Fisciano, 14/11/2016

Esercizio 1 Si consideri il seguente campione:

2, 3, 1, 3, 4, 5, 2, 6, 1, 7, 8, 6, 8, 6, 6, 5, 7, 4, 2, 1, 2, 4, 6, 4, 5, 1, 5, 6, 5, 1, 3, 3, 2, 7, 8 6, 6, 2, 4, 5, 8, 6, 8, 6, 6, 1, 3, 2, 5, 3, 4, 1, 6, 7, 8, 5, 7, 4, 3, 4, 3, 5, 5, 6, 4, 3, 3, 8, 5, 2

- (i) Individuare quali sono le modalità del carattere in esame e calcolarne le frequenze assolute e relative. [3 punti]
- (ii) Rappresentare i dati mediante un istogramma usando classi di ampiezza 1.5. [3 punti]

Esercizio 2 Un esperimento consiste nel lanciare due dadi, di cui uno equo e l'altro truccato nel senso che la faccia recante il numero 6 è stata modificata nel numero 5.

- (i) Determinare la probabilità che la somma degli esiti dei due lanci sia un numero minore o uguale ad 8. [3 punti]
- (ii) Se la somma degli esiti dei due lanci è un numero minore o uguale ad 8, qual è la probabilità che il dado truccato abbia mostrato un numero diverso da 5? [3 punti]

Esercizio 3 Un sistema elettronico è composto da tre componenti C_1 , C_2 , C_3 che funzionano secondo le seguenti regole:

- (R.1) C_1 funziona con probabilità 1/2;
- (R.2) Se C_i funziona, allora C_{i+1} funziona con probabilità (i+1)/6, i=1,2;
- (R.3) Se C_i non funziona, allora C_{i+1} funziona con probabilità i/6, i=1,2.
- (i) Calcolare la probabilità che il componente C_i funzioni, i = 2, 3. [5 punti]
- (ii) Se il componente C_{i+1} funziona, determinare la probabilità che anche C_i funzioni, i = 1, 2. [5 punti]

Esercizio 4 Se P(A) = P(B), in quale caso risulta $P(A | \overline{B}) = P(\overline{A} | B)$? Giustificare la risposta. [4 punti]

Esercizio 5 Un esperimento consiste nel generare a caso un vettore booleano di lunghezza n. Sapendo che il vettore contiene almeno un bit pari ad 1.

- (i) qual è la probabilità che i primi due bit sono pari ad 1? [3 punti]
- (ii) qual è la probabilità che i primi due bit sono pari ad 0? [3 punti]

Fisciano, 16/11/2016 – ore 13

Esercizio 1 Si consideri il seguente campione:

 $1.2, 1.3, 1.9, 1.3, 1.4, 1.5, 1.2, 1.6, 1.1, 1.7, 1.8, 1.6, 1.8, 1.6, 1.6, 1.5, 1.7, 1.4, 1.2, 1, 1.2, 1.4, 1.6, 1.4\\ 1.5, 1.1, 1.5, 1.6, 1.5, 1.1, 1.3, 1.9, 1.2, 1.7, 1.6, 1.6, 1.2, 1.4, 1.5, 1.8, 1.6, 1.8, 1.6, 1.6, 1.1, 1.3, 1.2, 1.5$

- (i) Individuare quali sono le modalità del carattere in esame e determinarne le frequenze assolute. [3 punti]
- (ii) Calcolare media, moda e mediana campionaria. [3 punti]

Esercizio 2 Un esperimento consiste nel generare a caso un vettore (x_1, \ldots, x_n) di lunghezza n, dove $x_i \in \{1, 2, \ldots, n\}$, $\forall i = 1, \ldots, n$. Si considerino i seguenti eventi: $A = \{la prima e l'ultima componente del vettore sono uguali<math>\}$, $B = \{tutte le componenti del vettore sono uguali<math>\}$, $C = \{nel vettore compare almeno una volta il numero <math>1\}$. Studiare l'indipendenza degli eventi A, B e C. [6 punti]

Esercizio 3 Un esperimento consiste nelle scegliere di attivare tre archi a caso del seguente grafo

È possibile raggiungere il nodo N_i partendo dal nodo N_j ($i \neq j$) solo se gli archi che collegano N_i ad N_j sono tutti attivi.

- (i) Determinare la probabilità che partendo da N_1 sia possibile raggiungere il nodo N_5 . [4 punti]
- (ii) Calcolare la probabilità che partendo da N_1 sia possibile raggiungere il nodo N_2 oppure il nodo N_5 . [6 punti]

Esercizio 4 Se $P(A \cup B) = P(A) + P(B)$, in quali casi possiamo affermare che A e B sono indipendenti? Giustificare la risposta [4 punti]

Esercizio 5 Si genera a caso un vettore ternario di lunghezza n costituito dai valori 0, 1, 2.

- (i) Determinare la cardinalità dello spazio campionario. [2 punti]
- (ii) Qual è la probabilità che un vettore non contenga mail il valore 2? [2 punti]
- (iii) Se il vettore non contiene mai il valore 2, qual è la probabilità che contenga tutti 0? [2 punti]

Fisciano, 16/11/2016 – ore 15

Esercizio 1 Si consideri il seguente campione:

 $2.5, 3.5, 1.9, 3.1, 4.3, 4.5, 3.2, 2.6, 4.1, 3.7, 3.8, 2.6, 3.8, 4.6, 3.6, 2.5, 4.7, 4.4, 3.2, 2.1, 3.2, 2.4, 2.6, 4.4\\ 3.5, 3.1, 2.5, 3.6, 3.5, 4.1, 4.3, 3.9, 2.2, 4.7, 2.6, 3.6, 2.2, 2.4, 3.5, 3.8, 3.6, 4.8, 4.6, 3.6, 2.1, 2.3, 3.2, 4.5$

- (i) Individuare quali sono le modalità del carattere in esame e determinarne le frequenze relative. [3 punti]
- (ii) Calcolare la varianza campionaria e la deviazione standard campionaria. [3 punti]

Esercizio 2 Un sistema di generazione di corrente è formato da tre generatori A_1 , A_2 , A_3 , disposti in parallelo, che funzionano indipendentemente l'uno dall'altro. La probabilità di funzionamento di A_i è pari ad i/6, i = 1, 2, 3.

- (i) Determinare la probabilità che il sistema funzioni. [4 punti]
- (ii) Sapendo che il sistema funziona, qual è la probabilità che il componente A_1 funzioni? [2 punti]

Esercizio 3 Da un'urna contenente 10 biglie (di cui 4 nere e 6 bianche) si estraggono 3 biglie in sequenza.

- (i) Determinare la probabilità che almeno due delle biglie estratte siano bianche. [4 punti]
- (ii) Se almeno due delle biglie estratte sono bianche, qual è la probabilità che la prima estratta è bianca? [6 punti]

Esercizio 4 Se P(A | B) = P(B) e P(B) > 0, in quali casi possiamo affermare che A e B sono indipendenti? Giustificare la risposta. [4 punti]

Esercizio 5 Un esperimento consiste nel lanciare n volte una moneta equa. Posto $A = \{\text{negli } n \text{ lanci si ottiene una sola volta testa}\}$, $B = \{\text{negli } n \text{ lanci si ottiene lo stesso esito}\}$ e $C = \{\text{negli } n \text{ lanci si ottiene almeno una volta testa}\}$, studiare l'indipendenza degli eventi A, $B \in C$. [6 punti]

Calcolo delle Probabilità e Statistica Matematica RISOLUZIONE DEGLI ESERCIZI

Fisciano, 14/11/2016

Esercizio 1 (i)

v_i	f_i	p_i
1	7	0,10
2	8	0,11
3	10	0,14
4	9	0,13
5	11	0,16
6	13	0,19
7	5	0,07
8	7	0,10

Esercizio 2 Consideriamo gli eventi $A = \{$ la somma degli esiti dei due lanci è un numero minore o uguale ad $8\}$ e $B = \{$ il dado truccato mostra un numero diverso da $5\}$, risulta

(i)
$$P(A) = \frac{27}{36} = 0.75$$
 (ii)
$$P(B \mid A) = \frac{P(A \cap B)}{P(B)} = \frac{21/36}{27/36} = \frac{21}{27} = 0.778$$

Esercizio 3 Consideriamo gli eventi $A_i = \{il \text{ componente } C_i \text{ funziona}\}, i = 1, 2, 3.$ Dai dati del problema si ha che

$$P(A_1) = \frac{1}{2}, \qquad P(A_2 \mid A_1) = \frac{1}{3}, \qquad P(A_3 \mid A_2) = \frac{1}{2}, \qquad P(A_2 \mid \overline{A_1}) = \frac{1}{6}, \qquad P(A_3 \mid \overline{A_2}) = \frac{1}{3}.$$

Quindi

(i)
$$P(A_2) = P(A_2 \mid A_1) \cdot P(A_1) + P(A_2 \mid \overline{A_1}) \cdot P(\overline{A_1}) = \frac{1}{3} \cdot \frac{1}{2} + \frac{1}{6} \cdot \frac{1}{2} = \frac{1}{4},$$
$$P(A_3) = P(A_3 \mid A_2) \cdot P(A_2) + P(A_3 \mid \overline{A_2}) \cdot P(\overline{A_2}) = \frac{1}{2} \cdot \frac{1}{4} + \frac{1}{3} \cdot \frac{3}{4} = \frac{3}{8}.$$

(ii)
$$P(A_1 | A_2) = \frac{P(A_2 | A_1) \cdot P(A_1)}{P(A_2)} = \frac{\frac{1}{3} \cdot \frac{1}{2}}{\frac{1}{4}} = \frac{2}{3},$$

$$P(A_2 | A_3) = \frac{P(A_3 | A_2) \cdot P(A_2)}{P(A_3)} = \frac{\frac{1}{2} \cdot \frac{1}{4}}{\frac{3}{8}} = \frac{1}{3}.$$

Esercizio 4 Essendo

$$P(A \mid \overline{B}) = \frac{P(A \cap \overline{B})}{P(\overline{B})} = \frac{P(A) - P(A \cap B)}{P(\overline{B})},$$

$$P(\overline{A} | B) = \frac{P(\overline{A} \cap B)}{P(B)} = \frac{P(B) - P(A \cap B)}{P(B)},$$

dall'ipotesi P(A) = P(B) segue che $P(A \mid \overline{B}) = P(\overline{A} \mid B)$ se $P(B) = P(\overline{B})$, ossia se

$$P(A) = P(B) = \frac{1}{2}.$$

Esercizio 5 Siano $A = \{\text{il vettore contiene almeno un bit pari ad } 1\}$, $B = \{\text{i primi due bit del vettore sono pari ad } 1\}$ e $C = \{\text{i primi due bit del vettore sono pari ad } 0\}$. Si ha che

(i)
$$P(B \mid A) = \frac{P(A \cap B)}{P(A)} = \frac{P(B)}{P(A)} = \frac{2^{n-2}/2^n}{1 - (1/2^n)} = \frac{2^{n-2}}{2^n - 1},$$

(ii)
$$P(C \mid A) = \frac{P(A \cap C)}{P(A)} = \frac{[1 - (1/2^{n-2})](1/4)}{1 - (1/2^n)} = \frac{2^{n-2} - 1}{2^n - 1}.$$

Fisciano, 16/11/2016 – ore 13

Esercizio 1 (i)

v_i	f_i
1.0	1
1.1	4
1.2	7
1.3	4
1.4	5
1.5	7
1.6	11
1.7	3
1.8	4
1.9	2

(ii) Risulta

 $media\ campionaria=1.46 \qquad moda=1.6 \qquad mediana\ campionaria=1.5$

Esercizio 2 Risulta

$$P(A) = \frac{n^{n-1}}{n^n} = \frac{1}{n}, \qquad P(B) = \frac{n}{n^n} = \frac{1}{n^{n-1}}, \qquad P(C) = 1 - \frac{(n-1)^n}{n^n}$$

$$P(A \cap B) = P(B) = \frac{1}{n^{n-1}}, \qquad P(A \cap C) = \left(\frac{1}{n}\right)^2 + \frac{n-1}{n^2} \cdot \left[1 - \frac{(n-1)^{n-2}}{n^{n-2}}\right]$$
$$P(B \cap C) = \frac{1}{n^n}, \qquad P(A \cap B \cap C) = \frac{1}{n^n}.$$

Esercizio 3 Un esperimento consiste nelle scegliere di attivare tre archi a caso del seguente grafo

Lo spazio campionario è costituito da

$$\binom{6}{3} = 20$$

possibili terne di archi. Posto $A_1 = \{$ partendo da N_1 è possibile raggiungere il nodo $N_5\}$ ed $A_2 = \{$ partendo da N_1 è possibile raggiungere il nodo $N_2\}$, si ha che

(i)
$$P(A_1) = \frac{12}{20} = \frac{3}{5},$$

(ii)
$$P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 \cap A_2) = \frac{18}{20} = \frac{9}{10},$$

essendo

$$P(A_2) = P(A_1) = \frac{3}{5}, \qquad P(A_1 \cap A_2) = \frac{6}{20} = \frac{3}{10}.$$

Esercizio 4 Dalla relazione $P(A \cup B) = P(A) + P(B)$ segue che $P(A \cap B) = 0$. Pertanto A e B sono indipendenti se P(A) = 0 oppure P(B) = 0.

Esercizio 5 (i) Risulta $|S| = 3^n$.

(ii) Posto $A = \{il \text{ vettore non contiene mail il valore 2}\}$, si ha che

$$P(A) = \frac{2^n}{3^n};$$

(iii) Considerato l'evento $B = \{il \text{ vettore contiene tutti } 0\},$

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)} = \frac{P(B)}{P(A)} = \frac{1/3^n}{2^n/3^n} = \frac{1}{2^n}.$$

Fisciano, 16/11/2016 – ore 15

Esercizio 1 (i)

v_i	p_i
1.9	0.021
2.1	0.042
2.2	0.042
2.3	0.021
2.4	0.042
2.5	0.063
2.6	0.083
3.1	0.042
3.2	0.083
3.5	0.083
3.6	0.104
3.7	0.021
3.8	0.063
3.9	0.021
4.1	0.042
4.3	0.042
4.4	0.042
4.5	0.042
4.6	0.042
4.7	0.042
4.8	0.021

(ii)

 $varianza\ campionaria=0.71$ $deviazione\ standard\ campionaria=0.84$

Esercizio 2 Posto $C_i = \{\text{il generatore A}_i \text{ funziona}\}, \text{ dai dati del problema risulta } P(C_i) = i/6, i = 1, 2, 3. Sia inoltre <math>B = \{\text{il sistema di generazione di corrente funziona}\}.$

(i)

$$P(B) = P(C_1 \cup C_2 \cup C_3) = P(C_1) + P(C_2) + P(C_3) - P(C_1 \cap C_2) - P(C_1 \cap C_3)$$
$$-P(C_3 \cap C_2) + P(C_1 \cap C_2 \cap C_3) = P(C_1) + P(C_2) + P(C_3) - P(C_1) \cdot P(C_2)$$
$$-P(C_1) \cdot P(C_3) - P(C_3) \cdot P(C_2) + P(C_1) \cdot P(C_2) \cdot P(C_3) = \frac{26}{36} = \frac{13}{18} = 0.7\overline{2}$$

(ii)
$$P(C_1 \mid B) = \frac{P(C_1 \cap (C_1 \cup C_2 \cup C_3))}{P(B)} = \frac{P(C_1)}{P(B)} = \frac{1/6}{26/36} = \frac{6}{26} = \frac{3}{13} = 0.23$$

Esercizio 3 Consideriamo gli eventi $B_i = \{\text{dall'urna si estraggono } i \text{ biglie bianche}\}, i = 1, 2, 3, ed <math>A = \{\text{la prima biglia estratta è bianca}\}$

(i)
$$P(B_2 \cup B_3) = \frac{\binom{4}{1}\binom{6}{2}}{\binom{10}{3}} + \frac{\binom{4}{0}\binom{6}{3}}{\binom{10}{3}} = \frac{2}{3};$$

(ii)
$$P(A \mid B_2 \cup B_3) = 1 - P(\overline{A} \mid B_2 \cup B_3) = 1 - \frac{1}{4} = \frac{3}{4},$$
 essendo
$$P(\overline{A} \mid B_2 \cup B_3) = \frac{\frac{4}{10} \cdot \frac{6}{9} \cdot \frac{5}{8}}{\frac{2}{3}} = \frac{1}{4}.$$

Esercizio 4 Se P(A | B) = P(B) allora risulta $P(A \cap B) = [P(B)]^2$. Pertanto, A e B sono indipendenti se P(A) = P(B).

Esercizio 5 Posto A= {negli n lanci si ottiene una sola volta testa}, B= {negli n lanci si ottiene lo stesso esito} e C= {negli n lanci si ottiene almeno una volta testa}, risulta

$$P(A) = \frac{n}{2^n}, \quad P(B) = \frac{2}{2^n}, \quad P(C) = 1 - \frac{1}{2^n}$$

$$P(A \cap B) = \begin{cases} 0, & \text{se } n > 1 \\ 1/2, & \text{se } n = 1 \end{cases} \qquad P(A \cap C) = P(A) = \frac{n}{2^n},$$

$$P(B \cap C) = \frac{1}{2^n}, \qquad P(A \cap B \cap C) = \begin{cases} 0, & \text{se } n > 1 \\ 1/2, & \text{se } n = 1 \end{cases}$$

Pertanto gli eventi A, B e C non sono indipendenti.