10 Testování statistických hypotéz

Teorie: Statistické hypotézy

Hypotéza je tvrzení o populaci, nulová hypotéza H_0 a alternativní hypotéza H_1

Statistický test je postup, kdy na základě pozorovaných dat zamítáme nebo nezamítáme hypotézu H_0 (zamítáme H_0 ve prospěch H_1 , pokud pozorované hodnoty jsou málo pravděpodobné). Každý test má své předpoklady!

Chyby testování jsou dvojího typu

hypotéza H_0 platí, ale my ji zamítneme (chyba 1. druhu, značíme obvykle α)

hypotéza H_0 neplatí, ale my ji nezamítneme (chyba 2. druhu, značíme obvykle β)

Hladina významnosti testu α je volena tak, aby $P(\text{chyba 1. druhu}) \leq \alpha$

P-hodnota testu je číslo takové, že hypotézu H_0 zamítáme na hladině α právě tehdy, když $p-hodnota < \alpha$, nejmenší hladiny, při které bychom H_0 zamítli

Testové kritérium je číslo vypočtené z pozorovaných dat

Kritický obor jsou hodnoty, že pokud testové kritérium leží v kritickém oboru, pak zamítneme H_0

Teorie: Jednovýběrové testy

(a) test o parametru π_0 alternativního rozdělení ; nulová hypotéza $H_0: p=\pi_0$, kde $p=\overline{x}$ (předpoklad np(1-p)>9)

Alternativa H_1	kritérium	zamítnu H_0 pokud
$p \neq \pi_0$		$ U > u_{1-\alpha/2}$
$p < \pi_0$	$U = \frac{p - \pi_0}{\sqrt{p(1-p)}} \sqrt{n}$	$U < u_{\alpha}$
$p > \pi_0$		$U > u_{1-\alpha}$

(b) test o střední hodnotě při výběru z $N(\mu, \sigma^2)$ (Z-TEST); nulová hypotéza $H_0: \mu = \mu_0$ při známé hodnotě σ

Alternativa H_1	kritérium	zamítnu H_0 pokud	EXCEL
$\mu \neq \mu_0$	_	$ U > u_{1-\alpha/2}$	
$\mu < \mu_0$	$U = \frac{\overline{x} - \mu_0}{\sigma} \sqrt{n}$	$U < u_{\alpha}$	$Z.TEST(data; \mu_0; \sigma)$
$\mu > \mu_0$		$U > u_{1-\alpha}$	

(c) test o střední hodnotě při výběru z $N(\mu,\sigma^2)$ (Z-TEST); nulová hypotéza $H_0:\mu=\mu_0$ při neznámé hodnotě σ

Alternativa H_1	kritérium	zamítnu H_0 pokud	EXCEL
$\mu \neq \mu_0$	_	$ T > t_{1-\alpha/2}(\nu = n-1)$	
$\mu < \mu_0$	$T = \frac{\overline{x} - \mu_0}{s} \sqrt{n}$	$T < t_{\alpha}(\nu = n - 1)$	$Z.TEST(data; \mu_0)$
$\mu > \mu_0$		$T > t_{1-\alpha}(\nu = n - 1)$	

(10.1) Průměrný podíl zmetkovitosti při současné technologii je 0.1. Po zavedení nové technologie bylo zjištěno, že z 200 vyrobených výrobků bylo 31 vadných. Zhoršuje nová technologie jakost výroby?

[
$$H_0: p = 0.1 \text{ a } H_1: p > 0.1$$
, kritérium $U = \frac{31/200 - 0.1}{\sqrt{31/200 \cdot 169/200}} \sqrt{200} = 2.15$, $U > u_{0,95} = 1.65$] [zamítáme H_0 , nová technologie zhoršuje jakost výroby]

(10.2) Automat plní krabice pracím práškem. V každé krabici má být 2 kg prášku. Z produkce bylo náhodně vybráno 6 krabic a jejich obsah přesně zvážen. Byly zjištěny následující odchylky od požadované hmotnosti −5, 1, −1, −8, 7, −6 v dkg. Ověřte, zda nedošlo k systematické odchylce nastavení automatu.

[$H_0: \mu=0$ a $H_1: \mu\neq 0$, kritérium $T=-0,889, |T|< t_{0,975}(5)=2.571$] [data neodporují předpokladu, že automat je správně seřízen]

Teorie: Dvouvýběrové testy

(a) test o rozdílu středních hodnot při výběrech z $N(\mu_1, \sigma^2)$ a z $N(\mu_2, \sigma^2)$ (T-TEST); nulová hypotéza $H_0: \mu_1 - \mu_2 = \delta$ a alternativní hypotéza $H_1: \mu_1 - \mu_2 \neq \delta$

$$T = \frac{\overline{x} - \overline{y} - \delta}{\sqrt{s_1^2/n_1 + s_2^2/n_2}}$$

a hypotézu
$$H_0$$
 zamítnu pro $|T| > t_{1-\alpha/2}(\nu = \min(n_1, n_2) - 1)$

Excel: T.TEST(data1;data2;chvosty;typ)

(b) test o shodě rozptylů při výběrech z $N(\mu_1,\sigma_1^2)$ a z $N(\mu_2,\sigma_2^2)$ (F-TEST); nulová hypotéza $H_0:\sigma_1^2=\sigma_2^2$

 $F=s_1^2/s_2^2$ a kritérium porovnávám s kvantily Fisherova rozdělení $F_{\alpha}(\nu_1=n_1-1;\nu_2=n_2-1)$

Excel: F.TEST(data1; data2)

(10.3) Porovnáme tělesnou zdatnosti desetiletých chlapců a dívek. Za tímto účelem bylo náhodně vybráno 33 chlapců a 28 dívek. Běželi 50m na čas s následujícími výsledky:

chlapci :
$$\overline{X}_n = 9.4636$$
 , $s_n^2 = 0.3302$ divky : $\overline{Y}_m = 10.1179$, $s_m^2 = 0.4522$

Potvrzují data domněnku, že chlapci i dívky běhají v průměru stejně rychle?

Teorie: Základní principy statistické přejímky

Cílem statistické přejímky je zjistit, zda dodavatel předkládá dávku, jejíž jakost je na vzájemně dohodnuté úrovni.

Parametr P označuje relativní podíl vadných výrobků v dávce.

Operativní charakteristika přejímacího plánu je funkce L(P), která vyjadřuje pravděpodobnost přijetí dávky.

Riziko přejímky $\alpha=$ riziko, že příjemce zamítne dodávku i když bude splňovat dohodnutou kvalitu.

Riziko přejímky $\beta=$ riziko, že příjemce přijme dodávku i když nebude splňovat dohodnutou kvalitu.

AQL (acceptable quality level) - dohodnutá hladina α pro dodavatele $L(AQL) \geq 1 - \alpha$.

LQ (limiting quality) - dohodnutá hladina α pro dodavatele $L(LQ) \leq \beta$.

- (10.4) Předpokládejme, že v zásilce 1000 výrobků je 1% vadných výrobků. Odběratel vybere a zkontroluje 50 výrobků.
 - (a) Určete ppst., že ve výběru nebude žádný vadný výrobek. [60,5%]
 - (b) Určete ppst., že ve výběru bude právě jeden vadný výrobek. [30,56%]
 - (c) Určete ppst., že ve výběru budou nejvýše dva vadné výrobky. [98,62%]
 - (d) Kolik výrobků musí odběratel vybrat, aby ppst. nalezení alespoň jednoho vadného výrobku byla 60%.
- (10.5) Jaká je ppst., že odběratel přijme zásilku 1000 výrobků obsahující 5% vadných výrobků, pokud kontrolu provádí následujícím postupem.

Vybere 20 výrobků a pokud není ve výběru vadný - zásilku přijme, pokud jsou ve výběru 2 a více vadné výrobky - zásilku odmítne, jinak provede další výběr rozsahu 20 a zásilku přijme pouze v případě, že jsou všechny výrobky v druhém výběru bezvadné.

[49,38%]

- (10.6) Podle dohody mezi dodavatelem a odběratelem má být v zásilce 10 000 kusů výrobků maximálně 2% zmetků. Byla dohodnuta zjednodušení přejímková kontrola formou kontroly 500 vybraných výrobků. Dodavatel požaduje, aby pravděpodobnost nepřijetí dobré zásilky byla maximálně 5%. Náhodná veličina X popisuje počet vadných výrobků ve výběru.
 - (a) určete počet výrobků X ve výběru, při kterých může odběratel odmítnout přijetí zásilky;
 - (b) určete ppst zamítnutí zásilky, která má 2% zmetků;
 - (c) určete ppst přijetí zásilky, která má 3% zmetků.
- (10.7) Součástky s délkou $X \sim N(\mu=150\,\mathrm{mm};\sigma^2=2,53)$ se balí do krabic, které mají délkou $Y \sim N(\mu=155\,\mathrm{mm};\sigma^2=0,36)$. Balíme 3000 součástek za směnu. Linka se zastaví pokud je součástka delší než krabice.
 - (a) Určete ppst, součástka se nevejde do krabice (bude delší). [0,16%]
 - (b) Určete ppst., že se linka zastaví během směny alespoň jednou. [99,2%]
 - (c) Určete průměrný počet zastavení linky během směny. [5]