学号:

姓名:

成绩:

年级:

专业:

说明: A^T 表示矩阵 A 的转置矩阵, A^* 表示矩阵 A 的伴随矩阵, E 是单位矩阵, O 是零矩阵, A^{-1} 表示可逆矩阵 A 的逆矩阵, $ A $ 表示方阵 A 的行列式, $\langle \alpha, \beta \rangle$ 表示向量 α, β 的内积。		
得分 一.客观题: 1-3 小题为判断题,在对的后面括号中填"√",错的后面打	舌号中填	["×",
	5分)。	
1. 若矩阵 A 与 B 相似,则 A 等价于 B .	()
2. 设 A 是 m×n 矩阵, m <n, ax="O" r(a)="m,则齐次方程组" td="" 且秩="" 只有零解.<=""><td>(</td><td>)</td></n,>	()
3. 在欧氏空间中只有零向量的模长为 0.	()
4. 设行列式 $\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = m$, $\begin{vmatrix} a_{13} & a_{11} \\ a_{23} & a_{21} \end{vmatrix} = n$, 则行列式 $\begin{vmatrix} a_{11} & a_{12} + a_{13} \\ a_{21} & a_{22} + a_{23} \end{vmatrix}$ 等于	()
(A) $m+n$ (B) $-(m+n)$ (C) $m-n$ (D) $n-m$		
5. 设 A 为 n 阶方阵, C 是 n 阶正交矩阵,且 $B=C^TAC$,则下列结论不成立的	勺是()
(A) A 与 B 相似 (B) A 与 B 等价		
(C) $A 与 B$ 有相同的特征值 (D) $A 与 B$ 有相同的特征向量	量	
6. 设矩阵 $A = \begin{pmatrix} a & b \\ b & -a \end{pmatrix}$ 其中 $a > b > 0$ 且 $a^2 + b^2 = 1$,则 A 为	()
(A) 初等矩阵 (B) 正交矩阵 (C) 正定矩阵 (D) 负定矩阵		
7. 对于 n 阶矩阵 A ,以下哪个条件不能得出 " A 与对角形矩阵相似"的结论	()
(A) A 有 n 个互异的特征值 (B) A 有 n 个线性无关的特征	E向量	
(C) A 是实对称矩阵 (D) A 的秩为 1		
8. n 阶矩阵 A,B,C 满足 $ABC=E,E$ 为 n 阶单位矩阵,则 B 的逆矩阵等于	()
(A) $A^{-1}C^{-1}$ (B) $C^{-1}A^{-1}$ (C) CA (D) AC	\boldsymbol{C}	
得分 二、行列式计算(第1题6分,第2题8分,共14分) x+a b c d		
1. 计算四阶行列式 $\begin{vmatrix} a & x+b & c & d \\ a & b & x+c & d \\ a & b & c & x+d \end{vmatrix}$.		
2. 计算 n (n>2) 阶行列式 1 1 1 ··· 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

得 分

三、求矩阵 X, 使下式成立:

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} X = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 (本题 8 分)

得 分

四、λ为何值时,方程组:

$$\begin{cases} x_1 + x_2 + x_3 = 1 \\ 2x_1 + \lambda x_2 + 2x_3 = 2 \\ 5x_1 + (\lambda + 3)x_2 + (\lambda + 2)x_3 = 6 \end{cases}$$
有惟一解,无解或有无穷多解?

并在有无穷多解时求出方程组的通解. (本题 13 分)

得 分

五、已知三维向量空间 R^3 的一个基: α_1 , α_2 , α_3 ; (本题 12 分) 设 $\beta_1 = 2\alpha_1 + 3\alpha_2 + 3\alpha_3$, $\beta_2 = 2\alpha_1 + \alpha_2 + 2\alpha_3$, $\beta_3 = \alpha_1 + 5\alpha_2 + 3\alpha_3$.

- 1) 证明 β_1 , β_2 , β_3 也是 R^3 的一个基;
- 2) 求由基 β_1 , β_2 , β_3 到基 α_1 , α_2 , α_3 的过渡矩阵;
- 3) 若向量 α 在基 α_1 , α_2 , α_3 , 下的坐标为(1, -2, 0), 求 α 在基 β_1 , β_2 , β_3 , 下的坐标.

得 分

六、求一个正交变换 X=PY,将下列二次型化成标准型 (本题 15 分) $f(x_1,x_2,x_3)=3x_1^2+3x_2^2+2x_3^2-2x_1x_2 ;$

并求出该二次型的秩,同时说明该二次型的类型(正定、负定、半正定、半负定、不定).

得 分

七、设A, B, C, D 均为n 阶方阵, A 是可逆矩阵, 且有AB=BA, 证明:

$$\begin{vmatrix} A & C \\ B & D \end{vmatrix} = |AD - BC|.$$

(本题 10 分)

得 分

八、设 X^* 是非齐次线性方程组AX = b的一个解, X_1, X_2, \dots, X_{n-r} 是它导出组的基础解系,证明: $X^*, X_1, X_2, \dots, X_{n-r}$ 线性无关。 (本题 8 分)

得 分