Probability Inequalities

Thm 1 (Gaussian Tail Inequality):

Let $X \sim \mathcal{N}(0,1)$. Then

Additionally:

Thm 2 (Markov Inequality): Let X be a non-negative random variable s.t. $\mathbb{E}(X)$ exists.

Then $\forall t > 0$

Thm 3 (Chebyshev's Inequality): Let $\mu = \mathbb{E}(X)$ and $\sigma^2 =$ Var(X).

Then:

Lemma 4: Let $\mathbb{E}(X) = 0$ and $a \le X \le b$.

Lemma 5: Let X be any random variable.

Then

Thm 6 (Hoeffding's Inequality): $X_1, ..., X_n$ iid, $\mathbb{E}(X_i) = \mu$, $a \leq X_i \leq b$.

Then $\forall \epsilon > 0$

Thm 9 (McDiarmid): X_1, \ldots, X_n indep't. If

$$\sup_{x_1,\ldots,x_n,x_i'}|g(x_1,\ldots,x_n)-g_i^*(x_1,\ldots,x_n)|\leq c_i \ \forall i, \implies$$

$$\mathbb{P}\left(g(X_1,\ldots,X_n) - \mathbb{E}(g(X_1,\ldots,X_n)) \ge \epsilon\right) \le e^{-2\epsilon^2/\sum_i c_i^2} \tag{1}$$

where $g_i^* = g$ with x_i replaced by x_i' .

Thm 12 (Cauchy-Schwartz inequality):

Thm 13 (Jensen's inequality):

Ex 15 (Kullback Leibler distance):

Thm 18:

 O_p and o_p : $X_n = o_p(1)$ if $\forall \epsilon > 0$, $\lim_{n \to \infty} \mathbb{P}(|X_n| > \epsilon) = 0$.

 $X_n = O_p(1)$ if $\forall \epsilon > 0$, $\exists C > 0$ s.t. $\lim_{n \to \infty} \mathbb{P}(|X_n| > C) \le \epsilon$.

 $X_n = o_p(a_n)$ if $X_n/a_n = o_p(1)$ and $X_n = O_p(a_n)$ if $X_n/a_n = O_p(1)$.

Shattering

Note: remember uniform bounds and union bound.

F a finite set, |F| = n, and $G \subset F$. A is a class of sets.

 \mathcal{A} picks out G if $\exists A \in \mathcal{A} \text{ s.t. } A \cap F = G$.

Let $S(\mathcal{A}, F) = |\{G \subset F \text{ picked out by } \mathcal{A}\}| \le 2^n$.

F is **shattered** by \mathcal{A} if $S(\mathcal{A}, F) = 2^n$ (ie if \mathcal{A} picks out all $G \subset F$).

Let \mathcal{F}_n be all finite sets with n elements.

The shatter coefficient $s_n(\mathcal{A}) = \sup_{F \in \mathcal{F}_n} s(\mathcal{A}, F) \leq 2^n$.

The VC dimension d(A) = the largest n s.t. $s_n(A) = 2^n$.

Thm 5: $\forall \epsilon > 0$, $\mathbb{P}(\sup_{A \in \mathcal{A}} |P_n(A) - P(A)| > \epsilon) \le 8s_n(\mathcal{A})e^{-n\epsilon^2/32}$

Random Samples

For $X_1, \ldots, X_n \sim F$ a **statistic** is any $T = g(X_1, \ldots, X_n)$.

E.g. \overline{X}_n , $S_n = \sum_i (X_i - \overline{X}_n)^2 / (n-1), (X_{(1)}, \dots, X_{(n)})$

Notes: $\mathbb{E}(\overline{X}_n) = \mathbb{E}(X_i)$, $Var(\overline{X}_n) = Var(X_i)/n$, $\mathbb{E}(S_n)^2 =$

 $\operatorname{Var}(X_i), \ X_{1,\dots,n} \sim \operatorname{Bern}(p) \implies \sum_i X_i \sim \operatorname{Bin}(n,p), \ X_{1,\dots,n} \sim$

 $\operatorname{Exp}(\beta) \Longrightarrow \sum_{i} X_{i} \sim \Gamma(n,\beta), X_{1,\dots,n} \sim \mathcal{N}(0,1) \Longrightarrow \sum_{i} X_{i}^{2} \sim \chi_{n}.$ **Thm.** 1: $X_{1},\dots,X_{n} \sim \mathcal{N}(\mu,\sigma^{2}) \Longrightarrow \overline{X}_{n} \sim \mathcal{N}(\mu,\sigma^{2}/n).$

Convergence

 X, X_1, X_2, \dots random variables.

(1) X_n converges almost surely $X_n \xrightarrow{a.s.} X$ if $\forall \epsilon > 0$

(2) X_n converges in probability $X_n \xrightarrow{p} X$ if $\forall \epsilon > 0$

(3) X_n converges in quadratic mean $X_n \xrightarrow{qm} X$ if

(4) X_n converges in distribution $X_n \rightsquigarrow X$ if

 $\forall t$ on which F_X is continuous.

Thm 10a: X, X_n, Y, Y_n random variables. Then

Thm 10b (Slutzky's Thm): X_1X_n,Y_n random variables. Then

Thm 12 (Law of Large Numbers): X_1, \ldots, X_n iid, $\mathbb{E}(X_i) = \mu$ $\Longrightarrow \overline{X}_n \xrightarrow{\mathrm{qm}} \mu.$

Thm 14 (CLT): X_1, \ldots, X_n iid, $\mathbb{E}(X_i) = \mu \operatorname{Var}(X_i) = \sigma^2$

 $\implies \sqrt{n}(\overline{X}_n - \mu)/\sigma \rightsquigarrow \mathcal{N}(0,1)$

 $\Longrightarrow \overline{X}_n \rightsquigarrow \mathcal{N}(\mu, \sigma^2/n)$

 $\implies \sqrt{n}(\overline{X}_n - \mu)/S_n \rightsquigarrow \mathcal{N}(0,1)$

Thm 18 (delta method): If $\sqrt{n}(Y_n - \mu)/\sigma \rightsquigarrow \mathcal{N}(0,1), g'(\mu) \neq 0$

 $\implies \sqrt{n}(g(Y_n) - g(\mu))/|g'(\mu)|\sigma \rightsquigarrow \mathcal{N}(0,1)$

ie $Y_n \approx \mathcal{N}(\mu, \sigma^2/n) \implies g(Y_n) \approx \mathcal{N}(g(\mu), g'(\mu)^2 \sigma^2/n)$

Thm 18b (2nd order delta method):

Sufficiency

If $X_1, \ldots, X_n \sim p(x; \theta)$, T sufficient for θ if $p(x^n|t; \theta) = p(x^n|t)$. Thm 9 (factorization): for $X^n \sim p(x;\theta)$, $T(X^n)$ sufficient for θ if the joint probability can be factorized as.

T is a minimal sufficient statistic (MSS) if T is sufficient and T = q(U) for all other sufficient stats U.

Thm 15: T is a MSS if:

Parametric Point Estimation

Method of Moments: Define equations

And solve for $\hat{\theta}$.

Maximum Likelihood (MLE): The MLE is

Often suffices to solve for θ in $\frac{\partial l(\theta)}{\partial \theta} = 0$. The MLE is **equivariant** \implies if $\eta = g(\theta)$ then $\hat{\eta} = g(\hat{\theta})$.

Bayes Estimation: For prior $\pi(\theta)$, choose

Mean Squared Error (MSE): The MSE is

$$MSE = \mathbb{E}(\hat{\theta} - \theta)^2 = \int (\hat{\theta} - \theta)^2 p(x^n; \theta) dx^n = bias(\hat{\theta})^2 + Var(\hat{\theta})$$
(2)

Defs: $\mathbf{bias}(\hat{\theta}) = \mathbb{E}(\hat{\theta}) - \theta$. We say $\hat{\theta}$ is **consistent** if $\hat{\theta} = \hat{\theta}_n \stackrel{p}{\to} \theta$. The **standard error** of $\hat{\theta}$, se($\hat{\theta}$), is the standard deviation of $\hat{\theta}$.

Risks and Estimators

 $L(\theta, \hat{\theta})$ is the **loss** of an estimator $\hat{\theta} = \hat{\theta}(x^n)$ for $x^n \sim p(x^n; \theta)$. The **risk** of this $\hat{\theta}$ is

When $L(\theta, \hat{\theta}) = (\theta - \hat{\theta})^2$, the risk is the MSE.

The **max risk** of $\hat{\theta}$ over a set $\theta \in \Theta$ is

The minimax risk is

The minimax estimator is

The **Bayes risk** of $\hat{\theta}$ given a prior $\pi(\theta)$ is

The **posterior risk** of $\hat{\theta}$ given a prior $\pi(\theta)$ is

where $\pi(\theta|x^n) = \frac{\mathbb{P}(x^n;\theta)\pi(\theta)}{m(x^n)}$ is the posterior over θ .

The **Bayes estimator** is

which equals the posterior mean $\mathbb{E}(\theta|x^n)$ when $L(\theta,\theta) = (\theta-\theta)^2$, the posterior median when $L(\theta, \hat{\theta}) = |\theta - \hat{\theta}|$, and the posterior mode when $L(\theta, \hat{\theta}) = \mathbb{I}[\theta \neq \hat{\theta}].$

Thm 10: If $\hat{\theta}$ is a Bayes estimator for some prior π and $R(\theta, \hat{\theta})$ is constant, then $\hat{\theta}$ is a minimax estimator.

Note: The MLE is approximately minimax (as n increases, if dimension of the parameter is fixed).

Distributions

Discrete distributions: (a) Bernoulli

- (b) Binomial
- (c) Poisson

Continuous distributions: (b) Normal

Expected Values

The **mean** or **expected value** of g(X) is

Related properties and definitions:

- Cov(X,Y) =(g)
- (h) Cov(X,Y) =
- $\rho(X,Y) =$ (i)

The **conditional expectation** of Y given X is the random variable $g(X) = \mathbb{E}(Y|X)$, where

The Law of Total/Iterated Expectation is

The Law of Total Variance is

The Law of Total Covariance is

Aymptotic (Large Sample) Theory

A random sequence A_n is:

2.

3.

If $Y_n \rightsquigarrow Y \implies Y_n = O_p(1)$

If $\sqrt{n}(Y_n - c) \rightsquigarrow Y \implies Y_n = O_p(1/\sqrt{n})$

Distances Between Distributions

For distributions P and Q with pdfs p and q:

 $K(P,Q) = \int p\log(p/q)$ Kullback-Leibler divergence

A model is **identifiable** if: $\theta_1 \neq \theta_2 \implies K(\theta_1, \theta_2) > 0$.

 $\hat{\theta}_n = T(X^n)$ is **consistent** for θ if $\hat{\theta}_n \xrightarrow{p} \theta$ (ie if $\hat{\theta}_n - \theta = o_p(1)$).

To show consistency, can show: $\operatorname{Bias}^2(\hat{\theta}_n) + \operatorname{Var}(\hat{\theta}_n) \to 0$.

The MLE is consistent under regularity conditions.

MLE not consistent when number of params (or support?) grows.

Score and Fisher Information

The score function is $S(\theta) = \frac{\partial}{\partial \theta} l(\theta) = \frac{\partial}{\partial \theta} \sum_{i=1}^{n} \log p(x_i | \theta)$.

The **Fisher information** is defined as

$$I_n(\theta) = \mathbb{E}_{\theta} \left[S(\theta)^2 \right] = \operatorname{Var}_{\theta} \left[S(\theta) \right] = -\mathbb{E}_{\theta} \left[\frac{\partial^2}{\partial \theta^2} l(\theta) \right]$$
 (3)

and
$$I_n(\theta) = -n\mathbb{E}\left[\frac{\partial^2}{\partial \theta^2}\log p(X_1; \theta)\right] = nI_1(\theta).$$

The observed information $\hat{I}_n(\theta) = -\sum_i \frac{\partial^2}{\partial \theta^2} \log p(X_i; \theta)$. Vector case: $S(\theta) = \left[\frac{\partial l(\theta)}{\partial \theta_i}\right]_{i=1,...,K} \quad I_{ij} = -\mathbb{E}_{\theta} \left[\frac{\partial^2 l(\theta)}{\partial \theta_i \partial \theta_j}\right]_{i,j=1,...,K}$

Efficiency and Robustness

For an estimator $\hat{\theta}_n(X^n)$ of θ , where $X^n \stackrel{\text{iid}}{\sim} p(x|\theta)$:

If $\sqrt{n}(\hat{\theta}_n - \theta) \rightsquigarrow \mathcal{N}(0, v^2)$, then v^2 is the **asymptotic-Var** $(\hat{\theta}_n)$.

E.g. for $\hat{\theta}_n = \overline{X}_n$: $v^2 = \sigma^2 = \text{Var}(X_i) = \lim_{n \to \infty} n \text{Var}(\overline{X}_n)$. In general, asymptotic- $\operatorname{Var}(\hat{\theta}_n)$ $v^2 \neq \lim_{n \to \infty} n \operatorname{Var}(\hat{\theta}_n)$. We will use approx: $Var(\hat{\theta}_n) \approx v^2/n$.

For param $\tau(\theta)$, $v(\theta) = \frac{|\tau'(\theta)|^2}{I_1(\theta)}$ is the **Cramer-Rao lower bound**. for most estimators $v^2 \ge v(\theta)$.

If $\sqrt{n}(\hat{\theta}_n - \tau(\theta)) \rightsquigarrow \mathcal{N}(0, v(\theta))$ (ie if $v^2 = v(\theta)$) $\Longrightarrow \hat{\theta}_n$ efficient. usually, $\sqrt{n}(\tau(\hat{\theta}_{mle}) - \tau(\theta)) \rightsquigarrow \mathcal{N}(0, v(\theta)) \implies \text{MLE efficient.}$

The standard error of efficient $\hat{\theta}_n$ is $se = \sqrt{\operatorname{Var}(\hat{\theta}_n)} \approx \sqrt{\frac{1}{I_n(\theta)}}$. The estimated standard error of efficient $\hat{\theta}_n$ is $\hat{se} \approx \sqrt{\frac{1}{I(\hat{\theta}_n)}}$

For efficient $\hat{\theta}_n$, $\hat{\tau} = \tau(\hat{\theta}_n)$, $se \approx \sqrt{\frac{|\tau'(\theta)|^2}{I_n(\theta)}}$, and $\hat{se} \approx \sqrt{\frac{|\tau'(\hat{\theta}_n)|^2}{I_n(\hat{\theta}_n)}}$.

In general, **asymptotic normality** is when:

 $\frac{\hat{\theta}_n - \mathbb{E}(\hat{\theta}_n)}{\sqrt{\operatorname{Var}(\hat{\theta}_n)}} \rightsquigarrow \mathcal{N}(0,1) \implies \hat{\theta}_n \rightsquigarrow \mathcal{N}(\mathbb{E}(\hat{\theta}_n), \operatorname{Var}(\hat{\theta}_n)).$

If $\sqrt{n}(W_n - \tau(\theta)) \rightsquigarrow \mathcal{N}(0, \sigma_W^2)$ and $\sqrt{n}(V_n - \tau(\theta)) \rightsquigarrow \mathcal{N}(0, \sigma_V^2)$ \implies asymptotic relative efficiency ARE $(V_n, W_n) = \sigma_W^2/\sigma_V^2$. Often there is a tradeoff between efficiency and robustness. (?)

Hypothesis Testing

Null hypothesis $H_0: \theta \in \Theta_0$, alternative $H_1: \theta \in \Theta_1$.

Type I error: If H_0 true but we reject H_0 .

To construct a test:

- 1. Choose a test statistic $W = W(X_1, \ldots, X_n)$
- 2. Choose a rejection region R

3. If $W \in \mathbb{R}$, reject H_0 otherwise retain H_0

(4)

For rejection region R, the **power function** $\beta(\theta) = \mathbb{P}_{\theta}(X^n \in R)$. Want level- α test ($\sup_{\theta \in \Theta_0} \beta(\theta) \leq \alpha$) that maximizes $\beta(\theta \in \Theta_1)$. A level- α test with power fn β is **uniformly most powerful** if: $\beta(\theta) \ge \beta'(\theta) \ \forall \theta \in \Theta_1 \ \forall \beta' \ne \beta.$

Neyman-Pearson Test

For simple $H_0: \theta = \theta_0$ and $H_1: \theta = \theta_1$, reject $H_0: \frac{L(\theta_1)}{L(\theta_0)} > k$. where k chosen s.t. $\mathbb{P}(\frac{L(\theta_1)}{L(\theta_0)} > k) = \alpha$.

Wald Test

For $H_0: \theta = \theta_0$ and $H_1: \theta \neq \theta_0$, reject H_0 if $\left| \frac{\hat{\theta}_n - \theta_0}{se} \right| > z_{\alpha/2}$. where $z_{\alpha/2}$ is the inverse standard-normal CDF of $1-\frac{\alpha}{2}$. and $\hat{\theta}_n$ is an unbiased estimator for θ . and $se = \sqrt{\operatorname{Var}(\hat{\theta}_n)}$. Can also use $\hat{se} =_{\text{eg.}} \sqrt{S_n^2/n}$. and if $\hat{\theta}_n$ efficient, can approx: $se \approx \sqrt{\frac{1}{I_n(\theta)}}$ or $\hat{se} \approx \sqrt{\frac{1}{I_n(\theta)}}$.

Likelihood Ratio Test

For $H_0: \theta \in \Theta_0$ and $H_1: \theta \notin \Theta_0$, reject H_0 if $\lambda(x^n) = \frac{L(\theta_0)}{L(\hat{\theta})} \leq c$. where $L(\hat{\theta}_0) = \sup_{\theta \in \Theta_0} L(\theta)$ and $L(\hat{\theta}) = \sup_{\theta \in \Theta} L(\theta)$.

and c chosen s.t. $\mathbb{P}(\lambda(x^n) \leq c) = \alpha$.

Thm: under $H_0: \theta = \theta_0 \implies W_n = -2\log\lambda(X^n) \rightsquigarrow \chi_1^2$ \implies reject H_0 if $W_n > \chi_{1,\alpha}^2$.

Also: for $\theta = (\theta_1, \dots, \theta_k)$, if H_0 fixes some of the parameters \implies $-2\log\lambda(X^n) \rightsquigarrow \chi^2_{\nu}$, where $\nu = \dim(\Theta) - \dim(\Theta_0)$.

P-Values

The **p-value** $p(x^n)$ is the smallest α -level s.t. we reject H_0 .

Thm: For a test of the form: reject H_0 when $W(x^n) > c$,

 $\implies p(x^n) = \sup_{n \in \mathbb{N}} \mathbb{P}_{\theta}(W(X^n) \ge W(x^n)) = \sup_{n \in \mathbb{N}} [1 - F(W(x^n)|\theta)].$

Thm: Under $H_0: \theta = \theta_0, \ p(x^n) \sim \text{Unif}(0,1)$.

Permutation Test

 $X^n \sim F, Y^m \sim G, H_0: F = G, H_1: F \neq G$

Let $Z = (X^n, Y^m)$ and L = (1, ..., 1, 2, ..., 2).

Let W = g(L, Z) = |(ave of 1 labeled pts) - (ave of 2 labeled pts)|. Let $p = \frac{1}{N!} \sum_{\pi} \mathbb{I}(g(L_{\pi}, Z) > g(L, Z)) \implies \text{reject } H_0 \text{ when } p < \alpha.$