Project Report

1. Illustration of confidence set converging into the cone

- 1) Compute the confidence set {a set which encapsulates the predicted theta and original theta with a given regret bound} at each phase of the algorithm.
- 2) And therefore show as a result how the confidence set changes and converges into the cone of the optimal arm.

2. <u>G/XY - static algorithm.</u>

Min-max optimization problem.

Let f be,

$$x'^{\top}(A + xx^{\top})^{-1}x'$$

then as shown in the RHS, to implement G-allocation strategy, we need to min-max f. This can be implemented as shown below

Input: decision space $\mathcal{X} \in \mathbb{R}^d$, confidence $\delta > 0$ Set: t = 0; $Y = \{y = (x - x'); x \neq x' \in \mathcal{X}\}$; while Eq. 11 is not true do if G-allocation then $x_t = \underset{x \in X}{\arg \min} \underset{x' \in X}{\max} x'^\top (A + xx^\top)^{-1} x'$ else if $\mathcal{X}\mathcal{Y}$ -allocation then $x_t = \underset{x \in X}{\arg \min} \underset{x' \in X}{\max} y^\top (A + xx^\top)^{-1} y$ end if Update $\hat{\theta}_t = A_t^{-1} b_t$, t = t + 1end while Return arm $\Pi(\hat{\theta}_t)$

Figure 2: Static allocation algorithms

Let
$$X_1$$
, X_2 , X_3 be the arms given.

3. XY – adaptive algorithm

Let X_hat_j => Set of potentially optimal arms in phase j

Algorithm:

- 1. In each phase we implement XY iterative algo.
- 2. The phase length is determined by the uncertainty present in estimating the active directions between successive phases.
- 3. Once a phase ends then we compute theta_hat using OLS method.
- 4. We then use the sub-optimal condition to remove the arms from X hat j.
- 5. And loop over the above steps until $| X_hat_j | = 1$

Results obtained:

Visualization of confidence set

Initial phase of the algorithm

After completion of the algorithm

Plot of Samples required vs Dimensionality over an average of 15 runs

Observations: A sample run of the program, shows that XY-adaptive algorithm eliminates the dominated arms at intial phases leading it to find the best arm in lesser no.of samples when compared to XY-static which samples across all the arms evenly.

Samples/arm	$\mathcal{X}\mathcal{Y}$ -adaptive	$\mathcal{X}\mathcal{Y}$
x_1	195	30124
x_2	48382	29517
x_3	5	31024
x_4	1	32014
x_5	1	28092
x_6	5	3
Budget	48589	118760