SPRAWOZDANIE Z LABORATORIUM LOGIKI UKŁADÓW CYFROWYCH						
Numer ćwiczenia	202	Temat ćwiczenia	Układy kombinacyjne			
Numer grupy	5	Termin zajęć	20.10.2016, 7:30			
Skład grupy			Prowadzący	Ocena		
Sebastian Korniewicz, 226183			Marinż Antoni Storna			
Bartosz Rodziewicz, 226105			Mgr inż. Antoni Sterna			

1. Cel ćwiczenia

Ćwiczenie ma na celu praktyczne zapoznanie studentów z budową, działaniem, właściwościami oraz syntezą podstawowych układów kombinacyjnych, takich jak: szyfratory, deszyfratory, transkodery, sumatory, komparatory oraz układy kontroli parzystości.

2. Przebieg ćwiczenia

1. Dekoder 2-bitowy

Aby wykonać schemat do tego zadania przygotowaliśmy tabelkę prawdy:

а	b	С	y o	y ₁	y ₂	y 3
0	0	0	1	0	0	0
0	1	0	0	1	0	0
1	0	0	0	0	1	0
1	1	0	0	0	0	1
0	0	1	0	0	0	0
0	1	1	0	0	0	0
1	0	1	0	0	0	0
1	1	1	0	0	0	0

gdzie a i b to wejścia 2-bitowej liczby, c to blokada, a y to wyjścia odpowiadające konkretnej zakodowanej liczbie na wejściu.

Wykonaliśmy z tego równania:

 $y_0 = \bar{a}\bar{b}\bar{c}$

 $y_1 = \bar{a}b\bar{c}$

 $y_2 = a\bar{b}\bar{c}$

 $y_3 = ab\bar{c}$

I schemat:

Na zajęciach dopiero uświadomiliśmy sobie, że nie posiadamy takich bramek jakich użyliśmy i przerobiliśmy na schemat z użyciem bramek NAND:

Taki też schemat (po długich problemach z niesprawną bramką) podłączyliśmy i układ działał.

2. Generator kodu U2 dla liczby 4 bitowej

Do tego zadania tak samo przygotowaliśmy tabelkę prawdy:

а	b	С	d	X ₁	X 2	X 3	X 4
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	1
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	1
0	1	1	0	0	1	1	0
0	1	1	1	0	1	1	1
1	0	0	0	0	0	0	0
1	0	0	1	1	1	1	1
1	0	1	0	1	1	1	0
1	0	1	1	1	1	0	1
1	1	0	0	1	1	0	0
1	1	0	1	1	0	1	1
1	1	1	0	1	0	1	0
1	1	1	1	1	0	0	1

Równania:

$$x_1 = ab + ad + ac = a(b+c+d)$$

$$x_2 = \bar{a}b + ab\bar{c}\bar{d} + a\bar{b}c + a\bar{b}d = b(\bar{a} + a\bar{c}\bar{d}) + a\bar{b}(c+d)$$

$$x_3 = c\bar{d} + \bar{a}c + a\bar{c}d = c(\bar{a} + \bar{d}) + a\bar{c}d$$

$$x_4 = d$$

Równania te przekształciliśmy do postaci odpowiadającej bramkom dostępnym w laboratorium dopiero w trakcie opracowywania tego sprawozdania:

$$x_{1} = \overline{a(\overline{b}\overline{c}\overline{d})}$$

$$x_{2} = \overline{b(a(\overline{a}\overline{c}\overline{d}))} + \overline{a}\overline{b} + \overline{c}\overline{d}$$

$$x_{3} = \overline{(c(\overline{d}a))(\overline{a}\overline{c}d)}$$

$$x_{4} = d$$

I z tego powstał schemat:

Tego układu nie byliśmy niestety w stanie podłączyć i przetestować (a najpierw przepisać go na dostępne w pracowni bramki), ponieważ zabrakło nam czasu z powodu problemów z poprzednim układem.

3. Wnioski

- Całe zajęcia straciliśmy na dekoderze, ponieważ nie potrafiliśmy poprawnie analizować systemu i wykryć uszkodzonej bramki.
- Warto dowiedzieć się jakie bramki są na stanie w pracowni na pierwszych zajęciach.