Thermodynamics	Describe what is meant by a system in thermodynamics.
Describe what is meant by a system	A system is a particular part of the universe.
Thermodynamics Describe what is meant by the surroundings of a system	Describe what is meant by the surroundings of a system in thermodynamics The part of the universe which is outside (i.e. surrounding) a system.
Thermodynamics Describe the boundary of a system	The boundary (or wall) of a system is the thing which separates it from its surroundings.
ELECTROMAGNETISM Explain Gauss' law for an electric field in words.	The total electric flux through any closed surface is proportional to its enclosed charge.

Thermodynamics Describe a closed system	A closed system is a system where no matter is exchanged, only energy.
Thermodynamics Describe how adiabatic walls.	Adiabatic walls prevent thermal interaction (i.e. heat exchange)
Thermodynamics What type of walls does a thermally isolated system have?	A thermally isolated system has adiabatic walls.
Electromagnetism What is Maxwell's II and what does it express?	$ abla \cdot \mathbf{B} = 0$ There are no magnetic monopoles.

What is the equilibrium entropy of an isolated system of N constituents with energy E?	isolated system is expressed as follows: $S(N,E) = \mathrm{kln}\Omega(\mathrm{N},\mathrm{E},\alpha*)$
Diffraction physics	
Define the electric displacement of a dielectric.	$\underline{D} = \epsilon_0 \underline{E} + \underline{P}$ Where E is the electric field, P is the polarisation
DIFFRACTION PHYSICS What are the refractive indices of MgF_2 and $\mathrm{Al}_2\mathrm{O}_3$?	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Quantum Mechanics	The quantum mechanical interpretation of a free particle is expressed as follows
What is the wave function for a free particle?	$\psi(\mathbf{r},t) = Ce^{\frac{i}{\hbar}(\mathbf{p}\cdot\mathbf{r} - \epsilon t)}$

Equilibrium entropy of an

STATISTICAL MECHANICS

Electromagnetism	
Express the force betcharges.	t

etween two

The force between two charges, q_1 and q_2 that a separated by a distance r should be expressed as follows:

$$\mathbf{F} = \frac{q_1 q_2}{4\pi \epsilon_0 r^2} \mathbf{r}$$

Where ϵ_0 is the permittivity of free space.

ELECTROMAGNETISM

What is the total charge contained within a volume?

$$Q_v = \int_V \rho(\underline{r}) dV$$

Where ρ is the sum of the charges.

DIFFRACTION PHYSICS

What happens when we apply a field to an electrically insulating material such as glass?

The charges will separate causing a polarisation in the material.

ELECTROMAGNETISM

What is Maxwells I?

What is Maxwells I?

$$abla \cdot \mathbf{E} = rac{
ho}{\epsilon_0}$$

Electromagnetism	What is Maxwells II?
What is Maxwells II?	$\nabla \cdot \mathbf{B} = 0$
Electromagnetism	What is Maxwells III?
What is Maxwells III?	$ abla extbf{X} extbf{E} = -rac{\partial extbf{B}}{\partial t}$
Electromagnetism	What is Maxwells IV?
What is Maxwells IV?	$\nabla \times \mathbf{B} = \mu_0 \left(\mathbf{J} + \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right)$
Diffraction Physics	What is the expression for intensity reflectance at normal incidence?
What is the expression for intensity reflectance	$r = \frac{n_1 - n_2}{n_1 + n_2}$

QUANTUM	MECHANICS
& CHILL CIVI	WIE CHI III II CO

What is the creation operator for a harmonic oscillator of mass, m and frequency ω

What is the creation operator for a harmonic oscillator of mass, m and frequency ω

$$\hat{a} = \frac{m\omega}{2\hbar}\hat{x} + i\sqrt{\frac{1}{2m\omega\hbar}}\hat{p}$$

QUANTUM MECHANICS

What is the annihilation operator for a harmonic oscillator of mass, m and frequency ω

What is the creation operator for a harmonic oscillator of mass, m and frequency ω

$$\hat{a} = \frac{m\omega}{2\hbar}\hat{x} - i\sqrt{\frac{1}{2m\omega\hbar}}\hat{p}$$

QUANTUM MECHANICS

Express the Hamiltonian

Express the Hamiltonian

$$i\hbar\frac{\partial\psi}{\partial t} = \hat{H}\psi$$

THERMODYNAMICS

What is Classius statement of the second law?

What is Classius statement of the second law?

It is impossible to construct a device that, operating in a cycle, produces no effect other than the transfer of heat from a colder to a hotter body.

THERMODYNAMICS What is the Kelvin-Planck statement of the second law?	What is Kelvin-Planck statement of the second law? It is impossible to construct a device that, operating in a cycle, produces no effect other than the extraction of heat from a single body at a uniform temperature and performance of an equivalent amount of work.
Thermodynamics What are the main consequences of the first law of thermodynamics?	What are the main consequences of the first law of thermodynamics? 1. Heat is a form of energy 2. Energy is conserved in thermal processes