

User Behavior Analysis Using Decision Trees

Martin Nicklas Jørgensen

Department of Computer Science

Martin Nicklas Jørgensen

Disposition

Introduction

Problem Analysis

Results

Conclusion and Future Wo

Question

- Introduction
- Problem Analysis
- Results & Conclusion
- Questions

Martin Nicklas Jørgensen

Disposition

Introduction

Problem Analysi

Results

Conclusion and Future Wo

Questio

- Introduction
- Problem Analysis
- Results & Conclusion
- Questions

Martin Nicklas Jørgensen

Disposition

Introduction

Problem Analysi

Result

Conclusion and Future Wo

Question

- Introduction
- Problem Analysis
- Results & Conclusion
- Questions

Martin Nicklas Jørgensen

Disposition

Introduction

Problem Analysi

Result

Conclusion and Future Wo

Questio

- Introduction
- Problem Analysis
- Results & Conclusion
- Questions

Martin Nicklas Jørgensen

Dispositio

Introduction

Problem Analysi

Results

Conclusion and Future Wo

Questio

Simplesite ApS

Introduction

- Hosts and sells a website CMS.
- Founded in 2001 as *Elk Consulting ApS*, later *123hjemmeside ApS* and now *Simplesite ApS*.
- 20-49 employees globally.
- 400.000 new websites every month.
- 80.000 paying subscribers.

Martin Nicklas Jørgensen

Dispositio

Introduction

Problem Analys

Result

Conclusion and Future Wo

Questio

Problem Description

Introduction

- After the change to freemium, a huge increase in new free users was observed.
- The number of paying users did not increase comparetively.
- Many users stop being active after a few days.
- Using Data Science, is it possible to find a pattern in how users who stay are using the site?

Martin Nicklas Jørgensen

Dienositio

Introductio

Problem Analysis

Result

Conclusion and Future We

Question

CRSIP-DM

Problem Analysis

Figure : Diagram of the CRISP-DM method. Image source: Wikimedia Foundation.

Martin Nicklas Jørgensen

Disposition

Introductio

Problem Analysis

Results

Conclusion and Future Wo

Questio

Business Understanding

Problem Analysis

- Some users do not stay active for very long, even on the free product.
- Can we figure out what makes users stay?

Martin Nicklas Jørgensen

Dispositio

Introduction

Problem Analysis

Results

Conclusion and Future Wor

Questio

Data Understanding & Preparation

Problem Analysis

- EngagementData datasets.
- CustomerJourney datasets.
- Features are removed from the datasets if they are derivative or not relevant.
- · Datasets are merged into a single dataset.
- Data from Sep. 2015 are used for training. (463716 observations)
- Data from Oct. 2015 are used for test. (495390 observations)
- Final dataset have 15 features one of which is the target variable isciretained.

Martin Nicklas Jørgensen

Dispositio

Introduction

Problem Analysis

Results

Conclusion and Future Wo

Question

Modelling -	Tree	Type
-------------	------	------

Problem Analysis

Max Depth	rpart Accuracy	ctree Accuracy
4	94.2799 %	94.27990 %
8	94.2799 %	94.31958 %
12	94.2799 %	94.36638 %

Table : The mean accuracy for the different 5-fold cross validation runs.

Martin Nicklas Jørgensen

Modelling - Formula & Depth

Problem Analysis

•		
Formula		
iscjretained	~	

Max Depth 4 6

8 4

iscjretained ~ edits14

6

8 iscjretained ~ logins14

4 6 8 isciretained ~ edits14 + logins14 4

6

8

94.27990 % 94.27990 %

94.27990 %

Mean Accuracy

94.27990 %

94.29672 %

94.31958 %

93.50055 %

93.50227 %

93.50119 %

94.27990 %

94.28465 % 94.29414 %

Table: Mean accuracy of different formulas and tree depths using 5-fold cross-in-side 9118

Problem Analysis

Martin Nicklas Jørgensen

Dispositio

Introduction

Problem Analysis

Results

Conclusion and Future Work

Question

Evaluation - Dataset Bias

Problem Analysis

Dataset	TRUE	FALSE
Training	30358	433358
Test	40731	454659
Equal	30358	30358

Table : The distribution of the *iscirctained* target variable classes in the different datasets.

Martin Nicklas Jørgensen

Disposition

Introductio

Problem Analysis

Results

Conclusion and Future Wo

Question

Deployment

Problem Analysis

- Deployment was not done during this project.
- Mail 2.0
- Possible design mentioned Future Work.

Martin Nicklas Jørgensen

Disposition

Introductio

Problem Analys

Results

Conclusion and Future Wo

Question

Results

Maximum Depth	_
4	92.84039 %
6	92.84039 % 92.84846 %
8	92.75823 %

Table: The results of the final datarun when training on the full training set and trying to predict the entire test set.

Martin Nicklas Jørgensen

Disposition

Introduction

Problem Analys

Results

Conclusion and Future Wo

Questio

Results

Figure : The comditional inference tree produced by the code when using a maximum depth of 4.

Martin Nicklas Jørgensen

Results

Disposition

Introductio

Problem Analys

Results

Conclusion and Future Work

Questic

Maximum Depth	Accuracy
4	91.79051 %
6	91.74852 %
8	91.74388 %

Table: The results of the final data run when training on the full training set excluding the *logins14 variable* and trying to predict the entire test set.

Martin Nicklas Jørgensen

Disposition

Introductio

Problem Analys

Results

Conclusion and Future Wo

Questio

Results

Figure: The conditional inference tree produced by the code when using a maximum depth of 4 and exluding the *logins14* attribute.

Martin Nicklas Jørgensen

Disposition

Introductio

Problem Analys

Results

Conclusion and Future Work

Questio

Future Work

Conclusion and Future Work

- · Better datasets.
- Rough design of automated solution.

Martin Nicklas Jørgensen

Disposition

Introduction

Problem Analysi

Results

Conclusion and Future Work

Question

Conclusion

Conclusion and Future Work

• TODO: Conclude things in here as well.

Martin Nicklas Jørgensen

Disposition

Introduction

Problem Analysis

Results

Conclusion and Future Work

Question

Questions

Questions.

