

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика, искусственный интеллект и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по лабораторной работе № 2 по курсу «Методы вычислений» на тему: «Метод золотого сечения» Вариант № 15

Студент	ИУ7-21М (Группа)	-	(Подпись, дата)	<u>Миронов</u> Γ. А. (И. О. Фамилия)
Преподаватель		-	(Подпись, дата)	Власов П. А. (И. О. Фамилия)

1 Выполнение индивидуального задания

1.1 Цель работы

Изучение метода золотого сечения для решения задачи одномерной оптимизации.

1.2 Постановка задачи

Необходимо:

- 1. реализовать метод золотого сечения в виде программы на ЭВМ.
- 2. провести решение задачи

$$\begin{cases} f(x) \to \min \\ x \in [a, b] \end{cases}$$

для данных индивидуального варианта для лабораторной работы № 1.

3. организовать вывод на экран графика целевой функции, найденной точки минимума $(x^*, f(x^*))$ и последовательности отрезков $[a_i, b_i]$, содержащих точку искомого минимума (для последовательности отрезков следует предусмотреть возможность "отключения" вывода ее на экран).

Индивидуальный вариант целевой функции:

$$\sinh\left(\frac{3x^4 - x + \sqrt{17} - 3}{2}\right) + \sin\left(\frac{5^{1/3}x^3 - 5^{1/3}x + 1 - 4 * 5^{1/3}}{-x^3 + x + 2}\right),\,$$

при
$$[a, b] = [0, 1].$$

Метод золотого сечения

В основе метода золотого сечения лежит идея об уменьшении числа обращений к целевой функции засчёт того, что одна из пробных точек текущей итерации может быть использована и на следующей.

Пробные точки x_1, x_2 выбираются симметрично относительно середины отрезка [a,b] (это нужно для того, чтобы относительное уменьшение длины отрезка $(\tau=\frac{\sqrt{(5)-1}}{2})$ при переходе к следующей итерации не зависела от того,

какая часть отрезка выбрана). au выбирается таким образом, чтобы пробная точка x_1 с текущей итерации стала бы одной из пробных точек на следующей итерации.

Каждая из пробных точек x_1, x_2 делит отрезок [a, b] на две независимые части таким образом, что

$$\frac{длина \ большей \ части}{длина \ всего \ отрезка} = \frac{длина \ меньшей \ части}{длина \ большей \ части}$$

Точки, обладающие этим свойством, называются точками золотого сечения отрезка [a,b]. На каждой итерации длина отрезка уменьшается в τ раз. Поэтому после выполнения n итерации длина текущего отрезка будет равна

$$\frac{1}{2}\tau^n(b-a),$$

т.к. в конце алгоритма берем $\frac{a+b}{2}$.

1.3 Схема алгоритма

1.4 Текст программы

Π истинг $1.1-\Phi$ айл main.m

```
function lab02()
    clc();
    clf();

    debugFlg = 1;
    delayS = 1e-2;
    a = 0;
    b = 1;
    eps = 1e-6;

    fplot(@f, [a, b]);
    hold on;

[xStar, fStar] = goldenRatio(a, b, eps, debugFlg, delayS);

scatter(xStar, fStar, 'r', 'filled');

legend("off");
```


Рисунок 1.1 – Схема алгоритма

```
end
function [xStar, fStar] = goldenRatio(a, b, eps, debugFlg,
    delayS)
    tau = (sqrt(5) - 1) / 2;
    1 = b - a;

    x1 = b - tau * 1;
    x2 = a + tau * 1;
    f1 = f(x1);
    f2 = f(x2);

i = 0;
while 1
    i = i + 1;

if debugFlg
    fprintf(' %2d ai=%.10f bi=%.10f\n', i, a, b);
```

```
line([a b], [f(a) f(b)], 'color', 'b');
            hold on;
            pause(delayS);
        end
        if 1 > 2 * eps
            if f1 <= f2
                b = x2;
                1 = b - a;
                x2 = x1;
                f2 = f1;
                x1 = b - tau * 1;
                f1 = f(x1);
            else
                a = x1;
                1 = b - a;
                x1 = x2;
                f1 = f2;
                x2 = a + tau * 1;
                f2 = f(x2);
            end
        else
            xStar = (a + b) / 2;
            fStar= f(xStar);
            break
        end
    end
    i = i + 1;
    if debugFlg
        fprintf(' 2d = 1.10f = 1.10f n', i, a, b);
        fprintf('RESULT: x*=\%.10f f(x*)=\%.10f\n', xStar, fStar);
        line([a b], [f(a) f(b)], 'color', 'r');
    end
end
```

```
function y = f(x)
    y = power(x - 0.555, 8);
    %k = power(5,1/3);

%y = sinh((3 * power(x,4) - x + sqrt(17) - 3) / 2) + sin((k * power(x, 3) - k * x + 1 - 2 * k) ./ (-power(x,3) + x + 2));
end
```

1.5 Результаты расчетов для задачи из индивидуального варианта.

Таблица 1.1 – Результаты расчетов

$N_{\overline{0}}$ Π/Π	ϵ	N	x^*	$f(x^*)$
1	1e-2	11	0.4442719100	-0.5511826696
2	1e - 4	20	0.4423525313	-0.5511898806
3	1e - 6	30	0.4423640182	-0.5511898808