Datathon 2024: Well, Well, (Oil) Well

Charlie Liu, Bayzhan Mukatay, Akshay Raj, Daniel Suarez

AGENDA

- DATA EXPLORATION, WRANGLING, & ENGINEERING
- FEATURE & MODEL SELECTION/TUNING
- 3 FINDINGS & ANALYSIS

Data Processing

Exploration

Feature Engineering

	145.2952	810.7745				0.179205	5.580189	1
Slickwater	210.5523	586.4838				0.359008	2.785454	1
Slickwater	214.7102	579.4774				0.370524	2.698882	1
	175.1102							1
	178.0678							1
	121.3453							1
	124.7229							1
Slickwater	180.6807	931.5449				0.193958	5.155753	1
Slickwater	177.6782	950.1917				0.186992	5.347823	1
Slickwater	189.9266	590.4277				0.321676	3.108715	1
Undefined	111.4279	591.2971				0.188446	5.306547	1.5
Undefined	106.5047	721.6284				0.147589	6.775555	1
	109.9499							2.5
	110.8576							2
Slickwater	216.7911							1
Slickwater	73.42521	456.0039				0.161019	6.210454	1
Slickwater	73.45889	461.6153				0.159134	6.283995	1
	144.5803	752.189	154.3166	22311.14	116075.3	0.192213	5.20257	1
Slickwater	146.3817	826.3251				0.177148	5.645004	1
Slickwater	113.2011	540.1978				0.209555	4.77202	1
Slickwater	111.3554	441.3129	195.481	21767.86	86268.3	0.252327	3.963105	1
	113.2617							1.5
	113.7462	490.5505				0.231875	4.312675	2
	34.28057	203.6173				0.168358	5.939729	1.5

Wrangling

Data Exploration

In exploring the data, we identified several areas of interest and concern and started brainstorming:

- 1. Handling rows with NaN's in the target column?
 - a. Keep these rows temporarily (may be valuable for imputation), then drop them when it's time to train
- 2. Several features with too few observations (<14%)
 - a. Drop these columns entirely
- 3. Working with categorical features
 - a. "Unknown" observations show a distinct distribution from NaN observations

Data Exploration

Feature Engineering

In addition to the cleaning that needs to be done, our data exploration process inspired us to engineer new and existing features in ways that best suits the provided dataset:

```
projection_group - project
'relative_well_position' onto
'well_family_relationship'
```

dist_surf_bh - the distance from
the bottom hole to the surface hole

dist_surf_hm - the distance from
the surface hole to the horizontal
midpoint

dist_surf_ht - the distance from
the surface hole to the horizontal toe

log_[...] - the natural log of
certain features for which a
logarithmic distribution reduces the
skewness of the feature

Wrangling - Cleaning

Given what we found and had planned, we were ready to start appropriately cleaning our data:

- 1. Drop infinity observations, drop outliers
- 2. Drop columns that offer very little (too few observations, no variation, etc.)
- 3. Relabel certain NaN and Unknown observations for categorical features
- 4. Take the natural log (new columns) of certain numeric features
- 5. Create our training-test-validation set splits (70% train, 15% test, 15% validation)
- 6. Drop rows with too many (>86%) NaN observations (will be unhelpful for imputation)

Wrangling - Imputation!

Now with clean data, we were able to perform imputation to further improve our predictive power:

- We began with simple (mean) imputation for our new log features
- Then, we proceeded to perform predictive imputation (with a linear regression model) to impute missing values for the rest of our features
- Sets were imputed separately to avoid leakage

Finally, we were left with clean, processed data with no missing observations!

	145.2952	810.7745				0.179205	5.580189	1
Slickwater	210.5523	586.4838				0.359008	2.785454	1
Slickwater	214.7102	579.4774				0.370524	2.698882	1
	175.1102							1
	178.0678							1
	121.3453							1
	124.7229							1
Slickwater	180.6807	931.5449				0.193958	5.155753	1
Slickwater	177.6782	950.1917				0.186992	5.347823	1
Slickwater	189.9266	590.4277				0.321676	3.108715	1
Undefined	111.4279	591.2971				0.188446	5.306547	1.5
Undefined	106.5047	721.6284				0.147589	6.775555	1
	109.9499							2.5
	110.8576							2
Slickwater	216.7911							1
Slickwater	73.42521	456.0039				0.161019	6.210454	1
Slickwater	73.45889	461.6153				0.159134	6.283995	1
	144.5803	752.189	154.3166	22311.14	116075.3	0.192213	5.20257	1
Slickwater	146.3817	826.3251				0.177148	5.645004	1
Slickwater	113.2011	540.1978				0.209555	4.77202	1
Slickwater	111.3554	441.3129	195.481	21767.86	86268.3	0.252327	3.963105	1
	113 2617							1 =

1.286981908 Slickwater Only

1.597587413 Slickwater Only

Inner Well

Inner Well

Batch-Concurrent Fra Sibling Wel

Batch-Sequential Fra Sibling Wel

Feature Selection

Model Selection

- Logistic Regression
- Lasso
- XGBoost
- CatBoost
- LightGBM
- Model Stacking

Findings!

- Different successful models determined slightly different sets of features to be most important
 - There were some features that we determined to be very important to all our models
 - Gross perforated length, true vertical depth, and proppant intensity, surface-toe distance, among others
 - Proppant-related features were deemed important (positively correlated), significantly more so than fluid
- We found overall that the well structure is a key contributor to oil production, especially considering depth
- High proppant-related metrics, especially intensity, seem to also greatly correlate with an increased peak production

Future Exploration

Engineer more features:

- Given the feature importance findings, better data collection and further exploration of additional imputation methods is valuable.
- We'd like to start observing the angle of the well decline
 - The importance of true vertical depth, fluid/proppant intensity, and surface-toe distance makes this clear
- We'd like to consider more geographical (potentially deanonymized) data to be able to cluster wells by location
- A deeper understanding of how Oil Wells work could provide with insight for engineering new features

RRICE DATATHON

THANK YOU!

