ORF 307 Intro to NLP

Prof. John Mulvey Spring, 2013

NLP

Find
$$x = (x_1, x_2, ..., x_n)$$

$$\max f(x)$$

s.t.

$$g_i(x) \le b_i$$
, for $i = 1, 2, ..., m$

$$x \ge 0$$

Note that this is an LP if f(x) and all $g_i(x)$ are linear.

Common cost functions

Types of NLP

• There are many flavors of NLPs (several of these are subsets of others)

Name	f(x)	g _i (x)
Linear prog	linear	linear
Unconstrained opt	nonlinear/linear	none
Linearly constrainted prog	Nonlinear/linear	linear
Quadratic prog	Quadratic	linear
Convex (max)	Concave	convex
Convex (min)	Convex	convex
Non-convex	Anything else	

• There are other types: fractional, geometric, conic, semi-definite,.....

Convex functions (1 var)

Real analysis definition:

A function $f: \mathbb{R} \to \mathbb{R}$ defined on (a,b) is said to be <u>convex</u> if it lies below it's support.

Mathematically:

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$$

For all $x \in (a, b)$, $y \in (a, b)$ and $t \in (0,1)$.

Definition: A function f is said to be <u>concave</u> if -f is convex.

Theorem

If f is twice differentiable, then f is convex on the real line <u>if and only if</u> $f''(x) \ge 0 \ \forall x$

Convex functions (multi var)

Real analysis definition:

A function $f: \mathbb{R}^n \to \mathbb{R}$ defined on a convex set S is said to be <u>convex</u> if it lies below it's support.

Mathematically:

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$$

Same as before But x, y are vectors

For all $x \in S$, $y \in S$ and $t \in (0,1)$.

Definition: A function f is said to be <u>concave</u> if -f is convex.

Theorem

If f is twice differentiable, then f is convex on the real line <u>if and only if</u> its Hessian is positive semi-definite.

Hessian matrix

$$H(f) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}.$$

A matrix H is said to be positive-semidefinite if $x^T H x \ge 0 \ \forall x \in \mathbb{R}^n$.

2-variable function

- H(f) is positive-semidefinite (and thus f is convex) if <u>all</u> of the following are true:
 - **■** *a* ≥ 0
 - $c \ge 0$
 - $ac b^2 \ge 0$

Quadratic functions

• $f(\vec{x})$ is quadratic if there exists a symmetric matrix Q such that:

•
$$f(\vec{x}) = x^T Q x$$

• Example: $f(x_1, x_2) = x_1^2 - 4x_1x_2 + 3x_2^2$

• Here
$$Q = \begin{bmatrix} 1 & -2 \\ -2 & 3 \end{bmatrix}$$

Not quadratic:

•
$$f(x) = x^3$$
, $f(x_1, x_2) = x_1^2 x_2$, $f(x) = x^{1.5}$

Hessian for quadratic functions

- In this case, the Hessian only contains constants.
- i.e.

$$H(f) = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$$

For some $a, b, c \in \mathbb{R}$

Examples of concave and convex functions

Convex	Concave	
ax + b	ax + b	
e^{x}	$\log(x)$	
x	\sqrt{x}	
x^3 when $x \ge 0$	x^3 when $x \le 0$	
x^k when k is even	$-x^k$ when k is even	

Properties

If f, g are convex functions, then the following functions are convex:

1.
$$h(x) = f(x) + g(x)$$

$$2. \ h(x) = \max(f(x), g(x))$$

3.
$$h(x) = f(ax + b)$$

4. If g is also nondecreasing, then h(x) = g(f(x)) is convex. For example if f(x) is convex then $e^{f(x)}$ is convex.

Solving NLPs

- There are many algorithms to solve NLPs. (see IOR sec. 12.9)
- We will not cover these in detail.
- We will mainly use AMPL and Excel.
- Some questions can be solved by hand using the famous KKT conditions which will be introduced next class.
- It is important to know for which problems we will get a global optimum.

Global vs. local optima

 Algorithms can "get stuck" on local optima or at saddle points.

A local maximum is a global maximum when the problem is a convex programming problem.

Note that LPs are convex programs

Convex Sets

- A convex set is a set of points that contains the entire line segment between its points.
- Formally:

S is said to be a <u>convex set</u> if $\forall x, y \in S$ and $\forall t \in [0,1]$:

$$(1-t)x + ty \in S$$

Constraint set

- Each inequality with a convex function describes a convex set.
- The feasible region is the intersection of all regions described by the constraints
- Fact: the intersection of convex sets is a convex set.
- Thus the feasible region is a convex set when the g_i 's are convex.

The Objective

- A full proof is very technical.
- Given some regularity conditions, a concave function's local maximum is always a global maximum on a convex set.

Example with linear obj and convex feasible region

Example with non-convex region

Example of a non-concave objective

■ FIGURE 12.8 A function with several local maxima (x = 0, 2, 4), but only x = 4 is a global maximum.

Non-convex programming

- Most non-convex programs are hard to solve.
- Programs like excel can still solve these.
- However, solutions returned by these algorithms might only be locally optimal.
- One should use the multi-start option or use an algorithm with randomization.

