## НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Дисциплина: «Дискретная математика»

Домашнее задание 3 Исследование алгоритмов решения метрической задачи коммивояжера Вариант 142

Выполнил: Мануйлов Александр, студент гр. БПИ185.

Преподаватель: Авдошин С.М., профессор департамента программной инженерии факультета компьютерных наук

- 1. На плоскости задано множество точек  $V = \{1, 2, 3, 4, 5, 6\}$  своими координатами  $(x_1 = 4, y_1 = 1)$   $(x_2 = 8, y_2 = 0)$   $(x_3 = 6, y_3 = 6)$   $(x_4 = 1, y_4 = 9)$   $(x_5 = 5, y_5 = 3)$   $(x_6 = 4, y_6 = 5)$ .
- 2. Вычислим элементы  $d_i j$  весовой матрицы смежности графа  $G = \langle V, V \times V \rangle$  по формуле  $d_{ij} = |x_i x_j| + |y_i y_j|$

$$D = \begin{pmatrix} 0 & 5 & 7 & 11 & 3 & 4 \\ 5 & 0 & 8 & 16 & 6 & 9 \\ 7 & 8 & 0 & 8 & 4 & 3 \\ 11 & 16 & 8 & 0 & 10 & 7 \\ 3 & 6 & 4 & 10 & 0 & 3 \\ 4 & 9 & 3 & 7 & 3 & 0 \end{pmatrix}$$

3. Используя метод ветвей и границ, найдем множество кодов всех оптимальных гамильтоновых циклов являющихся решением задачи коммивояжера на графе G . Петли не могут быть частью решения. Поэтому положим диагональные элементы равными бесконечности.

$$D = \begin{pmatrix} \infty & 5 & 7 & 11 & 3 & 4 \\ 5 & \infty & 8 & 16 & 6 & 9 \\ 7 & 8 & \infty & 8 & 4 & 3 \\ 11 & 16 & 8 & \infty & 10 & 7 \\ 3 & 6 & 4 & 10 & \infty & 3 \\ 4 & 9 & 3 & 7 & 3 & \infty \end{pmatrix}$$

Обозначим через  $S = \{p : V \xrightarrow{i} V | (p(1) = 1) \& (\forall i \in V) (\forall j \in V) ((p(i) = p(j)) \Rightarrow (i = j)) \}$  множество кодов всех гамильтоновых цикл  $v = (p_1, p_2, p_3, p_4, p_5, p_6, p_1)$  графа G, заданного весовой матрицей смежности D. Здесь  $p_i$  используется в качестве сокращённой записи p(i).

Найдём нижнюю границу b множества S

| S | 1        | 2        | 3        | 4        | 5        | 6        | $\min$ |
|---|----------|----------|----------|----------|----------|----------|--------|
| 1 | $\infty$ | 5        | 7        | 11       | 3        | 4        | 3      |
| 2 | 5        | $\infty$ | 8        | 16       | 6        | 9        | 5      |
| 3 | 7        | 8        | $\infty$ | 8        | 4        | 3        | 3      |
| 4 | 11       | 16       | 8        | $\infty$ | 10       | 7        | 7      |
| 5 | 3        | 6        | 4        | 10       | $\infty$ | 3        | 3      |
| 6 | 4        | 9        | 3        | 7        | 3        | $\infty$ | 3      |
|   |          |          |          |          |          | $\alpha$ | 24     |

| S      | 1        | 2        | 3        | 4        | 5        | 6        |   |
|--------|----------|----------|----------|----------|----------|----------|---|
| 1      | $\infty$ | 2        | 4        | 8        | 0        | 1        |   |
| 2      | 0        | $\infty$ | 3        | 11       | 1        | 4        |   |
| 3      | 4        | 5        | $\infty$ | 5        | 1        | 0        |   |
| 4      | 4        | 9        | 1        | $\infty$ | 3        | 0        |   |
| 5      | 0        | 3        | 1        | 7        | $\infty$ | 0        |   |
| 6      | 1        | 6        | 0        | 4        | 0        | $\infty$ | β |
| $\min$ | 0        | 2        | 0        | 4        | 0        | 0        | 6 |

$$b = \alpha + \beta = 30$$



Определим дугу ветвления для разбиения множества  $S_1$ 

| S | 1        | 2        | 3        | 4        | 5        | 6        |
|---|----------|----------|----------|----------|----------|----------|
| 1 | $\infty$ | $0^1$    | 4        | 4        | 00       | 1        |
| 2 | $0^1$    | $\infty$ | 3        | 7        | 1        | 4        |
| 3 | 4        | 3        | $\infty$ | 1        | 1        | $0^{1}$  |
| 4 | 4        | 7        | 1        | $\infty$ | 3        | $0^{1}$  |
| 5 | $0_0$    | 1        | 1        | 3        | $\infty$ | $0_0$    |
| 6 | 1        | 4        | $0^1$    | $0^1$    | $0_0$    | $\infty$ |

(1, 2)

| $S_0$ | 1        | 2        | 3        | 4        | 5        | 6        |
|-------|----------|----------|----------|----------|----------|----------|
| 1     | $\infty$ | $\infty$ | 4        | 4        | 0        | 1        |
| 2     | 0        | $\infty$ | 3        | 7        | 1        | 4        |
| 3     | 4        | 3        | $\infty$ | 1        | 1        | 0        |
| 4     | 4        | 7        | 1        | $\infty$ | 3        | 0        |
| 5     | 0        | 1        | 1        | 3        | $\infty$ | 0        |
| 6     | 1        | 4        | 0        | 0        | 0        | $\infty$ |
| min   |          | 1        |          |          |          |          |

| $S_0$ | 1        | 2        | 3        | 4        | 5        | 6        |
|-------|----------|----------|----------|----------|----------|----------|
| 1     | $\infty$ | $\infty$ | 4        | 4        | 0        | 1        |
| 2     | 0        | $\infty$ | 3        | 7        | 1        | 4        |
| 3     | 4        | 2        | $\infty$ | 1        | 1        | 0        |
| 4     | 4        | 6        | 1        | $\infty$ | 3        | 0        |
| 5     | 0        | 0        | 1        | 3        | $\infty$ | 0        |
| 6     | 1        | 3        | 0        | 0        | 0        | $\infty$ |

 $b_0 = b + 1 = 31$ 

| $S_1$ | 1        | 3        | 4        | 5        | 6        | $\min$ |
|-------|----------|----------|----------|----------|----------|--------|
| 2     | $\infty$ | 3        | 7        | 1        | 4        | 1      |
| 3     | 4        | $\infty$ | 1        | 1        | 0        |        |
| 4     | 4        | 1        | $\infty$ | 3        | 0        |        |
| 5     | 0        | 1        | 3        | $\infty$ | 0        |        |
| 6     | 1        | 0        | 0        | 0        | $\infty$ |        |

| $S_1$ | 1        | 3        | 4        | 5        | 6        |
|-------|----------|----------|----------|----------|----------|
| 2     | $\infty$ | 2        | 6        | 0        | 3        |
| 3     | 4        | $\infty$ | 1        | 1        | 0        |
| 4     | 4        | 1        | $\infty$ | 3        | 0        |
| 5     | 0        | 1        | 3        | $\infty$ | 0        |
| 6     | 1        | 0        | 0        | 0        | $\infty$ |

 $b_1 = b + 1 = 31$ 



Определим дугу ветвления для разбиения множества  $S_1$ 

| $S_1$ | 1        | 3        | 4        | 5        | 6        |
|-------|----------|----------|----------|----------|----------|
| 2     | $\infty$ | 2        | 6        | $0^2$    | 3        |
| 3     | 4        | $\infty$ | 1        | 1        | $0^1$    |
| 4     | 4        | 1        | $\infty$ | 3        | $0^{1}$  |
| 5     | $0^1$    | 1        | 3        | $\infty$ | 00       |
| 6     | 1        | $0^{1}$  | $0^1$    | 00       | $\infty$ |

(2,5)

| $S_{10}$ | 1        | 3        | 4        | 5        | 6        | min |
|----------|----------|----------|----------|----------|----------|-----|
| 2        | $\infty$ | 2        | 6        | $\infty$ | 3        | 2   |
| 3        | 4        | $\infty$ | 1        | 1        | 0        |     |
| 4        | 4        | 1        | $\infty$ | 3        | 0        |     |
| 5        | 0        | 1        | 3        | $\infty$ | 0        |     |
| 6        | 1        | 0        | 0        | 0        | $\infty$ |     |

| $S_{10}$ | 1        | 3        | 4        | 5        | 6        |
|----------|----------|----------|----------|----------|----------|
| 2        | $\infty$ | 0        | 4        | $\infty$ | 1        |
| 3        | 4        | $\infty$ | 1        | 1        | 0        |
| 4        | 4        | 1        | $\infty$ | 3        | 0        |
| 5        | 0        | 1        | 3        | $\infty$ | 0        |
| 6        | 1        | 0        | 0        | 0        | $\infty$ |

$$b_{10} = b_1 + 2 = 33$$

| $S_{11}$ | 1        | 3        | 4        | 6        |
|----------|----------|----------|----------|----------|
| 3        | 4        | $\infty$ | 1        | 0        |
| 4        | 4        | 1        | $\infty$ | 0        |
| 5        | $\infty$ | 1        | 3        | 0        |
| 6        | 1        | 0        | 0        | $\infty$ |
| $\min$   | 1        |          |          |          |

$$S_{11}$$
 1 3 4 6 3  $\frac{3}{4}$   $\infty$  1 0 4  $\frac{3}{4}$   $\frac{1}{4}$   $\frac{3}{4}$   $\frac{1}{4}$   $\frac{1}{$ 

$$b_{11} = b_1 + 1 = 32$$



Определим дугу ветвления для разбиения множества  $S_0$ 

| $S_0$ | 1        | 2        | 3        | 4        | 5        | 6        |
|-------|----------|----------|----------|----------|----------|----------|
| 1     | $\infty$ | $\infty$ | 4        | 4        | $0^1$    | 1        |
| 2     | $0^{1}$  | $\infty$ | 3        | 7        | 1        | 4        |
| 3     | 4        | 2        | $\infty$ | 1        | 1        | $0^{1}$  |
| 4     | 4        | 6        | 1        | $\infty$ | 3        | $0^1$    |
| 5     | 00       | $0^2$    | 1        | 3        | $\infty$ | 00       |
| 6     | 1        | 3        | $0^1$    | $0^{1}$  | 00       | $\infty$ |

(5, 2)

| $S_{00}$ | 1        | 2        | 3        | 4        | 5        | 6        |
|----------|----------|----------|----------|----------|----------|----------|
| 1        | $\infty$ | $\infty$ | 4        | 4        | 0        | 1        |
| 2        | 0        | $\infty$ | 3        | 7        | 1        | 4        |
| 3        | 4        | 2        | $\infty$ | 1        | 1        | 0        |
| 4        | 4        | 6        | 1        | $\infty$ | 3        | 0        |
| 5        | 0        | $\infty$ | 1        | 3        | $\infty$ | 0        |
| 6        | 1        | 3        | 0        | 0        | 0        | $\infty$ |
| min      |          | 2        |          |          |          |          |

| $S_{00}$ | 1        | 2        | 3        | 4        | 5        | 6        |
|----------|----------|----------|----------|----------|----------|----------|
| 1        | $\infty$ | $\infty$ | 4        | 4        | 0        | 1        |
| 2        | 0        | $\infty$ | 3        | 7        | 1        | 4        |
| 3        | 4        | 0        | $\infty$ | 1        | 1        | 0        |
| 4        | 4        | 4        | 1        | $\infty$ | 3        | 0        |
| 5        | 0        | $\infty$ | 1        | 3        | $\infty$ | 0        |
| 6        | 1        | 1        | 0        | 0        | 0        | $\infty$ |

$$b_{00} = b_0 + 2 = 33$$

| $S_{01}$ | 1        | 3        | 4        | 5        | 6        |
|----------|----------|----------|----------|----------|----------|
| 1        | $\infty$ | 4        | 4        | 0        | 1        |
| 2        | 0        | 3        | 7        | $\infty$ | 4        |
| 3        | 4        | $\infty$ | 1        | 1        | 0        |
| 4        | 4        | 1        | $\infty$ | 3        | 0        |
| 6        | 1        | 0        | 0        | 0        | $\infty$ |

$$b_{01} = b_0 + 0 = 31$$



Определим дугу ветвления для разбиения множества  $S_{01}$ 

| $S_{01}$ | 1        | 3        | 4        | 5        | 6        |
|----------|----------|----------|----------|----------|----------|
| 1        | $\infty$ | 4        | 4        | $0^1$    | 1        |
| 2        | $0^4$    | 3        | 7        | $\infty$ | 4        |
| 3        | 4        | $\infty$ | 1        | 1        | $0^1$    |
| 4        | 4        | 1        | $\infty$ | 3        | $0^1$    |
| 6        | 1        | $0^1$    | $0^{1}$  | 00       | $\infty$ |

(2,1)

| $S_{010}$ | 1        | 3        | 4        | 5        | 6        | min |
|-----------|----------|----------|----------|----------|----------|-----|
| 1         | $\infty$ | 4        | 4        | 0        | 1        |     |
| 2         | $\infty$ | 3        | 7        | $\infty$ | 4        | 3   |
| 3         | 4        | $\infty$ | 1        | 1        | 0        |     |
| 4         | 4        | 1        | $\infty$ | 3        | 0        |     |
| 6         | 1        | 0        | 0        | 0        | $\infty$ |     |
| $\min$    | 1        |          |          |          |          | '   |

| $S_{010}$ | 1        | 3        | 4        | 5        | 6        |
|-----------|----------|----------|----------|----------|----------|
| 1         | $\infty$ | 4        | 4        | 0        | 1        |
| 2         | $\infty$ | 0        | 4        | $\infty$ | 1        |
| 3         | 3        | $\infty$ | 1        | 1        | 0        |
| 4         | 3        | 1        | $\infty$ | 3        | 0        |
| 6         | 0        | 0        | 0        | 0        | $\infty$ |

$$b_{010} = b_{01} + 4 = 35$$

| $S_{011}$ | 3        | 4        | 5        | 6        | $\min$ |
|-----------|----------|----------|----------|----------|--------|
| 1         | 4        | 4        | $\infty$ | 1        | 1      |
| 3         | $\infty$ | 1        | 1        | 0        |        |
| 4         | 1        | $\infty$ | 3        | 0        |        |
| 6         | 0        | 0        | 0        | $\infty$ |        |

$$b_{011} = b_{01} + 1 = 32$$



Определим дугу ветвления для разбиения множества  $S_{11}$ 

| $S_{11}$ | 1        | 3        | 4        | 6        |
|----------|----------|----------|----------|----------|
| 3        | 3        | $\infty$ | 1        | $0^{1}$  |
| 4        | 3        | 1        | $\infty$ | $0^1$    |
| 5        | $\infty$ | 1        | 3        | $0^1$    |
| 6        | $0^3$    | $0^1$    | $0^{1}$  | $\infty$ |

(6,1)

| $S_{110}$ | 1        | 3        | 4        | 6        |
|-----------|----------|----------|----------|----------|
| 3         | 3        | $\infty$ | 1        | 0        |
| 4         | 3        | 1        | $\infty$ | 0        |
| 5         | $\infty$ | 1        | 3        | 0        |
| 6         | $\infty$ | 0        | 0        | $\infty$ |
| min       | 3        |          |          |          |

| $S_{110}$ | 1        | 3        | 4        | 6        |
|-----------|----------|----------|----------|----------|
| 3         | 0        | $\infty$ | 1        | 0        |
| 4         | 0        | 1        | $\infty$ | 0        |
| 5         | $\infty$ | 1        | 3        | 0        |
| 6         | $\infty$ | 0        | 0        | $\infty$ |

$$b_{110} = b_{11} + 3 = 35$$

| $S_{111}$ | 3        | 4        | 6        | min |
|-----------|----------|----------|----------|-----|
| 3         | $\infty$ | 1        | 0        |     |
| 4         | 1        | $\infty$ | 0        |     |
| 5         | 1        | 3        | $\infty$ | 1   |

$$S_{111}$$
 3 4 6 3  $\infty$  1 0 4 1  $\infty$  0 5 0 2  $\infty$ 



Определим дугу ветвления для разбиения множества  $S_{011}$ 

| $S_{011}$ | 3        | 4        | 5        | 6        |
|-----------|----------|----------|----------|----------|
| 1         | 3        | 3        | $\infty$ | $0^3$    |
| 3         | $\infty$ | 1        | 1        | $0^{1}$  |
| 4         | 1        | $\infty$ | 3        | $0^{1}$  |
| 6         | $0^1$    | $0^1$    | $0^1$    | $\infty$ |

(1,6)

| $S_{0110}$ | 3        | 4        | 5        | 6        | min |
|------------|----------|----------|----------|----------|-----|
| 1          | 3        | 3        | $\infty$ | $\infty$ | 3   |
| 3          | $\infty$ | 1        | 1        | 0        |     |
| 4          | 1        | $\infty$ | 3        | 0        |     |
| 6          | 0        | 0        | 0        | $\infty$ |     |

$$b_{0110} = b_{011} + 3 = 35$$

$$S_{0111}$$
 3 4 5 3  $\infty$  1 1 4 1  $\infty$  3 6 0 0  $\infty$  min 1

$$\begin{array}{c|ccccc} S_{0111} & 3 & 4 & 5 \\ \hline 3 & \infty & 1 & 0 \\ 4 & 1 & \infty & 2 \\ 6 & 0 & 0 & \infty \\ \end{array}$$

$$b_{0111} = b_{011} + 1 = 33$$



Определим дугу ветвления для разбиения множества  $S_{111}$ 

| $S_{111}$ | 3        | 4        | 6        |
|-----------|----------|----------|----------|
| 3         | $\infty$ | 1        | $0^1$    |
| 4         | 1        | $\infty$ | $0^1$    |
| 5         | $0^3$    | 2        | $\infty$ |

(5, 3)

| $S_{1110}$ | 3        | 4        | 6        | min |
|------------|----------|----------|----------|-----|
| 3          | $\infty$ | 1        | 0        |     |
| 4          | 1        | $\infty$ | 0        |     |
| 5          | $\infty$ | 2        | $\infty$ | 2   |
| $\min$     | 1        |          |          | •   |

| $S_{1110}$ | 3        | 4        | 6        |
|------------|----------|----------|----------|
| 3          | $\infty$ | 1        | 0        |
| 4          | 0        | $\infty$ | 0        |
| 5          | $\infty$ | 0        | $\infty$ |

$$b_{1110} = b_{111} + 3 = 36$$

| $S_{1111}$ | 4        | 6        | $\min$ |
|------------|----------|----------|--------|
| 3          | 1        | $\infty$ | 1      |
| 4          | $\infty$ | 0        |        |

$$\begin{array}{c|ccc}
S_{1111} & 4 & 6 \\
3 & 0 & \infty \\
4 & \infty & 0
\end{array}$$



Определим дугу ветвления для разбиения множества  $S_{0111}$ 

| $S_{0111}$ | 3        | 4        | 5        |
|------------|----------|----------|----------|
| 3          | $\infty$ | 1        | $0^3$    |
| 4          | 1        | $\infty$ | 2        |
| 6          | $0^{1}$  | $0^{1}$  | $\infty$ |

(3, 5)

| $S_{01110}$ | 3        | 4        | 5        | min |
|-------------|----------|----------|----------|-----|
| 3           | $\infty$ | 1        | $\infty$ | 1   |
| 4           | 1        | $\infty$ | 2        |     |
| 6           | 0        | 0        | $\infty$ |     |
| $\min$      |          | ,        | 2        |     |

| $S_{01110}$ | 3        | 4        | 5        |
|-------------|----------|----------|----------|
| 3           | $\infty$ | 0        | $\infty$ |
| 4           | 1        | $\infty$ | 0        |
| 6           | 0        | 0        | $\infty$ |

 $b_{01110} = b_{0111} + 3 = 36$ 

| $S_{01111}$ | 3        | 4        |
|-------------|----------|----------|
| 4           | 1        | $\infty$ |
| 6           | $\infty$ | 0        |
| $\min$      | 1        |          |

$$\begin{array}{c|cccc}
S_{01111} & 3 & 4 \\
4 & 0 & \infty \\
6 & \infty & 0
\end{array}$$



Определим дугу ветвления для разбиения множества  $S_{10}$ 

| $S_{10}$ | 1        | 3        | 4        | 5        | 6        |
|----------|----------|----------|----------|----------|----------|
| 2        | $\infty$ | $0^{1}$  | 4        | $\infty$ | 1        |
| 3        | 4        | $\infty$ | 1        | 1        | $0^1$    |
| 4        | 4        | 1        | $\infty$ | 3        | $0^1$    |
| 5        | $0^1$    | 1        | 3        | $\infty$ | 00       |
| 6        | 1        | 00       | $0^{1}$  | $0^1$    | $\infty$ |

(2, 3)

| $S_{100}$ | 1        | 3        | 4        | 5        | 6        | min |
|-----------|----------|----------|----------|----------|----------|-----|
| 2         | $\infty$ | $\infty$ | 4        | $\infty$ | 1        | 1   |
| 3         | 4        | $\infty$ | 1        | 1        | 0        |     |
| 4         | 4        | 1        | $\infty$ | 3        | 0        |     |
| 5         | 0        | 1        | 3        | $\infty$ | 0        |     |
| 6         | 1        | 0        | 0        | 0        | $\infty$ |     |

| $S_{100}$ | 1        | 3        | 4        | 5        | 6        |
|-----------|----------|----------|----------|----------|----------|
| 2         | $\infty$ | $\infty$ | 3        | $\infty$ | 0        |
| 3         | 4        | $\infty$ | 1        | 1        | 0        |
| 4         | 4        | 1        | $\infty$ | 3        | 0        |
| 5         | 0        | 1        | 3        | $\infty$ | 0        |
| 6         | 1        | 0        | 0        | 0        | $\infty$ |

$$b_{100} = b_{10} + 1 = 34$$

| $S_{101}$ | 1        | 4        | 5        | 6        |
|-----------|----------|----------|----------|----------|
| 3         | $\infty$ | 1        | 1        | 0        |
| 4         | 4        | $\infty$ | 3        | 0        |
| 5         | 0        | 3        | $\infty$ | 0        |
| 6         | 1        | 0        | 0        | $\infty$ |

$$b_{101} = b_{10} + 0 = 33$$



Определим дугу ветвления для разбиения множества  $S_{101}$ 

| $S_{101}$ | 1        | 4        | 5        | 6        |
|-----------|----------|----------|----------|----------|
| 3         | $\infty$ | 1        | 1        | $0^{1}$  |
| 4         | 4        | $\infty$ | 3        | $0^3$    |
| 5         | $0^1$    | 3        | $\infty$ | $0_0$    |
| 6         | 1        | $0^1$    | $0^1$    | $\infty$ |

(4, 6)

| $S_{1010}$ | 1        | 4        | 5        | 6        | $\min$ |
|------------|----------|----------|----------|----------|--------|
| 3          | $\infty$ | 1        | 1        | 0        |        |
| 4          | 4        | $\infty$ | 3        | $\infty$ | 3      |
| 5          | 0        | 3        | $\infty$ | 0        |        |
| 6          | 1        | 0        | 0        | $\infty$ |        |

$$b_{1010} = b_{101} + 3 = 36$$

$$S_{1011}$$
 1 4 5  $\infty$  1 1  $\infty$  0 3  $\infty$  6 1  $\infty$  0  $\infty$ 

$$S_{1011}$$
 1 4 5  $\infty$  0 1  $\infty$  0 2  $\infty$  6 1  $\infty$  0

$$b_{1011} = b_{101} + 1 = 34$$



Определим дугу ветвления для разбиения множества  $S_{00}$ 

| $S_{00}$ | 1        | 2        | 3        | 4        | 5        | 6        |
|----------|----------|----------|----------|----------|----------|----------|
| 1        | $\infty$ | $\infty$ | 4        | 4        | $0^{1}$  | 1        |
| 2        | $0^1$    | $\infty$ | 3        | 7        | 1        | 4        |
| 3        | 4        | $0^{1}$  | $\infty$ | 1        | 1        | 00       |
| 4        | 4        | 4        | 1        | $\infty$ | 3        | $0^1$    |
| 5        | 00       | $\infty$ | 1        | 3        | $\infty$ | 00       |
| 6        | 1        | 1        | $0^{1}$  | $0^{1}$  | 00       | $\infty$ |

(1, 5)

| $S_{000}$ | 1        | 2        | 3        | 4        | 5        | 6        | $\min$ |
|-----------|----------|----------|----------|----------|----------|----------|--------|
| 1         | $\infty$ | $\infty$ | 4        | 4        | $\infty$ | 1        | 1      |
| 2         | 0        | $\infty$ | 3        | 7        | 1        | 4        |        |
| 3         | 4        | 0        | $\infty$ | 1        | 1        | 0        |        |
| 4         | 4        | 4        | 1        | $\infty$ | 3        | 0        |        |
| 5         | 0        | $\infty$ | 1        | 3        | $\infty$ | 0        |        |
| 6         | 1        | 1        | 0        | 0        | 0        | $\infty$ |        |

| $S_{000}$ | 1        | 2        | 3        | 4        | 5        | 6        |
|-----------|----------|----------|----------|----------|----------|----------|
| 1         | $\infty$ | $\infty$ | 3        | 3        | $\infty$ | 0        |
| 2         | 0        | $\infty$ | 3        | 7        | 1        | 4        |
| 3         | 4        | 0        | $\infty$ | 1        | 1        | 0        |
| 4         | 4        | 4        | 1        | $\infty$ | 3        | 0        |
| 5         | 0        | $\infty$ | 1        | 3        | $\infty$ | 0        |
| 6         | 1        | 1        | 0        | 0        | 0        | $\infty$ |

$$b_{000} = b_{00} + 1 = 34$$

| $S_{001}$ | 1        | 2        | 3        | 4        | 6        |
|-----------|----------|----------|----------|----------|----------|
| 2         | 0        | $\infty$ | 3        | 7        | 4        |
| 3         | 4        | 0        | $\infty$ | 1        | 0        |
| 4         | 4        | 4        | 1        | $\infty$ | 0        |
| 5         | $\infty$ | $\infty$ | 1        | 3        | 0        |
| 6         | 1        | 1        | 0        | 0        | $\infty$ |

$$b_{001} = b_{00} + 0 = 33$$



Определим дугу ветвления для разбиения множества  $S_{001}$ 

| $S_{001}$ | 1        | 2        | 3        | 4        | 6        |
|-----------|----------|----------|----------|----------|----------|
| 2         | $0^{4}$  | $\infty$ | 3        | 7        | 4        |
| 3         | 4        | $0^1$    | $\infty$ | 1        | 00       |
| 4         | 4        | 4        | 1        | $\infty$ | $0^{1}$  |
| 5         | $\infty$ | $\infty$ | 1        | 3        | $0^1$    |
| 6         | 1        | 1        | $0^1$    | $0^{1}$  | $\infty$ |

(2, 1)

| $S_{0010}$ | 1        | 2        | 3        | 4        | 6        | min |
|------------|----------|----------|----------|----------|----------|-----|
| 2          | $\infty$ | $\infty$ | 3        | 7        | 4        | 3   |
| 3          | 4        | 0        | $\infty$ | 1        | 0        |     |
| 4          | 4        | 4        | 1        | $\infty$ | 0        |     |
| 5          | $\infty$ | $\infty$ | 1        | 3        | 0        |     |
| 6          | 1        | 1        | 0        | 0        | $\infty$ |     |
| $\min$     | 1        |          |          |          |          | '   |

| $S_{0010}$ | 1        | 2        | 3        | 4        | 6        |
|------------|----------|----------|----------|----------|----------|
| 2          | $\infty$ | $\infty$ | 0        | 4        | 1        |
| 3          | 3        | 0        | $\infty$ | 1        | 0        |
| 4          | 3        | 4        | 1        | $\infty$ | 0        |
| 5          | $\infty$ | $\infty$ | 1        | 3        | 0        |
| 6          | 0        | 1        | 0        | 0        | $\infty$ |

$$b_{0010} = b_{001} + 4 = 37$$

| $S_{0011}$ | 2        | 3        | 4        | 6        |
|------------|----------|----------|----------|----------|
| 3          | 0        | $\infty$ | 1        | 0        |
| 4          | 4        | 1        | $\infty$ | 0        |
| 5          | $\infty$ | 1        | 3        | 0        |
| 6          | 1        | 0        | 0        | $\infty$ |

$$b_{0011} = b_{001} + 0 = 33$$



Определим дугу ветвления для разбиения множества  $S_{0011}$ 

| $S_{0011}$ | 2        | 3        | 4        | 6        |
|------------|----------|----------|----------|----------|
| 3          | $0^1$    | $\infty$ | 1        | $0_0$    |
| 4          | 4        | 1        | $\infty$ | $0^1$    |
| 5          | $\infty$ | 1        | 3        | $0^1$    |
| 6          | 1        | $0^1$    | $0^1$    | $\infty$ |

(3, 2)

| $S_{00110}$ | 2        | 3        | 4        | 6        |
|-------------|----------|----------|----------|----------|
| 3           | $\infty$ | $\infty$ | 1        | 0        |
| 4           | 4        | 1        | $\infty$ | 0        |
| 5           | $\infty$ | 1        | 3        | 0        |
| 6           | 1        | 0        | 0        | $\infty$ |
| $\min$      | 1        |          |          |          |

| $S_{00110}$ | 2        | 3        | 4        | 6        |
|-------------|----------|----------|----------|----------|
| 3           | $\infty$ | $\infty$ | 1        | 0        |
| 4           | 3        | 1        | $\infty$ | 0        |
| 5           | $\infty$ | 1        | 3        | 0        |
| 6           | 0        | 0        | 0        | $\infty$ |

$$b_{00110} = b_{0011} + 1 = 34$$

| $S_{00111}$ | 3        | 4        | 6        |
|-------------|----------|----------|----------|
| 4           | 1        | $\infty$ | 0        |
| 5           | $\infty$ | 3        | 0        |
| 6           | 0        | 0        | $\infty$ |

$$\begin{array}{c|ccccc} S_{00111} & 3 & 4 & 6 \\ \hline 4 & 1 & \infty & 0 \\ 5 & \infty & 3 & 0 \\ 6 & 0 & 0 & \infty \\ \end{array}$$

$$b_{00111} = b_{0011} + 0 = 33$$



Определим дугу ветвления для разбиения множества  $S_{00111}$ 

| $S_{00111}$ | 3        | 4        | 6        |
|-------------|----------|----------|----------|
| 4           | 1        | $\infty$ | $0^{1}$  |
| 5           | $\infty$ | 3        | $0^3$    |
| 6           | $0^1$    | $0^3$    | $\infty$ |

(5,6)

| $S_{001110}$ | 3        | 4        | 6        | $\min$ |
|--------------|----------|----------|----------|--------|
| 4            | 1        | $\infty$ | 0        |        |
| 5            | $\infty$ | 3        | $\infty$ | 3      |
| 6            | 0        | 0        | $\infty$ |        |

$$b_{001110} = b_{00111} + 3 = 36$$

| $S_{001111}$ | 3        | 4        |
|--------------|----------|----------|
| 4            | 1        | $\infty$ |
| 6            | $\infty$ | 0        |
| min          | 1        |          |

$$\begin{array}{c|cccc} S_{001111} & 3 & 4 \\ & 4 & 0 & \infty \\ & 6 & \infty & 0 \end{array}$$

 $b_{001111} = b_{00111} + 1 = 34$ 



Определим дугу ветвления для разбиения множества  $S_{1011}$ 

| $S_{1011}$ | 1        | 4        | 5        |
|------------|----------|----------|----------|
| 3          | $\infty$ | $0^3$    | 1        |
| 5          | $0_3$    | 2        | $\infty$ |
| 6          | 1        | $\infty$ | $0^2$    |

(3, 4)

| $S_{10110}$ | 1        | 4        | 5        | min |
|-------------|----------|----------|----------|-----|
| 3           | $\infty$ | $\infty$ | 1        | 1   |
| 5           | 0        | 2        | $\infty$ |     |
| 6           | 1        | $\infty$ | 0        |     |
| $\min$      |          | 2        |          |     |

 $b_{10110} = b_{1011} + 3 = 37$ 

$$S_{10111}$$
 1 5  $5$  0  $\infty$  6  $\infty$  0

$$S_{10111}$$
 1 5 5 6  $\infty$  0  $\infty$  6

 $b_{10111} = b_{1011} + 0 = 34$ 



Определим дугу ветвления для разбиения множества  $S_{00110}$ 

| $S_{00110}$ | 2        | 3        | 4        | 6        |
|-------------|----------|----------|----------|----------|
| 3           | $\infty$ | $\infty$ | 1        | $0^1$    |
| 4           | 3        | 1        | $\infty$ | $0^1$    |
| 5           | $\infty$ | 1        | 3        | $0^1$    |
| 6           | $0^3$    | $0^1$    | $0^1$    | $\infty$ |

(6, 2)

| $S_{001100}$ | 2        | 3        | 4        | 6        |
|--------------|----------|----------|----------|----------|
| 3            | $\infty$ | $\infty$ | 1        | 0        |
| 4            | 3        | 1        | $\infty$ | 0        |
| 5            | $\infty$ | 1        | 3        | 0        |
| 6            | $\infty$ | 0        | 0        | $\infty$ |
| $\min$       | 3        |          |          |          |

 $S_{001100}$  $\infty$  $\infty$  $\infty$  $\infty$  $\infty$ 

$$b_{001100} = b_{00110} + 3 = 37$$

| $S_{001101}$ | 3        | 4        | 6        | min |
|--------------|----------|----------|----------|-----|
| 3            | $\infty$ | 1        | 0        |     |
| 4            | 1        | $\infty$ | 0        |     |
| 5            | 1        | 3        | $\infty$ | 1   |

 $b_{001101} = b_{00110} + 1 = 35$ 



Определим дугу ветвления для разбиения множества  $S_{100}$ 

| $S_{100}$ | 1        | 3        | 4        | 5        | 6        |
|-----------|----------|----------|----------|----------|----------|
| 2         | $\infty$ | $\infty$ | 3        | $\infty$ | $0^3$    |
| 3         | 4        | $\infty$ | 1        | 1        | $0^{1}$  |
| 4         | 4        | 1        | $\infty$ | 3        | $0^{1}$  |
| 5         | $0^1$    | 1        | 3        | $\infty$ | $0_0$    |
| 6         | 1        | $0^1$    | $0^1$    | $0^{1}$  | $\infty$ |

(2, 6)

| $S_{1000}$ | 1        | 3        | 4        | 5        | 6        | $\min$ |
|------------|----------|----------|----------|----------|----------|--------|
| 2          | $\infty$ | $\infty$ | 3        | $\infty$ | $\infty$ | 3      |
| 3          | 4        | $\infty$ | 1        | 1        | 0        |        |
| 4          | 4        | 1        | $\infty$ | 3        | 0        |        |
| 5          | 0        | 1        | 3        | $\infty$ | 0        |        |
| 6          | 1        | 0        | 0        | 0        | $\infty$ |        |

| $S_{1000}$ | 1        | 3        | 4        | 5        | 6        |
|------------|----------|----------|----------|----------|----------|
| 2          | $\infty$ | $\infty$ | 0        | $\infty$ | $\infty$ |
| 3          | 4        | $\infty$ | 1        | 1        | 0        |
| 4          | 4        | 1        | $\infty$ | 3        | 0        |
| 5          | 0        | 1        | 3        | $\infty$ | 0        |
| 6          | 1        | 0        | 0        | 0        | $\infty$ |

$$b_{1000} = b_{100} + 3 = 37$$

| $S_{1001}$ | 1        | 3        | 4        | 5        |
|------------|----------|----------|----------|----------|
| 3          | 4        | $\infty$ | 1        | 1        |
| 4          | 4        | 1        | $\infty$ | 3        |
| 5          | 0        | 1        | 3        | $\infty$ |
| 6          | $\infty$ | 0        | 0        | 0        |

$$b_{1001} = b_{100} + 0 = 34$$



Определим дугу ветвления для разбиения множества  $S_{1001}$ 

| $S_{1001}$ | 1        | 3        | 4        | 5        |
|------------|----------|----------|----------|----------|
| 3          | 4        | $\infty$ | 1        | 1        |
| 4          | 4        | 1        | $\infty$ | 3        |
| 5          | $0^{5}$  | 1        | 3        | $\infty$ |
| 6          | $\infty$ | $0^1$    | $0^1$    | $0^1$    |

(5,1)

| $S_{10010}$ | 1        | 3        | 4        | 5        | min |
|-------------|----------|----------|----------|----------|-----|
| 3           | 4        | $\infty$ | 1        | 1        |     |
| 4           | 4        | 1        | $\infty$ | 3        |     |
| 5           | $\infty$ | 1        | 3        | $\infty$ | 1   |
| 6           | $\infty$ | 0        | 0        | 0        |     |
| $\min$      | 4        |          |          |          |     |

| $S_{10010}$ | 1        | 3        | 4        | 5        |
|-------------|----------|----------|----------|----------|
| 3           | 0        | $\infty$ | 1        | 1        |
| 4           | 0        | 1        | $\infty$ | 3        |
| 5           | $\infty$ | 0        | 2        | $\infty$ |
| 6           | $\infty$ | 0        | 0        | 0        |

$$b_{10010} = b_{1001} + 5 = 39$$

| $S_{10011}$ | 3        | 4        | 5        |
|-------------|----------|----------|----------|
| 3           | $\infty$ | 1        | 1        |
| 4           | 1        | $\infty$ | 3        |
| 6           | 0        | 0        | $\infty$ |
| min         |          |          | 1        |

$$b_{10011} = b_{1001} + 1 = 35$$



Определим дугу ветвления для разбиения множества  $S_{000}$ 

| $S_{000}$ | 1        | 2        | 3        | 4        | 5        | 6        |
|-----------|----------|----------|----------|----------|----------|----------|
| 1         | $\infty$ | $\infty$ | 3        | 3        | $\infty$ | $0^3$    |
| 2         | $0^1$    | $\infty$ | 3        | 7        | 1        | 4        |
| 3         | 4        | $0^{1}$  | $\infty$ | 1        | 1        | 00       |
| 4         | 4        | 4        | 1        | $\infty$ | 3        | $0^1$    |
| 5         | 00       | $\infty$ | 1        | 3        | $\infty$ | 00       |
| 6         | 1        | 1        | $0^{1}$  | $0^{1}$  | $0^{1}$  | $\infty$ |

(1,6)

| $S_{0000}$ | 1        | 2        | 3        | 4        | 5        | 6        | $\min$ |
|------------|----------|----------|----------|----------|----------|----------|--------|
| 1          | $\infty$ | $\infty$ | 3        | 3        | $\infty$ | $\infty$ | 3      |
| 2          | 0        | $\infty$ | 3        | 7        | 1        | 4        |        |
| 3          | 4        | 0        | $\infty$ | 1        | 1        | 0        |        |
| 4          | 4        | 4        | 1        | $\infty$ | 3        | 0        |        |
| 5          | 0        | $\infty$ | 1        | 3        | $\infty$ | 0        |        |
| 6          | 1        | 1        | 0        | 0        | 0        | $\infty$ |        |

| $S_{0000}$ | 1        | 2        | 3        | 4        | 5        | 6        |
|------------|----------|----------|----------|----------|----------|----------|
| 1          | $\infty$ | $\infty$ | 0        | 0        | $\infty$ | $\infty$ |
| 2          | 0        | $\infty$ | 3        | 7        | 1        | 4        |
| 3          | 4        | 0        | $\infty$ | 1        | 1        | 0        |
| 4          | 4        | 4        | 1        | $\infty$ | 3        | 0        |
| 5          | 0        | $\infty$ | 1        | 3        | $\infty$ | 0        |
| 6          | 1        | 1        | 0        | 0        | 0        | $\infty$ |

$$b_{0000} = b_{000} + 3 = 37$$

| $S_{0001}$ | 1        | 2        | 3        | 4        | 5        |
|------------|----------|----------|----------|----------|----------|
| 2          | 0        | $\infty$ | 3        | 7        | 1        |
| 3          | 4        | 0        | $\infty$ | 1        | 1        |
| 4          | 4        | 4        | 1        | $\infty$ | 3        |
| 5          | 0        | $\infty$ | 1        | 3        | $\infty$ |
| 6          | $\infty$ | 1        | 0        | 0        | 0        |

$$b_{0001} = b_{000} + 0 = 34$$



Определим дугу ветвления для разбиения множества  $S_{0001}$ 

| $S_{0001}$ | 1        | 2        | 3        | 4        | 5        |
|------------|----------|----------|----------|----------|----------|
| 2          | $0^1$    | $\infty$ | 3        | 7        | 1        |
| 3          | 4        | $0^2$    | $\infty$ | 1        | 1        |
| 4          | 4        | 4        | 1        | $\infty$ | 3        |
| 5          | $0^1$    | $\infty$ | 1        | 3        | $\infty$ |
| 6          | $\infty$ | 1        | $0^1$    | $0^1$    | $0^1$    |

(3, 2)

| $S_{00010}$ | 1        | 2        | 3        | 4        | 5        | $\min$ |
|-------------|----------|----------|----------|----------|----------|--------|
| 2           | 0        | $\infty$ | 3        | 7        | 1        |        |
| 3           | 4        | $\infty$ | $\infty$ | 1        | 1        | 1      |
| 4           | 4        | 4        | 1        | $\infty$ | 3        |        |
| 5           | 0        | $\infty$ | 1        | 3        | $\infty$ |        |
| 6           | $\infty$ | 1        | 0        | 0        | 0        |        |
| $\min$      |          | 1        |          |          |          | •      |

| $S_{00010}$ | 1        | 2        | 3        | 4        | 5        |
|-------------|----------|----------|----------|----------|----------|
| 2           | 0        | $\infty$ | 3        | 7        | 1        |
| 3           | 3        | $\infty$ | $\infty$ | 0        | 0        |
| 4           | 4        | 3        | 1        | $\infty$ | 3        |
| 5           | 0        | $\infty$ | 1        | 3        | $\infty$ |
| 6           | $\infty$ | 0        | 0        | 0        | 0        |

$$b_{00010} = b_{0001} + 2 = 36$$

| $S_{00011}$ | 1        | 3        | 4        | 5        |
|-------------|----------|----------|----------|----------|
| 2           | 0        | $\infty$ | 7        | 1        |
| 4           | 4        | 1        | $\infty$ | 3        |
| 5           | 0        | 1        | 3        | $\infty$ |
| 6           | $\infty$ | 0        | 0        | 0        |

$$b_{00011} = b_{0001} + 0 = 34$$



Определим дугу ветвления для разбиения множества  $S_{00011}$ 

| $S_{00011}$ | 1        | 3        | 4        | 5        |
|-------------|----------|----------|----------|----------|
| 2           | $0^1$    | $\infty$ | 7        | 1        |
| 4           | 4        | 1        | $\infty$ | 3        |
| 5           | $0^{1}$  | 1        | 3        | $\infty$ |
| 6           | $\infty$ | $0^1$    | $0^3$    | $0^1$    |

(6,4)

| $S_{000110}$ | 1        | 3        | 4        | 5        |
|--------------|----------|----------|----------|----------|
| 2            | 0        | $\infty$ | 7        | 1        |
| 4            | 4        | 1        | $\infty$ | 3        |
| 5            | 0        | 1        | 3        | $\infty$ |
| 6            | $\infty$ | 0        | $\infty$ | 0        |
| $\min$       |          |          | 3        |          |

 $S_{000110}$  $\infty$  $\infty$  $\infty$  $\infty$ 

 $b_{000110} = b_{00011} + 3 = 37$ 

| $S_{000111}$ | 1        | 3        | 5        | $\min$ |
|--------------|----------|----------|----------|--------|
| 2            | 0        | $\infty$ | 1        |        |
| 4            | $\infty$ | 1        | 3        | 1      |
| 5            | 0        | 1        | $\infty$ |        |

$$\begin{array}{c|cccc} S_{000111} & 1 & 3 & 5 \\ 2 & 0 & \infty & 1 \\ 4 & \infty & 0 & 2 \\ 5 & 0 & 1 & \infty \end{array}$$

 $b_{000111} = b_{00011} + 1 = 35$ 



Ответ: множество кодов всех оптимальных гамильтоновых циклов являющихся решением задачи коммивояжера на графе G есть  $\{125346, 164352, 156432, 123465, \}$ . Вес  $f_0$  оптимального гамильтонова цикла равен 34.

4. Используя весовую матрицу смежности D графа G, построим кратчайшее связывающее дерево T волновым методом.

| - | 1 | 2        | ) | 3        | } | 4        |   | 5        | ) | 6        | ; |
|---|---|----------|---|----------|---|----------|---|----------|---|----------|---|
| λ | ω | λ        | ω | λ        | ω | λ        | ω | λ        | ω | λ        | ω |
| 0 | 0 | $\infty$ | 0 |
|   |   | 5        | 1 | 7        | 1 | 11       | 1 | 3        | 1 | 4        | 1 |
|   |   |          |   | 4        | 5 | 10       | 5 |          |   | 3        | 5 |
|   |   |          |   | 3        | 6 | 7        | 6 |          |   |          |   |

$$E(T)=(2,1),(3,6),(4,6),(5,1),(6,5)$$
 Вес дерева  $f(T)=\sum_{(i,j)\in E(T)}d_{ij}=\sum_{i=1}^6\lambda_i=21$ 

5. Найдем приближенное решение задачи коммивояжера  $v_1$  с помощью первого алгоритма Кристофидеса.

В графе с удвоенным числом ребер дерева

$$E(T)||E(T)| = \{(1,2), (2,1), (3,6), (6,3), (4,6), (6,4), (1,5), (5,1), (5,6), (6,5)\}$$

Построим Эйлеров цикл  $\mu = (2, 1, 5, 6, 4, 6, 3, 6, 5, 1, 2).$ 

Удалим повторения вершин в Эйлеровом цикле для получения приближенного решения  $v_1 = (2, 1, 5, 6, 4, 3, 2)$ . Вес полученного гамильтонова цикла равен

$$f(v_1) = 5 + 3 + 3 + 7 + 8 + 8 = 34$$

Вычислим относительную точность полученного решения  $\epsilon = \frac{f(v_1) - f(v_0)}{f(v_0)} = \frac{34 - 34}{34} = 0$ 

Таким образом, найдено точное решение задачи коммивояжера.

6. Найдем приближенное решение задачи коммивояжера  $v_2$  с помощью второго алгоритма Кристофидеса.

Кратчайшее связывающее дерево имеет ребра E(T)=(2,1),(3,6),(4,6),(5,1),(6,5)

В дереве четыре вершины нечетной степени 2, 3, 4, 6. В оптимальное паросочетание E(M) = (2,3), (3,4) входит два ребра.

Строим Эйлеров цикл в графе со множеством ребер

$$E(T)||E(M) = \{E(T) = (2,3), (3,4), (2,1), (3,6), (4,6), (5,1), (6,5)\}$$

Полученный эйлеров цикл является одновременно и гамильтоновым

$$v_2 = \mu = (2, 1, 5, 6, 4, 3, 2)$$
. Вес цикла  $f(v_2) = 34$ 

Оотносительная точность решения 
$$\epsilon = \frac{f(v_2) - f(v_0)}{f(v_0)} = \frac{34 - 34}{34} = 0$$

Таким образом, вторым алгоритмом найдено точное решение.