

1. Brief Introduction

Project statement: Our project is designed to assess default risk for people with little or no credit history. Using data provided by financial companies, we use machine learning methods to predict a person's ability to repay, which can make it easier for people without a credit history to get a loan.

Objective: Explore the relationship between different variables, find important features, and build models. Finally, we choose the best model to predict the default risk.

1. Brief Introduction

Data Source: kaggle(Home Credit - Credit Risk Model Stability)

Technologies and Programming Languages:

Data Preparation and Processing: Python 3, NumPy, Pandas, Polars

EDA: python packages(matplotlib, seaborn, statistics, etc.)

Machine Learning Models: XGBoost, LightGBM, CatBoost

2. Data Cleaning

- (1) Missing values: Set the threshold to 95%
- (2) Outlier detection: IsolationForest

2. Data Cleaning

- (3)Unrepresentative classification features: only one category or > 200 categories
- (4) Independent variables: Correlation coefficient

2. Data Cleaning

(5) Sample unbalance: oversample and undersample

3. EDA

max number 24 by max relationship to client 415 T max number of control of the co

Recursive Feature Elimination:
 More accurate,
 But time-consuming

<u>Feature Importance</u>: Fast,

But unstable

20

30

10

validfrom 1069D max_num_group1_3 LightGBM Feature Importance (Top 20)

Importance

50

60

5. Model Training

Training and Prediction progress

- 1. **Model Training**: features (X) and their corresponding target values (y).
- 2. **Evaluation Metric**: "AUC" (Area Under the Receiver Operating Characteristic Curve)
- 3. **Model Fitting**: The fit method .Parameters: learning rate, depth of trees, and the number of trees (iterations) .
- 4. **Prediction**: the predict_proba method. Returns a two-column matrix, 1st column is the probability of the negative class (usually 0) and the 2nd column is the probability of the positive class (usually 1).
- 5. Probabilities and Scores:
 - The scores are the output from predict_proba.
 - High probability values indicate a higher confidence in the positive class and vice versa.
- 6. **Decision Threshold**: By default, threshold of 0.5. Greater than 0.5, the predicted class label will be 1 (positive), smaller than 0.5, it will be 0 (negative).

6. Conclusion Results

Models	Score of Validation Data	Score of Testing Data
LightGBM	0.85885	0.79597
XGBoost	0.85684	0.81964
CatBoost	0.85478	0.79013

Training Results

LightGBM Model: Training data:

Testing data:

```
Training until validation scores don't improve for 100 rounds
        valid 0's auc: 0.839801 Out of Sample Accuracy: 0.7959659943323887
[100]
[200]
        valid 0's auc: 0.850962
[300]
       valid_0's auc: 0.855293
[400]
        valid 0's auc: 0.857417
[500]
        valid_0's auc: 0.85808
[600]
        valid 0's auc: 0.858279
[700]
        valid 0's auc: 0.85863
[800]
        valid 0's auc: 0.858827
Early stopping, best iteration is:
[778]
       valid 0's auc: 0.858847
```

CatBoost Model: Training data:

```
Default metric period is 5 because AUC is/are not implemented for GPU
       test: 0.7238580 best: 0.7238580 (0)
                                                total: 72.4ms
                                                                remaining: 1m 12s
       test: 0.8297901 best: 0.8297901 (100)
                                                total: 6.7s
                                                                remaining: 59.6s
100:
       test: 0.8402348 best: 0.8402348 (200)
                                                total: 13.3s
                                                                remaining: 52.8s
200:
300:
       test: 0.8457661 best: 0.8457661 (300)
                                                total: 19.9s
                                                                remaining: 46.1s
400:
       test: 0.8487443 best: 0.8487499 (398)
                                                total: 26.4s
                                                                remaining: 39.5s
500:
       test: 0.8509343 best: 0.8509343 (500)
                                                total: 33s
                                                                remaining: 32.9s
600:
       test: 0.8522608 best: 0.8522778 (599)
                                                total: 39.5s
                                                                remaining: 26.2s
700:
       test: 0.8531803 best: 0.8531803 (700)
                                                total: 45.9s
                                                                remaining: 19.6s
800:
       test: 0.8537449 best: 0.8537516 (799)
                                                total: 52.4s
                                                                remaining: 13s
900:
       test: 0.8543310 best: 0.8543333 (899)
                                               total: 58.9s
                                                                remaining: 6.47s
999:
       test: 0.8547843 best: 0.8547843 (999)
                                               total: 1m 5s
                                                                remaining: Ous
```

XGBoost Model:

Testing data:

Out of Sample Accuracy: 0.8196366061010169

Training data:

[0]	validation_0-auc: 0.74571
[100]	validation_0-auc: 0.84104
[200]	validation_0-auc: 0.85079
[300]	validation_0-auc: 0.85411
[400]	validation_0-auc:0.85557
[500]	validation_0-auc: 0.85646
[600]	validation_0-auc:0.85680
[700]	validation_0-auc: 0.85696
[800]	validation_0-auc: 0.85682
[900]	validation_0-auc: 0.85682
[999]	validation_0-auc: 0.85684
Comple	ted training fold 5/5

Testing data:

Out of Sample Accuracy: 0.7901316886147691

Sample Case Prediction

LightGBM:

case_id	
1911587	0.028370
1679928	0.098218
149421	0.181099
992962	0.049547
1812637	0.293403
dtype: fl	oat64

XGBoost:

case_id	
1911587	0.020822
1679928	0.105364
149421	0.135711
992962	0.047066
1812637	0.249646
dtype: fl	oat32

CatBoost:

case_id	
1911587	0.052600
1679928	0.165412
149421	0.270684
992962	0.082798
1812637	0.260636
dtame: fl	nat64

Model Comparison

Feature	XGBoost	LightGBM	CatBoost
Algorithmic Approach	Level-wise tree growth	Level-wise tree growth	Ordered boosting, handles categorical features natively
Categorical Feature Support	Requires preprocessing	Converts categories to integers, uses them directly	Excellent support for categorical features without preprocessing
Speed and Scalability	Highly efficient on CPU/GPU; good for moderate to large datasets	Faster on large datasets due to histogram optimizations	Competitive but can be slower due to complex calculations
Ease of Use	Extensive parameter tuning required for optimal performance	Easier to use with defaults; less flexible for categorical data	Easy to use with categorical data; provides detailed prediction explanations
Model Performance	Excellent, with proper tuning can achieve great results	Comparable or better on large datasets; very efficient	Comparable, excels with datasets that have complex categorical features
Handling Overfitting	Regularization features (L1, L2) to help prevent overfitting	Similar parameters to control overfitting, e.g., max_depth	Uses algorithmic approaches to minimize overfitting risk
Community and Documentation	Very well-documented with a large user community	Well-supported with growing documentation and community	Well-documented, though newer, with a growing user base

Link to project code

Main Project:

https://github.com/ChelseaLiu0822/LDRPM-Loan-Default-Risk-Prediction-Model/blob/main/LDRPM_Loan_Default_Risk_Prediction_Model_Project_FinalVersion1.ipynb

Main Branch(with README file):

https://github.com/ChelseaLiu0822/LDRPM-Loan-Default-Risk-Prediction-Model/tree/main

