SUJET n°2 (1 problème)

PROBLÈME (MINES MP 2016)

A. Une intégrale à paramètre

1. La fonction $\psi: u \mapsto \frac{\mathrm{e}^{-u}}{\sqrt{u}}$ est continue sur I par théorèmes généraux.

On a $\psi(u) \underset{u \to 0}{\sim} \frac{1}{u^{1/2}}$; or la fonction $u \mapsto \frac{1}{u^{1/2}}$ est une fonction de Riemann intégrable sur]0;1], donc par comparaison à une fonction positive, ψ est intégrable sur]0;1].

De plus, par croissances comparées, $u^2\psi(u) \underset{u\to +\infty}{\longrightarrow} 0$ donc $\psi(u) \underset{u\to +\infty}{=} o\left(\frac{1}{u^2}\right)$; or la fonction $u\mapsto \frac{1}{u^2}$ est une fonction de Riemann intégrable sur $[1\,;+\infty[$, donc par comparaison à une fonction positive, ψ est intégrable sur $[1\,;+\infty[$.

Ainsi, $\psi: u \mapsto \frac{\mathrm{e}^{-u}}{\sqrt{u}}$ est intégrable sur I.

2. Pour que F(x) existe, il faut au moins (conformément au programme) que la fonction $u \mapsto \frac{e^{-u}}{\sqrt{u(u+x)}}$ soit définie et continue par morceaux sur I, ce qui n'est réalisé que pour $x \ge 0$.

Pour x=0, on a $\frac{\mathrm{e}^{-u}}{\sqrt{u}(u+x)} \sim \frac{1}{u^{3/2}}$; or la fonction de Riemann $u\mapsto \frac{1}{u^{3/2}}$ n'est pas intégrable au

voisinage de 0, donc par comparaison de fonctions positives, il en est de même de $u \mapsto \frac{e^{-u}}{\sqrt{u(u+x)}}$

Enfin, si x > 0, $\frac{\mathrm{e}^{-u}}{\sqrt{u}(u+x)} \sim \frac{1}{u \to 0}$ et $\frac{\mathrm{e}^{-u}}{\sqrt{u}(u+x)} = \sigma\left(\frac{1}{u^2}\right)$, donc comme dans la question précédente on peut conclure que $u \mapsto \frac{\mathrm{e}^{-u}}{\sqrt{u}(u+x)}$ est intégrable sur I.

Conclusion : l'ensemble les valeurs de x pour les quelles F(x) est définie est $I=]0\,;+\infty[$.

- 3. Posons $f:(x,u)\in I^2\longmapsto \frac{\mathrm{e}^{-u}}{\sqrt{u}(u+x)}$
 - On a déjà vu que, pour tout $x \in I$, la fonction $u \longmapsto f(x,u) = \frac{\mathrm{e}^{-u}}{\sqrt{u}(u+x)}$ est continue et intégrable sur I.
 - Pour tout $u\in I$, la fonction $x\longmapsto \frac{\mathrm{e}^{-u}}{\sqrt{u}(u+x)}$ est de classe \mathscr{C}^1 sur I, et admet comme dérivée la fonction $x\longmapsto \frac{\partial f}{\partial x}(x,u)=\frac{-\mathrm{e}^{-u}}{\sqrt{u}(u+x)^2}$.
 - La fonction $u \mapsto \frac{\partial f}{\partial x}(x,u) = \frac{-\mathrm{e}^{-u}}{\sqrt{u}(u+x)^2}$ est continue (par morceaux) sur I.
 - Soit a > 0. On a l'hypothèse de domination :

$$\forall x \in [a; +\infty[, \forall u \in I, \left| \frac{\partial f}{\partial x}(x, u) \right| \leqslant \frac{e^{-u}}{\sqrt{u}(u+a)^2}$$

et la fonction $u\mapsto \frac{\mathrm{e}^{-u}}{\sqrt{u}(u+a)^2}$ est continue et intégrable sur $]0\,;+\infty[$ (la démonstration de l'intégrabilité étant analogue aux précédentes).

En conclusion, avec les hypothèses précédentes, le théorème de régularité des intégrales dépendant d'un paramètre permet d'affirmer que :

la fonction F est de classe \mathscr{C}^1 sur I et $F': x \longmapsto \int_0^{+\infty} \frac{-\mathrm{e}^{-u}}{\sqrt{u}(u+x)^2} \,\mathrm{d}u$.

4. Soit $x \in I$. En écrivant x = (u + x) - u on a :

$$xF'(x) = \int_0^{+\infty} \frac{-e^{-u}(x+u)}{\sqrt{u}(u+x)^2} du + \int_0^{+\infty} \frac{e^{-u}u}{\sqrt{u}(u+x)^2} du = \int_0^{+\infty} \frac{-e^{-u}}{\sqrt{u}(u+x)} du + \int_0^{+\infty} \frac{e^{-u}\sqrt{u}}{(u+x)^2} du.$$

soit:
$$xF'(x) = -F(x) + \int_0^{+\infty} \frac{e^{-u}\sqrt{u}}{(u+x)^2} du$$
.

On effectue une intégration par parties (les fonctions sont bien de classe \mathscr{C}^1):

$$\int_0^{+\infty} \frac{e^{-u} \sqrt{u}}{(u+x)^2} du = \left[\frac{-e^{-u} \sqrt{u}}{u+x} \right]_{u=0}^{u \to +\infty} + \int_0^{+\infty} \left(\frac{e^{-u}}{2\sqrt{u}(u+x)} - \frac{e^{-u} \sqrt{u}}{u+x} \right) u u,$$

et le terme entre crochets est nul par croissances comparées, ce qui valide l'intégration par parties. On a donc :

$$\int_0^{+\infty} \frac{e^{-u}\sqrt{u}}{(u+x)^2} du = \int_0^{+\infty} \frac{e^{-u}}{2\sqrt{u}(u+x)} du - \int_0^{+\infty} \frac{e^{-u}\sqrt{u}}{u+x} du = \frac{1}{2}F(x) - \int_0^{+\infty} \frac{e^{-u}\sqrt{u}}{u+x} du.$$

(on a bien le droit de couper l'intégrale en 2 car on a reconnu F(x), donc une intégrale convergente).

Ainsi:
$$xF'(x) = -\frac{1}{2}F(x) - \int_0^{+\infty} \frac{e^{-u}\sqrt{u}}{u+x} du$$

soit

$$xF'(x) - (x - \frac{1}{2})F(x) = \int_0^{+\infty} \frac{-xe^{-u}}{\sqrt{u}(u+x)} du - \int_0^{+\infty} \frac{e^{-u}\sqrt{u}}{u+x} du = \int_0^{+\infty} \frac{-(x+u)e^{-u}}{\sqrt{u}(u+x)} du = -K.$$

On a bien démontré : pour tout $x \in I$, $xF'(x) - (x - \frac{1}{2})F(x) = -K$.

5. La fonction G est de classe \mathscr{C}^1 par produit et on a :

$$G'(x) = \frac{1}{2\sqrt{x}}e^{-x}F(x) - \sqrt{x}e^{-x}F(x) + \sqrt{x}e^{-x}F'(x) = \frac{e^{-x}}{\sqrt{x}}\left(xF'(x) - (x - \frac{1}{2})F(x)\right)$$

donc
$$G'(x) = -K \frac{e^{-x}}{\sqrt{x}}$$

Il en résulte que la fonction $x \mapsto G(x) + K \cdot \int_0^x \frac{\mathrm{e}^{-t}}{\sqrt{t}} \, \mathrm{d}t$ est de dérivée nulle, donc est constante sur l'intervalle I.

Ainsi, il existe une constante réelle C telle que pour tout $x \in I$, $G(x) = C - K \cdot \int_0^x \frac{e^{-t}}{\sqrt{t}} dt$.

6. • Soit x > 0. On peut effectuer dans l'expression intégrale de G(x) le changement de variable affine u = tx qui conduit à :

$$G(x) = e^{-x} \int_0^{+\infty} \frac{xe^{-tx}}{\sqrt{t}(tx+x)} dt = e^{-x} \int_0^{+\infty} \frac{e^{-tx}}{\sqrt{t}(t+1)} dt.$$

On considère alors une suite $(x_n)_{n\in\mathbb{N}}$ à valeurs dans I qui converge vers 0.

Posons alors
$$f_n: t \mapsto \frac{e^{-tx_n}}{\sqrt{t(t+1)}}$$
, de sorte que $G(x_n) = \int_0^{+\infty} f_n$, et $f: t \mapsto \frac{1}{\sqrt{t(t+1)}}$.

On vérifie les hypothèses du théorème de convergence dominée :

- Les fonctions f_n sont continues (par morceaux) sur I.
- La suite $(f_n)_n$ converge simplement vers f sur I, et f est continue (par morceaux) sur I.
- De plus $f(t) \underset{t\to 0}{\sim} \frac{1}{t^{1/2}}$ et $f(t) \underset{t\to +\infty}{\sim} \frac{1}{t^{3/2}}$; ainsi comme dans la question 1., f est intégrable sur I, et on a l'hypothèse de domination :

$$\forall n \in \mathbb{N}, \ \forall t \in I, \ |f_n(t)| \leq f(t).$$

Le théorème de convergence dominée s'applique donc, et on a $\lim_{n \to +\infty} \int_I f_n = \int_I f$.

Par caractérisation séquentielle de la limite.

$$\lim_{x \to 0} G(x) = \lim_{x \to 0} \int_0^{+\infty} \frac{e^{-tx}}{\sqrt{t(t+1)}} dt = \int_0^{+\infty} \frac{1}{\sqrt{t(t+1)}} dt.$$

Il ne reste plus qu'à calculer cette intégrale, ce qui se fait classiquement en utilisant le changement de variable $v = \sqrt{t}$ (de classe \mathscr{C}^1 bijectif de \mathbb{R}_+^* sur \mathbb{R}_+^*):

$$\int_{0}^{+\infty} \frac{1}{\sqrt{t(t+1)}} dt = 2 \int_{0}^{+\infty} \frac{1}{v^2 + 1} dv = 2 \left[\arctan(v) \right]_{v=0}^{v \to +\infty} = \pi$$

- Pour x > 0, on a $0 \le G(x) = e^{-x} \int_0^{+\infty} \frac{e^{-tx}}{\sqrt{t}(t+1)} dt \le e^{-x} \int_0^{+\infty} \frac{1}{\sqrt{t}(t+1)} dt$, donc par théorème d'encadrement $\lim_{x \to +\infty} G(x) = 0$.
- La fonction $t\mapsto \frac{\mathrm{e}^{-t}}{\sqrt{t}}$ étant continue et intégrable sur I, on a $\lim_{x\to 0}\int_0^x \frac{\mathrm{e}^{-t}}{\sqrt{t}}\,\mathrm{d}t=0$, et puisque $G(x) = C - K \cdot \int_0^x \frac{\mathrm{e}^{-t}}{\sqrt{t}} \, \mathrm{d}t, \, \text{on a donc } C = \pi.$

Or
$$\lim_{x\to +\infty} \int_0^x \frac{\mathrm{e}^{-t}}{\sqrt{t}} \, \mathrm{d}t = \int_0^{+\infty} \frac{\mathrm{e}^{-t}}{\sqrt{t}} \, \mathrm{d}t = K$$
, donc $0 = \lim_{x\to +\infty} G(x) = \pi - K^2$, et puisque $K \geqslant 0$ par positivité de l'intégrale, on en tire : $K = \sqrt{\pi}$.

B. Étude de deux séries de fonctions

7. • Soit x > 0. Pour tout $n \ge 1$ on a $0 \le \frac{\mathrm{e}^{-nx}}{\sqrt{n}} \le \mathrm{e}^{-nx} = (\mathrm{e}^{-x})^n$. Or la série géométrique de terme général $(e^{-x})^n$ converge puisque $0 < e^{-x} < 1$, donc par comparaison de séries à termes positifs, il en est de même de la série $\sum_{n \in \mathbb{N}^*} \frac{e^{-nx}}{\sqrt{n}}$.

Rem: on pouvait aussi utiliser $\frac{e^{-nx}}{\sqrt{n}} = o\left(\frac{1}{n^2}\right)$.

- On utilise ici le théorème de continuité de la somme d'une série de fonctions.
- Pour $n \ge 1$, la fonction $u_n : x \mapsto \frac{e^{-nx}}{\sqrt{n}}$ est continue sur I par les théorèmes usuels.
- Soit a > 0. On a:

$$\forall x \in [a; +\infty[, \forall n \in \mathbb{N}^*, \left| \frac{e^{-nx}}{\sqrt{n}} \right| \leqslant \frac{e^{-na}}{\sqrt{n}}$$

donc $||u_n||_{\infty}^{[a;+\infty[} = \frac{e^{-na}}{\sqrt{n}}$, qui est le terme général d'une série convergente comme cela a déjà été vu.

Ainsi la série de fonctions $\sum_{n\geq 1} u_n$ converge normalement donc uniformément sur tout intervalle de la forme $[a; +\infty] \subset I$.

Il en résulte que f est continue sur tous ces intervalles donc sur leur réunion : f est définie et continue sur I.

• Soit x > 0. On a, par croissances comparées, $\lim_{n \to +\infty} n^2 \sqrt{n} e^{-nx} = 0$ donc $\sqrt{n} e^{-nx} = o\left(\frac{1}{n^2}\right)$. La série $\sum \frac{1}{n^2}$ étant une série à termes positifs convergente, on en déduit la convergence de la série

 $\sum_{n\geqslant 1} \sqrt{n} e^{-nx}.$

- On montre de la même manière que pour f (convergence normale sur tout intervalle $[a; +\infty[\subset I)$ que : g continue sur \overline{I} .
- 8. Soit $x \in I$, fixé. On considère la fonction $h: u \in I \mapsto \frac{e^{-ux}}{\sqrt{u}}$

Cette fonction est le produit des deux fonctions positives et décroissantes sur $I: u \mapsto \frac{1}{\sqrt{u}}$ et $u \mapsto e^{-ux}$ donc la fonction h est décroissante sur I, et comme dans la question $\mathbf{1}$, la fonction \dot{h} est continue et intégrable sur I.

On a alors:

$$\forall n \geqslant 1, \int_{n}^{n+1} h(u) du \leqslant h(n) \leqslant \int_{n-1}^{n} h(u) du$$

(l'inégalité de droite est licite pour n=1 puisque h intégrable).

En sommant pour n variant de 1 à $N \in \mathbb{N}^*$ on obtient, grâce à la relation de Chasles :

$$\int_1^{N+1} \frac{\mathrm{e}^{-ux}}{\sqrt{u}} \, \mathrm{d}u \leqslant \sum_{n=1}^N \frac{\mathrm{e}^{-nx}}{\sqrt{n}} \leqslant \int_0^N \frac{\mathrm{e}^{-ux}}{\sqrt{u}} \, \mathrm{d}u \,,$$

puis par passage à la limite quand $N \to +\infty$: $\int_1^{+\infty} \frac{\mathrm{e}^{-ux}}{\sqrt{u}} \, \mathrm{d}u \leqslant f(x) \leqslant \int_0^{+\infty} \frac{\mathrm{e}^{-ux}}{\sqrt{u}} \, \mathrm{d}u \,.$

• On effectue alors le changement de variable de classe \mathscr{C}^1 , strictement croissant et bijectif de \mathbb{R}_+^* sur \mathbb{R}_+^* : ux = t, d'où :

$$\int_{x}^{+\infty} \frac{\mathrm{e}^{-t}}{\sqrt{xt}} \, \mathrm{d}t \leqslant f(x) \leqslant \int_{0}^{+\infty} \frac{\mathrm{e}^{-t}}{\sqrt{xt}} \, \mathrm{d}t$$

donc par théorème d'encadrement $\lim_{x\to 0} \sqrt{x} f(x) = \int_0^{+\infty} \frac{\mathrm{e}^{-t}}{\sqrt{t}} \, \mathrm{d}t = K = \sqrt{\pi}$.

On en déduit l'équivalent : $f(x) \underset{x \to 0}{\sim} \sqrt{\frac{\pi}{x}}$.

- **9.** Posons pour $n \in \mathbb{N}^*$: $u_n = \sum_{k=1}^n \frac{1}{\sqrt{k}} 2\sqrt{n}$.
 - 1ère solution (classique, mais un peu lourde) Soit $n \in \mathbb{N}^*$. On a :

$$u_{n+1} - u_n = \left(\sum_{k=1}^{n+1} \frac{1}{\sqrt{k}} - 2\sqrt{n+1}\right) - \left(\sum_{k=1}^{n} \frac{1}{\sqrt{k}} - 2\sqrt{n}\right)$$

$$= \frac{1}{\sqrt{n+1}} + 2(\sqrt{n} - \sqrt{n+1})$$

$$= \frac{1}{\sqrt{n+1}} - \frac{2}{\sqrt{n} + \sqrt{n+1}} = \frac{\sqrt{n} - \sqrt{n+1}}{\sqrt{n(n+1) + n + 1}} \le 0$$

donc la suite $(u_n)_{n\in\mathbb{N}^*}$ est décroissante

En utilisant une comparaison série intégrale comme dans la question 8. on a

$$\sum_{k=1}^{n} \frac{1}{\sqrt{k}} \geqslant \int_{1}^{n+1} \frac{1}{\sqrt{t}} dt = 2\sqrt{n+1} - 2\sqrt{1}$$

donc
$$\sum_{k=1}^{n} \frac{1}{\sqrt{k}} - 2\sqrt{n} \ge 2\sqrt{n+1} - 2 - 2\sqrt{n} \ge -2$$
.

Ainsi la suite $(u_n)_{n\in\mathbb{N}^*}$ et minorée par -2; puisqu'elle est décroissante, elle converge.

• 2ème solution : bien plus jolie En reprenant le calcul ci-dessus,

$$u_{n+1} - u_n = \frac{\sqrt{n} - \sqrt{n+1}}{\sqrt{n(n+1)} + n + 1} = \frac{\sqrt{n}\left(1 - \sqrt{1 + \frac{1}{n}}\right)}{\sqrt{n(n+1)} + n + 1} \sim \frac{-\frac{\sqrt{n}}{2n}}{2n} = -\frac{1}{4n^{3/2}}$$

donc, par comparaison à une série de Riemann, la série $\sum (u_{n+1} - u_n)$ converge, et il est bien connu que cela équivaut à la convergence de la suite $(u_n)_{n \in \mathbb{N}^*}$.

10. • Le résultat de la question précédente montre qu'il existe un réel ℓ tel que $\lim_{n \to +\infty} \left(\sum_{k=1}^{n} \frac{1}{\sqrt{k}} - 2\sqrt{n} \right) = \ell$ soit

$$\sum_{k=1}^{n} \frac{1}{\sqrt{k}} = 2\sqrt{n} + \ell + o(1)$$

d'où l'on tire :
$$\sum_{k=1}^{n} \frac{1}{\sqrt{k}} \sim_{n \to +\infty} 2\sqrt{n}.$$

Par comparaison de séries à termes positifs, il résulte alors de la question 7. que, pour tout x > 0,

la série
$$\sum_{n\geqslant 1} \left(\sum_{k=1}^n \frac{1}{\sqrt{k}}\right) e^{-nx}$$
 converge.

• Soit x > 0. On considère les séries de termes généraux $a_k = \frac{e^{-kx}}{\sqrt{k}}$ pour $k \ge 1$ et $a_0 = 0$, et $b_k = e^{-kx}$ pour $k \ge 0$.

Ces séries sont absolument convergentes : cela a déjà été vu en 7. pour la première, et la seconde est géométrique de raison $e^{-x} \in]0;1[$; leurs sommes sont :

$$\sum_{k=0}^{+\infty} a_k = f(x) \quad \text{ et } \quad \sum_{k=0}^{+\infty} b_k = \frac{1}{1 - e^{-x}} .$$

On effectue le produit de Cauchy de ces deux séries; on obtient une série de terme général c_n pour $n \ge 0$ où :

$$c_0 = 0 \quad \text{et, pour } n \geqslant 1, \ c_n = \sum_{k=0}^n a_k b_{n-k} = \sum_{k=1}^n a_k b_{n-k} = \sum_{k=1}^n \frac{\mathrm{e}^{-kx}}{\sqrt{k}} \mathrm{e}^{-(n-k)x} = \left(\sum_{k=1}^n \frac{1}{\sqrt{k}}\right) \mathrm{e}^{-nx} \,,$$

donc, d'après le théorème du cours sur le produit de Cauchy de deux séries absolument convergentes :

$$h(x) = \sum_{n=1}^{+\infty} c_n = \sum_{n=0}^{+\infty} c_n = \left(\sum_{n=0}^{+\infty} a_n\right) \left(\sum_{n=0}^{+\infty} b_n\right).$$

Ainsi,
$$\forall x > 0, \ h(x) = \frac{f(x)}{1 - e^{-x}}$$
.

- **11.** Quand $x \to 0$, on a $1 e^{-x} \sim x$ donc directement avec le résultat de la question **8.**, on a $h(x) \underset{x \to 0}{\sim} \frac{\sqrt{\pi}}{x^{3/2}}$.
 - Notons encore $(u_n)_{n\in\mathbb{N}^*}$ la suité définie à la question **9.** par $u_n=\sum_{k=1}^n\frac{1}{\sqrt{k}}-2\sqrt{n}$.

On a, pour x > 0:

$$h(x) = \sum_{n=1}^{+\infty} \left(\sum_{k=1}^{n} \frac{1}{\sqrt{k}} \right) e^{-nx} = \sum_{n=1}^{+\infty} (u_n + 2\sqrt{n}) e^{-nx} = 2g(x) + \sum_{n=1}^{+\infty} u_n e^{-nx}$$

(on a bien le droit de couper la somme en deux car les séries écrites convergent).

On a vu que la suite $(u_n)_{n\in\mathbb{N}^*}$ est convergente; elle est donc bornée d'où

$$\forall x > 0, \ \left| \sum_{n=1}^{+\infty} u_n e^{-nx} \right| \leqslant \sum_{n=1}^{+\infty} |u_n| e^{-nx} \leqslant ||u||_{\infty} \sum_{n=1}^{+\infty} e^{-nx} = ||u||_{\infty} \frac{e^{-x}}{1 - e^{-x}} \underset{x \to 0}{\sim} \frac{||u||_{\infty}}{x}$$

Ainsi,

$$g(x) = \frac{1}{2} \left(\underbrace{h(x)}_{\sim \frac{\sqrt{\pi}}{x^{3/2}}} - \underbrace{\sum_{n=1}^{+\infty} u_n e^{-nx}}_{=\mathcal{O}\left(\frac{1}{x}\right)} \right) \underset{x \to 0}{\sim} \frac{\sqrt{\pi}}{2x^{3/2}} \cdot$$

C. Séries de fonctions associées à des ensembles d'entiers

- **12.** Si A est finie alors $\sum_{n \in A} a_n e^{-nx} = \sum_{n \in A} e^{-nx}$ est une somme finie donc si A est fini, $I_A = [0; +\infty[$.
 - ullet On suppose désormais que A est infini.

On définit φ par récurrence par $\varphi(0) = \min A$ et $\varphi(n+1) = \min (A \setminus \{\varphi(k) \mid 0 \le k \le n\})$. Cette définition a bien un sens car, A étant infinie, l'ensemble $A \setminus \{\varphi(k) \mid 0 \le k \le n\}$ est une partie non vide de \mathbb{N} .

Par construction la suite φ est strictement croissante à valeurs dans A et telle que $\forall n \in \mathbb{N}, \ a_{\varphi(n)} = 1$: elle répond donc à la question posée.

• Si x = 0, la suite $(a_n e^{-nx})$ ne converge pas vers 0 (considérer la suite extraite $(a_{\varphi(n)} e^{-\varphi(n)x})$ constante égale à 1), donc la série $\sum_{n \geq 0} a_n e^{-nx}$ diverge grossièrement.

Si x > 0, on a $|a_n e^{-nx}| \le e^{-nx}$, ce qui donne par comparaison de séries à termes positifs la convergence de la série $\sum_{n=0}^{\infty} a_n e^{-nx}$

Ainsi, si
$$A$$
 est infini, $I_A =]0; +\infty[=I.$

13. Soit
$$x > 0$$
; on a : $f_A(x) = \sum_{k=0}^{+\infty} a_k e^{-kx}$ et $\frac{1}{1 - e^{-x}} = \sum_{k=0}^{+\infty} e^{-kx}$

Par définition de A(n), on a $Card(A(n)) = \sum_{k=0}^{n} a_k$; le produit de Cauchy des deux séries ci-dessus,

absolument convergentes, donne alors directement : $\sum_{n=0}^{+\infty} \operatorname{Card}(A(n)) e^{-nx} = \frac{f_A(x)}{1 - e^{-x}}$

14. • Soit $n \in \mathbb{N}$. On a :

$$A_1(n) = \left\{ k^2 \mid k \in \mathbb{N}^* \text{ et } k^2 \leqslant n \right\} = \left\{ k^2 \mid k \in \mathbb{N}^* \text{ et } k \leqslant \sqrt{n} \right\} = \left\{ k^2 \mid 1 \leqslant k \leqslant \lfloor \sqrt{n} \rfloor \right\},$$

et $A_1(n)$ est de cardinal $|\sqrt{n}|$.

Pour x > 0 on a donc d'après la question précédente, $\frac{f_{A_1}(x)}{1 - e^{-x}} = \sum_{n=0}^{+\infty} \lfloor \sqrt{n} \rfloor e^{-nx}.$

• Pour $n \in \mathbb{N}$, on a $\sqrt{n} - \lfloor \sqrt{n} \rfloor \in [0;1]$ donc

$$0 \leqslant \sum_{n=0}^{+\infty} \sqrt{n} e^{-nx} - \frac{f_{A_1}(x)}{1 - e^{-x}} \leqslant \sum_{n=0}^{+\infty} e^{-nx} = \frac{1}{1 - e^{-x}}$$

d'où $(1 - e^{-x})g(x) - 1 \le f_{A_1}(x) \le (1 - e^{-x})g(x)$ car $1 - e^{-x} > 0$.

Or d'après 11., $(1-\mathrm{e}^{-x})g(x)$ équivaut à $\frac{\sqrt{\pi}}{2\sqrt{x}}$ quand $x\to 0$, donc $\frac{2\sqrt{x}f_{A_1}(x)}{\sqrt{\pi}}$ tend vers 1 par théorème d'encadrement.

Ainsi
$$f_{A_1}(x) \underset{x \to 0}{\sim} \frac{\sqrt{\pi}}{2\sqrt{x}}$$
.

On en déduit $xf_{A_1}(x) \underset{x\to 0}{\sim} \frac{\sqrt{x}\pi}{2}$ puis $\lim_{x\to 0} xf_{A_1}(x) = 0$ puis : $A_1 \in S$ et $\Phi(A_1) = 0$

15. • Soit x > 0. On note (a_n) la suite associée à l'ensemble $A = A_1$, c'est-à-dire $a_n = \begin{cases} 1 & \text{si } n \text{ est un carr\'e parfait} \\ 0 & \text{sinon} \end{cases}$. Soit $n \in \mathbb{N}^*$. On a

$$v(n) = \operatorname{Card}\left(\left\{(\alpha,\beta) \in A_1^2 \mid \alpha+\beta=n\right\}\right) = \operatorname{Card}\left(\left\{(k,n-k) \mid k \in A_1 \text{ et } n-k \in A_1\right\}\right),$$

donc $v(n) = \sum_{k=1}^{n-1} a_k a_{n-k} = \sum_{k=0}^n a_k a_{n-k}$ car $a_0 = 0$, cette dernière formule restant vraie pour n = 0 puisque v(0) = 0.

On effectue ensuite le produit de Cauchy de la série $\sum_{k\geq 0} a_k e^{-kx}$ (absolument convergente), de somme

$$f_{A_1}(x)$$
, par elle-même et on obtient : la série $\sum_{n\geqslant 0}v(n)\mathrm{e}^{-nx}$ converge et $\sum_{n=0}^{+\infty}v(n)\mathrm{e}^{-nx}=(f_{A_1}(x))^2$.

• En notant (b_n) la suite associée à l'ensemble A_2 , on a pour tout entier n, $b_n \leq v(n)$ (car dès que b_n vaut 1 alors v(n) vaut au moins 1). On en déduit directement que pour tout x > 0,

$$f_{A_2}(x) = \sum_{n=0}^{+\infty} b_n e^{-nx} \le \sum_{n=0}^{+\infty} v(n) e^{-nx} = (f_{A_1}(x))^2.$$

Par suite, $xf_{A_2}(x) \leqslant x(f_{A_1}(x))^2$. En utilisant l'équivalent $f_{A_1}(x) \underset{x\to 0}{\sim} \frac{\sqrt{\pi}}{2\sqrt{x}}$ trouvé à la question **15.**, on obtient que $\lim_{x\to 0} x(f_{A_1}(x))^2 = \frac{\pi}{4}$. En admettant que $A_2 \in S$ et en passant à la limite quand $x\to 0$, on déduit alors de l'inégalité précédente que : $\Phi(A_2) \leqslant \frac{\pi}{4}$.

D. Un théorème taubérien

- **16.** Soit $\psi \in E$. Pour tout x > 0, $|\alpha_n e^{-nx} \psi(e^{-nx})| \leq ||\psi||_{\infty} \alpha_n e^{-nx}$ donc la série $\sum_{n \geq 0} \alpha_n e^{-nx} \psi_1(e^{-nx})$ est absolument convergente par comparaison entre séries à termes positifs, donc convergente, et $L(\psi)(x)$ existe, c'est-à-dire $L(\psi)$ est bien définie pour tout $\psi \in E$.
 - Soit $\psi_1, \psi_2 \in E$, et $\lambda \in \mathbb{R}$. On a pour tout x > 0:

$$L(\lambda\psi_1 + \psi_2)(x) = \sum_{n=0}^{+\infty} \left(\alpha_n e^{-nx} \left(\lambda\psi_1(e^{-nx}) + \psi_2(e^{-nx}) \right) \right) = \lambda \sum_{n=0}^{+\infty} \alpha_n e^{-nx} \psi_1(e^{-nx}) + \sum_{n=0}^{+\infty} \alpha_n e^{-nx} \psi_2(e^{-nx})$$

donc $L(\lambda \psi_1 + \psi_2)(x) = \lambda L(\psi_1)(x) + L(\psi_2)(x)$ pour tout x > 0 c'est-à-dire $L(\lambda \psi_1 + \psi_2) = \lambda L(\psi_1) + L(\psi_2)$. En conclusion, l'application L est une application linéaire de E dans $\mathcal{A}(I, \mathbb{R})$.

• On suppose que $\psi_1 \leqslant \psi_2$.

Pour tout x > 0 et pour tout $n \in \mathbb{N}$, $\alpha_n e^{-nx} \psi_1(e^{-nx}) \leq \alpha_n e^{-nx} \psi_2(e^{-nx})$ car $\alpha_n e^{-nx} \geqslant 0$, donc $L(\psi_1)(x) \leq L(\psi_2)(x)$ en sommant.

Ainsi, pour tous ψ_1, ψ_2 dans $E, \psi_1 \leqslant \psi_2$ entraı̂ne $L(\psi_1) \leqslant L(\psi_2)$.

17. • On a bien $E_1 \subset E$ (par définition de E_1) et $E_1 \neq \emptyset$ car l'application nulle $\theta : x \in [0;1] \mapsto 0$ vérifie $\theta \in E$ et $L(\theta)(x) = 0$ pour tout x donc $\lim_{x \to 0} x(L(\theta))(x) = 0$.

Soient $\psi_1, \psi_2 \in E_1$ et $\lambda \in \mathbb{R}$.

Pour tout x>0, on a $x(L(\lambda\psi_1+\psi_2))(x)=\lambda x(L(\psi_1))(x)+x(L(\psi_2))(x)$ donc par opérations sur les limites on a $\lim_{x\to 0}x(L(\lambda\psi_1+\psi_2))(x)=\lambda\lim_{x\to 0}x(L(\psi_1))(x)+\lim_{x\to 0}x(L(\psi_2))(x)$ existe, ce qui prouve que $\lambda\psi_1+\psi_2\in E_1$ donc $\underline{E_1}$ est stable par combinaison linéaire.

En conclusion, E_1 est un sous espace vectoriel de E.

• De plus, d'après le calcul ci-dessus, $\Delta(\lambda\psi_1 + \psi_2) = \lambda\Delta(\psi_1) + \Delta(\psi_2)$ et $\Delta: E_1 \longrightarrow \mathbb{R}$ donc Δ est une forme linéaire sur E_1 .

Enfin, pour tout x > 0 et toute $\psi \in E$, on a $|x(L(\psi))(x)| \leq ||\psi||_{\infty} x \sum_{n=0}^{+\infty} \alpha_n e^{-nx}$ donc par passage à la limite en 0, on a $|\Delta(\psi)| \leq \ell ||\psi||_{\infty}$.

Le théorème du cours sur la caractérisation des applications linéaires continues montre alors que l'application Δ est une forme linéaire continue sur $(E_1, \| \cdot \|_{\infty})$.

18. • Soit $p \in \mathbb{N}$. On a $e_p \in E$ car e_p est continue donc continue par morceaux sur [0;1].

Soit
$$x > 0$$
. On a $L(e_p)(x) = \sum_{n=0}^{+\infty} \alpha_n \mathrm{e}^{-n(p+1)x}$ donc $xL(e_p)(x) = \frac{[(p+1)x]\sum_{n=0}^{+\infty} \alpha_n \mathrm{e}^{-n[(p+1)x]}}{p+1}$. Puisque $\lim_{y \to 0^+} y \sum_{n=0}^{+\infty} \alpha_n \mathrm{e}^{-ny} = \ell$ on en déduit $\Delta(e_p) = \frac{\ell}{p+1}$ et $e_p \in E_1$.

• On remarque que $\Delta(e_p) = \ell \int_0^1 e_p$, donc par combinaison linéaire, pour toute fonction polynomiale P, on a $P \in E_1$ et $\Delta(P) = \ell \int_0^1 P$.

Soit maintenant $\psi \in E_0$. Le théorème de Stone-Weierstrass nous fournit une suite de fonctions polynomiales (P_k) qui converge uniformément vers ψ sur [0;1].

Pour tout x > 0 et $k \in \mathbb{N}$ on a :

$$|xL(\psi)(x) - xL(P_k)(x)| = x \left| \sum_{n=0}^{+\infty} \alpha_n e^{-nx} \left(\psi(e^{-nx}) - P_k(e^{-nx}) \right) \right|$$

$$\leq x \sum_{n=0}^{+\infty} \alpha_n e^{-nx} \left| \psi(e^{-nx}) - P_k(e^{-nx}) \right|$$

$$\leq \|\psi - P_k\|_{\infty} x \sum_{n=0}^{+\infty} \alpha_n e^{-nx} = \|\psi - P_k\|_{\infty} x L(e_0)(x).$$

Maintenant, pour tout $a \in]0;1[$ la série de fonctions $\sum_{n=0}^{+\infty} \alpha_n e^{-nx}$ converge normalement sur [a;1]

(vérification aisée) donc la fonction $x \mapsto xL(e_0)(x)$ est continue sur]0;1]; de plus, elle admet comme limite ℓ en 0 donc $x \mapsto xL(e_0)(x)$ est prolongeable par continuité sur le segment [0;1]. En particulier, elle y est bornée, et si on note M un majorant, l'inégalité précédente implique :

$$\forall x \in]0; 1[, |xL(\psi)(x) - xL(P_k)(x)| \leq M \|\psi - P_k\|_{\infty}$$

Puisque $\lim_{k\to +\infty} \|\psi - P_k\|_{\infty} M = 0$, on en déduit que la suite de fonction $(x\mapsto xL(P_k)(x))_{k\geqslant 0}$ converge uniformément sur]0;1[vers $x \mapsto xL(\psi)(x)$.

Comme $\lim_{x\to 0} xL(P_k)(x) = \Delta(P_k)$, le théorème de la double limite nous donne alors que la suite $(\Delta(P_k))$ converge et que

$$\lim_{x \to 0} x L(\psi)(x) = \lim_{k \to +\infty} \Delta(P_k).$$

Cela signifie que $\psi \in E_1$, donc $E_0 \subset E_1$. De plus :

$$\Delta(\psi) = \lim_{k \to +\infty} \Delta(P_k) = \lim_{k \to +\infty} \ell \int_0^1 P_k = \ell \int_0^1 \psi,$$

la dernière égalité découlant de la convergence uniforme de la suite (P_k) vers ψ sur le segment [0;1].

En conclusion, pour tout $\psi \in E_0$, on a $\Delta(\psi) = \ell \int_0^1 \psi$.

19. • La fonction g_- est continue en tous points de $[0;1] \setminus \{a-\varepsilon,a\}$. De plus $\lim_{x\to(a-\varepsilon)^-} g_-(x) = \lim_{x\to(a-\varepsilon)^+} g_-(x) = g_-(a-\varepsilon) = 1$; idem pour les limites à droite et à gauche en a. On en déduit que g_{-} est continue sur [0;1]; idem pour g_{+} .

• On a
$$\Delta(g_-) = \ell \int_0^1 g_- = \ell \left(\int_0^{a-\varepsilon} g_- + \int_{a-\varepsilon}^a g_- + \int_a^1 g_- \right);$$

 $\text{Or}: \int_0^{a-\varepsilon} g_- = a - \varepsilon \text{ et } \int_{a-\varepsilon}^a g_- = \frac{\varepsilon \cdot 1}{2} \text{ (aire d'un triangle) et } \int_a^1 g_- = 0 \text{, donc } \Delta(g_-) = \ell \left(a - \frac{\varepsilon}{2}\right) \cdot \frac{1}{2} \left(a - \frac{\varepsilon}{2}\right)$

Calcul similaire pour $\Delta(g_+)$

$$\Delta(g_{-}) = \ell\left(a - \frac{\varepsilon}{2}\right) \text{ et } \Delta(g_{+}) = \ell\left(a + \frac{\varepsilon}{2}\right).$$

 $\bullet \text{ On a } 1_{[0,a]} \in E \text{ et } g_- \leqslant 1_{[0,a]} \leqslant g_+, \text{ donc pour tout } x>0, \ xL(g_-)(x) \leqslant xL(1_{[0,a]})(x) \leqslant xL(g_+)(x).$

On a $\lim_{x\to 0} xL(g_-)(x) = \ell\left(a - \frac{\varepsilon}{2}\right)$; par définition de la limite, il existe $\alpha_1 > 0$ tel que

$$\forall x \in [0; \alpha_1], \ xL(g_-)(x) \geqslant \ell(a - \varepsilon).$$

De même, puisque $\lim_{x\to 0} xL(g_+)(x) = \ell\left(a + \frac{\varepsilon}{2}\right)$, on peut trouver $\alpha_2 > 0$ tel que

$$\forall x \in [0; \alpha_2], \ xL(g_+)(x) \leq \ell(a+\varepsilon);$$

en prenant alors $\alpha = \min(\alpha_1, \alpha_2)$ on a :

$$\forall x \in [0, \alpha], |xL(1_{[0,a]})(x) - \ell a| \leq \ell \varepsilon.$$

On vient ainsi de montrer que $\lim_{x\to 0} xL(1_{[0,a]})(x) = \ell a$.

En conclusion, $1_{[0,a]} \in E_1$ et $\Delta(1_{[0,a]}) = \ell a$.

• Pour $1_{[0,a[}$, les calculs sont identiques ce qui donne : $1_{[0,a[} \in E_1 \text{ et } \Delta(1_{[0,a[}) = \ell a.$

On en déduit, pour $0 \leqslant a \leqslant b \leqslant 1$, puisque $1_{[a,b]} = 1_{[0,b]} - 1_{[0,a[}, 1_{[a,b]} \in E_1 \text{ et } \Delta(1_{[a,b]}) = \ell(b-a) = \ell \int_a^1 1_{[a,b]} da$ On a évidemment des résultats analogues pour $1_{]a,b]},\ 1_{]a,b[}$ et $1_{[a,b[}.$

Par linéarité, on en déduit alors que toute fonction en escalier φ appartient à E_1 et que $\Delta(\varphi) = \ell \int_0^1 \varphi$. Enfin, on sait que si $\psi \in E$ alors ψ est limite uniforme d'une suite de fonctions en escalier sur [0;1]. On montra alors, exactement comme dans la question 18., que $\psi \in E_1$ et que $\Delta(\psi) = \ell \int_0^{\pi} \psi$.

Conclusion:
$$E_1 = E$$
 et $\Delta(\psi) = \ell \int_0^1 \psi$ pour tout $\psi \in E$.

20. • Soit N > 0. On a :

$$(L(\psi))\left(\frac{1}{N}\right) = \sum_{n=0}^{+\infty} \alpha_n e^{-n/N} \psi(e^{-n/N}) = \sum_{n=0}^{N} \alpha_n e^{-n/N} \psi(e^{-n/N}) = \sum_{n=0}^{N} \alpha_n e^{-n/N} e^{n/N},$$

donc
$$(L(\psi))\left(\frac{1}{N}\right) = \sum_{k=0}^{N} \alpha_k$$
.

 \bullet Puisque ψ est continue par morceaux, elle appartient à E_1 d'après ce qui précède et :

$$\lim_{x \to 0} x(L(\psi))(x) = \Delta(\psi) = \ell \int_0^1 \psi = \ell \int_{1/e}^1 \psi = \ell(\ln(1) - \ln(1/e)) = \ell.$$

donc
$$\lim_{N \to +\infty} \frac{1}{N} \sum_{k=0}^{N} \alpha_k = \lim_{N \to +\infty} \frac{1}{N} (L(\psi)) \left(\frac{1}{N}\right) = \ell = \lim_{x \to 0} \left(x \sum_{n=0}^{+\infty} \alpha_n e^{-nx}\right).$$

21. En reprenant les notations de la partie \mathbb{C} , on a $\operatorname{Card}(A(n)) = \sum a_k$.

Comme
$$A \in S$$
, $\lim_{x \to 0} \left(x \sum_{n=0}^{+\infty} a_n e^{-nx} \right) = \lim_{x \to 0} x f_A(x) = \Phi(A)$

On peut appliquer donc le résultat précédent à la suite $(\alpha_n) = (a_n)$ avec $\ell = \Phi(A)$ et on obtient que $\lim_{n \to +\infty} \frac{1}{n} \operatorname{Card}(A(n)) = \Phi(A).$

$$\lim_{n \to +\infty} \frac{1}{n} \operatorname{Card} (A(n)) = \Phi(A).$$

Pour tout x > 0, la série $\sum_{x > 0} v(n) e^{-nx}$ converge et a pour somme $(f_{A_1}(x))^2$; de plus $\lim_{x \to 0} x (f_{A_1}(x))^2 = \frac{\pi}{4}$ d'après 14. et 15.

On peut donc appliquer les résultats précédents et on en déduit : $\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} v(k) = \frac{\pi}{4}$.

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} v(k) = \frac{\pi}{4} .$$

