

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at <http://about.jstor.org/participate-jstor/individuals/early-journal-content>.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

THE APPROXIMATE INSCRIPTION OF CERTAIN REGULAR POLYGONS.

By PROF. H. A. HOWE, Denver, Col.

1. To inscribe a regular nonagon in a circle.—Let ACB be a central angle of 60° in the given circle. Bisect ACB by CF , laying off DE and EF equal to CD .

Bisect FCB by CG , and draw the arcs EL and FG from C as a centre. Bisect FCG , thus determining H , the mid-point of EL . From H draw HI parallel to CG , and from the point I where it cuts FG draw IC . Then will ICG be nearly equal to one third of FCG , or 5° . By solving the triangle HIC we find that $CIH = ICG = 4^\circ 59' 31''.37$. Hence $ACM = 40^\circ 0' 28''.63$, and a chord drawn from A to M will be very nearly equal to the side of a regular nonagon inscribed in the circle whose radius is $AC : 9 \times 28''.63 = 257''.67$, which is $\frac{1}{5030}$ of the entire circumference. If one half the angle FCI were subtracted from an angle of 45° , an angle of $39^\circ 59' 45''.68$ would result, which is a closer approximation to 40° .

It is evident that there are many ways of getting angles more nearly equal to 5° ; we give a few, each of which depends upon the trisection of a small angle, together with successive bisections of angles; thus:

$$5^\circ = \frac{15}{2}^\circ - \frac{1}{3} \cdot \frac{15}{2}^\circ \quad (A)$$

$$= \frac{1}{4}^\circ + \frac{1}{3} \cdot \frac{1}{4}^\circ \quad (B)$$

$$= \frac{15}{4}^\circ + \frac{15}{8}^\circ - \frac{1}{3} \cdot \frac{15}{8}^\circ \quad (C)$$

$$= \frac{15}{4}^\circ + \frac{15}{16}^\circ + \frac{1}{3} \cdot \frac{15}{16}^\circ \quad (D)$$

$$= \frac{15}{4}^\circ + \frac{15}{16}^\circ + \frac{15}{32}^\circ - \frac{1}{3} \cdot \frac{15}{32}^\circ \quad (E)$$

$$= \frac{1}{4}^\circ + \frac{1}{16}^\circ + \frac{1}{64}^\circ + \frac{1}{3} \cdot \frac{1}{64}^\circ, \quad (F)$$

• • • • • • • • • •

If the trisections included in solutions $(A), \dots (F)$ be performed in the same manner in which FCG was trisected (getting ICG as the approximate value of $\frac{1}{3}FCG$), it is easy to compute the error of each solution in the following way:—

Let FCG now denote any one of these angles to be trisected; denote ICG by x and HCG by y ; let $2F(y)$ denote $y - \sin y$, and $2F(x)$ denote $x - \sin x$.

Since $\sin y = \frac{3}{2} \sin x$, we have

$$y - 2F(y) = \frac{3}{2}x - \frac{3}{2} \cdot 2F(x). \quad (1)$$

By development,

$$2F(y) = \frac{1}{6} \sin^3 y + \frac{3}{40} \sin^5 y + \frac{5}{112} \sin^7 y + \frac{35}{1152} \sin^9 y + \dots \quad (2)$$

Likewise, substituting $\frac{3}{2} \sin y$ for $\sin x$, we get

$$2F(x) = \frac{4}{81} \sin^3 y + \frac{4}{405} \sin^5 y + \frac{40}{15309} \sin^7 y + \frac{140}{177147} \sin^9 y + \dots \quad (3)$$

Hence

$$\frac{2F(x)}{2F(y)} = \frac{8}{27} - (\frac{2}{27} \sin^2 y + \frac{1549}{51030} \sin^4 y + \frac{651827}{4133430} \sin^6 y + \dots) = \frac{8}{27} - \varphi(y), \quad (4)$$

where $\varphi(y)$ denotes the series in the ().

Find the value of $F(x)$ from (4), substitute it in (1), and reduce, obtaining

$$y - \frac{3}{2}x = \frac{5}{9} \cdot 2F(y) + \frac{3}{2} \varphi(y) \cdot 2F(y),$$

or

$$\frac{2}{3}y - x = \frac{10}{27} \cdot 2F(y) + \varphi(y) \cdot 2F(y). \quad (5)$$

Now $\frac{2}{3}y - x$ is the error of x , and (5) furnishes an easy method of computing this error. Thus we find the following table:—

Solution.	$2y$	Error of x .	$\frac{9}{1,296,000} \times \text{error of } x$
(A)	7.5°	''	I : 40,290 ±
(B)	3.75	0.4462	I : 322,700 ±
(C)	1.875	0.0558	I : 2,583,000 ±
(D)	0.9375	0.00698	I : 20,660,000 ±
(E)	0.46875	0.00087	I : 165,000,000 ±
(F)	0.234375	0.00011	I : 1,300,000,000 ±

It thus becomes apparent that it is possible to find a third of any acute angle without much labor, and attain a result the theoretical error of which is far less than the unavoidable errors of the most careful draughtsmen with the best drawing instruments manufactured. When the angle is between 45° and

90° , it is best to find one third of its complement, and subtract it from 30° . If the given angle is obtuse it is best to find a third of its supplement, and subtract it from 60° .

2. *The Inscription of a Regular Polygon of Eleven Sides.—1st Method.*—

Divide the radius CA of the given circle into twelve equal parts, of which CD contains eleven. Construct $ACB = 30^\circ$. Draw AB and DE . From B draw BE parallel to AC . Draw CE . Then $ECD = 33^\circ 3' 20''$, which is one per cent. larger than $360^\circ : 11$. If the arc ED had been

drawn with a radius of 11.1 , ECD would have been equal to $32^\circ 43' 13''.60$, which is $\frac{1}{4793}$ smaller than $360^\circ : 11$.

2d Method.—If a triangle be formed of sides 6, 10, 11, the angle opposite 6 will be $32^\circ 45' 50''$, which is $\frac{1}{897}$ larger than $360^\circ : 11$.

3. *The Inscription of a Regular Polygon of Thirteen Sides.*—In the preceding figure let $CD = 12$, and $CA = 13$, and the angle $ECD = 30^\circ$, EB being parallel to AC . Then $ACB = 27^\circ 29' 11''.14$, which is $\frac{1}{1345}$ smaller than $360^\circ : 13$. If CA be taken as $12\frac{1}{11}$, ACB will be $15''.27$ larger than desired, or $\frac{1}{6529}$ too large.

4. *The Multisection of Small Angles.*—If we wish to find one fifth of ACB , by successive bisections we obtain $ACG = \frac{1}{4}BCA$. Lay off $CH = 4$ and $CA = 5$, and draw the arcs BA and HK . From E , where CG cuts HK , draw EF parallel to CA . FCA is nearly one fifth of BCA . Denote GCA by α , and FCA by x . By reasoning similar to that employed before we may show that

$$\frac{4}{5}\alpha - x = \left(\frac{3.6}{125} + \frac{12.96}{15625} \sin^2 \alpha + \dots \right) 2F(\alpha).$$

If $BCA = 15^\circ$, FCA is $2^\circ 59' 57''.22$, which is $2''.78$ too small.

To find $\frac{1}{7}$ of BCA . By successive bisections, find $FCA = \frac{1}{8}BCA$. Lay off $CA = 8$ and $CH = 7$, and draw BA and KH ; also draw FE parallel to CA . ECA is nearly equal to $\frac{1}{7}BCA$. Denoting FCA by α , and ECA by x , we find

$$\frac{8}{7}\alpha - x = \left(-\frac{12.0}{343} - \frac{34.56}{16807} \sin^2 \alpha - \dots \right) 2F(\alpha).$$

If $BCA = 15^\circ$, $ECA = 2^\circ 8' 34''.71$, which is $0''.42$ too large.

By combinations of the methods which have been set forth one may easily find $\frac{1}{9}$, $\frac{1}{10}$, $\frac{1}{11}$, etc. of any small angle with considerable accuracy. These methods are so simple that it is quite probable that they are not new; but I have never heard of them.

