A Level Pure Mathematics Notes

Xingzhi Lu

2024

Contents

1	Proof 1.1 Methods
2	Algebra and functions2.1 Expressing solutions with set notations
3	Coordinate geometry in (x, y) plane 3.1 Parametric equations
4	Sequences and series 4.1 Binomial expansion
5	Trigonometry 5.1 Radian calculations 5.2 Trigonometry formulae 5.3 Identities 5.4 Graphs
6	Exponentials and logarithms 6.1 Sketching graphs 6.2 e^x function 6.3 Logarithm
7	Differentiation 7.1 Formulae
8	Integration 1 8.1 Definition 1 8.2 Formulae 1 8.3 Techniques 1
9	Numerical methods 1 9.1 Locating roots 1 9.2 Iteration 1 9.3 The Newton-Raphson method 1 9.4 The trapezium rule 1
10	Vectors110.1 Angle with x-, y-, and z-axis110.2 Vectors in equations1

1 Proof

1.1 Methods

- Proof by deduction
- Proof by exhaustion
- Disproof by counter example
- Proof by contradiction

1.2 Proof by contradiction

1.2.1 Steps

- 1. Assume that the first statement is false
- 2. Use logical steps / contradiction from knowledge to show that the assumption is false
- 3. Conclude that the assumption is false so the original statement must be true

1.2.2 Irrationality of $\sqrt{2}$

Assumption: $\sqrt{2}$ is a rational number

Then $\sqrt{2} = \frac{a}{b}$ for some integers a and b

Also assume that a and b has no common factors so the fraction is in the simplest form

So
$$2 = \frac{a^2}{b^2}$$
, $a^2 = 2b^2$

So a^2 must be even, so a is also even

If a is even, then it can be expressed in the form a = 2n, where n is an integer

Substitute a = 2n: $(2n)^2 = 2b^2$

So $4n^2 = 2b^2$

So $b^2 = 2n^2$, hence b^2 must be even and b is also even

If a and b are both even, they will have a common factor or 2

This contradicts that a and b has no common factors, so $\sqrt{2}$ is an irrational number

1.2.3 Infinity of primes

Assumption: there is a finite number of prime numbers

List all the prime numbers that exist: $p_1, p_2, p_3, \ldots, p_n$

Consider the number $N = p_1 \times p_2 \times p_3 \times \cdots \times p_n + 1$

When N is divided by any of $p_1, p_2, p_3, \ldots, p_n$ a remainder of 1 is produced so none of them is a factor of N

Therefore N must be prime or have a prime factor not in the list of all the prime numbers that exist

This contradicts the assumption that there is a finite number of prime numbers

Therefore there must be an infinite number of prime numbers

2 Algebra and functions

2.1 Expressing solutions with set notations

Examples:

- x > a and x < b can be expressed as $\{x : x > a\} \cap \{x : x < b\}$
- x < c or x > d can be expressed as $\{x : x > c\} \cup \{x : x < d\}$

2.2 Sketching graphs

2.2.1 Quadratic / cubic / quartic

Find:

- Roots (may only be one or none)
- \bullet y-intercept
- Turning point
- \bullet Shape

${\bf 2.2.2} \quad {\bf Reciprocal\ graphs}$

Find:

- Horizontal asymptotes (by long division)
- \bullet Vertical asymptotes (where denominator = 0)

3 Coordinate geometry in (x, y) plane

3.1 Parametric equations

3.1.1 Convert to Cartesian form

- Express t in terms of x, then substitute t = f(x) into y = g(t)
- ullet Find the range of x by using the original parametric equation
- ullet Find the range of y using original equation / considering the domain of x

3.1.2 Sketching curve

Sketch at regular intervals of t

4 Sequences and series

4.1 Binomial expansion

4.1.1 Expanding $(1+x)^n$

When |x| < 1:

$$(1+x)^n \approx 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \dots$$

4.1.2 Expanding $(a + bx)^n$

$$(a+bx)^n = (a(1+\frac{b}{a}x))^n = a^n(1+\frac{b}{a}x)^n$$

Valid for
$$\left|\frac{b}{a}x\right| < 1$$
 or $|x| < \frac{a}{b}$

4.2 Divergent / convergent series

$$\sum_{i=1}^{n} u_i = u_1 + u_2 + u_3 + \dots + u_n$$

If
$$\lim_{n\to\infty} S_n$$
 exists, $\sum_{i=1}^n u_i$ converges

If
$$\lim_{n\to\infty} S_n$$
 does not exist, $\sum_{i=1}^n u_i$ diverges

4.3 Geometric series

Sum of first n terms: $S_n = \frac{a(1-r^n)}{1-r}$

Sum to infinity: When |r| < 1 (convergent series): $S_{\infty} = \frac{a}{1-r}$

4.4 Recurrence relations

Increasing sequence: $u_{n+1} > u_n$ for all $n \in \mathbb{N}$

Decreasing sequence: $u_{n+1} < u_n$ for all $n \in \mathbb{N}$

Periodic sequence: If there is an integer k such that $u_{n+k} = u_n$ for all $n \in \mathbb{N}$, k = the order of the sequence

5 Trigonometry

5.1 Radian calculations

Arc length: $s = r\theta$

Area of sector: $A = \frac{1}{2}r^2\theta$

5.2 Trigonometry formulae

5.2.1 Addition / subtraction

- $\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$
- $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$
- $\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$
- $\sin A + \sin B = 2\sin\frac{A+B}{2}\cos\frac{A-B}{2}$
- $\sin A \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$
- $\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$
- $\cos A \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$

5.2.2 Double angle

- $\sin 2A = 2\sin A\cos A$
- $\bullet \cos 2A = \cos^2 A \sin^2 A$
- $\bullet \ \tan 2A = \frac{2\tan A}{1 \tan^2 A}$

5.2.3 Power descending

(Derive from double angle)

- $\sin A \cos A = \frac{\sin 2A}{2}$
- $\bullet \sin^2 A = \frac{1 \cos 2A}{2}$
- $\bullet \cos^2 A = \frac{1 + \cos 2A}{2}$

5.2.4 Half angle

- $\bullet \ \sin\frac{A}{2} = \pm\sqrt{\frac{1-\cos A}{2}}$
- $\bullet \cos \frac{A}{2} = \pm \sqrt{\frac{1 + \cos A}{2}}$
- $\tan \frac{A}{2} = \pm \sqrt{\frac{1 \cos A}{1 + \cos A}} = \frac{1 \cos A}{\sin A} = \frac{\sin A}{1 + \cos A}$

5.2.5 Small angle estimation

When θ is small:

- $\sin \theta \approx \theta$
- $\cos \theta \approx 1 \frac{\theta^2}{2}$
- $\tan \theta \approx \theta$

5.3 Identities

•
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

•
$$\sin^2 \theta + \cos^2 \theta = 1$$

•
$$\tan^2 \theta + 1 = \sec^2 \theta$$

•
$$\cot^2 \theta + 1 = \csc^2 \theta$$

5.4 Graphs

5.4.1 secant, cosecant and cotangent

5.4.2 arcsin, arccos, arctan

6 Exponentials and logarithms

6.1 Sketching graphs

Find the y-intercept of the graph

6.2 e^x function

$$(e^x)' = e^x$$

 $(e^{kx})' = ke^{kx}$ (gradient directly proportional to y value)

6.3 Logarithm

$$a^x = n$$
: $\log_a n = x \ (a \neq 1 \text{ and } a > 0, x \geq 0)$

6.3.1 Laws

The multiplication law: $\log_a x + \log_a y = \log_a xy$

The division law:
$$\log_a x - \log_a y = \log_a(\frac{x}{y})$$

The power law:
$$\log_a x^k = k \log_a x$$

Change base formula :
$$\log_a b = \frac{\log_c b}{\log_c a}$$

6.3.2 Logarithms in non-linear form

Exponential

•
$$y = ab^x \rightarrow \ln y = x \ln b + \ln a$$

• x-axis =
$$x$$
, y-axis = $\ln y$, gradient = $\ln b$, y-intercept = $\ln a$

Power

•
$$y = ax^b \rightarrow \ln y = b \ln x + \ln a$$

• x-axis =
$$\ln x$$
, y-axis = $\ln y$, gradient = b , y-intercept = $\ln a$

Logarithmic

•
$$y = a \ln x \rightarrow \text{kept the same}$$

• x-axis =
$$\ln x$$
, y-axis = y, gradient = a

7 Differentiation

$$f'(x) = \lim_{n \to 0} \frac{f(x+h) - f(x)}{h}$$

7.1 Formulae

$\mathbf{f}(\mathbf{x})$	$\mathbf{f'}(\mathbf{x})$
$\tan kx$	$k \sec^2 kx$
$\sec kx$	$k \sec kx \tan kx$
$\cot kx$	$-k \csc^2 kx$
$\csc kx$	$-k\operatorname{cosec} kx\operatorname{cot} kx$

7.2 Rules

Chain rule: $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$

Product rule: (f(x)g(x))' = f'(x)g(x) + g'(x)f(x)

Quotient rule: $\frac{f(x)}{g(x)} = \frac{f'(x)g(x) - g'(x)f(x)}{g^2(x)}$

7.3 Tangent and normal

For curve y = f(x):

Tangent at (a, f(a)): y - f(a) = f'(a)(x - a)

Normal at (a, f(a)): $y - f(a) = -\frac{1}{f'(a)}(x - a)$

Integration 8

Definition

$$\int_{a}^{b} f(x) dx = \lim_{\delta x \to 0} \sum_{x=a}^{b} f(x) \delta x$$

Formulae 8.2

Formula sheet:

$$f(\mathbf{x})$$
 $\int f(x) dx (+c)$

$$\sec^2 kx$$
 $\frac{1}{k} \tan kx$

$$\tan kx \qquad \frac{1}{k} \ln |\sec kx|$$

$$\cot kx$$
 $\frac{1}{k}\ln|\sin kx|$

$$\csc kx - \frac{1}{k} \ln|\csc kx + \cot kx|, \frac{1}{k} \ln|\tan(\frac{1}{2}kx)|$$

$$\sec kx \qquad \frac{1}{k}\ln|\sec kx + \tan kx|, \ \frac{1}{k}\ln|\tan(\frac{1}{2}kx + \frac{1}{4}\pi)|$$
 Integrating $\sin^2 x$ or $\cos^2 x$ (power descending):

•
$$\int \sin^2 x \, dx = \int \frac{1 - \cos 2x}{2} \, dx = \frac{1}{2} (x - \frac{\sin 2x}{2}) + c$$

•
$$\int \cos^2 x \, dx = \int \frac{1 + \cos 2x}{2} \, dx = \frac{1}{2} (x + \frac{\sin 2x}{2}) + c$$

By part:

$$\bullet \int \ln x \, dx = x \ln x + x + c$$

8.3 **Techniques**

8.3.1 U-sub

•
$$\int f'(ax+b) dx = \frac{f(ax+b)}{a} + c$$

Substitution:
$$u = ax + b$$

•
$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + c$$

Substitution:
$$u = f(x)$$

8.3.2 By part

$$\bullet \int u \, dv = uv - \int v \, du$$

• LIPET rule: leftmost =
$$u$$

L: logarithmic

I: inverse trigonometry

P: polynomial

E: exponential

T: trigonometry

9 Numerical methods

9.1 Locating roots

9.1.1 Method

If a function f(x) is continuous on the interval [a,b] and f(a) and f(b) have opposite signs, then f(x) has at least one root, x, which satisfies a < x < b

9.1.2 How change of sign can fail

- When the interval is too large sign may not change as there may be an even number of roots
- If the function is not continuous, sign may change but there may be an asymptote e.g. reciprocal

9.2 Iteration

- Iterative formula can be found by rewriting f(x) = 0 into x = g(x), then $x_{n+1} = g(x_n)$
- Find the value of x_1 , x_2 , x_3 , etc.
- If converge (get closer to the root from the same direction / alternate above and below the root) then solution can be found

9.3 The Newton-Raphson method

- $\bullet \ x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$
- \bullet Find approximation to x decimal places
- \bullet Show accurate to x decimal places: use change in sign to show
- * If any value of x_i is at a turning point then the method will fail as f'(x) = 0 which results in division by zero

9.4 The trapezium rule

$$\int_{a}^{b} y \, dx \approx \frac{1}{2} (y_0 + 2(y_1 + y_2 + \dots + y_{n-1}) + y_n) \text{ where } h = \frac{b-a}{n} \text{ and } y_i = f(a+ih)$$

10 Vectors

10.1 Angle with x-, y-, and z-axis

If $\vec{a} = x\vec{i} + y\vec{j} + z\vec{k}$ makes an angle θ_x with the positive x-axis then $\cos\theta_x = \frac{x}{|a|}$, similarly for angles θ_y and θ_z

10.2 Vectors in equations

10.2.1 2D

If \vec{a} and \vec{b} are 2 non-parallel vectors and $p\vec{a}+q\vec{b}=r\vec{a}+s\vec{b}$ then p=r and q=s

10.2.2 3D

If \vec{a} , \vec{b} and \vec{c} are vectors in 3 dimensions which do not all lie on the same plane (parallel to the same plane) then you can compare their coefficients on both sides of an equation