IMPERIAL 21 August 2024

Charge Noise in Semiconductor Spin Qubits for Quantum Computing

Chen Huang

Contents

- Quantum dots / Spin qubits
 - Double quantum dots
 - Stability diagram
- Charge noise
 - 1/f noise
 - Mitigation strategies
- Charge noise extraction
 - Single electron transistor (SET)

Quantum Dots / Spin Qubits

Quantum dots are man-made submicron structures in a solid.

How to define the quantum states in QDs?

Spin qubits	Single QD	Multiple QDs
Described in	Single-spin qubit	Charge qubits / Singlet-Triplet and hybrid qubits / Triple-dot qubits
Defined by	Spin state	Location of spins in QDs, or their charge state
Controlled by	Magnetic fields	("Charge-like" qubits) use voltages to shift the electron between dots

Why use semiconductor spin qubits for quantum computing?

- Scalability with existing semiconductor technology.
- Long coherence times.
- Small size, high density, ...

Double QDs

Two variations of a typical set of gate electrodes used to define double quantum dots:

P - plunger

L - lead

T - tunnel-coupling

S - source

D - drain

Stadium style

Overlapping style

[1] Harvey, 2022

Charge Stability Diagram

Charge stability diagram maps out the different charge states of the quantum dots as adjusting the gate voltages.

- Gate coupling: V_{g_1,g_2} , C_{g_1,g_2}
- Tunnel barriers connect the source and drain: $R_{L,R}$, $C_{L,R}$
- Inter-dot coupling: R_m , C_m

Inter-dot coupling (a) small (b) intermediate (c) large

Charge Noise

Charge noise: random fluctuations in the electric field within a semiconductor environment.

Sources of charge noise

- structural defects
- atomic vacancies

Charge traps

strain in the material

. . .

Two-Level Fluctuators (TLFs) $\rightarrow 1/f$ noise

Charge Noise

Impact

- Single-spin qubit operations
 - Interfere *g*-factor and disrupt drive pulse, especially with micromagnets.
- Spin-cavity coupling
 - Complicate long-range qubit interconnects.
- Two-qubit gates
 - Cause fluctuations in exchange interaction, reducing fidelity.

Mitigation strategies

- Dynamic decoupling
 - use control pulses to average out noise effects
- Improved material design
 - high-purity materials
 - better fabrication techniques
- Noise characterisation

Charge Noise Extraction

Use a Single Electron Transistor (SET) as a noise sensor

- SET current spectroscopy
- SET peaking-tracking

8

Reconfigurable SET for Multi-QD Sensing

Challenge with Single SET

Limited Efficiency
 SET reservoir screens capacitive coupling, reducing sensitivity to a single QD.

Serial SETs