Planche no 11. Exponentielles et logarithmes

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice nº 1 (**)

Trouver la plus grande valeur de $\sqrt[n]{n}$, $n \in \mathbb{N}^*$.

Exercice nº 2 (**I)

$$\mathrm{D\acute{e}terminer}\,\lim_{n\to+\infty}\bigg(1+\frac{1}{n}\bigg)^n.$$

Exercice nº 3 (**I)

- 1) Etudier brièvement la fonction $x \mapsto \frac{\ln x}{x}$ et tracer son graphe.
- 2) Trouver tous les couples (a,b) d'entiers naturels non nuls et distincts vérifiant $a^b=b^a$.

Exercice nº 4

Résoudre dans \mathbb{R} les équations ou inéquations suivantes :

1) (**)
$$\ln |x+1| - \ln |2x+1| \le \ln 2$$

2) (**)
$$x^{\sqrt{x}} = \sqrt{x}^{x}$$

1) (**)
$$\ln |x+1| - \ln |2x+1| \le \ln 2$$

2) (**) $x^{\sqrt{x}} = \sqrt{x}^x$
3) (***) $\ln_x(10) + 2\ln_{10x}(10) + 3\ln_{100x}(10) = 0$
4) (**) $2^{2x} - 3^{x-\frac{1}{2}} = 3^{x+\frac{1}{2}} - 2^{2x-1}$

4) (**)
$$2^{2x} - 3^{x-\frac{1}{2}} = 3^{x+\frac{1}{2}} - 2^{2x-\frac{1}{2}}$$

Exercice no 5 (***)

Trouver
$$\lim_{x \to +\infty} \frac{(x^x)^x}{x^{(x^x)}}$$
.

Exercice nº 6

Construire le graphe des fonctions suivantes :

1) (***I)
$$f_1(x) = \left(1 + \frac{1}{x}\right)^x$$
 (à étudier sur]0, $+\infty$ [).

2) (**)
$$f_2(x) = \log_2 \left(1 - \log_{\frac{1}{2}} (x^2 - 5x + 6)\right)$$
.

Exercice nº 7 (**)

Montrer que $\forall x \in]0,1[, x^x(1-x)^{1-x} \geqslant \frac{1}{2}.$

Planche no 12. Fonctions puissances

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice nº 1 (**T)

Déterminer le domaine de définition des fonctions suivantes puis étudier leur dérivabilité :

1)
$$f_1 : x \mapsto \sqrt{x^2 + 1}$$

2)
$$f_2 : x \mapsto \sqrt[3]{x^3 + 1}$$
.

$$2) f_3 : x \mapsto \sqrt{x^3 - x^4}.$$

Exercice nº 2 (*T)

Donner la dérivée des fonctions suivantes :

1)
$$\sqrt{x^2 + 1}$$
 2) $\sqrt[3]{x^3 + 1}$ 3) $\frac{1}{\left(\sqrt[4]{x^2 + x + 1}\right)^3}$
4) $\frac{x}{\sqrt{x^2 + 1}}$ 5) $\sqrt{\frac{x - 1}{x + 1}}$.

4)
$$\frac{x}{\sqrt{x^2+1}}$$
 5) $\sqrt{\frac{x-1}{x+1}}$

Exercice nº 3 (**T)

Déterminer les limites suivantes :

1)
$$\lim_{x \to +\infty} \left(\sqrt{x^2 + x + 1} + x \right)$$
 et $\lim_{x \to -\infty} \left(\sqrt{x^2 + x + 1} + x \right)$

$$2) \lim_{x \to +\infty} \left(\sqrt[3]{x^3 + 1} - x \right)$$

3)
$$\lim_{x \to 1} \frac{\sqrt{2x+7}-3}{x-1}$$
 et $\lim_{x \to -2} \frac{\sqrt{2x+5}-1}{\sqrt{3x+15}-3}$

Exercice nº 4 (***)

Etude complète de la fonction $f: x \mapsto \sqrt{\frac{x^3}{x-1}}$. On étudiera en particulier la dérivabilité de f en 0 à gauche. D'autre part, on montrera que la droite d'équation $y = x + \frac{1}{2}$ est asymptote à la courbe de f en $+\infty$ et que la droite d'équation $y = -x - \frac{1}{2}$ est asymptote à la courbe de f en $-\infty$.

Exercice no 5 (**)

Etudier le signe de $\sqrt{x^2 + 1} - x$ et $\sqrt{x^2 + 1} + x$.

Exercice nº 6 (**) Résoudre dans \mathbb{R} l'équation $2^{4\cos^2 x+1} + 16.2^{4\sin^2 x-3} = 20$.

Planche nº 13. Fonctions trigonométriques

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice nº 1 (***IT)

Etude complète et graphe des fonctions suivantes :

1)
$$f_1: x \mapsto 2\cos(x) + \cos(2x)$$
 2) $f_2: x \mapsto \frac{\sin(x)}{2 - \cos(x)}$
3) $f_3: x \mapsto |\tan(x)| + \cos(x)$ 2) $f_4: x \mapsto \frac{2\sin(x)}{2\cos(x) + 1}$

Exercice nº 2 (***I)

$${\rm Calculer} \ I = \int_{\pi/6}^{\pi/3} \cos^4 x \sin^6 x \ dx \ {\rm et} \ J = \int_{\pi/6}^{\pi/3} \cos^4 x \sin^7 x \ dx.$$

Exercice nº 3 (*T)

Pour $x \in \mathbb{R}$, on pose $f(x) = e^{(1+i)x}$. Montrer que pour tout réel x, f''(x) - 2f'(x) + 2f(x) = 0.

Planche nº 14. Fonctions trigonométriques réciproques

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice nº 1 (***IT)

Domaine de définition et calcul des fonctions suivantes :

 $\sin(\operatorname{Arcsin} x)$, $\operatorname{Arcsin}(\sin x)$, $\cos(\operatorname{Arccos} x)$, $\operatorname{Arccos}(\cos x)$, $\tan(\operatorname{Arctan} x)$, $\operatorname{Arctan}(\tan x)$.

Exercice nº 2 (IT)

- 1) (**) Calculer $\operatorname{Arccos} x + \operatorname{Arcsin} x$ pour x élément de [-1;1].
- 2) (**) Calculer $\operatorname{Arctan} x + \operatorname{Arctan} \frac{1}{x}$ pour x réel non nul.
- 3) (**) Calculer $\cos(\arctan a)$ et $\sin(\arctan a)$ pour a réel donné.

Exercice no 3 (***I)

Existence et calcul de $\int_0^{\sin^2 x} Arcsin \sqrt{t} \ dt + \int_0^{\cos^2 x} Arccos \sqrt{t} \ dt$.

Exercice nº 4 (***)

Simplifier les expressions suivantes :

1)
$$f_1(x) = Arcsin\left(\frac{x}{\sqrt{1+x^2}}\right)$$
.

2)
$$f_2(x) = Arccos\left(\frac{1-x^2}{1+x^2}\right)$$
.

3)
$$f_3(x) = Arcsin \sqrt{1-x^2} - Arctan \left(\sqrt{\frac{1-x}{1+x}}\right)$$
.

4)
$$f_4(x) = \operatorname{Arctan} \frac{1}{2x^2} - \operatorname{Arctan} \frac{x}{x+1} + \operatorname{Arctan} \frac{x-1}{x}$$
.

Exercice no 5 (**I)

Calculer $\arctan \frac{1}{2} + \arctan \frac{1}{5} + \arctan \frac{1}{8}$.

Exercice nº 6 (***I)

Calculer $u_n = \operatorname{Arctan} \frac{2}{1^2} + \operatorname{Arctan} \frac{2}{2^2} + ... + \operatorname{Arctan} \frac{2}{n^2}$ pour n entier naturel non nul donné puis déterminer $\lim_{n \to +\infty} u_n$. (Utiliser le n° 2.4))

Exercice nº 7 (***) (Mines de DOUAI 1984)

On considère la fonction numérique f telle que :

$$f(x) = (x^2 - 1) Arctan \frac{1}{2x - 1},$$

et on appelle (\mathscr{C}) sa courbe représentative dans un repère orthonormé.

- 1) Quel est l'ensemble de définition \mathcal{D} de f?
- 2) Exprimer, sur $\mathcal{D} \setminus \{0\}$, la dérivée de f sous la forme : f'(x) = 2xg(x).
- 3) Montrer que : $\forall x \in \mathbb{R}$, $2x^4 4x^3 + 9x^2 4x + 1 > 0$ et en déduire le tableau de variation de q.
- 4) Dresser le tableau de variation de f.

Exercice nº 8 (**)

Simplifier les expressions suivantes

1)
$$\sin(2 \operatorname{Arcsin} x)$$
 2) $\cos(2 \operatorname{Arccos} x)$ 3) $\sin^2 \left(\frac{\operatorname{Arccos} x}{2}\right)$

Exercice nº 9

Résoudre dans $\mathbb R$ les équations suivantes :

1) (*)
$$\cos x = \frac{1}{3}$$

3) (*)
$$\tan(x) = 3$$

5) (***)
$$Arcsin(2x) = Arcsin(x \sqrt{2})$$

7) (***)
$$Arctan(x-1) + Arctan(x) + Arctan(x+1) = \frac{\pi}{2}$$
.

2) (*)
$$\sin(2x) = -\frac{1}{4}$$

2) (*)
$$\sin(2x) = -\frac{1}{4}$$

4) (***) $Arcsin(x) + Arcsin(\frac{x}{2}) = \frac{\pi}{4}$
6) (***) $2 Arcsin x = Arcsin(2x\sqrt{1-x^2})$

6) (***)
$$2 \arcsin x = Arcsin \left(2x\sqrt{1-x^2} \right)$$

Planche nº 15. Trigonométrie hyperbolique

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice nº 1 (*IT)

Etablir pour ch, sh et th les formules d'addition, de duplication et de linéarisation.

Exercice nº 2 (**)

Etudier $f: x \mapsto \ln(chx) - x$. Montrer en particulier que la droite \mathscr{D} d'équation $y = -2x - \ln 2$ est asymptote au graphe de f en $-\infty$ (on dit que la droite d'équation y = ax + b est asymptote au graphe de f en $-\infty$ si et seulement si $\lim_{x\to -\infty} f(x) - (ax + b) = 0$. Construire le graphe de f et la droite \mathscr{D} .

Exercice nº 3 (**)

Résoudre dans \mathbb{R} l'équation sh(2+x) + sh(2+2x) + ... + sh(2+100x) = 0.

Exercice nº 4 (**I)

- 1) Montrer que pour tout réel x non nul, on a : $th x = \frac{2}{th(2x)} \frac{1}{th x}$.
- 2) En déduire la valeur de $u_n = 2^0 \operatorname{th} \left(2^0 x \right) + 2^1 \operatorname{th} \left(2^1 x \right) + ... + 2^n \operatorname{th} \left(2^n x \right)$ pour n entier naturel et x réel non nul donnés puis calculer la limite de la suite (u_n) .

Exercice nº 5 (***I) (définition de argsh, argch et argth)

- 1) a) Montrer que sh est une bijection de \mathbb{R} sur \mathbb{R} . On note argsh la fonction réciproque (argument sinus hyperbolique).
 - b) Construire le graphe de argsh.
 - c) Déterminer une expression simple de l'argument sinus hyperbolique d'un nombre (ou encore résoudre l'équation $\operatorname{argsh} x = y$ d'inconnue x et de paramètre y).
 - d) Etudier la dérivabilité de argsh et déterminer sa dérivée.
- 2) a) Montrer que ch réalise une bijection de $[0, +\infty[$ sur un intervalle à préciser. On note argch la fonction réciproque (argument cosinus hyperbolique).
 - b) Construire le graphe de argch.
 - c) Déterminer une expression simple de l'argument cosinus hyperbolique d'un nombre.
 - d) Etudier la dérivabilité de argch et déterminer sa dérivée.
- 3) a) Montrer que th réalise une bijection de \mathbb{R} sur un intervalle à préciser. On note argth la fonction réciproque (argument tangente hyperbolique).
 - b) Construire le graphe de argth.
 - c) Déterminer une expression simple de l'argument tangente hyperbolique d'un nombre.
 - d) Etudier la dérivabilité de argth et déterminer sa dérivée.

Exercice nº 6 (**)

Simplifier les expressions suivantes

1)
$$\ln \left(\sqrt{x^2 + 1} + x \right) + \ln \left(\sqrt{x^2 + 1} - x \right)$$
.

2)
$$\frac{\operatorname{ch}(\ln x) + \operatorname{sh}(\ln x)}{x}$$
.

3)
$$\sinh^2 x \cos^2 y + \cosh^2 x \sin^2 y$$
.

Exercice nº 7 (**T)

Résoudre dans \mathbb{R} les équations suivantes :

1)
$$ch x = 2$$

2)
$$ch x = \frac{1}{2}$$
.

Exercice nº 8 (**)

$$\mathrm{Calculer}\, \sum_{k=0}^n \mathrm{ch}(\mathfrak{a} k + b),\, ((\mathfrak{a},b) \in \mathbb{R}^2,\, \mathfrak{n} \in \mathbb{N}).$$

Exercice nº 9 (***)

Résoudre dans \mathbb{R} l'équation $a \operatorname{ch} x + b \operatorname{sh} x = c$ en discutant en fonction des paramètres réels a, b et c (pénible).