Allgemein

Wachstum und Verfall

Wachtsumsfaktor:

$$q = 100 \% + p \% = 1 + \frac{p}{100}$$

Verdoppelungszeit:

$$t_V = \frac{\ln(2)}{\ln(q)}$$

Abnahme:

$$B(t) = \frac{m}{m} \cdot t + b \quad \text{mit } \frac{m}{m} < 0$$

Summe und Produkte

Summezeichen:

Es sei: $n, k \in Z$ und $n \ge k$

$$\sum_{k=1}^{n} a_k = a_1 + a_2 + a_3 + \ldots + a_n$$

Produktzeichen:

$$\prod_{k=1}^{n} a_k = a_1 \cdot a_2 \cdot a_3 \cdot \ldots \cdot a_n$$

k = Laufvariable, Laufindex

1 = Startwert n = Endwert

 a_k ist die Funktion bezueglich der Laufvariable

Aussagen, Logik, Mengen

*	Bedeutung		
Ø oder	Leere Menge		
$x \in A$	Element x ist in Menge A		
$x \notin A$	Element x ist nicht in Menge A		
$A \subset B$	A ist eine Teilmenge von B		
$A \cap B$	Schnittmenge von A und B		
$A \cup B$	Vereinigunsgsmenge von A und B		
$A \backslash B$	Differenzbildung, Menge A ohne B		
\bar{A}_B	$:= \{x \mid x \in B \land x \notin A\}$		

Aussagenlogik:

Eine Aussage beschreibt einen Sachverhalt (durch Worte oder Symbole), der entweder wahr oder falsch ist.

АВ	$A \wedge B$	$A \lor B$	¬ В	A ∨ ¬ B
ТТ	T T T	ТТТ	FT	T T F T
T F	T F F	T T F	TF	T T T F
F T	$\mathbf{F} \mathbf{F} \mathbf{T}$	F T T	FT	F F F T
F F	\mathbf{F} \mathbf{F} \mathbf{F}	F F F	TF	F T T F

*	Bedeutung	Beispiel
A	Kardinalität/Mächtigkeit	A = 1;2
	Anzahl Elemente	- A =2
\wedge	Konkuktion/UND A \wedge	$A \wedge B$
V	Disjunktion/ODER A ∨	-1;0;1;
	B = Wahr wenn	
_	Negation $A = W \neg A = F$	$\neg A$
\Longrightarrow	Implikation: Daraus folgt	
\iff	äquivalenz	
A	für Alle	$\forall x \in \mathbb{N}$
3	Es Existiert	$\exists x \in \mathbb{N}$

Misc

Gleichungen

Lineare Gleichung

Definition

Eine Gleichung, die sich in die Form ax + b = 0bringen lässt, heisst lineare Gleichung. Wir können lineare Gleichungen daran erkennen, dass die Variable nur in der 1. Potenz auftritt, also kein x^2, x^3 ... enthalten.

Lösen einer Linearen Gleichung

- 1. Gleichung nach x auflösen
- 2. Lösungsmenge aufschreiben

Quadratische Gleichungen

Definiton

Gleichungen, die sich auf die Form $ax^2 + bx + c =$ $0 (a, b, c \in \mathbb{R}; a \neq 0)$ bringen lassen, heissen quadratische Gleichungen.

Wir können quadratische Gleichungen daran erkennen, dass die Variable x in der 2. Potenz x^2 , aber in keiner höheren Potenz vorkommt.

Es gibt 4 Arten/Formen von Quadratischen Gleichungen.

- 1. $ax^2 + bx + c = 0$ $(a, b, c \in \mathbb{R}; a \neq 0)$
- 2. $ax^2 + bx = 0$ $(a, b \in \mathbb{R}; a \neq 0)$
- 3. $ax^2 + c = 0$ $(a, c \in \mathbb{R}; a \neq 0)$
- 4. $ax^2 = 0 \quad (a \in \mathbb{R}; a \neq 0)$

Lösung einer Reinquadratische Gleichung | Fallunterscheidung: $ax^{2} = 0$

Reinquadratische Gleichungen ohne Absolutglied besitzen als einzige Lösung die Null.

Lösung einer Reinquadratische Gleichung mit Absolutglied $ax^2 + c = 0$

- 1. Gleichung nach x^2 auflösen
- 2. Wurzel ziehen
- 3. Lösungsmenge aufschreiben

Lösung einer Gemischtquadratische Gleichungen ohne Absolutglied $ax^2 + bx = 0$

- 1. Quadratische Gleichung in Normalform bringen
- 2. x ausklammern
- 3. Faktoren gleich Null setzen
- 4. Gleichung nach x^2 auflösen
- 5. Lösungsmenge aufschreiben

Mitternachtsformel

Gemischtquadratische Gleichungen $ax^2+bx+c=$ 0 mit Absolutglied lösen wir mit der Mitternachtsformel:

$$x_{1/2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x_{1} = \frac{-b - \sqrt{b^{2} - 4ac}}{2a}$$
$$x_{2} = \frac{-b + \sqrt{b^{2} - 4ac}}{2a}$$

Übersicht

	Allgemeine	Normalform
	Form	
Reinquadratisch	$2x^2 = 0, a = 2,$	$x^2 = 0, a = 1,$
ohne	b = 0 und c = 0	b = 0 und c = 0
Absolutglied		
Reinquadratisch	$2x^2 - 8 = 0,$	$x^2 - 4 = 0,$
mit	a = 2, b = 0	a = 1, b = 0
Absolutglied	und $c = -8$	und $c = -4$
Gemischtquadrat	$-2x^2 - 8x = 0,$	$x^2 - 4x = 0,$
isch ohne	a = 2, b = -8	a = 1, b = -4
Absolutglied	und $c = 0$	und $c = 0$
Gemischtquadrat	$-2x^2 - 8x + 6 = 0,$	$x^2 - 4x + 3 = 0,$
isch mit	a = 2, b = -8	a = 1, b = -4
Absolutglied	und $c = 6$	und $c = 3$

Regeln

Wenn das lineare Glied fehlt, gilt b = 0. Wenn das absolute Glied fehlt, gilt c = 0.

Wenn das x^2 allein steht, gilt a = 0 (wegen

 $1 \cdot x^2 = x^2$).

Wenn das x allein steht, gilt b - 1(wegen $1 \cdot x = x$).

Lösen einer Quadratischen Gleichung Kehrwert mit Mitternachtsformel

- 1. Gleichung in allgemeine Form bringen
- 2. a,b,c aus der allgemeinen Form herauslesen
- 3. a,b,c in die Mitternachtsformel einsetzen
- 4. Lösung berechnen
- 5. Lösungsmenge aufschreiben

Bruchgleichungen

Wenn die Zähler der Brueche nur aus Zahlen bestehen, kann eine Kehrwertbildung sinnvoll sein. Den Kehrwert eines Bruchs erhält man durch Vertauschen von Zähler und Nenner.

$$\frac{1}{x} = \frac{2}{x+1} \Rightarrow \frac{x}{1} = \frac{x+1}{2}$$

Lösen einer Bruchgleichung

- 1. Definitionsmenge bestimmen
- 2. Gleichung nach x auflösen
- 3. Prifen, ob der x-Wert in der Definitionsmenge ist
- 4. Lösungsmenge aufschreiben

Wenn die Zähler der Brueche nur aus Zahlen bestehen, kann eine Kehrwertbildung sinnvoll sein. Den Kehrwert eines Bruchs erhält man durch Vertauschen von Zähler und Nenner.

$$\frac{1}{x} = \frac{2}{x+1} \Rightarrow \frac{x}{1} = \frac{x+1}{2}$$

Multiplikation übers Kreuz

Wenn auf beiden Seiten der Gleichung jeweils ein Bruch steht, kann eine Multiplikation ueber Kreuz sinnvoll sein.

$$\frac{1}{x} = \frac{2}{x+1} \Rightarrow 1 \cdot x+1 = 2 \cdot x$$

Funktionen

Lineare Funktion

Nullstelle berechnen

Funktion gleich Null setzen und nach X auflösen.

Schnittpunkt berechnen

Beide Funktionen gleichsetzen, nach X auflösen und in eine der beiden Funktionen einsetzen um Y zu berechnen.

Umkehrfunktion bilden

Funktion nach x auflösen, x und y vertauschen.

Quadratische Funktion

Exponential Funktion

Potenz Funktion

$$y = x^3$$
 $y = (x+1)^3$ $y = (x-2)$
 $y = 2x^3$ $y = \frac{1}{2}x^3$

Wurzel Funktion

${\bf Logarithmische\ Funktion}$

Trigonometrie

Identitäten

Kofunktionen

$$\sin(\frac{\pi}{2} - x) = \cos x$$

$$\cos(\frac{\pi}{2} - x) = \sin x$$

$$\tan(\frac{\pi}{2} - x) = \cot x$$

$$\cot(\frac{\pi}{2} - x) = \tan x$$

$$\sec(\frac{\pi}{2} - x) = \csc x$$

$$\csc(\frac{\pi}{2} - x) = \sec x$$

Symmetrie

$$\sin(-x) = -\sin x$$
$$\cos(-x) = \cos x$$
$$\tan(-x) = -\tan x$$

Doppelter Winkel

$$\sin(2x) = 2\sin x \cos x$$

$$\cos(2x) = \cos^2 x - \sin^2 x$$

$$= 2\cos^2 x - 1$$

$$= 1 - 2\sin^2 x$$

$$\tan(2x) = \frac{2\tan x}{1 - \tan^2 x}$$

Halber Winkel

$$\sin\frac{x}{2} = \pm\sqrt{\frac{1-\cos x}{2}}$$

$$\cos\frac{x}{2} = \pm\sqrt{\frac{1+\cos x}{2}}$$

$$\tan\frac{x}{2} = \frac{1-\cos x}{\sin x}$$

$$= \frac{\sin x}{1+\cos x}$$

Exponent Reduktion

$$\sin(\frac{\pi}{2} - x) = \cos x$$

$$\sin(\frac{\pi}{2} - x) = \sin x$$

$$\tan(\frac{\pi}{2} - x) = \cot x$$

$$\cot(\frac{\pi}{2} - x) = \cot x$$

$$\cot(\frac{\pi}{2} - x) = \tan x$$

$$\cot(\frac{\pi}{2} - x) = \cot x$$

Pythagoras

$$\sin^2 x + \cos^2 x = 1$$
$$1 + \tan^2 x = \sec^2 x$$
$$1 + \cot^2 x = \csc^2 x$$

Umkehrwert

$$\cot x = \frac{1}{\tan x}$$
$$\csc x = \frac{1}{\sin x}$$
$$\sec x = \frac{1}{\cos x}$$

Quotient

$$\tan(x) = \frac{\sin(x)}{\cos(x)}$$
$$\cot(x) = \frac{\cos(x)}{\sin(x)}$$

Summe und Differenz von Winkel

$$\sin(x+y) = \sin x \cos y + \cos x \sin y$$

$$\sin(x-y) = \sin x \cos y - \cos x \sin y$$

$$\cos(x+y) = \cos x \cos y - \sin x \sin y$$

$$\cos(x-y) = \cos x \cos y + \sin x \sin y$$

$$\tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$$

$$\tan(x-y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$$

Produkt zu Summe

$$\sin x \sin y = \frac{1}{2} \left[\cos(x - y) - \cos(x + y) \right]$$

$$\cos x \cos y = \frac{1}{2} \left[\cos(x - y) + \cos(x + y) \right]$$

$$\sin x \cos y = \frac{1}{2} \left[\sin(x + y) + \sin(x - y) \right]$$

$$\tan x \tan y = \frac{\tan x + \tan y}{\cot x + \cot y}$$

$$\tan x \cot y = \frac{\tan x + \cot y}{\cot x + \tan y}$$

Summe Zu Produkt

$$\sin x + \sin y = 2\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)$$

$$\sin x - \sin y = 2\cos\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)$$

$$\cos x + \cos y = 2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)$$

$$\cos x - \cos y = -2\sin\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)$$

$$\tan x + \tan y = \frac{\sin(x+y)}{\cos x\cos y}$$

$$\tan x - \tan y = \frac{\sin(x-y)}{\cos x\cos y}$$

Additionstheoreme

$$\begin{split} \sin(\alpha+\beta) &= \sin(\alpha) \cdot \cos(\beta) + \cos(\alpha) \cdot \sin(\beta) \\ \sin(\alpha-\beta) &= \sin(\alpha) \cdot \cos(\beta) - \cos(\alpha) \cdot \sin(\beta) \\ \cos(\alpha+\beta) &= \cos(\alpha) \cdot \cos(\beta) - \sin(\alpha) \cdot \sin(\beta) \\ \cos(\alpha-\beta) &= \cos(\alpha) \cdot \cos(\beta) + \sin(\alpha) \cdot \sin(\beta) \\ \tan(\alpha+\beta) &= \frac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha) \cdot \tan(\beta)} \\ \tan(\alpha-\beta) &= \frac{\tan(\alpha) - \tan(\beta)}{1 + \tan(\alpha) \cdot \tan(\beta)} \\ \cot(\alpha+\beta) &= \frac{\cot(\alpha) \cdot \cot(\beta) - 1}{\cot(\alpha) + \cot(\beta)} \\ \cot(\alpha-\beta) &= \frac{\cot(\alpha) \cdot \cot(\beta) + 1}{\cot(\alpha) - \cot(\beta)} \end{split}$$

Winkelfunktion des dreifachen winkel

$$\sin(3\alpha) = \sin(2\alpha + \alpha)$$

$$\sin(3\alpha) = 3 \cdot \sin(\alpha) - 4 \cdot \sin^3(\alpha)$$

$$\cos(3\alpha) = 4 \cdot \cos^3(\alpha) - 3 \cdot \cos(\alpha)$$

$$\tan(3\alpha) = \frac{3 \cdot \tan(\alpha) - \tan^3(\alpha)}{1 - 3 \cdot \tan^2(\alpha)}$$

Vektoren

Definition

Ein Vektor ist durch Länge, Richtung und Orientierung eindeutig bestimmt.

Ortsvektor

Ein Vektor, dessen Anfangspunkt im Ursprung O und dessen Endpunkt im Punkt A liegt, heißt Ortsvektor \overrightarrow{OA} von A.

$$A(x|y) \quad \Rightarrow \quad \overrightarrow{OA} = \begin{pmatrix} x \\ y \end{pmatrix}$$

Vektoraddition

Vektoren lassen sich nur dann addieren, wenn sie gleicher Dimension und gleicher Art sind.

$$\vec{a} + \vec{b} = \begin{pmatrix} x_a \\ y_a \end{pmatrix} + \begin{pmatrix} x_b \\ y_b \end{pmatrix} = \begin{pmatrix} x_a + x_b \\ y_a + y_b \end{pmatrix}$$

Kommutativgesetz

$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$

${\bf Assoziativg esetz}$

$$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$$

Vektorsubtraktion

Vektoren werden subtrahiert, indem man ihre Komponenten subtrahiert:

$$\vec{a} - \vec{b} = \begin{pmatrix} x_a \\ y_a \end{pmatrix} - \begin{pmatrix} x_b \\ y_b \end{pmatrix} = \begin{pmatrix} x_a - x_b \\ y_a - y_b \end{pmatrix}$$

Skalarmultiplikation

Wird ein Vektor \vec{v} mit einem Skalar (einer reellen Zahl) λ multipliziert, wird jede Komponente des Vektors mit dieser Zahl multipliziert:

$$\lambda \cdot \vec{v} = \lambda \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \lambda \cdot x \\ \lambda \cdot y \end{pmatrix}$$

Misc

Multipliziert man einen Vektor mit einem Skalar c, wird der Vektor – in Abhängigkeit des Wertes des Skalars – verlängert, verkürzt und/oder er ändert seine Orientierung.

c > 1: Der Vektor wird verlängert.

0 < c < 1: Der Vektor wird verkürzt.

 $c<0\colon$ Der Vektor ändert seine Orientierung.

Betrag eines Vektors

Die Länge eines Vektors heisst Betrag des Vektors.

$$\vec{v} = \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow |\vec{v}| = \sqrt{x^2 + y^2}$$

Einheitsvektor

Ein Vektor der Länge 1 heisst Einheitsvektor.

$$\vec{a}^0 = \frac{1}{|a|} \vec{a}$$

Abstand zweier Punkte

Verbindungsvektor berechnen und dann Länge des Vektors berechnen.

Skalarprodukt

Das Skalarprodukt ist eine mathematische Verknüpfung, die zwei Vektoren eine Zahl (Skalar) zuordnet.

$$\vec{a} \circ \vec{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \circ \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = a_1 \cdot b_1 + a_2 \cdot b_2 + a_3 \cdot b_3$$

Kommutativgesetz

$$\vec{a} \circ \vec{b} = \vec{b} \circ \vec{a}$$

Distributivgesetz

$$\vec{a} \circ \left(\vec{b} + \vec{c} \right) = \vec{a} \circ \vec{b} + \vec{a} \circ \vec{c}$$

Gemischtes Assoziativgesetz

$$(k \cdot \vec{a}) \circ \vec{b} = k \cdot (\vec{a} \circ \vec{b})$$

Winkel zwischen zwei Vektoren

$$\cos \varphi = \frac{\vec{u} \circ \vec{v}}{|\vec{u}| \cdot |\vec{v}|} \qquad \Rightarrow \qquad \varphi = \cos^{-1} \left(\frac{\vec{u} \circ \vec{v}}{|\vec{u}| \cdot |\vec{v}|} \right)$$

Skalarprodukt berechnen, Beträge der Vektoren berechnen, Zwischenergebnisse in die Formel einsetzen und Formel nach Winkel auflösen.