Fiche suites arithmétiques et géométriques : problèmes

Exercice 1

On propose deux placements à une personne possédant 5 000 € d'économies.

Avec le placement A il recevra 350 € d'intérêts supplémentaires chaque année.

Avec le placement B il recevra 5 % d'intérêts supplémentaires chaque année.

On note u_n la somme qu'il possède au bout de n années avec le placement A et on note v_n la somme qu'il possède au bout de n années avec le placement B.

1) Étude du placement A

- **a)** Exprimer u_{n+1} en fonction de u_n .
- **b)** Déterminer la nature de la suite (u_n) .
- **c)** Exprimer u_n en fonction de n.
- **d)** Calculer u_5 et interpréter le résultat obtenu.
- e) Déterminer au bout de combien d'années on dépassera 12 500 € avec le placement A.

2) Étude du placement B

- **a)** Exprimer v_{n+1} en fonction de v_n .
- **b)** Déterminer la nature de la suite (v_n) .
- **c)** Exprimer v_n en fonction de n.
- **d)** Calculer v_7 et interpréter le résultat obtenu.
- e) Déterminer au bout de combien d'années on dépassera 12 500 € avec le placement B.

3) Comparaison des deux placements

Déterminer le nombre d'années à partir duquel le placement B devient plus intéressant que le placement A.

Exercice 2

On observe deux types de cellules, notées A et B. Au même instant, on isole 1 500 cellules A et 1 000 cellule B dans deux milieux différents.

Le nombre de cellules A augmente de 8 % par jour et le nombre de cellules B augmente de 10 % par jour.

On pose $u_0 = 1500$ et on note u_n le nombre de cellules A au bout de n jours.

On pose $v_0 = 1\,000$ et on note v_n le nombre de cellules B au bout de n jours.

- 1) **a)** Exprimer u_{n+1} en fonction de u_n .
 - **b)** Exprimer v_{n+1} en fonction de v_n .
- **2)** Déterminer la nature des suites (u_n) et (v_n) .
- **3)** Exprimer u_n et v_n en fonction de n.
- 4) Calculer u_8 et v_8 et interpréter les résultats obtenus.
- 5) Déterminer au bout de combien de temps le nombre de cellules B devient supérieur au nombre de cellules A.

Exercice 3

Aline et Blandine décident de reprendre leur entraînement à vélo.

Chacune a établi un programme d'entraînement différent.

Aline décide de parcourir 20 km la première semaine puis d'augmenter chaque semaine la distance parcourue de 7 km. Blandine décide de parcourir 20 km la première semaine puis d'augmenter chaque semaine la distance parcourue de 13.5 %.

On note u_n la distance parcourue par Aline la n-ième semaine et v_n la distance parcourue par Blandine la n-ième semaine.

1) Programme d'entraînement d'Aline

- **a)** Exprimer u_{n+1} en fonction de u_n .
- **b)** Déterminer la nature de la suite (u_n) .
- **c)** Exprimer u_n en fonction de n.
- **d)** Calculer u_6 et interpréter le résultat obtenu.
- e) Déterminer au bout de combien de semaine Aline parcourra plus de 70 km.

2) Programme d'entraînement de Blandine

- a) Exprimer v_{n+1} en fonction de v_n .
- **b)** Déterminer la nature de la suite (v_n) .
- **c)** Exprimer v_n en fonction de n.
- **d)** Calculer v_8 et interpréter le résultat obtenu.
- e) Déterminer au bout de combien de semaine Blandine parcourra plus de 70 km.

3) Comparaison des deux programmes

Déterminer le nombre de semaines qu'il faudra pour que Blandine parcourt plus de km qu'Aline.

Solutions

Exercice 1

- 1) **a)** $u_{n+1} = u_n + r = u_n + 350$
 - **b)** (u_n) est une suite arithmétique car, pour passer d'un terme au suivant, on ajoute toujours le même nombre : 350 (raison).
 - **c)** $u_n = u_0 + n \times r = 5000 + n \times 350$
 - **d)** $u_5 = u_0 + 5 \times r = 5\,000 + 5 \times 350 = 6\,750$. Au bout de 5 ans, il possèdera 6 750 \in .
 - e) À l'aide de la calculatrice, il dépassera 12 500 € au bout de 22 ans car u_{22} = 12 700 et u_{21} = 12 350.
- **2) a)** $v_{n+1} = v_n \times q = v_n \times 1,05$
 - **b)** (v_n) est une suite géométrique car, pour passer d'un terme au suivant, on multiplie toujours pas le même nombre : 1,05 (raison).
 - **c)** $v_n = v_0 \times q^n = 5\,000 \times 1,05^n$
 - **d**) $v_7 = v_0 \times q^7 = 5\,000 \times 1,07^5 \approx 7\,035,50$ Au bout de 7 ans, il possèdera 7 035,50 € avec le placement B.
 - e) À l'aide de la calculatrice, il dépassera 12 500 € au bout de 19 ans car $v_{19} \approx 12$ 635 et $v_{18} \approx 12$ 033.
- 3) Il faudra 15 ans car $u_{15} = 10\,250$, $v_{15} \approx 10\,395$ et $u_{14} = 9\,900$, $v_{14} \approx 9\,899$, 7.

Exercice 2

- 1) **a)** $u_{n+1} = u_n \times q = u_n \times 1,08$
 - **b)** $v_{n+1} = v_n \times q = v_n \times 1,10$
- 2) (u_n) est une suite géométrique car, pour passer d'un terme au suivant, on multiplie toujours par le même nombre : 1,08 (raison).
 - (v_n) est une suite géométrique car, pour passer d'un terme au suivant, on multiplie toujours par le même nombre : 1,10 (raison).
- 3) $u_n = u_0 \times q^n = 1500 \times 1,08^n$ et $v_n = v_0 \times q^n = 1000 \times 1,10^n$
- 4) $u_8 = u_0 \times q^8 = 1500 \times 1,08^8 \approx 2776$ et $v_8 = v_0 \times q^8 = 1000 \times 1,10^8 \approx 2144$ Au bout de 8 jours il y a 2776 cellules A et 2144 cellules B.
- **5)** Il faudra 23 jours car $u_{23} \approx 8807$, $v_{23} \approx 8954$ et $u_{22} = 8155$, $v_{22} \approx 8140$.

Exercice 3

- 1) **a)** $u_{n+1} = u_n + r = u_n + 7$
 - b) (u_n) est une suite arithmétique car, pour passer d'un terme au suivant, on ajoute toujours le même nombre : 7 (raison).
 - c) $u_n = u_1 + (n-1) \times r = 20 + (n-1) \times 7$
 - **d**) $u_6 = u_1 + 5 \times r = 20 + 5 \times 7 = 55$. La 6^{ème} semaine, Aline parcourra 55 km.
 - e) À l'aide de la calculatrice, elle dépassera 70 km au bout de 9 semaines car $u_9 = 76$ et $u_8 = 69$.
- **2) a)** $v_{n+1} = v_n \times q = v_n \times 1,135$
 - b) (v_n) est une suite géométrique car, pour passer d'un terme au suivant, on multiplie toujours pas le même nombre : 1,135 (raison).
 - **c)** $v_n = v_1 \times q^{n-1} = 20 \times 1,135^{n-1}$
 - **d)** $v_8 = v_1 \times q^7 = 20 \times 1,135^7 \approx 48,53$
 - La 8^{ème} semaine, Blandine parcourra 48,53 km.
 - e) À l'aide de la calculatrice, elle dépassera 70 km au bout de 11 semaines car $v_{11} \approx 70,96$ et $v_{10} \approx 62,52$.
- 3) Il faudra 16 semaines car $u_{16} = 125$, $v_{16} \approx 133,65$ et $u_{15} = 118$, $v_{15} \approx 117,75$.