Assessment of Lingcod (Ophiodon elongatus)

for the

Pacific Fishery Management Council

in 2005

by

Thomas H. Jagielo and Farron R. Wallace

Washington Department of Fish and Wildlife 48 Devonshire Road. Montesano, Washington 98563

October 2005

Executive Summary

Stock

This assessment applies to lingcod (*Ophiodon elongatus*) in the full Pacific Fishery Management Council (PFMC) management zone (the US-Vancouver, Columbia, Eureka, Monterey, and Conception INPFC areas). Separate assessment models were constructed to describe population trends in the northern (LCN: US-Vancouver, Columbia) and southern (LCS: Eureka, Monterey, Conception) areas.

Catches

Commercial Landings

Commercial lingcod catch history in California waters is available beginning 1916 (personal communication Brenda Erwin, PSMFC) and averaged 428 mt between 1916 and 1955 (Table 4). Commercial lingcod landings in Oregon were first reported in 1950 (Mark Freeman, personal communication) and averaged 264 mt between 1950 and 1953. Washington commercial lingcod landings were first reported in 1937 (anonymous, 1956, WDFW report) and averaged 106 mt until 1955.

Catch data were compiled from agency reports and personal communication for all years preceding 1981 (Table 5). The PacFIN database was queried for catch information in subsequent years and catch detail is presented by gear and INPFC area in Table 6.

Commercial landings peaked in 1985 at 3,129 mt in northern waters (Columbia and Vancouver INPFC areas) and in 1974 at 1,735 mt in southern waters (Eureka, Monterey and Conception INPFC Areas)(Table 5). Average catch between 1990-1997 declined 40 % and 35% since the 1980's in northern and southern waters, respectively. Under rebuilding management, commercial fishery restrictions in recent years (1998-present) reduced coastwide catches to an annual average of less than 225 mt (Figure 3).

From 1981-1997, trawl gear has made up the majority of commercial landings for the northern (83%) and southern (63%) coast. In recent years (1998-2004), commercial fishery restrictions constrained the trawl portion of the commercial catch to 65% and 40% for the northern and southern coast, respectively. In 2004, coastwide commercial landings totaled 174 mt and were distributed as follows by INPFC area: U.S.-Vancouver (41.7 mt), Columbia (44.6 mt), Eureka 39.5 mt), Monterey (33.2 mt), Conception (14.8 mt).

Recreational Landings

Recreational fishers in California have targeted lingcod since the early 1940's. Catch averaged 65.3 mt annually between 1947-1954 (Leet et al., 1992). Recreational lingcod catch information is not available until 1977 for Oregon waters and averaged 52.3 mt annually between 1977 and 1979. Recreational lingcod catch in Washington was first estimated in 1967 to be 25.3 mt and annual catch estimates have been provided since 1975.

Recreational catch estimates were extracted from the RecFIN database for years 1980–1989 and 1993 to present for California waters. California recreational catch estimates for all other years

were previously compiled in the 2000 lingcod assessment (Jagielo et al., 2000). Oregon recreational catch data were provided by ODFW (Don Bodenmiller personal communication). The recreational catch in Washington was provided by the WDFW Ocean Sampling Program.

Recreational catch in southern waters has declined since catch peaked in 1980 at 2,226 mt (Table 5, Figure 4). In contrast, recreational catch in northern waters peaked at 236 mt in 1994. Estimated coastwide recreational landings averaged 500 mt. from 1998-2004 and were 1175 mt. and 316 mt. in 2003 and 2004, respectively.

Historically, recreational landings have comprised a larger proportion of the total landings for the southern area, compared to the northern area. In recent years, the recreational portion of the total landings has increased substantially in both the southern and northern areas. In 2004 recreational fisheries harvested 65% of the total lingcod catch coastwide (Figure 5).

Data and Assessment

Present Modeling Approach and Assessment Program

The present assessment updates the previous coastwide assessment (Jagielo et al. 2003) and is implemented in Stock Synthesis II using the executable code SS2 version 1.19d (Methot 2005).

As in the previous assessment, separate age structured models were constructed to analyze stock dynamics for the northern (LCN: US-Vancouver, Columbia) and southern (LCS: Eureka, Monterey, Conception) areas.

The LCN model incorporated the following likelihood components, which are described mathematically in Methot 2005). Input data sources are specified by Table number in the body of the 2003 assessment document which follows:

- 1) Commercial Catch-At-Age: 1979-2004 (Table 9, Table 15).
- 2) Recreational Catch-At-Age: 1980, 1986-2004 (Table 10, Table 15).
- 3) Commercial Catch-At-Length: 1975-1978 (Table 13).
- 4) Recreational Catch-At-Length: 1981-1983 (Table 13).
- 5) NMFS Trawl Survey Catch-At-Age: 1992, 1995, 1998, 2001, and 2004 (Table 11).
- 6) NMFS Trawl Survey Catch-At-Length: 1986 and 1989 (Table 12).
- 7) WDFW Tag Survey Catch-At-Age: 1994-1997 (Table 11).
- 8) WDFW Tag Survey Catch-At-Length: 1986-1993 (Table 12).
- 9) NMFS Trawl Survey Biomass (mt): 1977, 1980, 1983, 1986, 1989, 1992, 1995, 1998, 2001 (Table 20) and 2004 (Table 21).
- 10) WDFW Tag Survey Abundance (Numbers of Fish): 1986-1992 (Table 22).

NOTE: THIS DATASET WAS OMITTED IN FINAL BASE MODEL AT THE REQUEST OF THE STAR PANEL CONDUCTED AUGUST 15-19, 2005.

11) Trawl Fishery Logbook CPUE Index: Washington and Oregon lingcod CPUE estimates (lbs/hr) derived from a Delta GLM analysis of trawl logbook information, 1976-1997 (Table 24).

The LCS model incorporated the following likelihood components:

- 1) Commercial Catch-At-Age: 1992-1998, 2000-2004 (Table 14, Table 15).
- 2) Recreational Catch-At-Age: 1992-1998, 2000-2004 (Table 14, Table 15).
- 3) NMFS Trawl Survey Catch-At-Age: 1995, 1998, 2001, and 2004 (Table 14, Table 15).
- 4) NMFS Trawl Survey Biomass (mt): 1977, 1980, 1983, 1986, 1989, 1992, 1995, 1998, 2001 (Table 20) and 2004 (Table 20, Table 21).
- 5) Trawl Fishery Logbook CPUE Index: Oregon and California lingcod CPUE estimates (lbs/hr) derived from a Delta GLM analysis of trawl logbook information, 1978-1997 (Table 25).

Unresolved Problems and Major Uncertainties

At the STAR Panel review (August 15-19, 2005) concern was raised regarding the apparent lack of evidence in the data for the northern (LCN) model estimates of high 1999 and 2000 year class strength. In particular, doubts were raised concerning the reliability of the 2001 and 2004 NMFS triennial survey estimates, in which these two year classes were abundant. Furthermore, the STAR Panel did not find compelling evidence from the fishery age composition data to corroborate the high year classes seen in those two surveys. As a result of these uncertainties, the lingcod assessment was recommended for further review at the follow-up STAR Panel meeting (September 26-30, 2005).

At the follow-up STAR Panel meeting, additional analyses and information were provided to document the LCN model estimates of high 1999 and 2000 year class strength. Additional model runs with sequential removal of the 2001 and 2004 NMFS trawl surveys, and age compositions from the commercial and recreational fisheries from 2000-2004 indicted that both survey and commercial data supported the two strong year classes. As a result, the STAT Team recommended and the STAR Panel approved the base LCN model for management.

The STAT team very much appreciated the constructive August 15-19, 2005 and September 26-30 STAR Panel reviews, which resulted in improved LCN and LCS models for fisheries management.

The STAT team additionally notes that:

- 1) Uncertainty regarding stock status is higher for the southern area relative to the northern area, primarily because historical data from the southern area were sparse relative to the northern area. The time series of fishery age data available for the southern (LCS) model is short and samples sizes are small, resulting in greater uncertainty in the estimation of assessment parameters and stock productivity for the southern area. Age data for the NMFS trawl survey were sparse for both regions in early years, but particularly for the southern region. Recreational fishery catch at age data were not available for the southern region in 2003.
- 2) Management-implemented minimum size limits have resulted in limiting the utility of fishery information for estimation of recent stock recruitment in both regions, and fishery trip limits have compromised the utility of recent fishery CPUE data as viable indices of abundance.

Management Reference Points

Management reference points derived from the 2005 lingcod stock assessment are summarized in Table ES-1. The estimates of unfished spawning biomass (Bzero) were determined as the product of mean recruitment from 1956-2005 and the estimated Spawners Per Recruit. On a coastwide basis the lingcod population is fully rebuilt; estimated spawning biomass was 34,017 mt in 2005, which is 0.60 of the unfished spawning biomass estimate (52,850 mt). The estimated ratio of 2005 spawning biomass to unfished spawning biomass is higher in the north (0.87) compared to the south (0.24).

Spawning Stock Biomass

SS2 estimates of the coastwide female spawning stock biomass declined from 60,106 mt in 1956 to 6,004 mt in 1994, and subsequently increased to 34017 mt in 2005 (Table ES-2, Figure ES1-Top). Female spawning biomass depletion (B_0/B_t) fell to 0.11 in 1994 and subsequently increased to 0.64 in 2005 (Table ES-2, Figure ES1-Bottom).

Recruitment

The model estimate of virgin recruitment was higher for the northern area (3750 thousand age 0 fish) compared to the southern area (2503 thousand age 0 fish). Recruitments were generally similar in magnitude in both the north and south from 1972-1992, averaging 2008 in the north, and 2071 in the south (Table ES-2. Figure ES-1, bottom). Subsequently, from 1993-2005, recruitments tended to be higher in the north, and averaged 4503 compared to 1309 for the same period in the south. Recent, historically strong, 1999 and 2000 year classes were estimated in the north.

Exploitation Status

In the northern area, the exploitation rate (catch/available biomass) peaked at 0.20 in 1991 and averaged 0.03 from 1956-1980, 0.12 from 1981-1997, and 0.02 from 1998-2005 (Table ES-3). Exploitation rates were generally higher in the southern area, peaking at 0.26 in 1989 and averaging 0.05 from 1956-1980, 0.20 from 1981-1997, and 0.10 from 1998-2005.

Management Performance

The first lingcod ABC's based on a quantitative assessment were implemented in 1995. A comparison of reported landings and ABC values shows good correspondence through 2001, when landings were typically at or below the target ABC values (Figure ES2). In 2002, landings exceeded the coastwide ABC by 17% and the coastwide OY was exceeded by 51%.

Forecasts and Decision Table

Projected yield was forecasted using the SS2 software for the northern (LCN) and southern (LCS) base models (Table ES-4). Coastwide yield forecasts (sum of LCN and LCS) are summarized in Table ES-5. Forecasts were run with and without the 40:10 adjustment option. These forecasts assumed that fishery removals in 2005 and 2006 were taken at the level projected by the Groundfish Management Team for 2005 (970mt) (John Devore, Personal Communication).

Additional model forecast runs were made for a set of alternative conditions to establish decision tables. For LCN, the decision table was constructed with the base model and one alternate model in which both: 1) the NMFS 2001 and 2004 shelf triennial trawl survey data were omitted, and 2) the age composition data for the recreational and commercial fishery were omitted for the years 2000 through 2004 (Table ES-6). For LCS, the decision table was constructed with the base model and two alternate models (Table ES-7). The first "low" alternate model assumed that spawning biomass in 2005 was approximately 1.25 standard deviations below the base model estimate of spawning biomass in 2005 (3375 mt); the second "high" alternate model assumed that spawning biomass in 2005 was approximately 1.25 standard deviations above the base model estimate of spawning biomass in 2005 (5827 mt).

In both decision tables (Table ES-6 and Table ES-7), the base case model using the base case catch projection is highlighted with a bold outline. The additional cells in the decision tables contrast the results obtained when the models are run with catch projections from the alternate (State of Nature) models. For instance, in the northern area, when base model projected catches are used with the alternate State of Nature model, a depletion level of 0.27 is predicted in the year 2016 (Table ES-6). In the southern area, the predicted depletion level of 0.39 in the year 2016 results when the "high" ending biomass model catches are applied to the "low" ending biomass State of Nature model (Table ES-7).

Recommendations: Research and Data Collection Needs

Emphasis should be placed on improving fishery age structure sampling size and geographical coverage in both regions. More frequent and synoptic fishery independent surveys should be conducted in both regions to aid in determination of stock status and recent recruitment.

Table ES1. Management reference points derived from the 2005 lingcod stock assessment.

Northern (LCN)	Base model
B2005 (mt)	29416
Rinit (Thousands)	3750
Spawners Per Recruit	10.52
Rmean56-05 (Thousands)	3207
Bzero (mt)	33749
Depletion	0.87
Southern (LCS)	Base model
B2005 (mt)	4601
Rinit (Thousands)	2503
Spawners Per Recruit	9.43
Rmean56-05 (Thousands)	2025
Bzero (mt)	19101
Depletion	0.24
Coastwide	Base models-Pooled
B2005 (mt)	34017
Bzero (Thousands)	52850
Depletion	0.64

Table ES2. Estimates of lingcod spawning biomass, depletion, and recruitment (1956-2005), derived from the 2005 lingcod stock assessment.

		ning Bioma			Depletion		Recruitme	ent-Age 0 (1	Thousands)
Bzero: Year	33749 LCN	19101 LCS	52850 Coastwide	LCN	LCS	Coastwide	LCN	LCS	Coastwide
1956	38357	21749	60106	1.14	1.14	1.14	3747	2497	6244
1957	37696	21500	59196	1.12	1.13	1.12	3745	2496	6241
1958	36979	20998	57977	1.10	1.10	1.10	3743	2494	6237
1959	36181	20480	56660	1.07	1.07	1.07	3740	2493	6233
1960	34816	20046	54862	1.03	1.05	1.04	3736	2491	6227
1961	33381	19675	53057	0.99	1.03	1.00	3731	2489	6220
1962	32166	19304	51470	0.95	1.01	0.97	3726	2488	6214
1963	31513	19065	50578	0.93	1.00	0.96	3724	2487	6210
1964	31280	18854	50134	0.93	0.99	0.95	3723	2486	6208
1965	30866	18781	49647	0.91	0.98	0.94	3721	2485	6206
1966	30281	18737	49018	0.90	0.98	0.93	3719	2485	6204
1967	29522	18700	48221	0.87	0.98	0.91	3715	2485	6200
1968	29283	18639	47922	0.87	0.98	0.91	3714	2485	6199
1969	28785	18539	47324	0.85	0.97	0.90	3712	2484	6196
1970	28723	18458	47181	0.85	0.97	0.89	3711	2484	6195
1971	28946	18228	47174	0.86	0.95	0.89	3712	2483	6195
1972	29065	17758	46823	0.86	0.93	0.89	3375	2480	5855
1973	29236	16829	46065	0.87	0.88	0.87	1176	2475	3652
1974	29073	15671	44744	0.86	0.82	0.85	2706	2468	5174
1975	28628	14435	43063	0.85	0.76	0.81	1515	2460	3975
1976	27545	13407	40952	0.82	0.70	0.77	1326	3967	5293
1977	26402	12480	38882	0.78	0.65	0.74	2318	1099	3417
1978	24918	12195	37113	0.74	0.64	0.70	2477	1227	3704
1979	23504	11994	35498	0.70	0.63	0.67	6619	5522	12141
1980	21260	11539	32800	0.63	0.60	0.62	1539	1403	2942
1981	19384	9664	29049	0.57	0.51	0.55	955	586	1541
1982	18112	8393	26505	0.54	0.44	0.50	1442	483	1925
1983	17140	7626	24766	0.51	0.40	0.47	1244	928	2172
1984	15700	7063	22763	0.47	0.37	0.43	1972	5487	7459
1985	13790	6212	20002	0.41	0.33	0.38	1298	1124	2422
1986	11454	5108	16562	0.34	0.27	0.31	2576	4621	7198
1987	10562	4512	15074	0.31	0.24	0.29	282	514	796
1988	9524	4384	13908	0.28	0.23	0.26	986	578	1563
1989	8615	4270	12885	0.26	0.22	0.24	1610	1581	3191
1990	7296	3934	11230	0.22	0.21	0.21	1357	1664	3021
1991	6328	3397	9725	0.19	0.18	0.18	2589	2015	4604
1992	4796	2720	7515	0.14	0.14	0.14	2806	800	3605
1993	4266	2255	6522	0.13	0.12	0.12	1120	1500	2620
1994 1995	3864 3924	2141 2226	6004 6150	0.11 0.12	0.11 0.12	0.11 0.12	3841 3607	1067 985	4908 4592
1996 1997	4449 5034	2215 2145	6664 7179	0.13 0.15	0.12 0.11	0.13 0.14	1694 1666	2606 314	4300 1979
1997	5034 5886	2075	7179 7961	0.15	0.11	0.14	4601	860	1979 5462
1999	7245	2331	9576	0.17	0.11	0.15	11733	2016	13750
2000	8675	2630	11306	0.21	0.12	0.18	12945	1587	14532
2001	10702	3099	13801	0.32	0.14	0.26	3320	1750	5070
2002	13758	3558	17316	0.41	0.10	0.33	3552	1106	4658
2003	18370	3859	22229	0.54	0.20	0.42	3434	788	4221
2004	24077	3919	27996	0.71	0.21	0.53	3318	1075	4393
2005	29416	4601	34017	0.87	0.24	0.64	3715	1362	5076

Table ES3. Estimates of exploitation rate derived from the 2005 lingcod stock assessment.

	LCN	LCS
Year	Exploitation Rate	Exploitation Rate
1956	0.016	0.018
1957	0.018	0.029
1958	0.021	0.029
1959	0.035	0.026
1960	0.039	0.024
1961	0.037	0.026
1962	0.027	0.021
1963	0.020	0.022
1964	0.027	0.017
1965	0.033	0.018
1966	0.039	0.019
1967	0.028	0.021
1968	0.036	0.023
1969	0.026	0.023
1970	0.020	0.031
1971	0.023	0.043
1972	0.022	0.068
1973	0.031	0.083
1974 1975	0.037 0.050	0.093 0.088
1975	0.043	0.086
1970	0.046	0.055
1977	0.040	0.055
1979	0.040	0.092
1980	0.063	0.193
1981	0.064	0.164
1982	0.079	0.178
1983	0.115	0.151
1984	0.128	0.139
1985	0.149	0.171
1986	0.074	0.152
1987	0.098	0.195
1988	0.109	0.226
1989	0.161	0.262
1990	0.146	0.261
1991	0.204	0.252
1992	0.130	0.256
1993	0.156	0.233
1994	0.131	0.191
1995	0.092	0.198
1996	0.097	0.198
1997	0.085	0.206
1998	0.049	0.125
1999	0.037	0.131
2000	0.011	0.062
2001	0.009	0.057
2002	0.009	0.103
2003	0.006	0.158
2004	0.008	0.039

Table ES4. Projected yield for the LCN Base Model (Top) and LCS Base Model (Bottom).

LCN Base	Model					
FORECAST	:_Withou	ut_40:10				
year	4010	bio-all	SpawnBio	recruit-0	Yield	ABC
2007	1	56321	36250	3741	5830	5830
2008	1	52212	34135	3734	5025	5025
2009	1	48734	31802	3725	4473	4473
2010	1	45743	29533	3715	4058	4058
2011	1	43170	27454	3705	3741	3741
2012	1	40976	25614	3694	3484	3484
2013	1	39145	24046	3684	3259	3259
2014	1	37670	22768	3675	3059	3059
2015	1	36525	21776	3667	2903	2903
2016	1	35653	21023	3661	2810	2810
FORECAST	:with_	40:10				
year	4010	bio-all	SpawnBio	recruit-0	Yield	ABC
2007	1	56321	36250	3741	5830	5830
2008	1	52212	34135	3734	5025	5025
2009	1	48734	31802	3725	4473	4473
2010	1	45743	29533	3715	4058	4058
2011	1	43170	27454	3705	3741	3741
2012	1	40976	25614	3694	3484	3484
2013	1	39145	24046	3684	3259	3259
2014	1	37670	22768	3675	3059	3059
2015	1	36525	21776	3667	2903	2903
2016	1	35653	21023	3661	2810	2810

LCS Base I	Model					
FORECAST	Γ:_Withoι	ıt_40:10				
year	4010	bio-all	SpawnBio	recruit-0	Yield	ABC
2007	1	9123	5451	1390	876	876
2008	1	9260	5398	2289	828	828
2009	1	9524	5374	2287	805	805
2010	1	10013	5419	2290	771	771
2011	1	10715	5609	2298	794	794
2012	1	11519	5973	2313	907	907
2013	1	12279	6429	2330	1025	1025
2014	1	12945	6884	2345	1134	1134
2015	1	13503	7291	2357	1218	1218
2016	1	13966	7643	2366	1275	1275
FORECAST	「:with_	40:10				
year	4010	bio-all	SpawnBio	recruit-0	Yield	ABC
2007	0.756	9123	5451	1390	662	876
2008	0.767	9475	5558	2296	658	857
2009	0.778	9906	5667	2301	664	853
2010	0.792	10529	5819	2307	656	828
2011	0.817	11332	6091	2318	698	855
2012	0.85	12214	6517	2333	824	969
2013	0.885	13035	7022	2349	965	1090
2014	0.914	13736	7509	2362	1097	1200
2015	0.936	14299	7928	2373	1200	1282
2016	0.953	14743	8273	2381	1269	1332

Table ES-5. Projected coastwide yield (Sum of LCN and LCS).

Coastwide-Pool	led (Sum of LC	N and LCS)			
FORECAST:_W	ithout_40:10				
year	bio-all	SpawnBio	recruit-0	Yield	ABC
2007	65445	41701	5130	6706	6706
2008	61471	39533	6022	5853	5853
2009	58257	37175	6012	5278	5278
2010	55756	34952	6005	4829	4829
2011	53885	33062	6003	4535	4535
2012	52495	31587	6008	4390	4390
2013	51424	30474	6014	4284	4284
2014	50615	29652	6020	4193	4193
2015	50028	29067	6024	4121	4121
2016	49619	28665	6026	4085	4085
FORECAST:v	vith_40:10				
year	bio-all	SpawnBio	recruit-0	Yield	ABC
2007	65445	41701	5130	6493	6706
2008	61686	39693	6030	5683	5883
2009	58640	37468	6026	5136	5326
2010	56271	35352	6022	4714	4886
2011	54502	33544	6023	4440	4597
2012	53190	32131	6027	4308	4453
2013	52181	31067	6033	4224	4349
2014	51405	30277	6037	4156	4259
2015	50824	29704	6040	4103	4184
2016	50396	29295	6041	4080	4142

Table ES6. Decision table for the northern (LCN) area.

LCN				_	State of Na	ature	
B0:	33749			Base	Case	Alterna	te Case
		Year	Catch	SSB	Depletion	SSB	Depletion
Management Decision	1						
				RUN BB		RUN AB	
Base Case Catch (Wit	h 40:10)	2007	5830	36250	1.07	20327	0.60
Full Model		2008	5025	34135	1.01	17713	0.52
		2009	4473	31802	0.94	15461	0.46
		2010	4058	29533	0.88	13614	0.40
		2011	3741	27454	0.81	12167	0.36
		2012	3484	25614	0.76	11067	0.33
		2013	3259	24046	0.71		0.30
		2014	3059	22768	0.67	9695	0.29
		2015	2903	21776	0.65	9346	0.28
		2016	2810	21023	0.62	9159	0.27
				RUN BA		RUN AA	
Alternate Case Catch	(With 40:10)	2007	3267	36250	1.07	20327	0.60
Delete:		2008	3042	36057	1.07	19584	0.58
2001, 2004 Survey		2009	2869	35277	1.05	18845	0.56
2000-2004 Fishery A	Age Comps.	2010	2729	34157	1.01	18170	0.54
		2011	2625	32927	0.98	17594	0.52
		2012	2555	31650	0.94	17116	0.51
		2013	2500	30396	0.90	16720	0.50
		2014	2456	29224	0.87	16396	0.49
		2015	2424	28171	0.83	16139	0.48
		2016	2402	27238	0.81	15933	0.47

Table ES7. Decision table for the southern (LCS) area.

LCS								
В0:	19101		Base Case		Alternate Ca	ase-Low	Alternate C	ase-High
	Year	Catch	SSB	Depletion	SSB	Depletion	SSB	Depletion
Management Decision								
			RUN BB		RUN LB		RUN HB	
Base Case Catch (With 40:10		662	5451	0.29	4251	0.22	6568	0.34
Full Model	2008	658	5558	0.29	4420	0.23	6653	0.35
	2009	664	5667	0.30	4607	0.24	6713	0.35
	2010	656	5819	0.30	4839	0.25	6796	0.36
	2011	698	6091	0.32	5189	0.27	6988	0.37
	2012	824	6517	0.34	5694	0.30	7325	0.38
	2013	965	7022	0.37	6280	0.33	7739	0.41
	2014	1097	7509	0.39	6850	0.36	8135	0.43
	2015	1200	7928	0.42	7354	0.38	8464	0.44
	2016	1269	8273	0.43	7784	0.41	8722	0.46
			RUN BL		RUN LL		RUN HL	
Alternate Case Catch (With 4	40:10) 2007	414	5451	0.29	4251	0.22	6568	0.34
Ending Biomass-Low	2008	491	5745	0.30	4600	0.24	6840	0.36
	2009	557	5984	0.31	4920	0.26	7031	0.37
	2010	602	6218	0.33	5237	0.27	7195	0.38
	2011	672	6525	0.34	5627	0.29	7421	0.39
	2012	808	6959	0.36	6144	0.32	7764	0.41
	2013	956	7459	0.39	6732	0.35	8171	0.43
	2014	1096	7936	0.42	7297	0.38	8554	0.45
	2015	1203	8337	0.44	7788	0.41	8862	0.46
	2016	1280	8660	0.45	8201	0.43	9095	0.48
			RUN BH		RUN LH		RUN HH	
Alternate Case Catch (With 4	40:10) 2007	853	5451	0.29	4251	0.22	6568	0.34
Ending Biomass-High	2008	799	5415	0.28	4280	0.22	6509	0.34
	2009	761	5412	0.28	4357	0.23	6458	0.34
	2010	706	5490	0.29	4512	0.24	6467	0.34
	2011	740	5727	0.30	4823	0.25	6626	0.35
	2012	849	6131	0.32	5302	0.28	6943	0.36
	2013	979	6628	0.35	5874	0.31	7351	0.38
	2014	1101	7116	0.37	6441	0.34	7752	0.41
	2015	1195	7545	0.39	6949	0.36	8094	0.42
	2016	1258	7908	0.33	7393	0.39	8374	0.44

Figure ES1. Female spawning biomass (top) depletion (middle), and recruitment (bottom) 1956-2005.

Figure ES2 Comparison of lingcod ABC, OY and landings (mt) between 1983 and 2003.

Introduction

Stock Structure and management Units

This document provides an updated coastwide assessment of the lingcod population in 2005 for the full PFMC management zone. Evidence from genetics analysis (Jagielo et al. 1996) and tagging studies (Cass et al. 1990, Jagielo 1995, Jagielo 1999a) suggest that the fish found within this entire area are of one intermingling stock unit. However, because of regional differences in data sources and data availability, the assessment was divided into two separately modeled units: Lingcod-North (LCN) and Lingcod-South (LCS), as it was in recent previous assessments (Jagielo et al. 2000, Jagielo et al. 2003) (Figure 1).

Life History

Lingcod (Ophiodon elongatus) are top order predators of the family Hexagrammidae. The species ranges from Kodiak Island in the Gulf of Alaska to Baja California, and its center of abundance is near British Columbia and Washington (Hart 1973). An analysis of genetic variation indicates that lingcod are genetically similar throughout the range (Jagielo et al. 1996). Among the *Hexagrammidae*, the genus *Ophiodon* is ecologically intermediate between the more littoral genera Hexagrammos, Agrammus, and Oxylebius and the more pelagic Pleurogrammus (Rutenberg 1962). Lingcod are demersal on the continental shelf, most abundant in waters less than 200 m deep, and patchily distributed among areas of hard bottom and rocky relief (Smith and Forrester 1973; Jagielo 1988). Lingcod are considered non-migratory, though some tagged individuals have moved exceptional distances and indirect evidence suggests a seasonal onshore movement associated with spawning (Jagielo 1995, 1999). Larval lingcod hatch in late winter and become epipelagic. When about 3 months old, juveniles settle on sandy bottom near eelgrass or kelp beds. By age 1 or 2, lingcod move into rocky habitats similar to those occupied by adults, but shallower. Fishery and survey data indicate that male lingcod tend to be more abundant than females in shallow waters, and the size of both sexes increases with depth (Jagielo 1994). In late fall, male lingcod aggregate and become territorial in areas suitable for spawning. Mature females are rarely seen at the spawning grounds and it is assumed that they move into spawning areas for only a brief time to deposit eggs. Following egg nest deposition, males assume a guardian role through the period of hatch-out. Hatch out is typically complete by April in Washington but has been reported as early as January and as late as June throughout the species range (Jagielo 1994). A more detailed review of lingcod life history can be found in Jagielo (1994), Adams and Hardwick (1992), and Cass et al. (1990).

History of the fishery

Lingcod have been a target of commercial fisheries since the early 1900's in California (CDFG Reports), and since the late 1930's in Oregon (Unpublished, ODFW Report, 1950) and Washington (Anonymous WDF Report, 1955) waters (Table 4). Recreational fishers have targeted lingcod since the 1920's in California. A modest recreational fishery (less than 20 mt annually) has taken place in Washington and Oregon since at least the 1970's.

Management

History

From 1983 through 1994, a coastwide ABC of 7,000 mt was in effect with the INPFC area components: US Vancouver (1000 mt), Columbia (4,000 mt), Eureka (500 mt), Monterey (1,100 mt) and Conception (400 mt) (Table 1). In 1994 a coastwide harvest guideline (HG) of 4,000 mt was established. Following an assessment for the northern area (Jagielo 1994), the coastwide ABC and Harvest Guideline were reduced for 1995 through 1997 to 2,400 mt with separate ABC's for the US Vancouver-Columbia (1,300 mt), Eureka (300 mt), Monterey (700 mt), and Conception (100 mt) areas. In 1998, following an updated assessment for the northern area (Jagielo et al.1997), the coastwide ABC was reduced to 1,532 mt with a Harvest Guideline of 838 mt. Separate ABC's by area were: Vancouver (including a portion of Canadian waters)-Columbia (1,021 mt), Eureka (139 mt), Monterey (325 mt), and Conception (46 mt). For 1999, the Council established a coastwide ABC of 960 mt and a Harvest Guideline of 730 mt, with area specific ABC's of US Vancouver-Columbia (450 mt), Eureka (139 mt), Monterey (325 mt), and Conception (46 mt). Following a new assessment for the southern area (Adams et al. 1999) and a rebuilding analysis (Jagielo 1999b), the coastwide ABC for 2000 was reduced to 700 mt which included area values of US Vancouver-Columbia (450 mt) and Eureka-Monterey-Conception (250 mt). Subsequently, a coastwide stock assessment (Jagielo et al. 2000) provided a northern ABC was of 610 mt and a southern ABC of 509 mt. Based on a revised rebuilding analysis (Jagielo and Hastie 2001) the 2001-coastwide lingcod OY was set at 611 mt, which is the harvest level derived from a constant exploitation rate that was expected to have a 60-percent probability of rebuilding the stock to B_{msv} within 9 years. The coastwide lingcod OY was similarly set at 577 mt in 2002 and 651 mt in 2003.

Regulations

A history of lingcod commercial trawl trip limits is summarized in Table 2. No trip limits were in effect prior to 1995, and trip limits have become increasingly restrictive since then as annual harvest guidelines have decreased.

A history of PFMC enacted recreational size and bag limits is summarized in Table 3. In California, a 5 fish bag limit was enacted in 1980 followed by a 22 inch size limit in 1981. These regulations remained in effect for 17 years. In March 1998, the bag limit was reduced from 5 to 3 fish and concurrently the size limit was increased to 24 inches. The bag limit was lowered again from 3 fish to 2 fish with in January 1999. In January 2000, the size limit increased from 24 to 26 in. and a seasonal closure (January through February) was implemented from the U.S.-Mexico border north to Lopez Point (36 deg 00 min N., Monterey County), and for March through April from Lopez Point north to Cape Mendocino (40 deg 10 min N., Humboldt County) The bag limit remained at 2 fish. A gear restriction was also enacted at this time limiting the number of hooks to 3, although this was primarily directed toward rockfish effort.

Performance

The first lingcod ABC's based on a quantitative assessment were implemented in 1995. A comparison of reported landings and ABC values shows good correspondence through 2001, when landings were typically at or below the target ABC values (Figure 2). In 2002, landings exceeded the coastwide ABC by 17% and the coastwide OY was exceeded by 51%.

DATA

Catch

Commercial Landings

Commercial lingcod catch history in California waters is available beginning 1916 (personal communication Brenda Erwin, PSMFC) and averaged 428 mt between 1916 and 1955 (Table 4). Commercial lingcod landings in Oregon were first reported in 1950 (Mark Freeman, personal communication) and averaged 264 mt between 1950 and 1953. Washington commercial lingcod landings were first reported in 1937 (anonymous, 1956, WDFW report) and averaged 106 mt until 1955.

Catch data were compiled from agency reports and personal communication for all years preceding 1981 (Table 5). The PacFIN database was queried for catch information in subsequent years and catch detail is presented by gear and INPFC area in Table 6.

Commercial landings peaked in 1985 at 3,129 mt in northern waters (Columbia and Vancouver INPFC areas) and in 1974 at 1,735 mt in southern waters (Eureka, Monterey and Conception INPFC Areas)(Table 5). Average catch between 1990-1997 declined 40 % and 35% since the 1980's in northern and southern waters, respectively. Under rebuilding management, commercial fishery restrictions in recent years (1998-present) reduced coastwide catches to an annual average of less than 225 mt (Figure 3).

From 1981-1997, trawl gear has made up the majority of commercial landings for the northern (83%) and southern (63%) coast. In recent years (1998-2004), commercial fishery restrictions constrained the trawl portion of the commercial catch to 65% and 40% for the northern and southern coast, respectively. In 2004, coastwide commercial landings totaled 174 mt and were distributed as follows by INPFC area: U.S.-Vancouver (41.7 mt), Columbia (44.6 mt), Eureka 39.5 mt), Monterey (33.2 mt), Conception (14.8 mt).

Recreational Landings

Recreational fishers in California have targeted lingcod since the early 1940's. Catch averaged 65.3 mt annually between 1947-1954 (Leet et al., 1992). Recreational lingcod catch information is not available until 1977 for Oregon waters and averaged 52.3 mt annually between 1977 and 1979. Recreational lingcod catch in Washington was first estimated in 1967 to be 25.3 mt and annual catch estimates have been provided since 1975.

Recreational catch estimates were extracted from the RecFIN database for years 1980–1989 and 1993 to present for California waters. California recreational catch estimates for all other years were previously compiled in the 2000 lingcod assessment (Jagielo et al., 2000). Oregon recreational catch data were provided by ODFW (Don Bodenmiller personal communication). The recreational catch in Washington was provided by the WDFW Ocean Sampling Program.

Recreational catch in southern waters has declined since catch peaked in 1980 at 2,226 mt (Table 5, Figure 4). In contrast, recreational catch in northern waters peaked at 236 mt in 1994. Estimated coastwide recreational landings averaged 500 mt. from 1998-2004 and were 1175 mt. and 316 mt. in 2003 and 2004, respectively.

Historically, recreational landings have comprised a larger proportion of the total landings for the southern area, compared to the northern area. In recent years, the recreational portion of the total landings has increased substantially in both the southern and northern areas. In 2004 recreational fisheries harvested 65% of the total lingcod catch coastwide (Figure 5).

Discard

There are three sources of discard information for lingcod. These include the federal Marine Recreational Fisheries Statistical Survey (MRFSS), and both the Washington Department of Fish and Wildlife (WDFW) and the NMFS West-Coast Groundfish Observer Programs. MRFSS have collected B1 (reported by angler to be dead) and B2 (reported by angler to be alive) catches since 1980. Estimates of lingcod discarded alive have increased substantially in response to 1) management changes in 1998 (the size limit increased from 22 to 24 inches), and 2) a seasonal closure in California waters beginning in 2000 (Table 7). It is interesting to note that estimates of fish discarded dead have decreased over time. Estimated live lingcod discarded in southern California was 306,000 fish in 2002. This compares to a total landed catch of 25,000 fish. WDFW began collecting discard information from the recreational fishery in 2002 and estimated that 57% of the catch was discarded. WDFW does not collect information on the portion of the catch discarded live or dead.

Based on an earlier study (Ricky, WDFW unpublished report), the PFMC Groundfish Management Team used a 20% inflation factor to adjust landed catch to account for unobserved lingcod mortality (personal communication, PFMC) in the commercial fishery beginning in 2002. Data collected by the Groundfish Observer program in 2001-2004 estimated that the percent discard of total observed catch ranged from 60-85% (Table 8). Because lingcod lack a swim bladder, it is likely that there is a relatively good survival rate for these fish.

Based on the advice provided by the STAR Panel conducted August 15-19, 2005, a catch dataset incorporating discard assumptions was prepared (Table 5a). The discard-adjusted data were used in the base models for both the northern (LCN) and southern (LCS) models.

Age and Size Composition

Age composition data from the northern area are summarized for the commercial fishery in Table 9. These data were derived by weighting the raw age frequencies from each WDFW vessel sample by the total landed weight of lingcod from that vessel. The recreational fishery age composition data, compiled from WDFW and ODFW recreational fishery samples, are summarized in Table 10. Age compositions derived from samples taken on board the NMFS Triennial Trawl shelf survey and age compositions obtained from sub-samples of lingcod taken for aging as part of the WDFW Cape Flattery Tag survey are summarized in Table 11. Northern area age composition data new to the present assessment are summarized in Table 15. Survey and fishery size composition data (cm) used in the northern model, with associated sample sizes, are summarized by data source in Tables 12 and 13, respectively.

Age composition data and sample size information for the southern area are summarized for the commercial and recreational fisheries, and the NMFS Triennial Trawl shelf survey in Table 14. Southern area age composition data new to the present assessment are summarized in Table 15.

Natural Mortality, Length, Weight, and Maturity at Age

Vectors of length, weight, and maturity-at-age by sex are summarized for the northern area in Table 16. Parameter estimates for these relationships, and natural mortality estimates used in the LCN model are summarized in Table 17. Comparable information for the southern area is summarized in Tables 18 and 19. Figure 6 shows the fit of female and male LCS and LCN lingcod to the von Bertalanffy growth equation.

Abundance Indices

NMFS Triennial Shelf Trawl Survey

Survey estimates of biomass (metric tons) and the associated coefficients of variation (CV's) from the triennial survey for 1977, 1980, 1983, 1986, 1989, 1992, 1995, 1998, and 2001 are summarized in Table 20. Results from the 2004 survey are summarized in Table 21. The total sum of lingcod abundance estimates from the US Vancouver and Columbia area for all depth strata (55-183 m, 184-366 m and 367-500 m) was incorporated into the LCN model. The total sum of the Eureka and Monterey biomass estimates for each year and depth strata was used in the LCS model.

Biomass estimates have been revised using a filtered dataset that excluded "water hauls". A complete description of the tow analysis and identification procedures of "water hauls" can be found in AFSC Processed Report 2001-03 (Zimmermann et al., 2001). Generally, lingcod biomass estimates from the filtered dataset increased with one exception. The 1980 Columbia INPFC lingcod biomass estimate was reduced from 8,699 mt to 3,219 mt, a difference of 5,480 mt (Table 18 and Figure 10). The difference resulted from a single large lingcod tow that was identified as a "water haul" and excluded from the dataset.

WDFW Cape Flattery Tag Survey

Annually, from 1986-1992, WDFW sampled lingcod from an established survey area in a consistent manner using bottomfish troll (dingle bar) hook and line gear. This sampling was initiated for the purpose of capturing fish for release as part of a multiple-year mark-recapture experimental design (Jagielo 1991, 1995). From 1986-1992, estimates of lingcod abundance in the Cape Flattery survey area were derived using external tags (Table 22). Voluntary tag returns from the recreational lingcod fishery at Neah Bay, Washington were used as the method for obtaining tag recaptures. Annual sampling with bottomfish troll gear continued beyond 1992 to extend the length composition time series, which had shown value as a recruitment index for previous lingcod stock assessments (Jagielo 1994, Jagielo et al. 1997, Jagielo et al. 2000). NOTE: THIS DATASET WAS OMITTED IN FINAL BASE MODEL AT THE REQUEST OF THE STAR PANEL CONDUCTED AUGUST 15-19, 2005.

Trawl Fishery Logbook Catch-Per-Unit-Effort (CPUE) Index

As was the case in the previous two lingcod assessments (Jagielo et al 2000, Jagielo et al. 2003) two independently estimated trawl fishery CPUE indices were incorporated into the northern and southern assessment models. They were constructed from Washington, Oregon and California trawl fishery logbook and fish ticket data dating back to 1976 (Table 23). Skipper's tow-by-tow estimates of retained catch were reconciled with fish ticket data (landing receipts). The adjusted catch and the skipper's estimate of tow duration was used to compute lingcod CPUE (lbs/hour).

The bathymetric and geographic distribution of trawl logbook CPUE is shown in Figures 7 and 8, respectively.

Following data verification and screening, a total of 490,971 tows in the northern area and 474,946 tows in the southern area were used in the analysis (Table 23). Because of significant changes in management beginning in 1998 both the northern and southern time series were truncated after 1997. Furthermore, the 1976 and 1977 tow data from the southern area were deemed of insufficient sample size and were dropped from the time series used in the assessment model. Tow-by-tow catch rates (CPUE) were fitted in a two-stage model process using Delta-Lognormal GLM procedure to predict abundance indices across the time series for each area. The model included a year, month, depth, and location (PFMC area) effect. A bootstrap procedure was previously used to estimate the standard errors of the year by year index values; however, the previous STAT Star Panel concluded that the bootstrap estimates of standard errors were unrealistically low and recommended using an assumed annual CV of 0.20 in both the southern and northern index in the 2003 assessment (Jagielo et al. 2003).

The northern trawl logbook index trend shows a sharply declining stock since 1976, and the southern trawl logbook index indicates a declining stock since 1979 (Table 24, Table 25, Figure 9).

Ageing error

Age reading error was modeled by incorporation of an age error transition matrix, which was developed from estimates of between-reader (within-lab) variability obtained from repeat age readings by two WDFW lingcod age readers (Figure 10). This age error transition matrix has not been modified since the last assessment.

Assessment

History of Modeling Approaches

The first assessment of lingcod provided to PFMC consisted of a yield-per-recruit analysis Adams (1986). Subsequently, an age structured assessment was prepared for a portion the northern area (PMFC areas 3A, 3B, and 3C-including Canada) by Jagielo (1994), using the Stock Synthesis model (Methot 1990). The assessment was subsequently updated to include the full Columbia INPFC area through 3C-N in Canada (Jagielo et al. 1997). Adams et al. (1999) subsequently conducted a length-based, age-structured assessment for the southern area (Eureka, Monterey, and Conception INPFC areas), using AD Model Builder (Fournier 1996). The first coastwide assessment of lingcod for the full PFMC management zone was conducted by Jagielo et al. 2000; that assessment (implemented in AD Model Builder) employed two age-structured models, conceptually and mathematically similar to the previous Stock Synthesis assessments of the northern area (Jagielo 1994, Jagielo et al. 1997). The 2003 assessment updated the previous coastwide assessment (Jagielo et al. 2000) and was implemented in Coleraine using the executable code COLERA20.EXE (Hilborn et al. 2000).

Present Modeling Approach and Assessment Program

The present assessment updates the previous coastwide assessment (Jagielo et al. 2003) and is implemented in Stock Synthesis II using the executable code SS2 ver. 1.19d (Methot 2005).

As in the previous assessment, separate age structured models were constructed to analyze stock dynamics for the northern (LCN: US-Vancouver, Columbia) and southern (LCS: Eureka, Monterey, Conception) areas.

The following discussion covers the modeled data, model structure, and base model results; first for the northern area (LCN), followed by a discussion of the same topics for the southern area (LCS).

Lingcod-North (LCN): US-Vancouver and Columbia INPFC Areas

Model Description

List and Description of Likelihood Components in the LCN Model

The LCN model incorporated the following likelihood components; input data sources are specified by Table number:

- 1) Commercial Catch-At-Age: 1979-2004 (Table 9, Table 15).
- 2) Recreational Catch-At-Age: 1980, 1986-2004 (Table 10, Table 15).
- 3) Commercial Catch-At-Length: 1975-1978 (Table 13).
- 4) Recreational Catch-At-Length: 1981-1983 (Table 13).
- 5) NMFS Trawl Survey Catch-At-Age: 1992, 1995, 1998, 2001, and 2004 (Table 11).
- 6) NMFS Trawl Survey Catch-At-Length: 1986 and 1989 (Table 12).
- 7) WDFW Tag Survey Catch-At-Age: 1994-1997 (Table 11). NOTE: THIS DATASET WAS OMITTED IN FINAL BASE MODEL AT THE REQUEST OF THE STAR PANEL CONDUCTED AUGUST 15-19, 2005.
- 8) WDFW Tag Survey Catch-At-Length: 1986-1993 (Table 12).
- 9) NMFS Trawl Survey Biomass (mt): 1977, 1980, 1983, 1986, 1989, 1992, 1995, 1998, 2001 (Table 20) and 2004 (Table 21).
- 10) WDFW Tag Survey Abundance (Numbers of Fish): 1986-1992 (Table 22).
- 11) Trawl Fishery Logbook CPUE Index: Washington and Oregon lingcod CPUE estimates (lbs/hr) derived from a Delta GLM analysis of trawl logbook information, 1976-1997 (Table 24).

The NMFS Trawl Survey Biomass and Trawl Fishery Logbook CPUE Index likelihood components were fit under a lognormal error structure; fishery and survey catch-at-age and catch-at-length likelihood components were fit assuming a multinomial distribution (Methot 2005). In addition to the likelihood components listed above, a likelihood penalty component was included which constrained the maximum annual instantaneous fishing mortality (F) to be less than or equal to 0.9 (Methot 2005).

Base Model Configuration

The LCN base model employed a Beverton-Holt stock-recruitment relationship with lognormal error structure (with a steepness parameter h = 0.9 and SD = 1.0) to constrain wide variations in recruitment, with an emphasis factor (lambda=1.0). Selectivity for the commercial and recreational fisheries and the NMFS and WDFW surveys was parameterized by a curve formed from two logistic distributions referred to as "SS2 Type 18: double logistic with defined peak and smooth joiners" (Methot 2005). Twelve parameters are used in this formulation, including eight parameters for female selectivity and four parameters to characterize male selectivity as offsets to female selectivity. The model used a catch dataset adjusted to account for discards (Table 5a).

Model Selection and Evaluation

A summary of negative log likelihood values, and both estimated and fixed model parameters of the LCN base model are provided in Appendix I (Tables 1-4).

Base-Run Results

Base run model results are presented in Appendix I (Tables 1-4 and Figures 1-14). Base run SS2 files including the control file (LCNCTL05.ctl), the data file (LCNData05.dat), the names file (SS2names.nam) and the forecast file (Forecast.ss2) are presented in Appendix Ia).

Uncertainty and Sensitivity Analyses

The results of model profiling over selected fixed values used in the assessment are included in Appendix I (Figures 4-6a).

A series of base model runs were conducted to examine the effect of different values of the assumed standard deviation of recruitment (SD-r) (Appendix I, Figure 4). SD-r was varied from 0.7 to 1.0. Little sensitivity was observed near the end of the time series, where data were available to estimate recruitments; more sensitivity was noted early in the time series where recruitment was primarily a function of the spawner-recruit curve assumptions. The value of SD-r=1.0 was selected for the final base model.

The base model was also profiled over different fixed values of the Beverton-Holt stock-recruitment steepness parameter (h) (Appendix I, Figure 5). The profile over h ranged from 0.8 to 1.0. Little sensitivity was observed near the end of the time series, where data were available to estimate recruitments; more sensitivity was noted early in the time series where recruitment was primarily a function of the spawner-recruit curve assumptions. This parameter was set at the fixed value of 0.9 for the final base model. Spawner-recruit emphasis was set at (lambda=1.0) in the base model.

The base model was also profiled over different fixed values of natural mortality (M) (Appendix I, Figure 6). The profile over M ranged from 0.14 and 0.26 (females and males, respectively) to 0.22-0.38). The values of 0.18 (females) and 0.32 (males), as used in previous assessments, were chosen for use in the 2005 final base model.

An historic analysis was conducted by plotting the estimates of recruitment and spawning biomass from the 2003 assessment (Jagielo et al. 2003) with the same from the present assessment (Appendix I Figure 1). The 2003 assessment time series started in 1973. The present assessment extended the time series of spawning biomass and recruitment back to 1956. The time series trend of spawning biomass follows generally the same shape for both assessments; however, the present assessment estimates of spawning biomass are consistently higher than those from the 2003 assessment for the entire time series.

A retrospective analysis was conducted by sequentially decrementing the end-year of the assessment from 2004 to 2000 (Appendix I, Figure 6b). No obvious model pathologies were detected. Curiously, the 1999 year class of recruits was anomalously high for the run ending in 2001 compared to the other retrospective runs. This can be explained in part by the large proportion of age 2 fish in the 2001 NMFS trawl survey.

An analysis of model stability was conducted by running the base model 30 times, using an SS2 jitter factor of 0.01 (Appendix I, Figure 6a). The SS2 jitter factor is applied as a multiplier to the minimum and maximum parameter bounds specified in the LCNCTL05.ctl file to vary the

parameter seed values. The model appeared to be stable at this level of imposed "jitter"; of the 30 model runs, 25 returned to the same total likelihood (648.675) and depletion (0.612) values. The remaining 5 runs did not differ substantially from the most common solution.

Lingcod South (LCS): Eureka, Monterey, and Conception INPFC Areas

Model Description

List and Description of Likelihood Components in the LCS Model

The LCS model incorporated the following likelihood components; input data sources are specified by Table number:

- 1) Commercial Catch-At-Age: 1992-1998, 2000-2004 (Table 14, Table 15).
- 2) Recreational Catch-At-Age: 1992-1998, 2000-2004 (Table 14, Table 15).
- 3) NMFS Trawl Survey Catch-At-Age: 1995, 1998, 2001, and 2004 (Table 14, Table 15).
- 4) NMFS Trawl Survey Biomass (mt): 1977, 1980, 1983, 1986, 1989, 1992, 1995, 1998, 2001 (Table 20) and 2004 (Table 20, Table 21).
- 5) Trawl Fishery Logbook CPUE Index: Oregon and California lingcod CPUE estimates (lbs/hr) derived from a Delta GLM analysis of trawl logbook information, 1978-1997 (Table 25).

The NMFS Trawl Survey Biomass, and Trawl Fishery Logbook CPUE Index likelihood components were fit under a lognormal error structure; fishery and survey catch-at-age and catch-at-length likelihood components were fit assuming a multinomial distribution (Methot 2005). In addition to the likelihood components listed above, a likelihood penalty component was included which constrained the maximum annual instantaneous fishing mortality (F) to be less than or equal to 0.9 (Methot 2005).

Base Model Configuration

The LCS base model employed a Beverton-Holt stock-recruitment relationship with lognormal error structure (with a steepness parameter h = 0.9 and SD = 1.0) to constrain wide variations in recruitment, with an emphasis factor (lambda=1.0). Selectivity for the commercial and recreational fisheries and the NMFS survey was parameterized by a curve formed from two logistic distributions referred to as "SS2 Type 18: double logistic with defined peak and smooth joiners" (Methot 2005). Twelve parameters are used in this formulation, including eight parameters for female selectivity and four parameters to characterize male selectivity as offsets to female selectivity. The model did not incorporate an explicit treatment of discards.

Model Selection and Evaluation

A summary of negative log likelihood values, and both estimated and fixed model parameters of the LCS base model is provided in Appendix II (Tables 1-4).

Base-Run Results

Base run model results are presented in Appendix II (Tables 1-4 and Figures 1-11). Base run SS2 files including the control file (LCSCTL05.ctl), the data file (LCSData05.dat), the names file (SS2names.nam) and the forecast file (Forecast.ss2) are presented in Appendix IIa).

Uncertainty and Sensitivity Analyses

The results of model profiling over selected fixed values used in the assessment are included in Appendix II (Figures 4-6).

A series of base model runs were conducted to examine the effect of different values of the assumed standard deviation of recruitment (SD-r) (Appendix II, Figure 4). SD-r was varied from 0.7 to 1.0. Little sensitivity was observed near the end of the time series, where data were available to estimate recruitments; more sensitivity was noted early in the time series where recruitment was primarily a function of the spawner-recruit curve assumptions. The value of SD-r=1.0 was selected for the final base model.

The base model was also profiled over different fixed values of the Beverton-Holt stock-recruitment steepness parameter (h) (Appendix II, Figure 5). The profile over h ranged from 0.8 to 1.0. Little sensitivity was observed near the end of the time series, where data were available to estimate recruitments; more sensitivity was noted early in the time series where recruitment was primarily a function of the spawner-recruit curve assumptions. This parameter was set at the fixed value of 0.9 for the final base model. Spawner-recruit emphasis was set at (lambda=1.0) in the base model.

The base model was also profiled over different fixed values of natural mortality (M) (Appendix II, Figure 6). The profile over M ranged from 0.14 and 0.26 (females and males, respectively) to 0.22-0.38). The values of 0.18 (females) and 0.32 (males), as used in previous assessments, were chosen for use in the 2005 final base model.

An historic analysis was conducted by plotting the estimates of recruitment and spawning biomass from the 2003 assessment (Jagielo et al. 2003) with the same from the present assessment (Appendix II, Figure 1). The 2003 assessment time series started in 1973. The base model from the current assessment extended the time series of spawning biomass and recruitment back to 1956 and suggests historically less depletion in the population relative to the 2003 assessment. The correspondence in spawning biomass is close for the two assessments near the end of the time series, and diverges going back to the beginning of the time series.

A retrospective analysis was conducted by sequentially decrementing the end-year of the assessment from 2004 to 2000 (Appendix II, Figure 6b). No obvious model pathologies were detected.

An analysis of model stability was conducted by running the base model 30 times, using an SS2 jitter factor of 0.01 (Appendix II, Figure 6a). The SS2 jitter factor is applied as a multiplier to the minimum and maximum parameter bounds specified in the LCSCTL05.ctl file to vary the parameter seed values. The model appeared to be stable at this level of imposed "jitter"; of the 30

model runs, 17 returned to the same total likelihood (170.275) and depletion (0.177) values. The remaining 13 runs did not differ substantially from the most common solution.

Coastwide Summary

Management Reference Points

Management reference points derived from the 2005 lingcod stock assessment are summarized in Table ES-1. The estimates of unfished spawning biomass (Bzero) were determined as the product of mean recruitment from 1956-2005 and the estimated Spawners Per Recruit. On a coastwide basis the lingcod population is fully rebuilt; estimated spawning biomass was 34,017 mt in 2005, which is 0.60 of the unfished spawning biomass estimate (52,850 mt). The estimated ratio of 2005 spawning biomass to unfished spawning biomass is higher in the north (0.87) compared to the south (0.24).

Spawning Stock Biomass

SS2 estimates of the coastwide female spawning stock biomass declined from 60,106 mt in 1956 to 6,004 mt in 1994, and subsequently increased to 34017 mt in 2005 (Table ES-2, Figure ES1-Top). Female spawning biomass depletion (B_0/B_t) fell to 0.11 in 1994 and subsequently increased to 0.64 in 2005 (Table ES-2, Figure ES1-Bottom).

Recruitment

The model estimate of virgin recruitment was higher for the northern area (3750 thousand age 0 fish) compared to the southern area (2503 thousand age 0 fish). Recruitments were generally similar in magnitude in both the north and south from 1972-1992, averaging 2008 in the north, and 2071 in the south (Table ES-2. Figure ES-1, bottom). Subsequently, from 1993-2005, recruitments tended to be higher in the north, and averaged 4503 compared to 1309 for the same period in the south. Recent, historically strong, 1999 and 2000 year classes were estimated in the north.

Exploitation Status

In the northern area, the exploitation rate (catch/available biomass) peaked at 0.20 in 1991 and averaged 0.03 from 1956-1980, 0.12 from 1981-1997, and 0.02 from 1998-2005 (Table ES-3). Exploitation rates were generally higher in the southern area, peaking at 0.26 in 1989 and averaging 0.05 from 1956-1980, 0.20 from 1981-1997, and 0.10 from 1998-2005.

Management Performance

The first lingcod ABC's based on a quantitative assessment were implemented in 1995. A comparison of reported landings and ABC values shows good correspondence through 2001, when landings were typically at or below the target ABC values (Figure ES2). In 2002, landings exceeded the coastwide ABC by 17% and the coastwide OY was exceeded by 51%.

Forecasts and Decision Table

Projected yield was forecasted using SS2 for the northern (LCN) and southern (LCS) base models (Table ES-4). Coastwide yield forecasts (sum of LCN and LCS) are summarized in Table ES-5. Forecasts were run with and without the 40:10 adjustment option. These forecasts assumed

that fishery removals in 2005 and 2006 were taken at the level projected by the Groundfish Management Team for 2005 (970mt) (John Devore, Personal Communication).

Additional model forecast runs were made for a set of alternative conditions to establish decision tables. For LCN, the decision table was constructed with the base model and one alternate model in which both: 1) the NMFS 2001 and 2004 shelf triennial trawl survey data were omitted, and 2) the age composition data for the recreational and commercial fishery were omitted for the years 2000 through 2004 (Table ES-6). For LCS, the decision table was constructed with the base model and two alternate models (Table ES-7). The first "low" alternate model assumed that spawning biomass in 2005 was approximately 1.25 standard deviations below the base model estimate of spawning biomass in 2005 was approximately 1.25 standard deviations above the base model estimate of spawning biomass in 2005 (5827 mt).

In both decision tables (Table ES-6 and Table ES-7), the base case model using the base case catch projection is highlighted with a bold outline. The additional cells in the decision tables contrast the results obtained when the models are run with catch projections from the alternate (State of Nature) models. For instance, in the northern area, when base model projected catches are used with the alternate State of Nature model, a depletion level of 0.27 is predicted in the year 2016 (Table ES-6). In the southern area, the predicted depletion level of 0.39 in the year 2016 results when the "high" ending biomass model catches are applied to the "low" ending biomass State of Nature model (Table ES-7).

Recommendations: Research and Data Needs

- 1) Emphasis should be placed on improving fishery age structure sampling size and geographical coverage in both regions.
- 2) More frequent and synoptic fishery independent surveys should be conducted in both regions to aid in determination of stock status and recent recruitment. Surveys of areas inaccessible to trawl survey gear should be conducted to address the issue of the habitat bias of trawl surveys.

Acknowledgments

The STAT Team would like to thank Jason Cope (UW-SAFS), Ian Stewart (NWFSC), and Richard Methot (NOAA Fisheries) for providing helpful advice on the use of the SS2 stock assessment model. The STAT Team also thanks the STAR Panels of August 15-19, and September 26-30 for their constructive reviews.

Literature Cited

Adams, P.B. 1986. Status of lingcod (*Ophiodon elongatus*) stocks off the coast of Washington, Oregon, and California. *In* Pacific Fishery Management Council, 1986. Status of the Pacific Coast Groundfish Fishery Through 1986 and Recommended Acceptable

- Biological Catches for 1987. Appendix 7, 58 p. Pacific Fishery Management Council, Portland, Oregon.
- Adams, P.B. and J.E. Hardwick. 1992. Lingcod. *In* Leet, WS., Dewees, C.M, and C.W. Haugen. California's living marine resources and their utilization. California Sea Grant Publication UCSGEP-92-12. p. 161-164.
- Adams, P.B., Williams, E.H, Silberberg, K.R., and T.E. Laidig. 1999. Southern lingcod assessment in 1999. In Pacific Fishery Management Council, 1999. Status of the Pacific Coast Groundfish Fishery Through 1999 and Recommended Acceptable Biological Catches for 2000. Pacific Fishery Management Council, Portland, Oregon.
- Akaike, H. 1972. Information theory and an extension of the maximum likelihood principle. *In* Proc. 2nd Int. Symp. Inf. Theor. Suppl. Probl. Control Inc. Theor. p. 267-281.
- Alverson, D.L. and M.J. Carney. 1975. A graphical review of the growth and decay of population cohorts. J. Cons. Int. Explor. Mer. 36:133-143.
- Cass, A.J., Beamish, R.J. and G.A. McFarlane. 1990. Lingcod (*Ophiodon elongatus*). Can. Spec. Pub. of Fish and Aquatic Sci. No. 109. 39 p.
- Fournier, D. 1996. An introduction to AD Model Builder for use in nonlinear modeling and statistics. Otter Research Ltd., Nanaimo, B.C., Canada.
- Hart, J.L. 1973. Pacific fishes of Canada. Fish. Res. Board. Can. Bull. No. 180. 740 pp.
- Hilborn, R., Maunder, M., Parma, A., Ernst, B., Payne, J., and P. Starr. 2000. Coleraine: A generalized age structured stock assessment model. Users Manual, Version 1.0, March 2000. School of Aquatic and Fisheries Sciences. Box 355020. Univ. of Wash., Seattle, WA 98195.
- Hilborn, R., Valero, J.L. and M. Maunder. 2001. Status of the Sablefish Resource off the U.S. Pacific Coast in 2001. School of Aquatic and Fisheries Sciences. Box 355020. Univ. of Wash., Seattle, WA 98195. Stock assessment submitted to Pacific Fishery Management Council, Portland, Oregon.
- Hoenig, J.M. 1983. Empirical use of longevity data to estimate mortality rates. Fish. Biol., US 82:898-903.
- Jagielo, T.H. 1988. The spatial, temporal, and bathymetric distribution of coastal lingcod trawl landings and effort in 1986. State of Wa. Dept. of Fish. Prog. Rept. No. 268. June 1988. 46 pp.

- Jagielo, T.H. 1991. Synthesis of mark-recapture and fishery data to estimate open population parameters. *In* Creel and Angler Surveys in Fisheries Management, American Fisheries Society Symposium 12:492-506.
- Jagielo, T.H. 1994. Assessment of lingcod (*Ophiodon elongatus*) in the area north of Cape Falcon (45^o 46' N.) and south of 49^o N. in 1994. *In* Pacific Fishery Management Council, 1994. Status of the Pacific Coast Groundfish Fishery Through 1994 and Recommended Acceptable Biological Catches for 1995. Appendix I. Pacific Fishery Management Council, Portland, Oregon.
- Jagielo, T.H. 1995. Abundance and survival of lingcod (*Ophiodon elongatus*) at Cape Flattery, Washington. Trans. Amer. Fish. Soc. 124(2).
- Jagielo, T. H., LeClair, L.L., and B.A. Vorderstrasse. 1996. Genetic variation and population structure of lingcod. Trans Amer. Fish Soc. 125(3).
- Jagielo, T.H., Adams, P., Peoples, M., Rosenfield, S., Silberberg, K, and T. Laidig. 1997.
 Assessment of lingcod (Ophiodon elongatus) for the Pacific Fishery Management
 Council in 1997. *In* Pacific Fishery Management Council, 1997. Status of the Pacific
 Coast Groundfish Fishery Through 1997 and Recommended Acceptable Biological
 Catches for 1998. Pacific Fishery Management Council, Portland, Oregon.
- Jagielo, T.H. 1999a. Movement, mortality, and size selectivity of sport and trawl caught lingcod off Washington. Trans. Amer. Fish. Soc. 128:31-48.
- Jagielo, T.H. 1999b. Lingcod Rebuilding. Analysis submitted to Pacific Fishery Management Council, May 5, 1999. Attachment G.9.c June 1999, PFMC Briefing Book.
- Jagielo, T.H., Wilson-Vandenberg, D., Sneva, J., Rosenfield, S. and F. Wallace. 2000. Assessment of lingcod (Ophiodon elongatus) for the Pacific Fishery Management Council in 2000. *In* Pacific Fishery Management Council, 2000. Status of the Pacific Coast Groundfish Fishery Through 2000 and Recommended Acceptable Biological Catches for 2001. Pacific Fishery Management Council, Portland, Oregon.
- Jagielo, T.H. and J. Hastie. 2001. Updated rebuilding analysis for lingcod. Document submitted to Pacific Fishery Management Council. August 8, 2001. Pacific Fishery Management Council, 7700 NE Ambassador Place, Suite 200. Portland, OR 97220-1384.
- Leet, WS., Dewees, C.M, and C.W. Haugen. 1992. California's living marine resources and their utilization. California Sea Grant Publication UCSGEP-92-12.
- MacCall, A.D. 2003. Status of bocaccio of California in 2003. *In*: Volume I: Status of the Pacific Coast Groundfish Fishery Through 2003. Stock assessment and fishery evaluation. Pacific Fishery Management Council, 7700 NE Ambassador Place, Suite 200. Portland, OR 97220-1384.

- Methot, R.D. 1990. Synthesis model: an adaptive framework for analysis of diverse stock assessment data. Int. N. Pac. Fish. Comm. Bull. 50:259-277.
- Methot, R.D. 2005. Technical description of the Stock Synthesis II Assessment Program. Version 1.17. March 2005. NOAA Fisheries, Seattle, WA.
- Pauley, D. 1980. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. J. Cons. Int. Explor. Mer. 39:175-192.
- Punt, A.E. 2003. SSC Default Rebuilding Analysis. Technical Specifications and Users Manual. Ver. 2.7a July 2003. School of Aquatic and Fisheries Sciences. P.O. Box 355020. University of Washington, Seattle, WA 98195-5020.
- Ralston, S. 1999. Trends in standardized catch rates of some rockfishes (Sebastes spp.) from the California trawl logbook database. NMFS, SWFSC Admin. Rept. SC-99-01. 40 p.
- Ralston, S. and E.J. Dick 2003. The status of black rockfish (Sebastes melanops) off Oregon and Northern California in 2003. *In*: Volume I: Status of the Pacific Coast Groundfish Fishery Through 2003. Stock assessment and fishery evaluation. Pacific Fishery Management Council, 7700 NE Ambassador Place, Suite 200. Portland, OR 97220-1384.
- Rutenberg, E.P. 1962. Survey of the fishes of family Hexagrammidae. *In* T.S. Rass, Ed., Greenlings: taxonomy, biology, interoceanic transplantation. Translated from Russian 1970; Israel Program for Scientific Translations, Jerusalem.
- Smith, J.E, and C.R. Forrester. 1973. Depth distribution of catch by Canadian otter trawlers. Fish. Res. Board of Canada Man. Rept. No. 1239. April 1973. 141 pp.
- Zimmermann, M., Wilkins, M.E., Weinberg, K.L., Lauth, R.R., and F.R. Shaw. 2001. Retrospective analysis of suspiciously small catches in the National Marine Fisheries Service West Coast Triennial Bottom Trawl Survey. AFSC Proc. Rep. 2001-03: 135 p.

Table 1. History of PFMC lingcod Acceptable Biological catches (ABC's), Harvest guidelines or Optimum yields (OT's) and landings. Source:PFMC SAFE 2001 document and personal communication with the PFMC Groundfish Management Team for most recent year's information.

	US Vancouver	Columbia	US Vancouve	r-Columbia	Eureka	Monterey	Conception	Eureka-Montere	y-Conception		Coastwide	.
Year	ABC	ABC	ABC	Landings	ABC	ABC	ABC	ABC	Landings	ABC	HG or OY	Harvest
1983	1,000	4,000	5,000	3,155	500	1,100	400	2,000	1,691	7,000		4,971
1984	1,000	4,000	5,000	3,163	500	1,100	400	2,000	1,555	7,000		4,719
1985	1,000	4,000	5,000	3,215	500	1,100	400	2,000	1,726	7,000		4,945
1986	1,000	4,000	5,000	1,396	500	1,100	400	2,000	1,517	7,000		2,934
1987	1,000	4,000	5,000	1,724	500	1,100	400	2,000	1,922	7,000		3,667
1988	1,000	4,000	5,000	1,763	500	1,100	400	2,000	2,044	7,000		3,930
1989	1,000	4,000	5,000	2,373	500	1,100	400	2,000	2,316	7,000		4,705
1990	1,000	4,000	5,000	1,868	500	1,100	400	2,000	1,966	7,000		3,845
1991	1,000	4,000	5,000	2,437	500	1,100	400	2,000	1,647	7,000		4,095
1992	1,000	4,000	5,000	1,391	500	1,100	400	2,000	1,467	7,000		2,870
1993	1,000	4,000	5,000	1,659	500	1,100	400	2,000	1,374	7,000		2,907
1994	1,000	4,000	5,000	1,449	500	1,100	400	2,000	1,091	7,000	4,000	2,424
1995			1,300	971	300	700	100	1,100	1,067	2,400	2,400	1,882
1996			1,300	1,120	300	700	100	1,100	937	2,400	2,400	2,070
1997			1,300	1,049	300	700	100	1,100	912	2,400	2,400	1,981
1998			1,021	225	139	325	46	510	496	1,532	838	707
1999			450	262	139	325	46	510	545	960	730	831
2000			450					250		700	378	446
2001			610					510		1,120	611	445
2002										745	577	873
2003										841	651	

Table 2. History of lingcod commercial trawl trip limits (thousand lbs) Source: PFMC SAFE 2001 document and personal communication with the PFMC Groundfish Management Team for most recent year's information. Note: Exception to commercial size limits: starting in 1996, trawl gear was allowed retention of 100 lb. at size less than minimum size limit.

Year	Jan	Feb	Mar	Apr		Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
< 199	95						No trip limit	regulations	3				
199	95	20	20	20	20	20	20	20	20	2	0 20	20	20
199	96	40		40		4	0	4	10		40		40
199	97	40		40		4	0	4	10		40		40
199	98	1		1		1			1		1		1
199	99	1.5				1.5			1		0.5	0.5	0.5
200	00	F	Prohibited	·		0.4	0.4	0.4	0.4	0.4	0.4	Prof	nibited
200	01	F	Prohibited		Г	0.4	0.4	0.4	0.4	0.4	0.5	Prof	nibited
2002	1/	8.0		8.0		1			1	0.5	0.5	0.5	0.5
200		8.0		8.0		1			1		0.8	(0.8

Commercial size limit 0f 22" `1995-1997 then 24" thereafter

Gear restrictions for rockfish retention beginning in 2001 ^{1/} South of 40⁰ 10' lingcod prohibited beginning July 1st

Table 3. History of lingcod size limits (inches) and recreational bag limits (number of fish): Source: PFMC SAFE 2001 document and personal communication with the PFMC Groundfish Management Team for most recent year's information.

State	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
				Daily Bag	Limits					
Washington	3	3	3	3	3	2	2	2	2	2
Oregon	3	3	3	3	3	2	2	2	2	2
California	5	5	5	5	5	2	2	2	2	2
			;	Size Limits	(inches)					
Washington	none	22	22	22	24	24	24	24	24	24
Oregon	none	22	22	22	24	24	24	24	24	24
California 1/	none	22	22	22	24	24	26	26	22	22

Beginning in 2000; South of 34° 27' N. Lat lingcod prohibited January-February and South of Cape Mendencino and north of 34° 27' N. Lat lingcod prohibited March-June

Table 4. Estimated commercial lingcod catch (mt) for California (1916-1955), Oregon (1950-1953) and Washington ()1935-1955).

Historical Commercial lingcod landings

Year California 1/ Total (mt) Oregon 2/ Total (mt) Washington 3/ Total (mt) 1916 280 1917 422 1918 415 1919 482 1920 312 1921 193 1921 193 1922 258 1923 212 1924 182 1925 310 1926 295 1927 252 1928 387 1929 529 1930 584 1931 558 1932 408 1933 494 1934 389 1935 462 0 0 1936 344 0 0 1937 439 1 1 1938 293 0 0 1939 262 0 0 1940 314 10 1 1941 240 51 1 1942 143 41 1 1944 <th>Historical C</th> <th>ommercial lin</th> <th></th> <th></th>	Historical C	ommercial lin		
1916 280 1917 422 1918 415 1919 482 1920 312 1921 193 1922 258 1923 212 1924 182 1925 310 1926 295 1927 252 1928 387 1929 529 1930 584 1931 558 1932 408 1933 494 1934 389 1935 462 0 1936 344 0 1937 439 1 1938 293 0 1939 262 0 1940 314 10 1941 240 51 1942 143 41 1943 326 162 1944 338 523 1945 344 237 1946 524 229 19				
1917 422 1918 415 1919 482 1920 312 1921 193 1922 258 1923 212 1924 182 1925 310 1926 295 1927 252 1928 387 1929 529 1930 584 1931 558 1932 408 1933 494 1934 389 1935 462 0 1936 344 0 1937 439 1 1938 293 0 1939 262 0 1940 314 10 1941 240 51 1942 143 41 1943 326 162 1944 338 523 1945 344 237 1946 524 229 1947 880 65			Total (mt)	Total (mt)
1918 415 1919 482 1920 312 1921 193 1922 258 1923 212 1924 182 1925 310 1926 295 1927 252 1928 387 1929 529 1930 584 1931 558 1932 408 1933 494 1934 389 1935 462 0 1936 344 0 1937 439 1 1938 293 0 1939 262 0 1940 314 10 1941 240 51 1942 143 41 1943 326 162 1944 338 523 1945 344 237 1946 524 229 1947 880 65 1948 93 132<				
1919 482 1920 312 1921 193 1922 258 1923 212 1924 182 1925 310 1926 295 1927 252 1928 387 1929 529 1930 584 1931 558 1932 408 1933 494 1934 389 1935 462 0 1936 344 0 1937 439 1 1938 293 0 1939 262 0 1940 314 10 1941 240 51 1942 143 41 1943 326 162 1944 338 523 1945 344 237 1946 524 229 1947 880 65 1948 93 132 1949 751<				
1920 312 1921 193 1922 258 1923 212 1924 182 1925 310 1926 295 1927 252 1928 387 1929 529 1930 584 1931 558 1932 408 1933 494 1934 389 1935 462 0 1936 344 0 1937 439 1 1938 293 0 1939 262 0 1940 314 10 1941 240 51 1942 143 41 1943 326 162 1944 338 523 1945 344 237 1946 524 229 1947 880 65 1948 93 132 1949 751 109 1950<				
1921 193 1922 258 1923 212 1924 182 1925 310 1926 295 1927 252 1928 387 1929 529 1930 584 1931 558 1932 408 1933 494 1934 389 1935 462 0 1936 344 0 1937 439 1 1938 293 0 1939 262 0 1940 314 10 1941 240 51 1943 326 162 1944 338 523 1945 344 237 1946 524 229 1947 880 65 1948 933 132 1949 751 109 1950 869 312 92 1951 758 379<				
1922 258 1923 212 1924 182 1925 310 1926 295 1927 252 1928 387 1929 529 1930 584 1931 558 1932 408 1933 494 1934 389 1935 462 0 1936 344 0 1937 439 1 1938 293 0 1939 262 0 1940 314 10 1941 240 51 1942 143 41 1943 326 162 1944 338 523 1945 344 237 1946 524 229 1947 880 65 1948 933 132 1949 751 109 1950 869 312 92 1951 758 </td <td></td> <td></td> <td></td> <td></td>				
1923 212 1924 182 1925 310 1926 295 1927 252 1928 387 1929 529 1930 584 1931 558 1932 408 1933 494 1934 389 1935 462 0 1936 344 0 1937 439 1 1938 293 0 1939 262 0 1940 314 10 1941 240 51 1942 143 41 1943 326 162 1944 338 523 1945 344 237 1946 524 229 1947 880 65 1948 933 132 1949 751 109 1950 869 312 92 1951 758 379 106 <t< td=""><td></td><td></td><td></td><td></td></t<>				
1924 182 1925 310 1926 295 1927 252 1928 387 1929 529 1930 584 1931 558 1932 408 1933 494 1934 389 1935 462 0 1936 344 0 1937 439 1 1938 293 0 1939 262 0 1940 314 10 1941 240 51 1942 143 41 1943 326 162 1944 338 523 1945 344 237 1946 524 229 1947 880 65 1948 933 132 1949 751 109 1950 869 312 92 1951 758 379 106 1952 620 224 <td></td> <td></td> <td></td> <td></td>				
1925 310 1926 295 1927 252 1928 387 1929 529 1930 584 1931 558 1932 408 1933 494 1934 389 1935 462 0 1936 344 0 1937 439 1 1938 293 0 1939 262 0 1940 314 10 1941 240 51 1942 143 41 1943 326 162 1944 338 523 1945 344 237 1946 524 229 1947 880 65 1948 933 132 1949 751 109 1950 869 312 92 1951 758 379 106 1952 620 224 93 1953 <td></td> <td></td> <td></td> <td></td>				
1926 295 1927 252 1928 387 1929 529 1930 584 1931 558 1932 408 1933 494 1934 389 1935 462 0 1936 344 0 1937 439 1 1938 293 0 1939 262 0 1940 314 10 1941 240 51 1942 143 41 1943 326 162 1944 338 523 1945 344 237 1946 524 229 1947 880 65 1948 933 132 1949 751 109 1950 869 312 92 1951 758 379 106 1952 620 224 93 1953 432 139 40				
1927 252 1928 387 1929 529 1930 584 1931 558 1932 408 1933 494 1934 389 1935 462 0 1936 344 0 1937 439 1 1938 293 0 1939 262 0 1940 314 10 1941 240 51 1942 143 41 1943 326 162 1944 338 523 1945 344 237 1946 524 229 1947 880 65 1948 933 132 1949 751 109 1950 869 312 92 1951 758 379 106 1952 620 224 93 1953 432 139 40 1955 438				
1928 387 1929 529 1930 584 1931 558 1932 408 1933 494 1934 389 1935 462 0 1936 344 0 1937 439 1 1938 293 0 1939 262 0 1940 314 10 1941 240 51 1942 143 41 1943 326 162 1944 338 523 1945 344 237 1946 524 229 1947 880 65 1948 933 132 1949 751 109 1950 869 312 92 1951 758 379 106 1952 620 224 93 1953 432 139 40 1955 438 63				
1929 529 1930 584 1931 558 1932 408 1933 494 1934 389 1935 462 0 1936 344 0 1937 439 1 1938 293 0 1939 262 0 1940 314 10 1941 240 51 1942 143 41 1943 326 162 1944 338 523 1945 344 237 1946 524 229 1947 880 65 1948 933 132 1949 751 109 1950 869 312 92 1951 758 379 106 1952 620 224 93 1953 432 139 40 1954 430 66 66 1955 438 63	1927	252		
1930 584 1931 558 1932 408 1933 494 1934 389 1935 462 0 1936 344 0 1937 439 1 1938 293 0 1939 262 0 1940 314 10 1941 240 51 1942 143 41 1943 326 162 1944 338 523 1945 344 237 1946 524 229 1947 880 65 1948 933 132 1949 751 109 1950 869 312 92 1951 758 379 106 1952 620 224 93 1953 432 139 40 1954 430 66 66 1955 438 63	1928	387		
1931 558 1932 408 1933 494 1934 389 1935 462 0 1936 344 0 1937 439 1 1938 293 0 1939 262 0 1940 314 10 1941 240 51 1942 143 41 1943 326 162 1944 338 523 1945 344 237 1946 524 229 1947 880 65 1948 933 132 1949 751 109 1950 869 312 92 1951 758 379 106 1952 620 224 93 1953 432 139 40 1954 430 66 1955 438 63	1929	529		
1932 408 1933 494 1934 389 1935 462 0 1936 344 0 1937 439 1 1938 293 0 1939 262 0 1940 314 10 1941 240 51 1942 143 41 1943 326 162 1944 338 523 1945 344 237 1946 524 229 1947 880 65 1948 933 132 1949 751 109 1950 869 312 92 1951 758 379 106 1952 620 224 93 1953 432 139 40 1954 430 66 1955 438 63	1930	584		
1933 494 1934 389 1935 462 0 1936 344 0 1937 439 1 1938 293 0 1939 262 0 1940 314 10 1941 240 51 1942 143 41 1943 326 162 1944 338 523 1945 344 237 1946 524 229 1947 880 65 1948 933 132 1949 751 109 1950 869 312 92 1951 758 379 106 1952 620 224 93 1953 432 139 40 1954 430 66 1955 438 63	1931	558		
1934 389 1935 462 0 1936 344 0 1937 439 1 1938 293 0 1939 262 0 1940 314 10 1941 240 51 1942 143 41 1943 326 162 1944 338 523 1945 344 237 1946 524 229 1947 880 65 1948 933 132 1949 751 109 1950 869 312 92 1951 758 379 106 1952 620 224 93 1953 432 139 40 1954 430 66 1955 438 63	1932	408		
1935 462 0 1936 344 0 1937 439 1 1938 293 0 1939 262 0 1940 314 10 1941 240 51 1942 143 41 1943 326 162 1944 338 523 1945 344 237 1946 524 229 1947 880 65 1948 933 132 1949 751 109 1950 869 312 92 1951 758 379 106 1952 620 224 93 1953 432 139 40 1954 430 66 1955 438 63	1933	494		
1936 344 0 1937 439 1 1938 293 0 1939 262 0 1940 314 10 1941 240 51 1942 143 41 1943 326 162 1944 338 523 1945 344 237 1946 524 229 1947 880 65 1948 933 132 1949 751 109 1950 869 312 92 1951 758 379 106 1952 620 224 93 1953 432 139 40 1954 430 66 66 1955 438 63	1934	389		
1937 439 1 1938 293 0 1939 262 0 1940 314 10 1941 240 51 1942 143 41 1943 326 162 1944 338 523 1945 344 237 1946 524 229 1947 880 65 1948 933 132 1950 869 312 92 1951 758 379 106 1952 620 224 93 1953 432 139 40 1954 430 66 66 1955 438 63	1935	462		0
1938 293 0 1939 262 0 1940 314 10 1941 240 51 1942 143 41 1943 326 162 1944 338 523 1945 344 237 1946 524 229 1947 880 65 1948 933 132 1949 751 109 1950 869 312 92 1951 758 379 106 1952 620 224 93 1953 432 139 40 1954 430 66 1955 438 63	1936	344		0
1939 262 0 1940 314 10 1941 240 51 1942 143 41 1943 326 162 1944 338 523 1945 344 237 1946 524 229 1947 880 65 1948 933 132 1949 751 109 1950 869 312 92 1951 758 379 106 1952 620 224 93 1953 432 139 40 1954 430 66 1955 438 63	1937	439		1
1940 314 10 1941 240 51 1942 143 41 1943 326 162 1944 338 523 1945 344 237 1946 524 229 1947 880 65 1948 933 132 1949 751 109 1950 869 312 92 1951 758 379 106 1952 620 224 93 1953 432 139 40 1954 430 66 1955 438 63	1938	293		0
1941 240 51 1942 143 41 1943 326 162 1944 338 523 1945 344 237 1946 524 229 1947 880 65 1948 933 132 1949 751 109 1950 869 312 92 1951 758 379 106 1952 620 224 93 1953 432 139 40 1954 430 66 1955 438 63	1939	262		0
1942 143 41 1943 326 162 1944 338 523 1945 344 237 1946 524 229 1947 880 65 1948 933 132 1949 751 109 1950 869 312 92 1951 758 379 106 1952 620 224 93 1953 432 139 40 1954 430 66 1955 438 63	1940	314		10
1943 326 162 1944 338 523 1945 344 237 1946 524 229 1947 880 65 1948 933 132 1949 751 109 1950 869 312 92 1951 758 379 106 1952 620 224 93 1953 432 139 40 1954 430 66 1955 438 63	1941	240		51
1944 338 523 1945 344 237 1946 524 229 1947 880 65 1948 933 132 1949 751 109 1950 869 312 92 1951 758 379 106 1952 620 224 93 1953 432 139 40 1954 430 66 1955 438 63	1942	143		41
1945 344 237 1946 524 229 1947 880 65 1948 933 132 1949 751 109 1950 869 312 92 1951 758 379 106 1952 620 224 93 1953 432 139 40 1954 430 66 1955 438 63	1943	326		162
1946 524 229 1947 880 65 1948 933 132 1949 751 109 1950 869 312 92 1951 758 379 106 1952 620 224 93 1953 432 139 40 1954 430 66 1955 438 63	1944	338		523
1947 880 65 1948 933 132 1949 751 109 1950 869 312 92 1951 758 379 106 1952 620 224 93 1953 432 139 40 1954 430 66 1955 438 63	1945	344		237
1947 880 65 1948 933 132 1949 751 109 1950 869 312 92 1951 758 379 106 1952 620 224 93 1953 432 139 40 1954 430 66 1955 438 63	1946	524		229
1948 933 132 1949 751 109 1950 869 312 92 1951 758 379 106 1952 620 224 93 1953 432 139 40 1954 430 66 1955 438 63				
1949 751 109 1950 869 312 92 1951 758 379 106 1952 620 224 93 1953 432 139 40 1954 430 66 1955 438 63				
1950 869 312 92 1951 758 379 106 1952 620 224 93 1953 432 139 40 1954 430 66 1955 438 63				
1951 758 379 106 1952 620 224 93 1953 432 139 40 1954 430 66 1955 438 63			312	
1952 620 224 93 1953 432 139 40 1954 430 66 1955 438 63				
1953 432 139 40 1954 430 66 1955 438 63				
1954 430 66 1955 438 63				
1955 438 63				
4/5 /h4 1lih		428	264	106

^{\$428\$} 264 $106\,$ $^{1/}$ Leet et al. 1992. California's living marine resources and their utilization

^{1/} Forrester, 1973.

^{2/} "Fisheries Statistics for Oregon 1950-1953" author Harrison S. Smith

^{3/} Anonymous, 1955 WDF Commercial Fishing Statistical Report.

Table 5. Estimated commercial and recreational lingcod catch (mt) for northern (1916-1955) and southern areas (Eureka, Monterey and Conception), 1956 to 2004

	No	rthern Area	So				
		couver - Columbia			onterrey-Concept	ion	Coastwide
Year	Commercial 1	Recreation ²	Total (mt)	Commercial ³	Recreation ⁴	Total (mt)	Total (mt)
1956	920		920	422	113	536	1,455
1957	1,000		1,000	744	114	858	1,858
1958	1,133		1,133	726	120	845	1,979
1959	1,863		1,863	638	94	732	2,594
1960	2,028		2,028	593	85	678	2,706
1961	1,875		1,875	653	70	724	2,599
1962	1,323		1,323	504	76	581	1,904
1963	938		938	514	83	597	1,534
1964	1,257		1,257	379	76	455	1,712
1965	1,538		1,538	369	100	469	2,006
1966	1,813		1,813	363	134	497	2,311
1967	1,244		1,244	426	131	557	1,800
1968	1,626		1,626	496	128	624	2,250
1969	1,148		1,148	505	98	603	1,751
1970	851		851	695	-	695	1,546
1971	1,009		1,009	952	-	952	1,961
1972	952		952	1,472	-	1,472	2,425
1973	1,326		1,326	1,615	403	2,018	3,344
1974	1,549		1,549	1,735	399	2,134	3,683
1975	2,019	85	2,104	1,447	429	1,876	3,981
1976	1,662	69	1,731	1,415	422	1,837	3,568
1977	1,671	76	1,747	769	284	1,053	2,799
1978	1,346	70	1,416	914	334	1,248	2,664
1979	2,211	82	2,292	1,434	340	1,774	4,066
1980	2,004	93	2,097	1,275	2,226	3,501	5,598
1981	1,905	128	2,033	1,404	1,169	2,572	4,605
1982	2,241	128	2,368	1,599	877	2,476	4,844
1983	3,051	114	3,165	1,221	586	1,807	4,972
1984	3,005	156	3,161	1,047	509	1,555	4,716
1985	3,127	90	3,217	753	974	1,726	4,943
1986	1,305	95	1,399	602	928	1,531	2,930
1987	1,620	111	1,731	982	950	1,932	3,663
1988	1,646	115	1,760	1,141	1,036	2,177	3,938
1989	2,231	146	2,377	1,358	964	2,322	4,699
1990	1,746	125	1,871	1,188	785	1,973	3,844
1991	2,320	121	2,441	844	807	1,651	4,092
1992	1,207	210	1,417	676	795	1,471	2,888
1993	1,429	252	1,681	778	469	1,247	2,928
1994	1,214	255	1,469	691	283	974	2,443
1995	858	117	975	610	291	901	1,876
1996	999	129	1,128	559	381	940	2,068
1997	933	120	1,053	636	289	924	1,978
1998	155	73	228	198	269	466	694
1999	169	101	270	190	357	547	817
2000	73	75	148	71	206	277	425
2001	70	86	156	88	178	266	422
2002	97	140	237	108	526	634	871
2003 ⁵	104	144	247	78	1,031	1,109	1,356
2004 5	86	168	254	88	148	236	490

^{1/} Early catch estimates from Forrest (1973) and Lynde (1983) then PacFIN estimates beginning 1981.

^{2/} Revised catch estimates for this assessment provided by ODFW for 1990-2004 and WDFW catch revised to exclude catch taken in Canadian waters.

^{3/} Early catch estimates from CDF&G Fish Bulletins and then PacFIN estimates beginning 1981.

^{4/} Early catch estimates from Leet et.al. (1982) and MRFSS estimates used from 1980-2004, Oregon catches south of Cape Blanco provided by ODFW.

^{5/} MRFSS estimates in 2003 and CRFS estimates from 2004 are not standardized and not comparable.

Table 5a. Estimated commercial and recreational lingcod catch (mt) for northern (1916-1955) and southern areas (Eureka, Monterey and Conception), 1956 to 2004, with adjustment for catch discarded.

Northern Area				Southern Area				
	U.S. Vancouver - Columbia				Ionterrey-Conce	•	on Coastwide	
Year	Commercial 1	Recreation ²	Total (mt)	Commercial ³	Recreation ⁴	Total (mt)	Total (mt)	
1956	920	0	920	422	113	536	1,455	
1957	1,000	5	1,005	744	114	858	1,863	
1958	1,133	9	1,143	726	120	845	1,988	
1959	1,863	14	1,876	638	94	732	2,608	
1960	2,028	18	2,046	593	85	678	2,724	
1961	1,875	23	1,897	653	70	724	2,621	
1962	1,323	27	1,350	504	76	581	1,931	
1963	938	32	969	514	83	597	1,566	
1964	1,257	36	1,293	379	76	455	1,748	
1965	1,538	40	1,578	369	100	469	2,047	
1966	1,813	45	1,858	363	134	497	2,355	
1967	1,244	49	1,293	426	131	557	1,850	
1968	1,626	54	1,680	496	128	624	2,304	
1969	1,148	58	1,206	505	98	603	1,809	
1970	851	63	914	695	119	814	1,728	
1971	1,009	67	1,076	952	179	1,131	2,207	
1972	952	72	1,024	1,472	269	1,741	2,765	
1973	1,326	76	1,402	1,615	403	2,018	3,420	
1974	1,549	81	1,630	1,735	399	2,134	3,763	
1975	2,019	85	2,104	1,447	429	1,876	3,981	
1976	1,662	69	1,731	1,415	422	1,837	3,568	
1977	1,671	76	1,747	769	284	1,053	2,799	
1978 1979	1,346	70	1,416	914	334	1,248	2,664	
	2,211	82	2,292	1,434	340	1,774	4,066	
1980	2,004	93	2,097	1,275	2,229	3,504	5,601	
1981 1982	1,905	128	2,033	1,404	1,173	2,577	4,610	
1983	2,241	128	2,368	1,599	882	2,481	4,849	
1984	3,051 3,005	114 156	3,165 3,161	1,221 1,047	589 514	1,810 1,561	4,975 4,722	
1985	3,005 3,127	90	3,101	753	981	1,733	4,722 4,950	
1986	1,305	95	1,399	602	950	1,733	4,950 2,951	
1987	1,620	111	1,731	982	969	1,950	3,682	
1988	1,646	115	1,760	1,141	1,054	2,195	3,955	
1989	2,231	146	2.377	1,358	980	2,193	4,715	
1990	1,746	125	1,871	1,188	799	1,987	3,857	
1991	2,320	121	2,441	844	820	1,665	4,106	
1992	1,207	210	1,417	676	808	1,484	2,901	
1993	1,429	252	1,681	778	479	1,257	2,939	
1994	1,214	255	1,469	691	289	980	2,449	
1995	1,018	117	1,135	705	300	1,005	2,139	
1996	1,186	129	1,315	648	391	1,039	2,354	
1997	1,106	120	1,226	736	299	1,035	2,354	
1998	718	73	791	349	279	629	1,420	
1999	665	101	766	347	375	722	1,420	
2000	223	75	298	120	240	360	658	
2001	206	86	292	151	226	377	669	
2002	226	140	366	152	608	759	1,125	
2002	147	144	291	100	1,125	1,226	1,516	
2004	208	168	376	107	188	295	671	
			0.0	.51	.50	_50	071	

^{1/} Early catch estimates from Forrest (1973) and Lynde (1983) then PacFIN estimates beginning 1981.
2/ Revised catch estimates for this assessment provided by ODFW for 1990-2004 and WDFW catch revised to exclude catch taken in Canadian waters.
3/ Early catch estimates from CDF&G Fish Bulletins and then PacFIN estimates beginning 1981.
4/ Early catch estimates from Leet et.al. (1982) and MRFSS estimates used from 1980-2004, Oregon Catches South of Blanco provided by ODFW

^{5/} MRFSS estimates in 2003 and CRFS estimates from 2004 are not standardized and not comparable. Awaiting explaination from CDFG?

^{6/} Catch estimates beginning in 1995 are expanded to include regulatory discard mortality

Table 6. Estimated commercial lingcod catch (mt) by gear and INPFC area, 1981 to 2004.

U.S Vancouver	INPFC Area - lingcod	landings in meti	ric tons				Shrimp	
Year	Hook&Line	Other	Net	Pot	Trolls	Trawls	Trawl	Total
1981	65.3	0.0	26.6	0.0	53.5	367.5	1.3	514.2
1982	67.6	0.0	76.6	0.4	115.3	336.3	0.2	596.4
1983	36.6	0.0	119.7	0.0	201.3	802.0	18.4	1178.0
1984	63.9	0.0	131.3	3.0	201.5	1344.4	2.1	1746.2
1985	100.2	0.0	247.2	0.5	178.0	1324.7	1.5	1852.1
1986	50.3	0.0	0.0	0.0	70.8	441.7	6.1	568.9
1987	94.5	0.0	0.2	0.0	43.6	584.9	4.3	727.5
1988	69.0	0.0	0.2	0.0	74.9	478.3	0.4	622.8
1989	91.2	0.0	0.1	0.0	119.1	789.0	0.2	999.6
1990	139.9	0.0	0.0	0.0	85.0	761.9	0.5	987.3
1991	80.9	0.0	0.0	0.0	26.0	1344.9	0.3	1452.1
1992	54.6	0.0	0.0	0.0	31.4	469.5	0.1	555.6
1993	35.9	0.0	0.0	0.0	20.3	594.2	0.8	651.2
1994	34.8	0.0	0.0	0.0	21.2	471.3	1.4	528.7
1995	21.3	0.0	0.0	0.0	8.8	257.2	2.8	290.1
1996	35.2	0.0	0.0	0.0	5.8	314.8	4.7	360.5
1997	35.5	0.0	0.0	0.0	12.1	253.1	0.2	300.9
1998	8.4	0.0	0.0	0.0	2.2	39.4	0.0	50.0
1999	15.1	0.0	0.0	0.0	1.8	29.8	0.1	46.8
2000	10.5	0.0	0.0	0.0	3.3	8.1	0.0	21.9
2001	12.4	0.0	0.0	0.0	1.7	10.9	0.1	25.1
2002	10.4	0.0	0.0	0.0	1.9	30.2	0.0	42.5
2003	11.4	0.0	0.0	0.0	1.5	35.5	0.0	48.4
2004	8.7	0.0	0.0	0.0	2.3	30.7	0.0	41.7

umbia INPF	C Area - lingcod land	lings in metric to	ns				Shrimp	
Year	Hook&Line	Other	Net	Pot	Trolls	Trawls	Trawl	Total
1981	27.2	0.0	45.5	3.5	29.0	1208.4	76.8	1390.4
1982	47.8	0.0	0.2	3.2	24.2	1497.9	71.0	1644.3
1983	37.0	0.0	10.8	2.1	31.5	1706.9	84.4	1872.7
1984	34.7	0.0	3.0	0.8	17.3	1154.2	49.1	1259.1
1985	54.0	0.0	0.0	1.4	43.3	1131.8	44.2	1274.7
1986	53.0	0.0	0.0	0.6	43.8	556.3	82.3	736.0
1987	81.1	0.1	0.0	0.7	20.3	721.7	68.5	892.4
1988	70.8	0.0	0.0	0.7	16.4	904.6	30.6	1023.1
1989	100.0	0.0	0.0	0.2	28.8	1056.4	45.7	1231.1
1990	62.5	0.0	0.0	0.1	11.6	663.5	21.1	758.8
1991	32.2	0.0	0.0	0.5	4.1	814.0	16.7	867.5
1992	55.1	0.0	0.0	0.1	8.8	573.3	14.1	651.4
1993	59.0	0.3	0.0	0.3	12.1	680.1	25.9	777.7
1994	102.4	0.0	0.0	1.0	5.8	535.2	40.7	685.1
1995	39.3	0.0	0.0	0.3	4.4	483.2	40.8	568.0
1996	48.4	0.0	0.0	0.2	5.9	555.3	28.6	638.4
1997	58.0	0.0	0.0	0.5	9.0	546.2	18.3	632.0
1998	10.7	0.0	0.0	0.3	3.0	83.7	6.9	104.6
1999	12.0	0.0	0.0	0.2	4.8	77.8	27.3	122.1
2000	6.9	0.0	0.0	0.1	6.3	24.0	14.0	51.3
2001	10.7	0.0	0.0	1.3	5.3	20.8	6.5	44.6
2002	8.4	0.0	0.0	0.9	2.9	36.6	6.0	54.8
2003	12.4	0.0	0.0	1.1	1.8	40.0	0.0	55.3
2004	13.1	0.0	0.0	2.4	3.3	25.8	0.0	44.6

Table 6 (continued). Estimated commercial lingcod catch (mt) by gear and INPFC area, 1981 to 2004.

ka INPFC A	Area - lingcod landing	gs in metric tons					Shrimp	
Year	Hook&Line	Other	Net	Pot	Trolls	Trawls	Trawl	Tota
1981	13.8	0.3	0.0	0.0	8.4	349.2	8.8	380.
1982	15.9	0.9	0.0	0.4	13.6	510.9	12.8	554.
1983	27.8	12.1	0.0	1.3	3.5	364.5	0.5	409.
1984	5.4	13.7	0.0	0.2	4.7	262.4	1.6	288.
1985	47.8	2.6	0.1	0.9	1.3	183.2	2.2	238.
1986	85.6	5.3	0.0	1.8	8.6	98.4	7.4	207.
1987	107.4	3.7	0.0	0.3	0.6	202.4	7.2	321.
1988	117.8	0.8	0.0	0.3	3.4	196.9	6.6	325.8
1989	189.7	0.6	0.0	1.5	1.1	190.8	5.5	389.
1990	179.9	0.8	0.0	0.3	4.1	228.2	8.5	421.
1991	65.9	0.0	0.0	0.0	0.0	139.0	7.8	212.
1992	60.1	0.0	0.0	0.1	0.0	105.8	3.8	169.
1993	39.0	0.0	0.2	0.1	0.3	154.4	3.3	197.
1994	53.9	0.1	0.3	0.2	0.2	160.3	12.9	227.
1995	91.4	0.0	0.7	0.2	0.2	133.5	6.1	232.
1996	73.9	0.0	0.0	0.2	2.8	117.4	9.1	203.
1997	109.1	0.0	0.1	0.2	0.1	149.6	5.1	264.
1998	40.4	0.1	0.0	0.2	0.6	56.7	1.1	99.
1999	43.3	0.1	0.0	0.3	1.1	56.7	3.8	105.
2000	21.6	0.0	0.0	0.5	0.3	19.6	0.5	42.
2001	32.4	0.0	0.0	0.3	0.2	19.4	0.4	52.
2002	38.3	0.0	0.0	1.1	0.1	23.6	0.1	63.
2003	33.4	0.0	0.0	0.8	0.4	5.4	0.0	40.
2004	32.3	0.0	0.0	0.5	0.1	6.6	0.0	39.

Year	C Area - lingcod land Hook&Line	Other	Net	Pot	Trolls	Trawls	Shrimp Trawl	Tota
1981	39.2	2.5	9.7	2.7	22.8	771.7	0.3	848.
1982	24.8	7.3	55.1	1.3	16.1	737.6	0.1	842
1983	13.9	48.4	112.7	0.7	5.2	581.1	0.6	762
1984	4.6	126.3	43.7	0.0	4.2	558.0	0.4	737
1985	18.4	97.1	144.3	1.7	6.1	222.0	0.1	489
1986	60.7	31.9	118.6	2.1	8.0	152.9	0.3	367
1987	69.3	26.4	175.3	0.9	1.2	343.4	0.8	617
1988	102.5	19.1	289.9	2.8	1.4	333.0	1.3	750
1989	218.3	9.7	235.5	2.2	0.5	434.7	2.6	903
1990	162.3	6.6	189.3	1.1	8.9	339.1	0.6	707
1991	135.8	4.2	106.3	0.9	0.7	311.0	0.3	559
1992	133.4	2.2	87.3	0.7	1.0	216.7	0.0	441
1993	111.5	0.1	107.6	0.3	2.6	277.5	0.2	499
1994	85.7	0.3	72.5	0.3	12.5	224.3	1.3	396
1995	74.4	0.2	48.9	0.9	9.2	185.2	0.4	319
1996	92.8	0.0	7.6	1.2	4.8	205.4	1.8	313
1997	89.8	0.0	27.4	2.0	1.9	218.1	1.6	340
1998	30.4	0.0	3.8	8.9	0.4	35.8	0.4	79
1999	24.3	0.1	0.8	1.6	0.6	42.1	0.5	70
2000	10.3	0.0	3.3	0.2	0.4	10.7	0.2	25
2001	14.8	0.0	0.4	0.6	1.2	9.4	0.1	26
2002	18.3	0.1	0.0	0.2	0.7	15.8	0.1	35
2003	13.7	0.1	0.0	8.0	2.1	8.5	0.0	25
2004	21.3	0.0	0.9	0.7	1.2	8.9	0.2	33

Table 6 (continued). Estimated commercial lingcod catch (mt) by gear and INPFC area, 1981 to 2004.

Conception INF	PFC Area - lingcod la	ndings in metric	tons				Shrimp	
Year	Hook&Line	Other	Net	Pot	Trolls	Trawls	Trawl	Total
1981	11.1	0.0	10.4	0.5	1.4	144.6	6.3	174.3
1982	4.5	0.0	27.5	0.1	0.2	159.8	10.0	202.1
1983	0.9	0.4	4.8	0.0	0.1	41.4	0.8	48.4
1984	0.6	0.3	3.9	0.0	0.0	11.8	4.7	21.3
1985	1.3	0.1	12.4	0.0	0.0	9.0	2.0	24.8
1986	3.3	0.3	15.1	0.2	0.3	8.3	0.2	27.7
1987	6.5	0.8	19.2	0.2	0.7	15.2	0.0	42.6
1988	5.3	0.3	40.3	0.0	0.0	19.5	0.0	65.4
1989	4.7	0.3	37.7	0.5	0.0	21.8	0.0	65.0
1990	5.9	0.5	26.8	0.3	0.0	24.4	0.1	58.0
1991	12.1	0.2	44.6	0.1	0.0	15.4	0.1	72.5
1992	21.5	0.3	25.6	0.2	0.0	17.3	0.1	65.0
1993	24.3	0.0	46.5	0.1	0.0	9.3	0.7	80.9
1994	18.9	0.0	21.7	1.5	0.2	20.8	3.2	66.3
1995	27.9	0.2	8.1	3.1	0.2	16.0	3.3	58.8
1996	24.2	0.6	4.8	6.7	0.2	4.1	1.6	42.2
1997	17.4	0.0	2.4	5.2	0.1	4.4	1.1	30.6
1998	10.2	0.0	1.4	3.0	0.1	3.2	1.0	18.9
1999	10.3	0.0	0.4	2.1	0.0	1.5	0.2	14.5
2000	2.9	0.0	0.0	0.6	0.0	0.1	0.1	3.7
2001	5.8	0.0	0.3	1.2	0.0	8.0	0.2	8.3
2002	8.3	0.0	0.1	1.4	0.1	0.1	0.0	10.0
2003	9.7	0.0	0.1	2.1	0.0	0.2	0.2	12.3
2004	10.6	0.0	0.1	1.8	0.0	2.3	0.0	14.8

Table 7. Estimates of lingcod discard, live and dead, in the recreational fishery by State.

MRFSS estimates of % lingcod catch (#'s of fish) that was discarded dead (B1 catches)

	SOUTHERN	NORTHERN `	,	`	ALL
YEAR	CALIFORNIA	CALIFORNIA	OREGON	WASHINGTON	SUBREGIONS
1980	2%	36%	37%	40%	21%
1981	11%	23%	18%	140%	31%
1982	2 12%	10%	14%	126%	23%
1983	13%	7%	43%	57%	19%
1984	8%	6%	7%	33%	8%
1985	18%	6%	8%	45%	10%
1986	5 5%	12%	17%	150%	13%
1987	25%	16%	18%	106%	23%
1988	60%	44%	3%	1100%	45%
1989	5%	24%	2%	100%	17%
1993	50%	12%	na	na	9%
1994	13%	6%	na	na	3%
1995	14%	6%	na	na	4%
1996	6 0%	12%	na	na	8%
1997	7 0%	1%	na	na	1%
1998	3 0%	9%	na	na	6%
1999	0%	7%	na	na	5%
2000	0%	10%	na	na	6%
2001	0%	14%	na	na	7%
2002	2 20%	5%	na	na	14%
2003	3 0%	0%	na	na	7%

MRFSS estimates of % lingcod catch (#'s of fish) that was discarded live (B2 catches)

	SOUTHERN	NORTHERN			
YEAR	CALIFORNIA	CALIFORNIA	OREGON	WASHINGTON	SUBREGIONS
1980	6%	4%	0%	0%	5%
1981	35%	7%	4%	37%	12%
1982	16%	14%	6%	23%	12%
1983	31%	12%	17%	10%	14%
1984	27%	13%	0%	22%	13%
1985	5 59%	10%	0%	9%	16%
1986	162%	35%	0%	0%	59%
1987	107%	38%	2%	29%	46%
1988	122%	39%	3%	0%	52%
1989	70%	39%	2%	0%	38%
1993	117%	57%	57%	na	52%
1994	88%	61%	41%	na	45%
1995	157%	65%	58%	na	60%
1996	400%	46%	83%	na	68%
1997	75%	78%	477%	na	163%
1998	250%	81%	767%	na	220%
1999	378%	73%	76%	na	89%
2000	1867%	428%	253%	na	397%
2001	1733%	590%	147%	na	514%
2002	1224%	271%	95%	57%	374%
2003	3100%	167%	200%		387%

Note: the 2002 Washington estimate is derived from data collected by WDFW.

Table 8. Estimates of lingcod discards using trawl gear from onboard observer data. (Source: Jim Hastie, NWFSC - July 2005).

Estimated annual trawl discard and discard rate for lingcod by INPFC area groups

			Landed	Estimated		Discard mortali	ty (with 50% survival)
	Year	Area	catch (mt)	Discard ¹ (mt)	Discard/Catch	mt	% of total mortality
	2000	Col-Van	24.3	220.9	90%	110.4	82%
-	2000	Eureka	23.6	54.4	70%		54%
		Mon-Con	10.5	46.5	82%		69%
		Coastwide	58.4	321.7	85%	160.9	73%
:	2001	Col-Van	21.0	176.1	89%	88.0	81%
		Eureka	25.5	72.5	74%	36.2	59%
		Mon-Con	9.3	62.8	87%	31.4	77%
		Coastwide	55.8	311.4	85%	155.7	74%
,	2002	Col-Van	50.4	189.2	79%	94.6	65%
•	2002	Eureka	33.2	60.1	64%		48%
		Mon-Con	15.0	29.0	66%		49%
		Coastwide	98.6	278.3	74%		59%
		Coastwide	96.0	210.3	74%	139.2	39%
:	2003	Col-Van	38.6	41.5	52%	20.8	35%
		Eureka	11.4	22.1	66%	11.1	49%
		Mon-Con	7.7	22.9	75%	11.4	60%
		Coastwide	57.6	86.5	60%	43.3	43%
	2004	Col-Van	33.0	139.0	81%	69.5	68%
		Eureka	10.7	11.1	51%		34%
		Mon-Con	9.7	17.7	65%		48%
		Coastwide	53.4	167.8	76%		61%
		Coastwide	JJ. T	107.0	1070	00.0	0170

¹ Amounts in this column represent gross amounts of estimated discard, not mortality due to discards. The GMT currently assumes a 50% mortality rate for trawl lingcod discards.

Note: Discard estimates for 2002-04 are based on year-specific observer data. For 2000-01, observer data from September 2001 to August 2004 were pooled. Caution should be used in interpreting the 2000-01 estimates, particularly if there has been a high degree of recruitment variability over the past 10 years.

Bycatch of lingcod in the fixed-gear sablefish fishery was projected to be less than 10 mt for the 2005 fishery, based on the model used by the GMT. It is unlikely that discard mortality would amount to more than 3 mt.

Table 9. Commercial fishery lingcod age composition used in the northern (LCN) model (1979-2002).

Fishery	Year	Tot.	Female I	roportio	n-at-age																	
		No.Fish	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Com	1979	694	0.000	0.003	0.004	0.015	0.031	0.052	0.094	0.207	0.236	0.145	0.050	0.018	0.017	0.017	0.030	0.031	0.006	0.000	0.000	0.000
Com	1980	1853	0.000	0.004	0.019	0.029	0.051	0.113	0.120	0.128	0.134	0.087	0.049	0.038	0.025	0.015	0.015	0.008	0.006	0.002	0.000	0.001
Com	1981	1325	0.000	0.007	0.053	0.070	0.067	0.059	0.073	0.073	0.085	0.119	0.050	0.013	0.012	0.006	0.009	0.000	0.000	0.000	0.000	0.000
Com	1982	469	0.000	0.013	0.039	0.093	0.124	0.160	0.136	0.067	0.037	0.052	0.054	0.010	0.030	0.000	0.009	0.009	0.000	0.001	0.000	0.000
Com	1983	443	0.000	0.019	0.110	0.137	0.161	0.085	0.052	0.044	0.021	0.018	0.037	0.039	0.020	0.014	0.011	0.008	0.014	0.005	0.003	0.003
Com	1984	339	0.000	0.000	0.036	0.121	0.206	0.196	0.080	0.048	0.022	0.016	0.010	0.018	0.013	0.001	0.001	0.001	0.001	0.000	0.000	0.000
Com	1985	312	0.000	0.000	0.002	0.040	0.101	0.235	0.285	0.078	0.077	0.040	0.016	0.009	0.016	0.000	0.008	0.000	0.000	0.000	0.000	0.000
Com	1986	663	0.000	0.003	0.026	0.069	0.106	0.147	0.160	0.156	0.084	0.054	0.043	0.018	0.006	0.012	0.018	0.004	0.005	0.006	0.000	0.000
Com	1987	741	0.000	0.008	0.046	0.085	0.127	0.172	0.137	0.104	0.102	0.041	0.015	0.005	0.001	0.003	0.001	0.003	0.004	0.000	0.001	0.000
Com	1988	821	0.000	0.031	0.144	0.064	0.097	0.101	0.079	0.094	0.058	0.045	0.022	0.013	0.007	0.000	0.000	0.000	0.000	0.005	0.003	0.000
Com	1989	786	0.000	0.004	0.120	0.309	0.161	0.075	0.048	0.024	0.022	0.017	0.008	0.000	0.008	0.000	0.001	0.000	0.000	0.000	0.001	0.000
Com	1990	887	0.000	0.013	0.041	0.179	0.167	0.088	0.072	0.049	0.032	0.021	0.036	0.004	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Com	1991	999	0.000	0.034	0.082	0.119	0.199	0.157	0.099	0.057	0.032	0.028	0.011	0.013	0.006	0.000	0.007	0.000	0.001	0.002	0.000	0.000
Com	1992	1140	0.000	0.175	0.142	0.119	0.085	0.071	0.083	0.042	0.026	0.010	0.015	0.009	0.000	0.004	0.008	0.001	0.000	0.000	0.000	0.000
Com	1993	1022	0.000	0.116	0.173	0.100	0.102	0.071	0.135	0.032	0.010	0.073	0.004	0.015	0.006	0.002	0.005	0.000	0.001	0.000	0.000	0.000
Com	1994	1034	0.000	0.107	0.308	0.194	0.095	0.039	0.019	0.025	0.011	0.006	0.002	0.003	0.001	0.001	0.004	0.000	0.000	0.000	0.000	0.000
Com	1995	1093	0.000	0.021	0.187	0.347	0.144	0.055	0.018	0.004	0.007	0.003	0.003	0.002	0.000	0.000	0.001	0.006	0.000	0.000	0.000	0.000
Com	1996	820	0.000	0.058	0.124	0.266	0.276	0.058	0.043	0.027	0.012	0.008	0.008	0.000	0.000	0.000	0.010	0.000	0.000	0.000	0.000	0.000
Com	1997	673	0.000	0.028	0.165	0.200	0.159	0.135	0.041	0.032	0.020	0.033	0.024	0.001	0.002	0.003	0.008	0.002	0.000	0.002	0.000	0.000
Com	1998	706	0.000	0.023	0.224	0.269	0.155	0.081	0.041	0.018	0.007	0.004	0.001	0.001	0.003	0.000	0.001	0.000	0.001	0.000	0.000	0.000
Com	1999	750	0.000	0.011	0.087	0.247	0.223	0.105	0.064	0.049	0.027	0.007	0.002	0.000	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000
Com	2000	310 548	0.000	0.003	0.057 0.079	0.136	0.273 0.142	0.147 0.155	0.064 0.099	0.035 0.027	0.030 0.026	0.015 0.015	0.004 0.003	0.009	0.005 0.003	0.000	0.003	0.000	0.000	0.000	0.000	0.000
Com Com	2001 2002	694	0.000	0.031	0.079	0.151 0.138	0.142	0.155	0.099	0.027	0.026	0.015	0.003	0.003	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Com	2002			portion-a		0.136	0.096	0.091	0.000	0.030	0.022	0.020	0.004	0.002	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Com	1979	694	0.000	0.001	0.003	0.005	0.018	0.007	0.008	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Com	1980	1853	0.000	0.000	0.009	0.003	0.010	0.053	0.000	0.002	0.009	0.001	0.005	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Com	1981	1325	0.000	0.001	0.010	0.045	0.048	0.060	0.064	0.050	0.020	0.006	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Com	1982	469	0.000	0.004	0.013	0.016	0.044	0.025	0.032	0.019	0.010	0.004	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Com	1983	443	0.000	0.005	0.034	0.061	0.077	0.015	0.002	0.000	0.000	0.006	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Com	1984	339	0.000	0.000	0.003	0.030	0.034	0.094	0.052	0.003	0.006	0.000	0.007	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Com	1985	312	0.000	0.000	0.000	0.016	0.015	0.015	0.044	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Com	1986	663	0.000	0.005	0.005	0.013	0.019	0.025	0.004	0.006	0.006	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Com	1987	741	0.000	0.007	0.020	0.008	0.044	0.033	0.023	0.006	0.005	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Com	1988	821	0.000	0.020	0.050	0.050	0.033	0.008	0.005	0.004	0.004	0.030	0.008	0.016	0.000	0.000	0.008	0.000	0.000	0.000	0.000	0.000
Com	1989	786	0.000	0.001	0.066	0.076	0.024	0.019	0.010	0.000	0.001	0.000	0.001	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Com	1990	887	0.000	0.006	0.041	0.106	0.066	0.026	0.026	0.004	0.013	0.000	0.008	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Com	1991	999	0.000	0.027	0.018	0.032	0.029	0.018	0.015	0.008	0.005	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Com	1992	1140	0.000	0.074	0.072	0.017	0.013	0.014	0.005	0.008	0.000	0.007	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Com	1993	1022	0.000	0.050	0.051	0.040	0.006	0.002	0.004	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Com	1994	1034	0.000	0.024	0.091	0.047	0.013	0.002	0.004	0.004	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Com	1995	1093	0.000	0.009	0.052	0.107	0.028	0.002	0.002	0.001	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Com	1996	820	0.000	0.011	0.038	0.025	0.018	0.011	0.000	0.003	0.001	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Com	1997	673	0.000	0.014	0.068	0.022	0.023	0.011	0.006	0.001	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Com	1998	706	0.000	0.005	0.064	0.045	0.018	0.019	0.013	0.003	0.001	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Com	1999	750	0.000	0.005	0.032	0.046	0.041	0.015	0.021	0.007	0.004	0.003	0.002	0.000	0.000	0.000	0.000	0.002	0.000	0.000	0.000	0.000
Com	2000	310	0.000	0.000	0.013	0.023	0.107	0.054	0.010	0.009	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Com	2001	548	0.000	0.014	0.015	0.069	0.062	0.048	0.028	0.017	0.011	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Com	2002	694	0.000	0.031	0.069	0.069	0.062	0.018	0.044	0.015	0.015	0.013	0.007	0.007	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Table 10. Recreational fishery lingcod age composition used in the northern (LCN) model (1980-2002).

Fishery	Year	Tot. F	- emale l	Proportio	n-at-age	;																
•	1	No.Fish	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Rec	1980	226	0.000	0.004	0.022	0.022	0.018	0.031	0.049	0.009	0.013	0.013	0.009	0.000	0.004	0.013	0.004	0.000	0.000	0.000	0.000	0.000
Rec	1986	341	0.000	0.003	0.015	0.056	0.062	0.053	0.062	0.062	0.050	0.032	0.026	0.018	0.012	0.009	0.009	0.003	0.006	0.006	0.003	0.000
Rec	1987	274	0.000	0.018	0.018	0.062	0.077	0.036	0.033	0.036	0.018	0.015	0.004	0.000	0.007	0.004	0.004	0.000	0.000	0.000	0.000	0.004
Rec	1988	250	0.004	0.044	0.112	0.044	0.024	0.008	0.004	0.000	0.000	0.004	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Rec	1989	227	0.000	0.013	0.044	0.062	0.040	0.031	0.040	0.013	0.013	0.000	0.004	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Rec	1990	207	0.005	0.019	0.029	0.068	0.063	0.034	0.010	0.000	0.010	0.005	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Rec	1991	247	0.000	0.004	0.065	0.040	0.032	0.077	0.057	0.012	0.028	0.012	0.012	0.016	0.012	0.004	0.016	800.0	0.016	0.000	0.000	0.000
Rec	1992	499	0.000	0.048	0.070	0.068	0.048	0.044	0.030	0.024	0.014	0.010	0.004	0.006	0.004	0.002	0.002	0.000	0.000	0.000	0.000	0.000
Rec	1993	530	0.002	0.049	0.096	0.081	0.049	0.038	0.023	0.015	0.006	800.0	0.002	0.002	0.002	0.000	0.000	0.002	0.000	0.000	0.000	0.000
Rec	1994	449	0.000	0.009	0.076	0.114	0.085	0.085	0.024	0.011	0.007	0.009	0.009	0.004	0.011	0.000	0.000	0.002	0.002	0.000	0.000	0.000
Rec	1995	643	0.000	0.005	0.042	0.096	0.106	0.059	0.058	0.019	0.012	0.006	0.005	0.002	0.000	0.002	0.002	0.000	0.002	0.000	0.000	0.000
Rec	1996	461	0.000	0.007	0.098	0.143	0.117	0.069	0.048	0.015	0.013	0.007	0.004	0.002	0.000	0.002	0.004	0.000	0.000	0.000	0.000	0.000
Rec	1997	446	0.000	0.007	0.087	0.108	0.092	0.085	0.029	0.020	0.009	0.004	0.002	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Rec	1998	416	0.002	0.007	0.067	0.147	0.127	0.079	0.067	0.024	0.019	0.002	0.002	0.007	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000
Rec	1999	609	0.000	0.000	0.053	0.138	0.149	0.085	0.053	0.033	0.011	0.003	0.003	0.002	0.002	0.000	0.002	0.000	0.000	0.000	0.000	0.000
Rec	2000	610	0.000	0.002	0.036	0.110	0.159	0.098	0.079	0.028	0.011	0.005	0.007	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Rec	2001	961	0.000	0.000	0.019	0.087	0.149	0.134	0.083	0.040	0.020	0.011	0.007	0.002	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Rec	2002	1098	0.000	0.001	0.054	0.160	0.147	0.095	0.074	0.036	0.015	0.015	0.011	0.001	0.001	0.001	0.001	0.000	0.000	0.000	0.000	0.000
		ſ	Vale Pro	portion-a	at-age																	
Rec	1980	226	0.000	0.009	0.080	0.146	0.173	0.142	0.137	0.049	0.040	0.009	0.004	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Rec	1986	341	0.000	0.006	0.053	0.100	0.059	0.041	0.053	0.067	0.044	0.029	0.018	0.021	0.006	0.006	0.006	0.003	0.000	0.003	0.003	0.000
Rec	1987	274	0.000	0.091	0.113	0.109	0.109	0.073	0.073	0.044	0.015	0.015	0.000	0.015	0.007	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Rec	1988	250	0.000	0.216	0.372	0.080	0.056	0.020	0.004	0.004	0.004	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Rec	1989	227	0.000	0.044	0.194	0.220	0.123	0.057	0.035	0.031	0.018	0.009	0.004	0.004	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Rec	1990	207	0.000	0.034	0.135	0.242	0.237	0.072	0.019	0.014	0.000	0.000	0.000	0.000	0.000	0.000	0.005	0.000	0.000	0.000	0.000	0.000
Rec	1991	247	0.000	0.028	0.113	0.109	0.069	0.126	0.028	0.065	0.012	0.012	0.012	0.004	0.004	0.000	0.000	0.000	0.000	0.000	0.004	0.000
Rec	1992	499	0.002	0.072	0.166	0.124	0.092	0.080	0.052	0.014	0.012	0.004	0.004	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Rec	1993	530	0.000	0.070	0.230	0.138	0.075	0.038	0.025	0.021	0.004	0.013	0.011	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000
Rec	1994	449	0.002	0.024	0.151	0.156	0.078	0.049	0.029	0.027	0.013	0.004	0.011	0.002	0.004	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Rec	1995	643	0.000	0.014	0.082	0.221	0.134	0.075	0.023	0.012	0.011	0.006	0.002	0.002	0.002	0.000	0.000	0.000	0.000	0.000	0.003	0.000
Rec	1996	461	0.000	0.007	0.087	0.111	0.121	0.078	0.028	0.024	0.002	0.002	0.007	0.000	0.002	0.000	0.002	0.000	0.000	0.000	0.000	0.000
Rec	1997	446	0.000	0.013	0.099	0.173	0.110	0.067	0.056	0.004	0.013	0.007	0.009	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Rec	1998	416	0.000	0.010	0.058	0.120	0.127	0.065	0.041	0.022	0.000	0.000	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Rec	1999	609	0.000	0.000	0.048	0.128	0.123	0.087	0.043	0.021	0.010	0.000	0.005	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Rec	2000	610	0.000	0.002	0.034	0.077	0.148	0.108	0.054	0.026	0.007	0.003	0.003	0.002	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Rec	2001	961	0.000	0.002	0.016	0.083	0.106	0.114	0.058	0.034	0.020	0.009	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Rec	2002	1098	0.000	0.000	0.028	0.100	0.118	0.066	0.045	0.020	0.006	0.004	0.004	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Table 11. NMFS Trawl Survey (1992-2001) and WDFW Cape Flattery Survey (1994-1997) age composition used in the northern (LCN) model.

Survey	Year	Tot. I	Female I	Proportion	n-at-age	;																
		No.Fish	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
NMFS	1992	74	0.068	0.149	0.149	0.135	0.014	0.054	0.014	0.000	0.000	0.014	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.014	0.000
NMFS	1995	208	0.091	0.101	0.207	0.130	0.058	0.043	0.019	0.005	0.005	0.000	0.000	0.000	0.005	0.000	0.000	0.000	0.000	0.000	0.000	0.000
NMFS	1998	367	0.114	0.101	0.120	0.112	0.109	0.090	0.049	0.014	0.003	0.003	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
NMFS	2001	563	0.108	0.206	0.121	0.036	0.021	0.027	0.027	0.025	0.016	0.012	0.004	0.002	0.002	0.000	0.002	0.000	0.000	0.000	0.000	0.000
		1	Male Pro	portion-	at-age																	
NMFS	1992	74	0.054	0.203	0.027	0.027	0.014	0.054	0.014	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
NMFS	1995	208	0.043	0.067	0.077	0.058	0.034	0.029	0.014	0.005	0.000	0.000	0.005	0.000	0.000	0.000	0.005	0.000	0.000	0.000	0.000	0.000
NMFS	1998	367	0.065	0.068	0.084	0.030	0.019	0.005	0.005	0.005	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
NMFS	2001	563	0.085	0.171	0.091	0.021	0.005	0.005	0.005	0.004	0.004	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Female I	Proportio	n-at-age)																
WDFW	1994	100	0.000	0.000	0.000	0.040	0.150	0.020	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
WDFW	1995	281	0.000	0.107	0.053	0.046	0.018	0.004	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
WDFW	1996	511	0.022	0.147	0.104	0.051	0.012	0.002	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
WDFW	1997	498	0.010	0.197	0.139	0.024	0.010	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1	Male Pro	portion-	at-age																	
WDFW	1994	100	0.000	0.000	0.000	0.280	0.420	0.080	0.000	0.010	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
WDFW	1995	281	0.000	0.206	0.185	0.295	0.060	0.014	0.007	0.000	0.004	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
WDFW	1996	511	0.031	0.319	0.225	0.070	0.012	0.004	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
WDFW	1997	498	0.014	0.309	0.227	0.046	0.014	0.008	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Table12. NMFS Trawl Survey (1986-1989) and WDFW Cape Flattery Survey (1986-1993) size composition data (cm) used in the northern (LCN) model.

Survey Year Tot. Female Proportion-at-size (cm)					
No.Fish 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60	62	64	66	68	70
NMFS 1986 220 0.000 0.000 0.000 0.001 0.007 0.005 0.014 0.002 0.006 0.010 0.000 0.000 0.000 0.001 0.017 0.000 0.010	0.053	0.011	0.029	0.108	0.010
NMFS 1989 470 0.001 0.000 0.003 0.038 0.019 0.020 0.003 0.000 0.008 0.039 0.006 0.020 0.002 0.002 0.012 0.009 0.026	0.061	0.034	0.061	0.060	0.013
Male Proportion-at-size (cm)					
NMFS 1986 220 0.000 0.001 0.000 0.022 0.003 0.009 0.002 0.001 0.000 0.000 0.012 0.001 0.000 0.005 0.006 0.031 0.066	0.022	0.003	0.012	0.028	0.051
NMFS 1989 470 0.020 0.000 0.002 0.003 0.008 0.002 0.001 0.000 0.000 0.025 0.016 0.039 0.004 0.005 0.008 0.012 0.008	0.040	0.043	0.039	0.012	0.003
French Proportion of the (cm)					
Female Proportion-at-size (cm) WDFW 1986 484 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.006 0.006 0.004 0.008 0.008 0.010 0.014 0.008	0.025	0.000	0.006	0.002	0.004
WDFW 1986 484 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.006 0.006 0.004 0.008 0.008 0.010 0.014 0.008 WDFW 1987 542 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.022 0.013 0.022 0.006 0.006 0.006 0.011 0.009 0.011	0.025	0.000	0.006 0.011	0.002	0.004
WDFW 1988 978 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.011 0.022 0.013 0.022 0.000 0.000 0.000 0.011 0.009 0.0110 0.009 0.011 0.009 0.009 0.011 0.009 0.011 0.009 0.009 0.000 0.0	0.005	0.005		0.004	0.000
WDFW 1989 964 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.006 0.004 0.001 0.001 0.008 0.012 0.007	0.016	0.003		0.010	0.003
WDFW 1990 971 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.018 0.020 0.041 0.014 0.014 0.004 0.011 0.028 0.028 0.008	0.007	0.005	0.009	0.007	0.009
WDFW 1991 1017 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.017 0.024 0.010 0.010 0.013 0.025 0.036 0.029 0.013	0.007	0.005	0.011	0.003	0.004
WDFW 1992 1003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0015 0.027 0.038 0.011 0.008 0.014 0.034 0.024 0.021 0.013	0.017	0.009	0.005	0.003	0.005
WDFW 1993 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.015 0.024 0.040 0.030 0.012 0.013 0.019 0.025 0.026 0.012	0.005	0.006	0.003	0.003	0.003
Male Proportion-at-size (cm)					
WDFW 1986 484 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.017 0.029 0.017 0.045 0.056 0.089 0.085 0.066 0.103 0.058	0.074	0.074	0.029	0.029	0.019
WDFW 1987 542 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.020 0.042 0.046 0.031 0.015 0.018 0.054 0.066 0.055 0.089 0.083	0.089	0.057	0.042	0.031	0.028
WDFW 1988 978 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.004 0.017 0.045 0.102 0.137 0.131 0.072 0.043 0.049	0.044	0.049	0.040	0.021	0.021
WDFW 1989 964 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.004 0.015 0.015 0.015 0.015 0.015 0.032 0.058 0.141 0.150 0.150	0.103	0.054	0.025	0.025	0.022
WDFW 1990 971 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.024 0.037 0.039 0.020 0.019 0.036 0.050 0.044 0.025 0.062	0.080	0.115	0.071	0.051	0.016
WDFW 1991 1017 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.017 0.060 0.052 0.026 0.045 0.085 0.102 0.076 0.043 0.043	0.040	0.033	0.048	0.034	0.033
WDFW 1992 1003 0.000 0.000 0.001 0.000 0.011 0.028 0.080 0.103 0.060 0.029 0.044 0.074 0.077 0.067 0.039 0.029	0.021	0.022	0.013	0.013	0.012
WDFW 1993 0.000 0.000 0.000 0.000 0.000 0.002 0.027 0.084 0.114 0.107 0.062 0.059 0.069 0.076 0.047 0.032 0.017	0.022	0.014	0.007	0.003	0.003
Survey Year Tot. Female Proportion-at-size (cm)					
No.Fish 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104	106	108	110		
NMFS 1986 220 0.012 0.050 0.033 0.096 0.023 0.026 0.013 0.026 0.026 0.012 0.001 0.026 0.000 0.007 0.013 0.000 0.000	0.000	0.000	0.006		
NMFS 1989 470 0.027 0.014 0.007 0.015 0.010 0.011 0.017 0.003 0.017 0.006 0.014 0.023 0.005 0.001 0.006 0.002 0.003	0.005	0.000	0.003		
Male Proportion-at-size (cm)					
NMFS 1986 220 0.022 0.010 0.001 0.012 0.028 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000	0.000	0.000		
NMFS 1989 470 0.018 0.052 0.000 0.003 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000	0.000	0.000		
Female Proportion-at-size (cm)					
WDFW 1986 484 0.002 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000	0.000	0.000		
WDFW 1987 542 0.007 0.006 0.000 0.002 0.000 0.004 0.000 0.000 0.000 0.002 0.002 0.002 0.002 0.000 0.000 0.000	0.000	0.000	0.000		
WDFW 1988 978 0.004 0.006 0.005 0.006 0.002 0.003 0.000 0.001 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.001 0.000	0.000	0.000	0.000		
WDFW 1989 964 0.002 0.002 0.002 0.003 0.001 0.003 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001	0.000	0.000	0.001		
WDFW 1990 971 0.014 0.012 0.014 0.004 0.002 0.000 0.002 0.000 0.000 0.000 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000	0.000	0.000		
WDFW 1991 1017 0.004 0.001 0.001 0.002 0.003 0.001 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000	0.000	0.000		
WDFW 1992 1003 0.002 0.003 0.001 0.001 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000	0.000	0.000		
WDFW 1993 0.000 0.002 0.000 0.002 0.001 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000	0.000	0.000		
Male Proportion-at-size (cm)	0.000				
WDFW 1986 484 0.029 0.019 0.019 0.010 0.010 0.000 0.004 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000					
WDFW 1987 542 0.013 0.015 0.002 0.009 0.002 0.002 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000	0.000	0.000		
	0.000 0.000	0.000	0.000		
WDFW 1988 978 0.024 0.011 0.007 0.007 0.001 0.002 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000		
WDFW 1988 978 0.024 0.011 0.007 0.007 0.001 0.002 0.000 0.001 0.000 0.00	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	0.000 0.000 0.000		
WDFW 1988 978 0.024 0.011 0.007 0.007 0.001 0.002 0.000 0.001 0.000 0.00	0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000		
WDFW 1988 978 0.024 0.011 0.007 0.007 0.001 0.002 0.000 0.001 0.000 0.00	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	0.000 0.000 0.000		

Table 13. Commercial (1975-1978) and Recreational (1981-1983) fishery size composition data (cm) used in the northern (LCN) model.

Fishery	Year	Tot.	Fen	nale Pro	portion-a	it-size (ci	m)																	
		No.Fish	28	30	32	34	36	38	40	42	44	46	48	50	52	54	56	58	60	62	64	66	68	70
Com	1975	146	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.002	0.001	0.003	0.003	0.007	0.007	0.011	0.021	0.021	0.033
Com	1976	483	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.004	0.006	0.010	0.019	0.015	0.023	0.023	0.039
Com	1977	262	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Com	1978	223	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.006	0.000	0.000	0.001	0.006	0.000	0.018	0.091	0.041	0.037	0.035	0.014	0.011
						-size (cm	,																	
Com	1975	146	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.003	0.002	0.003	0.003	0.008	0.011	0.017	0.037	0.053	0.069	0.053
Com	1976	483	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.000	0.004	0.004	0.002	0.013	0.010	0.023	0.037	0.043
Com	1977	262	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Com	1978	223	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.006	0.000	0.000	0.022	0.006	0.011	0.028	0.001	0.000	0.000
			Fen	nale Pro	nortion-a	it-size (ci	m)																	
Rec	1981	98	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.010	0.010	0.000	0.000	0.000	0.010	0.010	0.000	0.000	0.000	0.010
Rec	1982	72	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.014	0.014	0.000	0.000	0.000	0.000	0.014	0.000	0.000	0.000	0.000	0.000	0.000
Rec	1983	39	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.026	0.000	0.051	0.000	0.000	0.026	0.000	0.000	0.000	0.026	0.000	0.000	0.000	0.000	0.000
			Ma	ale Propo	ortion-at-	-size (cm	1)																	
Rec	1981	98	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.020	0.000	0.020	0.000	0.020	0.082	0.061	0.102	0.071	0.071	0.041	0.071	0.031	0.031	0.133
Rec	1982	72	0.000	0.000	0.000	0.000	0.000	0.014	0.000	0.000	0.014	0.014	0.000	0.014	0.069	0.069	0.097	0.097	0.111	0.083	0.014	0.069	0.042	0.069
Rec	1983	39	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.026	0.051	0.000	0.026	0.000	0.000	0.051	0.000	0.128	0.103	0.051	0.128	0.026	0.103	0.000
Fishery	Year	Tot.	Eon	nalo Pro	nortion o	ıt-size (cı	m)																	
risilery		No.Fish	72	74	76	78	80	82	84	86	88	90	92	94	96	98	100	102	104	106	108	110		
Com	1975	146	0.058	0.075	0.078	0.049	0.038	0.030	0.027	0.017	0.012	0.014	0.017	0.012	0.013	0.011	0.009	0.003	0.005	0.002	0.002	0.003		
Com	1976	483	0.042	0.076	0.065	0.083	0.060	0.069	0.047	0.043	0.033	0.016	0.014	0.008	0.025	0.021	0.008	0.004	0.002	0.002	0.004	0.008		
Com	1977	262	0.008	0.008	0.011	0.004	0.023	0.053	0.069	0.088	0.038	0.073	0.050	0.042	0.023	0.050	0.073	0.042	0.061	0.061	0.050	0.172		
Com	1978	223	0.011	0.025	0.014	0.030	0.002	0.032	0.023	0.025	0.055	0.099	0.037	0.055	0.051	0.032	0.022	0.054	0.023	0.037	0.004	0.017		
			Ma	ale Propo	ortion-at-	-size (cm																		
Com	1975	146	0.052	0.033	0.022	0.016	0.009	0.008	0.002	0.002	0.002	0.002	0.000	0.001	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000		
Com	1976	483	0.039	0.017	0.014	0.012	0.004	0.000	0.004	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
Com	1977	262	0.004	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
Com																								
	1978	223	0.000	0.006	0.011	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
	1978	223						0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
Rec			Fen	nale Pro	portion-a	ıt-size (cı	m)																	
Rec Rec	1981	98	Fen 0.000	nale Pro 0.000	portion-a	nt-size (ci 0.000	m) 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.010	0.000	0.000	0.010	0.000	0.000	0.000		
Rec	1981 1982	98 72	Fen 0.000 0.000	nale Pro 0.000 0.000	portion-a 0.000 0.000	nt-size (ci 0.000 0.000	m) 0.000 0.014	0.000 0.000	0.000 0.014	0.000 0.000	0.000 0.014	0.000 0.014	0.000 0.000	0.000 0.000	0.000 0.000	0.010 0.000	0.000 0.000	0.000 0.000	0.010 0.000	0.000	0.000 0.000	0.000 0.000		
	1981	98	Fen 0.000 0.000 0.000	nale Pro 0.000 0.000 0.000	portion-a 0.000 0.000 0.000	nt-size (cr 0.000 0.000 0.026	m) 0.000 0.014 0.051	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.010	0.000	0.000	0.010	0.000	0.000	0.000		
Rec	1981 1982	98 72	Fen 0.000 0.000 0.000	nale Pro 0.000 0.000 0.000	portion-a 0.000 0.000 0.000	nt-size (ci 0.000 0.000	m) 0.000 0.014 0.051	0.000 0.000	0.000 0.014	0.000 0.000	0.000 0.014	0.000 0.014	0.000 0.000	0.000 0.000	0.000 0.000	0.010 0.000	0.000 0.000	0.000 0.000	0.010 0.000	0.000	0.000 0.000	0.000 0.000		
Rec Rec	1981 1982 1983	98 72 39	Fen 0.000 0.000 0.000 Ma	0.000 0.000 0.000 0.000 ale Propo	portion-a 0.000 0.000 0.000 ortion-at-	nt-size (ci 0.000 0.000 0.026 -size (cm	m) 0.000 0.014 0.051	0.000 0.000 0.051	0.000 0.014 0.000	0.000 0.000 0.000	0.000 0.014 0.000	0.000 0.014 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.010 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.010 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000		

Table 14. Age composition of fisheries (1992-2002) and surveys (1995-2001) used in the southern (LCS) model.

F: 1		-																				
Fishery	Year				n-at-age		_	•	_	•	•	40		40	40		45	40	4-7	40	40	00
Com	1992	No.Fish 289	0.000	0.138	0.289	0.091	5 0.041	6 0.041	0.000	0.006	0.000	0.000	0.000	0.000	0.000	0.000	15 0.000	16 0.000	0.000	18 0.000	0.000	0.000
Com	1992	787	0.000	0.136	0.209	0.083	0.041	0.041	0.000	0.005	0.005	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Com	1994	538	0.000	0.207	0.301	0.003	0.034	0.012	0.003	0.005	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Com	1995	267	0.000	0.000	0.079	0.261	0.107	0.068	0.033	0.014	0.003	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Com	1996	302	0.000	0.018	0.226	0.138	0.097	0.104	0.019	0.005	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Com	1997	728	0.000	0.020	0.173	0.198	0.160	0.053	0.055	0.033	0.009	0.008	0.001	0.001	0.000	0.012	0.000	0.000	0.000	0.000	0.000	0.000
Com	1998	287	0.000	0.053	0.253	0.142	0.055	0.000	0.145	0.073	0.000	0.000	0.019	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Com	2000	61	0.000	0.000	0.000	0.048	0.286	0.000	0.333	0.095	0.000	0.048	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Com	2001	262	0.000	0.000	0.111	0.250	0.083	0.167	0.000	0.028	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Com	2002	249	0.000	0.011	0.055	0.313	0.168	0.127	0.050	0.022	0.029	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1	Male Pro	portion-	at-age																	
Com	1992	289	0.000	0.092	0.120	0.079	0.063	0.040	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Com	1993	787	0.000	0.076	0.077	0.064	0.023	0.037	0.004	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Com	1994	538	0.000	0.082	0.147	0.081	0.032	0.024	0.012	0.001	0.007	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Com	1995	267	0.000	0.002	0.101	0.194	0.080	0.027	0.015	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Com	1996	302	0.000	0.038	0.126	0.075	0.056	0.048	0.021	0.009	0.000	0.004	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Com	1997	728	0.000	0.036	0.126	0.083	0.000	0.013	0.000	0.000	0.000	0.005	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Com	1998	287	0.000	0.000	0.093	0.036	0.038	0.019	0.019	0.019	0.036	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Com	2000	61	0.000	0.000	0.000	0.048	0.095	0.048	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Com	2001	262	0.000	0.000	0.056	0.083	0.194	0.028	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Com	2002	249	0.000	0.000	0.024	0.037	0.066	0.032	0.033	0.033	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Eomolo I	Droportio	n at aga																	
Rec	1992	49	0.000	0.000	n-at-age 0.020	0.061	0.020	0.082	0.000	0.041	0.041	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Rec	1993	294	0.000	0.000	0.020	0.173	0.020	0.065	0.041	0.041	0.024	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Rec	1994	196	0.000	0.024	0.107	0.173	0.033	0.003	0.041	0.037	0.024	0.010	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Rec	1995	525	0.000	0.006	0.053	0.215	0.117	0.040	0.029	0.013	0.002	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Rec	1996	545	0.002	0.007	0.110	0.110	0.180	0.101	0.040	0.020	0.013	0.004	0.002	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Rec	1997	212	0.000	0.000	0.052	0.151	0.118	0.085	0.038	0.024	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Rec	1998	70	0.000	0.000	0.014	0.114	0.214	0.086	0.100	0.014	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Rec	2000	48	0.000	0.000	0.000	0.083	0.125	0.104	0.063	0.021	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Rec	2001	396	0.000	0.000	0.000	0.040	0.114	0.149	0.093	0.056	0.043	0.028	0.008	0.005	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Rec	2002	409	0.000	0.000	0.010	0.049	0.144	0.095	0.095	0.059	0.020	0.017	0.005	0.002	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000
				portion-																		
Rec	1992	49	0.000	0.082	0.102	0.184	0.122	0.082	0.061	0.082	0.020	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Rec	1993	294	0.000	0.020	0.136	0.116	0.054	0.031	0.014	0.007	0.000	0.000	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Rec	1994	196	0.000	0.010	0.082	0.184	0.082	0.046	0.020	0.000	0.005	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Rec	1995	525	0.002	0.010	0.091	0.261	0.080	0.055	0.013	800.0	0.004	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Rec	1996	545	0.000	0.002	0.095	0.088	0.138	0.055	0.022	0.007	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Rec Rec	1997 1998	212 70	0.000	0.000	0.075 0.014	0.222 0.129	0.123 0.129	0.104 0.100	0.009 0.057	0.000	0.000 0.014	0.000	0.000 0.014	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Rec	2000	48	0.000	0.000	0.014	0.129	0.129	0.100	0.057	0.000	0.014	0.000	0.014	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Rec	2000	396	0.000	0.000	0.000	0.104	0.107	0.140	0.003	0.042	0.042	0.021	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Rec	2001	409	0.000	0.000	0.003	0.040	0.178	0.102	0.073	0.040	0.020	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1100	2002	403	0.000	0.000	0.017	0.071	0.170	0.113	0.001	0.002	0.003	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Survey	Year	Tot.	Female I	Proportio	n-at-age																	
		No.Fish	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
NMFS	1995	208	0.260	0.168	0.048	0.034	0.024	0.014	0.005	0.000	0.010	0.005	0.000	0.005	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
NMFS	1998	221	0.226	0.231	0.072	0.027	0.032	0.018	0.009	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
NMFS	2001	197	0.183	0.274	0.056	0.005	0.036	0.010	0.010	0.010	0.005	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
NIMEC	400-			portion-		0.046	0.04:	0.00:	0.000	0.046	0.000	0.005	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
NMFS	1995	208	0.163	0.178	0.014	0.019	0.014	0.024	0.000	0.010	0.000	0.005	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
NMFS	1998	221	0.122	0.149	0.036	0.036	0.018	0.018	0.005	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
NMFS	2001	197	0.157	0.157	0.061	0.005	0.010	0.015	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.005	0.000	0.000	0.000	0.000	0.000	0.000

Table 15. Fishery (2003, 2004) and NMFS trawl survey (2001, 2004) age composition data, new to the 2005 stock assessment (LCN-Top; LCS-Bottom).

Source	Year	Tot.	Female	Proporti	ion-at ag	je																
		No. Fish	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
LCN Com	2003	779	0.000	0.017	0.131	0.246	0.128	0.058	0.044	0.017	0.018	0.008	0.015	0.005	0.006	0.001	0.000	0.000	0.001	0.000	0.000	0.000
LCN Com	2004	453	0.000	0.013	0.084	0.258	0.124	0.053	0.024	0.011	0.002	0.004	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
LCN Rec	2003	1035	0.000	0.007	0.080	0.178	0.112	0.060	0.036	0.027	0.015	0.006	0.007	0.004	0.000	0.001	0.001	0.000	0.000	0.000	0.000	0.000
LCN Rec	2004	566	0.000	0.000	0.025	0.154	0.143	0.071	0.039	0.018	0.019	0.000	0.002	0.005	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
LCN NMFS Survey	2001	618	0.120	0.211	0.140	0.031	0.021	0.034	0.045	0.032	0.016	0.007	0.004	0.000	0.002	0.000	0.001	0.000	0.000	0.000	0.000	0.000
LCN NMFS Survey	2004	408	0.004	0.063	0.097	0.152	0.147	0.051	0.029	0.019	0.022	0.017	0.014	0.014	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000
			Male Pro	nortion	-at-ane																	
			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
LCN Com	2003	779	0.000	0.014	0.069	0.122	0.049	0.026	0.004	0.013	0.003	0.003	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
LCN Com	2004	453	0.000	0.011	0.049	0.126	0.148	0.053	0.011	0.007	0.000	0.009	0.007	0.002	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000
LCN Rec	2003	1035	0.000	0.005	0.066	0.144	0.109	0.065	0.038	0.030	0.008	0.002	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
LCN Rec	2004	566	0.000	0.000	0.027	0.155	0.175	0.097	0.048	0.011	0.005	0.002	0.004	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
LCN NMFS Survey	2001	618	0.065	0.150	0.085	0.021	0.004	0.003	0.002	0.003	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
LCN NMFS Survey	2004	408	0.004	0.031	0.103	0.126	0.068	0.019	0.003	0.004	0.010	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
,																						
			Famala	D																		
			Female	Proporti			_	_	-		•	40	44	40	40	44	45	40	47	40	40	
1.00.0	0000	00	2 2 2 2 2	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
LCS Com	2003	98	0.000	0.000	0.041	0.184	0.133	0.082	0.082	0.020	0.041	0.000	0.000	0.010	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
LCS Com	2004	138	0.014	0.014	0.181	0.210	0.138	0.043	0.065	0.014	0.000	0.007	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
LCS Rec	2003	383	0.013	0.000	0.029	0.162 0.012	0.112 0.017	0.099	0.063 0.019	0.039	0.026	0.013	0.010	0.000	0.005	0.000	0.000	0.003	0.000	0.000	0.000	0.000
LCS NMFS Survey	2001	248	0.155																			
LCS NMFS Survey	2004	384	0.096	0.094	0.107	0.099	0.119	0.066	0.027	0.015	0.032	0.004	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Male Pro	portion	-at-age																	
			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
LCS Com	2003	98	0.000	0.000	0.020	0.204	0.082	0.031	0.051	0.020	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
LCS Com	2004	138	0.014	0.029	0.058	0.072	0.094	0.022	0.014	0.007	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
LCS Rec	2003	383	0.008	0.000	0.016	0.162	0.097	0.060	0.044	0.018	0.013	0.005	0.000	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
LCS NMFS Survey	2001	248	0.118	0.153	0.088	0.005	0.017	0.019	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000
LCS NMFS Survey	2004	384	0.083	0.073	0.051	0.064	0.036	0.009	0.007	0.000	0.000	0.000	0.015	0.001	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Table 16. Lingcod length, weight, and fraction mature at age data used in the northern (LCN) model.

			Males					Fe	males		
	Length		Weight	t	Fraction		Length		Weight		Fraction
Age	(Cm.)	(In.)	(Kg.)	(Lbs.)	Mature	Age	(Cm.)	(In.)	(Kg.)	(Lbs.)	Mature
1	42.0	16.5	0.65	1.4	0.17	1	43.0	16.9	0.62	1.4	0.04
2	48.9	19.3	1.07	2.4	0.37	2	51.6	20.3	1.16	2.6	0.09
3	54.9	21.6	1.54	3.4	0.63	3	59.4	23.4	1.87	4.1	0.21
4	60.0	23.6	2.06	4.5	0.83	4	66.4	26.1	2.73	6.0	0.42
5	64.4	25.4	2.58	5.7	0.93	5	72.7	28.6	3.72	8.2	0.66
6	68.2	26.8	3.11	6.8	0.98	6	78.4	30.9	4.80	10.6	0.84
7	71.5	28.1	3.61	8.0	0.99	7	83.5	32.9	5.95	13.1	0.93
8	74.3	29.2	4.09	9.0	1.00	8	88.1	34.7	7.15	15.8	0.97
9	76.7	30.2	4.54	10.0	1.00	9	92.3	36.3	8.36	18.4	0.99
10	78.8	31.0	4.95	10.9	1.00	10	96.0	37.8	9.57	21.1	1.00
11	80.6	31.7	5.32	11.7	1.00	11	99.4	39.1	10.77	23.7	1.00
12	82.2	32.4	5.66	12.5	1.00	12	102.4	40.3	11.93	26.3	1.00
13	83.5	32.9	5.96	13.1	1.00	13	105.2	41.4	13.05	28.8	1.00
14	84.7	33.3	6.23	13.7	1.00	14	107.7	42.4	14.12	31.1	1.00
15	85.7	33.7	6.46	14.3	1.00	15	109.9	43.3	15.14	33.4	1.00
16	86.5	34.1	6.67	14.7	1.00	16	111.9	44.1	16.10	35.5	1.00
17	87.2	34.3	6.86	15.1	1.00	17	113.7	44.8	17.00	37.5	1.00
18	87.9	34.6	7.02	15.5	1.00	18	115.3	45.4	17.85	39.3	1.00
19	88.4	34.8	7.16	15.8	1.00	19	116.8	46.0	18.63	41.1	1.00
20	88.9	35.0	7.28	16.1	1.00	20	118.1	46.5	19.36	42.7	1.00
Growth Par	rameters:	Weight P	arameters:	Maturity Pa	rameters:	Growth Pa	rameters:	Weight Pa	rameters:	Maturity Pa	rameters:
Linf	91.816869	a	0.003953	Alpha	1.060	Linf	130.18329	a	0.00176	Alpha	0.994
K	0.149260	b	3.214900	Beta	2.506	K	0.104103	b	3.397800	Beta	4.323
L1	41.999173					L1	42.98222				

Table 17. Lingcod biological parameters used in the northern (LCN) model.

Parameter	Male	Female
	Estimate	Estimate
Growth ¹		
Linf	91.817	130.183
K	0.149	0.104
L1	41.999	42.982
T_0	-3.097	-2.850
n	6274	16884
Length-Weight ²		
a	0.003953	0.001760
b	3.214900	3.397800
R sq	0.52	0.71
n	5149	12079
Maturity ³		
Alpha	1.060	0.994
Beta	2.506	4.323
n	15	21
Natural Mortality ⁴		
M	0.32	0.18
Fecundity ⁵		
a		2.82406E-04
b		3.0011

¹ Growth Model: L = Linf + (L1-Linf) * exp(K * (1-Age))

 $^{^{2}}$ Length Weight Model: W = $a*L^{b}$

³Maturity Model: P = 1/(1+exp(-Alpha * (Age-Beta)))

⁴Natural Mortality: Data source: Jagielo (1994); derived from an average of values using methods of Hoenig (1983), Alverson and Carney (1975), and Pauly (1980).

Table 18. Mean length, weight and fraction of lingcod mature at age used in the LCS model. Survey data only were used for ages 1-3. Survey and fishery data were used for ages 4+.

			Males					Fe	emales		
	Length		Weight		Fraction		Length		Weight		Fraction
Age	(Cm.)	(In.)	(Kg.)	(Lbs.)	Mature	Age	(Cm.)	(In.)	(Kg.)	(Lbs.)	Mature
1	34.3	13.5	0.34	0.7	0.06	1	35.1	13.8	0.31	0.7	0.04
2	43.7	17.2	0.75	1.6	0.18	2	45.6	18.0	0.76	1.7	0.11
3	51.3	20.2	1.25	2.7	0.43	3	54.7	21.5	1.41	3.1	0.29
4	57.4	22.6	1.79	3.9	0.72	4	62.5	24.6	2.23	4.9	0.55
5	62.3	24.5	2.32	5.1	0.90	5	69.3	27.3	3.16	7.0	0.79
6	66.2	26.0	2.82	6.2	0.97	6	75.2	29.6	4.17	9.2	0.92
7	69.3	27.3	3.27	7.2	0.99	7	80.2	31.6	5.20	11.5	0.97
8	71.8	28.2	3.66	8.1	1.00	8	84.6	33.3	6.24	13.7	0.99
9	73.7	29.0	3.99	8.8	1.00	9	88.4	34.8	7.24	16.0	1.00
10	75.3	29.7	4.28	9.4	1.00	10	91.7	36.1	8.20	18.1	1.00
11	76.6	30.2	4.51	10.0	1.00	11	94.6	37.2	9.09	20.0	1.00
12	77.6	30.6	4.71	10.4	1.00	12	97.0	38.2	9.92	21.9	1.00
13	78.4	30.9	4.87	10.7	1.00	13	99.2	39.0	10.68	23.5	1.00
14	79.1	31.1	5.00	11.0	1.00	14	101.0	39.8	11.37	25.1	1.00
15	79.6	31.3	5.11	11.3	1.00	15	102.6	40.4	11.99	26.4	1.00
16	80.0	31.5	5.20	11.5	1.00	16	104.0	40.9	12.55	27.7	1.00
17	80.4	31.6	5.27	11.6	1.00	17	105.2	41.4	13.04	28.8	1.00
18	80.6	31.7	5.32	11.7	1.00	18	106.2	41.8	13.48	29.7	1.00
19	80.8	31.8	5.37	11.8	1.00	19	107.1	42.2	13.87	30.6	1.00
20	81.0	31.9	5.40	11.9	1.00	20	107.9	42.5	14.22	31.3	1.00
Growth Par	ameters:	Weight Pa	rameters:	Maturity Pa	arameters:	Growth Pa	rameters:	Weight Pa	rameters:	Maturity Pa	rameters:
Linf	81.693959	a	0.003953	Alpha	1.240	Linf	112.81069	a	0.00176	Alpha	1.129
K	0.223233	b	3.214900	Beta	3.233	K	0.144902	b	3.397800	Beta	3.814
L1	34.252704					L1	35.113463				

Table 19. Lingcod biological parameters used in the southern (LCS) model.

Parameter	Male	Female
	Estimate	Estimate
Growth ¹		
Linf	81.694	112.811
K	0.223	0.145
L1	34.253	35.113
T_0	-1.435	-1.573
n	986	1780
Length-Weight ²		
a	0.003953	0.001760
b	3.214900	3.397800
R sq	0.52	0.71
n	5149	12079
Maturity ³		
Alpha	1.240	1.129
Beta	3.233	3.814
R sq	0.989	0.994
Natural Mortality ⁴		
M	0.32	0.18
Fecundity ⁵		
a		2.82406E-04
b		3.0011

¹ Growth Model: L = Linf + (L1-Linf) * exp(K * (1-Age))

 $^{^{2}}$ Length Weight Model: W = $a*L^{b}$

³Maturity Model: P = 1/(1+exp(-Alpha * (Age-Beta)))

⁴Natural Mortality: Data source: Jagielo (1994); derived from an average of values using methods of Hoenig (1983), Alverson and Carney (1975), and Pauly (1980).

Table 20. NMFS trawl survey lingcod biomass estimates by INPFC area for combined depth strata. Note: The shallow depth strata was 50-100 fm. in 1977, and 30-100 fm. for all other years.

NMFS Trawl Survey lingcod biomass (mt) estimates for combined depth strata by INPFC

Standard analysis which includes all good perfromance hauls.

Year	Conception	Monterey	Eureka	Columbia	US Vancouver	Monterey + Eureka	CV	Columbia +US Vancouver	CV
1977	69	1,800	274	12,648	2,277	2,074	0.32	14,925	0.77
1980		671	431	8,699	1,281	1,102	0.29	9,979	0.65
1983		1,467	494	4,026	1,805	1,962	0.33	5,831	0.15
1986		611	316	1,828	988	926	0.21	2,816	0.12
1989	54	2,107	473	3,649	1,863	2,580	0.20	5,512	0.29
1992	27	484	148	3,071	1,069	632	0.24	4,140	0.49
1995	42	703	179	1,320	552	881	0.28	1,872	0.16
1998	34	651	219	2,002	1,018	871	0.27	3,020	0.26
2001	85	693	654	3,903	1,324	1,347	0.12	5,227	0.27

Including all good perfrmance hauls, but excluding tows identified as "water hauls"

Year	Conception	Monterey	Eureka	Columbia	US Vancouver	Monterey + Eureka	CV	Columbia +US Vancouver	CV
1977	74	2,368	624	12,773	2,270	2,993	0.14	15,043	0.77
1980		929	608	3,219	1,361	1,537	0.31	4,580	0.31
1983		1,523	556	4,306	1,962	2,079	0.33	6,268	0.16
1986		611	315	1,860	951	926	0.21	2,812	0.12
1989	54	2,168	540	3,933	1,922	2,708	0.20	5,856	0.30
1992	32	476	154	3,071	1,084	630	0.25	4,155	0.49
1995	46	703	199	1,329	555	901	0.27	1,884	0.16
1998	34	651	219	2,002	1,018	871	0.27	3,020	0.26
2001	85	693	654	3,903	1,324	1,347	0.12	5,227	0.27

Difference in estimated biomass (mt) by including and excluding "water hauls"

			,				
Year	Conception	Monterey	Eureka	Columbia	US Vancouver	Monterey + Eureka	Columbia +US Vancouver
1977	5	569	350	125	-7	919	118
1980	0	258	177	-5,480	81	435	-5,399
1983	0	55	61	280	157	117	437
1986	0	0	-1	33	-37	-1	-4
1989	1	61	67	284	60	128	344
1992	6	-8	6	0	15	-2	15
1995	3	0	20	9	3	20	12
1998	0	0	0	0	0	0	0
2001	0	0	0	0	0	0	0

Table 21. NMFS trawl survey lingcod biomass estimates by INPFC area for the 2004 Triennial Shelf Survey. (Source: Mark Wilkins, AFSC, July 2005).

INPFC Area	Depth Stratum	Biomass (mt)	CV (Biomass)
US Vancouver			
	55-183 m	2665	0.36
	184-366 m	450	0.73
	367-500 m	0	
	55-366 m	3115	0.32
	55-500 m	3115	0.32
Columbia			
	55-183 m	6793	0.42
	184-366 m	1458	0.74
	367-500 m	0	
	55-366 m	8251	0.37
	55-500 m	8251	0.37
North (LCN) Tota	al	11366	0.35
Eureka			
	55-183 m	622	
	184-366 m	802	
	367-500 m	0	
	55-366 m	1424	0.31
	55-500 m	1424	0.31
Monterey			
	55-183 m	1628	0.33
	184-366 m	535	0.34
	367-500 m	129	0.68
	55-366 m	2163	0.27
	55-500 m	2292	0.25
Conception			
	55-183 m	40	0.34
	184-366 m	118	0.49
	367-500 m	0	
	55-366 m	159	0.37
	55-500 m	159	
South (LCS) Tot	al	3746	0.32
Journ (EGS) Tot	aı	3740	0.32

Table 22. WDFW Cape Flattery tag survey index used in the northern (LCN) assessment. Estimates for the years 1986-1992 were obtained from Jagielo (1995).

Year	Number of Fisl	h Standard Deviation
198	6 1197	700 18800
198	7 2085	500 31800
198	8 1654	19000
198	9 1490	000 13500
199	0 1238	300 10300
199	1 1144	100 9500
199	2 1273	300 11000

Table 23. Number of logbook tows used to develop trawl logbook CPUE indices in southern and northern waters.

Year	1A	1B	1C	2A	2B	2C	2C	3A	3B	3C
1976	0	0	0	673	2783	1433	1433	3966	0	0
1977	0	0	0	447	1290	1747	1747	2051	0	0
1978	2048	9495	8702	985	1951	1638	1638	3142	0	0
1979	2472	10552	12756	1764	3007	1981	1981	5583	0	0
1980	2036	8895	7958	1137	1101	1048	1048	4479	0	0
1981	5566	19492	16002	3701	3806	1396	1396	5270	0	0
1982	2412	10345	7970	2845	5267	4503	4503	8446	0	0
1983	1494	9416	7465	2330	5324	1195	1195	4912	0	0
1984	1683	6883	7629	1657	2320	1927	1927	5644	0	0
1985	2699	8366	7142	1140	2784	2928	2928	3606	0	0
1986	2865	9941	5151	770	1432	2053	2053	5520	4338	3816
1987	3030	6630	5070	1415	5016	2765	2765	10821	3520	3287
1988	3182	6847	6209	1456	5117	7490	3751	11027	4607	4077
1989	4338	8000	5777	1431	5232	12348	6183	12492	5711	5352
1990	3622	6483	5601	1504	4786	10598	5319	9211	4491	5759
1991	3296	8931	5197	1736	6713	14917	7504	12067	5630	6460
1992	3393	10158	4210	1487	5468	14288	7190	10485	4936	5905
1993	2450	9936	4205	1827	5674	8702	8702	8491	4797	5711
1994	2662	8995	3940	1531	3888	7176	7176	7130	3674	4951
1995	2721	8688	4986	1372	3699	9378	4696	7205	3825	3230
1996	2697	9568	4968	1424	3320	9388	4699	8199	3605	2643
1997	1867	8000	4763	1717	3550	9194	4603	5706	2072	2271
1998	2673	5792	3776	2184	3228	7516	3759	4236	2066	2262
1999	3403	5258	4064	1637	2712	6026	3014	4341	1809	1841
2000	1702	3692	3278	728	2095	5423	2716	4451	2045	1638
2001	2261	3090	3078	1161	2140	6376	3195	3574	2072	1935
2002	3310	4640	3114	726	1278	4345	2176	3337	2560	1577
	69,882	208,093	153,011	39,665	90,908	154,599	96,117	169,375	61,758	62,715

Table 24. Summary of estimated Delta GLM logbook index results in the northern region, indicating: 1) sample size (# of tows), 2) the percentage of tows with lingcod present (2003 index % positive), and 3) the computed index values used in the 2003 LCN stock assessment model. The logbook index values used in the 2000 assessment are provided for comparison.

Northern Area Trawl Logbook Index

		_	-	
	2000 Index		2003 Inde	X
Year	Index Value	# of Tows	% Positive	Index Value
1976		9,615	62%	20.33
1977		6,835	52%	16.16
1978		8,369	54%	10.79
1979		12,552	58%	11.37
1980		7,676	64%	11.32
1981		11,868	63%	13.33
1982		22,719	50%	9.29
1983	335.9	12,626	51%	9.32
1984	218.3	11,818	44%	6.99
1985	296.7	12,246	36%	6.26
1986	271.6	19,212	23%	3.58
1987	287.0	28,174	31%	4.24
1988	218.1	39,808	27%	4.56
1989	201.2	53,483	25%	5.45
1990	201.1	45,443	23%	4.36
1991	157.4	60,704	22%	3.94
1992	153.8	55,370	19%	2.23
1993	102.9	42,077	28%	2.74
1994	157.6	33,995	28%	2.82
1995	40.6	36,715	21%	2.47
1996	127.3	36,543	22%	2.54
1997	123.0	31,987	21%	2.36

Table 25. Summary of estimated Delta GLM logbook index results in the southern region, indicating: 1) sample size (# of tows), 2) the percentage of tows with lingcod present (2003 index % positive), and 3) the computed index values used in the 2003 LCS stock assessment model. The logbook index values used in the 2000 assessment are provided for comparison.

Southern Area Trawl Logbook Index

	2000 Index		2003 Inde	X
Year	Index Value	# of Tows	% Positive	Index Value
1978	44.51	21,230	34%	5.80
1979	49.23	27,544	47%	11.75
1980	45.79	20,026	47%	9.57
1981	49.65	44,761	46%	7.29
1982	45.62	23,572	47%	7.37
1983	29.16	20,705	43%	8.88
1984	25.46	17,852	39%	7.56
1985	15.53	19,347	31%	3.56
1986	17.41	18,727	24%	3.10
1987	27.25	16,145	33%	5.42
1988	26.32	17,694	31%	5.63
1989	28.99	19,546	32%	7.30
1990	29.97	17,210	28%	6.18
1991	22.27	19,160	31%	3.75
1992	18.58	19,248	27%	3.12
1993	20.51	18,418	28%	3.84
1994	21.56	17,128	25%	3.63
1995	20.35	17,767	25%	3.87
1996	16.65	18,657	26%	3.12
1997	18.81	16,347	28%	3.30

Figure 1. Lingcod stock boundaries and location of PMFC and INPFC Areas.

Figure 2. Comparison of lingcod ABC, OY and landings (mt).

Figure 3. Comparison of commercial lingcod landings in the northern (U.S. Vancouver and Columbia) and southern (Eureka, Monterey and conception) areas.

Figure 4. Comparison of recreational lingcod landings in the northern (U.S. Vancouver and Columbia) and southern (Eureka, Monterey and conception) areas.

Figure 5. Recreational proportion of total lingcod harvest in the southern (Eureka, Monterey and Conception) and northern (Columbia and U.S. Vancouver) areas.

Figure 6. Length-at-age data fit to the von Bertalanffy growth model for the northern (LCN) and southern (LCS) areas. Survey data only were used for ages 1-3. Both survey and fishery data were used for ages 4+.

Figure 7. Mean lingcod CPUE calculated from raw data for all tows with a recorded depth.

Figure 8. Time series (1976-2002) of observed lingcod trawl logbook CPUE (lbs/hr) by PMFC Area.

Figure 9. Trawl logbook CPUE indices for the northern (LCN) and southern (LCS) areas.

Figure 10. Between-reader (within-lab) estimates of WDFW age reading error variability.

Appendix I. Northern Area (LCN) Base Model Output. Assessment of Lingcod for the Pacific Fishery Management Council in 2005

Table 1. Negative log likelihood and lambda (likelihood weighting factor) values for the northern area (LCN) base model.

Component	-Log(L)	Lambda
Total Likelihood	648.58	
Indices	22.26	
Trawl Logbook	14.89	1
NMFS Trawl Survey	7.37	1
WDFW Tagging Survey	0.00	0
Length_comps	252.14	
Commercial Fishery	40.57	1
Recreational	22.91	1
NMFS Trawl Survey	96.54	1
WDFW Tagging Survey	92.13	1
Age_comps	365.35	
Commercial Fishery	175.10	1
Recreational	112.36	1
NMFS Trawl Survey	20.88	1
WDFW Tagging Survey	57.02	1
Equil_catch	0.00	1
Recruitment	8.73	1
Parm_priors	0.02	1
Parm_devs	0.00	1
Penalties	0.00	0
Forecast_Recruitment	0.08	

Table 2. Parameters used in the northern area (LCN) base model; mortality-growth and biology.

Value	Min	Max	Active_Cnt	Bound
0.18	3			
C)			
43	3			
118	3			
0.1041				
0.0633	3			
0.28857	7			
0.5754	1			
C)			
-0.0231				
-0.2842	2			
0.3603	3			
-0.2379	9			
0.5324	1			
0.5754	1			
0.0000)			
-0.0231				
-0.2842	2			
3.95E-06	6			
3.2149	9			
	0.18 0.43 118 0.1041 0.0633 0.28857 0.5754 0.0231 -0.2842 0.5324 0.5754 0.0000 -0.0231 -0.2842 3.95E-06	0.18 0 43 118 0.1041 0.0633 0.28857 0.5754 0 -0.0231 -0.2842 0.3603 -0.2379 0.5324 0.5754 0.0000 -0.0231 -0.2842 3.95E-06 3.2149	0.18 0 43 118 0.1041 0.0633 0.28857 0.5754 0 -0.0231 -0.2842 0.3603 -0.2379 0.5324 0.5754 0.0000 -0.0231 -0.2842 3.95E-06	0.18 0 43 118 0.1041 0.0633 0.28857 0.5754 0 -0.0231 -0.2842 0.3603 -0.2379 0.5324 0.5754 0.0000 -0.0231 -0.2842 3.95E-06

Table 3. Parameters used in the northern area (LCN) base model; spawner-recruit, recruitment deviations, and initial F.

Parameter N	ame Va	lue l	Min	Max	Active_	Cnt	Bound
SR_parms							
LN(R0)	8	3.22947	1	10	0	1	0
H		0.9					
SD-r		1					
Init_R_Mult		0					
Recr_Devs							
	1972 0.	404478				2	0
	1973 -0.	649724				3	0
	1974 0.	183462				4	0
	1975 -0.	395553				5	0
	1976 -0.	527238				6	0
	1977 0.	032428				7	0
	1978 0.	101296				8	0
	1979 1	.08686				9	0
	1980 -0.	366912				10	0
	1981 -0.					11	0
	1982 -0.					12	0
		.56783				13	0
	1984 -0.					14	0
	1985 -0.					15	0
		190429				16	0
		2.01354				17	0
	1988 -0.					18	0
	1989 -0.					19	0
	1990 -0.					20	0
		265252				21	0
		392935				22	0
	1993 -0.					23	0
		751929				24	0
		685574				25	0
	1996 -0.					26	0
	1997 -0.					27	0
		0.85178				28	0
	1999	1.7572				29	0
	2000 1	.83304				30	0
init_F_parms							_
Com		003945	0		1	31	0
Rec	0.	000697	0		1	32	0

Table 4. Parameters used in the northern area (LCN) base model; selectivity.

Parameter Name	Value	Min	Max	Active_Cnt	Bound
sel_parms				-	
Com-Fem					
age@peak	5				
sel@minA	0				
asc_infl (logit)	0.737617	-10	10	33	0
asc_slope	4.19387	0.1	20	34	0
sel@maxA (logit)	-10.5291	-20	30	35	0
desc_infl (logit)	-1.06958	-10	10	36	0
desc_slope	1.25993	-10	2	37	
width of top	1.5		_	-	-
Com-Male					
Age_@transition	5				
MinL Offset	0	0	0	0	0
M1 Offset	-0.499987	-10	30	38	
MaxL Offset	-6.46127	-10	10	39	
Rec-Fem	0.10121		.0	00	ŭ
age@peak	5				
sel@minA	0				
asc_infl (logit)	0.572743	-10	10	40	0
asc slope	9.4277	0	20	41	0
sel@maxA (logit)	-10.2262	-20	30	42	
desc_infl (logit)	-2.41048	-10	10	43	
desc_slope	0.213336	0	2	44	
width_of_top	1.5	U	2		U
Rec-Male	1.5				
Age_@transition	5				
MinL Offset	0	0	0	0	0
M1 Offset	1.06322	-10	30	45	
MaxL Offset	1.00322	-10	0	45	
NMFS-Female	U	U	U	U	U
	2				
age@peak	0.140				
sel@minA	0.149	10	10	46	0
asc_infl (logit)	4.62712	-10	10	46	
asc_slope	0.161997	0	30	47	
sel@maxA (logit)	-3.2613	-15	30	48	
desc_infl (logit)	-1.32554	-10	10	49	
desc_slope	9.89498	0	20	50	0
width_of_top	1				
NMFS-Male					
Age_@transition	3			•	•
MinL Offset	0	0	0	0	
M1 Offset	-0.030891	-10	0	51	0
MaxL Offset	0	0	0	0	0
WDFW-Female					
age@peak	3				
sel@minA	0				_
asc_infl (logit)	-2.50203	-10	10	52	
asc_slope	6.25441	-10	10	53	
sel@maxA (logit)	-8.28019	-20	30	54	
desc_infl (logit)	-2.5929	-10	10	55	
desc_slope	0.680645	0	10	56	0
width_of_top	1				
WDFW-Male					
Age_@transition	3				
MinL Offset	0				
M1 Offset	2.26672				
MaxL Offset	0				

Figure 1. SS2 output for the northern area (LCN) base model; From the top: recruitment, female spawning biomass, total biomass, and spawner-recruit relationship. Triangular symbols are present assessment estimates; square symbols are 2003 assessment estimates.

Figure 2. SS2 output for the northern area (LCN) base model: Model fits to indices of abundance; Top: trawl logbook, Bottom: NMFS trawl survey.

Figure 3. SS2 output for the northern area (LCN) base model: Estimated selectivity for the commercial fishery, recreational fishery, NMFS trawl survey, and WDFW tagging survey.

Figure 4. SS2 output for the northern area (LCN) base model: Profile of the base model over the standard deviation of recruitment. Clockwise from top left: negative log likelihood values, trawl logbook index, NMFS trawl survey, female spawning biomass, recruitment.

Figure 5. SS2 output for the northern area (LCN) base model: Profile over Beveton-Holt spawner-recruit steepness (*h*). Clockwise from top left: negative log likelihood values, trawl logbook index, NMFS trawl survey, female spawning biomass, recruitment.

Figure 6. SS2 output for the northern area (LCN) base model: Profile over natural mortality (M). Clockwise from top left: negative log likelihood values, trawl logbook index, NMFS trawl survey, female spawning biomass, recruitment.

Figure 6a. SS2 output for the northern area (LCN) base model: Model stability test; Results of 30 base-model runs with SS2 jitter factor = 0.01.

Run Number	-Log Likelihood	Depletion
1	648.675	0.612608302
2	648.675	0.612608302
3	648.675	0.612608302
4	648.675	0.612608302
5	648.675	0.612608302
6	648.675	0.612608302
7	648.675	0.612608302
8	648.675	0.612608302
9	648.675	0.612608302
10	648.675	0.612608302
11	648.675	0.612608302
12	648.675	0.612608302
13	648.675	0.612608302
14	648.675	0.612608302
15	648.675	0.612608302
16	648.675	0.612608302
17	648.675	0.612608302
18	648.675	0.612608302
19	648.675	0.612608302
20	648.675	0.612608302
21	648.675	0.612608302
22	648.675	0.612608302
23	648.675	0.612608302
24	648.675	0.612608302
25	648.675	0.612608302
26	648.814	0.620331152
27	648.814	0.620331152
28	649.423	0.611444507
29	649.423	0.611444507
30	649.423	0.611444507

Figure 6b. SS2 output for the northern area (LCN) base model: Retrospective Analysis, obtained by sequentially decrementing end-year from 2004 to 2000; Top: time series of recruitment, Bottom: time series of spawning biomass.

Figure 7. SS2 output for the northern area (LCN) base model: Model fits to commercial fishery catch-at-age.

Figure 7, continued. SS2 output for the northern area (LCN) base model: Model fits to commercial fishery catch-at-age.

Figure 7, continued. SS2 output for the northern area (LCN) base model: Model fits to commercial fishery catch-at-age.

Figure 7, continued. SS2 output for the northern area (LCN) base model: Model fits to commercial fishery catch-at-age.

Figure 7, continued. SS2 output for the northern area (LCN) base model: Model fits to commercial fishery catch-at-age.

Figure 8. SS2 output for the northern area (LCN) base model: Model fits to recreational fishery catch-at-age.

Figure 8, continued. SS2 output for the northern area (LCN) base model: Model fits to recreational fishery catch-at-age.

Figure 8, continued. SS2 output for the northern area (LCN) base model: Model fits to recreational fishery catch-at-age.

Figure 8, continued. SS2 output for the northern area (LCN) base model: Model fits to recreational fishery catch-at-age.

Figure 9. SS2 output for the northern area (LCN) base model: Model fits to commercial fishery catch-at-length.

Figure 10. SS2 output for the northern area (LCN) base model: Model fits to recreational fishery catch-at-length.

Figure 11. SS2 output for the northern area (LCN) base model: Model fits to NMFS trawl survey catch-at-age.

Figure 12. SS2 output for the northern area (LCN) base model: Model fits to WDFW tagging survey catch-at-age.

Figure 13. SS2 output for the northern area (LCN) base model: Model fits to NMFS trawl survey catch-at-length.

Figure 14. SS2 output for the northern area (LCN) base model: Model fits to WDFW tagging survey catch-at-length.

Figure 14, continued. SS2 output for the northern area (LCN) base model: Model fits to WDFW tagging survey catch-at-length.

Filename: LCNCTL05.CTL

```
# LCNCTL05.ctl: 2005 LCN assessment model ** Tagging Lambda = 0.0 **
# datafile:LCNData05.dat
          # N growthmorphs
2
                    each_morph_(1=female;_2=male)
#_assign_sex_to
          # N Areas (populations)
# each fleet/survey operates in just one area
                                                  assigned_to_share_same_selex(FUTURE_coding)
#_but_different_fleets/surveys_can
                                        1 #area_for_each_fleet and each Survey
0 #do_migration_(0/1)
0 # N Block Designs
#_N_Blocks_per_Design(Block_1_always_starts_in_styr)
#Natural_mortality_and_growth_parameters_for_each_morph
          # Last age for natmort young
3
          #_First_age_for_natmort_old
1
          #_age_for_growth_Lmin
20
          #_age_for_growth_Lmax
-4
          # MGparm dev phase
          LO
                    HI
                              INIT
                                        PRIOR
                                                  PR_type
                                                           SD
                                                                       PHASE
                                                                                 env-variable
                                                                                                     use\_dev
                                                                                                               dev_minyr dev_maxyr
          dev_stddev
# Female natural mortality and growth
                                        0.0001
                                                  0
                                                             99
                                                                       -3
                                                                                 0
                                                                                           0
                                                                                                     0
                                                                                                               0
                                                                                                                         0.5
                                                                                                                                   0
          0.05
                    0.25
                              0.18
          0
                    #M1_natM_young
          -3
                              0
                                                  0
                                                             99
                                                                       -3
                                                                                 0
                                                                                           0
                                                                                                     0
                                                                                                               0
                                                                                                                         0.5
                                                                                                                                   0
          0
                    #M1_natM_old_as_exponential_offset(rel_young)
          10
                    60
                              43
                                        43
                                                  0
                                                                       -2
                                                                                 0
                                                                                           0
                                                                                                     0
                                                                                                               0
                                                                                                                         0.5
                                                                                                                                   0
                    #M1 Lmin
          0
          40
                    140
                                        118
                                                  0
                                                             99
                                                                       -2
                                                                                 0
                                                                                           0
                                                                                                     0
                                                                                                               0
                                                                                                                         0.5
                                                                                                                                   0
                              118
          0
                    #M1 Lmax
          0.01
                    0.5
                              0.1041
                                        0.1041
                                                  0
                                                             99
                                                                       -3
                                                                                 0
                                                                                           0
                                                                                                     0
                                                                                                               0
                                                                                                                         0.5
                                                                                                                                   0
                    #M1_VBK
          0
          0.01
                    0.5
                              0.0633
                                        0.0633
                                                  0
                                                                       -3
                                                                                 0
                                                                                           0
                                                                                                     0
                                                                                                               0
                                                                                                                         0.5
                                                                                                                                   0
                    #M1 CV-young
          0
          0.01
                              0.28857
                                        0.28857
                                                                                                     0
                                                                                                                                   0
                                                                       -3
                                                                                 0
                                                                                           0
                                                                                                               0
                                                                                                                         0.5
                    #M1_CV-old_as_exponential_offset(rel_young)
          0
# Male natural mortality and growth
                                        0.5754
                                                                                                                         0.5
                                                                                                                                   0
                                                                       -3
                                                                                 0
                                                                                           0
                                                                                                     0
                                                                                                               0
          0.01
                    0.5
                              0.5754
          0
                    \#M2\_natM\_young\_as\_exponential\_offset(rel\_females)
                                                                                                                         0.5
          -3
                              0
                                                  0
                                                             99
                                                                                 0
                                                                                           0
                                                                                                     0
                                                                                                               0
                                                                                                                                   0
                                        1
          0
                    #M2_natM_old_as_exponential_offset(rel_young_males)
                                                                                 0
                                                                                           0
                                                                                                     0
                                                                                                               0
                                                                                                                         0.5
                                                                                                                                   0
          _1
                              -0.0231 1.0
                                                  0
          0
                    #M2 Lmin as exponential offset(rel females Lmin)
          -1
                              -0.2842 1.0
                                                  0
                                                             99
                                                                       -3
                                                                                 0
                                                                                           0
                                                                                                     0
                                                                                                               0
                                                                                                                         0.5
                                                                                                                                   0
          0
                    #M2_Lmax_as_exponential_offset(rel_females_Lmax)
          0.01
                                                                                 0
                              0.3603
                                       1.0
                                                            99
                                                                                           0
                                                                                                     0
                                                                                                               0
                                                                                                                         0.5
                                                                                                                                   0
                                                  0
          0
                    #M2_VBK_as_exponential_offset(rel_females)
          -1
                              -0.2379 0
                                                             99
                                                                                 0
                                                                                           0
                                                                                                     0
                                                                                                               0
                                                                                                                         0.5
                                                                                                                                   0
                                                  0
          0
                    #M2 CV-young as exponential offset(rel CV-young females)
          0.01
                                                                                 0
                                                                                           0
                                                                                                     0
                                                                                                               0
                                                                                                                         0.5
                                                                                                                                   0
                              0.5324
                                       0
                                                  0
                    #M2_CV-old_as_exponential_offset(rel_CV-young_males)
# Add 2+2*gender lines to read the wt-Len and mat-Len parameters
# Female length-weight
          LO
                    HI
                              INIT
                                                             PR type
                                                                      SD
                                                                                 PHASE
                              0.00000176 0.00000176
                                                                                                     0
          -3
                    3
                                                             0
                                                                       99
                                                                                 -3
                                                                                           0
                                                                                                               0
                                                                                                                         0
                                                                                                                                   0.5
          0
                    0
                              #Female wt-len-1 a
          -3
                    5
                              3.39780
                                          3.397800
                                                                       -3
                                                                                 0
                                                                                           0
                                                                                                     0
                                                                                                               0
                                                                                                                         0.5
                                                                                                                                   0
          0
                    #Female wt-len-2 b
# Female maturity
```

	-3	100	68.059	0.1577	0	99	-3	0	0	0	0	0.5	0
	0 -5	#Female n	nat-len-infl -0.1577	68.059	0	99	-3	0	0	0	0	0.5	0
	0	#Female n	nat-len-slop	e			5		Ü	·	·	0.5	Ü
# Female f				-	nd slope = 0		2	0	0	0	0	0.5	0
	-3 0	3 #Female e	1. ggs/gm inte	1. ercent	0	99	-3	0	0	0	0	0.5	0
	-3	3	0.	0.	0	99	-3	0	0	0	0	0.5	0
# Mala lan	0 igth-weight	#Female e	ggs/gm slo _l	pe									
# Iviaic icii	-3	3	0.0000039	53	0.0000039	53	0	99	-3	0	0	0	0
	0.5	0	0	#Male wt-									
	-5 0	5	3.2149 #Male wt-	3.2149 len-2		0	99	-3	0	0	0	0	0.5
	· ·		minute we	1011 2									
#_allocate		2 41	.: c	1 1.	1								
# pop*gmo	orpn iines F	For the prop 0.5000	0.2	on morph ii	n each area 9.8	-3	0	0	0	0	0.5	0	0
	#frac to m	orph 1 in ar	ea 1										
0	1 #frag to m	0.5000 orph 2 in ar	0.2	0	9.8	-3	0	0	0	0	0.5	0	0
	#11ac to 111	orpii 2 iii ai	Ca I										
		oportion ass											
0	1 #frac to ar	1 ea 1	1	0	0.8	-3	0	0	0	0	0.5	0	0
	#ITAC to ai	ca i											
0 #_custon	n-env_read												
#_	0=read or	ne_setup_an	id apply to	all env f	xns:	1=read_a_:	setup line	for each N	AGparm w	ith Env-va	r>0		
					,								
0 # auston	n-block_rea	ad											
#_		au ne_setup_an	id_apply_to	_all_MG-b	locks;	1=read_a_:	setup_line_	for_each_b	lock	x	MGparm_	with_block	>0
												_	
# LO #-10	HI 10	INIT 0.0	PRIOR 0	Pr_type 0	SD 4	PHASE 4							
<i>n</i> -10	10	0.0	· ·	O	7	7							
#_Spawne	r-Recruitm	ent_parame	ters										
1	# SR fxn:	1=Beverto	n-Holt										
	_			_	~~								
#LO 1	HI 100	INIT 8.22947	PRIOR 7.6187	Pr_type 0	SD 99	PHASE 1	#Ln(R0)						
0.2	5	0.9	0.9	0	99	-4	#steepness						
0	20	1.0	0.5	0	99	-3	#SD_recru	itments					
-5 -5	5	0	0	0	99 99	-3 -5	#Env_link # In(init_e	q_R_multi	nlier)				
5	5		· ·	·	,,	5	"_III(IIII_C	q_rc_mann	piici)				
0	#env-var_	for_link											
#	recruitmer	nt_residuals											
#start_rec_		end_rec_y		Lower_lim	nit	Upper_lim	it	phase					
1972		2000		-15		15		3					
#init_F se	tupforeach	fleet											
#LO	HI	INIT	PRIOR		SD	PHASE							
0	1	0.0039 0.0006	0.09 0.09	0	99 99	1							
U	1	0.0000	0.07	U)7	1							
#_Qsetup #_add_par	m_row_for	_each_posi	tive_entry_	below(row	_then_colu	mn)							
#-Float(0/1	l) fleet	#Do-powe	er(0/1) survey	#Do-env(0	0/1)	#Do-dev(0	/1) #env-V	ar	#Num/Bio	(0/1)	for	each	
0	0	0	0	0	1 #Com_1								
0	0	0	0	0	1 #Rec_2	2							
0	0	0	0	0	1 #Logbk_ 1 #NMFS_								
0	0	0	0	0	0 #WDFTa								

LO HI INIT PRIOR PR_type SD PHASE env-variable #_SELEX_&_RETENTION_PARAMETERS

#Selex_type Do_retention(0/1) Do_male Mirrored_selex_number

"Belex_ty	pe Do_reten	mon(o/1) L	o_male wi	inforcu_sere	zx_numoer								
#Length S	electivity												
0		0	0	#Com 1									
0		0	0	#Rec 2									
0		0	0										
				#Logbk_3									
0		0	0	#NMFS_4									
0		0	0	#WDFTag	g_5								
#_Age	selectivity												
18	0	1	0	#Com_1									
18	0	1	0	#Rec 2									
15	0	0	1	#Logbk_3									
18		1	0	#NMFS_4									
18		1	0	#WDFTag									
10	U	1	U	#WDF Tag	3_3								
//C 1.1	0 4 0 1	c r	1 5 1 1	. I G1 G1	1 5: 11	G2 G1 G	D 1337: 14						
	-8 Age Sele												
#LO		INIT	PRIOR	PR_type	SD	PHASE	env-variab	ole	use_dev	dev_miny	r dev_maxy	rdev_stdde	V
	Block_Patt	tern											
1	20	5	0.001	0	99	-2	0	0	0	0	0.5	0	0
	# age@pea	ak - fem											
0		0	1	0	99	-2	0	0	0	0	0.5	0	0
	# sel@mir	ıA											
-10		0.7376	0	0	99	2	0	0	0	0	0.5	0	0
-10	# asc infl		Ü	O	,,	_	Ü	O	Ü	Ü	0.5	O .	U
0.1			0.001	0	00	-	0	0	0	0	0.5	0	^
0.1		4.193	0.001	0	99	5	0	0	0	0	0.5	0	0
• •	# asc_slop		_										
-20		-10.52	-5	0	99	4	0	0	0	0	0.5	0	0
	# sel@max	xA (logit)											
-10		-1.069	-1.5	0	99	4	0	0	0	0	0.5	0	0
	# desc inf												
-10		1.259	0.5	0	99	4	0	0	0	0	0.5	0	0
-10			0.5	O	,,	-	Ü	O	Ü	Ü	0.5	O .	U
0	# desc_slo			0	00		0	0	0	0	0.5	0	^
0		1.5	1	0	99	-4	0	0	0	0	0.5	0	0
			maxA - p1										
#Com_1 9	-12 Age Sel	lex for mal	es relative t	to females)									
# 4 parms:	: 1=dogleg a	ge, 2=log(rel_sel) at r	nin age, 3=	log(rel_sel) at dogleg	age, 4+log((relsel) at m	axage				
1	20	5	3	0	99	-2	0	0	0	0	0	0	0
	# Age @t	ransition -	male										
-10		0.0	3.21	0	99	-4	0	0	0	0	0	0	0
-10	# ln(mal_s			Ü	,,	-	Ü	O	Ü	Ü	Ü	O .	U
10				0	00	4	0	0	0	0	0	0	^
-10		-0.499	-0.20	0	99	4	0	0	0	0	0	0	0
	# ln(mal_s												
-10	10	-6.461	0	0	99	4	0	0	0	0	0	0	0
	# ln(mal_s	sel/fem_sel) @ maxL										
#Rec 2 13	3-20 Age Se	lex for Fen	nales										
1 -		5	0.001	0	99	-2	0	0	0	0	0	0	0
•	# age@pea		0.001	Ü		_					Ü	Ü	•
0	2		1	0	99	-2	0	0	0	0	0	0	٥
U			1	U	99	-2	U	U	U	U	U	U	U
10	# sel@mir		0	0	00	2	0	0	0	0	0	0	^
-10		0.572	0	0	99	2	0	0	0	0	0	0	0
	# asc_infl												
0.0		9.427	0.001	0	99	3	0	0	0	0	0	0	0
	# asc_slop	e											
-20	30	-10.22	-5	0	99	4	0	0	0	0	0	0	0
	# sel@max												
-10		-2.410	-1.5	0	99	4	0	0	0	0	0	0	0
10	# desc_inf		1.0	Ü							Ü	Ü	•
0		0.213	0.5	0	99	4	0	0	0	0	0	0	0
U			U.J	U	77	4	U	U	U	U	U	U	U
	# desc_slo				00			^					_
0		1.5	1	0	99	-4	0	0	0	0	0	0	0
	# width_o	f_top <= (maxA - p1)									
#Rec_2 21	1-24 Age Se	lex for mal		to females									
1		5	5	0	99	-2	0	0	0	0	0	0	0
	# Age_@t	ransition -	male										
	33	- /											

-10	30 00.0	20.35	0	99	-4	0	0	0	0	0	0	0
-10	# ln(mal_sel/fem_se 30 1.06	-0.09	0	99	4	0	0	0	0	0	0	0
-10	# ln(mal_sel/fem_se 10 00.0	0.33	0	99	-4	0	0	0	0	0	0	0
-10	# ln(mal_sel/fem_se			99	-4	Ü	U	U	U	O	U	U
#NIMES	1 25 22 Aga Salay for	Famalas: D	ook Init Inf	11 Clonel E	Sinal Infl?	Hono? Dool	Width					
#INIVIF S	_4 25-32 Age Selex for 35 3 0.00		99	-2	0	0	0	0	0	0	0	#
	ak - fem	10	,,	2	V	V	V	U	O	O	O	"
0	2 0.149	1	0	99	-2	0	0	0	0	0	0	0
	# sel@minA											
-10	10 4.627 # asc infl (logit)	2	0	99	2	0	0	0	0	0	0	0
0	30 0.161	0.001	0	99	3	0	0	0	0	0	0	0
	# asc_slope											
-15	30 -3.26	-5	0	99	4	0	0	0	0	0	0	0
10	# sel@maxA (logit)		0	99	4	0	0	0	0	0	0	0
-10	10 -1.32 # desc infl (logit)	-1.5	U	99	4	U	U	U	U	U	U	U
0	20 9.894	0.5	0	99	5	0	0	0	0	0	0	0
	# desc slope	0.0	v		Ü	v	v	v		•	Ü	Ů
0	40 1.0	1	0	99	-5	0	0	0	0	0	0	0
	# width_of_top <= (
#NMFS	_4 33-36 Age Selex for	males relat	ive to fema	les		4.1						
	ns: 1=dogleg age, 2=log	(rel_sel) at	min age, 3=	= log(rel_se 99			g(relsel) at r		0	0	0	0
1	10 3 # Age_@transition	-	U	99	-2	0	U	0	U	0	0	0
-10	30 0.0	1	0	99	-4	0	0	0	0	0	0	0
10	# ln(mal_sel/fem_se	el) @ minL			•			Ü	v	•	· ·	Ů
-10	0 -0.030	1	0	99	4	0	0	0	0	0	0	0
	# ln(mal_sel/fem_se	el) @ m1										
-30	0 0.00	1	0	99	-4	0	0	0	0	0	0	0
	# ln(mal_sel/fem_se	el) @ maxL										
#WDFV	VTag_5 37-44 Age Sele	x for Femal	les									
0	20 3	0.001	0	99	-3	0	0	0	0	0	0	0
	# age@peak - fem											
0	2 0	1	0	99	-3	0	0	0	0	0	0	0
	# sel@minA											
-10	10 -2.50	249	0	99	3	0	0	0	0	0	0	0
-10	# asc_infl (logit) 10 6.25	.134	0	99	4	0	0	0	0	0	0	0
-10	# asc slope	.134	U	22	4	U	U	U	U	U	U	U
-20	30 -8.28	-5	0	99	4	0	0	0	0	0	0	0
	# sel@maxA (logit)											
-10	10 -2.59	-1.5	0	99	4	0	0	0	0	0	0	0
0	# desc_infl (logit)	0.5	0	00	_	0	0	0	0	0	0	0
0	10 0.680	0.5	0	99	5	0	0	0	0	0	0	0
0	# desc_slope 40 1	1	0	99	-5	0	0	0	0	0	0	0
U	# width_of_top <= (,,	-5	U	U	U	U	U	U	U
#WDFV	VTag_5 45-48 Age Sele	x for males	relative to	females								
0	20 3	3	0	99	-2	0	0	0	0	0	0	0
	# Age_@transition -											
-15	10 0.0	6.61	0	99	-4	0	0	0	0	0	0	0
-20	# ln(mal_sel/fem_se 20 2.26	5.62 minL	0	99	4	0	0	0	0	0	0	0
-20	# ln(mal sel/fem se		U	77	4	U	U	U	U	U	U	U
-20	20 0.00	0	0	99	-4	0	0	0	0	0	0	0
-	# ln(mal_sel/fem_se						-	-	-	-	-	-
		-										
_	m-env_read											
0	# 0=read one setu	in and ann	ly to all e	nv fxns: 1	=read a se	etun line fo	or each SE	Lnarm wit	h Env-var>	>()		

```
0
                                              #_
                                                                                          0 = read\_one\_setup\_and\_apply\_to\_all;\_1 = Custom\_so\_see\_detailed\_instructions\_for\_N\_rows\_in\_Custom\_setup\_and\_apply\_to\_all;\_1 = Custom\_setup\_and\_apply\_to\_all;\_1 = Custom\_setup\_apply\_to\_all;\_1 = Custom\_setup\_apply\_to\_all;
#LO
                                              НІ
                                                                                          INIT
                                                                                                                                         PRIOR
                                                                                                                                                                                     PR_type SD
                                                                                                                                                                                                                                                                                  PHASE
                                                                                          0
                                                                                                                                         0
                                                                                                                                                                                     0
                                                                                                                                                                                                                                    4
# -10
                                               10
                                                                                                                                                                                                                                                                                  4
-4
                                              \#\_phase\_for\_selex\_parm\_devs
                                              #_max_lambda_phases:_read_this_Number_of_values_for_each_componentxtype_below
0
                                              \#\_sd\_offset - 0 = omit + log(s) term; 1 = include Log(s) term in Like
#_CPUE_lambdas for each fleet and survey
                                                                                                                                       1
#_discard_lambdas
                                             0
                                                                                          0
                                                                                                                                                                                     0
\#\_meanwtlambda(one\_for\_all\_sources)
\#\_lenfreq\_lambdas
                                                                                                                                         1
                                                                                                                                                                                       1
                                             1
\#\_age\_freq\_lambdas
                                                                                                                                                                                       1
                                           1
\#\_size@age\_lambdas
                                                                                                                                                                                       1
                                             1
#_initial_equil_catch
\#\_recruitment\_lambda
1.0
#_parm_prior_lambda
\#\_parm\_dev\_timeseries\_lambda
\# crashpen lambda
#max F
0.9
```

999

#_end-of-file

Filename: LCNData05d.DAT

```
#_Number_of_datafiles: 1
# start nudata: 1
#_MODEL_DIMENSIONS
1956 # styr
2004 #_endyr
1 # nseas
# vector with N months in each season
12 # months/season
1 # spawn seas
2 # Nfleet
3 # Nsurv
# Labels
Comm1%Sport2%logbk3%NMFS4%WDFTAG5
# Timing within each season, for each fishery and survey
0.5 0.5 0.5 0.5 0.5
2 # Ngenders
40 #_accumulator_age; model_always_starts_with_age_0
132 7.6 #_init_equil_catch_for_each_fishery
#_catch_biomass(mtons):_columns_are_fisheries_rows_are_year*season
\bar{920}
         5
1000
1133
1863
         14
2028
         18
1875
         23
1323
         27
938
         32
1257
         36
1538
         40
1813
         45
1244
         49
1626
         54
1148
         58
851
         63
1009
         67
952
         72
1326
         76
1549
         81
2019
         85
1662
         69
1671
         76
1346
         70
2211
         82
2004
         93
```

```
1905
         128
2241
         128
3051
         114
3005
         156
3127
         90
1305
         95
1620
         111
1646
         115
2231
         146
1746
         125
2320
         121
1207
         210
1429
         252
1214
         255
1018
         117
1186
         129
1106
         120
718
         73
         101
665
223
         75
206
         86
226
         140
147
         144
208
         168
39 #_N_cpue_and_surveyabundance_observations
# year seas index obs se(log)
#Logbook GLM
1976 1 3 20.33 0.2
1977 1 3 16.16 0.2
1978 1 3 10.79 0.2
1979 1 3 11.37 0.2
1980 1 3 11.32 0.2
1981 1 3 13.33 0.2
1982 1 3 9.29 0.2
1983 1 3 9.32 0.2
1984 1 3 6.99 0.2
1985 1 3 6.26 0.2
1986 1 3 3.58 0.2
1987 1 3 4.24 0.2
1988 1 3 4.56 0.2
1989 1 3 5.45 0.2
1990 1 3 4.36 0.2
1991 1 3 3.94 0.2
1992 1 3 2.23 0.2
1993 1 3 2.74 0.2
1994 1 3 2.82 0.2
1995 1 3 2.47 0.2
1996 1 3 2.54 0.2
1997 1 3 2.36 0.2
#NMFS Trawl Survey no water hauls
1977 1 4 15043.15776 0.77
1980 1 4 4579.96215 0.31
```

```
1983 1 4 6267.97273 0.16
1986 1 4 2811.65104 0.12
1989 1 4 5855.76262 0.3
1992 1 4 4154.87076 0.49
1995 1 4 1884.36548 0.56
1998 1 4 3019.97203 0.26
2001 1 4 5226.82217 0.27
2004 1 4 11365.7 0.35
#WDFW Tag Survey in numbers of fish
1986 1 5 119700 0.16
1987 1 5 208500 0.15
1988 1 5 165400 0.11
1989 1 5 149000 0.09
1990 1 5 123800 0.08
1991 1 5 114400 0.08
1992 1 5 127300 0.09
2 # discard type
0 # N discard obs
0 # N meanbodywt obs
-1 # comp tail compression
0.0001 # add to comp
42 # N LengthBins
28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110
17 # N Length obs
#Yr Seas Flt/Svy Gender Part Nsamp(Fem-Male)
#Com 1 Length Comps
1975 1 1 3 0 14.6 0.0000000000 0.0000000000
                                                0.0000000000
                                                                   0.0000000000
                                                                                       0.0000000000
                                                                                                          0.0000000000
                                                                                                                             0.0000000000
                                                                                                                                                 0.0000000000
         0.0000000000
                            0.0000000000
                                                0.0001489417
                                                                   0.0031108317
                                                                                       0.0017565662
                                                                                                          0.0011852852
                                                                                                                             0.0025418072
                                                                                                                                                 0.0029410116
         0.0065371858
                            0.0067358572
                                                0.0107029144
                                                                   0.0214315447
                                                                                       0.0213849300
                                                                                                          0.0334709147
                                                                                                                             0.0584148774
                                                                                                                                                 0.0752367302
         0.0779870928
                            0.0487304609
                                                0.0375367740
                                                                   0.0303834109
                                                                                       0.0274517735
                                                                                                          0.0170846334
                                                                                                                             0.0116896115
                                                                                                                                                 0.0143208604
         0.0168067903
                            0.0117262534
                                                0.0128513433
                                                                   0.0105013505
                                                                                       0.0094854849
                                                                                                          0.0027994129
                                                                                                                             0.0049533924
                                                                                                                                                 0.0023328711
         0.0019703447
                            0.0028396070
                                                0.0000000000
                                                                   0.0000000000
                                                                                       0.0000000000
                                                                                                          0.0000000000
                                                                                                                             0.0000000000
                                                                                                                                                 0.0000000000
         0.0000000000
                            0.0000000000
                                                0.0000000000
                                                                   0.0000744708
                                                                                       0.0010472954
                                                                                                          0.0034707080
                                                                                                                             0.0015286394
                                                                                                                                                 0.0031044549
         0.0032655141
                            0.0084576705
                                                0.0110242922
                                                                   0.0168913290
                                                                                       0.0368298376
                                                                                                          0.0533668091
                                                                                                                             0.0686534366
                                                                                                                                                 0.0532135656
         0.0522671670
                            0.0328809278
                                                0.0221313752
                                                                   0.0163318470
                                                                                       0.0091745992
                                                                                                          0.0077709247
                                                                                                                             0.0022468499
                                                                                                                                                 0.0022993468
         0.0018747793
                            0.0015849008
                                                0.0004976894
                                                                   0.0008954757
                                                                                       0.0004976894
                                                                                                          0.0009953787
                                                                                                                             0.0004976894
                                                                                                                                                 0.0000000000
         0.0000744708
                            0.0000000000
                                                0.0000000000
                                                                   0.0000000000
1976 1 1 3 0 40.0 0.0000000000 0.00000000000
                                                0.0000000000
                                                                   0.0000000000
                                                                                       0.0000000000
                                                                                                          0.0000000000
                                                                                                                             0.0000000000
                                                                                                                                                 0.0000000000
         0.0000000000
                                                                   0.0000000000
                                                                                                          0.0000000000
                                                                                                                             0.0042932706
                                                                                                                                                 0.0063050163
                            0.0000000000
                                                0.0000000000
                                                                                       0.0000000000
         0.0104633974
                             0.0186452699
                                                0.0148915575
                                                                   0.0230734300
                                                                                       0.0234780986
                                                                                                          0.0393022855
                                                                                                                             0.0415838104
                                                                                                                                                 0.0755253064
         0.0645223509
                            0.0826280626
                                                                   0.0694784718
                                                                                       0.0468097104
                                                                                                          0.0427862189
                                                                                                                             0.0327274901
                                                0.0595546326
                                                                                                                                                 0.0163637451
         0.0144868889
                            0.0081818725
                                                0.0246805071
                                                                   0.0207919052
                                                                                       0.0081818725
                                                                                                          0.0040234915
                                                                                                                             0.0021466353
                                                                                                                                                 0.0021466353
         0.0042932706
                            0.0084516516
                                                0.0000000000
                                                                   0.0000000000
                                                                                       0.0000000000
                                                                                                          0.0000000000
                                                                                                                             0.0000000000
                                                                                                                                                 0.0000000000
         0.0000000000
                             0.0000000000
                                                0.0000000000
                                                                   0.0000000000
                                                                                       0.0000000000
                                                                                                          0.0000000000
                                                                                                                             0.0021466353
                                                                                                                                                 0.0000000000
         0.0040234915
                            0.0041583810
                                                0.0021466353
                                                                   0.0126100327
                                                                                       0.0103285078
                                                                                                          0.0230734300
                                                                                                                             0.0374254293
                                                                                                                                                 0.0431908875
         0.0393022855
                             0.0166335242
                                                0.0143519993
                                                                   0.0124751431
                                                                                       0.0042932706
                                                                                                          0.0000000000
                                                                                                                             0.0040234915
                                                                                                                                                 0.0000000000
```

0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.0000000000	0.0000000000	0.0000000000	0.0000000000				
1977 1 1 3 0 26.2 0.00000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0076335878	0.0076335878
0.0114503817	0.0038167939	0.0229007634	0.0534351145	0.0687022901	0.0877862595	0.0381679389	0.0725190840
0.0496183206	0.0419847328	0.0229007634	0.0496183206	0.0725190840	0.0419847328	0.0610687023	0.0610687023
0.0496183206	0.1717557252	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.0038167939	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.000000000	0.0000000000	0.0000000000	0.0000000000		***************************************	***************************************	
1978 1 1 3 0 22.3 0.00000000000		0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.000000000	0.0064070830	0.0000000000	0.0000000000	0.0009766171	0.0064070830	0.0000000000	0.0181416502
0.0909142142	0.0407371492	0.0373628991	0.0353066833	0.0137907830	0.0107579501	0.0107579501	0.0245487331
0.0137907830	0.0299791990	0.0019532341	0.0319324331	0.0234691344	0.0249779695	0.0549571686	0.0986241689
0.0372447548	0.0550601503	0.0510507004	0.0324646513	0.0221511001	0.0536391343	0.0230247354	0.0368155184
0.00372447348	0.0350001303	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.0000000000	0.00000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.0064070830	0.000000000
0.000000000	0.0015159003	0.0064070830	0.0107579501	0.0279229832	0.0009766171	0.0004070830	0.0000000000
0.000000000	0.0213139003	0.0107579501	0.0107379301	0.00000000000	0.0009766171	0.000000000	0.0000000000
		0.0107379301			0.0009766171		0.000000000
0.000000000	0.0000000000		0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.0000000000	0.0000000000	0.0000000000	0.0000000000				
#Rec Length Comps	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000
1981 1 2 3 0 9.8 0.00000000000		0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.000000000	0.0000000000	0.0000000000	0.0102040816	0.0102040816	0.0000000000	0.0000000000	0.0000000000
0.0102040816	0.0102040816	0.0000000000	0.0000000000	0.0000000000	0.0102040816	0.0000000000	0.0000000000
0.000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.000000000	0.0000000000	0.0000000000	0.0102040816	0.0000000000	0.0000000000	0.0102040816	0.0000000000
0.000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.000000000	0.0204081633	0.0000000000	0.0204081633	0.0000000000	0.0204081633	0.0816326531	0.0612244898
0.1020408163	0.0714285714	0.0714285714	0.0408163265	0.0714285714	0.0306122449	0.0306122449	0.1326530612
0.0306122449	0.0306122449	0.0000000000	0.0510204082	0.0306122449	0.0102040816	0.0102040816	0.0000000000
0.0000000000	0.0000000000	0.0000000000	0.0102040816	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.0000000000	0.0000000000	0.0000000000	0.0000000000				
1982 1 2 3 0 7.2 0.00000000000		0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.000000000	0.0138888889	0.0138888889	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0138888889
0.000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.000000000	0.0000000000	0.0138888889	0.0000000000	0.0138888889	0.0000000000	0.0138888889	0.0138888889
0.000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0138888889
0.0000000000	0.0000000000	0.0138888889	0.0138888889	0.0000000000	0.0138888889	0.0694444444	0.0694444444
0.0972222222	0.0972222222	0.1111111111	0.0833333333	0.0138888889	0.0694444444	0.0416666667	0.0694444444
0.0138888889	0.027777778	0.027777778	0.0000000000	0.0000000000	0.027777778	0.0000000000	0.0138888889
0.0138888889	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.000000000	0.0000000000	0.0000000000	0.0000000000				
1983 1 2 3 0 3.9 0.00000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0256410256
0.0000000000	0.0512820513	0.0000000000	0.0000000000	0.0256410256	0.0000000000	0.0000000000	0.0000000000
0.0256410256	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.000000000	0.0256410256	0.0512820513	0.0512820513	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.000000000	0.0000000000	0.0000000000	0.00000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000

0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.0000000000	0.0256410256	0.0512820513	0.0000000000	0.0256410256	0.0000000000	0.0000000000	0.0512820513
0.0000000000	0.1282051282	0.1025641026	0.0512820513	0.1282051282	0.0256410256	0.1025641026	0.0000000000
0.0000000000	0.0256410256	0.0256410256	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.0000000000	0.0000000000	0.0000000000	0.0000000000				
#NMFS Survey Length Comps							
1986 1 4 3 0 99 0.00000000000	0.0000000000	0.0000000000	0.0010924626	0.0066860944	0.0049146845	0.0140637093	0.0022254385
0.0059680308	0.0097036381	0.0000000000	0.0000000000	0.0000000000	0.0008829109	0.0169583160	0.0000000000
0.0101646517	0.0526240057	0.0107625724	0.0290676069	0.1079526246	0.0097148142	0.0122336249	0.0498816732
0.0327640979	0.0961101627	0.0230548718	0.0262470418	0.0125954508	0.0256742673	0.0261436630	0.0118103306
0.0008829109	0.0257315448	0.0000000000	0.0073007793	0.0126904475	0.0000000000	0.0000000000	0.0000000000
0.0000000000	0.0063955162	0.0000000000	0.0008144574	0.0000000000	0.0224681272	0.0026948341	0.0085776473
0.0019362572	0.0011217998	0.0000000000	0.0000000000	0.0120589986	0.0009667316	0.0000000000	0.0050152693
0.0056592914	0.0312427530	0.0657433356	0.0216997712	0.0028582844	0.0123188426	0.0277725778	0.0513639018
0.0223507783	0.0095108506	0.0011036387	0.0116692325	0.0278717656	0.0008829109	0.0000000000	0.0000000000
0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.0000000000	0.0000000000	0.0000000000	0.0000000000				
1989 1 4 3 0 99 0.0013070357	0.0000000000	0.0030014599	0.0375334563	0.0193774252	0.0201898203	0.0029934560	0.0000000000
0.0083248492	0.0394535902	0.0063638954	0.0199168876	0.0020537990	0.0017056296	0.0122867763	0.0085113399
0.0264800799	0.0609296362	0.0338108456	0.0608856148	0.0602901251	0.0125637110	0.0267754236	0.0137058665
0.0074796381	0.0150137027	0.0096639005	0.0109621320	0.0171435386	0.0028261747	0.0169034218	0.0064935585
0.0141516834	0.0230576152	0.0052841702	0.0014975284	0.0063606938	0.0016079821	0.0025740520	0.0048783728
0.0000000000	0.0025740520	0.0200681612	0.0000000000	0.0017368448	0.0032303713	0.0076052992	0.0017368448
0.0013998809	0.0000000000	0.0000000000	0.0254683878	0.0157756733	0.0390774073	0.0042020439	0.0053802169
0.0081607694	0.0120522622	0.0090211879	0.0404388695	0.0425006723	0.0393127217	0.0121611152	0.0034128600
0.0180431762	0.0517587755	0.0000000000	0.0031999565	0.0073235622	0.0000000000	0.0000000000	0.0000000000
0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.0000000000	0.0000000000	0.0000000000	0.0000000000				
#WDFW Tagging Length Comps							
1986 1 5 3 0 99 0.00000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.0061983471	0.0061983471	0.0061983471	0.0041322314	0.0082644628	0.0082644628	0.0103305785	0.0144628099
0.0082644628	0.0247933884	0.0000000000	0.0061983471	0.0020661157	0.0041322314	0.0020661157	0.0000000000
0.0000000000	0.0000000000	0.0020661157	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.0000000000	0.0020661157	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.0000000000	0.0000000000	0.0020661157	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.0000000000	0.0165289256	0.0289256198	0.0165289256	0.0454545455	0.0557851240	0.0888429752	0.0847107438
0.0661157025	0.1033057851	0.0578512397	0.0743801653	0.0743801653	0.0289256198	0.0289256198	0.0185950413
0.0289256198	0.0185950413	0.0185950413	0.0103305785	0.0103305785	0.0000000000	0.0041322314	0.0020661157
0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.0000000000	0.0000000000	0.0000000000	0.0000000000				
1987 1 5 3 0 99 0.00000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0018450185	0.0110701107
0.0221402214	0.0129151292	0.0221402214	0.0055350554	0.0055350554	0.0055350554	0.0110701107	0.0092250923
0.0110701107	0.0110701107	0.0055350554	0.0110701107	0.0036900369	0.0055350554	0.0073800738	0.0055350554
0.0000000000	0.0018450185	0.0000000000	0.0036900369	0.0000000000	0.0000000000	0.0000000000	0.0018450185
0.0018450185	0.0018450185	0.0000000000	0.0018450185	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0055350554
0.0202952030	0.0424354244	0.0461254613	0.0313653137	0.0147601476	0.0184501845	0.0535055351	0.0664206642
0.0553505535	0.0885608856	0.0830258303	0.0885608856	0.0571955720	0.0424354244	0.0313653137	0.0276752768
0.0129151292	0.0147601476	0.0018450185	0.0092250923	0.0018450185	0.0018450185	0.0018450185	0.0018450185
0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.0000000000	0.0000000000	0.0000000000	0.0000000000				

1988 1 5 3 0 99 0.00000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.0010224949	0.0030674847	0.0020449898	0.0092024540	0.0153374233	0.0276073620	0.0276073620	0.0214723926
0.0092024540	0.0051124744	0.0051124744	0.0061349693	0.0040899796	0.0000000000	0.0040899796	0.0061349693
0.0051124744	0.0061349693	0.0020449898	0.0030674847	0.0000000000	0.0010224949	0.0000000000	0.0010224949
0.0010224949	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0010224949	0.0000000000	0.0000000000
0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.0010224949	0.0020449898	0.0040899796	0.0173824131	0.0449897751	0.1022494888	0.1370143149	0.1308793456
0.0715746421	0.0429447853	0.0490797546	0.0439672802	0.0490797546	0.0398773006	0.0214723926	0.0214723926
0.0235173824	0.0112474438	0.0071574642	0.0071574642	0.0010224949	0.0020449898	0.0000000000	0.0010224949
0.0000000000	0.0000000000	0.00000000000	0.00000000000	0.0000000000	0.00000000000	0.0000000000	0.00000000000
0.000000000	0.0000000000	0.0000000000	0.0000000000	0.000000000	0.000000000	0.000000000	0.000000000
1989 1 5 3 0 99 0.0000000000		0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0010373444
0.0020746888	0.0062240664	0.0041493776	0.0010373444	0.0010373444	0.0082987552	0.0124481328	0.0072614108
0.0072614108	0.0155601660	0.0176348548	0.0124481328	0.0103734440	0.0031120332	0.0020746888	0.0020746888
0.0020746888	0.0031120332	0.0010373444	0.0031120332	0.0010373444	0.0000000000	0.0010373444	0.0000000000
0.000000000	0.0010373444	0.0000000000	0.0010373444	0.0000000000	0.0000000000	0.0010373444	0.0000000000
0.000000000	0.0010373444	0.0000000000	0.0000000000	0.0000000000	0.0010373444	0.0000000000	0.0000000000
0.0010373444	0.0041493776	0.0145228216	0.0165975104	0.0145228216	0.0145228216	0.0321576763	0.0580912863
0.1410788382	0.1504149378	0.1504149378	0.1026970954	0.0539419087	0.0248962656	0.0248962656	0.0217842324
0.0155601660	0.0165975104	0.0041493776	0.0041493776	0.0010373444	0.0020746888	0.0000000000	0.0000000000
0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.0000000000	0.0000000000	0.0000000000	0.0000000000				
1990 1 5 3 0 99 0.0000000000		0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0177619893
0.0195381883	0.0408525755	0.0142095915	0.0142095915	0.0035523979	0.0106571936	0.0284191829	0.0284191829
0.0088809947	0.0071047957	0.0053285968	0.0088809947	0.0071047957	0.0088809947	0.0142095915	0.0124333925
0.0142095915	0.0035523979	0.0017761989	0.0000000000	0.0017761989	0.0000000000	0.0000000000	0.0000000000
0.0017761989	0.0017761989	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.0017761989	0.0239786856	0.0373001776	0.0390763766	0.0195381883	0.0186500888	0.0355239787	0.0497335702
0.0444049734	0.0248667851	0.0621669627	0.0799289520	0.1154529307	0.0710479574	0.0506216696	0.0159857904
0.0088809947	0.0088809947	0.0115452931	0.0035523979	0.0000000000	0.0008880995	0.0008880995	0.0000000000
0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.0000000000	0.0000000000	0.0000000000	0.0000000000				
1991 1 5 3 0 99 0.0000000000		0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0009832842	0.0029498525
0.0167158309	0.0235988201	0.0098328417	0.0098328417	0.0127826942	0.0245821042	0.0363815143	0.0294985251
0.0127826942	0.0068829892	0.0049164208	0.0108161259	0.0029498525	0.0039331367	0.0039331367	0.0009832842
0.0009832842	0.0019665683	0.0029498525	0.0009832842	0.0019665683	0.0000000000	0.0019665683	0.00000000000
0.0000000000	0.0000000000	0.00000000000	0.00000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.0039331367	0.0167158309	0.0599803343	0.0521140610	0.0255653884	0.0452310718	0.0845624385	0.1022615536
0.0039331307	0.0432645034	0.0432645034	0.0403146509	0.0233033884	0.0481809243	0.0344149459	0.0334316618
	0.0049164208						
0.0196656834		0.0058997050	0.0009832842	0.0000000000	0.0000000000	0.0009832842	0.0000000000
0.000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0050020520	0.0140551246
1992 1 5 3 0 99 0.00000000000		0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0059820538	0.0149551346
0.0269192423	0.0378863410	0.0109670987	0.0079760718	0.0139581256	0.0338983051	0.0239282154	0.0209371884
0.0129611167	0.0169491525	0.0089730808	0.0049850449	0.0029910269	0.0049850449	0.0019940179	0.0029910269
0.0009970090	0.0009970090	0.0000000000	0.0009970090	0.0000000000	0.0000000000	0.0009970090	0.0000000000
0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0009970090	0.0000000000	0.0000000000	0.0109670987
0.0279162512	0.0797607178	0.1026919242	0.0598205384	0.0289132602	0.0438683948	0.0737786640	0.0767696909
0.0667996012	0.0388833500	0.0269192423	0.0209371884	0.0219341974	0.0129611167	0.0129611167	0.0119641077

0.0109670987 0.0000000000 0.00000000000 1993 1 5 3 0 99 0.00000000000 0.0240963855 0.0120481928 0.0000000000 0.0000000000 0.00000000		0.00000 0.00000 0.00000 0.04016 0.00502 0.00200 0.00000 0.00000 0.08433 0.03212 0.00000 0.00000	00000 00000 00000 06426 00803 80321 00000 00000 73494 85141 00000 00000	0.0019940179 0.0000000000 0.0000000000 0.0000000000		0.000000000 0.0000000000 0.000000000 0.00000000		0.000000000 0.0000000000 0.0000000000		0.0009970090 0.0000000000 0.0190763052 0.0030120482 0.0010040161 0.000000000 0.0092369478 0.0070281124 0.000000000 0.000000000 0.0000000000		0.0000000000 0.0000000000 0.0040160643 0.0251004016 0.0000000000 0.0000000000 0.0000000000		0.000000000 0.0000000000 0.0150602410 0.0261044177 0.0020080321 0.0000000000 0.0000000000 0.0020080321 0.0763052209 0.0030120482 0.0000000000 0.0000000000		
20 #_N_age_bins 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20																
#_N_age	eerror_defin	itions														
1.5 18.5 35.5	2.5 19.5 36.5	3.5 20.5 37.5	4.5 21.5 38.5	5.5 22.5 39.5	6.5 23.5 40.5	7.5 24.5	8.5 25.5	9.5 26.5	10.5 27.5	11.5 28.5	12.5 29.5	13.5 30.5	14.5 31.5	15.5 32.5	16.5 33.5	17.5 34.5
0.001 0.001 0.001	0.001 0.001 0.001	0.001 0.001 0.001	0.001 0.001 0.001	0.001 0.001 0.001	0.001 0.001 0.001	0.001 0.001	0.001 0.001	0.001 0.001	0.001 0.001	0.001 0.001	0.001 0.001	0.001 0.001	0.001 0.001	0.001 0.001	0.001 0.001	0.001 0.001
1.5 18.5 35.5	2.5 19.5 36.5	3.5 20.5 37.5	4.5 21.5 38.5	5.5 22.5 39.5	6.5 23.5 40.5	7.5 24.5	8.5 25.5	9.5 26.5	10.5 27.5	11.5 28.5	12.5 29.5	13.5 30.5	14.5 31.5	15.5 32.5	16.5 33.5	17.5 34.5
5 0.715501191 1.465598832		0.80926 1.55936	3396 1037	0.90302: 1.65312:	5602 3242											3
	0.00000 0.00000 0.00000 0.02409 0.01204 0.00000 0.00000 0.02710 0.04718 0.00200 0.00000 0.00000 #_N_age 1.5 18.5 35.5 0.001 0.001 1.5 18.5 35.5 0.71550 1.46559	0.0000000000 0.000000000 0.000000000 0.0240963855 0.0120481928 0.00000000000 0.000000000 0.000000000 0.00271084337 0.0471887550 0.0020080321 0.0000000000 0.0000000000 0.0000000000	0.00000000000 0.00000 0.0000000000 0.00000 0.3 0 99 0.0000000000 0.00000 0.0240963855 0.04016 0.0120481928 0.00502 0.0000000000 0.00000 0.0000000000 0.00000 0.0021084337 0.08433 0.0471887550 0.03212 0.0020080321 0.00000 0.0000000000 0.00000 0.00000000	0.0000000000 0.0000000000 0.0000000000	0.0000000000	0.0000000000	0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.000000000 0.0240963855 0.0401606426 0.0301204819 0.01204 0.0000000000 0.000000000 0.000000000 0.0010040161 0.00100 0.0000000000 0.0000000000 0.0000000000 0.000000000 0.000000000 0.00271084337 0.0843373494 0.1144578313 0.10742 0.0471887550 0.0321285141 0.0170682731 0.02208 0.0020080321 0.0000000000 0.000000000 0.000000000 0.0000000000 0.0000000000 0.000000000 0.000000000 0.0000000000 0.0000000000 0.000000000 0.000000000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 <t< td=""><td>0.0000000000</td><td>0.0000000000</td><td>0.0000000000 0.000000000 0.000000000 0.000000</td><td>0.0000000000 0.000000000 0.000000000 0.000000</td><td>0.0000000000</td><td>0.0000000000</td><td>0.0000000000</td><td>0.0000000000 0.0000000000<</td><td>0.0000000000</td></t<>	0.0000000000	0.0000000000	0.0000000000 0.000000000 0.000000000 0.000000	0.0000000000 0.000000000 0.000000000 0.000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000 0.0000000000<	0.0000000000

55 # N Agecomp obs

3

3

#Yr Seas Flt/Svy Gender Part Ageerr Lbin_lo Lbin_hi Nsamp datavector(female-male)

3

#Com 1 Age Comps

 $1981\ 1\ 1\ 3\ 0\ 2\ -1\ -1\ 40.0\ 0\ 0.006869185\ 0.052506503\ 0.069993811\ 0.067419153\ 0.059190293\ 0.072991602\ 0.07334632\ 0.084607436\ 0.119046534\ 0.049943728\ 0.01337834\ 0.011897026\ 0.005864662\ 0.008774407\ 0.00023413\ 0.$

```
1984\ 1\ 1\ 3\ 0\ 2\ -1\ -1\ 33.9\ 0\ 0\ 0.036025544\ 0.120691126\ 0.205723659\ 0.195994048\ 0.080291529\ 0.048373013\ 0.022136789\ 0.015551624\ 0.009605419\ 0.018134869\ 0.01333085\ 0.001251173
0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.001251173\ 0.0
1985 \ 1 \ 1 \ 3 \ 0 \ 2 \ -1 \ -1 \ 31.2 \ 0 \ 0.000298442 \ 0.001987681 \ 0.040266078 \ 0.101435357 \ 0.235397499 \ 0.28549755 \ 0.078193054 \ 0.076501121 \ 0.040042177 \ 0.015636681 \ 0.008692065 \ 0.015636681 \ 0.008692065 \ 0.015636681 \ 0.008692065 \ 0.015636681 \ 0.008692065 \ 0.015636681 \ 0.008692065 \ 0.015636681 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.008692065 \ 0.0086920
0.007910621\ 0.00018456\ 0\ 0\ 0\ 0\ 0\ 0.000298442\ 0.000298442\ 0.015860582\ 0.015149817\ 0.015263699\ 0.044298886\ 0.000596884\ 0.00055368\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0
1986\ 1\ 1\ 3\ 0\ 2\ -1\ -1\ 40.0\ 0\ 0.003131076\ 0.025630353\ 0.068767155\ 0.106038917\ 0.146744688\ 0.15963359\ 0.156209909\ 0.083834838\ 0.053998121\ 0.043001166\ 0.018085335\ 0.006186117
0.011920448\,0.018312428\,0.00430184\,0.004539594\,0.006395238\,0.0\,0.0\,005372104\,0.004577363\,0.01264405\,0.018918589\,0.024507474\,0.004485753\,0.006036146\,0.006427093\,0.0\,00026961
3.10042E-05 0 0 0 0 0 0 0 0
1987\ 1\ 1\ 3\ 0\ 2\ -1\ -1\ 40.0\ 0\ 0.008008495\ 0.046026893\ 0.084541681\ 0.126700838\ 0.171608157\ 0.136863551\ 0.103892467\ 0.102368503\ 0.040526178\ 0.014946603\ 0.005422533\ 0.000826192
0.002510307\ 0.000778998\ 0.003096766\ 0.003567064\ 0\ 0.000778998\ 0\ 0\ 0.006975622\ 0.020496225\ 0.00801659\ 0.044379211\ 0.032795377\ 0.022623806\ 0.005563232\ 0.005472926\ 0.000843368\ 0\ 0.00567064\ 0.00567064\ 0.00567064\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975620\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975622\ 0.006975
0.000384348.0.0.0.0.0
1988\ 1\ 1\ 3\ 0\ 2\ -1\ -1\ 40.0\ 0\ 0.031461304\ 0.143703543\ 0.063950551\ 0.097407275\ 0.101245268\ 0.07905152\ 0.094056031\ 0.058183815\ 0.044969992\ 0.022374834\ 0.012568141\ 0.007242449
0.000171169\ 0\ 0\ 0\ 0.005165158\ 0.002760466\ 0\ 0\ 0.019556469\ 0.049873815\ 0.05041191\ 0.032731189\ 0.008245977\ 0.004712567\ 0.004432702\ 0.004154582\ 0.029627873\ 0.00798535\ 0.015970701\ 0\ 0
0.00798535 0 0 0 0 0
1989\ 1\ 1\ 3\ 0\ 2\ -1\ -1\ 40.0\ 0\ 0.00438203\ 0.119850817\ 0.308531241\ 0.160874677\ 0.074930028\ 0.047520555\ 0.024461295\ 0.021788907\ 0.017132945\ 0.007788129\ 0.000398926\ 0.007637376\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.0000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.0000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.000398926\ 0.0
0.001433006\ 0.000379793\ 0.000345031\ 0\ 0.001433006\ 0\ 0\ 0.001433006\ 0\ 0\ 0.00143906\ 0\ 0\ 0.00144961\ 0.06636062\ 0.076382447\ 0.024314279\ 0.019148552\ 0.01004375\ 0.000268011\ 0.00101337\ 0\ 0.00134598\ 0\ 0.000790268\ 0\ 0\ 0
0\ 0\ 0\ 0\ 0\ 0.005861697\ 0.040707867\ 0.105617182\ 0.065616985\ 0.026057341\ 0.025919138\ 0.004247243\ 0.012543125\ 0\ 0.007902405\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0
1991\ 1\ 1\ 3\ 0\ 2\ -1\ -1\ 40.0\ 0\ 0.033978925\ 0.081646227\ 0.119145743\ 0.198796205\ 0.157053846\ 0.099018027\ 0.056862363\ 0.032448742\ 0.028190025\ 0.010605135\ 0.013072406\ 0.00600988\ 0.00600988\ 0.00600988\ 0.00600988\ 0.00600988\ 0.00600988\ 0.00600988\ 0.00600988\ 0.00600988\ 0.00600988\ 0.00600988\ 0.00600988\ 0.00600988\ 0.00600988\ 0.00600988\ 0.00600988\ 0.00600988\ 0.00600988\ 0.00600988\ 0.00600988\ 0.00600988\ 0.00600988\ 0.00600988\ 0.00600988\ 0.00600988\ 0.00600988\ 0.00600988\ 0.00600988\ 0.00600988\ 0.00600988\ 0.00600988\ 0.00600988\ 0.00600988\ 0.00600988\ 0.0060098\ 0.0060098\ 0.0060098\ 0.0060098\ 0.0060098\ 0.0060098\ 0.0060098\ 0.0060098\ 0.0060098\ 0.0060098\ 0.0060098\ 0.0060098\ 0.0060098\ 0.0060098\ 0.0060098\ 0.0060098\ 0.0060098\ 0.0060098\ 0.0060098\ 0.0060098\ 0.0060098\ 0.0060098\ 0.0060098\ 0.0060098\ 0.0060098\ 0.0060098\ 0.0060098\ 0.0060098\ 0.0060098\ 0.0060098\ 0.0060098\ 0.0060098\ 0.0060098\ 0.0060098\ 0.0060098\ 0.0060098\ 0.0060098\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.0060099\ 0.006009\ 0.00
0.007223898\ 0\ 0.001177783\ 0.002355567\ 0\ 0\ 0\ 0.026909853\ 0.018198879\ 0.031780812\ 0.028880766\ 0.01803825\ 0.015154818\ 0.008202836\ 0.005042711\ 0\ 0.000206305\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0
1992\ 1\ 1\ 3\ 0\ 2\ -1\ -1\ 40.0\ 0\ 0.174545732\ 0.141631532\ 0.118847697\ 0.08471211\ 0.071157023\ 0.083169424\ 0.041690113\ 0.026168794\ 0.010159997\ 0.01511247\ 0.009142544\ 0.00045196\ 0.003998033
0.008222562\ 0.000692762\ 0.000117528\ 0.000117528\ 0.000117528\ 0\ 0\ 0\ 0.073907669\ 0.071856319\ 0.017431569\ 0.012555422\ 0.013709238\ 0.005386803\ 0.007817122\ 8.52498E-05\ 0.007312801\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0
1993\ 1\ 1\ 3\ 0\ 2\ -1\ -1\ 40.0\ 0\ 0.115904949\ 0.173321339\ 0.099808484\ 0.102417754\ 0.070684752\ 0.134930006\ 0.032190892\ 0.009603728\ 0.073164131\ 0.004309527\ 0.015265726\ 0.006342657
0.001722002\ 0.004568442\ 0.000487329\ 0.001264005\ 0\ 0\ 0\ 0\ 0.050118204\ 0.050526469\ 0.040459262\ 0.005636169\ 0.001660381\ 0.003626994\ 0.001337019\ 0.000649777\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0
1994\ 1\ 1\ 3\ 0\ 2\ -1\ -1\ 40.0\ 0\ 0.107436681\ 0.307512726\ 0.194312593\ 0.094545405\ 0.038646301\ 0.019124911\ 0.024868623\ 0.011072403\ 0.006379807\ 0.001531115\ 0.002731525\ 0.000551815
0.001267983\ 0.00394701\ 0.000275908\ 0\ 0.000154992\ 0\ 0\ 0\ 0.024139059\ 0.091469083\ 0.047061823\ 0.012829561\ 0.001856329\ 0.003545312\ 0.004144914\ 0\ 0\ 0.000297061\ 0\ 0\ 0\ 0.000297061\ 0\ 0\ 0
1995\ 1\ 1\ 3\ 0\ 2\ -1\ -1\ 40.0\ 0\ 0.020855938\ 0.186631402\ 0.346820219\ 0.143670099\ 0.055176057\ 0.017753033\ 0.003888755\ 0.007216244\ 0.002702272\ 0.003355004\ 0.002427255\ 0\ 0.000212006
0.000764918\ 0.005834658\ 0.000143364\ 0\ 0.00E + 00\ 0\ 0\ 0.008916665\ 0.051895815\ 0.106864094\ 0.027857337\ 0.002375977\ 0.002324269\ 0.001459598\ 0\ 0\ 0\ 0.000855021\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0
1996\ 1\ 1\ 3\ 0\ 2\ -1\ -1\ 40.0\ 0\ 0.057656682\ 0.124272217\ 0.266098901\ 0.276199336\ 0.05842101\ 0.043081862\ 0.026935931\ 0.011673259\ 0.00765892\ 0.008377882\ 0\ 0\ 0.000146652\ 0.009967668\ 0\ 0\ 0\ 0\ 0
0.0011215279\ 0.038182338\ 0.02544157\ 0.017995599\ 0.011076331\ 0\ 0.002756044\ 0.001159518\ 0\ 0.001683\ 0\ 0\ 0\ 0\ 0\ 0\ 0
1997\ 1\ 1\ 3\ 0\ 2\ -1\ -1\ 40.0\ 0\ 0.027943356\ 0.164570217\ 0.200047866\ 0.15880798\ 0.134765534\ 0.040889581\ 0.031650072\ 0.019976674\ 0.033161279\ 0.024193226\ 0.00134466\ 0.001993163
0.003397766 \ 0.007539747 \ 0.001993163 \ 0.001993163 \ 0.00 \ 0.013625481 \ 0.067975335 \ 0.022301909 \ 0.022612928 \ 0.010704626 \ 0.006015221 \ 0.001346798 \ 0.000381302 \ 0.000768953 \ 0.000 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.000768953 \ 0.0000768953 \ 0.000768953 \ 0.000768953 \ 0.00076953 \ 0.00076953 \ 
1998\ 1\ 1\ 3\ 0\ 2\ -1\ -1\ 40.0\ 0\ 0.022571578\ 0.224078633\ 0.269319671\ 0.154833462\ 0.080761094\ 0.040775873\ 0.017793558\ 0.006973829\ 0.00449362\ 0.000770763\ 0.001291276\ 0.003484523\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001291276\ 0.001
0.000770763\ 0\ 0.001478371\ 0\ 0\ 0\ 0\ 0.00520524\ 0.063695051\ 0.045437909\ 0.018198033\ 0.018884286\ 0.013479797\ 0.002572789\ 0.001245003\ 0\ 0\ 0.00188488\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0
1999\ 1\ 1\ 3\ 0\ 2\ -1\ -1\ 40\ 0\ 0\ 0\ 010735673\ 0\ 087086226\ 0\ 246760247\ 0\ 223243455\ 0\ 104572668\ 0\ 064114745\ 0\ 048535482\ 0\ 026961615\ 0\ 006548026\ 0\ 002267982\ 0\ 0\ 000850155\ 0\ 001284383\ 0\ 0\ 0\ 0
2000\ 1\ 1\ 3\ 0\ 2\ -1\ -1\ 31.0\ 0\ 0.003312198\ 0.057174317\ 0.136052656\ 0.272972728\ 0.146809557\ 0.063522878\ 0.034794558\ 0.030235539\ 0.015478467\ 0.003989225\ 0.008744508\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.0048401\ 0.00
0.002845487\ 0\ 0\ 0\ 0\ 0\ 0.013087343\ 0.023209794\ 0.106994324\ 0.053986903\ 0.01045394\ 0.008649991\ 0.002845487\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0
2001 1 1 3 0 2 -1 -1 40 0 0 0 030990492 0 078880433 0 151138149 0 141684561 0 15465605 0 098778973 0 027077623 0 025856518 0 015439547 0 003379184 0 002575701 0 003379184 0 0 0 0 0 0
0\ 0\ 0.013815632\ 0.014871391\ 0.068850873\ 0.06235235\ 0.048272112\ 0.027560033\ 0.016944226\ 0.010813348\ 0.00268362\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0
2002\ 1\ 1\ 3\ 0\ 2\ -1\ -1\ 40.0\ 0\ 0.020643537\ 0.135452478\ 0.138246818\ 0.098044234\ 0.090768969\ 0.059515129\ 0.050170547\ 0.021561314\ 0.02609329\ 0.003934479\ 0.00196724\ 0.00196724\ 0.00196724\ 0.00\ 0\ 0\ 0\ 0
0.031179337\ 0.069312086\ 0.068583265\ 0.061816348\ 0.018065704\ 0.044048329\ 0.014953709\ 0.015397012\ 0.013429772\ 0.007424582\ 0.007424582\ 0\ 0\ 0\ 0\ 0\ 0\ 0
0.2464698331
                                                                                                                                                                                                                                                                                      0.1283697047
                                                                                                                                                                                                                                                                                                                                                     0.0577663671
                                                                                                                                                                                                                                                                                                                                                                                                                   0.0436456996
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0.0166880616
                              0.0179717587
                                                                                            0.0077021823
                                                                                                                                                          0.0154043646
                                                                                                                                                                                                                        0.0051347882
                                                                                                                                                                                                                                                                                      0.0064184852
                                                                                                                                                                                                                                                                                                                                                     0.0012836970
                                                                                                                                                                                                                                                                                                                                                                                                                   0.0000000000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0.0000000000
                              0.0012836970
                                                                                            0.0000000000
                                                                                                                                                          0.0000000000
                                                                                                                                                                                                                        0.0000000000
                                                                                                                                                                                                                                                                                      0.0000000000
                                                                                                                                                                                                                                                                                                                                                     0.0141206675
                                                                                                                                                                                                                                                                                                                                                                                                                   0.0693196406
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0.1219512195
                             0.0487804878
                                                                                                                                                                                                                                                                                                                                                     0.0025673941
                                                                                                                                                                                                                                                                                                                                                                                                                   0.0025673941
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0.0000000000
                                                                                            0.0256739409
                                                                                                                                                          0.0038510911
                                                                                                                                                                                                                        0.0128369705
                                                                                                                                                                                                                                                                                      0.0025673941
                             0.0000000000
                                                                                            0.0000000000
                                                                                                                                                          0.0000000000
                                                                                                                                                                                                                        0.0000000000
                                                                                                                                                                                                                                                                                      0.0000000000
                                                                                                                                                                                                                                                                                                                                                     0.0000000000
                                                                                                                                                                                                                                                                                                                                                                                                                   0.0000000000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0.0000000000
2004 1 1 3 0 2 -1 -1 40.0 0.0000000000 0.01324503310.0838852097
                                                                                                                                                                                                                        0.2582781457
                                                                                                                                                                                                                                                                                      0.1236203091
                                                                                                                                                                                                                                                                                                                                                     0.0529801325
                                                                                                                                                                                                                                                                                                                                                                                                                   0.0242825607
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0.0110375276
                             0.0022075055
                                                                                            0.0044150110
                                                                                                                                                          0.0022075055
                                                                                                                                                                                                                        0.0000000000
                                                                                                                                                                                                                                                                                      0.0000000000
                                                                                                                                                                                                                                                                                                                                                     0.0000000000
                                                                                                                                                                                                                                                                                                                                                                                                                   0.0000000000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0.0000000000
```

0.0000000000

0.0000000000

0.0000000000

0.0000000000

0.0000000000

0.0110375276

0.0485651214

0.1258278146

0.1479028			0.0110375276	0.0066225166	0.0000000000	0.0088300221	0.0066225166	0.0022075055
0.00220750	55 0.000	00000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
#Rec_Age Comps	6.0.0.0044247	79 0 022123894 0	022123894 0 017699	115 0 030973451 0 04	8672566 0 008849558	R 0 013274336 0 0132	7/336 0 0088/0558 0	0.004424779 0.013274336
0.004424779 0 0 0 0 0								
								017595308 0.011730205
0.008797654 0.00879	654 0.0029325	51 0.005865103 0	.005865103 0.002932	2551 0 0 0.005865103	0.052785924 0.09970	6745 0.058651026 0.04	41055718 0.05278592	4 0.06744868 0.04398827
0.029325513 0.01759								
								0729927 0.003649635 0.003649635
0 0 0 0 0.003649635 0								
				4 0 0 0 0 0 0 0 0 0 0 0 0 0				0 0 0 0.044052863 0.193832599
0.220264317 0.12334							403280 0 0 0 0 0 0 0 0	0 0 0.044032803 0.193832399
							0918 0 0 0 0 0 0 0 0 0	0 0 0.033816425 0.1352657
0.241545894 0.23671								
								16194332 0.012145749
			0 0 0 0.028340081 0	.113360324 0.1093117	41 0.068825911 0.12	5506073 0.028340081	0.064777328 0.01214	5749 0.012145749 0.012145749
0.004048583 0.00404								
								6012024 0.004008016
0.002004008 0.00200	008 0 0 0 0 0 0	.002004008 0.072	144289 0.166332665	0.124248497 0.09218	4369 0.080160321 0.0	152104208 0.01402803	6 0.012024048 0.0040	008016 0.004008016 0.002004008
	0 0 001886792	0 049056604 0 0	96226415 0 0811320	75 0 049056604 0 037	735849 0 022641509 (01509434 0 0056603	77 0 00754717 0 0018	886792 0.001886792 0.001886792
								0 0.001886792 0 0 0 0 0
								004454343 0.011135857 0 0
0.002227171 0.002222	171 0 0 0 0.002	2227171 0.024498	886 0.151447661 0.1	55902004 0.07795100	2 0.048997773 0.0289	53229 0.026726058 0	013363029 0.0044543	343 0.011135857 0.002227171
0.004454343 0 0 0 0 0								
								5521 0 0.00155521 0.00155521 0
								0155521 0 0 0 0 0 0.00311042 0 002169197 0 0.002169197
								002169197 0 0.002169197
								02242152 0 0 0 0 0 0 0 0 0
0.013452915 0.09865								322.2162 0 0 0 0 0 0 0 0 0
1998 1 2 3 0 2 -1 -1 40	0 0.002403846	6 0.007211538 0.0	67307692 0.1466346	15 0.127403846 0.0793	326923 0.067307692 (0.024038462 0.019230	769 0.002403846 0.00	02403846 0.007211538 0
0.002403846 0 0 0 0 0								
								0.001642036 0 0.001642036 0 0 0
0 0 0 0 0.047619048 0								0 0 0 0 0 0 0 0 0 0.001639344
0.03442623 0.077049								0 0 0 0 0 0 0 0 0 0.001639344
								001040583 0 0 0 0 0 0 0 0
0.002081165 0.015608								010100000000000000000000000000000000000
2002 1 2 3 0 2 -1 -1 40	0 0 0.00091074	47 0.053734062 0	.160291439 0.146630	237 0.094717668 0.07	3770492 0.035519126	5 0.014571949 0.0145	71949 0.010928962 0.	000910747 0.000910747
0.000910747 0.00091								
2003 1 2 3 0 2 -1 -1 40								
0.01545893			0.0067632850	0.0038647343	0.0000000000	0.0009661836	0.0009661836	0.0000000000
0.0000000 0.1091787			0.0000000000 0.0376811594	0.000000000 0.0299516908	0.000000000 0.0077294686	0.0048309179 0.0019323671	0.0657004831 0.00000000000	0.1439613527 0.0009661836
0.0000000			0.00000000000	0.0000000000	0.0077294080	0.00000000000	0.0000000000	0.0000000000
2004 1 2 3 0 2 -1 -1 40								
0.0194346			0.0017667845	0.0053003534	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.0000000			0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0265017668	0.1554770318
0.1749116			0.0477031802	0.0106007067	0.0053003534	0.0017667845	0.0035335689	0.0017667845
0.0000000	0.00	00000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000

#NMFS Survey Age Comps

2001 1 4 3 0 2 -1 -1 40.0 0.119	5511955 0.21070	0.140231	5543 0.03097985	53 0.0209665630	0.0337843188	0.0454866809
0.0162576739	0.0073745878	0.0039712182	0.0000000000	0.0020728571 0.000	0000000 0.001476	8564 0.0000000000
0.000000000	0.0000000000	0.0000000000	0.0000000000	0.0649520542 0.149	7722942 0.084926	6799 0.0214044940
0.0042836979	0.0025585764	0.0023129119	0.0025889516	0.0012448931 0.000	8701533 0.000000	0.0000000000
0.000000000	0.0000000000	0.0000000000	0.0000000000	0.000 0.0000000000	0.000000 0.000000	0.0000000000
2004 1 4 3 0 2 -1 -1 40.0 0.003	5952614 0.06289	0.097144	0.15244768	52 0.1472861247	0.0513114833	0.0291076123
0.0218298424	0.0168063783	0.0140589282	0.0141983541	0.0000000000 0.001	1644763 0.000000	0.0000000000
0.000000000	0.0000000000	0.0000000000	0.0000000000	0.0041222304 0.031	4111635 0.103353	4247 0.1263304322
0.0676519629	0.0187346499	0.0029694938	0.0038425081	0.0095699167 0.000	8440299 0.000000	0.0000000000
0.0000000000	0.0000000000	0.0000000000	0.0000000000 (0,000 0 0,000 0,000 0	0,00000 0 0,000000	0.0000000000

#WDFW Tagging Survey Age Comps

0 #_N_MeanSize-at-Age_obs

#Yr Seas Flt/Svy Gender Part Ageerr Ignore datavector(female-male)

samplesize(female-male)

0 # N environ variables

0 # N environ obs

999

ENDDATA

Filename: SS2NAMES.NAM

```
LCNDATA05d.dat
LCNCTL05.CTL
1
     #run number
0
      # 0=no Parameter read; use the init values in the CTL file; 1=use SS2.PAR
     #Show_run_progress_on_console_(0/1/2)
     #Produce_detailed_.rep_file_(0/1)
1
0
     #_N_nudata
      #_last_phase
Code_version_:_
       # burn in for mcmc chain
2
       # thinning interval for mcmc chain
.000 # jitter initial parm values
0.01 # push initial parm values away from bounds
-1
     # min year for spbio sd_report (negative value sets to styr-2; the virgin
level)
     # max year for spbio sd_report (negative value sets to endyr+1)
-1
```

Filename: FORECAST.SS2

```
# summary age for biomass reporting
     # 0=skip forecast; 1=normal; 2=force without sdreport required
     # Do_MSY: 0=skip; 1=calculate; 2=set to Fspr; 3=set to endyear(only
useful if set relative F from endyr)
      # target SPR
     # number of forecast years
12
12
     # number of forecast years with stddev
10
     # emphasis for the forecast recruitment devs that occur prior to endyyr+1
     # fraction of bias adjustment to use with forecast_recruitment_devs before
endyr+1
     # fraction of bias adjustment to use with forecast_recruitment_devs after
endyr
0.0
    # topend of 40:10 option; set to 0.0 for no 40:10
    # bottomend of 40:10 option
0.0
1.0 # OY scalar relative to ABC
     # for forecast: 1=set relative F from endyr; 2=use relative F read below
# relative Fs used for forecast; rows are seasons; columns are fleets
# Fleet 1 Fleet 2
0.5
    0.5
# verify end of input harvest rates
999
# specified actual catches into the future
# (negative values are not used, but there must be a sufficient number of
values)
# fleet1 fleet2
     -1
          -1 #year 1
                                       1
                            season
     -1
           -1 #year 2
                           season
     -1
           -1
               #year 3
                                      1
                           season
     -1
           -1
                #year 4
                                      1
                           season
                #year 5
     -1
           -1
                           season
     -1
           -1 #year 6
                           season
                                       1
     -1
          -1 #year 7
                          season
                                      1
     -1
          -1 #year 8
                          season
                                      1
     -1
          -1 #year 9
                          season
     -1
          -1
               #year 10
                         season
                                      1
                                      1
     -1
          -1
               #year 11
                         season
               #year 12
                                      1
     -1
           -1
                            season
```

Filename: SS2.STD

index	name	value std dev
1	SR_parm[1]	8.2295e+000 6.0926e-002
2	rec_dev1	4.0448e-001 3.4968e-001 -6.4972e-001 5.5649e-001
4	rec_dev1 rec dev1	1.8346e-001 3.6967e-001
5	_	-3.9555e-001 5.1451e-001
	rec_dev1	-5.2724e-001 4.6657e-001
6	rec_dev1	
7	rec_dev1	3.2428e-002 3.9414e-001
8	rec_dev1	1.0130e-001 4.7424e-001
9	rec_dev1	1.0869e+000 2.1447e-001
10	rec_dev1	-3.6691e-001 5.0167e-001
11	rec_dev1	-8.3942e-001 4.8202e-001
12	rec_dev1	-4.2364e-001 2.6594e-001
13	rec_dev1	-5.6783e-001 2.5719e-001
14	rec_dev1	-1.0160e-001 1.7944e-001
15	rec_dev1	-5.1036e-001 2.0569e-001
16	rec_dev1	1.9043e-001 1.1324e-001
17	rec_dev1	-2.0135e+000 3.8910e-001
18	rec_dev1	-7.5233e-001 1.6636e-001
19	rec_dev1	-2.5090e-001 1.3077e-001
20	rec_dev1	-4.0102e-001 1.7001e-001
21	rec_dev1	2.6525e-001 1.2684e-001
22	rec_dev1	3.9293e-001 1.4381e-001
23	rec_dev1	-5.0232e-001 4.1306e-001
24	rec_dev1	7.5193e-001 2.3349e-001
25	rec_dev1	6.8557e-001 2.7234e-001
26	rec_dev1	-9.6639e-002 4.6511e-001
27	rec_dev1	-1.3762e-001 4.6978e-001
28	rec_dev1	8.5178e-001 3.0361e-001
29	rec_dev1	1.7572e+000 3.1580e-001
30	rec_dev1	1.8330e+000 3.0397e-001
31	init_F[1]	3.9449e-003 2.2767e-004
32	init_F[2]	6.9670e-004 7.7643e-005
33	selparm[3]	7.3762e-001 1.6314e-001
34	selparm[4]	4.1939e+000 1.6927e+000
35	selparm[5]	-1.0529e+001 3.8664e+001
36	selparm[6]	-1.0696e+000 1.3400e-001
37	selparm[7]	1.2599e+000 9.6629e-001
38	selparm[11]	-4.9999e-001 1.1698e-001
39	selparm[12]	-6.4613e+000 2.3977e+000
40	selparm[15]	5.7274e-001 5.5487e-001
41	selparm[16]	9.4277e+000 3.0578e+001
42	selparm[17]	-1.0226e+001 3.9672e+001
43	selparm[18]	-2.4105e+000 4.5483e-001
44	selparm[19]	2.1334e-001 9.3221e-002
45	selparm[23]	1.0632e+000 9.5736e-002
46	selparm[27]	4.6271e+000 3.5876e-002
47	selparm[28]	1.6200e-001 2.6107e-001
48	selparm[29]	-3.2613e+000 2.0208e+000
49	selparm[30]	-1.3255e+000 3.8484e-001
50	selparm[31]	9.8950e+000 4.1573e+001
51	selparm[35]	-3.0891e-002 1.3149e-001
52	selparm[39]	-2.5020e+000 1.0955e+001
53	selparm[40]	6.2544e+000 2.5305e+001
54	selparm[41]	-8.2802e+000 4.3552e+001

```
55
                         -2.5929e+000 2.1912e-001
      selparm[42]
 56
      selparm[43]
                         6.8064e-001 3.3308e-001
 57
      selparm[47]
                         2.2667e+000 1.0225e-001
 58
      fore_recruitments -4.9803e-002 2.9962e-001
 59
      fore recruitments -3.7198e-003 3.1477e-001
 60
      fore recruitments -5.6715e-002 3.0745e-001
 61
      fore recruitments -1.0465e-001 3.0097e-001
 62
      fore_recruitments 0.0000e+000 1.0000e+000
 63
      fore recruitments 0.0000e+000 1.0000e+000
 64
      fore recruitments 0.0000e+000 1.0000e+000
 65
      fore_recruitments 0.0000e+000 1.0000e+000
 66
      fore_recruitments 0.0000e+000 1.0000e+000
 67
      fore_recruitments 0.0000e+000 1.0000e+000
 68
      fore_recruitments 0.0000e+000 1.0000e+000
 69
      fore_recruitments 0.0000e+000 1.0000e+000
 70
      fore_recruitments 0.0000e+000 1.0000e+000
 71
      fore recruitments 0.0000e+000 1.0000e+000
 72
      fore_recruitments 0.0000e+000 1.0000e+000
 73
      fore_recruitments 0.0000e+000 1.0000e+000
 74
      R0
                         3.7498e+003 3.7561e+000
 75
      S0
                         3.9466e+004 3.7561e+000
 76
                         3.9466e+004 3.7561e+000
      spbio_std
 77
      spbio_std
                         3.8357e+004 3.7561e+000
 78
                         3.8357e+004 3.7561e+000
      spbio_std
 79
      spbio_std
                         3.7696e+004 3.7561e+000
 80
      spbio_std
                         3.6979e+004 3.7561e+000
 81
      spbio std
                         3.6181e+004 3.7561e+000
      spbio_std
 82
                         3.4816e+004 3.7561e+000
                         3.3381e+004 3.7561e+000
 83
      spbio_std
 84
      spbio_std
                         3.2166e+004 3.7561e+000
 85
                         3.1513e+004 3.7561e+000
      spbio_std
 86
                         3.1280e+004 3.7561e+000
      spbio_std
 87
                         3.0866e+004 3.7561e+000
      spbio_std
 88
                         3.0281e+004 3.7561e+000
      spbio_std
 89
      spbio_std
                         2.9521e+004 3.7561e+000
 90
                         2.9283e+004 3.7561e+000
      spbio_std
 91
      spbio std
                         2.8785e+004 3.7561e+000
 92
      spbio std
                         2.8723e+004 3.7561e+000
 93
      spbio_std
                         2.8946e+004 3.7561e+000
 94
      spbio_std
                         2.9065e+004 3.7561e+000
 95
                         2.9236e+004 3.7561e+000
      spbio std
                         2.9073e+004 3.7561e+000
 96
      spbio_std
 97
                         2.8628e+004 3.7561e+000
      spbio_std
 98
      spbio std
                         2.7545e+004 3.7561e+000
 99
      spbio_std
                         2.6402e+004 3.7561e+000
100
                         2.4918e+004 3.7561e+000
      spbio_std
101
      spbio_std
                         2.3504e+004 3.7561e+000
102
      spbio_std
                         2.1260e+004 3.7561e+000
103
                         1.9384e+004 3.7561e+000
      spbio_std
104
      spbio_std
                         1.8112e+004 3.7561e+000
105
      spbio_std
                         1.7140e+004 3.7561e+000
106
      spbio_std
                         1.5700e+004 3.7561e+000
107
      spbio std
                         1.3790e+004 3.7561e+000
108
      spbio std
                         1.1454e+004 3.7561e+000
109
      spbio std
                         1.0562e+004 3.7561e+000
110
      spbio_std
                         9.5239e+003 3.7561e+000
111
      spbio std
                         8.6149e+003 3.7561e+000
```

```
7.2956e+003 3.7561e+000
112
      spbio_std
113
      spbio_std
                         6.3284e+003 3.7561e+000
114
      spbio_std
                         4.7957e+003 3.7561e+000
115
      spbio_std
                         4.2661e+003 3.7561e+000
116
      spbio std
                         3.8638e+003 3.7561e+000
117
      spbio std
                         3.9241e+003 3.7561e+000
118
      spbio std
                         4.4488e+003 3.7561e+000
119
      spbio_std
                         5.0338e+003 3.7561e+000
120
      spbio std
                         5.8857e+003 3.7561e+000
121
      spbio_std
                         7.2455e+003 3.7561e+000
122
      spbio_std
                         8.6752e+003 3.7561e+000
123
                         1.0702e+004 3.7561e+000
      spbio_std
124
      spbio_std
                         1.3758e+004 3.7561e+000
125
      spbio_std
                         1.8370e+004 3.7561e+000
126
      spbio_std
                         2.4077e+004 3.7561e+000
127
      spbio_std
                         2.9416e+004 3.7561e+000
128
                         3.7498e+003 3.7561e+000
      recr_std
129
                         3.7498e+003 3.7561e+000
      recr_std
130
                         3.7468e+003 3.7561e+000
      recr_std
131
                         3.7449e+003 3.7561e+000
      recr_std
132
                         3.7428e+003 3.7561e+000
      recr_std
133
                         3.7404e+003 3.7561e+000
      recr_std
134
      recr_std
                         3.7360e+003 3.7561e+000
135
                         3.7309e+003 3.7561e+000
      recr_std
136
                         3.7263e+003 3.7561e+000
      recr_std
137
      recr_std
                         3.7237e+003 3.7561e+000
138
      recr std
                         3.7228e+003 3.7561e+000
      recr_std
139
                         3.7210e+003 3.7561e+000
140
                         3.7185e+003 3.7561e+000
      recr_std
141
                         3.7151e+003 3.7561e+000
      recr_std
142
      recr_std
                         3.7140e+003 3.7561e+000
143
                         3.7116e+003 3.7561e+000
      recr_std
144
                         3.7113e+003 3.7561e+000
      recr_std
145
                         3.7124e+003 3.7561e+000
      recr_std
146
      recr_std
                         3.3747e+003 3.7561e+000
147
                         1.1762e+003 3.7561e+000
      recr_std
148
      recr std
                         2.7055e+003 3.7561e+000
149
      recr std
                         1.5154e+003 3.7561e+000
150
                         1.3265e+003 3.7561e+000
      recr_std
151
      recr_std
                         2.3175e+003 3.7561e+000
152
      recr std
                         2.4767e+003 3.7561e+000
153
                         6.6186e+003 3.7561e+000
      recr_std
154
      recr_std
                         1.5392e+003 3.7561e+000
155
      recr_std
                         9.5497e+002 3.7561e+000
156
                         1.4417e+003 3.7561e+000
      recr_std
157
                         1.2440e+003 3.7561e+000
      recr_std
158
      recr_std
                         1.9717e+003 3.7561e+000
159
      recr_std
                         1.2981e+003 3.7561e+000
160
      recr_std
                         2.5765e+003 3.7561e+000
161
      recr_std
                         2.8221e+002 3.7561e+000
162
      recr_std
                         9.8575e+002 3.7561e+000
163
      recr_std
                         1.6096e+003 3.7561e+000
164
                         1.3568e+003 3.7561e+000
      recr std
165
      recr std
                         2.5887e+003 3.7561e+000
166
      recr_std
                         2.8057e+003 3.7561e+000
167
      recr std
                         1.1197e+003 3.7561e+000
168
                         3.8411e+003 3.7561e+000
      recr std
```

```
169
                         3.6070e+003 3.7561e+000
      recr_std
170
      recr_std
                         1.6944e+003 3.7561e+000
171
      recr_std
                         1.6655e+003 3.7561e+000
172
      recr_std
                         4.6015e+003 3.7561e+000
173
      recr std
                         1.1733e+004 3.7561e+000
174
      recr std
                         1.2945e+004 3.7561e+000
175
      recr std
                         3.3198e+003 3.7561e+000
176
      recr_std
                         3.5516e+003 3.7561e+000
177
                         3.4335e+003 3.7561e+000
      recr_std
178
      recr_std
                         3.3183e+003 3.7561e+000
179
      recr_std
                         3.7146e+003 3.7561e+000
180
      depletion
                         6.1008e-001 3.7561e+000
181
      depletion
                         7.4534e-001 3.7561e+000
182
      depletion
                         2.6631e+003 3.7561e+000
183
      depletion
                         1.7140e+004 3.7561e+000
184
                         4.5000e-001 3.7561e+000
      depletion
185
      depletion
                         2.9416e+004 3.7561e+000
186
      depletion
                         3.7146e+003 3.7561e+000
187
                         7.4534e-001 3.7561e+000
      depletion
188
      depletion
                         -1.#INDe+000 3.7561e+000
189
      depletion
                         -1.#INDe+000 3.7561e+000
190
                         -1.#INDe+000 3.7561e+000
      depletion
191
                         -1.#INDe+000 3.7561e+000
      depletion
192
      depletion
                         -1.#INDe+000 3.7561e+000
193
      depletion
                         -1.#INDe+000 3.7561e+000
194
      depletion
                         -1.#INDe+000 3.7561e+000
195
      depletion
                         -1.#INDe+000 3.7561e+000
                         -1.#INDe+000 3.7561e+000
196
      depletion
197
      depletion
                         -1.#INDe+000 3.7561e+000
198
      depletion
                         -1.#INDe+000 3.7561e+000
199
                         -1.#INDe+000 3.7561e+000
      depletion
200
                         -1.#INDe+000 3.7561e+000
      depletion
201
                         -1.#INDe+000 3.7561e+000
      depletion
202
      depletion
                         -1.#INDe+000 3.7561e+000
203
      depletion
                         -1.#INDe+000 3.7561e+000
204
      depletion
                         -1.#INDe+000 3.7561e+000
205
      depletion
                         -1.#INDe+000 3.7561e+000
206
      depletion
                         -1.#INDe+000 3.7561e+000
207
      depletion
                         -1.#INDe+000 3.7561e+000
208
      depletion
                         -1.#INDe+000 3.7561e+000
209
      depletion
                         -1.#INDe+000 3.7561e+000
210
      depletion
                         -1.#INDe+000 3.7561e+000
211
                         -1.#INDe+000 3.7561e+000
      depletion
212
      depletion
                         -1.#INDe+000 3.7561e+000
213
      depletion
                         -1.#INDe+000 3.7561e+000
214
      depletion
                         -1.#INDe+000 3.7561e+000
215
      depletion
                         -1.#INDe+000 3.7561e+000
216
                         -1.#INDe+000 3.7561e+000
      depletion
217
                         -1.#INDe+000 3.7561e+000
      depletion
218
      depletion
                         -1.#INDe+000 3.7561e+000
219
      depletion
                         -1.#INDe+000 3.7561e+000
220
      depletion
                         -1.#INDe+000 3.7561e+000
221
      depletion
                         -1.#INDe+000 3.7561e+000
222
      depletion
                         -1.#INDe+000 3.7561e+000
223
      depletion
                         -1.#INDe+000 3.7561e+000
224
      depletion
                         -1.#INDe+000 3.7561e+000
225
      depletion
                         -1.#INDe+000 3.7561e+000
```

226 227	depletion depletion	-1.#INDe+000 -1.#INDe+000	3.7561e+000 3.7561e+000
228	depletion	-1.#INDe+000	3.7561e+000
229	depletion	-1.#INDe+000	3.7561e+000
230	depletion	-1.#INDe+000	3.7561e+000
231	depletion	-1.#INDe+000	3.7561e+000
232	depletion	-1.#INDe+000	3.7561e+000
233	depletion	-1.#INDe+000	3.7561e+000
234	depletion	-1.#INDe+000	3.7561e+000
235	depletion	-1.#INDe+000	3.7561e+000
236	depletion	-1.#INDe+000	3.7561e+000
237	depletion	-1.#INDe+000	3.7561e+000
238	depletion	-1.#INDe+000	3.7561e+000
239	depletion	-1.#INDe+000	3.7561e+000
240	depletion	-1.#INDe+000	3.7561e+000
241	depletion	-1.#INDe+000	3.7561e+000
242	depletion	-1.#INDe+000	3.7561e+000
243	depletion	-1.#INDe+000	3.7561e+000
244	depletion	-1.#INDe+000	3.7561e+000

Appendix II. Southern Area (LCS) Base Model Output. Assessment of Lingcod for the Pacific Fishery Management Council in 2005

Table 1. Negative log likelihood and lambda (likelihood weighting factor) values for the southern area (LCS) base model.

Component	-Log(L)	Lambda
Total Likelihood	168.74	
Indices	21.72	
Trawl Logbook	7.50	1
NMFS Trawl Survey	14.22	1
Discard	0.00	
Age_comps	140.07	
Commercial Fishery	78.74	1
Recreational	47.09	1
NMFS Trawl Survey	14.23	1
Size-at-age	0.00	
Equil_catch	0.00	1
Recruitment	6.71	1
Parm_priors	0.02	1
Parm_devs	0.00	1
Penalties	0.00	0.000
Forecast_Recruitment	0.22	0

Table 2. Parameters used in the southern area (LCS) base model; mortality-growth and biology.

Value	Min	Max	Active_Cnt	Bound
0.18				
0				
35.1				
107.9				
0.1449				
0.0699				
-0.13116				
0.5754				
0				
-0.02482				
-0.28624				
0.43216				
-0.17699				
0.98074				
1.76E-06				
3.3978				
60.6010				
-0.1550				
3.95E-06				
3.2149				
	0.18 0 35.1 107.9 0.1449 0.0699 -0.13116 0.5754 0 -0.02482 -0.28624 0.43216 -0.17699 0.98074 1.76E-06 3.3978 60.6010 -0.1550 3.95E-06	0.18 0 35.1 107.9 0.1449 0.0699 -0.13116 0.5754 0 -0.02482 -0.28624 0.43216 -0.17699 0.98074 1.76E-06 3.3978 60.6010 -0.1550 3.95E-06	0.18 0 35.1 107.9 0.1449 0.0699 -0.13116 0.5754 0 -0.02482 -0.28624 0.43216 -0.17699 0.98074 1.76E-06 3.3978 60.6010 -0.1550 3.95E-06	0.18 0 35.1 107.9 0.1449 0.0699 -0.13116 0.5754 0 -0.02482 -0.28624 0.43216 -0.17699 0.98074 1.76E-06 3.3978 60.6010 -0.1550 3.95E-06

Table 3. Parameters used in the southern area (LCS) base model; spawner-recruit, recruitment deviations, and initial F.

Parameter Name	Value	Min	Max	Active_Cnt	Bound
SR_parms					
LN(R0)	7.82528	1	100	1	0
Н	0.9				
SD-r	1				
Init_R_Mult	0				
Recr_Devs					
197				2	0
197	7 -0.298281			3	0
1978	3 -0.187007			4	0
1979	9 1.31782			5	0
198	0 -0.050209			6	0
198	1 -0.912532			7	0
198:	2 -1.09592			8	0
198	3 -0.435261			9	0
198	1.34793			10	0
198	5 -0.226117			11	0
1986	1.20906			12	0
198	7 -0.97255			13	0
198	3 -0.851553			14	0
1989	9 0.15918			15	0
199	0.221584			16	0
199	1 0.436269			17	0
1993	2 -0.447594			18	0
199	3 0.221315			19	0
199				20	0
199	5 -0.19598			21	0
199	6 0.777998			22	0
199	7 -1.3312			23	0
199	3 -0.3149			24	0
1999	9 0.509758			25	0
200	0.244251			26	0
init_F_parms					
Com	0.0141265	0	1	27	0
Rec	0.0027733	0	1	28	0

Table 4. Parameters used in the southern area (LCS) base model; selectivity.

Parameter Name	Value	Min	Max	Active_Cnt	Bound
sel_parms					
Com-Fem					
age@peak	5				
sel@minA	0				
asc_infl (logit)	0.309357	-20	20	29	0
asc_slope	12.3414	0.1	20	30	0
sel@maxA (logit)	-9.49234	-20	20	31	0
desc_infl (logit)	-2.8446	-20	20	32	0
desc_slope	1.69115	0	2	33	0
width_of_top	1.5				
Com-Male					
Age_@transition	5				
MinL Offset	0	0	0	0	0
M1 Offset	-0.415637	-10	10	34	0
MaxL Offset	4.13413	-10	10	35	0
Rec-Fem					
age@peak	4				
sel@minA	0				
asc_infl (logit)	4.1625	-10	10	36	0
asc_slope	0.1	0	0	0	0
sel@maxA (logit)	-8.14862	-10	30	37	0
desc_infl (logit)	-1.72958	-10	10	38	0
desc_slope	8.90171	0	20	39	0
width_of_top	1.5				
Rec-Male					
Age_@transition	4				
MinL Offset	0	0	0	0	0
M1 Offset	0	0	0	0	0
MaxL Offset	0	0	0	0	0
NMFS-Female					
age@peak	3				
sel@minA	0				
asc infl (logit)	-4.92714	-20	20	40	0
asc_slope	0.101	0	0	0	0
sel@maxA (logit)	-8.04143	-20	30	41	0
desc_infl (logit)	-1.33629	-20	30	42	0
desc_slope	9.65261	0	20	43	0
width_of_top	1				
NMFS-Male					
Age_@transition	3				
MinL Offset	0	0	0	0	0
M1 Offset	-0.060557	-10	20	44	0
MaxL Offset	0	0	0	0	0

Figure 1. SS2 output for the southern area (LCS) base model; From the top: recruitment, female spawning biomass, total biomass, and spawner-recruit relationship. Triangular symbols are present assessment estimates; square symbols are 2003 assessment estimates.

Figure 2. SS2 output for the southern area (LCS) base model: Model fits to indices of abundance; Top; trawl logbook, bottom; NMFS trawl survey.

Figure 3. SS2 output for the southern area (LCS) base model: Estimated selectivity for the commercial fishery, recreational fishery, NMFS trawl survey, and WDFW tagging survey.

Figure 4. SS2 output for the southern area (LCS) base model: Profile of the base model over the standard deviation of recruitment.; Clockwise from top left: negative log likelihood values, trawl logbook index, NMFS trawl survey, female spawning biomass, recruitment.

Figure 5. SS2 output for the southern area (LCS) base model: Profile over Beveton-Holt spawner-recruit steepness (*h*); Clockwise from top left: negative log likelihood values, trawl logbook index, NMFS trawl survey, female spawning biomass, recruitment.

Figure 6. SS2 output for the southern area (LCS) base model: Profile over natural mortality (M); Clockwise from top left: negative log likelihood values, trawl logbook index, NMFS trawl survey, female spawning biomass, recruitment.

Figure 6a. SS2 output for the southern area (LCS) base model: Model stability test; Results of 30 base-model runs with SS2 jitter factor = 0.01.

-Log Likelihood	Depletion
170.243	0.17768
170.243	0.17768
170.243	0.17768
170.243	0.17768
170.243	0.17768
170.243	0.17768
170.243	0.17768
170.243	0.17768
170.243	0.17768
170.243	0.17768
170.243	0.17768
170.243	0.17768
170.243	0.17768
170.243	0.17768
170.243	0.17768
170.243	0.17768
170.243	0.17768
170.275	0.18573
170.275	0.18573
170.275	0.18573
170.275	0.18573
170.275	0.18573
170.275	0.18573
170.275	0.18573
170.275	0.18573
170.275	0.18573
170.275	0.18573
170.275	0.18573
170.275	0.18573
170.275	0.18573
	170.243 170.243 170.243 170.243 170.243 170.243 170.243 170.243 170.243 170.243 170.243 170.243 170.243 170.243 170.243 170.243 170.243 170.243 170.275 170.275 170.275 170.275 170.275 170.275 170.275 170.275 170.275 170.275 170.275 170.275 170.275 170.275 170.275 170.275 170.275 170.275

Figure 6b. SS2 output for the southern area (LCS) base model: Retrospective Analysis, obtained by sequentially decrementing end-year from 2004 to 2000; Top: time series of recruitment (number of age 0 fish in thousands), Bottom: time series of spawning biomass (mt).

Figure 7. SS2 output for the southern area (LCS) base model: Model fits to commercial fishery catch-at-age.

Figure 7, continued. SS2 output for the southern area (LCS) base model: Model fits to commercial fishery catch-at-age.

Figure 8. SS2 output for the southern area (LCS) base model: Model fits to recreational fishery catch-at-age.

Figure 8, continued. SS2 output for the southern area (LCS) base model: Model fits to recreational fishery catch-at-age.

Figure 11. SS2 output for the southern area (LCS) base model: Model fits to NMFS trawl survey catch-at-age.

Filename:LCSCTL05.CTL

```
# LCSCTL05.ctl: 2005 LCS assessment model
# datafile:LCSData05.dat
          #_N_growthmorphs
                    each_morph_(1=female;_2=male)
#_assign_sex_to
          #_N_Areas_(populations)
# each fleet/survey operates in just one area
# but different fleets/surveys can
                                                   assigned_to_share_same_selex(FUTURE_coding)
          1
                    1
                                         #area for each fleet and each Survey
0 #do migration (0/1)
0 #_N_Block_Designs
#_N_Blocks_per_Design(Block_1_always_starts_in styr)
#Natural mortality and growth parameters for each morph
2
          #_Last_age_for_natmort_young
3
          #_First_age_for_natmort_old
1
          #_age_for_growth_Lmin
20
          # age for growth Lmax
          #_MGparm_dev_phase
-4
                                         PRIOR
#
          LO
                                                   PR type SD
                                                                       PHASE
                    HI
                              INIT
                                                                                 env-variable
                                                                                                      use dev dev minyr dev maxyr
          dev stddev
# Female natural mortality and growth
          0.05
                    0.25
                              0.18
                                         0.0001
                                                   0
                                                             0.8
                                                                       -3
                                                                                 0
                                                                                                      0
                                                                                                                0
                                                                                                                          0.5
                                                                                                                                    0
          0
                    #M1_natM_young
          -3
                              0
                                                             0.8
                                                                       -3
                                                                                 0
                                                                                            0
                                                                                                      0
                                                                                                                0
                                                                                                                          0.5
                                                                                                                                    0
          0
                    #M1_natM_old_as_exponential_offset(rel_young)
          10
                              35.1
                                         35
                                                   0
                                                                       -2
                                                                                 0
                                                                                            0
                                                                                                      0
                                                                                                                0
                                                                                                                          0.5
                                                                                                                                    0
                    60
                                                             10
                    \#M1\_Lmin
          0
          40
                    140
                              107.9
                                         108
                                                   0
                                                             10
                                                                       -2
                                                                                 0
                                                                                            0
                                                                                                      0
                                                                                                                0
                                                                                                                          0.5
                                                                                                                                    0
                    #M1_Lmax
          0
          0.01
                    0.5
                              0.1449
                                         0.001
                                                   0
                                                             0.8
                                                                       -3
                                                                                 0
                                                                                            0
                                                                                                      0
                                                                                                                0
                                                                                                                          0.5
                                                                                                                                    0
          0
                    #M1 VBK
          0.01
                    0.5
                              0.0699
                                         0.001
                                                   0
                                                             0.8
                                                                       -3
                                                                                 0
                                                                                            0
                                                                                                      0
                                                                                                                0
                                                                                                                          0.5
                                                                                                                                    0
          0
                    #M1_CV-young
          0.01
                    0.5
                              -.13116
                                        0
                                                                       -3
                                                                                 0
                                                                                            0
                                                                                                      0
                                                                                                                0
                                                                                                                          0.5
                                                                                                                                    0
                    #M1_CV-old_as_exponential_offset(rel_young)
          0
# Male natural mortality and growth
          0.01
                              0.5754
                                                                       -3
                                                                                 0
                                                                                            0
                                                                                                      0
                                                                                                                0
                                                                                                                          0.5
                                                                                                                                    0
                    0.5
                                        0.5754
                                                   0
                                                             0.8
          0
                    #M2_natM_young_as_exponential_offset(rel_morph_1)
          -3
                    3
                              0
                                        1.0
                                                   0
                                                             0.8
                                                                       -3
                                                                                 0
                                                                                            0
                                                                                                      0
                                                                                                                0
                                                                                                                          0.5
                                                                                                                                    0
          0
                    #M2_natM_old_as_exponential_offset(rel_young)
          -3
                    3
                              -.02482
                                                   0
                                                                       -3
                                                                                 0
                                                                                            0
                                                                                                      0
                                                                                                                0
                                                                                                                          0.5
                                                                                                                                    0
                                        1.0
                                                             0.8
          0
                    #M2_Lmin_as_exponential_offset
          0
                              -.28624 1.0
                                                             0.8
                                                                       -3
                                                                                 0
                                                                                            0
                                                                                                      0
                                                                                                                0
                                                                                                                          0.5
                                                                                                                                    0
                    #M2_Lmax_as_exponential_offset
          0
          0.01
                    0.5
                              0.43216 1.0
                                                             0.8
                                                                       -3
                                                                                 0
                                                                                            0
                                                                                                      0
                                                                                                                0
                                                                                                                          0.5
                                                                                                                                    0
          0
                    #M2_VBK_as_exponential_offset
          0.01
                                                                                                      0
                                                                                                                0
                                                                                                                                    0
                    0.5
                              -.17699 0
                                                             0.8
                                                                       -3
                                                                                            0
                                                                                                                          0.5
                    #M2_CV-young_as_exponential_offset(rel_CV-young_for_morph_1)
          0
          0.01
                              0.98074 0
                                                                                            0
                                                                                                      0
                                                                                                                0
                                                                                                                          0.5
                                                                                                                                    0
                                                             0.8
                                                                       -3
                    #M2_CV-old_as_exponential_offset(rel_CV-young)
          0
# Add 2+2*gender lines to read the wt-Len and mat-Len parameters
# Female length-weight
                              0.00000176 0.00000176
                                                                                                      0
                                                                                                                0
                                                                                                                          0
                                                                                                                                    0.5
                                                             0
                                                                       0.8
                                                                                 -3
                                                                                            0
          -3
                    3
          0
                    0
                              #Female wt-len-1 a
                                          3.39780 0
          -3
                              3.39780
                                                                                 0
                                                                                                      0
                                                                                                                0
                                                                                                                                    0
                                                             0.8
                                                                       -3
                                                                                            0
                                                                                                                          0.5
                    3
          0
                    #Female wt-len-2 b
# Female maturity
                    100
                              60.601
                                         84.6
                                                   0
                                                             0.8
                                                                       -3
                                                                                 0
                                                                                            0
                                                                                                      0
                                                                                                                0
                                                                                                                          0.5
                                                                                                                                    0
          -3
          0
                    #Female mat-len-1
```

	-3 0	5 #Famala	-0.155	3.814	0	0.8	-3	0	0	0	0	0.5	0
# Femal	-	- Same as b	mat-len-2 piomass if ir	ntercept = 1	and slope =	0							
	-3 0	3 #Female	1. eggs/gm in	1. tercent	0	0.8	-3	0	0	0	0	0.5	0
	-3	3	0.	0.	0	0.8	-3	0	0	0	0	0.5	0
# Male l	0 length-weig	#Female	eggs/gm sl	ope									
	-3	3	0.000003		0.0000039	953	0	0.8	-3	0	0	0	0
	0.5 -3	0 5	0 3.2149	#Male wt 3.2149	-len-1 0	0.8	-3	0	0	0	0	0.5	0
	0	#Male w											
#_alloca	ite_recruits												
# pop*g	morph line	s For the pro 0.5000	oportion of 6	each morph	in each area 9.8	· -3	0	0	0	0	0.5	0	0
	-	morph 1 in											
0	1 #frac to	0.5000 morph 2 in	0.2 area 1	0	9.8	-3	0	0	0	0	0.5	0	0
		_											
# pop lii 0	nes For the	proportion a	assigned to o	each area	0.8	-3	0	0	0	0	0.5	0	0
	#frac to												
0 #_cus	tom-env_re	ad											
#_	0=read	one setup	and apply	to all env	fxns;	1=read a	setup line	for each	MGparm	with_Env-v	ar>0		
_	_		_ 11 /_		Í		- 1			_			
	tom-block_												
#_	0=read_	one_setup_	and_apply_	to_all_MG-	blocks;	1=read_a	_setup_line	_for_each	_block	X	MGparm	_with_bloc	k>0
# LO	HI	INIT	PRIOR	Pr_type	SD	PHASE							
#-10	10	0.0	0	0	4	4							
#_Spaw	ner-Recruit	ment_paran	neters										
1	# SR_fx	n: 1=Bever	ton-Holt										
#LO	HI	INIT	PRIOR	Pr_type	SD	PHASE							
1 0.2	100 5	7.825 0.90	7.6497 0.9	0	99 99	1 -4	#Ln(R0) #steepnes	S					
0	20	1.0	0.5	0	99	-3	#SD_recr	uitments					
-5 5	5	0	0	0	99	-3	#Env_link		I.: I: \				
-5	5	0	0	0	99	-5	#_ln(init_	eq_K_mu	itipiier)				
0	#env-va	r_for_link											
#		nent_residua											
#	start_red	c_year 2000	end_rec_ -15	year 15	Lower_lir	nit	Upper_lin	nit	phase				
			-13	13	1								
	_setupforea		DDIOD	DD 4	CD	DILACE							
#LO 0	HI 1	INIT 0.0141	PRIOR 0.09	PR_type 0	SD 99	PHASE 1							
0	1	0.0027	0.09	0	99	1							
" 0 4													
#_Qsetu #_add_p		for_each_po	sitive_entry	_below(row	v_then_colu	mn)							
#-Float(0/1)	#Do-pov	ver(0/1)	#Do-env(0/1)	#Do-dev(0/1) #env-	Var	#Num/E	Bio(0/1)	for	each	
/-(fleet	and	survey	'(,		, -		,	` /			
0	0	0	0	0	1 #Com_1								
0	0	0	0	0	1 #Rec_2								
0	0	0	0	0	1 #Logbk								
0	0	0	0	0	1 #NMFS	_4							
#	LO	HI	INIT	PRIOR	PR_type	SD	PHASE	env-vari	able				
#_SELE	EX_&_RET	ENTION_P	PARAMETI	ERS									

#Selex_t	ype	Do_retent	ion(0/1)	Do_male	Mirrored_	selex_numl	ber						
#Length	Selectivity												
0	0	0	0	#Com_1 #Rec_2									
0	0	0	0	#Logbk_3									
0	0	0	0	#NMFS_4									
#_Age	selectivity												
18	0	1	0	#Com_1									
18 15	0	1	0	#Rec_2									
18	0	1	1	#Logbk_3 #NMFS 4									
				_									
# 1-8 Co #LO	m_1 Age Sel HI	lex for Fem INIT	ales PRIOR	PR type	SD	PHASE	env-variab	ole	use dev	dev minyi			
1	20	5	0.001	0	99	-3	0	0	0	0	0.5	0	0
0	# age@pe	ak - fem 0	1	0	99	-3	0	0	0	0	0.5	0	0
U	# sel@mi		1	U	99	-3	U	U	U	U	0.5	U	U
-20	20	0.309	0	0	99	2	0	0	0	0	0.5	0	0
0.1	# asc_infl 20	(logit) 12.341	0.001	0	99	5	0	0	0	0	0.5	0	0
	# asc_slop	pe											
-20	20 # sel@ma	-9.49 xA (logit)	-5	0	99	4	0	0	0	0	0.5	0	0
-20	20	-2.84	-1.5	0	99	4	0	0	0	0	0.5	0	0
0	# desc_in 2	fl (logit) 1.69	0.5	0	99	4	0	0	0	0	0.5	0	0
U	# desc slo		0.5	U	99	4	U	U	U	U	0.5	U	U
0	40	1.5	1	0	99	-4	0	0	0	0	0.5	0	0
# 9-12 C	# width_c om 1 Age S		maxA - p1 les relative										
1	10	5	3	0	99	-2	0	0	0	0	0	0	0
-10	# Age_@ 10	transition - 0.0	male 3.21	0	99	-4	0	0	0	0	0	0	0
		sel/fem_sel		O	,,	-	O .	V	V	· ·	O	O	Ü
-10	10 # ln(mal	-0.415	-0.20	0	99	4	0	0	0	0	0	0	0
-10	# III(IIIai_ 10	sel/fem_sel 4.134	1	0	99	4	0	0	0	0	0	0	0
	# ln(mal_	sel/fem_sel	l) @ maxL										
# 13-20 1	Rec_2 Age S	elex for Fe	males										
1	20	4	0.001	0	99	-3	0	0	0	0	0	0	0
0	# age@pe	eak - fem 0	1	0	99	-3	0	0	0	0	0	0	0
U	# sel@mi		1	U	99	-5	U	U	U	U	U	U	U
-10	10	4.162	0	0	99	2	0	0	0	0	0	0	0
0.1	# asc_infl 10	0.1	0.001	0	99	-3	0	0	0	0	0	0	0
10	# asc_slop		5	0	00	4	0	0	0	0	0	0	0
-10	30 # sel@ma	-8.14 xA (logit)	-5	0	99	4	0	0	0	0	0	0	0
-10	10	-1.72	-1.5	0	99	4	0	0	0	0	0	0	0
0	# desc_in 20	fl (logit) 8.901	0.5	0	99	4	0	0	0	0	0	0	0
Ü	# desc_slo	ope	0.5			•							
0	40 # width c	1.5	1 maxA - p1	0	99	-4	0	0	0	0	0	0	0
# 21-24 1	Rec_2 Age S												
1	10	4	3	0	99	-2	0	0	0	0	0	0	0
-10	# Age_@ 10	transition - 0.00	male 1	0	99	-4	0	0	0	0	0	0	0
	# ln(mal_	sel/fem_sel	l) @ minL										
-10	10 # ln(mal	0.00 sel/fem_sel	1 1) @ m1	0	99	-4	0	0	0	0	0	0	0
-10	10	0.00	1	0	99	-4	0	0	0	0	0	0	0
	# ln(mal_	sel/fem_sel	l) @ maxL										

```
1
                         20
                                                  3
                                                                           0.001
                                                                                                    0
                                                                                                                             99
                                                                                                                                                       -2
                                                                                                                                                                                0
                                                                                                                                                                                                        0
                                                                                                                                                                                                                                  0
                                                                                                                                                                                                                                                          0
                                                                                                                                                                                                                                                                                    0
                                                                                                                                                                                                                                                                                                             0
                          # age@peak - fem
0
                                                  0.0
                                                                                                    0
                                                                                                                             99
                                                                                                                                                       -2
                                                                                                                                                                                0
                                                                                                                                                                                                        0
                                                                                                                                                                                                                                  0
                                                                                                                                                                                                                                                          0
                                                                                                                                                                                                                                                                                    0
                                                                                                                                                                                                                                                                                                             0
                          # sel@minA
-20
                         20
                                                   -4.92
                                                                                                    0
                                                                                                                             99
                                                                                                                                                       2
                                                                                                                                                                                0
                                                                                                                                                                                                        0
                                                                                                                                                                                                                                  0
                                                                                                                                                                                                                                                           0
                                                                                                                                                                                                                                                                                    0
                                                                                                                                                                                                                                                                                                             0
                          # asc_infl (logit)
0.1
                         20
                                                  0.101
                                                                           0.001
                                                                                                    0
                                                                                                                             99
                                                                                                                                                       -3
                                                                                                                                                                                0
                                                                                                                                                                                                        0
                                                                                                                                                                                                                                  0
                                                                                                                                                                                                                                                           0
                                                                                                                                                                                                                                                                                    0
                                                                                                                                                                                                                                                                                                             0
                          # asc_slope
-20
                                                  -8.04
                                                                           -5
                                                                                                    0
                                                                                                                             99
                                                                                                                                                       4
                                                                                                                                                                                0
                                                                                                                                                                                                        0
                                                                                                                                                                                                                                  0
                                                                                                                                                                                                                                                           0
                                                                                                                                                                                                                                                                                    0
                                                                                                                                                                                                                                                                                                             0
                          # sel@maxA (logit)
-20
                                                 -1.33
                                                                           -1.5
                                                                                                    0
                                                                                                                             99
                                                                                                                                                       4
                                                                                                                                                                                0
                                                                                                                                                                                                        0
                                                                                                                                                                                                                                  0
                                                                                                                                                                                                                                                           0
                                                                                                                                                                                                                                                                                    0
                                                                                                                                                                                                                                                                                                             0
                          # desc_infl (logit)
0
                         20
                                                  9.65
                                                                           0.5
                                                                                                    0
                                                                                                                             99
                                                                                                                                                       5
                                                                                                                                                                                0
                                                                                                                                                                                                        0
                                                                                                                                                                                                                                  0
                                                                                                                                                                                                                                                           0
                                                                                                                                                                                                                                                                                    0
                                                                                                                                                                                                                                                                                                             0
                          # desc_slope
0
                         40
                                                  1.0
                                                                                                                             99
                                                                                                                                                       -5
                                                                                                                                                                                0
                                                                                                                                                                                                        0
                                                                                                                                                                                                                                  0
                                                                                                                                                                                                                                                           0
                                                                                                                                                                                                                                                                                    0
                                                                                                                                                                                                                                                                                                             0
                          # width_of_top <= ( maxA - p1 )
# 33-36 NMFS_4 Age Selex for males relative to females
                                                                                                                                                                                                                                                          0
                         10
                                                 3
                                                                                                                             99
                                                                                                                                                       -2
                                                                                                                                                                                0
                                                                                                                                                                                                        0
                                                                                                                                                                                                                                  0
                                                                                                                                                                                                                                                                                    0
                                                                                                                                                                                                                                                                                                             0
                                                                          3
                                                                                                    0
                          # Age_@transition - male
                                                                                                                             99
                                                                                                                                                                                                        0
                                                                                                                                                                                                                                                          0
-10
                         20
                                                 0.00
                                                                           23.0
                                                                                                    0
                                                                                                                                                       -4
                                                                                                                                                                                0
                                                                                                                                                                                                                                  0
                                                                                                                                                                                                                                                                                    0
                                                                                                                                                                                                                                                                                                             0
                          # ln(mal_sel/fem_sel) @ minL
-10
                                                  -0.06
                                                                                                    0
                                                                                                                             99
                                                                                                                                                       4
                                                                                                                                                                                0
                                                                                                                                                                                                        0
                                                                                                                                                                                                                                  0
                                                                                                                                                                                                                                                          0
                                                                                                                                                                                                                                                                                    0
                                                                                                                                                                                                                                                                                                             0
                         20
                                                                           8.76
                          # ln(mal_sel/fem_sel) @ m1
-10
                         20
                                                 0.00
                                                                           -0.22
                                                                                                    0
                                                                                                                             99
                                                                                                                                                                                0
                                                                                                                                                                                                        0
                                                                                                                                                                                                                                  0
                                                                                                                                                                                                                                                          0
                                                                                                                                                                                                                                                                                    0
                                                                                                                                                                                                                                                                                                             0
                          # ln(mal_sel/fem_sel) @ maxL
#_custom-env_read
                          #_0=read_one_setup_and_apply_to_all_env_fxns; 1=read_a_setup_line_for_each_SELparm_with_Env-var>0
# except read NO setup lines If no SELparms have Env-var>0
# LO
                                                                           PRIOR
                                                                                                                                                       PHASE
                         HI
                                                  INIT
                                                                                                   PR_type SD
# -10
                         10
                                                  0
                                                                           0
                                                                                                    0
                                                                                                                                                       4
                                                                                                                                                                                #Env-parm_setup
#_custom-block_read
                                                  0 = read\_one\_setup\_and\_apply\_to\_all;\_1 = Custom\_so\_see\_detailed\_instructions\_for\_N\_rows\_in\_Custom\_setup\_and\_apply\_to\_all;\_1 = Custom\_so\_see\_detailed\_instructions\_for\_N\_rows\_in\_Custom\_setup\_apply\_to\_all;\_1 = Custom\_setup\_apply\_to\_all;\_1 = Custom\_setup\_apply\_to\_all;\_1 = Custom\_setup\_apply\_to\_all,\_1 = Custom\_set
0
                         #_
#LO
                         НІ
                                                  INIT
                                                                           PRIOR
                                                                                                    PR type SD
                                                                                                                                                       PHASE
# -10
                         10
                                                  0
                                                                           0
                                                                                                    0
                                                                                                                             4
                                                                                                                                                       4
-4
                         #_phase_for_selex_parm_devs
                         #_max_lambda_phases:_read_this_Number_of_values_for_each_componentxtype_below
1
0
                         \#\_sd\_offset - 0 = omit + log(s) term; 1 = include Log(s) term in Like
#_CPUE_lambdas for each fleet and survey
                        1
#_discard_lambdas
0
                        0
                                                                           0
#_meanwtlambda(one_for_all_sources)
\#_lenfreq_lambdas
0
                        0
                                                  0
                                                                           0
#_age_freq_lambdas
                         1
#_size@age_lambdas
#_initial_equil_catch
#_recruitment_lambda
#_parm_prior_lambda
#_parm_dev_timeseries_lambda
```

crashpen lambda

300 #max F 1.0

999 #_end-of-file

Filename: LCSData05d.DAT

```
# LCSData05d.dat 2005 LCS Assessment
# Number of datafiles: 1
# start nudata: 1
# MODEL DIMENSIONS
1956 #_styr
2004 # endyr
1 #_nseas
#_vector_with_N_months_in_each_season
12 # months/season
1 # spawn seas
2 # Nfleet
2 #_Nsurv
# Labels
Comm1%Sport2%logbk3%NMFS4
# Timing within each season, for each fishery and survey
0.5 0.5 0.5 0.5
2 #_Ngenders
40 #_accumulator_age; model_always_starts_with_age_0
161.4 40.3 #_init_equil_catch_for_each_fishery
#_catch_biomass(mtons): columns_are_fisheries _rows_are_year*season
\frac{1}{422} \frac{1}{13}
744 114
726 120
638 94
593 85
653 70
504 76
514 83
379 76
369 100
363 134
426 131
496 128
505 98
695 119
952 179
1472 269
1614.6 403.1
1734.6
         399.1
1447.1
         429.1
1415.3
        422.1
768.6
         284.1
         334.2
914.2
1433.9 339.7
```

```
1275.0
        2229
1403.7
        1173
1598.9
        882
1220.7
        589
1046.5
        514
752.6
        981
601.1
        950
981.5
        969
1141.2
        1054
1357.7
        980
1187.7
        799
844.4
        820
676.1
        808
778.0
        479
691.1
        289
705
        300
648
        391
736
        299
349
        279
347
        375
120
        240
151
        226
152
        608
100 1125
107 188
30\,\#\_N\_cpue\_and\_survey abundance\_observations
#_year seas index obs se(log)
#Logbook GLM
1978
        1
                 3
                          5.8
                                   .2
.2
.2
1979
        1
                 3
                          11.8
1980
        1
                 3
                          9.6
                 3
1981
                          7.3
                                   1982
        1
                 3
                          7.4
1983
                 3
                          8.9
        1
                 3
1984
        1
                          7.6
                 3
1985
        1
                          3.6
1986
        1
                 3
                          3.1
                 3
                          5.4
1987
        1
                 3
1988
        1
                          5.6
                 3
                          7.3
1989
1990
                 3
                          6.2
        1
1991
        1
                 3
                          3.8
                 3
1992
        1
                          3.1
                 3
1993
        1
                          3.8
1994
        1
                 3
                          3.6
                 3
1995
        1
                          3.9
                                   .2
1996
        1
                 3
                          3.1
                                   .2
1997
        1
                 3
                          3.3
#NMFS Trawl Survey no water hauls
1977 1
                          2992.9
                                   .14
```

1980	1	4	1537.3	.31
1983	1	4	2078.7	.33
1986	1	4	925.9	.21
1989	1	4	2708.1	.20
1992	1	4	629.7	.25
1995	1	4	901.3	.27
1998	1	4	870.5	.27
2001	1	4	1346.9	.12
2004	1	4	3745.8	.32

2 #_discard_type 0 #_N_discard_obs

0 #_N_meanbodywt_obs

-1 #_comp_tail_compression 0.0001 #_add_to_comp

 $42 \# N_L = 1000 + 100$ 0 #_N_Length_obs

20 #_N_age_bins 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

#_N_ageerror_definitions 2

0.5	1.5	2.5	3.5	4.5	5.5	6.5	7.5	8.5	9.5	10.5	11.5	12.5	13.5	14.5	15.5	16.5	17.5
	18.5	19.5	20.5	21.5	22.5	23.5	24.5	25.5	26.5	27.5	28.5	29.5	30.5	31.5	32.5	33.5	34.5
	35.5	36.5	37.5	38.5	39.5	40.5											
0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	0.001	0.001	0.001	0.001	0.001	0.001											
0.5	1.5	2.5	3.5	4.5	5.5	6.5	7.5	8.5	9.5	10.5	11.5	12.5	13.5	14.5	15.5	16.5	17.5
	18.5	19.5	20.5	21.5	22.5	23.5	24.5	25.5	26.5	27.5	28.5	29.5	30.5	31.5	32.5	33.5	34.5
	35.5	36.5	37.5	38.5	39.5	40.5											
0.5	0.715501191		0.80926	3396	0.90302	5602	0.99678	7807	1.09055	0012	1.18431	2217	1.27807	4422	1.37183	6627	
	1.46559	1.465598832		1.559361037		3242	1.74688	5447	1.84064	7652	1.934409857		2.02817	2062	2.12193	4267	
	2.21569	6472	2.30945	8677	2.40322	0882	2.5	2.6	2.7	2.8	2.9	3	3	3	3	3	3
	3	3	3	3	3	3	3	3	3	3							

27 #_N_Agecomp_obs

#Yr Seas Flt/Svy Gender Part Ageerr Lbin_lo Lbin_hi Nsamp datavector(female-male) #Com 1 Age Comps

// COIII_1	7150 COI	nps															
1992	1	1	3	0	2	-1	-1	28.9	0	0.1383	317762	0.2891	0858	0.0909	998391	0.0411	60674
	0.0408	341257	0	0.0060	96096	0	0	0	0	0	0	0	0	0	0	0	0
	0	0.0918	71557	0.1201	38604	0.0792	297347	0.0625	21058	0.0396	648674	0	0	0	0	0	0
	0	0	0	0	0	0	0	0									
1993	1	1	3	0	2	-1	-1	40	0	0.2672	269601	0.3005	55667	0.0830)51851	0.0339	71697
	0.0118	377766	0.009	168764	0.0047	27982	0.0052	24045	0	0	0	0	0	0	0	0	0

	0 0 0.000361396	0 0.07639 0 0	91509 0.07 0 0	6726831 0	0.06434	9688	0.022829	9594 0	0.03732270	09 0	0.0044957	79	0.0016741	08
1994	1 1	3 0	2 -1	-1	40	0	0.088444	-	0.24100454	-	0.1354060	174	0.0409229	156
1777	0.046766227	0.016582109	0.005258632		106223	0.0009		0.01125		0.002353		0	0.0407227	0
	0 0	0 0	0 0		278053	0.1466		0.08098		0.031833		0.0240095	-	Ü
	0.012054763	0.000686715	0.006932412		506215	0	0	0		0	0	0	0	0
	0													
1995	1 1	3 0	2 -1	-1	26.7	0	0.015928	892	0.07914117	73	0.2609390	800	0.1073801	
	0.067529984	0.033362611	0.013768495		430881	0	0	0		0	0	0	0	0
	0 0	0.0018		1310109	0.19373		0.079669		0.02679407	72	0.0152003	33	0	0
	0 0	0 0	0 0	0	0	0	0	0				_		
1996	1 1	3 0	2 -1	-1	30.2	0	0.02848		0.22588425		0.1378462		0.0967104	
	0.103603503	0.019492079	0.005227274		875154	0	0.00128		0.00128722		0	0	0	0
	0 0	0 0		7511894	0.12553		0.07548		0.05607757		0.0479799		0.0207278	92
1007	0.009102428	0 0.0038		0	0	0	0 02004	0	-	0	0 1004204	0	0.1600405	.00
1997	1 1	3 0	2 -1 0.033254392	-1	40 197599	0	0.030948		0.17309122		0.1984396	0	0.1600485	
	0.053162266 0 0	0.055330347	0.033234392	0.009	0.03577	0.0075	0.12608	0.00132	0.0827361	0.000627	297 0.0134032	-	0.0121597	0
	0 0.00457			2289865	0.03377.	0	0.12008	0		0	0.0134032	236	U	U
1998	1 1	3 0	2 -1	-1	28.7	0	0.052758	-	0.25275809	-	0.1419989)Q1	0.0553795	56
1996	0 0.14462			0	0.01889		0.032730	0		0	0.1419909	0	0.0555795	0
	0 0.14402	0.0723		6482794	0.01779		0.018896	0	0.01889676		0.0188967		0.0364827	
	0 0	0 0.0551	0 0	0	0.03777	0	0.01005	0	0.01007070	<i>52</i>	0.0100707	02	0.0501027	,
2000	1 1	3 0	2 -1	-1	6.1	0	Ö	0	0.04761904	48	0.2857142	286	0	
	0.333333333	0.095238095	0 0.04	7619048	0	0	0	0		0	0	0	0	0
	0 0	0 0.0476	19048 0.09	5238095	0.047619	9048	0	0	0	0	0	0	0	0
	0 0	0 0	0 0											
2001	1 1	3 0	2 -1	-1	26.2	0	0	0.11111	11111	0.25	0.0833333	333	0.1666666	67
	0 0.02777	7778 0	0 0	0	0	0	0	0	0	0	0	0	0	0
	0.05555556	0.083333333	0.19444444	0.027	777778	0	0	0	0	0	0	0	0	0
	0 0	0 0	0											
2002	1 1	3 0	2 -1	-1	24.9	0	0.010993		0.05514589		0.3129950		0.1678033	
	0.126693506	0.050341298	0.021860565	****	239599	0	0	0	•	0	0	0	0	0
	0 0	0 0	0.024367271		773629	0.0662		0.03196	59028	0.032727	894	0.0328538	301	0
2002	0 0	0 0	0 0	0	0	0	0	0	200000	0.040016	2265	0.1026724	1604	
2003	1 1 0.1326530612	3 0 0.0816326531	2 -1 0.0816326531	-1	9.8 4081633		0000000 3163265	0.00000		0.040816		0.1836734 0.0102040		
	0.0000000000	0.0000000000	0.0000000000		0000000		0000000	0.00000		0.000000		0.0102040		
	0.000000000	0.0000000000	0.0204081633		0816327		5326531	0.03061		0.051020		0.0204081		
	0.0000000000	0.0000000000	0.0000000000		0000000		0000000	0.00000		0.000000		0.0000000		
	0.0000000000	0.0000000000	0.0000000000		0000000	0.0000	,000000	0.00000	500000	0.000000	0000	0.0000000	7000	
2004	1 1	3 0	2 -1	-1	13.8	0.0144	1927536	0.01449	927536	0.181159	4203	0.2101449	275	
2001	0.1376811594	0.0434782609	0.0652173913	-	4927536		0000000	0.00724		0.000000		0.0000000		
	0.0000000000	0.0000000000	0.0000000000		0000000		0000000	0.00000		0.000000		0.0000000		
	0.0144927536	0.0289855072	0.0579710145	0.072	4637681	0.0942	2028986	0.02173	391304	0.014492	7536	0.0072463	3768	
	0.0000000000	0.0000000000	0.0000000000	0.000	0000000	0.0000	0000000	0.00000	000000	0.000000	0000	0.0000000	0000	
	0.0000000000	0.0000000000	0.0000000000	0.000	0000000									
#Rec_Ag														
#Rec_Ag 1992	ge Comps 1 2 0.081632653	3 0 0 0.0408	2 -1	-1 0816327	4.9 0	0	0	0.02040		0.061224	49 0	0.0204081	63	0

	0 0	0.081632653	0.102040816	0.183673469	0.12244898	0.081632653	0.06122449	0.081632653	
	0.020408163	0 0	0 0	0 0	0 0	0 0	0		
1993	1 2	3 0	2 -1	-1 29.4	0 0.02380				3639456
	0.06462585	0.040816327	0.037414966	0.023809524	0 0	0 0	0 0	0 0	0
	0 0	0 0.02040)5442 0.006	5802721
1994	0 0 1 2	0.003401361 3 0	0 0 2 -1	0 0 -1 19.6	0 0 0 0.01020	0 0 04082 0.107142	0 857 0.1326	52061 0.11	7346939
1994	0.081632653	0.051020408	0.045918367	0.015306122	0.010204082	0.10/142	0 0.1326	0.117	0
	0.081032033	0.031020408	0.043918307	0.013300122	0.183673469	0.081632653	0.045918367	0.020408163	0
	0.005102041	0 0	0.010204082	0.001032033	0.163073407	0.001032033	0.043718307	0.020408103	Ü
1995	1 2	3 0	2 -1	-1 40	0 0.00571		*	38095 0.114	1285714
1,,,,	0.04 0.028571					0 0.033333	0 0	0 0	0
	0 0	0.001904762	0.00952381	0.091428571	0.260952381	0.08 0.055238			7619048
	0.003809524	0.001904762	0 0	0 0	0 0	0 0	0 0		
1996	1 2	3 0	2 -1	-1 40	0.001834862	0.00733945	0.110091743	0.110091743	
	0.179816514	0.100917431	0.040366972	0.020183486	0.012844037	0.003669725	0.001834862	0.001834862	0
	0 0	0 0	0 0	0 0	0.001834862	0.095412844	0.088073394	0.137614679	
	0.055045872	0.022018349	0.00733945	0.001834862	0 0	0 0	0 0	0 0	0
	0 0								
1997	1 2	3 0	2 -1	-1 21.2	0 0	0.051886792	0.150943396	0.117924528	
	0.08490566	0.037735849	0.023584906	0 0	0 0	0 0	0 0	0 0	0
	0 0	0 0.07547				3585 0.009433	962 0	0 0	0
	0 0	0 0	0 0	0 0	0				
1998	1 2	3 0	2 -1	-1 7	0 0	0.014285714	0.114285714	0.214285714	
	0.085714286	0.1 0.01428		0 0	0 0	0 0	0 0	0 0	0
	0 0	0.014285714	0.128571429	0.128571429	0.1 0.05714	2857 0	0.014285714	0 0.014	1285714
2000	0 0 1 2	$\begin{array}{ccc} 0 & 0 \\ 3 & 0 \end{array}$	0 0 2 -1	0 0	0 0	0 002222	222 0.125	0.104166667	0.0625
2000		0 0	2 -1 0	-1 4.8 0 0	0 0	0 0.083333 0 0		0.104166667	0.0625
	0.020833333 0.104166667	0.166666667	0.145833333	0 0 0.083333333	0.041666667	0.041666667	0 0 0.020833333	0 0	0
	0.104100007	0.100000007	0.143833333	0.06555555	0.041000007	0.041000007	0.020833333	0 0	U
2001	1 2	3 0	2 -1	-1 39.6	0 0	0 0.040404	0.1136	36364 0.149	3989899
2001	0.093434343	0.05555556	0.042929293	0.02777778	0.007575758	0.005050505	0.002525253	0 0	0
	0 0	0.055555550	0.042)2)2)3	0.002525253	0.04040404	0.111111111	0.161616162	0.073232323	V
	0.04040404	0.02020202	0.012626263	0 0	0.0404040	0 0	0.101010102	0.073232323	
2002	1 2	3 0	2 -1	-1 40	0 0	0.009779951	0.048899756	0.144254279	
	0.095354523	0.095354523	0.058679707	0.019559902	0.017114914	0.004889976	0.002444988	0.002444988	0
	0 0	0 0	0 0	0 0	0.017114914	0.070904645	0.178484108	0.114914425	
	0.080684597	0.031784841	0.004889976	0.002444988	0 0	0 0	0 0	0 0	0
	0								
2003	1 2	3 0	2 -1	-1 38.3	0.0130548303	0.0000000000	0.0287206266	0.1618798956	
	0.1122715405	0.0992167102	0.0626631854	0.0391644909	0.0261096606	0.0130548303	0.0104438642	0.0000000000	
	0.0052219321	0.0000000000	0.0000000000	0.0026109661	0.0000000000	0.0000000000	0.0000000000	0.0000000000	
	0.0078328982	0.0000000000	0.0156657963	0.1618798956	0.0966057441	0.0600522193	0.0443864230	0.0182767624	
	0.0130548303	0.0052219321	0.0000000000	0.0026109661	0.0000000000	0.0000000000	0.0000000000	0.0000000000	
	0.0000000000	0.0000000000	0.0000000000	0.0000000000					
/DDATEG G	A . C								
	urvey Age Comps	3 0	2 1	1 20.0	0.250615295	0.169260221	0.049076022	0.022652946	
1995	1 4 0.024038462	3 0 0.014423077	2 -1 0.004807692	-1 20.8 0 0.0096	0.259615385 515385 0.00480	0.168269231 07692 0	0.048076923 0.004807692	0.033653846 0 0	0
	0.024038462	0.014423077	0.004807692						1038462
	0 0.009615		0.004807692	0 0 0	0 0.01442	0.019230	0 0.0144	0.024	+030404
	0.00901.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.00700/072	0 0	U U	0	o o	U U	

1998	1	4	3	0	2	-1	-1	22.1	0.226244344		0.230769231		0.07239819		0.027149321		
	0.031674208		0.018099548		0.00904	0.009049774		0	0	0	0	0	0	0	0	0	0
	0	0	0.1221	71946	0.14932	21267	0.03619	0.036199095		0.036199095		9548	0.018099	548	0.004524887		0
	0	0	0	0	0	0	0	0	0	0	0	0					
2001	1	4	3	0	2	-1	-1	19.7	0.155031	5536	0.30712	27959	0.069527	70333	0.0116	955992	
	0.01653	350909	0.0074	985059	0.01928	376990	0.00609	990609	0.002455	1573	0.00000	00000	0.000000	00000	0.0000	000000	
	0.00000	000000	0.0000	000000	0.00000	000000	0.00000	000000	0.000000	0000	0.00000	00000	0.000000	00000	0.0000	000000	
	0.11845	568491	0.1529	891059	0.08816	553281	0.00470)58503	0.017481	2273	0.01939	49503	0.001650	9308	0.0000	000000	
	0.00000	000000	0.0000	000000	0.00000	000000	0.00000	000000	0.000000	0000	0.00190	32620	0.000000	00000	0.0000	000000	
	0.00000	000000	0.0000	000000	0.00000	000000	0.00000	000000									
2004	1	4	3	0	2	-1	-1	40	0.095990	0982	0.09390	41604	0.107236	6420	0.0991	207996	
	0.11852	247500	0.0656	817055	0.02693	378914	0.01502	281895	0.032046	2346	0.00363	04377	0.000000	00000	0.0007	720993	
	0.00000	000000	0.0000	000000	0.00000	000000	0.00000	000000	0.000000	0000	0.00000	00000	0.000000	00000	0.0000	000000	
	0.08269	933184	0.0729	663276	0.05118	399528	0.06397	762723	0.035571	2194	0.00917	41965	0.007229	3031	0.0000	000000	
	0.00000	000000	0.0000	000000	0.01517	742864	0.00135	515478	0.001800	5674	0.00000	00000	0.000000	00000	0.0000	000000	
	0.00000	000000	0.0000	000000	0.00000	000000	0.00000	000000									

0 #_N_MeanSize-at-Age_obs #Yr Seas Flt/Svy Gender Part Ageerr Ignore datavector(female-male) # samplesize(female-male)

0 #_N_environ_variables 0 #_N_environ_obs

999

ENDDATA

Filename: FORECAST.SS2

```
# summary age for biomass reporting
     # 0=skip forecast; 1=normal; 2=force without sdreport required
     # Do_MSY: 0=skip; 1=calculate; 2=set to Fspr; 3=set to endyear(only
useful if set relative F from endyr)
      # target SPR
     # number of forecast years
12
12
     # number of forecast years with stddev
     # emphasis for the forecast recruitment devs that occur prior to endyyr+1
     # fraction of bias adjustment to use with forecast_recruitment_devs before
endyr+1
     # fraction of bias adjustment to use with forecast_recruitment_devs after
endyr
0.40 # topend of 40:10 option; set to 0.0 for no 40:10
0.10 # bottomend of 40:10 option
1.0 # OY scalar relative to ABC
     # for forecast: 1=set relative F from endyr; 2=use relative F read below
# relative Fs used for forecast; rows are seasons; columns are fleets
# Fleet 1 Fleet 2
0.5
    0.5
# verify end of input harvest rates
999
# specified actual catches into the future
# (negative values are not used, but there must be a sufficient number of
values)
# fleet1 fleet2
     -1
          -1 #year 1
                                       1
                            season
     -1
           -1 #year 2
                           season
     -1
           -1
               #year 3
                                      1
                          season
     -1
           -1
                #year 4
                                      1
                           season
                #year 5
     -1
           -1
                           season
     -1
           -1 #year 6
                          season
                                       1
     -1
          -1 #year 7
                          season
                                      1
     -1
          -1 #year 8
                          season
                                      1
     -1
          -1 #year 9
                          season
     -1
          -1
               #year 10
                         season
                                      1
                                      1
     -1
          -1
               #year 11
                         season
               #year 12
                                      1
     -1
           -1
                            season
```

Filename: SS2NAMES.NAM

```
LCSData05d.dat
LCSCTL05.CTL
     #run number
       # 0=no Parameter read; use the init values in the CTL file; 1=use
SS2.PAR
     #Show_run_progress_on_console_(0/1/2)
     #Produce_detailed_.rep_file_(0/1)
1
0
     #_N_nudata
       #_last_phase
Code_version_:_
10
     # burn in for mcmc chain
2
       # thinning interval for mcmc chain
.000 # jitter initial parm values
0.01 # push initial parm values away from bounds
     # min year for spbio sd_report (negative value sets to styr-2; the virgin
level)
    # max year for spbio sd_report (negative value sets to endyr+1)
```

Filename: SS2.STD

index	name	value std dev
1	SR_parm[1]	7.8253e+000 1.0093e-001
2	rec_dev1	9.8130e-001 8.1864e-001
3	rec_dev1	-2.9828e-001 1.4602e+000
4	rec_dev1	-1.8701e-001 1.4076e+000
5	rec_dev1	1.3178e+000 4.6759e-001
6	rec_dev1	-5.0209e-002 1.4008e+000
7	rec_dev1	-9.1253e-001 8.9844e-001
8	rec_dev1	-1.0959e+000 8.4215e-001
9	rec_dev1	-4.3526e-001 9.0183e-001
10 11	rec_dev1	1.3479e+000 2.6847e-001
12	rec_dev1	-2.2612e-001 1.1936e+000
13	rec_dev1 rec_dev1	1.2091e+000 3.3852e-001 -9.7255e-001 8.6134e-001
14	rec_dev1	-8.5155e-001 6.6134e-001
15	rec_dev1 rec_dev1	1.5918e-001 2.2141e-001
16	rec_dev1 rec_dev1	2.2158e-001 2.4678e-001
17	rec_dev1	4.3627e-001 2.1651e-001
18	rec_dev1 rec_dev1	-4.4759e-001 4.3161e-001
19	rec_dev1	2.2131e-001 2.9013e-001
20	rec_dev1	-1.0736e-001 4.2512e-001
21	rec_dev1	-1.9598e-001 5.8690e-001
22	rec_dev1	7.7800e-001 2.6340e-001
23	rec_dev1	-1.3312e+000 7.8255e-001
24	rec_dev1	-3.1490e-001 5.5140e-001
25	rec_dev1	5.0976e-001 4.2892e-001
26	rec_dev1	2.4425e-001 8.1052e-001
27	init_F[1]	1.4126e-002 2.0234e-003
28	init_F[2]	2.7733e-003 3.6353e-004
29	selparm[3]	3.0936e-001 2.1908e-001
30	selparm[4]	1.2341e+001 2.7124e+001
31	selparm[5]	-9.4923e+000 4.0978e+001
32	selparm[6]	-2.8446e+000 4.3940e-001
33	selparm[7]	1.6912e+000 4.2936e+000
34	selparm[11]	-4.1564e-001 1.8407e-001
35	selparm[12]	4.1341e+000 8.8068e+000
36	selparm[15]	4.1625e+000 6.9810e+000
37	selparm[17]	-8.1486e+000 3.1712e+001
38	selparm[18]	-1.7296e+000 3.7842e-001
39	selparm[19]	8.9017e+000 3.5655e+001
40	selparm[27]	-4.9271e+000 3.8697e+000
41	selparm[29]	-8.0414e+000 4.8745e+001
42	selparm[30]	-1.3363e+000 4.0499e-001
43	selparm[31]	9.6526e+000 4.2159e+001
44	selparm[35]	-6.0557e-002 2.9147e-001
45	fore_recruitments	3.1086e-001 6.9361e-001
46	fore_recruitments	-1.7140e-001 7.3566e-001
47	fore_recruitments	-5.2324e-001 7.0640e-001
48	fore_recruitments	-2.1473e-001 9.6298e-001
49	fore_recruitments	0.0000e+000 1.0000e+000
50	fore_recruitments	0.0000e+000 1.0000e+000
51	fore_recruitments	0.0000e+000 1.0000e+000
52	fore_recruitments	0.0000e+000 1.0000e+000
53	fore_recruitments	0.0000e+000 1.0000e+000
54	fore_recruitments	0.0000e+000 1.0000e+000

```
55
      fore_recruitments 0.0000e+000 1.0000e+000
 56
      fore_recruitments 0.0000e+000 1.0000e+000
 57
      fore_recruitments 0.0000e+000 1.0000e+000
 58
      fore_recruitments 0.0000e+000 1.0000e+000
 59
      fore recruitments 0.0000e+000 1.0000e+000
 60
      fore recruitments 0.0000e+000 1.0000e+000
 61
                         2.5031e+003 2.5264e+002
 62
      S0
                         2.3607e+004 2.3828e+003
 63
                         2.3607e+004 2.3828e+003
      spbio_std
 64
      spbio_std
                         2.1749e+004 2.3780e+003
 65
      spbio_std
                         2.1749e+004 2.3780e+003
 66
      spbio_std
                         2.1500e+004 2.3789e+003
 67
      spbio_std
                         2.0998e+004 2.3804e+003
 68
      spbio_std
                         2.0479e+004 2.3808e+003
 69
      spbio_std
                         2.0046e+004 2.3803e+003
 70
                         1.9675e+004 2.3798e+003
      spbio_std
 71
                         1.9304e+004 2.3798e+003
      spbio_std
 72
                         1.9065e+004 2.3798e+003
      spbio_std
 73
      spbio_std
                         1.8854e+004 2.3801e+003
 74
      spbio_std
                         1.8781e+004 2.3801e+003
 75
      spbio_std
                         1.8737e+004 2.3801e+003
 76
      spbio_std
                         1.8700e+004 2.3801e+003
 77
      spbio_std
                         1.8639e+004 2.3803e+003
 78
                         1.8539e+004 2.3807e+003
      spbio_std
 79
      spbio_std
                         1.8458e+004 2.3808e+003
 80
      spbio_std
                         1.8228e+004 2.3814e+003
 81
      spbio std
                         1.7758e+004 2.3826e+003
 82
      spbio_std
                         1.6829e+004 2.3845e+003
 83
                         1.5671e+004 2.3845e+003
      spbio_std
 84
      spbio_std
                         1.4435e+004 2.3822e+003
 85
      spbio_std
                         1.3407e+004 2.3793e+003
 86
      spbio_std
                         1.2480e+004 2.3716e+003
 87
                         1.2195e+004 2.3177e+003
      spbio_std
 88
      spbio_std
                         1.1994e+004 2.0932e+003
 89
      spbio_std
                         1.1539e+004 1.7299e+003
 90
      spbio_std
                         9.6643e+003 1.5091e+003
 91
      spbio std
                         8.3933e+003 1.4490e+003
 92
      spbio std
                         7.6258e+003 1.2942e+003
 93
      spbio_std
                         7.0631e+003 1.1490e+003
 94
      spbio_std
                         6.2121e+003 1.0699e+003
 95
                         5.1077e+003 9.9835e+002
      spbio std
                         4.5120e+003 9.2471e+002
 96
      spbio_std
 97
      spbio_std
                         4.3843e+003 8.6537e+002
 98
      spbio std
                         4.2702e+003 8.0337e+002
 99
      spbio_std
                         3.9342e+003 6.6318e+002
100
                         3.3969e+003 5.3843e+002
      spbio_std
101
      spbio_std
                         2.7197e+003 4.7036e+002
102
      spbio_std
                         2.2555e+003 4.2168e+002
103
      spbio_std
                         2.1406e+003 3.8415e+002
104
      spbio_std
                         2.2256e+003 3.6386e+002
105
      spbio_std
                         2.2148e+003 3.5855e+002
106
      spbio_std
                         2.1452e+003 3.6275e+002
107
      spbio std
                         2.0754e+003 3.7913e+002
108
      spbio std
                         2.3308e+003 4.1165e+002
109
      spbio std
                         2.6304e+003 4.6456e+002
110
      spbio_std
                         3.0991e+003 5.3414e+002
111
      spbio std
                         3.5581e+003 6.1426e+002
```

```
3.8591e+003 7.0623e+002
112
      spbio_std
113
      spbio_std
                         3.9186e+003 8.2215e+002
114
      spbio_std
                         4.6009e+003 9.8079e+002
115
      recr_std
                         2.5031e+003 2.5264e+002
116
      recr std
                        2.5031e+003 2.5264e+002
117
      recr std
                        2.4972e+003 2.5267e+002
118
      recr std
                        2.4963e+003 2.5269e+002
119
                        2.4945e+003 2.5273e+002
      recr_std
120
                        2.4925e+003 2.5278e+002
      recr_std
121
      recr_std
                        2.4908e+003 2.5283e+002
122
      recr_std
                        2.4893e+003 2.5288e+002
123
                        2.4877e+003 2.5294e+002
      recr_std
124
      recr_std
                        2.4866e+003 2.5299e+002
125
      recr_std
                        2.4857e+003 2.5303e+002
126
                        2.4853e+003 2.5304e+002
      recr_std
                        2.4851e+003 2.5305e+002
127
      recr_std
128
                        2.4850e+003 2.5306e+002
      recr_std
129
                        2.4847e+003 2.5307e+002
      recr_std
                        2.4842e+003 2.5310e+002
130
      recr_std
131
                        2.4838e+003 2.5312e+002
      recr_std
132
                        2.4827e+003 2.5318e+002
      recr_std
133
                        2.4804e+003 2.5332e+002
      recr_std
134
      recr_std
                        2.4754e+003 2.5367e+002
135
                        2.4684e+003 2.5427e+002
      recr_std
                        2.4597e+003 2.5517e+002
136
      recr_std
137
      recr_std
                        3.9666e+003 2.9364e+003
138
      recr std
                        1.0994e+003 1.6596e+003
      recr_std
                        1.2273e+003 1.7866e+003
139
140
                        5.5223e+003 2.2785e+003
      recr_std
141
                        1.4031e+003 1.9950e+003
      recr_std
142
                        5.8608e+002 5.3101e+002
      recr_std
143
                        4.8311e+002 4.0982e+002
      recr_std
144
                        9.2838e+002 8.4676e+002
      recr_std
145
                        5.4872e+003 1.2302e+003
      recr_std
146
                        1.1236e+003 1.3856e+003
      recr_std
                        4.6215e+003 1.2675e+003
147
      recr std
148
      recr std
                        5.1367e+002 4.5317e+002
149
      recr std
                        5.7755e+002 3.5987e+002
150
                        1.5813e+003 3.1632e+002
      recr_std
151
      recr_std
                        1.6637e+003 3.7261e+002
                        2.0154e+003 3.9711e+002
152
      recr std
153
                        7.9976e+002 3.4464e+002
      recr_std
                        1.4999e+003 4.1374e+002
154
      recr_std
155
      recr std
                        1.0665e+003 4.5128e+002
156
      recr_std
                        9.8511e+002 5.7380e+002
157
                        2.6061e+003 6.9057e+002
      recr_std
                        3.1383e+002 2.5022e+002
158
      recr_std
                        8.6017e+002 4.7700e+002
159
      recr_std
                        2.0163e+003 8.7257e+002
160
      recr_std
161
      recr_std
                        1.5867e+003 1.2888e+003
162
      recr_std
                        1.7500e+003 1.2173e+003
163
      recr_std
                        1.1060e+003 8.2270e+002
164
                        7.8771e+002 5.6087e+002
      recr std
165
      recr std
                        1.0748e+003 1.0402e+003
166
      recr std
                        1.3619e+003 1.3693e+003
167
      depletion
                        1.6599e-001 2.9460e-002
168
      depletion
                        1.9489e-001 3.5883e-002
```

```
169
                         1.4109e+003 1.3708e+002
      depletion
170
                         1.0252e+004 1.0348e+003
      depletion
                         4.5000e-001 2.9436e-007
171
      depletion
172
      depletion
                         4.6009e+003 9.8079e+002
173
      depletion
                         1.3619e+003 1.3693e+003
174
      depletion
                         1.9489e-001 3.5883e-002
175
      depletion
                         5.8604e+002 2.4711e+002
176
      depletion
                         7.5867e-002 1.7176e-002
177
      depletion
                         4.9829e+003 9.9105e+002
178
      depletion
                         2.2676e+003 2.2796e+003
179
      depletion
                         2.1107e-001 3.6283e-002
180
      depletion
                         6.3964e+002 2.3639e+002
181
      depletion
                         8.0620e-002 1.5337e-002
182
      depletion
                         5.1723e+003 9.8809e+002
183
      depletion
                         2.2776e+003 2.2895e+003
184
                         2.1909e-001 3.6116e-002
      depletion
185
      depletion
                         6.0102e+002 2.1697e+002
186
      depletion
                         7.3807e-002 1.5718e-002
187
                         5.3435e+003 1.0212e+003
      depletion
188
      depletion
                         2.2860e+003 2.2979e+003
                         2.2635e-001 3.7237e-002
189
      depletion
190
      depletion
                         6.1499e+002 2.3611e+002
191
      depletion
                         6.9727e-002 1.6927e-002
192
      depletion
                         5.6094e+003 1.1245e+003
193
      depletion
                         2.2983e+003 2.3102e+003
194
      depletion
                         2.3761e-001 4.1625e-002
195
      depletion
                         6.6824e+002 2.8308e+002
196
      depletion
                         6.9113e-002 1.7651e-002
197
      depletion
                         6.0464e+003 1.3549e+003
                         2.3162e+003 2.3284e+003
198
      depletion
199
                         2.5612e-001 5.1627e-002
      depletion
200
                         7.8331e+002 3.9952e+002
      depletion
201
                         7.3900e-002 2.1886e-002
      depletion
202
      depletion
                         6.5928e+003 1.6316e+003
203
      depletion
                         2.3356e+003 2.3480e+003
204
      depletion
                         2.7927e-001 6.3447e-002
205
      depletion
                         9.1493e+002 4.8999e+002
206
      depletion
                         7.9634e-002 2.3969e-002
207
      depletion
                         7.1445e+003 1.8641e+003
208
      depletion
                         2.3525e+003 2.3649e+003
209
      depletion
                         3.0264e-001 7.3154e-002
210
      depletion
                         1.0376e+003 5.5135e+002
211
                         8.4548e-002 2.4542e-002
      depletion
212
      depletion
                         7.6424e+003 2.0300e+003
213
      depletion
                         2.3658e+003 2.3782e+003
214
      depletion
                         3.2373e-001 7.9887e-002
215
      depletion
                         1.1547e+003 5.9132e+002
216
      depletion
                         8.9316e-002 2.4220e-002
217
      depletion
                         8.0533e+003 2.1389e+003
218
      depletion
                         2.3756e+003 2.3881e+003
219
      depletion
                         3.4113e-001 8.4146e-002
220
      depletion
                         1.2495e+003 6.1380e+002
221
      depletion
                         9.2916e-002 2.3522e-002
222
      depletion
                         8.3790e+003 2.2112e+003
223
      depletion
                         2.3828e+003 2.3953e+003
224
      depletion
                         3.5493e-001 8.6860e-002
225
      depletion
                         1.3109e+003 6.2559e+002
```

226	depletion	9.4655e-002	2.2887e-002
227	depletion	8.6417e+003	2.2624e+003
228	depletion	2.3882e+003	2.4007e+003
229	depletion	3.6606e-001	8.8736e-002
230	depletion	1.3511e+003	6.3298e+002
231	depletion	9.5378e-002	2.2485e-002