Homework 3

Problem 1. Let V be a 3-dimensional vector space over a field k. Show that the projective plane $\mathbb{P}(V)$ satisfies our axioms (1) and (3) but not the parallel postulate (2); instead, show (2'): any two lines intersect in a unique point.

Proof. Let $L_1 = \langle v_1 \rangle$ and $L_2 = \langle v_2 \rangle$ be distinct. Then these two 1-dimensional subspaces of V are two points in $\mathbb{P}(V)$. Since L_1 and L_2 are distinct, v_1 and v_2 are independent so the space $\langle v_1, v_2 \rangle = \langle v_1 \rangle + \langle v_2 \rangle$ is a 2-dimensional subspace of V containing L_1 and L_2 . Suppose L_1 and L_2 are contained in some other 2-dimensional subspace different from $L_1 + L_2$. Then there is some vector $w \in L_1 + L_2$ which is not in this subspace. Writing $w = \alpha v_1 + \beta v_2$ we see that this subspace cannot possibly contain L_1 and L_2 . Thus L_1 and L_2 form a unique line in $\mathbb{P}(V)$ so axiom (1) is satisfied.

Since V is 3-dimensional we can take b_1 , b_2 and b_3 to be a basis for V. Then these three vectors are independent and $L_1 = \langle b_1 \rangle$, $L_2 = \langle b_2 \rangle$ and $L_3 = \langle b_3 \rangle$ are three distinct points of $\mathbb{P}(V)$. We know that $L_3 \nsubseteq L_1 + L_2$ because b_1 , b_2 and b_3 are a basis so no proper subset of them can span V. Thus we cannot express points in L_3 as a linear combination of points in L_1 and L_2 . Thus there exist three distinct points forming three distinct lines so axiom (3) is satisfied.

Take any two distinct lines $P_1 = \langle v_1, v_2 \rangle$ and $P_2 = \langle w_1, w_2 \rangle$. These are two distinct 2-dimensional subspaces of V so their intersection has dimension at most 1. Note that v_1 and v_2 are independent and so are w_1 and w_2 , but we can't have four linearly independent vectors in a 3-dimensional vector space. Without loss of generality then we can write $v_1 = \alpha w_1 + \beta w_2$. But then $\langle \alpha w_1 + \beta w_2 \rangle \subseteq P_1 \cap P_2$ so P_1 and P_2 intersect in a single point. Thus axiom (4) is satisfied.

Now note that if P is a line in $\mathbb{P}(V)$ and L is some point off of P then any line containing L will be distinct from P and intersect P in a unique point, hence cannot be parallel to P. Thus axiom (2) is not satisfied.

Problem 2. Show that the only field automorphism of \mathbb{R} is the identity.

Proof. Let $f: \mathbb{R} \to \mathbb{R}$ be an automorphism. Note that for $r \in \mathbb{R}$, f(r) = f(0+r) = f(0) + f(r) so f(0) = 0. Likewise, $f(r) = f(1 \cdot r) = f(1)f(r)$ so f(1) = 1. It immediately follows that $f(\mathbb{Z}) = \mathbb{Z}$ since any integer $n = 1 + \dots + 1 = f(1) + \dots + f(1) = f(1 + \dots + 1) = f(n)$ where there are n terms in the sum. Now let $p \in \mathbb{Q}$ such that p = a/b. Note that f(p) = f(a/b) = f(a)f(1/b) = a(1/f(b)) = a(1/b) = a/b = p. Thus $f(\mathbb{Q}) = \mathbb{Q}$.

Let $a \leq b$ in \mathbb{R} so that $b-a \geq 0$. But then we know $(b-a)=c^2$ for some nonnegative real number c. Thus $f(b-a)=f(c^2)=f(c)^2 \geq 0$. Thus f must preserve order on \mathbb{R} . Now let $r \in \mathbb{R}$ and suppose r < f(r). Choose $p \in \mathbb{Q}$ so that r . But then <math>f(r) < f(p) = p contrary to our assumption. A similar proof holds if f(r) < r. Thus r = f(r) and f is the identity.

Problem 3. In our classifications of the collineations of $\mathbb{P}(V)$ when V has dimension at least 3, we defined a map $\theta: k \to k$ by the requirement that

$$\sigma(\langle e_1 + x_2 e_2 \rangle) = (\langle f_1 + \theta(x_2) f_2 \rangle).$$

We could have defined θ_i for any i > 2 in the same way, but replacing e_2 and f_2 by e_i and f_i . Show that $\theta_i = \theta$.

Proof. Consider the line $\langle xe_2 - xe_i \rangle$. This lies in $\langle e_2 \rangle + \langle e_i \rangle$ and also in $\langle e_1 + xe_2 \rangle + \langle e_1 + xe_i \rangle$. Under σ then it is spanned by some vector of $\langle f_2 \rangle + \langle f_i \rangle$ and also by some vector of $\langle f_1 + \theta(x)f_2 \rangle + \langle f_1 + \theta_i(x)f_i \rangle$. Thus the image line must be $\langle \theta(x)f_2 - \theta_i(x)f_i \rangle$. On the other hand $\langle xe_2 - xe_i \rangle = \langle e_2 - e_i \rangle$ and the image of this line must be $\langle \theta(1)f_2 - \theta_i(1)f_i \rangle = \langle f_2 - f_i \rangle$. Thus we have $\langle \theta(x)f_2 - \theta_i(x)f_i \rangle = \langle f_2 - f_i \rangle$ so $\theta(x) = \theta_i(x)$. \square

Problem 4. Show that

$$\sigma(\langle e_1 + x_2 e_2 + \dots + x_n e_n \rangle) = (\langle f_1 + \theta(x_2) f_2 + \dots + \theta(x_n) f_n \rangle)$$

and

$$\sigma(\langle x_2 e_2 + \dots + x_n e_n \rangle) = (\langle \theta(x_2) f_2 + \dots + \theta(x_n) f_n \rangle).$$

Proof. We proceed by induction with the case n=2 being done already. Suppose $\sigma(\langle e_1+x_2e_2+\cdots+x_{n-1}e_{n-1}\rangle)=\langle f_1+\theta(x_2)f_2+\cdots+\theta(x_{n-1})f_{n-1}\rangle$. The line $\langle e_1+x_2e_2+\cdots+x_ne_n\rangle$ lies in $\langle e_1+x_2e_2+\cdots+x_ne_n\rangle$ lies in $\langle e_1+x_2e_2+\cdots+x_ne_n\rangle$ lies in $\langle e_1+x_2e_2+\cdots+x_ne_n\rangle$ lies in $\langle e_1+x_2e_2+\cdots+x_ne_n\rangle$ so it has image in $\langle f_1+\theta(x_n)f_n\rangle+\langle f_2\rangle+\cdots+\langle f_{n-1}\rangle$. Since the image includes f_1 we must have $y=\theta(x_n)$ so that

$$\sigma(\langle e_1 + x_2 e_2 + \dots + x_n e_n \rangle) = (\langle f_1 + \theta(x_2) f_2 + \dots + \theta(x_n) f_n \rangle).$$

The image of $\langle x_2e_2+\cdots+x_ne_n\rangle$ lies in $\langle f_2\rangle+\cdots+\langle f_n\rangle$. But note this line also lies in $\langle e_1+x_2e_2+\cdots+x_ne_n\rangle+\langle e_1\rangle$ so its image is also in $\langle f_1+\theta(x_2)f_2+\cdots+\theta(x_n)f_n\rangle+\langle f_1\rangle$. It then follows that $\sigma(\langle x_2e_2+\cdots+x_ne_n\rangle)=(\langle \theta(x_2)f_2+\cdots+\theta(x_n)f_n\rangle)$.