

We have,

$$a*b = \frac{ab}{2}$$
 for all $a, b \in Q_0$

(i)

Commutativity: Let $a, b \in Q_0$, then

$$\Rightarrow \qquad a*b = \frac{ab}{2} = \frac{ba}{2} = b*a$$

Hence, '*' is commutative on Q_0 .

Associativity: Let $a, b, c \in Q_0$, then

$$\Rightarrow \qquad (a*b)*c = \frac{ab}{2}*c = \frac{abc}{4} \qquad \qquad ---(i)$$

and,
$$a * (b * c) = a * \frac{bc}{2} = \frac{abc}{4}$$
 --- (ii)

From (i) & (ii)
$$(a*b)*c = a*(b*c)$$

$$\Rightarrow$$
 * is associative on Q_0 .

(ii)

Let $e \in Q_0$ be the identity element with respect to *.

By identity property, we have, a*e=e*a=a for all $a \in Q_0$

$$\Rightarrow \frac{ae}{2} = a \Rightarrow e = 2$$

Thus, the required identity element is 2.

(iii)

Let $b \in Q_0$ be the inverse of $a \in Q_0$ with respect to *, then,

$$a*b=b*a=e$$
 for all $a \in Q_0$

$$\Rightarrow \frac{ab}{2} = e \Rightarrow \frac{ab}{2} = 2$$
$$\Rightarrow b = \frac{4}{a}$$

Thus, $b = \frac{4}{a}$ is the inverse of a with respect to *.

We have.

$$a * b = a + b - ab$$
 for all $a, b \in R - \{+1\}$

(i)

Commutative: Let $a, b \in R - \{+1\}$, then,

$$\Rightarrow$$
 $a*b=a+b-ab=b+a-ba=b*a$

So, '*' is commutative on $R - \{+1\}$.

Associativity: Let $a,b,c \in R - \{+1\}$, then

$$(a*b)*c = (a+b-ab)*c$$

= $a+b-ab+c-ac-bc+abc$
= $a+b+c-ab-ac-bc+abc$ ---(i)

and,
$$a*(b*c) = a*(b+c-bc)$$

= $a+b+c-bc-ab-ac+abc$ ---(ii)

From (i) & (ii)
$$(a*b)*c = a*(b*c)$$

So, '*' is associative on $R - \{+1\}$.

(ii)

Let $e \in R - \{+1\}$ be the identity element with respect to *, then a*e=e*a=a for all $a \in R - \{+1\}$

$$\Rightarrow$$
 $e(1-a)=0$

$$\Rightarrow \qquad e = 0 \qquad \qquad \left[\forall \, a \neq 1 \Rightarrow 1 - a \neq 0 \right]$$

e = 0 will be the identity element with respect to *.

(iii)

Let $b \in R - \{1\}$ be the inverse element of $a \in R - \{1\}$, then a * b = b * a = e

$$\Rightarrow$$
 $a+b-ab=0$

$$[\because e = 0]$$

$$\Rightarrow$$
 $b(1-a)=-a$

$$\Rightarrow \qquad b = \frac{-\partial}{1 - \partial} \neq 1$$

$$\Rightarrow \partial = \frac{-\partial}{1 - \partial} \neq 1$$

$$\Rightarrow \partial = 1 - \partial \Rightarrow 1 = 0$$
Not possible

 $b = \frac{-a}{1-a} \text{ is the inverse of } a \in R - \{1\} \text{ with respect to } *.$

We have,

$$(a,b)*(c,d) = (ac,bd)$$
 for all $(a,b),(c,d) \in A$

(i)

Let $(a,b),(c,d) \in A$, then

$$(a,b)*(c,d) = (ac,bd)$$

$$= (ca,db)$$

$$= (c,d)*(a,b)$$

$$[\because ac = ca \text{ and } bd = db]$$

$$\Rightarrow \qquad \big(a,b\big)*\big(c,d\big)=\big(c,d\big)*\big(a,b\big)$$

So, '*' is commutative on A

Associativity: Let $(a,b),(c,d),(e,f) \in A$, then

$$\Rightarrow \qquad ((a,b)*(c,d))*(e,f) = (ac,bd)*(e,f)$$
$$= (ace,bdf) \qquad ---(i)$$

and,
$$(a,b)*((c,d)*(e,f)) = (a,b)*(ce,df)$$

= (ace,bdf) ---(ii)

From (i) & (ii)

$$\Rightarrow \qquad \big(\big(a,b \big) * \big(c,d \big) \big) * \big(e,f \big) = \big(a,b \big) * \big(\big(c,d \big) * \big(e,f \big) \big)$$

So, '*' is associative on A.

(ii)

Let $(x,y) \in A$ be the identity element with respect to *.

$$(a,b)*(x,y) = (x,y)*(a,b) = (a,b)$$
 for all $(a,b) \in A$

$$\Rightarrow$$
 $(ax,by) = (a,b)$

$$\Rightarrow$$
 $ax = a$ and $by = b$

$$\Rightarrow$$
 $x = 1$, and $y = 1$

. (1,1) will be the identity element

(iii)

Let $(c,d) \in A$ be the inverse of $(a,b) \in A$, then

$$(a,b)*(c,d)=(c,d)*(a,b)=e$$

$$\Rightarrow \qquad \left(ac,bd \right) = \left(1,1 \right) \qquad \left[\because e = \left(1,1 \right) \right]$$

$$\Rightarrow$$
 ac = 1 and bd = 1

$$\Rightarrow \qquad c = \frac{1}{a} \text{ and } d = \frac{1}{b}$$

 $\therefore \qquad \left(\frac{1}{a}, \frac{1}{b}\right) \text{ will be the inverse of (a,b) with respect to } *.$

The binary operation * on N is defined as:

a * b = H.C.F. of a and b

It is known that:

H.C.F. of a and b = H.C.F. of b and $a_{i,j}$ $a_{i,j}$ $b \in \mathbb{N}$.

Therefore, a * b = b * a

Thus, the operation * is commutative.

For $a, b, c \in \mathbb{N}$, we have:

(a*b)*c = (H.C.F. of a and b)*c = H.C.F. of a, b, and ca*(b*c)=a*(H.C.F. of b and c) = H.C.F. of a, b, and c

Therefore, (a * b) * c = a * (b * c)

Thus, the operation * is associative.

Now, an element $e \in \mathbf{N}$ will be the identity for the operation * if a * e = a = e * a, $\forall a \in \mathbf{N}$.

But this relation is not true for any $a \in \mathbf{N}$.

Thus, the operation * does not have any identity in N.

********* END ********