

Métricas de Avaliação: MAE

≡ Ciclo	Ciclo 07: Outros algoritmos Classificação e Regressão
# Aula	60
☑ Done	✓
☑ Ready	✓

Objetivo da Aula:

O erro da reta de regressão
O erro MAE
As vantagens e desvantagens do MAE
Resumo
Próxima aula

Conteúdo:

▼ 1. O erro da reta de regressão

▼ 2. O erro MAE

O erro absoluto médio (MAE) mede a diferença média absoluta entre as previsões do modelo e os valores reais.

O MAE é usado como um função de perda (métrica de performance) e representa quão bem o model ajustou aos dados de treinamento. Quanto menor o valor do MAE, melhor o desempenho do modelo.

▼ 2.1 Fórmula:

A fórmula para calcular o MAE é:

$$MAE = rac{1}{n} \sum_{i=1}^n |y_i - \hat{y}_i|$$

Onde:

- n é o número de exemplos no conjunto de dados
- y_i é o valor real do i ésimo exemplo
- y^_i é a previsão do modelo para o i ésimo exemplo

▼ 2.2 Exemplo:

Actual Value (y)	Predicted Value (ŷ)	Error (y - ŷ)	Absolute Error y - ŷ
10	18	-8	8
120	10	110	110
15	13	2	2
18	25	-7	7
20	19	1	1
25	26	-1	1
			MAE = (1/6))*129 = 21,5

▼ 2.3 Como interpretar o MAE

O MAE é fácil de entender e interpretar, pois mede a diferença média absoluta entre as previsões do modelo e os valores reais em unidades da variável exploratória.

▼ 3. As vantagens e desvantagens do MAE

▼ 3.1 Vantagens

- Métrica mais robusta em relação aos outliers, pois não utiliza a soma dos erros quadráticos, o que faz com que um erro muito grande não influencie tanto no resultado final.
- 2. Em relação ao MSE, o MAE é mais fácil de comunicar para pessoas não técnicas, pois fornece um valor em unidades da variável exploratória, enquanto o RMSE fornece um valor em unidades ao quadrado.
- 3. É muito usado para comunicar a performance dos algoritmos para o time de negócio, enquanto o RMSE é usado para dar mais peso a grandes possivelmente causado por outliers.

▼ 3.2 Desvantagens

- 1. Não leva em consideração a direção do erro (positivo ou negativo), o que pode ser um problema na interpretação dos resultados.
- 2. O MAE pode ser menos adequado para casos em que erros grandes devem ser penalizados mais do que erros pequenos.

▼ 4. Resumo

- 1. O erro absoluto médio (MAE) mede a diferença média absoluta entre as previsões do modelo e os valores reais.
- 2. A fórmula para calcular o MAE é: MAE = $(1/n)*\sum |y_i y_i|$.
- 3. O MAE é fácil de entender e interpretar, pois mede a diferença média absoluta entre as previsões do modelo e os valores reais em unidades da variável exploratória.
- 4. O MAE é mais robusto em relação aos outliers e é mais fácil de comunicar para pessoas não técnicas do que o RMSE. No entanto, não leva em consideração a direção do erro e pode ser menos adequado para casos em que erros grandes devem ser penalizados mais do que erros pequenos.

▼ 5. Próxima aula

Métricas de Avaliação: MAPE