

Diffie-Hellman key exchange and ElGamal encryption

Cryptography, Spring 2020

L. Batina, J. Daemen

April 22, 2020

Institute for Computing and Information Sciences Radboud University

Outline

Merkle-Diffie-Hellman key exchange

ElGamal encryption

Discrete log crypto security notions

Conclusions

Merkle-Diffie-Hellman key

exchange

Ralph Merkle, Martin Hellman, Whitfield Diffie

Invented public key cryptography in 1976!

Merkle-Diffie-Hellman: cryptographic key pairs

- ▶ Domain parameters: specification of cyclic group we work in
 - Non-secret information that is common to all users
 - In this case, it consists of
 - ▶ $p \in \mathbb{N}$: prime modulus
 - ▶ $g \in (\mathbb{Z}/p\mathbb{Z})^*$: generator
 - one always takes g with large prime order $\operatorname{ord}(g) = q$ Note: q divides p-1 (due to Lagrange) so $\langle g \rangle \neq (\mathbb{Z}/p\mathbb{Z})^*$
- Every participating user has a key pair:
 - private key PrK that she keeps for herself: $a \in \mathbb{Z}/q\mathbb{Z}$
 - public key PK that she makes public: $A = g^a \in \langle g \rangle$

Key pair generation in discrete-log based crypto

$$a \stackrel{\$}{\leftarrow} \mathbb{Z}/q\mathbb{Z}$$

 $A \leftarrow g^a$

Toy example with prime order q: p = 103, g = 8

q, the order of 8, is 17

NIST: for 128 bits of security, p shall be 3072 bits long and q 256 bits

Due to discrete log solving algorithms that we will discuss later

Key pairs in our toy example

(Merkle-)Diffie-Hellman key exchange

It does public-key based establishment of a shared secret

Alice and Bob arrive at the same shared secret $K_{A,B} = K_{B,A}$

$$K_{A,B} = (B^a) = (g^b)^a = g^{b \cdot a} = g^{a \cdot b} = (g^a)^b = A^b = K_{B,A}$$

- ▶ Alice and Bob derive key(s) from secret: $K \leftarrow H(\text{"KDF"}; K_{A,B})$
 - using key derivation function (KDF), in this example built from a cryptographic hash function
- ▶ This requires specifying how to encode elements of $\langle g \rangle$ as bitstrings
- ► They use K to encipher and/or MAC their communication

(Merkle-)Diffie-Hellman in our toy example

Alice's computation illustrated

Alice's computation illustrated

Man-in-the-middle attack

Alice's client		Eve		Bob's server
p, g, a, A		p, g, e, E		p, g, b, B
	$\xrightarrow{Alice,A}$		$\xrightarrow{Alice, E}$	
			\leftarrow Bob,B	
	\leftarrow Bob, E			
$K \leftarrow E^a$		$K \leftarrow A^e$		
		$K' \leftarrow B^e$		$K' \leftarrow E^b$

- ▶ Alice and Bob both unknowingly share a secret with Eve
- ▶ In subsequent exchange protected with shared secrets
 - Eve decrypts, can read plaintext, and re-encrypts
 - Eve may modify/delete messages and compute tags
- ▶ Solution: Alice must verify *B* belongs to Bob and vice versa

Public key authentication is essential!!!!!!

Diffie-Hellman key exchange: attention points

- ► Assume Alice authenticated Bob's public key and vice versa
- Security against eavesdropping Eve
 - Eve needs either a or b to compute $K_{A,B}$
 - given g, A and B, predicting $K_{A,B}$ should be hard
 - This is called (computational) Diffie-Hellman hardness assumption (CDH)
 - CDH seems as hard as discrete log problem but no proof of this
- ightharpoonup Domain parameters: both need to work in same cyclic group $\langle g \rangle$
- ▶ Entity authentication?
 - can be done with challenge-response using key derived from shared secret
 - along with encryption, message authentication

DH: mutual and unilateral public key authentication

- ▶ Mutual PK authentication: both parties authenticate public keys
 - If Alice validated Bob's public key, she knows only Bob has $K_{A,B}$
 - If Bob validated Alice's public key, he knows only Alice has K_{A,B}
- Unilateral authentication of the public key
 - Alice authenticates Bob's public key but not vice versa
 - Alice still has guarantee that only Bob knows $K_{A,B}$
 - only Bob can decipher what she enciphers with K
 - only Bob can generate tags with K
- ► TLS (https) almost always uses unilateral authentication
 - website does not authenticate public key of browser
 - browser generates key pair (a, A) on the spot

Note: even if there is public key authentication, DH does not achieve entity or message authentication as such

DH key exchange: forward secrecy

Static Diffie-Hellman: Alice and Bob have long-term key public key pairs

- ▶ limitation: $K_{A,B}$ is always the same
- ▶ leakage of $K_{A,B}$, a or b allows decryption of all past messages
- ▶ this is called: lack of forward secrecy

Forward secrecy

is the property that the compromise of keys in a device does not compromise encrypted communication of the past

Consider unilateral case where Bob does not validate Alice's key

- ▶ Alice can generate fresh keypair (a, A) for each session/message
- ▶ this is called an ephemeral key pair
- \blacktriangleright leaking $K_{A,B}$ or a only affects single session/message
- ▶ leaking **b** still affects all past cryptograms of Bob

Diffie-Hellman key exchange with forward secrecy

Diffie-Hellman variant with fresh random key pairs for each session

- \blacktriangleright Alice generates ephemeral key pair (a, A) on the spot
- \blacktriangleright Bob generates ephemeral key pair (b, B) on the spot
- ▶ They do a Diffie-Hellman with these keys
- Each destroys her/his private key and shared secret after establishment of K
- ► At the end of the session both destroy *K*
- ► This gives forward secrecy across session
- ▶ Public key authentication can be done as follows
 - both Alice and Bob have long-term signing keys they authenticate from each other
 - Can be done manually or via a PKI
 - They use these to provide certificate over the ephemeral public keys

ElGamal encryption

EIGamal encryption

- ▶ Warning: encryption with public key crypto is risky business
- ➤ One of the earliest public key encryption schemes is ElGamal, invented by Taher ElGamal in 1985
- Interesting because often used as building block in cryptographic protocols
- ▶ Alice encrypt a message M to cryptogram (C, A) for Bob like this:

Alice Bob
$$\begin{array}{ccc}
p, g, (q), B & p, g, (q), b, B (= g^b) \\
\hline
a & & \mathbb{Z}/q\mathbb{Z} \\
A \leftarrow g^a & \\
C \leftarrow M \times B^a & \xrightarrow{\text{Alice}, (C, A)} & M' \leftarrow C \times A^{q-b}
\end{array}$$

$$M' = C \times A^{q-b} = M \times B^a \times A^{-b} = M \times (g^b)^a \times (g^a)^{-b} = M \times g^{ba} \times g^{-ab} = M$$

ElGamal encryption: attention points

Alice		Bob
p, g, (q), B		$p,g,(q),b,B(=g^b)$
$a \stackrel{\$}{\leftarrow} \mathbb{Z}/q\mathbb{Z}$		
$A \leftarrow g^a$		
$C \leftarrow M \times B^a$	$\xrightarrow{Alice,(C,A)}$	$M \leftarrow C \times A^{q-b}$

- ▶ Message M must be an element of $\langle g \rangle$
 - requires encoding function mapping m to $M \in \langle g \rangle$
 - note: must be efficiently decodable for Bob to decrypt
 - ullet existence of such a function depends on the group $\langle g \rangle$
- \blacktriangleright As first step Alice generates an ephemeral key pair (a, A)
 - for security, a must be randomly generated for each encryption
 - re-use leads to leakage like in one-time pad
- Encryption costs 2 exponentiations, decryption a single one

Security of ElGamal encryption and DDH

Alice		Bob
p, g, (q), B		$p,g,(q),b,B(=g^b)$
$a \stackrel{\mathfrak{s}}{\leftarrow} \mathbb{Z}/q\mathbb{Z}$		
$A \leftarrow g^a$		
$C \leftarrow M \times B^a$	$\xrightarrow{Alice,(C,A)}$	$M \leftarrow C \times A^{q-b}$

- ► Encryption works by multiplication with a one-time key B^a
- ▶ Secure if this key is indistinguishable from a random element in $\langle g \rangle$
- ▶ Leads to *Decisional Diffie Hellman* security notion for a group $\langle g \rangle$
 - with what Eve knows, she cannot distinguish B^a from an element randomly chosen from $\langle g \rangle$
- ▶ Don't forget: before you encrypt, verify that B is indeed Bob's public key!

Discrete log crypto security notions

Security notions

Discrete log (DL) hardness assumption

Let $a \stackrel{\$}{\leftarrow} \mathbb{Z}/q\mathbb{Z}$ and $A \leftarrow g^a$.

Given $\langle g \rangle$ and A, the success probability to determine a is negligible.

Computational Diffie-Hellman (CDH) hardness assumption

Let $a, b \stackrel{\$}{\leftarrow} \mathbb{Z}/q\mathbb{Z}$, $A \leftarrow g^a$ and $B \leftarrow g^b$.

Given $\langle g \rangle$ and A, B, the succes probability to determine g^{ab} is negligible.

Decisional Diffie-Hellman (DDH) hardness assumption

Let $a,b,c \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \mathbb{Z}/q\mathbb{Z}$, $A \leftarrow g^a$ and $B \leftarrow g^b$.

Given $\langle g \rangle$ and A, B, the advantage of distinguishing g^{ab} and g^c is negligible.

Note: negligible means that the probability/advantage is almost 0 even for an adversary with significant computational resources N and data M

Relations between security notions

$DDH \Rightarrow CDH \Rightarrow DL$

- ▶ If in $\langle g \rangle$ DDH hardness assumption holds, CDH hardness holds too
 - determining the shared secret allows distinguish it from random
- ▶ If in $\langle g \rangle$ CDH holds, DL holds too
 - solving discrete log allows determining the shared secret
- ► Implications for cryptographic schemes
 - ElGamal encryption is secure if DDH is satisfied
 - Diffie-Hellman is secure if CDH is satisfied
 - Any discrete-log based crypto requires DL to be satisfied
- ightharpoonup Security strength: $\log_2(N/\Pr(\text{success}))$ with N attack workload
- ▶ Achieved security strength depends on $\langle g \rangle$
 - for s bits of security ord(g) must be at least 2^{2s}
 - if $\langle g \rangle \subset (\mathbb{Z}/p\mathbb{Z})^*$, it is required that $p \ggg 2^{2s}$
 - groups exist where CDH holds and DDH not, e.g. if ord(g) is not prime

Conclusions

Conclusions (some more)

- ▶ Two very simple discrete-log based cryptosystems:
 - (Merkle)-Diffie-Hellman allows establishing a shared secret
 - ElGamal allows encrypting a message $M \in \langle g \rangle$
- ▶ We specified them for $\langle g \rangle \subset (\mathbb{Z}/p\mathbb{Z})^*$ but there are other choices for $\langle g \rangle$
 - "Diffie-Hellman is secure" said formally: CDH holds
 - "ElGamal is secure" said formally: DDH holds
 - Both require that DL assumption holds for $\langle g \rangle$
- ▶ Both require parties to authenticate public keys of the other party