Linear Algebra Class on 27 April

Youngjun Kwon

27 April 2019

Definition 1. x is eigen-vector such that $Ax = \lambda x$ and $x \neq 0$. λ is called eigen-value.

Definition 2. $\phi_A(t) := \det(tI_n - A) \in P_n(\mathbb{R})$ is called characteristic polynomial of A

Definition 3. $(\lambda I_n - A)x = 0$ where $A \in \mathfrak{M}_{n \times n}(\mathbb{R})$

Null space of $(\lambda I_n - A)$ is called eigen space of A with respect to λ ; $E_{\lambda} := N(\lambda I_n - A)$

Definition 4. A is diagonalizable if and only if $D \sim A$ for some diagonal matrix D

Theorem 5. $A \in \mathfrak{M}_{n \times n}(\mathbb{R})$ is diagonalizable if and only if $[\mathbb{R}^n$ has n-linearly independent eigenvectors. ($\iff \mathbb{R}^n$ has a basis consisting of eigen vectors of A)]

Proof.

A is diagonalizable
$$\iff D = Q^{-1}AQ$$
 where $Q \coloneqq [x_1, \dots, x_n]$ and $D \coloneqq \operatorname{diag}(\lambda_1, \dots, \lambda_n)$
 $\iff QD = AQ$
 $\iff \lambda_x x_j = Ax_j \text{ for } j = 1, \dots, n \text{ where } \{x_1, \dots, x_n\} \text{ is linearly independent}$
(:: Q is invertible)

 $\therefore D \sim A \iff \mathbb{R}^n$ has n-linearly independent eigen vectors.

Theorem 6. Let T be a linear operator on a vector space V, and let $\lambda_1, \lambda_2, \ldots, \lambda_k$ be distinct eigenvalues of T. If v_1, v_2, \ldots, v_n are eigenvectors of T such that λ_i corresponds to v_i $(1 \le i \le k)$, then $\{v_1, v_2, \ldots, v_k\}$ is linearly independet.

Proof. The proof is by mathmatical induction on k. Suppose that k=1. Then $v_1 \neq 0$ since v_1 is an eigenvector, and hence $\{v_1\}$ is linearly independent. Now assume that the theorem holds for k-1 distinct eigenvalues, where $k-1 \geq 1$, and that we have k eigenvectors v_1, v_2, \ldots, v_k corresponding to the distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_k$. We wish to show that $\{v_1, v_2, \ldots, v_k\}$ is linearly independent. Suppose that a_1, a_2, \ldots, a_k are scalars such that

$$a_1v_1 + a_2v_2 + \dots + a_kv_k = 0 \tag{1}$$

Applying $T - \lambda_k I$ to both sides of (1), we obtain

$$(\mathbf{T} - \lambda_k I)(a_1 v_1 + \dots + a_k v_k) = a_1(\lambda_1 - \lambda_k)v_1 + \dots + a_{k-1}(\lambda_{k-1} - \lambda_k)v_{k-1} = 0$$

$$(: (\mathbf{T} - \lambda_k I)(a_k v_k) = a_k(\lambda_k v_k - \lambda_k v_k) = 0)$$

Since distinct $\lambda_1, \lambda_2, \dots, \lambda_{k-1}$

$$a_i(\lambda_i - \lambda_k) = 0$$

Therefore $a_i = 0$ for all i = 1, 2, ..., k - 1. We have $a_k v_k = 0$. So that $a_k = 0$ (: v_k is eigenvector.) It follows that $\{v_1, v_2, ..., v_k\}$ is linearly independent.

Corollary 7. If all eigenvalues are distinct, then A is diagonalizable.

Definition 8. A polynomial f(t) in P(F) splits over F if there are scalars c, a_1, \ldots, a_n (not necessarily distinct) in F such that

$$f(t) = c(t - a_1)(t - a_2) \dots (t - a_n).$$

Definition 9. Let λ be an eigenvalue of a linear operator or matrix with characteristic polynomial f(t). The (algebraic) multiplicity of λ is the largest positive integer k for which $(t - \lambda)^k$ is a factor of f(t).

Theorem 10. Let T be a linear operator on a finite-dimensional vector space V, and let λ be an eigenvalue of T having multiplicity m. Then $1 \leq \dim(E_{\lambda}) \leq m$.

Proof. Take a basis $\{v_1, \ldots, v_k\}$ of E_{λ} . Extend $\{v_1, \ldots, v_k\}$ to $\{v_1, \ldots, v_k, v_{k+1}, \ldots, v_n\}$ by basis extension theorem. Put $A := [T]_{\beta}$. Observe that v_i $(1 \le i \le k)$ is an eigenvector of T corresponding to λ , and therefore

$$A = \begin{pmatrix} \lambda I_p & B \\ O & C \end{pmatrix}$$

The characteristic polynomial of T is

$$f(t) = \det(A - tI_n) = \det\begin{pmatrix} (\lambda - t)I_k & B \\ O & C - tI_{n-k} \end{pmatrix}$$
$$= \det((\lambda - t)I_k) \det(C - tI_{n-k})$$
$$= (\lambda - t)^k g(t)$$

where g(t) is a polynomial. Thus $(\lambda - t)^k$ is a factor of f(t), and hence the multiplicity of is at least k. But $\dim(E_{\lambda}) = k$, and so $\dim(E_{\lambda}) \leq m$.

Theorem 11. Let T be a linear operator on a vector space V, and let $\lambda_1, \lambda_2, \ldots, \lambda_k$ be distinct eigenvalues of T. For each $i = 1, 2, \ldots, k$, let S_i be a finite linearly independent subset of the eigenspace E_{λ_i} . Then $S = S_1 \cup S_2 \cup \cdots \cup S_k$ is a linearly independent subset of V.

Proof. Suppose that for each i

$$S_i = \{v_{i1}, v_{i2}, \dots, v_{in_i}\}.$$

Then $S = \{v_{ij} : 1 \le j \le n_i, and 1 \le i \le k\}$. Consider any scalars a_{ij} such that

$$\sum_{i=1}^{k} \sum_{j=1}^{n_i} a_{ij} v_{ij} = 0.$$

For each i, let

$$w_i = \sum_{j=1}^{n_i} a_{ij} v_{ij}.$$

Then $w_i \in E_{\lambda_i}$ for each i, and $w_1 + \cdots + w_k = 0$. Therefore, $w_i = 0$ for all i. But each S_i is linearly independent, and hence $a_{ij} = 0$ for all j. We conclude that S is linearly independent.

Theorem 12. Let T be a linear operator on a finite-dimensional vector space V such that the characteristic polynomial of T splits. Let $\lambda_1, \lambda_2, \ldots, \lambda_k$ be the distinct eigenvalues of T. Then

- 1. T is diagonalizable if and only if the multiplicity of λ is equal to dim (E_{λ_i}) for all i
- 2. If T is diagonalizable and β_i is an ordered basis for E_{λ_i} , for each i, then $\beta = \beta_1 \uplus \beta_2 \uplus \cdots \uplus \beta_k$ is an ordered basis for V consisting of eigenvectors of T.

Proof. For each i, let m_i , denote the multiplicity of λ_i , $di = \dim(E_{\lambda_i})$, and $n = \dim(V)$. $(\Longrightarrow) \exists \beta$: basis for V consisting of eigenvectors of T. Let $\beta_i := \beta \cap E_{\lambda_i}$, $n_i = |\beta_i|$. Then

$$n_i \le d_i \le m_i$$

$$\sum_i n_i = n, \sum_i m_i = n$$

$$n = \sum_i n_i \le \sum_i d_i \le \sum_i m_i = n$$

It follows that

$$\sum_{i=1}^{k} (m_i - d_i) = 0.$$

Since $(m_i - d_i) \ge 0$ for all i, we conclude that $m_i = d_i$ for all i.

(\Leftarrow) Suppose that $d_i = d_i$ for all i. We simultaneously show that T is diagonalizable and prove (2). For each i, let β_i be an ordered basis for E_{λ_i} , and let $\beta = \beta_1 \cup \beta_2 \cup \cdots \cup \beta_k$. By Theorem 11, β is linearly independet. Furthermore, since $d_i = m_i$ for all i, β contains

$$\sum_{i=1}^{k} d_i = \sum_{i=1}^{k} m_i = n$$

vectors. Therefore β is an ordered basis for V consisting of eigenvectors of V, and we conclude that T is diagonalizable.