Assignment -2

Python Programming

Assignment Date	27 September 2022					
Student Name	PRIYADHARSHINI D					
Student Roll Number	820419106041					
Maximum Marks	2 Marks					

1.Download Data set

2.Load the dataset

3. Perform Below Visualizations.

Univariate Analysis

```
In [48]: sns.histplot(data, x="Balance")
```

Out[48]: <AxesSubplot:xlabel='Balance', ylabel='Count'>

• Bi - Variate Analysis

In [51]: sns.displot(data, x="Balance", y="Age")

Out[51]: <seaborn.axisgrid.FacetGrid at 0x181064ebd60>

4. Perform descriptive statistics on the dataset.

central Tendancy

In [5]: data.mean()

C:\Users\welcome\AppData\Local\Temp/ipykernel_11976/531903386.py:1: FutureWarning: Dropping of nuisan ce columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

data.mean()

Out[5]: RowNumber 5.000500e+03 CustomerId 1.569094e+07 6.505288e+02 CreditScore Age Tenure 3.892180e+01 5.012800e+00 7.648589e+04 Balance NumOfProducts 1.530200e+00 HasCrCard 7.055000e-01 IsActiveMember 5.151000e-01 EstimatedSalary 1.000902e+05 Exited 2.037000e-01 dtype: float64

In [6]: data.median()

C:\Users\welcome\AppData\Local\Temp/ipykernel_11976/4184645713.py:1: FutureWarning: Dropping of nuisa nce columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction. data.median()

Out[6]: RowNumber

5.000500e+03 1.569074e+07 CustomerId CreditScore 6.520000e+02 3.700000e+01 Age Tenure 5.000000e+00 Balance 9.719854e+04 NumOfProducts 1.000000e+00 HasCrCard 1.000000e+00 IsActiveMember 1.000000e+00 EstimatedSalary 1.001939e+05 Exited 0.000000e+00 dtype: float64

In [7]: data.mode()

Out[7]:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard
0	1	15565701	Smith	850.0	France	Male	37.0	2.0	0.0	1.0	1.0
1	2	15565706	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
2	3	15565714	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
3	4	15565779	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
4	5	15565796	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Nat
		****	222	411			200		***	1944	55
995	9996	15815628	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaM
996	9997	15815645	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
997	9998	15815656	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
998	9999	15815660	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
999	10000	15815690	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

10000 rows × 14 columns

In [8]: data.skew()

C:\Users\welcome\AppData\Local\Temp/ipykernel_11976/1188251951.py:1: FutureWarning: Dropping of nuisa nce columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version thi s will raise TypeError. Select only valid columns before calling the reduction. data.skew()

Out[8]: RowNumber 0.000000 CustomerId 0.001149 CreditScore -0.071607 1.011320 Age Tenure 0.010991 -0.141109 Balance NumOfProducts 0.745568 HasCrCard -0.901812 IsActiveMember -0.060437 EstimatedSalary 0.002085 1.471611 Exited dtype: float64

In [9]: data.kurt()

C:\Users\welcome\AppData\Local\Temp/ipykernel_11976/2907027414.py:1: FutureWarning: Dropping of nuisa nce columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction. data.kurt()

Out[9]: RowNumber

-1.200000 -1.196113 CustomerId CreditScore -0 425726 1.395347 Age Tenure -1.165225 -1.489412 Balance NumOfProducts 0.582981 HasCrCard -1.186973 IsActiveMember -1.996747 EstimatedSalary -1.181518 Exited 0.165671 dtype: float64

```
In [10]: data.var()
         C:\Users\welcome\AppData\Local\Temp/ipykernel_11976/445316826.py:1: FutureWarning: Dropping of nuisan
         ce columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this
         will raise TypeError. Select only valid columns before calling the reduction.
           data.var()
Out[10]: RowNumber
                            8.334167e+06
         CustomerId
                            5.174815e+09
         CreditScore
                            9.341860e+03
                            1.099941e+02
         Age
         Tenure
                            8.364673e+00
                            3.893436e+09
         Balance
         NumOfProducts
                            3.383218e-01
         HasCrCard
                            2.077905e-01
         IsActiveMember
                            2.497970e-01
         EstimatedSalary
                           3.307457e+09
         Exited
                            1.622225e-01
         dtype: float64
```

```
In [11]: data.std()
         C:\Users\welcome\AppData\Local\Temp/ipykernel_11976/2723740006.py:1: FutureWarning: Dropping of nuisa
         nce columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version thi
         s will raise TypeError. Select only valid columns before calling the reduction.
           data.std()
Out[11]: RowNumber
                             2886.895680
         CustomerId
                            71936.186123
                               96.653299
         CreditScore
                               10.487806
         Age
         Tenure
                                2.892174
                            62397.405202
         Balance
         NumOfProducts
                                0.581654
         HasCrCard
                                0.455840
         IsActiveMember
                                0.499797
         EstimatedSalary
                            57510.492818
         Exited
                                0.402769
         dtype: float64
```

5. Handle the Missing values.

```
In [12]: data.isna().sum()
Out[12]: RowNumber
         CustomerId
         Surname
         CreditScore
         Geography
         Gender
         Age
         Tenure
         Balance
         NumOfProducts
         HasCrCard
         IsActiveMember
         EstimatedSalary
         Exited
         dtype: int64
```

6. Find the outliers and replace the outliers

```
In [56]: sns.boxplot(data['Age'])
    C:\Users\welcome\anaconda3\lib\site-packages\seaborn\_decorators.py:36: FutureWarning: Pass the follo
    wing variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `dat
    a`, and passing other arguments without an explicit keyword will result in an error or misinterpretat
    ion.
        warnings.warn(
Out[56]: <AxesSubplot:xlabel='Age'>
```



```
In [54]: import numpy as np
    data['Age']=np.where(data['Age']>50,20,data['Age']) #replacing

In [68]: import seaborn as sns
    sns.boxplot(data['Age'])
    C:\Users\welcome\anaconda3\lib\site-packages\seaborn\_decorators.py:36: FutureWarning: Pass the follo
    wing variable as a keyword arg: x. From version 0.12, the only valid positional argument will be 'dat
    a', and passing other arguments without an explicit keyword will result in an error or misinterpretat
    ion.
    warnings.warn(

Out[68]: <AxesSubplot:xlabel='Age'>
```

7. Check for Categorical columns and perform encoding

In [56]: data.tail()#Gender categorical column Out[56]: RowNumber Customerld Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCa 9995 9996 15606229 Obijiaku 771 Male 39 5 0.00 9996 9997 15569892 Johnstone 516 35 10 57369.61 France Male 9997 9998 15584532 709 France Female 36 0.00 9998 9999 15682355 Sabbatini 772 42 3 75075.31 2 792 10000 15628319 Walker France Female 28 9999 4 130142.79

Encoding

In [57]: data['Gender'].replace({'Female':1,'Male':0},inplace=True)
data.tail()

Out[57]:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCa
9995	9996	15606229	Obijiaku	771	France	0	39	5	0.00	2	
9996	9997	15569892	Johnstone	516	France	0	35	10	57369.61	1	
9997	9998	15584532	Liu	709	France	1	36	7	0.00	11	
9998	9999	15682355	Sabbatini	772	Germany	0	42	3	75075.31	2	
9999	10000	15628319	Walker	792	France	1	28	4	130142.79	1	
4)

In [58]: data_main=pd.get_dummies(data,columns=['Geography'])
data_main

Out[58]:

	RowNumber	CustomerId	Surname	CreditScore	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActive
0	1	15634602	Hargrave	619	1	42	2	0.00	1	1	
1	2	15647311	Hill	608	1	41	1	83807.86	1	0	
2	3	15619304	Onio	502	1	42	8	159660.80	3	1	
3	4	15701354	Boni	699	1	39	1	0.00	2	0	
4	5	15737888	Mitchell	850	1	43	2	125510.82	1	1	
	•••			****				444			
995	9996	15606229	Obijiaku	771	0	39	5	0.00	2	1	
996	9997	15569892	Johnstone	516	0	35	10	57369.61	1	1	
997	9998	15584532	Liu	709	1	36	7	0.00	1	0	
998	9999	15682355	Sabbatini	772	0	42	3	75075.31	2	1	
999	10000	15628319	Walker	792	1	28	4	130142.79	1	1	

10000 rows × 16 columns

8. Split the data into dependent and independent variables.

```
In [59]: y=data_main['Exited']
       y.head()
Out[59]: 0
       1
           0
       2
           1
       3
           0
       Name: Exited, dtype: int64
  In [60]: x=data_main.drop(columns=['Exited'],axis=1)
         x.head()
  Out[60]:
           RowNumber Customerid Surname CreditScore Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMem
         0 1 15634602 Hargrave 619 1 42 2 0.00
                2 15647311 Hill 608 1 41
                                                    1 83807.86
         2 3 15619304 Onio 502 1 42 8 159660.80
                 4 15701354 Boni 699 1 39
                                                                     2
                                                                             0
                                                    1
                                                         0.00
              5 15737888 Mitchell 850 1 43 2 125510.82
                                                                  1 1
```

9. Scale the independent variables In [61]: x=data_main.drop(columns=['Surname',],axis=1) x.head() Out[61]: RowNumber Customerld CreditScore Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember Estim 1 42 15634602 0.00 0 1 2 15647311 608 1 41 1 83807.86 1 1 2 3 15619304 502 1 42 8 159660.80 0 4 15701354 699 1 39 0.00 0 5 15737888 850 1 43 2 125510.82 In [62]: from sklearn.preprocessing import scale x=scale(x)Out[62]: array([[-1.73187761, -0.78321342, -0.32622142, ..., 0.99720391,

10. Split the data into training and testing

```
In [63]: from sklearn.model_selection import train_test_split

In [64]: x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=0)

In [65]: x_train.shape

Out[65]: (8000, 15)

In [66]: x_test.shape

Out[66]: (2000, 15)

In [67]: y_train.shape

Out[67]: (8000,)

In [98]: y_test.shape

Out[98]: (2000,)
```