Exhibit 2.

BEST AVAILABLE COPY

FEMS Microbiology Letters 156 (1997) 259-264

Determination of genetic diversity within the genus Bifidobacterium and estimation of chromosomal size

Katie O'Riordan a, Gerald F. Fitzgerald a,b,*

Department of Microbiology, University College, Cork, Ireland
 National Food Biotechnology Centre, University College, Cork, Ireland

Received 4 June 1997; revised 5 September 1997; accepted 9 September 1997

Abstract

Pulsed-field gel electrophoresis was proven to be an efficient means of differentiating 25 strains of Bifidobacterium obtained from culture collections. Xbal, Spel, Dral restriction enzyme profiles indicated genomic heterogeneity among strains. When seven human isolates of bifidobacteria were compared using the same methods, two individual banding patterns were obtained. However, despite its discriminatory potential, pulsed-field gel electrophoresis was shown to be of no value in texonomic identification. Genomic sizes estimated for eight Bifidobacterium strains ranged from 1.5 Mb to 2.1 Mb.

Keywords: Bifidobacterhum; Pulsed-field gel electrophoresis; Chromosome size

1. Introduction

The genus Bifidobacterium is among the three most prevalent bacterial genera in the human colon. According to the most recent classification the genus consists of 32 species, 12 of which are of human origin [1]. Differentiation of species within this genus has traditionally relied on DNA-DNA homology or various phenotypic characteristics [2]. The reputed therapeutic value of these microorganisms has resulted in their incorporation into many functional foods. Because of this, considerable effort has since been devoted to the application of various molecular techniques for the rapid identification of strains. These include the use of genus-specific [3], species-

The technique of pulsed-field gel electrophoresis (PFGE) has been exploited to successfully unravel the organisation of many bacterial genomes revealing the presence of multiple chromosomes. linear chromosomes or large plasmids in different hosts. Rare cutting enzymes employed in conjunction with PFGE have allowed species identification and strain classification within the same species and have also provided useful data for estimating genome size and for genome mapping [8]. Until recently, information on genomic organisation of bifidobacteria was limited to one species of the genus which described intra-species polymorphisms between four of five B.

0378-1097/97/\$17,00 © 1997 Federation of European Microbiological Secteties. Published by Elsevier Science 8.V. PH S0378-1097(97)00435-7

specific [4] and strain-specific [5] probes based on appropriate 16S rRNA sequences. rRNA gene restriction patterns or randomly cloned DNA fragments as species-specific DNA probes have also been used to distinguish between species [6,7].

^{*} Corresponding author. Tel.: +353 (21) 902730; Fax: +353 (21) 903101; E-muil: G.Fitzgerald@UCC.IE

breve strains examined [9]. However, Roy et al. [10] provided a more extensive study, in which PFGE was used to compare a bank of dairy-related bifido-bacteria compassing culture collection and commercial strains. The method was successful in distinguishing between strains even within a given species and in establishing the origin of commercial strains.

The aim of this study was to employ PFGE to (i) determine intra- and inter-species genetic diversity of a number of culture collection typed strains of bifidobacteria including representatives of the four prevalent human species, (ii) evaluate the technique of PFGE as a means of differentiating between and speciating a range of human bifidobacterial isolates, and (iii) estimate genomic sizes for representative strains.

2. Materials and methods

2.1. Bacterial strains

Bifidobacteria strains studied are listed in Table 1. Bifidobacteria were routinely cultured in TPY broth [11] at 37°C under anaerobic conditions which were maintained using the anaerobic Gas Pak system (Merck, Darmstadt, Germany) in an anaerobic chamber.

2.2. Preparation of bacterial plugs

Agarose plugs containing genomic DNA were prepared as follows: 100 ml volumes of TPY were inoculated (2%) with the appropriate microorganism. When an OD_{600mm} of ~ 1 was attained the cells were harvested, washed once in 50 mM EDTA, pH 8.5 and finally resuspended in 1.5 ml of the same solution. 500 µl of this cell suspension was heated to 42°C and mixed with 3 ml of molten 1% low melting point agarose and the resulting solution was poured into the mould chamber (Bio-Rad, Richmond, CA, USA). Solidified blocks were incubated for 4-16 h in lysozyme solution (2 mg ml⁻¹ lysozyme, 0.05% Nlauryl sarcosine in 50 mM_EDTA, pH 8.5). The blocks were then heated overnight (12-16 h) with proteinase K at 42°C (2 mg ml-1 proteinase K, 1% SDS, 0.1 M Tris in 50 mM EDTA, pH 8.5). Inserts were washed at least three times with 50 mM EDTA,

Table l

Blfidabacterium strains

Species	Strain	Source
B. bifidum	NCFB 1452	Nursling stools
a. Bywair	NCFB 1453	Zoose gaileruM
•	NCFB 1454	Nursling stools
	NCFB 1455	Nursling stools
	NCFB 1456	Nursling stoold
	NCFB 2203	infant intestine
	NCIMB 8810	Nursling stools
	Chr. Hansens 12	Commercial strain
B. infantis	NCFB 2255	infant intestine
	NCFB 2256	Infagt intestine
	NCFB 2205	Infant intestine
	Visby 420	Commercial strain
B. breve	NCFB 2257	Infact intestine
	NCFB 2258	Infant intentine
	NCIMB 8815	Numiling stools
	NCIMB 8807	Sloope gailerun
	NCIC HBIS	infant incesting
B, adolescentis	NCFB 2204	Adult intesting
	NCFB 2229	Adult intesting
i.	NCFB 2230	Adult intestine
	NCFB 2231	Adult intestine
	NCTC 11814	Adult intestine
Bifidobacterium sp.	UCC 35612	Adult intestina
	UCC 33624	Adult intestine
	UCC 35658	Adult intestine
	UCC 35652	Adult intestine
	UCC 35675	Adult Intestine
	UCC 35678	Adult intestine
	UCC 35687	Adult intestine
B. angulation	NCFB 2236	Human (acces
B. coremulation	NCFB 2246	Human facces
B. pseudocatemulatum	NCIMB 8811	Nursling aroots

NCFB: National Collection of Food Bacteria, Reading, UK. NCIMB: National Collection of Industrial and Marine Bacteria. Aberdeen, UK. NCTC: National Culture Type Collection, London, UK. UCC: Culture Collection, University College, Cork, Ireland. Visby: Laboratorium Wiesby, Germany. Chr. Hansens Laboratory A/S, Copenhagen, Denmark.

pH 8.5 at room temperature with gentle shaking and were finally stored in the same solution at 4°C.

2.3. Restriction digestion of DNA in agarose blocks

Agarose blocks were cut into 1×2×5 mm segments with a scalpel and washed in 1 ml sdH₂O on ice for 15 min to lower the EDTA concentration in the plug. The water was replaced with 100-200 µl restriction endonuclease buffer and left to equilibrate overnight at 4°C. The buffer was replaced and the

appropriate restriction endonuclease added. Digestion was performed at the recommended temperature for the chosen enzyme.

2.4. PFGE

Separation of DNA fragments was performed in a CHEF DR II apparatus (Bio-Rad). Agarose gels were prepared using 1% pulsed-field certified agarose (Bio-Rad) in 0.5×TBE (45 mM Tris, 45 mM boric acid, 1 mM EDTA, pH 8.0). Electrophoresis was performed at 8°C with pulse times varying with the size range of DNA fragments. To resolve fragments in the size range 150-600 kb switch times of 6-60 s were used, for 40-200 kb fragments switch times of 1-20 s, and for fragments of 20-45 kb switch times varied between 0.1 and 5 s. The sizes of the restriction fragments were determined by comparison with standard size markers. The standards used were Lambda ladder PFG Marker (48.5-1018,5 kb), Yeast Chromosome PFG Marker (225-1900 kb) and Low Range Marker (0.13-194 kb), all obtained from New England Biolabs (Beverly, MA). Gels were ethidium bromide-stained and photographed on a UV transilluminator using either a Polaroid MP4 Land camera containing type 667 film or a UVP image store 5000 Gel Documentation System linked to a Sony video graphic printer.

3. Results and discussion

Molecular technologies are currently the favoured methods for discriminating between strains of many different bacterial genera. In general, the available literature indicates that even though it is more time-consuming and labour-intensive, for many genera PFGE is more effective than ribotyping, SDS-PAGE or random amplified polymorphic DNA (RAPD) PCR assays in discriminating between strains [12]. Because of this PFGE was chosen in this study as a means of distinguishing between bifidobacterial strains. In this study 25 typed bifidobacterial strains representing the four predominant species present in the human intestine were first digested with restriction enzymes and resultant profiles compared. These included B. bifidum (8 strains), B. adolescentis (5 strains), B. Infantis (4 strains), B. breve (5 strains) and three other strains (B. angulatum, B. catenulatum, B. pseudocatenulatum) of species less frequently isolated from humans. In addition seven human isolates were examined in a similar manner.

3.1. Selection of suitable enzymes for PFGE analysis of Bifidobacterium species

Physical genome analyses require restriction enzymes that cut the bacterial genome into a limited number of fragments. Due to the high GC content of bifidobacteria (55-64%) enzymes incorporating ATrich sequence (Dral, Asel, Sspl) or 8 bp sequence (Sfil, Notl, Pacl, Swal, Asel) in their recognition sites or possessing the tetranucleotide CTAG in their restriction sites (XbaI, SpeI, AvrII) were tested, as these would be expected to cleave such genomes infrequently [13]. Only Asel, Spel and Xbal proved to be suitable in that they produced fewer than 30 bands. DraI was a very effective rare cutter for Biftdobactertum sp. 35612 but continuously resulted in partial digests for a number of other strains. Employing different switch times enabled good resolution of fragments of all molecular masses.

3.2. Comparison of genomic restriction digest patterns of culture collection strains

It was of interest to study whether strains within the same species could be differentiated by PFGE. Initially the 25 culture collection strains were examined. These included some 'type' strains which, although obtained from different culture collections, are believed to be identical. Of the five B. breve strains analysed some appeared to be genetically similar (Fig. 1). The type strains 2257 and 11815 which are listed in the culture collections as being synonymous appeared indistinguishable when digested with XbaI (Fig. 1, lanes 1 and 5) and when digested with Spel, profiles differed by only one band. Strains 8815 and 8807, which according to collection catalogues listings are phenotypically different, were shown to display very related patterns. Xbal macrorestriction analysis of these strains resulted in profiles with very minor differences (one obvious band; Fig. I, lanes 3 and 4). When five strains of the species B. adolescentis were examined in a similar manner they also appeared genetically quite homologous, and

Fig. 1. Xbal macrorestriction profiles of five B. breve strains. PFGE was performed at 180 V for 24 h with a ramped switch time of 2-12 s. Lane 1, B. breve 2257; lane 2, B. breve 2258; lane 3, B. breve 8815; lane 4, B. breve 8807; lane 5, B. breve 11815.

again the type strains 11814 and 2204 produced the expected identical patterns when digested with Xbal, SpeI and DraI (data not shown) reiterating the reproducibility of this method. The seven strains representing the species B. bifidum exhibited a greater degree of genomic heterogeneity with both XbaI and Spel restriction digests (Fig. 2). The profiles obtained in this study for strain 2203 appeared to correlate well with XbaUSpel digests of the same strain (ATCC 15696) reported by Roy et al. [10]. The type strains 8810 and 1454 displayed identical patterns (data not shown) but in general the strains within this species appeared quite diverse. When strains of this and other species were compared, inter-species differences were not found to be any more pronounced than intra-species differences (Fig. 2). In fact, B. pseudocatenulatum 8811 and B. bifidum 1455 displayed identical patterns (Fig. 2, lanes 4 and 7). These strains, obtained from different culture collections, are believed to be phenotypically identical although speciated differently. While four strains from the species B. infantis were compared, all produced different patterns when digested with XbaI and Spel (Xbal digests of three strains shown in Fig. 3, lanes 5, 6, 7). Intra-species relatedness did not appear to be greater than inter-species relatedness, e.g. when digested with the same enzyme, the

Fig. 2. Total DNA digested with Spel. Gels were resolved at 180 V for 24 h with a ramped switch time of 2-12 s. Lane 1, low range PPG marker; lane 2, B. bifidum Chr. Hansens 12; lane 3, B. catenulanum 2236; lane 4, B. pseudocatenulanum 3811; lane 5, B. bifidum 2203; lane 6. B. bifidum 1456; lane 7, B. bifidum 1455; lane 8, B. bifidum 1434; lane 9, B. bifidum 1453; lane 10, B. bifidum 1452.

three largest B. infantis 2256 fragments co-migrated with three of the four largest B. pseudocatenulatum 8811 fragments, only one of which co-migrated with fragments from the related species B. catenulatum (Fig. 3, lanes 6, 3, 4). However, over a range of digests B. catenulatum and B. pseudocatenulatum were shown to consistently result in a greater number of co-migrating bands. DNA-DNA homology studies have indicated that the species B. catenulatum and B. pseudocatenulatum are very similar in that they exhibit degrees of homology as high as 75% [2]. In this study the similarity of macrorestriction

Fig. 3. Xbal digesus of total DNA from Bifidobacterium stealas. Oels were run at 180 V for 24 h with a ramped switch time of 2~10 s. Lane 1. low range PFG marker; lane 2. B. angulatum NCFB 2236; lane 3. B. pseudocatenulurum NCIMB 8811; lane 4. B. extenulurum NCFB 2246; lane 5. B. infantis Visby 420; lane 6. B. Infantis NCFB 2256; lane 7. B. Infantis NCFB 2255.

Fig. 4. Comparison of Asul and Ascl digests of human bifidobacteria isolates. PPGE was performed at 180 V for 24 h with a ramped switch time of 3-5 s. Lana 1, low range PPG marker; lane 2. B. bifidum 2203 (Asel); lane 3. Bifidobacterium isolate 35612 (Asel); lane 4. Bifidobacterium isolate 35624 (Asel); lane 5. Bifidobacterium isolate 35638 (Asel); lane 6. B. bifidum 2203 (Asel); lane 7. Bifidobacterium isolate 35612 (Asel); lane 8. Bifidobacterium isolate 35634 (Asel); lane 9. Bifidobacterium isolate 35638 (Asel), lane 10. low range PFG marker.

patterns obtained for 1455 and 8811 with those obtained for B. catenularum suggest that these strains are indeed better classified as B. pseudocatenulatum.

3.3. Comparison of genomic patterns of human isolates

A bank of seven human intestinal isolates, classified as members of the genus Bifidobacterium both by their 3:2 acetate:lactate ratio as determined by HPLC and by classical positive fructose 6-phosphate phosphoketolase reactions, were also compared by PFGE. As these particular strains were all isolated: from one individual it was of interest to determine if they were identical. Therefore the strains were compared by restricting their genomic DNA with a number of enzymes (AvrII, DraI, AseI, Xbal, SpeI, NotI). Only two classes of restriction patterns were obtained with isolate 35658 displaying a different banding pattern to each of the other isolates. The two types of banding patterns generated for Asel and AscI are shown in Fig. 4 (lanes 3-5 and 7-9, respectively).

The patterns obtained from the two human isolate groups (represented by 35658 and 35612) were compared to digest patterns of a number of culture collection strains (B. adolescentis, B. angulatum, B. bifidum, B. infantis, B. longum, B. pseudocatenulatum and B. breve) in an attempt to identify the isolates

to species level. However, although co-migrating bands could be identified, due to the extreme sensitivity of this method, species boundaries could not clearly be defined. It would therefore appear that although PFGE is a good discriminatory technique it would require a great deal of screening to establish its taxonomic relevance.

3.4. Genomic sizes

Genome sizes were estimated for eight strains representing different species (Blfidobacterium sp. 35612, B. angulatum, B. catenulatum, B. pseudocatenulatum, B. bifidian, B. breve, B. infantis, B. adolescentis; see Table 2). Fragments obtained from at least two different enzymes were sized. In addition, each gel was run under three different ramped switch times as described in Section 2 to obtain maximum resolution of different molecular mass fragments. In each case the size of the restriction fragments was determined as described by Heath et al. using two flanking size standards [14]. The presence of multiple bands was assessed by visual evaluation of ethidium bromide staining. Estimated genome sizes ranged from 1.5 Mb to 2.1 Mb with an average genome size of 1.8 Mb. This value places them in the lower category size range for bacterial chromosomes, smaller than

Table 2
Genome restriction analysis of Blidobactertum strains by PFGE

Strain	Enzyme	Total number of restriction fragments	Genome size (Mb)
Blfidobacterium sp. 35612	Xbal	18	1.85
	Spel	21	1.5
	Dra1	11	1.79
B. angulatum	Xbal	16	1.77
	Spel	13	1.50
B. catemilatum	Xbal	18	1,46
	Spel	18	1.69
B. pseudocauenulatum	Xbal	19	1.65
	Spel	19	1.55
B. bifidum 8810	Xbal	16	1.96
	Spal	25	1.80
B. breve 2257	Xbal	11	1.53
	Spei	21	1.64
B. Infantis 2255	Xbai	18	1,67
	Spel	23	2.07
B. adolescensis 2231	Ybal	16	1.97
	Spel	19	2.02

the genetically related Actinomycetaceae, Streptomyces sp. (6.5-8.2 Mb) and Corynebucterium glutamicum (2.987 Mb) [15]. PFGE although a popular method of chromosome sizing can at best only be relied on to give an estimated value. The values obtained for B. breve NCFB 2257 is very close to the 1.6 Mb value proposed by Roy et al. [10] for the synonymous strain B. breve ATCC 15700 but lower than the 2.1 Mb values reported by others for members of the same species [9]. Profiles obtained for B. infantis strain NCFB 2205, when compared to those described previously [10] for the equivalent strain ATCC 15697, revealed some slight differences. In this study a greater number of smaller sized bands resulted in a higher genomic size of approximately 1.87 Mb compared to the 1.5 Mb reported by Roy et al. [10]. This study is also the first to report estimated genome sizes for strains of B. angulatum, B. catenulatum or B. pseudocaternilatum.

References

- [1] Mella, L., Ludwig, W., Rouger, U., Gut, C., Kaufmann, P., Dusen, G., Wenger, S. and Teuber, M. (1997) Bifidobacterium lactis sp. nov., a moderately oxygen tolerant species isolated from fermented milk. Syst. Appl. Microbiol. 20, 57-64.
- [2] Lauer, E. and Kandler, O. (1983) DNA-DNA homology, murein types and enzyme patterns in the type strains of the genus Bifidobacterium. Syst. Appl. Microbiol. 4, 42-64.
- [3] Kaufmann, P., Pfefferkorn, A., Teuber, M. and Meile, L. (1997) Identification and quantification of Blitdobacterium species isolated from food with genus-specific 16S rRNA-targeted probes by colony hybridization and PCR. Appl. Environ. Microbiol. 63, 1268-1273.
- (4) Yamamoto, T., Morotomi, M. and Tanaka, R. (1992) Speciesspecific oligonucleotide probes for five Bifidobacterium species detected in human intestinal microfiora. Appl. Environ. Microbiol. 58, 4076-4079.

- [5] Kok. R.G., De Waal, A., Schut, F., Welling, G.W., Weetk, G. and Hellingwerf, K.J. (1996) Specific detection and analysis of a probiotic Bifidobacterium strain in Infant feces. Appl. Environ. Microbiol. 52, 3668-3672.
- [6] Mangin, I., Bourget, N., Bouhnik, Y., Bisetti, N., Simonet, J.-M. and Decaris, B. (1994) (dentification of Bifidobacterium strains by rRNA gene restriction patterns. Appl. Environ. Microbiol. 60, 1451-1458.
- [7] Ito. M., Ohno, T. and Tanaka, R. (1992) A specific DNA probe for identification of Bifidobacterium breve. Microbiol. Ecol. Health Dis. 5, 185-192.
- [8] Smith, C.L. and Condemine, G. (1990) New approaches for physical mapping of small genomes. J. Bacteriol. 172, 1167-1172
- [9] Bourget, N., Simonet, J.-M. and Decaris, B. (1993) Analysis of the genome of the five Bifidobacterium breve strains: plasmid content, pulsed-field gel electrophoresis genome size estimation and rrn loci number. FEMS Microbiol. Lett. 110, 11-20.
- [10] Roy, D., Ward, P. and Champagne, G. (1996) Differentiation of bifidobacteria by use of pulsed-field gel electrophoresis and polymerase chain reaction. Int. J. Food Microbiol. 29, 11–29.
- [11] Scardovi, V. (1986) Genus Bifidobacterium. In: Bergey's Manual of Systematic Bacteriology (Sneath, P.H.A., Mair, N.S., Sharpe, M.E. and Holt, J.G., Eds.), Vol. 2, pp. 1418-1434. Williams and Wilkins, Baltimore, MD.
- [12] Moissenet, D., Valcin, M., Marchaed, V., Grimprel, E., Begue, P., Garbarg-Chenon, A. and Vu-Thien, H. (1996) Comparative DNA analysis of Bordetella persunts clinical isolates by pulsed field gel electrophoresis, randomly amplified polymorphism DNA, and ERIC polymerase chain reaction. FEMS Microbiol. Lett. 143, 127-132.
- [13] McClelland, M., Jones, R., Patel, Y. and Nelson, M. (1987) Restriction endonucleases for pulsed field mapping of bacterial genomes. Nucleic Acids Res. 15, 5985-6005.
- [14] Henth, J.D., Perkins, J.D., Sharma, B. and Weinstock, G.M. (1992) Notl genomic deavage map of Escherichia coli K-12 strain MG1655, J. Bacteriol. 174, 558-567.
- [15] Correia, A., Martin, J.F. and Castro, J.M. (1994) Pulsed-field gel electrophoresis analysis of the genome of amino acid producing corynebacteria: chromosome sizes and diversity of restriction patterns. Microbiology 140, 2841-2847.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.