Assignment#5

Numerical Differentiation

1. Determine y'(1) & y"(1) from following data:

X	0.5	1.0	1.5	2.0	2.5
у	6	3	2	1.2	0.8

2. Find the **velocity** and **acceleration** when t = 0.1 second.

t (sec)	0	0.1	0.2	0.3	0.4	0.5	0.6
x (cm)	30.13	31.62	32.87	33.64	33.95	33.81	33.24

3. The table gives the angle in radians (Θ) through which a rotating rod has turned for various values of time in seconds (t), Find the **angular velocity** & **angular acceleration** at t = 0.2.

t	0	0.2	0.4	0.6	0.8
θ	0	0.122	0.493	0.123	2.022

- 4. Given $\sin 0^{\circ} = 0.000$, $\sin 10^{\circ} = 0.1736$, $\sin 20^{\circ} = 0.3420$, $\sin 30^{\circ} = 0.500$, $\sin 40^{\circ} = 0.6428$,
 - a. Find the value of sin 23°,
 - b. Find the numerical value of $\cos x$ at x = 10,
 - c. Find the numerical value of d^2y/dx^2 at $x = 20^\circ$ for $y = \sin x$
- 5. Find the value of f'(8) from the table given below:

X	6	7	9	12
f(x)	1.556	1.690	1.908	2.158

Maxima & Minima

1. Find the **maximum** & **minimum** value of y from the following table:

X	0	1	2	3	4	5
у	0	0.25	0	0.25	16	56.25

2. Find the value of \mathbf{x} for which $\mathbf{f}(\mathbf{x})$ is maximum, using the table:

X	9	10	11	12	13	14
f(x)	1330	1340	1320	1250	1120	930

Also find the maximum value of f(x)?

Numerical Integration

1. Given that:

	X	4.0		4.4				5.2
Ī	log x	1.3963	1.4351	1.4816	1.5261	1.5686	1.6094	1.6487

Evaluate $\int_{4}^{5.2} \log x \, dx$ by

a. Trapezoidal rule

- b. Simpson's 1/3rd rule
- c. Simpson's 3/8th rule & also find the error in each case
- 2. Write an algorithm to calculate the definite integral $\int_a^b f(x)dx$ using composite Simpson's 1/3rd rule.
- 3. Evaluate $\int_0^2 f(x) dx$ for the function $f(x) = e^x + \sin(2x)$ using **Simpson's 3/8th** rule taking $h = \frac{1}{2} \int_0^2 f(x) dx$
- 4. Write a pseudo-code to integrate a given function within given limits using Simpson's 3/8th
- 5. Use **Romberg's Integration** method to compute $\int_0^{0.5} \frac{x}{\sin x} dx$, correct to 3 decimal places.
- 6. Evaluate following using **Gaussian Quadrature 2-point & 3-point** formula:

 - a. $\int_0^1 \frac{\tan^{-1} x}{x} dx$ b. $\int_0^{\pi/2} e^{\sin x} dx$ c. $\int_{0.2}^{1.5} e^{-x^2} dx$ d. $\int_2^3 \frac{\cos 2x}{1+\sin x} dx$ e. $\int_{0.2}^{1.2} (\log(x+1) + \sin 2x) dx$
- 7. Use **Gauss-Legendre** four-point formula to evaluate $\int_2^4 (x^4 + 1) dx$