Statistical analysis of repeated measurements Lecture 3: random effects models

Brice Ozenne - email: broz@sund.ku.dk

29-11-2022

¹ Neurobiology Research Unit, University Hospital of Copenhagen, Rigshospitalet.

² Section of Biostatistics, Department of Public Health, University of Copenhagen.

Introduction

The course so far

Lecture 1 & 2: one arm and two arms follow-up studies

- describe and compare the change over time using LMM
- confirmatory clinical study

LMM: linear mixed model

- linear model for the mean categorical vs. continuous time baseline adjustment
- model for the variance compound symmetry, unstructured, stratified unstructured
- can handle missing data

Introduction

Mixed model as a Gaussian model

Under normality assumption, the data $\mathbf{Y} = (Y_1, \dots, Y_t)$ is fully characterized by:

- a mean vector $\mu = (\mu_1, \dots, \mu_t)$
- a covariance matrix Ω $\mathbf{Y} \sim \mathcal{N}(\mu, \Omega)$ (i.e. standard deviations σ and correlations $\boldsymbol{\rho}$)

The mixed model is a way to **parametrize** a multivariate normal distribution and **estimate** these parameters.

0000

Examples of mean structures

Examples of mean structures

Introduction 0000

Tille as categorical variable					
time	Placebo (E=0)	Calcium $(E=1)$			
baseline	α	$\alpha + \gamma$			
6 months	$\alpha + \beta_1$	$\alpha + \beta_1 + \gamma + \delta_1$			
12 months	$\alpha + \beta_2$	$\alpha + \beta_2 + \gamma + \delta_2$			
18 months	$\alpha + \beta_3$	$\alpha + \beta_3 + \gamma + \delta_3$			
24 months	$\alpha + \beta_4$	$\alpha + \beta_4 + \gamma + \delta_4$			

Time as categorical variable

Introduction

Time as categorical variable					
time	Placebo (E=0)	Calcium $(E=1)$			
baseline	α	$\alpha + \gamma$			
6 months	$\alpha + \beta_1$	$\alpha + \beta_1 + \gamma + \delta_1$			
12 months	$\alpha + \beta_2$	$\alpha + \beta_2 + \gamma + \delta_2$			
18 months	$\alpha + \beta_3$	$\alpha + \beta_3 + \gamma + \delta_3$			
24 months	$\alpha + \beta_4$	$\alpha + \beta_4 + \gamma + \delta_4$			

Time as numeric variable

time	Placebo (E=0)	Calcium (E=1)
baseline	α	$\alpha + \gamma$
6 months	$\alpha + 0.5\beta$	$\alpha + 0.5\beta + \gamma + 0.5\delta$
12 months	$\alpha + \beta$	$\alpha + \beta + \gamma + \delta$
18 months	$\alpha + 1.5\beta$	$\alpha + 1.5\beta + \gamma + 1.5\delta$
24 months	$\alpha + 2 \beta$	$\alpha + 2 \beta + \gamma + 2 \delta$

Introduction

time	Placebo (E=0)	Calcium $(E=1)$
baseline	α	$\alpha + \gamma$
6 months	$\alpha + \beta_1$	$\alpha + \beta_1 + \gamma + \delta_1$
12 months	$\alpha + \beta_2$	$\alpha + \beta_2 + \gamma + \delta_2$
18 months	$\alpha + \beta_3$	$\alpha + \beta_3 + \gamma + \delta_3$
24 months	$\alpha + \beta_4$	$\alpha + \beta_4 + \gamma + \delta_4$

Time as numeric variable

time	Placebo (E=0)	Calcium (E=1)		
baseline	α	$\alpha + \gamma$		
6 months	$\alpha + 0.5\beta$	$\alpha + 0.5\beta + \gamma + 0.5\delta$		
12 months	$\alpha + \beta$	$\alpha + \beta + \gamma + \delta$		
18 months	$\alpha + 1.5\beta$	$\alpha + 1.5\beta + \gamma + 1.5\delta$		
24 months	$\alpha + 2 \beta$	$\alpha + 2 \beta + \gamma + 2 \delta$		

Time as categorical variable + baseline adjustment

Time as categorical variable + baseline adjustiment			
time	Placebo (E=0)	Calcium $(E=1)$	950
baseline	$\mu(0,0) = \alpha$	$\mu(0,1) = \alpha$	
6 months	$\mu(0.5,0) = \alpha + \beta_1$	$\mu(0.5,1) = \frac{\alpha}{2} + \beta_1 + \delta_1$	900
12 months	$\mu(1,0) = \alpha + \beta_2$	$\mu(1,1) = \alpha + \beta_2 + \delta_2$	
18 months	$\mu(1.5,0) = \alpha + \beta_3$	$\mu(1.5,1) = \frac{\alpha}{1} + \beta_3 + \delta_3$	L
24 months	$u(20) - \alpha \perp \beta_4$	$\mu(21) - \alpha + \beta_4 + \delta_4$	

Introduction ○○○●

Examples of correlation structures

$$\begin{bmatrix} 1 & \rho & \rho & \rho \\ \rho & 1 & \rho & \rho \\ \rho & \rho & 1 & \rho \\ \rho & \rho & \rho & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & \rho_1 & \rho_2 & \rho_3 \\ \rho_1 & 1 & \rho_1 & \rho_2 \\ \rho_2 & \rho_1 & 1 & \rho_1 \\ \rho_3 & \rho_2 & \rho_1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & \rho_{1,2} & \rho_{1,3} & \rho_{1,4} \\ \rho_{1,2} & 1 & \rho_{2,3} & \rho_{2,4} \\ \rho_{1,3} & \rho_{2,3} & 1 & \rho_{3,4} \\ \rho_{1,4} & \rho_{2,4} & \rho_{3,4} & 1 \end{bmatrix}$$

Examples of correlation structures

Compound symmetry (CS)

constant correlation

Introduction

 correlation dependent on elapsed time

Unstructured (UN)

• flexible correlation over time

$$\begin{bmatrix} 1 & \rho & \rho & \rho \\ \rho & 1 & \rho & \rho \\ \rho & \rho & 1 & \rho \\ \rho & \rho & \rho & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & \rho_1 & \rho_2 & \rho_3 \\ \rho_1 & 1 & \rho_1 & \rho_2 \\ \rho_2 & \rho_1 & 1 & \rho_1 \\ \rho_3 & \rho_2 & \rho_1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & \rho_{1,2} & \rho_{1,3} & \rho_{1,4} \\ \rho_{1,2} & 1 & \rho_{2,3} & \rho_{2,4} \\ \rho_{1,3} & \rho_{2,3} & 1 & \rho_{3,4} \\ \rho_{1,4} & \rho_{2,4} & \rho_{3,4} & 1 \end{bmatrix}$$

Plan for today

Graphical representation of correlation structures

multilevel data

Introduction

nested vs. crossed correlation factors

Alternative specification of the covariance structure

- user friendly via a formula interface!
- necessary in some observational studies e.g. relate indirectly observed quantities
- complement the covariance patterns (CS, UN, ...)

Hierarchical data

- graphical representation
- relation to correlation patterns

A graphical representation (2 levels)

The **correlation** structure in the gastricbypass study can be viewed:

- 2 levels: patient (level 1), measurement (level 0)
 → or family and individuals, doctor and patients, . . .
- observations are correlated within cluster (level 1)

A graphical representation (3 levels, **nested**)

This graphical representation can be used with than 2 factors:

Hospital (A, B,)			\mathbf{Y}_{A}					
Patient (i, j, \dots)		\mathbf{Y}_{Ai}			\mathbf{Y}_{Aj}			\mathbf{Y}_{Bk}
Measurement (1, 2,)	Y_{Ai1}	Y_{Ai2}	Y_{Ai3}	Y_{Aj1}	Y_{Aj2}	Y_{Aj3}	Y_{Bk1}	Y_{Bk2}

A graphical representation (3 levels, **nested**)

This graphical representation can be used with than 2 factors:

This graphical representation can be used with than 2 factors:

- **3 levels**: hospital (level 2), patient (level 1), measurement (level 0) → or school, class, student, . . .
- observation are correlated within cluster, and are even more correlated when belonging to the same sub-cluster

A graphical representation (3 levels, **crossed**)

This graphical representation does not require factors to be nested.

- different instruments are used during the study
- measurements are analyzed by batch in the lab'

A graphical representation (3 levels, **crossed**)

This graphical representation does not require factors to be nested.

- different instruments are used during the study
- measurements are analyzed by batch in the lab'

A graphical representation (3 levels, **crossed**)

This graphical representation does not require factors to be nested.

- different instruments are used during the study
- measurements are analyzed by batch in the lab'

→ observations are **correlated** if they originate from the same patient **or** made with the same instrument.

Note

Variables included in the graphical representation are special:

in comparison comparison to traditional covariates like sex:

Note

Variables included in the graphical representation are special:

- non-informative values
 (patient id could be shuffled without consequence)
 (comparison patient 1 vs. 2 is not of interest)
- range growing with the sample size (more data implies more patients id's)

in comparison comparison to traditional covariates like sex:

- admit only two values (male and female), independently of the sample size.
- each has a specific meaning which may be interest, e.g. compare weight loss for male vs. female.

2 level

3 level (nested)

3 level (crossed)

$$R_{A} = \begin{bmatrix} 1 & \rho_{d} & \rho_{d} & \rho_{s} & 0 & 0\\ \rho_{d} & 1 & \rho_{d} & 0 & \rho_{s} & 0\\ \rho_{d} & \rho_{d} & 1 & 0 & 0 & \rho_{s}\\ \rho_{s} & 0 & 0 & 1 & \rho_{d} & \rho_{d}\\ 0 & \rho_{s} & 0 & \rho_{d} & 1 & \rho_{d}\\ 0 & 0 & \rho_{s} & \rho_{d} & \rho_{d} & 1 \end{bmatrix}$$

$$R_{B} = \begin{bmatrix} 1 & \rho & \rho & \rho & \rho & \rho \\ \rho & 1 & \rho & \rho & \rho & \rho \\ \rho & \rho & 1 & \rho & \rho & \rho \\ \rho & \rho & \rho & 1 & \rho & \rho \\ \rho & \rho & \rho & \rho & 1 & \rho \\ \rho & \rho & \rho & \rho & \rho & 1 \end{bmatrix}$$

$$R_{C} = \begin{bmatrix} 1 & \rho_{p} & \rho_{p} & \rho_{h} & \rho_{h} & \rho_{h} \\ \rho_{p} & 1 & \rho_{p} & \rho_{h} & \rho_{h} & \rho_{h} \\ \rho_{p} & \rho_{p} & 1 & \rho_{h} & \rho_{h} & \rho_{h} \\ \rho_{h} & \rho_{h} & \rho_{h} & 1 & \rho_{p} & \rho_{p} \\ \rho_{h} & \rho_{h} & \rho_{h} & \rho_{p} & 1 & \rho_{p} \\ \rho_{h} & \rho_{h} & \rho_{h} & \rho_{p} & \rho_{p} & 1 \end{bmatrix}$$

Correlation structure (2 levels)

Simplifying assumption:

• within factor(s), observations are all equally correlated

Patient \mathbf{Y}_{i} $\mathbf{Y}_{i1} \mathbf{Y}_{i2} \mathbf{Y}_{i3} \mathbf{Y}_{i4} \mathbf{Y}_{i5} \mathbf{Y}_{i}$ Measurement

$$R = \begin{bmatrix} 1 & \rho & \rho & \rho & \rho & \rho \\ \rho & 1 & \rho & \rho & \rho & \rho \\ \rho & \rho & 1 & \rho & \rho & \rho \\ \rho & \rho & \rho & 1 & \rho & \rho \\ \rho & \rho & \rho & \rho & 1 & \rho \\ \rho & \rho & \rho & \rho & \rho & 1 \end{bmatrix}$$

Correlation structure (3 levels, **nested**)

• within factor(s), observations are all equally correlated

$$R = \begin{bmatrix} 1 & \rho_{p} & \rho_{p} & \rho_{h} & \rho_{h} & \rho_{h} \\ \rho_{p} & 1 & \rho_{p} & \rho_{h} & \rho_{h} & \rho_{h} \\ \rho_{p} & \rho_{p} & 1 & \rho_{h} & \rho_{h} & \rho_{h} \\ \rho_{h} & \rho_{h} & \rho_{h} & 1 & \rho_{p} & \rho_{p} \\ \rho_{h} & \rho_{h} & \rho_{h} & \rho_{p} & 1 & \rho_{p} \\ \rho_{h} & \rho_{h} & \rho_{h} & \rho_{p} & \rho_{p} & 1 \end{bmatrix}$$

⚠ Simplifying assumption:

within factor(s), observations are all equally correlated

$$R = \begin{bmatrix} 1 & \rho_d & \rho_d & \rho_s & 0 & 0 \\ \rho_d & 1 & \rho_d & 0 & \rho_s & 0 \\ \rho_d & \rho_d & 1 & 0 & 0 & \rho_s \\ \rho_s & 0 & 0 & 1 & \rho_d & \rho_d \\ 0 & \rho_s & 0 & \rho_d & 1 & \rho_d \\ 0 & 0 & \rho_s & \rho_d & \rho_d & 1 \end{bmatrix}$$

Exercise & break!

Consider a study where we would measure some brain signal repeatedly over time:

How would you represent the correlation structure

- considering a single brain region
- considering a multiple brain regions

Latent variables

- as a part of the research question
 - as a way to account for correlation

An unusual research question

Research question: is weight loss associated with the initial weight?

 weight loss is not directly measured but can be deduced from the observed weight over time

An unusual research question

Research question: is weight loss associated with the initial weight?

 weight loss is not directly measured but can be deduced from the observed weight over time

An unusual research question

Research question: is weight loss associated with the initial weight?

- weight loss is not directly measured but can be deduced from the observed weight over time
- → slope associated with the intercept?

A two-step approach

Run a linear regression for each individual:

intercept and time as a continuous variable

```
id (Intercept) time.num
1 1 127.5615 -3.231514
2 2 166.6006 -5.554824
3 3 110.3994 -3.794641
```

Compute the Pearson correlation between both quantities:

```
[1] -0.6217227
```

A two-step approach

Run a linear regression for each individual:

• intercept and time as a continuous variable

Compute the Pearson correlation between both quantities:

[1] -0.6217227

p-values/CI from usual tests should not be trusted! Indeed modeling uncertainty about the intercept and slope is not accounted for

Single-step approach: random slope model

In SAS:

In 😱

```
e.rs <- lmer(weight \sim time.num + (time.num|id), data = gastricbypassL)
```

Latent variable in a random slope model

The model estimate a population intercept and slope:

```
fixef(e.rs)
```

(Intercept) time.num 130.496885 -4.479778

as well as a subject specific intercept and slope:

```
coef(e.rs)
```

```
(Intercept)
               time.num
     129.6055 -3.949467
     166.2820 -5.530303
3
     110.7275 -3.861765
```

Example of software output (in **R**)

Estimate correlation:

id

```
VarCorr(e.rs)

Groups Name Std.Dev. Corr
```

(Intercept) 20.21900 time.num 0.88028 -0.731

Residual 3.20841 with its confidence interval:

```
confint(e.rs, oldNames=FALSE)[2,,drop=FALSE]
```

```
Computing profile confidence intervals ...
```

```
2.5 % 97.5 % cor_time.num.(Intercept)|id -1 -0.268034
```

Warning messages:

1: In FUN(X[[i]], ...) :
 non-monotonic profile for cor time.num.(Intercept)|id

2: In confint.thpr(pp, level = level, zeta = zeta) :
 bad spline fit for cor_time.num.(Intercept)|id: falling back,

Intuition about random effects

Two viewpoints:

- weight measurements are correlated within patient
- each patient has his own "natural" weight level/slope

Intuition about random effects

Two viewpoints:

- weight measurements are correlated within patient
- each patient has his own "natural" weight level/slope

Intuition about random effects

Two viewpoints:

- weight measurements are correlated within patient
- each patient has his own "natural" weight level/slope

Intuition about random effects

Two viewpoints:

- weight measurements are correlated within patient observed residuals $\varepsilon_{it} = u_i + \xi_{it}$ are (very) correlated!
- each patient has his own "natural" weight level/slope conditional residuals ξ_{it} are white noise

Random effect models

- random intercept model
 - random slope model

For individual i at time t, we model the weight Y_{it} as:

,

$$Y_{it} = \mu_t + u_i + \xi_{it}$$

where:

- μ_t is the population mean over time (fixed effect).
- $u_i \sim \mathcal{N}(0, \sigma_B^2)$ is the random intercept for subject $i \rightarrow$ mathematical construct which may reflect unobservable concepts (e.g. "natural" weight)

•
$$\boldsymbol{\xi}_{i} = (\xi_{i1}, \xi_{i2}, \xi_{i3}, \xi_{i4}) \sim \mathcal{N} \left(\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_{W}^{2} & 0 & 0 & 0 \\ 0 & \sigma_{W}^{2} & 0 & 0 \\ 0 & 0 & \sigma_{W}^{2} & 0 \\ 0 & 0 & 0 & \sigma_{W}^{2} \end{bmatrix} \right)$$
 residual error, independent of u_{i}

Random intercept model (software)

In 😱 :

In SAS:

```
proc mixed data=gastricbypassL;
class id time;
model weight = time / ddfm=kr cl;
random id;
run;
```

Random intercept model (output)

```
e.ReI
```

```
Linear mixed model fit by REML ['lmerModLmerTest']
Formula: weight ~ time + (1 | id)
  Data: gastricbypassL
REML criterion at convergence: 499.0104
Random effects:
Groups
         Name
             Std.Dev.
id (Intercept) 18.379
Residual
                     3.246
Number of obs: 80, groups: id, 20
Fixed Effects:
 (Intercept) time-1 week time+1 week time+3 weeks
     128.97
                   -7.73
                              -13.27
                                            -26.60
```

Variance decomposition (visually)

- σ_B^2 : variance of the random effect (i.e. yellow lines)
- σ_W^2 : variance of the noise (i.e. points around the yellow lines)

Variance decomposition (numerically)

Variation	Variance component	Estimate	Proportion of variance
Between Within	$\sigma_B^2 \ \sigma_W^2$	$18.379^2 \approx 337 \\ 3.246^2 \approx 11$	96.96% 3.02%
Total	$\sigma_B^2 + \sigma_W^2$	$18.379^2 + 3.246^2 \approx 348$	100%

at the same time or once removing the time effect

Random effect models 00000000000000

Variance decomposition (numerically)

Variation	Variance component	Estimate	Proportion of variance
Between Within	$\sigma_B^2 \ \sigma_W^2$	$18.379^2 \approx 337 \\ 3.246^2 \approx 11$	96.96% 3.02%
Total	$\sigma_B^2 + \sigma_W^2$	$18.379^2 + 3.246^2 \approx 348$	100%

Typical difference in weight between two measurements¹:

on the same patient:

between two different patients:

at the same time or once removing the time effect

Variance decomposition (numerically)

Variation	Variance component	Estimate	Proportion of variance
Between Within	$\frac{\sigma_B^2}{\sigma_W^2}$	$18.379^2 \approx 337$ $3.246^2 \approx 11$	96.96% 3.02%
Total	$\sigma_B^2 + \sigma_W^2$	$18.379^2 + 3.246^2 \approx 348$	100%

Typical difference in weight between two measurements¹:

• on the **same** patient:

$$\pm 1.96 \sqrt{2\sigma_W^2} \approx \pm 9.19$$

between **two** different patients:

$$\pm 1.96\sqrt{2(\sigma_B^2 + \sigma_W^2)} \pm 51.71$$

at the same time or once removing the time effect

Intra-class correlation (ICC)

We would like to evaluate the correlation between two observations from the same patient (at different time t and t')

We can compute:

- the variance \mathbb{V} ar $[Y_{it}] = \mathbb{V}$ ar $[Y_{it'}] =$
- the covariance

$$\mathbb{C}ov(Y_{it}, Y_{it'}) =$$

So the correlation is

$$\rho = \mathbb{C}or(Y_{it}, Y_{it'}) =$$

Intra-class correlation (ICC)

We would like to evaluate the correlation between two observations from the same patient (at different time t and t')

We can compute:

- the variance \mathbb{V} ar $[Y_{it}] = \mathbb{V}$ ar $[Y_{it'}] = \sigma_R^2 + \sigma_W^2$
- the covariance

$$\mathbb{C}ov(Y_{it}, Y_{it'}) = \mathbb{C}ov(\mu_t + u_i + \xi_{it}, \mu_{t'} + u_i + \xi_{it'})$$
$$= \mathbb{C}ov(u_i, u_i) = \sigma_B^2$$

So the correlation is

$$\rho = \mathbb{C}or(Y_{it}, Y_{it'}) = \frac{\sigma_B^2}{\sigma_B^2 + \sigma_W^2} = 0.970$$

Relation to covariance pattern (in formula)

We have seen that:

- the variance is $\sigma_B^2 + \sigma_W^2$
- the covariance is σ_B^2

So:

$$\Omega = \begin{bmatrix} \sigma_W^2 + \sigma_B^2 & \sigma_B^2 & \sigma_B^2 & \sigma_B^2 \\ \sigma_B^2 & \sigma_W^2 + \sigma_B^2 & \sigma_B^2 & \sigma_B^2 \\ \sigma_B^2 & \sigma_B^2 & \sigma_W^2 + \sigma_B^2 & \sigma_B^2 \\ \sigma_B^2 & \sigma_B^2 & \sigma_B^2 & \sigma_B^2 & \sigma_W^2 + \sigma_B^2 \end{bmatrix}$$

Relation to covariance pattern (in formula)

We have seen that:

- the variance is $\sigma_R^2 + \sigma_W^2$
- the covariance is σ_R^2

So:

$$\Omega = \begin{bmatrix} \sigma_W^2 + \sigma_B^2 & \sigma_B^2 & \sigma_B^2 & \sigma_B^2 \\ \sigma_B^2 & \sigma_W^2 + \sigma_B^2 & \sigma_B^2 & \sigma_B^2 \\ \sigma_B^2 & \sigma_B^2 & \sigma_B^2 & \sigma_B^2 & \sigma_B^2 \\ \sigma_B^2 & \sigma_B^2 & \sigma_B^2 & \sigma_B^2 & \sigma_W^2 + \sigma_B^2 \end{bmatrix} = \sigma^2 \begin{bmatrix} 1 & \rho & \rho & \rho \\ \rho & 1 & \rho & \rho \\ \rho & \rho & 1 & \rho \\ \rho & \rho & \rho & 1 \end{bmatrix}$$

with
$$\sigma^2 = \sigma_W^2 + \sigma_R^2$$
.

Exactty a compound symmetry structure!

(assuming positive correlation)

Relation to covariance pattern (in **R**)

```
e.CS <- lmm(weight ~ time,
    repetition =~time|id,
    structure = "CS",
    data = gastricbypassL)
logLik(e.CS)
logLik(e.lme)</pre>
```

```
[1] -249.5052
'log Lik.' -249.5052 (df=6)
```

```
coef(e.CS, effects = "all", transform.sigma="square")
```

```
(Intercept) time-1 week time+ 1 week time+ 3 weeks 128.9700000 -7.7300000 -13.2700000 -26.6050000 sigma^2 rho 348.3162479 0.9697449
```

Marginal vs. conditional predictions

When using mixed model, one can predict:

• for a new individual: $\hat{Y}_{it} = \hat{\mu}_t$

predict(e.ReI, newdata = gastricbypassL, re.form=~0)

• for a known individual (BLUP): $\hat{Y}_{it} = \hat{\mu}_t + \hat{u}_i$

predict(e.ReI, newdata = gastricbypassL)

What are the random effects?

In this simple model,

$$u_i = \frac{\sigma_B^2}{\sigma_B^2 + \sigma_W^2/4} \times \frac{1}{4} \sum_{t=1}^4 (Y_{it} - \mu_t)$$

- i.e. 0.992 times the average residual for individual i.
- \rightarrow average of the residuals shrinked toward 0
- \rightarrow individual predictions are shrinked toward the population mean σ_P^2 controls the shrinkage/how individual-specific predictions are

Numerically:

Break & exercise

Discuss with your neighbor:

- benefits and limitations of the random intercept model
- why does a random intercept model fail to be estimated when considering the outcome glucagon? (pre- vs. post. operation)

```
df <- gastricbypassL[gastricbypassL$visit %in% 2:3,] lmer(glucagonAUC \sim time + (1|id), data = df)
```

```
boundary (singular) fit: see help('isSingular')
```

Limitations of random intercept models

A random intercept model assumes:

- equal, positive correlation between any two replicates
 - ightarrow unrealistic: close in time means larger correlation
- same variance for all replicates
 - → unrealistic: variability changes over time

Limitations of random intercept models

A random intercept model assumes:

- equal, positive correlation between any two replicates
 - \rightarrow unrealistic: close in time means larger correlation
- same variance for all replicates
 - → unrealistic: variability changes over time

Can be improved by adding more random effects:

• including individual-specific time changes

Random slope models (model)

For individual i at time t we model its weight Y_{it} as:

$$Y_{it} = \mu_t + u_i + t \times v_i + \xi_{it}$$

where:

- $u_i \sim \mathcal{N}(0, \sigma_I^2)$: random intercept for subject i
- $v_i \sim \mathcal{N}(0, \sigma_S^2)$: random slope for subject i
- $\xi_{it} \sim \mathcal{N}(0, \sigma_W^2)$: residual error term for subject *i* at time *t*

Random slope models (model)

For individual i at time t we model its weight Y_{it} as:

$$Y_{it} = \mu_t + u_i + t \times v_i + \xi_{it}$$

where:

- $u_i \sim \mathcal{N}(0, \sigma_I^2)$: random intercept for subject i
- $v_i \sim \mathcal{N}(0, \sigma_S^2)$: random slope for subject i
- $\xi_{it} \sim \mathcal{N}(0, \sigma_W^2)$: residual error term for subject *i* at time *t*

Usually we model the correlation between u_i and v_i (parameter ρ)

- individuals with high baseline weight tend to lose more weight
- \triangle Not to be confused with the ρ parameters in the correlation structure!

Random slope models (software)

```
## time.num 0 : -3 months, 2.76: -1 week
            3.23: +1 \text{ week}, 6 : +3 \text{ months}
##
```

in 😱 :

```
e.ReS <- lmer(weight ~ time + (time.num|id),
       data = gastricbypassL)
```

in SAS:

```
proc mixed data=gastricbypassL;
class id time;
model weight = time / ddfm=kr cl;
random intercept time.num /
       type=un subject=id g gcor v vcorr;
run;
```

Random slope models (output)

```
e.ReS
```

```
Linear mixed model fit by REML ['lmerModLmerTest']
Formula: weight ~ time + (time.num | id)
  Data: gastricbypassL
REML criterion at convergence: 469.0984
Random effects:
             Std.Dev. Corr
Groups
        Name
 id
        (Intercept) 20.342
         time.num 1.069 - 0.65
Residual
                  1.909
Number of obs: 80, groups: id, 20
Fixed Effects:
 (Intercept) time-1 week time+1 week time+3 weeks
     128.97
                  -7.73 -13.27
                                           -26.60
```

Comments

Compared to the random intercept model:

- the fixed effect are almost identical
- the residual variance is even smaller (1.909² instead of 3.246²)
- the variance of the random intercept is slightly larger (20.342² instead of 18.379²)
 - \rightarrow more flexibility helps to capture individual variations

Comments

Compared to the random intercept model:

- the fixed effect are almost identical
- the residual variance is even smaller (1.909² instead of 3.246²)
- the variance of the random intercept is slightly larger (20.342² instead of 18.379²)
 - \rightarrow more flexibility helps to capture individual variations

- $\rightarrow \text{ difference in slope between individuals}$
- $\pm 1.96\sqrt{2\sigma_5^2} \approx \pm 2.96 \text{ kg/month}$

Correlation between random effects

VarCorr(e.ReS)

```
confint(e.ReS, oldNames=FALSE)[2,,drop=FALSE]
```

```
Computing profile confidence intervals ... 2.5 % 97.5 % cor_time.num.(Intercept)|id -0.8555569 -0.2712663
```

Evidence for a correlation between the random intercept and random slope

larger initial weight is associated with larger weight loss

Random slope models (illustration)

What about Ω and R?

What about Ω and R?

The residual variance-covariance matrix has a complex expression:

- depends on 4 parameters $(\sigma_I^2, \sigma_S^2, \rho, \sigma_W^2)$
- more flexible than CS but less than UN

correlation				standard		
		-3 months	-1 week	+1 week	+3 weeks	deviation
	-3 months	1.0000000	0.9831382	0.9799849	0.9472105	20.43121
	-1 week	0.9831382	1.0000000	0.9891228	0.9739420	18.66236
	+1 week	0.9799849	0.9891228	1.0000000	0.9773993	18.39135
	+3 weeks	0.9472105	0.9739420	0.9773993	1.0000000	17.00906

Exercise: numerical vs. categorical variable

In the gastricbypass study we can consider time:

- as a numeric variable time.num
- as a categorical variable time

What is the difference between following mixed models:

```
weight \sim time.num + (time.num|id)
weight \sim time + (time.num|id)
weight \sim time.num + (time|id)
weight \sim time + (time|id)
```

Hint: only two of them make sense!

Conclusion

When using a mixed model, one has to specify:

- a model for the mean "same as usual"
- a model for the variance and correlation "many possibilities!"

Direct specification:

 Unstructured pattern (UN) is a good default for discrete time/balanced design

Indirect specification via random effects:

- random slopes models are well suited for time series
- nested/crossed random effects for complex hierarchical structure (and many more)

What we have seen today

✓ Covariance structure

- describing a correlation structure via a graph
- correlation structure with 2 or 3 levels
- nested vs. crossed correlation factors

✓ Random effect models (2 levels)

- random intercept, random slope
- typical differences between replicates
- decomposition of the variance, e.g. within vs. between
- conditional vs. marginal predictions

✓ Comparing random effects with covariance patterns

- CS equivalent to random intercept
- random slope more flexible than CS but less than UN
- nested random intercept more flexible than CS but less than UN

Latent variab

Random effect models 0000000000000 00000000 Conclusion

OO

OOOOOOOOO

Reference I

Pastes dataset

Quantify the variability in quality (strength) of a paste:

- several batches where analyzed (batch)
- in each batch several samples were taken (sample)

```
data("Pastes", package = "lme4")
str(Pastes)
```

```
'data.frame': 60 obs. of 4 variables:

$ strength: num 62.8 62.6 60.1 62.3 62.7 63.1 60 61.4 57.5 56.

$ batch : Factor w/ 10 levels "A", "B", "C", "D", ...: 1 1 1 1 1 1 1 1 2 cask : Factor w/ 3 levels "a", "b", "c": 1 1 2 2 3 3 1 1 2 2
```

Pastes dataset (visually)

Pastes dataset (structure)

For each of the 10 batches:

• 3 samples were taken and analyzed twice

```
A:a A:b A:c B:a B:b B:c C:a C:b C:c D:a D:b D:c E:a E:b
Α
     2
           2
                2
                                                                  0
                                                                        0
B
     0
           0
                0
                           2
                                       0
                                                  0
                                                       0
                                                             0
                                                                  0
                                                                        0
     0
           0
                0
                                 0
                                                       0
                                                                  0
                                                                        0
           0
                                       0
                                            0
D
     0
                0
                      0
                                 0
                                                  0
                                                                        0
E
                                                             0
                                                                        2
     0
           0
                0
                           0
                                 0
                                      0
                                                  0
                                                       0
                                                                  0
F
     0
           0
                0
                                 0
                                      0
                                                                  0
                                                                        0
G
     0
           0
                0
                      0
                           0
                                 0
                                       0
                                            0
                                                  0
                                                       0
                                                             0
                                                                  0
                                                                        0
Н
     0
           0
                                 0
                                      0
                                                             0
                0
                                                  0
                                                       0
                                                                  0
                                                                        0
     0
           0
                0
                           0
                                 0
                                      0
                                            0
                                                  0
                                                       0
                                                             0
                                                                  0
                                                                        0
J
     0
           0
                0
                      0
                           0
                                 0
                                       0
                                            0
                                                  0
                                                       0
                                                             0
                                                                  0
                                                                        0
```

Nested random effects (model)

For observation $i \in \{1, 2\}$ from batch $b \in \{A, B, ..., J\}$ and sample $s \in \{A : a, A : b, ..., J : c\}$, we model:

$$Y_{bsi} = \alpha + u_b + v_s + \varepsilon_{bsi}$$

- α: average quality
- u_b : deviation from average quality for batch b.
 - \rightarrow has variance τ_b .
- v_s: deviation from average quality for sample s.
 - \rightarrow has variance $\tau_{\rm s}$.
- ε_{bsi} : residual error.
 - \rightarrow has variance σ^2 .

Nested random effects (software)

in 😱 :

```
e.nested <- lmer(strength \sim 1 + (1|batch/sample), data = Pastes)
```

in SAS:

Nested random effects (output)

```
e.nested
```

```
Linear mixed model fit by REML ['lmerModLmerTest']
Formula: strength ~ 1 + (1 | batch/sample)
   Data: Pastes
REML criterion at convergence: 246.9907
Random effects:
             Name Std.Dev.
 Groups
 sample:batch (Intercept) 2.9041
 batch
              (Intercept) 1.2874
 Residual
                          0.8234
Number of obs: 60, groups: sample:batch, 30; batch, 10
Fixed Effects:
(Intercept)
      60.05
```

Variance decomposition

Variation	Variance component	Estimate	Proportion of variance
Sample	$ au_{S}$	$2.9041^2 \approx 8.433$	78.31%
Batch	$ au_{b}$	$1.2874^2 \approx 1.657$	15.39%
Residual	σ^2	$0.8234^2\approx0.678$	6.29%
Total	$\tau_s + \tau_b + \sigma^2$	$.^2 + .^2 + .^2 \approx 10.769$	100%

 \rightarrow most of the variance comes from the sample!

Typical differences/correlation

Typical difference in strength for two observations:

- from the **same batch** and the **same sample** will be $[-1.96\sqrt{2*\sigma^2}; 1.96\sqrt{2*\sigma^2}] = [-2.28; 2.28]$
- from the same batch but a different sample $[-1.96\sqrt{2*(\sigma^2+\tau_s)}; 1.96\sqrt{2*(\sigma^2+\tau_s)}] = [-8.37; 8.37]$
- from a different batch (and therefore a different sample) $[-1.96\sqrt{2*(\sigma^2+\tau_s+\tau_b)}; 1.96\sqrt{2*(\sigma^2+\tau_s+\tau_b)}] = [-9.10; 9.10]$

Typical differences/correlation

Typical difference in strength for two observations:

- from the same batch and the same sample will be $[-1.96\sqrt{2*\sigma^2}; 1.96\sqrt{2*\sigma^2}] = [-2.28; 2.28]$
- \rightarrow correlation: $\rho_s = \frac{\tau_b + \tau_s}{\tau_b + \tau_s + \sigma^2} \approx 0.937$
 - from the same batch but a different sample

$$[-1.96\sqrt{2*(\sigma^2+\tau_s)}; 1.96\sqrt{2*(\sigma^2+\tau_s)}] = [-8.37; 8.37]$$

- \rightarrow correlation: $\rho_b = \frac{\tau_b}{\tau_b + \tau_a + \sigma^2} \approx 0.154$
 - from a different batch (and therefore a different sample) $[-1.96\sqrt{2*(\sigma^2+\tau_s+\tau_b)}; 1.96\sqrt{2*(\sigma^2+\tau_s+\tau_b)}]$ = [-9.10; 9.10]
- \rightarrow correlation: 0

What about Σ and R?

