INTRO TO DATA SCIENCE USING AZURE ML STUDIO

Laura Da Silva, Founder of Da Silva Advanced Analytics, Founder of IWDS and Microsoft MVP in Al @lauradatasci @wogisci

Topics for today:

- Intro to data science
- Data science applications
- Intro to machine learning
- Data science life cycle
- Getting started with Azure ML Studio

INTRO TO DATA SCIENCE

What is Data Science?

What to learn to become a Data Scientist?

MODERN DATA SCIENTIST

Data Scientist, the sexiest job of the 21th century, requires a mixture of multidisciplinary skills ranging from an intersection of mathematics, statistics, computer science, communication and business. Finding a data scientist is hard. Finding people who understand who a data scientist is, is equally hard. So here is a little cheat sheet on who the modern data scientist really is.

MATH & STATISTICS

- ☆ Machine learning
- ☆ Statistical modeling
- Experiment design
- Supervised learning: decision trees, random forests, logistic regression
- Unsupervised learning: clustering, dimensionality reduction
- Optimization: gradient descent and variants

DOMAIN KNOWLEDGE & SOFT SKILLS

- ☆ Curious about data
- ☆ Influence without authority
- ☆ Hacker mindset
- ☆ Problem solver
- Strategic, proactive, creative, innovative and collaborative

PROGRAMMING & DATABASE

- ☆ Computer science fundamentals
- Scripting language e.g. Python
- ☆ Statistical computing packages, e.g., R
- Tatabases: SOL and NoSOL
- ☆ Relational aigebra
- Parallel databases and parallel query processing
- ☆ MapReduce concepts
- ☆ Hadoop and Hive/Pig
- ☆ Custom reducers
- ☆ Experience with xaaS like AWS

COMMUNICATION & VISUALIZATION

- Able to engage with senior management
- ☆ Story telling skills
- Iranslate data-driven insights into decisions and actions
- ☆ Visual art design
- ☆ R packages like ggplot or lattice
- ☆ Knowledge of any of visualization tools e.g. Flare, D3.js, Tableau

What skills are expected from a Data Scientist?

Experience coding (SQL, R, Python)

Machine Learning (Maths & Statistics)

Curious about data

Good communicator:
Translate data-driven
insights into
decisions and actions

General skills for becoming a Data Scientist

Problem Solving Skills

Patience

Coding Skills

Creativity (Think outside the box)

Intellectual Curiosity

Resilience

Communication Skills

Big Initiative

Machine Learning / Data Mining Skills

Because in your every day you will be ...

- Solving problems for getting the best solution for your client/company
- Understanding data and business objectives
- Transforming data to give it a coherent and useful form
- Implementing new *algorithms* to make predictions on data
- Studying and using models to understand specific data
- Using feedback to learn how to improve your solution or make better predictions

DATA SCIENCE APPLICATIONS

Data Science Applications

Current Trends

Recommender Systems

Speech recognition

Facial identification/recognition

Health (detection of cancer)

Self Driving cars

Smart houses

Data Science Applications

INTRO TO MACHINE LEARNING

Intro to Machine learning

Western Digital.

Example: Iris flower

	Feat	ures	Labels			
Sepal length	Sepal width	Petal length	Petal width	Species		
5.1	3.5	1.4	0.2	Iris setosa		
4.9	3.0	1.4	0.2	lris setosa		
7.0	3.2	4.7	1.4	lris versicolor		
6.4	3.2	4.5	1.5	Iris versicolor		
6.3	3.3	6.0	2.5	lris virginica		
5.8	3.3	6.0	2.5	Iris virginica		

Unsupervised Learning

Definition

 You give the input data
 (X) and no corresponding output variables (labels).

Techniques

- Clustering: you want to discover the inherent groupings in the data.
- Association: you want to discover rules that describe large portions of your data.

	Feat	ures	Labels			
Sepal length	Sepal width	Petal length	Petal width	1 pecies		
5.1	3.5	1.4	0.2	Iris seto la		
4.9	3.0	1.4	0.2	Iris s tosa		
7.0	3.2	4.7	1.4	Iris Arsicolor		
6.4	3.2	4.5	1.5	Iris yelsicolor		
6.3	3.3	6.0	2.5	Misvirgmika		
5.8	3.3	6.0	2.5	iris virginica		

Supervised Learning

Definition

You give the input data (X)
 and an output variable (Y)
 (labels), and you use an
 algorithm to learn the
 mapping function from the
 input to the output.

$$Y = f(X)$$

Techniques

- Classification: you want to classify a new input value.
- Regression: you want to get a function that fit really well the data so you can predict the future.

	Feat	ures	Labels			
Sepal length	Sepal Petal width length		Petal width	Species		
5.1	3.5	1.4	0.2	lris setosa		
4.9	3.0	1.4	0.2	lris setosa		
7.0	3.2	4.7	1.4	Iris versicolor		
6.4	3.2	4.5	1.5	Iris versicolor		
6.3	3.3	6.0	2.5	Iris virginica		
5.8	3.3	6.0	2.5	Iris virginica		

DATA SCIENCE LIFE CYCLE

Supervised learning example: Titanic survivor predictor

The titanic survivor predictor example will predict the probability of surviving in the Titanic based on data about passengers on the Titanic.

- 1. Let's explore the dataset
- 2. Let's follow the instructions together to get our predictions

Data Science cycle

The ORIGINAL Dataset

The original dataset usually has to be transformed in order to be used

	Passengerlå	Survived	Pclass	Name	Sex [‡]	Age ‡	SibSp [‡]	Parch [‡]	Ticket ‡	Fare ‡	Cabin ‡	Embarked
37	37	1	3	Mamee, Mr. Hanna	male	NA	0	0	2677	7.2292		С
38	38	0	3	Cann, Mr. Ernest Charles	male	21.00	0	0	A./5. 2152	8.0500		S
39	39	0	3	Vander Planke, Miss. Augusta Maria	female	18.00	2	0	345764	18.0000		S
40	40	1	3	Nicola-Yarred, Miss. Jamila	female	14.00	1	0	2651	11.2417		С
41	41	0	3	Ahlin, Mrs. Johan (Johanna Persdotter Larsson)	female	40.00	1	0	7546	9.4750		S
42	42	0	2	Turpin, Mrs. William John Robert (Dorothy Ann Wonna	female	27.00	1	0	11668	21.0000		S
43	43	0	3	Kraeff, Mr. Theodor	male	NA	0	0	349253	7.8958		С
44	44	1	2	Laroche, Miss. Simonne Marie Anne Andree	female	3.00	1	(SC/Paris 2123	41.5792		С
45	45	1	3	Devaney, Miss. Margaret Delia	female	19.00	0	0	330958	7.8792		Q
46	46	0	3	Rogers, Mr. William John	male	NA	0	0	S.C./A.4. 23567	8.0500		S
47	47	0	3	Lennon, Mr. Denis	male	NA	1	0	370371	15.5000		Q
48	48	1	3	O'Driscoll, Miss. Bridget	female	NA	0	0	14311	7.7500		Q
49	49	0	3	Samaan, Mr. Youssef	male	NA	2	0	2662	21.6792		С
50	50	0	3	Arnold-Franchi, Mrs. Josef (Josefine Franchi)	female	18.00	1	0	349237	17.8000		S
51	51	0	3	Panula, Master. Juha Niilo	male	7.00	4	1	3101295	39.6875		S
52	52	0	3	Nosworthy, Mr. Richard Cater	male	21.00	0	0	A/4. 39886	7.8000		S
53	53	1	1	Harper, Mrs. Henry Sleeper (Myna Haxtun)	female	49.00	1	0	PC 17572	76.7292	D33	С

Data Dictionary

Variable Name	Description
Survived	Survived (1) or died (0)
Pclass	Passenger's class
Name	Passenger's name
Sex	Passenger's sex
Age	Passenger's age
SibSp	Number of siblings/spouses aboard
Parch	Number of parents/children aboard
Ticket	Ticket number
Fare	Fare
Cabin	Cabin
Embarked	Port of embarkation

Final dataset

Observations

Attributes or features

	Α	В	С	D	Е	F	G
	PassengerClass	Gender	Age	SiblingSpouse	ParentChild	FarePrice	PortEmbarkation
	1	male	22	1	1	7.25	S
	1	female	38	1	1	71.28	С
	2	female	40	3	0	34.5	S
	1	male	12	0	0	51.6	С
	1	female	3	1	2	18.4	Q
ns 🚽	2	male	45	1	0	11.3	С
	1	female	23	2	2	16.7	Q
	3	male	16	0	0	30.1	С
	1	female	21	2	1	20.3	S
	2	male	58	1	1	18.8	С
	1	>					
Nume	rical Data		Cat	egorical Data			

Splitting the data for training and testing

Model evaluation: the confusion matrix

n=165	Predicted: NO	Predicted: YES		
Actual:				
NO	50	10		
Actual:				
YES	5	100		

AZURE ML STUDIO

Create your first experiment in Azure Machine Learning Studio

Sign in Azure Machine Learning Studio: https://studio.azureml.net/

Let's follow the tutorial of creating an experiment in Azure ML for Income prediction.

Details about the dataset can be found at:

https://archive.ics.uci.edu/ml/datasets/adult

The training experiment

The predictive experiment

The web service details

Challenges

Looking at examples you will find in the Gallery (https://gallery.azure.ai/):

- Create the experiment for the Titanic survivor predictor.
- Create the experiment for Sentiment analysis using messages from Twitter.
- Create an experiment for movie recommendation.