Verständnisfragen

2 Punkte pro Aufgabe

- 1. Wie sieht die Gesamtwellenfunktion für 2 Elektronen $\Psi(\underline{x}_1,\underline{x}_2,t)$ aus, wenn die beiden Elektronen vollständig durch die beiden Einteilchenfunktionen $\Psi_1(\underline{x},t)$ und $\Psi_2(\underline{x},t)$ beschrieben werden können und beide Elektronen die gleiche Elektronenspinrichtung aufweisen?
- 2. Was besagt die Born-Oppenheimer Näherung?
- 3. Wie berechnet man die Wärmekapazität (pro Volumen) $c_V(T)$ von Elektronen im Festkörper, wenn die Zustandsdichte Z(E) (pro Volumen) und die Fermi-Energie E_F bekannt ist (nur Ansatz angeben)?
- 4. Aus welchen beiden Funktionstypen setzt sich eine Blochwelle zusammen?
- 5. Wieviele Elektronen besetzen Zustände mit dem gleichen \underline{k} -Vektor in einem einfach kubischen Kristall aus $^{29}_{14}$ Si-Atomen?
- 6. Welche Bedingung muss für die Bandstruktur $E(\underline{k})$ gelten, damit ein Material ein Metall ist, d.h. der spezifische Widerstand für $T \to 0$ K nicht gegen unendlich strebt?
- 7. Warum tragen nur Elektronen in der Nähe der Fermienergie $E_{\rm F}$ zum elektrischen Strom bei?
- 8. Mit welchem Modell beschreibt man die Bindungsenergie von Donatorelektronen im Halbleiter?
- 9. Skizzieren Sie die Ladungsträgerdichte eines Halbleiters mit Bandlücke $E_{\rm G}$, Donatordichte N_D und Donatorbindungsenergie E_D als Funktion der inversen Temperatur 1/T. Benutzen Sie dabei alle angegebenen Größen.
- 10. Warum ist der Strom I einer Diode in Durchlassrichtung für $T=0\,\mathrm{K}$, bei Spannungen $U << E_\mathrm{G}$ (E_G : Bandlücke) Null?

- 11. Warum bilden Ferromagnete Domänen?
- 12. Welche Wechselwirkung führt zur Cooper-Paarbildung in Supraleitern?

Aufgaben

Aufgaben sind entsprechend Schwierigkeitsgrad markiert:

(*) leicht, (**) mittel, (***) schwer.

1. Dreidimensionales Elektronengas [8 Punkte]

Ein dreidimensionales Elektronensystem in einem Festkörper (Quader mit Kantenlängen $l=3\,$ mm, $b=2\,$ mm, $h=1\,$ mm, Gitterstruktur einfach kubisch mit Gitterkonstante $a=3\,$ Å) werde beschrieben durch die Dispersionsrelation

$$E(k) = \gamma k^3 \tag{1}$$

mit $\gamma = 3 \cdot 10^{-49} \,\text{J} \cdot \text{m}^3$ und $k = |\vec{k}| \ge 0$. Jedes Atom steuert ein Elektron bei.

- (a) Berechnen Sie das Volumen V_k , das ein Zustand im k-Raum einnimmt. Geben Sie an, welche Randbedingungen Sie für die Berechnung verwendet haben. [3] (*)
- (b) Bestimmen Sie den Fermi-Wellenvektor $k_{\rm F}$. [4] (**)
- (c) Berechnen Sie die Fermi-Energie $E_{\rm F}$. [1] (*)
- 2. Photoelektronenspektroskopie [8 Punkte]

Auf eine Probe mit der Austrittsarbeit $\Phi = 4.5 \,\text{eV}$ trifft Licht der Energie $h\nu = 55 \,\text{eV}$. Der Austrittswinkel und die Energie der austretenden Photoelektronen werden analysiert.

- (a) Bis zu welcher maximalen Energie werden Elektronen detektiert? [2] (*)
- (b) Unter einem Winkel von $\theta = 3.5^{\circ}$ zur Oberflächennormalen werden bei der Energie $E = 49.5 \,\text{eV}$ Elektronen nachgewiesen. Geben Sie den oberflächenparallelen Wellenvektor $k_{||}$ des Anfangszustandes an. [3] (**)
- (c) Bei welchem Winkel und welcher Energie wird ein Elektron detektiert, dessen Anfangszustand im Festkörper 0,8 eV unter der Fermi-Energie bei $k_{||} = 3 \, \mathrm{nm}^{-1}$ und $k_{\perp} = 2,5 \, \mathrm{nm}^{-1}$ liegt? [3] (**)

3. Magnetismus [8 Punkte]

Ein Metall hat eine fcc-Struktur mit Gitterkonstante $a = 5.5 \,\text{Å}$. Jedes Atom gibt ein Elektron ans Leitungsband ab, das als freies Elektronengas beschrieben werden soll.

- (a) Berechnen Sie die Zustandsdichte pro Volumen an der Fermi-Energie. [5] (**)
- (b) Wie groß muss der Austauschparameter I (in eV) mindestens sein, damit das Metall ferromagnetisch wird? [3] (**)

Konstanten:

Plancksches Wirkungsquantum: $\hbar = 1.05 \cdot 10^{-34} \text{ Js}$

Boltzmann-Konstante: $k_B = 1.38 \cdot 10^{-23} \text{ J/K}$

Elementarladung: $e = 1.60 \cdot 10^{-19} \text{ C}$

Elektronen
masse: $m_{\rm Elektron} = 9.11 \cdot 10^{-31} \text{ kg}$

Vakuum-Dielektrizitätskonstante: $\varepsilon_0=8.85\cdot 10^{-12}~As/Vm$ 1 nm =10⁻⁹ m, 1 Å= 10⁻¹⁰ m, 1 eV = 1.6 · 10⁻¹⁹ J

Dauer der Klausur: 1,5 Stunden Bestanden haben Sie mit 50 % der Punkte! (Gesamtpunktzahl: 48)