

Sentiment Analysis of Tweets about Georgia State University

A Natural Language Processing Use-Case

David King Agbi Joel Dassoundo Ifeanyi Moses Uzowuru

J. Mack Robinson College of Business, Georgia State University

Introduction

Introduction Problem

Statement Methodology

Methodolog

Data Cleaning

Vectorization

Machine Learning &

Conclusion

■ Sentiment analysis is simply identifying and classifying sentiments (which are the point of view or emotions) that are expressed in the message or text source

Introduction

Introduction Problem

Statement

Methodology Data Cleaning

Data Transformation Vectorization Machine Learning & Model Evaluation

Conclusion

Sentiment analysis is simply identifying and classifying sentiments (which are the point of view or emotions) that are expressed in the message or text source

■ A Natural Language Processing is simply preparing computers to understand and process the language we speak, either through audio or texts. Siri, Cortana, Bixby and google translator are all examples of this.

Introduction

Introduction Problem

Statement

Methodology

Data Cleaning

Data Transformation

Vectorization

Machine Learning &

- Sentiment analysis is simply identifying and classifying sentiments (which are the point of view or emotions) that are expressed in the message or text source
- A Natural Language Processing is simply preparing computers to understand and process the language we speak, either through audio or texts. Siri, Cortana, Bixby and google translator are all examples of this.
- Build a machine learning model that can analyze several tweets made about GSU with the ability to estimate the sentiments of those tweets.
 - Thus, we would classify these tweets as positive, neutral or negative.

WHY?

Introduction

Problem Statement

Methodology

Data Cleaning
Data Transformation &
Vectorization

Machine Learning & Model Evaluation

Steps Involved

Introduction

Problem Statement

Methodology

Data Cleaning
Data Transformation &
Vectorization
Machine Learning &
Model Evaluation

Figure: Process involved in the project

Task 1 - Exploratory Data Analysis & Visualization

Introduction

Problem Statement

Methodology

Data Cleaning
Data Transformation &
Vectorization

Machine Learning Model Evaluation

Conclusion

link_prc	count_seen	tweet_description	Link_to_tweet	Location	User_name	Tweet_Date	Tweet_Text	
https://pbs.twimg.com/profile_images/513!	1234	NaN	NaN	So Cal	Miguel	2021-11-20 18:46:57+00:00	At the half, #1 Georgia beating up on Creampuf	0
https://pbs.twimg.com/profile_images/137	1531	MCHS '20	NaN	Georgia, USA	Xander 🍫	2021-11-20 18:44:17+00:00	RT @DraftDiamonds: 2022 NFL Draft Prospect Int	1
https://pbs.twimg.com/profile_images/434-	10790	@NationalMGC & @Gamma_Eta1995 Nat'l Pres Emeri	NaN	Miami, FL	christianne medrano graham	2021-11-20 18:31:35+00:00	First play off game of the season for out West	2
https://pbs.twimg.com/profile_images/127-	12624	I'm a mother, grandmother, wifeetc.\n\nI V	NaN	Tennessee USA	Anita Hollis	2021-11-20 17:55:18+00:00	RT @RegWatchCanada: TAXED TO DEATH Biden Vap	3
https://pbs.twimg.com/profile_images/124	98180	Proud Grandmother of 3 boys and 1 girl. Attend	NaN	Buford, Ga	Deborah Elliott	2021-11-20 17:48:59+00:00	RT @gpbnews: #ICYMI: Currently, 40 Black women	4
https://pbs.twimg.com/profile_images/1443	18392	Kızıl elma tüm cihan demektir.	NaN	NaN	Ali AYDOĞAN	2021-11-12 06:56:31+00:00	RT @NazmiyeHatun_: @_Ebru_yildirim_ @erdemnevi	8960
https://pbs.twimg.com/profile_images/101!	1578	Официальный аккаунт Гомельского государственно	https://t.co/cvCV4zJ5AO	246019, г. Гомель, пул. Советская, 104 \nTeneф	ГГУ имени Ф. Скорины	2021-11-12 06:51:38+00:00	На кафедре ботаниях и физиологии растений биол	8961
https://pbs.twimg.com/profile_images/120-	55918	#CarpeDiem Grambling State University Alum	https://t.co/kMd2q4GXke	Where they make Gumbo @, La	Don Juan	2021-11-12 06:46:30+00:00	RT @HBCUSports: The long-term GSU baseball coa	8962
https://pbs.twimg.com/profile_images/118:	1619	NaN	NaN	NaN	Dmaingi	2021-11-12 06:43:10+00:00	RT @PHIAMAX: If today's chaos' was in ELDORET	8963

Figure: Output of extracted tweets showing the various columns

Task 1 - Exploratory Data Analysis & Visualization

Introduction Problem

Statement

Methodology Data Cleaning

Data Transformation Vectorization Machine Learning &

Conclusion

We do this by first extracting the tweets using Twitter API.
The figure below shows the flow diagram of the process

Figure: Extracting Tweets using Twitter API

Task 1

Introduction

Problem Statement

Methodology Data Cleaning

Data Transformation & Vectorization Machine Learning & Model Evaluation

Conclusion

Next thing is to import all the necessary libraries we employed in the project

Task 1

Introduction

Statement

Methodology Data Cleaning

Vectorization

Machine Learning &

Model Evaluation

Conclusion

Next thing is to import all the necessary libraries we employed in the project

We then analyse or explore the dataset such as getting the information, describing the data, shape of the data, checking for null elements and so on. We visualized the sentiments using the countplot and visualized the null elements by using the heatmap and got these results:

Task 1 - Exploratory Data Analysis & Visualization

Introduction

Problem Statement

Methodology Data Cleaning

Data Transformation & Vectorization Machine Learning & Model Evaluation

Task 1 - Exploratory Data Analysis & Visualization

Introduction

Problem Statement

Methodology

Data Cleaning Data Transformation &

Conclusion

As we can see, this looks not balanced

David King Agbi Joel Dassoundo Ifeanyi Moses Uzowuru

Task 1 - Exploratory Data Analysis & Visualization

Introduction

Problem Statement

Methodology

Data Cleaning

Conclusion

■ Therefore, we applied the augmentation technique to populate the negative tweets to make it more significant. This is the new plot of the distribution of sentiments

David King Agbi Joel Dassoundo Ifeanyi Moses Uzowuru

Introduction

Problem Statement

Methodology Data Cleaning

Vectorization

Machine Learning &

Conclusion

■ The following are the processing techniques that we employed in the listed order to normalize the text:

Introduction

Problem Statement

Methodology Data Cleaning

Vectorization

Machine Learning &

Model Evaluation

Conclusion

■ The following are the processing techniques that we employed in the listed order to normalize the text:

Removal of punctuations.

Introduction

Problem Statement

Methodology Data Cleaning

Vectorization

Machine Learning &

Model Evaluation

Conclusion

■ The following are the processing techniques that we employed in the listed order to normalize the text:

- Removal of punctuations.
- Removal of stop words.

Introduction

Problem Statement

Methodology Data Cleaning

Vectorization

Machine Learning &

Model Evaluation

Conclusion

■ The following are the processing techniques that we employed in the listed order to normalize the text:

- Removal of punctuations.
- Removal of stop words.
- Tokenization

Introduction

Problem Statement

Methodology Data Cleaning

Vectorization

Machine Learning &

Model Evaluation

- The following are the processing techniques that we employed in the listed order to normalize the text:
- Removal of punctuations.
- Removal of stop words.
- Tokenization
- Stemming/Lemmatization

Introduction

Statement

Data Cleaning

Vectorization

Machine Learning &

Model Evaluation

- The following are the processing techniques that we employed in the listed order to normalize the text:
- Removal of punctuations.
- Removal of stop words.
- Tokenization
- Stemming/Lemmatization
- Converting capital letters to small letters

Task 3 - Feature Extraction

Introduction

Problem Statement Methodology

Data Cleaning

Data Transformation &

Vectorization Machine Learning

Model Evaluation

Conclusion

Data in the form of text is not suitable for training a machine learning model. For this reason, we had to convert the tweets into numerical features, ensuring that the inherent learnable pattern is conserved in the best way possible.

Task 3 - Feature Extraction

Introduction

Statement Methodology

Data Cleaning

Data Transformation &

Vectorization

Machine Learning Model Evaluation

Conclusion

Data in the form of text is not suitable for training a machine learning model. For this reason, we had to convert the tweets into numerical features, ensuring that the inherent learnable pattern is conserved in the best way possible.

■ To do this, we used the count vectorizer or vectorization (Term Frequency-Inverse Document Frequency (TF-IDF)) to perform textual transformations into vectors

Task 4 - Machine Learning & Model Evaluation

Introduction Problem

Statement

Methodology

Data Cleaning

Data Transformation 8

Machine Learning & Model Evaluation

Conclusion

■ Now that the feature extraction is done, the data is ready to be fed into a model

Task 4 - Machine Learning & Model Evaluation

Introduction

Statement Methodology

Data Cleaning

Data Transformation 8

Machine Learning & Model Evaluation

- Now that the feature extraction is done, the data is ready to be fed into a model
- Finally, the data is split into training and test using stratified sampling so that the split follows the population distribution and then we applied the machine learning algorithms. Thus, we compared the performance of the:
 - Multinomial Naive Baye's Model
 - 2 Multinomial Logistic regression Model
 - 3 The Decision Tree (Random Forest) Model

Multinomial Naive Baye's Model

We had the following confusion matrix and classification report after using the Multinomial Naive Baye's Model

Introduction

Methodology Data Cleaning

Machine Learning & Model Evaluation

Conclusion

Problem Statement

Multinomial Naive Baye's model

Introduction

Problem Statement

Methodology Data Cleaning

Data Transformation & Vectorization

Machine Learning & Model Evaluation

Conclusion

#Evaluation scores for multinomial naive bayes
print(classification_report(y_test, naive_bayes))

	precision	recall f1-score		support
-1.0 0.0 1.0	0.92 0.85 0.80	0.79 0.91 0.78	0.85 0.88 0.79	466 1063 572
accuracy macro avg weighted avg	0.86 0.85	0.83 0.85	0.85 0.84 0.85	2101 2101 2101

Multinomial Logistic Regression model

■ We had the following confusion matrix and classification report after using the Multinomial Logistic Regression model

Introduction

Problem Statement

Methodology Data Cleaning

Machine Learning & Model Evaluation

Multinomial Logistic Regression model

Introduction

Problem Statement

Methodology Data Cleaning Data Transformation

Machine Learning & Model Evaluation

Woder Evaluation

Conclusion

#Evaluation scores for Multinomial Logistics Regression
from sklearn.metrics import classification_report
print(classification_report(y_test,logistics_pred))

	precision	recall	f1-score	support
-1.0 0.0 1.0	0.96 0.88 0.90	0.88 0.95 0.83	0.92 0.92 0.86	466 1063 572
accuracy macro avg weighted avg	0.91 0.91	0.89 0.90	0.90 0.90 0.90	2101 2101 2101

Random Forest Model

We had the following confusion matrix and classification report after using the Random Forest Model

Introduction

Methodology Data Cleaning

Machine Learning & Model Evaluation

Conclusion

Problem Statement

David King Agbi Joel Dassoundo Ifeanyi Moses Uzowuru

Random Forest Model

Introduction

Problem Statement

Methodology Data Cleaning

Data Transformation & Vectorization

Machine Learning & Model Evaluation

Conclusion

#Evaluation scores for random forest
print(classification_report(y_test, rand_f))

support	f1-score	recall	precision	
466	0.86	0.85	0.87	-1.0
1063	0.88	0.93	0.83	0.0
572	0.77	0.70	0.87	1.0
2101	0.85			accuracy
2101	0.84	0.83	0.86	macro avg
2101	0.85	0.85	0.85	weighted avg

Conclusion

Introduction

Problem Statement

Methodology Data Cleaning

Data Transformation Vectorization Machine Learning & Model Evaluation

Conclusion

In terms of negative prediction, Multinomial logistics Regression performed the best in classifying correctly negative tweets and in its precision power, which is why it has the best F1 score and we thereby confirm the algorithm as our model of choice.

Thank You!

