

3D IC Analysis using RedHawk

Introduction

3D die stacking using Through Silicon Vias (TSVs) is an emerging technology with considerable promise in reducing the area, performance and power limitations of transmitting signals between multiple dies. It provides the flexibility of connecting chips performing different functions (memory, processor, power management) and fabricated using different processes inside the same package in a significantly closer form than what is possible in other multi-die packages like MCMs and 3D ICs that do not use TSVs.

But challenges increase in the PDN network design and in ensuring power integrity. Power Noise to the top die comes from the switching within the die as well as from the noise from bottom die. Both the die's PDN are not mutually exclusive. Count, design and placement of TSV's play a major role in ensuring power integrity.

Supported Configurations

RedHawk supports several TSV based IC configurations as shown in the figure.

Analysis Methods

- RedHawk can do stacked IC analysis using 2 ways :
 - **Concurrent Analysis :** If the design database is available for both the dies , then concurrent analysis [both dies together] can be done in a single run.
 - Model Based Approach: It is quite possible that the database may not be available for one or more of the dies, as they may come from different vendors. Hence vendors can create a Electrical Model of the die called CPM(Chip Power Model) and give it to other customers. Customers can use mixed approach of CPM + die or CPM + CPM to perform IR drop analysis.

Data Setup For Concurrent Analysis

- The data setup for concurrent analysis is only slightly different from normal RedHawk data preparation.
 - RedHawk needs the data for multiple dies in separate GSR's (Global System Requirements file)
 - For e.g., for the sample 3D IC configuration shown below, two GSR files: top_die.GSR and bottom_die.GSR need to be created for importing the data in RedHawk

Creating Bottom DIE GSR

 The tech file needs some additional information for the bottom die (Explained in detail in next page)

```
TECH_FILE <path_to_bottom_die_tech_file>
```

The package gets connected to bottom die. Hence the bottom die
 GSR must have the bump locations file under PAD_FILES

```
PAD_FILES {
<path_to_file>
}
```


Tech File Information

- TECH file requirements :
 - RedHawk models TSVs as vias in the TECH_FILE. Hence the bottom die which contains the TSV's need EM, RLC, area, etc related information in its tech file (e.g. shown below).
 - All the other metal layers below the substrate which connect to the top metal layers of the top die also need to be modeled appropriately in tech file

```
via TSV {
em 0.072
Area 0.003600
UpperLayer met1
LowerLayer BMET
Resistance 0.8
Capacitance 50
Inductance 0.130
}
```


Creating top DIE GSR

- A "TSV" file indicates how this "top die" (which references this TSV file) connects to the other die defined in the TSV file.
 - The TSV file is an input given under PAD_FILES in top DIE GSR.
 - It describes the method by which the bottom die gets connected to top die and the location of copper pillars.
 - Example of a TSV file shown in the next slide.

```
PAD_FILES {
top_die.tsv # the TSV file indicates how this die connects
  to other dies
}
```

Creating a TSV File

DIE bottom die

ORIENTATION FS

PLACE 1080 1000

LAYER AP

CONNECT BMET

RESISTANCE 0.01

CAPACITANCE 0.8

INDUCTANCE 11

CP bump1 1001 1332 1021 1352

CP bump2 6545 2295 6565 2315

Name of the die to which this "top die" connects

Refer to *next few slides* how to decide these settings

The copper pillar connects the layer defined by "LAYER" (in top die) to the layer defined by "CONNECT" (in bottom die)

R,L,C of Copper Pillars, default values if not defined individually

Location of copper pillar landing (coordinates refer to bottom die origin, lower left)

Defining Top DIE Orientation in TSV file

In a RedHawk run, the bottom die is the reference for the coordinate system and orientation of the top die. Top die can be treated as an instance of the bottom die and then decide on its orientation with respect to bottom die like any other instance in the DEF of the bottom die.

Next few slides show some basic points to keep in mind while preparing .tsv file for top die with the help of an example, and below are the description for some orientation and connectivity related keywords in the .tsv file:

Section of .tsv file	
DIE <bot_die_ptr></bot_die_ptr>	### die to which the die specifying the .tsv is being attached ### should match "import GSR <bot_gsrfile> -die <bot_die_ptr>" ### in RH command file i.e. the name assigned to the bottom die</bot_die_ptr></bot_gsrfile>
ORIENTATION FS PLACE x y LAYER <layer_top> CONNECT <layer_bot></layer_bot></layer_top>	### refer to next slides ### offset of top die origin w.r.t. bottom die ### layer of the top die connected to bottom die ### layer of the bottom die to which top die connects

Definitions: Bump Placements on Bottom and Top Dies

Assuming equal number of power/ground bumps on both dies (shown), say both dies appear as below in 'N' orientation:

Example Configuration #1 Two Chips Facing Same Direction

Example Configuration #1 Two Chips Facing Same Direction (contd.)

So when the bottom and top die both are flipped chip designs, connected face-to-back, then **ports 1,2,3,4** for bmet layer of bottom die connect to **ports a,b,c,d** of top die AP layer **respectively**

RedHawk sees the design such that the silicon of the bottom die faces the bottom, so the configuration needs to be visualized as follows for the die-to-die connection.

Example Configuration #1 Two Chips Facing Same Direction (contd.)

RedHawk sees the design such that the silicon of the bottom die faces the bottom, so the configuration needs to be visualized as follows for the die-to-die connection.

TSV settings needed:

ORIENTATION N
LAYER AP
CONNECT BMET

Example Configuration #2 Silicon of Two Chips Away From Each Other

Example Configuration #2 Silicon of Two Chips Away From Each Other

When the bottom die is not flipped chip but top die is, then **ports 1,2,3,4** for AP layer of bottom die connect to **ports b,a,d,c** of top die AP layer **respectively** (refer to the views shown earlier)

Package

RedHawk always sees the design such that the silicon of the bottom die (reference die) is facing the bottom So top die needs to be flipped and connection of its AP layer to AP layer of bottom die is to be specified so that correct connections are made

TSV settings needed:

ORIENTATION FN LAYER AP CONNECT AP

RH Command File

#Setting up design:

import GSR top_die.GSR -die topdie
import GSR bottom_die.GSR -die botdie
setup design

#Performing Power Calculation and extraction:

```
perform pwrcalc
perform extraction -power -ground -c
```

#Static/Dynamic Analysis:

```
perform analysis -static -die topdie
perform analysis -vectorless -die topdie
or
perform analysis -static
perform analysis -vectorless

perform analysis -static -die botdie
perform analysis -vectorless -die botdie
```

The "-die" option associates a "name" with each of the die's being imported using the GSR.

These names are not keywords.

These are used to refer to the dies at other places in the file and also in .tsv file

For performing concurrent analysis

For performing just bottom die analysis

GUI Usage for Multiple Dies

Use "die selection" option in GUI to switch between dies

Log message and file structure

The log message viewer shows steps for both dies and adsRpt directory also contains "botdie" and "topdie", each of which contain usual redhawk output files for respective dies:

Model Based Approach

User can create a CPM for one of the dies and hook it to the other die and do a CPM + RH analysis. Example setup shown below.

Setting up the flow contd.

 User can create a CPM for one of the dies(say top die) and hook it to the other die and do a CPM + RH analysis

Create some plocs on the top most layer of the top die where connections

come from the bottom die

	1010 2021 MET8 VDD
vdd_2	100 1902 MET8 VDD
vss_1	100.2 202.34 MET8 VSS
vss_2	190.2 54.34 MET8 VSS

Create CPM for the top die using the perform power model command. E.g. :

perform powermodel -wirebond

Setting up the flow contd.

- Create Redhawk setup for bottom die stand alone
- Create plocs on the topmost as well as bottommost layer of the bottom die

top_vdd_1	1090 1521 MET8 VDD
bot_vdd_1	120 1902 BMET1 VDD
 	• •
top_vss_1	170.2 2802.34 MET8 VSS
bot_vss_1	180.2 894.34 BMET1 VSS
L	

Edit package file for the bottom die to include CPM and copper pillar parasitics


```
.subckt RedHawk_PKG top_vdd1 bot_vdd1 top_vss_1 bot_vss_1
...

include 'top_die_cpm.sp'

XadsPowerModel topdie_CPM_VDD_PORT1 topdie_CPM_VSS_PORT1
adsPowerModel

R_connection_VDD top_vdd1 tmp1 10e-03
L_connection_VDD tmp1 topdie_CPM_VDD_PORT1 120e-12
C_connection_VDD topdie_CPM_VDD_PORT1 0 2e-12
```

Setting up the flow contd.

- Hook up the CPM within the package
 - Note that it is important to take care of the top die placement and orientation with respect to bottom die while hooking up the CPM to the bottom die
- Run RedHawk
 - The GSR and command file remain the same as for bottom die stand alone
 - Include the package in the GSR

Example: Top die CPM hookup

Package gets connected to the bottom die. Package model contains the top die CPM inside it as explained in earlier slides.

Example: Top die CPM included inside the package ______

Package subckt needs to be modified so that it contains the additional ports from CPM and invokes CPM model from within.

package.sp file

subckt REDHAWK_PKG BMB_GROUND_4 BMB_GROUND_3 BMB_GROUND_1 BMB_GROUND_1

BMB_GROUND_11 BMB_GROUND_10 BMB_GROUND_9 BMB_GROUND_16 BMB_GROUND_15

BMB_POWER_6 BMB_POWER_5 BMB_POWER_4 BMB_POWER_5 BMB_POWER_7

GROUND_3 AP_GROUND_4 AP_GROUND_5 AP_GROUND_6 AP_GROUND_7 AP_GROUND_8 A

GROUND_14 AP_GROUND_15 AP_GROUND_16 AP_POWER_1 AP_POWER_2 AP_POWER_3 A

AP_POWER_10 AP_POWER_11 AP_POWER_12

.include 'multiport.sp'

XadsPowerModel BMB_GROUND_14_tmp BMB_GROUND_15_tmp BMB_GROUND_16_tmp BM tmp BMB_GROUND_5_tmp BMB_GROUND_6_tmp BMB_GROUND_7_tmp BMB_GROUND_8_tmp tmp BMB_POWER_10_tmp BMB_POWER_11_tmp BMB_POWER_12_tmp BMB_POWER_7_tmp MB_POWER_6_tmp BMB_POWER_1_tmp BMB_POWER_2_tmp BMB_POWER_3_tmp BMB_GROU

*** DIE connection point RLC ****

R_connection_BMB_GROUND_4 BMB_GROUND_4 tmp1 0 L_connection_BMB_GROUND_4 tmp1 BMB_GROUND_4_tmp 0 C_connection_BMB_GROUND_4 BMB_GROUND_4_tmp 0 0

R_connection_BMB_GROUND_3 BMB_GROUND_3 tmp2 0
L_connection_BMB_GROUND_3 tmp2 BMB_GROUND_3_tmp 0
C_connection_BMB_GROUND_3 BMB_GROUND_3_tmp 0 0

Ports added to subckt to hook CPM vdd/vss

Top die CPM model being invoked inside the package.sp

Any connection point, copper piller RLC's between the dies to be included here

In this E.g. BMB ports are on bottom die hook to the top die

Example: Bottom die CPM hookup

Top die is under redhawk analysis, package model contains the bottom die CPM inside it hooked up to the package as depicted below:

Example: Bottom die CPM included inside the package

Package subckt needs to be modified so that it contains the additional ports from CPM and invokes CPM model from within.

package.sp file .subckt REDHAWK_PKG BMI_GROUND_4 BMB_GROUND_3 BMB_GROUND_2 BMB_GR(|DND_1 ROUND_12 BMB_GROUND_11 BMB_GROUND_10 BMB_GROUND_9 BMB_GROUND_16 BMB_GROU BMB_POWER_1 BMB_POWER_6 BMB_POWER_5 BMB_POWER_4 BMB_POWER_9 BMB_FOWER_8 .include 't1_cpm.spi' MadsPowerModel AP_POWER_1 AP_POWER_2 AP_POWER_3 AP_POWER_4 AP_POWER_5 AF POWER_11 AP_POWER_12 BMB_POWER_1_tmp BMB_POWER_2_tmp BMB_POWER_3_tmp BMB tmp BMB_POWER_8_tmp BMB_POWER_8_tmp BMB_POWER_10_tmp BMB_POWER_11_tmp BM OUND_4 AP_GROUND_5 AP_GROUND_6 AP_GROUND_7 AP_GROUND_8 AP_GROUND_9 AP_GR 14 AP_GROUND_15 BMB_GROUND_1_tmp BMB_GROUND_2_tmp BMB_GROUND_3_tmp BMB_Q 7_tmp_BMB_GROUND_8_tmp_BMB_GROUND_9_tmp_BMB_GROUND_10_tmp_BMB_GROUND_11_ BMB_GROUND_15_tmp BMB_GROUND_16_tmp AP_GROUND_16 adsPowerModel *** DIE connection point RLC **** R_connection_BMB_GROUND_4 BMB_GROUND_4 tmp1 0 _connection_BMB_GROUND_4 tmp1 BMB_GROUND_4_tmp 🚺 C_connection_BMB_GROUND_4 BMB_GROUND_4_tmp 0 0 R_connection_BMB_GROUND_3 BMB_GROUND_3 tmp2 0 L_connection_BMB_GROUND_3 tmp2 BMB_GROUND_3_tmp 0 C_connection_BMB_GROUND_3_BMB_GROUND_3_tmp 0 0

Ports from bottom die CPM connecting to top die

Bottom die CPM model being invoked inside the package.sp

Any connection point, copper piller RLC's between the dies to be included here

In this E.g. BMB ports are on bottom die hook to the top die

