Зміст

3.8	Постановка основних граничних задач для лінійних дифе-		
	ренційних рівнянь 2-го порядку, коректність, класичні та		
	узагал	њнені розв'язки	1
	3.8.1	Гранична задача для еліптичного рівняння	2
	3.8.2	Постановка змішаних задач для рівняння гіперболі-	
		чного типу. Задача Коші для гіперболічного рівняння	3
	3.8.3	Задача Коші	4
	3.8.4	Постановка змішаних задач для рівняння параболі-	
		чного типу	4
	3.8.5	Коректність задач математичної фізики	5
	3.8.6	Приклад Адамара	7
	3.8.7	Класичний і узагальнений розв'язки	7
	3.8.8	Формально спряжені оператори. Друга формула Грі-	
		на	9

3.8 Постановка основних граничних задач для лінійних диференційних рівнянь 2-го порядку, коректність, класичні та узагальнені розв'язки

Серед множини математичних моделей, які були розглянуті в попередніх параграфах можна виділити найтиповіші математичні моделі, які концентрують в собі головні особливості усіх розглянутих вище. Ці моделі представляють собою граничні задачі для рівнянь трьох типів: еліптичних, параболічних та гіперболічних лінійних рівнянь другого порядку.

Розглянемо основний диференціальний оператор другого порядку:

$$Lu = \nabla \cdot (p(x)\nabla u) - q(x)u. \tag{3.8.1}$$

Запишемо основні диференціальні рівняння:

• Еліптичне рівняння:

$$Lu = -F(x), \quad x \in \Omega \subset \mathbb{R}^n.$$
 (3.8.2)

• Параболічне рівняння:

$$\rho(x)\frac{\partial u}{\partial t} = Lu + F(x,t), \quad x \in \Omega, \quad t > t_0.$$
 (3.8.3)

• Гіперболічне рівняння:

$$\rho(x)\frac{\partial^2 u}{\partial t^2} = Lu + F(x,t), \quad x \in \Omega, \quad t > t_0.$$
 (3.8.4)

3.8.1 Гранична задача для еліптичного рівняння

Будемо розділяти внутрішні і зовнішні задачі для еліптичного рівняння.

Визначення 3.8.1.1 (внутрішньої і зовнішньої задач). Якщо $x \in \Omega$, то таку задачу будемо називати *внутрішньою*, якщо $x \in \Omega'$ — *зовнішньою*.

Зауваження 3.8.1.1 — В подальшому ми будемо розглядати класичні розв'язки граничних задач. Це означає, що рівняння і усі граничні умови виконуються в кожній точці області або границі.

Введемо обмеження на коефіцієнти рівняння p і q та вільний член F. Зокрема будемо припускати, що $p>0, p\in C^1\left(\overline{\Omega}\right), q\geq 0, q\in C\left(\overline{\Omega}\right),$ $F(x)\in C\left(\overline{\Omega}\right).$

Позначимо $\partial \Omega = S$ — поверхню на якій задаються граничні умови загального вигляду:

$$\alpha(x)\frac{\partial u}{\partial n} + \beta(x)u\Big|_{S} = V(x),$$
 (3.8.5)

де $\alpha, \beta \ge 0, \ \alpha, \beta, B \in C(S)$. З умови (3.8.5) можна отримати умови 1, 2, 3 роду:

1. Діріхле:

$$u|_{S} = \frac{V(x)}{\beta(x)}. (3.8.6)$$

2. Неймана:

$$\frac{\partial u}{\partial n}\Big|_{S} = \frac{V(x)}{\alpha(x)}.$$
 (3.8.7)

3. Ньютона:

$$\left. \frac{\partial u}{\partial n} + \frac{\beta}{\alpha} u \right|_{S} = \frac{V}{\alpha}. \tag{3.8.8}$$

Таким чином гранична задача для еліптичного рівняння може бути сформульована наступним чином:

Постановка задачі (граничної для еліптичного рівняння)

Знайти функцію $u(x) \in C^2(\Omega) \cap C^1(\overline{\Omega})$, яка в кожній внутрішній точці області Ω (для внутрішньої задачі) або Ω' (для зовнішньої задачі) задовольняє рівняння (3.8.2), а кожній точці границі S виконується одна з граничних умов (3.8.6), (3.8.7) або (3.8.8).

Визначення 3.8.1.2. У випадку зовнішньої граничної задачі в нескінченно віддаленій точці області слід задавати додаткові умови поведінки розв'язку. Такі умови називають умовами *регулярності* на нескінченості.

Зауваження 3.8.1.2 — Як правило вони полягають в завданні характеру спадання розв'язку і мають вигляд

$$u(x) = O\left(\frac{1}{|x|^{\alpha}}\right),\tag{3.8.9}$$

при $|x| \to \infty$, де α — деякий заданий параметр задачі.

3.8.2 Постановка змішаних задач для рівняння гіперболічного типу. Задача Коші для гіперболічного рівняння

Для постановки граничних задач рівняння гіперболічного типу (3.8.4) введемо просторово-часовий циліндр, як область зміни незалежних змінних x, t:

$$Z(\Omega, T) = \Omega \times (0, T]. \tag{3.8.10}$$

Для отримання єдиного розв'язку гіперболічного рівняння, на нижній основі просторово-часового циліндру $Z_0(\Omega,T)=\Omega\times\{t=0\}$ треба задати початкові умови:

$$u(x,0) = u_0(x), \quad x \in \Omega,$$
 (3.8.11)

$$\frac{\partial u(x,0)}{\partial t} = v_0(x), \quad x \in \Omega. \tag{3.8.12}$$

На боковій поверхні просторово-часового циліндру $Z_S(\Omega,T) = S \times (0,T]$ треба задати граничні умови одного з трьох основних типів:

1. Діріхле:

$$u|_{S} = \varphi(x, t). \tag{3.8.13}$$

2. Неймана:

$$\frac{\partial u}{\partial n}\Big|_{S} = \varphi(x, t).$$
 (3.8.14)

3. Ньютона:

$$\frac{\partial u}{\partial n} + \alpha(x, t)u\Big|_{S} = \varphi(x, t).$$
 (3.8.15)

Таким чином постановка граничної задачі для гіперболічного рівняння має вигляд:

Постановка задачі (граничної для гіперболічного рівняння)

Знайти функцію $u(x,t)\in C^{(2,2)}\Big(Z(\Omega,T)\Big)\cap C^{(1,1)}\Big(\overline{Z(\Omega,T)}\Big)$, яка задовольняє рівнянню (3.8.4) для $(x,t)\in Z(\Omega,T)$, початковим умовам (3.8.11), (3.8.12) для $(x,t)\in Z_0(\Omega,T)$, і в кожній точці $(x,t)\in Z_S(\Omega,T)$ одній з граничних умов (3.8.13)–(3.8.15).

Зауваження 3.8.2.1 — При цьому відносно вхідних даних будемо робити наступні припущення

$$p > 0, \quad p \in C^1(\overline{\Omega}), \quad q \ge 0, \quad q \in C(\overline{\Omega}), \quad F(x,t) \in C(\overline{Z(\Omega,T)}),$$

$$(3.8.16)$$

$$u_0, v_0 \in C(\overline{Z_0(\Omega,T)}), \quad \alpha, \varphi \in C(\overline{Z_S(\Omega,T)}), \quad \alpha \ge 0. \quad (3.8.17)$$

3.8.3 Задача Коші

У випадку, коли область Ω має великі розміри і впливом граничних умов можна знехтувати, область Ω ототожнюється з усім евклідовим простором, тобто $\Omega = \mathbb{R}^n$.

У зв'язку з відсутністю границі, граничні умови не задаються. В цьому випадку гранична задача трансформується в задачу Коші для гіперболічного рівняння яка ставиться наступним чином:

Постановка задачі (Коші для гіперболічного рівняння)

Знайти функцію $u(x,t)\in C^{(2,2)}\Big(Z(\mathbb{R}^n,T)\Big)\cap C^{(1,1)}\Big(\overline{Z(\mathbb{R}^n,T)}\Big)$, яка задовольняє рівнянню (3.8.4) для $(x,t)\in Z(\mathbb{R}^n,T)$, початковим умовам (3.8.11), (3.8.12) для $x\in\mathbb{R}^n$.

3.8.4 Постановка змішаних задач для рівняння параболічного типу

При постановці граничної задачі і задачі Коші для рівняння параболічного типу треба враховувати, що по часовій змінній рівняння має перший порядок, що і обумовлює деякі відмінності в постановці граничних задач.

Постановка граничної задачі для рівняння параболічного типу (3.8.3) має вигляд:

Постановка задачі (граничної для параболічного рівняння)

Знайти функцію $u(x,t)\in C^{(2,1)}\Big(Z(\Omega,T)\Big)\cap C^{(1,0)}\Big(\overline{Z(\Omega,T)}\Big)$, яка задовольняє рівняння (3.8.3) для $(x,t)\in Z(\Omega,T)$, початковим умовам (3.8.11) для $(x,t)\in Z_0(\Omega,T)$ і в кожній точці $(x,t)\in Z_S(\Omega,T)$ одній з граничних умов (3.8.13)–(3.8.15).

Аналогічні зміни необхідно запровадити і при постановці задачі Коші для рівняння параболічного типу.

Вправа 3.8.4.1. Записати самостійно постановку задачі Коші для параболічного рівняння (3.8.3).

3.8.5 Коректність задач математичної фізики

Зважуючи на фізичну природу задач математичної фізики, до них застосовуються наступні природні вимоги.

- 1. Існування розв'язку: задача повинна мати розв'язок (задача яка не має розв'язку не представляє інтересу як математична модель).
- 2. Єдиність розв'язку: не повинно існувати декілька розв'язків задачі.
- 3. Неперервна залежність від вхідних даних: розв'язок задачі повинен мало змінюватись при малій зміні вхідних даних.

Розглянемо математичну модель у вигляді наступної граничної задачі:

$$\begin{cases} Lu = f, & x \in \Omega, \\ \ell u = \varphi, & x \in S = \partial \Omega. \end{cases}$$
 (3.8.18)

Формулювання диференціального рівняння і граничних умов ще недостатньо що б гранична задача була сформульована однозначно. Необхідно додатково вказати які аналітичні властивості вимагаються від розв'язку, в якому розумінні задовольняється рівняння і граничні умови.

При аналізі граничної задачі виникають наступні питання:

- Чи може існувати розв'язок з відповідними властивостями?
- Які аналітичні властивості треба вимагати від вхідних даних $f, \varphi,$ коефіцієнтів диференціального оператора і граничних умов?

- Чи існують серед умов задачі такі, що протирічать одне одном?
- \bullet Які умови треба накладати на гладкість границі S?
- Чи достатньо сформульованих умов для однозначного знаходження розв'язку?
- Чи можна гарантувати, що малі зміни f, φ приведуть до малих змін розв'язку?

Перелічені проблеми зручно розв'язувати звівши граничну задачу до операторного рівняння. Застосувавши загальні методи теорії операторів та операторних рівнянь.

В першу чергу виберемо два бананових простора E та F.

Шуканий розв'язок розглядається як елемент E, а сукупність правих частин як елемент F.

Визначимо оператор A, як відображення $u \mapsto \{Lu, \varphi\}$, тоді гранична задача (3.8.18) зводиться до операторного рівняння

$$Au = g, \quad g = \{f, \varphi\}.$$
 (3.8.19)

Позначимо R(A) та D(A) — область значень та область визначення оператора A. Коректність операторного рівняння визначають для пари просторів E та F.

Твердження 3.8.5.1

В термінах операторного рівняння (3.8.19) існування розв'язку означає, що область значень оператора R(A) є не порожня підмножина F.

Твердження 3.8.5.2

Єдиність розв'язку означає, що відображення $A:D(A)\to R(A)$ ін'єктивне і на R(A) визначений обернений оператор A^{-1} .

Визначення 3.8.5.1 (ін'єктивного відображення). Відображення $A: D(A) \to R(A)$ називається *ін'єктивним*, якщо різні елементи множини D(A) переводяться в різні елементи множини R(A).

Твердження 3.8.5.3

Вимога неперервної залежності розв'язку від правої частини або стійкості граничної задачі зводиться до неперервності або обмеженості оператора A^{-1} .

3.8.6 Приклад Адамара

Приклад 3.8.6.1 (Адамара, некоректно поставленої задачі)

Розглянемо рівняння Лапласа

$$\frac{\partial^2 u}{\partial t^2} = -\frac{\partial^2 u}{\partial x^2}, \quad t > 0, \quad 0 < x < \pi.$$
 (3.8.20)

Додаткові умови

$$u|_{x=0} = u|_{x=\pi} = 0, \quad u|_{t=0} = 0, \quad \frac{\partial u}{\partial t}\Big|_{t=0} = \frac{\sin(kx)}{k}.$$
 (3.8.21)

Твердження 3.8.6.1

Для прикладу Адамара порушена умова непевної залежності розв'язку від вхідних даних.

Доведення. Розв'язок

$$u_k(x,t) = \frac{\sinh(kt)\sin(kx)}{k^2},$$
 (3.8.22)

причому $\forall x \in (0, \pi)$:

$$\lim_{k \to \infty} u_k(x, 0) = \lim_{k \to \infty} \frac{\sin(kx)}{k} = 0,$$
(3.8.23)

але $\forall t > 0, \forall x \in (0, \pi)$:

$$\lim_{k \to \infty} u_k(x, t) = \lim_{k \to \infty} \frac{\sinh(kt)\sin(kx)}{k^2} = \infty.$$
 (3.8.24)

3.8.7 Класичний і узагальнений розв'язки

Визначення 3.8.7.1 (класичного розв'язку). Класичний розв'язок — це розв'язок, який задовольняє рівнянню, початковим і граничним умовам в кожній точці, області, або границі.

Це означає, що класичний розв'язок повинен мати певну гладкість, яка визначається порядком похідних рівняння і порядком похідних граничних і початкових умов.

Розглянемо рівняння

$$\nabla \cdot (p(x)\nabla u) - q(x)u = -F(x), \quad x \in \Omega$$
 (3.8.25)

та однорідні умови

$$u|_{S} = 0. (3.8.26)$$

Отримаємо для нього відповідне інтегральне співвідношення.

Розглянемо функцію v(x), таку, що $v|_S = 0$, помножимо рівняння на v та проінтегруємо по Ω :

$$\iiint_{\Omega} v \left(\nabla \cdot (p(x)\nabla u) - u \right) d\Omega = - \iiint_{\Omega} Fv d\Omega.$$
 (3.8.27)

Після інтегрування за частинами отримаємо:

$$\iiint_{\Omega} (p \langle \nabla u, \nabla v \rangle) - quv) d\Omega + \iint_{S} pv \frac{\partial u}{\partial n} dS = - \iiint_{\Omega} Fv d\Omega.$$
 (3.8.28)

Остаточно, після врахування граничних умов маємо:

$$\iiint_{\Omega} (p \langle \nabla u, \nabla v \rangle) + quv) d\Omega = \iiint_{\Omega} Fv d\Omega.$$
 (3.8.29)

Інтегральна тотожність має зміст для більш широкого класу функцій ніж той якому належить класичний розв'язок граничної задачі і коефіцієнти рівняння.

Якщо $u,v\in C^2(\Omega)\cap C(\overline{\Omega}),\,p\in C^1(\Omega,\,q\in C(\Omega))$ то з тотожності (3.8.29), обернений ланцюжок перетворень дозволяє отримати граничну задачу (3.8.25), (3.8.26). Але (3.8.29) має зміст для функцій більш широкого класу, а саме $F,u,v,\nabla u,\nabla v\in L_2(\Omega),\,p,\,q$ — обмежені. Це дозволяє використовувати інтегральну тотожність (3.8.26) для визначення узагальненого розв'язку граничної задачі (3.8.25), (3.8.26).

Для цього введемо множину $N_2 = \{u|u, \nabla u \in L_2(\Omega), u|_S = 0\}.$

Визначення 3.8.7.2 (узагальненого розв'язку). Узагальненим розв'язком граничної задачі (3.8.25), (3.8.26) будемо називати довільну функцію $u \in N_2$, таку, що $\forall v \in N_2$ має місце інтегральна тотожність (3.8.29).

3.8.8 Формально спряжені оператори. Друга формула Гріна

Будемо розглядати лінійний диференціальний оператор

$$Lu = \sum_{i,j=1}^{N} \frac{\partial}{\partial x_j} \left(A_{i,j}(x) \frac{\partial u}{\partial x_i} \right) + \sum_{k=1}^{N} B_k(x) \frac{\partial u}{\partial x_k} + C(x)u.$$
 (3.8.30)

Будемо припускати, що $A_{i,j} = A_{j,i} \in C^1(\overline{\Omega}), B_k \in C(\overline{\Omega}), u \in C^2(\overline{\Omega}).$ Розглянемо інтеграл:

$$\iiint_{\Omega} v L u \, dx = \iiint_{\Omega} v \left(\sum_{i,j=1}^{N} \frac{\partial}{\partial x_{j}} \left(A_{i,j}(x) \frac{\partial u}{\partial x_{i}} \right) + \sum_{k=1}^{N} B_{k}(x) \frac{\partial u}{\partial x_{k}} + C(x) u \right) dx.$$
(3.8.31)

Для перетворення першої і другої суми застосуємо формулу інтегрування за частинами:

$$\iiint_{\Omega} v(x) \frac{\partial u(x)}{\partial x_i} dx = \iint_{S} v(x) u(x) \cos(n, x_i) dx - \iiint_{\Omega} u(x) \frac{\partial v(x)}{\partial x_i} dx.$$
(3.8.32)

Після однократного застосування формули інтегрування за частинами отримаємо:

$$\iiint_{\Omega} vLu \, dx =$$

$$= \iiint_{\Omega} \left(-\sum_{i,j=1}^{n} A_{i,j}(x) \frac{\partial u}{\partial x_i} \frac{\partial v}{\partial x_j} - \sum_{k=1}^{n} \frac{\partial}{\partial x_k} (B_k(x)v)u + C(x)uv \right) dx +$$

$$+ \oiint_{S} \left(\sum_{i,j=1}^{N} A_{i,j}(x) \frac{\partial u}{\partial x_i} \cos(n, x_j) + \sum_{k=1}^{N} B_k(x)uv \cos(n, x_k) \right) dS.$$
(3.8.33)

Продовжимо інтегрування за частинами до першого інтегралу по області Ω , перекидаючи похідну з функції u:

$$\Psi = \iiint_{\Omega} \left(\sum_{i,j=1}^{N} u \frac{\partial}{\partial x_{i}} \left(A_{i,j}(x) \frac{\partial v}{\partial x_{j}} \right) - \sum_{k=1}^{n} \frac{\partial}{\partial x_{k}} (B_{k}(x)v)u + C(x)uv \right) dx +$$

$$+ \oiint_{S} \left(\sum_{i,j=1}^{n} A_{i,j}(x) \left(\frac{\partial u}{\partial x_{i}}v - \frac{\partial v}{\partial x_{i}}u \right) \cos(n, x_{j}) + \sum_{k=1}^{N} B_{k}(x)uv \cos(n, x_{k}) \right) dS.$$
(3.8.34)

Введемо наступний оператор:

$$Mu = \sum_{i,j=1}^{n} \frac{\partial}{\partial x_j} \left(A_{i,j}(x) \frac{\partial u}{\partial x_i} \right) - \sum_{k=1}^{N} \frac{\partial}{\partial x_k} (B_k(x)u) + C(x)u.$$
 (3.8.35)

Визначення 3.8.8.1 (формально спряженого оператора). Оператор M називається формально спряженим до оператора L.

Враховуючи це позначення, останню формулу можна записати у вигляді:

$$\iiint_{\Omega} (VLu - uMv) \, dx =$$

$$= \oiint_{S} \left(\sum_{i,j=1}^{N} A_{i,j}(x) \left(\frac{\partial u}{\partial x_{i}} v - \frac{\partial v}{\partial x_{i}} u \right) \cos(n, x_{j}) + \right.$$

$$+ \sum_{k=1}^{n} B_{k}(x) uv \cos(n, x_{k}) \, dS.$$
(3.8.36)

Визначення 3.8.8.2 (другої формули Гріна). Ця формула називається *другою формулою Гріна*.

Розглянемо основні оператори математичної фізики другого порядку з постійними коефіцієнтами:

- 1. Гельмгольца: $A_1 u = (\Delta + k^2) u$.
- 2. Теплопровідності: $A_2 u = \left(a^2 \Delta \frac{\partial}{\partial t}\right) u$.
- 3. Хвильовий: $A_3 u = \left(a^2 \Delta \frac{\partial^2}{\partial t^2}\right) u$.

Оскільки оператори A_1 , A_3 містять лише похідні другого порядку, то ці оператори є формально самоспряженими. Для оператора A_2 , згідно до визначення спряженим буде оператор $A_2^{\star}u = \left(a^2\Delta + \frac{\partial}{\partial t}\right)u$.

Запишемо другу формулу Гріна для кожного з основних операторів:

1. для Гельмгольца:

$$\iiint_{\Omega} (v(\Delta u + k^2 u) - u(\Delta v + k^2 v)) dx = \iint_{S} \left(v \frac{\partial u}{\partial n} - u \frac{\partial v}{\partial n} \right) dS; \quad (3.8.37)$$

2. для теплопровдіності:

$$\int_{t_0}^{T} \iiint_{\Omega} \left(v \left(a^2 u - \frac{\partial u}{\partial t} \right) - u \left(a^2 \Delta v + \frac{\partial v}{\partial t} \right) \right) dx dt =$$

$$= \int_{t_0}^{T} \iint_{S} a^2 \left(v \frac{\partial u}{\partial n} - u \frac{\partial v}{\partial n} \right) dS dt - \iiint_{\Omega} uv|_{t_0}^{T} dx. \quad (3.8.38)$$

3. для хвильового:

$$\int_{t_0}^{T} \iiint_{\Omega} \left(v \left(a^2 u - \frac{\partial^2 u}{\partial t^2} \right) - u \left(a^2 \Delta v - \frac{\partial^2 v}{\partial t^2} \right) \right) dx dt =$$

$$= \int_{t_0}^{T} \iint_{S} a^2 \left(v \frac{\partial u}{\partial n} - u \frac{\partial v}{\partial n} \right) dS dt - \iiint_{\Omega} \left(v \frac{\partial u}{\partial t} - u \frac{\partial v}{\partial t} \right) \Big|_{t_0}^{T} dx.$$
(3.8.39)