

Perceptron topológia működése

- Számítási modell, amely bemenő értékekre kimenő értékeket számol:
 - A 0-adik réteg az x_i bemeneti értékeket, mint o_i⁰ t, továbbítja
 - Az s-edik réteg j-edik neuronjának i-edik bemenete = az s-1-edik réteg i-edik neuronjának kimenete: o_is-1
 - Az s-edik réteg j-edik neuronjának i-edik bemenetéhez tartozó súly: w_{ii}s
 - Az s-edik réteg mindegyik neuronja kiszámolja a saját kimeneti értékét: o_i^s

Hopfield topológia

b
e
m
e
n
e
t
t

Hopfield topológia működése

- ☐ Célja egy nyugalmi helyzet előállítása
 - Minden neuron kezdő állapota egy-egy bemeneti érték
 - Egy neuron mindaddig újra számolja a többi neuron kimeneti értéke alapján a belső állapotát, ameddig az eltér a korábbi állapotától.
 - A stabil helyzetben kialakult állapotok lesznek a kimeneti értékek.

1.3. Tanulás

- A tanulás a hálózat paramétereinek tanító példák alapján történő beállítása.
 - Paraméterek: súlyok (amely kihat egy-egy neuron bemeneteinek számára, közvetve a topológiára), topológia, aktivizációs függvény
- ☐ Leggyakrabban a súlyokat tanuljuk meg:
 - Mintákat, azaz lehetséges bemeneteket mutatunk a mesterséges neuronhálónak, amely minden mintára kiszámítja a kimenetet, majd ez alapján módosítja a súlyokat: w_i= w_i + \(\Delta w_i\)

12

2

	$\eta = 0.1$		Tanítás és alkalmazás						
	x_I	x_2	w_0	w_{I}	w_2	I	0	t	e
0.			0.08	0.08	0.08				
1.	1	0	0.08	0.08	0.08	0.160	1	0	-1
2.	0	1	-0.02	-0.02	0.08	0.06	1	0	-1
3.	1	1	-0.12	-0.02	-0.02	-0.16	0	1	1
4.	1	0	-0.02	0.08	0.08	0.06	1	0	-1
5.	0	1	-0.12	-0.02	0.08	-0.04	0	0	0
6.	1	1	-0.12	-0.02	0.08	-0.06	0	1	1
7.	1	0	-0.02	-0.08	0.18	0.06	1	0	-1
ļ									
14.			-0.22	0.08	0.18				
14.	1	0	-0.22	0.08	0.18	-0.14	0	0	0
15.	0	1	-0.22	0.08	0.18	-0.04	0	0	0
16.	1	1	-0.22	0.08	0.18	0.04	1	1	0
17.	0	0	-0.22	0.08	0.18	-0.22	0	0	0

	Megjegyzo
☐ Egy neuron súlyai annak a hip határozzák meg, amelyik a ber	
terét két részre osztja. Az egyi bemenetekhez <i>I</i> -et, a másikho	
 Ezért a perceptron csak <u>lineári</u> osztályozási problémákat képe 	
azokat biztosan megoldja.	

Példa

Az AND műveletre betanított perceptron bemenetei egy síkon ábrázolhatóak.

Az $I(x_1, x_2) = w_0 + w_1 x_1 + w_2 x_2 = 0$ egyenlet egy egyenest határoz meg: $-x_2 = -(w_1/w_2)x_1 - (w_0/w_2) \text{ azaz } x_2 = -0.44 \ x_1 + 1.22$ $step(I(x_1, x_2)) = 0$ $step(I(x_1, x_2)) = 1$

Ellenpélda

A XOR művelethez nem rajzolható be szeparáló egyenes, tehát nem tanítható meg egy perceptronnak.

Megjegyzés

A két bemenetű egyrétegű perceptron modell csak félsíkokat képes felismerni, a kétrétegű perceptron modell már konvex poliédereket is, a három rétegű háló pedig tetszőleges poliédereket.

Megjegyzés

A perceptron modellnek természetes általánosítása a többrétegű perceptron háló. (Ilyenkor elképzelhető, hogy a közbülső rétegek neuronjainak aktivizációs függvénye lineáris.)

A többrétegű perceptron modellekhez azonban nem találtak tanuló eljárást, ezért a súlyai csak közvetlen módon állíthatók be.

Energia függvény

A háló energiafüggvénye egyetlen tanító minta esetén:

$$E = \frac{1}{2} \sum_{j=1}^{n} (t_j - o_j^r)^2$$

Az E tekinthető úgy is, mint háló $\{w^s_{ij}\}$ súlyainak $E(w_{11}^{l}, \ldots, w_{n^{r-l}n^{r}}^{r})$ függvénye, ezért értékének minimalizálásához a háló súlyait a gradiens módszer alapján kell megváltoztatni:

$$w^{s}_{ij} \leftarrow w^{s}_{ij} - \eta \frac{\partial E}{\partial w^{s}_{ij}}$$

Tanulási szabály

Az E többek között függ az s-edik réteg j-edik neuronjának összegzett bemenetétől (Is,) is, ami viszont tekinthető az *i*-edik súly (w_{ij}^s) függvényének:

$$-\eta \frac{\partial E}{\partial w^{s}_{ij}} = -\eta \frac{\partial E}{\partial I^{s}_{j}} \frac{\partial I^{s}_{j}}{\partial w^{s}_{ij}}$$

Viszont tekintető az redik suly
$$(w_{ij})$$
 fuggvenyenek.
$$-\eta \frac{\partial E}{\partial w^{s}_{ij}} - \eta \frac{\partial E}{\partial F_{i}} \frac{\partial F_{j}}{\partial w^{s}_{ij}}$$
Jelöljük e^{s}_{j} -vel a $-\frac{\partial E}{\partial F_{j}}$ -t, továbbá
$$F_{j} = \sum_{i=0}^{n} w^{s-l}_{ij} o^{s-l}_{i} -\text{ből kiszámoljuk, hogy} \frac{\partial F_{j}}{\partial w^{s}_{ij}} = o^{s-l}_{i}$$
Így azt kapjuk, hogy $-\eta \frac{\partial E}{\partial w^{s}_{ij}} = \eta e^{s}_{j} o^{s-l}_{i}$

s=r eset

Az $o_j^r = f(I_j^r)$ miatt az energiafüggvény

 $E = \frac{1}{2} \sum_{j=1}^{n} (t_j - f(I_j))^2 \text{ alakban írható fel, és ezért}$ $e^r_j = -\frac{\partial E}{\partial I_j} = \frac{1}{2} 2 (t_j - f(I_j)) f'(I_j) = (t_j - o^r_j) o^r_j (I - o^r_j)$

Kihasználjuk, hogy $f(x) = \frac{1}{1 + e^{-x}}$, azaz f'(x) = f(x)(1 - f(x))

s<r eset

E függ s+1-edik réteg (I^{s+1}_k) összegzett bemeneteitől is, amelyek azonban mindannyian függnek az s-edik réteg j-edik neuronjának (I^s_i) összegzett bemenetétől.

$$e^{s}_{j} = -\frac{\partial E}{\partial I^{s}_{j}} = -\sum_{k=1}^{n} \frac{s+l}{\partial I^{s+l}} \frac{\partial E}{\partial I^{s+l}_{k}} = \sum_{k=1}^{n} \frac{s+l}{\partial I^{s+l}_{k}} \frac{\partial E}{\partial I^{s+l}_{k}} \frac{\partial I^{s+l}}{\partial I^{s}_{j}}^{k} =$$

Az I^{s+l}_k függ az s-edik réteg j-edik neuronjának (o^s_j) kimenetétől, ezért $=\sum_{k=1}^{n^{s+l}}\frac{\partial E}{\partial I^{s+l}_k}\frac{\partial I^{s+l}_k}{\partial o^s_j}\frac{\partial o^s_j}{\partial I^s_j}=$

$$=\sum_{k=1}^{n^{s+1}}\frac{\partial E}{\partial I^{s+1}}\frac{\partial I^{s+1}}{\partial o^{s}}\frac{\partial o^{s}}{\partial I^{s}}=$$

s < r eset $= \sum_{k=1}^{n} \frac{\partial E}{\partial I^{s+1}} \frac{\partial \sum_{j=0}^{n} w^{s+1}_{jk} o^{s}}{\partial o^{s}_{j}}^{j} \frac{\partial f(I^{s}_{j})}{\partial I^{s}_{j}} =$ Felismerve a e^{s+1}_{k} jelölést a $-\frac{\partial E}{\partial I^{s+1}_{k}}$ -ban, és kiszámolva a deriváltakat: $= \sum_{k=1}^{n} e^{s+1}_{k} w^{s+1}_{jk} f'(I^{s}_{j}) = o^{s}_{j} (1 - o^{s}_{j}) \sum_{k=1}^{n} e^{s+1}_{k} w^{s+1}_{jk}$

 $\{inicializ\'al\'as\} \qquad Algoritmus \\ o^s{}_0 \leftarrow ?; \ w^s{}_{ij} \leftarrow ?; \ \eta \leftarrow ? \\ \{tan\'it\'o p\'eld\'ak feldolgoz\'asa:\} \\ \hline {for} \ \ V\'(x,t) \in P \ \ \underline{loop} \\ \{kimenet sz\'am\'it\'as\} \\ \{bemeneti r\'eteg\} \\ \hline \ \ \underline{for} \ \ j=1 \dots n^0 \ \ \underline{loop} \ \ o^0{}_j \leftarrow x_j \ \ \underline{endloop} \\ \{el\~ore \ haladva \ a \ neuron \ r\'etegeken\} \\ \hline \ \ \underline{for} \ \ s=1 \dots r \ \ \underline{loop} \\ \hline \ \ \ \ \underline{for} \ \ j=1 \dots n^s \ \ \underline{loop} \ \ o^s{}_j \leftarrow f(\sum_{i=0}^{\infty} w^s{}_{ij} \ o^{\ s \cdot l}{}_i) \ \ \underline{endloop} \\ \ \ \ \ \underline{endloop} \\ \ \ \ \ \ \ \underline{endloop}$

 $\label{eq:Algorithmus} Algorithmus $$ \{hiba\ visszaterjesztés\ \acute{e}s\ s\'{u}lym\'{o}dos\'{t}\'{a}s\}$ $$ \{kimeneti\ r\'{e}teg\}$ $$ \underbrace{for\ j=1\ ..\ n^r\ loop\ e^r_j \leftarrow (t_j-o^r_j)\ o^r_j(1-o^r_j)}$$$ endloop $$$ \underbrace{for\ i=0\ ..\ n^{r-1}\ loop\ }_{for\ j=1\ ..\ n^r\ loop\ w^r_{ij}} \leftarrow w^r_{ij} + \eta\ e^r_jo\ ^{r-1}_i$$$ endloop $$$ endloop $$$$

