scale-free networks

introduction to network analysis (ina)

Lovro Šubelj University of Ljubljana spring 2024/25

scale-free *property*

- random graphs = Poisson degree distribution p_k [ER59]
- real networks contain highly linked hubs [Pri65, FFF99]
- scale-free networks \sim power-law degree distribution p_k [BA99]

see zooming into World Wide Web demo

scale-free structure

scale-free power-law

— power-law degree distribution p_k with exponent $\gamma > 1$

$$p_k \sim k^{-\gamma}$$
 $\log p_k \sim -\gamma \log k$

— theoretically correct discrete power-law p_k for $k \geq 1$

$$\sum_{k=1}^{\infty} p_k = C \sum_{k=1}^{\infty} k^{-\gamma} = C\zeta(\gamma) = 1$$
$$p_k = Ck^{-\gamma} = \frac{k^{-\gamma}}{\zeta(\gamma)}$$

— analytically convenient continuos power-law p(k) for $k \geq k_{min}$

$$\int_{k_{min}}^{\infty} p(k) \, \mathrm{d}k = C \int_{k_{min}}^{\infty} k^{-\gamma} \, \mathrm{d}k = C \left. \frac{k^{-\gamma+1}}{-\gamma+1} \right|_{k_{min}}^{\infty} = C \frac{k^{-\gamma+1}}{\gamma-1} = 1$$

$$p(k) = Ck^{-\gamma} = (\gamma - 1)k_{min}^{\gamma-1} k^{-\gamma}$$

scale-free hubs

- for small $k \ll \langle k \rangle$ power-law above Poisson

 many small degree nodes in scale-free network
- for average $k \approx \langle k \rangle$ power-law below Poisson most nodes similar degree in random graph
- for large $k \gg \langle k \rangle$ power-law above Poisson

existence of hubs in scale-free network

- random graph with $n \approx 10^{12}$ and $\langle k \rangle = 4.6$ then $n_{k>100} \approx 10^{-82}$
- scale-free network with $n \approx 10^{12}$ and $\gamma = 2.1$ then $n_{k>100} \approx 4 \cdot 10^9$

scale-free cutoff

- maximum degree k_{max} by upper natural cutoff of p(k)
- for random graph with exponential $p(k) = \lambda e^{\lambda k_{min}} e^{-\lambda k}$

$$\int_{k_{max}}^{\infty} p(k) \, \mathrm{d}k = \lambda \mathrm{e}^{\lambda k_{min}} \, \frac{\mathrm{e}^{-\lambda k}}{-\lambda} \Big|_{k_{max}}^{\infty} = \mathrm{e}^{\lambda k_{min}} \mathrm{e}^{-\lambda k_{max}} = n^{-1}$$

$$k_{max} = k_{min} + \frac{\ln n}{\lambda}$$

— for scale-free network with power-law $p(k) = (\gamma - 1)k_{min}^{\gamma - 1}k^{-\gamma}$

$$\textstyle \int_{k_{\max}}^{\infty} p(k) \, \mathrm{d}k = (\gamma-1) k_{\min}^{\gamma-1} \left. \frac{k^{-\gamma+1}}{-\gamma+1} \right|_{k_{\max}}^{\infty} = k_{\min}^{\gamma-1} k_{\max}^{-\gamma+1} = n^{-1}$$

$$k_{max} = k_{min} n^{\frac{1}{\gamma - 1}}$$

- random graph with $n \approx 3 \cdot 10^5$ and $\lambda = 1$ then $k_{max} \approx 14$
- scale-free network with $n \approx 3 \cdot 10^5$ and $\gamma = 2.1$ then $k_{max} \approx 10^5$

scale-free moments

- x-th moment $\langle k^{\times} \rangle$ of power-law $p_k \sim k^{-\gamma}$ — $\langle k^2 \rangle = \sigma_k^2 + \langle k \rangle^2$ determines spread and $\langle k^3 \rangle$ determines skewness $\langle k^{\times} \rangle = \sum_{k=1}^{\infty} k^{\times} p_k \approx \int_{k_{min}}^{k_{max}} k^{\times} p(k) \, \mathrm{d}k \sim \frac{k_{max}^{\times - \gamma + 1} - k_{min}^{\times - \gamma + 1}}{x - \gamma + 1}$
- moments $\mathbf{x} \leq \gamma 1$ finite whereas moments $\mathbf{x} > \gamma 1$ diverge

- scale-free networks $\gamma < 3$ lack scale as $k = \langle k \rangle \pm \infty$
- random graphs have scale as $k = \langle k \rangle \pm \sqrt{\langle k \rangle}$

scale-free networks

- heavy-tail p_k of real networks [Bar16]
- spread $\sigma_k = \sqrt{\langle k^2 \rangle \langle k \rangle^2}$ in real networks

scale-free "small-world"

- random graphs are "small-world" as $\langle d \rangle \simeq \frac{\ln n}{\ln \langle k \rangle}$
- scale-free networks $\gamma >$ 3 are "small-world" as $\langle d \rangle \sim \ln n$
- scale-free networks $\gamma < 3$ "ultrasmall-world" as $\langle d \rangle \sim \ln \ln n$

scale-free *exponent*

no graphical $\{k\}$ for $\gamma < 2$ $n = (k_{max}/k_{min})^{\gamma-1}$ nonexistent for $\gamma \gg 3$

scale-free distributions

NAME	$p_x/p(x)$	$\langle x \rangle$	$\langle x^2 \rangle$
Poisson (discrete)	$e^{-\mu}\mu^x/x!$	μ	$\mu(1+\mu)$
Exponential (discrete)	$(1-e^{-\lambda})e^{-\lambda x}$	$1/(e^{\lambda}-1)$	$(e^{\lambda}+1)/(e^{\lambda}-1)^2$
Exponential (continuous)	$\lambda e^{-\lambda x}$	$1/\lambda$	$2/\lambda^2$
Power law (discrete)	$x^{-lpha}/\zeta(lpha)$	$\begin{cases} \zeta(\alpha-2)\big/\zeta(\alpha), & \text{if } \alpha>2\\ \infty, & \text{if } \alpha\leq1 \end{cases}$	$\begin{cases} \zeta(\alpha-1)/\zeta(\alpha), & \text{if } \alpha > 1\\ \infty, & \text{if } \alpha \le 2 \end{cases}$
Power law (continuous)	$lpha x^{-lpha}$	$\begin{cases} \alpha/(\alpha-1), & \text{if } \alpha > 2\\ \infty, & \text{if } \alpha \le 1 \end{cases}$	$\begin{cases} \alpha/(\alpha-2), & \text{if } \alpha > 1\\ \infty, & \text{if } \alpha \le 2 \end{cases}$
Power law with cutoff (continuous)	$rac{\lambda^{1-lpha}}{\Gamma(1-lpha)}x^{-lpha}e^{-\lambda x}$	$\lambda^{-1}\tfrac{\Gamma(2-\alpha)}{\Gamma(1-\alpha)}$	$\lambda^{-2} \frac{\Gamma(3-lpha)}{\Gamma(1-lpha)}$
Stretched exponential (continuous)	$\beta \lambda^{\beta} x^{\beta-1} e^{-(\lambda x)^{\beta}}$	$\lambda^{-1}\Gamma(1+\beta^{-1})$	$\lambda^{-2}\Gamma(1+2\beta^{-1})$
Log-normal (continuous)	$\frac{1}{x\sqrt{2\pi\sigma^2}}e^{-(\ln x - \mu)^2 / (2\sigma^2)}$	$e^{\mu+\sigma^2ig/2}$	$e^{2(\mu+\sigma^2)}$
Normal (continuous)	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-(x-\mu)^2\Big/(2\sigma^2)}$	μ	$\mu^2 + \sigma^2$

scale-free *history*

scale-free references

A.-L. Barabási and R. Albert.

Emergence of scaling in random networks. *Science*, 286(5439):509–512, 1999.

A.-L. Barabási.

Network Science.

Cambridge University Press, Cambridge, 2016.

Wouter de Nooy, Andrej Mrvar, and Vladimir Batagelj.

Exploratory Social Network Analysis with Pajek: Expanded and Revised Second Edition. Cambridge University Press, Cambridge, 2011.

David Easley and Jon Kleinberg.

Networks, Crowds, and Markets: Reasoning About a Highly Connected World.
Cambridge University Press. Cambridge, 2010.

Ernesto Estrada and Philip A. Knight.

A First Course in Network Theory.
Oxford University Press, 2015.

P. Erdős and A. Rényi.

On random graphs I.

Publ. Math. Debrecen, 6:290-297, 1959.

Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos.

On power-law relationships of the Internet topology. *Comput. Commun. Rev.*, 29(4):251–262, 1999.

Mark E. J. Newman.

Networks.

Oxford University Press, Oxford, 2nd edition, 2018.

scale-free references

D. J. de Solla Price.

Networks of scientific papers. *Science*, 149:510–515, 1965.