0.1. Integration and measure

• Dirichlet's function: $f:[0,1]\to\mathbb{R}$,

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{otherwise} \end{cases}$$

1. The real numbers

- $a \in \mathbb{R}$ is an **upper bound** of $E \subseteq \mathbb{R}$ if $\forall x \in E, x \leq a$.
- $c \in \mathbb{R}$ is a least upper bound (supremum) if $c \leq a$ for every upper bound a.
- $a \in \mathbb{R}$ is an **lower bound** of $E \subseteq \mathbb{R}$ if $\forall x \in E, x \geq a$.
- $c \in \mathbb{R}$ is a **greatest lower bound (supremum)** if $c \geq a$ for every upper bound a.
- Completeness axiom of the real numbers: every subset E with an upper bound has a least upper bound. Every subset E with a lower bound has a greatest lower bound.
- Archimedes' principle:

$$\forall x \in \mathbb{R}, \exists n \in \mathbb{N} : n > x$$

- Every non-empty subset of \mathbb{N} has a minimum.
- The rationals are dense in the reals:

$$\forall x < y \in \mathbb{R}, \exists r \in \mathbb{Q} : r \in (x, y)$$

1.1. Conventions on sets and functions

• For $f: X \to Y$, **preiamge** of $Z \subseteq Y$ is

$$f^{-1}(Z) := \{x \in X : f(x) \in Z\}$$

• $f: X \to Y$ injective if

$$\forall y \in f(X), \exists ! x \in X : y = f(x)$$

- $f: X \to Y$ surjective if Y = f(X).
- Limit inferior of sequence x_n :

$$\liminf_{n\to\infty} x_n \coloneqq \lim_{n\to\infty} \Bigl(\inf_{m\geq n} x_m\Bigr) = \sup_{n>0} \inf_{m\geq n} x_m$$

• Limit superior of sequence x_n :

$$\limsup_{n \to \infty} x_n \coloneqq \lim_{n \to \infty} \left(\sup_{m \ge n} x_m \right) = \inf_{n \ge 0} \sup_{m \ge n} x_m$$

1.2. Open and closed sets

• $U \subseteq \mathbb{R}$ is open if

$$\forall x \in U, \exists \varepsilon : (x - \varepsilon, x + \varepsilon) \subseteq U$$

1

- Arbitrary unions of open sets are open.
- Finite intersections of open sets are open.
- $x \in \mathbb{R}$ is point of closure (limit point) for $E \subseteq \mathbb{R}$ if

$$\forall \delta > 0, \exists y \in E : |x - y| < \delta$$

Equivalently, x is point of closure if every open interval containing x contains another point of E.

- Closure of E, \overline{E} , is set of points of closure.
- F is closed if $F = \overline{F}$.
- If $A \subset B \subseteq \mathbb{R}$ then $\overline{A} \subset \overline{B}$.
- $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
- For any set E, \overline{E} is closed.
- Let $E \subseteq \mathbb{R}$. The following are equivalent:
 - E is closed.
 - $\mathbb{R} E$ is open.
- Arbitrary intersections of closed sets are closed. Finite unions of closed sets are closed.
- **Definition**: collection C of subsets of \mathbb{R} covers (is a covering of) $F \subseteq \mathbb{R}$ if $F \subseteq \bigcup_{S \in C} S$. If each S in C open, G is open covering. If C is finite, C is finite cover.
- Covering C of F contains a finite subcover if exists $\{S_1, ..., S_n\} \subseteq C$ with $F \subseteq \bigcup_{i=1}^n S_i$ (i.e. a finite subset of C covers F). F is compact if any open covering U contains a finite subcover.
- **Example**: \mathbb{R} is not compact, [a, b] is compact.
- **Heine-Borel theorem**: if $F \subset \mathbb{R}$ closed and bounded then any open covering of F has finite subcovering (so F is compact). If F compact then F closed and bounded.

1.3. The extended real numbers

- **Definition**: **extended reals** are $\mathbb{R} \cup \{-\infty, \infty\}$ with the order relation $-\infty < \infty$ and $\forall x \in \mathbb{R}, -\infty < x < \infty$. ∞ is an upper bound and $-\infty$ is a lower bound for every $x \in \mathbb{R}$, so $\sup(\mathbb{R}) = \infty$, $\inf(\mathbb{R}) = -\infty$.
 - Addition: $\forall a \in \mathbb{R}, a + \infty = \infty \land a + (-\infty) = -\infty. \ \infty + \infty = \infty (-\infty) = \infty.$ $\infty - \infty$ is undefined.
 - Multiplication: $\forall a \in \mathbb{R}_{>0}, a \cdot \infty = \infty, \ \forall a \in \mathbb{R}_{<0}, a \cdot = -\infty. \ \infty \cdot \infty = \infty$ and $0 \cdot \infty = \infty.$
 - lim sup and lim inf are defined as

$$\limsup x_n \coloneqq \inf_{n \in \mathbb{N}} \biggl\{ \sup_{k \geq n} x_k \biggr\}, \quad \liminf x_n \coloneqq \sup_{n \in \mathbb{N}} \biggl\{ \inf_{k \geq n} x_k \biggr\}$$

- **Definition**: extended real number l is **limit** of (x_n) if either
 - $\forall \varepsilon > 0, \exists N \in \mathbb{N} : \forall n \geq N, |x_n l| < \varepsilon$. Then (x_n) converges to l. or
 - $\forall \Delta > 0, \exists N \in \mathbb{N} : \forall n \geq N, x_n > \Delta \text{ (limit is } \infty) \text{ or }$
 - $\forall \Delta > 0, \exists N \in \mathbb{N} : \forall n \geq N, x_n < -\Delta \text{ (limit is } -\infty).$

 (x_n) converges in the extended reals if it has a limit in the extended reals.

2. Further analysis of subsets of \mathbb{R}

TODO: up to here, check that all notes are made from these topics

2.1. Countability and uncountability

- A is **countable** if $A = \emptyset$, A is finite or there is a bijection $\varphi : \mathbb{N} \to A$ (in which case A is **countably infinite**). Otherwise A is **uncountable**. φ is called an **enumeration**.
- If surjection from \mathbb{N} to A, or injection from A to \mathbb{N} , then A is countable.
- Examples of countable sets:
 - \mathbb{N} $(\varphi(n) = n)$
 - $2\mathbb{N} \ (\varphi(n) = 2n)$
- Q is countable.
- Exercise (todo): show that \mathbb{N}^k is countable for any $k \in \mathbb{N}$.
- Exercise (todo): show that if a_n is a nonnegative sequence and $\varphi : \mathbb{N} \to \mathbb{N}$ is a bijection then

$$\sum_{n=1}^{\infty}a_n=\sum_{n=1}^{\infty}a_{\varphi(n)}$$

• Exercise (todo): show that if $a_{n,k}$ is a nonnegative sequence and $\varphi : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ is a bijection then

$$\sum_{n=1}^{\infty}\sum_{n=1}^{\infty}a_{n,k}=\sum_{n=1}^{\infty}a_{\varphi(n)}$$

- $f: X \to Y$ is monotone if $x \ge y \Rightarrow f(x) \ge f(y)$ or $x \le y \Rightarrow f(x) \ge f(y)$.
- Let f be monotone on (a, b). Then it is discountinuous on a countable set.
- Set of sequences in $\{0,1\},$ $\{((x_n))_{n\in\mathbb{N}}: \forall n\in\mathbb{N}, x_n\in\{0,1\}\}$ is uncountable.
- Theorem: \mathbb{R} is uncountable.

2.2. The structure theorem for open sets

- Collection $\{A_i: i \in I\}$ of sets is **(pairwise) disjoint** if $n \neq m \Longrightarrow A_n \cap A_m = \emptyset$.
- Structure theorem for open sets: let $U \subseteq \mathbb{R}$ open. Then exists countable collection of disjoint open intervals $\{I_n : n \in \mathbb{N}\}$ such that $U = \bigcup_{n \in \mathbb{N}} I_n$.

2.3. Accumulation points and perfect sets

• $x \in \mathbb{R}$ is accumulation point of $E \subseteq \mathbb{R}$ if x is point of closure of $E - \{x\}$. Equivalently, x is a point of closure if

$$\forall \delta > 0, \exists y \in E : y \neq x \land |x - y| < \delta$$

Equivalently, there exists a sequence of distinct $y_n \in E$ with $y_n \to x$ as $n \to \infty$.

- **Exercise**: set of accumulation points of \mathbb{Q} is \mathbb{R} .
- $E \subseteq \mathbb{R}$ is **isolated** if

$$\forall x \in E, \exists \varepsilon > 0 : (x - \varepsilon, x + \varepsilon) \cap E = \{x\}$$

- **Proposition**: set of accumulation points E' of E is closed.
- Bounded set E is **perfect** if it equals its set of accumulation points.

- Exercise (todo): what is the set of accumulation points of an isolated set?
- Every non-empty perfect set is uncountable.

2.4. The middle-third Cantor set

- Middle third Cantor set:
 - Define $C_0 := [0, 1]$
 - Given $C_n = \bigcup_{i=1}^{2^n} [a_i, b_i]$, $a_i < b_1 < a_2 < \cdots$, with $|b_i a_i| = 3^{-n}$, define

$$C_{n+1} \coloneqq \cup_{i=1}^{2^n} \left[a_i, a_i + 3^{-(n+1)} \right] \cup \left[b_i - 3^{-(n+1)}, b_i \right]$$

which is a union of 2^{n+1} disjoint intervals, with difference in endpoints equalling $3^{-(n+1)}$.

• The middle third Cantor set is

$$C\coloneqq\bigcup_{n\in\mathbb{N}}C_n$$

Observe that if a is an endpoint of an interval in C_n , it is contained in C.

• **Proposition**: the middle third Cantor set is closed, non-empty and equal to its set of accumulation points. Hence it is perfect and uncountable.

2.5. G_s, F_{σ}

- Set E is G_{δ} if $E = \bigcap_{n \in \mathbb{N}} U_n$ with U_n open.
- Set E is \mathbf{F}_{σ} if $E = \bigcup_{n \in \mathbb{N}} F_n$ with F_n closed.
- Lemma: set of points where $f: \mathbb{R} \to \mathbb{R}$ is continuous is G_{δ} .

3. Construction of Lebesgue measure

3.1. Lebesgue outer measure

• **Definition**: let I non-empty interval with endpoints $a = \inf(I) \in \{-\infty\} \cup \mathbb{R}$ and $b = \sup(I) \in \mathbb{R} \cup \{\infty\}$. The **length** of I is

$$\ell(I)\coloneqq b-a$$

and set $\ell(\emptyset) = 0$.

- Example: if $I=(-\infty,b]=(-\infty,a]\cup[a,b]$ then $\ell(I)=\infty=\ell(-\infty,a])+\ell([a,b])$
- **Definition**: let $A \subseteq \mathbb{R}$. **Lebesgue outer measure** of A is infimum of all sums of lengths of intervals covering A:

$$\mu^*(A) \coloneqq \inf \biggl\{ \sum_{k=1}^\infty \ell(I_k) : A \subseteq \bigcup_{k=1}^\infty I_k, I_k \text{ intervals} \biggr\}$$

4

It satisfies **monotonicity**: $A \subseteq B \Longrightarrow \mu^*(A) \le \mu^*(B)$.

• Proposition: outer measure is countably subadditive: if $\{E_k\}_{k=1}^{\infty}$ is any countable collection of sets then

$$\mu^* \left(\bigcup_{k=1}^{\infty} E_k \right) \le \sum_{k=1}^{\infty} \mu^*(E_k)$$

• Lemma: we have

$$\mu^*(A) = \inf \biggl\{ \sum_{k=1}^\infty \ell(I_k) : A \subset \bigcup_{k=1}^\infty I_k, I_k \neq \emptyset \text{ open intervals} \biggr\}$$

• Lebesgue outer measure of interval is its length: $\mu^*(I) = \ell(I)$.

3.2. Measurable sets

• Notation: $E^c = \mathbb{R} - E$.

• **Proposition**: let $E = (a, \infty)$. Then

$$\forall A \subseteq \mathbb{R}, \quad \mu^*(A \cap E) + \mu^*(A \cap E^c)$$

• Definition: $E \subseteq \mathbb{R}$ is Lebesgue measurable if

$$\forall A \subseteq \mathbb{R}, \mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^c)$$

Collection of such sets is \mathcal{F}_{μ^*} .

• Lemma (excision property): let E Lebesgue measurable set with finite measure and $E \subseteq B$, then

$$\mu^*(B-E)=\mu^*(B)-\mu^*(E)$$

- Remark: not every set is Lebesgue measurable.
- **Definition**: collection of subsets of \mathbb{R} is an **algebra** if contains \emptyset and closed under taking complements and finite unions: if $A, B \in \mathcal{A}$ then $\mathbb{R} A, A \cup B \in \mathcal{A}$.
- Remark: if a union of a countable collection of Lebesgue measurable sets is also the union of a countable disjoint collection of Lebesgue measurable sets: if $\{A_k\}_{k=1}^{\infty}$ is countable collection of Lebesgue measurable sets, then let $A_{1'} = A_1$ and for k > 1, define

$$A_{k'}=A_k-\cup_{i=1}^{k-1}A_i$$

then $\left\{A_{k'}\right\}_{k=1}^{\infty}$ is disjoint union of Lebesgue measurable sets.

• **Proposition**: if $E_1,...,E_n$ Lebesgue measurable then $\bigcup_{k=1}^n E_k$ is Lebesgue measurable. If $E_1,...,E_n$ disjoint then

$$\mu^*\bigg(A\cap\bigcup_{k=1}^n E_k\bigg)=\sum_{k=1}^n \mu^*(A\cap E_k)$$

for any $A \subseteq \mathbb{R}$. In particular, for $A = \mathbb{R}$,

$$\mu^* \left(\bigcup_{k=1}^n E_k \right) = \sum_{k=1}^n \mu^*(E_k)$$

• **Proposition**: if E is countable union of Lebesgue measurable sets, then E is Lebesgue measurable. Also, if $\left\{E_k\right\}_{k\in\mathbb{N}}$ is countable disjoint collection of Lebesgue measurable sets then

$$\mu^*\!\left(\bigcup_{k=1}^\infty E_k\right) = \sum_{k=1}^\infty \mu^*(E_k)$$

3.3. Abstract definition of a measure

- **Definition**: let $X \subseteq \mathbb{R}$. Collection of subsets of \mathcal{F} of X is σ -algebra if
 - $\emptyset \in F$
 - $E \in F \Longrightarrow E^c \in F$
 - $\bullet \ E_1,...,E_n \in F \Longrightarrow \cup_{k=1}^\infty E_k \in \mathcal{F}.$
- Example:
 - Trivial examples are $\mathcal{F} = \{\emptyset, \mathbb{R}\}$ and $\mathcal{F} = \mathcal{P}(\mathbb{R})$.
 - Arbitrary intersections of σ -algebras are σ -algebras.
- **Definition**: let \mathcal{F} σ -algebra of X. $\nu: \mathcal{F} \to \mathbb{R} \cup \{\pm \infty\}$ is **measure** satisfying
 - $\nu(\emptyset) = 0$
 - $\forall E \in \mathcal{F}, \nu(E) \geq 0$
 - Countable additivity: if $E_1, E_2, ... \in \mathcal{F}$ are disjoint then

$$\nu\!\left(\bigcup_{k=1}^\infty E_k\right) = \sum_{k=1}^\infty \nu(E_k)$$

Elements of \mathcal{F} are **measurable** (as they are the only sets on which the measure ν is defined).

- **Proposition**: if ν is measure then it satisfies:
 - Monotonicity: $A \subseteq B \Longrightarrow \nu(A) \le \nu(B)$.
 - Countable subadditivity: $\nu(\cup_{k\in\mathbb{N}} E_k) \leq \sum_{k\in\mathbb{N}} \nu(E_k).$
 - Excision: if A has finite measure, then $A \subseteq B \Longrightarrow m(B-A) = m(B) m(A)$.

3.4. Lebesgue measure

- Lemma: the Lebesgue measurable sets form a σ -algebra and contain every interval.
- Theorem (Caratheodory extension): the restriction of the outer measure μ^* to the σ -algebra of Lebesgue measurable sets is a measure.
- **Definition**: the measure μ of μ^* restricted to \mathcal{F}_{μ^*} is the **Lebesgue measure**. It satisfies $\mu(I) = \ell(I)$ for any interval I and is translation invariant.
- Hahn extension theorem: there exists unique measure μ defined on \mathcal{F}_{μ^*} for which $\mu(I) = \ell(I)$ for any interval I.

3.5. Sets of measure 0

- Exercise (todo): middle-third Cantor set is Lebesgue measurable and has Lebesgue measure 0.
- Exercise (todo): any countable set is Lebesgue measurable and has Lebesgue measure 0.
- Exercise (todo): any E with $\mu^*(E) = 0$ is Lebesgue measurable and has $\mu(E) = 0$.

• Lemma: let E Lebesgue measurable set with $\mu(E) = 0$, then $\forall E' \subseteq E, E'$ is Lebesgue measurable.

3.6. An approximation result for Lebesgue measure

• **Definition**: Borel σ -algebra $\mathcal{B}(\mathbb{R})$ is smallest σ -algebra containing all intervals: for any other σ -algebra \mathcal{F} containing all intervals, $\mathcal{B}(\mathbb{R}) \subset \mathcal{F}$.

$$\mathcal{B}(\mathbb{R}) = \bigcap \{\mathcal{F}: \mathcal{F} \text{ } \sigma \text{ -algebra containing all intervals} \}$$

 $E \in \mathcal{B}(\mathbb{R})$ is **Borel** or **Borel measurable**.

- Every open subset of \mathbb{R} , every closed subset of \mathbb{R} , every G_{δ} set, every F_{σ} set is Borel.
- **Proposition**: the following are equivalent:
 - \bullet E is Lebesgue measurable
 - $\forall \varepsilon > 0, \exists \text{ open } G : E \subseteq G \land \mu^*(G E) < \varepsilon$
 - $\forall \varepsilon > 0, \exists \text{ closed } F : F \subseteq E \land \mu^*(E F) < \varepsilon$
 - $\exists G \in G_{\delta} : E \subseteq G \land \mu^*(G E) = 0$
 - $\exists F \in F_{\sigma} : F \subseteq E \land \mu^*(E F) = 0$

4. Measurable functions

4.1. Definition of a measurable function

- Lemma: let $f: E \to \mathbb{R} \cup \{\pm \infty\}$ with E Lebesgue measurable. The following are equivalent:
 - $\forall c \in \mathbb{R}, \{x \in E : f(x) > c\}$ is Lebesgue measurable.
 - $\forall c \in \mathbb{R}, \{x \in E : f(x) \ge c\}$ is Lebesgue measurable.
 - $\forall c \in \mathbb{R}, \{x \in E : f(x) < c\}$ is Lebesgue measurable.
 - $\forall c \in \mathbb{R}, \{x \in E : f(x) \leq c\}$ is Lebesgue measurable.
- **Definition**: $f: E \to \mathbb{R}$ is **(Lebesgue) measurable** if it satisfies any one of the above properties.