Warehousing

- Warehousing are the activities involved in the design and operation of warehouses
- A warehouse is the point in the supply chain where raw materials, work-in-process (WIP), or finished goods are stored for varying lengths of time.
- Warehouses can be used to add value to a supply chain in two basic ways:
 - 1. Storage. Allows product to be available where and when its needed.
 - 2. Transport Economies. Allows product to be collected, sorted, and distributed efficiently.
- A *public warehouse* is a business that rents storage space to other firms on a month-to-month basis. They are often used by firms to supplement their own *private warehouses*.

Types of Warehouses

Warehouse Design Process

- The objectives for warehouse design can include:
 - maximizing cube utilization
 - minimizing total storage costs (including building, equipment, and labor costs)
 - achieving the required storage throughput
 - enabling efficient order picking
- In planning a storage layout: either a storage layout is required to fit into an existing facility, or the facility will be designed to accommodate the storage layout.

Warehouse Design Elements

- The design of a new warehouse includes the following elements:
 - 1. Determining the layout of the storage locations (i.e., the warehouse layout).
 - 2. Determining the number and location of the input/output (I/O) ports (e.g., the shipping/receiving docks).
 - 3. Assigning items (stock-keeping units or *SKUs*) to storage locations (*slots*).
- A typical objective in warehouse design is to minimize the overall storage cost while providing the required levels of service.

Design Trade-Off

 Warehouse design involves the trade-off between building and handling costs:

Shape Trade-Off

VS.

Square shape minimizes perimeter length for a given area, thus minimizing building costs

Aspect ratio of 2 (W = 2D) min. expected distance from I/O port to slots, thus minimizing handling costs

Storage Trade-Off

VS.

Maximizes cube utilization, but minimizes material accessibility Making at least one unit of each item accessible decreases cube utilization

Storage Policies

- A storage policy determines how the slots in a storage region are assigned to the different SKUs to the stored in the region.
- The differences between storage polices illustrate the trade-off between minimizing building cost and minimizing handling cost.
- Type of policies:
 - Dedicated
 - Randomized
 - Class-based

Dedicated Storage

- Each SKU has a predetermined number of slots assigned to it.
- Total capacity of the slots assigned to each SKU must equal the storage space corresponding to the maximum inventory level of each *individual* SKU.
- Minimizes handling cost.
- Maximizes building cost.

Randomized Storage

- Each SKU can be stored in any available slot.
- Total capacity of all the slots must equal the storage space corresponding to the maximum aggregate inventory level of all of the SKUs.
- Maximizes handling cost.
- Minimizes building cost.

Class-based Storage

- Combination of dedicated and randomized storage, where each SKU is assigned to one of several different storage classes.
- Randomized storage is used for each SKU within a class, and dedicated storage is used between classes.
- Building and handling costs between dedicated and randomized.

Individual vs Aggregate SKUs

		Dedicated		Random	(d	
Time	A B C		C	ABC	AB	AC	ВС
1	4	1	0	5	5	4	1
2	1	2	3	6	3	4	5
3	4	3	1	8	7	5	4
4	2	4	0	6	6	2	4
5	0	5	3	8	5	3	8
6	2	5	0	7	7	2	5
7	0	5	3	8	5	3	8
8	3	4	1	8	7	4	5
9	0	3	0	3	3	0	3
10	4	2	3	9	6	7	5
M_i	4	5	3	9	7	7	8

Cube Utilization

- *Cube utilization* is percentage of the total space (or "cube") required for storage actually occupied by items being stored.
- There is usually a trade-off between cube utilization and material accessibility.
- Bulk storage using block stacking can result in the minimum cost of storage, but material accessibility is low since only the top of the front stack is accessible.
- Storage racks are used when support and/or material accessibility is required.

Honeycomb Loss

 Honeycomb loss, the price paid for accessibility, is the unusable empty storage space in a lane or stack due to the storage of only a single SKU in each lane or stack

Estimating Cube Utilization

 The (3-D) cube utilization for dedicated and randomized storage can estimated as follows:

Cube utilization =
$$\frac{\text{item space}}{\text{total space}} = \frac{\text{item space}}{\text{item space} + \begin{pmatrix} \text{honeycomb} \\ \text{loss} \end{pmatrix} + \begin{pmatrix} \text{down aisle} \\ \text{space} \end{pmatrix}}$$

$$CU(3-D) = \begin{cases} \frac{x \cdot y \cdot z \cdot \sum_{i=1}^{N} M_{i}}{TS(D)}, & \text{dedicated} \\ \frac{x \cdot y \cdot z \cdot M}{TS(D)}, & \text{randomized} \end{cases}$$
 where
$$\frac{x = \text{lane/unit-load width}}{y = \text{unit-load depth}}$$

$$z = \text{unit-load height}$$

$$\frac{x \cdot y \cdot \sum_{i=1}^{N} \left\lceil \frac{M_{i}}{H} \right\rceil}{TA(D)}, & \text{dedicated} \end{cases}$$

$$\frac{M_{i} = \text{maximum number of units of SKU } i}{M = \text{maximum number of units of all SKUs}}$$

$$N = \text{number of different SKUs}$$

$$D = \text{number of rows}$$

$$TS(D) = \text{total 3-D } space \text{ (given } D \text{ rows of storage)}.$$

$$TA(D) = \text{total 2-D } area \text{ (given } D \text{ rows of storage)}.$$

Unit Load

- Unit load: single unit of an item, or multiple units restricted to maintain their integrity
- Linear dimensions of a unit load:

Depth (stringer length) \times Width (deckboard length)

$$y \times x$$

• Pallet height (5 in.) + load height gives z: $y \times x \times z$

Cube Utilization for Dedicated Storage

Storage Area at Different Lane Depths													Item Space	Lanes	Total Space	Cube Util.	
D=1		Α	Α	Α	Α	В	В	В	В	В	С	С	С	10	40	24	F00/
$A/2=1 \bigg\{$														12	12	24	50%
		A	А	В	В		С										
D=2		Α	Α	В	В	В	С	С						12	7	21	57%
$A/2=1 \bigg\{$																	
	_ _						1										
		A		В		С											
D=3		Α		В	В	С								12	5	20	60%
		Α	Α	В	В	С								12	5	20	00%
$A/2=1 \bigg\{$																	

Total Space/Area

• The total space required, as a function of lane depth *D*:

Total space (3-D):
$$TS(D) = X \cdot \underbrace{\left(Y + \frac{A}{2}\right)}_{\text{Eff. lane depth}} \cdot Z = xL(D) \cdot \left(yD + \frac{A}{2}\right) \cdot zH$$

Total area (2-D):
$$TA(D) = \frac{TS(D)}{Z} = X \cdot Y^{\text{eff}} = xL(D) \cdot \left(yD + \frac{A}{2}\right)$$

where

X = width of storage region (row length)

Y = depth of storage region (lane depth)

Z = height of storage region (stack height)

A = down aisle width

L(D) = number of lanes (given D rows of storage)

H = number of levels.

Number of Lanes

Given D, estimated total number of lanes in region:

Number of lanes:
$$L(D) = \begin{cases} \sum_{i=1}^{N} \left\lceil \frac{M_i}{DH} \right\rceil, & \text{dedicated} \end{cases}$$

$$\left[\frac{M + NH\left(\frac{D-1}{2}\right) + N\left(\frac{H-1}{2}\right)}{DH} \right], \text{ randomized } (N > 1)$$

Estimated HCL:

Unit Honeycomb Loss:

Expected Loss:
$$\frac{1}{D} \Big[(D-2) + (D-1) \Big] = \frac{1}{D} (1+2) = \frac{1}{D} \sum_{i=1}^{D-1} i = \frac{1}{D} \Big(\frac{(D-1)D}{2} \Big) = \frac{D-1}{2} = 1$$
 159

Optimal Lane Depth

• Solving for *D* in dTS(D)/dD = 0 results in:

Optimal lane depth for randomized storage (in rows): $D^* = \sqrt{\frac{A(2M-N)}{2NyH}} + \frac{1}{2}$

Max Aggregate Inventory Level

- Usually can determine max inventory level for each SKU:
 - $-M_i$ = maximum number of units of SKU i
- Since usually don't know M directly, but can estimate it if
 - SKUs' inventory levels are uncorrelated
 - Units of each item are either stored or retrieved at a constant rate

$$M = \left[\sum_{i=1}^{N} \frac{M_i}{2} + \frac{1}{2} \right]$$

- Can add include safety stock for each item, SS_i
 - For example, if the order size of three SKUs is 50 units and 5 units of each item are held as safety stock

$$M = \left| \sum_{i=1}^{N} \left(\frac{M_i - SS_i}{2} + SS_i \right) + \frac{1}{2} \right| = \left| 3 \left(\frac{50}{2} + 5 \right) + \frac{1}{2} \right| = 90$$

Steps to Determine Area Requirements

- 1. For randomized storage, assumed to know N, H, x, y, z, A, and all M_i
 - Number of levels, H, depends on building clear height (for block stacking) or shelf spacing
 - Aisle width, A, depends on type of lift trucks used
- 2. Estimate maximum aggregate inventory level, M
- 3. If D not fixed, estimate optimal land depth, D^*
- 4. Estimate number of lanes required, $L(D^*)$
- 5. Determine total 2-D area, $TA(D^*)$

Aisle Width Design Parameter

- Typically, A (and sometimes H) is a parameter used to evaluate different overall design alternatives
- Width depends on type of lift trucks used, a narrower aisle truck
 - reduces area requirements (building costs)

costs more and slows travel and loading time (handling

costs)

Units of items A, B, and C are all received and stored as $42 \times 36 \times 36$ in. $(y \times x \times z)$ pallet loads in a storage region that is along one side of a 10-foot-wide down aisle in the warehouse of a factory. The shipment size received for each item is 31, 62, and 42 pallets, respectively. Pallets can be stored up to three deep and four high in the region.

$$x = \frac{36}{12} = 3$$
' $M_A = 31$ $A = 10$ '
 $y = 3.5$ ' $M_B = 62$ $D = 3$
 $z = 3$ ' $M_C = 42$ $H = 4$
 $N = 3$

 If a dedicated policy is used to store the items, what is the 2-D cube utilization of this storage region?

$$L(D) = L(3) = \sum_{i=1}^{N} \left\lceil \frac{M_i}{DH} \right\rceil = \left\lceil \frac{31}{3(4)} \right\rceil + \left\lceil \frac{62}{3(4)} \right\rceil + \left\lceil \frac{42}{3(4)} \right\rceil = 3 + 6 + 4 = 13 \text{ lanes}$$

$$TA(3) = xL(D) \cdot \left(yD + \frac{A}{2}\right) = 3(13) \cdot \left(3.5(3) + \frac{10}{2}\right) = 605 \text{ ft}^2$$

$$CU(3) = \frac{\text{item space}}{TA(3)} = \frac{x \cdot y \cdot \sum_{i=1}^{N} \left\lceil \frac{M_i}{H} \right\rceil}{TA(3)} = \frac{3 \cdot 3.5 \cdot \left(\left\lceil \frac{31}{4} \right\rceil + \left\lceil \frac{62}{4} \right\rceil + \left\lceil \frac{42}{4} \right\rceil \right)}{605} = 61\%$$

2. If the shipments of each item are uncorrelated with each other, no safety stock is carried for each item, and retrievals to the factory floor will occur at a constant rate, what is an estimate the maximum number of units of all items that would ever occur?

$$M = \left[\sum_{i=1}^{N} \frac{M_i}{2} + \frac{1}{2} \right] = \left[\frac{31 + 62 + 42}{2} + \frac{1}{2} \right] = 68$$

3. If a randomized policy is used to store the items, what is total 2-D area needed for the storage region?

$$D = 3$$

$$L(3) = \left\lceil \frac{M + NH\left(\frac{D-1}{2}\right) + N\left(\frac{H-1}{2}\right)}{DH} \right\rceil$$

$$= \left\lceil \frac{68 + 3(4)\left(\frac{3-1}{2}\right) + N\left(\frac{4-1}{2}\right)}{3(4)} \right\rceil = 8 \text{ lanes}$$

$$TA(3) = xL(D) \cdot \left(yD + \frac{A}{2}\right) = 3(8) \cdot \left(3.5(3) + \frac{10}{2}\right) = 372 \text{ ft}^2$$

4. What is the optimal lane depth for randomized storage?

$$D^* = \left\lfloor \sqrt{\frac{A(2M-N)}{2NyH}} + \frac{1}{2} \right\rfloor = \left\lfloor \sqrt{\frac{10(2(68)-3)}{2(3)3.5(4)}} + \frac{1}{2} \right\rfloor = 4$$

5. What is the change in total area associated with using the optimal lane depth as opposed to storing the items three deep?

$$D = 4 \Rightarrow L(4) = \left\lceil \frac{68 + 3(4)\left(\frac{4 - 1}{2}\right) + N\left(\frac{4 - 1}{2}\right)}{3(4)} \right\rceil = 6 \text{ lanes}$$

$$\Rightarrow TA(4) = 3(6) \cdot \left(3.5(4) + \frac{10}{2}\right) = 342 \text{ ft}^2$$

$$D = 3 \Rightarrow TA(3) = 372 \text{ ft}^2$$

Example 2: Trailer Loading

How many identical $48 \times 42 \times 30$ in. four-way containers can be shipped in a full truckload? Each container load:

- 1. Weighs 600 lb
- 2. Can be stacked up to six high without causing damage from crushing
- 3. Can be rotated on the trucks with respect to their width and depth.

169