Seminer W 9 - 971

Compute by applying elementary operations the ranks of the matrices:

1.
$$\begin{pmatrix} 0 & 2 & 3 \\ 2 & 4 & 3 \\ 1 & 1 & 1 \\ 2 & 2 & 4 \end{pmatrix}$$
 . 2.
$$\begin{pmatrix} 1 & -1 & 3 & 2 \\ -2 & 0 & 3 & -1 \\ -1 & 2 & 0 & -1 \end{pmatrix}$$
 . 3.
$$\begin{pmatrix} \beta & 1 & 3 & 4 \\ 1 & \alpha & 3 & 3 \\ 2 & 3\alpha & 4 & 7 \end{pmatrix} (\alpha, \beta \in \mathbb{R})$$
.

Compute by applying elementary operations the ranks of the matrices:

1.
$$\begin{pmatrix} 0 & 2 & 3 \\ 2 & 4 & 3 \\ 1 & 1 & 1 \\ 2 & 2 & 4 \end{pmatrix}$$
 . 2.
$$\begin{pmatrix} 1 & -1 & 3 & 2 \\ -2 & 0 & 3 & -1 \\ -1 & 2 & 0 & -1 \end{pmatrix}$$
 . 3.
$$\begin{pmatrix} \beta & 1 & 3 & 4 \\ 1 & \alpha & 3 & 3 \\ 2 & 3\alpha & 4 & 7 \end{pmatrix} (\alpha, \beta \in \mathbb{R})$$
.

ral M=3 (=) < \frac{1}{2} or B \frac{7}{2}1

Compute by applying elementary operations the inverses of the matrices:

$$4. \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix}.$$

5.
$$\begin{pmatrix} 1 & 4 & 2 \\ 2 & 3 & 1 \\ 3 & 0 & -1 \end{pmatrix}.$$

Compute by applying elementary operations the inverses of the matrices:

$$4. \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix}.$$

$$\mathbf{5.} \begin{pmatrix} 1 & 4 & 2 \\ 2 & 3 & 1 \\ 3 & 0 & -1 \end{pmatrix}.$$

$$\begin{pmatrix}
1 & 2 & 3 & 1 & 0 & 0 \\
2 & 75 & 0 & 10 & 2 & 0 \\
1 & -12 & 0 & 0 & 1 & 2 & 1 \\
0 & -3 & -1 & -1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & -3 & -1 & -1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & -3 & -1 & -2 & 1 & 0 \\
0 & 0 & 0 & 1 & -1 & 1
\end{pmatrix}$$

of the matrix is not investille, because we have

7. In the real vector space \mathbb{R}^3 consider the list $X = (v_1, v_2, v_3, v_4)$, where $v_1 = (1, 0, 4)$, $v_2 = (2, 1, 0), v_3 = (1, 5, -36)$ and $v_4 = (2, 10, -72)$. Determine dim < X > and a basis of < X >.

Sol. To find a basis of $\langle X \rangle$, we just med to bring the matrix whose rows are the elements of X to a row exhaboration of X to X to

((1,0,4) , (P,7,-7)

9. Determine the dimension of the subspaces S, T, S+T and $S \cap T$ of the real vector space \mathbb{R}^3 and a basis for the first three of them, where

$$S = <(1,0,4), (2,1,0), (1,1,-4)>,$$

$$T = <(-3,-2,4), (5,2,4), (-2,0,-8)>.$$

6. Let K be a field, let $B = (e_1, e_2, e_3, e_4)$ be a basis and let $X = (v_1, v_2, v_3)$ be a list in the canonical K-vector space K^4 , where

$$v_1 = 3e_1 + 2e_2 - 5e_3 + 4e_4,$$

$$v_2 = 3e_1 - e_2 + 3e_3 - 3e_4,$$

$$v_3 = 3e_1 + 5e_2 - 13e_3 + 11e_4.$$

Write the matrix of the list X in the basis B, determine an echelon form for it and deduce that X is linearly dependent.

Sol
$$X=(b_1,u_1,...,b_m)$$
 list of vectors

$$B=(b_1,b_2,...)b_n)$$

$$b_n = a_{n_1}b_1 + a_{n_2}b_2 + ... + a_{n_m}b_n$$

$$C = a_{n_1}b_1 + a_{n_2}b_2 + ... + a_{n_m}b_n$$

$$C = a_{n_1}b_1 + ... + a_{n_m}b_n$$

$$C = a_{n_1}a_{n_2}a_{n_3}a_{n_4}a_{n_5}a_{n_6}a_{n_$$

>) the initial vectors were liverly dypulat