TMA-101

B. TECH. (NON-CS) (FIRST SEMESTER)

END SEMESTER EXAMINATION, 2018

ENGINEERING MATHEMATICS

Time: Three Hours
Maximum Marks: 100

Note:(i) 'This question paper contains five questions with alternative choice.

(ii) All questions are compulsory.

- (iii) Each question carries three Parts (a),(b), and (c). Attempt any two question of each Part.
- (iv) Each Part carries ten marks. Total marks assigned to each question are twenty.

Attempt any two questions of choice from (a),
 (b) and (c). (2×10=20 Marks)

(a) Define Eigen value and Eigen vector of the matrix. Find the Eigen value of the matrix:

$$\begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

- (b) Find for what values of λ and μ the system of linear equations x+y+z=6, x+2y+5z=10 and $2x+3y+\lambda z=\mu$ has
 - (i) a unique solution
 - (ii) no solution
 - (iii) infinite no solution
- (c) A square matrix A is defined by $A = \begin{pmatrix} 1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{pmatrix}.$ Find the modal

matrix P and the resulting diagonal matrix D of A.

- Attempt any two questions of choice from (a),
 (b) and (c). (2×10=20 Marks)
 - (a) Define Leibnitz's theorem, and if $y = (x^2 1)^n$, prove that:

$$(x^2-1) y_{n+2} + 2 xy_{n+1} - n(n+1)y_n = 0.$$

(b) Define Cauchy's root test, and test for convergence of the series whose *n*th term is $\frac{n^{n^2}}{(n+1)^{n^2}}.$

(3) TMA-101

(c) If z = f(x, y) is a homogeneous function of x and y of degree n, then:

$$x^{2} \frac{\partial^{2} z}{\partial x^{2}} + 2 xy \frac{\partial^{2} z}{\partial x \partial y} + y^{2} \frac{\partial^{2} z}{\partial y^{2}} = n(n-1) z$$

- 3. Attempt any two questions of choice from (a), (b) and (c). (2×10=20 Marks)
 - (a) If $u^3 + v^3 = x + y$, $u^2 + v^2 = x^3 + y^3$, then prove that : $\frac{\partial (u, v)}{\partial (x, y)} = \frac{y^2 x^2}{2 u v (u v)}$.
 - (b) Divide 120 into three parts so that the sum of their products taken two at a time shall be maximum.
 - (c) Use the method of the Lagrange's multipliers to find the volume of the largest rectangular parallelepiped that can be inscribed in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$
- 4. Attempt any two questions of choice from (a), (b) and (c). (2×10=20 Marks)
 - (a) Evaluate $\oint \overline{F} \cdot dr$ where $\overline{F} = x^2 \hat{i} + xy \hat{j}$ and C is the boundary of the square in the plane z = 0 and bounded by the lines x = 0, y = 0, x = a and y = a.

P. T. O.

F. No. : c-43

- (b) Evaluate $\oint \overline{F} \cdot dr$ by Stokes' Theorem, where $\overline{F} = (x^2 + y^2)\hat{i} 2xy\hat{j}$ and C is the boundary of the rectangle $x = \pm a$, y = 0 and y = b.
- (c) Show that div (grad r^n) = $n(n+1)r^{n-2}$, where $r^2 = x^2 + y^2 + z^2$.
- 5. Attempt any *two* questions of choice from (a), (b) and (c). (2×10=20 Marks)
 - (a) Find by double integration the whole area of the curve $a^2x^2 = y^3(2a y)$.
- (b) To prove that:

$$\overline{m}$$
 $m + \frac{1}{2} = \frac{\sqrt{\pi}}{2^{2m-1}} \overline{2m}$

where m is positive.

(c) Change the order of integration of ?

MAN TO STATE OF THE STATE OF TH

$$\int_0^a \int_{\sqrt{a^2-y^2}}^{y+a} f(x,y) \, dx dy.$$

Parametri (100-101 a.s.)