DiS Notes (divB):- ODD 2020-2021

(Author: Prof Ravindra Divekar)

Here is the list of rules used for the boolean expression simplifications. This is a fairly standard list you could find most anywhere, but we thought you needed an extra copy.

The Idempotent Laws	AA = A		A+A=A		
The Associative Laws	(AB)C = A(BC)		(A+B)+C = A+(B+C)		
The Commutative Laws	AB = BA		A+B=B+A		
The Distributive Laws	A(B+C) = AB+AC		A+BC = (A+B)(A+C)		
The Identity Laws	AF = F	AT = A	A+F=A	A+T=T	
The Complement Laws	$A\overline{A} = F$	$A + \overline{A} = T$	$\overline{F} = T$	$\overline{T} = F$	
The Involution Law	$\overline{\overline{\mathbf{A}}} = \mathbf{A}$				
DeMorgan's Law	$\overline{AB} = \overline{A} + \overline{B}$		$\overline{A+B} = \overline{A} \overline{B}$,

Simplify: C + BC:

Expression	Rule(s) Used
C + BC	Original Expression
C + (B + C)	DeMorgan's Law.
(C + C) + B	Commutative, Associative Laws.
T + B	Complement Law. (T means true or logic1)
T	Identity Law.(T=1)

Simplify: AB(A + B)(B + B):

Expression	Rule(s) Used
AB(A + B)(B + B)	Original Expression
AB(A + B)	Complement law, Identity law.
(A + B)(A + B)	DeMorgan's Law
A + BB	Distributive law. This step uses the fact that "or" distributes over
	"and". Itcan look a bit strange since addition does not distribute
	Over multiplication.
Α	Complement, Identity.

Simplify: (A + C)(AD + AD) + AC + C:

Rule(s) Used
Original Expression
Distributive.
Complement, Identity.
Commutative, Distributive.
Associative, Idempotent.
Distributive.
Idempotent, Identity, Distributive.
Identity, twice.

UNIVERSAL GATES: NAND, NOR

Every other gate can be expressed or Symbolized as a combination of nand gates or nor gates.

NOR as a universal gate:-

```
NOR: Y = a' + b' OR = \simNOR = (a' + b')
NOT: (a + a)
AND: Y = a.b
         = ((a.b)')'
         = (a' + b')'
         = ((a+a)' + (b+b)')'
NAND: = (((a+a)' + (b+b)')')'
EXOR: Y = a xor b
            = ab' + a'b
              ((ab' + a'b)')'
            = ((ab')'. (a'b)')' :::: (x'+y') = x'.y'
            = ((a' + b). (a+b'))'
                                              ::::: (xy)' = x' + y'
            = let m = (a'+b) n = (a+b')
              (m.n)' = m' + n'
            = ( (a'+b)' + (a+b')' )' ← all NOR gates?
            = (((a+a)'+b)' + (a + (b+b)')')')'
EX-NOR: (ab' + a'b)' = ab + a'b'
```

NAND as a universal gate:-

```
NAND: Y = (a.b)'

AND: ((ab)')' = ((ab)'.(ab)')'

NOT: (a.a)'

OR: a+b = ((a+b)')' = (a'.b')' = ((a'b').(a'b'))'

NOR: ((ab)'.(ab)')'

EXOR: (((a'b)'(ab')')'

EX_NOR: do it yourself
```

Logic Gates using only NAND Gates

SOP = sum of products

Y = a'b + bc each term (a'b , bc) is called a **Minterm**

POS = product of sums

 $Y = (x'+z) \cdot (y+z')$ each term (x'+z) and (y+z') is a **Maxterm**

Canonical or Standard Form

```
Y(a,b,c) = ab + a'bc not in canonical form
            ab(c+c') + a'bc
            abc + abc' + a'bc ← is a canonical SOP form
ex2: Y(a,b,c,d) = ab + c'd'
= ab + cd'
= ab(c+c')(d+d') + cd'(a+a')(b+b')
= ab(cd+c'd+cd'+c'd') + cd'(ab+a'b+ab'+a'b')
= abcd + abc'd + abcd' + abcd' + abcd' + a'bcd' + a'b'cd' (term in red
occurs more than once so only one copy is kept).
= [abcd + abc'd + abcd'+ abc'd' + a'bcd' + ab'cd' + a'b'cd']
(is <u>canonical SOP</u> or <u>standard SOP</u> form of the given expression: ab + cd')
Y(p,q,r) = (p+r') \cdot (p+q+r)
        = (p + qq' + r'). (p+q+r)
        = (p+q+r') \cdot (p+q'+r') \cdot (p+q+r)
 Is canonical POS form of the given expression.
P1) X(a,b,c) = a'+b'
              = a'(b+b')(c+c') + b'(a+a')(c+c')
              = a'bc + a'b'c + a'bc' + a'b'c' +
                ab'c + a'b'c + ab'c' + a'b'c'
P2) Y(a,b,c)
= (a'+b')c
= (a'+b' + cc')(c + aa' + bb')
```

= (a'+b'+c)(a'+b'+c')(a+b+c)(a'+b+c)(a+b'+c)(a'+b'+c')

= (a'+b'+c)(a'+b'+c')(a+b+c)(a'+b+c)(a+b'+c)

Relation of Canonical Form or Standard form to Minterms or Maxterms:

```
EX1:
Y(a,b,c) = ab + a'bc
                                         ;not canonical form
          = ab(c+c') + a'bc
          = abc + abc' + a'bc ← is a canonical SOP form
           = m7 + m6 + m3
            = \sum m(3,6,7)
Here Y(a,b,c) = Sum of products
                 = contains minterms
                 = each product is a minterm
abc
000
001
010
0.11 = a'bc = m3
100
101
110 \text{ abc'} = \text{m6}
111 \text{ abc} = m7
P = (a'+b'+c).(a'+b'+c').(a+b+c).(a'+b+c).(a+b'+c) = Product of Sums
abc
0\ 0\ 0\ = (a+b+c) = M0
001
0.10 = .(a+b'+c) = M2
011
100 = (a'+b+c) = M4
101
1\ 1\ 0 = (a'+b'+c) = M6
1 \ 1 \ 1 = (a'+b'+c') = M7
P = M0. M2. M4. M6. M7 = \pi M(0,2,4,6,7)
```