Mis rayadas con los generadores

Tenemos unos hermosos potenciales generadores de $SL(2,\mathbb{Z})$, que son :

$$x = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, y = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

Si asumimos que x,y generan todas las $M\in SL(2,\mathbb{Z})$ con $\|M\|_{\infty}\leq 2$, ¿podemos demostrar que $\langle x,y\rangle=SL(2,\mathbb{Z})$?

Veamos que sí, y chachi pistachi. Sea

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in SL(2, \mathbb{Z}),$$

 $con ||A||_{\infty} = a_{11} > 2$

Lo primero para ahorrarnos quebraderos de cabeza es darnos cuenta de que, con las hipótesis anteriores, $|a_{11}| \neq |a_{ij}|$ para todo $ij \neq 11$, y que no puede ser que $|a_{22}| > |a_{12}|$, $|a_{21}|$. También es cierto que $a_{11}a_{22} \geq 0 \iff a_{12}a_{21} \geq 0$.

Con esto, la vida es más fácil.

O yo hago las cosas mal y me creo que es más fácil. Ya veremos.

Se abren ante nosotros 4 fantásticos caminos en función del orden relativo de los $|a_{ij}|$, cada uno subdividido en otros 4 según el signo de los a_{ij} . No son 8 porque hacemos la trampa de que $a_{11} > 0$.

Además, pa no repetirlo 16 veces, que quede claro que $|a_{11}| = a$, $|a_{12}| = b$, $|a_{21}| = c$, $|a_{22}| = d$.

1.
$$|a_{11}| > |a_{12}| \ge |a_{21}| \ge |a_{22}| \equiv a > b \ge c \ge d$$

Obs.

Como
$$a > b, |a - b| < a$$

Como $c \ge d, |c - d| = |d - c| \le |c| < a$

1.1. $a_{11} > 2, a_{12} \ge 0, a_{21} \ge 0, a_{22} \ge 0$

$$AR = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} a-b & b \\ c-d & d \end{pmatrix} \qquad |a-b| < a$$

$$|c-d| < a$$

1.2. $a_{11} > 2, a_{12} \ge 0, a_{21} \le 0, a_{22} \le 0$

$$AR = \begin{pmatrix} a & b \\ -c & -d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} a-b & b \\ d-c & -d \end{pmatrix} \qquad |a-b| < a$$

$$|d-c| < a$$

1.3. $a_{11} > 2, a_{12} \le 0, a_{21} \ge 0, a_{22} \le 0$

$$AR = \begin{pmatrix} a & -b \\ c & -d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} a-b & b \\ c-d & -d \end{pmatrix} \qquad |a-b| < a$$

$$|c-d| < a$$

1.4. $a_{11} > 2, a_{12} \le 0, a_{21} \le 0, a_{22} \ge 0$

$$AR = \begin{pmatrix} a & -b \\ -c & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} a-b & b \\ d-c & d \end{pmatrix} \qquad |a-b| < a$$

$$|d-c| < a$$

2. $|a_{11}| > |a_{12}| \ge |a_{22}| \ge |a_{21}| \equiv a > b \ge d \ge c$

Obs.

Como a > b, |a - b| < aComo $d \ge c, |c - d| = |d - c| \le |d| < a$

2.1. $a_{11} > 2, a_{12} \ge 0, a_{21} \ge 0, a_{22} \ge 0$

$$AR = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} a-b & b \\ c-d & d \end{pmatrix} \qquad |a-b| < a$$

2.2. $a_{11} > 2, a_{12} \ge 0, a_{21} \le 0, a_{22} \le 0$

$$AR = \begin{pmatrix} a & b \\ -c & -d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} a-b & b \\ d-c & -d \end{pmatrix} \qquad |a-b| < a$$

$$|d-c| < a$$

2.3. $a_{11} > 2, a_{12} \le 0, a_{21} \ge 0, a_{22} \le 0$

$$AR = \begin{pmatrix} a & -b \\ c & -d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} a-b & b \\ c-d & -d \end{pmatrix} \qquad |a-b| < a$$

$$|c-d| < a$$

2.4. $a_{11} > 2, a_{12} \le 0, a_{21} \le 0, a_{22} \ge 0$

$$AR = \begin{pmatrix} a & -b \\ -c & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} a-b & b \\ d-c & d \end{pmatrix} \qquad |a-b| < a$$

$$|d-c| < a$$

3. $|a_{11}| > |a_{21}| \ge |a_{12}| \ge |a_{22}| \equiv a > c \ge b \ge d$

Obs.

Como
$$a > c, |a-c| < a$$

Como $b \ge d, |b-d| = |d-b| \le |b| < a$

3.1. $a_{11} > 2, a_{12} \ge 0, a_{21} \ge 0, a_{22} \ge 0$

$$RA = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a - c & b - d \\ c & d \end{pmatrix} \qquad |a - c| < a$$

$$|b - d| < a$$

3.2. $a_{11} > 2, a_{12} \ge 0, a_{21} \le 0, a_{22} \le 0$

$$RA = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ -c & -d \end{pmatrix} = \begin{pmatrix} a-c & b-d \\ c & -d \end{pmatrix} \qquad |a-c| < a$$

$$|b-d| < a$$

3.3. $a_{11} > 2, a_{12} \le 0, a_{21} \ge 0, a_{22} \le 0$

$$RA = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & -b \\ c & -d \end{pmatrix} = \begin{pmatrix} a-c & d-b \\ c & -d \end{pmatrix} \qquad |a-c| < a$$

$$|d-b| < a$$

3.4. $a_{11} > 2, a_{12} \le 0, a_{21} \le 0, a_{22} \ge 0$

$$RA = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & -b \\ -c & d \end{pmatrix} = \begin{pmatrix} a-c & d-b \\ -c & d \end{pmatrix} \qquad |a-c| < a$$

$$|d-b| < a$$

4. $|a_{11}| > |a_{21}| \ge |a_{22}| \ge |a_{12}| \equiv a > c \ge d \ge b$

Obs.

Como
$$a > c, |a - c| < a$$

Como $d \ge b, |b - d| = |d - b| \le |b| < a$

4.1. $a_{11} > 2, a_{12} \ge 0, a_{21} \ge 0, a_{22} \ge 0$

$$RA = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a - c & b - d \\ c & d \end{pmatrix} \qquad |a - c| < a$$

$$|b - d| < a$$

4.2. $a_{11} > 2, a_{12} \ge 0, a_{21} \le 0, a_{22} \le 0$

$$RA = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ -c & -d \end{pmatrix} = \begin{pmatrix} a-c & b-d \\ c & -d \end{pmatrix} \qquad |a-c| < a$$

$$|b-d| < a$$

4.3. $a_{11} > 2, a_{12} \le 0, a_{21} \ge 0, a_{22} \le 0$

$$RA = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & -b \\ c & -d \end{pmatrix} = \begin{pmatrix} a-c & d-b \\ c & -d \end{pmatrix} \qquad |a-c| < a$$

$$|d-b| < a$$

4.4. $a_{11} > 2, a_{12} \le 0, a_{21} \le 0, a_{22} \ge 0$

$$RA = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & -b \\ -c & d \end{pmatrix} = \begin{pmatrix} a-c & d-b \\ -c & d \end{pmatrix} \qquad |a-c| < a$$

$$|d-b| < a$$

En todo caso, la matriz R tiene $\|R\|_{\infty} = \|R^{-1}\|_{\infty} = 1$

Así que podemos expresar A como el producto de 2 matrices de norma $< a_{11}$, y con esto y un bizcocho, hasta mañana a las 8.

Ah, bueno. Si $||A_2||_{\infty} = a_{22}$, entonces en A_2 es la inversa de alguna de las matrices A de arriba, y listo. Si $||A_3||_{\infty} = a_{12}$, entonces A_3 es el producto de alguna de las matrices A por $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, y también está listo. Y si

 $||A_4||_{\infty} = a_{21}$, entonces A_4 es el la inversa del producto de alguna de las matrices A por $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

Y si $||A_{caca}||_{\infty} = |a_{ij}|$, con $a_{ij} < 0$, pues mira, chico. Me estoy hartando. Pero A_{caca} es el producto de alguna de las A_i por $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$. Que aunque a mí me costó mucho, el ordenador me dijo en un plis plas que sí estaba generada por x e y.

Menuda pesadilla. Que las matrices de norma 1 y 2 están generadas por x e y, te lo vas a creer porque sí. PORQUE YO PASO DE LA LIFE :D