PLSC 502 – Autumn 2016 Measures of Association: Nominal Variables

October 27, 2016

Frequency Tables

$$P_y = \frac{n_y}{N}$$
.

Category	Frequency	Proportion
No Civil War	30	0.70
Civil War	13	0.30
Total	43	1.00

Two-Way Crosstabs

- Row proportions (or percentages) are the proportion of observations in that row of the table (that is, with Y = y) falling into the column defined by X = x. They sum to 1.0 across columns.
- Column proportions (or percentages) are the proportion of observations in that column of the table (that is, with X = x) falling into the row defined by Y = y. They sum to 1.0 down rows.
- *Cell proportions* (or percentages) are the proportion of the total number of observations in that cell of the table. They sum to 1.0 overall columns and rows (cells).

Two-Way Table

Sub-Saharan?						
Civil War?	No	Yes	Total			
No	5	25	30			
(Row)	(0.17)	(0.83)	(1.00)			
[Column]	[0.83]	[0.68]	[0.70]			
$\{Cell\}$	$\{0.12\}$	$\{0.58\}$	$\{0.70\}$			
Yes	1	12	13			
(Row)	(80.0)	(0.92)	(1.00)			
[Column]	[0.17]	[0.32]	[0.30]			
$\{Cell\}$	$\{0.02\}$	$\{0.28\}$	$\{0.30\}$			
Total	6	37	43			
	(0.14)	(0.86)	(1.00)			
	[1.00]	[1.00]	[1.00]			
	$\{0.14\}$	{0.86}	$\{1.00\}$			

The Setup

- N total observations on nominal-level variables Y and X
- k_Y / k_X = the number of different categories of Y and X
- n_{yx} = number of observations in the cell corresponding to category {x, y}
- $R_y = \sum_{k_X} n_{yx} =$ "marginals" of Y
- $C_x = \sum_{k_Y} n_{yx} =$ "marginals" of X

Example: 2×2 table

Y =?						
<i>X</i> =?	0	1	Total			
0	n ₀₀	n ₀₁	R_0			
1	n_{10}	n_{11}	R_1			
Total	C_0	C_1	Ν			

Independence

Expectations...

$$E_{yx} = \frac{R_y \times C_x}{N}$$

For a one-way table:

$$E_y = N \times \frac{1}{k_Y}$$

Statistical independence implies:

$$H_0: f(Y|X) = f(Y)$$

Suggests that if $Y \perp X$, then

- On average, $n_{yx} = E_{yx}$
- $n_{yx} E_{yx}$ should be small

Chi-Square

Chi-square statistic:

$$W = \sum_{k_Y k_x} \frac{(n_{yx} - E_{yx})^2}{E_{yx}}$$

Because

$$n_{yx} - E_{yx} \sim \mathcal{N}(0, \sigma_E^2)$$

we can show that:

$$W \sim \chi^2_{(k_Y-1)(k_X-1)}$$
.

Chi-Square Pointers

- Large values of W are evidence against the (null / independence) hypothesis.
- In general, if $W \ge d.f.$, then P is small.
- Can test vs. any expectation (e.g., that $E_{yx} = \frac{N}{k_Y k_X \forall x, y}$)
- Not recommended when $E_{yx} < 5...$

Fisher's Exact Test

$$P = \frac{(R_1!R_2!...R_{k_Y}!)(C_1!C_2!...C_{k_X}!)}{N!\prod_{k_Y,k_Y}n_{yx}!}.$$

- Intuition:
 - · $N! \prod_{k_Y,k_X} n_{y_X}!$ = possible ways in which one could arrange the data on N observations in a $k_y \times k_X$ contingency table
 - $(R_1!R_2!...R_{k_Y}!)(C_1!C_2!...C_{k_X}!)$ reflects the possible orderings with the marginals determined by the values of R and C.
- Difficult as tables get large...

Example: Feminism as an Insult

"Do you consider calling someone a feminist to be a compliment, an insult, or a neutral description?"

> summary(DH)

lcard	respon	intrace	femi	insult	region	timezone
Min. :1	Min. : 1	White:743	Complimer	nt: 86	East :206	Eastern :543
1st Qu.:1	1st Qu.: 264	Black:244	Insult	:276	Midwest:287	Central :302
Median :1	Median : 526	Asian: 64	Neutral	:595	South :354	Mountain: 60
Mean :1	Mean : 526		NA's	: 94	West :204	Pacific :143
3rd Qu.:1	3rd Qu.: 788					Bering : 1
Max. :1	Max. :1051					Hawaii : 2
race	religion	1				
White:885	Protestant:571					
Black:103	Catholic :236	3				
Asian: 15	Jewish : 18	3				
Other: 41	Other : 45	5				
NA's : 7	None :162	2				
	NA's : 19)				

One-Way Tables

```
> oneway<-table(feminsult)
> oneway
feminsult.
Compliment
              Insult
                       Neutral
       86
                 276
                            595
> prop.table(oneway)
feminsult
Compliment
           Insult
                        Neutral
  0.08986
             0.28840
                        0.62173
> chisq.test(table(feminsult))
Chi-squared test for given probabilities
data: table(feminsult)
X-squared = 414.8, df = 2, p-value < 2.2e-16
```

Two-Way Tables

```
> region<-table(feminsult,region)</pre>
```

> addmargins(region)

region

East	Midwest	South	West	Sum
11	29	26	20	86
45	69	102	60	276
137	167	192	99	595
193	265	320	179	957
	11 45 137	11 29 45 69 137 167	11 29 26 45 69 102 137 167 192	45 69 102 60 137 167 192 99

> prop.table(region)

region

 feminsult
 East Midwest
 South
 West

 Compliment
 0.01149
 0.03030
 0.02717
 0.02090

 Insult
 0.04702
 0.07210
 0.10658
 0.06270

 Neutral
 0.14316
 0.17450
 0.20063
 0.10345

> prop.table(region,1)

region

 feminsult
 East Midwest
 South
 West

 Compliment
 0.1279
 0.3372
 0.3023
 0.2326

 Insult
 0.1630
 0.2500
 0.3696
 0.2174

 Neutral
 0.2303
 0.2807
 0.3227
 0.1664

Two-Way Tables (continued)

An Alternative: CrossTable

CrossTable (continued)

.

feminsult	Day18\$regio		South	l West	Row Total
Compliment	I 11 I	29	I 26	20	I 86 I
	0.128	0.337	0.302	0.233	0.090
	0.057	0.109	0.081	0.112	l I
	0.011	0.030	0.027	0.021	l I
Insult	l 45 l	69	l 102	l 60	276
	0.163	0.250	0.370	0.217	0.288
	0.233	0.260	0.319	0.335	1
	0.047	0.072	0.107	0.063	l l
Neutral	137	167	192	99	l 595
	0.230	0.281	0.323	0.166	0.622
	0.710	0.630	0.600	0.553	l I
	0.143	0.175	0.201	0.103	l I
Column Total		265	320	179	957
	0.202	0.277	0.334	0.187	l I

Statistics for All Table Factors

Three-Way Crosstabs

- > threeway<-table(feminsult,region,intrace)</pre>
- > addmargins(threeway)
- , , intrace = White

region

feminsult	East	Midwest	South	West	Sum
Compliment	10	20	18	14	62
Insult	34	47	71	42	194
Neutral	98	120	131	75	424
Sum	142	187	220	131	680

, , intrace = Black

region

feminsult	East	${\tt Midwest}$	South	West	$\operatorname{\mathtt{Sum}}$
Compliment	1	9	7	2	19
Insult	8	12	26	13	59
Neutral	33	40	49	19	141
Sum	42	61	82	34	219

Three-Way Crosstabs (continued)

, , intrace = Asian

region feminsult East Midwest South West Sum Compliment 0 0 1 4 5 Insult 3 10 5 5 23 Neutral 6 7 12 5 30 Sum 9 17 18 14 58

, , intrace = Sum

region

feminsult	East	Midwest	South	West	Sum
Compliment	11	29	26	20	86
Insult	45	69	102	60	276
Neutral	137	167	192	99	595
Sum	193	265	320	179	957

> chisq.test(threeway)

Chi-squared test for given probabilities

data: threeway

X-squared = 1490, df = 35, p-value < 2.2e-16

Small Cell Frequencies

```
> table(feminsult,race)
           race
feminsult
            White Black Asian Other
 Compliment 69
                     13
 Insult.
              244
                     21
 Neutral
              496
                     61
                                 25
> chisq.test(table(feminsult,race))
Pearson's Chi-squared test
      table(feminsult, race)
data:
X-squared = 6.453, df = 6, p-value = 0.3744
Warning message:
In chisq.test(table(feminsult, race)) :
 Chi-squared approximation may be incorrect
```

Small Cell Frequencies (continued)

```
> fisher.test(table(feminsult,race), workspace=20000000)
Fisher's Exact Test for Count Data
data: table(feminsult, race)
p-value = 0.3681
alternative hypothesis: two.sided
```