

Combination of Higgs to Invisible Direct Measurements

 $\underline{\text{P. Dunne}} \ \& \ \text{N. Wardle}$ on behalf of the $H{\rightarrow}\text{invisible}$ analysis groups

Introduction

- Decays of the Higgs boson to invisible final states are a strong indication of BSM physics
- SUSY, graviscalars, etc.
- Because the final state is invisible the search must be carried out in the associated production channels:
- Search for large missing transverse energy plus associated production

Analyses

- ► There are two currently approved PASs searching for invisible final states of the Higgs boson.
- VBF (HIG-13-013), ZH→II+inv (HIG-13-018)
- These two results have been combined and the result is public
- A further analysis, in the ZH→bb+inv channel is in progress (HIG-13-028)
- ► An indirect limit can also be placed using the signal strength of the visible channels (HIG-13-005)
- Combination between direct and indirect methods is being investigated e.g. talk by M. Zanetti

Current Indirect Result

▶ observed (expected) limit of 64% (67%) at 95% C.L. on BR_{inv} for a 125 GeV Higgs

Individual Results: Direct

VBF

observed (expected) limit of 69% (53%) at 95% C.L. on BRiny for a 125 GeV Higgs

observed (expected) limit of 75% (91%) at 95% C.L. on BRiny for a 125 GeV Higgs

Datacards

- ZH analysis (cards from M. Zanetti) has datacards for 105.115.125.135 and 145 GeV
- ► VBF analysis has datacards for 110,125,150,200,300 and 400 GeV
- The signal yield is the only Higgs mass dependent part of the datacard
- New VBF datacards were produced for 115,135 and 145 GeV, with signal yields caluclated using method discussed later
- ▶ The VBF cards used for the PAS do not separate out individual sources of error so JES/R correlations are not currently taken into account (see discussion later).

Signal Yield interpolation

- $ightharpoonup N_{Signal} = eff. imes acc. imes \mathcal{L}\sigma$
- Luminosity is constant
- Yield over cross-section is thus proportional to efficiency times acceptance
- Signal yields were produced at 115, 125(to cross-check), 135 and 145 GeV for the VBF channel
- Cross-sections from LHC-HXSWG were used

Combination Method

- ▶ The cards for the two approved analyses were combined using the standard Higgs combination tool
- ▶ The luminosity uncertainties were considered correlated between the analyses
- All other uncertainties were considered not to be correlated between analyses (see discussion later)

Results

- Observed (expected) limit at 125 GeV is 54(46)%
- Agrees with number produced by M. Zanetti

Improvements to datacards

- New cards are being produced for the VBF analysis which separate out the uncertainty sources
- CMS standard sources currently being considered:
- lumi_7/8TeV
- CMS_scale_j, CMS_res_j: with their effects propagated through to the met
- CMS_scale_met: Currently this is being treated as being the same as the unclustered energy scale uncertainty
- pdf_qqbar
- ► These uncertainties are also considered by ZH→II+inv and will be labelled as such in their datacards.

Conclusions

- ▶ The results of HIG-13-013 and HIG-13-018 have been combined using the standard Higgs combination tool
- ▶ The result is compatible with the SM at the 1σ level
- ▶ The combined result gives strongest direct limit on the invisible branching fraction of the SM Higgs
- ▶ Work is being done to improve the treatment of systematic errors for paper HIG-13-030 on all of the invisible channels.

Backup

Previous Limits

- \triangleright Current CMS limits on BR_{inv} for a 125 GeV Higgs boson are:
- VBF: observed (expected) limit of 69% (53%) at 95% C.L.
- ZH: observed (expected) limit of 75% (91%) at 95% C.L.
- CMS indirect limit, from visible channels: observed (expected) limit of 64% (67%) at 95% C.L.
- ATLAS also produce an indirect limit and a limit in the ZH channel:
- Indirect limit 60% (no expected limit given)
- ZH: observed (expected) 65% (84%)

VBF Cross-sections

Mass/GeV	$\sigma/{\it pb}$
110	1.809 ± 0.048
115	1.729 ± 0.046
125	1.578 ± 0.042
135	1.448 ± 0.038
145	1.333 ± 0.035
150	1.280 ± 0.033
200	0.869 ± 0.023
300	0.441 ± 0.011
400	0.254 ± 0.007

Summary of Uncertainties

Background	Source	Uncertainty		
$Z \rightarrow \nu \nu$				
	Statistics in control region	29%		
	MC statistics	14%		
	Theory uncertainty	20%		
	Jet/MET scale/resolution	5%		
$W \rightarrow \mu \nu$				
	Statistics in control region	5%		
	MC statistics	10%		
	Theory uncertainty	20%		
	Jet/MET scale/resolution	4%		
$W \rightarrow e \nu$				
	Statistics in control region	10%		
	MC statistics	10%		
	Theory uncertainty	20%		
	Jet/MET scale/resolution	+5 %		
$W \rightarrow \tau \nu$				
	Statistics in control region	30%		
	MC statistics	20%		
	Theory uncertainty	20%		
	Jet/MET scale/resolution	+16% -2		
	Tau ID efficiency	8%		
	Electron contamination	5%		

-OCD	1/4 11	
QCD	Statistics in control region	2%
	MC stats (background)	2%
\ \ \ \	Jet/MET scale/resolution	+45% -75%
		35%
Other backgr	ounds	
	Luminosity	4%
	MC statistics	10%
	Jet/MET scale/resolution	28-81%
	Cross-section uncertainty	8-20%
Signal		
_	MC statistics	10%
	Jet/MET scale/resolution	11%
	PDF uncertainty	5%
	QCD Scale uncertainty	4%