Caractériser les performances d'un système

Table des matières

Introduction		3
I - F	- Rapidité 1. Premier ordre	
	1. Premier ordre	4
	2. Deuxième ordre	5
	3. Avec l'analyse harmonique	5
II - Précision statique		7
	1. Généralités	7
	2. Écart statique en position (erreur indicielle)	7
	3. Écart statique en vitesse (erreur de traînage ou de poursuite)	8

Introduction

Les performances d'un système asservi sont habituellement les suivantes :

- 1. la **rapidité**
- 2. la **précision**
- 3. la **stabilité**

Cette dernière sera traitée au cours de la deuxième année, et non détaillée ici.

Rapidité

La **rapidité** est définie par le temps de réponse du système soumis à un échelon d'amplitude e_0 . En général, on utilise le temps de réponse **à 5%**.

1. Premier ordre

Le temps de réponse dépend directement de la constante de temps : $t_{r,5\%} = 3.\tau$.

Bouclage avec retour unitaire

Système asservi à retour unitaire

Le temps de réponse diminue si l'on boucle le système.

$$\operatorname{En\,effet}: FTBO = \frac{K}{1+\tau p} \to FTBF = \frac{\frac{K}{1+K}}{1+\frac{\tau}{1+K}p}$$

d'où:

•
$$t_{r\ FTBO} = 3\tau \rightarrow t_{r\ FTBF} = 3\left(\frac{\tau}{1+K}\right)$$

• $t_{r \ FTBF}$ diminue si K augmente

On améliore donc la rapidité d'un système de premier ordre bouclé en augmentant le gain de la FTBO.

2. Deuxième ordre

Le temps de réponse dépend de la pulsation propre et du coefficient d'amortissement.

Abaque temps de réponse réduit pour second ordre

Bouclage avec retour unitaire

Le coefficient d'amortissement m diminue quand on boucle le système.

En effet:
$$FTBO = \frac{K}{1 + \frac{2m}{\omega_0}p + \frac{1}{\omega_0^2}p^2} \to FTBF = \frac{\frac{K}{1+K}}{1 + \frac{2m}{\omega_0(1+K)}p + \frac{1}{\omega_0^2(1+K)}p^2}$$

d'où:

$$\omega_{0\ FTBF} = \omega_0 \sqrt{1+K} \operatorname{et} m_{FTBF} = \frac{m}{\sqrt{1+K}}$$

Le temps de réponse peut donc augmenter ou diminuer suivant la valeur de m (par rapport à 0,7) mais on risque de faire apparaître des oscillations et un dépassement en bouclant le système.

3. Avec l'analyse harmonique

Lien entre bande passante et rapidité

De façon générale, plus la bande passante d'un système est étendue, plus il est rapide.

Premier ordre

La bande passante est liée à la constante de temps, puisque la pulsation de cassure vaut $\frac{1}{\tau}$.

Si la bande passante augmente, $\frac{1}{\tau}$ augmente et $3.\tau = t_{r,5\%}$ diminue.

Second ordre

La bande passante est liée à la pulsation propre, puisque la pulsation de cassure vaut ω_0 . Or, pour une valeur de m correspond une valeur du temps de réponse réduit $t_{r,5\%}$. ω_0 .

Donc pour un coefficient d'amortissement donné : si ω_0 augmente (car la bande passante augmente), le temps de réponse diminue.

Précision statique

1. Généralités

On caractérise la précision par l'**écart** \mathcal{E} (parfois appelé "erreur") entre la consigne e(t) et la sortie s(t) dans le système asservi à retour unitaire ci-contre.

Système asservi à retour unitaire

On distingue:

- la précision **statique** (i.e. en régime permanent) : $\lim_{t\to +\infty} \varepsilon(t)$
- la précision dynamique (i.e. en régime transitoire) : pas au programme de CPGE.

$$\lim_{t \to +\infty} \varepsilon(t) = \lim_{t \to +\infty} (e(t) - s(t))$$

Il faut comparer ce qui est comparable : e(t) et s(t) doivent être de même dimension !

2. Écart statique en position (erreur indicielle)

L'entrée est un échelon d'amplitude e_0 : $e(t) = e_0 u(t)$.

$$\varepsilon_s(p) = E(p) - S(p) = E(p) \left[1 - \frac{H}{1+H} \right] = \frac{E(p)}{1+H} = \frac{e_0}{p(1+H)}$$

donc
$$\varepsilon_s = \lim_{t \to +\infty} \varepsilon(t) = \lim_{p \to 0} p \ \varepsilon(p) = \lim_{p \to 0} \frac{e_0}{1 + H(p)}$$

Or, lorsque p tend vers 0, $H(p) \approx \frac{K}{p^{\alpha}}$ (avec α classe de H(p), c.à.d. ici la **classe de la FTBO** du système).

Relation entre la classe de la FTBO et l'écart en position

Deux cas de figure apparaissent :

- $\alpha=0$: $\varepsilon_s=\frac{e_0}{1+K}$; il faut donc **augmenter le gain statique de la FTBO** pour améliorer la précision.
- $\alpha > 0$: $\varepsilon_s = 0$; le système est précis en position s'il existe **au moins un intégrateur dans la FTBO**.

3. Écart statique en vitesse (erreur de traînage ou de poursuite)

L'entrée est une rampe de pente a : e(t) = atu(t).

$$\varepsilon_{\nu}(p) = E(p) - S(p) = E(p) \left[1 - \frac{H}{1+H} \right] = \frac{E(p)}{1+H} = \frac{a}{p^2(1+H)}$$
$$\operatorname{donc} \varepsilon_{\nu} = \lim_{t \to +\infty} \varepsilon(t) = \lim_{p \to 0} p \ \varepsilon(p) = \lim_{p \to 0} \frac{a}{p(1+H(p))} = \lim_{p \to 0} \frac{a}{p\left(1 + \frac{K}{p^{\alpha}}\right)}$$

Relation entre la classe de la FTBO et l'écart en vitesse

Fondamental

Trois cas de figure apparaissent :

- $\alpha = 0: \varepsilon_v \to \infty$
- $\alpha = 1 : \varepsilon_v = \frac{a}{K}$; il faut donc **augmenter le gain statique de la FTBO** pour améliorer la précision, malgré la présence d'**un intégrateur** dans la FTBO.
- $\alpha > 1$: $\varepsilon_{\nu} = 0$; le système est précis en poursuite s'il existe **au moins deux intégrateurs dans** la FTBO.

Attention

Dans certains ouvrages, l'appellation de ces écarts peut changer (par exemple "précision statique" pour l'écart en position et "précision dynamique" pour l'écart en vitesse)!