

## **CSC380: Principles of Data Science**

**Probability Primer 4** 

Xinchen Yu

## Review: Random Variable Examples

## $X_1, X_2$ : outcomes of two dice

• 
$$R_1 = X_1 + X_2$$

$$\bullet \ R_2 = \frac{(X_1 + X_2)}{2}$$

• 
$$R_3 = I\{X_1 = 1\}$$

*I*: Indicator function

Random variable induces a partition of the outcome space!

$$\{R_3 = 1\} \Leftrightarrow \{(1,1), (1,2), ..., (1,6)\}$$
  
 $\{R_3 = 0\} \Leftrightarrow \{(2,1), (2,2), ..., (2,6), (3,1), (3,2), ..., (3,6), ..., (6,1), (6,2), ..., (6,6)\}$ 

Q: what distribution does  $R_3$  follow with what parameter?

Bernoulli, PMF: 
$$p(X = x) = \pi^x (1 - \pi)^{1-x}, \pi = \frac{1}{6}$$

## Review: Discrete Distribution

#### Another example.

- let S = sum of two dice;
- probability of S on different values:

$$P(S = 2) = 1/36$$
  
 $P(S = 3) = 2/36$   
 $P(S = 4) = 3/36$   
...  
 $P(S = 12) = 1/36$ 





$$\mathsf{PMF}\colon f_X(S) = \frac{\min(S-1,13-S)}{36}, \text{ for } S \in \{2,3,4,5,6,7,8,9,10,11,12\}$$

## Outline

- Continuous probability
- Continuous distribution
  - PDF
  - CDF
- Useful continuous distributions

# **Continuous Probability**





(TV show spin the wheel)

## **Continuous Probability**

Experiment Spin continuous wheel and measure X displacement from 0

Say the circumference is 1.

Outcome space  $\Omega$  is all points (real numbers) in (0,1]

Question Assuming uniform distribution,

what is P(X = x)?



## **Proof**

### **Goal**: Show P(X=x) = 0

- Say the displacement X is in (0, 1]
- Let N be a very large number. Q: how many such intervals?

• Let 
$$I_k = \left(\frac{k-1}{N}, \frac{k}{N}\right]$$
 e.g.,  $I_1 = \left(\frac{1-1}{24}, \frac{1}{24}\right] = \left(0, \frac{1}{24}\right]$ ,  $I_{21} = \left(\frac{21-1}{24}, \frac{21}{24}\right] = \left(\frac{20}{24}, \frac{21}{24}\right]$ 

• Let j(x) be k such that  $x \in I_k$ 

• 
$$P(X = x) \le P(X \in I_{j(x)}) = \frac{1}{N}$$
 e.g.,  $P(X = 21) \le P(X \in (\frac{20}{24}, \frac{21}{24}]) = \frac{1}{24}$ 

- We can make N as large as we want!
- $\Rightarrow$  P(X=x) must be 0.



# **Continuous Probability**

Maybe, it's not so weird.

 Q1: Probability that your house water usage tomorrow is 20.58 gallon?

 Q2: Probability that your house water usage tomorrow is 20.5891231285 gallon?



in reality, we never work with a precise real number.

we work with intervals!!

# **Continuous Probability**

we could try to convince ourselves that it is sensible.

... or we could just accept this oddity...



## **Continuous Distributions**

# Fundamental Theorem of Calculus: example

• The area of any circular cylinder:

$$V = \pi \cdot r^2 \cdot x$$

• Think about slicing the cylinder into thin pieces, r = 2,  $thickness = \Delta x$ :

$$V_{slice} = \pi \cdot 2^2 \cdot \Delta x$$

• Letting  $\Delta x \rightarrow 0$ :

$$V = \int_0^3 \pi \cdot 2^2 \cdot dx = \int_0^3 4\pi \, dx$$

• Volume for each thin piece dv:

$$dv = 4\pi \ dx, \qquad \frac{dv}{dx} = 4\pi$$

Get antiderivative:

$$V = 4\pi x$$

•  $V = \int_0^3 4\pi \, dx = V(3) - V(0) = 4\pi \cdot 3 - 0 = 12\pi$ 





## Fundamental Theorem of Calculus: example





# Fundamental Theorem of Calculus: example







# Mapping example to continuous probability





# Continuous Probability Distributions

**Definition** The <u>cumulative distribution function</u> (CDF) of a RV X is the function given by,

$$F(x) = P(X \le x)$$

#### **Key properties:**

F is monotonically increasing F(x) goes to 0/1 if x goes to  $-\infty/+\infty$ 



Can easily measure probability of closed intervals,

$$P(a < X \le b) = F(b) - F(a)$$

e.g. 
$$a = 64$$
,  $b = 70$ 

# Continuous Probability Distributions

 $\triangleright$  If F(X) is differentiable then,

Fundamental Theorem of Calculus

$$p(x) = \frac{dF(x)}{dx}$$
 and  $F(t) = \int_{-\infty}^{t} p(x) dx$ 

p(x) is called X's **probability density function (PDF)** 

$$\approx \frac{F(x) - F(x - \epsilon)}{x - (x - \epsilon)} = \frac{P(X \in (x - \epsilon, x])}{\epsilon} \text{ when } \epsilon \to 0$$

Intuition: p(x) characterizes how likely X takes values in the neighborhood of x

- $p(x) \ge 0$  for all x
- $P(a < X \le b) = F(b) F(a) = \int_a^b p(x) dx$
- $\int_{-\infty}^{+\infty} p(x) dx = 1$







$$P(a < X \le b) = F(b) - F(a)$$
$$F(t) = \int_{-\infty}^{t} p(x) dx$$

$$p(x) = \frac{dF(x)}{dx}$$

# **Continuous Probability**





 $\triangleright$  Events represented as intervals  $a \leq X < b$  with probability,

$$P(a \le X < b) = \int_a^b p(X = x) \, dx$$

- > Specific outcomes have zero probability P(X = x) = 0
- > But may have nonzero probability density p(X = x) > 0

### **Notation**

- For continuous RV X, use p(X = x), p(x), pX(x) to denote its PDF (probability density function)
  - Recall: P(X = x) is not its PDF value (in fact, always 0)

- For discrete RV X, use p(X = x), p(x), pX(x) to denote its PMF (probability mass function)
  - In this case, p(X = x) = P(X = x)

• General suggestions for HW / exams: to be extra safe, you can explicitly declare "we use p(X = x) to denote the PDF of continuous RV X"

## Continuous Probability Distributions

Most definitions for discrete RVs hold, replacing sum with integral...

Law of Total Probability for continuous distributions,

$$p(x) = \int_{\mathcal{Y}} p(x,y) \, dy$$
Recall: for discrete  $X$ 

$$P(X = x) = \sum_{y} P(Y = y, X = x)$$

All the rules apply when replacing PMF with PDF...

#### **Conditional PDF:**

$$p(X \mid Y) = \frac{p(X,Y)}{p(Y)} = \frac{p(X,Y)}{\int p(x,Y) dx}$$

### **Probability Chain Rule:**

$$p(X,Y) = p(Y)p(X \mid Y)$$

## **Uniform Continuous Distribution**

**Uniform** distribution on interval [a, b]: Uniform $[a, b]^{f(x)}$ 

$$p(x) = \begin{cases} 0 & \text{if } x \le a, \\ \frac{1}{b-a} & \text{if } a \le x \le b, \\ 0 & \text{if } b \le x \end{cases} \qquad P(X \le x) = \begin{cases} 0 & \text{if } x \le a, \\ \frac{x-a}{b-a} & \text{if } a \le x \le b, \\ 1 & \text{if } b \le x \end{cases}$$

$$P(X \le x) = \int_{-\infty}^{x} p(t)dt$$



#### Notation:

p(x) for the PDF function at location x

P(A) for the probability of event A

Again, PDF function ≠ probability



## **Uniform Continuous Distribution**

Example: Let  $X = \text{length of an eight-week-old baby's smile } (X \sim U(0, 23)).$  The probability density function is  $p(x) = \frac{1}{23-0} = \frac{1}{23}$  for  $0 \le X \le 23$ .

Q: find the probability that a random eight-week-old baby smiles more than 12 seconds knowing the baby smiles more than 8 seconds.

#### Method 1 (write a new PDF):

$$X \sim U(8, 23)$$

$$p(x) = \frac{1}{23 - 8} = \frac{1}{15}$$

$$P(23 > x > 12)$$

$$= \frac{(23 - 12)}{15}$$

$$\approx 0.7333$$

#### Method 2 (bayes rule):

$$P(x > 12 \mid x > 8)$$

$$= \frac{P(x > 12 \text{ and } x > 8)}{P(x > 8)} = \frac{P(x > 12)}{P(x > 8)}$$

$$= \frac{(23 - 12) \times \frac{1}{23}}{(23 - 8) \times \frac{1}{23}} \approx 0.7333$$





## **Uniform Continuous Distribution**

### numpy.random.uniform

#### numpy.random.uniform(low=0.0, high=1.0, size=None)

Draw samples from a uniform distribution.

Samples are uniformly distributed over the half-open interval [low, high] (includes low, but excludes high). In other words, any value within the given interval is equally likely to be drawn by uniform.

### **Example** Draw 1,000 samples from a uniform on [-1,0),

```
a = -1
b = 0
N = 1000
X = np.random.uniform(a,b,N)
count, bins, ignored = plt.hist(X, 15, density=True)
plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')
plt.show()
```

bins: length 16, consisting of boundary points

#### redline: PDF of uniform distr.



## Gaussian/Normal Distribution

**Gaussian** (a.k.a. Normal) distribution with mean mean (location)  $\mu$  and variance (scale)  $\sigma^2$  parameters,

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{(x-\mu)^2}{2\sigma^2})$$

Compactly, 
$$X \sim \mathcal{N}(\mu, \sigma^2)$$

#### Observations:

- Larger  $\sigma^2$ : p(x) more "spread out"
- Larger  $\mu$ : p(x) 's center shifts to the right more





# Things that follow Gaussian

#### Female shoe size



**Birth Weight** 







(From https://studiousguy.com/real-life-examples-normal-distribution/)

## numpy.random

### numpy.random.normal

scale = 
$$\sqrt{\sigma^2}$$

numpy.random.normal(loc=0.0, scale=1.0, size=None)

Draw random samples from a normal (Gaussian) distribution.

### Example Sample zero-mean gaussian with scale 0.1,

bins: length 31, consisting of boundary points



redline: PDF of gaussian distr.

## Recap

#### Useful discrete distributions

- Bernoulli → "Coinflip Distribution"
- Binomial → Multiple Bernoulli draws

#### Continuous probability

- P(X=x) = 0 does not mean you won't see x
- Probabilities assigned to intervals via CDF P(X > x)
- PDF measures probability density of single points p(X=x) >= 0

#### Useful continuous distributions

- Exponential → waiting time.
- Univariate / Multivariate Gaussian → Probably most ubiquitous distribution
- There are a lot more we will touch on later in the course...