第4节 高考中椭圆常用的二级结论(★★★)

内容提要

解析几何中存在无数的二级结论,本节筛选出了一些在高考中比较常用的椭圆二级结论,记住这些结论可适当缩短解题时间.

1. 焦点三角形面积公式: 如图 1,设 P 是椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 上一点, $F_1(-c,0)$, $F_2(c,0)$ 分别是椭圆的左、右焦点, $\angle F_1PF_2 = \theta$,则 $S_{\Delta PF_1F_2} = c |y_P| = b^2 \tan \frac{\theta}{2}$.

证明: 一方面, ΔPF_1F_2 的边 F_1F_2 上的高 $h = |y_P|$, 所以 $S_{\Delta PF_1F_2} = \frac{1}{2}|F_1F_2| \cdot h = \frac{1}{2} \times 2c \times |y_P| = c|y_P|$;

另一方面,记 $|PF_1|=m$, $|PF_2|=n$,则由椭圆定义,m+n=2a ①,

在 ΔPF_1F_2 中,由余弦定理, $|F_1F_2|^2 = |PF_1|^2 + |PF_2|^2 - 2|PF_1| \cdot |PF_2| \cdot \cos \angle F_1PF_2$,

所以 $4c^2 = m^2 + n^2 - 2mn\cos\theta = (m+n)^2 - 2mn - 2mn\cos\theta = (m+n)^2 - 2mn(1+\cos\theta)$ ②,

将式①代入式②可得: $4c^2 = 4a^2 - 2mn(1 + \cos\theta)$, 所以 $mn = \frac{4a^2 - 4c^2}{2(1 + \cos\theta)} = \frac{2b^2}{1 + \cos\theta}$,

故
$$S_{\Delta PF_1F_2} = \frac{1}{2}mn\sin\theta = \frac{1}{2} \cdot \frac{2b^2}{1+\cos\theta} \cdot \sin\theta = b^2 \cdot \frac{\sin\theta}{1+\cos\theta}$$

$$=b^2 \cdot \frac{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2\cos^2\frac{\theta}{2}} = b^2\tan\frac{\theta}{2}.$$

2. 焦半径公式: 设椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的左、右焦点分别为 F_1 , F_2 , 点 $P(x_0, y_0)$ 为椭圆上任意一点,则左焦半径 $|PF_1| = a + ex_0$,右焦半径 $|PF_2| = a - ex_0$,其中 e 为椭圆的离心率.

证明:
$$F_1(-c,0)$$
, 设 $P(x_0,y_0)$, 则 $\left|PF_1\right| = \sqrt{(x_0+c)^2+y_0^2}$ ①,

因为点 P 在椭圆上,所以 $\frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} = 1$,故 $y_0^2 = b^2 - \frac{b^2}{a^2} x_0^2$,代入①得: $\left| PF_1 \right| = \sqrt{x_0^2 + 2cx_0 + c^2 + b^2 - \frac{b^2}{a^2} x_0^2}$

$$=\sqrt{(1-\frac{b^2}{a^2})x_0^2+2cx_0+a^2}=\sqrt{\frac{c^2}{a^2}x_0^2+2cx_0+a^2}=\sqrt{(\frac{c}{a}x_0+a)^2}=\left|\frac{c}{a}x_0+a\right|=\left|a+ex_0\right|,$$

因为0 < e < 1, $-a \le x_0 \le a$, 所以 $a + ex_0 > 0$, 故 $|PF_1| = a + ex_0$; 同理可证 $|PF_2| = a - ex_0$.

3. 基于椭圆第三定义的斜率积结论: 如图 2,设 A,B 分别是椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的左、右顶点,P 是椭圆上不与 A,B 重合的任意一点,则 $k_{PA} \cdot k_{PB} = -\frac{b^2}{a^2}$.

注:上述结论中 A, B 是椭圆的左、右顶点,可将其推广为椭圆上关于原点对称的任意两点,如图 3,只要直线 PA, PB 的斜率都存在,就仍然满足 $k_{PA}\cdot k_{PB}=-\frac{b^2}{a^2}$,下面给出证明.

证明: 设
$$A(x_1, y_1)$$
, $P(x_2, y_2)$, 则 $B(-x_1, -y_1)$, 所以 $k_{PA} \cdot k_{PB} = \frac{y_2 - y_1}{x_2 - x_1} \cdot \frac{y_2 + y_1}{x_2 + x_1} = \frac{y_2^2 - y_1^2}{x_2^2 - x_1^2}$ ①,

因为点
$$A$$
 在椭圆上,所以 $\frac{x_1^2}{a^2} + \frac{y_1^2}{b^2} = 1$,故 $y_1^2 = b^2(1 - \frac{x_1^2}{a^2}) = -\frac{b^2}{a^2}(x_1^2 - a^2)$,同理 $y_2^2 = -\frac{b^2}{a^2}(x_2^2 - a^2)$,

所以
$$y_2^2 - y_1^2 = -\frac{b^2}{a^2}(x_2^2 - a^2 - x_1^2 + a^2) = -\frac{b^2}{a^2}(x_2^2 - x_1^2)$$
,代入①得: $k_{PA} \cdot k_{PB} = -\frac{b^2}{a^2}$;

在上述条件中令A(-a,0), B(a,0), 即得内容提要第 3 点的特殊情况下的结论.

4. 中点弦斜率积结论: 如图 4,AB 是椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的一条不与坐标轴垂直且不过原点的弦,M为AB中点,则 $k_{AB} \cdot k_{OM} = -\frac{b^2}{a^2}$,此结论可用下面的点差法来证明.

证明: 设
$$A(x_1, y_1)$$
, $B(x_2, y_2)$, $x_1 \neq x_2$, $y_1 \neq y_2$, 因为 A 、 B 都在椭圆上,所以
$$\begin{cases} \frac{x_1^2}{a^2} + \frac{y_1^2}{b^2} = 1\\ \frac{x_2^2}{a^2} + \frac{y_2^2}{b^2} = 1 \end{cases}$$

两式作差得:
$$\frac{x_1^2 - x_2^2}{a^2} + \frac{y_1^2 - y_2^2}{b^2} = 0$$
, 整理得: $\frac{y_1 - y_2}{x_1 - x_2} \cdot \frac{y_1 + y_2}{x_1 + x_2} = -\frac{b^2}{a^2}$ ①,

注意到
$$\frac{y_1-y_2}{x_1-x_2}=k_{AB}$$
, $\frac{y_1+y_2}{x_1+x_2}=\frac{2y_M}{2x_M}=\frac{y_M}{x_M}=k_{OM}$, 所以式①即为 $k_{AB}\cdot k_{OM}=-\frac{b^2}{a^2}$.

注:中点弦结论和上面的第三定义斜率积结论的结果都是 $-\frac{b^2}{a^2}$,这是巧合吗?不是,两者之间有必然的联系.如上面图 5,设 B' 为 B 关于原点的对称点,则 B' 也在该椭圆上,且 O 为 BB' 中点,结合 M 为 AB 中点可得 OM//AB',所以 $k_{AB} \cdot k_{OM} = k_{AB} \cdot k_{AB'}$,于是又回到了椭圆上的点 A 与椭圆上关于原点对称的 B 和 B' 的连线的斜率积.

典型例题

类型 I: 焦点三角形面积

【例 1】设 F_1 , F_2 是椭圆 $\frac{x^2}{8} + \frac{y^2}{b^2} = 1(0 < b < 2\sqrt{2})$ 的两个焦点,点 P 在椭圆上, $\angle F_1 P F_2 = 60^\circ$,且 $\Delta F_1 P F_2$ 的面积为 $\frac{4\sqrt{3}}{3}$,则 b =_____.

解析: 给出 $\angle F_1PF_2$, 直接代公式 $S=b^2\tan\frac{\theta}{2}$ 算焦点三角形面积,

因为 $\angle F_1PF_2 = 60^\circ$,所以 $S_{\Delta F_1PF_2} = b^2 \tan 30^\circ = \frac{\sqrt{3}}{3}b^2$,由题意, $S_{\Delta F_1PF_2} = \frac{4\sqrt{3}}{3}$,所以 $\frac{\sqrt{3}}{3}b^2 = \frac{4\sqrt{3}}{3}$,故b = 2.

答案: 2

【变式】(2023 •全国甲卷)椭圆 $\frac{x^2}{9} + \frac{y^2}{6} = 1$ 的两焦点为 F_1 , F_2 , O 为原点, P 为椭圆上一点, $\cos \angle F_1 P F_2 = \frac{3}{5}$, 则 |OP| = ()

(A)
$$\frac{2}{5}$$
 (B) $\frac{\sqrt{30}}{2}$ (C) $\frac{3}{5}$ (D) $\frac{\sqrt{35}}{2}$

解析: 由题意, a=3, $b=\sqrt{6}$, $c=\sqrt{a^2-b^2}=\sqrt{3}$,

如图,已知 $\angle F_1PF_2$,可由焦点三角形面积公式求 $S_{\Delta PF_1F_2}$,而 $S_{\Delta PF_1F_2}=\frac{1}{2}|F_1F_2|\cdot y_P$,故可建立方程求 y_P ,

$$\mathcal{L} \mathcal{L} F_1 P F_2 = \theta$$
,则由题意, $\cos \theta = \frac{3}{5}$,又 $\cos \theta = 2\cos^2 \frac{\theta}{2} - 1$,所以 $2\cos^2 \frac{\theta}{2} - 1 = \frac{3}{5}$,

结合
$$\frac{\theta}{2}$$
为锐角可得 $\cos\frac{\theta}{2} = \frac{2\sqrt{5}}{5}$,故 $\tan\frac{\theta}{2} = \frac{1}{2}$,所以 $S_{\Delta PF_1F_2} = b^2 \tan\frac{\theta}{2} = 3$,

又
$$S_{\Delta PF_1F_2} = \frac{1}{2} |F_1F_2| \cdot |y_P| = \frac{1}{2} \times 2\sqrt{3} |y_P| = \sqrt{3} |y_P|$$
, 所以 $\sqrt{3} |y_P| = 3$, 故 $|y_P| = \sqrt{3}$,

代入椭圆方程可求得 $|x_P| = \frac{3\sqrt{2}}{2}$,所以 $|OP| = \sqrt{x_P^2 + y_P^2} = \frac{\sqrt{30}}{2}$.

答案: B

【反思】从上面两道题可以看出,当题干给出 $\angle F_1PF_2$ 时,可用 $S_{\Delta PF_1F_2}=b^2\tan\frac{\theta}{2}$ (其中 $\theta=\angle F_1PF_2$)来算焦点三角形的面积;由 $S_{\Delta PF_1F_2}=c|y_P|=b^2\tan\frac{\theta}{2}$ 还可以建立顶角 θ 和 $|y_P|$ 之间的等量关系.

类型Ⅱ: 焦半径公式

【例 2】椭圆 $\frac{x^2}{6} + \frac{y^2}{2} = 1$ 的左、右焦点分别为 F_1 , F_2 ,椭圆上的一点 P 满足 $|PF_1| = 3|PF_2|$,若 P 在第一象限,则点 P 的坐标为_____.

解析:条件涉及焦半径 $\left|PF_1\right|$ 和 $\left|PF_2\right|$,要求坐标,可用焦半径公式,由题意, $a=\sqrt{6}$,c=2, $e=\frac{\sqrt{6}}{3}$,

设 $P(x_0, y_0)(x_0 > 0, y_0 > 0)$,则由焦半径公式, $|PF_1| = \sqrt{6} + \frac{\sqrt{6}}{3}x_0$, $|PF_2| = \sqrt{6} - \frac{\sqrt{6}}{3}x_0$,

因为 $|PF_1|=3|PF_2|$,所以 $\sqrt{6}+\frac{\sqrt{6}}{3}x_0=3(\sqrt{6}-\frac{\sqrt{6}}{3}x_0)$,解得: $x_0=\frac{3}{2}$,

代入椭圆方程结合 $y_0 > 0$ 可解得: $y_0 = \frac{\sqrt{5}}{2}$, 故点 P 的坐标为 $(\frac{3}{2}, \frac{\sqrt{5}}{2})$.

答案: $(\frac{3}{2}, \frac{\sqrt{5}}{2})$

【变式】(2019•新课标III卷)设 F_1 , F_2 为椭圆C: $\frac{x^2}{36} + \frac{y^2}{20} = 1$ 的两个焦点,M为C上一点且在第一象限,若 ΔMF_1F_2 为等腰三角形,则M的坐标为_____.

解法 1: 由题意,a=6, $b=2\sqrt{5}$, $c=\sqrt{a^2-b^2}=4$,椭圆 C 的离心率 $e=\frac{c}{a}=\frac{2}{3}$,

题干给出 ΔMF_1F_2 为等腰三角形,应先判断谁是底,谁是腰,可通过比较三边的长来判断,

如图,点M在第一象限 $\Rightarrow |MF_1| > |MF_2|$,又 $|MF_1| + |MF_2| = 2a = 12$,所以 $|MF_2| < 6$,

而 $|F_1F_2|=2c=8$,所以 $|MF_2|<|F_1F_2|$,故只能 $|MF_1|=|F_1F_2|=8$,

涉及焦半径|MF|,可用焦半径公式来求M的坐标,

设 $M(x_0, y_0)(x_0 > 0, y_0 > 0)$,由焦半径公式, $|MF_1| = 6 + \frac{2}{3}x_0 = 8$,所以 $x_0 = 3$,

又点 M 在椭圆 C 上,所以 $\frac{x_0^2}{36} + \frac{y_0^2}{20} = 1$,结合 $\begin{cases} x_0 = 3 \\ y_0 > 0 \end{cases}$ 可得: $y_0 = \sqrt{15}$,故 $M(3, \sqrt{15})$.

解法 2: 得出 $|MF_1| = |F_1F_2| = 8$ 的过程同解法 1,接下来也可用两点间距离来翻译 $|MF_1| = 8$,

曲题意, $F_1(-4,0)$,设 $M(x_0,y_0)(x_0>0,y_0>0)$,则 $|MF_1|=\sqrt{(x_0+4)^2+y_0^2}=8$ ①,

还差一个方程,可把点M代入椭圆方程来建立,因为M在椭圆C上,所以 $\frac{x_0^2}{36} + \frac{y_0^2}{20} = 1$ ②,

联立①②,结合
$$\begin{cases} x_0 > 0 \\ y_0 > 0 \end{cases}$$
解得: $\begin{cases} x_0 = 3 \\ y_0 = \sqrt{15} \end{cases}$,故 $M(3, \sqrt{15})$.

答案: (3,√15)

类型III: 第三定义、中点弦斜率积结论

【例 3】已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的焦距为 4,左、右顶点分别为 A 和 B,P 是椭圆上不与 A,B 重合的一点,若直线 PA,PB 的斜率之积为 $-\frac{1}{2}$,则椭圆 C 的方程为_____.

解析: 椭圆 C 的焦距为 $4 \Rightarrow 2\sqrt{a^2 - b^2} = 4 \Rightarrow \sqrt{a^2 - b^2} = 2$ ①,

再建立一个关于 a, b 的方程, 就可求出 a 和 b, 条件中有斜率之积, 联想到椭圆第三定义斜率积结论,

由题意, $k_{PA}k_{PB} = -\frac{b^2}{a^2} = -\frac{1}{2}$ ②,联立①②可求得: $a^2 = 8$, $b^2 = 4$,所以椭圆 C 的方程为 $\frac{x^2}{8} + \frac{y^2}{4} = 1$.

答案: $\frac{x^2}{8} + \frac{y^2}{4} = 1$

【变式 1】已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$,点 A,B 为长轴的两个端点,若在椭圆上存在点 P 使直线 AP 和 BP 的斜率之积 $k_{AP} \cdot k_{BP} \in (-\frac{1}{3}, 0)$,则椭圆 C 的离心率 e 的取值范围是_____.

解析:看到 $k_{AP} \cdot k_{BP}$,想到第三定义斜率积结论,由题意, $-\frac{1}{3} < k_{AP} \cdot k_{BP} = -\frac{b^2}{a^2} < 0$,所以 $\frac{b^2}{a^2} < \frac{1}{3}$,

从而 $a^2 > 3b^2 = 3(a^2 - c^2)$, 故 $\frac{c^2}{a^2} > \frac{2}{3}$, 所以 $e = \frac{c}{a} > \frac{\sqrt{6}}{3}$, 又 0 < e < 1, 所以 $\frac{\sqrt{6}}{3} < e < 1$.

答案: $(\frac{\sqrt{6}}{3},1)$

【反思】椭圆中涉及两直线的斜率积,可考虑用第三定义斜率积结论.

【变式 2】(2022・全国甲卷) 椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的左顶点为 A,点 P, Q 均在 C 上,且关于 y 轴对称,若直线 AP, AQ 的斜率之积为 $\frac{1}{4}$,则 C 的离心率为(

(A)
$$\frac{\sqrt{3}}{2}$$
 (B) $\frac{\sqrt{2}}{2}$ (C) $\frac{1}{2}$ (D) $\frac{1}{3}$

解法 1: 条件涉及斜率积,可尝试用第三定义斜率积结论,如图,P,Q 关于y 轴对称,不能直接用结论,但只需作其中一个关于x 轴的对称点,就可产生关于原点对称的两点,

设点 Q 关于 x 轴的对称点为 Q' ,则 P , Q' 关于原点对称,且 $k_{AQ'} = -k_{AQ}$ ①,

由椭圆第三定义斜率积结论的推广知 $k_{AP} \cdot k_{AQ'} = -\frac{b^2}{a^2}$,

将式①代入得: $k_{AP} \cdot (-k_{AQ}) = -\frac{b^2}{a^2}$,故 $k_{AP} \cdot k_{AQ} = \frac{b^2}{a^2}$,又 $k_{AP} \cdot k_{AQ} = \frac{1}{4}$,所以 $\frac{b^2}{a^2} = \frac{1}{4}$,

故 $a^2 = 4b^2 = 4(a^2 - c^2)$,整理得: $\frac{c^2}{a^2} = \frac{3}{4}$,所以椭圆 C 的离心率 $e = \frac{c}{a} = \frac{\sqrt{3}}{2}$.

解法 2: 也可直接设点的坐标来算 AP, AQ 的斜率积,

设
$$P(x_0, y_0)$$
,则 $Q(-x_0, y_0)$,由题意, $A(-a, 0)$,所以 $k_{AP} \cdot k_{AQ} = \frac{y_0}{x_0 + a} \cdot \frac{y_0}{-x_0 + a} = \frac{y_0^2}{a^2 - x_0^2}$ ①,

有 x₀, y₀ 两个变量,可用椭圆方程消元,

因为点 P 在椭圆 C 上,所以 $\frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} = 1$,

故
$$y_0^2 = b^2 (1 - \frac{x_0^2}{a^2}) = \frac{b^2}{a^2} (a^2 - x_0^2)$$
,

代入①得: $k_{AP} \cdot k_{AQ} = \frac{b^2}{a^2}$, 接下来同解法 1.

答案: A

【例 4】已知直线 $y=-\frac{1}{2}x+2$ 与椭圆 $C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$ 交于 A, B 两点,线段 AB 的中点为 P(2,1),则椭圆 C 的离心率为_____.

解析:条件中涉及椭圆的弦中点,想到中点弦斜率积结论,如图, $k_{OP} \cdot k_{AB} = \frac{1}{2} \times (-\frac{1}{2}) = -\frac{b^2}{a^2}$,

所以
$$a^2 = 4b^2 = 4(a^2 - c^2)$$
,整理得: $\frac{c^2}{a^2} = \frac{3}{4}$,故椭圆 C 的离心率 $e = \frac{c}{a} = \frac{\sqrt{3}}{2}$.

答案: $\frac{\sqrt{3}}{2}$

【变式】直线 l: x+3y-7=0 与椭圆 $\frac{x^2}{9}+\frac{y^2}{b^2}=1(0< b<3)$ 相交于 A,B 两点,椭圆的两个焦点分别为 F_1 , F_2 , 线段 AB 的中点为 C(1,2),则 ΔCF_1F_2 的面积为_____.

解析: 椭圆中涉及弦中点,想到中点弦斜率积结论,如图, $k_{OC} \cdot k_{AB} = -\frac{b^2}{o}$ ①,

$$C(1,2) \Rightarrow k_{OC} = 2$$
, $x + 3y - 7 = 0 \Rightarrow y = -\frac{1}{3}x + \frac{7}{3} \Rightarrow k_{AB} = -\frac{1}{3}$,代入①可得 $2 \times (-\frac{1}{3}) = -\frac{b^2}{9}$,

所以
$$b^2 = 6$$
, 从而 $c = \sqrt{9 - b^2} = \sqrt{3}$, 故 $S_{\Delta CF_1F_2} = \frac{1}{2} |F_1F_2| \cdot |y_C| = \frac{1}{2} \times 2\sqrt{3} \times 2 = 2\sqrt{3}$.

答案: 2√3

【反思】在椭圆中,涉及弦中点的问题都可以考虑用中点弦斜率积结论来建立方程,求解需要的量.

《一数•高考数学核心方法》

强化训练

- 1. (2023 北京丰台模拟 ★) 已知椭圆 $C: \frac{x^2}{4} + \frac{y^2}{3} = 1$ 的左、右两个顶点分别为 A , B ,点 P 是椭圆 C 上 异于 A , B 的任意一点,则直线 PA , PB 的斜率之积为 .
- 2. $(2023 \cdot$ 甘肃武威模拟 \cdot ★★)若椭圆 $\frac{x^2}{25} + \frac{y^2}{9} = 1$ 的焦点为 F_1 , F_2 ,点P 在椭圆上,且 $\angle F_1 P F_2 = 90^\circ$,则 $\Delta P F_1 F_2$ 的面积为(

(A) 9 (B) 12 (C) 15 (D) 18

3. (★★) 椭圆 $\frac{x^2}{6} + \frac{y^2}{2} = 1$ 的左、右焦点分别为 F_1 , F_2 , 点P 在椭圆上,则 $|PF_1| \cdot |PF_2|$ 的取值范围为_____.

《一数•高考数学核心方法》

4. (★★★) 设 F_1 , F_2 是椭圆 $\frac{x^2}{4} + \frac{y^2}{2} = 1$ 的左、右焦点,P是椭圆在第一象限上的一点,且 $\angle F_1 P F_2 = 60^\circ$,则点P的坐标为____.

5. $(2022 \cdot 全国模拟 \cdot \star \star \star \star)$ 已知 P 是椭圆 $C : \frac{x^2}{8} + \frac{y^2}{4} = 1$ 在第一象限上的动点, F_1 , F_2 分别是其左、右焦点,O 是坐标原点,则 $\frac{|OP|}{|PF_1| - |PF_2|}$ 的取值范围是_____.

- 6. (2022 广西模拟 ★★) 已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的左焦点为 F,过 F 作倾斜角为 45° 的直线 与椭圆 C 交于 A, B 两点,若点 M(-3,2) 是线段 AB 的中点,则椭圆 C 的离心率是())
- (A) $\frac{\sqrt{3}}{3}$ (B) $\frac{1}{2}$ (C) $\frac{2}{5}$ (D) $\frac{\sqrt{5}}{5}$

- 7. (2023•黑龙江哈尔滨模拟•★★)阿基米德是古希腊著名的数学家、物理学家,他利用"逼近法"得 到椭圆的面积除以圆周率 π 等于椭圆的长半轴长与短半轴长的乘积. 已知椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的右 焦点为F(3,0),过F作直线l交椭圆于A,B两点,若弦AB的中点为M(2,-1),则椭圆的面积为() (A) $36\sqrt{2}\pi$ (B) $18\sqrt{2}\pi$ (C) $9\sqrt{2}\pi$ (D) $6\sqrt{2}\pi$

- 8. $(2023 \cdot \text{重庆模拟} \cdot \star \star \star \star)$ 已知点 A(-5,0),B(5,0),动点 P(m,n)满足直线 PA,PB 的斜率之积为 $-\frac{16}{25}$, 则 $4m^2 + n^2$ 的取值范围是()
- (A) [16,100] (B) [25,100]
- (C) [16,100)
- (D) (25,100)