${\bf Description:}$

A simply Supported square plate with distributed load (q).

Reference:

S. Timoshenko , S . Woinowsky , Theory of Plates and Shells , pg:116, Article : 30 .

Material and Geometric data:

Figure 1: TIM116

Table 1: Input Data

Material Property		Geometric Data		Loading Data		
Young's Modulus (E)	2E11 pa	Length (a)	10 m	Distributed Load (q)	$1000 \ N/m^2$	
Poission's Ratio (ν)	0.3	Breath (b)	10~m			
		Thickness (t)	0.1~m			

Mesh and boundary condition:

Analytically solution:

The w_{max} which is the w displacement at the middle of the plate is given by

$$w_{max} = 0.00406 \frac{qb^4}{D} \tag{1}$$

The analytically solution of the problem is calculated as $w_{max} = -0.0022167m$

Figure 2: Geomentry and Mesh of TIM116

Table 2: FEM and Boundary condition data

Direchlet Boundary			Neumann Boundary					
Geo -Entity	w	θ_x	θ_y	Geo -Entity	F_z	M_x	M_y	
line {1,2,3,4}	Fixed	Free	Free	Area {1}	$1000 \ N/m^2$			

Result and error analysis:

The maximum displacement of the domain is our solution . w displacement at middle is -0.0022144m.

$$error\% = \mid \frac{w_{analytical} - w_{FEM}}{w_{analytical}} \mid \times 100$$
 (2)

So the Error percentage is 0.1%.

Figure 3: FEM solution plot