Problema 806

Siga un triangle \overrightarrow{ABC} amb $\overline{AB} > \overline{AC}$, la recta (Δ) tangent en A al seu cercle circumscrit, I el centre del cercle inscrit i J el centre del exinscrit en el sector BAC. Siga el punt D en el costat \overline{AB} tal que $\overline{AD} = \overline{AC}$.

Les rectes DI i DJ tallen la recta (Δ) en els punts P i Q, respectivament.

Demostreu que A és el punt mig de \overline{PQ} .

Solució de Ricard Peiró i Estruch.

Considerem la circumferència de centre A que passa per C i D.

La bisectriu AI és mediatriu del segment CD,

$$\angle PAB = 180^{\circ}-C$$
.

$$\angle ACI = \angle ADI = \frac{C}{2}$$
.

Aleshores,
$$\angle APD = \frac{C}{2}$$
.

$$\angle BAQ = C$$
.

Aleshores, P pertany a la circumferència de centre A que passa per C.

$$\angle CJA = \angle DJA = \frac{B}{2}$$

$$\angle JAQ = \frac{A}{2} + C$$
.

Aleshores,
$$\angle AQD = 90 - \frac{C}{2}$$
.

$$\angle DAP = 180^{\circ}-C$$
.

Aleshores, ${\sf Q}$ pertany a la circumferència de centre ${\sf A}$ que passa per ${\sf C}.$

Per tant, \overline{PQ} és un diàmetre, aleshores el centre A és el punt mig de \overline{PQ} .