Concours Blanc n°1 – Durée : 4h

L'utilisation de la calculatrice, des feuilles/notes de cours ou d'exercices est interdite.

La présentation, la rédaction, la clarté et la précision des raisonnements entreront dans l'appréciation de la copie.

Les résultats non encadrés/soulignés/surlignés ne seront pas pris en compte.

Exercice 1 : Encadrements et étude de fonction

Dans cet exercice, on s'intéresse à la fonction $f: x \mapsto \frac{\ln(1+x)}{x}$.

- 1. (a) Préciser le domaine de définition de f et justifier qu'elle y est de classe C^1 .
 - (b) Proposer une fonction Python qui prend en entrée un réel x et :
 - Renvoie la valeur de f(x) si celle-ci est bien définie
 - Affiche un message d'erreur dans le cas contraire.
 - (c) La fonction f est-elle prolongeable par continuité en -1? En 0? Justifier.

Dans la suite, on désigne toujours par la notation f la fonction prolongée, définie sur $]-1,+\infty[$.

2. (a) A l'aide d'études de fonctions appropriées, établir les encadrements :

$$\forall x \in [0, +\infty[, \ x - \frac{x^2}{2} \le \ln(1+x) \le x - \frac{x^2}{2} + \frac{x^3}{3}]$$

$$\forall x \in [-\frac{1}{2}, 0], \ x - \frac{x^2}{2} + \frac{2x^3}{3} \le \ln(1+x) \le x - \frac{x^2}{2} + \frac{x^3}{3}.$$

- (b) En déduire que f est dérivable en 0 et que $f'(0) = -\frac{1}{2}$.
- 3. Montrer que f admet un unique point fixe, que l'on note α , sur l'intervalle $]0, +\infty[$.
- 4. (a) En utilisant à nouveau 2.(a), montrer que $\forall x \in]0, +\infty[, -\frac{1}{2} \leqslant f'(x) \leqslant \frac{1}{6}.$
 - (b) En déduire que pour tous $x, y \in]0, +\infty[, |f(x) f(y)| \le \frac{1}{2}|x y|.$
- 5. On définit la suite u en posant : $u_0 = 1$ et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$.
 - (a) Compléter le programme suivant pour que l'appel de vectU(n) renvoie un vecteur contenant les n premiers termes de la suite u. On recopiera l'intégralité du programme sur sa copie.

```
import numpy as np
def vectU(n) :
    U = ......; U[0] = ...
    for k in range( ... ) :
        U[k+1] = ......
    return U
```

- (b) Montrer que pour tout $n \in \mathbb{N}$, $|u_{n+1} \alpha| \leq \frac{1}{2}|u_n \alpha|$.
- (c) En déduire une majoration de $|u_n \alpha|$ en fonction de n et α , puis la valeur de $\lim_{n \to +\infty} u_n$.

Exercice 2: Une équation fonctionnelle

Dans cet exercice, on cherche à déterminer toutes les fonctions dérivables $f: \mathbb{R} \to \mathbb{R}$ satisfaisant la relation :

(*)
$$\forall (x,y) \in \mathbb{R}^2$$
, $f(x+y) = \frac{f(x) + f(y)}{1 + f(x)f(y)}$ (et $f(x)f(y) \neq -1$)

- 1. Quelques exemples.
 - (a) Déterminer les fonctions constantes qui satisfont la relation (\star) .
 - (b) Montrer que la fonction $f: x \mapsto \frac{e^x 1}{e^x + 1}$ satisfait la relation (\star) .
- 2. Propriétés générales.
 - (a) Montrer que si une fonction f satisfait la relation (\star) , alors la fonction g = -f également.
 - (b) Montrer que si une fonction f satisfait la relation (\star) et s'il existe un $x \in \mathbb{R}$ tel que f(x) = 1 ou f(x) = -1, alors f est nécessairement constante.

Dans toute la suite, on considère une fonction <u>non constante</u> $f \in D(\mathbb{R}, \mathbb{R})$ satisfaisant la relation (\star) . On pose de plus $a = f'(0) \in \mathbb{R}$.

- 3. Ensemble d'arrivée.
 - (a) Montrer qu'on a nécessairement f(0) = 0.
 - (b) En raisonnant par l'absurde, en déduire que : $\forall x \in \mathbb{R}, f(x) \in]-1,1[$.
- 4. Equation différentielle.
 - (a) Pour tous $x, h \in \mathbb{R}$, montrer l'égalité : $\frac{f(x+h) f(x)}{h} = \frac{f(h)}{h} \times \frac{1 f(x)^2}{1 + f(x)f(h)},$
 - (b) En déduire (en justifiant rigoureusement) que : $\forall x \in \mathbb{R}, \ f'(x) = a(1 f(x)^2)$. Pourquoi ne peut-on pas avoir a = 0?

Puisque $a \neq 0$, quitte à considérer -f plutôt que f (c'est possible d'après la question 2.(a)), on suppose dans la suite que a = f'(0) > 0.

- 5. Bijectivité.
 - (a) Justifier que f est strictement croissante sur \mathbb{R} . En déduire qu'elle admet des limites finies $\ell_1 = \lim_{x \to -\infty} f(x)$ et $\ell_2 = \lim_{x \to +\infty} f(x)$.
 - (b) Déterminer les valeurs de ℓ_1 et ℓ_2 .

 Indication : On pourra déjà prendre x=y dans l'égalité (\star) puis passer à la limite.
 - (c) Montrer que f réalise une bijection de \mathbb{R} dans]-1,1[, que sa réciproque f^{-1} est dérivable sur]-1,1[, et que : $\forall x \in]-1,1[$, $(f^{-1})'(x)=\frac{1}{a(1-x^2)}$.
- 6. Expression de f^{-1} .

Dans cette question, on souhaite montrer : $\forall x \in]-1,1[, f^{-1}(x)=\frac{1}{2a}\ln\left(\frac{1+x}{1-x}\right).$

On s'intéresse pour cela à la différence : $\forall x \in]-1,1[, h(x)=f^{-1}(x)-\frac{1}{2a}\ln\left(\frac{1+x}{1-x}\right).$

- (a) Justifier que h est dérivable sur]-1,1[et calculer h'.
- (b) Calculer h(0) et obtenir la conclusion voulue.
- 7. Expression de f.

Montrer finalement que : $\forall x \in \mathbb{R}, \ f(x) = \frac{e^{2ax} - 1}{e^{2ax} + 1}$ Indication : f est la réciproque de f^{-1} ...

Conclusion de l'étude : Les seules fonctions dérivables non-constantes satisfaisant la relation (\star) sont les :

$$f: x \mapsto \pm \frac{e^{2ax} - 1}{e^{2ax} + 1}$$
, avec $a \in \mathbb{R}$.

Problème: Matrice de transition d'une chaîne de Markov

Partie I - Contexte probabiliste

Soient $p_1, p_2, p_3 \in]0,1[$ fixés.

Un mobile se déplace aléatoirement entre trois sites, notés A, B et C, selon le protocole suivant :

- Au départ, c'est à dire à l'instant n=0, le mobile est situé en A.
- Entre l'instant n et l'instant n + 1:
 - Si le mobile était en A, il y reste avec probabilité p_1 , ou bien il va en B avec probabilité $1-p_1$.
 - Si le mobile était en B, il va en A avec probabilité p_2 , ou bien en C avec probabilité $1-p_2$.
 - Si le mobile était en C, il y reste avec probabilité p_3 , ou bien il va en B avec probabilité $1-p_3$.

Pour tout $n \in \mathbb{N}$, on introduit les évènements suivants :

 A_n = "Le mobile se situe en A à l'instant n", B_n = "Le mobile se situe en B à l'instant n", C_n = "Le mobile se situe en C à l'instant n".

- 1. (a) Donner les probabilités $P(A_0)$, $P(B_0)$, $P(C_0)$, puis $P(A_1)$, $P(B_1)$, $P(C_1)$ en fonction de p_1 .
 - (b) Calculer les probabilités $P(A_2)$, $P(B_2)$, $P(C_2)$ en fonction de p_1 et p_2 .
- 2. Soit $n \in \mathbb{N}$. À l'aide la formule des probabilités totales, montrer que $P(A_{n+1}) = p_1 P(A_n) + p_2 P(B_n)$. Exprimer de même $P(B_{n+1})$ et $P(C_{n+1})$ en fonction de $P(A_n)$, $P(B_n)$, $P(C_n)$ et de p_1, p_2, p_3 .

Pour toute la suite, on définit la matrice de transition associée au mouvement du mobile :

$$M = \begin{pmatrix} p_1 & p_2 & 0\\ 1 - p_1 & 0 & 1 - p_3\\ 0 & 1 - p_2 & p_3 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$$

L'objectif du problème est de déterminer, dans des cas particuliers, l'expression de $P(A_n), P(B_n), P(C_n)$, puis la limite de ces probabilités lorsque n tend vers $+\infty$.

Dans cette optique, on définit également, pour tout $n \in \mathbb{N}$, la matrice colonne $U_n = \begin{pmatrix} P(A_n) \\ P(B_n) \\ P(C_n) \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R}).$

- 3. (a) Démontrer que : $\forall n \in \mathbb{N}, \ U_n = M^n \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.
 - (b) On effectue les importations : import numpy as np et import numpy.linalg as al. Définir en Python une fonction nommée calcul_proba qui prend en entrée des réels p1, p2, p3 (correspondant aux valeurs $p_1, p_2, p_3 \in]0, 1[$) ainsi qu'un entier n, et renvoie la matrice U_n .

Partie II - Etude du mobile symétrique

Dans cette partie, on se place dans le cas d'un mobile symétrique dont toutes les probabilités de déplacement sont égales. On suppose ainsi que $p_1 = p_2 = p_3 = \frac{1}{2}$. On introduit par ailleurs la matrice $J = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

- 4. Déterminer une matrice $S \in \mathcal{M}_3(\mathbb{R})$ de sorte que $M = \frac{1}{2}(J S)$.
- 5. (a) Pour tout $k \in \mathbb{N}^*$, déterminer l'expression de J^k en fonction de k et de la matrice J.
 - (b) Pour tout $k \in \mathbb{N}$, déterminer l'expression de S^k en fonction de la parité de k.
 - (c) Vérifier que les matrices S et J commutent. Que vaut le produit JS^k pour tout $k \in \mathbb{N}$?
- 6. (a) Montrer que pour tout $n \in \mathbb{N}$, $M^n = \frac{1}{2^n} \left((-1)^n S^n + \left(\sum_{k=1}^n \binom{n}{k} (-1)^{n-k} 3^{k-1} \right) J \right)$.
 - (b) Obtenir finalement, pour tout $n \in \mathbb{N}$, $M^n = \frac{1}{2^n} \left((-1)^n S^n + \frac{2^n (-1)^n}{3} J \right)$.
- 7. (a) En déduire que pour tout $n \in \mathbb{N}$, $P(A_{2n}) = \frac{1}{3} + \frac{2}{3}4^{-n}$ et $P(B_{2n}) = P(C_{2n}) = \frac{1}{3} \frac{1}{3}4^{-n}$. Calculer de même les expressions de $P(A_{2n+1})$, $P(B_{2n+1})$, $P(C_{2n+1})$.
 - (b) Déterminer, en justifiant, $\lim_{n\to+\infty} P(A_n)$, $\lim_{n\to+\infty} P(B_n)$, $\lim_{n\to+\infty} P(C_n)$. Expliquer en quoi ce résultat est cohérent avec l'hypothèse d'un "mobile symétrique".

Partie III - Etude d'un mobile asymétrique

Dans cette partie, on se place dans le cas d'un mobile asymétrique ayant les probabilités de déplacement :

$$p_1 = \frac{1}{2}, \quad p_2 = \frac{3}{4}, \quad p_3 = \frac{1}{2}.$$

On introduit par ailleurs le polynôme $P(X) = 4X^3 - 4X^2 - X + 1$.

8. (a) Proposer un programme Python qui définit la matrice M (avec les valeurs particulières de p_1, p_2, p_3 spécifiées dans cette partie) puis calcule et affiche le contenu de la matrice P(M).

On admet que ce programme affiche la matrice nulle : P est donc un polynôme annulateur de M.

- (b) En déduire que M est inversible et exprimer son inverse M^{-1} en fonction de I_3 , M et M^2 .
- (c) Déterminer la forme factorisée du polynôme P dans $\mathbb{R}[X]$. Donner ses racines et leurs multiplicités.

On s'intéresse à présent aux équations de la forme $MX = \lambda X$ d'inconnue X, où λ est un réel fixé. Pour tout $\lambda \in \mathbb{R}$, on définit ainsi l'ensemble de matrices colonnes : $E_{\lambda} = \{X \in \mathcal{M}_{3,1}(\mathbb{R}) \mid MX = \lambda X\}$.

- 9. (a) En résolvant un système linéaire, déterminer explicitement l'ensemble E_1 (i.e E_{λ} avec $\lambda = 1$). On notera en particulier que $\binom{3}{2} \in E_1$.
 - (b) Vérifier rapidement que l'on a $\binom{-1}{0} \in E_{\frac{1}{2}}$, et $\binom{3}{-4} \in E_{-\frac{1}{2}}$.

On introduit alors la matrice : $Q = \begin{pmatrix} 3 & -1 & 3 \\ 2 & 0 & -4 \\ 1 & 1 & 1 \end{pmatrix}$ ("fusion" des trois matrices colonnes précédentes).

- 10. Montrer que Q est inversible et déterminer la matrice inverse Q^{-1} .
- 11. (a) Montrer qu'il existe une matrice diagonale D, dont on précisera les coefficients, telle que MQ=QD.
 - (b) En déduire une expression de M en fonction des matrices D, Q et Q^{-1} .
 - (c) Proposer un programme Python qui définit les matrices M et Q, puis affiche le produit $Q^{-1}MQ$ pour confirmer la valeur trouvée pour la matrice D.
- 12. (a) Démontrer par récurrence que pour tout $n \in \mathbb{N}$, $M^n = QD^nQ^{-1}$.
 - (b) Que vaut la matrice D^n pour tout $n \in \mathbb{N}$?
- 13. (a) Déduire finalement, pour tout $n \in \mathbb{N}$, les expressions des probabilités :

$$P(A_n) = \frac{1}{2} + \frac{1}{4} \left(\frac{1}{2}\right)^n + \frac{1}{4} \left(-\frac{1}{2}\right)^n, \quad P(B_n) = \frac{1}{3} - \frac{1}{3} \left(-\frac{1}{2}\right)^n, \quad P(C_n) = \frac{1}{6} - \frac{1}{4} \left(\frac{1}{2}\right)^n + \frac{1}{12} \left(-\frac{1}{2}\right)^n.$$

(b) En déduire $\lim_{n\to+\infty} P(A_n)$, $\lim_{n\to+\infty} P(B_n)$, $\lim_{n\to+\infty} P(C_n)$ et interpréter ces valeurs vis à vis des déplacements du mobile.

*** Fin du sujet ***