本应用技术手册是针对有一定8051系列(MCS-51)单片机编程基础的用户编写的。

选用 STC 单片机的理由:降低成本,提升性能,原有程序直接使用,硬件无需改动。 STC 公司鼓励您放心大胆选用 PLCC,PQFP 小型封装, 3.3V 工作电压单片机,使 您的产品更小,更轻,功耗更低。如果相关新增功能没有用到,则不需看相应部分。用 STC 提供的 STC-ISP.exe 工具将您原有的代码下载进 STC 相关的单片机即可,或用通用编

5V: 5.5 - 3.8V, 乃至 3.4V; 3V: 3.6 - 2.4V, 乃至 1.9V

STC89 系列单片机选型一览表 IAP / ISP 美国技术 , 超低价格, 15 分钟学会

型号	最高 频率		Flash 程序	RAM 数据	降低 EMI	ľΊ	双倍法	4	IS	I A	EEP ROM	数据指	串口 UART	中断	先	定时	/	向下 兼容	向下 兼容	向下 兼容
	5V	3V	存储器	存储器		狗	速		Р	Р		针		源	级	器	D	Winbond	Philips	Atmel
STC89C51 RC	0-80M		4K	512							1K+	2	1ch+	8	4	3		W78E51	P89C51	
STC89C52 RC	0-80M		8K	512							1K+	2	1ch+	8	4	3		W78E52	P89C52	
STC89C53 RC	0-80M		15K	512								2	1ch+	8	4	3		W78E54	P89C54	AT89C55
STC89C54 RD+	0-80M		16K	1280							8K+	2	1ch+	8	4	3		W78E54	P89C54	AT89C55
STC89C58 RD+	0-80M		32K	1280							8K+	2	1ch+	8	4	3		W78E58	P89C58	AT89C51RC
STC89C516 RD+	0-80M		63K	1280								2	1ch+	8	4	3		W78E516	P89C51RD2	AT89C51RD2
STC89LE51 RC		0-80M	4K	512							1K+	2	1ch+	8	4	3		W78LE51		AT89LV51
STC89LE52 RC		0-80M	8K	512							1K+	2	1ch+	8	4	3		W78LE52		AT89LV52
STC89LE53 RC		0-80M	14K	512								2	1ch+	8	4	3		W78LE54		AT89LV55
STC89LE54 RD+		0-80M	16K	1280							8K+	2	1ch+	8	4	3		W78LE54		AT89LV55
STC89LE58 RD+		0-80M	32K	1280							8K+	2	1ch+	8	4	3		W78LE58		AT89LV51RC
STC89LE516RD+		0-80M	63K	1280								2	1ch+	8	4	3		W78LE516	P89LV51RD2	AT89LV51RD2
STC89LE516AD		0-90M	64K	512								2	1ch+	6	4	3		需要A/D转	换时才选用,	8路8位精度
STC89LE516X2		0-90M	64K	512								2	1ch+	6	4	3		在P1.0 - P	1.7口 , 17 个	机器周期一次

RC/RD+系列为真正的看门狗,缺省为关闭(冷启动), 启动后无法关闭,可放心省去外部看门狗。内部Flash 擦写次数为100,000次以上,STC89C51RC/RD+系列单片机出厂时就已完全加密,无法解密。用户程序是用 ISP/IAP 机制写入,一边校验一边写,无读出命令,彻底无法解密。DIP-40,PLCC-44,PQFP-44 三种封装(PLCC、QFP有 P4 口), RC/RD+系列单片机 P4 口地址为 E8H,并有 2 个附加外部中断,P4.2/INT3,P4.3/INT2。STC89LE516AD/X2 系列单片机 P4 口地址为 C0H, 无附加外部中断。

STC89C51RC / RD+ 系列单片机 管脚图

TO /D4 O	,	J 10	
	1	40	vcc
T2EX/P1.1	2	39	PO.O/ADO
P1.2 🔲	3	38	PO.1/AD1
P1.3	4	37	P0.2/AD2
P1.4	5	36	PO.3/AD3
P1.5 🔲 (6	35	PO.4/AD4
P1.6 🗀	7	34	P0.5/AD5
P1.7 🔲	8	33	P0.6/AD6
RST	9 .	D 32 31 31 30	PO.7/AD7
RXD/P3.01	10	T 31	EA
TXD/P3.11	11 ;	30	ALE/PROG
INTO/P3.21	12	29	PSEN
INT1/P3.31	13	28	P2.7/A15
T0/P3.41	4	27	P2.6/A14
T1/P3.5	15	26	P2.5/A13
WR/P3.6	16	25	P2.4/A12
RD/P3.71	7	24	P2.3/A11
XTAL21	18	23	P2.2/A10
XTAL11	19	22	P2.1/A9
VSS2	20	21	P2.0/A8

关于编译器 / 汇编器:

- 1.任何老的编译器 / 汇编器均可使用 Keil C51中: Device选择标准的 Intel8052 头文件包含标准的 <reg52.h>
- 2.新增特殊功能寄存器用 "sfr"及"sbit"声明地址即可
- 3.汇编中用 " data ",或 " EQU " 声明地址

关于仿真及仿真器:

- 1.任何老的仿真器均可使用
- 2. 老的仿真器仿真他可仿真的基本功能
- 3. 新增特殊功能用 ISP 下载看结果即可
- 4.STC8051 专用仿真器也已推出,人民币 1950

关于工作电压 / 时钟频率:RC/RD+系列是真正的6T 单片机 , 兼容普通的12 时钟 / 机器周期

			·	·	·	·	

3V: 3.6 - 2.4V(可外部 24MHz,双倍速 48MHz),2.3-1.9V 时不要进行 IAP 擦除/编程 关于看门狗: RC/RD+系列为真正的看门狗,缺省为关闭(冷启动),启动后无法关闭。

- A. 看门狗溢出复位无法关看门狗(C版);
- B. 单片机软复位无法关看门狗(C版)
- C. 带电工作时,外部复位无法关看门狗(C版)
- D. 软件无法关看门狗

E.外部干扰无法关看门狗

F. 只有给单片机彻底断电, 才可以

--- 出厂就加密(超级加密),利用 ISP 技术写入程序,无读出命令,无法解密

STC单片机在线编程线路, STC RS-232 转换器 关于 /EA(/EA管脚已内部上拉到 Vcc):

3. 电容 C2 可接 47~33pF(<24MHz),30,22,15pF,33M以上15pF;6M以下47pF,100pF-180pF;

CRYSTAL(晶振)	C1(坚决不用)	C2(47pF - 15pF)	R1(不用)	C3	R2
6MHz	Don't use	47pF) 100pF	Don't use	10uF	10K/8.2K
11.0592MHz	Don't use	30pF, 33pF, 47pF	Don't use	10uF	10K/8.2K
22.1184MHz	Don't use	27pF, <mark>33</mark> pF, <mark>47</mark> pF	Don't use	10uF-22uF	15K,10K,8.2K
24MHz	Don't use	27pF, <mark>33</mark> pF, <mark>47</mark> pF	Don't use	10uF-22uF	15K,10K,8.2K
33MHz(Don't use)	Don't use	15pF	15k - 6.8k	10uF-22uF	15K,10K,8.2K
40MHz(Don't use)	Don't use	15pF	15k - 6.8k	10uF-22uF	15K,10K,8.2K

- 4.如需工作在24M以上,尽量选择双倍速,外部晶振用低频率(<24MHz),这样EMI会小很多;
- 5. 如果外部晶振频率在 33M 以上, 焊 R1 电阻(15K 左右), 33MHz 以上, 建议用有源时钟输入。
- 6. 推荐在 XTAL2 管脚串一个 120 160 欧姆的电阻再到晶振的管脚, 如果这样 XTAL1 管脚旁的 C1
- 7. 晶体振荡器(内部时钟反向放大器增益)软件设置(在用 STC-ISP 工具软件烧录时设置):

STC89C51RC/RD+系列单片机 ISP 编程 原理 注意事项

为什么有些用户下载程序不成功(在宏晶提供的下载板上)

- 1. 可能电脑端的 STC-ISP 控制软件要升级,现在必须升级到正式版本 STC-ISP-V2.5
- 2. 现在单片机端(下位机)的 ISP 软件是 V2.5C, 解决了少数电脑慢, 通信连不上的问题.
- 3.运行用户程序时,可到40M/80MHz,但ISP下载程序现版本软件只能到33M/66MHz
- 4.少数客户的PLCC-44,PQFP-44转DIP-40的转换座走线过长,造成时钟振荡不稳定,下载不成功,可将XTAL1脚的电容去掉,XTAL2脚的电容加大到47pF以上。
- 5.可能单片机内部没有 ISP 引导码,或者要升级 PC 端的 STC-ISP 控制软件
- 6. 电脑端的 ISP 控制软件 STC-ISP-V2.9 测试版加了一些功能,欢迎测试。
- 7. 电脑端的 ISP 控制软件 STC-ISP-V2.6 测试版不要用,有误
- 8.新的单片机端(下位机)的 ISP软件是 V2.7C,加了一些抗干扰措施,主要解决冷起动运行 ISP程序时间过长的问题,以免客户感觉"复位慢",实为 ISP程序在检测要不要下载程序 为什么有些用户下载程序不成功(在用户自己的系统上)

- 1. 可能用户板上有外部看门狗,需不让其起作用
- 2.可能用户板上 P3.0/RxD, P3.1/Txd 除了接 RS-232 转换器外,还接了 RS-485 等电路,需要将其断开。

超低功耗 ---- STC89C51RC / RD+ 系列单片机

1. 掉电模式:

典型功耗 0.5uA, 可由外部中断唤醒,中断返回后,继续执行原程序

2.空闲模式:

典型功耗 2mA

3. 正常工作模式:

典型功耗 4mA - 7mA

超强抗干扰 ---- STC89C51RC / RD+ 系列单片机

1. I/0 \Box

输入/输出口经过特殊处理,很多干扰是从 I/O 进去的,每个 I/O 均有对 VCC/对 GND 二级管箝位保护。

2. 电源

单片机内部的电源供电系统经过特殊处理,很多干扰是从电源进去的

3. 时钟

单片机内部的时钟电路经过特殊处理,很多干扰是从时钟部分进去的

4. 看门狗

单片机内部的看门狗电路经过特殊处理,打开后无法关闭,可放心省去外部看门狗

5. 复位电路

单片机内部的复位电路经过特殊处理,很多干扰是从复位电路部分进去的, STC89C51RC/RD+系列单片机为高电平复位。推荐外置复位电路为MAX810/STC810,STC6344, STC6345,813L,706P;也可用R/C复位,10uF电容/10k电阻,22uF/8.2k等。

6. 宽电压,不怕电源抖动 5V: 6v - 3.4v 3V: 4v - 1.9v

降低单片机对外部的电磁辐射 (EMI)--- 三大措施

1. 禁止 ALE 时钟信号输出:

RC/RD+ 系列 8051 单片机 扩展 RAM 管理及禁止 ALE 输出 特殊功能寄存器 只写

M	lnemonic	Add	Name	7	6	5	4	3	2	1	0	Reset value
А	UXR	8Eh	Auxiliary Register 0	ı	ı	ı	1	ı	1	EXTRAM	ALEOFF	xxxx,xx00

禁止 ALE 信号输出(应用示例供参考,汇编语言):

MOV AUXR, #00000001B: ALEOFF 位置 " 1 ", 禁止 ALE 时钟输出

- 2. 外部时钟频率降一半,6T模式:传统的8051为每个机器周期12时钟,如将STC的增强型8051单片机在ISP烧录程序时设为双倍速(即6T模式,每个机器周期6时钟),则可将单片机外部时钟频率降低一半,有效的降低单片机时钟对外界的辐射
- 3. 单片机内部时钟振荡器增益降低一半: 在 ISP 烧录程序时将 OSCDN 设为 1/2 gain 可以有效的降低单片机时钟高频部分对外界的辐射,5V单片机外部晶振频率<24MHz时 ,3V单片机外部晶振频率<16MHz 时,将 OSCDN 设为 1/2 gain。

特殊功能寄存器映像 SFR Mapping

 ${\tt STC89C51RC, STC89C52RC, STC89C53RC, STC89C54RD+, STC89C58RD+, STC89C516RD+ STC89LE51RC, STC89LE52RC, STC89LE53RC, STC89LE54RD+, STC89LE58RD+, STC89LE516RD+ STC89LE51RC, STC89LE51RD+, STC89LE516RD+, STC89LE516RD+$

	Bit Addressable		N	Non Bit Add	dressable				
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	
F8h									FFh
F0h	B 0000,0000								F7h
E8h	P4 xxxx,1111								EFh
E0h	ACC 0000,0000	WDT_CONTR xx00,0000	ISP_DATA 1111,1111	ISP_ADDRH 0000,0000	ISP_ADDRL 0000,0000	ISP_CMD 1111,1000	ISP_TRIG xxxx,xxxx	ISP_CONTR 000x,x000	E7h
D8h									DFh
D0h	PSW 0000,0000								D7h
C8h	T2CON 0000,0000	T2MOD xxxx,xx00	RCAP2L 0000,0000	RCAP2H 0000,0000	TL2 0000,0000	TH2 0000,0000			CFh
C0h	XICON 0000,0000								C7h
B8h	IP xx00,0000	SADEN 0000,0000							BFh
B0h	P3 1111,1111							IPH 0000,0000	B7h
A8h	IE 0000,0000	SADDR 0000,0000							AFh
A0h	P2 1111,1111		AUXR1 xxxx,0xx0						A7h
98h	SCON 0000,0000	SBUF xxxx,xxxx							9Fh
90h	P1 1111,1111								97h
88h	TCON 0000,0000	TMOD 0000,0000	TL0 0000,0000	TL1 0000,0000	TH0 0000,0000	TH1 0000,0000	AUXR xxxx,xx00		8Fh
80h	P0 1111,1111	SP 0000,0111	DPL 0000,0000	DPH 0000,0000				PCON 0xx1,0000	87h
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	

RC/RD+系列8051 单片机内核特殊功能寄存器 C51 Core SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0	Reset Value
ACC	E0h	Accumulator									0000,0000
В	F0h	B Register									0000,0000
PSW	D0h	Program Status Word	CY	AC	F0	RS1	RS0	OV	1	Р	0000,0000
SP	81h	Stack Pointer									0000,0111
DPL	82h	Data Pointer Low Byte									0000,0000
DPH	83h	Data Pointer High Byte	·	·	·	·	·			·	0000,0000

RC/RD+系列8051 单片机系统管理特殊功能寄存器System Management SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0	Reset value
PCON	87h	Power Control	SMOD	1	ı	POF	GF1	GF0	PD	IDL	0xx1,0000
AUXR	8Eh	Auxiliary Register 0	-	-	ı	1	-	1	EXTRAM	ALEOFF	xxxx,xx00
AUXR1	A2h	Auxiliary Register 1	-	-	-	-	GF2	-	-	DPS	xxxx,0xx0

不同:STC89LE516AD / 89LE516X2系列单片机没有EXTRAM控制位.

RC/RD+系列8051 单片机 中断 特殊功能寄存器 Interrupt SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0	Reset Value
IE	A8h	Interrupt Enable	EA	-	ET2	ES	ET1	EX1	ET0	EX0	0000,0000
IP	B8h	Interrupt Priority Low		-	PT2	PS	PT1	PX1	PT0	PX0	xx00,0000
IPH	B7h	Interrupt Priority High	РХЗН	PX2H	PT2H	PSH	PT1H	PX1H	PTOH	PX0H	0000,0000
XICON	C0h	Auxiliary Interrupt Control	РХЗ	EX3	IE3	IT3	PX2	EX2	IE2	IT2	0000,0000

不同: STC89LE516AD 系列单片机没有(XICON, PX3H, PX2H), 因为 P4.2/P4.3 无中断.

RC/RD+系列8051 单片机 I/O 口 特殊功能寄存器 Port SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0	Reset Value
P0	80h	8-bit Port 0	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0	1111,1111
P1	90h	8-bit Port 1	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0	1111,1111
P2	A0h	8-bit Port 2	P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0	1111,1111
P3	B0h	8-bit Port 3	P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0	1111,1111
P4	E8h	4-bit Port 4	-	-	-	-	P4.3	P4.2	P4.1	P4.0	xxxx,1111

不同: STC89LE516AD / 89LE516X2 系列单片机 P4 口地址为 C0h, 而不是 E8h.

RC/RD+系列 8051 单片机 串行口 特殊功能寄存器 Serial I/O Port SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0	Reset Value
SCON	98h	Serial Control	SMO/FE	SM1	SM2	REN	TB8	RB8	TI	RI	0000,0000
SBUF	99h	Serial Data Buffer									XXXX,XXXX
SADEN	B9h	Slave Address Mask									0000,0000
SADDR	A9h	Slave Address									0000,0000

RC/RD+系列 8051 单片机 定时器 特殊功能寄存器 Timer SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0	Reset Value
TCON	88h	Timer / Counter 0 and 1 Control	TF1	TR1	TF0	TRO	IE1	IT1	IE0	IT0	0000,0000
TMOD	89h	Timer / Counter 0 and 1 Modes	GATE GATE1	C/T# C/T1#	M1 M1_1	MO M1_0	GATE GATE0	C/T# C/T0#	M1 MO_1	MO MO_0	0000,0000
TL0	8Ah	Timer / Counter O Low Byte									0000,0000
THO	8Ch	Timer / Counter O High Byte									0000,0000
TL1	8Bh	Timer / Counter 1 Low Byte									0000,0000
TH1	8Dh	Timer / Counter 1 High Byte									0000,0000
T2CON	C8h	Timer / Counter 2 Control	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2#	CP/RL2#	0000,0000
T2MOD	C9h	Timer / Counter 2 Mode	-	-	-	-	-	-	T20E	DCEN	xxxx,xx00
RCAP2L	CAh	Timer / Counter 2 Reload/Capture Low Byte									0000,0000
RCAP2H	CBh	Timer / Counter 2 Reload/Capture High Byte									0000,0000
TL2	CCh	Timer / Counter 2 Low Byte									0000,0000
TH2	CDh	Timer / Counter 2 High Byte									0000,0000

RC/RD+系列 8051 单片机 看门狗定时器 特殊功能寄存器 Watch Dog Timer SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0	Reset Value
WDT_CONTR	E1h	Watch-Dog-Timer Control register	1	-	EN_WDT	CLR_WDT	IDLE_WDT	PS2	PS1	PS0	xx00,0000

RC/RD+系列 8051 单片机 ISP/IAP 特殊功能寄存器 ISP/IAP SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0	Reset Value
ISP_DATA	E2h	ISP/IAP Flash Data Register									1111,1111
ISP_ADDRH	E3h	ISP/IAP Flash Address High									0000,0000
ISP_ADDRL	E4h	ISP/IAP Flash Address Low									0000,0000
ISP_CMD	E5h	ISP/IAP Flash Command Register	-	-	-	-	-	MS2	MS1	MSO	xxxx,x000
ISP_TRIG	E6h	ISP/IAP Flash Command Trigger									xxxx,xxxx
ISP_CONTR	E7h	ISP/IAP Control Register	ISPEN	SWBS	SWRST	-	-	WT2	WT1	WTO	000x,x000

STC89C51RC/RD+ 系列单片机扩展 RAM 的使用 STC89C51RC/RD+ 系列单片机扩展 RAM 的禁止

适用型号:

STC89C51RC, STC89C52RC, STC89C53RC, STC89LE51RC, STC89LE52RC, STC89LE53RC STC89C54RD+, STC89C58RD+, STC89C516RD+, STC89LE54RD+, STC89LE58RD+, STC89LE516RD+

普通 89C51,89C52 系列单片机的内部 RAM 只有 128(89C51)/256(89C52)供用户使用

- (1).低 128 字节的内部 RAM (地址:00H-7FH),可直接寻址或间接寻址,(data/idata)
- (2).高 128 字节的内部 RAM (地址: 80H-FFH), 只能间接寻址(普通 89C51 没有), (idata)
- (3). 特殊功能寄存器 SFR (地址: 80H-FFH), 只能直接寻址, (data)

特殊功能寄存器 SFR 和高 128 字节的内部 RAM 是通过寻址方式来区分的, 传统的 8051 系列单片机只有 128-256 字节 RAM 供用户使用,在此情况下 STC 公司响应广大用户的呼声,在一些单片机内部增加了 RAM。 STC89C58RD+ 系列单片机扩展了 1024 个字节 RAM, STC89C52RC 系列单片机扩展了 256 个字节 RAM。

RC/RD+系列8051 单片机 扩展 RAM 管理及禁止 ALE 输出 特殊功能寄存器

只写

Mnemonic	Add	Name	7	6	5	4	3	2	1	0	Reset value
AUXR	8Eh	Auxiliary Register 0	-	-	-	1	-	-	EXTRAM	ALEOFF	xxxx,xx00

Symbol 符号 Function 功能

EXTRAM

Internal/External RAM access 内部/外部 RAM 存取

0: 内部扩展的 EXT RAM 可以存取.

RD+系列单片机

在 00H 到 3FFH 单元(1024 字节),使用 MOVX @DPTR 指令访问,超过 400H 的地址空间总是访问外部数据存储器(含 400H 单元), MOVX @R i 只能访问 00H 到 FFH 单元

RC 系列单片机

在 00H 到 FFH 单元(256 字节),使用 MOVX @DPTR 指令访问,超过 100H 的地址空间 总是访问外部数据存储器(含 100H 单元), MOVX @Ri 只能访问 00H 到 FFH 单元

1: External data memory access.

外部数据存储器存取,禁止访问内部扩展 RAM,此时 MOVX @DPTR / MOVX @Ri的使用同普通 8052 单片机

ALEOFF Disable/enable ALE.

0: ALE is emitted at a constant rate of 1/3 the oscillator frequency in 6 clock mode, 1/6 fosc in 12 clock mode

ALE 脚输出固定的 1/6 晶振频率信号在 12 时钟模式时,在 6 时钟模式时输出固定的 1/3 晶振频率信号.

1: ALE is active only during a MOVX or MOVC instruction.

ALE 脚仅在执行 MOVX or MOVC 指令时才输出信号,好处是:降低了系统对外界的 EMI.

注解:STC89LE516AD,STC89LE516X2 系列无 EXTRAM 控制位,仅有 ALEOFF 控制位。

STC89LE516AD/X2系列用 MOVX A, @Ri / MOVX @Ri, A指令固定访问内部扩展的EXTRAM, 用 MOVX A, @DPTR / MOVX @DPTR, A指令固定访问外部RAM.

```
应用示例供参考(汇编):
  访问内部扩展的 EXTRAM
  ;新增特殊功能寄存器声明(汇编方式)
  AUXR
        DATA
              8EH;
                       或者用 AUXR EQU 8EH 定义
  MOV
        AUXR, #00000000B: EXTRAM 位清为 "0", 其实上电复位时此位就为 "0".
     :MOVX A. @DPTR / MOVX @DPTR. A 指令可访问内部扩展的 EXTRAM
        ;RD+系列为(00H - 3FFH,共1024字节)
        ;RC 系列为(00H - FFH, 共 256 字节)
     ;MOVX A, @Ri / MOVX A, @Ri 指令可直接访问内部扩展的 EXTRAM
        ;使用此指令 RD+ 系列 只能访问内部扩展的 EXTRAM(00H - FFH, 共 256 字节)
   :写芯片内部扩展的 EXTRAM
           DPTR, #address
     MOV
     MOV
           A, #value
     MOVX
           @DPTR, A
  ;读芯片内部扩展的 EXTRAM
     MOV
           DPTR, #address
           A, @DPTR
     MOVX
  RD+ 系列
   ; 如果 #address < 400H,则在EXTRAM位为"0"时,访问物理上在内部,逻辑上在外部的
        此.EXTRAM
   : 如果 #address >= 400H ,则总是访问物理上外部扩展的 RAM 或 I/O 空间 ( 400H - FFFFH )
  RC 系列
   ; 如果 #address < 100H,则在EXTRAM位为"0"时,访问物理上在内部,逻辑上在外部的
        此 EXTRAM
   ; 如果 #address >= 100H,则总是访问物理上外部扩展的 RAM 或 I/O 空间 (100H--FFFFH)
  禁止访问内部扩展的 EXTRAM ,以防冲突
              #00000010B; EXTRAM 控制位设置为 " 1 ", 禁止访问 EXTRAM, 以防冲突
  MOV
     有些用户系统因为外部扩展了 I/O 或者用片选去选多个 RAM 区,有时与此内部扩展的 EXTRAM
  逻辑地址上有冲突,将此位设置为"1", 禁止访问此内部扩展的 EXTRAM 就可以了.
大实话 : 其实不用设置 AUXR 寄存器即可直接用 MOVX @DPTR 指令访问此内部扩展的 EXTRAM, 超过此
       RAM空间,将访问片外单元.如果系统外扩了SRAM,而实际使用的空间小于1024/256字节,则可
       直接将此 SRAM 省去, 比如省去 STC62WV256, IS62C256, UT6264 等. 另外尽量用 MOVX A, @Ri
       / MOVX @Ri, A 指令访问此内部扩展的 EXTRAM,这样只能访问 256 字节的扩展 EXTRAM,但可
       与很多单片机兼容。如STC89LE516AD/X2系列MOVX A, @Ri / MOVX @Ri, A指令只能固定访
       问内部扩展的 EXTRAM, MOVX A, @DPTR / MOVX @DPTR, A 指令固定访问外部 RAM.
应用示例供参考(C 语言):
  /* 访问内部扩展的 EXTRAM */
  /* RD+系列为(00H - 3FFH, 共 1024 字节扩展的 EXTRAM) */
```

```
/* RC 系列为(00H - FFH, 共256字节扩展的 EXTRAM) */
  /* 新增特殊功能寄存器声明(C 语言方式) */
  sfr AUXR = 0x8e /* 如果不需设置 AUXR 就不用声明 AUXR
  AUXR = 0x00; /* 0000,0000 EXTRAM 位清 0, 其实上电复位时此位就为 0 */
  unsigned char xdata sum, loop_counter, test_array[128];
  /* 将变量声明成 xdata 即可直接访问此内部扩展的 EXTRAM */
```

```
/* 写芯片内部扩展的 EXTRAM */
      sum = 0;
      loop counter = 128;
      test_array[0] = 5;
/* 读芯片内部扩展的 EXTRAM */
      sum = test_array[0];
   /* RD+系列:
```

如果 #address < 400H,则在EXTRAM位为"0"时,访问物理上在内部,逻辑 上在外部的此 EXTRAM

如果 #address>=400H,则总是访问物理上外部扩展的 RAM 或 I/O 空间 (400H-FFFFH)

RC 系列:

如果 #address < 100H,则在EXTRAM位为"0"时,访问物理上在内部,逻辑 上在外部的此 EXTRAM

如果 #address>=100H, 总是访问物理上外部扩展的 RAM 或 I/O 空间(100H--FFFFH)

*/

禁止访问内部扩展的 EXTRAM,以防冲突

0x02; /* 0000,0010, EXTRAM 位设为 " 1 ", 禁止访问 EXTRAM,以防冲突 */ AUXR 有些用户系统因为外部扩展了 I/O 或者用片选去选多个 RAM 区,有时与此内部扩展的 EXTRAM 逻辑上有冲突,将此位设置为"1",禁止访问此内部扩展的 EXTRAM 就可以了.

AUXR 是只写寄存器

所谓只写,就是直接用"MOV AUXR, #data"去写,而不要用含读的操作如"或,与,入栈" 因为他不让你读,如去读,读出的数值不确定,用含读的操作如"或,与,入栈",会达不到 需要的效果。

中断 RC/RD+系列8051 单片机 中断 特殊功能寄存器 Interrupt SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0	Reset Value
IE	A8h	Interrupt Enable	EA	-	ET2	ES	ET1	EX1	ET0	EX0	0000,0000
IP	B8h	Interrupt Priority Low	-	-	PT2	PS	PT1	PX1	PT0	PX0	xx00,0000
IPH	B7h	Interrupt Priority High	РХЗН	PX2H	PT2H	PSH	PT1H	PX1H	PTOH	PX0H	0000,0000
XICON	C0h	Auxiliary Interrupt Control	РХЗ	EX3	IE3	IT3	PX2	EX2	IE2	IT2	0000,0000

中断与普通8052 完全兼容,优先级可设为4级,另增加2个外部中断INT2/P4.3,INT3/P4.2。

Interrupt Source 中断源	Vector Address 中断 向量地址	Polling Sequence 中断 查询次序	中断 优先级设置	优先级0	优先级1	优先级2	优先级3 最高	Interrupt Request 中断请求
/INTO	0003H	0(最优先)	PXOH, PXO	0,0	0,1	1,0	1,1	IE0
Timer O	000BH	1	PTOH,PTO	0,0	0,1	1,0	1,1	TF0
/INT1	0013H	2	PX1H,PX1	0,0	0,1	1,0	1,1	IE1
Timer 1	001BH	3	PT1H,PT1	0,0	0,1	1,0	1,1	IF1
UART	0023H	4	PSH, PS	0,0	0,1	1,0	1,1	RI + TI
Timer 2	002BH	5	PT2H,PT2	0,0	0,1	1,0	1,1	TF2 + EXF2
/INT2	0033H	6	PX2H,PX2	0,0	0,1	1,0	1,1	IE2
/INT3	003BH	7(最低)	PX3H,PX3	0,0	0,1	1,0	1,1	IE3

Name	Function Function
РХ3	External interrupt 3 priority high if set
EX3	External interrupt 3 enable if set
IE3	IE3 is set/cleared automatically by hardware when interrupt is detected/serviced
IT3	External interrupt 3 is falling-edge/low-level triggered when this bit is set/cleared by software
PX2	External interrupt 2 priority high if set
EX2	External interrupt 2 enable if set
IE2	IE2 is set/cleared automatically by hardware when interrupt is detected/serviced
IT2	External interrupt 2 is falling-edge/low-level triggered when this bit is set/cleared by software
PXH3	External interrupt 3 priority highest if set
PXH2	External interrupt 2 priority highest if set

降低单片机对系统的电磁干扰 (EMI)--- 三大措施

1. 禁止 ALE 信号输出,适用型号:

STC89C51RC, STC89C52RC, STC89C53RC, STC89LE51RC, STC89LE52RC, STC89LE53RC STC89C54RD+, STC89C58RD+, STC89C516RD+, STC89LE54RD+, STC89LE58RD+, STC89LE516RD+

STC89LE516AD / X2 系列 (注:此系列单片机无 EXTRAM 控制位)

RC/RD+ 系列 8051 单片机 扩展 RAM 管理及禁止 ALE 输出 特殊功能寄存器 只写

Mnemonic	Add	Name	7	6	5	4	3	2	1	0	Reset value
AUXR	8Eh	Auxiliary Register 0	-	-	-				EXTRAM	ALEOFF	xxxx,xx00

禁止 ALE 信号输出(应用示例供参考,C语言):

sfr AUXR = 0x8e; /* 声明 AUXR 寄存器的地址 */

AUXR = 0x01;

/* ALEOFF位置1,禁止ALE信号输出,提升系统的EMI性能,复位后为0,ALE信号正常输出 */禁止ALE信号输出(应用示例供参考,汇编语言):

AUXR EQU 8Eh ; 或 AUXR DATA 8Eh

MOV AUXR, #00000001B; ALEOFF 位置"1",禁止 ALE 信号输出,提升了系统的 EMI 性能

- 2. 外部时钟频率降一半,6T模式:传统的8051为每个机器周期12时钟,如将STC的增强型8051单片机在ISP烧录程序时设为双倍速(及6T模式,每个机器周期6时钟),则可将单片机外部时钟频率降低一半,有效的降低单片机时钟对外界的干扰
- 3. 单片机内部时钟振荡器增益降低一半: 在 ISP 烧录程序时将 OSCDN 设为 1/2 gain 可以有效的降低单片机时钟高频部分对外界的辐射,但此时外部晶振频率尽量不要高于 24MHz。

P4 □

RC/RD+ 系列 8051 单片机 I/O 口 特殊功能寄存器 Port SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0	Reset Value
Р0	80h	8-bit Port 0	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0	1111,1111
P1	90h	8-bit Port 1	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0	1111,1111
P2	A0h	8-bit Port 2	P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0	1111,1111
Р3	B0h	8-bit Port 3	P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0	1111,1111
P4	E8h	4-bit Port 4	-	-	-	-	P4.3	P4.2	P4.1	P4.0	xxxx,1111

汇编语言:

P4 DATA 0E8H; or P4 EQU 0E8H

MOV A, P4; Read P4 status to Accumulator.

MOV P4, #0AH; Output data "A" through P4.0 - P4.3

ORL P4, #00000001B; P4.0 = 1 ANL P4, #11111110B; P4.0 = 0

MOV P4, #0AH; Output data "A" through P4.0 - P4.3

C 语言:

注:STC89LE516AD,STC89LE516X2,STC89LE58AD,STC89LE54AD的P4口地址在COh。

双数据指针 DPTRO, DPTR1 的使用

适用型号:

STC89C51RC, STC89C52RC, STC89C53RC, STC89LE51RC, STC89LE52RC, STC89LE53RC STC89C54RD+, STC89C58RD+, STC89C516RD+, STC89LE54RD+, STC89LE58RD+, STC89LE516RD+ STC89LE516AD, STC89LE516X2

RC/RD+/AD/X2 系列 8051 单片机 双数据指针 特殊功能寄存器

Mn	emonic	Add	Name	7	6	5	4	3	2	1	0	Reset value
AU	XR1	A2h	Auxiliary Register 1	1	-	1	1	GF2	-	-	DPS	xxxx,0xx0

Symbol 符号 Function 功能

GF2 General purpose user-defined flag. 通用功能用户自定义位

DPS DPTR registers select bit. DPTR 寄存器选择位

0: DPTR0 is selected DPTR0 被选择 1: DPTR1 is selected DPTR1 被选择

此系列单片机有两个 16-bit 数椐指针, DPTR0, DPTR1. 当 DPS 选择位为 0 时, 选择 DPTR0, 当 DPS 选择位为 1 时, 选择 DPTR1.

AUXR1 特殊功能寄存器,位于 A2H 单元,其中的位不可用布尔指令快速访问.但由于 DPS 位位于 bit0,故对 AUXR1寄存器用 INC指令,DPS 位便会反转,由0变成1或由1变成0,即可实现双数椐指针的快速切换.应用示例供参考:

:新增特殊功能寄存器定义

AUXR1 DATA 0A2H

MOV AUXR1, #0;此时 DPS 为 0, DPTR0 有效

MOV DPTR, #1FFH ;置 DPTR0 为 1FFH

MOV A, #55H

MOVX @DPTR. A :将1FFH单元置为55H

MOV DPTR, #2FFH ; 置 DPTR0 为 2FFH

MOV A, #OAAH

MOVX @DPTR, A ;将 2FFH 单元置为 0AAH

INC AUXR1 ; 此时 DPS 为 1, DPTR1 有效

MOV DPTR, #1FFH ; 置 DPTR1 为 1FFH

MOVX A, @DPTR ; 读 DPTR1 数椐指针指向的 1FFH 单元的内容,累加器 A 变为 55H.

INC AUXR1 ; 此时 DPS 为 0, DPTR0 有效

MOVX A, @DPTR ; 读 DPTRO 数椐指针指向的 2FFH 单元的内容,累加器 A 变为 OAAH.

INC AUXR1 ; 此时 DPS 为 1, DPTR1 有效

MOVX A, @DPTR ; 读 DPTR1 数椐指针指向的 1FFH 单元的内容,累加器 A 变为 55H.

INC AUXR1 ; 此时 DPS 为 0, DPTR0 有效

MOVX A. @DPTR : 读 DPTRO 数据指针指向的 2FFH 单元的内容, 累加器 A 变为 OAAH.

结论:与Philips使用方式一致

看门狗应用

适用型号:

STC89C51RC, STC89C52RC, STC89C53RC, STC89LE51RC, STC89LE52RC, STC89LE53RC

STC89C54RD+, STC89C58RD+, STC89C516RD+, STC89LE54RD+, STC89LE58RD+, STC89LE516RD+

宏晶技术支持,请直接向宏晶采购晶片,而不要通过中间商,支持我们更好地服务

RC/RD+系列 8051 单片机 看门狗定时器 特殊功能寄存器 Watch Dog Timer SFR

Mnemonic	Add	Name	7	6	5	4	3	2	1	0	Reset Value
WDT_CONTR	E1h	Watch-Dog-Timer Control register	1	-	EN_WDT	CLR_WDT	IDLE_WDT	PS2	PS1	PS0	xx00,0000

Symbol 符号 Function 功能

EN_WDT Enable WDT bit. When set, WDT is started

看门狗允许位, 当设置为"1"时,看门狗启动。

CLR_WDT WDT clear bit. When set, WDT will recount. Hardware will automatically clear

this bit.

看门狗清"0"位, 当设为"1"时, 看门狗将重新计数。硬件将自动清"0"此位。

IDLE_WDT When set, WDT is enabled in IDLE mode. When clear, WDT is disabled in IDLE mode

看门狗"IDLE"模式位,当设置为"1"时,看门狗定时器在"空闲模式"计数

当清"0"该位时,看门狗定时器在"空闲模式"时不计数

PS2, PS1, PS0 Pre-scale value of Watchdog timer is shown as the bellowed table:

看门狗定时器预分频值,如下表所示

PS2	PS1	PS0	Pre-scale 预分频	WDT Period @20MHz and 12 clocks mode
0	0	0	2	39.3 mS
0	0	1	4	78.6 mS
0	1	0	8	157.3 mS
0	1	1	16	314.6 mS
1	0	0	32	629.1 mS
1	0	1	6 4	1.25\$
1	1	0	128	2.5\$
1	1	1	256	58

The WDT period is determined by the following equation 看门狗溢出时间计算

看门狗溢出时间 = (N x Pre-scale x 32768) / Oscillator frequency

N = 12, 当在12 clock mode时, N = 6, 当在6 clock mode时

设时钟为 12MHz, 12 时钟模式

看门狗溢出时间 = (12 x Pre-scale x 32768) / 12000000 = Pre-scale x 393216 / 12000000

PS2	PS1	PS0	Pre-scale 预分频	WDT Period @12MHz and 12 clocks mode
0	0	0	2	65.5 mS
0	0	1	4	131.0 mS
0	1	0	8	262.1 mS
0	1	1	16	524.2 mS
1	0	0	32	1.0485\$
1	0	1	6 4	2.09718
1	1	0	128	4.1943\$
1	1	1	256	8.3886\$

设时钟为 11.0592MHz, 12 时钟模式

看门狗溢出时间 = (12 x Pre-scale x 32768) / 11059200 = Pre-scale x 393216 / 11059200

P\$2	PS1	PS0	Pre-scale 预分频	WDT Period @11.0592MHz and 12 clocks mode
0	0	0	2	71.1 mS
0	0	1	4	142.2 mS
0	1	0	8	284.4 mS
0	1	1	16	568.8 mS
1	0	0	32	1.1377\$
1	0	1	64	2.2755\$
1	1	0	128	4.55118
1	1	1	256	9.1022\$

汇编语言程序示例

```
WDT_CONTR
           DATA
                  0E1H ;
                            或者
                                   WDT_CONTR EQU
                                                   0E1H
;复位入口
   ORG
           H0000
   LJMP
           Initial
   ...
   ORG
           0060H
Initial:
   MOV
           WDT CONTR, #00110100B; Load initial value 看门狗定时器控制寄存器初始化
              ; EN_WDT = 1, CLR_WDT = 1, IDLE_WDT = 0, PS2 = 1, PS1 = 0, PS0 = 0
   . . .
Main_Loop:
   LCALL
           Display_Loop
   LCALL
           Keyboard_Loop
   ...
   MOV
           WDT_CONTR, #00110100B; 喂狗, 不要用 ORL
                                                       WDT_CONTR,
                                                                   #00010000B
   ...
   LJMP
           Main_Loop
C语言程序示例
#include<reg52.h>
       WDT_CONTR =
sfr
                      0xe1;
void main()
{
   . . .
   while(1){
       WDT CONTR
                      0x34;
       /* 0011,0100 EN_WDT = 1,CLR_WDT = 1, IDLE_WDT = 0, PS2 = 1, PS1 = 0, PS0 = 0 */
       display();
       keyboard();
                      0x34; /* 喂狗, 不要用 WDT_CONTR = WDT_CONTR | 0x10;*/
       WDT_CONTR =
   }
}
```

STC 89C51RC/RD+ 系列单片机在系统可编程的使用

--- 将用户代码下载进单片机内部, 不用编程器

STC单片机在线编程线路、STC RS-232 转换器

STC 单片机在线编程线路, STC RS-232 转换器

上面左图适用如下型号:

STC89C51RC , STC89C52RC , STC89C53RC

STC89LE51RC, STC89LE52RC, STC89LE53RC

STC89C54RD+ , STC89C58RD+ , STC89C516RD+

STC89LE54RD+ ,STC89LE58RD+ ,STC89LE516RD+

STC89C516RD, STC89C58RD (老产品,不要选)

STC89LV516RD ,STC89LV58RD (老产品,不要选)

上面右图适用如下型号:

STC89LE516AD, STC89LE516X2, STC89LE58AD, STC89LE54AD, STC89LE52AD

STC89 系列单片机大部分具有在系统可编程(ISP)特性,ISP 的好处是:省去购买通用编程器,单片机在用户系统上即可下载/烧录用户程序,而无须将单片机从已生产好的产品上拆下,再用通用编程器将程序代码烧录进单片机内部。有些程序尚未定型的产品可以一边生产,一边完善,加快了产品进入市场的速度,减小了新产品由于软件缺陷带来的风险。由于可以将程序直接下载进单片机看运行结果故也可以不用仿真器。

大部分 STC89 系列单片机在销售给用户之前已在单片机内部固化有 ISP 系统引导程序,配合 PC 端的控制程序即可将用户的程序代码下载进单片机内部,故无须编程器(速度比通用编程器快)。不要用通用编程器编程,否则有可能将单片机内部已固化的 ISP 系统引导程序擦除,造成无法使用 STC 提供的 ISP 软件下载用户的程序代码。

如何获得及使用 STC 提供的 ISP 下载工具 (STC-ISP. exe 软件):

(1). 获得 STC 提供的 ISP 下载工具 (软件)

登陆 www.MCU-Memory.com 网站,从STC 半导体专栏下载 PC (电脑)端的 ISP 程序,然后将其自解压,再安装即可(执行 setup.exe),注意随时更新软件。

- (2). 使用 STC-ISP 下载工具(软件),请随时更新,目前已到 Ver2.5 / 2.9 版本(2005/2/2),支持 *.Hex(Intel 16 进制格式)文件,RC/RD+系列单片机的底层软件版本为 Ver2.7C(旧版可更换)。 请谁时注意升级 PC(电脑)端的 ISP 程序,现 Ver2.5 是正式版, Ver2.9 测试版欢迎测试。 单片机的底层软件版本为 Ver2.7C 的单片机,PC(电脑)端的 ISP 程序必须是 Ver2.5 以上
- (3).已经固化有 ISP引导码,并设置为上电复位进入 ISP的STC89C51RC/RD+系列单片机出厂时就已完全加密,需要单片机内部的电放光后上电复位(冷起动)才运行系统 ISP 程序。

Step1/ 步骤1:选择你所使用的单片机型号,如STC89C58RD+,STC89LE516AD等

Step2/步骤2:打开文件,要烧录用户程序,必须调入用户的程序代码(*.bin, *.hex)

Step3/步骤3:选择串行口,你所使用的电脑串口,如串行口1--COM1, 串行口2--COM2,...

有些新式笔记本电脑没有 RS-232 串行口,可买一条 USB-RS232 转接器,人民币 70 元左右。

Step4/步骤4:设置是否双倍速,双倍速选中Double Speed即可

STC89C51RC / RD+ 系列可以反复设置 双倍速/单倍速

STC89LE516AD 为单倍速, STC89LE516X2 为双倍速, 用户自己无法指定 双倍速/单倍速 STC89C516RD 系列出厂时为单倍速, 用户可指定设为双倍速, 如想从双倍速恢复成单倍 速,则需用通用编程器擦除整个晶片方可,这会将单片机内部已烧录的 ISP 引导程序擦除。一般使用缺省设置即可,无须设置。

OSCDN: 单片机时钟振荡器增益降一半

选 1/2 gain 为降一半,降低 EMI;选 full gain(全增益)为正常状态。 Step5/步骤5:选择"Download/下载"按钮下载用户的程序进单片机内部,可重复执行 Step5/ 步骤5, 也可选择"Re-Download/重复下载"按钮

下载时注意看提示,主要看是否要给单片机上电或复位, 下载速度比一般通用编程器快。

一般先选择"Download/下载"按钮,然后再给单片机上电复位(先彻底断电),而不要先上电

关于硬件连接:

- (1). MCU/单片机 RXD(P3.0) --- RS-232转换器 --- PC/电脑 TXD(COM Port Pin3)
- (2). MCU/单片机 TXD(P3.1) --- RS-232转换器 --- PC/电脑 RXD(COM Port Pin2)
- (3). MCU/单片机 GND ------- PC/电脑 GND(COM Port Pin5)
- (4). P1.0, P1.1 = 0, 0 ; 上电复位进入 ISP 模式,下载完后释放 P1.0,P1.1, 89LE516AD/X2 运行用户程序.

STC89C51RC/RD+,STC89LE51RC/RD+系列单片机不需要P1.0,P1.1 = 0,0 STC89LE516AD,STC89LE516X2,STC89LE58AD,STC89LE54AD需要P1.0,P1.1 = 0,0

(5). RS-232 转换器可选用 SP232/MAX232(4.5-5.5V), SP3232/MAX3232(3V-5.5V).

SP232/MAX232 尽量选用 SOP 封装(窄体, SP232EEN), SP3232 尽量选用 SSOP 封装(SP3232EEA)