CODING THEORY: PRACTICE EXAM SOLUTIONS

1.

a)	0	1	α	α^2	α^3	α^4	α^5	α^6
	000	001	010	100	011	110	111	101

- b) i) $H_{3,1} = \begin{pmatrix} \alpha^6 & \alpha^5 & \alpha^4 & \alpha^3 & \alpha^2 & \alpha & 1 \end{pmatrix}$
 - ii) Note that $H_{3,1}v = (v(\alpha))$, so v(X) is a codeword if and only if $v(\alpha) = 0$. Since $v(X) \in \mathbb{B}[X]$, we know that $v(\alpha) = 0$ if and only if the minimal polynomial of α divides v(X). Clearly, the minimal polynomial of α is $X^3 + X + 1$ so the generator polynomial of Ham(3) is $X^3 + X + 1$.

To show Ham(3) is cyclic, we need to show that the generator polynomial $X^3 + X + 1$ divides $X^7 - 1$. Indeed, by Fermat's little theorem, α is a zero of $X^7 - 1$, so its minimal polynomial $X^3 + X + 1$ divides $X^7 - 1$.

c) i) The standard choice of check matrix is

$$V_{3,2} = \left(egin{array}{ccccc} lpha^6 & \cdots & lpha^2 & lpha & 1 \ (lpha^6)^2 & \cdots & (lpha^2)^2 & lpha^2 & 1 \ (lpha^6)^3 & \cdots & (lpha^2)^3 & lpha^3 & 1 \ (lpha^6)^4 & \cdots & (lpha^2)^4 & lpha^4 & 1 \end{array}
ight).$$

The corresponding generator polynomial is $g_{3,2}^{RS}(X) = (X - \alpha)(X - \alpha^2)(X - \alpha^3)(X - \alpha^4)$. We show that the *F*-linear code defined by the check matrix $V_{3,2}$ and the cyclic code defined by the generator polynomial $g_{3,2}^{RS}(X)$ as follows. We identify, as usual, $v := (v_6, \cdots, v_0) \in F^7$ with $v(X) := v_6 X^6 + \cdots + v_0 \in F[X]$. Then the equation $V_{3,2}v = 0$ translates to $v(\alpha) = \cdots = v(\alpha^4) = 0$; i.e. $(X - \alpha)|v(X), \cdots, (X - \alpha^4)|v(X)$, which is equivalent to requiring $g_{3,2}(X)|v(X)$.

To show RS(3,2) is cyclic, one needs to show that the generator polynomial divides $X^7 - 1$. Indeed, by Fermat's little theorem, we know that $X - \alpha^i$ divides $X^7 - 1$ for any i.

ii) Since the dimension of RS(3,2) is precisely $2^3 - 1 - 2 \cdot 2 = 3$, the generator matrix is a 7×3 -matrix with entries in F, and giving a generator matrix is equivalent to giving an injective F-linear map $F^3 \rightarrow F^7$.

The systematic encoding sends u(X) to $u(X) \cdot X^4 - \left(u(X)X^4 \mod g_{3,2}^{RS}(X)\right)$, where $u(X) \in F[X]$ is of degree ≤ 2 and $u(X)X^4 \mod g_{3,2}^{RS}(X)$ is the remainder of $u(X)X^4$ after long division by $g_{3,2}^{RS}(X)$. (Note that what you obtain is a polynomial with degree ≤ 6 with coefficients in F.) Under

the usual identification¹, the systematic encoding gives an injective F-linear map $F^3 \to F^7$. (So far, we have not done anything but recalled various definitions.)

To find the 7×3 matrix corresponding to the systematic encoding, we plug in the "standard basis" of F^3 ; i.e. $(1,0,0)^{\top}, (0,1,0)^{\top}, (0,0,1)^{\top} \in F^3$. Note that they correspond to $X^2, X, 1 \in F[X]$, respectively. To proceed, we need to expand the generator polynomial.

$$\begin{split} g^{\text{RS}}_{3,2}(X) &= X^4 + (\alpha + \alpha^2 + \alpha^3 + \alpha^4)X^3 \\ &+ (\alpha\alpha^2 + \alpha\alpha^3 + \alpha\alpha^4 + \alpha^2\alpha^3 + \alpha^2\alpha^4 + \alpha^3\alpha^4)X^2 \\ &+ (\alpha\alpha^2\alpha^3 + \alpha\alpha^2\alpha^4 + \alpha\alpha^3\alpha^4 + \alpha^2\alpha^3\alpha^4)X + \alpha\alpha^2\alpha^3\alpha^4 \\ &= X^4 + \alpha^3X^3 + X^2 + \alpha X + \alpha^3 \end{split}$$

For the computation, use table in a) above.

We perform long division:

$$X^{2} \cdot X^{4} = (X^{2} + \alpha^{3}X + \alpha^{2})g_{3,2}^{RS}(X) + \alpha^{4}X^{3} + X^{2} + \alpha^{4}X + \alpha^{5}$$

$$X \cdot X^{4} = (X + \alpha^{3})g_{3,2}^{RS}(X) + \alpha^{2}X^{3} + X^{2} + \alpha^{6}X + \alpha^{6}$$

$$1 \cdot X^{4} = g_{3,2}^{RS}(X) + \alpha^{3}X^{3} + X^{2} + \alpha X + \alpha^{3}$$

So the systematic encoding produces:

$$X^{2} \mapsto X^{6} + \alpha^{4}X^{3} + X^{2} + \alpha^{4}X + \alpha^{5}$$

$$X \mapsto X^{5} + \alpha^{2}X^{3} + X^{2} + \alpha^{6}X + \alpha^{6}$$

$$1 \mapsto X^{4} + \alpha^{3}X^{3} + X^{2} + \alpha X + \alpha^{3}$$

and if we rewrite this in vector form

$$\begin{array}{cccc} (1,0,0)^\top & \mapsto & (1,0,0,\alpha^4,1,\alpha^4,\alpha^5)^\top \\ (0,1,0)^\top & \mapsto & (0,1,0,\alpha^2,1,\alpha^6,\alpha^6)^\top \\ (0,0,1)^\top & \mapsto & (0,0,1,\alpha^3,1,\alpha,\alpha^3)^\top \end{array}$$

So the corresponding generator matrix is

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \alpha^4 & \alpha^2 & \alpha^3 \\ 1 & 1 & 1 \\ \alpha^4 & \alpha^6 & \alpha \\ \alpha^5 & \alpha^6 & \alpha^3 \end{pmatrix}$$

Coding Theory © Imperial College London 2/10

¹We identify a vector $u \in F^3$ with a polynomial $u(X) \in F[X]$ with degree ≤ 2 , and a vector $v \in F^7$ with a polynomial $v(X) \in F[X]$ with degree ≤ 6 .

2. a)
$$V_{k,t} = \begin{pmatrix} \alpha^{q-2} & \cdots & \alpha^2 & \alpha & 1 \\ (\alpha^{q-2})^2 & \cdots & (\alpha^2)^2 & \alpha^2 & 1 \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ (\alpha^{q-2})^{2t} & \cdots & (\alpha^2)^{2t} & \alpha^{2t} & 1 \end{pmatrix}.$$

b) $g_{k,t}^{RS}(X) = \prod_{i=1}^{2t} (X - \alpha^i)$. This divides $X^{q-1} - 1$ because by Fermat's little theorem $X - \alpha^i$ divides $X^{2^k - 1} - 1$ for any i.

Identify $v=(v_{q-2},\cdots,v_0)\in F^{q-1}$ with $v(X):=v_{q-2}X^{q-2}+\cdots+v_0\in F[X]$ Then $V_{k,t}v=0$ can be rewritten as

$$v_{q-2}\alpha^{q-2} + \dots + v_1\alpha + v_0 = 0$$

$$v_{q-2}(\alpha^2)^{q-2} + \dots + v_1\alpha^2 + v_0 = 0$$

$$\vdots$$

$$v_{q-2}(\alpha^{2t})^{q-2} + \dots + v_1\alpha^{2t} + v_0 = 0,$$

i.e., $v(\alpha) = v(\alpha^2) = \cdots = v(\alpha^{2t}) = 0$. This shows that v(X) is a RS(k,t)-codeword if and only if $g_{k,t}^{RS}(X)$ divides v(X).

c) i) Let $v = (v_{q-2}, \dots, v_0) \in F^{q-1}$ be a codeword such that $v_j = 0$ for any $j \neq i_1, \dots i_{2t}$. we want to show that v = 0. Clearly,

$$0=V_{k,t}
u=\left(egin{array}{ccc} oldsymbol{lpha}^{i_{2t}} & oldsymbol{lpha}^{i_{1}} \ dots & \ddots & dots \ oldsymbol{lpha}^{(2t)i_{2t}} & oldsymbol{lpha}^{(2t)i_{1}} \end{array}
ight)\left(egin{array}{c} v_{i_{2t}} \ dots \ v_{i_{1}} \end{array}
ight)$$

But because the determinant of the square matrix is non-zero, it is invertible. Therefore,

$$\begin{pmatrix} v_{i_{2t}} \\ \vdots \\ v_{i_1} \end{pmatrix} = \begin{pmatrix} \alpha^{i_{2t}} & \alpha^{i_1} \\ \vdots & \cdots & \vdots \\ \alpha^{(2t)i_{2t}} & \alpha^{(2t)i_1} \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

Therefore $v_{i_1} = \cdots = v_{i_{2t}} = 0$. But because $v_j = 0$ for all $j \neq i_1, \cdots, i_{2t}$, we conclude that v = 0.

ii) Any 2t + 1 vectors in F^{2t} are linearly dependent over F. Therefore, there exists an F-linear dependence relation

$$v_{2t}(\boldsymbol{\alpha}^{2t}, \cdots, (\boldsymbol{\alpha}^{2t})^{2t})^{\top} + \cdots + v_1(\boldsymbol{\alpha}, \cdots, \boldsymbol{\alpha}^{2t})^{\top} + v_0(1, \cdots, 1)^{\top} = 0,$$
(2.1)

where $v_0, v_1 \cdots, v_{2t} \in F$ and not all of them are zero. Now, take $v := (0, \cdots, 0, v_{2t}, \cdots, v_1, v_0) \in F^{q-1}$. Then we see

$$V_{k,t}v = v_{2t}(\alpha^{2t}, \dots, (\alpha^{2t})^{2t})^{\top} + \dots + v_1(\alpha, \dots, \alpha^{2t})^{\top} + v_0(1, \dots, 1)^{\top} = 0,$$

so v is a codeword of RS(k,t). This shows that the minimal distance of RS(k,t) is at most 2t+1. On the other hand, part i) shows that the minimal distance of RS(k,t) is at least 2t+1. So the minimal distance has to be exactly 2t+1.

- iii) Even though $V_{k,t}$ is a check matrix for $\operatorname{BCH}(k,t)$ the solution to part ii) does not work because $v_0, \cdots v_{2t}$ in equation ii) does not have to be elements of $\mathbb B$. In order to produce a codeword $v \in \mathbb B^{q-1}$ with d(v,0) = 2t+1 one has to find a linear dependence relation over $\mathbb B$ of some 2t+1 column vectors of $V_{k,t}$, but this is not always possible. Indeed any 2t+1 vectors in F^{2t} are linearly dependent over F but the linear dependence relation doesn't need to have all coefficients in $\mathbb B$.
- 3. a) i) To show F_{β} is closed under addition and multiplication, consider two elements $\gamma := \sum_{n \geq 0} a_n \beta^n$ and $\delta := \sum_{n \geq 0} b_n \beta^n$. Now, one can obtain by direct computation that

$$\gamma + \delta = \sum_{n \geqslant 0} (a_n + b_n) \beta^n$$

$$\gamma \cdot \delta = \sum_{n \geqslant 0} (\sum_{m=0}^n a_m b_{n-m}) \beta^n.$$

Clearly, $\gamma + \delta$ and $\gamma \cdot \delta$ satisfy the requirement for being elements in F_{β} .

To show F_{β} is a subfield, one needs to note:

- Note that $0, 1 \in F_{\beta}$ (by taking $a_i = 0$ for all i, or $a_0 = 1$ and $a_i = 0$ for all i > 0).
- For $\gamma \in F_{\beta}$, $-\gamma \in F_{\beta}$ because $-\gamma = \gamma$ (i.e., $\gamma + \gamma = 0$).
- For any nonzero $\gamma \in F_{\beta}$, $\gamma^{-1} \in F_{\beta}$ because by Fermat's little theorem $\gamma^{-1} = \gamma^{2^k-2}$ and F_{β} is closed under multiplication.
- ii) We need to show that any subfield $F' \subset F$ containing β also contains F_{β} . Indeed, F' is necessarily closed under addition and multiplication, so it has to contain all the elements of the form $\sum_{n \geq 0} a_n \beta^n$ for $a_n \in \mathbb{B}$.
- b) Note that $\beta^2 = \alpha^2 + \alpha + 1 = \beta + 1$ and $\beta^3 = 1$. Therefore, any element in F_{β} can be written as $a_0 + a_1\beta$ for $a_0, a_1 \in \mathbb{B}$; i.e., $F_{\beta} = \{0, 1, \beta, 1 + \beta\}$.

Note that the smallest field containing α is F_{α} , but it is clear from the definition that any element $\gamma \in F$ also belongs to F_{α} ; i.e., $F_{\alpha} = F$.

- c) i) To check $F_{q'}$ is a subfield, we need to check the following:
 - $0, 1 \in F_{q'}$; this is obvious from the definition of $F_{q'}$.
 - For any $\gamma \in F_{q'}$, we have $-\gamma, \gamma^{-1} \in F_{q'}$; indeed, $-\gamma = \gamma$, and $(\gamma^{-1})^{q'} = (\gamma^{q'})^{-1} = \gamma^{-1}$.
 - $F_{q'}$ is closed under addition and multiplication; consider $\gamma, \delta \in F_{q'}$, in other words, $\gamma^{q'} = \gamma$ and $\delta^{q'} = \delta$. We have

$$\begin{array}{rcl} (\gamma\delta)^{q'} & = & \gamma^{q'}\delta^{q'} = \gamma\delta \\ (\gamma+\delta)^{q'} & = & \gamma^{q'}+\delta^{q'} = \gamma+\delta. \end{array}$$

Note that the second line is obtained from iterating $(\gamma + \delta)^2 = \gamma + \delta$ using that $q' = 2^{k'}$.

Now we check that $|F_{q'}|=q'$. One can do this by writing down all the nonzero elements of $F_{q'}$ as powers of a (chosen) primitive element of F. We present an alternative solution. Note that elements of $F_{q'}$ are exactly zeroes of $X^{q'}-X=X(X^{q'-1}-1)$. So it is enough to show that

 $X^{q'-1}-1$ has q'-1 zeroes in F. Note that (q'-1)|(q-1); indeed, we have $\frac{q-1}{q'-1}=1+q'+\cdots+(q')^{k/k'-1}$. (Recall that $q=2^k$, $q'=2^{k'}$ and k'|k.) Therefore $X^{q-1}-1=(X^{q'-1}-1)(1+X^{q'-1}+\cdots+X^{\frac{q-1}{q'-1}-1})$. Now, by Fermat's little theorem, $X^{q-1}-1$ has exactly q-1 simple (i.e., distinct) zeroes in F, so it follows that its factor $X^{q'-1}-1$ has q'-1 zeroes.

- ii) Since $F_{q'}$ is a subfield of F, F is a vector space over $F_{q'}$. In other words, there exists an $F_{q'}$ -linear isomorphism $F \cong F_{q'}^n$ for a suitable n. By counting both sides, one obtain that $q = (q')^n$, so we have k = k'n.
- iii) By the previous part, for any subfield $F' \subset F$ we have $|F'| = 2^{k'}$ for some k'|k. By Fermat's little theorem, any subfield $F' \subset F$ with |F'| = q' should equal to $F_{q'}$. This shows that all the possible subfields of F are of the form $F_{q'}$ for some $q' = 2^{k'}$ with k'|k.

Set $q'=2^{k'}$ for some k'|k. We will write down all the non-zero elements of $F_{q'}$ in terms of α . Indeed, $\beta:=\alpha^{(q-1)/(q'-1)}\in F_{q'}$. Furthermore, $\beta^i\in F_{q'}$ for any i. Since α is a primitive element, it follows that $1,\beta,\beta^2,\cdots,\beta^{q'-2}$ are all distinct. So we have found q'-1 nonzero elements of $F_{q'}$. Hence,

$$F_{q'} = \{0, 1, \beta, \beta^2, \cdots, \beta^{q'-2}\},\$$

where $\beta := \alpha^{(q-1)/(q'-1)}$. We have any shown that any subfield of F is of this form for $q' = 2^{k'}$ with k'|k.

iv) Let k = 4. Then possible k' are 1, 2, and 4. Clearly, $F_2 = \mathbb{B}$, and $F_{16} = F$. It remains to find F_4 .

Using the previous part $\beta = \alpha^{15/3} = \alpha^5 = \alpha^2 + \alpha$, and $F_4 = \{0, 1, \beta, \beta^2 = \beta + 1\}$. This is the subfield found in b).

4. a) We present two solutions. Note that the check matrix $V_{4,2}$ for RS(4,2) is obtained by deleting the last two rows from the check matrix $V_{4,3}$ for RS(4,3). Therefore any $v \in F^{15}$ such that $V_{4,3}v = 0$ should also satisfy $V_{4,2}v = 0$.

Alternatively, we may use the cyclic code description of RS(4,t), Let $g_{4,2}^{RS}(X)$ and $g_{4,3}^{RS}(X)$ denote the generator polynomials of RS(4,2) and RS(4,3), respectively. Observe that $g_{4,2}^{RS}(X)$ divides $g_{4,3}^{RS}(X)$ (which is clear from the formula). If v(X) is a codeword of RS(4,3), then $g_{4,3}^{RS}(X)$ divides v(X), so clearly $g_{4,2}^{RS}(X)$ also divides v(X).

- b) i) $s(z) = \alpha^3 z^3 + \alpha^4 z^2 + \alpha^3 z + \alpha^5$. Since $s(z) \neq 0$, d(X) is not a codeword and some error has occurred during transmission.
 - ii) We apply Euclid's algorithm for s(z) and z^4 :

Step 1 $z^4 = (\alpha^{12}z + \alpha^{13})s(z) + r_1(z)$ where $r_1(z) = \alpha^8z^2 + \alpha^5z + \alpha^3$.

Step 2 $s(z) = (\alpha^{10}z + \alpha^8)r_1(z) + r_2(z)$ where $r_2(z) = \alpha^3z + \alpha^3$.

We stop the process since $deg(r_2(z)) < 2$. Putting this all thgether, we get

$$r_2(z) = s(z) + (\alpha^{10}z + \alpha^8)r_1(z)$$
 ... Step2

$$= s(z) + (\alpha^{10}z + \alpha^8) \left((\alpha^{12}z + \alpha^{13})s(z) + z^4 \right)$$
 ... Step1

$$\equiv (\alpha^7 z^2 + \alpha^4 z + \alpha^{13})s(z) \mod z^4$$

Therefore we get

$$l(z) = \alpha^2(\alpha^7 z^2 + \alpha^4 z + \alpha^{13}) = \alpha^9 z^2 + \alpha^6 z + 1$$

 $w(z) = \alpha^2 r_2(z) = \alpha^5 z + \alpha^5$.

By exhaustive search, One can see that l(z) has no roots in F; i.e., $l(z) \in F[z]$ is irreducible. (Mode B3) This cannot occur if there were at most 2 error symbols, so we conclude that there are at least 3 error symbols in the received word.

c) i) $s(z) = \alpha^3 z^3 + \alpha^4 z^2 + \alpha^3 z + \alpha^5$. Since $s(z) \neq 0$, d(X) is not a codeword and some error has occurred during transmission.

Remark. It is a *mere coincidence* that the syndrome polynomial for the RS(4,3)-decoding and the syndrome polynomial for RS(4,2)-decoding, which was found in part b) i) coincide – in general, this is not the case. Note that in our message we have $d(\alpha^5) = d(\alpha^6) = 0$, which caused such a coincidence.

ii) We apply Euclid's algorithm for s(z) and z^6 :

Step 1
$$z^6 = (\alpha^{12}z^3 + \alpha^{13}z^2 + \alpha^5z + \alpha^3)s(z) + r_1(z)$$
 where $r_1(z) = \alpha^5z^2 + \alpha^7z + \alpha^8$.

We stop the process since $deg(r_1(z)) < 3.So$

$$r_1(z) \equiv (\alpha^{12}z^3 + \alpha^{13}z^2 + \alpha^5z + \alpha^3)s(z) \mod z^6$$

Therefore we get

$$l(z) = \alpha^{12}(\alpha^{12}z^3 + \alpha^{13}z^2 + \alpha^5z + \alpha^3) = \alpha^9z^3 + \alpha^{10}z^2 + \alpha^2z + 1$$

$$w(z) = \alpha^{12}r_1(z) = \alpha^2z^2 + \alpha^4z + \alpha^5.$$

By exhaustive search, we find the roots of l(z) are $\alpha^{-7}, \alpha^{-8}, \alpha^{-9}$, so the error positions are $\{7,8,9\}$. We briefly explain how to find the roots of l(z). (See the handout *Examples: Decoding Algorithm* for more details.) By plugging in $z=1,\alpha^{-1},\alpha^{-2},\cdots$, we find α^{-7} is the first root of l(z) (and is a simple root because it is not a root of $\frac{d}{dz}l(z)=\alpha^9z^2+\alpha^2$). So $(1+\alpha^7z)$ is a factor of l(z) and its quotient is $\alpha^2z^2+\alpha^{12}z+1$. Continuing the search, we see that α^{-8} is another root, so we have $\alpha^2z^2+\alpha^{12}z+1=(1-\alpha^8z)(1-\alpha^sz)$ for some s. By comparing the coefficients of z^2 , we obtain s=9.

So the error polynomial is of the form $e(X) = e_9 X^9 + e_8 X^8 + e_7 X^7$, where

$$e_9 = w(\alpha^{-9})(\alpha^{-9}(1-\alpha^7\alpha^{-9})^{-1}(1-\alpha^8\alpha^{-9})^{-1} = 1$$

$$e_8 = w(\alpha^{-8})\alpha^{-8}(1-\alpha^7\alpha^{-8})^{-1}(1-\alpha^9\alpha^{-8})^{-1} = \alpha^9$$

$$e_7 = w(\alpha^{-7})\alpha^{-7}(1-\alpha^8\alpha^{-7})^{-1}(1-\alpha^9\alpha^{-7})^{-1} = \alpha^{11}$$
So $e(X) = X^9 + \alpha^9 X^8 + \alpha^{11} X^7$

iii) Assume that the correction via RS(4,3)-decoding algorithm is correct. Then the transmitted codeword c(X) = d(X) + e(X) is an RS(4,3)-codeword and three symbols are transmitted incorrectly during transmission. But since c(X) is also a RS(4,2)-codeword by part a), you may try the RS(4,2)-decoding algorithm. This will not work because RS(4,2)-decoding algorithm can correct at most two error symbols in a block, and there are three error symbols.

Remark. In the remark, I ask you to re-do this question for the following syndromes:

$$d(\alpha) = d(\alpha^2) = 0$$
, $d(\alpha^3) = \alpha^{13}$, $d(\alpha^4) = \alpha^{11}$, $d(\alpha^5) = \alpha^7$, $d(\alpha^6) = \alpha^6$.

The "interesting and instructive" feature here is that both the RS(4,2)- and RS(4,3)- decoding algorithms work, but produce different error polynomials. The RS(4,2)-decoding algorithm should produce $X^4 + \alpha^{13}X^3$ as the error polynomial, while RS(4,3)-decoding algorithm should produce $\alpha^6X^2 + \alpha^3X + \alpha^{10}$. This indicates that even when there are more than 2 error symbols, the RS(4,2)-decoding algorithm might work but it produces a wrong error polynomial.

Here is a more detailed explanation to this phenomenon. One can observe that both error polynomials produce the *same* syndromes for i=1,2,3,4; i.e. when evaluated at $X=\alpha,\alpha^2,\alpha^3,\alpha^4$ they produce the same values as above. But when evaluated at $X=\alpha^5,\alpha^6$, the former one (produced by the RS(4,2)-decoding algorithm) gives wrong syndromes while the latter one (produced by the RS(4,3)-decoding algorithm) gives the right syndromes. Roughly speaking what the RS(4,2)-decoding algorithm does is to find an error polynomial with at most two non-zero terms which has the same syndromes for i=1,2,3,4 as given. And as we have seen above it is possible that an error polynomial with more than two non-zero terms have exactly the same syndromes for i=1,2,3,4 as a polynomial with at most two non-zero terms. In that case, the RS(4,2)-decoding algorithm produces a wrong error polynomial (the one with at most two non-zero terms). So in practice, in order for the RS(4,t)-decoding algorithm to be completely reliable, the chance of having more than t error symbols in a single block should be negligible.

For the next set of syndromes:

$$d(\alpha) = d(\alpha^2) = 0$$
, $d(\alpha^3) = \alpha^{13}$, $d(\alpha^4) = \alpha^{11}$, $d(\alpha^5) = \alpha^7$, $d(\alpha^6) = \alpha^6$

the RS(4,3)-decoding algorithm should produce the error polynomial $\alpha^4 X^5 + \alpha^9 X^4 + \alpha^7 X^3$. If you run the RS(4,2)-decoding algorithm, you will run into the failure mode A since the syndrome polynomial is divisible by z^2 .

For the last set of syndromes:

$$d(\alpha)=\alpha^6,\quad d(\alpha^2)=(\alpha^3)=0,\quad d(\alpha^4)=\alpha^3,\quad d(\alpha^5)=\alpha,\quad d(\alpha^6)=\alpha^{12}$$

the RS(4,3)-decoding algorithm should produce the error polynomial $\alpha^4 X^5 + \alpha^{10} X^4 + \alpha^9 X^3$. If you run the RS(4,2)-decoding algorithm, you will run into the failure mode B1 since Euclid's algorithm terminates in step 1 and produces $r_1(z) = \alpha^3 z$ which has z = 0 as a root.