

计算机学院 编译原理报告

预习作业1

姓名:谢子涵

学号:2010507

专业:计算机科学与技术

目录 编译原理实验报告

目录

1	C 程序优化	2
	W #03 %	2
	1.2 实验结果及分析	2
2	分词、构造语法树	3
3	静态检查	4
4	语法描述	4
5	代码链接	5

1 C 程序优化 编译原理实验报告

1 C 程序优化

1.1 测试方案

考虑不同矩阵规模 N=10、50、100、200、300、500、1000 、2000 、3000 、4000 ,以及不同的编译器优化级别(包括不设置编译选项、以及设置编译选项 O0、O1、O2、O3),对 LOOP1 和 LOOP2 所用时间进行测试,并进行对比分析。

IDE: CLion 编译器:GCC

1.2 实验结果及分析

N	LOOP1	LOOP1-O0	LOOP1-O1	LOOP1-O2	LOOP1-O3
10	0	0.0002	0.0001	0.0001	0.0001
50	0.0004	0.0004	0.0004	0.0001	0
100	0.0007	0.0007	0.0006	0.0001	0.0001
200	0.0015	0.0012	0.0009	0.0003	0.0001
300	0.0017	0.0017	0.0013	0.0004	0.0001
500	0.0027	0.0026	0.0021	0.0006	0.0002
1000	0.0051	0.0051	0.0043	0.0011	0.0003
2000	0.0112	0.0098	0.008	0.0022	0.0005
3000	0.0169	0.0147	0.012	0.0032	0.0008
4000	0.027	0.0196	0.0153	0.0043	0.0011

表 1: LOOP1 采取不同编译器优化级别在不同矩阵规模下的测试结果

N	LOOP2	LOOP2-O0	LOOP2-O1	LOOP2-O2	LOOP3-O3
10	0.0002	0.0001	0	0.0001	0
50	0.0005	0.0002	0.0001	0.0001	0.0001
100	0.0006	0.0004	0.0002	0.0002	0.0001
200	0.0011	0.0008	0.0003	0.0002	0.0001
300	0.0014	0.0012	0.0004	0.0004	0.0001
500	0.0024	0.0017	0.0006	0.0006	0.0001
1000	0.0048	0.0035	0.0013	0.0011	0.0003
2000	0.0094	0.0069	0.0024	0.0023	0.0006
3000	0.0143	0.0103	0.0037	0.0034	0.0009
4000	0.0189	0.0139	0.0049	0.0045	0.0012

表 2: LOOP2 采取不同编译器优化级别在不同矩阵规模下的测试结果

2 分词、构造语法树 编译原理实验报告

图 1.1: LOOP1 与 LOOP2 在不同规模下的比较

如图1.1、表1、表2所示,在不同问题规模下,LOOP1 的运行时间通常大于LOOP2 的运行时间。 尤其是在优化级别较低时,这种差距更为明显,而优化级别较高时,这种差距缩小。因此,为了获得 运行更快的目标程序,选择LOOP2 的编程方式。

图 1.2: 在不同问题规模下采取不同编译器优化级别的比较

如图1.2、表1、表2所示,对于 LOOP1 和 LOOP2 两种编程方式,均有运行时间:不设置编译优化选项 >00>01>02>03。

2 分词、构造语法树

分词: Model = "Civic" AND Year = "2001" 语法树: 4 语法描述 编译原理实验报告

图 2.3: 构造的语法树

第二种语法树:

图 2.4: 第二种语法树

3 静态检查

第一个程序: 空引用错误。若 char* 类型的指针 s 没有被赋值 (即该指针没有指向任何内存地址),那么不进行 s 是否为空而直接 return *s 就可能产生错误。

第二个程序: 内存管理。int 型指针 glob 指向了临时变量 loc 的地址,并且函数返回的也是临时变量 loc 的地址。另外,临时数组变量 sa 的首地址也被赋给了传入的二级指针 **x 所指向的一级指针。而函数调用结束后,临时变量会被销毁,后续如果通过已赋值的外部指针变量再次访问,就会出现问题。

第三个程序:未赋值的变量的错误。需要先对变量进行赋值,才能使用,否则就会产生错误。该程序中,没有对变量 i 进行初始化,就直接进行了 i>=0 的判断,会产生错误。就算进行了默认初始化,对于无符号整数 i 来说,是一定 >=0 的,因此 else 语句无意义。

4 语法描述

标识符列表中的单个标识符都是表达式,而其中任意两个标识符相加或相乘都是表达式,因此,其中任意 n 个表达式进行加或乘都是表达式。由于数也是表达式,采用任意 n 个数或表示符列表中的标

5 代码链接 编译原理实验报告

识符进行加或乘都是表达式。

而采用标识符列表中的任意一个标识符 id,以及任意上述能构成的表达式 exp,构成的 id:=exp 都是一个语句,可记为 statement。而 while(exp)do statement 和 if(exp)then statement 也都是语句。

5 代码链接

Github 链接