1.9 Bayesian Theory Workshop 1

1. Algebra of expectations. There are 3 random variables, X, Y, and Z, that have the following properties and relationships:

$$E[X] = 3, V[X] = 2; E[Y] = 4, V[Y] = 3; E[Z] = -1, V[Z] = 1$$

 $Cov[X, Y] = 0; Cov[X, Z] = 0; Cov[Y, Z] = 1$

Let a=2, b=-3.

- (a) What is E[aX + bY]?
- (b) What is V[aX + bY]?
- (c) What is Cov[aY, bZ]?
- (d) What is V[aY + bZ]?
- 2. Probability distribution mean and variance
 - (a) Let $X \sim \text{Bernoulli}(\theta)$. Show that

$$E[X] = \theta$$
 $V[X] = \theta(1 - \theta)$

(b) Let $X \sim \text{Uniform}(\alpha, \beta)$. Show that

$$E[X] = \frac{\alpha + \beta}{2}$$

$$V[X] = \frac{(\beta - \alpha)^2}{12}$$

(c) Let $X \sim \text{Poisson}(\mu)$. Show that

$$E[X] = \mu$$

Hints: (a)
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
; (b) $\frac{n\theta^{n-1}}{n!} = \frac{d}{d\theta} \frac{\theta^n}{n!}$

(d) Let $X \sim \text{Exponential}(\lambda)$. Show that

$$E[X] = \frac{1}{\lambda}$$

Hint: Integration by parts: $\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$.

3. Joint probability distribution exercise (Reich & Ghosh). X_1 and X_2 have the joint pmf:

x_1	x_2	$\Pr(X_1 = x_1, X_2 = x_2)$
0	0	0.15
1	0	0.15
2	0	0.15
0	1	0.15
1	1	0.20
2	1	0.20

- (a) Compute the marginal distributions of X_1 and X_2
- (b) Compute the conditional distributions of $X_1|X_2$ and $X_2|X_1$.
- (c) Are X_1 and X_2 independent? Justify your answer.
- 4. Bayes Theorem exercise (Reich & Ghosh). According to insurance.com, the 2017 auto theft rate was 135 per 10,000 residents in Raleigh, North Carolina compared to 214 per 10,000 residents in Durham/Chapel Hill, North Carolina. Assuming Raleigh's population is twice as large as Durham/Chapel Hill and a car has been stolen in one of these two areas, what is the probability it was stolen in Raleigh?