Theorem 0.1 (Cantor). For all sets X (including infinite), $X \not\geq \mathcal{P}(X)$. That is, there does not exist an injection from $\mathcal{P}(X)$ to X.

Theorem 0.2 (Informal statement of the axiom of choice). Given a family \mathscr{F} of nonempty sets, it is possible to pick out an element from each set in the family.

Theorem 0.3 (Zorn's Lemma). Let (A, \triangleright) be a partial order such that the following condition is satisfied:

(\mathcal{Z}) In words, if every chain has an upper bound then there is a maximal element. More precisely, ff C is a chain, then $\exists x$ such that $x \triangle$

Theorem 0.4 (Collection \mathcal{T} generated by a basis \mathcal{B} is a topology on X).

Claim 0.1. τ_1 has a countable basis.

Claim 0.2. τ_2 doesn't have a countable basis.

Claim 0.3. $B_{\varepsilon}(b) \subset \mathbb{R}^2 - f(A)$

Claim 0.4 (Inclusion is Continuous). *If* (X, τ) *is a topological space and* $A \subseteq X$, *then* $f : A \to X : a \mapsto a$ *is continuous (with respect to* τ_A *and* τ).

Claim 0.5. Let (X, τ) and (Y, σ) be topological spaces and $f: X \to Y$ be a continuous function (with respect to τ and σ). Let $A \subset X$ be nonempty and τ_A its subspace topology. Let $B \subset Y$ be nonempty and σ_B its subspace topology. Suppose further that $f(A) \subseteq B$ (that is, for $x \in A$, we have that $f(x) \in B$). Define $\hat{f}: A \to B: x \mapsto f(x)$ (that is, the restriction of f). **Then** $\hat{f}: A \to B$ is continuous (with respect to τ_A and τ_B).

Theorem 0.5 ("Continuous" = "Continuous"). *If* (X_1, d_1) *and* (X_2, d_2) *are metric spaces with induced topologies* τ_{d_1} *and* τ_{d_2} , *then for* $f: X_1 \to X_2$, *the following are equivalent:*

- (i) f is continuous with respect to τ_{d_1} and τ_{d_2} .
- (ii) For all $a \in X_1$ and $\varepsilon > 0$, there exists a $\delta > 0$ such that for all $b \in X_1$ for which $d_1(a,b) < \delta$, we have that $d_2(f(a),f(b)) < \varepsilon$.

Theorem 0.6 (Separation Axiom). *Metric spaces are always* T_2 .

Claim 0.6. $(a_i)_{i\in\mathbb{N}}\to b$

Claim 0.7. A sequence with no infinite repetition converges to every point.

Claim 0.8 (Metric space: closed \iff sequentially closed). In a metric space, a set is closed if and only if it is sequentially closed. More formally: If (X,d) is a metric space and \mathcal{T}_d is the induced topology on X, then $S \subset X$ is sequentially closed if and only if S is closed (with respect to T, that is $X - S \in T$).

Claim 0.9. Let π_1 be π_2 projection maps (as above). Then

- (i) π_1 is continuous with respect to $\tau_1 \otimes \tau_2$ and τ_1 .
- (ii) π_2 is continuous with respect to $\tau_1 \otimes \tau_2$ and τ_2 .

Theorem 0.7 (Bounded Value Theorem (BVT)). *If* $f : [0,1] \to \mathbb{R}$ *is continuous, then* rng f *is bounded (above and below).*

Theorem 0.8 (Set-Theoretic Rules). We have that, for any sets A, B, C,

(i) First distributive law for the operations \cap and \cup :

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \tag{0.1}$$

(ii) Second distributive law for the operations \cap and \cup :

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \tag{0.2}$$

(iii) DeMorgan's laws:

$$A - (B \cup C) = (A - B) \cap (A - C) \tag{0.3}$$

"The complement of the union equals the intersection of the complements."

$$A - (B \cap C) = (A - B) \cup (A - C) \tag{0.4}$$

"The complement of the intersection equals the union of the complements."

Claim 0.10. A set is open in the metric topology induced by d if and only if for each $y \in U$ there is a $\delta > 0$ such that $B_d(y, \delta) \subset U$.