

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

Telephone: +86-755-26648640 +86-755-26648637 Website:

www.cqa-cert.com

Report Template Version: V04 Report Template Revision Date: 2018-07-06

# **Test Report**

CQASZ20190901002E-01 Report No.:

Applicant: Avantree Technology Co., Ltd.

The 4th Floor, Yuepeng Building, No.1019 Jiabin Rd, Luohu District, Shenzhen, Address of Applicant:

China

**Equipment Under Test (EUT):** 

**EUT Name:** Wireless Stereo Headphones

All Model No.: BTHS-AS90, BTHS-AS90B, BTHS-AS90C, BTHS-AS90M, BTHS-ANC033,

**BTHS-035** 

Test Model No.: BTHS-AS90 **Brand Name:** Avantree

FCC ID: 2AITF-BTHS-AS90

Standards: 47 CFR Part 15, Subpart C

**Date of Receipt:** 2019-12-13

Date of Test: 2019-12-13 to 2019-12-24

Date of Issue: 2019-12-24 **Test Result:** PASS\*

In the configuration tested, the EUT complied with the standards specified above

Tested By:

(Tom chen)

Reviewed By:

Approved By:

(Jack Ai)



The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CQA, this report can't be reproduced except in full.





## 1 Version

## **Revision History Of Report**

| Report No.           | Version | Description    | Issue Date |
|----------------------|---------|----------------|------------|
| CQASZ20190901002E-01 | Rev.01  | Initial report | 2019-12-24 |



## 2 Test Summary

| Test Item                                                         | Test Requirement                                                                      | Test method        | Result |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------|--------|
| Antenna Requirement                                               | 47 CFR Part 15, Subpart C Section<br>15.203/15.247 (c)                                | ANSI C63.10 (2013) | PASS   |
| AC Power Line Conducted Emission                                  | 47 CFR Part 15, Subpart C Section<br>15.207                                           | ANSI C63.10 (2013) | PASS   |
| Conducted Peak Output<br>Power                                    | 47 CFR Part 15, Subpart C Section<br>15.247 (b)(1)                                    | ANSI C63.10 (2013) | PASS   |
| 20dB Occupied Bandwidth                                           | 47 CFR Part 15, Subpart C Section<br>15.247 (a)(1)                                    | ANSI C63.10 (2013) | PASS   |
| Carrier Frequencies<br>Separation                                 | 47 CFR Part 15, Subpart C Section<br>15.247 (a)(1)                                    | ANSI C63.10 (2013) | PASS   |
| Hopping Channel Number                                            | 47 CFR Part 15, Subpart C Section<br>15.247 (a)(1)                                    | ANSI C63.10 (2013) | PASS   |
| Dwell Time                                                        | 47 CFR Part 15, Subpart C Section<br>15.247 (a)(1)                                    | ANSI C63.10 (2013) | PASS   |
| Pseudorandom Frequency<br>Hopping Sequence                        | 47 CFR Part 15, Subpart C Section<br>15.247(b)(4)&TCB Exclusion List<br>(7 July 2002) | ANSI C63.10 (2013) | PASS   |
| Band-edge for RF<br>Conducted Emissions                           | 47 CFR Part 15, Subpart C Section 15.247(d)                                           | ANSI C63.10 (2013) | PASS   |
| RF Conducted Spurious<br>Emissions                                | 47 CFR Part 15, Subpart C Section 15.247(d)                                           | ANSI C63.10 (2013) | PASS   |
| Radiated Spurious emissions                                       | 47 CFR Part 15, Subpart C Section<br>15.205/15.209                                    | ANSI C63.10 (2013) | PASS   |
| Restricted bands around fundamental frequency (Radiated Emission) | 47 CFR Part 15, Subpart C Section<br>15.205/15.209                                    | ANSI C63.10 (2013) | PASS   |

All Model No.: BTHS-AS90, BTHS-AS90B, BTHS-AS90C, BTHS-AS90M, BTHS-ANC033, BTHS-035 Only the model BTHS-AS90 was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, with difference being color of appearance, pack and model name.



## 3 Contents

|   |                  |                                                  | Page |
|---|------------------|--------------------------------------------------|------|
| 1 | VERSION          |                                                  | 2    |
| 2 | TEST SUMMARY     | Υ                                                | 3    |
| 3 |                  |                                                  |      |
|   |                  |                                                  |      |
| 4 | GENERAL INFO     | RMATION                                          | 5    |
|   |                  | MATION                                           |      |
|   |                  | CRIPTION OF EUT                                  |      |
|   |                  | NSTRUCTIONS                                      |      |
|   |                  | IMENT                                            |      |
|   |                  | OF SUPPORT UNITS                                 |      |
|   |                  | F THE MEASUREMENT UNCERTAINTY                    |      |
|   |                  | )N                                               |      |
|   |                  | 7                                                |      |
|   |                  | ES FROM STANDARD CONDITIONS                      |      |
|   |                  | MATION REQUESTED BY THE CUSTOMER                 |      |
|   |                  |                                                  |      |
| 5 | TEST RESULTS     | AND MEASUREMENT DATA                             | 12   |
|   | 5.1 ANTENNA REQ  | OUIREMENT                                        | 12   |
|   | 5.2 CONDUCTED E  | EMISSIONS                                        | 13   |
|   | 5.3 CONDUCTED P  | EAK OUTPUT POWER                                 | 17   |
|   | 5.4 20DB OCCUPY  | BANDWIDTH                                        | 24   |
|   | 5.5 CARRIER FREQ | QUENCIES SEPARATION                              | 30   |
|   | 5.6 HOPPING CHAI | NNEL NUMBER                                      | 37   |
|   |                  |                                                  |      |
|   |                  | OR RF CONDUCTED EMISSIONS                        |      |
|   |                  | CONDUCTED EMISSIONS                              |      |
|   |                  | REMENTS FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM |      |
|   |                  | JRIOUS EMISSION & RESTRICTED BANDS               |      |
|   |                  | d Emission below 1GHz                            |      |
|   |                  | tter Emission above 1GHz                         |      |
| 6 | PHOTOGRAPHS      | S - EUT TEST SETUP                               | 93   |
|   |                  | ISSION                                           |      |
|   | 6.2 CONDUCTED E  | MISSION                                          | 94   |
| 7 | DHOTOGDADHS      | S - ELIT CONSTRUCTIONAL DETAILS                  | 05   |



Report No.: CQASZ20190901002E-01

## 4 General Information

### 4.1 Client Information

| Applicant:               | Avantree Technology Co., Ltd.                                                         |
|--------------------------|---------------------------------------------------------------------------------------|
| Address of Applicant:    | The 4th Floor, Yuepeng Building, No.1019 Jiabin Rd, Luohu<br>District,Shenzhen, China |
| Manufacturer:            | Avantree Technology Co., Ltd.                                                         |
| Address of Manufacturer: | The 4th Floor, Yuepeng Building, No.1019 Jiabin Rd, Luohu<br>District,Shenzhen, China |

### 4.2 General Description of EUT

| ,                     |                                                                      |  |  |
|-----------------------|----------------------------------------------------------------------|--|--|
| Product Name:         | Wireless Stereo Headphones                                           |  |  |
| All Model No.:        | BTHS-AS90, BTHS-AS90B, BTHS-AS90C, BTHS-AS90M, BTHS-ANC033, BTHS-035 |  |  |
| Test Model No.:       | BTHS-AS90                                                            |  |  |
| Trade Mark:           | Avantree                                                             |  |  |
| Hardware Version:     | Rer 2.7                                                              |  |  |
| Software Version:     | BT5.0                                                                |  |  |
| Operation Frequency:  | 2402MHz~2480MHz                                                      |  |  |
| Bluetooth Version:    | V5.0                                                                 |  |  |
| Modulation Technique: | Frequency Hopping Spread Spectrum(FHSS)                              |  |  |
| Modulation Type:      | GFSK, π/4DQPSK, 8DPSK                                                |  |  |
| Transfer Rate:        | 1Mbps/2Mbps/3Mbps                                                    |  |  |
| Number of Channel:    | 79                                                                   |  |  |
| Hopping Channel Type: | Adaptive Frequency Hopping systems                                   |  |  |
| Product Type:         | ☐ Mobile ☐ Portable ☐ Fix Location                                   |  |  |
| Test Software of EUT: | Blue test 3 (manufacturer declare )                                  |  |  |
| Antenna Type:         | Integral antenna                                                     |  |  |
| Antenna Gain:         | 0.9dBi                                                               |  |  |
| USB Cable:            | 98cm(Unshielded)                                                     |  |  |
| AUX Cable:            | 148cm(Unshielded)                                                    |  |  |
| Power Supply:         | lithium battery:DC3.7V, Charge by DC5V                               |  |  |



Report No.: CQASZ20190901002E-01

| Operation Frequency each of channel |           |         |           |         |           |         |           |
|-------------------------------------|-----------|---------|-----------|---------|-----------|---------|-----------|
| Channel                             | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |
| 0                                   | 2402MHz   | 20      | 2422MHz   | 40      | 2442MHz   | 60      | 2462MHz   |
| 1                                   | 2403MHz   | 21      | 2423MHz   | 41      | 2443MHz   | 61      | 2463MHz   |
| 2                                   | 2404MHz   | 22      | 2424MHz   | 42      | 2444MHz   | 62      | 2464MHz   |
| 3                                   | 2405MHz   | 23      | 2425MHz   | 43      | 2445MHz   | 63      | 2465MHz   |
| 4                                   | 2406MHz   | 24      | 2426MHz   | 44      | 2446MHz   | 64      | 2466MHz   |
| 5                                   | 2407MHz   | 25      | 2427MHz   | 45      | 2447MHz   | 65      | 2467MHz   |
| 6                                   | 2408MHz   | 26      | 2428MHz   | 46      | 2448MHz   | 66      | 2468MHz   |
| 7                                   | 2409MHz   | 27      | 2429MHz   | 47      | 2449MHz   | 67      | 2469MHz   |
| 8                                   | 2410MHz   | 28      | 2430MHz   | 48      | 2450MHz   | 68      | 2470MHz   |
| 9                                   | 2411MHz   | 29      | 2431MHz   | 49      | 2451MHz   | 69      | 2471MHz   |
| 10                                  | 2412MHz   | 30      | 2432MHz   | 50      | 2452MHz   | 70      | 2472MHz   |
| 11                                  | 2413MHz   | 31      | 2433MHz   | 51      | 2453MHz   | 71      | 2473MHz   |
| 12                                  | 2414MHz   | 32      | 2434MHz   | 52      | 2454MHz   | 72      | 2474MHz   |
| 13                                  | 2415MHz   | 33      | 2435MHz   | 53      | 2455MHz   | 73      | 2475MHz   |
| 14                                  | 2416MHz   | 34      | 2436MHz   | 54      | 2456MHz   | 74      | 2476MHz   |
| 15                                  | 2417MHz   | 35      | 2437MHz   | 55      | 2457MHz   | 75      | 2477MHz   |
| 16                                  | 2418MHz   | 36      | 2438MHz   | 56      | 2458MHz   | 76      | 2478MHz   |
| 17                                  | 2419MHz   | 37      | 2439MHz   | 57      | 2459MHz   | 77      | 2479MHz   |
| 18                                  | 2420MHz   | 38      | 2440MHz   | 58      | 2460MHz   | 78      | 2480MHz   |
| 19                                  | 2421MHz   | 39      | 2441MHz   | 59      | 2461MHz   |         |           |

#### Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

| Channel             | Frequency |
|---------------------|-----------|
| The Lowest channel  | 2402MHz   |
| The Middle channel  | 2441MHz   |
| The Highest channel | 2480MHz   |



Report No.: CQASZ20190901002E-01

### 4.3 Additional Instructions

| <b>EUT Test Software S</b>   | ettings:                                         |                                                                                                                                                                              |  |  |  |
|------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Mode:                        |                                                  | <ul> <li>         ⊠ Special software is used.          ☐ Through engineering command into the engineering mode.         engineering command: *#*#3646633#*#*     </li> </ul> |  |  |  |
| EUT Power level:             | Class2 (Power level is built-in set pa selected) | rameters and cannot be changed and                                                                                                                                           |  |  |  |
| Use test software to set the | lowest frequency, the middle frequency a         | nd the highest frequency keep                                                                                                                                                |  |  |  |
| transmitting of the EUT.     |                                                  |                                                                                                                                                                              |  |  |  |
| Mode                         | Channel                                          | Frequency(MHz)                                                                                                                                                               |  |  |  |
|                              | CH0                                              | 2402                                                                                                                                                                         |  |  |  |
| DH1/DH3/DH5                  | CH39                                             | 2441                                                                                                                                                                         |  |  |  |
|                              | CH78                                             | 2480                                                                                                                                                                         |  |  |  |
|                              | CH0                                              | 2402                                                                                                                                                                         |  |  |  |
| 2DH1/2DH3/2DH5               | CH39                                             | 2441                                                                                                                                                                         |  |  |  |
|                              | CH78                                             | 2480                                                                                                                                                                         |  |  |  |
|                              | CH0                                              | 2402                                                                                                                                                                         |  |  |  |
| 3DH1/3DH3/3DH5               | CH39                                             | 2441                                                                                                                                                                         |  |  |  |
|                              | CH78                                             | 2480                                                                                                                                                                         |  |  |  |

#### Run Software:





Report No.: CQASZ20190901002E-01

#### **4.4** Test Environment

| Operating Environment:  | Operating Environment:                                                                                                      |  |  |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|--|
| Radiated Emissions:     | Radiated Emissions:                                                                                                         |  |  |
| Temperature:            | 24.6 °C                                                                                                                     |  |  |
| Humidity:               | 55 % RH                                                                                                                     |  |  |
| Atmospheric Pressure:   | 1015mbar                                                                                                                    |  |  |
| Conducted Emissions:    |                                                                                                                             |  |  |
| Temperature:            | 24.2 °C                                                                                                                     |  |  |
| Humidity:               | 53 % RH                                                                                                                     |  |  |
| Atmospheric Pressure:   | 1015mbar                                                                                                                    |  |  |
| Radio conducted item to | est (RF Conducted test room):                                                                                               |  |  |
| Temperature:            | 24 °C                                                                                                                       |  |  |
| Humidity:               | 46 % RH                                                                                                                     |  |  |
| Atmospheric Pressure:   | 1015mbar                                                                                                                    |  |  |
| Test mode:              |                                                                                                                             |  |  |
| Test Mode:              | Use test software to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT. |  |  |

## 4.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) Support equipment

| Description | Manufacturer | Model No.      | Certification | Supplied by |
|-------------|--------------|----------------|---------------|-------------|
| PC          | Lenovo       | ThinkPad E450c | FCC           | CQA         |
| Adapter     | Samsung      | EP-TA50CBC     | FCC           | CQA         |





#### 4.6 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the **Shenzhen Huaxia Testing Technology Co., Ltd.** quality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CQA laboratory is reported:

| No. | Item                               | Uncertainty        | Notes |
|-----|------------------------------------|--------------------|-------|
| 1   | Radiated Emission (Below 1GHz)     | 5.12dB             | (1)   |
| 2   | Radiated Emission (Above 1GHz)     | 4.60dB             | (1)   |
| 3   | Conducted Disturbance (0.15~30MHz) | 3.34dB             | (1)   |
| 4   | Radio Frequency                    | 3×10 <sup>-8</sup> | (1)   |
| 5   | Duty cycle                         | 0.6 %.             | (1)   |
| 6   | Occupied Bandwidth                 | 1.1%               | (1)   |
| 7   | RF conducted power                 | 0.86dB             | (1)   |
| 8   | RF power density                   | 0.74               | (1)   |
| 9   | Conducted Spurious emissions       | 0.86dB             | (1)   |
| 10  | Temperature test                   | 0.8℃               | (1)   |
| 11  | Humidity test                      | 2.0%               | (1)   |
| 12  | Supply voltages                    | 0.5 %.             | (1)   |
| 13  | Frequency Error                    | 5.5 Hz             | (1)   |

<sup>(1)</sup>This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.



Report No.: CQASZ20190901002E-01

#### 4.7 Test Location

#### Shenzhen Huaxia Testing Technology Co., Ltd,

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

#### 4.8 Test Facility

#### • A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

#### • FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

#### 4.9 Abnormalities from Standard Conditions

None.

#### 4.10 Other Information Requested by the Customer

None.





### 4.11 Equipment List

|                   | _            |                     | Instrument | Calibration | Calibration |
|-------------------|--------------|---------------------|------------|-------------|-------------|
| Test Equipment    | Manufacturer | Model No.           | No.        | Date        | Due Date    |
| EMI Test Receiver | R&S          | ESR7                | CQA-005    | 2019/10/25  | 2020/10/24  |
| Spectrum analyzer | R&S          | FSU26               | CQA-038    | 2019/10/25  | 2020/10/24  |
|                   |              | AMF-6D-02001800-29- |            |             |             |
| Preamplifier      | MITEQ        | 20P                 | CQA-036    | 2019/10/25  | 2020/10/24  |
| Loop antenna      | Schwarzbeck  | FMZB1516            | CQA-060    | 2019/10/21  | 2020/10/20  |
| Bilog Antenna     | R&S          | HL562               | CQA-011    | 2019/9/26   | 2020/9/25   |
| Horn Antenna      | R&S          | HF906               | CQA-012    | 2019/9/26   | 2020/9/25   |
| Horn Antenna      | Schwarzbeck  | BBHA 9170           | CQA-088    | 2019/9/25   | 2020/9/24   |
| Coaxial Cable     |              |                     | 0007       |             |             |
| (Above 1GHz)      | CQA          | N/A                 | C007       | 2019/9/26   | 2020/9/25   |
| Coaxial Cable     |              |                     | 0040       |             |             |
| (Below 1GHz)      | CQA          | N/A                 | C013       | 2019/9/26   | 2020/9/25   |
| Antenna Connector | CQA          | RFC-01              | CQA-080    | 2019/9/26   | 2020/9/25   |
| Power Sensor      | KEYSIGHT     | U2021XA             | CQA-30     | 2019/9/26   | 2020/9/25   |
| Power divider     | MIDWEST      | PWD-2533-02-SMA-79  | CQA-067    | 2019/9/26   | 2020/9/25   |
| LISN              | R&S          | ENV216              | CQA-003    | 2019/10/23  | 2020/10/22  |
| Coaxial cable     | CQA          | N/A                 | CQA-C009   | 2019/9/26   | 2020/9/25   |

#### Note:

The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.



Report No.: CQASZ20190901002E-01

#### 5 Test results and Measurement Data

#### 5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

**EUT Antenna:** Please see EUT internal photos.

The antenna is integral antenna. The best case gain of the antenna is 0.9dBi.





### **5.2** Conducted Emissions

| _ |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |               |  |
|---|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------|--|
|   | Test Requirement:     | 47 CFR Part 15C Section 15.207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |               |  |
|   | Test Method:          | ANSI C63.10: 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |               |  |
|   | Test Frequency Range: | 150kHz to 30MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |               |  |
|   | Limit:                | Frequency range (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Limit (dBuV)                             |               |  |
|   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Quasi-peak                               | Average       |  |
|   |                       | 0.15-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 66 to 56*                                | 56 to 46*     |  |
|   |                       | 0.5-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 56                                       | 46            |  |
|   |                       | 5-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60                                       | 50            |  |
|   |                       | * Decreases with the logarithn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n of the frequency.                      | <u> </u>      |  |
|   | Test Procedure:       | <ul> <li>* Decreases with the logarithm of the frequency.</li> <li>1) The mains terminal disturbance voltage test was conducted in a shielded room.</li> <li>2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.</li> <li>3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,</li> <li>4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.</li> <li>5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement.</li> </ul> |                                          |               |  |
|   | Test Setup:           | Shielding Room  EUT  AC Mains  LISN1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AE  LISN2  AC Ma  Ground Reference Plane | Test Receiver |  |
|   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |               |  |



Report No.: CQASZ20190901002E-01

| Exploratory Test Mode: | Non-hopping transmitting mode with all kind of modulation and all kind of data type at the lowest, middle, high channel.                                 |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Final Test Mode:       | Through Pre-scan, find the DH5 of data type and GFSK modulation at the lowest channel is the worst case.  Only the worst case is recorded in the report. |
| Test Voltage:          | AC 120V/60Hz                                                                                                                                             |
| Test Results:          | Pass                                                                                                                                                     |

**Measurement Data** 



#### Live line:



#### Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



#### Neutral line:



#### Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



Report No.: CQASZ20190901002E-01

#### **5.3** Conducted Peak Output Power





Report No.: CQASZ20190901002E-01

#### **Measurement Data**

| GFSK mode    |                         |             |        |  |
|--------------|-------------------------|-------------|--------|--|
| Test channel | Peak Output Power (dBm) | Limit (dBm) | Result |  |
| Lowest       | 3.740                   | 21.00       | Pass   |  |
| Middle       | -1.500                  | 21.00       | Pass   |  |
| Highest      | -1.000                  | 21.00       | Pass   |  |
|              | π/4DQPSK mode           |             |        |  |
| Test channel | Peak Output Power (dBm) | Limit (dBm) | Result |  |
| Lowest       | -5.270                  | 21.00       | Pass   |  |
| Middle       | -2.230                  | 21.00       | Pass   |  |
| Highest      | -1.660                  | 21.00       | Pass   |  |
| 8DPSK mode   |                         |             |        |  |
| Test channel | Peak Output Power (dBm) | Limit (dBm) | Result |  |
| Lowest       | -4.880                  | 21.00       | Pass   |  |
| Middle       | -1.850                  | 21.00       | Pass   |  |
| Highest      | -1.240                  | 21.00       | Pass   |  |



#### Test plot as follows:





















Report No.: CQASZ20190901002E-01

### 5.4 20dB Occupy Bandwidth



#### **Measurement Data**

| Toot shannal | 20dB Occupy Bandwidth (MHz) |          |       |
|--------------|-----------------------------|----------|-------|
| Test channel | GFSK                        | π/4DQPSK | 8DPSK |
| Lowest       | 0.950                       | 1.264    | 1.268 |
| Middle       | 0.948                       | 1.240    | 1.264 |
| Highest      | 0.950                       | 1.238    | 1.266 |



#### Test plot as follows:





















Report No.: CQASZ20190901002E-01

## 5.5 Carrier Frequencies Separation

| Test Requirement:      | 47 CFR Part 15C Section 15.247 (a)(1)                                                                                                                                                                                                                                      |  |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Test Method:           | ANSI C63.10:2013                                                                                                                                                                                                                                                           |  |
| Test Setup:            | Spectrum Analyzer    E.U.T     Non-Conducted Table     Ground Reference Plane                                                                                                                                                                                              |  |
|                        | Remark: Offset=Cable loss+ attenuation factor.                                                                                                                                                                                                                             |  |
| Limit:                 | 2/3 of the 20dB bandwidth                                                                                                                                                                                                                                                  |  |
|                        | Remark: the transmission power is less than 0.125W.                                                                                                                                                                                                                        |  |
| Exploratory Test Mode: | Hopping transmitting with all kind of modulation and all kind of data type                                                                                                                                                                                                 |  |
| Final Test Mode:       | Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type. Only the worst case is recorded in the report. |  |
| Test Results:          | Pass                                                                                                                                                                                                                                                                       |  |



Report No.: CQASZ20190901002E-01

#### **Measurement Data**

| GFSK mode    |                                      |             |        |  |
|--------------|--------------------------------------|-------------|--------|--|
| Test channel | Carrier Frequencies Separation (MHz) | Limit (MHz) | Result |  |
| Lowest       | 0.981                                | ≥0.633      | Pass   |  |
| Middle       | 0.990                                | ≥0.633      | Pass   |  |
| Highest      | 0.995                                | ≥0.633      | Pass   |  |
|              | π/4DQPSK mode                        |             |        |  |
| Test channel | Carrier Frequencies Separation (MHz) | Limit (MHz) | Result |  |
| Lowest       | 1.000                                | ≥0.843      | Pass   |  |
| Middle       | 0.995                                | ≥0.843      | Pass   |  |
| Highest      | 1.043                                | ≥0.843      | Pass   |  |
| 8DPSK mode   |                                      |             |        |  |
| Test channel | Carrier Frequencies Separation (MHz) | Limit (MHz) | Result |  |
| Lowest       | 1.000                                | ≥0.845      | Pass   |  |
| Middle       | 1.135                                | ≥0.845      | Pass   |  |
| Highest      | 1.005                                | ≥0.845      | Pass   |  |

| Mode     | 20dB bandwidth (MHz) (worse case) | Limit (MHz) (Carrier Frequencies Separation) |
|----------|-----------------------------------|----------------------------------------------|
| GFSK     | 0.95                              | 0.633                                        |
| π/4DQPSK | 1.264                             | 0.843                                        |
| 8DPSK    | 1.268                             | 0.845                                        |



#### Test plot as follows:





















Report No.: CQASZ20190901002E-01

### **5.6** Hopping Channel Number



#### **Measurement Data**

| Mode     | Hopping channel numbers | Limit |
|----------|-------------------------|-------|
| GFSK     | 79                      | ≥15   |
| π/4DQPSK | 79                      | ≥15   |
| 8DPSK    | 79                      | ≥15   |



### Test plot as follows:











### 5.7 Dwell Time







#### **Measurement Data**

| Mode     | Packet | Channel | Burst Width [ms/hop/ch] | Dwell Time[s] | Limit (second) |
|----------|--------|---------|-------------------------|---------------|----------------|
| GFSK     | DH1    | LCH     | 0.41                    | 0.131         | ≤0.4           |
| GFSK     | DH1    | MCH     | 0.41                    | 0.131         | ≤0.4           |
| GFSK     | DH1    | HCH     | 0.41                    | 0.131         | ≤0.4           |
| π/4DQPSK | 2DH1   | LCH     | 0.42                    | 0.134         | ≤0.4           |
| π/4DQPSK | 2DH1   | MCH     | 0.42                    | 0.134         | ≤0.4           |
| π/4DQPSK | 2DH1   | HCH     | 0.42                    | 0.134         | ≤0.4           |
| 8DPSK    | 3DH1   | LCH     | 0.42                    | 0.134         | ≤0.4           |
| 8DPSK    | 3DH1   | MCH     | 0.42                    | 0.134         | ≤0.4           |
| 8DPSK    | 3DH1   | HCH     | 0.42                    | 0.134         | ≤0.4           |
| GFSK     | DH3    | LCH     | 1.66                    | 0.266         | ≤0.4           |
| GFSK     | DH3    | MCH     | 1.66                    | 0.266         | ≤0.4           |
| GFSK     | DH3    | HCH     | 1.66                    | 0.266         | ≤0.4           |
| π/4DQPSK | 2DH3   | LCH     | 1.67                    | 0.267         | ≤0.4           |
| π/4DQPSK | 2DH3   | MCH     | 1.67                    | 0.267         | ≤0.4           |
| π/4DQPSK | 2DH3   | HCH     | 1.67                    | 0.267         | ≤0.4           |
| 8DPSK    | 3DH3   | LCH     | 1.67                    | 0.267         | ≤0.4           |
| 8DPSK    | 3DH3   | MCH     | 1.67                    | 0.267         | ≤0.4           |
| 8DPSK    | 3DH3   | HCH     | 1.67                    | 0.267         | ≤0.4           |
| GFSK     | DH5    | LCH     | 2.91                    | 0.31          | ≤0.4           |
| GFSK     | DH5    | MCH     | 2.91                    | 0.31          | ≤0.4           |
| GFSK     | DH5    | HCH     | 2.91                    | 0.31          | ≤0.4           |
| π/4DQPSK | 2DH5   | LCH     | 2.92                    | 0.312         | ≤0.4           |
| π/4DQPSK | 2DH5   | MCH     | 2.92                    | 0.312         | ≤0.4           |
| π/4DQPSK | 2DH5   | HCH     | 2.92                    | 0.312         | ≤0.4           |
| 8DPSK    | 3DH5   | LCH     | 2.92                    | 0.312         | ≤0.4           |
| 8DPSK    | 3DH5   | MCH     | 2.92                    | 0.312         | ≤0.4           |
| 8DPSK    | 3DH5   | HCH     | 2.92                    | 0.312         | ≤0.4           |

#### Remark:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

DH1/2DH1/3DH1 Dwell time = Burst Width(ms)\*(1600/ (2\*79))\*31.6

DH3/2DH3/3DH3 Dwell time = Burst Width (ms)\*(1600/ (4\*79))\*31.6

DH5/2DH5/3DH5 Dwell time = Burst Width (ms)\*(1600/ (6\*79))\*31.6

### Test plot as follows:



























































## **5.8** Band-edge for RF Conducted Emissions

| Test Requirement:      | 47 CFR Part 15C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                      |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Test Method:           | ANSI C63.10:2013                                                                                                                                                                                                                                                                                                                                                                        |  |
| Test Setup:            | Spectrum Analyzer  E.U.T  Non-Conducted Table                                                                                                                                                                                                                                                                                                                                           |  |
|                        | Ground Reference Plane                                                                                                                                                                                                                                                                                                                                                                  |  |
|                        | Remark: Offset=cable loss+ attenuation factor.                                                                                                                                                                                                                                                                                                                                          |  |
| Limit:                 | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |
| Exploratory Test Mode: | Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type                                                                                                                                                                                                                                                                                              |  |
| Final Test Mode:       | Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi$ /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type. Only the worst case is recorded in the report.                                                                                                             |  |
| Test Results:          | Pass                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                        |                                                                                                                                                                                                                                                                                                                                                                                         |  |



| Mode      | Test<br>Channel | Frequency<br>[MHz] | Frequency<br>Hopping | Emission Level [dBm] | Limit<br>[dBm] | Result |
|-----------|-----------------|--------------------|----------------------|----------------------|----------------|--------|
|           |                 | Off                | -49.830              | -25.29               | PASS           |        |
| GFSK      | LCH             | 2400               | On                   | -46.050              | -21.58         | PASS   |
|           |                 | 2483.5             | Off                  | -47.370              | -21.77         | PASS   |
| GFSK      | GFSK HCH        |                    | On                   | -46.950              | -21.6          | PASS   |
|           | π/4DQPSK LCH    | 2400               | Off                  | -49.910              | -27.34         | PASS   |
| π/4DQPSK  |                 |                    | On                   | -45.620              | -23.68         | PASS   |
|           |                 |                    | Off                  | -50.330              | -23.45         | PASS   |
| π/4DQPSK  | HCH             | 2483.5             | On                   | -46.540              | -23.32         | PASS   |
|           |                 |                    | Off                  | -49.140              | -26.92         | PASS   |
| 8DPSK LCH | 2400            | On                 | -46.350              | -23.58               | PASS           |        |
|           |                 | Off                | -50.420              | -23.3                | PASS           |        |
| 8DPSK     | HCH             | 2483.5             | On                   | -45.970              | -23.32         | PASS   |

Report No.: CQASZ20190901002E-01

### Test plot as follows:

























Report No.: CQASZ20190901002E-01

# **5.9** Spurious RF Conducted Emissions

| -                      |                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Test Requirement:      | 47 CFR Part 15C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Test Method:           | ANSI C63.10:2013                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Test Setup:            | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane  Remark: Offset=cable loss+ attenuation factor.                                                                                                                                                                                                                                                                   |  |  |
| Limit:                 | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |
| Exploratory Test Mode: | Non-hopping transmitting with all kind of modulation and all kind of data type                                                                                                                                                                                                                                                                                                          |  |  |
| Final Test Mode:       | Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.                                                                                                                                                             |  |  |
| Test Results:          | Pass                                                                                                                                                                                                                                                                                                                                                                                    |  |  |



































































Report No.: CQASZ20190901002E-01



#### Remark:

Pre test 9kHz to 25GHz, find the highest point when testing, so only the worst data were shown in the test report. Per FCC Part 15.33 (a) and 15.31 (o) ,The amplitude of spurious emissions from intentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this part.



Report No.: CQASZ20190901002E-01

### 5.10 Other requirements Frequency Hopping Spread Spectrum System

### Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1), (h) requirement:

The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

#### Compliance for section 15.247(a)(1)

According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage

outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- · Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)



Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:



Each frequency used equally on the average by each transmitter.

According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals.

### Compliance for section 15.247(g)

According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.



Report No.: CQASZ20190901002E-01

#### Compliance for section 15.247(h)

According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.



Report No.: CQASZ20190901002E-01

# **5.11** Radiated Spurious Emission & Restricted bands

| Test Requirement: | 47 CFR Part 15C Section                                                                 | CFR Part 15C Section 15.209 and 15.205 |                                |                         |               |                          |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------|----------------------------------------|--------------------------------|-------------------------|---------------|--------------------------|--|--|--|--|--|
| Test Method:      | ANSI C63.10: 2013                                                                       |                                        |                                |                         |               |                          |  |  |  |  |  |
| Test Site:        | Measurement Distance                                                                    | : 3m                                   | n (Semi-Anech                  | oic Cham                | ber)          |                          |  |  |  |  |  |
| Receiver Setup:   | Frequency                                                                               |                                        | Detector                       | RBW                     | VBW           | Remark                   |  |  |  |  |  |
|                   | 0.009MHz-0.090MH                                                                        | z                                      | Peak                           | 10kHz                   | z 30kHz       | Peak                     |  |  |  |  |  |
|                   | 0.009MHz-0.090MH                                                                        | z                                      | Average                        | 10kHz                   | z 30kHz       | Average                  |  |  |  |  |  |
|                   | 0.090MHz-0.110MH                                                                        | Quasi-peak                             | 10kHz                          | z 30kHz                 | Quasi-peak    |                          |  |  |  |  |  |
|                   | 0.110MHz-0.490MH                                                                        | 0.110MHz-0.490MHz Peak                 |                                |                         |               | Peak                     |  |  |  |  |  |
|                   | 0.110MHz-0.490MH                                                                        | z                                      | Average                        | 10kHz                   | z 30kHz       | Average                  |  |  |  |  |  |
|                   | 0.490MHz -30MHz                                                                         |                                        | Quasi-peak                     | 10kHz                   | z 30kHz       | Quasi-peak               |  |  |  |  |  |
|                   | 30MHz-1GHz                                                                              |                                        | Peak                           | 100 kH                  | Iz 300kHz     | Peak                     |  |  |  |  |  |
|                   | Above 1GHz                                                                              |                                        | Peak                           | 1MHz                    | z 3MHz        | Peak                     |  |  |  |  |  |
|                   | Above 1GHz                                                                              |                                        | Peak                           | 1MHz                    | 10Hz          | Average                  |  |  |  |  |  |
| Limit:            | Frequency                                                                               |                                        | eld strength<br>crovolt/meter) | Limit<br>(dBuV/m)       | Remark        | Measureme<br>distance (n |  |  |  |  |  |
|                   | 0.009MHz-0.490MHz                                                                       | 2                                      | 400/F(kHz)                     | -                       | -             | 300                      |  |  |  |  |  |
|                   | 0.490MHz-1.705MHz                                                                       | 24                                     | 1000/F(kHz)                    | -                       | -             | 30                       |  |  |  |  |  |
|                   | 1.705MHz-30MHz                                                                          |                                        | 30                             | -                       | -             | 30                       |  |  |  |  |  |
|                   | 30MHz-88MHz                                                                             |                                        | 100                            | 40.0                    | Quasi-peak    | 3                        |  |  |  |  |  |
|                   | 88MHz-216MHz                                                                            |                                        | 150                            | 43.5                    | Quasi-peak    | 3                        |  |  |  |  |  |
|                   | 216MHz-960MHz                                                                           |                                        | 200                            | 46.0                    | Quasi-peak    | 3                        |  |  |  |  |  |
|                   | 960MHz-1GHz                                                                             | 960MHz-1GHz 50                         |                                | 54.0                    | Quasi-peak    | 3                        |  |  |  |  |  |
|                   | Above 1GHz                                                                              | Average                                | 3                              |                         |               |                          |  |  |  |  |  |
|                   | Note: 15.35(b), Unless<br>emissions is 20dE<br>applicable to the e<br>peak emission lev | 3 ab<br>equi                           | ove the maxin<br>pment under t | num perm<br>est. This p | itted average | emission limit           |  |  |  |  |  |



Report No.: CQASZ20190901002E-01



Antenna Tower

Artenna Antenna Tower

Ground Reference Plane

Test Receiver



Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

#### Test Procedure:

- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
  - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.



|                        | d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for                                                                                                                                                                                                                                                                             |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.                                                                                                                                                                                                                                                 |
|                        | e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.                                                                                                                                                                                                                                                                                                                |
|                        | f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.  g. Test the EUT in the lowest channel (2402MHz),the middle channel |
|                        | (2441MHz),the Highest channel (2480MHz)  h. The radiation measurements are performed in X, Y, Z axis positioning                                                                                                                                                                                                                                                                                                           |
|                        | for Transmitting mode, and found the X axis positioning which it is the worst case.                                                                                                                                                                                                                                                                                                                                        |
|                        | i. Repeat above procedures until all frequencies measured was complete.                                                                                                                                                                                                                                                                                                                                                    |
| Exploratory Test Mode: | Non-hopping transmitting mode with all kind of modulation and all kind of data type                                                                                                                                                                                                                                                                                                                                        |
|                        | Transmitting mode, Charge + Transmitting mode.                                                                                                                                                                                                                                                                                                                                                                             |
| Final Test Mode:       | Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case.                                                                                                                                                                                                                                                                                                                                         |
|                        | Pretest the EUT at Transmitting mode and Charge + Transmitting mode, found the Charge + Transmitting mode which it is worse case                                                                                                                                                                                                                                                                                           |
|                        | For below 1GHz part, through pre-scan, the worst case is the lowest channel.                                                                                                                                                                                                                                                                                                                                               |
|                        | Only the worst case is recorded in the report.                                                                                                                                                                                                                                                                                                                                                                             |
| Test Results:          | Pass                                                                                                                                                                                                                                                                                                                                                                                                                       |



### 5.11.1 Radiated Emission below 1GHz

| J. 1 1 | . i ita     | alateu                 | LIIII33    | 1011 1 | JCIOW I          | OHE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------|-------------|------------------------|------------|--------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30MF   | lz∼1Gl      | Ηz                     |            |        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Test r | node:       |                        |            | CI     | narge + T        | ransmitting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | Vertical         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 80L    | evel (d     | BuV/m)                 |            |        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •      |             |                        |            |        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 70     |             |                        |            |        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 60     |             |                        |            |        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 50     |             |                        |            |        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 40     |             |                        |            |        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30     |             | 46.                    |            | 2      |                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                  | 5<br>5 | 6<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A STATE OF THE PARTY OF THE PAR |
| 20     | April March | AND THE REAL PROPERTY. | VI         |        | aphorocontradent | Appallation to the state of the | 4                 | population which | S S    | THE STATE OF THE S |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10     |             |                        | , with the | **     |                  | المهادي يبحون                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | W. 1              |                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 ;    | 30          | 5                      | 0          |        | 100              | Freque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200<br>ency (MHz) |                  | 50     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |             |                        | R          | ead    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Limit             | Over             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |             | Fre                    |            |        | Factor           | Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Line              |                  | Remark | Pol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        |             | МН                     | z d        | BuV    | dB/m             | dBuV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | dBuV/m            | dB               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1      | pp          | 39.9                   | 9 14       | .62    | 14.80            | 29.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40.00             | -10.58           | Peak   | VER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TICAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2      |             | <b>75.</b> 9           |            | .03    | 9.13             | 26.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40.00             | -13.84           | Peak   | VER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TICAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3      |             | 125.0                  | 1 15       | .76    | 10.51            | 26.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | -17.23           |        | VER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TICAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4      |             | 222.1                  |            | .13    | 9.20             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | -23.67           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TICAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5      |             | 477.1                  |            | .59    | 16.57            | 29.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | -16.84           |        | VER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TICAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6      |             | 709.1                  | 8 11       | .50    | 20.16            | 31.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46.00             | -14.34           | Peak   | VER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TICAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

#### Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor = Antenna Factor + Cable Factor – Preamplifier Factor,

Level = Read Level + Factor,

Over Limit=Level-Limit Line.





#### Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor = Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor.

Over Limit=Level-Limit Line.



## 5.11.2 Transmitter Emission above 1GHz

| Worse case | mode:            | GFSK(DH | 5)                | Test chann | el:    | Lowest           |           |
|------------|------------------|---------|-------------------|------------|--------|------------------|-----------|
| Frequency  | Meter<br>Reading | Factor  | Emission<br>Level | Limits     | Over   | Detector<br>Type | Ant. Pol. |
| (MHz)      | (dBµV)           | (dB)    | (dBµV/m)          | (dBµV/m)   | (dB)   |                  | H/V       |
| 2390       | 55.78            | -9.2    | 46.58             | 74         | -27.42 | Peak             | Н         |
| 2400       | 56.01            | -9.39   | 46.62             | 74         | -27.38 | Peak             | Н         |
| 4804       | 51.95            | -4.33   | 47.62             | 74         | -26.38 | Peak             | Н         |
| 7206       | 49.69            | 1.01    | 50.70             | 74         | -23.30 | Peak             | Н         |
| 2390       | 53.28            | -9.2    | 44.08             | 74         | -29.92 | Peak             | V         |
| 2400       | 55.75            | -9.39   | 46.36             | 74         | -27.64 | Peak             | V         |
| 4804       | 52.74            | -4.33   | 48.41             | 74         | -25.59 | Peak             | V         |
| 7206       | 51.15            | 1.01    | 52.16             | 74         | -21.84 | Peak             | V         |

| Worse case | Worse case mode: |        | GFSK(DH5)         |          | Test channel: |                  | Middle    |  |
|------------|------------------|--------|-------------------|----------|---------------|------------------|-----------|--|
| Frequency  | Meter<br>Reading | Factor | Emission<br>Level | Limits   | Over          | Detector<br>Type | Ant. Pol. |  |
| (MHz)      | (dBµV)           | (dB)   | (dBµV/m)          | (dBµV/m) | (dB)          |                  | H/V       |  |
| 4882       | 50.45            | -4.11  | 46.34             | 74       | -27.66        | peak             | Η         |  |
| 7323       | 50.35            | 1.51   | 51.86             | 74       | -22.14        | peak             | Н         |  |
| 4882       | 53.48            | -4.11  | 49.37             | 74       | -24.63        | peak             | V         |  |
| 7323       | 48.29            | 1.51   | 49.80             | 74       | -24.20        | peak             | V         |  |

| Worse case | mode:            | GFSK(DH5 | 5)                | Test channel: |        | Highest          |           |
|------------|------------------|----------|-------------------|---------------|--------|------------------|-----------|
| Frequency  | Meter<br>Reading | Factor   | Emission<br>Level | Limits        | Over   | Detector<br>Type | Ant. Pol. |
| (MHz)      | (dBµV)           | (dB)     | (dBµV/m)          | (dBµV/m)      | (dB)   |                  | H/V       |
| 2483.5     | 57.19            | -9.29    | 47.90             | 74            | -26.10 | Peak             | Н         |
| 4960       | 53.17            | -4.04    | 49.13             | 74            | -24.87 | Peak             | Н         |
| 7440       | 49.42            | 1.57     | 50.99             | 74            | -23.01 | Peak             | Н         |
| 2483.5     | 53.50            | -9.29    | 44.21             | 74            | -29.79 | Peak             | V         |
| 4960       | 50.34            | -4.04    | 46.30             | 74            | -27.70 | Peak             | V         |
| 7440       | 48.53            | 1.57     | 50.10             | 74            | -23.90 | Peak             | V         |





| Worse case | mode:            | π/4DQPSk | ((2DH5)           | Test chann | iel:   | Lowest           |           |
|------------|------------------|----------|-------------------|------------|--------|------------------|-----------|
| Frequency  | Meter<br>Reading | Factor   | Emission<br>Level | Limits     | Over   | Detector<br>Type | Ant. Pol. |
| (MHz)      | (dBµV)           | (dB)     | (dBµV/m)          | (dBµV/m)   | (dB)   |                  | H/V       |
| 2390       | 53.74            | -9.2     | 44.54             | 74         | -29.46 | Peak             | Н         |
| 2400       | 55.68            | -9.39    | 46.29             | 74         | -27.71 | Peak             | Н         |
| 4804       | 53.89            | -4.33    | 49.56             | 74         | -24.44 | Peak             | Н         |
| 7206       | 48.87            | 1.01     | 49.88             | 74         | -24.12 | Peak             | Н         |
| 2390       | 53.79            | -9.2     | 44.59             | 74         | -29.41 | Peak             | V         |
| 2400       | 56.26            | -9.39    | 46.87             | 74         | -27.13 | Peak             | V         |
| 4804       | 52.51            | -4.33    | 48.18             | 74         | -25.82 | Peak             | V         |
| 7206       | 48.84            | 1.01     | 49.85             | 74         | -24.15 | Peak             | V         |

| Worse case | mode:            | π/4DQPSk | ((2DH5)           | Test chann | el:    | Middle           |           |
|------------|------------------|----------|-------------------|------------|--------|------------------|-----------|
| Frequency  | Meter<br>Reading | Factor   | Emission<br>Level | Limits     | Over   | Detector<br>Type | Ant. Pol. |
| (MHz)      | (dBµV)           | (dB)     | (dBµV/m)          | (dBµV/m)   | (dB)   |                  | H/V       |
| 4882       | 52.54            | -4.11    | 48.43             | 74         | -25.57 | peak             | Н         |
| 7323       | 51.19            | 1.51     | 52.70             | 74         | -21.30 | peak             | Н         |
| 4882       | 52.24            | -4.11    | 48.13             | 74         | -25.87 | peak             | V         |
| 7323       | 50.27            | 1.51     | 51.78             | 74         | -22.22 | peak             | V         |

| Worse case | mode:            | π/4DQPSk | K(2DH5)           | Test chann | iel:   | Highest          |           |
|------------|------------------|----------|-------------------|------------|--------|------------------|-----------|
| Frequency  | Meter<br>Reading | Factor   | Emission<br>Level | Limits     | Over   | Detector<br>Type | Ant. Pol. |
| (MHz)      | (dBµV)           | (dB)     | (dBµV/m)          | (dBµV/m)   | (dB)   |                  | H/V       |
| 2483.5     | 55.04            | -9.29    | 45.75             | 74         | -28.25 | Peak             | н         |
| 4960       | 52.58            | -4.04    | 48.54             | 74         | -25.46 | Peak             | Н         |
| 7440       | 49.58            | 1.57     | 51.15             | 74         | -22.85 | Peak             | Н         |
| 2483.5     | 54.57            | -9.29    | 45.28             | 74         | -28.72 | Peak             | V         |
| 4960       | 50.40            | -4.04    | 46.36             | 74         | -27.64 | Peak             | V         |
| 7440       | 50.01            | 1.57     | 51.58             | 74         | -22.42 | Peak             | V         |



Report No.: CQASZ20190901002E-01

| Worse case | mode:            | 8DPSK(3D | )H5)              | Test chann | iel:   | Lowest           |           |
|------------|------------------|----------|-------------------|------------|--------|------------------|-----------|
| Frequency  | Meter<br>Reading | Factor   | Emission<br>Level | Limits     | Over   | Detector<br>Type | Ant. Pol. |
| (MHz)      | (dBµV)           | (dB)     | (dBµV/m)          | (dBµV/m)   | (dB)   |                  | H/V       |
| 2390       | 54.59            | -9.2     | 45.39             | 74         | -28.61 | Peak             | н         |
| 2400       | 55.69            | -9.39    | 46.30             | 74         | -27.70 | Peak             | Н         |
| 4804       | 53.05            | -4.33    | 48.72             | 74         | -25.28 | Peak             | Н         |
| 7206       | 50.12            | 1.01     | 51.13             | 74         | -22.87 | Peak             | Н         |
| 2390       | 56.09            | -9.2     | 46.89             | 74         | -27.11 | Peak             | V         |
| 2400       | 54.35            | -9.39    | 44.96             | 74         | -29.04 | Peak             | V         |
| 4804       | 53.48            | -4.33    | 49.15             | 74         | -24.85 | Peak             | V         |
| 7206       | 50.42            | 1.01     | 51.43             | 74         | -22.57 | Peak             | V         |

| Worse case | mode:            | 8DPSK(3D | H5)               | Test channel: |        | Middle           |           |
|------------|------------------|----------|-------------------|---------------|--------|------------------|-----------|
| Frequency  | Meter<br>Reading | Factor   | Emission<br>Level | Limits        | Over   | Detector<br>Type | Ant. Pol. |
| (MHz)      | (dBµV)           | (dB)     | (dBµV/m)          | (dBµV/m)      | (dB)   |                  | H/V       |
| 4882       | 50.64            | -4.11    | 46.53             | 74            | -27.47 | peak             | Н         |
| 7323       | 48.74            | 1.51     | 50.25             | 74            | -23.75 | peak             | Н         |
| 4882       | 52.20            | -4.11    | 48.09             | 74            | -25.91 | peak             | V         |
| 7323       | 50.60            | 1.51     | 52.11             | 74            | -21.89 | peak             | V         |

| Worse case | mode:            | 8DPSK(3DH5) |                   | Test chann | Test channel: |                  | Highest   |  |
|------------|------------------|-------------|-------------------|------------|---------------|------------------|-----------|--|
| Frequency  | Meter<br>Reading | Factor      | Emission<br>Level | Limits     | Over          | Detector<br>Type | Ant. Pol. |  |
| (MHz)      | (dBµV)           | (dB)        | (dBµV/m)          | (dBµV/m)   | (dB)          |                  | H/V       |  |
| 2483.5     | 56.35            | -9.29       | 47.06             | 74         | -26.94        | Peak             | Н         |  |
| 4960       | 52.62            | -4.04       | 48.58             | 74         | -25.42        | Peak             | Н         |  |
| 7440       | 48.47            | 1.57        | 50.04             | 74         | -23.96        | Peak             | Н         |  |
| 2483.5     | 53.30            | -9.29       | 44.01             | 74         | -29.99        | Peak             | V         |  |
| 4960       | 51.07            | -4.04       | 47.03             | 74         | -26.97        | Peak             | V         |  |
| 7440       | 49.60            | 1.57        | 51.17             | 74         | -22.83        | Peak             | V         |  |

#### Remark

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
  - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

# 6 Photographs - EUT Test Setup

## **6.1** Radiated Emission













## **6.2** Conducted Emission



# 7 Photographs - EUT Constructional Details

Test mode No.: BTHS-AS90

























































BT Antenna

.The End