Novel Applications of Al Techniques in Database Management

Johannes Wünsche

July 15, 2018

Agenda

- 1 Overview
- 2 Short Summary of Natural Language Interfaces, ML in DB and Data Managment Applications
- 3 Self-Management of Databases
- 4 Software 2.0

Overview

Overview

Short Summary of Natural Language Interfaces, ML in DB and

Data Managment Applications

Natural Language Interfaces & ML in DB

Natural Language Interfaces

- Idea of using AI to interpret NL questions or requests and react accordingly
- quite old concept improved by modern hardware and technology

Machine Learning in Databases

- machine learning methods on data
- e.g. *Apache MADlib*, which implements
 - decision trees
 - random forest
 - bayes classifier
 - clustering
 - association rules
 -

Data Management Applications

Figure 1: by DeepER-Deep Entity Resolution, Muhammad Ebraheem et al

Entity Resolution

- Finding of Records that refer to the same entity
- Required if shape of data is not unitary

Self-Management of Databases

Self-Management of Databases

- Tuning of parameters of Database Management Systems
 - like cache amount and frequency of writing to storage
 - implementations like OtterTune by Database Research Group at Carnegie Mellon University
- Elastic Scaling of Machine Allocation
 - avoid latency spikes by action prediction through time-series prediction
 - implementations like P-Store by Taft, MIT
- Learned Index Structures
 - a "model can learn the sort order or structure of lookup keys and use this signal to effectively predict the position or existence of records"
 - alternative technology to exisiting Bloom-Filters or B-Trees

B-Tree Bloom-Filter

Learned Index Structures

Learned Index Structures

- Performance of Index Access can be unintuitively enhanced by predicting the index of a searched instance with a Neural Network or Linear Regression
- Shown to result in equally good or better performance than conventional Index Structures

Learned Index Structures by Example

Searching for a index

- Similar to every other model used
- Transform key to vector and use as input for trained NN

Enhancement of LIS: Recursive Model Index(RMI)

■ refinement of models after every step to better display details

Learned Index Strucutures Result

		Map D	Web Data			Log-Normal Data			
Type	Config	Size (MB) Lookup	(ns) Model (ns)	Size (MB)	Lookup (ns)	Model (ns)	Size (MB)	Lookup (ns)	Model (ns)
Btree	page size: 32	52.45 (4.00x) 274 (0	.97x) 198 (72.3%)	51.93 (4.00x)	276 (0.94x)	201 (72.7%)	49.83 (4.00x)	274 (0.96x)	198 (72.1%)
1 .	page size: 64	26.23 (2.00x) 277 (0	.96x) 172 (62.0%)	25.97 (2.00x)	274 (0.95x)	171 (62.4%)	24.92 (2.00x)	274 (0.96x)	169 (61.7%)
	page size: 128	13.11 (1.00x) 265 (1	.00x) 134 (50.8%)	12.98 (1.00x)	260 (1.00x)	132 (50.8%)	12.46 (1.00x)	263 (1.00x)	131 (50.0%)
	page size: 256	6.56 (0.50x) 267 (0	.99x) 114 (42.7%)	6.49 (0.50x)	266 (0.98x)	114 (42.9%)	6.23 (0.50x)	271 (0.97x)	117 (43.2%)
	page size: 512	3.28 (0.25x) 286 (0	.93x) 101 (35.3%)	3.25 (0.25x)	291 (0.89x)	100 (34.3%)	3.11 (0.25x)	293 (0.90x)	101 (34.5%)
Learned	2nd stage models: 10k	0.15 (0.01x) 98 (2	.70x) 31 (31.6%)	0.15 (0.01x)	222 (1.17x)	29 (13.1%)	0.15 (0.01x)	178 (1.47x)	26 (14.6%)
Index	2nd stage models: 50k	0.76 (0.06x) 85 (3	.11x) 39 (45.9%)	0.76 (0.06x)	162 (1.60x)	36 (22.2%)	0.76 (0.06x)	162 (1.62x)	35 (21.6%)
	2nd stage models: 100k	1.53 (0.12x) 82 (3	.21x) 41 (50.2%)	1.53 (0.12x)	144 (1.81x)	39 (26.9%)	1.53 (0.12x)	152 (1.73x)	36 (23.7%)
	2nd stage models: 200k	3.05 (0.23x) 86 (3	.08x) 50 (58.1%)	3.05 (0.24x)	126 (2.07x)	41 (32.5%)	3.05 (0.24x)	146 (1.79x)	40 (27.6%)

Figure 2: The Case for Learned Index Structures by Kraska et al

Learned Index Structures Conclusion

Advantages

- lacksquare can take advantage of real world data patterns(ML) ightarrow allows for high optimization
- lower engineering costs

Disadvantages

■ initial work on B-Trees and alike is lower since they do not require additional training

Software 2.0

Intro

- Classical Software Dev major downsides like difficult optimization of code and human error
- S2.0 doesn't base on declarative programming and tries to learn the desired functionality with a approximate base net
- enabled by development of Neural Networks in last 20 years allowing >100 layers deep networks
- program space is restricted for future training (backpropagation, gradien descent)
- many real world problems easier to detect desirable behaviour than to write a specific program

Advantages

Higher Portability

- Smaller operation set
- Matrix Multiplication and thresholding at zero required
- small instruction set of chips with pretrained nets allows for

Better Performance

- allows for better performance and correctness predictions because closer implementation in hardware less core primitives are needed
- modules can be introduced to a single module reducing communication overhead by sacrificing clarity of separation, which is due to the human unlike nature of so2 sacrificed beforehand either way
- well trained neural nets outperform code implementation

Advantages

Better Runtime Predictability

- lacksquare requires same amount of memory each iteration o low probability of infinite loops or locks
- \blacksquare speed well adjustable \to speed can easily improved by reducing performance

Disadvantages

Unintuitivity

- \blacksquare can be treated as different new paradigm \to requires rethinking of development style
- even though the network may work well, for humans difficult to understand
- developing in so2 is unintuitive and not well developed
- requires manually curating, maintaining, cleaning and labelling of datasets
- may not be applicable easily to all problems

Disadvantages

Nonrecognizable errors

- errors may occur unpredictable
- can silently fail due to changed biases (hard to track since a large amount of them are being trained)

Lack of Tools

no tools exist that support the development process like IDE, highlighting and alike for classical software

Example

Conclusion

Optimization

- Allows for greater optimization of complex problems
- e.g. Cuttlefish achieves 7.5x speedup to other query optimizers *Cuttlefish: A Lightweight Primitive for Adaptive Query Processing*

Development difficult

■ No Tools and unexperienced developers

Thank you for your attention.

Do you have any questions? Ideas? Be free to ask them.