Case study 1:-

1, a) Asset A = 0.10+0.0570,15 = 0.1000

3

Asset B -> 0.20+0.10+0.25 - 0.55 - 0.1833

Asset C - 0.15+0.05+0.20 = 0.40 = 0.1333

b) centered data:

	AssetA	AssetB	Assetc
1 Ti	0,0000	0.0167	0.0167
7	-0.0500	-0.0832	-0,0832
12			a 10,000667
Tz	(0000.500		,

SOUTH IN A REAL TROUBLE VEING

c). Caraciance Matrix

			TV 20 -	A (A
	- A	Asset A	Assets	Assetc
	Asset A	9 9		1200,00375
-		0.0025	v.	0.07583
-	Asset B	0.00375	0.00 583	0.00583
	Asset C	0.00375	Level a representation	0, 000
l			- South and the state of the st	

Cov(x, x) = E(xy) - E(x)E(y) or $\frac{1}{n-1} = E(xi-x)(yi-y)$ $Cov(x, x) - E(x^2) - (E(x))^2$ or $\frac{1}{n-1} = E(xi-x)^2 = \frac{1}{n-1} = \frac{$

As we have calculated (Xi-x) values for each entry in b), we can take mose values he calc Coraciance matinis ()

 $L = (X_i - \bar{X})^2 - for Asset A = L = (-0.05)^2 + (0)^2 + (0.05)^2$

= 1 x (0.0025x2) = 0.0025

for cov. 1/w Asset ARB-1 & (xi-x)(4i=4) = 1 (0x0.0167

+ (-0.05)(-0.0822) +(0-05)(0,0667))

= 1 (0.0675)= 0.00375 similarly we cancalculate all so have written around in Coravance mating

XVD evaluration is

A-UEV^T Zansoporter Matrin jeigenvectors JATA matrix peigen rechers JAAT

biagonal matrix Centaining singular values

(systs of eigenvalues)

AAT= CCT= 0,0025 0,00275 6,003757 0.00250,00375 0.00275 0.00583 0,00583 0.00375 0.00583 0.0093 0.00375 0.00375 0.00583 0,00582

Talled it

	Date Page
	A.AT = C.CT
	0.000034375 0.0000531 6.0006521] (4,)
1	6.0000531. 6.0000826403 0.0000820403 M2 =>I
	0,0000231, 0,00008204303 0,0000820403/M3
	Valley of Add de Valley
	0.000034315-7 0.0000231 0.0000231 (N)
	0.000053 0.00008204-7 0.0000.850A NT = 0
	0.0000 23) 0.0000 850 A 0.0000 850 A-7 N3
	eigen values gote -1 det (A-1 I/20.
	(0.000034375-y) (0.0000 8204-y)2- (0.00008204)2)
	below the boundary of the contract of the boundary of the boun
	- 0,0000.0 (6- 40280000 0) x 1 550000.0 1550000.0 1550000.0
	+ 0.000023 0.00023 x0,00008204 - 10,000 531x (00008204)
·	$= (6.000034375 - \lambda) (0.00008204 \times (-2\lambda) + \lambda^{2}) + 2 \times (0.0000531)^{2} \lambda$
- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	-5.84×10-9×+6,000024375×2 + 0.600048408×2 -×2 +5-63922×10-9×
	- 12+0.000198455 12 + 10-9 1 - 0.
	N2-0.500198455x 0.00028
5	1
<i>j.</i> !	Singular 1 = 1,407 × 10-2 Sigen values 1 = 1,99 × 15 Y
	$\frac{1}{2} = 7.39 = \times 10^{-5}$
	03=0.
	Norted in descending order ~D.
	substituting each eigen value we obtain
	eigen vertous as >

classmate

wise eigen vector

e) or Principal compenent directions-

f? Based on eigenverters proportion of total
englainet principal correponent >

 $\frac{1.99\times10^{-4}}{1.4091\times10^{-2}} + 1.3915\times10^{-5}$ $\frac{1.99\times10^{-4}}{5.46\times10^{-9}+1.99\times10^{-4}}$

2 4 (PA + (XS-) X POLE 0 5000 1 8/1-25/15 2 299.99.

- 9948f

 $\frac{A2}{5} = \frac{7.2919 \times 10^{-9}}{1.4093 \times 10^{-2}} = \frac{5.40 \times 10^{-9}}{5.46 \times 10^{-9} + 1.99 \times 10^{-9}}$

· sala · a · · · · · · ·

red explains most prevauance, means it represents me dominant trends in asset retiens.

The first principal component weights all assets positively, suggesting that may move to gether in a correlated partion (likely due to a commonmental partor).

- PCZ has very low variance, meansary deciation from PCI is minor.

- PCI suggeste that all assets more in the same direction.

A treshipt in PCI means all assets increase

- PC2, on me other hand captures amaller differences b/w

men, experially how Asset A behaves compared.

To the others.

in appearath orienallmarket whereas if it has strong presence in pc2, it might behave differently from me rest, showing more independent trends.

1) Direcipication

since PC1 explains almost all variance, it means
assets more very similarly. This high correlation
makes prostpolio vulnerable to market-wide
shocks, to reduce risk, investors should consider
addry assets. hat aren't highly iscrelated with

i) Recommendations per envestment or Risk management.

mese's stocks.

h) Rehavioury Assets

Liskmanagement: Assisticensetty market driven (evice pa 1 deines returns), hedging strategies should jours en reducing exploring to PCI movements (eg-using derivatives) Investment strategy Jan innester wants broad market exposing high PC1 weights, since mese closely pellon market's morement. If wohing for unique, asset specific oppuehinities, neystrould analyze 1C2, which captures mesmaller différences 5/m assets. To truly diversify, investors should book perassits that contribute to more to PC2 or PC3, as mese represent independent trends & reduce dependence en PCI. FROM SUCKET CONTROVES OF COURT OF

CASE	STUDY	2

Given n vectors $V_1, V_2, \dots, V_n \in \mathbb{R}^m$ and $W \in \mathbb{R}^m$

Topind: $\vec{x} = \begin{pmatrix} x_1 & \text{such that} & L = \| \sum_{i=1}^{n} x_i v_i - w \|_{\infty}$ is minimized \Rightarrow L represents how far $x_1 v_1 + x_2 v_2 + 1$ is from w.

Let A be mxn matrix then.

A = $\begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$ (each v_i is an modimensional column).

A is how we can move around inside the subspace spanned by the vectors Vi.
Each component his is the "coefficient" that says how much Vi we include.

Lis a norm = 170.

(a) To show || Ax -w|| can be solved directly if A is diagonal.

Let A is a nxn diagonal matrin (m=n) (it may extend with zero paddize).

$$A = \begin{pmatrix} a_1 & 0 & --- & 0 \\ 0 & a_2 & 1 \\ 0 & --- & a_n \end{pmatrix}$$

||Ax-w||₂ = \sqrt{\sq}}}}}}}}}} \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}}} \sqrt{\sqrt $\|Ax - \omega\|_{2}^{2} = \sum_{i=1}^{n} (\alpha_{i}x_{i} - \omega_{i})^{2}$ Partial doincitive wit xi <u>θ</u> (d; x; -w;)² - 2θ; (α; x; -w;) = 0 =) aj Xi - W; = O (assuming a; ≠ 0). $= \begin{cases} x_i = \begin{cases} w_i & \text{if } a_i \neq 0 \\ a_i & \text{of } a_i = 0 \end{cases}$. A being a diagonal matrin, minimization problem is trivial to solve. A = U ZVT. AZ-W= UZVTZ -W=UZVTZ -UUTW = U(SVTR-VTW). if A is diagonal => A is a symmetric matrix => spectral decomposition applies to it.

A = Q A QT we know, for A being a diagonal matrix its eigenvectors are standard basis vectors

=) Q = I and $Q^T = I$ U = Q, $V^T = Q^T$ =) U = I and V = I=) A = IΣI meaning the redation parts
U and V one simply the identity. Ax'-W = I(SI S=1. AR-W= I (NIR-II) = (NR-W) The ugen values of A (diagonal material): clit (A-1I=0 $=) \begin{bmatrix} a_{1}-\lambda & 0 & 0 & -0 \\ 0 & a_{2}-\lambda & 0 & -1 \\ 0 & -1 & 0 & -1 \end{bmatrix} = 0 = , a_{1}=\lambda_{1}$ $=) (a_{1}-\lambda) (a_{2}-\lambda) (a_{3}-\lambda) - ... (a_{n}-\lambda) = 0$ $=) (a_{1}-\lambda) (a_{2}-\lambda) (a_{3}-\lambda) - ... (a_{n}-\lambda) = 0$ min || g/ x² - w|| is identical in structure to the diagonal case of part (a) and ruduces to the same spiried case.

/_/
(c) given (x_i,y_i) data points if $[i,n]$ in \mathbb{R}^2
goal: find a, b to best fit line y = an+b.
∑ (axi+b-yi)² → minimize
To be obtain axi+b-y: where xi andy; are constants and a,b are unknown =) (ab) a,b must be components of x in previous form
$\overline{x} = \begin{bmatrix} a \\ b \end{bmatrix}$ then det $A = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$
and $W = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ then $A\vec{x} = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} \begin{bmatrix} q_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$
$A\vec{x} - \vec{\omega} = \begin{bmatrix} an_1 + b - y_1 \\ an_2 + b - y_2 \end{bmatrix}$ $= \begin{bmatrix} an_1 + b - y_1 \\ y_1 \end{bmatrix}$
Then 1= Ax - w = \\ \frac{5}{(axi+b-y:)^2}
Then for minimizing L we need to minimiz
$\ (A\vec{x}' - \omega)\ _{2}^{2} = \lim_{i \to \infty} \min_{i = 1}^{n} (ax_{i} + b - y_{i})^{2}$
of finding the best fit live is equivalent to

minimizero | | Ax - w| | [previous questions).

(d) finding best fit for quadratic equation:

y=ax2+bx+c given data points (n,y), (x,yn)

then unknowns we or, b, c.

=) $\vec{x} = \begin{bmatrix} 9 \\ b \end{bmatrix}$ \vec{x} is of 3×1 form.

to get 3×1

and $\vec{\omega} = \begin{bmatrix} y_1 \\ y_n \end{bmatrix}$.

L= $\left| A\vec{x} - \vec{\omega} \right|_{2}$, then minimizing L $\left| A\vec{x} - \vec{\omega} \right|_{2}$.

=) minimizing L^2 =) minimizing $\sum_{i=1}^{n} (an_i^2 + bn_i + c - y_i)^2$ =) finding a,b,c S+t y=f $f=an^2 + bn + c$ is best. fit to data points. L