draw confision matrix and calculate Accuracy, precision, recall, specificity, and error rate for temperature predicted as High, Medium, and Low

Assistant

Poe

To create a confusion matrix and calculate the metrics like accuracy, precision, recall, specificity, and error rate, you'll need some data. However, without specific numbers, I can guide you through the process.

Confusion Matrix Structure

Assuming you have a confusion matrix for three classes: High, Medium, and Low, it might look like this:

	Predicted High	Predicted Medium	Predicted Low
Actual High	TP_H	FP_H	FN_H
Actual Medium	FP_M	TP_M	FN_M
Actual Low	FP_L	FP_L	TP_L

Where:

- **TP** = True Positive
- **FP** = False Positive
- **FN** = False Negative

Metrics Calculation

1. Accuracy:

$$Acuuracy = (TPh + TPm + TPl) / total samples$$

2. **Precision** for each class:

PrecisionHigh =
$$TP H / (TP H + FP H)$$

$$PrecisionMedium = TP_M / (TP_M + FP_M)$$

PrecisionLow =
$$TP_L / (TP_L + FP_L)$$

3. **Recall** for each class:

RecallHigh =
$$TP_H / (TP_H + FN_H)$$

RecallMedium =
$$TP_M / (TP_M + FN_M)$$

$$RecallLow = TP_L / (TP_L + FN_L)$$

4. **Specificity** for each class (True Negative Rate):

SpecificityHigh =
$$TN_H / (TN_H + FP_H)$$

SpecificityMedium =
$$TN_M / (TN_M + FP_M)$$

SpecificityLow =
$$TN L / (TN L + FP L)$$

5. Error Rate: