

A 086352

**STILWELL LAKE DAM
ORANGE COUNTY, NEW YORK
INVENTORY NO. 770**

**PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM**

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED
CONTRACT NO. DACW-51-78-C-0024

NEW YORK DISTRICT CORPS OF ENGINEERS

DECEMBER 1978

OF THE STATE OF NEW YORK PLATES: ALL
BLACK AND WI

ONE COPY

DISCLAIMER NOTICE

**THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.**

ADA086352

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
BEFORE COMPLETING FORM

REPORT DOCUMENTATION PAGE		
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
AD-A086 352		
4. TITLE (and Subtitle) Phase I Inspection Report Stilwell Lake Dam Orange County, New York Inventory No. NY 770	5. TYPE OF REPORT & PERIOD COVERED Phase I Inspection Report National Dam Safety Program	
6. PERFORMING ORG. REPORT NUMBER	7. AUTHOR(s) Eugene O'Brien, P.E.	
8. CONTRACT OR GRANT NUMBER(s) DACW-51-79-C-0001	9. PERFORMING ORGANIZATION NAME AND ADDRESS Tippetts - Abbott - McCarthy - Stratton 655 Third Avenue New York, NY 10017	
10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS		11. CONTROLLING OFFICE NAME AND ADDRESS New York State Department of Environmental Conservation/ 50 Wolf Road Albany, New York 12233
12. REPORT DATE		13. NUMBER OF PAGES 11 March 1980
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) Department of the Army 26 Federal Plaza/ New York District, COFE New York, New York 10007		15. SECURITY CLASS. (of this report) UNCLASSIFIED
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; Distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) S ELECTED JUL 10 1980 D C		
18. SUPPLEMENTARY NOTES THIS DOCUMENT IS BEST QUALITY PRACTICALLY. THE COPY FURNISHED TO DDC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Dam Safety National Dam Safety Program Visual Inspection Hydrology, Structural Stability Stilwell Lake Dam Orange County U.S. Military Academy - Fort Montgomery		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This report provides information and analysis on the physical condition of the dam as of the report date. Information and analysis are based on visual inspection of the dam by the performing organization. Visual observations made during the course of the inspection did not indicate any severe structural deficiency or mechanical malfunction which would adversely affect the immediate safety or stability of the dam. → over		

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

The total discharge capacity of the spillway and the regulating outlets is approximately 39,975 cfs. This is greater than the estimated Probable Maximum Flood (PMF) of 24,245 cfs, therefore, the project discharge capacity is adequate.

No remedial measures are required to assure the safety of the dam at the present time.

Some measures are recommended and included in Section 7 of the Inspection Report.

② National Dam Inspection
Program.

①

STILWELL LAKE DAM
ORANGE COUNTY, NEW YORK

INVENTORY NO. 770 Number NY 770

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

⑪ Nec 78

⑩

Eugene O'Brien

⑫ 115

⑯ DACW51-78-C-0024

Prepared by: TIPPETTS-ABBETT-McCARTHY-STRATTON

NEW YORK DISTRICT CORPS OF ENGINEERS

DECEMBER 1978

1414046

This document has been approved
for public release and sale; it is
distributed by the U.S. Army Corps of Engineers.

HUDSON RIVER BASIN
STILWELL LAKE DAM
INVENTORY NO. 770
PHASE I INSPECTION REPORT

CONTENTS

	<u>Page No.</u>
- ASSESSMENT	
- OVERVIEW PHOTOGRAPH	
1 PROJECT INFORMATION 1	
1.1 GENERAL 1	
a. Authority 1	
b. Purpose of Inspection 1	
1.2 DESCRIPTION OF THE PROJECT 1	
a. Description of Dam and Appurtenances 1	
b. Location 2	
c. Size Classification 2	
d. Hazard Classification 2	
e. Ownership 2	
f. Use of Dam 2	
g. Design and Construction History 3	
h. Normal Operating Procedures 3	
1.3 PERTINENT DATA 3	
a. Drainage Areas 3	
b. Discharge at Dam Site 3	
c. Elevation 3	
d. Reservoir 3	
e. Storage 3	
f. Dam 3	
g. Spillway 4	
h. Regulating Outlets 4	
2 ENGINEERING DATA 5	
2.1 DESIGN 5	
2.2 CONSTRUCTION RECORDS 5	

	<u>Page No.</u>
2.3 OPERATION RECORDS	5
2.4 EVALUATION OF DATA	5
3 VISUAL INSPECTION	6
3.1 FINDINGS	6
a. General	6
b. Dam	6
c. Spillway	6
d. Appurtenant Structures	6
e. Downstream Channel	7
3.2 EVALUATION OF OBSERVATIONS	7
4 OPERATIONAL AND MAINTENANCE PROCEDURES	8
4.1 PROCEDURES	8
4.2 MAINTENANCE OF THE DAM	8
4.3 MAINTENANCE OF OPERATING FACILITIES	8
4.4 DESCRIPTION OF WARNING SYSTEM IN EFFECT	8
4.5 EVALUATION	8
5 HYDRAULIC/HYDROLOGIC	9
5.1 DRAINAGE AREA CHARACTERISTICS	9
5.2 SPILLWAY CAPACITY	9
5.3 RESERVOIR CAPACITY	9
5.4 FLOODS OF RECORD	9
5.5 DESIGN FLOOD	9
5.6 EVALUATION	10

Accession For	
NTIS GRA&I	9
DDC TAB	9
Unannounced	9
Justified	9
By _____	
Dist. _____	10
Available _____	
Dist. _____	Available or special
<i>PX 23</i>	

Page No.

6	STRUCTURAL STABILITY	12
6.1	EVALUATION OF STRUCTURAL STABILITY	12
a.	Visual Observations	12
b.	Design and Construction Data	12
c.	Operating Records	12
d.	Post-Construction Changes	12
e.	Seismic Stability	12
6.2	REVIEW OF STABILITY COMPUTATIONS	12
7	ASSESSMENT/REMEDIAL MEASURES	14
7.1	DAM ASSESSMENT	14
a.	Safety	14
b.	Adequacy of Information	14
7.2	REMEDIAL MEASURES	14

APPENDICES

- A. DRAWINGS
- B. PHOTOGRAPHS
- C. ENGINEERING DATA CHECKLIST
- D. VISUAL INSPECTION CHECKLIST
- E. HYDROLOGIC DATA AND COMPUTATIONS

PHASE I REPORT
NATIONAL DAM SAFETY PROGRAM

Name of Dam: STILWELL LAKE DAM (I.D. NO. 770)
State Located: NEW YORK
County Located: ORANGE
Stream: POPOLOPEN BROOK
Date of Inspection: DECEMBER 5, 1978

ASSESSMENT

Visual observations made during the course of the inspection did not indicate any severe structural deficiency or mechanical malfunction which would adversely affect the immediate safety or stability of the dam.

The total discharge capacity of the spillway and the regulating outlets is approximately 39,975 cfs. This is greater than the estimated Probable Maximum Flood (PMF) of 24,245 cfs, therefore, the project discharge capacity is adequate.

No remedial measures are required to assure the safety of the dam at the present time.

Some measures are recommended and included in Section 7 of the Inspection Report.

Eugene O'Brien, P.E.
New York No. 29823

Col. Clark H. Benn
New York District Engineer

Approved by:

Date: 11 March 80

I. OVERVIEW OF SPILLWAY AND RESERVOIR VIEWED
FROM RIGHT NON-OVERFLOW MONOLITH

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM
STILWELL LAKE DAM, INVENTORY NO. 770
HUDSON RIVER BASIN
ORANGE COUNTY, NEW YORK

SECTION 1 - PROJECT INFORMATION

1.1 GENERAL

a. Authority

The Phase 1 Inspection reported herein was authorized by the DEPARTMENT OF THE ARMY, NEW YORK DISTRICT, CORPS OF ENGINEERS by Contract No. DACW 51-78-C-0024, Modification No. P 00002, in fulfillment of the request by the Commandant, United States Military Academy in accordance with criteria specified in the National Dam Inspection Act, Public Law 92-367, 8 August 1976.

b. Purpose of Inspection

The purpose of this inspection and report is to investigate and evaluate the existing conditions of subject dam in order to: identify deficiencies and hazardous conditions; determine if they constitute hazards to human life or property; and notify the Commandant of the United States Military Academy of these results along with recommendations for remedial measures where necessary.

1.2 DESCRIPTION OF THE PROJECT

a. Description of Dam and Appurtenances

Stilwell Lake Dam is a concrete gravity dam which trends about north-south and consists of a dropped center spillway and eight non-overflow monoliths. The length of spillway is 160 feet. The height of spillway crest is at El 602.0, about 43 feet above the bedrock foundation. The lengths of the north and south non-overflow monoliths are 120 feet and 200 feet, respectively. The maximum height of the non-overflow monolith is about 61 feet above its foundation. The differential height between the top of the non-overflow monolith at El 617.8 and spillway crest is 15.8 feet.

Two spray walls are located along both sides of the spillway to contain the flows. The spray walls are extended downstream by gravity retaining walls with stone filled drains behind the walls.

Two core walls 85 feet and 35 feet long are extended from the ends of the north and south non-overflow monoliths respectively into sound rock.

An intake chamber is provided in the north non-overflow monolith approximately 46 feet north of the spillway. The chamber has two 20-inch diameter sluice gates at different elevations which control discharges through 20-inch diameter cast iron pipes. A steel "A" type hoist frame, located at the top of the chamber, can be used to lower and raise the intake screens.

A 36-inch diameter cast iron low level outlet pipe, located 15 feet south of the spillway centerline, can be used to lower the water level in the reservoir for maintenance and in the case of an emergency. A bell-mouth pipe entrance is provided with bar screen. Stoplogs are also provided to permit repairs to the valve located in the drainage and grouting gallery.

A 5-foot wide by 7-foot high drainage and grouting gallery is located in the spillway monoliths at El 565 and extends into both non overflow monoliths. Access to the gallery is provided by two gates on the downstream face of the non-overflow sections. Pipes, 3 inches in diameter on 5-foot centers, have been drilled for the purpose of creating a grout curtain. Pressure relief pipes, 6 inches in diameter on 20 foot centers, are provided near the downstream face of the gallery wall with outlets draining into a gutter. Seepage collected in the gutter can be emptied through two 6-inch diameter drains leading to the downstream face of the spillway.

b. Location

The dam is located approximately 5 miles southwest of the United States Military Academy, about 2 1/2 miles west of the town of Fort Montgomery.

c. Size Classification

The dam is greater than 40 feet high but less than 100 feet high, therefore, classified as an "intermediate" dam.

d. Hazard Classification

The dam is in the "significant" hazard potential category because of the few isolated homes located a short distance downstream from the dam.

e. Ownership

Stilwell Lake Dam is owned by the United States Military Academy. The day-to-day operation and maintenance of the operating facilities is managed by the Water Plants Section of the Utilities Division. The maintenance of the dam is managed by the Buildings and Structures Section of the Buildings and Grounds Division. Both Divisions are directly responsible to the Directorate of Facilities Engineering, United States Military Academy.

f. Use of Dam

The impoundment provided by the dam is for water supply and recreational purposes.

g. Design and Construction History

The dam was designed by Alexander Potter Associates, Architect-Engineers of New York City. It was constructed and completed in November, 1948 by the U.S. Army Corps of Engineers. Design data, calculation and as-built drawings can be obtained from the Directorate of Facilities Engineering, United States Military Academy.

h. Normal Operating Procedures

The water level in the reservoir is usually maintained to the spillway crest with the upper sluice gate open. During September to April, water passes over the spillway crest with flashboards in the open position.

1.3 PERTINENT DATA

a. <u>Drainage Area</u> (square miles)	12.5
b. <u>Discharge at Dam Site</u> (cfs)	
Maximum regulating gate outlets	285
Ungated Spillway at maximum pool, El 617.8	39,690
Total Spillway capacity at maximum pool, El 617.8	39,975
c. <u>Elevation</u> (feet above MSL)	
Top of Dam	617.8
Maximum pool-design surcharge	617.8
Crest of Spillway (ungated)	602
Streambed at centerline of dam	560
d. <u>Reservoir</u> (miles)	
Length of Maximum pool	0.75
e. <u>Storage</u> (acre-feet)	
Crest of Spillway, El 602	1920
Top of dam, El 617.8	9465
f. <u>Dam</u>	
Type:	Concrete gravity
Length:	480 feet
Height:	58 feet \pm
Side Slopes:	Upstream: vertical at top 8V on 1H at bottom
Top Width:	Downstream: 10V on 8H
Grout Curtain:	9.67 feet 3-inch diameter grout pipes spaced at 5 foot centers

g. Spillway

Type: .

Concrete Ogee Weir

section

Length:

160 feet

Crest Elevation:

602

h. Regulating Outlets

Two 20-inch diameter sluice gates are located at El 592 and El 585. They are connected to a common 20-inch diameter cast iron pipe with its outlet at El 565.5. A gate valve is provided to regulate the discharge.

A 36-inch diameter cast iron pipe is located at El 562. A valve is provided in the drainage and grouting gallery to regulate the discharge.

SECTION 2 - ENGINEERING DATA

2.1 DESIGN

Design data, engineering information and as-built drawings are available for evaluation of the original design of the dam. There are no records available of any design changes to the dam.

2.2 CONSTRUCTION RECORDS

There are no construction records available for the project.

2.3 OPERATION RECORDS

There are no operation records available.

A record of reservoir elevation and rainfall are kept daily and are available at the Lusk Reservoir Water Treatment Plant.

2.4 EVALUATION OF DATA

Information and drawings were made readily available by personnel of the Water Plants Section of the Utilities Division and the Civil Section of the Engineering Plans and Services Division; Directorate of Facilities Engineering, United States Military Academy.

The information obtained from available data, the personal interviews and the visual inspection are considered adequate for this Phase I inspection and evaluation.

SECTION 3 - VISUAL INSPECTION

3.1 FINDINGS

a. General

A visual inspection of Stilwell Lake Dam was made on December 5, 1978. At that time the reservoir level was at El 599+, about 3 feet below spillway crest.

Water was discharging from the 20-inch diameter cast iron pipe into the spillway bucket. The water level at the bucket was maintained at the top of bucket sill by discharges from two 12-inch diameter drain pipes leading into the downstream channel.

Flashboards on the spillway crest were in an upright position except for those on the monolith adjacent to the north (left) non-overflow monoliths which were in a horizontal position.

b. Dam

Both north and south non-overflow monoliths were in good condition. No displacements of the horizontal and vertical alignments were observed. There was some white mineral deposition along horizontal joints on the downstream face of the dam. No seepage and/or leakage were observed.

c. Spillway

On the downstream face, there was some deterioration of concrete existing in the area near the crest.

There was some spalling along the horizontal and vertical joints. The horizontal joint above the 36-inch diameter low level outlet pipe appears to have a wide gap. There was wetness existing on the concrete face below this gap, but no seepage was detected. Grass was growing along one of the vertical joints.

The wooden flashboards were in deteriorating condition. It was reported that the owner is planning to replace them. It is also reported that an accessway will be installed between the spillway crest and the top of the dam.

d. Appurtenant Structures

The two 20-inch diameter sluice gates in the intake chamber were found to be in operating condition. Downstream, opposite the intake chamber, a 20-inch diameter gate valve and a flow indicator were provided. It appears that the flow indicator is now abandoned and the stem and wheel of gate valve are rusted. It is reported that this gate valve is kept open all the time.

A 36-inch diameter valve located in the drainage and grouting gallery was found well maintained. The valve was closed at the time inspected. It was reported that an original butterfly valve was replaced in 1974.

Inside the drainage and grouting gallery, water has collected to approximately one inch deep. The gutter was full of water and silt. Significant amounts of silt and debris were found deposited near the south end of the gallery to the degree that the two 6-inch diameter gutter drains were blocked. No leakage was observed through joints. On the downstream side of the gallery wall, the entire surface below the first horizontal joint was found wet and covered by white mineral deposits. The entrance gates to the gallery were locked and in good condition.

The railings along south retaining walls were rusted with paint completely peeled off. The lock on the south entrance gate on the top of the dam failed to open with the key inserted.

e. Downstream Channel

Riprap protection is provided on the south (right) bank of the channel. Some debris, broken concrete pipes and bushes were found in the downstream channel.

3.2 EVALUATION OF OBSERVATIONS

Visual observations made during the course of the inspection did not indicate any severe structure deficiency or mechanical malfunction which would adversely affect the immediate safety of the dam. However, there is continuous need of inspection, maintenance and repair programs.

SECTION 4 - OPERATIONAL AND MAINTENANCE PROCEDURES

4.1 PROCEDURES

During the months of September to April, water passes over the spillway crest with the flashboards open. During May to September the upper sluice gate is opened to maintain the water level about one inch over the spillway crest.

The 36-inch diameter valve located in the drainage and grouting gallery is usually kept closed. This valve is opened when it is desired to maintain the reservoir level not higher than one foot above flashboards so that the flashboards will stay in an upright position.

4.2 MAINTENANCE OF THE DAM

There is no operation and maintenance manual for the dam; however, present maintenance of the project appears adequate.

4.3 MAINTENANCE OF OPERATING FACILITIES

The two 20-inch diameter sluice gates, at the intake chamber, and the 36-inch diameter valve in the drainage and grouting gallery, appear to be in acceptable operating condition. An original 36-inch diameter butterfly valve was replaced in 1974.

Records of daily operation of gates are kept in the office.

4.4 DESCRIPTION OF WARNING SYSTEM IN EFFECT

An electric water level indicator is located at the Water Plant and automatically registers reservoir level. If deemed necessary, Plant personnel will report conditions to a higher authority by telephone communications.

4.5 EVALUATION

There appears to be nothing in the present operational or maintenance procedures which would adversely affect the safety of the project. Overall maintenance of the dam and appurtenant features is considered to be adequate.

SECTION 5 - HYDRAULIC/HYDROLOGIC

5.1 DRAINAGE AREA CHARACTERISTICS

Stilwell Lake is the last significant lake on Popolopen Brook before the Brook enters the Hudson River. The watershed of Stilwell Lake has a maximum length of 6.4 miles in the NE-NW direction and a maximum width of 2.6 miles. The entire watershed, which is wooded and includes many lakes and ponding areas, occupies 8021 acres (12.53 square miles). About 45% (3630 acres) of the area is controlled by Popolopen Lake, the outflow of which, to a degree, is attenuated again, by Mine Lake before entering Stilwell Lake. Mine Lake and a number of other lakes and ponding areas control an additional 29% (2349.2 acres) of the watershed so that flow from only 2041.8 acres can be considered as uncontrolled flow entering Stilwell Lake. It is estimated that the available storage, in the lakes upstream of Mine Lake, a 480.9 acre-feet could attenuate up to 4.64 inches of runoff over that partial area. The estimated available storage over the entire basin of 12.53 square miles is about 3780 acre-feet which is equivalent to approximately 5.5 inches of runoff.

5.2 SPILLWAY CAPACITY

Normal discharges from Stilwell Lake is possible through two low level valve controlled 20-inch diameter cast iron pipe outlets. The spillway is 160 feet in length with an "ogee" shaped crest and has a computed maximum discharge (water level El 617.8) of 39,690 cfs. It is estimated that with the water surface at El 602 the discharge capacities of the 20-inch diameter and 36-inch diameter pipes are 71 cfs and 214 cfs respectively.

5.3 RESERVOIR CAPACITY

According to an available as-built drawing¹ the maximum reservoir capacity (El 617.8) is given as 1455 million gallons or 4465 acre-feet. It is estimated that the surcharge storage between spillway crest El 602 and El 617.8 is 2541 acre-feet.

5.4 FLOODS OF RECORD

There are no stream gages or records of major floods for the Popolopen Brook Watershed. Flow records for gages in the Wallkill River basin indicate that the worst flooded recorded was October 16, 1955.

5.5 DESIGN FLOOD

Because there are no data available on floods for the Popolopen Brook

it was necessary to synthesize the Standard Project Flood.

The Probable Maximum 6-hour rainfall for the United States Military Academy area is 24.4 inches². This amount, adjusted³ for conformity of generalized isohyetals (in Reference 2) with the shape of the watershed, becomes 19.52 inches. The inflow is based on the sum of the flows entering Stilwell Lake from the directly contributing area (2041.8 acres), the lake area (131 acres), and the outflow from Mine Lake. Inflow to Mine Lake is based on the sum of the flows from the directly contributing area (777 acres), the lake area (24.5 acres), the upstream area affected by ponding (1171 acres), and the outflow from Popolopen Lake. Unit hydrographs, based on the Snyder method⁴, and using $C_T = 2$ and $640 C_p = 400$, were developed for sub-basins VI, VII and X. Flows from all other areas were computed by the instantaneous conversion of excess rainfall to runoff because of the small contributing drainage areas and the negligible lag time. A loss of 0.2 inches per hour was applied to all rainfall over the land areas. The runoff volume equal to the estimated retention capacity of each ponding sub-area was subtracted from the beginning of the flood runoff and in each case the remaining runoff was lagged appropriately before it was added to form the inflow to Mine Lake. The inflow peaks of the Probable Maximum Flood and the Standard Project Flood to Stilwell Lake are 26,291 cfs and 10,170 cfs respectively.

The potential of the dam being overtopped was investigated on the basis of the available surcharge storage and spillway discharge capacity to meet a potential emergency inflow. It was assumed that the lake levels were at spillway crest elevation (Mine Lake El 648.63, and Stilwell Lake El 602) at the start of the flood inflow and the low level outlets were closed during the occurrence. The maximum capacity of the spillway on Mine Lake was calculated to be 1420 cfs. The computed discharge of the Stilwell Lake spillway with the water level at El 617.8, equivalent to the top of the dam, is 39,690 cfs.

5.6 EVALUATION

The PMF and SPF were routed through the lakes using a computerized technique, and resulted in a maximum lake elevation of 613.35 and 607.97 for the PMF and SPF respectively, and with peak outflows of 24,245 cfs and 9232 cfs respectively.

The PMF peak outflow is about 61% of the computed spillway capacity and the spillway is therefore considered adequate.

References

¹ As-built drawing titled: USMA Water Supply Dam and Reservoir - Hydrologic and Design Data, drawing no. 512-464, dated November 1948

- ² "Rainfall Frequency Atlas of the United States," USWB Technical Paper No. 40.
- ³ Engineering Circular EC 1110-2-27, August 1966
- ⁴ "Flood Hydrograph Analyses and Computations," EM 1110-2-1405

SECTION 6 - STRUCTURAL STABILITY

6.1 EVALUATION OF STRUCTURAL STABILITY

a. Visual Observations

Visual observations did not indicate either existing or potential conditions which would adversely affect the safety or structural stability of the dam.

b. Design and Construction Data

Stability design calculations and other engineering data are available from the Directorate of Facilities Engineering, United States Military Academy.

c. Operating Records

The dam has never been overtopped. The daily records of reservoir elevations and operation of gates are kept and available at the Water Plant.

d. Post-Construction Changes

There are no records of any post-construction changes except for the 1974 replacement of the 36-inch diameter butterfly valve in the drainage and grouting gallery.

e. Seismic Stability

The dam is located in Seismic Zone No. 1, therefore, no seismic analyses are warranted.

6.2 REVIEW OF STABILITY COMPUTATIONS

The original stability calculations indicated that 50% of the head was assumed for the uplift along the base of the dam. This is not in accordance with the present design practice indicated on Chapter 2, paragraph 2-04 of EM 1110-2-2200, revised November 23, 1960, published by the Corps of Engineers, U.S. Army.

Using the above criteria with an assumed maximum 50% drain efficiency, it is found that for the Design Loading Case III, water surface at El 617.8, the sliding factor would be 0.98. This is greater than 0.65 allowed by the criteria specified in Chapter 3, paragraph 3-03 of the above mentioned manuals.

It should be noted that the water surface for the Probable Maximum Flood (PMF) is 4.5 feet below that assumed for Design Loading Case III. Thus, the sliding factor for the case of PMF would be less than 0.98. In view of the fact that its severity, short duration and unusual occurrence

in nature, the safety against sliding can be considered not critical.
Therefore, the stability of the dam is considered adequate.

SECTION 7 - ASSESSMENT/REMEDIAL MEASURES

7.1 DAM ASSESSMENT

a. Safety

Visual observations made during the course of the inspection did not indicate any severe structural deficiency or mechanical malfunction which would adversely affect the immediate safety or stability of the dam.

The total discharge capacity of the spillway and the regulating outlets is approximately 39,975 cfs. This is greater than the estimated Probable Maximum Flood (PMF) of 24,245 cfs, therefore, the project discharge capacity is adequate.

b. Adequacy of Information

Information and data available are considered adequate for the performance of this investigation.

Records of previous inspections made in April 1976 were not available at the time of this Phase I inspection.

7.2 REMEDIAL MEASURES

No remedial measures are required to assure the safety of the dam at the present time.

Certain measures are recommended as follows:

a. Deteriorated concrete surface and spalling along joints should be monitored so that the repairs can be made when needed.

b. Silt and debris deposited in the drainage and grouting gallery should be removed. The two 6-inch diameter gutter drains should be cleaned to ensure the free-passage of water collected in the gallery.

c. Establish an observation and monitoring program of the pattern and quantity occurring on the downstream side of the gallery wall.

d. Establish a program of periodic inspections of the project features.

e. Prepare an Operation and Maintenance Manual.

DRAWINGS

APPENDIX A

VICINITY MAP
STILWELL LAKE DAM

SCALE OF SALES

Scale 1:25,000

TOPOGRAPHIC MAP
STILWELL LAKE DAM

STILWELL LAKE DAM LIST OF DRAWINGS

- 7512-461 GENERAL LOCATION PLAN
- 7512-462 RESERVOIR
- 7512-464 HYDROLOGIC & DESIGN DATA
- 7512-465.1 . GENERAL PLAN OF DAM
- 7512-466 PLAN OF SPILLWAY AND BUCKET SECTIONS
- 7512-467 SPILLWAY SECTIONS & ELEVATION OF DAM
- 7512-468 NON-OVERFLOW SECTIONS & SPRAY WALL
- 7512-469.1 INTAKE AND DRAW-OFF DETAILS
- 7512-470 GROUTING GALLERY AND PLANT
- 7512-471 WATER STOPS, BLOW-OFF & MISCELLANEOUS DETAILS
- 7512-472 MISCELLANEOUS DAM APPURTENANCES

WAR DEPARTMENT

RESERVOIR VOLUME-AREA CURVES

RAINFALL DATA

CASE I RESERVOIR EMPTY

CASE II - RESERVOIR FULL TO CREST & ICE THRUST

SPILLWAY SECTION

W.H. CO.	100
GRANT CO.	100
HAL. CO. 100	100
HAL. CO. 200	100
HAL. CO. 300	100
HAL. CO. 400	100
HAL. CO. 500	100
HAL. CO. 600	100
HAL. CO. 700	100
HAL. CO. 800	100
HAL. CO. 900	100
HAL. CO. 1000	100
HAL. CO. 1100	100
HAL. CO. 1200	100
HAL. CO. 1300	100
HAL. CO. 1400	100
HAL. CO. 1500	100
HAL. CO. 1600	100
HAL. CO. 1700	100
HAL. CO. 1800	100
HAL. CO. 1900	100
HAL. CO. 2000	100
HAL. CO. 2100	100
HAL. CO. 2200	100
HAL. CO. 2300	100
HAL. CO. 2400	100
HAL. CO. 2500	100
HAL. CO. 2600	100
HAL. CO. 2700	100
HAL. CO. 2800	100
HAL. CO. 2900	100
HAL. CO. 3000	100
HAL. CO. 3100	100
HAL. CO. 3200	100
HAL. CO. 3300	100
HAL. CO. 3400	100
HAL. CO. 3500	100
HAL. CO. 3600	100
HAL. CO. 3700	100
HAL. CO. 3800	100
HAL. CO. 3900	100
HAL. CO. 4000	100
HAL. CO. 4100	100
HAL. CO. 4200	100
HAL. CO. 4300	100
HAL. CO. 4400	100
HAL. CO. 4500	100
HAL. CO. 4600	100
HAL. CO. 4700	100
HAL. CO. 4800	100
HAL. CO. 4900	100
HAL. CO. 5000	100
HAL. CO. 5100	100
HAL. CO. 5200	100
HAL. CO. 5300	100
HAL. CO. 5400	100
HAL. CO. 5500	100
HAL. CO. 5600	100
HAL. CO. 5700	100
HAL. CO. 5800	100
HAL. CO. 5900	100
HAL. CO. 6000	100
HAL. CO. 6100	100
HAL. CO. 6200	100
HAL. CO. 6300	100
HAL. CO. 6400	100
HAL. CO. 6500	100
HAL. CO. 6600	100
HAL. CO. 6700	100
HAL. CO. 6800	100
HAL. CO. 6900	100
HAL. CO. 7000	100
HAL. CO. 7100	100
HAL. CO. 7200	100
HAL. CO. 7300	100
HAL. CO. 7400	100
HAL. CO. 7500	100
HAL. CO. 7600	100
HAL. CO. 7700	100
HAL. CO. 7800	100
HAL. CO. 7900	100
HAL. CO. 8000	100
HAL. CO. 8100	100
HAL. CO. 8200	100
HAL. CO. 8300	100
HAL. CO. 8400	100
HAL. CO. 8500	100
HAL. CO. 8600	100
HAL. CO. 8700	100
HAL. CO. 8800	100
HAL. CO. 8900	100
HAL. CO. 9000	100
HAL. CO. 9100	100
HAL. CO. 9200	100
HAL. CO. 9300	100
HAL. CO. 9400	100
HAL. CO. 9500	100
HAL. CO. 9600	100
HAL. CO. 9700	100
HAL. CO. 9800	100
HAL. CO. 9900	100
HAL. CO. 10000	100

— CORPS OF ENGINEERS, U.S. ARMY

3

CASE II - RESERVOIR FULL TO CREST & ICE THRUST

CASE III - RESERVOIR FULL TO MAX FLOOD LEVEL PLUS UPSTREAM DAY FAILURE

SPILLWAY SECTION

Max Water Surface El 617.02

	1888	1889	1890	1891	1892	1893	1894	1895	1896	1897	1898	1899	1900	1905	1906	1907	1908	1909	1910	1911	1912	1913	1914	1915	1916	
JANUARY	8	4.0	3.0	2.0	2.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
FEBRUARY	0	3.0	2.0	1.0	1.0	4.0	1.0	7.0	2.0	3.0	6.0	4.0	3.0	3.0	3.0	3.0	2.0	2.0	4.0	4.0	4.0	3.0	3.0	3.0	3.0	
MARCH	9	3.0	1.0	1.0	1.0	2.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
APRIL	4	2.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
MAY	9	4.0	3.0	2.0	2.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
JUNE	0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
JULY	9	7.0	3.0	2.0	2.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
AUGUST	0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
SEPTEMBER	7	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
OCTOBER	7	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
NOVEMBER	0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
DECEMBER	7	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Annual	97	5.76	4.26	4.2	5.47	4.76	4.62	4.56	5.43	7.7	4.68	3.50	4.15	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
	1918	1919	1920	1921	1922	1923	1924	1925	1926	1927	1928	1929	1930	1931	1932	1933	1934	1935	1936	1937	1938	1939	1940	1941	1942	1943
JANUARY	11.12	8.26	11.42	9.65	8.22	15.34	11.31	12.22	11.24	12.31	12.91	14.32	13	1.47	9.35	8.72	19.33	12.60	13.34	12.12	10.42	10.34	12.33	12.12	12.33	12.12
FEBRUARY	11.14	9.7	11.24	10.63	10.38	11.24	10.23	8.49	11.41	11.34	11.46	10.44	10	11.91	12.23	12.29	9.26	12.23	12.23	12.23	12.23	12.23	12.23	12.23	12.23	12.23
MARCH	7.13	12.42	10.43	11.26	11.56	11.23	7.93	11.31	10.48	9.86	11.37	12.64	12	9.26	12.46	12.66	14.99	12.42	11.26	12.26	13.62	13.34	12.26	13.53	12.26	12.26
APRIL	13.34	13.74	13.46	13.59	10.24	9.89	11.57	8.64	11.17	8.26	12.41	11.25	9.23	13.45	10.26	13.26	12.34	12.34	12.34	12.34	12.34	12.34	12.34	12.34	12.34	
MAY	12.35	15.43	15.43	15.43	7.04	7.16	8.25	15.36	11.46	7.02	6.34	12.32	12.31	12.26	18.47	8	12.29	12.33	9.16	12.32	12.32	12.32	12.32	12.32	12.32	12.32
JUNE	9.15	9.38	1.31	8.50	14.60	8.30	10.25	3.85	12.36	9.35	6.51	9.94	10.36	9.35	11.11	8.11	9.35	14.35	6.38	12.52	10.33	10.83	10.32	9.32	10.32	10.32
JULY	0.345	0.72	12.33	9.96	9.334	8.158	9.231	2.466	9.270	13.327	12.730	16.398	13.335	12.730	18.343	9.247	4.34	12.32	12.32	12.32	12.32	12.32	12.32	12.32	12.32	12.32
AUGUST	0.293	1.436	1.435	7.241	11.129	7.079	10.156	0.22	13.488	11.778	11.724	8.224	9.241	9.241	10.284	10.329	12.107	11.339	11.638	9.314	8.285	4.327	4.327	4.327	4.327	4.327
SEPTEMBER	14.231	10.459	9.278	9.445	8.285	9.537	9.935	12.152	10.230	8.458	10.250	9.229	9.12	11.102	8.179	11.521	12.617	9.310	9.345	9.427	10.170	11.346	9.281	0.042	11.102	11.346
OCTOBER	11.030	14.237	1.573	10.295	0.150	5.359	7.206	4.282	14.359	10.625	11.143	10.411	7.220	15.135	12.336	8.178	9.335	10.371	13.267	14.152	14.973	14.338	12.152	12.152	12.152	12.152
NOVEMBER	9.110	11.52	2.347	0.558	0.725	7.249	1.1	5.15	15.543	12.261	3.237	9.426	11.072	10.830	16.06	16.310	10.370	17.152	14.329	11.357	13.411	10.289	12.221	13.391	12.221	
DECEMBER	12.400	11.37	1.339	9.340	10.164	15.255	2.252	11.21	1.296	15.540	8.180	11.146	2.232	11.51	15.319	12.230	3.000	11.200	14.430	13.220	12.221	13.391	4.5	8		
Annual	128.3185	129.3038	125.4141	118.1687	113.3414	111.1111	110.3111	109.3111	108.3111	107.3111	106.3111	105.3111	104.3111	103.3111	102.3111	101.3111	100.3111	99.3111	98.3111	97.3111	96.3111	95.3111	94.3111	93.3111	92.3111	

NOTE : Rainfall data prior to 1888 unavailable at U.S. Weather Bureau.

CASE I RESERVOIR EMPTY

CASE II RESERVOIR FULL TO CREST & ICE 3' THICK

NON-OVERFLOW SECTION

RECORD DRAWING
OF WORK - AS - BUILT

gaskins

Contracting Where
It's Necessary, 1949

CONT NO W 30 075 246 2846

NO. 48	1	RECORD WORK AS NEEDED	1-37
DATE	REV NO.	REVISIONS	REV BY

NON-OVERFLOW SECTION

ORD DRAWING
WORK - AS - BUILT

J. R. Parry

Contracting Officer
10 November 1943

CONT NO W 30 075 ENG 2846

NOT 48	RECORD WORK AS BUILT	REV BY	APP BY
DATE	REV NO.	REVISIONS	

DC TH703-8 MAY 43

UNITED STATES MILITARY ACADEMY
WATER SUPPLY DAM & RESERVOIR
HYDROLOGIC AND DESIGN DATA

POPOLOPEN	WEST POINT, N.Y.
IN 21 SHEETS	SHEET NO 4
U.S. ENGINEERING OFFICE	CALENDAR A SHOWN NEW YORK DISTRICT NEW YORK, N.Y.
Re:	1943
F. J. Parry	Engineering Bureau P.M. 11 1/2 in. Subcommittee 3rd Army Albany, N.Y. Architect: Engineers
E. J. Garber	Colonel, Corps of Engineers 6

T-1 Acceptance Specification dated 8 June 1943

7512-464

WAR DEPARTMENT

CORPS OF ENGINEERS, U. S. ARMY

NOTE:-
Stones to be paved w/
Riprap except where R.
is at the Su face

WAR DEPARTMENT

CORPS OF ENGINEERS, U.S. ARMY

3

RECORD DRAWING
OF WORK AS BUILT

Jas Rooney

Contracting Officer
D. November 1965

CONT NO W 30 075 ENG 2B46

DATE	REV NO	REVISIONS	PV BY	APP BY
6/1/66	3	RECORD WORK AS BUILT	J. M.	
3/1/66		Land for work	J. M.	
10/5/65		Bridge Deleted	H.A.T.	

NOTES

Area and volume curves for Reservoir shown on Sheet No 4
 Contour interval = 5 ft
 Existing Telephone Cable Line and existing High Voltage Electric Transmission Line will be relocated by others.
 Entrance to existing Iron Mine shall be plugged with concrete. Details of construction will be furnished at a later date and payment made under appropriate items.
 Existing Electric Distribution Lines along forest of Dean Road will be relocated by others.
 Elevations are based on U.S. A.R.C. Datum 0.00 MSL
 Sandy soil
 Coordinate system is arbitrary.

RECORD DRAWING OF WORK - AS - BUILT

J. L. Conroy

Contracting Officer
10 November 1945

CONT NO W 30 075 ENG. 2B4G

400 600ft

DATE	REV NO	REVISIONS	REV BY	APP BY
Nov 45	3	RECORD WORK AS BUILT	J. L. C.	
Apr 46	4	Old rd located	J. L. C.	
10 Sep 45	5	bridge Deleted	H.A.T.	

DC T11703 8 MAY 48

UNITED STATES MILITARY ACADEMY WATER SUPPLY DAM & RESERVOIR RESERVOIR

POPOLOPEN

WEST POINT, N.Y.

IN 21 SHEETS

SCALES AS SHOWN

U.S. ENGINEER OFFICE, NEW YORK DISTRICT, NEW YORK N.Y. 1945

Prepared

Submitted

Approved

Assigned

Entered

Li Col Corps of Engineers

C. S. G. - F. C. -

Principal Engineer

Supervisor

A. J. Blyerma

Alexander J. Blyerma

Architect - Engineer

Colonel Corps of Engineers

E. W. Schubert

Colonel Corps of Engineers

7512-482

7512-482

To Accompany Specifications Dated 8 June 1945

WAR DEPARTMENT

GENERAL LOCATION MAP

CORPS OF ENGINEERS, U. S. ARMY

3

WAR DEPARTMENT

MONOLITHS No.

DETAIL A

OVERFLOW SECTION - 160'-0"

CFC 08
EL 562.00

TAXIS OF 0' 0" DRAFT

6' gallery

Grooving and Drainage gallery

36" Dia C + Blow-off

SWL Drain
10'-0"

Int. El 562.7

SWL Drain
9'-0"

Low. El 562.29

Construction Joint

LOW Point of Bucket El 560.0'

Edge of bucket El 563.72

SWL drain back

6' 12" min. circular drains spaced 20' 0" x

CORPS OF ENGINEERS, U. S. ARMY

PLAN OF SPILLWAY

$\frac{1}{8}'' = 1 \text{ Ft.}$

A 160'-0"

RECORD DRAW
OF WORK - AS - BU

CONT NO W 30 075 ENG 2846

DATE	REV NO	REVISIONS	REV BY	APP BY
1/10/48	G	RECORD WORK AS PLANNED	J J M	
1/10/48	G	INCL INI. OUT-OF-SITE	J W R	
1/27/48	H	Added Gutter dimension 6'	A F A	
		Reference Note	A F A	
		Added note referring to Grades	A F A	
		Added detail A'	A F A	

WAY

**RECORD DRAWING
OF WORK - AS - BUILT**

DC 111703 8 MAY 48

**UNITED STATES, MILITARY ACADEMY
WATER SUPPLY DAM & RESERVOIR
PLAN OF SPILLWAY & BUCKET SECTIONS**

POPOLOPEN

WEST POINT, N.Y.

IN 21 SHEETS SCALES AS SHOWN SHEET NO. 6
U.S. ENGINEER OFFICE NEW YORK DISTRICT, NEW YORK, N.Y. 1045

Revised Recommended Approved
F. J. Penney *Charles F. Faure* *E. W. Fairchild*
Principal Engineer Lt Col Corps of Engineers Colonel, Corps of Engineers
Subway
Alessandro Paoletti, Associate, Architects - Engineers

CONT NO W-30-075 ENG 2846

DATE	REV NO	REVISIONS	REV BY	APP BY
11-48	G	RECORD WORK AS BUILT	JJM	
11-20-48	A	Intake pipe was re-laid	JWS	JKW
8/21/48	A	Added Gutter dimension G1	APR	
	A	" " reference Note	APR	
	A	Added note referring to Grades	APR	
	A	Added detail A	APR	

To Accompany Specifications Dated Oct 1948

7512-466

WAR DEPARTMENT

SECTION A-A
1/4" = 1 ft.

~~SPRAY WALL~~
(For details of construction
see Sheet No. 8)

PLAN B-B

CORPS OF ENGINEERS, U. S. ARMY

NOV 40	T	DEC 10 1960
DEC 46	ED	1-1960
DEC 45	SD	Added chart
	A	Revised ac
	D	Revised ion
	A	Added diagram
	A	Revised diagram
DATE	REV NO	REV

DETAIL OF CREST

Scale 1&10'

Note
Edges of concrete at contraction joints of Spillway Monoliths shall be chamfered 1½" on the upstream face and only ¾" on the downstream face.

RECORD DRAWING OF WORK - AS - BUILT

John Corney

Engineering Officer
11 November 1948

DC T11703 8 MAY 48

UNITED STATES MILITARY ACADEMY WATER SUPPLY DAM & RESERVOIR SPILLWAY SECTION & ELEVATION OF DAM

POPOLOPEN

WEST POINT, N.Y.

IN 21 SHEETS

SHEET NO 7

U.S. ENGINEER OFFICE, NEW YORK DISTRICT, NEW YORK, N.Y.

10

R. T. Smith, Head Draftsman, Assistant Engineer

F. L. Parsons, Charles Fairman, E. M. Harbach, Assistant Engineers

U. S. Army Corps of Engineers, Engineers

7812-467

Approved for release Date 5 Dec 1948

WAR DEPARTMENT

3 CORPS OF ENGINEERS, U. S. ARMY

To Accompany Specification Drawing 5-Air 2 1945

7512-468

WAR DEPARTMENT

CORPS OF ENGINEERS. U. S. ARMY

Monogram, For details
See Sheet No 12.

SECTIONAL PLAN K-K

PLAN J-J

4

PLAN C-C

RECORD DR.

Jas Com

DATE REV NO REVISION

J.F.

La Asuncion, Septiembre Días 3 Jun. '43

WAR DEPARTMENT

PLAN OF GROUTING AND DRAINAGE GALLERY

Scale 1:20'0"

PROFILE ON CENTER LINE OF GALLERY

5.0 x 10⁻²⁰ g.

CORPS OF ENGINEERS U.S. ARMY

GROUT Holes type "B" to be drilled and grouted as directed by Contracting Officer.

Aprox end of concrete
Core No. 1

Original Ground - no

Assumes Rock

SECTION I-I

Scale 1:10'0"

Entrance reinforced
with 3d" bars, 18" o.c.
bottomways

SECTION C-C

Scale 1:10'0"

3d" CONCRETE COLUMNS
3d" CONCRETE UNREINFORCED
CONCRETE SEE AW 10-52-472
Entrance to gallery

-11577.96
-11577.04
-11577.00 Top of walling

Construction Joint

36' 9 1/2"

SECTION 2-a

Scanned by: 10-0

SECTION b-b

Scale 1:10'0"

SECTION b-b

MIXING AND PUMPING PLANT

5

RECORD DRAWING
OF WORK AT SWIFT

DATE	REV NO	REVISIONS	REV BY	APP BY
1-4-73	3	1		
1-4-73	3	2		
1-4-73	3	3		
1-4-73	3	4		
1-4-73	3	5		
1-4-73	3	6		
1-4-73	3	7		
1-4-73	3	8		
1-4-73	3	9		
1-4-73	3	10		
1-4-73	3	11		
1-4-73	3	12		
1-4-73	3	13		
1-4-73	3	14		
1-4-73	3	15		
1-4-73	3	16		
1-4-73	3	17		
1-4-73	3	18		
1-4-73	3	19		
1-4-73	3	20		
1-4-73	3	21		
1-4-73	3	22		
1-4-73	3	23		
1-4-73	3	24		
1-4-73	3	25		
1-4-73	3	26		
1-4-73	3	27		
1-4-73	3	28		
1-4-73	3	29		
1-4-73	3	30		
1-4-73	3	31		
1-4-73	3	32		
1-4-73	3	33		
1-4-73	3	34		
1-4-73	3	35		
1-4-73	3	36		
1-4-73	3	37		
1-4-73	3	38		
1-4-73	3	39		
1-4-73	3	40		
1-4-73	3	41		
1-4-73	3	42		
1-4-73	3	43		
1-4-73	3	44		
1-4-73	3	45		
1-4-73	3	46		
1-4-73	3	47		
1-4-73	3	48		
1-4-73	3	49		
1-4-73	3	50		
1-4-73	3	51		
1-4-73	3	52		
1-4-73	3	53		
1-4-73	3	54		
1-4-73	3	55		
1-4-73	3	56		
1-4-73	3	57		
1-4-73	3	58		
1-4-73	3	59		
1-4-73	3	60		
1-4-73	3	61		
1-4-73	3	62		
1-4-73	3	63		
1-4-73	3	64		
1-4-73	3	65		
1-4-73	3	66		
1-4-73	3	67		
1-4-73	3	68		
1-4-73	3	69		
1-4-73	3	70		
1-4-73	3	71		
1-4-73	3	72		
1-4-73	3	73		
1-4-73	3	74		
1-4-73	3	75		
1-4-73	3	76		
1-4-73	3	77		
1-4-73	3	78		
1-4-73	3	79		
1-4-73	3	80		
1-4-73	3	81		
1-4-73	3	82		
1-4-73	3	83		
1-4-73	3	84		
1-4-73	3	85		
1-4-73	3	86		
1-4-73	3	87		
1-4-73	3	88		
1-4-73	3	89		
1-4-73	3	90		
1-4-73	3	91		
1-4-73	3	92		
1-4-73	3	93		
1-4-73	3	94		
1-4-73	3	95		
1-4-73	3	96		
1-4-73	3	97		
1-4-73	3	98		
1-4-73	3	99		
1-4-73	3	100		
1-4-73	3	101		
1-4-73	3	102		
1-4-73	3	103		
1-4-73	3	104		
1-4-73	3	105		
1-4-73	3	106		
1-4-73	3	107		
1-4-73	3	108		
1-4-73	3	109		
1-4-73	3	110		
1-4-73	3	111		
1-4-73	3	112		
1-4-73	3	113		
1-4-73	3	114		
1-4-73	3	115		
1-4-73	3	116		
1-4-73	3	117		
1-4-73	3	118		
1-4-73	3	119		
1-4-73	3	120		
1-4-73	3	121		
1-4-73	3	122		
1-4-73	3	123		
1-4-73	3	124		
1-4-73	3	125		
1-4-73	3	126		
1-4-73	3	127		
1-4-73	3	128		
1-4-73	3	129		
1-4-73	3	130		
1-4-73	3	131		
1-4-73	3	132		
1-4-73	3	133		
1-4-73	3	134		
1-4-73	3	135		
1-4-73	3	136		
1-4-73	3	137		
1-4-73	3	138		
1-4-73	3	139		
1-4-73	3	140		
1-4-73	3	141		
1-4-73	3	142		
1-4-73	3	143		
1-4-73	3	144		
1-4-73	3	145		
1-4-73	3	146		
1-4-73	3	147		
1-4-73	3	148		
1-4-73	3	149		
1-4-73	3	150		
1-4-73	3	151		
1-4-73	3	152		
1-4-73	3	153		
1-4-73	3	154		
1-4-73	3	155		
1-4-73	3	156		
1-4-73	3	157		
1-4-73	3	158		
1-4-73	3	159		
1-4-73	3	160		
1-4-73	3	161		
1-4-73	3	162		
1-4-73	3	163		
1-4-73	3	164		
1-4-73	3	165		
1-4-73	3	166		
1-4-73	3	167		
1-4-73	3	168		
1-4-73	3	169		
1-4-73	3	170		
1-4-73	3	171		
1-4-73	3	172		
1-4-73	3	173		
1-4-73	3	174		
1-4-73	3	175		
1-4-73	3	176		
1-4-73	3	177		
1-4-73	3	178		
1-4-73	3	179		
1-4-73	3	180		
1-4-73	3	181		
1-4-73	3	182		
1-4-73	3	183		
1-4-73	3	184		
1-4-73	3	185		
1-4-73	3	186		
1-4-73	3	187		
1-4-73	3	188		
1-4-73	3	189		
1-4-73	3	190		
1-4-73	3	191		
1-4-73	3	192		
1-4-73	3	193		
1-4-73	3	194		
1-4-73	3	195		
1-4-73	3	196		
1-4-73	3	197		
1-4-73	3	198		
1-4-73	3	199		
1-4-73	3	200		
1-4-73	3	201		
1-4-73	3	202		
1-4-73	3	203		
1-4-73	3	204		
1-4-73	3	205		
1-4-73	3	206		
1-4-73	3	207		
1-4-73	3	208		
1-4-73	3	209		
1-4-73	3	210		
1-4-73	3	211		
1-4-73	3	212		
1-4-73	3	213		
1-4-73	3	214		
1-4-73	3	215		
1-4-73	3	216		
1-4-73	3	217		
1-4-73	3	218		
1-4-73	3	219		
1-4-73	3	220		
1-4-73	3	221		
1-4-73	3	222		
1-4-73	3	223		
1-4-73	3	224		
1-4-73	3	225		
1-4-73	3	226		
1-4-73	3	227		
1-4-73	3	228		
1-4-73	3	229		
1-4-73	3	230		
1-4-73	3	231		
1-4-73	3	232		
1-4-73	3	233		
1-4-73	3	234		
1-4-73	3	235		
1-4-73	3	236		
1-4-73	3	237		
1-4-73	3	238		
1-4-73	3	239		
1-4-73	3	240		
1-4-73	3	241		
1-4-73	3	242		
1-4-73	3	243		
1-4-73	3	244		
1-4-73	3	245		
1-4-73	3	246		
1-4-73	3	247		
1-4-73	3	248		
1-4-73	3	249		
1-4-73	3	250		
1-4-73	3	251		
1-4-73	3	252		
1-4-73	3	253		
1-4-73	3	254		
1-4-73	3	255		
1-4-73	3	256		
1-4-73	3	257		
1-4-73	3	258		
1-4-73	3	259		
1-4-73	3	260		
1-4-73	3	261		
1-4-73	3	262		
1-4-73	3	263		
1-4-73	3	264		
1-4-73	3	265		
1-4-73	3	266		
1-4-73	3	267		
1-4-73	3	268		
1-4-73	3	269		
1-4-73	3	270		
1-4-73	3	271		
1-4-73	3	272		
1-4-73	3	273		
1-4-73	3	274		
1-4-73	3	275		
1-4-73	3	276		
1-4-73	3	277		
1-4-73	3	278		
1-4-73	3	279		
1-4-73	3	280		
1-4-73	3	281		
1-4-73	3	282		
1-4-73	3	283		
1-4-73	3	284		
1-4-73	3	285		
1-4-73	3	286		
1-4-73	3	287		
1-4-73	3	288		
1-4-73	3	289		
1-4-73	3	290		
1-4-73	3	291		
1-4-73	3	292		
1-4-73	3	293		
1-4-73	3	294		
1-4-73	3	295		
1-4-73	3	296		
1-4-73	3	297		
1-4-73	3	298		
1-4-73	3	299		
1-4-73	3	300		
1-4-73	3	301		
1-4-73	3	302		
1-4-73	3	303		
1-4-73	3	304		
1-4-73	3	305		
1-4-73	3	306		
1-4-73	3	307		
1-4-73	3	308		
1-4-73	3	309		
1-4-73	3	310		
1-4-73	3	311		
1-4-73	3	312		
1-4-73	3	313		
1-4-73	3	314		
1-4-73	3	315		
1-4-73	3	316		
1-4-73	3	317		
1-4-73	3	318		
1-4-73	3	319		
1-4-73	3	320		
1-4-73	3	321		
1-4-73	3	322		
1-4-73	3	323		
1-4-73	3	324		
1-4-73	3	325		
1-4-73	3	326		
1-4-73	3	327		
1-4-73	3	328		
1-4-73	3	329		
1-4-73	3	3		

**AN ALPHABETICAL
INDEX OF THE
WAR DEPARTMENT.**

Q Gauge Crimped
to Water Stop

Top of Non-Overflow Section El 6178.

Holes spaced at 6'
except at joints

Q Gauge unneeded
copper strip
pedes shown
section b-b

Const Jt

WATER STOPS FOR CORE WALL SECTION
TYPICAL
SCALE 1"=10'

3 - CORPS OF ENGINEERS, U.S. ARMY

WATER STOPS FOR OVERFLOW SECTION

TYPICAL

SCALE: 1/8"-10"

STOP LOG DETAIL

SCALE: 1/8"-10"

SECTION F-F

SECTION n-n

SCALE 1/2"-10"

FRAME DETAIL

SCALE: 1/8"-10"

ELEVATION 9-9

DETAILS OF BLOW-OFF

SCALE 3/8"-10 EXCEPT AS NOTED

SECTI

Slope 1/25

SECTIONAL PLANE

SECTION d-d

AS KID
TYPICAL PLANT SECTION

RECORD DRAWING
OF WORK AS BUILT

Jack Rooney

Carrying Other
to another site

on no fill

all grade change right water stop

2' 10"

second place

AS P

1 ft. fill

**RECORD DRAWING
OF WORK - AS BUILT**

J. L. Conroy

Contracting Officer
14 November 1945

DATE	REV NO	REVISIONS	REV BY	APP BY
APR 45	1	Initial drawing	"	"
12. 45	2	"	IWS	I.P.
3/27/45	3	Revised bell mouth base & reservoir A.P.A.	"	"
8/27/45	4	Reservoir cover 100 sq. ft. secant A.P.A.	"	"

DETAIL OF FLASHBOARD SOCKETS

SCALE: 1" = 10'

DC T11703 8 MAY 45

**UNITED STATES MILITARY ACADEMY
WATER SUPPLY DAM & RESERVOIR
WATER STOPS, BLOW-OFF & MISC. DETAILS**

POPOLOPEN

WEST POINT N.Y.

IN 21 SHEETS

SHEET NO 11

U.S. ENGINEER OFFICE NEW YORK DISTRICT, NEW YORK N.Y. 1945

Revised by *F. J. Parsons* Recommended by *Charles F. Simmer* Approved by *E. W. Tarbuck*
Date of revision: 14 Oct 1945 U.S. Corps of Engineers Colored Corps of Engineers
Date of approval: 14 Oct 1945
Name of engineer: *John C. Gandy*
Name of architect: *Asst. Prof. H. A. Daniels Architect Engineer*

To be submitted for discussion by 8 June 1945

7512-471

WAR DEPARTMENT

PLAN

WIRE CHAIN LIN.

SCREEN LIFTER

NOTE - All Rivers

CORPS OF ENGINEERS, U. S. ARMY

3

PLAN

ELEV B-B DOUBLE SWING GATE

SECT C-C

WIRE CHAIN LINK ENCLOSURE
SCALE 1" = 10'

**DETAILS OF GATE
AT ENTRANCE TO
DRAINAGE GALLERY**

SCALE: 1" = 10'

ELEVATION
SCALE 1" = 10'

**DETAIL OF SOCKET
AT BOTTOM OF EACH POST.**
SCALE 1" = 10'

40 275 275 1000 625
All pipe street first quality standard
All pipe & fittings shall be galvanized
after cutting & threading
S & fittings streets standard etc. 1000
joints shall be painted white up to
2" or free air
All fittings shall be painted
Samples of fittings shall be shown when
for approval

DETAILS OF RAILING AT TOP OF NON-OVERFLOW SECTIONS

REQUIRED STOP

SECT A-A

BOTTOM VIEW

INTAKE SCREEN
AS REQUIRED
SCALE 1:10

Reference page in C-2
is used to identify

SECT A-A
SEE PLAN OR AT NO
SCALE 1:10

CONT NO A-30 1/25 1966

DATE	REV NO	REV NOS	PE
6/1/66	3	RECORD WORK AS PLS	
7/1/66	2	PLS - 1/15 7/1/66	
8/1/66	1	PLS - 1/15 8/1/66	

→ Reversing edge with L 8'2" to starting

DETAILS OF HOIST FRAME AND GRAT OVER INTAKE SCREEN

SCALE AS SHOWN

RECORD DRAWING OF WORK AS BUILT

J. R. Conroy

SECT P-P
INTAKE GRAT AS
SCALE 1'-0"

DC T11703 8 MAY 45

UNITED STATES MILITARY ACADEMY WATER SUPPLY DAM & RESERVOIR MISCELLANEOUS DAM APPURTENANCES

POPOLOPEN

WEST POINT, N.Y.

IN 21 SHEETS

SHEET NO 12

SCALES AS SHOWN
U.S. ENGINEER OF ICE NEW YORK DISTRICT NEW YORK N.Y. 1945

Approved
J. F. Parsons *Chase Parmer* *E. G. Garber*
Principal Engineer Civil Engineer of Engineers General Engineer
Reservoirs Reservoirs Reservoirs
Reservoir Reservoir Reservoir
Reservoir Reservoir Reservoir

CONTINUATION SHEET NO 12					
DATE	REV NO	REVISONS	REV BY	APP BY	
DEC 45	3	RECORD WORK AS BUILT	J. J. M.		
DEC 45	2	1st Draft of Drawing revised	J. J. M.		
DEC 45	1	Final Drawing - Draft No 1	J. J. M.	J. F. Parsons	

To Acq. Dept. Ser. Engrg. Bldg. No. 141

7512-472

PHOTOGRAPHS

APPENDIX B

2. DOWNSTREAM FACE OF SPILLWAY AND RIGHT
NON-OVERFLOW MONOLITH

3. DOWNSTREAM FACE OF SPILLWAY AND LEFT
NON-OVERFLOW MONOLITH

4. UPSTREAM VIEW OF DAM

5. DOWNSTREAM VIEW OF SPILLWAY BUCKET SILL DISCHARGE OF 20 INCH
OUTLET AND TWO 12 INCH BUCKET DRAINS, VIEWED FROM RIGHT BANK

6. INTAKE CHAMBER SHOWING "A" TYPE HOIST FRAME
AND TWO FLOOR STANDS OF SLUICE GATES

7. INTERIOR OF GALLERY, SHOWING 36 INCH VALVE AND
WHITE MINERAL DEPOSITION ALONG D/S SIDE OF WALL

8. DOWNSTREAM CHANNEL WITH RIPRAP AT RIGHT BANK

9. OVERALL VIEW OF DOWNSTREAM CHANNEL

10. DETERIORATING CONCRETE SURFACE
AND SPALLING ALONG JOINTS

11. WIDENED GAP AT HORIZONTAL JOINT AND WET MARK

12. GALLERY ENTRANCE GATE AT RIGHT NON-OVERFLOW
MONOLITH SHOWING WHITE MINERAL DEPOSITION

ENGINEERING DATA CHECKLIST

APPENDIX C

CHECKLIST
ENGINEERING DATA
DESIGN, CONSTRUCTION, OPERATION
PHASE I

NAME OF DAM STILWELL LAKE

ID # 770

ITEM	REMARKS
AS-BUILT DRAWINGS	see Appendix for list of drawings available.
REGIONAL VICINITY MAP	U.S.G.S.
CONSTRUCTION HISTORY	Construction procedures and diversion schemes were discussed in design Report.
TYPICAL SECTIONS OF DAM	Concrete gravity section See drawings nos. 7512-468, 7512-469.1
OUTLETS-PLAN	see Dwg. 7512-465.1
-DETAILS	20 inch dia. C.I. pipe controlled by two swing gates, 36 inch dia. blow-off controlled by valve in the gallery
-CONSTRAINTS	None. There is a 20 inch dia. intake pipe at Queensboro Furnace for water supply to Lusk Reservoir.
-DISCHARGE RATINGS	available, see Dwg. 7512-464
RAINFALL/RESERVOIR RECORDS	Available at Water Plant

ITEM	REMARKS
DESIGN REPORTS	Available from Alexander Potter Associates, New York City
GEOLOGY REPORTS	Same as above
DESIGN COMPUTATIONS	
HYDROLOGY & HYDRAULICS	
DAM STABILITY	
SEEPAGE STUDIES	None available
MATERIALS INVESTIGATIONS	
BORING RECORDS	
LABORATORY	
FIELD	
POST-CONSTRUCTION SURVEYS OF DAM	None available
BORROW SOURCES	unknown

ITEM	REMARKS
MONITORING SYSTEMS	Level indicator installed at office of Water Plant.
MODIFICATIONS	None except that 36 inch diameter valve in gallery was replaced in 1974.
HIGH POOL RECORDS	Dam has not been overtopped. Reservoir elevations are recorded by level indicator.
POST CONSTRUCTION ENGINEERING STUDIES AND REPORTS	None
PRIOR ACCIDENTS OR FAILURE OF DAM	None
DESCRIPTION	
REPORTS	
MAINTENANCE	Previous inspection was made in April, 1976.
OPERATION	Upper sluice gate is usually open, reservoir level
RECORDS	is normally maintained near spillway crest. Records of gate and valve opening is maintained. No operation and maintenance manual

ITEM	REMARKS
SPILLWAY PLAN	
SECTIONS	concrete ogee weir section
DETAILS	see drawing No. 7512-467
OPERATING EQUIPMENT	Gates and valve are hand operated.
PLANS & DETAILS	none

VISUAL INSPECTION CHECKLIST

VISUAL INSPECTION CHECKLIST

1. Basic Data

a. General

Name of Dam St. Paul Lake Dam Hazard Category Significant
County Orange ID# 770
Stream Name Popolopen Creek Tributary of Hudson River
Location Orange County Nearest Town (P.O.) Fort Montgomery
Longitude 74° 01' 57" Latitude 41° 20' 39" Other Directions
About 5 miles S.W. of West Point, 6000 ft. S.E. of Rt. 293 and Mine Ferme Rd.
Date of Insp Dec. 5, 1978 Weather Sunny - cloudy Temperature 45°F

b. Inspection Personnel T.C. Chiara - Structural Engineer

M A Mariano - Geotechnical Engineer

c. Persons Contacted

John O'Connor, Kenneth J. Tomann P. Hufjan
of Civil Engineer of U.S.M.A.

Jim McDonald, water plant foreman USMA

d. History: Date Constructed Nov. 1948

Present Owner U.S. M.A.

Designed by Alexander Pitter Associates, New York City

Constructed by U.S. Army Corps of Engineers

Recent History

2. Technical Data

Type of Dam Concrete Gravity Drainage Area 8021 Acres

Height 58 ft Length 680 ft

Upstream Slope 1:1 (1) on 1:1 (1) Downstream Slope 1:1 (1) on 1:1 (1)

Top Crest Width 9'-8" Bottom Freeboard at Spillway Crest 15.8 ft

Low Level Control: (Type and Size) 36" G.I. Pipe
Valve Condition good condition, replaced in 1974
Emergency Spillway Type (Material) Concrete Width 160 feet
Side Slopes (See drawing)
Height (Crest to Top) 15.8 feet
Exit Slope (See drawing)
Exit Length (See drawing)
Ponded Surface Area _____ Acres
Capacity (Normal Level) 1924 Acre Feet
Capacity Emergency Spillway Level 1924 Acre Feet

3. Embankment

Not applicable - Concrete Gravity Dam

a. Crest

(1) Vertical Alignment

.....

(2) Horizontal Alignment

.....

(3) Longitudinal Surface Cracks

.....

(4) Transverse Surface Cracks

.....

(5) General Condition of Surface

.....

(6) Miscellaneous

.....

b. Upstream Slope Not applicable

(1) Undesirable Growth or Debris _____

(2) Sloughing, Subsidence, or Depressions _____

(3) Slope Protection _____

(a) Condition of Riprap _____

(b) Durability of Individual Stones _____

(c) Adequacy of Slope Protection Against Waves and Runoff _____

(d) Gradation of Slope Protection - Localized Areas of Fine Material _____

(4) Surface Cracks _____

c. Downstream Slope _____

(1) Undesirable Growth or Debris _____

- (2) Sloughing, Subsidence, or Depressions; Abnormal Bulges or Non-Uniformity

Not applicable

- (3) Surface Cracks on Face of Slope

- (4) Surface Cracks or Evidence of Heaving at Embankment Toe

- (5) Wet or Saturated Areas or Other Evidence of Seepage on Face of Slope; Evidence of "Piping" or "Boils"

- (6) Fill Contact with Outlet Structure

- (7) Condition of Grass Slope Protection

- d. Abutments

- (1) Erosion of Contact of Embankment with Abutment from Surface Water Runoff, Upstream or Downstream

- (2) Springs or Indications of Seepage Along Contact of Embankment with the Abutments

- (3) Springs or Indications of Seepage in Areas a Short Distance Downstream of Embankment -- Abutment Tie-in

Not applicable

- e. Area Downstream of Embankment, Including Tailrace Channel

- (1) Localized Subsidence, Depressions, Sinkholes, Etc.

- (2) Evidence of "Piping" or "Boils"

- (3) Unusual Presence of Lush Growth, such as Swamp Grass, etc.

- (4) Unusual Muddy Water in Downstream Channel

- (5) Sloughing or Erosion

- (6) Surface Cracks or Evidence of Heaving Beyond Embankment, Top

(7) Stability of Tailrace Channel Sideslopes _____

(8) Condition of Tailrace Channel Riprap _____

(9) Adequacy of Slope Protection Against Waves, Currents and Surface Runoff _____

(10) Miscellaneous _____

f. Drainage System _____

(1) Condition of Relief Wells, Drains and Appurtenances _____

(2) Unusual Increase or Decrease in Discharge from Relief Wells _____

4. Instrumentation

None

(1) Monumentation/Surveys _____

(2) Observation Wells None

(3) Weirs None

(4) Piezometers None

(Other) _____

5. Reservoir

water elevation at El. 599 or 3 ft below spillway crest at time of inspection.

a. Slopes portions of reservoir slopes visible from the dam show no signs of distress, instability or other adverse conditions

Both bank's immediate u/s of dam are well protected by riprap.

b. Sedimentation Not visible

6. Spillways

ungated spillway with 5 ft flashboard, 4 monoliths width 160 ft.

a. Principal Spillway: Inlet Condition

Pipe Condition

General Remarks (include information such as recently repaired potential for debris accumulation, special items of note, etc.)

Crest at cl. 602, some minor deterioration of concrete near crest existed. No repair has been made. Spillway is in good condition. Flashboards at first left monolith were in horizontal position, all others were in upright position.

b. Emergency Spillway: General Condition Owner is contemplating to replace flashboards and also to provide access from top of non-overflow monolith (H. 617.8) to spillway crest.

Tree Growth some debris and bushes existed in the downstream of channel.

Erosion No erosion observed

Other Observations 36"dia Blow-off is

closed. Two 12"dia C.I. drains for Bucket are working properly. Water @ O/S of Spillway is retained to top of S-I

7. Structural (if required) See Attached Appendix

8. Downstream Channel

Immediate right bank has good riprap protection while the left bank has rock outcrop.

a. Condition (obstructions, debris, etc.) There is no concrete apron beyond the dam. The stream bed is full of rocks and stones. Some debris existed but constitute no obstruction. There are a line of trees along o/s face of right non-overflow monoliths.

b. Slopes appeared to be stable.

c. Approximate No. Homes and Population

Few houses within 2 miles could be affected by a flood.

d. General

Mauri Marin
TEAM CAPTAIN

STRUCTURAL INSPECTION CHECKLIST

PHASE I DAM INSPECTION

1. Concrete Surfaces Minor deterioration at o/s face near spillway crest.
Some spalling along horizontal joints of spillway, some white mineral deposit along horizontal joint above Gallery entrance gate at right non-overflow monolith. Overall condition is good.
2. Structural Cracking None observed.
3. Movement - Horizontal and Vertical Alignment None observed.
4. Junctions with Abutments or Embankments good condition
5. Drains - Foundation, Joint, Face foundation drains not visible. Two 12"dia bucket drains and 20"dia C.I. outlet from intake chamber are in good working condition.
6"dia drains in gutter of Gallery are clogged by silt, 1"deep water in gutter.
6. Water Passages, Conduits, Sluices No overflow from spillway. 36"dia blow-off is closed. Two 20"dia sluice gates in Intake Chamber. Lower one is closed, while the upper one is open. Water flows out from 20"dia C.I. pipe.
7. Seepage or Leakage No seepage or leakage observed.
There are white mineral deposit along o/s face wall of Gallery.
8. Monolith Joints - Construction Joints In general, good condition.
Some spalling along horizontal joints of spillway.
9. Foundation o/s face of dam covered by dirt and leaves.
Left bank has rock outcrop. Dam foundation found to be typical granite gneiss.

10. Abutments No defect or damage observed.

11. Control Gates Two 20"Ø sluice gates at two levels are located at Intake Chamber to permit withdrawal of water through 20"Ø C.I. pipe. Gates are in operating condition.

12. Approach and Outlet Channels Well protected by riprap.

13. Stilling Basin Not applicable

14. Intake Structure located at left non-overflow monolith to house two 20"Ø sluice gates "A" type steel hoist frame and other maintenance features are in good condition

15. Scourment None

16. Stability

a. Overturning There is no adverse effect to the stability.

b. Sliding Shear-friction resistance should be investigated

c. Seismic Not significant - Seismic zone NO. 2

17. Instrumentation

a. Alignment None

b. Uplift

c. Seismic

18. Miscellaneous

HYDROLOGIC DATA AND COMPUTATIONS

APPENDIX E

RAINS

Job No. 1487-13

Sheet 1 of _____

Project STILLWELL LAKE

Date 11/21/78

Subject UPSTREAM STORAGE OF PKF IN MINE LAKE

By CV

WATER LEVEL

Chk'd by _____

SUB AREA	TOTAL STRECH LENGTH		LOSS [*] (IN)	PMP (IN)	PONDING AREA (IN)	FLOODING STORAGE (AC FT)	3-FT PONDING STORAGE (IN · RO)
	AREA (ACRES)	LOSS (%)					
II	242.1	79.3	0.95	18.57	50.5	151.5	7.45
III	580.7	96.0	1.15	18.37	23.2	69.6	1.44
IV	97.7	67.2	0.81	18.71	32.0	96.0	11.79
IVa	219.5	88.2	1.06	18.46	25.9	77.7	4.25
IV	101.0	71.6	0.86	18.66	28.7	86.1	10.23
Σ 1243.0					Σ 160.3	480.9	

TOTAL PONDING AREA 160.3, ASSUMING 3 FEET AVERAGE
PONDING DEPTH, AVAILABLE STORAGE IN 1243 ACRES
IS 480.9 ACRES/FTOR $\frac{480.9}{1243} \times 12 = 4.64" RO$

SUB AREA	PERCENT PONDED TO TOTAL RUNOFF	APPRX. TIME SPAGE BEGINS (HRS)	ADOPTED
			EVEN-TIME BEGIN. HOUR
II	$7.45 : 18.57 = .4012$	2.47	2:50
III	$1.44 : 18.37 = .0784$	1.05	1.00
IV	$11.79 : 18.71 = .6301$	3.12	3.25
IVa	$4.25 : 18.46 = .2302$	2.02	2:00
IV	$10.23 : 18.66 = .5482$	2.85	2.75

6-HR PMP = 24.4". EFFECTIVE PMP : 0.8 (24.4) = 19.52"

* EQUIVALENT FLOW TO BE CONSIDERED, FREQUENT RAINFALL OF EACH HYDROGRAPH

* LOSS = $0.2 \times 6\text{hr} \times \%$

TAMS

Job No. 1487-18

Sheet 1 of 1

Project STILWELL AKE

Date 1/21/78

Subject PMF FROM "PONDEROSA" AREAS ABOVE
MINE LAKE BEFORE LAG

By CU

Chk. by _____

	A%	II	III	IV	IVa	V
1.						
1.25	.029	530.2	1247.7	213.8	473.9	220.4
1.50	.029	530.2	1247.7	213.8	473.9	220.4
1.75	.041	749.6	1764.0	302.3	670.1	311.7
2.	.060	1097.0	2581.5	442.4	980.6	456.1
2.25	.077	1407.8	3313.0	567.7	1258.4	585.3
2.50	.107	1956.3	4603.7	789.9	1758.3	813.4
2.75	.101	1846.6	4345.6	744.6	1650.6	767.8
3.	.085	1554.0	3657.2	626.7	1389.1	646.1
3.25	.070	1279.8	3011.8	516.1	1144.0	532.1
3.5	.058	1060.4	2495.5	427.6	947.9	440.9
3.75	.045	822.7	1936.1	331.8	735.4	342.1
4	.037	676.5	1591.9	272.8	604.7	281.2
4.25	.033	603.3	1419.8	243.3	539.3	250.8
4.50	.027	493.6	1161.7	196.7	441.3	205.2
4.75	.024	438.8	1032.6	176.9	392.2	182.4
5	.022	402.2	946.6	162.2	359.5	167.2
5.25	.022	402.2	946.6	162.2	359.5	167.2
5.50	.022	402.2	946.6	162.2	359.5	167.2
5.75	.022	402.2	946.6	162.2	359.5	167.2
6.	.018	329.1	774.5	132.7	294.2	136.8

$$\text{II } \frac{18.57 \times 244.1 \times 43560}{12 \times 15 \times 60} = 18.57 \times 244.1 \times 4,033 = 18282.8$$

$$\text{III } 18.37 \times 580.7 \times 4,033 = 43025.4$$

$$\text{IV } 18.71 \times 97.7 \times 4,033 = 7372.8$$

$$\text{IVa } 18.46 \times 219.5 \times 4,033 = 16342.9$$

$$\text{V } 18.66 \times 101.0 \times 4,033 = 7601.5$$

TAMS

Job No. 1487-18

Sheet 3 of _____

Project STILWELL LAKE SAFETY INSPECTION

Date Nov 30, 78

Subject PMF from Pending Areas after LAG

By DLC

Chk. by _____

	<u>II</u>	<u>III</u>	<u>IV</u>	<u>IVa</u>	<u>V</u>	<u>Σ</u>
1						
1.25						
1.50						
1.75						
2.		<u>1247.7</u>				<u>1247.7</u>
2.25		<u>1247.7</u>				<u>1247.7</u>
2.50		<u>1764.0</u>				<u>1764.0</u>
2.75		<u>2581.5</u>		<u>1258.4</u>		<u>3839.5</u>
3.00		<u>3133.0</u>		<u>1758.3</u>		<u>4891.3</u>
3.25	<u>1846.6</u>	<u>4603.7</u>		<u>1650.6</u>		<u>8100.9</u>
3.50	<u>1554.0</u>	<u>4345.6</u>		<u>1389.1</u>	<u>646.1</u>	<u>7934.8</u>
3.75	<u>1279.8</u>	<u>3657.2</u>		<u>1144.0</u>	<u>522.1</u>	<u>6603.1</u>
4.	<u>1060.4</u>	<u>3011.8</u>	<u>427.6</u>	<u>947.9</u>	<u>440.9</u>	<u>5888.6</u>
4.25	<u>822.7</u>	<u>2495.5</u>	<u>331.8</u>	<u>735.4</u>	<u>342.1</u>	<u>4727.5</u>
4.50	<u>676.5</u>	<u>1936.1</u>	<u>272.8</u>	<u>604.7</u>	<u>281.2</u>	<u>3771.3</u>
4.75	<u>603.3</u>	<u>1591.9</u>	<u>243.3</u>	<u>539.3</u>	<u>250.8</u>	<u>3228.6</u>
5.	<u>493.6</u>	<u>1419.8</u>	<u>196.4</u>	<u>441.3</u>	<u>205.2</u>	<u>2756.3</u>
5.25	<u>438.8</u>	<u>1161.7</u>	<u>176.9</u>	<u>392.2</u>	<u>182.4</u>	<u>2352.0</u>
5.50	<u>402.2</u>	<u>1032.6</u>	<u>162.2</u>	<u>359.5</u>	<u>167.2</u>	<u>2123.7</u>
5.75	<u>402.2</u>	<u>946.6</u>	<u>162.2</u>	<u>359.5</u>	<u>167.2</u>	<u>2037.7</u>
6.	<u>402.2</u>	<u>946.6</u>	<u>162.2</u>	<u>359.5</u>	<u>167.2</u>	<u>2037.7</u>
6.25	<u>402.2</u>					
6.50	<u>329.1</u>					
6.75					<u>Σ</u>	<u>64552.4</u>

$$\frac{64522.4 \times 15 \times 60 \times 12}{1171. \times 43560} = 13.67$$

LOSSES 1.20

Available Storage 19.52 - 14.87 = 4.65" R.O.
USED

LAWS

Job No. 1487-18

Project STILWELL LAKE INSPECTIONS

Subject Upstream Storage of 40 PMP in Mine
Lake Watershed (1/2 PMP)

Sheet A of _____

Date DEC 1 1978

By DLC

Ch'k. by _____

	Total Surface Area (acres)	LAND AREA (%)	50% PMP.	% Pended to Excess R.O.	Outflow Start time
II	244.1	79.3	9.285	$7.45/9.285 = 0.802$	3.56 / 4.00
III	580.7	96.0	9.185	$1.44/9.185 = 0.157$	1.70 / 1.75
IV	97.7	67.2	9.355	$11.79/9.355 = 1. +$	NO OUTFLOW
IVa	219.5	88.2	9.23	$4.25/9.23 = 0.460$	1.62 / 1.50
V	101.0	71.6	9.33	$10.23/9.33 = 1. +$	no outflow.
$\Sigma 1243.0$					

Time	A%	II	III	IV	IVa	V
1.50	.029			0		
1.75	.041		882.	0		
2.0	.060		1290.7			
2.25	.077		1656.3			
2.5	.107		2301.7			
2.75	.101		2172.6			
3.	.085		1828.4			
3.25	.07		1505.8			
3.5	.058		1247.6			
3.75	.045		968.0			
4.	.037	338.2	795.9			
4.25	.033	301.7	709.9			
4.5	.027	246.8	580.8			
4.75	.024	219.4	516.3			
5.	.022	201.1	473.2			
5.25	.022	201.1	473.2			
5.5	.028	201.1	473.2			
5.75	.022	201.1	473.2			
6.0	.018	164.5	387.2	0	147.1	0

$$\underline{II} \quad \underline{9.285 \times 244.1 \times 43560 = 9.285 \times 244.1 \times 4.033 = 9141.} \\ 12 \times 15 \times 60$$

$$\underline{III} \quad \underline{9.185 \times 580.7 \times 4.033 = 21,511} \\ 0.02 \times 210 \times 11.22 = 5171$$

TAMS

Job No. 1487-18

Project Safety Inspection STILWELL LAKE.
 Subject 50% PAY from PONING AREA AFTER
 LAKE Mine LAKE

Sheet 5 of _____
 Date DEC 1 197
 By DCC
 Ch'k. by _____

	<u>II</u>	<u>III</u>	<u>IV.</u>	<u>Σ</u>
2.			237.	237
2.25			335.	335
2.5		882.	490.3	1372.3
2.75		1290.7	629.2	1919.9
3.		1656.3	874.3	2530.6
3.25		2301.7	825.3	3127.0
3.5		2172.6	694.5	2867.1
3.75		1828.4	572.0	2400.4
4.		1505.8	473.9	1979.7
4.25		1247.6	367.7	1615.3
4.5	338.2	968.0	302.3	1608.5
4.75	301.7	795.9	269.6	1367.2
5.	246.8	709.9	220.6	1177.3
5.25	219.4	580.8	196.1	996.3
5.5	201.1	516.3	179.8	897.2
5.75	201.1	473.2	179.8	854.1
6.0	201.1	473.2	179.8	854.1
<u>Σ</u>				26139.0

$$\frac{26139.0 \times 15 \times 60 \times 12}{1171. \times 43560} = 5.53$$

LOSSES 0.6

UTILIZED STORAGE. 9.76 - 6.13 3.63" RO.

TAMS

Job No. 1487-18

Sheet 6 of _____

Project STILWELL LAKE

Date DEC 1 1970

Subject Inflow computations for Mine LAKE

By DLC

Ch'k. by _____

For instantaneous conversion of rainfall to runoff
 Adjacent lake area (VIII) 206.5 acres — 89 %
 Mine lake Area 24.5 — 11 %

$$\Sigma 231.0 \text{ acres}$$

$$\text{Weighted } P_{TIP} = (89 \times 18.32) + (11 \times 19.52) / 100 \\ = 18.45 \text{ inches.}$$

U/H. for Brooks Hollow

$$L = 1.74 \quad hca = 0.98 \quad \text{Area} = 1.48 \text{ square miles}$$

$$\text{Assume } C_f = 2. \text{ and } 640 C_p = 400.$$

$$(LL_{ca})^{0.3} = 1.17$$

$$t_p = C_f (LL_{ca})^{0.3} = (2.0)(1.17) \\ = 2.34 \text{ hrs.}$$

$$t_p = t_p/5.5 = 0.425 \approx 25.5 \text{ mins. Use } t_R = 15 \text{ mins} = 0.25 \text{ hrs}$$

$$T_{pR} = 2.34 + 0.25(0.25 - 0.425)$$

$$= 2.30 \text{ hrs. use } 2.25 \text{ hrs}$$

$$g_p = 400 / 12.25 = 177.8 \text{ cfs}$$

$$Q_p = 177.8 \times 1.48 = 264 \text{ cfs.}$$

TAMS

Job No. 1487-1E

Project Safety Inspection STILWELL LAKE
 Subject U/H for Brooks Hollow (inflow to
 mines 1, 2, 3)

Sheet 1 of 1
 Date Dec 3 77
 By DLC
 Ch'k. by

TAMS

Job No. 1487-18

Project INSPECTION STILWELL LAKE

Subject Mine Lk. OUTFLOW & STORAGE (SURCHARGE)
COMPUTATIONS

Sheet 8 of _____
 Date DEC 8, 78
 By DEC
 Chk. by _____

Spillway Lc. El.
 Spillway Cross El.
 * Top or Dam El.

CREST WIDTH

Dm LENGTH

Field EL
 (ft) HEAD
 (ft) (H_b) C

143.0'
 92.3'
 94.7'
 5.5'
 390.0'

Field EL (ft)	HEAD (ft)	C	$Q = C1 H^{3/4}$ Q _d	(CFS) Q _s	ΣQ	EL (MSL)	Area (acres)
92.3	0					648.63	46.4
93.	0.7	2.68		224	224	649.33	49.6
94.	1.7	2.65		840	840	650.33	54.2
* 94.7	2.4	2.67		1420	1420	651.03	57.4
95.0	2.7 (3)	2.67	12.5	1694	1819	651.33	58.8
96.0	3.7 (13)	2.69	1131	2738	3869	652.33	63.4
98.0	5.7 (33)	2.88	4574	5605	10179	654.33	72.6
100.0	7.7 (53)	3.07	9310	9380	18690	656.33	81.9

FL USGS.	Field	AREA	MEAN AREA	Δ Volume	SURCHARGE STORAGE (AC FT)
648.63	92.3	46.4	48.0	33.6	0
649.33	93.0	49.6	51.9	51.9	33.6
650.33	94.0	54.2	55.8	39.1	85.5
651.03	94.7	57.4	58.1	17.4	124.6
651.33	95.0	58.8	61.1	61.1	142.
652.33	96.0	63.4	68.0	136.0	203.1
654.33	98.0	72.6	77.25	154.5	339.1
656.33	100.0	61.9	90.45	332.95	493.6
-	103.67	99.			625.6

LAMIS

Job No. 1487-18

Project INSPECTION STILWELL LAKE

Subject HINES LAKE Spillway rating curve

Sheet B.C. of 1

Date DEC 8 78

By D.LC

Ch'k. by

DAVIS

Job No. 1487-18

Project INSPECTION STILWELL LAKE

Subject AREA SURCHARGE STORAGE CURVES. for
MINE LAKE.

Sheet 9 of

Date DEC 8, 78

By D.L.C.

Ch'k. by

① Area planimetric from USGS Popoopen
Lake Quadrangle.

P MFropopen
Lake

TIME (HOURS)	TOTAL RUN-OFF P MF COMPUTED (CFS)	OUTFLOW (CES)	Ponding Areas OUTFLOW (CFS)	MINE LAKE INFLOW (CFS)
0.000	0.0			0.0
0.250	276.5	0.31		276.8
0.500	311.3	1.09		312.9
0.750	340.0	2.18		342.2
0.999	363.2	3.69		366.9
1.249	565.6	5.93		571.5
1.499	608.2	9.07		617.3
1.749	872.9	13.37		886.3
1.999	1312.8	19.40	1247.7	2579.9
2.249	1750.2	30.07	1247.7	3028.0
2.499	2345.3	1303.44	1764	5412.7
2.749	2421.7	4084.09	3839.5	10345.3
2.999	2396.9	6647.93	4891.3	13936.1
3.249	2340.9	9040.19	8100.9	19482.0
3.499	2406.0	11323.19	7954.8	21664.0
3.749	2482.8	12899.45	6603.1	21985.4
3.999	2661.9	13543.07	5288.6	22092.6
4.249	2859.5	13679.64	4727.5	21266.6
4.499	3026.9	13542.22	3771.3	20340.4
4.749	3120.8	13263.79	3228.6	19613.2
4.999	3118.4	12892.99	2756.3	18767.7
5.249	3049.9	12451.29	2352.0	17853.2
5.499	2929.6	11980.67	2123.7	17034.0
5.749	2736.4	11510.11	2037.7	16284.2
5.999	2556.8	11044.64	2037.7	15639.1
6.249	2025.4	10490.57		12516.0
6.499	1841.7	9761.08		11602.8
6.749	1665.7	8882.48		10548.2
6.999	1502.4	7875.73		9378.1
7.249	1344.0	6914.96		8259.0
7.499	1189.9	6048.80		7238.7
7.749	1029.5	5233.22		6262.7
7.999	860.9	4462.18		5323.1
8.249	701.7	3753.51		4455.2
8.499	552.2	3121.87		3674.1
8.749	428.6	2572.38		3001.0
8.999	330.5	2102.37		2432.9
9.249	251.4	1704.73		1956.1
9.499	189.4	1370.29		1559.7
9.749	140.6	1138.88		1279.5
9.999	103.8	998.47		1102.3
10.249	75.0	858.13		933.1
10.499	53.6	723.41		777.0
10.749	36.8	598.15		635.0
10.999	26.2	485.03		509.2
11.249	14.6			14.6
11.499	7.8			7.8
11.749	3.2			3.2

SAFETY INSPECTION STILLWELL LAKE
RESERVOIR ROUTING MINES LAKE
TAMS JOB NO. 1478-18 DEC 1978

PMF

INPUT PARAMETERS

STARTING ELEV. (FT.)	TIME INTERVAL (HOURS)	STARTING TIME (HOURS)	ENDING TIME (HOURS)	PRINT OPTION	GATE INTERVAL (HOURS)	PLOT OPTION	STORAGE COEF.	OUTFLOW COEF.	INFLOW COEF.	TIME BREAK
48.63	0.25	0.00	11.75	1	NO	NO	1.000	1.000	1.000	0.000

MOORE BUSINESS FORMS INC., INC. PRINTED IN USA

TIME (HRS)	INFLOW (CFS)	OUTFLOW (CFS)	STORAGE (ACFT)	ELEVATION (FT.)
0.00	0.00	0.00	0.0000	48.63
0.25	276.80	17.80	2,6712	48.68
0.50	312.90	53.45	8,0185	48.79
0.75	342.20	88.72	13,3088	48.90
1.00	366.90	122.93	18,4396	49.01
1.25	571.50	167.48	25,1230	49.15
1.50	617.30	222.42	33,3630	49.32
1.75	886.30	356.53	43,0817	49.51
2.00	2579.89	640.24	68,6697	50.00
2.25	3028.00	1172.75	107,9319	50.73
2.50	5412.70	2032.52	161,8119	51.65
2.75	10345.30	3981.82	262,1024	53.19
3.00	13936.10	7040.37	397,8460	55.09
3.25	19482.00	10870.50	554,6024	57.11
3.50	21664.00	14714.03	711,9071	59.15
3.75	21985.40	17520.84	827,1909	60.64
4.00	22092.60	19356.69	900,2807	61.59
4.25	21266.60	20252.73	938,5900	62.09
4.50	20340.40	20470.91	947,5195	62.20
4.75	19613.20	20275.17	939,5085	62.10
5.00	18767.10	19845.47	921,9221	61.67
5.25	17853.20	19237.39	897,0350	61.55
5.50	17034.00	18526.80	867,9526	61.17
5.75	16284.20	17736.93	837,6718	60.78
6.00	15639.10	17063.86	808,0788	60.40
6.25	12516.00	15880.87	759,6622	59.77
6.50	11602.86	14367.03	697,7053	58.97
6.75	10548.20	13063.13	644,3402	58.28
7.00	9378.10	11835.10	594,0806	57.62
7.25	8259.03	10650.13	525,1737	56.99
7.50	7238.70	9495.78	498,2977	56.39
7.75	6262.10	8401.74	453,2084	55.81
8.00	5323.10	7371.90	411,4144	55.26
8.25	4455.20	6288.38	371,1619	54.44
8.50	3674.10	5485.00	335,4080	54.24
8.75	3001.00	4727.01	297,4515	53.71
9.00	2432.90	4017.51	263,7955	53.22
9.25	1956.10	3374.03	233,2713	52.77
9.50	1559.70	2803.58	206,2111	52.37
9.75	1279.50	2382.74	182,3086	51.98
10.00	1102.30	2028.28	161,5641	51.65
10.25	933.10	1727.73	143,9744	51.34
10.50	777.00	1483.37	128,6247	51.09
10.75	635.00	1275.34	116,8484	50.85
11.00	509.20	1059.72	102,3350	50.63
11.25	14,60	871.22	87,6049	50.36
11.50	7,80	679.11	71,9449	50.06
11.75	3,20	532.62	59,6028	49.83
MAX. VALUES	22092.60	20470.91	62.20	
MIN. VALUES	0.00	0.00	48.63	

HORN

SPF

SPF

TIME (HOURS)	TOTAL RUN-OFF COMPUTED (CFS)	Popotopen Lake	
		OUTFLOW (CFS)	(CFS)
0.000	0.0		0.0
0.250	138.2	0.15	138.4
0.500	155.9	0.54	156.4
0.750	170.0	1.09	171.1
0.999	181.6	1.64	183.4
1.249	282.3	2.96	285.8
1.499	304.1	4.53	308.6
1.749	436.4	6.68	443.1
1.999	656.4	9.70	666.1
2.249	875.1	13.79	888.9
2.499	1172.6	19.22	1191.8
2.749	1210.8	28.23	1239.0
2.999	1198.4	796.51	1994.9
3.249	1170.4	2311.30	3481.7
3.499	1203.0	3642.76	4845.8
3.749	1241.4	4571.38	5812.8
3.999	1330.9	5214.70	6545.6
4.249	1429.7	5738.38	7168.1
4.499	1513.4	6075.69	7589.1
4.749	1560.4	6197.01	7757.4
4.999	1559.2	6196.33	7755.5
5.249	1524.9	6110.94	7635.8
5.499	1464.8	5958.77	7423.6
5.749	1368.2	5773.10	7141.3
5.999	1278.4	5558.26	6836.7
6.249	1012.7	5234.45	6247.2
6.499	920.8	4774.10	5694.9
6.749	832.8	4267.79	5100.6
6.999	751.2	3794.07	4545.3
7.249	672.0	3371.64	4043.6
7.499	594.9	2973.16	3568.6
7.749	514.7	2586.03	3100.7
7.999	430.4	2212.83	2643.2
8.249	350.3	1865.86	2216.7
8.499	276.1	1554.43	1830.5
8.749	214.3	1282.29	1496.6
8.999	165.2	1115.41	1280.6
9.249	125.7	991.86	1117.6
9.499	94.7	868.99	963.7
9.749	70.5	751.05	821.4
9.999	51.9	640.58	692.5
10.249	37.5	539.07	576.6
10.499	26.8	447.33	474.1
10.749	18.4	365.72	384.1
10.999	12.1	294.38	306.5
11.249	7.3		7.3
11.499	3.9		3.9
11.749	1.6		1.6

SAFETY INSPECTION STILLWELL LAKE
RESERVOIR ROUTING MINES LAKE
TAMS JOB NO. 1478-1B DEC 1978
SPE

INPUT PARAMETERS

STARTING ELEV. (FT.)	TIME INTERVAL (HOURS)	STARTING TIME (HOURS)	ENDING TIME (HOURS)	PRINT INTERVAL (HOURS)	GATE OPTION	PLOT OPTION	STORAGE COEF.	OUTFLOW COEF.	INFLOW COEF.	TIME COEF.	BREAK TIME
48.63	0.25	0.00	11.75	1	NO	NO	1.000	1.000	1.000	1.000	0.000

RESERVOIR ELEV. (FT.)	RESERVOIR STORAGE (ACRES)	RESERVOIR OUTFLOW (CCFS)
48.63	0.0000	0.00
49.33	33.6000	224.00
50.33	85.5000	840.00
51.03	124.6000	1420.00
51.33	142.0000	1694.00
52.33	203.1000	2738.00
54.33	339.1000	5605.00
56.33	493.6000	9380.00

TIME (HRS.)	INFLOW (CFS)	OUTFLOW (CFS)	STORAGE (ACFS)	ELEVATION (FT.)
0.00	0.00	0.00	0.0000	48.43
0.25	138.40	8.90	1.3356	48.45
0.50	156.40	26.72	4.0087	48.71
0.75	171.10	44.35	6.6535	48.76
1.00	183.40	61.45	9.2185	48.82
1.25	285.80	83.73	12.5604	48.89
1.50	308.60	111.20	16.6805	48.97
1.75	445.25	145.25	21.7885	49.08
2.00	666.10	197.92	29.6894	49.24
2.25	888.90	307.39	40.6264	49.46
2.50	1191.80	466.78	54.0557	49.72
2.75	1239.00	629.58	67.7719	49.98
3.00	1994.90	845.30	85.8577	50.33
3.25	3481.70	1344.95	119.5410	50.93
3.50	4245.80	2157.45	169.1239	51.77
3.75	5812.80	3179.18	224.0261	52.63
4.00	6545.60	4236.10	274.2596	53.37
4.25	7168.10	5162.45	318.1071	54.02
4.50	7569.10	593.02	354.9808	54.53
4.75	7757.40	6658.62	382.2219	54.88
5.00	7755.50	7093.51	400.0207	55.11
5.25	7635.80	7332.04	409.7830	55.24
5.50	7423.60	7410.34	612.9875	55.28
5.75	7141.30	7359.67	410.9140	55.25
6.00	6936.70	7232.64	405.7149	55.19
6.25	6247.20	6978.83	395.3233	55.05
6.50	5604.90	6579.61	378.9882	54.87
6.75	5100.60	6111.43	359.8268	54.59
7.00	4545.30	5601.34	338.9268	54.32
7.25	4043.60	5140.04	317.0444	54.00
7.50	3568.60	4669.20	294.7091	53.67
7.75	3100.70	4198.13	272.2632	53.34
8.00	2643.20	3730.03	250.1582	53.02
8.25	2216.76	3271.13	228.3900	52.70
8.50	1830.50	2830.79	207.506	52.39
8.75	1496.60	2470.57	187.2490	52.07
9.00	1280.69	2148.79	168.6167	51.76
9.25	1117.60	1866.35	152.0889	51.49
9.50	963.70	1626.20	137.6945	51.25
9.75	821.49	1422.46	124.7566	51.03
10.00	692.50	1246.69	112.9168	50.82
10.25	576.60	1085.12	102.0245	50.62
10.50	474.10	937.37	92.0661	50.44
10.75	384.10	810.25	82.9938	50.28
11.00	306.50	709.14	74.4748	50.11
11.25	4.57	588.75	66.3316	49.92
11.50	3.90	661.64	53.6220	49.71
11.75	1.60	361.64	45.2141	49.55
MAX. VALUES	7757.40	7410.34		55.28
MIN. VALUES	0.00	0.00		48.63

TAMS

Job No. 1487-1 Sheet 16 of _____
 Project INSPECTION Date DEC 4- 1970
 Subject L/H for direct infiltration sign-b. By D.L.C.
VI -- INFLOW INTO GILWELL LKE. Chk. by _____

$$\text{AREA} = 1.79 \text{ sq miles} = 1146.2 \text{ acres}$$

$$L = 2.42 \text{ miles } L_{CA} = 1.10 \text{ miles}$$

$$\text{Assume } C_I = 2.0 \quad \text{et } 640 C_p = 400$$

$$t_p = C_I (L L_{CA})^{0.3} = 2.68 \text{ hrs}$$

$$t_r = t_p / 5.5 = 0.49 \text{ hrs } (\text{use } 0.50)$$

$$g_p = 640 C_p / t_p = \frac{400}{2.68} = 149.25$$

$$Q_p = 149.25 \times 1.79 = 267.2 \text{ cfs.}$$

Sub-basin VI

$$\text{AREA} = 0.728 \text{ sq mi} / 465.9 \text{ acre}$$

$$L 1.33 \text{ miles. } L_{CA} = 0.44 \text{ miles.}$$

$$\text{Assume } C_I = 2.0 \quad 640 C_p = 400.$$

$$t_p = 0.85 \quad t_r = t_p / 5.5 = 0.15 \quad (\text{use } t_r = 0.25)$$

$$t_{pr} = 0.85 + 0.25(0.25 - 0.15) = 0.85 + 0.025 \\ = 0.875 \text{ hrs} / 52.5 \text{ min}$$

$$g_{pr} = 640 C_p / t_{pr} = \frac{400}{0.875} = 457. \text{ cfs/ sq mi.}$$

$$Q_p = 332.7 \text{ cfs.}$$

TAMS

Job No. 1487-18 Sheet 17 of _____
Project INSPECTION Date Nov. 1 1973
Subject INFLOW - LAKE & ADJACENT LAND AREA. By Dale G.
THE E XI Ch'k. by _____

Lake Area. 131 acres / 0.205 sq mi 30.8
Adjacent Land area (XI) 298.7 acres / 0.46 sq mi 69.2
 Σ 429.7 acres / 0.665 sq mi

6HR PMP 19.52"

Assuming 0.2"/hour loss on adj land area

Excess - 18.32"

Weighted excess rainfall =

$$(.692 \times 18.32) + (.308 \times 19.52)$$
$$= 18.69"$$

TAMS

Job No. 1437-18

Project INSPECTION STILWELL LAKE

Subject UNIT HYDROGRAPHS FOR DEEP HOLLOW
SUB-BASIN III

Sheet 13 of _____

Date DEC 4, 1971

By DLC

Ch'k. by _____

TAMS

Job No. 1487-1B

Sheet 19 of _____

Project INSPECTION STILWELL LAKE

Date Dec 4, 1975

Subject Unit Hydrograph Curves for DEEP
HOLLOW & SIS. SISN. TL

By D.L.C.

Ch'k. by _____

DEEP Hollow'		SUB-BASIN VI	
TIME (HRS)	Q (CFS)	TIME (HRS)	Q (CFS)
0	0	0	0
0.5	30	0.25	55
1.0	70	0.50	135
1.5	125	0.75	240
2.0	185	1.00	333
2.5	245	1.25	279
3.0	265	1.5	218
3.5	240	1.75	170
4.0	208	2.	130
4.5	177	2.25	104
5.0	155	2.5	75
5.5	133	2.75	55
6.0	115	3.	40
6.5	94	3.25	28
7.0	79	3.5	14
7.5	65	3.75	7
8.0	48	4.	0
8.5	34		
9.0	25		
9.5	15		
10.0	6		
10.5	0		

TAMS

Job No. 1487-16

Project INSPECTION STILWELL LAKE

Subject SPILLWAY ELEVATION DISCHARGE RELN
COMPUTATIONS

Sheet 20 of _____

Date DEC 8, 78

By D.L.C.

Chk. by _____

SPILLWAY LENGTH 160.0'

CREST EL. 602' (MSL)

"OGEE" shaped CREST.

* TOP OF DAM 617.8'
DAM LENGTH 480.0'

ELEV	HEAD	C _s	Q _s	H _D	C _D	Q _D	Q _T
602	0						
603	1.	3.95	632				632
604	2.		1788				1788
606	4.		5056				5056
608	6.		9288				9288
610	8.		14300				14300
612	10.		19990				19990
614	12.		26270				26270
*617.8	15.8	3.95	32400	0			39,692
620	18	3.94	48140	2.2	2.64	3084	51220
624	22	3.93	64880	6.2	2.64	14,590	79470

**

DAVIS

Job No. 1487-1B

Project INSPECTION STILWELL LAKE

Subject SPILLWAY RATING CURVE

Sheet 20a of _____

Date DEC 8, 78

By D.L.C.

Ch'k. by _____

TAMS

Job No. 1487-13
 Project INSPECTION SOTILWELL LAKE
 Subject _____
 Sheet 21 of _____
 Date Dec 11 1971.
 By DLC
 Chk. by _____

El.	STORAGES		
	(Million Gallons)	(Acre Feet)	Surcharge (Ac Fr)
602	627	1924.3	0
603	670	2056.23	131.9
604	710	2178.99	254.7
606	810	2485.89	561.6
608	910	2792.79	868.5
610	1010	3099.69	1175.4
612	1120	3437.28	1513.
614	1240	3805.56	1881.3
617.8	1455	4465.4	2541.1
620	1620	4971.8	3047.5
624.	1920	5892.5	3968.2

Storage supplied by

TOTAL RUN-OFF		MINE LAKE	
ME OUTS)	COMPUTED (CFS)	SPF OUTFLOW (CFS)	
0.000	0.0		0.0
0.250	270.2	8.90	279.1
0.500	322.6	26.72	349.3
0.750	387.1	44.35	426.1
1.000	458.2	61.45	519.7
1.250	697.8	83.73	781.5
1.500	773.4	111.20	884.6
1.750	1062.5	145.25	1207.8
2.000	1509.0	197.92	1706.9
2.250	1991.0	307.39	2298.4
2.500	2639.4	466.78	3106.2
2.750	2851.0	629.58	3480.6
3.000	2948.5	845.30	3193.8
3.250	2985.6	1344.95	4330.6
3.500	3018.9	2157.45	5176.4
3.750	2975.1	3179.18	6154.3
4.000	2954.0	4238.10	7192.1
4.250	2923.2	5162.45	8085.7
4.500	2910.2	5993.02	8903.2
4.750	2870.5	6058.62	9529.1
5.000	2844.8	7093.51	9938.3
5.250	2790.6	7332.04	10122.6
5.500	2760.0	7410.34	10170.3
5.750	2656.2	7359.67	10015.9
6.000	2598.1	7232.64	9830.7
6.250	2181.7	6978.83	9160.5
6.500	2085.3	6579.61	8664.9
6.750	1962.4	6111.43	8073.8
7.000	1830.9	5601.34	7432.2
7.250	1703.2	5140.04	6843.2
7.500	1590.8	4669.20	6260.0
7.750	1478.9	4198.13	5677.0
8.000	1376.2	3730.03	5106.2
8.250	1269.0	3271.13	4540.2
8.500	1167.7	2830.79	3998.5
8.750	1069.3	2470.57	3539.9
9.000	973.9	2148.79	3122.7
9.250	887.6	1866.35	2754.0
9.500	803.9	1626.20	2430.1
9.750	728.0	1422.46	2150.5
10.000	653.4	1246.69	1900.1
10.250	586.0	1085.12	1671.1
10.500	518.5	937.37	1455.9
10.750	459.5	810.25	1269.8
11.000	400.5	709.14	1109.6
11.250	349.5	588.75	938.3
11.500	298.5	461.64	760.1
11.750	254.6	361.84	616.4
12.000	210.8		
12.250	175.8		
12.500	140.8		
12.750	115.2		
13.000	89.6		

STILLWELL LAKE SAFETY INSPECTION
 RESERVOIR ROUTING STILLWELL LAKE
 TAMS NEW YORK JOB NO. 1487-17 DEC 78
 STANDARD PROJECT FLOOD

INPUT PARAMETERS

STARTING ELEV. C.FT.)	TIME INTERVAL (HOURS)	STARTING TIME (HOURS)	ENDING TIME (HOURS)	PRINT INTERVAL OPTION	GATE COEF.	STORAGE COEF.	OUTFLOW COEF.	INFLOW COEF.	TIME COEF.	SPEAK TIME
602.00	0.25	0.00	11.75	1	NO	YES	1.000	1.000	1.000	0.000

RESERVOIR ELEV. (FT.)	RESERVOIR STORAGE (ACFT.)	RESERVOIR OUTFLOW (SCFS)
602.00	0.0000	0.00
603.00	131.9000	632.00
604.00	254.7000	1788.00
606.00	561.6000	5056.00
608.00	868.5001	9228.00
610.00	1175.4001	14300.00
612.00	1513.0002	19990.00
614.00	1881.3000	26270.00

TIME (HRS)	INFLOW (CFS)	OUTFLOW (CFS)	STORAGE (ACRES) ft. ³	ELEVATION (FT.)
0.00	0.00	-	-	-
0.25	272.10	13.15	0.0000	602.00
0.50	349.30	41.52	2.7451	602.02
0.75	426.10	74.15	8.6671	602.06
1.00	512.70	114.74	15.4767	602.11
1.25	781.50	162.53	23.3205	602.17
1.50	884.60	225.73	33.9206	602.25
1.75	1207.80	303.06	47.1106	602.35
2.00	1706.90	411.86	63.2304	602.47
2.25	2298.40	561.80	85.9567	602.65
2.50	3106.20	882.58	117.2497	602.88
2.75	3480.60	1376.69	158.5188	603.21
3.00	3793.80	1720.23	203.7839	603.58
3.25	4350.60	2175.35	247.5035	603.94
3.50	5176.40	2694.50	291.0771	604.23
3.75	6154.30	3273.16	338.899	604.54
4.00	7192.10	3944.62	394.1732	604.90
4.25	8085.70	4674.18	457.2296	605.31
4.50	8903.20	5532.29	525.7431	605.76
4.75	9529.10	6445.52	596.1402	606.22
5.00	9938.30	7260.66	662.3668	606.65
5.25	10122.60	7947.29	721.4799	607.04
5.50	10170.30	8492.46	771.2738	607.36
5.75	10015.90	8899.26	810.8090	607.62
6.00	9830.70	9145.40	839.5843	607.81
6.25	9160.50	9232.36	858.1737	607.93
6.50	8664.90	9153.32	864.4656	607.97
6.75	8073.80	8958.82	844.6285	607.84
7.00	7432.20	8659.83	822.9508	607.70
7.25	6843.20	8282.54	795.5854	607.52
7.50	6260.00	7853.44	764.4674	607.32
7.75	5677.00	7386.16	730.5908	607.10
8.00	5160.20	6496.40	695.2089	606.87
8.25	4540.20	6390.65	658.3874	606.63
8.50	3998.50	5864.77	620.2512	606.32
8.75	3539.90	5345.28	582.5784	606.13
9.00	3122.70	4892.05	546.2036	605.9
9.25	2754.00	4506.22	509.9707	605.6
9.50	2430.10	4126.20	474.4705	605.43
9.75	2150.50	3765.25	440.3850	605.21
10.00	1900.10	3421.63	408.1161	604.99
10.25	1671.10	3098.54	377.7744	604.80
10.50	1455.90	2705.40	349.3056	604.61
10.75	1269.80	2512.49	322.7377	604.44
11.00	1109.60	2251.26	298.2054	604.28
11.25	938.30	2008.88	275.4438	604.13
11.50	760.10	1780.77	253.9327	603.99
11.75	616.40	1587.67	233.4196	603.82
MAX. VALUES	10170.30	9232.36		607.97
MIN. VALUES	0.00	0.00		602.00

TIME-HGS

PMF INFLOW HYDROGRAPH

MINE LAKE

TIME (HOURS)	TOTAL RUN-OFF COMPUTED (CFS)	PMF	
		OUTFLOW (CFS)	
0.000	0.0		0.0
0.250	540.5	17.80	558.3
0.500	645.2	53.45	698.7
0.750	774.3	88.72	863.0
1.000	916.4	122.93	1039.3
1.250	1395.7	167.48	1563.2
1.500	1546.9	222.42	1769.3
1.750	2125.1	336.53	2461.6
2.000	3018.1	640.24	3658.3
2.250	3982.1	1172.75	5154.9
2.500	5278.9	2032.52	7311.4
2.750	5702.1	3981.82	9683.9
3.000	5897.0	7040.37	12937.4
3.250	5971.2	10870.50	16841.7
3.500	6037.8	14714.03	20751.8
3.750	5950.3	17530.84	23481.1
4.000	5908.1	19316.69	25224.8
4.250	5846.5	20252.73	26099.2
4.500	5820.4	20470.91	26291.3
4.750	5741.0	20275.17	26016.2
5.000	5689.6	19845.47	25535.1
5.250	5581.3	19237.39	24818.7
5.500	5520.1	18526.80	24046.9
5.750	5312.5	17786.93	23099.4
6.000	5196.3	17063.86	22260.2
6.250	4363.4	15880.87	20244.3
6.500	4170.7	14367.03	18537.7
6.750	3924.9	13063.13	16988.0
7.000	3661.8	11835.10	15496.9
7.250	3406.4	10640.13	14046.5
7.500	3181.6	9494.78	12676.4
7.750	2957.9	8407.74	11365.6
8.000	2752.5	7371.90	10124.4
8.250	2538.0	6388.38	8926.4
8.500	2335.5	5485.00	7820.5
8.750	2138.6	4727.01	6865.6
9.000	1947.9	4017.51	5965.4
9.250	1775.2	3374.03	5149.2
9.500	1607.8	2803.58	4411.4
9.750	1456.0	2382.74	3838.7
10.000	1306.8	2028.28	3335.1
10.250	1172.0	1727.73	2899.7
10.500	1037.1	1483.37	2520.5
10.750	919.1	1275.34	2194.4
11.000	801.0	1089.72	1890.7
11.250	699.1	871.22	1570.3
11.500	597.1	679.11	1276.2
11.750	509.3	532.62	1041.9
12.000	421.6		
12.250	351.6		

STILLWELL LAKE SAFETY INSPECTION
 RESERVOIR RCUTING STILLWELL LAKE
 TAMS NEW YORK JOB NO. 1487-17 DEC 78
 PROBABLE MAXIMUM FLOOD

INPUT PARAMETERS

STARTING ELEV. INTERVAL (FT.)	TIME TYPE (HOURS)	STARTING TIME (HOURS)	ENDING TIME (HOURS)	PRINT INTERVAL (HOURS)	GATE OPTION	PLOT OPTION	STORAGE COEF.	OUTFLOW COEF.	BREAK TIME
802.00	0.25	0.00	11.75	1	NO	YES	1.000	1.000	0.000

RESERVOIR ELEV. (FT.)	RESERVOIR STORAGE (ACFT)	RESERVOIR OUTFLOW (CFS)
602.00	0.0000	0.00
603.00	131.9000	632.00
604.00	254.7000	1788.00
606.00	561.6000	5056.00
608.00	865.5001	9228.00
610.00	1175.4001	14300.00
612.00	1513.0002	19920.00
614.00	1881.3000	26270.00

	MAX. VALUES	MIN. VALVES
TIME (HRS)	26291.30	24275.04
	0.00	0.00

TIME (HRS)	INFLOW (CFS)	OUTFLOW (CFS)	STORAGE (ACFS)	ELEVATION (FT.)
0.00	0.00		0.0000	602.00
0.25	556.30	26.31	5.4912	602.04
0.50	698.70	83.07	17.3371	602.13
0.75	863.00	148.84	21.0633	602.23
1.00	1032.30	224.46	46.8458	602.35
1.25	1163.20	325.95	68.0277	602.51
1.50	1769.30	452.28	94.5931	602.71
1.75	2461.60	609.04	127.1098	602.96
2.00	3658.30	1023.42	172.405	603.33
2.25	5154.90	1621.39	237.0023	603.85
2.50	7311.40	2513.96	322.8763	604.44
2.75	9683.90	3695.64	433.8485	605.16
3.00	12937.40	5239.69	574.9217	606.08
3.25	16841.70	7631.90	748.7018	607.21
3.50	20751.60	10592.79	948.3956	608.52
3.75	23421.10	13892.05	1150.4770	609.83
4.00	26224.80	16558.46	1333.1325	610.93
4.25	26099.20	19517.49	1484.9653	611.83
4.50	26291.30	21495.92	1601.2173	612.47
4.75	26016.20	22878.77	1682.4167	612.92
5.00	25535.10	23738.82	1732.8554	613.19
5.25	24818.70	24165.76	1757.8142	613.32
5.50	24046.90	24245.50	1762.5434	613.35
5.75	23099.40	24045.56	1750.8447	613.29
6.00	22660.20	23640.08	1727.0647	613.16
6.25	20244.30	22931.16	1685.4396	612.93
6.50	18557.70	21180.12	1623.2496	612.60
6.75	16923.00	20657.75	1552.1618	612.21
7.00	1596.90	19353.72	1475.5171	611.77
7.25	14046.50	18105.55	1395.3171	611.30
7.50	12676.40	16440.78	1314.2836	610.82
7.75	11365.60	15282.46	1233.6916	610.34
8.00	10124.40	13956.61	1154.4960	609.85
8.25	8926.40	12689.13	1076.7622	609.35
8.50	7620.50	11453.32	1001.0891	608.86
8.75	6865.60	10276.32	929.0179	608.39
9.00	5965.40	9186.02	861.2501	607.95
9.25	5149.20	8287.96	795.9786	607.52
9.50	7441.40	7716.41	732.5195	607.11
9.75	3838.70	6107.98	673.7131	606.73
10.00	3335.10	5554.54	619.5094	606.37
10.25	2890.70	5176.00	570.3023	606.05
10.50	2520.50	4666.28	525.0015	605.76
10.75	2194.40	4210.32	482.1822	605.48
11.00	1890.70	3782.22	441.9790	605.22
11.25	1570.30	3377.04	403.9260	604.97
11.50	1276.20	2991.19	367.6932	604.73
11.75	1041.90	2629.37	333.7145	604.51

STILWELL LAKE - PMF