Clips 2

Fernández Angulo, Óscar García Prado, Sergio

13 de diciembre de 2016

I. SISTEMA CARDIOVASCULAR HUMANO

- El sistema cardiovascular está formado por el corazón y una red de vasos sanguíneos interconectados.
- 2. Los vasos sanguíneos se subdividen en tres categorías: arterias, capilares y venas.
- 3. Estas categorías se subdividen como indica la figura.
- 4. La aorta, la arteria y venas pulmonares y la arteria cubital son ejemplos de vasossanguíneos específicos
- 5. Las arterias transportan sangre desde el corazón hasta los capilares de los tejidos y sedistinguen de otros vasos por poseer una pared gruesa formada por capas de células musculares. En la mayoría de los casos, las arterias transportan sangre con un elevado contenido de oxigeno.
- 6. Contrariamente a las arterias, las venas transportan sangre desde los capilares de los tejidos al corazón. Tienen una pared relativamente delgada que contiene menos células musculares que las de las arterias, pero más tejido fibroso. Usualmente, las venas contienen sangre pobre en oxigeno.
- 7. La presión sanguínea media en las arterias es relativamente elevada (40-100 mmHg), frente a una presión media inferior a 10 mmHg en la mayoría de las venas.
- 8. Las arterias pulmonares son un ejemplo de excepción a la descripción anterior. Estas arterias transfieren sangre del corazón a los pulmones y poseen una gruesa pared muscular. Por ello se las considera arterias. Sin embargo, estas arterias transfieren sangre con bajo contenido en oxigeno y su presión media es más bien baja (13 mmHg).
- 9. La presión sanguínea media de un paciente se calcula a partir de los valores de la presión sanguínea muestreados en un intervalo de tiempo. La presión sanguínea oscila entre un valor máximo, denominado presión sistólica, y un nivel mínimo denominado presión diastólica;

la diferencia entre ambas se denomina presión del pulso. En la práctica diaria, en vez de calcular la presión sanguínea media, solo suelen registrarse los valores de las presiones sistólica y diastólica.

- 10. La tabla 1 muestra la presión sanguínea media, el diámetro y el porcentaje total de volumen de sangre para cada categoría.
- 11. El funcionamiento del sistema cardiovascular suele explicarse recurriendo a la analogía con un sistema hidráulico. Este sistema hidráulico estaría compuesto por una bomba (corazón), un conjunto de conducciones interconectadas (vasos sanguíneos) y un contenedor conectado a la bomba (presurizador) lleno de agua (sangre).
- 12. La información presentada en esta discusión es generalmente aplicable a un adulto sano. Por ejemplo, si un paciente sufre una estenosis (estrechamiento) arterial, la presión sanguínea distal (en dirección opuesta al corazón) en la estenosis de la arteria es próxima a cero.
- 13. Cualquier desarreglo que afecta al corazón o a los vasos sanguíneos se considera una enfermedad cardiovascular. Así, un aneurisma (protuberancia) de la arteria abdominal, una estenosis arterial o la arteriosclerosis, que afectan a los vasos sanguíneos, son enfermedades cardiovasculares. La regurgitación aórtica, que ocurre cuando las válvulas de las aortas no son totalmente estancas, es una enfermedad cardiovascular que afecta al corazón.
- 14. Para realizar la diagnosis médica, se puede recurrir a una descripción detallada de la estructura y funcionamiento del sistema cardiovascular (conocimiento "profundo" o detallado) o se puede recurrir a las asociaciones típicas y bien documentadas entre síntomas (quejas del paciente), evidencia clínica (resultado de test o pruebas realizadas por equipos médicos), causas y enfermedades (conocimiento superficial, de naturaleza heurística). Aunque esta distinción entre conocimiento detallado y superficial no siempre es clara y precisa, en la práctica diaria de la profesión el conocimiento superficial juega un papel importante.
- 15. Así, cuando un paciente se queja de un dolor abdominal, una auscultación permite percibir un rumor abdominal y al palpar el abdomen del paciente se siente una masa pulsante, un aneurisma de la arteria abdominal probablemente cause estos síntomas y evidencias clínicas.
- 16. Si la presión sistólica del paciente supera los 140 mmHg, la presión del pulso es superior a 50 mmHg, y al auscultar al paciente se percibe un rumor sistólico o una dilatación del corazón, todo ello puede estar causado por una regurgitación aórtica.
- 17. Como último ejemplo, si un paciente siente calambres en las piernas al andar, que desaparecen tras uno o dos minutos de descanso, la presencia de una estenosis en una de las arterias de las piernas es más que probable. A su vez, la estenosis suele deberse a un problema de arteriosclerosis, especialmente si el paciente pertenece a algún grupo de riesgo: obeso o fumador durante más de 15 años o edad superior a 50 años.

Categoría	Presión sanguínea Media (mmHg)	Diámetro (cm)	Porcentaje del volumen de sangre total
Grandes Arterias	90-100	1-2,5	11
Pequeñas Arterias	80-90	0,4	7
Arteriolas	40-80	30μm	2
Grandes Venas	<10	1,5-3	39
Pequeñas Venas	<10	0,5	25
Tabla 1	: Valores de algunas pro	piedades de los vas	os Sanguíneos

Nombre Sexo		Síntomas	Evidenvia	Presion Sistólica/
				Diastólica
Mujer	12	Fiebre	Rumor Diastólico	150/60
Hombre	ombre 60 Dolor Abdominal Rumor Abdomi		Rumor Abdominal	130/90
			Masa Pulsante	
	Mujer	Mujer 12	Mujer 12 Fiebre	Mujer 12 Fiebre Rumor Diastólico Hombre 60 Dolor Abdominal Rumor Abdominal

La base de conocimiento necesaria para representar el problema requiere de un conjunto tanto de objetos como de atributos de los mismos. Esto se describe a continuación a partir de la Definición del Dominio (DD) y el conjunto de reglas:

 $O = \{paciente, enfermedad, queja, riesgo\}$

```
DA = \{ \\ enfermedad.tipo^s, enfermedad.subtipo^s, enfermedad.lugar^s, \\ paciente.edad^s: number, paciente.queja^m, \\ paciente.sistolica^s: number, paciente.sistolica^s: number, paciente.pulso^s: number, \\ paciente.auscultacion^m, paciente.riesgo^m \\ queja.nombre^s, queja.duracion^s: number, queja.lugar^s \\ riesgo.nombre^s, riesgo.duraccion^s: number \\ \}
```

R1: if equals(combustibleEnMotor, estado, f) and equals(depositoCombustible, observacion, cero) then add(depositoCombustible, estado, vacio) fi