Solar image color tables and their perception

J. Ireland, M. S. Kirk

Scaling an image so it looks "good": SSWIDL

Typically a version of the original data is plotted.

- 1. Clip data to some range: c = C(x)
- 2. Rescale: y = R(c)
- 3. Display using *y* and color table (colormap).

Scaling an image so it looks "good": Matplotlib / Astropy / Sunpy

Original data does not have to be changed.

Colors in displayed images of data are defined by a *mapping* from the original data to colormap indices.

- 1. Normalize to range [0,1] (can involve clipping): y = N(x)
- 2. Rescale in range [0,1]: z = f(y)
- 3. Mapping $x \to f(N(x))$ relates data values to a colormap index.
- 4. Display x using mapping $x \to f(N(x))$ and colormap.

Types of color maps

1. Sequential

change in lightness and often saturation of color incrementally, often using a single hue;
should be used for representing information that has ordering, e.g. intensity

2. Diverging

 change in lightness and possibly saturation of two different colors that meet in the middle at an unsaturated color; should be used when the information being plotted has a critical middle value, such as topography or when the data deviates around zero, e.g. magnetogram, Doppler velocity.

3. Qualitative

often are miscellaneous colors; should be used to represent information which does not have ordering or relationships, e.g. maps of different solar features.

Perceptually uniform color maps

A perceptually uniform colormap has the property that if your data goes from 0.1 to 0.2, this should create about the same *perceptual change* as if your data goes from 0.8 to 0.9.

Perceptual deltas

A "perceptually uniform" colormap is one for which the "perceptual deltas" plot makes a simple horizontal line. This is essentially the derivative of the colormap in perceptual space with respect to the data.

Test image: sine wave plus ramp

The test image consists of a sine wave superimposed on a ramp function. The sine wave amplitude is set so that the range from peak to trough represents a series of features that are 10% of the total data range. The amplitude of the sine wave is modulated from its full value at the top of the image to 0 at the bottom. Here the image is displayed using a linear grey colour map.

Test image with colormaps

Colormap in the color space

Colormap evaluation: jet

Same data, image scaling, different color table

Stark demarcation between light and dark features

Smooth gradation between features is accentuated

Identical AIA 304 image from July 26, 2010

Colormap evaluation: sohoeit304

Colormap evaluation: sdoaia304

Same data, image scaling, different color table (2)

Identical AIA 171 Image from July 26, 2010

Colormap evaluation: sohoeit171

Colormap evaluation: sdoaia171

Other data...

Colormap evaluation: viridis

Try it for yourself

- 1. Follow the SunPy installation instructions on sunpy.org
- 2. git clone https://github.com/wafels/viscm
- 3. Change directory to where you cloned the git repository above
- 4. git checkout -b sunpy
- 5. python setup.py install
- 6. python -m viscm view sdoaia171

The main repository <u>https://github.com/matplotlib/viscm</u> contains much more information about the perception of colormaps and how to **make your own** perceptually uniform colormaps.

Design your own AIA 304Å scaling function and colormap

Requirements

- 1. Reddish-orangey colors (because that's what the community expects now).
- As perceptually uniform as we can make it.

python -m viscm edit

Conclusions

- Many colormaps used in solar physics have large variation in their perception.
- Advice is available on the selection of colormaps to best display your data, taking into account common types of colorblindness.
- Tools are available to test and design colormaps using their perception as a criterion.
- We can understand how the colormap is biasing our perception.

More information

- http://matplotlib.org/users/colormaps.html
- o https://bokeh.github.io/colorcet/
- o http://www.kennethmoreland.com/color-advice/
- https://gist.github.com/endolith/2719900#id7
- https://mycarta.wordpress.com/2012/10/14/the-rainbow-is-deadlong-live-the-rainbow-part-4-cie-lab-heated-body/
- http://ccom.unh.edu/sites/default/files/publications/Ware_1988_CGA_Color_sequences_univariate_maps.pdf
- http://www.research.ibm.com/people/l/lloydt/color/color.HTM
- https://en.wikipedia.org/wiki/CIE 1931 color space
- o https://en.wikipedia.org/wiki/Lab color space
- https://en.wikipedia.org/wiki/CIECAM02
- http://dba.med.sc.edu/price/irf/Adobe_tg/models/cielab.html
- https://www.youtube.com/watch?v=xAoljeRJ3IU
- https://www.youtube.com/watch?v=TojFwkglCKs
- https://bids.github.io/colormap/
- http://peterkovesi.com/projects/colourmaps/
- o http://colour-science.org/
- o http://python-colormath.readthedocs.io/en/latest/
- https://pypi.python.org/pypi/ciecam02/
- http://markkness.net/colorpy/ColorPy.html

Updates to this presentation

Any updates to this presentation will be made here:

https://docs.google.com/presentation/d/1nFfxHEDEIUu3tQtQgxjnWw6FvWTGCN1UUGAlenAQelk/edit?usp=sharing

End