Los números complejos

2015-01-19 9:00

1 Campos

2 Caracterización de los números reales

3 Números complejos

4 Más definiciones y propiedades

Un campo es una estructura formada por un conjunto F y dos operaciones binarias $F \times F \to F$, la primera llamada suma y denotada por $(a,b) \mapsto a+b$, la segunda llamada producto y denotada por $(a,b) \mapsto ab$, tales que:

• a + b = b + a para todos $a, b \in F$,

- a + b = b + a para todos $a, b \in F$,
- a + (b + c) = (a + b) + c para todos $a, b, c \in F$,

- a + b = b + a para todos $a, b \in F$,
- a + (b + c) = (a + b) + c para todos $a, b, c \in F$,
- existe un elemento $0 \in F$ tal que a + 0 = a para todo $a \in F$,

- a + b = b + a para todos $a, b \in F$,
- a + (b + c) = (a + b) + c para todos $a, b, c \in F$,
- existe un elemento $0 \in F$ tal que a + 0 = a para todo $a \in F$,
- para todo $a \in F$ existe $-a \in F$ tal que a + (-a) = 0,

- a + b = b + a para todos $a, b \in F$,
- a + (b + c) = (a + b) + c para todos $a, b, c \in F$,
- existe un elemento $0 \in F$ tal que a + 0 = a para todo $a \in F$,
- para todo $a \in F$ existe $-a \in F$ tal que a + (-a) = 0,
- ab = ba para todos $a, b \in F$,

- a + b = b + a para todos $a, b \in F$,
- a + (b + c) = (a + b) + c para todos $a, b, c \in F$,
- existe un elemento $0 \in F$ tal que a + 0 = a para todo $a \in F$,
- para todo $a \in F$ existe $-a \in F$ tal que a + (-a) = 0,
- ab = ba para todos $a, b \in F$,
- a(bc) = (ab)c para todos $a, b, c \in F$,

- a + b = b + a para todos $a, b \in F$,
- a + (b + c) = (a + b) + c para todos $a, b, c \in F$,
- existe un elemento $0 \in F$ tal que a + 0 = a para todo $a \in F$,
- para todo $a \in F$ existe $-a \in F$ tal que a + (-a) = 0,
- ab = ba para todos $a, b \in F$,
- a(bc) = (ab)c para todos $a, b, c \in F$,
- existe un elemento $1 \in F$ con $1 \neq 0$ tal que a1 = a para todo $a \in F$,

- a + b = b + a para todos $a, b \in F$,
- a + (b + c) = (a + b) + c para todos $a, b, c \in F$,
- existe un elemento $0 \in F$ tal que a + 0 = a para todo $a \in F$,
- para todo $a \in F$ existe $-a \in F$ tal que a + (-a) = 0,
- ab = ba para todos $a, b \in F$,
- a(bc) = (ab)c para todos $a, b, c \in F$,
- existe un elemento $1 \in F$ con $1 \neq 0$ tal que a1 = a para todo $a \in F$,
- para todo $a \in F$, $a \neq 0$ existe $a^{-1} \in F$ tal que $a(a^{-1}) = 1$,

- a + b = b + a para todos $a, b \in F$,
- a + (b + c) = (a + b) + c para todos $a, b, c \in F$,
- existe un elemento $0 \in F$ tal que a + 0 = a para todo $a \in F$,
- para todo $a \in F$ existe $-a \in F$ tal que a + (-a) = 0,
- ab = ba para todos $a, b \in F$,
- a(bc) = (ab)c para todos $a, b, c \in F$,
- existe un elemento $1 \in F$ con $1 \neq 0$ tal que a1 = a para todo $a \in F$,
- para todo $a \in F$, $a \neq 0$ existe $a^{-1} \in F$ tal que $a(a^{-1}) = 1$,
- a(b+c) = ab + ac para todos $a, b, c \in F$.

• El conjunto de los números racionales Q, con las operaciones usuales.

- El conjunto de los números racionales Q, con las operaciones usuales.
- El conjunto de los números reales ℝ, con las operaciones usuales.

- El conjunto de los números racionales Q, con las operaciones usuales.
- El conjunto de los números reales \mathbb{R} , con las operaciones usuales.
- Existen campos con una cantidad finita de elementos. (De hecho, existe un campo con n elementos si y solo si $n=p^r$ para p primo y r>0.)

- El conjunto de los números racionales Q, con las operaciones usuales.
- El conjunto de los números reales \mathbb{R} , con las operaciones usuales.
- Existen campos con una cantidad finita de elementos. (De hecho, existe un campo con n elementos si y solo si $n=p^r$ para p primo y r>0.)
- El campo de los números complejos, que estudiaremos aquí.

Observaciones

• En todo campo se define a-b como a+(-b). Si $b\neq 0$ se define $\frac{a}{b}$ como ab^{-1} .

Observaciones

- En todo campo se define a-b como a+(-b). Si $b\neq 0$ se define $\frac{a}{b}$ como ab^{-1} .
- Existen muchas propiedades que se deducen solamente a partir de los axiomas de campo. Por ejemplo, se tiene que los elementos 0, 1 son únicos con respecto a las propiedades que los definen, y que a0 = 0 para todo elemento del campo a.

Definición (Campo ordenado)

Decimos que F es un campo ordenado si existe un conjunto $P \subseteq F$ tal que:

Definición (Campo ordenado)

Decimos que F es un campo ordenado si existe un conjunto $P \subseteq F$ tal que:

• $a + b \in P$ para todos $a, b \in P$,

Definición (Campo ordenado)

Decimos que F es un campo ordenado si existe un conjunto $P \subseteq F$ tal que:

- $a + b \in P$ para todos $a, b \in P$,
- $ab \in P$ para todos $a, b \in P$,

Definición (Campo ordenado)

Decimos que F es un campo ordenado si existe un conjunto $P \subseteq F$ tal que:

- $a + b \in P$ para todos $a, b \in P$,
- $ab \in P$ para todos $a, b \in P$,
- F es unión disjunta de $\{0\}$, P, y $\{-a \mid a \in P\}$.

Definición (Campo ordenado)

Decimos que F es un campo ordenado si existe un conjunto $P \subseteq F$ tal que:

- $a + b \in P$ para todos $a, b \in P$,
- $ab \in P$ para todos $a, b \in P$,
- F es unión disjunta de $\{0\}$, P, y $\{-a \mid a \in P\}$.

Ejemplo

Los campos $\mathbb Q$ y $\mathbb R$ son ordenados.

Campos ordenados completos

Relación de orden

En un campo ordenado, se puede definir la relación a > b como $a - b \in P$.

Campos ordenados completos

Relación de orden

En un campo ordenado, se puede definir la relación a > b como $a - b \in P$.

Definición (Campo ordenado completo)

Si F es un campo ordenado donde todo subconjunto no vacío acotado superiormente tiene una mínima cota superior, decimos que F es completo.

Campos ordenados completos

Relación de orden

En un campo ordenado, se puede definir la relación a > b como $a - b \in P$.

Definición (Campo ordenado completo)

Si F es un campo ordenado donde todo subconjunto no vacío acotado superiormente tiene una mínima cota superior, decimos que F es completo.

Teorema (Caracterización de R)

Salvo isomorfismo, el único campo ordenado completo es el campo de los números reales.

Definición de Hamilton (1833)

Sea $\mathbb{C}=\{(x,y)\mid x,y\in\mathbb{R}\}$. Entonces, en \mathbb{C} podemos definir operaciones de suma y producto:

•
$$(x, y) + (u, v) = (x + u, y + v),$$

de tal modo que $\mathbb C$ resulta ser un campo.

Definición de Hamilton (1833)

Sea $\mathbb{C} = \{(x, y) \mid x, y \in \mathbb{R}\}$. Entonces, en \mathbb{C} podemos definir operaciones de suma y producto:

- (x, y) + (u, v) = (x + u, y + v),
- $\bullet (x,y)(u,v) = (xu yv, xv + yu),$

de tal modo que $\mathbb C$ resulta ser un campo.

• En \mathbb{C} tenemos 0 = (0,0) y 1 = (1,0).

- En \mathbb{C} tenemos 0 = (0,0) y 1 = (1,0).
- ¿Cuál es el inverso multiplicativo de $(x, y) \neq 0$?

- En \mathbb{C} tenemos 0 = (0,0) y 1 = (1,0).
- ¿Cuál es el inverso multiplicativo de $(x, y) \neq 0$?
- El subconjunto $\{(x,0) \in \mathbb{C} \mid x \in \mathbb{R}\}$ es cerrado bajo las operaciones definidas en \mathbb{C} , y resulta ser un campo isomorfo a \mathbb{R} bajo la correspondencia $x \leftrightarrow (x,0)$.

- En \mathbb{C} tenemos 0 = (0,0) y 1 = (1,0).
- ¿Cuál es el inverso multiplicativo de $(x, y) \neq 0$?
- El subconjunto $\{(x,0) \in \mathbb{C} \mid x \in \mathbb{R}\}$ es cerrado bajo las operaciones definidas en \mathbb{C} , y resulta ser un campo isomorfo a \mathbb{R} bajo la correspondencia $x \leftrightarrow (x,0)$.
- Por lo anterior, denotaremos a (x, 0) por x.

- En \mathbb{C} tenemos 0 = (0,0) y 1 = (1,0).
- ¿Cuál es el inverso multiplicativo de $(x, y) \neq 0$?
- El subconjunto $\{(x,0) \in \mathbb{C} \mid x \in \mathbb{R}\}$ es cerrado bajo las operaciones definidas en \mathbb{C} , y resulta ser un campo isomorfo a \mathbb{R} bajo la correspondencia $x \leftrightarrow (x,0)$.
- Por lo anterior, denotaremos a (x,0) por x.
- Tenemos que (0, y) = y(0, 1) para todo $y \in \mathbb{R}$. Denotaremos a (0, 1) por i.

- En \mathbb{C} tenemos 0 = (0,0) y 1 = (1,0).
- ¿Cuál es el inverso multiplicativo de $(x, y) \neq 0$?
- El subconjunto $\{(x,0) \in \mathbb{C} \mid x \in \mathbb{R}\}$ es cerrado bajo las operaciones definidas en \mathbb{C} , y resulta ser un campo isomorfo a \mathbb{R} bajo la correspondencia $x \leftrightarrow (x,0)$.
- Por lo anterior, denotaremos a (x,0) por x.
- Tenemos que (0, y) = y(0, 1) para todo $y \in \mathbb{R}$. Denotaremos a (0, 1) por i.
- Se tiene entonces que $i^2 = (0, 1)(0, 1) = (-1, 0) = -1$.

- En \mathbb{C} tenemos 0 = (0,0) y 1 = (1,0).
- ¿Cuál es el inverso multiplicativo de $(x, y) \neq 0$?
- El subconjunto $\{(x,0)\in\mathbb{C}\mid x\in\mathbb{R}\}$ es cerrado bajo las operaciones definidas en \mathbb{C} , y resulta ser un campo isomorfo a \mathbb{R} bajo la correspondencia $x\leftrightarrow(x,0)$.
- Por lo anterior, denotaremos a (x,0) por x.
- Tenemos que (0, y) = y(0, 1) para todo $y \in \mathbb{R}$. Denotaremos a (0, 1) por i.
- Se tiene entonces que $i^2 = (0, 1)(0, 1) = (-1, 0) = -1$.
- Además, (0,y)=(0,1)(y,0)=iy para todo $y\in\mathbb{R}$. Por lo tanto, (x,y)=(x,0)+(0,y)=x+iy para todo $(x,y)\in\mathbb{C}$.

Ejercicios

• Demuestra que si definimos suma de parejas de reales de manera usual y el producto como (x,y)(u,v)=(xu,yv), no se obtiene un campo.

Ejercicios

- Demuestra que si definimos suma de parejas de reales de manera usual y el producto como (x,y)(u,v)=(xu,yv), no se obtiene un campo.
- Demuestra que si definimos suma de tercias de reales de manera usual y el producto como el producto cruz, no se obtiene un campo.

• ¿Es posible definir una estructura de campo en el conjunto de tercias de números reales? ¿O en general en \mathbb{R}^n ?

- ¿Es posible definir una estructura de campo en el conjunto de tercias de números reales? ¿O en general en \mathbb{R}^n ?
- Hamilton no lo logró en \mathbb{R}^3 . Pero en 1843 definió una estructura (\mathbb{H}) de <u>álgebra con división</u> en \mathbb{R}^4 , la cual cumple los axiomas de campo excepto la conmutatividad del producto.

- ¿Es posible definir una estructura de campo en el conjunto de tercias de números reales? ¿O en general en \mathbb{R}^n ?
- Hamilton no lo logró en \mathbb{R}^3 . Pero en 1843 definió una estructura (\mathbb{H}) de <u>álgebra con división</u> en \mathbb{R}^4 , la cual cumple los axiomas de campo excepto la conmutatividad del producto.
- Frobenius probó en 1877 que las únicas álgebras con división de dimensión finita sobre ℝ son: ℝ, ℂ y ℍ.

- ¿Es posible definir una estructura de campo en el conjunto de tercias de números reales? ¿O en general en \mathbb{R}^n ?
- Hamilton no lo logró en \mathbb{R}^3 . Pero en 1843 definió una estructura (\mathbb{H}) de <u>álgebra con división</u> en \mathbb{R}^4 , la cual cumple los axiomas de campo excepto la conmutatividad del producto.
- Frobenius probó en 1877 que las únicas álgebras con división de dimensión finita sobre ℝ son: ℝ, ℂ y ℍ.
- Usando que C es algebraicamente cerrado (es decir, todo polinomio con coeficientes en C tiene una raíz en C), es fácil demostrar que el único campo que extiende a C y es de dimensión finita como espacio vectorial sobre R es C.

Definiciones

• El número complejo z=(x,y) se denotará como z=x+iy. Decimos que x es la parte real de z y que y es la parte imaginaria de z. Escribimos $x=\Re z$, $y=\Im z$.

Definiciones

- El número complejo z=(x,y) se denotará como z=x+iy. Decimos que x es la parte real de z y que y es la parte imaginaria de z. Escribimos $x=\Re z,\ y=\Im z.$
- El conjugado de z = x + iy es $\overline{z} = x iy$.

Definiciones

- El número complejo z=(x,y) se denotará como z=x+iy. Decimos que x es la parte real de z y que y es la parte imaginaria de z. Escribimos $x=\Re z,\ y=\Im z.$
- El conjugado de z = x + iy es $\overline{z} = x iy$.
- El módulo de z=x+iy es $|z|=\sqrt{x^2+y^2}$.

•
$$\overline{\overline{z}} = z$$
, $\overline{z + w} = \overline{z} + \overline{w}$, $\overline{zw} = \overline{z} \overline{w}$, $\overline{\frac{z}{w}} = \frac{\overline{z}}{\overline{w}}$.

•
$$\overline{\overline{z}} = z$$
, $\overline{z + w} = \overline{z} + \overline{w}$, $\overline{zw} = \overline{z} \, \overline{w}$, $\overline{\frac{z}{w}} = \frac{\overline{z}}{\overline{w}}$.

•
$$\Re z = \frac{z+\overline{z}}{2}$$
, $\Im z = \frac{z-\overline{z}}{2}$.

•
$$\overline{\overline{z}} = z$$
, $\overline{z+w} = \overline{z} + \overline{w}$, $\overline{zw} = \overline{z} \, \overline{w}$, $\overline{\frac{z}{w}} = \frac{\overline{z}}{\overline{w}}$.

- $\Re z = \frac{z+\overline{z}}{2}$, $\Im z = \frac{z-\overline{z}}{2}$.
- $|zw| = |z||w|, |\frac{z}{w}| = \frac{|z|}{|w|}.$

- $\overline{\overline{z}} = z$, $\overline{z + w} = \overline{z} + \overline{w}$, $\overline{zw} = \overline{z} \, \overline{w}$, $\overline{\frac{z}{w}} = \frac{\overline{z}}{\overline{w}}$.
- $\Re z = \frac{z+\overline{z}}{2}$, $\Im z = \frac{z-\overline{z}}{2}$.
- |zw| = |z||w|, $|\frac{z}{w}| = \frac{|z|}{|w|}$.
- $|z| = |\overline{z}|$, $z\overline{z} = |z|^2$.

- $\bullet \ \overline{\overline{z}} = z, \ \overline{z+w} = \overline{z} + \overline{w}, \ \overline{zw} = \overline{z} \ \overline{w}, \ \overline{\frac{z}{w}} = \frac{\overline{z}}{\overline{w}}.$
- $\Re z = \frac{z+\overline{z}}{2}$, $\Im z = \frac{z-\overline{z}}{2}$.
- |zw| = |z||w|, $|\frac{z}{w}| = \frac{|z|}{|w|}$.
- $|z| = |\overline{z}|$, $z\overline{z} = |z|^2$.
- $|\Re z| \leq |z|$, $|\Im z| \leq |z|$.

- $\overline{\overline{z}} = z$, $\overline{z+w} = \overline{z} + \overline{w}$, $\overline{zw} = \overline{z} \, \overline{w}$, $\overline{\frac{z}{w}} = \frac{\overline{z}}{\overline{w}}$.
- $\Re z = \frac{z+\overline{z}}{2}$, $\Im z = \frac{z-\overline{z}}{2}$.
- $|zw| = |z||w|, |\frac{z}{w}| = \frac{|z|}{|w|}.$
- $|z| = |\overline{z}|$, $z\overline{z} = |z|^2$.
- $|\Re z| \le |z|$, $|\Im z| \le |z|$.
- $|z + w| \le |z| + |w|$, $|z + w| \ge ||z| |w||$.

- $\overline{\overline{z}} = z$, $\overline{z+w} = \overline{z} + \overline{w}$, $\overline{zw} = \overline{z} \, \overline{w}$, $\overline{\frac{z}{w}} = \frac{\overline{z}}{\overline{w}}$.
- $\Re z = \frac{z+\overline{z}}{2}$, $\Im z = \frac{z-\overline{z}}{2}$.
- $|zw| = |z||w|, \ |\frac{z}{w}| = \frac{|z|}{|w|}.$
- $|z| = |\overline{z}|$, $z\overline{z} = |z|^2$.
- $|\Re z| \leq |z|$, $|\Im z| \leq |z|$.
- $|z + w| \le |z| + |w|$, $|z + w| \ge ||z| |w||$.
- Si $z \neq 0$, $z^{-1} = \frac{\overline{z}}{|z|^2}$.