Digital Read/Write ToF 센서

목표

- 아두이노의 Digital 출력 실험
- 아두이노의 Digital 입력 실험
- On/Off 스위치 센서 실험 및 릴레이의 이해
- ToF의 이해 및 초음파를 이용한 거리 측정 실험

아두이노 개발 환경 구성 및 LED 테스트

아두이노 개발 환경 구성

• 빵판 사용법(브레드보드)

아두이노 개발 환경 구성 및 LED 테스트

• Arduino LED 회로 구성

아두이노를 이용한LED 실험

• tinkercad.com : 전체 회로 구성

아두이노를 이용한LED 실험

• tinkercad.com : 코드 작성


```
// C++ code
void setup()
 pinMode(8, OUTPUT);
void loop()
 digitalWrite(8, HIGH);
 delay(1000); // Wait for 1000 millisecond(s)
 digitalWrite(8, LOW);
 delay(1000); // Wait for 1000 millisecond(s)
```

아두이노를 이용한LED 실험

• tinkercad.com : 시뮬레이션 시작

디지털 IO 포트 관련 레지스터

Port

IO 포트 출력 실험

f Vcc a b • 7-segment 실험 **Light Emitting Diode (LED) Polarity** Current can only flow in one direction from the Anode to the Cathode and LEDs must be connected the correct way around! POSITIVE (+) = Anode NEGATIVE (-) = Cathode d Vcc c Vcc The long leg of an LED indicates the Anode (+) A flat edge on the LED casing indicates the Cathode (-) pin. abcdefg common-anode type

а	\rightarrow	PD0		
b	\rightarrow	PD1		
С	\rightarrow	PD2		
d	\rightarrow	PD3		
е	\rightarrow	PD4		
f	\rightarrow	PD5		
g	\rightarrow	PD6		
DP	\rightarrow	PD7		

```
0 = a(0) b(0) c(0) d(0) e(0) f(0) g(1) DP(1)
```

$$1 = a(1) b(0) c(0) d(1) e(1) f(1) g(1) DP(1)$$

$$2 = a(0) b(0) c(1) d(0) e(0) f(1) g(0) DP(1)$$

$$3 = a(0) b(0) c(0) d(0) e(1) f(1) g(0) DP(1)$$

$$4 = a(1) b(0) c(0) d(1) e(1) f(0) g(0) DP(1)$$

$$5 = a(0) b(1) c(0) d(0) e(1) f(0) g(0) DP(1)$$

$$6 = a(0) b(1) c(0) d(0) e(0) f(0) g(0) DP(1)$$

$$7 = a(0) b(0) c(0) d(1) e(1) f(0) g(1) DP(1)$$

$$8 = a(0) b(0) c(0) d(0) e(0) f(0) g(0) DP(1)$$

$$9 = a(0) b(0) c(0) d(0) e(1) f(0) g(0) DP(1)$$

$$. = DP(0)$$

		а	b	С	d	е	f	g	DP
		PD0	PD1	PD2	PD3	PD4	PD5	PD6	PD7
0	\rightarrow	0	0	0	0	0	0	1	1
1	\rightarrow	1	0	0	1	1	1	1	1
2	\rightarrow	0	0	1	0	0	1	0	1
3	\rightarrow	0	0	0	0	1	1	0	1
4	\rightarrow	1	0	0	1	1	0	0	1
5	\rightarrow	0	1	0	0	1	0	0	1
6	\rightarrow	0	1	0	0	0	0	0	1
7	\rightarrow	0	0	0	1	1	0	1	1
0	\rightarrow	0	0	0	0	0	0	0	1
9	\rightarrow	0	0	0	0	1	0	0	1


```
void setup()
{
    DDRD = B00000001;
}

void loop()
{
    PORTD = B00000000;
}
```

```
void setup()
{
    DDRD = B00000001;
}

void loop()
{
    PORTD = B00000001;
}
```



```
void setup()
{
    DDRD = B00000011;
}

void loop()
{
    PORTD = B00000000;
}
```

```
void setup()
{
    DDRD = B00000011;
}

void loop()
{
    PORTD = B00000011;
}
```



```
void setup()
{
    DDRD = B00000111;
}

void loop()
{
    PORTD = B00000000;
}
```

```
void setup()
{
    DDRD = B00000111;
}

void loop()
{
    PORTD = B00000111;
}
```



```
void setup()
{
    DDRD = B00001111;
}

void loop()
{
    PORTD = B00000000;
}
```

```
void setup()
{
    DDRD = B00001111;
}

void loop()
{
    PORTD = B00001111;
}
```



```
void setup()
{
    DDRD = B00111111;
}

void loop()
{
    PORTD = B00000000;
}
```

```
void setup()
{
    DDRD = B00111111;
}

void loop()
{
    PORTD = B00111111;
}
```



```
void setup()
{
    DDRD = B01111111;
}

void loop()
{
    PORTD = B00000000;
}
```

```
void setup()
{
    DDRD = B01111111;
}

void loop()
{
    PORTD = B01111111;
}
```


• 7-segment 실험 QUIZ – 숫자 4와 2를 1초 간격으로 표시 하는 코드를 완성 하시오.


```
void setup()
DDRD = B[ ];
void loop()
PORTD = B[_____];
delay(1000);
PORTD = B[____];
delay(1000);
```


13.4.2 PORTB – The Port B Data Register										
	Bit	7	6	5	4	3	2	1	0	
	0x05 (0x25)	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	PORTB
	Read/Write	R/W								
	Initial Value	0	0	0	0	0	0	0	0	
13.4.3 DDRB – The Port B Data Direction Register										
	Bit	7	6	5	4	3	2	1	0	
	0x04 (0x24)	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	DDRB
	Read/Write	R/W								
	Initial Value	0	0	0	0	0	0	0	0	
13.4.4 PINB – The Port B Input Pins Address										
	Bit	7	6	5	4	3	2	1	0	
	0x03 (0x23)	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	PINB
	Read/Write	R	R	R	R	R	R	R	R	
	Initial Value	NI/A								


```
void setup()
{
   DDRB = B00000000;
   Serial.begin(9600);
}

void loop()
{
   Serial.println(PINB);
}
```



```
void setup()
{
    DDRB = B00000000;
    DDRD = B00000001;
}

void loop()
{
    PORTD = PINB;
}
```



```
void setup()
 DDRB = B00000000;
 DDRD = B00000001;
void loop()
 int input = PINB;
 PORTD = input;
```



```
void setup()
 DDRB = B00000000;
 DDRD = B00010000;
void loop()
 int input = PINB;
 PORTD = input;
```

출력 포트가 3번핀(PortD.3)으로 변경되었다면?

디지털 입출력 관련 API

- pinMode
- digitalRead
- digitalWrite

디지털 입출력 관련 API

• 디지털 입출력핀의 방향을 설정

pinMode(핀번호, 방향);

- pinMode(8, INPUT);
- pinMode(8, OUTOUT);

디지털 입출력 API 실험

9번핀(PortB.1)을 입력핀으로 2번핀(PortD.2)을 출력핀으로 버튼이 눌렸을 때만 LED의 불이 들어 오도록 코드를 완성하시오.

```
void setup()
{
    pinMode(9, INPUT);
    pinMode(2, OUTPUT);
}

void loop()
{
}
```

디지털 입출력 관련 API

• 디지털 입력

digitalRead(핀번호);

int input = digitalRead(8);

디지털 입출력 API 실험

9번핀(PortB.1)을 입력핀으로 2번핀(PortD.2)을 출력핀으로 버튼이 눌렸을 때만 LED의 불이 들어 오도록 코드를 완성하시오.

```
void setup()
{
    pinMode(9, INPUT);
    pinMode(2, OUTPUT);
}

void loop()
{
    int input = digitalRead(9);
}
```

디지털 입출력 관련 API

• 디지털 출력

digitalWrite(핀번호, 출력레벨);

- digitalWrite(8, 0);
- digitalWrite(8, 1);
- digitalWrite(8, LOW);
- digitalWrite(8, HIGH);

디지털 입출력 API 실험

9번핀(PortB.1)을 입력핀으로 2번핀(PortD.2)을 출력핀으로 버튼이 눌렸을 때만 LED의 불이 들어 오도록 코드를 완성하시오.

```
void setup()
{
    pinMode(9, INPUT);
    pinMode(2, OUTPUT);
}

void loop()
{
    int input = digitalRead(9);
    digitalWrite(2, LOW);
}
```

디지털 입출력 API 실험

9번핀(PortB.1)을 입력핀으로 2번핀(PortD.2)을 출력핀으로 버튼이 눌렸을 때만 LED의 불이 들어 오도록 코드를 완성하시오.

```
void setup()
   pinMode(9, INPUT) ;
  pinMode(2, OUTPUT);
void loop()
  int input = digitalRead(9);
  if( input == 0 )
     digitalWrite(2, LOW);
   else
     digitalWrite(2, HIGH);
```

부저 실험

- 부저(소리) 출력 실험
 - 능동부저:전원을공급하면단음(삐)소리가출력
 - 수동부저:진동을만들어특정주파수의소리를출력(다양한소리를출력할수있음,멜로디)

옥타브 음계	1	2	3	4	5	6	7	8
C(도)	32.7032	65.4064	130.8128	261.6256	523.2511	1046.502	2093.005	4186.009
C#	34.6478	69.2957	138.5913	277.1826	554.3653	1108.731	2217.461	4434.922
D(레)	36.7081	73.4162	146.8324	293.6648	587.3295	1174.659	2349.318	4698.636
D#	38.8909	77.7817	155.5635	311.1270	622.2540	1244.508	2489.016	4978.032
E(n])	41.2034	82.4069	164.8138	329.6276	659.2551	1318.510	2637.020	5274.041
F(异)	43.6535	87.3071	174.6141	349.2282	698.4565	1396.913	2793.826	5587.652
F#	46.2493	92.4986	184.9972	369.9944	739.9888	1479.978	2959.955	5919.911
G(金)	48.9994	97.9989	195.9977	391.9954	783.9909	1567.982	3135.963	6271.927
G#	51.9130	103.8262	207.6523	415.3047	830.6094	1661.219	3322.438	6644.875
A(라)	55.0000	110.0000	220.0000	440.0000	880.0000	1760.000	3520.000	7040.000
A#	58.2705	116.5409	233.0819	466.1638	932.3275	1864.655	3729.310	7458.620
B(시)	61.7354	123.4708	246.9417	493.8833	987.7666	1975.533	3951.066	7902.133

- •도:261.6256Hz
- •레:293.1826Hz
- •□|:329.6276 Hz
- •파:349.2282 Hz
- •솔:391.9954 Hz
- •라:440.0000 Hz
- •시:466.1638 Hz
- •도:523.2511 Hz

마그네틱 도어센서 실험

digitalRead

digitalRead

digitalRead


```
void setup()
 pinMode(8, INPUT) ;
 Serial.begin(9600);
void loop()
 int read = digitalRead(8);
 Serial.println(read);
```

부저 실험

- 부저(소리) 출력 실험
 - 부저 + <> 아두이노 8번핀
 - 부저 <> 아두이노 GND

부저 + LED 실험

• 부저(소리) 출력 실험

QUIZ

문이 열리면(버튼이 눌렸을 때) 경고음(부저)을 울려봅시다.

ToF(Time of Flight)

• ToF는 피사체를 향해 발사한 빛이나 소리가 반사돼 돌아오는 시간 으로 거리를 계산해 사물의 입체감이나 공간 정보, 움직임 등을 인 식하는 3D 센싱 기술이다

초음파 센서란?

- 초음파 센서는 인간이 들을 수 있는 범위를 벗어나 20,000Hz 이상 의 음파를 사용해 센서로부터 지정된 목표 물체까지의 거리를 측 정 및 계산하는 산업용 제어 장치.
- 음파는 기본적으로 고체, 액체 및 기체를 통과해 이동하는 압력파이고 거리를 측정하거나 표적이 있고 없음을 감지하기 위해 산업용 응용 분야에서 사용할 수 있다.

초음파 센서 모듈

• SRF04 초음파 모듈을 사용하여 장애물까지의 거리 측정

SRF04 Timing Diagram

초음파를 이용한 거리 측정

t: 신호가 되돌아 올때까지 걸리는 시간(s)

속 도 (m/s)			
331			
344			
1498			
3300			
5000			
5000			
6000			

LED를 이용한 digitalWrite 실험

• Arduino LED ON/OFF 실행

```
// C++ code
void setup()
 pinMode(8, OUTPUT);
void loop()
 digitalWrite(8, HIGH);
 delay(1000); // Wait for 1000 millisecond(s)
 digitalWrite(8, LOW);
 delay(1000); // Wait for 1000 millisecond(s)
```

- VCC ↔ 아두이노 5V
- GND ↔ 아두이노 GND
- TRIG ↔ 아두이노 6
- ECHO ↔ 아두이노 7


```
void setup()
 Serial.begin(9600);
 pinMode(6, OUTPUT);
                              //6 : Trigger
 pinMode(7, INPUT);
                              //7 : Echo
void loop()
 //trigger 발생
 digitalWrite(6, LOW);
 delayMicroseconds(2);
 digitalWrite(6, HIGH);
 delayMicroseconds(10);
 digitalWrite(6, LOW);
 long value = pulseln(7, HIGH);
 float distance = (float)value * 0.01723;
 Serial.print("Ultra Sonic : ") ;
 Serial.print(distance);
 Serial.println("cm");
```

```
1 // C++ code
3 void setup()
    Serial.begin(9600);
    pinMode(6, OUTPUT); //6 : Trigger
   pinMode(7, INPUT); //7 : Echo
9 }
10
11 void loop()
12 {
    //trigger 발생
13
    digitalWrite(6, LOW) ;
    delayMicroseconds(2);
    digitalWrite(6, HIGH);
    delayMicroseconds(10);
18
     digitalWrite(6, LOW);
19
20
     long value = pulseIn(7, HIGH) ;
21
22
23
     float distance = (float) value * 0.01723;
24
25
     Serial.print("Ultra Sonic : ") ;
26
    Serial.print(distance);
     Serial.println("cm") ;
28 }
```


• QUIZ : 초음파 센서로 10cm이내에 장애물이 감지 되면 LED를 켜고 그렇지 않으면 LED를 끄는 회로와 프로그램을 완성 하시

> 1. 선 번 Serial.begin(9600); 다. pinMode(6, OUTPUT); 2. 일시 pinMode(7, INPUT); 면 해 3. Use t 11 void loop() 14 digitalWrite(6, LOW) ; delayMicroseconds(2); 16 digitalWrite(6, HIGH); delayMicroseconds(10); digitalWrite(6, LOW) ; long value = pulseIn(7, HIGH) ; 39.6in / 100.6cm float distance = (float) value * 0.0 Serial.print("Ultra Sonic : ") ; Serial.print(distance); Serial.println("cm") ; ARDUINO (UNO) 시리얼 모니터 Ultra Sonic : 98.85cm Ultra Sonic : 99.02cm Ultra Sonic : 99.06cm Ultra Sonic : 98 85cm Ultra Sonic : 99.06cm Ultra Sonic : 99.06cm Ultra Sonic : 98.85cm Ultra So