Temporada Académica de Verano 2010

Curso : Probabilidad y Estadística

Sigla : EYP1113-1

Pauta : I2

Profesor : Ricardo Olea Ayudante : Claudia Ortega.

1. (20%) Sean Y_1 , Y_2 e Y_3 variables aleatorias independientes con $E(Y_i) = 0$ y $Var(Y_i) = 1$ para i = 1, 2 y 3. Defina las siguientes variables aleatorias:

$$X_1 = \frac{Y_1}{\sqrt{1 - \phi^2}}, \quad X_2 = \phi X_1 + Y_2, \quad X_3 = \phi X_2 + Y_3,$$

donde $|\phi| < 1$.

(a) (10 %) Determine el valor esperado de X_i , para i = 1, 2 y 3.

(b) (10%) Calcule $Cov(X_i, X_j)$, para todo $i, j \in \{1, 2, 3\}$.

Solución

(a) A partir del enunciado se deduce que:

$$X_{1} = \frac{1}{\sqrt{1 - \phi^{2}}} Y_{1}$$

$$X_{2} = \frac{\phi}{\sqrt{1 - \phi^{2}}} Y_{1} + Y_{2} \quad [2\%]$$

$$X_{3} = \frac{\phi^{2}}{\sqrt{1 - \phi^{2}}} Y_{1} + \phi Y_{2} + Y_{3} \quad [2\%]$$

Como la esperanza es un operador lineal tenemos que:

$$E(X_1) = \frac{1}{\sqrt{1 - \phi^2}} E(Y_1) = 0 \quad [2\%]$$

$$E(X_2) = \frac{\phi}{\sqrt{1 - \phi^2}} E(Y_1) + E(Y_2) = 0 \quad [2\%]$$

$$E(X_3) = \frac{\phi^2}{\sqrt{1 - \phi^2}} E(Y_1) + \phi E(Y_2) + E(Y_3) = 0 \quad [2\%]$$

(b) Por independencia entre Y_1, Y_2 e Y_3 [1 %] se tiene que las covarianzas pedidas son:

$$Cov(X_{1}, X_{1}) = Cov\left(\frac{1}{\sqrt{1-\phi^{2}}}Y_{1}, \frac{1}{\sqrt{1-\phi^{2}}}Y_{1}\right) = \frac{1}{1-\phi^{2}} \quad [1\%]$$

$$Cov(X_{1}, X_{2}) = Cov\left(\frac{1}{\sqrt{1-\phi^{2}}}Y_{1}, \frac{\phi}{\sqrt{1-\phi^{2}}}Y_{1} + Y_{2}\right) = \frac{\phi}{1-\phi^{2}} \quad [1\%]$$

$$Cov(X_{1}, X_{3}) = Cov\left(\frac{1}{\sqrt{1-\phi^{2}}}Y_{1}, \frac{\phi^{2}}{\sqrt{1-\phi^{2}}}Y_{1} + \phi Y_{2} + Y_{3}\right) = \frac{\phi^{2}}{1-\phi^{2}} \quad [1\%]$$

$$Cov(X_{2}, X_{2}) = Cov\left(\frac{\phi}{\sqrt{1-\phi^{2}}}Y_{1} + Y_{2}, \frac{\phi}{\sqrt{1-\phi^{2}}}Y_{1} + Y_{2}\right) = \frac{\phi^{2}}{1-\phi^{2}} + 1 \quad [2\%]$$

$$Cov(X_{2}, X_{3}) = Cov\left(\frac{\phi}{\sqrt{1-\phi^{2}}}Y_{1} + Y_{2}, \frac{\phi^{2}}{\sqrt{1-\phi^{2}}}Y_{1} + \phi Y_{2} + Y_{3}\right) = \frac{\phi^{3}}{1-\phi^{2}} + \phi \quad [2\%]$$

$$Cov(X_{3}, X_{3}) = Cov\left(\frac{\phi^{2}}{\sqrt{1-\phi^{2}}}Y_{1} + \phi Y_{2} + Y_{3}, \frac{\phi^{2}}{\sqrt{1-\phi^{2}}}Y_{1} + \phi Y_{2} + Y_{3}\right) = \frac{\phi^{4}}{1-\phi^{2}} + \phi^{2} + 1 \quad [2\%]$$

2. (30%) Mucho se ha dicho con respecto a las implicancias producidas por la implementación del Transantiago. Con el objetivo de realizar un análisis más profundo, usted entrevista a 25 personas, con respecto a la carga de la Bip! y el número de trayectos realizados (Combinaciones de viajes en un sentido: Alimentadores, Troncales y/o Metro) durante un mes.

	Carga Mensual (M\$)	Total Trayectos Mensuales
Promedio	45	110
Desv. Estándar	16	48

- (a) (15%) ¿Existe evidencia que permita afirmar que la carga media es superior a M\$40? Asuma Normalidad de los datos. (Use $\alpha=5\,\%$)
- (b) (15%) Determine el mínimo valor de significancia (o un rango donde se encuentra) para el cual es posible afirmar que el costo mensual medio por viaje es inferior a M\$0.430 (\$430 pesos). Puede utilizar una aproximación de primer orden para determinar una expresión para el valor esperado y varianza teórica del costo mensual. Puede utilizar la información muestral que se entrega para obtener una estimación del costo medio y su varianza. Por simplicidad asuma que los costos mensuales tienen distribución normal y que existe independencia entre la carga y el trayecto mensual de cada individuo.

Solución

Definamos las variables X_1 : Carga mensual Bip! y X_2 : Total trayectos en un mes.

(a) Asumiendo Normalidad tenemos que

$$X_1 \stackrel{\text{iid}}{\sim} \text{Normal}(\mu_{X_1}, \sigma_{X_1}), \quad i = 1, \dots, 25 \quad [2\%]$$

Se desea contratar las siguientes hipótesis

$$H_0: \mu_{X_1} = 40 \text{ vs } H_a: \mu_{X_1} > 40$$
 [3 %]

Bajo la hipótesis nula tenemos que el estadístico de prueba

$$T = rac{\overline{X}_1 - 40}{S_{X_1}/\sqrt{25}} \sim t(25 - 1)$$
 [2%]

Valores grandes de Tapoyan fuertemente ${\rm H}_a.$ Para un nivel de significancia $\alpha=5\,\%$ rechazamos ${\rm H}_0$ si

$$T > t_{1-0.05, 25-1}$$
 [3 %]

Reemplazando tenemos que

$$T = \frac{45 - 40}{16/\sqrt{25}} = 1.5625 < 1.711 = t_{0.95, 24}$$
 [3 %]

Por lo tanto, no existe suficiente evidencia para rechazar la hipótesis que la carga media es igual o inferior a M\$40. [2%]

(b) Definamos el costo mensual como $Y = \frac{X_1}{X_2}$.

Como se permite asumir normalidad de los costos, tenemos que

$$Y_1, \ldots, Y_{25} \stackrel{\text{iid}}{\sim} \text{Normal}(\mu_Y, \sigma_Y)$$

Las hipótesis a contrastar son:

$$H_0: \mu_Y = 0.430 \text{ vs } H_a: \mu_Y < 0.430$$
 [2 %]

3

Bajo la hipótesis nula tenemos que el estadístico de prueba

$$T = \frac{\overline{Y} - 0.430}{S_Y / \sqrt{25}} \sim t(25 - 1)$$
 [2 %]

donde $\overline{Y} = \hat{\mu}_Y$ y $S_Y = \hat{\sigma}_Y$ son estimaciones del valor esperado y desviación estándar respectivamente.

A partir de una aproximación de primer orden tenemos que

$$\begin{split} E(Y) &= \mu_Y \approx \frac{\mu_{X_1}}{\mu_{X_2}} \quad \textbf{[2\%]} \\ \mathrm{Var}(Y) &= \sigma_Y^2 \approx \sigma_{X_1}^2 \cdot \left[\frac{1}{\mu_{X_2}}\right]^2 + \sigma_{X_2}^2 \cdot \left[-\frac{\mu_{X_1}}{\mu_{X_2}^2}\right]^2 \quad \textbf{[2\%]} \end{split}$$

Reemplazando con los valores estimados para $\mu_{X_1},\,\mu_{X_2},\,\sigma_{X_1}$ y σ_{X_2} tenemos que

$$\hat{\mu}_Y \approx 0.409$$
, [2 %] $\hat{\sigma}_Y^2 \approx 0.053$ [2 %]

Por lo tanto como

$$T \approx \frac{0.409 - 0.430}{\sqrt{0.053}/\sqrt{25}} = -0.4560909$$
 [1%]

Esto implica que

valor-p >
$$10\%$$
 [2%]

3. (25 %) La DARA está interesada en realizar un estudio sobre el rendimiento de los alumnos. Las metodologías que pretende usar en el análisis requieren que los PPA de los alumnos distribuyan normal o bien lognormal, pues de lo contrario no podrá hacer inferencia acerca de ciertos temas. Se tiene que la varianza histórica del PPA de los alumnos PUC es de (1.2)², mientras que la media muestral obtenida para PPA fue 4.8. En base a la siguiente información:

PPA	Frecuencia
≤ 4.5	20
(4.5 - 5.5]	25
(5.5 - 6.5]	19
> 6.5	6

¿Hasta qué nivel de significancia aproximado usted le indicaría a la DARA que es razonable el supuesto de normalidad y lognormal respectivamente?

Solución:

Test de Bondad de Ajuste χ^2 para una distribución Normal y Log
Normal.

Sean las siguientes hipótesis:

$$H_0: Datos \sim Normal \quad vs. \quad H_a: Datos \not\sim Normal \quad [1\%]$$
 (1)

$$H_0: Datos \sim LogNormal$$
 vs. $H_a: Datos \not\sim LogNormal$ [1 %] (2)

Para (1) tenemos que

$$\mu = 4.8, \quad [1\%] \quad \sigma = 1.2 \quad [1\%]$$

Mientras que para (2)

$$\xi = \sqrt{\ln\left(1 + \left[\frac{1.2}{4.8}\right]^2\right)} = 0.2462207, \quad [1\%] \quad \lambda = \ln 4.8 - \frac{1}{2} \cdot 0.2462207 = 1.5383036 \quad [1\%]$$

La siguiente tabla muestra los valores observados y esperados según las distribuciones propuestas:

PPA	Frecuencia Observada	Probabil	Probabilidad Teórica		a Esperada (E_i)	$(O_i -$	$-E_i)^2/E_i$	
	(O_i)	Normal	LogNormal	Normal	LogNormal	Normal	LogNormal	
≤ 45	20	0,4013	0,4447	28,0906	31, 1306	3,2729	6, 1945	
(4.5 - 5.5]	25	0,3189	0,3058	22,3210	21,4029	0,2871	0,5176	
(5.5 - 6.5]	19	0,2015	0,1617	14, 1081	11,3210	1,2595	3,1036	
> 6.5	6	0,0783	0,0878	5,4803	6,1455	0,0450	0,0035	
Total	70	1,0000	1,0000	70,0000	70,0000	4,8645	9,8192	
		[2%]	[2%]	[2%]	[2%]	[2%]	[2%]	

En ambos casos los parámetros provienen de solo una estimación. Luego, el estadístico de prueba

$$X^{2} = \sum_{i=1}^{4} \frac{(O_{i} - E_{i})^{2}}{E_{i}} \text{ se compara con un valor } \chi^{2}(\nu), \text{ con } \nu = (k-1) - 1 = 2. \quad \textbf{[2\%]}$$

Se rechaza H_0 si $X^2 > \chi^2_{1-\alpha}(2)$.

• Caso 1:
$$\chi^2_{0.90}(2) = 4.61 < 4.8645 < 5.99 = \chi^2_{0.95}(2) \Rightarrow 5\% < \text{valor-p} < 10\%$$
 [2%]

• Caso 2:
$$\chi^2_{0.99}(2) = 9.21 < 9.8192 < 10.60 = \chi^2_{0.995}(2) \Rightarrow 0.5\% < \text{valor-p} < 1\%$$
 [2%]

Como solo se tiene un rango donde de encuentran los valores-p. Entonces solo podemos afirmar que para α mayor a 10% en el caso normal y mayor a un 1% en el caso Log Normal las distribuciones propuestas serían rechazadas. [1%]

- 4. (25%) Se realizan mediciones de la velocidad media de vehículos en n tramos de una vía expresa. Se asumen que las mediciones X_i son independientes con distribución Normal(μ_i , σ). Se postula que $\mu_i = \mu \theta_i$, donde θ_i representa el ángulo del peralte en el tramo correspondiente a la medición.
 - (a) (15 %) Determine un intervalo de confianza al $(1 \alpha) \cdot 100$ % para μ , asumiendo σ conocido.
 - (b) (10 %) Determine el tamaño muestral n para un nivel confianza del 95 % para que la estimación de μ tenga un error de $\pm \delta$.

Solución

(a) Tenemos que X_1, \ldots, X_n son variables aleatorias independientes con distribución Normal con varianza σ^2 y valor esperado $\mu \theta_i$, para $i = 1, \ldots, n$. Esto implica que

$$\overline{X}_n \sim \text{Normal}\left(\frac{\mu}{n}\sum_{i=1}^n \theta_i, \frac{\sigma}{\sqrt{n}}\right)$$
 [2 %]

Sea

$$Z = \frac{\overline{X}_n - \frac{\mu}{n} \sum_{i=1}^n \theta_i}{\sigma / \sqrt{n}} \sim \text{Normal}(0, 1) \quad [2\%]$$

Entonces

$$P\left(k_{\alpha/2} \leq Z \leq k_{1-\alpha/2}\right) = 1 - \alpha \quad [2\%]$$

$$\Rightarrow P\left(k_{\alpha/2} \leq \frac{\overline{X}_n - \frac{\mu}{n} \sum_{i=1}^n \theta_i}{\sigma/\sqrt{n}} \leq k_{1-\alpha/2}\right) = 1 - \alpha \quad [2\%]$$

$$\Rightarrow P\left(\frac{\sigma}{\sqrt{n}} k_{\alpha/2} \leq \overline{X}_n - \frac{\mu}{n} \sum_{i=1}^n \theta_i \leq \frac{\sigma}{\sqrt{n}} k_{1-\alpha/2}\right) = 1 - \alpha \quad [2\%]$$

$$\Rightarrow P\left(-\frac{\sigma}{\sqrt{n}} k_{1-\alpha/2} \leq \frac{\mu}{n} \sum_{i=1}^n \theta_i - \overline{X}_n \leq -\frac{\sigma}{\sqrt{n}} k_{\alpha/2}\right) = 1 - \alpha \quad [1\%]$$

$$\Rightarrow P\left(\overline{X}_n - \frac{\sigma}{\sqrt{n}} k_{1-\alpha/2} \leq \frac{\mu}{n} \sum_{i=1}^n \theta_i \leq \overline{X}_n - \frac{\sigma}{\sqrt{n}} k_{\alpha/2}\right) = 1 - \alpha \quad [1\%]$$

$$\Rightarrow P\left(\sum_{i=1}^n X_i - \frac{\sqrt{n}\sigma}{n} k_{1-\alpha/2} \leq \mu \leq \sum_{i=1}^n X_i + \frac{\sqrt{n}\sigma}{n} k_{1-\alpha/2}\right) = 1 - \alpha \quad [1\%]$$

Por lo tanto

$$<\mu>_{1-\alpha} \in \left(\frac{\sum_{i=1}^{n} X_{i}}{\sum_{i=1}^{n} \theta_{i}} - \frac{\sqrt{n} \sigma}{\sum_{i=1}^{n} \theta_{i}} k_{1-\alpha/2}; \frac{\sum_{i=1}^{n} X_{i}}{\sum_{i=1}^{n} \theta_{i}} + \frac{\sqrt{n} \sigma}{\sum_{i=1}^{n} \theta_{i}} k_{1-\alpha/2} \right)$$
 [2%]

(b) Se pide que

$$\frac{\sqrt{n}\,\sigma}{\sum_{i=1}^{n}\theta_{i}}\,k_{1-\alpha/2} = \delta \Rightarrow \frac{n}{\left(\sum_{i=1}^{n}\theta_{i}\right)^{2}} = \left(\frac{\delta}{\sigma\,k_{1-\alpha/2}}\right)^{2} \quad [5\%]$$

Para un 95 % de confianza $k_{1-\alpha/2}=k_{0.975}=1.96$ y considerando $\theta=\max|\theta_i|$ tenemos que

$$\frac{n}{n^2 \theta^2} = \left(\frac{\delta}{\sigma 1.96}\right)^2 \Rightarrow n = \left(\frac{1.96 \sigma}{\delta \theta}\right)^2 \quad [5\%]$$

Formulario

Distribución	$P(X=x) \mathbf{o} f_X(x)$	Θ_X	Parámetros	Esperanza y Varianza
Binomial	$\binom{n}{x} p^x (1-p)^{n-x}$	$x = 0, \dots, n$	p	$\mu_X = n p$ $\sigma_X^2 = n p (1 - p)$
Geometrica	$p(1-p)^{x-1}$	$x = 1, 2 \dots$	p	$\mu_X = 1/p$ $\sigma_X^2 = (1-p)/p^2$
Binomial-Negativa	$\binom{x-1}{r} p^r (1-p)^{x-r}$	$x = r, r + 1, \dots$	r,p	$\mu_X = r/p$ $\sigma_X^2 = r(1-p)/p^2$
Poisson	$\frac{(\nu t)^x e^{-\nu t}}{x!}$	$x = 0, 1, \dots$	ν	$\mu_X = \nu t$ $\sigma_X^2 = \nu t$
Exponencial	$ u e^{- u x}$	$x \ge 0$	ν	$\mu_X = 1/\nu$ $\sigma_X^2 = 1/\nu^2$
Gamma	$\frac{\nu^k}{\Gamma(k)} x^{k-1} e^{-\nu x}$	$x \ge 0$	k, u	$\mu_X = k/ u$ $\sigma_X^2 = k/ u^2$
Gamma Trasladada	$\frac{\nu^k}{\Gamma(k)} (x - \gamma)^{k-1} e^{-\nu (x - \gamma)}$	$x \geq \gamma$	$ u,\gamma,k$	$\mu_X = k/\nu + \gamma$ $\sigma_X^2 = k/\nu^2$
Normal	$\frac{1}{\sqrt{2\pi}\sigma}\exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$	$-\infty < x < \infty$	μ,σ	$\mu_X = \mu$ $\sigma_X^2 = \sigma^2$
Log-Normal	$\frac{1}{\sqrt{2\pi}\xix}\exp\left[-\frac{1}{2}\left(\frac{\ln x - \lambda}{\xi}\right)^2\right]$	$x \ge 0$	λ, ξ	$\mu_X = \exp\left(\lambda + \frac{1}{2}\xi^2\right)$ $\sigma_X^2 = \mu_x^2 \left(e^{\xi^2} - 1\right)$
Uniforme	$\frac{1}{(b-a)}$	$a \leq x \leq b$	a,b	$\mu_X = (a+b)/2$ $\sigma_X^2 = (b-a)^2/12$
Beta	$\frac{1}{B(q,r)} \frac{(x-a)^{q-1} (b-x)^{r-1}}{(b-a)^{q+r-1}}$	$a \le x \le b$	q,r	$\mu_X = a + \frac{q}{q+r}(b-a)$ $\sigma_X^2 = \frac{q r (b-a)^2}{(q+r)^2 (q+r+1)}$

 \bullet Propiedades de $\Gamma(\cdot)$ son:

(1)
$$\Gamma(a+1) = a \Gamma(a)$$
, (2) $\Gamma(n+1) = n!$ si $n \in \mathbb{N}$, (3); $\Gamma(1/2) = \sqrt{\pi}$

■ Propiedades de $B(\cdot, \cdot)$:

(1)
$$B(q,r) = \int_0^1 x^{q-1} (1-x)^{r-1} dx;$$
 (2) $B(q,r) = \frac{\Gamma(q)\Gamma(r)}{\Gamma(q+r)}$

Valor Esperado

• Sea X una variable aleatoria discreta y Θ_X el conjunto de todos los valores posible.

$$E[g(X)] = \sum_{x \in \Theta_X} g(x) \cdot P(X = x)$$

• Sea X una variable aleatoria continua y Θ_X la unión de todos los intervalos en los \mathbb{R} en que la función de densidad $f_X(x) \neq 0$.

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) \cdot f_X(x) \, dx = \int_{x \in \Theta_X} g(x) \cdot f_X(x) \, dx$$

ullet Sean X e Y variables aleatorias distribuidas conjuntamente

$$E[g(X,Y)] = \begin{cases} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy \\ \sum_{x \in \Theta_X} \sum_{y \in \Theta_Y} g(x,y) P(X=x, Y=y) \end{cases}$$

■ Varianza: Sea X una variable aleatoria,

$$Var(X) = \sigma_X^2 = E[(X - \mu_X)^2] = E(X^2) - \mu_X^2$$

 \blacksquare Skewness: Sea X una variable aleatoria,

$$\theta = \frac{E[(X - \mu_X)^3]}{\sigma_X^3}$$

■ Kurtosis: Sea X una variable aleatoria,

$$K = \frac{E[(X - \mu_X)^4]}{\sigma_Y^4}$$

 \blacksquare Covarianza: Sean X e Y variables aleatorias,

$$Cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)] = E(X \cdot Y) - \mu_X \cdot \mu_Y$$

Aproximación de Momentos:

Sean X_1, \ldots, X_n variables aleatorias con valores esperados $\mu_{X_1}, \ldots, \mu_{X_n}$ y varianzas $\sigma^2_{X_1}, \ldots, \sigma^2_{X_n}$ e Y una función de ellas.

Aproximación de primer orden:

$$Y \simeq g(\mu_{X_1}, \dots \mu_{X_n}) + \sum_{i=1}^n (X_i - \mu_{X_i}) \frac{\partial}{\partial X_i} g(\mu_{X_1}, \dots, \mu_{X_n})$$

$$E(Y) \simeq g(\mu_{X_1}, \dots \mu_{X_n})$$

$$\operatorname{Var}(Y) \simeq \sum_{i=1}^n \sum_{j=1}^n \rho_{ij} \sigma_{X_i} \sigma_{X_j} \left[\frac{\partial}{\partial X_i} g(\mu_{X_1}, \dots, \mu_{X_n}) \cdot \frac{\partial}{\partial X_j} g(\mu_{X_1}, \dots, \mu_{X_n}) \right]$$

Tablas de Percentiles p

Distribución Normal Estándar						Distribu	ción t-st	udent t	$t_p(u)$						
Z_p	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	ν	$t_{0.90}$	$t_{0.95}$	$t_{0.975}$	$t_{0.99}$
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359	1	3.078	6.314	12.706	31.821
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753	2	1.886	2.920	4.303	6.965
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141	3	1.638	2.353	3.182	4.541
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517	4	1.533	2.132	2.776	3.747
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879	5	1.476	2.015	2.571	3.365
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224	6	1.440	1.943	2.447	3.143
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549	7	1.415	1.895	2.365	2.998
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852	8	1.397	1.860	2.306	2.896
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133	9	1.383	1.833	2.262	2.821
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389	10	1.372	1.812	2.228	2.764
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621	11	1.363	1.796	2.201	2.718
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830	12	1.356	1.782	2.179	2.681
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015	13	1.350	1.771	2.160	2.650
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177	14	1.345	1.761	2.145	2.624
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319	15	1.341	1.753	2.131	2.602
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441	16	1.337	1.746	2.120	2.583
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545	17	1.333	1.740	2.110	2.567
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633	18	1.330	1.734	2.101	2.552
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706	19	1.328	1.729	2.093	2.539
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767	20	1.325	1.725	2.086	2.528
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817	21	1.323	1.721	2.080	2.518
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857	22	1.321	1.717	2.074	2.508
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890	23	1.319	1.714	2.069	2.500
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916	24	1.318	1.711	2.064	2.492
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936	25	1.316	1.708	2.060	2.485
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952	26	1.315	1.706	2.056	2.479
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964	27	1.314	1.703	2.052	2.473
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974	28	1.313	1.701	2.048	2.467
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981	29	1.311	1.699	2.045	2.462
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986	30	1.310	1.697	2.042	2.457
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990	∞	1.282	1.645	1.960	2.326

Distribución Chi-Cuadrado $\chi_p^2(\nu)$

ν	$\chi^{2}_{0.025}$	$\chi^{2}_{0.05}$	$\chi^{2}_{0.10}$	$\chi^{2}_{0.90}$	$\chi^{2}_{0.95}$	$\chi^{2}_{0.975}$	$\chi^{2}_{0.99}$	$\chi^{2}_{0.995}$
1	0.00	0.00	0.02	2.71	3.84	5.02	6.63	7.88
2	0.05	0.10	0.21	4.61	5.99	7.38	9.21	10.60
3	0.22	0.35	0.58	6.25	7.81	9.35	11.34	12.84
4	0.48	0.71	1.06	7.78	9.49	11.14	13.28	14.86
5	0.83	1.15	1.61	9.24	11.07	12.83	15.09	16.75
6	1.24	1.64	2.20	10.64	12.59	14.45	16.81	18.55
7	1.69	2.17	2.83	12.02	14.07	16.01	18.48	20.28
8	2.18	2.73	3.49	13.36	15.51	17.53	20.09	21.95
9	2.70	3.33	4.17	14.68	16.92	19.02	21.67	23.59
10	3.25	3.94	4.87	15.99	18.31	20.48	23.21	25.19
11	3.82	4.57	5.58	17.28	19.68	21.92	24.72	26.76
12	4.40	5.23	6.30	18.55	21.03	23.34	26.22	28.30
13	5.01	5.89	7.04	19.81	22.36	24.74	27.69	29.82
14	5.63	6.57	7.79	21.06	23.68	26.12	29.14	31.32
15	6.26	7.26	8.55	22.31	25.00	27.49	30.58	32.80
16	6.91	7.96	9.31	23.54	26.30	28.85	32.00	34.27
17	7.56	8.67	10.09	24.77	27.59	30.19	33.41	35.72
18	8.23	9.39	10.86	25.99	28.87	31.53	34.81	37.16
19	8.91	10.12	11.65	27.20	30.14	32.85	36.19	38.58
20	9.59	10.85	12.44	28.41	31.41	34.17	37.57	40.00
21	10.28	11.59	13.24	29.62	32.67	35.48	38.93	41.40
22	10.98	12.34	14.04	30.81	33.92	36.78	40.29	42.80
23	11.69	13.09	14.85	32.01	35.17	38.08	41.64	44.18
24	12.40	13.85	15.66	33.20	36.42	39.36	42.98	45.56
25	13.12	14.61	16.47	34.38	37.65	40.65	44.31	46.93