

TWO-DIMENSIONAL DESCRIPTION OF THE NATURAL ATMOSPHERE INCLUDING ACTIVE WATER VAPOR MODELING AND POTENTIAL PERTURBATIONS DUE TO NO_x AND HO_x AIRCRAFT EMISSIONS

George F. Widhopf and Leslie Glatt

April 15, 1979

FINAL REPORT

Prepared for
HIGH ALTITUDE POLLUTION PROGRAM
U.S. DEPARTMENT OF TRANSPORTATION

FEDERAL AVIATION ADMINISTRATION
Office of Environment and Energy
Washington, D.C. 20591

79 09 6 038

DOC FILE COPY

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

The work reported in this document was conducted under Contract No. DOT-FA-77WAI-720 for the Department of Transportation. The publication of this Report does not indicate endorsement by the Department of Transportation, nor should the contents be construed as reflecting the official position of that agency.

$\overline{(9)}$		T	echnical Report I	Documentation Page
A II	2. Government Accession No	. 3.	Recipient's Catalog (No.
FAA EE 79-07				
4. Title and Subtitle	ation of the Nature		April 15, 10	79
Two-Dimensional Descrip		1	Performing Organizati	
Modeling and Potential P	rturbations Due t	0 /		
NO and HOW Aircraft En	nissions,	- 8.5	erforming Organizati	on Report No.
George F. Widhopf and L	eslie Glatt	114	ATR-79(485	8)-1ND
Performing Organization Name and Address	/	10.	Work Unit No. (TRA	S)
The Aerospace Corporati P.O. Box 92957	on '	N.	Contract on Grent No	
Los Angeles, California	90009	(13)	DOT-FA77V	VAI-729
12 5		19.	Type of Report and	eriod Covered
U.S. Department of Tran	sportation		Final Repor	t
Federal Aviation Adminis	tration (1)	14501		
Office of Environment and	d Energy	LT 1 11.	Sponsoring Agency (ode
Washington, D.C. 20591				
1) Final rept.		(11)	15 A	~ 79/
MI INOT LEDIN	2	4	70 117	
16. Abstract	Nation of Seattlement (SE)			
The status of the Aerospa				
model of the atmosphere Pollution Program (HAP)				
obtained during this study				
chronological effects of r				
state of the natural and pedata are made to elucidat				
many trace species in the				
relatively good agreemen				
when the most recent che				
estimates of the effect of	combined NOk)an	d HO. emissi	ons from pr	ojected
future fleets of subsonic	and supersonic ai:	rcraft indicat	e a resulting	increase in
ozone level in both the st				
occurring in the troposph rently estimated to be 3.				
previous estimates of 1.5				
higher hydroxyl reaction				
based on a currently proj number of supersonic air	craft) the effect	of HO()emiss	ions on the t	c and a small
column has been found sn	nall in comparison	to the corre	sponding eff	ect of NO/
emissions.		•		(*)
17. Key Words		stribution Statement		
numerical modeling		cument is av		
water vapor aircra	t emissions In	rough the Nat formation Ser		
		rginia 22151.		,
troposphere istry 19. Security Classif. (of this report)	20. Security Classif. (of the	nis page)	21. No. of Pages	22. Price
Unclassified	Unclassified		114	
Oliciassified			11.7	

CONTENTS

ABST	RACT	i
1.	INTRODUCTION 1	- 1
2.	MODEL 2	- 1
3.	CHEMICAL MODEL 3	- 1
4.	BOUNDARY CONDITIONS 4	- 1
5.	TRANSPORT DATA 5	- 1
6.	NUMERICAL SCHEME 6	- 1
7.	WATER VAPOR MODELING 7-	- 1
8.	MODEL RESULTS 8	- 1
9.	CONCLUSIONS 9-	- 1
REFE	CRENCES R.	- 1
APPE	ENDIX. HYDRODYNAMIC AND TRANSPORT PARAMETERS	-1

Access	on For	/
NTIS (DDC TAILUNGENES) Unempoor	3	*
By	bution/	
	Avail au	
Dist	specia	
A		

FIGURES

1a.	Water Vapor Profile in Natural Atmosphere in October	7-5
1b.	Water Vapor Profile in Natural Atmosphere in January	7-6
1c.	Water Vapor Profile in Natural Atmosphere in April	7-7
1d.	Water Vapor Profile in Natural Atmosphere in July	7-8
2.	Comparison of Measured and Calculated Average Annual Precipitation Rate	7-9
3.	Comparison of the Calculated and Observed Decay of the Z _r - 95 Burden Resulting from the 17 June 1967 Chinese Nuclear Test	7-1:
4a.	Calculated Monthly Variation of the Total Ozone Column as a Function of Latitude (10 ⁻³ cm at STP) Using Chemical System Outlined in Table I. [after Widhopf, et al (1977)]	8-2
4b.	Observed Monthly Variation of the Total Ozone Column as a Function of Latitude (10-3 cm at STP) [after Dütsch (1971)]	8-2
5 a.	Comparison of Calculated and Observed Ozone Profiles	8-3
5b.	Comparison of Calculated and Observed Ozone Profiles	8-4
5c.	Comparison of Calculated and Observed Ozone Profiles	8-5
5d.	Comparison of Calculated and Observed Ozone	9.4

FIGURES (Continued)

6a.	Calculated Temporal Ozone Change Resulting from Aircraft NO _X Emissions from a Combined Subsonic and Supersonic Fleet Projected to be Operational in 1990 Using Chemical System of Table I [after Widhopf, et al (1977)]	8-9
6b.	Calculated Temporal Ozone Change Resulting from Aircraft NO _x Emissions from a Combined Subsonic and Supersonic Fleet Projected to be Operational in 1990 Using Chemical System of Table I [After Widhopf et al (1977)]	8-10
7.	Latitudinal Variation of Ozone Column Change (Table I. Chemical System) (after Widhopf, et al 1977)	8-11
8.	Vertical Change in Ozone Concentration at 40°N During October Resulting from Aircraft Fleet Emissions Listed in Table V	8-12
9.	Calculated Monthly Variation of the Total Ozone Column as a Function of Latitude Using Chemical System as Modified by Table IIa (10 ⁻³ cm at STP) [Widhopf and Glatt (1978)]	8-14
10.	Calculated Temporal Ozone Change Resulting from NO _X and HO _X Emissions from a Combined Subsonic and Supersonic Fleet of Aircraft Using Chemical System of Table IIa [after Widhopf and Glatt (1978)]	8-17
11.	Calculated Monthly Variation of the Total Ozone Column as a Function of Latitude (10 ⁻³ cm at STP) Using the Chemical System in Table IIb	8-21
12.	Comparison of Calculated Ozone Profile (15 June at 30°N) with Measurements	8-23
13.	Calculated Monthly Variation of the Total Ozone Column as a Function of Latitude (10 ⁻³ cm at STP) Using the Chemical System in Table III	
	(2 ppbv ClO ₂)	8-25

FIGURES (Continued)

14a.	Comparison of Calculated and Observed Cl and	8-27
	ClO Profiles	0-21
14b.	Comparison of Calculated and Measured	
	Distribution of HCl	8-28
15.	Comparison of Calculated NO _x Profiles in	
	Troposphere with Fishman-Crutzen Estimated	
	NO _x Profiles	8-29
16.	Predicted and Measured HNO ₃ Versus Altitude. Dashed Error-Bars Represent Experiment Marine Values, Solid Bars are Continental Measurements, and Curves are Theoretical Estimates. Locations are Given Primarily for Samples Taken Near Populated Areas. [After Huebert and Lazrus (1978)]	8-31
17.	Comparison of Calculated and Observed HNO ₃ Column Variation with Latitude	8-32
18.	Comparison of Calculated and Measured Profiles of NO, NO ₂ and HNO ₃	8-33
19.	Comparison of Calculated and Observed OH Concentration	8-35
20.	Comparison of Calculated and Observed Concentration of O(³ P)	8-36
21.	Comparison of Calculated and Measured Profiles of NO	8-37
22a.	Comparison of Calculated N ₂ O Profiles with Measurements of Schmeltekopf et al (1977)	8-38
22b.	Comparison of Calculated N ₂ O Profiles with Measurements	8-39
22c.	Comparison of Calculated N2O Profiles with Measurements	8-40

FIGURES (Continued)

23.	Comparison of Calculated and Measured CH ₄ Profile	8-41
24.	O ₃ Column Change Resulting from NO _x and HO _x Emissions from a Combined Fleet of Subsonic and Supersonic Aircraft (Table IV) Using	
	Chemical Set of Table III (2 ppbv ClO _x)	8-43
25.	O3 Column Change as a Function of Time	8-44

1. INTRODUCTION

The potential effect of various pollutants on the state of the earth's ozone shield has been extensively investigated in the last decade. These studies have concentrated primarily on the effect of NO $_{\rm X}$ and ClO $_{\rm X}$ pollutants which result from various anthropogenic sources. Another potential pollutant which has not been adequately investigated is water vapor.

Water vapor is the main source of hydroperoxyls in the atmosphere and is also a major component of aircraft exhaust emissions. Thus, a comprehensive evaluation of the effect of aircraft emissions on ozone must consider the effect of this species. Previous calculations of the effect of NO_x aircraft emissions on ozone have shown that tropospheric effects are very important in modeling the effect of NO_x on ozone [Widhopf, et al. (1977); Hidalgo and Crutzen (1977)]. Since rainout is one of the controlling mechanisms in determining the distribution of water vapor, and rainout/washout effects are important in determining the rate at which NO_x is removed from the troposphere, a model is needed which adequately predicts the distribution of water vapor including the effect of rainout. This type of model was developed for use in our two-dimensional time-dependent model of the atmosphere in order to study both the natural and perturbed atmosphere.

During the course of this study, various important hydroperoxyl reaction rates were measured for the first time. These rates increased the relative importance of HO_x with regard to NO_x on the chemical structure of the atmosphere and have resulted in dramatic changes in the atmospheric distribution of some trace species. As a result of the sequential manner in which these measurements were made, a number of interim results were obtained.

Results for the state of the natural atmosphere are discussed in this report, including the latest two-dimensional model results which consider the effect of ClO_{κ} . In addition, further estimates have been made of the

potential effect of NO_x and HO_x emissions from projected future fleets of subsonic and supersonic aircraft. Comparisons are also made with available data in order to elucidate areas where additional measurements of reaction rates and species distributions are needed.

2. MODEL

The model is a time-dependent phenomenological photochemical model of the atmosphere in which the hydrodynamic variables (mean atmospheric density, temperature, turbulent diffusion coefficients, and mean meridional winds) either are specified, or are obtained indirectly, from observations as a function of time during the year and used to solve the system of species conservation equations for the meridional distribution of trace species throughout the year. The formulation of the model, discussed in Widhopf and Taylor [1974] and Widhopf [1975], basically is designed to examine relatively small changes in the ozone concentration as a function of the time of year throughout the meridional plane, since any resultant changes in the species concentration occurring as a result of the introduction of a pollutant are not coupled back to the atmospheric dynamics or temperature distributions.

The governing species conservation equation is derived following the general procedure outlined by Reed and German [1965] for representing the turbulent transport flux due to large-scale eddies. In the meridional plane, this equation, written in terms of the mass mixing ratio, is of the form

$$\frac{\partial \rho Y_{i}}{\partial t} + \frac{\partial \rho w Y_{i}}{\partial z} + \frac{1}{\cos \phi} \frac{\partial \rho v Y_{i} \cos \phi}{r \partial \phi} = \frac{\partial}{r \partial \phi} \left\{ \rho k_{\phi z} \frac{\partial Y_{i}}{\partial z} + \rho k_{\phi \phi} \frac{\partial Y_{i}}{r \partial \phi} \right\}
+ \frac{\rho}{r} \left\{ (2k_{zz} - k_{\phi z} \tan \phi) \frac{\partial Y_{i}}{\partial z} + (2k_{z\phi} - k_{\phi \phi} \tan \phi) \frac{\partial Y_{i}}{r \partial \phi} \right\}
+ \frac{\partial}{\partial z} \left\{ \rho k_{zz} \frac{\partial Y_{i}}{\partial z} + k_{\phi z} \frac{\partial Y_{i}}{r \partial \phi} \right\} + \omega_{i} + S_{i}, i = 1, 2...$$
(1)

where Y_i is the mass mixing ratio ρ_i/ρ of the ith chemical species; ρ is the local mean atmospheric density; t is the temporal variable; $r = z + R_e$, where R_e is the mean radius of the earth and z is the altitude measured from and

normal to the earth's surface; ϕ is the latitude; ω_i is the photochemical rate of production/depletion of the ith species; and S_i is the local source/sink effect. The components of the tensor $k_{\alpha\beta}$ represent the diffusion coefficient in the respective directions arising from large-scale eddy motions, whereas v and w are the components of the mean circulation in the meridional and vertical directions, respectively. This equation is solved for each of the trace species considered.

3. CHEMICAL MODEL

The chemical system considered in this investigation includes the following species: $O(^{1}D)$, $O(^{3}P)$, O_{2} , O_{3} , O_{3} , O_{4} , O_{2} , O_{3} , O_{2} , O_{3} , O_{4} , O_{5} , O_{6} , O_{6} , O_{7} , O_{8} , $O_{$ N2O5, H, OH, HO2, H2O, H2O2, HNO3, CO, and CH4. Also included are the important ClO, species Cl, ClO, ClONO, and HCl which are produced in the atmosphere as a result of the release at the earth's surface of CF2Cl2, CFCl₂, CCl₄, and CH₂Cl, among others. Smog type reactions initiated by the oxidation of methane by OH, which have been shown to be potentially important in the lower regions of the atmosphere, particularly for the evaluation of aircraft emissions effects through the work of Hidalgo and Crutzen [1977] and Widhopf, et al. [1977] are also included. These reactions involve the species CH3, CHO, CH2O, CH3O, CH3O2, and CH3O2H. The specific reaction systems and the associated reaction rate coefficients used in this investigation are tabulated in Tables I through III. Table I lists the reactions and associated rates used in Widhopf, et al. [1977], while Tables II-a, II-b, and III list changes introduced in subsequent studies which are discussed in this report. Specifically, Table II-a lists additional reactions and updated reaction rates that were recommended by the NASA-CFM study [1977] together with the new measurements of the rate for the reaction NO + HO₂→NO₂ + OH. Table II-b includes the new rate measurement for the reaction HO₂ + O₃→OH + 202. Table III includes the ClOx system together with the most recent temperature-dependent rate for the reaction NO + HO2-NO2 + OH, and a pressure-dependent rate for the reaction CO + OH →CO, + H.

Computation of the absorption of solar radiation is an integral step in determining the chemical structure of the atmosphere, since many of the important reactions in the atmosphere are photochemical processes. The diurnally averaged local photolysis rates J_i are calculated at every location in the atmosphere at every third time step by a technique developed by Kramer and Widhopf [1978], using the solar flux data compiled by Ackerman [1971]. The

time variation of the solar zenith angle with latitude and solar declination is included in the determination of the photolysis rates J_i . The absorption cross sections utilized to compute J_i for the various species are outlined in Widhopf [1975] and the NASA-CFM study [1977].

In order to properly model the chemistry of the species N₂O₅, NO₃, and ClONO₂ which have important nighttime chemistry, a diurnal averaging was introduced similar to that of Turco and Whitten [1978]. Here, the diurnal variation of the concentration is modeled as a constant daytime level followed by a constant nighttime level. The ratio between these two states can be calculated and is used to average the chemical production/depletion terms to account for daytime-nighttime chemistry. This change allows for an appropriate modeling of the nighttime chemistry for NO₃, N₂O₅, and ClONO₂ while improving the calculated relative concentrations of NO₂ to NO.

The effect of multiple scattering was also found to have a significant effect on distributions of NO and NO₂ as well as other species. Therefore, it was included in the model using the work of Luther, et al. [1978].

TABLE I. CHEMICAL REACTIONS AND RATE COEFFICIENTS

	REACTION	RATE COEFFICIENT ^a	,	REACTION		RATE COEFFICIENT®
-	0(³P) · 0, →20,	1.9(10)-11 exp[-2300/1]	26.	No · hv	→N · O(³P)	J. 26,
~;		.,	27.	7 0 · z	→NO · O(³ P)	1.02(10)-1+T exp[-1110/T]
~:	03 · hv -+0(3P) · 02		28.		(4,)O · N→	71.(10)-11
÷	, (4')0- "	.,*	.67	N · NO2	ON · ON	0.0
5.	O(3P) + O2 + M-O3 + M	1.07(10) 34 exp[510/T]	30.	M . 04 . M . (11) O . 4N	W . 02N-	2.8(10)-30
è	O(3P) · NO, -02 · NO	4,1(10)-12	÷	No ON	(4)O · O(3P)	1.4(10)-12
-		9(10)-13 exp[-1200/T]	.77	0	110 · 110	2, \$2(10)^-10
ź	O3 · NO2 - O2 · NO3	O3 · NO2 -02 · NO3 1.23(10)-13 exp[-2470/T]	3.	O(lbi · Cli	→OH · CH,	1, 38(10)-10
*	NO3 + hr -2/3 NO2 + O(3P) - 1/3	No · Ov	ż	OII · O(³ P)		4.2(10)-11
•	O3 · OH -+O2 · HO2	1.6(10)-12 exp[-1000/T]	35.	M . O . H	M . €HO, M	2.08(10)-32 exp[290/T]
10.	NO · HO - OH · NO	2. 3(10)-13	36.		· 0 · 110 •	1,23(10) ⁻¹⁰ exp[-562/T]
Ė	O(3P) + H2O -OH + OH	0.0	37.	P) . N	M · ONe	3. 9.(10) 33 exp[940/T]
?	OH + NO2 + M HNO3 + M	2.76(10) exp 880/T	38.	HO · HO	-H20 : 0(3P)	1(10)-11 exp[-550/T]
2.	HNO3 · hr -OH · NO2	113	39.	1 . o . x	70 · 0N	5,7(10)-13
ż	HO ₂ + O ₃ →OH · O ₂ · O ₂	1(10) ⁻¹³ exp[-1250/T]	+00		→OH · O(³P)	1,40
15.	(A	3(10)-11	÷	OH · CH	-H20 · CH3	2. 30(10)-12 exp[-1710/T]
16.		2(10)-11	45.	M · HO?	M · 202 · M	2.5(101-33 exp[2500/T]
.71	OH + HO3 -H2O + NO3	8.9(10)-14	43.	H202 . O(11)	-он ⋅ но	2.75(10)-12 exp[-2125/T]
	NO3 + hr -2/3[NO2 + O(3P)] + 1/3[NO + O2]	1 ² 0 + 0N	‡		-4H · CO₂	log10K -12.95 · 3.94(10)-4 T
	H ₂ O ₂ + hv — OH + OH	J18	45.	CH20 + hr	→H2 · CO	J. 5
19.	H ₂ O ₂ + OH → H ₂ O + HO ₂	1.7(10)-11 exp[-910/T]	. 46.	СНО • О₂	→HO ₂ CO	5(10)-12
70.	HO ₂ · HO ₂ - H ₂ O ₂ · O ₂	1.7(10) T exp[-500/T]	47.	X	→CH ₃ O ₂ · M	2.6(1))-31
71.	03 · hr -02 · O(¹D)	17,	48.		→CH3O + NO2	1.5(10)-12 exp[-500/T]
.22.	O('D) + M M + O('P)	2.2(10) - 11 exp[92/T]	-64		→CH302H · O2	3.0(1))-11 exp[-500/Tj
23.		J ₂₃	.05	CH3O2H + hv -	→CH30 + OH	J ₅₀
24.	N20 + O(1D) -N2 + O2	5.7(10)-11	51.		-сн₂о + но₂	1.6(10)-13 exp[-3300/T]
.52	ON + ON + (Q,)O + OZN	5.7(10)-11	52.	CH2O + NV	•H - CHO	J ₅₂
			53.	СН20 + ОН -	ФН20 + СНО	1.4(13)*11

*Units in sec 1, cm sec 1 and cm sec 1 for unimolecular, bimolecular and trimolecular reactions.

TABLE IIa. ADDITIONAL REACTIONS AND NEW NASA (1977) RATES

	REACTION	RATE COEFFICIENT"	REACTION	
		2 1 10-12 exp[-1450/T]	55. CH.O : OH • H.O : CHO	; 10 ⁻¹¹ expl 250/Tl
	01 + NO-02 + 102	La constitution of the con	.,	L 10 10
×	0, · NO, -0, · NO,	1.2 10 ⁻¹³ exp[-2450/T]	A. NO. NO. W. NO. IN	hard send to send out sen
	0, . 011 0, . 110,	1,5 10-12 exp(-1000/T)		[N] 10 5 10
. 01	ON - 100 - ON -	8 10-12	SE, NOS M-NO, NOS M	D4 0 F1 / (4 0 F14 · F1
1	M. ON I W. ON I HO	log (k) = -AT/(B·T) - 0,5 log In(T/280)		D 2,2 10 cxpl-9700/T]
: :	0. 0.10-0.01	7.3 10 14 exp[-1275/11]		E 5,7 10 4 expl 10-00/T!
<u>:</u> :	i. ii. i.	1.5 10-11		F MMI/E
	5. III. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	17.01	51. NO. 1 1 - 2/3(NO, 101 - 1/3(NO - 02)	,,0
: :		7 9 x		
:	1. Oil	11.00-11 750/11		N, 7 10 14
<u>.</u>	11,02 + OH -+ 11,0 + HO,	i lacticidad of i		- 11
20.	110, 110, -11,0, 10,	2.5 dm 15	54. NO. O N - NO. N	-
77	N,0 · 0(1111-N, · 0,	5,510'11	e0, (O, bu → O · CO	
25.	N,0 . 01 m - NO . NO	5,5 10-11	11. H ₂ · O(¹ D)·→OH · H	. o l o . c
27.		5,5 (10) 12 expl 3220/T	12. O(10) · CH4 → H2 · CH2O	1. ol +.1
28.	0 · N • N • N	8,2 10-11 expl-410/11	1.3. O · CH ₄ → CH ₃ · OH	1,5 10 " exp[-4450/T]
¥0.		1,5 10 47	e4. CH2O · O→OH · CHO	2 10 1 exp[-1450/T]
=	0.0, · N - N · ON	2 10-11 expl-800/T]		
İ		4,2 10-11		
17.	M + O + M - O + ON	1,55 10 ⁻⁴² exp[584/T]		
6,		5 10-12 exp[-150/T]	A = A1 . A24 . A42 . A42	
+2	42. 20H + M + H,0, + M	1,25 10 32 exp[900/T]	B = B ₁ + B ₂ z · B ₄ z ²	
‡	# (O · OH - H · (O)	11-01 t*1	A, = 31.0.2273	B ₁ > -827, 572
+	±, CHO · O, → HO, · CO	4, 10 12	A2 -0.258304	B, 44, 758' x log 10 0, 94 N2
*	48, CH,O, . NO - CH,O + NO,	1,5 10-12	A 5 0.0889287	В,1, зкоч.
0,	44. (H,0,+H0,-+(H,0,H+0)	2,5 10.12	A4 = 2.520174(10)	

a tritts in sec 1, cm sec 1 and cm sec 1 for unimolecular, bimolecular and trimolecular reactions.

TABLE IIb. CHEMICAL REACTIONS AND RATE COEFFICIENTS

REACTION	RATE COEFFICIENT
14. HO ₂ + O ₃ OH + 2O ₂	1.4(10) ⁻¹⁴ exp[-580/T]

TABLE III. CHLORINE CHEMICAL REACTION AND RATE COEFFICIENTS

	REACTION	RATE COEFFICIENT
10.	NO + HO ₂ → OH + NO ₂	3.3(10) ⁻¹² exp[254/T]
44.	CO + OH → H + CO ₂	$1.4(10)^{-13} + 7.33(10)^{-33}[M]$
65.	$CI + O_3 \longrightarrow CIO + O_2$	$2.7(10)^{-11} \exp[-257/T]$
66.	$CIO + O(^{3}P) \longrightarrow CI + O_{2}$	$7.7(10)^{-11} \exp[-130/T]$
67.	C10 + NO-C1 + NO2	$1(10)^{-11} \exp[200/T]$
68.	CH ₄ + Cl—HCl + CH ₃	$7.3(10)^{-12} \exp[-1260/T]$
69.	C1 + H ₂ → HC1 + H	$3.5(10)^{-11} \exp[-2290/T]$
70.	HO ₂ + Cl—HCl + O ₂	3(10)-11
71.	OH + HCl→H ₂ O + Cl	$3(10)^{-12} \exp[-425/T]$
72.	HC1 + O(³ P)—←C1 + OH	1.1(10)-11 exp[-3370/T]
73.	$Cl + OH \longrightarrow HCl + O(^3P)$	1(10) ⁻¹¹ exp[-2970/T]
74.	$ClO + h\nu \longrightarrow Cl + O(^3P)$	J 74
75.	HCl + hv→H + Cl	J ₇₅
76.	$C10 + NO_2 + N_2 \longrightarrow C10NO_2 + N_2$	$\frac{3.3(10)^{-23} \text{ T}^{-3.34}}{1+8.7(10)^{-9} [\text{M}]^{1/2} \text{ T}^{-0.6}}$
77.	Clono2 + hv Clo + NO2	J ₇₇
78.	$Clono_2 + O(^3P) \longrightarrow Clo + No_3$	$3(10)^{-12} \exp[-808/T]$
79.	CIO + CIO + CI + O(3P)	$2.1(10)^{-12} \exp[-2200/T]$
80.	C10 + C10-2C1 + O2	1.5(10) ⁻¹² exp[-1238/T]

4. BOUNDARY CONDITIONS

The computational domain considered in this investigation extends from the north to the south pole, with a 10° meridional resolution, and from the surface to 50 km, with a vertical resolution of $\Delta z = 2$ km from the surface to 12 km, $\Delta z = 1$ km up to 35 km, and $\Delta z = 2.5$ km up to the upper boundary. At the polar regions, a zero latitudinal flux is assumed.

A fixed ozone concentration $[6(10)^{11} \text{ mol/cm}^3]$ was imposed at the lower boundary, as interpreted from the meridional distributions compiled by Dütsch [1971] and Hering and Borden [1964-67] [as summarized in the data compilation of Wu (1973)]. The concentration of N2O at the lower boundary was prescribed as an average value (0.31 ppmv) interpreted from the tropospheric measurements of Schutz, et al. [1970] and Goldman, et al. [1973]. The latitudinal variation of the mass mixing ratio of CO at the surface was interpreted from the measurements of Seiler [1974]. The mass mixing ratio of CH, (1.34 ppmv) at the lower boundary was specified from the measurements of Ehhalt, et al. [1973, 1974]. Injection of NO and NO, resulting from the anthrophotogenic activities was specified at the lower boundary as interpreted from the estimates of Robinson and Robbins [1971]. The species O(3P), O(1D), OH, N, and H were taken to be in photochemical equilibrium at the lower boundary because of their relatively short lifetimes, whereas H2O, HNO3, NO2, NO, HO2, H2O2, N2O5, NO3, and ClOx were removed from the troposphere by simulating atmospheric rainout/washout. The species H2O, HNO3, H2O2, HO2, N2O5, NO3, and ClOx are removed at the average rates defined by Junge [1963], whereas NO2 and NO were assumed to be removed at one-tenth this rate. The rainout/washout model is discussed in more detail in a subsequent section.

The species $O(^3P)$, $O(^1D)$, O_3 , OH, HO_2 , H_2O_2 , N, H, Cl, ClO, and $ClONO_2$ were assumed to be in photochemical equilibrium at the upper boundary, whereas the mass mixing ratios of NO_2 , N_2O , H_2O , N_2O_5 , NO_3 , CH_4 , CO, and HNO_3 were continued analytically to the upper boundary by a

second-order extrapolation in space and time described by Widhopf [1975] and Widhopf and Taylor [1974]. This extrapolation allows the use of centered spatial differencing at this boundary while also eliminating the necessity of specifying a boundary condition for these species at this location. It is an accurate and stable method of evaluating conditions at computational boundaries [Widhopf and Victoria (1973)] when the physical mechanisms interior to the computational domain govern the boundary value. This is the case for N₂O, NO₂, CH₄, N₂O₅, NO₃, H₂O, and HNO₃, which are being transported up into the higher regions of the stratosphere.

5. TRANSPORT DATA

The meridional distributions of both mean density and temperature were specified using the data obtained from 10 years of observations which were analyzed and compiled by Louis [1973, 1974]. These averaged data are specified from the surface to 68 km for the entire meridional plane and for each of the four seasons. A tabulation of the temperature is included in the Appendix.

Luther [1973a, b] has analyzed the heat transfer, temperature, and wind variance data of Oort and Rasmussen [1971] using the procedure outlined by Reed and German [1965] for defining the components of the anisotropic turbulent eddy diffusivity tensor. The three components k, , k, and k, are specified for the northern hemisphere from the surface to 60 km. Values for the components of the diffusivity tensor in regions where observational data were not available were obtained by Luther by extrapolation, using the results of Wofsy and McElroy [1973] and Newell, et al. [1966]. These coefficients are specified for each month and initially were used to parameterize the components of the turbulent diffusivity tensor. The values for the southern hemisphere were obtained by reflecting the northern hemispheric values, shifted by six months, and applying them appropriately in the southern hemisphere. However, when these transport coefficients were tested against the dispersion of inert tracers in the atmosphere, they were found to be not totally adequate [Widhopf (1975)] and were improved by numerical experimentation described by Widhopf, et al. [1977]. Additional tropospheric modifications which were necessary to model the water vapor distributions are discussed in subsequent sections. The most current values of the turbulent diffusion coefficients used in the model for the months of October, January, April, and July are also included in the Appendix.

The mean meridional circulation was obtained from the work of Louis, et al. [1974] who calculated the circulation patterns by solving the continuity and energy equations using compiled observations of the local meridional

temperature distributions and heat transfer rates. These are the same data sources used to define the thermal structure of the atmosphere, as previously discussed. The circulation patterns are specified for the entire meridional plane for each season from the surface to 50 km. In order to insure that total mass conservation was satisfied, the vertical wind component obtained by Louis was specified and the meridional component calculated from the global continuity equation. Both the vertical and meridional wind velocities are tabulated in the Appendix.

In order that smooth variations of all these parameters exist throughout the year, the temperature, density, and transport parameters $(k_{zz}, k_{\phi z}, k_{\phi \phi})$, and w) were specified at each location by temporarily fitting the data previously described using a five-term Fourier series.

6. NUMERICAL SCHEME

In this model, an accurate (second-order in space and time) and efficient time-implicit finite difference scheme has been employed to solve the governing individual species conservation equation for those species with chemical lifetimes less than two days $[O(^1D), O(^3P), O_3, N, NO, NO_2, NO_3, N_2O_5, H, OH, HO_2, H_2O_2, Cl, ClO, and ClONO_2].$ Advective and diffusive terms that are important in determining the time-dependent distributions of the species are treated using a leap-frog and a Dufort-Frankel finite difference scheme, respectively.

The time-implicit method makes use of a second-order accurate method developed by Widhopf and Victoria [1973]. In this method, the chemical production/loss term $\mathring{\boldsymbol{\omega}}_{i}$, at a specific mesh point and at the new time level n+1, is approximated by the expansion

$$\dot{\omega}_{i}^{n+1} (Y_{i}, \rho, T) = \dot{\omega}_{i}^{n} + \sum_{i=1}^{N} \left(\frac{\partial \dot{\omega}_{i}}{\partial Y_{i}} \right)^{n} \left(Y_{i}^{n+1} - Y_{i}^{n} \right) + \left(\frac{\partial \dot{\omega}_{i}}{\partial \rho} \right)^{n} \left(\rho^{n+1} - \rho^{n} \right) + \left(\frac{\partial \dot{\omega}_{i}}{\partial \rho} \right)^{n} \left(\rho^{n+1} - \rho^{n} \right)$$

$$+ \left(\frac{\partial \dot{\omega}_{i}}{\partial T} \right)^{n} \left(T^{n+1} - T^{n} \right)$$
(2)

where the index i denotes the species i, Y_i the corresponding mass fraction, T the temperature, ρ the density, n the current time level of the computation, and N the number of species considered. All partial derivatives of $\mathring{\boldsymbol{\omega}}_i$ are analytically computed and evaluated at the current time level n. In addition, $\mathring{\boldsymbol{\omega}}_i^n$ is approximated by the following:

$$\mathring{\boldsymbol{\omega}}_{i}^{n} = \frac{\mathring{\boldsymbol{\omega}}_{i}^{n+1} + \mathring{\boldsymbol{\omega}}_{i}^{n-1}}{2}.$$

The use of these relations in the governing species conservation equations results in a linear set of coupled equations for Y_i^{n+1} . (For this problem, the time variations of ρ and T are specified.) These equations are coupled only in time and not in space, and thus the technique results in a solution of a set of N_s linear equations at each mesh point. The stability and accuracy of the scheme is discussed by Widhopf and Victoria [1973].

This time-implicit algorithm overcomes the "stiff" nature of the governing equations which results from the wide range of chemical time scales of the problem. For the current numerical system, the allowable time step is determined by the convective time-step limitation, which yields a maximum time step of a few days. In order to simplify the calculation and reduce the N_s matrix size (with analogous reduction in computation time), only those species whose shortest chemical time scales are less than two days throughout the computational domain need to be solved using the time-implicit algorithm. All other long-lived species (N₂O, H₂O, HNO₃, CO, CH₄, and HCl) are solved in a straightforward explicit manner. This combination of numerical algorithms has proven to be computationally stable and accurate with a significant reduction in computation time. The simulation of one complete yearly cycle requires approximately 20 min on a CDC 7600 and includes all radiative flux calculations.

7. WATER VAPOR MODELING

Water vapor is the source of hydroperoxyls in the natural atmosphere and is also a major component of exhaust emissions from aircraft propulsion systems. These hydroperoxyls play an important role in determining the chemical state of the atmosphere as well as the effect of various pollutants on this natural state.

The simulation of the water vapor distribution in the atmosphere is difficult because it undergoes an exponential decrease in concentration in the troposphere from a surface value of approximately 104 ppmv to a relatively constant low concentration of approximately 4-6 ppmv in the stratosphere. The tropospheric distribution results from a balance between surface evaporation, rainout, and transport, whereas the stratospheric distribution depends on the gross transport exchange mechanisms between the troposphere and stratosphere, with chemistry playing a minor role. Because of limited knowledge of the controlling physical mechanisms in each of these areas, the distribution of H2O has not been previously calculated in aeronomic photochemical models, but specified using data as a guide. As an example, Widhopf, et al. [1977] prescribed the water vapor distribution in the troposphere by specifying the relative humidity following the work of Manabe and Wetherald [1967], and the stratospheric value was assumed to be 2.5 ppmm as interpreted from the measurements of Mastenbrook [1971]. In addition to these modeling problems, early indirect measurements of the hydroperoxyl reaction rates indicated H₂O emission effects on O₂ were much less than the corresponding effect of NO on O3. Thus, active modeling of water vapor was not emphasized.

However, due to the increased importance of tropospheric phenomena, as shown by the work of Widhopf, et al. [1977] and Hidalgo and Crutzen [1977], the active modeling of water vapor is now more important since it would provide a representation of rainout/washout phenomena which are important in the troposphere. Furthermore, new direct measurements by Howard and

Evenson [1977] and Zahniser and Howard [1978] of hydroperoxyl reaction rates for the reactions NO + HO₂ and HO₂ + O₃ (discussed in subsequent sections) have increased the magnitude of these rates by a factor of approximately 35 and 3, respectively. These rate changes have increased the importance of hydroperoxyls in the chemical balance of the natural and perturbed atmosphere.

In this regard, it is necessary to include an active water vapor model in any comprehensive atmospheric model. The very simple model used herein is a result of an extension of a one- and two-dimensional steady-state water vapor modeling effort described by Glatt and Widhopf [1978]. Here, the average rainout rate as a function of latitude [Junge (1963)] is used to describe the rainout in the troposphere. The rainout is treated as a first-order removal mechanism proportional to the local water vapor concentration and removed throughout the troposphere at the average precipitation rate interpreted from available data. The latitudinal variation of the local residence time, $a(\phi)(1/\sec)$, as interpreted from Junge [1963], is presented in Table IV. The time-dependent surface boundary condition is a relative humidity specification using the work of Manabe and Wetherald [1967].

This is a very simple empirical approach somewhat consistent with this type of empirical photochemical model of the atmosphere. Other more complicated approaches were attempted; however, each required fundamental empirical or assumed information at some point. For example, rainout occurs when warm moist air accents and saturates; however, in the present model, the vertical velocities are prescribed in the mean and have no meaning when applied to the determination of a condition when rainout can occur. As a result, we have used this approach due to its simplicity and ease of interpretation of the consequences of the specification of empirical information. As will be shown, the model yields relatively adequate agreement with the sparse available H₂O data.

LATITUDINAL VARIATION OF RAINOUT RATE PARAMETER a(\$\phi\$) AS INTERPRETED FROM JUNGE [1963] TABLE IV.

LATITUDE

	00	100	200	300	0° 10° 20° 30° 40° 50° 60° 70° 80° 90° N	50°	009	002	800	N _o 06
a(\$\phi)(10 ₆ /sec)	1.76 1.36 1.1 1.2 1.79 2.08 1.89 1.2 0.90 0.83	1.36	1.1	1.2	1.79	2.08	1.89	1.2	0.90	0.83

Figures la through ld show calculated water vapor profiles for the mid-months of each of the four seasons compared with available tropospheric data [Oort and Rasmussen (1971)] and data compilation by Harries [1976]. As can be seen, the exponential decrease of water vapor with increased altitude in the troposphere is calculated adequately, as is the average stratospheric concentration. In general, comparison with tropospheric data for all seasons shows relatively good agreement at the mid-latitude (30°N). At the equator, the calculated concentration of water vapor above 5 km is higher than the data for all seasons, whereas at 60°N the results are in good agreement during the spring and summer seasons, but low during the fall and winter. The underprediction at 60°N is essentially due to the lower surface concentration used in the model. The higher values predicted at the equation above 5 km are due to the upward convection of moist air from the surface to higher altitude. This is due to the fact that upward motion exists in the equatorial region throughout the year, while the surface maintains a high concentration of water vapor. Considering the simplicity of the model, the results are encouraging.

In the present model, the water vapor distribution arises from a balance between a surface flux (evaporation), rainout, and transport, with chemistry playing a minor role. The surface flux F_z is given by $F_z(\phi) = -\rho k_{zz} dY/dz | z=0$, where ρ is the density, k_{zz} the vertical diffusion coefficient, and Y the mass fraction of water vapor. The total precipitation at the surface at any particular latitude is given by

$$P(\phi) = \int_{0}^{H(\phi)} a(\phi) \rho Y dz$$

where $a(\phi)$ is the average rainout rate constant (sec⁻¹) as a function of latitude, and H is the height of the troposphere. Figure 2 shows the latitudinal distribution of average annual precipitation compared with data [Junge (1963)].

Fig. 1a. Water Vapor Profile in Natural Atmosphere in October

Fig. 1b. Water Vapor Profile in Natural Atmosphere in January

Fig. 1c. Water Vapor Profile in Natural Atmosphere in April

Fig. 1d. Water Vapor Profile in Natural Atmosphere in July

Fig. 2. Comparison of Measured and Calculated Average Annual Precipitation Rate

The resultant latitudinal distribution of precipitation, although high, does seem to follow the trends in the data between 0°N and 25°N. However, the results do not show the constant level of precipitation as measured between 25 and 55°. Also included is the latitudinal distribution of precipitation for an earlier calculation where the vertical resolution in the troposphere was 1 km. The differences in the two calculations result from relative changes in the first two km of the respective calculated water vapor profiles. The changes in the tropospheric water vapor profiles calculated with each resolution are minor and both are in agreement with available data; however, the calculated precipitation is seen to be more sensitive. In this regard, it must be pointed out that the present type of model should not be expected to reproduce the precipitation data, since we have lumped all the physical mechanisms for rainout into one parameter, $a(\phi)$, which is just a function of latitude. Since nearly all the precipitation occurs in the first 5 km in the model, the mass fraction of water vapor at altitude does not affect the total precipitation rate [Widhopf and Glatt (1978)].

A sensitivity study was performed in order to attempt a systematic variation of the parameters to determine the effect on the water profiles of changing the key parameters in the water model. From the results of the previous simplified one-dimensional model developed by Glatt and Widhopf [1978], in which the water vapor distribution is a result of a balance between the divergence of the vertical eddy flux and the rainout (i.e., precipitation), the resultant distribution was found to be

$$Y = \frac{Y_{s} \sinh[\overline{\lambda}(1-\overline{z})] + Y_{H} \sinh[\overline{\lambda}\overline{z}]}{\sinh \overline{\lambda}}$$

where Y_s is the surface value of mass mixing ratio of water vapor, Y_H the mass mixing ratio at the tropopause $\overline{Z} = Z/H$, H the height of the tropopause $\overline{\lambda} = H \sqrt{a_o/K_o}$, a_o the constant rainout rate, and K_o the constant vertical

turbulent diffusion coefficient. The surface flux can be obtained by differentiating the above expression and is given by

$$F_s = \sqrt{a_o K_o} [Y_s \tanh \overline{\lambda} - Y_H / \sinh \overline{\lambda}]$$

For typical values of the parameters, the surface flux can be expressed as

$$F_s \simeq \sqrt{a_o K_o} Y_s$$
.

Thus, it can be seen for a given value of Y_s that the surface flux is proportional to $\sqrt{a_0K_0}$. By requiring the surface flux to take on appropriate values, we require $\sqrt{a_0K_0}$ to be constant. The equation for the mass mixing ratio can now be written in terms of either a_0 or K_0 , i.e.

$$\lambda = H \sqrt{a_o/K_o} = \frac{H}{K_o} \sqrt{a_o K_o} = \frac{H a_o}{\sqrt{a_o K_o}}$$

One can now vary the parameters in a systematic way to attempt to match the data. However, since data exist for the total average annual precipitation rates [Junge (1963)], whereas there is some uncertainty in K_0 , it is appropriate to fix a_0 and vary K_0 . This type of sensitivity study was carried out in the two-dimensional model where K_0 is the value of k_{zz} at the surface. It should be emphasized that in the two-dimensional model k_{zz} is not constant in the troposphere, but is a function of latitude, altitude, and time of year as shown in the Appendix. The net effect was a modification of the two-dimensional vertical turbulent diffusion coefficients in the lower regions of the troposphere, the results of which correspond to the profiles shown in Figs. la through ld.

The sensitivity studies performed to date have shown a relative insensitivity of the troposphere profiles to most changes in other parameters such as ± 15 percent variation in these rainout rates and the surface value of k_{zz} .

However, there is a larger sensitivity in the predicted stratospheric level of H_2O to transport across the tropopause. The Junge rainout rates are average tropospheric values and, as long as these values are specified throughout the troposphere as a function of latitude, the stratospheric values of water vapor concentration fall within the measured variation. However, changes in this specification can result in large increases or decreases in H_2O in the stratosphere.

Since proper transport of water vapor in the lower regions of the troposphere necessitated some modifications to the turbulent diffusion coefficients, as well as providing a means for calculating the effect of washout, it was important to verify these coefficients by rerunning previous inert tracer experiments such as C-14, W-185, and Zr-95. In the case of W-185 and Zr-95, the rainout/washout model was used to wash out these particulate tracers. The C-14 and W-185 results presented in Widhopf, et al. [1977], which were in good agreement with data, were not appreciably affected; however, the time decay of the total Zr-95 burden could now be reproduced using a smaller density of 2 gm/cm³ as compared to 6.4 gm/cm³ used in past simulations (see Fig. 3). Utilization of a density of 6.4 gm/cm³ assumed the particle to be entirely composed of tungsten, while a density of 2 gm/cm³ assumes some hybrid form of the particle, more in line with estimates made by others. Thus, the water modeling has been an aid in developing a better prescription of the transport in the troposphere.

Further model improvements are anticipated in which the surface relative humidity boundary condition will be replaced by a specified surface mass mixing ratio as a function of time. This modification should improve the water vapor distribution at the higher latitudes during the fall and winter seasons. Some minor modifications in k_{zz} will most probably be required. The resultant minimum in the water vapor profiles near the tropopause, although seen in some data sets (Figs. la through ld), can probably be attributed to an improper specification of the transport coefficients near the tropopause, as well as the prescription of the manner in which the model parameter $a(\phi)$ approaches zero in the tropopause. The availability of more data and further analysis of our rainout and transport specification may lead to improvements in this area.

Fig. 3. Comparison of the Calculated and Observed Decay of the Z_r - 95 Burden Resulting from the 17 June 1967 Chinese Nuclear Test

8. MODEL RESULTS

In the last few years, the development and application of new laboratory techniques have resulted in the first direct measurements of some important hydroperoxyl reaction rates. These newly measured rates are significantly different in magnitude than those previously interpreted by indirect means. This has resulted in significant changes in the calculated distribution of some trace species in the natural and perturbed atmosphere, as well as an increase in the relative importance of the hydroperoxyl chemical cycle in aeronomic studies. These effects were investigated as an integral part of our continuing model development and study effort for HAPP, and the important changes are summarized herein, together with other model results.

In order to provide a frame of reference, model calculations performed using the O-H-N chemistry listed in Table I, and reported by Widhopf, et al. [1977], are reproduced in this report. These results were in good agreement with observations of O3 for both total ozone column and the spatial distribution of ozone using the chemical reactions and rates accepted to be most accurate at the time (1976). In these calculations, H2O was specified and NO3, N2O5, and ClO, were not considered. In addition, a straightforward diurnal averaging procedure was used. The variation of the calculated ozone column in the natural atmosphere with time of year is reproduced in Fig. 4a, which can be compared to Dütsch's [1971] compilation of observed ozone data (see Fig. 4b). The calculation is in good agreement with observations except at high latitudes during the winter-spring seasons where the ozone column is underestimated by, at most, 9 percent. Ozone profiles calculated at various latitudes during the mid-months of each season are reproduced in Figs. 5a through 5d, together with available data. The calculated profiles reproduce the observed distributions throughout the year except in the troposphere, where the O₂ levels are underpredicted.

<260

< 260

0 **30UTITAJ**

30°

8

STP) Using Chemical System Outlined in Table I. (After Widhoff, Function of Latitude (10-3 cm at Calculated Monthly Variation of the Total Ozone Column as a et al (1977)] Fig. 4a.

(10⁻³ cm at STP) MODEL RESULT MONTH 9

2

06°S

Observed Monthly Variation of

Fig. 4b.

the Total Ozone Column as a Function of Latitude (10-3 cm at STP) [After Dütsch (1971)]

1.09

330

30°

Fig. 5a. Comparison of Calculated and Observed Ozone Profiles

Fig. 5b. Comparison of Calculated and Observed Ozone Profiles

Fig. 5c. Comparison of Calculated and Observed Ozone Profiles

Fig. 5d. Comparison of Calculated and Observed Ozone Profiles

Subsequent calculations of the effect on ozone abundance of projected 1990 subsonic and supersonic fleet NO_x emissions (see Table V), which were performed in that same study, indicated a potentially small overall increase in ozone due to these emissions. Specifically, the calculations indicated that NO emissions in the troposphere from subsonic-type aircraft could result in an O3 increase through the "smog" chemical cycle as opposed to an O3 column decrease above approximately 15 km resulting from supersonic aircraft NOx emissions in the stratosphere. Representative results are reproduced in Figs. 6a, 6b, and 7 which depict the ozone column change at various latitudes over five years of simulation and also show the latitudinal variation during the fifth year at February 15, June 15, and October 15. A typical change in the O3 concentration with altitude at 40°N during October is shown in Fig. 8, where the ozone concentration change is shown to be negative above approximately 21 km and positive below. This results in an overall column increase below ~15 km. A more detailed explanation of the important chemical mechanisms in each regime is included in Widhopf, et al. [1711].

As a consequence of these results, subsequent modeling efforts were initially focused on modeling H_2O , since any information in this area would (a) provide a better evaluation than that used in the 1976 study of average rainout/washout effects which are important in the troposphere and influence the distributions of NO_x and HO_x , (b) provide the ability (heretofore unavailable) to actively model H_2O emissions which are a significant fraction of aircraft emissions, and (c) result in a better tropospheric model and prescription of the distribution of hydroperoxyls in the natural atmosphere.

As previously stated, important hydroperoxyl reaction rates were subsequently measured directly for the first time and became available during this effort. These new measurements were substantially different than the values listed in Table I and increased the relative importance of HO_X with respect to the effect of NO_X on O_3 , making a water model even more important. Unfortunately for the modeler, not one but a number of hydroperoxyl reaction

TABLE V. 1990 WORLDWIDE AIRCRAFT NO. EMISSIONS, HIGH ESTIMATES, kg/yr

						AL.	ALTITUDES - km	3 - km						
3	Latitude	×	0-k	9-10		10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19	12-13	13-14	14-15	15-16	16-17	81-71	18-19	Total
Z.	.04	3. 35 Ec	3.03Ec	1.43E7	1. 31 E7	N 60. 3.35E6 3.03E6 1.43E7 1.31E7 1.46E7 1.31E6 9.99E5 4.06E5 1.72E6 2.59E6 2.10E6 1.43E6 5.894E7	1. 31 E6	9. 99E5	4.06E5	1.72E6	2.59E6	2. 10E6	1.43E6	5.894E7
	50-n0	2. 15E7	2. 59E7	9. 44E7	1.06E8	50-n0 2.15E7 2.59E7 9.44E7 1.00E8 9.09E7 8.26E6 3.72E6 2.12E6 6.57E6 1.03E7 8.06E6 3.71E6 3.814E8	8.26E6	3.72E6	2.12E6	6.57E6	1.03E7	8.06E6	3.71E6	3. 814E8
	10-50	7. e0E7	40-50 7.00E7 8.70E7	1. 79E8	2. 79E8	1.79E8 2.79E8 1.62E8 2.48E7 4.59E6 2.09E6 4.17E6 6.90E6 5.46E6 2.36E6 8.334E8	2. 48E7	4.59E6	2.09E6	4.17E6	6. 90E6	5.46E6	2. 36E6	8. 334E8
	30-40	7.74E7	30-40 7.74E7 9.20E7	1. 67 E8	3.09E8	1.67E8 3.09E8 1.72E8 2.97E7 3.11E6 1.74E6 1.30E6 2.73E6 2.07E6 8.63E5 8.589E8	2.97E7	3.11E6	1.74E6	1.30E6	2.73E6	2.07E6	8. 63E5	8.589E8
	20-30	2. ol E7	2.83E7	6.74E7	1.02E8	20-30 2.01E7 2.83E7 6.74E7 1.02E8 6.92E7 8.73E6 1.55E6 1.20E6 8.06E5 1.90E6 1.71E6 4.67E5 3.094E8	8.73E6	1.55E6	1.20E6	8.06E5	1.90E6	1.71E6	4.67E5	3.094E8
	10-20	1.11E7	10-20 1.11E7 1.18E7	2.65E7	4. 28E7	2.65E7 4.28E7 3.99E7 3.67E6 4.74E5 1.54E5 3.24E5 5.38E5 4.22E5 1.71E5 1.379E8	3.67E6	4.74E5	1.54E5	3.24E5	5.38E5	4. 22E5	1.71E5	1. 379E8
	01-0	4.80E6	5. I4E6	1.50E7	1.82E7	0-10 4.80E6 5.14E6 1.50E7 1.82E7 1.36E7 1.26E6 1.73E5	1.26E6	1.73E5	0	2.91E5	4.08E5	2.91E5 4.08E5 3.44E5 1.63E5 5.938E7	1.63E5	5.938E7
	0-01	3.31E6	3.77E6	1. 22E7	1. 38E7	10-0 3.31E6 3.77E0 1.22E7 1.38E7 1.09E7 8.65E5 1.38E5	8.65E5	1.38E5	0	3.01E5	4. 22E5	3.01E5 4.22E5 3.56E5 1.65E5 4.623E7	1.65E5	4.623E7
	20-10	2.74E6	3.21E6	1.14E7	1.52E7	20-10 2.74E6 3.21E6 1.14E7 1.52E7 1.15E7 1.11E6 3.15E5 1.32E5 1.10E5 2.19E5 1.58E5 7.52E4 4.617E7	1.11E6	3.15E5	1.32E5	1.10E5	2.19E5	1.58E5	7.52E4	4.617E7
	30-20	3. 67E6	4.01E6	9.47E6	1.37E7	30-20 3.67E6 4.01E6 9.47E6 1.37E7 8.66E6 9.31E5 5.10E4	9. 31 E5	5.10E4	0	9.85E4	1.38E5	9.85E4 1.38E5 1.16E5 6.63E4 4.091E7	6.63E4	4.091E7
	40-30	4.01E6	4.63E6	6.62E6	1.18E7	40-30 4.01E6 4.63E6 6.62E6 1.18E7 6.14E6 1.21E6 8.64E4 5.16E4 1.56E4 4.74E4 2.84E4 6.22E3 3.464E7	1.21E6	8.64E4	5.16E4	1.56E4	4.74E4	2.84E4	6.22E3	3.464E7
	50-40	2.36E5	3.05E5	3.19E5	8.28E5	50-40 2.36E5 3.05E5 3.19E5 8.28E5 4.46E5 9.29E4 1.5 E1	9.29E4	1.5 El	0	0	0	0	0	2.227E6
	60-50	4.77E4	3.79E4	2.99E4	2.52E4	60-50 4.77E4 3.79E4 2.99E4 2.52E4 1.04E4 1.45E3 0.97	1.45E3	0.97	0	0	0	0	0	1.526E5
S	+09 S	0	0	0	0	0	0	0	0	0	0	0	0	0
To	Total	2.343E8	3 2. 691 E8	16.036E8	9.255E8	2.343E8 2.691E8 6.036E8 9.255E8 5.999E8 8.197E7 1.521E7 7.894E6 1.571E7 2.625E7 2.082E7 9.477E6 2.810E9	8.197E7	1.521E7	7.894E6	1.571E7	2.625E7	2.082E7	9.477E6	2.810E9
		The same of the sa					STATE OF THE STATE		The same of the sa					

*Oliver, R.C. [1977] and Little, A.D. [1976]

Calculated Temporal Ozone Change Resulting from Aircraft NO_x Emissions from a Combined Subsonic and Supersonic Fleet Projected to be Operational in 1990 Using Chemical System of Table I [after Widhopf, et al (1977)] Fig. 6a.

Calculated Temporal Ozone Change Resulting from Aircraft NO Emissions from a Combined Subsonic and Supersonic Fleet Projected to be Operational in 1990 Using Chemical System of Table I [after Widhopf, et al (1977)] Fig. 6b.

Fig. 7. Latitudinal Variation of Ozone Column Change (Table I. Chemical System (after Widhopf, et al 1977)

Fig. 8. Vertical Change in Ozone Concentration at 40°N During October Resulting from Aircraft Fleet Emissions Listed in Table V

rates have turned out to be incorrect; however, the measurements were necessarily made in sequence. This situation produced interim results when each measurement was reported which were not satisfying when compared to available ozone data. Thus, these interim results had to be investigated carefully, and the important findings are described in the following subsections.

8.1 NO + HO₂ (R10) RATE CHANGE

The rate at which the reaction NO + HO2 - NO2 + OH proceeds was measured by Howard and Evenson [1977] to be approximately 35 times faster than previously interpreted using indirect measurements (Table I). As a result, calculations were performed using this new NO + HO, rate (R10 = 810⁻¹²) together with the updated reaction rates recommended in the NASA-CFM study [1977]. The rate R20 was also scaled appropriately as a result of this measurement, since this reaction rate was previously estimated using the same indirect methodology. The ClO, was not considered in this computation; however, N2O5, NO3, and active H2O modeling were included, together with a day-night averaging needed to model the important nighttime chemistry of N2O5 and NO3. The corresponding calculated results for the variation of the ozone column as a function of latitude and time of year in the natural atmosphere, originally reported by Widhopf and Glatt [1978], are shown in Fig. 9. The contours are similar to those shown in Figs. 4a and 4b; however, the ozone level is seen to be approximately 20 to 30 percent higher than either that measured or calculated with the old rate. The corresponding ozone profiles for various latitudes and seasons for this calculation are shown in Figs. 5a through 5d. These differences are primarily due to the increase in the NO + HO, reaction rate which results in, among other things, the increased conversion of NO into NO2, an increase in production of O(3P), and the increased production of the NO_x sink, HNO₃. Since NO₂ is much less effective than NO in catalytically reducing ozone, as well as producing more O(3P), and since more NO_x is stored in HNO₃, this reaction rate change has resulted in an overall increase in ozone in the calculated natural atmosphere.

Fig. 9. Calculated Monthly Variation of the Total Ozone Column as a Function of Latitude Using Chemical System as Modified by Table IIa (10⁻³ cm at STP) [after Widhopf and Glatt (1978)]

Note that in this calculation the vertical transport above 20 km was reduced from that used in the previously described natural atmosphere calculation [Widhopf, et al. (1977)]. This change was introduced in order to reduce the levels of N₂O and CH₄ at altitude so that better agreement with available high altitude measurements of N₂O and CH₄ could be obtained. This change was determined not to affect any of the previous inert tracer results, since for these cases the major portion of the tracer was always below 25 km. This transport modification reduced the ozone overprediction to the present level of 20 to 30 percent.

At this point, some sensitivity studies were performed to determine if modifications to the transport could account for the discrepancy between the predicted and observed ozone columns. In brief, even relatively drastic changes in transport (while always trying to match observations of other species and inert tracers) could not account for the differences. Note here that the difference between measured and calculated ozone profiles is much more easily determined in a multidimensional model, since the measured profiles are available at various latitudes. In a one-dimensional model, the variation of a mean ozone profile is large because of the latitudinal variation of ozone and, thus, rather large changes in the calculated ozone profiles can still fall within the measured variation. This is not generally true in the multidimensional model case, and the comparisons are more direct. Further reduction of the vertical transport did not seem possible if the model results for other species distributions at high altitudes were to agree with available measurements (specifically N2O and CH4). As a consequence, the results of these numerical simulations indicated that another chemical rate could also be inaccurate, or an additional important chemical mechanism (perhaps involving HO2NO2) was not presently included in the model. The reader should not be left with the idea that we feel that the transport as prescribed in this model is quite correct but, rather, we consider that within our experience and the confines of our model tests these discrepancies in ozone cannot be accounted for by an inaccurate specification of the transport only. From our studies we believe that the discrepancy in this case must be principally

caused by a chemical problem, with the transport also playing a role. These questions were actively pursued and candidate reactions were suggested [Widhopf and Glatt (1978)], as interpreted from the results of both the natural atmospheric simulation and a study of the effect of combined NO_X and HO_X aircraft emissions on ozone.

In order to estimate the effect of combined NO, and HO, aircraft emissions, a calculation was performed injecting NO at the rate specified in Table V with the following modification: the rate of injection above 15 km was tripled. This effectively triples the number of supersonic aircraft considered. The HO, was simultaneously injected at a rate 73.5 times the NO_x rate, which corresponds to the ratio of the HO_x to NO_x emission indices [Oliver (1976)]. The results of this calculation are shown in Fig. 10. For this case, the injection of combined NO, and HO, emissions increased the ozone concentration above the level calculated in the natural atmosphere in both the troposphere and stratosphere. Very small increases in ozone occur in the stratosphere with the predominant changes occurring in the troposphere where most of the pollutants are deposited. The resultant maximum increase in ozone column is approximately 3.5 percent, somewhat higher than the 1.5 percent obtained in the previous calculations where HO was not injected. This change was primarily due to the change in reaction rate 10. The variation with time of year is quite similar to the previous calculation in which the minimum effect occurs during late winter-early spring, and the maximum effect occurs during late summer-early autumn. This calculation was carried out for approximately two years since, as in the previous NO, case, the overall column changes are nearly periodic from year to year after one-half year.

In order to understand and explain the increase in total ozone column obtained for this calculation, the chemical mechanisms for the production/depletion of ozone were investigated. Analyses of the results indicate that

Fig. 10. Calculated Temporal Ozone Change Resulting from NO_x and HO_x Emissions from a Combined Subsonic and Supersonic Fleet of Aircraft Using Chemical System of Table IIa [after Widhopf and Glatt (1978)]

different chemical mechanisms are important in the stratosphere and troposphere. In the stratosphere, the injection of NO₂ depletes ozone through the catalytic destruction cycle.

$$NO_2 + O(^3P) \longrightarrow NO + O_2$$
 R6

$$NO + O_3 \longrightarrow NO_2 + O_2$$
 R7

However, the overall increase in ozone level is due to NO reacting with HO₂, i.e.

$$NO + HO_2 \longrightarrow OH + NO_2$$
 R10

which, in turn, produces O3 through the cycle

$$NO_2 + h\nu \longrightarrow NO + O(^3P)$$
 R4

$$O(^{3}P) + O_{2} + M \longrightarrow O_{3} + M$$
 R5

A reduction in HO₂ also occurs through R10 which reduces the effectiveness of the ozone loss due to

$$HO_2 + O_3 \longrightarrow OH + O_2 + O_2$$
 R14

The net result is an increase in ozone in the stratosphere. For the previous calculation [Widhopf, et al. (1977)], which used the slower rate for R10, the NO_x emissions reduced ozone slightly in the stratospere. Thus, this new hydrperoxyl rate measurement has resulted in an important change in the effect of NO_x emissions on ozone in the stratosphere.

In the troposphere, the effect of combined injection of NO_2 and H_2O is a production of ozone. This ozone increase is due to the increase in concentration of $O(^3P)$. As pointed out by Widhopf, et al. [1977], in the strict NO_2

injection case, the increase in $O(^3P)$ was initiated by R10 which produced OH which, in turn, oxidized methane which then cycled through the smog chain to produce HO_2 . The increase in NO_2 produced $O(^3P)$ through R4. The additional injection of H_2O had a slight effect in reducing the level of ozone increase; this is a result of the formation of HNO_3 in the troposphere which is then rained out, reducing the level of NO_2 and thus $O(^3P)$, i.e.

$$H_2O + O(^1D) \longrightarrow OH + OH$$
 $R32$
 $OH + NO_2 + M \longrightarrow HNO_3 + M$
 $R12$
 $NO_2 + h\nu \longrightarrow NO + O(^3P)$
 $R4$
 $O(^3P) + O_2 + M \longrightarrow O_3 + M$
 $R5$

In the stratosphere, injection of H₂O reduces the ozone increase due to NO, injection by introducing additional OH and HO₂, i.e.

$$H_2O + O(^1D) \longrightarrow OH + OH$$
 $O_3 + OH \longrightarrow O_2 + HO_2$
 $O_3 + HO_2 \longrightarrow OH + O_2 + O_2$
 R_14

Thus, the combined effect of the injection of NO_x and HO_x for these calculations is to increase ozone in both the troposphere and stratosphere. Since the mechanisms in both the stratosphere and troposphere are strongly dependent on the rate at which the reaction HO₂ + NO → OH + NO₂ proceeds, together with the fact that the use of this rate resulted in substantial increases in the ozone levels in the natural atmosphere above observed levels, it was definitely felt that other reaction rates involving the hydroperoxyls were still inaccurate. Possible candidate hydroperoxyl reaction rates that should be investigated further were suggested [Widhopf and Glatt (1978)]. These

recommendations were based on our analysis of the controlling chemical mechanisms in the aforementioned natural and perturbed results. Since we found that in the natural atmosphere the overprediction could not be accounted for by transport modifications alone, we suggest that the following reactions involving the production or depletion of $O(^3P)$, those depleting ozone, and important reactions involving the partitioning of OH, HO₂, and H₂O, should be investigated further.

$OH + O_3 \longrightarrow O_2 + HO_2$	R9
$HO_2 + O_3 \longrightarrow OH + O_2 + O_2$	R14
$HO_2 + O(^3P) \longrightarrow OH + O_2$	R15
$OH + HO_2 \longrightarrow H_2O + O_2$	R16
$O(^{1}D) + H_{2}O \longrightarrow OH + OH$	R32
$OH + O(^3P) \longrightarrow O_2 + H$	R34
$OH + OH \longrightarrow H_2O + O(^3P)$	R38
$HO_2 + h\nu \longrightarrow OH + O(^3P)$	R40

8.2 $HO_2 + O_3$ (R14) RATE CHANGE

Subsequently, new direct measurements of the rate at which the reaction R14 (HO₂ + O₃ → OH + 2O₂) proceeds were made by Zahniser and Howard [1978]; this rate was significantly different than previous values obtained from indirect means. With the use of this new reaction rate, the natural atmosphere was recalculated employing the chemistry listed in Table IIb. The results for the ozone column variation are shown in Fig. 11. Here, the calculations are seen to be in much better agreement with observations than the previous result, confirming our conclusion that the previous overprediction of ozone was mostly chemically related. The ozone column is in good

Fig. 11. Calculated Monthly Variation of the Total Ozone Column as a Function of Latitude (10⁻³ cm at STP) Using the Chemical System in Table IIb

agreement with observations during October through March but consistently larger, by approximately 10 percent, than observed values for the other months. The level of the difference is not that significant; however, its persistence through months where chemical processes rather than transport phenomena are most important may be significant, together with the fact that the trend is present at all latitudes. Thus, it is felt that the other reaction rates listed in the previous section as being important should be measured as soon as possible along with a continuing analysis and refinement of the transport prescription.

A comparison with available data of the corresponding ozone profiles calculated in each of the three studies previously described provides additional important information. As an illustration, Fig. 12 presents an example for the month of June at 30°N. Additional profile comparisons for selected latitudes are shown in Figs. 5a through 5d for calculations performed using the chemical system of Table IIb. Here, it is seen that the ozone profiles calculated using the new reaction rates are in good agreement with data below ~30 km; however, above 30 km, even with the new HO₂ + O₃ rate, the ozone concentration is still overpredicted. The corresponding June ozone column is 10 percent greater than the observation at this latitude and time of year; however, this overprediction is also true for other seasons where the ozone column is in good agreement with data (see Fig. 11). Results plotted in Figs. 5a through 5d confirm this trend throughout the year.

8.3 C10x CHEMICAL SYSTEM

The altitude regime above 30 km is the region where the effect of ClO_X has been seen to be important. Thus, the next modeling aspect investigated in this study was the inclusion of ClO_X . Since much of the available ozone data [Dütsch (1971)] have been taken before there were any significant ClO_X source emissions in the atmosphere, coupled with the fact that there is no agreement on how much ClO_X is presently in the atmosphere and what future emissions will be, the effect of ClO_X on ozone was performed parametrically in this study. This allowed for study of the effect of ClO_X on species

Fig. 12. Comparison of Calculated Ozone Profile (15 June at 30°N) with Measurements

distributions and for preliminary investigation of the effect of combined NO $_{\rm X}$ and HO $_{\rm X}$ aircraft emissions on ozone, which is of primary interest to HAPP.

In light of these facts, combined with the fact that the cost of a simulation of 20 to 40 years is prohibitive, a calculation of the distribution of trace species in an atmosphere containing 2 ppbv of ClO_x was performed. Initially, the concentrations of Cl, ClO, ClONO₂, and HCl were computed in equilibrium, with 2 ppbv ClO_x in the stratosphere. Subsequently, at each time step the total ClO_x in the stratosphere was maintained at 2 ppbv by the addition of a source of HCl. The specific chemical system used is outlined in Table III. Here, the new temperature variation of RlO [Zahniser and Howard (1978)] has been included in the computation, as well as the pressure-dependence for R44, CO + OH + M — H + CO₂ + M [Chan, et al. (1977)]. The corresponding result for the variation of the ozone column is shown in Fig. 13.

The ozone column is now in agreement with observations in the northern hemisphere during May through October and approximately 10 percent lower during most of the rest of the year, except near the poles where the high levels during winter-spring are approximately 20 percent low. An almost uniform reduction in ozone column at all latitudes and time of year was noticed when these results were compared to the previous one. It should be remembered that the ozone observations with which we are comparing should not have been affected substantially by ${\sf CIO}_{_{_{f X}}}$ due to the time period in which the observations were made. Thus, this particular comparison is helpful, but not necessarily direct. A seasonally variable level of ClOx may be more appropriate for future simulations. The corresponding O3 profiles are shown in Figs. 5a through 5d where good agreement with the available data is noticed above 30 km, a region where ClO, should be important. However, at most latitudes, the peak level of ozone is lower than observed. The effect of ClO, in the natural atmosphere will require further study, especially since the resultant ozone reduction is more than we anticipated and other levels of ClOx will need to be studied.

Fig. 13. Calculated Monthly Variation of the Total Ozone Column as a Function of Latitude (10⁻³ cm at STP) Using the Chemical System in Table III (2 ppbv ClO_X)

As stated, the level of 2 ppbv of ClO_X was chosen in order to provide an initial estimate of the effect of ClO_X. A comparison of the calculated profiles of Cl, ClO, and HCl with corresponding available measurements is shown in Figs. 14a and 14b. Because ClO_X was introduced uniformly throughout the year, the variation of the calculated Cl and ClO concentrations does not vary much (<10 percent) with time of year. However, the profiles at 30°N during July are in very good agreement with measurements made during July at 32°N. The calculated HCl distribution during May is shown in Fig. 14b and is in comparative agreement with available measurements. Further study will determine the relative significance of these ClO_X comparisons.

Other comparisons with data are useful in elucidating areas where present model predictions using present chemical sets are in agreement with observations and where more research is needed. Some tropospheric results are discussed first. All of these results are plotted for the last calculation which includes ClO_x, since the introduction of ClO_x does not substantially effect the distribution of these trace species, at least, within the accuracy limits of the data.

Figures la through 1d show the calculated H₂O vapor profiles compared with data for the months of October, January, April, and July. As discussed previously, these profiles are in relatively good agreement with data. This type of agreement is virtually independent of the chemical system considered, since the variation of H₂O is primarily controlled by transport processes and rainout. Other aspects of these comparisons were discussed previously.

Tropospheric NO_X profiles are shown in Fig. 15 compared to tropospheric estimates made by Fishman and Crutzen [1978] in their attempt to balance the CO budget. These profiles are shown for each of the sets of reaction rates outlined in Tables I through III. The rapid increase in the concentration of NO_X in the lower few kilometers is due to the inclusion of anthropogenic sources of NO_X at the surface. A dramatic reduction in the NO_X level from that calculated using the 1976 Table I chemical system is obtained with the introduction of the new NO + HO₂ rate. Subsequent changes are not very profound for the chemical systems of Tables IIb and III.

Fig. 14a. Comparison of Calculated and Observed Cl and ClO Profiles

* ×

Fig. 14b. Comparison of Calculated and Measured Distribution of HCl

Fig. 15. Comparison of Calculated NO_x Profiles in Troposphere with Fishman-Crutzen Estimated NO_x Profiles

Tropospheric HNO₃ profiles at 30°N latitude are compared in Fig. 16, with the corresponding measurements reported by Huebert and Lazarus [1978]. Here, the data very near the surface have been used to evaluate the surface deposition velocity. This deposition velocity controls the shape of the profile below 2 km, while rainout controls the profile in the rest of the troposphere. This is a further indication that this very simple rainout model provides an approximate means to simulate the average rainout process in the troposphere. Here it should be emphasized that, at best, the rainout/washout is only simulated in some average sense.

While the calculated tropospheric level of HNO₃ seems to be in good agreement with the limited available data, the concentration of HNO₃ is overpredicted in the stratosphere using any of the chemical systems in Tables II and III. This is shown in Fig. 17, where the computed HNO₃ columns above 12 km are compared to measurements. The predicted levels using the new hydroperoxyl reaction rates (Table III with 2 ppbv ClO_x) are a factor of approximately three to four higher than these observations. This is also demonstrated in Fig. 18, where a comparison is made of the computed profiles of NO, NO₂, and HNO₃ with the corresponding simultaneous measurements of these species in the stratosphere [Evans, et al. (1976)]. The NO level is in good agreement with observations; however, the HNO₃ level is seen to be too high and the NO₂ level is low.

Inclusion of the species $\mathrm{HO_2NO_2}$ would decrease the level of $\mathrm{HNO_3}$ to values in much better agreement with data; however, there is no solid justification at the present time for including this species. The overprediction of $\mathrm{HNO_3}$ above current observed levels needs further extensive investigation, especially with regard to the pressure-dependent reaction rate (R12) which controls $\mathrm{HNO_3}$ formation, since the approximation of $\mathrm{HNO_3}$ rainout/washout seems reasonable from the comparison shown in Fig. 16.

Predicted and Measured HNO3 Versus Altitude. Dashed Error-Bars Represent Experimented Marine Values, Solid Bars are Continental Measurements, and Curves are Theoretical Estimates. Locations are Given Primarily for Samples Taken Near Populated Areas. [After Huebert and Lazrus (1978)] Fig. 16.

Fig. 17. Comparison of Calculated and Observed HNO₃ Column Variation with Latitude

Fig. 18. Comparison of Calculated and Measured Profiles of NO, NO, NO and HNO $_3$

Since OH is a species which controls many of the important chemical processes, the calculated distribution at 30°N during January is shown in Fig. 19 compared to some measurements in January 1976 [Anderson (1976)]. The agreement in the high stratosphere is good, and the calculated profile is also within the broad regime of the tropospheric measurements. More data are needed in the troposphere and lower stratosphere in order to determine the adequacy of the OH calculation in this regime.

A comparison of the calculated distribution of $O(^3P)$ at $50^{\circ}N$ during November is compared to an analogous measurement in Fig. 20 [Anderson (1975)]. The calculated daylight average value of $O(^3P)$ is in relatively good agreement with the data, being somewhat on the low side.

Calculated profiles of the daylight averaged value of NO are compared to various measurements in Fig. 21 and are in good agreement with the wide range of the data. This further reinforces the need for further investigation into the HNO₃ formation rate or the inclusion of HO₂NO₂ in the system.

Corresponding comparisons for N_2O are shown in Figs. 22a through 22c, where the model calculations are in relative agreement with data. As mentioned earlier, k_{zz} was lowered above 20 km from previous model calculations [Widhopf, et al. (1977)] in order to bring the predicted N_2O level above 40 km in better agreement with the sparse available data. As seen in Fig. 22b, this has been achieved. However, a detailed comparison of these results with the data indicates that the calculations underpredict the N_2O level between 20 and 30 km. Thus, we intend to look into this specification of k_{zz} above 20 km more carefully in the future and determine if a more optimal prescription is possible. The k_{zz} profiles included in the Appendix correspond to these lower values.

A comparison for CH₄ is shown in Fig. 23. The concentration of CH₄ is underpredicted in the stratosphere, which is probably due to the lower boundary condition which was set at 1.35 ppmv after the measurements of Ehhalt, et al. [1975]. More recent measurements indicate a level of 1.61 ppmv in the troposphere, which should increase the level of CH₄ in the stratosphere.

Fig. 19. Comparison of Calculated and Observed OH Concentration

Fig. 20. Comparison of Calculated and Observed Concentration of O(3P)

Fig. 21. Comparison of Calculated and Measured Profiles of NO

Comparison of Calculated N₂O Profiles with Measurements of Schmeltekopf et al (1977) Fig. 22a.

* ×

Fig. 22b. Comparison of Calculated N2O Profiles with Measurements

Fig. 22c. Comparison of Calculated N₂O Profiles with Measurements of Schmeltekopf et al

Fig. 23. Comparison of Calculated and Measured CH₄ Profile

Since the CH₄ distribution is dependent upon chemical processes as well as transport, the resolution of this disagreement is not straightforward and will be studied further in our future investigations, together with N₂O.

These comparisons indicate relative agreement of the calculated distributions with some of the limited data currently available. In order to estimate the effect of combined NO_X and HO_X aircraft emissions using the most updated set of chemical rates and reactions, including the effect of ClO_X, a perturbed atmospheric calculation was performed using the NO_X injection rates shown in Table V, whereas the H₂O was injected at a rate 73.5 times the NO_X rates. For this simulation, the 2 ppbv ClO_X calculation was taken for this initial study as being representative of the "natural atmosphere" to which the atmosphere perturbed by aircraft NO_X and H₂O emissions would be compared.

Figure 24 shows the latitudinal distribution of the resultant change in total ozone column during October, July, and April of the second year of simulation. Note that the peak ozone change (3.5 percent) occurs at 40°N in October (corresponding to the latitude for peak injection) and moves slightly southward, peaking about 30°N during April. This transport effect has been observed in previous calculations by Widhopf, et al. [1977]. A profile of the ozone concentration change with altitude at 40°N during October is included in Fig. 8. The change in ozone resulting from the NO and HO aircraft emissions is positive at all altitudes throughout the troposphere and stratosphere. The major change has occurred in the troposphere, but the new hydroperoxyl reaction rates have resulted, as in the previous case (Tables IIa, IIb), in a slight production of ozone. The chemical mechanisms responsible for this were discussed previously.

Figure 25 shows the resultant temporal ozone column change at 40°N latitude for the two years of simulation. Also shown is the result of Widhopf and Glatt [1978] for the NO_X and HO_X injection case using the chemical reaction rate data from Table IIa. Note that the peak ozone maxima and minima are approximately equal for both chemical sets IIa and III and occur within a

 O_3 Column Change Resulting from NO_x and HO_x Emissions from a Combined Fleet of Subsonic and Supersonic Aircraft (Table IV) Using Chemical Set of Table III (2 ppbv ClO $_x$) Fig. 24.

Fig. 25. O₃ Column Change as a Function of Time

month of each other. This result may seem inconsistent, since nearly three times as much injection occurred above 15 km in Widhopf and Glatt [1978] and, in addition, Table III introduces ${\rm ClO}_{\rm X}$ which ties up ${\rm NO}_{\rm X}$, i.e.

$$ClO + NO_2 + N_2 \longrightarrow ClONO_2 + N_2$$
 R76

Thus, one might expect a lower peak increase in ozone column. This result is found to be true in the stratosphere; however, there is an additional increase of O_3 in the troposphere due to the introduction of the pressure-dependent reaction rate for $CO + OH \longrightarrow H + CO_2$. This increase in H produces more HO_2 through the reaction

$$H + O_2 + M \longrightarrow HO_2 + M$$
 R35

which, in turn, produces more O₃. Thus, for this calculation, it appears the two effects tend to cancel each other out.

The basic mechanisms for ozone increase in both stratosphere and troposphere have been discussed earlier, except the inclusion of the reaction

$$C10 + NO_2 + N_2 \longrightarrow C10NO_2 + N_2$$

in the stratosphere when ClO_x is considered. This reaction slightly attenuates the ozone increase in the stratosphere.

One important area of consideration is the determination of what part of the ozone change is due to H_2O injection and what part is due to the NO_X injection. To answer this question, a calculation was performed for a two-year period wherein just NO_X was injected. Table VI shows the resultant percent changes in O_3 , $O(^3P)$, NO, NO_2 , HNO_3 , OH, and HO_2 for various altitudes at 40^ON latitude during October for both injection cases. Note that the maximum ozone percent increase occurs at 10 km where the peak injection occurs. For these injection rates, the water has only a slight attenuating

TABLE VI. PERCENT CHANGE IN SPECIES CONCENTRATION DURING 15 OCTOBER FOR NO_x AND HO_x INJECTION CASE (second column) AND NO_x ONLY CASE (first column)

1 .

1.5 49.2 9.8 3.6 4.1 - 2.6 1 28.7 91.2 27.2 54.2 45.0 50.0 74.6 185.1 174.3 210.0 191.0 175.2 10 43.1 759.6 725.8 769.0 744.2 368.4 32 90.8 310.7 306.4 314.9 311.2 156.5 14 21.7 36.9 36.2 47.6 47.2 46.2 4 6.8 16.9 16.6 20.2 19.9 18.6 1 2.9 13.4 12.9 14.0 13.5 10.2 1 1.1 6.3 6.0 6.0 5.7 4.7 1 0.2 1.2 1.1 1.1 0.5 1	Alt	6		0(3P)	ía	2		NO,	1	HNO	-	НО	H	НО2	2
4.5 1.1 4.3 1.5 49.2 9.8 3.6 4.1 - 2.6 1 27.9 29.3 28.1 28.7 91.2 27.2 54.2 45.0 50.0 84.4 74.7 84.6 74.6 185.1 174.3 210.0 191.0 175.2 10 145.2 141.7 147.9 143.1 759.6 725.8 769.0 744.2 368.4 32 93.0 91.4 93.2 90.8 310.7 36.4 314.9 311.2 156.5 14 22.2 22.1 22.4 21.7 36.9 36.2 47.6 47.2 46.2 4 7.3 7.2 6.8 16.9 16.6 20.2 19.9 18.6 1 1.4 1.3 2.1 1.1 6.3 6.0 6.0 5.7 4.7 4.7 1.4 1.3 2.1 1.1 1.1 1.1 0.5 4.7 4.7	(KM)		3								,		1		
27.9 29.3 28.1 28.7 91.2 27.2 54.2 45.0 50.0 84.4 74.7 84.6 74.6 185.1 174.3 210.0 191.0 175.2 10 145.2 141.7 147.9 143.1 759.6 725.8 769.0 744.2 368.4 32 93.0 91.4 93.2 90.8 310.7 306.4 314.9 311.2 156.5 14 22.2 22.1 22.4 21.7 36.9 36.2 47.6 47.2 46.2 4 7.3 7.2 6.8 16.9 16.6 20.2 19.9 18.6 1 1.4 1.3 2.1 11.1 6.3 6.0 6.0 5.7 4.7 1.4 1.3 2.1 1.1 6.3 6.0 6.0 5.7 4.7 0.1 0.1 0.1 0.7 -0.2 1.2 1.1 1.1 0.5	7	4.5	1.1	-		49.2	8.6	3.6	1257		16.1	1.02	4.9	200.0	76.8
84.4 74.7 84.6 74.6 185.1 174.3 210.0 191.0 175.2 10 145.2 141.7 147.9 143.1 759.6 725.8 769.0 744.2 368.4 32 93.0 91.4 93.2 90.8 310.7 36.4 314.9 311.2 156.5 14 22.2 22.1 22.4 21.7 36.9 36.2 47.6 47.2 46.2 4 7.3 7.2 7.6 6.8 16.9 16.6 20.2 19.9 18.6 1 1.4 1.3 2.1 11.4 12.9 14.0 13.5 10.2 1 1.4 1.3 2.1 1.1 6.3 6.0 6.0 5.7 4.7 0.1 0.1 0.1 0.7 -0.2 1.2 1.1 1.1 0.5		27.9	29.3	28.1	28.7	91.2	27.2	54.2	45.0	50.0	5.0	52.0	- 2.3	64.3	44.8
145.2 141.7 147.9 143.1 759.6 725.8 769.0 744.2 368.4 32 93.0 91.4 93.2 90.8 310.7 306.4 314.9 311.2 156.5 14 22.2 22.1 22.4 21.7 36.9 36.2 47.6 47.2 46.2 4 7.3 7.2 7.6 6.8 16.9 16.6 20.2 19.9 18.6 1 3.3 3.2 3.8 2.9 13.4 12.9 14.0 17.5 10.2 1 1.4 1.3 2.1 1.1 6.3 6.0 6.0 5.7 4.7 0.1 0.1 0.1 0.7 -0.2 1.2 1.1 1.1 0.5	0 00	84 4	74.7	84.6	74.6	185.1	174.3		191.0	175.2	105.0	86.7	72.7	121.4	112.3
93.0 91.4 93.2 90.8 310.7 306.4 314.9 311.2 156.5 14 22.2 22.1 22.4 21.7 36.9 36.2 47.6 47.2 46.2 4 7.3 7.2 7.6 6.8 16.9 16.6 20.2 19.9 18.6 1 3.3 3.2 3.8 2.9 13.4 12.9 14.0 13.5 10.2 1 1.4 1.3 2.1 1.1 6.3 6.0 6.0 5.7 4.7 0.1 0.1 0.1 0.7 -0.2 1.2 1.1 1.1 0.5	. 0	145.2	141.7	147.9	143.1	759.6	725.8		744.2	368.4	322.8	109.9	7.66	143.5	141.5
22.2 22.1 22.4 21.7 36.9 36.2 47.6 47.2 46.2 4 7.3 7.2 7.6 6.8 16.9 16.6 20.2 19.9 18.6 1 3.3 3.2 3.8 2.9 13.4 12.9 14.0 13.5 10.2 1 1.4 1.3 2.1 1.1 6.3 6.0 6.0 5.7 4.7 0.1 0.1 0.7 -0.2 1.2 1.2 1.1 1.1 0.5	12	93.0	91.4	93.2	90.8	310.7	306.4		311.2	156.5	147.9	57.9	5.55	8.99	63.7
7.3 7.2 7.6 6.8 16.9 16.6 20.2 19.9 18.6 1 3.3 3.2 3.8 2.9 13.4 12.9 14.0 13.5 10.2 1 1.4 1.3 2.1 1.1 6.3 6.0 6.0 5.7 4.7 0.1 0.1 0.7 - 0.2 1.2 1.2 1.1 1.1 0.5	14	" "	22.1	22.4	21.7	36.9	36.2	47.6	47.2	46.2	45.4	15.1	14.5	- 6.4	- 6.1
3.3 3.2 3.8 2.9 13.4 12.9 14.0 13.5 10.2 1 1.4 1.3 2.1 1.1 6.3 6.0 6.0 5.7 4.7 0.1 0.1 0.7 - 0.2 1.2 1.1 1.1 0.5	: 4	7 3	7,7	7.6	8.9	16.9		20.2	19.9	18.6	18.3	0.2	0.2	8.8	- 8.1
1.4 1.3 2.1 1.1 6.3 6.0 6.0 5.7 4.7 0.1 0.1 0.7 - 0.2 1.2 1.2 1.1 1.1 0.5	8	3.3	3.2	3.8	2.9				13.5	10.2	10.0	- 2.8	- 2.6	- 10.8	- 9.2
0.1 0.1 0.7 - 0.2 1.2 1.1 1.1 0.5	20	1.4	1.3	2.1	1.1	6.3		6.0	5.7	4.7	4.6	1.3	0.5	- 2.8	- 2.4
	25	0.1	0.1	0.7	1	1.2		1.1	1.1	0.5	0.4	1.7	1.6	0.7	1,51
30 .09 .02 0.6 0.2 0.6 0.7 0.7 0.6 - 0.4 - 0.4	30	60.				9.0					- 0.4	2.0	0.4	1.2	0.3

effect on the ozone increase. In the troposphere, the injection of H₂O produces OH through the reaction

$$H_2O + O(^1D) \longrightarrow OH + OH$$
 R2

which then reacts with NO2 to form nitric acid through

$$OH + NO_2 + M \longrightarrow HNO_3 + M$$
 R12

which is then rained out. This loss in NO_2 reduces the increase in $O(^3P)$; thus the ozone increase is slightly lower. In the stratosphere, the increase in OH and HO_2 due to the injection of H_2O lowers the ozone increase due to NO_X injection, through the reactions

$$OH + O_3 \longrightarrow O_2 + HO_2$$
 R10

$$HO_2 + O_3 \longrightarrow OH + O_2 + O_2$$
 R14

It must be pointed out that the chemical mechanisms described above for controlling the ozone changes correspond to a given set of rate constants and injection rates for NO_x and H₂O, and modification of these rates may lead to other important chemical mechanisms. Future studies are desirable which will vary the level of ClO_x to determine the effect on the stratospheric ozone perturbations. Also, in all of these studies the projected emissions from supersonic aircraft flying in the stratosphere are very small compared to the emissions from subsonic aircraft flying in the troposphere. Thus, the effects in the stratosphere are small compared to those occurring in the troposphere. Therefore, different emission scenarios might weight the results differently and make different mechanisms more important.

Also, the uncertainty regarding the specification of transport and rainout/washout must be kept in mind, since the prescription of these important phenomena are still in an elementary stage because of a combination of an incomplete data base, understanding and an inability of economically calculating them from first principles.

9. CONCLUSIONS

The higher hydroperoxyl reaction rates recently measured have significantly influenced the predicted distribution of trace species and increased the relative importance of HO_x on the atmospheric chemical balance. Current calculated ozone levels are in reasonable agreement with data when calculated using the most recent reaction rates; however, a number of additional important reaction rates need to be measured and are outlined in the text. The distribution of most other species in the troposphere and stratosphere are in relatively good agreement with data; however, stratospheric levels of HNO2 are significantly overpredicted using current chemical systems and reaction rates. A very simple active water vapor model has been included which seems to adequately predict, within the confines of parameterized models, the natural seasonal tropospheric and stratospheric distribution of water vapor. This has been used to estimate the effect of combined NO and HO, aircraft emissions on ozone, including 2 ppbv of ClO, in the stratosphere. Ozone is seen to increase in both the stratosphere and troposphere as a result of these emissions, where the total ozone column peaks at approximately 3.5 percent during summer-fall. The new higher hydroperoxyl rates play an important role in determining this level. The major effect is in the troposphere due to the much larger estimated subsonic fleet. As a result, the H2O emissions play a minor role in the ozone change, since they are a small fraction of the tropospheric water level, whereas the stratospheric emission levels are small due to the small projected fleet of supersonic aircraft.

REFERENCES

- Ackerman, M. (1971), "Ultraviolet Solar Radiation Related to Mesospheric Processes," Mesospheric Models and Related Experiments, ed. G. Fiocco, Springer-Verlag, New York, 149-159.
- Ackerman, M.J., J.C. Fontanella, D. Frimount, A. Girard, N. Louisnard, and C. Muller (1975), "Simultaneous Measurements of NO and NO₂ in the Stratosphere," Planet. Space Sci., 23, 651.
- Ackerman, M., D. Frimount, A. Girard, M. Gottignies, and C. Muller (1976), "Stratospheric HCl from Infrared Spectra," Geophys. Res. Lett., 3, 81-83.
- Ackerman, M., et al. (1977), Aeronomica Acta, 180.
- Anderson, J.G. (1975), "The Absolute Concentration of (O³P) in the Earth's Stratosphere, "Geophys. Res. Lett., 2, 231.
- Anderson, J.G. (1976), "The Absolute Concentrations of $OH(X^2\pi)$ in the Earth's Stratosphere, "Geophys. Res. Lett., 3, 165.
- Anderson, J.G., et al. (1977), "Atomic Chlorine and the Chlorine Monoxide Radical in the Stratosphere: Three In Situ Observations," Science, 198(4316), 501-503.
- Chan, W.H., et al. (1977), "The Pressure Dependence of the Rate Constant for the Reaction OH + CO H + CO₂" Chem. Phys. Lett., 45, 240-243.
- Dütsch, H.A. (1971), "Photochemistry of Atmospheric Ozone," Advances in Geophysics, 15, ed. H.E. Landsberg and J. VanMeighem, 219-322.
- Ehhalt, D.H. and L.E. Heidt (1973), "Vertical Profiles of Moiecular H₂ and CH₄ in the Stratosphere," AIAA Paper No. 73-518, AIAA/AMS Int. Conf. on the Impact of Aerospace Operations in the High Atmosphere, Denver, Colorado.
- Ehhalt, D.H., et al. (1974), "Vertical Profiles of CH₄, H₂, CO, N₂O, and CO₂ in the Stratosphere," Proc. Third Conf. on CIAP, ed. A.J. Broderick and T.M. Hard, DOT-TSC-OST-74-15, 153-160.
- Ehhalt, D. H., et al. (1975), "Concentrations of CH₄, CO, CO₂, H₂, H₂O, and N₂O in the Upper Stratosphere," J. Atm. Sci., 32, I63-I69.
- Evans, W., et al. (1976), "Intercomparison of NO, NO₂, and HNO₃
 Measurements with Photochemical Theory," Atmosphere, 14, 189-198.

- Eyre, J.R. and H.K. Roscoe (1977), "Radiometric Measurements of HCl," Nature, 226, 243-244.
- Farmer, C.B. (1974), "Infrared Measurements of Stratospheric Composition," Can. J. Chem., 52, 1544-1559.
- Farmer, C.B., O.F. Raper, and R.H. Norton (1976), "Spectroscopic Detection and Vertical Distribution of HCl in the Troposphere and Stratosphere," Geophys. Res. Lett., 3, 13-16.
- Fishman, J. and P.J. Crutzen (1978), "The Distribution of the Hydroxyl Radical in the Troposphere," Atmospheric Science Paper No. 284, Colorado State University, Department of Atmospheric Sciences, Fort Collins, Colorado.
- Glatt, L. and G.F. Widhopf (1978), "Aircraft HO, and NO, Emission Effects on Stratospheric Ozone and Temperature," NASA Contractor Report 158945.
- Goldman, A., et al. (1973), "Balloon-Borne Infrared Measurements of the Vertical Distributions of N₂O in the Atmosphere," J. of the Optical Society of America, 63(7).
- Harries, J.E., et al. (1974), "Studies of Stratospheric H₂O, O₃, HNO₃, N₂O, and NO₂ from Aircraft," Proc. Third Conf. on CIAP, ed. A.J. Broderick and T.M. Hard, 197-212.
- Harries, J.E. (1976), "The Distribution of Water Vapor in the Stratosphere,"

 Rev. of Geophysics and Space Sciences, 14, 565-575.
- Heidt, L.E., et al. (1976), "Stratospheric Distribution of Trace Gases at 52°N," Geophys. Res. Lett.,
- Hering, W.S. (1964a), Ozonesonde Observations over North America, 1, AFCRL Research Report, AFCRL-64-30(I).
- Hering, W.S. and T.R. Borden, Jr. (1964b), Ozonesonde Observations over North America, 2, Environmental Research Papers No. 38, AFCRL-64-30(II).
- Hering, W.S. and T.R. Borden, Jr. (1965), Ozonesonde Observations over North America, 3, Environmental Research Papers No. 133, AFCRL-64-30(III).

- Hering, W.S. and T.R. Borden, Jr. (1967), Ozonesonde Observations over North America, 4, Environmental Research Papers No. 279, AFCRL-64-30(IV).
- Hidalgo, H. and P.J. Crutzen (1977), "The Tropospheric and Stratospheric Composition Perturbed by NO Emissions of High Altitude Aircraft,"

 J. Geophysics Res., 82, 5833-5866.
- Horvath, J.J. and C.J. Mason (1976), "Nitric Oxide Mixing Ratios near the Stratopause by a Rocket-Borne Chemiluminescent Detector," EOS.
- Howard, C.J. and K.M. Evenson (1977), "Kinetics of the Reaction of HO₂ Radicals with NO," Geophys. Res. Lett., 4(10), 437-440.
- Heubert, B.J. and A.L. Lazrus (1978), "Global Tropospheric Measurements of Nitric Acid Vapor and Particulate Nitrate," Geophys. Res. Lett., 5(7), 577-580.
- Jarnot, R.F. (1976), "Radiometric Measurements of Atmospheric Minor Constituents," D. Phil. Thesis, Oxford University.
- Junge, C. E. (1963), Air Chemistry and Radioactivity, Academic Press: New York and London.
- Kramer, R. and G. F. Widhopf (1978), "Evaluation of Daylight or Diurnally Averaged Photolytic Coefficients in Atmospheric Photochemical Models," J. Atmos. Sci., 35(9), 1726-1734.
- Krueger, A.J. (1973), "The Mean Ozone Distribution from Several Series of Rocket Soundings," Review Pure and Applied Geophysics Pageoph, 106-108(5-7), 1272-1280.
- Lazrus, A. L., B. W. Gandrud, R. N. Woodward, and W. A. Sedlacek (1976), "Direct Measurements of Stratospheric Chlorine and Bromine,"

 J. Geophys. Res., 81, 1067-1070.
- Little, A.D., Inc. (1976), Stratospheric Emissions Due to Current and Projected Aircraft Operations, draft report.
- Louis, J.F. (1973), private communication.
- Louis, J.F., J. London, and E. Danielsen (1974), "The Interaction of Radiation and the Meridional Circulation of the Stratosphere," presented at the IAMAP First Special Assembly, Melbourne, Australia, 14-25 January 1974.

- Luther, F.M. (1973a), "Monthly Values of Eddy Diffusion Coefficients in the Lower Stratosphere," UCRL Report 74616; also AIAA Paper No. 73-498, AIAA/AMS Int. Conf. on the Environmental Impact of Aerospace Operations in the High Atmosphere, Denver, Colorado.
- Luther, F.M. (1973b), private communication.
- Luther, F.M., et al. (1978), "Effect of Multiple Scattering on Species Concentration and Model Sensitivity," Lawrence Livermore Laboratory Report UVRL-79946, Rev. 1, 40.
- Manabe, S. and R.T. Wetherald (1967), "Thermal Equilibrium of the Atmosphere with a Given Distribution of Relative Humidity," J. Atmos. Sci., 24(3).
- Mason, C.J. and J.J. Jorvath (1976), "The Direct Measurement of Nitric Oxide Concentration in the Upper Atmosphere by a Rocket-Borne Chemiluminescent Detector," Geophys. Res. Lett., 3, 391.
- Mastenbrook, H.J. (1971), "The Variability of Water Vapor in the Stratosphere," J. Atmos. Sci., 28(11).
- Murcray, D.G., et al. (1973), "Vertical Distribution of Minor Atmospheric Constituents as Derived from Airborne Measurements of Atmospheric Emission and Absorption Spectra," Proc. Second Conf. on CIAP, ed. A.J. Broderick, 86-98.
- Murcray, D.G., et al. (1975), "Seasonal and Latitudinal Variations of the Stratospheric Concentration of HNO₃," Geophysical Res. Lett., 2(6), 223-236.
- National Aeronautics and Space Administration (1977), "Chlorofluoromethanes and the Stratosphere," ed. Robert D. Hudson, NASA Ref. Publication 1010. Goddard Space Flight Center, Maryland.
- Newell, R.E., J.M. Wallace, and J.R. Mahoney (1966), "The General Circulation of the Atmosphere and Its Effects on the Movement of Trace Substances, Part 2," Tellus, 18, 363-380.
- Oliver, R. (1977), "Aircraft Emissions: Potential Effects on Ozone and Climate--A Review and Progress Report, Part I," Department of Transportation, FAA EQ77-3.

- Oort, A.H. and E.M. Rasmussen (1971), "Atmospheric Circulation Statistics," NOAA Prof. Paper 5, National Oceanic and Atmospheric Administration.
- Raper, O. F., et al. (1977), "Vertical Distribution of HCl in the Stratosphere," Geophys. Res. Lett., 4(11), 531-534.
- Reed, R.J. and K.E. German (1965), "A Contribution to the Problem of Stratosphere Diffusion by Large-Scale Mixing," Mon. Wea. Rev., 93, 313-321.
- Ridley, B. A., H. I. Schiff, A. Shaw, and L. R. Megill (1975), "In Situ Measurements of Stratospheric Nitric Oxide Using a Balloon-Borne Chemiluminescent Instrument," J. Geophys. Res., 80, 1925.
- Ridley, B. A., J. T. Bruin, H. IL Schiff, and J. C. McConnell (1976),
 "Altitude Profile and Sunset Decay Measurements of Stratospheric
 Nitric Oxide, "Atmosphere, 14, 180.
- Robinson, E. and R.C. Robbins (1971), Sources, Abundance and Fate of Gaseous Atmospheric Pollutants, American Petroleum Institute, Washington, D.C.
- Rowland, F.S. (1976), "Stratospheric Chemistry of the Chlorofluoromethanes,"
 Paper presented at the Int. Conf. on Problems Related to the Stratosphere, Logan, Utah, 15 September.
- Schmeltekopf, A. L., et al. (1977), "Stratospheric Nitrous Oxide Altitude Profiles at Various Latitudes," J. Geophys. Res.,
- Schütz, K., C. Junge, R. Beck, and B. Albrecht (1970), "Studies of Atmospheric N₂O," J. Geophys. Res., 75, 2230-2246.
- Seiler, W. (1974), "The Cycle of Atmospheric CO," Tellus, 23, 116-135.
- Telegadas, K. (1974), "Radioactivity Distribution in the Stratosphere from Chinese and French High Yield Nuclear Tests (1967-1970), "U.S. Atomic Energy Commission, HASL Report. 281.
- Turco, R.P. and R.C. Whitten (1978), "A Note on the Diurnal Averaging of Aeronomical Models," J. Atmos. and Terrestrial Phys., 40(1), 13-20.
- Widhopf, G.F. and K.J. Victoria (1973), "On the Solution of the Unsteady Navier-Stokes Equations including Multicomponent Finite Rate Chemistry," Computers and Fluids, 1, 159-184.

REFERENCES (Concluded)

- Widhopf, G.F. and T.D. Taylor (1974), "Numerical Experiments on Stratospheric Meridional Ozone Distributions Using a Parameterized Two-Dimensional Model," Proc. Third Conf. on CIAP, ed. A.J. Broderick and T.M. Hard, DOT-TSC-OST-74-15, 376-389.
- Widhopf, G.F. (1975), "A Two-Dimensional Photochemical Model of the Stratosphere including Initial Results of Inert Tracer Studies,"

 Proc. Fourth Conf. on CIAP, ed. T. Hard and A. Broderick, Department of Transportation, DOT-TSC-OST-75-38, 316-331.
- Widhopf, G.F., L. Glatt, and R.F. Kramer (1977), "Potential Ozone Column Increase Resulting from Subsonic and Supersonic Aircraft NO_x Emissions," AIAA J., 15, 1322-1330.
- Widhopf, G.F. and L. Glatt (1978), "Numerical Modeling of Atmospheric Pollution," Sixth Int. Conf. on Numerical Methods in Fluid Dynamics, Tbilisi, USSR, June.
- Wilcox, R.W., G.D. Nastrum, and A.D. Belmont (1975), "Periodic Analysis of Total Ozone and Its Vertical Distribution," Control Data Res. Rpt. 3, Minneapolis, Minnesota.
- Williams, W.J., J.J. Kosters, A. Goldman, and D.G. Murcray (1976),
 "Measurement of the Stratospheric Mixing Ratio of HCl Using Infrared
 Absorption Technique," Geophys. Res. Lett., 3, 383-385.
- Wofsy, S.C. and M.B. McElroy (1973), "On Vertical Mixing in the Upper Stratosphere and Lower Mesosphere," J. Geophys. Res., 78, 2619-2624.
- Wu, Mao-Fou (1973), "Observations and Analysis of Trace Constituents in the Stratosphere," Environmental Research and Technology, Inc., Annual Report, Contract DoT-OS-20217.
- Zahniser, M.S. and C.J. Howard (1978), "A Direct Measurement of the Temperature Dependence of the Rate Constant for the Reaction HO₂ + O₃ → OH + 2 O₂, "Poster Session Program, WMO Symposium on the Geophysical Aspects and Consequences of Changes in the Composition of the Stratosphere, Toronto, Canada, 26-30 June 1978.

APPENDIX

HYDRODYNAMIC AND TRANSPORT PARAMETERS

Listed in this Appendix are the meridional distributions of T, k_{zz} , $k_{\phi z}$, $k_{\phi \phi}$, v and ω for 15 October, 15 January, 15 April, and 15 July as used in the last set of calculations (corresponding to the chemical set in Table III) described in this report.

					-	T (IN UNITS	OF 100.		DEGREES KELVIN)	2	Ĭ.	FOR 9C	OCTOBER				
				SOUTH				LATITL	LATITUDE (DEGREES)	REES				HORTH			
(LT(KM)	2	2	9	20	\$	30	20	2	•	9	20	2	9	20	9	2	80
50.0	2.785	2.735	2.691	2.674	2.673	2.680	2.691	2.705	2.718	2.728	2.723	2.708	2.678	2.643	2.618	2.598	2.588
47.5	2.799	2.755	2.706	2.683	2.679	2.677	2.677	2.687	2.703	2.703	5.694	2.678	2.653	2.611	2.578	2.553	2.547
45.0	2.754	2.721	2.674	5.644	2.636	2.638	2.643	2.653	2.665	2.663	2.652	2.637	5.609	2.563	2.524	2.499	2.496
45.5	2.685	2.657	2.616	2.586	2.580	2.584	2.594	5.605	2.614	2.611	2.600	2.584	2.553	2.506	2.465	2.441	2.436
40.0	5.609	2.587	2.556	2.532	2.524	2.529	2.541	2.551	2.556	2.554	2.545	2.528	2.493	2.448	2.407	2.381	2.373
37.5	2.533	2.516	2.497	2.480	2.471	2.474	2.485	2.493	2.498	2.494	2.488	2.473	2.440	2.394	2.352	2.327	2.316
35.0	2.462	2.453	2.441	5.459	2.450	5.419	2.458	2.436	2.439	2.436	2.432	2.418	2.388	5.344	2.302	2.276	2.260
34.0	2.434	2.458	5.419	5.408	5.400	2.397	5.404	2.412	2.414	2.413	5.409	2.398	2.368	2.325	2.283	2.257	2.239
33.0	5.406	2.403	2.397	2.368	2.379	2.375	2.380	2.388	2.390	2.388	2.387	2.377	5.349	2.307	2.265	2.238	2.220
32.0	2.378	2.378	2.375	2.367	2.358	2.353	2.356	2.363	2.365	2.365	2.364	2.356	2.330	2.289	5.249	2.221	2.203
31.0	2.351	2.353	2.353	2.347	2.338	2.331	2.333	2.337	2.341	2.345	2.345	2.336	2.311	2.273	2.234	2.205	2.184
30.0	2.324	5.329	2.331	5.356	2.318	2.310	2.310	2.313	2.315	2.318	2.320	2.316	2.292	2.258	2.220	2.191	5.169
29.0	2.298	5.306	5.309	2.305	2.297	2.290	2.288	2.289	2.291	2.294	2.298	2.296	2.275	2.243	2.208	2.179	2.157
28.0	2.273	2.282	2.286	2.282	2.277	2.270	2.266	2.265	2.266	2.270	2.275	2.275	2.259	2.230	2.197	2.168	2.147
27.0	5.549	2.260	2.265	2.261	2.257	2.252	5.242	2.242	2.243	2.246	2.251	2.255	2.244	2.218	2.188	2.160	2.138
26.0	2.227	2.238	5.545	2.245	2.239	2.234	2.226	2.219	2.219	2.223	2.229	2.235	2.229	2.208	2.181	2.154	2.132
25.0	2.208	2.220	2.228	2.222	2.223	2.217	2.207	2.197	5.195	5.199	2.207	2.215	2.216	5.199	2.175	2.150	2.128
24.0	2.192	2.202	2.213	2.211	2.208	2.201	2.188	2.176	2.171	2.175	2.183	2.195	2.203	2.192	2.171	2.147	2.127
23.0	2.179	2.193	2.202	5.199	2.194	5.186	5.169	2.153	2.146	5.149	2.160	2.174	2.190	2.166	5.169	2.148	2.129
22.0	2.168	2.184	5.154	2.190	2.182	2.171	2.150	2.130	2.122	2.124	2.135	2.152	2.175	2.181	5.169	2.151	2.134
21.0	2.158	2.176	2.190	2.185	2.171	2.155	2.129	5.106	2.097	5.099	2.111	2.130	2.161	2.177	2.172	2.157	2.142
20.0	2.147	2.168	2.186	2.182	2.162	2.138	5.105	2.080	2.072	2.073	2.086	2.108	2.147	2.174	2.176	2.165	2.150
19.0	2.136	2.160	2.182	2.182	2.157	2.119	2.078	2.051	2.040	2.043	2.058	2.085	2.133	2.172	2.180	2.174	2.160
18.0	5.12¢	2.149	2.177	2.184	2.156	2.103	5.046	2.012	5.001	2.007	5.026	2.062	2.121	2.171	2.187	5.184	2.170
17.0	2.110	2.135	2.169	2.185	2.159	2.093	2.018	1.930	1.975	1.982	2.002	5.046	2.114	2.173	5.195	2.195	2.181
16.0	260.2	2.118	2.157	2.185	2.165	2.0%	2.018	1.983	1.982	1.937	2.002	2.047	2.116	5.176	2.203	5.502	2.193
15.0	5.0/4	2.101	2.147	2.187	2.175	2.114	2.053	2.028	5.059	2.031	2.037	5.068	2.125	5.178	5.208	2.213	2.203
14.0	2.057	2.086	2.139	2.188	2.187	2.143	2.106	2.097	2.100	5.100	2.097	5.106	2.143	2.181	5.206	2.216	2.211
13.0	2.042	2.076	2.132	2.185	2.197	2.176	5.166	2.170	2.176	2.176	2.167	5.159	2.170	5.186	2.201	2.214	2.215
12.0	2.030	2.070	2.130	2.182	2.208	2.217	2.230	5.544	2.251	2.250	2.237	2.221	5.209	2.200	2.198	5.204	5.209
10.0	2.025	5.089	2.165	5.256	2.282	2.334	2.373	2.395	2.3%	2.390	2.376	5.354	2.320	2.277	2.237	2.206	2.183
8.0	2.117	2.179	2.258	2.337	2.411	5.469	2.507	2.527	2.534	2.529	5.509	5.434	2.447	2.397	5.346	2.300	2.267
0.9	2.251	2.299	2.375	5.426	2.537	5.5%	5.635	2.658	5.664	2.655	5.635	5.608	5.566	5.514	2.467	2.450	2.384
0.4	2.365	2.422	2.497	2.575	2.652	2.717	5.756	2.779	2.787	2.778	2.757	2.726	2.676	2.620	5.574	2.530	2.488
2.0	5.469	2.531	2.602	2.672	2.753	2.853	5.864	2.838	2.897	2.839	5.866	2.829	2.773	2.713	2.668	2.627	2.577
0.0	2.558	2.622	2.688	2.754	2.836	2.910	2.957	2.981	5.989	2.984	2.963	2.920	2.852	2.777	2.719	2.662	5.584

		98	1.%7	1.476	1.107	.631	.623	.468	.351	.313	.279	.249	.222	.197	.176	.157	.140	.125	1111	660.	.088	.079	.070	.063	.080	850.	.115	.129	.127	.125	.123	.058	.080	.105	.168	.347	.722	1.500
		2	1.967	1.476	1.107	.831	.623	.468	.351	.313	.279	.249	.222	.197	.176	.157	.140	.125		660.	.088	.079	.070	.063	.080	860.	.115	.129	.127	.125	.123	.060	.089	114	.175	.360	.7.	1.5 .0
		09	1.967	1.476	1.107	.831	.623	.468	.351	.313	.279	.249	.222	.197	.176	.157	.140	.125	111	660.	.088	.079	.070	.063	.080	860.	.115	.129	.127	.125	.123	.121	.129	.153	.276	.486	.655	1.500
	NORTH	20	5.085	3.815	2.862	2.147	1.611	1.209	.907	.808	.721	.642	.573	.510	.455	905.	.362	.322	.287	.256	.228	.203	.181	.162	.157	.152	.147	.147	.161	.175	.189	.203	.195	.279	.424	949.	. 784	1.530
OCTOBER .		9	2.169	1.627	1.221	916	.687	.516	.387	.345	.307	.274	.244	.218	.194	.173	.154	.137	.123	.109	.097	.087	.077	690.	.095	.122	.148	.172	.160	.147	.135	.122	.270	.378	.531	.748	1.058	1.500
		30	.440	.330	.248	.186	.139	.105	.078	.070	.062	.056	.050	.044	.039	.035	.031	.028	.025	.022	.020	.018	.016	.014	.034	.055	.075	.092	.088	.084	.080	060.	.144	.229	.366	.585	. 936	1.500
Ş.		50	.156	.117	.088	990.	.049	.037	.028	.025	.022	.020	.018	.016	.014	.012	110.	.010	600.	900.	.007	900.	900.	.005	.014	.023	.031	.040	.050	090.	.070	.089	.142	.227	.364	.583	.934	1.500
6	REES)	2	.177	.133	.100	.075	.056	.042	.032	.028	.025	.022	.020	.018	910.	.014	.013	.01	.010	600.	.008	.007	900.	900.	.009	.012	.015	.018	.019	.020	.021	.029	.057	109	.210	.405	.773	1.53
.00001 KMSQ/SEC	DE (DEG	•	.236	.177	.133	100	.075	.056	.042	.038	.033	.030	.027	.024	.021	.019	.017	.015	.013	.012	110.	600.	800.	800.	600.	.011	.012	.014	.022	.029	.036	850.	.085	.152	.269	.477	.846	1.500
.00001		9	.275	.207	.155	116	.087	.065	650.	.044	.039	.035	.031	.028	.025	.022	.020	.017	910.	.014	.012	110.	.010	600.	.013	.017	.021	.025	.031	.036	.041	.054	.095	.164	.285	964	.862	1.500
UNITS OF		20	.206	.155	.116	.087	.065	650.	.037	.033	.029	.026	.023	.021	.018	.016	.015	.013	.012	.010	600.	.008	.007	.007	.022	.038	.054	.067	.065	.063	.061	.078	.128	.209	343	.561	.917	1.500
S NI		20	906	679	.510	.382	.287	.215	.162	.144	.128	.114	.102	160.	.081	.072	.064	.057	.051	950.	.041	.036	.032	.029	690.	110	.150	.179	.157	.135	.112	060.	.145	.231	.369	.590	. 41	1.500
K 22		9	3.082	2.313	1.735	1.302	776.	.733	.550	.490	.437	.389	.347	.309	.276	.246	.219	.195	.174	.155	.138	.123	110	850.	.117	.137	.156	.172	.172	.173	.173	.173	340	.545	.704	.908	1.168	1.500
	SOUTH	20	2.280																																			
		9	3.289	2.468	1.851	1.389	1.042	.782	.587	.523	994.	.415	.370	.330	.28	.262	.234	.208	. I'86	.166	.148	.132	.117	.105	.097	.089	.081	.080	.102	.125	.147	.168	.104	.119	.227	.427	.800	1.500
		2	3.289	2.468	1.851	1.389	1.042	.782	.587	.523	995.	.415	.370	.330	.294	.262	.234	.208	.186	.166	.148	.132	.117	.105	.097	.089	.082	.080	102	.125	.147	.166	.103	.118	.220	.414	784	1.500
		8	3.289	2.468	1.851	1.389	1.042	.782	.587	.523	996.	.415	.370	.330	.294	.262	.234	.208	.186	.166	.148	.132	.117	.105	.097	.089	.082	.080	102	.125	.147	.165	.103	.118	.170	.347	.715	1.500
		(LT(KH)	50.0	47.5	45.0	45.5	40.0	37.5	35.0	# · ·	33.0	32.0	31.0	30.0	29.0	28.0	27.0	26.0	25.0	54.0	23.0	22.0	21.0	20.0	19.0	18.0	17.0	16.0	15.0	14.0	13.0	12.0	10.0	8.0	6.0	4.0	2.0	0.0

					KFZ	Z.	UNITS OF	. 001 K	KMSQ/SEC		-	FOR OC.	OCTOBER				
				SOUTH				LATITU	LATITUDE (DEGREES)	REES				NORTH			
TCKM	8	2	9	20	04	30	50	2	•	9	20	30	3	20	9	20	
50.0	.267	909.		.748	.914	.355	.065	.093	.045	.005	021	324	-1.350	-1.312	-1.312	984	•
47.5	.305	769.		.855	.914	. 355	.065	.097	950.	.005	021	324	-1.350	1.312	-1.312	. 6.	•
45.0	.343	.779	_	.962	766.	.372	990.	101.	950.		- 021	356	-1.538	-1.5.8	-1.518	-1.1.8	•
45.5	.356	.809	_	1.000	1.018	.329	.058	.094	.043	.005	017	329	-1.471	-1.534	-1.534	-1.150	
40.0	.369	.840	_	1.037	1.039	.287	.051	.087	.039	. n. 5	013	301	-1.404	-1.550	-1.550	-1.162	•
37.5	.377	.856	•	1.058	1.100	.256	.048	.080	.036	·004	011	236	-1.367	-1.442	-1.442	-1.081	•
35.0	.384	.872	_	1.078	1.161	.224	.044	.073	.033	.003	008	171	-1.33	-1.334	-1.334	-1.001	•
34.0	.389	.883	_	1.092	1.131	.228	550.	.074	.033	.003	007	157	-1.279	-1.336	-1.336	-1.002	•
33.0	.393	.894	_	1.105	1.100	.231	.044	.075	.033	.003	006	143	-1.227	-1.338	-1.338	-1.004	•
32.0	.398	· 904	_	1.118	1.069	.235	550.	.077	.033	.003	006	128	-1.176	-1.340	-1.340	-1.005	•
31.0	.403	.915	_	1.131	1.038	.238	.044	.078	.034	.003	005	114	-1.124	-1.342	-1.342	-1.007	•
30.0	407	.926	_	1.144	1.008	.242	550.	620.	.034	.003	004	099	-1.073	-1.344	-1.344	-1.008	•
29.0	.395	868.	_	1.110	.964	.251	950.	.081	.036	.003	005	107	-1.029	-1.340	-1.340	-1.005	•
28.0	.383	.870	_	1.076	.961	.260	.047	.084	.038	.003	006	115	984	-1.335	-1.336	-1.002	•
27.0	.371	.842	_	1.042	.937	.269	650.	980.	040	.003	007	123	056	-1.332	-1.332	666 -	•
26.0	.358	.815		1.007	.914	.278	.050	.088	.042	.004	008	131	896	-1.328	-1.328	956 -	•
25.0	.346	.787	_	.973	169.	.287	.052	160.	550	· 004	009	139	852	-1.324	-1.324	993	•
24.0	.343	.778	_	.965	.867	.296	.053	.093	950.	.004	009	147	807	-1.315	-1.315	987	•
23.0	.339	.770	_	.956	.844	. 305	.055	560.	870.	.004	010	155	763	-1.306	-1.306	960	•
22.0	.335	.762	_	. 948	.820	.314	.056	860.	.050	.004	011	163	719	-1.297	-1.297	973	•
21.0	.332	.754	_	.940	.797	.323	.058	.100	.051	.004	012	171	F.674	-1.288	-1.238	966	•
20.0	.328	.745		.931	.773	. 332	.060	.102	.053	.004	013	179	630	-1.279	-1.279	959	•
19.0	.355	.806	_	1.004	.974	.692	.218	.144	.018	037	110	393	862	-1.322	-1.322	166	•
18.0	.382	.867		1.077	1.175	1.053	.376	.186	017	079	208		-1.054	-1.364	-1.364	-1.023	•
17.0	605	.928	-	1.150	1.376	1.413	.534	.228	053	120	305		-1.326	-1.407	-1.407	-1.055	•
16.0	. 445	1.012	1.350	1.251	1.564	. 562	.622	.241	060	145	373	943	-1.498	-1.469	-1.469	-1.102	•
15.0	46.	1.249		1.554	1.703	848	925	.136	081	083	322		-1.430	-1.705	-1.705	-1.279	•
14.0	.6/3	1.530		1.937	1.841	. 363	.230	.045	082	017	270		-1.362	-1.944	-1.544	-1.458	•
13.0	108.	1.820		2.268	1.980	. 100	.038	010	083	.053	214		-1.294	-2.185	-5.185	-1.639	•
12.0	. 932	2.118	•••	2.639	2.118	. 100	083	040	087	.100	156		-1.556	-2.456	-2.456	-1.820	•
10.0	062	.064		099	- 100	. 100	100	- 100	.045	.038	.100		.100	.100	.100	.100	
8.0	100	067	•	100	- 100	. 100	100	100	.039	.056	.100		.100	.100	.100	.100	
0.9	.064	016	•	100	100	.100	100	078	004	.057	.100		.100	.100	.053	.084	•
4.0	665	.538		.961	-,100	.100	100	950	.032	060.	.100		680.	563	-1.363	700	•
5.0	.607	1.030	•••	2.001	1.213	.381	100	100	090.	.079	.098		785	-1.932	-2.153	-1.109	•
0.0	.443	.829	-	1.715	1.189	.765	.052	082	.097	.094	.031		903	-1.695	-1.676	823	•

60 4.533 4.645

A-4

		2	0.00.0	4.959	4.715	4.508	4.300	3.659	3.018	2.772	2.526	2.281	2.034	1.789	1.739	1.689	1.639	1.589	1.539	1.489	1.440	1.389	1.339	1.290	1.265	1.239	1.214	1.229	104.1	1.575	1.918	2.781	2.899	2.117	1.329	.838	0.000
		09	0.000	3.965	3.628	3.038	5.449	1.999	1.550	1.445	1.341	1.237	1.133	1.028	1.053	1.077	1.102	1.126	1.151	1.175	1.199	1.224	1.243	1.273	1.261	1.250	1.238	1.295	070.1	2 203	2.625	3.630	3.515	2.407	1.555	1.043	0.000
	NORTH	20	0.000	2.783	2.667	2.349	2.030	1.705	1.379	1.334	1.289	1.244	1.199	1.153	1.123	1.093	1.053	1.033	1.002	.972	.942	.911	.881	.851	946.	1.042	1.138	1.326	100.1	2 992	3.548	4.365	3.935	2.634	1.668	1.064	0.000
OCTOBER		40	0.000	3.246	3.041	2.562	2.033	1.832	1.581	1.478	1.374	1.270	1.166	1.063	1.004	446	.884	.825	.765	.706	959.	.586	.526	.467	.625	. 784	.943	1.162	200	2 865	3.426	3.660	3.032	1.921	1.201	.792	0.000
70R 9C		30	0.000	1.748	1.563	1.275	986.	.719	.451	.405	.359	.312	.266	.219	.227	.234	242	.249	.256	.264	.272	.279	.287	.294	155.	.587	.733	.931	1.530	2 150	2.556	2.234	1.616	1.033	.724	.528	0.000
ī.		20	0.000	.982	.813	.587	.362	.266	171.	.150	.129	.108	.087	.067	.077	.088	660.	.109	.120	.130	.141	.152	.163	.174	.273	.371	.470	.590	100	1 200	1.416	1.089	.725	995.	.347	.278	0.000
	GREES	2	0.000	.545	905.	.329	.252	.190	.128	.119	.110	.100	160.	.082	.094	.106	.118	.129	.141	.153	.165	771.	.189	.200	.255	.310	. 365	.423	643	639		.541	.363	.246	.207	.182	0.00
KMSQ/SEC)	JOE (DE	10 0 10	0.000	.618	965.	408	.319	.264	.209	.203	.197	190	.184	.178	.180	.183	.186	.188	191	.194	.196	.198	.201	.203	.249	.295	.341	.390	204.	576	638	.477	.300	.181	.145	.143	0.000
6	LATIT	2	0.000	.880	.745	.613	.481	005	.319	.312	.306	.300	.294	.287	.286	.286	.285	.284	.283	.282	.281	.280	.279	.278	.373	.468	.563	.658	007.	950	1.049	.853	109.	.372	.263	.205	0.000
CIN UNITS		20	0.000	1.070	.861	.682	.502	.426	.350	.338	.327	.315	.303	. 292	.292	.292	.293	.293	.293	.294	.294	.294	.294	.294	877.	.603	.757	746.	207.1	1.955	2.290	1.861	1.263	.761	.500	. 361	0.000
KFF (2	0.00	1.319	1.114	.881	849.	.534	.450	.412	.405	.397	.390	.382	.383	. 384	.385	.336	.388	.389	.390	.391	.332	.393	.623	.853	1.083	1.337	2 . 700	3.183	3.781	3.428	2.505	1.590	1.110	.779	0.000
		9	0.000	2.046	1.820	1.621	1.422	1.345	1.269	1.199	1.130	1.061	.992	.923	.885	.847	.809	177.	.733	969.	.658	.620	.583	.545	.723	.902	1.081	1.345	2 554	3.162	3.767	4.597	4.005	2.601	1.678	1.128	0.000
	SOUTH	20	0.000	2.989	2.762	2.501	2.239	2.051	1.863	1.821	1.778	1.736	1.693	1.650	1.572	1.493	1.414	1.335	1.257	1.178	1.099	1.020	.942	.863	.957	1.051	1.146	1.315	2 25	2.730	3.201	4.774	4.686	3.1%	2.055	1.315	0.000
		9	0.000	3.414	3.172	2.887	2.603	2.279	1.955	1.871	1.787	1.702	1.618	1.534	1.512	1.491	1.469	1.448	1.456	1.405	1.384	1.362	1.341	1.319	1.377	1.434	265.1	1.586	2 066	2.306	2.545	3.988	4.153	2.979	1.919	1.187	0.000
		2	0.000	3.187	2.721	2.219	1.715	1.433	1.151	1.080	1.011	.941	.872	.802	.913	1.023	1.134	1.245	1.356	1.467	1.577	1.688	1.799	1.910	1.876	1.843	1.809	1.73	1 926	1.988	2.053	3.101	3.405	2.603	1.633	.978	0.000
		8	0.000	3.804	3.086	5.479	1.871	1.557	1.242	1.170	1.098	1.025	.953	.880	.982	1.084	1.185	1.287	1.389	1.490	1.592	1.693	1.795	1.897	1.783	1.670	1.556	1.400	1 483	1.492	1.500	2.298	2.575	1.994	1.279		0.000
		(LT(KH)	90.05	47.5	45.0	45.5	40.0	37.5	35.0	34.0	33.0	32.0	31.0	30.0	29.0	28.0	27.0	26.0	25.0	24.0	23.0	22.0	21.0	20.0	19.0	18.0	17.0	10.0	14.0	13.0	12.0	10.0	8.0	6.0	4.0	2.0	0.0

e e
9
.093 .057
100

		80	1.130	1.855	2.090	1.805	1.320	.802	.564	.595	.662	.726	.760	.750	.700	.622	.533	.447	.368	.293	.217	.136	.054	020	074	101	105	083	056	033	022	024	058	126	226	249	121	0.000
		20	192	055	.853	.943	.934	1.060	1.300	1.410	1.490	1.530	1.530	1.490	1.400	1.300	1.190	1.100	1.020	.957	006	.844	.782	.716	.652	.590	.538	.462	.370	.299	.284	.324	.421	474	.507	.451	.217	0.000
		9	337	.026	.290	.442	.636	.901	.918	.833	.728	.630	.551	.495	.456	.418	.370	.309	.234	.157	.088	.038	.014	.020	.052	.106	.158	.240	.378	.563	.749	.888	1.000	1.000	.983	.830	.437	0.000
	NORTH	20	025	.147	.218	.260	.287	.159	114	224	319	395	445	695	466	955-	450	404	400	+04	405	392	362	320	271	217	153	098	064	050	037	004	.089	.142	.130	090.	.003	0.000
DCTOBER		\$	203	121	054	089	226	334	317	293	269	246	229	217	212	211	214	217	219	215	206	191	171	148	128	112	107	174	332	550	760	909	-1.060	-1.140	-1.150	696	518	0.00
FOR 90		30	.176	.003	061	134	244	281	176	116	065	030	012	012	025	048	072	091	098	090	071	051	038	039	056	095	194	372	579	749	853	921	-1.070	-1.050	883	722	452	0.000
		20	084	093	074	001	032	132	152	131	960	052	008	.033	990.	160.	.109	.120	.122	.114	.093	.063	.028	006	046	116	286	380	301	078	.155	.282	.309	.218	.132	.159	.124	0.000
	GREES	2	2%	103	.051	.123	960.	022	155	180	184	173	151	123	092	062	029	900.	.043	.078	106	.120	.120	.111	860.	060.	.097	.221	.493	.866	1.240	1.540	1.680	1.900	1.660	1.300	. 759	0.000
KH/SEC)	LATITUDE (DEG	•	.426	.393	.447	.365	.198	440.	076	096	097	079	045	.001	.048	.088	.115	.129	.134	.137	.142	.151	.164	.182	.210	.280	.537	.885	1.230	1.530	1.810	2.140	2.640	2.530	2.140	1.700	1.020	0.000
.000001 KM/SEC	LATIT	9	.687	.641	.570	765	.387	.216	.032	025	064	083	086	077	059	031	900.	.053	.102	.146	.178	.192	.192	.185	.179	.181	.219	.248	.221	.089	173	515	-1.070	-1.040	758	600	407	0.000
5		50	.520	.428	.325	.231	.125	.041	.019	.013	900.	.001	004	010	015	015	008	900.	.021	.026	.016	008	041	070	097	158	- 309	607	-1.040	-1.530	-1.940	-2.200	-2.300	-2.100	-1.740	-1.270	683	0.000
(IN UNITS		30	906	.413	.074	101	149	098	.001	.025	.024	007	059	120	177	223	250	250	250	250	230	210	210	210	210	210	230	230	250	330	400	500	660	740	753	658	391	0.000
=		9	.712	.181	223	390	419	299	185	178	193	223	254	280	295	303	308	314	320	354	321	310	297	291	287	257	213	171	144	133	123	109	162	277	312	254	114	0.000
	SOUTH	20	249	423	631			-					-		-						-																	
		3	-1.860	-1.700	-1.550	-1.230	695	228	.047	.115	.167	.203	.225	.236	.239	.235	.224	.206	.183	.159	.140	.132	.141	.166	.199	.228	.285	.322	.314	.266	.216	.202	.274	.345	.352	.277	.162	0.00
		2	-3.510		1.990	1.390	752	259	100	.213	.299	.353	.375	.373	.358	.341	.333	.339	.358	.386	.450	.457	498	.544	.591	.636	. 703	707	.621	.484	.372	.336	.348	.295	.234	.162	.067	0.000
		8	-3.380		-1.790		508	.032	.263	.299	.321	.332	.328	.309	.277	.243	.221	.224	.253	.305	.366	.453	.465	.488	165	.482	.459	.454	. 368	.282	.165	.038	138	162	170	151	065	0.000
		LICKE	50.0	2		2		S		0		0		30.0	0	28.0	_	_	_	_	_	_	_	_	_	18.0	17.0	16.0	15.0	14.0	13.0	12.0	10.0	8.0	6.0	4.0	2.0	0.0

MORTH
;
LATITUDE (DEGREES)
:
SOUTH
5
,
5

	20	2.668 2	2.001 2	1.501 1	1.126 1		.845	.634	.634 .476	.634 .476 .424	. 634 . 634 . 424 . 378	. 634 . 634 . 424 . 378	. 424 . 424 . 337 . 337	. 424 . 424 . 378 . 337 . 330	. 256 . 276 . 376 . 378 . 300 . 268 . 239	245 474 474 474 474 478 478 478 478 478 478	. 258 . 337 . 337 . 337 . 337 . 239 . 239 . 213	. 234 . 234 . 336 . 337 . 239 . 239 . 239 . 239	. 645 . 476 . 476 . 378 . 337 . 239 . 239 . 213 . 190	. 645 476 476 476 300 300 300 300 300 300 300 300 300 30	.645 .424 .424 .337 .337 .239 .239 .239 .159	.645 .634 .426 .336 .337 .337 .239 .239 .213 .151 .151	.645 .476 .476 .426 .337 .337 .239 .239 .239 .239 .239 .239 .239 .239		.645 .476 .476 .337 .339 .239 .239 .239 .239 .151 .150 .150 .150				645 444 474 474 424 424 424 424 424	645 444 444 444 444 444 444 444		645 444 474 474 474 474 474 474 4	645 444 474 474 474 474 474 474 4	645 444 444 444 444 444 444 444	. 645 . 645 . 645 . 646 . 646
	9	2.668	2.001	1.501	1.126	.845	.634	476	.424	.378	.337	.300	.268	.239	.213	190	.169	.151	.134	.120	.107	950.	.085	.089	.093	.097	101	.102	.103	104	901.	060.	.095	.113	
NORTH	20	5.488	4.117	3.089	2.317	1.739	1.304	.979	.872	.778	.693	.618	.551	165.	.438	.390	.348	.310	.276	952.	.220	.196	.175	.167	.159	.151	.143	.139	.136	.132	.128	.125	.274	.415	
	0,	4.893	3.671	2.754	5.066	1.550	1.163	.873	.778	.693	.618	.551	165	.438	.390	.348	.310	.276	.246	.220	.196	.175	.156	.161	.167	.173	.174	.156	.139	.122	.105	.387	.506	.663	
	8	996.	.723	.543	.407	305	.229	.172	.153	.137	.122	.109	760.	.086	.077	690.	190.	.054	650.	.043	.039	.034	.031	.075	.120	.165	961.	171.	.146	.121	.095	.151	.239	.378	
	50	.203	.152	.114	.086	590 .	.048	.036	.032	.029	920.	.023	.020	.018	.016	.014	.013	.01	.010	600.	.008	200.	900.	.019	.032	550.	.056	190.	990.	170.	060.	.143	.229	.366	
REESI	10	.184	.138	.103	.078	.058	550	.033	.029	.026	.023	.021	.018	.016	.015	.013	.012	010	600.	800.	.007	.007	900.	800.	.010	.012	.016	.026	.036	.047	.061	.104	.178	.303	
ATTTUDE (DEG	•	.298	.224	.168	.126	.095	170.	.053	.047	.042	.038	.034	.030	.027	.024	.021	.019	.017	.015	.013	.012	.011	600.	.010	010	.010	110.	.014	.017	.023	.032	.061	.115	.219	
LATITU	10	.188	.141	.106	.079	090.	.045	.034	.030	.027	.024	.021	.019	.017	.015	.013	.012	110.	600.	800.	800.	.007	900.	.012	.017	.023	.028	.027	.026	.026	.036	.067	.124	.231	
	20	.201	.151	.113	.085	.064	950.	.036	.032	.028	.025	.023	.020	.018	.016	.014	.013	.01	.010	600.	900.	.007	900.	910.	.026	.036	950.	550.	.041	.039	.052	760.	.160	.281	
	30	.234	.175	.131	660.	.074	950.	.042	.037	.033	.030	920.	.023	.021	.019	.017	.015	.013	.012	.010	600.	.008	.007	.019	.031	.043	.056	.055	.054	.053	.052	160.	.160	.280	
	9	444	.333	.250	.188	.141	106	.079	170.	.063	950.	.050	.045	040	.035	.032	.028	.025	.022	.020	.018	910.	.014	.045	920.	.107	.138	.136	.135	.133	.131	.266	.380	.532	
SOUTH	20	1.446	1.085	.814	119.	.458	.344	.258	.230	.205	.183	.163	.145	.129	.115	.103	.092	.082	.073	.065	.058	.052	950.	.056	990.	.076	980.	.113	.140	.167	.195	.177	.217	.352	
	9	1.262	.947	.710	.533	400	.300	.225	.201	.179	.159	.142	.127	.113	.101	060.	.080	.071	.064	.057	.050	.045	040	.042	.044	950.	.048	.064	.080	960.	.140	.135	.155	.262	
	2	1.262	.947	.710	.533	004	.300	.225	.201	.179	.159	.142	.127	.113	.101	060.	.080	170.	.064	.057	.050	.045	040	.041	.043	550.	850.	.064	.080	960.	.059	.072	.070	060.	
	90	1.262	.947	.710	.533	400	.300	.225	.201	.179	.159	.142	.127	.113	101.	060.	.080	.071	990.	.057	.050	.045	040	.041	.043	550.	950.	.064	.080	950.	.054	.076	.102	.093	
	TCKH)	90.0	47.5	12.0	45.5	0.0	37.5	35.0	34.0	33.0	32.0	31.0	30.0	0.62	28.0	27.0	56.0	0.52	24.0	23.0	22.0	21.0	20.0	19.0	18.0	17.0	16.0	15.0	14.0	13.0	12.0	10.0	8.0	6.0	

2.666 11.501 11.501 11.501 1.506 1.506 1.506 1.506 1.506 1.506 1.506 1.506

					*	KFZ (IN I	(IN UNITS OF	.00	KMSQ/SEC	5	E	FOR JA	JANUARY				
				SOUTH				עדודאו	JOE (DE((DEGREES)				NORT			
LTCKM)	8	2	9	20	9	30	02	10	0	10	92	20	9	20	9	2	8
50.0	950	.104	.138	.145	.026	.038	.024	.030	.014	500 .	110.	547	-2.343	-1.930	-1.930	-1.447	63
47.5	.048	.109	.145	.153	.026	.038	.023	.029	.014	.003	.012	547	-2.343	-1.930	-1.930	-1.447	63
45.0	.050	.114	.152	.160	.025	.039	.022	.029	.014	.002	.012	581	-2.613	-2.220	-2.220	-1.665	73
45.5	650.	.111	.149	.157	.021	.039	.021	.028	.013	.002	600.	511	-2.589	-2.280	-2.280	-1.710	75
40.0	.049	.109	.145	.154	.017	.038	.020	.026	.012	.002	.007	440	-2.565	-2.340	-2.340	-1.755	77
37.5	950.	.104	.139	.148	.005	.042	.020	.027	.012	.002	.005	346	-2.637	-2.303	-2.303	-1.727	76
35.0	.043	660.	.132	.141	007	950.	.020	.027	.012	.002	.004	253	-2.709	-2.266	-2.266	-1.699	74
34.0	950	.100	.133	.142	001	.045	.020	.027	.013	.002	.003	244	-2.606	-2.293	4	-1.720	75
33.0	440.	101.	.134	.144	900.	550.	.020	.028	.013	.001	.003	236	-2.502	-2.321	2	-1.741	76
32.0	.045	101.	.135	.145	.012	.043	.020	.028	.013	.001	.002	227	-2.398	-2.349	-	-1.762	
31.0	.045	.102	.136	.146	.018	.042	.020	.029	.014	.001	.002	219	-2.295	-2.377	٠	-1.783	78
30.0	.045	.103	.137	.147	.024	.042	.020	.029	.014	.001	.001	210	-2.191	-2.405	2	-1.804	79
29.0	.051	.116	.154	.164	.036	550.	.022	.030	.014	.001	.002	224	-2.105	-2.350		-1.762	
28.0	.056	.128	171.	.180	048	.047	.023	.031	.014	.002	.003	237	-2.018	-2.24	2	-1.721	75
27.0	.062	141.	.188	197	090.	650.	.025	.032	.014	.002	.003	250	-1.931	-2.239	2	-1.679	73
26.0	990.	.153	.205	.213	.072	.052	.027	.033	.014	.003	.004	263	-1.844	-2.184	2	-1.639	721
25.0	.073	.166	.221	.230	.083	.055	.028	.034	.014	.003	500.	276	-1.758	-2.129	2	-1.597	70
24.0	.078	.177	.236	.244	.095	.057	.030	.035	.014	.004	.005	290	-1.671	-2.131	-5	-1.598	. 70
23.0	.083	.188	.251	.259	.107	090.	.031	.036	.014	.004	900.	303	-1.584	-2.134	٠	-1.600	704
22.0	.088	.199	.266	.273	.119	.062	.033	.037	.014	. 005	900.	316	-1.498	-2.136	4	-1.602	. 70
21.0	.092	.210	.280	.287	.131	.065	.035	.037	.015	.005	.007	329	-1.411	-2.138	÷	-1.604	70
20.0	.097	.221	.295	.302	.142	.068	.036	.038	.015	900.	.008	343	-1.324	-2.141	2	-1.606	70
19.0	.129	.292	.390	.399	.367	.195	.127	560.	.036	026	173	601	-1.466	-2.127	-2.	-1.5%	70
18.0	.160	.363	484	.493	.591	.322	.218	.151	.058	057	355 -	1.260	-1.607	-2.114	-5	-1.586	69
17.0	161.	.434	.579	.589	.816	655.	.308	.207	.030	038	536 .	-1.718	-1.748	-2.101	2	-1.576	69
16.0	.237	.538	.718	.729	.995	.532	.373	.244	.080	090	630 -	-1.934	-1.845	-2.082	2	-1.561	68
15.0	.335	.760	1.014	1.026	756	.420	.331	.201	.036	.023	379	1.131	-1.763	-2.414	2	-1.810	796
14.0	.431	.979	1.306	1.321	.993	.316	.289	.159	012	.094	128	390	-1.681	-2.744	-5	-2.058	906
13.0	.528	1.199	1.599	1.616	.992	.233	.248	.112	060	.100	.093	.100	-1.600	-3.075	ņ	-2.306	-1.01
12.0	.625	1.450	1.893	1.914	.991	.211	.204	.063	107	.100	.100	.100	-1.518	-3.404	ņ	-2.553	-1.12
10.0	054	.187	.185	100	100	100	100	+50	.100	.100	100	.100	100	.100	•	100	707.
8.0	100	.042	100	100	100	100	100	024	.100	.100	.100	.100	.100	.100	•	960.	10
6.0	.149	.517	.164	100	100	100	031	.188	.001	.100	960.	100	.100	.100	•	760.	707
4.0	.476	916.	.664	191.	067	100	098	.012	.032	038	.100	.100	.100	-1.493	7	165	134
5.0	.677	1.168	996.	.641	.420	028	099	029	060.	040	.070	337	-1.554	-3.238	-2	764	39
0.0	.549	.915	.754	.486	.333	.231	070	.130	.106	.072	214	-1.042	-1.709	-2.868	-1.975	572	300

																																				-		
		80	0.00	7.325	6.686	6.017	5.348	4.554	3.759	3.455	3.151	2.847	2.543	2.239	2.369	2.493	2.627	2.756	2.835	3.014	3.144	3 273	3.402	3.531	3.343	3.155	2.967	2.810	2.776	2.743	5.709	2.676	3.493	3.773	2.966	1.943	1.241	0.000
		2	0.000	7.576	7.422	6.457	5.491	4.585	3.678	3.390	3.102	2.814	2.526	2.238	5.406	2.574	2.742	5.909	3.077	3.244	3.412	3.570	3.748	3.916	3.714	3.513	3.311	3.152	3.160	3.169	3.178	3.187	4.151	4.364	3.410	2.216	1.378	0.000
		9	0.00	7.293	7.023	6.255	5.469	4.667	3.846	3.649	3.453	3.256	3.059	2.863	2.886	606	2.931	2.934	2.977	3.000	3.023	3.046	3.069	3.092	3.003	2.913	5.854	2.797	3.019	3.240	3.461	3.682	5.051	5.190	3.862	2.543	1.632	000.0
	HORTH	20	000.	5.157	5.832	5.232	4.631	4.127	3.622	3.540	3.456	3.376	3.294	3.212	3.073	2.92	2.796	2.657	5.518	. 380	2.241	2.102	1.963	1.825	1.868	1.912	1.955	5.00.2	5.615	3.137	3.658	4.179	2.901	669.5	4.187	2.701	1.724	000.0
CART		40	0.00	5.072	4.632	4.020	3.409	3.143	2.877	5.689	2.505	2.313	921.2	1.939	1.832	1.725	1.619	1.513	1.407	1.301	1.194	1.038	. 982	.876	1.056	1.237	1.417	1.705	2.453	3.139	3.656	4.573	5.794	5.296	3.493	2.183	1.424	0.00.0
		30	0.000	2.542	2.195	1.723	1.252	.910	.569	.532	965	.459	.423	.386	.356	.405	.414	.423	.432	1441	.451	.460	695.	.478	.767	1.056	1.345	1.740	2.561	3.383	4.204	5.025	769.4	3.514	2.211	1.463	. 989	0.000
		92	0.000	1.778	1.475	1.064	.653	474	.296	.263	.230	.197	.164	.132	.148	.163	.179	.194	.210	.226	.241	526	.272	.288	.505	.723	056	1.206	1.664	2.122	2.580	3.038	2.555	1.793	1.074	.662	.428	0.000
	REESI	01	0.000	1.038	.861	689.	.516	.363	.210	.195	.160	.165	.150	.135	.154	.173	191	.210	.228	.247	.266	.25.	.303	.321	.457	.592	.727	.865	1.015	1.165	1.315	1.465	1.210	848	.512	.330	242.	0.000
4/36/1	DE (DEG	10 0 10	0.000	.863	969.	.567	.439	.338	.238	.227	.216	.205	194	.183	.199	.214	.229	.245	.260	.275	.291	.306	.321	.337	.418	064.	.579	.667	.783	306.	1.016	1.133	.848	.550	.325	.233	.204	0.000
5	LATITU	10	0.000	419	.323	.273	.224	.203	.181	178	.174	170	.167	.163	.164	.164	.164	.165	.165	.166	.167	.167	.168	.168	.210	.253	.296	. 338	.376	.414	.452	164.	.325	.197	.164	.156	.154	0.000
		50	0.000	.383	.281	.249	.218	.198	.178	.175	.172	.169	.165	.162	.166	171.	.176	.180	.184	.189	.194	.198	.203	.208	.270	.333	.395	195	.537	.614	069.	.767	905.	.303	.230	.228	.233	0.00
		30	0.00	.560	468	.386	.304	.272	.240	.227	.214	.201	.189	.176	.180	.184	.187	191	.195	199	.203	.207	.211	.215	.326	.436	.547	.670	.845	1.020	1.195	1.369	1.042	929.	095.	.393	.339	0.000
		40	0.000	.353	.308	.259	.209	171.	.133	.134	.135	.136	.138	.139	.147	.155	.163	171.	.180	.138	.196	.204	.212	.220	.344	.468	.592	1//	1.171	1.570	1.970	2.370	2.124	1.496	+05.	.610	.454	000.0
	SOUTH	20	0.000	.315	. 258	.216	.172	.144	.114	==	.107	.104	.100	950.	.110	.124	.138	.152	.166	.180	.155	.208	.223	.237	.321	.405	489	.639	1.048	1.458	1.868	2.277	2.709	2.254	1.374	006.	.613	0.000
		3	0.000	. 329	.242	.199	.155	.144	.133	.132	.132	.131	.130	.130	.133	.136	.140	.143	.147	.150	.153	.157	.160	.163	.208	.254	.299	198.	.671	.951	1.232	1.512	5.396	5.264	1.417	· 90 ·	.577	0.000
		2	0.000	.440	.362	.361	.360	.311	.263	.256	.250	.243	.237	.230	.208	.186	.164	.141	.119	260.	.074	.052	.030	.008	.056	.104	.153	622.	.417	909.	561.	.982	1.930	1.990	1.299	908	.511	0.000
		8	0.000	.433	.394	.374	.353	.309	.266	.258	.250	.242	.234	.225	.206	.186	.166	.147	.127	.107	.087	.067	.047	.028	950.	990.	.085	621.	.275	124.	199.	.713	1.634	1.715	1.116	.702	565	0.00
		LTIKHI	50.0	47.5	45.0	42.5	40.0	37.5	35.0	34.0	33.0	32.0	31.0	30.0	29.0	28.0	27.0	26.0	25.0	24.0	23.0	22.0	21.0	20.0	19.0	18.0	17.0	16.0	15.0	14.0	13.0	12.0	10.0	8.0	0.9	4.0	5.0	0.0

		8	104	057	.246	.268	.299	165.	.321	.187	.162	.254	.102	.053	.145	.122	.161	.140	.108	.144	.116	.097	.089	.057	.059	.059	005	184	345	276	134	045	820.	030	034	.042	.034	052
		2	128	.088	.240	.144	.026	025	221	304	318	264	308	305	233	215	162	136	126	096	036	076	041	017	.013	.031	011	121	176	076	.042	.045	021	003	.032	.034	.008	.004
		3	132	.182	.244	.038	219	363	475	498	465	398	386	354	285	256	209	182	171	158	165	152	122	093	063	032	077	225	350	255	135	114	178	115	.012	550.	.129	.103
	NORTH	20	136	.236	.272	.058	175	237	243	227	181	122	106	082	044	035	019	013	018	026	056	082	100	108	105	031	135	320	452	511	427	370	340	226	032	.156	.267	.206
JANUARY		40	143	.297	415	.306	.143	101.	.054	.056	.083	.114	.128	.131	.130	.108	.089	.075	990.	.054	.030	.003	023	038	038	056	038	263	427	463	419	392	329	160	600.	.146	.221	.134
FOR JA		20	057	.540	.709	.682	.442	.217	.040	.016	.039	.076		.137	.144	.123	.093	.065	950.	.039	.035	.038	950.	.061	.080	.083	.047	020	054	020	600.	027	098	047	.032	.062	000	036
•		50	.034	906	1.018	.959	.614	.246	004	050	049	021	.015	090.	160.	.092	.078	.056	.038	.031	.033	.047	.074	.115	.165	.214	.363	.650	095	1.144	1.075	.820	.360	.121	.004	174	481	247
	GREES	91	.028	1.095	1.230	1.139	.738	.296	010	079	100	090	066	028	002	001	010	019	015	900.	.035	.067	.105	.151	.212	. 344	.681	1.223	1.769	5.065	1.948	1.531	.687	.161	132	435	789	206
SEC.)	UDE (DE	10 0 10	.021	1.103	1.339	1.273	.625	.335	011	096	134	141	137	118	103	101	099	090	063	019	.030	.073	.106	.129	.152	.235	.462	.830	1.243	1.549	1.605	1.391	.680	.075	289	436	548	. 236
.001 KM/SEC	LATIT	10	016	.986	1.379	1.372	.910	.374	016	118	176	210	228	230	254	219	205	179	139	085	025	.028	.058	.060	.034	013	.039	.243	665	.677	.686	.571	.296	.027	204	268	162	.573
6		20	057	.766	1.325	1.387	.958	.438	.022	102	189	248	287	297	293	286	273	251	217	166	099	033	.014	.024	006	090	092	.053	.254	.291	.218	.112	· 00 ·	077	125	072	.035	.369
(IN UNITS		30	032	.539	1.164	1.280	.923	.456	.059	064	165	244	293	305	296	279	259	235	202	156	094	029	.023	.047	650.	.036	.024	.027	.038	.036	.011	032	072	041	003	.013	.026	.082
>		40	.065	.381	.954	1.085	.820	.443	.114	.008	089	169	222	237	229	218	208	196	177	140	081	014	.042	.075	.087	.100	.113	.106	.079	.049	.038	950.	.056	750.	.005	029	052	066
	SOUTH	20	.133	.328	.757	.837	049.	.389	.179	.107	.028	046	101	126	125	120	114	109	100	077	037	.015	.065	960.	.102	.087	.085	.109	.134	.133	.104	.075	.062	.045	004	045	065	087
		9	.144	.300	909	.622	.456	.295	.179	141	.103	090.	.010	013	009	.004	.020	.032	.033	.033	.043	.069	.109	.142	.153	.135	191	.068	.045	.023	000	022	033	017	.001	.003	020	056
		2	.134	.261	.451	.438	.318	.205	.126	.102	.093	.054	.027	.019	.026	.044	.068	.083	.084	.078	.074	.085	.109	131	.135	.116	.074	.017	029	054	062	063	045	020	007	000	900.	.003
		8	160.	.147	.267	.250	.169	.119	.084	690.	.037	.010	001	010	007	.008	.033	.053	.062	090	.050	940.	.044	950.	.042	.033	.008	034	064	075	077	082	075	045	.001	.032	.032	.008
		1 TTTKM)	50.0	47.5	45.0	42.5	40.0	37.5	35.0	34.0	33.0	32.0	31.0	30.0	29.0	28.0	27.0	26.0	25.0	24.0	23.0	22.0	21.0	20.0	19.0	18.0	17.0	16.0	15.0	14.0	13.0	12.0	10.0	8.0	6.0	4.0	2.0	0.0

0.00

-5.226 -5.256 -1.360 -1.550 -1

LTIKH

.

				150 8				LATITUDE		(DEGREES)				NORTH			
ALTIKM)	8	2	9	20	3	30	20	2		97	50	30	60	20	09	20	80
50.0	2.636	2.657	2.676	2.696	2.715	2.724	2.723	2.721	2.715	2.6	2 672	2.161	2.662	2.673	2.673	2.7.9	2 754
47.5	2.573	2.598	2.627	2.655	2.679	2.697	2.703	2.704	2.700	2.639	2.682	2.675	2.665	2.655	5.649	5.679	2.719
45.0	2.509	2.535	2.571	2.604	2.633	2.654	2.664	2.668	2.667	2.670	2.659	2.651	2.636	2.614	2.610	2.637	2.673
42.5	2.446	2.474	2.511	2.544	2.573	2.498	2.612	2.619	2.620	2.025	2.613	2.602	2.582	2.561	2.560	2.586	2.618
40.0	2.381	2.410	2.449	2.484	2.515	2.540	2.556	2.564	2.567	2.567	2.559	2.545	2.526	5.504	2.505	2.530	2.560
37.5	2.320	2.348	2.386	2.423	2.455	2.482	2.498	2.508	2.510	2.510	2.505	2.488	5.469	2.447	2.448	2.473	2.500
35.0	2.263	2.288	2.324	2.362	2.3%	2.455	2.445	2.451	2.452	2.450	2.445	2.430	2.411	2.391	2.393	2.415	2.440
34.0	2.243	2.266	2.301	2.339	2.372	2.401	2.450	2.427	2.429	2.455	2.418	5.405	2.389	2.371	2.372	2.392	2.419
33.0	2.223	2.246	2.279	2.314	2.349	2.378	5.3%	2.403	2.40E	2.401	2.394	2.385	2.367	2.351	2.351	2.371	2.397
32.0	2.205	2.227	2.259	2.292	2.325	2.355	2.373	2.379	2.382	2.377	2.370	2.359	5.344	2.332	2.331	2.348	2.373
31.0	2.188	2.210	2.240	2.271	2.305	2.332	2.351	2.356	2.358	2.352	2.348	2.335	2.323	2.314	2.313	2.328	2.352
30.0	2.172	2.194	2.223	2.250	2.280	5.309	2.327	2.332	2.334	2.329	2.324	2.312	2.303	2.2%	2.2%	5.309	2.332
29.0	2.157		2.208	2.235	2.258	2.285	2.304	\$.306	2.309	2.306	2.301	2.290	2.285	2.280	2.281	2.292	2.314
28.0	2.144		2.195	2.216	2.237	2.263	2.279	2.282	2.285	2.282	2.278	5.269	2.267	2.267	2.268	2.277	2.298
27.0	2.132		2.185	2.205	2.217	2.239	2.256	2.258	2.259	2.257	2.255	2.248	2.251	2.254	2.256	2.265	2.286
26.0	2.121		2.176	2.190	2.200	2.217	2.231	2.233	2.233	2.231	2.231	2.227	2.235	2.241	2.243	2.254	2.276
25.0	2.112		2.168	2.180	2.185	2.195	2.205	2.206	5.206	5.204	2.206	5.206	2.221	2.230	2.235	2.245	2.268
24.0	2.104		2.163	2.173	2.173	2.174	2.178	2.178	2.177	2.177	2.181	2.185	2.207	2.220	2.222	2.237	2.260
23.0	5.099		2.159	5.169	2.163	2.154	2.151	5.149	5.149	2.150	2.154	2.165	2.195	2.212	2.219	2.235	2.254
22.0	2.097		2.158	5.166	2.155	2.135	2.123	5.119	2.117	5.119	2.126	2.147	2.185	2.202	2.215	2.229	5.249
21.0	5.100		2.159	5.166	2.150	2.117	5.002	5.086	2.085	5.085	2.097	2.130	2.177	2.200	2.211	2.227	2.246
20.0	2.107		2.163	2.168	2.145	2.100	5.064	2.047	5.044	5.049	2.067	2.111	2.168	5.1%	2.208	2.256	5.242
0.6	2.117	2.145	2.170	2.172	2.141	5.085	2.035	2.007	2.002	2.012	2.037	2.092	2.158	2.193	2.208	2.227	5.244
18.0	2.131		2.181	2.177	2.139	2.073	2.011	1.972	1.962	1.979	2.012	5.074	2.147	2.189	2.207	2.228	2.245
17.0	2.148		2.191	2.180	2.135	2.063	1.998	1.954	1.943	1.964	1.958	2.061	2.137	2.165	2.206	2.227	5.545
16.0	2.167		2.201	2.183	2.132	2.060	2.004	1.973	1.968	1.985	2.012	2.062	2.135	2.182	2.207	2.227	2.243
15.0	2.183		5.209	2.184	2.134	2.076	2.042	2.035	2.031	2.040	5.056	5.085	2.137	2.180	5.206	2.222	5.240
14.0	2.195		2.211	2.183	2.142	2.112	5.108	5.109	2.110	2.114	2.120	2.127	2.150	2.180	5.204	2.22	2.235
13.0	2.200		5.209	2.182	2.161	5.164	2.182	2.188	2.189	2.192	2.191	2.179	2.174	2.183	2.202	2.217	2.230
12.0	2.195	2.211	2.205	2.186	2.193	2.223	2.252	2.260	2.263	2.266	2.262	2.239	2.207	2.194	2.201	2.213	2.226
10.0	2.179		2.211	5.249	2.303	2.351	2.383	5.3%	2.405	2.403	2.396	2.356	2.310	2.250	2.217	2.217	2.226
8.0	2.202		2.291	2.373	2.438	5.484	2.518	2.535	2.536	2.534	2.523	5.490	2.430	2.351	2.285	2.255	2.249
6.0	2.296		2.420	5.499	2.563	2.612	5.646	2.660	5.664	2.660	2.646	2.613	2.550	2.473	5.406	2.362	2.337
4.0	5.406		2.533	2.610	2.678	2.730	5.764	2.777	2.781	2.777	2.760	2.722	2.661	5.589	5.554	2.475	5.445
2.0	2.505	2.554	2.627	5.705	2.774	2.828	5.864	2.878	2.883	2.880	2.859	2.816	2.757	2.693	2.630	2.577	2.545
0.0	2.577		2.701	2.779	2.820	2.911	2.952	2.965	2.973	2.971	2.946	2.897	2.838	2.780	2.711	2.641	2.587

				SOUTH				LATITA	UDE LDE	SREES				NORTH			
	8	2	09	20	\$	2	20	10	•	10	20	20	40	20	9	20	
_	996	1.966	1.966	5.081	2.168	044	.156	771.	.256	.275	.206	906	3.085	2.281	3.288	3.288	
_	.475	1.475	_	3.812	1.626	.330	.117	.133	.192	.207	.155	.680	2.314	1.711	2.467	2.467	
_	1.107	1.107	_	2.860	1.220	.248	.088	.100	.144	.155	.116	.510	1.736	1.284	1.851	1.851	100
	.830	.830		2.146	.915	.186	990.	.075	.108	.116	.087	.383	1.303	.963	1.388	1.388	
	.623	.623		1.610	.687	.139	650.	.056	.081	.087	.065	.287	776.	.723	1.042	1.042	
	.467	.467		1.208	.515	.105	.037	.042	.061	.065	650.	.215	.733	.542	.782	.782	
	.351	.351		906.	.387	.078	.028	.032	950.	650.	.037	.162	.550	.407	.556	.586	
	.312	.312		.808	.345	.070	.025	.028	.041	.044	.033	.144	064.	.363	.523	.523	
	.279	.279		.720	.307	.062	.022	.025	.036	.039	.029	.128	.437	.323	995.	995.	
	.248	.248		.642	.274	.056	.020	.022	.032	.035	.026	.114	.390	.288	415	.415	
	.221	.221		.572	.244	.050	.018	.020	.029	.031	.023	.102	.347	.257	.370	.370	
	.197	.197		.510	.218	550.	.016	.018	920.	.028	.021	160.	.310	.229	.330	.330	
	.176	.176		.455	.194	.039	.014	.016	.023	.025	.018	.081	.276	.204	.294	.294	
	.157	.157		505	.173	.035	.012	.014	020	.022	.016	.072	942.	.182	.262	.262	
	.140	.140		.361	.154	.031	110.	.013	.018	020.	.015	.064	.219	.162	.234	.234	
	.125	.125		.322	.137	.028	.010	110.	.016	.017	.013	.057	.195	.145	.208	.208	
				.297	.122	.025	600.	.010	.014	.016	.012	.051	.174	.129	.186	.166	
	660.	660.		.256	.109	.022	.008	.009	.013	.014	.010	950.	.155	.115	.166	.166	
	.089	.088		.228	260.	.020	.007	.008	.011	.012	.009	.041	.138	.102	.148	.148	
	.079	.079		.203	.087	.018	900.	.007	.010	.01	.008	.036	.123	160.	.132	.132	
	.070	.070		.181	.077	.016	900.	900.	600.	.010	.007	.032	.110	.031	.117	.117	
	.063	.063		.162	690.	.014	500.	900.	.008	600.	.007	.029	.098	.073	.105	.105	
	.080	.080		.157	.095	.034	.014	.009	.010	.013	.022	690.	.117	.083	.097	.097	
	960.	650.		.152	.122	.054	.023	.012	.012	.017	.038	.110	.137	560 .	.089	.089	
	.115	.115		.147	.148	.075	.031	.015	.014	.021	.054	.150	.156	.105	.081	.081	
	.129	.129		.146	.172	.092	040	.018	.018	.025	.067	.179	.172	.117	.080	.080	
	.127	.127		.161	.160	.088	.050	.019	.028	.031	.065	.157	.172	.133	.102	.102	
	.125	.125		.175	.147	.084	050.	.020	.038	.036	.063	.135	.172	.150	.125	.125	
	.123	.123		. 189	.135	.030	.070	.023	.040	.045	190.	.112	.173	.167	.147	.147	
	.058	.060		.203	.122	.076	.039	.032	.063	.058	.078	.137	.173	.184	.168	.166	
	.080	.089		.195	.340	.124	.142	190.	.105	.100	.128	.204	.289	.136	.104	.103	
	.105	.114		.329	7965	.203	1:227	.116	.177	.172	.209	.304	403	.162	.119	.118	
	.113	.127		645	.614	.334	.364	.220	.299	.295	.342	454	.550	. 284	.170	160.	
	.219	.283		. 700	.822	.550	.582	.418	.508	.507	.561	.677	.779	.497	. 344	.230	
	.573	.657		1.023	1.107	806.	.934	.792	.870	.872	.917	1.008	1.081	.865	. 709	.536	
	1.500	1.500		1.500	1.500	1.500	1.500	1.500	1.500	1.500	7.500	1.500	1.500	1.500	1.500	1.500	

5.56 5.66 1.065 1.06

					2	KFZ (IN URITS OF	UNITS		.001 KMSQ/SEC	3		8	APPIL				
				SOUTH				LIZ	LATITUDE (DE	(DEGREES)				E S	=		
(LTCKH)	8	2	3	2	\$	2	2	2	•	2	20	8	\$	20	3	2	8
50.0	.356	.814	1.065	1.078	1.2%	.324	.021	005	036	093	065	355	92	5 825	529 9	619	27
47.5	.425	996.	1.286	1.280	1.294	.324	.021	005	036	097	065	355	92	5 825	825	619	27
45.0	265.	1.118	1.491	1.482	1.473	.356	.021	006	036	101	066	372	-1.010	826 0	1928	696	30
45.5	.497	1.129	1.506	1.497	1.409	.328	.017	005	033	094	058	329	-1.031	1965	9 9	724	31
40.0	.502	1.140	1.520	1.511	1.346	.301	.013	005	031	087	051	287	-1.052	2 -1.001	1-1.001	751	33
37.5	.467	1.060	1.414	1.405	1.311	.236	.011	004	027	080	048	256	4	4 -1.	7	766	33
35.0	.431	.981	1.307	1.298	1.275	171.	.008	003	023	073	044	254		7	1-1.041	781	34
34.0	.432	.982	1.309	1.300	1.226	.157	.007	003	023	074	044	228		7	7		- 34
33.0	.433	.983	1.311	1.301	1.177	.142	900	003	025	075	044	231	-	7	7		35
32.0	.433	.985	1.313	1.303	1.128	128	900	003	025	077	044	235	7	7	-1.079		35
31.0	434	986	1.315	1.305	1.079	*11.	.005	003	022	078	500	238	٠.		-1.092	619	35
9.00		106.	1.310	1.307	1.003		100	003	220		550	162	i	÷ .	-1.105	629	
28.0	439	. 280	1 300	100	996	116	200	200		100.	0,00	162.	. 44	2/0.1- /	2/0.1-	1.004	. 24
27.0	431	979	1.305	1.296	405	121	200	100	010	0.00	040	260	•	-	-1.005	754	11
26.0	.429	.976	1.301	1.293	.860	.131	.008	004	033	089	050	278	•	•	972	729	321
25.0	.428	.973	1.298	1.289	.817	.139	.009	004	035	091	052	287		·	939	704	310
24.0	.425	996.	1.289	1.280	.775	.147	600.	004	038	093	053	296		•	932		30
23.0	.422	096.	1.280	1.272	.732	.155	.010	004	041	095	055	305		·	•	693	30
22.0	.419	.953	1.271	1.263	.690	.163	110.	004	043	097	056	314		•	•	689	30
21.0	.416	946.	1.262	1.254	.647	171.	.012	004	046	100	058	323		·	•		30
20.0	.413	940	1.253	1.246	.605	.179	.013	004	049	102	059	332	•		i		29
19.0	.426	696.	1.292	1.284	.828	.393	911.	.037	062	144		693		:		728	32
18.0	.439	666.	1.332	1.323	1.050	.607	.208	.079	075	186	376	-1.053	7	7	-1.040	780	1.34
24.5	673	1.000	1.5/1	100.1	1.679	170.	272	021.	008	622.		-1.413	1.39	201.1-1	-1.100	100.	1 20 2
15.0	244	1.236	1.648	1.636	1.373	999	121	083	. 052	130	425	- 948			-	-1.158	- 50
14.0	.618	1.405	1.874	1.859	1.309	.410	.270	.017	023	044	229	363	-1.859		7	-1.419	62
13.0	.693	1.575	2.100	2.083	1.244	.214	.213	053	.007	.010	038	.100			-2.	-1.685	74
12.0	.768	1.746	2.328	2.307	1.179	.135	.156	100	.016	040	.083	.100	4	-2.	-2.612	-1.959	86
10.0	100	100	100	100	100	100	100	089	600.	.100	.100	.100	.100	•	340	069	.060
8.0	100	100	100	100	100	100	100	056	005	.100	.100	.100	2.	•	. 100	990.	.10
6.0	.156	084	059	100	100	100	100	056	099	.078	.100	.100	.10	_	.100	.015	05
4.0	7462	.705	1.372	.564	089	100	100	090	006	.045	.100	.100	•		7	499	46
2.0	.686	1.117	2.168	1.931	.785	.120	098	079	.050	.100	.100	381	7	?	-1.543	957	56
0.0	.513	.829	1.688	1.694	.903	.490	031	094	.021	. OF .	- 052	766	-1.190	0 -1.716	-1.575	7 .	41

						KFF ((IN UNITS		OF KMS9/SEC)		•	FOR A	APRIL					
				SOUTH				LATIT	ATITUDE (DEC	GREES				NORTH				
TKM	8	2	9	20	40	30	20	07	•	2	2	20	6	20	3	2	8	
20.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	3.000	0.000	0.000	0.000	0.000	0.00	0.00	
17.5	4.974	4.955	3.962	2.781	3.243	1.746	.982	.545	.75/	.880	1.071	1.320	5.049	2.932	3.417	3.191	3.807	
15.0	4.788	4.712	3.625	2.666	3.038	1.562	.813	905	609.	.747.	.861	1.114	1.821	5.765	3.175	2.7.0	3.088	
12.5	4.607	4.504	3.036	2.347	2.559	1.274	.587	.329	665.	.4.3	.682	.881	1.623	2.504	2.891	2.2.2	2.481	
0.0	4.425	4.296	2.448	2.029	2.081	.985	.362	.251	.388	.481	.503	849.	1.423	2.242	2.607	1.718	1.873	
37.5	3.870	3.656	1.999	1.704	1.831	.718	.266	.190	.312	00	.426	.534	1.347	5.054	2.282	1.435	1.558	
95.0	3.315	3.015	1.549	1.378	1.580	.451	171.	.128	.236	.319	.350	.420	1.270	1.865	1.958	1.152	1.243	
34.0	3.032	2.769	1.445	1.333	1.476	.405	.150	.119	.227	.312	.338	.412	1.201	1.823	1.534	1.082	1.171	
33.0	2.748	2.524	1.341	1.288	1.373	.358	.129	.110	.218	306	.327	.405	1.132	1.781	1.789	1.012	1.098	
32.0	5.464	2.278	1.236	1.244	1.269	.312	108	.100	.210	.300	.315	.397	1.062	1.738	1.705	.942	1.026	
31.0	2.181	2.032	1.132	1.198	1.166	.265	.087	.091	.201	.294	.303	.390	.993	1.695	1.620	.873	. 953	
30.0	1.898	1.787	1.028	1.153	1.062	.219	.067	.082	.193	.287	.291	.382	.924	1.653	1.536	.802	.681	
68.0	1.836	1.737	1.052	1.123	1.003	.227	.077	·094	.205	.286	.292	.383	.886	1.574	1.514	.914	.932	
28.0	1.775	1.688	1.077	1.093	.943	.234	.088	.105	.218	.286	.292	.384	.848	1.495	1.493	1.025	1.084	
27.0	1.713	1.638	1.101	1.062	.884	.242	660.	.117	.231	.284	.292	.385	.810	1.416	1.471	1.135	1.166	
6.0	1.652	1.538	1.126	1.032	.824	642.	.109	.129	.244	.284	.293	.386	.772	1.337	1.450	1.247	1.288	
25.0	1.591	1.538	1.150	1.002	.764	.256	.120	.141	.256	.283	.293	.388	.734	1.258	1.458	1.358	1.330	
24.0	1.529	1.488	1.175	176.	.705	.264	.130	.153	.269	.282	.294	.389	969.	1.179	1.407	1.469	1.492	
23.0	1.468	1.439	1.199	.941	.645	.271	141	.165	.281	.281	.294	.390	.659	1.101	1.386	1.580	1.534	
22.0	1.407	1.389	1.223	.911	.536	.279	.152	.177	.294	.280	.294	.391	.621	1.022	1.364	1.691	1.695	
21.0	1.346	1.339	1.248	.881	.526	.286	.163	.189	.307	.279	.294	.392	.583	.943	1.343	1.602	1.797	
0.02	1.284	1.289	1.272	.850	.467	.294	.174	.200	.319	.278	.294	.393	.545	.864	1.322	1.913	1.833	
19.0	1.253	1.264	1.261	946	.625	055	.273	.255	.371	.373	855	.624	.724	.958	1.379	1.879	1.765	
18.0	1.222	1.239	1.249	1.042	.784	.586	.371	.310	.453	.468	.603	.853	.902	1.052	1.436	1.845	1.672	
17.0	1.191	1.214	1.238	1.138	.943	.733	.470	.364	.475	.563	.757	1.084	1.081	1.147	1.494	1.812	1.553	
16.0	1.193	1.228	1.295	1.325	1.182	.931	.590	.423	.528	.659	.947	1.387	1.345	1.316	1.568	1.797	1.468	
15.0	1.332	1.400	1.627	1.830	1.742	1.337	.796	.495	.537	. 756	1.283	1.936	1.951	1.788	1.827	1.861	1.477	
14.0	1.471	1.573	1.959	2.435	2.303	1.742	1.002	.566	.645	.854	1.619	2.585	2.556	5.259	2.067	1.925	1.454	
13.0	1.611	1.745	2.292	2.990	2.864	2.148	1.209	.639	. 704	. 952	1.955	3.184	3.162	2.730	2.307	1.990	1.493	
12.0	1.750	1.917	2.624	3.546	3.454	2.554	1.415	117.	.763	1.049	2.291	3.783	3.767	3.202	5.546	2.054	1.501	
10.0	5.669	2.780	3.628	4.362	3.658	2.233	1.038	.541	.567	.853	1.852	3.430	4.598	4.774	3.508	3.102	2.233	
8.0	2.854	2.898	3.513	3.932	3.030	1.614	.725	.363	.386	.602	1.264	2.503	4.006	4.687	4.154	3.405	2.576	
0.9	2.168	2.116	5.406	2.632	1.919	1.032	.465	.246	.254	.372	.762	1.591	2.601	3.197	2.979	2.603	1.994	
4.0	1.378	1.328	1.554	1.667	1.201	.724	.347	.207	.190	.263	.500	1.110	1.679	2.055	1.919	1.633	1.200	
5.0	648.	.837	1.042	1.063	.792	.527	.278	.182	.159	.205	.361	.779	1.128	1.315	1.187	. 979	143.	
0.0	0.000	0.000	0.000	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	

		8	104	107	149	860	024	.014	012	.033	.028	.021	.057	990.	.082	860.	.112	.158	.183	.172	.159	.142	.127	860.	.130	109	.168	1.050	. 955	.831	699.	369	639	023	.021	.061	.033	052
		2	128	.024	006	045	093	174	247	242	232	208	155	112	064	021	.005	.032	.042	.033	.028	.028	.035	.041	.073	036	108	.548	765	.434	.361	154	289	.024	.030	.024	003	· 004
		9	132	029	.008	017	139	255	378	358	323	270	207	159	110	065	041	021	018	033	043	045	035	020	.008	062	.047	.355	.321	.267	.195	156	233	004	.017	.032	.033	.103
	NORTH	20	136	209	039	014	092	236	285	248	192	131	072	038	013	.010	.022	.034	.031	.010	012	028	033	034	030	095	021	194	.146	.079	100.	266	.305	099	036	.062	.136	.206
APRIL		9	143	313	159	010	004	091	128	097	047	.008	.059	.083	.095	.103	.101	.097	.080	650.	.021	004	016	+20	031	077	034	170.	036	117	152	325	319	127	057	690.	.193	.134
708 7		8	057	266	122	.023	.034	046	078	052	014	.029	.077	.108	.132	.147	.146	.134	101.	.056	.013	019	032	035	026	021	.021	.057	086	167	150	229	181	023	.019	.056	.091	036
		20	.034	111	017	.056	.032	045	067	650	022	.01	.057	660.	.139	.167	.172	.155	.114	.061	.016	009	008	600.	.047	.131	.226	.281	.214	.170	.177	==	.017	004	007	018	081	247
	GREES	2	.028	.061	101	960.	.055	005	032	018	.005	.031	990.	.095	.122	.139	.137	.122	160.	.055	.029	.019	.028	.053	.104	.234	.379	.454	.472	.478	.486	195	.250	040	047	115	252	206
SEC)	30) 30n	•	.021	.257	.256	.177	.105	.055	.030	.034	.042	.052	.073	060.	.108	.121	.117	.102	.072	.033	.013	000	.002	.014	.035	650.	.078	.146	922.	.311	.356	.333	.215	.045	102	142	121	.236
.001 KM/SEC	LATI	92	016	.472	705	.249	.161	.130	.095	.079	990.	.054	.055	.060	.070	.081	.080	.070	.043	.012	014	030	039	046	088	279	486	530	451	348	322	316	174	065	048	.034	.250	.573
6		2	057	.639	.503	.280	.182	.175	.151	.127	.102	.080	.075	.075	.076	.072	.055	.031	001	026	035	037	037	037	046	144	338	532	652	663	603	516	301	119	029	.084	.340	.369
CIN UNITS		2	032	.755	.567	.302	.189	.187	.179	.163	.142	.126	.124	.125	.120	.104	.074	.042	.013	000	.00¢	.012	.015	.023	.051	.048	.007	024	031	015	.003	003	033	046	033	.000	.026	.082
>		9	.065	.801	.603	.345	.227	.217	.229	.228	.223	.213	.209	.198	.186	.169	.145	.121	.093	.070	.058	.050	550.	.045	.075	.108	.094	.035	028	052	027	.004	.030	.033	.013	016	045	066
	SOUTH	20	.133	.695	.522	.382	.332	.322	.345	.350	.345	.321	.300	.273	.247	.223	.197	.179	.158	.138	.121	.100	.075	.051	.050	.065	.063	.035	.002	007	.021	.054	.079	.065	10.	040	072	087
		9	.144	955	.355	.340	.371	.417	955	.437	.403	.357	.320	.283	.256	.238	.221	.212	.198	.186	.178	.163	.142	.119	.110	.110	.086	.029	026	046	025	002	.005	.004	.00	009	035	056
		2	.134	.252	.207	.256	.319	.354	.360	.338	.325	.300	.270	.232	.199	.177	.165	.166	.165	.166	.166	.156	.140	.119	.104	060.	.055	004	057	077	058	032	019	026	017	002	000	.003
		8	160.	.167	.164	.180	.190	161.	.170	.164	.169	.158	.135	101	.081	.063	.052	.055	.062	.072	.074	.065	.052	.026	008	047	067	055	027	008	008	016	023	033	030	001	.026	.008
		(LT(KH)	50.0	47.5	45.0	45.5	40.0	37.5	35.0	34.0	33.0	32.0	31.0	30.0	29.0	28.0	27.0	26.0	25.0	24.0	23.0	22.0	21.0	20.0	19.0	18.0	17.0	16.0	15.0	14.0	13.0	12.0	10.0	8.0	6.0	4.0	2.0	0.0

						IN ON	30 51	100000	KM/SEC)			¥ §	#IL					
				SOUTH				LATIT	UDE (DE	GREESI				NCRTH				
LTCKHI	30	2	9	20	40	30	20	2	10 0 12	::	20	20	40	53	9		00	
50.0	455	116	.106	090	341	431	538	613	327	8.0.	.429	698.	.918	.794	.368	541	-1.390	
47.5	.350	.627	.919	\$69.	.035	337	640	816	705	293	.010	.451	.819	1.011	.651	374	-1.150	
45.0	.721	.886	1.410	1.230	.387	251	603	902	875	564	289	.140	.717.	1.070	.719	400	930	
45.5	866.	.979	1.475	1.235	.433	170	463	791	847	616	320	009	.535	.890	.533	407	669	
40.0	1.310	1.120	1.340	. 956	.210	106	319	585	702	506	238	050	.280	.555	.331	250	436	
37.5	1.565	1.295	1.175	849.	650.	044	230	489	616	418	195	028	.056	.216	.366	.156	213	
35.0	1.750	1.470	1.080	.353	014	016	193	473	573	389	181	034	093	055	.504	.674	.100	
34.0	1.800	1.530	1.070	.261	054	028	191	456	539	377	170	039	141	145	.515	.851	.242	
33.0	1.830	1.560	1.060	.197	105	051	188	456	493	360	155	035	182	225	.489	.987	.372	
32.0	1.840	1.560	1.030	.163	157	082	183	335	435	338	140	021	215	309	.431	1.080	.472	
31.0	1.800	1.540	.988	.152	197	115	179	339	366	310	122	005	245	388	.359	1.120	.529	
30.0	1.740	1.500	.939	.151	219	145	177	289	291	277	103	002	266	455	.288	1.120	.540	
29.0	1.640	1.450	788.	.151	225	160	174	237	216	240	083	022	288	502	.230	1.090	.505	
28.0	1.530	1.390	.849	.145	222	172	162	184	149	201	061	062	307	528	.185	1.030	.436	
27.0	1.420	1.330	908.	.129	217	185	135	130	095	161	039	109	318	535	.147	.959	.344	
26.0	1.320	1.270	. 758	.106	219	201	097	077	057	122	020	149	321	528	.113	.889	192.	
25.0	1.240	1.220	.703	.077	230	220	059	025	031	037	007	168	313	511	.080	.831	.140	
24.0	1.180	1.160	.642	.043	245	236	036	.020	013	059	003	164	292	486	.057	. 790	.048	
23.0	1.140	1.110	.581	.008	255	243	036	.054	.001	1+0	012	141	261	456	.050	.759	028	
22.0	1.100	1.060	.521	026	252	241	054	.073	.018	032	032	110	219	452	.059	.732	060	
21.0	1.050	1.010	.461	058	234	233	080	.082	.041	027	061	086	173	383	.079	669.	140	
20.0	986.	.957	.399	086	202	228	104	060.	.074	020	095	077	128	345	.103	.654	162	
19.0	898	016.	.337	104	152	228	134	860.	.127	015	140	086	086	297	.131	.594	212	
18.0	.795	.883	.293	097	085	254	210	860.	.266	018	200	124	054	240	.172	.530	219	
17.0	699.	.877	.267	078	043	363	390	160.	.692	013	360	240	060	194	.214	.461	212	
16.0	.535	.827	.252	056	043	501	683	.244	1.190	008	540	320	016	125	.241	.390	163	
15.0	.407	. 708	.242	038	080	611	-1.040	.624	1.580	025	710	410	.118	018	. 255	.320	085	
14.0	.299	.550	.235	026	127	669	-1.400	1.150	1.800	089	-1.000	500	.307	.112	.279	.258	00	
13.0	.215	.411	.233	011	166	694	-1.700	1.660	1.970	202 -	-1.200	600	095.	.237	. 332	.211	.054	
12.0	.154	.333	.241	.015	201	726	-1.940	2.020	2.200	339	-1.400	700	.503	.339	.412	.179	.074	
10.0	.072	.265	.247	160.	296	796	-2.100	2.340	2.520	576	-1.870	902	.377	.511	.522	.125	.053	
8.0	.002	.217	.269	.172	374	799	-1.850	2.240	2.280	- 0690-	-1.630	820	.202	.633	.541	.073	024	
6.0	077	.193	.279	.189	382	755	-1.460	1.810	1.860	523	-1.310	667	003	069.	.525	.020	087	
4.0	095	.167	.213	.131	279	653	-1.180	1.350	1.450	196	-1.030	521	108	.657	400	500 .	129	
2.0	052	.105	.123	850.	141	414	779	.819	.844	.002	628	294	067	.376	.196	.012	120	
0.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	

. >

					K22	S NI J	NITS OF	.00001	KHSQ/S	6	Ĭ.	٦ 8	JULY					
				SOUTH				LATITA	JOE (DE	GREES)				NORTH				
T(KM)	00	2	9	20	40	30	20	2	10 0	10	50	30	9	20	9	20	99	
50.0	2.669	2.669	5.669	5.484	4.895	.965	.203	.184	.208	.188	.201	.233	.443	1.448	1.261	1.261	1.261	
47.5	2.003	2.003	2.003	4.114	3.673	.724	.152	.138	.156	.141	.151	.175	.332	1.086	. 946	946	956.	
45.0	1.503	1.503	1.503	3.087	2.755	.543	.114	.103	.117	106	.113	.131	.249	.815	.710	.710	.710	
45.5	1.127	1.127	1.127	2.316	2.067	408	.086	.078	.088	.079	.085	860.	.187	.611	.532	.532	.532	
40.0	948.	.846	.846	1.737	1.551	.306	.064	.058	990.	090.	.064	.074	.140	654.	.399	.399	.399	
37.5	.634	.634	.634	1.303	1.164	.229	.048	550.	650.	.045	.048	.055	.105	.34.	.300	.300	.300	
35.0	.476	.476	.476	.978	.873	.172	.036	.033	.037	.034	.036	.042	.079	.253	.225	.225	.225	
34.0	.424	.454	454	.872	.778	.153	.032	.029	.033	.030	.032	.037	.070	.230	.200	.200	.200	
33.0	.378	.378	.378	111.	\$69.	.137	.029	.026	.029	.027	.028	.033	.063	.205	.179	.179	.179	
32.0	.337	.337	.337	.693	.618	.122	.026	.023	.026	.024	.025	.029	.056	.183	.159	.159	.159	
31.0	.301	.301	.301	.617	.551	.109	.023	. 021	.023	.021	.023	.026	.050	.163	.142	.142	.142	
30.0	.268	.268	.268	.550	165	.097	.020	.018	.021	.019	.020	.023	.044	.145	.127	.127	.127	
29.0	.239	.239	.239	165	.438	.086	.018	.016	.019	.017	.018	.021	.040	.130	.113	.113	.113	
28.0	.213	.213	.213	.437	.390	720.	.016	.015	.017	.015	.016	.019	.035	.115	101.	101.	101.	
27.0	.190	.190	.190	.350	.348	690.	.014	.013	.015	.013	.014	.017	.032	.103	060.	060.	060.	
26.0	.169	.169	.169	.348	.310	.061	.013	.012	.013	.012	.013	.015	.028	. 092	.080	.080	.080	
25.0	.151	.151	.151	.310	772.	.055	110.	.010	.012	110.	110.	.013	.025	.082	170.	170.	170.	
24.0	.134	.134	.134	.276	.247	650.	.010	.009	.010	.009	.010	.012	.022	.073	.063	.063	.063	
23.0	.120	.120	.120	.246	.220	.043	600.	.003	.009	.008	.009	.010	.020	.065	.057	.057	.057	
22.0	.107	.107	.107	.219	.196	.039	.003	.007	.003	.008	.008	600.	.018	.058	.050	.050	.050	
21.0	.095	.095	.095	.196	.175	.034	.007	.007	.007	.007	.007	.008	.016	.052	.045	.045	.045	
20.0	.085	.085	.085	.174	.156	.031	900.	900.	.007	900.	900.	.007	.014	950.	040	.040	040	
19.0	.089	.089	.039	.166	.161	.076	.019	.003	.012	.012	.016	.019	.045	.056	.042	.042	.042	
18.0	.093	.093	.093	.159	.167	.120	.032	.010	.018	.017	.026	.031	.076	990.	550.	550.	550.	
17.0	.097	.097	.097	.151	.173	.165	550.	.012	.023	.023	.035	.043	.107	920.	950.	950.	950.	
16.0	101.	.101	101.	.143	.174	.196	.056	.016	.029	.028	.045	.056	.138	980.	840.	.048	850.	
15.0	.102	.102	.102	.139	.156	171.	.061	.026	.057	.027	.043	.055	.136	.113	.064	.064	.064	
14.0	.103	.103	.103	.136	.139	.146	990.	.036	.086	.026	.041	.054	.134	.140	.080	.080	.080	
13.0	.104	.104	.104	.132	.122	.121	120.	950.	.114	.025	.039	.053	.133	.167	960.	960.	960.	
12.0	.107	.107	.107	.128	.105	960.	060.	.060	.140	.034	.052	690.	.131	.195	.140	.059	.055	
10.0	060.	060.	060.	.125	.392	.151	.143	.102	.208	.064	160.	.115	.198	.177	.135	.072	920.	
8.0	260.	.697	.095	. 282	.709	.239	.229	.175	.311	.120	.160	.192	.297	.221	.155	.070	.102	
6.0	.176	.186	.193	.454	.854	.379	.366	.300	.463	.226	.281	.321	555	.357	.284	.110	.140	
4.0	.363	.373	.381	.641	1.030	.599	.535	.512	.687	.425	165.	.535	999.	.576	965.	.263	.303	
2.0	.735	.748	.756	. 977	1.243	856	.937	.877	1.017	. 798	.858	.897	666.	.929	.865	.627	.665	
0.0	1.500	1.500	1.500	1.500	1.500	1.500	1.500	1.500	1.500	1.500	1.500	1.500	1.500	1.500	1.500	1.500	1.500	

JULY

10 0 10 20		20	30				9	•
	2			2	40 30	•	}	ş
0.000 0.000 0.000 0.000	0.000 0.0	0.000		0.000	0.000 0.000		0.000 0.000	0.000 0.000
.418 .383		1.778		2.541	••	5.070	5.070	574 7.292 6.157 5.070 3
.323 .281		1.475		2.194	••	4.630	5.831 4.630	7.021 5.831 4.630
1 .273 .249	_	1.064		1.723	_	4.019	5.232 4.019	6.255 5.232 4.019 1
.224 .218		.653	1	1.251		3.408	4.631 3.408	5.488 4.631 3.408
.202 .198	_	474	0.00	.910		3.142	4.127 3.142	4.127 3.142
871. 181.		.296	_	.569		2.876	3.623 2.876	3.846 3.623 2.876
271. 771. '		.263		.532		5.689	5.689	3.650 3.541 2.689
174 . 172		.230		965.		2.501	3.459 2.501	100 3.454 3.459 2.501
991. 0/1.		.197		.459		2.313	3.377 2.313	812 3.257 3.377 2.313
1 .167 .165		.165		.423		2.125	3.295 2.125	524 3.060 3.295 2.125
191 . 161		.132		.386		1.937	3.213 1.937	2.864 3.213 1.937
. 163 .166		.148		.396		1.831	3.074 1.831	405 2.886 3.074 1.831
171. 991.		.163		.405		1.725	909 2.935 1.725	573 2.909 2.935 1.725
.164 .175		.179		.414		1.619	1.619	932 2.796 1.619
.165 .180		.194		.453		1.513	2.658 1.513	909 2.954 2.658 1.513
.165 .184		.210		.432		1.406	2.519 1.406	076 2.977 2.519 1.406
165 .189		.226		.441		1.300	2.380 1.300	244 3.000 2.380 1.300
1 .166 .193		.241		.451		1.194	1.194	3.023 2.241 1.194
167 .198	_	.256		.460		1.033	2.102 1.099	3.046 2.102 1.089
167 .203		.272		.469		.982	1.963 .982	3.069 1.963 .982
167 .207		.283	The same of	.478		.875	.875	3.092 1.824 .875
692. 012.		.505		.767		1.056	1.868 1.056	1.868 1.056
253 .332		.723		1.056		1.237	1.912 1.237	2.913 1.912 1.237
1 .296 .394		076.		1.345		1.417	1.955 1.417	2.624 1.955 1.417
.338 .460		1.206	-	1.74		1.705	2.094 1.705	2.798 2.094 1.705
.376 .536		1.664		2.561		2.422	2.614 2.422	2.614 2.422
. 414 .613		2.122		3.383		3.138	3.136 3.138	3.240 3.136 3.138
. 452 . 689		2.581	-	4.204	•	3.855	3.656 3.855	3.461 3.656 3.855
. 490 .765		3.039		5.025	-	4.572	4.572	3.682 4.177 4.572
. 324 .505		2.555		4.695	•	5.794	5.900 5.794	5.060 5.900 5.794
.156 .302	_	1.793		3.515		5.296	5.899 5.296	5.189 5.899 5.296
.164 .230		1.075		2.211		3.494	4.187 3.494	3.862 4.187 3.494
.156 .227	1	.662	-	1.463		2.183	2.701 2.183	2.701 2.183
1.154 .233		.428		.989		1.424	1.424	1.724 1.424
0.000 0.000	_	0.00		0.00		0.000	0.000 0.000	0.000 0.000

JULY

F08

KFF (IN UNITS OF KHSQ/SEC)

					>	V IIN UNITS	8	.001 KH/SEC)	(236		•	8	JULY			
				30				LATIT	30) 300	GREES				HURTH		
(LTCKM)	8	2	3	20	?	2	20	10	10 0 10	2	20	2	\$	20	3	2
50.0	160.	.134	¥1.	.133	.065	032	057	016	.021	.028	.034	057	143	136	132	128
47.5	025	059	089	075	259	496	688	763	746	636	492	314	196	185	187	088
45.0	072	158	186	209	410	646	820	926	966	948	864	709	548	424	295	120
42.5	064	097	060	109	385	661	870	-1.015	-1.117	-1.165	-1.104	954	736	+64	277	066
40.0	064	039	.074	.01	246	444	609	737	846	926	916	840	681	450	230	040
37.5	090	039	.107	.030	149	220	271	343	430	492	507	507	441	309	157	024
35.0	115	057	.086	007	099	081	058	091	127	134	145	166	178	186	126	067
×.0	087	033	.089	.007	067	043	004	020	034	016	018	046	085	140	127	960
33.0	050	.005	101	.045	022	007	.031	.030	.042	.079	.086	090.	900.	075	094	088
32.0	032	.033	101.	.080	.029	.031	.053	.067	.101	.150	.165	.152	.089	900.	025	035
31.0	024	940.	.095	.104	.067	.054	.065	.084	.139	.188	.212	.206	.141	990.	520 .	005
30.0	029	.042	.090	.117	.089	.064	.058	.085	.156	.204	.226	.229	.167	.107	.062	.021
29.0	029	.035	.087	.127	850.	.067	.051	.078	.157	199	.218	.225	.177	.129	.083	.039
28.0	031	.022	.079	.123	160.	.056	.036	190.	.137	.175	.189	951.	.169	.136	530.	.039
27.0	037	.008	.068	.109	.074	.037	.018	.041	.107	.140	.151	.157	.154	.137	.082	.043
26.0	041	.002	.058	.035	.054	.014	007	.012	.062	.094	.103	==	.129	121.	.065	.036
25.0	- 048	.002	.050	.059	040.	006	037	027	900.	.038	.047	.061	550.	.093	.041	.024
24.0	052	.012	650.	.043	.034	019	071	072	055	026	018	.003	.047	.050	.010	.007
23.0	054	.028	.062	.045	040	022	099	117	111	092	088	066	019	008	025	011
22.0	056	940.	.089	690.	.055	018	114	148	154	148	153	139	094	071	061	026
21.0	061	.068	.127	.109	.075	011	116	164	178	183	197	199	164	130	094	046
20.0	073	.085	.170	.162	.102	006	114	169	183	188	208	230	204	163	113	060
19.0	095	.102	.203	.181	800.	005	107	165	167	149	176	226	209	158	102	051
18.0	147	.102	.275	.256	.154	.070	037	220	176	045	058	185	205	145	077	024
17.0	153	.07	.282	.296	.225	.179	117	451	332	017	.039	092	161	131	067	018
16.0	062	.023	.135	.155	.175	.207	264	900	696	213	012	.015	070	113	084	058
15.0	.056	016	063	067	.036	.143	511	-1.472	-1.190	563	174	.072	.007	103	115	120
14.0	.119	026	173	207	083	.034	755	-1.943	-1.602	855	300	.087	.058	058	073	066
13.0	060.	012	131	172	095	054	870	-2.104	-1.741	939	315	.054	040	030	015	.023
12.0	.022	000	019	017	.007	097	809	-1.899	-1.581	830	252	.014	007	040	001	.053
10.0	054	011	990.	.139	.127	136	514	-1.134	955	481	136	.002	029	050	003	.053
0.0	058	024	.038	.089	.086	117	267	532	400	179	060	001	032	060	026	.005
•	021	016	900.	.010	.024	058	063	076	.026	.060	.028	600.	010	030	016	005
•	.020	004	017	040	031	.010	.183	.503	655	.246	060.	.012	.019	.017	. 005	009
8.0	.034	.008	040	066	079	.082	.481	1.099	.859	404	.132	.01	950.	.080	.041	002
0.0	900.	.003	056	087	066	.082	.369	.573	.236	206	247	036	.134	.206	.103	500 .

	•		•		•			••	0 1.820	_	-	_	-																									
	,	2 9	0000	00.7	2.59	2.37	2.16	1.85	1.480	1.35	1.21	1.06	.90	.74	.58	.45	.34	.26	.21	.18	.17	.19	.21	. 25	. 28	.29	.28	.28	.28	. 28	.27	.26	.24	.22	.18	.13	.07	
	5		0.730	6.03	1.770	1.745	1.770	1.680	1.480	1.360	1.230	1.080	.912	747.	.587	.438	.304	.188	950.	.033	.004	.013	.055	.116	.177	.222	992.	.295	304	.296	. 285	.286	.319	.356	.368	.318	.205	
	HORTH		201.0	501.2	1.690	1.675	1.840	1.805	1.500	1.300	1.000	.874	.689	.533	404	.296	.208	.134	.074	.028	.004	.007	.039	.092	.147	.202	.268	. 289	.249	.173	.115	.108	.140	.139	.125	.076	.021	
JULY	\$		3.630	204.7	1.940	1.890	1.950	1.785	1.410	1.210	1.000	.791	.596	.424	.284	.181	.118	. 088	.082	060.	106	.133	.167	.203	.238	.277	.296	.230	.074	111	246	299	323	352	354	239	168	
FOR	5		207	600.7	2.220	2.040	1.880	1.510	1.060	.892	.734	.592	.470	.369	.289	.226	.179	.149	.135	.137	.150	.165	.172	.166	.147	.104	033	118	061	.122	.313	.397	.370	.359	.308	.203	.100	
2	5		2.070	604.7	1.930	1.675	1.440	1.090	.763	.642	.535	855	.381	.328	.284	.245	.211	.180	.153	.132	.117	.105	160.	.072	950.	003	107	128	.034	.381	.834	1.160	1.510	1.490	1.230	.881	555	
	REES		1.300	1.410	1.200	.923	649.	.363	.200	.180	.177	.181	.185	.182	.172	.158	.142	.130	.126	.129	.131	.125	.107	.085	690.	.074	.158	.458	.752	1.150	1.600	2.020	2.560	2.520	2.140	1.590	.874	
CM/SEC)	ATITUDE (DEGREES	, ;	727	004	.413	.204	045	212	265	240	193	133	067	000	.064	.120	.161	.185	.192	.186	.170	.146	.118	060.	.073	.084	.218	.516	.986	1.580	2.220	2.790	3.380	3.300	3.050	2.530	1.380	
.000001 KM/SEC	HITA	2 4		100.	459	572	697	686	598	549	489	417	338	253	171	099	041	100.	.027	040	150.	.031	600.	020	047	056	139	351	752	-1.300	-1.880	-2.380	-2.950	-2.890	-2.510	-1.890	938	
5	,	3 6	700	2007	-1.600	-1.535	-1.550	-1.360	-1.000	856	712	583	476	393	330	281	240	205	180	171	185	219	261	300	329	355	495	823	-1.330	-2.130	-2.920	-3.570	-4.040	-3.660	-3.080	-2.330	-1.280	
(IN UNITS	ş		200	10.00	-2./00	-2.530	-5.400	-1.950	-1.360	-1.130	929	766	640	544	472	416	369	334	314	312	327	353	334	414	454	456	467	+ .484	521	597	729	913	-1.410	-1.670	-1.620	-1.340	780	
=	4		100	200	-3.500	-3.190	-5.990	-2.530	-1.960	-1.730	-1.510	-1.310	-1.130	976	844	736	651	580	516	453	384	345	315	306	353	340	346	286	164	027	.056	.058	094	230	252	174	090	
	SOUTH		A EAR	100	2.340	-2.770	-2.260	-1.820	-1.500	-1.380	-1.250	-1.100	932	764	604	463	349	265	208	172	149	130	110	092	063	075	045	600.	.056	.067	.052	.032	.139	.218	.215	.142	.063	
	9	2 4	TE FOR	2000	100	-3.100	-2.070	-1.210	638	475	338	226	134	056	.016	.083	.141	.182	.204	.206	.198	.192	.203	.237	.296	.336	.483	.583	.539	.358	.162	170.	.218	.327	.339	.262	.157	
	2				16.480					684	511	358	223	108	013	.060	110	.143	.166	.189	.219	.264	.328	.413	.520	.643	.822	.883	. 754	.493	. 251	.146	.206	.260	.251	.130	.082	
	2		ATO 4		2		2	960	8	-1.320	-1.160	994	836	694	576	486	450	373	340	313	286	254	219	183	156	145	184	210	179	950	011	.028	021	121	181	145	070	
	MITCH	5							35.0			32.0	31.0	30.0	29.0	28.0	27.0	26.0	25.0	24.0	23.0	22.0	21.0	0.02	19.0	18.0	17.0	16.0	15.0	14.0	13.0	12.0	10.0	8.0	0.9	4.0	2.0	