

Overview of Distributed Training

Data Parallelism

data GPU 0 data GPU₁ data GPU 2

GPU 3

Pipeline Parallelism

A1

15

A2

Y1

258

cat

346

Y1

258 346

Tensor Parallelism

Overview of Distributed Training

ZeRO Performance

- 1. Super linear scalability
- 2. At high complexity (400 GPUs), performance per GPU doesn't decrease much

source: https://arxiv.org/pdf/1910.02054

Example with 4 GPUs

Model size is represented by the colored squares

Parameters, **Gradients** and **Optimizer State** split across GPUs Data is split across GPUs

Params broadcasted from GPU 0

Each GPU calculates on its own Data

A subset of activations are saved for checkpointing

Once complete, other GPUs delete the parameters

Continue until all GPUs are complete

All GPUs calculate the loss

Start backward (Parameters of M3 reused)

Params + checkpointing activations -> recompute the activations

Gradients reduced to GPU3

Note: This communication is overlapped with calculation as well

Backward pass to the next layer

Note: This computation is overlapped with reduced communication

All gradients calculated

Using the gradients (fp16 casted to fp32) to update the params (fp32)

REDUCE-SCATTER

→ now each GPU has one finalized chunk, in which the complete sum is computed

Ring-Allreduce

Assume we have Ψ parameters, Traditional DP involves a all-reduce for gradients, $2 * (N-1) * \Psi / N \approx 2 \Psi$

Assume we have Ψ parameters, N GPUs

Hint1: param broadcasted?

Hint2: gradients reduced?

Assume we have Ψ parameters

1. Param broadcasted in forward: $\Psi/N * N = \Psi$

Assume we have Ψ parameters

- 1. Param broadcasted in forward: Ψ
- 2. Param broadcasted in backward: Ψ
- 3. Gradients reduced in backward: Ψ

So with stage3: Total volume: $3 * \Psi$

Zero Overview

source: https://arxiv.org/pdf/1910.02054

Combining All Together 2D Parallel

Combining All Together 3D Parallel

Example in industry: (MP) TP=16, PP = 8, Zero (stage1) DP= 8, 1024 NPUs to train LLama2 70B

Zero-R

1. Partitioned Activation Checkpointing

- The activation chunk is gathered only on-demand during backward pass.
- ZeRO-offload can move these partitioned activations to CPU memory.

2. CB: Constant-Size Buffers

- LLMs fuse tensors into a single massive buffer to improve all-reduce efficiency.
- ZeRO-R uses fixed-size buffer, splitting the work into chunks if necessary.

3. MD: Memory Defragmentation

ZeRO-R allocates contiguous memory regions for major tensors (long lived).

Zero-DP Performance

Figure 4: Max model throughput with ZeRO-DP.

Figure 5: SOTA Turing-NLG enabled by ZeRO.

source: https://arxiv.org/pdf/1910.02054

Zero-DP Performance

Figure 6: Max model size

Figure 7: Max cache allocated.

Figure 8: Throughput per GPU.

source: https://arxiv.org/pdf/1910.02054