$f_{0}(0) = \int_{1}^{1/2} f_{0}(x) \int_{1}^{1/2} (1-x) \int_{1-x}^{1/2} f_{0}(x) \int_{1}^{1/2} (1-x) \int_{1-x}^{1/2} f_{0}(x) \int_{1}^{1/2} f_{0}(x$

The problem with the above is small errors should be more likely than large errors. Thus, another consideration is $f'(\epsilon) < 0$ for $\epsilon > 0$ and $f'(\epsilon) > 0$ for $\epsilon < 0$.

Then he reasoned if $f''(\epsilon) = f'(\epsilon) = > f(\epsilon) = ce^{-\frac{1}{2}|\delta|}$ when you solve this simple differential equation. Solving this for c,d to make it a valid PDF, you get c = 1/2, d = 1. (should be d = 1/2. This is only one such valid solution). c = d is full solution set. $\sqrt[k]{\kappa} = \frac{1}{\kappa} \sqrt[k]{\delta} = \frac$

a valid PDF, you get
$$c = 1/2$$
, $d = 1$. (should be $d = 1/2$. This is only one such valid solution). $c = d$ is full solution se $\sqrt[k]{\kappa} = \sqrt[k]{k} = \sqrt[k]$

Weibull(1, λ) = $\lambda e^{-\lambda y} \int_{\gamma \angle (Q, \infty)} = \operatorname{Exp}(\lambda)$ Weibull is a generalization of the exponential making a more flexible "survival distribution". The k parameter is very important. Let's first find the CDF.

riexible "survival distribution". The k parameter is very important. Let's first find the CDF. $\begin{aligned}
& (x_1) = \sum_{k=0}^{k} k \lambda(x_1)^{k-1} e^{-kk} \lambda^k dx \\
& (x_2) = \sum_{k=0}^{k} k \lambda(x_1)^{k-1} e^{-kk} \lambda^k dx \\
& (x_1) = \sum_{k=0}^{k} k \lambda(x_1)^{k-1} e^{-kk} \lambda^k dx \\
& (x_2) = \sum_{k=0}^{k} k \lambda(x_1)^{k-1} e^{-kk} \lambda^k dx \\
& (x_1) = \sum_{k=0}^{k} k \lambda(x_1)^{k-1} e^{-kk} \lambda^k dx \\
& (x_2) = \sum_{k=0}^{k} k \lambda(x_1)^{k-1} e^{-kk} \lambda^k dx \\
& (x_1) = \sum_{k=0}^{k} k \lambda(x_1)^{k-1} e^{-kk} \lambda^k dx \\
& (x_2) = \sum_{k=0}^{k} k \lambda(x_1)^{k-1} e^{-kk} \lambda^k dx \\
& (x_1) = \sum_{k=0}^{k} k \lambda(x_1)^{k-1} e^{-kk} \lambda^k dx \\
& (x_2) = \sum_{k=0}^{k} k \lambda(x_1)^{k-1} e^{-kk} \lambda^k dx \\
& (x_1) = \sum_{k=0}^{k} k \lambda(x_1)^{k-1} e^{-kk} \lambda^k dx \\
& (x_2) = \sum_{k=0}^{k} k \lambda(x_1)^{k-1} e^{-kk} \lambda^k dx \\
& (x_1) = \sum_{k=0}^{k} k \lambda(x_1)^{k-1} e^{-kk} \lambda^k dx \\
& (x_2) = \sum_{k=0}^{k} k \lambda(x_1)^{k-1} e^{-kk} \lambda^k dx \\
& (x_1) = \sum_{k=0}^{k} k \lambda(x_1)^{k-1} e^{-kk} \lambda^k dx \\
& (x_2) = \sum_{k=0}^{k} k \lambda(x_1)^{k-1} e^{-kk} \lambda^k dx \\
& (x_1) = \sum_{k=0}^{k} k \lambda(x_1)^{k-1} e^{-kk} \lambda^k dx \\
& (x_2) = \sum_{k=0}^{k} k \lambda(x_1)^{k-1} e^{-kk} \lambda^k dx \\
& (x_1) = \sum_{k=0}^{k} k \lambda(x_1)^{k-1} e^{-kk} \lambda^k dx \\
& (x_2) = \sum_{k=0}^{k} k \lambda(x_1)^{k-1} e^{-kk} \lambda^k dx \\
& (x_1) = \sum_{k=0}^{k} k \lambda(x_1)^{k-1} e^{-kk} \lambda^k dx \\
& (x_2) = \sum_{k=0}^{k} k \lambda(x_1)^{k-1} e^{-kk} \lambda^k dx \\
& (x_1) = \sum_{k=0}^{k} k \lambda^k dx \\
& (x_2) = \sum_{k=0}^{k} k \lambda^k dx \\
& (x_1) = \sum_{k=0}^{k} k \lambda^k dx \\
& (x_2) = \sum_{k=0}^{k} k \lambda^k dx \\
& (x_1) = \sum_{k=0}^{k} k \lambda^k dx \\
& (x_2) = \sum_{k=0}^{k} k \lambda^k dx \\
& (x_1) = \sum_{k=0}^{k} k \lambda^k dx \\
& (x_2) = \sum_{k=0}^{k} k \lambda^k dx \\
& (x_1) = \sum_{k=0}^{k} k \lambda^k dx \\
& (x_2) = \sum_{k=0}^{k} k \lambda^k dx \\
& (x_1) = \sum_{k=0}^{k} k \lambda^k dx \\
& (x_2) = \sum_{k=0}^{k} k \lambda^k dx \\
& (x_1) = \sum_{k=0}^{k} k \lambda^k dx \\
& (x_2) = \sum_{k=0}^{k} k \lambda^k dx \\
& (x_1) = \sum_{k=0}^{k} k \lambda^k dx \\
& (x_2) = \sum_{k=0}^{k} k \lambda^k dx \\
& (x_1) = \sum_{k=0}^{k} k \lambda^k dx \\
& (x_2) = \sum_{k=0}^{k} k \lambda^k dx \\
& (x_1) = \sum_{k=0}^{k} k \lambda^k dx \\
& (x_2) = \sum_{k=0}^{k} k \lambda^k dx \\
& (x_1) = \sum_{k=0}^{k} k \lambda^k dx \\
& (x_2) = \sum_{k=0}^{k} k \lambda^k dx \\
& (x_1) = \sum_{k=0}^{k} k \lambda^k dx$

Let's consider the conditional probability $w = P(Y \ge y + c \mid Y \ge c), c > 0$

P(Y=y+L,Y=c)

k is called the "Weibull modulus". $|x| \Rightarrow w = e^{\lambda(c - \frac{c}{2} + 0)} = e^{-\lambda y} = \mathbb{E} \times \rho(\lambda)$ This is the "memorylessness property" = $e^{-\lambda(c + c)}$ of the exponential rv. The geometric also has this property due to the underlying iid Bernoullis. $|x| \Rightarrow e^{\lambda(c^{k} - (y + c)^{k})}| = e^{\lambda(c^{k} - (y + c)^{k})}$ $|x| \Rightarrow e^{\lambda(c^{k} - (y + c)^{k})}| = e^{\lambda(c^{k} - (y + c)^{k})}|$ $|x| \Rightarrow e^{\lambda(c^{k} - (y + c)^{k})}| = e^{\lambda(c^{k} - (y + c)^{k})}|$ $|x| \Rightarrow e^{\lambda(c^{k} - (y + c)^{k})}| = e^{\lambda(c^{k} - (y + c)^{k})}|$ $|x| \Rightarrow e^{\lambda(c^{k} - (y + c)^{k})}| = e^{\lambda(c^{k} - (y + c)^{k})}|$ $|x| \Rightarrow e^{\lambda(c^{k} - (y +$

Order Statistics (p160). Let X_1, \dots, X_n be continuous rv's then sort them from smallest to largest and denote them X_0, \dots, X_n which are called the order statistics of the original set of rv's. $X_{(1)} = \min_{k} \left\{ X_1, \dots, X_n \right\}$ $X_{(k)} = \left\{ \frac{1}{k} \mid \text{wyst} \right\}$ $X_{(n)} = \text{Vnax} \left\{ X_1, \dots, X_n \right\}$ $X_{(n)} = \text{Vnax} \left\{ X_1, \dots, X_n \right\}$ $X_{(n)} = \text{Vnax} \left\{ X_1, \dots, X_n \right\}$ Which is called the "range"

The goal is to find the distribution (PDF and CDF) of all order statistics given the distribution of the original collection.