CHAPITRE 1 - LES ENSEMBLES DE NOMBRES

$$\mathbb{Z} = \{\ldots; -3; -2; -1; 0; 1; 2; 3; \ldots\}$$

Proposition. – Tout entier est aussi un entier : on dit que l'ensemble des entiers est dans l'ensemble des entiers Cette inclusion se note :

$$\mathbb{N} \dots \mathbb{Z}$$

1. LES ENSEMBLES DE NOMBRES

Définition. – Les entiers naturels ou nuls sont les nombres L'ensemble des entiers naturels est noté

$$\mathbb{N} = \{0; 1; 2; \ldots\}$$

Notation. – On écrit par exemple 2... \mathbb{N} (se lit « 2 à \mathbb{N} »).

Définition. – Les nombres décimaux sont les nombres qui s'écrivent comme quotient d'un entier (relatif) par une puissance de 10, c'est-à-dire par 1, 10, 100, 1000 etc (ou plus généralement 10^k où k est un entier naturel). L'ensemble des nombres décimaux est noté \mathbb{D} .

Exemples. -

- 1. Par exemple, 0, 2 est un nombre décimal car on peut écrire $0, 2 = \frac{2}{10}$. Donner deux autres exemples de nombres décimaux.
- 2. L'entier naturel 4 est-il un nombre décimal? Et l'entier relatif -7?

18

Proposition. – L'ensemble des entiers relatifs est inclus dans l'ensemble des nombres décimaux : $\mathbb{Z} \subset \mathbb{D}$. On a donc :

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{D}$$

4

Proposition. – L'ensemble des nombres décimaux est inclus dans l'ensemble des nombres rationnels : $\mathbb{D} \subset \mathbb{Q}$. On a donc :

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q}$$

Définition. – Les nombres rationnels sont les nombres qui s'écrivent comme le quotient de deux entiers. L'ensemble des nombres rationnels est noté \mathbb{Q} .

Exemples. -

- 1. Le nombre $\frac{2}{3}$ est le quotient des entiers 2 et 3 donc $\frac{2}{3}$ est un nombre rationnel.
- 2. Les nombres $\frac{4}{7}$, 3, -4 et 0, 23 sont-ils des nombres rationnels?

Définition. – À chaque point de la droite graduée ci-dessous, on a associé un nombre unique, qui est appelé son abscisse. Inversement, à chaque nombre correspond un unique point de la droite graduée.

Les nombres réels sont les abscisses de tous les points d'une droite graduée. L'ensemble des nombres réels est noté $\mathbb R$.

Proposition. – Il existe des nombres réels qui ne sont pas rationnels, comme $\sqrt{2}$ (il faudra savoir le démontrer) ou π . Ces nombres sont appelés des nombres irrationnels.

Définition. – Soit a un nombre réel. L'intervalle $[a; +\infty[$ est l'ensemble des réels tels que $x \ge a$. On définit de la même façon les intervalles $[a; +\infty[$, $]-\infty; a[$ et $]-\infty; a[$.

Intervalles	Ensemble des réels <i>x</i> tels que	Représentation graphique
$[a; +\infty[$	$x \ge a$	
$]a;+\infty[$		
$]-\infty$; a]		
] − ∞; a[

2. Intervalles de $\mathbb R$

Définition. – Soient a et b deux nombres réels tels que a < b. L'intervalle [a;b] est l'ensemble des réels tels que $a \le x \le b$. On définit de même les intervalles [a;b[,]a;b] et]a;b[.

Intervalles	Ensemble des réels <i>x</i> tels que	Représentation graphique
[a; b]	$a \le x < b$	
[a; b[
]a; b]		
]a; b[

9

3. VALEUR ABSOLUE D'UN NOMBRE, DISTANCE ENTRE DEUX NOMBRES RÉELS

Définition. – Soit x un nombre réel. On appelle valeur absolue de x le nombre noté |x| défini par :

$$x = \begin{cases} x \sin x \ge 0 \\ -x \sin x < 0 \end{cases}$$

Exemples. – Donner la valeur absolue des nombres 5, -2, 4, $\pi-5$ et $\frac{1}{7}-0$, 1.

10

18

1

18

Proposition. – On retiendra les propriétés suivantes :

- La valeur absolue d'un nombre est positive ou nulle.
- Un nombre et son opposé ont la même valeur absolue.

Exemples. – Après avoir traduit chacune des égalités et inégalités suivantes à l'aide d'une distance, représenter l'ensemble des réels x tels que :

1.
$$|X-4|=2$$

2.
$$|x-2|=3$$

3.
$$|x+3|=1$$

4.
$$|x + 1| = 2$$

5.
$$|x-3| \le 2$$

6.
$$|x+7| < 1$$

7.
$$|x-5| \ge 3$$

8.
$$|x+6| > 1$$

Définition. – On appelle distance entre deux réels a et b le nombre |b-a| (qui est aussi égal à |a-b|). Sur une droite graduée, si A est le point d'abscisse a et B le point d'abscisse b, la distance entre a et b est égale à la distance AB.

Exemples. – Déterminer la distance entre 3 et -1, puis la distance entre -15 et 12.

Exemples. - Compléter chacune des phrases suivantes :

- 1. L'intervalle [2; 8] est l'ensemble des réels x tels que
- 2. L'intervalle [2, 25; 6, 35] est l'ensemble des réels x tels que
- 3. Traduire à l'aide d'une valeur absolue la condition $y \in [7,4;7,6]$.

4. Intersection et réunion de deux intervalles

Définition. – Soient I et J deux intervalles. L'intersection de I et J est l'ensemble des réels qui appartiennent à I et à J. Cet intervalle est noté $I \cap J$ (et se lit « I inter J »).

Exemples. – Dans chacun des cas suivants, préciser l'intersection des intervalles I et J.

5. ENCADREMENT DÉCIMAL D'UN RÉEL

Définition. – L'encadrement décimal d'un réel x à 10⁻ⁿ près (où n est un entier naturel non nul) est l'encadrement $d \le x < d + 10^{-n}$ où d est un nombre décimal.

Exemples. – L'encadrement décimal de π à 10⁻⁴ près est donc 3,141 5 $\leq \pi <$ 3,141 6. Donner l'encadrement décimal de $\sqrt{2}$ à 10⁻⁵ près, puis celui de $\frac{215}{368}$ à 10⁻² près.

Définition. – Soient I et J deux intervalles. La réunion de I et J est l'ensemble des réels qui appartiennent à I ou à J (ou aux deux!). Cet ensemble n'est pas nécessairement un intervalle : il est noté $I \cup J$ (se lit « I union J »).

Exemples. – Dans chacun des cas précédents, décrire le plus simplement possible la réunion des intervalles I et J.

1.
$$I = [-3; 5] \text{ et } J =] - 1; 7]$$

2. $I =] - 3; -1] \text{ et } J =] - 1; 10[$
3. $I = [5; 10] \text{ et } J =]6; 7[$
4. $I =] - \infty; 10[\text{ et } J =] - 3; 12]$
5. $I = [-2; +\infty[\text{ et } J =] - 4; 6[$
6. $I =] - 10; 1] \text{ et } J = [1; +\infty[$

1/

16

18