Lecture 4: Probability Theory and Randomized Algorithms

Angsheng Li

BeiHang University

Computational Theory 15, Oct., 2019

Outline

- 1. Recall probability theory
- 2. Algorithms
- 3. Tail Inequalities
- 4. Random walk and expander
- 5. Eigenvalue
- 6. PageRank and Google Matrix

General view

- Understanding the principles
- Applications of the principles
- Enjoy randomness powerful, useful, and beautiful

Laplace's definition

Definition

If S is a finite nonempty sample space of equally likely possible outcomes, and E is an event, i.e., a subset of S, then the *probability* of event E is:

$$\Pr[E] = \frac{|E|}{|S|},\tag{1}$$

that is, if x is uniformly picked at random, written $x \in_{\mathbb{R}} S$, then the probability that $x \in E$ is $\frac{|E|}{|S|}$.

We may restate the definition as

$$\Pr_{\mathbf{X} \in \mathbf{R}}[\mathbf{X} \in \mathbf{E}] = \frac{|\mathbf{E}|}{|\mathbf{S}|}.$$
 (2)

- In the Laplace's definition, it is assumed that all the possible outcomes in the sample space occur with equal probability
- The probability is defined by the sizes of various sets, so sets are the basic notions of probability, so probability can be defined by using the notions of sets
- According to the definition, probability is naturally accompanying with counting problems
- There is no structure in the sample space

Complement

Theorem

Let E be an event in a sample space S, and let $\bar{E} = S \setminus E$. Then

$$\Pr[\bar{\mathbf{E}}] = 1 - \Pr[\mathbf{E}]. \tag{3}$$

Union

Theorem

Let E_1 and E_2 be two events in the sample space S. Then,

$$\Pr[E_1 \cup E_2] = \Pr[E_1] + \Pr[E_2] - \Pr[E_1 \cap E_2].$$
 (4)

Probability distribution

Let *S* be a sample space of possible outcomes.

Definition

A *probability distribution* over S is a function

$$p: S \to [0,1]$$

such that the following properties are satisfied:

(1) For each $s \in S$,

$$0 \leq p(s) \leq 1$$

(2)

$$\sum_{s \in S} p(s) = 1.$$

(How to deal with the case, if the sum is $\neq 1$?)

Uniform distribution

Definition

Suppose that the sample space *S* has size *n*. Then the *uniform distribution* over *S* is to define

$$p(i) = \frac{1}{n}$$

for each $i \in S$.

Probability of an event

Suppose that *S* is a sample space, *E* is an event of *S*, and *p* is a probability distribution over *S*. Then, the *probability of the event E* is:

$$\Pr[E] = \sum_{s \in E} \rho(s). \tag{5}$$

Disjoint events

Theorem

Suppose that E_1, E_2, \cdots are pairwise disjoint events in a sample space S. Then, for $E = \bigcup_{i \ge 1} E_i$,

$$\Pr[E] = \sum_{i \ge 1} \Pr[E_i]. \tag{6}$$

Conditional probability

Definition

Let E, F be events with $\Pr[F] > 0$. We define the **conditional probability** of E under the condition of F, written, $\Pr[E|F]$, as follows:

$$\Pr[E|F] = \frac{\Pr[E \cap F]}{\Pr[F]}.$$
 (7)

By definition, if $\Pr[E] \cdot \Pr[F] > 0$, then

$$\Pr[E|F] \cdot \Pr[F] = \Pr[E \cap F] = \Pr[F|E] \cdot \Pr[E]. \tag{8}$$

Independency

Definition

Given events E, F, we say that E and F are **independent**, if:

$$\Pr[E \cap F] = \Pr[E] \cdot \Pr[F]. \tag{9}$$

Pairwise independency

We say that the events E_1, E_2, \dots, E_n are *pairwise independent*, if for all $i \neq j$,

$$\Pr[E_i \cap E_i] = \Pr[E_i] \cdot \Pr[E_i].$$

Mutual independency

We say that the events E_1, E_2, \dots, E_n are mutually independent, if for any set $X \subset [n]$,

$$\Pr[\cap_{x\in X} E_x] = \prod_{x\in X} \Pr[E_x].$$

Bernoulli Trails

A Bernoulli trail is an execution of an experiment that has only two possible outcomes, written 0 and 1, respectively.

- 1: success, true, head
- 0: failure, false, tail

Generally, the possible outcomes of a Bernoulli trail are 1 and 0 for which the probability that 1 occurs is p, and the probability that 0 occurs is q = 1 - p.

Binomial distribution theorem

Theorem

The probability of exactly k successes in n independent Bernoulli trails with probability p of 1, and q = 1 - p of 0, is

$$\binom{n}{k}p^k(1-p)^{n-k}. (10)$$

Proof

For the Bernoulli trail, let p(1) = p, and p(0) = q = 1 - p. Then, every string $a \in \{0, 1\}^n$ is a possible outcome of the n independent Bernoulli trails.

For every possible outcome $a = a_1 a_2 \cdots a_n$, by the independency,

$$p(a) = \prod_{i=1}^{n} p(a_i).$$

Let E be the event that there are exactly k 1's in n independent Bernoulli trails. Then, for every $a \in E$,

$$p(a) = p^k (1 - p)^{n-k}.$$

Proof - continued

By definition, $|E| = \binom{n}{k}$. Therefore,

$$\Pr[E] = \sum_{a \in E} p(a) = \binom{n}{k} p^k (1-p)^{n-k}. \tag{11}$$

We write

$$b(k; n, p) = \binom{n}{k} p^k (1 - p)^{n-k},$$

called the binomial distribution, since

$$\sum_{k=0}^{n} \binom{n}{k} p^{k} q^{n-k} = (p+q)^{n} = 1,$$

for q = 1 - p.

Applications

- Primality test
- Fingerprinting
- Error correcting code
- Hash functions
- And more to come

Bayes' Theorem

Theorem

Given events E, F in a sample space S, if $\Pr[E] \cdot \Pr[F] > 0$, then

$$\Pr[F|E] = \frac{\Pr[E|F] \cdot \Pr[F]}{\Pr[E|F] \cdot \Pr[F] + \Pr[E|\bar{F}] \cdot \Pr[\bar{F}]}.$$
 (12)

Intuition

The probability of F under the condition of event E can be expressed by the probability of E under the conditions of both the event F and the complement of F.

Proof

$$\Pr[E|F] \cdot \Pr[F] = \Pr[E \cap F].$$

$$\Pr[F|E] \cdot \Pr[E] = \Pr[E \cap F].$$

$$\Pr[\boldsymbol{E}|\boldsymbol{F}] \cdot \Pr[\boldsymbol{F}] + \Pr[\boldsymbol{E}|\bar{\boldsymbol{F}}] \cdot \Pr[\bar{\boldsymbol{F}}] = \Pr[\boldsymbol{E}].$$

(3) follows from

$$E = E \cap S = E \cap (F \cup \overline{F}) = (E \cap F) \cup (E \cap \overline{F}), \tag{13}$$

for disjoint sets $E \cap F$ and $E \cap \overline{F}$.

By the definition of conditional probability,

$$\Pr[F|E] = \frac{\Pr[F \cap E]}{\Pr[E]}.$$
 (14)

The theorem follows from (1) - (3).

Generalised Bayes' Theorem

Theorem

Suppose

- (i) E is an event in sample space S,
- (ii) F_1, F_2, \dots, F_n are events that form a partition of S, and

(iii)
$$\Pr[E] \cdot \prod_{i=1}^{n} \Pr[F_i] > 0.$$

Then, for every $j \in [n]$,

$$\Pr[F_j|E] = \frac{\Pr[E|F_j] \cdot \Pr[F_j]}{\sum\limits_{i=1}^{n} \Pr[E|F_i] \cdot \Pr[F_i]}.$$
 (15)

Understanding

Suppose that

- 1. E is a cancer, say, lung cancer
- 2. F_1, F_2, \dots, F_n are all the causes of lung cancer
- 3. The known data include: for each i
 - the probability of every cause F_i ,
 - the probability of lung cancer occurs when cause i occurs

The generalised Bayes' Theorem allows to compute the probability that a lung cancer is caused exactly by cause F_j , for each j.

This understanding allows the theorem to be applied in a wide range of applications in engineering, and data mining etc.

Expectation

Definition

Let *S* be a sample space. A **random variable** on *S* is a function of the form:

$$X: S \to \mathbb{R}^{\geq 0}.$$
 (16)

Definition

Let S be a sample space, and X be a random variable on S. Then the *expectation* of X, written E[X], is defined by

$$E[X] = \sum_{s \in S} p[s] \cdot X(s). \tag{17}$$

The *deviation of X at s* \in *S* is:

$$X(s) - E[X]$$
.

Basic property

Theorem

If X is a random variable, p(s) is a probability distribution of sample space S, then

(1) For every $r \in \mathbb{R}^{\geq 0}$,

$$\Pr[X = r] = \sum_{X(s) = r, s \in S} \rho(s).$$

$$E[X] = \sum_{r} \Pr[X = r] \cdot r.$$

Proof

Proof.

(1) is by definition. For (2).

$$\begin{split} E[X] &= \sum_{s \in S} p(s) X(s) = \sum_{r} \sum_{s \in S, X(s) = r} p(s) \cdot r \\ &= \sum_{r} r \cdot \Pr[X = r]. \end{split}$$

Linearity of Expectation

Theorem

If X_i , $i = 1, 2, \dots, n$ are random variables on S, not necessarily independent, for $X = \sum_{i=1}^{n} X_i$, and for $\alpha, \beta \geq 0$,

(1)

$$E[X] = \sum_{i=1}^{n} E[X_i].$$

$$E[\alpha X + \beta] = \alpha E[X] + \beta.$$

Proof

Proof. For (1).

$$E[X] = \sum_{s \in S} p(s)X(s)$$

$$= \sum_{s \in S} p(s)(X_1(s) + \dots + X_n(s))$$

$$= \sum_{i=1}^{n} \sum_{s \in S} p(s)X_i(s)$$

$$= \sum_{i=1}^{n} E[X_i].$$

For (2). Similarly by definition.

Expectation of Bernoulli trails

Theorem

The expected number of successes when n independent Bernoulli trails are performed, where p is the probability of success on each trail, is

np.

Proof.

By the linearity of expectation.

The Geometric Distribution

Suppose that the probability that a coin comes up tails is p. The coin is flipped repeatedly until it comes up tails. What is the expected number of flips?

Let *X* be the random number of times of flips that come up tail for the first time. Then:

$$\Pr[X = k] = (1 - p)^{k-1} p.$$
 (18)

This leads to

Definition

A random variable X has a *geometric distribution with* parameter p, if:

$$\Pr[X = k] = (1 - p)^{k-1} p, \ k \ge 1.$$
 (19)

Expectation of Geometric distribution

Theorem

If the random variable X has the geometric distribution with parameter p, then

$$E[X] = \frac{1}{p}$$
.

Proof.

$$E[X] = \sum_{k=1}^{\infty} k \cdot \Pr[X = k]$$
$$= \sum_{k \ge 1} k \cdot (1 - p)^{k-1} p$$
$$= \frac{1}{p}.$$

Expectation of Geometric distribution - understanding

If the probability that an event occurs, is p, then on the average, $\frac{1}{p}$ many times experiments will make sure that, the event must occur.

Independent Random Variables

Definition

We say that random variables *X* and *Y* on *S* are *independent*, if:

$$\Pr[X = x \& Y = y] = \Pr[X = x] \cdot \Pr[Y = y].$$
 (20)

Theorem

If X and Y are independent random variables on a sample space S, then

$$E[X \cdot Y] = E[X] \cdot E[Y].$$

Variance

Definition

Let X be a random variable on a sample space S. The *variance* of X, denoted by Var[X], is defined by

$$\operatorname{Var}[X] = \sum_{s \in S} (X(s) - E[X])^2 \rho(s). \tag{21}$$

The **standard deviation** of X, written $\sigma(X)$, is defined by

$$\sigma(\mathbf{X}) = \sqrt{\operatorname{Var}[\mathbf{X}]}.$$
 (22)

Theorem of Deviation

Theorem

If X is a random variable on a sample space S, then

$$Var[X] = E[X^2] - (E[X])^2 = E[(X - E[X])^2].$$
 (23)

Proof.

$$Var[X] = \sum_{s \in S} (X(s) - E[X])^{2} p(s)$$

$$= \sum_{s \in S} X^{2}(s) p(s) - 2E[X] \sum_{s \in S} X(s) p(s) + (E[X])^{2} \sum_{s \in S} p(s)$$

$$= E[X^{2}] - (E[X])^{2}$$

$$= E[(X - E[X])^{2}].$$

Bienaymé's formula

Theorem

1. If X, Y are independent random variables on a sample space S, then

$$Var[X + Y] = Var[X] + Var[Y].$$

2. If X_1, X_2, \dots, X_n are pairwise independent random variables on S, then

$$\operatorname{Var}[X_1 + \dots + X_n] = \operatorname{Var}[X_1] + \dots + \operatorname{Var}[X_n].$$

Proof

$$\begin{aligned} & \operatorname{Var}[X_{1} + \cdots X_{n}] \\ &= E[(X_{1} + \cdots + X_{n})^{2}] - (E[X_{1} + \cdots + X_{n}])^{2} \\ &= \sum_{i=1}^{n} E[X_{i}^{2}] + 2E_{i < j}[X_{i}X_{j}] - (\sum_{i=1}^{n} E[X_{i}])^{2} \\ &= \sum_{i=1}^{n} (E[X_{i}^{2}] - (E[X_{i}])^{2}), \text{ using pairwise independency} \\ &= \sum_{i=1}^{n} \operatorname{Var}[X_{i}]. \end{aligned}$$

The variance of *n* independent Bernoulli trails

$$E[X_i] = p$$
.

$$X_i^2 = X_i$$

$$Var[X_i] = E[X_i^2] - (E[X_i])^2 = p - p^2 = p(1-p).$$

$$Var[X_1 + X_2 + \cdots X_n] = npq, q = 1 - p.$$

Occupancy problem

Given m balls and n bins, each ball is randomly put in one of the n bins.

Questions

- 1) What is the maximum number of balls in any bin?
- 2) What is the expected number of bins with *k* balls in them?

Sum Principle

For arbitrary events E_1, E_2, \dots, E_n , not necessarily independent,

$$\Pr[\cup_{i=1}^n E_i] \le \sum_{i=1}^n \Pr[E_i]. \tag{24}$$

We will use this simple principle to answer the questions.

The events

Consider the case m = n.

- For each i, $1 \le i \le n$, define X_i to be the number of balls in the ith bin. Clearly, $E[X_i] = 1$.
- Define the event:
 E_i(k): Bin j has k or more balls.

Therefore,

$$\Pr[E_1(k)] \leq \sum_{i=k}^{n} (\frac{e}{i})^i$$

$$\leq (\frac{e}{k})^k (1 + \frac{e}{k} + (\frac{e}{k})^2 + \cdots).$$

The probability estimation

Set $k^* = \frac{3 \ln n}{\ln \ln n}$, then

$$\Pr[\mathcal{E}_1(k^*)] \le (\frac{e}{k^*})^{k^*} \frac{1}{1 - e/k^*} \le n^{-2}.$$
 (25)

By the same reason, for each i, $1 \le i \le n$,

$$\Pr[\mathbf{E}_i(\mathbf{k}^*)] \leq \mathbf{n}^{-2}.$$

By the sum principle,

$$\Pr[\cup_{i \ge 1} E_i(k^*)] \le \sum_{i=1}^n \Pr[E_i(k^*)]$$
$$\le n \cdot n^{-2} = \frac{1}{n}.$$

Theorem

Theorem

With probability at least $1 - \frac{1}{n}$, no bin has more than $k^* = \frac{e \ln n}{\ln \ln n}$ balls in it.

Corollary. For $m = n \log n$, with probability 1 - o(1), every bin contains $O(\log n)$ balls.

The Markov Inequality

Let X be a discrete random variable and f(x) be any real-valued function. The *expectation* of f(X) is defined by

$$E[f(X)] = \sum_{x} f(x) \cdot \Pr[X = x]. \tag{26}$$

Theorem

(Markov Inequality) Let Y be a random variable assuming only non-negative values. Then for all $t \in \mathbb{R}^+$,

$$\Pr[Y \ge t] \le \frac{E[Y]}{t}.\tag{27}$$

Equivalently,

$$\Pr[Y \ge k \cdot E[Y]] \le \frac{1}{k}.$$
 (28)

Proof

Proof.

Define a function f(y) by

$$f(y) = \begin{cases} 1, & \text{if } y \ge t \\ 0, & \text{o.w.} \end{cases}$$
 (29)

Then,

$$\Pr[Y \ge t] = E[f(Y)].$$

Since $f(y) \leq \frac{y}{t}$ for all y,

$$E[f(Y)] \leq E[\frac{Y}{t}] = \frac{E[Y]}{t},$$

and the theorem follows.

Chebyshev's Inequality

Theorem

(Chebyshev's Inequality) Let X be a random variable with expectation μ and standard deviation σ . Then for any $t \in \mathbb{R}^+$,

$$\Pr[|X - \mu| \ge t \cdot \sigma] \le \frac{1}{t^2}.$$
 (30)

Proof

Proof. First.

$$\Pr[|X - \mu| \ge t\sigma] = \Pr[(X - \mu)^2 \ge t^2\sigma^2].$$

The random variable $Y=(X-\mu)^2$ has expectation σ^2 , and applying the Markov inequality to Y bounds this probability from above by $\frac{1}{t^2}$.

Principle of Deferred Decision

Question: Order independency.

Random Subsum Principle: Let a be a nonzero element in $GF(2)^n$. Then;

$$\Pr_{\mathbf{x} \in_{\mathbf{R}GF(2)^n}} [\mathbf{a} \cdot \mathbf{x} = 0] = \frac{1}{2}.$$
 (31)

Proof.

Let $\mathbf{a} = (\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n)$ with $\mathbf{a}_1 \neq 0$ say. For a random $\mathbf{x} \in \mathrm{GF}(2)^n$,

$$\mathbf{a} \cdot \mathbf{x} = 0 \iff \mathbf{a}_1 \mathbf{x}_1 + \mathbf{a}_2 \mathbf{x}_2 + \cdots + \mathbf{a}_n \mathbf{x}_n = 0 \pmod{2}$$

 $\iff \mathbf{x}_1 = -(\mathbf{a}_2 \mathbf{x}_2 + \cdots + \mathbf{a}_n \mathbf{x}_n) \mod{2}.$

Case 1 x_2, \dots, x_n are chosen before x_1 . Done **Case 2**. Otherwise. The same result holds by the principle of deferred decision.

The Coupon Collection Problem

- There are *n* types of coupons
- At each trial, a coupon is picked randomly
- Let m be the number of trials.

Question: What is the relationship between *m* and the probability that each type of the coupons has been collected. Let *X* be the random number of trails required to collect at least one copy of each of the coupons.

Let C_1, C_2, \dots, C_X denote the sequence of trials, where C_i denotes the type of the coupon that is picked by the *i*th trial. We say that the *i*th trial is *successful*, if C_i is different from C_j for all i < i.

Clearly, C_1 and C_X are both successful.

Analysis

For each i, define X_i to be the random number of trails that picks the (i+1)-th new type of coupons. Then

$$X_0 = 1$$

$$X = \sum_{i=0}^{n-1} X_i.$$

Let p_i be the probability of success on any trail of the *i*th epoch. Then

$$p_i = \frac{n-i}{n}$$

 X_i is geometrically distributed with parameter p_i , therefore,

$$E[X_i] = \frac{1}{\rho_i}, \ \mathrm{Var}[X_i] = \frac{1-\rho_i}{\rho_i^2}.$$

Analysis - continued

$$E[X] = E[\sum_{i=0}^{n-1} X_i] = \sum_{i=0}^{n-1} E[X_i]$$

$$= \sum_{i=0}^{n-1} \frac{n}{n-i} = n \sum_{i=0}^{n-1} \frac{1}{n-i}$$

$$= n \cdot (1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}) = nH_n.$$

 H_n is the *n*th *Harmonic number*, which is asymptotically equal to $\ln n + \Theta(1)$, implying that

$$E[X] = n \ln n + O(n).$$

Analysis - continued

Since the X_i 's are independent,

$$\sigma_X^2 = \sum_{i=0}^{n-1} \sigma_{X_i}^2 = \sum_{i=0}^{n-1} \frac{ni}{(n-i)^2}$$
$$= \sum_{i=1}^{n} \frac{n(n-i)}{i^2} = n^2 \sum_{i=1}^{n} \frac{1}{i^2} - nH_n.$$

The sum $\sum_{i=1}^{n} \frac{1}{i^2}$ converges to $\frac{\pi^2}{6}$ as n goes to infinity, hence

$$\lim_{n\to\infty}\frac{\sigma_X^2}{n^2}=\frac{\pi^2}{6}.$$

Analysis - continued

By the Chebyshev's Inequality,

$$\Pr[|X - n \ln n| \ge n] \le O(\frac{1}{n^2}).$$

The kth central moment

Definition

For $k \in \mathbb{N}$, the kth moment and the kth moment of a random variable X are defined by

$$\mu_X^k = E[X^k]$$

$$\sigma_X^k = E[(X - E[X])^k].$$

The expected value is the first moment, the variance is the 2nd central moment.

Probability generating function

Definition

Let X be a non-negative integer-valued random variable with the density function p. The *probability generating function* of X is

$$G_X(z) = E[z^X] = \sum_{i=0}^{\infty} p(i)z^i.$$
 (32)

Proposition: Let X be a non-negative integer-valued random variable with the probability generating function G(z). Then:

- 1. G(1) = 1.
- 2. E[X] = G'(1).
- 3. $E[X^2] = G''(1) + G'(1)$.
- 4. $Var[X] = G''(1) + G'(1) G'(1)^2$.

Distributions

1. Bernoulli distribution

$$E[X] = p$$
, $Var[X] = pq$ and $G(z) = q + pz$, for $q = 1 - p$.

2. Binomial distribution

$$E[X] = np$$
, $Var[X] = npq$, and $G(z) = (q + pz)^n$, for $q = 1 - p$.

3. Geometric distribution

$${\cal E}[X]=rac{1}{p}, {
m Var}[X]=q/p^2,$$
 and ${\cal G}(z)=pz/(1-qz)$ for $q=1-p.$

Linearity of expectation

For **any** random variables X and Y,

$$E[X + Y] = E[X] + E[Y].$$
 (33)

Basic properties

- 1. If a_1, a_2, \dots, a_n are some numbers whose average is c, then there exists an i such that $a_i \ge c$.
- 2. If X is a random variable which takes values from a finite set and $E[X] = \mu$, then

$$\Pr[X \ge \mu] > 0.$$

3. If $a_1, a_2, \dots, a_n \ge 0$ are numbers whose average is c, then the fractions of a_i 's that are $\ge k \cdot c$ is at most $\frac{1}{k}$.

Markov inequality

Let X be a positive random variable. Then

$$\Pr[X \ge k \cdot E[X]] \le \frac{1}{k}.\tag{34}$$

More properties

- 1. If a_1, a_2, \cdots, a_n are numbers in the interval [0, 1] whose average is ρ , then there are at least $\frac{\rho}{2}$ fraction of the a_i 's that are at least $\geq \frac{\rho}{2}$.
- 2. If $X \in [0,1]$ and $E[X] = \mu$, then for any c < 1,

$$\Pr[X \le c\mu] \le \frac{1-\mu}{1-c\mu}.$$

Variance

The variance of a random variable X is:

$$Var[X] = E[(X - E[X])^{2}]$$

$$= E[X^{2}] - (E[X])^{2}.$$
(35)

The standard deviation of X is:

$$\sigma(X) = \sqrt[2]{\text{Var}[X]}.$$
 (36)

Chebyshev inequality

If X is a random variable with standard deviation σ , then for every k > 0,

$$\Pr[|X - E[X]| > k \cdot \sigma] \le \frac{1}{k^2}.$$
 (37)

Proof. Applying Markov to $(X - E[X])^2$.

Variance property

If X_1, X_2, \dots, X_n are pairwise independent, then

$$\operatorname{Var}\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right]. \tag{38}$$

Max-Cut

Max-Cut Given an undirected graph G=(V,E) with n vertices and m edges, the $maximum\ cut$ problem, denoted Max-Cut, is to find a set $X\subset V$ such that the number of edges between X and the complement \bar{X} of X, written $e(X,\bar{X})$, is maximised. Or, let E(X,Y) be the set of all the edges of G with one endpoint in X and the other in Y. Then e(X,Y)=|E(X,Y)|. The problem is NP-hard.

Theorem

For any undirected graph G = (V, E) with n vertices and m edges, there is a partition of the vertex set V into two sets A and B such that

$$e(A, B) \ge \frac{m}{2}.$$

Probabilistic Algorithm

Proof.

We define the cut (A, B) as follows:

Each vertex in V is independently and equiprobably assigned to either A or B.

Then for every edge $e = (x, y) \in E$, with probability $\frac{1}{2}$, the edge e = (x, y) is in the cut (A, B).

Define random variable X_e by

$$X_e = \begin{cases} 1, & \text{if the edge } e \text{ is in the cut } (A, B), \\ 0, & \text{otherwise.} \end{cases}$$
 (39)

Then for every edge e, $E[X_e] = \frac{1}{2}$. By the linearity of expectation,

$$E[e(A,B)] = \sum_{e \in E} E[X_e] = \frac{m}{2}.$$

Deterministic Algorithm

The theorem implies that there is a cut of size at least $\frac{m}{2}$. Is there a polynomial time algorithm to find such a cut? **Algorithm** C:

- (1) Let $e = (u, v) \in E$ be an edge of G.
 - put u into A, written $u \searrow A$,
 - put v into B, i.e., $v \searrow B$.
- (2) For every vertex $x \in V \setminus (A \cup B)$, Case 2a If e(x, A) > e(x, B), then

$$x \searrow B$$
,

and

Case 2b. Otherwise. Then

$$x \setminus A$$
.

Proof

At every step i, at which we decide a vertex x in A or B, we consider m_i edges. The algorithm $\mathcal C$ ensures that at least $\lceil \frac{m_i}{2} \rceil$ edges in the cut.

Therefore,

$$e(A, B) \geq \sum_{i} \lceil \frac{m_{i}}{2} \rceil$$

 $\geq \frac{m}{2}$.

Time complexity: O(n).

$\frac{1}{2}$ -approximation algorithm

Note that the maximum number of edges in the cut is at most m. We use OPT to denote the solution for the Max-Cut. Then

Our algorithm C outputs a cut (A, B) such that

$$e(A, B) \ge \frac{1}{2} \cdot \text{OPT}.$$

This means that the algorithm C is a $\frac{1}{2}$ -approximation algorithm for the Max-Cut problem.

Open Question Is there a polynomial time algorithm that gives approximation ratio better than $\frac{1}{2}$ for the Max-Cut problem?

Maximum Satisfiability

Assume the conjunctive norm form (CNF) of formula. Given a CNF formula ϕ of n variables and m clauses, that is, ϕ is of the following form:

$$\phi: C_1 \wedge C_2 \wedge \cdots \wedge C_m,$$

where each C_i is a clause of the form:

$$z_1 \vee z_2 \vee \cdots \vee z_k$$

in which each z_j is either a variable x or the negation $\neg y$ of a variable y, referred to as literal.

The question is to find an assignment for the n variables such that the number of satisfied clauses among the m clauses is maximised.

We use **MAX SAT** to denote the problem. Clearly, it is NP-hard.

Probabilistic Algorithm

Consider a clause C of k variables of the form:

$$C = y_1 \vee y_2 \vee \cdots \vee y_k$$
, each y_j is a literal.

Suppose that for each variable x occurred in C, x is defined independently and randomly with equal probability to either 0 or 1. Then the probability that C is satisfied is $1 - \frac{1}{2^k}$.

Suppose that all the variables are assigned randomly with equal probability to either 0 or 1.

For every clause *C*, define random variable

$$X_C = \begin{cases} 1, & \text{if } C \text{ is satisfied,} \\ 0, & \text{otherwise.} \end{cases}$$
 (40)

Then, if C contains k literals, then

$$E[X_C] = 1 - \frac{1}{2^k}.$$

Proof

Let
$$X = \sum_{C} X_{C}$$
.

Then X is the random number of the satisfied clauses of ϕ . Suppose that k_1, k_2, \dots, k_m are the number of literals of C_1, C_2, \dots, C_m , respectively. By the linearity of expectation,

$$E[X] = \sum_{i=1}^{m} (1 - \frac{1}{2^{k_i}}),$$

which can be computed independently from the random assignments.

Let
$$N_{\phi} = E[X]$$
.

- Generally, $E[X] \ge \frac{m}{2}$.
- If every clause has at least 2 literals, then $E[X] \ge \frac{3}{4}$.
- If every clause has at least 3 literals, then $E[X] \ge \frac{7}{8}$.

Deterministic Algorithm

Fix an ordering of all the variables of ϕ as

$$x_1, x_2, \cdots, x_n$$
.

Consider x_1 . There are two cases:

Case 1: $x_1 = 0$.

Let n_0 be the number of clauses of ϕ that are satisfied simply by $x_1 = 0$, and ϕ_0 be the formula obtained from ϕ by deleting the satisfied clauses and the literal x_1 .

Case 2: $x_1 = 1$.

Let n_1 be the number of clauses of ϕ that are satisfied simply by $x_1=1$, and ϕ_1 be the formula obtained from ϕ by deleting the satisfied clauses and the literal x_1 .

By the definition of N_{ϕ} ,

$$\frac{1}{2}(n_0 + N_{\phi_0}) + \frac{1}{2}(n_1 + N_{\phi_1}) = N_{\phi}. \tag{41}$$

Proof

Therefore, either $n_0 + N_{\phi_0} \ge N_{\phi}$ or $n_1 + N_{\phi_1} \ge N_{\phi}$.

Case 1: If $n_0 + N_{\phi_0} \ge N_{\phi}$, then

 $- \operatorname{set} x_1 = 0$, and

 $-\phi \leftarrow \phi_0$.

Case 2: Otherwise, then

 $-x_1 = 1$, and

 $-\phi \leftarrow \phi_1$.

In either case, repeat the procedure above, until we assigned a value for every variable x_i .

The assignment satisfies at least N_{ϕ} clauses.

Self-reducibility method

The method of the algorithm for the MAX SAT problem above is due to an important property of SAT, that is, the

self-reducibility property

This is a general idea for many algorithmic problems.

The method is referred to as

Self-reducibility method

The Chernoff bounds

Let X_1, X_2, \cdots, X_n be mutually independent random variables over $\{0,1\}$, and let $\mu = \sum_{i=1}^{n} E[X_i]$. Then for every $\delta > 0$,

$$\Pr[\sum_{i=1}^{n} X_i \ge (1+\delta)\mu] \le \left[\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right]^{\mu}.$$
 (42)

$$\Pr[\sum_{i=1}^{n} X_{i} \le (1-\delta)\mu] \le \left[\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right]^{\mu}.$$
 (43)

For every c > 0,

$$\Pr[|\sum_{i=1}^{n} X_i - \mu| \geq c \cdot \mu] \leq 2 \cdot e^{-\min\{c^2/4, c/2\} \cdot \mu}.$$

Poisson Trials

Recall: Let X_1, \dots, X_n be independent Bernoulli trials such that for $1 \le i \le n$, $\Pr[X_i = 1] = p$ and $\Pr[X_i = 0] = 1 - p$. Let $X = \sum_{i=1}^n X_i$, then X is said to have the binomial distribution.

Generally, let X_1, \dots, X_n be independent coin tosses such that for $1 \le i \le n$, $\Pr[X_i = 1] = p_i$ and $\Pr[X_i = 0] = 1 - p_i$. Such coin tosses are referred to as **Poisson trials**. Let $X = \sum_{i=1}^{n} X_i$, X_i are Poisson trials.

Clearly,

$$E[X] = \sum_{i=1}^{n} p_i = \mu \text{ (denoted)}$$
 (44)

Questions

- 1) For a real number $\delta > 0$, what is the probability of $X > (1 + \delta)\mu$?
- 2) How large must δ be in order that the tail probability is less than a prescribed value ϵ ?

The answer: The Chernoff bounds.

Moment Generating Function

For a random variable X, we call the quantity $E[e^{tX}]$ the moment generating function of X. Because:

$$E[e^{tX}] = \sum_{k=0}^{\infty} \frac{E[X^k]}{k!} t^k, \tag{45}$$

where $E[X^k]$ is the k-th moment of X, for natural number k. The idea to prove the Chernoff bounds is: the moment generating function + the Markov inequality.

Chernoff bound - lower bound

Theorem

Let X_1, X_2, \dots, X_n be independent Poisson trials such that for $1 \le i \le n$, $\Pr[X_i = 1] = p_i$ and $\Pr[X_i = 0] = 1 - p_i$, where $0 < p_i < 1$. Then, for $X = \sum_{i=1}^n X_i$, $\mu = E[X] = \sum_{i=1}^n p_i$ and any $\delta > 0$.

$$\Pr[X > (1+\delta)\mu] < \left[\frac{\mathbf{e}^{\delta}}{(1+\delta)^{(1+\delta)}}\right]^{\mu}.$$
 (46)

Concentration Theorem

Proof

For any positive real t,

$$\Pr[X > (1+\delta)\mu]$$

$$= \Pr[tX > t(1+\delta)\mu]$$

$$= \Pr[\exp(tX) > \exp(t(1+\delta)\mu)]$$

$$< \frac{E[\exp(tX)]}{\exp(t(1+\delta)\mu)},$$

the last inequality is by the Markov Inequality.

Proof - continued

Consider $E[\exp(tX)]$. By the independency of X_i 's, and hence $\exp(tX_i)$'s,

$$E[\exp(tX)] = E[\exp(t\sum_{i=1}^{n} X_i)]$$

$$= E[\prod_{i=1}^{n} \exp(tX_i)]$$

$$= \prod_{i=1}^{n} E[\exp(tX_i)].$$

This gives

$$\Pr[X > (1+\delta)\mu] < \frac{\prod\limits_{i=1}^{n} E[\exp(tX_i)]}{\exp(t(1+\delta)\mu)}.$$
 (47)

Proof - continued

By definition,

$$e^{tX_i} = \begin{cases} e^t, & \text{with probability } p_i, \\ 1, & \text{with probability } 1 - p_i. \end{cases}$$
 (48)

Therefore,

$$E[e^{tX_i}] = p_i e^t + 1 - p_i = 1 + p_i(e^t - 1).$$

For $x = p_i(e^t - 1)$, we use the inequality $1 + x < e^x$ to obtain:

Proof - continued

$$\Pr[\mathbf{X} > (1+\delta)\mu] < \frac{\prod\limits_{i=1}^{n} \exp(\mathbf{p}_{i}(\mathbf{e}^{t}-1))}{\exp(t(1+\delta)\mu)}$$
$$= \frac{\exp(\sum\limits_{i=1}^{n} \mathbf{p}_{i}(\mathbf{e}^{t}-1))}{\exp(t(1+\delta)\mu)}$$
$$= \frac{\exp((\mathbf{e}^{t}-1)\mu)}{\exp(t(1+\delta)\mu)}.$$

Proof -continued

Let
$$f = \frac{\exp((e^t - 1)\mu)}{\exp(t(1+\delta)\mu)}$$
.

Set f' = 0. Solving the equation, we obtain

$$t = \ln(1 + \delta).$$

For this choice of t,

$$f = \left[\frac{\mathbf{e}^{\delta}}{(1+\delta)^{(1+\delta)}}\right]^{\mu}.$$

Summary of the proof

- 1. We studied the random variable e^{tX} rather than X
- 2. The expectation of the product of the e^{tX_i} turns into the product of their expectations due to independence
- We pick a value of t to obtain the best possible upper bound.

The approach above works for the sum of other distributions.

Significance

- Usually, $\mu = \Theta(n)$
- For $\delta > 0$ such that

$$\frac{\mathbf{e}^{\delta}}{(1+\delta)^{(1+\delta)}} = \frac{1}{2},$$

then,

$$\left[rac{oldsymbol{e}^{\delta}}{(1+\delta)^{(1+\delta)}}
ight]^{\mu}=rac{1}{2^{\Theta(oldsymbol{n})}},$$

which is exponentially decreasing to 0.

The Laws of Large Number

Let X_1, X_2, \dots, X_n be independent Poisson trials such that for each i, $\Pr[X_i = 1] = p$ and $\Pr[X_i = 0] = 1 - p$, $0 . For <math>X = \sum_{i=1}^{n} X_i$. Then

$$\Pr[X > (1+\delta)np] < [(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}})^p]^n$$

which exponentially decreases to 0.

Chernoff bound - upper bound

Theorem

Let X_1, X_2, \dots, X_n be independent Poisson trials such that for $1 \le i \le n$, $\Pr[X_i = 1] = p_i$, $0 < p_i < 1$. Then, for $X = \sum_{i=1}^n X_i$, $\mu = E[X] = \sum_{i=1}^n p_i$ and δ with $0 < \delta < 1$, $\Pr[X < (1 - \delta)\mu] < \exp(-\mu \frac{\delta^2}{2}). \tag{49}$

Proof

As before,

$$\Pr[\mathbf{X} < (1 - \delta)\mu]$$

$$= \Pr[-\mathbf{X} > -(1 - \delta)\mu]$$

$$= \Pr[\exp(-t\mathbf{X}) > \exp(-t(1 - \delta)\mu)],$$

for any positive real t.

By Markov and the same argument as before,

$$\Pr[X < (1-\delta)\mu] < \frac{\prod_{i=1}^{n} E[\exp(-tX_i)]}{\exp(-t(1-\delta)\mu)}.$$
 (50)

Proof -continued

Computing $E[\exp(-tX_i)]$, we have

$$\Pr[X < (1 - \delta)\mu] < \frac{\exp(\mu(\boldsymbol{e}^{-\tau} - 1))}{\exp(-t(1 - \delta)\mu)}.$$

Set $t = \ln \frac{1}{1-\delta}$, we have

$$\Pr[X < (1-\delta)\mu] < \left[\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right]^{\mu}.$$
 (51)

For $\delta \in (0,1]$,

$$(1 - \delta)^{(1 - \delta)} > \exp(-\delta + \delta^2/2),$$

using the Mclaurin expansion for $ln(1 - \delta)$.

Martingales

There is a Martingale theory dealing with the case that X_i are not totally independent, with similar bounds. Powerful and useful in theoretical computer science.

Random Walk

- To understand the dynamics of physical systems
- To understand the operations, interactions and communications that occur in networks
- To understand virus spreading in networks
- To understand the evolution of systems in nature and society
- To understand the role of randomness

Expanders vs Randomness

Advanced topic and research directions: on the basis of randomness

- Communication networks
- Pseudo random generator
- Randomness
- Derandomisation
- UPATH is Log space
- PageRank

Conventions

For simplicity, we assume that the graphs are:

- regular
- selfloop
- parallel edges

Theory is possible for general graphs without these assumptions.

Inner product

$\langle u, v \rangle$

- $\langle xu + yv, w \rangle = x \langle u, w \rangle + y \langle v, w \rangle$
- $\langle v, u \rangle = \overline{\langle u, v \rangle}$, \bar{z} is the complex conjugation of z
- For all u, $\langle u, u \rangle \ge 0$, with 0 only if u = 0
- $\langle u, v \rangle = 0$ means u, v are orthogonal, written $u \perp v$
- If u^1, u^2, \dots, u^n satisfy $u^i \perp u^j$ for all $i \neq j$, then they are linearly independent.

Parseval's identity: If u^1, u^2, \dots, u^n form an orthonormal basis for C^n , then for every v, if $v = \sum_i \alpha_i u^i$, then

$$\langle \mathbf{v}, \mathbf{v} \rangle = \sum_{i=1}^{n} |\alpha_i|^2. \tag{52}$$

Hilbert space: Vector spaces with inner product.

Dot product

• For
$$u, v \in \mathbb{F}^n$$
, $u \odot v = \sum_{i=1}^n u_i v_i$

- $S \subset \mathbb{F}^n$, $S^{\perp} = \{u : u \perp S\}$
- $u \perp v$, if $u \odot v = 0$, $u \perp S$, if for all $v \in S$, $u \perp v$.
- $\dim(S) + \dim(S^{\perp}) = n$
- $u \in \mathbb{F}^n$, $u^{\perp} = \{v : v \perp u\}$, and $\dim(u^{\perp}) = n 1$.

Random subsum principle

For every non-zero $u \in GF(2^n)$,

$$\Pr_{\mathbf{v} \in_{\mathbf{R}} GF(2^n)} [\mathbf{u} \odot \mathbf{v} = 0] = \frac{1}{2}.$$
 (53)

Eigenvectors and eigenvalues

If A is a real, symmetric matrix, for λ and ν , if $A\nu = \lambda \nu$, then

$$\lambda \langle \mathbf{v}, \mathbf{v} \rangle = \langle \mathbf{A} \mathbf{v}, \mathbf{v} \rangle = \overline{\langle \mathbf{v}, \mathbf{A} \mathbf{v} \rangle} = \overline{\langle \mathbf{v}, \lambda \mathbf{v} \rangle} = \overline{\lambda} \langle \mathbf{v}, \mathbf{v} \rangle$$

This implies that:

$$\lambda = \bar{\lambda}$$

so λ is a real.

Norms

It is a function of the following form:

$$||\ ||:\ \mathbb{F}^n \to \mathbb{R}^{\geq 0} \tag{54}$$

A norm satisfies the following properties:

- (i) $||v|| = 0 \iff v = 0$
- (ii) $||\alpha v|| = |\alpha| \cdot ||v||$, where α is a real scale.
- (iii) $||u+v|| \leq ||u|| + ||v||$.

L_p -norm

 L_p -norm of $v, p \ge 1$,

$$||v||_{p} = (\sum_{i=1}^{n} |v_{i}|^{p})^{1/p}$$

p = 2, L_2 -norm, the Euclidean norm

$$||\mathbf{v}||_2 = (\sum_{i=1}^n |\mathbf{v}_i|^2)^{1/2}$$

 $p=1, L_1$ -norm

$$||v||_1 = \sum_{i=1}^n |v_i|$$

 $p=\infty$, L_{∞} -norm

$$||\mathbf{v}||_{\infty} = \max_{i} |\mathbf{v}_{i}|.$$

Hölder inequality

For every p, q, if $\frac{1}{p} + \frac{1}{q} = 1$, then

$$||u||_{p} \cdot ||v||_{q} \ge \sum_{i=1}^{n} |u_{i}v_{i}|.$$
 (55)

$$p = q = 2$$
: Cauch-Schwarz

L_1 - and L_2 -norms

For every vector $v \in \mathbb{R}^n$,

$$\frac{|\mathbf{v}|_1}{\sqrt{n}} \le ||\mathbf{v}||_2 \le |\mathbf{v}|_1. \tag{56}$$

Notations: Adjacent matrix

- G: d-regular, n vertices,
- p: a column vector, a distribution over the vertices of G

$$p = \begin{pmatrix} \rho_1 \\ \rho_2 \\ \dots \\ \rho_n \end{pmatrix} \tag{57}$$

where $p_1 + p_2 + \cdots p_n = 1$.

- A_{ij} : $\frac{n_{ij}}{d}$, where n_{ij} the number of edges between i and j.
- A: the adjacent matrix. It is normalised, symmetric, stochastic

Notations: Adjacent matrix

- q = Ap: the distribution of a random walk in G from distribution p.
- A^leⁱ: the distribution of *l*-step random walk from node i
- 1: The uniform distribution is:

$$1 = \begin{pmatrix} \frac{1}{n} \\ \frac{1}{n} \\ \dots \\ \frac{1}{n} \end{pmatrix} \tag{58}$$

- 1^{\perp} : { $v : v \perp 1$ }
- $\mathbf{v} \perp 1 \iff \sum \mathbf{v}_i = 0$.

$$\lambda(A)$$

Define

$$\lambda(A) = \lambda(G)$$

= $\max\{||Av||_2 : ||v||_2 = 1, v \perp 1\}.$ (59)

Suppose that

$$\lambda_1, \lambda_2, \cdots, \lambda_n$$

are the eigenvalues of A with orthogonal eigenvectors

$$v^1, v^2, \cdots, v^n$$

respectively, that are listed such that:

$$|\lambda_1| \ge |\lambda_2| \ge \dots \ge |\lambda_n|. \tag{60}$$

$$|\lambda_i| \leq 1$$

For λ and v such that $Av = \lambda v$. Then $\lambda = \frac{\langle v, Av \rangle}{\langle v, v \rangle}$. By definition,

$$\langle \mathbf{v}, \mathbf{A}\mathbf{v} \rangle = \sum_{i=1}^{n} \mathbf{a}_{ii} \mathbf{v}_{i}^{2} + 2 \sum_{i < j, i \sim j} \mathbf{a}_{ij} \mathbf{v}_{i} \mathbf{v}_{j}$$

For i < j, $i \sim j$:

$$a_{ij}(\mathbf{v}_i - \mathbf{v}_j)^2 = a_{ij}\mathbf{v}_i^2 - 2a_{ij}\mathbf{v}_i\mathbf{v}_j + a_{ij}\mathbf{v}_j^2$$

Summing up all such i, j's:

$$\sum_{i < j, i \sim j} a_{ij} (v_i - v_j)^2 = \sum_{i=1}^n (1 - a_{ii}) v_i^2 - 2 \sum_{i < j, i \sim j} a_{ij} v_i v_j$$

Proof - I

$$\langle \mathbf{v}, A\mathbf{v} \rangle = \sum_{i=1}^{n} a_{ii} v_{i}^{2} + \sum_{i=1}^{n} (1 - a_{ii}) v_{i}^{2} - \sum_{i < j, i \sim j} a_{ij} (v_{i} - v_{j})^{2}$$

$$= \sum_{i=1}^{n} v_{i}^{2} - \sum_{i < j, i \sim j} a_{ij} (v_{i} - v_{j})^{2}.$$
(61)

Noting that $\sum_{i=1}^{n} v_i^2 \ge 2 \sum_{i < i} a_{ij} v_i v_j$, we have

$$-\sum_{i=1}^{n} v_i^2 \leq \sum_{i=1}^{n} v_i^2 - \sum_{i \leq i, i \neq i} a_{ij} (v_i - v_j)^2 \leq \sum_{i=1}^{n} v_i^2.$$

So that

 $1^{\perp} - \operatorname{Span}\{v^2, \dots, v^n\}$

$$-1 < \lambda < 1$$
.

By definition, A1 = 1. So $\lambda_1 = 1$, and 1 is the eigenvector of $\lambda_1 = 1$. By the choice of the eigenvectors, 4 D > 4 P > 4 E > 4 E > 9 Q P

Proof - II

Given
$$v$$
, with $v \perp 1$, $||v||_2 = 1$.

Let
$$\mathbf{v} = \alpha_2 \mathbf{v}^2 + \cdots + \alpha_n \mathbf{v}^n$$
 with $\alpha_2^2 + \cdots + \alpha_n^2 = 1$.

$$\mathbf{A}\mathbf{v} = \alpha_2 \mathbf{A}\mathbf{v}^2 + \dots + \alpha_n \mathbf{A}\mathbf{v}^n = \alpha_2 \lambda_2 \mathbf{v}^2 + \dots + \alpha_n \lambda_n \mathbf{v}^n$$

$$||\mathbf{A}\mathbf{v}||_2^2 = \alpha_2^2 \lambda_2^2 + \dots + \alpha_n^2 \lambda_n^2$$

Since
$$\lambda_2^2 \geq \cdots \geq \lambda_n^2$$
,

$$\max ||\mathbf{A}\mathbf{v}||_2^2 = \lambda_2^2.$$

Therefore

$$\lambda = \lambda(\mathbf{G}) = |\lambda_2|.$$

Spectral gap

We call $1 - \lambda(G)$ the **spectral** gap of G.

Lemma

Let G be an n-vertex regular graph and p a probability distribution over G's vertices. Then,

$$||\mathbf{A}^{\prime}\mathbf{p}-1||_2 \leq \lambda^{\prime}.$$

Proofs consist of the following items:

1) By definition of $\lambda = \lambda(G)$, for every $\nu \perp 1$,

$$||\mathbf{A}\mathbf{v}||_2 \leq \lambda ||\mathbf{v}||_2.$$

Proofs - I

2) If $v \perp 1$, then so is Av.

$$\langle 1, \mathbf{A} \mathbf{v} \rangle = \langle \mathbf{A}^{\mathrm{T}} 1, \mathbf{v} \rangle = \langle 1, \mathbf{v} \rangle = 0.$$

Note $A = A^{T}$, and A1 = 1.

3) $A: 1^{\perp} \rightarrow 1^{\perp}$, and

A shrinks each $v \in 1^{\perp}$ by at least λ factor in L_2 norm.

4) By 3), A^I shrinks each $v \in 1^{\perp}$ by at least λ^I factor, giving

$$\lambda(\mathbf{A}^l) \leq \lambda^l.$$

Proofs - II

5) Let
$$p = \alpha 1 + p'$$
, $p' \perp 1$, Since $p' \perp 1$, $\sum p'_i = 0$. But $\sum p_i = 1$, so $\alpha = 1$.

$$A'p = A'(1+p') = A'1 + A'p' = 1 + A'p'.$$

$$||A'p - 1||_2 = ||A'p'||_2$$

 $\leq ||A'||_2 \cdot ||p'||_2$
 $\leq \lambda' \cdot ||p'||_2$
 $\leq \lambda' \cdot ||p||_2$
 $\leq \lambda' \cdot |p|_1 = \lambda'.$

The third inequality uses $||p||_2^2 = ||1||_2^2 + ||p'||_2^2$.

Log space algorithm for connectivity in expanders

Suppose that λ is a constant significantly smaller than 1.

By Lemma 32 above, let $I = O(\log n)$.

Then $\lambda' \approx 0$. Therefore

$$A^{\prime}p\approx 1.$$

This means that for any two nodes i, j, the distance between i and j is within $O(\log n)$.

According to this property, we are able to design a log space algorithm to decide, for any two vertices, whether or not, they are connected.

The algorithm simply enumerates all the paths from i of length $O(\log n)$, to see if there is a path passes j. The enumeration of all the paths can be done in log space.

Randomized log space (RL, for short) for connectivity

Lemma

(RL) If G is a regular connected graph with self-loop at each vertex, then

$$\lambda(\mathbf{G}) \le 1 - \frac{1}{4d\mathbf{n}^2}.\tag{62}$$

Let $u \perp 1$, $||u||_2 = 1$. We show that $||Au||_2 \leq 1 - \frac{1}{4dn^2}$. Let v = Au. It suffices to show that $1 - ||v||_2^2 \geq \frac{1}{2dn^2}$. Since $||u||_2 = 1$,

$$1 - ||\mathbf{v}||_2^2 = ||\mathbf{u}||_2^2 - ||\mathbf{v}||_2^2.$$

Considering $\sum_{i,j} A_{ij} (u_i - v_j)^2$, we have

Proofs - I

$$\sum_{i,j} A_{ij} (u_i - v_j)^2 = \sum_{i,j} A_{ij} u_i^2 - 2 \sum_{i,j} A_{ij} u_i v_j + \sum_{i,j} A_{ij} v_j^2
= \sum_{i=1}^n u_i^2 - 2 \langle Au, v \rangle + \sum_{j=1}^n v_j^2
= ||u||_2^2 - 2 \langle Au, v \rangle + ||v||_2^2
= ||u||_2^2 - 2||v||_2^2 + ||v||_2^2
= ||u||_2^2 - ||v||_2^2
= 1 - ||v||_2^2.$$

Therefore, we only need to prove

$$\sum_{i,i} A_{ij} (u_i - v_j)^2 \ge \epsilon = \frac{1}{2 dn^2}.$$

Proofs - II

By the choice of u, $\sum u_i = 0$, and $\sum u_i^2 = 1$. So there exist i, j such that $u_i u_j < 0$.

Let $u^+ = \max_i \{u_i\}$, and $u^- = \min_i \{u_i\}$. If both $u^+ < \frac{1}{\sqrt{n}}$ and

$$u^{-} > -\frac{1}{\sqrt{n}}$$
 hold, then $\sum_{i=1}^{n} u_i^2 < 1$.

Since $||u||_2 = 1$, either $u^+ \ge \frac{1}{\sqrt{n}}$ or $u^- \le -\frac{1}{\sqrt{n}}$. Let i and j be such that $u_i = u^+$ and $u_j = u^-$. Then:

$$u_i - u_j \ge \frac{1}{\sqrt{n}}. ag{63}$$

Proofs - III

Because G is connected, there is a path P between i and j. Suppose that the path P is labelled by $1, 2, \dots, D+1$. Then:

$$\frac{1}{\sqrt{n}}$$

$$\leq u_{1} - u_{D+1}$$

$$= (u_{1} - v_{1}) + (v_{1} - u_{2}) + (u_{2} - v_{2}) + \dots + (v_{D} - u_{D+1})$$

$$\leq |u_{1} - v_{1}| + |v_{1} - u_{2}| + \dots + |v_{D} - u_{D+1}|$$

$$\leq \sqrt{(u_{1} - v_{1})^{2} + (v_{1} - u_{2})^{2} + \dots + (v_{D} - u_{D+1})^{2}} \cdot \sqrt{2D + 1}.$$

Proofs - IV

Therefore.

$$(u_1-v_1)^2+(v_1-u_2)^2+\cdots+(v_D-u_{D+1})^2\geq \frac{1}{n(2D+1)}.$$

Since $A_{ii}, A_{ii+1} \geq \frac{1}{d}$,

$$\sum_{i,j} A_{ij} (u_i - v_j)^2 \geq \frac{1}{d} \cdot [(u_1 - v_1)^2 + (v_1 - u_2)^2 + \dots + (v_D - u_{D+1})^2]$$

$$\geq \frac{1}{dn(2D+1)}$$

Random walk lemma

Lemma

(Random walk lemma) Let G be a d-regular n-vertex graph with all vertices having a self-loop. Let s be a vertex in G. Let $I > \Omega(dn^2 \log n)$, and X_I be the distribution of the vertex of the lth step in a random walk from s. Then for every t,

$$\Pr[X_l=t] > \frac{1}{2n}.$$

Proofs - 1

By the previous lemma,

$$||A'p - 1||_2 \le (1 - \frac{1}{4dn^2})^{\Omega(dn^2 \log n)} < \frac{1}{n^{\alpha}}$$

for some constant α .

Choose α such that for $q = A^l p$,

$$|q-1|_1 \leq \sqrt{n} \cdot ||q-1||_2 < \frac{1}{n^2}.$$

Then for every i,

$$|q_i-\frac{1}{n}|<\frac{1}{n^2}$$

So that

$$-\frac{1}{n^2} < q_i - \frac{1}{n} < \frac{1}{n^2}$$

Proofs - 2

Therefore, the probability that $X_l = t$ is:

$$q_i > \frac{1}{n} - \frac{1}{n^2}$$
$$\geq \frac{1}{2n}.$$

Run the *I*-step random walks for $t = O(n \log n)$ many times, then with high probability, every vertex is visited, if the graph is connected.

This gives a randomized log space, written **RL**, algorithm to decide the connectivity of two vertices.

Assignments

- Suppose that p and q are primes and n = pq. What is the probability that a randomly picked natural number less than n is not divisible by either p or q?
- Suppose that m and n are natural numbers. What is the probability that a randomly picked natural number less than mn is not divisible by either m or n?

A Card Game

- For fun and for better understanding
 - Standard deck of 52 cards, each is randomly shuffled
 - The pack is divided into 13 piles, each contains 4 cards
 - Each pile is arbitrarily labeled by an index in $\{A, 1, 2, \dots, 10, J, Q, K\}$
 - The first move is to draw a card from the pile labeled K
 - At each subsequent move, the card whose label is the face value of the last card is drawn
 - The game is over when an attempt is made to draw a card from an empty pile

We win if at the end of the game, all cards were drawn, and lose otherwise.

What is the probability of winning the game?

Thank You!