The Beta-Binomial Distribution

Kevin R. Coombes

February 14, 2018

Contents

1 Introduction 1

1 Introduction

This vignette documents the beta-binomial distribution, which is included in the TailRank package

> library(TailRank)

Mathematically, the beta-binomial distribution has parameters N, u, and v that determine the density function

$$\binom{N}{x}Beta(x+u,N-x+v)/Beta(u,v).$$

Statistically, one can think of this distribution as a hierarchical model, starting with a binomial distribution $Binom(x,N,\theta)$ whose success parameter θ comes from a beta distribution, $\theta \sim Beta(x,u,v)$. This distribution has a larger variance than the binomial distribution with a fixed (known) parameter θ .

We provide the usual set of functions to implement a distribution:

- dbb is the distribution function.
- pbb is the cumulative distribution function.
- qbb is the quantile function.
- rbb is the random-sample function.

We start by comparing the distributions of a binomial distribution and a beta-binomial distribution.

- > N <- 20
- > u <- 3
- > v <- 10

```
> p <- u/(u+v)
> x <- 0:N
> y <- dbinom(x, N, p)
> yy <- dbb(x, N, u, v)
>
> barplot(t(matrix(c(y, yy), ncol=2)), beside=TRUE, col=c("blue", "red"))
> legend("topright", c("Binomial", "Beta-Binomial"), col=c("blue", "red"), pch=15)
```


Now we sample data from each of these distributions.

```
> set.seed(561662)
> r <- rbinom(1000, N, p)
> rr <- rbb(1000, N, u, v)
> mean(r)
[1] 4.599
> mean(rr)
[1] 4.482
> var(r)
[1] 3.345545
```

- > var(rr)
- [1] 7.741417
- > sd(r)
- [1] 1.829083
- > sd(rr)
- [1] 2.78234