Preduciska 24 - SVD, PCA & data analysis

Motivace: maime dataset -> uložený obrázek/zdravotní deeta/ data preference hudby/filmi/--/deta z burzy/...

Problem -> majone hodie dat & nevime jak je analyzavat & 2 nelze je prakticky dlouho sladout

m) potrebujene kompresi dat, blera zadrova důležité rysy analýzu dat m> co z nich lze vyzíst

-> ve sponsté prépadir maine detaset v tabulce:

			$\overline{}$
12	203	12	12
12	203	12	12
203	203	203	203
12	203	12	12
12	203	12	12
	12 203	12 203 203 203 12 203	12 203 12 203 203 203 12 203 203 12 203 12

odpovída zernobilému obrázku -> císla ma skále O až 255 odpovidají odshimm šedi (0 ~ žerná)

=> tady marne «Svetlý kříž na tnovém poli)

12 12 203 12 12	=> tady marne (svetly	efizma thaven poli
vēk váha krevní tlak	akcie A okcie B akcie C	vek bydliste préjem

	vēl	value	L'EVILLE Hale
pacient 1			
pacients			
pacient 3			
i			

- 1	vēl	Va /200	krevní tlak		akcie A	akcie B	akcie C		ver	bydlis te	pri
-	VEZ	10,000		simulaceI				uzivalel 1			\
ent1								uzivatel 2			
eut2				simulaceI			-				+
eut 3				simulaceII				uzivatel 3	5		+-
				,							
ì				1	1		1	1	1		•
	'	1									

	vēk	bydliste	prijem_
uzivatel 1			
uzivatel 2			
uživatel 3			
1			'

=> mame data v matici a cheeme

- · komprimovat vehikost matice
- · nanelyzorat, co meim riká

Hlavni néstroj: singularni rozklad (SVD) pro A E R m>n.

Lingebra 2: HAER " JUER", VER", EER":

• $\bigcup_{1} \bigvee_{j} \int_{1}^{\infty} \int_{1}^{\infty}$

Komprese dat
=) $A = \sigma_1 \cdot \vec{V}_1 \vec{V}_1 + \sigma_2 \cdot \vec{V}_2 \vec{V}_2 + \dots + \sigma_n \cdot \vec{V}_n \vec{V}_n $ (by dyadický 602vg A)
Ecle 5. jsou mezáporne Viv; = 1 unitárni matice
=) idea aproximace $A: A \approx 6, \vec{v_1} \cdot \vec{v_1} + 5, \vec{v_2} \cdot \vec{v_3} =: A_r$
memory cost $A \sim m \cdot n$ $A_r = \bigcup_{i,i=r} \sum_{n=r,n=r} (\bigvee_{i,i=r} v_i) $ memory cost $A_r \sim v \cdot (m+n+1) \cdot - (v \text{ praxi } V_2 := 5_{\nu}V_2 \text{ m}) \cdot (v \cdot (m+n))$
memory ast Ar ~ v. (m+n+1) (v praxi ve = by/k
Véta (Eckhart-Young-Thirsky)
M-, A = Pmxn , C = 10 Nept A = USV is singularing rozzlad.
Pak nejpresnejší aproximace A maticí hodnosti r je práve matice Ar dána prvními r členy dyadického rozvoje A. Můžeme zapsat jako VXE R ^{mxr} VE R ^{nxr} ve R ^{nxr} matice hodnosti r jsen práve matice dosu XY pro-
Muzeme zapsat jako XXE R ^{mxr} YE R ^{nxr} i watice lochosti (json prave matice dvaru X.Y pro
A - XYTTI > A - A - N rejaké XeR, YeR -> tedy právé matice s memory aust r. (mm)
kde
=> Spocterim singularniho rozkladu (= singular value decomposition = SVD)
isme schopni majit nejpresnejsi kompresi dat v
Eukleidovské norme z m.n dat na v. (m+n) dat.
Mython Demo: image compression

Analyza dat data = rádley matice = body ai = R & mam jich m -> i=1,...,n motivace pro n = 3: • kdy \(\text{ budon \(\text{a}_1, ..., \text{a}_m v\text{\text{sechuy le\text{\text{\text{z}}}} t na jedné prímce => smērový vektor 3 té přímky mi o těch datech hodue vypovádá m) slovy: všechna data mají stejny "poměr" mezi hoduotami, teatures" («ratio) m> liší se jen šlálováním nebo-li rozptyl v datech læ rysvétlit pozorovamím (=variance) pouze tohoto skálovámí • ledy = \alpha_1,..., am lezi vokolo prinky" m> všechuy rovnosti výše læ nahradit «≈" a dostaneme m) slovy: data mají podobný "poměr" mezi hoduotami, features" a tedy rozphyl /rozdíly v datech odpovídejí pase škálování tohoto poměrní DEDTOVAMI! Pokud by deta ležela približné v rovine dané vektory 5,52 pak mame $\begin{bmatrix} -\tilde{a}_1 - \\ -\tilde{a}_m - \end{bmatrix} \approx \begin{bmatrix} \tilde{a}_m & \tilde{a}_{n2} \\ \tilde{a}_{m1} & \tilde{a}_{m2} \end{bmatrix} \cdot \begin{bmatrix} -\tilde{s}_1 - \\ -\tilde{s}_2 - \end{bmatrix} \dots rank-2 \dots a opet plati, Ze rozptyl v datech lze "približne vysvekit" pouze skalovamim pomerní hodnot prvků vektorů <math>\tilde{s}_1, \tilde{s}_2, \tilde{t}$: pomerů konkretuích hodnot vektorů $\tilde{s}_1, \tilde{s}_2, \tilde{t}$: pomerů konkretuích hodnot masich merených "features" Pozorovanu 2: V R' funguje stejna idea, jen « nejde vizualizovat" Pozorovámi 3: Aualyzovat data = najít co nejmenší počet š, ..., šr, Eteré mem tablo « vysvetle" ty data. Vektorium si, ..., sir se Fike « principal components (= of the dataset)." Jejich nalezení odpovída na lezení nejlepōlí rank-r aproximaci matice A mo stati sportat SVD! (tr. PCA= component)
avalysis 'Lython demo: Ivis destaset