Machine Learning & Ethics

William Seymour | Human Centred Computing william.seymour@cs.ox.ac.uk

Overview

- Introduction to Machine Learning (13:30-14:10, Access Grid)
- Practical: Building a Classifier (14:20-15:00, Comlab)
- Ethics in Machine Learning (15:10-15:50, Access Grid)
 - Ethical challenges in computer science
 - Academic work on ethics in ML
 - Owner with the owner of the owner of the owner of the owner of the owner ow
- Practical: Operationalising Ethics (16:00:16:30, Comlab)
 - Explaining image classifiers
 - Revisiting pred pol classifiers from earlier

Examples?

Woman Follows GPS, Drives Car Into Canada's Georgian Bay

The 23-year-old Canadian woman took a wrong turn onto a boat ramp to the bay.

Top Stories

1 in 4 people near Congo's Ebola outbreak believe virus isn't real, new study says

Pope Francis travels to Morocco,

NETFLIX

A user of **Kaggle**, ● a platform for machine learning and data science competitions which was recently acquired by Google, has uploaded a facial data set he says was created by exploiting Tinder's API to scrape 40,000 profile photos from Bay Area users of the dating app — 20,000 apiece from profiles of each gender.

200

WHITE men rating...

Facebook Manipulated User News Feeds To Create Emotional

Responses

women rating men

What can we do?

- Codes of conduct / ethical guidance
- Derive working definitions of what we consider "fair"
- Data protection laws (e.g. GDPR)
- FAT/ML: Fairness, Accountability, and Transparency

What can we do?

- Codes of conduct / ethical guidance
- Derive working definitions of what we consider "fair"
- Data protection laws (e.g. GDPR)
- FAT/ML: Fairness, Accountability, and Transparency

The Ethics of Algorithms

- 1. Inconclusive Evidence
- 2. Inscrutable Evidence
- 3. Misguided Evidence
- 4. Unfair Outcomes
- 5. Transformative Effects
- 6. Traceability

The Ethics of Algorithms

- 1. Inconclusive Evidence
- 2. Inscrutable Evidence
- 3. Misguided Evidence
- 4. Unfair Outcomes
- 5. Transformative Effects
- 6. Traceability

"Mby Chauld I Trust Vaug"

V Ur S€ ma

ABSTRACT

Despite widesp main mostly bla predictions is,

ton SA du

l's behaviour, as

s is an important n making. When [6] or terrorism

The Ethics of Algorithms

- 1. Inconclusive Evidence
- 2. Inscrutable Evidence
- 3. Misguided Evidence
- 4. Unfair Outcomes
- 5. Transformative Effects
- 6. Traceability

About that data set we used earlier...

rrested in Broward ere charged with new creators of the

f 🔰 🖵 Donate

N A SPRING AFTERNOON IN 2014, Brisha Borden was running late to pick up her god-sister from school when she spotted an unlocked kid's blue Huffy bicycle and a silver Razor scooter. Borden and a friend grabbed the bike and scooter and tried to ride them

An aside: the personal impact of classification

- Everyone that COMPAS classified was a real person
- Classification scores were used to distribute services within prisons
- In some states, COMPAS scores are used during sentencing
- How many years of life disappeared due to this algorithm?

H1: Maximum Profit

Group	Count
Combined	6172
African American	3175
Caucasian	2103
Hispanic	509
Asian	31
Native American	11
Other	343

Group	Count	Accuracy (%)
Combined	6172	64.4
African American	3175	64.6
Caucasian	2103	64.9
Hispanic	509	58.7
Asian	31	74.2
Native American	11	81.8
Other	343	65.9

Group	Count	Accuracy (%)	
Combined	6172	64.4	
African American	3175	64.6	
Caucasian	2103	64.9	
Hispanic	509	58.7	
Asian	31	74.2	
Native American	11	81.8	
Other	343	65.9	

Group	Count	Accuracy (%)	P(Recid) (%)
Combined	6172	64.4	48.4
African American	3175	64.6	55.8
Caucasian	2103	64.9	41.6
Hispanic	509	58.7	38.7
Asian	31	74.2	32.3
Native American	11	81.8	54.6
Other	343	65.9	37.9

Α	II Defendants	
	Low	High
Survived	2681	1282
Recidivated	1216	2035

FN rate: 37.40

A	II Defendants	
	Low	High
Survived	2681	1282
Recidivated	1216	2035
FP rate: 32.35		

FN rate: 37.40

Black Defendants		White Defendants			
	Low	High		Low	High
Survived	990	805	Survived	1139	349
Recidivated	532	1369	Recidivated	461	505
FP rate: 44.85			FP rate: 23.45		
FN rate: 27.99		FN rate: 47.72			

Who is Wronged?

- True negative: low risk criminal given more lenient sentence
- True positive: high risk criminal given harsher sentence
- False negative: high risk criminal given more lenient sentence
- False positive: low risk criminal given harsher sentence

Fair A Stu Alexandra "Whe P(Y= satis:	ORIGIN	Group	P(Recid) (%)		
	A Stu	Combined	48.4	rate that nave s at	
	"Whe	African American	55.8		
	P(Y=	Caucasian	41.6		
	imba	Hispanic	38.7		
	error (Asian	32.3		
		Native American	54.6		
		Other	37.9		

Can we just ignore {race, age, gender}?

- Just excluding protected class data seems like an obvious option
- Other features can act as **proxies** for protected classes
- Might cause us to unwittingly perpetuate systemic discrimination

Practical #2

- Explaining image predictions using LIME
- Exploring unfairness in your classifiers from earlier
 - Do you think your classifier is fair?
 - O How does it treat people of different groups?
 - Does it adhere to any of the fairness definitions we just covered?