Universidade de São Paulo

Escola de Artes, Ciências e Humanidades

Docente: Prof. Dr. Clodoaldo A M Lima.

Discente: No. USP:

Atenção

No USP com final 2, 4, 6, 8 – resolver as questões 1^a, 3^a, 5^a, 7^a, 9^a, 11^a, 13^a

No USP com final 0, 1, 3, 5, 7, 9 – resolver as questões 2^a, 4^a, 6^a, 8^a, 10^a, 12^a. 14^a

1ª Questão) (**1,0 ponto**) Um programa roda em 10 segundos em um computador A, que tem um clock de 400 MHz. Está sendo projetada uma nova máquina B, que deverá rodar este programa em 6 segundos. No entanto, essa redução afetará o projeto do resto da CPU. Por essa razão, a máquina B requer **1,2** vezes mais ciclos de clock que a máquina A para um mesmo programa. Qual a frequência de clock da nova máquina?

TA = NINST*NCA*TCA

TB = NINST*NCB*TCB

TA/TB = NCA/NCB * TCA/TCB

10/6 = NCA/1.2*NCA * TCA/TCB

TCB = 6/10*1/1.2*TCA

TCB = TCA/2

1/FB = 2/FA

FB = 2 *400

FB = 800 MHz

2º Questão) (1,0 ponto) Assuma que os estágios individuais de um fluxo de dados tem as seguintes latências

IF	ID	EX	MEM	WB
250 os	350 os	150 ps	300 ps	200 ps

Assuma que instruções executadas pelo processador são quebradas como segue

formato R	Beq	Lw	Sw
45%	20%	20%	15%

a) (0,3 ponto) Qual é o tempo de ciclo em processador com pipeline e sem pipeline?

Sem pipeline

TC = 250ps + 350ps+150ps+300ps+200ps = 1250 ps

Com pipeline

TC = 350ps

b) (0,3 ponto) Qual a latência da instrução lw em processador com pipeline e sem pipeline?

Sem pipeline

Latência = 1250 ps

Com pipeline

Latência =5*350ps = 1750 ps

c) (0,4 ponto) Se pudermos dividir um estágio do fluxo de dados no pipeline em dois novos estágios, cada com metade do estágio original, qual estágio você dividiria e qual o novo ciclo de clock do processador?

O estágio com maior duração é o DI (0,2 Ponto). Neste caso, o TC seria de 300ps (0,2 ponto)

3ª Questão) (**1,0 ponto**) Um processador RISC é implementado em duas versões de organização síncrona: uma monociclo, em que cada instrução executa em exatamente um ciclo de relógio, e uma versão pipeline de 5 estágios. Os estágios da versão pipeline são: (1) busca de instrução, (2) busca de operandos, (3) execução da operação, (4) acesso à memória e (5) atualização do banco de registradores. A frequência máxima de operação das organizações foi calculada em 200 MHz para a versão monociclo e 400 MHz para a versão pipeline. Um programa X que executa 200 instruções é usado para comparar o desempenho das organizações. Das 200 instruções, apenas 40% fazem acesso à memória, enquanto as demais operam apenas sobre registradores internos da organização. Assuma, que o programa não apresenta nenhum conflito de dados ou de controle entre instruções que podem estar simultaneamente dentro do pipeline da segunda organização. Calcule o tempo de execução do programa X nas organizações **monociclo e pipeline**.

Organização da máquina Versão 1 - Monociclo

Período para execução de uma instrução [1/(200 x 10^6)] s = 5 ns

Período para execução de 200 instruções 200 x 5 ns = 1.000 ns

Período do pipeline $[1/(400 \times 10^{6})]$ s = 2,5 ns

Período para execução de 200 instruções (Observar o princípio da Figura 1)

40% fazem acesso à memória (80 instruções – utilizam 5 estágios)

60% operam apenas sobre registradores internos da organização (120 instruções – utilizam 4 estágios).

Estágio 1: 200 períodos de clock (200 instruções)

Estágio 2: tem início no segundo período de clock para a instrução 1. Logo, para execução deste estágio em todas as instruções, temse mais um período de clock em relação ao estágio anterior; Estágio 3:

Importante: 40% e 60% (descritos anteriormente) estarão inseridos no tempo necessários à execução do pior caso (5 estágios).

Logo, o período para execução das 200 instruções é: (200 + 1 + 1 + 1 + 1) x 2,5 ns = 510 ns

4ª Questão) (**1,0 Ponto**) Assinale verdadeiro (V) ou falso (F). (Lembre-se: um item assinalado incorretamente anula um item assinalo corretamente)

- (V) RISC apresenta poucos formatos de instrução e muitos registradores de uso genérico, enquanto CISC possui instruções de vários comprimentos (no mesmo conjunto)
- (F) Arquitetura superpipeline baseia-se no aumento das unidades funcionais de forma que seja possível executar mais de uma instrução em cada ciclo de relógio
- (V) Na RISC a complexidade esta no compilador, enquanto na CISC a complexidade esta no microprograma
- (F) Uma arquitetura super-escalar consiste em aumentar o número de estágios da pipeline, conseguindo diminuir Tcc e aumentar a frequência de relógio
- (V) Arquitetura vetorial especifica uma série de operações a realizar em vários dados, numa só instrução
- (V) Uma arquitetura com grau de grau de super-escalaridade igual a 2 apresenta 2 ciclos de penalização (5 instruções) nos saltos previstos incorretamente
- (F) Programas compilados para arquitetura CISC possuem garantia que serão menores que os compilados para RISC.
- (F) No mecanimo de write back uma escrita modifica o dado na cache e memória juntos
- (V) No caso em que não há escalonamento dinâmico, as instruções são emitidas pela ordem com que são geradas pelo compilador, executadas pela mesma ordem e terminadas ainda em ordem
- (V) Tamanhos e posições das instruções são fixos e alinhados de acordo com o tamanho de uma palavra em RISC
- 5ª Questão) (**1,5 ponto**) Usando o sistema de previsão local de desvio de 2 bits, mostrado na Figura1, um certo loop é executado duas vezes:
- a) considerando-se que o estado inicial seja 10, calcular a porcentagem de acertos e erros de previsão, considerando-se que o loop termina com 10 iterações;

Iteração	Estado	Previsão	Realizado	Acerto	Iteração	Estado	Previsão	Realizado	Acerto
1	10->11	S	S	S	11	10->11	S	S	S
2	11-11	S	S	S	12	11	S	S	S
3	11→11	S	S	S	13	11	S	S	S
4	11→11	S	S	S	14	11	S	S	S
5	11-11	S	S	S	15	11	S	S	S
6	11→11	S	S	S	16	11	S	S	S
7	11-11	S	S	S	17	11	S	S	S
8	11-11	S	S	S	18	11	S	S	S
9	11-11	S	S	S	19	11	S	S	S
10	11>10	S	N	N	20	11	S	N	N

¹ª Iteração – 90% acerto

Total − 2 erros, 90% acerto

b) comparar com o caso em que não use esse sistema de previsão, e apenas considere que a **previsão para frente** seja sempre de desvio;

Taxa de acerto 10% - acerta somente na última iteração

c) comparar com o sistema de previsão de um bit

Considerando estado inicial igual a 0 – 80% acerto

Considerando estado inicial igual a 1 – 85% acerto

²ª Iteração - 90 % acerto

- 6ª Questão) (**1,5 ponto)** Usando o sistema de previsão local de desvio de 2 bits, mostrado na Figura1, um certo loop é executado duas vezes:
- a) considerando-se que o estado inicial seja 11, calcular a porcentagem de acertos e erros de previsão, considerando-se que o loop termina com 10 iterações;

Iteração	Estado	Previsão	Realizado	Acerto	Iteração	Estado	Previsão	Realizado	Acerto
1	11-11	S	S	S	11	10->11	S	S	S
2	11-11	S	S	S	12	11	S	S	S
3	11→11	S	S	S	13	11	S	S	S
4	11-11	S	S	S	14	11	S	S	S
5	11-11	S	S	S	15	11	S	S	S
6	11-11	S	S	S	16	11	S	S	S
7	11-11	S	S	S	17	11	S	S	S
8	11-11	S	S	S	18	11	S	S	S
9	11-11	S	S	S	19	11	S	S	S
10	11>10	S	N	N	20	11	S	N	N

1ª Iteração - 90% acerto

2ª Iteração - 90 % acerto

Total − 2 erros, 90% acerto

b) comparar com o caso em que não use esse sistema de previsão, e apenas considere que a **previsão para trás** seja sempre de desvio;

Considerando taxa de acerto 90% - erra na saida

c) comparar com o sistema de previsão de um bit

Considerando estado inicial igual a 0 – 80% acerto

Considerando estado inicial igual a 1 – 90% acerto

7ª Questão) (1,5 ponto) Considere o conjunto de instruções abaixo

					Latência
I1	div	F6	F2	F4	3
I2	sw	F2	45(R3)		2
I3	mult	F0	F6	F4	4
I4	div	F8	F2	F0	4
I5	sub	F10	F0	F6	1
I6	add	F6	F8	F6	2

a) Identifique as situações de dependência (WAW, WAR, RAW) na seguinte sequência de código acima, do MIPS64:

WAW - I1-I6 0,1

WAR – I2-I1, I6 – I5, I6 – I3, I6-I1 0,2

RAW – I3-I1, I4 – I2, I4 – I3, I5- I3, I5 – I1, I6 – I4, I6 – I1 0,7

b) 0,5 Apresente uma sequência de termino em ordem e outra em fora de ordem (que execute no menor tempo) Termino em ordem

I1	I2	<u>I1</u>	<u>I2,</u>		<u>I3</u>	I4	I5		<u>I4</u>	<u>I5</u>	<u>I6</u>		
			I3							I6			

Termino fora de ordem

г														
	T1	12	T1	13		13	14	15	15	14	I6	1 <u>6</u>		
	11	12	11,	13		13	1-7	15	15	17	10	10		
			12											
			12											

8ª Questão) (1,5 Ponto) Considere o conjunto de instruções abaixo

				Laté	ència	
I1	sw	F2	45(R3)		2	
I2	div	F6	F6	F4	3	
I3	lw	F0	60 (F2)		4	
I4	div	F8	F6	F2	5	
I5	add	F6	F8	F2	1	
I6	sub	F10	F0	F6	2	

a) (0,5 ponto) Identifique as situações de dependência (WAW, WAR, RAW) na seguinte sequência de código acima, do

WAW - I2 - I5 0,2

WAR - I5 - I4, I5 - I2, 0,2

RAW - I4 - I2, I4 - I1, I5 - I4, I6 - I2, I6 - I3, I6 - I5, I3 - I1, I5 - I1 0,6

b) (0,5 ponto) Apresente uma sequência de termino em ordem e outra em fora de ordem (que execute no menor tempo)

Termino em ordem

I1	I2	<u>I1</u>	<u>I2</u>	I4	<u>I3</u>		<u>I4</u>	I5	<u>I5</u>	I6	I <u>6</u>		
		13											

Termino fora de ordem

ĺ	I1	I2	<u>I1</u>	<u>I2</u>	I4	<u>I3</u>		<u>I4</u>	I5	<u>I5</u>	I6	I <u>6</u>		
			I3											

9ª Questão) (**1,5 ponto**) Considere a seguinte sequencia de instruções, e assuma que estas sejam executadas em um pipeline com 5 estágios (BI(Busca), DI (Decodificação), EX (Execução) MEM (Memória) WB (Write-back))

Sequencia Instruçõ	ies
lw \$11, 40 (\$6) lw \$12, 20(\$4)	
add \$12, \$3, \$11	
add \$11, \$6, \$4	
or \$11, \$11, \$4	

a) (0,25 ponto) Quais dependências são conflitos (hazards) que podem ser resolvidos com adiantamento? Quais dependências que são conflitos e irão provocar a parada (bolhas) na execução?

		1	2	3	4	5	6	7	8	10	11	12	13	14
lw \$	\$11, 40 (\$6)	ВІ	DI	EX	MEM	W								
lw \$	\$12, 20(\$4)		ВІ	DI	EX	MEM	W							
add \$	\$12, \$3, \$ <mark>11</mark>			ВІ	DI	Х	EX	MEM	W					
add \$	511, \$6, \$4				BI	Х	DI	EX		W				
or \$	\$11, \$11, \$4						BI	DI	Х	Х	EX		W	

lw \$11, 40 (\$6)

add \$12, \$3, \$11

Este conflito pode ser resolvido com adiantamento. O adiantamento é realizado entre Rd de uma instrução a frente e RS e Rt de uma instrução anterior. (0.15 ponto)

add \$11, \$6, \$4

Este conflito pode ser resolvido com adiantamento (0,1)

or \$11, \$11, \$4

b) (0,25 ponto) Se não há adiantamento ou detecção de conflito, insira nops para assegura a execução correta e desenhe o diagrama de execução do pipeline para este código

lw \$11, 40 (\$6)

lw \$12, 20(\$4)

NOPS 0,1

add \$12, \$3, \$11

add \$11, \$6, \$4

NOPS

NOPS 0,15

```
or $11, $11, $4
```

c) (0,25) Repita o item anterior, mas adicione nops somente quando um conflito não pode ser evitado por mudando ou rearranjando estas instruções. Você pode assumir o registrador R7 para guardar valores temporários em seu código modificado.

```
Iw $11, 40 ($6)
add $R7, $6, $4
Iw $12, 20($4)
add $12, $3, $11
or $11, $R7, $4
```

- d) (0,25) Um conflito estrutural (duas instruções tentando acessar a memória) pode ser resolvido pelo compilador inserindo uma instrução nops?
 - Não, pois como o conflito estrutural mencionado é devido a dois acessos a memória. Logo adicionar um nops, não resolve, pois teremos que continuar acessando a memória para buscar a instrução.
- e) (0,25) Suponha as instruções abaixo. Qual o procedimento a ser adotado pela unidade de detecção de conflito

```
add $2, $1, $3
```

load \$1,(10) \$2

Deve se inserir uma bolha (0.15 ponto). Neste caso, todos os sinais de controle deverão ser fixados em 0 (zero) para os estágios EX, MEM e ER. Estes valores de sinais de controle são gerados no estagio DI e são passados adiante a cada ciclo de relógio, produzindo o efeito desejado (nenhum registrador ou memória é escrito)

f) (0,25) Apresente o teste de conflito realizado no estagio EX e MEM pela unidade de adiantamento.

```
Conflitos no Estágio EX se (EX/MEM.EscReg = 1 e (EX/MEM.RegistradorRd \square 0) e (EX/MEM.RegistradorRd = DI/EX.RegistradorRs )) Adianta.A = 10 se (EX/MEM.EscReg = 1 e (EX/MEM.RegistradorRd \square 0) e (EX/MEM.RegistradorRd = DI/EX.RegistradorRt )) Adianta.B = 10 Conflitos no Estágio MEM se (EX/MEM.EscReg = 1 e (EX/MEM.RegistradorRd \square 0) e (MEM/ER.RegistradorRd = DI/EX.RegistradorRs )) Adianta.A = 01 se (EX/MEM.EscReg = 1 e (EX/MEM.EscReg = 1 e (EX/MEM.RegistradorRd \square 0) e (MEM/ER.RegistradorRd \square 0) e (MEM/ER.RegistradorRd = DI/EX.RegistradorRt )) Adianta.B = 01
```

10^a Questão) (**1,5 ponto**) Considere a seguinte sequencia de instruções, e assuma que estas sejam executadas em um pipeline com 5 estágios (BI(Busca), DI (Decodificação), EX (Execução) MEM (Memória) WB (Write-back))

Sequencia Instruções

Iw \$11, 40 (\$6)

sw \$12, 20(\$4)

add \$12, \$3, \$11

add \$11, \$6, \$4

and \$11, \$11, \$4

- a) Quais dependências são conflitos (hazards) que podem ser resolvidos com adiantamento? Quais dependências que são conflitos e irão provocar a parada (bolhas) na execução?
- b) Se não há adiantamento ou detecção de conflito, insira nops para assegura a execução correta e desenhe o diagrama de execução do pipeline para este código
- c) Repita o item anterior, mas adicione nops somente quando um conflito n\u00e3o pode ser evitado por mudando ou rearranjando estas instru\u00fc\u00fces. Voc\u00e2 pode assumir o registrador R7 para guardar valores tempor\u00e1rios em seu c\u00f3digo modificado.
- d) Um conflito estrutural (duas instruções tentando acessar a memória) pode ser resolvido pelo compilador inserindo uma instrução nops?
- e) Suponha as instruções abaixo. Qual o procedimento a ser adotado pela unidade de detecção de conflito

load \$1,(10) \$2

add \$2, \$1, \$3

f) Apresente o teste de conflito realizado no estagio EX e MEM pela unidade de adiantamento.

11ª. Questão) (**1,5 ponto**) Mostrar o resultado (**décimo ciclo**) do uso do placar (scoreboard) para a sequência de instruções, considerando-se que a instrução LD leva 1 ciclo para execução; MULD, 6 ciclos. ADDD e SUBD levam 3 ciclos; e DIVD, 10 ciclos.

LD F2, 34(R2) LD F6, 45(R3) MULD F0, F2, F4 DIVD F10, F0, F6 SUBD ,F0, F6, F2 ADDD F6, F8, F2

Cada linha 0,2

12ª. Questão) (1,5 Ponto) Mostrar o resultado (<u>décimo ciclo</u>) do uso do placar (scoreboard) para a sequência de instruções, considerando-se que a instrução LD leva 2 ciclo para execução; MULD, 7 ciclos. ADDD e SUBD levam 3 ciclos; e DIVD, 12 ciclos.

LD F2, 34(R2) LD F6, 45(R3) MULD F0, F2, F4 DIVD F10, F0, F6 SUBD ,F0, F6, F2 ADDD F6, F8, F2

	4	Mult1	Y	MULE) F	0	F2 F4			Y	
ı		Int									
			Busy	Op	Fi		j Fk	Qj	Qk	Rj	
Temp	o restante	FU			des		1 52	FU	FU	Fj?	
Esta	do das	FU			de	. ,	4 60	EU	E11	EIO	
								╛			
	ADDD	F6, F8, F2	2]			
	SUBD	,F0, F6,	F2					1			
		F10, F0,		8	8			+			
		F0, F2,	F4	7	-7		10	+			
		, 34(R2) , 45(R3)	-	1	2	4	5	-			
	I D E2	24(D2)	1		•			٦ .			
	msuayao	1	n	Emite	Oper	final	resultado	•			
	Instrução	1	k		Lê	EX	Escreve				
Esta	do da ii	nstruç	ão	1		I	ı				
_											

Registro de estado dos resultados

Y

DIVD

FU F2 F4 F6 F8 F10 F12 ... F30

MULD DIVD

Y

Y

N

F10 F0

F6

Mult1

¹³ª Questão) (**2,0 pontos**) Mostrar o resultado do uso do algoritmo de Tomasulo, com os mesmos números de ciclos para a mesma sequência de instruções da 11ª Questão.

Estado da instrução

Instruç	ão j	En	nite	EX final	Escreve resultado		Busy	Ender (A)
	LD F2, 34(R2)			3	4	1 101	N	
	LD F6, 45(R3)	2		4	5	LD1 LD2	N	
	MULD F0, F2, F4	1 3		10	Ī	LD3	N	
	DIVD F10, F0, F6	5 4						
	SUBD ,F0, F6, F2	5		9	10	†		
10.	ADDD F6, F8, F2	6		10				

Estações de reserva

Tempo restante	RS	Busy	Op	S1 Vj	S2 Vk	RS Qj	RS
	Add1 Add2	Y	ADD	R(F8)	M(A1)		
0	Add3 Mult1	N Y	MULD	M(A1)	R(F4)		
	Mult2	Y	DIVD		M(A2)		Mult1

Registro de estado dos resultados

14ª Questão) (**2,0 pontos**) Mostrar o resultado do uso do algoritmo de Tomasulo, com os mesmos números de ciclos e para a mesma sequência de instruções da 12ª Questão.

Estado da instrução

Instruç	ção j k	Emite	EX final	Escreve resultado		Busy	Ender (A)
100	LD F2, 34(R2)	1	4	5	1.04	N	
	LD F6, 45(R3)	2	5	6	LD1 LD2	N	
	MULD F0, F2, F4	3	180		LD3	N	
	DIVD F10, F0, F6	4			200		
	SUBD ,F0, F6, F2	5	9	10			
(4	ADDD F6, F8, F2	6	10				

Estações de reserva

Tempo restante	RS	Busy	Ор	S1 Vj	S2 Vk	RS Qj	RS
0	Add1 Add2	Y N	ADD	R(F8)	M(A1)		
1	Add3 Mult1 Mult2	Y Y	MULD DIVD	M(A1)	R(F4) M(A2)		Multl

Registro de estado dos resultados

FO	F2	F4	F6	F8	F10	F12	***	F30
FU M(A2)+M(A1)	M(A1)		RF(8)+M((A1)	Mult2	5		