The motor programs underlying navigation in *Drosophila* larva

based on PLoS ONE, 6:e23180, 2011, with K. Shen, M. Klein, A. Tang, E. Kane, M. Gershow, P. Garrity, and A.D.T. Samuel

Subhaneil Lahiri

Harvard University

December 10, 2011

Muscle usage in head-sweeps

The motor programs underlying navigation in Drosophila

December 10, 2011

Introduction

We will look at the motor behaviour of the *Drosophila* larva during navigational motion, paying attention to which segments are used, in which order, etc.

We want to get some insight into the circuits that control this behaviour and the role of sensory feedback by quantifying the motor output at high resolution.

Muscle usage in head-sweeps

Introduction

We will look at the motor behaviour of the Drosophi/a larva during navigational motion, paying attention to which segments are used, in which order, etc.

and the role of sensory feedback by quantifying the motor output at high resolution.

1. future: interfere, now: just look at normal behaviour

Drosophila larva

[Hertweck (1931)]

 $\sim 10^4 \ \text{neurons}.$

Has CNS, spiking neurons,...

Many genetic tools.

Transparent \implies optogenetics.

□ ► ◆□ ► ◆ Ē ► ◆ Ē ► 夕 Q (~ ·

Muscle usage in head-sweeps

___Drosophila larva

- 1. factor of 10 j adult
- 2. unlike c. elegans
- 3. sequenced genome, $\mathsf{GAL4}/\mathsf{UAS}$ system target cell types

Navigation

Relevant sensory inputs can be controlled easily.

Large scale motor output can be measured easily.

Muscle usage in head-sweeps

-Navigation

L

- 1. Temperature, odour, light
- 2. path travelled, turning decisions

Outline

- Navigation and locomotion
- 2 Imaging and analysis of fluorescent muscles
- Results
- Conclusions and future directions

- 1. review how D.larvae navigate, what's known about locomotion circuits
- 2. how larvae with fluorescent muscles will help us, how we use them
- 3. results of this analysis
- 4. conclusions and future directions

Muscle usage in head-sweeps

Navigation and locomotion

Section 1

Navigation and locomotion

Section 1

Navigation and locomotion

Biased random walks

Alternating runs and reorientations.

Similar to E. coli and C. elegans.

Effectively point-like sensor.

Muscle usage in head-sweeps

Navigation and locomotion

1. longer runs in good directions

Biased random walks

- 2. can do more
- 3. has to move sensor to measure gradients

Head-sweeps

Moves head from side-to-side to sample environment and pick a direction to travel.

- 1. accepted
- 2. rejected

Navigation strategy

For thermo-/chemo-/photo-taxis, larva modulates:

- head-sweep frequency
- head-sweep size
- head-sweep acceptance probability

Depending on whether conditions are improving/worsening.

[Luo et al. (2010)]

- 1. turns more when things are getting worse
- 2. larger turns when things are getting worse
- 3. more likely to accept when better

Locomotion and sensory feedback

Crawl using peristaltic waves from posterior to anterior that lift and push the body forwards.

Several types of Multidendritic (md) sensory neurons.

Repeated in each segment.

Possibly used for proprioception.

[Bodmer and Jan (1987), Grueber et al. (2002)]

md neurons are used for locomotion:

• Turn off all types \rightarrow no locomotion

- [Song et al. (2007)]
- Turn off certain subsets \rightarrow disrupt pattern (toothpasting)

[Hughes and Thomas (2007)]

For finer analysis: quantify patterns of muscle use.

Muscle usage in head-sweeps Navigation and locomotion -Locomotion and sensory feedback

Repeated in each segment. ossibly used for proprioception nd neurons are used for locomotion:

comption and sensory feedback

For finer analysis: quantify patterns of muscle use

1. in future: interfere

Questions

Different types of head-sweep:

- Different circuits?
- When is decision made? With what info?
- Mechano-sensory feedback?

Look for differences in mechanics of different types of head-sweep.

1. difference in initiation \rightarrow makes decision before

Muscle usage in head-sweeps

Imaging and analysis of fluorescent muscles

Section 2
Imaging and analysis of fluorescent muscles

Section 2

Imaging and analysis of fluorescent muscles

Fluorescent muscles

Mutant: w^- ; $\frac{mhc-GFP^{0110}}{CvO}$

[Hughes and Thomas (2007)]

Can see segment boundaries \rightarrow measure length \rightarrow which segment contracts.

Muscle usage in head-sweeps

Imaging and analysis of fluorescent muscles

Fluorescent muscles

- 1. we see 11 segments, some people talk about A9 (terminal, too small), mouth segment (involute during early development)
- 2. can't automate this yet.

Intensity pattern

Subhaneil Lahiri (Harvard)

Muscle usage in head-sweeps

Muscles contract \rightarrow same GFP in smaller volume \rightarrow increase concentration \rightarrow increase brightness.

Muscle usage in head-sweeps
Limaging and analysis of fluorescent muscles
Limiting pattern

1. another measure of contraction. less noisy

Apparatus

- Temperature varied from $14-16^{\circ}\mathrm{C}$ with period $300\,\mathrm{s}$.
- Movable stage keeps larva in camera frame.

Muscle usage in head-sweeps

Imaging and analysis of fluorescent muscles

Apparatus

- 1. triggers many head-sweeps
- 2. allows comparison of head-sweepin warming/cooling

Find boundary, head, tail and bend angle automatically

- 1. allows us to flag interesting bits
- 2. slowest part
- 3. automatic again
- 4. less noisy

User clicks on segment boundaries

- 1. allows us to flag interesting bits
- 2. slowest part
- 3. automatic again
- 4. less noisy

Map to boundary. Find segment lengths.

- 1. allows us to flag interesting bits
- 2. slowest part
- 3. automatic again
- 4. less noisy

Split segment into quadrants. Mean pixel value \rightarrow intensity.

- 1. allows us to flag interesting bits
- 2. slowest part
- 3. automatic again
- 4. less noisy

Coordinate system

Muscle usage in head-sweeps
Imaging and analysis of fluorescent muscles
Coordinate system

this slide just to explain how to read graphs. Interpret later.

thorax -3 to 3, rest abdomen

- 1. Head in middle, left above, right below. Bright spots: contraction. See peristalsis go from tail to head
- 2. Head at bottom, tail at top. Remove peristalsis, just see bend. Bright: left bend, dark: right bend.

Coordinate system

Muscle usage in head-sweeps

Imaging and analysis of fluorescent muscles

Coordinate system

this slide just to explain how to read graphs. Interpret later.

thorax -3 to 3, rest abdomen

- Head in middle, left above, right below.
 Bright spots: contraction. See peristalsis go from tail to head
- 2. Head at bottom, tail at top. Remove peristalsis, just see bend. Bright: left bend, dark: right bend.

 $\begin{array}{c} \text{Muscle usage in head-sweeps} \\ & \stackrel{\textstyle \square}{-} \text{Results} \\ \end{array}$

Section 3

Section 3

Results

Forward motion

Pulse travels from tail to head. New pulse starts after previous reaches head.

1. Mouth hooks drown out all else (ratio) in T1,T2.

Small accepted head-sweep

Basic pattern: Kink starts around (T3,A1,A2) and propagates back. Subsequent peristalsis starts before kink reaches tail.

Muscle usage in head-sweeps

Results

Small accepted head-sweep

1. Completes head-sweepwith peristalsis, not unbending.

Large accepted head-sweep

Basic pattern: Kink starts around (T3,A1,A2) and propagates back. Subsequent peristalsis starts from kink, not tail.

Muscle usage in head-sweeps
Results
Large accepted head-sweep

1. same as small, statistics later

Rejected head-sweep

Rejected head-sweep not undone until next one.

Muscle usage in head-sweeps
Results
Rejected head-sweep

1. no unbending program

Position of initial bend

Little dependence on size or temperature.

Muscle usage in head-sweeps
Results
Position of initial bend

1. error bars ar std dev, not std err.

Position of start of peristalsis

- Transition is around $90 100^{\circ}$.
- Varies from animal to animal.
- Not fully determined by angle.

Varies from animal to animal. Not fully determined by angle.

Possible explanations

- Mechanical reason?
 - $> 90^{\circ}$ tail would move wrong way.
 - $< 90^{\circ}$ starting from kink would be slower.
- Neural circuit?
 Stretch-sensors involved in locomotion pattern. If one side is already contracted, segment just anterior to kink might think peristaltic pulse has already reached it
- Central pattern generator?
 Body re-coupling in mid-cycle dependence on head-sweepsize?

Possible explanations

Mechanical reason?

- $> 90^{\circ}$ tail would move wrong way. $< 90^{\circ}$ starting from kink would be slower
- Stretch-sensors involved in locomotion pattern. If one side is already contracted, segment just anterior to kink might think peristaltic pulse has already reached it
 - Body re-coupling in mid-cycle dependence on head-sweepsize?

Muscle usage in head-sweeps

Conclusions and future directions

Section 4

Section 4

Conclusions and future directions

Conclusions

Navigation results from combining two basic motor programs: peristalsis and asymmetric contraction. Pathway from sensory input \rightarrow motor output simpler than previously thought.

All head-sweeps start at the same segments. Same circuits? Decision on size of head-sweep made later?

Large head-sweeps: subsequent peristalsis starts at kink. Shows that peristalsis can start anywhere. Implications for circuits that control forward motion.

ons

Navigation results from combining two basic motor programs: peristalsis and asymmetric contraction. Pathway from sensory input \rightarrow motor outp simpler than previously thought.

All head-sweeps start at the same segments. Same circuits? Decision on size of head-sweep made later?

Large head-sweeps: subsequent peristalsis starts at kink. Shows that peristalsis can start anywhere. Implications for circuits that control forward motion.

Future directions

Interfere with motor patterns (optogenetically).

Fully automate image analysis.

Other stimuli.

Reverse crawling, hunching, and rolling.

- 1. requires next point
- 2. machine learning training data
- 3. we did temperature, could do odour. light difficult. Unlikely to be any difference.
- 4. nociceptive and rapid avoidance responses

Acknowledgements

Thanks to:

- Konlin Shen
- Anji Tang
- Mason Klein
- Liz Kane
- Ashley Carter
- Aravi Samuel
- Garrity lab

Acknowledgements

Konlin Shen
 Anji Tang
 Mason Klein

Ashley Carter
 Aravi Samuel
 Garrity lab

1. Last slide!

References I

Subhaneil Lahiri, Konlin Shen, Mason Klein, Anji Tang, Elizabeth Kane, Marc Gershow, Paul Garrity, and Aravinthan D. T. Samuel.

"Two alternating motor programs drive navigation in Drosophila larva".

PLoS ONE, 6:e23180, 2011, PubMed: 21858019.

L. Luo, M. Gershow, M. Rosenzweig, K. Kang, C. Fang-Yen, P. A. Garrity, and A. D. Samuel.

"Navigational decision making in Drosophila thermotaxis".

J. Neurosci., 30:4261-4272, Mar 2010, PubMed: 20335462.

10

Muscle usage in head-sweeps
Conclusions and future directions
References

ences I

Subhaneil Lahiri, Konlin Shen, Mason Klein, Anji Tang, Elizabath Kan Marc Gerahow, Paul Garrity, and Aravinthan D. T. Samuel. "Two alternating motor programs drive ravigation in *Drosophila* lava"

B. L. Lun, M. Carobox, M. Rosenzeseig, K. Kang, C. Fang-Yen, P. A. Carrity, and A. D. Samsel.
"Narigational decision making in Drosophila thermotaxis".

J. Neurosci., 30:4261–4272, Mar 2010, PubMed: 100336462.

References II

Rolf Bodmer and Yuh Nung Jan.

"Morphological differentiation of the embryonic peripheral neurons in Drosophila".

Development Genes and Evolution, 196:69-77, 1987.

ISSN 0949-944X.

W. B. Grueber, L. Y. Jan, and Y. N. Jan.

"Tiling of the Drosophila epidermis by multidendritic sensory neurons".

Development, 129:2867-2878, Jun 2002, PubMed:12050135.

11

Muscle usage in head-sweeps
Conclusions and future directions
References

References II

Their Budines and Yah Hong Jan.
"Margabagied ifferentiation of the embryonic parighent resource in
Development Commission of Confedence," 1987
1988 (1986) 1982.

W. B. Goulton, L. V. Jan, and V. N. Jan.

References III

Muscle usage in head-sweeps Conclusions and future directions References

W. Song, M. Onishi, L. Y. Jan, and Y. N. Jan. "Peripheral multidendritic sensory neurons are necessary for rhythmic locomotion behavior in Drosophila larvae".

"A sensory feedback circuit coordinates muscle activity in Drosophila"

W. Song, M. Onishi, L. Y. Jan, and Y. N. Jan.

"Peripheral multidendritic sensory neurons are necessary for rhythmic locomotion behavior in Drosophila larvae".

Proc. Natl. Acad. Sci. U.S.A., 104:5199-5204, Mar 2007, PubMed: 17360325.

C. L. Hughes and J. B. Thomas.

"A sensory feedback circuit coordinates muscle activity in Drosophila".

Mol. Cell. Neurosci., 35:383-396, Jun 2007, PubMed:17498969.

Toothpasting

back