

PIC18F4550: Entradas Analógicas

Prof. Matheus Ribeiro

ENTRADAS ANALÓGICAS

- 13 pinos de entradas analógicas multiplexadas
- Resolução de 10 bits
- Registradores associados:
 - ADCON0
 - ADCON1
 - ADCON2
 - ADRESH
 - ADRESL

REGISTRADOR ADCONO

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON

CHS3:CHS0 – Seleção do canal de entrada analógica

0000 (AN0)	0100 (AN4)	1000 (AN8)	1100 (AN12)
0001 (AN1)	0101 (AN5)	1001 (AN9)	
0010 (AN2)	0110 (AN6)	1010 (AN10)	
0011 (AN3)	0111 (AN7)	1011 (AN11)	

- ► GO/DONE Início (1) / Término (0) da conversão
- ADON Habilita (1) / Desabilita (0) módulo AD

REGISTRADOR ADCON1

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0

PCFG3:PCFG0 – Determina o número de entradas analógicas

1111 (Nenhuma)	1010 (AN0 até AN4)	0101 (AN0 até AN9)
1110 (ANO)	1001 (AN0 até AN5)	0100 (AN0 até AN10)
1101 (AN0 até AN1)	1000 (AN0 até AN6)	0011 (AN0 até AN11)
1100 (AN0 até AN2)	0111 (AN0 até AN7)	0010 (AN0 até AN12)
1011 (ANO até AN3)	0110 (ANO até AN8)	

- VCFG1 Referência negativa (1: Externa (AN2) / 0: Vss)
- VCFG0 Referência positiva (1: Externa (AN3) / 0: Vdd)

REGISTRADOR ADCON2

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADFM	-	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0

- ADFM Formato do resultado da conversão
 - ▶ 1: justificado à direita
 - 0: justificado à esquerda
- ACQT2:ACQT0 Tempo de aquisição A/D (Tad: tempo de aquisição por bit)

 111 (20 Tad)
 101 (12 Tad)
 011 (6 Tad)
 001 (2 Tad)

 110 (16 Tad)
 100 (8 Tad)
 010 (4 Tad)
 000 (0 Tad)

ADCS2:ADCS0 – Clock para conversão A/D

111 (Frc interno) 101 (Fosc/16) 011 (Frc interno) 001 (Fosc/8) 110 (Fosc/64) 100 (Fosc/4) 010 (Fosc/32) 000 (Fosc/2)

- Os registradores ADRESH e ADRESL recebem o resultado da conversão A/D
- No caso de formato justificado à direita:

ADRESH												
-	-	-	-	-	-	D9	D8					

ADRESL											
D7	D6	D5	D4	D3	D2	D1	D0				

No caso de formato justificado à esquerda:

ADRESH											
D9	D8	D7	D6	D5	D4	D3	D2				

ADRESL											
D1	D0	-	-	-	-	-	-				

Leitura 10 bits: Método 1

AN = ADRESH;

							А	N							
-	-	-	-	_	-	-	-	-	-	-	-	-	-	D9	D8

AN = AN << 8;

AN															
-	-	-	-	-	-	D9	D8	-	-	-	-	-	-	-	-

AN = AN | ADRESL;

							А	Ν							
-	-	-	-	-	-	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0

Leitura 10 bits: Método 2

AN = 256*ADRESH;

							Α	N							
-	-	-	-	-	-	D9	D8	-	-	-	-	-	-	-	-

AN = AN + ADRESL;

							Α	Ν							
-	-	-	-	-	-	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0

Leitura 10 bits: Método 3

AN = ADRES;

							Α	N							
-	-	-	-	-	-	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0

Leitura 8 bits

AN = ADRESH;

AN											
D9	D8	D7	D6	D5	D4	D3	D2				

CONVERSÃO A/D

- 1. Configurar a entrada analógica (registrador TRIS)
- 2. Configurar o módulo A/D (registradores ADCON0, ADCON1, ADCON2)
- 3. Configurar interrupção (opcional)
- 4. Aguardar o tempo de aquisição definido
- 5. Iniciar conversão (ADCON0bits.GO_DONE = 1)
- 6. Aguardar término da conversão (ADCON0bits.GO_DONE = 0)
- 7. Ler o resultado (registradores ADRESH e ADRESL)
- 8. Aguardar um intervado de pelo menos 3 Tad e voltar ao passo 1 ou 2

RESUMO

Preparação:

Declarar as variáveis para receber o valor lido pelo módulo A/D

```
Ex.: unsigned short NOME;
```

• Inicializar as portas utilizadas, configurando os pinos como entradas

```
Ex.: TRISA = 0b0000001;
```

Configurar e inicializar o módulo A/D

```
Ex.: ADCON2 = 0b10000001;
ADCON1 = 0b00001110;
ADCON0 = 0b00000001;
```


RESUMO

Utilização:

Selecionar o canal desejado

```
Ex.: ADCONObits.CHS0 = 0;
```

Aguardar tempo mínimo e iniciar a conversão

```
Ex.: __delay_us(10);
ADCONObits.GO DONE = 1;
```

Aguardar término de conversão e realizar leitura

```
Ex.: while (ADCONObits.GO_DONE);
VANO = ADRES;
```


