Key ID: 028

Name:

1. Problem

An experiment has $n_1 = 3$ plants in the treatment group and $n_2 = 4$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

	value1	value2	value3	value4
sample 1:	112	114	100	223
sample 2:	211	204	233	

- (a) Determine degrees of freedom.
- (b) Determine t^* for a 98% confidence interval.
- (c) Determine SE.
- (d) Determine a lower bound of the 98% confidence interval of $\mu_2 \mu_1$.
- (e) Determine an upper bound of the 98% confidence interval of $\mu_2 \mu_1$.
- (f) Determine $|t_{obs}|$ under the null hypothesis $\mu_2 \mu_1 = 0$.
- (g) Determine a lower bound of the two-tail p-value.
- (h) Determine an upper bound of two-tail p-value.
- (i) Do you reject the null hypothesis with a two-tail test using a significance level α = 0.02? (yes or no)

1.	(a)					2		0	0	0	
	(b)					6] .	9	6	0	
	(c)					7] .	7	5	0	
	(d)				5	5] .	0	6	0	
	(e)			1	6	2] .	9	4	0	
	(f)				1	4] .	0	6	5	
	(g)					0] .	0	0	5	
	(h)					0] .	0	1	0	
	(i)	yes	S								

Key ID: 028

1. Solution

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{X_1} = 109$$

$$\overline{X_2} = 218$$

$$s_1 = 7.57$$

$$s_2 = 12.8$$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(3, 4) - 1 = 2$$

We use the t table to find t^* such that $P(|T| < t^*) = 0.98$

$$t^* = 6.96$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(7.57)^2}{3} + \frac{(12.8)^2}{4}} = 7.75$$

We find the bounds of the confidence interval.

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (55.06, 162.94)$$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(218 - 109) - 0}{7.75} = 14.06$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 14.06$$

We use the table to determine bounds on *p*-value. Remember, df = 2 and *p*-value = $P(|T| > |t_{\text{obs}}|)$.

$$0.005 < p$$
-value < 0.01

We should consider both comparisons to make our decision.

$$|t_{\sf obs}| > t^{\star}$$

$$p$$
-value $< \alpha$

Thus, we reject the null hypothesis. Also notice the confidence interval does not contain 0.

- (a) 2
- (b) 6.96
- (c) 7.75
- (d) 55.06
- (e) 162.94
- (f) 14.065
- (g) 0.005
- (h) 0.01
- (i) yes