CS601: Software Development for Scientific Computing

Autumn 2023

Week5: Matrix Computations with Dense Matrices, Library functions

Computational Intensity – Matrix-Matrix Product

- Words moved = $n^3+3n^2 = n^3+O(n^2)$
- Number of arithmetic operations = 2n³ (from slide 35)
- computational intensity q≈2n³/n³ = 2. (computation to communication ratio)
- Can we do better?

Insight - Data reuse

 How many memory accesses needed to compute a row of C, where 4096x4096 are the sizes of matrices.

 How many memory accesses needed to compute a tile of C of size 64x64?

Blocked Matrix Multiply

• For N=4:

$$\begin{bmatrix} Cj \\ = \end{bmatrix} \begin{bmatrix} Cj \\ + \end{bmatrix} \begin{bmatrix} A \\ \end{bmatrix} * \begin{bmatrix} Bj \\ \end{bmatrix} = \begin{bmatrix} Cj \\ \end{bmatrix} \begin{bmatrix} n \\ + \sum \\ k=1 \end{bmatrix} * \begin{bmatrix} A(:,k) \\ \end{bmatrix} = \begin{bmatrix} Bj(k,:) \end{bmatrix}$$

for k=1 to n
$$\begin{bmatrix} c_{11} \\ c_{21} \\ c_{31} \\ c_{41} \end{bmatrix} = \begin{bmatrix} c_{11} \\ c_{21} \\ c_{31} \\ c_{41} \end{bmatrix} + \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} * \begin{bmatrix} b_{11} \\ b_{21} \\ b_{31} \\ b_{41} \end{bmatrix}$$

.....

for k=1 to n
$$\begin{bmatrix} c_{14} \\ c_{24} \\ c_{34} \\ c_{44} \end{bmatrix} = \begin{bmatrix} c_{14} \\ c_{24} \\ c_{34} \\ c_{44} \end{bmatrix} + \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} * \begin{bmatrix} b_{14} \\ b_{24} \\ b_{34} \\ b_{44} \end{bmatrix}$$

$$\begin{bmatrix} c_{11} & c_{12} & c_{13} & c_{14} \\ c_{21} & c_{22} & c_{23} & c_{24} \\ c_{31} & c_{42} & c_{43} & c_{44} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & c_{13} & c_{14} \\ c_{21} & c_{22} & c_{23} & c_{24} \\ c_{31} & c_{42} & c_{43} & c_{44} \end{bmatrix} + \begin{bmatrix} c_{12} & c_{13} & c_{14} \\ c_{21} & c_{22} & c_{23} & c_{24} \\ c_{31} & c_{42} & c_{43} & c_{44} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & c_{13} & c_{14} \\ c_{21} & c_{22} & c_{23} & c_{24} \\ c_{32} & c_{33} & c_{34} \\ c_{41} & c_{42} & c_{43} & c_{44} \end{bmatrix} + \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & b_{13} & b_{14} \\ b_{21} & b_{22} & b_{23} & b_{24} \\ b_{31} & b_{32} & b_{33} & b_{34} \\ b_{41} & b_{42} & b_{43} & b_{44} \end{bmatrix}$$

j=1 for k=1 to n
$$\begin{bmatrix} c_{11} \\ c_{21} \\ c_{31} \\ c_{41} \end{bmatrix} = \begin{bmatrix} c_{11} \\ c_{21} \\ c_{31} \\ c_{41} \end{bmatrix} + \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} * \begin{bmatrix} b_{11} \\ b_{21} \\ b_{31} \\ b_{41} \end{bmatrix}$$

$$k=1 \begin{bmatrix} c_{11} \\ c_{21} \\ c_{31} \end{bmatrix} = \begin{bmatrix} c_{11} \\ c_{21} \\ c_{31} \end{bmatrix} + \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \end{bmatrix} * [b_{11}]$$
 First row of B_1

$$= \begin{bmatrix} c_{11} \\ c_{21} \\ c_{31} \\ c_{41} \end{bmatrix} = \begin{bmatrix} c_{11} \\ c_{21} \\ c_{31} \\ c_{41} \end{bmatrix} + \begin{bmatrix} a_{11}b_{11} \\ a_{21}b_{11} \\ a_{31}b_{11} \\ a_{41}b_{11} \end{bmatrix}$$

- What is required to be in fast memory
- What is operated upon

Nikhil Hegde

 B_4

 b_{24}

$$k=3 \qquad \begin{bmatrix} c_{11} \\ c_{21} \\ c_{31} \\ c_{41} \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} \\ a_{21}b_{11} + a_{22}b_{21} \\ a_{31}b_{11} + a_{32}b_{21} \\ a_{41}b_{11} + a_{42}b_{21} \end{bmatrix} + \begin{bmatrix} a_{13} \\ a_{23} \\ a_{33} \\ a_{43} \end{bmatrix} * [b_{41}]$$

$$= \begin{bmatrix} c_{11} \\ c_{21} \\ c_{31} \\ c_{41} \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} \\ a_{21}b_{11} + a_{22}b_{21} \\ a_{21}b_{11} + a_{22}b_{21} \\ a_{31}b_{11} + a_{32}b_{21} \\ a_{41}b_{11} + a_{42}b_{21} \end{bmatrix} + \begin{bmatrix} a_{13}b_{31} \\ a_{23}b_{31} \\ a_{23}b_{31} \\ a_{43}b_{31} \end{bmatrix}$$

$$\begin{bmatrix} C_{11} & C_{2} & C_{3} & C_{4} & C_{1} & C_{2} & C_{3} & C_{4} & & A & B_{1} & B_{2} & B_{3} & B_{4} \\ \hline \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} \\ C_{21} & C_{22} & C_{23} & C_{24} \\ C_{31} & C_{32} & C_{33} & C_{34} \\ C_{41} & C_{42} & C_{43} & C_{44} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} \\ C_{21} & C_{22} & C_{23} & C_{24} \\ C_{32} & C_{33} & C_{34} \\ C_{42} & C_{42} & C_{43} & C_{44} \end{bmatrix} + \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{33} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & b_{13} & b_{14} \\ b_{21} & b_{22} & b_{23} & b_{24} \\ b_{31} & b_{32} & b_{33} & b_{34} \\ b_{41} & b_{42} & b_{43} & b_{44} \end{bmatrix}$$

Nikhil Hegde

41

$$\begin{bmatrix} C_{11} & C_{2} & C_{3} & C_{4} & C_{1} & C_{2} & C_{3} & C_{4} \\ C_{21} & C_{22} & C_{23} & C_{24} \\ C_{31} & C_{42} & C_{43} & C_{44} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} \\ C_{21} & C_{22} & C_{23} & C_{24} \\ C_{31} & C_{41} & C_{42} & C_{43} & C_{44} \end{bmatrix} + \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & b_{13} & b_{14} \\ b_{21} & b_{22} & b_{23} & b_{24} \\ b_{31} & b_{32} & b_{33} & b_{34} \\ b_{41} & b_{42} & b_{43} & b_{44} \end{bmatrix}$$

j=2 for k=1 to n
$$\begin{bmatrix} c_{12} \\ c_{22} \\ c_{32} \\ c_{42} \end{bmatrix} = \begin{bmatrix} c_{12} \\ c_{22} \\ c_{32} \\ c_{42} \end{bmatrix} + \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} * \begin{bmatrix} b_{12} \\ b_{22} \\ b_{32} \\ b_{42} \end{bmatrix}$$

- And so on..
- At any point, you need C_j, B_j, and one column of A to be in fast memory

Computational Intensity - Blocked Matrix Multiply

```
for j=1 to N
//Read entire Bj into fast memory of B read once.
//Read entire Cj into fast memory

for k=1 to n
//Read column k of A into fast memory column of A read N times
C(*,j)=C(*,j) + A(*,k)*Bj(k,*) //outer-product
//Write Cj back to slow memory

• Number of arithmetic operations = <math>2n^3 read/write each entry of C
• q=2n^3/(N+3)n^2=2n/N. Good!
```

Blocked Matrix Multiply - General

$$\begin{bmatrix} A_{11} & A_{12} & \dots & A_{1p} \\ A_{21} & A_{22} & \dots & A_{2p} \\ & \vdots & & & \\ A_{q1} & A_{q2} & \dots & A_{qp} \end{bmatrix}$$

$$\begin{bmatrix} B_{11} & B_{12} & \dots & B_{1r} \\ B_{21} & B_{22} & \dots & B_{2r} \\ & & \vdots & & \\ B_{p1} & B_{p2} & \dots & B_{pr} \end{bmatrix}$$

- $A, B, C \in \mathbb{R}^{n \times n}$
- We wish to update C block-by-block: $C_{ij} = C_{ij} + \sum_{k=1}^{p} A_{ik}B_{kj}$
 - Assume that blocks of A, B, and C fit in cache. C_{ij} is roughly n/q by n/r, A_{ij} is roughly n/q by n/p, B_{ij} is roughly n/p by n/r.
 - But how to choose block parameters p, q, r such that assumption holds for a cache of size *M*?
 - i.e. given the constraint that $\frac{n}{a} \times \frac{n}{r} + \frac{n}{a} \times \frac{n}{p} + \frac{n}{p} \times \frac{n}{r} \le M$

Blocked Matrix Multiply - General

• Maximize $\frac{2n^3}{qrp}$ subject to $\frac{n}{q} \times \frac{n}{r} + \frac{n}{q} \times \frac{n}{p} + \frac{n}{p} \times \frac{n}{r} \le M$

$$-q_{opt} = p_{opt} = r_{opt} \approx \sqrt{\frac{n^2}{3M}}$$

- Each block should roughly be a square matrix and occupy one third of the cache size
- Can we design algorithms that are independent of cache size?