Q1

The likelihood function conditional on the data is:

$$\mathbb{P}(\mathbf{X}|p) = p^{\mathbf{1}^T\mathbf{X}}(1-p)^{N-\mathbf{1}^T\mathbf{X}}$$

Take the log-likelihood of the function and obtain the MLE of p^* :

$$l(p) = \mathbf{1}^T \mathbf{X} \log(p) + (N - \mathbf{1}^T \mathbf{X}) \log(1 - p)$$

$$\frac{\partial l}{\partial p} = \frac{\mathbf{1}^T \mathbf{X}}{p} - \frac{N - \mathbf{1}^T \mathbf{X}}{1 - p} = 0$$

$$p^*N = \mathbf{1}^T\mathbf{X}$$

$$p_{MLE}^* = rac{\mathbf{1}^{\scriptscriptstyle T}\mathbf{X}}{N} = rac{1}{N}\sum_{i=1}^N x_i$$

Q2

The likelihood function of posterior is:

$$\mathbb{P}(p|\mathbf{X}) \propto \mathbb{P}(\mathbf{X}|p)\mathbb{P}(p) \propto p^{\mathbf{1}^T\mathbf{X}+lpha-1}(1-p)^{N-\mathbf{1}^T\mathbf{X}+eta-1}$$

We assume that $\alpha > \beta > 1$. Therefore, the posterior thus follows Beta distribution: Beta($\mathbf{1}^T\mathbf{X} + \alpha$, $N - \mathbf{1}^T\mathbf{X} + \beta$)

To maximize the posterior likelihood, we take the mode of the beta distribution:

$$p_{MAP}^* = rac{\mathbf{1}^T \mathbf{X} + lpha - 1}{N + lpha + eta - 2}.$$

Q3

(a)

Notice that, in expectation, $\mathbf{1}^T\mathbf{X}=Np^*=0.99N$. However, each $x\in\{0,1\}$, so if N<100, then $\hat{p}_{MLE}=1$. If N=100, in expectation, $\hat{p}_{MLE}=0.99$, which is within 0.01 of p^* .

(b)

Take
$$\alpha=7, \beta=2$$
. Let $p^*_{MAP}=rac{\mathbf{1}^T\mathbf{X}+lpha-1}{N+lpha+eta-2}>0.98$, we can obtain $N=44$.

Q4

(a)

Use the similar arguments as Q3, we can see that \hat{p}_{MLE} does not depend on the prior belief. Therefore, we obtain the same answer: N=100.

(b)

Take
$$lpha=7, eta=2$$
. Let $p^*_{MAP}=rac{\mathbf{1}^T\mathbf{X}+lpha-1}{N+lpha+eta-2}<0.02$, we can obtain $N=294$.

Q5

In conclusion, when we do have the correct prior, \hat{p}_{MAP} converges much faster to the true p^* than \hat{p}_{MLE} . However, if the prior is incorrect, then it takes extra samples to correct the prior belief. Therefore, \hat{p}_{MLE} performs better.