1. Derive the strain transformation matrix, $[T]_{\varepsilon}$,from the equation given below:

$$\begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_{12} \end{bmatrix} = [T] \begin{bmatrix} \varepsilon_{\chi} \\ \varepsilon_{y} \\ \varepsilon_{\chi y} \end{bmatrix}$$

- 2. Derive $\eta_{y,xy}$ and $\eta_{xy,x}$ as a function of engineering constants in principal material coordinates.
- 3. Write a MATLAB <u>function</u> to import the lamina properties given below from an Excel spreadsheet and plot the elastic constants as a function of lamina orientation, θ .

$$E_1 = 135 \text{ GPa}$$
, $E_2 = 10 \text{ GPa}$ $G_{12} = 5 \text{ GPa}$ $v_{12} = 0.3$

- a. Plot E_x as a function of θ (normalize the y axis with E_1)
- b. Plot G_{xy} as a function of θ (normalize the y axis with G_{12})
- c. Plot E_y as a function of θ (normalize the y axis with E_2)
- d. Plot v_{xy} as a function of θ (normalize the y axis with v_{12})
- e. Plot $\eta_{\nu,x\nu}$ as a function of θ
- 4. Write a short paragraph for each plot stating your interpretation of the plot.