U: UE R - R

7.2. The Cauchy-Goursat theorem. We've already mentioned conservative vector fields, so lets remind ourselves of what that means. In two dimensions, a vector field $\varphi: U \to \mathbb{R}^2$ on an open set $U \subset \mathbb{R}^2$ is **conservative** if there exists a scalar function $\Phi: U \to \mathbb{R}$ of class \mathbb{C}^1 so that

$$\varphi = \nabla \Phi;$$

that is, φ is the gradient of Φ . Such a vector field has path independent line integrals - that is, the value of

$$\int_{C} \varphi \cdot d\mathbf{s}$$

depends only on where C begins and ends (and indeed is equal to $\Phi(b) - \Phi(a)$ if a, b are the initial and final points of C). The converse is also true - if a vector field on $U \subset \mathbb{R}^2$ has path independent line integrals, then it is conservative.

This structure carries over into complex analysis as a relationship between analyticity and path independent integrals (via the Cauchy-Riemann equations). Let us consider what should happen if we evaluate an analytic function on a closed loop. 7 J=4

· U simply connected

of continues on T

. Family a con Unl

· Comfand in U

 $\int_{C} f(z)dz = F(b) - F(a)$

Dx = Ψ, Dy = Ψ2

φ=(b,, e) conservative.

Scy. ds = Scy. ds = D(0)-D(0)

\$ (a) - \$(a)

Example 7.9. Consider

 $\oint_C f(z) \, dz$

Assume f has an antiderisative F also analytic on V.

J

where f is analytic on a simply connected open set containing C.

If (z)dz = F(a) - F(a) by FT comprex fronts
= 0

Let's formalize this.

Theorem 7.10 (Cauchy-Goursat). Let $f: \underline{U} \to \underline{\mathbb{C}}$ be analytic on a simply connected domain U, and let C be a piecewise smooth simple closed curve in U. Then

 $\oint_C f(z) \, dz = 0.$

Proof. Green's theorem!

\$\int_{\text{L}} L dx + M dy = \int_{\text{R}} \left(\frac{2n}{2\infty} - \frac{2L}{2\infty} \right) dA

Greens

(r))

f = u+iv analytin -1 up one class (1 (continue

24 24 24 25 25 all exist

27 29 27 29 20 all exist

C & C P . 113

44

One useful consequence of the Cauchy-Goursat theorem is that integration over a simple closed curve is always equivalent to integration over a circle.

Theorem 7.12. Suppose that C_1 and C_2 are simple closed curves with one in the interior of the other, and suppose f(z) is a function analytic on a domain U containing both curves. Then

 $\oint_{C_1} f \, dz = \oint_{C_2} f \, dz.$

Proof. Do the picture!

to parametric

fir analyte on U

by Cauchy- Consul

46

Example 7.13. Evaluate

$$\oint_C \frac{1}{z - z_0} \, dz$$

for z_0 in the exterior of C and for z_0 in the interior of C.

It 26 is outside G

Carchy Goursal -> gt 2-20d2=0

· FT Compex functions

Cauchy Consut

. Crue contant

20 inside G. $f(2)=\frac{1}{2-20}$ $\int_{C_1}^{1} \frac{1}{2-20} dz = \int_{\Gamma_1}^{1} \frac{1}{2-20} dz$ = State ireit at = 127 idt - 271 i

26 = 204 re , 044 cm dz=ireitdt

We end with the other half of the Fundamental Theorem for complex functions, and a corollary for analytic functions. A **primitive** of a complex function f is a function F so that F' = f (that is, an antiderivative).

Theorem 7.14. An analytic function f on a simply connected domain U has a primitive

Corollary 7.15. If f is analytic on a simply connected domain U and $a, b \in U$ are joined by a contour $C \subset U$, then

$$\int_C f(z), dz = F(b) - F(a)$$
 where F is any antiderivative of f over U .

Proof. Technical. To be addressed in a separate video.

Jef de = F(6)-F(a)

Il F'=f, Fmesti.

For of anyti frety.