Capítulo 1

Ondas planas

Lejos de las fuentes de campo las ecuaciones de Maxwell son

$$\nabla \cdot \mathbf{E} = 0 \qquad \qquad \nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \cdot \mathbf{B} = 0 \qquad \qquad \nabla \times \mathbf{B} = \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t}$$

Podemos derivar con respecto al tiempo en cada ecuación de rotor y reemplazar con la otra de manera que

$$\boldsymbol{\nabla}\times(\boldsymbol{\nabla}\times\mathbf{B}) = \frac{1}{c}\frac{\partial}{\partial t}\left(-\frac{1}{c}\frac{\partial\mathbf{B}}{\partial t}\right) = \boldsymbol{\nabla}(\boldsymbol{\nabla}\cdot\mathbf{B}) - \nabla^2\mathbf{B}$$

$$\boldsymbol{\nabla}\times(\boldsymbol{\nabla}\times\mathbf{E})=-\frac{1}{c}\frac{\partial}{\partial t}\left(\frac{1}{c}\frac{\partial\mathbf{E}}{\partial t}\right)=\boldsymbol{\nabla}(\boldsymbol{\nabla}\cdot\mathbf{E})-\nabla^{2}\mathbf{E}$$

y esto nos lleva a

$$\nabla^2 \mathbf{B} - \frac{1}{c^2} \frac{\partial^2 \mathbf{B}}{\partial t^2} = 0 \qquad \nabla^2 \mathbf{E} - \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0$$

dos sendas ecuaciones de onda para E y B. Pero es sabido que la solución de

$$\nabla^2 \psi - \frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2} = 0$$

es

$$\psi = A \operatorname{e}^{i(\mathbf{k} \cdot \mathbf{x} - \omega t)} + B \operatorname{e}^{i(\mathbf{k} \cdot \mathbf{x} - \omega t)}$$

de modo que podemos postular como soluciones para nuestras ecuaciones de onda a

$$\mathbf{E} = \vec{\mathbb{E}}_0 \, \mathrm{e}^{i(\mathbf{k} \cdot \mathbf{x} - \omega \, t)} \qquad \mathbf{B} = \vec{\mathbb{B}}_0 \, \mathrm{e}^{i(\mathbf{k} \cdot \mathbf{x} - \omega \, t)}$$

Se tiene además que ${\bf k}=k\hat{n}$ da a través de \hat{n} la dirección de propagación de la onda. El número de onda k podrá ser complejo lo cual refleja atenuación. Las características del medio entran a través de

$$k = \sqrt{\mu \epsilon} \frac{\omega}{c}$$

Por su parte $\vec{\mathbb{E}}_0$ y $\vec{\mathbb{B}}_0$ son complejos uniformes y podrán dar desfasajes.

Al utilizar las ecuaciones de divergencia sobre las soluciones se obtiene que

$$\hat{n} \cdot \vec{\mathbb{E}}_0 = 0 \qquad \hat{n} \cdot \vec{\mathbb{B}}_0 = 0$$

de manera que las ondas se propagan perpendicularmente a los campos, por ello las ondas electromagnéticas son transversales.

Utilizando las ecuaciones de rotor se llega a la importante relación

$$\vec{\mathbb{B}}_0 = \sqrt{\mu \epsilon} \hat{n} \times \vec{\mathbb{E}}_0$$

de modo que los vectores $\vec{\mathbb{E}}_0$ y $\vec{\mathbb{B}}_0$ también son perpendiculares. Si el vector $\mathbf{k} \in \mathbb{R}$ entonces $\vec{\mathbb{E}}_0$ y $\vec{\mathbb{B}}_0$ tienen la misma fase.

En el vacío o en un medio LIH los campos E y B estarán en fase. Asimismo

$$\mathbf{S} \parallel \hat{n}$$

pues $\mathbf{S} \propto \mathbf{E} \times \mathbf{H}$.

En un medio anisótropo $\nabla \cdot \mathbf{D} = \nabla \cdot (\epsilon \mathbf{E}) = 0$ siendo ϵ un tensor. Allí $\vec{\mathbb{E}}_0 \cdot \hat{n} \neq 0$ salvo que ϵ estee diagonalizado y $\mathbf{E} \parallel$ al eje principal.

Notemos que \mathbf{E},\mathbf{B} y \hat{n} forman una terna derecha.

1.0.1 Sobre complejos

$$\mathcal{R}(A) = \frac{1}{2}(A+A^*) \qquad \text{con } A \in \mathbb{C}$$

Sean

$$\mathbf{A}(\mathbf{x},t) = \mathbf{A}(\mathbf{x}) e^{-i\omega t} \qquad \qquad \mathbf{B}(\mathbf{x},t) = \mathbf{B}(\mathbf{x}) e^{-i\omega t}$$

siempre trabajaremos en general con dependencias temporales armónicas y metemos $e^{i\mathbf{k}\cdot\mathbf{x}}$ en el módulo vbA_0 que pasa a depender de \mathbf{x} .

Los campos físicos son siempre la parte real de las expresiones complejas.

$$\mathcal{R}(\mathbf{A} + \mathbf{B}) = \mathcal{R}(\mathbf{A}) + \mathcal{R}(\mathbf{B})$$

Acá hay que hacer las cuentas para demostrar todo esto que acá se dice sin más. con operaciones lineales es lo mismo tomar parte real antes o después.

$$\mathcal{R}(\mathbf{A}.\mathbf{B}) \neq \mathfrak{R}(\mathbf{A}) + \mathcal{R}(\mathbf{B})$$

con operaciones no lineales no es lo mismo. Para hacer producto necesito tomar la parte real de cada factor y entonces

$$\Re(\mathbf{A}).\Re(\mathbf{B}) = \frac{1}{2}\Re(\mathbf{A}.\mathbf{B}^* + \mathbf{A}.\mathbf{B}\,\mathrm{e}^{-i2\omega t})$$

Pero como en las aplicaciones estaré interesado en el promedio sobre un número entero de períodos,

$$\langle \mathbf{AB} \rangle = \langle \mathfrak{R}(\mathbf{A}).\mathfrak{R}(\mathbf{B}) \rangle = \frac{1}{2}\mathfrak{R}(\mathbf{A}.\mathbf{B}^*)$$

1.0.2 Poynting promedio y energías promedio

Los campos E y H en ondas electromagnéticas toman la forma

$$\mathbf{E} = \vec{\mathbb{E}}(\mathbf{x}) e^{-i\omega t}$$
 $\mathbf{H} = \vec{\mathbb{H}}(\mathbf{x}) e^{-i\omega t}$

de manera que

$$\mathbf{S}(\mathbf{x},t) = \frac{c}{4\pi} \frac{1}{2} \mathfrak{R}(\vec{\mathbb{E}} \times \vec{\mathbb{H}}^* + \vec{\mathbb{E}} \times \vec{\mathbb{H}} e^{-i2\omega t})$$
$$\langle \mathbf{S}(\mathbf{x},t) \rangle = \frac{c}{8\pi} \mathfrak{R}(\vec{\mathbb{E}} \times \vec{\mathbb{H}}^*)$$

En un MLIH es

$$\vec{\mathbb{B}} = \sqrt{\mu \epsilon} \hat{n} \times \vec{\mathbb{E}} \qquad \qquad \vec{\mathbb{H}} = \sqrt{\frac{\epsilon}{\mu}} \hat{n} \times \vec{\mathbb{E}}$$

donde usamos que $\mathbf{H} = \mathbf{B}/\mu$

$$\langle \mathbf{S}(\mathbf{x},t) \rangle = \frac{c}{8\pi} \Re(\vec{\mathbb{E}} \times \sqrt{\frac{\epsilon}{\mu}} (\hat{n} \times \vec{\mathbb{E}})^*)$$

$$\langle \mathbf{S}(\mathbf{x},t) \rangle = \frac{c}{8\pi} \sqrt{\frac{\epsilon}{\mu}} (\hat{n}(\vec{\mathbb{E}} \cdot \vec{\mathbb{E}}^*) - \vec{\mathbb{E}}^*(\vec{\mathbb{E}} \cdot \hat{n}))$$

y finalmente

$$\langle \mathbf{S}(\mathbf{x},t) \rangle = \frac{c}{8\pi} \sqrt{\frac{\epsilon}{\mu}} |\vec{\mathbb{E}}|^2 \hat{n}$$

que es el vector de Poynting para ondas en MLIH.

$$\begin{split} U(\mathbf{x},t) &= \frac{1}{8\pi} (\mathbf{H} \cdot \mathbf{B} + \mathbf{E} \cdot \mathbf{D}) \\ \langle U(\mathbf{x},t) \rangle &= \frac{1}{8\pi} \frac{1}{2} \Re(\vec{\mathbb{H}} \cdot \vec{\mathbb{B}}^* + \vec{\mathbb{E}} \cdot \vec{\mathbb{D}}^*) \\ \langle U(\mathbf{x},t) \rangle &= \frac{1}{16\pi} \Re(\frac{1}{\mu} |\vec{\mathbb{B}}|^2 + \epsilon |\vec{\mathbb{E}}|^2) = \frac{1}{8\pi} |\vec{\mathbb{E}}|^2 \end{split}$$

puesto que

$$|\vec{\mathbb{B}}|^2 = \mu \epsilon |\vec{\mathbb{E}}|^2,$$

y entonces la densidad de energía promedio es

$$\langle U(\mathbf{x},t)\rangle = \frac{1}{8\pi} |\vec{\mathbb{E}}|^2.$$

1.1 Polarización de ondas

Una onda plana bien general en \hat{n} es

$$\mathbf{E}(\mathbf{x},t) = (\hat{\epsilon}_1 \vec{\mathbb{E}}_1 + \hat{\epsilon}_2 \vec{\mathbb{E}}_2) \, \mathrm{e}^{i(\mathbf{k} \cdot \mathbf{x} - \omega t)}$$

Figura 1.1

Si $\vec{\mathbb{E}}_1, \vec{\mathbb{E}}_2$ están en fase entonces $\mathbf{E}(\mathbf{x},t)$ está linealmente polaridaza con θ fijo. Es como que \mathbf{E} viaja siempre por el mismo andarivel, oscilando. Las amplitudes $\vec{\mathbb{E}}_1, \vec{\mathbb{E}}_2$ son complejos para permitir la diferencia de fase entre componentes

Si $\vec{\mathbb{E}}_1, \vec{\mathbb{E}}_2$ tienen fase arbitraria entonces $\mathbf{E}(\mathbf{x},t)$ está elípticamente polarizada.

Si $|\vec{\mathbb{E}}_1|=|\vec{\mathbb{E}}_2|$ y la fase es $\pi/2$ entonces $\mathbf{E}(\mathbf{x},t)$ está circularmente polarizada.

$$\vec{\mathbb{E}}_2 = \vec{\mathbb{E}}_1 e^{i\pi/2} = \vec{\mathbb{E}}_1 i$$

entonces

$$\mathbf{E}(\mathbf{x},t) = \vec{\mathbb{E}}_1(\hat{\epsilon}_1 \pm \hat{\epsilon}_2) \, \mathrm{e}^{i(\mathbf{k} \cdot \mathbf{x} - \omega t)}$$

donde el + corresponde a \mathcal{C}^+ antihoraria y el - a horaria. Nos definimos por comodidad,

 $\hat{\epsilon}_+ \equiv \frac{\hat{\epsilon}_1 + i\hat{\epsilon}_2}{\sqrt{2}} \qquad \qquad \hat{\epsilon}_- = \frac{\hat{\epsilon}_1 - i\hat{\epsilon}_2}{\sqrt{2}}$

una base de polarizaciones. Se cumplen

$$\begin{split} \hat{\epsilon}_{\pm} \cdot \hat{\epsilon}_{\mp}^* &= 0 & \qquad \hat{\epsilon}_{\pm} \cdot \hat{\epsilon}_{\pm}^* &= 1 \\ \\ \hat{\epsilon}_{1} &= \sqrt{2} (\hat{\epsilon}_{+} + i \hat{\epsilon}_{-}) & \qquad \hat{\epsilon}_{2} &= \sqrt{2} (\hat{\epsilon}_{+} - i \hat{\epsilon}_{-}) \end{split}$$

luego cualquier polarización se puede escribir como combinación lineal de \mathcal{C}^+ y \mathcal{C}^- . Entonces una onda plana general es

$$\mathbf{E}(\mathbf{x},t) = (\hat{\epsilon}_{+}\vec{\mathbb{L}}_{+} + \hat{\epsilon}_{-}\vec{\mathbb{L}}_{-}) e^{i(\mathbf{k}\cdot\mathbf{x} - \omega t)}$$

Una onda que rebota en un espejo transfiere impulso lineal. Una onda \mathcal{C} lleva \mathbf{L} pero no lo transfiere en un rebote perfecto. Por ser \mathbf{L} un vectorial axial (pseudovector) el reflejo es equivalente a una simetría del sistema.

Tenemos dos base entonces $\{\hat{\epsilon}_1, \hat{\epsilon}_2\}$ y $\{\hat{\epsilon}_+, \hat{\epsilon}_-\}$. Además,

$$\frac{\vec{\mathbb{E}}_{-}}{\vec{\mathbb{E}}_{+}} = r e^{i\alpha}$$

si $r=\pm 1, \alpha=0$ entonces estamos frente a linealmente polarizada.

1.2 Reflexión y refracción de ondas en medios

Partimos de una onda

$$\mathbf{E}(\mathbf{x},t) = \vec{\mathbb{E}}_0 \; \mathrm{e}^{i(\mathbf{k}\cdot\mathbf{x} - \omega \, t)}$$

donde

$$k = \sqrt{\mu \epsilon} \frac{\omega}{c} = \frac{\omega}{v}$$

siendo v la velocidad en el medio. Los índices de refracción serán

$$n = \sqrt{\mu \epsilon}$$
 $n' = \sqrt{\mu' \epsilon'}$

Figura 2.2

de tal suerte que los campos son

$$\mathbf{B} = \frac{\sqrt{\mu\epsilon}}{k} \mathbf{k} \times \mathbf{E}$$
 $\mathbf{H} = \sqrt{\frac{\epsilon}{\mu}} \frac{1}{k} \mathbf{k} \times \mathbf{E}$

y tenemos

$$|\mathbf{k}| = |\mathbf{k''}|$$
 pues $\mu'' = \mu, \, \epsilon'' = \epsilon$

Utilizando las condiciones de contorno llegamos a

$$\omega t = \omega' t = \omega'' t$$

$$\mathbf{k} \cdot \mathbf{x} \mid_{z=0} = \mathbf{k}' \cdot \mathbf{x} \mid_{z=0} = \mathbf{k}'' \cdot \mathbf{x} \mid_{z=0}$$

La existencia de condiciones de contorno en z=0 que deben ser satisfechas en todo t en todo punto (x,y) lleva a todos los factores de fase iguales en z=0. Se debe tener ${\bf B}$ normal continuo y ${\bf D}$ normal continuo también, lo cual viene de ${\bf \nabla}\cdot{\bf B}=0$ y ${\bf \nabla}\cdot{\bf D}=0$.

La frecuencia ω es la misma para el medio 1 y el medio 2 pues $\lambda_1 \neq \lambda_2$. Los tres vectores $\mathbf{k}, \mathbf{k}', \mathbf{k}''$ están en un mismo plano, entonces

$$k\sin(i) = k'\sin(r) = k''\sin(i'),$$

y se deducen las consecuencias

$$n\sin(i) = n'\sin(i')$$
 Ley de Snell,

$$i = i'$$
 Ley de reflexión

Luego se plantean los contornos

$$\begin{split} D_{\hat{n}}: & \quad & [\mathbf{D}_{2}-\mathbf{D}_{1}]\cdot\hat{n}=0 \quad \rightarrow \quad & [\epsilon'\mathbf{E}_{0}^{'}-\epsilon(\mathbf{E}_{0}+\mathbf{E}_{0}^{''})]\cdot\hat{n}=0 \\ \\ E_{\hat{t}}: & \quad & \hat{n}\times[\mathbf{E}_{2}-\mathbf{E}_{1}]=0 \quad \rightarrow \quad & \hat{n}\times[\mathbf{E}_{0}^{'}-(\mathbf{E}_{0}+\mathbf{E}_{0}^{''})]=0 \\ \\ B_{\hat{n}}: & \quad & [\mathbf{k}'\times\mathbf{E}_{0}^{'}-(\mathbf{k}\times\mathbf{E}_{0}+\mathbf{k}''\times\mathbf{E}_{0}^{''})]\cdot\hat{n} \end{split}$$

$$H_{\hat{t}}: \qquad \hat{n} \times \left[\frac{1}{u'}\mathbf{k}' \times \mathbf{E}_{0}^{'} - \frac{1}{u}(\mathbf{k} \times \mathbf{E}_{0} + \mathbf{k}'' \times \mathbf{E}_{0}^{''})\right] = 0$$

de manera que

$$\mathbf{B} = \frac{\sqrt{\mu\epsilon}}{k} \mathbf{k} \times \mathbf{E} = \frac{c}{\omega} \mathbf{k} \times \mathbf{E} \qquad \mathbf{H} = \frac{c}{\mu\omega} \mathbf{k} \times \mathbf{E}$$

donde c/ω es el mismo para ambos medios.

Aplicando diligentemente los contornos se llega a las *relaciones de Fresnel* que son los cocientes de las amplitudes relativas.

Usando $\mu \sim 1$ (válido para medios transparentes) tenemos

$$\begin{split} \frac{TE}{\frac{E_0^{''}}{E_0}} &= -\frac{\sin(i-r)}{\sin(i+r)} & \frac{E_0^{''}}{E_0} &= \frac{\tan(i-r)}{\tan(i+r)} \\ \frac{E_0^{''}}{E_0} &= 1 + \frac{\sin(r-i)}{\sin(i+r)} & \frac{E_0^{''}}{E_0} &= \frac{2\sin(r)\cos(i)}{\sin(i+r)\cos(i-r)} \end{split}$$

Figura 2.3

frecuencias ópticas $\mu'/\mu = 1$

Si $i\sim 0$ entonces TE y TM son similares a menos de un signo.

Polarization (Brewster angle)

Es un i_B tal que no hay onda ${f E}$ reflejada (en TM),

$$E_0^{''} = 0,$$

puest $tan(i+r) \to \infty$

$$i_b = atan\left(\frac{n'}{n}\right),$$

pues $i_B + r = \pi/2$ entonces

$$\frac{n}{n'}\sin(i_B) = \cos(i_B) \rightarrow i_b = atan\left(\frac{n'}{n}\right),$$

Sirve para producir luz polarizada linealmente.

Figura 2.4

Atención, pero

$$\mathbf{S}_i \neq \mathbf{S}_r + \mathbf{S}_t$$

pues S no está relacionado linealmente con E, B, y lo que sí vale es

$$\mathbf{S}_i \cdot \hat{n} = \mathbf{S}_r \cdot \hat{n} + \mathbf{S}_t \cdot \hat{n}$$

Reflexión interna total

Sea $n_{inc} > n_{trans}.$ Entonces se da que

$$n\sin(i) = n'\sin(r),$$

$$\frac{n}{n'}\sin(i) = \sin(r),$$

y el LHS es mayor igual a 1 para algunos i. Existe un ángulo límite

$$\sin(r) = 1 = \frac{n}{n'}\sin(i)$$

$$i_0 = asin\left(\frac{n'}{n}\right)$$

de manera que si $i \geq i_0$ entonces $\sin(r) > 1$ y se debe tener un $r \in \mathbb{C}$.

Figura 2.5

Si $\sin(r) > 1$ se tiene $\sin(r)^2 > 1$ y como por teorema de Pitágoras es

$$\cos(r)^2 = 1 - \sin(r)^2 \rightarrow \cos(r) = i\sqrt{\sin(r)^2 - 1}$$

donde notemos espcialmente que hemos sacado fuera un $\sqrt{-1}=i$ para que el argumento de la raíz sea positivo en este caso especial. Luego

$$\cos(r) = i\sqrt{\frac{n}{n'}\sin(i)^2 - 1} = ia$$

y si $\sin(r) = 1$ entonces $r = \pi/2$. Entonces

$$\mathrm{e}^{i(\mathbf{k}\cdot\mathbf{x})} = \mathrm{e}^{i(k\cos(r)z + k\sin(r)x)} = \underbrace{\mathrm{e}^{-kaz}}_{\text{atenuación}} \underbrace{\mathrm{e}^{ik\sin(r)x}}_{\text{propagación}}$$

1.3 Corrientes en conductores

La continuidad de la carga y la divergencia de ${f D},$

$$\nabla \cdot \mathbf{J} + \frac{\partial \rho}{\partial t} = 0 \qquad \nabla \cdot \mathbf{D} = 4\pi \rho,$$

nos llevan a

$$\nabla \cdot \mathbf{J} + \frac{1}{4\pi} \nabla \cdot \frac{\partial \mathbf{D}}{\partial t} = 0$$

$$\nabla \cdot \left(\mathbf{J} + \frac{1}{4\pi} \frac{\partial \mathbf{D}}{\partial t} \right) = 0$$

y esto lo puedo pensar como una densidad de corriente estacionaria,

$$\nabla \cdot \mathbf{J}_{e} = 0 \tag{3.1}$$

siendo \mathbf{J}_e proveniente de un \mathbf{E}' tal que $\nabla \times \mathbf{E}' \neq 0$. Recordando la ley de Ohm microscópica, $\mathbf{J} = \sigma \mathbf{E}$,

$$\mathbf{D} = \epsilon \mathbf{E} = \frac{\epsilon}{\sigma} \mathbf{J}$$

y esto nos conduce a una ecuación diferencial para J,

$$\mathbf{J}_{e} = \mathbf{J} + \frac{\epsilon}{4\pi\sigma} \frac{\partial \mathbf{J}}{\partial t} = \left(1 + \frac{\epsilon}{4\pi\sigma} \frac{\partial}{\partial t}\right)$$

y entonces

$$\mathbf{J} = \mathbf{J}_e + \mathbf{J}_0 e^{-4\pi\sigma/\epsilon t}$$

siendo el segundo término del RHS la parte no estacionaria de la corriente. Evidentemente, si $t \to \infty$ esta tiende a cero.

Dado que se verifica (3.1) se tiene

$$-\frac{\partial \rho}{\partial t} = \nabla \cdot \mathbf{J}_0 \, \mathrm{e}^{-4\pi\sigma/\epsilon t}$$

y definimos un tiempo de relajación

$$\tau = \frac{\epsilon}{4\pi\sigma}$$

que es un tiempo característico en el cual se alcanzarían condiciones estacionarias.

Podemos distinguir dos comportamientos entonces en términos de este tiempo de relajación τ , si $t<\tau$

$$\mathbf{J} = \mathbf{J}_e + \mathbf{J}_0 \, \mathrm{e}^{-t/\tau}$$

y en cambio cuando $t\gg au$ se tendrá $\mathbf{J}\approx \mathbf{J}_e$ de manera que

$$\nabla \cdot \mathbf{J} = \nabla \cdot \mathbf{J}_{e}$$
.

Por otra parte con respecto a los conductores, si se da que ($\sigma \ll 1$) estamos en presencia de un conductor malo y no se alcanza *nunca* la condición de $\mathbf{E} = 0$ en el interior. Tienen un τ grande. Si estamos ante un conductor perfecto ($\sigma \rightarrow$

Un campo irrotacional no puede mantener una corriente estacionaria, necesito una FEM para ella. La FEM es una fuente de E no conservativo.

 ∞) la corriente es estacionaria y se tiene un $\mathbf{E} = 0$ en el interior, el tiempo τ es pequeño, tendiendo a cero.

Podemos desarrollar un enfoque similar en términos de la densidad de carga ρ .

$$\nabla \cdot \mathbf{J} = -\frac{\partial \rho}{\partial t} \qquad \qquad \mathbf{J} = \sigma \mathbf{E} = \frac{\sigma}{\epsilon} \mathbf{D}$$

$$\frac{\partial \rho}{\partial t} + \frac{4\pi\sigma}{\epsilon} \rho = 0 \qquad \qquad \nabla \cdot \mathbf{J} = \frac{\sigma}{\epsilon} \nabla \cdot \mathbf{D} = \frac{4\pi\sigma}{\epsilon} \rho$$

Entonces

$$\rho = \rho_0 \, \mathrm{e}^{-t/\tau} \qquad \qquad \tau \equiv \frac{\epsilon}{4\pi\sigma},$$

y una vez que $t\gg \tau$ y se estabiliza el sistema es $\rho=\rho_0$ entonces

$$\nabla \cdot \mathbf{J} = 0 \qquad \qquad \frac{\partial \rho}{\partial t} = 0$$

1.4 Campo electromagnético en un medio conductor

Tenemos un campo EM de fuentes lejanas y queremos ver qué sucede en un medio conductor. Se verifican

$$\nabla \cdot \mathbf{B} = 0 \qquad \nabla \times \mathbf{H} = \frac{4\pi}{c} \mathbf{J} + \frac{1}{c} \frac{\partial \mathbf{D}}{\partial t}$$
$$\nabla \cdot \mathbf{D} = 0 \qquad \nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$$

siendo $\rho_L=0$ y μ,ϵ homogéneos. Modelando de acuerdo

$$\mathbf{B} = \mu \mathbf{E} \qquad \mathbf{D} = \epsilon \mathbf{E}$$

y siendo la ley de Ohm microscópica

$$J = \sigma E$$
,

y reemplazando en la ecuación del rotor para ${f H}$ se tiene

$$\nabla \times \mathbf{H} = \frac{4\pi}{c} \sigma \mathbf{E} + \frac{\epsilon}{c} \frac{\partial \mathbf{E}}{\partial t} = \nabla \times \frac{\mathbf{B}}{\mu}$$

$$\mathbf{\nabla} \times (\mathbf{\nabla} \times \mathbf{E}) = -\frac{1}{c} \mathbf{\nabla} \times \left(\frac{\partial \mathbf{B}}{\partial \mathbf{t}} \right),$$

$$\nabla (\nabla \cdot \mathbf{E}) - \nabla^2 \mathbf{E} = -\frac{1}{c} \frac{\partial}{\partial t} (\nabla \times \mathbf{B})$$

y ahora podemos introducir la expresión que tenemos para el rotor de ${\bf H}$ y usar que la divergencia de ${\bf E}$ es nula de manera que

$$-\nabla^2 \mathbf{E} = -\frac{\mu}{c} \frac{\partial}{\partial t} \left[4\pi \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t} \right]$$

y entonces

$$-\nabla^2 \mathbf{E} + \frac{4\pi\mu\sigma}{c^2} \frac{\partial \mathbf{E}}{\partial t} + \frac{\mu\varepsilon}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0.$$

que no es otra cosa que una ecuación de ondas general. Un par de casos particulares interesantes son el caso $\sigma=0$ que corresponde a un dieléctrico, para el que se tiene

$$\nabla^2 \mathbf{E} - \frac{\mu \varepsilon}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0,$$

una ecuación de ondas usual. Para el caso general $\sigma > 0$ (conductor) podemos pensar en una solución general del tipo onda plana armónica,

$$\mathbf{E}(\mathbf{x}) = \mathbf{E_0} \ e^{i(\mathbf{k} \cdot \mathbf{x} - \omega t)},$$

cuyas derivadas temporales son fáciles de hallar y resultan proporcionales a ${f E}$ de manera que reemplazando este *ansatz* en la ecuación arribamos a

$$\nabla^2 \mathbf{E} + \frac{4\pi}{c^2} i\mu \sigma \omega \mathbf{E} + \frac{1}{c^2} \mu \varepsilon \omega^2 \mathbf{E} = 0,$$

que se puede agrupar de manera más inteligente como

$$\nabla^2 \mathbf{E} + \frac{\mu \varepsilon \omega^2}{c^2} \left(1 + i4\pi \frac{\sigma}{\varepsilon \omega} \right) \mathbf{E} = 0$$

Podemos definir una especie de número de onda efectivo

$$K^2 \equiv k^2 \left(1 + i 4 \pi \frac{\sigma}{\varepsilon \omega} \right)$$

y considerar la ecuación de onda homogénea

$$\nabla^2 \mathbf{E} + K^2 \mathbf{E} = 0.$$

con los diferentes casos particulares ocurriendo dentro de K^2 . Así para el caso de un excelente conductor,

$$4\pi \frac{\sigma}{\varepsilon \omega} \gg 1$$

se tiene

$$\nabla^2 \mathbf{E} + i \frac{4\pi\sigma\mu\omega}{c^2} \mathbf{E} = 0$$

que es una ecuación de difusión para la corriente de conducción (?). Por el contrario en el caso de un conductor pobre

$$4\pi \frac{\sigma}{\varepsilon \omega} \ll 1$$

resulta en

$$\nabla^2 \mathbf{E} + \frac{\mu \varepsilon \omega^2}{c^2} \mathbf{E} = 0$$

que es una ecuación de ondas usual dando como resultado una propagación. Tiende a la ecuación de ondas con $\sigma = 0$.

En general podemos escribir

$$K^2 = k^2 \left(1 + \frac{i}{\tau \omega} \right)$$

donde τ es la relajación del medio y ω es la vibración del campo. Se puede poner en términos del período,

$$K^2 = k^2 \left(1 + \frac{iT}{2\pi\tau} \right)$$

y si $\tau \gg T$ se tiene propagación.

Para metales $\tau \approx 10^{-14}$ segundos y entonces es válida la ecuación de difusión hasta la región de radiofrecuencias. Por ejemplo, si

$$\frac{4\pi\sigma}{\varepsilon\omega}\gg 1 \quad \rightarrow \quad \frac{1}{\tau\omega}\gg 1 \quad \rightarrow \quad \frac{1}{\tau}\gg\omega$$

y para metales se cumple que $1.10^{14} \gg 6.10^6$ siendo este último un valor Estos ejemplitos hay que razonable para ondas de radio.

revisarlos y reescribirlos.

Si consideramos los campos funciones de la distancia ξ de una plano al origen O, tendremos

Figura 4.6

los campos son constantes en los planos de normal \hat{n} (ver ilustración).

$$\boldsymbol{\nabla} = \hat{n} \frac{\partial}{\partial \boldsymbol{\xi}}$$

y de acuerdo a Maxwell,

$$\hat{n} \cdot \frac{\partial \mathbf{D}}{\partial \xi} = 0 \qquad \qquad \hat{n} \cdot \frac{\partial \mathbf{B}}{\partial \xi} = 0$$

$$\hat{n} \times \frac{\partial \mathbf{E}}{\partial \xi} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} \qquad \qquad \hat{n} \times \frac{\partial \mathbf{H}}{\partial \xi} = \frac{4\pi}{c} \sigma \mathbf{E} + \frac{\varepsilon}{c} \frac{\partial \mathbf{E}}{\partial t}$$

y si tomamos producto escalar de la última ecuación con la normal resulta

$$\hat{n}\cdot\left(\hat{n}\times\frac{\partial\mathbf{H}}{\partial\xi}\right)=\frac{4\pi}{c}\sigma\boldsymbol{E}_{n}+\frac{\varepsilon}{c}\frac{\partial\boldsymbol{E}_{n}}{\partial t}=0$$

de manera que

$$E_n = E_n^0 e^{-\frac{4\pi\sigma}{\varepsilon}t}.$$

El $E_{\hat{n}}$ (electrostático) se apaga exponencialmente con el tiempo de relajación del conductor.

$$\hat{n} \cdot \left(\hat{n} \times \frac{\partial \mathbf{E}}{\partial \xi} \right) = \frac{\mu}{c} \frac{\partial H}{\partial t} = 0$$

 ${\cal H}_n$ solo es constante en el tiempo y uniforme en el espacio.

No se ve influenciado por el conductor. Asimismo la energía está metida casi por completo en el campo magnético cuando es un muy buen conductor.

$$K^2 = \mu \varepsilon \frac{\omega^2}{c^2} \left[1 + i \frac{4\pi\sigma}{\varepsilon\omega} \right]$$

de manera que podemos escribir

$$K = \beta + i\frac{\alpha}{2}$$

siendo β el término responsable de la propagación, α el término que se atenua. Esta escritura es sólo conveniente puesto que resulta que

$$\beta = \sqrt{\mu\varepsilon} \frac{\omega}{c} \left[\frac{1 + \sqrt{1 + (\omega\tau)^{-2}}}{2} \right]^{1/2} = k$$

$$\frac{\alpha}{2} = \sqrt{\mu \varepsilon} \frac{\omega}{c} \left[\frac{1 + \sqrt{-1 + (\omega \tau)^{-2}}}{2} \right]^{1/2} = k$$

y ahí vemos la simetría.

Entonces resulta que para el caso de un mal conductor $\frac{4\pi\sigma}{\omega\varepsilon}\ll 1$ o bien $\frac{4\pi\sigma}{\varepsilon}\ll \omega$ o bien $1/\tau\ll \omega$ se tiene

$$K = \sqrt{\mu\varepsilon} \frac{\omega}{c} + i \frac{2\pi\sqrt{\mu}\sigma}{c\sqrt{\varepsilon}}$$

y en cambio por el mismo razonamiento pero para un excelente conductor, $1/\tau\gg\omega$

$$K = \frac{\sqrt{2\pi\omega\mu\sigma}}{c}(1+i)$$

y aquí la parte de atenuación $\alpha/2=\alpha(\omega)/2$ de modo que hay distorsión. En general tendremos

$$\mathbf{E} = \vec{\mathbb{E}}_0 \, \mathrm{e}^{-\alpha/2\hat{n} \cdot \mathbf{x}} \, \mathrm{e}^{i[\beta \hat{n} \cdot \mathbf{x} - \omega t]}$$

que nos muestra una primera exponencial real que es el factor de atenuación. Entre más conductor un medio más rápida es la atenuación.

$$\mathbf{H} = \frac{c}{\mu\omega} \left[\beta + i \frac{\alpha}{2} \right] \hat{k} \times \mathbf{E}$$

de modo que si $\mathbf{k} \in \mathbb{R}^3$ entonces $\mathbf{E}_0, \mathbf{B}_0$ tienen la misma fase. Si en cambio \mathbf{k} pertenece a \mathbb{C}^3 hay crecimiento o decaimiento exponencial en algunas direcciones. Vemos en una onda plana el caso de la atenuación se vería así

$$\mathrm{e}^{i(\mathbf{k}\cdot\mathbf{x}-\omega t)}=\mathrm{e}^{i(k\hat{n}_R\cdot\mathbf{x}+k\hat{n}_I\cdot\mathbf{x}-\omega t)}=\mathrm{e}^{i(k\hat{n}_R\cdot\mathbf{x}-\omega t)}+\mathrm{e}^{k\hat{n}_I\cdot\mathbf{x}}$$

1.4.1 Algunos ejemplos y casos

Recordemos

$$\omega = 2\pi\nu$$
 $k = \frac{2\pi}{\lambda} = \frac{\omega}{c}\sqrt{\mu\epsilon} = \frac{\omega}{v}$

Figura 4.7

Noción de algunos numeritos a partir de la tabla

Figura 4.8

Para una malla metálica de interespaciado ℓ tenemos los casos $\lambda\gg\ell$ significa que es macizo para la onda. La penetración no dependerá de la $\sigma(\omega)$, es un conductor macizo.

 $\lambda \ll \ell$ es transparente para la onda. No ve el conductor.

Figura 4.9

En un buen conductor $\mu_M>\mu_E$ el material se comporta inductivamente. En un mal conductor $\mu_E>\mu_M$ el material se comporta capacitivamente.