Questão 1: Dentre os problemas que a COVID-19 nos trouxe, um deles é o distanciamento social seguro; em princípio, cada pessoa deve ficar a uma distância de cerca de 2m de todas as outras. Nesse contexto, um problema muito atual é calcular o número máximo de pessoas que pode ser colocadas numa sala, obedecendo esse distanciamento. Na verdade, esse é um problema de ladrilhamento porque podemos imaginar que cada pessoa é o centro de um círculo de raio 1m, e precisamos saber qual o número máximo de círculos necessários para cobrir o chão dessa sala.

Vamos considerar apenas dois padrões, I e II, para ladrilhamento, conforme mostram as figuras

Qual o número máximo de lajotas circulares, com 1m de raio, que podemos usar para ladrilhar o chão de uma sala de $10m \times 11m$, usando os padrões I e II para ladrilhamento?

Questão 2:

- (a) Sejam V e W espaços vetoriais sobre \mathbb{R} e $\langle \ , \ \rangle$ um produto interno em W. Se $T:V\to W$ é uma transformação linear injetora, então a aplicação dada por $f(u,v)=\langle T(u),T(v)\rangle$, para quaisquer $u,v\in V$, define um produto interno em V.
- (b) Sejam a e b reais positivos e $u=(\sqrt{a},\sqrt{b}),\ v=(\sqrt{b},\sqrt{a})$ em \mathbb{R}^2 . Utilize a Desigualdade de Cauchy-Schwarz para comparar a média aritmética $\frac{a+b}{2}$ com a média geométrica \sqrt{ab} .

Observação 1: Seja E um espaço vetorial sobre o corpo \mathbb{R} . Sejam $u, v, w \in E$ e $\alpha \in \mathbb{R}$, um produto interno é a função $\langle \ , \ \rangle : E \to \mathbb{R}$ tal que

- (P1) $\langle u, v \rangle = \langle v, u \rangle;$
- (P2) $\langle u + w, v \rangle = \langle u, v \rangle + \langle w, v \rangle;$
- (P3) $\langle \alpha u, v \rangle = \alpha \langle u, v \rangle;$
- (P4) $\langle u, u \rangle > 0$, $\forall u \in E \text{ e } \langle u, u \rangle = 0 \Leftrightarrow u = 0$.

Observação 2: Desigualdade de Cauchy-Schwarz:

$$|\langle u,v\rangle| \leq \|u\|\cdot\|v\|$$