

LIBXAAC Encoder

API Document

Document Number LIBXAAC-Enc-API

Version 1.0

Date August 4, 2023

Ittiam Systems Confidential

Ittiam Systems (P) Ltd, The Consulate, 1 Richmond Road, Bangalore 560 025, India

Notice

Ittiam Systems reserves the right to make changes to its products or discontinue any of its products or offerings without notice.

Ittiam warrants the performance of its products to the specifications applicable at the time of sale in accordance with Ittiam's standard warranty.

Revision History

Version	Date	Changes
1.0	August 4, 2023	Original version

Copyright © 2023, Ittiam Systems (P) Ltd

Contents

1.	Intro	duction		
	1.1	Motiva	tion	1
	1.2	Scope		3
	1.3	Glossa	ary	4
2.	'C' A	pplicatio	n Program Interface	5
	2.1	Memoi	ry Management	5
	2.2	'C' API	ls	6
		2.2.1	Library Information API	6
		2.2.2	Create API	6
		2.2.3	Processing API	7
		2.2.4	Delete API	7
	2.3	Input D	Oata	8
	2.4	Config	uration parameters	8
	2.5	Error F	Handling	10
		2.5.1	API fatal error codes	10
		2.5.2	Configuration non-fatal error codes	11
		2.5.3	Configuration fatal error codes	12
		2.5.4	Initialization fatal error codes	14
		2.5.5	Execution non-fatal error codes	17
		2.5.6	Execution fatal error codes	18
3.	Input	and Ou	tput configuration structure	24
	3.1	Input C	Configuration Structure	24
	3.2	Output	t Configuration Structure	30
4.	Refe	rence		32

Tables

Table 2-1 Library information API	6
Table 2-2 Create API	7
Table 2-3 Processing API	7
Table 2-4 Delete API	7
Table 2-5 API fatal error codes	10
Table 2-6 Configuration non-fatal error codes	11
Table 2-7 Configuration fatal error codes	12
Table 2-8 Initialization fatal error codes	15
Table 2-9 Execution non-fatal error codes	17
Table 2-10 Execution fatal error codes	19
Table 3-1 ixheaace_input_config structure description	26
Table 3-2 ixheaace_aac_enc_config structure description	26
Table 3-3 ia_drc_input_config structure description	27
Table 3-4 ia_drc_enc_params_struct structure description	27
Table 3-5 ia_drc_uni_drc_config_struct structure description	29
Table 3-6 ia_drc_loudness_info_set_struct structure description	29
Table 3-7 ia_drc_uni_drc_gain_ext_struct structure description	30
Table 3-8 ixheaace_user_config_struct structure description	30
Table 3-9 ixheaace_output_config structure description	31
Table 3-10 ixheaace_mem_info_table structure description	31
Table 3-11 ixheaace_version structure description	31

_		\sim		r	^	0
		g	u		H	
-	•	9	•	-	•	•

1. Introduction

1.1 Motivation

Extended HE-AAC, the latest innovation member of the MPEG AAC codec family, is ideally suited for adaptive bit rate streaming and digital radio applications. Extended HE-AAC bridges the gap between speech and audio coding and ensures consistent high-quality audio for all signal types, including speech, music, and mixed material. It is the required audio codec for DRM (Digital Radio Mondiale). When it comes to coding, the codec is incredibly effective, generating high-quality audio for music and speech at bitrates as low as 6 kbit/s for mono and 12 kbit/s for stereo services. By switching to extremely low bitrate streams, Extended HE-AAC streaming apps and streaming radio players can provide uninterrupted playback even during very congested network conditions.

As the Extended High Efficiency AAC Profile is a logical evolution of the MPEG Audio's popular AAC Family profiles, the codec supports AAC-LC, HE-AACv1 (AAC+) and HE-AACv2 (eAAC+) audio object type encoding. The bitrate that was saved with AAC family tools can be used to enhance video quality. Extended HE-AAC is a well-liked option for a number of applications since it is a strong and effective audio codec that provides high-quality audio at low bitrates.

Figure 1-1 Block Diagram of libxaac

One of the key features of libxaac encoder (refer to above image) is that it has support for AAC-LD (Low Delay), AAC-ELD (Enhanced Low Delay), and AAC-ELDv2 (Enhanced Low Delay version 2) modes. AAC-LD mode provides low latency encoding, making it suitable for applications such as interactive communication and live audio streaming. It helps to

reduce the delay in the encoding process to improve the real-time performance of the system. AAC-ELD mode improves the low-delay performance of HE-AAC by reducing the coding delay while maintaining high audio quality. It was observed that minimum delay it can achieve is 15ms. In order to achieve low delay coding scheme and low bitrate, it uses the Low Delay SBR tool. AAC-ELDv2 is the most advanced version of AAC-based low delay coding. It provides an enhanced version of AAC-ELD, which provides even lower coding delay and higher audio quality.

MPEG-D USAC, also known as Unified Speech and Audio Coding, is designed to provide high-quality audio coding at low bit rates. MPEG-D USAC combines advanced audio coding techniques with state-of-the-art speech coding algorithms to achieve significant compression gains while maintaining perceptual audio quality. The standard supports a wide range of audio content, including music, speech, and mixed audio, making it versatile for different use cases. With its ability to deliver high-fidelity audio at reduced bit rates, MPEG-D USAC plays a crucial role in optimizing bandwidth usage and enhancing the user experience in the digital audio domain.

Overall, libxaac encoder, with support for AAC-LD, AAC-ELD, and AAC-ELDv2 modes, is a versatile audio coding technology that can be used for a wide range of applications, such as broadcasting, streaming, and teleconferencing which requires high-quality audio compression with minimal delay.

Also, the libxaac supports MPEG-D DRC (Dynamic Range Control) for the Extended HE-AAC profile in both encoder and decoder. MPEG-D DRC offers a bitrate efficient representation of dynamically compressed versions of an audio signal. This is achieved by adding a low-bitrate DRC metadata stream to the audio signal. DRC includes dedicated sections for metadata-based loudness leveling, clipping prevention, ducking, and for generating a fade-in and fade-out to supplement the main dynamic range compression functionality. The DRC effects available at the DRC decoder are generated at the DRC encoder side. At the DRC decoder side, the audio signal may be played back without applying DRC, or an appropriate DRC effect is selected and applied based on the given playback scenario. It offers flexible solutions to efficiently support the widespread demand for technologies such as loudness normalization and dynamic range compression for various playback scenarios.

Note:

- The operating points for MPEG-D USAC (along with MPEG-D DRC) in libxaac encoder is currently restricted to 64kbps and 96 kbps. It is recommended to use the encoder at these operating points only. The support shall be extended to other operating points soon.
- Further Quality enhancements for AAC-ELD and AAC-ELDv2 modes may be pushed as quality assessment is in progress.

This document describes the Application Program Interface for the libxaac encoder. It also addresses the knowledge requirements of developers to integrate different components of their system with libxaac encoder software solution.

1.2 Scope

This document discusses the following:

- Overview of API (Chapter 2)
 - This chapter gives a complete overview of the API.
 - Overview of error codes.
 - It contains some information useful for system integrator.

1.3 Glossary

Term	Explanation
API	Application Program Interface (Interface through which an application talks to functional blocks)
MPEG	Moving Picture Experts Group
AAC	Advanced Audio Coding
HE-AAC	High Efficiency Advanced Audio Coding
SBR	Spectral Bandwidth Replication
PS	Parametric Stereo
ADTS	Audio Data Transport Stream
ADIF	Audio Data Interchange Format
LOAS	Low Overhead Audio Stream
LC	Low Complexity
HQ	High Quality (SBR Encoder)
LP	Low Power (SBR Encoder)
LTP	Long Term Prediction
CELP	Code Excited Linear Prediction
IS	Intensity Stereo
MS	Mid-side Stereo
TNS	Temporal Noise Shaping
PCE	Program Configuration Element
PNS	Perceptual Noise Substitution
USAC	Unified Speech and Audio Coding
eSBR	Enhanced SBR
MPS	MPEG Surround

2. 'C' Application Program Interface

This chapter describes the API for the libxaac encoder implementation.

2.1 Memory Management

Ittiam audio software implementation supports a flexible memory scheme and a simple, easy to use C interface that eases the integration of the software into a larger system.

Data memory (RAM memory) usage of the audio software consists primarily of the scratch and persistent memory. The algorithm also uses an input buffer and an output buffer for communication with the external world.

Persistent Memory

This is also known as static or context. This is the state or history information that is stored across algorithm invocations. The algorithm expects that the contents of the persistent memory be unchanged by the system for the complete lifetime of the algorithm.

Scratch Memory

This is the temporary buffer used by the algorithm for processing. The contents of this memory region should be unchanged if the actual encode process is active. This region can be used freely by the system between successive calls to encode.

Input Buffer

This is the buffer used by the algorithm for accepting input. This memory region is treated as read-only by the algorithm. Before the call to the Encoder, the input buffer needs to be filled with the input data.

Output Buffer

This is the buffer to which the algorithm writes the output. This buffer needs to be made available for usage of the Encoder before its call.

2.2 'C' APIs

This section lists the APIs used in the libxaac encoder implementation.

2.2.1 Library Information API

The following function should be called to get the library name and version number details.

ixheaace_get_lib_id_strings		
Description	This API gets the encoder library name and version number details.	
Syntax	<pre>ixheaace_get_lib_id_strings (pVOID pv_output);</pre>	
Parameters	<pre>pv_output Pointer to the output structure variable. The library updates the relevant output parameters of this structure.</pre>	
Returns	IA_NO_ERROR.	

Table 2-1 Library information API

2.2.2 Create API

The following function should be called to create the encoder instance.

ixheaace_create	
Description	This API gets the memory requirements size of the API. It sets the configuration parameters of the libxaac encoder. It sets the attributes of all memory types required by the application onto the memory structure. It creates necessary memories (discussed in the previous section) and sets the pointer to the memory being referred to by the index to the input value. This API also encodes header/initialization bytes as per set parameters and initializes state, configuration structure and output configuration structure.
Syntax	<pre>ixheaace_create(pVOID pv_input, pVOID pv_output);</pre>
Parameters	Pointer to the input structure variable, ia_input_config. The library gets its necessary input parameters from this structure. pv_output Pointer to the output structure variable, ia_output_config. The library updates the relevant output parameters of this structure.

ixheaace_create		
Returns	Error Code based on the success/failure of encoder instance creation.	

Table 2-2 Create API

2.2.3 Processing API

The following function should be called for encoding.

ixheaace_proces	ixheaace_process	
Description	This API encodes the input frame data	
Syntax	<pre>ixheaace_process (pVOID p_ia_module_obj, pVOID pv_input, pVOID pv_output);</pre>	
Parameters	p_ia_module_obj Pointer to API structure object. pv_input Pointer to the input structure variable. The library gets its necessary input parameters from this structure. pv_output Pointer to the output structure variable. The library updates the relevant output parameters of this structure.	
Returns	Error Code based on the success/failure of encoder processing.	

Table 2-3 Processing API

2.2.4 Delete API

The following function should be called to delete the encoder instance

ixheaace_delete		
Description	This API frees the allocated memories for the encoder.	
Syntax	<pre>ixheaace_delete(pVOID pv_output);</pre>	
Parameters	pv_output Pointer to the output structure variable. The library updates the relevant output parameters of this structure.	
Returns	IA_NO_ERROR.	

Table 2-4 Delete API

2.3 Input Data

The input source is a stored file.

Stored File Input

File is read for input data into the input buffer. The process loop will not produce output until a valid input is received.

2.4 Configuration parameters

The encode algorithm accepts the following parameters from the user.

- Bitrate Can be set to values from 8000 to 576000. Please refer to **Section 2.5** for more details on error handling. For USAC profile, bitrates are restricted to 64000 and 96000.
- AOT Audio object type, can be set to 2 for AAC-LC, 5 for HE-AACv1(Legacy SBR), 29 for HE-AACv2, 23 for AAC-LD, 39 for AAC-ELD, 42 for USAC. The default value is 2.
- eSBR flag Can be set to 0 or 1. When set to 1, enables eSBR in HE-AACv1 and USAC encoding. Default value is 0 for HEAACv1 profile (legacy SBR) and 1 for USAC profile.
- USAC mode Can be set to 0 for USAC Switched, 1 for USAC FD, 2 for USAC TD. Default value is 1 (USAC FD).
- CCFL index Indicates core coder frame length index for USAC encoder. Valid values are 0, 1, 2, 3, 4. eSBR enabling is implicit.
 - 0 Core coder frame length of USAC is 768 and eSBR is disabled
 - 1 Core coder frame length of USAC is 1024 and eSBR is disabled
 - 2 Core coder frame length of USAC is 768 and eSBR ratio is 8:3
 - 3 Core coder frame length of USAC is 1024 and eSBR ratio is 2:1
 - 4 Core coder frame length of USAC is 1024 and eSBR ratio is 4:1.

Default value is 3.

- PVC Encoder flag Can be set to 0 or 1. When set to 1, enables PVC Encoder for USAC profile. The default value is 0.
- ADTS flag Can be set to 0 or 1. If set to 1, ADTS bitstream is generated and by default ADTS flag is disabled. This flag is applicable only for AAC-LC/HE-AACv1/HE-AACv2 profiles. The default value is 0.
- TNS flag Can be set to 0 or 1. When set to 1, enables Temporal Noise Shaping. The default value is 1.
- NF flag Can be set to 0 or 1. When set to 1, enables Noise Filling for USAC profile. The default value is 0.

- Complex prediction flag Can be set to 0 or 1. When set to 1, enables Complex Prediction for USAC profile. The default value is 0.
- MPS flag Can be set to 0 or 1. If set to 1, MPEG-Surround is enabled. The default value is 0. This flag is applicable only when the AOT is set to 39 (AAC-ELD).
- DRC flag Can be set to 0 or 1. When set to 1, enables DRC encoder for USAC profile. The default value is 0.
- Inter-TES Encoder flag Can be set to 0 or 1. When set to 1, enables inter-TES encoder for USAC profile. The default value is 0.
- Harmonic SBR flag Can be set to 0 or 1. When set to 1, enables harmonic SBR for USAC profile. The default value is 0.
- High quality eSBR flag Can be set to 0 or 1. When set to 1, high quality eSBR is enabled for USAC profile. The default value is 0. Note that this flag is valid only when Harmonic SBR flag is set to 1.
- Tree Configuration Denotes the tree configuration for MPS. Can be set to 0 for 212 configuration, 1 for 5151 configuration, 2 for 5152 configuration and 3 for 525 configuration. Default value is 0 for stereo input and 1 for 6-channel input.
- Frame-size Denotes the frame size (in samples) to be used by the core coder for AAC-LC / HE-AACv1 / HE-AACv2, AAC-LD / AAC-ELD / AAC-ELDv2 and USAC profiles. Can be set to 960 or 1024 for AAC-LC / HE-AACv1 / HE-AACv2, 480 or 512 for AAC-LD / AAC-ELD / AAC-ELDv2 and 1024 or 768 for USAC. Default value is 1024 for AAC-LC / HE-AACv1 / HE-AACv2, 512 for AAC-LD / AAC-ELD / AAC-ELDv2 and 1024 for USAC.
- Bit-reservoir size Denotes the maximum size of the bit-reservoir to be used. Valid values are from -1 to 6144. Should be set to -1 to omit use of bit reservoir. Default value is 384.
- Additional downmix ID count Denotes the number of additional downmix IDs connected with one DRC set. Valid values are from 0 to 8. Default value is 0.
- DRC Location Encoding of this field depends on the audio codec. A codec specification may include this specification, and use values 1 4 to refer to codec-specific locations. Default value is 1.
- DRC set target loudness value upper It denotes upper limit or threshold above which the loudness of the audio signal should not exceed after applying dynamic range control. Valid values are from -63 to 0. Default value is 0.
- DRC set target loudness value lower It denotes lower limit or threshold below which the loudness of the audio signal should not exceed after applying dynamic range control. Valid values are from -63 to 0. Default value is 0.
- Attenuation scaling This parameter determines the degree to which the audio content's dynamic range will be reduced or attenuated during playback. Valid values are from 0 to 1.875. Default value is 1.5.
- Amplification scaling It is used to apply dynamic range adjustments to the audio content during decoding and playback. Valid values are from 0 to 1.875. Default value is 1.5.
- Gain offset It is used to adjust the gain or volume level of the audio content during decoding and playback. Valid values are -8 to 8. Default value is 8.

- Limiter peak target This field declares the peak target level used by the encoderside DRC. Valid values are -31.875 to 0. Default value is 0.
- DRC characteristic It describes the desired dynamic range processing to be applied during audio playback. Valid values are 0 to 11. Default value is 0.
- Crossover frequency index This index corresponds to a specific frequency value used to split the audio content into frequency bands for individual processing. Valid values are 0 to 15. Default value is 0.
- Start sub-band index zero-based sub-band index for an available sub-band domain. The field is used to signal the start index for a specific DRC band. Valid values are 0 to 255. Default value is 0.
- Sample peak level It represents the level of the maximum sample magnitude in dBFS. Valid values are from -107 to 20. Default value is 0.
- True peak level It represents the level of the true peak in dBTP. Valid values are from -107 to 20. Default value is 0.
- Measurement system It refers to the method or system used to assess and measure the audio content's loudness and dynamic range. Valid values are 0 to 11. Default value is 0.
- Reliability This field is used to indicate the level of confidence or trustworthiness associated with the loudness information. Valid values are 0 to 3. Default value is 0.
- Method definition It defines the algorithms and parameters used to modify the audio signal's dynamic range, loudness, or other characteristics to achieve the desired audio experience. Valid values are 0 to 9. Default value is 0.
- Method value The method value is based on the method definition and varies from -116 to 121. Default value is 0.

2.5 Error Handling

The Encoder algorithm signals error conditions to the sample application through errorcodes. The complete listing of error codes and the error handling procedure are listed down in the following sections.

2.5.1 API fatal error codes

The Encoder must be re-instantiated with appropriate correction in case of fatal errors.

Error Number	Error Code
0xFFFF8000	IA_EXHEAACE_API_FATAL_MEM_ALLOC
0xFFFF8001	IA_EXHEAACE_API_FATAL_UNSUPPORTED_AOT

Table 2-5 API fatal error codes

Below is the list of error codes and its mapping to the cause of error code:

IA_EXHEAACE_API_FATAL_MEM_ALLOC

This error code is returned when there is a memory allocation failure.

IA_EXHEAACE_API_FATAL_UNSUPPORTED_AOT

This error code is returned when the set audio object type is not unsupported or invalid. The valid AOTs are AOT_AAC_LC, AOT_SBR, AOT_ER_AAC_LD, AOT_PS, AOT_ER_AAC_ELD and AOT_USAC.

2.5.2 Configuration non-fatal error codes

Non-fatal error codes are generated by Encoder for invalid configuration parameters. Please refer to **Section 2.4** for information on configuration parameters.

Error Number	Error Code
0x00000800	IA_EXHEAACE_CONFIG_NONFATAL_INVALID_CONFIG
0x00000801	IA_EXHEAACE_CONFIG_NONFATAL_BITRES_SIZE_TOO_SMALL
0x00000900	IA_EXHEAACE_CONFIG_NONFATAL_MPS_INVALID_CONFIG
0x00000901	IA_EXHEAACE_CONFIG_NONFATAL_MPS_PARAM_ERROR
0x00000B00	IA_EXHEAACE_CONFIG_NONFATAL_DRC_MISSING_CONFIG

Table 2-6 Configuration non-fatal error codes

Below is the list of error codes and its mapping to the cause of error code:

IA_EXHEAACE_CONFIG_NONFATAL_INVALID_CONFIG

This error code is returned when AAC CRC configuration is enabled for ADTS output format type or if input is dual-mono.

IA_EXHEAACE_CONFIG_NONFATAL_BITRES_SIZE_TOO_SMALL

This error code is returned when the allocated bit reservoir size is insufficient.

IA_EXHEAACE_CONFIG_NONFATAL_MPS_INVALID_CONFIG

This error code is returned when configuration related to MPS is invalid.

IA EXHEAACE CONFIG NONFATAL MPS PARAM ERROR

This error code is returned when an any of the MPS parameters are conflicting.

IA EXHEAACE CONFIG NONFATAL DRC MISSING CONFIG

This error code is returned when DRC configuration data is missing.

2.5.3 Configuration fatal error codes

The possible fatal error codes generated as a part of the Encoder indicating invalid configuration parameter are listed below. Please refer to **Section 2.4** for information on configuration parameters.

Error Number	Error Code
0xFFFF8800	IA_EXHEAACE_CONFIG_FATAL_SAMP_FREQ
0xFFFF8801	IA_EXHEAACE_CONFIG_FATAL_NUM_CHANNELS
0xFFFF8802	IA_EXHEAACE_CONFIG_FATAL_USE_STEREO_PRE_PROC
0xFFFF8803	IA_EXHEAACE_CONFIG_FATAL_QUALITY_LEVEL
0xFFFF8804	IA_EXHEAACE_CONFIG_FATAL_PCM_WDSZ
0xFFFF8805	IA_EXHEAACE_CONFIG_FATAL_AAC_CLASSIC_WITH_PS
0xFFFF8806	IA_EXHEAACE_CONFIG_FATAL_USE_TNS
0xFFFF8807	IA_EXHEAACE_CONFIG_FATAL_CHANNELS_MASK
0xFFFF8808	IA_EXHEAACE_CONFIG_FATAL_WRITE_PCE
0xFFFF8809	IA_EXHEAACE_CONFIG_FATAL_USE_FULL_BANDWIDTH
0xFFFF8A00	IA_EXHEAACE_CONFIG_FATAL_USAC_SAMP_FREQ
0xFFFF8A01	IA_EXHEAACE_CONFIG_FATAL_USAC_RESAMPLER_RATIO
0xFFFF8B00	IA_EXHEAACE_CONFIG_FATAL_DRC_INVALID_CONFIG
0xFFFF8A01	IA_EXHEAACE_CONFIG_FATAL_DRC_UNSUPPORTED_CONFIG
0xFFFF8A02	IA_EXHEAACE_CONFIG_FATAL_DRC_PARAM_OUT_OF_RANGE
0xFFFF8A03	IA_EXHEAACE_CONFIG_FATAL_DRC_COMPAND_FAILED

Table 2-7 Configuration fatal error codes

Below is the list of error codes and its mapping to the cause of error code:

IA_EXHEAACE_CONFIG_FATAL_SAMP_FREQ

It is a fatal error returned when the input sample frequency is not valid. Valid sampling rate ranges from 8000 to 96000 Hz.

IA_EXHEAACE_CONFIG_FATAL_NUM_CHANNELS

It is a fatal error returned when the number of channels in the stream is not valid. Supported channels are from 1 to 2 for AOT_USAC. And 1 to 6 for other audio object types.

IA_EXHEAACE_CONFIG_FATAL_USE_STEREO_PRE_PROC

It is a fatal error returned when stereo pre-processing flag is not valid. Valid values are 0 and 1.

IA EXHEAACE CONFIG FATAL QUALITY LEVEL

It is a fatal error returned when value of inverse quantization in AAC configuration is invalid. Valid values are 1, 2 and 3.

IA_EXHEAACE_CONFIG_FATAL_PCM_WDSZ

It is a fatal error returned when PCM word size is not supported or not valid. Supported PCM word size is 16 bit.

IA_EXHEAACE_CONFIG_FATAL_AAC_CLASSIC_WITH_PS

It is a fatal error returned when parametric stereo is used along with AAC classic profile.

IA_EXHEAACE_CONFIG_FATAL_USE_TNS

It is a fatal error returned when TNS flag set is not valid. Valid values are 0 and 1.

IA_EXHEAACE_CONFIG_FATAL_CHANNELS_MASK

It is a fatal error returned when channels mask is not valid. Supported values for the channel masks are 4 (1 channel), 3 (2 channels), 7 (3 channels), 263 (4 channels), 55 (5 channels) and 63 (6 channels).

IA EXHEAACE CONFIG FATAL WRITE PCE

It is a fatal error returned when program configuration element (PCE) flag is set incorrectly. Valid values are 0 and 1.

IA EXHEAACE CONFIG FATAL USE FULL BANDWIDTH

It is a fatal error returned when full bandwidth flag set is not valid. Valid values are 0 and

IA EXHEAACE CONFIG FATAL USAC SAMP FREQ

It is a fatal error returned when USAC core-coder's sampling frequency is not valid for TD and Switched modes. Valid value ranges from 6000 Hz to 32000.

IA EXHEAACE CONFIG FATAL USAC RESAMPLER RATIO

It is a fatal error returned when resampler ratio is invalid. The valid resampler ratios are 2:1, 4:1 and 8:3.

IA_EXHEAACE_CONFIG_FATAL_DRC_INVALID_CONFIG

It is a fatal error returned when DRC configuration is not valid.

IA_EXHEAACE_CONFIG_FATAL_DRC_UNSUPPORTED_CONFIG

It is a fatal error returned when one/more of DRC configuration is unsupported.

IA_EXHEAACE_CONFIG_FATAL_DRC_PARAM_OUT_OF_RANGE

It is a fatal error returned when one or more DRC parameters such as frame size, number of bands are out of range.

IA_EXHEAACE_CONFIG_FATAL_DRC_COMPAND_FAILED

It is a fatal error returned when DRC compand has failed.

2.5.4 Initialization fatal error codes

These are possible fatal error codes generated at the time of initialization of encoder. The encoder must be re-instantiated with appropriate correction in case of fatal errors.

Error Number	Error Code
0xFFFF9000	IA_EXHEAACE_INIT_FATAL_RESAMPLER_INIT_FAILED
0xFFFF9001	IA_EXHEAACE_INIT_FATAL_AAC_INIT_FAILED
0xFFFF9002	IA_EXHEAACE_INIT_FATAL_AACPLUS_NOT_AVAIL
0xFFFF9003	IA_EXHEAACE_INIT_FATAL_BITRATE_NOT_SUPPORTED
0xFFFF9004	IA_EXHEAACE_INIT_FATAL_INVALID_TNS_PARAM
0xFFFF9005	IA_EXHEAACE_INIT_FATAL_SCALE_FACTOR_BAND_NOT_SUPPORTED
0xFFFF9006	IA_EXHEAACE_INIT_FATAL_INVALID_CORE_SAMPLE_RATE
0xFFFF9007	IA_EXHEAACE_INIT_FATAL_INVALID_ELEMENT_TYPE
0xFFFF9008	IA_EXHEAACE_INIT_FATAL_NUM_CHANNELS_NOT_SUPPORTED
0xFFFF9009	IA_EXHEAACE_INIT_FATAL_INVALID_NUM_CHANNELS_IN_ELE
0xFFFF900A	IA_EXHEAACE_INIT_FATAL_SFB_TABLE_INIT_FAILED
0xFFFF9100	IA_EXHEAACE_INIT_FATAL_MPS_INIT_FAILED
0xFFFF9200	IA_EXHEAACE_INIT_FATAL_USAC_RESAMPLER_INIT_FAILED
0xFFFF9201	IA_EXHEAACE_INIT_FATAL_USAC_BITRES_SIZE_TOO_SMALL
0xFFFF9400	IA_EXHEAACE_INIT_FATAL_SBR_INVALID_NUM_CHANNELS
0xFFFF9401	IA_EXHEAACE_INIT_FATAL_SBR_INVALID_SAMPLERATE_MODE
0xFFFF9402	IA_EXHEAACE_INIT_FATAL_SBR_INVALID_FREQ_COEFFS
0xFFFF9403	IA_EXHEAACE_INIT_FATAL_SBR_INVALID_NUM_BANDS

0xFFFF9404	IA_EXHEAACE_INIT_FATAL_SBR_INVALID_BUFFER_LENGTH
0xffff9405	IA_EXEHAACE_INIT_FATAL_SBR_NOISE_BAND_NOT_SUPPORTED

Table 2-8 Initialization fatal error codes

Below is the list of error codes and its mapping to the cause of error code:

IA_EXHEAACE_INIT_FATAL_RESAMPLER_INIT_FAILED

It is a fatal error returned when resampler initialization has failed.

IA_EXHEAACE_INIT_FATAL_AAC_INIT_FAILED

It is a fatal error returned when AAC initialization has failed.

IA_EXHEAACE_INIT_FATAL_AACPLUS_NOT_AVAIL

It is a fatal error returned when AAC classic and SBR flags are set simultaneously.

IA_EXHEAACE_INIT_FATAL_BITRATE_NOT_SUPPORTED

It is a fatal error returned when bitrate is not supported for the given sampling frequency.

IA_EXHEAACE_INIT_FATAL_INVALID_TNS_PARAM

It is a fatal error returned when an invalid TNS parameter is used.

IA_EXHEAACE_INIT_FATAL_SCALE_FACTOR_BAND_NOT_SUPPOR TED

It is a fatal error returned when the scale factor band parameters are not assigned due to invalid block type. The valid block types are long window, short window, start window and stop window.

IA_EXHEAACE_INIT_FATAL_INVALID_CORE_SAMPLE_RATE

It is a fatal error returned when core sample rate is invalid. Supported sample rates are 8000, 11025, 12000, 16000, 22050, 24000, 32000, 44100, 48000, 64000, 88200 and 96000Hz.

IA EXHEAACE INIT FATAL INVALID ELEMENT TYPE

It is a fatal error returned when bitstream element type is not valid. Valid types are single channel element, coupling channel element, low frequency effect channel and channel pair element.

IA_EXHEAACE_INIT_FATAL_NUM_CHANNELS_NOT_SUPPORTED

It is a fatal error returned when number of channels per bit-stream element is invalid. Valid values are 1 and 2.

IA EXHEAACE INIT FATAL INVALID NUM CHANNELS IN ELE

It is a fatal error returned when number of channels per bit-stream element is invalid. Valid values are 1 and 2.

IA_EXHEAACE_INIT_FATAL_SFB_TABLE_INIT_FAILED

It is a fatal error returned when there is a scale factor band initialization failure since the spectral start offset and spectral lines are not the same.

IA EXHEAACE INIT FATAL MPS INIT FAILED

It is a fatal error returned when MPS initialization has failed.

IA EXHEAACE INIT FATAL USAC RESAMPLER INIT FAILED

It is a fatal error returned USAC resampler initialization has failed.

IA_EXHEAACE_INIT_FATAL_USAC_BITRES_SIZE_TOO_SMALL

It is a fatal error returned when USAC bit reservoir size is not sufficient.

IA_EXHEAACE_INIT_FATAL_SBR_INVALID_NUM_CHANNELS

It is a fatal error returned when SBR number of channels per bit-stream element is invalid. Valid values are 1 and 2.

IA_EXHEAACE_INIT_FATAL_SBR_INVALID_SAMPLERATE_MODE

It is a fatal error returned when SBR sampling rate mode is dual rate and the number of channels is less than twice the lower frequency boundary of the master frequency table.

IA EXHEAACE INIT FATAL SBR INVALID FREQ COEFFS

It is a fatal error returned when SBR frequency coefficients are not valid.

IA EXHEAACE INIT FATAL SBR INVALID NUM BANDS

It is a fatal error returned when SBR number of bands are not valid.

IA EXHEAACE INIT FATAL SBR INVALID BUFFER LENGTH

It is a fatal error returned when SBR buffer length is not valid.

IA_EXEHAACE_INIT_FATAL_SBR_NOISE_BAND_NOT_SUPPORTED

It is a fatal error returned when SBR noise band is not supported.

2.5.5 Execution non-fatal error codes

These are possible non-fatal error codes generated at the time of process call of encoder. The content of the output buffer shall not be valid when these error codes are returned. Next input data can be provided to encoder without any corrective actions.

Error Number	Error Code
0x00001900	IA_EXHEAACE_EXE_NONFATAL_MPS_ENCODE_ERROR
0x00001901	IA_EXHEAACE_EXE_NONFATAL_MPS_INVALID_DATA_BANDS
0x00001C00	IA_EXHEAACE_EXE_NONFATAL_ESBR_INVALID_BANDWIDTH_INDEX
0x00001C01	IA_EXHEAACE_EXE_NONFATAL_ESBR_INVALID_NUM_PATCH
0x00001C02	IA_EXHEAACE_EXE_NONFATAL_ESBR_INVALID_VOCOD_BUF
0x00001C03	IA_EXHEAACE_EXE_NONFATAL_ESBR_INVALID_PVC_MODE
0x00001C04	IA_EXHEAACE_EXE_NONFATAL_ESBR_INVALID_FFT
0x00001C05	IA_EXHEAACE_EXE_NONFATAL_ESBR_INVALID_START_BAND
0x00001C06	IA_EXHEAACE_EXE_NONFATAL_ESBR_INVALID_VALUE

Table 2-9 Execution non-fatal error codes

Below is the list of error codes and its mapping to the cause of error code:

IA_EXHEAACE_EXE_NONFATAL_MPS_ENCODE_ERROR

This error code is returned when the output bytes are greater than the bit stream buffer size in MPS 212 encoding.

IA_EXHEAACE_EXE_NONFATAL_MPS_INVALID_DATA_BANDS

This error code is returned when number of MPS data bands is less than 1.

IA_EXHEAACE_EXE_NONFATAL_ESBR_INVALID_BANDWIDTH_IND EX

This error code is returned when ESBR bandwidth index is invalid...

IA_EXHEAACE_EXE_NONFATAL_ESBR_INVALID_NUM_PATCH

This error code is returned when ESBR number of patches is invalid.

IA_EXHEAACE_EXE_NONFATAL_ESBR_INVALID_VOCOD_BUF

This error code is returned when ESBR vocod real or imaginary buffers are not allocated.

IA_EXHEAACE_EXE_NONFATAL_ESBR_INVALID_PVC_MODE

This error code is returned when ESBR PVC mode is invalid. The valid values are 1 and 2.

IA_EXHEAACE_EXE_NONFATAL_ESBR_INVALID_FFT

This error code is returned when ESBR FFT filter buffers are not allocated.

IA_EXHEAACE_EXE_NONFATAL_ESBR_INVALID_START_BAND

This error code is returned when the start sub band value is invalid, during the reinitialization of the harmonic band extension data, i.e., lesser than 0.

IA_EXHEAACE_EXE_NONFATAL_ESBR_INVALID_VALUE

This error code is returned when crossover QMF values are invalid in Harmonic transposer.

2.5.6 Execution fatal error codes

These are possible fatal error codes generated at the time of process call of encoder. The encoder needs to be re-initialized or re-instantiated once this error is reported.

Error Number	Error Code
0xFFFF9800	IA_EXHEAACE_EXE_FATAL_SBR_INVALID_TIME_SLOTS
0xFFFF9801	IA_EXHEAACE_EXE_FATAL_SBR_INVALID_IN_CHANNELS
0xFFFF9802	IA_EXHEAACE_EXE_FATAL_PS_INVALID_HYBRID_RES_VAL
0xFFFF9803	IA_EXHEAACE_EXE_FATAL_UNSUPPORTED_AOT
0xFFFF9804	IA_EXHEAACE_EXE_FATAL_INVALID_BLOCK_TYPE
0xFFFF9805	IA_EXHEAACE_EXE_FATAL_INVALID_SBR_FRAME_TYPE
0xFFFF9806	IA_EXHEAACE_EXE_FATAL_INVALID_SBR_NUM_ENVELOPES
0xFFFF9807	IA_EXHEAACE_EXE_FATAL_SBR_INVALID_BS
0xFFFF9808	IA_EXHEAACE_EXE_FATAL_SBR_INVALID_CODEBOOK
0xFFFF9809	IA_EXHEAACE_EXE_FATAL_INVALID_SCALE_FACTOR_GAIN
0xFFFF980A	IA_EXHEAACE_EXE_FATAL_INVALID_BIT_RES_LEVEL
0xFFFF980B	IA_EXHEAACE_EXE_FATAL_INVALID_BIT_CONSUMPTION
0xffff980C	IA_EXHEAACE_EXE_FATAL_INVALID_SIDE_INFO_BITS
0xFFFF980D	IA_EXHEAACE_EXE_FATAL_INVALID_HUFFMAN_BITS

0xFFFF980E	IA_EXHEAACE_EXE_FATAL_INVALID_SCALE_FACTOR_BITS
0xFFFF980F	IA_EXHEAACE_EXE_FATAL_SBR_INVALID_AMP_RES
0xFFFF9810	IA_EXHEAACE_EXE_FATAL_INVALID_OUT_BYTES
0xFFFF9811	IA_EXHEAACE_EXE_FATAL_INVALID_TNS_FILT_ORDER
0xFFFF9812	IA_EXHEAACE_EXE_FATAL_SBR_INVALID_SAMP_FREQ
0xffff9900	IA_EXHEAACE_EXE_FATAL_MPS_NULL_DATA_HANDLE
0xffff9901	IA_EXHEAACE_EXE_FATAL_MPS_INVALID_HUFF_DATA_TYPE
0xffff9902	IA_EXHEAACE_EXE_FATAL_MPS_INVALID_NUM_PARAM_SETS
0xFFFF9903	IA_EXHEAACE_EXE_FATAL_MPS_UNSUPPORTED_GUIDED_ENV_SHAPE
0xffff9904	IA_EXHEAACE_EXE_FATAL_MPS_3D_STEREO_MODE_NOT_SUPPORTED
0xffff9905	IA_EXHEAACE_EXE_FATAL_MPS_UNSUPPORTED_RESIDUAL_CODING
0xffff9906	IA_EXHEAACE_EXE_FATAL_MPS_UNSUPPORTED_ARBITARY_DOWNMIX_CODING
0xffff9907	IA_EXHEAACE_EXE_FATAL_MPS_ARBITARY_TREE_NOT_SUPPORTED
0xffff9908	IA_EXHEAACE_EXE_FATAL_MPS_INVALID_QUANT_COARSE
0xffff9909	IA_EXHEAACE_EXE_FATAL_MPS_INVALID_RES_STRIDE
0xffff990A	IA_EXHEAACE_EXE_FATAL_MPS_INVALID_LEVELS
0xffff990B	IA_EXHEAACE_EXE_FATAL_MPS_CFFT_PROCESS
0xffff9A00	IA_EXHEAACE_EXE_FATAL_USAC_INVALID_FAC_LEN
0xFFFF9A01	IA_EXHEAACE_EXE_FATAL_USAC_INVALID_NUM_SBK
0xFFFF9A02	IA_EXHEAACE_EXE_FATAL_USAC_INVALID_NUM_CHANNEL
0xFFFF9A03	IA_EXHEAACE_EXE_FATAL_USAC_INVALID_BIT_RSVR_LVL
0xFFFF9A04	IA_EXHEAACE_EXE_FATAL_USAC_INVALID_MAPPING

Table 2-10 Execution fatal error codes

Below is the list of error codes and its mapping to the cause of errors:

IA_EXHEAACE_EXE_FATAL_SBR_INVALID_TIME_SLOTS

It is a fatal error returned when number of SBR time slots is invalid. Valid values are 16 and 32.

IA EXHEAACE EXE FATAL SBR INVALID IN CHANNELS

It is a fatal error returned when the number SBR input channels per bitstream element is invalid. Valid values are 1 and 2.

IA_EXHEAACE_EXE_FATAL_PS_INVALID_HYBRID_RES_VAL

It is a fatal error returned when the hybrid filtering configuration set in invalid. Valid configurations are four channel filtering and eight channel filtering.

IA EXHEAACE EXE FATAL UNSUPPORTED AOT

It is a fatal error returned when the set audio object type is invalid. The valid AOTs are AOT_AAC_LC, AOT_SBR, AOT_ER_AAC_LD, AOT_PS, AOT_ER_AAC_ELD and AOT USAC.

IA EXHEAACE EXE FATAL INVALID BLOCK TYPE

It is a fatal error returned when the block type is invalid. The valid block types are long window, short window, start window and stop window.

IA_EXHEAACE_EXE_FATAL_INVALID_SBR_FRAME_TYPE

It is a fatal error returned when frame class of the SBR frame is not valid. The valid types are FIXFIX, FIXVAR, VARFIX and VARVAR.

IA_EXHEAACE_EXE_FATAL_INVALID_SBR_NUM_ENVELOPES

It is a fatal error returned when the number of SBR envelopes in the SBR frame is invalid. The valid values are 1 to 4 for the SBR frame classes FIXVAR and VARFIX and 1 to 8 for VARVAR SBR frame class.

IA_EXHEAACE_EXE_FATAL_SBR_INVALID_BS

It is a fatal error returned when SBR bit stream is not valid.

IA_EXHEAACE_EXE_FATAL_SBR_INVALID_CODEBOOK

It is a fatal error returned when SBR code book is not valid.

IA EXHEAACE EXE FATAL INVALID SCALE FACTOR GAIN

It is a fatal error returned when memory is not properly allocated for SBR scale factor gain.

IA_EXHEAACE_EXE_FATAL_INVALID_BIT_RES_LEVEL

It is a fatal error returned when the value of bit reservoir level is not between zero and the maximum bit reservoir bits calculated.

IA_EXHEAACE_EXE_FATAL_INVALID_BIT_CONSUMPTION

It is a fatal error returned when bit consumption is negative.

IA_EXHEAACE_EXE_FATAL_INVALID_SIDE_INFO_BITS

It is a fatal error returned when the number of side information bits encoded in section data do not match the actual number of side information bits.

IA_EXHEAACE_EXE_FATAL_INVALID_HUFFMAN_BITS

It is a fatal error returned when the number of Huffman bits encoded in spectral data are not matching with the actual number of Huffman bits.

IA_EXHEAACE_EXE_FATAL_INVALID_SCALE_FACTOR_BITS

It is a fatal error returned when scale factor bits are not valid.

IA_EXHEAACE_EXE_FATAL_SBR_INVALID_AMP_RES

It is a fatal error returned when SBR amplitude resolution value is not valid. Valid values are 0 and 1.

IA_EXHEAACE_EXE_FATAL_INVALID_OUT_BYTES

It is a fatal error returned when number of output bytes exceeds the average bytes per frame for a given bitrate.

IA EXHEAACE EXE FATAL INVALID TNS FILT ORDER

It is a fatal error returned when TNS filter order exceeds the maximum TNS order. The maximum value is 12.

IA_EXHEAACE_EXE_FATAL_SBR_INVALID_SAMP_FREQ

It is a fatal error returned when SBR sampling frequency is not valid. Supported sampling frequencies are 16000, 22050, 24000, 32000, 44100 and 48000.

IA EXHEAACE EXE FATAL MPS NULL DATA HANDLE

It is a fatal error returned when there are memory allocation errors for MPS data handles.

IA EXHEAACE EXE FATAL MPS INVALID HUFF DATA TYPE

It is a fatal error returned when MPS Huffman data type is not valid. Valid types are ICC and CLD.

IA EXHEAACE EXE FATAL MPS INVALID NUM PARAM SETS

It is a fatal error returned when the number of parameter data sets in a frame exceeds the maximum number of parameter data sets supported. The maximum parameter data sets supported is 7.

IA_EXHEAACE_EXE_FATAL_MPS_UNSUPPORTED_GUIDED_ENV_S HAPE

It is a fatal error returned when the temporal shaping configuration parameter is not valid. Valid values are 0 (do not apply temporal shaping) and 1 (apply Sub-band Domain Temporal Processing).

IA_EXHEAACE_EXE_FATAL_MPS_3D_STEREO_MODE_NOT_SUPP ORTED

It is a fatal error returned when 3D audio encoding is enabled.

IA_EXHEAACE_EXE_FATAL_MPS_UNSUPPORTED_RESIDUAL_COD ING

It is a fatal error returned when MPS residual coding is enabled.

IA_EXHEAACE_EXE_FATAL_MPS_UNSUPPORTED_ARBITARY_DO WNMIX CODING

It is a fatal error returned when MPS arbitrary downmix coding is enabled.

IA_EXHEAACE_EXE_FATAL_MPS_ARBITARY_TREE_NOT_SUPPOR TED

It is a fatal error returned when MPS arbitrary tree flag is set.

IA_EXHEAACE_EXE_FATAL_MPS_INVALID_QUANT_COARSE

It is a fatal error returned when there is error in the coarse quantization in MPS.

IA_EXHEAACE_EXE_FATAL_MPS_INVALID_RES_STRIDE

It is a fatal error returned when there is error in the grouping of parameter bands for entropy coding.

IA_EXHEAACE_EXE_FATAL_MPS_INVALID_LEVELS

It is a fatal error returned when MPS quantization levels are invalid. The valid values are 15 and 31 for CLD data type, 4 and 8 for ICC data type, 26 and 51 for CPC data type.

IA_EXHEAACE_EXE_FATAL_MPS_CFFT_PROCESS

It is a fatal error returned when there is error in MPS complex FFT process.

IA EXHEAACE EXE FATAL USAC INVALID FAC LEN

It is a fatal error returned when USAC FAC length is invalid. The valid values are 48, 64, 96 or 128.

IA_EXHEAACE_EXE_FATAL_USAC_INVALID_NUM_SBK

It is a fatal error returned when the number of sub-blocks are zero.

IA_EXHEAACE_EXE_FATAL_USAC_INVALID_NUM_CHANNEL

It is a fatal error returned when number of channels per bitstream element is invalid. The valid values are 1 and 2.

IA_EXHEAACE_EXE_FATAL_USAC_INVALID_BIT_RSVR_LVL

It is a fatal error returned when USAC bit reservoir level is negative or greater than the maximum bit reservoir level.

IA_EXHEAACE_EXE_FATAL_USAC_INVALID_MAPPING

It is a fatal error returned when the FFT size in USAC mapping is invalid. Valid values are 64, 128, 256, 512, 1024, 192, 384, 768, 320, 960, 448, 896, 576, 640, 704, 832. For analysis case, the valid values are 576, 384, 512, 768. For synthesis case, the valid values are 448, 512, 576, 768, 672.

3. Input and Output configuration structure

This section describes the definitions of the elements of the input and output configuration structures used in the API call.

3.1 Input Configuration Structure

Data Type	Element Name	Description
UWORD32	ui_pcm_wd_sz	Word size of PCM input.
WORD32	i_bitrate	Bitrate to be used for encoding.
WORD32	frame_length	Frame length to be used for encoding.
WORD32	frame_cmd_flag	Frame length command flag.
WORD32	out_bytes_flag	Flag to signal the library to use default or user-set bit reservoir size.
WORD32	user_tns_flag	Flag to indicate to tns is enabled.
WORD32	user_esbr_flag	Flag to indicate if esbr is enabled.
WORD32	aot	Audio Object Type specifier
WORD32	i_mps_tree_config	MPS tree configuration
WORD32	esbr_flag	Flag to enable eSBR for HE-AACv1 streams
WORD32	i_channels	Number of channels of PCM input.

WORD32	i_samp_freq	Sampling frequency of PCM input.
WORD32	i_native_samp_freq	Native sampling frequency.
WORD32	i_channels_mask	Channel mask of PCM input data.
WORD32	i_num_coupling_chan	Number of coupling channels.
WORD32	i_use_mps	Enable/Disable MPS encoding when AOT is AAC-ELD (AAC-ELDv2 profile).
WORD32	i_use_adts	Flag that indicates to use ADTS header. Applicable only for HE-AACv2 and its subset profiles.
WORD32	i_use_es	Flag that indicates to encode as elementary stream. Suitable for feeding as input to MP4
WORD32	usac_en	Flag that indicates USAC encoding is enabled
WORD32	codec_mode	Pointer to USAC mode indicator
WORD32	cplx_pred	Flag to indicate usage of complex prediction
WORD32	ccfl_idx	Flag to indicate core coder frame length index and eSBR ratio for USAC profile
WORD32	pvc_active	Flag to indicate usage of PVC encoder for USAC profile
WORD32	harmonic_sbr	Flag to indicate usage of Harmonic SBR for USAC profile
WORD32	inter_tes_active	Flag to indicate if inter-TES encoder is enabled
ia_drc_input_config	str_drc_cfg	DRC input configuration structure
FLAG	use_drc_element	Flag to indicate if DRC is enabled

WORD32	drc_frame_size	DRC frame size
WORD32	hq_esbr	Flag to indicate usage of high quality eSBR for USAC profile. Valid only when Harmonic SBR flag is enabled
FLAG	write_program_config_element	Flag to indicate PCE writing.
ixheaace_aac_enc_config	aac_config	AAC parameter configuration structure

Table 3-1 ixheaace_input_config structure description

Data Type	Element Name	Description
WORD32	sample_rate	Input stream sampling frequency
WORD32	bitrate	Encoder bit rate in bits/sec
WORD32	num_channels_in	Number of input channels
WORD32	num_channels_out	Number of output channels
WORD32	bandwidth	Targeted audio bandwidth in Hz
WORD32	dual_mono	Flag to make 2 SCEs for stereo input files
WORD32	use_tns	Enable/disable TNS
WORD32	noise_filling	Enable/disable noise filling
WORD32	use_adts	Use ADTS header
WORD32	private_bit	Private bit of MPEG Header
WORD32	copyright_bit	Copyright bit of MPEG Header
WORD32	original_copy_bit	Original bit of MPEG Header
WORD32	f_no_stereo_preprocessing	Forbid usage of stereo pre- processing
WORD32	inv_quant	Improve distortion by inverse quantization
WORD32	full_bandwidth	Enable usage of full bandwidth of input
WORD32	bitreservoir_size	Size of bit reservoir
WORD32	length	AAC configuration block length

Table 3-2 ixheaace_aac_enc_config structure description

Data Type	Element Name	Description
ia_drc_enc_params_struct	str_enc_params	DRC parameter structure
ia_drc_uni_drc_config_struct	str_uni_drc_config	DRC configuration structure
<pre>ia_drc_loudness_info_set_struct</pre>	str_enc_loudness_info_set	DRC loudness information structure
ia_drc_uni_drc_gain_ext_struct	str_enc_gain_extension	DRC gain extension structure

Table 3-3 ia_drc_input_config structure description

Data Type	Element Name	Description
WORD32	frame_size	Frame size for encoding
WORD32	sample_rate	Input stream sampling frequency
WORD32	delay_mode	Flag to set low/high delay
WORD32	domain	Indicates type of domain
WORD32	parametric_drc_only	Flag to indicate parametric DRC
WORD32	frame_count	Number of Frames processed
WORD32	gain_sequence_present	Flag that indicates if gain sequence is present

Table 3-4 ia_drc_enc_params_struct structure description

Data Type	Element Name	Description
WORD32	sample_rate_present	Flag to indicate sample rate is present

WORD32	sample_rate	Input stream sampling frequency
WORD32	downmix_instructions_count	Downmix instructions count value
WORD32	drc_coefficients_uni_drc_count	DRC coefficients count value
WORD32	drc_instructions_uni_drc_count	DRC instructions count value
WORD32	drc_description_basic_present	Flag to indicate if DRC basic instructions and coefficients are present
WORD32	drc_coefficients_basic_count	DRC basic coefficients count
WORD32	drc_instructions_basic_count	DRC basic instructions count
WORD32	uni_drc_config_ext_present	Flag to indicate if DRC configuration extensions are present
ia_drc_uni_drc_config_ext _struct	str_uni_drc_config_ext	DRC extension configuration structure
ia_drc_coefficients_basic _struct	str_drc_coefficients_basic	DRC basic coefficients structure
ia_drc_instructions_basic _struct	str_drc_instructions_basic	DRC basic instructions structure
<pre>ia_drc_coefficients_uni_d rc_struct</pre>	str_drc_coefficients_uni_drc	DRC coefficients structure
ia_drc_instructions_uni_d rc	str_drc_instructions_uni_drc	DRC instructions structure
ia_drc_channel_layout_str uct	str_channel_layout	DRC channel layout structure

ia_drc_downmix_instructions_struct	str_downmix_instructions	DRC downmix information structure
WORD32	loudness_info_set_present	Flag to indicate if loudness information is present.

Table 3-5 ia_drc_uni_drc_config_struct structure description

Data Type	Element Name	Description
WORD32	loudness_info_album_count	Count of loudness information albums
WORD32	loudness_info_count	Loudness information count
WORD32	loudness_info_set_ext_present	Flag to indicate if loudness information extensions are present
<pre>ia_drc_loudness_info_stru ct</pre>	str_loudness_info_album	DRC loudness information album structure
<pre>ia_drc_loudness_info_stru ct</pre>	str_loudness_info	DRC loudness information structure
<pre>ia_drc_loudness_info_set_ extension_struct</pre>	str_loudness_info_set_extension	DRC loudness information set extension structure

 Table 3-6 ia_drc_loudness_info_set_struct structure description

Data Type	Element Name	Description
WORD32	uni_drc_gain_ext_present	Flag to indicate if DRC gain extensions are present

WORD32	uni_drc_gain_ext_type	DRC gain extension type
WORD32	ext_bit_size	Extension bit size

Table 3-7 ia_drc_uni_drc_gain_ext_struct structure description

Data Type	Element Name	Description
ixheaace_input_config	input_config	Input configuration structure
ixheaace_output_config	output_config	Output configuration structure

Table 3-8 ixheaace_user_config_struct structure description

3.2 Output Configuration Structure

Data Type	Element Name	Description
WORD32	i_out_bytes	Number of encoded output bytes.
WORD32	i_bytes_consumed	Number of bytes used by the encoder in the input buffer.
UWORD32	ui_inp_buf_size	Input buffer size.
UWORD32	malloc_count	Counter holding the value of total memory allocations done.
UWORD32	ui_rem	Memory alignment related parameter.
UWORD32	ui_proc_mem_tabs_size	Codec memory tables size field.
pVOID	pv_ia_process_api_obj	Pointer to encoder API object.
pVOID	arr_alloc_memory[100]	Array containing all the addresses of the dynamically allocated memories requested by the encoder library.
pVOID	malloc_xheaace	Pointer to system memory allocation function.
VOID	free_xheaace	Pointer to dynamically allocated memory freeing function.
ixheaace_version	version	Structure containing information about library name and library version number

ixheaace_mem_info_table	mem_info_table[4]	Structure containing information about the dynamically allocated memories used by the encoder library.
WORD32	input_size	Size of the input file (in samples)
WORD32	samp_freq	AAC core coder sampling frequency
WORD32	header_samp_freq	Sampling frequency to be specified in the header
WORD32	audio_profile	Audio profile
FLOAT32	down_sampling_ratio	Downsampling ratio
pWORD32	pb_inp_buf_32	Pointer to input buffer

Table 3-9 ixheaace_output_config structure description

Data Type	Element Name	Description
UWORD32	ui_size	Size of memory
UWORD32	ui_alignment	Alignment of memory
UWORD32	ui_type	Type of memory
pVOID	mem_ptr	Allocated memory address

Table 3-10 ixheaace_mem_info_table structure description

Data Type	Element Name	Description
WORD8 *	p_lib_name	Pointer to library name string
WORD8 *	p_version_num	Pointer to library version number

Table 3-11 ixheaace_version structure description

4. Reference

[1]	ISO/IEC 14496-3:2001/Amd1, Bandwidth Extension (MPEG-4)
[2]	ISO/IEC 14496-3:2001/Amd2, Parametric Audio for High Quality Audio (MPEG-4)