Informations und Kommunikationstheorie -Aufgabensammlung Lösung

2. Quellenkodierung

1. Aufgabe

Shannon-Verfahren:

Wahrscheinlichkeit	1. Stufe	2.Stufe	3. Stufe	4. Stufe	5. Stufe	Code	Länge	Lm
1/2	0					0	1	0,5
1/4		0				10	2	0,5
1/8			0			110	3	0,375
1/16	1	1		0		1110	4	0,25
1/32		1	1	1	0	11110	5	0,15625
1/32					1	11111	5	0,15625

Huffmann-Verfahren

Beide Verfahren ergeben die selben Codewörter, desshalb wird der Rechenweg nur einmal aufgeführt.

$$H_m = \sum p(x_i) \cdot \log_2 \frac{1}{p(x_i)}$$

$$= \frac{1}{2} \cdot \log_2 \frac{1}{2} + \frac{1}{4} \cdot \log_2 \frac{1}{4} + \frac{1}{8} \cdot \log_2 \frac{1}{8} + \frac{1}{16} \cdot \log_2 \frac{1}{16} + \frac{1}{32} \cdot \log_2 \frac{1}{32} \cdot 2$$

$$= 1.9375 = 1.94 \frac{bit}{QZ}$$

$$H_k = 1$$

$$R_k = 1.94 \cdot 1 - 1.94 = 0$$

2. Aufgabe

a)

Wahrscheinlichkeit	1. Stufe	2.Stufe	3. Stufe	4. Stufe	Code	Länge
0,3	0	0			0	1
0,15	U	1			1	1
0,14		0			100	3
0,12		0	1		101	3
0,1	1		0	0	1100	4
0,08		1	U	1	1101	4
0,06		1	1	0	1110	4
0,05				1	1111	4

$$\begin{split} l_m &= \sum_i p(x_i) \cdot l \\ &= 0.3 \cdot 1 + 0.15 \cdot 1 + 0.14 \cdot 3 + 0.12 \cdot 3 + 0.1 \cdot 4 + 0.06 \cdot 4 + 0.08 \cdot 4 + 0.06 \cdot 4 + 0.05 \cdot 4 \\ &= 2,84 \frac{Bit}{QZ} \end{split}$$

$$\begin{split} H_m &= \sum p(x_i) \cdot \log_2 \frac{1}{p(x_i)} \\ &= 0.3 \cdot \log_2 \frac{1}{0.3} + 0.15 \cdot \log_2 \frac{1}{0.15} + 0.14 \cdot \log_2 \frac{1}{0.14} + 0.12 \cdot \log_2 \frac{1}{0.12} + 0.1 \cdot \log_2 \frac{1}{0.1} + 0.06 \cdot \log_2 \frac{1}{0.06} + 0.08 \cdot \log_2 \frac{1}{0.08} + 0.06 \cdot \log_2 \frac{1}{0.06} + 0.05 \cdot \log_2 \frac{1}{0.05} \\ &= 2,78 \frac{bit}{QZ} \end{split}$$

$$R_k = l_m - H_m = 2.84 - 2.78$$

= $0.06 \frac{Bit}{QZ}$

$$\begin{split} l_m &= \sum_i p(x_i) \cdot l \\ &= 0.3 \cdot 2 + 0.15 \cdot 3 + 0.14 \cdot 3 + 0.12 \cdot 3 + 0.1 \cdot 3 + 0.08 \cdot 3 + 0.06 \cdot 4 + 0.06 \cdot 4 + 0.05 \cdot 4 \\ &= 2,81 \frac{Bit}{QZ} \\ H_m &= \sum_i p(x_i) \cdot \log_2 \frac{1}{p(x_i)} \\ &= 0.3 \cdot \log_2 \frac{1}{0.3} + 0.15 \cdot \log_2 \frac{1}{0.15} + 0.14 \cdot \log_2 \frac{1}{0.14} + 0.12 \cdot \log_2 \frac{1}{0.12} + 0.1 \cdot \log_2 \frac{1}{0.1} + 0.06 \cdot \log_2 \frac{1}{0.06} + 0.08 \cdot \log_2 \frac{1}{0.08} + 0.06 \cdot \log_2 \frac{1}{0.06} + 0.05 \cdot \log_2 \frac{1}{0.06} \\ &= 2,78 \frac{bit}{QZ} \\ R_k &= l_m - H_m = 2.81 - 2.78 \\ &= 0,03 \frac{Bit}{QZ} \end{split}$$

Aufgabe 3

- (1) nicht eindeutig dekodierbar, da a_4^* und a_7^* nicht präfixfrei sind. (a_4^* bildet den Anfang von a_7^*)
- (2) Ist eindeutig, da Präfixfreiheit besteht und sich ein Baum aufspannen lässt.

Aufgabe 4

$$H_Q = 0.1 \cdot \log_2 \frac{1}{0.1} + 0.9 \cdot \log_2 \frac{1}{0.9} = 0.47 \frac{bit}{QZ}$$

$$l_m = \lceil \log_2 N
ceil = 1$$

$$R_k = 1 - 0.47 = 0.53 rac{bit}{QZ}$$

	Berechnung	Wahrscheinlichkeit				Länge	Code
p(BB)	0,9 * 0,9	0,81	0			1	0
p(AB)	0,9 * 0,1	0,09		0		2	10
p(BA)	0,9 * 0,1	0,09	1	1	0	3	110
p(AA)	0,1 * 0,1	0,01		1	1	3	111

$$egin{aligned} l_m^{[2]} &= 0.81 \cdot 1 + 0,09 \cdot 2 + 0,09 \cdot 2 + 0,01 \cdot 3 = 1,29 \ &= > l_m = rac{l_m^{[2]}}{2} = 0,645 \ R_k &= 0.645 - 0.47 rac{bit}{QZ} = 0.175 rac{bit}{QZ} \end{aligned}$$

d)

	Berechnung	Wahrscheinlichkeit						Länge	Code
p(BBB)	0,9 * 0,9 * 0,9	0,729	0					1	0
p(ABB)	0,1 * 0,9 * 0,9	0,081		0	0			3	100
p(BAB)	0,9 * 0,1 * 0,9	0,081		0	1			3	111
p(BBA)	0,9 * 0,9 * 0,1	0,081			0			3	110
p(AAB)	0,1 * 0,1 * 0,9	0,009	1	1		0	0	5	11100
p(ABA)	0,1 * 0,9 * 0,1	0,009			1	U	1	5	11101
p(BAA)	0,9 * 0,1 * 0,1	0,009			Т	1	0	5	11110
p(AAA)	0,1 * 0,1 * 0,1	0,001				1	1	5	11111

$$\begin{split} l_m^{[3]} &= 0.729 \cdot 1 + 0.081 \cdot 3 \cdot 3 + 0.009 \cdot 5 \cdot 3 + 0.01 \cdot 5 = 1.598 \frac{KZ}{Block} \\ &=> l_m = \frac{l_m^{[3]}}{3} = 0.533 \\ R_k &= 0.533 - 0.47 = 0.063 \frac{KZ}{QZ} \end{split}$$

e)

Bei einer Erweiterung der Blocklänge reduziert sich die Koderedundanz bis maximal $\mathit{l}_{m}=\mathit{H}_{m}$.

Aufgabe 5

a)

Shannon-Verfahren:	Wahrscheinlichkeiten			Länge	Code
	0,7	0		1	0
	0,2	1	0	2	10
	0,1	T	1	2	11

$$H_m = 0.7 \cdot \log_2 \frac{1}{0.7} + 0.2 \cdot \log_2 \frac{1}{0.2} + 0.1 \cdot \log_2 \frac{1}{0.1} = 1.157$$

$$l_m = 0.7 \cdot 1 + 0.2 \cdot 2 + 0.1 \cdot 2 \\ = 1.3 \frac{KZ}{QZ}$$

$$R_k = l_m - H_m = 1.3 - 1.157$$

= $0.143 \frac{bit}{QZ}$

b)

Shannon-Verfahren:

		Wahrscheinlichkeiten							Länge	Code
p(AA)	0,7 * 0,7	0,49	0						1	0
p(AB)	0,7 * 0,2	0,14		0	0				3	100
p(BA)	0,2 * 0,7	0,14		U	1				3	101
p(AC)	0,7 * 0,1	0,07			0	0			4	1100
p(CA)	0,1 * 0,7	0,07	1	,	U	1		·	4	1101
P(BB)	0,2 * 0,2	0,04	1 1		0			4	1110	
p(BC)	0,2 * 0,1	0,02			1		0		5	11110
p(CB)	0,1 * 0,2	0,02			1	1	1	0	6	111110
p(CC)	0,1 * 0,1	0,01					1	1	6	111111

$$H_m = 1.157$$

$$l_m^{[2]} = 0.49 \cdot 1 + 0.14 \cdot 3 \cdot 2 + 0.07 \cdot 4 \cdot 2 + 0.04 \cdot 4 + 0.02 \cdot 5 + 0.02 \cdot 6 + 0.01 \cdot 6 \\ = 2.33$$

$$egin{aligned} l_m &= rac{l_m^{[2]}}{2} = rac{2.33}{2} \ &= 1.165rac{KZ}{QZ} \end{aligned}$$

$$R_k = l_m - H_m = 1.165 - 1.157$$

= $0.008 \frac{bit}{QZ}$

c)

- durch die paarweise Kodierung kann eine Minimierung der Redundanz erziehlt werden
- ullet die max. Reduzierung ist auf H_m als untere Schranke begrenzt

Aufgabe 6

$$H_m = 0.8 \cdot \log_2 rac{1}{0.8} + 0.2 \cdot \log_2 rac{1}{0.2} = 0.7219$$

$$l = \lceil \log_2 N \rceil$$

= 1

a)

m = 2

p(AA)	0,8 * 0,8	0,64	0			1	0
p(AB)	0,8 * 0,2	0,16		0		2	10
p(BA)	0,8 * 0,2	0,16	1	1	0	3	110
p(BB)	0,2 * 0,2	0,04			1	3	111

$$l_m^{[2]} = 0.64 \cdot 1 + 0.16 \cdot 2 + 0.16 \cdot 3 + 0.04 \cdot 3 = 1.56$$
 $l_m = \frac{l_m^{[2]}}{2} = \frac{1.56}{2} = 0.78$

m = 3

	Berechnung	Wahrscheinlichkeit						Länge	Code
p(BBB)	0,8 * 0,8 * 0,8	0,512	0					1	0
p(ABB)	0,2 * 0,8 * 0,8	0,128		_	0			3	100
p(BAB)	0,2 * 0,8 * 0,8	0,128		0	1			3	111
p(BBA)	0,2 * 0,8 * 0,8	0,128			0			3	110
p(AAB)	0,2 * 0,2 * 0,8	0,032	1	1 1	1	_	0	5	11100
p(ABA)	0,2 * 0,2 * 0,8	0,032				0	1	5	11101
p(BAA)	0,2 * 0,2 * 0,8	0,032			T	1	0	5	11110
p(AAA)	0,2 * 0,2 * 0,2	0,008				1	1	5	11111

$$l_m^{[3]} = 0.512 \cdot 1 + 0.128 \cdot 3 \cdot 3 + 0.032 \cdot 5 \cdot 3 + 0.008 \cdot 5 = 2.184$$
 $l_m = \frac{l_m^{[3]}}{2} = \frac{2.184}{3} = 0.728$

=> für m=3 ist die Voraussetzung, erfüllt mit einer Einsparung von 27.2%

b)

Die maximale Reduzierung ist durch H_m begrenzt, da R_k nicht negativ sein darf $R_k=l_m-H_m$ => Einsparung um max 27,8%