Title

Subtitle

Authors

Institution

2024-09-13

Outline

1. Animation
1.1 Simple Animation 4
1.2 Complex Animation 5
1.3 Callback Style Animation
1.4 Math Equation Animation
1.5 CeTZ Animation
1.6 Fletcher Animation
2. Theorems
2.1 Prime numbers
3. Others
3.1 Side-by-side
3.2 Multiple Pages
4. Appendix
4.1 Appendix

1. Animation

1.1 Simple Animation

We can use #pause to

Meanwhile,

1.1 Simple Animation

We can use **#pause** to display something later.

Meanwhile, we can also use #meanwhile to

1.1 Simple Animation

We can use **#pause** to display something later.

Just like this.

Meanwhile, we can also use #meanwhile to display other content synchronously.

1.2 Complex Animation

At subslide 1, we can

use

for reserving space,

use for not reserving space,

call #only multiple times × for choosing one of the alternatives.

1.2 Complex Animation

At subslide 2, we can
use #uncover function for reserving space,
use #only function for not reserving space,
use #alternatives function ✓ for choosing one of the alternatives.

At subslide 1, we can

use for reserving space,

use for not reserving space,

call #only multiple times X for choosing one of the alternatives.

At subslide 2, we can

use #uncover function for reserving space,

use #only function for not reserving space,

use #alternatives function ✓ for choosing one of the alternatives.

At subslide 3, we can

use #uncover function for reserving space,

use #only function for not reserving space,

use #alternatives function ✓ for choosing one of the alternatives.

1.4 Math Equation Animation

Equation with pause:

$$f(x) =$$

Here,

1.4 Math Equation Animation

Equation with pause:

$$f(x) = x^2 + 2x + 1$$
$$=$$

Here, we have the expression of f(x).

1.4 Math Equation Animation

Equation with pause:

$$f(x) = x^2 + 2x + 1$$
$$= (x+1)^2$$

Here, we have the expression of f(x).

By factorizing, we can obtain this result.

1.5 CeTZ Animation

CeTZ Animation in Touying:

1.5 CeTZ Animation

CeTZ Animation in Touying:

1.5 CeTZ Animation

CeTZ Animation in Touying:

1.6 Fletcher Animation

Fletcher Animation in Touying:

1.6 Fletcher Animation

Fletcher Animation in Touying:

1.6 Fletcher Animation

Fletcher Animation in Touying:

2. Theorems

2.1 Prime numbers

Definition 2.1.1: A natural number is called a *prime number* if it is greater than 1 and cannot be written as the product of two smaller natural numbers.

Example: The numbers 2, 3, and 17 are prime. Corollary 2.1.1.1 shows that this list is not exhaustive!

Theorem 2.1.1 (Euclid): There are infinitely many primes.

Proof: Suppose to the contrary that $p_1, p_2, ..., p_n$ is a finite enumeration of all primes. Set $P = p_1 p_2 ... p_n$. Since P+1 is not in our list, it cannot be prime. Thus, some prime factor p_j divides P+1. Since p_j also divides P, it must divide the difference (P+1)-P=1, a contradiction.

2.1 Prime numbers

Corollary 2.1.1.1: There is no largest prime number.

Corollary 2.1.1.2: There are infinitely many composite numbers.

Theorem 2.1.2: There are arbitrarily long stretches of composite numbers.

Proof: For any n > 2, consider

$$n! + 2, \quad n! + 3, \quad ..., \quad n! + n$$

3. Others

First column. Second column.

3.2 Multiple Pages

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo, cum corpore dolemus, fieri tamen permagna accessio potest, si aliquod aeternum et infinitum impendere malum nobis opinemur. Quod idem licet transferre in voluptatem, ut postea variari voluptas distinguique possit, augeri amplificarique non possit. At etiam Athenis, ut e patre audiebam facete et urbane Stoicos irridente, statua est in quo a nobis philosophia defensa et collaudata est, cum id, quod maxime placeat, facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Temporibus autem quibusdam et aut officiis debitis aut rerum necessitatibus saepe eveniet, ut et voluptates repudiandae sint et molestiae non recusandae. Itaque earum rerum defuturum, quas natura non depravata desiderat. Et quem ad me accedis, saluto: 'chaere,' inquam, 'Tite!' lictores, turma omnis chorusque: 'chaere, Tite!' hinc hostis mi Albucius, hinc inimicus. Sed iure Mucius. Ego autem mirari satis non queo unde hoc sit tam insolens domesticarum rerum fastidium. Non est omnino hic docendi locus; sed ita prorsus existimo, neque eum Torquatum, qui hoc primus cognomen invenerit, aut

3.2 Multiple Pages

torquem illum hosti detraxisse, ut aliquam ex eo est consecutus? – Laudem et caritatem, quae sunt vitae.

4. Appendix

4.1 Appendix

Please pay attention to the current slide number.