STAT1006 Week 1 Cheat Sheet

Lisa Luff

8/6/2020

Contents

Revision
Statistical Inference
Hypothesis Testing
Testing a population mean: One Sample T-Test
Robustness of T-Tests
Continuity Correction
Which Statistical Modelling/Inference?
New Topics
Non-Parametric (Distribution Free) Testing
Addressing non-Normal data
Non-Parametric Hypothesis Testing
Rank Transformations
The Wilcoxon Signed Rank Test
Linear Models and Linear Regression

Revision

Statistical Inference

- Select from:
 - A statistic is a property of the sample
 - Statistics of a sample:
 - * Mean: (x)
 - * Standard Deviation: s
 - * Proportion: (p)
- Which is a representation of:
 - A parameter is a property of the population
 - Parameters of a population are:
 - * Mean: μ
 - * Standard Deviation: σ
 - * Proportion: p
- Statistical inference is:
 - Hypothesis testing
 - Estimation:
 - 1. Point estimation
 - 2. Confidence interval

Hypothesis Testing

- 1. State the hypotheses (null and alternative)
- 2. Calculate the test statistic
- 3. Determine the sampling distribution of the test statistic
- Eg. The sampling distribution is t, with df = x
- 4. Find the p-value
- 5. Make a decision
- 6. State your conclusion

Testing a population mean: One Sample T-Test

- σ is the population standard deviation
- μ is the population mean
- ullet s is the sample standard deviation
- \bar{x} is the sample mean
- n is the sample size
- When σ is known Z test
 - Test statistic: $z = \frac{(\bar{x} \mu)}{\frac{\sigma}{\sqrt{n}}}$
 - Which follows the Standard Normal Distribution, N(0, 1)
- When σ is unknown t-test
 - Test statistic: $t = \frac{\bar{x} \mu}{(\frac{s}{\sqrt{n}})}$
 - Which follows Student's T-Distribution with df = n 1

Robustness of T-Tests

- If a significance test is robust, the p-value does not change very much when the conditions for use of the procedure are violated
 - For t-tests
 - * Except for small samples, simple random sampling is more important than the condition that the population distribution is Normal
 - a) Sample size at least 15: t procedures can be used, except in the presence of strong outliers or skewness
 - b) Sample size less than 15: Use t procedures if the data appear close to Normal
 - c) Large samples(Central Limit Theorum), roughly $n \ge 40$: The t procedures can be used even for clearly skewed distributions

Continuity Correction

- A continuity correction factor is used when you use a continuous function to approximate a discrete one
 eg. When you use a Normal distribution to approximate a binomial
- You just add or subtract 0.5
 - Deciding whether to add or subtract 0.5:
 - * P(X = n) use P(n 0.5 < X < n + 0.5)
 - * P(X > n) use P(X > n + 0.5)
 - * P(X < n) use P(X < n 0.5)
 - * $P(X \ge n)$ use P(X > n 0.5)
 - * $P(X \le n)$ use P(X > n + 0.5)

Which Statistical Modelling/Inference?

Which statistical modelling/inference?

Type of objective	Type of data	Statistical method/model (PARAMETRIC)	Statistical method/model (NONPARAMETRIC)
RELATIONSHIPS	2 numerical (1 or more than 1 numerical explanatory, 1 numerical response)	Simple Linear Regression Multiple Linear Regression (Weeks 5-12)	
	Numerical – 1 sample from 1 population Numerical – 1 sample paired	One sample t-test Paired t-test	Wilcoxon Signed Rank Test (Week 1) Wilcoxon Signed Rank Test
COMPARISONS	Numerical –	Two sample t-test	(Week 2) Wilcoxon Rank Sum Test (Week
	2 samples from 2 independent populations	Two sample t-test	2)
	Numerical – 3 samples or more from 3 or more independent populations	ANOVA 1006 Semester 2 2020	Kruskal Wallis Test (Week 3)

New Topics

Non-Parametric (Distribution Free) Testing

- Extension of t and F tests for cases where the usual assumption of Normality may not be tenable
 - Assumptions made for single sample t-tests:
 - 1. The data is a random sample
 - 2. The distribution of the sample means are Normal
 - * This can mean:
 - a) The underlying data distribution is Normal
 - b) The sample size is large enough for the Central Limit Theorum to give a Normal distribution for the sample means
 - Assumptions made for non-parametric methods (usually):
 - 1. Independence
 - 2. Population distributions are continuous
- Methods are based on ranks, which, after calculating, the actual observations are not used
 - Disadvantage: Can be less efficient because not all the information in the observations is used

Addressing non-Normal data

- Is the lack of normality due to outliers?
 - If the outlier appears to be "real" data, you have to leave it in
 - If you have reason to think the outlier is an error, you may be able to remove it
- Try transforming the data
 - Try a logarithm for right-skewed data that are positive numbers
- Try another standard distribution
 - Other procedures can replace the t procedures if data (especialy right-skewed data) fit another distribution
- Use modern bootstrap methods and permutation tests
 - Although often more computationally intensive than t procedures, such methods avoid the requiement of a specific type of distribution for the population
- Use non-parametric methods, as discussed here

Non-Parametric Hypothesis Testing

- If a sample size is small and the population is non-Normal, non-parametric tests provide an alternative
- Mean is replaced by median, denoted as $\tilde{\mu}$ or η
 - We use median because population might be skewed
- How to apply this as a sign test (rank test is an extension of this):
 - 1. State hypotheses in terms of $\tilde{\mu}_0$ and $\tilde{\mu}_A$ and compare with $\tilde{\mu}$
 - 2. Replace each value in the data set with + if it is greater than $\tilde{\mu}_0$, or if it is less
 - 3. If H_0 is true, then the number of plus signs should be approximately equal to the number of minus signs
 - If we observe more of one sign than the other than would occur by chance alone, reject H_0

Rank Transformations

- Based on the ranks, or order, of the data and not the actual values
- Focuses on the center of the population(s)
 - If a Normal distribution: mean
 - If a skewed distribution: median
 - * Ranking data is essential for median, as you must order the values to find which is at the center
- To rank observations, order them from smallest to largest, then assign a value to each starting with 1 for the smallest
 - Moving the values to their ranks retains only the ordering of the observations and makes no other use of their numerical values
- Dealing with ties in rank tests:
 - If two or more values are the same as each other
 - * Each will be assigned the average of the corresponding ranks
 - * Then you continue ranking with the next value
 - EG: 3rd and 4th values are equal, (3+4)/2=3.5, so both the 3rd and 4th values will be assigned as 3.5, and then the next value will the 5th.

The Wilcoxon Signed Rank Test

- The exact distribution for the Wilcoxon test W applies only data that aren't tied
- Most statistical software will detect ties and make the necessary adjustments when using the Normal approximation
- 1. Draw a simple random sample from the population of size n, with values of $X_1, X_2, ..., X_n$
- 2. Set the hypotheses in terms of $\tilde{\mu}$
- 3. Transform each value of X_i into $X_i \tilde{\mu}_0 = X_i'$
- 4. Remove ties (this would be when $X_i' = 0$)
- 5. Rank the **absolute** values of X_i'
- If there are ties between $|X_i'|$ values, then statistical software will be needed to evaluate, as it will be able to make the necessary adjustments
- 6. The sum W^+ of the ranks for the postive differences (used to evaluate $\tilde{\mu} < \tilde{\mu}_0$) is the Wilcoxon signed rank statistic (Not positive because they're absolute, only those whose value X'_i was positive)
- This can also be done to calculate W_{-} (sum of negative values), when evaluating $\tilde{\mu} > \tilde{\mu}_0$
- Or to calculate W ($min(W^+, W_-)$), when evaluating $\tilde{\mu} \neq \tilde{\mu}_0$
- 7. Calculate the p-value for the Wilcoxon signed rank statistic using the Normal approximation with the continuity correction (assuming $n \ge 15$)
- R uses this approximation
- If the distribution of the responses is not affected by the different treatments within pairs, then W^+ has:
 - Mean: $\mu_{W^+} = \frac{n(n+1)}{4}$
- Standard deviation = $\sigma_{W^+} = \sqrt{\frac{n(n+1)(2n+1)}{24}}$ Under H_0 , the sampling distribution of $z = \frac{(W^+(\pm 0.5 \text{ continuity correction}) \mu_{W^+})}{\sigma_{W^+}}$ is approximately Standard Normal
- 8. The Wilcoxon signed rank test rejects the hypothesis that there are no systematic differences between X_i' when the rank sum W^+ is far from its mean

Linear Models and Linear Regression

- Linear models are the basis of many common methods of statistical analysis
 - eg. t-tests (one or two means), f-tests (several means) and multivariate methods