1 Lecture 8: Conjugate gradients and Krylov subspaces

1.1 Krylov subspaces

What's a standard non-convex problem? Finding the eigenvalues of a matrix. Below we list the standard methods for solving linear equations, and for solving eigenvalue equations.

	Ax = b	$Ax = \lambda x$ (non convex)
Basic	Gradient descent	Power methods
Accelerated	Chebyshev iteration	Chebyshev iteration
Accelerated and step size free	Conjugate gradient	Lanczos

Remark 1.1 (Chebyshev). The Chebyshev flow requires step sizes to be carefully chosen while the "accelerated and step size free" methods do not.

Definition 1.2 (Krylov subspace). For a matrix $A \in \mathbb{R}^{n \times n}$ and a vector $b \in \mathbb{R}^n$, the Krylov sequence of order t is b, Ab, A^2b ,, A^tb . Define the Krylov subspace as the span $[b, Ab, A^2b,, A^t \subset \mathbb{R}^n]$.

Fact 1 (Polynomial connection). A useful fact, if A has eigenvectors $u_1, ... u_n$ and $t \ge rank(A)$ and $< b, u_i > \ne 0$, then $u_i \in K_t \ \forall i$

Suppose I have a vector $v \in K_t(A, b)$, then $\iff \exists \alpha_i : v = \alpha_0 b + \alpha_1 A b + \cdots + \alpha_t A^t b$. If we define $p(A) \sum_{i=1}^t \alpha_i A^i$ then v = p(A)b. Then $K_t(A, b) = \{p(A)b : \deg(p) \leqslant t\}$.

Suppose we have a symmetric matrix $A \in \mathbb{R}^{n \times n}$ that has orthonormal eigenvectors $u_1 \cdots u_n$ and ordered eigenvalues $\lambda_1 \geqslant \lambda_2 \ldots \geqslant \lambda_n$. Now suppose we write b in this basis, $b = \alpha_1 u_1 + \ldots + \alpha_n u_n$ with $\alpha_i = \langle u_i, b \rangle$.

Remark 1.3 (Orthonormal eigenvectors).

$$\langle u_i, u_j \rangle = 0 \ i \neq j$$

 $\langle u_i, u_i \rangle = 1$

Remark 1.4. $p(A)u_i = p(\lambda_i)u_i$

Subsequently:

$$A = \sum_{i} \lambda_{i} u_{i} \mathbf{u_{i}}^{\top}$$

$$p(A) = \sum_{i} p(\lambda_{i}) u_{i} \mathbf{u_{i}}^{\top}$$

$$p(A)b = \alpha_{1} p(\lambda_{1}) u_{1} + \alpha_{2} p(\lambda_{2}) u_{2} + \dots + \alpha_{n} p(\lambda_{n}) u_{n}$$

We want to find a polynomial such that $p(A)b \approx \alpha_1 u_1$. Ideally, we would have $p(\lambda_1) = 1$ and $p(\lambda_i) = 0$ for i > 1. One thing that'll do this is if we get $p(\lambda_1) = 1$

and $\max_{i>1} p(\lambda_i)$ as small as possible. This will give us a close approximation to the top eigenvalue.

What's an easy polynomial that'll get us pretty close to this? $p(\lambda) = \frac{\lambda^t}{\lambda_1^t}$. From this we get $p(\lambda_1) = 1$ and $p(\lambda_2) = (\frac{\lambda_2}{\lambda_1})^t$. We want $p(\lambda_2)$ to get small so we care about how close λ_2 is to λ_1 .

 $\lambda_1=(1+\epsilon)\lambda_2$ then you need $p(\lambda_2)=\frac{1}{(1+\epsilon)^t}$ if you want $p(\lambda_2)$ to get small.

Remark 1.5 (\angle notation). tan \angle (a, b) is the tangent of the angle between a and b

Theorem 1.6.
$$\tan \angle (p(A)b, u_1) \leqslant \max_{j>1} \frac{|p(\lambda_j)|}{|p(\lambda_1)|} \tan \angle (b, u)$$

Proof. Define $\theta = \angle(u_1,b)$. By this, we get $\sin^2\theta = \sum_{j>1}\alpha_j^2$ and $\cos^2\theta = |\alpha_1|^2$ and $\tan^2\theta = \sum_{j>1}\frac{|\alpha_j^2|}{|\alpha_1|^2}$. Now we can write $\tan^2\angle(p(A)b,u_1) = \sum_{j>1}\frac{|p(\lambda_j)\alpha_j|^2}{|p(\lambda_1)|^2} \le \max_{j>1}\frac{|p(\lambda_j)|^2}{|p(\lambda_1)|^2}\sum_{j>1}\frac{\alpha_j|^2}{|\alpha_1|^2}$.

We note that this last sum $\sum_{j>1} \frac{\alpha_j|^2}{|\alpha_1|^2}$ is just $\tan \theta$ we have our desired result

Apply this to $p(\lambda) = \frac{\lambda^t}{\lambda_1^t}$ and $\lambda_1 = (1 + \epsilon)\lambda_2$. This implies $\tan \angle (p(A)b, u_1) \le \frac{1}{(1+\epsilon)t} \tan \angle (u_1, b)$. IF there is a big gap between λ_1 and λ_2 this converges quickly but it can be slow if $\lambda_1 \approx \lambda$)2.

Definition 1.7 (Power method).

$$x_0 = \frac{b}{\|b\|}$$

$$x_t = \frac{Ax_{t-1}}{\|Ax_{t-1}\|}$$

1.2 Applying Chebyshev polynomials

So, as in prior lectures, we need to normalize our chebyshev polynomials. However, now we want to ensure that $p(\lambda_1) = 1$ so that we are picking out the first eigenvalue with the correct scaling.

Lemma 1.8. A suitably rescaled degree t Chebyshev polynomial achieves

$$\min_{p(\lambda_1)=1} \max_{\lambda \in [\lambda_2, \lambda_n]} p(\lambda) \leqslant \frac{2}{(1+\sqrt{\epsilon})^t}$$
 (1)

where $\epsilon = \frac{\lambda_1}{\lambda_2} - 1$

	Ax = b	$Ax = \lambda x$ (non convex)
ϵ	$\frac{1}{\kappa} = \frac{\alpha}{\beta}$	$\frac{\lambda_1}{\lambda_2} - 1$

1.3 Conjugate gradient method

We want to solve Ax = b, $A \ge 0$.

 $x_0=0$: "solution" $r_0=b$: "residual" $p_0=r_0$: "search direction"

For t = 1, 2, ...

$$\eta_t = \frac{\|r_t\|}{\langle p_{t-1}, Ap_{t-1} \rangle}$$
: "step size" $x_t = x_{t-1} + \eta_t p_{t-1}$ $r_t = r_{t-1} - \eta_t A r_{t-1}$ $p_t = r_t + \frac{\|r_t\|^2}{\|r_{t-1}^2\|} P_{t-1}$

Proof. Proof by induction. Show that 1-3 are true initially and stay true when the update rule is applied.

Lemma 1.9.

1.
$$span < r_0, ... r_{t-1} >= K_t(A, b)$$

2.
$$j < t < r_t, r_j >= 0, r_t \perp K_t(a, b)$$

3.
$$i \neq j$$
: $p_i \top A p_i = 0$: "Conjugacy"

Lemma 1.10. Let $||u||_A = \sqrt{u^\top A u}$ and $\langle u, v \rangle_A = u^\top A v$ and $e_t = x^* - x_t$. Then e_t minimizes $||x^* - x||_A$ over all vectors $x \in K_{t-1}$.

Proof. We know that $x_t \in K_{t-1}$. Let $x \in K_{t-1}$. Define $x = x_t + \delta$. Then $e = x^* - x = x_t + \delta$. Lets compute the error in the A norm.

$$||x^* - x||_A^2 = ||e_t + \delta||^\top A(e_t + \delta)$$

$$e = x^* - x$$

$$e = x^* - x = e_t + \delta$$

$$||x^* - x||_A^2 = e_t^\top A e_t + \delta^\top A \delta + 2 e_t^\top A \delta$$

$$A \delta \in K_{t-1}$$

Want to argue that the last term $2e_t^\top A\delta = 0$ because e_t is orthogonal to the Krylov subspace. By definition $e_t^\top A = r_t$.