Pay Attention: ADHD Through the Lifespan

Anthony L. Rostain, MD, MA
Professor of Psychiatry and Pediatrics
Perelman School of Medicine at the
University of Pennsylvania

Week 5: Neurochemistry of ADHD

Homework Review

Neurotransmitter systems

Derived from Monoamines

- Serotonin (5-HT)
- Norepinephrine (NE)
- Dopamine (DA)
- Acetylcholine (Ach)
- Histamine

Derived from Amino Acids

- Glutamate
- γ amino butyric acid (GABA)
- Aspartate
- Glycine

Human Brain

- Contains over 100 billion neurons,
 - Manifold neurotransmitter systems & subsystems.
- The earth contains over 6 billion people.
- Glutamate system > 20 billion neurons.
- GABA system > 8 billion cortical neurons.
- 30,000 to 50,000 norepinephrine neurons.
- 250,000 serotonin neurons.
- 250,000 dopamine neurons.

Human Brain

- Billion-cell systems DO something
 - Glutamate.
 - GABA.
- Thousand-cell systems FINE TUNE the billion cell systems.
 - Serotonin.
 - Catecholamines (norepinephrine, dopamine)
 - Histamine

Catecholamines and Brain Activity

DLPFC, dorsolateral prefrontal cortex; VLPFC, left ventrolateral prefrontal cortex; BS-ACh, pedunculopontine/laterodorsal tegmental nuclei; VTA/SN, ventral tegmental area-substantia nigra; NBM, nucleus basalis magnocellularis; LC, locus coeruleus; DA, dopamine; acetylcholine; NE, norepinephrine; NBM, nucleus basalis magnocellularis; VTA, ventral tegmental area; SN, substantia nigra.

Neurochemical Deficits in ADHD

- Dopamine dysregulation
- Norepinephrine dysregulation
- Evidence from
 - Drug responding:
 - Stimulants increase dopamine outside nerves
 - Methylphenidate works by slowing re-uptake
 - Amphetamines work by increasing production/release
 - Atomoxetine decreases norepinephrine reuptake
 - Molecular genetics: genes to date are dopamine and norepinephrine regulators
 - Distribution of neurotransmitters in identified brain regions associated with ADHD

Mid-Lecture Questions

Dopamine (DA) is a key neurotransmitter in the biology of a wide array of brain processes

- Control of movement
- Reward
- Motivation
- Attention
- Experience of Pain or Pleasure
- Emotions

DA modulates cortical and basal ganglia neural circuits

- Dorsolateral Prefrontal Cortex (DLPFC)
- Orbital Frontal Cortex
- Anterior Cingulate Cortex
- Insular Cortex
- Limbic System
- Nucleus Accumbens

Dopamine clearance from the synaptic cleft is regulated by:

- Dopamine Transporter Protein (DAT1)
 - Responsible for rapid uptake of DA from synaptic cleft
- Monoamine Oxidase A (MAO-A)
 - Catabolism of DA
- Catechol-O-Methyl-Transferase (COMT)
 - Catabolism of DA

*Note: genetic studies of ADHD have focused on candidate genes coding for elements of DA metabolism

Mechanism of Action MPH: Insights from PET Imaging Studies

(Volkow et al. J Att Dis. 2002;(suppl)1)

- Therapeutic doses of MPH significantly enhance extracellular dopamine (DA) in the basal ganglia
 - (a) MPH's therapeutic effects are in part due to amplification of DA signals
 - (b) Variability in responses is in part due to differences in DA tone between subjects
 - (c) MPH's effects are context dependent
- Because DA enhances task-specific neuronal signaling and decreases noise, MPH-induced increases in DA could improve attention and decrease distractibility
- Since DA modulates motivation, the increases in DA would also enhance the saliency of the task facilitating the "interest it elicits" and thus improving performance

Norepinephrine

- Acts on Post-synaptic Alpha-2 Receptors
- Three Subtypes of Alpha-2 Receptors: A, B and C
- Most Alpha-2 Receptors post-synaptic to NE cells
 e.g., dendritic spines of PFC Pyramidal Cells
- The A Subtype most important for NE action in PFC
- Alpha-2A receptor stimulation strengthens PFC network connections

Mid-Lecture Questions

