

# Sistemas de Controle II - QS1.2021

# Laboratório Virtual 2

Diagramas de Bode e Nyquist com Octave

Professora: Dra. Heloise Assis Fazzolari

Grupo G

#### Alunos:

Daniel Macedo Costa Fagundes RA 11076809

Marcos Vinicius Fabiano de Oliveira RA 11067212

Santo André

# **SUMÁRIO**

| ı | Attividades                                                                                                                                                |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | 1.1 Determinar o diagrama de Bode para a seguinte função de transferência:                                                                                 |
|   | Reescrever a função de transfer $G(j\omega)$ como um produto dos fatores básicos e identificar as frequências de quebra                                    |
|   | Traçar curvas assintóticas de módulo em dB com as inclinações apropriadas em baixa e alta frequência                                                       |
|   | Traçar curvas lineares aproximadas de fase com os valores apropriados de fase em baixa e alta frequência, bem como nas frequências de quebra               |
|   | Verifique a frequência de ressonância e o pico de ressonância em dB, caso existam                                                                          |
|   | Determine o gráfico exato do diagrama de Bode usando o Matlab                                                                                              |
|   | 1.2 Considere a seguinte função de transferência:                                                                                                          |
|   | Determine os parâmetros da função padrão de segunda ordem:ζ, ωn;                                                                                           |
|   | Obtenha a função de transferência senoidal $G(j\omega)$ . Determine as partes real imaginária, módulo e fase;                                              |
|   | Esboce o diagrama de Nyquist manualmente tendo em vista os pontos característicos:                                                                         |
|   | Utilizando o comando nyquist do Matlab, desenhe o diagrama                                                                                                 |
|   | 1.3 Sistema de Servomotor CC                                                                                                                               |
|   | Obtenha o modelo do sistema de servomotor, considerando como entrada a tensão da armadura (va em V) e saída a velocidade angular da carga ( em rad/s) 15   |
|   | Considere agora o sistema completo. Aplique um sinal senoidal ao sistema e faça as leituras da saída (amplitude a fase) para vários valores de frequência. |
|   | Desenhe os diagramas de Bode e de Nyquist a partir dos dados obtidos. 27                                                                                   |
| 4 | NEXO A - Códigos Octave                                                                                                                                    |
|   | Atividade 1.1 24                                                                                                                                           |
|   | Atividade 1.2                                                                                                                                              |
|   | Atividade 1.3                                                                                                                                              |
|   |                                                                                                                                                            |

#### 1 Atividades

1.1 Determinar o diagrama de Bode para a seguinte função de transferência:

$$G(s) = \frac{s+10}{s^2 + 2.4s + 4}$$

A. Reescrever a função de transfer  $G(j\omega)$  como um produto dos fatores básicos e identificar as frequências de quebra

Podemos reescrever a função de transferência como produto de fatores básicos e colocar na forma padrão:

$$G(s) = \frac{10\left(\frac{1}{10}s + 1\right)}{4\left(\frac{1}{4}s^2 + \frac{6}{10}s + 1\right)} = \frac{2.5\left(\frac{s}{10} + 1\right)}{\left(\left(\frac{s}{2}\right)^2 + \frac{6}{10}s + 1\right)}$$

Fazendo  $s = j\omega$ , temos a função de transferência senoidal.

$$G(j\omega) = \frac{2.5\left(\frac{j\omega}{10} + 1\right)}{\left(\left(\frac{j\omega}{2}\right)^2 + \frac{6}{10}j\omega + 1\right)}$$

Avaliando a função de transferência senoidal acima, podemos analisar os fatores individualmente. Por questão de conveniência, para plotar as assíntotas de módulo no item B e as curvas aproximadas de fase no item C, iremos também abordar os comportamentos de módulo e fase em baixas e altas frequências para cada um dos fatores neste item.

#### Ganho K

$$K = 2.5 \ rad/s$$

$$M = 20 \log(2.5) \Rightarrow M = 7,96 \ dB$$

$$\angle K = 0^{\circ} (K > 0)$$

A contribuição do ganho K é uma reta horizontal de valor 7,96 dB, e devido o valor de K ser maior do que zero, a contribuição para o ângulo de fase 0°.

### Zero Real fora da Origem

$$\omega_c=10 \ rad/s$$
 $M_{BF}=0 \ dB$ 
 $M_{AF}=20 \log(10) \Rightarrow M_{AF}=20 \ dB$ 
 $fase_{BF}=0^\circ$ 
 $fase_{\omega_c}=45^\circ$ 
 $fase_{AF}=90^\circ$ 

A contribuição do zero real fora da origem é um segmento de reta de valor 0 dB (baixas frequências) até a frequência de canto, e depois, um novo segmento de reta partindo da frequência de canto, com aclive de +20 dB/década para altas frequências. A fase para baixas frequências fica em 0°, na frequência de canto passa por 45° e chegando a 90° para altas frequências. A variação de 0° a 90° é alcançada em duas décadas.

### Polo de Segunda Ordem

Forma padrão: 
$$\left(\frac{j\omega}{\omega_n}\right)^2 + 2\xi\left(\frac{j\omega}{\omega_n}\right) + 1 \implies \omega_n = \omega_c = 2 \ rad/s$$

$$M_{BF} = 0 \ dB$$

$$M_{AF} = -40 \ dB/d\acute{e}cada$$

$$fase_{BF} = 0^\circ$$

$$fase_{\omega_c} = -90^\circ$$

$$fase_{AF} = -180^\circ$$

Em baixas frequências, temos uma assíntota que parte de 0 dB até a frequência de canto, sendo esta igual à frequência natural. A partir deste ponto, temos uma nova assíntota com declive de -40 dB/década (altas frequências). Vale ressaltar que o coeficiente de amortecimento  $\xi$  não influencia na caracterização das assíntotas, mas gera um pico de ressonância na região  $\omega_n$ , que deve ser considerado durante a criação do DB. Para baixas frequências, a fase fica em 0°, na frequência de canto passa por -90° e chega em -180° para altas frequências. A variação de 0° a -180° é alcançada dependendo do valor do fator de amortecimento. Quanto mais próximo de 0, mais próximo de um segmento de reta vertical será.

# B. Traçar curvas assintóticas de módulo em dB com as inclinações apropriadas em baixa e alta frequência



Em verde temos a assíntota relativa ao ganho K.

Em roxo temos as assíntotas relativas ao zero real fora da origem.

Em azul claro temos as assíntotas relativas ao polo de segunda ordem.

Em **preto** temos o somatório de todas as assíntotas, gerando uma aproximação para a curva de módulo vs. frequência.

C. Traçar curvas lineares aproximadas de fase com os valores apropriados de fase em baixa e alta frequência, bem como nas frequências de quebra



Em verde temos a assíntota relativa à fase de K.

Em roxo temos as assíntotas relativas à fase do zero real fora da origem.

Em azul claro temos as assíntotas relativas à fase do polo de segunda ordem.

Em **preto** temos o somatório de todas as assíntotas, gerando uma aproximação para a curva de fase vs. frequência.

# Verifique a frequência de ressonância e o pico de ressonância em dB, caso existam

Comparando com a forma padrão, temos:

$$2\xi \left(\frac{j\omega}{\omega_n}\right) = \frac{6}{10}j\omega \implies \xi = 0.6 \ (0 \le \xi \le 0.71)$$

Como temos  $\xi$  limitado entre 0 e 0,71, assim, há pico de ressonância e podemos calcular a frequência de ressonância da seguinte forma:

$$\omega_r = \omega_n \sqrt{1 - 2\xi^2} = 2\sqrt{1 - 2.(0.6)^2} \implies \omega_r = 1.02 \, rad/s$$

Já o pico de ressonância pode ser determinado conforme abaixo:

$$M_r = \frac{1}{2\xi\sqrt{1-\xi^2}} = \frac{1}{2(0.6)\sqrt{1-(0.6)^2}} \Rightarrow M_r = 1.042$$

## E. Determine o gráfico exato do diagrama de Bode usando o Matlab



### 1.2 Considere a seguinte função de transferência:

$$G(s) = \frac{1}{s^2 + 0.8s + 1}$$

## A. Determine os parâmetros da função padrão de segunda ordem:ζ, ωn;

Dado para um sistema de segunda ordem a equação na forma padrão:

$$G(s) = \frac{K(\tau_a s + 1)}{\tau^2 s^2 + 2\xi \tau s + 1}$$

Podemos determinar para o numerador que:

$$\tau_a = 0$$
  $e$   $K = 1$ 

Para o denominador temos:

$$s^{2} = \tau s^{2} \Rightarrow \tau^{2} = 1 \Rightarrow \tau = 1$$

$$\therefore 2\xi \tau s = 0, 8s \Rightarrow 2\xi = 0, 8 \Rightarrow \xi = 0, 4$$

$$\tau = \frac{1}{\omega_{n}} \Rightarrow \omega_{n} = 1 rad/seg$$

# B. Obtenha a função de transferência senoidal $G(j\omega)$ . Determine as partes real, imaginária, módulo e fase;

Considerando a hipótese que *G(s)* é um sistema linear invariante no tempo (SLIT) é válido que sua função de transferência senoidal *G(jw)* seja obtida simplesmente substituindo *s* por *jw*.

$$G(jw) = \frac{1}{(jw)^2 + 0,8(jw) + 1}$$

Analisando o numerador e denominador de G(jw):

#### Numerador

$$\mathbb{R} \{1\} = 1$$

$$\mathbb{I} \{1\} = 1$$

$$| | = \sqrt{(1^2)} = 1$$

$$\angle = 0^\circ$$

#### Denominador

$$\mathbb{R} \left\{ (j\omega)^2 + 0, 8(j\omega) + 1 \right\} = 1 - \omega^2$$

$$\mathbb{I} \left\{ (j\omega)^2 + 0, 8(j\omega) + 1 \right\} = 0, 8\omega$$

$$| \ | = \sqrt{((1 - \omega^2)^2 + (0, 8\omega)^2)}$$

$$\angle = tan^{-1}(\frac{0, 8\omega}{1 - \omega^2})$$

Podemos calcular o módulo de *G(jw)* como a divisão dos módulos entre numerador e denominador, bem como a fase que é dada por *fase do numerador* menos a *fase do denominador*:

$$|G(jw)| = \frac{|num|}{|den|} = \frac{1}{\sqrt{((1-\omega^2)^2 + (0,8\omega)^2)}}$$

$$\angle G(jw) = \angle (num) - \angle (den) = 0^{\circ} - tan^{-1}(\frac{0,8\omega}{1-\omega^2})$$

As partes reais e imaginárias podem ser encontradas fazendo a radiciação da equação:

$$G(jw) = \frac{1}{(jw)^2 + 0,8(jw) + 1}$$

$$G(jw) = \frac{1}{(j\omega)^2 + 0, 8(j\omega) + 1} = \frac{1}{(1 - \omega^2) + 0, 8(j\omega)} \cdot \frac{(1 - \omega^2) - 0, 8j\omega}{(1 - \omega^2) - 0, 8j\omega}$$

$$G(jw) = \frac{(1-\omega^2) - 0.8j\omega}{(1-\omega^2)^2 + (0.8\omega)^2} = \frac{1-\omega^2}{(1-\omega^2)^2 + (0.8\omega)^2} - \frac{0.8\omega}{(1-\omega^2)^2 + (0.8\omega)^2}j$$

# C. Esboce o diagrama de Nyquist manualmente tendo em vista os pontos característicos:

$$\bullet \omega \to 0 \quad \bullet \ \omega = \omega_r \quad \bullet \ \omega = \omega_n \quad \bullet \ \omega \to \infty$$

Temos todas as informações para determinar wr

$$\omega_r = \sqrt{(1 - 2\xi^2)} = 0,824 rad/s$$

Vamos aos cálculos!

Pela teoria, e por substituição direta sabemos que:

$$|G(jw)| = \frac{1}{\sqrt{((1-0^2)^2 + (0,8\cdot 0)^2)}} = 1$$

$$\angle G(jw) = -tan^{-1}(\frac{0,8\cdot 0}{1-0^2}) = 0^\circ$$

• 
$$\omega = \omega_r$$

$$|G(j\omega_r)| = \frac{1}{\sqrt{((1-0.824^2)^2 + (0.8 \cdot 0.824)^2)}} = 1.364i$$

$$\angle G(jw_r) = -tan^{-1}(\frac{0.8 \cdot 0.824}{1-0.824^2}) = -64.034^\circ$$

• 
$$\omega = \omega_n$$

$$|G(jw_r)| = \frac{1}{\sqrt{((1-1^2)^2 + (0,8\cdot 1)^2)}} = 1,25$$

Como nosso sistema é subamortecido (**0<ζ<1** ) pela teoria temos que:

se 
$$\omega = \omega_n \Rightarrow \angle G(jw_n) = -90^\circ$$

• 
$$\omega \to \infty$$

$$\lim_{w \to \infty} |G(jw)| = \frac{1}{\infty} = 0$$

Por definição:

$$\lim_{w \to \infty} \angle G(jw) \Rightarrow \angle G(jw) = -180^{\circ}$$

O diagrama corta o eixo imaginário quando a parte real de *G(jw)* é igual a zero:

$$\frac{1 - \omega^2}{(1 - \omega^2)^2 + (0, 8\omega)^2} = 0 \Rightarrow \omega = 1$$



Assim, temos o ponto (0,1,25).

O diagrama corta o eixo real quando a parte imaginária de G(jw) é igual a zero:

$$\frac{0,8\omega}{(1-\omega^2)^2 + (0,8\omega)^2} j = 0 \Rightarrow \omega = 0$$

Para w=0, o eixo real corresponde a 0. Assim, temos o ponto (0,0).



## D. Utilizando o comando nyquist do Matlab, desenhe o diagrama

O código utilizado para descrever o diagrama abaixo conta em anexo.



#### 1.3 Sistema de Servomotor CC

A. Obtenha o modelo do sistema de servomotor, considerando como entrada a tensão da armadura ( $v_a$  em V) e saída a velocidade angular da carga ( $\dot{\theta}$  em rad/s).

Para iniciar a modelagem do sistema, temos que avaliar os parâmetros de entrada e saída. Nesse caso, temos uma entrada elétrica V(s) e uma saída mecânica  $\Theta(s)$ . Assim,



onde a função de transferência G(s) pode ser definida como:

$$G(s) = \frac{\Theta(s)}{V(s)}$$

Para o sistema proposto, temos uma representação por meio de diagrama de blocos, conforme a seguir:



Logo, podemos avaliar que a função de transferência de malha aberta é dada pelo produto de cada bloco. Ou seja,

$$G(s) = A(s) M(s) E(s)$$

Do enunciado, temos as seguintes definições:

$$A(s) = K_a$$
$$E(s) = \frac{K_{enc}}{s}$$

onde, *Kenc* é a resolução do encoder (1024 pulsos por revolução).

Através da modelagem de um motor de corrente contínua executada em Dorf *et. al.* (2001), temos:

$$M(s) = \frac{K_e}{s[(R_a + L_a s)(J s + b) + K_b K_e]}$$

Devido à condição de estado estacionário, a potência de entrada será igual a potência entregue ao eixo, de modo que podemos observar que  $\mathit{Kb}$  é igual a  $\mathit{Ke}$ . Portanto, realizando todas as considerações anteriores, a função de transferência do modelo é então determinada.

$$G(s) = \frac{K_a K_e}{s \left[ (R_a + L_a s)(J s + b) + K_e^2 \right]}$$

B. Considere agora o sistema completo. Aplique um sinal senoidal ao sistema e faça as leituras da saída (amplitude a fase) para vários valores de frequência.











C. Desenhe os diagramas de Bode e de Nyquist a partir dos dados obtidos.







# **ANEXO A - Códigos Octave**

## Atividade 1.1

```
1 close all;
2 clear all;
3 clc;
4
5 pkg load control
6
7 n = [1 10];
8 d = [1 2.4 4];
9 sys = tf(n,d);
10
11 bode(sys);
```

### Atividade 1.2

```
1 close all; %fecha todas as figuras
2 clear all; %limpa todas as variáveis
              %limpa o terminal
3 clc;
5 pkg load control
7 s = tf('s'); %operador de laplace
9 \text{ x_min} = -1.1;
10 \text{ x_max} = 1.1;
12 \text{ y-min} = -1.5;
13 \text{ y_max} = 1.5;
G_S = (1)/(s^2 + 0.8*s + 1)
16
17 hold on;
18 grid on;
19 nyquist(G_s);
21 eixox_h = plot([x_min, x_max],[0 0], '-k','linewidth',1);
22 eixoy_h = plot([0 0],[y_min, y_max], '-k','linewidth',1);
23 legend('Gs');
24 axis([x_min, x_max, y_min, y_max]);
```

#### Atividade 1.3

```
1 clear all;
2 close all;
3 clc;
5 ##Limpa todos os dados anteriores
6 clear -a
7 close all
9 ## Inicia pacote de controle
10 pkg load control
12 s = tf('s');
13
14 ##constantes
15 Ke = 0.117;
16 \text{ Ka} = 5;
17 J = 1.88e-6;
18 b = 2.13e-4;
19 Ra = 1.8;
20 La = 4.1e-3;
22 ##funcao de transferencia
23 G_s = (Ka*Ke) / (s*((Ra+La*s)*(J*s+b)+Ke^2))
24
25 ##numero de graficos para gerar
26 graphs = 5;
27
28 ##vetor de freq em hertz
omega_f = linspace(0.15,160, graphs);
30 ##vetor auxiliar para guardar os valores em rad/s
31 omega_n = zeros(length(omega_f),1);
33 ##vetor de tempo
34 t = linspace(0, 0.1, 1000);
36 for i=1:length (omega_f)
37
38 ## converte de hertz pra rad/s
       omega_n(i) = omega_f(i) *2*pi;
39
40 ## sinal senoidal
       u = sin(omega_n(i)*t);
41
43 ## gera grafico pra cada \omega
       figure
44
       lsim(G_s,u,t)
       title(strcat("freq: ",num2str(omega_f(i)), " rad/s"))
47
48 end
49
```

```
50 figure
51 bode(G_s)
52 title('Diagrama de Bode')
53
54 figure
55 nyquist(G_s)
56 title('Diagrama de Nyquist')
```