20053722 Student Number Bryan Hoang Name

1.

(a) Finding $P(X_n = X_{(k)})$ for k = 1, ..., n.

Solution:

As noted by the given hint, since all orderings of X_1, \ldots, X_n are equally likely,

$$P(X_n = X_{(1)}) = \dots = P(X_n = X_{(n)}) \tag{1}$$

Given the sample space, we also have

$$\sum_{i=1}^{n} P(X_n = X_{(i)}) = 1 \tag{2}$$

Given (1) and (2), it follows that

$$\sum_{i=1}^{n} P(X_n = X_{(i)}) = 1$$

$$\sum_{i=1}^{n} P(X_n = X_{(k)}) = 1, \quad \text{for } k \in \{1, \dots, n\}, \text{ by } (1)$$

$$nP(X_n = X_{(k)}) = 1, \quad \text{for } k \in \{1, \dots, n\}$$

$$\Rightarrow P(X_n = X_{(k)}) = \frac{1}{n}, \text{ for } k \in \{1, \dots, n\}$$

(b) Showing that $(X_n, X_{(n)})$ does not have a joint pdf.

Solution:

Proof. (Contradiction)

Suppose that $(X_n, X_{(n)})$ does have a joint pdf, $f(x_1, x_2)$. From (a), we know that

$$P(X_n = X_{(n)}) = \frac{1}{n} \tag{3}$$

But since we know that the joint pdf of $(X_n, X_{(n)})$ exists, we can compute the LHS of (3) as follows:

$$P(X_n = X_{(n)}) = \iint_{\{(x,x)|x \in \mathbb{R}\}} f(x_1, x_2) dx_1 dx_2$$
$$= \int_{\mathbb{R}} \int_{x_2}^{x_2} f(x_1, x_2) dx_1 dx_2$$
$$= \int_{\mathbb{R}} 0 dx_2$$

MTHE	/STAT	353 -	Homework	3,	2020
------	-------	-------	----------	----	------

2

20053722
Student Number

Bryan Hoang	
Name	

$$= 0$$

$$\neq \frac{1}{n}$$

which contradicts (3). Therefore, $(X_n, X_{(n)})$ does not have a joint pdf.