FIG. 1A

DYNAMICALLY ADJUSTABLE DIGITAL GYRATOR HAVING EXTENDED FEEDBACK

2/24 -

FIG. 1B

FIG. 2A

50-ICO*RCO=ICO*RP=VP ICO=14.27 mA VP=35.7 Volts

Note: All results are at steady state

 $FIG.\ 2B$ DYNAMICALLY ADJUSTABLE DIGITAL GYRATOR EXAMPLE

RP=Gyrator Impedance=400 ohms RCO=Central Office Resistance

ļ.

APPROVED O.G. F.G.
C.ASS SUBCLASS

4/24

FIG.~~3A CODEC and Telephone System Stability Block Diagram

FIG. 3B

FIG. 4

Simplified D/A Path

FIG. 5A

DSP Based Gyrator Block Diagram

FIG. 5B

FIG. 6

9/24

	FIG. 0 $3/24$
ADRNG= 1.16	Input @ 4.6V/LSB @TIP 1 / (.005*32768)=.00611 mA/LSB
DCDIV= 130	1
DCGN= 5	Input Gain
DAGN= 1.25	ADRNG * DCDIV * DCGN * Filtgain $H(z) = \frac{Input \ Gain}{ADRNG + DCDIV + DCGN + Filtgain}$
DARNG= 1.4	
INTGN= .75	EAGE CAIN
	FAST GAIN Register High Word
	Register Low Word
	SLOW GAIN
Feedback Gain	Register High Word
FAST POLE	Register Low Word
Register High Word	—
Register Low Word	Σ
SLOW POLE	+ 1
Register High Word	Positive Current Limit
Register Low Word	Register
1	Current Limit*.00611 ma/LSB
	If I > Current Limit set I = Current Limit
	Hysterisis
	Z^-1
	Precharge Current
	Register High Word
	Register Low Word
CODEC Default Cur	+
ma /.00611 ma/BIT	
Register	- 0x/00
Negister	
	Negative Clipper
	If<0 Output = 0
	Output Gain
	1 / (DAGN * DARNG*INTGN)
	Sample and Hold
	4X
	Register
	↓
	Data Out

10/24

troute that

11/24

FIG. 7B

10 Hz Fast DC Loop Filter Gain and Phase

CSCHOLO CSEACH

12/24

HICHARA CINALL

8B

1 Hz Slow DC Loop Filter Gain and Phase

FIG. 9

First Order Filter Topology

FIG. 10

Final Low Pass Topology with glitch removed

15/24

DC LOOP FILTER OUTPUT V (Q14) Current Limit DC Loop Filter Fcslow = 1Hz -40 dB @ 100Hz Current Limit = 60 mA 100 Hz DC LOOP FILTER INPUT V (Q14) 2 Current Limit 0

DC Loop Filter Without Hysterysis

FIG. 11A

16/24

DC LOOP FILTER OUTPUT Lower Hysterysis Limit V (Q14) Current Limit 0 DC Loop Filter
Fcslow = 1Hz
-40 dB @ 100Hz
Current Limit = 60 mA · 100 Hz DC LOOP FILTER INPUT V (Q14) Current Limit 0

FIG. 11B

DC Loop Filter With Hysterysis

17/24

유은 ZCO Magnitude (TAS/PBX/REAL) **H**2 <u>.</u> æ Ohms
200000 2*10⁵
1.8*10⁵
1.8*10⁵
200(f) | 1.8*10⁵
200(f) | 1.2*10⁵
7(f) | 8*10⁴
6*10⁴
4*10⁴
4*10⁴
4*10⁴

FIG. 12A

No. Seed No. Seed Study Seed S. E. Seed S. E. Seed S.

GASSSUBCLASS

18/24

FIG. 12B

TAS, PBX and Real Phone Line V/I Loadlines

APPROVED C.G. F.G.

19/24

FIG. 13A

asatata tatata

 $FIG. \quad \textit{1} \ 3B$ TAS Termination with Lowpass Filter Cutoff = 1 Hz

21/24

FIG. 14A

andero and the

FIG. 14B

TAS Termination with Lowpass Filter Cutoff = .1 Hz

+

+

APPROVED ASS SUBCLA

23/24

FIG. 15

PRIOR ART

FIG. 16

FIG. 17

FIG. 18A

50-ICO*RCO=ICO*RP=VTIP
ICO=14.27 mA
VP=35.7 Volts
Note: All results are at steady state

FIG. 18B

Basic External Gyrator Example

