Lição 6

Algoritmos de Ordenação

Objetivos

Ao final desta lição, o estudante será capaz de:

- Explicar os algoritmos utilizados em ordenação por inserção, ordenação por seleção, Merge Sort e Quick Sort
- Implementar seu próprio algoritmo utilizando essas técnicas

Ordenação

- Organização de elementos em uma ordem particular
- Usado em diversos tipos de aplicações
- Vários algoritmos de ordenação foram inventados porque essa tarefa é fundamental e frequentemente utilizada

Ordenação por inserção

- Um dos algoritmos mais simples
- Totalmente intuitivo e é semelhante a maneira de organizar uma coleção de cartas
 - Objetivo: Dispor uma série de cartas do menor para o maior nível
 - Preparação: cartas , tabela 1, tabela 2
 - Início: Cartas desordenadas são posicionadas na tabela 1
 - Técnica: Cartas ordenadas serão posicionadas na tabela 2
 - Busca uma carta na tabela 1, compara com as que já estão na tabela 2 e coloca esta carta em uma posição adequada na tabela 2
 - Repete esse passo até que todas as cartas sejam posicionadas na tabela 2

Ordenação por inserção: Algoritmo

- Dividir os elementos a serem ordenados em dois grupos:
 - Seção não ordenada
 - Seção ordenada
- Repetição dos seguintes passos até não existirem elementos na parte não ordenada da coleção (array)
 - Primeiro elemento disponível na seção não ordenada do array é selecionado
 - Coloca o elemento selecionado na posição adequada na seção ordenada do array

Ordenação por inserção: Algoritmo

```
void insertionSort(Object array[], int startIdx,
                    int endIdx) {
   for (int i = startIdx; i < endIdx; i++) {
      int k = i;
      for (int j = i + 1; j < endIdx; j++) {
         if (((Comparable) array[k]).compareTo(
               array[j])>0) {
            k = \dot{j};
      swap(array[i], array[k]);
```


Ordenação por inserção: Exemplo

Dados

Manga

Maçã

Pêssego

Laranja

Banana

1° passo

Manga

Maçã

Pêssego.

Laranja

Banana

2º passo

Maçã

Manga

Pêssego

Laranja

Banana

3° passo

Laranja

Maçã

Manga

Pêssego

Banana

4° passo

Banana

Laranja

Maçã

Manga

Pêssego

Ordenação por seleção

- Intuitivo e fácil de implementar
- Mais uma maneira de organizar as cartas

Ordenação por seleção: Algoritmo

- Selecionar o elemento com o menor valor
- Trocar elemento escolhido com o elemento da posição i
 - Começa do 1 ao n
 - Onde n é o total de elementos menos 1

Ordenação por seleção: Algoritmo

```
void selectionSort(Object array[], int startIdx,
                   int endIdx) {
   int min;
   for (int i = startIdx; i < endIdx; i++) {
      min = i;
      for (int j = i + 1; j < endIdx; j++) {
         if (((Comparable) array[min]).compareTo(
               array[j])>0) {
            min = j;
      swap(array[min], array[i]);
```


Ordenação por seleção: Exemplo

Dados

Maricar

Vanessa

Margaux

Hannah

Rowena

1° passo

Hannah

Vanessa

Margaix

Marican

Rowena

2º passo

Hannah.

Margaux

Vanes sa

Maricar

Rowena

3° passo

Hannah

Margaux

Mari car

Vanes sa

Rowena

4° passo

Hannah

Margaux

Mari car.

Rowena

Vanessa.

Merge Sort: Paradigma do dividir-e-conquistar

- Usa recursividade para resolver um problema
 - Problema original é dividido em subproblemas
 - Soluções para os subproblemas conduzem à solução do problema principal
- Passos:
 - Dividir
 - Conquistar
 - Combinar

Merge Sort: Algoritmo

- Utiliza a abordagem do dividir-e-conquistar
 - Dividir
 - Conquistar
 - Combinar
- A repetição acaba quando a parte a ser ordenada possui exatamente um elemento

Merge Sort: Algoritmo

Merge Sort: Exemplo

Dados:

7 2 5 6

Dividir o array de dados em dois:

7 2

5 6

ArrayEsq ArrayDir

Dividir o ArrayEsq em dois:

7

2

ArrayEsq ArrayDir

Combinar

2 7

Dividir ArrDir em dois:

5

6

ArrayEsq ArrayDir

Combinar

5 6

Combinar ArrayEsq e ArrayDir.

2 5 6 7

Quick Sort: Algoritmo

- Criado por C.A.R. Hoare
- Baseado no paradigma de dividir-e-conquistar
 - Dividir
 - Conquistar
 - Sem a fase de "Combinar"

Quick Sort: Algoritmo

Quick Sort: Exemplo

Array dado:

Escolhe o primeiro elemento para ser o eixo = 3.

	3	1	4	1	5	9	2	6	5	3	5	8

Inicializa a esquerda com o ponteiro no segundo elemento, e a direita com o ponteiro no último elemento.

	left										right
3	1	4	1	5	9	2	6	5	3	5	8

Mover o ponteiro da esquerda na direção da direita até ser localizado um valor maior do que o do eixo. Mover o ponteiro direito na direção esquerda até ser localizado um valor menor do que o eixo.

		left			right						
3	j	L <u>4</u>	1	5	9	2	6	5	<u>3</u>	5	8

Troda os elementos referidos com os ponteiros esquerdo e direito.

left							right						
3	1	3	1	5	9	2	6	5	4	5	8		

Quick Sort: Exemplo

Mover os ponteiros direito e esquerdo novamente.

left right

3 1 5 9 2 6 5 4 5 8

Trocar os elementos.

left right

3 1 2 9 5 6 5 4 5 8

Mover os ponteiros esquendos e direitos novamente.

right left

3 1 3 1 <u>2</u> 9 5 6 5 4 5 8

Observe que os ponteiros da esquerda e direita se cruzaram e o direito < esquerdo. Neste caso, troca o eixo pelo valor do ponteiro direito.

pivot

2	1	3	1	3	9	5	6	5	4	5	8
		_		_	=		_			1	1

Sumário

- Técnicas simples de ordenação
 - Ordenação por inserção
 - Ordenação por seleção
- Paradigma do dividir-e-conquistar
 - Merge Sort
 - Quick Sort

Parceiros

 Os seguintes parceiros tornaram JEDITM possível em Língua Portuguesa:

