Vulnerabilita' Identificate da Nessus:

Risoluzione "NFS Exported Share Information Disclosure"

1. Modifica del file /etc/exports e rimozione della riga che consente di montare la root del sistema:

2. Riavvio del sistema per rendere attive le modifiche.

Risoluzione "VNC Server 'password' password"

1. Occorre eseguire il comando "vncpasswd" per rimpiazzare la password di default con una password piu' robusta:

```
msfadmin@metasploitable: $\times\normale vncpasswd
Using password file \times\normale home/msfadmin\times\normale vnc\passwd
UNC directory \times\normale home\normale not exist, creating.
Password:
Warning: password truncated to the length of 8.
Verify:
Would you like to enter a view-only password (y\n)? n
msfadmin@metasploitable: $\times\normale \times\normale \t
```

Risoluzione "Apache Tomcat AJP Connector Request Injection (Ghostcat)"

1. Mdifichiamo il file /etc/tomcat5.5/server.xml e commentiamo la riga che definisce un connettore AJP:

2. Riavviamo il servizio del web server tomcat o la macchina metasploitable per rendere attive le modifiche.

Risoluzione "SSL Version 2 and 3 Protocol Detection"

Nessus rileva il problema sui servizi che usufruiscono delle porte 25 e 5432. Da netstat cerchiamo i servizi per poterne modificare le configurazioni:

```
msfadmin@metasploitable:~$ sudo netstat -tulpn | grep :25
                  0 0.0.0.0:25
                                             0.0.0.0:*
                                                                      LISTEN
4973/master
msfadmin@metasploitable:~$ sudo netstat -tulpn | grep :5432
                  0 0.0.0.0:5432
                                             0.0.0.0:*
                                                                      LISTEN
tcp
           0
4818/postgres
                  0 :::5432
                                                                      LISTEN
tcp6
4818/postgres
```

nel nostro caso si tratta del server PostgreSQL e del servizio Postfix per l'invio di messaggi di posta elettronica (SMTP):

```
eF Igrep 4975
1728 0 Jul05 ?
msfadmin@metasploitable:
                          ~$ ps
1353
                                                           00:00:03 /usr/lib/postfix
root
          4973
                    1 0
/master
postfix
                                                           00:00:00 qmgr -1 -t fifo
           4979 4973
                       0
                          1365
                                 1800
                                         0 Jul05 ?
                                         0 12:53 ?
                                                           00:00:00 pickup -1 -t fif
                 4973
                       0
                           1355
                                 1648
                                                           00:00:00 grep 4973
msfadmin 19389 19325
                            751
                                  756
                                         0 14:21 tty1
                       Ω
                           1447
                                 2456
                                                           00:00:00 tlsmgr -1 -t uni
postfix
         20984
                4973
                                         0 Jul12 ?
-
x -u -c
msfadmin@metasploitable:~$
```

la risoluzione del problema richiede pertanto di moficicare le configurazioni dei due servizi.

1. PostgreSQL:

Modifichiamo il file di configurazione del server PostgreSQL DB in:

/etc/postgresql/8.3/main

occorre disabilitare il supporto SSL in quanto la versione 8.3 di PostgreSQL non supporta lo standard TSLv1.2 che risolverebbe la vulnerabilita' in questione:

```
#unix_socket_permissions = 0???

#bonjour_name = ''

# change requires restart)

# - Security and Authentication -

#authentication_timeout = 1min  # 1s-600s

ssl = false  # (change requires restart)

#ssl_min_protocol_version = 'TLSv1.2'

#ssl_ciphers = 'TLSv1.2:taNULL'  # allowed SSL ciphers

#password_encryption = on

# begin with 0 to use octal notation  # (change requires restart)

# change requires restart)

# clange requires restart)
```

i due parametri commentati sarebbero quelli utilizzati in versioni di PostgreSQL piu' recenti.

2. Postfix:

Modifichiamo il file di configurazione in /etc/postfix/main.cf:

```
smtpd_tls_mandatory_protocols = !SSLu2, !SSLu3, !TLSu1, !TLSu1.1, TLSu1.2
smtp_tls_mandatory_protocols = !SSLu2, !SSLu3, !TLSu1, !TLSu1.1, TLSu1.2
smtpd_tls_protocols = !SSLu2, !SSLu3, !TLSu1, !TLSu1.1, TLSu1.2
smtpd_tls_protocols = !SSLu2, !SSLu3, !TLSu1, !TLSu1.1, TLSu1.2
smtpd_tls_cert_file=/etc/ssl/certs/ssl-cert-snakeoil.pem
smtpd_tls_key_file=/etc/ssl/private/ssl-cert-snakeoil.key
smtpd_use_tls=yes
smtpd_tls_session_cache_database = btree:${data_directory}/smtpd_scache
smtp_tls_session_cache_database = btree:${data_directory}/smtp_scache

# See /usr/share/doc/postfix/TLS_README.gz in the postfix-doc package for
```

Riavviamo il servizio.

Risoluzione "Bind shell backdoor detection":

In questo caso nessus identifica una backdoor attiva con accesso root sulla porta 1524. Utilizzando netstat:

```
msfadmin@metasploitable:"$ sudo netstat -tlunp | grep :1524
[sudo] password for msfadmin:
tep 0 0.0.0.0:1524 0.0.0.0:* LISTEN
5010/xinetd
msfadmin@metasploitable:"$
```

il processo che esegue la backdoor e' quello con PID 5010 (xinetd). Ricercando su internet:

https://packetstormsecurity.com/files/26161/pure-xinetd-backdoor.c.htmlhttps://packetstormsecurity.com/files/26161/pure-xinetd-backdoor.c.html

oppure:

https://elhacker.info/Cursos/Computer%20and%20Network%20Hacking%20Mastery%20Practical%20Techniques/9.%20Attacks%20on%20Operating%20Systems/3.%20Entering%20the%20system%20by%20the%20backdoor.pdf

per trovare come qusto servizio possa essere utilizzato per la definzione di una backdoor.

Siccome xinetd e' la versione X server di inetd verifichiamo entrambi i file di configurazione. Per xinetd.conf:

```
mstadminumetasploitable:/etc$ cat xinetd.comf
# Simple configuration file for xinetd
#
# Some defaults, and include /etc/xinetd.d/
defaults
{
# Please note that you need a log_type line to be able to use log_on_success
# and log_on_failure. The default is the following:
# log_type = SYSLOG daemon info
}
includedir /etc/xinetd.d
```

e la cartella di configurazione /etc/xinetd.d:

possiamo analizzare file per file, ma questi sembrano leggittimi e non hanno include per richiamare file malevoli.

Per inetd.conf:

la riga con il comando /bin/bash bash -i sembra essere quella indirizzata ad aprire una sessione di bash. Commentiamo la riga e riavviamo la distro.

Verifica della risoluzione delle criticita'.

Per verificare che le criticita' siano state risolve, eseguiamo nuovamente la scansione con Nessus sul target per verificare che gli elementi CRITICAL siano stati eliminati:

A fronte degli interventi correttivi intrapresi, l'unica criticita' non eliminata e' quella relativa al server smtp postfix. Probabilmente a causa disud

```
root@metasploitable:~# postconf ; grep protocols
inet_protocols = ipv4
lmtp_tls_mandatory_protocols = SSLv3, TLSv1
smtp_tls_mandatory_protocols = !SSLv2, !SSLv3, !TLSv1, !TLSv1.1, TLSv1.2
smtpd_tls_mandatory_protocols = !SSLv2, !SSLv3, !TLSv1, !TLSv1.1, TLSv1.2
root@metasploitable:~# _
```

Aggiungiamo anche la riga per i protocolli lmtp e riavviamo i servizi.