MA446 Grupos e Representações - Exercícios

Adair Neto

16 de abril de 2023

Lista 1

Exercício 1

Questão: Seja G um grupo e $a, b \in G$. Demonstre que

- 1. Os elementos $b^{-1}ab$ e a têm a mesma ordem.
- 2. Os elementos ab e ba têm a mesma ordem.

Resolução:

1. • Sabemos que

$$|a| = \min\{z \in \mathbb{Z} : a^z = 1_G\}$$

- Seja m = |a| e $n = |b^{-1}ab|$.
- Note que

$$(b^{-1}ab)^m = b^{-1}a^mb = b^{-1}1_Gb = b^{-1}b = 1_G$$

- Ou seja, $m \ge n$.
- · Por outro lado,

$$1_{G} = (b^{-1}ab)^{n} = b^{-1}a^{n}b \iff b^{-1}a^{n} = b^{-1} \iff a^{n} = bb^{-1} = 1_{G}$$

- Assim, $n \ge m$ e, portanto, n = m.
- 2. Pelo item anterior, $ba \in b^{-1}(ba)b = (b^{-1}b)ab = ab$ têm a mesma ordem.

Exercício 3

Questão: Seja G um grupo.

- 1. Demonstre que se para todo $g \in G$ temos $g^{-1} = g$, então G é abeliano.
- 2. Demonstre que se para todos $a, b \in G$ temos $(ab)^2 = a^2b^2$, então G é abeliano.

Resolução:

Lembre que

$$(ab)^{-1} = b^{-1}a^{-1}$$

• Como $g^{-1} = g$, para todo $g \in G$, segue que

$$ab = (ab)^{-1} = b^{-1}a^{-1} = ba$$

2. Basta notar que

$$abab = (ab)^2 = a^2b^2 = aabb \iff bab = abb \iff ba = ab$$

Exercício 5

Questão: Sejam p primo e

$$G = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z}_p, \ ad - bc \neq 0 \text{ em } \mathbb{Z}_p \right\}$$

Demonstre que G é grupo com respeito à multiplicação de matrizes e calcule a ordem de G.

Resolução:

- 1. Verificar que é grupo.
 - Elemento neutro: matriz identidade
 - Inversa:

$$\frac{1}{ad-bc}\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

- Associatividade: segue da associatividade das matrizes e de \mathbb{Z}_{D} .
- 2. Ordem |G|.
 - Para montar uma base de G, temos $(p^2 1)$ opções para a primeira coluna e $(p^2 p)$ para a segunda, pois queremos eliminar possíveis combinações lineares da primeira.
 - Logo,

$$|G| = (p^2 - 1)(p^2 - p) = (p^2 - 1)(p - 1)p$$

Exercício 6

Questão: Seja G um grupo.

- 1. Sejam $H \le G$ e $N \triangleleft G$. Mostre que $H \cap N \triangleleft H$.
- 2. Sejam N, M ambos subgrupos normais de G tais que $M \cap N = 1$. Mostre que, para $m \in M$ e $n \in N$, temos mn = nm.

Resolução:

1. • Queremos mostrar que, para todo $h \in H$ temos que

$$h(H \cap N)h^{-1} \subseteq H \cap N$$

• Por um lado, como N \triangleleft G e $h \in G$,

$$h(H \cap N)h^{-1} \subseteq hNh^{-1} \subseteq N$$

• Por outro,

$$h(H \cap N)h^{-1} \subseteq hHh^{-1} = H$$

- Logo, $h(H \cap N)h^{-1} \subseteq H \cap N$.
- 2. Pela normalidade de N e M, temos

$$N \triangleleft G \implies mN = Nm, \quad \forall m \in M \subseteq G$$

e

$$M \triangleleft G \implies nM = Mn, \quad \forall n \in N \subseteq G$$

· Assim, temos que

$$m^{-1}(nm)n^{-1} \in m^{-1}NmN = Nm^{-1}mN = N$$

e

$$m^{-1}(nm)n^{-1} \in MnMn^{-1} = Mnn^{-1}M = M$$

- Isto é, $m^{-1}(nm)n^{-1} \in M \cap N = 1$.
- Logo,

$$m^{-1}(nm)n^{-1}=1\iff m^{-1}nm=n\iff nm=mn$$

Exercício 7

Questão: Seja \mathbb{Z} o grupo cíclico infinito com operação + e $G = \mathbb{Z}/n\mathbb{Z} = \mathbb{Z}_n$.

- 1. Ache o número de geradores de G como função de *n*.
- 2. Ache todos os elementos de ordem 36 em \mathbb{Z}_{36} .
- 3. Ache a ordem do elemento $20 + 36\mathbb{Z}$ em \mathbb{Z}_{36} .
- 4. Ache todos os elementos em \mathbb{Z}_{36} de ordem 9.

Resolução:

1. Geradores de G:

• Seja $g \in G$. Sabemos que a ordem de g^z é n sse. $z \in n$ são coprimos, pois

$$|g^z| = \frac{n}{\operatorname{mdc}(n, z)}$$

- Assim, temos $\varphi(n)$ geradores de G.
- 2. Elementos de ordem 36 em \mathbb{Z}_{36} :
 - São todos os elementos coprimos com 36, i.e.,

- Note que são exatamente $\varphi(36) = 12$ elementos.
- 3. Ordem do elemento $20 + 36\mathbb{Z}$:
 - Podemos calcular na mão, fazendo 20i, $1 \le i \le 35$, e tirando os restos mod 36 até encontrar o primeiro elemento congruente a zero.
 - Ou, simplesmente,

$$\frac{36}{\text{mdc}(36,20)} = \frac{36}{4} = 9$$

- Portanto, a ordem desejada é 9.
- 4. Elementos de ordem 9.
 - · Como queremos

$$9 = \frac{36}{\text{mdc}(36, k)} \implies \text{mdc}(36, k) = 4$$

• Temos que os elementos de ordem 9 são os números k = 4t com t e 9 coprimos.

Exercício 8

Questão: Seja

$$G = \left\{ \begin{pmatrix} a & 0 \\ b & d \end{pmatrix} : a, b, d \in \mathbb{C}, \ ad \neq 0 \right\}$$

grupo com respeito à multiplicação de matriz e

$$\mathbf{N} = \left\{ \begin{pmatrix} 1 & 0 \\ b & 1 \end{pmatrix} : b \in \mathbb{C} \right\}$$

Mostre que N ⊲ G e G/N é abeliano.

Resolução:

1. Para mostrar que $gNg^{-1} \subseteq N$, basta ver que

$$\begin{pmatrix} a & 0 \\ b & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ b' & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{a} & 0 \\ \frac{-b}{ad} & \frac{1}{d} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \frac{b'd}{a} & 1 \end{pmatrix} \in \mathbb{N}$$

- 2. Para mostrar que G/N é abeliano, usaremos o teorema do isomorfismo.
 - Considere

$$\varphi: \mathbf{G} \longrightarrow \mathbb{R}^* \times \mathbb{R}^*$$

$$\begin{pmatrix} a & 0 \\ b & d \end{pmatrix} \longmapsto (a, d)$$

- Verifique que φ é um homomorfismo.
- Claramente φ é epimorfismo.
- · Calcule o núcleo:

$$\ker(\varphi) = \{g \in G : \varphi(g) = (1,1)\} = N$$

pois

$$\begin{pmatrix} a & 0 \\ b & d \end{pmatrix} \in \ker(\varphi) \iff a = 1 = d$$

Pelo teorema do isomorfismo, temos que

$$G/N \simeq \mathbb{R}^* \times \mathbb{R}^*$$

• Como $\mathbb{R}^* \times \mathbb{R}^*$ é abeliano, temos que G/N é abeliano.

Exercício 11a

Questão: Sejam G um grupo e $H \le G$. Demonstre que $\bigcap_{g \in G} gHg^{-1}$ é um subgrupo normal de G.

Resolução:

- Seja $t \in G$. Queremos verificar que $tMt^{-1} \subseteq M$, em que $M = \bigcap_{g \in G} gHg^{-1}$.
- · Para isso, note que

$$tMt^{-1} = t \left(\bigcap_{g \in G} gHg^{-1}\right)t^{-1} = \bigcap_{g \in G} tgHg^{-1}t^{-1}$$

- Chamando s = tg temos que $s \in G$ e $g^{-1}t^{-1} = s^{-1} \in G$.
- · Portanto,

$$\bigcap_{g \in G} tgHg^{-1}t^{-1} = \bigcap_{s \in G} sHs^{-1} = M$$

• Logo, M é subgrupo normal de G.

Exercício 11b

Questão: Sejam G o grupo \mathbb{C}^* com operação multiplicação e H o grupo

$$H = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{R}, \ a^2 + b^2 \neq 0 \right\}$$

com a operação multiplicação de matrizes. Demonstre que existe isomorfismo de grupos $\varphi: G \longrightarrow H$.

Resolução:

• Construa φ da seguinte forma

$$\varphi: \mathbb{C}^* \longrightarrow \mathbf{H}$$

$$z = a + ib \longmapsto \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$

- Verifique que φ é homomorfismo.
- φ é injetora, pois

$$\ker(\varphi) = \left\{ z \in \mathbb{C}^* : \varphi(z) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

e

$$\varphi(z) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \iff z = 1 \implies \ker(\varphi) = 1$$

• Por fim, φ é claramente sobrejetora, pois toda matriz em H com $a^2 + b^2 \neq 0$ é imagem de um elemento $z = a + ib \in \mathbb{C}^*$.

Exercício 12

Questão: Seja G um grupo. Mostre que

- 1. Cada subgrupo característico de G é subgrupo normal de G.
- 2. Se H é subgrupo normal de G e N é subgrupo característico de H, então N é subgrupo normal de G.

Resolução:

- 1. Seja H um subgrupo característico de G.
 - Vimos que $\varphi_g : G \longrightarrow G$, dada por $\varphi_g(k) = gkg^{-1}$ é automorfismo.

$$\varphi_g(H) = gHg^{-1} \subseteq H \implies H \triangleleft G$$

2. • Como $H \triangleleft G$,

$$\varphi_g(H) = gHg^{-1} = H$$

- Defina $\theta = \varphi_g |_{\mathcal{H}}$, i.e., a restrição de φ_g a H.
- Note que θ é:
 - Homomorfismo, pois é restrição de homomorfismo a um subgrupo.

- Sobrejetora por definição.
- Injetora, pois φ_g é injetora.
- Assim, θ é um automorfismo.

$$\theta(N) = gNg^{-1} \subseteq N \implies N \triangleleft G$$

Exercício 13

Questão: Seja *p* um número natural primo.

- 1. Demonstre que S_p tem exatamente (p-1)! elementos de ordem p.
- 2. Quantos elementos x tem em S_{101} tais que $x^{101} = 1$?
- 3. Quantos elementos x tem em S_0 tais que $x^9 = 1$?

Resolução:

- 1. Elementos de ordem *p*:
 - Decomponha g, um elemento de ordem p, em produto de ciclos independentes:

$$g = g_1 \cdots g_k$$

- Como $p = |g| = mmc(|g_1|, ..., |g_k|)$, temos que $|g_1| = ... = |g_k| = p$.
- Mas $|\sup(g_1)| \ge p$ e $g_i \in S_p$, temos que k = 1.
- · Ou seja,

$$g = g_1 = (i_1, i_2, \dots, i_p) = (1, i_2, \dots, i_p)$$

- Como i_2, \dots, i_p é permutação arbitrária de 2, 3, . . . , p, temos (p-1)! possibilidades.
- 2. Elementos em S_{101} tais que $x^{101} = 1$:
 - Note que

$$-p = 101$$
 é primo
 $-x^{101} = 1 \iff |x| \mid 101.$

- Assim, |x| = 101 ou |x| = 1.
- Caso |x| = 101, temos, pelo item anterior, (101-1)! = 100! possibilidades.
- Caso |x| = 1, temos $x = 1_{S_{101}}$.
- Portanto, temos 100! + 1 possibilidades.
- 3. Elementos em S₀ tais que $x^9 = 1$:
 - Como 9 não é primo, refazemos a decomposição em ciclos independentes:

$$x = g_1 \cdots g_k$$

• Temos que

$$|x| = \text{mmc}(|g_1|, ..., |g_k|)$$
 e $|x| | 9$

- Assim, temos três possibilidades.
- 1. Se |x| = 1, então $x = 1_{S_0}$.
- 2. Se |x| = 3, como 3 é primo, temos que $|g_1|, ..., |g_k| = 3$.
 - Se k = 1, pelo primeiro item temos (3-1)! = 2 possibilidades.
 - Se k = 2, i.e., $x = g_1g_2 = g_2g_1$, temos o seguinte número de possibilidades:

$$\frac{2\binom{9}{3}\binom{6}{3}2}{2} = 2\binom{9}{3}\binom{6}{3} = 3360$$

• Se k = 3, temos o seguinte número de possibilidades:

$$\frac{2\binom{9}{3}2\binom{6}{3}2\binom{3}{3}}{3!} = \frac{2\binom{9}{3}2\binom{6}{3}}{3} = 2240$$

- 3. Se |x| = 9, temos k = 1 e $|g_1| = 9$. Assim, pelo primeiro item, temos 8! possibilidades.
- Somando todas as possibilidades, temos o seguinte número de possibilidades:

$$1 + 2 + 3360 + 2240 + 8! = 45923$$

- Solução alternativa para elementos de ordem p:
 - Note que os elementos de ordem *p* são os *p*-ciclos.
 - Como cada *p*-ciclo é uma lista da forma $(a_1 \ a_2 \ \cdots \ a_p)$, 1 ≤ a_i ≤ p, temos exatamente p! listas.
 - Porém, um mesmo ciclo pode ser representado em p listas diferentes.
 - Assim, temos exatamente $\frac{p!}{p} = (p-1)!$ elementos de ordem p.

Exercício 15a

Questão: 1. O ciclo $(1 \ 3 \ 2 \ 6)(1 \ 4 \ 2)$ é elemento de A_n ?

2. Escreva os elementos em produto de ciclos independentes e encontre as ordens de todos os elementos.

Resolução:

1. Decomponha $g = \begin{pmatrix} 1 & 3 & 2 & 6 \end{pmatrix} \begin{pmatrix} 1 & 4 & 2 \end{pmatrix}$ em um produto de transposições.

$$(1 \ 3 \ 2 \ 6) = (1 \ 6)(1 \ 2)(1 \ 3)$$

 $(1 \ 4 \ 2) = (1 \ 2)(1 \ 4)$

· Assim, temos

$$g = \begin{pmatrix} 1 & 6 \end{pmatrix} \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 4 \end{pmatrix}$$

- 2. Escrever em ciclos independentes.

$$g = \begin{pmatrix} 1 & 4 & 6 \end{pmatrix} \begin{pmatrix} 2 & 3 \end{pmatrix}$$

3. Ordem:

$$|g| = mmc(|(1 \ 4 \ 6)|, |(2 \ 3)|) = mmc(3, 2) = 6$$

Outros

Pequeno teorema de Fermat

Teorema. Se p é primo e $z \in \mathbb{Z}/p\mathbb{Z}$, então $z^{p-1} \equiv 1 \mod p$.

Demonstração.

• Aplique o teorema de Lagrange a $G = \mathbb{Z}_p^{\times}$:

$$|z| \mid |\mathsf{G}| = p - 1$$

- Reescreva $p-1=|z|\cdot m$, para algum inteiro m.
- Use a definição de ordem:

$$z^{|z|m} = (z^{|z|})^m = 1_G^m = 1_G$$
 e $z^{|z|m} = z^{p-1}$

· Logo,

$$z^{p-1} \equiv 1 \mod p$$

Questão 1 (P1 2020)

Enunciado.

- 1. Dê definição de grupo e ordem de elemento de grupo.
- 2. Seja $\varphi : G \longrightarrow H$ um homomorfismo de grupos. Mostre que $|\varphi(g)| | |g|$. Se |G| = 100 e |H| = 81, mostre que $Im(\varphi) = 1_H$.

Solução.

- Um grupo é um conjunto munido de uma operação satisfazendo associatividade, existência de elemento neutro e existência de inversa.
 - A ordem de um elemento *g* de grupo G é a ordem do subgrupo gerado pelo elemento, em que esse subgrupo é o menor subgrupo de G que contém o elemento *g*. A ordem de um grupo G é a cardinalidade de G enquanto conjunto.
- 2. 1. Vamos mostrar que $|\varphi(g)| | |g|$.

- Seja $|g| = n e k = |\varphi(g)|$.
- Então $g^n = 1 \implies \varphi(g^n) = 1 = \varphi(g)^n$.
- Pelo o algoritmo de Euclides,

$$n = kq + r$$
, $0 \le r < k$

• Denotando $\varphi(g) = x$,

$$1 = x^n = x^{kq+r} = (x^k)^q x^r = 1^q x^r \implies x^r = 1$$

- Como isso contradiz a minimalidade de k, temos que r = 0.
- Logo, $n = kq e k \mid n$.
- 2. Mostrar que $Im(\varphi) = 1_H$.
 - Note que

$$|g| |G| = 100$$
 e $|\varphi(g)| |H| = 81$

• Como $|\varphi(g)|$ |g|, temos que

$$|\varphi(g)| | 81$$
 e $|\varphi(g)| | 100$

- Mas mdc(100, 81) = 1.
- Portanto, $|\varphi(g)| = 1 \implies \varphi(g) = 1_H$ para todo $g \in G$.
- Logo, $Im(\varphi) = 1_H$.

Questão 2 (P1 2020)

Enunciado. Seja G um grupo com dois subgrupos normais N e M tais que G = NM e $N \cap M = 1$.

- 1. Mostre que nm = mn para todos $n \in \mathbb{N}$ e $m \in \mathbb{M}$.
- 2. Mostre que $\varphi: \mathbb{N} \times \mathbb{M} \longrightarrow \mathbb{G}$ dado por $\varphi((n,m)) = nm$ é um isomorfismo de grupos.

Solução.

- 1. Ver exercício 6b.
- 2. 1. φ é homomorfismo.
 - · Por um lado,

$$\varphi((n_1, m_1)(n_2, m_2)) = \varphi((n_1 n_2, m_1 m_2)) = n_1 n_2 m_1 m_2$$

· Por outro,

$$\varphi((n_1, m_1))\varphi((n_2, m_2)) = n_1 m_1 n_2 m_2 \stackrel{mn = nm}{=} n_1 n_2 m_1 m_2$$

- 2. φ é monomorfismo.
 - Note que

$$(n,m) \in \ker(\varphi) \iff \varphi((n,m)) = nm = 1_G$$

• Como $N \cap M = 1$,

$$nm = 1_g \iff n = 1 = m$$

- 3. φ é epimorfismo.
 - Seja $nm \in G = NM$.
 - Tomando $(n, m) \in \mathbb{N} \times \mathbb{M}$, temos que $\varphi(n, m) = nm$.
 - Logo, φ é sobrejetora.

Questão 3 (P1 2020)

Enunciado.

- 1. Dê as definições dos grupos S_n e A_n . Calcule $|S_n|$ e $|A_n|$. Quais dos elementos (1 2 3)(4 5 6) e (1 2)(3 4)(1 2 3) são elementos de A_6 ?
- 2. Demonstre que $\sigma(i_1 \quad i_2 \quad \dots \quad i_k)\sigma^{-1} = (\sigma(i_1) \quad \sigma(i_2) \quad \dots \quad \sigma(i_k))$. Ache $\sigma \in S_{10}$ tal que $\sigma\rho\sigma^{-1} = \rho'$ para

$$\rho = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 2 & 4 & 6 & 5 \end{pmatrix}, \quad \rho' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 3 & 5 & 6 & 4 \end{pmatrix}$$

Solução.

- 1. 1. Definições de S_n e A_n :
 - Seja X = {1,2,...,n}. Então S_n = {f : X → X : f é bijetora} é chamado grupo simétrico, em que a operação é a composição de funções.
 - $A_n = \{ \sigma \in S_n : \sigma \text{ é par } \}$, i.e., $\sigma \text{ é produto de um número par de transposições.}$
 - 2. Ordens:
 - $|S_n| = n!$ pois existem n! possibilidades de permutar os elementos 1, 2, ..., n.
 - $|A_n| = \frac{n!}{2}$ pois $[S_n : A_n] = 2$.
 - − De fato, supondo $n \ge 2$, tome $\tau \in S_n$ uma permutação ímpar.
 - Assim, $S_n = A_n \cup \tau A_n$.
 - Vamos verificar que τA_n é o conjunto de todas as permutações ímpares.
 - Por um lado, todos os elementos de τA_n são ímpares, pois são o produto de uma permutação ímpar com uma permutação par em A_n.
 - Por outro, se σ é permutação ímpar, $\tau^{-1}\sigma$ é par.
 - Ou seja, toda permutação ímpar está em τA_n :

$$\tau^{-1}\sigma \in A_n \iff \sigma \in \tau A_n$$

- 3. Elementos de A₆:
 - Como $(1 \ 2 \ 3)(4 \ 5 \ 6) = (1 \ 3)(1 \ 2)(4 \ 6)(4 \ 5)$ é produto de um número par de transposições, temos que esse elemento pertence a A_6 .
 - Como (1 2)(3 4)(1 2 3) = (1 2)(3 4)(1 3)(1 2) é produto de um número par de transposições, esse elemento pertence a A_6 .
- 2. 1. Mostrar que $\sigma(i_1 \ i_2 \ \dots \ i_k)\sigma^{-1} = (\sigma(i_1) \ \sigma(i_2) \ \dots \ \sigma(i_k))$.
 - Calculado em $\sigma(i_i)$,

$$\sigma(i_1 \quad i_2 \quad \dots \quad i_k)\sigma^{-1}(\sigma(i_i)) = \sigma(i_1 \quad i_2 \quad \dots \quad i_k)(i_i) = \sigma(i_{i+1})$$

- Ou seja, $\sigma(i_j) \longrightarrow \sigma(i_{j+1})$, o que mostra a igualdade desejada.
- 2. Achar $\sigma \in S_{10}$ tal que $\sigma \rho \sigma^{-1} = \rho'$.
 - Note que $\sigma(1 \ 3 \ 2)(5 \ 6)\sigma^{-1} = (1 \ 2)(4 \ 5 \ 6)$.
 - Assim, pelo tipo de decomposição, temos que

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 6 & 5 & 3 & 1 & 2 \end{pmatrix}$$

Questão 4 (P1 2020)

Enunciado.

- 1. Enuncie a primeira parte do teorema de isomorfismos.
- 2. Seja $G = GL_5(\mathbb{R}) = \{a \in M_5(\mathbb{R}) \mid det(A) \neq 0\}$ e $H = SL_5(\mathbb{R}) = \{A \in GL_5(\mathbb{R}) \mid det(A) = 1\}$. Demonstre que H é um subgrupo normal de G e G/H é um grupo abeliano.

Solução.

1. Seja $\varphi: G \longrightarrow H$ um homomorfismo de grupos. Então existe um único isomorfismo

$$\psi : G/\ker(\varphi) \longrightarrow \operatorname{Im}(\varphi)$$

tal que $\varphi = \psi \circ \pi$, em que $\pi : G \longrightarrow G/\ker(\varphi)$ é a projeção canônica. Isto é, $\psi(\ker(\varphi)g) = \varphi(g)$.

- 2. 1. Mostrar que H \triangleleft G, i.e., $gHg^{-1} \subseteq H$, para todo $g \in G$.
 - Seja $g \in G$ e $h \in H$. Então

$$\det(ghg^{-1}) = \det(g) \det(h) \det(g^{-1}) = \det(h) = 1$$

- Isto é, $ghg^{-1} \in H$ e, portanto, $H \triangleleft G$.
- 2. Mostrar que G/H é abeliano, i.e., $g_1g_2H = g_1Hg_2H = g_2Hg_1H = g_2g_1H$.
 - Note que

$$g_1g_2(g_2g_1)^{-1} = g_1g_2g_1^{-1}g_2^{-1}$$

• E

$$\det(g_1g_2(g_2g_1)^{-1}) = \det(g_1)\det(g_2)\frac{1}{\det(g_1)}\frac{1}{\det(g_2)} = 1$$

- Assim, temos que $g_1g_2(g_2g_1)^{-1} \in H$.
- · Ou seja,

$$g_2g_2H = g_2g_1H$$

Logo, G/H é abeliano.

Questão 5 (P1 2020)

Enunciado. Seja $G = \{g \in \mathbb{C} \mid g^{36} = 1\}$ um grupo com respeito à operação produto de números complexos. Mostre que G é um grupo cíclico de ordem 36. Escreva todos os geradores de G. Escreva um elemento de G de ordem 9.

Solução.

- 1. Mostre que G é um grupo cíclico de ordem 36.
 - Reescreva

$$G = \{g \in \mathbb{C} : g^{1/36}\} = \{g_k = e^{i(2\pi k/36)} : k \in \mathbb{Z}\}$$

- Note que para $k \ge 36$ temos que os elementos começam a se repetir. Portanto, |G| = 36.
- Como $\langle g_1 \rangle \subseteq G$, basta verificar que $G \subseteq \langle g_1 \rangle$.
- De fato, cada gk pode ser escrito como

$$e^{i(2\pi k/36)} = \underbrace{e^{i(2\pi/36)}e^{i(2\pi/36)}\cdots e^{i(2\pi/36)}}_{k \text{ vezes}} = (e^{i(2\pi/36)})^k$$

- Ou seja, todo elemento $g_k \in G$ pode ser escrito como potência de g_1 , i.e., $G \subseteq \langle g_1 \rangle$.
- Logo, $G = \langle g_1 \rangle$, de onde segue que G é grupo cíclico de ordem 36.
- 2. Escreva todos os geradores de G. Note que $g_1^{36} = e^{i2\pi} = 1$.

 - Como k < 36 implica que k/36 < 1, segue que $2\pi k/36$ não é múltiplo de 2π . Assim, $e^{i2\pi k/36} \neq 1$ e, portanto, k = 1 é o menor inteiro positivo tal que $g_1^{36} = 1$. Ou seja, $|g_1| = 36 = |G|$.
 - Como G = $\langle g_1 \rangle$, todo $a \in G$ pode ser escrito como g_1^k .
 - E como

$$|g_1^k| = \frac{|g_1|}{\operatorname{mdc}(k, |g_1|)} = \frac{36}{\operatorname{mdc}(k, 36)}$$

- Temos que g_1^k gera G sse. $|g_1^k| = 36$, i.e., mdc(k, 36) = 1.
- Assim, queremos os inteiros positivos k coprimos com 36, que são

$$k \in \{1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35\}$$

- Ou seja, os geradores de G são os elementos g_k com k descrito acima.
- 3. Escreva um elemento de G de ordem 9.
 - Queremos $b = g_1^k$ tal que |b| = 9.

$$9 = \frac{36}{\text{mdc}(k, 36)} \implies \text{mdc}(k, 36) = 4$$

• Tomando k=4, temos que $b=e^{i2\pi 4/36}$ é elemento de ordem 9 em G.

Questão 1b (P1 2021)

Enunciado. Seja $G = S_3$.

- 1. Mostre que o subgrupo N gerado por $a = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ é um subgrupo normal de G.
- 2. Seja B o subgrupo de $G = S_3$ gerado por $\begin{pmatrix} 1 & 2 \end{pmatrix}$. Mostre que B não é um subgrupo normal em G.

Solução.

1. Aplique o Teorema de Lagrange,

$$[G:N] = \frac{|G|}{|N|} = \frac{6}{3} = 2 \implies N \triangleleft G$$

2. Basta considerar

$$(1 \ 3)(1 \ 2)(1 \ 3) = (2 \ 3) \notin B \Longrightarrow B \not \triangleleft G$$

Questão 3b (P1 2021)

Enunciado. Seja $G = \mathbb{Z}_{12} \times \mathbb{Z}_{36}$ o produto direto (externo).

- 1. Existe elemento de G de ordem 432?
- 2. É verdade que $\mathbb{Z}_{12} \times \mathbb{Z}_{36} \simeq \mathbb{Z}_{432}$?

Solução.

- 1. Considere $(a, b) \in \mathbb{Z}_{12} \times \mathbb{Z}_{36}$.
 - Em notação aditiva,

$$36(a,b) = (0_{\mathbb{Z}_{12}}, 0_{\mathbb{Z}_{36}}) \implies |(a,b)| | 36$$

- Assim, não existe $(a, b) \in G$ de ordem 432.
- 2. Note que $1+432\mathbb{Z}$ tem ordem 432. Logo, \mathbb{Z}_{432} e $\mathbb{Z}_{12}\times\mathbb{Z}_{36}$ não são isomorfos.

Questão 4 (P1 2021)

Enunciado.

- 1. Defina o subgrupo comutador G' e mostre que G' é normal em G e G/G' é um grupo abeliano.
- 2. Ache a ordem de G' para $G = S_3$.

Solução.

1. O subgrupo comutador G' é o subgrupo de G gerado por todos os comutadores, i.e.,

$$G' = \{ [a, b] = a^{-1}b^{-1}ab \mid a, b \in G \}$$

- 2. Vamos mostrar que G' é normal.
 - Tome $g \in G$ e $[a,b] \in G'$.
 - Então

$$g^{-1}[a,b]g = g^{-1}a^{-1}b^{-1}abg = g^{-1}a^{-1}gg^{-1}b^{-1}gg^{-1}agg^{-1}bg = [g^{-1}ag,g^{-1}bg]$$

- Logo, $G' \triangleleft G$.
- 3. Mostremos que G/G' é abeliano.
 - Considere as classes laterais g_1G' e g_2G' em G/G'.
 - Sabemos que

$$g_1G'g_2G' = g_1g_2G'$$
 e $g_2G'g_1G' = g_2g_1G'$

· Observe que

$$g_1g_2(g_2g_1)^{-1} = g_1g_2g_1^{-1}g_2^{-1} = [g_1^{-1}, g_2^{-1}]$$

- Ou seja, $g_1g_2(g_2g_1)^{-1} \in G'$.
- Logo,

$$g_1g_2G' = g_2g_1G'$$

- 2. Lembre que $|S_n/A_n| = 2$ implica que S_n/A_n é cíclico, ou seja, é abeliano.
 - Assim, S_3/A_3 é abeliano e temos que $G' \subseteq A_3$.
 - Como $|A_3| = 3$ é primo, temos, pelo teorema de Lagrange, que os únicos subgrupos de A_3 são 1 e A_3 .
 - Mas como S_3 não é abeliano, temos que $G' \neq 1$.
 - Logo, $G' = A_3$ e, portanto, |G'| = 3.