${ m MA201}$ - Differential Equations

Indian Institute of Technology Ropar September 15, 2020

Contents

1	Line	ear Dif	ferential Equations
	1.1	Solutio	on of an ODE
	1.2	First (Order Ordinary Differential Equations
		1.2.1	Solving First Order ODEs
		1.2.2	Exact Differential Equations
		1.2.3	Integrating Factors
		1.2.4	First Order Linear Differential Equation
		1.2.5	Bernoulli Equations
	1.3	Initial	Value Problems
		1.3.1	Peano Existence Theorem
		1.3.2	Picard's Existence and Uniqueness Theorem
		1.3.3	Lipschitz Condition
		1.3.4	Picard's Existence and Uniqueness Theorem - 2
		1.3.5	Picard's Method of Successive Approximations

Chapter 1

Linear Differential Equations

A general n^{th} order differential equation can be written as

$$F(x, y, \frac{dy}{dx}, \cdots, \frac{d^n y}{dx^n}) = 0$$

An n^{th} order ODE is *linear*, if it can be written in the form

$$a_0(x)\frac{d^n y}{dx^n} + a_1(x)\frac{d^{n-1} y}{dx^{n-1}} + \dots + a_n(x)y = g(x)$$

where the functions $a_i(x)$ are called the coefficient functions.

A non-linear ODE is an ODE which is NOT linear.

1.1 Solution of an ODE

A solution of the n^{th} order ODE

$$F(x, y, \frac{dy}{dx}, \cdots, \frac{d^n y}{dx^n}) = 0$$

on an interval $I \subseteq \mathbb{R}$ is a function $y = \phi(x)$ which is defined on I, which is at least n times differentiable on I, and which satisfies the equation.

1.2 First Order Ordinary Differential Equations

Consider the first-order ODE of the form

$$\frac{dy}{dx} = f(x, y) \tag{1.1}$$

The eq. (1.1) can always be written as

$$M(x,y)dx + N(x,y)dy = 0 (1.2)$$

1.2.1 Solving First Order ODEs

We assume that the ODE of the form eq. (1.1) or eq. (1.2) has a solution.

1. Separable Equations

If the eq. (1.1) or eq. (1.2) can be written in the form

$$\frac{dy}{dx} = g(x) \cdot h(y)$$

or

$$f_1(x)\phi_1(y)dx + f_2(x)\phi_2(y)dy = 0$$

then the DE is called a separable equation and can be solved by separating variables and integrating.

2. Homogeneous Equations

If the eq. (1.2) can be written in the form

$$\frac{dy}{dx} = f(\frac{x}{y})$$

then the DE is called a homogeneous equation and can be solved by substituting y = vx and $\frac{dy}{dx} = v + x \frac{dv}{dx}$. After substitution, the equation changes to separable equation.

3. Exact Equations

If the eq. (1.2) can be written in the form

$$dF(x,y) = 0$$

without multiplying by any factor, then the DE is called a homogeneous equation and its general solution solution is

$$F(x,y) = c$$

where c is an arbitrary constant.

Note: Total differential := dF and it is defined by the formula

$$dF(x,y) = \frac{\partial F(x,y)}{\partial x} dx + \frac{\partial F(x,y)}{\partial y} dy$$

1.2.2 Exact Differential Equations

How to check if a DE of form eq. (1.2) is exact or not.

Theorem 1.1 Consider the differential equation

$$M(x,y)dx + N(x,y)dy = 0 (1.3)$$

where M(x,y) and N(x,y) have continuous first partial derivatives at all points (x,y) in rectangular domain D. Then, the differential equation 1.3 is exact **iff**

$$\frac{\partial M}{\partial y}(x,y) = \frac{\partial N}{\partial x}(x,y)$$

1.2.3 Integrating Factors

Sometimes an equation **not exact** but can be **made exact** by multiplying it by some function of x and y. The function which when multiplied, makes the equation exact is called *integrating factor*.

1: If
$$\frac{1}{N} \left[\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right]$$
 be a function of x only

$$\frac{1}{N} \left[\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right] = g(x)$$

then $e^{\int g(x)dx}$ is an IF of the equation.

2: If $\frac{1}{M} \left[\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right]$ be a function of y only

$$\frac{1}{M} \left[\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right] = h(y)$$

then $e^{\int h(y)dy}$ is an IF of the equation.

3: If $Mx + Ny \neq 0$ and the equation is homogeneous, then $\frac{1}{Mx + Ny}$ is an IF of the equation.

4: If $Mx - Ny \neq 0$ and the equation can be written as

$$\{f_1(xy)\} ydx + \{f_2(xy)\} xdy = 0$$

then $\frac{1}{Mx - Nu}$ is an IF of the equation.

1.2.4 First Order Linear Differential Equation

The first order ODE is linear in the dependent variable y and independent variable x if it can be written in the form

$$\frac{dy}{dx} + P(x)y = Q(x) \tag{1.4}$$

where P and Q are function of x only.

Solution

- If P(x) = 0, then the eq. (1.4) degenerates into a simple separable equation.
- If P(x)! = 0, then the eq. (1.4) is **not** exact. By rule 1 of section 1.2.3, integrating factor is $e^{\int P(x)dx}$. Therefore, the solution is

$$y(x) = \frac{\int Q(x)e^{\int P(x)dx}dx}{e^{\int P(x)dx}}$$

where c is a constant.

1.2.5 Bernoulli Equations

An equation of the form

$$\frac{dy}{dx} + P(x)y = Q(x)y^n \tag{1.5}$$

is called a Bernoulli DE, where P and Q are functions of X alone.

Note: When $n \in \{0,1\}$, then eq. (1.5) is a linear DE.

Theorem 1.2 Suppose $n \notin \{0,1\}$, then the transformation $v = y^{1-n}$ reduces the eq. (1.5) to a linear DE in v.

1.3 Initial Value Problems

Consider the first order DE of the form

$$\begin{cases} \frac{dy}{dx} = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

where f is a real-valued function defined in some domain D in xy-plane.

$$D = \{(x, y) : a \le x \le b, c \le y \le d\}$$

where a, b, c and d re real finite constants.

This type of DE is called *initial value problem*(IVP). and $y(x_0) = y_0$ is called an *initial condition*. A IVP may have zero, one, finite or infinite solutions.

1.3.1 Peano Existence Theorem

Let D be a rectangular domain that contains point x_0, y_0 in its interior. If f(x, y) is a **continuous** function in the domain D, then there exists a solution to the initial value problem on some interval $I = (x_0 - h, x_0 + h)$ where h > 0, sufficiently small.

1.3.2 Picard's Existence and Uniqueness Theorem

Let D be a rectangular domain that contains point x_0, y_0 in its interior. If f(x, y) and $\frac{\partial f}{\partial y}(x, y)$ are **continuous** function in the domain D, then there exists some interval $I = (x_0 - h, x_0 + h), h > 0$ contained in [a, b] and a **unique** function $\phi(x)$ defined on I that is a solution of the initial value problem.

Note: If f(x,y) does not satisfy the hypotheses of *Picard Existence and Uniqueness Theorem*, then we **cannot** conclude about the solution.

1.3.3 Lipschitz Condition

The function $f: D \to \mathbb{R}$ is said to be Lipschitz w.r.t. y in D if $\exists k > 0$ such that

$$|f(x, y_1) - f(x, y_2)| \le k|y_1 - y_2|$$

for all $(x, y_1), (x, y_2) \in D$.

k is called Lipschitz constant.

1.3.4 Picard's Existence and Uniqueness Theorem - 2

Let D be a rectangular domain that contains point (x_0, y_0) in its interior. Let f satisfies the following two conditions:

- 1: f(x,y) is continuous in D
- **2:** f(x,y) satisfies a Lipschitz condition w.r.t. in y in D

Consider the rectangle $R: |x-x_0| \le \alpha, |y-y_0| \le \beta$ in D. Then, there exists a **unique** solution to the IVP in the interval $I = [x_0 - h, x_0 + h]$, where $h = \min\{\alpha, \frac{\beta}{M}\}, M = \max_{(x,y) \in R} |f(x,y)|$.

1.3.5 Picard's Method of Successive Approximations

In the IVP

$$\begin{cases} \frac{dy}{dx} = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

Approximations are as follows

$$\begin{aligned} y_1(x) &= y_0 + \int_{x_0}^x f(t,y_0) dt & \text{First approximation} \\ y_2(x) &= y_0 + \int_{x_0}^x f(t,y_1(t)) dt & \text{Second approximation} \\ &\vdots \\ y_n(x) &= y_0 + \int_{x_0}^x f(t,y_{n-1}(t)) dt & n^{th} \text{ approximation} \end{aligned}$$

These approximations converge to the solution of the IVP

Solution =
$$\lim_{n\to\infty} y_n(x)$$

Bibliography