【数据处理】

测量时使氢氧化铁溶胶界面下降 5mm, 再交换正负极使其上升 5mm, 共测量十次

序号	1	2	3	4	5	平均值
下降所用时间(s)	302.45	379.04	415.16	445.16	490.11	406.38
上升所用时间(s)	459.11	657.24	931.11	924.17	946.63	783.69

环境温度为 $14.0\,^{\circ}$ C (287.15K),假设电泳时所用的辅助液的性质与纯水相同,则根据水粘度近似公式 $^{[1][2]}\eta=2.414\times 10^{-5}\times 10^{\frac{-247.8}{2-140}}$ 可以计算出水的粘度为 $\eta=1.166\times 10^{-3}$ $Pa\cdot s$,根据文献 $^{[3]}$ 中的近似公式可知此时水的介电常数 D=82.31

将测量所得数据和电极间的距离 l=18.5 cm 代入公式

$$\zeta = \frac{4\pi\eta sl}{DVt}300^2 (V)$$

对于下降组数据可以求出 $\zeta_{down} = +9.12 \times 10^{-3} \, V$,对于上升组数据可以求出 $\zeta_{up} = +4.73 \times 10^{-3} \, V$,取平均值为 $\zeta = +6.92 \times 10^{-3} \, V$,与文献值 $\zeta = +44 \times 10^{-3} \, V$ 相去甚远,可能的原因包括但不限于:1. 电极间距离测量的误差;2. 辅助液的粘度和介电常数与水之间的差异;3. 观察界面高度时的读数误差;4. 界面运动与单个胶粒本身的运动间关系不明确;5. 胶体的制备方法与文献中方法不一致;

根据文献 $^{[4]}$,不同方法和 pH 下,不同体系制备的氢氧化铁胶体的 ζ 电位不尽相同,因此对于实验所得的测量值无法评价其数据的准确程度。

此外,从数据中可以发现下降所需的时间小于上升所需的时间,原因有待于研究。

【引用】

[1]http://www.as-1.co.jp/academy/24/24-2.html

[2]https://zh.wikipedia.org/wiki/%E9%BB%8F%E5%BA%A6#.E6.B0.B4

[3]https://nvlpubs.nist.gov/nistpubs/jres/56/jresv56n1p1_A1b.pdf

[4]http://link.springer.com/article/10.1007%2FBF00351560