

LMT84, LMT84-Q1

ZHCSCF8C -MARCH 2013-REVISED OCTOBER 2015

LMT84/LMT84-Q1 具有 AB 类输出的 1.5V SC70/TO-92 模拟温度传感器

特性

- LMT84-Q1 符合 AEC-Q100 0 级标准并且采用汽车 级工艺流程制造
- 1.5V 低压运行
- 非常精确: 典型值 ±0.4°C
- -50°C 至 150°C 的宽温度范围
- 5.4µA 低静态电流
- -5.5mV/°C 的平均传感器增益
- 封装:
 - 小型 SC70 (小外形尺寸晶体管 (SOT) 5 引线) 表面贴装
 - 带引线 TO-92
- 输出受到短路保护
- 具有 ±50µA 驱动能力的推挽输出
- 封装与行业标准 LM20/19 和 LM35 温度传感器兼
- 热敏电阻的成本有效替代产品

应用范围

- 汽车
- 工业用
- 大型家用电器 家用电器
- 电池管理
- 磁盘驱动器
- 游戏
- 无线收发器
- 手机

全范围摄氏温度传感器(-50°C至 150°C)

3 说明

LMT84/LMT84-Q1 是高精度 CMOS 集成电路温度传 感器,此传感器具有与温度成线性反比关系的模拟输出 电压。 这款器件的特性使得它适用于很多普通温度感 测应用。 它可由电压低至 1.5V 的电源供电运行,功耗 5.4µA, 这使得这款器件成为电池供电类器件的理想选 择。 凭借包括通孔式 TO-92 封装在内的封装选 项,LMT84 可安装于电路板上、电路板外、散热器中 或同一应用的多个独立位置。 AB 类输出结构为 LMT84/LMT84-Q1 提供强大的输出源电流和灌电流能 力,可直接驱动高达 1.1nF 的电容负载。 这意味着, 借助其瞬态负载条件,它非常适合于驱动一个模数转换 器采样保持输入。 它在 -50°C 至 150°C 的工作温度范 围内可实现额定精度。 这一精度, 3 引线封装选项和 其他特性也使得 LMT84/LMT84-Q1 成为热敏电阻的替 代产品。

LMT85/LMT85-Q1, LMT86/LMT86-Q1 和 LMT87/LMT87-Q1 用于具有不同平均传感器增益和类 似精度的器件(更详细信息请参见《同类替代器 件》。)

器件信息(1)

器件型号	封装	封装尺寸 (标称值)			
LMT84	SOT (5)	2.00mm x 1.25mm			
LIVI I 64	TO-92 (3)	4.3mm x 3.5mm			
LMT84-Q1	SOT (5)	2.00mm x 1.25mm			

(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。

输出电压与温度间的关系

1	特性1		8.2 Functional Block Diagram	9
2	应用范围 1		8.3 Feature Description	9
3			8.4 Device Functional Modes	11
4	全范围摄氏温度传感器(-50°C 至 150°C)	9	Application and Implementation	12
5	修订历史记录		9.1 Applications Information	12
6	Pin Configuration and Functions		9.2 Typical Applications	13
7	Specifications4	10	Power Supply Recommendations	14
•	7.1 Absolute Maximum Ratings	11	Layout	14
	7.2 ESD Ratings - Commercial		11.1 Layout Guidelines	14
	7.3 ESD Ratings - Automotive		11.2 Layout Example	15
	7.4 Recommended Operating Conditions	12	器件和文档支持	16
	7.5 Thermal Information		12.1 相关链接	16
	7.6 Accuracy Characteristics		12.2 商标	16
	7.7 Electrical Characteristics		12.3 静电放电警告	16
	7.8 Typical Characteristics 7		12.4 Glossary	16
8	Detailed Description9	13	机械、封装和可订购信息	17
-	8.1 Overview			

5 修订历史记录

注: 之前版本的页码可能与当前版本有所不同。

Changes from Revision B (May 2014) to Revision CPage• 己删除 有关 TO-126 封装的所有叙述1• Added TO-92 LPM pin configuration graphic3• Changed Handling Ratings to ESD Ratings and moved Storage Temperature to Absolute Maximum Ratings table4• Changed KV to V4• Added layout recommendation for TO-92 LP and LPM packages15Changes from Revision A (June 2013) to Revision BPage• 已更改 数据表流程和版面布局,以符合全新的 TI 标准。已在整个文档内添加以下章节:应用范围和实施、电源建议、布局布线、器件和文档支持、机械、封装和可订购信息。1

Device Comparison Table⁽¹⁾

ORDER NUMBER	PACKAGE	PIN	BODY SIZE (NOM)	Mounting Type
LMT84DCK	SOT (AKA ⁽²⁾ : SC70, DCK)	5	2.00 mm x 1.25 mm	Surface Mount
LMT84LP	TO-92 (AKA ⁽²⁾ : LP)	3	4.3 mm x 3.5 mm	Through-hole; straight leads
LMT84LPM	TO-92 (AKA ⁽²⁾ : LPM)	3	4.3 mm x 3.5 mm	Through-hole; formed leads
LMT84DCK-Q1	SOT (AKA (2): SC70, DCK)	5	2.00 mm x 1.25 mm	Surface Mount

- (1) For all available packages and complete order numbers, see the Package Option addendum at the end of the data sheet.
- (2) AKA = Also Known As

Comparable Alternative Devices

DEVICE NAME	AVERAGE OUTPUT SENSOR GAIN	POWER SUPPLY RANGE
LMT84/LMT84-Q1	−5.5 mV/°C	1.5V to 5.5V
LMT85/LMT85-Q1	−8.2 mV/°C	1.8V to 5.5V
LMT86/LMT86-Q1	−10.9 mV/°C	2.2V to 5.5V
LMT87/LMT87-Q1	−13.6 mV/°C	2.7V to 5.5V

6 Pin Configuration and Functions

3-Pin TO-92

V_{DD}OUT

3-Pin TO-92 LPM Package

Pin Functions

	P	IN			DESCRIPTION			
LABEL	DCK NUMBER	LP NUMBER	LPC NUMBER	TYPE	EQUIVALENT CIRCUIT	FUNCTION		
GND	5			Ground		Power Supply Ground		
GND	1			Ground		Power Supply Ground		
OUT	3	See Pin Diagram	See Pin Diagram	Analog Output	VDD	Outputs a voltage which is inversely proportional to temperature		
V_{DD}	4			Power		Positive Supply Voltage		
GND	2			Ground		Power Supply Ground, (direct connection to the back side of the die)		

7 Specifications

7.1 Absolute Maximum Ratings (1)(2)

	MIN	MAX	UNIT
Supply Voltage	-0.3	6	V
Voltage at Output Pin	-0.3	$(V_{DD} + 0.5)$	V
Output Current	-7	7	mA
Input Current at any pin ⁽³⁾	-5	5	mA
Maximum Junction Temperature (T _{JMAX})		150	°C
Storage temperature T _{stg}	-65	150	°C

- (1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not specified specific performance limits. For specifications and test conditions, see the *Electrical Characteristics*. The specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
- (2) Soldering process must comply with Reflow Temperature Profile specifications. Refer to www.ti.com/packaging.
- (3) When the input voltage (V_I) at any pin exceeds power supplies (V_I < GND or V_I > V), the current at that pin should be limited to 5 mA.

7.2 ESD Ratings - Commercial

	-		VALUE	UNIT
		Human Body Model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins. (1) Applies for TO-92 package LMT84LP.	±2500	
	SC70 p	Human Body Model (HBM), per JESD22-A114, all pins. Applies for SC70 package LMT84DCK.	±2500	V
V _(ESD)	Electrostatic discharge	Charged Device Model (CDM), per JEDEC specification JESD22-C101, all pins. (2) Applies for all parts.	±1000	
		Machine Model ESD stress voltage, per JEDEC specification JESD22-A115 (3) Applies for SC70 package LMT84DCK.	±250	V

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.
- 3) The machine model is 200 pF capacitor discharged directly into each pin.

7.3 ESD Ratings - Automotive

			VALUE	UNIT
		Human-body model (HBM), per JESD22-A114, all pins. (1) Applies for SC70 package LMT84DCK-Q1.	±2500	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101, all pins. (2) Applies for SC70 package LMT84DCK-Q1.	±1000	V

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.4 Recommended Operating Conditions

	MIN	MAX	UNIT
Specified Temperature Range:	$T_{MIN} \le T_A$	≤ T _{MAX}	°C
	-50 ≤ 7	_A ≤ 150	°C
Supply Voltage Range (V _{DD})	1.5	5.5	V

7.5 Thermal Information⁽¹⁾

THERMAL METRIC ⁽²⁾		LMT84/ LMT84-Q1	LMT84	
		DCK	LP	UNIT
		5 PINS	3 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance (3)(4)	275	167	
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	84	90	
$R_{\theta JB}$	Junction-to-board thermal resistance	56	146	°C/W
ΨЈТ	Junction-to-top characterization parameter	1.2	35	
Ψ_{JB}	Junction-to-board characterization parameter	55	146	

- (1) For information on self-heating and thermal response time see section Mounting and Thermal Conductivity.
- (2) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
- (3) The junction to ambient thermal resistance (R_{0JA}) under natural convection is obtained in a simulation on a JEDEC-standard, High K board as specified in JESD51-7, in an environment described in JESD51-2. Exposed pad packages assume that thermal vias are included in the PCB, per JESD 51-5.
- (4) Changes in output due to self heating can be computed by multiplying the internal dissipation by the thermal resistance.

7.6 Accuracy Characteristics

These limits do not include DC load regulation. These stated accuracy limits are with reference to the values in Table 1.

PARAMETER	TEST CONDITIONS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
Temperature Accuracy	70°C to 150°C; V _{DD} = 1.5 V to 5.5 V	-2.7	±0.6	2.7	°C
	0°C to 70°C; V _{DD} = 1.5 V to 5.5 V	-2.7	±0.9	2.7	°C
(3)	-50°C to 0°C; V _{DD} = 1.6 V to 5.5 V	-2.7	±0.9	2.7	°C
	–50°C to 150°C; V _{DD} = 2.3 V to 5.5 V		±0.4		°C

- (1) Limits are specified to TI's AOQL (Average Outgoing Quality Level).
- (2) Typicals are at $T_J = T_A = 25^{\circ}$ C and represent most likely parametric norm.
- (3) Accuracy is defined as the error between the measured and reference output voltages, tabulated in the Transfer Table at the specified conditions of supply gain setting, voltage, and temperature (expressed in °C). Accuracy limits include line regulation within the specified conditions. Accuracy limits do not include load regulation; they assume no DC load.

7.7 Electrical Characteristics

Unless otherwise noted, these specifications apply for V_{DD} = +1.5V to +5.5V. MIN and MAX limits apply for T_A = T_J = T_{MIN} to T_{MAX} ; typical values apply for T_A = T_J = 25°C.

	PARAMETER	TEST CONDITIONS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNITS
	Sensor Gain			-5.5		mV/°C
	Load Regulation (3)	Source ≤ 50 μ A, (V _{DD} - V _{OUT}) ≥ 200 mV	-1	-0.22		mV
	Load Regulation (7)	Sink ≤ 50 μA, V _{OUT} ≥ 200 mV		0.26	1	mV
	Line Regulation (4)			200		μV/V
	Supply Current	$T_A = 30^{\circ}C \text{ to } 150^{\circ}C, (V_{DD} - V_{OUT}) \ge 100 \text{ mV}$		5.4	8.1	μΑ
IS	Supply Current	$T_A = -50$ °C to 150°C, $(V_{DD} - V_{OUT}) \ge 100 \text{ mV}$		5.4	9	μΑ
C_L	Output Load Capacitance			1100		pF
	Power-on Time (5)	C _L = 0 pF to 1100 pF		0.7	1.9	ms
	Output drive			±50		μΑ

- Limits are specific to Tl's AOQL (Average Outgoing Quality Level). Typicals are at $T_J = T_A = 25^{\circ}$ C and represent most likely parametric norm. Source currents are flowing out of the LMT84/LMT84-Q1. Sink currents are flowing into the LMT84/LMT84-Q1. Line regulation (DC) is calculated by subtracting the output voltage at the highest supply voltage from the output voltage at the lowest supply voltage. The typical DC line regulation specification does not include the output voltage shift discussed in Output Voltage Shift.
- (5) Specified by design and characterization.

7.8 Typical Characteristics

Typical Characteristics (continued)

8 Detailed Description

8.1 Overview

The LMT84/LMT84-Q1 is an analog output temperature sensor. The temperature sensing element is comprised of a simple base emitter junction that is forward biased by a current source. The temperature sensing element is then buffered by an amplifier and provided to the OUT pin. The amplifier has a simple push-pull output stage thus providing a low impedance output source.

8.2 Functional Block Diagram

Full-Range Celsius Temperature Sensor (-50°C to 150°C)

8.3 Feature Description

8.3.1 LMT84/LMT84-Q1 Transfer Function

The output voltage of the LMT84/LMT84-Q1, across the complete operating temperature range, is shown in Table 1. This table is the reference from which the LMT84/LMT84-Q1 accuracy specifications (listed in the Accuracy Characteristics section) are determined. This table can be used, for example, in a host processor look-up table. A file containing this data is available for download at the LMT84 product folder under Tools and Software Models.

Table 1. LMT84/LMT84-Q1 Transfer Table

TEMP (°C)	V _{OUT} (mV)								
-50	1299	-10	1088	30	871	70	647	110	419
-49	1294	-9	1082	31	865	71	642	111	413
-48	1289	-8	1077	32	860	72	636	112	407
-47	1284	-7	1072	33	854	73	630	113	401
-46	1278	-6	1066	34	849	74	625	114	396
-45	1273	-5	1061	35	843	75	619	115	390
-44	1268	-4	1055	36	838	76	613	116	384
-43	1263	-3	1050	37	832	77	608	117	378
-42	1257	-2	1044	38	827	78	602	118	372
-41	1252	-1	1039	39	821	79	596	119	367
-40	1247	0	1034	40	816	80	591	120	361

Feature Description (continued)

Table 1. LMT84/LMT84-Q1 Transfer Table (continued)

Table 11 Emile 4 21 Trailere 1 Table (centiliaea)												
TEMP (°C)	V _{OUT} (mV)	TEMP (°C)	V _{OUT} (mV)	TEMP (°C)	V _{OUT} (mV)	TEMP (°C)	V _{OUT} (mV)	TEMP (°C)	V _{OUT} (mV)			
-39	1242	1	1028	41	810	81	585	121	355			
-38	1236	2	1023	42	804	82	579	122	349			
-37	1231	3	1017	43	799	83	574	123	343			
-36	1226	4	1012	44	793	84	568	124	337			
-35	1221	5	1007	45	788	85	562	125	332			
-34	1215	6	1001	46	782	86	557	126	326			
-33	1210	7	996	47	777	87	551	127	320			
-32	1205	8	990	48	771	88	545	128	314			
-31	1200	9	985	49	766	89	539	129	308			
-30	1194	10	980	50	760	90	534	130	302			
-29	1189	11	974	51	754	91	528	131	296			
-28	1184	12	969	52	749	92	522	132	291			
-27	1178	13	963	53	743	93	517	133	285			
-26	1173	14	958	54	738	94	511	134	279			
-25	1168	15	952	55	732	95	505	135	273			
-24	1162	16	947	56	726	96	499	136	267			
-23	1157	17	941	57	721	97	494	137	261			
-22	1152	18	936	58	715	98	488	138	255			
-21	1146	19	931	59	710	99	482	139	249			
-20	1141	20	925	60	704	100	476	140	243			
-19	1136	21	920	61	698	101	471	141	237			
-18	1130	22	914	62	693	102	465	142	231			
-17	1125	23	909	63	687	103	459	143	225			
-16	1120	24	903	64	681	104	453	144	219			
-15	1114	25	898	65	676	105	448	145	213			
-14	1109	26	892	66	670	106	442	146	207			
-13	1104	27	887	67	664	107	436	147	201			
-12	1098	28	882	68	659	108	430	148	195			
-11	1093	29	876	69	653	109	425	149	189			
								150	183			

Although the LMT84/LMT84-Q1 is very linear, its response does have a slight umbrella parabolic shape. This shape is very accurately reflected in Table 1. The Transfer Table can be calculated by using the parabolic equation.

$$V_{TEMP}(mV) = 870.6mV - \left[5.506 \frac{mV}{^{\circ}C} (T - 30^{\circ}C)\right] - \left[0.00176 \frac{mV}{^{\circ}C^{2}} (T - 30^{\circ}C)^{2}\right]$$
(1)

The parabolic equation is an approximation of the transfer table and the accuracy of the equation degrades slightly at the temperature range extremes. Equation 1 can be solved for T resulting in:

$$T = \frac{5.506 - \sqrt{(-5.506)^2 + 4 \times 0.00176 \times (870.6 - V_{TEMP} (mV))}}{2 \times (-0.00176)} + 30$$
(2)

For an even less accurate linear approximation, a line can easily be calculated over the desired temperature range from the Table using the two-point equation:

$$V - V_1 = \left(\frac{V_2 - V_1}{T_2 - T_1}\right) \times (T - T_1)$$
(3)

Where V is in mV, T is in ${}^{\circ}$ C, T₁ and V₁ are the coordinates of the lowest temperature, T₂ and V₂ are the coordinates of the highest temperature.

For example, if we want to resolve this equation, over a temperature range of 20°C to 50°C, we would proceed as follows:

$$V - 925 \text{ mV} = \left(\frac{760 \text{ mV} - 925 \text{ mV}}{50^{\circ}\text{C} - 20^{\circ}\text{C}}\right) \times (\text{T} - 20^{\circ}\text{C})$$
(4)

$$V - 925 \text{ mV} = (-5.50 \text{ mV} / {}^{\circ}\text{C}) \times (\text{T} - 20 {}^{\circ}\text{C})$$
 (5)

$$V = (-5.50 \text{ mV} / {}^{\circ}\text{C}) \times \text{T} + 1035 \text{ mV}$$
 (6)

Using this method of linear approximation, the transfer function can be approximated for one or more temperature ranges of interest.

8.4 Device Functional Modes

8.4.1 Mounting and Thermal Conductivity

The LMT84/LMT84-Q1 can be applied easily in the same way as other integrated-circuit temperature sensors. It can be glued or cemented to a surface.

To ensure good thermal conductivity, the backside of the LMT84/LMT84-Q1 die is directly attached to the GND pin. The temperatures of the lands and traces to the other leads of the LMT84/LMT84-Q1 will also affect the temperature reading.

Alternatively, the LMT84/LMT84-Q1 can be mounted inside a sealed-end metal tube, and can then be dipped into a bath or screwed into a threaded hole in a tank. As with any IC, the LMT84/LMT84-Q1 and accompanying wiring and circuits must be kept insulated and dry, to avoid leakage and corrosion. This is especially true if the circuit may operate at cold temperatures where condensation can occur. If moisture creates a short circuit from the output to ground or V_{DD}, the output from the LMT84/LMT84-Q1 will not be correct. Printed-circuit coatings are often used to ensure that moisture cannot corrode the leads or circuit traces.

The thermal resistance junction to ambient ($R_{\theta JA}$ or θ_{JA}) is the parameter used to calculate the rise of a device junction temperature due to its power dissipation. The equation used to calculate the rise in the LMT84/LMT84-Q1's die temperature is:

$$T_{J} = T_{A} + \theta_{JA} \left[\left(V_{DD} I_{S} \right) + \left(V_{DD} - V_{O} \right) I_{L} \right]$$

$$(7)$$

where T_A is the ambient temperature, I_S is the supply current, I_L is the load current on the output, and V_O is the output voltage. For example, in an application where $T_A = 30^{\circ}\text{C}$, $V_{DD} = 5$ V, $I_S = 5.4$ μA , $V_{OUT} = 871$ mV, and $I_L = 2$ μA , the junction temperature would be 30.015°C, showing a self-heating error of only 0.015°C. Since the LMT84/LMT84-Q1's junction temperature is the actual temperature being measured, care should be taken to minimize the load current that the LMT84/LMT84-Q1 is required to drive. Thermal Information (1) shows the thermal resistance of the LMT84/LMT84-Q1.

8.4.2 Output Noise Considerations

A push-pull output gives the LMT84/LMT84-Q1 the ability to sink and source significant current. This is beneficial when, for example, driving dynamic loads like an input stage on an analog-to-digital converter (ADC). In these applications the source current is required to quickly charge the input capacitor of the ADC. The LMT84/LMT84-Q1 is ideal for this and other applications which require strong source or sink current.

The LMT84/LMT84-Q1 supply-noise gain (the ratio of the AC signal on V_{OUT} to the AC signal on V_{DD}) was measured during bench tests. Its typical attenuation is shown in Figure 8 found in the Typical Characteristics section. A load capacitor on the output can help to filter noise.

For operation in very noisy environments, some bypass capacitance should be present on the supply within approximately 5 centimeters of the LMT84/LMT84-Q1.

8.4.3 Capacitive Loads

The LMT84/LMT84-Q1 handles capacitive loading well. In an extremely noisy environment, or when driving a switched sampling input on an ADC, it may be necessary to add some filtering to minimize noise coupling. Without any precautions, the LMT84/LMT84-Q1 can drive a capacitive load less than or equal to 1100 pF as shown in Figure 10. For capacitive loads greater than 1100 pF, a series resistor may be required on the output, as shown in Figure 11.

(1) For information on self-heating and thermal response time see section Mounting and Thermal Conductivity.

Device Functional Modes (continued)

Figure 10. LMT84 No Decoupling Required for Capacitive Loads Less than 1100 pF

Figure 11. LMT84 with Series Resistor for Capacitive Loading Greater than 1100 pF

C _{LOAD}	Minimum R _S				
1.1 nF to 99 nF	3 kΩ				
100 nF to 999 nF	1.5 kΩ				
1 μF	800 Ω				

8.4.4 Output Voltage Shift

The LMT84/LMT84-Q1 is very linear over temperature and supply voltage range. Due to the intrinsic behavior of an NMOS/PMOS rail-to-rail buffer, a slight shift in the output can occur when the supply voltage is ramped over the operating range of the device. The location of the shift is determined by the relative levels of V_{DD} and V_{OUT} . The shift typically occurs when V_{DD} - V_{OUT} = 1.0V.

This slight shift (a few millivolts) takes place over a wide change (approximately 200 mV) in V_{DD} or V_{OUT}. Since the shift takes place over a wide temperature change of 5°C to 20°C, V_{OUT} is always monotonic. The accuracy specifications in the Accuracy Characteristics table already include this possible shift.

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Applications Information

The LMT84/LMT84-Q1 features make it suitable for many general temperature sensing applications. It can operate down to 1.5V supply with 5.4 uA power consumption making it ideal for battery powered devices. Package options including through-hole TO-92 package allows the LMT84 to be mounted on-board, off-board, to a heat sink, or on multiple unique locations in the same application.

9.2 Typical Applications

9.2.1 Connection to an ADC

Figure 12. Suggested Connection to a Sampling Analog-to-Digital Converter Input Stage

9.2.1.1 Design Requirements

Most CMOS ADCs found in microcontrollers and ASICs have a sampled data comparator input structure. When the ADC charges the sampling cap, it requires instantaneous charge from the output of the analog source such as the LMT84/LMT84-Q1 temperature sensor and many op amps. This requirement is easily accommodated by the addition of a capacitor (C_{FILTER}).

9.2.1.2 Detailed Design Procedure

The size of C_{FILTER} depends on the size of the sampling capacitor and the sampling frequency. Since not all ADCs have identical input stages, the charge requirements will vary. This general ADC application is shown as an example only.

9.2.1.3 Application Curves

9.2.2 Conserving Power Dissipation with Shutdown

Figure 14. Simple Shutdown Connection of the LMT84

Typical Applications (continued)

9.2.2.1 Design Requirements

Since the power consumption of the LMT84 is less than 9 μ A it can simply be powered directly from any logic gate output, thus not requiring a specific shutdown pin. The device can even be powered directly from a micro controller GPIO. In this way it can easily be turned off for cases such as battery powered systems where power savings is critical.

9.2.2.2 Detailed Design Procedure

Simply connect the V_{DD} pin of the LMT84 directly to the logic shutdown signal from a microcontroller.

9.2.2.3 Application Curves

10 Power Supply Recommendations

The LMT84's low supply current and supply range of 1.5V to 5.5V allow the device to easily be powered from many sources.

Power supply bypassing is optional and is mainly dependent on the noise on the power supply used. In noisy systems it may be necessary to add bypass capacitors to lower the noise that is coupled to the LMT84's output.

11 Layout

11.1 Layout Guidelines

The LMT84 is extremely simple to layout. If a power supply bypass capacitor is used is should be connected as shown in the Layout Example.

11.2 Layout Example

Figure 19. SC70 Package Recommended Layout

Figure 20. TO-92 LP Package Recommended Layout

Figure 21. TO-92 LPM Package Recommended Layout

12 器件和文档支持

12.1 相关链接

下面的表格列出了快速访问链接。 范围包括技术文档、支持与社区资源、工具和软件,以及样片或购买的快速访问。

表 2. 相关链接

器件	产品文件夹	样片与购买	技术文档	工具与软件	支持与社区
LMT84	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处
LMT84-Q1	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处

12.2 商标

All trademarks are the property of their respective owners.

12.3 静电放电警告

这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损伤。

12.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 机械、封装和可订购信息

以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。

重要声明

德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据 JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售都遵循在订单确认时所提供的TI 销售条款与条件。

TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。

TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,客户应提供充分的设计与操作安全措施。

TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。

对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行 复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。

在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。

客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而对 TI 及其代理造成的任何损失。

在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。

TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。

只有那些 TI 特别注明属于军用等级或"增强型塑料"的 TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有法律和法规要求。

TI 己明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要求,TI不承担任何责任。

	产品		应用
数字音频	www.ti.com.cn/audio	通信与电信	www.ti.com.cn/telecom
放大器和线性器件	www.ti.com.cn/amplifiers	计算机及周边	www.ti.com.cn/computer
数据转换器	www.ti.com.cn/dataconverters	消费电子	www.ti.com/consumer-apps
DLP® 产品	www.dlp.com	能源	www.ti.com/energy
DSP - 数字信号处理器	www.ti.com.cn/dsp	工业应用	www.ti.com.cn/industrial
时钟和计时器	www.ti.com.cn/clockandtimers	医疗电子	www.ti.com.cn/medical
接口	www.ti.com.cn/interface	安防应用	www.ti.com.cn/security
逻辑	www.ti.com.cn/logic	汽车电子	www.ti.com.cn/automotive
电源管理	www.ti.com.cn/power	视频和影像	www.ti.com.cn/video
微控制器 (MCU)	www.ti.com.cn/microcontrollers		
RFID 系统	www.ti.com.cn/rfidsys		
OMAP应用处理器	www.ti.com/omap		
无线连通性	www.ti.com.cn/wirelessconnectivity	德州仪器在线技术支持社区	www.deyisupport.com

邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122 Copyright © 2015, 德州仪器半导体技术(上海)有限公司

30-Jun-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
LMT84DCKR	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-50 to 150	BNA	Samples
LMT84DCKT	ACTIVE	SC70	DCK	5	250	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-50 to 150	BNA	Samples
LMT84LP	ACTIVE	TO-92	LP	3	1800	Green (RoHS & no Sb/Br)	CU SN	N / A for Pkg Type	-50 to 150	LMT84	Samples
LMT84LPG	ACTIVE	TO-92	LPG	3	1000	Green (RoHS & no Sb/Br)	CU SN	N / A for Pkg Type	-50 to 150	LMT84	Samples
LMT84LPGM	ACTIVE	TO-92	LPG	3	3000	Green (RoHS & no Sb/Br)	CU SN	N / A for Pkg Type	-50 to 150	LMT84	Samples
LMT84LPM	ACTIVE	TO-92	LP	3	2000	Green (RoHS & no Sb/Br)	CU SN	N / A for Pkg Type	-50 to 150	LMT84	Samples
LMT84QDCKRQ1	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-50 to 150	BOA	Samples
LMT84QDCKTQ1	ACTIVE	SC70	DCK	5	250	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-50 to 150	BOA	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

PACKAGE OPTION ADDENDUM

30-Jun-2017

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF LMT84, LMT84-Q1:

Catalog: LMT84

Automotive: LMT84-Q1

NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects

PACKAGE MATERIALS INFORMATION

www.ti.com 4-Nov-2015

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

All difficultions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LMT84DCKR	SC70	DCK	5	3000	178.0	8.4	2.25	2.45	1.2	4.0	8.0	Q3
LMT84DCKT	SC70	DCK	5	250	178.0	8.4	2.25	2.45	1.2	4.0	8.0	Q3
LMT84QDCKRQ1	SC70	DCK	5	3000	178.0	8.4	2.25	2.45	1.2	4.0	8.0	Q3
LMT84QDCKTQ1	SC70	DCK	5	250	178.0	8.4	2.25	2.45	1.2	4.0	8.0	Q3

www.ti.com 4-Nov-2015

*All dimensions are nominal

7 till dilliforioriorio di o riorinirial							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LMT84DCKR	SC70	DCK	5	3000	210.0	185.0	35.0
LMT84DCKT	SC70	DCK	5	250	210.0	185.0	35.0
LMT84QDCKRQ1	SC70	DCK	5	3000	210.0	185.0	35.0
LMT84QDCKTQ1	SC70	DCK	5	250	210.0	185.0	35.0

TO-92

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M
- per ASME Y14.5M.

 2. This drawing is subject to change without notice.

TO-92

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4040001-2/F

TO-92 - 5.34 mm max height

TO-92

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.
- 3. Lead dimensions are not controlled within this area.4. Reference JEDEC TO-226, variation AA.
- 5. Shipping method:

 - a. Straight lead option available in bulk pack only.
 b. Formed lead option available in tape and reel or ammo pack.
 - c. Specific products can be offered in limited combinations of shipping medium and lead options.
 - d. Consult product folder for more information on available options.

TO-92

TO-92

DCK (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-203 variation AA.

DCK (R-PDSO-G5)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

重要声明

德州仪器 (TI) 公司有权按照最新发布的 JESD46 对其半导体产品和服务进行纠正、增强、改进和其他修改,并不再按最新发布的 JESD48 提供任何产品和服务。买方在下订单前应获取最新的相关信息,并验证这些信息是否完整且是最新的。

TI 公布的半导体产品销售条款 (http://www.ti.com/sc/docs/stdterms.htm) 适用于 TI 己认证和批准上市的已封装集成电路产品的销售。另有其他条款可能适用于其他类型 TI 产品及服务的使用或销售。

复制 TI 数据表上 TI 信息的重要部分时,不得变更该等信息,且必须随附所有相关保证、条件、限制和通知,否则不得复制。TI 对该等复制文件不承担任何责任。第三方信息可能受到其它限制条件的制约。在转售 TI 产品或服务时,如果存在对产品或服务参数的虚假陈述,则会失去相关 TI 产品或服务的明示或暗示保证,且构成不公平的、欺诈性商业行为。TI 对此类虚假陈述不承担任何责任。

买方和在系统中整合 TI 产品的其他开发人员(总称"设计人员")理解并同意,设计人员在设计应用时应自行实施独立的分析、评价和判断,且应全权负责并确保应用的安全性,及设计人员的应用(包括应用中使用的所有 TI 产品)应符合所有适用的法律法规及其他相关要求。设计人员就自己设计的应用声明,其具备制订和实施下列保障措施所需的一切必要专业知识,能够(1)预见故障的危险后果,(2)监视故障及其后果,以及(3)降低可能导致危险的故障几率并采取适当措施。设计人员同意,在使用或分发包含 TI 产品的任何应用前,将彻底测试该等应用和该等应用中所用 TI 产品的功能。

TI 提供技术、应用或其他设计建议、质量特点、可靠性数据或其他服务或信息,包括但不限于与评估模块有关的参考设计和材料(总称"TI资源"),旨在帮助设计人员开发整合了 TI 产品的 应用, 如果设计人员(个人,或如果是代表公司,则为设计人员的公司)以任何方式下载、访问或使用任何特定的 TI资源,即表示其同意仅为该等目标,按照本通知的条款使用任何特定 TI资源。

TI 所提供的 TI 资源,并未扩大或以其他方式修改 TI 对 TI 产品的公开适用的质保及质保免责声明;也未导致 TI 承担任何额外的义务或责任。TI 有权对其 TI 资源进行纠正、增强、改进和其他修改。除特定 TI 资源的公开文档中明确列出的测试外,TI 未进行任何其他测试。

设计人员只有在开发包含该等 TI 资源所列 TI 产品的 应用时, 才被授权使用、复制和修改任何相关单项 TI 资源。但并未依据禁止反言原则或其他法理授予您任何TI知识产权的任何其他明示或默示的许可,也未授予您 TI 或第三方的任何技术或知识产权的许可,该等产权包括但不限于任何专利权、版权、屏蔽作品权或与使用TI产品或服务的任何整合、机器制作、流程相关的其他知识产权。涉及或参考了第三方产品或服务的信息不构成使用此类产品或服务的许可或与其相关的保证或认可。使用 TI 资源可能需要您向第三方获得对该等第三方专利或其他知识产权的许可。

TI 资源系"按原样"提供。TI 兹免除对资源及其使用作出所有其他明确或默认的保证或陈述,包括但不限于对准确性或完整性、产权保证、无屡发故障保证,以及适销性、适合特定用途和不侵犯任何第三方知识产权的任何默认保证。TI 不负责任何申索,包括但不限于因组合产品所致或与之有关的申索,也不为或对设计人员进行辩护或赔偿,即使该等产品组合已列于 TI 资源或其他地方。对因 TI 资源或其使用引起或与之有关的任何实际的、直接的、特殊的、附带的、间接的、惩罚性的、偶发的、从属或惩戒性损害赔偿,不管 TI 是否获悉可能会产生上述损害赔偿,TI 概不负责。

除 TI 己明确指出特定产品已达到特定行业标准(例如 ISO/TS 16949 和 ISO 26262)的要求外,TI 不对未达到任何该等行业标准要求而承担任何责任。

如果 TI 明确宣称产品有助于功能安全或符合行业功能安全标准,则该等产品旨在帮助客户设计和创作自己的 符合 相关功能安全标准和要求的应用。在应用内使用产品的行为本身不会 配有 任何安全特性。设计人员必须确保遵守适用于其应用的相关安全要求和 标准。设计人员不可将任何 TI 产品用于关乎性命的医疗设备,除非己由各方获得授权的管理人员签署专门的合同对此类应用专门作出规定。关乎性命的医疗设备是指出现故障会导致严重身体伤害或死亡的医疗设备(例如生命保障设备、心脏起搏器、心脏除颤器、人工心脏泵、神经刺激器以及植入设备)。此类设备包括但不限于,美国食品药品监督管理局认定为 III 类设备的设备,以及在美国以外的其他国家或地区认定为同等类别设备的所有医疗设备。

TI 可能明确指定某些产品具备某些特定资格(例如 Q100、军用级或增强型产品)。设计人员同意,其具备一切必要专业知识,可以为自己的应用选择适合的 产品, 并且正确选择产品的风险由设计人员承担。设计人员单方面负责遵守与该等选择有关的所有法律或监管要求。

设计人员同意向 TI 及其代表全额赔偿因其不遵守本通知条款和条件而引起的任何损害、费用、损失和/或责任。

邮寄地址: 上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2017 德州仪器半导体技术(上海)有限公司