

Микросхема приемопередатчика по стандарту RS-485/RS-422 5559ИН10АУ, К5559ИН10АУ, К5559ИН10АН4, 5559ИН10БУ К5559ИН10БУ, К5559ИН10БSI

TП – технологическая перемычка ГГ/ҮҮ – год выпуска НН/WW – неделя выпуска

Тип корпуса:

- 8-ми выводной металлокерамический корпус H02.8-1В для микросхем 5559ИH10АУ, 5559ИH10БУ, К5559ИH10АУ, К5559ИH10БУ;
- 8-ми выводной пластиковый корпус SO-8 для микросхем К5559ИН10ASI (функциональный аналог К5559ИН10AУ) и К5559ИН10БSI (функциональный аналог К5559ИН10БУ);
- микросхемы К5559ИН10АН4,
 К5559ИН10БН4 поставляются в бескорпусном исполнении.

Основные параметры микросхемы

- Напряжение питания от 4,5 до 5,5 В;
- Скорость передачи данных:
 - не более 500 кбит/с для
 5559ИН10АУ, К5559ИН10А,
 К5559ИН10АУ, К5559ИН10АSI;
 - не более 2500 кбит/с для
 5559ИН10БУ, К5559ИН10Б,
 К5559ИН10БУ, К5559ИН10БS;
- Для микросхем типа А ограничение скорости нарастания/спада выходного сигнала передатчика для уменьшения уровня электромагнитных помех, а также отражений при неидеально согласованной шине;
- Входной импеданс приемника соответствует 1/8 единицы нагрузки (1/8 U.L.), что допускает параллельное включение до 256 эквивалентных приемопередатчиков на шине;
- Отказоустойчивая к наличию короткого замыкания и обрыва на шине схема приемника, что не требует использования внешних fail-safe резисторов;
- Режим «Горячей замены» (hot-swap), исключающий ошибочные включения выхода передатчика и приемника при подаче питания;
- Рабочий диапазон температур:

Обозначение	Диапазон
5559ИН10А(Б)У	минус 60 – 125 °C
К5559ИН10А(Б)У	минус 60 – 125 °C
К5559ИН10А(Б)УК	0 – 70 °C
К5559ИH10ASI	минус 45 – 85 °C
К5559ИН10БSI	минус 45 – 85 °C

Области применения микросхемы

Микросхема предназначена для использования в аппаратуре общего назначения, в качестве приемо-передатчика по стандарту RS-485/422 для организации полудуплексного канала связи по соответствующим стандартам. Максимальная длина линии связи для микросхем типа A 1,2 км.

Основные области применения:

- интеллектуальные датчики;
- промышленные системы управления;
- телекоммуникационное оборудование;
- системы безопасности;
- измерительное оборудование;
- Profibus и т.д.

1 Описание выводов

Таблица 1 – Описание выводов

№ вывода в корпусе H02.8-1B	№ вывода в корпусе SO-8	№ контактной плащадки кристалла	Условное обозначе- ние	Описание		
1	1	1	RO	Выход приемника RS-485		
2	2	2	nRE	Разрешение выхода приемника Активный низкий логический уровень		
3	3	3	DE	Разрешение входа передатчика Активный высокий логический уровень		
4	4	4	DI	Вход передатчика		
5	5	5, 6	GND	Общий		
6	6	7	AY	Прямой вход приемника, прямой выход передатчика		
7	7	8	BZ	Инверсный вход приемника, Инверсный выход передатчика		
8	8	9, 10	U _{cc}	Питание		

2 Структурная блок-схема микросхемы

Рисунок 1 – Структурная блок-схема

Примечание — Все элементы схемы имеют электрическую связь с соответствующими контактными площадками.

3 Указания по применению и эксплуатации

При ремонте аппаратуры и измерении параметров микросхем замену микросхем необходимо проводить только при отключенных источниках питания.

Инструмент для пайки (сварки) и монтажа не должен иметь потенциал, превышающий 0,3 В относительно шины "Общий".

Запрещается подведение каких-либо электрических сигналов (в том числе шин «Питание» и «Общий») к выводу 1, если он не используется.

Неиспользуемые логические выводы 2, 3, 4 рекомендуется подключить к выводу GND или U_{CC} .

Технологическая перемычка, расположенная между выводами 2, 3 в соответствии с габаритным чертежом на рисунке 16, электрически соединена с крышкой корпуса. Технологическую перемычку необходимо соединить с шиной "Общий".

Технологическую перемычку, расположенную между выводами 6, 7 в соответствии с габаритным чертежом на рисунке 16, необходимо оставить неподключенной или соединить с шиной "Общий".

Типовая схема включения микросхем приведена на рисунке 2. Конденсаторы (С1, С2) необходимо располагать как можно ближе к микросхеме.

Порядок подачи и снятия напряжении питания и входных сигналов на микросхему:

- подача (включение микросхемы): общий, питание, входные сигналы или одновременно;
- снятие (выключение микросхемы): одновременно или в обратном порядке.

Допускается подача входных напряжений на выводы 6 (AY), 7 (BZ) при отключенном напряжении питания.

4 Описание функционирования микросхемы

Микросхема функционирует в четырех режимах, описанных ниже.

4.1 RS-485 передатчик

Выходы передатчика имеют ограничение скорости нарастания/спада выходного сигнала для уменьшения уровня электромагнитных помех, а также отражений при неидеально согласованной шине. Таким образом обеспечивается стабильная передача информации со скоростью до 500 Кбит/с для ИС К5559И10АУ, К5559И10А, К5559И10АН4 (далее 5559ИН10А) и до 2,5 Мбит/с для ИС К5559И10БУ, К5559И10Б, К5559И10БН4 (далее 5559ИН10 или 5559ИН10А и 5559ИН10Б).

В схеме реализовано два механизма защиты выходов передатчика:

- по максимальному выходному току;
- по рассеиваемой мощности.

Данные активизируются механизмы защиты В случаях неправильного использования схемы приемопередатчика, замыкания выходов передатчика на шины питания и «Общий», а также при возникновении конфликтных ситуаций (попытки несколькими приемопередатчикам). одновременной передачи данных термозащиты срабатывает при температуре кристалла более 140°C и переводит схему передатчика в состояние «Выключено».

Таблица истинности работы передатчика микросхемы приведена в Таблице 2.

Входы			Вых	оды	
nRE	DE	DI	BZ	AY	
Х	1	1	0	1	
Х	1	0	1	0	
0	0	Х	Высокое выходное сопротивление, Z		
1	0	Х	Высокое выходное сопротивление Режим «Выключено»		

Таблица 2 – таблица истинности работы передатчика

4.2 RS-485 приемник

Выход приемника находится в состоянии высокого логического уровня, когда входы приемника замкнуты или не подключены (обрыв), или когда они подключены к согласованной шине, на которой все подключенные передатчики находятся в состоянии с высоким выходным сопротивлением. Данная особенность достигается смещением входного дифференциального порогового напряжения приемника в диапазон от -50 мВ до -200 мВ, что не противоречит требованиям стандарта. Благодаря этому не требуется использование внешних (fail-safe) резисторов. Таблица истинности работы приемника микросхемы приведена в Таблице 3.

	Входы			
nRE	DE	AY-BZ	RO	
0	X	≥ минус 50 мВ	1	
0	X	≤ минус 200 мВ	0	
0	X	Обрыв/замыкание	1	
1	1	Х	Высокое выходное сопротивление	
1	0	Х	Высокое выходное сопротивление Режим «Выключено» SHDN	

Приемники рассчитаны на прием со скоростью до 500 Кбит/с для ИС типа А и до 2,5 Мбит/с для ИС типа Б и содержат входной фильтр дополнительно к наличию входного гистерезиса. Это повышает невосприимчивость приемника к быстро меняющимся входным дифференциальным сигналам, а также сигналам с очень медленными скоростями нарастания/спада.

Входной импеданс приемника RS-485 по стандарту не должен быть меньше 12 кОм (одна единица нагрузки, 1 U.L.), стандартный передатчик способен работать на 32 единицы нагрузки. Входной импеданс данного приемопередатчика составляет 1/8 единицы нагрузки (менее 96 кОм), что позволяет параллельно подключить к шине до 256 эквивалентных приемопередатчиков. Так же допустима комбинация на шине данных приемопередатчиков с приемопередатчиками, имеющими другой входной импеданс.

4.3 Режим "Выключено" (Shutdown)

При появлении на входах DE и nRE состояний «0» и «1», соответственно, микросхемы переходят в режим "выключено" (shutdown), с током потребления порядка 3 мкА. Схема не переходит в режим «выключено», если период времени присутствия комбинации DE = «0» и nRE = «1» на входах меньше 50 нс. Схема гарантированно переходит в режим «выключено», если период времени превышает 700 нс.

4.4 Режим "Горячей замены"

момент начальный контроллер времени, когда на схемой приемопередатчика подключенные к шине подается питание или, когда питание на микросхемы подается одновременно с подключением к шине, управляющий схемой приемопередатчика переходит на стадию инициализации. В течение этого периода, выходы контроллера находятся в состоянии с высоким выходным сопротивлением и не способны управлять входами приемопередатчика DE и nRE. В тоже время, токи утечки выходов контроллера способны перевести управляющие входы приемопередатчика в активное состояние, что может привести к ошибочному включению выхода передатчика и/или выхода приемника. Дополнительно паразитные емкости печатной платы так же могут «подтянуть» напряжение на входах DE и nRE к потенциалам Ucc и GND. Дифференциальные помехи в шине, вызванные подключением, могут привести к ошибкам, а также полному нарушению передачи информации по шине.

Спецификация 5559ИН10АУ, К5559ИН10АУ, К5559ИН10ASI, К5559ИН10БН4, 5559ИН10БУ, К5559ИН10БУ, К5559ИН10БSI, К5559ИН10БН4

Схема данного приемопередатчика имеет режим «Горячей замены» (hot-swap), который заключается в том, что при подаче питания на схему, в начальный период времени длительностью не менее 7 мкс активизируется схема «подтяжки» входов DE и nRE в неактивное состояние с токовой способностью 1,5 мА. По окончанию неактивного состояния схема оставляет входы подтянутыми с токовой способностью 0,5 мА до появления активного состояния на входе. При появлении активного состояния на управляющем входе схема «подтяжки» отключается, обеспечивая «прозрачный» режим управления работой схемы приемопередатчика.

4.5 Максимальная длина шины

Максимальная длина шины по стандарту RS-485/RS-422 составляет 1200 м для ИС типа А. В случае превышения данной длины следует использовать повторители. Для ИС типа Б максимальная длина шины не регламентируется.

5 Типовая схема включения микросхемы

5559ИН10У – включаемая микросхема;

```
G1, G2 — источник постоянного напряжения, U_{CC} = (4,5-5,5) B; C1, C2 — конденсаторы, C1 = C2 = не менее 0,1 мкФ \pm 20 %; R1, R2 — резисторы, R1 = R2 = 120 Ом.
```

Рисунок 2 – Типовая схема включения

Примечание — При использовании линии передачи с типовым волновым сопротивлением 120 Ом, линия должна быть согласована с обоих концов резисторами номиналом 120 Ом.

6 Предельно допустимые характеристики микросхемы

Таблица 4 – Предельно-допустимые и предельные режимы эксплуатации микросхем

	<u>e</u>		Норма параметра				
Наименование параметра, единица измерения	Буквенное обозначение	Предельно допустимый режим		Предельный режим			
	Бу 060	не менее	не более	не менее	не более		
5559ИН10АУ, 5559ИН10БУ							
Напряжение источника питания, В	Ucc	4,5	5,5	минус 0,3	6,0		
Входное напряжение низкого уровня, В	U _{IL}	0	0,8	минус 0,3	-		
Входное напряжение высокого уровня, В	U _{IH}	3	Ucc	_	U _{CC} +0,3		
Входное напряжение приемника, В	U_{I_R}	минус 7	12	минус 8	13		
Дифференциальное пороговое напряжение приемника, В, при: минус 7 В < U _{I R} < 12 В	U _{тн}	минус 200	минус 50	_	-		
5559ИН10АУ							
Скорость передачи данных, Кбит/с	f_{DR}	_	500	-	_		
5559ИН10БУ							
Скорость передачи данных, Кбит/с	f_{DR}	_	2 500	_	_		
Примечание – Не допускается одно режимов.							

Микросхемы устойчивы к воздействию статического электричества с потенциалом не менее 2 000 В.

7 Электрические параметры микросхемы

Таблица 5 – Электрические параметры микросхем при приёмке и поставке

Наименование параметра,	нное чение іетра	Норма параметра		атура ы, °С
единица измерения, режим измерения	Буквенное обозначение параметра	не менее	не более	Температура среды, °С
5559ИН10АУ, 5559ИН10БУ				
Выходное дифференциальное напряжение передатчика, В, при: R_L = 54 Ом; R_L = 100 Ом; без нагрузки	U _{O_D}	2 2,5 –	Ucc Ucc Ucc	25, 125, минус 60
Изменение выходного дифференциального напряжения передатчика, В	ΔU_{O_D}	-	0,2	25, 125, минус 60
Выходное синфазное напряжение передатчика, B, при: R_L = 54 Ом; R_L = 100 Ом	Uoc	_	3	25, 125, минус 60
Изменение выходного синфазного напряжения передатчика, B, при: R_L = 54 Ом; R_L = 100 Ом	ΔU_{OC}	1	0,2	25, 125, минус 60
Выходное напряжение высокого уровня приемника, В, при: I _O = минус 1 мА	U _{ОН}	U _{CC} - 0,6	_	25, 125, минус 60
Выходное напряжение низкого уровня приемника, B, при: I_O = 1 мA	U _{OL}	_	0,4	25, 125, минус 60
Ток потребления, мкА, при: U_{nRE} = 0 B, U_{DE} = U_{CC} , без нагрузки U_{nRE} = U_{CC} , U_{DE} = U_{CC} , без нагрузки U_{nRE} = 0 B, U_{DE} = 0 B, без нагрузки U_{nRE} = U_{CC} , U_{DE} = 0 B, без нагрузки	Icc	-	1 800 1 800 1 800 10	25, 125, минус 60
Входной ток высокого/низкого уровня, мкА, на выводах: 2, 3, 4	I _{IH} I _{IL}	минус 1	1	25, 125, минус 60
Ток короткого замыкания передатчика, по абсолютной величине, мА, при: $U_{AY}(U_{BZ})$ = 12 В при: $U_{AY}(U_{BZ})$ = минус 7 В	I _{OS_D}	40	250	25, 125, минус 60
Минимальный ток короткого замыкания передатчика, по абсолютной величине, мА,	I _{OSF_D}	20	_	25, 125, минус 60
Выходной ток приемника в состоянии «Выключено», мкА	I _{OZ_R}	минус 1	1	25, 125, минус 60

Наименование параметра,	нное чение іетра		Норма параметра	
единица измерения, режим измерения	Буквенное обозначение параметра	не менее	не более	 Температура среды, °C
Ток короткого замыкания выхода приемника, мА, при: $0 \ B < U_{O_R} < U_{CC}$	I _{OS_R}	минус 110	110	25, 125, минус 60
Ток утечки на входе приемника, мкА	I _{IL_R}	минус 100	125	25, 125, минус 60
Время задержки распространения сигнала приемника при включении/выключении, нс	t _{PLH_R} t _{PHL_R}	_	200	25, 125, минус 60
Разность задержек распространения сигнала приемника, нс, t _{PLH_R} - t _{PHL_R}	t _{SKEW_R}	_	30	25, 125, минус 60
Время задержки распространения сигнала передатчика при переходе из состояния «Выключено» в состояние высокого уровня,нс, при: Unre 0 B, (приемник включен)	t _{PZH_D}	_	2 500	25, 125, минус 60
Время задержки распространения сигнала передатчика при переходе из состояния «Выключено» в состояние низкого уровня, нс, при: U _{nRE} = 0 B, (приемник включен)	t _{PZL_D}	_	2 500	25, 125, минус 60
Время задержки распространения сигнала передатчика при переходе из состояния высокого уровня в состояние «Выключено»,нс, при: Unre 0 B, (приемник включен)	t _{PHZ_D}	-	100	25, 125, минус 60
Время задержки распространения сигнала передатчика при переходе из состояния низкого уровня в состояние «Выключено», нс, при: Unre 0 B, (приемник включен)	t _{PLZ_D}	_	100	25, 125, минус 60
Время задержки распространения сигнала передатчика при переходе из состояния «Выключено» в состояние высокого уровня,нс, при: Unre Unre Unre Unre Unre Unre Unre Unre	t _{PZH_D(SHDN)}	_	5 500	25, 125, минус 60
Время задержки распространения сигнала передатчика при переходе из состояния «Выключено» в состояние низкого уровня, нс, при: Unre Unre Unre Unre Unre Unre Unre Unre	t _{PZL_D(SHDN)}	_	5 500	25, 125, минус 60
Время задержки распространения сигнала	t _{PZH_R(SHDN)}	_	5 500	25, 125, минус 60
Время задержки распространения сигнала		_	5 500	25, 125, минус 60

Наименование параметра,	нное чение іетра	Норма параметра		оатура ы, °С
единица измерения, режим измерения	Буквенное обозначение параметра	не менее	не более	Температура среды, °С
5559ИН10АУ				
Время задержки распространения сигнала передатчика при включении/ выключении, нс, при: C_L = 50пФ, R_L =54 Ом	t _{PLH_D}	200	1 000	25, 125, минус 60
Разность задержек распространения сигнала передатчика, нс, $ t_{\text{PLH_D}} - t_{\text{PHL_D}} $	t _{SKEW_D}	_	140	25, 125, минус 60
Время нарастания/спада дифференциального выходного напряжения передатчика, нс, при: C_L =50 пФ, R_L =54 Ом	tr tf	250	600	25, 125, минус 60
5559ИН10БУ				
Время задержки распространения сигнала передатчика при включении/ выключении, нс, при: C_L = 50пФ, R_L =54 Ом	t _{PLH_D} t _{PHL_D}	25	200	25, 125, минус 60
Разность задержек распространения сигнала передатчика, нс, t _{PLH D} - t _{PHL D}	t _{SKEW_D}	_	80	25, 125, минус 60
Время нарастания/спада дифференциального выходного напряжения передатчика, нс, при: C_L =50 пФ, R_L =54 Ом	t _r t _f	25	200	25, 125, минус 60

Примечания:

- 1 Режимы измерения параметров приведены в ТСКЯ.431323.002ТБ4.
- 2 SHDH режим работы, при котором выходы приемника и передатчика переводятся в состояние высокого импеданса, при nRE=«1» и DE=«0»;
- 3 «Выключено» состояние высокого импеданса:
 - для выхода RO приемника при nRE =«1»,
 - для выходов AY и BZ передатчика при DE=«0»;
- 4 n в названии вывода обозначает активный низкий уровень сигнала.

8 Электрические параметры микросхемы, контролируемые на общей пластине (бескорпусное исполнение)

Таблица 6

Наименование параметра,		Норма параметра		ату-ра ı, °C
единица измерения, режим измерения	Буквенн обозначе парамет	не менее	не более	Температу-ра среды, °С
Ток потребления, мкА, при:				
U_{nRE} = 0 B, U_{DE} = U_{CC} , без нагрузки		-	1 665	
$U_{\text{nRE}} = U_{\text{CC}}, \ U_{\text{DE}} = U_{\text{CC}}, \ \text{без нагрузки}$	Icc	-	1 665	25
U _{nRE} = 0 B, U _{DE} = 0 B, без нагрузки		-	1 665	
$U_{\text{nRE}} = U_{\text{CC}}, \ U_{\text{DE}} = 0 \ \text{B}, \ \text{без нагрузки}$		-	9,25	
Функциональный контроль	ФК	-	-	25

9 Типовые зависимости

Рисунок 3 – Зависимость тока потребления I_{cc} от температуры для микросхем 5559ИН10АУ, 5559ИН10БУ при: $U_{DE} = U_{CC}$

Рисунок 4 – Зависимость тока потребления I_{cc} от температуры для микросхем 5559ИН10АУ, 5559ИН10БУ при: U_{DE} = 0 B, без нагрузки

Рисунок 5 – Зависимость тока короткого замыкания выхода приемника los_R от напряжения источника питания для микросхем 5559ИН10АУ, 5559ИН10БУ

Рисунок 6 – Зависимость выходного дифференциального напряжения передатчика U_{O_D} от напряжения источника питания для микросхем 5559ИН10АУ, 5559ИН10БУ

Рисунок 7 – Зависимость выходного дифференциального напряжения передатчика U_{O_D} от температуры для микросхем 5559ИН10АУ, 5559ИН10БУ

Рисунок 8 – Зависимость времени задержки распространения сигнала передатчика при включении tplh_D от температуры для микросхем 5559ИН10АУ, 5559ИН10БУ

Рисунок 9 – Зависимость времени задержки распространения сигнала передатчика при выключении t_{PHL_D} от температуры для микросхем 5559ИН10АУ, 5559ИН10БУ

Рисунок 10 – Зависимость времени задержки распространения сигнала приемника при выключении t_{PLH_R} от температуры для микросхем 5559ИН10АУ, 5559ИН10БУ

Рисунок 11 – Зависимость времени задержки распространения сигнала приемника при включении tphl_R от температуры для микросхем 5559ИН10АУ, 5559ИН10БУ

Рисунок 12 – Зависимость выходного напряжения высокого уровня приемника U_{он} от температуры для микросхем 5559ИН10АУ, 5559ИН10БУ

Рисунок 13 – Зависимость выходного напряжения низкого уровня приемника U_о∟ от температуры для микросхем 5559ИН10АУ, 5559ИН10БУ

Рисунок 14 – Зависимость тока короткого замыкания передатчика Ios_D от температуры для микросхем 5559ИН10АУ, 5559ИН10БУ

Рисунок 15 – Зависимость тока потребления Icc от температуры при Unre= Ucc, Ude= 0 В (без нагрузки) для микросхем 5559ИН10АУ, 5559ИН10БУ

10 Габаритный чертеж микросхемы

- 1. А зона не контролируемая по толщине и ширине вывода.
- 2. Б длина вывода, в пределах которой производится контроль смещения плоскостей симметрии выводов от номинального расположения.
- 3. Форма ключа не регламентируется.
- 4. Нумерация выводов показана условно.

Рисунок 16 - Корпус Н02.8-1В

Рисунок 17 - Корпус SO-8

- 1 Размеры контактных площадок (КП) кристалла (85 × 85) мкм. Координаты КП см. таблицу 7. Материал КП AlCu (0,5 % Cu).
- 2 М маркировка кристалла:
 MLDR13_REV2 v1 для 5559ИН10АН4;
 MLDR13_REV2 v2 для 5559ИН10БН4.
- 3 Номера КП кристалла присвоены условно.
- 4 Технология XT06, проектные нормы 0,6 мкм.

Рисунок 18 – Кристалл (бескорпусное исполнение)

Таблица 7 – Координаты КП кристалла

№ КП	Обозначение КП	Коорд	инаты КП
IN KII	Обозначение ктт	X	Υ
1	RO	-473,3	-726,4
2	nRE	-224,4	-726,4
3	DE	233,2	-726,4
4	DI	508,35	-726,4
5	GND	798,35	-412,9
6	GND	798,35	8,6
7	AY	428,5	659,5
8	BZ	-35,5	659,5
9	U _{CC}	-799,4	188,35
10	U _{CC}	-799,4	-412,9

11 Информация для заказа

Обозначение	Маркировка	Максимальная скорость приема- передачи, кбит/с	Тип корпуса	Температурный диапазон
5559ИН10АУ	ин10А	500	H02.8-1B	минус 60 – 125 °C
К5559ИН10АУ	КИН10А	500	H02.8-1B	минус 60 – 125 °C
К5559ИН10АУК	КИН10А∙	500	H02.8-1B	0 – 70 °C
К5559ИH10ASI	MDRI4851SI*	500	SO-8	минус 45 – 85 °C
5559ИН10БУ	ин10Б	2500	H02.8-1B	минус 60 – 125 °C
К5559ИН10БУ	КИН10Б	2500	H02.8-1B	минус 60 – 125 °C
К5559ИН10БУК	КИН10Б∙	2500	H02.8-1B	0 – 70 °C
К5559ИН10БSI	MDRI4852SI**	2500	SO-8	минус 45 – 85 °C

Примечание — Микросхемы в бескорпусном исполнении поставляются в виде отдельных кристаллов, получаемых разделением пластины. Микросхемы поставляются в таре (кейсах) без потери ориентации. Маркировка микросхем — К5559ИН10АН4, К5559ИН10БН4 —наносится на тару.

Микросхемы с приемкой «ВП» маркируются ромбом. Микросхемы с приемкой «ОТК» маркируются буквой «К».

^{*} Для микросхем К5559ИН10ASI допускается маркировка MDRI4851I.

^{**} Для микросхем К5559ИН10БSI допускается маркировка MDRI4852I.

Лист регистрации изменений

№ п/п	Дата	Версия	Краткое содержание изменения	№№ изменяемых листов
1	22.02.2008	2.1		
2	29.03.2010	2.2	Корректировка на основании планового пересмотра документации.	1, 16, 17
3	27.04.2010	2.3	Замена логотипа	1
4	17.05.2010	2.4	Отработка габаритного чертежа	16
5	29.05.2012	2.5.0	Введена микросхема в бескорпусном исполнении	По тексту
6	06.12.2012	2.6.0	Устранение ошибок и приведение в соответствие с ТУ	По тексту
7	19.06.2013	2.6.1	Ошибка в наименовании корпуса	17,19
8	29.10.2014	2.7.0	Исправлен рисунок 6	14
9	17.11.2014	2.8.0	Исправлен рисунок 1	3
10	25.05.2016	2.9.0	Устранение ошибок и приведение в соответствие с ТУ	По тексту
11	20.02.2017	2.10.0	Добавление вариантов маркировок для микросхем в пластиковых корпусах	24
12	11.08.2017	2.10.1	Исправлена ссылка на рисунок	5
13	24.09.2019	2.11.0	Добавлено изображение микросхемы в пластиковом корпусе. Дополнен раздел Указания по применению и эксплуатации.	
14	06.11.2019	2.12.0	Изменен температурный диапазон для микросхем в пластиковом корпусе. Исправления в разделе Указания по применению и эксплуатации. Исправления на ГЧ для корпуса Н02.8-1В. Добавлены координаты КП кристалла	