<u>Assignment - 3 (Advanced Numerical Techniques)</u>

Submission by: Abhinav Jain, 13MA20004

Q. Solve the fourth order differential equation by block tri-diagonal method.

$$y'''' + 81y = 81x^2$$

Subject to the boundary conditions y(0)=y(1)=y''(0)=y''(1)=0Where h=0.1, 0.05

Solution Plot: (For h = 0.05)

MATLAB Output:

ans =

Y =

0 0.0227

0 0.0227 0.0451 Y = 0 0.0227 0.0451 0.0668 Y = 0 0.0227 0.0451 0.0668 0.0875 Y = 0 0.0227 0.0451 0.0668 0.0875 0.1070 Y = 0 0.0227 0.0451 0.0668 0.0875 0.1070 0.1247 Y = 0.0227 0.0451 0.0668 0.0875 0.1070 0.1247 0.1402 Y = 0 0.0227 0.0451 0.0668 0.0875 0.1070 0.1247 0.1402 0.1532 Y = 0 0.0227 0.0451 0.0668 0.0875 0.1070 0.1247 0.1402 0.1532 0.1632 Y = 0.0227 0.0451 0.0668 0.1247 0.1402 0.1532 0 0.0875 0.1070 0.1632 0.1697

Columns 1 through 11

Y =

0 0.0227 0.0451 0.0668 0.0875 0.1070 0.1247 0.1402 0.1532 0.1632 0.1697 Column 12 0.1724 Y = Columns 1 through 11 0 0.0227 0.0451 0.0668 0.0875 0.1070 0.1247 0.1402 0.1532 0.1632 0.1697 Columns 12 through 13 0.1724 0.1709 Y = Columns 1 through 11 0 0.0227 0.0451 0.0668 0.0875 0.1070 0.1247 0.1402 0.1532 0.1632 0.1697 Columns 12 through 14 0.1724 0.1709 0.1649 Y = Columns 1 through 11 0 0.0227 0.0451 0.0668 0.0875 0.1070 0.1247 0.1402 0.1532 0.1632 0.1697 Columns 12 through 15 0.1724 0.1709 0.1649 0.1541 Y = Columns 1 through 11 0 0.0227 0.0451 0.0668 0.0875 0.1070 0.1247 0.1402 0.1532

0.1632 0.1697

Columns 12 through 16

0.1724 0.1709 0.1649 0.1541 0.1385

Y =

Columns 1 through 11

0 0.0227 0.0451 0.0668 0.0875 0.1070 0.1247 0.1402 0.1532

0.1632 0.1697

Columns 12 through 17

0.1724 0.1709 0.1649 0.1541 0.1385 0.1182

Y =

Columns 1 through 11

0 0.0227 0.0451 0.0668 0.0875 0.1070 0.1247 0.1402 0.1532

0.1632 0.1697

Columns 12 through 18

0.1724 0.1709 0.1649 0.1541 0.1385 0.1182 0.0934

Y =

Columns 1 through 11

0 0.0227 0.0451 0.0668 0.0875 0.1070 0.1247 0.1402 0.1532

0.1632 0.1697

Columns 12 through 19

0.1724 0.1709 0.1649 0.1541 0.1385 0.1182 0.0934 0.0648

Y =

Columns 1 through 11

0 0.0227 0.0451 0.0668 0.0875 0.1070 0.1247 0.1402 0.1532

0.1632 0.1697

Columns 12 through 20

0.172	4 0.1709	0.1649	0.1541	0.1385	0.1182	0.0934	0.0648	0.0333		
X =										
Columns 1 through 11										
0.4500	0 0.0500 0.5000	0.1000	0.1500	0.2000	0.2500	0.3000	0.3500	0.4000		
Columns 12 through 21										
0.550 1.0000	0 0.6000	0.6500	0.7000	0.7500	0.8000	0.8500	0.9000	0.9500		
Y =										
Columns 1 through 11										
0.1632	0 0.0227 0.1697	0.0451	0.0668	0.0875	0.1070	0.1247	0.1402	0.1532		
Columns 12 through 21										
0.172 0	4 0.1709	0.1649	0.1541	0.1385	0.1182	0.0934	0.0648	0.0333		
ans =										
Columns 1 through 11										
0.4500	0 0.0500 0.5000	0.1000	0.1500	0.2000	0.2500	0.3000	0.3500	0.4000		
Columns 12 through 21										
0.550 1.0000	0 0.6000	0.6500	0.7000	0.7500	0.8000	0.8500	0.9000	0.9500		

Solution Plot: (For h = 0.1)

MATLAB Output:

Y =

0 0.0447

Y =

0 0.0447 0.0869

Y =

0 0.0447 0.0869 0.1239

Y =

0 0.0447 0.0869 0.1239 0.1524

Y =

	0	0.0447	0.0869	0.1239	0.1524	0.1690				
Υ =	0	0.0447	0.0869	0.1239	0.1524	0.1690	0.1704			
Υ =	0	0.0447	0.0869	0.1239	0.1524	0.1690	0.1704	0.1539		
Υ =	0	0.0447	0.0869	0.1239	0.1524	0.1690	0.1704	0.1539	0.1183	
Y = 0.0650	0	0.0447	0.0869	0.1239	0.1524	0.1690	0.1704	0.1539	0.1183	
X = 0.9000			0.2000	0.3000	0.4000	0.5000	0.6000	0.7000	0.8000	
Y = 0.0650	0	0.0447 0	0.0869	0.1239	0.1524	0.1690	0.1704	0.1539	0.1183	
ans =										
0.9000	0 1.0	0.1000 0000	0.2000	0.3000	0.4000	0.5000	0.6000	0.7000	0.8000	