Lecture11: MOSFET, small-signal model

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Coumputer Science
Gwangju Institute of Science and Technology

Summary

- We can define two derivatives.
 - First, $\frac{\partial I_D}{\partial V_{GS}}$. It is the transconductance.
 - Second, $\frac{\partial I_D}{\partial V_{DS}}$. It is the inverse of the output resistance, r_O .

Large-signal model (1/2)

Saturation region

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2$$

- Drain current is determined by gate voltage. (voltage-controlled current source)
- Channel-length modulation?

Large-signal model (2/2)

Triode region

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left[2(V_{GS} - V_{TH}) V_{DS} - V_{DS}^2 \right]$$

Still, it can be described by a voltage-controlled current source.

Example 6.13 (Razavi)

- Always in the saturation region!
 - Any necessary condition?

Gate and drain are tied.

They are connected to V_{DD} .

Small-signal model

- The large-signal model is complete (within its accuracy limitation).
 - But, for small-signal analysis, it is convenient to have the small-signal model.

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS})$$

What is g_m and r_o ?

Time-dependent one?

- Everything was in the dc steady-state...
 - How about the frequency-dependent case?
 - Capacitive components can be seen.
 - Their physical origin?

High-frequency, equivalent-circuit model for the case in which the source is connected to the substrate

CMOS

- 9's complementary of 123?
 - **876**
- Complementary MOS
 - Here we have an NMOSFET.
 - A device where the transport is dominated by holes

Why is it important?

Why amplifiers?

- Signal amplification
 - Usually, signals are "weak." (in the μ V or mV range)
 - It is too small for reliable processing.
 - If the signal magnitude is made larger, processing is much easier.

Amplifier

"Weak" signal

- Desirable properties
 - Low power consumption
 - High speed operation
 - Low noise

Impedances (1/3)

- A MOSFET with three terminals
 - Looking into the gate, we see the infinite impedance.
 - (Strictly valid at the low-frequency range)

Impedances (2/3)

- A MOSFET with three terminals
 - Looking into the drain, we see r_0 if the source is ac grounded.

Impedances (3/3)

- A MOSFET with three terminals
 - Looking into the source, we see $1/g_m$ if the gate is ac grounded and channel-length modulation is neglected.

