PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICAS

Primer semestre de 2024

MAT1107 - Introducción al Cálculo

Solución Interrogación N° 9

1. Sea $\{a_n\}_{n\in\mathbb{N}}$ una sucesión con $\lim_{n\to\infty}a_n=1$. Demuestre que

$$\lim_{n \to \infty} \frac{a_n}{\sqrt{n+1} - \sqrt{n}} = +\infty$$

Solución. Como $\lim_{n\to\infty}a_n=1$, existe un $N\in\mathbb{N}$ tal que $a_n>\frac{1}{2}$ para todo n>N. Además, tenemos que

$$\frac{1}{\sqrt{n+1} - \sqrt{n}} = \frac{\sqrt{n+1} + \sqrt{n}}{(n+1) - n} = \sqrt{n+1} + \sqrt{n} > 2\sqrt{n} > 0.$$

Multiplicando las desigualdades anteriores, tenemos que, para todo n > N,

$$\frac{a_n}{\sqrt{n+1}-\sqrt{n}} > \sqrt{n}.$$

Como el lado derecho diverge a $+\infty$, el lado izquierdo también lo hará.

Criterio de Corrección (CC) Pregunta 1.

- CC 1. 2 puntos por acotar la sucesión a_n para todo n > N.
- CC 2. 2 puntos por acotar la sucesión $\frac{1}{\sqrt{n+1}-\sqrt{n}}$.
- CC 3. 2 puntos por usar el Teorema del Sandwich y concluir que la sucesión diverge $a + \infty$.

2. Demuestre que para todo $x \ge 0$ se cumple que

$$e^x \ge \frac{1}{2} + x + \frac{x^2}{2}.$$

Solución. Fijemos un $x \ge 0$. Sabemos que

$$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x.$$

Tenemos que existe un $N \geq 3$ tal que, si n > N, entonces

$$\left(1 + \frac{x}{n}\right)^n < e^x + \frac{1}{2}.$$

La expansión binomial del lado izquierdo es

$$\left(1 + \frac{x}{n}\right)^n = \sum_{k=0}^n \binom{n}{k} \frac{x^k}{n^k} = 1 + n \cdot \frac{x}{n} + \frac{n(n-1)}{2} \cdot \frac{x^2}{n^2} + \sum_{k=3}^n \binom{n}{k} \frac{x^k}{n^k} \ge 1 + x + \frac{n-1}{2n} \cdot x^2,$$

donde la última igualdad se tiene porque $x \ge 0$ y $n > N \ge 3$. Por lo tanto:

$$1 + x + \frac{n-1}{2n} \cdot x^2 \le e^x + \frac{1}{2}.$$

Aplicando límite a la desigualdad anterior, obtenemos que

$$1 + x + \frac{x^2}{2} \le e^x + \frac{1}{2},$$

de lo que se concluye lo pedido.

Observación: También se admite afirmar directamente que

$$\left(1 + \frac{x}{n}\right)^n \le e^x$$

para todo $n \in \mathbb{N}$ (teorema en los apuntes del curso).

Criterio de Corrección (CC) Pregunta 2.

CC 1. 2 puntos por acotar $(1+1/n)^n$ por e^x .

CC 2. 2 puntos por usar el Teorema del binomio para obtener los términos de $(1+1/n)^n$.

CC 3. 2 puntos por concluir lo pedido.