

AD-A107 255

AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH
MECHANISMS OF RECOVERING LOW CYCLE FATIGUE DAMAGE IN INCOLOY 90--ETC(U)
1979 R E SCHAFRIK

F/G 11/6

UNCLASSIFIED

AFIT-CI-79-212D

NL

1.e 3
40° +
0° +

AC FILE COPY

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 79-212D	2. GOVT ACCESSION NO. <i>AD-A107</i>	3. RECIPIENT'S CATALOG NUMBER <i>255</i>
4. TITLE (and Subtitle) Mechanisms of Recovering Low Cycle Fatigue Damage in Incology 901		5. TYPE OF REPORT & PERIOD COVERED <i>THESIS/DISSERTATION</i>
6. AUTHOR(s) Capt Robert E. Schafrik		7. PERFORMING ORG. REPORT NUMBER
8. CONTRACT OR GRANT NUMBER(s)		9. PERFORMING ORGANIZATION NAME AND ADDRESS AFIT STUDENT AT: The Ohio State University
10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS		11. CONTROLLING OFFICE NAME AND ADDRESS AFIT/NR WPAFB OH 45433
12. REPORT DATE 1979		13. NUMBER OF PAGES 239
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) LEVEL		15. SECURITY CLASS. (of this report) UNCLAS
16. DISTRIBUTION STATEMENT (of this Report) APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE <i>REV 13 1981</i>
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		<i>22 OCT 1981</i> <i>Frederick C. Lynch</i>
18. SUPPLEMENTARY NOTES APPROVED FOR PUBLIC RELEASE: IAW AFR 190-17		<i>FREDERIC C. LYNCH, Major, USAF</i> <i>Director of Public Affairs</i> <i>Air Force Institute of Technology (AFIT)</i> <i> Wright-Patterson AFB, OH 45433</i>
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)		
ATTACHED		

811030051

MECHANISMS OF RECOVERING LOW CYCLE FATIGUE DAMAGE
IN INCOLOY 901

BY

Robert E. Schafrik, Capt. USAF (Ph.D.)
The Ohio State University, 1979
Professor James A. Begley, Adviser

ABSTRACT

The effect of thermal treatment and hot isostatic pressing (HIP) on eliminating low cycle fatigue (LCF) damage in the iron-nickel superalloy, Incoloy 901, was investigated. Testing was done in air at 500°F at a total strain range of 0.75%. The mechanisms of crack initiation and crack propagation in baseline specimens were determined and used as the basis of comparison for the rejuvenated specimens.

Crack initiation in the baseline specimens was due to decohering of blocky grain boundary carbides. Pre-crack initiation damage consisted of extrusions and intrusions formed at persistent slip bands and partially decohered grain boundary carbides.

A pre-rejuvenation damage level of 800 cycles (60% of crack initiation) was selected. Some specimens to be HIP processed were ceramic coated; the rest were left uncoated. Post-HIP testing revealed that LCF properties were adversely affected by surface microstructural damage caused by the HIP processing.

Thermal rejuvenation, consisting of a standard solution treatment and double aging, was partially successful in recovering fatigue properties with a pre-rejuvenation damage level of 800 cycles. Initiation life was extended by 400 cycles and cycles to failure was extended by 600 cycles. This behavior is explained in terms of microstructural damage which is resistant to thermal treatment.

Total Pages - 259

Selected Bibliography

1. M.N. Menon and W.H. Reiman, "Low Cycle Fatigue Crack Initiation Study in René 95", J. Mater. Sci. 10, 1571-1581 (1975).
2. B. Leis and A. Clauer, Investigation of Rejuvenation of Fatigue Damage in IN-718, AFML TR-78-90, Wright-Patterson AFB, OH.
3. H.F. Merrick, "The Low Cycle Fatigue of Three Wrought Nickel-Base Alloys", Met Trans 5, 891-897 (1976).
4. C. Laird, Mechanisms and Theories of Fatigue, presented at the Materials Science Seminar, ASM, St. Louis Mo. (1978).

MECHANISMS OF RECOVERING LOW CYCLE FATIGUE DAMAGE
IN INCOLOY 901

DISSERTATION

Presented in Partial Fulfillment of the Requirements for
the Degree Doctor of Philosophy in the Graduate
School of The Ohio State University

By

Robert E. Schafrik, B.S.Met., M.S.

* * * * *

The Ohio State University

1979

Accession for	✓
NIIS GP&I	
DTIC TTS	
Unannounced	
Justification	
By	
Distribution	
Available	
At	
Dist	

Reading Committee:

Dr. G. W. Powell

Dr. J. P. Hirth

Dr. J. A. Begley

Approved By

James A. Begley
Adviser
Department of Metallurgical Engineering

DEDICATION

To my wife, Mary; and to my children: Catherine,
Frances, Robert Jr., and Steven.

ACKNOWLEDGEMENTS

The author wishes to express his sincere appreciation to Dr. J. A. Begley of The Ohio State University for his guidance and encouragement throughout this project. The author is thankful for the constructive comments of the following individuals in the early stages of this effort: Dr. B. Wilshire of University College, University of Wales; A. Adair, Dr. W. Reimann, and Dr. H. A. Lipsitt of the Air Force Materials Laboratory, Wright-Patterson Air Force Base; Drs. A. Clauer and B. Leis, Battelle-Columbus Laboratories; and Dr. J. C. Williams, Carnegie-Mellon University. Also, the author is grateful for the excellent training in practical aspects of transmission electron microscopy provided by Dr. J. C. Williams.

Appreciation is due to Captain P. Martin and R. Kerans of the Air Force Materials Laboratory for helpful advice, instruction, and troubleshooting assistance in using the many different pieces of laboratory equipment required to complete this dissertation; and for helpful discussions on the research work throughout the project. Also, appreciation is due to Mr. Dwelle Butts of the Air Force Materials Laboratory for his efforts in obtaining necessary supplies.

I wish to thank my wife, Mary, and our four children for their support and extreme patience throughout my graduate education.

The author is obliged to the following for supplying materials:
M. M. Allen, Government Products Division, Pratt-Whitney Aircraft Co.,

for providing a section of a compressor shaft forging; P. Bailey, Aircraft Engine Group, General Electric Co., for providing ceramic coating for some specimens; and D. Weaver, Kelsey-Hayes, Detroit, for a piggybacked hot-isostatic-pressing run.

I would like to recognize the cooperation and help of the following: S. Leffler, J. Henry, M. Henry, G. Cornish, and J. Barlowe. Many thanks are due to Ms. S. Ehlers for typing this manuscript.

Able assistance in transferring my fatigue data from paper punch tape format to computer disk file was provided by Captain D. Summer and Ms. C. Johnson of the Air Force Materials Laboratory.

This research was performed under the auspices of the Air Force Materials Laboratory. I am appreciative of the moral and financial support provided by Dr. H. A. Lipsitt, and for his helpful advice during various stages in this project. I am likewise appreciative of the encouragement given me by Dr. H. Burte and L. Hjelm of the Air Force Materials Laboratory.

Finally, I wish to thank the Air Force Institute of Technology and the U. S. Air Force for the opportunity to complete my graduate education. I would like to acknowledge the administrative assistance provided by my Program Managers, Captains S. Brown and D. Cain.

VITA

February 6, 1946 Born - Cleveland, Ohio
1963-1967 B.S.Met., Case-Western Reserve University, Cleveland, Ohio
1967-1968 Applications Engineer, American Air Filter Co., Louisville, KY
1968 Commissioned and entered U. S. Air Force
1968-1972 Base Civil Engineer, Hanscom Air Force Base, Bedford, MA
1972-1974 M.S., Aerospace Engineering, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio
1974-1975 Materials Development Engineer, Metallurgy and Ceramics Laboratory, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio
1975-1977 Assistant Branch Chief, Metals Branch, Manufacturing Technology, Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio

PUBLICATIONS

"Determination of Texture Pole Figures Using Picker FACS-1 Apparatus," with L. A. Jacobson, ARL TR 75-0190, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio (1975).

"The Deformation and Fracture of TiAl at Elevated Temperatures," with H. A. Lipsitt and D. S. Schechtman, Met. Trans. A 6A, 1991-1996 (1975).

"Dynamic Elastic Moduli of the Titanium Aluminides," Met. Trans. A 8A, 1003-1006 (1977).

"Manufacture of TiAl by Extrusion of Blended Elemental Powders,"
Met. Trans. B 7B, 713-716 (1976).

"Manufacture of TiAl by Extrusion of Blended Elemental Powders,"
DDC Report AD-780630, Defence Documentation Center, Arlington, VA
(1974).

TABLE OF CONTENTS

	Page
DEDICATION	ii
ACKNOWLEDGEMENTS	iii
VITA	v
LIST OF TABLES	x
LIST OF FIGURES	xi
Chapter	
1. INTRODUCTION	1
I. Crack Initiation	2
II. Stage I Crack Propagation	4
III. Stage II Crack Propagation	5
IV. Physical Metallurgy of Incoloy 901	5
V. Rejuvenation	9
2. EXPERIMENTAL PROCEDURE	11
I. Metallography Techniques	11
A. Optical Microscopy	11
B. Transmission Electron Microscopy	12
C. Scanning Electron Microscopy	13
D. Surface Replication	13
II. Aging Response of Incoloy 901	14
A. Material Specification	14
B. Thermal Treatments	14
III. Low Cycle Fatigue	18
A. LCF Specimen Design and Manufacture	18
B. Ceramic Coating Procedure	24
C. Specimen Preparation after Rejuvenation	27
D. Load Train Configuration	27
E. Strain Measuring System	27
F. Low Cycle Fatigue Testing	34
G. Computation of Strain Range and Stress Range	37
H. In Situ Surface Replication	40

TABLE OF CONTENTS (CONT'D)

Chapter	Page
IV. Tensile Testing	41
A. Specimen Configuration	41
B. Machine Description	41
C. Computation of Stress and Strain	41
V. Rejuvenation Treatments	42
A. Thermal Treatments	42
B. Hot Isostatic Pressing (HIP) Treatments	45
VI. Sonic Modulus Testing	49
3. RESULTS AND DISCUSSION	51
I. Aging Response of Incoloy 901	51
A. Characterization of As-Received Microstructure	51
B. Development of Standard Solution and Double-Aged Treatment	55
C. Microstructure Response at Elevated Temperatures	62
D. Microstructure Resulting from Hot Isostatic Pressing	62
II. Mechanical Properties	65
A. Tensile Testing	65
B. Elastic Constants	65
III. Low Cycle Fatigue Baseline Testing	68
A. Determination of Effective Gauge Length	68
B. Cyclic Stress-Strain Curve	71
C. Characterization of Fatigue Damage	73
i. Baseline Data	73
ii. Dislocation Substructure	90
iii. Fractography	90
D. Crack Initiation Mechanisms	96
i. Surface Replication	96
ii. Surface Scanning Electron Microscopy	107
iii. Proposed Mechanism	126

TABLE OF CONTENTS (CONT'D)

Chapter	Page
IV. Rejuvenation Effects	127
A. Results of HIP Treatments	127
i. Presentation of Data	127
ii. Mechanisms	158
B. Results of Thermal Treatments	159
i. Presentation of Data	159
ii. Mechanisms	179
C. Conclusions	181
4. SUMMARY	185
5. APPENDIX	189
Listing of Computer Programs	
I. Source Listing of Modified Instron Low Cycle Fatigue Application Program APP-900-A3A8	190
II. Source Listing of FORTRAN Program for Stress and Strain Computations and Plotting	224
BIBLIOGRAPHY	239

LIST OF TABLES

Table		Page
1	Chemical Analysis of Billet	15
2	Commercial Heat Treatment Specifications for Incoloy 901	16
3	Furnace Cool Rates - Vacuum Cool and Helium Gas Quench	19
4	Standard Heat Treatment, STA 3A, for Incoloy 901	25
5	Low Stress Grinding Parameters	26
6	Typical LVDT Calibration Curve Data	33
7	Incoloy 901 Tensile Data	66
8	Effective Elastic Gauge Length	68
9	Summary of Baseline LCF Properties	74
10	Line Constants for Log $\Delta\epsilon$ vs Log N Curves	75
11	Calculation of Crack Growth Rate from Fracture Mechanics	106
12	Summary of HIP Rejuvenation on LCF Properties	128
13	Effect of Vapor Honing on LCF Properties	141
14	Summary of Thermal Rejuvenation on LCF Properties	160
15	Summary of Repolishing on LCF Properties	161
16	Summary of LCF Data for Multiple Thermal Rejuvenation - LCF Specimen 41	172
17	Summary of Cycles to Crack Initiation, 0.70-0.80 Total Strain Range, 500 F Test Temperature	182
18	Summary of Cycles to Failure, 0.70-0.80 Total Strain Range, 500 F Test Temperature	183

LIST OF FIGURES

Figure		Page
1	Low Cycle Fatigue Specimen Design	21
2	View of Incoloy 901 Shaft Forging	22
3	Load Train Sketch	28
4	LCF Specimen Grip Design	30
5	Strain Measuring System	31
6	LVDT Calibration Curve	35
7	Plot of Displacement vs Cycles	38
8	Heat Treatment Fixture Design	43
9	HIP Fixture Design	46
10	Plot of Temperature vs Time for HIP Run	47
11	Plot of Pressure vs Time for HIP Run	48
12	Micrograph of As-Received Material	52
13	Electron Micrograph of Inclusions	54
14	Electron Microprobe Image of Carbide Inclusion	56
15	TEM Micrograph of γ'	57
16	TEM Micrograph of Grain Boundary MC Carbides	58
17	TEM Micrograph of Precipitate-Free Grain Boundary	59
18	TEM Micrograph of Undesirable Grain Boundary Precipitate Morphology	61
19	TEM Micrograph of η Platelets	63
20	Micrograph of η Platelets	64
21	Micrograph of As-HIP'd Material <i>xi</i>	67

LIST OF FIGURES (CONT'D)

Figure		Page
22	Plot of Stress vs Displacement at 70°F	69
23	Plot of Stress vs Displacement at 500°F	70
24	Plot of Cyclic Stress-Strain Curve	72
25	Plot of Stress Range vs Cycles - Expanded Scale	76
26	Plot of Baseline Strain Range vs Cycles to Failure	77
27	Plot of Baseline Strain Range vs Cycles to Initiation	78
28	Plot of Stress Range vs Cycles - LCF Specimen 2	79
29	Plot of Stress Range vs Cycles - LCF Specimen 4	80
30	Plot of Stress Range vs Cycles - LCF Specimen 5	81
31	Plot of Stress Range vs Cycles - LCF Specimen 6	82
32	Plot of Stress Range vs Cycles - LCF Specimen 7	83
33	Plot of Stress Range vs Cycles - LCF Specimen 8	84
34	Plot of Stress Range vs Cycles - LCF Specimen 11	85
35	Plot of Stress Range vs Cycles - LCF Specimen 12	86
36	Plot of Stress Range vs Cycles - LCF Specimen 32	87
37	Plot of Stress Range vs Cycles - LCF Specimen 33	88
38	Plot of Stress Range vs Cycles - LCF Specimen 53	89
39	TEM Micrograph of Fatigued Specimen with Planar Dislocations	91
40	SEM Fractograph - LCF Specimen 33	92
41	SEM Fractograph, Initiation Site - LCF Specimen 33	93
42	SEM Fractograph, Fatigue Striations - LCF Specimen 33	94
43	SEM Fractograph, Cracked Carbides - LCF Specimen 33	95
44	Micrographs of Replicas, Cracks - LCF Specimen 7	97

LIST OF FIGURES (CONT'D)

Figure		Page
45	Plot of Crack Length vs Cycles - LCF Specimen 7	99
46	Micrographs of Replicas, Cracks - Specimen 8	101
47	Plot of Crack Length vs Cycles - LCF Specimen 8	104
48	Electron Micrographs Depicting Grain Boundary Offsets	109
49	SEM Micrograph, Crack at Carbide - LCF Specimen F2	111
50	SEM Micrograph, Crack at Carbide - LCF Specimen F2	113
51	Micrograph of Replica - LCF Specimen 36	114
52	Micrograph of Replica, Crack at Carbide - LCF Specimen 36	115
53	SEM Micrograph, Main Crack - LCF Specimen 53	116
54	SEM Micrograph, Fatigue Striations - LCF Specimen 53	117
55	SEM Micrograph, Secondary Cracking - LCF Specimen 53	118
56	SEM Micrograph, Extrusion after 800 Cycles - LCF Specimen 38	120
57	SEM Micrograph, Decohering Carbide after 800 Cycles - LCF Specimen 38	121
58	SEM Micrograph, Longitudinal Section after 2103 Cycles - LCF Specimen 39	122
59	SEM Micrograph, Cracks in Longitudinal Section after 2103 Cycles - LCF Specimen 39	123
60	Plot of Stress Range vs Cycles - LCF Specimen 14	129
61	Plot of Stress Range vs Cycles - LCF Specimen 16	130
62	Plot of Stress Range vs Cycles - LCF Specimen 18	131
63	Plot of Stress Range vs Cycles - LCF Specimen 19	132
64	Plot of Stress Range vs Cycles - LCF Specimen 20	133
65	Plot of Stress Range vs Cycles - LCF Specimen 21	134
66	Plot of Stress Range vs Cycles - LCF Specimen 22	135

LIST OF FIGURES (CONT'D)

Figure		Page
67	Plot of Stress Range vs Cycles - LCF Specimen 23	136
68	Plot of Stress Range vs Cycles - LCF Specimen 24	137
69	Plot of Stress Range vs Cycles - LCF Specimen 25	138
70	Plot of Stress Range vs Cycles - LCF Specimen 29	139
71	SEM Micrograph, As-Vapor-Honed Surface - LCF Specimen 55	142
72	Plot of Stress Range vs Cycles - LCF Specimen 27	143
73	Plot of Stress Range vs Cycles - LCF Specimen 28	144
74	SEM Micrograph, Secondary Cracking - LCF Specimen 28	146
75	SEM Micrograph, Secondary Cracking - LCF Specimen 28	147
76	SEM Micrograph, Secondary Cracking - LCF Specimen 28	148
77	Micrograph, Coating Reaction - LCF Specimen 20	149
78	SEM Fractograph - LCF Specimen 25	150
79	Micrographs of Replicas, Cracks - LCF Specimen 21	151
80	Plot of Crack Length vs Cycles - LCF Specimen 21	152
81	Micrograph, Surface Oxidation - LCF Specimen 26	154
82	SEM Micrographs, Main Crack - LCF Specimen 16	155
83	SEM Micrographs, Secondary Cracking - LCF Specimen 16	157
84	Plot of Stress Range vs Cycles - LCF Specimen 13	162
85	Plot of Stress Range vs Cycles - LCF Specimen 34	163
86	Plot of Stress Range vs Cycles - LCF Specimen 35	164
87	Plot of Stress Range vs Cycles - LCF Specimen 42	165
88	Plot of Stress Range vs Cycles - LCF Specimen 43	166
89	Plot of Stress Range vs Cycles - LCF Specimen 51	167
90	Plot of Stress Range vs Cycles - LCF Specimen 54	168

LIST OF FIGURES (CONT'D)

Figure		Page
91	Plot of Stress Range vs Cycles - LCF Specimen 38	169
92	Plot of Stress Range vs Cycles - LCF Specimen 40	170
93	SEM Micrograph, Cracking at Inclusions - LCF Specimen 42	173
94	TEM Micrograph, Dislocation Network after 800 Cycles - LCF Specimen 31	174
95	TEM Micrograph, Annealed Dislocation Network - LCF Specimen 31	175
96	Plot of Stress Range vs Cycles - LCF Specimen 41	176
97	SEM Micrograph, Surface Cracking after 1606 Cycles - LCF Specimen 41	177
98	SEM Micrograph, Cracking after Failure - LCF Specimen 41	180
99	Plot of Strain Range vs Cycles to Failure with Baseline Trend Line and Rejuvenation Data	188

Chapter 1

INTRODUCTION

The modern gas turbine engine demands the ultimate in performance from materials. Typical material requirements include high strength and stiffness at operating temperatures, good oxidation resistance, low creep rates and high stress rupture values, and good low-cycle and high-cycle fatigue resistance. Since the results of component failure, especially of rotating components, usually are catastrophic, design approaches and material specifications tend to be conservative (1,3,4,61).

A turbine disk is that component which transmits the work done by hot, expanding gases on the turbine blades to the power shaft of the engine. Experience has indicated that turbine disks can fail either by stress rupture at the rim where the blades are attached with dovetail slots; or, as is usually the case, by low-cycle fatigue at cross-sectional changes or at bolt holes (10). The low-cycle fatigue results from vibration, changing engine operating speeds and thermal gradients (3,12). When a turbine disk is limited by low-cycle fatigue (LCF) life, the design approach is to establish a probability of failure of 0.5%, with failure defined as extension of a detectable crack and not component disintegration. Therefore, most turbine disks reach their LCF life with a high probability of additional life remaining (1). Since these disks are quite expensive, there is a great deal of interest in processing the disks in some manner (i.e., rejuvenating the disks)

to remove the microstructural damage which leads to LCF failure, so that the disks can be returned to service safely and reliably at low cost (2).

This investigation was undertaken to determine how the LCF process causes crack initiation in Incoloy 901, and to find which rejuvenation treatments can lead to recovery of the initiation life. Incoloy 901 was selected for study because it is a commonly used superalloy and, thus, there are many disks which potentially can be returned to service after rejuvenation.

Subsequent portions of this introduction will briefly review LCF crack initiation and propagation in superalloys, the physical metallurgy of Incoloy 901, and rejuvenation.

I. CRACK INITIATION

Dieter divides the fatigue process into four steps: crack initiation, Stage I crack growth, Stage II crack growth, and ultimate ductile failure (14). This classification will be used in the following discussion.

The mechanisms for LCF crack initiation generally involve the interaction between the deformation processes and the alloy microstructures (1,4,5,6,7,8,9,11,46,64,67,68). The mode of crack nucleation depends on such factors as the amount of deformation, the degree of slip dispersal, test temperature and environment, and the amount and type of microstructural defects (carbo-nitrides, borides, porosity, brittle second phases, etc.). Kim and Laird point out that in pure metals, crack initiation occurs at persistent slip bands at low stress ranges and at grain boundaries at high stress ranges exclusive of severe

environmental effects (47). In lower temperature regimes (less than about 700°F or 370°C), superalloys deform by planar slip which is heterogeneous in nature (4). Kuhlmann-Wilsdorf and Laird have developed a dislocation model to explain how persistent slip bands can lead to the formation of intrusions and extrusions on the specimen surface which in turn lead to crack initiation (49,46). This model presents the rationale for the simple stress-raiser mechanism proposed by Wood 20 years ago (50).

At high cyclic ranges, cracks generally initiate at the grain boundaries. Recent work by Kim and Laird (47,48) have developed three criteria for crack initiation in pure metals at grain boundaries:

- (a) The grain boundaries must have a high degree of lattice mismatch;
- (b) The slip on the active slip system in either one or both of the adjacent grains should be directed at the intersection of the boundary with the specimen surface; and (c) The trace of the boundary at the free surface should lie at an angle of 30-90° with respect to the stress axis. Kim and Laird also observed grain boundary sliding in their LCF experiments on pure copper (47). The cracks were observed to have initiated at grain boundary steps.

Superalloys contain a substantial amount of carbides, carbo-nitrides, and borides intentionally added to control the grain size, improve creep resistance, increase grain boundary strength, and to vitiate the adverse effects of trace elements (17). Unfortunately, it has been found that these nonmetallic inclusions serve as favorable sites for crack initiation. In a study by Gell and Leverant on the LCF behavior of Mar-M200, it was found that metal carbides played a key role in

determining the crack initiation life (8). The carbides can be pre-cracked due to differential contraction during the solidification process or during the various metalworking processes. Also, the carbides can de-cohere from the matrix, especially at the surface, leading to a localized strain concentration region. As recently shown by Reimann and Menon, carbides provide a preferential path for developing LCF cracks in René 95 and seem to be associated with initiation of the cracks themselves (1).

Many investigators have found coherent twin boundaries to be significant sites for crack initiation at lower stress ranges (4).

II. STAGE I CRACK PROPAGATION

There is some disagreement in the literature about a definition of Stage I cracking. Coffin suggests that Stage I is early growth of a crack to some detectable limit and then propagation through a plastic regime (12). A more accepted definition is that Stage I cracking is that stage where cracks propagate along specific crystallographic planes which are oriented near 45° to the applied stress axis (46). But Laird points out that this definition is not strictly applicable to LCF where crack nucleation and growth may occur along sections which are not crystallographic (47).

Since persistent slip bands develop on the most active slip plane, cracks initiated at them generally continue to propagate along them (46). Thus, a persistent slip band can lead to the development of intrusions/extrusions, to a crack nucleus, and finally to crack propagation.

Similarly, cracks nucleated at grain boundaries tend to grow along the boundary both on the surface and into the bulk (47). Thus, the

crack front develops a thumbnail shape. Also, Kim and Laird predicted and observed a crack path which is asymmetric with respect to the boundary, with the crack occurring in that grain with the most favorably oriented active slip system (48).

III. STAGE II CRACK PROPAGATION

Coffin proposes that Stage I cracking leads to Stage II cracking when the crack overcomes the plastic zone which envelops it during its early stages, and thus it begins to grow elastically (12).

Usually, however, Stage II is denoted as the transition of the crack from growing along the maximum shear direction to growing normal to the applied stress direction. At high stress ranges, the crack will almost immediately propagate by Stage II processes (46).

It is during Stage II crack growth that fatigue striations are generated, although not all materials develop a striation pattern. Striations are usually observed in superalloys (53). It is generally accepted that each striation represents the propagation distance of a fatigue crack during each cycle. A crack plastic blunting process proposed by Laird requiring two slip systems (51) is a very reasonable explanation for the formation of striations (52).

Stage II continues until the crack becomes long enough to cause the final instability. In brittle materials, the crack begins to propagate unstably after a critical length is reached. In ductile materials, the crack grows until a tensile overload occurs, at which time fracture occurs by shear rupture on planes inclined 45° to the tensile axis (52).

IV. PHYSICAL METALLURGY OF INCOLOY 901

Incoloy 901 is an iron-nickel superalloy widely used as a turbine disk material since the early 1960's (17). Its nominal composition is (in weight percent): Ni-42.5, Fe-36.0, Cr-12.5, Mo-5.7, Ti-2.8, Al-0.2, C-0.05, and B-0.015. Since it is fairly strong and ductile at intermediate temperatures (up to 1000°F/540°C) and contains substantial iron and relatively low chromium, it is widely used due to its comparatively low cost. It also possesses the advantage of being in that group of superalloys which can be forged and machined fairly conventionally (19).

Incoloy 901 has an austenitic (γ -f.c.c.) iron-nickel-chromium matrix. Molybdenum, titanium, carbon, and boron are the other principal substitutional solid-solution strengtheners of the matrix (17). The stacking fault energy is not known, but from data presented by Decker and Floreen, it can be estimated to be greater than 60 ergs/cm² (18).

The primary precipitate is γ' , an intermetallic compound of the type Cu₃Au, possessing a Strukturbericht structure type Ll₂. Its stoichiometric composition is Ni₃Al with a lattice parameter of 3.60 Å. In actual fact, γ' contains some iron on the nickel lattice sites, and some titanium on the aluminum lattice sites, so that γ' is usually denoted as (Ni,Fe)₃(Al,Ti). The lattice mismatch between γ' and the γ matrix is low, so that the γ' nucleates homogeneously. The γ' grows in a spherical morphology which indicates that the lattice misfit is less than 0.5% (17,20). The solvus temperature is 1725°F (940°C) (17).

Actually, in Incoloy 901, γ' is a metastable precipitate (18). The equilibrium precipitate is η , an h.c.p.-ordered intermetallic compound with a Strukturbericht structure type DO₂₄. It has the stoichiometric

composition Ni₃Ti. Unlike γ' , it does not dissolve substantial amounts of other elements (20). The precipitation of η may occur in two forms: at the grain boundaries in a cellular morphology or intergranularly as plates (22,20). The cellular precipitation nucleates at a lower temperature than the plate-shaped precipitates. The solvus temperature for η is 1825°F (996°C) (17). Significant precipitation occurs in the temperature range 1500–1750°F (816–954°C), with the most rapid precipitation rate in the temperature region 1600–1650°F (871–899°C) (25).

The cellular precipitation reaction consists of alternating lamellae of γ and η . These cells have a random orientation with respect to the grain into which they are growing. But the close-packed planes and directions of the h.c.p. η and the f.c.c. γ are parallel to one another (20). These orientation relationships are also true for the plate morphology which are thought to nucleate on stacking faults in γ' (18). The interface between γ and η is semi-coherent, with a lattice mismatch of 0.65% (19). The η phase is associated with severe degradation in mechanical properties. Not only is the phase itself brittle, but also it grows at the expense of the γ' . However, η has successfully been used to control the grain size of Incoloy 901 during forging by the utilization of special thermomechanical processing (25).

Carbides play a key role in superalloys. They help to control grain size since some carbide types are stable nearly to the melting point of the alloys. Also, the carbides which precipitate in the grain boundary greatly increase stress rupture strength at elevated temperatures. And, carbides can increase the chemical stability of the matrix by removing reacting elements (26). MC carbides form shortly after freezing and,

hence, they occur as discrete particles distributed homogeneously throughout the alloy. In Incoloy 901, these MC carbides have the composition TiC with an f.c.c. structure. Some molybdenum can substitute on the titanium lattice sites, so that a carbide of the type (Ti,Mo)C is possible (26,70).

Although carbides of the type $M_{23}C_6$ usually form in superalloys during low-temperature heat treatment and service in the temperature range 1400-1800°F (760-980°C), they are not found in Incoloy 901. Instead, MC carbides of the type (Ti,Mo)C precipitate at the grain boundaries during the stabilization portion of the heat treatment (70). The morphology of these grain boundary carbides is similar to that for a Laves phase and they have been incorrectly identified as Laves phases (24).

The formation of carbo-nitrides and titanium nitrides has been reported (24). Cubic TiN is as thermally inert in the superalloy as is TiC.

The boron which is added to improve creep properties results in the precipitation of hard, refractory M_3B_2 borides (26). Typical composition of these borides is: $(Mo,Ti,Al,Cr,Fe,Ni,Si)_3B_2$ (24,69).

In addition to the intentional precipitates, various topologically close-packed (t.c.p.) intermetallic compounds form in superalloys due to solid-state bonding phenomena (t.c.p. phases are also referred to as "Hume-Rothery compounds" and "electron compounds"). A hexagonal Laves phase of the type $(Fe,Cr,Mn,Si)_2(Mo,Ti,Ch)$ has been found in Incoloy 901 after aging for long times in the temperature range 1200-2000°F (649-1093°C). The morphology varies from general intergranular to grain

boundary precipitation (24,23,18). The trigonal μ phase has been observed in Incoloy 901 with high boron additions (0.1 weight percent) (24). This phase has a close structural relationship to the M_6C carbides and, thus, it may be that M_6C can precipitate in this alloy, although it has not been reported. The chemical composition of the μ phase can be quite complex. It is, in general, $(Ti,Mo)_6(Fe,Ni)_7$ (24). The precipitation is intragranular as thin platelets parallel to γ close-packed planes.

V. REJUVENATION

Metallurgical engineers who are responsible for the maintenance of turbine engines have long expressed a desire to be able to restore at least a portion of the design life of expensive engine components through some sort of processing operation. This process has been given the name "rejuvenation." Recent advances made by Wilshire and others have shown that thermal treatments are successful in recovering the creep life of superalloys (28,29). Wilshire found that the onset of tertiary creep is caused either by development and growth of grain boundary cavities or by microstructural changes which cause changes in volume fraction and morphology of the γ' (28). Thus, suitable heat treatments could be devised to sinter out the cavities in the first case, or to restore the original microstructure in the second case in order to recover the creep life.

The success with creep damage has given impetus to finding suitable processing conditions for recovering the low-cycle fatigue (LCF) life of superalloys. The use of hot-isostatic-pressing (HIP) technology to consolidate metal powders has been quite successful (31) and it was

inferred that this technology would be useful in healing LCF damage. The HIP process involves the introduction of high pressure gas into an autoclave at elevated temperature. Thus, some mechanical energy is available as well as thermal energy.

Researchers at the Stellite Division of the Cabot Corporation obtained some preliminary data on turbine blades which indicated that some recovery of creep and fatigue properties was possible with HIP processing (30). An Air Force funded study on HIP rejuvenation in IN-718 concluded that there was no rejuvenation of pre-crack initiated damage, but that there was some rejuvenation of post-crack initiation life due to the closure and bonding of fatigue cracks (2). However, this work was not conclusive because the HIP cycle chosen for the rejuvenation effort substantially changed the baseline properties of the material, and there was relatively little effort devoted to microstructural characterization.

It is the purpose of this dissertation to report the results of the experimental investigation to recover some portion of pre-crack initiated LCF life using thermal and HIP processing. Pertinent aspects of the physical metallurgy of Incoloy 901 are presented. The LCF behavior of Incoloy 901 at various strain ranges is reported. The microstructural mechanisms of LCF damage and the resultant effects of the rejuvenation processes are detailed.

Chapter 2

EXPERIMENTAL PROCEDURE

I. METALLOGRAPHY TECHNIQUES

A. Optical Microscopy

The samples to be examined were mounted in Bakelite, hand polished through 600-grit silicon carbide paper using water as a lubricant, and polished successively with 6- μ , 1- μ , and 1/4- μ diamond paste. Several different etchants were utilized. ASTM Etchant 105 (32) was most generally used to reveal microstructural details. It was freshly mixed each time in these proportions: 92% HCl, 5% H_2SO_4 , and 3% HNO_3 . Immersion for 5-30 seconds was usually sufficient. Marble's Reagent (ASTM Etchant 25) was effective in highlighting the grain boundaries. It was mixed in these proportions: 10 g $CuSO_4$, 50 ml HCl, and 50 ml water (32). Etchant times were generally 10-30 seconds. Glyceregia (ASTM Etchant 87) was useful in highlighting microstructural details when the other etchants were not adequate. It was freshly mixed each time according to the formula: 10 ml HNO_3 , 50 ml HCl, 30 ml glycerin (32). The samples were bathed in hot water prior to immersion in the glyceregia. Etchant times depended on the surface temperature of the specimen. Average times were between 20 seconds and 1 minute. Sometimes the samples were immersed in HF for a few seconds to remove a passive layer prior to etching.

After the samples were satisfactorily etched, they were thoroughly rinsed in water and bathed in a saturated sodium bicarbonate solution placed in an ultrasonic cleaner for several minutes. This step was necessary to prevent etching of the microscope objective piece. The etched surface was then dried using a methanol wash and a blower. The samples were examined and photographed in a Bausch and Lomb Research II Metallograph using a xenon light source.

B. Transmission Electron Microscopy

Thin slices of Incoloy 901, approximately 0.010 inch thick, were cut using a thin abrasive cut-off wheel. These slices were then ground flat on 240- and 320-grit silicon carbide paper using water as a lubricant. The slices were attached to the bottom of a stainless steel mount using balsam wax. The slice was further ground down to a thickness of 5-6 mils on 320- and 400-grit silicon carbide paper using a water lubricant. The thin slices were then dismounted and the residual balsam was removed by slight grinding on the 400-grit paper. A punch-out die, with a 3-mm opening, was used to cut out the disks. In the case of the fatigue specimens where the disks were taken normal to the longitudinal axis, the above procedure was simplified somewhat since the fatigue specimens had a nominal 3-mm diameter.

Electropolishing was done with a dual-jet Tenupol. The electrolyte had the following composition: 600 ml methanol, 250 ml butanol, and 60 ml perchloric acid (70%). The electrolyte was maintained at a temperature of about -60°C by constantly adding liquid nitrogen to a methanol bath surrounding the electrolyte.

The controls on the polisher were set for minimum flow rate and maximum sensitivity of the photocell detector which turned off the

electrolyte pump after perforation of the disk. A two-step polishing sequence worked best. Electropolishing for 15-30 minutes at 30 volts followed by final polishing at 16-20 volts produced dished disks with holes close to the center. After electropolishing, the disks were washed in methanol. Great care was taken in handling to prevent inducing artifact dislocations into the structure.

C. Scanning Electron Microscopy (SEM)

An AMR Model 1000 Scanning Electron Microscope was used in this investigation. An Energy Dispersive Analysis of X-Rays (EDAX) attachment to the SEM was used to identify chemical elements. Sample preparation involved cutting the LCF specimen just below the extensometer flange, and mounting it on an aluminum stud using a silver paste.

D. Surface Replication

Acetyl cellulose replicating film was used to replicate the surface in the gauge section of the low-cycle fatigue specimen. The replication was done on loose specimens and while the specimens were mounted in the Instron Hydraulic Testing Machine (37). The replicating film, 0.034 mm thick (1.34 mils), was cut into strips 0.30 in. wide (the approximate length of the gauge section). The strips were cut into lengths 0.25-0.30 in. long. Strips of this length covered about 75% of the gauge length area. A reference line was made on the LCF specimen above the extensometer flange so that the location of each replica could be noted. At least six replicas were made for each gauge length, with adequate overlap of areas between adjacent replicas. Thus, the gauge section was completely replicated about three times. This provided insurance against an artifact in the replica obscuring a vital surface detail.

The replicating film was prepared for use by submerging it in acetone for 8-10 seconds, holding a corner with tweezers. The film was removed from the acetone and quickly applied to the surface. The film "grabbed" onto the surface almost immediately. The film dried on the surface for 5-10 minutes, and then was stripped off with tweezers. It was placed on a piece of double-sided sticky tape mounted on a glass slide. The position of the reference mark on the LCF specimen with respect to the replica was scribed into the sticky tape at the appropriate position. A piece of masking tape on the reverse of the glass contained the identification data. Two glass slides at a time were then placed in a vacuum evaporator, and the belljar evacuated to 2×10^{-5} torr. The slides were rotated and a uniform thin coating of 99.99% purity aluminum was applied. The replicas were then examined using a light microscope or a scanning electron microscope.

II. AGING RESPONSE OF INCOLOY 901

A. Material Specification

The Incoloy 901 was received in the form of a segment of a partially finished compressor shaft. The shaft had been cast, forged, and pierced. A chemical analysis is presented in Table 1. A band saw with a bi-metal blade was used to cut pieces of material for study. The material was received in solution-treated and double-aged condition. The commercial heat treatment specification is shown in Table 2 (34).

B. Thermal Treatments

Heat treating studies were conducted in two different furnaces. A vertical tube drop Marshall furnace was used when rapid quenching

TABLE 1
CHEMICAL ANALYSIS OF BILLET

Element	Weight Percent	Atomic Percent
C	0.034	0.162
Mn	0.10	0.104
P	0.019	0.035
S	0.005	0.009
Si	0.10	0.203
Cr	12.41	13.63
Ni	41.33	40.21
Mo	5.31	3.16
Ti	2.99	3.57
Al	0.29	0.61
Cu	0.09	0.08
Co	0.29	0.28
Bi	0.00005	0.00001
Pb	0.0003	0.00008
B	0.015	0.079
Fe Balance (37.02)		37.86

TABLE 2
COMMERCIAL HEAT TREATMENT SPECIFICATION
FOR INCOLOY 901

SOLUTION	Heat to 1975-2025 F Hold within ± 25 F for 2 hours Cool at rate equivalent to air cool or faster
STABILIZATION	Heat to 1400-1475 F Hold within ± 15 F for 2-4 hours Cool in air or quench in water
PRECIPITATION	Heat to 1300-1375 F Hold within ± 15 F for 24 hours Cool in air

Reference: Pratt & Whitney Aircraft Specification 1003H, 20 Nov. 1973.

of the specimen was desired. A thin piece of alumel wire was used to suspend a tantalum specimen basket in the furnace hot zone. The alumel wire was formed into a loop and each end was connected to a metal post in a cap at the top of the furnace. Heavy gauge nichrome wire, bent at each end in the form of a "U", was used to connect the basket to the alumel wire. Helium gas was passed through a gas train to remove impurities and then introduced into the top cap of the tube. The bottom tube opening was covered with a thin sheet of plastic held in place by a rubber band wrapped around the tube. Tygon tubing, connected to a side tap in the tube, near the bottom, directed the helium gas into a beaker of vacuum pump oil. Minimal pressure and flow rate of the gas was maintained, i.e., only sufficient pressure to generate a bubble every few seconds in the oil was used. A chromel-alumel thermocouple placed at the same height in the tube as the basket was used to monitor temperature. When the heat treatment was completed, the thin alumel wire loop was broken by passing a 110-volt line current through it. The basket, with the specimen in it, fell out the bottom of the tube, easily penetrating the plastic membrane on the bottom. A pail of water was placed under the tube to serve as the quenching medium.

A Brew High Vacuum Furnace was also used for heat treatment studies. Vacuums on the order of 10^{-6} torr were easily obtainable at the temperatures used in this study. A platinum/platinum-10% rhodium thermocouple was used to monitor temperature. The hot zone of the furnace was 6 inches in diameter by 14 inches high. Tantalum heating elements and shields were used. The furnace design was of the cold wall type. Temperature was controlled within $\pm 5^{\circ}\text{F}$. The specimens were either

cooled in vacuo or by backfilling the furnace chamber with helium gas, which passed through the gas train, to a partial pressure of 640 torr (about 0.83 atmosphere). The cooling rates, as measured by a thermocouple, for the vacuum cool and the helium quench, are presented in Table 3.

III. LOW-CYCLE FATIGUE

A. LCF Specimen Design and Manufacture

The specimen design is shown in Figure 1. The outstanding feature of the specimen is the extensometer ridges located on either side of the gauge section. This allows accurate measurement of displacement and the ability to maintain constant, uniform temperature in the gauge section using a clamshell furnace. The disadvantages of the system are the long times required for the entire system to reach equilibrium (typically 2-3 hours) and the fact that the calculation of strain necessarily involves the application of effective gauge lengths. The details of the load train, the strain measuring system, and the equations required to convert displacement to strain are discussed in following sections.

The specimens were manufactured by Metcut Research Associates from blanks sawed from a portion of a forged shaft. Figure 2(a) shows a photograph of the shaft segment. Specimen blanks were sawed from this segment parallel to the shaft axis. A typical cutout configuration is depicted in Figure 2(b). The blanks were then rounded by straight wheel grinding, and rough machined to ~ 0.020 in. oversize in the gauge section. The specimens were given a standard heat treatment, designated as STA 3A

TABLE 3
FURNACE COOLING RATES

Vacuum Cool

A. Heat Treatment Temperature: 1975 F

Temperature (°F)	Average Cooling Rate (°F/min.)
1400	192.0
1299	97.6
1072	72.2
893	55.8
709	47.8
509	27.1

B. Heat Treatment Temperature: 1400 F

1299	100.0
1072	50.5
893	40.2
709	28.2
509	15.1

C. Heat Treatment Temperature: 1300 F

1072	46.5
893	35.4
709	25.1
509	33.7

TABLE 3 (CONT'D)

Helium Gas Quench (640 torr)

A. Heat Treatment Temperature: 1975 F

Temperature (°F)	Average Cooling Rate (°F/min.)
1400	243.4
1299	214.6
1072	166.2
893	137.4
709	120.0
509	116.4

B. Heat Treatment Temperature: 1400 F

1299	85.5
1072	104.1
893	92.0
709	83.6
509	75.4

C. Heat Treatment Temperature: 1300 F

1072	82.7
893	86.1
709	75.1
509	67.0

SCALE:
ALL DIMENSIONS IN INCHES

Figure 1. Low-Cycle Fatigue Specimen Design

Figure 2a. Incoloy 903 shaft forging photogram

Figure 2b. Incoloy 901 Shaft Forging Segment Indicating Cut-Out Pattern for LCF Test Specimens

prior to final machining. The heat treatment parameters for STA 3A are contained in Table 4. The specimens, in groups of nine, were heat treated in a Brew High Vacuum Furnace. The fixture used to support the specimens in the furnace chamber is described in Section V of this chapter.

Final machining of the gauge section was done using a low-stress grinding approach (35). The machining parameters are summarized in Table 5. Final polishing of the gauge section was done with 400-grit silicon carbide paper using water as a lubricant, followed by 3/0 and 4/0 Emery polishing paper using Buehler Isocut Fluid as a lubricant. The paper was cut into strips approximately 0.20 inches wide, and polishing was done axially with the specimen chucked in a jeweler's lathe.

B. Ceramic Coating Procedure

A gas-tight ceramic coating, Solaramic 5210, was applied to the gauge sections of some specimens at General Electric's Materials and Processing Laboratory in Evendale, Ohio. Before the coating was applied, the gauge section was vapor blasted; this procedure entailed impinging fine alumina powder (Novacite 1250/150, supplied by Malvern Minerals) in a water stream at 0.31 MPa at the specimen surface. The specimen-to-surface distance was kept at about 5 cm, and total honing time was approximately 1 minute. The surface had a bright matte finish after the vapor blasting.

The ceramic coating was then applied, and baked in air at 1750°F for 20 minutes, and air cooled. The gauge section was inspected for spallation of the coating.

TABLE 4

STANDARD HEAT TREATMENT STA 3A
FOR INCOLOY 901

SOLUTION	Heat to 1975°F in vacuum Hold within ± 4 F for 2 hours Backfill furnace with helium gas to a partial pressure of 640 torr
STABILIZATION	Heat to 1400°F in vacuum Hold within ± 4 F for 2 hours Backfill furnace with helium gas to a partial pressure of 640 torr
PRECIPITATION	Heat to 1300°F in vacuum Hold within ± 4 F for 24 hours Backfill furnace with helium gas to a partial pressure of 640 torr

TABLE 5
LOW STRESS GRINDING PARAMETERS

SPEEDS	Work surface: 8-26 ft/min. Table speed: 7 in./min. Wheel speed for traverse grinding: 2800-3250 ft/min.
FEEDS	Traverse grinding Roughing: 0.001 in./pass Finishing: Last 0.010 in. (250 μm) First 0.0080 in.: 0.0005 in./pass Next 0.0008 in. : 0.0004 in./pass Final 0.0012 in.: 0.0002 in./pass Plung grinding: 0.00002 to 0.00008 in./rev.

C. Specimen Preparation after Rejuvenation

After the specimens were thermally rejuvenated (see Section V-A), the gauge section was axially repolished with 3/0 and 4/0 emery polishing paper as described above in Section III-A. This provided a good quality surface for replication; an oxidized surface could not be replicated without loss of detail.

After the specimens were HIP rejuvenated (see Section V-B), those specimens which were ceramic coated were mechanically polished with 240-grit polishing paper to remove the coating. The specimens were given the standard STA 3A (Table 5) to restore the morphology of the precipitates in the matrix. The gauge length was then lightly polished through 4/0 emery polishing paper as previously described.

D. Load Train Configuration

A photograph of the load train is shown in Figure 3(a). Note that a resistance-wound clamshell furnace was used for heating. A sketch of the load train with the various components labelled is illustrated in Figure 3(b). The grip design is contained in Figure 4. A molybdenum di-sulfide lubricant was effective in preventing binding in the grips.

E. Strain Measuring System

Although commonly referred to as a strain measuring system, the system employed actually measured displacement which must then be converted to strain. The necessary equations to accomplish this are described in Sections III-F and IV-C. Figure 5 is a photograph of the extensometer system used in this investigation. The system features a Satek PSH-8MS High Temperature Extensometer with a Microformer (Linear

Figure 3a. Photograph of Load Train

Figure 3b. Sketch of Load Train

Figure 4. LCF Specimen Grip Design

Figure 5. Photograph of Strain Measuring System

Variable Differential Transducer or "LVDT") to measure displacement. The suspension arms, which lock into the extensometer fixture, bolt around the flanges on the LCF specimen and effectively transmit the displacement of the specimen to the LVDT located beneath the furnace. The length of the suspension arms was governed by two criteria: (a) adequate length to allow the center of the specimen gauge length to be located in the center of the furnace hot zone with a one-inch clearance between the top of the extensometer fixture and the bottom of the furnace; and (b) proper difference in length between the top and bottom arms so that they would lock into the fixture for the particular flange separation distance used for the LCF specimen.

Calibration of the strain measuring system was accomplished as follows: The extensometer system was mounted in a Boeckeler Instrument Calibration Fixture. The top extension arm remained fixed and the bottom arm was movable using a dial calibrated in increments of 0.0001 inch. The LVDT was connected to an Instron Model 602A Stroke Controller. A Resistance-Capacitance (R-C) balancing network was adjusted to compensate for the resistive and capacitive characteristics of the system.

The zero suppression control was used to give a zero voltage when the LVDT core was in the center position of the LVDT. Output was read as a voltage on a digital voltmeter. Voltage readings were then taken as the dial was advanced in increments of a thousandths of an inch from 0 mils to 10 mils to -10 mils, and back to 0 mils. These 41 data points were then used to compute a linear least-square error line of the form $y = mx + b$ (36) where y is the displacement in volts, x is the displacement in mils, m is the slope of the line in volts/mil, and b is the y -intercept value. Table 6 contains typical data obtained from a

TABLE 6
TYPICAL LVDT CALIBRATION CURVE DATA

<u>Inches × 10³</u>	<u>Output Voltage</u>	<u>Inches × 10³</u>	<u>Output Voltage</u>
0.0	0.003	-1.0	-0.687
1.0	0.723	-2.0	-1.397
2.0	1.429	-3.0	-2.120
3.0	2.129	-4.0	-2.835
4.0	2.828	-5.0	-3.552
5.0	3.534	-6.0	-4.269
6.0	4.230	-7.0	-4.991
7.0	4.927	-8.0	-5.707
8.0	5.622	-9.0	-6.428
9.0	6.320	-10.0	-7.153
10.0	6.994	-9.0	-6.421
9.0	6.324	-8.0	-5.700
8.0	5.630	-7.0	-4.980
7.0	4.926	-6.0	-4.258
6.0	4.243	-5.0	-3.538
5.0	3.553	-4.0	-2.821
4.0	2.848	-3.0	-2.110
3.0	2.130	-2.0	-1.396
2.0	1.421	-1.0	-0.678
1.0	0.721	0.0	0.023
0.0	0.007		

calibration run. The data is plotted in Figure 6. Note that it is very linear. The inverse slope of this graph, or $1/m$, is the desired calibration factor, λ , in volts per mil. These calibration runs were typically done before and after each LCF test.

F. Low Cycle Fatigue Testing

All LCF testing was performed on an Instron Dynamic Materials Testing System. The testing was done using a saw-tooth wave form at a frequency of 0.4 Hz under strain control (actually displacement control, as explained above) with zero mean level (i.e., fully reversed). The signal cable connecting the actuator LVDT with the Stroke Controller was disconnected and attached to the extensometer LVDT by means of an adapter cable. Specimen displacement thus served as the feedback to the controller. Command signals to the servovalve were generated by two different techniques: (a) Instron Model 860 Function Generator (i.e., an analog computer), and (b) Instron Series 900 Computer System, utilizing a Computer Automation Alpha 16 Minicomputer. Load-displacement hysteresis loops were plotted on a Hewlett Packard Model 7004B X-Y Plotter.

The load train alignment was checked and the load cell calibrated prior to each test. To begin the actual testing, the specimen was loaded into the grips, the extension arms were attached, and a chromel-alumel thermocouple was placed in close proximity to the LCF specimen surface in the center of the gauge length. Then the clamshell furnace was placed around the assembly. All testing was done at 500°F. Temperature was controlled using a West Guardsman Controller. The specimen was heated under load control at a tensile stress of ~ 3 ksi.

Figure 6. LVDT Calibration Curve

Once the temperature and the indicated specimen displacement readings had equilibrated, the Stroke Zero Suppression control was used to obtain zero voltage output of the LVDT at zero load.

The operation of the Function Generator was fairly straightforward. The proper amplitude setting to provide the desired strain range was empirically determined, using several specimens.

Testing under computer control required the use of a computer program. Instron's Low Cycle Fatigue Application Program APP-900-A3A8 (1974) was modified to provide more frequent and better formatted data output. The Appendix contains the source listing of the modified program. The address locations are in hexadecimal notation. The program was assembled using an Alpha 16 Assembler. Program parameters were entered via a teletype keyboard. Output was accomplished by teletype printer and punched paper tape. The frequency of data output was governed only by the speed of the paper tape punch. The fastest rate that data could be recorded was every three cycles at the test strain rate. The data on paper tape was processed by another program, written in Fortran, on a CDC 6600 computer. This program provided data, typically every five cycles, in tabular format for the following parameters: total displacement, plastic displacement, maximum elongation, minimum elongation, stress range, maximum stress, minimum stress, the ratio of maximum stress to minimum stress, elastic strain range, plastic strain range, and total strain range. Also, the program generated plots of stress range versus cycles, ratio of maximum stress to minimum stress versus cycles, and strain range versus cycles. A source listing of the computer program is contained in the Appendix.

The Instron computer program required a specification of strain rate, rather than frequency. Equation 1 is the appropriate expression relating frequency to strain rate:

$$\dot{\epsilon} = 2\pi v \Delta u \quad (1)$$

where $\dot{\epsilon}$ is "strain" rate (actually displacement rate) in mils per second, v is frequency in hertz (cycles per second), and Δu is displacement in mils.

The Instron was capable of controlling displacements to ± 0.00004 in. A typical plot of displacement versus cycles is shown in Figure 7.

G. Computation of Strain Range and Stress Range

As previously explained, the strain measuring system actually measured displacement. Since the cross-section of the LCF specimen between the extensometer flanges was not uniform, as is apparent from Figure 1, the computation of strain involved consideration of an effective gauge length. An effective gauge length is defined as that gauge length of uniform cross-sectional area which produces the same displacement under the application of a given load as does the gauge section of variable geometry. Use of the effective gauge length concept is made in the following equation which allows the computation of strain from displacement data:

$$\Delta \epsilon_t = \Delta \epsilon_e + \Delta \epsilon_p = \frac{u_t - u_p}{L_{eff}^e} + \frac{u_p}{L_{eff}^p} \quad (2)$$

where $\Delta \epsilon_t$ is the total strain range, $\Delta \epsilon_e$ is the elastic strain range, $\Delta \epsilon_p$ is the plastic strain range, u_t is the total specimen displacement (in inches), u_p is the plastic displacement (in inches), L_{eff}^e is the effective gauge length in the elastic regime (in inches), and L_{eff}^p is

Figure 7. Plot of Displacement vs Cycles

the effective gauge length in the plastic regime (in inches). Now, u_t and u_p can be measured directly from the hysteresis loop plots or can be obtained from the computer data.

Equation 3 was used to compute displacement in thousandths of an inch when displacement distances were measured from hysteresis loop plots:

$$u = \lambda \cdot s \cdot l_D \quad (3)$$

where u is displacement (in mils), λ is the LVDT calibration factor, m^{-1} (in mils/volt), s is the plotter chart scale factor (in volts/inch of chart), and l_D is the measured chart distance along the displacement axis of the hysteresis loop plot (in inches).

The plastic effective gauge length, L_{eff}^p , was assumed to be the straight portion of gauge length. This straight segment was measured for each specimen using a traveling microscope. Measurements were made along the top and bottom surfaces of a specimen supported horizontally; these were then averaged and rounded off to two significant figures.

The experimental determination of the elastic effective gauge length, L_{eff}^e , involved comparing the slope of a stress-displacement curve to a known elastic modulus value. The equation of interest was:

$$L_{eff}^e = \frac{E_{ACT}}{\Delta\sigma/\Delta u} \quad (4)$$

where L_{eff}^e is the effective elastic gauge length (in inches), E_{ACT} is the known Young's Modulus (in psi), $\Delta\sigma$ is the stress range (in psi), and Δu is the displacement range (in inches).

The calculation of stress, using distances measured along the load axis on the fatigue hysteresis loop, was done by applying Equation 5:

$$\sigma = k \cdot (1/d_0^2) \cdot t \cdot \ell_L \quad (5)$$

where σ is stress (in psi), k is a constant $= 6.367 \times 10^2$ when the full scale load is 5000 lbs, d_0 is the specimen diameter (in inches), t is the plotter chart scale factor (in volts/inch of chart), and ℓ_L is the measured chart distance (in inches) along the load axis of the hysteresis loop plot.

H. In Situ Surface Replication

When it was necessary to interrupt a fatigue test in order to replicate the gauge length of the specimen, the specimen was not removed from the load train but rather replicated in place in order to maintain the same alignment (37). The procedure is detailed below.

After the LCF test was halted, while the specimen was going into compression, the system was placed in Load Control with a mean level of zero. Then the stroke value was recorded. A mean tensile stress of about 3 ksi was then imposed on the specimen. The furnace was removed and a small fan was used to speed the cooling of the load train. After the system was at room temperature, the actuator was turned off, the thermocouple pulled back, and the extensometer removed. These procedures exposed the gauge section. The gauge section was cleaned with acetone and the replication was accomplished as explained in Section I-D.

In order to restart the test, the extensometer was reattached and the thermocouple placed back in position. The actuator was turned on, and a mean tensile stress of about 3 ksi was imposed. The furnace was placed back around the load train. When the system was equilibrated, both with respect to temperature and dimensions, a zero mean level was

imposed and the Stroke Zero Suppression Control was used to set the same stroke value which was recorded when test was initially stopped. Then the test was restarted.

IV. TENSILE TESTING

A. Specimen Configuration

The same specimen design, shown in Figure 1 for LCF testing, was used for tensile testing. Specimen manufacture was also done in the same way.

B. Machine Description

Mechanical testing was performed on an Instron Tensile Testing Machine, Model TT-C. The cross-head was moved at a constant speed utilizing an amplidyne drive and selsyn control elements. A Leeds and Northrup chart recorder (1.5 seconds full scale response time) was driven by the output from the extensometer LVDT. Load was measured by an Instron Load Cell. The chart was operated at 100 lbs full scale to provide good sensitivity of the load-displacement curve. The load cell and the LVDT gain control were calibrated prior to each test. The load train and furnace assembly were essentially the same as shown in Figure 3 for the LCF testing.

C. Computation of Stress and Strain

Stress was simply computed by dividing the load by the cross-sectional area of the specimen. The strain was computed in an analogous manner to that for the LCF data. Thus, a relationship was required to convert displacement to strain. It is certainly true that

$$\epsilon_t = \epsilon_e + \epsilon_p \quad (6)$$

where ϵ_t is total strain, ϵ_e is elastic strain, and ϵ_p is plastic strain. But

$$\epsilon_e = \frac{\sigma}{E} = \frac{u_e}{L_{eff}^e} \quad (7a)$$

and

$$\epsilon_p = \frac{u_p}{L_{eff}^p} = \frac{u_t - u_e}{L_{eff}^p} \quad (7b)$$

where σ is the stress (in psi), E is Young's Modulus (in ksi), u_p is the plastic displacement of the gauge section (in inches), u_t is the total displacement of the gauge section (in inches), u_e is the elastic displacement of the gauge section (in inches), L_{eff}^e is the effective gauge length in the elastic regime (in inches), and L_{eff}^p is the effective gauge length in the plastic regime (in inches). Thus, it is apparent that:

$$\epsilon_t = \frac{\sigma}{E} + \frac{\frac{u_t - \frac{\sigma \cdot L_{eff}^e}{E}}{L_{eff}^p}}{L_{eff}^p} \quad (8)$$

So, Equation 8 is the desired relationship.

V. REJUVENATION TREATMENTS

A. Thermal Treatments

The only thermal rejuvenation treatment which was investigated was STA 3A which is defined in Table 4. It was necessary to suspend the specimen vertically in the furnace in order to minimize creep effects which could warp the specimen. A heat treating fixture, shown in Figure 8(a) and Figure 8(b), was designed to support the specimens in the center of the furnace hot zone. This fixture minimized the

Figure 8a. Heat Treatment Fixture Design

Figure 8b. Button Head Cap Design

possibility of specimen distortion, did not adversely affect critical machined surfaces, and was fairly simple to use. It held nine specimens. The cap, depicted in Figure 8(b), fit over the LCF specimen button head. Fine Nichrome wire was threaded into the two holes on each side of the cap, and thus the specimen was supported on the surface under the button head. Chromel wire, with a bead on one end, was threaded through the hole at the top of the cap. This wire was then pulled through a hole on the top plate of the fixture shown in Figure 8(a). The material used to manufacture the fixture and cap was AISI 1020 steel.

B. Hot Isostatic Pressing (HIP) Treatments

The HIP processing was conducted in a small, high-pressure, 7-in. i.d. × 14-in. long, HIP unit at Kelsey-Hayes, Detroit, Michigan. The chamber was designed by Autoclave Engineering, Erie, Pennsylvania. The heating elements were Kanthal wound, supplied by Conway Pressure Systems, Columbus, Ohio.

The fatigue specimens were vertically supported in a special fixture, shown in Figure 9. The same button head cap design, depicted in Figure 8(b) was used.

The temperature and pressure profiles for the HIP run are shown in Figures 10 and 11. The autoclave gas used was commercially pure argon.

A summary of the HIP run is as follows: The specimens mounted in the fixture were loaded into the HIP chamber. The system was flushed with argon gas until the atmosphere was primarily argon. The unit was slowly heated to 2050°F and the pressure was raised to 15 ksi. The 2050°F temperature was maintained for one hour, then the temperature

Figure 9. HIP Fixture Design

Figure 10. Plot of Temperature vs Time for HIP Run

Figure 11. Plot of Pressure vs Time for HIP Run

was lowered to 1975°F while maintaining 15 ksi. After two hours at 1975°F, the pressure was released and the heating elements were turned off. When the chamber temperature reached 1700°F, the unit was opened, and the fixture removed. It was then placed in an argon gas stream until it reached ambient temperature.

VI. SONIC MODULUS TESTING

Moduli of elasticity were measured at room temperature using a Magnaflux FM-500 Elastomat. A right cylindrical rod was centerless ground to a uniform diameter of 0.4983 inches. The rod was 4.483 inches long and weighed 117.625 g.

The test rod was suspended at its nodal points by adjustable cross wires. Mechanical vibration was transmitted to the sample by a piezoelectric transducer by means of a 0.004-inch Nichrome wire spot welded to the rod about 0.010 inch from the circumference. Another transducer, similarly connected on the other side of the rod, received the mechanical vibration from the specimen. The rod was excited by means of a variable frequency oscillator which contained a digital counter. The resonant frequency was determined by the appearance of a circular Lissajou figure on an oscilloscope. The oscilloscope had the voltage output of one transducer connected to the x-axis and the voltage output of the other transducer connected to the y-axis. In such a manner, the resonant frequencies for the longitudinal (Young's) modulus, transverse modulus, and shear modulus were measured. The following equations were then used to compute the moduli:

Longitudinal (Young's) Modulus (39):

$$E = \frac{4.00 \times 10^{-4} \rho \ell^2 f_L^2}{6.895} \quad (9)$$

Shear Modulus (39):

$$G = \frac{4.00 \times 10^{-4} \rho \ell^2 f_G^2}{6.895} \quad (10)$$

Transverse Modulus (40):

$$E_T = \frac{1.261886 \times 10^{-4}}{6.895} \frac{\rho \ell^2 f_T^2 T_1}{d^2} \quad (11)$$

Shape Correction Factor, T_1 (41):

$$T_1 = 1 + 4.88669 \left[\frac{1 + 1.26225 v + 0.2098 v^2}{1 + v} \right] \left(\frac{d}{\ell} \right)^2 \quad (12)$$

where ρ is density (in g/cc); ℓ is length (in cm); d is diameter (in cm); f_L , f_G , and f_T are the resonant frequencies; E , G , and E_T are the elastic modulii (in psi); and v is Poisson's ratio.

Chapter 3
RESULTS AND DISCUSSION

I. AGING RESPONSE OF INCOLOY 901

A. Characterization of As-Received Microstructure

The microstructure of the Incoloy 901 forging was examined using a metallograph, a transmission electron microscope, and an electron microprobe.

Figure 12 shows a typical microstructure. Using the ASTM Linear Intercept Method to measure grain size (42), the grain size was determined to be 90 μm or ASTM Equivalent Grain Size 3.5. Particularly evident in Figure 12(a) are the inclusion stringers which parallel the forging direction. Figures 12(b) and 12(c) are higher magnification photographs of these inclusions. It is evident that these particles act as obstacles to grain boundary migration and thus assist in controlling the grain size during processing and thermal treatment. Figures 12(a) and 12(c) contain several annealing twins. These twins were commonly observed in the as-received material. Also evident in Figures 12(b) and 12(c) are much smaller particles.

Figure 13 is an electron image produced in a microprobe of a lightly etched sample. This clearly shows that there are two different particle morphologies.

a. General Microstructure

b. Inclusion Stringers

Figure 12. Micrograph of As-Received Material

Figure 12 (continued)

53

c. Inclusion Stringers

Figure 13. Electron Micrograph of Inclusion

Qualitative electron probe analysis, shown in Figure 14, clearly identifies the large, blocky phase as a titanium/molybdenum carbide. Quantitative analysis indicates that these are MC-type carbides with slightly varying proportions of titanium and molybdenum. A typical carbide had the composition $Ti_{0.8}Mo_{0.2}C$. The sizes of these primary carbides typically ranged from 2-15 μm .

The small symmetrical particles in Figures 13 and 14 were approximately 1 μm in size and thus were difficult to quantitatively analyze. However, the results from an electron microprobe quantitative analysis indicated the following composition in weight percent: Ti-9.88, Co-13.52, Fe-8.55, Ni-3.42, Mo-52.23; difference from 100% is 12.40. Although boron could not be analyzed for in the microprobe, this analysis is consistent with the hypothesis that these particles are M_3B_2 borides. Furthermore, Beattie electrolytically extracted similar particles from Incoloy 901 and analyzed them chemically and by x-ray diffraction (69). His conclusion was that these particles were M_3B_2 borides.

Transmission electron microscopy was used to characterize the small γ' precipitates and the grain boundary precipitates. Figure 15 shows γ' in dark field. The particles have a spherical morphology and an average diameter of 300 \AA units. Figure 16 shows the grain boundary precipitates. These are MC carbides of the type $(Ti,Mo)C$ rather than $M_{23}C_6$ carbides (70). It should be noted that some grain boundaries, as indicated in Figure 17, were relatively free of precipitates.

B. Development of Standard Solution and Double-Aged Treatment

Since the LCF test specimens were cut from different portions of a shaft forging, it was desired to subject them all to a standard,

Figure 14. Electron Microprobe Image of Carbide Inclusion

Figure 15. TEM Micrograph of γ'

a. Typical Grain Boundary MC Precipitates

b. Typical Grain Boundary MC Precipitates

Figure 16. TLM Micrograph of Grain Boundary MC Carbides

Figure 17. TEM Micrograph of Precipitate-Free Grain Boundary

known heat treatment prior to testing. Also, this standard heat treatment could be used for thermal rejuvenation and to restore the microstructure of hot isostatically pressed specimens. Table 2 contains the specification for the commercial heat treatment. Since the minimization of grain growth was an important consideration in developing the standard heat treatment, the lowest portion of the time and temperature ranges were selected for the solutioning treatment. The drop furnace was used to rapidly quench a piece of material which was subsequently examined by transmission electron microscopy. It was determined that 2 hours at 1975°F was sufficient to dissolve all phases except for the primary MC carbides.

All heat treatments were done in a vacuum furnace to minimize surface contamination. However, it was necessary to backfill the furnace with helium gas in order to obtain a high enough cooling rate to prevent the nucleation and growth of undesirable precipitates and precipitate morphologies. Such undesirable grain boundary morphologies are shown in Figure 18. Figure 18(a) shows needles of a n phase growing out from a grain boundary MC precipitate in a platelet morphology, and Figure 18(b) is a dark field view of the MC platelets growing out from a grain boundary. These precipitates were formed during vacuum cooling from the solutioning temperature because the cooling rate was too slow. It was found that backfilling the furnace to 640 torr of helium gas produced the proper grain boundary morphology. The standard heat treatment, designated as STA 3A, is presented in Table 4.

a. Needle-Shaped n Phase and MC Platelets

b. MC Platelets (Dark Field)

Figure 15. TEM Micrograph of Ultra-fine Grain Boundary Precipitate Morphology

The effect of STA 3A on grain size was measured. The average grain size was increased to 120 μm (ASTM Equivalent Grain Size 3), but remained fairly stable at this size with subsequent heat treatments. The matrix was not dislocation-free, but the dislocations were randomly oriented.

C. Microstructure Response at Elevated Temperatures

In order to better understand the physical metallurgy of Incoloy 901, the microstructure which developed at 1500°F and 1700°F was studied using a drop furnace. After 6 hours at 1500°F, no change in the grain size occurred. The fine γ' coarsened appreciably, approximately doubling in size to 600 \AA units. The grain boundary carbides developed a blocky morphology.

After 6 hours at 1700°F, no change in the grain size occurred. The change in precipitates was dramatic. No γ' was seen, although the solvus temperature is assumed to be 1725°F (17). The platelet morphology of the η phase is evident from the transmission electron micrographs in Figure 19. Figure 20 shows these η platelets at lower magnification as seen in a metallograph.

D. Microstructure Resulting from Hot Isostatic Pressing (HIP)

Hot isostatic pressing of superalloys is normally accomplished at very high temperatures; i.e., above the 1975°F solutioning temperature of Incoloy 901. In an attempt to measure the effect on grain growth of these high HIP temperatures, one piece of material was heated in a vacuum furnace to 2100°F for five hours and another piece was heated to 2050°F for three hours. The average grain size after the 2100°F

a. Nucleation of η at Grain Boundary

b. Matrix Nucleation of η

Figure 19. TEM Micrograph of η Platelets

a. Typical n Platelets

b. Typical l Platelets

Figure 20. Micrographs of n Platelets

heat treatment was 237 μm (ASTM Equivalent Grain Size 1). The average grain size which resulted from the 2050°F heat treatment was 181 μm (ASTM Equivalent Grain Size 1.5).

Figure 21 shows photomicrographs of as-HIPed material (15 ksi pressure, 1 hour at 2050°F, 2 hours at 1975°F). Note that the primary carbides helped to control grain growth. There also appears to be some η -phase precipitation which occurred during cooling. Except for the primary carbides and η platelets, transmission electron microscopy did not reveal any other precipitates. The grain size was about 150 μm , or ASTM Equivalent Grain Size 2.

When the as-HIPed material was given the standard STA 3A heat treatment, the desirable morphology and distribution of precipitates was restored.

II. MECHANICAL PROPERTIES

A. Tensile Properties

The measured tensile properties of the Incoloy 901 test specimens, after STA 3A, are summarized in Table 7. These properties (at room temperature) are well above the specified minimums of 100 ksi yield strength and 150 ksi ultimate tensile strength (43).

B. Elastic Constants

The elastic moduli were measured at room temperature using an Elastomat Sonic Modulus Tester. Young's Modulus was determined to be 30.2×10^6 psi; the corrected transverse modulus was 30.3×10^6 psi; the shear modulus was 11.2×10^6 psi; and Poisson's ratio was 0.35. Young's Modulus of 29.9×10^6 psi at room temperature and 27.51×10^6 psi at 500°F have been reported from mechanical test data (44).

TABLE 7
INCOLoy 901 TENSILE DATA

Specimen	Test Temperature (°F)	Yield Stress (ksi)	Tensile Stress (ksi)	Fracture Stress (ksi)	Reduction in Area (%)	Strain Rate (in./in./min.)
B2	70	135.3	178.3	207.6	14.3	2×10^{-2}
B1	500	119.4	155.4	175.4	12.6	2×10^{-2}
B3	500	123.3	165.7	194.3	14.9	2×10^{-2}
B4	500	123.7	161.3	189.0	15.1	2×10^{-3}

a. Typical Microstructure

b. Grain Boundary Region

Figure 24. Micrographs of As-HIP'd Material

III. LOW-CYCLE FATIGUE BASELINE TESTING

A. Determination of Effective Gauge Length

The low-cycle fatigue specimen design (Figure 1) requires the use of an effective gauge length in order to compute a strain from the measured displacement between the flanges. A plot of Stress vs Displacement at room temperature is shown in Figure 22, and Figure 23 shows Stress vs Displacement at 500°F. The slope of the linear portions of these curves is an effective modulus, $\Delta\sigma/\Delta u$ (recall Equation 4). Thus, Equation 4 allows computation of the effective elastic gauge length, L_{eff}^e , once the effective modulus, $\Delta\sigma/\Delta u$, is known. Using a linear least square error curve fit to the linear portion of the data in Figures 22 and 23, the effective modulus at 70°F was found to be 58.76×10^6 psi/in. with a correlation coefficient of 0.9999. At 500°F, the effective modulus was found to be 54.89×10^6 psi/in. with a correlation coefficient of 0.999. The results are summarized in Table 8. Strain was then computed using Equations 2 and 8.

Table 8

EFFECTIVE ELASTIC GAUGE LENGTH

Temperature (°F)	Young's Modulus ($\times 10^{-6}$ psi)	Effective Modulus ($\times 10^{-6}$ psi/in.)	Effective Elastic Gauge Length (in.)
70	30.2	58.76	0.51
500	27.5	54.89	0.50

Figure 22. Plot of Stress vs Displacement at 70°F

Figure 23. Plot of Stress vs Displacement at 500°F

B. Cyclic Stress-Strain Curve

Using the methodology described by Manson (3), a comparison of a 500°F static stress-strain curve with the 500°F cyclic stress-strain curve was made. For experimental ease, the tensile data used was measured at a strain rate of 2×10^{-2} in./in./min., while the cyclic data was obtained at a higher strain rate of 3.3×10^{-1} in./in./min. The tensile data presented in Table 7 shows that the mechanical properties of this alloy at 500°F are not very sensitive to strain rate within the range studied; thus, this comparison is not expected to be in significant error.

Figure 24 is the cyclic stress-strain curve compared to the static curve. At the lower strain ranges, the alloy cyclically softens; and, at the higher strain ranges, it cyclically hardens. For total strain ranges greater than 2.0%, Merrick observed rapid strain hardening of Incoloy 901 at room temperature and at 1000°F (16). The strain rate was not specified. Hardening peaked at about 10 cycles, then gradual softening occurred. Very rapid strain hardening was observed in this work also. The strain softening which occurred happened very gradually.

Cyclic strain hardening has been explained phenomenologically as being caused by dispersal of slip onto neighboring slip planes, and analogous to unidirectional hardening (4,66,67). The cyclic softening is due to the concentration of cyclic slip in the active slip bands (4,64,65,68). Thus, the shape of the cyclic stress-strain curve can be explained as follows: At the higher strain ranges, strain hardening has occurred but since the lifetimes at these high ranges is short, there was insufficient time for appreciable strain softening to

Figure 24. Plot of Cyclic Stress-Strain Curve

occur. At the lower strain ranges, the lifetimes are relatively long and hence there was time for softening to occur.

C. Characterization of Fatigue Damage

i. Baseline Data

A summary of the baseline data is presented in Table 9. The stress range reported is the stabilized range. The initiation cycle, N_i , was determined by extrapolating the asymmetric load drop back to the stable stress range on a plot of expanded Stress Range vs Cycles (2). A typical plot of this type is shown in Figure 25. The transition to the rapid load decrease, N_i' , was determined by the point at which the load drop-off was no longer linear. The cycles to failure, N_f , was determined when the maximum tensile stress was 20 ksi. Figure 26 is a log-log plot of Strain Range vs Cycles. Table 10 contains the constants for the linear least square fit lines of Figure 26. Using the data in Table 10, the following Coffin-Manson type equations can be derived:

$$\Delta\epsilon_t = 8.15 N^{-0.295} \quad (13a)$$

$$\Delta\epsilon_e = 1.75 N^{-0.114} \quad (13b)$$

$$\Delta\epsilon_p = 71.29 N^{-0.898} \quad (13c)$$

The data estimated from Merrick (16) was obtained by merely averaging his room temperature and 1000°F data. Figure 27 compares the trend line for Cycles to Initiation with Cycles to Failure.

Plots of Stress Range vs Cycles for the baseline specimens listed in Table 9 are contained in Figures 28-38, respectively. Note that these plots, in general, contain data obtained by measurement of hysteresis loops and by output from the Instron Minicomputer. The computer data

TABLE 9
SUMMARY OF BASELINE LCF PROPERTIES

Specimen	Strain Range (%)			Stress Range (ksi)			Cycles		
	$\Delta\varepsilon_t$	$\Delta\varepsilon_p$	$\Delta\varepsilon_e$	N_i	N_i'	N_f	N_i/N_f	N_i'/N_f	
2	1.08	0.25	0.83	232	780	-	1139	0.68	-
3	2.44	1.37	1.07	292	-	-	58	-	-
5	1.10	0.27	0.83	237	480	760	852	0.56	0.89
6	0.71	0.07	0.64	187	1400	2610	3263	0.43	0.80
7	0.72	0.05	0.67	191	1600	3200	3752	0.43	0.85
8	0.72	0.05	0.67	184	1200	3300	3820	0.31	0.82
11	0.70	0.05	0.65	181	2350	3800	4025	0.58	0.94
12	0.79	0.04	0.75	190	1300	2550	3398	0.38	0.75
32	0.70	0.04	0.66	189	1350	2900	4059	0.33	0.71
33	0.76	0.05	0.71	196	1000	2300	2965	0.34	0.78
53*	0.72	0.03	0.69	191	900	2600	3264	0.28	0.80

*Electropolished before test

TABLE 10
LINE CONSTANTS FOR $\log \Delta\epsilon$ VS $\log N$ CURVES

	<u>b*</u>	<u>m*</u>
$\Delta\epsilon_t$	0.911	-0.295
$\Delta\epsilon_p$	1.853	-0.898
$\Delta\epsilon_e$	0.242	-0.114

*Equation is of the form:

$$\log \Delta\epsilon = m \log N + b$$

where $\Delta\epsilon$ is strain range (%)

N is number of cycles

m is slope of the line

b is the y-intercept

Figure 25. Plot of Stress Range vs Cycles - Expanded Scale

Figure 26. Plot of Baseline Strain Range vs Cycles to Failure

Figure 27. Plot of Baseline Strain Range vs Cycles to Initiation

Figure 28. Plot of Stress Range vs Cycles - LCF Specimen 2

AD-A107 255

AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH
MECHANISMS OF RECOVERING LOW CYCLE FATIGUE DAMAGE IN INCOLOY 90--ETC(U)
1979 R E SCHAFRIK

F/6 11/6

UNCLASSIFIED AFIT-CI-79-212D

NL

Figure 29. Plot of Stress Range vs Cycles - LCF Specimen 4

Figure 30. Plot of Stress Range vs Cycles - LCF Specimen 5

Figure 31. Plot of Stress Range vs Cycles - LCF Specimen 6

Figure 32. Plot of Stress Range vs Cycles - LCF Specimen 7

Figure 33. Plot of Stress Range vs Cycles - LCF Specimen 8

Figure 34. Plot of Stress Range vs Cycles - LCF Specimen 11

Figure 35. Plot of Stress Range vs Cycles - LCF Specimen 12

Figure 36. Plot of Stress Range vs Cycles - LCF Specimen 32

Figure 37. Plot of Stress Range vs Cycles - LCF Specimen 33

Figure 38. Plot of Stress Range vs Cycles - LCF Specimen 53

was obtained, in general, at every fifth cycle. The hysteresis loop data was usually obtained every 100 cycles. The effect of rejuvenation efforts will be discussed with respect to this baseline data.

ii. Dislocation Substructure

A typical dislocation substructure after a test is shown in Figure 39. The dislocations are aligned in bands, giving rise to the planar slip characteristics of this alloy. The dislocations are bowed around and looped around γ' precipitates, although cutting of the precipitates cannot be ruled out. Stacking fault contrast was observed in some precipitates, leading to the conclusion that they had been sheared. Using surface replication techniques, others have observed sheared γ' on the surface (16). Not every foil showed the concentration of slip bands depicted in Figure 39. Thus, deformation even at these higher strain ranges, is still somewhat localized.

iii. Fractography

Extensive fractography was carried out on samples which were removed unbroken from the fatigue machine and subsequently broken in tension. This procedure preserved the character of the fracture surface. The fractures were mixed mode, with both intergranular and transgranular regions. This behavior has been observed by others (16,45). A typical fractograph for LCF Specimen 33 is shown in Figure 40. Figure 41 is a higher magnification view of a likely crack initiation area. This was determined by following fatigue striations back to the edge. Typical fatigue striations are shown in Figure 42. Striations were seen close to the edge. Figures 43(a) and 43(b) demonstrate the cracking of carbides which lie on the fracture surface. The morphology of the

a. Planar Dislocations

b. Planar Dislocations

Figure 39. TEM Micrograph of Fatigued Specimens with Planar Dislocations

Figure 40. SEM Fractograph -- LCF Specimen 33

Figure 41. SEM Fractograph, Initiation Site - LCF Specimen 33

Figure 42. SEM Fractograph, Fatigue Striations - LCF Specimen 33

a. Cracked Titanium Carbide Particle

b. Cracked and Pull-Out Titanium Carbide Particles

Figure 43. SEM Fractograph, Cracked Carbides

carbide shown in Figure 43(a) suggests it may be a carbo-sulfide. The presence of these carbides may contribute to the large amount of longitudinal cracking which has been observed in this alloy (9).

D. Crack Initiation Mechanisms

i. Surface Replication

Surface replication during the course of fatigue testing was done in order to find the fraction of life at which crack initiation at 500°F occurred for total strain range of 0.75%. Two specimens, LCF Specimen 7 and LCF Specimen 8, were replicated at 500-cycle intervals. A composite of the replicas' photomicrographs are presented in Figures 44 and 46. Figure 44(a) shows the replication after 500 cycles of the area where the crack will initiate in LCF Specimen 7. At this magnification, there is no apparent crack, but persistent slip lines are evident. Figure 44(b), after 1000 cycles, still does not show a microcrack, but more intense deformation concentrated in the slip bands and grain boundaries is evident. Figure 44(c), after 1500 cycles, shows the first indication of microcracking. In Figure 44(d), after 2000 cycles, the cracking has extended into a persistent slip band. In Figure 44(e), after 2500 cycles, another microcrack becomes evident on the left-hand side. By Figure 44(f), after 3305 cycles, the two cracks have lined up and further extended. In the final series, Figure 44(g), after 3752 cycles (the last cycle), substantial crack propagation had occurred. A plot of Crack Length vs Cycles for LCF Specimen 7 is shown in Figure 45. When the crack length is extrapolated to zero length, the x-ordinate is intercepted at approximately 1500 cycles. The transition to rapid crack growth, N_i' , occurred at approximately 3400 cycles.

Figure 44. Micrographs of Replicas, Cracks - LCF Specimen 7

Figure 44 (continued)

98

Figure 45. Plot of Crack Length vs Cycles - LCF Specimen 7

A composite of the photomicrographs of the surface replicas for LCF Specimen 8 is contained in Figure 46. In this specimen, three separate cracks form. Figure 46(a), taken after 500 cycles, shows the development of slip lines but no cracks are apparent. In Figure 46(b), after 1000 cycles, there is a persistent slip band evident in the upper right-hand portion of the collage which eventually becomes the upper crack. In Figure 46(c), after 1500 cycles, the V-shaped beginning of the middle crack is apparent. At 2000 cycles, Figure 46(d), the lower crack is evident as is a portion of the upper crack. Unfortunately, the middle crack is obscured by artifacts in the replica. In Figure 46(e), after 2500 cycles, all three cracks are clearly visible and several microcracks at either end of the middle crack are visible. By 3000 cycles, shown in Figure 46(f), the microcracks of the middle crack have linked up. Further crack extension by 3500 cycles, Figure 46(g), is readily apparent. A plot of Crack Lengths vs Cycles for LCF Specimen 8 is contained in Figure 47. The crack lengths plotted are the sum of the individual lengths. Since the measured crack lengths entailed some judgment, the scatter is not unreasonable. At the early cycles, it is especially difficult to ascertain if a crack exists and to measure its extent. Extrapolating the data back to zero crack length, it appears that crack initiation occurred at approximately 1300 cycles.

If the Stress Range vs Cycles plot for Specimens 7 and 8, contained in Figures 32 and 33, are closely examined, the asymmetric stress drop-off for LCF Specimen 7 occurs at about 1500 cycles and at about 1300 cycles for Specimen 8. These cycles correlate reasonably well with those determined from the crack length measurements. Therefore, the

Figure 46. Micrographs of Replicas, Crack - LCF Specimen 8

Figure 46 (continued)

102

Figure 46 (continued)

103

Figure 47. Plot of Crack Length vs Cycles - LCF Specimen 8

asymmetric load drop-off is used in the remainder of this dissertation as evidence that a definite crack exists. In Table 9, N_i is thus a measure of the crack initiation cycle. Furthermore, a damage level of 800 cycles was selected for rejuvenation efforts since it seemed well below the actual crack initiation point.

The slope of the lines in Figures 45 and 47 yields a crack growth rate, da/dN , of $0.27 \mu\text{m}/\text{cycle}$ or $1.07 \times 10^{-4} \text{ in.}/\text{cycle}$. Macha has determined crack growth rates as a function of ΔK at 400°F and 600°F (62). At 400°F he found that:

$$\frac{da}{dN} = 0.15 \times 10^{-9} (\Delta K)^{2.9} \quad (14)$$

where da/dN is crack growth rate in $\text{in.}/\text{cycle}$, and ΔK is stress intensity range in $\text{ksi} \sqrt{\text{in.}}$. At 600°F , he found:

$$\frac{da}{dN} = 0.10 \times 10^{-9} (\Delta K)^{3.2} \quad (15)$$

Since these expressions have the form:

$$\frac{da}{dN} = C (\Delta K)^m \quad (16)$$

C and m can be estimated to be 0.125 and 3.05, respectively, at 500°F , by simple averaging. Thus, at 500°F it is estimated that:

$$\frac{da}{dN} = 0.125 \times 10^{-9} (\Delta K)^{3.05} \quad (17)$$

By finding ΔK for a fatigue crack in the LCF test specimen, Equation 17 can be used to verify the replication-derived crack growth rate. Irwin's methodology for a semi-elliptical crack, correcting for the plane strain plastic zone in a finite body, was used (63). It is only an approximation for the geometry of the LCF specimen. The details of the calculation are presented in Table 11. The computed value of

TABLE 11
CALCULATION OF CRACK GROWTH RATE FROM FRACTURE MECHANICS

- Assumptions:
1. Initial flaw size, $2c$, of 0.118 in.
($3000 \mu\text{m}$)
 2. Crack aspect ratio, $a/2c$, of 0.30
 3. Stress range, $\Delta\sigma$, of 190 ksi
 4. Ratio $\sigma_{\max}/\sigma_{y.s.}$ of 0.75
 5. $da/dN = 0.125 \times 10^{-9} (\Delta K)^{3.05}$

Calculation: Irwin's equation of interest is

$$K_I = \frac{1.1 \sigma \sqrt{\pi a}}{\sqrt{Q}}$$

$$\text{where } Q = \int_0^{\pi/2} [1 - \left(\frac{c^2-a^2}{c^2}\right) \sin^2 \phi] d\phi = 1.12 \left[\frac{\sigma}{\sigma_{y.s.}}\right]^2$$

Using the above assumptions, $Q = 1.4$. Thus $\Delta K = 107.5 \text{ ksi} \sqrt{\text{in.}}$

From Assumption 5,

$$\frac{da}{dN} = 1.96 \times 10^{-4}$$

$da/dN = 1.96 \times 10^{-4}$ in./cycle agrees reasonably well with the measured value.

Higher magnification photographs of the replicas taken for Specimens 7 and 8 revealed evidence of a concentrated deformation zone along grain boundaries. But since these specimens were not lightly etched prior to testing, these observations were inconclusive.

ii. Surface Scanning Electron Microscopy

The above replication procedure was invaluable for finding cracks during a fatigue test, but it was not suitable for defining the crack initiation mechanisms for the following reasons: (1) The sharp radius of curvature of the LCF specimen made the replication process extremely difficult to accomplish without producing artifacts in the replica; and (2) A cycle of cooling the specimen, replicating it, and reheating the specimen for further testing took 3-4 hours with the consequence that a great deal of time was consumed in the testing.

With these difficulties in mind, several different approaches were taken to better determine the crack initiation mechanism: (1) A LCF specimen was lightly etched prior to testing and a search was made for offsets in the longitudinal polishing scratches at grain boundaries; (2) A LCF specimen had two parallel flats machined longitudinally and the specimen was electropolished (one flat was lightly etched), and after 1800 cycles of testing at 500°F at a strain range of 0.75%, the flats were examined in the SEM; (3) A specimen was tested at room temperature and replicated every 300 cycles until the asymmetric load drop-off occurred and a definite microcrack could be seen; (4) A specimen, after complete testing, was placed directly in the SEM for

surface observation; (5) The gauge section of a specimen was examined in the SEM after 800 cycles of testing; and (6) A longitudinal section of a gauge section was made of a specimen tested to 2103 cycles. The results of these metallographical investigations are detailed below, and a proposed mechanism for crack initiation at 500°F at $\Delta\varepsilon_t = 0.75\%$ is presented.

LCF Specimen 42 was lightly etched after polishing through 4/0 emery paper. After testing was completed, the gauge section was placed in the SEM. Using the straight polishing scratches as fiduciary marks, offsets of them along grain boundaries were observed. Figure 48(a) and (b) show typical offsets at grain boundaries. There is an apparent curvature of the scratches in the vicinity of the grain boundary indicating the existence of a band of deformation along the boundary. Also, the offsets along a boundary are not uniform. The formation of grain boundary ledges was not readily apparent, but this experimental technique may not have been sensitive enough to detect them. Figure 48(c) shows offsets along a persistent slip band. Note that the polishing scratches which pass through a persistent slip band are relatively straight right up to the band, and that the offsets along the length of the band are reasonably uniform.

LCF Specimen F2 had two flats machined which were mechanically polished and then electropolished. One flat was lightly etched before testing. The stabilized stress range was 190.5 ksi, at total strain range of 0.75%. Crack initiation, as determined by the asymmetric load drop-off, occurred at 875 cycles. The fatigue test was halted at 1800 cycles and the flat surfaces examined in the SEM. Figure 49 shows

a. Offset of Polishing Scratch at a Grain Boundary

b. Offset of Polishing Scratches at a Grain Boundary

Figure 48. Electron Micrographs Depicting Grain Boundary Offsets

c. Offset of Polishing Scratches at a Persistent Slip Band

Figure 49. SEM Micrograph, Crack at Carbide + LCF Specimen V2

cracks leading away from a large carbide inclusion. Figure 50 graphically shows slip lines and cracks associated with two blocky carbides. The slip lines are at nearly a 45° angle with respect to the longitudinal stress axis.

LCF Specimen 36 was tested at room temperature after light etching. The stress range, after 500 cycles, constantly decreased at the rate of 3.2 psi/cycle. The stabilized stress range was 222 ksi at a total strain range of 0.73%. The test was stopped at 3900 cycles and the specimen broken in liquid nitrogen for fractographic examination. Figure 51 is a 100× view of a replica of a typical area after 3900 cycles. The slip lines within each grain are clearly evident. As the test progressed, there appeared to be a gradual thickening of the grain boundary regions. Using the longitudinal polishing scratches as fiduciary marks, higher magnification definitely revealed offsets along the grain boundaries. Figure 52 shows a typical crack which apparently initiated at a grain boundary carbide. On the fractograph, it was difficult to differentiate the fatigue initiated fracture from the tensile overload fracture.

LCF Specimen 53, which was electropolished before testing, was placed directly in the SEM after testing at 500°F. Table 9 has a summary of its properties. Figure 53 shows a portion of the main crack. Note the grain which pulled out in the center of the photograph. This crack follows a combined transgranular and intergranular path on the surface. Figure 54 shows fatigue striations in an intergranular crack region which are obvious from looking in from the surface. Figure 55

Figure 50. SEM Micrograph, Crack at Carbide - LCF Specimen F2

Figure 51. Micrograph of Replica - LCF Specimen 36

Figure 52. Micrograph of Replica, Crack at Carbide + LGI Specimen 36

Figure 53. SEM Micrograph, Main Crack - LTC Specimen 53

Figure 54. SEM Micrograph of fatigue striations on POM specimen.

Figure 55. SEM Micrograph, Secondary Cracking - UCP Specimen 53

shows surface cracking which occurred at some distance from the main crack. The crack associated with the carbide is normal to the loading direction.

LCF Specimen 38 was removed from the Instron after 800 cycles at 500°F at a total strain range of 0.77%. It was lightly etched before testing. Figure 56(a) shows the general microstructure as viewed in the SEM. Figure 56(b) is a high magnification view of the slip line in the center of Figure 56(a). At this magnification, the slip line is seen to be an extrusion band. These extrusions were also commonly seen on other fatigue specimens examined in the SEM with greater than 800 cycles of damage. Figure 57(a) shows a blocky carbide in a grain boundary. Figure 57(b) shows that this carbide is beginning to de-cohere. The microstructural damage observed in this specimen at this stage of testing occurred well before the asymmetric load drop-off or the initiation of microcracking.

LCF Specimen 39 was tested at 500°F at a total strain range of 0.77%. The test was stopped after 2103 cycles. Crack initiation, determined by the asymmetric load drop method occurred at 1300 cycles. The specimen was sectioned longitudinally, lightly etched, gold plated, and examined in the SEM. Figure 58 shows the general microstructural appearance. The blocky carbide stringers and the grain boundary Laves phase are clearly evident, as are the small spherical precipitates. Figure 59(a) shows a crack along an apparent slip plane which is oriented 60° with respect to the applied load. Figure 59(b) is a magnified view of the edge of the crack. Figure 59(c) shows a crack running from the edge along a grain boundary oriented at 30° with respect to the applied

a. General Microstructure

b. Extrusion

Figure 56. SEM micrograph, Extrusion after 800 cycles - LCF Specimen 38

a. Blocky Carbide

b. Magnified View of Carbide

Figure 57. SEM Micrograph, Decohesing Carbide after 800 Cycles -
LCF Specimen 38

Figure 5b. SEM photograph, longitudinal section after 2403 cycles - LCF at an angle 30°

a. Crack 1

Figure 59. SEM Micrograph, Cracks in Longitudinal Section after 2103 Cycles - 1C Specimen 39

00100 H
02-3 15.0 00 604 580

b. Higher Magnification View of Crack 1

Figure 59 (continued)

125

c. Crack 2

stress. Note that as predicted by Kim and Laird, the crack is not symmetric with respect to the boundary, but propagates primarily in one grain (48). These cracks, as they progressed into the specimen, followed a path either along another slip plane in a grain or along a grain boundary, but not deviating by more than 15° from a 45° angle with respect to the applied stress. Blocky carbides seem to be associated with crack propagation into the thickness.

iii. Proposed Mechanism

At 500°F and within the total strain range 0.7-0.8%, this material can initiate cracks at persistent slip bands or at grain boundaries, whichever is energetically favorable. Generally, cracks initiate at blocky carbide inclusions in those grain boundaries oriented between 30° and 60° with respect to the principle tensile direction. The combination of a deformation zone along a grain boundary, as evidenced by the offsets of polishing scratches across the boundaries, and the tendency to develop grain boundary steps, as developed by Kim and Laird (47,48), results in large compatibility strains between the carbide and the grains which are relieved by the decohering of the carbide. This marks the start of Stage I propagation and is noted by the start of the asymmetric load drop-off. Once the crack begins to propagate along a grain boundary away from the carbide, it either continues growing along the boundary both on the surface and into the material, or it turns and begins to propagate along a favorably oriented persistent slip band which had already formed a crack embryo in the form of intrusions/extrusions. Since the strain range is fairly high, these nucleation events occur at multiple locations. Once these cracks begin to link up, the crack

grows more rapidly, leading to a much larger decrease in stress drop-off per cycle. The point at which this happens corresponds to N_i' in Table 9.

Thus, the carbides play a key role in the crack initiation process, but are not as important during crack propagation. Stage I cracking generally ends when the crack reaches the end of a grain or a grain boundary triple point in terms of through the thickness of the crack dimension.

The material is ductile enough so that Stage II cracking leads to the formation of fatigue striations. It is not surprising that the fracture surface shows both intergranular and transgranular cracking.

It is clear that after 800 cycles, well before the start of Stage I crack growth, substantial microstructural damage in the form of partially de-cohered carbides and persistent slip bands already exists. This information is crucial in evaluating the effects of the rejuvenation treatments.

IV. REJUVENATION EFFECTS

A. Results of HIP Treatments

i. Presentation of Data

The results of the 11 specimens, pre-damaged in LCF to a given number of cycles, hot isostatically pressed and heat treated, and then retested to failure, are summarized in Table 12. The plots of stress range vs cycles are contained in Figures 60-70. Specimen 16 was mechanically polished and electro-polished three times before retesting.

It is apparent from this data, in comparison with the baseline data of Table 9, that no rejuvenation by HIP occurred. The ceramic

TABLE 12
SUMMARY OF HIP REJUVENATION ON LCF PROPERTIES

Specimen	Prior Damage Cycles	Strain Range (%)			Stress Range (ksi)	N_i	N_i'	N_f	N_i'/N_f	N_i'/N_f	Remarks
		$\Delta\varepsilon_t$	$\Delta\varepsilon_p$	$\Delta\varepsilon_e$							
14	800	0.73	0.02	0.71	196.0	801	1750	2297	0.35	0.76	
16	800	0.73	0.03	0.70	193.0	1350	1800	2134	0.63	0.84	Electro-polished
18	800	0.72	0.03	0.69	189.0	1750	2250	2619	0.67	0.86	
19	800	0.76	0.05	0.71	195.5	1450	1650	1933	0.75	0.85	
20	800	0.73	0.02	0.71	194.8	1750	2350	3147	0.56	0.75	Coated
21	800	0.74	0.02	0.72	200.0	1150	1450	1797	0.64	0.81	Coated
22	800	0.76	0.05	0.71	197.0	1400	1700	2287	0.61	0.74	Coated
23	2100	0.76	0.05	0.71	195.0	2650	2950	3286	0.81	0.90	Coated
24	2100	0.70	0.04	0.66	186.5	801	2900	3862	0.21	0.75	
25	0	0.68	0.03	0.65	179.4	700	950	1573	0.45	0.60	Coated
29	0	0.77	0.04	0.73	202.0	900	1250	1660	0.54	0.75	

Figure 60. Plot of Stress Range vs Cycles - LCF Specimen 14

Figure 61. Plot of Stress Range vs Cycles - LCF Specimen 16

Figure 62. Plot of Stress Range vs Cycles - LCF Specimen 18

Figure 63. Plot of Stress Range vs Cycles - LCF Specimen 19

Figure 64. Plot of Stress Range vs Cycles - LCF Specimen 20

Figure 65. Plot of Stress Range vs Cycles - LCF Specimen 21

Figure 66. Plot of Stress Range vs Cycles - LCF Specimen 22

Figure 67. Plot of Stress Range vs Cycles - LCF Specimen 23

Figure 68. Plot of Stress Range vs Cycles - LCF Specimen 24

Figure 69. Plot of Stress Range vs Cycles - LCF Specimen 25

Figure 70. Plot of Stress Range vs Cycles - LCF Specimen 29

coated and the uncoated specimens performed about the same; although Specimen 20, which was coated, performed the best. On the basis of total life, these HIP specimens were clearly inferior to the baseline specimens. Specimens 25 and 29, which were HIP'd without prior damage, failed within the range of about 1600-1700 cycles. The remaining HIP'd specimens with different levels of pre-HIP damage also failed within this range of cycles after retesting commenced, regardless of the level of pre-HIP damage. This includes two specimens which were predamaged to 2100 cycles; crack initiation had already occurred in these specimens prior to the HIP treatment. This is strong evidence that the HIP processing itself adversely damaged the microstructure at the surface of the material.

Those specimens which were to be ceramic coated were first vapor honed to provide a suitable surface for the coating to adhere to. The effect of the vapor honed surface on the LCF properties was investigated. Figure 71 shows a SEM photomicrograph of the as-vapor-honed surface. The surface is fairly rumpled and some inclusions appear to have already decohered from the microstructure. The gauge section of two vapor-honed specimens was repolished and then tested at 500°F. The Stress Range vs Cycles for these specimens, Specimens 27 and 28, are shown in Figures 72 and 73. Table 13 is a summary of the LCF data. It is clear that vapor honing, even after repolishing, was deleterious to the fatigue life. During repolishing, the diameter was reduced from 0.118 in. to about 0.116 in., or by 25 μ (about one-fifth of a grain diameter) along the specimen radius. Specimen 28, after testing, was placed in the SEM. In addition to the main crack, extensive cracking along the gage

TABLE 13
EFFECT OF VAPOR HONING ON LCF PROPERTIES

Specimen	Strain Range (%)			Stress Range			Cycles		
	$\Delta\varepsilon_t$	$\Delta\varepsilon_p$	$\Delta\varepsilon_e$	(ksi)	N_i'	N_f	N_i/N_f	N_i'/N_f	
27	0.81	0.06	0.75	205.0	900	1200	1505	0.60	0.80
28	0.76	0.04	0.72	198.0	1100	1850	1995	0.55	0.93

Figure 71. SEM Micrograph, As-Vapor-Honed Surface - LCF Specimen 55

Figure 72. Plot of Stress Range vs Cycles - LCF Specimen 27

Figure 73. Plot of Stress Range vs Cycles - LCF Specimen 28

length was observed. Typical examples of secondary cracks are shown in Figures 74, 75, and 76. All three of these cracks seem to be associated with inclusions which have decohered, cracked, or failed out.

There was a reaction between the ceramic coating and the base material during HIPing. Figure 77 shows a typical reaction zone from LCF Specimen 20. This reaction was observed in the shank region, above the extensometer flange. It is assumed a similar reaction occurred in the gauge section. The apparent penetration depth of the reaction zone was at least 5μ . This zone should have been removed during the polishing operation prior to retesting. However, the grain boundaries may have been damaged to much greater penetration depths by alloy depletion. Greater material removal than that accomplished by repolishing was deemed unwise due to the already small specimen diameter.

Figure 78 shows some fractographs taken of ceramic-coated LCF Specimen 25. The fracture appears much more intergranular in nature than for the baseline specimens.

Crack growth rate in another ceramic-coated specimen, LCF Specimen 21, was also measured by the surface replication technique. Photomicrographs of the replicas are shown in Figure 79. The plot of Crack Length vs Cycles is contained in Figure 80. Extrapolation of the crack length to zero shows that initiation occurred between 1100 and 1200 cycles. This agrees with the asymmetric load drop-off point, N_i , in Table 12 of 1150 cycles. Note that the slope of this curve is about $1.5 \mu\text{m}/\text{cycle}$. This is 5.5 times the slope of the two baseline specimens plotted in Figures 45 and 47. Thus, the crack growth rate was greatly accelerated in the HIP rejuvenated specimen.

a. Low Magnification View of Crack

b. High Magnification View of Crack

Figure 74. SEM Micrograph, Secondary Cracking - LCF Specimen 28

a. General Crack

b. Higher Magnification View of Crack

Figure 75. SEM Micrograph, Secondary Cracking - LCF Specimen 28

Figure 76. SEM Micrograph, Secondary Cracking - LCF Specimen 28

a. General Area

b. Higher Magnification of Reaction Zone

Figure 77. Micrograph, Coating Reaction

a. Fractograph

b. Possible Crack Initiation Area

Figure 78. SEM Fractography - LCF Specimen 25

Figure 79. Micrographs of Replicas, Cracks - LCF Specimen 21

Figure 80. Plot of Crack Length vs Cycles - LCF Specimen 21

The uncoated specimens were badly contaminated after HIP processing.

Figure 81 shows the reaction zone for LCF Specimen 26. The apparent reaction zone is 5-10 μ in depth. After HIP processing, alloy depletion along the grain boundaries to much greater depths has been observed in IN-713 (54). Thus, even after repolishing, the grain boundaries were still substantially weakened compared to the baseline. Figure 82 contains SEM photomicrographs of the primary crack in LCF Specimen 16. This crack had progressed completely around the circumference of the specimen. No baseline specimen had a complete circumferential crack, but it was not unusual for the HIP processed specimens (both coated and bare) to have one. Note that the crack in Figure 82(a) is both intergranular and transgranular. The role of a fractured blocky carbide in promoting cracking is graphically shown in Figures 82(b) and (c). Cracking throughout the gauge length was extensive. Figure 83 shows a typical intergranular crack located at some distance from the main crack. The fracture appearance for the uncoated specimens was very similar to that of the coated specimens.

HIP processing increased the material grain size from 120 μm to 150 μm . It is known that LCF life is usually sensitive to grain size. Merrick found an inverse relationship between grain size and fracture life for two different grain sizes at room temperature and at 1000°F (16). Handbook data at room temperature for three grain sizes also shows an inverse relationship with fracture life for stress-controlled tests (43). When this data is plotted, it is apparent that the relationship follows a Hall-Petch dependency:

$$N_f \propto \frac{1}{\sqrt{\text{g.s.}}} \quad (18)$$

a. Surface Contamination, Area 1

b. Surface Contamination, Area 2

Figure 81. Micrograph, Surface Oxidation - LCF Specimen 26

a. Main Crack

b. Magnification of Center Portion of Crack

Figure 82. SEM Micrographs, Main Crack - LCF Specimen 16

c. Possible Carbide Pullout

Figure 83. SEM Micrographs, Secondary Cracking - LCF Specimen 16

where N_f is the cycles to failure, and g.s. is the grain size. Thus, the effect of increased grain size from the rejuvenation processing on the cycles to failure can be estimated:

$$N_{f_2} = N_{f_1} \times \frac{\overline{g.s.}_1}{\overline{g.s.}_2} \quad (19)$$

Using Equation 18, a decrease in cycles to failure of 12% can be estimated to be due to the grain size changes alone.

iii. Mechanisms

Considering the data presented in Tables 12 and 13, the fatigue behavior for the HIP'd specimens (both coated and uncoated) and the vapor-honed specimens is similar. But the mechanisms of crack nucleation and growth are most likely not the same. Recall that the previous section demonstrated that the critical step for crack initiation in the baseline specimens was the decohering of a grain boundary carbide. Clearly, vapor honing, even with repolishing, can decohere or fracture carbides. This not only would greatly shorten the initiation time, but would provide many crack initiation sites. Thus, once crack growth began, it would progress very rapidly due to microcrack linkup. This is what was observed for the vapor-honed specimens.

The ceramic coating reacts with the matrix during HIP processing. Even though optical microscopy showed that the reaction depth was such that it should be removed by repolishing, localized contamination along the grain boundaries and existing persistent slip bands can be substantially greater. This would promote the early intergranular failure as was observed. This investigation is inconclusive, however,

in differentiating between the damage due to vapor honing and the damage due to contamination by the ceramic coating.

The uncoated specimens had contaminated grain boundaries which were relatively weak. Thus, the carbides readily decohered and crack propagation was fairly rapid.

B. Results of Thermal Treatments

1. Presentation of Data

The results of seven thermally rejuvenated specimens are contained in Table 14. A comparison of this data with the baseline data (Table 9) and the HIP rejuvenated data (Table 12) reveals that some rejuvenation definitely occurred as a result of the thermal treatment. The plots of Stress Range vs Cycles are contained in Figures 84-90. Note that LCF Specimen 13 was heat treated in a poor vacuum and, as a result, the surface was badly oxidized. It was tested without repolishing. The remaining specimens, except for LCF Specimen 54, were all repolished after thermal treatment.

An investigation was made to determine the effect of repolishing alone on enhancing the fatigue properties. A summary of the data is contained in Table 15. The plots of Stress Range vs Cycles are shown in Figures 91 and 92. These data are essentially no different than the baseline properties. Also, since LCF Specimen 54 was not repolished after the thermal treatment and yet was clearly rejuvenated, it can be concluded that repolishing alone does not recover LCF damage for the conditions studied in this investigation.

Table 14 indicates that complete recovery of LCF damage was not accomplished. But, it was previously shown that after 800 cycles,

Position	Initial Thickness in microns	Initial Range			Final Range			Treated		
		N ₁	N _{1'}	N ₂	N ₁	N _{1'}	N ₂	N _f	N ₁ /N _f	N _{1'} /N _f
13*	800	0.79	0.07	0.72	198.0	1650	2100	2504	0.66	0.84
34	400	0.75	0.05	0.70	194.5	1800	2700	3333	0.54	0.81
35	800	0.74	0.03	0.71	194.0	1800	3900	5384	0.33	0.72
42	803	0.74	0.02	0.72	197.6	1800	3300	4134	0.44	0.80
43	803	0.75	0.02	0.73	200.5	2000	2650	2890	0.69	0.92
51	803	0.72	0.02	0.70	194.0	1700	3700	4475	0.38	0.83
54**	803	0.75	0.04	0.71	194.2	1900	3200	4106	0.46	0.78

*Heat treated in a poor vacuum

**Retested without repolishing

TABLE 15
SUMMARY OF REPOLISHING ON LCF PROPERTIES

Specimen	Prior Damage Cycles	Strain Range (%)			Stress Range (ksi)			Cycles		
		$\Delta\epsilon_t$	$\Delta\epsilon_p$	$\Delta\epsilon_e$	N_i	N_i'	N_f	N_i/N_f	N_i'/N_f	
38	803	0.76	0.05	0.71	196.0	1575	2700	3562	0.44	0.76
40	803	0.73	0.02	0.71	194.5	1300	2800	3206	0.41	0.87

Figure 84. Plot of Stress Range vs Cycles - LCF Specimen 13

Figure 85. Plot of Stress Range vs Cycles - LCF Specimen 34

Figure 86. Plot of Stress Range vs Cycles - LCF Specimen 35

Figure 87. Plot of Stress Range vs Cycles - LCF Specimen 42

Figure 88. Plot of Stress Range vs Cycles - LCF Specimen 43

Figure 89. Plot of Stress Range vs Cycles - LCF Specimen 51

Figure 90. Plot of Stress Range vs Cycles - LCF Specimen 54

Figure 91. Plot of Stress Range vs Cycles - LCF Specimen 38

Figure 92. Plot of Stress Range vs Cycles - LCF Specimen 40

blocky carbides in the grain boundary began to decohere (Figure 51), and extrusions at persistent slip bands occurred (Figure 50). This is not the type of damage that thermal treatment can remove.

SEM photomicrographs of the gauge section of the thermally rejuvenated specimens after N_f revealed extensive cracking and decohering of inclusions. A typical example is shown in Fig. 93 from LCF Specimen 42.

LCF Specimen 31 was damaged in LCF at 500°F at a total strain range of 0.75% (stabilized stress range was 191 ksi). The gauge section was cut in two. Foils were made from one half for TEM investigation. The other half was given the thermal rejuvenation treatment, and the foils were prepared for TEM investigation. Figure 94 shows a network of dislocations beginning to form after 800 cycles. Figure 95, after the thermal treatment, shows that most of the dislocations have been annealed out.

The previous results were for a single rejuvenation treatment. In an attempt to determine the effect of multiple rejuvenations, LCF Specimen 41 was subjected to multiple blocks of 803 cycles of LCF damage plus thermal rejuvenation. The plot of Stress Range vs Cycles is contained in Figure 96. Table 16 summarizes the LCF data. Note that the thermal rejuvenation treatments seemed to have forestalled the onset of crack initiation as determined by the asymmetric load dropoff, but once the dropoff occurred, the crack progressed very rapidly. The surface of this specimen was examined in the SEM after the second block of 803 cycles (i.e., after 1606 cycles) and after failure. Figure 97 shows photomicrographs taken after 1606 cycles. Figure 97(a) shows the development of persistent slip bands

TABLE 16
SUMMARY OF LCF DATA FOR MULTIPLE THERMAL REJUVENATION - LCF SPECIMEN 41

Prior Damage Cycles	Strain Range (%)			Stress Range (ksi)			Cycles		
	$\Delta\epsilon_t$	$\Delta\epsilon_p$	$\Delta\epsilon_e$	N_i	N_i'	N_f	N_i/N_f	N_i'/N_f	
0	0.76	0.05	0.71	197.0	-	-	-	-	-
803	0.77	0.07	0.70	201.0	-	-	-	-	-
1606	0.77	0.06	0.71	193.0	-	-	-	-	-
2409	-	-	-	195.5	2500	2700	3134	0.80	0.86

a. General Appearance of Cracking

b. Decohered Inclusions and Cracking

Figure 93. SEM Micrograph, Cracking at Inclusions - LCF Specimen 42

Figure 94. TEM Micrograph, Dislocation Network after 800 Cycles - LCF Specimen 31

Figure 95. TEM Micrograph, Annealed Dislocation Network - 1CF Specimen

AD-A107 255 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH
MECHANISMS OF RECOVERING LOW CYCLE FATIGUE DAMAGE IN INCOLOY 90--ETC(U)
1979 R E SCHAFRIK
UNCLASSIFIED AFIT-CI-79-212D

F/G 11/6

NL

3 x 3
AFIT-CI-79-212D

END
DATE FILMED
12-81
DTIC

Figure 96. Plot of Stress Range vs Cycles - LCF Specimen 41

a. General Appearance of Cracking

b. Decohered Inclusion

Figure 97. SEM Micrograph, Surface Cracking after 1606 Cycles -
LCF Specimen 41

c. Possible Cracked Grain Boundary

and the effect of polishing a group of carbides. Figure 97(b) shows a blocky grain boundary carbide in the process of decohering. Figure 97(c) shows a grain boundary beginning to crack or form a ledge. Figure 98 are photomicrographs taken after failure. Figure 98(a) shows extensive deformation and cracking in a region near the principle crack. Figure 98(b) is a typical area located at some distance from the main crack. The grain boundary cracking and persistent slip bands are readily apparent. Note that the total life for LCF Specimen 41 was the same as could be expected for a baseline specimen. Thus, no overall rejuvenation was accomplished although the onset of gross microcracking may have been significantly retarded.

ii. Mechanisms

The rejuvenation effect of the thermal treatment was primarily due to the recovery of dislocations in the persistent slip bands and the deformation zone along the grain boundary. The fact that dislocation recovery can occur at elevated temperatures is well established, and several mechanisms have been postulated (55,56,57). Thus, after thermal rejuvenation and during subsequent testing, the planar dislocation arrays must re-form the persistent slip bands and the deformation zone along the grain boundary must be re-established. Also, the γ' precipitates which were sheared and possibly disordered are restored to their original distribution and morphology (65). The result is that the processes which lead to the decohering of the blocky grain boundary carbides are retarded. However, the decohering itself is not repaired by thermal treatment. Nor are the voids healed on the interior of a persistent slip band which developed intrusions and extrusions.

a. Surface Deformation Near Crack

b. General Cracking

Figure 98. SEM Micrograph, Cracking after Failure - LCF Specimen 41

Also, the rejuvenation process acts to disperse slip throughout the gauge section, leading to a greater number of decohering carbides. Thus, when microcracks begin to propagate, they readily link up, leading to an accelerated crack growth rate. If the grain boundaries are simultaneously weakened during the thermal rejuvenation processing, such as by contamination from a poor vacuum, crack growth is accelerated even more.

C. Conclusions

Table 17 summarizes the cycles to crack initiation as a function of the processing, and Table 18 similarly summarizes the cycles to failure. It is evident that the data for the repolishing treatment alone belongs to the same population as the baseline data. The vapor-honed plus repolished data indicates crack initiation at about 400 cycles earlier than the baseline data, and less than half the total lifetime to failure. The HIP samples did not show any rejuvenation of LCF properties. The uncoated HIP specimens performed slightly worse than the coated HIP specimens. Crack initiation for the HIP samples (with 800 cycles of pre-HIP damage) occurred at about the same point as for the baseline specimens. But failure occurred 1300-1500 cycles earlier than the baseline data. Also, the data indicates that failure occurred within about 1600 cycles after HIP processing regardless of the level of initial damage (Table 12). The conclusion is that vapor honing and HIP processing damaged the surface of the test specimens. Vapor honing caused fracturing and decohering of blocky grain boundary carbides. Ceramic-coated plus HIP specimens not only had the deleterious effects of the vapor-honing induced damage, but also contamination due to reaction

TABLE 17
 SUMMARY OF CYCLES TO CRACK INITIATION
 0.70-0.80 TOTAL STRAIN RANGE
 500 F TEST TEMPERATURE

	<u>Prior Damage</u> (cycles)	Treatment							
		<u>Baseline</u>	<u>Repolish</u>	<u>Vapor</u>	<u>Honed</u>	<u>HIP-Bare</u>	<u>HIP-Coated</u>	<u>Thermal</u>	<u>Thermal</u>
No. of Data Points	8	0	803	0	800	800	800	800-803	400
Mean	1388	1438	1000	2	4	3	1338	1433	1840
Standard Deviation	448	194	141			396	301	114	-

*Excludes LCF Specimen 13

TABLE 18
 SUMMARY OF CYCLES TO FAILURE
 0.70-0.80 TOTAL STRAIN RANGE
 500 F TEST TEMPERATURE

	Baseline	Repolish	Vapor	Honed	Treatment		
					HIP-Bare	HIP-Coated	Thermal
Prior Damage (cycles)	0	803	0	800	800	800-803	400
No. of Data Points	8	2	2	4	3	5*	1
Mean	3568	3384	1750	2246	2410	4198	3333
Standard Deviation	401	252	346	290	683	895	-

*Excludes LCF Specimen 13

between the ceramic coating and the superalloy. The uncoated HIP specimens were badly contaminated from impure argon in the HIP unit.

The thermally rejuvenated specimens definitely showed some rejuvenation. Those specimens damaged to 800 cycles before rejuvenation increased their initiation time by about 450 cycles and their total lifetime by about 630 cycles on the average (but note the high standard deviation in Table 18). The specimen predamaged 400 cycles before rejuvenation increased its initiation time by 400 cycles, but no increase in total lifetime was obtained. The experience with multiple rejuvenation (Table 16) indicates that damage accumulation in the form of decohering carbides, which are not affected by thermal treatments, leads to eventual very rapid crack extensions.

Chapter 4

SUMMARY

The mechanisms of crack initiation and growth in strain-controlled low cycle fatigue (LCF) damage were determined for the iron-nickel superalloy, Incoloy 901. Testing was done in air at a temperature of 500°F (260°C) and total strain range of 0.75%. The effect of hot isostatic pressing (HIP) and thermal treatment in reducing LCF damage was investigated.

The LCF specimens were manufactured using a low stress grinding method to maintain surface quality. Specimens were hand polished along the axial direction through 4/0 emery paper. Prior to testing, all specimens were given a standard solution treatment and double age, referred to as STA 3A (Table 4), to insure the uniform precipitate morphology and distribution from specimen to specimen. The as-received grain size was 90 μm . After STA 3A, the grain size was increased to 120 μm , but remained stable after subsequent heating to the solutioning temperature. The 0.2% offset yield stress at 500°F was 122 ksi.

Initial LCF testing was conducted over the total strain range of 0.70% to 2.44%. The Cyclic Stress-Strain Curve (Figure 24) exhibited cyclic hardening at the high strain ranges and cyclic softening at the lower ranges. A log-log plot of Total Strain Range vs Cycles (Figure 26) exhibits a linear curve with a negative slope.

Crack initiation in the baseline specimens was due to the decohering of blocky grain boundary carbides. Pre-crack initiation damage consisted of planar dislocation arrays forming persistent slip bands and an intense deformation region adjacent to favorably oriented grain boundaries. The persistent slip bands formed intrusions and extrusions at a total strain range of 0.75% by 800 cycles (about 60% of crack initiation time). Stage I crack propagation occurred along the grain boundary or along a favorably oriented persistent slip band. Substantial Stage II crack propagation occurred, as evidenced by the formation of fatigue striations. Fractography revealed a mixed fracture mode, consisting of both intergranular and transgranular fracture.

The HIP-processed specimens were subjected to a HIP cycle of 2025°F for one hour and 1975°F for two hours at 15 ksi of argon (Figures 10 and 11). Both uncoated and ceramic-coated specimens were HIP'd. Specimens had pre-HIP LCF damage of 0 cycles, 800 cycles, and 2100 cycles. The HIP processing increased the grain size by 25%. The specimens were subjected to STA 3A to restore the original morphology and distribution of the precipitates. No rejuvenation occurred. In fact, the fatigue properties were worse than the baseline properties by a substantial amount. Even correcting for the grain size change utilizing a Hall-Petch-type equation, it is clear that the HIP processing itself produced surface-related damage in the microstructure. In fact, the HIP processing caused more damage than the LCF pre-HIP damage levels.

In the case of the ceramic-coated specimens, damage resulted from at least two sources: (1) vapor honing the specimen surface to provide

a matte finish for the coating to adhere to, damaged the blocky carbides by decohering and cracking them; and (2) the ceramic coating reacted with the superalloy. As a consequence, intergranular cracking was promoted, and crack growth rates were greater than five times the rate in the baseline specimens.

The uncoated HIP specimens were damaged by contamination from the HIP atmosphere. Preferential formation of oxides and nitrides along the grain boundaries led to weakening of the boundaries. This promoted intergranular cracking, accelerated crack growth rates, and early failures. Overall, there was not much apparent difference between the behavior of the coated and uncoated specimens, although the coated ones were slightly superior.

Figure 99 plots the rejuvenation data and the trend line for the baseline data on a log-log plot of Total Strain Range vs Cycles to Failure.

The thermally rejuvenated specimens were given STA 3A after 800 cycles of damage. As long as the heat treating was done in a good vacuum so that surface contamination did not occur, partial rejuvenation was accomplished. Initiation life was increased by 400 cycles and the failure cycle was increased by 600 cycles. Complete rejuvenation was not attained because the grain boundary carbides had already begun to decohere after 800 cycles and persistent slip bands had formed intrusions and extrusions. When a specimen was rejuvenated three times after blocks of 803 cycles of damage, it failed catastrophically due to rapid crack extension. Thus, the unrecovered microstructural damage can adversely affect the fatigue life.

Figure 99. Plot of Strain Range vs Cycles to Failure with Baseline Trend Line and Rejuvenation Data

APPENDIX
LISTING OF COMPUTER PROGRAMS

APPENDIX I

**SOURCE LISTING OF MODIFIED INSTRON LOW CYCLE FATIGUE
APPLICATION PROGRAM APP-900-A3A8**

PAGE 0001

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021

*
*
* LOW CYCLE FATIGUE
*
* APP-900-A3A8+10D2
*
* 04/04/75
*
*

*
* COPYRIGHT INSTRON CORPORATION
* DECEMBER 1974
*
* MODIFIED BY STEVE LEFFLER &
* BOB SCHAFRIK
*
* 4/13/79
*

PAGE	0003	LOW CYCLE FATIGUE
0039		*
0040		***** BEGIN SECTION *****
0041		*
0042	001B F98E	BEGIN ITBL TABLE1, 33
	001C 0468	
	001D 0021	
0043	001E F98E	ITBL TABLE2, 33
	001F 0499	
	0020 0021	
0044	0021 F98E	ITBL TABLE3, 23
	0022 04AA	
	0023 0017	
0045	0024 F98E	ITBL TABLE4, 33
	0025 04C1	
	0026 0021	
0046	0027 F95E	INID BUFFID
	0028 053E	
0047	0029 F947	FMOV F0, AUGSTN
	002A 006E	
	002B 0450	
0048	002C F947	FMOV F0, DATPX AND DATPY
	002D 006E	
	002E 0173	
0049	002F F997	JST *GETSTA
0050	0030 EA9C	STX INDEX1
0051	0031 9900	STA INDEX ALSO XB
	0172	
0052	0032 C2B1	AXI '1'
0053	0033 0500	SEM
0054	0034 EB9D	STXB *CURSTP
0055	0035 0F0C	SVM
0056	0036 F947	FMOV F1, FCYCLE
	0037 045E	
	0038 043A	
0057	0039 FA71	JST INITCY
0058	003A F9FF	CRLF
0059	003B F909	TYPE MAREA ASK AREA DIMS.
	003C 04F7	
0060	003D F93D	IFLT FTHICK GET THICKNESS
	003E 043C	
0061	003F F93D	IFLT FWIDTH GET WIDTH
	0040 043E	
0062	0041 F90F	CRLF
0063	0042 F948	FCMP FWIDTH, F0
	0043 043E	
	0044 006E	
0064	0045 2105	JAZ ROUND ZERO = ROUND
0065	0046 F043	FMPL FTHICK, FWIDTH, FAREA
	0047 043C	
	0048 043E	
	0049 0442	
0066	004A F20C	JMP CLEAR1
0067	004B F944	ROUND FDVD FTHICK, F2, FAC1

PAGE	0002	LOW CYCLE FATIGUE
0023	0000	REL 0
0024	*	
0025	*****	SSP-LINKAGE *****
0026	*	
0027	0000	DATA NAME
0028	0001	DATA BEGIN
0029	0002	DATA PESTPT
0030	0003	DATA UPDATE
0031	0004	DATA FINAL
0032	0005	DATA STAT:A
0033	0006	DATA STAT:B
0034	*	
0035	0007	C1D0 NAME TEXT 'APP-900-A3'
	0008	D0AD
	0009	B9B0
	000A	B7AD
	000B	C1B3
0036	000C	C1B8 TEXT 'A8+MOD2'
	000D	ABCD
	000E	CFC4
	000F	B2A0
0037	0010	A7A0 TEXT ' LOW CYCLE FATIGUE'
	0011	A7CC
	0012	CFC7
	0013	A2C3
	0014	D9C3
	0015	CCC5
	0016	A7C6
	0017	C1D4
	0018	C9C7
	0019	D5C5
	001A	C0A0

PAGE 0004

LOW CYCLE FATIGUE

	004C	043C	
	004D	0070	
	004E	0426	
0068	004F	F943	FMPL FAC:1, FAC:1, FAC:1
	0050	0426	
	0051	0426	
	0052	0426	
0069	0053	F943	FMPL FAC:1, F:PI, FAREA
	0054	0426	
	0055	007A	
	0056	0442	
0070	0057	F969	CLEAR1 TYPE MSTPLM ASK STRAIN LIMITS
	0058	05CD	
0071	0059	F93D	IFLT MAXLIM MAX. LIMIT
	005A	0446	
0072	005B	F93D	IFLT MINLIM MIN. LIMIT
	005C	0448	
0073	005D	E100	LDX XABC
		0170	
0074	005E	F944	FDVD MAXLIM,*STVALP,HLIMIT
	005F	0446	
	0060	8CB4	
	0061	0CB5	
0075	0062	F944	FDVD MINLIM,*STVALP,LLIMIT
	0063	0448	
	0064	8CB4	
	0065	08C0	
0076		***	
0077	0066	F90F	CRLF
0078	0067	F9F9	TYPE PNDMES RANDOM LIMITS?
	0068	9518	
0079	0069	F90B	IKB
0080	006A	C0AC	CAI ',', LEAVE AS IS?
0081	006B	F20A	JMP CLEAR2 YES
0082	006C	C0D9	CAI ''
0083	006D	F202	JMP PNDMLT
0084	006E	0110	ZAR RQSTD/ASSID NO
0085	006F	F201	JMP \$+2
0086	0070	035A	RNDMLT APP SET RANDOM FLAG
0087	0071	99FC	STA PNDFLG
		0175	
0088	0072	F9FB	WTCLR IKB TERMINATION CHAR?
0089	0073	C0AC	CAI ',',
0090	0074	F201	JMP CLEAR2
0091	0075	F6C3	JMP WTCLR NO
0092		***	
0093	0076	B2F5	CLEAR2 LDA ENDFLG
0094	0077	3125	JAV CLR2
0095	0078	F90F	CPLF
0096	0079	F909	TYPE MNSTRS ASK MIN. STRESS
	007A	05D3	
0097	007B	F93D	IFLT STRSLM GET STRESS LIMIT
	007C	F444	

PAGE	0005	LOW CYCLE FATIGUE		
0098	007D	F944	CLR2 FDVD HLIMIT,F32767,HPNGE	
	007E	00BE		
	007F	0074		
	0080	0452		
0099	0081	F944	FDVD LLIMIT,F32767,LPGIE	
	0082	00C0		
	0083	0074		
	0084	0454		
0100	0085	F945	FIX HLIMIT,HLIMIT	
	0086	00BE		
	0087	00BE		
0101	0088	F945	FIX LLIMIT,LLIMIT	
	0089	00C0		
	008A	00C3		
0102	008B	F947	FMOV F1,NN	
	008C	045E		
	008D	0458		
0103	008E	F947	FMOV F0,XX CALC. MD AFTER	
	008F	006E		
	0090	045A		
0104	* GET CYCLE #'S & INCREMENTS			
0105	0091	F9EF	CPLF	
0106	0092	F9F9	TYPE NMESS	
0107	0093	00CC		
0108	0094	F93D	IFLT FNM1	
	0095	00C4		
0109	0096	F93D	IFLT FNM2	
	0097	00C6		
0110	0098	F93D	IFLT FNM3	
	0099	00C8		
0111	009A	F9FF	CPLF	
0112	009B	0010	ARM	I PASS INITIALLY
0113	009C	9ADA	STA CNT	
0114	009D	9AD5	STA XC	NEED FOR FINAL
0115	009E	C7CA	LAM 10	
0116	009F	9AC9	STA CNTN1	INITIALIZE
0117	00A0	B2CA	LDA NUM1	SLOPE ROUTINE
0118	00A1	9ACA	STA NUM	
0119	00A2	9A95	STA DLTLD	
0120	00A3	8A97	ADD I300	
0121	00A4	9A97	STA LOAD2	
0122	00A5	0110	ZAR	
0123	00A6	99EE	STA BRANCH	
		01C7		
0124	00A7	9ADE	STA DATPX	
0125	00A8	9AD0	STA DATPY	
0126	00A9	9AC3	STA MDFLG	
	00AA	F22B	JMP RESTRT	

PAGE 0006 LOW CYCLE FATIGUE

0128	00AB	0100	INITCY	EXIT
0129	07AC	0350		APP
0130	02AD	9AC3		STA XBPT OR XA
0131	00AE	F947		FMOV F1,CMPtbl
	08AF	045E		
	02B0	158A		
0132	02B1	F947		FMOV F2,CMPtbl+2
	*	0070		
	0080	058C		
0133	00B4	F941		FADD F1,F2,F3
	00B5	045E		
	20B6	0070		
	30B7	00CA		
0134	00B8	F947		FMOV F3,CMPtbl+4
	00B9	00CA		
	00BA	058E		
0135	00BB	DABC	IMS	DATPX PRINT FIRST CYCLE
0136	00BC	F711	RTN	INITCY
0137	*			
0138	*			
0139	*			
0140	00BD	0000	INDEX1	DATA 0
0141	00BE	002C	HLIMIT	PES 2,0
0142	00C0	0000	LLIMIT	RES 2,0
0143	00C2	0000	CURSTP	BAC STANUM+9
0144	00C3	00D9	ANDM	DATA 'Y'
0145	00C4	0020	FNM1	RES 2,0 CUT-OFF CYCLE 1 INC
0146	00C6	0000	FNM2	PES 2,0 INCREMENT TWO
0147	00C8	0000	FNM3	RES 2,0 LAST CYCLE
0148	00CA	0000	F3	PES 2,0
0149	00CC	C5CE	NMESS	TEXT 'ENTER NM1,NM2,NM3: e'
	00CD	D4C5		
	00CE	D2A0		
	00CF	CECD		
	00D0	B1AC		
	00D1	CECD		
	00D2	B2AC		
	00D3	CECD		
	00D4	B3BA		
	00D5	C0A0		

PAGE 0007

LOW CYCLE FATIGUE

0151 *
 0152 ***** RESTART SECTION *****
 0153 *
 0154 00D6 F93D RESTPT STOP
 0155 00D7 B29D LDA PNDLFG RANDOM LIMITS
 0156 00D8 2114 JAZ RSTEX NO
 0157 00D9 F90F CPLF
 0158 00DA F909 TYPE RESETM RESET RANDOM SEQUENCE
 00DB E531
 0159 00DC F90B IKB
 0160 00DD 0E43 TAX
 0161 00DE C0AC CAI ',' DO THE SAME AS LAST TIME?
 0162 00DF F27B JMP SAME2 YES
 0163 00E0 EE1D STX PNDM
 0164 00E1 C0CE RESET1 CAI 'N' RESET SEQUENCE?
 0165 00E2 F202 JMP PSTRT0 NO
 0166 00E3 C603 LAP 3 YES
 0167 00E4 9B3F STA *PN1PTR
 0168 00E5 C1AC RSTRTE CXI ',' SAME AS LAST TIME?
 0169 00E6 F206 JMP RSTEX YES
 0170 00E7 F92B IKB INPUT TERMINATION?
 0171 00E8 C0AC CAI ','
 0172 00E9 F203 JMP RSTEX
 0173 00EA F625 JMP RSTRTO NO, KEEP WAITING
 0174 00EB B623 LDA PNDM
 0175 00EC F60B RESET1
 0176 *
 0177 00ED F90F RSTEX CPLF
 0178 00EE F909 TYPE MRATE
 00EF 0522
 0179 00F0 F93D IFLT SRRATE
 00F1 044A
 0180 00F2 F90F CPLF
 0181 00F3 E27C LDX XABC
 0182 00F4 F944 FDVD SRRATE,*STVALP, CLKRT
 00F5 044A
 00F6 80B4
 00F7 044C
 0183 00F8 F90F CPLF
 0184 00F9 F913 RATE CLKRT SET TIME VALUE
 00FA 044C
 0185 00FB E274 LDX XABC FORCE INDEX IN XA
 0186 00FC 0129 IXR
 0187 00FD F944 FDVD *LDVALP, FAREA, STRESV
 00FE 80A7
 00FF 0442
 0100 0445
 0188 0101 F344 FDVD STRSLM, STRESV, STRESS
 0102 0444
 0103 0445
 0104 0272
 0189 0105 F945 FIX STRESS, STRESS
 0106 0272

PAGE 0008 LOW CYCLE FATIGUE

0190	0107	0272	
	0108	F912	MODE STROKE
	0109	FF01	
0191	010A	F90F	CPLF
0192	010B	F909	TYPE MEXEC
	010C	052D	PRINT EXECUTE
0193	010D	F90F	CPLF
0194	010E	F909	TYPE MHEAD
	010F	0553	
0195	0110	F90F	CPLF
0196	0111	F951	CLOS
0197	*		
0198	0112	0800	SETTBL ENT
0199	0113	DA64	IMS DATPX PRINT ALL TRIGGER CYCLES
0200	*		STORE CURRENT CYCLE - END OF TEST?
0201	0114	F947	FMOV FCYCLE, FTCYC
	0115	043A	
	0116	013F	
0202	0117	F943	FCMP FNM3,F0 SEE IF DEFAULT
	0118	00C8	
	0119	006E	
0203	011A	2104	JAZ SETTB2
0204	011B	F948	FCMP FTCYC,FNM3 LAST CYCLE?
	011C	013F	
	011D	02C8	
0205	011E	3F95	JAP INCDNE
0206	011F	B251	SETTB2 LDA XBPT
0207	0120	0150	IAR
0208	0121	C004	CAI 4
0209	0122	F202	JMP INCTBL
0210	0123	9A4D	STA XBPT
0211	0124	F712	RTN SETTB2
0212	0125	0350	INCTEL ARP
0213	0126	9A4A	STA XBPT
0214	0127	FA19	INCTB2 JST CYADJ
0215	0128	F947	FMOV FTCYC,CMPTBL
	0129	013F	
	012A	058A	
0216	012B	FA15	JST CYADJ
0217	012C	F947	FMOV FTCYC,CMPTBL+2
	012D	013F	
	012E	058C	
0218	012F	FA11	JST CYADJ
0219	0130	F947	FMOV FTCYC,CMPTBL+4
	0131	013F	
	0132	058E	
0220	0133	F721	PTN SETTB2
0221	0134	0C10	INCDNE APM
0222	0135	9A91	STA BPANCH FINI
0223	0136	F956	EXIT
0224	*		
0225	0137	0000	OLDLD DATA 0
0226	0138	0000	DLTLD DATA 0

PAGE 0009

LOW CYCLE FATIGUE

0227 0139 0000 DLTSTN DATA 0,0
013A 0000
0228 013B 012C I300 DATA 300
0229 013C 0000 LOAD2 DATA 0
0230 013D 0000 CUPLD DATA 0
0231 013E 0020 CUPSTI DATA 0
0232 013F 0000 FTCYC RES 2,0 CYCLE VALUE
0233 *
0234 * ADJUST CYCLE TRIGGER VALUE
0235 0141 0800 CYADJ ENT
0236 0142 F943 FCMP FTCYC,FNM1 SEE IF INC BY 1
0143 013F
0144 00C4
0237 0145 3055 JAP CYAD2 INC BY MORE
0238 0146 F941 FADD F1,FTCYC,FTCYC
0147 045E
0148 013F
0149 013F
0239 014A F224 JMP CYAD3
0240 014B F941 CYAD2 FADD FNM2,FTCYC,FTCYC INC BY FNM2
014C 00C6
014D 013F
014E 013F
0241 014F F70E CYAD3 RTN CYADJ
0242 *
0243 *

PAGE 0010 LOV CYCLE FATIGUE

```

0245      *
0246 0150 B218 N1    LDA CNTN1
0247 0151 21C3    JAZ NIX
0248 0152 B219    LDA NUM
0249 0153 9616    SUB CURLD   SAVE POINTS
0250 0154 2231    JAM DATN1
0251 0155 F236 NIX  JMP NOT1
0252 0156 B214 DATN1 LDA NUM1 OF LOAD
0253 0157 8A14    ADD NUM1
0254 0158 9A13    STA NUM1 AND STRAIN
0255 0159 B61C    LDA CURLD
0256 015A F991    GIVE TABLE3
015B 04AA
0257 015C F226    JMP FULLN1
0258 015D B61F    LDA CURSTN IN 5Z
0259 015E F991    GIVE TABLE3
015F 04AA
0260 0160 F222    JMP FULLN1
0261 0161 DA27    IMS CNTN1
0262 0162 F279    JMP NOT1
0263 0163 0110 FULLN1 ZAR
0264 0164 9AC4    STA CNTN1 SLOPE
0265 0165 F957    CUE SLOPE:,1000
0166 0339
0167 0353
0266 0168 F273    JMP NOT1
0267      *
0268 0169 0000 CNTN1 DATA 0 CALCULATION
0269 016A 0190 BPEAK DATA 400 26% FS
0270 016B 0064 NUM1 DATA 100
0271 016C 0200 NUM DATA 0
0272 016D 0000 MDFLG DATA 0
0273 016E 0000 UTEMPI DATA 0
0274 016F 0200 UTEMPI2 DATA 0
0275 0170 0171 XABC DATA $+1
0276 0171 0000 XBPT DATA 0 OR XA
0277 0172 0000 INDEX DATA 0 OR XB
0278 0173 0000 XC DATA 0
0279 0024 VALPTR EQU :4
0280 0174 0395 FN1PTR DATA EJ1
0281 0175 0000 FNDFLG DATA 0
0282 0176 0368 GETNUM DATA RANDOM
0283 0177 0000 CNT DATA 0
0284 0178 0000 DATPX DATA 0
0285 0179 0000 DATPY DATA 0

```

PAGE 0011

LOW CYCLE FATIGUE

0287	*	
PAUSE	*	
0288	*	
0289	***** UPDATE SECTION *****	
0290	*	
0291	017A F910	UPDATE READ LOAD, CUPLD
	017B 0000	
	017C 013D	
0292	017D F910	READ STROKE, CURSTN
	017E 0001	
	017F 213E	
0293	0180 B246	LDA BRANCH
0294	0181 3031	JAP S+2 IF < 0 THEN
0295	0182 F95F	DONE REQUESTED DONE
0296	0183 3181	JAG S+2
0297	0184 F243	JMP UP:
0298	0185 E6C8	LDX INDEX1
0299	0186 E648	LDA CURSTN
0300	0187 9524	SUB @*VALPTP.
0301	0188 D61E	CMS BREAK
0302	0189 F202	JMP S+3
0303	018A 0000	NOP
0304	018B F95F	DONE
0305	018C B64E	LDA CURSTN
0306	018D D6CD	CMS LLIMIT
0307	018E F2C6	JMP REVUP
0308	018F 0000	NOP
0309	0190 B653	LDA CUPLD
0310	0191 9E5A	STA OLDLD
0311	0192 F911	RAMP DOWN
	0193 0000	
0312	0194 F956	EXIT
0313	*	
0314	0195 B61C	REVUP LDA DATPY
0315	0196 210A	JAZ XX3
0316	0197 B659	LDA CURSTN
0317	0198 BE29	EMA UTE1P2
0318	0199 0048	TAX
0319	019A B65D	LDA CUPLD
0320	019B BE2D	EMA UTE1P1
0321	019C F957	CUE PRINT, 2900
	019D 02F6	
	019E 0B54	
0322	019F 0110	ZAR
0323	01A0 0E27	STA DATPY
0324	01A1 E631	XX3 LDY XABC
0325	01A2 F943	FCMP *C1PTBL, FCYCLE
	01A3 858A	
	01A4 C43A	
0326	01A5 3189	JAG DATA1 FILL TABLE UNLESS CYCLE <
0327	01A6 B669	LDA CUPLD VALUE SOUGHT
0328	01A7 0000	NOP
0329	01A8 0000	NOP
0330	01A9 0000	NOP

PAGE	0012	LOW CYCLE FATIGUE	
0331	01AA	B66C	LDA CURSTN
0332	01AB	0F00	NOP
0333	01AC	0F00	NOP
0334	01AD	0F00	NOP
0335	01AE	FE9C	JST SETTEL
0336	01AF	F941	DATA01 FADD F1, FCYCLE, FCYCLE
	01B0	045E	
	01B1	043A	
	01B2	043A	
0337	01B3	B67C	LDA OLDDLD
0338	01B4	3E49	ADD NUM1
0339	01B5	9E7D	STA DLTLD
0340	01B6	8E7B	ADD I302
0341	01B7	9E7B	STA LOAD2
0342	01B8	F911	RAMP UP
	01B9	0F00	
0343	01BA	P645	LDA PNDFLG
0344	01BB	2108	JAZ PMPUP
0345	01BC	FF46	JST *GETNUM
0346	01BD	F943	FMPL H RANGE, PNDTNP, HLIMIT
	01BE	0452	
	01BF	0456	
	01C0	00BE	
0347	01C1	F945	FIX HLIMIT,HLIMIT
	01C2	00BE	
	01C3	00BE	
0348	01C4	0110	FMPUP ZAP
0349	01C5	9A01	STA BRANCH
0350	01C6	F956	EXIT
0351		*	
0352	01C7	0F00	BRANCH DATA 0
0353		*	
0354	01C8	E100	UP: LDX INDEX1
		0FBD	
0355	01C9	B594	LDA *VALPTR
0356	01CA	969C	SUB CURSTN
0357	01CB	D661	CMS BREAK
0358	01CC	F202	JMP \$+3
0359	01CD	0F00	NOP
0360	01CE	F95F	DONE
0361	01CF	B100	LDA HLIMIT
		00BE	
0362	01D0	D692	CMS CURSTN
0363	01D1	F24C	JMP REVDIN
0364	01D2	0F00	NOP
0365	01D3	B696	LDA CUDLD
0366	01D4	9E9D	STA OLDDLD
0367	01D5	F911	RAMP UP
	01D6	0F00	
0368	01D7	F949	FCMP FCYCLE, F1
	01D8	043A	
	01D9	045E	
0369	01DA	3101	JAN NOTI

PAGE 0013

LOW CYCLE FATIGUE

0370	01DB	F69B	JMP	N1	RETURNS TO NOT1	
0371	01DC	B66F	NOT1	LDA	MDFLG	
0372	01DD	2C0F	JAM	UPEXIT		
0373	01DE	3189	JAG	MD2ND		
0374	01DF	B6A2	LDA	CUPLD	AT 1ST SMPL PT?	
0375	01E0	D6A8	CMS	DLTLD		
0376	01E1	F23B	JMP	UPEXIT	NO	
0377	01E2	0220	NOP			
0378	01E3	9EAB	STA	DLTLD	YES, STORE DATA	
0379	01E4	B6A6	LDA	CURSTN		
0380	01E5	9EAC	STA	DLTSTN		
0381	01E6	DE79	IMS	MDFLG		
0382	01E7	F235	JMP	UPEXIT		
0383	01E8	B6A2	MD2ND	LDA	CUPLD	AT 2ND SMPL PT?
0384	01E9	D6AD	CMS	LOAD2		
0385	01EA	F232	JMP	UPEXIT		
0386	01EB	0220	NOP			
0387	01EC	B6AF	LDA	CUPLD	YES, CALC. MD	
0388	01ED	96B5	SUB	DLTLD		
0389	01EE	9EB6	STA	DLTLD		
0390	01EF	B6B1	LDA	CURSTN		
0391	01F0	9EB7	SUB	DLTSTN		
0392	01F1	9EB3	STA	DLTSTN		
0393	01F2	F946	FLT	DLTLD,MOD		
	01F3	0138				
	01F4	045C				
0394	01F5	F943			FMPL MOD, STPESV, MOD	
	01F6	045C				
	01F7	0445				
	01F8	045C				
0395	01F9	F946	FLT		DLTSTN, DLTSTN	
	01FA	0139				
	01FB	0139				
0396	01FC	E68C	LDX	XABC	XB=INDEX	
0397	01FD	F943			FMPL DLTSTN,*STVALP, DLTSTN	
	01FE	0139				
	01FF	82B4				
	0200	0139				
0398	0201	F944			FDVD MOD, DLTSTN, MOD	
	0202	045C				
	0203	0139				
	0204	045C				
0399	0205	F943			FMPL MOD, F1000, MOD	
	0206	045C				
	0207	0466				
	0208	045C				
0400	0209	F941			FADD MOD, XX, XX CALC. NEW	
	020A	045C				
	020B	045A				
	020C	045A				
0401	020D	DE96	IMS	CNT	MODULUS	
0402	020E	F2FC	JMP	XIT	EVERY 4TH	
0403	020F	F944			FDVD XX,NN,MD CYCLE	

PAGE 0014 LOW CYCLE FATIGUE

0210	045A			
0211	045B			
0212	0274			
0404	0213	C704	LAM 4	AVERAGE OVER
0405	0214	9E9D	STA CNT	4 CYCLES
0406	0215	F947	FMOV F0,XX	
	0216	006E		
	0217	045A		
0407	0218	F947	FMOV F4,NN	
	0219	0460		
	021A	045B		
0408	021B	0010	XIT APM	RESET FLAG
0409	021C	9EAF	STA MDFLG	
0410	021D	F956	UPEXIT EXIT	
0411	*			
0412	021E	B6A9	REVDUN LDA FNDFLG	NO STRESS TEST
0413	021F	3104	JAN RVDN	WITH RANDOM OPTION
0414	0220	B251	LDA STPSS	
0415	0221	96E4	SUB CUPLD	
0416	0222	2031	JAM S+2	
0417	0223	F95F	DONE	END OF TEST
0418	0224	B6AC	RVDN LDA DATPX	
0419	0225	210D	JAZ XX2	
0420	0226	B6E9	LDA CUPLD	
0421	0227	9EB9	STA UTE1P1	
0422	0228	B6EA	LDA CURSTN	
0423	0229	9E2A	STA UTE1P2	
0424	022A	F947	FMOV FCYCLE, FAC: 3	
	022B	043A		
	022C	0278		
0425	022D	F947	FMOV MD, FAC: 4	
	022E	0274		
	022F	02F4		
0426	0230	0110	ZAP	
0427	0231	9EB9	STA DATPX	
0428	0232	DEB9	IMS DATPY	
0429	0233	F946	XY2 FLT CURSTN, TEMP AV	
	0234	013E		
	0235	0438		
0430	0236	F941	FADD TEMP AV, AUG STN, AUG STN	
	0237	0438		
	0238	0450		
	0239	0450		
0431	023A	E6CA	LDX XABC	
0432	023B	F949	FCMP *CMPTBL, FCYCLE	
	023C	858A		
	023D	043A		
0433	023E	3190	JAG DATA022	
0434	023F	B100	LDA CURLD	
		013D		
0435	0240	0000	NOP	
0436	0241	0000	NOP	
0437	0242	0000	NOP	

PAGE	0015	LOW CYCLE FATIGUE			
0438	0243	B100	LDA	CURSTN	
		0135			
0439	0244	0000	NOP		
0440	0245	0000	NOP		
0441	0246	0000	NOP		
0442	0247	B22C	LDA	MD	
0443	0248	0000	NOP		
0444	0249	0000	NOP		
0445	024A	0000	NOP		
0446	024B	B229	LDA	MD+1	
0447	024C	0000	NOP		
0448	024D	0000	NOP		
0449	024E	0000	NOP		
0450	024F	F911	DATA02	RA1P	DOWN
	0250	8000			
0451	0251	9110	ZAR		
0452	0252	9E55	STA	MDFLG	
0453	0253	B6DE	LDA	PNDFLG	
0454	0254	2103	JAZ	PMPPD	
0455	0255	FFDF	JST	*GETNUM	
0456	0256	F943	FMPL	LNGE, PNDT1P, LLIMIT	
	0257	0454			
	0258	0456			
	0259	00C2			
0457	025A	F945	FIX	LLIMIT, LLIMIT	
	025B	00C0			
	025C	00C0			
0458	025D	F350	RMPDN	ARP	
0459	025E	9E97	STA	BRANCH	
0460	025F	F956		EXIT	
0461		*			
0462	026E	F957	FULL	CUE	WINKER, 100S FLASH STATUS 1
	0261	026D			
	0262	03ED			
0463	0263	9010	APM		REQUEST A DONE
0464	0264	9E9D	STA	BRANCH	IN UPDATE
0465	0265	F956		EXIT	
0466		*			
0467	0266	0010	STAT:A	APM	REQUEST A DONE
0468	0267	9EAC	STA	BRANCH	IN UPDATE
0469	0268	F951		CLOS	
0470		*			
0471	0269	DEF1	STAT:B	IMS DATPX	
0472	026A	F959		WINK 2	
	026B	0002			
0473	026C	F951		CLOS	
0474		*			
0475	026D	F958	WINKER	WINK 1	
	026E	2001			
0476	026F	F951		CLOS	
0477		*			
0478	0270	FFAB	INITCX	DATA INITCY	
0479	0271	F112	SETPTR	DATA SETTBL	

PAGE 0016 LOW CYCLE FATIGUE

0480	0272	0200	STPES	RES	2,0
0481	0274	0000	MD	PES	2,0
0482	0276	0000	FAC:2	RES	2,0
0483	0278	0200	FAC:3	RES	2,0
0484		*			
PAUSE					
0485			***** FINAL SECTION *****		
0486			*		
0487	027A	0110	FINAL	ZAR	
0488	027B	9EB4	STA	BRANCH	
0489	027C	F90F	CRLF		
0490	027D	F90F	CRLF		
0491		*	TYPE TRAILER		
0492	027E	F900	TYPE NULL		
	027F	04E2			
0493	0230	F909	TYPE NULL		
	0281	04E2			
0494	0292	0000	NOP		
0495	0293	F993	DATE		
0496	0294	F90F	CRLF		
0497	0285	F909	TYPE BUFFID		
	0286	053E			
0498	0257	F90F	CPLF		
0499	0253	F90F	CRLF		
0500	0289	F900	JST SWAP	SAVE CYCLE	
	0398				
0501	028A	B400	LDA	00	DATA IN CASE OF
0502	028B	3181	JAG	LOOP3	START
0503	028C	FF1C	JST	*INITCX	
0504	028D	E265	LOOP3	LDX XABCP	
0505	028E	F947	FMOV	*CMPTBL, FAC:1	
	028F	853A			
0506	0290	0426			
0507	0291	F992	GET	TABLE1	
	0292	0463			
0508	0293	F242	JMP	EMPTY	
0509	0294	951C	STA	FAC:3	
0510	0295	F992	GET	TABLE4	
	0296	04C1			
0511	0297	F23E	JMP	EMPTY	
0512	0298	9E22	STA	FAC:2	
0513	0299	F992	GET	TABLE4	
	029A	04C1			
0514	029B	F23A	JMP	EMPTY	
0515	029C	9E25	STA	FAC:2+1	
	*		TAB 2		
0516	*		WDEC	FAC:1,9,0 CYCLE 4	
0517	029D	F94D	WFLT	FAC:1	
	029E	0426			
0518	*		TAB 5		
0519	*		VDEC	FAC:2,10,0 MODULUS	
0520	029F	F94D	WFLT	FAC:2	
	02A0	0276			
0521	*		TAB 6		

PAGE	0017	LOW CYCLE FATIGUE			
0522	02A1	FA0C	JST	PRINTV	
0523	02A2	C6A0	LAP	"	
0524		*	LXP	31	
0525	02A3	C41C	LXP	28	
0526	02A4	F92E	OTT		
0527	02A5	00A8	DXR		
0528	02A6	3342	JXN	S-2	
0529	02A7	F992	GET	TABLE1	
	02A8	0468			
0530	02A9	F22C	JMP	EMPTY	
0531	02AA	9E32	STA	FAC:3	
0532	02AB	FA02	JST	PRINTV	
0533	02AC	FF3B	JST	*SETPTR	
0534	02AD	F620	JMP	LOOP3	
0535		*			
0536	02AE	0300	PRINTV	ENT	
0537	02AF	F946	FLT	FAC:3, FAC:3	
	02B0	0278			
	02B1	0278			
0538	02B2	F943	FMPL FAC:3, STRESV, FAC:3		
	02B3	0278			
	02B4	0445			
	02B5	0278			
0539		*	WDEC FAC:3, S, 3 STRESS		
0540	02B6	F94D	WFLT FAC:3		
	02B7	0278			
0541		*	TAB 6		
0542	02B8	E23A	LDX	XABC P	
0543	02B9	F992	GET	TABLE2	
	02BA	0489			
0544	02BB	F21A	JMP	EMPTY	
0545	02BC	9A37	STA	FAC:4	
0546	02BD	F946	FLT	FAC:4, FAC:4	
	02BE	02F4			
	02BF	02F4			
0547	02C0	F943	FMPL FAC:4, *STVAL P, FAC:4		
	02C1	02F4			
	02C2	8CF4			
	02C3	02F4			
0548		*	WDEC FAC:4, 7, 4 STRAIN		
0549	02C4	F94D	WF LT FAC:4		
	02C5	02F4			
0550	02C6	F944	TAB 7		
0551	02C7	0278	FDVD FAC:3, FAC:2, FAC:3		
	02C8	0276			
	02C9	0273			
0552	02CA	F943	FMPL FAC:3, F100P, FAC:3		
	02CB	0273			
	02CC	0466			
	02CD	0273			
0553	02CE	F942	FSUB FAC:4, FAC:3, FAC:3		
	02CF	02F4			

PAGE	0018	LOW CYCLE FATIGUE			
	02D0	0278			
	02D1	0273	*	VDEC	FAC:3,9,7 PLASTIC STPAIN
0554	02D2	F94D		WFLT	FAC:3
0555	02D3	0273			
0556	02D4	F90F	CPLF		
0557	02D5	F727	RTN	PRINTV	
0558			*		
0559	02D6	F90F	EMPTY	CPLF	
0560	02D7	F90F		CPLF	
0561	02D8	F909		TYPE	MLAST
02D9	0575				
0562			*	VDEC	FCYCLE, 9, 0 FINAL CYCLE *
0563	02DA	F94D		WFLT	FCYCLE
	02DB	043A			
0564	02DC	F90F	CPLF		
0565	02DD	F909	TYPE	MAVGS	
	02DE	057A			
0566	02DF	F944		FDVD	AUGSTN, FCYCLE, AUGSTN
	02E0	045C			
	02E1	043A			
	02E2	0450			
0567	02E3	E20F	LDX	XABCP	
0568	02E4	F943	FMPL	AUGSTN, *STVALP, FAC:3	
	02E5	0450			
	02E6	80B4			
	02E7	0278			
0569			*	VDEC	FAC:3,7,4 PEAK STPAIN
0570	02E8	F94D		WFLT	FAC:3
	02E9	0273			
0571	02EA	F90F	CPLF		
0572	02EB	F909	TYPE	MSLOPE	
	02EC	0583			
0573			*	VDEC	RESULT, 10, 0 SLOPE
0574	02ED	F94D		WFLT	RESULT
	02EE	0436			
0575	02EF	FAA8	JST	SWAP	
0576	02F0	F0CF	CRLF		
0577	02F1	F90F	CRLF		
0578	02F2	F951	CLOS		
0579			*		
0580	02F3	0171	XAECP	DATA	XBPT
0581	02F4	0000	FAC:4	RES	2,0
0582			*		
0583	02F6	9900	PRINT	STA	FAC:1
		0426			
0584	02F7	EE81	STX	FAC:2	
0585	02F8	F946	FLT	FAC:1, FAC:1	
	02F9	0426			
	02FA	0426			
0586	02FB	F946	FLT	FAC:2, FAC:2	
	02FC	0276			
	02FD	0276			

PAGE 0019

LOW CYCLE FATIGUE

0587	02FE	F943	FMPL FAC:1, STRESV, FAC:1
	02FF	0426	
	0300	044E	
	0301	0426	
0588	0302	E60F	LDX XABCP
0589	0303	F943	FMPL FAC:2,*STVALP, FAC:2
	0304	0276	
	0305	80B4	
	0306	0276	
0590	0307	C626	LAP 6
0591	0308	9922	STA OUFLEN FIELD LENGTH = 6
		05EE	
0592	0309	FAA5	JST CPLF2
0593	*		TAB 2
0594	*		WDEC FAC:3,9,0 CYCLE #
0595	*		* OUTPUT CYCLE #
0596	030A	F947	FMOV F1,OUFLZ / 1.
	030B	045E	
	030C	05F2	
0597	030D	F947	FMOV FAC:3,OUFLX
	030E	0278	
	030F	05F0	
0598	0310	F941	FADD F1E14,OUFLX,OUFLX ELIM 13.99
	0311	05F8	
	0312	05F0	
	0313	05F0	
0599	0314	F900	JST OUFLFX
		0596	
0600	0315	FA95	JST SPACE
0601	*		* OUTPUT MODULUS
0602	0316	F947	FMOV F1E6,OUFLZ / 1.E6
	0317	05F4	
	0318	05F2	
0603	0319	F947	FMOV FAC:4,OUFLX
	031A	02F4	
	031B	05F0	
0604	031C	F900	JST OUFLFX
		0596	
0605	031D	FA8D	JST SPACE
0606	*		* OUTPUT MAX STRESS
0607	031E	F947	FMOV FAC:1,OUFLX
	031F	0426	
	0320	05F0	
0608	0321	F947	FMOV F1,OUFLZ / 1.
	0322	045E	
	0323	05F2	
0609	0324	F900	JST OUFLFX PRINT NUM
		0596	
0610	0325	FA85	JST SPACE
0611	*		* STORE STRAIN
0612	0326	F947	FMOV FAC:2,OUTMPI
	0327	0276	
	0328	03B5	

PAGE 0021

LOW CYCLE FATIGUE

	0355	03B7	
	0356	05F0	
0639	0357	F920	JST OUFLX
		0596	
0640	0358	FA52	JST SPACE
0641	0359	FA2D	JST PRITSB
0642			* OUTPUT MIN PSTPAIN
0643	035A	F947	FMOV F1E14,OUFLZ / 1.E-4
	035B	05F8	
	035C	25F2	
0644	035D	F947	FMOV OUTMP2,OUFLX
	035E	03D7	
	035F	05F0	
0645	0360	F920	JST OUFLX
		0596	
0646	0361	FA49	JST SPACE
0647	0362	FA4C	JST CPLF2
0648	0363	F95A	DIM 2
	0364	0002	
0649	0365	F95A	DIM 1
	0366	0001	
0650	0367	F951	CLOS
0651	*		
0652	*		
0653	0368	0800	RANDOM EXIT
0654	0369	5804	DATA : 5804 ICA, GET CONSOLE STATUS
0655	036A	9AE8	STA PNDDMP SAVE IT
0656	036B	C6AA	LAP : AA IS THIS AN LSI OR ALPHA?
0657	036C	4404	DATA : 4404 OCA
0658	036D	5804	DATA : 5804 ICA
0659	036E	3107	JAN LSI IT'S AN LSI IF NON-ZERO RESPON
0660	036F	E215	LDX FN1 ELSE, IT'S AN ALPHA
0661	0370	11A8	RPX 1
0662	0371	6303	SIN 2
0663	0372	B213	LDA PN2
0664	0373	0110	ZAP
0665	0374	19AE	DATA : 19AE MPS 15
0666	0375	F274	JMP PNDFIN
0667	0376	F110	LSI ZAP
0668	0377	E20E	LDX FN2 ASSURE X-PEG POSITIVE FOR LSI
0669	0378	1960	DATA : 1960,PN1 MPY FN1
0379	0385		
0670	037A	E2DB	PNDFIN LDA PNDDMP
0671	037B	4404	DATA : 4404 OCA, RESTORE CONSOLE STATUS
0672	037C	13A3	LPX 1
0673	037D	3801	JXN \$+2
0674	037E	C403	LXP 3
0675	037F	EA05	STX FN1
0676	0380	EAD5	STX PNDDMP
0677	0381	F246	FLT PNDDMP, PNIDMP
	0382	F456	
	0383	F456	
0678	0384	F71C	RTN RANDOM

PAGE 0022 LOW CYCLE FATIGUE

```

0679 0385 0003 PN1 DATA 3
0680 0386 00FD PN2 DATA 253
0681 *
0682 0387 0800 PPNTSB ENT
0683 0388 F944 FDVD FAC:1, FAC:4, FAC:1
0389 0426
038A 02F4
038B 0426
0684 038C F943 FMPL FAC:1, F100C, FAC:1
038D 0426
038E 0466
038F 0426
0685 0390 F942 FSUB FAC:2, FAC:1, FAC:1
0391 0276
0392 0426
0393 0426
0686 * WDEC FAC:1,9,7 PLASTIC STRAIN
0687 * STORE MAX. PLASTIC STRAIN
0688 F394 F947 FMOV FAC:1, OUTMP2
0395 0426
0396 03B7
0689 0397 F710 RTN PPNTSB
0690 *
0691 0398 0802 SWAP ENT
0692 0399 E29B LDX ACMPTB SWAP THE CONTENTS OF
0693 039A EA97 STX TEMP1 CMPTBL & TMPTEL
0694 039B C206 AXI 6
0695 039C EA97 STX TEMP2
0696 039D C706 LAM 6
0697 039E 9AB7 STA RNDTMR
0698 039F E6AC LDX XABCP
0699 03A0 B422 LDA #2
0700 03A1 BC02 EIA #0
0701 03A2 9C02 STA #2
0702 03A3 B39E SWLOOP LDA *TE1P1
0703 03A4 B28F EIA *TE1P2
0704 03A5 9B8C STA *TE1P1
0705 03A6 DA3B IMS TE1P1
0706 03A7 DA3C IMS TE1P2
0707 03A8 DAAD IMS RNDT1P
0708 03A9 F6C6 JMP SWLOOP
0709 03AA F712 RTN SWAP
0710 * PRINT SPACE
0711 03AB 0900 SPACE ENT
0712 03AC C620 LAP :20
0713 03AD F903 OTR
0714 03AE F703 RTN SPACE
0715 * DO CPLF - NO PARITY BIT
0716 03AF 0900 CPLF2 ENT
0717 03B0 C6FD LAP :FD CR
0718 03B1 F90E OTR
0719 03B2 C60A LAP :FA LF
0720 03B3 F90E OTR

```

PAGE 0023

LOW CYCLE FATIGUE

0721	03B4	F725	RTN	CRLF2
0722	03B5	0000	OUTMP1 RES	2,0
0723	03B7	0000	OUTMP2 RES	2,0

PAGE 0024 LOW CYCLE FATIGUE

```

0725 *
0726 ***** CALCULATE SLOPE *****
0727 *
0728 03B9 F947 SLOPE: FM0V F0,NMBPTS
      03BA 006E
      03BB 0428
      03BC F947
      03BD 006E
      03BE 042A
0729 03BF F947 FM0V F0,XSUM
      03C0 006E
      03C1 042C
0730 03C2 F947 FM0V F0,YSUM
      03C3 006E
      03C4 042E
0731 03C5 F947 FM0V F0,XXSUM
      03C6 006E
      03C7 0430
0732 03C8 F992 SLOPE1 GET TABLE3
      03C9 04AA
0734 03CA F228 JMP LAST
0735 03CB 9A66 STA TEMP1
0736 03CC F946 FLT TEMP1,TEMP2
      03CD 0432
      03CE 0434
0737 03CF F941 FADD TEMP2,YSUM,YSUM
      03D0 0434
      03D1 042C
      03D2 042C
0738 03D3 F992 GET TABLE3
      03D4 04AA
0739 03D5 F21D JMP LAST
0740 03D6 9A5B STA TEMP1
0741 03D7 F946 FLT TEMP1,TEMP1
      03D8 0432
      03D9 0432
0742 03DA F943 FMPL TEMP1,TEMP2,TEMP2
      03DB 0432
      03DC 0434
      03DD 0434
0743 03DE F941 FADD TEMP2,XYSUM,XYSUM
      03DF 0434
      03EF 0432
      03E1 0430
0744 03E2 F941 FADD TEMP1,XSUM,XSUM
      03E3 0432
      03E4 042A
      03E5 042A
0745 03E6 F943 FMPL TEMP1,TEMP1,TEMP1
      03E7 0432
      03E8 0432
      03E9 0432
0746 03EA F941 FADD TEMP1,XXSUM,XXSUM

```

PAGE	0025	LOW CYCLE FATIGUE
	03EB	0432
	03EC	042E
	03ED	042E
0747	03EE	F941 FADD F1,NMBPTS,NMBPTS
	03EF	045E
	03F0	0428
	03F1	0423
0748	03F2	F62A JMP SLOPE1
0749	*	
0750	03F3	F943 LAST FMPL XSUM,YSUM,TEMP1
	03F4	042A
	03F5	042C
	03F6	0432
0751	03F7	F943 FMPL NMBPTS,XYSUM,TEMP2
	03F8	0428
	03F9	0430
	03FA	0434
0752	03FB	F942 FSUB TEMP2,TEMP1,TEMP2
	03FC	0434
	03FD	0432
	03FE	0434
0753	03FF	F943 FMPL XSUM,XSUM,TEMP1
	0400	042A
	0401	042A
	0402	0432
0754	0403	F943 FMPL NMBPTS,XXSUM,XXSUM
	0404	0428
	0405	042E
	0406	042E
0755	0407	F942 FSUB XXSUM,TEMP1,TEMP1
	0408	042E
	0409	0432
	040A	0432
0756	040B	F944 FDVD TEMP1,TEMP2,RESULT
	040C	0432
	040D	0434
	040E	0436
0757	040F	E100 LDX XABCP
	02F3	
0758	0410	F944 FDVD F1,RESULT,RESULT
	0411	045E
	0412	0436
	0413	0436
0759	0414	F943 FMPL RESULT,*LDVALP,RESULT
	0415	0436
	0416	80A0
	0417	0436
0760	0418	F944 FDVD RESULT,*STVALP,RESULT
	0419	0436
	041A	80B4
	041B	0436
0761	041C	F944 FDVD RESULT,FAREA,RESULT
	041D	0436

PAGE 0026

LOW CYCLE FATIGUE

	041E	0442	
	041F	0436	
0762	0420	F943	FMPL RESULT, F1000, RESULT
	0421	0436	
	0422	0466	
	0423	0436	
0763	0424	F951	CLOS
0764	*		

PAUSE

0765	*		
0766	*		
0767	0425	058A	ACMPTB DATA CMPTBL
0768	0426	0000	FAC:1 PES 2,0
0769	0428	0000	NMBPTS PES 2,0
0770	042A	0000	XSUM RES 2,0
0771	042C	0000	YSUM RES 2,0
0772	042E	0000	XYSUM PES 2,0
0773	0430	0000	XYSUM1 PES 2,0
0774	0432	0000	TE1P1 PES 2,0
0775	0434	0000	TE1P2 PES 2,0
0776	0436	0000	RESULT RES 2,0
0777	0438	0000	TE1PAV RES 2,0
0778	043A	0000	FCYCLE PES 2,0
0779	043C	0000	FTHICK RES 2,0
0780	043E	0000	FWIDTH RES 2,0
0781	0440	0000	VWIDTH RES 2,0
0782	0442	0000	FAREA RES 2,0
0783	0444	0000	STPSLM PES 2,0
0784	0446	0000	YALIM RES 2,0
0785	0448	0000	MINLIM RES 2,0
0786	044A	0000	SPPATE PES 2,0
0787	044C	0000	CLKFT RES 2,0
0788	044E	0000	STPES" PES 2,0
0789	0450	0000	AUGSTN PES 2,0
0790	0452	0000	HRNGE RES 2,0
0791	0454	0000	LPNGE RES 2,0
0792	0456	0000	PNDTIP PES 2,0
0793	0458	0000	YY RES 2,0
0794	045A	0000	XX PES 2,0
0795	045C	0000	MOD PES 2,0
0796	045E	4096	F1 DATA :4080,0
	045F	0000	
0797	0460	4180	F4 DATA :4180,0
	0461	0000	
0798	0462	41A0	F5 DATA :41A0,0
	0463	0000	
0799	0464	4220	F10 DATA :4220,0
	0465	0000	
0800	0466	457A	F1000 DATA :457A,0
	0467	0000	
0801	*		
0802	*		
0803	*		
0804	*		

PAGE 0027

LOW CYCLE FATIGUE

0805 0000 LOAD EQU 0
 0806 0001 STROKE EQU 1
 0807 0002 STRAIN EQU 2
 0808 *
 0809 0000 UP EQU 0
 0810 8000 DOWN EQU :8000
 0811 *
 0812 *
 0813 0074 F32767 EQU :74
 0814 007A F:PI EQU :7A
 0815 006E F0 EQU :6E
 0816 0070 F2 EQU :70
 0817 0097 GETSTA EQU :97
 0818 *
 0819 *
 0820 00A0 LDVALP EQU :A0
 0821 02B4 STVALP EQU :B4
 0822 *
 0823 0468 0000 TABLE1 PES 33,0
 0824 0439 0000 TABLE2 PES 33,0
 0825 04AA 0000 TABLE3 PES 23,0
 0826 04C1 0000 TABLE4 PES 33,0
 0827 *
 0828 04E2 0000 NULL RES 20,0
 0829 04F6 C0C0 TEXT '00'
 0830 *
 0831 04F7 C4C9 MAREA TEXT 'DIMS. (THICK,WIDTH):: 0'
 04F8 CDD3
 04F9 AEA0
 04FA A8D4
 04FB C8C9
 04FC C3CB
 04FD ACD7
 04FE C9C4
 04FF D4C3
 0500 A9BA
 0501 BAA0
 0502 C0A2
 0832 0503 CDC9 MMSTPS TEXT 'MIN. STRESS (KSI):: 0'
 0504 CEAE
 0505 A0D3
 0506 D4D2
 0507 C5D3
 0508 D3A0
 0509 A3C9
 050A D3C9
 050B A9BA
 050C A0C9
 0833 050D D3D4 MSTPLM TEXT 'STRAIN LMTS (+,-):: 0'
 050E D2C1
 050F C9CE
 0510 AFCC
 0511 CDD4

PAGE 0028 LOW CYCLE FATIGUE

0512 D3A2
0513 A8AB
0514 ACAD
0515 A9BA
0516 BAA0
0517 CCA0
0834 0518 D2C1 PRIMES TEXT 'RANDOM LMTS (Y,N): e'
0519 CEC4
05JA CFCD
05JB A2CC
05JC CDD4
05JD D3A2
05JE A8D9
05IF ACCE
0520 A9BA
0521 A0C0
0835 0522 D3D4 MPATE TEXT 'STRAIN RATE (1/SEC): e'
0523 D2C1
0524 C9CE
0525 A2D2
0526 C1D4
0527 C5A0
0528 A8B1
0529 AFD3
052A C5C3
052B A9BA
052C A0C0
0836 052D C5D3 MEXEC TEXT 'EXECUTE'
052E C5C3
052F D5D4
0530 C5C0
0837 0531 D2C5 PESETM TEXT 'RESET PANDOM NOS. (Y,N): e'
0532 D3C5
0533 D4A0
0534 D2C1
0535 CEC4
0536 CFCD
0537 A7CE
0538 CFD3
0539 AEA0
053A A8D9
053B ACCE
053C A9BA
053D A0C0
0838 *
0839 053E C0C0 BUFFID PES 26,;C0C0
0840 *
0841 0558 C3D9 MHEAD TEXT 'CYCLES MODULUS (+) STRESS(-)'
0559 C3CC
055A C5D3
055B A7CD
055C CFCA
055D D5CC

PAGE 0029

LOW CYCLE FATIGUE

055E	D5D3
055F	A0A3
0560	ABA9
0561	D3D4
0562	D2C5
0563	D3D3
0564	A3AD
0565	A9A0
0842	0566 A0A3 TEXT '(+)T.DISPL.(-)' 0567 ABA9 0568 D4AE 0569 C4C9 056A D3D0 056B CCAE 056C A3AD 056D A9A0
0843	056E A3AB TEXT '(+)PLASTIC(-)@' 056F A9D0 0570 CCC1 0571 D3D4 0572 C9C3 0573 A3AD 0574 A9C0
0844	0575 C3D9 MLAST TEXT 'CYCLES= 0' 0576 C3CC 0577 C5D3 0578 BDA0 0579 CFA0
0845	057A C1D6 MAVGS TEXT 'AVG PEAK STRAIN= 0' 057B C7A0 057C D9C5 057D C1CB 057E AFD3 057F D4D2 0580 C1C9 0581 CEBD 0582 AFD0
0846	0583 D3CC MSLOPE TEXT 'SLOPE(PSI)= 0' 0584 CFD0 0585 C5A8 0586 DGD3 0587 C9A9 0588 BDA0 0589 CEA0
0847	058A 0000 CMPTEL FES 6,0 0848 0590 0000 TMPTEL RES 6,0
0849	*
0850	*
0851	* SUBROUTINE TO CONVERT FLOAT TO FIX POINT.
0852	P596 0300 OUFLFX ENT
0853	*
0854	* OUTPUT FIX POINT NUMBERS
0855	* AT CALL: OUFLEN - CONTAINS (INT) FIELD LENGTH

PAGE 0030

LOW CYCLE FATIGUE

0856 * OUFLX - X (F.P.) # TO BE OUTPUT (LOST)
 0857 * OUFLZ - Z(F.P.) NUM TO DIVIDE BY: Z=Z/10
 0858 *
 0859 0597 B256 LDA OUFLN1 SAVE LENGTH
 0860 0598 9A56 STA OUFLN2
 0861 0599 EA53 STX OUSAUX SAVE X-REG
 0862 059A 0000 NOP
 0863 059B 0000 NOP
 0864 059C 0000 NOP
 0865 059D 0000 NOP
 0866 059E 0000 NOP
 0867 059F 0000 NOP
 0868 05A0 F944 FDUD OUFLX,OUFLZ,OUFLZ Z=X/Z (RIGHT UNITS)
 05A1 05F0
 05A2 05F2
 05A3 05F2
 0869 05A4 0110 ZAP
 0870 05A5 9A46 STA OUPK K=0
 0871 05A6 C701 LAM I
 0872 05A7 3A47 ADD OUFLN2 L=L-1
 0873 05A8 2095 JAM A RETURN
 0874 05A9 9A45 STA OUFLN2
 0875 *
 0876 * PRINT SIGN (+ OR -)
 0877 *
 0878 05AA F943 FCMP OUFLZ,F0 SEE IF Z<0 OR >0,A=-1,OR +1
 05AB 05F2
 05AC 006E
 0879 05AD 3P96 JAP OU2 Z>0
 0880 05AE 0043 TAX (SAVE A)
 0881 05AF F942 FSUB F0,OUFLZ,OUFLZ Z=ABS(Z)
 05B0 006E
 05B1 05F2
 05B2 05F2
 0882 05B3 P732 TXA (RESTORE A)
 0883 05B4 3101 OU2 JAN S+2
 0884 05B5 C6F1 LAP I A=1, IF Z=0
 0885 05B6 C308 NAX X=-A
 0886 05B7 C220 AXI :2C X=:2C -(A)
 0887 05B8 0730 TXA A=X = "+" OR "-"
 0888 05B9 F9CE OTT PRINT "+" OR "-"
 0889 05BA C6F1 LAP I A=1
 0890 05BB 9A2F 0U1 STA OUPJ J=1
 0891 05BC C7C1 OULLOOP LAP I A=-1
 0892 05BD 8A31 ADD OUFLN2 L=L-1
 0893 05BE 20AA A JAM OUPET RETURN
 0894 05BF 9A2F STA OUFLN2
 0895 05C0 F948 OU3 FCMP OUFLZ,F1
 05C1 05F2
 05C2 045E
 0896 05C3 2289 JAM OU3R Z<1
 0897 05C4 F944 FDUD OUFLZ,F10,OUFLZ Z=Z/10
 05C5 05F2

PAGE 0031 LOW CYCLE FATIGUE

0906	05C6	0464		
0907	05C7	05F2		
0908	05C8	C6F1	LAP 1	
0909	05C9	8A21	ADD OUPJ	J=J+1
0910	05CA	9A20	STA OUPJ	
0911	05CB	F6C3	JMP 0U3	
0912	05CC	C6F1	0U3B LAP 1	
0913	05CD	8A1E	ADD OUPK	K=K+1
0914	05CE	9A1D	STA OUPK	STORE K
0915	05CF	921B	SUB OUPJ	A=K-J
0916	05D0	3103	JAN 0U4	
0917	05D1	C62E	* PRINT DECIMAL POINT	
0918	05D2	F9C5	LAP :2E	
0919	05D3	F617	OTT	
0920	05D4	F943	JMP 0ULOOP	
0921	05D5	05F2	0U4 FMPL OUFLZ, F1E, OUFLZ Z=Z*10	
0922	05D6	0464		
0923	05D7	05F2		
0924	05D8	F945	FIX OUFLZ, OUFLX X=INT(Z)	
0925	05D9	05F2		
0926	05DA	05F0		
0927	05DB	F946	FLT OUFLX, OUFLX BACK TO F.P.	
0928	05DC	05F0		
0929	05DD	05F2		
0930	05DE	F942	FSUB OUFLZ, OUFLX, OUFLZ Z=10*Z-INT(10*Z)	
0931	05DF	05F2		
0932	05E0	05F0		
0933	05E1	05F2		
0934	05E2	F945	FIX OUFLX, OUFLX BACK TO FIX	
0935	05E3	05F2		
0936	05E4	05F0		
0937	05E5	C630	* PRINT DIGIT	
0938	05E6	8AC9	LAP :30	
0939	05E7	F9C5	ADD OUFLX	
0940	05E8	F62C	OTT	
0941	05E9	E2C3	JMP 0ULOOP	
0942	05EA	F754	* RETURN	
0943	05EB	0000	OUPJ LDX OUSAUX	PESTORE X
0944	05EC	0000	OUFLX RTN	
0945	05ED	0000	* DATA	
0946	05EE	0000	*	
0947	05EF	0000	OUPJ DATA 0	DECIMAL POINT LOCATOR
0948	05F0	0000	OUPK DATA 0	CHARACTER POINTER
0949	05F1	0000	OUSAUX DATA 0	XREG
0950	05F2	0000	OUFLX1 DATA 0	FIELD LEN.
0951	05F3	0000	OUFLX2 DATA 0	TE1P
0952	05F4	0000	OUPJ PES 2,0	(F.P.) X
0953	05F5	2400	OUPK PES 2,0	(F.P.) Z
0954	05F6	3B33	F1E6 DATA :4A74,:2400 1.E6	
0955	05F7	126F	F1E13 DATA :3B33,:126F 1.E-3	

PAGE 0032

LOW CYCLE FATIGUE

0935 05F8 39D1 F1E14 DATA :39D1,:B717 1.E-4
05F9 B717

8936

e937

END

PAGE 0033

LOW CYCLE FATIGUE

AC1PTB	0425	AUGSTN	0450	A	05BE	BEGIN.	061B
BRAVCH	01C7	SREAK	016A	BUFFID	053E	CLEAPI	0257
CLEARF2	0076	CLKRT	044C	CLR2	007D	CMPTBL	058A
CNTN1	0169	CNT	0177	CPLF2	03AF	CUPLD	013D
CURSTN	013E	CURSTP	00C2	CYADJ	0141	CYAD2	014B
CYAD3	014F	DATA21	01AF	DATA22	024F	DATN1	0156
DATPX	0173	DATPY	0179	DLTLD	0133	DLTST1	0139
DOIN	0000	EMPTY	02D6	FAC:1	0426	FAC:2	0276
FAC:3	0273	FAC:4	02F4	FAREA	0442	FCYCLE	043A
FINAL	027A	FIM1	00C4	FNM2	00C6	FNM3	02C6
FTCYC	013F	FTHICK	003C	FULLN1	0163	FULL	0267
FWIDTH	043E	F2	006E	F1E43	05F6	F1EM4	05F3
FIE6	05F4	F1	045E	F10	0464	F1070	0466
F2	0070	F3	00CA	F32767	0274	F4	0460
F5	0462	F:PI	007A	GETNUI	0176	GETSTA	0097
HLIMIT	00B3	HPNGE	0452	INCD1E	0134	INCTBL	0125
INCTB2	0127	INDEX	0172	INDEX1	00BD	INITCY	0270
INITCY	00AB	I3EF	0133	LAST	03F3	LDVALP	07A7
LLIMIT	00C2	LOAD	0702	LOAD2	013C	LOOP3	028D
LNGE	0454	LSI	0376	MAPEA	04F7	MAVGS	057A
MAXLIM	0446	MDFLG	016D	MD	0274	MD21D	0123
MEXEC	052D	MHEAD	0558	MINLIM	0448	MLAST	0575
MMSTPS	05C3	MOD	045C	MPATE	0522	MSLOPE	0593
MSTPLM	05FD	NAME	0007	NMBPTS	0428	NMESS	09CC
NN	0458	NOT1	01DC	NULL	04E2	NUM	016C
NUM1	016B	NIX	0155	N1	0150	OLCLD	0137
OUFLEN	05EE	OUFLFX	0596	OUFLN2	05EF	OUFLX	05F0
OUFLZ	05F2	OULOOP	05BC	OUPJ	05EB	OUPK	05EC
OURET	05E9	OUSAVX	05ED	OUTMPI	03B5	OUTMP2	03E7
OUI	05EB	OU2	05B4	OU3B	05CC	OU3	05C0
OU4	05D4	PRINTV	02AE	PRINT	02F6	PRINTS2	0387
RANDOM	0363	RESETM	0531	RESET1	00E1	RESTRPT	04D6
RESULT	0426	REV'D'N	021E	REV'P	0195	PM.PDN	025D
RMPUP	01C4	PNDFIN	037A	PNDFLG	0175	PNDMES	0518
RNDMLT	0070	PNDM	00C3	PNDTMR	0456	PN1PTR	0174
PVI	0385	PJ2	0386	ROUND	0043	PSTEX	00ED
RSTPTP	00E5	PVDN	0224	SA1E2	00EB	SETPTR	0271
SETTEL	0112	SETTB2	011F	SLOPE1	03C8	SLOPE:	03B9
SPACE	03AB	SPRATE	044A	STAT:A	0266	STAT:B	0269
STRAIN	0002	STRESS	0272	STRESV	044E	STPOKE	0271
STRSLM	0444	STVALF	00B4	SWAP	0399	SVLOOP	03A3
TABLE1	0469	TABLE2	0489	TABLE3	04AA	TABLE4	04C1
TEMPAV	0438	TEMPI	0432	TEMP2	0434	TMPTEL	0590
UPDATE	017A	UPEXIT	021D	UP	00FF	UP:	01C8
UTEMP1	016E	UTEMP2	016F	VALPTP	00C4	VIDTH	044C
WINKER	026D	WTCLR	0072	XABCP	02F3	XABC	0170
XBPT	0171	XC	0173	XIT	021B	XSUM	042A
XXSUM	042E	XX	045A	XX2	0233	XX3	01A1
XYSUM	043E	YSUM	042C				

APPENDIX II

**SOURCE LISTING OF FORTRAN PROGRAM FOR STRESS
AND STRAIN COMPUTATIONS AND PLOTTING**

```

PROGRAM DATA (OUTPUT,TAPE1,TAPE2,TAPE3,TAPE4,
1 TAPE5,TAPE6,INPUT=7.)          000110
                                  000120
C                                000130
***** THIS PROGRAM DEVELOPED BY 000140
C CAPT ROBERT SCHAFRIK          000150
C MAY, 1973                      000160
*****                           000170
C                                000180
C                                000190
COMMON /A/ N(15)C,F(15)D,SIGMA1(15)C,SIGMA2(15)C,ELONG1(15)C,ELONG2(15)C,PLST1(15)C,PLST2(15)C,TITL(6C),R1(15)C, 000200
BOELTEP(15)C                   000210
REAL N                          000220
C                                000230
C                                000240
IFLAG = YES FOR COMPUTER DATA 000250
IFLAG = NO FOR NO COMPUTER DATA 000260
IFLAG1 = YES FOR COMPUTER DATA PRINT-OUT (DATA ON P.F.) 000270
IUNIT IS THE TAPE NUMBER       000280
C                                000290
READ 4,IFLAG,IUNIT,IFLAG1      000300
FORMAT (/ A1,4X,I1,X,A1)        000310
C                                000320
IF (IUNIT.LE.1.OR.IUNIT.GT.6) IUNIT=1 000330
PRINT 8,IFLAG,IUNIT,IFLAG1      000340
FORMAT (1H1,T2,*FROM DATA * COMPUTER DATA = *,A1, 000350
A/T2,*TAPE UNIT IS *,I1 /    000360
BT4,*COMPUTER DATA FLAG IS *,A1//) 000370
IF (IFLAG.NE.1HY) GO TO 50     000380
C                                000390
READ (IUNIT,9) (TITL(JT),JT=1,60) 000400
FORMAT(60A1)                    000410
C                                000420
IMAX=1500                      000430
I=0                            000440
1 CONTINUE                      000450
I=I+1                          000460
IF (I.GT.IMAX) GO TO 1000      000470
C                                000480
READ (IUNIT,10) N(I),E(I),SIGMA1(I),SIGMA2(I),ELONG1(I),ELONG2(I), 000490
1PLST1(I),PLST2(I)            000500
10 FORMAT (9(F7.0,1X))         000510
C                                000520
IF(N(I).LT.0.9) GO TO 3        000530
IF (EOF(IUNIT))2,1              000540
3 CONTINUE                      000550
PRINT 30                        000560
30 FORMAT (T2,*READ TERMINATED BY ZERO VALUE*) 000570
I=I-1                          000580
GO TO 40                        000590
1000 CONTINUE                    000600
I=IMAX                         000610
PRINT 1001,I                     000620
1001 FORMAT(T2,+H**** ,2X,*IMAX = *,I5,2X, 000630
1 *DATA PTS EXCEED ARRAY DIMENSIONS*,//) 000640
GO TO 40                        000650
2 CONTINUE                      000660
PRINT 31                        000670
31 FORMAT (T2,*READ TERMINATED BY EOF*) 000680
I=I-1                          000690
40 CONTINUE                      000700
PRINT 18,(TITL(JA),JA=1,6C)     000710
18 FORMAT (// T2,60A1, /T2,50(1H*)//) 000720
PRINT 11,I                       000730

```

```

11  FORMAT(           /T2,*NUMBER OF DATA PTS = *,I5  000740
1, //)
      IF (I.EQ.0) STOP  000750
      DO 20 J=1,I      000760
      IF (IFLAG1.NE.1HY) GO TO 45  000770
      PRINT 21, N(J),E(J),SIGMA1(J),SIGMA2(J),ELONG1(J),
      1ELONG2(J),PLST1(J),PLST2(J)  000780
21  FORMAT (T2,F7.0, 3(1X,F7.2), 4(1X,F7.3))  000790
45  CONTINUE  000800
      E(J)=E(J)*1.E6  000810
      ELONG1(J)=ELONG1(J)*1.E-3  000820
      ELONG2(J)=ELONG2(J)*1.E-3  000830
      PLST1(J)=PLST1(J)*1.E-3  000840
      PLST2(J)=PLST2(J)*1.E-3  000850
20  CONTINUE  000860
      CALL LCF(I)  000870
      GO TO 51  000880
50  CONTINUE  000890
      I=0  000900
      PRINT 55  000910
55  FORMAT (// T2,*NO COMPUTER DATA*, //)  000920
C      READ 9,TITL  000930
C      PRINT 18, (TITL(JA),JA=1,50)  000940
C      CALL LCF(I)  000950
51  CONTINUE  000960
      CALL DATA1  000970
      CALL SUBPLOT(I)  000980
      STOP  000990
      END  001000
C*****  001010
C*****  001020
C*****  001030
C*****  001040
C*****  001050
C*****  001060
C*****  001070
C      SUBROUTINE LCF(I)  001080
C      COMMON /A/ N(1500),E(1500),SIGMA1(1500),SIGMA2(1500),ELONG1(1500),CC1090
C      AELONG2(1500),PLST1(1500),PLST2(1500),TITL(60),R1(1500),
C      BDELTEP(1500)  001100
C      COMMON /D/ LPLST,LELST  001110
C      REAL LPLST,LELST,N  001120
C      DIMENSION MSIG(1500)  001130
C      DIMENSION DELTSIG(1500),DELTEL(1500),DELTPL(1500),DELTEE(1500),
C      ADELSTN(1500)  001140
C      EQUIVALENCE (E(1),DELTSIG(1)), (ELONG1(1),DELTEL(1)),
C      A(ELONG2(1),DELTPL(1)), (PLST1(1),DELTEE(1)),
C      B(PLST2(1),DELSTN(1))  001150
C      DATA MSIG /1500*(1H)/  001160
C      DATA IFLG /0/  001170
C      READ *,EACT,LELST,LPLST,SFACTOR,DFACTOR,IFLG  001180
C      EACT IS ACTUAL ELASTIC MODULUS IN E6 PSI  001190
C      LELST IS AN ASSUMED ELASTIC EFFECTIVE GAGE LENGTH  001200
C      LPLST IS EFFECTIVE PLASTIC GAGE LENGTH  001210
C      SFACTOR - COMPUTER STRESS CORRECTION FACTOR  001220
C      DFACTO - DISPL CORRECTION FACTOR, COMPUTER  001230
C      IFLG IS USED TO SPECIFY DATA PRINT-OUT  001240
C          FOR PRINT-OUT, USE 1  001250
C
C      PRINT 23,EACT,LELST,LPLST,SFACTOR,DFACTOR,IFLG  001260
23  FORMAT (T2,*FROM LCF* / T2,*EACT = *,E12.5,*, LELST = *, E12.5,
Z* LPLST = *, E12.5 / T3,3H***,
1*. SFACTOR = *. F12.5, *. DFACTO = *. F12.5 / .  001270
                                         001280
                                         001290
                                         001300
                                         001310
                                         001320
                                         001330
                                         001340
                                         001350
                                         001360
                                         001370
                                         001380
                                         001390

```

```

      AT3,*COMPUTER DATA PRINT-OUT FLAG IS = *,I1 //)
C   IF (I.EQ.0) RETURN
C   EACT=EACT*1.E+6
C   DELTEET=0.0
C   DO 9 J=1,I
C     DELTEET=DELTEET+E(J)
9    CONTINUE
C   ASSUME MINI-COMPUTER INTERNAL ARITHMETIC IS OK
C   DELTEET=DELTEET/I*(1.00/1.00)
C   LELST=EACT/DELTEET
C   DO 10 J=1,I
C     SIGMA1(J)=SIGMA1(J)*SFACTOR
C     SIGMA2(J)=SIGMA2(J)*SFACTOR
C     ELONG1(J)=ELONG1(J)*DFACTOR
C     ELONG2(J)=ELONG2(J)*DFACTOR
C     DELTSIF=SIGMA1(J)-SIGMA2(J)
C     DELTEK=ELONG1(J)-ELONG2(J)
C   ELASTIC STRAIN = SIGMA/E = (UT-UP)/LELST
C
C     PL1=PLST1(J)
C     PLST1(J)=ELONG1(J)-(LELST*SIGMA1(J)*1.E+3/EACT)
C     PL2=PLST2(J)
C     PLST2(J)=ELONG2(J)-(LELST*SIGMA2(J)*1.E+3/EACT)
C     DELTPK=PLST1(J)-PLST2(J)
C     IF (DELTPK.LE.1.E-6) GO TO 11
12   CONTINUE
C     DELTE0=(DELTEK-DELTPK)/LELST
C     DELTEP(J)=(DELTPK/LPLST)
C     DELTSTM=DELTE0+DELTEP(J)
C     R1(J)=ABS(SIGMA1(J)/SIGMA2(J))
C     GO TO 8
11   CONTINUE
C     PLST1(J)=PL1*LELST
C     PLST2(J)=PL2*LELST
C     MSIG(J)=1H*
C     DELTPK=PLST1(J)-PLST2(J)
C     RPL=DELTSIF/DELTEET
C     DISPOIF=RPL/DELTEK
C     DRATIO=DISPOIF*DFACTOR*1.E3
C     PRINT 101, N(J),DRATIO
101  FORMAT(1T3,*CORRECTION FACTOR FOR DISPLACEMENTS: N = *,F6.1,3X,*SUGGESTED DFACTO = *,F6.4)
C     IF (DELTPK.GT.1.E-6) GO TO 12
C     MSIG(J)=1HX
C     DELTPK=1.E-5
C     GO TO 12
8    CONTINUE
C     E(J)=DELTSIF
C     ELONG1(J)=DELTEK
C     ELONG2(J)=DELTPK
C     PLST1(J)=DELTE0
C     PLST2(J)=DELTSTM
10   CONTINUE
C
C     PRINT 20,(TITL(JA),JA=1,31)
20   FORMAT(1H1,T40,*INSTRVN COMPUTER*/ T26,
Z*DATA FOR *, 31A1 / T29,4D(1H*), 3(/),
XT59, *RATIO*, / T50, *MAX STRESS*,/
1T11,*TOTAL*, T21,*PLASTIC*, T30 ,
2*STRESS*, T40,*MAX*, T49, *MIN*,T60, *TO*, T68, *ELASTIC*,
3T79, *PLASTIC*, T89,*STRAIN* /
4 T2.*CYCLES*. T11. *ELONG*. T21. *ELONG*. T30. 002050

```

```

5   ** "RANGE", T40,"STRESS",          C02060
6   T48, "STRESS", T56, "MIN STRESS", T68, "STRAIN",      002070
7   T79, "STRAIN", T89, "RANGE",      002080
8       T10,"(INCHES)", T20, "(INCHES)", T30,      002090
9       *(KSI)*, T4, "(KSI)", T48,      002100
A   *(KSI)*, T68, *(PCNT)*, T79, *(PCNT)* /)      002110
C   002120
DO 30 K=1,I
DELTEP(K)=DELTEP(K)*100.          002130
DELTEE(K)=DELTEE(K)*100.          002140
DELTSTN(K)=DELTSTN(K)*100.        002150
NT=N(K)                          002160
C   002170
C   USE TO ELIMINATE PRINTING
C   IF (IFLG.NE.1) GO TO 99          002180
C   002190
C   PRINT 22,NT, DELTEL(K),DELTPL(K),      002200
1DELT(SIG(K),SIGMA1(K),SIGMA2(K),R1(K),DELTEE(K),      002210
3DELTEP(K),DELTSTN(K),MSIG(K)      002220
22 FORMAT (T2, I5,                   T11, F6.5, T21, F6.5, T30,      002230
1 F7.2, T40, F5.1, T48, F6.1, T56, F7.3,      002240
3 T68,F5.3,T79,F6.4, T89, F5.3,T120,A1)      002250
C   002260
99 CONTINUE                         002270
C   002280
30 CONTINUE                         002290
PRINT 40
40 FORMAT (// )
PRINT 31,DELTEET,LELST
31 FORMAT (1H1,
1   T , "THE AVERAGE MODULUS FOR THIS DATA WAS",E12.5,* PSI*,002370
2 / T2,*EFFECTIVE ELASTIC GAGE LENGTH IS *,E12.5,* INCHES*) 002380
RETURN
END
C   002390
C   002400
C   *****SUBROUTINE DATA1*****          002410
C   002420
C   002430
SUBROUTINE DATA1
COMMON /A/ BA(12000),TITL(60),BB(3000)
COMMON /C/ SIG3(70),STRT(70),STRP(70),STRNC(70),NC(70),KI,
ZDELTLC(70),DELTPLC(70)
INTEGER UNITS,DATASTS
REAL NC
C   002440
C   002450
C   002460
C   002470
C   002480
C   002490
C   002500
C   002510
C   002520
C   002530
C   002540
C   002550
C   002560
C   002570
C   002580
C   002590
C   002600
C   002610
C   002620
C   002630
C   002640
C   002650
C   002660
C   002670
C   002680
C   002690
C   002700
C   002710
READ 11,DATASTS
FORMAT (I1)
IF (DATASTS.LE.0) GO TO 50
KA=0
DO 15 M=1,DATASTS
FOR CHART DIMENS IN M1,USE M
FOR CHART DIMENSIONS IN INCHES, USE I
READ 2,UNITS,FCTR
FORMAT (A1,4X,F5.0)
PRINT 9,TITL
FORMAT (/ T2,BJ(1H5)/ T2,60A1)
PRINT 6,UNITS,FCTR
FORMAT (/T2,*FROM DATA1, UNITS = *,A1 ,/, AT2,*AND THESE NUMBER OF CYCLES TO DATA 1*,1X,F5.0/)
IF (UNITS.EQ.1H1.OR.UNITS.EQ.1HM) GO TO 51
GO TO 50

```

```

51  CONTINUE          002720
C
C   CALSIG IS CALIBRATION FACTOR FOR LOAD SCALE ON H-P CHART 002730
C   CALDIS1 IS EXTENSOMETER CALIB FACTOR                   002740
C   CALDIS2 IS CALIBRATION FACTOR FOR H-P CHART             002750
C   SPECA IS SPECIMEN AREA                                002760
C   READ *,CALSIG,CALDIS1,CALDIS2,SPECA                  002770
C
C   PRINT 10,CALSIG,CALDIS1,CALDIS2,SPECA                002780
10  FORMAT (// T2,*FROM DATA1*/ T2,*H-P CHART LOAD SCALE CALIBRATION 002790
    1IS *, F7.5,                                              002800
    2 / T2,*EXTENSOMETER CALIBRATION FACTOR IS *, F7.5,      002810
    4 / T2,*H-P CHART DISPLACEMENT SCALE CALIBRATION IS *,F7.5, 002820
    5 / T2,*SPECIMEN AREA = *,F7.5 /)                      002830
    PRINT 29,UNITS                                         002840
    29 FORMAT (T2,* UNITS DESIG IS *, A2/)                 002850
    CALDIS=CALDIS1*CALDIS2                               002860
C
C   KT=KA          002870
100 CONTINUE          002880
    KA=KA+1          002890
    IF (KA.GT.70) GO TO 70
C
C   READ *,NC(KA),STRT(KA),STRP(KA),SIGC(KA)            002900
C   USE -1. TO TERMINATE READING DATA STRING           002910
C   PRINT *,NC(KA),STRT(KA),STRP(KA),SIGC(KA)           002920
    IF(NC(KA).LT.0.9) GO TO 103                         002930
    NC(KA)=NC(KA)+FCTR                                 002940
    GO TO 103                                         002950
70  CONTINUE          002960
    PRINT 71                                         002970
    71 FORMAT (4(/) T3,*EXCEEDED ARRAY DIMENSIONS IN DATA1*,3(/)) 002980
103 CONTINUE          002990
    PRINT 4                                         003000
    4 FORMAT (// T2,*CYCLES*, T10,*T.DISPL*, T18,*PL.DISPL*,T28, 003010
    1*STRESS*)/)
    KA=KA-1          003020
    KI=KA          003030
    KS=KT+1          003040
C
C   DO 1 J=KS,KI          003050
    PRINT 5,NC(J),STRT(J),STRP(J),SIGC(J)            003060
    5 FORMAT (T2,F5.0,T10,F5.2,T18,F5.2,T29,F5.2) 003070
1  CONTINUE          003080
    CALL DATA2 (CALSIG,CALDIS,SPECA,UNITS,KS)        003090
15  CONTINUE          003100
C
C   PRINT 9          003110
    PRINT 21,(TITL(JA),JA=1,31)                      003120
    21 FORMAT (1H1,T28,*HYSTERESIS LOOP*,/
    AT16,*DATA FOR *, 31A1/
    BT16,40(1H*), 3(/)
    CT10,*TOTAL*, T20,*PLASTIC*,T31,
    D*STRESS*, T42,*ELASTIC*, T53,
    E*PLASTIC*, T65,*STRAIN* / T2
    F,*CYCLES*, T11,*ELONG*, T21, *ELONG*,
    GT31, *RANGE*, T42, *STRAIN*, T53,
    H*STRAIN*, T65,*RANGE*, / T10,
    I*(INCHES)*, T20, *(INCHES)*, T31,
    J*(KSI)*, T42, *(PCNT)*, T53,*(PCNT)*,
    KT65, *(PCNT)* /)
C
C   DO 28 MC=1,KI          003130
    NT=NC(MC)          003140
    PRINT 22,NT,DELTPLC(MC),DILTPLC(MC),SIGC(MC), 003150
    ASTRT(MC).STRP(MC).STRNC(MC)                    003160
    15  CONTINUE          003170
C
C   PRINT 9          003180
    PRINT 21,(TITL(JA),JA=1,31)                      003190
    21 FORMAT (1H1,T28,*HYSTERESIS LOOP*,/
    AT16,*DATA FOR *, 31A1/
    BT16,40(1H*), 3(/)
    CT10,*TOTAL*, T20,*PLASTIC*,T31,
    D*STRESS*, T42,*ELASTIC*, T53,
    E*PLASTIC*, T65,*STRAIN* / T2
    F,*CYCLES*, T11,*ELONG*, T21, *ELONG*,
    GT31, *RANGE*, T42, *STRAIN*, T53,
    H*STRAIN*, T65,*RANGE*, / T10,
    I*(INCHES)*, T20, *(INCHES)*, T31,
    J*(KSI)*, T42, *(PCNT)*, T53,*(PCNT)*,
    KT65, *(PCNT)* /)
C
C   DO 28 MC=1,KI          003200
    NT=NC(MC)          003210
    PRINT 22,NT,DELTPLC(MC),DILTPLC(MC),SIGC(MC), 003220
    ASTRT(MC).STRP(MC).STRNC(MC)                    003230
    15  CONTINUE          003240
C
C   PRINT 9          003250
    PRINT 21,(TITL(JA),JA=1,31)                      003260
    21 FORMAT (1H1,T28,*HYSTERESIS LOOP*,/
    AT16,*DATA FOR *, 31A1/
    BT16,40(1H*), 3(/)
    CT10,*TOTAL*, T20,*PLASTIC*,T31,
    D*STRESS*, T42,*ELASTIC*, T53,
    E*PLASTIC*, T65,*STRAIN* / T2
    F,*CYCLES*, T11,*ELONG*, T21, *ELONG*,
    GT31, *RANGE*, T42, *STRAIN*, T53,
    H*STRAIN*, T65,*RANGE*, / T10,
    I*(INCHES)*, T20, *(INCHES)*, T31,
    J*(KSI)*, T42, *(PCNT)*, T53,*(PCNT)*,
    KT65, *(PCNT)* /)
C
C   DO 28 MC=1,KI          003270
    NT=NC(MC)          003280
    PRINT 22,NT,DELTPLC(MC),DILTPLC(MC),SIGC(MC), 003290
    ASTRT(MC).STRP(MC).STRNC(MC)                    003300
    15  CONTINUE          003310
C
C   PRINT 9          003320
    PRINT 21,(TITL(JA),JA=1,31)                      003330
    21 FORMAT (1H1,T28,*HYSTERESIS LOOP*,/
    AT16,*DATA FOR *, 31A1/
    BT16,40(1H*), 3(/)
    CT10,*TOTAL*, T20,*PLASTIC*,T31,
    D*STRESS*, T42,*ELASTIC*, T53,
    E*PLASTIC*, T65,*STRAIN* / T2
    F,*CYCLES*, T11,*ELONG*, T21, *ELONG*,
    GT31, *RANGE*, T42, *STRAIN*, T53,
    H*STRAIN*, T65,*RANGE*, / T10,
    I*(INCHES)*, T20, *(INCHES)*, T31,
    J*(KSI)*, T42, *(PCNT)*, T53,*(PCNT)*,
    KT65, *(PCNT)* /)
C
C   DO 28 MC=1,KI          003340
    NT=NC(MC)          003350
    PRINT 22,NT,DELTPLC(MC),DILTPLC(MC),SIGC(MC), 003360
    ASTRT(MC).STRP(MC).STRNC(MC)                    003370

```

```

22  FORMAT (T2,I5,T11,F6.5,T21,F6.5,T30,F7.2,T42,F5.3      003380
     AT53,F6.4,T65,F5.3)                                     003390
28  CONTINUE                                                 003400
    PRINT 27                                                 003410
27  FORMAT (1H1)                                              003420
C
C      RETURN                                                 003430
50  CONTINUE                                                 003440
    PRINT 7                                                 003450
7   FORMAT (/ T2,*NO HYSTERESIS LOOP DATA* ,/)             003460
    KI=0                                                 003470
    RETURN                                                 003480
    END                                                 003490
03500
C*****                                                       003500
C
C      SUBROUTINE DATA2(CALSIG,CALDIS,SPECA,UNITS,KS        003510
COMMON /C/ SIGC(70),STRT(70),STRP(70),STRNC(70),NC(70),KI 003520
A,DELTEL(70),DELTPLC(70)                                003530
COMMON /D/ LP,LE                                         003540
INTEGER UNITS                                           003550
REAL NC                                                 003560
C LE IS EFF ELAST GAGE LGTH,LP IS PL EFF GAGE LENGTH, 003570
REAL LE,LP                                              003580
C
C      SIG( C,CAL,A,F)=C/F*CAL*500./A                      003590
E(C,CAL,F)=C/F*CAL                                     003600
STNE(UTOT,UPL,EE)=(UTOT-UPL)/EE                         003610
STNP(UPL,EP)=UPL/EP                                     003620
C
C      PRINT 8,LE,LP,CALSIG,CALDIS                         003630
8   FORMAT (T2,* LE,LP,CALSIG,CALDIS ARE = *, 4F9.5, //) 003640
    PRINT 6                                                 003650
6   FORMAT (3(/), T2,*CYCLES*, T9,*ELAST STN*, T22, *PL STRN*, 003660
1 T35, *TOT STRN*,T48,*STRESS*,T57,*TOT DISPL*,T70,*PL DISPL* /) 003670
IF (UNITS.EQ.1H)  FACTOR=1.00                           003680
IF (UNITS.EQ.1HM) FACTOR=2.54                           003690
C
C      DO 5 K=KS,KI                                       003700
SIGC(K)=SIG(SIGC(K),CALSIG,SPECA,FACTOR)*1.E-3          003710
UT=E(STRT(K),CALDIS,FACTOR)                            003720
UP=E(STRP(K),CALDIS,FACTOR)                            003730
STNEL=STNE(UT,UP,LE)*1.E2                               003740
STNPL=STNP(UP,LP)*1.E2                                 003750
STRN( K)=STNEL+STNPL                                  003760
C
C      STORE ELAS & PLAST STRAIN                         003770
STRT(K)=STNEL                                         003780
STRP(K)=STNPL                                         003790
DELTEL( K)=UT                                         003800
DELTPLC( K)=UP                                         003810
UT=UT*1.E3                                             003820
UP=UP*1.E3                                             003830
C
C      PRINT 7,NC(K),STRT(K),STRP(K),STRNC(K),SIGC(K),UT,UP 003840
7   FORMAT (T2,F5.0,T9,F4.3,T22,F4.3 ,T35,F5.3, T48,F5.1,T57, 003850
1 F4.2,T70,F4.3)                                     003860
C
C      CONTINUE                                              003870
    RETURN                                                 003880
    END                                                 003890
C*****                                                       003900
C
C      SUBROUTINE SUTPLOT(I)                                003910
COMMON /A/ N(1500),DELTsig(1500),X(1500),Y(1500),DELTel(1500), 003920
ADELTpl(1500),DELTee(1500),DELTstn(1500),Titl(60), 003930
Bri(1500),DELTep(1500)                                003940
COMMON /C/ SIGc(70),STRt(70),STRp(70),STRnc(70),NC(70),KT 003950
C
C*****                                                       003960
C
C      SUBROUTINE SUTPLOT(I)                                003970
COMMON /A/ N(1500),DELTsig(1500),X(1500),Y(1500),DELTel(1500), 003980
ADELTpl(1500),DELTee(1500),DELTstn(1500),Titl(60), 003990
Bri(1500),DELTep(1500)                                004000
COMMON /C/ SIGc(70),STRt(70),STRp(70),STRnc(70),NC(70),KT 004010
BRI(1500),DELTep(1500)                                004020
COMMON /C/ SIGc(70),STRt(70),STRp(70),STRnc(70),NC(70),KT 004030

```

```

A,DELTLC(70),DELTPLC(70)          004040
REAL N,U(50),NC                   004050
REAL XA(70),YA(70)                 004060
DIMENSION IPAK(50),MPLOT(10)       004070
LOGICAL HYPLOT,COMPLOT,DUALPT    004080
C                                     004090
C                                     004100
PRINT 10,I,KI                     004110
10 FORMAT (1H1//T2,*FROM SUBPLOT : NO. OF COMPUTER DATA PTS IS = *,   004120
A15 / T17,*NO. OF HYSTERESIS LOOP DATA PTS IS = *, I5/)           004130
CALL COMPRS                         004140
C                                     004150
C                                     004160
C                                     004170
C                                     004180
C                                     004190
C                                     004200
C                                     004210
C                                     004220
C                                     004230
C                                     004240
C                                     004250
C                                     004260
C                                     004270
C                                     004280
C                                     004290
C                                     004300
C                                     004310
C                                     004320
C                                     004330
C                                     004340
C                                     004350
C                                     004360
C                                     004370
C                                     004380
C                                     004390
C                                     004400
C                                     004410
C                                     004420
C                                     004430
C                                     004440
C                                     004450
C                                     004460
C                                     004470
C                                     004480
C                                     004490
C                                     004500
C                                     004510
C                                     004520
C                                     004530
C                                     004540
C                                     004550
C                                     004560
C                                     004570
C                                     004580
C                                     004590
C                                     004600
C                                     004610
C                                     004620
C                                     004630
C                                     004640
C                                     004650
C                                     004660
C                                     004670
C                                     004680
C                                     004690

C                                     004100
C                                     004110
C                                     004120
C                                     004130
C                                     004140
C                                     004150
C                                     004160
C                                     004170
C                                     004180
C                                     004190
C                                     004200
C                                     004210
C                                     004220
C                                     004230
C                                     004240
C                                     004250
C                                     004260
C                                     004270
C                                     004280
C                                     004290
C                                     004300
C                                     004310
C                                     004320
C                                     004330
C                                     004340
C                                     004350
C                                     004360
C                                     004370
C                                     004380
C                                     004390
C                                     004400
C                                     004410
C                                     004420
C                                     004430
C                                     004440
C                                     004450
C                                     004460
C                                     004470
C                                     004480
C                                     004490
C                                     004500
C                                     004510
C                                     004520
C                                     004530
C                                     004540
C                                     004550
C                                     004560
C                                     004570
C                                     004580
C                                     004590
C                                     004600
C                                     004610
C                                     004620
C                                     004630
C                                     004640
C                                     004650
C                                     004660
C                                     004670
C                                     004680
C                                     004690

```

```

      READ *,XINC1,XMAX2          004700
C
      PRINT 8,YMIN2,YINC2,YMAX2,YMIN3,YINC3,YMAX3,YMIN4,YINC4,YMAX4,
      YMINS,YINC5,YMAX5,XFORGN,XCYCLE,XINC1,XMAX2          004710
      FORMAT (/T3,*YMIN2,YINC2,YMAX2 = *,3F10.2/
      AT3,*YMIN3,YINC3,YMAX3 = *,3F10.2/
      BT3,*YMIN4,YINC4,YMAX4 = *,3F10.2/
      CT3,*YMIN5,YINC5,YMAX5 = *,3F10.2/
      ET3,*XFORGN,XCYCLE = *,2F10.2/
      DT3,*XINC1,XMAX2 = *,2F10.2/)          004720
C
      JTEST=0                      004730
      DO 507 JRS=1,10             004740
      IF (MPLOT(JRS).EQ.1HY) JTST=1          004750
      JTEST=JTEST+JTST            004760
      607 CONTINUE                  004770
      IF (JTEST.EQ.0) GO TO 1001          004780
      CALL BGNPL(-1)                004790
      DO 1000 MINDEX=1,2           004800
      IF (MINDEX.EQ.1.AND.COMPLOT) GO TO 400          004810
      IF (MINDEX.EQ.1.AND..NOT.COMPLOT) GO TO 410          004820
      IF (MINDEX.EQ.2.AND.COMPLOT) GO TO 405          004830
      IF (MINDEX.EQ.2.AND..NOT.COMPLOT) GO TO 405          004840
      400 CONTINUE                  004850
C
      FIND XMAX                   004860
      XMAX=N(1)                   004870
      DO 30 M=2,I                 004880
      IF (N(M).GT.XMAX) XMAX=N(M)          004890
      30 CONTINUE                  004900
      XMAX=XMAX/100.              004910
      IXMAX=XMAX                 004920
      XMAX=(IXMAX+1)*100.          004930
      IF (DUALPT) GO TO 402          004940
      GO TO 401                  004950
      402 CONTINUE                  004960
      DO 32 M=1,KI               004970
      IF (NC(M).GT. XMAX) XMAX=NC(M)          004980
      32 CONTINUE                  004990
      XMAX=XMAX/100.              005000
      IXMAX=XMAX                 005010
      XMAX=(IXMAX+1)*100.          005020
      GO TO 401                  005030
C
      410 CONTINUE                  005040
C
      FIND NC-MAX                 005050
      XMAX=NC(1)                  005060
      DO 31 M=2,KI               005070
      IF (NC(M).GT. XMAX) XMAX=NC(M)          005080
      31 CONTINUE                  005090
      XMAX=XMAX/100.              005100
      IXMAX=XMAX                 005110
      XMAX=(IXMAX+1)*100.          005120
      GO TO 401                  005130
C
      405 CONTINUE                  005140
      415 CONTINUE                  005150
      XMAX=XMAX2                  005160
      GO TO 401                  005170
C
      401 CONTINUE                  005180
      PRINT 3, MINDEX,XMAX          005190
      3 FORMAT (T2,*MINDEX= *, I3, 4X,*XMAX = *,F7.1 /)
      C
      IF (MPLOT(MINDEX*5-4).NE.1HY) GO TO 502          005200
      501 CONTINUE                  005210
      C

```



```

C      PRINT 3, J,N(J),DELTSTN(J)          006680
C3     FORMAT(T2,*J= *,I5,3X,*N= *,F7.1,3X,*DELTSTN= *,F6.4) 006690
C12    CONTINUE                           006700
C
C      XLTH=7.0                           006710
C      YLTH=5.0                           006720
C      YMIN=YMIN3                         006730
C      YINC=YINC3                          006740
C      YMAX=YMAX3                          006750
C      X4IN=0.0                            006760
C      XINC=500.                           006770
C      IF (MINDEX.EQ.1) XINC=XINC1        006780
C
C      IF (.NOT.COMPLOT) GO TO 130        006790
C      IT=0                                006800
C      DO 230 IJ=1,I                        006810
C      IF (DELTSTN(IJ).LT.YMIN.OR.DELTSTN(IJ).GT.YMAX) GO TO 231 006820
C      IF (N(IJ).LT.XMIN.OR.N(IJ).GT.XMAX) GO TO 231             006830
C      IT=IT+1                            006840
C      X(IT)=N(IJ)                         006850
C      Y(IT)=DELTSTN(IJ)                   006860
C      GO TO 230                           006870
C51    CONTINUE                           006880
C50    CONTINUE                           006890
C130   CONTINUE                           006900
C
C      IF (.NOT.HYPLOT) GO TO 237         006910
C      JT=0                                006920
C      DO 235 IJ=1,KI                      006930
C      IF (STRNC(IJ).LT.YMIN.OR.STRNC(IJ).GT.YMAX) GO TO 236       006940
C      IF (NC(IJ).LT.XMIN.OR.NC(IJ).GT.XMAX) GO TO 236             006950
C      JT=JT+1                            006960
C      XA(JT)=NC(IJ)                       006970
C      YA(JT)=STRNC(IJ)                   006980
C      GO TO 235                           006990
C56    CONTINUE                           007000
C55    CONTINUE                           007010
C57    CONTINUE                           007020
C
C      CALL SCLPIC(1.0)                    007030
C      CALL TITLE (1H , -1,"CYCLESS", 100, "STRAIN RANGE (PERCENT)S", 007040
C1 100,XLTH, YLTH)                      007050
C      CALL HEADIN ("STRAIN RANGE VS CYCLESS", -100, 3,1)           007090
C      CALL FRAME                           007100
C      CALL BLNK1(XORGIN,XF,YORGIN,YF,+1)           007110
C      CALL BLNK1(.95,4.25,1.95,2.55,+1)           007120
C      CALL XINTAX                           007130
C      CALL GRAF (XMIN,XINC,XMAX,YMIN,YINC,YMAX) 007140
C      CALL SCLPIC(0.5)                     007150
C      IF (COMPLOT) CALL CURVE (X,Y,IT,-1)           007160
C      IF (HYPLOT) CALL CURVE(XA,YA,JT,-1)           007170
C      CALL RESET ("BLNK1")                  007180
C      CALL RESET ("BLNK2")                  007190
C      CALL HEIGHT (HT)                    007200
C      CALL MESSAG(U,100,X0,Y0)              007210
C      CALL SCLPIC(1.0)                     007220
C      IF (COMPLOT) CALL LINES("COMPUTER GENERATED DATA",IPAK,1) 007230
C      IF (HYPLOT) CALL LINES ("HYSTERESIS LOOP DATA",IPAK,LN2) 007240
C      CALL LEGEND (IPAK,LN2,1.0,2.0)          007250
C      CALL ENOPL(MINDEX*5-2)                007260
C      CALL RESET ("HEIGHT")                007270
C
C504   CONTINUE                           007280
C      IF (MPLOT(MINDEX*5-1).NE.1HY) GO TO 505 007290
C
C      PLOT EXPANDED STRESS RANGE VS CYCLES PRINT #4 007300
C
C505   CONTINUE                           007310
C
C506   CONTINUE                           007320
C
C507   CONTINUE                           007330

```

```

C
XLTH=7.0
YLTH=5.0
YMIN=YMIN4
YINC=YINC4
YMAX=YMAX4
XMIN=0.0
XINC=500.
IF (MINDEX.EQ.1) XINC=XINC1

C
IF (.NOT.COMPLOT) GO TO 140
IT=0
DO 240 IJ=1,I
IF (DELT(SIG(IJ).LT.YMIN.OR.DELT(SIG(IJ).GT.YMAX)) GO TO 241
IF (N(IJ).LT.XMIN.OR.N(IJ).GT.XMAX) GO TO 241
IT=IT+1
X(IT)=N(IJ)
Y(IT)=DELT(SIG(IJ))
GO TO 240
241 CONTINUE
240 CONTINUE
140 CONTINUE
C
IF (.NOT.HYPLOT) GO TO 247
JT=0
DO 245 IJ=1,KI
IF (SIGC(IJ).LT.YMIN.OR.SIGC(IJ).GT.YMAX) GO TO 246
IF (NC(IJ).LT.X4IN.OR.NC(IJ).GT.XMAX) GO TO 246
JT=JT+1
X1(JT)=NC(IJ)
Y1(JT)=SIGC(IJ)
GO TO 245
246 CONTINUE
245 CONTINUE
247 CONTINUE
C
CALL SCLPIC(1.0)
CALL TITLE(1H ,-1, "CYCLESS", 100, "STRESS RANGE (KSI)$",
1 100,XLTH, YLTH)
CALL HEADIN ("STRESS RANGE VS CYCLESS", -100,3,1)
CALL FRAME
CALL BLNK1(XORGIN,XF,.30 ,.60 ,+1)
CALL BLNK2(0.60,3.90,0.90,1.6,+1)
CALL INTAXS
CALL GRAF (XMIN,XINC,XMAX,YMIN,YINC,YMAX)
CALL GRID (5,5)
CALL SCLPIC(0.5)
IF (COMPLOT) CALL CURVE (X,Y,IT,-1)
IF (HYPLOT) CALL CURVE(XA,YA,JT,-1)
CALL RESET("BLNK1")
CALL RESET ("BLNK2")
CALL HEIGHT (HT)
CALL MESSAG(U,100,X0,.38)
CALL SCLPIC(1.0)
IF (COMPLOT) CALL LINES("COMPUTER GENERATED DATA",IPAK,1)
IF (HYPLOT) CALL LINES ("HYSTERESIS LOOP DATA",IPAK,LN2)
CALL LEGEND (IPAK,LN2,.05,.95)
CALL ENDPL (MINDEX*5-1)
CALL RESET ("HEIGHT")

t
c
505 CONTINUE
IF (MPLOT(MINDEX*5).NE.1HY) GO TO 99
C
PIOT STRFSS RANGE VS LOG CYCLES PLOT #5

```

```

C      YMIN=YMIN5
      YMAX=YMAX5
      YLTH=5.
      XLTH=7.
      YSTEP=YINC5
      XMIN=0.0
      IF ((YMIN5+YLTH*YINC5).LT.YMAX5) YSTEP=(YMAX5-YMIN5)/YLTH

C      IF (.NOT.COMPLOT) GO TO 150
      IT=0
      DO 250 IJ=1,I
      IF (DELT(SIG(IJ).LT.YMIN.OR.DELTSIG(IJ).GT.YMAX) GO TO 251
      IF (N(IJ).LT.XMIN.OR.V(IJ).GT.XMAX) GO TO 251
      IT=IT+1
      X(IT)=N(IJ)
      Y(IT)=DELT(SIG(IJ))
      GO TO 250
251  CONTINUE
250  CONTINUE
      IF (IT.EQ.0) GO TO 260
150  CONTINUE

C      IF (.NOT.HYPLT) GO TO 257
      JT=0
      DO 255 IJ=1,KI
      IF (SIGC(IJ).LT.YMIN.OR.SIGC(IJ).GT.YMAX) GO TO 256
      IF (NC(IJ).LT.XMIN.OR.NC(IJ).GT.XMAX) GO TO 256
      JT=JT+1
      XA(JT)=NC(IJ)
      YA(JT)=SIGC(IJ)
      GO TO 255
256  CONTINUE
255  CONTINUE
      IF (JT.EQ.0) GO TO 260
257  CONTINUE

C      PRINT 280,YMIN,YMAX,YLTH,XLTH,YSTEP
280  FORMAT (T2 ,*YMIN5,YMAX5,YLTH,XLTH,YSTEP = *,5F7.1 /)

C      CALL MIXALF ("L/CSTD")
      CALL TITLE ("STRESS RANGE VS L(0G) CYCLES", -100,
1 "CYCLES", 100, "STRESS RANGE ((KSI))S", 100,
2 XLTH,YLTH)
      CALL YINTAX
      CALL FRAME
      CALL BLNK1(XORGIN,XF,YORGIN,YF,+1)
      XINC5=XLTH/XCYCLE
      PRINT 291,X5ORGN,XINC5,YMIN,YSTEP
      FORMAT (T2 ,*X5ORGN,XINC5,YMIN,YSTEP = *,4F7.1 /)

C      CALL XLOG(X5ORGN,XINC5,YMIN,YSTEP)
      CALL SCLPIC(0.5)
      IF (COMPLOT) CALL CURVE (X,Y,IT,-1)
      IF (HYPLT) CALL CURVE(XA,YA,JT,-1)
      CALL RESET("BLNK1")
      CALL HEIGHT (HT)
      CALL MESSAG(U,100,X0,Y0)
      CALL SCLPIC(1.0)
      IF (COMPLOT) CALL LINES("COMPUTER GENERATED DATA",IPAK,1)
      IF (HYPLT) CALL LINES ("HYSTERESIS LOOP DATA",IPAK,LN2)
      CALL LEGEND (IPAK,LN2,1.,2.)
      CALL ENDPL (INDEX*5)
      GO TO 99

```


BIBLIOGRAPHY

1. M. N. Menon and W. H. Reimann, "Low Cycle Fatigue Crack Initiation Study in René 95," J. Mater. Sci. 10, 1571-1581 (1975).
2. B. Leis and A. Clauer, Investigation of Rejuvenation of Fatigue Damage in IN-718, Air Force Materials Laboratory Technical Report, AFML-TR-78-90, AF Contract F33615-76-C-5100 (Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio, 1978).
3. S. S. Manson, Thermal Stress and Low Cycle Fatigue, McGraw-Hill (1966).
4. M. Gill, G. R. Leverant, and C. H. Wells, "The Fatigue Strength of Nickel-Base Superalloys," Achievement of High Fatigue Resistance in Superalloys, ASTM STP 467, American Society of Testing and Materials, 53-76 (1970).
5. C. H. Wells and C. P. Sullivan, "Low Cycle Fatigue of Udiment 700 at 1700 F," Trans. ASM 61, 149-155 (1968).
6. C. H. Wells and C. P. Sullivan, "The Effect of Temperature on the Low Cycle Fatigue Behavior of Udiment 700," Trans. ASM 60, 217-222 (1967).
7. C. H. Wells and C. P. Sullivan, "The Low Cycle Fatigue Characteristics of a Nickel-Base Superalloy at Room Temperature," Trans. ASM 57, 841-855 (1964).
8. M. Gell and G. R. Leverant, "The Fatigue of the Nickel-Base Superalloy MAR-M-200 in Single Crystal and Columnar Grain Forms at Room Temperature," Trans. AIME 242, 1869-1879 (1968).
9. P. Gauthier, H. DeRandy, and J. Auvinet, "Secondary Cracking Process During Fatigue Crack Propagation," Eng. Fract. Mech. 5, 977-981 (1973).
10. W. H. Vaughan, R. J. Sanford, J. M. Krofft, W. H. Cullen, and J. W. Dolly, Failure Studies of a Third Stage Fan Disk from a TF-30 Turbine Engine, NRL Memorandum Report 3874, Naval Research Laboratories (1978).
11. A. H. Cottrell, "Fracture," Proc. Roy. Soc. London A 276, 1-18 (1963).

12. A. W. Funkenbusch and L. F. Coffin, "Low Cycle Fatigue Crack Nucleation and Early Growth in Ti-17," Met. Trans. 9A, 1159-1167 (1978).
13. J. C. Grosskrentz, Phys. Stat. Solidi (B) 47, 359-396 (1971).
14. G. E. Dieter, Mechanical Metallurgy, McGraw-Hill, 403-450 (1976).
15. C. H. Wells and C. P. Sullivan, "The Low Cycle Fatigue Characteristics of a Nickel-Base Superalloy at Room Temperature," Trans. ASM 57, 841-847 (1964).
16. H. F. Merrick, "The Low Cycle Fatigue of Three Wrought Nickel-Base Alloys," Met. Trans. 5, 891-897 (1974).
17. D. R. Muzyka, "The Metallurgy of Iron Nickel Alloys," The Superalloys (C. T. Sims and W. C. Hagel, eds.), John Wiley and Sons, New York (1972).
18. R. F. Decker and S. Floreen, "Precipitation from Substitutional Iron-Base Austenitic and Martensitic Solid Solutions," Precipitation from Iron Base Alloys (G. R. Speich and J. B. Clark, eds.), Gordon and Breach Scientific Publishers, New York (1965).
19. E. F. Bradley and M. J. Donachie, "Forgings for Jet Engines: More Quality at Less Cost," Metals Prog. 106/2, 80-82 (July 1974).
20. D. Raynor and J. M. Silcock, "Strengthening Mechanisms in Gamma-Prime Precipitating Alloys," Metal Sci. J. 4, 121-130 (1970).
21. D. R. Muzyka, "Controlling Microstructure and Properties of Superalloys Via Use of Precipitated Phases," Metals Eng. Qtrly 11/4, 12-20 (1971).
22. G. R. Speich, "Cellular Precipitation in an Austenitic Fe-30Ni-6Ti Alloy," Trans. AIME 227, 754-762 (1963).
23. C. C. Clark and J. S. Iwanski, "Phase Changes in Precipitation Hardening Nickel-Chromium-Iron Alloys during Prolonged Heating," Trans. AIME 215, 648-651 (1959).
24. H. J. Beattie and W. C. Hagel, "Intragranular Precipitation of Intermetallic Compounds in Complex Austenitic Alloys," Trans. AIME 221, 28-35 (1961).
25. E. E. Brown, R. C. Boettner, and D. L. Ruckle, Minigrain Processing of Nickel-Base Alloys, presented at the Metallurgical Society of AIME Fall Meeting, Cleveland, 1970.

26. R. F. Decker and C. T. Sims, "The Metallurgy of Nickel-Based Superalloys," The Superalloys (C. T. Sims and W. C. Hagel, eds.) John Wiley and Sons, New York (1972).
27. C. T. Sims, "The Occurrence of Topologically Close-Packed Phases," The Superalloys (C. T. Sims and W. C. Hagel, eds.), John Wiley and Sons, New York (1972).
28. J. P. Dennison and B. Wilshire, "Mechanisms of Improving Creep Rupture Lives by Re-Heat Treatments," Fracture 2, 635-639 (1977).
29. J. P. Dennison, P. D. Holmes, and B. Wilshire, "The Creep and Fracture Behavior of the Cast Nickel-Based Superalloy IN-100," Mater. Sci. & Eng. 33, 35-47 (1978).
30. K. C. Anthony and J. F. Rodavitch, The Effects of HIP Rejuvenation of Turbine Blades, presented at the AIME Annual Meeting, Atlanta, Georgia.
31. Summary Report on the Powder Metallurgy Seminar, Air Force Materials Laboratory Technical Report AFML-TM-LT-74-4 (Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio, 1974).
32. ASTM Standard E407-70, "Standard Methods for Microetching Metals and Alloys," Annual Book of ASTM Standards, American Society of Testing and Materials, Philadelphia (1974).
33. M. F. Henry, A Technique for Monitoring Time Dependent Surface Damage, General Electric Report No. 71-C-338, Schenectady, New York (1971).
34. Pratt and Whitney Aircraft Specification 1003H, East Hartford, Conn. (November 1973).
35. W. P. Koster and J. B. Kohls, Relationship of Surface Integrity to Cost and Reliability of Structural Components, SME Technical Paper IQ72-207 (1972).
36. R. L. Ketter and S. P. Prawel, Modern Methods of Engineering Computation, McGraw-Hill (1969).
37. L. G. Heroux and C. P. Sullivan, "Metallographic Replication of Curved Surfaces," Trans. ASM 56, 861-863 (1963).
38. L. K. Singhal and M. L. Vaidya, "Precipitation of Sigma Phase in a Duplex Fe-Cr-Ni-Ti Alloy," Trans. ASM Qtrly 62, 879-885 (1969).
39. W. H. Hill, K. D. Shimmin, and B. A. Wilcox, "Elevated Temperature Dynamic Moduli of Metallic Materials," ASTM Proc. 61, 890-906 (1961).

40. S. Spinner and W. F. Tefft, "A Method for Determining Mechanical Resonance Frequencies and for Calculating Elastic Moduli from These Frequencies," ASTM Proc. 61, 1221-1238 (1961).
41. W. E. Tefft, "Numerical Solution of the Frequency Equations for the Flexural Vibration of Cylindrical Rods," J. Research NBS 64B, 237-242 (1960).
42. ASTM Standard E112-61, "Standard Methods for Estimating the Average Grain Size of Metals," Annual Book of ASTM Standards, American Society of Testing and Materials, Philadelphia (1974).
43. Aerospace Structural Metals Handbook, Code 4107, Mechanical Properties Data Center, Traverse City, Michigan (December 1973).
44. A. Green, H. Sieber, D. Wells, and T. Wolfe, Research Investigation to Determine Mechanical Properties of Nickel and Cobalt-Base Alloys for Inclusion in Military Handbook 5, Air Force Materials Laboratory Technical Report ML-TDR-64-116, DDC AD-608813, V1, 500-508 (1964).
45. SEM/TEM Fractography Handbook, MCIC-HB-06, compiled by McDonnell Douglas Astronautics Co., published by Metals and Ceramics Information Center, Battelle-Columbus Laboratories, Columbus, Ohio (1975).
46. C. Laird, Mechanisms and Theories of Fatigue, presented at the Materials Science Seminar, American Society for Metals, St. Louis, Missouri (1978).
47. W. H. Kim and C. Laird, "Crack Nucleation and Stage I Propagation in High Strain Fatigue - I. Microscopic and Interferometric Observations," Acta Met. 26, 777-787 (1978).
48. W. H. Kim and C. Laird, "Crack Nucleation and Stage I Propagation in High Strain Fatigue - II. Mechanism," Acta Met. 26, 789-799 (1978).
49. D. Kuhlmann-Wilsdorf and C. Laird, "Dislocation Behavior in Fatigue," Mater. Sci. and Eng. 31, 137-156 (1977).
50. W. A. Wood, Fatigue in Aircraft Structures, Academic Press, New York (1956).
51. C. Laird, Fatigue Crack Propagation, ASTM 415, American Society for Testing and Materials, Philadelphia (1967).
52. A. S. Tetelman and A. J. McEvily, Fracture of Structural Materials, 347-400 (1967).

53. American Society for Metals, Failure Analysis and Prevention, vol. 10, Metals Handbook (8th ed.), Metals Park, Ohio (1975).
54. F. Petit, Personal Communication, Materials Research Laboratory, Pratt and Whitney Aircraft, Commercial Products Division, East Hartford, Conn. (June 1979).
55. R. Sandström, "Subgrain Growth Occurring by Boundary Migration," Acta Met. 25, 905-911 (1977).
56. R. Sandström, "On Recovery of Dislocations in Subgrains and Subgrain Coalescence," Acta Met. 25, 897-904 (1977).
57. J. P. Hirth and J. Lothe, Theory of Dislocations, McGraw-Hill, New York (1968).
58. M. R. James and A. W. Sleswyk, "Influence of Intrinsic Stacking Fault Energy on Cyclic Hardening," Acta Met. 26, 1721-1726 (1978).
59. R. W. Landgraf, "The Resistance of Metals to Cyclic Deformation," Achievement of High Fatigue Resistance in Metals and Alloys, ASTM STP 467, American Society of Testing and Materials, 3-36 (1970).
60. R. W. Smith, M. H. Hirschberg, and S. S. Manson, Fatigue Behavior of Materials under Strain Cycling in Low and Intermediate Life Range, NASA Technical Note D-1574, Lewis Research Center, Cleveland, Ohio (1963).
61. T. J. Dolan, "Designing Structures to Resist Low-Cycle Fatigue," Metals Eng. Qtrly 10, 18-25 (November 1970).
62. D. Macha, Unpublished Research, Air Force Materials Laboratory, Metals Behavior Branch (AFML/LLN), Wright-Patterson Air Force Base, Ohio 45433 (1977).
63. G. R. Irwin, Plastic Zone Near a Crack and Fracture Toughness, Seventh Sagamore Ordnance Materials Research Conference (August 1960).
64. C. Calabrese and C. Laird, "High Strain Fatigue Fracture Mechanics in Two Phase Alloys," Met. Trans. 5, 1785-1793 (1974).
65. C. Calabrese and C. Laird, "Cyclic Stress-Strain Response of Two-Phase Alloys; Part I. Microstructures Containing Particles Penetrable by Dislocations," Mater. Sci. and Eng. 13, 141-157 (1974).
66. C. Calabrese and C. Laird, "Cyclic Stress-Strain Response of Two-Phase Alloys; Part II. Particles Not Penetrated by Dislocations," Mater. Sci. and Eng. 13, 159-174 (1974).

67. W. H. Kim and C. Laird, "The Role of Cyclic Hardening in Crack Nucleation at High Strain Amplitude," Mater. Sci. and Eng. 33, 225-231 (1978).
68. C. Laird, V. J. Langelo, M. Hallrah, N. C. Yang, and R. DeLaVeaux, "The Cyclic Stress-Strain Response of Precipitation Hardened Al-15 wt% Ag Alloy," Mater. Sci. and Eng. 32, 137-160 (1978).
69. H. J. Beattie, Jr., "The Crystal Structure of a M_3B_2 -Type Double Boride," Acta Cryst. 11, 607-609 (1958).
70. M. J. Fleetwood and C. A. P. Horton, "The Use of the Microprobe Analyzer and the Electron Microscope for the Identification of Precipitate Particles in a Nickel-Chromium-Iron Alloy," J. Roy. Microsc. Soc. 83, 245-250 (1964).

**DA
FILM**