Parallel overview

http://cees-gitlab.stanford.edu/bob/gp257_2020.git

Agenda

- Types of parallel computers
- Programing models
- Shared concepts
- Examples

SISD	SIMD
Single instruction, single	Single instruction, Multiple
data	Data
MISD	MIMD
Multiple Instruction, Single	Multiple Instruction,
Data	Multiple Data

SISD	SIMD
Single instruction, single	Single instruction, Multiple
data	Data
MISD	MIMD
Multiple Instruction, Single	Multiple Instruction,
Data	Multiple Data

load a(I)

c(I)=a(I)

store c(I)

load a(2)

c(2)=a(2)

store c(2)

Example: Most PCs
What we have talked
about up to this point

SISD	SIMD
Single instruction, single	Single instruction, Multiple
data	Data
MISD	MIMD
Multiple Instruction, Single	Multiple Instruction,
Data	Multiple Data

load a(1) load a(2) c(1)=a(1) c(2)=a(2)store c(1) store c(2) Example: Vector processors Good for vector dominated codes

SISD	SIMD
Single instruction, single	Single instruction, Multiple
data	Data
MISD	MIMD
Multiple Instruction, Single	Multiple Instruction,
Data	Multiple Data

load
$$a(I)$$
 load $a(I)$
 $c(I)=a(I)*a$ $c(2)=a(I)*b$
store $c(I)$ store $c(2)$

Example: None*
Certain algorithms fit this model.

SISD Single instruction, single	SIMD Single instruction, Multiple
data	Data
MISD	MIMD
Multiple Instruction, Single	Multiple Instruction,
Data	Multiple Data

load
$$a(I)$$
 load $a(2)$
 $c(I)=a(I)*a$ $c(2)=a(2)*b$
store $c(I)$ store $c(2)$

Example: Multi-core, SMP What we will be discussing for the remainder of the class

Standard CPU: Threads

Thread contains a task or series of tasks you wish to do

Standard CPU: Vector

Pentium 3 (1999) allowed four simultaneous vector operations

Standard CPU: Vector

Sandy Bridge (2011) increased vector length to 8

Standard CPU: Vector

Xeon Phi (2012) increased vector length to 16

Standard CPU: Multiple threads per core

Core

Multiple threads can exist on be targeted to a single core..we will come back to why

Standard CPU: Memory

A core usually has its own memory (L1, L2)

Standard CPU: Multiple cores per CPU

A single CPU is composed of multiple cores

Standard CPU: Memory shared on a single CPU

A single CPU often shares memory (L3)

2004 Intel Pentium 4 with 2 cores

2006 Intel Xeon with 4 cores

2009 Intel Woodcrest with 6 cores

2011 Intel Sandy Bridge with 8 cores

2020 Intel Cascade lake 56

2012 Intel Xeon Phi with 50 cores

Nvidia

2012 K20

512 cores

Nvidia

2020 A I 00

6000 cores

Multiple processors per board

Multiple CPUs per motherboard

Multiple processors per board

Shared memory on a motherboard

Multiple processors per board

Shared memory on a motherboard

Parallel growth (conventional Intel)

Compute vs. memory bound

Cluster made up of multiple computer units

Parallel computer memory architectures

 Shared memory architectures - all processors have access to all memory

 Distributed memory architectures programer manages communicating information between nodes

Chip-level multiprocessing (CMP)

- Multiple cores that exist on a single chip
- Share memory at some level
- Large speedup for compute bound applications

Thread I Load A

Thread 2 Load B

Thread 3 Lo

Thread 4

Load D

Load C

Thread I

Load A

Thread 2

Receive B

Thread 3

Load C

Thread 4

Load D

Thread I Load A

Thread 2

Thread 3 Receive C

Thread 4 Load D

Thread I Receive A

Thread 2 Load E

Thread 3

Thread 4 Load D

Sun Niagra & Niagra II, GPU

Compute vs. memory bound

Shared memory architectures

All processors identical

Equal access time to all memory

All processors can simultaneously access

Changes by one processor is seen by all

Changes by one processor is seen by all

Uniform Memory Access (UMA)

SMP Advantages

- Fast access to all memory locations
- Easy to program

Non-uniform memory access

Non-uniform memory access (NUMA)

Local memory

Local memory

Distant memory

SMP Disadvantages

- If written poorly a code on NUMA machine will slow down with increasing processors quickly
- Limited scalability at a reasonable cost

Terminology

- Latency the time it takes to receive the first byte
- Bandwidth- how many bytes can be transferred in a given amount of time

Sun Fire 6900

Sun Fire: Local memory

Sun Fire: Distant memory

Sun Fire: Distant memory

Sun Fire: Memory migration

Sun Fire: Memory migration

Sun Fire: Increased nodes, increase fabric complexity

Distributed memory

Architectures

Architecture	UMA	NUMA	Distributed
Example	SMP	Sun 6900	Beowulf cluster
Communication	MPI, threads, Openmp	MPI, threads, Openmp	MPI
Scalability	10s of processors	100s of processors	1000s of processors
Drawbacks	Memory bandwidth	Non-uniformity	programming challenge

Distributed memory: Advantages

- For certain problems (embarrassingly parallel) scales very well
- Cheap (computers are commodity hardware)
- Memory scales with the number of processors

Measuring speedup

```
speedup= serial code time parallel code time
```

Perfect speedup

speedup= serial code time parallel code time — Ideal

Typical pattern

serial code time speedup= parallel code time Ideal Measured

Typical pattern

Super linear

Example:
Better cache
behavior

Clock time

Serial Can be parallel Serial Parallel

Parallel

Serial

Parallel

parallel

Serial

Parallel overhead

Serial

Parallel overhead

1 2 4 8 16

Programming models

- Threads
- Message passing
- Data parallel model
- Collection of tasks

Threads model

```
program alpha
call sub I ()
call sub2()
call sub3()
call sub4()
call sub5()
end program
```

Time

Threads model

```
program alpha
call sub I ()
call sub2()
call sub3()
call sub4()
call sub5()
end program
```

Thread model implementation

- POSIX Thread library
 - Always available
 - Directly only in C
 - Hard, lots of ways to mess up
- OpenMP
 - Compiler directives
 - Fortran, C, C++
 - Easier, less ways to mess up

Message passing

Machine 1 Machine 2

Message passing

- Parallel Virtual Machine (PVM)
 - Dying
- Message Passing Interface (MPI)
 - MPICH, OpenMap, Lam/MPI, etc.
 - Approximately same level of complexity as POSIX threads

Data parallel model

program alpha
real :: alpha(:,:)

Data parallel model

TI T2 T3 T4

program alpha
real :: alpha(:,:)
!HPF\$ Distribute alpha(BLOCK,*)

Data parallel model

- Implementation
 - CM Fortran
 - High Performance Fortran
 - Unified Parallel C
 - Co-Array Fortran
- Automatic mapping to SMP and distributed memory
- Easy to program, not much used, maybe coming back

Hybrid models

- Combine two or more mechanisms
 - MPI and Posix, MPI and OpenMP
- Model of the future on conventional hardware
 - Many cores/processors on each machine

Automatic parallelization

- Many compilers claim they can automatically parallellize your code
- Very simple loops (think vector operations) will work
- Anything more complex can
 - Run slower
 - Produce errors

Partitioning

- Domain decomposition
- Functional decomposition

Domain decomposition

Domain decomposition

Different processors are assigned different portions of the dataset to work on

Functional decomposition

Different processors are assigned different tasks to work on

How many processors?

- Functional decomposition is generally more limited (how many different task do you have?)
- Both are dependent on the amount of communication/synchronization needed

Sparse matrix multiplication

for i in range(npts):
 dat[iloc[i, I]]=mat[i]*mod[iloc[i,0]]

Sparse matrix multiplication

for i in range(npts):
 dat[iloc[i, I]]=mat[i]*mod[iloc[i,0]]

Embarrassingly parallel

- Process I and 2 never need to share any information
- Problem scales to very large number of processors
- Everyone else is jealous

Domain decomposition

Does process 2 need to know anything about what process I computes?

Functional decomposition

Does process 2 need information that process I calculates?

```
num=0
den=0
for i in range(gg.shape[0]):
    num+=gg[i]*rr[i]
for i in range(gg.shape[0]):
    den+=gg[i]*gg[i]
alfa=-num/den
```



```
num=0
den=0
for i in range(gg.shape[0]):
    num+=gg[i]*rr[i]
for i in range(gg.shape[0]):
    den+=gg[i]*gg[i]
alfa=-num/den
```



```
num=0
den=0
for i in range(gg.shape[0]):
    num+=gg[i]*rr[i]
for i in range(gg.shape[0]):
    den+=gg[i]*gg[i]
alfa=-num/den
```


.

•••

Nodes split computational domain

..

def convolve(pm,pp,dvv):
 for i2 in range(I,pp.shape[0]-I):
 for i1 in range(I,pp.shape[I]-I):
 pn[i2,i1]=dvv[i2,i1]*(-4*pp[i2,i1]+pp[i2-I,i1]+
 pp[i2+I,i1]+pp[i2,iI+I]+pp[i2,iI-I])

Need to grab info from neighbors

```
def convolve(pm,pp,dvv):
    for i2 in range(I,pp.shape[0]-I):
        for i1 in range(I,pp.shape[I]-I):
            pn[i2,i1]=dvv[i2,i1]*(-4*pp[i2,i1]+pp[i2-I,i1]+
            pp[i2+I,i1]+pp[i2,iI+I]+pp[i2,iI-I])
```


Need to grab info from neighbors

```
def timeStep(pm,pp,pn,dvv)
     convolve()
     ...
     exchangeBoundaries()
```

```
def convolve(pm,pp,dvv):
    for i2 in range(I,pp.shape[0]-I):
        for i1 in range(I,pp.shape[I]-I):
            pn[i2,i1]=dvv[i2,i1]*(-4*pp[i2,i1]+pp[i2-I,i1]+
            pp[i2+I,i1]+pp[i2,iI+I]+pp[i2,iI-I])
```


Cost of Communication

- Communicating data takes time
 - Inter-task comm. has overhead
 - Often synchronization is necessary
- Communication is much more "expensive" than computation
 - Communicating data needs to save a lot of computation before it pays off
 - Infiniband needs < 10µs to set up communication
 - 1.2GHz AMD Athlon CPU needs ~0.8ns to perform one floating point operation (Flop)
 - 12,500 floating point operations per communication setup!

Cost of Communication

· Formula for the time needed to transmit data

$$\cos t = L + \frac{N}{B}$$

L = Latency [s]

N = number of bytes [byte]

B = Bandwidth [byte/s]

cost [s]

Communication Hardware

Architecture	Comment	Bandwidth	Latency
Myrinet http://www.myricom.com/	but	Sust. one-way for large messages:	short messages:
Infiniband <pre>http://www.infinibandta.org/</pre>	commodity Vendor indep. standard	~1.2GB/s ~900MB/s (4x HCAs)	~3μs ~10μs
Qadrics (QsNet) http://www.quadrics.com/	Expensive, proprietary	~900MB/s	~2µs
Gigabit Ethernet	commodity	~100MB/s	~60µs

Custom: SGI, IBM, Cray, Sun, Compaq, ...

Amount of work vs amount of computation

def timeStep(pm,pp,pn,dvv)
 convolve()

. . .

exchangeBoundaries()

```
def convolve(pm,pp,dvv):
    for i2 in range(I,pp.shape[0]-I):
        for i1 in range(I,pp.shape[I]-I):
            pn[i2,i1]=dvv[i2,i1]*(-4*pp[i2,i1]+pp[i2-I,i1]+
            pp[i2+I,i1]+pp[i2,iI+I]+pp[i2,iI-I])
```


Granularity

- Ratio of computation to communication
- Fine-grain parallelism
 - Low computation to communication
- Coarse-grain parallelism
 - High computation to communication
 - Generally better

Both processes need to be at the same stage

```
def timeStep(pm,pp,pn,dvv)
     convolve()
```

exchangeBoundaries()

```
def convolve(pm,pp,dvv):
    for i2 in range(I,pp.shape[0]-I):
        for i1 in range(I,pp.shape[1]-I):
            pn[i2,i1]=dvv[i2,i1]*(-4*pp[i2,i1]+pp[i2-I,i1]+
                 pp[i2+I,i1]+pp[i2,iI+I]+pp[i2,iI-I])
```


Cost of communicating Synchronization

Cost of communicating Synchronization

Collective communication: Broadcast

Collective communication: Reduce

Collective communication

```
num=0
den=0
for i in range(gg.shape[0]):
    num+=gg[i]*rr[i]
for i in range(gg.shape[0]):
    den+=gg[i]*gg[i]
alfa=-num/den
    collect(den)
    collect(num)
    master: alfa = - num/den
    broadcast alfa
```


One node collects all local num, den

Calculates alfa

send to all processors alfa

Load balancing

Amount of work might vary significantly

for i in range(npts):
 dat[iloc[i, I]]=mat[i]*mod[iloc[i,0]]

Load balancing

```
Master: while(all_blocks_not_done): send_block()
```

```
while(all_blocks_not_done):
    receive_block()
    for i in range(npts):
        dat[iloc[i, I]]=mat[i]*mod[iloc[i, 0]]
```

