Prüfung zur Systemtheorie und Regelungstechnik I, Universität Freiburg, SoSe 2020 (Prof. Dr. M. Diehl) Mikroklausur 1 am 02.6.2020

	WikiOkiaust	11 1 dili 02.0.2020	
Name:	Matr	ikelnummer:	Punkte: /9
			. Sie dürfen Extrapapier für Zwischen- 1 Punkt, falsche -1/3 Punkt, keine oder
1. Ein hängendes Pendel, auf d	as eine äußere Kraft wirkt, wir	rd durch die linearisierte DGL $I\dot{ heta}$	$\dot{\dot{ heta}} = -mgL heta - c\dot{ heta}L + FL$ beschrieben.
Nehmen Sie $x = \begin{bmatrix} \theta \\ \dot{\rho} \end{bmatrix}$ als Zu	stand und $u = F$ als Eingang.	. Bringen Sie das System in die I	Form $\dot{x} = Ax + Bu$. Geben Sie A und
B an.			
(a) $\boxed{\mathbf{x}}$ $A = \begin{bmatrix} 0 \\ -mqL/I \end{bmatrix}$	$\begin{bmatrix} 1 \\ -cL/I \end{bmatrix}, B = \begin{bmatrix} 0 \\ L/I \end{bmatrix}$		$\begin{bmatrix} 1 \\ -cL \end{bmatrix}, B = \begin{bmatrix} 0 \\ L \end{bmatrix}$
(a) $\boxed{\mathbf{x}}$ $A = \begin{bmatrix} 0 \\ -mgL/I \end{bmatrix}$ (c) $\boxed{}$ $A = \begin{bmatrix} 0 \\ mgL/I \end{bmatrix}$	$\begin{bmatrix} 1 \\ 2L/I \end{bmatrix}, B = \begin{bmatrix} 0 \\ L/I \end{bmatrix}$	$\begin{array}{c c} & \text{(b)} & A = \begin{bmatrix} 0 \\ -mgL \end{bmatrix} \\ & \text{(d)} & A = \begin{bmatrix} mgL/I \\ 0 \end{bmatrix} \end{array}$	$\begin{bmatrix} cL/I \\ 1 \end{bmatrix}, B = \begin{bmatrix} L \\ 0 \end{bmatrix}$
$\dot{x} = \left[egin{array}{c} \dot{ heta} \ \ddot{ heta} \end{array} ight]$	$= \begin{bmatrix} x_2 \\ -mgL/I \cdot x_1 - cL/I \cdot x_1 \end{bmatrix}$	$c_2 + L \cdot u = \begin{bmatrix} 0 & 1 \\ -mgL/I & -cH \end{bmatrix}$	$\begin{bmatrix} L/I \end{bmatrix} x + \begin{bmatrix} 0 \\ L/I \end{bmatrix} u$
2. Welche Lösung $x(t)$ hat die	Differential gleichung $\dot{x}(t) =$	-2u(t) + x(t) mit dem Anfangs	swert $x(0) = 2$?
(a)			-)d au
(c) $2e^t - 2e^t \int_0^t e^{\tau} u(t)$	$(\tau)d\tau$		$u(\tau)d\tau$
eine senkrechte Kraft $4k_pu$ Bewegungsgleichung des Q	erzeugen. Zusätzlich wirker uadkopters ist gegeben durch nit konstantem Eingang $u_{\rm ss}$ bet	die Gewichtskraft und die Luft $m\dot{v} = -k_{\rm r}v^2 - mg + 4k_{\rm p}u^2$. V	Geschwindigkeit u rotieren und damit treibung der Bewegung entgegen. Die Welche Geschwindigkeit $v_{\rm ss}$ stellt sich
		$-k_{\rm r}/mv_{\rm ss}^2 - g + 4k_{\rm p}/mu_{\rm ss}^2 = 0$	0
			,
	$\Leftrightarrow v_{ m ss}$ =	$=\sqrt{rac{-mg+4k_{ m p}u_{ m ss}^2}{k_{ m r}}}$	
4. Multipliziaran Sia a — 4	2i mit $b = 1 + i$ Dos Frach	nis ist gagaban durah	
4. Multiplizieren Sie $a = -4$ - $(a) \qquad -4 - 2j$	$-2j$ lift $\theta = 1 + j$. Das Ergeo	$\frac{\text{(b)} \text{(b)} 4+2j}{\text{(b)} \text{(b)} $	
$\begin{array}{ c c c c c }\hline (c) \boxed{x} & -2 - 6j \\ \hline \end{array}$			
	$(-4 - 2j) \cdot (1+j) = -4 - 2j$	$2j - 4j - 2j^2 = -4 - 6j + 2 =$	= -2 - 6j
5. Dividieren Sie $a = 3e^{-\pi j}$ d	urch $b=2e^{-3\pi i}$ Dos Frachni	s ist gagaban durch:	
(a) $\frac{3}{2}e^{-\pi j}$	$\frac{\text{dich } b = 2e^{-3\pi j}}{\text{(b)} \qquad 6e^{-3\pi j}}$	$\frac{ (c) \frac{3}{2}e^{2\pi j}}{ c }$	
	$\frac{3e^{-\pi j}}{2e^{-3\pi j}} =$	$= \frac{3}{2}e^{-\pi j}e^{3\pi j} = \frac{3}{2}e^{2\pi j}$	
6. Wie lautet der Imaginärteil v	_+		
(a) $e^{at} \cdot \sin(bt)$	$\begin{array}{c c} \hline & (b) & e^{jbt} \\ \hline \end{array}$	(c) $e^{bt} \cdot \sin(at)$	(d) $-e^{at} \cdot \sin(bt)$
at I	ibt _atibt at / /1.) : -:(1,1)\ at (1,1)	: _at _:(Lt)
e^{ab}/e	$e^{-e} = e^{-e} = e^{-e} \cdot (\cos(bt))$	$(1 - j \cdot \sin(bt)) = e^{at} \cdot \cos(bt) - \frac{1}{2}$	$j \cdot e^{-t} \cdot \sin(vt)$

7.	Multiplizieren Sie die b	eiden Matrizen A_1 und A_2 mit $A_1 =$	$\begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$ un	$\operatorname{nd} A_2 = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$	$\begin{bmatrix} -2 \\ 2 \end{bmatrix}$			
	(a) $ \begin{bmatrix} 0 & 3 \\ 1 & -2 \end{bmatrix} $		(c)	$\begin{bmatrix} -4 & 2 \\ 7 & 4 \end{bmatrix}$		(d) [$\begin{bmatrix} 6 & 2 \\ -3 & -6 \end{bmatrix}$	

$$\begin{bmatrix}1&2\\2&-1\end{bmatrix}\cdot\begin{bmatrix}0&-2\\3&2\end{bmatrix}=\begin{bmatrix}1\cdot0+2\cdot3&1\cdot-2+2\cdot2\\2\cdot0+(-1)\cdot3&2\cdot(-2)+(-1)\cdot2\end{bmatrix}=\begin{bmatrix}6&2\\-3&-6\end{bmatrix}$$

8. Der Traktor aus der Vorlesung wird durch die beiden Differentialgleichungen $\dot{x}_1 = V\cos(x_2)$ und $\dot{x}_2 = \frac{V}{L}\tan(u)$ beschrieben. Hierbei ist x_1 die X-Koordinate und x_2 der Orientierungswinkel des Traktors. Die Y-Koordinate sei in diesem Beispiel nicht von Interesse. Linearisieren Sie das System in der Gleichgewichtslage $u_{\rm ss} = 0$ und $x_{\rm ss} = \begin{bmatrix} 0 & \frac{\pi}{2} \end{bmatrix}^{\rm T}$. Bringen Sie das linearisierte System in die Form $\dot{x} = Ax + Bu$, indem Sie A und B angeben.

by stein in the Form w That But, intern one II that B this good.					
(a) $A = \begin{bmatrix} 0 & -V \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 \\ V/L \end{bmatrix}$	(b)				
(c) \square $A = \begin{bmatrix} V/L & 0 \\ o & V \end{bmatrix}, B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$(\mathbf{d}) \square A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 \\ -V/L \end{bmatrix}$				

$$\begin{split} f(x,u) &= \begin{bmatrix} V\cos(x_2) \\ \frac{V}{L}\tan(u) \end{bmatrix}, A = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(x_{\rm ss},u_{\rm ss}) & \frac{\partial f_1}{\partial x_2}(x_{\rm ss},u_{\rm ss}) \\ \frac{\partial f_2}{\partial x_2}(x_{\rm ss},u_{\rm ss}) & \frac{\partial f_2}{\partial x_2}(x_{\rm ss},u_{\rm ss}) \end{bmatrix}, B = \begin{bmatrix} \frac{\partial f_1}{\partial u}(x_{\rm ss},u_{\rm ss}) \\ \frac{\partial f_2}{\partial u}(x_{\rm ss},u_{\rm ss}) \end{bmatrix} \\ A &= \begin{bmatrix} 0 & -V\sin(x_{\rm ss2}) \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -V \\ 0 & 0 \end{bmatrix} \\ B &= \begin{bmatrix} 0 \\ \frac{V}{L\cos^2(u_{\rm ss})} \end{bmatrix} = \begin{bmatrix} 0 \\ \frac{V}{L} \end{bmatrix} \end{split}$$

9. Bestimmen Sie das Produkt $A \cdot x$ von $A = \begin{bmatrix} -3 & 4 \\ -2 & 2 \end{bmatrix}$ und $x = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$.

				[0]			
$\begin{vmatrix} (a) \ x \end{vmatrix} \begin{vmatrix} -1 \end{vmatrix}$	18 10	(b)	$\begin{bmatrix} 0 \\ 2 \end{bmatrix}$	(c) [[17] 10]	(d)	$\begin{bmatrix} 2 \\ 0 \end{bmatrix}$

$$\begin{bmatrix} -3 & 4 \\ -2 & 2 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ -3 \end{bmatrix} = \begin{bmatrix} (-3) \cdot 2 + 4 \cdot (-3) \\ (-2) \cdot 2 + 2 \cdot (-3) \end{bmatrix} = \begin{bmatrix} -18 \\ -10 \end{bmatrix}$$