Automatic container model crane

Juni 17, 2016

Gruppe 633

Daniel Bähner Andersen Nicolaj Vinkel Christensen Ralf Victor Lomand Ravgård Christiansen Simon Bjerre Krogh Thomas Holm Pilgaard

Institut for elektroniske systemer Aalborg Universitet Danmark

Force estimation

Force estimation

Force estimation model

Automatic container model crane

Gruppe 633

- ▶ Model approach
- ► Nonlinearities in the EndoWrist dynamics
 - ► Hammerstein Wiener Models

Figure: Hammerstein-Wiener model.

Force estimation

► Linear model

- Choice of inputs affects model quality
- ► Inputs: effort, velocity
- Outputs: force
- ▶ Black-box identification
 - ► Subspace identification
 - ► Hankel singular value analysis

Include picture with effort force fit here!!

Force estimation

- ► Input and output nonlinearities
 - ► Effort
 - ► Force

Include picture with effort force fit here!!

Force estimation model

Hammerstein Wiener Models

Automatic container model crane Gruppe 633

Force estimation

Nonlinearities

- Deadzone nonlinearities
- ► Input/Output -saturation

Automatic container model crane Gruppe 633

► Modeling for additional outputs allows correction of the model using an estimator

Automatic container model crane

Gruppe 633

- Modeling for additional outputs allows correction of the model using an estimator
- ► A multiple output model that adequatley captures the dynamics of the system could be used in a Kalman filter to create a state estimate

Automatic container model crane

Gruppe 633

- Modeling for additional outputs allows correction of the model using an estimator
- ► A multiple output model that adequatley captures the dynamics of the system could be used in a Kalman filter to create a state estimate
- ► The state estimates can be used in a state feedback loop to change system dynamics

Automatic container model crane

Gruppe 633

- Modeling for additional outputs allows correction of the model using an estimator
- ► A multiple output model that adequatley captures the dynamics of the system could be used in a Kalman filter to create a state estimate
- ► The state estimates can be used in a state feedback loop to change system dynamics
- ➤ This means that reference following capabilities can be added to the system, dispite the nonlinear characteristics of the dynamics

Automatic container model crane Gruppe 633

_ _ _

► The hypothesis was tested in simulation

Automatic container model crane

Gruppe 633

- ► The hypothesis was tested in simulation
- ► Simulation results show that full reference following is possible despite the input nonlinearities in the system

Automatic container model crane

Gruppe 633

- ► The hypothesis was tested in simulation
- ► Simulation results show that full reference following is possible despite the input nonlinearities in the system
- ▶ While the transient behaviour of the reference value is replicated, offsets and parasitic gains need to be compensated

Automatic container model crane

Gruppe 633

- ► The hypothesis was tested in simulation
- ► Simulation results show that full reference following is possible despite the input nonlinearities in the system
- ▶ While the transient behaviour of the reference value is replicated, offsets and parasitic gains need to be compensated
- ► Could be implemented with improved model, doesn't improve estimate of current one.