- (1) (a) 99 (b) 1 (c) 1 (d) 0
 - (2) (a) 5x8+10=50
 - (b) Storting from Vio, we can find each edge betwee. (Vi, Vio) is [2,9] is smader than (V, Vio), which is lo.

 Apply this algorithm, to other edge until that edge. (V2, Vi) which is 10.
 - 131 (a) S, -> S5 -> S6 -> S7
 - (b) No. Sr >> S3

(4)

- Apply the Greedy algorithm: G> C2>C3, cost = 1+6=7 Optimal: C1-> G> C1 > C3, Cost = 1+1+3=5
- Let $C = \{C_1 = 1, C_2 \le 5, C_6 = Jx_2, C_4 : 5^2\}$ Suppose $X = \{X_1, X_2, X_4, X_4, G\}$ be the optimal solution. Let $g = \{g_1, g_2, g_3, g_4\}$ be the solution to the greedy algorith. We need to prove $\sum_{i=1}^{n} \{x_i c_i = \sum_{i=1}^{n} g_i c_i$ $x_i + 5x_2 + 2 \cdot 5x_3 + 5^2x_4 = g_1 + 5g_2 + 2 \cdot 5g_3 + 5^2g_4$

$x, +5x_2 + 2.5x_3 + 5^2x_4 = 9, + 59. + 2.59. + 5^2y_4$

Peducing the equation by mod 5 yields $X_1 = g_1 \pmod{5}$ Notice that $0 \le X_1 \le J_2$, $0 \le g_1 < 5$, which implies $X_2 = g_1$ Then we can eliminate X_1 and g_1 , divide 5 we get equation

 $X_2 + 2X_3 + JX_4 = g_2 + 2g_3 + Jg_4$ We can get $X_3 + 2X_3 = (g_3 + 2g_3) \pmod{J}$ We can notice $0 \le X_2 < 2$, $0 \le X_3 < 2J$, so as g_2 and g_3 $X_2 : 0, 1$ $X_4 = 0, 1, 2$

Result = 0, $x_2 = 0$ $x_3 = 0$, uniqueResult = 1, $x_3 = 0$, uniqueResult = 2, $x_2 = 0$, $x_3 = 1$, uniqueResult = 3, $x_3 = 1$, uniqueResult = 4, $x_2 = 0$, $x_3 = 2$, unique

For every result, the solution is unique. Thus $X_2 = g_2$, $X_3 = g_3$. Use the similar approach, ne got $x_4 = g_4$. Thus we proce every element in greedy solution is the same as the optimal solution.

	Inp sat	X	1 7) Xav	Chek
(6) Initial)	.	F	F		
コメ	No	T		Y	
× // >>/	No			T	
7 4	•			•	F
Final		NA	14/4		
•			\ '		
	1	1	•		1

(b) The only case that it's not satisfied is that Z is folse, X/Y is True. X | Y | Z T | T | F