Ontology-based Data Access: Theory and Practice

Guohui Xiao

Roman Kontchakov

KRDB Research Centre

re Department of Computer Science & Inf. Systems

Free University of Bozen-Bolzano

Birkbeck, University of London

http://ontop.inf.unibz.it/ijcai-2018-tutorial

Query Answering in OBDA

Query Answering in OBDA

an OBDA specification $\mathcal{P} = (\mathcal{O}, \mathcal{M}, \mathcal{S})$

 \mathcal{O} an ontology (class and property inclusions / tgds)

 ${\mathcal M}$ a mapping (assertions of the form $\varphi(x) \leadsto \psi(x)$)

 ${\cal S}$ a data source schema with integrity constraints

an OBDA specification $\mathcal{P} = (\mathcal{O}, \mathcal{M}, \mathcal{S})$

 \mathcal{O} an ontology (class and property inclusions / tgds)

 ${\mathcal M}$ a mapping (assertions of the form $\varphi(x) \leadsto \psi(x)$)

 ${\cal S}$ a data source schema with integrity constraints

a source database \mathcal{D} (relations conforming to \mathcal{S})

an OBDA instance $(\mathcal{P},\mathcal{D})$

an OBDA specification $\mathcal{P} = (\mathcal{O}, \mathcal{M}, \mathcal{S})$ \mathcal{O} an ontology (class and property inclusions / tgds) ${\mathcal M}$ a mapping (assertions of the form $\varphi(x) \leadsto \psi(x)$) S a data source schema with integrity constraints a source database ${\mathcal D}$ (relations conforming to ${\mathcal S}$) an OBDA instance $(\mathcal{P}, \mathcal{D})$ mapping \mathcal{M} virtual $\mathcal{M}(\mathcal{D})$ is a set of atoms database \mathcal{D} in the signature of \mathcal{O} RDF graph $\mathcal{M}(\mathcal{D})$

an OBDA specification $\mathcal{P} = (\mathcal{O}, \mathcal{M}, \mathcal{S})$ \mathcal{O} an ontology (class and property inclusions / tgds) \mathcal{M} a mapping (assertions of the form $\varphi(x) \rightsquigarrow \psi(x)$) ${\cal S}$ a data source schema with integrity constraints an OBDA instance $(\mathcal{P}, \mathcal{D})$ a source database \mathcal{D} (relations conforming to \mathcal{S}) mapping \mathcal{M} virtual $\mathcal{M}(\mathcal{D})$ is a set of atoms database \mathcal{D} in the signature of \mathcal{O} RDF graph $\mathcal{M}(\mathcal{D})$

 $\mathcal I$ is a model of $(\mathcal P,\mathcal D)$ if it satisfies all axioms in $\mathcal O$ and contains all $\mathcal M(\mathcal D)$

an OBDA specification $\mathcal{P} = (\mathcal{O}, \mathcal{M}, \mathcal{S})$

 \mathcal{O} an ontology (class and property inclusions / tgds)

 ${\mathcal M}$ a mapping (assertions of the form $\varphi(x) \leadsto \psi(x)$)

 ${\cal S}$ a data source schema with integrity constraints

a source database \mathcal{D} (relations conforming to \mathcal{S})

an OBDA instance $(\mathcal{P},\mathcal{D})$

 $\mathcal{M}(\mathcal{D})$ is a set of atoms in the signature of \mathcal{O}

 $\mathcal I$ is a model of $(\mathcal P,\mathcal D)$ if it satisfies all axioms in $\mathcal O$ and contains all $\mathcal M(\mathcal D)$

a tuple a of constants in ${\mathcal D}$ is a **certain answer** to a query q(x) over $({\mathcal P},{\mathcal D})$ if

 $\mathcal{I} \models q(a)$ for every model \mathcal{I} of $(\mathcal{P}, \mathcal{D})$

q'(x) is an <code>FO-rewriting</code> of q(x) with respect to ${\mathcal P}$ if, for every ${\mathcal D}$,

certain answers to q(x) over $(\mathcal{P},\mathcal{D})$ = answers to q'(x) over \mathcal{D}

q'(x) is an FO-rewriting of q(x) with respect to \mathcal{P} if, for every \mathcal{D} , certain answers to q(x) over $(\mathcal{P}, \mathcal{D})$ = answers to q'(x) over \mathcal{D}

evaluating a fixed FO-query over databases \mathcal{D} is in AC^0 (data complexity)

q'(x) is an FO-rewriting of q(x) with respect to $\mathcal P$ if, for every $\mathcal D$, certain answers to q(x) over $(\mathcal P,\mathcal D)$ = answers to q'(x) over $\mathcal D$

evaluating a fixed FO-query over databases \mathcal{D} is in AC⁰ (data complexity) so, the **certain answers problem** should also be in AC⁰ for data complexity

NB: AC⁰ = circuits of constant depth with AND/OR gates of unbounded fan-in

the **certain answers problem** should also be in AC⁰ for data complexity

the **certain answers problem** should also be in AC⁰ for data complexity

1 ontology $\{\exists R.A \sqsubseteq A\} \Rightarrow \mathsf{NL} ext{-hard}$ certain answers problem for A(x) (in data complexity) R is a directed graph,

the certain answers problem should also be in AC⁰ for data complexity

1 ontology $\{\exists R.A \sqsubseteq A\} \Rightarrow \mathsf{NL} ext{-hard}$ certain answers problem for A(x) (in data complexity) R is a directed graph,

the **certain answers problem** should also be in AC⁰ for data complexity

1 ontology $\{\exists R.A \sqsubseteq A\} \Rightarrow \mathsf{NL} ext{-hard}$ certain answers problem for A(x) (in data complexity) R is a directed graph,

the **certain answers problem** should also be in AC⁰ for data complexity

1 ontology $\{\exists R.A \sqsubseteq A\} \Rightarrow \mathsf{NL} ext{-hard}$ certain answers problem for A(x) (in data complexity) R is a directed graph,

the **certain answers problem** should also be in AC⁰ for data complexity

ontology $\{\exists R.A \sqsubseteq A\} \Rightarrow \text{NL-hard}$ certain answers problem for A(x) (in data complexity)

and A 'labels' all vertices inverse-reachable in R from other A-labelled vertices

2 ontology $\{\exists R_1.A \sqcap \exists R_2.A \sqsubseteq A\} \Rightarrow$ PTIME-hard certain answers problem for A(x) (in data complexity)

the **certain answers problem** should also be in AC⁰ for data complexity

ontology $\{\exists R.A \sqsubseteq A\} \Rightarrow \mathsf{NL} ext{-hard}$ certain answers problem for A(x) (in data complexity)

- 2 ontology $\{\exists R_1.A \sqcap \exists R_2.A \sqsubseteq A\} \Rightarrow$ PTIME-hard certain answers problem for A(x) (in data complexity) Circuit Value Problem or Path System Accessibility
- 3 ontology $\{A \sqsubseteq A_1 \sqcup A_2\} \Rightarrow {\sf CONP ext{-}hard}$ certain answers problem for q_{2+2} (in data complexity) Boolean Satisfiability (2+2CNF)

the **certain answers problem** should also be in AC⁰ for data complexity

ontology $\{\exists R.A \sqsubseteq A\} \Rightarrow \mathsf{NL} ext{-hard}$ certain answers problem for A(x) (in data complexity)

and A 'labels' all vertices inverse-reachable in R from other A-labelled vertices

- 2 ontology $\{\exists R_1.A \sqcap \exists R_2.A \sqsubseteq A\} \Rightarrow$ PTIME-hard certain answers problem for A(x) (in data complexity) Circuit Value Problem or Path System Accessibility
- 3 ontology $\{A \sqsubseteq A_1 \sqcup A_2\} \Rightarrow \text{CONP-hard}$ certain answers problem for q_{2+2} (in data complexity)
- 4 sameAs(a,b) \Rightarrow **L-hard** certain answers problem for A(x) (in data complexity)

 ${\sf NB}{:}\;{\sf AC}^{\bf 0}\subsetneq {\sf L}\subseteq {\sf NL}\subseteq {\sf PTIME}\subseteq {\sf CONP}$

OBDA Query Answering in Practice

split construction of FO-rewritings into two separate steps:

if $\mathcal D$ contains Project(itract), then **any model** of $(\mathcal O,\mathcal D)$ will have a fragment similar to

let \mathcal{O} contain RA \square \exists worksOn.Project

Project □ ∃isManagedBy.Professor

worksOn[−] □ involves isManagedBy

□ involves

if \mathcal{D} contains Project(itract), then any model of $(\mathcal{O}, \mathcal{D})$

will have a fragment similar to

if \mathcal{D} contains RA(stas), then any model of $(\mathcal{O}, \mathcal{D})$ will have a fragment similar to

let \mathcal{O} contain RA \square \exists worksOn.Project

Project □ ∃isManagedBy.Professor

worksOn[−] □ involves isManagedBy

□ involves

if \mathcal{D} contains Project(itract), then any model of $(\mathcal{O}, \mathcal{D})$

will have a fragment similar to

if \mathcal{D} contains RA(stas), then any model of $(\mathcal{O}, \mathcal{D})$ will have a fragment similar to

Professor

if \mathcal{O} is Horn (does not contain any disjunctions), then

certain answers to q(x) over $(\mathcal{O}, \mathcal{D})$ =

answers to q(x) over $\mathfrak{C}_{\mathcal{O}}(\mathcal{D})$

the canonical model / chase

 $q(x) = \exists y, z \, (\text{worksOn}(x,y) \, \land \, \text{involves}(y,z) \, \land \, \text{Professor}(z))$

```
q(x) = \exists y, z \, (\mathsf{worksOn}(x,y) \, \land \, \mathsf{involves}(y,z) \, \land \, \mathsf{Professor}(z))
```

```
q(x) = \exists y, z \, (\mathsf{worksOn}(x,y) \, \land \, \mathsf{involves}(y,z) \, \land \, \mathsf{Professor}(z))
```



```
q(x) = \exists y, z \, (\mathsf{worksOn}(x,y) \, \land \, \mathsf{involves}(y,z) \, \land \, \mathsf{Professor}(z))
```


 $q(x) = \exists y, z \, (\mathsf{worksOn}(x,y) \, \land \, \mathsf{involves}(y,z) \, \land \, \mathsf{Professor}(z))$

$$q(x) = \exists y, z \, (\mathsf{worksOn}(x,y) \, \land \, \mathsf{involves}(y,z) \, \land \, \mathsf{Professor}(z))$$

a **tree witness** \approx a query fragment embeddable into a tree of labelled nulls such that only its 'boundary' (join) variables may be answer variables

 $q'(x) = \exists y, z \left[\mathsf{RA}(x) \lor \left(\mathsf{worksOn}(x,y) \land \mathsf{Project}(y) \right) \lor \left(\mathsf{RA}(x) \land (x=z) \land \mathsf{Professor}(z) \right) \lor \left(\mathsf{worksOn}(x,y) \land \left[\mathsf{involves}(y,z) \lor \mathsf{worksOn}(z,y) \lor \mathsf{isManagedBy}(y,z) \right] \land \mathsf{Professor}(z) \right) \right]$

idea: replace all the class and property names in the OMQ rewriting by their SQL definitions in the mapping

FormationPressure $(x) \land \mathsf{name}(x,y) \land \mathsf{hasDepth}(x,z)$

idea: replace all the class and property names in the OMQ rewriting by their SQL definitions in the mapping

```
FormationPressure(x) \land \mathsf{name}(x,y) \land \mathsf{hasDepth}(x,z)
```

```
Can be unfolded into SELECT "FP-" || P1.PRESSURE_S" AS x, "P2.IDENTIFIER" AS y,

"PressureMeasuredDepth-" || P3.PRESSURE_S AS z

FROM PRESSURE P1, PRESSURE P2, PRESSURE P3

WHERE ("FP-" || P1.PRESSURE_S) = ("FP-" || P2.PRESSURE_S)

AND ("FP-" || P1.PRESSURE_S) = ("FP-" || P3.PRESSURE_S)
```

idea: replace all the class and property names in the OMQ rewriting by their SQL definitions in the mapping

```
FormationPressure(x) \land \mathsf{name}(x,y) \land \mathsf{hasDepth}(x,z)
```

issues in such unfolded SQLs:

- joins over string concatenations (indexes cannot be used by DB engine)
- redundant self-joins (since PRESSURE. PRESSURE_s is the primary key)

<u>idea:</u> replace all the class and property names in the OMQ rewriting by their SQL definitions in the mapping

```
FormationPressure(x) \land \mathsf{name}(x,y) \land \mathsf{hasDepth}(x,z)
```

issues in such unfolded SQLs:

both are typical for OBDA!

- joins over string concatenations (indexes cannot be used by DB engine)
- redundant self-joins (since PRESSURE. PRESSURE_S is the primary key)

use Semantic Query Optimisation

<u>idea:</u> replace all the class and property names in the OMQ rewriting by their SQL definitions in the mapping

FormationPressure $(x) \land \mathsf{name}(x,y) \land \mathsf{hasDepth}(x,z)$

issues in such unfolded SQLs:

both are typical for OBDA!

- joins over string concatenations (indexes cannot be used by DB engine)
- redundant self-joins (since PRESSURE.PRESSURE_S is the primary key)

use Semantic Query Optimisation

```
optimised unfolding:
```

```
SELECT "FP-" || P.PRESSURE_S" AS x, "P.IDENTIFIER" AS y,

"PressureMeasuredDepth-" || P.PRESSURE_S AS z

FROM PRESSURE P
```

Unfolding with R2RML

IRI templates in R2RML are 'functions,' and so, can encode GLAV mappings

 $arphi(x) \leadsto \psi(x)$, where both arphi(x) and $\psi(x)$ are CQs

(with existentially quantified variables)

(for details, see De Giacomo et al. [2018])

NB: the result heavily relies on the lack of UNA and functional properties

Unfolding with R2RML

IRI templates in R2RML are 'functions,' and so, can encode GLAV mappings

 $arphi(x) \leadsto \psi(x)$, where both arphi(x) and $\psi(x)$ are CQs

(with existentially quantified variables)

(for details, see De Giacomo et al. [2018])

NB: the result heavily relies on the lack of UNA and functional properties

Theorem: every rewriting of an OMQ with an OWL 2 QL ontology can be unfolded with R2RML (equivalently, GLAV) mapping

idea: careful unification of query fragments with mappings

(see Calvanese et al. [2012])

\exists hasFormationPressure $^ \sqsubseteq$ FormationPressure

```
SELECT WELLBORE.IDENTIFIER, PRESSURE.PRESSURE_S
FROM WELLBORE, PRESSURE
WHERE WELLBORE.REF_EXISTENCE_KIND = 'actual'
WELLBORE.WELLBORE_S = PRESSURE.FACILITY_S

\Rightarrow hasFormationPressure(iri("Wellbore-", IDENTIFIER), iri("FP-", PRESSURE_S))
```

```
SELECT PRESSURE_S FROM PRESSURE

→ FormationPressure(iri("FP-", PRESSURE_S))
```


∃hasFormationPressure FormationPressure

→ FormationPressure(iri("FP-", PRESSURE_S))

redundant

→ FormationPressure(iri("FP-", PRESSURE_S))

SELECT PRESSURE_S FROM PRESSURE

→ FormationPressure(iri("FP-", PRESSURE_S))

applies to subclass
/ sub-property axioms
domain & range axioms

Optimising Saturated Mappings (1)

```
SELECT PRESSURE.PRESSURE_S
FROM WELLBORE, PRESSURE
WHERE WELLBORE.REF_EXISTENCE_KIND = 'actual'
WELLBORE.WELLBORE_S = PRESSURE.FACILITY_S

UNION
SELECT PRESSURE_S FROM PRESSURE

FormationPressure(iri("FP-", PRESSURE_S))
```

Optimising Saturated Mappings (1)

```
SELECT PRESSURE.PRESSURE_S
FROM WELLBORE, PRESSURE
WHERE WELLBORE.REF_EXISTENCE_KIND = 'actual'
WELLBORE.WELLBORE_S = PRESSURE.FACILITY_S

UNION
SELECT PRESSURE_S FROM PRESSURE

FormationPressure(iri("FP-", PRESSURE_S))
```


Query Containment

SELECT PRESSURE.PRESSURE_S
FROM WELLBORE, PRESSURE
WHERE WELLBORE.REF_EXISTENCE_KIND = 'actual'
WELLBORE.WELLBORE_S = PRESSURE.FACILITY_S
UNION

SELECT PRESSURE_S FROM PRESSURE

→ FormationPressure(iri("FP-", PRESSURE_S))

Optimising Saturated Mappings (1)

```
SELECT PRESSURE.PRESSURE_S
FROM WELLBORE, PRESSURE
WHERE WELLBORE.REF_EXISTENCE_KIND = 'actual'
WELLBORE.WELLBORE_S = PRESSURE.FACILITY_S
UNION
SELECT PRESSURE_S FROM PRESSURE

FormationPressure(iri("FP-", PRESSURE_S))
```


Query Containment

```
SELECT PRESSURE.PRESSURES
FROM WELLBORE, PRESSURE
WHERE WELLBORE.REF_EXISTENCE_KIND = 'actual'
WELLBORE.WELLBORE_S = PRESSURE.FACILITY_S
UNION

SELECT PRESSURE_S FROM PRESSURE

FormationPressure(iri("FP-", PRESSURE_S))
```

this optimisation need not be performed on EACH query it can be done only ONCE, offline, when the system starts

if, however, the mapping is not saturated, then **every** query containing expl:FormationPressure will have to go through the **expansion & reduction** due to query containment

Optimising Saturated Mappings (2)

Optimising Saturated Mappings (2)

Query Containment with

ALTER TABLE wellbore_exploration_all

FOREIGN KEY (fldNpdidField)

REFERENCES field (fldNpdidField)

Optimising Saturated Mappings (3)

```
SELECT seaName FROM seis_acquisition
WHERE seaSurveyTypeMain = 'Grunnundersøkelser'

UNION
SELECT seaName FROM seis_acquisition
WHERE seaSurveyTypeMain = 'Ordinær seismisk undersøkelse'

UNION
...(5 more from subclasses of :Survey)

~> Survey(iri("survey/", seaName))
```

Optimising Saturated Mappings (3)

```
SELECT seaName FROM seis_acquisition
WHERE seaSurveyTypeMain = 'Grunnundersøkelser'
UNION
SELECT seaName FROM seis_acquisition
WHERE seaSurveyTypeMain = 'Ordinær seismisk undersøkelse'
UNION
...(5 more from subclasses of :Survey)

$\sim \text{Survey(iri("survey/", seaName))}$
```


References

- R. Kontchakov, M. Rezk, M. Rodríguez-Muro, G. Xiao & M. Zakharyaschev. "Answering SPARQL Queries under the OWL 2 QL Entailment Regime with Databases". In: Proc. of the 13th Int. Semantic Web Conf., ISWC 2014, Part I, vol. 8796 of LNCS, pp. 552–567. Springer, 2014.
- 2. M. Rodríguez-Muro, R. Kontchakov & M. Zakharyaschev. "Ontology-based data access: Ontop of databases". In: Proc. of the 12th Int. Semantic Web Conf., ISWC 2013, vol. 8218 of LNCS, pp. 558–573. Springer, 2013.
- 3. J. F. Sequeda, M. Arenas, and D. P. Miranker. "OBDA: Query rewriting or materialization? In practice, both!" In: Proc. of the 13th Int. Semantic Web Conf., ISWC 2014, Part I, vol. 8796 of LNCS, pp. 535–551. Springer, 2014.
- 4. G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi & R. Rosati. "Using ontologies for semantic data integration." In: A Comprehensive Guide through the Italian Database Research over the Last 25 Years, vol. 31 of Studies in Big Data. Springer, 2018.
- D. Calvanese, G. De Giacomo, M. Lenzerini & M. Y. Vardi. "Query processing under GLAV mappings for relational and graph databases". In: PVLDB, 6(2):61–72, 2012.
- 6. A. Artale, D. Calvanese, R. Kontchakov & M. Zakharyaschev. "The DL-Lite family and relations." In: JAIR, 36:1–69, 2009.