

Chapter 23 Multi-Way Search Trees

Chapter Scope

- Examine 2-3 and 2-4 trees
- Introduce the concept of a B-tree
- Example specialized implementations of B-trees

Combining Tree Concepts

- We've seen:
 - general trees, with multiple children per node
 - binary search trees, with a relationship among the elements but only two children per node
- A multi-way search tree combines these elements
- Each node might have more than two children with a specific relationship among the elements

- In a 2-3 tree, each node has two or three children
- A 2-node contains one element, and a 3-node contains two elements
- A 2-node can has either two children or no children
- A 3-node has either three children or no children

• A 2-3 tree:

The relationship among the parents and children reflect the contents

- Inserting an element may simply add an element to a leaf node
- Adding 27:

- Inserting an element may split a 3-node and move an element up
- Adding 32:

- Splitting a 3-node whose parent is already a 3node causes ripple effects
- Adding 57:

- If a ripple effect propagates all the way to the root, a new 2-node is created
- Adding 25:

- Removing an element may convert a 3-node into a 2-node
- Removing 51:

- Removing a 2-node leaf causes an underflow and requires a rotation
- Removing 22:

- Underflows may require multiple rotations
- Removing 30:

Removing 55:

- Rotations may not solve everything the height of the tree may have to be reduced
- Removing 45:

Removing internal nodes 30, then 60:

2-4 Trees

- A 2-4 tree is similar to a 2-3 tree, with nodes that can contain three elements
- A 4-node has either four children or no children
- The same ordering rules apply
- Similar cases govern insertions and removals

2-4 Trees

Insertions into a 2-4 tree:

2-4 Trees

Removals from a 2-4 tree:

B-trees

- 2-3 and 2-4 trees are examples of a larger class of multi-way search trees called *B-trees*
- The maximum number of children of each node is called the order of the B-tree
- Thus, a 2-3 tree is a B-tree of order 3
- A 2-4 tree is a B-tree of order 4

B-Trees

• A B-tree of order 6:

Variations on B-Trees

- A B*-tree is a B-tree that guarantees that each non-root node is at least two-thirds full
- This avoids the problem of the B-tree being half empty
- In a B⁺-tree, each element appears in a leaf, even if it also appears in an internal node
- This improves the sequential access to all elements of the tree

Variations on B-trees

• A B⁺-tree of order 6:

