

Week 14: Differential equations

Instructor: Cécile Huneau (cecile.huneau@polytechnique.edu) Tutorial Assistants:

- Allen Fang (groups?, allen.fang@sorbonne-universite.fr)
- Yuan Xu (groups?, xu.yuan@polytechnique.edu)

Exercise 1. Let Ω be an open set of \mathbb{R}^2 . Let $f:\Omega\to\mathbb{R}$ be a C^1 function, $\phi:]a,b[\to\mathbb{R}$ be a solution to the differential equation y'=f(t,y) and $t_0\in I$. Let $u:]a,b[\to\mathbb{R}$ be such that for all a< t< b we have $(t,u(t))\in\Omega$.

- 1. Assume that for all $t \in]a,b[$, u'(t) > f(t,u(t)). Show the following statements :
 - If $\phi(t_0) \le u(t_0)$ then $\phi(x) \le u(x)$ for all $x \in [x_0, b[$.
 - If $\phi(t_0) \ge u(t_0)$ then $\phi(x) \ge u(x)$ for all $x \in]a, x_0[$.
- 2. Assume that for all $t \in]a,b[$, u'(t) < f(t,u(t)). Show the following statements :
 - If $\phi(t_0) \ge u(t_0)$ then $\phi(x) \ge u(x)$ for all $x \in [x_0, b[$.
 - If $\phi(t_0) \le u(t_0)$ then $\phi(x) \le u(x)$ for all $x \in]a, x_0[$.

Exercise 2. We admit in this exercise Theorem 4.3 of the notes, which is the above exercise but with \leq or \geq signs in the inequalities for u, instead of < or > signs.

We consider the differential equation y' = -y(y + t). The aim of this exercise is to draw the graph $(t, \phi(t))$ of some of the solutions in the (t, y) plane.

- 1. In which parts of the (t, y) plane are the solutions to the differential equation y' = -y(y + t) increasing? and decreasing?
- 2. Show that there exists a unique maximal ϕ_r : $]a,b[\to \mathbb{R}$ such that $\phi_r(o) = r$. What is ϕ_o ? Show that if r > o then $\phi_r(t) > o$ for all $t \in]a,b[$.
- 3. We now consider $\phi_1:]a, b[\to \mathbb{R}$. Show that ϕ_1 is decreasing in the region $0 \le t < b$. Deduce that $b = +\infty$ and $\phi_1(t) \to 0$ as $t \to \infty$.
- 4. Let $u(t) = \frac{2}{t+2}$ for t > -2. Show that for t > -2 we have $u'(t) \ge -u(t)(u(t) + t)$.
- 5. Show that for all $\max(a, -2) < t < 0$ we have $\phi_2(t) \ge u(t)$. Deduce that $-2 \le a < 0$ and that ϕ_1 is decreasing on $]a, +\infty[$. Draw the graph of ϕ_1 .
- 6. Let $v(t) = \frac{1}{2} \frac{t}{2}$ and $w(t) = -\frac{3}{t}$. Show that $v'(t) \le -v(t)(v(t)+t)$ for $t \le 0$ and $w'(t) \le -w(t)(w(t)+t)$ for $t \le -2$. Draw the graph of v and w.
- 7. Let $0 < r \le \frac{1}{2}$. Show that ϕ_r is defined on \mathbb{R} and that $\lim_{t \to +\infty} \phi_r(t) = \lim_{t \to -\infty} \phi_r(t) = 0$.
- 8. Show that if ϕ is a solution then $t \mapsto -\phi(-t)$ is also a solution.

9. Draw on a same picture the graph of ϕ_r , for $r=1,\frac{1}{2},\frac{1}{4},-\frac{1}{2},-1$.

Exercise 3. We consider again the differential equation y' = -y(y + t).

- 1. Let $t_o \ge 0$ and $y_o > 0$. Calculate the maximal solution u of the Cauchy problem $y' = -y^2$, $y(t_o) = y_o$.
- 2. Let $t_0 \ge 0$ and $\phi:]a,b[\to \mathbb{R}$ a maximal solution such that $\phi(t_0) > 0$. Show that $b = +\infty$ and that $\phi(t) \to 0$ as $t \to \infty$.