	STUBENTS NAME: Kamusiime Rongh
	REG NO: 2021/A/CSK/0350/F
	COURSE CODE: DW 1105
	COURSE NAME; FUNDAMENTALS OF SOLUTION METHODS IN OPTIMIZATION
-	ACABEMIC YEAR: 2021 SEMESTER: 1
-	

Solutions

SECTION A

question One

(a) The haveling unlessman problem (TSP) is to one of the most well utudied combinational optimization problems. It has broad applications in logistics, planning and DNA sequencing. It asks the following question;

Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city and returns to the origin city:

formally, for a set of cities [A] = (1,2,---)

[n] = (1,2,--,n), an non-by-no matrix C = (Cij), where

Cij > D Cij = 6 upecifies the cost of haveling from city li to city

Ji - By convention, we assume Cii = O cii = 0 and Cij = Gicij = Cji,

meaning that the cost of haveling from city li to city Ji is equal

to the cost of haveling from city li to city Ji is equal

to the cost of haveling from city li to city li. Further more

use only consider the metric TSP in this article; that is the

triangle inequality.

(6)	From/To	Denvei	Edmonton	Famo	
	Aushin	250	400	340	
	Boston	400	600	350	
	Chicago	200	400	010	
	Total	850	1400	950	-

Denver in order to ophmize airfare.

Ont Drilling of printed circuit board to connect a conductor or one layer with a conductor on another layer.

X-ray crystallography to obtain information about the shucture of crystalline material.

Computer wiring to connect components on a computer

Mask plotting in PCB production to the production

JECTION B

Question one quality accuracy, precision or completeness for speed.

b) Maxi Max Gain looks at the best that could happen under each achor and then chooses the action with the largest value. It assumes that they will ter get the most possible and then they take the action with the best case scenario. The maximum of the maximum of the maximum of the best of the best.

(i) Identifying the maximum payoff for each alternative	
to model A = shr. 60000	
	-
For madel 6 = Shr. 78000	
	- 1
: The highest maximum payoff is = shs.78000.	
	_
·	
deaphin the minimum payoff for each afternative	
dentifying the minimum payoff for each alternative	
For mode B = 5 hs. 30000	
101 MB08 D - 4 13 5 5 5 5	_
21 1 -1	
The highest minimum payoff is who. 30000.	
: Model B will yield ophnum relution.	_
	-
UI) Using Hurwicz d = 0.7 Weighted average for each alternative = d(maximum in row) +	
Wordhied grerage for each alternative = x(maximum in row) +	-
(1-d) (minimum in now)	-
	- Si
For model A = 0.7 (60000) + (1-x) (28000)	
= 42000 f8400	
= Shs. 50400	-
	-
hor model B = (0.7) (78000) + (1-07) (30000)	
= 54600 + 9000	
= she 63 600	
: Model B will give the ophnim solution.	Suit
, IT love I optimom solution.	
	-

Question three	
e) Modeling refers to the whidy complex systems using mo	use of computed to shmulate and allematics, physics and computer
negative pants or Jackets X > 0, y > 0	cutteril time to make panta and
4x + 8y = 48	
Jackèt. 8x+4y = 60	tor time to make pants and
in Anti-led and	
(ii) Anhorated profit 2x + 1.5y = f(x,y)	

constaints.	
4x + 8y < 48 (1	
 For constraint (i)	For constraint (ii)
4x +8y = 48.	8x+4y = 60
X y	X y.
0 12	0
6 0	15 0
	4

Querhon fire

(i) Shortest write problem is one of network ophmization problems that aims to define the shortest path from one node to another.

with a label from a finite label ret instead of a weight.

(iii) Maximal flow problem involves finding a feasible flow through a single-source, single-sink flow network that is maximum:

1-

b) The following are the algorithms in (a) above.

Bellman Ford's Mgontum; This is used to find the shortest paths from the source vertex to all other vertices in a weighted graph. It depends on the following concept: Shortest path contains at most n-1 edges, because the shortest path couldn't have a cycle:

Kruskal's Algorithm; It builds the spanning free by adding edges one by one into a growing spanning free Kruskal's algorithm follows greedy approach as in each iteration; it finds on edge which has least weight and add it to the growing.

The Ford-fulkerson algorithm! This is an algorithm that tackles the max-flow min-cut problem that is given a network with vertices that have certain weight, and edges between those vertices that have certain weight, how much flow can the network process at a time? Flow typically means data through a computer spanning tree.

from the source a to the sink g, the minimal route is a to c, c to b, b to e, e to fy f to g

. The mining rock is (3, 4, 2, 3, 4)