
NASA-GLENN CHEMICAL EQUILIBRIUM PROGRAM CEA2, MAY 21, 2004
BY BONNIE MCBRIDE AND SANFORD GORDON
REFS: NASA RP-1311, PART I, 1994 AND NASA RP-1311, PART II, 1996

problem case=LMPHR o/f=2,4,6,8,10,
 rocket frozen nfz=1 tcest,k=3800
 p,bar=20,25,30,
react
 oxid=H2O(L) wt=100
 oxid=CH3OH(L) wt=100
 oxid=NH3(L) wt=100
 fuel=Sasoll Wax 0907 wt=100 t,k=298.16
 h,kj/mol=-1422.526 C 50 H 102

WARNING!! Wax NOT RECOGNIZED (INPUT)

WARNING!! LITERAL EXPECTED FOR 0907 (INPUT)

end

OPTIONS: TP=F HP=F SP=F TV=F UV=F SV=F DETN=F SHOCK=F REFL=F INCD=F RKT=T FROZ=T EQL=F IONS=F SIUNIT=T DEBUGF=F SHKDBG=F DETDBG=F TRNSPT=F

TRACE= 0.00E+00 S/R= 0.000000E+00 H/R= 0.000000E+00 U/R= 0.000000E+00

Pc,BAR = 20.000000 25.000000 30.000000

Pc/P =

SUBSONIC AREA RATIOS =

SUPERSONIC AREA RATIOS =

NFZ= 1 Mdot/Ac= 0.000000E+00 Ac/At= 0.000000E+00

REACTANT WT.FRAC (ENERGY/R),K TEMP,K DENSITY
EXPLODED FORMULA

O: H2O(L) 0.333333 0.0000000E+00 0.00 0.0000
H 2.00000 0 1.00000

O: CH3OH(L) 0.333333 0.000000E+00 0.00 0.0000
C 1.00000 H 4.00000 0 1.00000

O: NH3(L) 0.333333 -0.860604E+04 239.72 0.0000
N 1.00000 H 3.00000

F: Sasoll 1.000000 -0.171090E+06 298.16 0.0000
C 50.00000 H ********

SPECIES BEING CONSIDERED IN THIS SYSTEM (CONDENSED PHASE MAY HAVE NAME LISTED SEVERAL TIMES) LAST thermo.inp UPDATE: 9/09/04

g 7/97 *C tpis79 *CH g 4/02 CH2

4 /00	~	11/00	~~~~	7/00	2222
g 4/02	CH3	g11/00	CH2OH	g 7/00	CH3O
g 8/99	CH4	g 7/00	СНЗОН	srd 01	CH300H
g 8/99	*CN	g12/99	CNN	tpis79	*CO
g 9/99	*C02	tpis91	COOH	tpis91	*C2
g 6/01	C2H	g 1/91	C2H2, acetylene	g 5/01	C2H2, vinylidene
g 4/02	CH2CO, ketene	g 3/02	O (CH) 20	srd 01	HO (CO) 2OH
g 7/01	C2H3, vinyl	g 9/00	CH3CN	g 6/96	CH3CO, acetyl
g 1/00	C2H4	g 8/88	C2H4O,ethylen-o	g 8/88	CH3CHO, ethanal
g 6/00	СНЗСООН	srd 01	OHCH2COOH	g 7/00	C2H5
g 7/00	C2H6	g 8/88	CH3N2CH3	g 8/88	С2Н5ОН
g 7/00	CH3OCH3	srd 01	CH3O2CH3	g 7/00	CCN
tpis91	CNC	srd 01	OCCN	tpis79	C2N2
g 8/00	C20	tpis79	*C3	n 4/98	C3H3,1-propynl
n 4/98	C3H3,2-propynl	g 2/00	C3H4,allene	g 1/00	C3H4, propyne
g 5/90	C3H4,cyclo-	g 3/01	C3H5,allyl	g 2/00	C3H6, propylene
g 1/00	C3H6,cyclo-	g 6/01	C3H6O,propylox	g 6/97	C3H6O,acetone
g 1/02	C3H6O,propanal	g 7/01	C3H7,n-propyl	g 9/85	C3H7,i-propyl
g 2/00	С3Н8	g 2/00	C3H8O,1propanol	g 2/00	C3H8O,2propanol
srd 01	CNCOCN	g 7/88	C302	g tpis	*C4
g 7/01	C4H2,butadiyne	g 8/00	C4H4,1,3-cyclo-	n10/92	C4H6,butadiene
n10/93	C4H6,1butyne	n10/93	C4H6,2butyne	g 8/00	C4H6,cyclo-
n 4/88	C4H8,1-butene	n 4/88	C4H8,cis2-buten	n 4/88	C4H8,tr2-butene
n 4/88	C4H8,isobutene	g 8/00	C4H8,cyclo-	g10/00	(CH3COOH) 2
n10/84	C4H9,n-butyl	n10/84	C4H9,i-butyl	g 1/93	C4H9,s-butyl
g 1/93	C4H9,t-butyl	g12/00	C4H10,n-butane	g 8/00	C4H10,isobutane
g 6/01	C4N2	g 8/00	*C5	g 5/90	C5H6,1,3cyclo-
g 1/93	C5H8,cyclo-	n 4/87	C5H10,1-pentene	g 2/01	C5H10,cyclo-
n10/84	C5H11,pentyl	g 1/93	C5H11,t-pentyl	n10/85	C5H12,n-pentane
n10/85	C5H12,i-pentane	n10/85	CH3C (CH3) 2CH3	g 2/93	C6H2
g11/00	C6H5,phenyl	g 8/00	C6H5O,phenoxy	g 8/00	C6H6
g 8/00	C6H5OH, phenol	g 1/93	C6H10,cyclo-	n 4/87	C6H12,1-hexene
g 6/90	C6H12,cyclo-	n10/83	C6H13,n-hexyl	g 6/01	C6H14,n-hexane
g 7/01	C7H7,benzyl	g 1/93	C7H8	g12/00	C7H8O,cresol-mx
n 4/87	C7H14,1-heptene	n10/83	C7H15,n-heptyl	n10/85	C7H16,n-heptane
n10/85	C7H16,2-methylh	n 4/89	C8H8, styrene	n10/86	C8H10,ethylbenz
n 4/87	C8H16,1-octene	n10/83	C8H17,n-octyl	n 4/85	C8H18,n-octane
n 4/85	C8H18,isooctane	n10/83	C9H19,n-nonyl	g 3/01	C10H8, naphthale
n10/83	C10H21,n-decyl	g 8/00	C12H9,o-bipheny	g 8/00	C12H10,biphenyl
g 6/97	*H	g 6/01	HCN	g 1/01	HCO
tpis89	HCCN	g 6/01	HCCO	g 6/01	HNC
g 7/00	HNCO	g10/01	HNO	tpis89	HNO2
g 5/99	HNO3	g 4/02	HO2	tpis78	*H2
g 5/01	HCHO, formaldehy	g 6/01	НСООН	g 8/89	Н2О
g 6/99	H2O2	g 6/01	(HCOOH) 2	g 5/97	*N
g 6/01	NCO	g 4/99	*NH	g 3/01	NH2
tpis89	NH3	tpis89		tpis89	*NO
g 4/99	NO2	j12/64		tpis78	*N2
g 6/01	NCN	g 5/99	N2H2	=	NH2NO2
g 4/99	N2H4	q 4/99	N20	g 4/99	N2O3
tpis89	N2O4	q 4/99	N205	tpis89	N3
g 4/99	N3H	g 5/97	*0	g 4/02	*OH
tpis89	*02	g 8/01	03	n 4/83	C(gr)
n 4/83	C(gr)	n 4/83	C(gr)	g11/99	H2O(cr)
g 8/01	H2O(L)	g 8/01	H2O(L)	,,-2	- (/
J	. ,	J -/ -	. ,		

O/F = 2.000000

		EFFECTIVE FUEL	EFFEC	TIVE OXIDANT	MIXTURE
ENTHALPY		h(2)/R		h(1)/R	h0/R
(KG-MOL) (K)/KG	-0.24325133E+03	-0.16	844346E+03	-0.19337942E+03
KG-FORM.WT	./KG	bi(2)		bi(1)	bOi
* H		0.14502132E+00	0.13	733597E+00	0.13989775E+00
*0		0.0000000E+00	0.28	905870E-01	0.19270580E-01
*C		0.71088880E-01	0.10	403058E-01	0.30631666E-01
*N		0.0000000E+00	0.19	572704E-01	0.13048470E-01
POINT ITN	Т	Н	0	С	N
1 22	1141.750	-7.810	-35.264	-1.052	-12.334
ADD C(gr)	1139.485	-7.734	-34.894	-1.717	-12.343

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 290.1 PSIA CASE = LMPHR

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	Sasoll	1.000000	-1422526.000	298.160

O/F= 2.00000 %FUEL= 33.333333 R,EQ.RATIO= 6.808939 PHI,EQ.RATIO=-1.772286

	CHAMBER	THROAT
Pinf/P	1.0000	1.8066
P, BAR	20.000	11.070
T, K	1139.49	1011.95
RHO, KG/CU M	2.7419 0	1.7089 0
H, KJ/KG	-1607.86	-2014.80
U, KJ/KG	-2337.28	-2662.59
G, KJ/KG	-18645.9	-17146.0
S, $KJ/(KG)(K)$	14.9524	14.9524
M, (1/n)	12.989	12.989
MW, MOL WT	11.847	11.847
Cp, $KJ/(KG)(K)$	3.2441	3.1366
GAMMAs	1.2458	1.2564
SON VEL, M/SEC	953.3	902.2
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At 1.0000 CSTAR, M/SEC 1297.2

CF	0.6954
Ivac, M/SEC	1620.2
Isp, M/SEC	902.2

MOLE FRACTIONS

CH4	0.13412	*CO	0.12493	*CO2	0.01590
C2H4	0.00001	C2H6	0.00002	HCN	0.00001
*H2	0.48801	H20	0.07156	NH3	0.00054
*N2	0.07702	C(gr)	0.08788		

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT ITN T H O C N

1 3 1155.213 -7.651 -34.522 -1.739 -12.247

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 362.6 PSIA CASE = LMPHR

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	Sasoll	1.0000000	-1422526.000	298.160

O/F= 2.00000 %FUEL= 33.333333 R,EQ.RATIO= 6.808939 PHI,EQ.RATIO=-1.772286

	CHAMBER	THROAT
Pinf/P	1.0000	1.8046
P, BAR	25.000	13.853
T, K	1155.21	1027.41
RHO, KG/CU M	3.4057 0	2.1219 0
H, KJ/KG	-1607.86	-2016.92
U, KJ/KG	-2341.93	-2669.78
G, KJ/KG	-18716.7	-17233.0
S, KJ/(KG)(K)	14.8101	14.8101

M, (1/n)	13.085	13.085
MW, MOL WT	12.000	12.000
Cp, $KJ/(KG)(K)$	3.2544	3.1458
GAMMAs	1.2426	1.2531
SON VEL, M/SEC	955.1	904.5
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1302.6
CF	0.6944
Ivac, M/SEC	1626.3
Isp, M/SEC	904.5

MOLE FRACTIONS

CH4	0.14225	*CO	0.12646	*CO2	0.01589
C2H4	0.00001	C2H6	0.00002	HCN	0.00001
*H2	0.48086	H2O	0.07301	NH3	0.00061
*N2	0.07798	C(ar)	0.08290		

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT ITN T H O C N

1 3 1168.300 -7.583 -34.219 -1.757 -12.168

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 435.1 PSIACASE = LMPHR

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUET.	Sasoll	1.0000000	-1422526.000	298.160

2.00000 %FUEL= 33.333333 R,EQ.RATIO= 6.808939 PHI,EQ.RATIO=-1.772286 0/F=

Pinf/P P, BAR T, K RHO, KG/CU M H, KJ/KG U, KJ/KG G, KJ/KG S, KJ/(KG) (K)	1168.30 4.0660 0 -1607.86 -2345.68 -18775.6	1.8030 16.639 1040.31 2.5326 0 -2018.61 -2675.60 -17305.5			
M, (1/n) MW, MOL WT Cp, KJ/(KG)(K) GAMMAS SON VEL,M/SEC MACH NUMBER PERFORMANCE PAR	12.130 3.2633 1.2400 956.5 0.000	12.130 3.1537 1.2504 906.4			
Ae/At CSTAR, M/SEC CF IVAC, M/SEC Isp, M/SEC MOLE FRACTIONS		1.0000 1306.9 0.6935 1631.2 906.4			
CH4	0.14915 0.00001 0.47480 0.07880	С2Н6	0.12772 0.00003 0.07423 0.07869		0.01589 0.00001 0.00067

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

O/F = 4.000000

	EFFECTIVE FUEL	EFFECTIVE OXIDANT	MIXTURE
ENTHALPY	h(2)/R	h(1)/R	h0/R
(KG-MOL)(K)/KG	-0.24325133E+03	-0.16844346E+03	-0.18340504E+03
KG-FORM.WT./KG	bi(2)	bi(1)	bOi
*H	0.14502132E+00	0.13733597E+00	0.13887304E+00

FileEditor:Sasolwax0907.out

*0			0.0000000E+00	0.28	905870E-01	0.23124696E	-01
*C			0.71088880E-01	0.10	403058E-01	0.22540223E	-01
*N			0.0000000E+00	0.19	572704E-01	0.15658164E	-01
POINT	ITN	T	Н	0	C	N	
1	4	1191.493	-7.780	-34.144	-1.789	-12.365	
REMOVE	C (c	gr)					
1	3	1195.146	-7.761	-33.904	-2.102	-12.373	

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 290.1 PSIA CASE = LMPHR

	REACTANT	WT FRACTION	I ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	Sasoll	1.0000000	-1422526.000	298.160

O/F= 4.00000 %FUEL= 20.000000 R,EQ.RATIO= 4.952150 PHI,EQ.RATIO=-0.886143

	CHAMBER	THROAT
Pinf/P	1.0000	1.8340
P, BAR	20.000	10.905
T, K	1195.15	1040.94
RHO, KG/CU M	2.3409 0	1.4655 0
H, KJ/KG	-1524.92	-2009.09
U, KJ/KG	-2379.30	-2753.23
G, KJ/KG	-20897.5	-18882.0
S, KJ/(KG)(K)	16.2094	16.2094
M, (1/n)	11.631	11.631
MW, MOL WT	11.631	11.631
Cp, $KJ/(KG)(K)$	3.1907	3.0878
GAMMAs	1.2887	1.3013
SON VEL, M/SEC	1049.3	984.0
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1386.9
CF	0.7095
Ivac, M/SEC	1740.3
Isp, M/SEC	984.0

MOLE FRACTIONS

CH4	0.08012	*CO	0.16668	*C02	0.01532
C2H6	0.00001	HCN	0.00001	*H2	0.57491
H20	0.07164	NH3	0.00052	*N2	0.09079

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT	ITN	Т	Н	0	С	N
1	3	1212.266	-7.674	-33.516	-2.161	-12.279

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 362.6 PSIA CASE = LMPHR

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	Sasoll	1.000000	-1422526.000	298.160

O/F= 4.00000 %FUEL= 20.000000 R,EQ.RATIO= 4.952150 PHI,EQ.RATIO=-0.886143

	CHAMBER	THROAT
Pinf/P	1.0000	1.8319
P, BAR	25.000	13.647
T, K	1212.27	1057.42
RHO, KG/CU M	2.9013 0	1.8157 0
H, KJ/KG	-1524.92	-2012.66
U, KJ/KG	-2386.60	-2764.27
G, KJ/KG	-20982.2	-18984.6
S, $KJ/(KG)(K)$	16.0503	16.0503
$M_{,}$ (1/n)	11.697	11.697
MW, MOL WT	11.697	11.697
Cp, KJ/(KG)(K)	3.2014	3.0973
GAMMAs	1.2854	1.2978
SON VEL, M/SEC	1052.4	987.7
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At 1.0000
CSTAR, M/SEC 1394.1
CF 0.7085
Ivac, M/SEC 1748.7
Isp, M/SEC 987.7

MOLE FRACTIONS

CH4	0.08340	*CO	0.16492	*CO2	0.01529
C2H4	0.00001	C2H6	0.00001	HCN	0.00002
*H2	0.56949	H20	0.07500	NH3	0.00059
*N12	0 09128				

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT ITN T H O C N

1 3 1226.560 -7.602 -33.200 -2.209 -12.202

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 435.1 PSIA CASE = LMPHR

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	Sasoll	1.0000000	-1422526.000	298.160

O/F= 4.00000 %FUEL= 20.000000 R,EQ.RATIO= 4.952150 PHI,EQ.RATIO=-0.886143

CHAMBER THROAT
Pinf/P 1.0000 1.8302
P, BAR 30.000 16.392
T, K 1226.56 1071.22

FileEditor:Sasolwax0907.out

RHO, KG/CU M H, KJ/KG U, KJ/KG	-1524.92	2.1632 0 -2015.56 -2773.32
G, KJ/KG S, KJ/(KG)(K)	-21053.0	-19070.5 15.9210
M, (1/n) MW, MOL WT Cp, KJ/(KG)(K) GAMMAS SON VEL,M/SEC MACH NUMBER	11.754 11.754 3.2103 1.2826 1054.9 0.000	11.754 11.754 3.1055 1.2950 990.6 1.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1400.0
CF	0.7076
Ivac, M/SEC	1755.5
Isp, M/SEC	990.6

MOLE FRACTIONS

CH4	0.08618	*CO	0.16343	*C02	0.01527
C2H4	0.00001	C2H6	0.00001	HCN	0.00002
*H2	0.56490	H20	0.07784	NH3	0.00066
*N2	0.09168				

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

O/F = 6.000000

ENTHALPY (KG-MOL) (K	i)/KG	EFFECTIVE FUEL h(2)/R -0.24325133E+03		TIVE OXIDANT h(1)/R 844346E+03	MIXTURE h0/R -0.17913030E+03
KG-FORM.WT	./KG	bi(2)		bi(1)	bOi
* H		0.14502132E+00	0.13	733597E+00	0.13843388E+00
*0		0.0000000E+00	0.28	905870E-01	0.24776460E-01
*C		0.71088880E-01	0.10	403058E-01	0.19072461E-01
*N		0.0000000E+00	0.19	572704E-01	0.16776604E-01
POINT ITN	Т	Н	0	С	N
1 5	1235.701	-7.777	-33.017	-2.758	-12.408

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 290.1 PSIA CASE = LMPHR

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	Sasoll	1.0000000	-1422526.000	298.160

O/F= 6.00000 %FUEL= 14.285714 R,EQ.RATIO= 4.333220 PHI,EQ.RATIO=-0.590762

	CHAMBER	THROAT
Pinf/P	1.0000	1.8457
P, BAR	20.000	10.836
T, K	1235.70	1067.25
RHO, KG/CU M	2.1621 0	1.3563 0
H, KJ/KG	-1489.38	-2016.93
U, KJ/KG	-2414.43	-2815.87
G, KJ/KG	-22145.6	-19857.2
S, $KJ/(KG)(K)$	16.7162	16.7162
M, (1/n)	11.107	11.107
MW, MOL WT	11.107	11.107
Cp, $KJ/(KG)(K)$	3.1793	3.0835
GAMMAs	1.3080	1.3206
SON VEL, M/SEC	1100.0	1027.2
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1435.6
CF	0.7155
Ivac, M/SEC	1805.0
Isp, M/SEC	1027.2

MOLE FRACTIONS

CH4	0.03664	*CO	0.16034	*C02	0.01483
HCN	0.00001	*H2	0.60960	H2O	0.08518
инз	0 00047	*N12	0 09292		

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT	ITN	T	Н	0	C	N
1	3	1252.653	-7.688	-32.663	-2.793	-12.314

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 362.6 PSIA CASE = LMPHR

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3 (L)	0.3333333	-71555.000	239.720
FUEL	Sasoll	1.0000000	-1422526.000	298.160

O/F= 6.00000 %FUEL= 14.285714 R,EQ.RATIO= 4.333220 PHI,EQ.RATIO=-0.590762

	CHAMBER	THROAT
Pinf/P	1.0000	1.8437
P, BAR	25.000	13.560
T, K	1252.65	1083.46
RHO, KG/CU M	2.6805 0	1.6809 0
H, KJ/KG	-1489.38	-2020.71
U, KJ/KG	-2422.06	-2827.41
G, KJ/KG	-22220.3	-19951.5
S, $KJ/(KG)(K)$	16.5496	16.5496
M_{\bullet} (1/n)	11.167	11.167
MW, MOL WT	11.167	11.167
Cp, $KJ/(KG)(K)$	3.1885	3.0913
GAMMAs	1.3047	1.3173
SON VEL, M/SEC	1103.1	1030.8
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1442.8
CF	0.7145
Ivac, M/SEC	1813.4
Isp, M/SEC	1030.8

MOLE FRACTIONS

CH4	0.03951	*CO	0.15871	*CO2	0.01474
HCN	0.00001	*H2	0.60459	H20	0.08849
инз	0 00054	*N2	0 09339		

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT	ITN	Т	H	0	С	N
1	3	1266.873	-7.616	-32.373	-2.823	-12.237

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 435.1 PSIA CASE = LMPHR

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	Sasoll	1.0000000	-1422526.000	298.160

O/F= 6.00000 %FUEL= 14.285714 R,EQ.RATIO= 4.333220 PHI,EQ.RATIO=-0.590762

	CHAMBER	THROAT
Pinf/P	1.0000	1.8420
P, BAR	30.000	16.287
T, K	1266.87	1097.09
RHO, KG/CU M	3.1950 0	2.0030 0
H, KJ/KG	-1489.38	-2023.79
U, KJ/KG	-2428.34	-2836.92
G, KJ/KG	-22284.0	-20031.6
S, KJ/(KG)(K)	16.4141	16.4141
M, (1/n)	11.218	11.218
MW, MOL WT	11.218	11.218
Cp, KJ/(KG)(K)	3.1964	3.0981
GAMMAs	1.3019	1.3145
SON VEL, M/SEC	1105.6	1033.8

MACH NUMBER 0.000 1.000

PERFORMANCE PARAMETERS

Ae/At 1.0000
CSTAR, M/SEC 1448.8
CF 0.7136
Ivac, M/SEC 1820.4
Isp, M/SEC 1033.8

MOLE FRACTIONS

 CH4
 0.04195
 *CO
 0.15732
 *CO2
 0.01466

 HCN
 0.00002
 *H2
 0.60035
 H2O
 0.09130

 NH3
 0.00061
 *N2
 0.09379

* THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

O/F = 8.000000

		EFFECTIVE FUEL	EFFECT	TIVE OXIDANT	MIXTURE
ENTHALPY		h(2)/R	ŀ	n(1)/R	h0/R
(KG-MOL) (K)/KG	-0.24325133E+03	-0.168	344346E+03	-0.17675545E+03
KG-FORM.W	T./KG	bi(2)		bi(1)	bOi
* H		0.14502132E+00	0.137	733597E+00	0.13818990E+00
*0		0.0000000E+00	0.289	905870E-01	0.25694107E-01
*C		0.71088880E-01	0.104	403058E-01	0.17145927E-01
*N		0.0000000E+00	0.195	572704E-01	0.17397959E-01
POINT ITN	T	Н	0	С	N
1 4	1275.738	-7.810	-32.209	-3.352	-12.446

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 290.1 PSIA CASE = LMPHR

REACTANT WT FRACTION ENERGY TEMP

		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	Sasoll	1.000000	-1422526.000	298.160

O/F= 8.00000 %FUEL= 11.111111 R,EQ.RATIO= 4.023756 PHI,EQ.RATIO=-0.443071

	CHAMBER	THROAT
Pinf/P	1.0000	1.8506
P, BAR	20.000	10.807
T, K	1275.74	1098.01
RHO, KG/CU M	2.0540 0	1.2896 0
H, KJ/KG		
U, KJ/KG	-2443.35	-2864.44
G, KJ/KG	-23132.8	-20671.5
S, KJ/(KG)(K)	16.9808	16.9808
M, (1/n)	10.893	10.893
MW, MOL WT		
Cp, KJ/(KG)(K)	3.1788	3.0857
GAMMAs	1.3160	1.3286
SON VEL, M/SEC	1132.0	1055.2
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At	1.00000
CSTAR, M/SEC	1469.8
CF	0.7180
Ivac, M/SEC	1849.4
Isp, M/SEC	1055.2

MOLE FRACTIONS

CH4	0.01690	*CO	0.15553	*C02	0.01434
HCN	0.00001	*H2	0.62257	H20	0.09569
MH3	0 00042	*N12	0 09455		

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT ITN T H O C N

1 3 1290.937 -7.718 -31.913 -3.347 -12.349

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 362.6 PSIA CASE = LMPHR

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	Sasoll	1.0000000	-1422526.000	298.160

O/F= 8.00000 %FUEL= 11.111111 R,EQ.RATIO= 4.023756 PHI,EQ.RATIO=-0.443071

	CHAMBER	THROAT
Pinf/P	1.0000	1.8488
P, BAR	25.000	13.522
T, K	1290.94	1112.53
RHO, KG/CU M	2.5494 0	1.6001 0
H, KJ/KG	-1469.63	-2029.80
U, KJ/KG	-2450.27	-2874.91
G, KJ/KG	-23171.5	-20732.4
S, KJ/(KG)(K)	16.8109	16.8109
M, (1/n)	10.945	10.945
MW, MOL WT	10.945	10.945
Cp, $KJ/(KG)(K)$	3.1866	3.0922
GAMMAs	1.3130	1.3257
SON VEL, M/SEC	1134.7	1058.5
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1476.1
CF	0.7170
Ivac, M/SEC	1856.9
Isp, M/SEC	1058.5

MOLE FRACTIONS

CH4	0.01933	*CO	0.15409	*CO2	0.01424
HCN	0.00001	*H2	0.61821	H2O	0.09867
NH3	0.00048	*N2	0.09497		

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT	ITN	T	H	0	С	N
1	3	1303.915	-7.644	-31.665	-3.347	-12.271

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 435.1 PSIA CASE = LMPHR

	REACTANT	WT FRACTION	ENERGY	TEMP	
		(SEE NOTE)	KJ/KG-MOL	K	
OXIDANT	H2O(L)	0.3333333	0.000	0.000	
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000	
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720	
FUEL	Sasoll	1.0000000	-1422526.000	298.160	

O/F= 8.00000 %FUEL= 11.111111 R,EQ.RATIO= 4.023756 PHI,EQ.RATIO=-0.443071

	CHAMBER	THROAT
Pinf/P	1.0000	1.8472
P, BAR	30.000	16.240
T, K	1303.91	1124.96
RHO, KG/CU M	3.0412 0	1.9083 0
H, KJ/KG	-1469.63	-2032.66
U, KJ/KG	-2456.09	-2883.72
G, KJ/KG	-23209.4	-20788.7
S, $KJ/(KG)(K)$	16.6727	16.6727
M, (1/n)	10.990	10.990
MW, MOL WT	10.990	10.990
Cp, $KJ/(KG)(K)$	3.1933	3.0980
GAMMAs	1.3105	1.3231
SON VEL, M/SEC	1137.0	1061.2
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1481.5
CF	0.7163
Ivac, M/SEC	1863.2
Isp, M/SEC	1061.2

MOLE FRACTIONS

CH4	0.02142	*CO	0.15284	*C02	0.01415
HCN	0.00002	*H2	0.61445	H20	0.10124
NH3	0.00055	*N2	0.09532		

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

O/F = 10.000000

		EFFECTIVE FUEL	EFFEC'	TIVE OXIDANT	MIXTURE	
ENTHALPY		h(2)/R]	n(1)/R	h0/R	
(KG-MOL) (K)	/KG	-0.24325133E+03	-0.16	844346E+03	-0.17524418E+	03
KG-FORM.WT.	/KG	bi(2)		bi(1)	bOi	
*H		0.14502132E+00	0.13	733597E+00	0.13803464E+	00
*0		0.0000000E+00	0.28	905870E-01	0.26278064E-	01
*C		0.71088880E-01	0.10	403058E-01	0.15919951E-	01
* N		0.0000000E+00	0.19	572704E-01	0.17793368E-	01
POINT ITN	Т	Н	0	С	N	
1 4	1319.039	-7.854	-31.393	-3.954	-12.486	

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 290.1 PSIA CASE = LMPHR

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	Sasoll	1.0000000	-1422526.000	298.160

O/F= 10.00000 %FUEL= 9.090909 R,EQ.RATIO= 3.838077 PHI,EQ.RATIO=-0.354457

		CHAMBER	THROAT
Piı	nf/P	1.0000	1.8518
P,	BAR	20.000	10.800
T,	K	1319.04	1134.33

FileEditor:Sasolwax0907.out

RHO, KG/CU M H, KJ/KG		1.2391 0 -2036.97
U, KJ/KG		-2908.60
G, KJ/KG S, KJ/(KG)(K)		-21478.2 17.1389
M, (1/n)	10.821	10.821
MW, MOL WT Cp, KJ/(KG)(K)	10.821	10.821
GAMMAs	1.3179	1.3306
SON VEL,M/SEC MACH NUMBER	1155.7 0.000	1076.9 1.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1498.8
CF	0.7186
Ivac, M/SEC	1886.3
Isp, M/SEC	1076.9

MOLE FRACTIONS

CH4	0.00748	*CO	0.15091	*C02	0.01386
HCN	0.00001	*H2	0.62558	H20	0.10572
NH3	0.00035	*N2	0.09608		

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT ITN T H O C N

1 3 1330.796 -7.757 -31.179 -3.890 -12.386

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 362.6 PSIA CASE = LMPHR

REACTANT WT FRACTION ENERGY TEMP (SEE NOTE) KJ/KG-MOL K

OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	Sasoll	1.0000000	-1422526.000	298.160

O/F= 10.00000 %FUEL= 9.090909 R,EQ.RATIO= 3.838077 PHI,EQ.RATIO=-0.354457

	CHAMBER	THROAT
Pinf/P	1.0000	1.8504
P, BAR	25.000	13.511
T, K	1330.80	1145.60
RHO, KG/CU M	2.4538 0	1.5405 0
H, KJ/KG	-1457.07	-2039.55
U, KJ/KG	-2475.91	-2916.60
G, KJ/KG	-24037.7	-21477.8
S, KJ/(KG)(K)	16.9678	16.9678
M, (1/n)	10.860	10.860
MW, MOL WT	10.860	10.860
Cp, $KJ/(KG)(K)$	3.1916	3.0979
GAMMAs	1.3156	1.3283
SON VEL, M/SEC	1157.7	1079.3
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1503.6
CF	0.7178
Ivac, M/SEC	1891.9
Isp, M/SEC	1079.3

MOLE FRACTIONS

CH4	0.00931	*CO	0.14979	*C02	0.01378
HCN	0.00001	*H2	0.62224	H2O	0.10804
NH3	0.00042	*N2	0.09640		

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT ITN T H O C N

1 3 1341.334 -7.680 -30.990 -3.848 -12.305

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 435.1 PSIA CASE = LMPHR

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	Sasoll	1.000000	-1422526.000	298.160

O/F= 10.00000 %FUEL= 9.090909 R,EQ.RATIO= 3.838077 PHI,EQ.RATIO=-0.354457

	CHAMBER	THROAT
Pinf/P	1.0000	1.8491
P, BAR	30.000	16.224
T, K	1341.33	1155.71
RHO, KG/CU M	2.9311 0	1.8397 0
H, KJ/KG	-1457.07	-2041.83
U, KJ/KG		
G, KJ/KG	-24029.6	-21490.6
S, KJ/(KG)(K)	16.8284	16.8284
M, (1/n)	10.896	10.896
MW, MOL WT	10.896	10.896
Cp, KJ/(KG)(K)	3.1970	3.1025
GAMMAs	1.3135	1.3262
SON VEL, M/SEC	1159.5	1081.4
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1507.9
CF	0.7172
Ivac, M/SEC	1896.9
Isp, M/SEC	1081.4

MOLE FRACTIONS

CH4	0.01097	*CO	0.14878	*C02	0.01371
HCN	0.00001	*H2	0.61922	H2O	0.11014
NH3	0.00048	*N2	0.09669		

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS