Patterns of Proof

证明的方式

The Axiomatic Method

公理化方法

The standard procedure for establishing truth in mathematics was invented by Eu- clid, a mathematician working in Alexandria, Egypt around 300 BC. His idea was to begin with five assumptions about geometry, which seemed undeniable based on direct experience. For example, one of the assumptions was "There is a straight line segment between every pair of points." Propositions like these that are simply accepted true are called axioms.

生活于公元前300年埃及亚历山大港的数学家欧几里得,发明了在数学中证实命题正确性的标准步骤。他的思想发轫于几何学上的五个假设,它们基于直接经验,似乎毋庸置疑。例如,其中一个假设是"两点之间只有一个直线段。"像这样不证自明的命题称为公理。

Starting from these axioms, Euclid established the truth of many additional propositions by providing "proofs". A proof is a sequence of logical deductions from axioms and previously-proved statements that concludes with the proposition in question.

从这些公理开始,通过提供"证明",欧几里得证实了许多附加命题的正确性。证明是一系列逻辑推论, 它们从公理与之前证实的陈述开始推定讨论中的命题。

There are several common terms for a proposition that has been proved. The different terms hint at the role of the proposition within a larger body of work.

- Important propositions are called *theorems*.
- A *lemma* is a preliminary proposition useful for proving later propositions.
- A *corollary* is a proposition that follows in just a few logical steps from a lemma or a theorem.

可用多个常见术语来指代已被证明的命题。不同的术语暗示着该命题在更大工作体系中的地位。

- 重要的命题称作定理。
- 引理是个可用于证明后续命题的初级命题。
- 从某个引理或定理开始,仅推导几步,就可得到叫做**推论**的命题。

Euclid's axiom-and-proof approach, now called the axiomatic method, is the foundation for mathematics today. In fact, just a handful of axioms, collectively called Zermelo-Frankel Set Theory with Choice(ZFC), together with a few logical deduction rules, appear to be sufficient to derive essentially all of mathematics.

欧几里德的公理&证明方法,现在称为公理化方法,是现代数学的基石。事实上,只需几个公理——它们统称为包括选择公理的策梅洛-弗兰克尔集合论——加上一些逻辑推论规则,似乎就足以推导出大体上所有的数学理论。

2.1.1 Our Axioms

2.1.1 我们的公理

The ZFC axioms are important in studying and justifying the foundations of mathematics, but for practical purposes, they are much too primitive. Proving theorems in ZFC is a little like writing programs in byte code instead of a full-fledged programming language——by one reckoning, a formal proof in ZFC that 2 + 2 = 4 requires more than 20,000 steps! So instead of starting with ZFC, we're going to take a huge set of axioms as our foundation: we'll accept all familiar facts from high school math!

在研究及证明数学基础的合理性方面,ZFC公理价值很大,但对实际应用来讲,它们却太过简陋。用 ZFC证明定理有点象用字节码而非完备的编程语言来编写程序——据估计,用规范的ZFC来证明2 + 2 = 4 需要超过20,000 个步骤! 所以与其从ZFC开始,倒不如把超大的公理集当作我们的基础: 我们将把高中数学中的常见事实都默认为公理!

This will give us a quick launch, but you may find this imprecise specification of the axioms troubling at times. For example, in the midst of a proof, you may find yourself wondering, "Must I prove this little fact or can I take it as an axiom?" Feel free to ask for guidance, but really there is no absolute answer. Just be up front about what you're assuming, and don't try to evade homework and exam problems by declaring everything an axiom!

这让我们得以快速开始,但有时你也会认为公理的这种不精确的规范会让人苦恼。例如,你可能在证明时陷入疑惑,"我是否必须证明这一小处事实,还是可以把它当公理?"不要吝于寻求指导,但的确不存在绝对正确的答案。只需直面你的职责,不要把一切都声明为公理来逃避作业和考试中的问题!