Heart Disease or Cardiovascular Disease Using Extensive Analysis & Visualization With Python

```
In [1]:
          import warnings
          warnings.filterwarnings('ignore')
          import pandas as pd
In [2]:
          import numpy as np
          import seaborn as sns
          import matplotlib.pyplot as plt
          import scipy.stats as st
          %matplotlib inline
          import os
In [3]:
          for dirname, _, filenames in os.walk('/kaggle/input'):
              for filename in filenames:
                   print(os.path.join(dirname, filename))
          sns.set(style="whitegrid")
In [4]:
          df = pd.read_csv('heart.csv')
In [5]:
          df
In [6]:
Out[6]:
                             trestbps
                                      chol fbs
                                                 restecg
                                                          thalach exang
                                                                         oldpeak
                                                                                   slope
               age
                    sex
                         ср
            0
                63
                      1
                          3
                                  145
                                       233
                                              1
                                                       0
                                                             150
                                                                       0
                                                                               2.3
                                                                                       0
                                                                                           0
                                                                                                1
                                                                                                        1
                37
                                  130
                                       250
                                                             187
                                                                               3.5
                                                                                                2
                                                       0
                                                                                                2
            2
                41
                      0
                          1
                                  130
                                       204
                                              0
                                                             172
                                                                       0
                                                                               1.4
                                                                                       2
                                                                                           0
                                                                                                        1
            3
                56
                                  120
                                       236
                                              0
                                                             178
                                                                       0
                                                                               8.0
                                                                                       2
                                                                                           0
                                                                                                2
                                                                                                        1
                                                                                                2
                57
                      0
                          0
                                                       1
                                                             163
                                                                       1
            4
                                  120
                                       354
                                              0
                                                                               0.6
                                                                                       2
                                                                                           0
                                                                                                        1
          298
                          0
                                              0
                                                       1
                                                             123
                                                                       1
                                                                               0.2
                                                                                                3
                57
                      0
                                  140
                                       241
                                                                                       1
                                                                                           0
                                                                                                        0
          299
                                                             132
                                                                               1.2
                                                                                                3
                45
                                  110
                                       264
                                                                                                        0
          300
                68
                          0
                                  144
                                       193
                                              1
                                                       1
                                                             141
                                                                       0
                                                                               3.4
                                                                                       1
                                                                                           2
                                                                                                3
                                                                                                        0
          301
                57
                                  130
                                       131
                                                             115
                                                                               1.2
                                                                                                3
                                                                                                        0
          302
                57
                      0
                                  130
                                       236
                                              0
                                                       0
                                                             174
                                                                       0
                                                                               0.0
                                                                                       1
                                                                                           1
                                                                                                2
                                                                                                        0
         303 rows × 14 columns
          df.head()
In [7]:
```

5, 3:24 PM		Heart Disease Analysis													
Out[7]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
	0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
	1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
	2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
	3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
	4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1
4															— •
In [8]:	: df.info()														
	<pre>cclass 'pandas.core.frame.DataFrame'> RangeIndex: 303 entries, 0 to 302 Data columns (total 14 columns): # Column Non-Null Count Dtype</pre>														
In [9]:	df.shape														
Out[9]:	(36	3, 1	L4)												
In [10]:	df	dty	pes												
Out[10]:	cho fbs res tha exa old slo ca tha tar	estbrolles stecgalach alach ang dpeak ppe	3	flo	int64 int64 int64 int64 int64 int64 int64 int64 int64 int64 int64										

 $localhost: 8888/doc/workspaces/auto-X/tree/Data\ Science\ Project\ NIT/Heart\ Disease\ Analysis.ipynb$

In [11]: df.describe()

Out[11]:		age	sex	ср	trestbps	chol	fbs	restecg	tha
	count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000
	mean	54.366337	0.683168	0.966997	131.623762	246.264026	0.148515	0.528053	149.646
	std	9.082101	0.466011	1.032052	17.538143	51.830751	0.356198	0.525860	22.90!
	min	29.000000	0.000000	0.000000	94.000000	126.000000	0.000000	0.000000	71.000
	25%	47.500000	0.000000	0.000000	120.000000	211.000000	0.000000	0.000000	133.500
	50%	55.000000	1.000000	1.000000	130.000000	240.000000	0.000000	1.000000	153.000
	75%	61.000000	1.000000	2.000000	140.000000	274.500000	0.000000	1.000000	166.000
	max	77.000000	1.000000	3.000000	200.000000	564.000000	1.000000	2.000000	202.000

Univariate Analysis

```
In [13]: df['target'].nunique()
Out[13]: 
In [14]: df['target'].unique()
Out[14]: array([1, 0], dtype=int64)
```

Frequency Distribution of Target Variable

Visualize Frequency Distribution of Target Variable

```
In [16]: f, ax = plt.subplots(figsize=(8, 6))
    ax = sns.countplot(x="target", data=df)
    plt.show()
```


Interpretation

```
df.groupby('sex')['target'].value_counts()
In [17]:
         sex target
Out[17]:
              1
                          72
              0
                          24
         1
              0
                        114
                         93
              1
         Name: target, dtype: int64
In [18]: f, ax = plt.subplots(figsize=(8, 6))
         ax = sns.countplot(x="sex", hue="target", data=df)
         plt.show()
```



```
In [20]: f, ax = plt.subplots(figsize=(8, 6))
    ax = sns.countplot(y="target", hue="sex", data=df)
    plt.show()
```



```
In [22]: f, ax = plt.subplots(figsize=(8, 6))
ax = sns.countplot(x="target", data=df, facecolor=(0, 0, 0, 0), linewidth=5, edgecolor=(0, 0, 0, 0)
```



```
In [24]: ax = plt.subplots(figsize=(8, 6))
    ax = sns.countplot(x="target", hue="exang", data=df)
    plt.show()
```


Bivariate Analysis

```
correlation = df.corr()
In [25]:
          correlation['target'].sort_values(ascending=False)
In [26]:
                      1.000000
         target
Out[26]:
                      0.433798
         thalach
                      0.421741
                      0.345877
         slope
         restecg
                      0.137230
         fbs
                     -0.028046
         chol
                     -0.085239
         trestbps
                     -0.144931
         age
                     -0.225439
                     -0.280937
         sex
         thal
                     -0.344029
                     -0.391724
         ca
         oldpeak
                     -0.430696
         exang
                     -0.436757
         Name: target, dtype: float64
```

Explore cp Variable

```
In [27]: df['cp'].nunique()
```

23

Name: cp, dtype: int64

```
Out[27]: 4

In [28]: df['cp'].value_counts()

Out[28]: 0 143
2 87
1 50
```

Visualizze the frequency distribution of cp variable

Analysis of target and thalch variable

```
df['thalach'].nunique()
In [31]:
Out[31]:
In [32]: ax = plt.subplots(figsize=(10,6))
          x = df['thalach']
          ax = sns.distplot(x, bins=10)
           plt.show()
             0.0200
             0.0175
             0.0150
             0.0125
             0.0100
             0.0075
             0.0050
             0.0025
             0.0000
                                                                                      200
                                                                                                 225
                                 75
                                           100
                                                                            175
                                                         thalach
In [33]: ax = plt.subplots(figsize=(10,6))
          x = df['thalach']
```

```
In [33]: ax = plt.subplots(figsize=(10,6))
    x = df['thalach']
    x = pd.Series(x, name="thalach variable")
    ax = sns.distplot(x, bins=10)
    plt.show()
```


Seaborn Kernal Density Estimation KDE Plot

```
In [35]: ax = plt.subplots(figsize=(10,6))
x = df['thalach']
x = pd.Series(x, name="thalach variable")
ax = sns.kdeplot(x)
plt.show()
```



```
In [36]: ax = plt.subplots(figsize=(10,6))
x = df['thalach']
x = pd.Series(x, name="thalach variable")
ax = sns.kdeplot(x, shade=True, color='g')
plt.show()
```


Histogram

```
In [37]: ax = plt.subplots(figsize=(10,6))
x = df['thalach']
ax = sns.distplot(x, kde=False, rug=True, bins=10)
plt.show()
```


Visualize Frequency Distribution of thalach Variable wrt target

Interpretation

Visualize distribution of thalach Variable Wrt target with boxplot

```
In [40]: ax = plt.subplots(figsize=(8, 6))
    sns.boxplot(x="target", y="thalach", data=df)
    plt.show()
```


Multivariate Analysis

Heat Map

```
In [41]: plt.figure(figsize=(16,12))
   plt.title('Correlation Heatmap of Heart Disease Dataset')
   a = sns.heatmap(correlation, square=True, annot=True, fmt='.2f', linecolor='black')
   a.set_xticklabels(a.get_xticklabels(), rotation=90)
   a.set_yticklabels(a.get_yticklabels(), rotation=30)
   plt.show()
```


Pair Plot

```
In [42]: num_var = ['age', 'trestbps', 'chol', 'thalach', 'oldpeak', 'target' ]
    sns.pairplot(df[num_var], kind='scatter', diag_kind='hist')
    plt.show()
```


Analysis of Age

```
In [43]:
          df['age'].nunique()
Out[43]:
In [44]:
          df['age'].describe()
                   303.000000
          count
Out[44]:
          mean
                    54.366337
          std
                     9.082101
          min
                    29.000000
          25%
                    47.500000
          50%
                    55.000000
          75%
                    61.000000
                    77.000000
          Name: age, dtype: float64
In [45]:
          ax = plt.subplots(figsize=(10,6))
          x = df['age']
          ax = sns.distplot(x, bins=10)
          plt.show()
```


Analyze Age and Target Variable

```
In [46]: ax = plt.subplots(figsize=(8, 6))
sns.stripplot(x="target", y="age", data=df)
plt.show()

70

60

40

30

0 1
```

```
In [47]: f, ax = plt.subplots(figsize=(8, 6))
    sns.boxplot(x="target", y="age", data=df)
    plt.show()
```

target

Analyze age and trestbps Variable

```
In [48]: ax = plt.subplots(figsize=(8, 6))
ax = sns.scatterplot(x="age", y="trestbps", data=df)
plt.show()
```


Analyze Age and Chol Variable

```
In [50]: ax = plt.subplots(figsize=(8, 6))
    ax = sns.scatterplot(x="age", y="chol", data=df)
    plt.show()
```



```
In [51]: ax = plt.subplots(figsize=(8, 6))
    ax = sns.regplot(x="age", y="chol", data=df)
    plt.show()
```


Analyze Chol and Thalach Variable

```
In [52]: ax = plt.subplots(figsize=(8, 6))
    ax = sns.scatterplot(x="chol", y = "thalach", data=df)
    plt.show()
```


300

chol

400

500

Dealing With Missing Values

200

```
In [54]:
          df.isnull().sum()
         age
Out[54]:
                      0
         sex
                      0
                      0
         trestbps
                      0
         chol
         fbs
                      0
         restecg
         thalach
         exang
         oldpeak
         slope
         ca
         thal
         target
         dtype: int64
```

ASSERT Statement

```
In [55]: assert pd.notnull(df).all().all()
In [56]: assert (df >= 0).all().all()
```

Outlier Detection

```
df['age'].describe()
In [57]:
         count
                  303.000000
Out[57]:
                   54.366337
         mean
         std
                    9.082101
                   29.000000
         min
         25%
                   47.500000
         50%
                   55.000000
         75%
                   61.000000
                   77.000000
         Name: age, dtype: float64
```

Box Plot of Age Variable

```
In [58]: ax = plt.subplots(figsize=(8, 6))
    sns.boxplot(x=df["age"])
    plt.show()
```


Trestbps Variable

```
df['trestbps'].describe()
In [59]:
                   303.000000
         count
Out[59]:
         mean
                   131.623762
         std
                    17.538143
         min
                    94.000000
         25%
                   120.000000
         50%
                   130.000000
         75%
                   140.000000
                   200.000000
         max
         Name: trestbps, dtype: float64
```

Box Plot Of Trestbps Variable

```
In [60]: ax = plt.subplots(figsize=(8, 6))
    sns.boxplot(x=df["trestbps"])
    plt.show()
```


Chol Variable

```
df['chol'].describe()
In [61]:
                   303.000000
         count
Out[61]:
                   246.264026
         mean
         std
                   51.830751
         min
                   126.000000
         25%
                   211.000000
         50%
                   240.000000
         75%
                   274.500000
                   564.000000
         max
         Name: chol, dtype: float64
```

Box Plot of Chol Variable

```
In [62]: ax = plt.subplots(figsize=(8, 6))
    sns.boxplot(x=df["chol"])
    plt.show()
```


Thalach Variable

```
df['thalach'].describe()
In [63]:
                   303.000000
         count
Out[63]:
                   149.646865
         mean
         std
                    22.905161
         min
                    71.000000
         25%
                   133.500000
         50%
                   153.000000
         75%
                   166.000000
                   202.000000
         max
         Name: thalach, dtype: float64
```

Box Plot of Thalach Variable

```
In [64]: ax = plt.subplots(figsize=(8, 6))
    sns.boxplot(x=df["thalach"])
    plt.show()
```


Oldpeak Variable

```
df['oldpeak'].describe()
In [66]:
                  303.000000
         count
Out[66]:
         mean
                     1.039604
         std
                     1.161075
         min
                     0.000000
         25%
                     0.000000
         50%
                     0.800000
         75%
                     1.600000
                     6.200000
         max
         Name: oldpeak, dtype: float64
In [67]: ax = plt.subplots(figsize=(8, 6))
         sns.boxplot(x=df["oldpeak"])
         plt.show()
```


In []: