Representation of the Earth Potential by Buried Masses

GEORGES BALMINO

Groupe de Recherches de Géodésie Spatiale Observatoire, 92 Meudon, France

Abstract. Some ways of representing the earth potential by point masses are explored. The 1969 standard earth model of the Smithsonian Astrophysical Observatory is used as a reference. Points regularly distributed on a sphere inside the earth have been considered, as well as nonuniform configurations. The values of the masses are derived by a least-squares fit to the SAO field. The values of the different representations obtained have been checked by computing the geoid heights, gravity anomalies, and spherical harmonics associated with the field of the masses. The best model obtained consists of 126 points, mostly at a depth of 1300 km, tied to the important gravity anomalies derived from the reference field. The mean of the residuals is 6 mgal.

The main results obtained so far in dynamical geodesy have been based on the expansion of the earth potential in spherical harmonics. The methods of analysis are complex, for they have to process numerous observations made on different satellites from many stations; in addition, the determination of the potential coefficients and station coordinates, computed at the same time, involves very large matrices that cannot be handled easily on present computers.

In the near future, the technical progress in satellite geodesy, as well as great improvements in type and accuracy of observational methods, will make it necessary to use new representations of the potential of the earth. The series of harmonic coefficients converges very slowly, and too many terms must be taken into account in order to represent small, or short-wave, variations of the field (as measured by an altimeter or determined from gravity measurements). It is desirable that new representations satisfy as many as possible of the following conditions:

- 1. Discrete formulation (one 'detail' for one function), which leads to simple programming. (Recursive formulas lead to important errors, which occur, for example, if one computes the Legendre functions up to (180, 180) to represent details of 1 degree on the geoid.)
- 2. Homogeneous representation on both the surface and exterior of the earth.

- 3. Possibility of increasing locally the number of parameters without perturbing distant regions.
- 4. The same formulation of the potential and its derivative on and outside the earth, so as to facilitate the combination of observations from different sources (like gravity anomalies and satellite-to-ocean altimetry).

The representation of the gravity field by buried masses, which was suggested by Weightmann [1967] several years ago, can satisfy these conditions under some restrictions on the configuration and depth of the points.

Theoretically, any distribution of masses inside the earth that keeps the geoid fixed gives the same field outside the geoid. Consequently, it is reasonable to distribute the mass points regularly. Nevertheless, the anomalies of the gravity field already known make us think of putting the masses at the places where particular features exist.

Taking the last standard earth model determined by Gaposchkin and Lambeck [1970], we have tried in our approach to attain an equivalence between this model and a configuration of mass points, in order to represent the gravimetric geoid as well as possible. The values of differently obtained representations outside the earth have been checked by integrating satellite orbits.

122

METHOD

One has the choice of taking a regular distribution on a sphere inside the earth, or putting the points at places corresponding to large gravity anomalies. If the anomalies of the field are not known (they are to be determined through observations), only the first point of view is valid, and a large number of mass points close to the earth's surface must be considered. One can also take surface density values [Koch, 1970], but the expression for the external field is not convenient to use for satellite motion.

Starting from an a priori configuration of points $(\mathbf{P}_i)_0$, $i=1, 2, \dots, N$, we determine parameters ϵ_i such that:

$$U_{0} = \frac{GM}{r} \left[1 - \sum_{n=2}^{21} \left(\frac{a}{r} \right)^{n} J_{n} P_{n}(\sin \phi) + \sum_{n=2}^{22} \left(\frac{a}{r} \right)^{n} \sum_{k=1}^{r'} \left(C_{nk} \cos k\lambda + S_{nk} \sin k\lambda \right) P_{nk}(\sin \phi) \right]$$

$$(1)$$

$$n' = \min(n, 16)$$

$$U_M = E + T_M = E + \sum_{k=1}^{N} T_{Mk}$$
$$= E + GM \sum_{k=1}^{N} \frac{\epsilon_k}{r_k}$$

$$\iiint_D |U_0 - U_M|^2 dv \quad \text{is a minimum} \qquad (2)$$

where E is a reference potential included in U_m (because terms like

$$1/r \text{ or } (1/r) J_2(a/r)^2 P_2(\sin \phi)$$

cannot be easily represented otherwise, except by deep point masses, which are without physical meaning, and D is a region of space outside the earth (e.g., between 500- and 1500-km height).

D is represented by a large number M(>N) of points S, and we thus have

$$\sum_{i=1}^{N} \left[\left(\frac{\partial T_{M}}{\partial \epsilon_{i}} \right)_{S} \Delta \epsilon_{i} + (\nabla T_{Mi})_{S} \cdot \Delta \mathbf{P}_{i} \right]$$

$$= (U_{0} - U_{M})_{S}$$

with

REPRESENTING EARTH POTENTIAL

$$\Delta \mathbf{P}_i = \mathbf{P}_i - (\mathbf{P}_i)_0$$
$$\Delta \epsilon_i = \epsilon_i - (\epsilon_i)_0$$
$$(\epsilon_i)_0 = 0$$

at the first iteration.

Different weights according to the heights of S can be chosen. In addition, we add the following constraints:

$$\sum_{i=1}^{N} \epsilon_i = 0$$

i.e., the total mass of the earth is unchanged, and

$$\sum_{i=1}^{N} \epsilon_{i} \varrho_{i} = 0$$

i.e., the center of inertia is not modified.

In the above,

$$\mathbf{e}_k = \mathbf{r} - \mathbf{r}_k$$

where \mathbf{r} is the geocentric vector to S, the point at which the potential is being computed, and \mathbf{r}_k is the vector from mass point P_k to S.

Finally, we solve

$$\begin{pmatrix} \begin{bmatrix} \mathbf{A}^T \mathbf{\Pi} A \end{bmatrix} & \mathbf{J}^T \end{pmatrix} \begin{pmatrix} \mathbf{Y} \\ \Lambda \end{pmatrix} = \begin{pmatrix} \begin{bmatrix} A^T \mathbf{\Pi} \end{bmatrix} & \mathbf{\Delta} \\ 0 \end{pmatrix}$$
 (3)

where

A is the matrix of equations of condition.

J is the jacobian of constraints.

y is the vector of unknowns.

A is the vector of Lagrange multipliers.

II is the matrix of weights.

 Δ is the vector of the quantities $(U_0 - U_M)$.

Results obtained using (3) in conjunction with (1) and (2) did not yield a satisfactory representation of the field on the earth's surface. Hence, condition (2) was replaced by:

$$\iint_{\Phi} |\Delta g_0 - \Delta g_M|^2 ds \quad \text{is a minimum} \qquad (4)$$

where Δg_0 is the field of the gravity anomalies derived from U_0 , and

$$\Delta g_M = \frac{\partial T_M}{\partial n} - \frac{2T}{a}$$

n being the normal at the surface Φ of the reference ellipsoid whose potential here is exactly E and whose mean radius is a.

123

GEORGES BALMINO

A natural weighting is obtained by writing the condition equations on the level curves of the gravity anomalies, which gives more importance to the large anomalies. Local studies have been made to determine optimal values ϵ_i , ρ_i for large anomalies.

The adequacy of a mass-point representation obtained via (2) or (4) can be checked in the following ways:

- 1. Computation of the residuals $U_0 U_M$ in D.
- 2. Calculation of gravity anomalies on ϕ from the formula:

$$\Delta g_Q = GM \sum_{k=1}^N \frac{\epsilon_k}{r_k^3} (a - \rho_k \cos \psi_k)$$

where Q is a point on Φ , a is the geocentric radius to Q, and ψ_k is the geocentric angle between ϱ_i and \mathbf{a} ; Δg_Q can then be compared with the actual anomaly at Q.

3. Determination of a harmonic coefficient set

$$\langle \gamma_{lm} \rangle = \sum_{k=1}^{N} \epsilon_k \left(\frac{\rho_k}{a} \right)^l \bar{P}_{lm}(\sin \phi_k)$$

$$\cdot \left(\frac{(2 - \delta_0^m)(l - m)!}{(2l + 1)(l + m)!} \right)^{1/2} \cos m \, \lambda_k$$

$$\langle \sigma_{lm} \rangle = \sum_{k=1}^{N} \epsilon_k \left(\frac{\rho_k}{a} \right)^l \bar{P}_{lm}(\sin \phi_k)$$

$$\cdot \left(\frac{(2 - \delta_0^m)(l - m)!}{(2l + 1)(l + m)!} \right)^{1/2} \sin m \, \lambda_k$$

where the bar denotes normalization; these can be compared with the SAO coefficients [Gaposchkin and Lambeck, 1970].

4. Comparison of numerical integration of a given orbit of a satellite in the SAO field and in the field U_{M} .

RESULTS

Various tests using regular distributions of mass points and condition 2 proved unsatisfactory. A model that gave a good representation of the gravity anomalies on the ellipsoid was obtained in the following manner. The reference potential E in (1) was taken to be the earth ellipsoid harmonics. Ninety-two points were positioned at the extreme values of a map of gravity anomalies based on the SAO

standard earth. Constraining the points to lie at the same depth, the best representation was obtained at a depth of 1300 km. This preliminary model was improved by adding additional points up to a total of 126 and individually adjusting the depths of the 20 largest anomalies. The results are given in Table 1. For this model,

TABLE 1. Model for 126 Mass Points

				14
	Tot /	Tona)	Donth	Mass ϵ , 10^{-6}
N	$\begin{array}{c} \mathrm{Lat.}\; \phi, \ \mathrm{deg} \end{array}$	$\begin{array}{c} \text{Long. } \lambda, \\ \text{deg} \end{array}$	Depth, km	mass of earth
	ueg	ueg	KIII .	eartii
1	59	-152	-1100	1.753
$\dot{\tilde{2}}$	3	-176	-1300	-0.511
3	-66	-177	-1300	-1.667
$\stackrel{\circ}{4}$	$\frac{30}{20}$	-160	-1300	0.810
5	-31	-159	-1300	1.176
6	-15	-158	-1300	-0.499
7	-2	-155	-1300	0.912
8	$2\overline{2}$	-143	-1300	-1.233
9	-27	-140	-1300	-1.734
10	32	-126	-1300	-1.603
11	3	-125	-1300	-1.159
12	19	-121	-1300	0.762
13	-46	-121	-1500	2.122
14	47	-115	-1100	0.667
15	-12	-101	-1300	0.699
16	-49	-99	-1300	-1.632
17	38	-98	-1300	-1.334
18	-76	-95	-1300	-1.265
19	-35	-85	-1300	0.579
20	-15	-85	-1000	-1.507
$\frac{20}{21}$	60	-89	-1300	-2.065
$\frac{21}{22}$	39	-71	-1300	-0.645
$\frac{22}{23}$. 0	-71	-1300	1.868
$\frac{23}{24}$	-19	-69	-1300	1.667
$\frac{25}{25}$	-54	-69	-1500	1.048
26	19	-64	-1300	-1.713
$\frac{20}{27}$	$\frac{13}{24}$	-28	-1300	-0.175
28	9	-49	-1300	-1.275
29	-14°	-52	-1300	-1.015
30	-36	-42	-2000	-0.646
31	$\frac{33}{42}$	-32	-1100	1.876
32	-18	-24	-1200	-1.061
33	69	-20	-1300	0.977
34	60	-175°	-1300	-0.933
35	9	-11	-1300	0.974
36	$2\overline{2}$	-4	-1300	-0.665
37	-64	$-2\tilde{5}$	-1500	0.753
38	39	-3	-1000	1.218
39	-39	2	-1000	-0.616
40	-50	15	-1300	0.987
41	-66	$\frac{15}{21}$	-1300	-1.337
$\frac{11}{42}$	-42	$\frac{21}{24}$	-1300	-0.848
43	4	$\frac{1}{25}$	-1000	-1.482
44	18	29	-1300	1.940
45	30	$\frac{25}{25}$	-1300	-2.460
46	45	$\frac{26}{26}$	-1000	1.498

REPRESENTING EARTH POTENTIAL

TABLE 1. (continued)

N 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65	Lat. ϕ , deg 35 21 -6 -43 -44 -67 -36 4 41 69 35 -49 -25 -1 47	Long. λ, deg 46 50 48 43 61 73 74 79 68 76 90 99 98	Depth, km -1300 -1300 -1100 -1300 -1300 -1300 -1300 -1300 -1300 -1300 -1300	Mass ϵ , 10^{-6} mass of earth 2.707 -2.213 -1.360 2.359 -1.681 1.682 1.603 -2.143 -1.807 -1.792	N 98 99 100 101 102 103 104 105 106	Lat. φ, deg 44 77 82 85 71 37 27	Long. λ, deg -89 -121 -78 -20 -52 -53 -44	Depth, km -1300 -1300 -1300 -1300 -1300 -1300 -1300 -1300	Mass ϵ , 10 ⁻⁶ mass of earth 1.252 -0.334 -0.857 0.048 1.519 -0.470 1.064
N 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64	$\begin{array}{c} \text{deg} \\ 35 \\ 21 \\ -6 \\ -43 \\ -44 \\ -67 \\ -36 \\ 4 \\ 41 \\ 69 \\ 35 \\ -49 \\ -25 \\ -1 \end{array}$	deg 46 50 48 43 61 73 74 79 68 76 90 99	km -1300 -1300 -1100 -1300 -1300 -1300 -1300 -1300 -1300 -1300 -1300 -1300	earth 2.707 -2.213 -1.360 2.359 -1.681 1.682 1.603 -2.143 -1.807 -1.792	98 99 100 101 102 103 104 105 106	deg 44 77 82 85 71 37 27	-89 -121 -78 -20 -52 -53 -44	km -1300 -1300 -1300 -1300 -1300 -1300 -1300	earth 1.252 -0.334 -0.857 0.048 1.519 -0.470
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64	$\begin{array}{c} 21 \\ -6 \\ -43 \\ -44 \\ -67 \\ -36 \\ 4 \\ 41 \\ 69 \\ 35 \\ -49 \\ -25 \\ -1 \end{array}$	50 48 43 61 73 74 79 68 76 90	$\begin{array}{c} -1300 \\ -1100 \\ -1300 \\ -1300 \\ -1300 \\ -1300 \\ -1300 \\ -1300 \\ -1300 \\ -1300 \\ -1300 \end{array}$	-2.213 -1.360 2.359 -1.681 1.682 1.603 -2.143 -1.807 -1.792	99 100 101 102 103 104 105 106	77 82 85 71 37 27	-121 -78 -20 -52 -53 -44	-1300 -1300 -1300 -1300 -1300	-0.334 -0.857 0.048 1.519 -0.470
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64	$ \begin{array}{r} -6 \\ -43 \\ -44 \\ -67 \\ -36 \\ 4 \\ 41 \\ 69 \\ 35 \\ -49 \\ -25 \\ -1 \\ \end{array} $	48 43 61 73 74 79 68 76 90	$\begin{array}{c} -1100 \\ -1300 \\ -1300 \\ -1300 \\ -1300 \\ -1300 \\ -1300 \\ -1300 \\ -1300 \\ -1300 \end{array}$	-1.360 2.359 -1.681 1.682 1.603 -2.143 -1.807 -1.792	100 101 102 103 104 105 106	82 85 71 37 27	$ \begin{array}{r} -78 \\ -20 \\ -52 \\ -53 \\ -44 \end{array} $	-1300 -1300 -1300 -1300	-0.857 0.048 1.519 -0.470
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64	$ \begin{array}{r} -43 \\ -44 \\ -67 \\ -36 \\ 4 \\ 41 \\ 69 \\ 35 \\ -49 \\ -25 \\ -1 \\ \end{array} $	43 61 73 74 79 68 76 90	$\begin{array}{c} -1300 \\ -1300 \\ -1300 \\ -1300 \\ -1300 \\ -1300 \\ -1300 \\ -1300 \\ -1300 \end{array}$	2.359 -1.681 1.682 1.603 -2.143 -1.807 -1.792	101 102 103 104 105 106	85 71 37 27	-20 -52 -53 -44	-1300 -1300 -1300	$0.048 \\ 1.519 \\ -0.470$
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64	$ \begin{array}{r} -44 \\ -67 \\ -36 \\ 4 \\ 41 \\ 69 \\ 35 \\ -49 \\ -25 \\ -1 \end{array} $	61 73 74 79 68 76 90	$\begin{array}{c} -1300 \\ -1300 \\ -1300 \\ -1300 \\ -1300 \\ -1300 \\ -1300 \\ -1300 \end{array}$	-1.681 1.682 1.603 -2.143 -1.807 -1.792	102 103 104 105 106	71 37 27	$ \begin{array}{r} -52 \\ -53 \\ -44 \end{array} $	$-1300 \\ -1300$	$1.519 \\ -0.470$
51 52 53 54 55 56 57 58 59 60 61 62 63 64	$ \begin{array}{r} -67 \\ -36 \\ 4 \\ 41 \\ 69 \\ 35 \\ -49 \\ -25 \\ -1 \end{array} $	73 74 79 68 76 90	$\begin{array}{c} -1300 \\ -1300 \\ -1300 \\ -1300 \\ -1300 \\ -1300 \end{array}$	1.682 1.603 -2.143 -1.807 -1.792	103 104 105 106	$\begin{array}{c} 37 \\ 27 \end{array}$	$-53 \\ -44$	-1300	-0.470
52 53 54 55 56 57 58 59 60 61 62 63 64	$ \begin{array}{r} -36 \\ 4 \\ 41 \\ 69 \\ 35 \\ -49 \\ -25 \\ -1 \end{array} $	74 79 68 76 90	-1300 -1000 -1300 -1300 -1300	$ \begin{array}{r} 1.603 \\ -2.143 \\ -1.807 \\ -1.792 \end{array} $	104 105 106	27	-44		
53 54 55 56 57 58 59 60 61 62 63 64	$ \begin{array}{r} -36 \\ 4 \\ 41 \\ 69 \\ 35 \\ -49 \\ -25 \\ -1 \end{array} $	74 79 68 76 90	-1000 -1300 -1300 -1300	-2.143 -1.807 -1.792	105 106			-1300	1.064
54 55 56 57 58 59 60 61 62 63 64	41 69 35 -49 -25 -1	68 76 90 99	$-1300 \\ -1300 \\ -1300$	$-1.807 \\ -1.792$	106	F0			
55 56 57 58 59 60 61 62 63 64	69 35 -49 -25 -1	76 90 99	$-1300 \\ -1300$	-1.792		58	-5	-1300	0.667
56 57 58 59 60 61 62 63 64	69 35 -49 -25 -1	90 99	-1300			-85	100	-1300	-0.010
57 58 59 60 61 62 63 64	$ \begin{array}{r} 35 \\ -49 \\ -25 \\ -1 \end{array} $	99			107	4	-28	-1300	0.333
58 59 60 61 62 63 64	$-25 \\ -1$		1900	1.308	108	-6	-11	-1300	-0.127
59 60 61 62 63 64	$-25 \\ -1$	9.8	-1300	1.380	109	-27	-16	-1300	-0.133
60 61 62 63 64	-1	00	-1300	-1.575	110	-73	-15	-1300	0.625
61 62 63 64	47	112	-1300	1.590	111	-61	-81	-1300	0.622
62 63 64		100	-1300	-1.931	112	-33	-70	-1300	0.064
$\begin{array}{c} 63 \\ 64 \end{array}$	62	109	-1300	2.080	113	-23	-4	-1300	1.177
64	12	124	-1300	1.110	114	-10	4	-1300	-0.4 03
	-21	121	-1300	0.808	115	-19	30	-1300	0.091
	-38	$\overline{122}$	-1300	-2.029	116	28	65	-1300	0.961
66	-63	120	-1300	-1.442	117	48	43	-1300	-2.070
67	- 4	142	-1100	1.224	118	58	13	-1300	-1.057
68	31	141	-1300	1.625	119	16	145	-1300	-0.561
69	-42	152	-1500	-2.374	120	-47	137	-1300	0.899
70	1	159	-1300	-0.434	121	-16	69	-1300	0.336
71	39	160	-1300	-1.755	122	-15	112	-1300	-0.598
72	5 7	158	-1300	2.384	123	-29	145	-1300	0.153
73	-47	135	-1300	-0.178	124	23	165	-1300	-0.164
74	-25	174	-1300	0.766	125	55	131	-1300	-0.872
75	$\overline{22}$	101	-1300	-0.895	126	15	14	-1300	0.990
76	68	133	-1300	-1.734					
77	-9	30	-1300	0.498					
78	16	-94	-1300	0.707					
79	10	50	-1300	1.573	the m	ean of the	residuals	is 6 mgal a	nd the lar
80	40	-112	-1300	1.519			are of th		
81	58	-40	-1300	-0.578			stimated a		
82	58	53	-1300	1.700			sumarca a	iccuracy ()1 tile 61.
83	-18	-40	-1300	1.284	standa	rd earth.			
84	-46	167	-1300	1.113					
85	85	100	-1100	1.052			REFERE	ICES	
86	-42	-35	-2000	-2.932					
87	-42	-16	-1300	1.248	Gapos	chkin, E.	M., and K.	Lambeck,	1969 Smit
88	26	126	-1300	-1.006	soni	an standar	d earth (II), $Smithson$	$i.\ Astroph$
89	40	131	-1300	0.942	Obs	$erv.\ Spec.$	Rep. 315,	1970.	
90	-19	160	-1200	0.684	Koch,	K. R., Su	rface densi	ty values f	or the ear
91	39	-163	-1300	-0.595	fron	satellite	and gravity	observatio	$\operatorname{ns}, Geoph_{i}$
92	42	-17	-1100	-1.040	J. R	oy. Astron	1. Soc., 21,	1–12, 1970.	
93	43	-135	-1300	-1.365	Weightman, J. A., Gravity, geodesy, and artificia				
94	33	-144	-1300	0.933	s ate	llites: A u	nified anal	ytical appr	oach, in T
95	17	-134	-1300	1.106			ial Satellit		
96	-51	-142	-1300	-0.318			Veis, pp. 4		
97	-34	-108	-1300	-0.378			ty, Athens,		