What is Machine Learning?

Supervised vs. Unsupervised

<Linear Regression with One Variable>

Model and Cost Function

Model Representation

Cost Function

Cost Function - Intuition I

Cost Function - Intuition II

Parameter Learning

Gradient Descent

Gradient Descent Intuition

Gradient Descent for Linear Regression

Linear Algebra Review (간단하게 정리)

week 2 Yoonjung Choi

<Linear Regression with Multiple Variables>

Multivariate Linear Regression

Multiple Features

Gradient Descent for Multiple Variables

Gradient Descent in Practice I - Feature Scaling

Gradient Descent in Practice II - Learning Rate

Features and Polynomial Regression

Computing Parameters Analytically

Normal Equation

Normal Equation Non Invertibility

<<2 회차 10.10.2020>>

week 3

<Logistic Regression>

1)Classification and Representation Yoonjung Cho

Classification

Hypothesis Representation

Decision Boundary

2)Logistic Regression Model Sanggeon Park

Cost Function

Simplified Cost Function and Gradient Descent

Advanced Optimization

3) Multiclass Classification (multi-level classification) Sung Chul Noh

Multiclass Classification: One-vs-all

Quiz: Logistic Regression

<Regularization>

4)Solving the Problem of Overfitting liliu Kim

Problem of Overfitting

Cost Function

Regularized Linear Regression

Regularized Logistic Regression

Assignment : logistic regression

Week4

<supervised learning : Neural Networks: Representation>

Motivations

Non-linear Hypotheses

Neurons and the Brain

5)Neural Networks Dae Bum Lee

Model Representation I

Model Representation II

6)Applications Jaeho Shin

Examples and Intuitions, I

Examples and Intuitions, II

Multiclass Classification

Assignment : multi-class classification and N

<<3 회차 24.10.2020>>

week 5

<Neural Networks: Learning>

Cost Function and Backpropagation Hyemi Kim

Cost Function

Backpropagation Algorithm

Backpropagation Intuition

Backpropagation in Practice Yoonjung Choi

Implementation Note: Unrolling Parameters

Gradient Checking

Random Initialization

Putting It Together

Application of Neural Networks Sanggeon Park

Autonomous Driving

Assignment: NN Learning (learning only)

week 6

<Advice for Applying Machine Learning> Minsung Kim

Evaluating a Learning Algorithm

Deciding What to Try Next

Evaluating a Hypothesis

Model Selection and Train/Validation/Test Sets

Bias vs. Variance

Diagnosing Bias vs. Variance

Regularization and Bias/Variance

Learning Curves

Deciding What to Do Next Revisited

Assignment: regularized linear regression and bias /variance

<Machine Learning System Design> Daebum Kim

Building a Spam Classifier

Prioritizing What to Work On

Error Analysis

Handling Skewed Data

Error Metrics for Skewed Classes Trading Off Precision and Recall

Using Large Data Sets

Data for Machine Learning

<<4 회차 7.11.2020>>

week 7

<Support Vector Machine SVM > lilju Kim

Large Margin Classification

Optimization Objective

Large Margin Intuition

Mathematics Behind Large Margin Classification

Kerne

Kernels I

Kernels II

SVMs in Practice

Using An SVM

Assignment : SVM

< Unsupervised Learning>>

week 8

<Unsupervised Learning>

Clustering Wooju Jeong

Unsupervised Learning: Introduction

K-Means Algorithm

Optimization Objective

Random Initialization

Choosing the Number of Clusters

<Dimensionality Reduction> Jaeho Shin

Motivation

Motivation I: Data Compression

Motivation II: Visualization

Principal Component Analysis(PCA)

Principal Component Analysis Problem Formulation

Principal Component Analysis Algorithm

Applying PCA(Principal Component Analysis)

Reconstruction from Compressed Representation

Choosing the Number of Principal Components

Advice for Applying PCA

Assignment: K-Means Clustering and PCA(Principal Component Analysis

<<5 회차 21 11 2020>>

week 9

<Anomaly Detection> Junwha Huh

Density Estimation

Problem Motivation Gaussian Distribution Algorithm

Building an Anomaly Detection System

Developing and Evaluating an Anomaly Detection System

Anomaly Detection vs. Supervised Learning

Choosing What Features to Use

Multivariate Gaussian Distribution (Optional)

Multivariate Gaussian Distribution

Anomaly Detection using the Multivariate Gaussian Distribution

< Recommender Systems > Yoonjung Choi

Predicting Movie Ratings

Problem Formulation
Content Based Recommendations

llaborativa Filtorina

Collaborative Filtering

Collaborative Filtering

Collaborative Filtering Algorithm

Low Rank Matrix Factorization

Vectorization: Low Rank Matrix Factorization

Implementational Detail: Mean Normalization

Assignment : anomaly detection and recommender systems

week 10

< Large Scale Machine Learning > Hyemi Kim

Gradient Descent with Large Datasets

Learning with Large Datasets

Stochastic Gradient Descent

Mini-Batch Gradient Descent Stochastic Gradient Descent Convergence

Advanced Topics

Online Learning

Map Reduce and Data Parallelism

week 11

<Application Example: Photo OCR> Sanggeon Park

Photo OCR

Problem Description and Pipeline

Sliding Windows

Siluling Williaows

Getting Lots of Data and Artificial Data Ceiling Analysis: What Part of the Pipeline to Work on Next