POLITECNICO DI MILAN

Elettrotecnica Parte 1: Concetti Fondamentali

Prof. Ing. Giambattista Gruosso, Ph. D.

Dipartimento di Elettronica, Informazione e Bioingegneria

Concetti Fondamentali

L'Elettrotecnica è la disciplina ingegneristica che studia, attraverso opportuni "modelli", il comportamento elettrico di oggetti fisici reali.

POLITECNICO DI MILANO

E' possibile rappresentare un oggetto fisico, anche molto complesso, mediante uno o più "elementi idealizzati" detti "componenti".

Prof. G. Gruosso

Una "rete elettrica " o un "circuito elettrico" è una struttura più o meno articolata ottenuta dall'interconnessione di più componenti che consente di descrivere in maniera rigorosa l'insieme di quei fenomeni (macroscopici) che coinvolgono le cariche elettriche e le loro interazioni all'interno dell'oggetto reale.

Grandezze Descrittive

POLITECNICO DI MILANO

Prof. G. Gruosso

Intensità di Corrente:

Quantità di carica che attraversa la sezione del conduttore nell'unità di tempo. Si misura in Ampere [A]

$$I = \frac{dQ}{dt}$$

Differenza di Potenziale:

Lavoro che il campo elettrico compie nel portare una carica unitaria da un nodo del circuito ad un altro. Si misura in Volt [V]

Componenti

POLITECNICO DI MILANO

Prof. G. Gruosso

morsetto

Componenti Fondamentali

Elementi attivi

Elementi Passivi

POLITECNICO DI MILANO

Prof. G. Gruosso

Elementi Elementi Indipendenti dipendenti

Convenzione dei Bipoli

v convenzione degli utilizzatori

Prof. G. Gruosso

$$p(t) = v(t) \cdot i(t)$$
 Watt [W]

Quale differenza?

Convenzione dei Bipoli

POLITECNICO DI MILANO

Quali convenzioni sono queste?

POLITECNICO DI MILANO

Prof. G. Gruosso

Utilizzatori

Generatori

Definizione di Nodi e Lati

POLITECNICO DI MILANO

- □II Nodo è il punto del circuito in cui convergono due o più terminali (o morsetti), il numero di nodi di una rete è solitamente indicato con N
- □II Lato è l'insieme di bipoli connessi a formare un percorso continuo che consente di collegare un nodo ad un altro nodo, il numero di lati è solitamente indicato con L
- □La Maglia è un percorso chiuso, che si svolge sui lati del circuito, avente inizio e termine nello stesso nodo ed in cui due e solo due lati coincidono" in ciascun nodo.

NB: non conta come si effettua il disegno del circuito

POLITECNICO DI MILANO

Leggi Fondamentali Legge di Kirchhoff delle correnti

POLITECNICO DI MILANO

Leggi Fondamentali Legge di Kirchhoff delle correnti

POLITECNICO DI MILANO

$$I_1 + I_2 + I_3 - I_4 + I_5 + I_6 + I_7 = 0$$

Leggi Fondamentali Legge di Kirchhoff delle Correnti

POLITECNICO DI MILANO

Leggi Fondamentali Legge di Kirchhoff delle Correnti : pseudonodi

POLITECNICO DI MILANO

Leggi Fondamentali Legge di Kirchhoff delle Correnti : Estensione concetto di nodo

POLITECNICO DI MILANO

Prof. G. Gruosso

Su S (include i nodi 2 e 5): $i_1 + i_2 + i_3 + i_6 = 0$

Leggi Fondamentali Legge di Kirchhoff delle Correnti : Estensione concetto di nodo

POLITECNICO DI MILANO

Leggi Fondamentali Legge di Kirchhoff delle Tensioni

POLITECNICO DI MILANO

Leggi Fondamentali Legge di Kirchhoff delle Tensioni

POLITECNICO DI MILANO

$$V_1 + V_2 + V_3 - V_4 + V_5 + V_6 + V_7 + V_8 + V_9 + V_{10} = 0$$

POLITECNICO DI MILANO

Leggi Fondamentali Legge di Kirchhoff delle Tensioni

POLITECNICO DI MILANO

$$v_4 - v_3 - v_5 + v_6 = 0$$

$$v_4 - v_2 + v_1 = 0$$

Leggi Fondamentali Legge di Kirchhoff delle Tensioni

POLITECNICO DI MILANO

POLITECNICO DI MILANO

Prof. G. Gruosso

Le LKC e LKT non dipendono dalla struttura interna dei componenti, ma solo dal modo in cui essi sono collegati (topologia del circuito).

Si tratta di equazioni lineari, algebriche ed a coefficienti costanti.

Leggi Fondamentali Teorema di Consevazione della potenza (Teorema di telleghen)

POLITECNICO DI MILANO

Siano:

 $\{i_k\}$ un sistema di correnti soluzione di un circuito $\{v_k\}$ un sistema di tensioni soluzione dello stesso circuito

Prof. G. Gruosso

Risulta:

$$\sum_{\mathbf{k}} \mathbf{v}_{\mathbf{k}} \, \mathbf{i}_{\mathbf{k}} = 0$$

$$\sum_{\mathbf{k}} \mathbf{P}_{\mathbf{k}} = 0$$

POLITECNICO DI MILANO

Una equazione di un sistema si dice indipendente quando non contiene informazioni già contenute in altre equazioni del sistema.

$$x_1 + x_2 + x_3 = 0$$
 (a)
 $x_2 - 3x_3 = 0$ (b)
 $x_1 + 2x_2 - x_3 = 0$ (a) + (b)

POLITECNICO DI MILANO

Prof. G. Gruosso

Legge di Kirchhoff per le correnti: se ne possono scrivere almeno tante quanti sono i nodi.

<u>Legge di Kirchhoff per le tensioni</u>: se ne possono scrivere tante quante sono le maglie.

POLITECNICO DI MILANO

Prof. G. Gruosso

Non tutte le LKC sono indipendenti

nodo 2:
$$-i_1 + i_3 + i_4 = 0$$

nodo 5:
$$i_1 - i_3 - i_4 = 0$$
 Equazione non indipendente

Non tutte le LKT sono indipendenti

POLITECNICO DI MILANO

$$M3 - V_j + V_{R5} = 0$$

$$-V_E - V_{R1} - V_{R3} + V_{R5} = 0$$

POLITECNICO DI MILANO

Prof. G. Gruosso

In un circuito con n nodi e b lati si possono scrivere:

LKC+LKT forniscono in totale <u>b equazioni indipendenti</u>.

Collegamenti tra i bipoli

POLITECNICO DI MILANO

Prof. G. Gruosso

Collegamento in serie

$$\begin{cases} i_1 = i_2 = i \\ v = v_1 + v_2 \end{cases}$$

Collegamento in parallelo

