Numerical Optimization Lab 04: Steepest Descent and Backtracking Strategy

Francesco Della Santa

Abstract

In this lesson, we will implement the *steepest descent* optimization method with the *back-tracking strategy*.

1 Exercises

Exercise 1 (Backtracking Implementation for Steepest Descent). Write a Matlab function *steepest_desc_bcktrck.m* that implements the *steepest_descent* optimization method with the *backtracking strategy* (see Appendix A) and that takes the following inputs and outputs.

INPUTS:

x0: a *column vector* of n elements representing the starting point for the optimization method;

f: a function handle variable that, for each column vector $\boldsymbol{x} \in \mathbb{R}^n$, returns the value $f(\boldsymbol{x})$, where $f: \mathbb{R}^n \to \mathbb{R}$ is the loss function that have to be minimized;

gradf: a function handle variable that, for each column vector $\boldsymbol{x} \in \mathbb{R}^n$, returns the value $\nabla f(\boldsymbol{x})$ as a column vector, where $\nabla f : \mathbb{R}^n \to \mathbb{R}^n$ is the gradient of f;

alpha0: a real scalar value characterizing the step length of the optimization method;

kmax: an integer scalar value characterizing the maximum number of iterations of the method;

tolgrad: a real scalar value characterizing the tolerance with respect to the norm of the gradient in order to stop the method.

c1: the factor c_1 for the Armijo condition that must be a scalar in (0,1);

rho: fixed factor, less than 1, used to reduce α ;

btmax: maximum number of steps allowed to update α during the backtracking strategy.

OUTPUTS:

xk: the last vector $\boldsymbol{x}_k \in \mathbb{R}^n$ computed by the optimization method before it stops;

fk: the value $f(x_k)$;

gradfk_norm: the euclidean norm of $\nabla f(\boldsymbol{x}_k)$;

k: index value of the last step executed by the optimization method before stopping;

xseq: a matrix/vector in $\mathbb{R}^{n \times k}$ such that each column j is the j-th vector $\mathbf{x}_j \in \mathbb{R}^n$ generated by the iterations of the method.

btseq: row vector in \mathbb{R}^k such that the j-th element is the number of backtracking iterations done at the j-th step of the steepest descent.

Once you have written the function, test it using the data inside the file test-functions.mat with alpha0 = 5, $c1 = 10^{-4}$, rho = 0.8 and btmax = 50; then, plot:

- the loss f (given in test_functions.mat) with the sequence xseq using the Matlab function contour;
- the barplot of the values in btseq using the function bar;
- the loss f with the sequence xseq using the Matlab function surf.

A Backtracking

Let the function $f: \mathbb{R}^n \to \mathbb{R}$ be given. The backtracking strategy for an iterative optimization method consists of looking for a value α_k satisfying the Armijo condition at each step k of the method, i.e.

$$f(\underbrace{\boldsymbol{x}_{k+1}}_{\boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k}) \le f(\boldsymbol{x}_k) + c_1 \alpha_k \nabla f(\boldsymbol{x}_k)^{\top} \boldsymbol{p}_k,$$
 (1)

where $c_1 \in (0,1)$ (typically, the standard choice is $c_1 = 10^{-4}$).

We recall that the Armijo condition suggests that a "good" α_k is such that you have a sufficient decrease in f and, moreover, the function value at the new point $f(\boldsymbol{x}_{k+1}) = f(\boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k)$ is under the "reduced tangent hyperplane" of f at \boldsymbol{x}_k^{-1} . To better explain the Armijo condition, we look at the function $\phi(\alpha) := f(\boldsymbol{x}_k + \alpha \boldsymbol{p}_k)$, such that $\phi'(\alpha) = \nabla f(\boldsymbol{x}_k + \alpha \boldsymbol{p}_k)^{\top} \boldsymbol{p}_k$ and $\phi'(0) = \nabla f(\boldsymbol{x}_k)^{\top} \boldsymbol{p}_k$ (see Figure 1).

Figure 1: Example of the Armijo condition.

The backtracking strategy is an *iterative process* that looks for this value α_k . Given an arbitrary factor $\rho \in (0,1)$ and an arbitrary starting value $\alpha_k^{(0)}$ for α_k , we decrease iteratively $\alpha_k^{(0)}$, multiplying it by ρ , until the Armijo condition is satisfied. Then $\alpha_k = \rho^{t_k} \alpha_k^{(0)}$, for a $t_k \in \mathbb{N}$, if it satisfies Armijo but $\rho^{t_k-1} \alpha_k^{(0)}$ does not.

¹i.e., the point $(\boldsymbol{x}_{k+1}, f(\boldsymbol{x}_{k+1})) \in \mathbb{R}^{n+1}$ is under the hyperplane $\{\boldsymbol{\xi} \in \mathbb{R}^{n+1} \mid [c_1 f_{x_1}(\boldsymbol{x}_k), \dots, c_1 f_{x_n}(\boldsymbol{x}_k), -1] \cdot \boldsymbol{\xi} + f(\boldsymbol{x}_k) = 0\}.$

Remark A.1 (Few things to keep in mind).

- The Armijo condition is often satisfied for very small values of α . Then, it is not enough to ensure that the algorithm makes reasonable progress; indeed, if α is too small, unacceptably short steps are taken.
- For simplicity, we consider ρ as a fixed parameter, but it can be chosen using already available information, changing with the iterations;
- Other conditions could be imposed to guarantee that not too short steps are taken (e.g., Wolfe conditions²), but they are not practical to be implemented.
- Practical implementations, instead of imposing a second condition, frequently use the backtraking strategy.
- The choice of $\alpha_k^{(0)}$ is method-dependent, but it is *crucial* to choose $\alpha_k^{(0)} = 1$ in Newton/Quasi-Newton methods for (possibly) get the second-order rate of convergence.
- In general, globalizing strategies (as the backtracking strategy) are methods specifically designed to help Newton's methods when we are far from the solution. Then, they are usually designed in such a way that they work only when needed: if close enough to x^* , they are "switched off" so that Newton's works and eventually fast convergence is maintained.

²i.e., Armijo condition and curvature condition $\nabla f(\boldsymbol{x}_{k+1})^{\top} \boldsymbol{p}_{k} \geq c_{2} \nabla f(\boldsymbol{x}_{k})^{\top} \boldsymbol{p}_{k}, c_{2} \in (c_{1}, 1).$