Homework 2

Naman Mishra (22223)

20 August, 2024

Problem 1.

(1) Let Ω be a set and $A \subseteq \Omega$. Define a function $\mathbf{1}_A \colon \Omega \to \mathbb{R}$ as follows.

$$\mathbf{1}_{A}(\omega) = \begin{cases} 1 & \text{if } \omega \in A \\ 0 & \text{if } \omega \notin A. \end{cases}$$

What is the smallest σ -algebra on Ω with respect to which $\mathbf{1}_A$ becomes a random variable?

(2) Assume that $A \in \mathcal{F}$. Give an explicit description of the push-forward measure $P \circ (\mathbf{1}_A)^{-1}$ on \mathbb{R} .

Solution.

(1) We need $\mathbf{1}_A^{-1}(B) \in \mathcal{F}$ for $B \in \mathcal{B}(\mathbb{R})$.

$$(\mathbf{1}_{A})^{-1}(B) = \begin{cases} \emptyset & \text{if } 0, 1 \notin B, \\ A & \text{if } 1 \in B, 0 \notin B, \\ A^{c} & \text{if } 0 \in B, 1 \notin B, \\ \Omega & \text{if } 0, 1 \in B. \end{cases}$$

Thus \mathcal{F} must contain \emptyset , A, A^c , Ω . $\mathcal{F} = \{\emptyset, A, A^c, \Omega\}$ is itself a σ -algebra, hence the smallest one that works.

(2) Let $B \in \mathcal{B}(\mathbb{R})$. Then

$$(P \circ (\mathbf{1}_A)^{-1})(B) = \begin{cases} 0 & \text{if } 0, 1 \notin B, \\ P(A) & \text{if } 1 \in B, 0 \notin B, \\ P(A^c) & \text{if } 0 \in B, 1 \notin B, \\ 1 & \text{if } 0, 1 \in B. \end{cases}$$

Problem 2. Recall the Lévy metric d defined in class. Show the following.

(1) Let a_n be a sequence of real numbers converging to a. For any $x \in \mathbb{R}$, δ_x is the measure define as follows: for $A \subseteq \mathbb{R}$,

$$\delta_x(A) = \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{if } x \notin A. \end{cases}$$

Using the definition of the metric show that

$$d(\delta_{a_n}, \delta_a) \to 0 \text{ as } n \to \infty.$$

(2) Consider the sequence of measures $\mu_n := \frac{1}{n} \sum_{i=1}^n \delta_{i/n}$ and μ is the uniform measure on [0,1]. Using the definition show that

$$d(\mu_n, \mu) \to 0 \text{ as } n \to \infty.$$

Solution.

- (1) The CDF of δ_x is $F_x(\omega) = [\omega \ge x]$. If $|x y| = \varepsilon$, then $F_x(\omega + \varepsilon) = [\omega + \varepsilon \ge x] = [\omega \ge x \varepsilon] \ge [\omega \ge y] = F_y(\omega)$ since $\omega \ge y \implies \omega \ge x |x y|$. Thus $d(\delta_x, \delta_y) \le |x y|$. As $a_n \to a$, $d(\delta_{a_n}, \delta_a) \to 0$.
- (2) The CDF of μ is F(x) = x for $x \in [0, 1]$. The CDF of μ_n is

$$F_n(x) = \frac{\lfloor nx \rfloor}{n}$$
 for $x \in [0, 1]$.

($\lfloor nx \rfloor$ counts the number of points $i/n \leq x$, and each of those has weight 1/n.) We claim that $d(\mu_n, \mu) \leq 1/n$.

Let $x \in [0, 1]$. Then

$$F\left(x+\frac{1}{n}\right) + \frac{1}{n} = x + \frac{2}{n}$$

$$= \frac{nx+2}{n}$$

$$> \frac{\lfloor nx \rfloor}{n} = F_n(x).$$

and

$$F_n\left(x+\frac{1}{n}\right) + \frac{1}{n} = \frac{\lfloor n(x+1/n)\rfloor + 1}{n}$$

$$= \frac{\lfloor nx\rfloor + 2}{n}$$

$$> \frac{nx}{n}$$

$$= x = F(x).$$

Thus

$$\frac{1}{n} \in \{ \varepsilon > 0 : F_n(x + \varepsilon) + \varepsilon \ge F(x) \text{ and}$$
$$F(x + \varepsilon) + \varepsilon \ge F_n(x) \text{ for all } x \in [0, 1] \}$$

and so $d(\mu_n, \mu)$, which is the infimum of all such ε , is at most 1/n. It follows that $\lim_{n\to\infty} d(\mu_n, \mu) = 0$ by the squeeze theorem.

Problem 3. For $k \geq 0$, define the functions $r_k : [0,1) \to \mathbb{R}$ by writing $[0,1) = \bigcup_{0 \leq j < 2^k} I_j^{(k)}$ where $I_j^{(k)}$ is the dyadic interval $[j2^{-k}, (j+1)2^{-k})$ and setting

$$r_k(x) = \begin{cases} -1 & \text{if } x \in I_j^{(k)} \text{ for odd } j, \\ 1 & \text{if } x \in I_j^{(k)} \text{ for even } j. \end{cases}$$

Fix $n \ge 1$ and define $T_n: [0,1) \to \{-1,1\}^n$ by $T_n(x) = (r_0(x), \dots, r_{n-1}(x))$. Find the push-forward of the Lebesgue measure on [0,1) under T_n .