236609 - AI and Robotics - Fall 2024

Lesson 2a: Three-Layered Decision Making in Robotics

Sarah Keren

The Taub Faculty of Computer Science Technion - Israel Institute of Technology

Table of contents

- 1. A Running Example
- 2. 3 Layers of Decision Making
- 3. Task Planning
- 4. Motion Planning
- 5. Control

A Running Example

Example

The person: "I an hungry"

Task Planning

The person: "I an hungry"

Motion Planning

Control

3 Layers of Decision Making

Components of a Robotic Agents

Autonomy

Autonomy

Autonomy

State Estimation

$\beta: \mathcal{S} \mapsto [0,1]$

Process incoming observations to maintain a *belief* as a probability distribution over states

Decision Making

$$\pi: \beta \mapsto \mathcal{A}$$
$$\pi: \beta \times \mathcal{A} \mapsto [0, 1]$$

Find a policy - a mapping belief and objective into actions (probabilities)

Motion Control

$$\dot{x}(t) = f(x(t), u(t), t) + w(t)$$

Translate actions into low-level commands (and monitor their execution)

- $x(t) \in \mathbb{R}^n$ state vector
- $u(t) \in \mathbb{R}^m$ control input
- $f: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R} \to \mathbb{R}^n$ system dynamics
- w(t) noise or disturbance

Layered Control Architecture (LCA)

Semantic Logic Discrete Planning	Decision Making	Flexible and Slow
Optimization Sampling Methods Continuous Planning	Trajectory Planning	Intermediate
PID Control CLFs/CBFs	Feedback Control	Rigid and Real Time

Information Flow

Top-Down Flow:

- Goals → Plans → Commands
- · Like company policies becoming specific actions

Bottom-Up Flow:

- Sensor data → Status updates → Results
- · Like workers reporting to management

Time Scales

Different Speeds for Different Needs

- · Planning: Seconds to minutes
- · Behavioral: Fraction of seconds
- · Execution: Milliseconds
- · Control: Microseconds
- · Hardware: Nanoseconds

Task Planning

What do we need to model?

A robot controlled by a model-based AI program

- · Model of the robot
- · Model of the world
- Model of possible actions
- Model of other agents

Al program reasons about the model to make decisions

Modeling the Environment

What do we need to model?

Modeling the Environment

What do we need to model?

Modeling the Environment

What do we need to model?

- · Sequential decision making
- · Uncertainty in action outcomes
- Partial observability

Additional considerations?

Model needs to be compact enough to be solvable but informative enough to be useful.

Environment: State and action space

- State Space: $s \in S$ is a world state (more accurately, a representation of a world state)
 - Typically, it is impossible / impractical to explicitly maintain the state space.
 - We therefore use a **factored representation** in which the state space is described via a set of variables $\mathcal{X} = X_1, \dots, X_n$, and a state is an assignment of a value $X_i \in Dom(X_i)$ for each variable X_i .
- Action space: $a \in A$ is an action agents can perform
 - · can have deterministic / non-deterministic / stochastic effects
 - · may be associated with preconditions and effects.

Examples

What are states and actions?

The Agent-Environment Interface

- An agent operates in the environment by taking actions.
- · An agent (and its behavior) is characterized by its:
 - · Objectives (reward and utility)
 - Ability to observe and sense the environment (observability and beliefs)

The Agent-Environment Interface

The agent and environment interact at each of a sequence of discrete time steps t = 1, 2, 3, ...

At each time step t:

- · The agent receives some representation of the environment's state $s_t \in \mathcal{S}$
- · On that basis selects an action $a_t \in \mathcal{A}(s)$

One time step later t + 1:

- · As a consequence of its action, the agent receives a numerical reward $r_{t+1} \in R$
- · Finds itself in a new state st+1

The environment and agent together thereby give rise to a sequence or **trajectory**: s_0 , a_0 , r_1 , s_1 , a_1 , r_2 , s_2 , a_2 , r_3 , ...

The Agent-Environment Interface

- **Episodes:** when the agent–environment interaction breaks naturally into sub-sequences. Each episode ends in a special state called the *terminal state*.
- **Episodic tasks:** Tasks with episodes. The time of termination *T* is a random variable that normally varies from episode to episode.
- Continuing tasks: When the agent–environment interaction does not break naturally into identifiable episodes, but goes on continually without limit.

Real-world examples of episodic vs. continuing tasks?

Reward

- **Reward:** a signal passed from the environment to the agent (typically referred to as **cost** when reward is negative).
- A reward r_t is a scalar feedback signal Indicates how well agent is doing at step t.
- The reward signal is your way of communicating to the agent what you want achieved, not how you want it achieved.

https://deepmind.com/research/publications/2021/Reward-is-Enough

Reward (cont.)

- · Often described by a reward function:
 - Depending on the setting, defined as $\mathcal{R}(s, a, s')$, $\mathcal{R}(s, a)$ or $\mathcal{R}(s)$
 - The reward can be stationary $\mathcal{R}(s,a,s')\in\mathbb{R}$ or non-stationary, in which case we consider the expectation

$$\mathcal{R}(s, a, s') = \mathbb{E}[r_{t+1}|S_t = s, A_t = a, S_{t+1} = s']$$

- \cdot An agent's objectives is to maximize it's **utility** ${\cal U}$
 - the expected total reward (return) it receives
 - · the min reward
- Utility is sometimes known as *goal* but we will refer to a goal as a state (or state set) an agent aims to reach.

https://deepmind.com/research/publications/2021/Reward-is-Enough

Reward (by David Sliver)

- · Fly stunt manoeuvres in a helicopter
 - + for following desired trajectory
 - · for crashing
- · Defeat the world champion at Backgammon
 - · +/- reward for winning/losing a game
- · Manage an investment portfolio
 - · + reward for each \$ in bank
- Control a power station
 - · + reward for producing power
 - · reward for exceeding safety thresholds
- · Make a humanoid robot walk
 - · + reward for forward motion
 - · reward for falling over
- · Play many different Atari games better than humans
 - +/- reward for increasing/decreasing score

Problems with this approach?

Reward

Designing a good reward function is an art.

Ball in cup image from Kober et al (2009)

Observation and Belief

- At each time step the agent receives an observation o_t that reflects the current state of the world
- A **belief** $\beta \in \mathcal{B}$ represents the possible world states (i.e., the states that are deemed possible by the agent).
- Induced by an observability/ sensor function that maps states to observations (more on this later)

Policy (for a single agent¹)

- A policy is a mapping from states to actions.
- More accurately: we seek a mapping from the agent's understanding of the state, i.e., its belief, to actions.
- Our objective is to find a (sub)-optimal policy for an agent to follow in order to achieve it's objective / maximize its utility.

¹we will consider multi-agent policies in the second part of the course

Formal definitions: Policy

- A **deterministic** policy is a mapping:
 - $\cdot \pi : \mathcal{S} \to \mathcal{A}$ from states to actions
 - $\pi: \mathcal{B} \to \mathcal{A}$ from beliefs to action
 - $\pi(s)/\pi(\beta)$ is the (single) action the agent will perform at state s or belief β .
- · A **non-deterministic** policy is a mapping:
 - $\pi: \mathcal{S} \to \mathcal{A}^n$ from states to actions,
 - $\pi: \mathcal{B} \to \mathcal{A}^n$ from beliefs to actions
 - $\pi(s)/\pi(\beta)$ is the set of actions one of which the agent will perform at state s or belief β .
- · A **stochastic** policy is a mapping:
 - $\pi: \mathcal{S} \times \mathcal{A} \rightarrow [0,1]$ from states to actions
 - $\pi:\mathcal{B}\times\mathcal{A}\to[0,1]$ from beliefs to action
 - $\pi(s, a)/\pi(\beta, a)$ is the probability the agent will perform action a at state s/ belief β .

Policies for Reactive Agents

SIMPLE ROOMBA

If BUMP = TRUE

THEN Turn (random direction/amt)

ELSE MOVE-STRAIGHT

https://www.youtube.com/watch?v=7FSUtSurqA4

Policies for Rational Agents

- Typically cannot be described explicitly for each state and require a compact representation.
- An **optimal policy**, denoted π^* is *better* than or equal to all other policies.
- Since our focus is on rational agents with a clearly defined utility measure, an optimal policy maximizes the agent's utility function \mathcal{U} .

Learning from a sample set

In supervised learning:

- A sample set: $S = \{(x_i, y_i)_{i=1}^m\}$
- Typically used to learn for an appropriate classifier (e.g., with lowest expected error or loss) among a hypothesis class *H*.

Learning a policy π :

- A sample set: $S = \{(s_i, a_i)_{i=1}^m\}$ or $S = \{(\beta_i, a_i)_{i=1}^m\}$
- Typically, a parameterized policy over a factored state-space representation is used.
- Parameterized policy as a conditional probability $\pi_{\theta}(a_t|\beta_t)$ or $\pi_{\theta}(a_t|s_t)$ (for fully observed)

Sample set representation of our domains?

A sample set:
$$S = \{(s_i, a_i)_{i=1}^m\}$$
 or $S = \{(\beta_i, a_i)_{i=1}^m\}$

Effective for sequential decision making?

Propositional STRIPS

Propositional STRIPS planning task defined by a tuple $P = \langle \mathcal{F}, I, \mathcal{A}, G, \mathcal{C} \rangle$, where

- $\mathcal F$ is a set of fluents and a state s is represented by the fluents that are true in s
- $I \subseteq F$ is the initial state
- $G \subseteq F$ represents the set of goal states, and
- \cdot \mathcal{A} is a set of actions.
 - Each action is a triple a = \(\langle pre(a)\), add(a), del(a)\rangle, which
 represents the precondition, add, and delete lists respectively, all
 subsets of \(\mathcal{F}\).
 - An action a is applicable in state s if $pre(a) \subseteq s$.
 - If action a is applied in state s, it results in a new state $s' = (s \setminus del(a)) \cup add(a)$.
- $\mathcal{C}:\mathcal{A}\to\mathbb{R}_0^+$ is a cost function that assigns each action a non-negative cost.

Propositional STRIPS

- The objective is to find a plan $\pi = \langle a_1, \dots, a_n \rangle$: a sequence of actions that brings an agent from the initial state to a goal state.
- The cost $c(\pi)$ of a plan π is $\sum_{i=1}^{n} (C(a_i))$.
- Often, the objective is to find an optimal solution for P: a plan
 π* that minimizes the associated cost.
- The literature is rich with different approaches developed to solve the planning problem (Bonet and Geffner 2013): more on this later on in the course.

From https://ai.dmi.unibas.ch/misc/tutorial_
aaai2015/planning02.pdf

Markov Decision Process

A Markov Decision Process(MDP) is a tuple $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$ where

- S is a finite set of states defined via a set of random variables $X = X_1, \dots, X_n$
- A is a finite set of actions
- \mathcal{P} is a state transition probability matrix $\mathcal{P}_{s,s'}^a = \mathcal{P}[S_{t+1} = s' | S_t = s, A_t = a]$
- \mathcal{R} is a reward function, $\mathcal{R}_s^a = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$, and
- optional: γ is a discount factor $\gamma \in [0, 1]$ that is used to favor immediate rewards over future rewards.

The Markov property: "The future is independent of the past given the present".

Extensions: Infinite and continuous MDPs, partially observable MDPs, undiscounted, average reward MDPs. etc.

Rewards (from Sutton and Barto 2018)

Expected return for episodic tasks:

$$G_t = r_{t+1} + r_{t+2} + r_{t+3} + \dots + r_T = \sum_{k=0}^{I} r_{t+k+1}$$

· Expected return for continuing tasks:

$$G_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$$

when γ is the discount factor.

· Returns at successive time steps are related to each other:

$$G_t = r_{t+1} + \gamma (r_{t+2} + \gamma r_{t+3} + \gamma^2 r_{t+4} + \dots) = r_{t+1} + \gamma G_{t+1}$$

How to model our domain as MDPs?

Is this model appropriate? Limitations? Strengths?

Accounting for Partial Observability

Reminder: Observation and Belief

At each time step the agent receives an observation o_t that reflects the current state of the world. s

Beliefs and Belief Tracking

- A **belief** is a representation of the possible world states.
- In partially observable domains, we may have a sensor model represented as a mapping function from what is observed to the actual world state.
- The agent maintains its belief via a *state estimator* which we will refer to as the process of **Belief Tracking**.

Belief

A belief $\beta \in \mathcal{B}$ can have different representations:

- **Deterministic:** a direct mapping from states to beliefs $\beta = s$ (in which case we simply talk about states)
- Non-deterministic: $\beta \subseteq \mathcal{S}$ represents the set of possible world states
- Stochastic: the belief is a probability distribution over possible underlying world states. $\beta: \mathcal{S} \to \mathcal{P}[\mathcal{S}]$ such that $\beta(s)$ represents the probability that s is the actual world state.

Recall that the environment-agent interactions give rise to a sequence or trajectory: s_0 , a_0 , r_1 , s_1 , a_1 , r_2 , s_2 , a_2 , r_3 , ...

From the point of view of the partially informed agent, we have a **history**: o_0 , a_0 , r_1 , o_1 , a_1 , r_2 , o_2 , a_2 , r_3 , ...

The agent needs to maintain its belief based on the current observation.

Beliefs in the Lab

$$\beta^{o,s}(p) = \frac{\hat{P}(o|p,s)\beta(p)}{\int_{p'\in\mathcal{P}_o}\hat{P}(o|p',s)\beta(p')dp'}$$
(1)

where β (p) is the estimated probability that p is the pose prior to considering observation o.

Partially Observable Markov Decision Process (POMDP)

A Partially Observable Markov Decision Process(POMDP) is a tuple $\langle S, A, P, R, \gamma, \Omega, O, \beta_0 \rangle$ where

- S, A, P, R and γ are as for an MDP.
- \cdot Ω is a set of observations (observation tokens),
- \mathcal{O} is a sensor function specifying the conditional observation probabilities $\mathcal{O}_{s,a}^o = \mathcal{P}[O_{t+1} = o | S_t = s, A_t = a]$ of receiving observation token $o \in \Omega$ in state s after applying action a².
- β_0 the initial belief: a probability distribution over the states such that $\beta_0(s)$ stands for the probability of s being the true initial state.

²alternatively: $\mathcal{O}_{S}^{o} = \mathcal{P}[o_{t} = o | S_{t} = s]$

How to model our domain as a POMDP?

 $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma, \Omega, \mathcal{O}, b_0 \rangle$

Is this model appropriate? Limitations? Strengths?

POMDPs at the CLAIR lab

 $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma, \Omega, \mathcal{O}, b_0 \rangle$

- State space: Position and orientation of all objects and robot configuration $S = \{(x_i, y_i, z_i, rx_i, ry_i, rz_i)\}_{i=1}^{N_{items}} \bigcup \mathcal{C}_{robot}$
- Action space: pick up or sense if there's object for each point in the workspace $\mathcal{A} = \{sense(x,y)|x,y \in workspace\} \cup \{sense(x,y)|x,y \in workspace\}$
- Observation Space: whether an item is picked at the last action or whether an object was sensed at the last action {picked, notpicked, sensed, notpensed}

Optimization Considerations

- Completeness
- Soundness
- Optimality
- Anytime guarantees
- Computational Efficiency
- · Generality
- Memory consumption

Motion Planning

Motion Planning

Motion Planning

From Oren Salzman's course slides*

(Formal) definition of the basic motion-planning** problem Let \mathcal{R} be a robot system with d degrees of freedom, moving in a known environment cluttered with obstacles. Given start and target configurations s and s' for \mathcal{R} , decide whether there is a collision-free, continuous path $\tau:[0,1]\to\mathcal{C}_{free}$ such that $\tau(0)=s$ and $\tau(1)=s'$ and if so, plan such a motion.

*Consider taking course 236901 to learn about algorithms for robotic motion planning.

https://arxiv.org/pdf/2209.14471.pdf

Motion Planning is Hard

More about this soon...

Control

Example of a Control Problem: Follow the Motion Plan

Given a motion plan τ , the trajectory tracking problem is defined by (X, U, f, τ) where:

- X is the state space (can be the configuration space and the derivatives in that space (velocities))
- *U* is the control/input space
- $f: X \times U \rightarrow X$ is the system dynamics what is the next state given the current and the control input, what assumption do we make here?
- $\tau:[0,1] \to C_{free}$ is the reference motion plan

The control objective is to find u(t) such that:

- $\dot{x}(t)=f(x(t),u(t))$ This is the system dynamic equation. Note that it's a ODE
- $\|x(t)- au(s(t))\|<arepsilon$ for some tracking error arepsilon we are close enough to the trajectory
- s(t) maps time to path parameter [0, 1]

Control

More about this very soon...

Summary

Summary:

- · We tool a closer look at the structure of a robot
- · We examined different models used in AI and robotics

What next?

· Cover basic reactive approaches to robotic control

