Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

Отчет по лабораторной работе №11_2 Курс: «Проектирование реконфигурируемых гибридных вычислительных систем»

Тема: «Задержка (Latency)»

Выполнил студент гр. 3540901/81501		Селиверстов С.А		
	(подпись)			
Руководитель		Антонов А.П.		
	(подпись)			
	دد >>	2019 г.		

Санкт – Петербург 2019

ОГЛАВЛЕНИЕ

1.	Задание	3
2.	Исходный код	7
3.	Моделирование	9
4.	Исследование	. 10
4.1.	Решение 1а	. 10
4.1.	2.Синтез решения 1а	. 10
4.1	3. C/RTL моделирование	. 12
4.2.	Решение 2а	. 12
4.2.2	2.Синтез решения 2а	. 13
4.3.	Решение 3а	. 13
4.3.	2.Синтез решения 3а	. 13
4.4.	Решение 4а	14
4.4.	2.Синтез решения 4а	.14
4.5.	Решение 5а	.14
4.5.	2.Синтез решения 5а	. 14
D		15

1. Задание

- Создать проект lab11_2
- Микросхема: xa7a12tcsg325-1q
- Создать функцию по образцу (иерархия функций)

```
Loop:for(i=1;i<3;i++) {
    op_Read; RD
    op_Compute; CMP
    op_Write; WR
```

Op_read: t_in=d_in[i]
Op_compute: t_r=t_in*t_in;
Op_write: d_out[i]=t_r;

- Создать тест lab11_2_test.c для проверки функции. Осуществить моделирование (с выводом результатов в консоль)
- Исследование:
- Solution_1a
 - задать: clock period 10; clock_uncertainty 0.1
 - установить реализацию ПО УМОЛЧАНИЮ
 - осуществить синтез для:
 - привести в отчете:
 - performance estimates=>summary (timing, latency)
 - utilization estimates=>summary
 - performance Profile
 - Resource profile
 - scheduler viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
 - resource viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
 - Выполнить cosimulation и привести временную диаграмму
- Solution_2a
 - задать: clock period 10; clock_uncertainty 0.1
 - установить реализацию LATENCY для одной итерации

```
#pragma HLS latency
...Loop Body...
}
```

- осуществить синтез
 - привести в отчете:
 - performance estimates=>summary (timing, latency)
 - utilization estimates=>summary
 - performance Profile
 - Resource profile
 - scheduler viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
 - resource viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
- Выполнить cosimulation и привести временную диаграмму
- Сравнить два решения (solution_1a и solution_2a) и сделать выводы: зависимость от LATENCY; объяснить (посчитать) число циклов Latency, II...
- Solution 3a
 - задать: clock period 10; clock_uncertainty 0.1
 - установить реализацию LATENCY для всего цикла

```
#pragma HLS latency
```

- осуществить синтез
 - привести в отчете:
 - performance estimates=>summary (timing, latency)
 - utilization estimates=>summary
 - performance Profile
 - Resource profile
 - scheduler viewer (выполнить Zoom to Fit)

- о На скриншоте показать Latency
- о На скриншоте показать Initiation Interval
- resource viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
- Выполнить cosimulation и привести временную диаграмму
- Сравнить два решения (solution_2a и solution_3a) и сделать выводы: зависимость от LATENCY; объяснить (посчитать) число циклов Latency, II...
- Solution_4a
 - задать: clock period 10; clock_uncertainty 0.1
 - установить реализацию LATENCY с опцией min=5
 - осуществить синтез
 - привести в отчете:
 - performance estimates=>summary (timing, latency)
 - utilization estimates=>summary
 - performance Profile
 - Resource profile
 - scheduler viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
 - resource viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - На скриншоте показать Initiation Interval
 - Выполнить cosimulation и привести временную диаграмму
- Сравнить два решения (solution_3a и solution_4a) и сделать выводы: зависимость от LATENCY; объяснить (посчитать) число циклов Latency, II
- Solution_5a
 - задать: clock period 10; clock_uncertainty 0.1
 - установить реализацию LATENCY с опцией max=8
 - осуществить синтез
 - привести в отчете:
 - performance estimates=>summary (timing, latency)
 - utilization estimates=>summary

- performance Profile
- Resource profile
- scheduler viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
- resource viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
- Выполнить cosimulation и привести временную диаграмму
- Сравнить два решения (solution_3a и solution_5a) и сделать выводы: зависимость от LATENCY; объяснить (посчитать) число циклов Latency, II

2. Исходный код

Зададим следующий код устройства:

```
#include "lab11_2.h"
void lab11_2(int d_in[N], int d_out[N])
{
   int i;
   int t_in,t_r;
   Loop: for(i = 0; i < N; i++)
   {
      t_in = d_in[i];
      t_r = t_in * t_in;
      d_out[i] = t_r;
   }
}</pre>
```

Заголовочный файл определим как:

#define N 16

Код теста для проверки функции имеет вид:

```
#include "lab11 2.h"
#include <stdio.h>
int main()
   \mathbf{int} \hspace{0.2cm} d\_in \hspace{0.1cm} [N] \hspace{0.1cm}, d\_actual \hspace{0.1cm} [N] \hspace{0.1cm}, d\_expected \hspace{0.1cm} [N] \hspace{0.1cm};
   int passed = 1;
   int i;
   \mbox{for}\,(\,i \ = \ 0\,; \, i \ < \ N; \, i +\!\!+\!\!)
     d_in[i] = i;
     d_{expected}[i] = i * i;
   lab11_2(d_in,d_actual);
   for (i = 0; i < N; i++)
     printf("Expected\_[\%d]\_actual\_[\%d] \setminus n", d\_expected[i], \ d\_actual[i]);\\
     if(d_expected[i] != d_actual[i])
        passed = 1;
   if(passed != 1){
                           —Test_failed ——_\n");
     printf("----
   } else {
     }
```

Скрипт для запуска программы с консоли имеет вид:

```
open_project -reset lab11_2
add files lab11 2.c
add_files_{-tb} lab11_2_{test.c}
set\_top\ lab11\_2
set solutions [list 1a 2a 3a 4a 5a]
foreach sol $solutions {
  {\tt open\_solution\_solution\_\$sol-reset}
  set_part \{xa7a12tcsg325-1q\}
  create\_clock\_period\ 10\,ns
  set_clock_uncertainty 0.1
  if \{\$sol = "2a"\} \{
     {\tt set\_directive\_latency "lab11\_2/Loop"}
  if {$sol == "3a"} {
     set_directive_latency "lab11_2"
  \mathbf{if} \ \{\$sol = "4a"\} \ \{
     \mathtt{set\_directive\_latency} \hspace{0.1cm} -\mathtt{min} \hspace{0.2cm} 5 \hspace{0.2cm} "lab11 \hspace{0.2cm} 2"
  if \{\$sol = "5a"\}
     \mathtt{set\_directive\_latency} \hspace{0.1cm} -\mathtt{max} \hspace{0.2cm} 8 \hspace{0.2cm} "lab11\_2"
  csim_design
  \operatorname{csynth\_design}
  cosim_design -trace_level all
exit
```

3. Моделирование

Результаты моделирования, подтверждающие корректность работы устройства, имеют вид:

```
INFO: [APCC 202-1] APCC is done.
  Generating csim.exe
Expected [0] actual [0]
Expected [1] actual [1]
Expected [4] actual [4]
Expected [9] actual [9]
Expected [16] actual [16]
Expected [25] actual [25]
Expected [36] actual [36]
Expected [49] actual [49]
Expected [64] actual [64]
Expected [81] actual [81]
Expected [100] actual [100]
Expected [121] actual [121]
Expected [144] actual [144]
Expected [169] actual [169]
Expected [196] actual [196]
Expected [225] actual [225]
-----Test passed-----
INFO: [SIM 211-1] CSim done with 0 errors.
INFO: [SIM 211-3] *********** CSIM finish ***
```

4. Исследование

4.1. Решение 1а

В соответствие с планом лабораторной работы устанавливаем:

- clock period = 10;
- clock uncertainty = 0.1;
- реализация ПО УМОЛЧАНИЮ

Директивы данного решения имеют вид:

4.1.2.Синтез решения 1а

Результаты оценки производительности имеют вид:

По данным результатам синтеза можно сделать вывод, что оценка производительности видно устройства соответствует заданным критериям.

Оценка использования имеет вид:

Utilization Estimates

Summary

Name	BRAM_	18K	DSP4	8E	FF	LUT
DSP	-		-		-	-
Expression	-			3	0	47
FIFO	-		-		-	-
Instance	-		-		-	-
Memory	-		-		-	-
Multiplexer	-		-		-	42
Register	-		-		84	-
Total		0		3	84	89
Available		40		40	16000	8000
Utilization (%)		0		7	~0	1

Профиль производительности имеет вид:

Данные планировщика просмотра имеет вид:

Данные обзора ресурсов имеет вид:

	Resource\Control Step	C0	C1	C2	C3	C4
1	⊡I/O Ports					
2	d_in(p0)		re	ad		
3	d_out(p0)					write
4	⊡Memory Ports					
5	d_in(p0)		read			
6	d_out(p0)					write
7	⊡Expressions					
8	i_1_fu_69		+			
9	i_phi_fu_56		phi_mux			
10	exitcond_fu_63		icmp			
11	t_r_fu_80				*	

4.1.3. C/RTL моделирование

Временная диаграмма результатов C/RTL моделирования имеет вид:

По результатам временной диаграммы можно сделать вывод, что выполнение одного цикла требует 4 такта (16 итераций цикла) и плюс 1 такт для инициализации, таким образом, Latency = 4*16 + I = 65, II = 66 тактов.

4.2. Решение 2а

В соответствие с планом лабораторной работы устанавливаем:

- clock period 10;
- clock_uncertainty 0.1
- установить реализацию LATENCY для одной итерации
 - Loop_A: for (i=0; i<N; i++)
 - {
 - #pragma HLS latency
 - ..Loop Body...

0 }

Директивы данного решения имеют вид:

- ▼ lab11_2
 - d_in
 - d_out
 - ▼ 🧗 Loop

% HLS LATENCY

4.2.2.Синтез решения 2а

Результаты синтеза идентичны Решению 1а

4.3. Решение 3а

В соответствие с планом лабораторной работы устанавливаем:

- clock period 10;
- clock uncertainty 0.1
- установить реализацию LATENCY для всего цикла
 - #pragma HLS latency
 - Loop_A: for (i=0; i<N; i++)
 {
 ..Loop Body...

Директивы данного решения имеют вид:

▼ ● lab11_2 % HLS LATENCY

- d in
- d out
- Y Loop

4.3.2.Синтез решения 3а

Результаты синтеза идентичны Решению 1а

4.4. Решение 4а

В соответствие с планом лабораторной работы устанавливаем:

- clock period 10;
- clock_uncertainty 0.1
- реализацию LATENCY с опцией min=5

Директивы данного решения имеют вид:

- ▼ lab11_2% HLS LATENCY min=5● d_in● d out
 - 🧗 Loop

4.4.2.Синтез решения 4а

Результаты синтеза идентичны Решению 1а

4.5. Решение 5а

В соответствие с планом лабораторной работы устанавливаем:

- clock period 10;
- clock uncertainty 0.1
- реализацию LATENCY с опцией max=8

Директивы данного решения имеют вид:

- ▼ lab11_2 % HLS LATENCY max=8 ● d_in
 - d_out

 ▼ Loop

4.5.2.Синтез решения 5а

Результаты синтеза идентичны Решению 1a 14

Вывод

При проведении исследований для данной функции никаких отличий при применении директивы LATENCY выявлено не было.