-2-

CITY UNIVERSITY OF HONG KONG

Course code and title : MA1200 Calculus and Basic Linear Algebra I

Section CA1, CB1, CC1 and CD1

Test 1

Session

: Semester A, 2017/2018

Time

: 12:30 - 13:30, 20 October 2017 (Friday)

Time allowed

: 1 hour

This paper has TWO pages (including this cover page).

Instructions to candidates:

1. This paper has FIVE questions.

2. Attempt ALL questions.

This is a closed-book test.

Candidates are allowed to use the following materials/aids:

Non-programmable calculators

Materials/aids other than those stated above are not permitted. Candidates will be subject to disciplinary action if any unauthorised materials or aids are found on them.

NOT TO BE TAKEN AWAY

Question 1

(a) The straight line $\frac{x}{5} + \frac{y}{12} = 1$ meets the x-axis at P and the y-axis at Q. Find the equation of the perpendicular bisector of PQ.

(10 marks)

(b) Find the equation of the circle on PQ as diameter.

(10 marks)

Question 2

Express
$$\frac{2x^2 - 3x + 18}{(x - 2)(x^2 - x + 2)}$$
 in partial fractions. (20 marks)

Question 3

Let f(x) be a periodic function of x with period 3 and $f(x) = x^2$ for $-1 < x \le 2$.

Sketch the graph of the curve y = f(x) in the interval [-4,5]. (20 marks)

Question 4

(a) If $t = \tan \frac{x}{2}$, show that $\tan x + \sec x = \frac{1+t}{1-t}$.

(Hint: You may use $\tan x = \frac{2t}{1-t^2}$, $\cos x = \frac{1-t^2}{1+t^2}$, where $t = \tan \frac{x}{2}$.) (10 marks)

(10 marks) (b) Find the general solution of $2\cos x = -1$.

Question 5

Let F(x) and G(x) be two functions defined by $F(x) = \frac{1}{x} ,$

$$G(x) = \sqrt{x}$$
.

(a) Find their largest possible domains and ranges.

(12 marks)

(b) Find $(G \circ F)(x)$ and state its largest possible domain.

(8 marks)

MA1200, CAI, CBI, CCI, CDI, 2017/18, Sen.A. Test 1, Suggested solutions.

Question 1

(1) -1 -1 soint 1 PO is (2) Q(0,12) (a) The mid-point of PQ is $M(\frac{0+5}{2}, \frac{12+0}{2}).$ Slope of $PQ = \frac{0-12}{5-0} = -\frac{12}{5}$ 6

The equation of the perpendicular bisector of PQ is given by $\frac{1}{4-20} = \frac{12}{2}$ $\frac{1}{456} = \frac{5}{12}$. Heat is $\frac{1}{10} = \frac{5}{12}$. Heat is (6) 10x-24y+119=0. 11 (7) The radius of the required circle is given by $r = \frac{1}{2}PQ = \frac{1}{2}\sqrt{(5-0)^2+(0-12)^2} = \frac{13}{2}$ units. :. The equation of the required circle is $(x-\frac{5}{2})^2+(y-6)^2=(\frac{13}{2})^2$, that is $\chi^2 + y^2 - 5\chi - 12y = 0.$ (10)

 $\frac{Question 2}{\text{Let } \frac{2x^2 - 3x + 18}{(x - 2)(x^2 - x + 2)}} = \frac{A}{x - 2} + \frac{Bx + C}{x^2 - x + 2} .$ 5 Then $2x^2-3x+18 = A(x^2-x+2)+(Bx+c)(x-2)(5)$ Put x = 2, then $2(2^2) - 3(2) + 18 = A(2^2 - 2 + 2) + 0$ So, $2x^2-3x+18-5(x^2-x+2)=(Bx+C)(x-2)$ $\frac{2x^2-3x+18}{(x-2)(x^2-x+2)} = \frac{5}{x-2} - \frac{3x+4}{x^2-x+2}$ Method II (Method of undetermined coefficients) Let $\frac{2\chi^2 - 3\chi + 18}{(\chi - 2)(\chi^2 - \chi + 2)} = \frac{A}{\chi - 2} + \frac{B\chi + C}{\chi^2 - \chi + 2}$. Then $2x^2-3x+18=A(x^2-x+2)+(Bx+c)(x-2)$ Comparing the corresponding coefficients, we have A+B=2 | Solving the system (*) for A, B -A-2B+C=-3 | -(*) and C, we get 2A-2C=18 A=5, B=-3, C=-4. Therefore, $\frac{2\chi^2 - 3\chi + 18}{(\chi - 2)(\chi^2 - \chi + 2)} = \frac{5}{\chi - 2} - \frac{3\chi + 4}{\chi^2 - \chi + 2}$.

$$\frac{\tan x + \sec x}{\tan x + \sec x} = \frac{2t}{1-t^2} + \frac{1+t^2}{1-t^2}, & \text{Since} \\
= \frac{2t+1+t^2}{1-t^2} \\
= \frac{(t+1)^2}{(1-t)(1+t)} = \frac{t+1}{1-t}, & \text{To}$$
Where $t = \tan \frac{x}{2}$.

2 cosx = -1 $\cos x = -\frac{1}{2}$ The general polution of the trigonometric equation $\chi = 2n\pi \pm \alpha$ where $d = \cos^{-1}(-\frac{1}{2}) = \frac{2\pi}{3}$, $N = 0, \pm 1, \pm 2, \dots$

Question 5. (a) $F(x) = \frac{1}{x}$, $G(x) = \sqrt{x}$ $Dom(F) = \mathbb{R} \setminus \{0\} = \text{the set of all real}$ $Ran(F) = \mathbb{R} \setminus \{0\}$. (3) $Dom(G) = [o, \infty)$ $Ran(G) = [0, \infty)$.

 $(G \circ F)(x) = G(F(x))$ $= 6(\frac{1}{2})$ $\Rightarrow \chi > 0 \quad \text{i. Dom}(G \circ F)$ $= (0, \infty)$

CITY UNIVERSITY OF HONG KONG

Course code and title : MA1200 Calculus and Basic Linear Algebra I

Section CE1, CF1, CG1 and CH1

Test 1

Session

: Semester A, 2017/2018

Time

: 17:30 - 18:30, 20 October 2017 (Friday)

Time allowed

: 1 hour

This paper has **TWO** pages (including this cover page).

Instructions to candidates:

1. This paper has FIVE questions.

2. Attempt ALL questions.

This is a closed-book test.

Candidates are allowed to use the following materials/aids:

Non-programmable calculators

Materials/aids other than those stated above are not permitted. Candidates will be subject to disciplinary action if any unauthorised materials or aids are found on them.

NOT TO BE TAKEN AWAY

Question 1

Show that the equation $25x^2 + 50x + 169y^2 - 676y = 3524$ represents an ellipse, and find the coordinates of its centre, vertices and foci.

(Hint: You may use the method of completing the squares.)

(20 marks)

Question 2

- (a) It is given that $\cos A = \frac{3}{5}$, where $270^{\circ} < A < 360^{\circ}$, and that $\sin B = \frac{5}{13}$, where $90^{\circ} < B < 180^{\circ}$. Without using a calculator, find the values of
 - (i) $\cos(A-B)$,
 - (ii) $\cos \frac{A}{2}$.

(Hint: You may use $\cos(A-B) = \cos A \cos B + \sin A \sin B$

$$\cos(2x) = 2\cos^2 x - 1 \quad .)$$

(10 marks)

(b) Find the general solution of $2\sin x = -1$.

(10 marks)

Question 3

Let
$$f(x) = \sqrt{(1+x)(3-x)}$$
.

Find the largest possible domain and the largest possible range of f(x).

(20 marks)

Question 4

Express
$$\frac{6x^2 + 30x + 52}{(x-3)(2x+1)^2}$$
 in partial fractions. (20 marks)

Question 5

Let F(x) and G(x) be two functions defined by

$$F(x) = 2x - 3 \quad \text{for} \quad x \in [-1, \infty) ,$$

$$G(x) = x^3$$
 for $x \in \mathbb{R}$.

(a) Find the inverse function for each and state its largest possible domain.

(b) Find $(\frac{G}{F})(x)$ and state its largest possible domain.

(8 marks)

(12 marks)

MAI200, CEI, CFI, CGI, CHI, 2017/18, Sem. A Test 1, suggested solutions Question | $25x^2 + 50x + 169y^2 - 676y = 3524$ $25(x^2+2x+1)+169(y^2-4y+4)=3524+25x1+169x4$ $\frac{(x+1)^{2} + (67(y-2)^{2} = 4225}{\frac{(x+1)^{2}}{13^{2}} + \frac{(y-2)^{2}}{5^{2}} = 1},$ $25(x+1)^2+169(y-2)^2=4225$ Which is the equation of an ellipse with centre at (-1,2) Comparing the equation with the standard form of the equation of an ellipse, $\frac{(\chi - \chi)^{\alpha}}{a^{2}} + \frac{(\chi - k)^{\alpha}}{4^{2}} = 1$, a > b > 0, we have h = -1, k = 2, a = 13, b = 5, $b^2 = a^2(1 - e^2)$ $\Rightarrow 25 = 169(1 - e^2)$ $\Rightarrow e^2 = 1 - \frac{25}{169} = \frac{144}{169}$ $e = \frac{12}{13}$, $ae = (13)(\frac{12}{13}) = 12$ The coordinates of its centre are (-1,2)The coordinates of its vertices are (-14,2), (12,2), (2) (2).

The coordinates of its foci are (-13,2), (11,2), (2)

$$= \left(\frac{3}{5}\right) \left(-\frac{12}{13}\right) + \left(-\frac{4}{5}\right) \left(\frac{5}{73}\right)$$

$$= -\frac{36}{65} - \frac{20}{65}$$

$$= -\frac{56}{65}$$

$$= -\frac{5}{65} - \frac{20}{65}$$

$$= -\frac{1+\cos A}{2} < 0, \text{ Since } 135^{\circ} < \frac{A}{2} < 180^{\circ}$$

$$= -\sqrt{\frac{1+\frac{3}{5}}{2}}$$

$$= -\sqrt{\frac{4}{5}}$$

$$= -0.894427 \quad (\text{con. to 6 d-p.})$$

(b) $2 \sin x = -1 \implies \sin x = -\frac{1}{2}$ The general polution of the trigonometric equation $\chi = n\pi + (-1)^{n} \left(-\frac{\pi}{6}\right), \quad n = 0, \pm 1, \pm 2, \dots$ Question 3 $+(\chi) = \sqrt{(1+\chi)(3-\chi)}$ $= \sqrt{3+2\chi-\chi^2}$ $= \sqrt{4 - (\chi^2 - 2\chi + 1)} = \sqrt{4 - (\chi - 1)^2}$ $(1+x)(3-x) \geqslant 0$ Solution of the inequality $\frac{1+\chi}{3-\chi} - \frac{1+\chi}{4-\chi} = \frac{1+\chi}{3-\chi} + \frac{1+\chi}{4-\chi} = \frac{1+\chi}{3-\chi} = \frac$ Dom(f) = [-1, 3] (7) Ran(f) = [0, 2] (7)Question 4. Let $\frac{6\chi^2+30\chi+52}{(\chi-3)(2\chi+1)^2} = \frac{A}{\chi-3} + \frac{B}{2\chi+1} + \frac{C}{(2\chi+1)^2}$ (5) $6x^{2} + 30x + 52 = A(2x+1)^{2} + B(x-3)(2x+1) + C(x-3)(5)$

Put X=3, then 54+90+52=49A+0+0, ... $A=\frac{196}{49}=4$ Ao, $6x^2+30x+52-4(2x+1)=(x-3)[B(2x+1)+C]$ $=-10\chi^{2}+14\chi+48$ $=(\chi-3)(-10\chi-16)$ $\Rightarrow -(0) \times -(16) = B(2) \times (1) + C$ Put x=-1, then 5-16=0+C, i, C=-11 A_{0} , -10x-16+11=B(2x+1)=-5(2x+1) , B=-5 $\frac{1}{(x-3)(2x+1)^2} = \frac{4}{x-3} - \frac{5}{2x+1} - \frac{11}{(2x+1)^2} = \frac{6}{x^2+30} + \frac{5}{2x+1} - \frac{11}{(2x+1)^2} = \frac{6}{x^2+30} + \frac{5}{2x+1} = \frac{11}{(2x+1)^2} = \frac{11}{(2x+1)^2}$ (a) F(x) and G(x) are one-to-one functions of x Let y = F(x) = 2x - 3. Then $x = \frac{1}{2}(y + 3)$. $F'(x) = \frac{1}{2}(x+3) \quad \text{for } x \in [-5, \infty)$ $Dom(F^{-1}) = [-5, \infty)$ Let $z = G(x) = x^3$. Then $x = z^{\frac{3}{3}}$. (6) $1.6^{-1}(x) = x^{3}$ for $x \in \mathbb{R}$ $Dom(6^{-1}) = R.$ (b) $\left(\frac{G}{F}\right)(\chi) = \frac{G(\chi)}{F(\chi)} = \frac{\chi^{5}}{2\chi - 3}$. $Dom(\frac{G}{F}) = Dom(G) \cap Dom(F)$ except that values of χ = $(-1.3) | 1 | (\frac{3}{2} \infty)$ for which $F(\chi) = 0$. (4)

CITY UNIVERSITY OF HONG KONG

Course code and title : MA1200 Calculus and Basic Linear Algebra I

Section C61 Test 1

Session : Semester A, 2017/2018

Time : 18:00 - 19:00, 16 October 2017 (Monday)

Time allowed : 1 hour

This paper has TWO pages (including this cover page).

Instructions to candidates:

1. This paper has **FIVE** questions.

2. Attempt ALL questions.

This is a closed-book test.

Candidates are allowed to use the following materials/aids:

Non-programmable calculators

Materials/aids other than those stated above are not permitted. Candidates will be subject to disciplinary action if any unauthorised materials or aids are found on them.

NOT TO BE TAKEN AWAY

Question 1

Find the equation of the circle which passes through the points (-2, -2), (1, 3), (3, 3). (20 marks)

Question 2

If $A+B+C=180^{\circ}$, show that $\sin A + \sin B + \sin C = 4\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}$.

(Hint: You may use

$$\sin x + \sin y = 2\sin\frac{x+y}{2}\cos\frac{x-y}{2} ,$$

$$\cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2} ,$$

 $\sin(2x) = 2\sin x \cos x$

$$\sin(90^\circ - x) = \cos x \quad . \tag{20 marks}$$

Question 3

Express
$$\frac{4x^2 + 11x + 12}{(x+2)^3}$$
 in partial fractions. (20 marks)

Question 4

(a) Let $f(x) = x^2 + 2x - 1$ for $x \in [-1, \infty)$. Sketch its graph. Find $f^{-1}(x)$ and state its largest possible domain. (12 marks)

(b) Let
$$g(x) = \sqrt{\frac{x-2}{x+3}}$$
.
Find the largest possible domain of $g(x)$. (8 marks)

Question 5

Let F(x) and G(x) be two functions defined by F(x) = [x], where [x] denotes the greatest integer not greater than x, $G(x) = |x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$.

Find the largest possible ranges of F(x) and G(x), and sketch the graphs of these functions for $-2 \le x \le 2$. (20 marks)

MA1200, C61, Test 1 , 2017/2018, Sem.A. Suggested ordations.

Q.I. Method I.

In the figure,

Slope of $PR = \frac{-2-3}{-2-3} = 1$,

Mid-point of PR is $N(\frac{-2+3}{2}, \frac{-2+3}{2})$,

Slope of L = -1Equation of L, is given by P(-2,-2) L $\frac{J-\bar{z}}{\chi-\frac{1}{2}} = -1$, that is $J = -\chi + 1$. Equation of L_2 (the perpendicular bisector of QR) is $\chi = 2$. (2) Solving the equations () and (2), we obtain $\chi = 2$, $\chi = -1$. The coordinates of the circum-centre, C of Δ PQR is The radius of the circum-circle of APQR is given by $\Gamma = \sqrt{(3-2)^2 + (3-(-1))^2}$ (= RC) = 117 ... The equation of the required circle is $(x-2)^2 + (y+1)^2 = 17$, that is $\chi^2 + \chi^2 - 4\chi + 2\chi - 12 = 0.$ (7)

Method I Let x2+ y2+Dx+Ey+F=0 be the equition of the circle which passes through the points (-2,-2), (1,3), (3,3), where D, E, F are unknown constants. $(-2)^{2}+(-2)^{2}-2D-2E+F=0$ 12+32+D+3E+F=0 - 0 (10)34+34+3D+3E+F=0 - 3 (3-(2): 8+20=0, ... D=-43+30: 18+3x8+5F=0, :, F=-12 Substituting D=-4, F=-12 into (), we get 8+8-2E-12=0, : E= 2 ; The equation of the required circle is $\chi^2 + \chi^2 - 4\chi + 2\chi - 12 = 0$. (10) $\frac{Q2}{LHS} = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) + 2 \sin\frac{C}{2} \cos\frac{C}{2}$ (5) $=2\sin\left(9e^{-\frac{C}{2}}\right)\cos\left(\frac{A-B}{2}\right)+2\sin\frac{C}{2}\cos\frac{C}{2}$ $=2\cos\frac{C}{2}\left[\cos\left(\frac{A-B}{2}\right)+\sin\left(9o^{2}-\frac{A+B}{2}\right)\right]$ $=2\cos\frac{C}{2}\left[\cos\left(\frac{A-B}{2}\right)+\cos\left(\frac{A+B}{2}\right)\right]$ $=2\cos\left(\frac{2}{2}\left(2\cos\left(\frac{A+b}{2}+\frac{A-b}{2}\right)\cos\left(\frac{A+b}{2}-\frac{A-b}{2}\right)\right)\right)$ = norc [norat real] = RHS House the result !!

Question 3. Method I Let $\frac{4x^2+(1x+12)}{(x+2)^3} = \frac{A}{x+2} + \frac{B}{(x+2)^2} + \frac{C}{(x+2)^3}$ Then 4x2+11x+12 = A(x+2)2+B(x+2)+ C Put x = -2, we have $4(-2)^2+11(-2)+12=0+0+C$, ... C=6 A_0 , $4x^2+11x+12-6 = (x+2)[A(x+2)+B]$ $=(\chi+2)(4\chi+3)$ $\Rightarrow 4x+3 = A(x+2)+B$ Put x = -2, we have 4(-2)+3 = 0+8A0, 4x+3+5 = A(x+2) $= 4(\chi + 2) \qquad , \quad A = 4$ Therefore, $\frac{4x^2+11x+12}{(x+2)^3} = \frac{4}{x+2} - \frac{5}{(x+2)^2}$ Method II. By synthetic division, (/o) $\therefore 4x^2 + 11x + 12 = 4(x+2)^2 - 5(x+2) + 6$ $\therefore \frac{4\chi^2 + 11\chi + 12}{(\chi + 2)^3} = \frac{4}{\chi + 2} - \frac{5}{(\chi + 2)^2} + \frac{6}{(\chi + 2)^3}$

Let u = x+2. Then x = u-2 $\frac{4x^2+11x+12}{(x+2)^3} = \frac{4(u-2)^2+11(u-2)+12}{u^3}$ $= \frac{4(u^2 - 4u + 4) + 11u - 22 + 12}{u^3}$ $= \frac{4u^2 - 5u + 6}{u^3}$ $= \frac{4}{x+2} - \frac{5}{(x+2)^2} + \frac{6}{(x+2)^3}$ Question 4.

 $| = \chi^{2} + 2\chi - 1$ $= (\chi + 1)^{2} - 2 \text{ for } \chi \in [-1, \infty)$ (a) $f(x) = x^2 + 2x - 1$ f(x) is one to one. Let y = f(x). $= (\chi + 1)^2 - 2$ Then $\chi = -1 \pm \sqrt{J+2}$. + (x) ≠ -1-1x+2 <0, Graph of y=+(x), for x>-1 for all X (rejected) : $f^{-1}(x) = -1 + \sqrt{x+2}$ for $x \in [-2, \infty)$ (5), Its largest possible domain is $Dom(f^{-1}) = Ran(f) = [-2, \infty) . \quad (3)$

$$\begin{array}{ccc}
f(x) & = \sqrt{\frac{\chi - 2}{\chi + 3}} \\
\frac{\chi - 2}{\chi + 3} & > 0 \\
\chi + 3 & \neq 0
\end{array}$$

$$\Rightarrow \chi \in (-\infty, -3) \cup [2, \infty)$$

i. The largest possible domain of
$$3/x$$
) is $Dom(3) = (-\infty, -3)U[2, \infty)$.

8

Graph of y=[x] for x ∈ [-2,2] Graph of y=|x| for 2 ≤ x ≤ 2

$$Ran(F) = Z = He set of all integers (5)$$

$$Ran(G) = [0, \infty).$$