

K-means clustering is one of the simplest and popular unsupervised machine learning algorithms.

Typically, unsupervised algorithms make inferences from datasets using only input vectors without referring to known, or labelled, outcomes.

<u>AndreyBu</u>, who has more than 5 years of machine learning experience and currently teaches people his skills, says that "the objective of K-means is simple: group similar data points together and discover underlying patterns. To achieve this objective, K-means looks for a fixed number (*k*) of clusters in a dataset."

A cluster refers to a collection of data points aggregated together because of certain similarities.

You'll define a target number k, which refers to the number of centroids you need in the dataset. A centroid is the imaginary or real location representing the center of the cluster.

Every data point is allocated to each of the clusters through reducing the in-cluster sum of squares.

In other words, the K-means algorithm identifies *k* number of centroids, and then allocates every data point to the nearest cluster, while keeping the centroids as small as possible.

The 'means' in the K-means refers to averaging of the data; that is, finding the centroid.

How the K-means algorithm works

To process the learning data, the K-means algorithm in data mining starts wife first group of randomly selected centroids, which are used as the beginning process for every cluster, and then performs iterative (repetitive) calculations to optimate the positions of the centroids

It halts creating and optimizing clusters when either:

- The centroids have stabilized there is no change in their values because the clustering has been successful.
- The defined number of iterations has been achieved.

K-means algorithm example problem

Let's see the steps on how the K-means machine learning algorithm works using the Python programming language.

We'll use the Scikit-learn library and some random data to illustrate a K-means clustering simple explanation.

Step 1: Import libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
%matplotlib inline
```

As you can see from the above code, we'll import the following libraries in our project:

- Pandas for reading and writing spreadsheets
- Numpy for carrying out efficient computations
- Matplotlib for visualization of data

Step 2: Generate random data

Here is the code for generating some random data in a two-dimensional space:

```
X= -2 * np.random.rand(100,2)
X1 = 1 + 2 * np.random.rand(50,2)
X[50:100, :] = X1
plt.scatter(X[:, 0], X[:, 1], s = 50, c = 'b')
plt.show()
```

A total of 100 data points has been generated and divided into two groups, of 50 points each.

Here is how the data is displayed on a two-dimensional space:

Step 3: Use Scikit-Learn

We'll use some of the available functions in the <u>Scikit-learn library</u> to process the randomly generated data.

Here is the code:

```
from sklearn.cluster import KMeans
Kmean = KMeans(n_clusters=2)
Kmean.fit(X)
```

In this case, we arbitrarily gave k (n_clusters) an arbitrary value of two.

Here is the output of the K-means parameters we get if we run the code:

```
KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter n_clusters=2, n_init=10, n_jobs=1, precompute_distances='auto', random_state=None, tol=0.0001, verbose=0)
```

Step 4: Finding the centroid

Here is the code for finding the center of the clusters:

```
Kmean.cluster_centers_
```

Here is the result of the value of the centroids:

```
array([[-0.94665068, -0.97138368],
[ 2.01559419, 2.02597093]])
```

Let's display the cluster centroids (using green and red color).

```
plt.scatter(X[:, 0], X[:, 1], s =50, c='b')
plt.scatter(-0.94665068, -0.97138368, s=200, c='g', marker='s')
plt.scatter(2.01559419, 2.02597093, s=200, c='r', marker='s')
plt.show()
```

Here is the output:

Step 5: Testing the algorithm

Here is the code for getting the labels property of the K-means clustering example dataset; that is, how the data points are categorized into the two clusters.

```
Kmean.labels_
```

Here is the result of running the above K-means algorithm code:

As you can see above, 50 data points belong to the 0 cluster while the rest belong to the 1 cluster.

For example, let's use the code below for predicting the cluster of a data point:

```
sample_test=np.array([-3.0,-3.0])
second_test=sample_test.reshape(1, -1)
Kmean.predict(second_test)
```

Here is the result:

```
array([0])
```

It shows that the test data point belongs to the 0 (green centroid) cluster.

Wrapping up

Here is the entire K-means clustering algorithm code in Python:


```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
%matplotlib inline
X = -2 * np.random.rand(100,2)
X1 = 1 + 2 * np.random.rand(50,2)
X[50:100, :] = X1
plt.scatter(X[:, 0], X[:, 1], s = 50, c = 'b')
plt.show()
from sklearn.cluster import KMeans
Kmean = KMeans(n_clusters=2)
Kmean.fit(X)
Kmean.cluster_centers_
plt.scatter(X[:,0], X[:,1], s =50, c='b')
plt.scatter(-0.94665068, -0.97138368, s=200, c='g', marker='s')
plt.scatter(2.01559419, 2.02597093, s=200, c='r', marker='s')
plt.show()
Kmean.labels
sample_test=np.array([-3.0,-3.0])
second_test=sample_test.reshape(1, -1)
Kmean.predict(second_test)
```

K-means clustering is an extensively used technique for data cluster analysis.

It is easy to understand, especially if you accelerate your learning using a <u>K-means</u> <u>clustering tutorial</u>. Furthermore, it delivers training results quickly.

However, its performance is usually not as competitive as those of the other sophisticated clustering techniques because slight variations in the data coul to high variance.

Furthermore, clusters are assumed to be spherical and evenly sized, something which may reduce the accuracy of the K-means clustering Python results.

What's your experience with K-means clustering in machine learning?

Please share your comments below.

Machine Learning

Written by Education Ecosystem (LEDU)

5.5K Followers · Writer for Towards Data Science

Education Ecosystem (LEDU) is a decentralized project-based learning platform that teaches people how to build tech products, https://www.educationecosystem.com

More from Education Ecosystem (LEDU) and Towards Data Science

Education Ecosystem (LEDU) in Towards Data Science

A Quick Introduction to Text Summarization in Machine Learning

Text summarization refers to the technique of shortening long pieces of text. The intention is to create a coherent and fluent summary...

3 min read · Sep 18, 2018

Damian Gil in Towards Data Science

Mastering Customer Segmentation with LLM

Unlock advanced customer segmentation techniques using LLMs, and improve your clustering models with advanced techniques

23 min read · Sep 26

€100 2.5K

Giuseppe Scalamogna in Towards Data Science

New ChatGPT Prompt Engineering Technique: Program Simulation

A potentially novel technique for turning a ChatGPT prompt into a mini-app.

9 min read · Sep 3

₹¹⁷ 1.7K

Education Ecosystem (LEDU) in Geek Culture

How To Create And Deploy Docker Applications

A brief overview of Docker

3 min read . Jul 15, 2022

See all from Education Ecosystem (LEDU)

See all from Towards Data Science

Recommended from Medium

Damian Gil in Towards Data Science

Mastering Customer Segmentation with LLM

Unlock advanced customer segmentation techniques using LLMs, and improve your clustering models with advanced techniques

23 min read · Sep 26

€ 2.5K

22

Abdullah Siddique in Dev Genius

Exploring KNN with Different Distance Metrics

Machine learning has become an essential tool for data scientists in solving a wide range of problems. One of the popular algorithms used...

13 min read · May 3

Lists

Predictive Modeling w/ Python

20 stories · 456 saves

Practical Guides to Machine Learning

10 stories · 529 saves

Natural Language Processing

674 stories · 292 saves

The New Chatbots: ChatGPT, Bard, and Beyond

13 stories · 134 saves

Chapter 10: Clustering **Hierarchical Clusters** k-Means Clusters Cluster 1+

Faridah Yusuf

Difference between K means and Hierarchical Clustering

In this article we are going to be looking at the differences between k-means clustering and hierarchical clustering.

2 min read · Jun 1

The ChatGPT Hype Is Over—Now Watch How Google Will Kill ChatGPT.

It never happens instantly. The business game is longer than you know.

Musharraf Hamraz

K-Means Clustering Explained

https://www.linkedin.com/in/musharraf-hamraz-6b8350227/

3 min read · Jun 27

Nimra Shahzadi

Supervised Machine Learning: Classification and Regression

This article aims to provide an in-depth understanding of Supervised machine learning, one of the most widely used statistical techniques...

8 min read · May 29

21

See more recommendations