}$$

$$= f_{n+1} + f_{n-1}$$

$$= L_n,$$
(3)

a solução geral da equação de recorrência (3) é (ver (1))

$$L_n = C_1 \Phi^n + C_2 \hat{\Phi}^n. \tag{4}$$

Exemplo (cont.)

Os valores iniciais de (L_n)_{n∈N} são:

$$L_1 = {}^{(2)} f_2 + f_0 = 1$$
 (5)
 $L_2 = {}^{(2)} f_3 + f_1 = 3$

$$L_0 = {}^{(3)} L_2 - L_1 = 2$$
 (6)

- A determinação de C_1 e C_2 faz-se a partir de (4), (5) e (6).
- Assim, obtém-se $C_1 = C_2 = 1$. Logo,

$$L_n = \Phi^n + \hat{\Phi}^n$$
.