循环比赛排名模型

问题: 若干支球队参加单循环比赛,各队两两交锋。假设每场比赛只计

胜负,不计比分,在比赛结束后如何排名?

下面对只进行一次比赛的情况进行讨论

1.双向连通竞赛图:对于任何一对顶点, 存在两条有向路径,使两顶点可以互相连 通,这种有向图称为双向连通竞赛图。

如图1是4个队比赛结果的双向连通竞赛图。 其对应的邻接矩阵A见右。

设 $s_0 = (1,1,1,1)^{\tau}$,则 $s_1 = A.s_0 = (2,2,1,1)$ 。表明每人胜的场次数。

 $s_2 = As_1 = (3, 2, 1, 2)$ 。表明每人的2级得分,其意义是他战胜的各个球队的得分之和。

继续进行下去,得到结果如下:

$$s_3 = As_2 = (3,3,2,3)$$
, $s_4 = As_3 = (5,5,3,3)$, $s_5 = As_4 = (8,6,3,5)$

$$s_6 = As_5 = (9, 8, 5, 8)$$
 $s_7 = As_6 = (13, 13, 8, 9)$ $s_8 = As_7 = (21, 17, 9, 13)$

 s_k 各分量代表各人的第k级得分,其意义是他战胜的各个球队的前一级得分之和。

得出其排名为: 1->2->4->3。

对一般性, 记 $s_1 = A.s_0$, $s_2 = A.s_1, \dots, s_k = A.s_{k-1}$ 。则有:

$$s_k = A.s_{k-1} = A^k.s_0 \ (k = 1, 2, \cdots)$$
 (1)

当迭代次数越多,名次排定顺序越稳定。

可将其较高级的得分作为排名的依据。

对其它双向连通竞赛图也可以采用类似方法迭代计算得到。

问题:是否双向连通竞赛图都一定可以按照(1)式的方法排出确定的名次,另外是否还有更简单的方法?

为了回答这个问题,我们先给出素阵的定义:

素阵:对于 $n(n \ge 4)$ 个顶点的双向连通竞赛图的邻接矩阵A,一定存在正整数r,使得 $A^r > 0$,这样的A就称为素阵。

Perron—Frobenius 定理:

素阵A的最大特征根为正单根 λ , λ 对应正特征向量s,且有

$$\lim_{k \to \infty} \frac{A^k . s_0}{\lambda^k} = s \tag{2}$$

(2)式说明 k 级得分向量 s_k ,当 $k \to \infty$ 时将趋向于 A 的最大特征根的特征向量 s 。 因此特征向量 s 可作为排名次依据的得分向量。

求出前面求矩阵 A 的最大特征值及特征向量:

 $\lambda_{\text{max}} = 1.3953$,对应特征向量为(0.6256, 0.5516, 0.3213, 0.4484)

2. 非双向连通竞赛图

对于非双向连通竞赛图,则没有此结论,如

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

计算得到:

$$s_1 = A.s_0 = (1,3,1,1)$$
 $s_2 = A.s_1 = (1,3,1,1)$ $s_3 = A.s_2 = (1,3,1,1)$

其最大特征值对应特征向量为(0.2887, 0.8660,0.2887,0.2887)。 从结果看无法对1,3,4进行排名。

3. 实际问题处理:

设n 支球队比赛,第i 支球队与第j 支球队胜率为:

$$a_{ij} = p_{ij}, a_{ji} = 1 - p_{ij}, (i = 1, 2, \dots, n-1; j = i+1),$$

其中 p_{ii} 表示第 i 支球队胜第 j 支球队的概率。且设 $a_{ii} = 0$ 。

则第i支球队胜其余n-1支球队的能力为:

$$s_i = \sum_{j=1}^n a_{ij}$$
 $(i = 1, 2, \dots, n)$

各球队的排名根据 $\{s_i\}$ 的大小。 s_i 越大越靠前,越小越靠后。

但实际中 P_{ij} 根据比赛进行估计。

- (1) 当进行m次比赛,第i支球队胜l次,则估计 $p_{ij} = \frac{l}{m}$, $p_{ji} = \frac{m-l}{m}$
- (2) 当只进行一次比赛时,若第i支球队胜,则记 $a_{ij}=1$, $a_{ji}=0$; 若第j支球队胜,则记 $a_{ij}=0$, $a_{ji}=1$ 。

实例 乒乓球循环比赛排名问题

2007年5月23到27日,第49届世界乒乓球单项锦标赛在萨格勒布进行。 国家乒乓球球队在世乒赛等重大国际比赛前,往往进行队内大循环比赛,然 后选出前几名队员直通。其中男单选拔规则如下:

中国乒乓球男队的比赛共16人参加,比赛采用11分制,每场为5局3胜。 根据规定,两次队内选拔赛积分相加获得前三名的运动员将获得参加第 49届世乒赛男子单打比赛的资格,获得四至六名的运动员将获得第49届世 乒赛的参赛资格.下面的表1和表2分别是两次大循环相互的比赛成绩,表格 中1表示横向运动员赢了纵向运动员,反之则为0。请根据该成绩对所有对 员进行排名。

表 1 第一阶段循环比赛成绩

				王				雷	52	单	张	邱	王			侯
	郝	끜	张	励	王	끜	陈	振	李	明	继	贻	建	许	李	英
第一轮	帅	琳	超	勤	皓	龙	玘	华	平	杰	科	可	军	昕	虎	超
郝帅	0	0	1	0	1	1	1	1	1	1	1	1	1	1	1	1
马琳	1	0	1	1	0	1	1	1	0	1	0	0	1	1	1	1
张超	0	0	0	0	0	1	1	0	1	1	1	1	1	1	1	1
王励勤	1	0	1	0	1	0	0	1	1	0	1	1	1	0	1	1
王皓	0	1	1	0	0	1	0	1	1	0	0	1	1	1	1	1
马龙	0	0	0	1	0	0	1	0	1	1	1	1	0	1	1	1
陈玘	0	0	0	1	1	0	0	0	0	1	1	0	1	1	1	0
雷振华	0	0	1	0	0	1	1	0	1	1	0	0	1	1	1	1
李平	0	1	0	0	0	0	1	0	0	1	1	1	1	0	1	1
单明杰	0	0	0	1	1	0	0	0	0	0	0	1	1	1	1	1
张继科	0	1	0	0	1	0	0	1	0	1	0	1	0	0	0	1
邱贻可	0	1	0	0	0	0	1	1	0	0	0	0	1	1	1	0
王建军	0	0	0	0	0	1	0	0	0	0	1	0	0	1	1	1
许昕	0	0	0	1	0	0	0	0	1	0	1	0	0	0	0	1
李虎	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0
侯英超	0	0	0	0	0	0	1	0	0	0	0	1	0	0	1	0

表 2 第二阶段循环比赛成绩

	0		6	Page 180	SEPTEMBER 1	3,400,000	201-301-8-4 	Hinto Seek			50	100			8	98
				王				雷			张	邸	王			侯
	郝	马	张	励	王	马	陈	振	李	周	继	贻	建	许	李	英
第二轮	帅	琳	超	勤	皓	龙	玘	华	平	斌	科	可	军	昕	虎	超
郝帅	0	1	1	1	0	1	1	0	1	1	0	0	1	0	1	1
马琳	0	0	1	1	1	0	1	1	0	0	1	1	1	1	1	1
张超	0	0	0	0	0	0	1	1	1	0	0	0	1	1	0	1
王励勤	0	0	1	0	1	1	1	1	1	1	1	0	1	1	1	1
王皓	1	0	1	0	0	0	1	1	0	1	1	1	1	1	1	1
马龙	0	1	1	0	1	0	1	1	1	1	1	1	1	1	1	1
陈玘	0	0	0	0	0	0	0	1	1	0	0	1	1	0	1	1
雷振华	1	0	0	0	0	0	0	0	0	1	1	0	0	1	1	1
李平	0	1	0	0	1	0	0	1	0	1	0	1	1	1	1	1
周斌	0	1	1	0	0	0	1	0	0	0	0	0	1	0	0	0
张继科	1	0	1	0	0	0	1	0	1	1	0	1	1	0	0	0
邱贻可	1	0	1	1	0	0	0	1	0	1	0	0	1	1	1	0
王建军	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
许昕	1	0	0	0	0	0	1	0	0	1	1	0	1	0	1	1
李虎	0	0	1	0	0	0	0	0	0	1	1	0	1	0	0	1
侯英超	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0

其中第二轮周斌顶替第一轮因伤不能参加的单明杰, 其第一轮的成绩按单明杰的算, 因此这两人的成绩当周斌的计算。

求解:

由第一阶段循环比赛成绩可得到邻接矩阵 A_1 ,其中 $al_{ij}=1$ 表示 i 胜 j, $al_{ij}=0$ 表示 i 输给 j 。

第二阶段循环比赛得到邻接矩阵 A_2 ,其中 $a2_{ij} = 1$ 表示 i 胜 j, $a2_{ij} = 0$ 表示 i 输给 j。

两次循环比赛得到综合矩阵 A,其中 $a_{ij} = (a1_{ij} + a2_{ij})/2$ 。

这样综合矩阵 A 各元素取值为 0 或 0.5 或 1,表示胜率。

是 0-1 邻接矩阵的扩展。

最后得到的综合矩阵 4 见表 3。

表 3 综合矩阵 A

			-		rs s		e e			e e					-	
				王				雷			张	印	王			侯
	郝	马	张	励	王	马	陈	振	李	周	继	贻	建	许	李	英
第二轮	帅	琳	超	勤	皓	龙	玘	华	平	斌	科	可	军	昕	虎	超
郝帅	0	0.5	1	0.5	0.5	1	1	0.5	1	1	0.5	0.5	1	0.5	1	1
马琳	0.5	0	1	1	0.5	0.5	1	1	0	0.5	0.5	0.5	1	1	1	1
张超	0	0	0	0	0	0.5	1	0.5	1	0.5	0.5	0.5	1	1	0.5	1
王励勤	0.5	0	1	0	1	0.5	0.5	1	1	0.5	1	0.5	1	0.5	1	1
王皓	0.5	0.5	1	0	0	0.5	0.5	1	0.5	0.5	0.5	1	1	1	1	1
马龙	0	0.5	0.5	0.5	0.5	0	1	0.5	1	1	1	1	0.5	1	1	1
陈玘	0	0	0	0.5	0.5	0	0	0.5	0.5	0.5	0.5	0.5	1	0.5	1	0.5
雷振华	0.5	0	0.5	0	0	0.5	0.5	0	0.5	1	0.5	0	0.5	1	1	1
李平	0	1	0	0	0.5	0	0.5	0.5	0	1	0.5	1	1	0.5	1	1
周斌	0	0.5	0.5	0.5	0.5	0	0.5	0	0	0	0	0.5	1	0.5	0.5	0.5
张继科	0.5	0.5	0.5	0	0.5	0	0.5	0.5	0.5	1	0	1	0.5	0	0	0.5
邱贻可	0.5	0.5	0.5	0.5	0	0	0.5	1	0	0.5	0	0	1	1	1	0
王建军	0	0	0	0	0	0.5	0	0.5	0	0	0.5	0	0	0.5	0.5	0.5
许昕	0.5	0	0	0.5	0	0	0.5	0	0.5	0.5	1	0	0.5	0	0.5	1
李虎	0	0	0.5	0	0	0	0	0	0	0.5	1	0	0.5	0.5	0	0.5
侯英超	0	0	0	0	0	0	0.5	0	0	0.5	0.5	1	0.5	0	0.5	0

求得矩阵A的最大特征值为6.38,对应的归一化的特征向量为:

w=(0.101322,0.095904,0.060594,0.095582,0.087 542,0.093150,0.050794,0.058527,0.067374,0.046 691,0.061483,0.059527,0.024322,0.045926,0.025 564,0.025698)

计算每人的10级得分,其归一化后向量与特征向量w相同。

因此w可作为排名的依据。得到结果见表4。

表 4 选拔赛两轮比赛综合排名

运动员	归一化特征向量	综合排名	运动员	归一化特征向量	综合排名
郝帅	0. 101322	1	邱贻可	0. 059527	9
马琳	0. 095904	2	雷振华	0. 058527	10
王励勤	0. 095582	3	陈玘	0. 050794	11
马龙	0. 093150	4	周斌	0. 046691	12
王皓	0. 087542	5	许昕	0. 045926	13
李平	0. 067374	6	侯英超	0. 025698	14
张继科	0. 061483	7	李虎	0. 025564	15
张超	0. 060594	8	王建军	0. 024322	16

```
A2=[0,1,1,1,0,1,1,0,1,1,0,0,1,0,1,1;
1,0,1,1,0,1,1,1,0,1,0,0,1,1,1,1,1;
                                                0,0,1,1,1,0,1,1,0,0,1,1,1,1,1,1,1
0,0,0,0,0,1,1,0,1,1,1,1,1,1,1,1,1
                                                0,0,0,0,0,0,1,1,1,0,0,0,1,1,0,1;
1,0,1,0,1,0,0,1,1,0,1,1,1,0,1,1;
                                                0,0,1,0,1,1,1,1,1,1,1,0,1,1,1,1;
0,1,1,0,0,1,0,1,1,0,0,1,1,1,1,1,1
                                                1,0,1,0,0,0,1,1,0,1,1,1,1,1,1,1,1
0,0,0,1,0,0,1,0,1,1,1,1,0,1,1,1;
                                                0,1,1,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1
0,0,0,1,1,0,0,0,0,1,1,0,1,1,1,0;
                                                0,0,0,0,0,0,0,1,1,0,0,1,1,0,1,1;
0.0.1.0.0.1.1.0.1.1.0.0.1.1.1.1:
                                                1,0,0,0,0,0,0,0,1,1,0,0,1,1,1;
0.1.0.0.0.0.1.0.0.1.1.1.1.0.1.1;
                                                0,1,0,0,1,0,0,1,0,1,0,1,1,1,1,1;
0,0,0,1,1,0,0,0,0,0,0,1,1,1,1,1,1
                                                0,1,1,0,0,0,1,0,0,0,0,0,1,0,0,0;
0,1,0,0,1,0,0,1,0,1,0,1,0,0,0,1;
                                                1,0,1,0,0,0,1,0,1,1,0,1,1,0,0,0;
0,1,0,0,0,0,1,1,0,0,0,0,1,1,1,0;
                                                1,0,1,1,0,0,0,1,0,1,0,0,1,1,1,0;
0,0,0,0,0,1,0,0,0,0,1,0,0,1,1,1;
                                                0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0
0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,1;
                                                1,0,0,0,0,0,1,0,0,1,1,0,1,0,1,1;
0,0,0,0,0,0,0,0,0,1,0,0,1,0,0;
                                                0,0,1,0,0,0,0,0,0,1,1,0,1,0,0,1;
0.0.0.0.0.0.1.0.0.0.0.1.0.0.1.0];
                                               0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0
```

```
[m,n]=size(A1);
                              [u,v]=eig(A);
res=sum(A1')+sum(A2');
                              for i=1:n
fprintf('序号 两轮总积分\n');
                               z(i)=v(i,i);
for i=1:n
                              end
 fprintf('%2d %4d\n',i,res(i));
                              [p,k]=max(z);
end
                              %获得最大特征值及位置
A=(A1+A2)/2;
                              w=u(:,k);
res2=sum(A');
                              %获得最大特征值对应特征向量
num=10;
                              w=w/sum(w);
Y=ones(n,1);
                              fprintf('序号 得分 特征向量\n');
for i=1:num
                              for k=1:n
Y=A*Y;
                              fprintf('\%2d %-8.6f %-8.6f\n',k,Y(k),w(k));
end
                              end
Y=Y/sum(Y); %归一化计算
```

输	
出	
 1	
结	
果	

	序号	两轮	总积分	序号	, 得分	特征向量
	1	23		1	0.101322	0.101322
输	2	22		2	0.095904	0.095904
1	3	16		3	0.060594	0.060594
妇	4	22		4	0.095582	0.095582
出结果	5	21		5	0.087542	0.087542
•	6	22		6	0.093150	0.093150
	7	13		7	0.050794	0.050794
	8	15		8	0.058527	0.058527
	9	17		9	0.067374	0.067374
	10	11		10	0.046691	0.046691
	11	13		11	0.061483	0.061483
	12	14		12	0.059527	0.059527
	13	6		13	0.024322	0.024322
	14	11		14	0.045926	0.045926
	15	7		15	0.025564	0.025564
	16	7		16	0.025698	0.025698

谢 谢!