EXata学习: VoIP Wifi-LTE 混合场景 Step by Step

目标: 建立一个 有线-WiFi -LTE VoIP 异构网络混合场景。

参照: 宣EXata学习(15): VoIP 有线-WiFi混合场景 Step by Step; 宣EXata学习(10): LTE 场

景的反向路由

《EXata 5.1 Multimedia and Enterprise Model Library》; 宣EXata学习(02): WiFi场景篇;

工具: EXata 5.1

日期: 2022-11-24 by Jiangtao Luo

1. 创建和配置场景

- a. 基于 VoIP 有线-WiFi 混合场景、save as portable; 重命名为 myVoIP_wifi_LTE。
- b. Channel properties, 改为 2 信道: 2.4 GHz、2.5 GHz, 为满足 LTE 用;
- c. 扩大区域: Terrain 修改为长方形 4500x2000。

2. 创建和配置拓扑

a. 修改节点

■ 复制 myLTE2 场景中的所有节点【Tip: 原来节点是可以复制的!不用再重复配置。】,并将 CN 节点 改为 路由器、与有线–WiFi 场景的路由连接、大致位置如图所示。

- 注意:Save as portable,复制有关文件到本场景文件夹。
- 此时,直接 RUN 时提示出错。这是 LTE 的 BER 文件指定的问题,从 myLTE 场景目录下拷贝过来。

Attempting license checkout (should take less than 2 seconds) ...Error in file ..\kernel\src\fileio.cpp:397 Can't open input file DL_BER_MCSO.ber

■ 原有的有线与 WiFi 之间的业务可正常完成。但 LTE 区域没有任何包传输的信息,包括路由包,死寂一

片。

b. 为 LTE 网络添加 SIP Proxy

复制 Proxy 节点到移动网络部分,命名为 Proxy3,连接到 SGWMME。

c. 配置节点

i. 设置 Proxy 节点

Proxy节点外观未变,注意检查 IP 地址已变化,后面协议配置时检查配置文件。

ii. 设置 Base Station

略。

iii. 设置SIP终软端

外观不变,包括 LTE 终端。

3. 配置网络协议

a. 配置 Proxy

■ 设置 Proxy 节点:未变,略。

b. 配置 Base Station

■ 略【本以为复制节点过来,一切不用重新配置,后来发现 Node Configuration 部分的配置可以复制,但

接口协议需要重新配置! Debug 环境细说】

c. 配置终端

■ 配置 LTE 终端(16, 17)的应用层协议为 SIP 信令: Node Configuration->Application Layer:

Multimedia Signaling Protocol: SIP; "Configure as SIP Proxy" 选 No, SIP Call Model: Proxy

Routed; Set VoIP parameters: Yes; Enable RTP: Yes。

d. 保存场景: Save as Portable...

4. 地址本文件修改

a. 修改本场景目录下的地址本(SIP Address Alias File): myVoIP.sip。根据 LTE 域的节点和 Proxy 地址进行添加。

1 2	190.0.1.1 190.0.1.2	Hostl Host2	al.com	7 7		0.0.1.6	
3	190.0.1.3	Host3	al.com	7	19	0.0.1.6	
7	190.0.1.6	Proxyl	al.com	7	1	90.0.1.6	
8	190.0.6.2	Proxy2	a2.com	8	1	90.0.6.2	
4	190.0.2.1	Host4	a2.com	8	1	90.0.6.2	
5	190.0.2.2	Host5	a2.com	8	1	90.0.6.2	
6	190.0.2.3	Host6	a2.com	8	1	90.0.6.2	
16	190.0.8.2	UE1	lte.com		18	190.0.11.2	
17	190.0.8.3	UE2	lte.com		18	190.0.11.2	
18	190.0.11.2	Proxy3	lte.com		18	190.0.11.2	

5. DNS 文件修改

a. 默认DNS 文件 default.dns 由于 Proxy2 地址变化也应相应修改:

#			
7	a2.com	190.0.6.2	
7	lte.com	190.0.11.2	
8	al.com	190.0.1.6	
8	lte.com	190.0.11.2	
18	a2.com	190.0.6.2	
18	al.com	190.0.1.6	

6. 加载应用

a. 在WiFi 域的节点 6 和 LTE 域的 16 之间添加 VoIP 应用,运行发现新应用没有反应,节点 6 由于超时未收到响应而结束,表明到 LTE 的路由未打通

Warning in file ..\libraries\lte\src\phy_lte.cpp:2613

Phy-LTE: CELL Selection min serving duration should be set. Change CELL Selection min serving duration to 1000000000.

Warning in file ..\libraries\lte\src\phy_lte.cpp:3075

Phy-LTE: SRS transmission interval should be set. Change SRS transmission interval to 10.

Warning in file ..\libraries\lte\src\phy_lte.cpp:3148

Phy-LTE: SRS transmission offset should be set. Change SRS transmission offset to 0.

Warning in file ..\libraries\multimedia_enterprise\src\multimedia_sip.cpp:2934

NODE-6:NO ANSWER FROM REMOTE END, CALL RELEASED ON TIMEOUT

b. 配置 eNB 节点 (14)的静态路由,确保 UE 的所有路由都经过 eNB,参考 <u>EEXata学习(08):LTE 场景</u>

(2) Step by Step 中静态路由的配置方法。


```
14 190.0.8.2 190.0.8.2
2
    14 190.0.8.3 190.0.8.3
3
4
    16 190.0.8.1 190.0.8.1
5
    16 190.0.7.1 190.0.8.1
 6
7
    16 190.0.8.3 190.0.8.1
8
9
    17 190.0.8.1 190.0.8.1
10
    17 190.0.7.1 190.0.8.1
11
12
    17 190.0.8.2 190.0.8.1
13
```

- c. eNB 配置静态路由后,LTE域有路由包,但两个 UE 间的 VoIP 业务连发起过程也没有。
- d. 在 UE 之间添加 CBR 业务尝试,发现 有 CBR 业务发出,但没有收到。表明: LTE 域内路由有问题!

- e. 修正 EPC 子网中 SGWMME 节点指示:
 - 选定 LTE 域内的有线子网 Wired Subnet, 修改 SGWMME 节点 ID 为 15

- 发现一个 UE (节点 16) 的 Phy 层和 MAC 协议不对: 不是 LTE, 而是 802.11, 纠正过来。仍然不行!
- 发现 eNB 的 MAC 层节点类型错误设置为 UE,修改过来,仍然不行!!【待解决!!!】
- 发现 eNB 的 LTE 接口 MAC 协议配置不全、RUN 时有警告信息、参考 LTE2 配置

Warning in file ..\libraries\lte\src\phy_lte.cpp:3292

Phy-LTE: PHY-LTE-DL-CQI-SNR-TABLE should be set. Change PHY-LTE-DL-CQI-SNR-TABLE[11] to 11.84.

Warning in file ..\libraries\lte\src\phy_lte.cpp:3292

Phy-LTE: PHY-LTE-DL-CQI-SNR-TABLE should be set. Change PHY-LTE-DL-CQI-SNR-TABLE[12] to 13.32.

Warning in file ..\libraries\lte\src\phy_lte.cpp:3292

Phy-LTE: PHY-LTE-DL-CQI-SNR-TABLE should be set. Change PHY-LTE-DL-CQI-SNR-TABLE[13] to 15.53.

Warning in file ..\libraries\lte\src\phy_lte.cpp:3292

Phy-LTE: PHY-LTE-DL-CQI-SNR-TABLE should be set.Change PHY-LTE-DL-CQI-SNR-TABLE[14] to 16.20.

Warning in file ..\libraries\lte\src\phy_lte.cpp:3292

Phy-LTE: PHY-LTE-DL-CQI-SNR-TABLE should be set. Change PHY-LTE-DL-CQI-SNR-TABLE[15] to 22.38.

- 。 首先解决了同一个 eNB 下两个 UE 间 CBR 业务互通的问题
 - eNB 主要修改以下配置: Physical Layer: Listenable/Listening Channels: Channel 0, Channel 1; 2 收 2 发;

■ eNB 的 MAC 补充配置 Transmission Mode

■ 两个 UE: Listenable/Listening Channels: Channel 0, Channel 1; 天线: 1 发 2 收

?

■ 终于搞定了 eNB 内终端的 CBR 通信

■ 下面测试 UE 到 Proxy 3 (16-->18) 的 CBR 业务,同样 OK

■ 添加 WiFi 和 LTE UE 间 CBR 业务: 6-->16, 17-->5, 发现 LTE 到 WiFi 的可以接收(只有 5 收到),反之不行。

■ 测试有线网络和 LTE UE 之间: 3-->17, 16-->2, 发现 LTE 到 有线 的可以接收(只有 2 收到),反 之不行。

- 添加 LTE UE 到有线的 VoIP 业务,发现超时,说明目前 LTE 到有线的 CBR 可以,但 VoIP 不行。
- 下面测试 LTE域内 Proxy 到 WiFi 和 有线之间的 CBR 业务,添加18-->1 和 6-->18 两个 CBR,发现 双向收发正常,说明到 Prxoy 有线部分的路由是正常的

- 【奇怪!】 Proxy 到两个 UE 双向 CBR 业务都没有问题,Proxy 到 有线和 WiFi 的双向 CBR 也没有问题,为什么 WiFi 或 有线到 UE 的不行? 【待解决!!!】
- 测试有线和 WiFi 域的 Proxy 和 LTE 终端间的 CBR 业务: UE 节点 16 --> Proxy2 [8] Proxy1[7]--

>UE[16],发现:前者正常,后者收不到。再次说明:LTE朝外路由通畅,反向到 UE 不通。

■ 测试给 SGWMME 配置 static routes,并修改 static-routes 文件,增加一行,到子网"190.0.8.0" 的下一跳均为 190.0.7.1,即 eNB。如下

```
14 190.0.8.2 190.0.8.2
    14 190.0.8.3 190.0.8.3
 2
 3
 4
    16 190.0.8.1 190.0.8.1
 5
    16 190.0.7.1 190.0.8.1
 6
    16 190.0.8.3 190.0.8.1
 8
 9
    17 190.0.8.1 190.0.8.1
10
    17 190.0.7.1 190.0.8.1
11
    17 190.0.8.2 190.0.8.1
12
13
14
    15 190.0.8.0 190.0.7.1
10
```

■ 问题仍未解决,核心网节点仍不能发送 CBR 给 UE,即 [19] 到 [16]的 CBR 业务仍未成功!但反向是成功的。

■ 此时(SGWMME配静态路由),19 到 eNB 的 CBR 也失败,而如果 SGWMME 配置 Bellman-Ford,则至少19 到 eNB 的 CBR 业务是没问题的;而且 WiFi 域的终端到 eNB 的都没有问题。【说明什么?是不是到 eNB 的 无线子网的路由不通所致?】

■ 此时(SGWMME 配置 Bellman–Ford),LTE UE 到 WiFi 终端的 CBR 也没有问题!<mark>仍然是回程路由</mark> 到 eNB 之后的问题!

■ 将 eNB 的外网 Interface (190.0.7.1) 作为 default gateway 也不行(在始发节点 6 即因"No route"而被丢弃)

■ 将 WiFi 终端的默认网关设置为 AP, 没有解决问题,不同的是丢包的位置改在了 AP! 【仍未解决!!! 待解决, 暂时搁置!】

×

7. 分析结果

a. 共添加三个跨域 VoIP 应用:1-->4,3->6,5-->2,分别开始于 1 min,1.2 min,和 1.5 min,结束于 4

k	b. 分析 VoIP 业务统计结果		
C	c. 各节点收到的 RTP 包结果:		
C	d. 查看 IP 转发数量:其中 9 为有线路由器,12 为 AP。		
e	e. 语音 MOS 评分查看: VoIP 分析中有 MOS 评分结果, 均为 3.29528。	这个与语音编码以及网络环境有关。三个会话的 评	[፤] 分

成功实现基于交换机-路由器的有线与 WiFi 不同接入网之间的 VoIP 会话。总结几点:

。 AP 和 UE 的路由协议(包括无线接口)仍应为 Bellman Ford, 否则提示找不到 Proxy。

min. Run and Play,

8. 结论

○ AP 无需配 Applicaiton Layer。