Clase 07 - Pruebas no paramétricas Curso Análisis de Datos con R para Biociencias.

Dr. José Gallardo Matus & Dra. Angélica Rueda Calderón

Pontificia Universidad Católica de Valparaíso

20 January 2023

PLAN DE LA CLASE

1.- Introducción

- ¿Qué son las pruebas no paramétricas?.
- ► Test de Correlación no paramétrico.
- Pruebas de contraste no paramétrico.
- Prueba de asociación Chi cuadrado.

2.- Práctica con R y Rstudio cloud

- Realizar pruebas no paramétricas.
- Realizar gráficas avanzadas con ggplot2.

MÉTODOS NO PARAMÉTRICOS

- Conjunto diverso de pruebas estadísticas.
- El concepto de "no paramétrico" a veces es confuso, pues los métodos no paramétricos si estiman y someten a prueban hipótesis usando parámetros, pero no los de distribución normal.
- ➤ Se aplican usualmente para variables cuantitativas que no cumplen con el supuesto de normalidad y para variables categóricas o cualitativas (nominales y ordinales).
- Supuestos: Muestras independientes con idéntica distribución.

PRUEBA DE CORRELACIÓN NO PARAMÉTRICA

¿Para que sirve?

Para estudiar asociación de dos variables, cuando no se cumple uno o varios supuestos de la correlación paramétrica:

- Las variables X e Y no son continuas.
- No existe relación lineal.
- La distribución conjunta de (X, Y) no es una distribución Bivariable normal.

ESTUDIO DE CASO: FERTILIDAD Y PLOMO

¿Cuáles son los supuestos que no se cumplen?

Fuente: Telisman et al. 2000

CORRELACIÓN NO PARAMÉTRICA

- Se basa en calcular el ranking de las variables.
- ► Calculamos ranking para cada variable.

Plomo sangre (X)	Nº espérmios (Y)	Ranking X	Ranking Y
742	170	4	2
101	180	1	3
313	210	2	4
600	160	3	1

Hipótesis	Verdadera cuando
H ₀ : X e Y mutuamente independientes	ho = 0
$\mathbf{H_{1}}$: X e Y no son mutuamente independientes	ho eq 0

COEFICIENTE DE CORRELACIÓN DE SPEARMAN

¿Cómo se calcula?

Ranking X	Ranking Y	d	d^2
4	2	2	4
1	3	-2	4
2	4	-2	4
3	1	2	4

$$\rho = 1 - \frac{6\sum d^2}{n(n^2 - 1)} = \frac{1}{n(n^2 - 1)}$$

$$rho = -0, 6$$

PRUEBA DE CORRELACIÓN CON R

```
# Crea objetos X e Y
X \leftarrow c(742,101,313,600)
Y \leftarrow c(170,180,210,160)
# Realiza test de correlación
cor.test(X,Y, method = "spearman",
         alternative = "two.sided")
##
    Spearman's rank correlation rho
##
##
## data: X and Y
## S = 16, p-value = 0.4167
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## -0.6
```

COMPARACIÓN DE MUESTRAS INDEPENDIENTES

¿Para qué sirve?

Para comparar dos muestras con idéntica distribución, con diferentes medianas y sin normalidad.

Usualmente para variables discretas.

PRUEBA DE MANN-WHITNEY (W)

Estudio de caso: Formación de biofilm (μm^2) de Staphylococcus epidermidis en presencia de plasma humano. Adaptado de Skovdal et a. 2021

Tratamiento con plasma (T)	Control sin plasma (C)
9	4
12	5
13	6

	Hipótesis
H ₀ :	Tratamiento = Control
H ₁ :	${\sf Tratamiento} > {\sf Control}$

CÁCULO ESTADÍSTICO MANN-WHITNEY (W)

¿Cómo se calcula el estadístico W?

Como la diferencia de los ranking entre tratamiento y control

Tratamiento (T)	Control (C)	Ranking T	Ranking C
9	4	4	1
12	5	5	2
13	6	6	3
		$\sum = 15$	$\sum = 6$

$$W = 15 - 6 = 9$$

Máxima diferencia posible entre T y C.

PRUEBA DE MANN-WHITNEY CON R

Crea objetos tratamiento y control

```
t \leftarrow c(9, 12, 13)
c \leftarrow c(0, 4, 6)
# Realiza prueba de Mann-Whitney
wilcox.test(t, c, alternative = "g",
            paired = FALSE)
##
   Wilcoxon rank sum exact test
##
##
## data: t and c
## W = 9, p-value = 0.05
## alternative hypothesis: true location shift is greater
```

COMPARACIÓN DE MUESTRAS PAREADAS

¿Para que sirve?

Para comparar dos muestras *pareadas* con idéntica distribución, con diferentes medianas y sin normalidad.

PRUEBA DE WILCOXON MUESTRAS PAREADAS

Estudio de caso: Gonadotrofina en trucha 7 y 14 días **post ovulación.**

¿Aumenta la gonadotrofina post ovulación?

Trucha	7 días	14 días	d	Ranking con signo
1	45	49	4	2
2	41	50	9	4
3	47	52	5	3
4	52	50	2	-1

W = suma de los ranking = 8

 $V={\sf suma}$ de casos positivos (aumenta) =9

H ₀	H ₁
d = 0	d > 0

PRUEBA DE WILCOXON PAREADAS CON R

```
# Crea objetos pre y post
pre \leftarrow c(45, 41, 47, 52)
post \leftarrow c(49, 50, 52, 50)
# Realiza prueba de Wilcoxon
wilcox.test(post - pre, alternative = "greater")
##
    Wilcoxon signed rank exact test
##
##
## data: post - pre
## V = 9, p-value = 0.125
## alternative hypothesis: true location is greater than 0
# no es necesario indicar muestras pareadas
# pues estamos haciendo la resta en la función.
```

COMPARACIÓN DE MÚLTIPLES MUESTRAS INDEPENDIENTES

¿Para que sirve?

Para comparar múltiples muestras con idéntica distribución, con diferentes medianas y sin normalidad.

ESTUDIO DE CASO: DAÑO EN PLANTAS DE NOGAL

Besoain. 201. Fertilizante Vitanica® RZ (con *Bacillus amyloliquefaciens*) tiene acción preventiva ante enfermedades fúngicas en nogal.

PRUEBA DE KRUSKAL - WALLIS CON R

Hipótesis

 $\mathbf{H_0}$: La distribución de los k grupos son iguales. $\mathbf{H_1}$: Al menos 2 grupos son distintos.

Realiza prueba de kruskal

kruskal.test(IDr ~ Tratamientos, data=data) %>% pander()

Table 10: Kruskal-Wallis rank sum test: IDr by Tratamientos

Test statistic	df	P value
39.84	4	4.679e-08 * * *

PRUEBA DE DUNN PARA COMPARACIONES MULTIPLES

Comparison	Z	P.unadj	P.adj
T0 - T1	4.2	2.3e-05	0.00023
T0 - T2	3.1	0.0017	0.017
T1 - T2	-1.1	0.27	1
T0 - T3	1.5	0.14	1
T1 - T3	-2.7	0.006	0.06
T2 - T3	-1.7	0.099	0.99
T0 - T4	5.7	1.4e-08	1.4e-07
T1 - T4	1.4	0.15	1
T2 - T4	2.5	0.011	0.11
T3 - T4	4.2	2.9e-05	0.00029

PRUEBA DE ASOCIACIÓN VARIABLES CATEGÓRICAS

¿Para que sirve?

Se utilizan para investigar la asociación de dos o más variables categóricas una de las cuales es una variable respuesta y la otra es una variable predictora.

Tratamiento	Respuesta +	Respuesta -
Si	a	С
No	b	d

PRUEBA DE CHI CUADRADO

Esta prueba contrasta frecuencias observadas con las frecuencias esperadas de acuerdo con la hipótesis nula.

Hipótesis

 $\mathbf{H_0}$: La variable predictora y la variable respuesta son independientes (Tratamiento = control)

H₁: La variable predictora y la variable respuesta NO son independientes

¿Cómo se calcula el estadístico Chi cuadrado?

$$X^2 = \sum \frac{(freq.obs. - freq.esp.)^2}{(freq.esperada)} = \sum \frac{(O - E)^2}{(E)}$$

ESTUDIO DE CASO: GERMINACIÓN DE SEMILLAS DE PEUMO

Chacon et al. 1998. Germinación depende de tamaño de semilla.

PRUEBA CHI CUADRADO

datos

```
## Germinated No germinated
## small 13 17
## medium 23 7
## large 26 4

# Test de Chi-squared en R (chisq.test)
test<-chisq.test(datos, correct = FALSE)

test %>% pander()
```

Table 14: Pearson's Chi-squared test: datos

Test statistic	df	P value
14.41	2	0.000742 * * *

PRÁCTICA ANÁLISIS DE DATOS

Guía de trabajo práctico disponible en Posit.cloud.
 Clase_07

RESUMEN DE LA CLASE

Revisión de conceptos de estadística no paramétrica.

- Correlación de Spearman.
- Prueba de Man-Whitney.
- Prueba de Wilcoxon.
- Prueba de Kruskal Wallis + DUNN test.
- Prueba de Chi-cuadrado.