

Evosim: Some operation on Set B such that By is subset of A Structuring element A OB = {z | Bz SA } set of structure element points fully inside A is called "Erosion". Exosion element out set of > If we do evosion operation on an itsage then the size of the itsage decreases > Erosian removes thin lines and isolated dots. ADBSA - This operation directly depends type of structuring element. -> It is used to shrink an object. ADB = {Z BZNASA} Dilation: - It is reverse of Erosion. If alteast one element in A If Dilation operation is used to expand an object. If it Kost day dyeylop with Find pixels such that shifted structuring element has any overlap with the original set. It increases sixe of the object. It fills the a connects two isolated objects. This operation is also always depends on type of structuring element. Thin lines becomes thicker.

The operation that does not change the size and bridge the grups They ase:-17(i). Morphological opening It is defined as so perform erosion and then dilation. A.B= (AOB) @B - It breaks the narrow bridges and eliminates the structures (11). Morphological closing Here we first dilate the given object and then erade the object with the same structuring element. A.B=(A + B) (B - Fuses the narrow break points (bridges) and eliminates small holes. — In Marphological opening, thin lines are removed whereas in morphological closing thin lines are not removed. CV. get Structuring Element (EV. MORPH_RECTIONAL 800 (5,5)) (CV. MORPH_BLACKHAT, (5,5)) (CV. MORPH_ELLIPSE, (S,S)) cv. imshow ('Driginal', img) Kernel=np.ones((5,5), np.unit8) erosion = cv. erade(img, kernel, iteration=1) dilation = cv. dilate (ing, kernel, iteration = 1) opening = cv. morphology Ex (img, cv. MORPH_OPEN, kernel) closing = cv.morphology Excling, cv.MORPH_CLOSE, Kernel)

Color Image Processing

colow is not just digital but it involves physics and the human vision system cons are faster in bright and is responsible for identifying colors in morning. - Rods are responsible for identifying in night

Alle Highburt

Colour is a spectral policerdistribution.

There are 3 types of cones. They are:

1)5 (small)

2) M (Medium)

3) L (barge)

ted light sensitive cones - 65 %. Green light sensitive cones - 33% Blue light sensitive comes - 2%.

Each type cone is responsible for a positiculose color.

where are 6-7 million cones.

Primary and Secondary colors:

- Newspaper's technology uses secondary color

CMYK (Cyan, magenta, yellow, black)

Red + Green = Yellow

Red + Blue = Magesta

Green + Blue = Cyan

Trichromatic Theory :-

R for L

& for M

Ci= SRi(X)P

41000 many colors can we see ?

Some linear combinations of points given new colors

Saturation means the amount of a particular dollar color

Image Inpainting

The problem with RGB colorspace is -

- We cannot quantifice the colors

- We cannot get the range of a particular color completely (we cannot quantize the colors)

-There is no difference between chromatic and Achromatic colors in RGB

CMYK- We can't get complete black in cmy

- It is extensively used in printers, printer mathines.

Converting 1

3 quantities are going to calculate are:

- 1) Hue
- 2) Saturation

-> Hue & Saturation describe colour. These two are responsible for

It is the dominant wavelength or large made with the o 1). Hue: present at particular one. It is dominant.

Red - 0° Cyan - 180° Yellow-60° Blue -240° Green - 120° Megenta = 300°

At the purity of the color. It is distance blo centre to Red 2). Saturation: -

3) Value(V) 3intensity arus Perpendicular distance of particular color from - the axis.

These saturated colors have lightness 0.5 in HSL, while in HSV They have value 1.

The complete saturated color has 0.5 lightness in HSL and 1 in 46V.

-> Hue & Saturation fined then intensity decreases then daykness of the Image increases.

-> Fixed the & Intensity then if the Saturation decreases then

the purity of the image decreases.

> Fixed Intensity & Saturation then if the Hue increases then - the color changes.

Given RGB, how to convert RGB into HSI

$$V = \frac{1}{3}(R+G+B)$$

 $S = 1 - \frac{3}{(R+G+B)}[min(R,G,B)]$

$$\theta = \cos^{2} \left\{ \frac{\frac{1}{2} \left[(R-4) + (R-B) \right]}{\left[(R-4)^{2} + (R-B) (G-B) \right]^{1/2}} \right\}$$

Color image Processing

1) Full color image Processing

2) Poudo color image processing

Scanned by CamScanner

Image Compression There are & compression techniques. They are: 1) Loss less compression 2) Lossy compression why do we need compression? zip File - loss less compression +Lossy compression is used and very good whenever the human vision unable to see the change -> Jpg PGM 8 bits for grayscale picture PAM_ No compression 8+8+8=24 bits for color image 400×600 TIFF] loss less & uses LZ cooling 240KY L4 JPEG - Joint Photographa Expert Group - Lossy compression & uses DCT Compression Ratio: -Compression Ration = No. of bits per pixel before (CR) No. of bits per pinel after for real world images, if we go with loss less compression then 2 < CR < 10 It depends on histogram of the image. Probability Density Function: (PDF) Pi=P(I(x,y)=i) = No. of pixels having I(x,y)=i Total No. of pixels Average no. of pits per phiets = Lavg = = Pi + bi In Uniform coding technique, No. of bits for pixel is always 8 bits .. So, Average # of bits, Lavg = 8 bits We use less no. of bits for high probability pixels value. For less probability pinch value, it uses more no. of bits.

BHM1:- Probability (Pi) Uniform cacking Variable length coole 19th	
	2784
0 0.19 001 11	-
1 0.25 010 01	
2 0.21 011 101 0.19 2	1
3 0.16	
4 0.08 101 10001 0.	
5 0.06 100001 0.38	3
6 0-03 (11) 100000 0.5 0.41	Elic .
7 0.02	
	0
Lang = = Pi * bi' Lang = i=0 112 +0.16 x3+0.08 x4 0.08 x4 0.32	1
$Lay = 0$ $= 0.19 \times 2 + 0.25 \times 240.21 \times 2 + 0.16 \times 3 + 0.08 \times 4 0.08 \times 4 0.08 \times 4 0.08 \times 4 0.08 \times 4 0.08 \times 4 0.08 \times 4 0.08 \times 4 0.08 \times 4 0.08 \times 4 0.08 \times 4 0.0$	1
$= 0.19 \times 2 + 0.25 \times 200 \times 10.02 \times 6$ $= 0.19 \times 2 + 0.25 \times 200 \times 10.02 \times 6$ $= 0.19 \times 2 + 0.25 \times 200 \times 10.02 \times 6$	
+0.06x5+0.03x6+0.02x6 2.70	1
27	1
$\frac{2.7}{3}$	100
Compression Ration (CR) = $\frac{3}{2.7} = 1.1$	
	1
Entropy: N pilog Pi	
Entropy = - \(\sum_{P_1} \log P_1^2 \) Entropy = - \(\sum_{P_1} \log P_1^2 \) If we use uniform distribution then entropy will be \[\sum_{N \log \sum_{N \log \sum_{N \qq \qua	
If we use uniform distribution then entropy with a surface uniform distribution then entropy a surface uniform distribution then entropy as a surface uniform distribution the surface uniform distribution the entropy as a surface uniform distribution the entropy as a surface uniform distribution the entropy as a surface uniform distribution distribution the entropy as a surface uniform distribution di	
N 1 109 (N) = - M [M.197]	A
Entropy = - Z N	
Best case: only 1 gray level > Entropy = - [1 log 1] = 0 [Best case] della 1 gray level > Entropy = - [1 log 1] = 0 [Best case]	1
Entropy = 10g1 = - [1 log1] = 0 Entropy - 0	1
Best case: only 1 gray level - Entity	1
and no of bits*	home
/* Entropy would be aug. no. of bits */	
/* Entropy would be aug. no. of bits per symbol that can Entropy is the lowest no. of average bits per symbol that can	1
Entropy is the distribution.	150
be used to code the distribution.	
The technique which results average bits per price which	8
the technique which results average bits per pixel which is similar	9
to entropy is Huffman Coding.	800
	000
the statement of the same of t	- DANS

Scanned by CamScanner

Given two cooling techniques where code B is Code B preffit code and code A is not. Cock A 1-0 Encode: 1234321 1- 10 2-10 2-00 Code A: 1000 11110 1100 10 3-110 3- 11 4-110 4-110 code B: 0101101111110100 Using proefix code, we can easily decode the data without ambiguity. Huyman Cooling is prefix code in which no prefixes are not matched and using this we can easily decode Truncated Huffman Cooling: -Without probabilities, we cannot do Huffman coding clossless technique) If we have stream of clata i.e., the probabilities are unknown, then how can calculate the average no of bits per pixel? Coming topic .. [LZ Coding & LZ Variance] Nempel - Ziv Compression Techniques:-NZ77 & NZ78 encoding algorithms. Lossless compression techniques 1) static 2) Adaptive 3)


```
LZW Encoding Algorithm
prefix - first input character
while (not end of characterstream)
       char - next input character;
       if (prefix + char exists in Dictionary)
           prefix - prefix+char;
           output: the code for prefix;
            insertInDictionary ((codeWord, prefix+ char));
           Codewood++;
           prefix - char;
   output: the code for prefix
                                            Prefix - B NBA ABA A
                                           CodeWord - 256 257 258 259 260261
         BABAABAAA
                                            char - KBAABAAA
                    Dictionary
                             String
 Output
               Index
                             BA
               256
  266>
                              AB
                257
 265>
                             BAA
                250
 1256>
                             ABA
                 259
 4257>
                               AA
                 260
  165>
   (260>
```