

Python机器学习小案例源码

-- 骨科疾病预测

Robin

- 数据分析基本步骤
- 数据分析建模理论基础
- k-近邻算法
- 案例实战

- 客户提供
- 自动化收集
 - 网络爬虫
- 手动收集
 - ,调查问卷
- 途径
 - 公开信息
 - 外部数据库
 - 自有数据库
 - 调查问卷
 - 客户数据

- 数据分析基本步骤
- 数据分析建模理论基础
- k-近邻算法
- 案例实战

数据分析建模理论基础

定义

- Machine Learning is a type of Artificial Intelligence that provides computers with the ability to learn without being explicitly programmed.
- Provides various techniques that can learn from and make predictions on DATA.

数据分析建模理论基础

机器学习

• 训练集 vs 验证集 vs 测试集

Original dataset	Training set	Train the models
	Validation set	Select the best model
	Test set	Test the model
New	Data>	Model in production

- 数据分析基本步骤
- 数据分析建模理论基础
- k-近邻算法
- 案例实战

k-近邻算法

kNN (k-NearestNeighbor), k-近邻算法

- 是一种基于样本/实例的算法
- 步骤:
 - 1. 计算出测试样本和所有训练样本的距离;
 - 2. 为测试样本选择k个与其距离最小的训练样本;
 - 3. 统计出k个训练样本中大多数样本所属的分类;
 - 4. 这个分类就是待分类数据所属的分类

k-近邻算法

kNN (k-NearestNeighbor), k-近邻算法

- 需要明确的问题
 - 1. 相似性度量,如:欧氏距离等
 - 2. 紧邻点个数,通过交叉验证得到最优紧邻点个数
- kNN优缺点

优点	缺点
• 算法简单直观,易于实现	• 计算量较大,分类速度慢
• 不需要额外的数据,只依靠数据	• 需要预先指定k值
(样本)本身	

- 数据分析基本步骤
- 数据分析建模理论基础
- k-近邻算法
- 案例实战

实战案例

项目名称: python机器学习小案例源码一骨科疾病预测

• 请参考相应的配套代码及案例讲解文档

疑问

□问题答疑: http://www.xxwenda.com/

■可邀请老师或者其他人回答问题

小象问答邀请 @Robin_TY 回答问题

