2021 - PHY 981 - Homework set 15 (final exam) (due May 2)

link to lecture notes link to nushellx.zip link to toi.zip link to mingw-w64.zip

There are 8 problems.

- 1. The 0^+ state at 3.067 MeV in 20 Na has a proton decay width of 36 keV. It decays to the $1/2^+$ ground state of 19 Ne. Obtain the experimental spectroscopic factor for this decay by using the wspot app to calculate the single-particle proton decay width.
- 2. This 0^+ state in 20 Na is calculated to decay the 1^+ state at 0.984 MeV with a B(M1) = 1.85 μ_N^2 . If the proton decay and this gamma decay are the only modes of decay, what is the branching ratio for the gamma decay?
- 3. In the $0f_{7/2}$ model space for the calcium isotopes, (a) what is the spectroscopic factor for 45 Ca $7/2^-$ to 44 Ca 0^+ ? (b) What is the sum over all states in 44 Ca?
- 4. What are the maximum J and T values allowed for $^{46}\mathbf{V}$ in the (0f1p) model space?
- 5. What are the spatial tensor ranks of the following operators (put "none" if it is not a tensor)?
 - a) The creation operator a_k^+ for the proton orbital $\alpha=(n,\ell,j)=(0,2,5/2)$.
 - b) The destruction operator a_k for proton orbital $\alpha = (n, \ell, j) = (0, 2, 5/2)$.
 - c) The two-body isospin operator $\tau_{zi}\tau_{zj}$.
 - d) The δ function interaction between two nucleons.
 - e) The two-body Coulomb interaction.
 - f) The magnetic moment operator.
- 6. What are the isospin tensor ranks for the above (put "none" if it is not a tensor)?

- 7. Reduce the following many-body wavefunction matrix elements of a one-body operator to a sum of single-particle terms. (a, b, c, d) represent different occupied m states. (a) $< a, b \mid \hat{F} \mid a, b >$; (b) $< a, b \mid \hat{F} \mid a, c >$; (c) $< a, b \mid \hat{F} \mid c, d >$.
- 8. The magnetic moment of the $9/2^+$ ground state of $^{91}{\rm Nb}$ is $+6.521~\mu_N$ Assuming that this is a $0g_{9/2}$ single-particle state, calculate the magnetic moment of the 8^+ state of $^{92}{\rm Mo}$ assuming that it has a $(0g_{9/2})^2$ configuration. Compare to experiment.