EECS 725 – Introduction to Radar

Homework Assignment #2 (30 points)

A side-looking, pulse-Doppler radar is carried on a satellite that orbits the Earth. The system has the following parameters:

Orbit altitude 330 km (above the sea level)

Radar frequency
Along-track antenna dimension
Transmitted pulse duration
Illuminated swath width
Mid-swath incidence angle

1 GHz
5 m
50 μs
37°

In addressing the problems listed below, assume that only echoes from the illuminated swath are observed. You must consider the curvature of the Earth (i.e., involves spherical geometry).

<u>Problem 1.</u> Find the range of available PRF values assuming it is permissible to have multiple pulses in the air.

<u>Problem 2.</u> If all the system parameters remain constant (including the illuminated swath width) except for the radar's frequency, how would the range of available PRF values change? Explain.

<u>Problem 3.</u> For the given system parameters, what is the maximum possible swath width? That is, how large might the swath width become before no valid PRF values are available?

Problem parameters

R_{e}	Earth's average radius
	(6378.145 km)
h	orbit altitude above sea level (km)
α	core angle
R	radar range
γ	look angle
Θ_{i}	incidence angle
V	satellite velocity (km/s)
$\mathbf{v}_{\mathbf{g}}$	satellite ground velocity (km/s)
μ	standard gravitational parameter
	$(398,600 \text{ km}^3/\text{s}^2 \text{ for Earth})$

Spherical Earth geometry calculations

$$\gamma + \alpha = \theta_{\rm i}$$

$$\frac{R_e + h}{\sin \theta_i} = \frac{R_e}{\sin \gamma} = \frac{R}{\sin \alpha}$$

$$R^{2} = R_{e}^{2} + (R_{e} + h)^{2} - 2 R_{e} (R_{e} + h) \cos \alpha$$

Satellite velocity calculations

$$v = \sqrt{\mu/(R_e + h)}$$
, km/s

$$v_{g} = v R_{e} / (R_{e} + h)$$