САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра вычислительной техники

Отчёт по лабораторной работе № 1 по дисциплине «Теория автоматов» Вариант N24

Студент: Куклина М. Р3301

Преподаватель: Ожиганов А.А.

Цель и постановка задачи

Цель

Овладение навыками минимизации полностью определённых абстрактных автоматов.

Постановка задачи

Задан абстрактный автомат табличным способом. Найти минимальный автомат в классе эквивалентных между собой автоматов. Для минимизации абстрактного автомата использовать алгоритм Ауфенкампа-Хона.

Исходный абстрактный автомат

δ	a_1	a_2	a_3	a_4	a_5
z_1	a_1	a_4	a_5	a_1	a_1
z_2	a_4	a_3	a_2	a_3	a_2

Таблица 1. Функция переходов

λ	a_1	a_2	a_3	a_4	a_5
z_1	w_2	w_1	w_1	w_2	w_2
z_2	w_1	w_2	w_2	w_2	w_2

Таблица 2. Функция выходов

Граф исходного автомата

Минимизация автомата

Разделим состояния автомата на классы эквивалентности.

$$b_1 = a_1$$

$$b_2 = a_2, a_3$$

$$b_3 = a_4, a_5$$

$$P_1 = b_1, b_2, b_3$$

Строим таблицу переходов с соответствующими классами эквивалентности. Разделим состояния автомата на классы эквивалентности.

δ	a_1	a_2	a_3	a_4	a_5
z_1	b_1	b_3	b_3	b_1	b_1
z_2	b_3	b_2	b_2	b_2	b_2

Таблица 3. Функция переходов

λ	b_1	b_2	b_3
z_1	w_2	w_1	w_2
z_2	w_1	w_2	w_2

Таблица 4. Функция выходов

 $b_1 = b_1 \\ b_2 = b_2 \\ b_3 = b_2 \\ P_2 = b_1, b_2, b_3$

Так как разбиения $P_1 = P_2$, значит, мы нашли минимальное число состояний.

δ	b_1	b_2	b_3
z_1	b_1	b_3	b_1
z_2	b_3	b_2	b_2

Таблица 5. Функция переходов

λ	b_1	b_2	b_3
z_1	w_2	w_1	w_2
z_2	w_1	w_2	w_2

Таблица 6. Функция выходов

Выходное слово минимальной длины

 $z_1 z_2 z_2 z_2 z_1 z_1$

Реакции исходного и минимизированного автомата на входное слово

Реакция исходного: $w_2w_1w_2w_2w_1w_2$ Реакция минимального: $w_2w_1w_2w_2w_1w_2$

Вывод

В ходе выполнения лабораторной работы был изучен алгоритм минимизации абстрактных автоматов. Из автомата Мили с пятью состояниями был получен автомат с тремя, полностью соответствующий исходному.