11.5 习题

张志聪

2024年12月25日

11.5.1

因为 $f:I\to\mathbb{R}$ 既是分段连续的,由定义 11.5.4 可知,存在一个 I 的划分 P,使得对所有的 $J\in P$, $f|_J$ 都是 J 上的连续函数。又因为 f 在 I 上是有界的,由命题 11.5.3 可知,任意 $J\in P$, $f|_J$ 在 J 上是黎曼可积的。

设 P 的基数为 n,对任意 $\epsilon/n>0$,对每一个 $J\in P$,我们能找到一个 分段常数函数 $h_J:J\to\mathbb{R}$ 在 J 上从上方控制 f,并且有

$$\int_J h_J \le \int_J f + \epsilon/n.$$

定义函数 $h:I\to\mathbb{R}$,对 $x\in J,J\in P$ 为 $h(x)=h_J(x)$ 。于是 h 在 I 上从上方控制 f 的分段常数函数。

从而

$$\overline{\int}_I f \le \int_I h$$

由习题 11.4.3 可知 (分段常值积分是特例)

$$\int_{I} h = \sum_{J \in P} \int_{J} h_{J}$$

于是

$$\overline{\int}_{I} f \leq \int_{I} h$$

$$= \sum_{J \in P} \int_{J} h_{J}$$

$$\leq \sum_{J \in P} \int_{J} f + \epsilon$$

同理可得

$$\underline{\int}_I f \geq \sum_{J \in P} \int_J f - \epsilon.$$

于是可得

$$0 \le \overline{\int}_I - \underline{\int}_I \le 2\epsilon.$$

但 ϵ 是任意的,所以 f 是黎曼可积的。