Navigating the Data Science World

November 2017

Data Science & Analytics – 'Clear & Present' Opportunity

What does it take to produce 'Actionable Insights'

What are the dimensions of Analytics?

Use Case **Interpret Analytics** Domain Business Formulation Output **Expertise Data Acquisition** Data Exploration & Data Data Visualization **Pre-processing** Math / Understand the Select the right Evaluating the algorithms techniques & code output of algos Quant Tech / Software Understand the IT Data Engineering & Ecosystem Architecture Engineering / SDLC Software

My Analytics Mindmap

Global Trends in Society

Macro-economy

Business Fundamentals

Specific Industry Domain

Analytical use cases

Analytical
Platforms &
Techniques

Data Management

Reporting & Self-service

Quantitative Techniques

Performance Mgmt

Insight Delivery

Analytics for Business Value

http://bit.ly/31KArT8

Scan for New Products

Evaluate Maturity

Monitor Ecosystem

Leverage Resources

Data Science Techniques - What's the real problem?

Is the focus on data **Navigation** or on the process **Data** Type of Data **Structured Not Webscale** Volume of data Is it a time-series? Has Label / DV? No Yes Category 1: Supervised ML on Structured Data DV - Continuous or Categorical? **Continuous Categorical** Regression Classification

- Exploratory Data Analysis (EDA)
- Data Pre-processing Outliers, Missing data, Variable Transformations
- > Feature Selection & Dimensionality Reduction
- Feature Engineering
- Algorithms Standalone vs Ensembles
- ➤ Algorithms Parametric vs Non-Parametric
- Algorithms Linear vs Non-linear
- Cross validation
- > Hyper-parameter Tuning
- Predict on Test set

- Exploratory Data Analysis (EDA)
- Clustering K-Means, Hierarchical, many others...
- Anomaly Detection Isolation Forest, LoF, many others...
- Recommenders Content based, Collaborative Filtering, Hybrids
- Self-Organizing Maps (SOMs) Use Deep Learning for structure discovery

Navigation

- Univariate vs Bivariate timeseries
- Visualizing and Decomposing Time series
- Stationary & Non-stationary Time series
- Plot Auto-correlation plots to find optimal differencing parameters
- Feature engineering Creating features like lag, moving average etc.
- > Build Timeseries forecasting models like ARIMA, Holt-Winters etc.
- Deep Learning Techniques like Recurrent Neural Networks (RNN)

- NLP Natural Language Processing. Used in areas like email spam detection, sentiment analysis, sarcasm detection etc.
- CNNs Convolutional Neural Networks Specialized Neural Network Architecture with Convolutional layer, Pooling layer, Flattening and Fully Connected layers to detect image features
- RNNs Recurrent Neural Networks Specialized ANN architecture with feedback loops that helps in short-term memory. (Ex: LSTMs)

Brief Detour - Why is Text Analytics Important

Lots of unstructured text – 80% of data in organization is unstructured and text data is rapidly growing

2 Text packs a lot of information

3 Text Analytics is the foundation to higher levels of cognitive technologies & to artificial intelligence

NLP in 1 Slide

- Full range of NLP can be utilized Phrase Modeling, Entity Extraction,
 Part of Speech tagging, Topic Models, Word embeddings, etc.
- ➤ GANS Generative Adversarial Networks. Artificial Neural Network architectures that generate text, art etc.
- Restricted Boltzmann Machines, Auto Encoders etc.

Navigation

- Delayed Feedback from environment
- > States, Policies, Actions
- Key Terms / Techniques Multi-armed bandits, Q Learning, Bellman's equation, Markov Decision Process, etc.
- In my view, AI is also in this category as all AI systems needs to work with structured & unstructured data and take actions based on their perception of the environment
- AlphaGo, Autonomous cars etc.
- Platforms OpenAI, Gym, Universe etc.

Navigation

- Fundamental idea is to use Bayes Theorem to estimate:Probability (Parameters | Data)
- All ML algorithms have a Bayesian variation Ex: Bayesian Linear
 Regression, Bayesian Logistic Regression, Bayesian Decision Trees etc.
- > Estimating uncertainty is critical for business decision making
- ➤ Packages for computation Stan, PyMC3 etc.

Navigation

- > Scaling both Supervised and Unsupervised Machine Learning Algorithms
- Spark, Big Data, Cloud All become relevant in addition to specific algorithmic techniques
- Check out H2o.ai Open Source platform build ground up for Machine Learning
- I would also put 'Enterprise Search' (ELK) into this category as elasticsearch, solr etc. are about providing structure to massive amounts of data so that it can be easily retrieved

Big Data – Key Technology Enabler

Navigation

- Very relevant in business context as they always have constraints
- Many optimization methods are available most common one is Linear
 Optimization (Simplex) with its variants like Integer, Quadratic optimization etc.
- Ex: PuLP package in Python helps to execute Linear Programming

Navigation

Category 10: ML in Production

- Architectural considerations:
 - 1. Data Products vs Applications
 - 2. User access (Concurrent etc.)
 - 3. Frequency of predictions
 - 4. Frequency of model calibration
 - 5. How many models are deployed (Is is one per customer segment?, one per product? etc.)
 - 6. Logging? Monitoring? Error Handling? Fault Tolerance?
 - 7. Software Engineering Principles
- Data Pipelines
- Webservices / APIs
- Containers & its orchestration (Ex: Dockers, Kubernetes etc.)
- ➤ Hardware GPUs
- Notebooks (Ex: Zeppelin)
- Streaming data (Ex: Storm, Kafka etc.)

Navigation

Key Skill #1: Business Connect

Collect Data

(Transactions, Observations and

Interactions)

Business Decision Making Pipeline

Data Science Pipeline

Analyze Data

(Apply Math to Data)

Manage Data

(Data engineering to store and ensure

quality of data)

Derive Insights

(Decipher patterns and get

Key Skill #2 - Hands-on Knowledge

Key Skill #3 – Think Technology Landscape

- > Cloud
- Mobility
- ➤ Web Technologies
- ➤ Embedded Analytics in Applications
- Legacy Systems

Q&A

- Karthikeyan Sankaran, Director, LatentView Analytics
- Email ID Karthikeyan.Sankaran@latentview.com
- LinkedIn http://in.linkedin.com/in/karthikeyansankaran
- Github github.com/skkeyan-mlai

Data Science & ML can have great impact on industries

McKinsey&Company

MCKINSEY GLOBAL INSTITUTE

THE AGE OF ANALYTICS:

COMPETING IN A

DATA-DRIVEN WORLD

DECEMBER 2016

SOURCE: McKinsey Global Institute analysis