习题(7)

7.1 设随机变量 X的分布函数 $F(x) = \begin{cases} 0 & , & x < 0 \\ A \cdot \sin x & , & 0 \le x \le \frac{\pi}{2} \end{cases}$ 试确定常数 A的值,并计算 $1 & , & x > \frac{\pi}{2} \end{cases}$

 $P\{|X| < \frac{\pi}{6}\}.$

7.2 设 $F_1(x)$ 与 $F_2(x)$ 分别为随机变量 X_1 与 X_2 的分布函数,令

$$F(x) = aF_1(x) - bF_2(x),$$

- (A) $a = \frac{3}{5}$, $b = -\frac{2}{5}$. (B) $a = \frac{2}{3}$, $b = \frac{2}{3}$.
 - (C) $a = -\frac{1}{2}$, $b = \frac{3}{2}$. (D) $a = \frac{1}{2}$, $b = -\frac{3}{2}$.
- 7. **3** 设随机变量 X 的分布函数 $F(x) = \begin{cases} A + B \cdot e^{-\frac{x^2}{2}} &, x > 0 \text{ ,且 } F(x)$ 是连续函数.
 - 1) 求系数 A,B;
 - 2) $\Re P\{1 < X < 2\}$.
- **7.4** 设 $F_1(x)$, $F_2(x)$ 都是一元分布函数,常数 a,b>0,且 a+b=1,试验证: $a\cdot F_1(x)+b\cdot F_2(x)$ 也是分布函数.

习题(7)参考解答

7.1 解:由于分布函数是右连续的,则

$$F(\frac{\pi}{2}) = \lim_{x \to \frac{\pi^+}{2}} F(x) \qquad A \cdot \sin \frac{\pi}{2} = 1 \qquad A = 1.$$

且

$$P\{ \mid X \mid <\frac{\pi}{6} \} = P\{ -\frac{\pi}{6} < X < \frac{\pi}{6} \} = F(\frac{\pi}{6} - 0) - F(-\frac{\pi}{6}) = \sin\frac{\pi}{6} = \frac{1}{2} .$$

7.2 解: 由
$$1 = F(+\infty) = a \cdot F_1(+\infty) - b \cdot F_2(+\infty) = a - b$$
,故答案应为(A).

7.3 解: 1) 由 $F(+\infty) = 1$ A = 1.又由 F(x) 是连续函数,则有

$$0 = F(0^-) = F(0^+) = A + B$$
 $B = -1$.

于是

$$F(x) = \begin{cases} 1 - e^{-\frac{x^2}{2}} &, & x > 0 \\ 0 &, & x \le 0 \end{cases}.$$

2)
$$P\{1 < X < 2\} = F(2) - F(1) = 1 - e^{-\frac{2^2}{2}} - (1 - e^{-\frac{1^2}{2}}) = e^{-\frac{1}{2}} - e^{-2} = 0.4712.$$

- **7.4 解**: 记 $F(x) = a \cdot F_1(x) + b \cdot F_2(x)$, 易知 F(x) 满足分布函数的三条基本性质:
- ① F(x)是一个不减函数;
- ② $0 \le F(x) \le 1$,且

$$F(+\infty) = a \cdot F_1(+\infty) + b \cdot F_2(+\infty) = a + b = 1,$$

$$F(-\infty) = a \cdot F_1(-\infty) + b \cdot F_2(-\infty) = 0;$$

③ F(x)右连续,即 $F(x^+) = F(x)$.

所以, $a \cdot F_1(x) + b \cdot F_2(x)$ 是一个分布函数.