Entropy of (m,l)-Bernoulli transformations

Neemias Martins

University of Campinas

Joint with Régis Varão, Pedro Mattos and Pouya Mehdipour

neemias.org

Baker map

$$X = [0, 1]^2, \ f(x, y) = \begin{cases} (2x, y/2) & \text{if } x \in \left[0, \frac{1}{2}\right) \\ (2x - 1, (y + 1)/2) & \text{if } x \in \left[\frac{1}{2}, 1\right] \end{cases}$$

Baker map

Coding the Baker map

To each orbit $\{..., f^{-1}(x), x, f(x), ...\}$ we relate a sequence $(x_n)_n$ of zeros and ones:

• if
$$f^n x \in \left[0, \frac{1}{2}\right)$$
, code $x_n = 0$

• if
$$f^n x \in \left[\frac{1}{2}, 1\right]$$
, code $x_n = 1$

Orbit of x : (...; 0011...). Orbit of f(x) : (...0; 011...).

A is a finite alphabet

$$A^{\mathbb{Z}} = \left\{ (x_n)_{n \in \mathbb{Z}} : x_n \in A \right\}$$

$$(x_n)_{n \in \mathbb{Z}} = (\cdots x_{-2} x_{-1}; x_0 x_1 \cdots)$$

 $A^{\mathbb{Z}}$ is a compact metric space with

$$d((x_n), (y_n)) = 2^{-\inf\{|i| : x_i \neq y_i\}}$$

 $\sigma: A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ is the (full) shift map

$$\sigma(x_n) = (x_{n+1}).$$

Let \mathcal{C} the σ -algebra generated by the cylinder sets

$$C_i[s] \stackrel{\text{def}}{=} \{(x_n) \in \Sigma : x_i = s\}$$

•
$$C_i[s_i...s_k] \stackrel{\text{def}}{=} \{(x_n) \in \Sigma : x_i = s_i, ..., x_k = s_k\}$$

$$(\cdots x_{i-1} s_i s_{i+1} \cdots s_k x_{k+1} \cdots) \in C_i[s_i...s_k]$$

Given a probability distribution $(p_{\alpha} : \alpha \in A)$ in A, we define a measure

- $\mu(C_i[s]) = p_s$
- $\mu(C_i[s_i...s_k]) = \mu(C_i[s_i]) \dots \mu(C_k[s_k]) = p_{s_i} \dots p_{s_k}$

We say that $f: X \to X$ and $g: Y \to Y$, defined on (X, \mathcal{B}_1, μ) and (Y, \mathcal{B}_2, ν) , are isomorphic if there are measurable sets $A \in \mathcal{B}_1$ and $B \in \mathcal{B}_2$ such that

- $\mu(A) = \nu(B) = 1$
- $f(A) \subset A$, $g(B) \subset B$
- $\exists \varphi : A \to B$ invertible measure preserving map such that

$$\varphi \circ f = g \circ \varphi.$$

A map $f: X \to X$, defined on (X, \mathcal{B}, ν) , is a Bernoulli shift if is isomorphic to a shift map on $(\Sigma, \mathcal{C}, \mu)$.

Zip shifts

- A and B be two finite alphabets $A \ge B$
- $\varphi: A \to B$ a surjective map
- Σ the space of all sequence of letters

$$(x_n)_{n \in \mathbb{Z}} = (\cdots x_{-2} x_{-1} ; x_0 x_1 \cdots)$$

with $x_{-1}, x_{-2}, \dots \in B$ and $x_0, x_1, \dots \in A$.

The full **zip shift** map is $\sigma_{\varphi}: \Sigma \to \Sigma$ with

$$\sigma_{\varphi}(\ \cdots x_{-1};\ x_0x_1\cdots\)=(\cdots x_{-1}\varphi(x_0);\ x_1x_2\cdots).$$

 $f: X \to X$ is a **extended Bernoulli** when is isomorphic to a zip shift on $(\Sigma, \mathcal{C}, \mu)$. If #B = m and #A = l, we say f is a **(m,l)-Bernoulli**.

The zip shift space

Let \mathcal{C} the σ -algebra generated by the cylinder sets

- $C_i[s] \stackrel{\text{def}}{=} \{(x_n) \in \Sigma : x_i = s\}$
- $C_i[s_i...s_k] \stackrel{\text{def}}{=} \{(x_n) \in \Sigma : x_i = s_i, ..., x_k = s_k\}$

Given a probability distribution $(p_{\alpha} : \alpha \in A)$ in A, we define $(p_{\beta} : \beta \in B)$

$$p_{\beta} \stackrel{\text{def}}{=} \sum_{\alpha \in \varphi^{-1}(\beta)} p_{\alpha}.$$

The measure μ is defined by

- $\bullet \ \mu(C_i[s]) = p_s$
- $\mu(C_i[s_i...s_k]) = \mu(C_i[s_i]) \dots \mu(C_k[s_k]) = p_{s_i} \dots p_{s_k}$

 $(\Sigma, \mathcal{C}, \mu)$ is the zip shift space

Baker's map 2-to-1

Baker's map n-to-1

Mehdipour, ---

The baker's n-to-1 is a (2,2n)-Bernoulli transformation.

Entropy

- Von Neumann: Isomorphism problem of Bernoulli shifts
- Shannon entropy

$$H(p_1, ..., p_k) \stackrel{\text{def}}{=} -\sum_{i=1}^k p_i \log p_i$$

Kolmogorov-Sinai entropy as a invariant of measure isomorphim:

$$H_{\mu}(\mathcal{P}) \stackrel{\text{def}}{=} H(\mu(P_1), ..., \mu(P_k))$$

$$h_{\mu}(f) \stackrel{\text{def}}{=} \sup_{\mathcal{P}} \lim_{k \to \infty} \frac{1}{k} H_{\mu} \left(\bigvee_{i=0}^{k-1} f^{-i} \mathcal{P} \right)$$

Ornstein theorem: Bernoulli shifts of same entropy are isomorphic.

Folding entropy

- $\varepsilon := \{\{x\} : x \in X\}$ the partition of X into single points
- $f^{-1}(\varepsilon) = \{f^{-1}(x) : x \in X\}$ the preimage partition of ε by f.

The folding entropy of f is defined by

$$\mathcal{F}_{\mu}(f) \stackrel{\text{def}}{=} H_{\mu}(\varepsilon \mid f^{-1}(\varepsilon)) = \int_{X} H_{\tilde{\mu}_{X}}(\varepsilon) d(f\mu)$$

where $\{\tilde{\mu}_x\}$ is a canonical family of conditional measures of μ disintegrated along the preimage sets $\{f^{-1}x\}$ for μ -a.e. $x \in X$.

Entropy of a zip shift

--- , Mattos, Varão

•
$$h_{\mu}(\sigma_{\varphi}) = H((p_{\alpha})_{\alpha \in A})$$

$$h_{\mu}(\sigma_{\varphi}) = H((p_{\alpha})_{\alpha \in A})$$

$$\mathcal{F}_{\mu}(\sigma_{\varphi}) = H((p_{\alpha})_{\alpha \in A}) - H((p_{\beta})_{\alpha \in B}).$$

Isomorphism theorem

--- , Varão, Mehdipour

Let f and g be two n-to-1 (m,l)-Bernoulli transformations of same entropy. Then $f\cong g$.

References

- [1] N. Martins, P. G. Mattos, e R. Varão, «Folding Entropy for Extended Shifts». 2024.
- [2] P. Mehdipour e N. Martins, «Encoding n-to-1 baker's transformations», *Arch. Math.*, vol. 119, pp. 199–211, 2022.
- [3] S. Lamei e P. Mehdipour, «Zip shift space», 2022.
- [4] W. Wu e Y. Zhu, «On preimage entropy, folding entropy and stable entropy», *Ergod. Th. & Dynam. Sys.*, vol. 41, pp. 1217–1249, 2021.
- [5] G. Liao e S. Wang, «Continuity properties of folding entropy», Israel Journal of Mathematics, 2024.
- [6] D. Ornstein, *Ergodic Theory, Randomness, and Dynamical Systems*. Yale Mathematical Monographs, 1974.

```
( . . . thank you . . . )
```