TOGETHER IS WAY BETTER WITH GRAPH NEURAL NETWORKS

De Marinis Pasquale Loconte Lorenzo <u>p.demarinis6@studenti.uniba.it</u> <u>I.loconte5@studenti.uniba.it</u>

Objective

- Introduction of Graph Neural Networks (GNNs) in existing deep recommender systems architectures
- Research questions:
 - How GNNs perform in contrast with Knowledge Graph
 Embeddings (KGE) models for learning collaborative features ?
 - How GNNs can be integrated in both collaborative and contentbased hybrid deep recommender systems?

Previous Works Deep Amar

- **Hybrid** architectures for recommendations based on Neural Networks
- Take user u and item i and return a relevance score s(u,i)
- Usage of Knowledge Graph Embeddings and Word Embeddings

Previous Works Deep Amar Revisited BASIC

- User and Movie features as inputs
 - **KG** embeddings (e.g. TransH)
 - **Word** embeddings (e.g. BERT)

PREVIOUS WORKS DEEP AMAR REVISITED MIXED FEATURE BASED

PREVIOUS WORKS

DEEP AMAR

REVISITED

MIXED

ENTITY BASED

PREVIOUS WORKS DEEP AMAR REVISITED EXTENDED

Graph Neural Networks

- Neural Network which directly operates on graph data
- Neighborhood aggregation as most important operation
- Able to catch higher order interactions
 - Stacking multiple layers

$$\mathbf{H}^{(l+1)} = F(\mathbf{H}^l, \mathbf{X})$$

Graph Neural Networks

- Graph Convolutional Networks (GCNs)
- GraphSage (SAmple and aggreGatE)
- Graph Attention Networks (GATs)
- Gated Graph Neural Networks (for sequential recommendation)
- ... and several others!

Graph Convolutional Networks (GCNs)

- Preprocess the adjacency matrix to be a symmetrically normalized Laplacian matrix
- Neighbors' features are weighted equally
- A non-linear transformation using a weight matrix is then applied
- LightGCN: the same as for GCN, but without the non-linear transformation
 - → less parameters and more efficient

Graph SAGE (SAmple and aggreGatE)

- Sample neighbors
- Aggregates (mean, sum, pooling)
- Multiply with Weight Matrix
- Activation Function

Graph Attention Network (GAT)

- The neighbors' features are weighted differently, by using an attention mechanism
- The aggregated features are then passed through a non-linear transformation

Deoscillated Graph Collaborative Filtering (DGCF)

- Try to avoid the «Oscillation problem»
 - Cross-hop matrix
 - Laplacian normalization
 - High-Pass Filter

BPRLoss

- Maximizes distance between positives and negatives item relevance scores
- Locality-Adaptive Weights
 - Weights each node

Adding cross-hop connections example

The Oversmoothing Problem

- With a relatively high number of GNN layers, nodes have approximately the same higher order neighbors in common
- The learned embeddings of nodes will be very similar, hence not permitting to effectively differentiate the nodes
- A simple solution is to limit the number of GNN layers

General GNN architecture

- Input embeddings: given or random
- Fusion layer: concatenation / mean / sum / etc...

Two-Step GNN

- Two sequential GNNs
- Item embeddings integrate properties information

Two-Way GNN

Properties Users Users **Properties** Items

User-Properties Graph

- Dereification of items
- Outdegree of Resulting graph is the product of User-Items and Item-Properties
 - Adjacency matrix is less sparse

Hybrid Architecture Tweaks

 Attention layer instead of concatenation

Hybrid Architecture Tweaks

 Residual connection of embeddings before concatenation

The Dataset

- Movielens-1M with user-item positive and negative ratings
- Two item-properties relations settings:
 - **RS1** {subject, director, starring, writer, language, editing, narrator}
 - **RS2** {subject, director, starring, writer, language, editing, cinematography, musicComposer, country, producer, basedOn}
- The item-properties adjacency matrix is way sparser than the user-item one

Grid Search

■ Basic architecture with GNNs

BasicRS	Reduce	
GCN	Concatenate	
GraphSage	Concatenate	
GAT	Concatenate	
LightGCN	Average	
DGCF	Average	

Dense Units	Channels	# Layers
(24, 24)	8	2
(32, 32)	8	3
(48, 48)	16	2
(64, 64)	16	3
(96, 48)	32	2
(128, 64)	32	3

	L ₂ Reg.	
	10-5	
Χ -	10-4	
	10-3	

Results - GNN / KGE comparison

Results - UI GNN / UIP GNN / Two-Step / Two-Way comparison

Grid Search

■ Feature-based Hybrid architecture with GNNs

HybridCBRS	Reduce
GCN	Concatenate
GraphSage	Concatenate
GAT	Concatenate
LightGCN	Average
DGCF	Average

Dense Units	Channels	# Layers
(24, 24)	8	2
(32, 32)	8	3
(48, 48)	16	2
(64, 64)	16	3
(96, 96)	32	2
(128, 128)	32	3

L₂ Reg.

10-5

10-4

10-3

Results - GNN / KGE comparison

Results - User-Item - Original / Tweaks comparison

Results - User-Item-Properties (RS2) - Original / Tweaks comparison

Conclusion

- Graph Neural Networks are good for graph data applied to recommendation tasks
- The learned embeddings are more **expressive**, with way less parameters
- It is possible to learn models in an end-to-end fashion

Future Works

- Evaluate such models on more datasets with a richer set of properties
- Introduce a transformer-based model to learn items' content embeddings jointly with the rest of the model