Арифметика
Лекция 2. Сравнения
по модулю

Математика в кибербезопасности

Лекция 2. Сравнения по модулю

Сравнение чисел по модулю

Видео 1, 0:42 - 2:58

Сравнение чисел a и b по модулю m покажет, равны ли остатки от деления этих чисел на m:

$$5/3=1$$
 | $2-$ остаток $5 \mod 3=2$ $5 \equiv 2 \mod 3$, $\equiv -$ знак сравнимости чисел

Какие остатки от деления на т можно получить?

- Если a : m, то a ≡ 0 mod m
- Если a ≡ b mod m, то a и b сравнимы по mod m
- Чисел a, сравнимых с b по mod m бесконечное количество

Сложение и умножение чисел по модулю

Видео 1, 2:59 - 3:28

$$5 \equiv 2 \mod 3$$

 $4 \equiv 1 \mod 3$

```
Сложение: (5 + 4) \mod 3 \equiv 9 \mod 3 \equiv 0 \mod 3
```

Умножение: $5 \cdot 4 \mod 3 \equiv 20 \mod 3 \equiv 2 \mod 3$

Что можно делать со сравнениями

Видео 1, 3:29 - 3:53

- Можно прибавлять к обеим частям число с: a + c ≡ b + c mod m
- Можно умножать обе части на число c: $a \cdot c \equiv b \cdot c \mod m$

Вычитание чисел по модулю

Видео 1, 3:54 - 4:34

Операция «вычитание» – это сложение с числом, обратным по модулю по сложению

В целых числах
$$\mathbb{Z}$$
: 2 + (-2) = 0

а и b - обратные числа по сложению, если:

$$a + b = 0$$

Обозначение обратного числа:

$$a = -b$$

 $b = -a$

Обратные числа по сложению

Видео 1, 4:35 - 6:07

а и b - обратные числа по сложению, если: $a + b \equiv 0 \mod m$

Тогда: $b \equiv (m - a) \mod m$

Если b – отрицательное число по mod m: $b mod m \equiv (m + b) mod m, где <math>b < 0$

Чтобы из отрицательного числа получить положительное, нужно взять обратное к нему по сложению:

 $-2 \mod 3 \equiv (3-2) \mod 3 \equiv 1 \mod 3$

Обратное число по сложению существует всегда

Деление чисел по модулю

Видео 1, 6:08 - 6:50

Операция «деление» - это умножение числа а на обратное к нему по умножению:

$$6/2 = 6 \cdot 2^{-1} = 6 \cdot 1/2 = 6/2 = 3$$

Обратные по умножению числа

Видео 1, 6:56 - 7:49

a, b – обратные, если $a \cdot b \equiv 1 \mod m$

Пример:

$$2 \cdot 3 \equiv 1 \mod 5$$

2 и $3 - \text{ обратные умножению по mod 5}$, то есть: $2 \equiv 3^{-1} \mod 5$
 $3 \equiv 2^{-1} \mod 5$

Как искать обратные по умножению числа

Видео 2, 0:00 - 1:25

Первый способ – подбором:

$$a = 4, m = 5$$

 $a \cdot b \equiv 1 \mod m$

Будем перебирать значения b:

Второй способ - с помощью расширенного алгоритма Евклида

НОД

Видео 2, 1:26-2:15

НОД (Наибольший Общий Делитель для целых чисел) — наибольшее число, на которое одновременно делятся несколько чисел

Если HOД (a, b) = 1, то а и b — взаимно простые числа

Обратное по умножению к числу a mod m будет существовать, если a и mвзаимно простые числа

Алгоритм Евклида

Видео №2, 2:16 - 3:45

Алгоритм Евклида используется для поиска наибольшего общего делителя двух целых чисел

Для любых целых чисел a, b:

$$HOД$$
 (a, b) = $HOД$ (b · q + r, b) = $HOД$ (a - b · q, b) = $HOД$ (r, b) = $HOД$ (b, r)

Пример:

НОД (43, 15) = НОД (13, 15) = НОД (15, 13) = НОД (2, 13) = НОД (13, 2) = НОД (1, 2) = НОД (2, 1) = НОД (0, 1).

Наименьший общий делитель равен единице— значит числа 43 и 15 являются взаимно простыми

Расширенный алгоритм Евклида

Видео 2, 3:46 - 7:56

- 1. Выразим оба числа «друг через друга»
- 2. Коэффициенты выпишем в две строки
- 3. Вычитаем из первой строки вторую максимальное количество раз
- 4. Вычитаем из второй строки третью, пока не получим 0 в левом столбце

Пример: НОД (48, 15) = 3

Значит, эти числа не взаимно простые.

$$48 = 1 \cdot 48 + 0 \cdot 15$$

 $15 = 0 \cdot 48 + 1 \cdot 15$

48	1	0	
15	0	1	
3	1	-3	НОД
0	-5	16	

Взаимно простые и обратные по умножению: используем расширенный алгоритм Евклида:

$$15 \cdot b \equiv 1 \mod 43$$

43	1	0	
15	0	1	
13	1	-2	
2	-1	3	
1	7	-20	НОД
0	-15	43	

Проверяем, что найденное число – обратно простое по умножению

$$HOД$$
 (43, 15) = 1
 $1 = 7 \cdot 43 - 20 \cdot 15$
 $b = -20 \equiv (43 - 20) \mod 43 \equiv 23 \mod 43$
 $23 \cdot 15 \equiv 1 \mod 43$
 $345 \equiv 1 \mod 43$

Значит, 23 и 15 — взаимно обратные числа.