

ABERDEEN 2040

Revision – Week 3

Data Mining & Visualisation

Today...

Revision questions on:

- K-Means Clustering
- Hierarchical Clustering
- Association Rule Mining

Let's say we have the following six data objects (a—f) in two-dimensional Euclidean space.

Using K-Means clustering, let's see how we would cluster these objects into *three* clusters.

Let's say that our initial centroids are b, d, and f.

Point	X ₁	X ₂
а	2	1
b	2	2
С	4	1
d	4	2
е	7	1
f	7	2

Cluster Centroids:

C1: 2, 2

C2: 4, 2

C3: 7, 2

We start by working out the distance between each point and each cluster centroid.

$$dist(i,j)^2 = (i_{x_1} - j_{x_1})^2 + (i_{x_2} - j_{x_2})^2$$

Let's start with point a (2, 1):

dist(a, c1) ² = $(2-2)^2 + (1-2)^2 = (0)^2 + (-1)^2$	=	1
dist(a, c2) ² = $(2-4)^2 + (1-2)^2 = (-2)^2 + (-1)^2 =$	=	5
dist(a, c3) ² = $(2-7)^2 + (1-2)^2 = (-5)^2 + (-1)^2 =$	=	26

Point	X ₁	X ₂
a	2	1
b	2	2
С	4	1
d	4	2
е	7	1
f	7	2

Cluster Centroids:

C1: 2, 2

C2: 4, 2

C3: 7, 2

ABERDEEN 2040

In this case, a is closest to C1, so let's allocate a to C1.

We start by working out the distance between each point and each cluster centroid.

$$dist(i,j)^2 = (i_{x_1} - j_{x_1})^2 + (i_{x_2} - j_{x_2})^2$$

We know that point b is our initial cluster centroid for C1.

So let's just allocate b to C1 without calculating!

Point	X ₁	X ₂
a	2	1
b	2	2
С	4	1
d	4	2
е	7	1
f	7	2

Cluster Centroids:

C1: 2, 2 {a}

C2: 4, 2

C3: 7, 2

We start by working out the distance between each point and each cluster centroid.

$$dist(i,j)^2 = (i_{x_1} - j_{x_1})^2 + (i_{x_2} - j_{x_2})^2$$

Let's move on to point c (4, 1):

dist(c, c1)² =
$$(4 - 2)^2 + (1 - 2)^2 = (2)^2 + (-1)^2 = 5$$

dist(c, c2)² = $(4 - 4)^2 + (1 - 2)^2 = (0)^2 + (-1)^2 = 1$
dist(c, c3)² = $(4 - 7)_2 + (1 - 2)^2 = (-3)^2 + (-1)^2 = 10$

Point	X ₁	X ₂
а	2	1
b	2	2
С	4	1
d	4	2
е	7	1
f	7	2

Cluster Centroids:

C1: 2, 2 {a, b}

C2: 4, 2

C3: 7, 2

ABERDEEN 2040

In this case, c is closest to C2, so let's allocate c to C2.

We start by working out the distance between each point and each cluster centroid.

$$dist(i,j)^2 = (i_{x_1} - j_{x_1})^2 + (i_{x_2} - j_{x_2})^2$$

We know that point d is our initial cluster centroid for C2.

So let's just allocate d to C2 without calculating!

Point	X ₁	X ₂
а	2	1
b	2	2
С	4	1
d	4	2
е	7	1
f	7	2

Cluster Centroids:

C1: 2, 2 {a, b}

C2: 4, 2 {c}

C3: 7, 2

We start by working out the distance between each point and each cluster centroid.

$$dist(i,j)^2 = (i_{x_1} - j_{x_1})^2 + (i_{x_2} - j_{x_2})^2$$

Let's move on to point e (7, 1):

dist(e, c1)² =
$$(7 - 2)^2 + (1 - 2)^2 = (5)^2 + (-1)^2 = 26$$

dist(e, c2)² = $(7 - 4)^2 + (1 - 2)^2 = (-3)^2 + (-1)^2 = 10$
dist(e, c3)² = $(7 - 7)^2 + (1 - 2)^2 = (0)^2 + (-1)^2 = 1$

Point	X ₁	X ₂
а	2	1
b	2	2
С	4	1
d	4	2
е	7	1
f	7	2

Cluster Centroids:

C1: 2, 2 {a, b}

C2: 4, 2 {c, d}

C3: 7, 2

ABERDEEN 2040

In this case, e is closest to C3, so let's allocate e to C3.

We start by working out the distance between each point and each cluster centroid.

$$dist(i,j)^2 = (i_{x_1} - j_{x_1})^2 + (i_{x_2} - j_{x_2})^2$$

We know that point f is our initial cluster centroid for C3.

So let's just allocate f to C3 without calculating!

Point	X ₁	X ₂
а	2	1
b	2	2
С	4	1
d	4	2
е	7	1
f	7	2

Cluster Centroids:

C1: 2, 2 {a, b}

C2: 4, 2 {c, d}

C3: 7, 2 {e}

So after 1 iteration of assignments, our current clusters are:

$$C1 = \{a, b\}$$

$$C2 = \{c, d\}$$

$$C3 = \{e, f\}$$

Point	X ₁	X ₂
a	2	1
b	2	2
С	4	1
d	4	2
е	7	1
f	7	2

Cluster Centroids:

C1: 2, 2 {a, b}

C2: 4, 2 {c, d}

C3: 7, 2 {e, f}

We then need to recompute our centroids:

C1 centroid =
$$((2+2)/2, (1+2)/2) = (2, 1.5)$$

C2 centroid =
$$((4+4)/2, (1+2)/2) = (4, 1.5)$$

C3 centroid =
$$((7+7)/2, (1+2)/2) = (7, 1.5)$$

Point	X ₁	X ₂
а	2	1
b	2	2
С	4	1
d	4	2
е	7	1
f	7	2

Cluster Centroids:

C1: 2, 2 {a, b}

C2: 4, 2 {c, d}

C3: 7, 2 {e, f}

Now, we need to repeat the process of allocating our points to clusters, based on their new centroids

$$dist(i,j)^2 = (i_{x_1} - j_{x_1})^2 + (i_{x_2} - j_{x_2})^2$$

Let's start with point a (2, 1):

dist(a, c1) ² = $(2-2)^2 + (1-1.5)^2 = (0)^2 + (-0.5)^2 = 0.25$
dist(a, c2) ² = $(2-4)^2 + (1-1.5)^2 = (-2)^2 + (-0.5)^2 = 4.25$
dist(a, c3) ² = $(2-7)^2 + (1-1.5)^2 = (-5)^2 + (-0.5)^2 = 25.25$

Point	X ₁	X ₂
a	2	1
b	2	2
С	4	1
d	4	2
е	7	1
f	7	2

Cluster Centroid

C1: 2, 1.5

C2: 4, 1.5

C3: 7, 1.

In this case, a is still closest to C1, so let's re-allocate a to C1

Now, we need to repeat the process of allocating our points to clusters, based on their new centroids

$$dist(i,j)^2 = (i_{x_1} - j_{x_1})^2 + (i_{x_2} - j_{x_2})^2$$

Let's move on to point b (2, 2):

dist(b, c1) ² = $(2-2)^2 + (2-1.5)^2 = (0)^2 + (0.5)^2 = 0.25$
dist(b, c2) ² = $(2-4)^2 + (2-1.5)^2 = (-2)^2 + (0.5)^2 = 4.25$
dist(b, c3) ² = $(2-7)^2 + (2-1.5)^2 = (-5)^2 + (0.5)^2 = 25.25$

Point	X ₁	X ₂
a	2	1
b	2	2
С	4	1
d	4	2
е	7	1
f	7	2

Cluster Centroid

C1: 2, 1.5 {a

C2: 4, 1.5

In this case, b is still closest to C1, so let's re-allocate b to C1.

Now, we need to repeat the process of allocating our points to clusters, based on their new centroids

$$dist(i,j)^2 = (i_{x_1} - j_{x_1})^2 + (i_{x_2} - j_{x_2})^2$$

Let's move on to point c (4, 1):

dist(c, c1) ² = $(4-2)^2 + (1-1.5)^2 = (2)^2 + (-0.5)^2 = 4.25$
dist(c, c2) ² = $(4-4)^2 + (1-1.5)^2 = (0)^2 + (-0.5)^2 = 0.25$
dist(c, c3) ² = $(4 - 7)^2 + (1 - 1.5)^2 = (-3)^2 + (-0.5)^2 = 9.2$

Point	X ₁	X ₂
а	2	1
b	2	2
С	4	1
d	4	2
е	7	1
f	7	2

Cluster Centroids:

C1: 2, 1.5 {a, b}

C2: 4, 1.5

C3: 7, 1.5

ABERDEEN 2040

In this case, c is still closest to C2, so let's re-allocate c to C2.

Now, we need to repeat the process of allocating our points to clusters, based on their new centroids

$$dist(i,j)^2 = (i_{x_1} - j_{x_1})^2 + (i_{x_2} - j_{x_2})^2$$

Let's move on to point d (4, 2):

dist(d, c1) ² = $(4-2)^2 + (2-1.5)^2 = (2)^2 + (0.5)^2 = 4.25$
dist(d, c2) ² = $(4-4)^2 + (2-1.5)^2 = (0)^2 + (0.5)^2 = 0.25$
dist(d, c3) ² = $(4 - 7)^2 + (2 - 1.5)^2 = (-3)^2 + (0.5)^2 = 9.25$

Point	X ₁	X ₂
a	2	1
b	2	2
С	4	1
d	4	2
е	7	1
f	7	2

Cluster Centroids:

C1: 2, 1.5 {a, b}

C2: 4, 1.5 {c}

C3: 7, 1.5

ABERDEEN 2040

In this case, d is still closest to C2, so let's re-allocate d to C2.

Now, we need to repeat the process of allocating our points to clusters, based on their new centroids

$$dist(i,j)^2 = (i_{x_1} - j_{x_1})^2 + (i_{x_2} - j_{x_2})^2$$

Let's move on to point e (7, 1):

dist(e, c1) ² = $(7 - 2)^2 + (1 - 1.5)^2 = (5)^2 + (-0.5)^2 = 25.25$
dist(e, c2) ² = $(7 - 4)^2 + (1 - 1.5)^2 = (3)^2 + (-0.5)^2 = 9.25$
dist(e, c3) ² = $(7-7)^2 + (1-1.5)^2 = (0)^2 + (-0.5)^2 = 0.25$

Point	X ₁	X ₂
a	2	1
b	2	2
С	4	1
d	4	2
е	7	1
f	7	2

Cluster Centroids:

C1: 2, 1.5 {a, b}

C2: 4, 1.5 {c, d}

C3: 7, 1.5

ABERDEEN 2040

In this case, e is still closest to C3, so let's re-allocate e to C3.

Now, we need to repeat the process of allocating our points to clusters, based on their new centroids

$$dist(i,j)^2 = (i_{x_1} - j_{x_1})^2 + (i_{x_2} - j_{x_2})^2$$

Let's move on to point f (7, 2):

dist(f, c1) ² = $(7 - 2)^2 + (2 - 1.5)^2 = (5)^2 + (0.5)^2 = 25$.	25
dist(f, c2) ² = $(7-4)^2 + (2-1.5)^2 = (3)^2 + (0.5)^2 = 9.2$	5
dist(f, c3) ² = $(7-7)^2 + (2-1.5)^2 = (0)^2 + (0.5)^2 = 0.2$	5

Point	X ₁	X ₂
а	2	1
b	2	2
С	4	1
d	4	2
е	7	1
f	7	2

Cluster Centroids:

C1: 2, 1.5 {a, b}

C2: 4, 1.5 {c, d}

C3: 7, 1.5 (e)

ABERDEEN 2040

In this case, f is still closest to C3, so let's re-allocate f to C3

So after 2 iterations of assignments, our current clusters are:

$$C1 = \{a, b\}$$

$$C2 = \{c, d\}$$

$$C3 = \{e, f\}$$

Point	X ₁	X ₂
a	2	1
b	2	2
С	4	1
d	4	2
е	7	1
f	7	2

Cluster Centroids:

C1: 2, 1.5 {a, b}

C2: 4, 1.5 {c, d}

C3: 7, 1.5 {e, f}

Note that, at this point, our cluster allocations have not changed since the last iteration.

Therefore, re-calculating the centroids will result in the same coordinates.

At this point, we have reached convergence, and our clusters will not change anymore.

Point	X ₁	X ₂
а	2	1
b	2	2
С	4	1
d	4	2
е	7	1
f	7	2

Cluster Centroids:

C1: 2, 1.5 {a, b}

C2: 4, 1.5 {c, d}

C3: 7, 1.5 (e, f)

Last step we need to do is to calculate the SSE.

Our clusters: $C1 = \{a, b\}; C2 = \{c, d\}; C3 = \{e, f\}$

And we've already calculated dist² for each of these values. This is our squared error!

To calculate SSE for each cluster:

$SSE_{C_k} =$	\sum	$ x_i -$	$\mu_k \ ^2$
	$x_i \in C_k$		

Point	X ₁	X ₂
a	2	1
b	2	2
С	4	1
d	4	2
е	7	1
f	7	2

Cluster Centroids:

C1: 2, 1.5 {a, b}

C2: 4, 1.5 {c, d}

C3: 7, 1.5 (e, f)

Last step we need to do is to calculate the SSE.

$$SSE_{C_k} = \sum_{x_i \in C_k} ||x_i - \mu_k||^2$$

$SSE_{c1} =$	$dist(a, c1)^2 +$	$dist(b, c1)^2 =$.25 + .25 = .5	5

$$SSE_{c2} = dist(c, c2)^2 + dist(d, c2)^2 = .25 + .25 = .5$$

$$SSE_{c3} = dist(e, c3)^2 + dist(f, c3)^2 = .25 + .25 = .5$$

Point	X ₁	X ₂
a	2	1
b	2	2
С	4	1
d	4	2
е	7	1
f	7	2

Cluster Centroids:

C1: 2, 1.5 {a, b}

C2: 4, 1.5 {c, d}

C3: 7, 1.5 {e, f}

Hierarchical Clustering: Revision

Let's say we are given a proximity matrix for data objects (a—e).

Using hierarchical clustering, let's see how we would cluster these objects using **MIN** and **MAX**.

	a	b	С	d	е
а	1.00	0.90	0.10	0.65	0.20
b	0.90	1.00	0.70	0.60	0.50
С	0.10	0.70	1.00	0.40	0.30
d	0.65	0.60	0.40	1.00	0.80
е	0.20	0.50	0.30	0.80	1.00

Let's also draw dendrograms for these.

Hierarchical Clustering: Revision

Note that we will use sim(i, j) to represent similarity between i and j, where i and j are points or clusters.

For instance, sim(a, b) = 0.90.

We will also use i, j to represent a cluster containing points i and j.

	a	b	С	d	е
а	1.00	0.90	0.10	0.65	0.20
b	0.90	1.00	0.70	0.60	0.50
С	0.10	0.70	1.00	0.40	0.30
d	0.65	0.60	0.40	1.00	0.80
е	0.20	0.50	0.30	0.80	1.00

Let's start with MIN.

We initialise each point as its own cluster:

	a	b	С	d	е
а	1.00	0.90	0.10	0.65	0.20
b	0.90	1.00	0.70	0.60	0.50
С	0.10	0.70	1.00	0.40	0.30
d	0.65	0.60	0.40	1.00	0.80
е	0.20	0.50	0.30	0.80	1.00

We then find the two clusters that are the **closest** together (highest proximity).

We can see from the proximity matrix, that our two closest clusters are $\{a\}$ and $\{b\}$, since sim(a, b) = 0.90.

As such, we merge them into {a, b} (and keep a record that we merged these first).

Now we need to update our proximity matrix.

Since we're using **MIN**, the distance between the new cluster {a, b} and the old clusters {c}, {d}, and {e} is:

...the MIN distance between <u>any member of the new</u> <u>cluster</u> and <u>each remaining (unchanged) clusters</u>.

Note: MIN distance corresponds to a higher proximity value.

For {a, b} and {c}? 0.70 is the MIN distance.

	а	b	С	d	е
а	1.00	0.90	0.10	0.65	0.20
b	0.90	1.00	0.70	0.60	0.50
С	0.10	0.70	1.00	0.40	0.30
d	0.65	0.60	0.40	1.00	0.80
е	0.20	0.50	0.30	0.80	1.00

	a, b	С	d	е
a, b	1.00			
С		1.00	0.40	0.30
d		0.40	1.00	0.80
е		0.30	0.80	1.00

Now we need to update our proximity matrix.

Since we're using **MIN**, the distance between the new cluster {a, b} and the old clusters {c}, {d}, and {e} is:

...the MIN distance between <u>any member of the new cluster</u> and <u>each remaining (unchanged) clusters</u>.

Note: MIN distance corresponds to a higher proximity value.

For {a, b} and {d}? 0.65 is the MIN distance.

	a	b	С	d	е
а	1.00	0.90	0.10	0.65	0.20
b	0.90	1.00	0.70	0.60	0.50
С	0.10	0.70	1.00	0.40	0.30
d	0.65	0.60	0.40	1.00	0.80
е	0.20	0.50	0.30	0.80	1.00

	a, b	С	d	е
a, b	1.00	0.70		
С	0.70	1.00	0.40	0.30
d		0.40	1.00	0.80
е		0.30	0.80	1.00

Now we need to update our proximity matrix.

Since we're using **MIN**, the distance between the new cluster {a, b} and the old clusters {c}, {d}, and {e} is:

...the MIN distance between <u>any member of the new</u> <u>cluster</u> and <u>each remaining (unchanged) clusters</u>.

Note: MIN distance corresponds to a higher proximity value.

For {a, b} and {e}? 0.50 is the MIN distance.

	а	b	С	d	е
а	1.00	0.90	0.10	0.65	0.20
b	0.90	1.00	0.70	0.60	0.50
С	0.10	0.70	1.00	0.40	0.30
d	0.65	0.60	0.40	1.00	0.80
е	0.20	0.50	0.30	0.80	1.00

	a, b	С	d	е
a, b	1.00	0.70	0.65	
С	0.70	1.00	0.40	0.30
d	0.65	0.40	1.00	0.80
е		0.30	0.80	1.00

Now we need to update our proximity matrix.

Since we're using **MIN**, the distance between the new cluster {a, b} and the old clusters {c}, {d}, and {e} is:

...the MIN distance between any member of the new cluster and each remaining (unchanged) clusters.

Note: MIN distance corresponds to a higher proximity value.

We have now updated our confusion matrix with {a, b}.

	a	b	С	d	е
a	1.00	0.90	0.10	0.65	0.20
b	0.90	1.00	0.70	0.60	0.50
С	0.10	0.70	1.00	0.40	0.30
d	0.65	0.60	0.40	1.00	0.80
е	0.20	0.50	0.30	0.80	1.00

				N.
	a, b	С	d	е
a, b	1.00	0.70	0.65	0.50
С	0.70	1.00	0.40	0.30
d	0.65	0.40	1.00	0.80
е	0.50	0.30	0.80	1.00

Now we merge the <u>closest</u> clusters again.

We can see from the proximity matrix, that our two closest clusters are $\{d\}$ and $\{e\}$, since sim(d, e) = 0.80.

As such, we merge them into {d, e} (and keep a record that we merged these second).

	a, b	С	d	е
a, b	1.00	0.70	0.65	0.50
С	0.70	1.00	0.40	0.30
d	0.65	0.40	1.00	0.80
е	0.50	0.30	0.80	1.00

Now we need to update our proximity matrix.

Since we're using **MIN**, the distance between the new cluster {a, b} and the old clusters {c}, {d}, and {e} is:

...the MIN distance between <u>any member of the new</u> <u>cluster</u> and <u>each remaining (unchanged) clusters</u>.

Note: MIN distance corresponds to a higher proximity value.

	a, b	С	d	е
a, b	1.00	0.70	0.65	0.50
C	0.70	1.00	0.40	0.30
d	0.65	0.40	1.00	0.80
е	0.50	0.30	0.80	1.00

	a, b	С	d, e
a, b	1.00	0.70	
С	0.70	1.00	/
d, e			1.00

Now we need to update our proximity matrix.

Since we're using **MIN**, the distance between the new cluster {a, b} and the old clusters {c}, {d}, and {e} is:

...the MIN distance between <u>any member of the new cluster</u> and <u>each remaining (unchanged) clusters</u>.

Note: MIN distance corresponds to a higher proximity value.

For {d, e} and {a, b}? 0.65 is the MIN distance.

	a, b	С	d	е
a, b	1.00	0.70	0.65	0.50
С	0.70	1.00	0.40	0.30
d	0.65	0.40	1.00	0.80
е	0.50	0.30	0.80	1.00

	a, b	С	d, e
a, b	1.00	0.70	
С	0.70	1.00	;
d, e			1.00

Now we need to update our proximity matrix.

Since we're using **MIN**, the distance between the new cluster {a, b} and the old clusters {c}, {d}, and {e} is:

...the MIN distance between <u>any member of the new</u> <u>cluster</u> and <u>each remaining (unchanged) clusters</u>.

Note: MIN distance corresponds to a higher proximity value.

For {d, e} and {c}? 0.40 is the MIN distance.

a, b 1.00 0.70 c 0.70 1.00	0.65	0.50
C 0.70 1.00		
	0.40	0.30
d 0.65 0.40	1.00	0.80
e 0.50 0.30	0.80	1.00

	a, b	С	d, e
a, b	1.00	0.70	0.65
С	0.70	1.00	
d, e	0.65		1.00

Now we need to update our proximity matrix.

Since we're using **MIN**, the distance between the new cluster {a, b} and the old clusters {c}, {d}, and {e} is:

...the MIN distance between <u>any member of the new</u> <u>cluster</u> and <u>each remaining (unchanged) clusters</u>.

Note: MIN distance corresponds to a higher proximity value.

We have now updated our confusion matrix with {d, e}.

	a, b	С	d	е
a, b	1.00	0.70	0.65	0.50
С	0.70	1.00	0.40	0.30
d	0.65	0.40	1.00	0.80
е	0.50	0.30	0.80	1.00

	a, b	С	d, e
a, b	1.00	0.70	0.65
С	0.70	1.00	0.40
d, e	0.65	0.40	1.00

Now we merge the <u>closest</u> clusters again.

We can see from the proximity matrix, that our two closest clusters are $\{a, b\}$ and $\{c\}$, since sim(ab, c) = 0.70.

As such, we merge them into {a, b, c} (and keep a record that we merged these third).

	a, b	С	d, e
a, b	1.00	0.70	0.65
С	0.70	1.00	0.40
d, e	0.65	0.40	1.00

At this point, we only have two clusters left to merge, so we merge {a, b, c} with {d, e}.

	a, b	С	d, e
a, b	1.00	0.70	0.65
С	0.70	1.00	0.40
d, e	0.65	0.40	1.00

	a, b, c	d, e	
		1	
a, b, c	1.00		
d, e		1.00	•

So at the end of the MIN process, our merge order was:

- 1. $\{a\} \& \{b\} \rightarrow \{a, b\}$
- 2. $\{d\} \& \{e\} \rightarrow \{d, e\}$
- 3. $\{a, b\} \& \{c\} \rightarrow \{a, b, c\}$
- 4. $\{a, b, c\} \& \{d, e\} \rightarrow \{a, b, c, d, e\}$

Therefore, our dendrogram would look like this:

Now let's go back to the question, and focus on MAX.

We initialise each point as its own cluster:

	a	b	С	d	е
а	1.00	0.90	0.10	0.65	0.20
b	0.90	1.00	0.70	0.60	0.50
С	0.10	0.70	1.00	0.40	0.30
d	0.65	0.60	0.40	1.00	0.80
е	0.20	0.50	0.30	0.80	1.00

We then find the two clusters that are the **closest** together (highest proximity).

But, again, we see from the proximity matrix, that our two closest clusters are $\{a\}$ and $\{b\}$, since sim(a, b) = 0.90.

As such, we merge them into {a, b} (and keep a record that we merged these first).

This time, we'll use MAX to update our proximity matrix.

Since we're using **MAX**, the distance between the new cluster {a, b} and the old clusters {c}, {d}, and {e} is:

...the **MAX distance** between <u>any member of the new</u> <u>cluster</u> and <u>each remaining (unchanged) clusters</u>.

Note: MAX distance corresponds to a lower proximity value.

	а	b	С	d	е
a	1.00	0.90	0.10	0.65	0.20
b	0.90	1.00	0.70	0.60	0.50
С	0.10	0.70	1.00	0.40	0.30
d	0.65	0.60	0.40	1.00	0.80
е	0.20	0.50	0.30	0.80	1.00

	a, b	С	d	е
a, b	1.00			
С		1.00	0.40	0.30
d		0.40	1.00	0.80
е		0.30	0.80	1.00

This time, we'll use MAX to update our proximity matrix.

Since we're using **MAX**, the distance between the new cluster {a, b} and the old clusters {c}, {d}, and {e} is:

...the **MAX distance** between <u>any member of the new</u> <u>cluster</u> and <u>each remaining (unchanged) clusters</u>.

Note: MAX distance corresponds to a lower proximity value.

For {a, b} and {c}? 0.10 is the MAX distance.

	a	b	С	d	е
а	1.00	0.90	0.10	0.65	0.20
b	0.90	1.00	0.70	0.60	0.50
С	0.10	0.70	1.00	0.40	0.30
d	0.65	0.60	0.40	1.00	0.80
е	0.20	0.50	0.30	0.80	1.00

	a, b	С	d	е
a, b	1.00			
С		1.00	0.40	0.30
d		0.40	1.00	0.80
е		0.30	0.80	1.00

This time, we'll use MAX to update our proximity matrix.

Since we're using **MAX**, the distance between the new cluster {a, b} and the old clusters {c}, {d}, and {e} is:

...the **MAX distance** between <u>any member of the new</u> <u>cluster</u> and <u>each remaining (unchanged) clusters</u>.

Note: MAX distance corresponds to a lower proximity value.

For {a, b} and {d}? 0.60 is the MAX distance.

	a	b	С	d	е
а	1.00	0.90	0.10	0.65	0.20
b	0.90	1.00	0.70	0.60	0.50
С	0.10	0.70	1.00	0.40	0.30
d	0.65	0.60	0.40	1.00	0.80
е	0.20	0.50	0.30	0.80	1.00

	a, b	С	d	е
a, b	1.00	0.10		
С	0.10	1.00	0.40	0.30
d		0.40	1.00	0.80
е		0.30	0.80	1.00

This time, we'll use MAX to update our proximity matrix.

Since we're using **MAX**, the distance between the new cluster {a, b} and the old clusters {c}, {d}, and {e} is:

...the **MAX distance** between <u>any member of the new</u> <u>cluster</u> and <u>each remaining (unchanged) clusters</u>.

Note: MAX distance corresponds to a lower proximity value.

For {a, b} and {e}? 0.20 is the MAX distance.

	а	b	С	d	е
а	1.00	0.90	0.10	0.65	0.20
b	0.90	1.00	0.70	0.60	0.50
С	0.10	0.70	1.00	0.40	0.30
d	0.65	0.60	0.40	1.00	0.80
е	0.20	0.50	0.30	0.80	1.00

	a, b	С	d	е
a, b	1.00	0.10	0.60	
С	0.10	1.00	0.40	0.30
d	0.60	0.40	1.00	0.80
е		0.30	0.80	1.00

This time, we'll use MAX to update our proximity matrix.

Since we're using **MAX**, the distance between the new cluster {a, b} and the old clusters {c}, {d}, and {e} is:

...the **MAX distance** between <u>any member of the new</u> <u>cluster</u> and <u>each remaining (unchanged) clusters</u>.

Note: MAX distance corresponds to a lower proximity value.

We have now updated our confusion matrix with {a, b}.

	a	b	С	d	е
a	1.00	0.90	0.10	0.65	0.20
b	0.90	1.00	0.70	0.60	0.50
С	0.10	0.70	1.00	0.40	0.30
d	0.65	0.60	0.40	1.00	0.80
е	0.20	0.50	0.30	0.80	1.00

	a, b	С	d	е
a, b	1.00	0.10	0.60	0.20
С	0.10	1.00	0.40	0.30
d	0.60	0.40	1.00	0.80
е	0.20	0.30	0.80	1.00

Now we merge the closest clusters again.

And, again, our two closest clusters are $\{d\}$ and $\{e\}$, since sim(d, e) = 0.80.

As such, we merge them into {d, e} (and keep a record that we merged these second).

	a, b	С	d	е
a, b	1.00	0.10	0.60	0.20
С	0.10	1.00	0.40	0.30
d	0.60	0.40	1.00	0.80
е	0.20	0.30	0.80	1.00

This time, we'll use MAX to update our proximity matrix.

Since we're using **MAX**, the distance between the new cluster {a, b} and the old clusters {c}, {d}, and {e} is:

...the **MAX distance** between <u>any member of the new</u> <u>cluster</u> and <u>each remaining (unchanged) clusters</u>.

Note: MAX distance corresponds to a lower proximity value.

	a, b	С	d	е
a, b	1.00	0.10	0.60	0.20
С	0.10	1.00	0.40	0.30
d	0.60	0.40	1.00	0.80
е	0.20	0.30	0.80	1.00

	a, b	С	d, e
a, b	1.00	0.10	
С	0.10	1.00	
d, e			1.00

This time, we'll use MAX to update our proximity matrix.

Since we're using **MAX**, the distance between the new cluster {a, b} and the old clusters {c}, {d}, and {e} is:

...the **MAX distance** between <u>any member of the new</u> <u>cluster</u> and <u>each remaining (unchanged) clusters</u>.

Note: MAX distance corresponds to a lower proximity value.

For {d, e} and {a, b}? 0.20 is the MAX distance.

	a, b	С	d	е
a, b	1.00	0.10	0.60	0.20
С	0.10	1.00	0.40	0.30
d	0.60	0.40	1.00	0.80
е	0.20	0.30	0.80	1.00

	a, b	С	d, e
a, b	1.00	0.10	
С	0.10	1.00	/
d, e			1.00

This time, we'll use MAX to update our proximity matrix.

Since we're using **MAX**, the distance between the new cluster {a, b} and the old clusters {c}, {d}, and {e} is:

...the **MAX distance** between <u>any member of the new</u> <u>cluster</u> and <u>each remaining (unchanged) clusters</u>.

Note: MAX distance corresponds to a lower proximity value.

For {d, e} and {c}? 0.30 is the MAX distance.

	a, b	С	d	е
a, b	1.00	0.10	0.60	0.20
С	0.10	1.00	0.40	0.30
d	0.60	0.40	1.00	0.80
е	0.20	0.30	0.80	1.00

	a, b	С	d, e
a, b	1.00	0.10	0.20
С	0.10	1.00	
d, e	0.20		1.00

This time, we'll use MAX to update our proximity matrix.

Since we're using **MAX**, the distance between the new cluster {a, b} and the old clusters {c}, {d}, and {e} is:

...the **MAX distance** between <u>any member of the new</u> <u>cluster</u> and <u>each remaining (unchanged) clusters</u>.

Note: MAX distance corresponds to a lower proximity value.

We have now updated our confusion matrix with {d, e}.

	a, b	С	d	е
a, b	1.00	0.10	0.60	0.20
С	0.10	1.00	0.40	0.30
d	0.60	0.40	1.00	0.80
е	0.20	0.30	0.80	1.00

	a, b	С	d, e
a, b	1.00	0.10	0.20
С	0.10	1.00	0.30
d, e	0.20	0.30	1.00

Now we merge the <u>closest</u> clusters again.

We can see from the proximity matrix, that our two closest clusters are $\{c\}$ and $\{d, e\}$, since sim(c, de) = 0.30.

As such, we merge them into {c, d, e} (and keep a record that we merged these third).

Note: this is a different ordering than we had for MIN!

	a, b	С	d, e
a, b	1.00	0.10	0.20
С	0.10	1.00	0.30
d, e	0.20	0.30	1.00

At this point, we only have two clusters left to merge, so we merge {a, b} with {c, d, e}.

	a, b	С	d, e
a, b	1.00	0.10	0.20
С	0.10	1.00	0.30
d, e	0.20	0.30	1.00

	a, b	c, d, e
a, b	1.00	
c, d, e		1.00

So at the end of the MAX process, our merge order was:

1.
$$\{a\} \& \{b\} \rightarrow \{a, b\}$$

2.
$$\{d\} \& \{e\} \rightarrow \{d, e\}$$

3.
$$\{c\} \& \{d, e\} \rightarrow \{c, d, e\}$$

4.
$$\{a, b\} \& \{c, d, e\} \rightarrow \{a, b, c, d, e\}$$

Therefore, our dendrogram would look like this:

Consider the following transactions involving five items. You have been asked to produce association rules for these items using the Apriori algorithm:

Transaction ID	Item List
1	Apple, Broccoli, Durian, Eggplant
2	Broccoli, Carrot, Durian
3	Apple, Broccoli, Durian, Eggplant
4	Apple, Carrot, Durian, Eggplant

ID	Item List
1	Apple, Broccoli, Durian, Eggplant
2	Broccoli, Carrot, Durian
3	Apple, Broccoli, Durian, Eggplant
4	Apple, Carrot, Durian, Eggplant

- i) Using a minimum support of 0.75, generate the frequent itemsets for the above data showing clearly the application of Apriori principle in pruning infrequent itemsets.
- ii) Using a minimum confidence of 0.75, generate the association rules generated from the frequent itemsets computed in (i) showing clearly the application of Apriori principle in pruning low confidence rules.

ID	Item List
1	Apple, Broccoli, Durian, Eggplant
2	Broccoli, Carrot, Durian
3	Apple, Broccoli, Durian, Eggplant
4	Apple, Carrot, Durian, Eggplant

- i) Using a minimum support of 0.75, generate the frequent itemsets for the above data showing clearly the application of Apriori principle in pruning infrequent itemsets.
- ii) Using a minimum confidence of 0.75, generate the association rules generated from the frequent itemsets computed in (i) showing clearly the application of Apriori principle in pruning low confidence rules.

ID	Item List	
1	Apple, Broccoli, Durian, Eggplant	\leftarrow
2	Broccoli, Carrot, Durian	
3	Apple, Broccoli, Durian, Eggplant	\leftarrow
4	Apple, Carrot, Durian, Eggplant	\leftarrow

First step, let's identify frequent 1-itemsets

minsup = **0.75**

$$Support = \frac{X \cap Y.count}{n}$$

{Apple}: 3 / 4 = 0.75 We see that Apple appears in 3 transactions (X.count)

{Broccoli}:

{Carrot}: We also see that we have 4 total transactions (n)

{Durian}:

{Eggplant}: Therefore, the support of our {Apple} 1-itemset is 0.75.

ID	Item List
1	Apple, Broccoli, Durian, Eggplant
2	Broccoli, Carrot, Durian
3	Apple, Broccoli, Durian, Eggplant
4	Apple, Carrot, Durian, Eggplant

First step, let's identify frequent 1-itemsets

$$Support = \frac{X \cap Y.count}{n}$$

{Apple}: 3 / 4 = 0.75

{Broccoli}: 3 / 4 = 0.75

{Carrot}: 2 / 4 = 0.5

{Durian}: 4 / 4 = 1.0

{Eggplant}: 3 / 4 = 0.75

After checking the support of each of our 1-itemsets, we can see that 4 of our itemsets are frequent.

Carrot does not reach the minimum level of support. Therefore, we use the Apriori principle to prune it.

ID	Item List
1	Apple, Broccoli, Durian, Eggplant
2	Broccoli, Carrot, Durian
3	Apple, Broccoli, Durian, Eggplant
4	Apple, Carrot, Durian, Eggplant

minsup = 0.75

So far, our *frequent* itemsets are:

{Apple}, {Broccoli}, {Durian}, {Eggplant}

From these, our *candidate* 2- itemsets are:

{Apple, Broccoli}, {Apple, Durian}, {Apple, Eggplant}, {Broccoli, Durian}, {Broccoli, Eggplant}, {Durian, Eggplant}

Note that we do not make any candidate 2-itemsets using Carrot, since the Apriori

principle tells us that all supersets containing Carrot will also be infrequent

ID	Item List
1	Apple, Broccoli, Durian, Eggplant
2	Broccoli, Carrot, Durian
3	Apple, Broccoli, Durian, Eggplant
4	Apple, Carrot, Durian, Eggplant

Next, lets go back and count the number of transactions that include our *candidate* 2-itemsets:

minsup = 0.75

$$\{A, B\}: 2 / 4 = 0.5 \times$$

$$\{A, D\}: 3 / 4 = 0.75$$

$$\{A, E\}: 3 / 4 = 0.75$$

{B, D}:
$$3 / 4 = 0.75$$

$$\{B, E\}: 2 / 4 = 0.5 \times$$

$$\{D, E\}: 3 / 4 = 0.75$$

After checking the support of each of our 2-itemsets, we can see that 4 of our itemsets are frequent.

{Apple, Broccoli} and {Broccoli, Eggplant} do not reach the minimum level of support. Therefore, we disc the Apriori principle to prune them.

ID	Item List
1	Apple, Broccoli, Durian, Eggplant
2	Broccoli, Carrot, Durian
3	Apple, Broccoli, Durian, Eggplant
4	Apple, Carrot, Durian, Eggplant

So far, our *frequent* itemsets are:

{A}, {B}, {D}, {E}, {A, D}, {A, E}, {B, D}, {D, E}

From these, our *candidate* 3- itemsets are:

{A, D, E}

From our frequent 2-itemsets, we can only produce one candidate 3-itemset, since the Apriori principle tells us that any other combinations will be infrequent!

E.g. since {A, B} is infrequent, we know that {A, B, D} will also be infrequent.

minsup = 0.75

ID	Item List
1	Apple, Broccoli, Durian, Eggplant
2	Broccoli, Carrot, Durian
3	Apple, Broccoli, Durian, Eggplant
4	Apple, Carrot, Durian, Eggplant

So, lets go back and count the number of transactions that include our *candidate* 3-itemset:

minsup = **0.75**

$$\{A, D, E\}: 3 / 4 = 0.75$$

ID	Item List
1	Apple, Broccoli, Durian, Eggplant
2	Broccoli, Carrot, Durian
3	Apple, Broccoli, Durian, Eggplant
4	Apple, Carrot, Durian, Eggplant

So far, our *frequent* itemsets are:

minsup = 0.75

{A}, {B}, {D}, {E}, {A, D}, {A, E}, {B, D}, {D, E}, {A, D, E}

However, since we only have one frequent 3- itemset, we cannot produce any candidate 4-itemsets.

Therefore, we are done finding frequent itemsets!

ID	Item List
1	Apple, Broccoli, Durian, Eggplant
2	Broccoli, Carrot, Durian
3	Apple, Broccoli, Durian, Eggplant
4	Apple, Carrot, Durian, Eggplant

- i) Using a minimum support of 0.75, generate the frequent itemsets for the above data showing clearly the application of Apriori principle in pruning infrequent itemsets.
- ii) Using a minimum confidence of 0.75, generate the association rules generated from the frequent itemsets computed in (i) showing clearly the application of Apriori principle in pruning low confidence rules.

ID	Item List
1	Apple, Broccoli, Durian, Eggplant
2	Broccoli, Carrot, Durian
3	Apple, Broccoli, Durian, Eggplant
4	Apple, Carrot, Durian, Eggplant

So far, our *frequent* itemsets are:

minsup = **0.75**

{A}, {B}, {D}, {E}, {A, D}, {A, E}, {B, D}, {D, E}, {A, D, E}

Let's now generate some candidate association rules.

So far, our *frequent* itemsets are:

{A}, {B}, {D}, {E}, {A, D}, {A, E}, {B, D}, {D, E}, {A, D, E}

Our candidate association rules are:

$\{A \Longrightarrow D\}$	$\{D \Longrightarrow B\}$	$\{D \Longrightarrow A, E\}$
$\{D \Longrightarrow A\}$	$\{D \Longrightarrow E\}$	$\{A, E \Longrightarrow D\}$
$\{A \Longrightarrow E\}$	$\{E \Longrightarrow D\}$	$\{E \Longrightarrow A, D\}$
$\{E \Longrightarrow A\}$	$\{A \Longrightarrow D, E\}$	$\{A, D \Longrightarrow E\}$
$\{B \Longrightarrow D\}$	$\{D, E \Longrightarrow A\}$	

Itemset	Support
Α	3/4 = 0.75
В	3 / 4 = 0.75
D	4 / 4 = 1
Е	3 / 4 = 0.75
A, D	3 / 4 = 0.75
A, E	3 / 4 = 0.75
B, D	3 / 4 = 0.75
D, E	3 / 4 = 0.75
A, D, E	3 / 4 = 0.75

Minconf = 0.75

Our candidate association rules are:

 $\{E \Longrightarrow D\} = 0.75 / 0.75 = 1$

$\{A \Longrightarrow D\}$	0.75 / 0.75 = 1	$\{A \Longrightarrow D, E\}$	0.75 / 0.75 = 1
$\{D \Longrightarrow A\}$	0.75 / 1 = 0.75	$\{D, E \Longrightarrow A\}$	0.75 / 0.75 = 1
$\{A \Longrightarrow E\}$	0.75 / 0.75 = 1	$\{D \Longrightarrow A, E\}$	0.75 / 1 = 0.75
$\{E \Longrightarrow A\}$	0.75 / 0.75 = 1	$\{A, E \Longrightarrow D\}$	0.75 / 0.75 = 1
$\{B \Longrightarrow D\}$	0.75 / 0.75 = 1	$\{E \Longrightarrow A, D\}$	0.75 / 0.75 = 1
$\{D\Longrightarrow B\}$	0.75 / 1 = 0.75	$\{A, D \Longrightarrow E\}$	0.75 / 0.75 = 1
$\{D\LongrightarrowE\}$	0.75 / 1 = 0.75		

Itemset	Support
Α	3 / 4 = 0.75
В	3 / 4 = 0.75
D	4 / 4 = 1
Е	3 / 4 = 0.75
A, D	3 / 4 = 0.75
A, E	3 / 4 = 0.75
B, D	3 / 4 = 0.75
D, E	3 / 4 = 0.75
A, D, E	3 / 4 = 0.75

Minconf = 0.75

In this case, all of our *candidate* association rules are valid, with confidence ≥ minconf.

Our *final* association rules are:

$\{A \Longrightarrow D\}$	$\{D \Longrightarrow B\}$	$\{D \Longrightarrow A, E\}$
$\{D \Longrightarrow A\}$	$\{D \Longrightarrow E\}$	$\{A, E \Longrightarrow D\}$
$\{A \Longrightarrow E\}$	$\{E \Longrightarrow D\}$	$\{E \Longrightarrow A, D\}$
$\{E \Longrightarrow A\}$	$\{A \Longrightarrow D, E\}$	$\{A, D \Longrightarrow E\}$
$\{B \Longrightarrow D\}$	$\{D, E \Longrightarrow A\}$	

Itemset	Support
Α	3/4 = 0.75
В	3 / 4 = 0.75
D	4 / 4 = 1
Е	3 / 4 = 0.75
A, D	3 / 4 = 0.75
A, E	3 / 4 = 0.75
B, D	3 / 4 = 0.75
D, E	3 / 4 = 0.75
A, D, E	3 / 4 = 0.75

Minconf = 0.75

ABFRDFFN 2040