ARITHMETIQUE

1) SYSTEMES DE NUMERATION

A) Bases

Base 10

$$5615 = 5 \times 1000 + 6 \times 100 + 1 \times 10 + 5 \times 1$$

$$= 5 \times 10^{3} + 6 \times 10^{2} + 1 \times 10^{1} + 5 \times 10^{0}$$

$$3,14 = 3 \times 1 + 1 \times 0,1 + 4 \times 0,01$$

$$= 3 \times 10^{0} + 1 \times 10^{-1} + 4 \times 10^{-2}$$

Base 2 (1 bit = 0 ou 1)

Base 10	Décomposition en puissances de 2	Base 2
6	$6 = 1 \times 4 + 1 \times 2 + 0 \times 1$ $= 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}$	1102
0,75	$0.75 = 1 \times 0.5 + 1 \times 0.25$ = $1 \times 2^{-1} + 1 \times 2^{-2}$	0,112

Base 16

1) les symboles

Décimal	0	1	2	3	4	5	6	7
Hexadécimal	0	1	2	3	4	5	6	7
Binaire 4 bits	0000	0001	0010	0011	0100	0101	0110	0111

Décimal	8	9	10	11	12	13	14	15
Hexadécimal	8	9	Α	В	С	D	E	F
Binaire 4 bits	1000	1001	1010	1011	1100	1101	1110	1111

2) Ecriture des nombres

Base 10	Décomposition en puissances de 16	Base 16
164	$164 = 10 \times 16^{1} + 4 \times 16^{0}$	A4 ₁₆
16 ⁻² = 0,0039065	$0,0039065 = 0 \times 16^{-1} + 1 \times 16^{-2}$	0,01 ₁₆

B) Conversions entre bases

Passage du binaire au décimal

On exprime le nombre à l'aide des puissances de 2.

Exemple: $101,0101_2 = 2^2 + 1 + 2^{-2} + 2^{-4} = 5,3125$ EXERCICES 1 ET 4 P78

Passage du décimal au binaire

Exemple 1 : conversion de 13,375 en binaire (pas d'arrondi)

On constitue un tableau comportant :

- sur la première ligne : toutes les puissances de 2 nécessaires pour composer le nombre donné,
- Sur la deuxième ligne : on remplit de gauche à droite avec 1 ou 0 suivant les besoins.

2 ³ (= 8)	2 ² (=4)	2 ¹ (=2)	2º (=1)	2 ⁻¹ (=0,5)	2 ⁻² (=0,25)	2 ⁻³ (=0,125)
1	1	0	1	0	1	1

Finalement, $13,375 = 1101,011_2$.

EXERCICES 7 ET 10 P78

Exemple 2 : conversion de 13,4 en binaire (arrondi nécessaire)

- 1) $13 = 1101_2$ (voir plus haut Exemple 1)
- 2) la partie décimale change : c'est 0,4. Les calculs sont plus compliqués : vous pouvez vous aider d'une troisième ligne "restes.

	2-1	2-2	2-3	2-4	2 -5	2 ⁻⁶	2 ⁻⁷	2-8	2 ⁻⁹
	0	1	1	0	0	1	1	0	0
restes	0,4	0,4-2 ⁻² = 3/20	3/20-2 ⁻³ = 1/40	1/40	1/40	1/40-2 ⁻⁶ = 3/320	3/320-2 ⁻⁷ = 1/640	1/640	1/640

On trouve:

 $13,4 = 1101,0110\ 0110\ 01_2...$

On arrondit en binaire par exemple avec une précision de 4 chiffres après la virgule, soit un arrondi à 2^{-4} : 13,4 = 1101,0110₂ (car il n'y a qu'un 0 après le dernier chiffre demandé).

Un arrondi à 2⁻⁵ serait 1101,01101₂ (car il y a un 1 après le dernier chiffre demandé).

EXERCICE 11, 14 et 15 P78

Passage de l'hexadécimal au binaire

- On exprime en binaire à 4 bits chaque symbole du nombre en hexadécimal.
- On supprime les 0 inutiles à gauche de la partie entière et à l'extrémité droite après la virgule.

Exemple : 3C, $1A_{16} = 0011 \ 1100$, $0001 \ 1010_2 = 111100$, 0001101_2 .

EXERCICE 16 P79

Passage du binaire à l'hexadécimal

- On regroupe les symboles du binaire en paquets de 4 bits à partir de la virgule en complétant avec des 0 si nécessaire.
- On remplace alors chaque groupement par sa valeur en hexadécimal.

Exemple: $1101101,111011_2 = 011011101,11101100 = 6D, EC_{16}$.

EXERCICE 19 P79

Passage de l'hexadécimal au décimal

On exprime le nombre à l'aide des puissances de 16.

Exemple : 3C,
$$1A_{16} = 3 \times 16^{1} + 12 \times 16^{0} + 1 \times 16^{-1} + 10 \times 16^{-2}$$

= $3 \times 16 + 12 + 16^{-1} + 10 \times 16^{-2}$
= $48 + 12 + 0,0625 + 0,0390625$
= $60,1015625$.

EXERCICE 22 P79

Passage du décimal à l'hexadécimal

Exemple: conversion de 2 656,71875 en base 16.

Comme pour le passage du décimal au binaire, on constitue un tableau comportant :

- sur la première ligne : toutes les puissances de 16 nécessaires pour composer le nombre donné,
- Sur la deuxième ligne : on remplit de gauche à droite suivant les besoins.
- Vous pouvez vous aider d'une troisième ligne "restes".

Puissances	16 ² (=256)	16 ¹ (=16)	16° (=1)	16 ⁻¹ (=1/16)	16 ⁻² (=1/256)
	10 = A ₁₆	6	0	11 = B ₁₆	8
restes	2 656 – 2 560	0	0	0,71875 – 11	0
	= 96			x 1/16 = 1/32	

On trouve 2 656,71875 = $A60,B8_{16}$

Autre méthode : passer de la base 10 à la base 2, puis à la base 16. EXERCICE 25 P79

C) Opérations sur les entiers naturels

Addition en base 2

Exemple: $1101_2 + 110_2 = 10011_2$. EXERCICE 28 P79

Addition en base 16

Exemple: $BA3E_{16} + 752_{16} = C190_{16}$. EXERCICE 31 P79

Multiplications et divisions par une puissance de 2 en base 2

Pour multiplier (respectivement diviser) par $2^n = 10...0_2$ (n zéros), un nombre écrit en base 2, on décale tous ses chiffres de n rangs vers la gauche (respectivement vers la droite).

Exemples: $11,001_2 \times 10_2 = 110,01_2$ et 10010_2 : $100_2 = 100,1_2$.

EXERCICE 34 P79

2) ARITHMETIQUE MODULAIRE

A) Division euclidienne

THEOREME: Pour tout entier naturel a et pour tout entier non nul b, il existe des entiers naturels uniques q et r tels que : $\mathbf{a} = \mathbf{bq} + \mathbf{r}$ avec $\mathbf{0} \le \mathbf{r} < \mathbf{b}$. q est le quotient de la division euclidienne de a par b et r est le reste.

Exemple 1 : la division euclidienne de 134 par 17 est 134 = 17 x 7 + 15 où $0 \le 15 < 17$. 7 est le quotient et 15 est le reste.

Exemple 2 : la division euclidienne de 2 par 150 est 2 = $0 \times 150 + 2$ où $0 \le 2 < 150$. 0 est le quotient et 2 est le reste.

B) Nombres premiers

Diviseurs et multiples d'un nombre entier naturel

DEFINITION: Soit a et b des nombres entiers naturels. a est un multiple de b s'il existe un entier naturel tel que a = bq. Alors, si $b \ne 0$, b est un diviseur de a (ou a est divisible par b).

Exemple: $12 = 3 \times 4$, on dit que 3 et 4 sont des diviseurs de 12 ou que 12 est un multiple de 3 et 4 ou que 12 est divisible par 3 et 4.

CRITERES DE DIVISIBILITE POUR UN ENTIER NATUREL n

- n est divisible par 2 s'il est pair (son chiffre des unités est 0, 2, 4, 6 ou 8); exemple 62.
- n est divisible par 3 si la somme de ses chiffres est divisible par 3; exemple 48.
- n est divisible par 4 si le nombre formé par ses deux derniers chiffres de droite est divisible par 4; exemple 608 mais pas 678.
- n est divisible par 5 si son chiffre des unités est 0 ou 5; exemple 75.
- n est divisible par 9 si la somme de ses chiffres est divisible par 9; exemple 801.

Nombres premiers

DEFINITION: un nombre entier naturel est premier s'il a exactement deux diviseurs: 1 et lui-même.

Exemples: 0 et 1 ne sont pas premiers. 2, 3, 5, 7 sont premiers. 6, 8, 9 ne sont pas premiers.

Voici le début de la liste des nombres premiers : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,...

Recherche de nombres premiers

Si un nombre entier naturel n ($n \ge 2$), n'est divisible par aucun des nombres premiers inférieurs ou égal à $\forall n$, alors n est un nombre premier.

Exemple: 221 est-il premier?

 $\sqrt{221} = 14.9$ arrondi au $10^{ième}$.

Les nombres premiers inférieurs à 14,9 sont : 2, 3, 5, 7, 11 et 13.

221 n'est pas divisible par 2, 3, 5, 7, 11 mais 221 = 13 x 17.

Donc 221 n'est pas premier.

EXERCICE 38, 39 et 40 P80

<u>Décomposition en produits de facteurs premiers</u>

THEOREME : Tout nombre supérieur ou égal à 2 se décompose de façon unique en un produit de facteurs premiers.

Exemple: $150 \ 2 \ 150 = 2 \times 3 \times 5^2$

75 3

25 5

5 5

1

Les diviseurs de 150 sont du type $2^i \times 3^j \times 5^k$ avec i = 0 ou 1; j = 0 ou 1; k = 0 ou 1 ou 2.

Ceci donne en tout $2 \times 2 \times 3 = 12$ diviseurs.

On obtient l'ensemble des diviseurs de 150 à l'aide d'un arbre :

1, 2, 3, 5, 6, 10, 15, 25, 30, 50, 75, 150.

EXERCICES 43, 44 et 46 P80

C) PGCD de deux entiers

DEFINITION: PGCD (a,b) est le plus grand diviseur commun à a et à b.

Exemple: on cherche le PGCD de 12 et 30.

 $12 = 2^2 \times 3$ et $30 = 2 \times 3 \times 5$ donc PGCD $(12,30) = 2 \times 3 = 6$

EXERCICE 50 P80

Entiers premiers entre eux

DEFINITION : deux nombres entiers naturels sont premiers entre eux si et seulement si leur seul diviseur commun est 1. Leur PGCD est donc égal à 1.

Méthode: pour savoir si deux nombres sont premiers entre eux, faire une décomposition en produit de facteurs premiers. S'il n'y a pas d'autres facteurs communs que 1, les nombres sont premiers entre eux.

Exemple:

 $8 = 2 \times 2 \times 2 = 2^3$ et $15 = 3 \times 5$ donc 8 et 15 n'ont pas d'autre diviseur commun que 1. Ainsi, 8 et 15 sont premiers entre eux.

 $7 = 1 \times 7$ et $63 = 2 \times 3 \times 7$ donc 7 et 63 ont un diviseur commun autre que 1 : c'est 7. Ainsi, 7 et 63 ne sont pas premiers entre eux.

EXERCICE 62 ET 64 P81

D) Congruences

DEFINITION: Soit a, b et n des nombres entiers naturels (et n supérieur ou égal à 2).

a est congru à b modulo n si et seulement si a et b ont le même reste dans la division euclidienne par n. on note $a \equiv b \pmod{n}$ ou $a \equiv b \pmod{n}$ ou plus simplement $a \equiv b \pmod{n}$.

Exemple: $17 \equiv 31 (7) \text{ car } 17 = 7 \times 2 + 3 \text{ et } 31 = 7 \times 4 + 3$

PROPRIETES IMMEDIATES

• 1) a ≡ a (n)

Exemple: $17 \equiv 17$ (7) car 17 et 17 ont le même reste dans la division par 7.

• 2) $a \equiv r(n)$ où r est le reste de la division euclidienne de a par n.

Exemple: $17 \equiv 3$ (7) car 17 et 3 ont le même reste dans la division par 7 (3).

• 3) Si $a \equiv b$ (n), alors $b \equiv a$ (n).

Exemple : $17 \equiv 31 \ (7)$ alors $31 \equiv 17 \ (7)$.

• 4) Si $a \equiv b$ (n) et $b \equiv c$ (n), alors $a \equiv c$ (n).

Exemple : $31 \equiv 17$ (7) et $17 \equiv 3$ (7) alors $31 \equiv 3$ (7).

• 5) a est congru à b modulo n si et seulement si I a – b I est un multiple de n.

Exemple : 31 - 17 = 14 et 14 est un multiple de 7 donc 31 = 17 (7).

• 6) Modulo n, les multiples de a sont les multiples de PGCD(a,n).

EXERCICE 65 P81

PROPRIETES: OPERATIONS SUR LES CONGRUENCES

Soient a, a', b, b', n et m des entiers naturels (et n supérieur ou égal à 2, m différent de 0).

Si $a \equiv b$ (n) et $a' \equiv b'$ (n) alors :

- 7) $a + a' \equiv b + b'(n)$
- 8) aa' ≡ bb' (n)
- 9) $a^m \equiv b^m (n)$
- 10) Si de plus $a \ge a'$ et $b \ge b'$, alors $a a' \equiv b b'$ (n).

EXERCICE 69, 70, 68, 71 P81 EXERCICE 73 p82

Devoir maison 72 et 74 p82