Exploring Microsoft File Structures

- Need to understand Microsoft file structures
 - Clusters
 - File Allocation Table (FAT)
 - New Technology File System (NTFS)
- The method an OS uses to store files determines where data can be hidden

Exploring Microsoft File Structures

- In Microsoft file structures
 - Sectors are grouped to form clusters
 - Clusters are typically 512, 1024, 2048, 4096, or more bytes each
 - Combining sectors minimizes the overhead of writing or reading files to a disk
 - Clusters are numbered sequentially starting at 2
 - First sector of all disks contains a system area, the boot record, and a file structure database

Exploring Microsoft File Structures

- OS assigns these cluster numbers, called logical addresses
- Sector numbers are called physical addresses
- Clusters and their addresses are specific to a logical disk drive, which is a disk partition

Disk Partitions

- Hard disks are partitioned, or divided, into two or more sections
- A partition is a logical drive
 - Large disks have to be partitioned
 - FAT16 does not recognize disks larger than 2 GB
- Hidden partitions or voids
 - To hide data on a hard disk
 - Large unused gaps between partitions on a disk Partition
 gap
 - can be created between the primary partition and the first logical partition
 - Another technique hide incriminating digital evidence at the end of a disk

Disk Partitions

- Disk-editing tools
 - access these hidden areas
 - identify the OS on an unknown disk
 - view file headers and other critical parts of a file
 - Both tasks involve analyzing the key hexadecimal codes the OS uses to identify and maintain the file system
 - alter information in partition table to hide a partition
 - Norton Disk- Edit, WinHex, or Hex Workshop

Partitions

Partition Types

- NTFS: 07

- FAT: 06

- FAT32: 0B

- Windows + R
- diskmgmt.msc

Master Boot Record Structure

- Boot disk contains a file called the Master Boot Record (MBR)
- Stores information about partitions on a disk and their locations, size, and other important items
- Several software products can modify the MBR, such as Partition Magic's Boot Magic
- These boot partition utilities can interfere with some computer forensics acquisition tools

Partition Mark at Start of Volume

NTFS

• FAT32

File Allocation Table (FAT)

- File structure database
- Microsoft originally designed for floppy disks
- originally used 12 or 16 bits for each cluster
- It is used by the operating system (OS) to manage files on hard drives
- It is often also found on in flash memory, digital cameras and portable devices
- Used before Windows NT and 2000

- FAT database is typically written to a disk's outermost track and contains:
 - Filenames, directory names, date and time stamps, the starting cluster number, and file attributes
- FAT versions
 - FAT12, FAT16, FAT32, FATX (for Xbox), and VFAT

FAT Versions

- FAT12—for floppy disks, max size 16 MB
- FAT16—allows hard disk sizes up to 2 GB
- FAT32— allows hard disk sizes up to 2 TB
- FATX—For Xbox media
 - The date stamps start at the year 2000, unlike the other FAT formats that start at 1980
- VFAT (Virtual File Allocation Table)
 - Allows long file names on Windows (MS-DOS had 8.3 limitation)

- Cluster sizes vary according to the hard disk size and file system
- This table is for FAT-16

Table 6-2 Sectors and bytes per cluster

Drive size	Number of sectors per cluster	FAT16
0–32 MB	1	512 bytes
33–64 MB	2	1 KB
65–128 MB	4	2 KB
129–255 MB	8	4 KB
256–511 MB	16	8 KB
512–1023 MB	32	16 KB
1024-2047 MB	64	32 KB
2048–4095 MB	128	68 KB

- Microsoft OSs allocate disk space for files by clusters
 - Results in drive slack
 - Unused space in a cluster between the end of an active file and the end of the cluster
- Drive slack includes:
 - RAM slack and file slack
- An unintentional side effect of FAT16 having large clusters was that it reduced fragmentation
 - As cluster size increased

- When you run out of room for an allocated cluster
 - OS allocates another cluster for your file, which creates more slack space on the disk
- As files grow and require more disk space, assigned clusters are chained together
 - The chain can be broken or fragmented

- When the OS stores data in a FAT file system, it assigns a starting cluster position to a file
 - Data for the file is written to the first sector of the first assigned cluster
- When this first assigned cluster is filled and runs out of room
 - FAT assigns the next available cluster to the file
- If the next available cluster isn't contiguous to the current cluster
 - File becomes fragmented

Deleting FAT Files

- In Microsoft OSs, when a file is deleted
 - Directory entry is marked as a deleted file
 - With the HEX E5 (σ) character replacing the first letter of the filename
 - FAT chain for that file is set to 0
- Data in the file remains on the disk drive
- Area of the disk where the deleted file resides becomes unallocated disk space
 - Available to receive new data from newly created files or other files needing more space

Examining NTFS Disks

- New Technology File System (NTFS)
 - Introduced with Windows NT
 - Recommended file system for Windows
- Improvements over FAT file systems
 - NTFS provides more information about a file
 - NTFS gives more control over files and folders
- NTFS was Microsoft's move toward a journaling file system
 - system keeps track of transactions such as file deleting or saving

Examining NTFS Disks

- In NTFS, everything written to the disk is considered a file
- On an NTFS disk
 - First data set is the Partition Boot Sector
 - Next is Master File Table (MFT)
- NTFS results in much less file slack space
- Clusters are smaller for smaller disk drives
- NTFS also uses Unicode
 - An international data format

Examining NTFS Disks

Table 6-3 Cluster sizes in an NTFS disk

Drive size	Sectors per cluster	Cluster size
0–512 MB	1	512 bytes
512 MB–1 GB	2	1024 bytes
1–2 GB	4	2048 bytes
2–4 GB	8	4096 bytes
4–8 GB	16	8192 bytes
8–16 GB	32	16,384 bytes
16–32 GB	64	32,768 bytes
More than 32 GB	128	65,536 bytes

NTFS File System

- MFT
 - First file in NTFS
 - contains information about all files on the disk
 - Including the system files the OS uses
- In the MFT, the first 15 records are reserved for system files
- Records in the MFT are called metadata

NTFS File System

Table 6-4 Metadata records in the MFT

Filename	System file	Record position	Description
\$Mft	MFT	0	Base file record for each folder on the NTFS volume; other record positions in the MFT are allocated if more space is needed.
\$MftMirr	MFT 2	1	The first four records of the MFT are saved in this position. If a single sector fails in the first MFT, the records can be restored, allowing recovery of the MFT.
\$LogFile	Log file	2	Previous transactions are stored here to allow recovery after a system failure in the NTFS volume.
\$Volume	Volume	3	Information specific to the volume, such as label and version, is stored here.
\$AttrDef	Attribute definitions	4	A table listing attribute names, numbers, and definitions.
\$	Root file- name index	5	This is the root folder on the NTFS volume.

NTFS File System

Table 6-4 Metadata records in the MFT (continued)

Filename	System file	Record position	Description
\$Bitmap	Boot sector	6	A map of the NTFS volume showing which clusters are in use and which are available.
\$Boot	Boot sector	7	Used to mount the NTFS volume during the bootstrap process; additional code is listed here if it's the boot drive for the system.
\$BadClus	Bad cluster file	8	For clusters that have unrecoverable errors, an entry of the cluster location is made in this file.
\$Secure	Security file	9	Unique security descriptors for the volume are listed in this file. It's where the access control list (ACL) is maintained for all files and folders on the NTFS volume.
\$Upcase	Upcase table	10	Converts all lowercase characters to uppercase Unicode characters for the NTFS volume.
\$Extend	NTFS extension file	11	Optional extensions are listed here, such as quotas, object identifiers, and reparse point data.
		12–15	Reserved for future use.

MFT and File Attributes

- In the NTFS MFT
 - All files and folders are stored in separate records of 1024 bytes each
 - Each record contains file or folder information
 - This information is divided into record fields containing metadata
 - A record field is referred to as an attribute ID

MFT and File Attributes

- File or folder information is typically stored in one of two ways in an MFT record:
 - Resident
 - very small files, about 512 bytes or less, all file metadata and data are stored in the MFT record
 - Nonresident
 - Files larger than 512 bytes are stored outside the MFT
 - File record provides cluster addresses where the file is stored on the drive's partition
 - These cluster addresses are referred to as data runs
- Each MFT record starts with a header identifying it as a resident or nonresident attribute

Table 6-5 Attributes in the MFT

Table 0-5 Att	induces in the 741 1
Attribute ID	Purpose
0x10	\$Standard Information
	This field contains data on file creation, alterations, MFT changes, read
	dates and times, and DOS file permissions.
0×20	\$Attribute List
	Attributes that don't fit in the MFT (nonresident attributes) are listed
	here along with their locations.
0x30	\$File Name
	The long and short names for a file are contained here. Up to 255 Uni-
	code bytes are available for long filenames. For POSIX requirements,
	additional names or hard links can also be listed. Files with short filena-
	mes have only one attribute ID 0x30. Long filenames have two
	attribute ID 0x30s in the MFT record: one for the short name and one
	for the long name.
0x40	\$Object_ID (for Windows NT, it's named \$Volume_Version)
	Ownership and who has access rights to the file or folder are listed
	here. Every MFT record is assigned a unique GUID. Depending on your
	NTFS setup, some file records might not contain this attribute ID.
0x50	\$Security_Descriptor
	Contains the access control list (ACL) for the file.
0x60	\$Volume_Name
	The volume-unique file identifier is listed here. Not all files need this
	unique identifier.
0x70	\$Volume_Information
	This field indicates the version and state of the volume.
0x80	\$Data
	File data or data runs to nonresident files.
0x90	\$Index_Root
	Implemented for use of folders and indexes.
0×A0	\$Index_Allocation
	Implemented for use of folders and indexes.
OxBO	\$Bitmap
	Implemented for use of folders and indexes.
0xC0	\$Reparse_Point
	This field is used for volume mount points and Installable File System
	(IFS) filter drivers. For the IFS, it marks specific files used by drivers.
0xD0	\$EA_Information
	For use with OS2 HPFS file systems.
OxEO	\$EA
	For use with OS2 HPFS file systems.
0x100	\$Logged_Utility_Stream
0.100	
	This field is used by Encrypting File System in Windows 2000 and XP.
	, ,, ,

- A: All MFT records start with FILE0
- B: Start of attribute 0x10
- C: Length of attribute 0x10 (value 60)
- D: Start of attribute 0x30
- E: Length of attribute 0x30 (value 70)
- F: Start of attribute 0x40
- G: Length of attribute 0x40 (value 28)
- H: Start of attribute 0x80
- I: Length of attribute 0x80 (value 70)
- J: Attribute 0x80 resident flag
- K: Starting position of resident data

CourseSmart

Resident File Data in the MFT

Figure 6-10 File data for a resident file

This figure is a repeat of a portion of the previous one

Nonresident File's MFT Record

- A: Start of nonresident attribute 0x80
- B: Length of nonresident attribute 0x80
- C: Attribute 0x80 nonresident flag
- D: Starting point of data run
- E: End-of-record marker (FF FF FF FF) for the MFT record

Figure 6-11 Nonresident file in an MFT record

MFT and File Attributes

- When a disk is created as an NTFS file structure
 - OS assigns logical clusters to the entire disk partition
- These assigned clusters are called logical cluster numbers (LCNs)
 - Become the addresses that allow the MFT to link to nonresident files on the disk's partition

NTFS Data Streams

- Data streams
- In NTFS, a data stream becomes an additional file attribute
 - Allows the file to be associated with different applications

NTFS Compressed Files

- NTFS provides compression similar to FAT DriveSpace 3
- Under NTFS, files, folders, or entire volumes can be compressed
- Most computer forensics tools can uncompress and analyze compressed Windows data

NTFS Encrypting File System (EFS)

- Encrypting File System (EFS)
 - Introduced with Windows 2000
 - Implements a public key and private key method of encrypting files, folders, or disk volumes
- When EFS is used in Windows 2000
 - A recovery certificate is generated and sent to the local Windows administrator account
- Users can apply EFS to files stored on their local workstations or a remote server

Deleting NTFS Files

- When a file is deleted in Windows XP, 2000, or NT
 - The OS renames it and moves it to the Recycle Bin
- Can use the Del (delete) MS-DOS command
 - Eliminates the file from the MFT listing