Note Curs Analiză Matematică

LazR

4 Noiembrie, 2023

Teoria mulțimilor

O mulțime este un obiect atomic în matematică și nu are o definiție propriuzisă.

În sistemul axiomatic Zermelo-Fraenkel, orice mulțime satisface următoarele axiome:

Axioma extensionalității

$$\forall x \forall y [\forall z (z \in x \iff z \in y) \Rightarrow x = y]$$

Axioma fundației

$$\forall x [x \neq \emptyset \Rightarrow \exists y (y \in x \land x \cap y = \emptyset)]$$

Axioma specificației:

$$\forall z \forall w_k \exists y \forall x [x \in y \iff ((x \in z) \land \phi(x, w_k, z))]k = [1...n]$$

Axioma perechilor

$$\forall x \forall y \exists z ((x \in z) \land (y \in z))$$

Axioma reuniunii

$$\forall \mathcal{F} \exists A \forall Y \forall x [(x \in Y \land Y \in \mathcal{F}) \Rightarrow x \in A]$$

Axioma schemei de înlocuire

$$\forall A \forall w_k [\forall x (x \in A \Rightarrow \exists ! y \phi) \Rightarrow \exists B \forall x (x \in A \Rightarrow \exists y (y \in B \land \phi)))]$$

Axioma mulțimii infinite

$$\exists X [\exists e (\forall z (e \notin z) \land e \in X) \land \forall y (y \in X \Rightarrow S(y) \in X)]$$

Axioma mulțimii submulțimilor

$$\forall x \exists y \forall z (z \subseteq x \Rightarrow z \in y)$$

Axioma alegerii

$$\forall x \in A \exists y \in B[R(x,y)] \Rightarrow \exists f[f:A \rightarrow B \land \forall x \in A(R(x,fx))]$$

Spații topologice

Fie o mulțime X oarecare și $\mathcal{P}(X)$ mulțimea submulțimilor sale.

Definițe: O clasă $\mathcal{T} \subset \mathcal{P}(X)$ se numește topologie pe mulțimea X dacă satisface următoarele axiome:

(D1)
$$\emptyset, X \in \mathcal{T}$$

- (D2) dacă $(G_{\alpha})_{\alpha \in I}$ este o familie arbitrară de mulțimi din \mathcal{T} atunci $\bigcup_{\alpha \in I} G_{\alpha} \in \mathcal{T}$
- (D3) dacă $(G_i)_{1 \leq i \leq n}$ este o familie finită de mulțimi din \mathcal{T} atunci $\bigcap_{i=1}^n G_i \in \mathcal{T}$ **Definiție:** Un spațiu topologic ese o structură algebrică (X, \mathcal{T}) , alcătuită dintr-o multime oarecare X si o topologie asociată \mathcal{T} .

X se numește suportul spațiului topologic, iar elementele din \mathcal{T} se numesc mulțimi deschise.

Definiție: Fie $\mathcal{T}_1, \mathcal{T}_2$ două topologii pe X. Se spune că \mathcal{T}_2 este mai fină decât topologia \mathcal{T}_1 sau \mathcal{T}_1 este mai slabă decât \mathcal{T}_2 dacă $\mathcal{T}_1 \subset \mathcal{T}_2$.

Exemple:

- i) $(X, \mathcal{T}), \mathcal{T} = \mathcal{P}(X)$ topologia discretă; cea mai fină topologie pe X
- ii) $(X, \mathcal{T}_0), \mathcal{T}_0 = \{X, \emptyset\}$ topologia grosieră; cea mai slabă topologie pe X
- iii) $(X, \mathcal{T}_C), \mathcal{T}_C = \{\emptyset\} \cup \{G \subset X : CG \text{ este finită}\}$ topologia cofinită (sau topologia lui Zariski)
- iv) $(Y, \mathcal{T}_Y), \mathcal{T}_Y = \{G \cap Y : G \in \mathcal{T}\}, Y \subset X$ topologia indusă pe Y de \mathcal{T}
- v) $(\mathbb{R}, \mathcal{T}), \mathcal{T} = \{G : \forall x \in G, \exists (\alpha, \beta), x \in (\alpha, \beta) \subset G\}$ topologia naturală a axei reale

Definiție: Fie (X, \mathcal{T}) un spațiu topologic. O mulțime închisă este o mulțime $F \subset X$ a cărei complementară CF este deschisă.

Remarcă: Fie \mathcal{F} familia tuturor mulțimilor închise din spațiul topologic (X, \mathcal{T}) . \mathcal{F} verifică următoarele proprietăți:

(F1)
$$\emptyset, X \in \mathcal{F}$$

- (D2) dacă $(F_{\alpha})_{\alpha \in I}$ este o familie arbitrară de mulțimi din \mathcal{F} atunci $\bigcap_{\alpha \in I} F_{\alpha} \in \mathcal{F}$
- (D3) dacă $(F_i)_{1 \le i \le n}$ este o familie finită de mulțimi din \mathcal{F} atunci $\bigcup_{i=1}^n F_i \in \mathcal{F}$

Vecinătăți

Fie (X, \mathcal{T}) un spațiu topologic și $x \in X$.

Definiție: O submulțime $V \subset X$ se numește vecinătate a punctului $x \in X$ dacă există o mulțime deschisă $G \in \mathcal{T}$ astfel încât $x \in G \subset V$.

Familia tuturor vecinătăților lui $x \in X$ se numește sistemul de vecinătăți ale lui x, notat \mathcal{V}_x .

Teoremă:

$$(V1)V \in \mathcal{V}_x \Rightarrow x \in V$$

$$(V2)V \in \mathcal{V}_x \land V \subset U \Rightarrow U \in \mathcal{V}_x$$

$$(V3)V_i \in \mathcal{V}_x, i = [1...n] \Rightarrow \bigcup_{i=1}^n \mathcal{V}_i \in \mathcal{V}_x$$

$$(V4)V \in \mathcal{V}_x \Rightarrow \exists W \in \mathcal{V}_x \ni \forall y \in W, V \in \mathcal{W}_y$$

Demonstrație: (V1) și (V2) rezultă din definiția unei vecinătăți. (V3) rezultă din (D3), iar (V4) este imediată, deoarece W poate fi chiar mulțimea deschisă G din definitia vecinătătii.

Teoremă: Dacă X este o mulțime oarecare și pentru orice element $x \in X$ se dă o familie \mathcal{V}_x de submulțimi ale lui X cu proprietățile (V1)-(V4), atunci există pe X o topologie unică \mathcal{T} pentru care \mathcal{V}_x să fie sistemul vecinătăților lui x.

Demonstrație:

$$G \in \mathcal{T} \iff \forall x \in G \Rightarrow G \in \mathcal{V}_x$$
.

Definiție: O bază (sau sistem fundamental) de vecinătăți ale unui punct $x \in X$ este o subfamilie \mathcal{W}_x a familiei \mathcal{V}_x pentru care orice vecinătate $V \in \mathcal{V}_x$ există $W \in \mathcal{W}_x$ astfel încât $W \subset V$.

Exemplu: Fie $(\mathbb{R}, \mathcal{T})$ topologia naturală a axei reale și $\{\mathcal{W}_{x_0}^{(n)}\}_{n\in\mathbb{N}}, \mathcal{W}_{x_0}^{(n)} = (x_0 - \frac{1}{n}, x_0 + \frac{1}{n}), x_0 \in \mathbb{R}.$ $\mathcal{W}_{x_0}^{(n)}$ reprezintă o bază de vecinătăți pentru punctul x_0 , deoarece în orice mulțime $G \subset \mathbb{R}$ este inclus un astfel de interval simetric.

Puncte și mulțimi în spații topologice

Fie (X, \mathcal{T}) un spațiu topologic și $A \subset X$.

Definiție: Un punct interior mulțimii A este un punct $x_0 \in X$ pentru care există o vecinătate $V \in \mathcal{V}_{x_0}$ astfel încât $V \subset A$.

Mulțimea punctelor interioare se notează Int(A).

Prin urmare,

$$Int(A) = \bigcup_{G \subset A; G \in \mathcal{T}} G.$$

Definiție: Un punct exterior mulțimii A este un punct $x_0 \in X$ pentru care există o vecinătate $V \in \mathcal{V}_{x_0}$ astfel încât $V \subset CA$.

Multimea punctelor exterioare se notează Ext(A).

Definiție: Un punct de frontieră al mulțimii A este un punct $x_0 \in X$ pentru care orice vecinătate $V \in \mathcal{V}_{x_0}$ conține simultan puncte din A și din CA. Mulțimea punctelor de frontieră se notează Fr(A).

Definiție: Un punct de acumulare al mulțimii A este un punct $x_0 \in X$ pentru care orice vecinătate $V \in \mathcal{V}_{x_0}$ conține cel puțin un punct al mulțimii A diferit de x_0 .

Mulțimea punctelor de acumulare se notează A'.

Definiție: Un punct izolat al mulțimii A este un punct $x_0 \in X$ pentru care există o vecinătate $V \in \mathcal{V}_{x_0}$ în care singurul punct al mulțimii A este x_0 . Mulțimea punctelor izolate se notează Iz(A).

Definiție: Un punct aderent al mulțimii A este un punct $x_0 \in X$ pentru care orice vecinătate $V \in \mathcal{V}_{x_0}$ conține cel puțin un punct al mulțimii A. Mulțimea punctelor aderente se notează \overline{A} și se numește închiderea mulțimii. **Definiție:** O mulțime densă în spațiul topologic (X, \mathcal{T}) este o mulțime $A \subset X$ care verifică $\overline{A} = X$.

Prin urmare,

$$\overline{A} = A \cup A' = \bigcap_{A \subset F, F \in \mathcal{F}} F = Int(A) \cup Fr(A).$$

Spații metrice

Definiție: O metrică pe mulțimea X este orice funcție $d: X \times X \to \mathbb{R}$ care satisface următoarele axiome:

Axioma identității:
$$d(x,y)=0 \iff x=y \; \forall x,y \in X$$

Axioma de simetrie:
$$d(x, y) = d(y, x) \ \forall x, y \in X$$

Axioma triunghiului:
$$d(x, z) \le d(x, y) + d(y, z) \ \forall x, y, z \in X$$

Consecință: Dacă în axioma triunghiului se înlocuiește z cu x se obține:

$$d(x,y) \ge 0 \ \forall x,y \in X$$

Consecință: Pentru oricare $x_1, x_2, ..., x_n \in X$ are loc inegalitatea generalizată a triunghiului:

$$d(x_1, x_n) \le \sum_{k=1}^{n-1} d(x_k, x_{k+1})$$

Consecință: Urmatoarea relație se numește inegalitatea patrulaterului, sau proprietatea de continuitate a metricii:

$$|d(x, u) - d(y, v)| \le d(x, y) + d(u, v) \ \forall x, y, z, w \in X$$

Demonstrație:

Fie $x, y, u, v \in X$. Avem:

$$d(x,u) \le d(x,y) + d(y,v) + d(v,u)$$

$$d(y,v) \le d(y,x) + d(x,u) + d(u,v)$$

Prin urmare:

$$d(x, u) - d(y, v) \le d(x, y) + d(v, u)$$

$$d(y,v) - d(x,u) \le d(y,x) + d(u,v)$$

Aşadar:

$$|d(x, u) - d(y, v)| \le d(x, y) + d(u, v) \ \forall x, y, u, v \in X$$

Definiție: Un spațiu metric este o structură algebrică alcatuită dintr-o multime X pe care s-a definit o metrică.

Definiție: Fie (X,d) un spațiu metric. Distanța de la un punct $x \in X$ la o multime $A \subset X$ este numărul:

$$d(x, A) = \inf\{d(x, y)|y \in A\}$$

Definiție: Distanța dintre mulțimile $A, B \subset X$ este numărul:

$$d(A, B) = \inf\{d(x, y) | x \in A, y \in B\}$$

Definiție: Diametrul unei mulțimi $A \subset X$ este numărul:

$$d(A) = \sup\{d(x, y)|x, y \in A\}$$

Inegalități remarcabile într-un spațiu metric

Teoremă: (Inegalitatea lui Hölder) Fie $a_k, b_k \in \mathbb{R}, k = [1...n]$. Atunci are loc inegalitatea:

$$\sum_{k=1}^{n} |a_k b_k| \le \left(\sum_{k=1}^{n} |a_k|^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} |b_k|^p\right)^{\frac{1}{q}}$$

pentru p > 1 și $\frac{1}{p} + \frac{1}{q} = 1$. Demonstrație:

Considerăm functia auxiliară:

$$\phi: (0, \infty] \to \mathbb{R}, \phi(x) = x^{\alpha} - \alpha x, \alpha \in (0, 1)$$

$$\phi'(x) = \alpha(x^{\alpha - 1} - 1) \Rightarrow x = 1 \text{ este punct de maxim} \Rightarrow$$

$$\Rightarrow x^{\alpha} \le \alpha x + 1 - \alpha \Rightarrow$$

$$\Rightarrow \left(\frac{\frac{|a_k|^p}{\sum_{i=1}^n |a_i|^p}}{|b_k|}\right)^{\frac{1}{p}} \le \frac{1}{p} \frac{\frac{|a_k|^p}{\sum_{i=1}^n |a_i|^p}}{\frac{|b_k|}{\sum_{i=1}^n |b_i|^q}} + 1 - \frac{1}{p} = \frac{1}{p} \frac{\frac{|a_k|^p}{\sum_{i=1}^n |a_i|^p}}{\frac{|b_k|}{\sum_{i=1}^n |b_i|^q}} + \frac{1}{p} + \frac{1}{q} - \frac{1}{p} \Rightarrow$$

$$\Rightarrow \left(\frac{|a_k|^p}{\sum_{i=1}^n |a_i|^p}\right)^{\frac{1}{p}} \left(\frac{|b_k|^q}{\sum_{i=1}^n |b_i|^q}\right)^{1 - \frac{1}{p}} \le \frac{1}{p} \frac{|a_k|^p}{\sum_{i=1}^n |a_i|^p} + \frac{1}{q} \frac{|b_k|^q}{\sum_{i=1}^n |b_i|^q}$$

$$\Rightarrow \frac{\sum_{k=1}^{n} |a_k| |b_k|}{\left(\sum_{k=1}^{n} |a_k|^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} |b_k|^q\right)^{\frac{1}{q}}} \le 1 \Rightarrow$$

$$\Rightarrow \sum_{k=1}^{n} |a_k b_k| \le \left(\sum_{k=1}^{n} |a_k|^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} |b_k|^p\right)^{\frac{1}{q}}.$$

Teoremă: (Inegalitatea Cauchy-Buniakovski) Fie $a_k, b_k \in \mathbb{R}, k = [1...n]$. Atunci are loc inegalitatea:

$$\left(\sum_{k=1}^{n} |a_k b_k|\right)^2 \le \left(\sum_{k=1}^{n} |a_k|^2\right) \left(\sum_{k=1}^{n} |b_k|^2\right)$$

Demonstrație:

Este un caz particular al inegalității lui Hölder pentru p = q = 2.

Teoremă: (Inegalitatea lui Minkovski) Fie $a_k, b_k \in \mathbb{R}, k = [1...n]$. Atunci are loc inegalitatea:

$$\left(\sum_{k=1}^{n} |a_k + b_k|^p\right)^{\frac{1}{p}} \le \left(\sum_{k=1}^{n} |a_k|^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{n} |b_k|^p\right)^{\frac{1}{p}}$$

pentru $p \ge 1$.

Demonstrație:

$$\sum_{k=1}^{n} |a_k + b_k|^p = \sum_{k=1}^{n} |a_k + b_k|^{p-1} |a_k + b_k| \le \sum_{k=1}^{n} |a_k + b_k|^{p-1} |a_k| + \sum_{k=1}^{n} |a_k + b_k|^{p-1} |b_k|$$

Conform inegalității lui Hölder:

$$\sum_{k=1}^{n} |a_k + b_k|^{p-1} |a_k| \le \left(\sum_{k=1}^{n} |a_k + b_k|^p \right)^{\frac{1}{q}} \left(\sum_{k=1}^{n} |a_k|^p \right)^{\frac{1}{p}}$$

$$\sum_{k=1}^{n} |a_k + b_k|^{p-1} |b_k| \le \left(\sum_{k=1}^{n} |a_k + b_k|^p \right)^{\frac{1}{q}} \left(\sum_{k=1}^{n} |b_k|^p \right)^{\frac{1}{p}},$$

deoarece q(p-1) = p.

Prin urmare:

$$\left(\sum_{k=1}^{n} |a_k + b_k|^p\right)^{\frac{1}{q} + \frac{1}{p}} \le \left(\sum_{k=1}^{n} |a_k + b_k|^p\right)^{\frac{1}{q}} \left(\left(\sum_{k=1}^{n} |a_k|^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{n} |b_k|^p\right)^{\frac{1}{p}}\right)$$

$$\left(\sum_{k=1}^{n} |a_k + b_k|^p\right)^{\frac{1}{p}} \le \left(\sum_{k=1}^{n} |a_k|^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{n} |b_k|^p\right)^{\frac{1}{p}}.$$

Lemă: Fie $a_k > -1, k = [1...n], n \in \mathbb{N}$ un șir de termeni cu același semn. Atunci:

$$\prod_{k=1}^{n} (1 + a_k) \ge 1 + \sum_{k=1}^{n} a_k.$$

Demonstrație:

Vom folosi inducția matematică.

$$(1): 1 + a_1 \ge 1 + a_1$$

$$(n): \prod_{k=1}^{n} (1 + a_k) \ge 1 + \sum_{k=1}^{n} a_k$$

$$(n+1): \prod_{k=1}^{n+1} (1 + a_k) \ge \left(1 + \sum_{k=1}^{n} a_k\right) (1 + a_{n+1}) \ge 1 + \sum_{k=1}^{n+1} a_k.$$

Teoremă: (Inegalitatea lui Bernoulli) Fie $a > -1, n \in \mathbb{N}$. Atunci:

$$(1+a)^n \ge 1 + na.$$

Demonstrație:

Este un caz particular al lemei anterioare pentru $a_k = a, k = [1...n]$.

Lemă: Fie $a_k > -1, k = [1...n], n \in \mathbb{N}$ un șir de termeni pozitivi reali. Dacă $\prod_{k=1}^n a_k = 1$, atunci:

$$\sum_{k=1}^{n} a_k \ge n$$

Demonstrație:

Vom folosi inducția matematică.

$$(1): a_1 \geq 1$$

$$(n): \sum_{k=1}^{n} a_k \ge n$$

$$(n+1): \sum_{k=1}^{n+1} a_k \ge n + a_{n+1} \ge n + a_{n+1} + a_1 - a_{n+1}a_1$$

$$\sum_{k=1}^{n+1} a_k \ge n + a_{n+1}(1 - a_1) - (1 - a_1) + 1 \ge n + 1 + (a_{n+1} - 1)(1 - a_1) \ge n + 1.$$

Teoremă: (Inegalitatea mediilor) Fie șirurile A_n , G_n , H_n definite în felul următor:

$$A_n = \frac{\sum_{k=1}^n a_k}{n}$$

$$G_n = \sqrt{\prod_{k=1}^n a_k}$$

$$H_n = \frac{n}{\sum_{k=1}^n \frac{1}{a_k}}$$

pentru $n \in \mathbb{N}$ și $a_k \in \mathbb{R}, k = [1...n]$. Atunci:

$$A_n \ge G_n \ge H_n$$

Demonstrație:

 $A_n \geq G_n$ rezultă din lema anterioară, pentru $a_k = \frac{a_k}{\sqrt{\prod_{k=1}^n a_k}}$, iar din această inegalitate se obține mai departe $G_n \geq H_n$, înlocuind a_k cu $\frac{1}{a_k}$.

Exemple de spații metrice

1. (Metrica discretă)
$$d: X \times X \to \mathbb{R}, d(x,y) = \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}$$

2. (Distanța euclidiană) $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}, d(x,y) = |x-y|$

Vom nota $(\mathbb{R}, |.|)$ spațiul numerelor reale cu metrica modul.

3.
$$d: \mathbb{C} \times \mathbb{C} \to \mathbb{R}, d(z_1, z_2) = |z_1 - z_2|$$

Vom nota $(\mathbb{C}, |.|)$ spațiul numerelor complexe cu metrica modul.

4.
$$d_e: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, d_e(x, y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$

5. (Metrica lui Cebîşev) $d_c: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, d_c(x,y) = \max_{1 \leq i \leq n} |x_i - y_i|$

6.
$$d_o: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, d_o(x, y) = \sum_{i=1}^n |x_i - y_i|$$

7. (Distanța Hamming)
$$d:\{0,1\}\times\{0,1\}\to\mathbb{R}, d(x,y)=\sum_{i=1}^n{(x_i+y_i)mod2}$$

Topologizarea spațiilor metrice

Definiție: Sfera deschisă cu centrul în punctul $x_0 \in X$ și de rază r > 0 este mulțimea:

$$S(x_0, r) = \{x \in X : d(x, x_0) < r\}.$$

Definiție: Sfera închisă cu centrul în punctul $x_0 \in X$ și de rază r > 0 este mulțimea:

$$\overline{S}(x_0, r) = \{x \in X : d(x, x_0) \le r\}.$$

Teoremă: Fie $\mathcal{T}_d = \{G \subset X : \forall x \in G, \exists r > 0, S(x,r) \subset G\} \cup \emptyset$ (topologia indusă metricii d). Orice spațiu metric (X,d) este un spațiu topologic (X,\mathcal{T}_d) . **Demonstrație:**

Fie
$$G_1 = \bigcup_{\alpha \in I} G_\alpha, \{G_\alpha\}_{\alpha \in I}, G_\alpha \in \mathcal{T}_d \text{ si } G_2 = \bigcap_{i=1}^n G_i, \{G_i\}_{1 \leq i \leq n}, G_i \in \mathcal{T}_d.$$

(D1)
$$\forall x \in X \forall r > 0[S(x,r) \subset X] \Rightarrow \emptyset, X \in \mathcal{T}_d$$

(D2) $\forall x \in G_1[\exists \alpha_0 \ni \exists S(x_0,r) \subset G_{\alpha_0} \subset G] \Rightarrow G \in \mathcal{T}_d$

(D3)
$$\forall x \in G_2[\exists n \ni \exists S(x,r) = \bigcap_{i=1}^n S_i(x_i,r_i) \subset G] \Rightarrow G \in \mathcal{T}_d.$$

Teoremă: (Teorema de separare a lui Hausdorff) Într-un spațiu metric (X, d) pentru orice $x, y \in X, x \neq y$ există $r_1, r_2 > 0$ astfel încât:

$$S(x, r_1) \cap S(y, r_2) = \emptyset.$$

Demonstrație: Se aleg $r_1, r_2 \ni r_1 + r_2 \le r \Rightarrow S(x, r_1) \cap S(y, r_2) = \emptyset$.

Definiție: Metricile echivalente sunt seturile de metrici care generează aceeași topologie.

Definiție: O mulțime mărginită este o mulțime $A \subset X$ pentru care există o sferă închisă care să o conțină pe A.

Definiție: O mulțime conexă este o mulțime $A \subset X$ pentru care nu există două mulțimi deschise nevide $G_1, G_2 \ni A \subset G_1 \cup G_2 \land G_1 \cap G_2 = \emptyset$.

O mulțime deschisă și conexă se numește domeniu.

Definiție: O mulțime compactă este o mulțime $K \subset X$ pentru care oricare ar fi familia $G = \bigcup_{\alpha \in I} G_{\alpha}, \{G_{\alpha}\}_{\alpha \in I}, G_{\alpha} \in \mathcal{T}_d$ astfel încât $A \subseteq G$, exisă $\alpha_k \in I \ni A \subseteq \bigcup_{i=1}^n G_{\alpha_i}, k = [1...n]$ (din oricare acoperire deschisă a sa se poate extrage o acoperire finită).

Teoremă: (Weierstrass-Bolzano) Orice mulțime mărignită și infinită din spațiul (\mathbb{R}^p , d_e), sau (\mathbb{R}^p , d_c), unde $p \geq 1$, are cel puțin un punct de acumulare. **Demonstrație:** Fie $A \subset \mathbb{R}$ o mulțime infinită și mărginită.

$$A \subset [a,b] \subset \mathbb{R} \Rightarrow \{[a_{n},b_{n}]\}_{n \in \mathbb{N}} \xrightarrow[n \to \infty]{} x_{0} \in A^{'} \Leftarrow [a_{m},b_{m}] \subset (x_{0}-\epsilon,x_{0}+\epsilon), \epsilon > 0.$$

Spații vectoriale normate

Fie (X, \mathbb{K}) un spațiu vectorial peste corpul $\mathbb{K}, \mathbb{K} = (\mathbb{R}, \mathbb{C})$.

Definiție: O normă pe X este o funcție $||.||: X \times X \to \mathbb{R}, x \to ||x||$, care îndeplinește următoarele axiome:

$$(\text{N1}) \ ||x|| = 0 \iff x = 0$$

$$(\text{N2 - omogenitate}) \ ||\lambda x|| = |\lambda|||x||$$

$$(\text{N3 - subaditivitate}) \ ||x + y|| \le ||x|| + ||y||$$

$$\forall x, y \in X, \forall \lambda \in \mathbb{K}$$

Consecință:

$$||x|| \ge 0 \Leftarrow 0 = ||0x|| = ||x + (-x)|| \le 2||x||$$

Consecință:

$$|||x|| - ||y||| \le ||x - y|| \iff ||x|| \le ||x - y|| + ||y|| \land ||y|| \le ||y - x|| + ||x|| = ||x - y|| + ||x||$$

Exemple:

1.
$$||.||_e : R^n \to R, ||x||_e = \sqrt{\sum_{i=1}^n x_i^2}$$
2. $||.||_c : R^n \to R, ||x||_c = \max_{1 \le i \le n} |x_i|$
3. $||.||_0 : R^n \to R, ||x||_0 = \sum_{i=1}^n |x_i|$

Topologia unui spațiu normat

Teoremă: Orice spațiu vectorial normat este un spațiu metric în care metrica $d: X \times X \to \mathbb{R}$ este definită în felul următor:

$$d(x,y) = ||x - y||.$$

Demonstrație: Axiomele metricii sunt ușor verificate prin axiomele normei.

Definiție: Topologia unui spațiu vectorial normat $(X, \mathbb{K}, ||.||)$, înzestrat cu metrica definită mai sus, este topologia indusă de metrica spațiului. **Definiție:** Fie $||.||_1$ și $||.||_2$ două norme pe același spațiu vectorial X. Cele două norme sunt echivalente dacă oricare ar fi $x \in X$, există constantele $c_1, c_2 > 0$ astfel încât $c_1||x_1|| \le ||x||_2 \le c_2||x_1||$.

Siruri de numere reale

Fie (X, d) un spațiu metric arbitrar.

Definiție: Un șir de puncte, $(x_n)_{n\in\mathbb{N}}$, în spațiul metric (X,d) este orice funcție $f:\mathbb{N}\to X$.

Definiție: Un subșir al șirului $(x_n)_{n \in \mathbb{N}} \in X$ este restricția șirului la o submulțime infinită a lui \mathbb{N} , $(x_k)_{k \in \mathbb{N}}$, cu $n_k < n_{k+1} \forall k \in \mathbb{N}$.

Definiție: Un şir $(x_n)_{n\in\mathbb{N}}\subset X$ este convergent dacă există un punct $x_0\in X$ astfel încât pentru orice vecinătate $V\in\mathcal{V}_{x_0}$ există un număr natural n(V) astfel încât pentru orice $n\geq n(V), n\in\mathbb{N}$ să avem $x_n\in V$. Punctul x_0 se numește limită a şirului $(x_n)_{n\in\mathbb{N}}$ și se notează:

$$\lim_{n \to \infty} x_n = x_0 \text{ sau } x_n \to x_0$$

Remarcă: Un punct x_0 este limita unui șir dacă în afara oricărei vecinătăți a sa se află un număr finit de termeni ai șirului sau în orice vecinătate se află toți termenii șirului începând cu un anumit rang, care depinde de vecinătatea aleasă.

Într-un spațiu metric:

$$\lim_{n \to \infty} x_n = x_0 \iff \forall \epsilon > 0 \,\exists \nu(\epsilon) \ni d(x_n, x_0) < \epsilon \,\forall n \ge \nu(\epsilon), n \in \mathbb{N}$$

Într-un spațiu vectorial normat:

$$\lim_{n \to \infty} x_n = x_0 \iff \forall \epsilon > 0 \,\exists \nu(\epsilon) \ni ||x_n - x_0|| < \epsilon \,\forall n \ge \nu(\epsilon), n \in \mathbb{N}$$

Remarcă:

$$\lim_{n \to \infty} x_n = x_0 \iff (d(x_n, x_0))_{n \in \mathbb{N}} \to 0$$

$$\lim_{n \to \infty} x_n = x_0 \iff (|x_n - x_0|)_{n \in \mathbb{N}} \to 0$$

Teoremă: Limita unui șir într-un spațiu metric este unică.

Demonstrație: Presupunând că șirul ar avea două limite $x_0 \neq y_0$, atunci, conform teoremei de separare a lui Hausdorff, există două sfere $S_1 = S(x_0, r_1), S_2 = (x_0, r_2), r_1, r_2 > 0$ astfel încât $S_1 \cap S_2 = \emptyset$. Dar $S_1 \in \mathcal{V}_{x_0} \wedge S_2 \in \mathcal{V}_{y_0} \Rightarrow \exists \nu(r_1) \wedge \nu(r_2) \ni \forall n \geq \max(\nu(r_1), \nu(r_2)) x_n \in S_1 \cap S_2$, ceea ce este absurd. Prin urmare, $x_0 = y_0$.

Definiție: Un punct limită $x_0 \in X$ al șirului $(x_n)_{n \in \mathbb{N}}$ este un punct pentru care orice vecinătate $\mathcal{V} \in \mathcal{V}_{x_0}$ și oricare $m \in \mathbb{N}$, există $n \geq m, n \in \mathbb{N}$, astfel încât $x_n \in V$.

Teoremă: Punctul $x_0 \in X$ este punct limită pentru șirul $(x_n)_{n \in \mathbb{N}}$ dacă și numai dacă există un subșir $(x_{n_k})_{k \in \mathbb{N}}$ al șirului x_n astfel încât $x_{n_k} \to x_0$.

Demonstrație: Suficiența este imediată. Pentru a demonstra necesitatea, presupunem că x_0 este punct limită. Atunci pentru orice $k \in \mathbb{N}$, există $n_k \in \mathbb{N}$ astfel încât $x_{n_k} \in S(x_0, \frac{1}{k}) \Rightarrow \lim_{k \to \infty} x_{n_k} = x_0$.

Şiruri fundamentale

Fie $(x_n)_{n\in\mathbb{N}}$ un șir din spațiul metric (X, d).

Definiție: Un șir fundamental, sau șir Cauchy, este un șir $(x_n)_{n\in\mathbb{N}}\subset X$ pentru care oricare ar fi $\epsilon>0$, există $\nu(\epsilon)\in\mathbb{N}$ astfel încât pentru orice $m,n\geq\nu(\epsilon)$ să avem $d(x_n,x_m)>\epsilon$.

Teoremă: Într-un spațiu metric, orice șir convergent este șir fundamental. **Demonstrație:**:

$$\forall \epsilon > 0 \exists \nu(\epsilon) \in \mathbb{N} \ni d(x_n, x_0) < \frac{\epsilon}{2} \land d(x_m, x_0) < \frac{\epsilon}{2}, m, n > \nu(\epsilon)$$
$$d(x_n, x_m) \le d(x_n, x_0) + d(x_0, x_m) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \Rightarrow (x_n) \text{ sir Cauchy.}$$

Definiție: Un spațiu metric complet este un spațiu metric (X, d) pentru care orice șir fundamental este convergent. Spațiile vectoriale normate complete se numesc spații Banach, iar dacă de asemenea s-a definit un produs scalar pe acestea, atunci se numesc spații Hilbert.

Teoremă:

- (i) Orice şir fundamental este mărginit.
- (ii) Orice șir fundamental care are un punct limită este convergen în acel punct.
- (iii) Orice șir fundamental care are un subșir convergent este convergent.

Lemă: (Lema lui Cesaro) Orice șir mărginit în \mathbb{R} are un subșir convergent. **Demonstrație:** Fie $(x_n)_{n\in\mathbb{N}}$ un șir mărginit în \mathbb{R} și $a,b\in\mathbb{R}, a< b\ni a\leq x\leq b, \forall n\in\mathbb{N}$.

$$\subset_{i=0}^k I_k = [a_k, b_k], k \in \mathbb{N}, card(\{n \in \mathbb{N} : x_n \in [a_k, b_k]\}) = \infty, b_k - a_k = \frac{b-a}{2^k} \Rightarrow$$

$$\Rightarrow \bigcap_{k\geq 0} I_k = x_0 \Rightarrow \Rightarrow |x_{n_k} - x_0| \leq \frac{b-a}{2^k} \forall k \in \mathbb{N} \Rightarrow x_{n_k} \to x_0, x_{n_k} \in I_k.$$

Teoremă: (Criteriul de convergență a lui Cauchy) Un șir de numere reale este convergent dacă și numai dacă este un șir fundamental.

Demonstrație: Dacă (x_n) este un șir convergent, conform teoremei enunțate mai sus, șirul este fundamental. Reciproc, dacă (x_n) este un șir fundamental, atunci el este mărginit, iar conform lemei lui Cesaro, are un subșir convergent. Prin urmare, el este de asemenea convergent, fiind un șir fundamental.

Şiruri de numere reale

Definiție: Limita superioară a unui șir $(x_n)_{n\in\mathbb{N}}$ este numărul:

$$x^* = inf_{n>1}\{\beta_n\} = inf_{n>1}\{sup_{k>n}\{x_k\}\}\$$

Definiție: Limita inferioară a unui șir $(x_n)_{n\in\mathbb{N}}$ este numărul:

$$x_* = \sup_{n>1} \{\alpha_n\} = \sup_{n>1} \{\inf_{k>n} \{x_k\}\}$$

Teoremă:

- (i) $a = x_* \iff \forall u < a \operatorname{card}\{n \in \mathbb{N} : x_n < u\} < \infty \land \forall v > a \operatorname{card}\{n \in \mathbb{N} : x_n < v\} = \infty.$
- (ii) $b = x^* \iff \forall u < b \operatorname{card} \{n \in \mathbb{N} : x_n > u\} = \infty \land \forall v > b \operatorname{card} \{n \in \mathbb{N} : x_n > v\} < \infty.$

Corolar:

- (i) x_* și x^* sunt puncte limită, iar pentru orice punct limită avem $x_* \le x \le x^*$.
- (ii) (x_n) are limita $x_0 \in \mathbb{R} \cup \{-\infty, \infty\}$ dacă și numai dacă $x_* = x^* = x_0$.

Teoremă: Fie $(x_n)_{n\in\mathbb{N}}$ un șir de numere reale pozitive. Atunci:

$$\frac{x_{n+1}}{x_n} \le \sqrt[n]{x_n} \le \sqrt[n]{x_n}^* \le \frac{x_{n+1}}{x_n}^*$$

Demonstrație: Fie $t=\frac{x_{n+1}}{x_n}$, și $T=\frac{x_{n+1}}{x_n}^*$. Pentru t=0 sau $T=\infty$, inegalitățile sunt evidente. Presupunem contrariul. Fie c>T fixat. Atunci există $m\geq 1$ astfel încât $\frac{x_{n+1}}{x_n}\leq c, \forall n\geq m,$ deci $x_{m+p}\geq c^px_m, \forall p\geq 1,$ de unde rezultă $\frac{x_n+p}{x_m+p}\leq c^{\frac{p}{m+p}}$ $\frac{p}{m+p}$ $\frac{p}{m+p}$