Name: Jigar Siddhpura SAPID: 60004200155

DIV: C/C2 Branch: Computer Engineering

POA EXPERIMENT 2

3 -	Restoring division (14 5) $ 9 = (14)_{10} = (01110)_{2} -9 = (11011)_{2} 00101 2_{comp}^{1/5}. $ $ 8 = (5)_{10} = (00101)_{2} A = 00000 11011 $ Count = (n+1) bits $ 5 bits = 5 $							
		0	-	. 1				
	00000	01110	A.L.S.	count				
•	00000	1110	A-A-B	4				
	11011	1110	+11011	-				
	50000	11100	Q0 C- 0	11141				
		11111 8	A C A + B					
			100101					
			11700000					
	00000	11100	A.L.S					
	00001	1100	At A-B					
•		1	+ (1011	3				
	11100	1100	11100					
	00001	11000	90, =0 2 A +A+B					
			+ 00(0)					
<u> </u>			1700001					
			10 0 19					
	00001	11 000	A·1·S					
	00011	1000	A - A - B					
		1000	+ 11011	2_				
	11110	1000 _	QOGO & ACATB	11110				
	00011	10000	4	+ 0010 1				
				Dogott				
Sundarum			FOR EDUCATIONAL USE					

	000 11	(0000)	A.L.S		
	0.01/1 -		At A-B	7	
,	2 13 6	0000	111011		
			100010		
	00000	U000 []	90 = 1		
	00000	00001	100		
	00010	10000	A·L·S·		
	00100		ACA-B		
		00001	+ 11017		
			. 11111	0	
	11111	00001	90=0 & A - A + B		
	00100				
		0000	+ 00101		
			D00100		
	~A	Parelas :	A -> (00/00) 2 =	(4),0	
	/ NAC 200 :		1		
	Canswer:	Outed:	Q -3 /00010) = =	(2)+0	6
	CAnswer:	Guetient :	0 -3 (00010)2 =	(2)40	•
	OAnswer:	Guetient:	9 -3 (00010)2 =	(2)40	•
	CAnswer:	Quetient :	9 -3 (00010)2 =	(2)40	•
	OAnswer:	Quetient :	9 -3 (00010)2 =	(2)40	•
	OAnswer:	Quetient:	9 -3 (00010)2 =	(2)40	•
	OAnswer:	Quetient :	9 -3 (00010)2 =	(2)40	•
	CAnswer:	Quetient:	9 -3 (00010)2 =	(2)40	•
	CAnswer:	Quetient:	9 -3 (00010)2 =	(2)40	•
	CAnswer:	Quetient:	9 -3 (00010)2 =	(2)40	•
	CAnswer:	Quetient:	9 -3 (00010)2 =	(2)40	•
	CAnswer:	Quetient:	9 -3 (00010)2 =	(2)40	
	CAnswer:	Quetient:	9 -3 (00010)2 =	(2)40	

	Answer & Quotient & (0010) 2 = (3)10 Remainder & (0011) = (00010) 2 (3)10						
Conclusion =	Hen & binarry	ce we have non- restoring division.	implement bu division	th restoring to perform			
		7.1					
				1100000			
		bea	0.200	1000			
		200000		101			
		1873					
	Conclusion	Conclusion & Hen & Bingray	Conclusion: Hence we have A non-vestoring binary division:	Conclusion: plance we have implement be A non-vestoring division Binary division.			

Restoring Division Code:

```
def binary_addition(a,b):
   """a,b are binary strings"""
   \max_{e} = \max(en(a), en(b))
   a = a.zfill(max_len)
   b = b.zfill(max_len)
   result = ''
   carry = 0
   for i in range(max_len - 1, -1, -1):
       r = carry
       r += 1 if a[i] == '1' else 0
       r += 1 if b[i] == '1' else 0
       result = ('1' if r % 2 == 1 else '0') + result
        carry = 0 if r < 2 else 1
   if carry != 0:
        result = '1' + result
   result = result.zfill(max_len)
   return result[-max_len:]
def complement(b):
   b_comp = ""
   for i in b:
        if i=="1": b_comp += "0"
       elif i=="0": b_comp += "1"
   b_comp = binary_addition(b_comp,"1")
   return b_comp
def binary_subtraction(a,b):
   """a,b are binary strings"""
   b_complement = complement(b)
   \max_{len} = \frac{len(a)}{a}
   return binary_addition(a,b_complement.zfill(max_len))
def ALS(a,q):
    """all are binary strings"""
   a = a[1:]+q[0]
   q = q[1:]+"_{}
   return a,q
def isNegative(bin_number):
   return bin_number[0] == "1"
```

```
def restoring_division(dividend, divisor, count, A="00000", Q1="0"):
    binary_dividend = bin(dividend)[2:].zfill(count) if dividend>0 else
bin(dividend)[3:].zfill(count)
    binary_divisor = bin(divisor)[2:].zfill(count+1) if divisor>0 else
bin(dividend)[3:].zfill(count+1)
    print(f"Dividend Q = {binary_dividend}, divisor B = {binary_divisor}, A = {A},
count = {count}\n")
    print("Count\tA\tQ\tOperation")
   print("----
                                        ·----")
    while(count!=0):
        print(f"{count}\t{A}\t{binary_dividend}\tbefore ALS")
        A, binary_dividend = ALS(A, binary_dividend)
        print(f"{count}\t{A}\t{binary_dividend}\tA <- A-B")</pre>
        A = binary_subtraction(A, binary_divisor)
case = isNegative(A)
        if(case):
             binary_dividend = binary_dividend.replace("_","0")
             A = binary_addition(A,binary_divisor)
             print(f"{count}\t{A}\t{binary_dividend}\tQ. = 0 & A<-A+B")</pre>
             binary_dividend = binary_dividend.replace("_","1")
             print(f"{count}\t{A}\t{binary_dividend}\tQ. = 1")
        print(f"{count}\t{A}\t{binary_dividend}")
        count -= 1
        print("-----
    remainder = int(A,base=2)
    quotient = int(binary_dividend,base=2)
   print(f"Remainder = {remainder}, Quotient = {quotient}")
restoring_division(int(input("Enter Dividend = ")),int(input("Enter Divisor = ")),4)
```

Output:

```
PS D:\SEM 5\POA\EXPERIMENTS> python -u "d:\SEM 5\POA\EXPERIMENTS\restoringDivision.py"
Enter Dividend = 11
Enter Divisor = 3
Dividend Q = 1011, divisor B = 00011, A = 00000, count = 4
Count
                   Q
                            Operation
4
         00000
                             before ALS
                   1011
                             A <- A-B
         00001
                   011_
4
                   0110
                             Q. = 0 & A < -A + B
         00001
4
                   0110
         00001
3
         00001
                   0110
                             before ALS
                   110_
1100
                            A <- A-B
Q. = 0 & A<-A+B
         00010
3
         00010
3
         00010
                   1100
2 2 2 2
         00010
                   1100
                             before ALS
                            A <- A-B
Q. = 1
                   100_
1001
         00101
         00010
         00010
                   1001
1
                             before ALS
         00010
                   1001
                   001_
0011
                            A <- A-B
Q. = 1
1
         00101
1
         00010
         00010
                   0011
Remainder = 2, Quotient = 3
PS D:\SEM 5\POA\EXPERIMENTS>
```

Non-restoring Division Code:

```
def binary_addition(a,b):
    """a,b are binary strings"""
    \max_{len} = \max(len(a), len(b))
    a = a.zfill(max_len)
   b = b.zfill(max_len)
   result = ''
    carry = 0
    for i in range(max_len - 1, -1, -1):
       r = carry
       r += 1 if a[i] == '1' else 0
       r += 1 if b[i] == '1' else 0
        result = ('1' if r % 2 == 1 else '0') + result
        carry = 0 if r < 2 else 1
    if carry != 0:
        result = '1' + result
    result = result.zfill(max_len)
   return result[-max_len:]
def complement(b):
   b_comp = ""
   for i in b:
        if i=="1": b_comp += "0"
        elif i=="0": b_comp += "1"
   b_comp = binary_addition(b_comp,"1")
   return b_comp
def binary_subtraction(a,b):
   """a,b are binary strings"""
   b_complement = complement(b)
   \max_{len} = \frac{len(a)}{a}
   return binary_addition(a,b_complement.zfill(max_len))
def ALS(a,q):
    """all are binary strings"""
   a = a[1:]+q[0]
   q = q[1:]+"_"
   return a,q
def isNegative(bin_number):
   return bin_number[0] == "1"
def nonRestoringDivision(dividend, divisor, count, A="00000"):
    binary_dividend = bin(dividend)[2:].zfill(count) if dividend>0 else
bin(dividend)[3:].zfill(count)
```

```
binary_divisor = bin(divisor)[2:].zfill(count+1) if divisor>0 else
bin(dividend)[3:].zfill(count+1)
   print(f"Dividend Q = {binary_dividend}, divisor B = {binary_divisor}, A = {A},
count = {count}\n")
   print("Count\tA\tQ\tOperation")
   print("--
   while(count!=0):
       print(f"{count}\t{A}\t{binary_dividend}\tbefore ALS")
       A, binary_dividend = ALS(A, binary_dividend)
       case = isNegative(A)
       if(case):
           print(f"{count}\t{A}\t{binary_dividend}\tA <- A+B")</pre>
           A = binary_addition(A,binary_divisor)
           print(f"{count}\t{A}\t{binary_dividend}\tA <- A-B")</pre>
           A = binary_subtraction(A, binary_divisor)
       print(f"{count}\t{A}\t{binary_dividend}\tQ. = ~(Amsb)")
       binary_dividend = binary_dividend.replace("_",str(int(not(int(A[0])))))
       print(f"{count}\t{A}\t{binary_dividend}")
       count -= 1
       print("-----")
   if isNegative(A):
       A = binary_addition(A,binary_divisor)
   remainder = int(A,base=2)
   quotient = int(binary_dividend,base=2)
   print(f"Remainder = {remainder}, Quotient = {quotient}")
nonRestoringDivision(int(input("Enter Dividend = ")),int(input("Enter Divisor =
```

Output:

```
PS D:\SEM 5\POA\EXPERIMENTS> python -u "d:\SEM 5\POA\EXPERIMENTS\restoringDivision.py"
Enter Dividend = 11
Enter Divisor = 3
Dividend Q = 1011, divisor B = 00011, A = 00000, count = 4
Count
                   Q
                            Operation
4
         00000
                             before ALS
                   1011
                             A <- A-B
         00001
                   011_
4
                   0110
                             Q. = 0 & A < -A + B
         00001
4
                   0110
         00001
3
         00001
                   0110
                             before ALS
                   110_
1100
                            A <- A-B
Q. = 0 & A<-A+B
         00010
3
         00010
3
         00010
                   1100
2 2 2 2
         00010
                   1100
                             before ALS
                            A <- A-B
Q. = 1
                   100_
1001
         00101
         00010
         00010
                   1001
1
                             before ALS
         00010
                   1001
                   001_
0011
                            A <- A-B
Q. = 1
1
         00101
1
         00010
         00010
                   0011
Remainder = 2, Quotient = 3
PS D:\SEM 5\POA\EXPERIMENTS>
```