

INE 5615 Redes De Computadores

2. Visão Geral do Modelo OSI e Internet

Profa: Carla Merkle Westphall carla.merkle.westphall@ufsc.br

Visão Geral do Modelo OSI e Internet

- Fundamentos e arquitetura
- Serviços e protocolos
- □ Funções das camadas
- Comparação das arquiteturas OSI e TCP/IP

Camadas

- A opção pelo modelo em camadas objetiva a redução da complexidade do sistema através da divisão e do isolamento das funcionalidades da rede
- Permite que cada camada possua funções específicas e preste um serviço para a camada superior
- Isto resulta em um modelo de comunicação baseado em encapsulamento no qual os dados passam pelas camadas de cima para baixo no emissor e de baixo para cima no receptor
- □ Um processo de uma máquina se comunica com outro processo de outra máquina DE UMA MESMA CAMADA: processos fim-a-fim

Camadas, protocolos e interfaces

Tipos de Serviços

- Com conexão (como sistema telefônico) estabelece conexão, usa conexão, libera conexão
- Sem conexão (como sistema postal) necessário endereços de destino completos
- Confiável requer confimação do recebimento (overhead e retardo)
- Não confiável

	Serviço	Exemplo
Orientados à Conexão	Fluxo de Mensagem Confiável	Seqüência de páginas
	Fluxo de bytes confiável	Logon remoto
	Conexão não confiável	Voz digitalizada
S <mark>em Conexão</mark>	Datagrama não confiável	Lixo de correio eletrônico
	Datagrama confirmado	Correspondência registrada
	Solicitação/resposta	Consulta a banco de dados

Primitivas de Serviço

Cinco primitivas de serviço para implementar um serviço simples orientado a conexão.

Primitiva	Significado
LISTEN	Espera bloqueada por uma conexão de entrada.
CONNECT	Estabelece uma conexão com um par que está à espera.
RECEIVE	Espera bloqueada por uma mensagem de entrada.
SEND	Envia uma mensagem ao par.
DISCONNECT	Encerra uma conexão.

Primitivas de Serviço

- ☐ Primitivas para especificar a função executada
- □ Parâmetros para enviar dados e infos de controle

Fonte: https://erg.abdn.ac.uk/users/gorry/course/intro-pages/service-prim.html

Primitivas de Serviço - Tipos

REQUEST	Primitiva usada para invocar algum serviço e enviar parâmetros necessários para a execução do serviço requisitado.
INDICATION	Primitiva usada para: •Indicar que um procedimento foi invocado por um usuário do serviço par da conexão e fornecer os parâmetros associados; ou •Notificar o usuário do serviço fornecedor que uma ação iniciou.
RESPONSE	Primitiva usada para reconhecer ou completar algum procedimento previamente invocado por um INDICATION para aquele usuário.
CONFIRM	Primitiva usada para reconhecer ou completar algum procedimento previamente invocado por um pedido (REQUEST) de um serviço de usuário.

Projeto de Protocolos

- O serviço a ser provido pelo protocolo
- As suposições sobre o ambiente no qual o protocolo será executado
- O vocabulário de mensagens usado para implementar o protocolo
- A codificação (formato) de cada mensagem no vocabulário
- As regras usadas para garantir a consistência das trocas de mensagens e executar o serviço especificado
- Especificação: máquina de estados, Redes de Petri, Linguagens formais, Linguagens de programação

Modelo OSI

- □ Formada em 1947, a ISO (International Standards Organization) é um comitê multinacional dedicado a um acordo mundial sobre as normas internacionais
- □ Um padrão ISO que trata dos aspectos das comunicações em redes é o modelo RM-OSI (Reference Model for Open Systems Interconnection), introduzido no final dos anos 70

Modelo OSI – Sete camadas

Modelo OSI – Conceitos Fundamentais

- Serviço: conjunto de primitivas (operações) que informa o que a camada faz
- □ Interface: informa como os processos podem acessar a camada – quais os parâmetros e resultados esperados
- Protocolo: conjunto de regras que controla o formato e o significado das mensagens trocadas entre entidades pares
- Nas camadas OSI:
 - □ Processos fim-a-fim
 - Interfaces entre camadas
 - Encapsulamento

Modelo OSI – Troca de informações

Camada Física

- Responsável pela movimentação de bits individuais de um nó para outro
- Características físicas das interfaces e dos meios de transmissão

Camada Física...

- □ Representação de bits: elétricos ou óticos
- □ Taxa de dados: bits por segundo
- □ Sincronização de bits: entre nós ponto a ponto
- Conexão dos dispositivos com o meio físico (ponto a ponto ou multiponto)
- Topologia física
- Modo de transmissão: simplex (sentido único), half-duplex (envio e recepção, mas não ao mesmo tempo), full-duplex (envio e recepção ao mesmo tempo)

Camada de Enlace de Dados

- Responsável pela transferência de quadros (frames) de um nó para o seguinte
- Deve transformar a camada física em uma linha confiável e livre de erros
- Faz o enquadramento: divide fluxos recebidos da camada de rede em quadros
- Colocar endereços físicos de origem e destino no cabeçalho
- Controla erros: detecta e retransmite frames danificados ou perdidos
- Controle de acesso: determina qual dispositivo assume o controle do link quando dois ou mais dispositivos estiverem conectados ao mesmo link

Camada de Enlace – Entrega nó a nó para outra rede

Camada de Rede

- □ Responsável pela entrega de pacotes individuais desde o host de origem até o host de destino
- Colocar endereços lógicos do emissor e do receptor no cabeçalho
- Roteamento: quando redes ou links estão conectados para criar redes de redes, dispositivos de conexão (roteadores ou comutadores) encaminham ou comutam pacotes para os destinos finais

Camada de Rede

Camada de Transporte

- Responsável por entregar uma mensagem de um processo a outro
- □ Endereçamento de ponto de acesso ao serviço (porta): a camada de rede encaminha cada pacote ao computador certo; a camada de transporte leva a mensagem inteira para o processo correto naquele computador
- Segmentação e remontagem: mensagem é dividida em segmentos e recebe números de sequência
- Controle de fluxo e controle de erros fim a fim

Camada de Sessão

- □ Responsável pelo controle de diálogo e sincronização
- Controle de diálogo: comunicação entre dois processos pode acontecer com half-duplex ou full-duplex
- □ Sincronização: permite adição de pontos de verificação/ sincronização. Transmissão de um arquivo de 2000 páginas pode ter um ponto de sincronização a cada 100 páginas (falha na transmissão da 523, só retransmite 501 em diante)

Camada de Apresentação

- Responsável pela sintaxe e semântica da informação trocada entre dois sistemas
- □ Responsável pela tradução, compressão e criptografia
- □ Tradução: traduz informações de formato específico do emissor para formato comum
- □ Compressão: reduz o número de bits. É importante na transmissão de conteúdos multimídia (texto, áudio, vídeo)
- Criptografia: uso de algoritmos para cifrar e decifrar as informações

Camada de Aplicação

- Responsável por prover serviços ao usuário
- Terminal de rede virtual
- □ Transferência, acesso e gerenciamento de arquivos
- Correio eletrônico
- Serviços de diretório

TCP/IP

- O conjunto de protocolos TCP/IP, quando comparado ao modelo OSI, é composto por 5 camadas:
 - Camada física
 - 2. Camada de enlace de dados
 - Camada de rede
 - Camada de transporte
 - 5. Camada de aplicação
- As camadas do conjunto de protocolos não correspondem exatamente àquelas do modelo OSI

TCP/IP

Camadas TCP/IP

☐ Física e de Enlace

■ Não define nenhum protocolo específico. Suporta todos os protocolos padrão e proprietários

Rede

- □ IP Internetworking Protocol
- □ Protocolo sem conexão e não confiável serviço de entrega do tipo "melhor esforço" (best-effort), isto é, não dispõe de nenhuma verificação ou correção de erros
- □ IP transporta pacotes chamados datagramas, mas não acompanha rotas e nem reordena pacotes

Camadas TCP/IP

Transporte

- □ TCP Transmission Control Protocol
 - □ Protocolo de transporte confiável, orientado â conexão
 - □ Divide o fluxo de dados em segmentos
- □ UDP User Datagram Protocol
 - Protocolo de transporte não confiável; sem conexão

Aplicação

- □ Internet não explicita camadas de Sessão e Apresentação do modelo OSI – essas tarefas são assumidas pelas camadas de Aplicação e Transporte do TCP/IP
- □ Na camada de aplicação o usuário tem acesso aos diversos serviços: correio eletrônico, transferência de arquivos, ...

TCP/IP - Endereços

Exemplo 1

Um nó com endereço físico 10 (emissor) envia um quadro (frame) para um nó com endereço físico 87 (receptor). Os dois nós estão conectados na rede com topologia barramento.

Endereço físico

□ A maioria das redes locais usam um endereço físico de 48bits (6-bytes) escrito com 12 dígitos hexadecimais; cada byte (2 dígitos hexadecimais) é separado por dois pontos

07:01:02:01:2C:4B

Um endereço físico de 6-bytes (12 dígitos hexadecimais)

Exemplo 2

□ Parte de uma rede de redes com dois roteadores conectando três LANS. Cada dispositivo (computador ou roteador) tem um par de endereços (lógicos e físicos) para cada conexão.

Exemplo 3

- □ Dois computadores se comunicando pela Internet. O emissor está executando três processos ao mesmo tempo com os endereços de porta a, b e c. O receptor está executando dois processos ao mesmo tempo com os endereços de porta j e k. Processo a do emissor quer se comunicar com o processo j do receptor.
- □ Endereços de porta são números de 16 bits.
- Embora o endereço físico mude de nó para nó, endereços lógicos e endereços de portas permanecem os mesmos por todo o percurso.

Encapsulamento

Fonte: https://youtu.be/dr5ZSq-QjaA?list=PLVEo1P9gAninM7KwP1KKolfMQdNs6P6Am

OSI x TCP/IP

OSI x TCP/IP

Por que o OSI não controlou o mundo:

- Momento ruim: enquanto os padrões eram feitos, TCP/IP já era amplamente usado
- □ Tecnologia ruim: falhas do modelo e protocolos camadas de sessão e apresentação praticamente vazias; modelo muito complexo
- Implementações ruins: implementações iniciais lentas, pesadas e gigantescas
- □ Política ruim: "padrão técnico inferior feito por burocratas" (histórico no livro do Tanenbaum)

OSI x TCP/IP

Críticas ao TCP/IP:

- Não diferencia serviço, interface e protocolo
- Não é um modelo geral
- A "camada" Host-rede não é realmente uma camada
- Não faz distinção entre camadas física e de enlace de dados
- □ Protocolos secundários são usados até hoje (telnet)

Estrutura da Internet - Exemplo

Comitês de Criação de Padrões

- □ ISO International Organization for Standardization
- ITU International Telecommunication Union
- ANSI American National Standards Institute (www.ansi.org)
- □ IEEE Institute of Electrical and Electronics Engineers
 - www.ieee.org
 - www.comsoc.org
 - www.computer.org
- EIA Electronic Industries Association
- □ IETF Internet Engineering Task Force (www.ietf.org)

ITU - International Telecommunication Union

http://www.itu.int/ITU-T/index.phtml

Principais setores

- Comunicações de rádio
- Padrões de telecomunicação
- Desenvolvimento

□ ITU-T

- Setor de padronização de Telecomunicações (ITU-T)
- Vários grupos de estudo
- Setor privado e público discutem os padrões
- Membros do Brasil: Ministério das Comunicações, Agência Nacional de Telecomunicações - ANATEL, Empresa Brasileira de Telecomunicações S.A. (EMBRATEL), Telemar Norte Leste

Padrões IEEE 802 – Grupos de Trabalho

Number	Topic
802.1	Overview and architecture of LANs
802.2 ↓	Logical link control
802.3 *	Ethernet
802.4 ↓	Token bus (was briefly used in manufacturing plants)
802.5	Token ring (IBM's entry into the LAN world)
802.6 ↓	Dual queue dual bus (early metropolitan area network)
802.7 ↓	Technical advisory group on broadband technologies
802.8 †	Technical advisory group on fiber optic technologies
802.9 ↓	Isochronous LANs (for real-time applications)
802.10↓	Virtual LANs and security
802.11 *	Wireless LANs
802.12↓	Demand priority (Hewlett-Packard's AnyLAN)
802.13	Unlucky number. Nobody wanted it
802.14↓	Cable modems (defunct: an industry consortium got there first)
802.15 *	Personal area networks (Bluetooth)
802.16 *	Broadband wireless
802.17	Resilient packet ring

* importantes ↓ hibernando † desistência

