Conversion of Dirac Egtr for (q, m) in external Apr to a 2nd order egtr. DE(39)

Dirac Equation: Particle in an External Field.

We have previously looked at the Hamiltonian form of the Dirac Egtin in an external field An = (A, ip) [pp. DE 20-23], up to identifying the compline of a Dwac particle with an external magnetic field (" intrinsic g=2), the Spin or but term (correct Thomas precession factor), and the Darwin Interaction (related to Zitter beweging, p. DE 27, Eg. (10)). These features were picked up by approxims to O(v/c)2; here we want to do a covariant version of the Ap problem.

1) The transition from the free-particle Dirac Egth, viz...

to the extra for (q,m) in an external field Am=(A, i p) is accomplished via.

as usual. In order to solve for the bispinors $\varphi A \times of \Psi = (x)$, we must gene-

rate a 2nd-order differential extra. We can do this by ...

The product Yn 8 in Eg. (3) here is conveniently rewribten in terms of the open matrix defined in Eq. (25), p. DE 35, viz...

$$\left\{ \begin{array}{l} \rightarrow \sigma_{\mu\nu} = -\frac{1}{2}i(\gamma_{\mu}\gamma_{\nu} - \gamma_{\nu}\gamma_{\mu}) \\ \alpha_{\nu\mu} \gamma_{\nu} + \gamma_{\nu}\gamma_{\mu} = 25\mu \end{array} \right\} \Rightarrow \frac{\gamma_{\mu}\gamma_{\nu} = 5_{\mu\nu} + i\sigma_{\mu\nu}}{\gamma_{\mu}\gamma_{\nu} + \gamma_{\nu}\gamma_{\mu}} = 25\mu$$

Use of this form for Ynyn in Eq. (3) yields the 2nd order Direc Egtn ...

$${ [\pi_{\mu}^{2} + (mc)^{2}] + i \sigma_{\mu\nu} \pi_{\mu} \pi_{\nu} } \psi = 0.$$

2) NOTE: in Eq (5), the [Thit (mc)2] (x4 by 4 identity matrix) is the Klein-Gordon operator [ref. Eq (12), p. fs 17 of class]. The term in Oper The Tis an add-on, specific to Dirac theory. We process this add-on as follows ..

→ $\sigma_{\mu\nu} \pi_{\mu} \pi_{\nu} = \frac{1}{2} (\sigma_{\mu\nu} \pi_{\mu} \pi_{\nu} + \sigma_{\nu\mu} \pi_{\nu} \pi_{\mu}) \leftarrow \text{by interchanging indices}$ $= \frac{1}{2} (\sigma_{\mu\nu} \pi_{\mu} \pi_{\nu} - \sigma_{\mu\nu} \pi_{\nu} \pi_{\mu}) = \frac{1}{2} \sigma_{\mu\nu} [\pi_{\mu}, \pi_{\nu}];$

... but: $[\Pi_{\mu}, \Pi_{\nu}] = [-i\hbar \frac{\partial}{\partial x_{\mu}} - \frac{q}{c} A_{\mu}, -i\hbar \frac{\partial}{\partial x_{\nu}} - \frac{q}{c} A_{\nu}]$

 $=i\hbar\frac{9}{c}\left\{\left[\frac{\partial}{\partial x_{\mu}}A_{\nu}-\frac{\partial}{\partial x_{\nu}}A_{\mu}\right]-\left[A_{\nu}\frac{\partial}{\partial x_{\mu}}-A_{\mu}\frac{\partial}{\partial x_{\nu}}\right]\right\}...$

Soll $[\Pi_{\mu}, \Pi_{\nu}] f = i \pi \frac{9}{c} \left[\left(\frac{\partial A_{\nu}}{\partial x_{\mu}} \right) - \left(\frac{\partial A_{\mu}}{\partial x_{\nu}} \right) \right] f$, W. N.t. fans f; (7)

... but: Fur = (0Ar/0xm)-(0Ap/0xm), is the EM field tensor...

 $\rightarrow -\frac{s_{0}}{\pi_{\mu}, \pi_{\nu}} = (i + q/c) F_{\mu\nu},$

and 1 Tom Ty Tr = - (9th/2c) Oper Fran.

Using Eq. (9), we can write the 2nd order Dirac Egtn in Eq. (5) as ...

 $\left[\begin{cases} \left[\pi_{\mu}^{2} + (mc)^{2}\right] - \left[qh/2c\right)\sigma_{\mu\nu}F_{\mu\nu} \right] \Psi = 0.$ $KG \text{ operator} \qquad Divac add-on (due to spin)$

* With the 4-vector convention in use [x = (tr, ict), etc.], the field tensor is:

 $F_{\mu\nu} = \begin{bmatrix} 0 & B_3 & -B_2 & -iE_1 \\ -B_3 & 0 & B_1 & -iE_2 \\ B_2 & -B_1 & 0 & -iE_3 \\ iE_1 & iE_2 & iE_3 & 0 \end{bmatrix}$ See e.g. Jackson" Classical ElectroDy-namics" (Wiley, 1st ed., 1962), p.379 $Eq. (11.108). F_{\mu\nu} \text{ is still } 4x4 \text{ and } anti-$

Symmetric. The fields are defined by An= (A, ip) in the usual minner, as: E=-Vφ-2(OAlOt), B=VXA. Maxwell's Eqs. are: OFmy/ox,= 4T Jr.

3) The sum Om Fur in Eq. (10) can be further processed. Write ... → Om Fur = Oij Fij + (Oka Fka + Oak Fak) antisym => ()= 20ka Fka. As we have previously seen [Eq. (32), p. DE 37] ... +1, for ijk= 123; $\rightarrow \sigma_{ij} = \epsilon_{ijk} \begin{pmatrix} \sigma_k & O \\ O & \sigma_k \end{pmatrix} \int \epsilon_{ijk} = \text{Levi-Civita symbol} = 0$ -1, for ijk=132; 0, otherwise. $\sigma_{ij} F_{ij} = \begin{pmatrix} \sigma_k & o \\ o & \sigma_k \end{pmatrix} \left(\epsilon_{ijk} \frac{\partial A_j}{\partial x_i} - \epsilon_{ijk} \frac{\partial A_i}{\partial x_j} \right)$ But : Eijk (OA; /OA;) = + Ekij (OA; /Ox;) = (VXA) = Bk; Gigh (∂A;/Aj) = - Ekji (∂Aj/∂x;) = - (♥×A)k = - Bk; $\xrightarrow{SoN} \sigma_{ij} F_{ij} = 2 \left(\begin{array}{c} \sigma_k B_k & O \\ O & \sigma_k B_k \end{array} \right) = 2 \left(\begin{array}{c} \sigma \cdot B & O \\ O & \sigma \cdot B \end{array} \right).$ At this point, Eq. (11) looks like ... → 5pm Fpm = 2 (0.1B 0) + 2 5k4 Fk4. The 2nd term RHS is now calculated [see Eq. (39), p. DE 38]: $\rightarrow \delta_{k4} = \begin{pmatrix} 0 & \delta_k \\ \delta_k & 0 \end{pmatrix}, F_{k4} = -i E_k \Rightarrow \delta_{k4} F_{k4} = -i \begin{pmatrix} 0 & \delta \cdot E \\ \delta \cdot E & 0 \end{pmatrix}$ Solf $\frac{1}{2} \mathcal{O}_{\mu\nu} F_{\mu\nu} = \begin{pmatrix} \mathcal{O} \cdot \mathcal{B} - i\mathcal{O} \cdot \mathcal{E} \\ -i\mathcal{O} \cdot \mathcal{E} & \mathcal{O} \cdot \mathcal{B} \end{pmatrix} \int_{\mathcal{O}} \mathcal{O}_{i} \operatorname{the Pauli 2x2 matrices} :$ $\mathcal{O}_{i} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 - i \\ i & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}. \tag{15}$ Use this result in Eq. (10). After dividing by 2m, we can write ... $\left\{\frac{1}{2m}\left[\pi_{\mu}^{2}+(mc^{2})\right]-\mu_{0}\left(-i\sigma.E-\sigma.B\right)\right\}\psi=0$ - (16)

This is a practical (exact) version of the End order Dirac Egth. It shows by how much the Klein-Gordon Egth missed describing the electron. The Dirac add-on is entirely connected with the electron spin S= 2 to, which KG doesn't do,