2022-2023 MP2I

17. Convexité, méthodologie

I. Généralités

I.1. définition

Proposition. Soient $a, b \in \mathbb{R}$ avec $a \leq b$. Alors, $[a, b] = \{ta + (1 - t)b, t \in [0, 1]\}$.

Définition. Soit $f: I \to \mathbb{R}$ où I est un intervalle de \mathbb{R} . On dit que f est convexe si :

$$\forall x, y \in I, \ \forall \lambda \in [0, 1], \ f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y).$$

Définition. On dit que f est concave si -f est convexe (autrement dit, si l'inégalité précédente est inversée).

m Toutes les propriétés des fonctions convexes sont vraies sur les fonctions concaves en inversant les inégalités.

Proposition. Soit $f: I \to \mathbb{R}$ où I est un intervalle de \mathbb{R} . Alors f est convexe si et seulement si $\forall x_1, x_2 \in I$, la corde reliant $(x_1, f(x_1))$ et $(x_2, f(x_2))$ est au-dessus de la courbe représentative de f.

I.2. Inégalités

Théorème. Inégalité de Jensen. Soit $f:I\to\mathbb{R}$ une fonction convexe où I est un intervalle. Alors :

$$\forall x_1, \dots, x_n \in I, \ \forall \lambda_1, \dots, \lambda_n \in \mathbb{R}_+ \ / \ \sum_{i=1}^n \lambda_i = 1, \ f\left(\sum_{i=1}^n \lambda_i x_i\right) \le \sum_{i=1}^n \lambda_i f\left(x_i\right).$$

m La convexité permet souvent de prouver « facilement » des inégalités en utilisant l'inégalité de Jensen à une fonction convexe/concave bien choisie en des bonnes valeurs de $\lambda_1, \ldots, \lambda_n$ (très souvent tous égaux à $\frac{1}{n}$).

Exercice d'application 1. Montrer que $\forall a, b \in \mathbb{R}, \ \frac{e^a + e^b}{2} \ge e^{\left(\frac{a+b}{2}\right)}$.

Exercice d'application 2. Montrer que $\forall n \in \mathbb{N}^*, \forall x_1, \dots, x_n \in \mathbb{R}_+^*, \frac{n}{\sum_{k=1}^n x_k} \leq \frac{\sum_{k=1}^n \frac{1}{x_k}}{n}$.

I.3. Propriétés des fonctions convexes

Proposition. Soit $f: I \to \mathbb{R}$ une fonction convexe où I est un intervalle de \mathbb{R} . Alors f est convexe si et seulement si ses pentes sont croissantes, c'est à dire si et seulement si

$$\forall y \in I$$
, la fonction $x \mapsto \frac{f(x) - f(y)}{x - y}$ est croissante sur $I \setminus \{y\}$.

Proposition. Soit $f: I \to \mathbb{R}$ une fonction convexe où I est un intervalle de \mathbb{R} . Soit $x_1, x_2 \in I$ tels que $x_1 < x_2$ et \mathcal{D} la droite passant par $(x_1, f(x_1))$ et $(x_2, f(x_2))$ (on dit que \mathcal{D} est une droite sécante à la courbe représentative de f). Alors, la courbe représentative est en-dessous de \mathcal{D} sur $[x_1, x_2]$ et au-dessus ailleurs.

 \boxed{m} Les deux propriétés précédentes permettent en général d'étudier les limites en $\pm \infty$ d'une fonction convexe à l'aide des théorèmes d'encadrements.

Exercice d'application 3. Soit $f: \mathbb{R} \to \mathbb{R}$ convexe telle que f(-1) > f(0) et f(0) < f(1). Montrer que $\lim_{x \to -\infty} f(x) = +\infty$ et que $\lim_{x \to +\infty} f(x) = +\infty$.

II. Régularité des fonctions convexes et lien avec la dérivabilité

Proposition. Soit $f:]a, b[\to \mathbb{R}$ convexe. Alors f est continue.

m Autrement dit, les seuls endroits où une fonction convexe peut être discontinue est au bord de l'intervalle (si l'intervalle n'est pas ouvert).

Proposition. Soit $f: I \to \mathbb{R}$ une fonction dérivable sur un intervalle I de \mathbb{R} . Alors, f est convexe si et seulement si f' est croissante sur I.

Proposition. Soit $f: I \to \mathbb{R}$ une fonction dérivable sur un intervalle I de \mathbb{R} . Alors la courbe représentative de f est située au-dessus de toutes ses tangentes.

 \bigcirc Quand f est convexe, on peut donc trouver des encadrements de f(x) en comparant le graphe de f par rapport aux tangentes et/ou aux sécantes de la courbe représentative de f.

Exercice d'application 4. Montrer sans étudier de fonctions que :

- 1) $\forall x \in \mathbb{R}, \ e^x \ge x + 1.$
- 2) $\forall x \in \left[0, \frac{\pi}{2}\right], \ \frac{2}{\pi}x \le \sin(x) \le x.$

Proposition. Soit $f: I \to \mathbb{R}$ une fonction deux fois dérivables sur un intervalle I de \mathbb{R} . Alors, f est convexe si et seulement si $\forall x \in I, f''(x) \geq 0$.

(m) C'est très souvent cette propriété qui est utilisée pour montrer qu'une fonction est convexe.

Exercice d'application 5. Les fonctions suivantes sont-elles convexes/concaves?

- 1) exp, ln, arctan, ch, sh sur leurs domaines de définition.
- 2) $x \mapsto \sin(x) \operatorname{sur} [0, 2\pi]$. Et $\operatorname{sur} [0, \pi]$?
- 3) $x \mapsto \frac{1}{1+x} \operatorname{sur} \mathbb{R}_+.$
- 4) $x \mapsto \arctan(\sqrt{x}) \text{ sur } \mathbb{R}_+^*$.
- 5) $x \mapsto \sqrt{x} \text{ sur } \mathbb{R}_+^*$. Et sur \mathbb{R}_+ ?

III. Correction des exercices

Exercice d'application 1. La fonction exponentielle est convexe (dérivée croissante). On en déduit que pour $a, b \in \mathbb{R}$, en prenant $\lambda = \frac{1}{2} \in [0, 1]$:

$$e^{\frac{a+b}{2}} \leq \frac{1}{2}e^a + \frac{1}{2}e^b$$

ce qui est l'inégalité demandée.

Exercice d'application 2. La fonction $f: x \mapsto \frac{1}{x}$ est convexe sur \mathbb{R}_+^* (car la dérivée seconde est $x \mapsto \frac{2}{x^3}$ qui est positive sur \mathbb{R}_+^*). D'après l'inégalité de Jensen prise en $\lambda_1 = \ldots = \lambda_n = \frac{1}{n}$, on en déduit que pour $x_1, \ldots, x_n > 0$:

$$f\left(\frac{\sum_{i=1}^{n} x_i}{n}\right) \le \sum_{i=1}^{n} \frac{f(x_i)}{n} \Leftrightarrow \frac{n}{\sum_{i=1}^{n} x_i} \le \frac{\sum_{i=1}^{n} \frac{1}{x_i}}{n}.$$

Exercice d'application 3. Puisque f est convexe, on a par croissance des pentes que pour x > 1 que $\frac{f(x) - f(0)}{x - 0} \ge \frac{f(1) - f(0)}{1 - 0}$. On en déduit donc que :

$$\forall x > 1, \ f(x) \ge x(f(1) - f(0)) + f(0).$$

Ceci entraine par théorème d'encadrement que $\lim_{x\to+\infty} f(x) = +\infty$ (puisque f(1) - f(0) > 0).

On procède de même pour la limite en $-\infty$. Par croissance des pentes, on a pour x < -1, $\frac{f(x) - f(0)}{x - 0} \le \frac{f(-1) - f(0)}{-1 - 0}$, soit (attention, x est négatif, on change le sens de l'inégalité!) :

$$\forall x < -1, \ f(x) \ge x(f(0) - f(-1)) + f(0).$$

Puisque f(0) - f(-1) < 0, on en déduit par théorème d'encadrement que $\lim_{x \to -\infty} f(x) = +\infty$.

Exercice d'application 4. Montrer sans étudier de fonctions que :

- 1) La fonction exponentielle est convexe sur \mathbb{R} (car sa dérivée est croissante). Or, sa tangente en 0 est d'équation $y = 1 \times (x 0) + 1$, soit y = x + 1. Par convexité, on a que $\forall x \in \mathbb{R}, e^x \geq x + 1$.
- 2) Sur $\left[0, \frac{\pi}{2}\right]$, la fonction sinus est concave (car sin" = $-\sin$ qui est négative sur cet intervalle). Puisque y = x est la tangente à 0 en sinus, on en déduit que $\forall x \in \left[0, \frac{\pi}{2}\right]$, $\sin(x) \leq x$.

De plus, toujours pas concavité, on a que sinus est au-dessus de ses cordes. Or, la corde reliant les points $(0,\sin(0))=(0,0)$ et $\left(\frac{\pi}{2},\sin\left(\frac{\pi}{2}\right)\right)=\left(\frac{\pi}{2},1\right)$ est d'équation :

$$y = \frac{1-0}{\frac{\pi}{2}-0}(x-0) + 0 = \frac{2}{\pi}x.$$

On a donc bien $\forall x \in \left[0, \frac{\pi}{2}\right], \ \frac{2}{\pi}x \leq \sin(x).$

Exercice d'application 5. Les fonctions suivantes sont-elles convexes/concaves?

1) exp est convexe (dérivée croissante) sur \mathbb{R} , ln est concave sur \mathbb{R}_+^* (car de dérivée décroissante). On a $\forall x \in \mathbb{R}$, $\arctan'(x) = \frac{1}{1+x^2}$ qui n'est ni croissante, ni décroissante sur \mathbb{R} donc arctan n'est

4

ni convexe, ni concave. ch est convexe (car sa dérivée sh est croissante) mais sh n'est ni convexe, ni concave sur \mathbb{R} (sa dérivée ch n'est ni croissante, ni décroissante sur \mathbb{R}).

- 2) $x \mapsto \sin(x)$ n'est pas convexe ou concave sur $[0, 2\pi]$ ($\sin'' = -\sin$ qui n'est pas de signe constant sur $[0, 2\pi]$). Par contre sur $[0, \pi]$, sin est concave (dérivée seconde négative).
- 3) $f: x \mapsto \frac{1}{1+x}$ est deux fois dérivables sur \mathbb{R}_+ comme composée de fonctions deux fois dérivables. On a pour $x \in \mathbb{R}_+$, $f'(x) = -\frac{1}{(1+x)^2}$ et $f''(x) = \frac{2}{(1+x)^3} \ge 0$. On en déduit que f est convexe sur \mathbb{R}_+ .
- 4) $f: x \mapsto \arctan(\sqrt{x})$ est deux fois dérivables sur \mathbb{R}_+^* comme composée de fonctions deux fois dérivables. On a pour x > 0:

$$f'(x) = \frac{1}{2\sqrt{x}} \times \frac{1}{1 + (\sqrt{x})^2} = \frac{1}{2\sqrt{x}(1+x)}.$$

On a alors $f''(x) = \frac{1}{2} \times \frac{-\left(\frac{1}{2\sqrt{x}} + \frac{3}{2}\sqrt{x}\right)}{(\sqrt{x} + x^{3/2})^2} \le 0$. On en déduit que f est concave sur \mathbb{R}_+^* .

5) $x \mapsto \sqrt{x}$ est concave sur \mathbb{R}_+^* (sa dérivée est $x \mapsto \frac{1}{2\sqrt{x}}$ qui est décroissante. Elle est aussi concave sur \mathbb{R}_+ . En effet, puisqu'elle est concave sur \mathbb{R}_+^* , il suffit de vérifier l'inégalité de concavité si x = 0. Or, pour $\lambda \in [0,1]$ et $y \in \mathbb{R}_+$, on a :

$$f(\lambda x + (1 - \lambda)y) = \sqrt{(1 - \lambda)y}$$

et $\lambda f(x) + (1-\lambda)f(y) = (1-\lambda)\sqrt{y}$. Puisque $0 \le \sqrt{1-\lambda} \le 1$, on en déduit par produit que :

$$f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y)$$

ce qui étant bien la concavité en en x = 0.

On peut aussi remarquer que la fonction racine étant continue, par passage à la limite dans les inégalités quand $x \to 0$ et à y fixé, on peut étendre la relation de concavité sur \mathbb{R}_+^* à \mathbb{R}_+ .