

TEMA 3. INTRODUCCIÓ ALS ROUTERS

UF2. CONFIGURACIÓ DE COMMUTADORS I ENCAMINADORS M07. PLANIFICACIÓ I ADMINISTRACIÓ DE XARXES

Administració de Sistemes Informàtics en Xarxa

EL ROUTER

- ► És un dispositiu intermedi
 - Permet comunicar xarxes diferents
 - Realitza l'enrutament
 - Assegura múltiples rutes per un mateix destí
 - Sol escollir la millor ruta (la més curta o la més ràpida)
 - Gestiona mesures de seguretat
 - Permet o denega l'accés
 - És un element essencial per garantir la QoS
 - Qualitat de Servei
 - La percepció de qualitat que experimenten els usuaris
 - Cal gestionar retards, sobrecarregues, errors, etc.

COM ÉS UN ROUTER?

- ▶ Té hardware
 - Placa base
 - CPU
 - RAM (volàtil)
 - ROM (permanent)
 - Interfícies de xarxa
- ► Té software
 - Sistema Operatiu
 - Processos per a l'enrutament

HARDWARE EN DETALL (I)

- ► CPU
 - Executa les instruccions (SO, arrencada, enrutament, etc)
- ► RAM (Random Access Memory):
 - En temps d'execució, conté
 - Sistema Operatiu (SO)
 - Configuració del router (fitxer running-config). En concret:
 - Configuració de les interfícies
 - Taula d'Enrutament
 - Contrasenyes i configuració d'adminsitració
 - Al ser volàtil, aquesta informació es perd al reiniciar!
 - Caché ARP (parells IP-MAC)
 - + Buffer de Paquets: guarda la cua de paquets (trames) a enrutar

HARDWARE EN DETALL (II)

- ► ROM (Read-Only Memory):
 - Versió bàsica del SO
 - Software basic de diagnòstic
 - Instruccions de bootstrap (arrencada)
- NVRAM: memòria RAM no volàtil
 - Conté l'arxiu de configuració d'inici (startup-config).
 - Conté la mateixa informació que el running-config
 - ◆ Cal copiar de running-config a startup-config si volem fer-lo permanent
- ► Memòria flash:
 - Memòria permanent (actua com a disc dur)
 - Conté el SO (el de Cisco és Internetwork Operative System)

HARDWARE EN DETALL (III)

- ▶ Interfícies
 - Ports d'administració
 - + Consola
 - Permet connectar-hi un PC amb un emulador de terminal
 - Tan sols s'utilitza per a la configuració inicial
 - Auxiliar
 - Serveix per connectar-hi un mòdem
 - Interfícies LAN que necessiten una IP, MX i MAC
 - Utilitzen el protocol Ethernet
 - Interfícies WAN que necessiten una IP i MX
 - Utilitzen els protocols Point-to-Point (PPP) o HDLC, entre altres

Procés d'arrancada

- ▶ 1. POST
 - Comprovació del hardware
- ▶ 2. Bootstrap
 - Copia de la ROM a la RAM de l'arrancada
- ▶ 3. SO Bootstrap
 - Càrrega del SO de la Flash o de la ROM
- ▶ 4. startup-config
 - Es copia de la NVRAM a la RAM (runningconfig)

CONFIGURACIÓ BÀSICA

- ► Els routers tenen dos modes
 - Usuari
 - → Només pot realitzar ordres de consulta (a l'iniciar-lo)
 - ◆ Router>
 - Enable
 - Permet configurar el router
 - → Router>enable
 - Router#
 - → Router#exit
 - * Router>

MODE ENABLE

- ▶ Des d'enable, tenim diverses opcions a configurar
 - Configuració global
 - + Contrasenyes, nom del router, etc.
 - Router# configure terminal
 - → Router (config)#
 - Configuració d'interfícies
 - + Configuració de la interfície en sí
 - Router (config)# interface NOM
 - Router (config-if)#
 - Configuració de terminal
 - Router (config)# line console
 - Router (config-line)#

ORDRES INTERESSANTS

- ► Mostrar la configuració
 - show running-config
- Desar la configuració
 - copy running-config startup-config
- ► Mostrar interfícies
 - show interfaces
- ▶ I moltes més coses!
 - Cal consultar sempre la documentació oficial
 - O la documentació sobre com configurar un DHCP

TAULES D'ENRUTAMENT

- La funció principal dels routers és enrutar
 - A través de les taules d'enrutament
- Les rutes de les taules poden ser:
 - Connectades directament (C)
 - Estàtiques (S)
 - + Quan hi ha pocs salts, un únic camí o estem connectats a un únic ISP
 - Dinàmiques (R)
 - S'obtenen a partir de protocols d'enrutament dinàmic
 - Descobreixen noves xarxes i les afegeixen a les taules d'enrutament
 - Per defecte (0.0.0.0)
 - És la ruta on anar quan la destinació no coincideix amb cap de les rutes

QUÈ CONTENEN LES ENTRADES?

- ► Cada entrada de la taula d'enrutament pot tenir...
 - Tipus de ruta
 - + C, S, R...
 - Xarxa de destinació + MX
 - Següent salt
 - → Interfície (!) o IP de sortida
 - Mètrica
 - Quants salts hi ha per arribar-hi?
 - → Se sol utilitzar en protocols d'enrutament dinàmic
 - ◆ En cas de dubte, agafem sempre la ruta més curta

COMMUTACIÓ

COM S'INTERPRETEN LES TAULES?

- ▶ Tenim la següent taula d'enrutament a R1:
 - C 172.16.128.0/18 fa0/0
 - C 192.168.4.4/30 fa1/0
 - \$ 172.16.192.0/18 192.168.4.6
- ▶ Volem enviar un missatge al PC1 (172.16.192.2)
 - R1 busca a la taula d'enrutament la IP de xarxa
 - Veu que per saltar a 172.16.192.2, cal enviar el paquet a 192.168.4.6
 - R1 no sap a quina interfície correspon 192.168.4.6
 - → Busca de nou a les taules d'enrutament
 - + Descobreix que es correspon a fa1/0

COM AFEGIR UNA ENTRADA?

- ▶ A través de la IP del següent router
 - Router(config)# ip route IP_{AX} MX IP_{HOP}
- ▶ A través de la interfície per la qual sortir
 - Router(config)# ip route IP_{AX} MX IF_{OUT}
 - Aconseguim resoldre la ruta amb una única cerca

SERIAL VS ETHERNET

- ▶ La interfície **serial** utilitza protocols de tipus broadcast
 - S'utilitza en xarxes WAN
 - A través d'una xarxa Punt a Punt
 - Al ser broadcast, no necessita la MAC
- ▶ La Ethernet sí utilitza la MAC
 - En connexions per Ethernet caldrà saber la MAC del següent router
 - L'esbrinarem a través del protocol ARP...
 - ... però per a això necessitem saber-ne la IP!

QUAN UTILITZAR CADA TIPUS D'ENTRADA?

- ► Si la interfície és serial...
 - Amb la interfície en tenim prou
 - Router(config)# ip route IP_{AX} MX IF_{OUT}
- ▶ Si la interfície és Ethernet...
 - És millor incloure tant la interfície...
 - + Per agilitzar la cerca de la interfície
 - ... com la IP
 - → Per permetre el descobriment de la MAC de destí a través d'ARP
 - Router(config)# ip route IP_{AX} MX IF_{OUT} IP_{HOP}

REDUIR LES RUTES

- Com menys entrades a les taules, més eficient
 - Podem utilitzar sempre que puguem rutes per defecte
 - + 0.0.0.0/0
 - + S'aplicarà quan no hi hagi cap altra ruta que coincideixi
 - Especialment útil si hi ha un únic router que dona sortida a tota l'empresa
 - Podem fer un resum de rutes
 - Agrupem un conjunt de xarxes en una única entrada
 - Caldrà que
 - Les xarxes es puguin expressar com a subxarxes d'una xarxa més gran
 - Que totes les xarxes a agrupar surtin per la mateixa interfície

Exemple de resum de rutes

- ▶ Imaginem que tenim aquesta taula d'enrutament:
 - \$ 172.16.1.0 255.255.255.0 Serial0/0/1
 - \$ 172.16.2.0 255.255.255.0 Serial0/0/1
 - \$ 172.16.3.0 255.255.255.0 Serial0/0/1
- ► El procés serà el següent:
 - 172.16.000000 | 01.0
 - 172.16.000000 | 10.0
 - 172.16.000000 | 11.0
- Les tres subxarxes tenen 22 bits en comú, per tant...
 - \bullet MX_{Ruta Resum} = /22.
 - $IP_{Ruta Resum} = 172.16.000000 \mid 00.0/22 = 172.16.0.0/22$
 - Entrada a la taula = \$ 172.16.0.0 255.255.252.0 Serial0/0/1