INTEGRATED CIRCUITS

DATA SHEET

74HC4052; 74HCT4052 Dual 4-channel analog multiplexer, demultiplexer

Product specification Supersedes data of 2003 May 16

Dual 4-channel analog multiplexer, demultiplexer

74HC4052; 74HCT4052

FEATURES

- Wide analog input voltage range from -5 V to +5 V
- · Low ON-resistance:
 - 80 Ω (typical) at $V_{CC} V_{EE} = 4.5 \text{ V}$
 - -70Ω (typical) at $V_{CC} V_{EE} = 6.0 \text{ V}$
 - 60 Ω (typical) at $V_{CC} V_{EE} = 9.0 \text{ V}$
- Logic level translation: to enable 5 V logic to communicate with ±5 V analog signals
- Typical "break before make" built in
- · Complies with JEDEC standard no. 7A
- · ESD protection:
 - HBM EIA/JESD22-A114-B exceeds 2000 V
 - MM EIA/JESD22-A115-A exceeds 200 V.
- Specified from -40 °C to +85 °C and -40 °C to +125 °C.

APPLICATIONS

- Analog multiplexing and demultiplexing
- · Digital multiplexing and demultiplexing
- · Signal gating.

DESCRIPTION

The 74HC4052 and 74HCT4052 are high-speed Si-gate CMOS devices and are pin compatible with the HEF4052B. They are specified in compliance with JEDEC standard no. 7A.

The 74HC4052 and 74HCT4052 are dual 4-channel analog multiplexers or demultiplexers with common select logic. Each multiplexer has four independent inputs/outputs (pins nY0 to nY3) and a common input/output (pin nZ). The common channel select logics include two digital select inputs (pins S0 and S1) and an active LOW enable input (pin \overline{E}). When pin \overline{E} = LOW, one of the four switches is selected (low-impedance ON-state) with pins S0 and S1. When pin \overline{E} = HIGH, all switches are in the high-impedance OFF-state, independent of pins S0 and S1.

 V_{CC} and GND are the supply voltage pins for the digital control inputs (pins S0, S1, and $\overline{E}).$ The V_{CC} to GND ranges are 2.0 V to 10.0 V for 74HC4052 and 4.5 V to 5.5 V for 74HCT4052. The analog inputs/outputs (pins nY0 to nY3 and nZ) can swing between V_{CC} as a positive limit and V_{EE} as a negative limit. $V_{CC}-V_{EE}$ may not exceed 10.0 V.

For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to GND (typically ground).

FUNCTION TABLE

	INPUT ⁽¹⁾		CHANNEL DETWEEN
Ē	S1	S0	CHANNEL BETWEEN
L	L	L	nY0 and nZ
L	L	Н	nY1 and nZ
L	Н	L	nY2 and nZ
L	Н	Н	nY3 and nZ
Н	X	X	none

Note

1. H = HIGH voltage level

L = LOW voltage level

X = don't care.

Dual 4-channel analog multiplexer, demultiplexer

74HC4052; 74HCT4052

QUICK REFERENCE DATA

 V_{EE} = GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns.

SYMBOL	PARAMETER	CONDITIONS	TYF	PICAL	UNIT	
STWIBOL	FARAIVIETER	CONDITIONS	74HC4052	74HCT4052	UNIT	
t _{PZH} /t _{PZL}	turn-on time $\overline{\mathbb{E}}$ or Sn to V_{os}	$C_L = 15 \text{ pF}; R_L = 1 \text{ k}\Omega;$ $V_{CC} = 5 \text{ V}$	28	18	ns	
t _{PHZ} /t _{PLZ}	turn-off time $\overline{\mathbb{E}}$ or Sn to V_{os}	$C_L = 15 \text{ pF}; R_L = 1 \text{ k}\Omega;$ $V_{CC} = 5 \text{ V}$	21	13	ns	
Cı	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per switch	notes 1 and 2	57	57	pF	
Cs	maximum switch capacitance	independent (Y)	5	5	pF	
		common (Z)	12	12	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma[(C_L + C_S) \times V_{CC}^2 \times f_o] \text{ where:}$

 f_i = input frequency in MHz;

f_o = output frequency in MHz;

C_L = output load capacitance in pF;

C_S = maximum switch capacitance in pF;

V_{CC} = supply voltage in Volts;

N = number of inputs switching;

 $\Sigma[(C_L + C_S) \times V_{CC}^2 \times f_o] = \text{sum of the outputs.}$

2. For 74HC4052 the condition is $V_I = GND$ to V_{CC}

For 74HCT4052 the condition is V_I = GND to V_{CC} – 1.5 V.

ORDERING INFORMATION

			PACKAGE		
TYPE NUMBER	TEMPERATURE RANGE	PINS	PACKAGE	MATERIAL	CODE
74HC4052D	-40 °C to +125 °C	16	SO16	plastic	SOT109-3
74HCT4052D	-40 °C to +125 °C	16	SO16	plastic	SOT109-3
74HC4052DB	-40 °C to +125 °C	16	SSOP16	plastic	SOT338-1
74HCT4052DB	-40 °C to +125 °C	16	SSOP16	plastic	SOT338-1
74HC4052N	−40 °C to +125 °C	16	DIP16	plastic	SOT38-9
74HCT4052N	-40 °C to +125 °C	16	DIP16	plastic	SOT38-9
74HC4052PW	-40 °C to +125 °C	16	TSSOP16	plastic	SOT403-1
74HC4052BQ	−40 °C to +125 °C	16	DHVQFN16	plastic	SOT763-1
74HCT4052BQ	-40 °C to +125 °C	16	DHVQFN16	plastic	SOT763-1

Dual 4-channel analog multiplexer, demultiplexer

74HC4052; 74HCT4052

PINNING

PIN	SYMBOL	DESCRIPTION
1	2Y0	independent input or output
2	2Y2	independent input or output
3	2Z	common input or output
4	2Y3	independent input or output
5	2Y1	independent input or output
6	Ē	enable input (active LOW)
7	V _{EE}	negative supply voltage
8	GND	ground (0 V)
9	S1	select logic input
10	S0	select logic input
11	1Y3	independent input or output
12	1Y0	independent input or output
13	1Z	common input or output
14	1Y1	independent input or output
15	1Y2	independent input or output
16	V _{CC}	positive supply voltage

Dual 4-channel analog multiplexer, demultiplexer

74HC4052; 74HCT4052

Dual 4-channel analog multiplexer, demultiplexer

74HC4052; 74HCT4052

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134); voltages are referenced to $V_{EE} = GND$ (ground = 0 V); note 1.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CC}	supply voltage		-0.5	+11.0	V
I _{IK}	input diode current	$V_{I} < -0.5 \text{ V or } V_{I} > V_{CC} + 0.5 \text{ V}$	_	±20	mA
I _{SK}	switch diode current	$V_{S} < -0.5 \text{ V or } V_{S} > V_{CC} + 0.5 \text{ V}$	_	±20	mA
I _S	switch current	$-0.5 \text{ V} < \text{V}_{\text{S}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$	_	±25	mA
I _{EE}	V _{EE} current		_	±20	mA
I _{CC} ; I _{GND}	V _{CC} or GND current		_	±50	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}; \text{ note}$	_	500	mW
P _S	power dissipation per switch		_	100	mW

Notes

- 1. To avoid drawing V_{CC} current out of pins nZ, when switch current flows in pins nYn, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into pins nZ, no V_{CC} current will flow out of pins nYn. In this case there is no limit for the voltage drop across the switch, but the voltages at pins nYn and nZ may not exceed V_{CC} or V_{EE}.
- 2. For DIP16 packages: above 70 °C derate linearly with 12 mW/K.

For SO16 packages: above 70 °C derate linearly with 8 mW/K.

For SSOP16 and TSSOP16 packages: above 60 $^{\circ}\text{C}$ derate linearly with 5.5 mW/K.

For DHVQFN16 packages: above 60 $^{\circ}\text{C}$ derate linearly with 4.5 mW/K.

Dual 4-channel analog multiplexer, demultiplexer

74HC4052; 74HCT4052

RECOMMENDED OPERATING CONDITIONS

CVMDOL	PARAMETER	CONDITIONS	7	74HC405	52	7.	4HCT40	52	LINUT
SYMBOL	FARAMILILA	CONDITIONS	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNIT
V _{CC}	supply voltage	see Figs 7 and 8							
		V _{CC} – GND	2.0	5.0	10.0	4.5	5.0	5.5	V
		V _{CC} – V _{EE}	2.0	5.0	10.0	2.0	5.0	10.0	V
VI	input voltage		GND	_	V _{CC}	GND	_	V _{CC}	V
Vs	switch voltage		V _{EE}	_	V _{CC}	V _{EE}	_	V _{CC}	V
T _{amb}	operating ambient	see DC and AC	-40	+25	+85	-40	+25	+85	°C
	temperature	characteristics per device	-40	_	+125	-40	_	+125	°C
t _r , t _f	input rise and fall times	V _{CC} = 2.0 V	_	6.0	1000	_	6.0	500	ns
		V _{CC} = 4.5 V	_	6.0	500	_	6.0	500	ns
		V _{CC} = 6.0 V	_	6.0	400	_	6.0	500	ns
		V _{CC} = 10.0 V	_	6.0	250	_	6.0	500	ns

Fig.7 Guaranteed operating area as a function of the supply voltages for 74HC4052.

Fig.8 Guaranteed operating area as a function of the supply voltages for 74HCT4052.

Dual 4-channel analog multiplexer, demultiplexer

74HC4052; 74HCT4052

DC CHARACTERISTICS

Family 74HC4052

 V_{is} is the input voltage at pins nYn or nZ, whichever is assigned as an input; V_{os} is the output voltage at pins nZ or nYn, whichever is assigned as an output; voltages are referenced to GND (ground = 0 V).

OVMBOL	DADAMETED	TEST CONDIT	IONS			TVD	NA V	
SYMBOL	PARAMETER	OTHER	V _{CC} (V)	V _{EE} (V)	MIN.	TYP.	MAX.	UNIT
T _{amb} = -40) °C to +85 °C; note 1				'	'		
V _{IH}	HIGH-level input		2.0	_	1.5	1.2	_	٧
	voltage		4.5	_	3.15	2.4	_	V
			6.0	_	4.2	3.2	_	٧
			9.0	_	6.3	4.7	_	٧
V _{IL}	LOW-level input		2.0	_	_	0.8	0.5	V
	voltage		4.5	_	_	2.1	1.35	V
			6.0	_	_	2.8	1.8	٧
			9.0	_	_	4.3	2.7	V
ILI	input leakage current	$V_I = V_{CC}$ or GND	6.0	0	_	_	±1.0	μΑ
			10.0	0	_	-	±2.0	μΑ
I _{S(OFF)}	analog switch OFF-state current	$V_I = V_{IH} \text{ or } V_{IL};$ $V_S = V_{CC} - V_{EE}; \text{ see Fig. 9}$						
		per channel	10.0	0	_	_	±1.0	μΑ
		all channels	10.0	0	_	_	±2.0	μΑ
I _{S(ON)}	analog switch ON-state current	$V_I = V_{IH} \text{ or } V_{IL};$ $V_S = V_{CC} - V_{EE}; \text{ see Fig. } 10$	10.0	0	_	_	±2.0	μΑ
I _{CC}	quiescent supply	$V_I = V_{CC}$ or GND;	6.0	0	_	_	80.0	μΑ
	current	$V_{is} = V_{EE} \text{ or } V_{CC};$ $V_{os} = V_{CC} \text{ or } V_{EE}$	10.0	0	_	_	160.0	μΑ

Dual 4-channel analog multiplexer, demultiplexer

74HC4052; 74HCT4052

CVMDC	DADAMETER	TEST CONDIT	IONS		NAIN	TVD	MAY	
SYMBOL	PARAMETER	OTHER	V _{CC} (V)	V _{EE} (V)	MIN.	TYP.	MAX.	UNIT
T _{amb} = -40) °C to +125 °C		•	•				
V _{IH}	HIGH-level input		2.0	_	1.5	_	_	V
	voltage		4.5	_	3.15	_	_	V
			6.0	_	4.2	_	_	V
			9.0	_	6.3	_	_	V
V_{IL}	LOW-level input		2.0	_	_	_	0.5	V
	voltage		4.5	_	_	_	1.35	V
			6.0	_	_	_	1.8	V
			9.0	_	_	_	2.7	V
I_{LI}	input leakage current	$V_I = V_{CC}$ or GND	6.0	0	_	_	±1.0	μΑ
			10.0	0	_	_	±2.0	μΑ
I _{S(OFF)}	analog switch OFF-state current	$V_I = V_{IH} \text{ or } V_{IL};$ $V_S = V_{CC} - V_{EE}; \text{ see Fig. 9}$						
		per channel	10.0	0	-	_	±1.0	μΑ
		all channels	10.0	0	-	_	±2.0	μΑ
I _{S(ON)}	analog switch ON-state current	$V_I = V_{IH} \text{ or } V_{IL};$ $V_S = V_{CC} - V_{EE}; \text{ see Fig.10}$	10.0	0	-	_	±2.0	μΑ
I _{CC}	quiescent supply	$V_I = V_{CC}$ or GND;	6.0	0	_	_	160	μΑ
	current	$V_{is} = V_{EE} \text{ or } V_{CC};$ $V_{os} = V_{CC} \text{ or } V_{EE}$	10.0	0	_	_	320.0	μΑ

Note

^{1.} All typical values are measured at T_{amb} = 25 °C.

Dual 4-channel analog multiplexer, demultiplexer

74HC4052; 74HCT4052

Family 74HCT4052

 V_{is} is the input voltage at pins nYn or nZ, whichever is assigned as an input; V_{os} is the output voltage at pins nZ or nYn, whichever is assigned as an output; voltages are referenced to GND (ground = 0 V).

OVMDOL	DADAMETER	TEST CONDIT	IONS			TVD	MAY	LINIT
SYMBOL	PARAMETER	OTHER	V _{CC} (V)	V _{EE} (V)	MIN.	TYP.	MAX.	UNIT
T _{amb} = -40) °C to +85 °C; note 1				'	'		•
V _{IH}	HIGH-level input voltage		4.5 to 5.5	_	2.0	1.6	_	V
V _{IL}	LOW-level input voltage		4.5 to 5.5	_	_	1.2	0.8	V
I _{LI}	input leakage current	$V_I = V_{CC}$ or GND	5.5	0	_	_	±1.0	μΑ
I _{S(OFF)}	analog switch OFF-state current	$V_I = V_{IH} \text{ or } V_{IL};$ $ V_S = V_{CC} - V_{EE}; \text{ see Fig.9}$						
		per channel	10.0	0	_	_	±1.0	μΑ
		all channels	10.0	0	_	_	±2.0	μΑ
I _{S(ON)}	analog switch ON-state current	$V_I = V_{IH} \text{ or } V_{IL};$ $V_S = V_{CC} - V_{EE}; \text{ see Fig.10}$	10.0	0	_	_	±2.0	μΑ
I _{CC}	quiescent supply	$V_I = V_{CC}$ or GND;	5.5	0	_	_	80.0	μΑ
	current	$V_{is} = V_{EE} \text{ or } V_{CC};$ $V_{os} = V_{CC} \text{ or } V_{EE}$	5.0	-5.0	_	_	160.0	μΑ
Δl _{CC}	additional quiescent supply current per input	$V_I = V_{CC} - 2.1 \text{ V; other inputs}$ at V_{CC} or GND	4.5 to 5.5	0	_	45	202.5	μΑ
T _{amb} = -40) °C to +125 °C					•		
V _{IH}	HIGH-level input voltage		4.5 to 5.5	_	2.0	_	_	V
V _{IL}	LOW-level input voltage		4.5 to 5.5	_	_	_	0.8	V
ILI	input leakage current	$V_I = V_{CC}$ or GND	5.5	0	_	_	±1.0	μΑ
I _{S(OFF)}	analog switch OFF-state current	$V_I = V_{IH} \text{ or } V_{IL};$ $V_S = V_{CC} - V_{EE}; \text{ see Fig. 9}$						
		per channel	10.0	0	_	_	±1.0	μΑ
		all channels	10.0	0	_	_	±2.0	μΑ
I _{S(ON)}	analog switch ON-state current	$V_I = V_{IH} \text{ or } V_{IL};$ $V_S = V_{CC} - V_{EE}; \text{ see Fig.10}$	10.0	0	_	_	±2.0	μΑ
I _{CC}	quiescent supply	$V_I = V_{CC}$ or GND;	5.5	0	_	_	160.0	μΑ
	current	$V_{is} = V_{EE} \text{ or } V_{CC};$ $V_{os} = V_{CC} \text{ or } V_{EE}$	5.0	-5.0	_	_	320.0	μΑ
Δl _{CC}	additional quiescent supply current per input	$V_I = V_{CC} - 2.1 \text{ V; other inputs}$ at V_{CC} or GND	4.5 to 5.5	0	_	_	220.5	μΑ

Note

1. All typical values are measured at T_{amb} = 25 °C.

Dual 4-channel analog multiplexer, demultiplexer

74HC4052; 74HCT4052

Dual 4-channel analog multiplexer, demultiplexer

74HC4052; 74HCT4052

Resistance R_{ON} for 74HC4052 and 74HCT4052

Vis is the input voltage at pins nYn or nZ, whichever is assigned as an input; see notes 1 and 2; see Fig.11.

CVMDOL	DADAMETED	TEST	CONDITIO	NS		RAINI	TVD	BAAV	
SYMBOL	PARAMETER	OTHER	V _{CC} (V)	V _{EE} (V)	I _S (μ A)	MIN.	TYP.	MAX.	UNIT
T _{amb} = -40) °C to +85 °C; note 3		<u>'</u>	•	•	•	1	•	1
R _{ON(peak)}	ON-resistance	$V_{is} = V_{CC}$ to V_{EE} ;	2.0	0	100	_	_	_	Ω
,	(peak)	$V_I = V_{IH}$ or V_{IL}	4.5	0	1000	_	100	225	Ω
			6.0	0	1000	-	90	200	Ω
			4.5	-4.5	1000	_	70	165	Ω
R _{ON(rail)}	ON-resistance (rail)	$V_{is} = V_{EE};$	2.0	0	100	_	150	_	Ω
, ,		$V_I = V_{IH}$ or V_{IL}	4.5	0	1000	_	80	175	Ω
			6.0	0	1000	_	70	150	Ω
			4.5	-4.5	1000	_	60	130	Ω
		$V_{is} = V_{CC};$	2.0	0	100	_	150	_	Ω
		$V_I = V_{IH} \text{ or } V_{IL}$	4.5	0	1000	_	90	200	Ω
			6.0	0	1000	_	80	175	Ω
			4.5	-4.5	1000	-	65	150	Ω
ΔR_{ON}	maximum	$V_{is} = V_{CC}$ to V_{EE} ;	2.0	0	_	_	_	_	Ω
	ON-resistance difference between any two channels	$V_I = V_{IH}$ or V_{IL}	4.5	0	_	_	9	_	Ω
			6.0	0	_	-	8	_	Ω
	any two channels		4.5	-4.5	_	_	6	_	Ω
T _{amb} = -40) °C to +125 °C		•				•		•
R _{ON(peak)}	ON-resistance	$V_{is} = V_{CC}$ to V_{EE} ;	2.0	0	100	_	_	_	Ω
, ,	(peak)	$V_I = V_{IH}$ or V_{IL}	4.5	0	1000	_	_	270	Ω
			6.0	0	1000	_	_	240	Ω
			4.5	-4.5	1000	_	_	195	Ω
R _{ON(rail)}	ON-resistance (rail)	$V_{is} = V_{EE};$	2.0	0	100	_	_	-	Ω
, ,		$V_I = V_{IH}$ or V_{IL}	4.5	0	1000	_	_	210	Ω
			6.0	0	1000	_	_	180	Ω
			4.5	-4.5	1000	_	_	160	Ω
		$V_{is} = V_{CC};$	2.0	0	100	_	_	_	Ω
		$V_I = V_{IH}$ or V_{IL}	4.5	0	1000	_	_	240	Ω
			6.0	0	1000	-	_	210	Ω
			4.5	-4.5	1000	_	_	180	Ω

Notes

- 1. For 74HC4052: V_{CC} GND or V_{CC} V_{EE} = 2.0, 4.5, 6.0 and 9.0 V; for 74HCT4052: V_{CC} GND = 4.5 and 5.5 V, V_{CC} V_{EE} = 2.0, 4.5, 6.0 and 9.0 V.
- 2. When supply voltages $(V_{CC} V_{EE})$ near 2.0 V the analog switch ON-resistance becomes extremely non-linear. When using a supply of 2 V, it is recommended to use these devices only for transmitting digital signals.
- 3. All typical values are measured at T_{amb} = 25 °C.

Dual 4-channel analog multiplexer, demultiplexer

74HC4052; 74HCT4052

Dual 4-channel analog multiplexer, demultiplexer

74HC4052; 74HCT4052

AC CHARACTERISTICS

Type 74HC4052

GND = 0 V; $t_r = t_f = 6$ ns; $C_L = 50$ pF.

OVMDOL	DADAMETED	TEST COND	ITIONS		NAIN!	TVD	MAY	
SYMBOL	PARAMETER	OTHER	V _{CC} (V)	V _{EE} (V)	MIN.	TYP.	MAX.	UNIT
T _{amb} = -40	°C to +85 °C; note 1		!	!	!	!	•	!
t _{PHL} /t _{PLH}	propagation delay V _{is} to V _{os}	R _L = ∞; see Fig.19	2.0	0	_	14	75	ns
			4.5	0	_	5	15	ns
			6.0	0	_	4	13	ns
			4.5	-4.5	_	4	10	ns
t _{PZH} /t _{PZL}	turn-on time \overline{E} , Sn to V_{os}	R _L = ∞; see Figs 20,	2.0	0	_	105	405	ns
		22 and 21	4.5	0	_	38	81	ns
			6.0	0	_	30	69	ns
			4.5	-4.5	_	26	58	ns
t _{PHZ} /t _{PLZ}	turn-off time E, Sn to Vos	$R_L = 1 \text{ k}\Omega$; see Figs 20,	2.0	0	_	74	315	ns
		22 and 21	4.5	0	_	27	63	ns
			6.0	0	_	22	54	ns
			4.5	-4.5	_	22	48	ns
T _{amb} = -40) °C to +125 °C				•		•	•
t _{PHL} /t _{PLH}	propagation delay V _{is} to V _{os}	R _L = ∞; see Fig.19	2.0	0	_	_	90	ns
			4.5	0	_	_	18	ns
			6.0	0	_	_	15	ns
			4.5	-4.5	_	_	12	ns
t _{PZH} /t _{PZL}	turn-on time E, Sn to Vos	R _L = ∞; see Figs 20,	2.0	0	_	_	490	ns
		22 and 21	4.5	0	_	_	98	ns
			6.0	0	_	_	83	ns
			4.5	-4.5	_	_	69	ns
t _{PHZ} /t _{PLZ}	turn-off time \overline{E} , Sn to V_{os}	$R_L = 1 \text{ k}\Omega$; see Figs 20,	2.0	0	_	_	375	ns
		22 and 21	4.5	0	_	_	75	ns
			6.0	0	_	_	64	ns
			4.5	-4.5	_	_	57	ns

Note

1. All typical values are measured at T_{amb} = 25 °C.

Dual 4-channel analog multiplexer, demultiplexer

74HC4052; 74HCT4052

Type 74HCT4052

 $\label{eq:gnd} \text{GND} = 0 \text{ V; } t_r = t_f = 6 \text{ ns; } C_L = 50 \text{ pF.}$

CAMBOI	PARAMETER	TEST COND	ITIONS		MIN.	TYP.	MAX.	LIMIT
SYMBOL	PARAWETER	OTHER	V _{CC} (V)	V _{EE} (V)	IVIIIN.	ITF.	WAA.	UNIT
T _{amb} = -40	°C to +85 °C; note 1						•	
t _{PHL} /t _{PLH}	propagation delay V _{is} to V _{os}	R _L = ∞; see Fig.19	4.5	0	_	5	15	ns
			4.5	-4.5	_	4	10	ns
t _{PZH} /t _{PZL}	turn-on time \overline{E} , Sn to V_{os}	$R_L = 1 \text{ k}\Omega$; see Figs 20,	4.5	0	_	41	88	ns
			4.5	-4.5	_	28	60	ns
t _{PHZ} t _{PLZ}	turn-off time \overline{E} , Sn to V_{os}	$R_L = 1 \text{ k}\Omega$; see Figs 20,	4.5	0	_	26	63	ns
		$R_L = 1 \text{ k}\Omega; \text{ see Figs 20}, 4.5$ 22 and 21 4.5	4.5	-4.5	_	21	48	ns
$T_{amb} = -40$	°C to +125 °C					-		
t _{PHL} /t _{PLH}	propagation delay V _{is} to V _{os}	R _L = ∞; see Fig.19	4.5	0	_	_	18	ns
			4.5	-4.5	_	_	12	ns
t _{PZH} /t _{PZL}	turn-on time \overline{E} , Sn to V_{os}	$R_L = 1 \text{ k}\Omega$; see Figs 20,	4.5	0	_	_	105	ns
		22 and 21	4.5	-4.5	_	_	72	ns
t _{PHZ} /t _{PLZ}	turn-off time \overline{E} , Sn to V _{os} $R_L = 1 \text{ k}\Omega$; see Figs 20,	4.5	0	_	_	75	ns	
		22 and 21	4.5	-4.5	_	_	57	ns

Note

^{1.} All typical values are measured at T_{amb} = 25 °C.

Dual 4-channel analog multiplexer, demultiplexer

74HC4052; 74HCT4052

Type 74HC4052 and 74HCT4052

Recommended conditions and typical values; GND = 0 V; T_{amb} = 25 °C; C_L = 50 pF. V_{is} is the input voltage at pins nYn or nZ, whichever is assigned as an input. V_{os} is the output voltage at pins nYn or nZ, whichever is assigned as an output.

		TEST COND	TEST CONDITIONS								
SYMBOL	PARAMETER	OTHER	V _{is(p-p)} (V)	V _{CC} (V)	V _{EE} (V)	TYP.	UNIT				
d _{sin}	sine-wave distortion	$f = 1 \text{ kHz}; R_L = 10 \text{ k}\Omega;$	4.0	2.25	-2.25	0.04	%				
		see Fig.13	8.0	4.5	-4.5	0.02	%				
		$f = 10 \text{ kHz}; R_L = 10 \text{ k}Ω;$	4.0	2.25	-2.25	0.12	%				
		see Fig.13	8.0	4.5	-4.5	0.06	%				
α _{OFF} (feedthr)	switch OFF signal	$R_L = 600 \Omega$; $f = 1 MHz$;	note 1	2.25	-2.25	-50	dB				
	feed-through	see Figs 14 and 15		4.5	-4.5	-50	dB				
$\alpha_{\text{ct(s)}}$	crosstalk between two	$R_L = 600 \Omega$; f = 1 MHz;	note 1	2.25	-2.25	-60	dB				
	switches/multiplexers	see Fig.16		4.5	-4.5	-60	dB				
V _{ct(p-p)}	crosstalk voltage	$R_L = 600 \Omega$; $f = 1 MHz$; \overline{E} or Sn,	_	4.5	0	110	mV				
	between control and any switch (peak-to-peak value)	square-wave between V_{CC} and GND, $t_r = t_f = 6$ ns; see Fig.17		4.5	-4.5	220	mV				
f _{max}	minimum frequency	$R_L = 50 \Omega$; see Figs 13 and 18	note 2	2.25	-2.25	170	MHz				
	response (-3dB)			4.5	-4.5	180	MHz				
C _S	maximum switch	independent (Y)	_	_	_	5	pF				
	capacitance	common (Z)	_	_	_	12	pF				

Notes

- 1. Adjust input voltage V_{is} to 0 dBm level (0 dBm = 1 mW into 600 Ω).
- 2. Adjust input voltage V_{is} to 0 dBm level at V_{os} for 1 MHz (0 dBm = 1 mW into 50 Ω).

Dual 4-channel analog multiplexer, demultiplexer

74HC4052; 74HCT4052

Dual 4-channel analog multiplexer, demultiplexer

74HC4052; 74HCT4052

Dual 4-channel analog multiplexer, demultiplexer

74HC4052; 74HCT4052

AC WAVEFORMS

Dual 4-channel analog multiplexer, demultiplexer

74HC4052; 74HCT4052

FAMILY	AMPLITUDE	V	t _r and t _f					
PAWILI	AWPLITUDE	V _M	f _{max} ; PULSE WIDTH	OTHER				
74HC4052	V _{CC}	50 %	< 2 ns	6 ns				
74HCT4052	3.0 V	1.3 V	< 2 ns	6 ns				

Fig.21 Input pulse definitions.

TEST	SWITCH	V _{is}
t _{PZH}	V_{EE}	V_{CC}
t _{PZL}	V_{CC}	V _{EE}
t _{PHZ}	V_{EE}	V _{CC}
t _{PLZ}	V _{CC}	V_{EE}
other	open	pulse

Definitions for test circuit:

R_L = load resistance

C_L = load capacitance including jig and probe capacitance.

 R_T = termination resistance should be equal to the output impedance Z_O of the pulse generator.

 t_r = t_f = 6 ns; when measuring f_{max} , there is no constraint to t_r and t_f with 50 % duty factor.

Fig.22 Test circuit for measuring AC performance.

Dual 4-channel analog multiplexer, demultiplexer

74HC4052; 74HCT4052

PACKAGE OUTLINES

DIP16: plastic dual in-line package; 16 leads (300 mil)

SOT38-9

DIMENSIONS (mm dimensions are derived from the original inch dimensions)

DIMENTO	MENOIONO (IIIII dilitorisions die derived from the original mondimensions)															
UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	b ₂	С	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	МН	w	Z ⁽¹⁾ max.
mm	4.32	0.38	3.56	1.65 1.40	0.51 0.41	1.14 0.76	0.36 0.20	19.3 18.8	6.45 6.24	2.54	7.62	3.81 2.92	8.23 7.62	9.40 8.38	0.254	0.76
inches	0.17	0.015	0.14	0.065 0.055	0.020 0.016	0.045 0.030	0.014 0.008	0.76 0.74	0.254 0.246	0.1	0.3	0.150 0.115	0.324 0.300	0.37 0.33	0.01	0.03

Note

1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.

OUTLINE		EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT38-9						-97-07-24- 03-03-12

Dual 4-channel analog multiplexer, demultiplexer

74HC4052; 74HCT4052

SO16: plastic small outline package; 16 leads; body width 3.9 mm; body thickness 1.47 mm

SOT109-3

UNIT	A max.	A ₁	A ₂	Α3	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	v	w	у	Z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.55 1.40	0.25	0.49 0.36	0.25 0.19	10.0 9.8	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.010 0.004	0.061 0.055	0.01		0.0100 0.0075		0.16 0.15	0.05	0.244 0.228	0.041	0.039 0.016	0.01	0.01	0.004	0.028 0.012	0°

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE		EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT109-3		MS-012AC			98-12-23 03-02-19

Dual 4-channel analog multiplexer, demultiplexer

74HC4052; 74HCT4052

SSOP16: plastic shrink small outline package; 16 leads; body width 5.3 mm

SOT338-1

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	ø	v	w	у	Z ⁽¹⁾	θ
mm	2	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	6.4 6.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	1.00 0.55	8° 0°

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT338-1		MO-150			99-12-27 03-02-19

Dual 4-channel analog multiplexer, demultiplexer

74HC4052; 74HCT4052

TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm

SOT403-1

D		u. o	o og	iiiai aiii		٠,												
UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E (2)	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	5.1 4.9	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.40 0.06	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT403-1		MO-153			-99-12-27 03-02-18

Dual 4-channel analog multiplexer, demultiplexer

74HC4052; 74HCT4052

DHVQFN16: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body 2.5 x 3.5 x 0.85 mm SOT763-1

OUTLINE		REFER	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT763-1		MO-241			-02-10-17- 03-01-27

Dual 4-channel analog multiplexer, demultiplexer

74HC4052; 74HCT4052

DATA SHEET STATUS

LEVEL	DATA SHEET STATUS ⁽¹⁾	PRODUCT STATUS ⁽²⁾⁽³⁾	DEFINITION
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

Notes

- 1. Please consult the most recently issued data sheet before initiating or completing a design.
- 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
- 3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

DEFINITIONS

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors – a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

© Koninklijke Philips Electronics N.V. 2004

SCA76

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

R44/04/pp27

Date of release: 2004 Nov 11

Document order number: 9397 750 14189

Let's make things better.

Philips Semiconductors

