Activity – Tautologies, Predicates, Quantifiers

Name:			
Name:			
One CM:			

- 1) Show that the following conditional statement is a tautology by using a truth table.
 - $(p \land q) \rightarrow p$

p	q	p∧q	$(\mathbf{p} \wedge \mathbf{q}) \rightarrow \mathbf{p}$
T	T		
T	F		
F	Т		
F	F		

- 2) Given the following:
 - A data type named: Student
 - P(x) be the statement "x can speak Spanish"
 - Q(x) be the statement "x knows the computer language C++"
 - S(x) be the statement "x is a student at your school"

Express each of these sentences (below) in terms of Student, P(x), Q(x), and S(x) using quantifiers and logical connectives. The domain for quantifiers consists Student.

- a) There is a student at your school who can speak Spanish but who doesn't know C++.
- b) Every student at your school either can speak Spanish or knows C++.
- 3) Let P(x) be the statement " $x = x^2$." If the domain consists of the integers, what are these truth values?
 - a) P(0)
 - b) P(1)
 - c) P(2)
 - d) P(-1)
 - e) $\exists x:Integer P(x)$
 - f) \forall x:Integer P(x)
- 4) Find a counterexample, if possible, to these universally quantified statements
 - a) \forall x:Integer $(x^2 \ge x)$
 - b) \forall x:Integer (x>0 \vee x<0)
- 5) Given an array a1[10] declared in C, C++, or Java, write a quantified proposition stating the fact that a1 is sorted in non-decreasing order