Lógica Computacional

DCC/FCUP

2020/21

Sistemas dedutivos de Hilbert, H

Usados incialmente nas tentativas de mecanização das demonstrações matemáticas (Sec. XIX e início de XX) (também por G. Frege e B. Russel)

Supondo apenas o conjunto completo de conectivas $\{\neg, \rightarrow\}$, toma a forma:

Axiomas

- $\phi \rightarrow (\psi \rightarrow \phi)$
- $(\phi \to (\psi \to \theta)) \to ((\phi \to \psi) \to (\phi \to \theta))$
- $(\neg \psi \rightarrow \neg \phi) \rightarrow ((\neg \psi \rightarrow \phi) \rightarrow \psi)$

Regras de inferência

• *Modus ponens*: de ϕ e de $\phi \rightarrow \psi$, inferir ψ

Proposição: (da dedução) Se $\Sigma \cup \{\psi\} \vdash_H \theta$ então $\Sigma \vdash_H \psi \to \theta$. Proposição: $\Sigma \vdash_{DN} \phi$ se e só se $\Sigma \vdash_H \phi$

Demonstração.

(\Leftarrow): Basta ver que os axiomas de H são teoremas de DN. A regra de inferência corresponde à regra da eliminação de implicação de DN (\to E)

 (\Rightarrow) : é possível transformar uma dedução em DN, numa dedução em H. (Não o faremos neste curso...)

Corolário: O sistema de dedução H é integro e completo para a lógica proposicional.

Sistemas dedutivos automatizáveis

Mesmo no sistema DN não é fácil construir um algoritmo para determinar se uma uma fórmula é um teorema, excepto se se usar a completude (e construir a dedução a partir da tabela de verdade). Mas existem outros sistemas de dedução automatizáveis e em que para determinar se uma fórmula ϕ é um teorema não é necessária a semântica.

A propriedade essencial

destes sistemas é que, partindo da fórmula que se pretende deduzir (i.e considerando a dedução da conclusão para as premissas), em cada passo duma dedução, as fórmulas são sub-fórmulas de alguma fórmula de um passo "anterior".

É fácil ver que a regra de *Modus ponens* não verifica esta propriedade!

Alguns desses sistemas

Sequents de Gentzen "Variante" do sistema de dedução natural. Tableaux deduzir que a fórmula $\neg \phi$ é uma contradição Resolução também por contradição, mas necessita de $\neg \phi$ em forma normal conjuntiva....cláusulas

Notação uniforme de Smullyan

Permite agrupar as fórmulas da forma $\phi \circ \psi$ e $\neg (\phi \circ \psi)$ em duas categorias:

conjuntivas α , a que se associam duas componentes α_1 e α_2 disjuntivas β , a que se associam duas componentes β_1 ou β_2

α	α_1	α_2	β	β_1	β_2
$\phi \wedge \psi$	ϕ	ψ	$\neg(\phi \land \psi)$	$\neg \phi$	$\neg \psi$
$\neg (\phi \lor \psi)$	$\neg \phi$	$\neg \psi$	$\phi \lor \psi$	ϕ	ψ
$\neg(\phi \to \psi)$	ϕ	$\neg \psi$	$\phi \to \psi$	$\neg \phi$	ψ

Para toda a atribuição de valores às variáveis v, e todas as fórmulas α e β :

$$v(\alpha) = v(\alpha_1) \wedge v(\alpha_2)$$

 $v(\beta) = v(\beta_1) \vee v(\beta_2).$

Tableaux semânticos

Para deduzir uma fórmula ϕ , inicia-se com $\neg \phi$ e produz-se uma contradição. Uma dedução é uma árvore em que os nós são etiquetados por fórmulas, sendo a raíz da árvore etiquetada por $\neg \phi$. Em cada passo, expande-se uma folha da árvore de acordo com as regras de expansão dos Tableaux:

$\frac{\neg \neg \phi}{}$	ユ	$\neg \top$	$\underline{}$	$\frac{\beta}{\alpha + \alpha}$
φ	ļ	Τ.	α_1	$\beta_1 \mid \beta_2$
			α_2	

Tableaux semânticos

Seja r um ramo da árvore etiquetado com ψ .

- Se ψ é $\neg\neg\phi$, expandimos a folha desse ramo com mais um nó etiquetado por ϕ .
- Analogamente, se ψ é $\neg\bot$, adiciona-se \top ou se é $\neg\top$, adiciona-se \bot .
- Se ψ é um α , adicionam-se a r dois nós, um etiquetado com α_1 e outro com α_2 (filho de α_1).
- Se ψ é um β , adiciona-se a r dois nós filhos, um etiquetado por β_1 outro por β_2 .

Tableau

Um tableau **T** pode ser definido indutivamente por: Seja $\{\phi_1, \ldots, \phi_n\}$ um conjunto de fórmulas.

1. Um *tableau* para $\{\phi_1, \dots, \phi_n\}$ é uma árvore de um só ramo:

$$\phi_1$$
 ϕ_2
 \vdots
 ϕ_n

2. Se **T** é um *tableau* para $\{\phi_1, \ldots, \phi_n\}$ e **T*** resulta de **T** por aplicação duma regra de expansão de *tableaux* então **T*** é um *tableau* para $\{\phi_1, \ldots, \phi_n\}$.

Exemplo

Um tableau para o conjunto $\{p \land (\neg q \lor \neg p)\}$ é:

$$p \land (\neg q \lor \neg p)$$
 p
 $\neg q \lor \neg p$
 $\neg p$

Satisfabiblidade e dedução em Tableaux

Um ramo r de um tableau diz-se fechado se existe uma fórmula ϕ tal que ϕ e $\neg \phi$ ocorrem em r.

Um tableau diz-se fechado se todos os seus ramos estão fechados.

O *tableau* do exemplo anterior tem, um ramo fechado mas não é fechado.

Satisfabiblidade e dedução em Tableaux

Uma dedução por *tableau* de ϕ é um *tableau* fechado para $\{\neg\phi\}$.

A fórmula ϕ é um teorema se ϕ tem uma dedução por tableau.

Um ramo r de um tableau é satisfazível se o conjunto de fórmulas que etiquetam os seus nós é satisfazível.

Um *tableau* **T** é satisfazível se pelo menos um dos seus ramos é satisfazível.

Integridade e Completude

Proposição: Pela aplicação de qualquer regra de expansão de *tableau* a um *tableau* satisfazível, obtêm-se um *tableau* satisfazível.

Proposição: Se existe um *tableau* fechado para um conjunto de fórmulas Γ , então Γ não é satisfazível.

Integridade e Completude

Teorema: Se ϕ tem uma dedução por *tableau*, então ϕ é uma tautologia.

Demonstração.

Uma dedução por tableau é um tableau fechado para $\{\neg\phi\}$. Então, pela Proposição $\ref{eq:posterior}$, $\{\neg\phi\}$ não é satisfazível, logo ϕ é uma tautologia.

Também se mostra que:

Teorema: Se ϕ é uma tautologia, ϕ tem uma dedução por *tableau*.

Exemplos

Constrói deduções de tableaux para as seguintes fórmulas:

- a) $\neg((p \lor q) \land (\neg p \land \neg q))$
- b) $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow \neg (\neg r \land p)$

Sistema dedutivo por Resolução

É um sistema dedutivo por refutação: para deduzir ϕ , deduz-se que $\neg \phi$ é uma contradição.

Seja Σ um conjunto de cláusulas (disjunção de literais) e representamos por \bot a cláusula vazia.

O sistema dedutivo por *resolução* não tem axiomas e apenas uma regra de inferência:

Regra de inferência da Resolução

$$\frac{C \cup \{p\} \quad C' \cup \{\neg p\}}{C \cup C'}$$

A conclusão $C \cup C'$ diz-se a resolvente das premissas.

Uma dedução de \bot a partir de um conjunto $\mathcal C$ de cláusulas diz-se uma refutação $\mathcal C.$

Uma dedução por resolução de uma fórmula ϕ é uma refutação de cláusulas que correspondem à FNC de $\neg\phi$.

Dado

$$\{\{\neg p\}, \{q, r\}, \{\neg r, \neg s\}, \{p, s\}, \{\neg q, \neg s\}\}$$

 $\frac{\{p,s\}\;\{\neg p\}}{\{s\}}\;\;\frac{\frac{\{q,r\}\;\{\neg r,\neg s\}}{\{q,\neg s\}}\;\{\neg q,\neg s\}}{\{\neg s\}}$

Integridade e Completude da Resolução

Teorema: (Integridade)

Seja $\mathcal{C} = \{C_1, \dots, C_n\}$ um conjunto não vazio de cláusulas da lógica proposicional.

- i. Sejam C_i e C_j cláusulas de C e R uma resolvente de C_i e C_j . Então $C \models R$.
- ii. Se $\mathcal{C} \vdash_R \bot$, isto é, existe uma dedução de \bot a partir de \mathcal{C} usando apenas a regra da Resolução, então \mathcal{C} não é satisfazível.

Teorema: (Completude) Se um conjunto de cláusulas $\mathcal C$ é não satisfazível então existe uma dedução $\mathcal C \vdash_{\mathcal R} \bot$.

Exercícios

Constrói deduções de *tableau* e por **resolução** para as seguintes fórmulas:

- a) $(p o q) o ((\neg p o q) o q)$
- b) $q \rightarrow (p \rightarrow (q \land p))$
- c) $q \rightarrow (\neg p \rightarrow \neg (q \rightarrow p))$