PyBOP: #1

Brady Planden

Engineering Science University of Oxford

Long Presentation, November 2023

Predictive modelling

and using other peoples data

Predictive continuum models require parameter sets, which are challenging to create. These sets are created by:

Experimentalists, who might not have expertise in the model structure;

Predictive modelling

and using other peoples data

Predictive continuum models require parameter sets, which are challenging to create. These sets are created by:

- Experimentalists, who might not have expertise in the model structure;
- Modellers, who fit the parameter set from varying quality of data

Predictive continuum models require parameter sets, which are challenging to create. These sets are created by:

- Experimentalists, who might not have expertise in the model structure;
- Modellers, who fit the parameter set from varying quality of data
- A mixture of the two, (i.e. the ideal situation)

Three different popular parameter sets, each with variations in construction:

ightharpoonup Chen2020 ightharpoonup teardown + imaging, half & full cell cycling, refit parameters

Three different popular parameter sets, each with variations in construction:

- ightharpoonup Chen2020 ightharpoonup teardown + imaging, half & full cell cycling, refit parameters
- lacktriangle Ecker2015 ightarrow teardown + spectrometry, half & full cell cycling, refit parameters

Three different popular parameter sets, each with variations in construction:

- ightharpoonup Chen2020 ightharpoonup teardown + imaging, half & full cell cycling, refit parameters
- ightharpoonup Ecker2015 ightarrow teardown + spectrometry, half & full cell cycling, refit parameters
- ▶ Mohat2020 \rightarrow Built in-house, half & full cell cycling, pressure model w/ fitting and measurements coupled.

Three different popular parameter sets, each with variations in construction:

- ightharpoonup Chen2020 ightharpoonup teardown + imaging, half & full cell cycling, refit parameters
- ightharpoonup Ecker2015 ightharpoonup teardown + spectrometry, half & full cell cycling, refit parameters
- ▶ Mohat2020 \rightarrow Built in-house, half & full cell cycling, pressure model w/ fitting and measurements coupled.

Uniqueness?

Three different popular parameter sets, each with a different creation method:

- ▶ Chen2020 \rightarrow DFN w/ trial and error fitting (RMSE), parameter variation between 12% to 1800%
- ightharpoonup Ecker2015 ightharpoonup DFN, variation from 45% to 154%
- ► Mohat2020 \rightarrow MPMe, variation from 0% to ?%

PyBOP: A battery parameterisation and optimisation package

(let's intelligently construct parameter sets and optimise models)

A package to standardised parameter identification and optimisation that provides:

- ► An API that offers complexity to advanced users while guiding new users
- A research platform to improve parameter identification and battery optimisation
- Performance, both in iter/s and convergance guarantees
- Open-source!

Function calls that align with intuition

The high-level API is,

```
# Generate problem, cost function, and optimisation class
problem = pybop.Problem(model, parameters, dataset)
cost = pybop.SumSquaredError(problem)
optim = pybop.Optimisation(cost, optimiser=pybop.GradientDescent)
x, final_cost = optim.run()
```


Function calls that align with intuition

The high-level API is,

```
# Generate problem, cost function, and optimisation class
problem = pybop.Problem(model, parameters, dataset)
cost = pybop.SumSquaredError(problem)
optim = pybop.Optimisation(cost, optimiser=pybop.Gradlen*Descent)
x, final_cost = optim.run()
```


Function calls that align with intuition

The high-level API is,

```
# Generate problem, cost function, and optimisation class
problem = pybop.Problem(model, parameters, dataset)
cost = pybop.SumSquaredError(problem)
optim = pybop.Optimisation(cost, optimiser=pybop.GradientDescent)
x, final_cost = optim.run()
```


 $\mathsf{CMA}\text{-}\mathsf{ES}^1$ provides a robust solution to challenging (noisy, multi-modal, etc.) cost landscapes, at the exchange for performance without requiring hyperparameter tuning. The algorithm is defined by the following steps,

1. Sample candidate solutions:

$$\mathbf{x}_{k}^{\left(g+1
ight)}\sim\mathbf{m}^{\left(g
ight)}+\sigma^{\left(g
ight)}\mathcal{N}\left(0,\mathbf{C}^{\left(g
ight)}
ight),\qquad ext{for }g=1,...,\lambda$$

¹I have a blog post that expands on this: bradyplanden.github.io

2. Construct the Evolutionary Paths:

$$\begin{aligned} \mathbf{p}_{\mathsf{c}}^{(g+1)} &= (1-c_{\mathsf{c}})\mathbf{p}_{\mathsf{c}}^{(g)} + h_{\sigma}^{(g+1)}\sqrt{c_{\mathsf{c}}(2-c_{\mathsf{c}})\mu_{w}dy} \\ \mathbf{p}_{\sigma}^{(g+1)} &= (1-c_{\sigma})\mathbf{p}_{\sigma}^{(g)} + \sqrt{c_{\sigma}(2-c_{\sigma})\mu_{w}dz} \\ h_{\sigma}^{(g+1)} &= \begin{cases} 1, & \text{if } \frac{\left\|\mathbf{p}_{\sigma}^{(g+1)}\right\|^{2}}{1-(1-c_{\sigma})^{2\cdot(g+1)}} < (2+4/(d+1)) d, \\ 0, & \text{otherwise} \end{cases} \end{aligned}$$

3. Update the Search Distribution:

$$\mathbf{m}^{(g+1)} = \mathbf{m}^{(g)} + c_{\mathsf{m}} \sum_{i=1}^{\mu} w_i \left(\mathbf{x}_{i:\lambda}^{(g+1)} - \mathbf{m}^{(g)} \right)$$

$$\sigma^{(g+1)} = \sigma^{(g)} \exp \left(\frac{c_{\sigma}}{d_{\sigma}} \left(\frac{\left\| \mathbf{p}_{\sigma}^{(g+1)} \right\|}{\mathbb{E} \|\mathcal{N}(0,\mathbf{I})\|} - 1 \right) \right)$$

$$\mathbf{C}^{(g+1)} = \left(1 - c_1 - c_{\mu} \sum_{i=1}^{\infty} w_i \right) \mathbf{C}^{(g)} + c_1 \underbrace{\mathbf{p}_{c}^{(g+1)} \mathbf{p}_{c}^{(g+1)^{\mathsf{T}}}}_{\text{rank-one undate}} + c_{\mu} \sum_{i=1}^{\lambda} w_i \mathbf{y}_{i:\lambda}^{(g+1)} \left(\mathbf{y}_{i:\lambda}^{(g+1)} \right)^{\mathsf{T}}$$

rank- μ update

rank-one update

Example: Fitting SPM Parameters from Pulse Data

Active Material Volume Fractions

This example fits the active material volume fractions, $\{\epsilon_k\}$ for $k \in \{n, p\}$, using a sum of square errors cost function,

$$\sum_{i=1}^{k} \left(Y_i - \hat{Y}_i \right)^2$$

a Chen2020 parameter set, and a constant applied current of 1C.

The ground truth parameters are:

$$[\epsilon_n = 0.75, \epsilon_p = 0.665]$$

We define the problem, cost, and corresponding optimisation with CMA-ES

- $\sim x0_p \sim \mathcal{N}(0.53, 0.01)$
- $\sim x0_n \sim \mathcal{N}(0.825, 0.01)$
- \triangleright bounds = [0.6 0.9, 0.5 0.8]
- Max iters: 500

Traverses the landscape quickly at the beginning.

19

Quickly finds an optimal & spends a large amount of time around this point.

Optimal at:

$$[\epsilon_n = 0.7508, \epsilon_p = 0.6650]$$

Cost Landscape

Negative electrode active material volume fraction

Gradient descent² to minimise the cost function, passing $\frac{\partial f}{\partial \theta}$ from the forward model to Pints'.

- \blacktriangleright $\times 0 \sim \mathcal{N}(\mu, \sigma^2)$
- Max iters: 500
- $\rightarrow \eta$: 0.01

Calculating $\frac{\partial f}{\partial \theta}$ is expensive, and results in slower fitting.

$$[\epsilon_n = 0.7504, \epsilon_p = 0.6651]$$

negative electrode active material volume fractio

^aWe run this daily on the cloud!

Example: Time-Series Comparison

v23.11 and beyond

We are currently working on the following:

- Adding bayesian methods: HMC, ABC, etc.
- Implement a version of PEM (Injecting terms into the model structure before discretising)
- Methods to acquire Hessian information
- More workflows & benchmarks for users

Automated testing is a step change in performance

Consider adding a testing suite to your individual research repositories. It solves a considerable amount of problems:

- ► Catches bugs / mistypes in your code before publishing results
- ► Tells you right away when you broke something
- Can be used for benchmarking
- Can format your code for consistency
- ▶ It's parametric, and free!

