Capacitor and Capacitance

1. use capacitance for a parallel plate capacitor.

$$C = \epsilon_0 \frac{A}{d}$$

2. Energy density, $u = \frac{1}{2} \epsilon_0 E^2$

and.
$$E = \frac{V}{d}$$
 or, $E = K \frac{Q}{r^2}$ and $V = K \frac{Q}{r}$

3. Q: unchanged - no way to leave the charge

C: de decreaces C: Encreases as separation increased.

E; unchanged, independent of separation

 $V: voltage increases as, <math>C = \frac{Q}{V}$

U: energy increases, as, $U = \frac{1}{2} \frac{Q^2}{r^2}$

4. Q: Lecreases - would fill by battery

c: decreases-

V: voltage unchanged, as connected with battery

U: decreases, as a and c

E: decreases, as E= J

5. Use energy, $U = \frac{1}{2} \frac{Q^2}{C}$ and capacitance, $C = 2\pi 6 \frac{L}{ln(4a)}$

6. Energy = $100 \times 10^3 \text{W}$ and 1 hour $U = \frac{1}{2} \text{QV}$ Potential difference = 1000 V. $U = \frac{1}{2} \text{QV}$

Find $C = \frac{49}{\text{AV}}$ and use $C = 60 \frac{\text{A}}{\text{A}}$

$$\frac{8}{4} u = \frac{1}{2} \left(\frac{V}{d} \right)^2$$

10, for parallel connection charge relation,
$$Q = Q_1 + Q_2$$

and, $V = \frac{Q_1}{C} = \frac{Q_2}{2C}$ then, $Q_1 = \frac{Q}{3}$.