# A brief introduction to Geostatistics

A lecture by Márk Somogyvári 07.05.2019

#### Slides and exercises

• <a href="https://github.com/marksomogyvari/geostatistics">https://github.com/marksomogyvari/geostatistics</a>

# What is geostatistics?

• Statistics of physical properties with spatio-temporal variations.



#### Widen field site, Switzerland



## Problem in 1-D

#### Widen field site, Switzerland





### Problem in 3-D

#### Widen field site, Switzerland





# Another example

Hungarian website on German weather



# And another from hydrogeology



Hydraulic heads from a fluvial aquifer in Switzerland

# Result is in conflict with reality





Where is the problem?

## fixed



Hydraulic heads from a fluvial aquifer in Switzerland

# General approaches

# The geologist's perspective

Continuity of layers





(Source: Wikipedia)

#### Tschingelmad outcrop

Afshari Moein et. al, (2018)

The geologist's perspective

Continuity of structural elements





Introduction to Geostatistics - Márk Somogyvári

# (Problem of scales)





# Geophysics perspective

 Nyquist-Shannon sampling theorem

• Nyquist frequency: 2 x fmax



We cannot add more information by interpolation



# Objective:

Reconstruct spatially continuous attributes from discrete samples.

# Interpolation syntax

$$Y(x_o)$$

Sample points/observations

$$Y(x_i) = interp(Y(x_o), x_o)$$

Query points

Calculate complete field vs calculate query point

# Interpolation properties

• 1D/2D

Exact/smoothing

Extrapolation



## Nearest neighbor

$$Y(x_i) = Y(x^*)$$
, where:  
 $|x_i - x^*| < |x_i - x_k| \ \forall k \in K$ 

Take the value of the closest sample



Voronoi cells

urce: Wikipedia (Balu Ertl)

# Source: Wikinedia

## Natural neighbor

- Considers multiple points
- Each neighbor is considered

$$Y(x_i) = \sum_{K} Y(x_k) w_k$$

$$w_k = \frac{A_{ik}}{A_i}$$



## Linear

- Does not work in 2-D by definition
  - triangulation



### Bilinear

#### Needs data on a regular grid





What is trilinear interpolation?

# Source: Wikipedia

# Interpolation on regular grids



# Higher powers

- Cubic
- Bicubic
- Quadratic etc...



# Using polynomials – spline interpolation

- Fit polinomials to all data exact
  - Find lowest order polynomial that fits the data

$$a_0 + a_1 x + \dots + a_n x^n$$



- Fit spline segments between
  - Continuus derivatives at points (dx and d2x)
  - Works better with a lot of points



#### Derivative-based

Minimum curvature



# Inverse distance weighting (IDW)



Weights based on distance



07.05.2019 Source: ArcGIS

# Special rules



#### Interpolation methods



2nd Ural Workshop on Parallel, Distributed, and Cloud Computing for Young Scientists Yekaterinburg, Russia, October 6, 2016

# Exercise part 1.



# Kriging



#### Gold mines in South Africa

- Danie G. Krige (1951)
- Georges Matheron (1960)

Statistical relation between measurement points



Source: http://wwwu.edu.uni-klu.ac.at/mmessner/sites/rsa/wits/wits.htm

# Exercise part 2.

# Multi-point statistics



Source: Researchgate – Matt Burton-Kelly

# MPS with training images

- Patterns
- Formations
- Structures

- Training image
  - Outcrop
  - Borehole data
  - Geological model



Fig. 10—Single-pass images with bad pad removed (a) and Filtersim full-bore images (b) in the same layered, fractured interval shown in Figs. 6 through 9. No vertical exaggeration. Bit size is 8.5 in. (21.5 cm). North is at the left and right edge, and south is in the center of each image. This is an 8-ft (2.4-m) vertical section.

Source: Hurley (2011) Method to generate full-bore images using borehole images and multipoint statistics

#### Stochastic methods

Create a lot of realizations

Further statistical analysis

• UQ





Comparison between the results of Kriging (**b**) and stochastic simulation (**c**) using conditioning point data in (**a**). Figure from Tahmasebi (2018)

# Other topics in geostatistics...

- Statistical analysis
- Monte Carlo simulations
- Gaussian simulation
- Bayesian inference
- Classification
- Machine learning

## Software

- Surfer
- ArcGIS
- R
- GoCAD

#### Recommended 'literature'

- ArcGIS/Surfer tutorials
- Youtube tutorials
- Handbook of Mathematical Geosciences (chapter on MPS)