Ellipsoïde de John-Loewner

Leçons: 152, 158, 171, 203, 219, 229, 253

Définition 1

Un ellipsoïde centré en 0 est une surface de \mathbb{R}^n d'équation q(x) = 1 où q est une forme quadratique définie positive. On le note \mathcal{E}_q .

Lemme 2

Si A et B sont deux matrices définies positives et $\alpha \in]0,1[$, alors $\det(\alpha A + (1-\alpha)B) \ge (\det A)^{\alpha}(\det B)^{1-\alpha}$ avec inégalité stricte si $A \ne B$.

Démonstration. On utilise le théorème de réduction simultanée : il existe $P \in GL_n(\mathbb{R})$ tel que $A = {}^tPP$ et $B = {}^tPDP$ où $D = Diag(\lambda_1, \ldots, \lambda_n)$, $\lambda_i > 0$. Ainsi, si $\alpha \in]0, 1[$:

$$\det(\alpha A + (1 - \alpha)B) = (\det P)^2 \prod_{i=1}^n (\alpha + (1 - \alpha)\lambda_i).$$

Or, \ln étant strictement concave, pour $i \in [1, n]$,

$$\ln(\alpha + (1 - \alpha)\lambda_i) \ge \alpha \ln(1) + (1 - \alpha)\ln(\lambda_i) = (1 - \alpha)\ln(\lambda_i),$$

d'où en sommant et en composant par exp, $\prod_{i=1}^{n} (\alpha + (1-\alpha)\lambda_i) \ge \left(\prod_{i=1}^{n} \lambda_i\right)^{1-\alpha}$.

Mais $\det(A)^{\alpha} \det(B)^{1-\alpha} = \det P^{2\alpha+2(1-\alpha)} \det(D)^{1-\alpha} = \det P^2 \left(\prod_{i=1}^n \lambda_i\right)^{1-\alpha}$ donc on a l'inégalité voulue.

Théorème 3

Soit K compact de \mathbb{R}^n d'intérieur non vide. Il existe un unique ellipsoïde centré en 0 de volume minimal contenant K

Démonstration. On munit \mathbb{R}^n de son produit scalaire canonique, de norme associée $\|\cdot\|$. On note \mathscr{Q} (resp. \mathscr{Q}^+ , \mathscr{Q}^{++}) l'ensemble des formes quadratiques (resp. positives, définies positives) sur \mathbb{R}^n .

Étape 1 : calcul du volume d'un ellipsoïde centré en 0.

Soit q forme quadratique positive. Selon le théorème de réduction simultanée, il existe une base orthonormée \mathcal{B} de \mathbb{R}^n (pour le produit scalaire canonique) et $a_1, \ldots, a_n \ge 0$ tels que $M_{\mathcal{B}}(q) = \text{Diag}(a_1, \ldots, a_n)$.

Par un premier de changement de variable envoyant (x_1,\ldots,x_n) sur ses coordonnées dans la base \mathcal{B} , on voit que le volume V_q de \mathcal{E}_q est

$$V_q = \int_{\left\{a_1 u_1^2 + \dots + a_n u_n^2\right\}} \mathrm{d}x.$$

Donc, en posant $u_i' = \sqrt{a_i}u_i$, on obtient par un nouveau changement de variable $V_q = \frac{1}{\sqrt{a_1 \dots a_n}} V_0$ où V_0 est le volume de la boule unité de \mathbb{R}^n . Or le déterminant de $M_{\mathscr{B}}(q)$ est

 $D(q) = a_1 \dots a_n$, et c'est une quantité invariante par changement de base orthonormée, appelée discriminant. Donc $q \mapsto D(q)$ est une application continue sur \mathcal{Q}^+ , qu'on va chercher à maximiser.

Étape 2: minimisation du discriminant.

Soit $\mathcal{A} = \{q \in \mathcal{Q}^+ : \forall x \in K, q(x) \leq 1\}$. On munit l'espace vectoriel \mathcal{Q} de la norme

$$N: q \mapsto \sup_{\|x\| \le 1} |q(x)|.$$

 \mathscr{A} est fermé : supposons que la suite $(q_n) \in (\mathscr{Q}^+)^{\mathbb{N}}$ converge vers $q \in \mathscr{Q}$. Alors pour tout $x \in \mathbb{R}^n$, $|q_n(x) - q(x)| \le N(q_n - q) ||x||^2$ donc $q_n(x) \xrightarrow[n \to +\infty]{} q(x)$. En particulier, $q(x) \ge 0$ et $q(x) \le 1$ pour $x \in K$.

 \mathscr{A} est borné : Comme K est d'intérieur non vide, on peut fixer une boule $B(a,r) \subset K$. Donc si $q \in \mathscr{A}$ et $||x|| \le r$, $q(a+x) \le 1$, de sorte que par l'inégalité de Minkowski,

$$\sqrt{q(x)} = \sqrt{q(a+x-a)} \le \sqrt{q(a+x)} + \sqrt{q(a)} \le 2.$$

Ainsi, pour
$$||x|| \le 1$$
, $q(x) = \frac{1}{r^2}q(rx) \le \frac{2}{r^2}$, soit $N(q) \le \frac{2}{r^2}$.

 \mathscr{A} est non vide : en effet, on peut trouver M>0 tel que $K\subset B(0,M)$ et $q:x\mapsto \frac{\|x\|^2}{M^2}$ est un élément de \mathscr{A} .

Finalement, $q\mapsto D(q)$ est une application continue sur le compact non vide $\mathscr A$ donc elle est bornée et atteint ses bornes en $q_0\in\mathscr Q^{++}\cap\mathscr A$ car le discriminant est nul pour un élément de $\mathbb Q^+\setminus\mathscr Q^{++}$. En d'autres termes, selon l'étape $1,\,\mathscr E_{q_0}$ est un ellipsoïde centré en 0 de volume minimal contenant K.

Étape 3: Unicité.

Supposons que q_1 soit un autre point de $\mathscr A$ où le minimum est atteint. Remarquons que $\mathscr A$ est convexe, et notons $q_2=\frac{q_0+q_1}{2}\in\mathscr A$. Alors par log-concavité stricte du déterminant, $D(q_2)>\sqrt{D(q_0)}\sqrt{D(q_1)}=D(q_0)$ qui est pourtant supposé maximal : c'est absurde.

Proposition 4

Si G est un sous-groupe compact de $GL_n(\mathbb{R})$, il existe $q \in \mathcal{Q}^{++}$ tel que $G \subset O(q)$.

Démonstration. Soit G un sous-groupe compact de $GL_n(\mathbb{R})$, B la boule unité fermée de \mathbb{R}^n muni d'une norme euclidienne. Introduisons $K = \{g(x)/g \in G, x \in B\}$. C'est un compact comme image de $G \times B$ par $(g,x) \mapsto g(x)$ continue. De plus, $B \subset K$ donc K est d'intérieur non vide. Soit donc \mathcal{E}_q l'ellipsoïde de John-Loewner associée à K où $q \in \mathcal{Q}^{++}$.

Si $g \in G$, $q': x \mapsto q(g(x))$ est définie positive et puisque g(K) = K, $\mathcal{E}_{q'}$ contient K. Classiquement, comme det est bornée sur G compact, on a $|\det g| = 1$, donc q' et q ont même discriminant. Donc selon l'étape 3 de la preuve précédente, q = q', i.e. $g \in O(q)$. Ainsi, $G \subset O(q)$.

Remarque. On peut même montrer que les sous-groupes compacts maximaux de $GL_n(\mathbb{R})$ sont les O(q) avec $q \in \mathcal{Q}^{++}$.

Remarquons d'abord qu'il suffit de montrer que $O_n(\mathbb{R})$ est un sous-groupe compact maximal. En effet, si $q \in \mathcal{Q}^{++}$, il existe une base de E dans laquelle la matrice de q est I_n , donc O(q) et $O_n(\mathbb{R})$ sont conjugués.

Soit donc G compact tel que $O_n(\mathbb{R}) \subset G$. Soit $g \in G$. Par décomposition polaire, on peut écrire G = OS où $O \in O_n(\mathbb{R})$ et $S \in \mathcal{S}_n^{++}(\mathbb{R})$. Donc $S = O^{-1}g \in G$. Mais S est diagonalisable dans une base orthonormée donc on montre sans mal que $||S||_2 = \rho(S)$, plus grande valeur propre de S (car les valeurs propres de S sont positives). Ainsi, les valeurs propres de S sont toutes égales à 1 puisque sinon $(S^k)_{k \in \mathbb{N}}$ ou $(S^{-k})_{k \in \mathbb{N}}$ ne seraient pas bornés. En d'autres termes, $S = I_n$ et $g \in O_n(\mathbb{R})$, ce qu'il fallait démontrer.

Références:

- Serge Francinou, Hervé Gianella et Serge Nicolas (2008). *Exercices de mathématiques Oraux X-ENS : Algèbre 3*. Cassini, pp. 229-232
- Philippe Caldero et Jérôme Germoni (2013). *Histoires hédonistes de groupes et de géométrie*. T. 1. Calvage et Mounet, p. 205 pour la remarque