MULTILEVEL 1 - Data set: CASCHOOL

INTRODUZIONE

Il data set contiene informazioni sulle performance dei test, sulle caratteristiche delle scuole e sulla situazione demografica di 420 studenti nei diversi distretti scolastici della California. Ci sono 14 variabili:

- 1. DISTRICT: codice del distretto
- 2. SCHOOL: nome della scuola
- 3. COUNTRY: nome della contea
- 4. GRADES: metodo di voto utilizzato nella contea
- 5. STUDENTS: totale degli studenti nella scuola
- 6. TEACHERS: totale degli insegnanti a tempo pieno
- 7. CALWORKS: percentuale di studenti che rientrano nel programma pubblico assistenziale CalWorks
- 8. LUNCH: percentuale di studenti che hanno diritto ad una riduzione sul prezzo del pranzo
- 9. COMPUTERS: numero di computer per classe
- 10. EXPENDITURE: spesa per studente
- 11. INCOME: reddito medio del distretto (migliaia di USD)
- 12. ENGLISH: percentuale di studenti per cui l'inglese è la seconda lingua
- 13. READ: punteggio megio nel test di lettura
- 14. MATH: punteggio megio nel test di matematica

Variabile dipendente: MATH

Analisi proposte:

- 1. Statistiche descrittive
- 2. Analisi multilevel

```
#-- R CODE
library(car)
library(sjstats)
library(plotrix)
library(sjPlot)
library(sjmisc)
library(lme4)
library(pander)
library(car)
library(olsrr)
library(systemfit)
library(het.test)
panderOptions('knitr.auto.asis', FALSE)
#-- White test function
white.test <- function(lmod,data=d){</pre>
  u2 <- lmod$residuals^2</pre>
  y <- fitted(lmod)
  Ru2 <- summary(lm(u2 \sim y + I(y^2)))r.squared
  LM <- nrow(data)*Ru2
  p.value <- 1-pchisq(LM, 2)</pre>
  data.frame("Test statistic"=LM,"P value"=p.value)
}
```

```
#-- funzione per ottenere osservazioni outlier univariate
FIND_EXTREME_OBSERVARION <- function(x,sd_factor=2){
    which(x>mean(x)+sd_factor*sd(x) | x<mean(x)-sd_factor*sd(x))
}
#-- import dei dati
ABSOLUTE_PATH <- "C:\\Users\\sbarberis\\Dropbox\\MODELLI STATISTICI"
d <- read.csv(pasteO(ABSOLUTE_PATH,"\\esercizi (3) copia\\1.multilevel\\CASchools.txt"),sep=" ")
#-- vettore di variabili numeriche presenti nei dati
VAR_NUMERIC <- names(d)[6:ncol(d)]
#-- print delle prime 6 righe del dataset
pander(head(d),big.mark=",")</pre>
```

Table 1: Table continues below

id	district	school	county	grades	students
1	75,119	Sunol Glen Unified	Alameda	KK-08	195
2	61,499	Manzanita Elementary	Butte	KK-08	240
3	$61,\!549$	Thermalito Union Elementary	Butte	KK-08	1,550
4	$61,\!457$	Golden Feather Union Elementary	Butte	KK-08	243
5	$61,\!523$	Palermo Union Elementary	Butte	KK-08	1,335
6	62,042	Burrel Union Elementary	Fresno	KK-08	137

Table 2: Table continues below

teachers	calworks	lunch	computer	expenditure	income	english
10.9	0.5102	2.041	67	6,385	22.69	0
11.15	15.42	47.92	101	5,099	9.824	4.583
82.9	55.03	76.32	169	$5,\!502$	8.978	30
14	36.48	77.05	85	$7{,}102$	8.978	0
71.5	33.11	78.43	171	$5,\!236$	9.08	13.86
6.4	12.32	86.96	25	5,580	10.41	12.41

read	math
691.6	690
660.5	661.9
636.3	650.9
651.9	643.5
641.8	639.9
605.7	605.4

STATISTICHE DESCRITTIVE

Si propongono la matrice di correlazione tra le variabili e alcune descrittive di base.

Table 4: Table continues below

students	teachers	calworks	lunch
Min.: 81.0	Min.: 4.85	Min.: 0.000	Min.: 0.00
1st Qu.: 379.0	1st Qu.: 19.66	1st Qu.: 4.395	1st Qu.: 23.28
Median: 950.5	Median: 48.56	Median $:10.520$	Median: 41.75
Mean: 2628.8	Mean: 129.07	Mean : 13.246	Mean: 44.71
3rd Qu.: 3008.0	3rd Qu.: 146.35	3rd Qu.:18.981	3rd Qu.: 66.86
Max. $:27176.0$	Max. $:1429.00$	Max. $:78.994$	Max. $:100.00$

Table 5: Table continues below

computer	expenditure	income	english
Min. : 0.0	Min. :3926	Min. : 5.335	Min.: 0.000
1st Qu.: 46.0	1st Qu.:4906	1st Qu.:10.639	1st Qu.: 1.941
Median: 117.5	Median:5215	Median $:13.728$	Median: 8.778
Mean: 303.4	Mean:5312	Mean : 15.317	Mean $:15.768$
3rd Qu.: 375.2	3rd Qu.:5601	3rd Qu.:17.629	3rd Qu.:22.970
Max. $:3324.0$	Max. :7712	Max. $:55.328$	Max. $:85.540$

read	math
Min. :604.5	Min. :605.4
1st Qu.:640.4	1st Qu.:639.4
Median $:655.8$	Median $:652.5$
Mean $:655.0$	Mean $:653.3$
3rd Qu.:668.7	3rd Qu.:665.9
Max. :704.0	Max. :709.5

pander(cor(d[,VAR_NUMERIC]),big.mark=",") #-- matrice di correlazione

Table 7: Table continues below

	students	teachers	calworks	lunch	computer
students	1	0.9971	0.09016	0.1292	0.9289
teachers	0.9971	1	0.09265	0.1243	0.9372
$\operatorname{calworks}$	0.09016	0.09265	1	0.7394	0.05916
lunch	0.1292	0.1243	0.7394	1	0.06139
$\operatorname{computer}$	0.9289	0.9372	0.05916	0.06139	1
${f expenditure}$	-0.1123	-0.09519	0.06789	-0.06104	-0.07131
income	0.02839	0.04301	-0.5127	-0.6844	0.09434
${f english}$	0.3549	0.3514	0.3196	0.6531	0.2913
read	-0.1884	-0.1791	-0.6118	-0.8788	-0.109
math	-0.1109	-0.1023	-0.6177	-0.823	-0.03295

	expenditure	income	english	read	math
students	-0.1123	0.02839	0.3549	-0.1884	-0.1109
${f teachers}$	-0.09519	0.04301	0.3514	-0.1791	-0.1023
$\operatorname{calworks}$	0.06789	-0.5127	0.3196	-0.6118	-0.6177
lunch	-0.06104	-0.6844	0.6531	-0.8788	-0.823
computer	-0.07131	0.09434	0.2913	-0.109	-0.03295
expenditure	1	0.3145	-0.0714	0.2179	0.155
income	0.3145	1	-0.3074	0.6978	0.6994
${f english}$	-0.0714	-0.3074	1	-0.6903	-0.5687
read	0.2179	0.6978	-0.6903	1	0.9229
\mathbf{math}	0.155	0.6994	-0.5687	0.9229	1

REGRESSIONE MULTILEVEL: Empty Model

Il primo modello proposto è l'empty model.

```
#-- R CODE
mod1 <- lmer(math ~ 1 + (1 | county),d,REML=T) #-- empty model</pre>
summary(mod1)
## Linear mixed model fit by REML ['lmerMod']
## Formula: math ~ 1 + (1 | county)
##
     Data: d
##
## REML criterion at convergence: 3576.9
## Scaled residuals:
      Min
             1Q
                    Median
                                3Q
## -2.38073 -0.70007 -0.09327 0.63614 2.85586
## Random effects:
## Groups
          Name
                      Variance Std.Dev.
           (Intercept) 95.96
## county
                               9.796
## Residual
                      255.95
                              15.998
## Number of obs: 420, groups: county, 45
##
## Fixed effects:
##
             Estimate Std. Error t value
## (Intercept) 653.696
                         1.759
pander(Anova(mod1, type="III"))
##
                               Pr(>Chisq)
##
       
                   Chisq
                           Df
## -----
## **(Intercept)** 138114 1
                                   0
## -----
## Table: Analysis of Deviance Table (Type III Wald chisquare tests)
```

```
mod1_null <- lm(math ~ 1,d) #-- modello nullo</pre>
pander(anova(mod1,mod1_null),big.mark=",") #-- test del rapporto di verosimiqlianza
##
         Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
##
**mod1_null** 2 3,657 3,665 -1,827
##
                               3,653
                                     NA
                                           NA
##
   **mod1** 3 3,586 3,598 -1,790 3,580 73.42
##
                                           1
                                                1.048e-17
## ------
##
## Table: Data: d
pander(data.frame("ICC"=icc(mod1)),big.mark=",") #-- ICC
##
## -----
     ICC
## -----
## **county** 0.2727
```

In questo caso come è noto non esistono variabili esplicative e si vede che il coefficiente interclasse è rilevante e pari a 0.273. Il test di verosimiglianza respinge l'ipotesi che il modello non interpreti la variabile dipendente. Si propongono poi gli intervalli di confidenza dei parametri casuali inerenti i distretti e quindi la relativa rappresentazione grafica.

```
#-- R CODE
res <- sjp.lmer(mod1, type = "re.qq", sort.est = "sort.all",show.values=T,title="T",prnt.plot=F)
res$data$lower <- res$data$y-res$data$ci
res$data$upper <- res$data$y+res$data$ci
pander(res$data[1:10,c("ID","y","upper","lower")],big.mark=",")</pre>
```

	ID	У	upper	lower
(Intercept)6	Fresno	-13.82	-5.629	-22
(Intercept)19	Merced	-13.22	-4.737	-21.7
(Intercept)20	Monterey	-13.11	-3.029	-23.2
(Intercept)25	Sacramento	-12.66	-2.574	-22.74
(Intercept)42	Tulare	-12.2	-6.13	-18.27
(Intercept)11	Kern	-11.55	-5.794	-17.31
(Intercept)15	Los Angeles	-6.967	-1.21	-12.72
(Intercept)24	Riverside	-6.867	5.277	-19.01
(Intercept)2	Butte	-6.701	3.95	-17.35
(Intercept)29	San Joaquin	-6.609	4.042	-17.26

```
plotCI(1:nrow(res$data$),res$data$y,ui=res$data$upper, li=res$data$lower,pch=19,scol="blue",xlab="Country
abline(h=mean(res$data$y),col=2,lwd=3,lty=2)
```


Country

Si osserva che per pochi distretti si può affermare una chiara superiorità in termini di efficacia rispetto ad altri perché l'estremo inferiore di molti si interseca con l'estremo superiore di altri.

REGRESSIONE MULTILEVEL: Random Intercept

Si propone ora un random intercept model con variabili di primo livello "calworks" e "read" e la loro interazione.

Si è visto che il coefficiente intraclasse si dimezza perché una buona parte della varianza complessiva viene spiegata dalla variabili esplicative di primo livello.

Tutte le variabili risultano essere significative.

```
#-- R CODE
mod1 <- lmer(math ~ calworks + read + calworks*read + (1 | county),d,REML=F) #-- empty model
## Warning: Some predictor variables are on very different scales: consider
## rescaling
summary(mod1)
## Linear mixed model fit by maximum likelihood ['lmerMod']
  Formula: math ~ calworks + read + calworks * read + (1 | county)
      Data: d
##
##
        AIC
                       logLik deviance df.resid
##
                 BIC
     2811.3
              2835.5 -1399.6
##
                                2799.3
                                            414
```

```
##
## Scaled residuals:
   Min 1Q Median 3Q
## -3.0544 -0.5807 -0.0197 0.5804 3.3553
## Random effects:
## Groups Name Variance Std.Dev.
## county (Intercept) 5.686 2.385
## Residual 42.471 6.517
## Number of obs: 420, groups: county, 45
## Fixed effects:
              Estimate Std. Error t value
## calworks 3.790746 1.029885 3.68
## read 0.899224 0.0057
## (Intercept) 66.144119 17.178843 3.85
## calworks:read -0.006111 0.001613 -3.79
## Correlation of Fixed Effects:
    (Intr) clwrks read
## calworks -0.480
           -0.999 0.494
## calworks:rd 0.459 -0.999 -0.474
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
pander(Anova(mod1, type="III"),big.mark=",")
##
## -----
       Chisq Df Pr(>Chisq)
##
## -----
                  14.82 1
##
   **(Intercept)**
                             0.000118
##
##
    **calworks** 13.55 1 0.0002326
##
      **read** 1,207 1 2.144e-264
##
##
## **calworks:read** 14.35 1 0.0001514
##
## Table: Analysis of Deviance Table (Type III Wald chisquare tests)
pander(data.frame("ICC"=icc(mod1)),big.mark=",") #-- ICC
##
## -----
     ICC
## -----
## **county** 0.1181
## -----
```

REGRESSIONE MULTILEVEL: Random Slope

```
#-- R CODE
mod1 <- lmer(math ~ calworks + read + calworks*read + (calworks | county),d,REML=T) #-- empty model
## Warning: Some predictor variables are on very different scales: consider
## rescaling
summary(mod1)
## Linear mixed model fit by REML ['lmerMod']
## Formula: math ~ calworks + read + calworks * read + (calworks | county)
##
    Data: d
##
## REML criterion at convergence: 2818.6
## Scaled residuals:
     Min 1Q Median
                         3Q
                                 Max
## -3.0568 -0.5719 -0.0226 0.5805 3.3751
##
## Random effects:
## Groups Name
               Variance Std.Dev. Corr
## county (Intercept) 10.973478 3.31262
##
         calworks 0.006747 0.08214 -0.86
                    42.130374 6.49079
## Number of obs: 420, groups: county, 45
## Fixed effects:
              Estimate Std. Error t value
## (Intercept) 59.336004 18.057454
                                 3.29
## calworks 4.175200 1.075153
                                  3.88
               0.909315 0.027257 33.36
## calworks:read -0.006679 0.001680 -3.98
## Correlation of Fixed Effects:
##
      (Intr) clwrks read
## calworks -0.540
## read -0.999 0.553
## calworks:rd 0.521 -0.999 -0.535
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
pander(Anova(mod1, type="III"),big.mark=",")
## -----
       
                  Chisq Df Pr(>Chisq)
## -----
##
   **(Intercept)**
                   10.8 1 0.001016
##
##
    **calworks** 15.08 1 0.000103
##
##
      **read** 1,113 1 5.078e-244
##
## **calworks:read** 15.81 1 6.987e-05
## -----
```

##

```
## Table: Analysis of Deviance Table (Type III Wald chisquare tests)
pander(data.frame("ICC"=icc(mod1)),big.mark=",") #-- ICC

##
## ------
##   ICC
## ------
## **county** 0.2066
```

Il coefficiente di correlazione dovrebbe essere calcolato in modo diverso tenendo conto della correlazione tra i coefficienti casuali di 1 e 2 livello che risulta negativa. Il coefficiente intraclasse calcolato in modo da tenere conto della correlazione fra coefficienti casuali di 1° e 2° livello vale 0.207. Il modello rimane significativo come ogni variabile.

Si presentano ora i grafici per l'intercetta e il parametro di regressione casuale inerente "calworks".

```
#-- R CODE
res <- sjp.lmer(mod1, type = "re.qq", sort.est = "sort.all",show.values=T,title="T",prnt.plot=F)
res$data$upper <- res$data$y+res$data$ci
res$data$lower <- res$data$y-res$data$ci
res_int <- subset(res$data,ind=="(Intercept)")
res_hw <- subset(res$data,ind=="calworks")
pander(res_int[1:10,c("ID","y","upper","lower")],big.mark=",")</pre>
```

	ID	У	upper	lower
(Intercept)8	Humboldt	-6.651	-2.582	-10.72
(Intercept)39	Sutter	-4.762	-0.3106	-9.214
(Intercept)17	Marin	-3.503	0.3423	-7.348
(Intercept)37	Sonoma	-3.327	-0.735	-5.919
(Intercept)36	Siskiyou	-2.725	1.992	-7.442
(Intercept)5	El Dorado	-2.61	1.206	-6.425
(Intercept)21	Nevada	-2.267	1.632	-6.165
(Intercept)20	Monterey	-2.152	2.551	-6.856
(Intercept)23	Placer	-2.019	1.673	-5.71
(Intercept)7	Glenn	-1.949	3.247	-7.145

```
pander(res_hw[1:10,c("ID","y","upper","lower")],big.mark=",")
```

	ID	У	upper	lower
calworks11	Kern	-0.1191	-0.004548	-0.2337
${ m calworks 28}$	San Diego	-0.06442	0.04766	-0.1765
${ m calworks 22}$	Orange	-0.06201	0.05892	-0.1829
${ m calworks}27$	San Bernardino	-0.06159	0.06814	-0.1913
${ m calworks}9$	Imperial	-0.05016	0.09218	-0.1925
${ m calworks} 6$	Fresno	-0.04986	0.07151	-0.1712
${ m calworks}33$	Santa Clara	-0.04855	0.06193	-0.159
calworks 16	Madera	-0.04811	0.09351	-0.1897
${ m calworks}41$	Trinity	-0.04392	0.11	-0.1979
${ m calworks 25}$	Sacramento	-0.03309	0.09456	-0.1607

ID	У	upper	lower

plotCI(1:nrow(res_int),res_int\$y,ui=res_int\$upper, li=res_int\$lower,pch=19,scol="blue",xlab="Country",y
abline(h=mean(res_int\$y),col=2,lwd=3,lty=2)

Intercept

plotCI(1:nrow(res_hw),res_hw\$y,ui=res_hw\$upper, li=res_hw\$lower,pch=19,scol="blue",xlab="Country",ylab=abline(h=mean(res_hw\$y),col=2,lwd=3,lty=2)

Calworks

Si vede come gli intervalli di confidenza si intersecano in gran parte in entrambi i casi e rendono difficile la costruzione di una graduatoria.