

11th meeting of the BRICS Astronomy Working Group

13 to 17 October 2025

Instituto Nacional de Pesquisas Espaciais (INPE) São José dos Campos, São Paulo, Brasil

Long term multiwavelength monitoring of high mass X-ray binaries

Itumeleng Monageng

First Name:	Itumeleng	
Last Name:	Monageng	
Institution/Affiliation:	University of Cape Town/South African Astronomical Observ	atory
Country of Residence:	South Africa	
Preferred type of presentation	Oral	
Will you attend in person or online?	_	
Email	itu@saao.ac.za	

Abstract

Be X-ray binaries, the largest subclass of high-mass X-ray binary systems, consist of a neutron star orbiting a Be star companion in an eccentric manner. The Be star has a geometrically thin Keplerian disc around it. These systems are strong candidates for progenitors of gravitational waves since their evolutionary processes can ultimately lead to the formation of a binary system comprised of two compact objects, such as two neutron stars or a neutron star and a black hole. The interaction between the neutron star and the Be disc results in the accretion of matter, causing X-ray outbursts. These transient X-ray outbursts occur in two types: Type I (normal outbursts with luminosities less than 10^37 erg/s) and Type II (giant outbursts with luminosities greater than 10^37 erg/s). The variability of the disc is tracked through changes in the Balmer emission lines in the optical spectra, with the H-alpha emission line being the strongest and most well-studied. In this talk, I will present the optical, X-ray and radio analysis of several individual outbursting systems that have been monitored using the Southern African Large Telescope (SALT), OGLE, MeerKAT and X-ray missions like Swift and MAXI. The goal is to study the impact of the neutron star on the Be disc under various orbital configurations and environmental conditions. I will discuss the unusual long-term behavior of the Balmer lines observed over multiple orbits of the neutron star and draw conclusions about the structure of the Be disc. Additionally, I will highlight the behavioral differences among the systems and how variations in the orbital parameters affect the evolution of the Be disc and X-ray emission.