ADP 정리 노트

2025-10-06

확률과 통계

통계학

- 불확실한 상황 하에서 데이터에 근거하여 과학적인 의사결정을 도출하기 위한 이론과 방법의 체계
- 모집단으로 부터 수집된 데이터(sample)를 기반으로 모집단의 특성을 추론하는 것을 목표로 한다.

Figure 1: 통계적 의사결정 과정

확률

- 고전적 의미: 표본공간에서 특정 사건이 차지하는 비율
- 통계적 의미: 특정 사건이 발생하는 상대도수의 극한
 - 각 원소의 발생 가능성이 동일하지 않아도 무한한 반복을 통해 수렴하는 값을 구할 수 있다.

확률 분포 정의 단계

• 확률실험 \rightarrow 표본공간 \rightarrow 확률변수 \rightarrow 확률분포 \rightarrow 표본의 분포 \rightarrow 통계적 추론 (추정, 검정)

- Experiment(확률실험): 동일한 조건에서 독립적으로 반복할 수 있는 실험이나 관측
- Sample space(표본공간): 모든 simple event의 집합
- Event(사건): 실험에서 발생하는 결과 (부분 집합)
- Simple event(단순사건): 원소가 하나인 사건
- 확률 변수: 확률실험의 결과를 수치로 나타낸 변수

확률 분포

이산 확률 분포

이산 표본 공간, 연속 표본공간에서 정의 가능포

- 베르누이 시행: 각 시행은 서로 독립적이고, 실패와 성공 두 가지 결과만 존재.
 - 단 모집단의 크기가 충분히 크고, 표본(시행)의 크기가 충분히 작다면 비복원 추출에서도 유효
 - 평균: p
 - 분산: p(1-p)
- 이항 분포: n번의 독립적인 베르누이 시행을 수행하여 성공 횟수를 측정
 - X ~ B(n, p), $f(x)=\binom{n}{x}p^x(1-p)^{n-x}$
 - 평균: np
 - 분산: np(1-p)
 - n이 매우 크고, p가 매우 작을 때, **포아송 분포로 근사**할 수 있다. (λ = np)

• 음이항 분포

- 정의: n번의 독립적인 베르누이 시행을 수행하여 k번 성공하고, r번 실패한 경우 (n = k + r)
 - 1. r번의 실패가 나오기 전까지, 성공한 횟수 x
 - * X ~ NB(r, p), $f(x) = \binom{x+r-1}{x} p^x (1-p)^r$
 - * 평균: $\frac{rp}{1-p}$
 - * 분산: $\frac{rp}{(1-p)^2}$
 - 2. r번의 실패가 나오기 전까지, 시행한 횟수 x
 - * 4번에서 성공을 실패로 바꿈
 - 3. k번의 성공이 나오기 전까지, 실패한 횟수 x
 - * 1번에서 실패를 성공으로 바꿈
 - 4. k번의 성공이 나오기 전까지, 시행한 횟수 x

$$\star \ f(x) = \tbinom{x-1}{k-1} p^k (1-p)^{x-k}$$

- * k가 1일 때 기하분포와 동일
- 5. n번의 시행 횟수에서, k번 성공 또는 r번 실패한 경우: 이항분포

• 기하 분포:

- 정의:
 - 1. 성공 확률이 p인 **베르누이 시행**에서 첫 성공까지의 시행 횟수

*
$$X \sim G(p), f(x) = (1-p)^{x-1}p, x = 1, 2, 3, ...$$

- * 평균: $\frac{1}{p}$ * 분산: $\frac{1-p}{p^2}$
- 2. 성공 확률이 p인 **베르누이 시행**에서 첫 성공까지의 실패 횟수
 - * $X \sim G(p), f(x) = (1-p)^x p, x = 0, 1, 2, ...$

 - * 평균: $\frac{1-p}{p}$ * 분산: $\frac{1-p}{p^2}$
- 비기억 특성: P(X>n+k|X>n)=P(X>k)
- 초기하 분포: 베르누이 시행이 아닌 시행에서 성공하는 횟수

- X ~ H(n, N, k),
$$f(x) = \frac{\binom{K}{x}\binom{N-K}{n-x}}{\binom{N}{n}}$$

- 평균: $rac{nK}{N}$
- 포아송 분포: 임의의 기간동안 어떤 사건이 간헐적으로 발생할 때, 동일한 길이의 기간동안 실제 사건이 발생하는 횟수
 - X ~ Poisson(\(\lambda\), $f(x) = \frac{e^{-\lambda}\lambda^x}{x!}, \lambda > 0$
 - 평균: λ
 - 분산: λ

연속 확률 분포

연속 표본 공간에서 정의 가능

- 균일 분포
 - $f(x) = \frac{1}{b-a}, a \le x \le b$ 평균: $\frac{a+b}{2}$ 분산: $\frac{(b-a)^2}{12}$
- 정규 분포
 - $X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$
 - 선형 변환: $Y = aX + b \sim N(a\mu + b, a^2\sigma^2)$
- t 분포
 - 자유도가 커질수록 표준 정규분포에 근사함.
- $-\frac{Z}{\sqrt{V/n}}\sim t(n), \text{Z: 표준정규분포, V: 자유도가 n인 카이제곱분포}$ f 분포
- - $F=rac{X_1/
 u_1}{X_2/
 u_2}$, $X_1\sim \chi^2(
 u_1)$, $X_2\sim \chi^2(
 u_2)$, X1과 X2는 서로 독립
- - α : 분포의 형태 결정, θ : 분포의 크기 결정
 - 평균: αθ
 - 분산: αθ²
 - **카이제곱 분포**: α = v/2, θ = 2 인 감마분포
 - * $Z_i \sim N(0,1)$ 일 때, $Z_1^2 + Z_2^2 + \ldots + Z_n^2 \sim \chi^2(n)$

- * X_i 가 서로 독립이고, 자유도가 ν_i 인 카이제곱분포를 따른다면, $X_1+X_2+\ldots+X_n\sim x^2(\nu_1+\nu_2+\ldots+\nu_n)$
- * 자유도가 커질수록 기댓값을 중심으로 모이고, 대칭에 가까워진다.
- **지수 분포**: α = 1, θ = 1/λ 인 감마분포
 - * $X Exp(\lambda = \frac{1}{\theta})$, f(x) = $\lambda e^{-\lambda x}$, x > 0
 - * θ : 평균 사건 발생 간격, λ : 단위 시간당 사건 발생 횟수
 - * 포아송 분포에서 사건 발생 간격의 분포
 - * $\sum_{i=1}^{n} X_i \sim \Gamma(n, \theta), \theta = 1/\lambda$
 - * 비기억 특성을 가진다: $p(X>s+t|X>s)=p(X>t)=e^{-\lambda t}$
 - * 독립적으로 동일한 지수분포를 따르는 확률변수 n개의 합은 $\alpha=n,\theta=\frac{1}{\lambda}$ 인 감마분포를 따른다.

다변량 분포

- 다항 분포: n번의 독립적인 베르누이 시행을 수행하여 k개의 범주로 분류
 - X ~ M(n, p1, p2, ..., pk), $f(x_1,x_2,...,x_k) = \frac{n!}{x_1!x_2!...x_k!} p_1^{x_1} p_2^{x_2}...p_k^{x_k}$
 - 평균: $[np_1, np_2, ..., np_k]$
 - 분산: $[np_1(1-p_1), np_2(1-p_2), ..., np_k(1-p_k)]$
 - 공분산: $-np_ip_i(i \neq j)$
 - 독립인 변수의 갯수는 k-1개 (k개의 사건)

샘플링

분포의 동질성 검정

- 연속형
 - 이표본 검정: 콜모고로프-스미르노프 검정 사용
 - 일표본 검정:
 - * 정규분포, 지수분포: 앤더슨-달링 검정 사용
 - * 그 외: 몬테카를로 방법 사용
- 이산형
 - 이표본: 카이제곱 독립성 검정
 - 일표본: 카이제곱 동질성 검정

표본의 분포

- 샘플링에 따라 통계량이 다른 값을 가질 수 있다. 따라서 통계량의 분포를 이용한 통계적 추론이 가능하다.
- 통계량: 표본의 특성을 나타내는 값

- 추정량: 아래의 조건을 만족하는 통계량
 - 불편성: 추정량의 기대값이 추정하려는 모수와 같아야 한다.
 - 효율성: 분산이 작아야 한다. 표본의 갯수가 많아질수록 분산이 작아져야 한다.

표본 평균의 분포

- 모집단의 분포와 관계없이, 모집단의 평균이 μ 이고, 분산이 σ^2 이면, \bar{X} 의 평균은 μ 이고, 분산은 σ^2/n 인 정규분포를 따른다.
 - 단 모집단의 분포에 따라 표본의 크기가 충분히 커야함. (중심극한정리¹)
- 만약 모집단의 분산을 모를 경우, σ 를 s로 대체하여, t분포를 따르는 표본 평균의 분포를 구할 수 있다.
 - 단 이때는 모집단이 정규분포를 따라야 한다.

표본 분산의 분포

- **정규 모집단으로 부터 나온 표본**의 분산 S에 대하여, $\frac{(n-1)S^2}{\sigma^2}$ 은 자유도가 n-1인 카이제곱 분포를 따른다.
 - 모집단이 정규분포를 따르지 않을 경우, 비모수적인 방법을 사용해야 한다.
- 두 정규 모집단으로부터 계산되는 표본분산의 비율은 f-분포를 따른다.

추정

- 통계적 추론: 모집단에서 추출된 표본의 통계량으로부터 모수를 추론하는 것
 - 추정
 - * 점추정
 - * 구간추정
 - 가설 검정

점 추정

- 불편성
 - $-E(\hat{\theta}) = \theta$
 - bias = $E(\hat{\theta}) \theta$
 - * 보통 sample size가 커질수록 bias는 0에 수렴
 - $-X, X_n$ 은 μ 의 불편추정량이다.
- 최소분산
 - $Var(\bar{X})$ 가 $Var(X_n)$ 보다 분산이 작아서 더 좋은 추정량

 $^{^1}$ 모집단의 분포와 상관 없이, 표본의 평균은 정규분포에 수렴한다는 정리. 이항분포의 경우, $P(X=c) \sim P(c-0.5 < X < c+0.5)$ 로 근사 가능하다는 라플라스의 정리를 일반화한 것

-
$$MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^2] = Var(\hat{\theta}) + bias^2$$

* 큰 오차에 더 큰 페널티를 주기 위해 제곱

	모수 $ heta$	표본크기	추정량 $\hat{ heta}$	기대값 $E(\hat{ heta})$	표준오차 $\sigma_{\hat{ heta}}$
모평균	μ	n	\overline{X}	μ	$\frac{\sigma}{\sqrt{n}}$
모비율	p	n	$\hat{p} = X/n$	p	$\sqrt{\frac{p(1-p)}{n}}$
모평균차이	$\mu_1 - \mu_2$	n_1, n_2	$\overline{X}_1 - \overline{X}_2$	$\mu_1 - \mu_2$	$\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
모비율차이	$p_1 - p_2$	n_1, n_2	$\hat{p}_1 - \hat{p}_2$	$p_1 - p_2$	$\sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$

Figure 2: 대표적인 불편추정량

- 전부 중심극한의정리를 적용할 수 있다. (비율은 0과 1의 평균이므로)
- 모평균, 모비율의 차이는 서로 독립이라는 가정이 필요하다.

구간 추정

- α: 유의수준
- 1 α: 신뢰수준²
- (θ_L, θ_U) = (1 α) × 100% 신뢰구간
- 1. (θ_L, θ_U) 이 충분이 높은 가능성으로 미지의 모수 θ 를 포함해야 한다
- 2. 구간이 충분히 좁아야 한다
 - 표준 정규분포에서 0을 중심으로 대칭일 때 길이가 짧다.
 - 고로 신뢰구간이 대칭임

표본의 크기 결정

특정 오차 아래로 하는 표본의 수 구하는 법

- 그냥 표본오차가 목표 오차보다 작게 하는 값을 구하면 됨.
- 모비율을 모를 때는 일단 0.5로 보수적으로 놓고 계산

모분산 추정

- 카이제곱 분포는 가장 짧은 신뢰구간을 구하기 쉽지 않음
 - 그냥 쉽게 구하기 위해 $(x_{\alpha/2}^2, x_{1-\alpha/2}^2)$ 를 사용

² 샘플링을 무한히 반복했을 때, **이들의 신뢰 구간 중 95%의 구간이 실제 모수를 포함**한다. 즉, 구간이 확률 변수이다.

- 모분산의 신뢰구간: $(\frac{(n-1)s^2}{x_{(1-\alpha)/2}^2(n-1)},\frac{(n-1)s^2}{x_{\alpha/2}^2(n-1)})$ 표본의 수가 적을수록, 카이제곱 분포의 신뢰구간은 더 길어진다.

분산분석

표본	개수	비모수 전	검정	모수 검정	
		서열척도	명목척도	등분산성 o	등분산성 x
단일 표본	1개	부호검정,	적합성 검정,	일표본 t-검정	
		부호순위검정	Run 검정		
대응 표본	2개	부호검정,	McNomar 7171	대응표본 t-검정	
		부호순위검정	McNemar 검정		
	Κ개	Friedman 검정	Cochran Q 검정	반복측정 분산분석	
독립 표본	2개	순위합 검정,	독립성 검정,	독립표본 t-검정	Welch's t-검정
		만위트니U 검정	독립성 검정 동질성 검정		
	Κ개	Kruskal-Wallis 검정	02000	일원배치 분산분석	Welch's ANOVA

상관분석

상관계수

• 두 변수 간의 선형적 관계의 강도와 방향을 나타내는 척도

질적 변수

- 스피어만 상관계수: 서열척도 vs 서열척도. 확률분포에 대한 가정 필요 없음.
- 켄달의 타우: 서열척도 vs 서열척도.
 - 둘 중 하나가 연속형이여도 스피어만, 켄달의 타우 중 하나를 사용.
 - 샘플이 적거나, 이상치, 동점이 많은 경우 켄달의 타우를 주로 사용.
 - 두 변수의 크기는 같아야함.
- 크래머 v: 명목척도 vs 명목척도.
 - 적어도 하나의 변수가 3개 이상의 level을 가지면 사용
 - 범위는 0~1. 0.2 이하면 서로 연관성이 약하고, 0.6 이상이면 서로 연관성이 높음.

양적 변수

- 피어슨 상관계수: 연속형 vs 연속형
 - 두 변수 간의 선형적 관계를 측정
 - -1~1 사이의 값
 - 0: 독립, 1: 완전한 양의 상관관계, -1: 완전한 음의 상관관계
 - 이상치에 민감

군집분석

전제 조건

- 1. scalability
- 2. 다양한 타입의 속성을 처리해야 함
 - k-means는 수치형만 처리 가능
- 3. 인위적인 형상의 군집도 발견할 수 있어야 함
 - k-means는 non-convex 형태는 잘 못찾음
- 4. 파라미터 설정에 전문지식을 요하지 않아야함
- 5. noise와 outliers를 처리해야 함
- 6. 데이터가 입력되는 순서에 민감하면 안됨
- 7. 차원 수가 높아도 잘 처리할 수 있어야함

- 8. 사용자 정의 제약조건도 수용할 수 있어야함
- 9. 해석과 사용이 용이해야함
- 10. scaling, one hot encoding 등의 전처리가 필요하다.

model

- Distance-based methods
- Partitioning methods
- k-means:
- polinominal 시간 안에 해결 가능
- noise, outlier에 민감함
- 수치형만 처리 가능
- non-convex 형태는 잘 못찾음
- k-modes: 범주형 데이터 처리 가능. 빈도수로 유사도 처리함
- k-prototype: 범주형, 수치형 섞인거 처리 가능
- k-medoids: 중심에 위치한 데이터 포인트를 사용해서 outlier 잘 처리함
- PAM: Partitioning Around Medoids
- scalability 문제 있음
- CLARA: sampling을 통해서 PAM의 scalability 문제를 해결
- 샘플링 과정에서 biased될 수 있음
- CLARANS: medoid 후보를 랜덤하게 선택함
- k-means++: 초기 centroids를 더 잘 잡음
- Hierarchical methods
- top-down: divisive, dia
- bottom-up: agglomerative
 - ward's distance: 군집 간의 거리 계산을 군집 내의 분산을 최소화하는 방식으로 계산
 - ESS: 각 군집의 중심으로 부터의 거리 제곱합
- Density-based methods
 - 다양한 모양의 군집을 찾을 수 있음
 - noise, outlier에 강함
 - DBSCAN: 잡음 포인트는 군집에서 제외
 - 1. core point를 찾음(eps 이내에 minPts 이상 있는 점)
 - 1. core point를 중심으로 군집을 확장
 - core point가 아닌 경우 확장 종료
 - 고정된 파라미터를 사용하기 때문에 군집간 밀도가 다를 경우 잘 못찾음
 - 군집간 계층관계를 인식하기 어렵다
 - OPTICS: DBSCAN의 단점을 보완
 - 군집의 밀도가 다를 때도 잘 처리함
 - 군집의 계층 구조를 인식할 수 있음

- eps, minPts 파라미터가 필요함
- Grid-based methods: 대표만(각 grid를 대표) 가지고 군집분석 하는거
 - 속도와 메모리 측면에서 효율적
- Model-based clustering methods
- 거리기반 군집의 단점:
 - 군집의 모양이 구형이 아닐 경우 찾기 어려움
 - 군집의 갯수 결정하기 어려움
 - 군집의 밀도가 높아야함

평가

- silhuette score: $\frac{i=1}^{n} s(i)_{n}$
- $-s(i): \frac{b(i) a(i)}{max((a(i), b(i)))}$
- a(i): 군집 내 노드간의 평균 거리
- b(i): 가장 가까운 군집과의 노드 간 평균 거리
- 1에 가까울 수록 좋음