# PROCURA EM ESPAÇOS DE ESTADOS

(PARTE 2)

Luís Morgado 2015

Procura em profundidade (Depth-First Search)

**function** DEPTH-FIRST-SEARCH(*problem*) **returns** a solution, or failure GENERAL-SEARCH(*problem*,ENQUEUE-AT-FRONT)



## PROCURA EM PROFUNDIDADE



#### Procura em largura (Breadth-First Search)

**function** BREADTH-FIRST-SEARCH(*problem*) **return**s a solution or failure **return** GENERAL-SEARCH(*problem*,ENQUEUE-AT-END)

[Russel & Norvig, 2003]



Grafo do Espaço de Estados



3 [6,4]

[6,4,**2,5**]

**4** [2,5,3]



6 [4,2,5] Árvore de Procura

## PROCURA EM LARGURA



# CRITÉRIOS DE EXPLORAÇÃO DO GRAFO DE ESPAÇO DE ESTADOS

#### PROCURA EM PROFUNDIDADE

Explorar primeiro nós com maior profundidade

#### PROCURA EM LARGURA

Explorar primeiro nós com menor profundidade

## QUAL O MELHOR MÉTODO DE PROCURA?

Aspectos a considerar num método de procura

#### - COMPLETO

 O método de procura garante que, caso exista solução, esta será encontrada

#### ÓPTIMO

 O método de procura garante que, existindo várias soluções, a solução encontrada é a melhor

#### COMPLEXIDADE

- TEMPO (complexidade temporal)
  - Tempo necessário para encontrar uma solução
- **ESPAÇO** (complexidade espacial)
  - Memória necessária para encontrar uma solução

 Parâmetros de caracterização de um método de procura:

## FACTOR DE RAMIFICAÇÃO - b

Número máximo de sucessores para um qualquer estado

#### PROFUNDIDADE DA PROCURA - d

- Profundidade do nó objectivo menos profundo na árvore de procura
- Dimensão do percurso entre o estado inicial e o estado objectivo

# COMPORTAMENTO LIMITE DE UMA FUNÇÃO

#### Notação f = O(g)

f(x) é de ordem O(g(x)) se existirem duas constantes positivas  $x_0$  e c tal que:

 $(x > x_0) : f(x) \le cg(x)$ 



## COMPLEXIDADE COMPUTACIONAL

#### PROCURA EM LARGURA

Factor de ramificação (branching factor): **b** 

Número de nós a expandir para encontrar uma solução de dimensão **d** 

$$1 + b + b^2 + b^3 + ... + b^d \longrightarrow Complexidade espacial:  $O(b^d)$$$

Complexidade temporal: O(b<sup>d</sup>)

UTILIZAÇÃO EXTENSIVA DE MEMÓRIA

#### PROCURA EM PROFUNDIDADE

Número de nós a expandir para explorar até uma profundidade *m* 

Complexidade espacial: **O(bm) PODE NÃO ENCONTRAR** 

Complexidade temporal:  $O(b^m)$  SOLUÇÃO

## COMPLEXIDADE COMPUTACIONAL

| Método de<br>Procura | Tempo    | Espaço   | Óptimo | Completo |
|----------------------|----------|----------|--------|----------|
| Profundidade         | $O(b^m)$ | O(bm)    | Não    | Não      |
| Largura              | $O(b^d)$ | $O(b^d)$ | Sim    | Sim      |

b – factor de ramificação

d −dimensão da solução

m – profundidade da árvore de procura

C\* − Custo da solução óptima

 $\varepsilon$  – Custo mínimo de uma transição de estado ( $\varepsilon$  > 0)

#### PROCURA EM PROFUNDIDADE LIMITADA

(Depth-Limited Search)

• Limitar procura a uma profundidade máxima

#### PROCURA EM PROFUNDIDADE ITERATIVA

(Iterative Deepening Search)

```
function Iterative-Deepening-Search(problem) returns a solution, or failure
inputs: problem, a problem
```

```
for depth \leftarrow 0 to \infty do

result \leftarrow DEPTH-LIMITED-SEARCH(problem, depth)

if result \neq \text{cutoff then return } result
```

[Russel & Norvig, 2003]

### PROCURA EM PROFUNDIDADE ITERATIVA



Número de nós a expandir para encontrar uma solução de dimensão **d** 

$$(d+1) + (d)b + (d-1)b^2 + ... + 2b^{d-1} + 1b^d$$

Complexidade espacial: O(bd)

Complexidade temporal:  $O(b^d)$ 

# PROCURA BIDIRECCIONAL



Figure 3.17 A schematic view of a bidirectional breadth-first search that is about to succeed, when a branch from the start node meets a branch from the goal node.

[Russel & Norvig, 2003]

# **BIBLIOGRAFIA**

[Russel & Norvig, 2009]

S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 3rd Edition, Prentice Hall, 2009

[Nilsson, 1998]

N. Nilsson, Artificial Intelligence: A New Synthesis, Morgan Kaufmann 1998

[Luger, 2009]

G. Luger, Artificial Intelligence: Structures and Strategies for Complex Problem Solving, Addison-Wesley, 2009

[Jaeger & Hamprecht, 2010]

M. Jaeger, F. Hamprecht, *Automatic Process Control for Laser Welding*, Heidelberg Collaboratory for Image Processing (HCI), 2000