Risoluzione del compito n. 6 (Giugno 2024)

PROBLEMA 1

Trovate le soluzioni (z,w), con $z,w\in\mathbb{C}$, del sistema

$$\left\{egin{aligned} ar{z}-w &= 3(1-\mathrm{i}) \ zar{w} + 5\mathrm{i} &= 0 \end{aligned}
ight.$$

Coniugando ambo i membri della prima equazione otteniamo

$$z - \bar{w} = 3(1+i) \iff \bar{w} = z - 3(1+i)$$

che sostituiamo nella seconda equazione ottenendo

$$z^2 - 3(1+i)z + 5i = 0$$
,

una equazione di secondo grado la cui soluzione è

$$z = \frac{3(1+i) \pm \sqrt{9(1-1+2i)-20i}}{2} = \frac{3(1+i) \pm \sqrt{-2i}}{2} .$$

Il numero -2i nel piano di Gauß punta dritto verso il basso, ossia ha argomento $-\pi/2$, quindi una delle sue radici quadrate ha argomento $-\pi/4$ ed è pertanto un multiplo di 1-i. Dato che -2i ha modulo 2, le sue radici hanno modulo $\sqrt{2}$ così le radici sono $\pm(1-i)$ e

$$z = \frac{3(1+i) \pm (1-i)}{2} = \begin{cases} 1+2i\\ 2+i \end{cases}$$

Ricavando w dalla prima equazione del sistema, $w = \bar{z} - 3(1 - i) = \bar{z} - 3 + 3i$, otteniamo

$$\begin{cases} z_1 = 1 + 2\mathbf{i} & \Rightarrow & \bar{z}_1 = 1 - 2\mathbf{i} & \Rightarrow & w_1 = -2 + \mathbf{i} \\ z_2 = 2 + \mathbf{i} & \Rightarrow & \bar{z}_2 = 2 - \mathbf{i} & \Rightarrow & w_2 = -1 + 2\mathbf{i} , \end{cases}$$

e le due soluzioni del sistema sono

$$z_1 = 1 + 2i$$
, $w_1 = -2 + i$, $z_2 = 2 + i$, $w_2 = -1 + 2i$.

PROBLEMA 2

Considerate le funzioni

$$f(x) = \log_{\,\mathrm{e}} rac{2\,\mathrm{e}|x|}{1+x^2} \ , \qquad g(x) = \log_{\,\mathrm{e}} \left|rac{2\,\mathrm{e}x}{1+x^2}
ight| \ , \qquad h(x) = \left|\log_{\,\mathrm{e}} rac{2\,\mathrm{e}x}{1+x^2}
ight| \ .$$

- a) Dite se sono uguali o diverse, giustificando accuratamente le risposte.
- b) Determinate il dominio di f, il segno, gli zeri, i limiti agli estremi del dominio.
- c) Determinate gli intervalli di monotonia di f e i punti di massimo o minimo locale.
- d) Determinate gli intervalli di convessità e/o concavità di f e i punti di flesso.
- e) Disegnate il grafico di f.

Dato che $|2\operatorname{ex}/(1+x^2)|=2\operatorname{e}|x|/1+x^2$, le funzioni f e g sono uguali. Invece f ed h sono diverse: ad esempio f esiste per x<0 mentre h no. Il dominio di f sono tutti i numeri x per cui l'argomento del logaritmo (esiste ed) è positivo, ma essendo un valore assoluto ciò equivale a dire che l'argomento non è nullo, dunque il dominio è $\mathbb{R}\setminus\{0\}$.

Osserviamo poi che f è pari, quindi basta studiarla per x>0 e ribaltare i risultati anche a sinistra dell'origine. Per x>0 abbiamo

$$f(x) > 0 \iff \frac{2 \operatorname{ex}}{1 + x^2} > 1 \iff x^2 - 2 \operatorname{ex} + 1 < 0 \iff \operatorname{e} - \sqrt{\operatorname{e}^2 - 1} < x < \operatorname{e} + \sqrt{\operatorname{e$$

(osserviamo che $\sqrt{e^2-1}$ < e quindi entrambi gli estremi sono positivi) perciò f(x) è

(osserviano che
$$\sqrt{e^2 - 1} < e$$
 quindi entrambi gli estremi sono positivi) percio $f(x)$ e
$$\begin{cases} > 0 & \text{per } -e - \sqrt{e^2 - 1} < x < -e + \sqrt{e^2 - 1} \text{ e per } e - \sqrt{e^2 - 1} < x < e + \sqrt{e^2 - 1} \\ = 0 & \text{per } x = \pm \left(e - \sqrt{e^2 - 1}\right) \text{ e per } x = \pm \left(e + \sqrt{e^2 - 1}\right) \\ < 0 & \text{per gli altri valori di } x \neq 0. \end{cases}$$

Sia per $x\to 0$ che per $x\to \pm\infty$ abbiamo $2\,{\rm e}|x|/(1+x^2)\to 0$, quindi la funzione f tende a $-\infty$. La derivata di f per x>0 è

$$f'(x) = \frac{1 - x^2}{x(1 + x^2)}$$

che è positiva per $\ 0 < x < 1 \$ e negativa per $\ x > 1 \$, dunque $\ f \$ è

strettamente crescente per x < -1 e per 0 < x < 1strettamente decrescente per -1 < x < 0 e per x > 1,

ed ha massimo (assoluto) in $x=\pm 1$ dove vale $\log {\mathsf e}=1$. La derivata seconda per x>0 è

$$f''(x) = \frac{x^4 - 4x^2 - 1}{x^2(1 + x^2)^2}$$

e dato che l'equazione $t^2-4t-1=0\,$ ha radici $\,t=2\pm\sqrt{5}\,$ ma una è negativa, abbiamo che $f\,$ è

I punti di flesso sono $x = \pm \sqrt{2 + \sqrt{5}}$.

PROBLEMA 3

Considerate le funzioni $f(x) = \operatorname{sen}(e^{2x-3x^2} - 1)$ e $g(x) = \operatorname{sen}(2x - x^2)$.

- a) Scrivete lo sviluppo di Taylor di ordine 4 e centrato in $x_0 = 0$ di f(x).
- b) Scrivete lo sviluppo di Taylor di ordine 4 e centrato in $x_0 = 0$ di g(x).
- c) Determinate l'ordine di infinitesimo e la parte principale per $\,x o 0\,$ della funzione $\,f(x) g(x)\,.$
- d) Calcolate, per tutti i valori del parametro $\alpha \in \mathbb{R}$ per cui esiste, il limite

$$\ell_{\alpha} = \lim_{x \to 0^+} \frac{f(x) - g(x) + \alpha x^3}{x^4}.$$

Sappiamo che $2x-3x^2$ è un infinitesimo di ordine 1, quindi $o(2x-3x^2)^k=o(x^k)$; poi

$$e^{2x-3x^2} = 1 + (2x - 3x^2) + \frac{1}{2}(\cdots)^2 + \frac{1}{6}(\cdots)^3 + \frac{1}{24}(\cdots)^4 + o(\cdots)^4$$

$$= 1 + 2x - 3x^2 + \frac{4x^2 - 12x^3 + 9x^4}{2} + \frac{8x^3 - 36x^4}{6} + \frac{16x^4}{24} + o(x^4)$$

$$= 1 + 2x - x^2 - \frac{14x^3}{3} - \frac{5x^4}{6} + o(x^4) ,$$

e di qui, osservando che anche $2x - x^2 + \cdots$ è un infinitesimo di ordine 1,

$$f(x) = \operatorname{sen}\left(2x - x^2 - \frac{14x^3}{3} - \frac{5x^4}{6} + o(x^4)\right)$$

$$= 2x - x^2 - \frac{14x^3}{3} - \frac{5x^4}{6} + o(x^4) - \frac{1}{6}(\dots)^3 + o(\dots)^4$$

$$= 2x - x^2 - \frac{14x^3}{3} - \frac{5x^4}{6} + o(x^4) - \frac{1}{6}(8x^3 - 12x^4)$$

$$= 2x - x^2 - 6x^3 + \frac{7x^4}{6} + o(x^4).$$

In modo simile

$$g(x) = 2x - x^2 - \frac{1}{6}(2x - x^2)^3 + o(2x - x^2)^4 = 2x - x^2 - \frac{4x^3}{3} + 2x^4 + o(x^4)$$

per cui

$$f(x) - g(x) = -\frac{14x^3}{3} - \frac{5x^4}{6} + o(x^4)$$

è un infinitesimo di ordine 3 con parte principale $-14x^3/3$. Allora per $x \neq 0$

$$\frac{f(x) - g(x) + \alpha x^3}{x^4} = \frac{(\alpha - 14/3)x^3 - 5x^4/6 + o(x^4)}{x^4} = \frac{\alpha - 14/3}{x} - \frac{5}{6} + \frac{o(x^4)}{x^4}$$

da cui otteniamo che il limite ℓ_{α} esiste per ogni $\alpha \in \mathbb{R}$ e vale

$$\ell_{\alpha} = \begin{cases} +\infty & \text{se } \alpha > 14/3 \\ -5/6 & \text{se } \alpha = 14/3 \\ -\infty & \text{se } \alpha < 14/3. \end{cases}$$

PROBLEMA 4

Per x > 0 sia $F(x) = \int_0^x \frac{e^{t^3} - 1}{t} dt$.

- a) Calcolate $\lim_{x\to 0^+} \frac{F(x)}{x^3}$.
 b) Posto $a_n = \int_0^{1/n} \frac{e^{t^3}-1}{t} dt$, determinate al variare dell'esponente reale

$$\sum_n n^{lpha} a_n$$
 .

Se 0 < t < x, è ${\sf e}^{t^3} > {\sf e}^0$ quindi la funzione integranda è positiva; inoltre ${\sf e}^{t^3} = 1 + t^3 + o(t^3)$ quindi

$$F(x) = \int_0^x (t^2 + o(t^2)) dt = \frac{x^3}{3} + o(x^3)$$

da cui $F(x)/x^3 \to 1/3$. In particolare, visto che $a_n = F(1/n) > 0$ e quindi possiamo applicare il criterio del confronto asintotico, dal punto precedente abbiamo

$$\lim_{n \to +\infty} \frac{a_n}{1/n^3} = \frac{1}{3} \quad \Rightarrow \quad n^{\alpha} a_n \sim n^{\alpha - 3} = \frac{1}{n^{3 - \alpha}}$$

e la serie converge se e solo se $3-\alpha>1$ cioè $\alpha<2$, mentre diverge positivamente per

Esercizio 1. Una soluzione dell'equazione $(z^2 - (1-i)z - i)(z+3-i) = 0$ è

(A)
$$-i$$
.
(B) i .
(C) $3-i$
(D) 0 .

Basta provare a sostituire i quattro numeri proposti nel polinomio al primo membro (anzi, solo nel primo fattore, dato che il secondo si annulla solo per $z=-3+\mathrm{i}$), e l'unico valore che lo annulla è $z=-\mathrm{i}$.

Esercizio 2. Ho scritto due numeri interi $a \in b$, con $1 \le a < b$, la cui somma fa 23. Qual è la probabilità che siano proprio a = 1 e b = 22?

(A)
$$1/11$$
. (C) $1/23$. (B) $2/23$. (D) $1/\binom{23}{2}$.

Naturalmente il caso favorevole è soltanto uno, appunto a=1 e b=22. Per contare i casi possibili osserviamo che per ogni scelta di a c'è un solo valore di b per cui la somma risulta 23, ma se vogliamo che sia a < b il numero a non deve superare metà del risultato, quindi $1 \le a \le 11$ e i casi possibili sono 11.

Esercizio 3. L'integrale $\int_0^{2\pi} |\cos x| dx$ vale

(A) 4.
(B) 2.
(C) 0.
(D)
$$2\pi$$
.

Per le simmetrie della funzione coseno, basta calcolare quattro volte l'integrale fra 0 e $\pi/2$ ottenendo $4\int_0^{\pi/2}\cos x\,dx=4$.

Esercizio 4. Dato $\alpha\in\mathbb{R}$, l'integrale generalizzato $\int_1^{+\infty}x^{2\alpha}\arctan(x^{3\alpha})\,dx$

- (A) converge se e solo se $\alpha < -1/5$. (C) converge se e solo se $\alpha < -1/2$.
- (B) non esiste per qualche valore di α . (D) diverge positivamente se $\alpha \geq -1/3$.

La funzione $f(x)=x^{2\alpha}\arctan(x^{3\alpha})$ è continua e positiva su $[1,+\infty)$, quindi l'integrale (generalizzato) o converge o diverge positivamente. Poiché inoltre $f(x)\to +\infty$ se $x\to +\infty$ per ogni $\alpha>0$, mentre $f(x)=\pi/4>0$ per ogni x, se $\alpha=0$, allora l'integrale diverge positivamente se $\alpha\geq 0$. Invece, se $\alpha<0$, risulta $x^\alpha\to 0^+$ e dunque $\arctan(x^{3\alpha})\sim x^{3\alpha}$ per $x\to +\infty$, dato che $\arctan t\sim t$ per $t\to 0$. Quindi se $\alpha<0$ abbiamo che $f(x)\sim x^{2\alpha}\cdot x^{3\alpha}=x^{5\alpha}=1/x^{-5\alpha}$ e per il criterio del confronto asintotico l'integrale converge se l'esponente $-5\alpha>1$, i.e. se $\alpha<-1/5$, mentre diverge positivamente se $\alpha\geq -1/5$.

Esercizio 5. Sia S l'insieme delle soluzioni della disequazione $\sqrt{x^2-1} \leq 3+3x$. Allora:

(A)
$$]1, 5/4[\subset S]$$
.

(C)
$$-1 \notin S$$

(B)
$$-5/4 \in S$$
.

(C) $-1 \not\in S$. (D) S non è limitato inferiormente.

La radice esiste se $x^2 - 1 > 0$, quindi se x < -1 o x > 1. Inoltre, per avere soluzioni occorre che 3+3x > 0, quindi x > -1. Osserviamo che x = -1 risolve la disequazione, mentre le eventuali altre soluzioni verificano la condizione x > 1, che ora imponiamo. Possiamo dunque elevare al quadrato ambo i membri e passare alla disequazione equivalente $(x^2-1) \le (3+3x)^2$, che riscriviamo come $(x-1)(x+1) \le 9(x+1)^2$. Semplificando poi il fattore positivo (x+1) ci riduciamo a risolvere la disequazione

$$(x-1) \le 9(x+1) \iff 8x \ge -10 \iff x \ge -\frac{5}{4}$$
.

Da quanto sopra ricaviamo che $S=\{-1\}\cup[1,+\infty)\,,$ dunque $]1,5/4[\subset S\,,$ mentre le altre risposte sono false, in quanto $-5/4 \notin S$, $-1 \in S$ ed S è limitato inferiormente.

Esercizio 6. La funzione $f: \mathbb{R} \to \mathbb{R}$ di legge $f(x) = x^4 + 2x^3 - 10x$

- (A) ha minimo uguale a -7.
- (C) ha un solo punto di flesso.
- (B) ha almeno un punto di massimo locale.
- (D) è convessa su [-1,0].

Abbiamo $f'(x) = 4x^3 + 6x^2 - 10$, dunque f'(1) = 0. Dividendo il polinomio $4x^3 +$ $6x^2-10$ per x-1, si ottiene la fattorizzazione $f'(x)=(x-1)(4x^2+10x+10)$, dove il polinomio $4x^2 + 10x + 10$ ha discriminante negativo e dunque è sempre positivo. Quindi la derivata prima è negativa se x < 1, si annulla in x = 1 ed è positiva se x>1. Ma allora f è strettamente decrescente su $(-\infty,1]$ e strettamente crescente su $[1,+\infty)$ ed ha un punto di minimo in x=1, per cui f ha minimo uguale a f(1) = 1 + 2 - 10 = -7. Osserviamo in particolare che f non ha punti di massimo locale. Dato poi che $f''(x) = 12x^2 + 12x = 12x(x+1)$, dallo studio del segno di f''deduciamo che f è concava su [-1,0] ed ha due punti di flesso in x=-1 e x=0.

Esercizio 7. La successione $\frac{3n+4n^{-1}}{\sqrt[n]{5\cdot n^n}+7/n}$ ha limite

(A) 3.

(B) 4/7.

$$\sqrt[n]{5n^n} = \sqrt[n]{5} \cdot \sqrt[n]{n^n} = \sqrt[n]{5} \cdot n \sim n$$

in quanto $\sqrt[n]{5} \to 1$, dunque

$$\frac{3n + 4n^{-1}}{\sqrt[n]{5n^n} + 7/n} \sim \frac{3n}{n} \to 3.$$