Package 'bvhar'

October 11, 2024

```
Type Package
Title Bayesian Vector Heterogeneous Autoregressive Modeling
Version 2.1.2
Description Tools to model and forecast multivariate time series
     including Bayesian Vector heterogeneous autoregressive (VHAR) model
     by Kim & Baek (2023) (<doi:10.1080/00949655.2023.2281644>).
     'bvhar' can model Vector Autoregres-
     sive (VAR), VHAR, Bayesian VAR (BVAR), and Bayesian VHAR (BVHAR) models.
License GPL (>= 3)
URL https://ygeunkim.github.io/package/bvhar/,
     https://github.com/ygeunkim/bvhar
BugReports https://github.com/ygeunkim/bvhar/issues
Suggests covr, GIGrvg, knitr, parallel, rmarkdown, testthat (>= 3.0.0)
Encoding UTF-8
LazyData true
RoxygenNote 7.3.1
Imports lifecycle, magrittr, Rcpp, ggplot2, tidyr, tibble, dplyr,
     foreach, purrr, stats, optimParallel, posterior, bayesplot
LinkingTo BH (>= 1.84.0-0), Rcpp, RcppEigen(>= 0.3.4.0.0)
VignetteBuilder knitr
Depends R (>= 3.6.0)
Config/testthat/edition 3
NeedsCompilation yes
Author Young Geun Kim [aut, cre, cph]
      (<https://orcid.org/0000-0001-8651-1167>),
     Changryong Baek [ctb]
Maintainer Young Geun Kim <ygeunkimstat@gmail.com>
Repository CRAN
Date/Publication 2024-10-11 15:20:02 UTC
```

2 Contents

Contents

autoplot.bvhardynsp
autoplot.bvharirf
autoplot.bvharsp
autoplot.normaliw
autoplot.predbvhar
autoplot.summary.bvharsp
autoplot.summary.normaliw
bound_bvhar
bvar_flat
bvar_horseshoe
bvar minnesota
bvar_ssvs
bvar_sv
byhar_horseshoe
bvhar_minnesota
bvhar_ssvs
bvhar_sv
choose_bayes
choose_bvar
choose_ssvs
choose_var
coef
compute_dic
compute_logml
confusion
conf_fdr
conf_fscore
conf_recall
dynamic_spillover
etf vix
fitted
forecast_expand
forecast_roll
FPE
fromse
geom_eval
gg_loss
HQ
init ssvs
irf.varlse
is.stable
mae
mape

Contents 3

mase	65
mrae	66
nse	67
predict	68
print.summary.bvharsp	73
relmae	74
relspne	75
residuals	76
mafe	77
mape	78
mase	79
msfe	80
set_bvar	81
set_dl	84
set_horseshoe	85
set_intercept	86
set_lambda	86
set_ldlt	88
set_ng	89
set_ssvs	90
sim_gig	93
sim_horseshoe_var	94
sim_iw	95
sim_matgaussian	95
sim_mncoef	96
sim_mniw	97
sim_mnormal	98
sim_mnvhar_coef	99
sim_mvt	100
sim_ssvs_var	101
sim_var	103
sim_vhar	104
spillover	105
spne	106
stableroot	107
summary.normaliw	108
summary.varlse	110
summary.vharlse	111
VARtoVMA	113
var_bayes	114
var_lm	116
VHARtoVMA	120
vhar_bayes	120
vhar_lm	123

126

Index

4 autoplot.bvharirf

autoplot.bvhardynsp

Dynamic Spillover Indices Plot

Description

Draws dynamic directional spillover plot.

Usage

```
## S3 method for class 'bvhardynsp'
autoplot(
  object,
  type = c("tot", "to", "from", "net"),
  hcol = "grey",
  hsize = 1.5,
  row_facet = NULL,
  col_facet = NULL,
  ...
)
```

Arguments

autoplot.bvharirf

Plot Impulse Responses

Description

Draw impulse responses of response ~ impulse in the facet.

```
## S3 method for class 'bvharirf'
autoplot(object, ...)
```

autoplot.bvharsp 5

Arguments

object A byharirf object

... Other arguments passed on the ggplot2::geom_path().

Value

A ggplot object

See Also

irf()

autoplot.bvharsp

Plot the Result of BVAR and BVHAR MCMC

Description

Draw BVAR and BVHAR MCMC plots.

Usage

```
## $3 method for class 'bvharsp'
autoplot(
  object,
  type = c("coef", "trace", "dens", "area"),
  pars = character(),
  regex_pars = character(),
  ...
)
```

Arguments

object A byharsp object

type The type of the plot. Posterior coefficient (coef), Trace plot (trace), kernel

density plot (dens), and interval estimates plot (area).

pars Parameter names to draw.

regex_pars Regular expression parameter names to draw.

.. Other options for each bayesplot::mcmc_trace(), bayesplot::mcmc_dens(),

and bayesplot::mcmc_areas().

Value

A ggplot object

6 autoplot.predbvhar

autoplot.normaliw

Residual Plot for Minnesota Prior VAR Model

Description

This function draws residual plot for covariance matrix of Minnesota prior VAR model.

Usage

```
## S3 method for class 'normaliw'
autoplot(object, hcol = "grey", hsize = 1.5, ...)
```

Arguments

```
object A normaliw object
hcol color of horizontal line = 0 (By default, grey)
hsize size of horizontal line = 0 (By default, 1.5)
additional options for geom_point
```

Value

A ggplot object

autoplot.predbvhar

Plot Forecast Result

Description

Plots the forecasting result with forecast regions.

```
## S3 method for class 'predbvhar'
autoplot(
  object,
  type = c("grid", "wrap"),
  ci_alpha = 0.7,
  alpha_scale = 0.3,
  x_cut = 1,
  viridis = FALSE,
  viridis_option = "D",
  NROW = NULL,
  NCOL = NULL,
  ...
)
```

```
## S3 method for class 'predbvhar'
autolayer(object, ci_fill = "grey70", ci_alpha = 0.5, alpha_scale = 0.3, ...)
```

Arguments

object A predbvhar object

type Divide variables using ggplot2::facet_grid() ("grid": default) or ggplot2::facet_wrap()

("wrap")

ci_alpha Transparency of CI

alpha_scale Scale of transparency parameter (alpha) between the two layers. alpha of CI

ribbon = alpha_scale * alpha of path (By default, .5)

x_cut plot x axes from x_cut for visibility

viridis If TRUE, scale CI and forecast line using ggplot2::scale_fill_viridis_d()

and ggplot2::scale_colour_viridis_d, respectively.

viridis_option Option for viridis string. See option of ggplot2::scale_colour_viridis_d. Choose

one of c("A", "B", "C", "D", "E"). By default, D.

NROW nrow of ggplot2::facet_wrap()
NCOL ncol of ggplot2::facet_wrap()

... additional option for ggplot2::geom_path()

ci_fill color of CI

Value

A ggplot object A ggplot layer

autoplot.summary.bvharsp

Plot the Heatmap of SSVS Coefficients

Description

Draw heatmap for SSVS prior coefficients.

Usage

```
## S3 method for class 'summary.bvharsp'
autoplot(object, point = FALSE, ...)
```

Arguments

object A summary.bvharsp object

point Use point for sparsity representation

... Other arguments passed on the ggplot2::geom_tile().

Value

A ggplot object

```
autoplot.summary.normaliw

Density Plot for Minnesota Prior VAR Model
```

Description

This function draws density plot for coefficient matrices of Minnesota prior VAR model.

Usage

```
## $3 method for class 'summary.normaliw'
autoplot(
  object,
  type = c("trace", "dens", "area"),
  pars = character(),
  regex_pars = character(),
  ...
)
```

Arguments

object	A summary.normaliw object
type	The type of the plot. Trace plot (trace), kernel density plot (dens), and interval estimates plot (area).
pars	Parameter names to draw.
regex_pars	Regular expression parameter names to draw.
	Other options for each bayesplot::mcmc_trace(), bayesplot::mcmc_dens(), and bayesplot::mcmc_areas().

Value

A ggplot object

bound_bvhar 9

bound_bvhar

Setting Empirical Bayes Optimization Bounds

Description

[Experimental] This function sets lower and upper bounds for set_bvar(), set_bvhar(), or set_weight_bvhar().

Usage

```
bound_bvhar(
   init_spec = set_bvhar(),
   lower_spec = set_bvhar(),
   upper_spec = set_bvhar()
)

## S3 method for class 'boundbvharemp'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

is.boundbvharemp(x)

## S3 method for class 'boundbvharemp'
knit_print(x, ...)
```

Arguments

Value

boundbvharemp class

10 bvar_flat

bvar_flat

Fitting Bayesian VAR(p) of Flat Prior

Description

This function fits BVAR(p) with flat prior.

Usage

```
bvar_flat(
  у,
  p,
  num_chains = 1,
  num_iter = 1000,
  num_burn = floor(num_iter/2),
  thinning = 1,
  bayes_spec = set_bvar_flat(),
  include_mean = TRUE,
  verbose = FALSE,
  num\_thread = 1
)
## S3 method for class 'bvarflat'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'bvarflat'
logLik(object, ...)
## S3 method for class 'bvarflat'
AIC(object, ...)
## S3 method for class 'bvarflat'
BIC(object, ...)
is.bvarflat(x)
## S3 method for class 'bvarflat'
knit_print(x, ...)
```

Arguments

y Time series data of which columns indicate the variables p VAR lag

num_chains Number of MCMC chains
num_iter MCMC iteration number

num_burn Number of burn-in (warm-up). Half of the iteration is the default choice.

bvar_flat 11

thinning Thinning every thinning-th iteration

bayes_spec A BVAR model specification by set_bvar_flat().
include_mean Add constant term (Default: TRUE) or not (FALSE)
verbose Print the progress bar in the console. By default, FALSE.

num_thread Number of threads x bvarflat object digits digit option to print

... not used

object A bvarflat object

Details

Ghosh et al. (2018) gives flat prior for residual matrix in BVAR.

Under this setting, there are many models such as hierarchical or non-hierarchical. This function chooses the most simple non-hierarchical matrix normal prior in Section 3.1.

$$A \mid \Sigma_e \sim MN(0, U^{-1}, \Sigma_e)$$

where U: precision matrix (MN: matrix normal).

$$p(\Sigma_e) \propto 1$$

Value

bvar_flat() returns an object bvarflat class. It is a list with the following components:

coefficients Posterior Mean matrix of Matrix Normal distribution

fitted.values Fitted values

residuals Residuals

mn prec Posterior precision matrix of Matrix Normal distribution

iw_scale Posterior scale matrix of posterior inverse-wishart distribution

iw_shape Posterior shape of inverse-wishart distribution

df Numer of Coefficients: mp + 1 or mp

p Lag of VAR

m Dimension of the time series

obs Sample size used when training = totobs - p

totobs Total number of the observation

process Process string in the bayes_spec: BVAR_Flat

spec Model specification (bvharspec)

type include constant term (const) or not (none)

call Matched call

prior_mean Prior mean matrix of Matrix Normal distribution: zero matrix **prior_precision** Prior precision matrix of Matrix Normal distribution: U^{-1}

 $\mathbf{y0} \ Y_0$

design X_0

y Raw input (matrix)

bvar_horseshoe

References

Ghosh, S., Khare, K., & Michailidis, G. (2018). *High-Dimensional Posterior Consistency in Bayesian Vector Autoregressive Models*. Journal of the American Statistical Association, 114(526).

Litterman, R. B. (1986). Forecasting with Bayesian Vector Autoregressions: Five Years of Experience. Journal of Business & Economic Statistics, 4(1), 25.

See Also

- set_bvar_flat() to specify the hyperparameters of BVAR flat prior.
- coef.bvarflat(), residuals.bvarflat(), and fitted.bvarflat()
- predict.bvarflat() to forecast the BVHAR process

bvar_horseshoe

Fitting Bayesian VAR(p) of Horseshoe Prior

Description

[Deprecated] This function fits BVAR(p) with horseshoe prior.

```
bvar_horseshoe(
 у,
  р,
  num_chains = 1,
  num_iter = 1000,
  num_burn = floor(num_iter/2),
  thinning = 1,
  bayes_spec = set_horseshoe(),
  include_mean = TRUE,
  minnesota = FALSE,
  algo = c("block", "gibbs"),
  verbose = FALSE,
  num\_thread = 1
)
## S3 method for class 'bvarhs'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'bvarhs'
knit_print(x, ...)
```

bvar_horseshoe 13

Arguments

y Time series data of which columns indicate the variables

p VAR lag

num_chains Number of MCMC chains num_iter MCMC iteration number

num_burn Number of burn-in (warm-up). Half of the iteration is the default choice.

thinning Thinning every thinning-th iteration

bayes_spec Horseshoe initialization specification by set_horseshoe().

include_mean Add constant term (Default: TRUE) or not (FALSE)

minnesota Minnesota type

algo Ordinary gibbs sampling (gibbs) or blocked gibbs (Default: block).

verbose Print the progress bar in the console. By default, FALSE.

num_thread [Experimental] Number of threads

x bvarhs object digits digit option to print

... not used

Value

bvar_horseshoe returns an object named bvarhs class. It is a list with the following components:

coefficients Posterior mean of VAR coefficients.

covmat Posterior mean of covariance matrix

psi posterior Posterior mean of precision matrix Ψ

pip Posterior inclusion probabilities.

param posterior::draws_df with every variable: alpha, lambda, tau, omega, and eta

param_names Name of every parameter.

df Numer of Coefficients: mp + 1 or mp

p Lag of VAR

m Dimension of the data

obs Sample size used when training = totobs - p

totobs Total number of the observation

call Matched call

process Description of the model, e.g. VAR_Horseshoe

type include constant term (const) or not (none)

algo Usual Gibbs sampling (gibbs) or fast sampling (fast)

spec Horseshoe specification defined by set_horseshoe()

chain The numer of chains

iter Total iterations

bvar_minnesota

```
burn Burn-in
thin Thinning
group Indicators for group.
num_group Number of groups.
y0 Y_0
design X_0
y Raw input
```

References

Carvalho, C. M., Polson, N. G., & Scott, J. G. (2010). *The horseshoe estimator for sparse signals*. Biometrika, 97(2), 465-480.

Makalic, E., & Schmidt, D. F. (2016). *A Simple Sampler for the Horseshoe Estimator*. IEEE Signal Processing Letters, 23(1), 179-182.

bvar_minnesota

Fitting Bayesian VAR(p) of Minnesota Prior

Description

This function fits BVAR(p) with Minnesota prior.

```
bvar_minnesota(
 у,
 p = 1,
 num_chains = 1,
  num_iter = 1000,
 num_burn = floor(num_iter/2),
  thinning = 1,
  bayes_spec = set_bvar(),
  scale_variance = 0.05,
  include_mean = TRUE,
 parallel = list(),
  verbose = FALSE,
  num\_thread = 1
)
## S3 method for class 'bvarmn'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'bvarhm'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
```

bvar_minnesota 15

```
## S3 method for class 'bvarmn'
logLik(object, ...)

## S3 method for class 'bvarmn'
AIC(object, ...)

## S3 method for class 'bvarmn'
BIC(object, ...)

is.bvarmn(x)

## S3 method for class 'bvarmn'
knit_print(x, ...)

## S3 method for class 'bvarhm'
knit_print(x, ...)
```

Arguments

y Time series data of which columns indicate the variables

p VAR lag (Default: 1)
num_chains Number of MCMC chains
num_iter MCMC iteration number

num_burn Number of burn-in (warm-up). Half of the iteration is the default choice.

thinning Thinning every thinning-th iteration

bayes_spec A BVAR model specification by set_bvar().

scale_variance Proposal distribution scaling constant to adjust an acceptance rate

include_mean Add constant term (Default: TRUE) or not (FALSE)

parallel List the same argument of optimParallel::optimParallel(). By default,

this is empty, and the function does not execute parallel computation.

verbose Print the progress bar in the console. By default, FALSE.

num_thread Number of threads
x bvarhm object
digits digit option to print

... not used

object A bvarmn object

Details

Minnesota prior gives prior to parameters A (VAR matrices) and Σ_e (residual covariance).

$$A \mid \Sigma_e \sim MN(A_0, \Omega_0, \Sigma_e)$$
$$\Sigma_e \sim IW(S_0, \alpha_0)$$

(MN: matrix normal, IW: inverse-wishart)

bvar_minnesota

Value

```
bvar_minnesota() returns an object bvarmn class. It is a list with the following components:
coefficients Posterior Mean
fitted.values Fitted values
residuals Residuals
mn_mean Posterior mean matrix of Matrix Normal distribution
mn_prec Posterior precision matrix of Matrix Normal distribution
iw_scale Posterior scale matrix of posterior inverse-Wishart distribution
iw_shape Posterior shape of inverse-Wishart distribution (alpha_0 - obs + 2). \alpha_0: nrow(Dummy
     observation) - k
df Numer of Coefficients: mp + 1 or mp
m Dimension of the time series
obs Sample size used when training = totobs - p
prior_mean Prior mean matrix of Matrix Normal distribution: A_0
prior_precision Prior precision matrix of Matrix Normal distribution: \Omega_0^{-1}
prior_scale Prior scale matrix of inverse-Wishart distribution: S_0
prior_shape Prior shape of inverse-Wishart distribution: \alpha_0
\mathbf{y0} Y_0
design X_0
p Lag of VAR
totobs Total number of the observation
type include constant term (const) or not (none)
y Raw input (matrix)
call Matched call
process Process string in the bayes_spec: BVAR_Minnesota
```

References

spec Model specification (bvharspec)
It is also normaliw and bvharmod class.

Bańbura, M., Giannone, D., & Reichlin, L. (2010). *Large Bayesian vector auto regressions*. Journal of Applied Econometrics, 25(1).

Giannone, D., Lenza, M., & Primiceri, G. E. (2015). *Prior Selection for Vector Autoregressions*. Review of Economics and Statistics, 97(2).

Litterman, R. B. (1986). Forecasting with Bayesian Vector Autoregressions: Five Years of Experience. Journal of Business & Economic Statistics, 4(1), 25.

KADIYALA, K.R. and KARLSSON, S. (1997), *NUMERICAL METHODS FOR ESTIMATION AND INFERENCE IN BAYESIAN VAR-MODELS*. J. Appl. Econ., 12: 99-132.

Karlsson, S. (2013). *Chapter 15 Forecasting with Bayesian Vector Autoregression*. Handbook of Economic Forecasting, 2, 791-897.

Sims, C. A., & Zha, T. (1998). *Bayesian Methods for Dynamic Multivariate Models*. International Economic Review, 39(4), 949-968.

bvar_ssvs 17

See Also

- set_bvar() to specify the hyperparameters of Minnesota prior.
- summary.normaliw() to summarize BVAR model

Examples

```
# Perform the function using etf_vix dataset
fit <- bvar_minnesota(y = etf_vix[,1:3], p = 2)
class(fit)

# Extract coef, fitted values, and residuals
coef(fit)
head(residuals(fit))
head(fitted(fit))</pre>
```

bvar_ssvs

Fitting Bayesian VAR(p) of SSVS Prior

Description

[Deprecated] This function fits BVAR(p) with stochastic search variable selection (SSVS) prior.

```
bvar_ssvs(
 у,
  р,
  num_chains = 1,
  num_iter = 1000,
 num_burn = floor(num_iter/2),
  thinning = 1,
 bayes_spec = choose_ssvs(y = y, ord = p, type = "VAR", param = c(0.1, 10), include_mean
    = include_mean, gamma_param = c(0.01, 0.01), mean_non = 0, sd_non = 0.1),
  init_spec = init_ssvs(type = "auto"),
  include_mean = TRUE,
 minnesota = FALSE,
  verbose = FALSE,
  num\_thread = 1
)
## S3 method for class 'bvarssvs'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'bvarssvs'
knit_print(x, ...)
```

18 bvar_ssvs

Arguments

y Time series data of which columns indicate the variables

p VAR lag

num_chains Number of MCMC chains num_iter MCMC iteration number

num_burn Number of burn-in (warm-up). Half of the iteration is the default choice.

thinning Thinning every thinning-th iteration

bayes_spec A SSVS model specification by set_ssvs(). By default, use a default semiau-

tomatic approach choose_ssvs().

init_spec SSVS initialization specification by init_ssvs(). By default, use OLS for

coefficient and cholesky factor while 1 for dummies.

include_mean Add constant term (Default: TRUE) or not (FALSE)

minnesota Apply cross-variable shrinkage structure (Minnesota-way). By default, FALSE.

verbose Print the progress bar in the console. By default, FALSE.

num_thread [Experimental] Number of threads

x bvarssvs objectdigits digit option to print

... not used

Details

SSVS prior gives prior to parameters $\alpha = vec(A)$ (VAR coefficient) and $\Sigma_e^{-1} = \Psi \Psi^T$ (residual covariance).

$$\alpha_j \mid \gamma_j \sim (1 - \gamma_j) N(0, \kappa_{0j}^2) + \gamma_j N(0, \kappa_{1j}^2)$$

$$\gamma_j \sim Bernoulli(q_j)$$

and for upper triangular matrix Ψ ,

$$\psi_{jj}^{2} \sim Gamma(shape = a_{j}, rate = b_{j})$$

$$\psi_{ij} \mid w_{ij} \sim (1 - w_{ij})N(0, \kappa_{0,ij}^{2}) + w_{ij}N(0, \kappa_{1,ij}^{2})$$

$$w_{ij} \sim Bernoulli(q_{ij})$$

Value

bvar_ssvs returns an object named bvarssvs class. It is a list with the following components:

coefficients Posterior mean of VAR coefficients.

chol_posterior Posterior mean of cholesky factor matrix

covmat Posterior mean of covariance matrix

omega_posterior Posterior mean of omega

bvar_ssvs 19

```
pip Posterior inclusion probability
param posterior::draws_df with every variable: alpha, eta, psi, omega, and gamma
param_names Name of every parameter.
df Numer of Coefficients: mp + 1 or mp
p Lag of VAR
m Dimension of the data
obs Sample size used when training = totobs - p
totobs Total number of the observation
call Matched call
process Description of the model, e.g. VAR_SSVS
type include constant term (const) or not (none)
spec SSVS specification defined by set_ssvs()
init Initial specification defined by init_ssvs()
chain The numer of chains
iter Total iterations
burn Burn-in
thin Thinning
group Indicators for group.
num_group Number of groups.
y0 Y_0
design X_0
y Raw input
```

References

George, E. I., & McCulloch, R. E. (1993). *Variable Selection via Gibbs Sampling*. Journal of the American Statistical Association, 88(423), 881-889.

George, E. I., Sun, D., & Ni, S. (2008). *Bayesian stochastic search for VAR model restrictions*. Journal of Econometrics, 142(1), 553-580.

Koop, G., & Korobilis, D. (2009). *Bayesian Multivariate Time Series Methods for Empirical Macroeconomics*. Foundations and Trends® in Econometrics, 3(4), 267-358.

20 bvar_sv

bvar_sv

Fitting Bayesian VAR-SV

Description

[Deprecated] This function fits VAR-SV. It can have Minnesota, SSVS, and Horseshoe prior.

Usage

```
bvar_sv(
  у,
  р,
  num_chains = 1,
  num_iter = 1000,
  num_burn = floor(num_iter/2),
  thinning = 1,
  bayes_spec = set_bvar(),
  sv_spec = set_sv(),
  intercept = set_intercept(),
  include_mean = TRUE,
  minnesota = TRUE,
  save_init = FALSE,
  convergence = NULL,
  verbose = FALSE,
  num\_thread = 1
)
## S3 method for class 'bvarsv'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'bvarsv'
knit_print(x, ...)
```

Arguments

у		Time series data of which columns indicate the variables
р		VAR lag
num_chai	ins	Number of MCMC chains
num_ite	r	MCMC iteration number
num_burr	n	Number of burn-in (warm-up). Half of the iteration is the default choice.
thinning	g	Thinning every thinning-th iteration
bayes_sp	oec	A BVAR model specification by set_bvar(), set_ssvs(), or set_horseshoe().
sv_spec		[Experimental] SV specification by set_sv().
intercep	ot	[Experimental] Prior for the constant term by set_intercept().

bvar_sv 21

include_mean Add constant term (Default: TRUE) or not (FALSE)

minnesota Apply cross-variable shrinkage structure (Minnesota-way). By default, TRUE.

save_init Save every record starting from the initial values (TRUE). By default, exclude the

initial values in the record (FALSE), even when num_burn = 0 and thinning = 1.

If num_burn > 0 or thinning != 1, this option is ignored.

convergence Convergence threshold for rhat < convergence. By default, NULL which means

no warning.

verbose Print the progress bar in the console. By default, FALSE.

num_thread Number of threads
x bvarsv object
digits digit option to print

... not used

Details

Cholesky stochastic volatility modeling for VAR based on

$$\Sigma_t^{-1} = L^T D_t^{-1} L$$

, and implements corrected triangular algorithm for Gibbs sampler.

Value

bvar_sv() returns an object named bvarsv class.

coefficients Posterior mean of coefficients.

chol_posterior Posterior mean of contemporaneous effects.

param Every set of MCMC trace.

param_names Name of every parameter.

group Indicators for group.

num_group Number of groups.

df Numer of Coefficients: 3m + 1 or 3m

p VAR lag

m Dimension of the data

obs Sample size used when training = totobs - p

totobs Total number of the observation

call Matched call

process Description of the model, e.g. VHAR_SSVS_SV, VHAR_Horseshoe_SV, or VHAR_minnesota-part_SV

type include constant term (const) or not (none)

spec Coefficients prior specification

sv log volatility prior specification

intercept Intercept prior specification

22 byhar_horseshoe

```
init Initial values
chain The numer of chains
iter Total iterations
burn Burn-in
thin Thinning
y0 Y_0
design X_0
y Raw input
If it is SSVS or Horseshoe:
pip Posterior inclusion probabilities.
```

References

Carriero, A., Chan, J., Clark, T. E., & Marcellino, M. (2022). Corrigendum to "Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors" [J. Econometrics 212 (1)(2019) 137-154]. Journal of Econometrics, 227(2), 506-512.

Chan, J., Koop, G., Poirier, D., & Tobias, J. (2019). *Bayesian Econometric Methods (2nd ed., Econometric Exercises)*. Cambridge: Cambridge University Press.

Cogley, T., & Sargent, T. J. (2005). *Drifts and volatilities: monetary policies and outcomes in the post WWII US*. Review of Economic Dynamics, 8(2), 262-302.

Gruber, L., & Kastner, G. (2022). Forecasting macroeconomic data with Bayesian VARs: Sparse or dense? It depends! arXiv.

bvhar_horseshoe

Fitting Bayesian VHAR of Horseshoe Prior

Description

[Deprecated] This function fits VHAR with horseshoe prior.

```
bvhar_horseshoe(
   y,
   har = c(5, 22),
   num_chains = 1,
   num_iter = 1000,
   num_burn = floor(num_iter/2),
   thinning = 1,
   bayes_spec = set_horseshoe(),
   include_mean = TRUE,
   minnesota = c("no", "short", "longrun"),
   algo = c("block", "gibbs"),
```

bvhar_horseshoe 23

```
verbose = FALSE,
num_thread = 1
)

## S3 method for class 'bvharhs'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

## S3 method for class 'bvharhs'
knit_print(x, ...)
```

Arguments

y Time series data of which columns indicate the variables

har Numeric vector for weekly and monthly order. By default, c(5, 22).

num_chains Number of MCMC chains num_iter MCMC iteration number

num_burn Number of burn-in (warm-up). Half of the iteration is the default choice.

thinning Thinning every thinning-th iteration

bayes_spec Horseshoe initialization specification by set_horseshoe().

include_mean Add constant term (Default: TRUE) or not (FALSE)

minnesota Minnesota type

algo Ordinary gibbs sampling (gibbs) or blocked gibbs (Default: block).

verbose Print the progress bar in the console. By default, FALSE.

num_thread [Experimental] Number of threads

x byharhs objectdigits digit option to print

... not used

Value

bvhar_horseshoe returns an object named bvarhs class. It is a list with the following components:

coefficients Posterior mean of VHAR coefficients.

covmat Posterior mean of covariance matrix

psi_posterior Posterior mean of precision matrix Ψ

param posterior::draws_df with every variable: alpha, lambda, tau, omega, and eta

param_names Name of every parameter.

df Numer of Coefficients: 3m + 1 or 3m

p 3 (The number of terms. It contains this element for usage in other functions.)

week Order for weekly term

month Order for monthly term

m Dimension of the data

24 bvhar_minnesota

```
obs Sample size used when training = totobs - p
totobs Total number of the observation
call Matched call
process Description of the model, e.g. VHAR_Horseshoe
type include constant term (const) or not (none)
algo Usual Gibbs sampling (gibbs) or fast sampling (fast)
spec Horseshoe specification defined by set_horseshoe()
chain The numer of chains
iter Total iterations
burn Burn-in
thin Thinning
group Indicators for group.
num_group Number of groups.
HARtrans VHAR linear transformation matrix
\mathbf{y0} \ Y_0
design X_0
y Raw input
```

References

Kim, Y. G., and Baek, C. (n.d.). Working paper.

bvhar_minnesota

Fitting Bayesian VHAR of Minnesota Prior

Description

This function fits BVHAR with Minnesota prior.

```
bvhar_minnesota(
   y,
   har = c(5, 22),
   num_chains = 1,
   num_iter = 1000,
   num_burn = floor(num_iter/2),
   thinning = 1,
   bayes_spec = set_bvhar(),
   scale_variance = 0.05,
   include_mean = TRUE,
   parallel = list(),
```

bvhar_minnesota 25

```
verbose = FALSE,
  num\_thread = 1
)
## S3 method for class 'bvharmn'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'bvharhm'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'bvharmn'
logLik(object, ...)
## S3 method for class 'bvharmn'
AIC(object, ...)
## S3 method for class 'bvharmn'
BIC(object, ...)
is.bvharmn(x)
## S3 method for class 'bvharmn'
knit_print(x, ...)
## S3 method for class 'bvharhm'
knit_print(x, ...)
```

Arguments

y Time series data of which columns indicate the variables

har Numeric vector for weekly and monthly order. By default, c(5, 22).

num_chainsNumber of MCMC chainsnum_iterMCMC iteration number

num_burn Number of burn-in (warm-up). Half of the iteration is the default choice.

thinning Thinning every thinning-th iteration

bayes_spec A BVHAR model specification by set_bvhar() (default) or set_weight_bvhar().

scale_variance Proposal distribution scaling constant to adjust an acceptance rate

include_mean Add constant term (Default: TRUE) or not (FALSE)

parallel List the same argument of optimParallel::optimParallel(). By default,

this is empty, and the function does not execute parallel computation.

verbose Print the progress bar in the console. By default, FALSE.

num_thread Number of threads
x bvharhm object
digits digit option to print

. . . not used

object A byharmn object

26 byhar_minnesota

Details

Apply Minnesota prior to Vector HAR: Φ (VHAR matrices) and Σ_e (residual covariance).

$$\Phi \mid \Sigma_e \sim MN(M_0, \Omega_0, \Sigma_e)$$
$$\Sigma_e \sim IW(\Psi_0, \nu_0)$$

(MN: matrix normal, IW: inverse-wishart)

There are two types of Minnesota priors for BVHAR:

- VAR-type Minnesota prior specified by set_bvhar(), so-called BVHAR-S model.
- VHAR-type Minnesota prior specified by set_weight_bvhar(), so-called BVHAR-L model.

Value

y Raw input (matrix)
call Matched call

```
bvhar_minnesota() returns an object bvharmn class. It is a list with the following components:
```

```
coefficients Posterior Mean
fitted.values Fitted values
residuals Residuals
mn mean Posterior mean matrix of Matrix Normal distribution
mn_prec Posterior precision matrix of Matrix Normal distribution
iw scale Posterior scale matrix of posterior inverse-wishart distribution
iw_shape Posterior shape of inverse-Wishart distribution (\nu_0 - obs + 2). \nu_0: nrow(Dummy obser-
     vation) - k
df Numer of Coefficients: 3m + 1 or 3m
m Dimension of the time series
obs Sample size used when training = totobs - 22
prior_mean Prior mean matrix of Matrix Normal distribution: M_0
prior_precision Prior precision matrix of Matrix Normal distribution: \Omega_0^{-1}
prior_scale Prior scale matrix of inverse-Wishart distribution: \Psi_0
prior shape Prior shape of inverse-Wishart distribution: \nu_0
\mathbf{y0} \ Y_0
design X_0
p 3, this element exists to run the other functions
week Order for weekly term
month Order for monthly term
totobs Total number of the observation
type include constant term (const) or not (none)
HARtrans VHAR linear transformation matrix: C_{HAR}
```

bvhar_ssvs 27

```
process Process string in the bayes_spec: BVHAR_MN_VAR (BVHAR-S) or BVHAR_MN_VHAR (BVHAR-L)
spec Model specification (bvharspec)
```

It is also normaliw and byharmod class.

References

Kim, Y. G., and Baek, C. (2024). *Bayesian vector heterogeneous autoregressive modeling*. Journal of Statistical Computation and Simulation, 94(6), 1139-1157.

See Also

- set_bvhar() to specify the hyperparameters of BVHAR-S
- set_weight_bvhar() to specify the hyperparameters of BVHAR-L
- summary.normaliw() to summarize BVHAR model

Examples

```
# Perform the function using etf_vix dataset
fit <- bvhar_minnesota(y = etf_vix[,1:3])
class(fit)

# Extract coef, fitted values, and residuals
coef(fit)
head(residuals(fit))
head(fitted(fit))</pre>
```

bvhar_ssvs

Fitting Bayesian VHAR of SSVS Prior

Description

[Deprecated] This function fits BVAR(p) with stochastic search variable selection (SSVS) prior.

```
bvhar_ssvs(
   y,
   har = c(5, 22),
   num_chains = 1,
   num_iter = 1000,
   num_burn = floor(num_iter/2),
   thinning = 1,
   bayes_spec = choose_ssvs(y = y, ord = har, type = "VHAR", param = c(0.1, 10),
   include_mean = include_mean, gamma_param = c(0.01, 0.01), mean_non = 0, sd_non = 0.1),
   init_spec = init_ssvs(type = "auto"),
   include_mean = TRUE,
```

28 bvhar_ssvs

```
minnesota = c("no", "short", "longrun"),
  verbose = FALSE,
  num_thread = 1
)

## S3 method for class 'bvharssvs'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

## S3 method for class 'bvharssvs'
knit_print(x, ...)
```

Arguments

y Time series data of which columns indicate the variables

har Numeric vector for weekly and monthly order. By default, c(5, 22).

num_chains Number of MCMC chains num_iter MCMC iteration number

num_burn Number of warm-up (burn-in). Half of the iteration is the default choice.

thinning Thinning every thinning-th iteration

bayes_spec A SSVS model specification by set_ssvs(). By default, use a default semiau-

tomatic approach choose_ssvs().

init_spec SSVS initialization specification by init_ssvs(). By default, use OLS for

coefficient and cholesky factor while 1 for dummies.

include_mean Add constant term (Default: TRUE) or not (FALSE)

minnesota Apply cross-variable shrinkage structure (Minnesota-way). Two type: short

type and longrun type. By default, no.

verbose Print the progress bar in the console. By default, FALSE.

num_thread [Experimental] Number of threads

x bvharssvs objectdigits digit option to print

. . . not used

Details

SSVS prior gives prior to parameters $\alpha = vec(A)$ (VAR coefficient) and $\Sigma_e^{-1} = \Psi \Psi^T$ (residual covariance).

$$\alpha_j \mid \gamma_j \sim (1 - \gamma_j) N(0, \kappa_{0j}^2) + \gamma_j N(0, \kappa_{1j}^2)$$

$$\gamma_j \sim Bernoulli(q_j)$$

and for upper triangular matrix Ψ ,

$$\psi_{jj}^2 \sim Gamma(shape = a_j, rate = b_j)$$

bvhar_ssvs 29

$$\psi_{ij} \mid w_{ij} \sim (1 - w_{ij})N(0, \kappa_{0,ij}^2) + w_{ij}N(0, \kappa_{1,ij}^2)$$

$$w_{ij} \sim Bernoulli(q_{ij})$$

Gibbs sampler is used for the estimation.

Value

```
bvhar_ssvs returns an object named bvharssvs class. It is a list with the following components:
coefficients Posterior mean of VAR coefficients.
chol posterior Posterior mean of cholesky factor matrix
covmat Posterior mean of covariance matrix
omega posterior Posterior mean of omega
pip Posterior inclusion probability
param posterior::draws_df with every variable: alpha, eta, psi, omega, and gamma
param_names Name of every parameter.
df Numer of Coefficients: 3m + 1 or 3m
p 3 (The number of terms. It contains this element for usage in other functions.)
week Order for weekly term
month Order for monthly term
m Dimension of the data
obs Sample size used when training = totobs - p
totobs Total number of the observation
call Matched call
process Description of the model, e.g. VHAR_SSVS
type include constant term (const) or not (none)
spec SSVS specification defined by set_ssvs()
init Initial specification defined by init_ssvs()
chain The numer of chains
iter Total iterations
burn Burn-in
thin Thinning
group Indicators for group.
num_group Number of groups.
HARtrans VHAR linear transformation matrix
y0 Y_0
design X_0
y Raw input
```

References

Kim, Y. G., and Baek, C. (n.d.). Working paper.

30 bvhar_sv

bvhar_sv

Fitting Bayesian VHAR-SV

Description

[**Deprecated**] This function fits VHAR-SV. It can have Minnesota, SSVS, and Horseshoe prior. This function is deprecated. Use vhar_bayes() with cov_spec = set_sv() option.

Usage

```
bvhar_sv(
 у,
 har = c(5, 22),
 num_chains = 1,
  num_iter = 1000,
  num_burn = floor(num_iter/2),
  thinning = 1,
  bayes_spec = set_bvhar(),
  sv_spec = set_sv(),
  intercept = set_intercept(),
  include_mean = TRUE,
 minnesota = c("longrun", "short", "no"),
  save_init = FALSE,
  convergence = NULL,
  verbose = FALSE,
  num\_thread = 1
)
## S3 method for class 'bvharsv'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'bvharsv'
knit_print(x, ...)
```

Arguments

у	Time series data of which columns indicate the variables
har	Numeric vector for weekly and monthly order. By default, c(5, 22).
num_chains	Number of MCMC chains
num_iter	MCMC iteration number
num_burn	Number of burn-in (warm-up). Half of the iteration is the default choice.
thinning	Thinning every thinning-th iteration
bayes_spec	A BVHAR model specification by set_bvhar() (default) set_weight_bvhar(), set_ssvs(), or set_horseshoe().
sv_spec	[Experimental] SV specification by set_sv().

bvhar_sv 31

intercept [Experimental] Prior for the constant term by set_intercept().

include_mean Add constant term (Default: TRUE) or not (FALSE)

minnesota Apply cross-variable shrinkage structure (Minnesota-way). Two type: short

type and longrun (default) type. You can also set no.

save_init Save every record starting from the initial values (TRUE). By default, exclude the

initial values in the record (FALSE), even when num_burn = 0 and thinning = 1.

If num_burn > 0 or thinning != 1, this option is ignored.

convergence Convergence threshold for rhat < convergence. By default, NULL which means

no warning.

verbose Print the progress bar in the console. By default, FALSE.

num_thread Number of threads
x bvarsv object
digits digit option to print

... not used

Details

Cholesky stochastic volatility modeling for VHAR based on

$$\Sigma_t = L^T D_t^{-1} L$$

Value

bvhar_sv() returns an object named bvharsv class. It is a list with the following components:

coefficients Posterior mean of coefficients.

chol posterior Posterior mean of contemporaneous effects.

param Every set of MCMC trace.

param_names Name of every parameter.

group Indicators for group.

num_group Number of groups.

df Numer of Coefficients: 3m + 1 or 3m

p 3 (The number of terms. It contains this element for usage in other functions.)

week Order for weekly term

month Order for monthly term

m Dimension of the data

obs Sample size used when training = totobs - p

totobs Total number of the observation

call Matched call

process Description of the model, e.g. VHAR_SSVS_SV, VHAR_Horseshoe_SV, or VHAR_minnesota-part_SV

type include constant term (const) or not (none)

spec Coefficients prior specification

32 choose_bayes

```
sv log volatility prior specification init Initial values intercept Intercept prior specification chain The numer of chains iter Total iterations burn Burn-in thin Thinning HARtrans VHAR linear transformation matrix y0 Y_0 design X_0 y Raw input If it is SSVS or Horseshoe: pip Posterior inclusion probabilities.
```

References

Kim, Y. G., and Baek, C. (n.d.). Working paper.

choose_bayes

Finding the Set of Hyperparameters of Bayesian Model

Description

[Experimental] This function chooses the set of hyperparameters of Bayesian model using stats::optim() function.

```
choose_bayes(
  bayes_bound = bound_bvhar(),
  ...,
  eps = 1e-04,
  y,
  order = c(5, 22),
  include_mean = TRUE,
  parallel = list()
)
```

choose_bvar 33

Arguments

bayes_bound Empirical Bayes optimization bound specification defined by bound_bvhar().

Additional arguments for stats::optim().

Hyperparameter eps is fixed. By default, 1e-04.

Time series data

Order for BVAR or BVHAR. p of bvar_minnesota() or har of bvhar_minnesota().

By default, c(5, 22) for har.

include_mean Add constant term (Default: TRUE) or not (FALSE)

parallel List the same argument of optimParallel::optimParallel(). By default,

this is empty, and the function does not execute parallel computation.

Value

byharemp class is a list that has

```
... Many components of stats::optim() or optimParallel::optimParallel()
spec Corresponding byharspec
fit Chosen Bayesian model
ml Marginal likelihood of the final model
```

References

Giannone, D., Lenza, M., & Primiceri, G. E. (2015). *Prior Selection for Vector Autoregressions*. Review of Economics and Statistics, 97(2).

Kim, Y. G., and Baek, C. (2024). *Bayesian vector heterogeneous autoregressive modeling*. Journal of Statistical Computation and Simulation, 94(6), 1139-1157.

See Also

- bound_bvhar() to define L-BFGS-B optimization bounds.
- Individual functions: choose_bvar()

choose_bvar	Finding the Set of Hyperparameters of Individual Bayesian Model

Description

Instead of these functions, you can use choose_bayes().

34 choose_bvar

Usage

```
choose_bvar(
  bayes_spec = set_bvar(),
  lower = 0.01,
 upper = 10,
  ...,
  eps = 1e-04,
 у,
 include_mean = TRUE,
  parallel = list()
)
choose_bvhar(
  bayes_spec = set_bvhar(),
  lower = 0.01,
 upper = 10,
 eps = 1e-04,
 у,
 har = c(5, 22),
  include_mean = TRUE,
 parallel = list()
)
## S3 method for class 'bvharemp'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
is.bvharemp(x)
## S3 method for class 'bvharemp'
knit_print(x, ...)
```

Arguments

bayes_spec	Initial Bayes model specification.
lower	[Experimental] Lower bound. By default, .01.
upper	[Experimental] Upper bound. By default, 10.
	not used
eps	Hyperparameter eps is fixed. By default, 1e-04.
У	Time series data
р	BVAR lag
include_mean	Add constant term (Default: TRUE) or not (FALSE)
parallel	List the same argument of optimParallel::optimParallel(). By default, this is empty, and the function does not execute parallel computation.
har	Numeric vector for weekly and monthly order. By default, c(5, 22).

 $choose_ssvs$ 35

byharemp object Χ digit option to print digits

Details

Empirical Bayes method maximizes marginal likelihood and selects the set of hyperparameters. These functions implement L-BFGS-B method of stats::optim() to find the maximum of marginal likelihood.

If you want to set lower and upper option more carefully, deal with them like as in stats::optim() in order of set_bvar(), set_bvhar(), or set_weight_bvhar()'s argument (except eps). In other words, just arrange them in a vector.

Value

byharemp class is a list that has

- stats::optim() or optimParallel::optimParallel()
- · chosen byharspec set
- · Bayesian model fit result with chosen specification
 - ... Many components of stats::optim() or optimParallel::optimParallel()
 - spec Corresponding bvharspec
 - fit Chosen Bayesian model
 - ml Marginal likelihood of the final model

References

Byrd, R. H., Lu, P., Nocedal, J., & Zhu, C. (1995). A limited memory algorithm for bound constrained optimization. SIAM Journal on scientific computing, 16(5), 1190-1208.

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2013). Bayesian data analysis. Chapman and Hall/CRC.

Giannone, D., Lenza, M., & Primiceri, G. E. (2015). Prior Selection for Vector Autoregressions. Review of Economics and Statistics, 97(2).

Kim, Y. G., and Baek, C. (2024). Bayesian vector heterogeneous autoregressive modeling. Journal of Statistical Computation and Simulation, 94(6), 1139-1157.

automatic Approach

Choose the Hyperparameters Set of SSVS-VAR using a Default Semichoose_ssvs

Description

[**Deprecated**] This function chooses (τ_{0i}, τ_{1i}) and $(\kappa_{0i}, \kappa_{1i})$ using a default semiautomatic approach.

36 choose_ssvs

Usage

```
choose_ssvs(
   y,
   ord,
   type = c("VAR", "VHAR"),
   param = c(0.1, 10),
   include_mean = TRUE,
   gamma_param = c(0.01, 0.01),
   mean_non = 0,
   sd_non = 0.1
)
```

Arguments

y Time series data of which columns indicate the variables.

ord Order for VAR or VHAR.

type Model type (Default: VAR or VHAR).

Preselected constants $c_0 \ll c_1$. By default, 0.1 and 10 (See Details).

include_mean Add constant term (Default: TRUE) or not (FALSE).

gamma_param Parameters (shape, rate) for Gamma distribution. This is for the output.

mean_non Prior mean of unrestricted coefficients. This is for the output.

sd_non Standard deviance of unrestricted coefficients. This is for the output.

Details

Instead of using subjective values of (τ_{0i}, τ_{1i}) , we can use

$$\tau_{ki} = c_k VAR(OLS)$$

It must be $c_0 \ll c_1$.

In case of $(\omega_{0ij}, \omega_{1ij})$,

$$\omega_{kij} = c_k = VAR(OLS)$$

similarly.

Value

ssvsinput object

References

George, E. I., & McCulloch, R. E. (1993). *Variable Selection via Gibbs Sampling*. Journal of the American Statistical Association, 88(423), 881-889.

George, E. I., Sun, D., & Ni, S. (2008). *Bayesian stochastic search for VAR model restrictions*. Journal of Econometrics, 142(1), 553-580.

Koop, G., & Korobilis, D. (2009). *Bayesian Multivariate Time Series Methods for Empirical Macroeconomics*. Foundations and Trends® in Econometrics, 3(4), 267-358.

choose_var 37

choose_var

Choose the Best VAR based on Information Criteria

Description

This function computes AIC, FPE, BIC, and HQ up to $p = lag_max$ of VAR model.

Usage

```
choose_var(y, lag_max = 5, include_mean = TRUE, parallel = FALSE)
```

Arguments

y Time series data of which columns indicate the variables

lag_max Maximum Var lag to explore (default = 5)

include_mean Add constant term (Default: TRUE) or not (FALSE)

parallel Parallel computation using foreach::foreach()? By default, FALSE.

Value

Minimum order and information criteria values

coef

Coefficient Matrix of Multivariate Time Series Models

Description

By defining stats::coef() for each model, this function returns coefficient matrix estimates.

```
## S3 method for class 'varlse'
coef(object, ...)
## S3 method for class 'vharlse'
coef(object, ...)
## S3 method for class 'bvarmn'
coef(object, ...)
## S3 method for class 'bvarflat'
coef(object, ...)
## S3 method for class 'bvharmn'
coef(object, ...)
```

38 compute_dic

```
## S3 method for class 'bvharsp'
coef(object, ...)
## S3 method for class 'summary.bvharsp'
coef(object, ...)
```

Arguments

object Model object
... not used

Value

matrix object with appropriate dimension.

compute_dic

Deviance Information Criterion of Multivariate Time Series Model

Description

Compute DIC of BVAR and BVHAR.

Usage

```
compute_dic(object, ...)
## S3 method for class 'bvarmn'
compute_dic(object, n_iter = 100L, ...)
```

Arguments

object Model fit ... not used

n_iter Number to sample

Details

Deviance information criteria (DIC) is

$$-2\log p(y\mid \hat{\theta}_{bayes}) + 2p_{DIC}$$

where p_{DIC} is the effective number of parameters defined by

$$p_{DIC} = 2(\log p(y \mid \hat{\theta}_{bayes}) - E_{post} \log p(y \mid \theta))$$

Random sampling from posterior distribution gives its computation, $\theta_i \sim \theta \mid y, i=1,\ldots,M$

compute_logml 39

$$p_{DIC}^{computed} = 2(\log p(y \mid \hat{\theta}_{bayes}) - \frac{1}{M} \sum_{i} \log p(y \mid \theta_{i}))$$

Value

DIC value.

References

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2013). *Bayesian data analysis*. Chapman and Hall/CRC.

Spiegelhalter, D.J., Best, N.G., Carlin, B.P. and Van Der Linde, A. (2002). *Bayesian measures of model complexity and fit.* Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64: 583-639.

compute_logml

Extracting Log of Marginal Likelihood

Description

Compute log of marginal likelihood of Bayesian Fit

Usage

```
compute_logml(object, ...)
## S3 method for class 'bvarmn'
compute_logml(object, ...)
## S3 method for class 'bvharmn'
compute_logml(object, ...)
```

Arguments

object Model fit ... not used

Details

Closed form of Marginal Likelihood of BVAR can be derived by

$$p(Y_0) = \pi^{-mn/2} \frac{\Gamma_m((\alpha_0 + n)/2)}{\Gamma_m(\alpha_0/2)} \det(\Omega_0)^{-m/2} \det(S_0)^{\alpha_0/2} \det(\hat{V})^{-m/2} \det(\hat{\Sigma}_e)^{-(\alpha_0 + n)/2}$$

Closed form of Marginal Likelihood of BVHAR can be derived by

$$p(Y_0) = \pi^{-ms_0/2} \frac{\Gamma_m((d_0 + n)/2)}{\Gamma_m(d_0/2)} \det(P_0)^{-m/2} \det(U_0)^{d_0/2} \det(\hat{V}_{HAR})^{-m/2} \det(\hat{\Sigma}_e)^{-(d_0 + n)/2}$$

40 confusion

Value

log likelihood of Minnesota prior model.

References

Giannone, D., Lenza, M., & Primiceri, G. E. (2015). *Prior Selection for Vector Autoregressions*. Review of Economics and Statistics, 97(2).

confusion

Evaluate the Sparsity Estimation Based on Confusion Matrix

Description

This function computes FDR (false discovery rate) and FNR (false negative rate) for sparse element of the true coefficients given threshold.

Usage

```
confusion(x, y, ...)
## S3 method for class 'summary.bvharsp'
confusion(x, y, truth_thr = 0, ...)
```

Arguments

x summary.bvharsp object.
y True inclusion variable.
... not used
truth_thr Threshold value when using non-sp

Threshold value when using non-sparse true coefficient matrix. By default, 0 for sparse matrix.

Details

When using this function, the true coefficient matrix Φ should be sparse.

In this confusion matrix, positive (0) means sparsity. FP is false positive, and TP is true positive. FN is false negative, and FN is false negative.

Value

Confusion table as following.

True-estimate	Positive (0)	Negative (1)
Positive (0)	TP	FN
Negative (1)	FP	TN

conf_fdr 41

References

Bai, R., & Ghosh, M. (2018). High-dimensional multivariate posterior consistency under global-local shrinkage priors. Journal of Multivariate Analysis, 167, 157-170.

conf_fdr

Evaluate the Sparsity Estimation Based on FDR

Description

This function computes false discovery rate (FDR) for sparse element of the true coefficients given threshold.

Usage

```
conf_fdr(x, y, ...)
## S3 method for class 'summary.bvharsp'
conf_fdr(x, y, truth_thr = 0, ...)
```

Arguments

x summary.bvharsp object. y True inclusion variable.

... not used

truth_thr Threshold value when using non-sparse true coefficient matrix. By default, 0 for

sparse matrix.

Details

When using this function, the true coefficient matrix Φ should be sparse. False discovery rate (FDR) is computed by

 $FDR = \frac{FP}{TP + FP}$

where TP is true positive, and FP is false positive.

Value

FDR value in confusion table

References

Bai, R., & Ghosh, M. (2018). High-dimensional multivariate posterior consistency under global-local shrinkage priors. Journal of Multivariate Analysis, 167, 157-170.

See Also

confusion()

42 conf_fnr

conf_fnr

Evaluate the Sparsity Estimation Based on FNR

Description

This function computes false negative rate (FNR) for sparse element of the true coefficients given threshold.

Usage

```
conf_fnr(x, y, ...)
## S3 method for class 'summary.bvharsp'
conf_fnr(x, y, truth_thr = 0, ...)
```

Arguments

x summary.bvharsp object.

y True inclusion variable.

... not used

truth_thr Threshold value when using non-sparse true coefficient matrix. By default, 0 for

sparse matrix.

Details

False negative rate (FNR) is computed by

$$FNR = \frac{FN}{TP + FN}$$

where TP is true positive, and FN is false negative.

Value

FNR value in confusion table

References

Bai, R., & Ghosh, M. (2018). High-dimensional multivariate posterior consistency under global-local shrinkage priors. Journal of Multivariate Analysis, 167, 157-170.

See Also

confusion()

conf_fscore 43

C	fscore
CODE	TSCOPE

Evaluate the Sparsity Estimation Based on F1 Score

Description

This function computes F1 score for sparse element of the true coefficients given threshold.

Usage

```
conf_fscore(x, y, ...)
## S3 method for class 'summary.bvharsp'
conf_fscore(x, y, truth_thr = 0, ...)
```

Arguments

x summary.bvharsp object.

y True inclusion variable.

... not used

truth_thr Threshold value when using non-sparse true coefficient matrix. By default, 0 for

sparse matrix.

Details

The F1 score is computed by

$$F_1 = \frac{2precision \times recall}{precision + recall}$$

Value

F1 score in confusion table

See Also

```
confusion()
```

conf_prec

conf_prec

Evaluate the Sparsity Estimation Based on Precision

Description

This function computes precision for sparse element of the true coefficients given threshold.

Usage

```
conf_prec(x, y, ...)
## S3 method for class 'summary.bvharsp'
conf_prec(x, y, truth_thr = 0, ...)
```

Arguments

x summary.bvharsp object.

y True inclusion variable.

... not used

truth_thr Threshold value when using non-sparse true coefficient matrix. By default, 0 for

sparse matrix.

Details

If the element of the estimate $\hat{\Phi}$ is smaller than some threshold, it is treated to be zero. Then the precision is computed by

 $precision = \frac{TP}{TP + FP}$

where TP is true positive, and FP is false positive.

Value

Precision value in confusion table

References

Bai, R., & Ghosh, M. (2018). High-dimensional multivariate posterior consistency under global-local shrinkage priors. Journal of Multivariate Analysis, 167, 157-170.

See Also

confusion()

conf_recall 45

conf_recall

Evaluate the Sparsity Estimation Based on Recall

Description

This function computes recall for sparse element of the true coefficients given threshold.

Usage

```
conf_recall(x, y, ...)
## S3 method for class 'summary.bvharsp'
conf_recall(x, y, truth_thr = 0L, ...)
```

Arguments

x summary.bvharsp object.

y True inclusion variable.

... not used

truth_thr Threshold value when using non-sparse true coefficient matrix. By default, 0 for

sparse matrix.

Details

Precision is computed by

$$recall = \frac{TP}{TP + FN}$$

where TP is true positive, and FN is false negative.

Value

Recall value in confusion table

References

Bai, R., & Ghosh, M. (2018). High-dimensional multivariate posterior consistency under global-local shrinkage priors. Journal of Multivariate Analysis, 167, 157-170.

See Also

```
confusion()
```

46 dynamic_spillover

divide_ts

Split a Time Series Dataset into Train-Test Set

Description

Split a given time series dataset into train and test set for evaluation.

Usage

```
divide_ts(y, n_ahead)
```

Arguments

y Time series data of which columns indicate the variables n_ahead step to evaluate

Value

List of two datasets, train and test.

dynamic_spillover

Dynamic Spillover

Description

This function gives connectedness table with h-step ahead normalized spillover index (a.k.a. variance shares).

```
dynamic_spillover(object, n_ahead = 10L, ...)

## S3 method for class 'bvhardynsp'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

## S3 method for class 'bvhardynsp'
knit_print(x, ...)

## S3 method for class 'olsmod'
dynamic_spillover(object, n_ahead = 10L, window, num_thread = 1, ...)

## S3 method for class 'normaliw'
dynamic_spillover(
   object,
   n_ahead = 10L,
```

dynamic_spillover 47

```
window,
 num\_iter = 1000L,
 num_burn = floor(num_iter/2),
  thinning = 1,
 num_thread = 1,
)
## S3 method for class 'ldltmod'
dynamic_spillover(
 object,
 n_ahead = 10L,
 window,
 sparse = FALSE,
 num\_thread = 1,
)
## S3 method for class 'svmod'
dynamic_spillover(object, n_ahead = 10L, sparse = FALSE, num_thread = 1, ...)
```

Arguments

object	Model object
n_ahead	step to forecast. By default, 10.
	not used
x	bvhardynsp object
digits	digit option to print
window	Window size
num_thread	[Experimental] Number of threads
num_iter	Number to sample MNIW distribution
num_burn	Number of burn-in
thinning	Thinning every thinning-th iteration
sparse	[Experimental] Apply restriction. By default, FALSE.

References

Diebold, F. X., & Yilmaz, K. (2012). *Better to give than to receive: Predictive directional measurement of volatility spillovers.* International Journal of forecasting, 28(1), 57-66. 48 etf_vix

etf_vix

CBOE ETF Volatility Index Dataset

Description

Chicago Board Options Exchage (CBOE) Exchange Traded Funds (ETFs) volatility index from FRED.

Usage

etf_vix

Format

A data frame of 1006 row and 9 columns:

From 2012-01-09 to 2015-06-27, 33 missing observations were interpolated by stats::approx() with linear.

GVZCLS Gold ETF volatility index

VXFXICLS China ETF volatility index

OVXCLS Crude Oil ETF volatility index

VXEEMCLS Emerging Markets ETF volatility index

EVZCLS EuroCurrency ETF volatility index

VXSLVCLS Silver ETF volatility index

VXGDXCLS Gold Miners ETF volatility index

VXXLECLS Energy Sector ETF volatility index

VXEWZCLS Brazil ETF volatility index

Details

Copyright, 2016, Chicago Board Options Exchange, Inc.

Note that, in this data frame, dates column is removed. This dataset interpolated 36 missing observations (nontrading dates) using imputeTS::na_interpolation().

Source

Source: https://www.cboe.com

Release: https://www.cboe.com/us/options/market_statistics/daily/

fitted 49

References

Chicago Board Options Exchange, CBOE Gold ETF Volatility Index (GVZCLS), retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/GVZCLS, July 31, 2021.

Chicago Board Options Exchange, CBOE China ETF Volatility Index (VXFXICLS), retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/VXFXICLS, August 1, 2021.

Chicago Board Options Exchange, CBOE Crude Oil ETF Volatility Index (OVXCLS), retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/OVXCLS, August 1, 2021.

Chicago Board Options Exchange, CBOE Emerging Markets ETF Volatility Index (VXEEMCLS), retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/VXEEMCLS, August 1, 2021.

Chicago Board Options Exchange, CBOE EuroCurrency ETF Volatility Index (EVZCLS), retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/EVZCLS, August 2, 2021.

Chicago Board Options Exchange, CBOE Silver ETF Volatility Index (VXSLVCLS), retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/VXSLVCLS, August 1, 2021.

Chicago Board Options Exchange, CBOE Gold Miners ETF Volatility Index (VXGDXCLS), retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/VXGDXCLS, August 1, 2021.

Chicago Board Options Exchange, CBOE Energy Sector ETF Volatility Index (VXXLECLS), retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/VXXLECLS, August 1, 2021.

Chicago Board Options Exchange, CBOE Brazil ETF Volatility Index (VXEWZCLS), retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/VXEWZCLS, August 2, 2021.

fitted

Fitted Matrix from Multivariate Time Series Models

Description

By defining stats::fitted() for each model, this function returns fitted matrix.

```
## S3 method for class 'varlse'
fitted(object, ...)
## S3 method for class 'vharlse'
fitted(object, ...)
```

50 forecast_expand

```
## S3 method for class 'bvarmn'
fitted(object, ...)
## S3 method for class 'bvarflat'
fitted(object, ...)
## S3 method for class 'bvharmn'
fitted(object, ...)
```

Arguments

object Model object ... not used

Value

matrix object.

forecast_expand

Out-of-sample Forecasting based on Expanding Window

Description

This function conducts expanding window forecasting.

```
forecast_expand(object, n_ahead, y_test, num_thread = 1, ...)
## S3 method for class 'olsmod'
forecast_expand(object, n_ahead, y_test, num_thread = 1, ...)
## S3 method for class 'normaliw'
forecast_expand(object, n_ahead, y_test, num_thread = 1, use_fit = TRUE, ...)
## S3 method for class 'ldltmod'
forecast_expand(
  object,
  n_ahead,
 y_test,
  num_thread = 1,
  level = 0.05,
  sparse = FALSE,
  lpl = FALSE,
  use_fit = TRUE,
)
```

forecast_expand 51

```
## S3 method for class 'svmod'
forecast_expand(
   object,
   n_ahead,
   y_test,
   num_thread = 1,
   level = 0.05,
   use_sv = TRUE,
   sparse = FALSE,
   lpl = FALSE,
   use_fit = TRUE,
   ...
)
```

Arguments

object	Model object
n_ahead	Step to forecast in rolling window scheme
y_test	Test data to be compared. Use divide_ts() if you don't have separate evaluation dataset.
num_thread	[Experimental] Number of threads
	Additional arguments.
use_fit	[Experimental] Use object result for the first window. By default, TRUE.
level	Specify alpha of confidence interval level $100(1 - alpha)$ percentage. By default, .05.
sparse	[Experimental] Apply restriction. By default, FALSE.
lpl	[Experimental] Compute log-predictive likelihood (LPL). By default, FALSE.
use_sv	Use SV term

Details

Expanding windows forecasting fixes the starting period. It moves the window ahead and forecast h-ahead in y_test set.

Value

```
predbvhar_expand class
```

References

```
Hyndman, R. J., & Athanasopoulos, G. (2021). Forecasting: Principles and practice (3rd ed.). OTEXTS. https://otexts.com/fpp3/
```

52 forecast_roll

forecast_roll

Out-of-sample Forecasting based on Rolling Window

Description

This function conducts rolling window forecasting.

```
forecast_roll(object, n_ahead, y_test, num_thread = 1, ...)
## S3 method for class 'bvharcv'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
is.bvharcv(x)
## S3 method for class 'bvharcv'
knit_print(x, ...)
## S3 method for class 'olsmod'
forecast_roll(object, n_ahead, y_test, num_thread = 1, ...)
## S3 method for class 'normaliw'
forecast_roll(object, n_ahead, y_test, num_thread = 1, use_fit = TRUE, ...)
## S3 method for class 'ldltmod'
forecast_roll(
 object,
 n_ahead,
  y_test,
  num_thread = 1,
  level = 0.05,
  sparse = FALSE,
  lpl = FALSE,
  use_fit = TRUE,
)
## S3 method for class 'svmod'
forecast_roll(
  object,
  n_ahead,
 y_test,
  num_thread = 1,
  level = 0.05,
  use_sv = TRUE,
  sparse = FALSE,
```

forecast_roll 53

```
lpl = FALSE,
  use_fit = TRUE,
   ...
)
```

Arguments

object	Model object
n_ahead	Step to forecast in rolling window scheme
y_test	Test data to be compared. Use divide_ts() if you don't have separate evaluation dataset.
num_thread	[Experimental] Number of threads
	not used
Х	bvharcv object
digits	digit option to print
use_fit	[Experimental] Use object result for the first window. By default, TRUE.
level	Specify alpha of confidence interval level 100(1 - alpha) percentage. By default, .05.
sparse	[Experimental] Apply restriction. By default, FALSE.
lpl	[Experimental] Compute log-predictive likelihood (LPL). By default, FALSE.
use_sv	Use SV term

Details

Rolling windows forecasting fixes window size. It moves the window ahead and forecast h-ahead in y_test set.

Value

```
predbvhar_roll class
```

References

Hyndman, R. J., & Athanasopoulos, G. (2021). *Forecasting: Principles and practice* (3rd ed.). OTEXTS.

54 FPE

FPE

Final Prediction Error Criterion

Description

Compute FPE of VAR(p) and VHAR

Usage

```
FPE(object, ...)
## S3 method for class 'varlse'
FPE(object, ...)
## S3 method for class 'vharlse'
FPE(object, ...)
```

Arguments

object Model fit ... not used

Details

Let $\tilde{\Sigma}_e$ be the MLE and let $\hat{\Sigma}_e$ be the unbiased estimator (covmat) for Σ_e . Note that

$$\tilde{\Sigma}_e = \frac{n-k}{T} \hat{\Sigma}_e$$

Then

$$FPE(p) = (\frac{n+k}{n-k})^m \det \tilde{\Sigma}_e$$

Value

FPE value.

References

Lütkepohl, H. (2007). New Introduction to Multiple Time Series Analysis. Springer Publishing.

fromse 55

fromse

Evaluate the Estimation Based on Frobenius Norm

Description

This function computes estimation error given estimated model and true coefficient.

Usage

```
fromse(x, y, ...)
## S3 method for class 'bvharsp'
fromse(x, y, ...)
```

Arguments

x Estimated model.

y Coefficient matrix to be compared.

... not used

Details

Consider the Frobenius Norm $\|\cdot\|_F$. let $\hat{\Phi}$ be nrow x k the estimates, and let Φ be the true coefficients matrix. Then the function computes estimation error by

$$MSE = 100 \frac{\|\hat{\Phi} - \Phi\|_F}{nrow \times k}$$

Value

Frobenius norm value

References

Bai, R., & Ghosh, M. (2018). High-dimensional multivariate posterior consistency under global-local shrinkage priors. Journal of Multivariate Analysis, 167, 157-170.

56 gg_loss

geom_eval

Adding Test Data Layer

Description

This function adds a layer of test dataset.

Usage

```
geom_eval(data, colour = "red", ...)
```

Arguments

data Test data to draw, which has the same format with the train data.

colour Color of the line (By default, red).

Other arguments passed on the ggplot2::geom_path().

Value

A ggplot layer

gg_loss

Compare Lists of Models

Description

Draw plot of test error for given models

```
gg_loss(
  mod_list,
  y,
  type = c("mse", "mae", "mape", "mase"),
  mean_line = FALSE,
  line_param = list(),
  mean_param = list(),
  viridis = FALSE,
  viridis_option = "D",
  NROW = NULL,
  NCOL = NULL,
  ...
)
```

HQ 57

Arguments

mod_list Lists of forecast results (predbvhar objects) Test data to be compared. should be the same format with the train data and predict\$forecast. Loss function to be used (mse: MSE, mae: MAE, mape: MAPE, mase: MASE) type mean_line Whether to draw average loss. By default, FALSE. Parameter lists for ggplot2::geom_path(). line_param Parameter lists for average loss with ggplot2::geom_hline(). mean_param viridis If TRUE, scale CI and forecast line using ggplot2::scale_fill_viridis_d() and ggplot2::scale_colour_viridis_d, respectively. viridis_option Option for viridis string. See option of ggplot2::scale_colour_viridis_d. Choose one of c("A", "B", "C", "D", "E"). By default, D. NROW nrow of ggplot2::facet_wrap() NCOL ncol of ggplot2::facet_wrap() Additional options for geom_loss (inherit.aes and show.legend)

Value

A ggplot object

See Also

- mse() to compute MSE for given forecast result
- mae() to compute MAE for given forecast result
- mape() to compute MAPE for given forecast result
- mase() to compute MASE for given forecast result

ΗQ

Hannan-Quinn Criterion

Description

Compute HQ of VAR(p), VHAR, BVAR(p), and BVHAR

```
HQ(object, ...)
## S3 method for class 'logLik'
HQ(object, ...)
## S3 method for class 'varlse'
HQ(object, ...)
```

58 HQ

```
## S3 method for class 'vharlse'
HQ(object, ...)
## S3 method for class 'bvarmn'
HQ(object, ...)
## S3 method for class 'bvarflat'
HQ(object, ...)
## S3 method for class 'bvharmn'
HQ(object, ...)
```

Arguments

object A logLik object or Model fit ... not used

Details

The formula is

$$HQ = -2\log p(y \mid \hat{\theta}) + k\log\log(T)$$

which can be computed by AIC(object, ..., k = 2 * log(log(nobs(object)))) with stats::AIC(). Let $\tilde{\Sigma}_e$ be the MLE and let $\hat{\Sigma}_e$ be the unbiased estimator (covmat) for Σ_e . Note that

$$\tilde{\Sigma}_e = \frac{n-k}{T} \hat{\Sigma}_e$$

Then

$$HQ(p) = \log \det \Sigma_e + \frac{2 \log \log n}{n} (\text{number of freely estimated parameters})$$

where the number of freely estimated parameters is pm^2 .

Value

HQ value.

References

Hannan, E.J. and Quinn, B.G. (1979). *The Determination of the Order of an Autoregression*. Journal of the Royal Statistical Society: Series B (Methodological), 41: 190-195.

Hannan, E.J. and Quinn, B.G. (1979). *The Determination of the Order of an Autoregression*. Journal of the Royal Statistical Society: Series B (Methodological), 41: 190-195.

Lütkepohl, H. (2007). New Introduction to Multiple Time Series Analysis. Springer Publishing.

Quinn, B.G. (1980). *Order Determination for a Multivariate Autoregression*. Journal of the Royal Statistical Society: Series B (Methodological), 42: 182-185.

init_ssvs 59

init_ssvs	Initial Parameters Model	of Stochastic	Search Var	riable Selection	(SSVS)

Description

[Deprecated] Set initial parameters before starting Gibbs sampler for SSVS.

Usage

```
init_ssvs(
   init_coef,
   init_coef_dummy,
   init_chol,
   init_chol_dummy,
   type = c("user", "auto")
)

## S3 method for class 'ssvsinit'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
is.ssvsinit(x)

## S3 method for class 'ssvsinit'
knit_print(x, ...)
```

Arguments

init_coef Initial coefficient matrix. Initialize with an array or list for multiple chains. init_coef_dummy Initial indicator matrix (1-0) corresponding to each component of coefficient. Initialize with an array or list for multiple chains. init_chol Initial cholesky factor (upper triangular). Initialize with an array or list for multiple chains. init_chol_dummy Initial indicator matrix (1-0) corresponding to each component of cholesky factor. Initialize with an array or list for multiple chains. [Experimental] Type to choose initial values. One of user (User-given) and type auto (OLS for coefficients and 1 for dummy). Х ssvsinit digits digit option to print not used

60 irf.varlse

Details

Set SSVS initialization for the VAR model.

- init_coef: (kp + 1) x m A coefficient matrix.
- init_coef_dummy: kp x m Γ dummy matrix to restrict the coefficients.
- init_chol: k x k Ψ upper triangular cholesky factor, which $\Psi\Psi^{\intercal} = \Sigma_e^{-1}$.
- init_chol_dummy: $k \times k \Omega$ upper triangular dummy matrix to restrict the cholesky factor.

Denote that init_chol and init_chol_dummy should be upper_triangular or the function gives error.

For parallel chain initialization, assign three-dimensional array or three-length list.

Value

ssvsinit object

References

George, E. I., & McCulloch, R. E. (1993). *Variable Selection via Gibbs Sampling*. Journal of the American Statistical Association, 88(423), 881-889.

George, E. I., Sun, D., & Ni, S. (2008). *Bayesian stochastic search for VAR model restrictions*. Journal of Econometrics, 142(1), 553-580.

Koop, G., & Korobilis, D. (2009). *Bayesian Multivariate Time Series Methods for Empirical Macroeconomics*. Foundations and Trends® in Econometrics, 3(4), 267-358.

irf.varlse

Impulse Response Analysis

Description

Computes responses to impulses or orthogonal impulses

```
## S3 method for class 'varlse'
irf(object, lag_max = 10, orthogonal = TRUE, impulse_var, response_var, ...)
## S3 method for class 'vharlse'
irf(object, lag_max = 10, orthogonal = TRUE, impulse_var, response_var, ...)
## S3 method for class 'bvharirf'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
irf(object, lag_max, orthogonal, impulse_var, response_var, ...)
is.bvharirf(x)
```

irf.varlse 61

```
## S3 method for class 'bvharirf'
knit_print(x, ...)
```

Arguments

object Model object

lag_max Maximum lag to investigate the impulse responses (By default, 10)

orthogonal Orthogonal impulses (TRUE) or just impulses (FALSE)

impulse_var Impulse variables character vector. If not specified, use every variable.

Response_var Response variables character vector. If not specified, use every variable.

... not used

x byharirf object digits digit option to print

Value

byharirf class

Responses to forecast errors

If orthogonal = FALSE, the function gives W_i VMA representation of the process such that

$$Y_t = \sum_{j=0}^{\infty} W_j \epsilon_{t-j}$$

Responses to orthogonal impulses

If orthogonal = TRUE, it gives orthogonalized VMA representation

Θ

. Based on variance decomposition (Cholesky decomposition)

$$\Sigma = PP^T$$

where P is lower triangular matrix, impulse response analysis if performed under MA representation

$$y_t = \sum_{i=0}^{\infty} \Theta_i v_{t-i}$$

Here,

$$\Theta_i = W_i P$$

and $v_t = P^{-1} \epsilon_t$ are orthogonal.

References

Lütkepohl, H. (2007). New Introduction to Multiple Time Series Analysis. Springer Publishing.

is.stable

See Also

VARtoVMA()
VHARtoVMA()

is.stable

Stability of the process

Description

Check the stability condition of coefficient matrix.

Usage

```
is.stable(x, ...)
## S3 method for class 'varlse'
is.stable(x, ...)
## S3 method for class 'vharlse'
is.stable(x, ...)
## S3 method for class 'bvarmn'
is.stable(x, ...)
## S3 method for class 'bvarflat'
is.stable(x, ...)
## S3 method for class 'bvharmn'
is.stable(x, ...)
```

Arguments

x Model fit ... not used

Details

VAR(p) is stable if

$$\det(I_m - Az) \neq 0$$

for $|z| \leq 1$.

Value

logical class

logical class

mae 63

References

Lütkepohl, H. (2007). New Introduction to Multiple Time Series Analysis. Springer Publishing.

mae

Evaluate the Model Based on MAE (Mean Absolute Error)

Description

This function computes MAE given prediction result versus evaluation set.

Usage

```
mae(x, y, ...)
## S3 method for class 'predbvhar'
mae(x, y, ...)
## S3 method for class 'bvharcv'
mae(x, y, ...)
```

Arguments

x Forecasting object

y Test data to be compared. should be the same format with the train data.

... not used

Details

Let $e_t = y_t - \hat{y}_t$. MAE is defined by

$$MSE = mean(|e_t|)$$

Some researchers prefer MAE to MSE because it is less sensitive to outliers.

Value

MAE vector corressponding to each variable.

References

mape mape

mape

Evaluate the Model Based on MAPE (Mean Absolute Percentage Error)

Description

This function computes MAPE given prediction result versus evaluation set.

Usage

```
mape(x, y, ...)
## S3 method for class 'predbvhar'
mape(x, y, ...)
## S3 method for class 'bvharcv'
mape(x, y, ...)
```

Arguments

x Forecasting object

y Test data to be compared. should be the same format with the train data.

... not used

Details

Let $e_t = y_t - \hat{y}_t$. Percentage error is defined by $p_t = 100e_t/Y_t$ (100 can be omitted since comparison is the focus).

$$MAPE = mean(|p_t|)$$

Value

MAPE vector corresponding to each variable.

References

mase 65

mase

Evaluate the Model Based on MASE (Mean Absolute Scaled Error)

Description

This function computes MASE given prediction result versus evaluation set.

Usage

```
mase(x, y, ...)
## S3 method for class 'predbvhar'
mase(x, y, ...)
## S3 method for class 'bvharcv'
mase(x, y, ...)
```

Arguments

x Forecasting object

y Test data to be compared. should be the same format with the train data.

... not used

Details

Let $e_t = y_t - \hat{y}_t$. Scaled error is defined by

$$q_t = \frac{e_t}{\sum_{i=2}^{n} |Y_i - Y_{i-1}|/(n-1)}$$

so that the error can be free of the data scale. Then

$$MASE = mean(|q_t|)$$

Here, Y_i are the points in the sample, i.e. errors are scaled by the in-sample mean absolute error $(mean(|e_t|))$ from the naive random walk forecasting.

Value

MASE vector corresponding to each variable.

References

66 mrae

mrae

Evaluate the Model Based on MRAE (Mean Relative Absolute Error)

Description

This function computes MRAE given prediction result versus evaluation set.

Usage

```
mrae(x, pred_bench, y, ...)
## S3 method for class 'predbvhar'
mrae(x, pred_bench, y, ...)
## S3 method for class 'bvharcv'
mrae(x, pred_bench, y, ...)
```

Arguments

x Forecasting object to use

pred_bench The same forecasting object from benchmark model

y Test data to be compared. should be the same format with the train data.

... not used

Details

Let $e_t = y_t - \hat{y}_t$. MRAE implements benchmark model as scaling method. Relative error is defined by

$$r_t = \frac{e_t}{e_t^*}$$

where e_t^* is the error from the benchmark method. Then

$$MRAE = mean(|r_t|)$$

Value

MRAE vector corresponding to each variable.

References

mse 67

mse

Evaluate the Model Based on MSE (Mean Square Error)

Description

This function computes MSE given prediction result versus evaluation set.

Usage

```
mse(x, y, ...)
## S3 method for class 'predbvhar'
mse(x, y, ...)
## S3 method for class 'bvharcv'
mse(x, y, ...)
```

Arguments

x Forecasting object
 y Test data to be compared. should be the same format with the train data.
 ... not used

Details

Let
$$e_t = y_t - \hat{y}_t.$$
 Then
$$MSE = mean(e_t^2)$$

MSE is the most used accuracy measure.

Value

MSE vector corresponding to each variable.

References

predict

Forecasting Multivariate Time Series

Description

Forecasts multivariate time series using given model.

```
## S3 method for class 'varlse'
predict(object, n_ahead, level = 0.05, ...)
## S3 method for class 'vharlse'
predict(object, n_ahead, level = 0.05, ...)
## S3 method for class 'bvarmn'
predict(object, n_ahead, n_iter = 100L, level = 0.05, num_thread = 1, ...)
## S3 method for class 'bvharmn'
predict(object, n_ahead, n_iter = 100L, level = 0.05, num_thread = 1, ...)
## S3 method for class 'bvarflat'
predict(object, n_ahead, n_iter = 100L, level = 0.05, num_thread = 1, ...)
## S3 method for class 'bvarssvs'
predict(object, n_ahead, level = 0.05, ...)
## S3 method for class 'bvharssvs'
predict(object, n_ahead, level = 0.05, ...)
## S3 method for class 'bvarhs'
predict(object, n_ahead, level = 0.05, ...)
## S3 method for class 'bvharhs'
predict(object, n_ahead, level = 0.05, ...)
## S3 method for class 'bvarldlt'
predict(
  object,
  n_ahead,
  level = 0.05,
  num\_thread = 1,
  sparse = FALSE,
 warn = FALSE,
)
```

```
## S3 method for class 'bvharldlt'
predict(
  object,
  n_ahead,
  level = 0.05,
 num\_thread = 1,
  sparse = FALSE,
 warn = FALSE,
)
## S3 method for class 'bvarsv'
predict(
 object,
  n_ahead,
  level = 0.05,
  num\_thread = 1,
  use_sv = TRUE,
  sparse = FALSE,
 warn = FALSE,
)
## S3 method for class 'bvharsv'
predict(
 object,
  n_ahead,
 level = 0.05,
 num_thread = 1,
 use_sv = TRUE,
  sparse = FALSE,
 warn = FALSE,
)
## S3 method for class 'predbvhar'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
is.predbvhar(x)
## S3 method for class 'predbvhar'
knit_print(x, ...)
```

Arguments

object Model object n_ahead step to forecast

level Specify alpha of confidence interval level 100(1 - alpha) percentage. By default,

.05.

... not used

n_iter Number to sample residual matrix from inverse-wishart distribution. By default,

100.

num_thread Number of threads

sparse [Experimental] Apply restriction. By default, FALSE. Give CI level (e.g. .05)

instead of TRUE to use credible interval across MCMC for restriction.

warn Give warning for stability of each coefficients record. By default, FALSE.

use_sv Use SV term

x predbvhar object
digits digit option to print

Value

predbvhar class with the following components:

process object\$process

forecast forecast matrix

se standard error matrix

lower lower confidence interval

upper upper confidence interval

lower_joint lower CI adjusted (Bonferroni)

upper_joint upper CI adjusted (Bonferroni)

y object\$y

n-step ahead forecasting VAR(p)

See pp35 of Lütkepohl (2007). Consider h-step ahead forecasting (e.g. n + 1, ... n + h).

Let $y_{(n)}^T = (y_n^T, ..., y_{n-p+1}^T, 1)$. Then one-step ahead (point) forecasting:

$$\hat{y}_{n+1}^T = y_{(n)}^T \hat{B}$$

Recursively, let $\hat{y}_{(n+1)}^T = (\hat{y}_{n+1}^T, y_n^T, ..., y_{n-p+2}^T, 1)$. Then two-step ahead (point) forecasting:

$$\hat{y}_{n+2}^T = \hat{y}_{(n+1)}^T \hat{B}$$

Similarly, h-step ahead (point) forecasting:

$$\hat{y}_{n+h}^{T} = \hat{y}_{(n+h-1)}^{T} \hat{B}$$

How about confident region? Confidence interval at h-period is

$$y_{k,t}(h) \pm z_{\ell} \alpha/2) \sigma_k(h)$$

Joint forecast region of $100(1-\alpha)\%$ can be computed by

$$\{(y_{k,1}, y_{k,h}) \mid y_{k,n}(i) - z_{(\alpha/2h)}\sigma_n(i) \le y_{n,i} \le y_{k,n}(i) + z_{(\alpha/2h)}\sigma_k(i), i = 1, \dots, h\}$$

See the pp41 of Lütkepohl (2007).

To compute covariance matrix, it needs VMA representation:

$$Y_t(h) = c + \sum_{i=h}^{\infty} W_i \epsilon_{t+h-i} = c + \sum_{i=0}^{\infty} W_{h+i} \epsilon_{t-i}$$

Then

$$\Sigma_{y}(h) = MSE[y_{t}(h)] = \sum_{i=0}^{h-1} W_{i} \Sigma_{\epsilon} W_{i}^{T} = \Sigma_{y}(h-1) + W_{h-1} \Sigma_{\epsilon} W_{h-1}^{T}$$

n-step ahead forecasting VHAR

Let T_{HAR} is VHAR linear transformation matrix. Since VHAR is the linearly transformed VAR(22), let $y_{(n)}^T = (y_n^T, y_{n-1}^T, ..., y_{n-21}^T, 1)$.

Then one-step ahead (point) forecasting:

$$\hat{y}_{n+1}^T = y_{(n)}^T T_{HAR} \hat{\Phi}$$

Recursively, let $\hat{y}_{(n+1)}^T = (\hat{y}_{n+1}^T, y_n^T, ..., y_{n-20}^T, 1)$. Then two-step ahead (point) forecasting:

$$\hat{y}_{n+2}^{T} = \hat{y}_{(n+1)}^{T} T_{HAR} \hat{\Phi}$$

and h-step ahead (point) forecasting:

$$\hat{y}_{n+h}^T = \hat{y}_{(n+h-1)}^T T_{HAR} \hat{\Phi}$$

n-step ahead forecasting BVAR(p) with minnesota prior

Point forecasts are computed by posterior mean of the parameters. See Section 3 of Banbura et al. (2010).

Let \hat{B} be the posterior MN mean and let \hat{V} be the posterior MN precision.

Then predictive posterior for each step

$$y_{n+1} \mid \Sigma_e, y \sim N(vec(y_{(n)}^T A), \Sigma_e \otimes (1 + y_{(n)}^T \hat{V}^{-1} y_{(n)}))$$
$$y_{n+2} \mid \Sigma_e, y \sim N(vec(\hat{y}_{(n+1)}^T A), \Sigma_e \otimes (1 + \hat{y}_{(n+1)}^T \hat{V}^{-1} \hat{y}_{(n+1)}))$$

and recursively,

$$y_{n+h} \mid \Sigma_e, y \sim N(vec(\hat{y}_{(n+h-1)}^T A), \Sigma_e \otimes (1 + \hat{y}_{(n+h-1)}^T \hat{V}^{-1} \hat{y}_{(n+h-1)}))$$

n-step ahead forecasting BVHAR

Let $\hat{\Phi}$ be the posterior MN mean and let $\hat{\Psi}$ be the posterior MN precision.

Then predictive posterior for each step

$$y_{n+1} \mid \Sigma_e, y \sim N(vec(y_{(n)}^T \tilde{T}^T \Phi), \Sigma_e \otimes (1 + y_{(n)}^T \tilde{T} \hat{\Psi}^{-1} \tilde{T} y_{(n)}))$$
$$y_{n+2} \mid \Sigma_e, y \sim N(vec(y_{(n+1)}^T \tilde{T}^T \Phi), \Sigma_e \otimes (1 + y_{(n+1)}^T \tilde{T} \hat{\Psi}^{-1} \tilde{T} y_{(n+1)}))$$

and recursively,

$$y_{n+h} \mid \Sigma_e, y \sim N(vec(y_{(n+h-1)}^T \tilde{T}^T \Phi), \Sigma_e \otimes (1 + y_{(n+h-1)}^T \tilde{T} \hat{\Psi}^{-1} \tilde{T} y_{(n+h-1)}))$$

n-step ahead forecasting VAR(p) with SSVS and Horseshoe

The process of the computing point estimate is the same. However, predictive interval is achieved from each Gibbs sampler sample.

$$y_{n+1} \mid A, \Sigma_e, y \sim N(vec(y_{(n)}^T A), \Sigma_e)$$
$$y_{n+h} \mid A, \Sigma_e, y \sim N(vec(\hat{y}_{(n+h-1)}^T A), \Sigma_e)$$

n-step ahead forecasting VHAR with SSVS and Horseshoe

The process of the computing point estimate is the same. However, predictive interval is achieved from each Gibbs sampler sample.

$$y_{n+1} \mid \Sigma_e, y \sim N(vec(y_{(n)}^T \tilde{T}^T \Phi), \Sigma_e \otimes (1 + y_{(n)}^T \tilde{T} \hat{\Psi}^{-1} \tilde{T} y_{(n)}))$$
$$y_{n+h} \mid \Sigma_e, y \sim N(vec(y_{(n+h-1)}^T \tilde{T}^T \Phi), \Sigma_e \otimes (1 + y_{(n+h-1)}^T \tilde{T} \hat{\Psi}^{-1} \tilde{T} y_{(n+h-1)}))$$

References

Lütkepohl, H. (2007). New Introduction to Multiple Time Series Analysis. Springer Publishing.

Corsi, F. (2008). A Simple Approximate Long-Memory Model of Realized Volatility. Journal of Financial Econometrics, 7(2), 174-196.

Baek, C. and Park, M. (2021). Sparse vector heterogeneous autoregressive modeling for realized volatility. J. Korean Stat. Soc. 50, 495-510.

Bańbura, M., Giannone, D., & Reichlin, L. (2010). *Large Bayesian vector auto regressions*. Journal of Applied Econometrics, 25(1).

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2013). *Bayesian data analysis*. Chapman and Hall/CRC.

Karlsson, S. (2013). *Chapter 15 Forecasting with Bayesian Vector Autoregression*. Handbook of Economic Forecasting, 2, 791-897.

Litterman, R. B. (1986). Forecasting with Bayesian Vector Autoregressions: Five Years of Experience. Journal of Business & Economic Statistics, 4(1), 25.

Ghosh, S., Khare, K., & Michailidis, G. (2018). *High-Dimensional Posterior Consistency in Bayesian Vector Autoregressive Models*. Journal of the American Statistical Association, 114(526).

print.summary.bvharsp 73

George, E. I., Sun, D., & Ni, S. (2008). *Bayesian stochastic search for VAR model restrictions*. Journal of Econometrics, 142(1), 553-580.

George, E. I., Sun, D., & Ni, S. (2008). *Bayesian stochastic search for VAR model restrictions*. Journal of Econometrics, 142(1), 553-580.

Korobilis, D. (2013). VAR FORECASTING USING BAYESIAN VARIABLE SELECTION. Journal of Applied Econometrics, 28(2).

Korobilis, D. (2013). *VAR FORECASTING USING BAYESIAN VARIABLE SELECTION*. Journal of Applied Econometrics, 28(2).

Huber, F., Koop, G., & Onorante, L. (2021). *Inducing Sparsity and Shrinkage in Time-Varying Parameter Models*. Journal of Business & Economic Statistics, 39(3), 669-683.

print.summary.bvharsp Summarizing BVAR and BVHAR with Shrinkage Priors

Description

Conduct variable selection.

Usage

```
## S3 method for class 'summary.bvharsp'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

## S3 method for class 'summary.bvharsp'
knit_print(x, ...)

## S3 method for class 'ssvsmod'
summary(object, method = c("pip", "ci"), threshold = 0.5, level = 0.05, ...)

## S3 method for class 'hsmod'
summary(object, method = c("pip", "ci"), threshold = 0.5, level = 0.05, ...)

## S3 method for class 'ngmod'
summary(object, level = 0.05, ...)
```

Arguments

X	summary.bvharsp object
digits	digit option to print
	not used
object	Model fit
method	Use PIP (pip) or credible interval (ci).
threshold	Threshold for posterior inclusion probability
level	Specify alpha of credible interval level 100(1 - alpha) percentage. By default, 05

74 relmae

Value

```
summary.ssvsmod object
hsmod object
ngmod object
```

References

George, E. I., & McCulloch, R. E. (1993). *Variable Selection via Gibbs Sampling*. Journal of the American Statistical Association, 88(423), 881-889.

George, E. I., Sun, D., & Ni, S. (2008). *Bayesian stochastic search for VAR model restrictions*. Journal of Econometrics, 142(1), 553-580.

Koop, G., & Korobilis, D. (2009). *Bayesian Multivariate Time Series Methods for Empirical Macroeconomics*. Foundations and Trends® in Econometrics, 3(4), 267-358.

O'Hara, R. B., & Sillanpää, M. J. (2009). A review of Bayesian variable selection methods: what, how and which. Bayesian Analysis, 4(1), 85-117.

relmae

Evaluate the Model Based on RelMAE (Relative MAE)

Description

This function computes RelMAE given prediction result versus evaluation set.

Usage

```
relmae(x, pred_bench, y, ...)
## S3 method for class 'predbvhar'
relmae(x, pred_bench, y, ...)
## S3 method for class 'bvharcv'
relmae(x, pred_bench, y, ...)
```

Arguments

Х	Forecasting object to use
pred_bench	The same forecasting object from benchmark model
У	Test data to be compared. should be the same format with the train data.
	not used

relspne 75

Details

Let $e_t = y_t - \hat{y}_t$. RelMAE implements MAE of benchmark model as relative measures. Let MAE_b be the MAE of the benchmark model. Then

$$RelMAE = \frac{MAE}{MAE_b}$$

where MAE is the MAE of our model.

Value

RelMAE vector corresponding to each variable.

References

Hyndman, R. J., & Koehler, A. B. (2006). *Another look at measures of forecast accuracy*. International Journal of Forecasting, 22(4), 679-688.

relspne

Evaluate the Estimation Based on Relative Spectral Norm Error

Description

This function computes relative estimation error given estimated model and true coefficient.

Usage

```
relspne(x, y, ...)
## S3 method for class 'bvharsp'
relspne(x, y, ...)
```

Arguments

x Estimated model.

y Coefficient matrix to be compared.

... not used

Details

Let $\|\cdot\|_2$ be the spectral norm of a matrix, let $\hat{\Phi}$ be the estimates, and let Φ be the true coefficients matrix. Then the function computes relative estimation error by

$$\frac{\|\hat{\Phi}-\Phi\|_2}{\|\Phi\|_2}$$

76 residuals

Value

Spectral norm value

References

Ghosh, S., Khare, K., & Michailidis, G. (2018). *High-Dimensional Posterior Consistency in Bayesian Vector Autoregressive Models*. Journal of the American Statistical Association, 114(526).

residuals

Residual Matrix from Multivariate Time Series Models

Description

By defining stats::residuals() for each model, this function returns residual.

Usage

```
## S3 method for class 'varlse'
residuals(object, ...)

## S3 method for class 'vharlse'
residuals(object, ...)

## S3 method for class 'bvarmn'
residuals(object, ...)

## S3 method for class 'bvarflat'
residuals(object, ...)

## S3 method for class 'bvharmn'
residuals(object, ...)
```

Arguments

```
object Model object ... not used
```

Value

matrix object.

rmafe 77

rmafe

Evaluate the Model Based on RMAFE

Description

This function computes RMAFE (Mean Absolute Forecast Error Relative to the Benchmark)

Usage

```
rmafe(x, pred_bench, y, ...)
## S3 method for class 'predbvhar'
rmafe(x, pred_bench, y, ...)
## S3 method for class 'bvharcv'
rmafe(x, pred_bench, y, ...)
```

Arguments

x Forecasting object to use

pred_bench The same forecasting object from benchmark model

y Test data to be compared. should be the same format with the train data.

... not used

Details

Let $e_t = y_t - \hat{y}_t$. RMAFE is the ratio of L1 norm of e_t from forecasting object and from benchmark model.

$$RMAFE = \frac{sum(\|e_t\|)}{sum(\|e_t^{(b)}\|)}$$

where $e_t^{(b)}$ is the error from the benchmark model.

Value

RMAFE vector corresponding to each variable.

References

Hyndman, R. J., & Koehler, A. B. (2006). *Another look at measures of forecast accuracy*. International Journal of Forecasting, 22(4), 679-688.

Bańbura, M., Giannone, D., & Reichlin, L. (2010). *Large Bayesian vector auto regressions*. Journal of Applied Econometrics, 25(1).

Ghosh, S., Khare, K., & Michailidis, G. (2018). *High-Dimensional Posterior Consistency in Bayesian Vector Autoregressive Models*. Journal of the American Statistical Association, 114(526).

78 rmape

rmape

Evaluate the Model Based on RMAPE (Relative MAPE)

Description

This function computes RMAPE given prediction result versus evaluation set.

Usage

```
rmape(x, pred_bench, y, ...)
## S3 method for class 'predbvhar'
rmape(x, pred_bench, y, ...)
## S3 method for class 'bvharcv'
rmape(x, pred_bench, y, ...)
```

Arguments

X	Forecasting object to use
pred_bench	The same forecasting object from benchmark model
у	Test data to be compared. should be the same format with the train data.
	not used

Details

RMAPE is the ratio of MAPE of given model and the benchmark one. Let $MAPE_b$ be the MAPE of the benchmark model. Then

$$RMAPE = \frac{mean(MAPE)}{mean(MAPE_b)}$$

where MAPE is the MAPE of our model.

Value

RMAPE vector corresponding to each variable.

References

Hyndman, R. J., & Koehler, A. B. (2006). *Another look at measures of forecast accuracy*. International Journal of Forecasting, 22(4), 679-688.

rmase 79

rmase

Evaluate the Model Based on RMASE (Relative MASE)

Description

This function computes RMASE given prediction result versus evaluation set.

Usage

```
rmase(x, pred_bench, y, ...)
## S3 method for class 'predbvhar'
rmase(x, pred_bench, y, ...)
## S3 method for class 'bvharcv'
rmase(x, pred_bench, y, ...)
```

Arguments

X	Forecasting object to use
pred_bench	The same forecasting object from benchmark model
У	Test data to be compared. should be the same format with the train data.
	not used

Details

RMASE is the ratio of MAPE of given model and the benchmark one. Let $MASE_b$ be the MAPE of the benchmark model. Then

$$RMASE = \frac{mean(MASE)}{mean(MASE_b)}$$

where MASE is the MASE of our model.

Value

RMASE vector corresponding to each variable.

References

Hyndman, R. J., & Koehler, A. B. (2006). *Another look at measures of forecast accuracy*. International Journal of Forecasting, 22(4), 679-688.

80 rmsfe

rmsfe

Evaluate the Model Based on RMSFE

Description

This function computes RMSFE (Mean Squared Forecast Error Relative to the Benchmark)

Usage

```
rmsfe(x, pred_bench, y, ...)
## S3 method for class 'predbvhar'
rmsfe(x, pred_bench, y, ...)
## S3 method for class 'bvharcv'
rmsfe(x, pred_bench, y, ...)
```

Arguments

x Forecasting object to use

pred_bench The same forecasting object from benchmark model

y Test data to be compared. should be the same format with the train data.

... not used

Details

Let $e_t = y_t - \hat{y}_t$. RMSFE is the ratio of L2 norm of e_t from forecasting object and from benchmark model.

$$RMSFE = \frac{sum(\|e_t\|)}{sum(\|e_t^{(b)}\|)}$$

where $e_t^{(b)}$ is the error from the benchmark model.

Value

RMSFE vector corresponding to each variable.

References

Hyndman, R. J., & Koehler, A. B. (2006). *Another look at measures of forecast accuracy*. International Journal of Forecasting, 22(4), 679-688.

Bańbura, M., Giannone, D., & Reichlin, L. (2010). *Large Bayesian vector auto regressions*. Journal of Applied Econometrics, 25(1).

Ghosh, S., Khare, K., & Michailidis, G. (2018). *High-Dimensional Posterior Consistency in Bayesian Vector Autoregressive Models*. Journal of the American Statistical Association, 114(526).

set_bvar 81

set_bvar

Hyperparameters for Bayesian Models

Description

Set hyperparameters of Bayesian VAR and VHAR models.

Usage

```
set_bvar(sigma, lambda = 0.1, delta, eps = 1e-04)
set_bvar_flat(U)
set_bvhar(sigma, lambda = 0.1, delta, eps = 1e-04)
set_weight_bvhar(sigma, lambda = 0.1, eps = 1e-04, daily, weekly, monthly)
## S3 method for class 'bvharspec'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
is.bvharspec(x)
## S3 method for class 'bvharspec'
knit_print(x, ...)
```

Arguments

sigma	Standard error vector for each variable (Default: sd)
lambda	Tightness of the prior around a random walk or white noise (Default: .1)
delta	Persistence (Default: Litterman sets $1 = \text{random walk prior}$, White noise prior = 0)
eps	Very small number (Default: 1e-04)
U	Positive definite matrix. By default, identity matrix of dimension ncol(X0)
daily	Same as delta in VHAR type (Default: 1 as Litterman)
weekly	Fill the second part in the first block (Default: 1)
monthly	Fill the third part in the first block (Default: 1)
x	byharspec object
digits	digit option to print
	not used

82 set_bvar

Details

- Missing arguments will be set to be default values in each model function mentioned above.
- set_bvar() sets hyperparameters for bvar_minnesota().
- Each delta (vector), lambda (length of 1), sigma (vector), eps (vector) corresponds to δ_j , λ , δ_i , ϵ .

 δ_i are related to the belief to random walk.

- If $\delta_i = 1$ for all i, random walk prior
- If $\delta_i = 0$ for all i, white noise prior

 λ controls the overall tightness of the prior around these two prior beliefs.

- If $\lambda = 0$, the posterior is equivalent to prior and the data do not influence the estimates.
- If $\lambda = \infty$, the posterior mean becomes OLS estimates (VAR).

 σ_i^2/σ_i^2 in Minnesota moments explain the data scales.

- set_bvar_flat sets hyperparameters for bvar_flat().
- set_bvhar() sets hyperparameters for bvhar_minnesota() with VAR-type Minnesota prior,
 i.e. BVHAR-S model.
- set_weight_bvhar() sets hyperparameters for bvhar_minnesota() with VHAR-type Minnesota prior, i.e. BVHAR-L model.

Value

Every function returns byharspec class. It is the list of which the components are the same as the arguments provided. If the argument is not specified, NULL is assigned here. The default values mentioned above will be considered in each fitting function.

```
process Model name: BVAR, BVHAR
```

prior Prior name: Minnesota (Minnesota prior for BVAR), Hierarchical (Hierarchical prior for BVAR), MN_VAR (BVHAR-S), MN_VHAR (BVHAR-L), Flat (Flat prior for BVAR)

sigma Vector value (or byharpriorspec class) assigned for sigma

lambda Value (or byharpriorspec class) assigned for lambda

delta Vector value assigned for delta

eps Value assigned for epsilon

set_weight_bvhar() has different component with delta due to its different construction.

daily Vector value assigned for daily weight

weekly Vector value assigned for weekly weight

monthly Vector value assigned for monthly weight

Note

By using set_psi() and set_lambda() each, hierarchical modeling is available.

set_bvar 83

References

Bańbura, M., Giannone, D., & Reichlin, L. (2010). *Large Bayesian vector auto regressions*. Journal of Applied Econometrics, 25(1).

Litterman, R. B. (1986). Forecasting with Bayesian Vector Autoregressions: Five Years of Experience. Journal of Business & Economic Statistics, 4(1), 25.

Ghosh, S., Khare, K., & Michailidis, G. (2018). *High-Dimensional Posterior Consistency in Bayesian Vector Autoregressive Models*. Journal of the American Statistical Association, 114(526).

Kim, Y. G., and Baek, C. (2024). *Bayesian vector heterogeneous autoregressive modeling*. Journal of Statistical Computation and Simulation, 94(6), 1139-1157.

Kim, Y. G., and Baek, C. (2024). *Bayesian vector heterogeneous autoregressive modeling*. Journal of Statistical Computation and Simulation, 94(6), 1139-1157.

See Also

- lambda hyperprior specification set_lambda()
- sigma hyperprior specification set_psi()

Examples

```
# Minnesota BVAR specification-----
bvar_spec <- set_bvar(</pre>
 sigma = c(.03, .02, .01), # Sigma = diag(.03^2, .02^2, .01^2)
 lambda = .2, # lambda = .2
 delta = rep(.1, 3), # delta1 = .1, delta2 = .1, delta3 = .1
 eps = 1e-04 # eps = 1e-04
)
class(bvar_spec)
str(bvar_spec)
# Flat BVAR specification-----
# 3-dim
\# p = 5 with constant term
\# U = 500 * I(mp + 1)
bvar_flat_spec <- set_bvar_flat(U = 500 * diag(16))</pre>
class(bvar_flat_spec)
str(bvar_flat_spec)
# BVHAR-S specification-----
bvhar_var_spec <- set_bvhar(</pre>
 sigma = c(.03, .02, .01), # Sigma = diag(.03^2, .02^2, .01^2)
 lambda = .2, # lambda = .2
 delta = rep(.1, 3), # delta1 = .1, delta2 = .1, delta3 = .1
 eps = 1e-04 # eps = 1e-04
class(bvhar_var_spec)
str(bvhar_var_spec)
# BVHAR-L specification-----
bvhar_vhar_spec <- set_weight_bvhar(</pre>
 sigma = c(.03, .02, .01), # Sigma = diag(.03^2, .02^2, .01^2)
 lambda = .2, # lambda = .2
 eps = 1e-04, # eps = 1e-04
```

set_dl

```
daily = rep(.2, 3), # daily1 = .2, daily2 = .2, daily3 = .2
weekly = rep(.1, 3), # weekly1 = .1, weekly2 = .1, weekly3 = .1
monthly = rep(.05, 3) # monthly1 = .05, monthly2 = .05, monthly3 = .05
)
class(bvhar_vhar_spec)
str(bvhar_vhar_spec)
```

set_dl

Dirichlet-Laplace Hyperparameter for Coefficients and Contemporaneous Coefficients

Description

[Experimental] Set DL hyperparameters for VAR or VHAR coefficient and contemporaneous coefficient.

Usage

```
set_dl(dir_grid = 100L, shape = 0.01, rate = 0.01)
## S3 method for class 'dlspec'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
is.dlspec(x)
```

Arguments

dir_grid Griddy gibbs grid size for Dirichlet hyperparameter shape Gamma shape rate Gamma rate x dlspec digits digit option to print ... not used

Value

dlspec object

References

Bhattacharya, A., Pati, D., Pillai, N. S., & Dunson, D. B. (2015). *Dirichlet-Laplace Priors for Optimal Shrinkage*. Journal of the American Statistical Association, 110(512), 1479-1490.

Korobilis, D., & Shimizu, K. (2022). *Bayesian Approaches to Shrinkage and Sparse Estimation*. Foundations and Trends® in Econometrics, 11(4), 230-354.

set_horseshoe 85

set_horseshoe

Horseshoe Prior Specification

Description

Set initial hyperparameters and parameter before starting Gibbs sampler for Horseshoe prior.

Usage

```
set_horseshoe(local_sparsity = 1, group_sparsity = 1, global_sparsity = 1)
## S3 method for class 'horseshoespec'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
is.horseshoespec(x)
## S3 method for class 'horseshoespec'
knit_print(x, ...)
```

Arguments

```
local_sparsity Initial local shrinkage hyperparameters group_sparsity Initial group shrinkage hyperparameters global_sparsity Initial global shrinkage hyperparameter x horseshoespec digits digit option to print ... not used
```

Details

Set horseshoe prior initialization for VAR family.

- local_sparsity: Initial local shrinkage
- group_sparsity: Initial group shrinkage
- global_sparsity: Initial global shrinkage

In this package, horseshoe prior model is estimated by Gibbs sampling, initial means initial values for that gibbs sampler.

References

Carvalho, C. M., Polson, N. G., & Scott, J. G. (2010). The horseshoe estimator for sparse signals. Biometrika, 97(2), 465-480.

Makalic, E., & Schmidt, D. F. (2016). *A Simple Sampler for the Horseshoe Estimator*. IEEE Signal Processing Letters, 23(1), 179-182.

86 set_lambda

set_intercept

Prior for Constant Term

Description

Set Normal prior hyperparameters for constant term

Usage

```
set_intercept(mean = 0, sd = 0.1)
## S3 method for class 'interceptspec'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
is.interceptspec(x)
## S3 method for class 'interceptspec'
knit_print(x, ...)
```

Arguments

mean	Normal mean of constant term
sd	Normal standard deviance for constant term
X	interceptspec object
digits	digit option to print
	not used

set_lambda

Hyperpriors for Bayesian Models

Description

Set hyperpriors of Bayesian VAR and VHAR models.

```
set_lambda(mode = 0.2, sd = 0.4, param = NULL, lower = 1e-05, upper = 3)
set_psi(shape = 4e-04, scale = 4e-04, lower = 1e-05, upper = 3)
## S3 method for class 'bvharpriorspec'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
is.bvharpriorspec(x)
## S3 method for class 'bvharpriorspec'
knit_print(x, ...)
```

set_lambda 87

Arguments

mode	Mode of Gamma distribution. By default, . 2.
sd	Standard deviation of Gamma distribution. By default, .4.
param	Shape and rate of Gamma distribution, in the form of c(shape, rate). If specified, ignore mode and sd .
lower	[Experimental] Lower bound for stats::optim(). By default, 1e-5.
upper	[Experimental] Upper bound for stats::optim(). By default, 3.
shape	Shape of Inverse Gamma distribution. By default, (.02)^2.
scale	Scale of Inverse Gamma distribution. By default, (.02)^2.
X	bvharpriorspec object
digits	digit option to print
	not used

Details

In addition to Normal-IW priors set_bvar(), set_bvhar(), and set_weight_bvhar(), these functions give hierarchical structure to the model.

- set_lambda() specifies hyperprior for λ (lambda), which is Gamma distribution.
- set_psi() specifies hyperprior for $\psi/(\nu_0-k-1)=\sigma^2$ (sigma), which is Inverse gamma distribution.

The following set of (mode, sd) are recommended by Sims and Zha (1998) for set_lambda().

```
• (mode = .2, sd = .4): default
• (mode = 1, sd = 1)
```

Giannone et al. (2015) suggested data-based selection for $set_psi()$. It chooses (0.02)^2 based on its empirical data set.

Value

byharpriorspec object

References

Giannone, D., Lenza, M., & Primiceri, G. E. (2015). *Prior Selection for Vector Autoregressions*. Review of Economics and Statistics, 97(2).

Examples

```
# Hirearchical BVAR specification-----
set_bvar(
    sigma = set_psi(shape = 4e-4, scale = 4e-4),
    lambda = set_lambda(mode = .2, sd = .4),
    delta = rep(1, 3),
    eps = 1e-04 # eps = 1e-04
)
```

88 set_ldlt

set_ldlt

Covariance Matrix Prior Specification

Description

[Experimental] Set prior for covariance matrix.

Usage

```
set_ldlt(ig_shape = 3, ig_scl = 0.01)
set_sv(ig_shape = 3, ig_scl = 0.01, initial_mean = 1, initial_prec = 0.1)
## S3 method for class 'covspec'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
is.covspec(x)
is.svspec(x)
is.ldltspec(x)
```

Arguments

ig_shape	Inverse-Gamma shape of Cholesky diagonal vector. For SV (set_sv()), this is for state variance.
ig_scl	Inverse-Gamma scale of Cholesky diagonal vector. For SV ($set_sv()$), this is for state variance.
initial_mean	Prior mean of initial state.
initial_prec	Prior precision of initial state.
X	covspec
digits	digit option to print
	not used

Details

set_ldlt() specifies LDLT of precision matrix,

$$\Sigma^{-1} = L^T D^{-1} L$$

set_sv() specifices time varying precision matrix under stochastic volatility framework based on

$$\Sigma_t^{-1} = L^T D_t^{-1} L$$

set_ng 89

References

Carriero, A., Chan, J., Clark, T. E., & Marcellino, M. (2022). Corrigendum to "Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors" [J. Econometrics 212 (1)(2019) 137-154]. Journal of Econometrics, 227(2), 506-512.

Chan, J., Koop, G., Poirier, D., & Tobias, J. (2019). *Bayesian Econometric Methods (2nd ed., Econometric Exercises)*. Cambridge: Cambridge University Press.

set_ng

Normal-Gamma Hyperparameter for Coefficients and Contemporaneous Coefficients

Description

[Experimental] Set NG hyperparameters for VAR or VHAR coefficient and contemporaneous coefficient.

Usage

```
set_ng(
    shape_sd = 0.01,
    group_shape = 0.01,
    group_scale = 0.01,
    global_shape = 0.01,
    global_scale = 0.01,
    contem_global_shape = 0.01,
    contem_global_scale = 0.01
)

## S3 method for class 'ngspec'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
is.ngspec(x)
```

Arguments

shape_sd Standard deviation used in MH of Gamma shape
group_shape Inverse gamma prior shape for coefficient group shrinkage
group_scale Inverse gamma prior scale for coefficient group shrinkage
global_shape Inverse gamma prior shape for coefficient global shrinkage
global_scale Inverse gamma prior scale for coefficient global shrinkage
contem_global_shape

Inverse gamma prior shape for contemporaneous coefficient global shrinkage contem_global_scale

Inverse gamma prior scale for contemporaneous coefficient global shrinkage

90 set_ssvs

```
x ngspec
digits digit option to print
... not used
```

Value

ngspec object

References

Chan, J. C. C. (2021). *Minnesota-type adaptive hierarchical priors for large Bayesian VARs*. International Journal of Forecasting, 37(3), 1212-1226.

Huber, F., & Feldkircher, M. (2019). *Adaptive Shrinkage in Bayesian Vector Autoregressive Models*. Journal of Business & Economic Statistics, 37(1), 27-39.

Korobilis, D., & Shimizu, K. (2022). *Bayesian Approaches to Shrinkage and Sparse Estimation*. Foundations and Trends® in Econometrics, 11(4), 230-354.

set_ssvs

Stochastic Search Variable Selection (SSVS) Hyperparameter for Coefficients Matrix and Cholesky Factor

Description

Set SSVS hyperparameters for VAR or VHAR coefficient matrix and Cholesky factor.

```
set_ssvs(
  coef_spike = 0.1,
  coef_slab = 5,
  coef_spike_scl = 0.01,
  coef_slab_shape = 0.01,
  coef_slab_scl = 0.01,
  coef_mixture = 0.5,
  coef_s1 = c(1, 1),
  coef_s2 = c(1, 1),
 mean\_non = 0,
  sd_non = 0.1,
  shape = 0.01,
  rate = 0.01,
  chol_spike = 0.1,
  chol_slab = 5,
  chol_spike_scl = 0.01,
  chol_slab_shape = 0.01,
  chol_slab_scl = 0.01,
  chol_mixture = 0.5,
```

set_ssvs 91

```
chol_s1 = 1,
  chol_s2 = 1
)

## S3 method for class 'ssvsinput'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
is.ssvsinput(x)

## S3 method for class 'ssvsinput'
knit_print(x, ...)
```

Arguments

coef_spike	[Deprecated] Standard deviance for Spike normal distribution. Will be deleted when bvar_ssvs() and bvhar_ssvs() are removed in the package.
coef_slab	[Deprecated] Standard deviance for Slab normal distribution. Will be deleted when bvar_ssvs() and bvhar_ssvs() are removed in the package.
coef_spike_scl	Scaling factor (between 0 and 1) for spike sd which is Spike $sd = c * slab sd$
coef_slab_shape	
	Inverse gamma shape for slab sd
coef_slab_scl	Inverse gamma scale for slab sd
coef_mixture	[Deprecated] Bernoulli parameter for sparsity proportion. Will be deleted when bvar_ssvs() and bvhar_ssvs() are removed in the package.
coef_s1	First shape of coefficients prior beta distribution
coef_s2	Second shape of coefficients prior beta distribution
mean_non	[Deprecated] Prior mean of unrestricted coefficients Will be deleted when bvar_ssvs() and bvhar_ssvs() are removed in the package.
sd_non	[Deprecated] Standard deviance for unrestricted coefficients Will be deleted when bvar_ssvs() and bvhar_ssvs() are removed in the package.
shape	Gamma shape parameters for precision matrix (See Details).
rate	Gamma rate parameters for precision matrix (See Details).
chol_spike	Standard deviance for Spike normal distribution, in the cholesky factor. Will be deleted when bvar_ssvs() and bvhar_ssvs() are removed in the package.
chol_slab	Standard deviance for Slab normal distribution, in the cholesky factor. Will be deleted when bvar_ssvs() and bvhar_ssvs() are removed in the package.
chol_spike_scl	Scaling factor (between 0 and 1) for spike sd which is Spike $sd = c * slab sd$ in the cholesky factor
chol_slab_shape	
	Inverse gamma shape for slab sd in the cholesky factor
chol_slab_scl	Inverse gamma scale for slab sd in the cholesky factor
chol_mixture	[Deprecated] Bernoulli parameter for sparsity proportion, in the cholesky factor (See Details). Will be deleted when bvar_ssvs() and bvhar_ssvs() are removed in the package.

92 set_ssvs

chol_s1	First shape of cholesky factor prior beta distribution
chol_s2	Second shape of cholesky factor prior beta distribution
X	ssvsinput
digits	digit option to print
	not used

Details

Let α be the vectorized coefficient, $\alpha = vec(A)$. Spike-slab prior is given using two normal distributions.

$$\alpha_j \mid \gamma_j \sim (1 - \gamma_j) N(0, \tau_{0j}^2) + \gamma_j N(0, \tau_{1j}^2)$$

As spike-slab prior itself suggests, set τ_{0j} small (point mass at zero: spike distribution) and set τ_{1j} large (symmetric by zero: slab distribution).

 γ_i is the proportion of the nonzero coefficients and it follows

$$\gamma_j \sim Bernoulli(p_j)$$

- coef_spike: au_{0j}
- coef_slab: τ_{1j}
- coef_mixture: p_i
- j = 1, ..., mk: vectorized format corresponding to coefficient matrix
- If one value is provided, model function will read it by replicated value.
- coef_non: vectorized constant term is given prior Normal distribution with variance cI. Here, coef_non is \sqrt{c} .

Next for precision matrix Σ_e^{-1} , SSVS applies Cholesky decomposition.

$$\Sigma_e^{-1} = \Psi \Psi^T$$

where $\Psi = \{\psi_{ij}\}$ is upper triangular.

Diagonal components follow the gamma distribution.

$$\psi_{jj}^2 \sim Gamma(shape = a_j, rate = b_j)$$

For each row of off-diagonal (upper-triangular) components, we apply spike-slab prior again.

$$\psi_{ij} \mid w_{ij} \sim (1 - w_{ij})N(0, \kappa_{0,ij}^2) + w_{ij}N(0, \kappa_{1,ij}^2)$$
$$w_{ij} \sim Bernoulli(q_{ij})$$

- shape: a_i
- rate: b_i
- chol_spike: $\kappa_{0,ij}$
- chol_slab: $\kappa_{1,ij}$
- chol_mixture: q_{ij}
- $j = 1, \dots, mk$: vectorized format corresponding to coefficient matrix
- $i=1,\ldots,j-1$ and $j=2,\ldots,m$: $\eta=(\psi_{12},\psi_{13},\psi_{23},\psi_{14},\ldots,\psi_{34},\ldots,\psi_{1m},\ldots,\psi_{m-1,m})^T$
- chol_ arguments can be one value for replication, vector, or upper triangular matrix.

sim_gig 93

Value

ssysinput object

References

George, E. I., & McCulloch, R. E. (1993). *Variable Selection via Gibbs Sampling*. Journal of the American Statistical Association, 88(423), 881-889.

George, E. I., Sun, D., & Ni, S. (2008). *Bayesian stochastic search for VAR model restrictions*. Journal of Econometrics, 142(1), 553-580.

Ishwaran, H., & Rao, J. S. (2005). *Spike and slab variable selection: Frequentist and Bayesian strategies.* The Annals of Statistics, 33(2).

Koop, G., & Korobilis, D. (2009). *Bayesian Multivariate Time Series Methods for Empirical Macroeconomics*. Foundations and Trends® in Econometrics, 3(4), 267-358.

sim_gig

Generate Generalized Inverse Gaussian Distribution

Description

This function samples $GIG(\lambda, \psi, \chi)$ random variates.

Usage

```
sim_gig(num_sim, lambda, psi, chi)
```

Arguments

num_sim	Number to generate
lambda	Index of modified Bessel function of third kind.
psi	Second parameter of GIG. Should be positive.
chi	Third parameter of GIG. Should be positive.

Details

The density of $GIG(\lambda, \psi, \chi)$ considered here is as follows.

$$f(x) = \frac{(\psi/\chi)^{(\lambda/2)}}{2K_{\lambda}(\sqrt{\psi\chi})} x^{\lambda-1} \exp(-\frac{1}{2}(\frac{\chi}{x} + \psi x))$$

where x > 0.

References

Hörmann, W., Leydold, J. *Generating generalized inverse Gaussian random variates*. Stat Comput 24, 547-557 (2014).

Leydold, J, Hörmann, W.. GIGrvg: Random Variate Generator for the GIG Distribution. R package version 0.8 (2023).

94 sim_horseshoe_var

sim_horseshoe_var Generate Horseshoe Parameters

Description

[Deprecated] This function generates parameters of VAR with Horseshoe prior.

Usage

```
sim_horseshoe_var(
   p,
   dim_data = NULL,
   include_mean = TRUE,
   minnesota = FALSE,
   method = c("eigen", "chol")
)

sim_horseshoe_vhar(
   har = c(5, 22),
   dim_data = NULL,
   include_mean = TRUE,
   minnesota = c("no", "short", "longrun"),
   method = c("eigen", "chol")
)
```

Arguments

р		VAR lag
dim_d	data	Specify the dimension of the data if hyperparameters of bayes_spec have constant values.
incl	ude_mean	Add constant term (Default: TRUE) or not (FALSE)
minne	esota	Only use off-diagonal terms of each coefficient matrices for restriction. In sim_horseshoe_var() function, use TRUE or FALSE (default). In sim_horseshoe_vhar() function, no (default), short type, or longrun type.
metho	od	Method to compute $\Sigma^{1/2}$.
har		Numeric vector for weekly and monthly order. By default, c(5, 22).

 sim_iw 95

sim_iw

Generate Inverse-Wishart Random Matrix

Description

This function samples one matrix IW matrix.

Usage

```
sim_iw(mat_scale, shape)
```

Arguments

mat_scale Scale matrix shape Shape

Details

Consider $\Sigma \sim IW(\Psi, \nu)$.

- 1. Upper triangular Bartlett decomposition: k x k matrix $Q=\left[q_{ij}\right]$ upper triangular with

 - $\begin{array}{ll} \mbox{(a)} \;\; q_{ii}^2\chi^2_{\nu-i+1} \\ \mbox{(b)} \;\; q_{ij}\sim N(0,1) \; \mbox{with i} < \mbox{j (upper triangular)} \end{array}$
- 2. Lower triangular Cholesky decomposition: $\Psi = LL^T$
- 3. $A = L(Q^{-1})^T$
- 4. $\Sigma = AA^T \sim IW(\Psi, \nu)$

Value

One k x k matrix following IW distribution

sim_matgaussian

Generate Matrix Normal Random Matrix

Description

This function samples one matrix gaussian matrix.

```
sim_matgaussian(mat_mean, mat_scale_u, mat_scale_v, u_prec)
```

96 sim_mncoef

Arguments

mat_mean Mean matrix

mat_scale_u First scale matrix

mat_scale_v Second scale matrix

u_prec If TRUE, use mat_scale_u as its inverse.

Details

Consider n x k matrix $Y_1, \ldots, Y_n \sim MN(M, U, V)$ where M is n x k, U is n x n, and V is k x k.

1. Lower triangular Cholesky decomposition: $U = PP^T$ and $V = LL^T$

2. Standard normal generation: s x m matrix $Z_i = [z_{ij} \sim N(0,1)]$ in row-wise direction.

 $3. Y_i = M + PZ_iL^T$

This function only generates one matrix, i.e. Y_1 .

Value

One n x k matrix following MN distribution.

sim_mncoef

Generate Minnesota BVAR Parameters

Description

This function generates parameters of BVAR with Minnesota prior.

Usage

```
sim_mncoef(p, bayes_spec = set_bvar(), full = TRUE)
```

Arguments

p VAR lag

bayes_spec A BVAR model specification by set_bvar().

full Generate variance matrix from IW (default: TRUE) or not (FALSE)?

Details

Implementing dummy observation constructions, Bańbura et al. (2010) sets Normal-IW prior.

$$A \mid \Sigma_e \sim MN(A_0, \Omega_0, \Sigma_e)$$

$$\Sigma_e \sim IW(S_0, \alpha_0)$$

If full = FALSE, the result of Σ_e is the same as input (diag(sigma)).

sim_mniw 97

Value

List with the following component.

```
coefficients BVAR coefficient (MN)
covmat BVAR variance (IW or diagonal matrix of sigma of bayes_spec)
```

References

Bańbura, M., Giannone, D., & Reichlin, L. (2010). *Large Bayesian vector auto regressions*. Journal of Applied Econometrics, 25(1).

Karlsson, S. (2013). *Chapter 15 Forecasting with Bayesian Vector Autoregression*. Handbook of Economic Forecasting, 2, 791-897.

Litterman, R. B. (1986). Forecasting with Bayesian Vector Autoregressions: Five Years of Experience. Journal of Business & Economic Statistics, 4(1), 25.

See Also

• set_bvar() to specify the hyperparameters of Minnesota prior.

Examples

```
# Generate (A, Sigma)
# BVAR(p = 2)
# sigma: 1, 1, 1
# lambda: .1
# delta: .1, .1, .1
# epsilon: 1e-04
set.seed(1)
sim_mncoef(
 p = 2,
 bayes_spec = set_bvar(
   sigma = rep(1, 3),
   lambda = .1,
   delta = rep(.1, 3),
    eps = 1e-04
 ),
 full = TRUE
)
```

sim_mniw

Generate Normal-IW Random Family

Description

This function samples normal inverse-wishart matrices.

```
sim_mniw(num_sim, mat_mean, mat_scale_u, mat_scale, shape, u_prec = FALSE)
```

98 sim_mnormal

Arguments

num_sim Number to generate

mat_mean Mean matrix of MN

mat_scale_u First scale matrix of MN

mat_scale Scale matrix of IW

shape Shape of IW

u_prec If TRUE, use mat_scale_u as its inverse. By default, FALSE.

Details

```
Consider (Y_i, \Sigma_i) \sim MIW(M, U, \Psi, \nu).
```

1. Generate upper triangular factor of $\Sigma_i = C_i C_i^T$ in the upper triangular Bartlett decomposition.

2. Standard normal generation: n x k matrix $Z_i = [z_{ij} \sim N(0,1)]$ in row-wise direction.

3. Lower triangular Cholesky decomposition: $U = PP^T$

 $4. \ A_i = M + PZ_iC_i^T$

sim_mnormal

Generate Multivariate Normal Random Vector

Description

This function samples n x muti-dimensional normal random matrix.

Usage

```
sim_mnormal(
  num_sim,
  mu = rep(0, 5),
  sig = diag(5),
  method = c("eigen", "chol")
)
```

Arguments

num_sim Number to generate process

mu Mean vector sig Variance matrix

method Method to compute $\Sigma^{1/2}$. Choose between eigen (spectral decomposition) and

chol (cholesky decomposition). By default, eigen.

sim_mnvhar_coef 99

Details

Consider $x_1, \ldots, x_n \sim N_m(\mu, \Sigma)$.

- 1. Lower triangular Cholesky decomposition: $\Sigma = LL^T$
- 2. Standard normal generation: $Z_{i1}, Z_{in} \overset{iid}{\sim} N(0, 1)$
- 3. $Z_i = (Z_{i1}, \dots, Z_{in})^T$
- 4. $X_i = LZ_i + \mu$

Value

T x k matrix

sim_mnvhar_coef

Generate Minnesota BVAR Parameters

Description

This function generates parameters of BVAR with Minnesota prior.

Usage

```
sim_mnvhar_coef(bayes_spec = set_bvhar(), full = TRUE)
```

Arguments

bayes_spec A BVHAR model specification by set_bvhar() (default) or set_weight_bvhar().

full Generate variance matrix from IW (default: TRUE) or not (FALSE)?

Details

Normal-IW family for vector HAR model:

$$\Phi \mid \Sigma_e \sim MN(M_0, \Omega_0, \Sigma_e)$$
$$\Sigma_e \sim IW(\Psi_0, \nu_0)$$

Value

List with the following component.

```
coefficients BVHAR coefficient (MN)
covmat BVHAR variance (IW or diagonal matrix of sigma of bayes_spec)
```

References

Kim, Y. G., and Baek, C. (2024). *Bayesian vector heterogeneous autoregressive modeling*. Journal of Statistical Computation and Simulation, 94(6), 1139-1157.

100 sim_mvt

See Also

- set_bvhar() to specify the hyperparameters of VAR-type Minnesota prior.
- set_weight_bvhar() to specify the hyperparameters of HAR-type Minnesota prior.

Examples

```
# Generate (Phi, Sigma)
# BVHAR-S
# sigma: 1, 1, 1
# lambda: .1
# delta: .1, .1, .1
# epsilon: 1e-04
set.seed(1)
sim_mnvhar_coef(
 bayes_spec = set_bvhar(
   sigma = rep(1, 3),
   lambda = .1,
   delta = rep(.1, 3),
   eps = 1e-04
 ),
 full = TRUE
)
```

sim_mvt

Generate Multivariate t Random Vector

Description

This function samples n x multi-dimensional t-random matrix.

Usage

```
sim_mvt(num_sim, df, mu, sig, method = c("eigen", "chol"))
```

Arguments

num_sim Number to generate process.
df Degrees of freedom.
mu Location vector
sig Scale matrix.
method Method to compute $\Sigma^{1/2}$. Choose between eigen (spectral decomposition) and chol (cholesky decomposition). By default, eigen.

Value

T x k matrix

sim_ssvs_var 101

sim_ssvs_var

Generate SSVS Parameters

Description

[Deprecated] This function generates parameters of VAR with SSVS prior.

Usage

```
sim_ssvs_var(
 bayes_spec,
 dim_data = NULL,
  include_mean = TRUE,
 minnesota = FALSE,
 mn_prob = 1,
 method = c("eigen", "chol")
)
sim_ssvs_vhar(
 bayes_spec,
 har = c(5, 22),
 dim_data = NULL,
 include_mean = TRUE,
 minnesota = c("no", "short", "longrun"),
 mn_prob = 1,
 method = c("eigen", "chol")
)
```

Arguments

bayes_spec	A SSVS model specification by set_ssvs().
р	VAR lag
dim_data	Specify the dimension of the data if hyperparameters of bayes_spec have constant values.
include_mean	Add constant term (Default: TRUE) or not (FALSE)
minnesota	Only use off-diagonal terms of each coefficient matrices for restriction. In sim_ssvs_var() function, use TRUE or FALSE (default). In sim_ssvs_vhar() function, no (default), short type, or longrun type.
mn_prob	Probability for own-lags.
method	Method to compute $\Sigma^{1/2}$.
har	Numeric vector for weekly and monthly order. By default, c(5, 22).

Value

List including coefficients.

102 sim_ssvs_var

VAR(p) with SSVS prior

Let α be the vectorized coefficient of VAR(p).

 $(\alpha \mid \gamma)$

 (γ_i)

 $(\eta_j \mid \omega_j)$

 (ω_{ij})

 (ψ_{ii}^2)

VHAR with SSVS prior

Let ϕ be the vectorized coefficient of VHAR.

 $(\phi \mid \gamma)$

 (γ_i)

 $(\eta_j \mid \omega_j)$

 (ω_{ij})

 (ψ_{ii}^2)

References

George, E. I., & McCulloch, R. E. (1993). *Variable Selection via Gibbs Sampling*. Journal of the American Statistical Association, 88(423), 881-889.

George, E. I., Sun, D., & Ni, S. (2008). *Bayesian stochastic search for VAR model restrictions*. Journal of Econometrics, 142(1), 553-580.

Ghosh, S., Khare, K., & Michailidis, G. (2018). *High-Dimensional Posterior Consistency in Bayesian Vector Autoregressive Models*. Journal of the American Statistical Association, 114(526).

Koop, G., & Korobilis, D. (2009). *Bayesian Multivariate Time Series Methods for Empirical Macroeconomics*. Foundations and Trends® in Econometrics, 3(4), 267-358.

sim_var

sim_var

Generate Multivariate Time Series Process Following VAR(p)

Description

This function generates multivariate time series dataset that follows VAR(p).

Usage

```
sim_var(
  num_sim,
  num_burn,
  var_coef,
  var_lag,
  sig_error = diag(ncol(var_coef)),
  init = matrix(0L, nrow = var_lag, ncol = ncol(var_coef)),
  method = c("eigen", "chol"),
  process = c("gaussian", "student"),
  t_param = 5
)
```

Arguments

num_sim	Number to generated process
num_burn	Number of burn-in
var_coef	VAR coefficient. The format should be the same as the output of coef() from var_lm()
var_lag	Lag of VAR
sig_error	Variance matrix of the error term. By default, diag(dim).
init	Initial y1,, yp matrix to simulate VAR model. Try matrix($0L$, nrow = var_lag, ncol = dim).
method	Method to compute $\Sigma^{1/2}$. Choose between eigen (spectral decomposition) and chol (cholesky decomposition). By default, eigen.
process	Process to generate error term. gaussian: Normal distribution (default) or student: Multivariate t-distribution.
t_param	[Experimental] argument for MVT, e.g. DF: 5.

Details

```
1. Generate \epsilon_1,\epsilon_n\sim N(0,\Sigma)
2. For i = 1, ... n, y_{p+i}=(y_{p+i-1}^T,\dots,y_i^T,1)^TB+\epsilon_i
```

3. Then the output is $(y_{p+1}, \ldots, y_{n+p})^T$

Initial values might be set to be zero vector or $(I_m - A_1 - \cdots - A_p)^{-1}c$.

sim_vhar

Value

T x k matrix

References

Lütkepohl, H. (2007). New Introduction to Multiple Time Series Analysis. Springer Publishing.

sim_vhar

Generate Multivariate Time Series Process Following VAR(p)

Description

This function generates multivariate time series dataset that follows VAR(p).

Usage

```
sim_vhar(
  num_sim,
  num_burn,
  vhar_coef,
  week = 5L,
  month = 22L,
  sig_error = diag(ncol(vhar_coef)),
  init = matrix(0L, nrow = month, ncol = ncol(vhar_coef)),
  method = c("eigen", "chol"),
  process = c("gaussian", "student"),
  t_param = 5
)
```

Arguments

num_sim	Number to generated process
num_burn	Number of burn-in
vhar_coef	VAR coefficient. The format should be the same as the output of $coef()$ from $var_lm()$
week	Weekly order of VHAR. By default, 5.
month	Weekly order of VHAR. By default, 22.
sig_error	Variance matrix of the error term. By default, diag(dim).
init	Initial y1,, yp matrix to simulate VAR model. Try matrix($0L$, nrow = month, ncol = dim).
method	Method to compute $\Sigma^{1/2}$. Choose between eigen (spectral decomposition) and chol (cholesky decomposition). By default, eigen.
process	Process to generate error term. gaussian: Normal distribution (default) or student: Multivariate t-distribution.
t_param	[Experimental] argument for MVT, e.g. DF: 5.

spillover 105

Details

Let M be the month order, e.g. M = 22.

- 1. Generate $\epsilon_1, \epsilon_n \sim N(0, \Sigma)$
- 2. For i = 1, ... n,

$$y_{M+i} = (y_{M+i-1}^T, \dots, y_i^T, 1)^T C_{HAR}^T \Phi + \epsilon_i$$

- 3. Then the output is $(y_{M+1}, \ldots, y_{n+M})^T$
- 4. For i = 1, ..., n,

$$y_{p+i} = (y_{p+i-1}^T, \dots, y_i^T, 1)^T B + \epsilon_i$$

5. Then the output is $(y_{p+1}, \ldots, y_{n+p})^T$

Initial values might be set to be zero vector or $(I_m - A_1 - \cdots - A_p)^{-1}c$.

Value

T x k matrix

References

Lütkepohl, H. (2007). New Introduction to Multiple Time Series Analysis. Springer Publishing.

spillover

h-step ahead Normalized Spillover

Description

This function gives connectedness table with h-step ahead normalized spillover index (a.k.a. variance shares).

```
spillover(object, n_ahead = 10L, ...)
## S3 method for class 'bvharspillover'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'bvharspillover'
knit_print(x, ...)
## S3 method for class 'olsmod'
spillover(object, n_ahead = 10L, ...)
## S3 method for class 'normaliw'
spillover(
   object,
   n_ahead = 10L,
```

106 spne

```
num_iter = 5000L,
num_burn = floor(num_iter/2),
thinning = 1L,
...
)

## S3 method for class 'bvarldlt'
spillover(object, n_ahead = 10L, sparse = FALSE, ...)

## S3 method for class 'bvharldlt'
spillover(object, n_ahead = 10L, sparse = FALSE, ...)
```

Arguments

object	Model object
n_ahead	step to forecast. By default, 10.
	not used
x	bvharspillover object
digits	digit option to print
num_iter	Number to sample MNIW distribution
num_burn	Number of burn-in
thinning	Thinning every thinning-th iteration
sparse	[Experimental] Apply restriction. By default, FALSE.

References

Diebold, F. X., & Yilmaz, K. (2012). *Better to give than to receive: Predictive directional measurement of volatility spillovers.* International Journal of forecasting, 28(1), 57-66.

spne

Evaluate the Estimation Based on Spectral Norm Error

Description

This function computes estimation error given estimated model and true coefficient.

```
spne(x, y, ...)
## S3 method for class 'bvharsp'
spne(x, y, ...)
```

stableroot 107

Arguments

x Estimated model.

y Coefficient matrix to be compared.

... not used

Details

Let $\|\cdot\|_2$ be the spectral norm of a matrix, let $\hat{\Phi}$ be the estimates, and let Φ be the true coefficients matrix. Then the function computes estimation error by

$$\|\hat{\Phi} - \Phi\|_2$$

Value

Spectral norm value

References

Ghosh, S., Khare, K., & Michailidis, G. (2018). *High-Dimensional Posterior Consistency in Bayesian Vector Autoregressive Models*. Journal of the American Statistical Association, 114(526).

stableroot

Roots of characteristic polynomial

Description

Compute the character polynomial of coefficient matrix.

```
## S3 method for class 'varlse'
stableroot(x, ...)
## S3 method for class 'vharlse'
stableroot(x, ...)
## S3 method for class 'bvarmn'
stableroot(x, ...)
## S3 method for class 'bvarflat'
stableroot(x, ...)
## S3 method for class 'bvharmn'
stableroot(x, ...)
```

108 summary.normaliw

Arguments

x Model fit... not used

Details

To know whether the process is stable or not, make characteristic polynomial.

$$\det(I_m - Az) = 0$$

where A is VAR(1) coefficient matrix representation.

Value

Numeric vector.

References

Lütkepohl, H. (2007). New Introduction to Multiple Time Series Analysis. Springer Publishing.

summary.normaliw

Summarizing Bayesian Multivariate Time Series Model

Description

summary method for normaliw class.

```
## S3 method for class 'normaliw'
summary(
   object,
   num_chains = 1,
   num_iter = 1000,
   num_burn = floor(num_iter/2),
   thinning = 1,
   verbose = FALSE,
   num_thread = 1,
   ...
)

## S3 method for class 'summary.normaliw'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

## S3 method for class 'summary.normaliw'
knit_print(x, ...)
```

summary.normaliw 109

Arguments

object A normaliw object

num_chains Number of MCMC chains num_iter MCMC iteration number

num_burn Number of burn-in (warm-up). Half of the iteration is the default choice.

thinning Thinning every thinning-th iteration

verbose Print the progress bar in the console. By default, FALSE.

num_thread Number of threads

... not used

x summary.normaliw object

digits digit option to print

Details

From Minnesota prior, set of coefficient matrices and residual covariance matrix have matrix Normal Inverse-Wishart distribution.

BVAR:

$$(A, \Sigma_e) \sim MNIW(\hat{A}, \hat{V}^{-1}, \hat{\Sigma}_e, \alpha_0 + n)$$

where $\hat{V} = X_*^T X_*$ is the posterior precision of MN.

BVHAR:

$$(\Phi, \Sigma_e) \sim MNIW(\hat{\Phi}, \hat{V}_H^{-1}, \hat{\Sigma}_e, \nu + n)$$

where $\hat{V}_H = X_+^T X_+$ is the posterior precision of MN.

Value

summary.normaliw class has the following components:

names Variable names

totobs Total number of the observation

obs Sample size used when training = totobs - p

p Lag of VAR

m Dimension of the data

call Matched call

spec Model specification (bvharspec)

mn_mean MN Mean of posterior distribution (MN-IW)

mn_prec MN Precision of posterior distribution (MN-IW)

iw_scale IW scale of posterior distribution (MN-IW)

iw_shape IW df of posterior distribution (MN-IW)

110 summary.varlse

```
iter Number of MCMC iterations
burn Number of MCMC burn-in
thin MCMC thinning
alpha_record (BVAR) and phi_record (BVHAR) MCMC record of coefficients vector
psi_record MCMC record of upper cholesky factor
omega_record MCMC record of diagonal of cholesky factor
eta_record MCMC record of upper part of cholesky factor
param MCMC record of every parameter
coefficients Posterior mean of coefficients
covmat Posterior mean of covariance
```

References

Litterman, R. B. (1986). Forecasting with Bayesian Vector Autoregressions: Five Years of Experience. Journal of Business & Economic Statistics, 4(1), 25.

Bańbura, M., Giannone, D., & Reichlin, L. (2010). *Large Bayesian vector auto regressions*. Journal of Applied Econometrics, 25(1).

summary.varlse

Summarizing Vector Autoregressive Model

Description

summary method for varlse class.

Usage

```
## S3 method for class 'varlse'
summary(object, ...)

## S3 method for class 'summary.varlse'
print(x, digits = max(3L, getOption("digits") - 3L), signif_code = TRUE, ...)

## S3 method for class 'summary.varlse'
knit_print(x, ...)
```

Arguments

```
object A varlse object
... not used
x summary.varlse object
digits digit option to print
signif_code Check significant rows (Default: TRUE)
```

summary.vharlse 111

Value

summary.varlse class additionally computes the following

names Variable names

totobs Total number of the observation

obs Sample size used when training = totobs - p

p Lag of VAR
coefficients Coefficient Matrix
call Matched call
process Process: VAR

covmat Covariance matrix of the residuals
corrmat Correlation matrix of the residuals
roots Roots of characteristic polynomials

is_stable Whether the process is stable or not based on roots

log_lik log-likelihood

ic Information criteria vector

• AIC - AIC

• BIC - BIC

• HQ - HQ

• FPE - FPE

References

Lütkepohl, H. (2007). New Introduction to Multiple Time Series Analysis. Springer Publishing.

summary.vharlse

Summarizing Vector HAR Model

Description

summary method for vharlse class.

Usage

```
## S3 method for class 'vharlse'
summary(object, ...)
## S3 method for class 'summary.vharlse'
print(x, digits = max(3L, getOption("digits") - 3L), signif_code = TRUE, ...)
## S3 method for class 'summary.vharlse'
knit_print(x, ...)
```

112 summary.vharlse

Arguments

object A vharlse object

... not used

x summary.vharlse object

digits digit option to print

signif_code Check significant rows (Default: TRUE)

Value

summary.vharlse class additionally computes the following

names Variable names

totobs Total number of the observation

obs Sample size used when training = totobs - p

p 3

week Order for weekly term

month Order for monthly term

coefficients Coefficient Matrix

call Matched call

process Process: VAR

covmat Covariance matrix of the residuals
corrmat Correlation matrix of the residuals
roots Roots of characteristic polynomials

is_stable Whether the process is stable or not based on roots

log_lik log-likelihood

ic Information criteria vector

• AIC - AIC

• BIC - BIC

• HQ - HQ

• FPE - FPE

References

Lütkepohl, H. (2007). New Introduction to Multiple Time Series Analysis. Springer Publishing.

Corsi, F. (2008). A Simple Approximate Long-Memory Model of Realized Volatility. Journal of Financial Econometrics, 7(2), 174-196.

Baek, C. and Park, M. (2021). Sparse vector heterogeneous autoregressive modeling for realized volatility. J. Korean Stat. Soc. 50, 495-510.

VARtoVMA 113

VARtoVMA

Convert VAR to VMA(infinite)

Description

Convert VAR process to infinite vector MA process

Usage

VARtoVMA(object, lag_max)

Arguments

object A varlse object

lag_max Maximum lag for VMA

Details

Let VAR(p) be stable.

$$Y_t = c + \sum_{j=0} W_j Z_{t-j}$$

For VAR coefficient B_1, B_2, \ldots, B_p ,

$$I = (W_0 + W_1L + W_2L^2 + \dots +)(I - B_1L - B_2L^2 - \dots - B_nL^p)$$

Recursively,

$$W_0 = I$$

$$W_1 = W_0 B_1 (W_1^T = B_1^T W_0^T)$$

$$W_2 = W_1 B_1 + W_0 B_2 (W_2^T = B_1^T W_1^T + B_2^T W_0^T)$$

$$W_j = \sum_{j=1}^k W_{k-j} B_j (W_j^T = \sum_{j=1}^k B_j^T W_{k-j}^T)$$

Value

VMA coefficient of k(lag-max + 1) x k dimension

References

Lütkepohl, H. (2007). New Introduction to Multiple Time Series Analysis. Springer Publishing.

114 var_bayes

var_bayes

Fitting Bayesian VAR with Coefficient and Covariance Prior

Description

[Maturing] This function fits BVAR. Covariance term can be homoskedastic or heteroskedastic (stochastic volatility). It can have Minnesota, SSVS, and Horseshoe prior.

Usage

```
var_bayes(
 у,
 р,
  num_chains = 1,
  num_iter = 1000,
  num_burn = floor(num_iter/2),
  thinning = 1,
  bayes_spec = set_bvar(),
  cov_spec = set_ldlt(),
  intercept = set_intercept(),
  include_mean = TRUE,
 minnesota = TRUE,
  save_init = FALSE,
  convergence = NULL,
  verbose = FALSE,
  num\_thread = 1
)
## S3 method for class 'bvarldlt'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'bvarldlt'
knit_print(x, ...)
```

Arguments

у	Time series data of which columns indicate the variables
р	VAR lag
num_chains	Number of MCMC chains
num_iter	MCMC iteration number
num_burn	Number of burn-in (warm-up). Half of the iteration is the default choice.
thinning	Thinning every thinning-th iteration
bayes_spec	A BVAR model specification by set_bvar(), set_ssvs(), or set_horseshoe().
cov_spec	[Experimental] SV specification by set_sv().
intercept	[Experimental] Prior for the constant term by set_intercept().

var_bayes 115

include_mean Add constant term (Default: TRUE) or not (FALSE)

minnesota Apply cross-variable shrinkage structure (Minnesota-way). By default, TRUE.

save_init Save every record starting from the initial values (TRUE). By default, exclude the

initial values in the record (FALSE), even when num_burn = 0 and thinning = 1.

If num_burn > 0 or thinning != 1, this option is ignored.

convergence Convergence threshold for rhat < convergence. By default, NULL which means

no warning.

verbose Print the progress bar in the console. By default, FALSE.

num_thread Number of threads
x bvarldlt object
digits digit option to print

... not used

Details

Cholesky stochastic volatility modeling for VAR based on

$$\Sigma_t^{-1} = L^T D_t^{-1} L$$

, and implements corrected triangular algorithm for Gibbs sampler.

Value

var_bayes() returns an object named byarsv class.

coefficients Posterior mean of coefficients.

chol_posterior Posterior mean of contemporaneous effects.

param Every set of MCMC trace.

param_names Name of every parameter.

group Indicators for group.

num_group Number of groups.

df Numer of Coefficients: 3m + 1 or 3m

p VAR lag

m Dimension of the data

obs Sample size used when training = totobs - p

totobs Total number of the observation

call Matched call

process Description of the model, e.g. VHAR_SSVS_SV, VHAR_Horseshoe_SV, or VHAR_minnesota-part_SV

type include constant term (const) or not (none)

spec Coefficients prior specification

sv log volatility prior specification

intercept Intercept prior specification

init Initial values

chain The numer of chains

iter Total iterations

burn Burn-in

thin Thinning

y0 Y_0

design X_0

y Raw input

If it is SSVS or Horseshoe:

pip Posterior inclusion probabilities.

References

Carriero, A., Chan, J., Clark, T. E., & Marcellino, M. (2022). Corrigendum to "Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors" [J. Econometrics 212 (1)(2019) 137-154]. Journal of Econometrics, 227(2), 506-512.

Chan, J., Koop, G., Poirier, D., & Tobias, J. (2019). *Bayesian Econometric Methods (2nd ed., Econometric Exercises)*. Cambridge: Cambridge University Press.

Cogley, T., & Sargent, T. J. (2005). *Drifts and volatilities: monetary policies and outcomes in the post WWII US*. Review of Economic Dynamics, 8(2), 262-302.

Gruber, L., & Kastner, G. (2022). Forecasting macroeconomic data with Bayesian VARs: Sparse or dense? It depends! arXiv.

Huber, F., Koop, G., & Onorante, L. (2021). *Inducing Sparsity and Shrinkage in Time-Varying Parameter Models*. Journal of Business & Economic Statistics, 39(3), 669-683.

Korobilis, D., & Shimizu, K. (2022). *Bayesian Approaches to Shrinkage and Sparse Estimation*. Foundations and Trends® in Econometrics, 11(4), 230-354.

Ray, P., & Bhattacharya, A. (2018). Signal Adaptive Variable Selector for the Horseshoe Prior. arXiv.

var_lm

Fitting Vector Autoregressive Model of Order p Model

Description

This function fits VAR(p) using OLS method.

Usage

```
var_lm(y, p = 1, include_mean = TRUE, method = c("nor", "chol", "qr"))
## S3 method for class 'varlse'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'varlse'
logLik(object, ...)
## S3 method for class 'varlse'
AIC(object, ...)
## S3 method for class 'varlse'
BIC(object, ...)
is.varlse(x)
is.bvharmod(x)
## S3 method for class 'varlse'
knit_print(x, ...)
```

Arguments

y Time series data of which columns indicate the variables

p Lag of VAR (Default: 1)

include_mean Add constant term (Default: TRUE) or not (FALSE)

method Method to solve linear equation system. (nor: normal equation (default), chol:

Cholesky, and qr: HouseholderQR)

x A varlse object digits digit option to print

... not used

object A varlse object

Details

This package specifies VAR(p) model as

$$Y_t = A_1 Y_{t-1} + \dots + A_p Y_{t-p} + c + \epsilon_t$$

If include_type = TRUE, there is constant term. The function estimates every coefficient matrix.

Consider the response matrix Y_0 . Let T be the total number of sample, let m be the dimension of the time series, let p be the order of the model, and let n = T - p. Likelihood of VAR(p) has

$$Y_0 \mid B, \Sigma_e \sim MN(X_0B, I_s, \Sigma_e)$$

where X_0 is the design matrix, and MN is matrix normal distribution.

Then log-likelihood of vector autoregressive model family is specified by

$$\log p(Y_0 \mid B, \Sigma_e) = -\frac{nm}{2} \log 2\pi - \frac{n}{2} \log \det \Sigma_e - \frac{1}{2} tr((Y_0 - X_0 B) \Sigma_e^{-1} (Y_0 - X_0 B)^T)$$

In addition, recall that the OLS estimator for the matrix coefficient matrix is the same as MLE under the Gaussian assumption. MLE for Σ_e has different denominator, n.

$$\hat{B} = \hat{B}^{LS} = \hat{B}^{ML} = (X_0^T X_0)^{-1} X_0^T Y_0$$

$$\hat{\Sigma}_e = \frac{1}{s - k} (Y_0 - X_0 \hat{B})^T (Y_0 - X_0 \hat{B})$$

$$\tilde{\Sigma}_e = \frac{1}{s} (Y_0 - X_0 \hat{B})^T (Y_0 - X_0 \hat{B}) = \frac{s - k}{s} \hat{\Sigma}_e$$

Let $\tilde{\Sigma}_e$ be the MLE and let $\hat{\Sigma}_e$ be the unbiased estimator (covmat) for Σ_e . Note that

$$\tilde{\Sigma}_e = \frac{n-k}{n} \hat{\Sigma}_e$$

Then

$$AIC(p) = \log \det \Sigma_e + \frac{2}{n}$$
(number of freely estimated parameters)

where the number of freely estimated parameters is mk, i.e. pm^2 or $pm^2 + m$. Let $\tilde{\Sigma}_e$ be the MLE and let $\hat{\Sigma}_e$ be the unbiased estimator (covmat) for Σ_e . Note that

$$\tilde{\Sigma}_e = \frac{n-k}{T} \hat{\Sigma}_e$$

Then

$$BIC(p) = \log \det \Sigma_e + \frac{\log n}{n}$$
 (number of freely estimated parameters)

where the number of freely estimated parameters is pm^2 .

Value

var_lm() returns an object named var1se class. It is a list with the following components:

coefficients Coefficient Matrix

fitted.values Fitted response values

residuals Residuals

covmat LS estimate for covariance matrix

df Numer of Coefficients

```
p Lag of VAR
m Dimension of the data
obs Sample size used when training = totobs - p
totobs Total number of the observation
call Matched call
process Process: VAR
type include constant term (const) or not (none)
design Design matrix
y Raw input
y0 Multivariate response matrix
method Solving method
call Matched call
It is also a byharmod class.
```

References

Lütkepohl, H. (2007). New Introduction to Multiple Time Series Analysis. Springer Publishing.

Akaike, H. (1969). Fitting autoregressive models for prediction. Ann Inst Stat Math 21, 243-247.

Akaike, H. (1971). Autoregressive model fitting for control. Ann Inst Stat Math 23, 163-180.

Akaike H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, vol. 19, no. 6, pp. 716-723.

Akaike H. (1998). *Information Theory and an Extension of the Maximum Likelihood Principle*. In: Parzen E., Tanabe K., Kitagawa G. (eds) Selected Papers of Hirotugu Akaike. Springer Series in Statistics (Perspectives in Statistics). Springer, New York, NY.

Gideon Schwarz. (1978). Estimating the Dimension of a Model. Ann. Statist. 6 (2) 461 - 464.

See Also

• summary.varlse() to summarize VAR model

Examples

```
# Perform the function using etf_vix dataset
fit <- var_lm(y = etf_vix, p = 2)
class(fit)
str(fit)

# Extract coef, fitted values, and residuals
coef(fit)
head(residuals(fit))
head(fitted(fit))</pre>
```

vhar_bayes

VHARtoVMA

Convert VHAR to VMA(infinite)

Description

Convert VHAR process to infinite vector MA process

Usage

VHARtoVMA(object, lag_max)

Arguments

object A vharlse object

lag_max Maximum lag for VMA

Details

Let VAR(p) be stable and let VAR(p) be $Y_0 = X_0B + Z$

VHAR is VAR(22) with

$$Y_0 = X_1 B + Z = ((X_0 \tilde{T}^T))\Phi + Z$$

Observe that

$$B = \tilde{T}^T \Phi$$

Value

VMA coefficient of k(lag-max + 1) x k dimension

References

Lütkepohl, H. (2007). New Introduction to Multiple Time Series Analysis. Springer Publishing.

vhar_bayes

Fitting Bayesian VHAR with Coefficient and Covariance Prior

Description

[Maturing] This function fits BVHAR. Covariance term can be homoskedastic or heteroskedastic (stochastic volatility). It can have Minnesota, SSVS, and Horseshoe prior.

vhar_bayes 121

Usage

```
vhar_bayes(
 у,
  har = c(5, 22),
 num_chains = 1,
  num_iter = 1000,
  num_burn = floor(num_iter/2),
  thinning = 1,
  bayes_spec = set_bvhar(),
  cov_spec = set_ldlt(),
  intercept = set_intercept(),
  include_mean = TRUE,
 minnesota = c("longrun", "short", "no"),
  save_init = FALSE,
  convergence = NULL,
  verbose = FALSE,
  num\_thread = 1
)
## S3 method for class 'bvharldlt'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'bvharldlt'
knit_print(x, ...)
```

Arguments

у	Time series data of which columns indicate the variables
har	Numeric vector for weekly and monthly order. By default, c(5, 22).
num_chains	Number of MCMC chains
num_iter	MCMC iteration number
num_burn	Number of burn-in (warm-up). Half of the iteration is the default choice.
thinning	Thinning every thinning-th iteration
bayes_spec	A BVHAR model specification by set_bvhar() (default) set_weight_bvhar(), set_ssvs(), or set_horseshoe().
cov_spec	[Experimental] SV specification by set_sv().
intercept	[Experimental] Prior for the constant term by set_intercept().
include_mean	Add constant term (Default: TRUE) or not (FALSE)
minnesota	Apply cross-variable shrinkage structure (Minnesota-way). Two type: short type and longrun (default) type. You can also set no.
save_init	Save every record starting from the initial values (TRUE). By default, exclude the initial values in the record (FALSE), even when num_burn = 0 and thinning = 1. If num_burn > 0 or thinning != 1, this option is ignored.
convergence	Convergence threshold for rhat < convergence. By default, NULL which means no warning.

vhar_bayes

verbose Print the progress bar in the console. By default, FALSE.

num_thread Number of threads x bvharldlt object digits digit option to print

... not used

Details

Cholesky stochastic volatility modeling for VHAR based on

$$\Sigma_t^{-1} = L^T D_t^{-1} L$$

Value

vhar_bayes() returns an object named byharsv class. It is a list with the following components:

coefficients Posterior mean of coefficients.

chol_posterior Posterior mean of contemporaneous effects.

param Every set of MCMC trace.

param_names Name of every parameter.

group Indicators for group.

num_group Number of groups.

df Numer of Coefficients: 3m + 1 or 3m

p 3 (The number of terms. It contains this element for usage in other functions.)

week Order for weekly term

month Order for monthly term

m Dimension of the data

obs Sample size used when training = totobs - p

totobs Total number of the observation

call Matched call

process Description of the model, e.g. VHAR_SSVS_SV, VHAR_Horseshoe_SV, or VHAR_minnesota-part_SV

type include constant term (const) or not (none)

spec Coefficients prior specification

sv log volatility prior specification

init Initial values

intercept Intercept prior specification

chain The numer of chains

iter Total iterations

burn Burn-in

thin Thinning

HARtrans VHAR linear transformation matrix

```
\mathbf{y0} \ Y_0
\mathbf{design} \ X_0
\mathbf{y} \ \text{Raw input}
If it is SSVS or Horseshoe:
```

pip Posterior inclusion probabilities.

References

Kim, Y. G., and Baek, C. (2024). *Bayesian vector heterogeneous autoregressive modeling*. Journal of Statistical Computation and Simulation, 94(6), 1139-1157.

Kim, Y. G., and Baek, C. (n.d.). Working paper.

vhar_lm

Fitting Vector Heterogeneous Autoregressive Model

Description

This function fits VHAR using OLS method.

Usage

```
vhar_lm(
  у,
  har = c(5, 22),
 include_mean = TRUE,
 method = c("nor", "chol", "qr")
## S3 method for class 'vharlse'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'vharlse'
logLik(object, ...)
## S3 method for class 'vharlse'
AIC(object, ...)
## S3 method for class 'vharlse'
BIC(object, ...)
is.vharlse(x)
## S3 method for class 'vharlse'
knit_print(x, ...)
```

Arguments

y Time series data of which columns indicate the variables

har Numeric vector for weekly and monthly order. By default, c(5, 22).

include_mean Add constant term (Default: TRUE) or not (FALSE)

method Method to solve linear equation system. (nor: normal equation (default), chol:

Cholesky, and qr: HouseholderQR)

x A vharlse object digits digit option to print

... not used

object A vharlse object

Details

For VHAR model

$$Y_t = \Phi^{(d)} Y_{t-1} + \Phi^{(w)} Y_{t-1}^{(w)} + \Phi^{(m)} Y_{t-1}^{(m)} + \epsilon_t$$

the function gives basic values.

Value

vhar_lm() returns an object named vharlse class. It is a list with the following components:

coefficients Coefficient Matrix

fitted.values Fitted response values

residuals Residuals

covmat LS estimate for covariance matrix

df Numer of Coefficients

m Dimension of the data

obs Sample size used when training = totobs - month

y0 Multivariate response matrix

p 3 (The number of terms. vharlse contains this element for usage in other functions.)

week Order for weekly term

month Order for monthly term

totobs Total number of the observation

process Process: VHAR

type include constant term (const) or not (none)

HARtrans VHAR linear transformation matrix

design Design matrix of VAR(month)

y Raw input

method Solving method

call Matched call

It is also a byharmod class.

References

Baek, C. and Park, M. (2021). *Sparse vector heterogeneous autoregressive modeling for realized volatility*. J. Korean Stat. Soc. 50, 495-510.

Bubák, V., Kočenda, E., & Žikeš, F. (2011). *Volatility transmission in emerging European foreign exchange markets*. Journal of Banking & Finance, 35(11), 2829-2841.

Corsi, F. (2008). A Simple Approximate Long-Memory Model of Realized Volatility. Journal of Financial Econometrics, 7(2), 174-196.

See Also

- coef.vharlse(), residuals.vharlse(), and fitted.vharlse()
- summary.vharlse() to summarize VHAR model

Examples

```
# Perform the function using etf_vix dataset
fit <- vhar_lm(y = etf_vix)
class(fit)
str(fit)

# Extract coef, fitted values, and residuals
coef(fit)
head(residuals(fit))
head(fitted(fit))</pre>
```

Index

* datasets	bvhar_ssvs(), 91
etf_vix,48	bvhar_sv, 30
AIC.bvarflat(bvar_flat), 10	choose_bayes, 32
AIC.bvarmn (bvar_minnesota), 14	choose_bayes(), 33
AIC.bvharmn(bvhar_minnesota), 24	choose_bvar, 33
AIC.varlse(var_lm), 116	choose_bvar(), 33
AIC.vharlse(vhar_lm), 123	choose_bvhar (choose_bvar), 33
autolayer.predbvhar	choose_ssvs, 35
(autoplot.predbvhar), 6	choose_ssvs(), 18, 28
autoplot.bvhardynsp, 4	choose_var, 37
autoplot.bvharirf,4	class, 9, 11, 13, 16, 18, 21, 23, 26, 29, 31, 33,
autoplot.bvharsp, 5	35, 51, 53, 61, 70, 82, 109, 111, 112,
autoplot.normaliw, 6	115, 118, 122, 124
autoplot.predbvhar, 6	coef, 37
autoplot.summary.bvharsp,7	coef(), 103, 104
autoplot.summary.normaliw,8	coef.bvarflat(), 12
	coef.vharlse(), 125
$bayesplot::mcmc_areas(), 5, 8$	compute_dic, 38
$bayesplot::mcmc_dens(), 5, 8$	compute_logml, 39
$bayesplot::mcmc_trace(), 5, 8$	conf_fdr, 41
BIC.bvarflat (bvar_flat), 10	conf_fnr, 42
BIC.bvarmn (bvar_minnesota), 14	conf_fscore, 43
BIC.bvharmn(bvhar_minnesota), 24	conf_prec, 44
BIC.varlse(var_lm), 116	conf_recall, 45
BIC.vharlse(vhar_lm), 123	confusion, 40
bound_bvhar, 9	confusion(), <i>41–45</i>
bound_bvhar(), 33	
bvar_flat, 10	divide_ts, 46
bvar_flat(), 82	divide_ts(), <i>51</i> , <i>53</i>
bvar_horseshoe, 12	dynamic_spillover, 46
bvar_minnesota, 14	
$bvar_minnesota(), 33, 82$	etf_vix,48
bvar_ssvs, 17	6:44 1 40
bvar_ssvs(), <i>91</i>	fitted, 49
bvar_sv, 20	fitted.bvarflat(), 12
byhar_horseshoe, 22	fitted.vharlse(), 125
byhar_minnesota() 23 82	foreach::foreach(), 37
byhar_minnesota(), 33, 82	forecast_expand, 50
bvhar_ssvs, 27	forecast_roll, 52

INDEX 127

FPE, 54	knit_print.bvarldlt(var_bayes), 114
fromse, 55	knit_print.bvarmn(bvar_minnesota), 14
	knit_print.bvarssvs (bvar_ssvs), 17
geom_eval, 56	knit_print.bvarsv (bvar_sv), 20
gg_loss, 56	knit_print.bvharcv(forecast_roll), 52
<pre>ggplot2::facet_grid(), 7</pre>	knit_print.bvhardynsp
ggplot2::facet_wrap(), 4, 7, 57	(dynamic_spillover), 46
ggplot2::geom_hline(), 57	knit_print.bvharemp(choose_bvar), 33
ggplot2::geom_path(), 5, 7, 56, 57	knit_print.bvharhm(bvhar_minnesota), 24
ggplot2::geom_tile(), 7	knit_print.bvharhs (bvhar_horseshoe), 22
ggplot2::scale_colour_viridis_d, 7, 57	knit_print.bvharirf(irf.varlse), 60
ggplot2::scale_fill_viridis_d(), 7, 57	knit_print.bvharldlt (vhar_bayes), 120
886101111011111111111111111111111111111	knit_print.bvharmn(bvhar_minnesota), 24
HQ, 57	knit_print.bvharpriorspec (set_lambda),
	86
init_ssvs, 59	knit_print.bvharspec(set_bvar), 81
init_ssvs(), 18, 19, 28, 29	knit_print.bvharspillover(spillover),
irf (irf.varlse), 60	105
irf(),5	knit_print.bvharssvs(bvhar_ssvs), 27
irf.varlse, 60	knit_print.bvharsv (bvhar_sv), 30
is.boundbvharemp (bound_bvhar), 9	knit_print.horseshoespec
is.bvarflat (bvar_flat), 10	(set_horseshoe), 85
is.bvarmn (bvar_minnesota), 14	knit_print.interceptspec
is.bvharcv (forecast_roll), 52	(set_intercept), 86
is.bvharemp (choose_bvar), 33	knit_print.predbvhar(predict), 68
is.bvharirf(irf.varlse), 60	
is.bvharmn (bvhar_minnesota), 24	knit_print.ssvsinit(init_ssvs), 59
is.bvharmod (var_lm), 116	knit_print.ssvsinput(set_ssvs), 90
is.bvharpriorspec (set_lambda), 86	knit_print.summary.bvharsp
is.bvharspec (set_bvar), 81	(print.summary.bvharsp), 73
is.covspec (set_ldlt), 88	knit_print.summary.normaliw
is.dlspec(set_dl), 84	(summary.normaliw), 108
is.horseshoespec (set_horseshoe), 85	knit_print.summary.varlse
is.interceptspec (set_intercept), 86	(summary.varlse), 110
is.ldltspec (set_ldlt), 88	knit_print.summary.vharlse
is.ngspec (set_ng), 89	(summary.vharlse), 111
is.predbvhar (predict), 68	knit_print.varlse(var_lm), 116
is.ssvsinit (init_ssvs), 59	knit_print.vharlse(vhar_lm), 123
is.ssvsinput (set_ssvs), 90	log ik hyarflat (byar flat) 10
is.stable, 62	<pre>logLik.bvarflat (bvar_flat), 10 logLik.bvarmn (bvar_minnesota), 14</pre>
is.svspec(set_ldlt), 88	
is.varlse(var_lm), 116	<pre>logLik.bvharmn(bvhar_minnesota), 24 logLik.varlse(var_lm), 116</pre>
is.vharlse(vhar_lm), 123	• , , , , , , , , , , , , , , , , , , ,
13. Vilai 15e (Vilai _1111), 123	logLik.vharlse(vhar_lm), 123
<pre>knit_print.boundbvharemp(bound_bvhar),</pre>	mae, 63
9	mae(), 57
knit_print.bvarflat(bvar_flat), 10	mape, 64
knit_print.bvarhm(bvar_minnesota), 14	mape(), 57
knit_print.bvarhs(bvar_horseshoe), 12	mase, 65

128 INDEX

mase(), <i>57</i>	<pre>print.vharlse(vhar_lm), 123</pre>
matrix, 38, 50, 76	
mrae, 66	relmae, 74
mse, 67	relspne, 75
mse(), 57	residuals, 76
	residuals.bvarflat(), 12
optimParallel::optimParallel(), 15, 25,	residuals.vharlse(), 125
33–35	rmafe, 77
	rmape, 78
posterior::draws_df, <i>13</i> , <i>19</i> , <i>23</i> , <i>29</i>	rmase, 79
predict, 68	rmsfe, 80
<pre>predict.bvarflat(), 12</pre>	
<pre>print.boundbvharemp(bound_bvhar), 9</pre>	set_bvar, 81
print.bvarflat(bvar_flat), 10	set_bvar(), 9, 15, 17, 20, 35, 87, 96, 97, 114
print.bvarhm(bvar_minnesota),14	<pre>set_bvar_flat (set_bvar), 81</pre>
print.bvarhs(bvar_horseshoe),12	set_bvar_flat(), <i>11</i> , <i>12</i>
print.bvarldlt(var_bayes), 114	set_bvhar(set_bvar),81
print.bvarmn(bvar_minnesota), 14	set_bvhar(), 9, 25-27, 30, 35, 87, 99, 100,
<pre>print.bvarssvs(bvar_ssvs), 17</pre>	121
print.bvarsv(bvar_sv), 20	set_dl, 84
<pre>print.bvharcv(forecast_roll), 52</pre>	set_horseshoe, 85
<pre>print.bvhardynsp(dynamic_spillover), 46</pre>	set_horseshoe(), 13, 20, 23, 24, 30, 114, 121
<pre>print.bvharemp (choose_bvar), 33</pre>	set_intercept, 86
<pre>print.bvharhm(bvhar_minnesota), 24</pre>	set_intercept(), 20, 31, 114, 121
<pre>print.bvharhs (bvhar_horseshoe), 22</pre>	set_lambda, 86
<pre>print.bvharirf(irf.varlse), 60</pre>	set_lambda(), <i>82</i> , <i>83</i>
print.bvharldlt (vhar_bayes), 120	set_ldlt,88
print.bvharmn (bvhar_minnesota), 24	set_ldlt(), 88
<pre>print.bvharpriorspec (set_lambda), 86</pre>	set_ng, 89
<pre>print.bvharspec (set_bvar), 81</pre>	set_psi(set_lambda), 86
print.bvharspillover(spillover), 105	set_psi(), 82, 83
print.bvharssvs (bvhar_ssvs), 27	set_ssvs, 90
print.bvharsv (bvhar_sv), 30	set_ssvs(), 18-20, 28-30, 101, 114, 121
print.covspec(set_ldlt), 88	set_sv(set_ldlt), 88
print.dlspec(set_dl), 84	set_sv(), 20, 30, 88, 114, 121
print.horseshoespec (set_horseshoe), 85	<pre>set_weight_bvhar(set_bvar), 81</pre>
print.interceptspec (set_intercept), 86	set_weight_bvhar(), 9, 25-27, 30, 35, 87,
print.ngspec(set_ng), 89	99, 100, 121
print.predbvhar (predict), 68	sim_gig, 93
print.ssvsinit(init_ssvs), 59	sim_horseshoe_var, 94
print.ssvsinput(set_ssvs), 90	sim_horseshoe_vhar(sim_horseshoe_var),
print.summary.bvharsp, 73	94
print.summary.normaliw	sim_iw, 95
(summary.normaliw), 108	sim_matgaussian, 95
<pre>print.summary.varlse(summary.varlse),</pre>	sim_mncoef, 96
110	sim_mniw, 97
print.summary.vharlse	sim_mnormal, 98
(summary.vharlse), 111	sim_mnvhar_coef, 99
print.varlse(var_lm), 116	$sim_mvt, 100$

INDEX 129

```
sim_ssvs_var, 101
sim_ssvs_vhar (sim_ssvs_var), 101
sim_var, 103
sim_vhar, 104
spillover, 105
spne, 106
stableroot, 107
stats::AIC(), 58
stats::approx(), 48
stats::coef(), 37
stats::fitted(), 49
stats::optim(), 32, 33, 35, 87
stats::residuals(), 76
summary.bvharsp
        (print.summary.bvharsp), 73
summary.hsmod(print.summary.bvharsp),
summary.ngmod(print.summary.bvharsp),
        73
summary.normaliw, 108
summary.normaliw(), 17, 27
summary.ssvsmod
        (print.summary.bvharsp), 73
summary.varlse, 110
summary.varlse(), 119
summary.vharlse, 111
summary.vharlse(), 125
var_bayes, 114
var_lm, 116
var_lm(), 103, 104
VARtoVMA, 113
VARtoVMA(), 62
vhar_bayes, 120
vhar_bayes(), 30
vhar_1m, 123
VHARtoVMA, 120
VHARtoVMA(), 62
```