Reproducible workflow

- 1. Document everything
- 2. Do (almost) everything using code
- 3. Use open source software & file formats
- 4. Organize files in one location
- 5. Track changes to files
- 6. Archive final working versions
- 7. Backup all files

Markdown editors

- Marktext my current editor
- Rstudio
- VSCode Microsoft
- VSCodium version with no telemetry

Main concepts McElreath 2

- Golem = algorithm
- Likelihood: counting all the ways data could have happened
- Bayesian updating: prior x likelihood
 - using counts
 - using probabilities
 - using distributions

Bayesian updating

Components of model

- 1) Likelihood
 - "data story" = data generating process
 - from first principles, or "off the shelf"
- 2) Parameters
 - quantities that don't change
 - to be estimated
- 3) Prior distribution
- 4) Posterior distribution (inference)
 - histogram is the posterior

Bayesian inference

$$P(B|A) = \frac{P(B)P(A|B)}{P(A)}$$

Bayes' rule for two events A, B

Apply Bayes' rule to convert the likelihood into what we really want to know: the probability of the model given the data

Total probability of the data

P(y): probability added up or integrated over all of the models

$$P(y) = \sum_{\theta} P(\theta) P(y|\theta)$$

Discrete parameter

$$P(y) = \int P(\theta)P(y|\theta) d\theta$$

Continuous parameter

Grid approximation

```
Algorithm
load data
define grid of parameter values
for each parameter value
  compute prior probability
                                          unstandardized
  compute likelihood
                                           posterior
  numerator = prior x likelihood
denominator = sum of numerators -
                                             total probability
for each parameter value
  posterior probability = numerator / denominator
plot posterior probability vs parameter values ___ posterior
                                                  distribution
```