Using Probabilistic Knockoffs of Binary Variables to Control the False Discovery Rate

Aaron Maurer Advisor: Rina Foygel Barber

July 29th, 2015

Overview

- 1. Original Knockoffs: What They Do and Where They Fail
- 2. Making Knockoffs Work With GLMs
- 3. Random Binary Knockoffs: The Theory
- 4. Random Binary Knockoffs: Performance
- 5. Where to next?

Variable Selection in Linear Regression

Assume

$$\mathbf{y} = X\beta + \mathbf{z}$$

where $\mathbf{y} \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times p}$, $\beta \in \mathbb{R}^p$, and \mathbf{z} is Gaussian noise. Also, assume sparsity:

$$\beta_i = 0 \quad \forall i \notin S$$

How do we pick estimate \hat{S} ?

False Discover Rate

A common goal for a method that generates $\hat{\mathcal{S}}$ is to control the false discovery rate

$$FDR = E\left[\frac{|\{j: \beta_j = 0 \& j \in \hat{S}\}|}{\max\{|\hat{S}|, 1\}}\right]$$

In other words, control portion of elements in \hat{S} which aren't in S.

FDR is controlled at level q if q <FDR irrespective of true β .

Knockoff Features

Knockoff variables can be used to control FDR in linear regression.

- The idea is to create a forgery of each variable; if the forgeries seem about as good predictors as the originals, the originals are lousy predictors.
- ▶ For each variable X_i , create a knockoff feature \tilde{X}_i such that, where $X^TX = G$, $\operatorname{diag}\{X^TX\} s$ and

$$\tilde{X}^T \tilde{X} = G$$
 & $X^T \tilde{X} = G - \text{diag}\{\mathbf{s}\}\$

For \tilde{X} to exist, it must be the case that

$$G_L = [X \ \tilde{X}]^T [X \ \tilde{X}] = \begin{bmatrix} G & G - \operatorname{diag}\{\mathbf{s}\} \\ G - \operatorname{diag}\{\mathbf{s}\} & G \end{bmatrix} \succeq 0$$

- \tilde{X}_i and X_i will have same correlation with other variables, but only low correlation with each other.
- Given **s**, \tilde{X} can be generated via a rotation of X.

Knockoff Filter

These knockoffs can be used in the knockoff filter method.

▶ Fit full path of LASSO regression on $[X\tilde{X}]$.

$$\beta(\lambda) = \arg\min_{\mathbf{b}} \left\{ \frac{1}{2} \|\mathbf{y} - X_L \mathbf{b}\|_2^2 + \lambda \|b\|_1 \right\}$$

- ▶ Z_i , \tilde{Z}_i largest λ such that X_i , \tilde{X}_i have nonzero coefficient.
- $W_i = Z_i$ if $Z_i > \tilde{Z}_i$, otherwise $W_i = -\tilde{Z}_i$.
- ▶ Since G_L & $[X\tilde{X}]^T\mathbf{y}$ sufficient statistics for $\beta(\lambda)$, W_i symmetrically distributed around 0 when X_i null predictor.
- ▶ Thus, FDR controlled when $\hat{S} = \{i : W_i > T\}$ for

$$T = \min \left\{ t > 0 : \frac{|\{j : W_j \le -t\}|}{\max\{|\{j : W_j \ge t\}|, 1\}} \le q \right\}$$

Variable Selection in GLMs

Knockoffs work great for linear regression, but what about GLMs?

Now, assume, for some link function g and y_i, \ldots, y_n from a exponential family distribution,

$$E(\mathbf{y}) = g(X\beta)$$

where $X \in \mathbb{R}^{n \times p}$ and $\beta \in \mathbb{R}^p$. Also, assume sparsity:

$$\beta_i = 0 \quad \forall i \notin S$$

How do we pick estimate \hat{S} ?

Where Knockoff Filter Fails

Knockoff filter don't work for other GLMs.

Can Knockoffs Be Fixed for GLMs?

- Other GLMs don't have the same sufficient statistics as linear regression.
- Original Knockoffs don't remotely have same distribution as X, so "look" different than real variables.
- Knockoffs will likely work better if they have the same marginal distribution as originals.
- ► For *X_i* with arbitrary distribution, unclear how this might be accomplished.

Random Binary Notation

- Binary data is common in data analysis and a much more manageable family of distributions for X.
- ▶ We can think of observations in X as observations of random binary vector $\mathbf{x} \in \{0,1\}^p$.
- ▶ The full family for x is multinomial on 2^p outcomes.
- Still useful to consider first two moments:

$$E(\mathbf{x}) = \mathbf{m} \in [0, 1]^p$$
 & $E(\mathbf{x}\mathbf{x}^T) = M \in [0, 1]^{p \times p}$

► For arbitrary M to correspond to a random binary vector, must be case that $M - \mathbf{mm}^T = \Sigma \succeq 0$

$$\max\{0, m_i + m_j - 1\} \le M_{ij} \le \min\{m_i, m_j\}$$

Random Binary Knockoffs

- Integer programing is np-hard, making finding finding $\tilde{X} \in \{0,1\}^{n \times p}$ to fit correlations exactly difficult.
- ▶ Instead, introduce a relaxed problem where $\tilde{X} \mid X$ is drawn randomly such that, where $\Sigma = \operatorname{Cov}(\mathbf{x})$

$$\mathrm{Cov}(\boldsymbol{\tilde{x}},\boldsymbol{x}) = \boldsymbol{\Sigma} - \mathrm{diag}\{\boldsymbol{s}\} \quad \& \quad \mathrm{Cov}(\boldsymbol{\tilde{x}}) = \boldsymbol{\Sigma}$$

For this to correspond to a random binary vector, must be the case

$$\Sigma_L = \operatorname{Cov}([\mathbf{x}\,\widetilde{\mathbf{x}}\,]) = \left[egin{array}{cc} \Sigma & \Sigma - \operatorname{diag}\{\mathbf{s}\} \\ \Sigma - \operatorname{diag}\{\mathbf{s}\} & \Sigma \end{array}
ight] \succeq 0$$

- Almost same correlation condition as before, just only holds in expectation.
- Switch from Gramian matrix to correlation matrix makes moment condition less likely to be violated.

Quadratic Programing

- ▶ Simplest approach to Random Binary Knockoffs is to draw the entries of \tilde{X} independently based on $P \in [0,1]^{n \times p}$.
- ▶ The best possible *P* for the task would satisfy

minimize
$$\|X^TP - (M - \operatorname{diag}\{s\})\|_{fro}^2 + \sum_{i \neq j} (P_i^TP_j - M_{ij})^2$$
 subject to $\mathbf{1}^TP = \mathbf{m}$ $0 \leq P \leq 1$

► Can be formulated as a quadratic program with slack variables

minimize
$$\|W\|_{fro}^2 + \|V\|_{fro}^2$$

subject to $-W \le X^T P - (M - \text{diag}\{s\}) \le W$
 $-V_{ij} \le P_i^T P_j - M_{ij} \le V_{ij} \quad \forall i \ne j$
 $\mathbf{1}^T P = \mathbf{m}$
 $0 < P < 1$

Huge optimization problem, likely computationally difficult.

Ising Model

- ▶ Instead, what if we found a random binary vector variable \mathbf{x}_L that had cross-moments M_L corresponding to Σ_L ?
- ► The Ising model can match any M_L . If A lower triangular matrix and L logistic link

$$P(\mathbf{x} = \gamma) \propto L(\gamma^T A \gamma)$$

- ► The Ising model binary analog of normal distribution; maximum entropy for given covariance matrix.
- Very easy to draw successive entries

$$P(x_i = 1 \mid x_1, ..., x_{i-1}) = L\left(A_{ii} + \sum_{k=1}^{i-1} A_{ik}x_i\right)$$

▶ Once fit, can draw x | x easily.

Fitting Ising Model

- ▶ If we were just trying to fit A X, we could do so via successive logistic regression to fit row a_i.
- ▶ Instead, simulate $\mathbf{m}_i = f(\mathbf{a}_i)$ and fit via Newton-Raphson. Let $\mathbf{x}_{-i}^{(k)} \sim \mathbf{x}_{-i}$

$$f(\mathbf{a}_i) \approx \frac{1}{K} \sum_{k=1}^{K} L\left(\mathbf{a}_i^T \begin{bmatrix} \mathbf{x}_{-i}^{(k)} \\ 1 \end{bmatrix}\right) \begin{bmatrix} \mathbf{x}_{-i}^{(k)} \\ 1 \end{bmatrix}$$
$$J(\mathbf{a}_i) \approx \frac{1}{K} \sum_{k=1}^{K} L'\left(\mathbf{a}_i^T \begin{bmatrix} \mathbf{x}_{-i}^{(k)} \\ 1 \end{bmatrix}\right) \begin{bmatrix} \mathbf{x}_{-i}^{(k)} \\ 1 \end{bmatrix} \begin{bmatrix} [\mathbf{x}_{-i}^{(k)}]^T & 1 \end{bmatrix}$$

Make successive updates

$$\mathbf{a}_{i}^{(k+1)} = \mathbf{a}_{i}^{(k)} - \left[J\left(\mathbf{a}_{i}^{(k)}\right)\right]^{-1} \left[f\left(\mathbf{a}_{i}^{(k)}\right) - \mathbf{m}_{i}\right]$$

Computational Issues

- K must be very large for big p and high correlation.
- ▶ This makes $J(\mathbf{a}_i)$ and even $f(\mathbf{a}_i)$ very expensive to calculate.
- ▶ This makes quasi-Newtonian methods, where $J(\mathbf{a}_i)$ is approximated appealing.
- ▶ In particular, Anderson Mixing, where f approximated with secant hyperplane through $\mathbf{a}_i^k, \ldots, \mathbf{a}_i^{(k-h+1)}$ works well
- ▶ When *K* too small, can instead solve relaxed problem

$$\mathbf{m}_{i}^{*}(\tau) = (1-\tau)\mathbf{m}_{i} + \tau \begin{bmatrix} 0 & \dots & 0 & M_{ii} \end{bmatrix}^{T}$$

▶ n doesn't matter, but this method is also fairly impractical for large p.

Random Binary Knockoffs in Linear Regression

Unfortunately, random binary Knockoffs only provide approximate FDR control for linear regression.

Distortion from M_L

Since \tilde{X} is randomly generated $\frac{1}{n}X_L^TX_L$ deviates from M_L .

Random Binary Knockoffs in Logistic Regression

Still, Random Binary Knockoffs seem to do way better than original knockoffs in logistic regression.

Discussion

- Random Binary Knockoffs seem to offer promise as a useful technique, but have outstanding issues.
- Seem to offer a method to extend Knockoffs for one type of variable to GLMs.
- Computational complexity prohibitive; simpler method, perhaps by good approximation of P, would be helpful.
- ▶ Random distortion from desired cross-moments might be compensated for by ensemble method based on multiple \tilde{X} .
- Might build higher order interactions into Ising model to allow for nasty data.