Introduction to Machine Learning

Statistics

Mingchen Gao

Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA mgao8@buffalo.edu Slides adapted from Varun Chandola

Outline

Generative Models for Discrete Data

Steps for Learning a Generative Model

Incorporating Prior

Beta Distribution

Conjugate Priors

Estimating Posterior

Using Predictive Distribution

Need for Prior

Need for Bayesian Averaging

Likelihood

Posterior Predictive Distribution

Learning Gaussian Models

Estimating Parameters

Generative Models

- X, feature vector, represents the data with multiple discrete attributes
- Y represents the class

Most probable class

$$P(Y = c | \mathbf{X} = \mathbf{x}, \boldsymbol{\theta}) \propto P(\mathbf{X} = \mathbf{x} | Y = c, \boldsymbol{\theta}) P(Y = c, \boldsymbol{\theta})$$

- \triangleright $p(x|y=c,\theta)$ class conditional density
- ▶ How is the data distributed for each class?

Steps for Learning a Generative Model

- ► Example: *D* is a sequence of *N* binary values (0s and 1s) (coin tosses)
- ▶ What is the best distribution that could describe *D*?
- ▶ What is the probability of observing a *head* in future?

Step 1: Choose the form of the model

- ► Hypothesis Space All possible distributions
 - ► Too complicated!!
- Revised hypothesis space All Bernoulli distributions $(X \sim Ber(\theta), 0 \le \theta \le 1)$
 - \bullet θ is the hypothesis
 - Still infinite (θ can take infinite possible values)

Compute Likelihood

▶ Likelihood of *D*

$$p(D|\theta) = \theta^{N_1}(1-\theta)^{N_0}$$

Maximum Likelihood Estimate

$$\begin{split} \hat{\theta}_{\textit{MLE}} &= \underset{\theta}{\arg\max} \, p(D|\theta) = \underset{\theta}{\arg\max} \, \theta^{\textit{N}_1} (1-\theta)^{\textit{N}_0} \\ &= \underset{\textit{N}_0}{\underbrace{\textit{N}_1}} \end{split}$$

Mingchen Gao

Compute Likelihood

▶ Likelihood of *D*

$$p(D|\theta) = \theta^{N_1} (1-\theta)^{N_0}$$

Maximum Likelihood Estimate

$$egin{array}{lcl} \hat{ heta}_{\mathit{MLE}} &=& rg \max_{ heta} p(D| heta) = rg \max_{ heta} heta^{N_1} (1- heta)^{N_0} \ &=& rac{N_1}{N_0+N_1} \end{array}$$

- ▶ We can stop here (MLE approach)
- ▶ Probability of getting a head next:

$$p(x^* = 1|D) = \hat{\theta}_{MLE}$$

Incorporating Prior

- $lackbox{ Prior } \textit{encodes} \textit{ our prior belief on } \theta$
- ▶ How to set a Bayesian prior?
 - 1. A point estimate: $\theta_{prior} = 0.5$
 - 2. A probability distribution over θ (a random variable)
 - ▶ Which one?
 - For a bernoulli distribution $0 \le \theta \le 1$
 - Beta Distribution

Beta Distribution as Prior

Continuous random variables defined between 0 and 1

$$Beta(\theta|a,b) \triangleq p(\theta|a,b) = \frac{1}{B(a,b)}\theta^{a-1}(1-\theta)^{b-1}$$

- ▶ a and b are the (hyper-)parameters for the distribution
- \triangleright B(a,b) is the **beta function**

$$B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$

$$\Gamma(x) = \int_0^\infty u^{x-1} e^{-u} du$$

If x is integer

$$\Gamma(x) = (x-1)!$$

- "Control" the shape of the pdf
- We can stop here as well (prior approach)

$$p(x^*=1)= heta_{prior}$$

Mingchen Gao

Properties of Beta Distribution

$$mean = rac{a}{a+b}$$
 $mode = rac{a-1}{a+b-2}$ $var = rac{ab}{(a+b)^2(a+b+1)}$

Conjugate Priors

Another reason to choose Beta distribution

$$p(D|\theta) = \theta^{N_1} (1-\theta)^{N_0}$$

 $p(\theta) \propto \theta^{a-1} (1-\theta)^{b-1}$

▶ Posterior
 \(\infty \) Likelihood × Prior

$$\begin{array}{ll} \rho(\theta|D) & \propto & \theta^{N_1}(1-\theta)^{N_0}\theta^{s-1}(1-\theta)^{b-1} \\ & \propto & \theta^{N_1+s-1}(1-\theta)^{N_0+b-1} \end{array}$$

- Posterior has same form as the prior
- Beta distribution is a conjugate prior for Bernoulli/Binomial distribution

Estimating Posterior

Posterior

$$p(\theta|D) \propto \theta^{N_1+a-1}(1-\theta)^{N_0+b-1}$$

= Beta(\theta|N_1+a, N_0+b)

 \triangleright After observing N trials in which we observe N_1 heads and N_0 tails, we update our belief as:

$$\mathbb{E}[\theta|D] = \frac{a + N_1}{a + b + N}$$

Using Posterior

- \blacktriangleright We know that posterior over θ is a beta distribution
- MAP estimate

$$\begin{array}{lcl} \hat{\theta}_{MAP} & = & \displaystyle \arg\max_{\theta} p(\theta|a+N_1,b+N_0) \\ \\ & = & \displaystyle \frac{a+N_1-1}{a+b+N-2} \end{array}$$

- What happens if a = b = 1?
- We can stop here as well (MAP approach)
- Probability of getting a head next:

$$p(x^* = 1|D) = \hat{\theta}_{MAP}$$

True Bayesian Approach

- \triangleright All values of θ are possible
- \triangleright Prediction on an unknown input (x^*) is given by Bayesian Averaging

$$p(x^* = 1|D) = \int_0^1 p(x^* = 1|\theta)p(\theta|D)d\theta$$

$$= \int_0^1 \theta Beta(\theta|a + N_1, b + N_0)$$

$$= \mathbb{E}[\theta|D]$$

$$= \frac{a + N_1}{a + b + N}$$

▶ This is same as using $\mathbb{E}[\theta|D]$ as a point estimate for θ

The Black Swan Paradox

- ▶ Why use a *prior*?
- ightharpoonup Consider D= tails, tails, tails
- ▶ $N_1 = 0, N = 3$
- $\hat{\theta}_{MLE} = 0$
- $p(x^* = 1|D) = 0!!$
 - Never observe a heads
 - ► The *black swan* paradox
- ▶ How does the Bayesian approach help?

$$p(x^*=1|D)=\frac{a}{a+b+3}$$

Why is MAP Estimate Insufficient?

- MAP is only one part of the posterior
 - \triangleright θ at which the posterior probability is maximum
 - But is that enough?
 - What about the posterior variance of θ ?

$$var[\theta|D] = \frac{(a+N_1)(b+N_0)}{(a+b+N)^2(a+b+N+1)}$$

- ▶ If variance is high then θ_{MAP} is not trustworthy
- Bayesian averaging helps in this case

Likelihood

- ▶ Why choose one hypothesis over other?
- Avoid suspicious coincidences
- ► Choose concept with higher *likelihood*

$$p(D|h) = \prod_{x \in D} p(x|h)$$

► Log Likelihood

$$\log p(D|h) = \sum_{x \in D} \log p(x|h)$$

The Principle of Occam's Razor

- ▶ Always choose the simpler explanation
- ► A general problem-solving philosophy

Finding the Best Hypothesis

Maximum A Priori Estimate

$$\hat{h}_{prior} = \arg\max_{h} p(h)$$

Maximum Likelihood Estimate (MLE)

$$\hat{h}_{MLE}$$
 = $\underset{h}{\operatorname{arg max}} p(D|h) = \underset{h}{\operatorname{arg max}} \log p(D|h)$
 = $\underset{h}{\operatorname{arg max}} \sum_{x \in D} \log p(x|h)$

Maximum a Posteriori (MAP) Estimate

$$\hat{h}_{MAP} = \underset{h}{\operatorname{arg max}} p(D|h)p(h) = \underset{h}{\operatorname{arg max}} (\log p(D|h) + \log p(h))$$

MAP and MLE

- $ightharpoonup \hat{h}_{prior}$ Most likely hypothesis based on prior
- \hat{h}_{MLE} Most likely hypothesis based on evidence
- $ightharpoonup \hat{h}_{MAP}$ Most likely hypothesis based on posterior

$$\hat{h}_{prior} = rg \max_{h} \log p(h)$$

$$\hat{h}_{MLE} = rg \max_{h} \log p(D|h)$$

$$\hat{h}_{MAP} = rg \max_{h} (\log p(D|h) + \log p(h))$$

Interesting Properties

- As data increases, MAP estimate converges towards MLE
 - ► Why?
- ► MAP/MLE are consistent estimators
 - ▶ If concept is in H, MAP/ML estimates will converge
- ▶ If $c \notin \mathcal{H}$, MAP/ML estimates converge to h which is closest possible to the truth

19 / 23

Mingchen Gao

Posterior Predictive Distribution

- ▶ New input, *x**
- ▶ What is the probability that *x** is also generated by the same concept as *D*?
 - ▶ $P(x^* \in C | x^*, D)$?
- ▶ **Option 0:** Treat *h*^{prior} as the true concept

$$P(x^* \in C|x^*, D) = P(x^* \in h^{prior}|x^*, h^{prior})$$

Option 1: Treat h^{MLE} as the true concept

$$P(x^* \in C|x^*, D) = P(x^* \in h^{MLE}|x^*, h^{MLE})$$

Option 2: Treat h^{MAP} as the true concept

$$P(x^* \in C|x^*, D) = P(x^* \in h^{MAP}|x^*, h^{MAP})$$

▶ Option 3: Bayesian Averaging

$$P(x^* \in C|x^*, D) = \sum_{h} P(x^* \in h|x^*, h)p(h|D)$$

← □ → ← □ → ← □ → □ → □ ← ○ ○
 CSE 4/574
 20 / 23

Multivariate Gaussian

pdf for MVN with d dimensions:

$$\mathcal{N}(\mathbf{x}|oldsymbol{\mu},oldsymbol{\Sigma}) riangleq rac{1}{(2\pi)^{d/2}|oldsymbol{\Sigma}|^{1/2}} exp\left[-rac{1}{2}(\mathbf{x}-oldsymbol{\mu})^{ op}oldsymbol{\Sigma}^{-1}(\mathbf{x}-oldsymbol{\mu})
ight]$$

Estimating Parameters of MVN

Problem Statement

Given a set of *N* independent and identically distributed (iid) samples, D, learn the parameters (μ, Σ) of a Gaussian distribution that generated D.

- MLE approach maximize log-likelihood
- Result.

$$\widehat{\mu}_{MLE} = rac{1}{N} \sum_{i=1}^{N} \mathsf{x_i} \triangleq \bar{\mathsf{x}}$$

$$\widehat{\boldsymbol{\Sigma}}_{\textit{MLE}} = \frac{1}{\textit{N}} \sum_{i=1}^{\textit{N}} (\mathbf{x_i} - \overline{\mathbf{x}}) (\mathbf{x_i} - \overline{\mathbf{x}})^{\top}$$

References

Chapter 4.1 - 4.2.5, 4.6 Murphy Book