

- For each element in a universe (domain), a predicate assigns one of two values, True and False.
- "Co-domain" is {True,False}
- Functions: more general co-domains
 - $\emptyset f : A \rightarrow B$
- A function maps each element in the domain to an element in the co-domain
- To specify a function, should specify domain, co-domain and the "table" itself

pair∈AIW²	Likes(pair)
(Alice, Alice)	TRUE
(Alice, Jabberwock)	FALSE
(Alice, Flamingo)	TRUE
(Jabberwock, Alice)	FALSE
(Jabberwock, Jabberwock)	TRUE
(Jabberwock, Flamingo)	FALSE
(Flamingo, Alice)	FALSE
(Flamingo, Jabberwock)	FALSE
(Flamingo, Flamingo)	TRUE

- \odot eg: Extent of liking, f: AIW² \rightarrow {0,1,2,3,4,5}
 - Note: no empty slot, no slot with more than one entry
 - Not all values from the co-domain need be used
- Image: set of values in the co-domain that do get used
 - For $f:A \rightarrow B$, $Im(f) \subseteq B$ s.t. $Im(f) = \{ y \in B \mid \exists x \in A \mid f(x) = y \}$

x∈Domain	f(x)∈Co-Domain
(Alice, Alice)	5
(Alice, Jabberwock)	
(Alice, Flamingo)	4
(Jabberwock, Alice)	0
(Jabberwock, Jabberwock)	4
(Jabberwock, Flamingo)	0
(Flamingo, Alice)	1
(Flamingo, Jabberwock)	0
(Flamingo, Flamingo)	5

ø eg: Extent of liking, f: AIW² → {0,1,2,3,4,5}

x∈Domain	f(x)∈Co-Domain
(Alice, Alice)	5
(Alice, Jabberwock)	1
(Alice, Flamingo)	4
(Jabberwock, Alice)	0
(Jabberwock, Jabberwock)	4
(Jabberwock, Flamingo)	0
(Flamingo, Alice)	1
(Flamingo, Jabberwock)	0
(Flamingo, Flamingo)	5

Function as a Relation

- As a relation between domain & co-domain, $R_f ⊆ domain × co-domain$ $R_f = \{ (x,f(x)) \mid x ∈ domain \}$
 - The special property of R_f : every x has a unique y s.t. $(x,y) \in R_f$
- Can be represented using a matrix
 - Convention: domain on the "x-axis", co-domain on the "y-axis"
 - Every column has exactly one cell "switched on"

Plotting a Function

- When both domain and co-domain are numerical (or otherwise totally ordered), we often "plot" the function
 - Shows only part of domain/codomain when they are infinite (here $f: \mathbb{Z} \rightarrow \mathbb{Z}$)

Composition

© Composition of functions f and g: $g \circ f$: Domain(f) \rightarrow Co-domain(g)

$$\circ$$
 gof(x) \triangleq g(f(x))

Composition

 \circ Composition of functions f and g: $g \circ f$: Domain(f) \rightarrow Co-domain(g)

$$\circ$$
 gof(x) \triangleq g(f(x))

- Defined only if Im(f) ⊆ Domain(g)
 - Typically, Domain(g) = Co-domain(f)
- \circ gof: Domain(f) \rightarrow Co-domain(g)
- Im(g∘f) ⊆ Im(g)

One-to-one, Onto, Bijections

Types of Functions

- Function viewed as a matrix: every column has exactly one cell "on"
- Onto Function (surjection): Every row has at least one cell "on"
- One-to-One function (injection): Every row has at most one cell "on"
- Bijection: Every row has exactly one cell "on"

Surjective Functions

 $\left(\begin{array}{c} \forall y \in B \ \exists \ x \in A \ f(x) = y \end{array} \right)$

- Onto Function (surjection): Every row has at least one cell "on"
- Given f:A→B, one can always define an "equivalent" onto function f':A→Im(f) such that $\forall x \in A$ f(x)=f'(x)

Injective Functions

- One-to-One function (injection): Every row has at most one cell "on"
- Domain matters: \mathbb{Z} → \mathbb{Z} defined as $f(x)=x^2$ is not one-to-one, but
 $f: \mathbb{Z}^+ \to \mathbb{Z}^+$ defined as $f(x)=x^2$ is one-to-one
- E.g., strictly increasing or decreasing functions

Injective \(\lorsymbol{+--}\) Invertible

- \odot f is said to be invertible if $\exists g$ s.t. $g \circ f = Id$
- Can recover x from f(x): f doesn't lose information

- One-to-one functions are invertible
- Suppose f : A→B is one-to-one

$$\forall y \in Im(f) \exists ! x \in A f(x) = y$$

- Let $g: B \rightarrow A$ be defined as follows: \forall for $y \in Im(f)$, g(y) = x s.t. f(x) = y (well-defined) for $y \notin Im(f)$, g(y) = some arbitrary element in A
 - Then $g \circ f = Id_A$, where $Id_A : A \rightarrow A$ is the identity function over A
 - g need not be invertible

Injective \(\lorsymbol{+--}\) Invertible

- \odot f is said to be invertible if $\exists g$ s.t. $g \circ f = Id$
- One-to-one functions are invertible
- And invertible functions are one-to-one
 - Suppose f : A → B is invertible

 - Now, for any $x_1,x_2 ∈ A$, if $f(x_1) = f(x_2)$, then $g(f(x_1)) = g(f(x_2))$
 - \circ But g(f(x)) = Id(x) = x
 - Hence, $\forall x_1, x_2 \in A$, if $f(x_1)=f(x_2)$, then $x_1=x_2$

Bijections

- Bijection: both onto and one-to-one
 - Every row and every column has exactly one cell "on"
 - Every element in the co-domain has exactly one pre-image
 - If f: A→B, f-1: B→A such that
 $f^{-1} \circ f: A \to A$ and $f \circ f^{-1}: B \to B$ are
 both identity functions
 - Both f and f-1 are invertible, and the inverses are unique

Domain & Co-Domain Sizes

- \odot Suppose $f : A \rightarrow B$ where A, B are finite
- Im(f)| ≤ |A|, with equality holding iff f is one-to-one
- Im(f)| ≤ |B|, with equality holding iff f is onto
- If f is onto, then |A| ≥ |B|
 - \odot f onto \Rightarrow Im(f) = B \Rightarrow |B| \leq |A|
- If f is one-to-one, then |A| ≤ |B|
 - of one-to-one
 ⇔ |Im(f)| = |A|. But |Im(f)| ≤ |B| ⇒ |A| ≤ |B|
 - Contrapositive: If |A| > |B|, then f not one-to-one
 - Pigeonhole principle
- If f is a bijection, then |A| = |B|
- If |A| = |B|, then f is onto ≡ f in one-to-one ≡ f is a bijection

Composition

Tomposition of functions f and g: $g \circ f$: Domain(f) \rightarrow Co-domain(g)

- \odot Defined only if $Im(f) \subseteq Domain(g)$
 - Typically, Domain(g) = Co-domain(f)
- \circ gof: Domain(f) \rightarrow Co-domain(g)
- \circ Im(gof) \subseteq Im(g)

Composition & Onto/One-to-One

- Suppose Domain(g) = Co-Domain(f) (then gof well-defined).
- Composition "respects onto-ness"
 - If f and g are onto, gof is onto as well
 - If gof is onto, then g is onto

Composition & Onto/One-to-One

- Suppose Domain(g) = Co-Domain(f) (then gof well-defined).
- Composition "respects onto-ness"
 - If f and g are onto, gof is onto as well
 - If gof is onto, then g is onto
- Composition "respects one-to-one-ness"
 - If f and g are one-to-one, gof is one-to-one as well
 - If gof is one-to-one, then f is one-to-one

Composition & Onto/One-to-One

- Suppose Domain(g) = Co-Domain(f) (then g0 f well-defined).
- Composition "respects onto-ness"
 - If f and g are onto, gof is onto as well Domain(g) ⊋ Co-Domain(f)?
 - If gof is onto, then g is onto
- Composition "respects one-to-one-ness"
 - If f and g are one-to-one, gof is one-to-one as well
 - If gof is one-to-one, then f is one-to-one
- Hence, composition "respects bijections"
 - If f and g are bijections then gof is a bijection as well
 - If gof is a bijection, then f is one-to-one and g is onto

Exercise: What if
Domain(g) ⊋ Co-Domain(f)?
What if Domain(g) = Im(f)
and/or Co-Domain(f) = Im(f) ?

Permutation of a string

- To permute = to rearrange
 - \odot e.g., π_{53214} (hello) = lleoh
 - \odot e.g., $\pi_{35142}(lleoh) = ehlol$
- Permutations are essentially bijections from the set of positions (here {1,2,3,4,5}) to itself
 - A bijection from any finite set to itself is called a permutation
- Permutations compose to yield permutations (since bijections do so)

Isomorphism

- Bijection with additional "structure preserving properties"
 - "Structure": some relation(s)
- An isomorphism between R and R' is a bijection from S to S' such that $\forall x,y \in S$, $R(x,y) \leftrightarrow R'(f(x),f(y))$

S	s'
0	d
1	a
2	b
3	С

4n	isomorphis	m

S	s'	
0	<u>a</u>	
1	b	
2	С	
3	d	
Not an		
somorphisn		