简单数学选讲 Preview

4182_543_731

温馨提示

这是一个只保留了题目的预览版。

约定: 课件中 p,q 表示指数, 其它部分默认表示可以是合数。没有范围的数默认 10^9 或者 10^{18} 级别。

- 质因数分解相关
- 欧拉定理
- exgcd
- CRT/同余方程
- 离散对数/bsgs
- 特征根方程
- 原根
- 单位根
- 二次剩余相关
- 组合数取模/Lucas
- 类欧几里得算法
- Stern-Brocot Tree

•

质因数分解

欧拉定理

Problem 1

求 $2^{2^{2^2}} \pmod{m}$, $m \le 10^9$,可以证明它良定义。

exgcd

经典问题

给定正整数 x, y, 求一组整数 a, b 使得 $ax + by = \gcd(x, y)$, 可以证明一定有解。

欧几里得算法的思想在之后的某些部分中也有体现。

4182_543_731

综合练习

Problem 2

求 $a^n \equiv n \pmod{m}$ 的一个解, $m \le 10^9$

CRT

CRT

给定若干两两互质的 b_1, \dots, b_k 。每一种可能的

 $(r_1, r_2, \dots, r_k) = (x \mod b_1, x \mod b_2, \dots, x \mod b_k)$ 都可能出现,且每一种可能的 r 和 $[0, \prod b_i)$ 中的 x 可以——对应。

同余方程/exCRT

经典问题 (exCRT)

给定若干形如 $x\equiv a_i\pmod{b_i}$ 的同余方程,求解 x,保证 b_i 的 lcm 在合理范围(10^{18})内。

同余方程/exCRT

Problem 2

找到最小的正整数 x 满足如下 n 个限制:

$$a_i x \ge b_i \coprod c_i |a_i x - b_i|$$

$$n \le 10^{5}$$

离散对数/bsgs

经典问题

求解模意义方程 $a^x \equiv b \pmod{p}$

 $p \le 10^{10}$, 10^5 次询问

特征根方程

经典问题

给一个 k 阶常系数线性递推 $a_n = \sum_{i=1}^k v_i a_{n-i}$, 其中前 k 项给定, 求通项公式。

12 / 41

特征根方程

Problem 2

定义 f_i 为第 i 个斐波那契数。给定 n, 有 n 个未知的整数 a_i , 它们生成了一个序列

$$p_i = \sum_{j=1}^n a_j * (f_j)^i$$

现在给出 p 的前 n 项,求下一项。所有数对某个给定的数取模。

$$n \le 5000$$

原根与阶

定义

可以证明,对于任意质数 p,存在 $g\in[1,p-1]$ 使得 $g^0,g^1,g^2,\cdots,g^{\varphi(p)-1}$ 在模 p 下两两不同。

事实上,原根对于 $2,4,q^r,2q^r$ 存在,其中 q 是奇质数。

4182_543_731

原根

Problem 1

令 p = 200003, 给定 n 个整数 a_1, \dots, a_n , 求 $\sum_{1 < i < j < n} (a_i a_j \pmod{p})$

Problem 2

给定集合 S 和质数 p, 从 S 中选 n 次数 (可以重复选同一个), 求 n 次选出的数乘积模 p 余 r 的方案数。 $p \le 8000$

单位根

定义

称 ω_k 是 k 次单位根,当且仅当 $\omega_k^k=1$ 且 $\forall i\in[1,k-1],\omega_k^i\neq 1$ 。可以证明,模质数意义下 k 次单位根存在当且仅当 k|p-1,也可以换为 $\varphi(m)$

单位根

定义

称 ω_k 是 k 次单位根,当且仅当 $\omega_k^k=1$ 且 $\forall i\in[1,k-1],\omega_k^i\neq 1$ 。可以证明,模质数意义下 k 次单位根存在当且仅当 k|p-1,也可以换为 $\varphi(m)$

Problem 1

求 $x^3 \equiv 1 \pmod{m}$ 的解数量。

单位根反演

定义 2
$$\frac{1}{d} \sum_{i=0}^{d-1} \omega_d^{in} = [d|n]$$

单位根反演

Problem 2

求
$$\sum_{i=0}^{+\infty} \binom{n}{id}$$

当然,如果只有一个序列,或者没有单位根,也可以从生成函数的角度大力做:

$$(1+x)^n \pmod{x^d-1}$$

单位根反演

Problem 3

有 m 个人,进行 n 次操作,每次选一个人。求有多少种操作方式使得每个人被选出的次数为 d 的倍数。

 $m \le 5 \times 10^5, d = 2$ 或者 $m \le 1000, d = 3$, 答案对一个模 6 余 1 且 > m 的质数取模。

19 / 41

二次剩余

经典问题

求解模意义方程 $x^2 \equiv a \pmod{p}$, 为了简便只考虑奇质数。

Cipolla

Problem 2

给一棵有根树,点有点权 a。给定质数 p 和常数 A,B。求有多少点对 u,v 满足 u 是 v 的祖 先且 $a_u^2+Aa_ua_v+Ba_v^2\equiv 0\pmod p$

$$n \le 10^5, 3 \le p \le 10^{16}$$

21 / 41

4182_543_731 简单数学选讲 Preview

勒让德符号

定义

$$\left(\frac{a}{p}\right) = \begin{cases}
1, \exists b \ s. \ t. \ b^2 \equiv a \pmod{p} \\
0, \ p|a \\
-1, \ otherwise
\end{cases}$$

根据之前的推导, $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \pmod{p}$

4182_543_731

勒让德符号

有一些结论:

$$\bullet \left(\frac{a}{p}\right)\left(\frac{b}{p}\right) = \left(\frac{ab}{p}\right)$$

$$\bullet \left(\frac{a^2}{p}\right) = \begin{cases} 0, & p|a\\ 1, & otherwise \end{cases}$$

- 对于奇质数 p,q, $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2}\frac{q-1}{2}}$
- $\bullet \left(\frac{2}{p}\right) = (-1)^{\frac{p^2 1}{8}}$
- $\bullet \ \sum_{i=1}^{p-1} \left(\frac{i}{p}\right) = 0$

勒让德符号

Problem 1

求 $x^2 + y^2 \equiv r \pmod{p}$ 的解数量

综合练习

Problem

考虑一种二阶递推: $a_0 = 0, a_1 = 1, a_n = Aa_{n-1} + a_{n-2} (n \ge 2)$

给出 x, p, l, r, 求 $\sum_{i=l}^{r} [a_i \equiv x \pmod{p}]$

 $l, r \le 10^{18}, p \le 10^9$

Lucas

Case 1

求 $\binom{n}{m} \pmod{p}$, $n, m \le 10^{18}, p \le 10^6$, p 是质数。

Lucas

Problem 1

给一个序列 a_1,\cdots,a_n ,求它有多少个子序列 b 满足 $|b|\geq 2$ 且 $\prod_{i=1}^{l-1}{b_{i+1}\choose b_{i+1}}$ 是奇数

exLucas

Case 2

求 $\binom{n}{m} \pmod{p^k}$, $n, m \le 10^{18}, p^k \le 10^6$, p 是质数。

exLucas

Problem 3

给定 p, k, A, 求有多少对 n, m 满足 $0 \le m \le n \le A$ 且 $p^k | \binom{n}{m}$ $p \le 10^9, A \le 10^{1000}$

exLucas

Case 3

求 $\binom{n}{m} \pmod{p^k}$, $n, m \le 10^{18}, p \le 10^6$, p 是质数。

4182_543_731

欧几里得算法的思想:

对于一个以 a, b 作为参数的问题, 如果可以递归到 $(a \mod b, b)$ (取模) 和 (b, a) (交换), 则可以使用 gcd 的过程, 在 $O(\log n)$ 步递归内解决问题。

31 / 41

Case 1

求
$$\sum_{i=0}^{n} \lfloor \frac{ai+c}{b} \rfloor$$
, 或者说线段下数点。

 $n \leq 10^9$

Case 2

给定 a, p, l, r, 找到最小的非负整数 b 使得 $ab \mod p \in [l, r]$ $p < 10^9$

Problem 1

给定互质的 a, b, 有 $0, 1, 2, \dots, n$ 共 n+1 个点, 你初始在 x_0 , 每一步可以选择从当前位置 x 走到 $x \pm a, x \pm b$ 中的一个位置。求能到达多少个位置。

Problem 2

交互。有一个未知的有理数 $\frac{a}{b}$,保证 $a,b \le 10^9$ 。你每次可以问一个 $[10^9+1,10^{12}]$ 的质数 p,交互库返回有理数对质数取模的结果。 在 5 次操作内猜出 $\frac{a}{b}$ 。

万能欧几里得

Stern-Brocot Tree

Stern-Brocot Tree/有理逼近

Problem 1

求
$$\sum_{i=1}^{n} \lfloor i\sqrt{d} \rfloor$$
, $n \leq 10^9$

Stern-Brocot Tree/有理数逼近

Problem 2

给出有理数, 求最小的 n 使得 [an, bn] 间存在整数。

Stern-Brocot Tree/有理数二分

Problem 1

考虑所有 [0,1] 之间分母不超过 n 的既约分数, 求出第 k 大, $n \leq 10^6$

Extra

Problem

给定 n 个非负整数的三元组 (x_i, a_i, b_i) ,选出一个子集满足选择的 x_i 的任意非空子集异或和非零 (即异或下线性无关),最大化选出部分的 $(\sum a)*(\sum b)$, $n \leq 100$