EE210: HW-5

Date: 05.02.2019

Unless stated otherwise, the BJT in the problems given below has the following characteristics $I_S = 2.03*10^{-15}A$; $\beta_F = 100$; $\beta_R = 1$; $V_A = 100$; $r_{bb} = 200\Omega$; $V_T = 26mV$; $C_{je0} = 1pF$; $C_{jc0} = 0.5pF$; $C_{js0} = 3pF$; m = 0.5; $V_{bi} = 0.85$; $\tau_F = 1ns$

Q.1 Design the amplifier shown in Fig.1 such that open circuit voltage gain is 100. What happens to the bias point if V_{BB} increases by 10%?

- **Q.2** Design the amplifier shown in Fig. 2 such that open circuit voltage gain is also 100. What happens to the bias point if V_{CC} increases by 10%? What would be the impact on the amplifier's characteristics if β were to become 200?
- **Q.3** Two alternative bias schemes are shown below. Design these amplifiers also for an open circuit voltage gain of 100 and check their sensitivity to β . Also try to evaluate your design using circuit simulation.

- **Q.4** (a) Design the amplifier shown below in Fig. 5 such that: $A_{V0} = -100$; $R_{in} = 1k\Omega$.
- (b) Determine the voltage gain and maximum voltage swing with 10% HD₂ distortion for $R_L = 2k\Omega$. Assume a saturation voltage of ~0.2V.
- (c) Determine the value of an extra un-bypassed emitter resistance that may be required to reduce open circuit voltage gain by half. Determine the new value of $R_{\rm in}$. Simulate the circuit to determine the swing for harmonic distortion of 10%.

Q.5 Suppose the amplifier shown in Fig. 6 is designed with same bias point (I_{CQ} and V_{CEQ}) calculated earlier in Q.4. What would be the open circuit voltage gain and input resistance for this amplifier? Will the output swing be similar?