5. Some Techniques for Defining PR Functions

5.1 Explicit Definability

This is a convenient method for showing that certain functions are PR.

Given a sequence $\vec{g} \equiv g_1, \ldots, g_m$ of functions of arity r_1, \ldots, r_m , and a sequence $\vec{x} \equiv x_1, \ldots, x_n$ of *indeterminates* or *variables*, the class $\mathbf{Expr}(\vec{g}, \vec{x})$ of $\mathbf{expressions}$ in \vec{g} , \vec{x} is defined inductively by:

- 1. $x_i \in Expr(\vec{g}, \vec{x}) \ (i = 1, ..., n),$
- 2. $\bar{0} \in Expr(\vec{q}, \vec{x})$, where $\bar{0}$ a symbol for the number 0,
- 3. If $E \in \mathbf{Expr}(\vec{g}, \vec{x})$, then so is $\overline{\mathbf{S}}(E)$, where $\overline{\mathbf{S}}$ is a symbol for the successor function \mathbf{S} ,
- 4. If $E_1, \ldots, E_{r_i} \in \mathbf{Expr}(\vec{g}, \vec{x})$, so is $\bar{g}_i(E_1, \ldots, E_{r_i})$ $(i = 1, \ldots, m)$, where \bar{g}_i is a symbol for the function g_i .

(More on inductive definitions can be found in [Kle52], §55.)

Since each expression in \vec{g} , \vec{x} represents an explicit definition of an n-ary function, we say that f is explicitly definable from \vec{g} iff $f = \lambda \vec{x} \cdot E$ for some $E \in Expr(\vec{g}, \vec{x})$.

Examples. (1)
$$E \equiv exp(y,2) - sqrt(x+y)$$
.
Then $E \in Expr(exp, sqrt, +, -, x, y)$.

Note that E defines a function relative to a list of variables \vec{x} , where $var(E) \subseteq \vec{x}$.

In this case, take $\vec{x} \equiv (x, y)$.

Then
$$f = \lambda x, y \cdot E = \lambda x, y \cdot (exp(y, 2) - sqrt(x + y)),$$

i.e.,
$$f(x,y) = exp(y,2) - sqrt(x+y)$$
,

(2) The constant function $C_k^n = \lambda \vec{x} \cdot k$ is explicitly defined from $\langle \rangle$ by the numeral $\bar{k} =_{df} \underbrace{\overline{S}(\cdots \overline{S}(\bar{0})\cdots)}_{k \text{ times}}$.

Note. In general we will not distinguish between functions and their symbols, or between numbers and their numerals.

Definition. $ED(\vec{g})$ is the class of functions explicitly definable from \vec{g} .

Theorem 5.1. $ED(\vec{g}) \subseteq PR(\vec{g})$. Hence if $\vec{g} \in PR$, then $ED(\vec{g}) \subseteq PR$.

Proof: We must show:

$$f$$
 expl. def. by E from $\vec{g} \implies f \in PR(\vec{g})$

by

- $structural\ induction\ on\ E$, or
- CVI on compl(E).

(Details in class.) \Box

Corollary 5.2. In particular, we can define new PR functions from old by:

- (a) permuting arguments, e.g. f(x,y) = g(y,x)
- (b) using dummy arguments, e.g. f(x, y, z) = g(x, y)
- (c) identifying arguments, e.g. f(x) = g(x, x)
- (d) substituting numerals for arguments, e.g. $f(x) = g(\bar{2}, x)$
- (e) any combination of the above.

Proof: (a) $f \in PR(\vec{g})$ since

$$f(x,y) = g(\mathbf{U}_2^2(x,y), \mathbf{U}_1^2(x,y)).$$

(b)-(e) Similarly. \Box

EXAMPLE:

If $f(x, y, z) = g(x, h(z, k(x)), \bar{2})$, then f is explicitly definable from g, h, k. Putting $\vec{x} \equiv (x_1, x_2, x_3)$,

$$f(\vec{x}) = g(U_1^3(\vec{x}), h(U_3^3(\vec{x}), k(U_1^3(\vec{x})), C_2^3(\vec{x}))),$$

which suggests a PR-derivation of f from g, h, k.

• So from now on, we will freely use *explicit definitions*, as well as *infix* and *postfix* notation, to show that functions are PR.

More examples of PR functions:

• Exponential $exp(x,y) = x^y$

Defined by primitive recursion on the second argument:

$$\begin{cases} exp(x,0) = 1 \\ exp(x,y+1) = exp(x,y) * x. \end{cases}$$

• Predecessor $pd(x) = \begin{cases} x-1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \end{cases}$

By primitive recursion:

$$\begin{cases} \mathbf{pd}(0) = 0 \\ \mathbf{pd}(x+1) = x. \end{cases}$$

• Monus $x - y = \begin{cases} x - y & \text{if } x \ge y \\ 0 & \text{otherwise} \end{cases}$

By primitive recursion on the second argument:

$$\begin{cases} x \doteq 0 = x \\ x \doteq (y+1) = \mathbf{pd}(x \doteq y). \end{cases}$$

• Absolute difference $\lambda x, y \cdot |x - y|$

By explicit definition from **monus** and **sum** which are both PR:

$$|x - y| = (x - y) + (y - x).$$

• Zero predicate (characteristic function of 0)

$$zero(x) = \begin{cases} 1 & \text{if } x = 0 \\ 0 & \text{otherwise} \end{cases}$$

By primitive recursion:

$$\begin{cases} \mathbf{zero}(0) = 1 \\ \mathbf{zero}(x+1) = 0 \end{cases}$$

or by explicit definition from **monus**: zero(x) = 1 - x.

• Characteristic function of positive integers

$$\mathbf{pos}(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$$

By primitive recursion:

$$\begin{cases} \mathbf{pos}(0) = 0 \\ \mathbf{pos}(x+1) = 1. \end{cases}$$

• Equality predicate (char. fn. of equality)

$$eq(x,y) = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{otherwise} \end{cases}$$

By explicit definition:

$$eq(x,y) = zero(|x-y|).$$

• Less-than-or-equal predicate

$$leq(x,y) = \begin{cases} 1 & \text{if } x \le y \\ 0 & \text{otherwise} \end{cases}$$

By explicit definition:

$$leq(x, y) = zero(x - y)$$

Theorem 5.3. Let P and Q be n-ary predicates. Define the predicates

$$R_1(\vec{x}) \Leftrightarrow \neg P(\vec{x}),$$

 $R_2(\vec{x}) \Leftrightarrow P(\vec{x}) \land Q(\vec{x}), \text{ and}$
 $R_3(\vec{x}) \Leftrightarrow P(\vec{x}) \lor Q(\vec{x}).$

Then $R_1 \in PR(P)$ and R_2 , $R_3 \in PR(P,Q)$. More informally, the predicate $\neg P$ is PR in P, and the predicates $P \land Q$, and $P \lor Q$ are PR in P, Q. Hence if P, $Q \in PR$, then so are $\neg P$, $P \land Q$, $P \lor Q$.

Proof: By explicit definition:

$$R_1(\vec{x}) = \mathbf{zero}(P(\vec{x})),$$

 $R_2(\vec{x}) = P(\vec{x}) * Q(\vec{x}), \text{ and}$
 $R_3(\vec{x}) = \mathbf{pos}(P(\vec{x}) + Q(\vec{x})).$

Alternatively for R_3 , by De Morgan's law, $P \vee Q \Leftrightarrow \neg(\neg P \wedge \neg Q)$.

Hence

• Less predicate $\lambda x, y \cdot x < y$

is PR, since $x < y \Leftrightarrow \neg (y \le x)$.

Lemma 5.4 (Definition by cases). Define f by

$$f(\vec{x}) \simeq \begin{cases} g(\vec{x}) & \text{if } P(\vec{x}) \\ h(\vec{x}) & \text{otherwise.} \end{cases}$$

Then $f \in PR(g, h, P)$. Hence if $g, h, P \in PR$, then so is f.

Proof: $f(\vec{x}) \simeq g(\vec{x}) * P(\vec{x}) + h(\vec{x}) * zero(P(\vec{x})).$

Lemma 5.5. Let P be an n-ary predicate, and f_1, \ldots, f_n m-ary functions. Define the predicate

$$Q(\vec{x}) = P(f_1(\vec{x}), \dots, f_n(\vec{x})).$$

Then $Q \in PR(P, f_1, ..., f_n)$. Hence if $P, f_1, ..., f_n \in PR$, then so is Q.

Proof: By composition. \Box

Corollary 5.6. Given m-ary functions f_1, f_2 , define the predicate

$$Q(\vec{x}) = (f_1(\vec{x}) = f_2(\vec{x})).$$

Then $Q \in PR(f_1, f_2)$. Hence if $f_1, f_2 \in PR$, then so is Q.

Note: In Lemma 5.5 and Cor. 5.6, if the f's are total, then Q is a predicate.

EXERCISES:

- 1. Does the converse of Theorem 5.1 hold, i.e., $PR(\vec{g}) \subseteq ED(\vec{g})$? If so, prove it. If not, state a modified result which is true, and prove it.
- 2. (Generalised definition by cases) Let, for some $n \geq 2, g_1, \ldots, g_n$ be functions and P_1, \ldots, P_{n-1} predicates. For the function f, as defined below, show that $f \in PR(g_1, \ldots, g_n, P_1, \ldots, P_{n-1})$. Hence if $\vec{g}, \vec{P} \in PR$, then so is f. (*Hint*: Induction on n with basis n = 2).

$$f(\vec{x}) \simeq \begin{cases} g_1(\vec{x}) & \text{if } P_1(\vec{x}) \\ g_2(\vec{x}) & \text{if } \neg P_1(\vec{x}) \land P_2(\vec{x}) \\ g_3(\vec{x}) & \text{if } \neg P_1(\vec{x}) \land \neg P_2(\vec{x}) \land P_3(\vec{x}) \\ \vdots \\ g_{n-1}(\vec{x}) & \text{if } \neg P_1(\vec{x}) \land \dots \land \neg P_{n-2}(\vec{x}) \land P_{n-1}(\vec{x}) \\ g_n(\vec{x}) & \text{otherwise.} \end{cases}$$

5.2 Finite sums and products.

Theorem 5.7. Let f be an (n+1)-ary function. Let

$$g(y, \vec{x}) = \sum_{z < y} f(z, \vec{x}), \qquad h(y, \vec{x}) = \prod_{z < y} f(z, \vec{x}).$$

Then $g, h \in PR(f)$. Hence if $f \in PR$, then so are g, h.

Proof: Define g, h by primitive recursion on y:

$$\begin{cases} g(0, \vec{x}) = 0 \\ g(y+1, \vec{x}) = g(y, \vec{x}) + f(y, \vec{x}), \end{cases}$$

and

$$\begin{cases} h(0, \vec{x}) = 1 \\ h(y+1, \vec{x}) = h(y, \vec{x}) * f(y, \vec{x}). \ \Box \end{cases}$$

Corollary 5.8. Let

$$g'(y, \vec{x}) = \sum_{z=0}^{y} f(z, \vec{x}), \qquad h'(y, \vec{x}) = \prod_{z=0}^{y} f(z, \vec{x}).$$

Then $g', h' \in PR(f)$.

Proof:
$$g'(y, \vec{x}) = g(y + 1, \vec{x})$$
, and $h'(y, \vec{x}) = h(y + 1, \vec{x})$.

Corollary 5.9. Let

$$g''(y, \vec{x}) = \sum_{z=1}^{y} f(z, \vec{x}), \qquad h''(y, \vec{x}) = \prod_{z=1}^{y} f(z, \vec{x}).$$

Then $g'', h'' \in PR(f)$.

EXERCISE: Prove Corollary 5.9.

5.3 Bounded quantification.

Theorem 5.10. Let P be an (n+1)-ary predicate. Let

$$Q(y, \vec{x}) = (\exists z < y) P(z, \vec{x})$$

and $R(y, \vec{x}) = (\forall z < y) P(z, \vec{x}).$

Then $Q, R \in PR(P)$. Hence if $P \in PR$, then so are Q and R.

Proof:

$$\begin{array}{rcl} R(y,\vec{x}) &=& \prod_{z < y} P(z,\vec{x}) \\ \text{and} & Q(y,\vec{x}) &=& \pmb{pos}(\sum_{z < y} P(z,\vec{x})), \end{array}$$

or alternatively, $Q(y, \vec{x}) \Leftrightarrow \neg((\forall z < y) \neg P(z, \vec{x})).$

Corollary 5.11. Let

$$Q'(y, \vec{x}) = (\exists z \le y) P(z, \vec{x})$$

and $R'(y, \vec{x}) = (\forall z \le y) P(z, \vec{x}).$

Then $Q', R' \in PR(P)$. Hence if $P \in PR$, then so are Q' and R'.

Corollary 5.12. Let

$$Q''(y, \vec{x}) \simeq (\exists z < f(y, \vec{x})) P(z, \vec{x})$$

and $R''(y, \vec{x}) \simeq (\forall z < f(y, \vec{x})) P(z, \vec{x}).$

Then $Q'', R'' \in PR(f, P)$. Hence if $f, P \in PR$, then so are Q'' and R''.

Intuitively, **bounded quantification** is **effective** in P since there are only finitely many cases to check, whereas **unbounded quantification** is **not** (in general).

EXERCISE: Prove Corollaries 5.11 and 5.12.

5.4 Bounded minimalisation (μ) .

Theorem 5.13. Let P be an (n+1)-ary predicate. Let

$$f(y, \vec{x}) = (\mu z < y)P(z, \vec{x}),$$

i.e., "the least z < y such that $P(z, \vec{x})$ holds, if such z exists; y otherwise." Then $f \in PR(P)$. Hence if $P \in PR$, then so is f.

Proof: Put

$$g(y, \vec{x}) = \sum_{z < y} \prod_{t < z} zero(P(t, \vec{x})). \tag{1}$$

Clearly, $g \in PR(P)$. We will show that f = g. There are two cases:

• Case 1: There exists t < y such that $P(t, \vec{x})$ is true, i.e. $P(t, \vec{x}) = 1$. Let t_0 be the least such t. Then, for any $t < t_0$, $P(t, \vec{x}) = 0$ so that $zero(P(t, \vec{x})) = 1$, and $zero(P(t_0, \vec{x})) = 0$. So for all z,

$$\prod_{t \le z} zero(P(t, \vec{x})) = \begin{cases} 1 & \text{if } z < t_0 \\ 0 & \text{if } z \ge t_0 \end{cases}$$

Therefore,

$$\sum_{z < y} \prod_{t < z} zero(P(t, \vec{x})) = \underbrace{1 + \dots + 1}_{t_0 \text{ times}} + 0 + 0 + \dots = t_0$$
 (2)

• Case 2: For all t < y, $P(t, \vec{x})$ is false, i.e. $P(t, \vec{x}) = 0$. Clearly, $zero(P(t, \vec{x})) = 1$. So for all z < y,

$$\prod_{t < z} \textit{zero}(P(t, \vec{x})) \ = \ 1.$$

Therefore,

$$\sum_{z < y} \prod_{t < z} zero(P(t, \vec{x})) = \underbrace{1 + \dots + 1}_{y \text{ times}} = y.$$
 (3)

From (1), (2) and (3):

$$g(y, \vec{x}) = \begin{cases} \text{"least } z < y \text{ such that } P(z, \vec{x}) \\ \text{if such } z \text{ exists" (Case 1)} \\ y \text{ otherwise (Case 2).} \end{cases}$$

Hence
$$f = g \in PR(P)$$
. \square

Note:

The condition that there is no z < y s.t. $P(z, \vec{x})$ holds is an "error case" for $f(y, \vec{x})$. In this case, we set $f(\vec{x}) = y$ to indicate without ambiguity that no such z was found.

Corollary 5.14. If
$$f(y, \vec{x}) = (\mu z \le y) P(z, \vec{x})$$
, then $f \in PR(P)$.

Corollary 5.15. If
$$f(y, \vec{x}) \simeq (\mu z < g(y, \vec{x})) P(z, \vec{x})$$
, then $f \in PR(g, P)$.

Proofs: Like Cors 5.11, 5.12 (p. 5-8). \Box

5.5 A note on unbounded minimalisation

Let P be an (n+1)-ary predicate, and f an n-ary function defined by

$$f(\vec{x}) \simeq \mu y P(\vec{x}, y) \simeq \begin{cases} \text{the least } y \text{ s.t. } P(\vec{x}, y) \text{ holds, if such } y \text{ exists} \\ \uparrow \text{ otherwise} \end{cases}$$
 (1)

Intuitively, $f \in EFF(P)$ since the following algorithm, which uses an oracle for P, computes f:

"Test $P(\vec{x}, 0)$, $P(\vec{x}, 1)$, $P(\vec{x}, 2)$,... until y is found such that $P(\vec{x}, y)$. Then halt, with output y."

EXERCISE. Is f as defined in (1) in PR(P)?

NOTES:

1. The n-ary function

$$g(\vec{x}) = \begin{cases} \mu y P(\vec{x}, y) & \text{if } \exists y P(\vec{x}, y) \\ 0 & \text{otherwise} \end{cases}$$

is total, but not (in general) effective in P.

2. In (1), $f \in \mathcal{G}\text{-}COMP(P)$. Hence if $P \in \mathcal{G}\text{-}COMP$, then so is f. You may try to prove this now, or wait for Lemma 11.1.

5.7 More examples of PR functions and predicates

• Integer division

$$x \ div \ y = \lfloor x/y \rfloor$$

= $\mu z [z * y \le x \land (z+1) * y > x]$
= $(\mu z \le x) [(z+1) * y > x].$

• Remainder

$$x \bmod y = x - (x \operatorname{div} y) * y.$$

• Divisibility predicate

$$y|x\iff x \bmod y = 0,$$

or alternatively,

$$y|x \iff \exists z(x=y*z) \iff (\exists z \le x)(x=y*z).$$

• Primality predicate

$$prime(x) \iff x > 1 \land \neg \exists y [1 < y \land y < x \land y | x] \\ \iff x > 1 \land \neg (\exists y < x) [1 < y \land y | x].$$

• Prime number sequence

Let p_n denote the *n*-th prime, with $p_0 = 0$. Is $\lambda n \cdot p_n \in PR$? The PR definition

$$\begin{cases} p_0 = 0 \\ p_{n+1} = \mu y [\mathbf{prime}(y) \land y > p_n] \end{cases}$$

is problematic as it stands, since (i) μ is unbounded, and (ii) it assumes the existence of a prime $> p_n$, or equivalently, the existence of infinitely many primes. Euclid comes to the rescue!

Theorem 5.16 (Euclid). There are infinitely many primes. More precisely,

$$\forall x \exists p \, [\mathbf{prime}(p) \land x$$

Proof: Let y = x! + 1.

For $2 \le k \le x$, k|x!, and so $y \mod k = 1$, and so $k \not\mid y$. But y has at least one prime factor p. So $x . <math>\square$

We can now re-define the prime number sequence as:

$$\begin{cases}
p_0 = 0 \\
p_{n+1} = (\mu y \le (p_n! + 1))[\mathbf{prime}(y) \land y > p_n]
\end{cases}$$

which is PR, by Corollary 5.15.

EXERCISES:

- 1. Show that the following functions and predicates are PR:
 - (a) even(x) (x is even)
 - (b) max(x,y)
 - (c) perfsq(x) (x is a perfect square)
 - (d) sqrt(x) (integral square root of x)
 - (e) gcd(x, y).

2. For any unary function f, define

$$g(n,x) \simeq f^n(x)$$

(the *n*-th iterated composition of f). Is $g \in PR(f)$?

- 3. (a) Show that every finite subset of N is PR.

 (A set or relation is said to be PR if its char. pred. is PR.)
 - (b) Is every co-finite subset of N PR?(A set is co-finite if its complement is finite.)
- 4. Prove the following function is PR:

$$d(n,k) = (k+1)$$
st digit in decimal expansion of $1/n$,

e.g.,
$$1/7 = 0.142...$$
, so $\mathbf{d}(7,0) = 1$, $\mathbf{d}(7,1) = 4$, $\mathbf{d}(7,2) = 2$.