Pomorski

WWI 2024 - Kolano

18 sierpnia 2024 - 23 sierpnia 2024

Karol Pomorski to znany kierowca wyścigowy (zakrawający o korsarza drogowego) i nauczyciel informatyki (w tej kolejności). Wybiera się na wycieczkę po Wrocławiu.

Kod zadania:

Limit pamięci:

nom

128 MiB

Ponieważ stan dróg we Wrocławiu jest prawie tak tragiczny jak w Krakowie, używalne drogi możemy zamodelować jako drzewo n-1 dróg łączących n skrzyżowań. Dzięki wysiłkom prezydenta Jacka Sutryka z każdego skrzyżowania we Wrocławiu da się dojechać do każdego innego drogami. Ponieważ Karol Pomorski porusza się z prędkościami łamiącymi prawa ruchu drogowego i fizyki, samochody, którymi jeździ trzeba często zmieniać, a także palą ogromne ilości paliwa.

Karol chce odwiedzić w pewnej kolejności wszystkie skrzyżowania. Przy każdym skrzyżowaniu poza ostatnim jeden z jego fanów wypożyczy mu swój samochód. Następnie przejedzie tym samochodem do kolejnego planowanego skrzyżowania do odwiedzenia, **nie odwiedzając** skrzyżowań po drodze. Ponieważ tak piłuje silnik, w i-tej podróży będzie musiał tankować co k_i skrzyżowań. Karol musi też zatankować w mieście początkowym i docelowym. Aby nie zostać na lodzie z pustym bakiem, każdy z fanów zaaranżował tak, żeby liczba dróg w danej podróży była podzielna przez k_i . Ponieważ nie każda stacja jest tak samo daleko od głównej drogi, na różnych stacjach zatankowanie baku kosztuje różną kwotę $-c_i$ przy i-tym skrzyżowaniu.

Po pracy w Kuklu Karol jest dość bogaty, ale chciałby poprawnie zaksięgować swoją przejażdżkę. Pomóż mu policzyć sumaryczny koszt tankowania podczas każdego przejazdu.

Wejście

W pierwszym wierszu standardowego wejścia znajduje się jedna liczba całkowita n ($2 \le n \le 50\,000$), oznaczająca liczbę skrzyżowań we Wrocławiu. Skrzyżowania są numerowane od 1 do n. W kolejnym wierszu znajduje się ciąg n liczb całkowitych c_i ($1 \le c_i \le 10\,000$) pooddzielanych pojedynczymi odstępami, oznaczających ceny całego baku paliwa przy poszczególnych skrzyżowaniach.

W kolejnych n-1 wierszach znajdują się po dwie liczby całkowite a_i , b_i $(1 \le a_i, b_i \le n)$, oznaczające, że skrzyżowania o numerach a_i i b_i łączy droga.

W następnym wierszu znajduje się ciąg n liczb całkowitych t_i , opisujący kolejność, w jakiej Karol Pomorski ma zamiar odwiedzić skrzyżowania (każda z liczb od do pojawi się w tym ciągu dokładnie raz).

Ostatni wiersz wejścia zawiera ciąg liczb całkowitych k_i oznaczających, co ile skrzyżowań Karol Pomorski musi tankować w i-tym przejeździe. Możesz założyć, że k_i zawsze dzieli odległość między skrzyżowaniami t_i a t_{i+1} .

Wyjście

Na wyjściu powinno znaleźć się n-1 wierszy. W i-tym z nich powinna znaleźć się jedna liczba całkowita, oznaczająca koszt przejazdu między skrzyżowaniem o numerze t_i a t_{i+1} .

Przykład

Weiście dla testu pom0:

Trojecte and resta pemer			
2	3	4	5
2			
3			
4			
5			
1	5	2	3
3	1	1	
	2 2 3 4 5	2 3 2 3 4 5 1 5	2 3 4 2 3 4

Wyjście dla testu pom0:

10 6 10 5

1/2

Ocenianie

To jest Kolano. Jeżeli Twój program zmieści się w limicie czasu (wynoszącym 2 sekundy) oraz pamięci i odpowie poprawnie, liczba punktów będzie proporcjonalna do szczytowego zużycia pamięci operacyjnej programu (im mniej tym lepiej). W przeciwnym wypadku, program otrzyma ∞ punktów. Granularność pomiaru pamięci może być narzucona przez ograniczenia systemu operacyjnego.

2/2