This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

世界知的所有權機関 際 事務

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6

A61K 31/155, 31/40, 31/445, 31/405, 47/10, 47/14, 47/30

A1

(11) 国際公開番号

WO99/33458

(43) 国際公開日

1999年7月8日(08.07.99)

(21) 国際出願番号

PCT/JP98/05919

(22) 国際出願日

1998年12月25日(25.12.98)

(30) 優先権データ

特願平9/357151

1997年12月25日(25.12.97)

(71) 出願人(米国を除くすべての指定国について)

第一製薬株式会社

(DAIICHI PHARMACEUTICAL CO., LTD.)[JP/JP]

〒103-8234 東京都中央区日本橋3丁目14番10号 Tokyo, (JP)

埼玉第一製薬株式会社(SAITAMA DAIICHI PHARMACEUTICAL CO., LTD.)[JP/JP]

〒344-0057 埼玉県春日部市南栄町8-1 Saitama, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

五十嵐京子(IGARASHI, Kyoko)[JP/JP]

川村尚久(KAWAMURA, Naohisa)[JP/JP]

〒344-0057 埼玉県春日部市南栄町8-1

埼玉第一製薬株式会社内 Saitama, (JP)

(74) 代理人

弁理士 有賀三幸,外(ARUGA, Mitsuyuki et al.)

〒103-0013 東京都中央区日本橋人形町1丁目3番6号

共同ビル Tokyo、(JP)

(81) 指定国 AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO特許 (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), ユー ラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC. NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

添付公開書類

国際調査報告書

MEDICINAL COMPOSITION FOR PERCUTANEOUS ADMINISTRATION (54) Title:

(54)発明の名称 経皮投与用医薬組成物

$$\begin{array}{c|c}
HN \\
H_2N
\end{array} \qquad \begin{array}{c}
R^2 \\
A \\
R^4
\end{array} \qquad \begin{array}{c}
R^3 \\
X - (CH_2)_n - Y
\end{array} \qquad \begin{array}{c}
(1)$$

(57) Abstract

A percutaneously absorbable medicinal composition comprising at least one member selected from the group consisting of aromatic amidine derivatives represented by general formula (1), salts of the derivatives, solvates of the derivatives and solvates of salts of the derivatives and a percutaneous absorption promoter. The composition has a high percutaneous absorbability, can maintain an available blood level for long, and has antithrombotic and anticoagulant effects.

一般式(1)

$$\begin{array}{c|c} & R^2 & R^3 \\ & & \\ H_2N & & \\ \end{array} \qquad X-(CH_2)_n-Y \qquad \qquad (1)$$

で表わされる芳香族アミジン誘導体(1)、該誘導体の塩、該誘導体の溶媒和物または該誘導体の塩の溶媒和物および経皮吸収促進剤を含有する経皮吸収用医薬 組成物。

本発明によれば経皮吸収性が高く、長時間に渡り有効血中濃度を維持することができる、抗血栓、抗血液凝固作用を有する経皮吸収用医薬組成物を得ることができる。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

AE アラブ首長国連邦
AL アルバニア
AM アルバニア
AT オーストラリア
AT オーストラリア
AT オーストラリア
AZ アゼルバインルン
BA ボズニアス
BE ベルギー
BC インシル
BC インシル
BC インシル
BC イン・シー
BC イン・

明 細 書

経皮投与用医薬組成物

技術分野

本発明は血液凝固抑制剤および血栓の予防治療剤として有用な芳香族アミジン 誘導体類の経皮投与用医薬組成物に関する。

背景技術

化学構造中に芳香族アミジン構造を有する化合物が、血液凝固第X因子を阻害し、血液凝固抑制剤および血栓の予防治療剤として有用であることが特開平5-208946号公報および国際公開WO96/16940号公報に記載されている。

従来、これら血液凝固系に作用する薬剤の投与形態としては、静脈内投与や経口投与が一般的であり、他の投与形態についてはほとんど検討されていない。

従って、本発明の目的は前記芳香族アミジン誘導体類の新たな投与形態を提供 することにある。

発明の開示

そこで本発明者は、前記芳香族アミジン誘導体類の経皮投与による吸収性について種々検討してきたところ、全く意外にも、この化合物と経皮吸収促進剤とを併用すればこの化合物が皮膚から効率良く吸収され、有効血中濃度が長時間持続することを見出し、本発明を完成するに至った。

すなわち、本発明は一般式(1)

〔式中、R¹は水素原子または低級アルコキシル基を示し、

R² は水素原子、低級アルキル基、低級アルコキシル基、カルボキシル基、アルコキシカルボニル基、カルボキシアルキル基またはアルコキシカルボニルアルキル基を示し、

R³ は水素原子、カルボキシル基、アルコキシカルボニル基、カルボキシアルキル基、アルコキシカルボニルアルキル基、カルボキシアルコキシル基またはアルコキシカルボニルアルコキシル基を示し、

R⁴ は水素原子、ハロゲン原子、アミノ基、シアノ基、ニトロ基、水酸基、低級アルキル基または低級アルコキシル基を示し、

nは0~4の数を示し、

Aは1~2個のヒドロキシアルキル基、カルボキシル基、アルコキシカルボニル基、カルボキシアルキル基もしくはアルコキシカルボニルアルキル基が置換していてもよい炭素数1~4のアルキレン基または式

で表わされる基 ${$ 式中、E は低級アルキレン基またはカルボニル基を示し、 R^5 は水素原子または式 $-D-W-R^6$ で表わされる基 ${}$ (式中、D は式

で表わされる基(式中、Zは酸素原子または硫黄原子を示す。)、 式

$$-\frac{1}{0}$$

で表わされる基またはスルホニル基を示し、

Wは単結合または-NR⁷ -で表わされる基(式中、R⁷ は水素原子、カルバモイル基、低級アルコキシカルボニル基、モノーもしくはジー低級アルキルアミノカルボニル基、低級アルキルスルホニル基、モノーもしくはジー低級アルキルアミノチオカルボニル基、置換基を有していてもよい低級アルキル基または置換基を有していてもよい低級アルカノイル基を示す。)を示し、

R⁶ は水酸基、低級アルコキシル基、置換基を有していてもよい低級アルキル基、 置換基を有していてもよいアリール基または置換基を有していてもよいヘテロア リール基を示す。)} を示し、

Xは単結合、酸素原子、硫黄原子またはカルボニル基を示し、

Yは置換基を有していてもよい飽和もしくは不飽和の5~6員の複素環式基もしくは環状炭化水素基、置換基を有していてもよいアミノ基または置換基を有していてもよいアミノアルキル基を示し、

で表わされる基は、インドリル、ベンゾフラニル、ベンゾチエニル、ベンズイミダゾリル、ベンズオキサゾリル、ベンブチアゾリル、ナフチル、テトラヒドロナフチルおよびインダニルより選ばれる基を示す〕

で表わされる芳香族アミジン誘導体、該誘導体の塩、該誘導体の溶媒和物または該誘導体の塩の溶媒和物と経皮吸収促進剤を含有する経皮投与用医薬組成物を提供するものである。

発明を実施するための最良の形態

本発明組成物に用いられる芳香族アミジン誘導体(1)、該誘導体の塩、該誘導体の溶媒和物または該誘導体の塩の溶媒和物は、前記の如く血液凝固第X因子を阻害し、血液凝固抑制剤および血栓の予防治療剤として有用であることが知られている(特開平5-208946号およびWO96/16940号公報)。

上記一般式(1)において、低級アルキル基としては、炭素数1~6の直鎖状、 分枝状または環状のアルキル基のいずれをも挙げることができ、具体例としては メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、第二級ブチル基、 第三級ブチル基、ペンチル基、ヘキシル基、シクロプロピル基、シクロブチル基、 シクロペンチル基、シクロヘキシル基等が挙げられる。

低級アルキル基は置換基を有していてもよく、低級アルキル基に置換し得る基としては、ハロゲン原子、カルボキシル基、カルバモイル基、アミノ基、シアノ基、ニトロ基、低級アルカノイル基、低級アルコキシル基、低級アルコキシカルボニル基、モノーもしくはジー低級アルキルアミノ基、アリール基、アラルキルオキシ基、アリールオキシ基、メルカプト基、低級アルキルチオ基、低級アルキチオカルボニル基、水酸基、カルバモイル基、モノーもしくはジー低級アルキルアミノカルボニル基等が挙げられる。

低級アルコキシル基としては、炭素数1~6のものを挙げることができ、具体 例としてはメトキシル基、エトキシル基、プロポキシル基、イソプロポキシル基、

プトキシル基、第二級ブトキシル基および第三級ブトキシル基等が挙げられる。 アルコキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニ ル基、プロポキシカルボニル基、ブトキシカルボニル基等が挙げられる。

カルボキシアルキル基としては、カルボキシメチル基、カルボキシエチル基、 カルボキシプロピル基等が挙げられる。

アルコキシカルボニルアルキル基としては、メトキシカルボニルメチル基、エトキシカルボニルメチル基、プロポキシカルボニルメチル基、メトキシカルボニルズチル基、エトキシカルボニルエチル基、メトキシカルボニルプロピル基、エトキシカルボニルプロピル基等が挙げられる。

カルボキシアルコキシル基としては、カルボキシメトキシル基、カルボキシエトキシル基、カルボキシプロポキシル基等が挙げられ、アルコキシカルボニルアルコキシル基としては、メトキシカルボニルメトキシル基、エトキシカルボニルメトキシル基、メトキシカルボニルエトキシル基、エトキシカルボニルエトキシル基、エトキシカルボニルエトキシル基、エトキシカルボニルエトキシル基等が挙げられる。

ヒドロキシアルキル基としては、ヒドロキシメチル基、ヒドロキシエチル基、 ヒドロキシプロピル基、ヒドロキシブチル基等が挙げられる。炭素数1~4のア ルキレン基としては、メチレン基、エチレン基、トリメチレン基、テトラメチレ ン基等が挙げられる。

モノーもしくはジー低級アルキルアミノカルボニル基としては、モノー低級アルキルアミノカルボニル基として、メチルアミノカルボニル基、エチルアミノカルボニル基、プロピルアミノカルボニル基、イソプロピルアミノカルボニル基、ブチルアミノカルボニル基、イソブチルアミノカルボニル基、ペンチルアミノカルボニル基、イソペンチルアミノカルボニル基、ヘキシルアミノカルボニル基、イソヘキシルアミノカルボニル基等が挙げられる。また、ジアルキルアミノカルボニル基、ジプロピルアミノカルボニル基、ジブチルブロピルアミノカルボニル基、ジブチルブロピルアミノカルボニル基、ジブチルブロピルアミノカルボニル基、ジブチルブロピルアミノカルボニル基、ジブチルブロピルアミノカルボニル基、ジブチルブロピルアミノカルボニル基、ジブチルブロピルアミノカルボニル基、ジブチルブロピルアミノカルボニル基、ジブチルブロピルアミノカルボニルス・ジブチル

アミノカルボニル基、ジペンチルアミノカルボニル基等の低級アルキル基でジ置換された対称型のジアルキルアミノカルボニル基、ならびに、エチルメチルアミノカルボニル基、メチルプロピルアミノカルボニル基、エチルプロピルアミノカルボニル基、ブチルメチルアミノカルボニル基、ブチルエチルアミノカルボニル基、ブチルプロピルアミノカルボニル基等の相異なる低級アルキル基でジ置換された非対称型のジアルキルアミノカルボニル基が挙げられる。

低級アルキルスルホニル基としては、メチルスルホニル基、エチルスルホニル 基、プロピルスルホニル基、イソプロピルスルホニル基、ブチルスルホニル基、 イソブチルスルホニル基、ペンチルスルホニル基、イソペンチルスルホニル基、 ヘキシルプロピル基、イソヘキシルプロピル基等が挙げられる。

モノーもしくはジー低級アルキルアミノチオカルボニル基としては、モノー低 級アルキルアミノチオカルボニル基として、メチルアミノチオカルボニル基、エ チルアミノチオカルボニル基、プロピルアミノチオカルボニル基、イソプロピル アミノチオカルボニル基、ブチルアミノチオカルボニル基、イソブチルアミノチ オカルボニル基、ペンチルアミノチオカルボニル基、イソペンチルアミノチオカ ルボニル基、ヘキシルアミノチオカルボニル基、イソヘキシルアミノチオカルボ ニル基等が挙げられる。また、ジアルキルアミノチオカルボニル基として、ジメ チルアミノチオカルボニル基、ジエチルアミノチオカルボニル基、ジプロピルア ミノチオカルボニル基、ジイソプロピルアミノチオカルボニル基、ジブチルアミ ノチオカルボニル基、ジペンチルアミノチオカルボニル基等の低級アルキル基で ジ置換された対称型のジアルキルアミノチオカルボニル基、ならびに、エチルメ チルアミノチオカルボニル基、メチルプロピルアミノチオカルボニル基、エチル プロピルアミノチオカルボニル基、ブチルメチルアミノチオカルボニル基、ブチ ルエチルアミノチオカルボニル基、ブチルプロピルアミノチオカルボニル基等の 相異なる低級アルキル基でジ置換された非対称型のジアルキルアミノチオカルボ ニル基が挙げられる。

低級アルカノイル基としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ピバロイル基、ヘキサノイル基等が挙げられ、好ましくは、アセチル基、プロピオニル基、ブチリル基であり、さらに好ましくはアセチル基、プロピオニル基である。低級アルカノイル基は置換基を有していてもよい。

なお、低級アルカノイル基に置換し得る基としては、ハロゲン原子、カルボキシル基、カルバモイル基、アミノ基、シアノ基、ニトロ基、低級アルカノイル基、低級アルコキシル基、低級アルコキシカルボニル基、モノーもしくはジー低級アルキルアミノ基、アリール基、アラルキルオキシ基、アリールオキシ基、メルカプト基、低級アルキルチオ基、低級アルキチオカルボニル基、水酸基、カルバモイル基、モノーもしくはジー低級アルキルアミノカルボニル基等が挙げられる。アリール基としては、フェニル基、ナフチル基、ビフェニル基、アントリル基

ヘテロアリール基としては、フリル基、チエニル基、ピロリル基、イミダゾリル基、ピラゾリル基、イソチアゾリル基、イソキサゾリル基、ピリジル基、ピリジル基、ドノリル基、キノリル基、インキノリル基、キナゾリニル基、キノリジニル基、キノキサリニル基、シンノリニル基、ベンズイミダゾリル基、イミダゾピリジル基、ベンゾフラニル基、ナフチリジニル基、1,2-ベンゾイソキサゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、オキサゾロピリジル基、イソチアゾロピリジル基、ベンゾチエニル基等が挙げられ、好ましくは、フリル基、チエ

等が挙げられ、アリール基は置換基を有していてもよい。

置換基を有していてもよい。

なお、これらのアリール基またはヘテロアリール基に置換し得る基としては、 ハロゲン原子、カルボキシル基、アミノ基、シアノ基、ニトロ基、水酸基、低級 アルコキシ基、低級アルコキシカルボニル基、モノーもしくはジー低級アルキル アミノ基、低級アルカノイル基、置換基を有していてもよい低級アルキル基が挙

ニル基、ピロリル基、イミダゾリル基、ピリジル基等が挙げられ、アリール基は

げられる。

また、飽和もしくは不飽和の5~6員の複素環式基としては、ヘテロ原子として1~2個の窒素原子または酸素原子を含む複素環式基が好ましい。このような複素環の具体例としてはピロリジン、ピペリジン、イミダゾリン、ピペラジン、テトラヒドロフラン、ヘキサヒドロピリミジン、ピロール、イミダゾール、ピラジン、ピロリジノン、ピペリジノン、モルホリン等が挙げられ、このうちピロリジンおよびピペリジンが特に好ましい。また、飽和もしくは不飽和の環状炭化水素基としては、シクロペンチル基、シクロヘキシル基等が挙げられる。また、アミノアルキル基としては、アミノメチル基、アミノエチル基、アミノプロピル基等が挙げられる。

複素環式基または環状炭化水素基は置換基を有していてもよく、これらの複素 環式基または環状炭化水素基に置換し得る基としては低級アルキル基、低級アル カノイル基、カルバモイル基、モノアルキルカルバモイル基、ジアルキルカルバ モイル基、ホルムイミドイル基、アルカノイミドイル基、ベンズイミドイル基、 カルボキシル基、アルコキシカルボニル基、カルボキシアルキル基、アルキルカ ルボニルアルキル基、アミノアルキル基、アルカノイルアミノ基、アルカノイル アミノアルキル基、イミノ基、アルコキシカルボニルイミノ基等が挙げられる。

また、アミノ基またはアミノアルキル基のアミノ部分に置換し得る基としては、低級アルキル基、ピロリジニル基、ピラジル基、カルバモイル基、モノアルキルカルバモイル基、ジアルキルカルバモイル基、低級アルカノイル基、ホルムイミドイル基、アルカノイミドイル基、ベンズイミドイル基、アルコキシカルボニル基等が挙げられる。

なお、ここで示したアルキル基、アルコキシル基、アルカノイル基等の基、および各置換基中のアルキル部分、アルコキシル部分、アルカノイル部分等の炭素数は1~6が好ましい。

で示される基としては、ベンゾフラニル、ベンズイミダゾリル、インドリル、ベンゾチエニル、ベンゾチアゾリル、ナフチルおよびテトラヒドロナフチルより選ばれる基が特に好ましい。

本発明にかかる一般式(1)で表わされる芳香族アミジン誘導体、該誘導体の 塩、該誘導体の溶媒和物または該誘導体の塩の溶媒和物には、不斉炭素原子が存 在することがあり、その場合、不斉炭素原子に基づく光学異性体あるいは立体異 性体が存在するが、これらの光学異性体、立体異性体およびこれらの混合物のい ずれも本発明に含まれる。

本発明においては、上述した芳香族アミジン誘導体(1)、該誘導体の塩、該 誘導体の溶媒和物または該誘導体の塩の溶媒和物の中でも、以下の化合物、その 塩またはそれらの溶媒和物が好ましい。

2-[4-[((3S)-1-rセトイミドイル-3-ピロリジニル) オキシ]フェニル] -3-(7-rミジノ-2-ナフチル) プロピオン酸、

2-[4-[(1-アセトイミドイル-4-ピペリジル)オキシ]フェニル]-3-(7-アミジノ-2-ナフチル)プロピオン酸、

(+) -2- [4- [(1-アセトイミドイル-4-ピペリジル) オキシ] フェ

ニル] - 3 - (7-アミジノ-2-ナフチル)プロピオン酸、

2-[4-[(1-アセトイミドイル-4-ピペリジル)オキシ]フェニル]-3-(5-アミジノベンゾ[b]チエン-2-イル)プロピオン酸、

2-[4-[((2S)-1-rセトイミドイル-2-ピロリジニル)メロキシ]フェニル]-3-(5-rミジノベンゾ[b]チエン-2-イル)プロピオン酸、 (+)-2-[4-[((2S)-1-rセトイミドイル-2-ピロリジニル)メトキシ]フェニル]-3-(5-rミジノベンゾ[b]チエン-2-イル)プロピオン酸、

3-[4-[((3S)-1-rセトイミドイル-3-ピロリジニル) オキシ] フェニル] -4-(5-rミジノベンゾ[b] チエンー 2-イル) 酪酸、 2-[4-[((3S)-1-rセトイミドイル-3-ピロリジニル) オキシ] フェニル] -3-(6-rミジノ-1-xチル-2-インドリル) プロピオン酸、 2-[4-[((3R)-1-rセトイミドイル-3-ピロリジニル) オキシ] フェニル] -3-(6-rミジノ-1-xチル-2-インドリル) プロピオン酸、 2-[4-[(1-rセトイミドイル-4-ピペリジニル) オキシ] フェニル] -3-(6-rミジノ-1-xチル-2-インドリル) プロピオン酸、

N-[4-[(1-rv+1+7+7+1)-4-ll]] フェニル] -[(7-rv+1)-2-rv+1] スルファモイルアセティックア

シッド、

エチル N-[N-[4-[(1-rセトイミドイル-4-ピペリジル) オキシ]フェニル] -N-[(7-rミジノ-2-ナフチル) メチル] スルファモイル] グリシネート、

特に好ましいものは、(2S) - 2 - [4 - [((3S) - 1 - r セトイミド イル - 3 - ピロリジニル) オキシ] フェニル] - 3 - (7 - r ミジノー 2 - ナフチル) プロピオン酸、

(+) -2 -[4 -[(1 - - - - - -[(1 - - - - -[(1 - - - -[(1 - - -[(1 - -[(1 - -[(1 - -[(1 - -[(1

(+) -2-[4-[((2S)-1-rセトイミドイル-2-ピロリジニル) メトキシ] フェニル] -3-(5-rミジノベンゾ[b] チェン-2-イル) プロピオン酸、

エチル N-[N-[4-[(1-rセトイミドイル-4-ピペリジル) オキシ]フェニル] -N-[(7-rミジノ-2-ナフチル) メチル] スルファモイル] グリシネート、

N-[N-4-[(1-r+h+1+i+1)-4-l+n]] フェニル] -N-[(7-r+i+1)-2-t+1) メチル] スルファモイル] グリシン、 およびN-[4-[(1-r+h+1+i+1)-4-l+n]] フェニル] -N-[(7-r+i+1)-2-t+1)] メチル] スルファモイルアセティックアシッド、これらの塩またはこれらの溶媒和物である。

(+) -2-[4-[((2S)-1-rセトイミドイル-2-ピロリジニル) メトキシ] フェニル] -3-(5-rミジノベンゾ[b] チェン-2-イル) プロピオン酸 2塩酸塩、

エチル N-[N-[4-[(1-rセトイミドイル-4-ピペリジル) オキシ]フェニル]-N-[(7-rミジノ-2-ナフチル) メチル] スルファモイル] グリシネート <math>2塩酸塩、

N-[N-4-[(1-rセトイミドイル-4-ピペリジル) オキシ] フェニル] -N-[(7-rミジノ-2-ナフチル) メチル] スルファモイル] グリシン 2塩酸塩、

およびN-[4-[(1-rセトイミドイル-4-ピペリジル) オキシ] フェニル] <math>-N-[(7-rミジノ-2-tフチル) メチル] スルファモイルアティックアシッド 2塩酸塩が好ましい。

上記のアミジン誘導体(1)、該誘導体の塩、該誘導体の溶媒和物または該誘導体の塩の溶媒和物の経皮吸収を促進させる物質(経皮吸収促進剤)としては、アルコール類、多価アルコール、高級アルカン、高級脂肪酸、高級脂肪酸エステル類、テルペン類、アルキル硫酸エステル類、アルキルアミンオキシド類、カルボキシベタイン類、ポリオキシアルキレンアルキルエーテル類、スルホキシド類およびアミド類から選ばれる1種または2種以上が挙げられる。このうち、アルコール類、多価アルコール、高級脂肪酸、高級脂肪酸エステル類、テルペン類、アルキル硫酸エステル類、アルキルアミンオキシド類、カルボキシベタイン類、オリオキシアルキレンアルキルエーテル類およびアミド類から選ばれる1種またポリオキシアルキレンアルキルエーテル類およびアミド類から選ばれる1種また

は2種以上がより好ましい。

前記経皮吸収促進剤のうち、アルコール類としては、炭素数 2~18の飽和脂肪族アルコール、炭素数 7~14のアリールアルカノールが好ましく、具体例としてエタノール、イソプロパノール等の炭素数 2~4のアルコール、ベンジルアルコール等の炭素数 7~12のアリールアルコール、1-オクタノール、1-ノナノール、1-デカノール、1-ドデカノール、ステアリルアルコール等が挙げられる。

多価アルコールとしては、炭素数2~4のアルキレングリコール、グリセリン、ポリエチレングリコール、ポリグリセリン、ソルビタン等が挙げられ、具体例としてはエチレングリコール、プロピレングリコール、ブチレングリコール、グリセリン、ポリエチレングリコール、ソルビタン等が挙げられる。

高級アルカンとしては、炭素数 $6 \sim 12$ のアルカンが好ましく、具体例としては $n - \sim 7$ タン、n - 1 ナン、n - 1 デカン等が挙げられる。

高級脂肪酸としては、炭素数 $6 \sim 1$ 8 の飽和または不飽和脂肪酸が好ましく、このうち炭素数 $6 \sim 1$ 6 の飽和または不飽和脂肪酸がより好ましい。高級脂肪酸の具体例としては、カプロン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、オレイン酸等が挙げられる。

高級脂肪酸エステル類としては、一価アルコールまたは多価アルコールの炭素数6~24の脂肪酸エステル類が好ましく、多価アルコールの炭素数6~24の脂肪酸エステル類がより好ましく、多価アルコールの炭素数6~16の脂肪酸エステルがさらに好ましい。ここで、多価アルコールとしては、エチレングリコール、ポリエチレングリコール、プロピレングリコール、ポリプロピレングリコール、グリセリン、ポリグリセリン、ソルビタン等が挙げられる。また、これらの多価アルコールとエステルを形成する脂肪酸としては、カプロン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸等が挙げられる。

これらの多価アルコール脂肪酸エステル類のうち、多価アルコールモノ脂肪酸

エステル類が好ましく、多価アルコールモノ C_6-C_{16} 脂肪酸エステルがより好ましく、グリセリンモノ脂肪酸エステルがさらに好ましく、グリセリンモノ C_6-C_{16} 脂肪酸エステルが特に好ましい。グリセリンモノ脂肪酸エステルの具体例としては、モノカプロン酸グリセリン、モノカプリル酸グリセリン、モノカプリン酸グリセリンが挙げられるが、このうちモノカプリル酸グリセリンが特に好ましい。

テルペン類としては、モノテルペンまたはセスキテルペンが挙げられ、具体例としてシネオール、 ℓ - メントール、メントン、d - リモネン、ネロリドール等が挙げられる。

アルキル硫酸エステル類としては、炭素数6~24のアルキル硫酸エステル塩が好ましく、デシル硫酸塩、ラウリル硫酸塩、テトラデシル硫酸塩等が挙げられるが、このうちラウリル硫酸アルカリ金属塩がより好ましく、ラウリル硫酸ナトリウムが特に好ましい。

アルキルアミンオキシド類としては、アルキルジメチルアミンオキシド類が好ましく、炭素数6~24のアルキルジメチルアミンオキシド類がより好ましく、 具体例としてデシルジメチルアミンオキシド、ラウリルジメチルアミンオキシド、 テトラデシルジメチルアミンオキシド等が挙げられる。

カルボキシベタイン類としては、アルキルジメチルアミノ酢酸類が好ましく、 炭素数6~24のアルキルジメチルアミノ酢酸がより好ましい。その具体例とし てはデシルジメチルアミノ酢酸、ドデシルジメチルアミノ酢酸、テトラデシルジ メチルアミノ酢酸等が挙げられる。

ポリオキシアルキレンアルキルエーテル類としては、ポリオキシエチレンアルキルエーテル、ポリオキシプロピレンアルキルエーテル等が挙げられるが、ポリオキシエチレンアルキルエーテルが好ましく、特にポリオキシエチレン C_6-C_{24} アルキルエーテルが好ましい。スルホキシド類としては、ジアルキルスルホキシド、例えばジメチルスルホキシドが挙げられる。またアミド類として

は、N, N-ジアルキルホルムアミド、N, N-ジアルキルアセトアミド、N, N-ジアルキルトルアミド、N-ヒドロキシアルキルラクトアミド、ピロリドン、N-アルキルピロリドン等が挙げられるが、より具体的にはN, N-ジメチルホルムアミド、N, N-ジメチルアセトアミド、N, N-ジエチルトルアミド、N-ヒドロキシエチルラクトアミド、N-ピロリドン、N-オクチル-2-ピロリドン等が挙げられる。

上記の経皮吸収促進剤のうち、 C_2-C_4 アルコール、 C_7-C_{12} アリールアルカノール、 C_6-C_{18} 飽和脂肪族アルコール、多価アルコール、 C_6-C_{16} 脂肪酸、テルペン、多価アルコールモノ C_6-C_{16} 脂肪酸エステル、 C_6-C_{24} アルキル硫酸エステル塩、 C_6-C_{24} アルキルジメチルアミンオキシド、 C_6-C_{24} アルキルジメチルアミノ酢酸、ポリエチレングリコール C_6-C_{24} アルキルエーテル、ピロリドン、N-アルキルピロリドン、N, N-ジアルキルホルムアミドおよびN, N-ジアルキルトリアミドから選ばれる 1 種または 2 種以上の組み合せが好ましい。

さらに、エタノール、イソプロパノール、ベンジルアルコール、エチレングリコール、プロピレングリコール、グリセリン、1- ノナノール、1- デカノール、ステアリルアルコール、カプロン酸、カプリル酸、カプリン酸、d- リモネン、シネオール、モノカプリル酸プロピレングリコール、モノカプリル酸グリセリン、モノカプリン酸グリセリン、ラウリルジメチルアミンオキシド、ドデシルN,Nージメチルアミノ酢酸、ラウリル硫酸ナトリウム、ポリオキシエチレンラウリルエーテル、N, N- ジエチルトルアミド、2- ピロリドンおよびN- オクチルー2- ピロリドンから選ばれる 1 種または 2 種以上の組み合せがより好ましい。

さらにまた、 C_2-C_4 アルコール、 C_7-C_{12} アリールアルカノール、 C_6-C_{18} 飽和脂肪族アルコール、 C_6-C_{16} 脂肪酸、テルペン、ピロリドンおよびN-アルキルピロリドンから選ばれる1種または2種以上の組み合せが好ましい。

より具体的には、エタノール、カプリン酸、ベンジルアルコール、1 - ノナノール、N-オクチル-2-ピロリドンおよびd-リモネンから選ばれる1~4種の組み合せが特に好ましい。これらの2種以上の組み合せの例としては、エタノールとカプリン酸;ベンジルアルコールとd-リモネン;エタノールとカプリン酸と1-ノナノール;エタノールとカプリン酸とd-リモネン;エタノールとベンジルアルコールと1-ノナノール;エタノールとベンジルアルコールと1-ノナノール;エタノールとベンジルアルコールと1-ノナノールとカプリン酸;カプリン酸;エタノールとベンジルアルコールと1-ノナノールとカプリン酸;カプリン酸とベンジルアルコールとd-リモネンとエタノール;カプリン酸とベンジルアルコールとd-リモネンとエタノール;カプリン酸とベンジルアルコールとd-リモネンとエタノールの各組み合せが挙げられる。

本発明経皮吸収用医薬組成物における芳香族アミジン誘導体(1)、該誘導体の塩、該誘導体の溶媒和物または該誘導体の塩の溶媒和物と経皮吸収促進剤との配合割合は、特に制限されないが、芳香族アミジン誘導体(1)、該誘導体の塩、該誘導体の溶媒和物または該誘導体の塩の溶媒和物に対して経皮吸収促進剤を重量比で0.01~10倍が好ましく、0.1~10倍がより好ましく、0.2~5倍が特に好ましい。

また本発明組成物中への芳香族アミジン誘導体(1)、該誘導体の塩、該誘導体の溶媒和物または該誘導体の塩の溶媒和物の配合量は、剤形等によっても異なるが、 $0.001\sim60$ 重量%が好ましく、 $0.001\sim50$ 重量%がより好ましく、 $0.1\sim30$ 重量%が特に好ましい。また経皮吸収促進剤の配合量は、合計で $0.001\sim60$ 重量%が好ましく、 $0.001\sim50$ 重量%がより好ましく、 $0.1\sim50$ 重量%が特に好ましい。また、経皮吸収促進剤を2種組み合せて配合する場合、その配合比は特に限定されないが、重量比で $1/50\sim50/1$ とするのが好ましい。

本発明組成物の剤形は、経皮的に吸収させることのできる剤形であれば特に限

定されず、例えば軟膏剤、クリーム剤、ゲル剤、パスタ剤、パップ剤、硬膏剤、パッチ剤、プラスター剤、リザーバー型貼付剤、ローション剤、リニメント剤等が挙げられる。プラスター剤としては、アクリル系樹脂、エチレン酢酸ビニル共重合体樹脂、スチレンーイソブチレンースチレンブロック共重合体樹脂などの粘着剤の中に、薬物や経皮吸収促進剤が溶解または分散してなるマトリックス型のプラスター剤が挙げられ、リザーバー型貼付剤としては、周辺部等に感圧接着剤を設けた薬剤放出可能な薬物放出剤層と、薬剤不透過性の裏打部材の間に、液体または半固体状の製剤が封入されてなるリザーバー型貼付剤などがある。これらの製剤を調製するにあたっては、従来公知の薬学上許容される種々の担体(添加剤)を必要に応じて配合することができる。

かかる添加剤としては、外用基剤、乳化剤、懸濁化剤、保存剤、安定剤、水等が挙げられる。

本発明組成物は、上記種々の剤形の製造法に従って製造することができ、皮膚に塗布し必要に応じてマッサージするか、また貼付することによって使用することができる。

実施例

次に実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれに何ら限 定されるものではない。

試験例1(ラットにおけるin vitro皮膚透過性試験)

<実験条件>

皮膚:Wistar系雄性ラット(8週齢)腹部摘出皮膚

装置:横型セル容量 0. 8 mL有効面積 0. 2 8 2 7 cm² (3 7 ℃)

ドナー側;化合物A50mg/mLまたは懸濁液(生食液)に各種促進剤を加えた液

レシーバー側;塩化ベンザルコニウム液 0.01%を含む 0.05 mo l/L リン酸緩衝液 (pH 6.8)

試料溶液の調製:一定時間毎にレシーバー液 0.3 mlをサンプリングする。各サンプリング液を正確に 0.15 mlとり、pーヒドロキシ安息香酸メチルのメタノール溶液 0.15 mlを正確に加え試料溶液とし、HPLCを用いて化合物 Aの皮膚透過量を測定する。

得られた結果を表1に示す。なお、表1には、経皮吸収促進剤を配合した場合の累積透過量と配合しなかった場合の累積透過量の比を経皮吸収促進効果として示した。

なし $1 - / + / - ル$ 1528 $1 - / + / - ル$ 1020	Q_{24} ($\mu g / cm^2 \pm S. E.$)	経皮吸収促進効果
	709.05±76.18 282.69±2433.	1.0 21.6
- トナカノール	796.50 ± 716.82	بن به
- 1.7. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	750.84 ± 389.5 545.30 ± 712.6	
プロン製 1769 1769 1056	$7697.37 \pm 2094.$	
1030 1030 1030 1030 1030 1030 1030 1030	8796.65 ± 625.34	
ノカプリル酸プロピレングリコール 1209	7203.18 ± 2588. 2093.92 ± 2946.	4.
ノカブリル酸グリセリン ネオール 541	8439.60 ± 419.7 5411 22 + 187 5	9.
イントール 433	339.38 ± 886.1	
351	510.57 ± 739.5 121.85 ± 687.8	
ロリトール 404 (10**** 0 / 1) 404 (10**** 0 / 1) 15/4	042.17 ± 740.6	
イングラ ス・プランス (Tominoを/L) クリルジメチルアミンオキシド (20mmo & /L) 2807	1040.48 ± 591.2 8070.51 ± 4963 .	No.
デシルN, N ージメチルアミノ酢酸 リオキツエチレンウウリルエーナル 868	1958.07 ± 776.70 8687.9 ± 4659.9	
ウリルジメチルアミンオキシド(20mmo l/L)		;
+モノカブリル酸グリセリン(1%) ウリルジメチルアドンオキシド(50mmo 0 /1)	6979.22 ± 395.00	9.4
+モノカプリル酸グリセリン(5%) ローニジュチョンディオキシビ(30mm-2011)	17918.72 ± 2598.04	24.1
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15422.01 ± 687.43	20.8
・ / / / / / / / / / / / / / / / / / / /	10724.49 ± 1253.28	14.4
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		6.1
+モノカプリル酸グリセリン(5%) 3645	64	44.2

表口

試験例2 (ブタにおけるin vitro皮膚透過性試験)

皮膚として、ユカタンミニブタ(5ケ月齢)の背部摘出皮膚を用いた以外は試験例1と同様にして化合物Aの単位面積当たりの48時間目の累積透過量 (μ g /cm²)を算出し、皮膚透過性を比較した (n=3)。

得られた結果を表2~表4に示す。なお、表2~表4には、経皮吸収促進剤を配合した場合の累積透過量と配合しなかった場合の累積透過量の比を経皮吸収促進効果として示した。

経皮吸収促進効果	1.0 15.5 20.4 16.1		25. 9 59. 6	15.4	29.7	23. 9 23. 2	26.0	24. 4 24. 5	85.8 28.9 76.4 19.1	55. 1	52. 0 20. 7
Q 48 (μg/cm ² ±S.Ε.)	61 ± 32 46 ± 60 44 ± 22 84 ± 35	2008 	1579 ± 651 3637 ± 1286	939 ± 278	1812 ± 264	1458 ± 496 1416 ± 425	1586 ± 599	1486 ± 593 1497 ± 225	5233±1955 1764±292 4662±7 1098±263 1168±410	3360 ± 512	3171 ± 905 1263 ± 149
経皮吸収促進剤	し プリン酸 (0.5%) + エチレングリコプリン酸 (0.5%) + ベンジルアルコプリン酸 (0.5%) + ベンジルアルコプリン酸 (0.5%) + エタノール (5%	プラン聚 (0.5%) + 1 - / ナノイノプリン聚 (5%) + 1 - / ナノーノーノリン聚 (5%) + d - リホギンプラン縣 (5%) + ポニオキシュー	イーナル(5%) プリン製(5%)+ オタノール(5%) プリン製(5%)+ エタノール(5%)	キシエチフンレウコルエーナル(5%) プリン駿(5%)+ウローカジメチルアニンオ	ンド(0.5%) + 1 - / ナノール(0.5%) レニン整(5%) + N - N - ジメチラボラット	ド(5%) プラン駿(5%)+2ーピロンドン(5%) プラン駿(5%)+Nーギゥチジー・プロコ	ソ(5%) プリン製(5%) + 1 - ノナノーグ(0.5%) +	フッケンメナケア、ソイキンド $(0.5%)$ + $(0.5%)$ ナントアレート $(5%)$ - $(0.5%)$ -	(2) + H タノーア(5%) 5%) + d - J 市 木ン(5%) ハオキンド(0.5%) ハオキンド(5%)	シッグソイングノ、フィナントントラントラコーラ(5%) タノーラ(20%) + ムーニサジ	リン酸(0.5%) タノール(20%) +カプリン酸(0.5%)

表2

経皮吸収促進剤	Q 48 (μg/cm ² ±5.Ε.)	経皮吸収促進効果
ン¢ , ,	ì	1.0
ンノン	2251 ± 399	36.9
ジドンタ	5251 ± 1111	86.1
ジルアルコール(0.5%) + 1 - / ナ/ール (0.5%) + 1 - / ナ/ール (0.5%) + カプリン酸(0.5%) + ベンコタノール(20%) + カプリン酸(0.5%) + ベン	5843 ± 517	95.8
ジナ々ルーノアー	6239 ± 1355	102.3
チーン・エン	4457 ± 710	73.1
ケイン	10060 ± 1600	164.9
7+1	1985 ± 166 3052 ± 583	32.5 50.0

表3

4	
表	

経皮吸収促進剤	Q 48 (μg/cm²±S.Ε.)	経皮吸収促進効果
のと	22±10	1.0
/ X (2:2%) - 、/ / / / / / / / / / / / / / / / / /	650±165	29.5
ノ殻(パコタ)~~ハハガンガーガ(0.゚+ ノナノーラ(0.º%) トイナノーラ(0.º%) ン幣(0 セ%) +Հンジデドラコーデ(0	1268土793	57.7
ハイス(2.5%) - ハイゲーグコーグ(2.5%) 1 - ノナノーブ(0.5%) + d - コホザン(5%)ノーブ(50%) + セプゴン製(5%) + エナーブ(50%) + セプゴン製(5%) + ボニャギ	698 ± 195 1986 ± 339	31.8 90.3
ゲスOM - ゲンノス AM - ゲンイナンルセントレードイ(3E.0.)(2%) ード(30%) +セピニン繋(5%) +ジィチ	1812±359	82. 4
7.52%/ - スノンノ吸 3%/ - ハインムア ド(5%)	2343 ± 440	106.5
7 (20%) - イン・ハマ (3%) - 2 にい(5%) - 1 (5%) + 4 よこ、繋(5%) + N - キ	3128 ± 833	142.2
7 (20%) ・ 7 / ~ / 数 (3%) ・ 11 ~ 7 ~ 7 2 ~ 11 ~ 4 ~ 11 ~ 4 ~ 11 ~ 4 ~ 11 ~ 4 ~ 11 ~ 4 ~ 11 ~ 4 ~ 11 ~ 4 ~ 11 ~ 4 ~ 11 ~ 4 ~ 11 ~ 4 ~ 11 ~ 4 ~ 11 ~ 4 ~ 11 ~ 4 ~ 11 ~ 4 ~ 11 ~ 4 ~ 11	4116 ± 466	187.1
(5%) - イン・ハマング・コーク(5%) - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	2746 ± 704	124.8
7 (20/2) - 、,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3513 ± 1517	159.7
ラ (20%) - イン・ハス (3.5%) - イフーフ (0.5%) + ローコルヤン (2%) - トラ(5%) + セプニン器 (0 ㎡) + イン・	1798±551	81.7
7 (202) - スノンフマ (2.0%) - フレーラ(0.5%) + 1 - ノナノーラ(0.5%) - 1 - ノナノーラ(0.5%) - 1 - 1 - 2 を(0.5%) - 1 - 1 - 1	7315±368	332. 5
ラ ラ ラ ラ ラ ラ ラ ラ ラ ラ ラ ラ ラ ラ ラ ラ ラ ラ ラ	2100±415	95.5
- 17(0.5%) - 17 (0.5%) - 17(0.5%) - 17(3.0%) - 17 17 18(0.5%) + 17 17 18(0.5%) + 17 18(0.5%) + 17 18(0.5%)	1962±77	89.2
- 17(0.5%) - 17(0.5%) - 17(0.5%) + 17(0.5%) + 17(0.5%) + 17(0.5%) + 17(0.5%) + 17(0.5%) + 17(0.5%) + 17(0.5%) + 17(0.5%)	6312 ± 927	286.9
	3098 ± 398	140.9

試験例3(ヒトにおけるin vitro皮膚透過性試験)

皮膚として、ヒト手術時摘出皮膚((1)NaBrによって角質層および表皮層のみの厚さ約 100μ mの皮膚、または(2)冷凍保存されていた皮膚を解凍し脂肪を除去した皮膚で、角質層、表皮層、真皮層および若干の脂肪層を含む、厚さ約1mmの皮膚)を用い、レシーバー側の液として塩化ベンザルコニウム0.01%を含む生理食塩水を用いる以外は、試験例2と同様にして化合物Aの単位面積当たりの48時間目の累積透過量 $Q(\mu g/cm^2)$ を算出し、皮膚透過性を比較した(n=2または3)。

得られた結果を表 5 および表 6 に示す。なお、表 5 および表 6 には、経皮吸収 促進剤を配合した場合の累積透過量と配合しなかった場合の累積透過量の比を経 皮吸収促進効果として示した。

表5

経皮吸収促進剤	皮膚	Q ₄₈ (µg/cm ² ±S, B.)	経皮吸収促進効果
7、聚(5%)	(2)	3±1 8±473	1.0
ノンソ製(5%) ナイニソ製(5%) ナトニソ製(5%) ナトニン 繋(5%) ナ	(28)		2666 3405
ノン・スペン・ス・オン・グ・プロコドン(5%) ナイタノーブ(50%) プロン器(5%) ナポニナサシドチフン	(2)	20007 ± 4466	6999
コート マート マート マート マート マート マート マート (1%) (1%) (1%) (1%) (1%) (1%) (1%) (1%)	666	6151 ± 3015 4249 ± 2061 5953 ± 742	2050 1416 1984
ノッノ殴 (3%) トローットトノ(1%) Hタノーブ(20%) プニン縣(5%) +ムーニオルン(1%)	(2)	21434 ± 1236	7145
イグ・吸(3/1)~ユーンドキン(1/2) オタノール(10%) プロン醪(5%) +ベンジホアビコーデ	(2)	12713 ± 1067	4238
(5%) (5%) トスンジラトテロープニン製(5%) トスンジラトテロー	(1)	19427±2475	6476
(20%) (20%) トベンジラアテコープリン類(5%) トベンジラアテコー	(1)	15256	5086
(1%) でぶん ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	(2)	6922 ± 2068	2717
%)+Hタノート(50%)=ソ欅(5%)+バンジラトラーー	(2)	14081 ± 2091	4694
(5%) + ユーリホネン(1%) / リソ酸(5%) + ベンジアアレコー	(2)	19572 ± 2350	6657
%) + d - ゴホ(20%)	(2)	22555±445	7518
(05%) $\pm 3\% - 11$ (20%)	(2)	10427 ± 3756	3476

张

経皮吸収促進剤	皮膚	Q 48 (μg/cm ² ±S.Ε.)	経皮吸収促進効果
カプリン酸(0.5%) + 1 - / ナノール (0.5%) エタノール(20%) カプリン酸(5%) + 1 - / ナリー(1%)	(1)	11643±6969	3881
トレスス 3~1/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4	(2)	11408 ± 2888	3803
こ~~~8 (2%) - ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	(2)	13848 ± 1907	4616
(5%) + 1 - / ナノール(1%) + エタノ ール(20%) カプリン酸(5%) + ベンジルアルロール	(2)	23032 ± 3111	7677
(5%) + d – り ホ ケノ(1%) + H タノール (20%) + 1 – ノ ナノー ブ (1%)	(2)	21929±52	7310
1 (5%) - (1%) - (ハケル・カート) 1 (5%) - (1%) + ベンジ - トラート - トート (1%) + ベンジ - トラー	(2)	3657 ± 2891	1286
1 (5%) + 4 タノール(5%) 1 - / ナノール(1%) + バンジルトコー	(2)	15156 ± 1451	5052
1 7 (2%) + Hタノール(10%) (2%) + Hタノール(10%) (2%) + ユタノール(2%) + ユーニルップ	(2)	7420±1601	2473
(1%) (1%) トラース (2%) (1%) (1%) (1%) (1%) トロート(2%) トローキルバンジャンシャン・ロート(2%) トローキャン	(2)	12306 ± 2234	4102
(5%) (2%) + ロール(2%) + ローニャン、 (2%)	(2)	10473 ± 3743	3491
$(1\%) + \pm 9 / - h(20\%)$	(2)	27242 ± 2162	9081

表1~表6より、芳香族アミジン誘導体(1)、該誘導体の塩、該誘導体の溶 媒和物または該誘導体の塩の溶媒和物は、経皮吸収促進剤との併用により、皮膚 透過性が飛躍的に向上することがわかる。

実施例1

化合物Aを1.2g、1,3-ブチレングリコール1.2g、塩化ベンザルコニウム0.04g、精製水6.4g、アクリル系エマルジョン型粘着剤(商品名:ニッカゾールTS-620、日本カーバイト工業社製)15.8g及び経皮吸収促進剤であるカプリン酸0.36gを攪拌混合し、さらにこの液に適宜水を加えながら攪拌混合し粘度を調整した。こうして得られた製剤溶液をポリエステルフィルムに塗膏し乾燥させ経皮吸収促進剤を含有するプラスター剤を得た。

実施例2

1,3-ブチレングリコール1.2g、塩化ベンザルコニウム0.04g、精製水6.4g、アクリル系エマルション型粘着剤(商品名:ニッカゾールTSー620、日本カーバイト工業社製)13.87gを混合攪拌し、この液に経皮吸収促進剤であるカプリン酸1.0g、ポリオキシエチレンラウリルエーテル1.0gと精製水6.4gに化合物A1.2gを溶解または分散させた液を加えて攪拌混合した。さらにこの液に適宜水を加えながら粘度を調整した。次にこの液をポリエステルフィルムに塗膏し乾燥させ、経皮吸収促進剤を含有するプラスター剤を得た。

実施例3

N-[4-[(1-アセトイミドイル-4-ヒペリジル) オキシ] フェニル] -N-[(7-アミジノ-2-ナフチル) メチル] スルファモイルアセティックアシッド 2 塩酸塩(以下化合物 B という)を1.2g、1,3-ブチレングリコール1.2g、塩化ベンザルコニウム0.04g、精製水6.4gを混合攪拌し予製液とした。次にアクリル系エマルション型粘着剤(商品名:ニッカゾールTS-620、日本カーバイト工業社製)15.8gと経皮吸収促進剤である

ラウリルジメチルアミンオキシド 0.36gの混合溶液を予製液に加え混合し、 さらにこの液に適宜水を加えながら攪拌混合し粘度を調整した。こうして得られ た製剤用液をポリエステルフィルムに塗膏し乾燥させ経皮吸収促進剤を含有する プラスター剤を得た。

実施例4

カルボキシビニルポリマー1.5重量%とトリエタノールアミン2.0重量%を精製水66.5重量%中に溶解し、12時間以上静置して基剤を十分に膨潤させた。別に化合物A5重量%と経皮吸収促進剤としてカプリン酸5重量%をエタノール20重量%中に溶解または分散させ、この溶液を膨潤した前記基剤中に徐々に加えて、マグネチックスターラーで約8時間攪拌することにより、経皮吸収促進剤を含有する外用ゲル製剤を調製した。

実施例5

カルボキシビニルポリマー1.5重量%とトリエタノールアミン2.0重量%を精製水81.5重量%中に溶解し、12時間以上静置して基剤を十分に膨潤させた。別に化合物A5重量%と経皮吸収促進剤としてカプリン酸5重量%をベンジルアルコール5.0重量%中に溶解または分散させ、この溶液を膨潤した前記基剤中に徐々に加えて、マグネチックスターラーで約8時間攪拌することにより、経皮吸収促進剤を含有する外用ゲル製剤を調製した。

実施例6

練合保存温度を40℃に設定したミキサーに精製水49重量%、エデト酸ナトリウム0.1重量%、軽質無水ケイ酸2重量%、酸化チタン0.3重量%を順次添加し溶解分散した液に、カルボキシビニルポリマー1重量%、カルボキシメチルセルロースナトリウム1.0重量%を徐々に添加し10分間攪拌溶解した。次に、予め化合物A5重量%と経皮吸収促進剤であるカプリン酸5.0%、ベンジルアルコール5.0%およびdーリモネン1.0重量%をグリセリン11.5重量%に溶解または分散した液を添加し、10分間攪拌溶解し、得られた糊液を

40℃に加熱したニーダーに移した。次いでこれに予め酒石酸1重量%を精製水2重量%に溶解した液を加え5分間練合し、さらに、予めグリセリン16重量%に乾燥水酸化アルミニウムゲル0.1重量%、ポリアクリル酸部分中和物6重量%を分散した液を徐々に添加し、40分間練合し、得られた組成物を支持体に展延してパップ剤を得た。

実施例7

プロピレングリコール2重量%、ポリオキシエチレンアルキルエーテル(商品名:ニッコールBC20TX、日光ケミカルズ社製)を0.6重量%、モノオレイン酸ソルビタン(商品名:ニッコールSO-10、日光ケミカルズ社製)を1.4重量%、経皮吸収促進剤のエタノール4.5重量%、ラウリル硫酸ナトリウム0.5重量%、水72重量%を混合して外用液剤の基剤を調製し、この基剤中にジメチルステアリルアミン1.2重量%、経皮吸収促進剤のd-リモネン2.8重量%およびベンジルアルコール10重量%に、化合物A5重量%をホモジナイザーで激しく攪拌しながら加え外用液剤を得た。

実施例8

ポリオキシエチレン硬化ひまし油60を5重量%、硬化ナタネ油27.5重量%を加温、溶解し、冷却後、ミリスチン酸イソプロピル47重量%を徐々に添加して十分に混和し、この混合物に化合物B5重量部をイソプロパノール4.5重量%および、経皮吸収促進剤のカプリン酸5.0重量%、ベンジルアルコール5.0重量%、1-ノナノール1.0重量%に溶解した液を添加して、全質均等になるまで十分に練合し、軟膏剤を得た。

実施例 9

精製水29.1重量%にメチルパラベン0.3重量%を加温溶解し、化合物A5重量%とモノカプリル酸グリセリン0.5重量%、プロピレングリコール10重量%を加え、次いでジメチルアセトアミド2重量%、経皮吸収促進剤としてベンジルアルコール5.0重量%、d-リモネン1.0重量%を順次添加した液と、

別に白色パラフィン25重量%、ステアリルアルコール22.1重量%を加温溶解した液を混合、乳化し、冷却してクリーム剤を得た。

実施例10

カルボキシビニルポリマー1重量%を精製水23重量%に膨潤させ、これにプロピレングリコール30重量%、クエン酸トリエチル20重量%、化合物A5重量%および2-ヒドロキシー4-メトキシベンゾフェノン0.5重量%を混合した溶液を加え混合攪拌した。次に経皮吸収促進剤であるベンジルアルコール5.0重量%とdーリモネン1.0重量%およびジイソプロパノールアミン1.1重量%を精製水13.4重量%に溶解したものを加え、全体が均一になるまで十分攪拌してゲル剤を得た。

次にこうして得られたゲル剤 4.0 gを、感圧接着面となる周辺部に、アクリル系粘着剤を積層させた、ポリエステル系フィルムより成る支持体と、薬物放出材層がエチレンビニルアセテート共重合体樹脂からなる薬剤貯蔵層に封入し、感圧接着面に、剝離ライナーであるポリエチレンテレフタレートフィルムを装着させることにより、リザーバー型の貼付剤を得た。

産業上の利用可能性

本発明によれば経皮吸収性が高く、長時間に渡り有効血中濃度を維持することができる、抗血栓、抗血液凝固作用を有する経皮吸収用医薬組成物を得ることができる。

請求の範囲

1. 一般式(1)

〔式中、R¹ は水素原子または低級アルコキシル基を示し、

R² は水素原子、低級アルキル基、低級アルコキシル基、カルボキシル基、アルコキシカルボニル基、カルボキシアルキル基またはアルコキシカルボニルアルキル基を示し、

R³ は水素原子、カルボキシル基、アルコキシカルボニル基、カルボキシアルキル基、アルコキシカルボニルアルキル基、カルボキシアルコキシル基またはアルコキシカルボニルアルコキシル基を示し、

R⁴ は水素原子、ハロゲン原子、アミノ基、シアノ基、ニトロ基、水酸基、低級 アルキル基または低級アルコキシル基を示し、

 $n は 0 \sim 4 の数を示し、$

Aは1~2個のヒドロキシアルキル基、カルボキシル基、アルコキシカルボニル 基、カルボキシアルキル基もしくはアルコキシカルボニルアルキル基が置換して いてもよい炭素数1~4のアルキレン基または式

で表わされる基{式中、Eは低級アルキレン基またはカルボニル基を示し、R^{δ} は水素原子または式-D-W-R^{δ} で表わされる基(式中、Dは式

で表わされる基(式中、Zは酸素原子または硫黄原子を示す。)、 式

で表わされる基またはスルホニル基を示し、

Wは単結合または-NR⁷-で表わされる基(式中、R⁷ は水素原子、カルバモイル基、低級アルコキシカルボニル基、モノーもしくはジー低級アルキルアミノカルボニル基、低級アルキルスルホニル基、モノーもしくはジー低級アルキルアミノチオカルボニル基、置換基を有していてもよい低級アルキル基または置換基を有していてもよい低級アルカノイル基を示す。)を示し、

R⁶ は水酸基、低級アルコキシル基、置換基を有していてもよい低級アルキル基、 置換基を有していてもよいアリール基または置換基を有していてもよいヘテロア リール基を示す。) } を示し、

Xは単結合、酸素原子、硫黄原子またはカルボニル基を示し、

Yは置換基を有していてもよい飽和もしくは不飽和の5~6員の複素環式基もしくは環状炭化水素基、置換基を有していてもよいアミノ基または置換基を有していてもよいアミノアルキル基を示し、

で表わされる基は、インドリル、ベンゾフラニル、ベンゾチェニル、ベンズイミダゾリル、ベンズオキサゾリル、ベンゾチアゾリル、ナフチル、テトラヒドロナフチルおよびインダニルより選ばれる基を示す〕

で表わされる芳香族アミジン誘導体、該誘導体の塩、誘導体の溶媒和物または誘導体の塩の溶媒和物と経皮吸収促進剤を含有する経皮投与用医薬組成物。

- 2. 経皮吸収促進剤が、アルコール類、多価アルコール、高級アルカン、高級 脂肪酸、高級脂肪酸エステル類、テルペン類、アルキル硫酸エステル類、アルキ ルアミンオキシド類、カルボキシベタイン類、ポリオキシアルキレンアルキルエ ーテル類、スルホキシド類およびアミド類から選ばれる1種または2種以上であ る請求項1記載の組成物。
- 3. アルコールが、炭素数 2~16の飽和脂肪族アルコールまたは炭素数 7~14のアリールアルカノールである請求項 2記載の組成物。
- 4. 多価アルコールが、炭素数 2~4のアルキレングリコール、グリセリン、ポリエチレングリコール、ポリプロピレングリコール、ポリグリセリンおよびソルビタンから選ばれるものである請求項 2 記載の組成物。
 - 5. 高級アルカンが、炭素数6~12のアルカンである請求項2記載の組成物。
- 6. 高級脂肪酸が、炭素数 6~1 8 の飽和または不飽和脂肪酸である請求項 2 記載の組成物。
- 7. 高級脂肪酸エステル類が、多価アルコールと炭素数6~24の脂肪酸とのエステル類である請求項2記載の組成物。
- 8. テルペン類が、シネオール、 *ℓ* メントール、メントン、 *d* リモネンおよびネロリドールから選ばれるものである請求項 2 記載の組成物。
- 9. アルキル硫酸エステル類が、炭素数6~24のアルキル硫酸エステル塩である請求項2記載の組成物。
- 10. アルキルアミンオキシド類が、炭素数6~24のアルキルジメチルアミンオキシド類である請求項2記載の組成物。

11. カルボキシベタイン類が、炭素数 $6 \sim 24$ のアルキルジメチルアミノ酢酸である請求項 2記載の組成物。

- 12. ポリオキシアルキレンアルキルエーテル類が、ポリオキシエチレンアルキルエーテル類である請求項2記載の組成物。
- 13. スルホキシド類がジアルキルスルホキシドであり、アミド類がN, N-ジアルキルホルムアミド、N, N-ジアルキルアセトアミド、N, N-ジアルキルトルアミド、N-ヒドロキシアルキルラクトアミド、ヒドロキシまたはN-アルキルピロリドンである請求項2記載の組成物。
- 14. 経皮吸収促進剤が、 C_2-C_4 アルコール、 C_7-C_{12} アリールアルカノール、 C_6-C_{18} 飽和脂肪族アルコール、多価アルコール、 C_6-C_{16} 脂肪酸、テルペン、多価アルコールモノ C_6-C_{16} 脂肪酸エステル、 C_6-C_{24} アルキル硫酸エステル塩、 C_6-C_{24} アルキルジメチルアミンオキシド、 C_6-C_{24} アルキルジメチルアミノ酢酸、ポリエチレングリコール C_6-C_{24} アルキルエーテル、ピロリドン、N-アルキルピロリドン、N, N-ジアルキルホルムアミドおよびN, N-ジアルキルトルアミドから選ばれる1種または2種以上の組み合せである請求項2記載の組成物。
- 15. 経皮吸収促進剤が、エタノール、イソプロパノール、ベンジルアルコール、エチレングリコール、プロピレングリコール、グリセリン、1ーノナノール、1ーデカノール、ステアリルアルコール、カプロン酸、カプリル酸、カプリン酸、dーリモネン、シネオール、モノカプリル酸プロピレングリコール、モノカプリル酸グリセリン、モノカプリン酸グリセリン、ラウリルジメチルアミンオキシド、ドデシルN, Nージメチルアミノ酢酸、ラウリル硫酸ナトリウム、ポリオキシエチレンラウリルエーテル、N, Nージエチルトルアミド、2ーピロリドンおよびNーオクチルー2ーピロリドンから選ばれる1種または2種以上の組み合せである請求項2記載の組成物。
 - 16. 経皮吸収促進剤が、C2-C1アルコール、C7-C12アリールアルカノ

ール、 C_6 - C_{18} 飽和脂肪族アルコール、 C_6 - C_{16} 脂肪酸、テルペン、ピロリドンおよびN-アルキルピロリドンから選ばれる1種または2種以上の組み合せである請求項2記載の組成物。

17. 経皮吸収促進剤が、エタノール、ベンジルアルコール、1-ノナノール、カプリン酸、d-リモネンおよびN-オクチル-2-ピロリドンから選ばれる1種または2種以上の組み合せである請求項2記載の組成物。

18. 一般式(1)中

で示される基が、ベンゾフラニル、ベンズイミダゾリル、インドリル、ベンゾチエニル、ベンゾチアゾリル、ナフチルおよびテトラヒドロナフチルより選ばれる基である請求項1~17のいずれか1項記載の組成物。

- 19.一般式(1)中、飽和または不飽和の5~6員環の複素環式基が、ヘテロ原子として1~2個の窒素原子または酸素原子を含む基である請求項1~18のいずれか1項記載の組成物。
- 20.一般式(1)中、飽和または不飽和の5~6員環の複素環式基が、ピロリジニル基またはピペリジル基である請求項1~18のいずれか1項記載の組成物。
- 21. 芳香族アミジン誘導体、該誘導体の塩、誘導体の溶媒和物または該誘導体の塩の溶媒和物が、以下の群より選ばれる化合物、その塩またはそれらの溶媒和物である請求項1~17のいずれか1項記載の組成物。

2-[4-[((3S)-1-rセトイミドイル-3-ピロリジニル) オキシ]フェニル] -3-(7-rミジノ-2-ナフチル)プロピオン酸、

(+) - 2 - [4 - [((3S) - 1 - アセトイミドイル - 3 - ピロリジニル)]

オキシ]フェニル]-3-(7-アミジノ-2-ナフチル)プロピオン酸、

- (2S) 2 [4 [((3S) 1 アセトイミドイル 3 ピロリジニル)
- オキシ]フェニル]-3-(7-アミジノ-2-ナフチル)プロピオン酸、
- オキシ]フェニル]-3-(7-アミジノ-2-ナフチル)プロピオン酸、
- 2-[4-[(1-アセトイミドイル-4-ピペリジル)オキシ]フェニル]-
- 3-(7-アミジノ-2-ナフチル)プロピオン酸、
- (+) 2 [4 [(1 rub + 1) + rub + 1] 1 rub + 1] 1 rub + 1 ru
- [-1] 3 (7 アミジノ 2 ナフチル)プロピオン酸、
- 2 [4 [(1 アセトイミドイル 4 ピペリジル)オキシ] フェニル] -
- 3-(5-アミジノベンゾ[b] チエン-2-イル)プロピオン酸、
- 2 [4 [((2S) 1 Pth / 1 + Fth / 1 + Ft
- フェニル] 3 (5 アミジノベンゾ [b] チエン 2 イル)プロピオン酸、
- メトキシ] フェニル] -3-(5-アミジノベンゾ [b] チエン-2-イル) プ
- ロピオン酸、
- 3-[4-[((3S)-1-アセトイミドイル-3-ピロリジニル) オキシ]
- フェニル]-4-(5-アミジノベンゾ「b]チエン-2-イル)酪酸、
- フェニル] 3 (6 アミジノ 1 エチル 2 インドリル)プロピオン酸、
- 2-[4-[((3R)-1-アセトイミドイル-3-ピロリジニル) オキシ]
- フェニル]-3-(6-アミジノ-1-エチル-2-インドリル)プロピオン酸、
- 2-[4-[(1-アセトイミドイル-4-ピペリジル) オキシ] フェニル] -
- 3-(6-アミジノ-1-エチル-2-インドリル)プロピオン酸、
- $N-[(7-r \leq \Im J-2-t \supset f n)] + N'-x f n Z n Z r \leq F$

エチル N-[N-4-[(1-rセトイミドイル-4-ピペリジル) オキシ]フェニル]-N-[(7-rミジノ-2-ナフチル) メチル] スルファモイル]カルバメート、

エチル N-[N-[4-[(1-rセトイミドイル-4-ピペリジル) オキシ]フェニル] -N-[(7-rミジノ-2-ナフチル) メチル] スルファモイル] グリシネート、

 $N-[N-4-[(1-rv+1+1+1)-4-l^2]]$ フェニル N-[(7-r+1)-2-rv+1] フェニル N-[(7-r+1)-2-rv+1] スルファモイル N-[(7-r+1)-2-rv+1] スルファモイル N-[(7-r+1)-2-rv+1] オンカルボニルグリシン、および

2 2. 芳香族アミジン誘導体、該誘導体の塩、該誘導体の溶媒和物または該誘導体の塩の溶媒和物が、以下の群より選ばれるものである請求項1~17のいずれか1項記載の組成物。

(2S) - 2 - [4 - [((3S) - 1 - アセトイミドイル - 3 - ピロリジニル) オキシ] フェニル] -3 - (7 - アミジノ - 2 - ナフチル) プロピオン酸 塩酸 塩 5 水和物、

(+) -2- [4- [(1-アセトイミドイルー4-ピペリジル)オキシ]フェーニール] -3-(7-アミジノー2-ナフチル)プロピオン酸 2塩酸塩、

メトキシ] フェニル] -3-(5-アミジノベンゾ[b] チエン-2-イル) プロピオン酸 2 塩酸塩、

エチル N-[N-[4-[(1-rセトイミドイル-4-ピペリジル) オキシ]フェニル] -N-[(7-rミジノ-2-ナフチル) メチル] スルファモイル] グリシネート <math>2塩酸塩、

N-[4-[(1-r+h+1)] - N-[(7-r+1)] - N-[(7-r

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP98/05919

	SIFICATION OF SUBJECT MATTER C1 ⁶ A61K31/155, A61K31/40, A6 A61K47/14, A61K47/30	1K31/445, A61K31/405, A	A61K47/10,	
According to	o International Patent Classification (IPC) or to both n	ational classification and IPC		
	S SEARCHED			
Minimum d Int.	ocumentation searched (classification system follower C1 A61K31/155, A61K31/40, A6A61K47/14, A61K47/30	d by classification symbols) 1K31/445, A61K31/405, A	A61K47/10,	
Documentat	tion searched other than minimum documentation to th	ne extent that such documents are included	in the fields searched	
	lata base consulted during the international search (na us (STN), MEDLINE (STN)	me of data base and, where practicable, se	earch terms used)	
C. DOCU	MENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where ap	opropriate, of the relevant passages	Relevant to claim No.	
PA.	WO, 98/26803, A1 (DAIICHI S 25 June, 1998 (25. 06. 98) & JP, 10-231254, A	EIYAKU CO.),	1-22	
A	JP, 7-69880, A (Sekisui Cher 14 March, 1995 (14. 03. 95)		1-22	
A	JP, 58-46015, A (Nitto Elected.), 17 March, 1983 (17. 03. 83)		1-22	
	· · · · · · · · · · · · · · · · · · ·			
Further documents are listed in the continuation of Box C. Special categories of cited documents: An document defining the general state of the art which is not considered to be of particular relevance E earlier document but published on or after the international filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) Co document referring to an oral disclosure, use, exhibition or other means P document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search 10 March, 1999 (10. 03. 99) See patent family annex. "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family Date of the actual completion of the international search 10 March, 1999 (10. 03. 99) Date of mailing of the international search 23 March, 1999 (23. 03. 99)				
Japa	nailing address of the ISA/ nese Patent Office	Authorized officer		
Facsimile No	D.	Telephone No.	j	

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. C1 A61K31/155, A61K31/40, A61K31/445, A61K31/405, A61K47/10, A61K47/14, A61K47/30

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. C16 A61K31/155, A61K31/40, A61K31/445, A61K31/405, A61K47/10, A61K47/14, A61K47/30

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

CAplus (STN), MEDLINE (STN)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
PA	WO, 98/26803, A1 (DAIICHI SEIYAKU CO.) 25.6月.1998(25.06.98) & JP, 10-231254, A	1-22
A	JP, 7-69880, A(積水化学工業株式会社) 14.3月.1995(14.03.95) (ファミリーなし)	1-22
A	JP,58-46015,A(日東電気工業株式会社)17.3月.1983(17.03.83) (ファミリーなし)	1-22

│ │ C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 10.03.99 国際調査報告の発送日 **23.03.99** 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 4C 9455 本国特許庁(ISA/JP) 森井 隆信 電話番号 03-3581-1101 内線 3454