





### INF 302 : Langages & Automates

Chapitre 5 : Algorithmes et problèmes de décision sur les AD

#### Yliès Falcone

ylies.falcone@univ-grenoble-alpes.fr — www.ylies.fr

Univ. Grenoble-Alpes, Inria

Laboratoire d'Informatique de Grenoble - www.liglab.fr Équipe de recherche LIG-Inria, CORSE - team.inria.fr/corse/

Année Académique 2020 - 2021

## Intuition et objectifs



- Parcours d'un automate :
  - en profondeur,
  - en largeur.
- Détection de cycles.
- Notions d'accessibilité et de co-accessibilité.
- Problèmes de décision : langage vide, langage infini.

Univ. Grenoble Alpes, Département Licence Sciences et Technologies, Licence deuxième année

#### Notations

Dans la suite, nous utilisons un AD  $(Q, \Sigma, q_{\text{init}}, \delta, F)$ .

### Successeurs d'un état

L'ensemble des états successeurs d'un état  $q \in Q$ , selon la fonction de transition  $\delta$ , est :

$$\operatorname{Succ}(q) = \{q' \in Q \mid \exists a \in \Sigma : \delta(q, a) = q'\}$$

En itérant sur  $\mathrm{Succ}(q)$ , nous obtenons les états selon la priorité donnée par les symboles.

#### Prédécesseurs d'un état

L'ensemble des états prédécesseurs d'un état  $q \in Q$ , selon la fonction de transition  $\delta$ , est :

$$\operatorname{Pr\'e}(q) = \left\{ q' \in Q \mid \exists a \in \Sigma : \delta(q', a) = q \right\}$$

En itérant sur  $\Pr{(q)}$ , nous obtenons les états selon la priorité donnée par les symboles.

Remarque Un état q est successeur d'un état q' ssi q' est un prédécesseur de q

## Exemple (Successeurs et prédécesseurs)



- successeurs de 0 : 1 et 2
- successeurs de 1 : 1 et 2
- successeurs de 2 : aucun
- prédécesseurs de 0 : aucun
- prédécesseurs de 1 : 0 et 1
- prédécesseurs de 2 : 0 et 1

## Plan Chap. 5 - Algorithmes et problèmes de décision sur les AD

- Parcours
- 2 Notions d'accessibilité et de co-accessibilité
- 3 Détection de cycles
- Quelques problèmes de décision
- Résumé

# Plan Chap. 5 - Algorithmes et problèmes de décision sur les AD

- Parcours
- 2 Notions d'accessibilité et de co-accessibilité
- 3 Détection de cycles
- Quelques problèmes de décisior
- Résumé

# À propos du parcours d'un automate

### **Objectifs**

- Visiter de manière ordonn'ee une seule fois chacun des états de l'automate (implémentation de « pour tout état q dans  $Q \dots$  » selon un ordre).
- Définir une « brique de base » pour d'autres algorithmes sur les automates.

### Principe

- suivi des transitions de l'automate,
- utilisation des successeurs d'un état.

Comment gérer les cycles?

### Quelques exemples d'applications

- détection de cycles,
- recherche de chemins (p. ex. : entre états, labyrinthe),
- collecte d'informations,
- tri topologique (p. ex. : ordonnancement, compilation).

# À propos du parcours d'un automate

### Algorithme paramétré par :

- une « opération de visite » des états de l'automate (où le traitement se fait);
- la « priorité » donnée entre les successeurs d'un état ;
- un « ordre » de parcours, influençant quels noeuds et quelles parties de l'automate sont visités en premières : profondeur ou largeur;
- un ensemble d'états de départ.

Le choix largeur vs profondeur influence le choix des successeurs visités en premier :

- parcours en largeur : on visite tous les successeurs avant de visiter les successeurs des successeurs;
- parcours en profondeur : on visite les successeurs du successeur avant de visiter les autres successeurs.

Largeur vs profondeur

⊲ Parcours largeur vs profondeur

## Parcours en profondeur vs largeur depuis l'état initial

# Exemple (Parcours en profondeur vs largeur)

- L'opération de visite consiste à afficher l'état.
- L'ensemble d'états de départ est réduit à l'état initial.



Priorité de a sur b

• prof. : A, B, F, D, G, C, E

• largeur : A, B, E, F, C, D, G

Priorité de b sur a

prof. : A, E, F, D, G, C, B

• largeur : A, E, B, F, C, D, G

# Parcours générique (sans ordre) d'un AD : version itérative

## **Algorithme 1** parcourir\_it() pour le parcours itératif d'un automate

```
Entrée : A = (Q, \Sigma, q_{init}, \delta, F)
                                                                                                  (* un AD *)
 1: ens d'états À_visiter := ensemble d'états de départ ;
 2: ens d'états Déjà visités := 0;
                                                                            (* initialement, rien n'est visité *)
 3: tant que A_{\text{visiter}} \neq \emptyset faire
                                                                       (* tant qu'il reste des états à visiter *)
         soit q \in A visiter;
 4.
                                                                                (* prendre un état à visiter *)
         \hat{A} visiter := \hat{A}_visiter \ \{q\};
 5:
                                                                              (* l'état q n'est plus à visiter *)
         Visiter l'état q; (* À définir en fonction de l'objectif de algorithme; par exemple, afficher. *)
 6:
         Déjà_visités := Déjà_visités \cup \{q\};
 7:
                                                                               (* l'état q vient d'être visité *)
         A\_visiter := A\_visiter \cup (Succ(q) \setminus Déja\_visités);
 8:
                                        (* les nouveaux états à visiter sont les successeurs de q non visités *)
```

### 9: fin tant que

- En utilisant un ensemble comme structure de données pour À\_visiter, l'ordre de parcours n'est pas déterminé.
- L'ordre de parcours dépend de l'insertion et la sélection des états dans À\_visiter (lignes 4 et 8).
   (Les éléments d'un ensemble ne sont pas ordonnés.)

## Parcours en profondeur d'un AD : version itérative

L'ensemble d'états est remplacé par une pile d'états (dernier entré, premier sorti) :

- empiler() : ajoute des éléments en sommet de pile ;
- dépiler() : retourne et supprime le sommet de pile;
- pile.opération() est vide(): indique si la pile est vide.

**Algorithme 2** parcourir\_it\_prof() pour le parcours itératif en profondeur d'un automate Entrée :  $A = (Q, \Sigma, q_{init}, \delta, F)$ (\* un AD \*)

```
1: pile d'états À visiter := ensemble d'états de départ ;
2: ens d'états Déjà_visités := 0;
                                                                              (* initialement, rien n'est visité *)
   tant que ¬ À_visiter.est_vide() faire
                                                                         (* tant qu'il reste des états à visiter *)
        état q := A_{\text{visiter}}.dépiler();
4:
                                                                                  (* prendre un état à visiter *)
        si q \notin Déjà visités alors
5:
            Visiter l'état q; (* À définir en fonction de l'objectif de algorithme; p. ex., afficher. *)
6:
            D\acute{e}j\grave{a}_visit\acute{e}s := D\acute{e}j\grave{a}_visit\acute{e}s \cup \{q\};
                                                                                 (* l'état q vient d'être visité *)
7.
            A_{\text{visiter.}empiler}(Succ(q) \setminus Déja_{\text{visités}});
8:
                                        (* les nouveaux états à visiter sont les successeurs de q non visités *)
```

- fin si 9:
- 10: fin tant que

L'empilement des successeurs se fait dans l'ordre inverse de la priorité entre successeurs. Remarque La structure de données pour Déjà\_visités n'importe pas.

Notation:

## Parcours en profondeur d'un AD : version itérative

## Exemple (Parcours itératif en profondeur d'un AD)



|   | À_visiter  | Déjà_visités  | Sortie     |
|---|------------|---------------|------------|
|   | (pile)     | (ensemble)    | (en cours  |
|   |            |               | de visite) |
|   | А          |               |            |
|   | B, E       | А             | А          |
|   | F, C, E    | A, B          | В          |
|   | D, C, E    | A, B, F       | F          |
|   | G, E, C, E | A, B, F       | D          |
| 1 | C, E, C, E | A, B, D, F, G | G          |
|   | E, C, E    | A,, D, F, G   | С          |
|   | C, E       | A,, G         | E          |
|   | Е          | A,, G         | _          |
|   |            | A,, G         | _          |
|   |            |               |            |

- À\_visiter est une pile, représentée avec le sommet de pile à gauche.
- Priorité de a sur b dans le choix des voisins.

   → on empile le successeur sur b puis celui sur a.

# Parcours en largeur d'un AD

L'ensemble d'états est remplacé par une file d'états (premier entré, premier sorti) :

- enfiler() : ajoute des éléments en début de file ;
- Notation: défiler(): retourne et supprime le dernier élément de la file; file.opération()
- est vide(): indique si la file est vide.

```
Algorithme 3 parcourir_it_larg() pour le parcours itératif en largeur d'un automate
```

```
Entrée : A = (Q, \Sigma, q_{init}, \delta, F)
                                                                                                      (* un AD *)
 1: file d'états À visiter := ensemble d'états de départ ;
 2: ens d'états Déjà_visités := 0;
                                                                               (* initialement, rien n'est visité *)
     tant que \neg À visiter.est vide() faire
                                                                          (* tant qu'il reste des états à visiter *)
         état q := A_{\text{visiter.}} défiler();
 4:
                                                                                   (* prendre un état à visiter *)
         si q \notin Déjà visités alors
 5:
              Visiter l'état q; (* À définir en fonction de l'objectif de algorithme; p. ex., afficher. *)
 6:
              D\acute{e}j\grave{a}_visit\acute{e}s := D\acute{e}j\grave{a}_visit\acute{e}s \cup \{q\};
                                                                                  (* l'état q vient d'être visité *)
 7.
              A\_visiter.enfiler(Succ(q) \setminus Déja\_visités);
 8:
                                          (* les nouveaux états à visiter sont les successeurs de q non visités *)
         fin si
```

- 9:
- 10: fin tant que

L'enfilage des successeurs se fait dans *l'ordre* de la priorité entre successeurs.

Remarque Pas de version récursive pour le parcours en largeur.

## Parcours en largeur d'un AD

## Exemple (Parcours itératif en largeur d'un AD)



| À_visiter  | Déjà_visités  | Sortie    |
|------------|---------------|-----------|
| (file)     | (ensemble)    | (en cours |
|            |               | de visite |
| А          |               |           |
| E, B       | Α             | А         |
| C, F, E    | A, B          | В         |
| F, C, C, F | A, B, E       | Е         |
| F, C, D, C | A, B, E, F    | F         |
| D, F, C, D | A, B, C, E, F | С         |
| G, D, F, C | A,, F         | D         |
| G, D, F    | A,, G         | _         |
| G, D       | A,, G         | _         |
| G          | A,, G         | _         |
|            | A,, G         | G         |
|            | ·             |           |

- À\_visiter est une file, avec le début de file à gauche.
- Priorité de a sur b dans le choix des voisins.
  - $\hookrightarrow$  on enfile le successeur sur a puis le successeur sur b.

## Parcours en profondeur d'un AD : version récursive

## Algorithme 4 parcourir\_prof() pour le parcours en profondeur récursif d'un automate

```
1: ens d'états Déjà_visités; (* variable globale aux deux algorithmes *)
2: Déjà_visités := ∅; (* initialement, rien n'est visité *)
3: pour chq état q dans l'ens. d'états de départ faire (* graphe possiblement déconnecté *)
4: si q ∉ Déjà_visités alors
5: parcourir_prof_rec(q)
6: fin si
7: fin pour

Algorithme 5 parcourir_prof_rec() pour le parcours en profondeur à partir d'un état
```

```
1: visiter l'état q; (* À définir en fonction de l'objectif de algorithme; par exemple, afficher. *)
2: Déjà_visités := Déjà_visités \cup \{q\}; (* l'état q n'est plus à visiter *)
3: pour chaque état q' \in \operatorname{Succ}(q) faire (* pour chaque successeur de q *)
```

4: si q' ∉ Déjà\_visités alors
5: parcourir\_prof\_rec(q')

Entrée :  $A = (Q, \Sigma, q_{init}, \delta, F)$ 

6: **fin si** 

Entrée :  $q \in Q$ 

7: fin pour

(\* un AD \*)

(\* un état \*)

## Parcours en profondeur d'un AD : version récursive

# Exemple (Parcours récursif en profondeur d'un AD)



∢ Parcours récursif en profondeur

## Parcours en profondeur d'un AD : version récursive

# Exemple (Parcours récursif en profondeur d'un AD)



# Plan Chap. 5 - Algorithmes et problèmes de décision sur les AD

- Parcours
- Notions d'accessibilité et de co-accessibilité
  - Accessibilité
  - Co-accessibilité
  - Vocabulaire et utilisation
- 3 Détection de cycles
- Quelques problèmes de décision
- 6 Résumé

### Accessibilité et co-accessibilité

Notions liées à la fonction de transition des ADs.

### Accessibilité et co-accessibilité : définition informelle

Propriétés s'appliquant aux états d'un AD :

- état accessible : peut être atteint en suivant la fonction de transition;
- état co-accessible : mène à un état accepteur en suivant la fonction de transition.

#### Nous utiliserons ces notions :

- pour répondre à des problèmes de décision sur les automates dans la section suivante;
- caractériser certaines de leurs propriétés en TD;
- dans les chapitres suivants.

# Plan Chap. 5 - Algorithmes et problèmes de décision sur les AD

- Parcours
- 2 Notions d'accessibilité et de co-accessibilité
  - Accessibilité
  - Co-accessibilité
  - Vocabulaire et utilisation
- 3 Détection de cycles
- Quelques problèmes de décision
- Résumé

Univ. Grenoble Alpes, Département Licence Sciences et Technologies, Licence deuxième année

# Accessibilité dans les AD : définition et décidabilité

Considérons un AD  $A = (Q, \Sigma, q_{\text{init}}, \delta, F)$ .

## Définition (Accessibilité d'un état dans un AD)

 $q \in Q$  est accessible s'il existe un mot  $u \in \Sigma^*$  tel que  $\delta^*(q_{\mathrm{init}}, u) = q$ .

## Exemple (États accessibles)



- accessibles: 0, 1, 2
- non accessibles : 3, 4, 5

## Théorème : accessibilité dans les graphes finis

Le problème de *l'accessibilité est décidable* pour les graphes finis.

#### Corollaire

Le problème de l'accessibilité d'un état dans un AD est décidable.

## Accessibilité dans les AD : intuition sur l'algorithme

Etant donné un AD  $A = (Q, \Sigma, q_{\text{init}}, \delta, F)$ .

### Idée de l'algorithme

- ullet cas de base :  $q_{\mathrm{init}}$  est accessible
- induction : si  $q \in Q$  est accessible dans A, alors s'il existe une transition dans  $\delta$  de q vers un état q', alors q' est accessible dans A ( $q' \in \operatorname{Succ}(q)$ ).



# Accessibilité dans les AD : algorithme itératif

# Algorithme 6 etats\_accessibles() pour le calcul des états accessibles

```
Entrée : A = (Q, \Sigma, q_{init}, \delta, F)
                                                                                                     (* un AD *)
Sortie: Accessibles \subseteq Q
                                                              (* ensemble des états accessibles dans A par \delta *)
 1: ens d'états Accessibles, À visiter, Déjà visités ;
 2: Accessibles := \{q_{init}\};
                                                                                                (* cas de base *)
 3: A_{\text{visiter}} := \{q_{\text{init}}\};
                                                                               (* parcours depuis l'état initial *)
 4: Déjà visités := \emptyset;
                                                                              (* initialement, rien n'est visité *)
 5: tant que \dot{A}_visiter \neq \emptyset faire
         soit q \in A visiter;
 6.
         \hat{A} visiter := \hat{A} visiter \ \{q\};
 7:
         Déjà visités := Déjà visités \cup \{q\};
 8:
         Accessibles := Accessibles \cup Succ(q);
 9:
                              (* induction; on ajoute les successeurs de q à l'ensemble des états accessibles *)
         \dot{A}_visiter := \dot{A}_visiter \cup (Succ(q) \ Déjà_visités);
10:
                     (* les nouveaux états à visiter sont ceux « découverts », cad les successeurs non visités *)
```

- 11: fin tant que
- 12: retourner Accessibles ;

Remarque Cet algorithme s'adapte pour calculer les états accessibles à partir d'un état ou d'un ensemble d'états donnés de l'automate (en modifiant les lignes 2 et 3).  $\Box$ 

# Plan Chap. 5 - Algorithmes et problèmes de décision sur les AD

- Parcours
- Notions d'accessibilité et de co-accessibilité
  - Accessibilité
  - Co-accessibilité
  - Vocabulaire et utilisation
- 3 Détection de cycles
- Quelques problèmes de décision
- Résumé

### Co-accessibilité dans les AD : définition et décidabilité

Considérons un AD  $A = (Q, \Sigma, q_{\text{init}}, \delta, F)$ .

### Définition (Co-accessibilité d'un état dans un AD)

 $q \in Q$  est co-accessible s'il existe un mot  $u \in \Sigma^*$  tel que  $\delta^*(q, u) \in F$ .

### Exemple (États co-accessibles)



- co-accessibles: 0, 1, 3, 4
- non co-accessibles : 2, 5

### Théorème : co-accessibilité dans les graphes finis

Le problème de la co-accessibilité est décidable pour les graphes finis.

Y. Falcone (UGA - Inria)

INF 302: Langages & Automates

## Co-accessibilité dans les AD : intuition sur l'algorithme

Etant donné un AD  $A = (Q, \Sigma, q_{\text{init}}, \delta, F)$ .

### Définition (Idée de l'algorithme)

- ullet cas de base : les états  $q \in F$  sont co-accessibles,
- induction : si  $q \in Q$  est co-accessible dans A, alors s'il existe une transition dans  $\delta$  depuis un état q' vers q, alors q' est co-accessible dans A.



Remarque La co-accessibilité d'un état q peut aussi se calculer :

- avec l'accessibilité depuis q vers  $q_f$ , avec  $q_f \in F$ ;
- avec l'accessibilité de q dans l'automate « miroir ».

INF 302 : Langages & Automates Année Académique 2020 - 2021 24 / 47

# Co-accessibilité dans les AD : algorithme

# Algorithme 7 etats\_coaccessibles() pour le calcul des états accessibles

```
Entrée: A = (Q, \Sigma, q_{init}, \delta, F)
                                                                                                  (* un AD *)
Sortie: Coaccessibles \subseteq Q
                                                             (* ensemble des états accessibles dans A par \delta *)
 1: ens d'états Coaccessibles, A_visiter, Déjà_visités ;
 2: Coaccessibles := F:
                                                                                              (* cas de base *)
 3: A visiter := F;
                                              (* on veut les états co-accessibles à tous les états accepteurs *)
 4: Déjà visités := \emptyset;
 5: tant que A_{\text{visiter}} \neq \emptyset faire
         soit q \in A visiter;
 6:
         A visiter := A visiter \setminus \{a\};
 7:
         Déjà visités := Déjà visités \cup \{q\};
 8:
         Coaccessibles := Coaccessibles \cup Pré(q)
 9:
                        (* induction; on ajoute les prédécesseurs de q à l'ensemble des états co-accessibles *);
         A_{\text{visiter}} := A_{\text{visiter}} \cup (Pré(q) \setminus Déjà_{\text{visités}});
10:
                                                    (* les nouveaux états à visiter sont ceux « découverts » *)
11: fin tant que
```

Cet algorithme peut facilement être modifié pour calculer les états co-accessibles à ensemble d'états donnés de l'automate (en modifiant les lignes 2 et 3).

12: retourner Coaccessibles;

### Co-accessibilité en réutilisant l'accessibilité

La co-accessibilité peut se résoudre en considérant un automate « miroir »

- en « inversant » la fonction de transition,
- en « partant des états accepteurs ».

puis en ré-utilisant l'algorithme d'accessibilité.

## Algorithme 8 etats\_coaccessibles() pour le calcul des états accessibles

**Entrée** :  $A = (Q, \Sigma, q_{init}, \delta, F)$  un AD

**Sortie :** ensemble des états co-accessibles dans A par  $\delta$ 

1: 
$$\delta' = \{ (q', a, q) \mid (q, a, q') \in \delta \} \cup \{ (q_{\text{new}}, a, q_f) \mid q_f \in F \land a \in \Sigma \} ;$$

- 2: **automate**  $E := (Q \cup \{q_{\text{new}}\}, \Sigma, \delta', q_{\text{new}}, q_{\text{init}});$
- 3: **retourner** etats\_acessibles(E) \ { $q_{\text{new}}$ };

# Plan Chap. 5 - Algorithmes et problèmes de décision sur les AD

- Parcours
- 2 Notions d'accessibilité et de co-accessibilité
  - Accessibilité
  - Co-accessibilité
  - Vocabulaire et utilisation
- 3 Détection de cycles
- Quelques problèmes de décision
- Résumé

### Vocabulaire



Un automate est dit co-accessible si tous ses états sont co-accessibles.

Un automate est dit émondé s'il est accessible et co-accessible.

Intuitivement, dans un automate émondé, tous les états sont « utiles » à la reconnaissance des mots.

# Utilisations des parcours et de la detection de cycles

- Problèmes de décision (voir section suivante).
- Garder uniquement les états « utiles » d'un automate.
- Connaitre et générer les états d'un automate dans les situations suivantes :
  - Lorsque les états ne sont pas donnés de manière explicite, mais par exemple sous forme de règles.
    - Exemple : automate de l'étrange planète vu dans le premier cours d'introduction.
  - Lorsqu'on ne veut pas les générer a priori.
    - Exemple : calcul du produit de deux automates "à la volée".

### En TD / Exercices

- Garder uniquement les états accessibles d'un automate : étant donné un automate, écrire un algorithme qui retourne un automate équivalent avec tous ses états accessibles.
- Même question avec la co-accessibilité.
- Produire la version émondée d'un automate. Langage reconnu?
- Produit de deux automates « à la volée ».

# Plan Chap. 5 - Algorithmes et problèmes de décision sur les AD

- Parcour
- Notions d'accessibilité et de co-accessibilité
- 3 Détection de cycles
- Quelques problèmes de décision
- 6 Résumé

### Détection de cycles

### Définition (Cycle - deux définitions équivalentes)

- séquence (non-vide) de transitions consécutives (l'état d'arrivée d'une transition est l'état de départ de la prochaine transition) t. q. le premier et le dernier états soient identiques.
- automate avec une transition arrière :
  - soit une transition d'un état sur lui même,
  - soit une transition d'un état vers l'un de ces ancêtres dans l'arbre produit par le parcours en profondeur.

### Exemple et contre-exemple (Cycle)



#### Automates sans cycle



## Détection de cycles - Une remarque / observation

#### Question

Lors d'un parcours en profondeur, est-ce que la découverte d'un état déjà visité implique l'existence d'un cycle?

# Exemple (Découvrir un état déjà visité n'implique pas l'existence de cycle)



Lors du parcours depuis l'état initial (où les voisins sont explorés dans l'ordre alphabétique) :

2 est visité, puis il est rencontré à nouveau.

Remarque La notion d'état visité n'est pas assez fine. Elle sert uniquement pour la terminaison de l'algorithme de parcours (et ne pas traiter des états déjà traités).

## Détection de cycles - Intuition

### Intuition pour trouver un cycle avec le parcours en profondeur récursif

- Se fait suivant la sous-structure d'arbre produit par le parcours.
- Lors du parcours qui a pour origine un état q, si on rencontre l'état q, alors il y a un cycle.
- Se souvenir des noeuds par lesquels on est passé depuis et provenant de l'appel initial.

Detection de cycle avec parcours en profondeur.

Nous allons utiliser un ensemble d'états,  $Pile\_d\_appel$ , pour « se souvenir » des états parents par lesquels le parcours est passé.

Nous définissons, comme pour le parcours récursif, une procédure detection\_cycle() appelée sur l'automate et une procédure detection\_cycle\_état() appelée sur les états.

Lors de tout appel à  $detection\_cycle\_état(q)$ , pour un état q,  $Pile\_d\_appel$  contient l'ensemble des états (« parents ») avec lesquels  $detection\_cycle\_état$  a été appelée et qui ont donné lieu à l'appel  $detection\_cycle\_état(q)$ .

Univ. Grenoble Alpes, Département Licence Sciences et Technologies, Licence deuxième année

### Détection des cycles dans un AD Basé sur l'algorithme récursif de parcours en profondeur - algorithme 1

#### Algorithme 9 detection cycle() pour détecter l'existence d'un cycle dans un automate **Entrée**: $A = (Q, \Sigma, q_{init}, \delta, F)$ (\* un AD \*)

**Sortie:** vrai s'il existe un cycle dans A, faux sinon

- 1: ens d'états Déjà\_visités, Pile\_d\_appel := ∅;
- 2: **pour** chaque état  $q \in Q$  faire
- si detection cycle état(q) alors retourner vrai fin si 3:
- 4: fin pour ; retourner faux

#### **Algorithme** 10 detection\_cycle\_ $\acute{e}tat()$ pour détecter les cycles à partir d'un état Entrée : $q \in Q$ (\* un état \*)

**Sortie : vrai** s'il existe un cycle à partir de q, faux sinon

1: si  $q \in Pile d$  appel alors retourner vrai fin si

- 2: si  $q \in D\acute{e}j\grave{a}\_visit\acute{e}s$  alors retourner faux fin si
- 3:  $Pile_d_appel := Pile_d_appel \cup \{q\};$
- 4: Déjà\_visités := Déjà\_visités ∪ {q};
- 5: pour chaque état  $q' \in Succ(q)$  faire
- si detection\_cycle\_état(q') alors retourner vrai fin si
- 7: fin pour
- 8: Pile d appel := Pile d appel  $\setminus \{a\}$ ; (\* l'état q est supprimé de la pile d'appel \*)
- 9. retourner faux

34 / 47

(\* on ajoute q à la pile d'appel \*)

(\* l'état q devient déjà visité \*)

# Détection des cycles dans un AD

Basé sur l'algorithme récursif de parcours en profondeur - algorithme 1



## Détection des cycles dans un AD

Basé sur l'algorithme récursif de parcours en profondeur - algorithme  ${\bf 1}$ 

# Exemple (Détection des cycles dans un AD avec l'algorithme 1)



## Détection des cycles dans un AD

Limites de l'algorithme 1 - Vers un second algorithme

### Limites de l'algorithme 1

- Les tests  $q \in \text{Pile\_d\_appel}$  et  $q \in \text{D\'ej\`a\_visit\'es}$  sont en  $\mathcal{O}(|Q|)$ .
- La pile d'appel existe déjà grâce aux appels récursifs dans le parcours en profondeur.

### Modifications à l'algorithme 1

- Utiliser un coloriage des états dans {BLANC, GRIS, NOIR} :
  - BLANC : état non traité;
  - GRIS: état en cours de traitement, successeurs pas tous traités;

     → l'état est dans la pile
  - NOIR : état et tous ses successeurs traités;

     → l'état n'est pas dans la pile
  - → retat ii est pas dans la pile
- Tester la couleur d'un état est en  $\mathcal{O}(1)$ .

## Détection de cycles dans un AD

Basé sur l'algorithme récursif de parcours en profondeur - algorithme 2

### Algorithme 11 detection\_cycle() pour l'existence de cycles dans un AD

Entrée : 
$$A = (Q, \Sigma, q_{\text{init}}, \delta, F)$$

(\* un AD \*) Entrée :  $q \in Q$ (\* un état \*)

**Sortie : vrai** s'il existe un cycle à partir de q, faux sinon

- 1: couleur :  $Q \to \{BLANC, GRIS, NOIR\}$  (\* initialement :  $\forall q \in Q$  : couleur(q) = BLANC\*)
- 2: **pour** chaque état  $q \in Q$  faire
- si couleur(q) == BLANC alors retourner detection cycle état(q) fin si
- 4: fin pour

## Algorithme 12 detection\_cycle\_état() pour l'existence de cycles à partir d'un état

**Entrée**:  $A = (Q, \Sigma, q_{\text{init}}, \delta, F)$  un AD,  $q \in Q$  un état

**Sortie : vrai** s'il existe un cycle à partir de q, faux sinon

- 1: couleur(q) := GRIS
- 2: **pour** chaque état  $q' \in Succ(q)$  faire
- si couleur(q') == GRIS alors retourner vrai fin si 3:
- si couleur(q') == BLANC et detection cycle état(q') alors retourner vrai 4: (\* q' n'a pas été traité et il y a une transition arrière dans le sous-arbre de racine q' \*)
- 5: fin si
- 6: fin pour
- 7: couleur(q) := NOIR
- 8 retourner faux

## Plan Chap. 5 - Algorithmes et problèmes de décision sur les AD

- Parcour:
- Notions d'accessibilité et de co-accessibilité
- 3 Détection de cycles
- Quelques problèmes de décision
- Résumé

Univ. Grenoble Alpes, Département Licence Sciences et Technologies, Licence deuxième année

### Problèmes de décision

Définition

#### Définition (Problème de décision)

- Question que l'on peut *exprimer mathématiquement* (formellement).
- Question à un certain nombre de paramètres que l'on souhaite pouvoir passer à un programme informatique.
- La réponse à la question est oui ou non.

#### Deux sortes de problèmes de décision existent :

- problèmes décidables : on peut trouver un algorithme ou un programme qui sait répondre à la question (avec une mémoire et un temps non-borné).
- problèmes indécidables : on ne peut pas trouver un algorithme ou un programme qui sait répondre à la question (de manière générale).

#### Exemple (Problème de décision)

- décidables : évaluation d'un circuit, voyageur de commerce, SAT(isfiabilité), ...
- indécidables : arrêt d'une machine de Turing ou de Minsky (automate avec deux compteurs) ou d'un programme, solutions entières d'une équation diophantienne, . . .

### Deux problèmes de décision sur les AD

Considérons un AD A.

### Problème du langage vide

Le langage reconnu par A est il vide?

#### Problème de la finitude du langage

Le langage reconnu par A est-il (de cardinalité) fini(e)?

Pour répondre à ces questions, nous allons utiliser les notions d'accessibilité, de co-accessibilité et de cycle.

## Décision du problème du langage vide

#### Théorème : décision du problème du langage vide

Le problème du *langage vide est décidable* pour les automates à états finis (déterministes).

### Algorithme 13 Procédure de décision pour le problème du langage vide

**Entrée** :  $A = (Q, \Sigma, \delta, q_{init}, F)$  un AD

**Sortie : vrai** si le langage reconnu par A est vide, **faux** sinon

- 1: **ens d'états** Accessibles := *etats\_accessibles(A)*;
- 2: **retourner** (Accessibles  $\cap F$ ) ==  $\emptyset$ ;

## Décision du problème de la finitude du langage

#### Théorème : décision du problème de la finitude du langage

Le problème de la finitude du langage est décidable pour les AD.

#### Idée intuitive de l'algorithme

- Le langage accepté ne sera pas fini, si l'automate peut accepter "autant de mots qu'on veut".
- Il y a un nombre fini d'états.
- Il faut pouvoir donc arriver dans un état accepteur par un nombre infini de chemins différents.
- Il faut l'existence d'un cycle.

Le langage reconnu par un automate  $(Q, \Sigma, \delta, q_{\mathrm{init}}, F)$  est infini ssi

il existe un cycle non trivial accessible et co-accessible.

## Décision du problème de la finitude du langage

## Algorithme 14 Procédure de décision pour le problème du langage infini

Entrée :  $A = (Q, \Sigma, \delta, q_{\text{init}}, F)$  un AD

**Sortie : vrai** si le langage reconnu par *A* est infini, **faux** sinon

- 1: **ens d'états** EtatsEmonde := *etats\_accessibles(A)* ∩ *etats\_coaccessibles(A)*;
- 2: **automate**  $E:=(Q\cap \text{EtatsEmonde}, \Sigma, \delta\cap \text{EtatsEmonde} \times \Sigma \times \text{EtatsEmonde}, q_{\text{init}}, F\cap \text{EtatsEmonde});$
- 3: **retourner**  $\{q \in \text{EtatsEmonde} \mid detection\_cycle\_\acute{e}tat()(E,q)\} \neq \emptyset$ ;

## Plan Chap. 5 - Algorithmes et problèmes de décision sur les AD

- Parcour
- Notions d'accessibilité et de co-accessibilité
- 3 Détection de cycles
- Quelques problèmes de décisior
- 6 Résumé

## Résumé du Chap. 5 - Algorithmes et problèmes de décision sur les AD

#### Algorithmes sur les automates déterministes

- Parcours :
  - profondeur : en récursif et itératif,
  - largeur (itératif).
- Détection de cycle dans un automate :
  - basée sur un parcours en profondeur,
  - détection de transition arrière,
- Accessibilité et de co-accessibilité :
  - état accessible : existence d'un chemin depuis l'état initial vers cet état,
  - état co-accessible : existence d'un chemin depuis cet état jusqu'à un état accepteur.
- Décidabilité de certains problèmes de décision : langage vide et finitude du langage.

Remarque Les notions des prochains chapitres et les exercices de TD nous permettront de répondre à d'autres problèmes de décision.  $\hfill\Box$ 

Remarque Les algorithmes de parcours, détection de cycle, de calcul des états accessibles et co-accessibles restent valables pour les automates non-déterministes que nous aborderons dans un prochain chapitre.

#### Chap. 5 - Bonus

#### Bonus

Définir des algorithmes permettant d'obtenir des automates :

- reconnaissant l'intersection des langages d'automates passés en paramètres ;
- reconnaissant l'union et l'union exclusive des langages d'automates passés en paramètres.