RNA seq: differential expression analysis

For INF-BIO 4121/9121 Fall semester 2016

Rebekah Oomen / Monica Hongrø Solbakken r.a.oomen@ibv.uio.no / m.h.solbakken@ibv.uio.no

INFBIO x121

Genome assembly

Statistical genomics

Basic HTS elements

Gene expression

Variant calling

INFBIO x121

Genome assembly

Statistical genomics

Basic HTS elements

Gene expression

Variant calling

Also called RNAseq and transcriptomics

Aims I

- You should be able to tell us:
 - Overall:
 - What is RNAseq?
 - Are there different kinds of RNAseq?
 - What is RNAseq used for?
 - In more depth:
 - How to design a RNAseq experiment for differential expression analysis
 - How to chose analysis strategy
 - Pitfalls in differential expression analysis (sequencing depth, batch effects, statistical approach etc.)

Aims I

- You should be able to tell us:
 - Overall:
 - What is RNAseq?
 - Are there different kinds of RNAseq?
 - What is RNAseq used for?
 - In more depth:
 - How to design a RNAseq experiment for differential expression analysis
 - How to chose analysis strategy
 - Pitfalls in differential expression analysis (sequencing depth, batch effects, statistical approach etc.)

Aims II

- You should be able to perform:
 - A reference based differential gene expression analysis with a pair-wise comparison involving several biological replicates
 - Present the overall statistics from that analysis
 (mapping percentage, variance, potential outliers, number of differentially expressed genes etc.)
 - Extract and present the main biological result(s)
 based on the annotation of the differentially
 expressed genes

Aims II

- You should be able to perform:
 - A reference based differential gene expression analysis with a pair-wise comparison involving several biological replicates
 - Present the overall statistics from that analysis (mapping percentage, variance, potential outliers, number of differentially expressed genes etc.)
 - Extract and present the main biological result(s)
 based on the annotation of the differentially
 expressed genes

Aims II

- You should be able to perform:
 - A reference based differential gene expression analysis with a pair-wise comparison involving several biological replicates
 - Present the overall statistics from that analysis (mapping percentage, variance, potential outliers, number of differentially expressed genes etc.)
 - Extract and present the main biological result(s)
 based on the annotation of the differentially
 expressed genes

Outline I

- RNAseq module day I
 - Introducing RNAseq
 - Experimental design and considerations
 - Experimental design exercise
 - The first steps of RNAseq exercise

Next generation sequencing and new possibilities

Moving away from model systems

Non-model species

The tree is the limit...

https://www.thinglink.com/scene/64508 3259847311362

Population variation

Inferred Population Structure Based on 1,048 Individuals and 993 Markers, Assuming Correlations among Allele Frequencies across Clusters.

Each individual is represented by a thin line partitioned into K colored segments that represent the individual's estimated membership fractions in K clusters.

Individual variation

A range of variability in the mussel Donax variabilis

By Debivort (Own work by Author) [GFDL (http://www.gnu.org/copyleft/fdl.html) or CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/)], via Wikimedia Commons

Quickly about transcription and old-school transcriptomics

Transcription

Copying information from DNA to a mobile RNA for regulatory or protein coding purposes

Transcription – all the RNAs

A transcriptome is a snapshot in time of all RNAs

present in a sample isolated from a given cell, tissue or organism

Transcription eukaryote mRNA

Splice variation eukaryotic mRNA

Obtaining transcriptomes I

Sanger cDNA library sequencing

- mRNA converted to the more stable cDNA
- cDNA cleaved and ligated into vectors
- Vectors amplified (cloned) in E. coli
- DNA isolated = cDNA library
- Sequenced on Sanger
- Low throughput
- High accuracy

Obtaining expression I

Quantitative RT-PCR

- qRT-PCR requires knowledge of gene sequence
- Hard manual work
- Low throughput
- Expression level relative to control (house-keeping gene)

Obtaining expression II

Microarray - expression determination

- Requires gene sequences for probe design
- High throughput compared to qRT-PCR
- Possibility of outsourcing
- Expression results relative to all probes

Next generation transcriptomics

Next generation transcriptomics

RNA sequencing

- Transcriptome and expression in one go
- No need for gene sequence information
- High throughput
- Can be outsourced
- Costly, but effective
- Expression results relative to all transcripts

RNAseq requires a different mindset

It's like watching a picture of the milky way when you are used to watching a picture of the sun...

We tend to think...

- Transcriptome = mRNA
- mRNA = Protein
- Protein = Biological relevance

Things are seldom as simple as clear cut...

Before interpreting function

- Remember:
 - RNA decay
 - RNA editing
 - RNA splicing
 - Translation regulation
 - RNA interference

— ...

Cons

- Heavily dependent on proper experimental design
- Enormous amounts of data
- No straight forward analysis
- Usually no clear-cut story from individual gene expressions

Pros

- Others have traversed the path you now set upon
- There are pipelines to help you manage the data
- Careful design will highlight your hypothesis beautifully
- The data you possess when you are finished are really cool and a great stepping stone for functional experiment

http://erika-vilches.com/

Uses of RNA data

Gene expression

Annotation of genome

Differential expression

Isoform analysis

Overall RNAseq pipeline

Where to start

Where to start

Very important -You cannot answer your biological question if the design is off!

Where to start

Where to start

Downstream options

Downstream options

Three ways to «Rome»Differential gene expression

Three ways to «Rome»Differential gene expression

Three ways to «Rome»Differential gene expression

Sample preparation

RNA isolation

- Aim for high quality RNA with good integrity and concentration
- Column based isolation loses all small RNAs
- Chloroform left-overs may interfere with sequencing reaction

Library preparation

- TotalRNA works for most applications
- Depending on sequencing instrument physical or enzymatic shearing might be needed (affects needed RNA input amount)
- More than 24 samples consider robot preparation

Library preparation II

- Depending on focus you may perform:
 - rRNA depletion
 - mRNA selection
 - Abundant transcript removal
 - smallRNA conservation
 - Skip library amplification
 - Strand specific library preparation

RNA enrichment / depletion

- Low conc. input RNA: deplete rRNA
- High conc. input RNA: enrich mRNA
- No polyA tail: deplete rRNA
- Enrich small RNA

RNA enrichment / depletion

Ribo-Zero Gold Kit: improved RNA-seq results after removal of cytoplasmic and mitochondrial ribosomal RNA Vladimir Benes, Jonathon Blake & Ken Doyle Nature Methods 8 (2011)

Library preparation – mRNA Illumina

Final library – mRNA Illumina

Gone from this: totalRNA with ribosomal peaks

To this:
mRNA selected
library with
~350 bp
fragment size

RNAseq technologies

Choose your sequencing technology

Differential expression

Read length

Genome resource

Model species

Novel transcripts

Isoforms

Paired-end

Money

Resources

- Computing power
 - Dedicated computer or access to computing cluster
- Genome resources
 - Reference or draft genome
 - Large toolkit available
- No genome
 - Small toolkit available

PacBio

- Long read sequencing technology
- 16 SMRT Cells
- Sequences entire RNAs up to 10 kb
- Reconstruction of isoforms
- Detection of novel transcripts
- Expression analysis
- Great for reference transcriptomes

PacBio sequencing well

Prof. Kjetill Jakobsen in fron t of the NSC' PacBio

Illumina

- Short read paired-end technology
- 2 flowcells 8 lanes each
- ~150 bp PE reads
- Reasonable reconstruction of isoforms
- Reasonable detection of novel transcripts
- Expression analysis
- Makes decent reference transcriptomes

Illumina HiSeq 4000

Sequencing output

Differential expression

- Model organism
 - Illumina >= 10 mill PE / sample
 - More for rare transcripts
- Non-model organism
 - Illumina >= 20 mill PE / sample
 - More for rare transcripts

Transcriptome assembly

- Depends on species
 - Illumina 100-150 mill PE reads minimum for vertebrates
 - For comparison yeast is sufficient with 4 mill PE stranded reads
 - PacBio vertebrate example:
 - ~25 000 full-length cDNAs
 - SMRT cells 1-2kb, 2-3kb and 3-6 kb

Experimental design