NOMBRE: DNI:

Para cada propuesta, marca ($\sqrt{\ }$) cuál de las siguientes afirmaciones es correcta.

Inicio del Test

- 1. Teniendo en cuenta que $5784 = 413 \cdot 14 + 2$, el cociente de dividir -5784 entre 14 es
 - (a) -413
 - (b) 413
 - (c) -414
 - (d) -412
- **2.** El conjunto de números $\{12x + 20y \mid x, y \in \mathbb{Z}\} \subseteq \mathbb{Z}$
 - (a) no contiene a ningún múltiplo de 4
 - (b) contiene algún múltiplo de 4, pero no a todos
 - (c) contiene a todos los múltiplos de 4, pero también otros números que no lo son.
 - (d) contiene a todos los múltiplos de 4 y a ningún otro número
- **3.** Entre los números $p, a, b, u, v \in \mathbb{Z}$ se tiene la relación $p = a \cdot r + b \cdot v$, y p es primo, entonces
 - (a) (a, b) = p
 - (b) (a, b) = 1
 - (c) una de las dos posibilidades anteriores, (a) o (b), es cierta
 - (d) ninguna de las tres posibilidades anteriores, (a), (b) o (c), son ciertas
- **4.** Sabiendo que (a, b) = 5, la ecuación difántica ax + by = 20,
 - (a) no tiene solución
 - (b) tiene 5 soluciones
 - (c) tiene $4 = \frac{20}{5}$ soluciones
 - (d) tiene más de 20 soluciones
- 5. ¿Es verdad que ...?
 - (a) $\forall m > 0$, $5^m + 1 \equiv 0 \mod (3)$
 - (b) $\exists m > 0$, tal que $5^m + 1 \equiv 0 \mod (4)$
 - (c) $\exists m > 0$, tal que $5^m + 1 \equiv 1 \mod (2)$
 - (d) $\forall m > 0$, $5^m + 1 \equiv 0 \mod (6)$ o $5^m + 1 \equiv 2 \mod (6)$

- **6.** Siendo m, n > 1, el sistema de congruencias $\begin{cases} x \equiv n \mod (m) \\ x \equiv m \mod (n) \end{cases}$
 - (a) puede no tener solución, según sea (m, n).
 - (b) tiene solución, pero esta no es única
 - (c) puede no tener solución, según sea [m, n].
 - (d) tiene solución, y esta es única.
- 7. Consideremos los anillos de restos $\mathbb{Z}_4 = \{0, 1, 2, 3\}$ y $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$. Entonces,
 - (a) \mathbb{Z}_4 no es subanillo de \mathbb{Z}_5 ni de \mathbb{Z}
 - (b) \mathbb{Z}_4 es un subanillo de \mathbb{Z}_5
 - (c) \mathbb{Z}_4 no es un subanillo de \mathbb{Z}_5 , pero sí que lo es de \mathbb{Z}
 - (d) Todas las afirmaciones anteriores son falsas.
- **8.** El anillo cociente $\mathbb{Z}/4\mathbb{Z} \cap 5\mathbb{Z}$,
 - (a) Tiene 4 ideales y 5 unidades
 - (b) Tiene 6 ideales y 8 unidades
 - (c) tiene 5 ideales y 4 unidades
 - (d) tiene 8 ideales y 6 unidades
- **9.** La ecuación 24x = a en \mathbb{Z}_{32} ,
 - (a) siempre tiene solución
 - (b) puede no tener solución, pero si tiene una entonces tiene 8 soluciones
 - (c) puede no tener solución, pero si tiene una entonces tiene 4 (= $\frac{32}{8}$) soluciones
 - (d) puede no tener solución, pero si tiene una entonces tiene 3 (= $\frac{24}{8}$) soluciones .
- **10.** El resultado de calcular $3^{3^{700}}$ en el anillo \mathbb{Z}_{100} es
 - (a) 3
 - (b) 9
 - (c) 27
 - (d) diferente de 3, 9 y 27.

Final del Test