«Продвинутые» методы ускорения А/В-тестов. СUPED

Цель урока

А теперь обсудим чуть более сложные методы, позволяющие принять решение при той же мощности, но за меньшее количество экспериментов.

Задачи урока

- Обсудим, что влияет на количество экспериментов (спойлер: дисперсия)
- Перечислим способы того, как снизить дисперсию метрик
- Разберём виды линеаризации метрик
- Насладимся красотой идеи CUPED,
 про которую все говорят

Ускорение тестов это возможность принять решение с той же мощностью при меньшем количестве наблюдений.

Ускорение тестов

Ускорение тестов — это возможность принять решение с той же мощностью при меньшем количестве наблюдений. Для этого можно снизить дисперсию, после чего, как следствие, увеличивается мощность.

Снижение дисперсии

Снизить дисперсию, чтобы увидеть более тонкие эффекты, можно с помощью **линеаризации**.

Линеаризация

Линеаризацию легко применить к ratio-метрикам — метрикам, где **что-то** делится на **что-то**. Например, **CTR**.

Линеаризация ration метрик

Ratio-метрика:

$$CTR = \frac{\sum clicks(u)}{\sum views(u)}$$

Обычную ratio-метрику CTR (глобальный CTR) сложно «сдвинуть с места»!

Ratio-метрика:

$$linearized_{CTR} = \sum clicks(u) - k \times \sum views(u),$$
 $k = CTRA$

^{*} Consistent Transformation of Ration Metrics for Efficient Online Controlled Experiments (ACM, 2018)

Линеаризация ration метрик

Ratio-метрика:

$$CTR = \frac{\sum clicks(u)}{\sum views(u)}$$

Ratio-метрика:

 $linearized_{CTR} = \sum clicks(u) - k \times \sum views(u),$

$$k = CTRA$$

Обычную ratio-метрику CTR (глобальный CTR) сложно «сдвинуть с места»!

А вот линеаризованный CTR уже сильно проще!

Линеаризация ration метрик

Ratio-метрика:

$$CTR = \frac{\sum clicks(u)}{\sum views(u)}$$

Ratio-метрика:

$$linearized_{CTR} = \sum clicks(u) - k \times \sum views(u), \leftarrow$$

$$k = CTRA$$

Линеаризованный СТR имеет меньшую дисперсию, при этом он сонаправлен с глобальным СТR, чего нельзя сказать о поюзерном СТR.

Дисперсия метрик

$$N=N_{groups} imes rac{\left(rac{Zlpha}{2}\Big/(C_{Ngroups}^2 imes N_{metrics})}{\Delta^2} + Z_eta
ight)^2 imes \sigma^2}{\Delta^2}$$
 Мы уже видели похожую формулу раньше

формулу раньше.

Самое главное: если снизить дисперсию метрики в два раза, то количество экспериментов снизится тоже в два раза.

Дисперсия метрик

$$N=Ngro_{ups}$$
 $imes rac{\left(rac{Z_{lpha}}{2}\middle/(c_{Ngroups}^2 imes Nm_{etrics})}+Z_{eta}
ight)^2 imes \sigma^2}{\Delta^2}$ Как снизить дисперсию???

Метрики есть. Снижаем дисперсию метрик!

- Заменяем выбросы максимальным значением
- Критерий Манна Уитни

Метрики есть. Снижаем дисперсию метрик!

- Заменяем выбросы максимальным значением
- Критерий Манна Уитни
- Применяем линеаризацию
 - Постстратификация
 - CUPED
 - CUPAC

Прежде чем мы будем говорить про виды линеаризации, необходимо вспомнить, что по сути это способ моделирования линейной зависимости, подсчёт некоторой метрики, которая линейно зависит от каких-то параметров.

(Обычный А/В с Т-критерием)

Индикаторы группы А или В (OneHotEncod).

Индикатор тестовой группы.

На линеаризованной метрике используем обычный Т-критерий.

 $metric = a_0 + a_1 \times is_test$ (Обычный А/В с Т-критерием)

Аналогично, но добавляются ещё индикаторы принадлежности к какой-то категории, например, того, что человек из Москвы или Санкт-Петербурга.

```
metric = a_0 + a_1 \times is\_test (Обычный А/В с Т-критерием)
```

 $metric = a_0 + a_1 \times is_test + a_2 \times is_msk + a_3 \times is_spb$ (Стратификация)

 $metric = a_0 + a_1 \times is_test + a_2 \times metric_{t_21}$ (CUPED)

Ничего нам не мешает использовать значения метрики до эксперимента (исторических данных)!

В этом и есть весь CUPED.

```
metric = a_0 + a_1 \times is\_test (Обычный А/В с Т-критерием) metric = a_0 + a_1 \times is\_test + a_2 \times is\_msk + a_3 \times is\_spb (Стратификация) metric = a_0 + a_1 \times is\_test + a_2 \times metric_{t\_21} (СUPED) metric = a_0 + a_1 \times is\_test + a_2 \times metric_{t\_21} + a_3 \times Age + a_4 \times is\_msk (СUPAC)
```

Мы можем пойти дальше и использовать ещё какие-то данные про пользователей. Например, их возраст. С некоторыми коэффициентами.

```
metric=a_0+a_1	imes is\_test (Обычный A/B с Т-критерием) metric=a_0+a_1	imes is\_test+a_2	imes is\_msk+a_3	imes is\_spb (Стратификация) metric=a_0+a_1	imes is\_test+a_2	imes metric_{t\_21} (CUPED) metric=a_0+a_1	imes is\_test+a_2	imes metric_{t\_21\_4} a_3	imes Age+a_4	imes is\_msk
```

Вот и всё! Если думать обо всех этих методах в таком ключе, то всё становится понятно.

Теперь и вы сможете ускорять свои тесты в десятки раз! Пользуйтесь!

(CUPAC)

```
metric=a_0+a_1	imes is\_test (Обычный A/B с Т-критерием) metric=a_0+a_1	imes is\_test+a_2	imes is\_msk+a_3	imes is\_spb (Стратификация) metric=a_0+a_1	imes is\_test+a_2	imes metric_{t\_21} (CUPED) metric=a_0+a_1	imes is\_test+a_2	imes metric_{t\_21}+a_3	imes Age+a_4	imes is\_msk (CUPAC)
```

Ускорение тестов: ещё раз про идею CUPED

это возможность принять решение с той же мощностью при меньшем количестве наблюдений. Для этого можно снизить дисперсию, после чего, как следствие, увеличивается мощность. Смысл метода CUPED: для уменьшения срока учитываем поведение

Ускорение тестов —

пользователей

до эксперимента.

Обычно дисперсия сокращается на 30–40 % и больше.

- Большой эффект = большая мощность
- Большая дисперсия + маленький эффект = маленькая мощность
- Маленькая дисперсия = большая мощность

CUPED: метод работы

Дисперсия метрики:

- Объясняемая данными до тестирования
- Не объясняемая данными до тестирования CUPED сокращает дисперсию, опираясь на 1

 $CUPED = metric - (covariate - mean(covariate)) \times theta$

- covariate метрика до эксперимента
- **metric** метрика после эксперимента

Коэффициент b линейной регрессии $y_t = a + bxt + \varepsilon_t$

CUPED: метод работы

Дисперсия метрики:

- Объясняемая данными до тестирования
- Не объясняемая данными до тестирования CUPED сокращает дисперсию, опираясь на 1

• **theta** вычисляется как

 $\frac{covariance(metric, covariate)}{variance(covariate)}$

Варианты равнозначны, но первый сохраняет среднее значение метрики.

 $Metric_{CUPED} = metric - covariate \times theta$

CUPED: кейс

Первичная метрика: среднее число покупок в приложении за неделю.

Изменение: дизайн.

По результатам тестирования: покупки могут обладать большей дисперсией. Известно:

- Количество покупок каждого покупателя до теста
- Дисперсия покупок в результате тестирования объясняется
 - а) количеством поездок до теста
 - b) и ещё чем-то

CUPED: кейс

Откажемся от А (количество поездок до теста).

Поэтому можем тестировать, будет ли покупатель делать больше покупок.

У разницы значения, вероятно, дисперсия значительно уменьшится.

Итоги и выводы урока

Если вы уже задействовали все простые техники ускорения тестирования, то самое время использовать что-то посерьёзнее, чтобы ускорить тестирование гипотез ещё в несколько раз.

Итоги и выводы урока

- Методы линеаризации могут сильно снизить дисперсию в ваших данных, что поможет детектировать более тонкие эффекты
- Выбор вида зависит от того, насколько разнообразны ваши данные
- ✓ Помните, что ускорение самого тестирования / сбора данных это только часть всего теста. Пытаться ускорить этот этап надо, но лучше делать это не в первую очередь, а когда у вас уже запускаются периодически более 10 А/В-тестов в месяц. То есть когда речь идёт про настройку массового тестирования