Brushed DC Motor Model Derivation State Space Form Transfer Functions Simulated Response

Lecture Module - Electrical Systems

ME3050 - Dynamic Modeling and Controls

Mechanical Engineering
Tennessee Technological University

Topic 4 - Example: DC Motor

Brushed DC Motor Model Derivation State Space Form Transfer Functions Simulated Response

Electrical Systems

- Brushed DC Motor
- Model Derivation
- State Space Form
- Transfer Functions
- Simulated Response

Model Derivation

Armature Controlled Brushed DC Motor

Brushed DC Motor Model Derivation State Space Form Transfer Functions Simulated Response

Brushed DC Motor

Animation on Web

Model Derivation

Armature Controlled Brushed DC Motor

 v_a : armature voltage (input)

 R_a : armature resistance Torque on armature

$$T = (nBLi_a) r = (nBLr) i_a = K_T i_a$$

Back EMF (electromotive force) voltage

$$v_b = nBLv = (nBLr)\omega = K_b\omega$$

Model Derivation

Armature Controlled Brushed DC Motor

Kirchoff's Voltage Law

$$v_a - R_a i_a - L_a \frac{di_a}{dt} - K_b \omega = 0$$

Newtons's Second Law

$$I\frac{d\omega}{dt} = T - c\omega - T_L = K_T i_a - c\omega - T_L$$

Image: System Dynamics, Palm, 4th, Pg. 376-378

State Space Form

State-Variable (State-Space) form

$$\frac{di_a}{dt} = \dot{x}_1 = \frac{1}{L_a} \left(v_a - R_a i_a - K_b \omega \right) = \begin{bmatrix} -\frac{R_a}{L_a} & -\frac{K_b}{L_a} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} \frac{1}{L_a} & 0 \end{bmatrix} \begin{bmatrix} v_a \\ T_L \end{bmatrix}$$

$$\frac{d\omega}{dt} = \dot{x}_2 = \frac{1}{L} \left(K_T i_a - c\omega - T_L \right) = \begin{bmatrix} -\frac{K_T}{L} & -\frac{c}{L} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 & -\frac{1}{L} \end{bmatrix} \begin{bmatrix} v_a \\ T_L \end{bmatrix}$$

Write the state equation in matrix form with states $x_1=i_a$, and $x_2=\omega$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -\frac{R_a}{L_a} & -\frac{K_b}{L_a} \\ \frac{K_T}{I} & -\frac{c}{I} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} \frac{1}{L_a} & 0 \\ 0 & -\frac{1}{I} \end{bmatrix} \begin{bmatrix} v_a \\ T_L \end{bmatrix}$$

Transfer Functions

The input-output relationships can be represented by the following transfer functions.

Armature Current to Armature Voltage

$$\frac{I_a(s)}{V_a(s)} = \frac{Is + c}{L_a I s^2 + (R_a I + c L_a) s + c R_a + K_b K_T}$$

Armature Current to External Load

$$\frac{I_{a}\left(s\right)}{T_{L}\left(s\right)} = \frac{K_{b}}{L_{a}Is^{2} + \left(R_{a}I + cL_{a}\right)s + cR_{a} + K_{b}K_{T}}$$

Transfer Functions

Armature Angular Velocity to Armature Voltage

$$\frac{\Omega(s)}{V_a(s)} = \frac{K_T}{L_a I s^2 + (R_a I + c L_a) s + c R_a + K_b K_T}$$

Armature Angular Velocity to External Load

$$\frac{\Omega\left(s\right)}{T_{L}\left(s\right)} = \frac{L_{a}s + R_{a}}{L_{a}Is^{2} + \left(R_{a}I + cL_{a}\right)s + cR_{a} + K_{b}K_{T}}$$

Simulated Response

The following MATLAB code defines a state space system object and simulates the system response to various inputs.

Simulated Response

```
% define components of the state equation
A=[-Ra/La -Kb/La
  KT/I - c/I:
% B matrix is 2x2 because u vector is 2x1
B=[1/La\ 0]
  0 - 1/I;
% use first two states as outputs
C=[1 0
  0 1];
% the D matrix shape of B matrix
D = [0 \ 0]
  0 0];
```

Simulated Response

```
% create a state space model object
sys1=ss(A,B,C,D);

% simulate a step response
figure(1)
step(sys1)
grid on; xlabel('time(s)')
```