Rumus-rumus perhitungan proyeksi jumlah penduduk:

a. Metoda Arithmatik

$$Ka = \frac{Pa - P1}{T2 - T1}$$

dimana: Pn = jumlah penduduk pada tahun ke n;

Po = jumlah penduduk pada tahun dasar;

Tn = tahun ke n;

To = tahun dasar:

Ka = konstanta arithmatik;

P1 = jumlah penduduk yang diketahui pada tahun ke I;

P2 = jumlah penduduk yang diketahui pada tahun terakhir;

T1 = tahun ke I yang diketahui;

T2 = tahun ke II yang diketahui.

b. Metode Geometrik

$$Pn = P (1+r)^n$$

dimana: Pn = jumlah penduduk pada tahun ke n;

Po = jumlah penduduk pada tahun dasar;

r = laju pertumbuhan penduduk;

n = jumlah interval

c. Metode Least Square

$$\hat{\mathbf{Y}} = \mathbf{a} + \mathbf{b}\mathbf{X}$$

dimana: \hat{Y} = nilai variabel berdasarkan garis regresi;

X = variabel independen;

a = kotanta;

b = koefisien arah regresi linear

Adapun persamaan a dan b adalah sebagai berikut:

$$a = \frac{\Sigma y. \Sigma x^2 - \Sigma x. \Sigma y}{n. \Sigma x^2 - (\Sigma x)^2}$$

$$a = \frac{\text{n.} \Sigma xy - \Sigma x. \Sigma y}{\text{n.} \Sigma x^2 - (\Sigma x)^2}$$

Bila koefisien \mathbf{b} telah dihitung terlebih dahulu, maka konstanta \mathbf{a} dapat ditentukan dengan persamaan lain, yaitu:

$$a = Y' - b.X'$$

Dimana Y' dan X' masing-masing adalah rata-rata untuk variabel Y dan X

d. Metode Trend Logistic:

$$Ka = \frac{k}{1 - 10^{a + bx}}$$

dimana: Y = Jumlah penduduk pada tahun ke-X;

X = Jumlah interval tahun;

k, a, dan b = Konstanta

- e. Untuk menentukan pilihan rumus proyeksi jumlah penduduk yang akan digunakan dengan hasil perhitungan yang paling mendekati kebenaran harus dilakukan analisis dengan menghitung standar deviasi atau koefisien korelasi;
- f. Rumus standar deviasi dan koefisien korelasi adalah sebagai berikut:
 - (1) Standar Deviasi:

$$S = \frac{\overline{\Sigma(Xi - X)^2}}{n - 1} \quad untuk \quad n > 20$$

$$S = \frac{\overline{\Sigma(Xi - X)^2}}{n} \quad untuk \ n = 20$$

(2) Koefisien Korelasi

Metode perhitungan proyeksi jumlah penduduk yang menghasilkan koefisien paling mendekati 1 adalah metoda yang terpilih

Contoh Perhitungan Pemilihan Metoda Proyeksi Jumlah Penduduk Kota "A" mempunyai data statistik penduduk selama 10 tahun terakhir, sebagai berikut:

Tabel Data Statistik Penduduk Kota "A"

Tahun	Jumlah Penduduk (Jiwa)	Pertumbuhan Penduduk		
		Jiwa	Persen (%)	
1987	66.789	-	-	
1988	67.340	551	0.82 %	
1989	68.528	1.188	1.76 %	
1990	69.450	922	1.35 %	
1991	70.128	678	0.98 %	
1992	70.274	146	0.21 %	
1993	70.696	422	0.60 %	
1994	71.309	394	0.98 %	
1995	72.146	756	1.06 %	
1996	75.089	2.943	4.08 %	
Jumlah	-	8.300	11.84 %	

Soal: Pilih metoda yang tepat untuk menghitung proyeksi jumlah penduduk 20 tahun mendatang

Cara pengerjaan:

Rata-rata pertambahan penduduk dari tahun 1987 sampai 1996 adalah:

$$Ka = (P_{96} - P_{87}) / (1996 - 1987)$$

$$Ka = (75.089 - 66.789)/9$$

$$Ka = 8.300/9$$

Ka = 922 jiwa/tahun

Persentase pertambahan penduduk rata-rata per tahun:

$$r = 11,84 \% / 9$$

$$r = 1,32 \%$$

Dengan bertolak dari data penduduk tahun 1996 hitung kembai jumlah penduduk per tahun dari tahun 1987 sampai dengan 1995 dengan menggunakan **metoda** arithmatik, geometrik dan least square.

a. Metoda Arithmatik

$$Ka = \frac{Pa - P1}{T2 - T1}$$

$$Ka = 922$$

$$Ka = P_{96} = 75.089$$

$$P87 = 75.089 - 922 (95 - 87) = 66.791$$

b. Metode Geometrik

$$Pn = P(1+r)^n$$

$$P_{87} = P_{96} (1 + 0.0132)^{(96-87)}$$

$$P_{87} = 75.089 / (1,0132)^9 = 66.730$$

c. Metode Least Square

$$\hat{\mathbf{Y}} = \mathbf{a} + \mathbf{b}\mathbf{X}$$

$$a = \frac{\Sigma y. \Sigma x^2 - \Sigma x. \Sigma y}{n. \Sigma x^2 - (\Sigma x)^2}$$

$$a = \frac{\mathbf{n} \cdot \mathbf{\Sigma} x y - \mathbf{\Sigma} \mathbf{x} \cdot \mathbf{\Sigma} y}{\mathbf{n} \cdot \mathbf{\Sigma} \mathbf{x}^2 - (\mathbf{\Sigma} \mathbf{x})^2}$$

Tabel Perhitungan Statistik Jumlah Penduduk Kota "A"

Tahun	Tahun ke (X)	Julah Penduduk (Jiwa)	X.Y	X2
1987	1	66.789	66.789	1
1988	2	67.340	134.680	4
1989	3	68.528	205.584	9
1990	4	69.450	277.800	16
1991	5	70.128	350.640	25
1992	6	70.274	421.644	36
1993	7	70.696	494.872	49
1994	8	71.309	571.120	64
1995	9	72.146	649.314	81
1996	10	75.089	750.890	100
Jumlah	55	701.83	3923.333	385

Dengan menggunakan rumus di atas maka besarnya **a** dan **b** dapat dihitung,yaitu:

$$a = 65.965,1$$

$$b = 766,88$$

$$Y_{87} = 65.965,1 + 766,88 (87 - 87)$$

$$Y87 = 65.965$$

Hasil perhitungan mundur jumlah penduduk selengkapnya adalah sebagai berikut:

Tabel Hasil Perhitungan Mundur Jumlah Penduduk Kota "A"

Tahun	Julah Penduduk (Jiwa)	Hasil perhitungan			
(X)	(Y)	Arithmatik	Geometrik	Least Square	
1987	66.789	66.789	66.730	65.965	
1988	67.340	67.711	67.611	66.732	
1989	68.528	68.633	68.503	67.499	
1990	69.450	69.556	69.407	68.266	
1991	70.128	70.478	70.323	69.033	
1992	70.274	71.400	71.252	69.800	
1993	70.696	72.322	72.192	70.566	
1994	71.309	73.245	73.145	71.333	
1995	72.146	74.167	74.111	72.100	
1996	75.089	75.089	75.089	73.089	
Jumlah	701.830				

Untuk menentukan metoda proyeksi jumlah penduduk yang paling mendekati kebenaran terlebih dahulu perlu dihitung standar deviasi dari hasil perhitungan ketiga metoda di atas.

$$S = \frac{\overline{\Sigma(Xi - X)^2}}{n - 1} \quad untuk \quad n > 20$$

dimana: S = standar deviasi;

Yi = variabel independen Y (jumlah penduduk);

Ymean = rata-rata Y; n = jumlah data;

Hasil perhitungan standar deviasi dari ketiga metoda perhitungan tersebut dapat dilihat pada tabel-tabel berikut.

Tabel Deviasi Standar dari Hasil Perhitungan Arithmatik

Tahun	Tahun ke (X)	Julah Penduduk (Jiwa)	Hasil Perhitungan Arithmatik (Yi)	Yi - Ymean	(Yi – Ymean) ²
1987	1	66.789	66.789	-3.394	1.151.910
1988	2	67.340	67.711	-2.472	6.109.597
1989	3	68.528	68.633	-1.55	2401.074
1990	4	69.450	69.556	-627	393.530
1991	5	70.128	70.478	295	86.966
1992	6	70.274	71.400	1.217	1.481.381
1993	7	70.696	72.322	2.139	4.576.776
1994	8	71.309	73.245	3.062	9.373.150
1995	9	72.146	74.167	3.984	15.870.503
1996	10	75.089	75.089	4.906	24.068.836
Jumlah	55	701.83	-	-	75.880.914
Ymean		70.1830	=	-	=
Standar Deviasi		-	-	-	2.755

Tabel Deviasi Standar dari Hasil Perhitungan Geometrik

Tahun	Tahun ke (X)	Julah Penduduk (Jiwa)	Hasil Perhitungan Geometrik (Yi)	Yi - Ymean	(Yi - Ymean) ²
1987	1	66.789	66.730	-3.453	11.924.731
1988	2	67.340	67.611	-2.572	6.617.176
1989	3	68.528	68.503	-1.680	2.822.155
1990	4	69.450	69.407	-776.000	601.69000
1991	5	70.128	70.323	140.000	19.737
1992	6	70.274	71.252	1.069	1.142.248
1993	7	70.696	72.192	2.009	4.037.219
1994	8	71.309	73.145	2.962	8.744.755
1995	9	72.146	74.111	3.928	15.427.128
1996	10	75.089	75.089	4.906	24.068.836
Jumlah	55	701.830	ı	ı	75.435.676
Ymean		70.183	-	-	
Standar Deviasi		-	-	-	2.747

Tabel Deviasi Standar dari Hasil Perhitungan Least Square

Tahun	Tahun ke (X)	Julah Penduduk (Jiwa)	Hasil Perhitungan Least Square (Yi)	Yi - Ymean	(Yi – Ymean) ²
1987	1	66.789	65.965	-4.218	17.790.680
1988	2	67.340	66.732	11.909.539	-
1989	3	68.528	67.499	-2.684	7.204.608
1990	4	69.450	68.266	-1.017	3.675.88
1991	5	70.128	69.033	-1.150	1.323.347
1992	6	70.274	69.800	-384	147.072
1993	7	70.696	70.566	383	146.980
1994	8	71.309	71.333	1.150	1.323.098
1995	9	72.146	72.100	11.917	3.675.426
1996	10	75.089	75.089	14.906	24.068.836
Jumlah	55	701.830	ı	I	71.265.499
Ymean		70.183	ı	-	70.183
Standar Deviasi		-	-	-	2.670

Hasil perhitungan standar deviasi memperlihatkan angka yang berbeda untuk ketiga metoda proyeksi. Angka terkecil adalah hasil perhitungan proyeksi dengan metoda Least Square. Jadi untuk memperkirakan jumlah kota "A" 20 tahun mendatang dipilih metoda Least Square.