Dr. Jürg M. Stettbacher

Neugutstrasse 54 CH-8600 Dübendorf

Telefon: +41 43 299 57 23 Email: dsp@stettbacher.ch

Übung

LZ Codierung

DMS X[.] = { C C A C B C C C B B C C B C C A B ... }

Eine diskrete gedächtnislose Quelle (DMS¹) erzeugt zu jedem diskreten Zeitpunkt $n=0,\ 1,\ 2,\ \dots$ eine Zufallsvariable $X\left[n\right]$, deren Wert 8 Bit umfasst. Das heisst, es entsteht mit der Zeit eine Sequenz $X\left[.\right]$ wie oben dargestellt.

- 1. Codieren Sie den Ausschnitt X [.] mit dem LZ-77 Verfahren. Der Suchbuffer sei 15 Zeichen lang, der Vorschaubuffer 8 Zeichen.
- 2. Wieviele Bit umfasst ein LZ-77 Token?
- 3. Im weiteren Verlauf der Codierung mit LZ-77 bilden wir den Token (14, 8, A). Was ist das Problem dabei?
- 4. Codieren Sie den Ausschnitt X [.] mit dem LZ-78 Verfahren. Das Wörterbuch sei für 63 Einträge ausgelegt.
- 5. Wieviele Bit umfasst ein LZ-78 Token?
- 6. Codieren Sie den Ausschnitt X [.] mit dem LZW Verfahren. Das Wörterbuch sei für 511 Einträge ausgelegt.
- 7. Wieviele Bit umfasst ein LZW Token?
- 8. Welches Verfahren erzielt die beste Kompressionsrate 2 R? (Zählen Sie nur vollständige Token und die damit übertragenen Quellsymbole.)
- 9. Verifizieren Sie Ihre Token aller drei Verfahren, indem sie diese wieder decodieren.

¹ Englisch: Discrete Memoryless Source.

 $^{^2}$ Die Kompressionsrate R ist definiert als die Anzahl Bits am Ausgang des Encoders dividiert durch Anzahl Bits am Eingang.

Antworten

1. LZ-77 Codierung:

Nr.	Text	Token	
1	С	(0, 0, C)	
2	CA	(1, 1, A)	
3	СВ	(2, 1, B)	
4	CCC	(5, 2, C)	
5	BB	(4, 1, B)	
6	CCBC	(4, 3, C)	
7	CBCCA	(11, 4, A)	
8	В		

- 2. LZ-77 Token: 4 + 3 + 8 = 15 Bit
- 3. Da der Vorschaubuffer nur 8 Zeichen umfasst, ist eine maximale Länge der Übereinstimmung von 7 möglich und das achte Zeichen wird als zusätzliches Zeichen im Token vermerkt.
- 4. LZ-78 Codierung:

Index	Eintrag	Token	
0	(null)	-	
1	С	(0, C)	
2	CA	(1, A)	
3	СВ	(1, B)	
4	CC	(1, C)	
5	CBB	(3, B)	
6	CCB	(4, B)	
7	CCBC	(6, C)	
8	CAB	(2, B)	
9	•••		

- 5. LZ-78 Token: 6 + 8 = 14 Bit
- 6. LZW Codierung:

Index	Eintrag	Token
	•••	
65	A	
66	В	
67	С	
	•••	
256	CC	(67)
257	CA	(67)
258	AC	(65)
259	СВ	(67)

Index	Eintrag	Token	
260	BC	(66)	
261	CCC	(256)	
262	CBB	(259)	
263	BCC	(260)	
264	CBC	(259)	
265	CCB	(256)	
266	BCCA	(263)	
267	AB	(65)	

7. LZ-78 Token: 9 Bit

8. Kompression:

Verfahren	#Token	$\#\mathrm{Bit}/\mathrm{Token}$	#Zeichen	R
LZ-77	7	15	19	$\frac{7.15}{19.8} = 0.69$
LZ-78	8	14	20	$\frac{8.14}{20.8} = 0.70$
LZW	12	9	19	$\frac{12 \cdot 9}{19 \cdot 8} = 0.71$

Bei diesem (kurzen) Beispiel komprimiert das LZ-77 Verfahren am besten.

9. LZ-77: (C C A C B C C C B B C C B C C B C C A ...) LZ-78: (C C A C B C C C B B C C B C C B C C A B ...) LZW: (C C A C B C C C B B C C B C C B C C A ...)