Advancements in Graph Bandwidth Reduction

Luis M. B. Varona^{1,2,3} and Nathaniel Johnston²
MountAllison

¹Dept. of Politics & International Relations, MtA
²Dept. of Mathematics & Computer Science, MtA
³Dept. of Economics, MtA

Science Atlantic – Mathematics, Statistics, & Computer Science (MSCS) 2025 Cape Breton University, Sydney, NS, Canada

October 18, 2025

Graph Bandwidth

Definition (Layout)

Let G=(V,E) be a graph* with |V|=n. A layout of G is a bijection from $V \hookrightarrow \{0,1,\dots,n-1\}.$

Definition (Graph bandwidth)

Let G=(V,E) be a graph* with |V|=n. The **bandwidth** $\beta(G,\pi)$ of G under a layout π is the maximum $k\in\{0,1,\ldots,n-1\}$ such that $|\pi(u)-\pi(v)|\leq k$ for all $\{u,v\}\in E$. The **minimum** bandwidth $\beta(G)$ of G is $\min\beta(G,\pi)$ taken over all layouts π .

- Empty graphs: $\beta\left(\overline{K_n}\right) = 0$
- Path graphs: $\beta(P_n) = 1$
- Complete graphs: $\beta(K_n) = n 1$

^{*}We use "graph" to refer specifically to a simple undirected graph.

Graph Bandwidth

Definition (Layout)

Let G=(V,E) be a graph* with |V|=n. A layout of G is a bijection from $V \hookrightarrow \{0,1,\dots,n-1\}.$

Definition (Graph bandwidth)

Let G=(V,E) be a graph* with |V|=n. The bandwidth $\beta(G,\pi)$ of G under a layout π is the maximum $k\in\{0,1,\dots,n-1\}$ such that $|\pi(u)-\pi(v)|\leq k$ for all $\{u,v\}\in E$. The minimum bandwidth $\beta(G)$ of G is $\min\beta(G,\pi)$ taken over all layouts π .

- Empty graphs: $\beta(\overline{K_n}) = 0$
- Path graphs: $\beta(P_n) = 1$
- Complete graphs: $\beta(K_n) = n 1$

^{*}We use "graph" to refer specifically to a simple undirected graph.

Graph Bandwidth

Definition (Layout)

Let G=(V,E) be a graph* with |V|=n. A layout of G is a bijection from $V \hookrightarrow \{0,1,\dots,n-1\}.$

Definition (Graph bandwidth)

Let G=(V,E) be a graph* with |V|=n. The bandwidth $\beta(G,\pi)$ of G under a layout π is the maximum $k\in\{0,1,\dots,n-1\}$ such that $|\pi(u)-\pi(v)|\leq k$ for all $\{u,v\}\in E$. The minimum bandwidth $\beta(G)$ of G is $\min\beta(G,\pi)$ taken over all layouts π .

- Empty graphs: $\beta\left(\overline{K_n}\right) = 0$
- Path graphs: $\beta(P_n) = 1$
- Complete graphs: $\beta(K_n) = n 1$

^{*}We use "graph" to refer specifically to a simple undirected graph.

Theoreticians usually think in terms of graphs, but computational scientists often formulate bandwidth as a matrix-theoretic concept:

Definition (Matrix bandwidth)

- Often, A is structurally symmetric: $A_{i,j} = 0 \iff A_{j,i} = 0$
- If A is the adjacency matrix of a graph G (ignoring weights and diagonal entries), then $\beta(A)=\beta(G)$

Theoreticians usually think in terms of graphs, but computational scientists often formulate bandwidth as a matrix-theoretic concept:

Definition (Matrix bandwidth)

- Often, A is structurally symmetric: $A_{i,j} = 0 \iff A_{j,i} = 0$
- If A is the adjacency matrix of a graph G (ignoring weights and diagonal entries), then $\beta(A)=\beta(G)$

Theoreticians usually think in terms of graphs, but computational scientists often formulate bandwidth as a matrix-theoretic concept:

Definition (Matrix bandwidth)

- Often, A is structurally symmetric: $A_{i,j} = 0 \iff A_{j,i} = 0$
- If A is the adjacency matrix of a graph G (ignoring weights and diagonal entries), then $\beta(A) = \beta(G)$

Theoreticians usually think in terms of graphs, but computational scientists often formulate bandwidth as a matrix-theoretic concept:

Definition (Matrix bandwidth)

- Often, A is structurally symmetric: $A_{i,j} = 0 \iff A_{j,i} = 0$
- If A is the adjacency matrix of a graph G (ignoring weights and diagonal entries), then $\beta(A)=\beta(G)$

Bandwidth Reduction Example

Figure 1: A 60×60 sparse matrix with original bandwidth 51.

Figure 2: Bandwidth reduced to 5 by the **Gibbs-Poole-Stockmeyer** heuristic algorithm.

- approximating partial differential equations...
- optimizing circuit layout...
- training recurrent neural networks...
- even investigating operators in quantum information theory!

- approximating partial differential equations...
- optimizing circuit layout...
- training recurrent neural networks...
- even investigating operators in quantum information theory!

- approximating partial differential equations...
- optimizing circuit layout...
- training recurrent neural networks.
- even investigating operators in quantum information theory!

Figure 3: My cat, **Ash**, playing with circuit-related things... <3

- approximating partial differential equations...
- optimizing circuit layout...
- training recurrent neural networks...
- even investigating operators in quantum information theory!

Figure 3: My cat, **Ash**, playing with circuit-related things... <3

- approximating partial differential equations...
- optimizing circuit layout...
- training recurrent neural networks...
- even investigating operators in quantum information theory!

Figure 3: My cat, **Ash**, playing with circuit-related things... <3

Types of Reduction Problems

Let G=(V,E) be a graph with |V|=n nodes, |E|=m edges.

- Bandwidth recognition: For a fixed k, determine whether there exists a layout π of G with $\beta(G,\pi) \leq k O(n^k)$
- Bandwidth minimization: Find a layout π of G that minimizes (or gets close to minimizing) $\beta(G,\pi)$
 - Exact algorithms: Find a layout π of G that truly minimizes $\beta(G,\pi)$ NP-complete
 - (Meta)heuristic algorithms: Find a layout π of G that approximately minimizes $\beta(G,\pi)$ typically O(mn) or $O(n^3)$

Types of Reduction Problems

Let G=(V,E) be a graph with |V|=n nodes, |E|=m edges.

- Bandwidth recognition: For a fixed k, determine whether there exists a layout π of G with $\beta(G,\pi) \leq k O(n^k)$
- Bandwidth minimization: Find a layout π of G that minimizes (or gets close to minimizing) $\beta(G,\pi)$
 - Exact algorithms: Find a layout π of G that truly minimizes $\beta(G,\pi)$ NP-complete
 - (Meta)heuristic algorithms: Find a layout π of G that approximately minimizes $\beta(G,\pi)$ typically O(mn) or $O(n^3)$

Types of Reduction Problems

Let G=(V,E) be a graph with $\lvert V \rvert = n$ nodes, $\lvert E \rvert = m$ edges.

- Bandwidth recognition: For a fixed k, determine whether there exists a layout π of G with $\beta(G,\pi) \leq k O(n^k)$
- Bandwidth minimization: Find a layout π of G that minimizes (or gets close to minimizing) $\beta(G,\pi)$
 - Exact algorithms: Find a layout π of G that truly minimizes $\beta(G,\pi)$ NP-complete
 - (Meta)heuristic algorithms: Find a layout π of G that approximately minimizes $\beta(G,\pi)$ typically O(mn) or $O(n^3)$

- In open-source, only reverse Cuthill-McKee (older, less efficient heuristic algorithm from 1971) is widely available
- In industry: Want to apply performant modern alternatives
- In academia: Want to benchmark new algorithm ideas; often also need recognition/exact minimization (e.g., to bound a density matrix's factor width in quantum information theory)
- I have created MatrixBandwidth.jl*, a unified Julia interface for recognition, exact minimization, and (meta)heuristic minimization algorithms for bandwidth reduction
- Now using it to investigate partial layout priority heuristics for bandwidth recognition algorithms...

^{*}Available on the official Julia package registry and at https://www.github.com/Luis-Varona/MatrixBandwidth.jl

- In open-source, only reverse Cuthill-McKee (older, less efficient heuristic algorithm from 1971) is widely available
- In industry: Want to apply performant modern alternatives
- In academia: Want to benchmark new algorithm ideas; often also need recognition/exact minimization (e.g., to bound a density matrix's factor width in quantum information theory)
- I have created MatrixBandwidth.jl*, a unified Julia interface for recognition, exact minimization, and (meta)heuristic minimization algorithms for bandwidth reduction
- Now using it to investigate partial layout priority heuristics for bandwidth recognition algorithms...

^{*}Available on the official Julia package registry and at https://www.github.com/Luis-Varona/MatrixBandwidth.jl

- In open-source, only reverse Cuthill-McKee (older, less efficient heuristic algorithm from 1971) is widely available
- In industry: Want to apply performant modern alternatives
- In academia: Want to benchmark new algorithm ideas; often also need recognition/exact minimization (e.g., to bound a density matrix's factor width in quantum information theory)
- I have created MatrixBandwidth.jl*, a unified Julia interface for recognition, exact minimization, and (meta)heuristic minimization algorithms for bandwidth reduction
- Now using it to investigate partial layout priority heuristics for bandwidth recognition algorithms...

^{*}Available on the official Julia package registry and at https://www.github.com/Luis-Varona/MatrixBandwidth.jl

- In open-source, only reverse Cuthill-McKee (older, less efficient heuristic algorithm from 1971) is widely available
- In industry: Want to apply performant modern alternatives
- In academia: Want to benchmark new algorithm ideas; often also need recognition/exact minimization (e.g., to bound a density matrix's factor width in quantum information theory)
- I have created MatrixBandwidth.jl*, a unified Julia interface for recognition, exact minimization, and (meta)heuristic minimization algorithms for bandwidth reduction
- Now using it to investigate partial layout priority heuristics for bandwidth recognition algorithms...

^{*}Available on the official Julia package registry and at https://www.github.com/Luis-Varona/MatrixBandwidth.jl

Definition (Partial layout)

Let G=(V,E) be a graph. A partial layout of G is a bijection from $U \hookrightarrow \{0,1,\ldots,m-1\}$ for some $U\subseteq V$ with |U|=m.

- ① If G violates an $O(n^3)$ "density" lower bound, return null.
- ② Initialize an empty queue Q for partial layouts of G and insert the empty partial layout $\varphi:\emptyset\to\emptyset$.
- ① While Q is not empty: Extract a partial layout φ from Q.* If φ is a full layout, return φ . If φ does not violate certain constraints, extend it by one node to φ' and insert φ' into Q.
- \bigcirc If Q is emptied, return null

^{*}Step 3 is simplified here—state data associated with each partial layout is also stored in Q, used to validate bandwidth constraints. (See next slide.)

Definition (Partial layout)

Let G=(V,E) be a graph. A partial layout of G is a bijection from $U \hookrightarrow \{0,1,\ldots,m-1\}$ for some $U\subseteq V$ with |U|=m.

- ① If G violates an $O(n^3)$ "density" lower bound, return null.
- ② Initialize an empty queue Q for partial layouts of G and insert the empty partial layout $\varphi:\emptyset\to\emptyset$.
- ① While Q is not empty: Extract a partial layout φ from Q.* If φ is a full layout, return φ . If φ does not violate certain constraints, extend it by one node to φ' and insert φ' into Q.
- \bigcirc If Q is emptied, return null

^{*}Step 3 is simplified here—state data associated with each partial layout is also stored in Q, used to validate bandwidth constraints. (See next slide.)

Definition (Partial layout)

Let G=(V,E) be a graph. A partial layout of G is a bijection from $U \hookrightarrow \{0,1,\ldots,m-1\}$ for some $U\subseteq V$ with |U|=m.

- If G violates an $O(n^3)$ "density" lower bound, return null.
- ② Initialize an empty queue Q for partial layouts of G and insert the empty partial layout $\varphi:\emptyset\to\emptyset$.
- ① While Q is not empty: Extract a partial layout φ from Q.* If φ is a full layout, return φ . If φ does not violate certain constraints, extend it by one node to φ' and insert φ' into Q.
- \bigcirc If Q is emptied, return null.

^{*}Step 3 is simplified here—state data associated with each partial layout is also stored in Q, used to validate bandwidth constraints. (See next slide.)

Definition (Partial layout)

Let G=(V,E) be a graph. A partial layout of G is a bijection from $U \hookrightarrow \{0,1,\ldots,m-1\}$ for some $U\subseteq V$ with |U|=m.

- If G violates an $O(n^3)$ "density" lower bound, return null.
- ② Initialize an empty queue Q for partial layouts of G and insert the empty partial layout $\varphi:\emptyset\to\emptyset$.
- ① While Q is not empty: Extract a partial layout φ from Q.* If φ is a full layout, return φ . If φ does not violate certain constraints, extend it by one node to φ' and insert φ' into Q.
- \bigcirc If Q is emptied, return null.

^{*}Step 3 is simplified here—state data associated with each partial layout is also stored in Q, used to validate bandwidth constraints. (See next slide.)

Definition (Partial layout)

Let G=(V,E) be a graph. A partial layout of G is a bijection from $U \hookrightarrow \{0,1,\ldots,m-1\}$ for some $U\subseteq V$ with |U|=m.

- If G violates an $O(n^3)$ "density" lower bound, return null.
- ② Initialize an empty queue Q for partial layouts of G and insert the empty partial layout $\varphi:\emptyset\to\emptyset$.
- **③** While Q is not empty: Extract a partial layout φ from Q.* If φ is a full layout, return φ . If φ does not violate certain constraints, extend it by one node to φ' and insert φ' into Q.
- \bigcirc If Q is emptied, return null

^{*}Step 3 is simplified here—state data associated with each partial layout is also stored in Q, used to validate bandwidth constraints. (See next slide.)

Definition (Partial layout)

Let G=(V,E) be a graph. A partial layout of G is a bijection from $U \hookrightarrow \{0,1,\ldots,m-1\}$ for some $U\subseteq V$ with |U|=m.

- If G violates an $O(n^3)$ "density" lower bound, return null.
- ② Initialize an empty queue Q for partial layouts of G and insert the empty partial layout $\varphi:\emptyset\to\emptyset$.
- **③** While Q is not empty: Extract a partial layout φ from Q.* If φ is a full layout, return φ . If φ does not violate certain constraints, extend it by one node to φ' and insert φ' into Q.
- If Q is emptied, return null.

^{*}Step 3 is simplified here—state data associated with each partial layout is also stored in Q, used to validate bandwidth constraints. (See next slide.)

- ① placed is an array representation of the mapping (i.e., placed[i] = v implies $\varphi(v) = i$)
- 2 unplaced is a hash set consisting of the nodes in $V \setminus U$ with which we may extend φ to a full layout
- ③ latest is a hash map from each node $v \in V \setminus U$ to the latest position $i \in \{m, m+1, \dots, n-1\}$ it can occupy without violating the bandwidth-k constraint
- ① region is a another data structure tracking edges connecting U to $V \setminus U$, used to validate bandwidth constraints in Step 3

- placed is an array representation of the mapping (i.e., placed [i]=v implies $\varphi(v)=i$)
- ② unplaced is a hash set consisting of the nodes in $V \setminus U$ with which we may extend φ to a full layout
- ③ latest is a hash map from each node $v \in V \setminus U$ to the latest position $i \in \{m, m+1, \dots, n-1\}$ it can occupy without violating the bandwidth-k constraint
- ① region is a another data structure tracking edges connecting U to $V \setminus U$, used to validate bandwidth constraints in Step 3

- placed is an array representation of the mapping (i.e., placed[i] = v implies $\varphi(v) = i$)
- ② unplaced is a hash set consisting of the nodes in $V \setminus U$ with which we may extend φ to a full layout
- latest is a hash map from each node v ∈ V \ U to the latest position i ∈ {m, m + 1, ..., n − 1} it can occupy without violating the bandwidth-k constraint
- ① region is a another data structure tracking edges connecting U to $V \setminus U$, used to validate bandwidth constraints in Step 3

- placed is an array representation of the mapping (i.e., placed[i] = v implies $\varphi(v) = i$)
- ② unplaced is a hash set consisting of the nodes in $V \setminus U$ with which we may extend φ to a full layout
- latest is a hash map from each node v ∈ V \ U to the latest position i ∈ {m, m + 1, ..., n − 1} it can occupy without violating the bandwidth-k constraint
- ① region is a another data structure tracking edges connecting U to $V \setminus U$, used to validate bandwidth constraints in Step 3

- placed is an array representation of the mapping (i.e., placed [i]=v implies $\varphi(v)=i$)
- ② unplaced is a hash set consisting of the nodes in $V \setminus U$ with which we may extend φ to a full layout
- **①** latest is a hash map from each node $v \in V \setminus U$ to the latest position $i \in \{m, m+1, \dots, n-1\}$ it can occupy without violating the bandwidth-k constraint
- **1 region** is a another data structure tracking edges connecting U to $V \setminus U$, used to validate bandwidth constraints in Step 3

We use MatrixBandwidth.jl to compare three **priority functions** for a state s, adapted from **constraint satisfaction problems**:

Least-active-nodes heuristic:

$$\mathtt{priority}_{\mathtt{lan}}(s) = \big| \big\{ v \in s.\mathtt{unplaced} : \exists u \in s.\mathtt{placed} \text{ with } \{u,v\} \in E \big\} \big|$$

Minimum-remaining-values heuristic:

$$\texttt{priority}_{\texttt{mrv}}(s) = \min\{s. \texttt{latest}[v] - | s. \texttt{placed}| : v \in s. \texttt{unplaced}\}$$

$$\texttt{priority}_{\texttt{trv}}(s) = \sum_{v \in s.\, \texttt{umplaced}} (s.\texttt{latest}[v] - |s.\texttt{placed}|)$$

We use MatrixBandwidth.jl to compare three **priority functions** for a state s, adapted from **constraint satisfaction problems**:

Least-active-nodes heuristic:

$$\mathtt{priority}_{\mathtt{lan}}(s) = \big| \big\{ v \in s.\mathtt{unplaced} : \exists u \in s.\mathtt{placed} \ \mathsf{with} \ \{u,v\} \in E \big\} \big|$$

Minimum-remaining-values heuristic:

$$\texttt{priority}_{\texttt{mrv}}(s) = \min\{s.\mathtt{latest}[v] - | s.\mathtt{placed}| : v \in s.\mathtt{unplaced}\}$$

$$\texttt{priority}_{\texttt{trv}}(s) = \sum_{v \in s.\, \texttt{umplaced}} (s.\texttt{latest}[v] - |s.\texttt{placed}|)$$

We use MatrixBandwidth.jl to compare three **priority functions** for a state s, adapted from **constraint satisfaction problems**:

Least-active-nodes heuristic:

$$\mathtt{priority}_{\mathtt{lan}}(s) = \big| \big\{ v \in s.\mathtt{unplaced} : \exists u \in s.\mathtt{placed} \ \mathtt{with} \ \{u,v\} \in E \big\} \big|$$

Minimum-remaining-values heuristic:

$$\texttt{priority}_{\texttt{mrv}}(s) = \min \big\{ s. \texttt{latest}[v] - |s. \texttt{placed}| : v \in s. \texttt{unplaced} \big\}$$

$$\texttt{priority}_{\texttt{trv}}(s) = \sum_{v \in s.\, \texttt{umplaced}} (s.\texttt{latest}[v] - |s.\texttt{placed}|)$$

We use MatrixBandwidth.jl to compare three **priority functions** for a state s, adapted from **constraint satisfaction problems**:

Least-active-nodes heuristic:

$$\mathtt{priority}_{\mathtt{lan}}(s) = \big| \big\{ v \in s.\mathtt{unplaced} : \exists u \in s.\mathtt{placed} \ \mathtt{with} \ \{u,v\} \in E \big\} \big|$$

Minimum-remaining-values heuristic:

$$\texttt{priority}_{\texttt{mrv}}(s) = \min\{s.\mathtt{latest}[v] - |s.\mathtt{placed}| : v \in s.\mathtt{unplaced}\}$$

$$\mathtt{priority}_{\mathtt{trv}}(s) = \sum_{v \in s.\,\mathtt{unplaced}} \bigl(s.\mathtt{latest}[v] - |s.\mathtt{placed}|\bigr)$$

Next Steps

Figure 4: Rebekka's dogs, Jonsi (right) and Timmy (left), being cute <3

Thank you!

Figure 5: Art by Rebekka Jonasson <3