Algebra

March 9, 2017

1 Group theory

1.1 Week 1

Def 1. A non-empty set G with a binary function $f: G \times G \to G, (a,b) \mapsto ab$ is a **group** if it satisfies

- 1. (ab)c = a(bc).
- 2. $\exists 1 \in G \text{ s.t. } 1a = a1 = a, \forall a \in G.$
- 3. $\exists a^{-1} \in G \text{ s.t. } aa^{-1} = a^{-1}a = 1.$

CONCON

Def 2. Let G be a group. Then G is said to be **abelian** if $\forall a, b \in G, ab = ba$.

Ex 1.1.1. Let G be a semigroup. Then TFAE (the following are equivalent)

- 1. G is a group.
- 2. For all $a, b \in G$ and the equations bx = a, yb = a, each of them has a solution in G.
- 3. $\exists e \in G \text{ s.t. } ae = a \ \forall a \in G \text{ and if we fix such } e, \text{ then } \forall b \in G \ \exists b' \in G \text{ s.t. } bb' = e.$

Ex 1.1.2. Let G be a group. Show that

- 1. $\forall a \in G, a^2 = 1$, then G is abelian.
- 2. G is abelian $\iff \forall a, b \in G, (ab)^n = a^n b^n$ for three consecutive integer n.

Def 3. Let G be a group and $H \subseteq G, H \neq \phi$. Then H is said to be a subgroup of G, denoted by $H \subseteq G$, if

- 1. $\forall a, b \in H, ab \in H$.
- 2. $1 \in H$.
- 3. $\forall a \in H, a^{-1} \in H$.

<u>useful criterion</u>: $H \leq G \iff \forall a, b \in H, ab^{-1} \in H$.

Proof.

- \Rightarrow $b \in H \implies b^{-1} \in H$, and $a \in H$, so $ab^{-1} \in H$.
- \Leftarrow 1. $H \neq \phi \implies \exists a \in H \implies aa^{-1} = 1 \in H$.
 - 2. $1, a \in H \implies 1a^{-1} = a^{-1} \in H$.
 - 3. $a, b^{-1} \in H \implies a(b^{-1})^{-1} = ab \in H$.

Eg 1.1.1. $(\mathbb{Z}, +, 0) \le (\mathbb{Q}, +, 0) \le (\mathbb{R}, +, 0) \le (\mathbb{C}, +, 0)$; $(\mathbb{Q}^{\times}, \times, 1) \le (\mathbb{R}^{\times}, \times, 1) \le (\mathbb{C}^{\times}, \times, 1)$

Eg 1.1.2.

- Special linear group $SL(n, \mathbb{F}) = \{ A \in GL(n, \mathbb{F}) \mid \det A = 1 \}$
- Orthogonal group $O(n) = \{ A \in GL(n, \mathbb{R}) \mid A^t A = I_n \}$

- Unitary group $U(n) = \{ A \in GL(n, \mathbb{C}) \mid A^*A = I_n \}$
- Special orthogonal group $SO(n) = SL(n, \mathbb{R}) \cap O(n)$
- Special unitary group $SU(n) = SL(n, \mathbb{C}) \cap U(n)$

Def 4. Let $f: G_1 \to G_2$. f is called an **isomorphism** if

- 1. f is 1-1 and onto.
- 2. $\forall a, b \in G_1, f(ab) = f(a)f(b)$. (homomorphism)

, denoted by $G_1 \cong G_2$.

Remark 1. (practice)

- 1. f(1) = 1.
- 2. $f(a^{-1}) = f(a)^{-1}$.
- 3. If f is an isomorphism, then $\exists f^{-1}$ is also a homomorphism.

Eg 1.1.3.

- $U(1) = \{ z \in \mathbb{C}^{\times} \mid \bar{z}z = 1 \}, z = \cos \theta + \sin \theta i \}$
- $SO(2) = \left\{ \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} : \theta \in \mathbb{R} \right\}$

notice that $U(1) \cong SO(2)$. $S^1 = \{(a,b) \in \mathbb{R}^2 \mid a^2 + b^2 = 1\}$, 可被賦予群的結構.

Eg 1.1.4. Let $A \in SU(2) \implies A = \begin{pmatrix} \alpha & \beta \\ -\bar{\beta} & \bar{\alpha} \end{pmatrix}, \alpha\bar{\alpha} + \beta\bar{\beta} = 1, \alpha, \beta \in \mathbb{C}.$

Quaternion(四元數): $\mathbb{H} = \{a+bi+cj+dk \mid a,b,c,d \in \mathbb{R}\}$ with $i^2 = j^2 = k^2 = -1, ij = k, jk = i, ki = j (\Longrightarrow ij = -ji).$

Let x = a + bi + cj + dk, $\bar{x} = a - bi - cj - dk$, then $N(x) = x\bar{x} = a^2 + b^2 + c^2 + d^2$, For $x \neq 0, N(x) \neq 0, x^{-1} = \frac{1}{N(x)}\bar{x}$

Now, for x = a + bi + cj + dk = (a + bi) + (c + di)j. So SU(2) $\cong \{x \in \mathbb{H}^{\times} \mid N(x) = 1\}$. $S^3 = \{(a, b, c, d) \in \mathbb{R}^4 \mid a^2 + b^2 + c^2 + d^2 = 1\}$, 可被賦予群的結構.

 \star The only spheres with continuous group law are S^1, S^3 .

Ex 1.1.3. Find a way to regard $M_{n\times n}(\mathbb{H})$ as a subset of $M_{2n\times 2n}(\mathbb{C})$, which preserves addition and multiplication, and then there is a way to characterize $GL(n,\mathbb{H})$.

Def 5 (symplectic group). $\operatorname{Sp}(n,\mathbb{F}) = \{ A \in \operatorname{GL}(2n,\mathbb{F}) \mid A^{\operatorname{t}}JA = J \}$ where $J = \begin{pmatrix} O & I_n \\ -I_n & O \end{pmatrix}$. $(A^{\operatorname{t}}JA = J \text{ preserving non-degenerate skew-symmetric forms})$ $\operatorname{Sp}(n) = \{ A \in \operatorname{GL}(n,\mathbb{H}) \mid A^*A = I_n \}.$

Ex 1.1.4. Show $\operatorname{Sp}(n) \cong \operatorname{U}(2n) \cap \operatorname{Sp}(n, \mathbb{C})$.

Ques: Find the smallest subgroup of SU(2) containing $\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$.

1.2 Week 2

1.2.1 Permutation groups and Dihedral groups

Def 6. A permutation of a set B is a 1-1 and onto function from B to B.

Let $S_B :=$ the set of permutations of B. Then $(S_B, \cdot, \mathrm{Id}_B)$ forms a group.

If $B = \{a_1, \ldots, a_n\}$, then $S_B \cong S_{\{1,\ldots,n\}}$ and write $S_n = S_{\{1,\ldots,n\}}$, called the symmetric group of degree n.

Theorem 1 (Cayley theorem). Any group is isomorphic to a subgroup of some permutation group.

(Hint): Let G be a group. Set B=G. Consider $a\in G$ as $\sigma_a:G\to G, x\mapsto ax$. Then $\sigma_a\in S_G\implies G\leq S_G$.

Fact 1.2.1. S_n is a finite group of order n!, i.e. $|S_n| = n!$.

Proof. EASY =
$$O$$

Cyclic notation: $\sigma \in S_5$, say $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 5 & 1 & 2 \end{pmatrix}$. Write $\sigma = (1\ 4)(2\ 3\ 5)$.

⇒ Any permutation can be written as a product of disjoint cycles.

Eg 1.2.1. In
$$S_7$$
, $\sigma_1 = (1\ 2\ 3)(4\ 5\ 6)(7)$, $\sigma_2 = (1\ 3\ 5\ 6)(2\ 4\ 7)$.

Then $\sigma_1 \sigma_2 = (2\ 5\ 4\ 7\ 3\ 6), \sigma_1^{-1} = (1\ 3\ 2)(4\ 6\ 5).$

Def 7. A 2 cycle is called a **transposition**.

Eg 1.2.2.
$$(1\ 2\ 3) = (1\ 3)(1\ 2), (1\ 2\ 3\ 4\ 5) = (1\ 5)(1\ 4)(1\ 3)(1\ 2).$$

Any permutation is a product of 2 cycles.

Useful formula: $\sigma \in S_n$, $\sigma(j_1 \ldots j_m)\sigma^{-1} = (\sigma(j_1) \ldots \sigma(j_m))$.

Eg 1.2.3. Let
$$\sigma = (1\ 2\ 3)(4\ 5\ 6\ 7), \ \sigma(2\ 3\ 4)\sigma^{-1} = (3\ 1\ 5).$$

Proof. Note that both sides are functions. For $i \in \{1, ..., n\}$,

<u>Case 1</u>: $\exists k \text{ s.t. } \sigma(j_k) = i, \text{ CONCON}$

Case 2: Otherwise, CONCON

Fact 1.2.2.
$$S_n = \langle (1 \ 2), \dots, (1 \ n) \rangle$$
.

Proof.
$$(1 i)^{-1} = (1 i)$$
 and $(i j) = (1 i)(1 j)(1 i)^{-1}$.

Def 8. Let G be a group and $S \subset G$. The subgroup generated by S defined to be the smallest subgroup of G which contains S, denoted by $\langle S \rangle$.

Ex 1.2.1.

1.
$$S_n = \langle (1\ 2), (2\ 3), \dots, (n-1\ n) \rangle, \quad n \geq 2.$$

2.
$$S_n = \langle (1\ 2), (1\ 2\ \dots\ n) \rangle, \quad n \geq 2.$$

Def 9. $A_n = \{\text{even permutations of } S_n\} \leq S_n, |A_n| = \frac{n!}{2}.$

Ex 1.2.2.

1.
$$A_n = \langle (1\ 2\ 3), (1\ 2\ 4), \dots, (1\ 2\ n) \rangle, n \geq 3.$$

2.
$$A_n = \langle (1\ 2\ 3), (2\ 3\ 4), \dots, (n-2\ n-1\ n) \rangle, n \geq 3.$$

Remark 2.
$$\langle S \rangle = \bigcap_{S \subseteq H \leq G} H = \{a_1 a_2 \dots a_k \mid k \in \mathbb{N}, a_i \in S \cup S^{-1}\} \cup \{1\}$$

The orthogonal transformations on \mathbb{R}^2 : O(2).

Let
$$A = \begin{pmatrix} a_1 & a_2 \\ b_1 & b_2 \end{pmatrix} \in \mathcal{O}(2)$$
.

略... (這邊討論旋轉和反射的矩陣)

<u>Case 1</u>: $A = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$ is counterclockwise roration w.r.t. α .

Case 2: $A = \begin{pmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{pmatrix}$ is the reflection. $A^2 = I_2 \implies$ eigenvalues are ± 1 . Easy to show that $L_A(v) = v - 2\langle v, v_2 \rangle v_2$.

 $O(2) = \{\text{rotations}\} \cup \{\text{reflections}\}.$

Def 10. The dihedral group D_n is the group of symmetries of a regular n-gon. In general, $D_n = \langle T, R \mid T^n = 1, R^2 = 1, TR = RT^{-1} \rangle \leq O(2) \leq S_n, |D_n| = 2n$.

Def 11. Let T be a linear transformation from $\mathbb{R}^n \to \mathbb{R}^n$.

- T is called a rotation if \exists a T-invariant subspace $W \subseteq \mathbb{R}^n$ with dim W = 2 s.t. $\begin{cases} T|_W \text{ is a rotation} \\ T|_{W^{\perp}} = \mathrm{id}_{W^{\perp}} \end{cases}$
- T is called a reflection if \exists a T-invariant subspace $W \subseteq \mathbb{R}^n$ with dim W = 1 s.t. $\begin{cases} T|_W = -\mathrm{id}_W \\ T|_{W^\perp} = \mathrm{id}_{W^\perp} \end{cases}$

<u>Main result</u>: the group of orthogonal transformations = $\langle \text{rotations}, \text{reflections} \rangle$.

Prop 1.2.1. For $T: \mathbb{R}^n \to \mathbb{R}^n$, \exists a T-invariant subspace $W \subseteq \mathbb{R}^n$ with $1 \leq \dim W \leq 2$.

Proof. Let
$$A = [T]_{\alpha} \in M_{n \times n}(\mathbb{R}) \subseteq M_{n \times n}(\mathbb{C})$$
. Consider $\widetilde{L_A} : \mathbb{C}^n \to \mathbb{C}^n, v \mapsto Av$.

Then \exists an eigenvalue $\lambda \in \mathbb{C}$ and an eigenvector $v \in \mathbb{C}^n$ for $\widetilde{L_A}$. Let $\lambda = \lambda_1 + \lambda_2 i, v = v_1 + v_2 i$. By definition, we have

$$Av = \widetilde{\mathcal{L}_A}(v) = \lambda v = (\lambda_1 + \lambda_2 i)(v_1 + v_2 i) \implies \begin{cases} Av_1 = \lambda_1 v_1 - \lambda_2 v_2 \\ Av_1 = \lambda_2 v_1 + \lambda_1 v_2 \end{cases},$$

so
$$W = \langle v_1, v_2 \rangle$$
.

Ex 1.2.3.

1. If T is orthogonal, then W^{\perp} is also T-invariant.

2. Use induction on n to show the main result.

For
$$n = 3, A \in \mathcal{O}(3)$$
, we have $A \sim \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \\ & \pm 1 \end{pmatrix}$.

1.2.2 Cyclic groups and internal direct product

Def 12. If $G = \langle a \rangle = \{\dots, a^{-2}, a^{-1}, a, 1, a, a^2, \dots\} = \{a^n \mid n \in \mathbb{Z}\}$, then G is a cyclic group generated by a.

Eg 1.2.4.
$$\mathbb{Z} = \langle 1 \rangle = \langle -1 \rangle$$
.

Eg 1.2.5. Let
$$A = \begin{pmatrix} \cos \frac{2\pi}{n} & -\sin \frac{2\pi}{n} \\ \sin \frac{2\pi}{n} & \cos \frac{2\pi}{n} \end{pmatrix} \in SO(2)$$
. Then $\langle A \rangle = \{I_2, A, A^2, \dots, A^{n-1}\}$ and $A^n = I_2, A^m = A^r$ where $m \equiv r \pmod{n}$.

Eg 1.2.6.
$$\mathbb{Z}/n\mathbb{Z} = {\overline{0}, \overline{1}, \dots, \overline{(n-1)}}$$
 with $\overline{j} = {m \in \mathbb{Z} \mid m \equiv j \pmod{n}}$.

$$\text{Define $\bar{i}+\bar{j}$} = \begin{cases} \overline{i+j} & \text{if $0\leq i+j\leq n$}\\ \overline{i+j-n} & \text{otherwise} \end{cases} \implies (\mathbb{Z}/n\mathbb{Z},+,\overline{0}) \text{ forms a group.}$$

Remark 3. $\overline{i} \times \overline{j} = \overline{i \times j}$.

- 略
- If $gcd(j, n) = d, \exists h, k \in \mathbb{Z} \text{ s.t. } hj + kn = d.$

Def 13.
$$(\mathbb{Z}/n\mathbb{Z})^{\times} = \{ j \in \mathbb{Z}/n\mathbb{Z} \mid \gcd(j,n) = 1 \} \implies ((\mathbb{Z}/n\mathbb{Z})^{\times}, \times, \overline{1}) \text{ forms a group.}$$

Eg 1.2.7. 略... 簡化剩餘系, 原根 (generator) $(1,2,4,p^k,2p^k,p)$ is an odd prime)

Def 14.

- The **order** of a finite gorup G is the number of elements in G, denoted by |G|.
- Let $a \in G$, the order of a is defined to be the least positive integer n s.t. $a^n = 1$, denoted by $\operatorname{ord}(a) = n$.
- If $a^n \neq 1 \quad \forall n \in \mathbb{N}$, then we call "a has infinte order".

Prop 1.2.2. Let $G = \langle a \rangle$ with ord(a) = n. Then

1.
$$a^m = 1 \iff n \mid m$$
.

Proof.

$$\Leftarrow$$
: Let $m = dn$, then $a^m = (a^n)^d = 1$.

$$\Rightarrow$$
: Let $m = qn + r, 0 \le r < n$. If $r \ne 0$, then $a^r = a^{m-qn} = (a^m)(a^n)^{-q} = 1$. But $r < n$, which is a contradiction. Hence $r = 0 \implies n \mid m$.

2.
$$\operatorname{ord}(a^r) = n/\gcd(r, n)$$
.

Proof. Let
$$gcd(r, n) = d, n = dn', r = dr'$$
 with $gcd(n', r') = 1$. Plan to show "ord(a^r) = n' ."

•
$$(a^r)^{n'} = a^{r'dn'} = (a^n)^{r'} = 1 \implies \operatorname{ord}(a^r) \mid n'.$$

•
$$1 = (a^r)^{\operatorname{ord}(a^r)} = a^{r \operatorname{ord}(a^r)} \implies n \mid r \operatorname{ord}(a^r) \implies n' \mid r' \operatorname{ord}(a^r) \implies n' \mid \operatorname{ord}(a^r).$$

Prop 1.2.3. Any subgroup of a cyclic group is cyclic.

Proof. Let $G = \langle a \rangle$ and $H \leq G$. If $H = \{1\}$, then $H = \langle 1 \rangle$, done!

Otherwise, $d = \min\{m \in \mathbb{N} \mid a^m \in H\}$, by well-ordering axiom. Claim $H = \langle a^d \rangle$.

 $\supset: a^d \in H$ by the definition of d.

 \subset : $\forall a^m \in H$, write $m = qd + r, 0 \le r < d$. If $r \ne 0$, then $a^r = a^{m-qd} = a^m(a^d)^{-q} \in H$, which is a contradiction. Hence $r = 0 \implies d \mid m$.

Ex 1.2.4.

1. $\operatorname{ord}(a) = \operatorname{ord}(a^{-1}) = n$.

2. $\langle a^r \rangle = \langle a^{\gcd(n,r)} \rangle$.

3. $\langle a^{r_1} \rangle = \langle a^{r_2} \rangle \iff \gcd(n, r_1) = \gcd(n, r_2).$

4. $\forall m \mid n, \exists ! H \leq \langle a \rangle$ s.t. |H| = m. Conversely, if $H \leq \langle a \rangle$, then $|H| \mid n$.

Prop 1.2.4. Let $G = \langle a \rangle$. Then

1. $\operatorname{ord}(a) = n \implies G \cong \mathbb{Z}/n\mathbb{Z}$

2. $\operatorname{ord}(a) = \infty \implies G \cong \mathbb{Z}$

Ex 1.2.5. Show Prop 1.2.4.

Def 15. Let $G_1, G_2 \leq G$. G is the internal direct product of G_1, G_2 if $G_1 \times G_2 \to G$, $(g_1, g_2) \mapsto g_1g_2$ is an isom.

Remark 4. In this case, we find that

• $G = G_1G_2 = \{ g_1g_2 \mid g_1 \in G_1, g_2 \in G_2 \}.$

• $G_1 \cap G_2 = \{1\}$. (consider $a \neq 1 \in G_1 \cap G_2$, then $(1, a) \mapsto a, (a, 1) \mapsto a$, but the function is 1-1, which is a contradiction.)

• If $a \in G$ with $a = g_1g_2 = g_1'g_2'$, then $(g_1')^{-1}g_1 = (g_2')g_2^{-1} \in G_1 \cap G_2 = \{1\} \implies \begin{cases} g_1 = g_1' \\ g_2 = g_2' \end{cases}$.

• For $g_1 \in G_1, g_2 \in G_2, (g_1, g_2) = (g_1, 1)(1, g_2) = (1, g_2)(g_1, 1) \implies g_1g_2 = g_2g_1.$

Ex 1.2.6. TFAE

1. G is the internal direct product of G_1, G_2 .

2. $\forall a \in G, \exists ! g_1 \in G_1, g_2 \in G_2 \text{ s.t. } a = g_1 g_2 ; \forall g_1 \in G_1, g_2 \in G_2, g_1 g_2 = g_2 g_1.$

3. $G_1 \cap G_2 = \{1\}$; $G = G_1G_2$; $\forall g_1 \in G_1, g_2 \in G_2, g_1g_2 = g_2g_1$.

Eg 1.2.8.

1.
$$G = \mathbb{Z}/6\mathbb{Z} = {\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}}, G_1 = {\overline{0}, \overline{3}}, G_2 = {\overline{0}, \overline{2}, \overline{4}}.$$
 We have $G \cong G_1 \times G_2$.

2.
$$G = S_3, G_1 = \langle (1\ 2) \rangle, G_2 = \langle (1\ 2\ 3) \rangle$$
. We have $G_1 \times G_2 \ncong G$ since $(1\ 2)(1\ 2\ 3) \neq (1\ 2\ 3)(1\ 2)$.

Eg 1.2.9. $G = S_3, G_1 = \langle (1\ 2) \rangle, G_2 = \langle (2\ 3) \rangle, G_1G_2 = \{1, (1\ 2), (2\ 3), (1\ 2\ 3)\} \not\leq G$ since $(1\ 3\ 2) = (1\ 2\ 3)^{-1} \not\in G_1G_2$.

Prop 1.2.5. Let $H, K \leq G$. Then $HK \leq G \iff HK = KH$.

Proof.

$$\Rightarrow : \begin{cases} H \leq HK \\ K \leq HK \end{cases} \implies KH \subseteq HK \; ; \; \forall hk \in HK, \exists h'k' \in HK \; \text{s.t.} \; \; (hk)(h'k') = 1 \; \implies \; hk = (k')^{-1}(h')^{-1} \in KH \; \implies \; HK \subseteq KH.$$

 \Leftarrow : For $h_1k_1, h_2k_2 \in HK$, $(h_1k_1)(h_2k_2)^{-1} = h_1k_1k_2^{-1}h_2^{-1} = h_1h'k' \in HK$.

1.3 Week 3

1.3.1 Coset and Quotient Group

Let $f: G_1 \to G_2$ be a group homo. Define Im $f := f(G_1)$.

Notice that $\operatorname{Im} f \leq G_2$.

Proof. Let
$$z_1 = f(a_1), z_2 = f(a_2)$$
, then $z_1 z_2^{-1} = f(a_1) f(a_2)^{-1} = f(a_1) f(a_2^{-1}) = f(a_1 a_2^{-1}) \in \text{Im } f$.

Def 16. $\ker f := \{ x \in G_1 \mid f(x) = 1 \} \le G_1.$

Fact 1.3.1.

- 1. $x \in (\ker f)a \iff f(x) = f(a)$.
- 2. $\ker f = \{1\} \iff f \text{ is 1-1.}$

Def 17. Let $H \leq G$, $\forall a \in G, Ha$ is called a **right coset** of H in G.

Fact 1.3.2.

- 1. For 2 right cosets Ha, Hb, either Ha = Hb or $Ha \cap Hb = \phi$ must hold.
- 2. $\{Ha : a \in G\}$ forms a partition of G.

Theorem 2 (Lagrange). Let $|G| < \infty$ and $H \le G$, $|H| \mid |G|$.

Remark 5. r is called the **index** of H in G, denoted by [G:H]. (The concept of index can be extended to infinite G, H.)

Ex 1.3.1. no subgroup of A_4 has order 6. (converse of Lagrange thm. is false.)

Coro 1.3.1. If |G| = p is a prime in \mathbb{Z} , then G is cyclic.

Coro 1.3.2. If $|G| < \infty, a \in G$, then $a^{|G|} = 1$.

$$\Gamma$$

Remark 6.

- 1. Let $H \leq G, a \in G, aH$ is called a **left coset**.
- 2. {right cosets of H} \leftrightarrow {right cosets of H} by $Ha \mapsto a^{-1}H$.

Ques: How to make $\{aH : a \in G\}$ to be a group? For aH, bH, we must have (aH)(bH) = abH. In general, (aH)(bH) = abH is not well-defined.

Eg 1.3.1. Let
$$H = \langle (1\ 2) \rangle \leq S_3$$
. $a_1 = (1\ 3), a_2 = (1\ 2\ 3), b_1 = (1\ 3\ 2), b_2 = (2\ 3)$. 出慘點

If we hope $a_1b_1H = a_2b_2H$, then we need $(a_1b_1)^{-1}a_2b_2 \in H$.

$$b_1^{-1}a_1^{-1}a_2b_2 = b_1^{-1}b_2b_2^{-1}a_1^{-1}a_2b_2$$

Notice that $b_1^{-1}b_2, a_1^{-1}a_2 \in H$, so we need $b_2^{-1}a_1^{-1}a_2b_2 \in H$.

Def 18. Let $H \leq G$. H is said to be **normal subgroup** of G if $\forall g \in G, h \in H, g^{-1}hg \in H$ (or $g^{-1}Hg \subseteq H$), denoted by $H \triangleleft G$.

Def 19. Let $H \triangleleft G$. The set $\{aH \mid a \in G\}$ forms a group under $(aH)(bH) = abH, a, b \in G$. We call it the **quotient group** of G by H, denoted by G/H.

(Note: The indentity is H = hH and $(aH)^{-1} = a^{-1}H$.)

Remark 7. Define $q: G \to G/H, a \mapsto aH$, called the quotient homomorphism.

Ex 1.3.2. Let $H \leq G$. Then TFAE

- (a) $H \triangleleft G$.
- (b) $\forall x \in G, xHx^{-1} = H.$
- (c) $\forall x \in G, xH = Hx$.
- (d) $\forall x, y \in G, (xH)(yH) = (xy)H.$

Ques: How to find a normal subgroup of G?

Prop 1.3.1.

- 1. If G is abelian, then $\forall H \leq G \rightsquigarrow H \triangleleft G$. (done by (c))
- 2. If $H \leq G$ with [G:H] = 2, then $H \triangleleft G$.

Eg 1.3.2.
$$n \le 3, [S_n : A_n] = 2 \implies A_n \triangleleft S_n.$$

Proof. We can write $G = H \cup Ha = H \cup aH \implies aH = Ha, \forall a \notin H.$

Def 20. Define the center of G to be $Z_G = \{ a \in G \mid ax = xa, \forall x \in G \} \leq G$.

Prop 1.3.2.

- 1. $Z_G \triangleleft G$. (by (c) and def.)
- 2. If G/Z_G is cyclic, then G is abelian.

$$Proof.$$
 Let $G/Z_G = \langle aZ_G \rangle$, (let $\overline{a} := aZ_G$) for some $a \in G$. For $x_1, x_2 \in G$, let $x_1 = a^{k_1}z_1, x_2 = a^{k_2}z_2$, then $x_1x_2 = a^{k_1+k_2}z_1z_2 = x_2x_1$. (z_i 可以各種交換)

Def 21. The commutator of G is define to be $[G,G] = \langle xyx^{-1}y^{-1} \mid x,y \in G \rangle$.

Prop 1.3.3. $[G,G] \triangleleft G$; $[G,G] = 1 \iff G$ is abelian.

Proof.
$$\forall x \in G, a \in [G, G], xax^{-1} = xax^{-1}a^{-1}a \text{ and } xax^{-1}a^{-1}, a \in [G, G].$$

Ex 1.3.3.

1. If $H \leq S_n$ and $\exists \sigma \in H$ is odd, then $[H : H \cap A_n] = 2$.

2. For $n \geq 3$, $[S_n, S_n] = A_n$.

Ex 1.3.4. Let $H \leq G$. Then $H \triangleleft G$ and G/H is abelian $\iff [G,G] \leq H$. (hint: G/[G,G] is "max" among all abelian quotient groups)

1.3.2 Isomorphism theorems & Factor theorem

Theorem 3 (1st isomorphism theorem). Let $f: G_1 \to G_2$ be a group homo. Then $G_1/\ker f \cong \operatorname{Im} f$.

Proof. Define $\varphi : a \ker f \mapsto f(a)$.

- well-defined: $a \ker f = b \ker f \implies a^{-1}b \in \ker f \implies f(a^{-1}b) = 1 \implies f(a)^{-1}f(b) = 1 \implies f(a) = f(b)$.
- group homo: $\varphi((a \ker f)(b \ker f)) = \varphi(ab \ker f) = f(ab) = f(a)f(b) = \varphi(a \ker f)\varphi(b \ker f)$.
- onto: by def. of $\operatorname{Im} f$.
- 1-1: $f(a) = f(b) \implies a \ker f = b \ker f$ (easy).

Theorem 4 (Factor theorem). Let $f: G_1 \to G_2$ be a group homo. and $H \triangleleft G_1, H \leq \ker f$. Then \exists a group homo. $\varphi: G/H \to G_2$ s.t.

Eg 1.3.3. Let $G = \langle a \rangle$ with ord(a) = n. Then $G \cong \mathbb{Z}/n\mathbb{Z}$. (1st isom. thm.)

Eg 1.3.4. $\varphi: \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}, 4\mathbb{Z} \leq 2\mathbb{Z}$, so by factor thm., $\mathbb{Z}/4\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$

Eg 1.3.5. det: $GL(n, \mathbb{F}) \to \mathbb{F}^{\times} \implies GL(n, \mathbb{F})/SL(n, \mathbb{F}) \cong \mathbb{F}^{\times}$

Eg 1.3.6. $\operatorname{sgn}: S_n \to \{\pm 1\} \implies S_n/A_n \cong \{\pm 1\}$

Theorem 5 (2nd isomorphism theorem). Let $H \leq G, K \triangleleft G$. Then $HK/K \cong H/H \cap K$.

$$\textit{Proof. } \text{First, } \begin{cases} H \leq G \\ K \lhd G \end{cases} \implies HK = KH \implies HK \leq G \text{ ; } K \lhd G \implies K \lhd HK.$$

Define $\varphi: H \to HK/K, h \mapsto hK$. which is a group homo.

- onto: $\forall (hk)K, hkK = hK, \text{ so } \varphi(h) = hK = hkK.$
- Find $\ker \varphi \colon a \in \ker \varphi \iff \begin{cases} a \in H \\ aK = K \end{cases} \iff a \in H \cap K$, so $\ker \varphi = H \cap K$.

Then by 1st isom. thm.

Eg 1.3.7. $G = GL(2, \mathbb{C}), H = SL(2, \mathbb{C}), K = \mathbb{C}^{\times} I_2 = Z_G \triangleleft G.$ By 2nd isom. thm., $G/K \cong H/\{\pm I_2\}.$ $(G = HK, \{\pm I_2\} = H \cap K)$ projective linear group: $\operatorname{PGL}(2,\mathbb{C}) = G/K$. projective special linear group: $\operatorname{PSL}(2,\mathbb{C}) = H/H \cap K$.

齊次座標...OTL

Ex 1.3.5.

- 1. Let $H_1 \triangleleft G_1, H_2 \triangleleft G_2$. Then $(H_1 \times H_2) \triangleleft (G_1 \times G_2)$ and $G_1 \times G_2/H_1 \times H_2 \cong G_1/H_1 \times G_2/H_2$.
- 2. Let $H \triangleleft G, K \triangleleft G$ s.t. G = HK. Then $G/H \cap K \cong G/H \times G/K$.

Ex 1.3.6. Let $H \triangleleft G$ with [G : H] = p, which is a prime in \mathbb{Z} . Then $\forall K \leq G$, either (1) $K \leq H$ or (2) G = HK and $[K : K \cap H] = p$.

Theorem 6 (3rd isomorphism theorem). Let $K \triangleleft G$.

1. There is a 1-1 correspondence between $\{H \leq G \mid K \leq H\}$ and $\{\text{subgroups of } G/K\}$. $(H \triangleleft G \dots \text{ normal})$

Proof. Define $\varphi: H \mapsto H/K$. $(H/K \leq G/K)$

- 1-1: Assume $H_1/K = H_2/K$. For $a \in H_1$, $aK \in H_1/K = H_2/K$. so $\exists b \in H_2$ s.t. $aK = bK \implies b^{-1}a \in K \leq H_2 \implies a \in bH_2 = H_2$. So $H_1 \leq H_2$. By symmetry, $H_2 \leq H_1$, and thus $H_1 = H_2$.
- onto: Given a subgroup Q of G/K, consider $H = q^{-1}(Q)$ where $q: G \to G/K$.

 - $-K \le H$: $\forall a \in K, q(a) = aK = K \in Q \implies a \in H \implies K \le H$.
 - -Q = H/K: $\forall aK \in Q, aK = q(a) \implies a \in H \implies aK \in H/K \implies Q \subseteq H/K$. And $\forall aK \in H/K (a \in H), q(a) \in Q \implies H/K \subseteq Q$. So Q = H/K.

- $H \triangleleft G, K \leq H \iff \forall g \in G, gHg^{-1} = H, K \leq H \iff \forall \overline{g} \in G/K, \overline{g}(H/K)\overline{g}^{-1} = H/K \iff H/K \triangleleft G/K.$
- 2. If $H \triangleleft G$ with $K \leq H$, then $(G/K)/(H/K) \cong G/H$.

Proof. Define $\varphi: G \to (G/K)/(H/K)$ with $\varphi: a \mapsto aK(H/K)$.

- onto: ... easy.
- Find $\ker \varphi$: $a \in \ker \varphi \iff aK(H/K) = H/K \iff aK \in H/K \iff a \in H$.

By 1st isom. thm., $(G/K)/(H/K) \cong G/H$.

Eg 1.3.8. $m\mathbb{Z} + n\mathbb{Z}/m\mathbb{Z} \cong n\mathbb{Z}/m\mathbb{Z} \cap n\mathbb{Z}$. $(m\mathbb{Z} + n\mathbb{Z} = \gcd(m, n)\mathbb{Z}, m\mathbb{Z} \cap n\mathbb{Z} = \operatorname{lcm}(m, n)\mathbb{Z})$

Ques: $G/K \cong G'/K'$ and $K \cong K' \implies G \cong G'$.

Eg 1.3.9. Q_8 and D_4 交給陳力

Extension problem: given two groups A, B, how to find G and $K \triangleleft G$, s.t. $K \cong A, G/K \cong B$? $(1 \rightarrow H \rightarrow G \rightarrow G/H \rightarrow 1$, short exact sequence)

(e.g.
$$G = A \times B, K = A \times \{1\}$$
)

1.4 Week 4

1.4.1 Universal property and direct sum & product

In general, let $f_1: G_1 \to G$, $f_2: G_2 \to G$ are group homo. $f_1 \times f_2: G_1 \times G_2 \to G$, $(a,b) \mapsto f_1(a)f_2(b)$. But we have (a,b) = (a,1)(1,b) = (1,b)(a,1), so $f_1(a)f_2(b) = f_2(b)f_1(a) \Longrightarrow$ need G to be abelian.

So we intend to define the direct sum in the category of abelian group.

<u>Notation</u>: For abelian groups, we use "+" to denote the group operation and "0" to denote the identity.

Def 22. Given a non-empty family of abelian groups $\{G_s \mid s \in \Lambda\}$, a (external) direct sum of $\{G_s \mid s \in \Lambda\}$ is an abelian group $\bigoplus_{s \in \Lambda} G_s$ with the embedding mappings $i_{s_0} : G_{s_0} \to \bigoplus_{s \in \Lambda} G_s$, $\forall s_0 \in \Lambda$ satisfying the universal property:

for any abelian group H and group homo. $\varphi_s:G_s\to H \forall s\in\Lambda,\quad\exists!$ group homo. $\varphi:\bigoplus_{s\in\Lambda}G_s\to H$ s.t. 又一個こ圖

Theorem 7. $\bigoplus_{s \in \Lambda} G_s$ exists and is unique up to isomorphisms.

Proof. Existence: $\bigoplus_{s \in \Lambda} G_s = \{ (g_s)_{s \in \Lambda} \mid g_s \in G_s, \text{ almost all of the } g_s' \text{ are } 0 \}$ and

$$i_{s_0}: G_{s_0} \to \bigoplus_{s \in \Lambda} G_s, a_{s_0} \mapsto (g_{s_0})_{s \in \Lambda} \text{ with } g_{s_0} = a_{s_0}, g_s = 0, \forall s \neq s_0.$$

group operaion: $(g_s)_{s\in\Lambda}+(g_s')_{s\in\Lambda}:=(g_s+g_s')_{s\in\Lambda}\in\bigoplus_{s\in\Lambda}G_s$. 這邊也一個さ圖

Uniqueness: Assume \exists another G satisfies the universal property, 一個大 τ 圖 $(G, \bigoplus_{s \in \Lambda} G_s)$ 互相有 唯一個映射可以 keep $i_{s_0}, \varphi \circ \psi = \mathrm{id}_G, \psi \circ \varphi = \mathrm{id}_{\bigoplus_{s \in \Lambda} G_s}$

Def 23. Given a non-empty family of groups $\{G_s \mid s \in \Lambda\}$, a direct product of $\{G_s \mid s \in \Lambda\}$ is a group $\prod_{s \in \Lambda} G_s$ with projections $p_{s_0} : \prod_{s \in \Lambda} G_s \to G_{s_0}, \forall s_0 \in \Lambda$ satisfying the following universal property:

for any group H with group homo. $\varphi_s: H \to G_s, \forall s \in \Lambda, \exists ! \varphi: H \to \prod_{s \in \Lambda} G_s \text{ s.t. }$ 又一個 $\exists \blacksquare$

Theorem 8. $\prod_{s \in \Lambda} G_s$ exists and is unique up to isomorphisms.

Proof. Existence: $\prod_{s \in \Lambda} G_s = \{ (g_s)_{s \in \Lambda} \mid g_s \in G_s \}$ and

$$p_{s_0}: \prod_{s\in\Lambda} G_s \to G_{s_0}, (g_{s_0})_{s\in\Lambda} \mapsto g_{s_0}, \forall s_0 \in \Lambda$$

- group operaion: $(g_s)_{s \in \Lambda} \cdot (g'_s)_{s \in \Lambda} := (g_s g'_s)_{s \in \Lambda} \in \prod_{s \in \Lambda} G_s$.
- Define φ : 這邊也一個 τ 圖 which is uniquely defined.

Uniqueness: Assume \exists another G satisfies the universal property, 一個大て圖 $(G, \prod_{s \in \Lambda} G_s)$ 互相有唯一個映射可以 keep i_{s_0} , $\varphi \circ \psi = \mathrm{id}_{G}$, $\psi \circ \varphi = \mathrm{id}_{\prod_{s \in \Lambda} G_s}$

Ex 1.4.1. Google the definition of the direct limit and show the existence and uniqueness.

Ex 1.4.2. Google the definition of the inverse limit and show the existence and uniqueness.

<u>Motivation</u>: ζ_m is called an *m*-th root of unity if $\zeta_m^m = 1$.

$$\varinjlim_{n} \mathbb{Z}/2^{n}\mathbb{Z} \cong \{ \, 2^{n} \text{-th roots of unity} : n \in \mathbb{N} \, \}$$

12

$$\varinjlim_{n} \mathbb{Z}/2^{n}\mathbb{Z} = (\bigoplus_{n \in \mathbb{N}} \mathbb{Z}/2^{n}\mathbb{Z})/\langle i_{k}(a) - i_{j}(f_{kj}(a)) \mid k \leq j, a \in \mathbb{Z}/2^{k}\mathbb{Z}\rangle$$

where $f_{kj}: \mathbb{Z}/2^k\mathbb{Z} \to \mathbb{Z}/2^j\mathbb{Z}$.

Inverse limit:

$$\varprojlim \mathbb{Z}/2^n \mathbb{Z} = \left\{ (n_1, n_2, \dots) \in \prod_n \mathbb{Z}/2^n \mathbb{Z} \middle| \forall i < j, n_i \equiv n_j \pmod{2}^{i+1} \right\}$$

1.4.2 Rings and fields

Def 24. A ring is sa non-empty set R with two operations $R \times R \to R$

$$(a,b) \mapsto a+b$$
 and $(a,b) \mapsto ab$

satisfying

- 1. (R, +, 0) is an abelian group.
- 2. (R,\cdot) is a semigroup. (if it is a monoid, then it is called "a ring with 1.")
- 3. (Distributive laws) $\forall a, b, c \in \mathbb{R}, \begin{cases} a(b+c) = ab + ac \\ (b+c)a = ba + ca \end{cases}$

Eg 1.4.1. $\mathbb{Z}, \mathbb{R}, \mathbb{C}, \mathbb{Z}/n\mathbb{Z}, M_{n \times n}(\mathbb{F})$

Eg 1.4.2. Let G be an abelian group. Define (endomorphism, automorphism)

$$\operatorname{End}(G) := \{ \text{ group homo. } G \to G \} \quad \operatorname{Aut}(G) := \{ \text{ group isom. } G \to G \}$$

A natural ring structure on End(G) is:

$$\forall a \in G, \begin{cases} (f+g)(a) := f(a)g(a) \\ (f \cdot g)(a) := f(g(a)) \end{cases}$$

Eg 1.4.3.
$$\mathbb{Z}\left[\sqrt{2}\right] = \left\{ a + b\sqrt{2} \mid a, b \in \mathbb{Z} \right\} \subset \mathbb{R}$$
.

Def 25. Let R be a ring with 1.

- (a) $\forall a \in R, a \neq 0$, a in called a unit if $\exists a^{-1} \in R$.
- (b) $(R^{\times} = \{\text{units in } R\}, \cdot, 1))$ forms a group.
- (c) R is called a division ring if $R \setminus \{0\} = R^{\times}$.
- (d) R is said to be commutative if $ab = ba, \forall a, b \in R$.
- (e) R is a field if R is a commutative division ring.
- (f) $a \neq 0$ is called a left zero divisor if $\exists b \in R, b \neq 0$ s.t. ab = 0.
- (g) a is called a zero divisor if a is either a left or right zero divisor.
- (h) R is called an integral domain if R is a commutative ring without zero divisors.

Fact:

- 1. fields \implies integral domains.
- 2. finite + integral domain \implies fields.

Proof. Let
$$R = \{0, a_1, \dots, a_n\}$$
, for $a \in R, a \neq 0$, $aa_i = aa_j \implies a(a_i - a_j) = 0 \implies i = j$. So $\{0, aa_1, \dots, aa_n\} = R \implies \exists a_i \text{ s.t. } aa_i = 1$.

Prop 1.4.1. TFAE

- 1. $\mathbb{Z}/n\mathbb{Z}$ is an integral domain.
- 2. $\mathbb{Z}/n\mathbb{Z}$ is a field.
- 3. n = p is a prime.

easy to prove.

Def 26.

- $f: R_1 \to R_2$ is called a ring homomorphism if $\forall a, b \in R, \begin{cases} f(a+b) &= f(a) + f(b) \\ f(ab) &= f(a)f(b) \end{cases}$.
- Im f is a subring of R_2 .
- $\ker f = \{x \in R_1 \mid f(x) = 0\}$ is an additive group of R_1 and $\forall r \in R_1, x \in \ker f, f(rx) = f(r)f(x) = f(r)0 = 0 \implies rx \in \ker f, xr \in \ker f.$
- $R_1/\ker f$ is an additive group and $R_1/\ker f \cong \operatorname{Im} f$ (additive isomorphism).

Def 27. Let I be an additive subgroup of R. I is called an ideal if $\forall r \in R, x \in I, rx \in I, xr \in I$. $(R/I, +, \cdot)$ forms a quotient ring under

$$\forall r_1, r_2 \in R, (r_1 + I)(r_2 + I) = r_1 r_2 + I$$

well-defined: easy to show.

Ex 1.4.3. State and show the isomorphism theorems and the factor theorem.

Prop 1.4.2. If R is a ring with 1, then $\exists!$ ring homo. $\varphi: \mathbb{Z} \to R$ s.t. $\varphi(1) = 1$.

Proof. Let $\varphi: \mathbb{Z} \to R$ is a ring homo. s.t. $\varphi(1) = 1$. Then $\forall n \in \mathbb{Z}, \varphi(n) = \varphi(1) + \dots + \varphi(1) = n1$. Now $\forall n, m \in \mathbb{Z}, \varphi(n)\varphi(m) = (n1)(m1) = n(m1) = (nm)1$ by the distributive law. So φ is well-defined and unique.

Def 28. In Prop 1.4.2, $\ker \varphi = m\mathbb{Z}$ for some m > 0. We call m the characteristic of R, denoted by $\operatorname{char} R = m$.

Prop 1.4.3.

- 1. If R is an integral domain, then char R = 0 or p, where p is a prime. (try to prove this)
- 2. In the case of char R = p, $\forall a, b \in R$, $(a + b)^p = a^p + b^p$.

Proof.

$$(a+b)^p = a^p + \binom{p}{1}a^{p-1}b + \dots + b^p = a^p + b^p$$

because $p \mid \binom{p}{1} \implies \binom{p}{i} a^{p-i} b^i = 0$.

Ex 1.4.4. Let F be a field. Show that

- 1. if char F = 0, then $\mathbb{Q} \hookrightarrow$ subfield of F.
- 2. if char F = p, then $\mathbb{Z}/p\mathbb{Z} \hookrightarrow \text{subfield of } F$.

Theorem 9. If F is a finite field, then $|F| = p^n$ for some $n \in \mathbb{N}$ and p is a prime.

Proof. By Ex. 1.4.4, char F = p, p is a prime and $\mathbb{Z}/p\mathbb{Z} \hookrightarrow F$.

We have $\mathbb{Z}/p\mathbb{Z} \times F \to F$, $(r, v) \mapsto rv$. F can be rearded as a vector space over $\mathbb{Z}/p\mathbb{Z}$.

Let
$$\dim_{\mathbb{Z}/p\mathbb{Z}} F = n$$
, then $F \cong (\mathbb{Z}/p\mathbb{Z})^n \implies |F| = p^n$.

Theorem 10. Let F be a field. Then any finite subgroup G of $(F^{\times}, \cdot, 1)$ is cyclic.

Proof. Let |G| = n. Define h to be the max order of an element in G, say $a^h = 1$.

If
$$h = n$$
, then $|\langle a \rangle| = h = n = |G|$ and $\langle a \rangle \subseteq G$, so $G = \langle a \rangle$.

Otherwise, h < n. We know that $x^h - 1$ has at most h roots. So $\exists b \in G$ is not a root of $x^h - 1$. Let $\operatorname{ord}(b) = h'$, so $h' \mid n$ and $h' \nmid h$. So \exists a prime p s.t. $p' \mid h'$ but $p' \nmid h$.

Write $h = mp^s$, s < r and $gcd(m, p) = 1 \implies ord(a^{p^s}) = m$.

Write $h' = qp^r \implies \operatorname{ord}(b^q) = p^r$.

Since
$$gcd(m, p^r) = 1$$
, ord $(a^{p^s}b^q) = mp^r > mp^s = h$, which is a contradiction.

Ex 1.4.5.

- 1. Let $a, b \in G$ with ab = ba and ord(a) = m, ord(b) = n. If gcd(m, n) = 1, then ord(ab) = mn. In general, is the order of ab equal to lcm(m, n)?
- 2. Let G be a finite group and $H, K \leq G$. Then $|HK| = \frac{|H||K|}{|H \cap K|}$.

1.5 Week 5

1.5.1 Group actions I

Def 29. A group G is said to act on a nonempty set X if \exists a map $G \times X \to X$ with $(g, x) \mapsto gx$ s.t.

- 1. 1x = x
- 2. $(g_1g_2)x = g_1(g_2x) \quad \forall g_1, g_2 \in G$

Prop 1.5.1. {actions of G} \leftrightarrow {group homo. $G \rightarrow S_X$ }

Proof. Given an action $(g, x) \mapsto gx$, consider $\varphi : G \to S_X$ s.t. $\varphi : g \mapsto (\tau_g : x \mapsto gx)$.

- 1-1: $gx = gy \implies g^{-1}(gx) = y \implies x = y$.
- onto: $\forall y \in X$, let $x = g^{-1}y$, then y = gx.
- group homo.: $\varphi(gg') = (\tau_{gg'} : x \mapsto gg'x) = \tau_g \circ \tau_g' = \varphi(g)\varphi(g')$.

Conversely, given a group homo. $\varphi: G \to S_X$, consider $(g, x) \mapsto \varphi(g)(x)$.

- $1x = \varphi(1)(x) = \text{Id}(x) = x$.
- $g_1g_2x = \varphi(g_1g_2)(x) = \varphi(g_1) \circ \varphi(g_2)(x) = g_1(g_2x).$

Def 30. A representation of G on a vector space V is a group action of G on V linearly. i.e. \exists group homo. $\varphi: G \to \operatorname{GL}(V)$.

Eg 1.5.1.

$$\mathbb{Z}/m\mathbb{Z} \to \mathrm{SO}(2), \quad \overline{k} \mapsto \begin{pmatrix} \cos \frac{2k\pi}{m} & -\sin \frac{2k\pi}{m} \\ \sin \frac{2k\pi}{m} & \cos \frac{2k\pi}{m} \end{pmatrix}$$

Eg 1.5.2.

$$S_n \to \mathrm{GL}(n,\mathbb{R}), \quad \sigma \mapsto (\tau_\sigma : e_i \mapsto e_{\sigma(i)})$$

Remark 8.

- 1. An action $G \times X \to X$ is said to be faithful if the corresponding group homo. $\varphi : G \hookrightarrow S_X$, denoted by $G \curvearrowright X$.
- 2. In general, $\ker \varphi = \{ g \in G \mid gx = x \quad \forall x \in X \} = \bigcap_{x \in X} \{ g \mid gx = x \}.$ Define $G_x = \{ g \mid gx = x \} \leq G$ is the isotropy subgroup of G at x. (the stabilizer of G at x)
- 3. $\varphi: G \to S_X \implies G/\ker \varphi \hookrightarrow S_X$. So $G/\ker \varphi \times X \to X$ is faithful.
- 4. Let $\mathcal{C}(X) = \{ f : X \to \mathbb{C} \}$. If $G \curvearrowright X$, then $G \curvearrowright \mathcal{C}(X)$ by $G \times \mathcal{C}(X) \to \mathcal{C}(X)$ with $(g, f) \mapsto gf(x) = f(g^{-1}x)$.

The reason: $(g_1g_2)f(x) = f((g_1g_2)^{-1}x) = f(g_2^{-1}g_1^{-1}x) = g_1(g_2f)(x)$.

Def 31. Let $G \curvearrowright X$ and $x \in X$.

- The **orbit** of x is defined to be $Gx = \{gx \mid g \in G\}$.
- $G \cap X$ is said to be transitive if \exists only one orbit. i.e. $\forall x, y \in X, \exists g \in G$ s.t. y = gx.

The set of orbits forms a partition: $x \sim y \iff \exists g \in G \text{ s.t. } y = gx.$

Prop 1.5.2. Let $G \curvearrowright X$ and $x \in X$. Then $|Gx| = [G : G_x]$.

In particular, $|G| < \infty \implies |G| = |Gx||G_x| \quad \forall x \in X$.

Proof. Define $\psi: Gx \to \{\text{left coset of } G_x\} \text{ as } \psi: gx \mapsto gG_x.$

- well-defined and 1-1: $g_1x = g_2x \iff g_2^{-1}g_1x = x \iff g_2^{-1}g_1 \in G_x \iff g_2^{-1}g_1G_x = G_x \iff g_1G_x = g_2G_x$.
- onto: $\forall g \in G, \psi(gx) = gG_x$.

1.5.2 Action by left multiplication

- The action $G \times G \to G$, $(g, x) \mapsto gx$ is associated with $\varphi : G \hookrightarrow S_G$. It is faithful (Cayley theorem) and transitive.
- Let $H \leq G$ and $X := \{ \text{left coset of } H \}$. The group action $(g, xH) \mapsto gxH \leadsto \varphi : G \to S_X$.

$$\ker \varphi = \bigcap_{x \in G} \underbrace{xHx^{-1}}_{\text{a conjugate of } H} \leq H$$

which is the largest normal subgroup in G contained in H.

Proof. If
$$\begin{cases} N \lhd G \\ N \leq H \end{cases}, \forall x \in G, xNx^{-1} \leq xHx^{-1} \implies N = N(xx^{-1}) = xNx^{-1} \leq xHx^{-1}.$$

Prop 1.5.3. Let $H \leq G$ with [G:H] = p being the smallest prime dividing |G|. Then $H \triangleleft G$.

Proof. Let $X = \{a_1H, \ldots, a_pH\}$ (all left coests of H) and $\varphi : G \to S_p$ be the associated group homo. for the group action $(g, a_iH) \mapsto ga_iH$.

By the 1st isom. thm., $G/\ker \varphi \hookrightarrow S_p$.

By Lagrange thm. $|G/\ker\varphi| \mid |S_p| = p!$ and $|G/\ker\varphi| \mid |G| \implies |G/\ker\varphi| \mid p$.

So $|G/\ker \varphi| = 1$ or p.

If $|G/\ker \varphi| = 1 \implies G = \ker \varphi \le H \le G$, which is a contradiction.

So $|G/\ker \varphi| = p \implies [G : \ker \varphi] = p \implies [G : H][H : \ker \varphi] = p \implies [H : \ker \varphi] = 1 \implies H = \ker \varphi \triangleleft G.$

1.5.3 Action by conjugation

• The action $G \times G \to G$ $(g,x) \mapsto gxg^{-1}$ is associated with the group homo. $\varphi : G \to S_G \quad g \mapsto (\tau_q : x \mapsto gxg^{-1}).$

$$\operatorname{Inn}(G) := \{ \tau_g \mid g \in G \}$$

Fact 1.5.1. τ_g is an automorphism. (isom. $G \to G$)

So $\varphi: G \to \operatorname{Inn}(G) \leq \operatorname{Aut}(G) \leq S_G$.

$$\ker \varphi = \{ g \in G \mid gxg^{-1} = x \quad \forall x \in G \} = Z_G.$$

By the 1st isom. thm., $G/\ker \varphi \cong \operatorname{Inn}(G)$.

- The conjugacy class: $Gx = \{gxg^{-1} \mid g \in G\} = \text{Cl}(x)$.
- The centralizer of x in G: $G_x = \{g \in G \mid gxg^{-1} = x\} = Z_G(x)$.

$$|Cl(x)| = [G : Z_G(x)], \text{ if } |G| < \infty, |G| = |Cl(x)||Z_G(x)||$$

• For $H \triangleleft G$, define $G \times H \to H$ $(g,h) \mapsto ghg^{-1}$ with the group homo. $\varphi : G \to \operatorname{Aut}(H)$.

$$\ker \varphi = \{ g \in G \mid gxg^{-1} = x \quad \forall x \in H \} = Z_G(H) \implies G/Z_G(H) \le \operatorname{Aut}(H)$$

• The normalizer of H in G: $N_G(H) = \{ g \in G \mid gHg^{-1} = H \}$

Theorem 11 (Normalizer-Centralizer theorem). If $H \leq G$ then $N_G(H)/Z_G(H) \hookrightarrow \operatorname{Aut}(H)$.

Proof. Define $\varphi = g :: N_G(H) \mapsto (h \mapsto ghg^{-1}) :: \operatorname{Aut}(H)$. Then $\ker \varphi = Z_G(H)$, so $N_G(H)/Z_G(H) \cong \operatorname{Im} \varphi \leq \operatorname{Aut}(H)$.

1.6 Week 6

1.6.1 Group actions II

Def 32. Let $G \cap X$ and $|X| < \infty$. Write Fix $G := \{ x \in X \mid gx = x \quad \forall g \in G \}$.

- $x \in \operatorname{Fix} G$, $Gx = \{x\}$.
- $x \notin \operatorname{Fix} G$, $|Gx| = [G:G_x]$.

Let $\{G_{x_1},\ldots,G_{x_n}\}$ be the set of distinct orbits. After rearrangement, assume $x_1,\ldots,x_r\in \operatorname{Fix} G, x_{r+1},\ldots,x_n\not\in\operatorname{Fix} G$. Then

$$|X| = |\operatorname{Fix} G| + \sum_{i=r+1}^{n} [G : G_{x_i}]$$

Theorem 12 (class equation). Let $|G| < \infty$. Then either $G = Z_G$ or $\exists a_1, \ldots, a_m \in G \setminus Z_G$ s.t.

$$|G| = |Z_G| + \sum_{i=1}^{n} [G : G_{a_i}]$$

Proof. Consider the action $(g, x) \mapsto gxg^{-1}$, then

$$\operatorname{Fix} G = \{ x \in G \mid gxg^{-1} = x \quad \forall g \in G \} = Z_G$$

It follows from the above argument.

Def 33. G is called a p-group if $|G| = p^n$, where p is a prime, $n \in \mathbb{N}$.

Prop 1.6.1. If G is a p-group, then $Z_G \neq \{1\}$.

Proof. Let $|G| = p^n$. If $G = Z_G$, then done. Otherwise, by the class equation (use action by conjugation), $|G| = |Z_G| + \sum_{i=1}^n [G:G_{a_i}], \quad a_i \notin Z_G$.

$$G_{a_i} = Z_G(a_i)$$
, so $a_i \notin Z_G \implies Z_G(a_i) \subsetneq G \implies p \mid [G : Z_G(a_i)] = \frac{|G|}{|Z_G(a_i)|}$.
So $|Z_G| = |G| - \sum_{i=1}^n [G : Z_G(a_i)] \implies p \mid |Z_G| \implies Z_G \neq \{1\}$.

Prop 1.6.2. If $|G| = p^2$, then G is abelian. $(\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z})$ and $\mathbb{Z}/p^2\mathbb{Z}$)

Proof. Assume that G is not abelian. By prop 1.6.1, $|Z_G| = p \implies |G/Z_G| = p \implies G/Z_G$ is cyclic $\implies G$ is abelian. (contradiction)

Prop 1.6.3. If $|G| = p^3$ and G is not abelian, then $|Z_G| = p$. (Abelian: $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}, \mathbb{Z}/p^2\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}, \mathbb{Z}/p^3\mathbb{Z}$)

Prop 1.6.4. Let $|G| = p^n$. Then $\forall 0 \le k \le n, \exists G_k \lhd G$ s.t. $|G_k| = p^k$ and $G_i \le G_{i+1}$. In general, for a finite group G, $\exists \{1\} = G_r \lhd G_{r-1} \lhd \cdots \lhd G_1 \lhd G_0 = G$ s.t. G_i/G_{i+1} is cyclic. we call G a solvable group.

Proof. By induction on n, n = 1 is trivial. For n > 1, assume that the statement a holds for n - 1. By prop 1.6.1, $Z_G \neq \{1\}$. $\exists a \in Z_G, a \neq 1$. Let $\operatorname{ord}(a) = p^l$, then $\operatorname{ord}(a^{p^{l-1}}) = p$. \Longrightarrow in any case, $\exists a \in Z_G$ with $\operatorname{ord}(a) = p$.

Now $|G/\langle a\rangle| = p^{n-1}$, so by induction hypothesis, $\forall 0 \le k \le n-1, \exists \overline{G_k} \triangleleft G/\langle a\rangle$ s.t. $|\overline{G_k}| = p^k, \overline{G_i} \le \overline{G_{i+1}}$.

By 3rd isom. thm., $\exists G_{k+1} \triangleleft G$ s.t. $\overline{G_k} = G_{k+1}/\langle a \rangle, G_j \subsetneq G_{j+1}$ and $|G_{k+1}| = p^{k+1}$.

Prop 1.6.5. Let a *p*-group $G \curvearrowright X$ with $|X| < \infty$. Then $|X| \equiv |\operatorname{Fix} G| \pmod{p}$.

Theorem 13 (Cauchy theorem). Let $p \mid |G|$. Then $\exists a \in G$ s.t. $\operatorname{ord}(a) = p$. Consider

$$X = \{ (a_1, \dots, a_p) \mid a_i \in G, a_1 a_2 \dots a_p = 1 \}$$

and the action $\mathbb{Z}/p\mathbb{Z} \times X \to X$:

$$(\overline{k},(a_1,\ldots,a_p))\mapsto(a_{k+1},\ldots,a_p,a_1,\ldots,a_k)$$

(This is well-defined since $ab=1 \implies ba=1$ in a group.) We find that $(a_1,\ldots,a_p) \in \operatorname{Fix} \mathbb{Z}/p\mathbb{Z} \iff a_1=a_2\ldots a_p$. By prop 1.6.5, $|\operatorname{Fix} \mathbb{Z}/p\mathbb{Z}| \equiv |X| \pmod p$. And $|X|=|G|^{p-1} \equiv 0 \pmod p$. Since $(1,\ldots,1) \in \operatorname{Fix} \mathbb{Z}/p\mathbb{Z}, |\mathbb{Z}/p\mathbb{Z}| \neq 0 \implies |\mathbb{Z}/p\mathbb{Z}| \geq p$.

So $\exists (a, \ldots, a) \in \operatorname{Fix} \mathbb{Z}/p\mathbb{Z} \implies a^p = 1$.

Application: Let $|G| = p^3$ and G be non-abelian (p is odd). By prop 1.6.3, $|G/Z_G| = p^2$. Since G is non-abelian, we have $G/Z_G \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$. That is, $\forall a \in G, a^p \in Z_G$. So,

$$\exists \varphi: G \to Z_G \cong C_p \text{ with } \varphi: a \mapsto a^p$$

Since G/Z_G is abelian, $[G,G] \leq Z_G$. And

$$\begin{cases} |[G,G]| \mid |Z_G| = p \\ G \text{ is non-abelian} \end{cases} \implies [G,G] = Z_G$$

Def 34. $[x,y] = x^{-1}y^{-1}xy \in [G,G], [x,y]^p = 1.$

So $a^p b^p = a^p b^p [b, a]^p$... 換換換總共需要 p(p-1)/2

$$a^p b^p = (ab)^p [b, a]^{\frac{p(p-1)}{2}} = (ab)^p$$

So φ is a group homo.

Now if $\ker \varphi = G$ ($\forall a \in G, a^p = 1$), i.e. φ is trivial, then φ is useless. Else, $\exists a \in G$ s.t. $\operatorname{ord}(a) = p^2$, then $H = \langle a \rangle \triangleleft G$. ([G : H] = p is the smallest prime dividing |G|)

Also, in this case, $\varphi: G \to Z_G \implies G/\ker \varphi \cong Z_G$. Let $E = \ker \varphi$, $|E| = p^2$. By the def. of $\ker \varphi$, $E \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$.

We find that $H \cap E = \langle a^p \rangle$. Pick $b \in E \setminus H$ and let $K = \langle b \rangle \implies |K| = p, H \cap K = \{1\}, HK = G.$

1.6.2 Semidirect product

Fact 1.6.1.
$$K \triangleleft G, H \triangleleft G, K \cap H = \{1\} \implies KH = K \times H$$
 $(\forall k \in K, h \in H, khk^{-1}h^{-1} \in H \cap K = \{1\}, \implies kh = hk)$

Fact 1.6.2. Let K, H be two groups, and $G = K \times H \implies K \times \{1\} \triangleleft K \times H, \{1\} \times H \triangleleft K \times H$

Observation 1. $K \leq G, H \triangleleft G, K \cap H = \{1\}$ (K 慘 H 好,簡稱慘好集) ⇒ elements in KH has unique representation? 好事喔 $KH \iff K \times H$ 1-1 corresp, $(kh) \leftrightarrow (k,h)$ Group operation : $\forall k_1, k_2 \in K, h_1, h_2 \in H, (k_1h_1)(k_2h_2) = k_1k_2(k_2^{-1}h_1k_2)h_2$ Let $\tau : K \to \text{Aut}(H), k \mapsto (\tau(k) : h \mapsto khk^{-1})$ (類似 $\in \text{Inn}(H)$)

Def 35 (Semi-Direct Product (慘好積)). $K \times_{\tau} H = \{(k,h)|k \in K, h \in H\}$ with group operation : $(k_1,h_1)(k_2,h_2) = (k_1k_2,\tau(k_2^{-1})(h_1)(h_2))$ where $\tau: K \to \operatorname{Aut}(H)$ (need not to be inner homomorphism)

Properties:

- Associativity: Good, ex
- The identity = (1,1)
- Inverse: $(k,h)^{-1} = (k^{-1}, \tau(k)(h^{-1}))$
- $K \cong K \times \{1\} \leq K \times_{\tau} H : (k_1, 1)(k_2, 1) = (k_1k_2, \tau(k_2^{-1})(1)1) = (k_1k_2, 1) \in K \times \{1\}$ $H \cong \{1\} \times H \leq K \times \tau H : (1, h + 1), (1, h_2) = (1, \tau(1^{-1})(h_1)h_2) = (1, h_1h_2) \in \{1\} \times K$
- $\bullet \ \ H \lhd K \times_t H: (k,h)(1,h')(k,h)^{-1} = (k,hh')(k^{-1},\tau(k)(h^{-1})) = (1,\tau(k)(hh')\tau(k)(h^{-1})) \in H$
- $\tau(k)(h) = khk^{-1}$: $(k,1)(1,h)(k^{-1},1) = (k,h)(k^{-1},1) = (1,\tau(k)(h))$
- If τ is trivial $\implies K \times_t H \cong K \times H$

Remark 9. Some definition swaps the order of H and K, i.e. $(h_1, k_1)(h_2, k_2) = (h_1\phi(k_1)(h_2), k_1k_2)$

Ex 1.6.1. Show that $H \rtimes_{\phi} K$ is a group and satisfies the above properties.

Eg 1.6.1. Construct a non-abelian group of order 21.

Fact 1.6.3. $\operatorname{Aut}(\mathbb{Z}/p\mathbb{Z}) \cong (\mathbb{Z}/p\mathbb{Z})^{\times} \cong C_{p-1}$

Sol: $\phi_k : \mathbb{Z}/p\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}, \overline{1} \mapsto \overline{k}$ $\phi_{k_2} \circ \phi_{k_1}(1) = \phi_{k_2}(\overline{k_1}) = \phi_{k_2}(1 + \dots + 1) = \overline{k_2} + \dots \overline{k_2} = \overline{k_1 k_2}$ Let $K = C_3, H = C_7$, define $\tau : C_3 \to \operatorname{Aut}(C_7) \cong C_6, a \mapsto \phi_2$ $\phi_k : b \mapsto b^k$ $G = \langle a, b | a^3 = 1, b^7 = 1, aba^{-1} = b^2 \rangle$

Eg 1.6.2. p : odd, $|G| = p^3$, G is non-abelian.

(sol) $\phi: G \to Z(G), a \mapsto a^p$ non trivial case $\exists a \in G$ with $\operatorname{ord}(a) = p^2$. Let $H = \langle a \rangle$ here ϕ is onto and $E = \ker \phi \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$ And $|H \cap E| = p$ $H \lhd G$ because [G:H] = p Pick $b \in E \setminus H$ and let $K = \langle b \rangle \implies |K| = p$, $K \cap H = \{1\}$ so $|G| = |KH| = p^3$

Fact 1.6.4. $\operatorname{Aut}(\mathbb{Z}/p^2\mathbb{Z}) \cong (\mathbb{Z}/p^2\mathbb{Z})^{\times}$

Sol: $\phi_k: \mathbb{Z}/p^2\mathbb{Z} \to \mathbb{Z}/p^2\mathbb{Z}, \bar{1} \mapsto \bar{k}, \gcd(k, p) = 1$

Find a group homo $\tau: K \Longrightarrow \operatorname{Aut}(H)$ because $(1+p)^p \equiv 1 \mod p^2$, ord $(\overline{1+p}) = p$. Let $P = \langle \overline{1+p} \rangle$ is the only subgroup of order p. (if $\exists |Q| = p, P \neq Q$ then $P \cap Q = 1, |PQ| = p^2$ but |G| = p(p-1), miserable.) So let $\tau: b \mapsto (\phi_{1+p}: a \mapsto a^{1+p})$ so $G = \langle a, b | a^{p^2} = 1, b^p = 1, bab^{-1} = a^{1+p} \rangle$ is a non-abelian group of order p^3 .

Eg 1.6.3. Isometry of \mathbb{R}^n

Def 36 (Isometry). An isometry of \mathbb{R}^n is a function $h: \mathbb{R}^n \to \mathbb{R}^n$ that preserves the distance between vectors.

 $h = t \circ k$ where t is translation, k is an isometry fixing the origin, i.e. $k \in O(n)$. Let T be the group of translations on R^n , $T \cong (R^n, +, 0), t \mapsto t(0)$.

Let
$$\tau: O(n) \to \operatorname{Aut}(T), A \mapsto L_A: R^n \to R^n, v \mapsto Av$$

 $\Longrightarrow \operatorname{Isom}(R^n) = O(n) \times_{\tau} R^n$

Eg 1.6.4. Quaternium $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$ is not a semi-deriect product of any two proper subgroups.

pf: since $\{\pm 1\}$ is contained in any non-trivial subgroups, can't find $H \cap K = \{1\}$.

Eg 1.6.5.
$$A_4, V_4 = \{1, (12)(34), (14)(23), (13)(24)\} \triangleleft A_4, V_4 \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$$

Let
$$H = \langle (123) \rangle \cong C_3$$
, define $\tau : H \to \operatorname{Aut}(V_4) \cong GL_2(\mathbb{Z}/2\mathbb{Z})$ (123) $\mapsto (\bar{0}\bar{1}; \bar{1}\bar{1})$ so $A_4 \cong C_3 \times_{\tau} V_4$.

Ex 1.6.2. Construct D_n as a semi-direct product of $\mathbb{Z}/n\mathbb{Z}$ and $\mathbb{Z}/2\mathbb{Z}$.

Ex 1.6.3.

- 1. Show that S_4 is a semi-direct product of V_4 and $H = \{ \sigma \in S_4 | \sigma(4) = 4 \} \sim S_3$.
- 2. Show that S_n is a semi-direct product of A_n and $H = \langle (12) \rangle$.

Remark 10.

- $\operatorname{Aut}(\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}) \cong GL_2(\mathbb{Z}/p\mathbb{Z})$ (regarded as a vector space over $\mathbb{Z}/p\mathbb{Z}$)
- $\operatorname{Aut}(\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}) \cong \operatorname{Aut}(\mathbb{Z}/p\mathbb{Z}) \times \operatorname{Aut}(\mathbb{Z}/q\mathbb{Z}) \cong C_{p-1} \times C_{q-1}$

1.7 Week 7

1.7.1 Composition series

Ques: How to simplify a finite group G?

Strategy:

- If $G = \{1\}$, then done.
- Otherwise, check whether G has a nontrivial proper normal subgroup.
- If no, then G is said to be a simple group.
- Otherwise, find a normal subgroup G_1 as large as possible s.t. G/G_1 is simple.
- If G_1 is simple, then done.
- Otherwse, repeat above on G_1 and get G_2, \ldots, G_n s.t.

$$G_n = \{1\} \triangleleft G_1 \triangleleft \cdots \triangleleft G_1 \triangleleft G_0 = G$$
 G_i/G_{i+1} is simple composition factors

Say "it is a composition series" with length(G) = n.

Hence simple groups can be regarded as basic building blocks of groups.

The classification of all finite simple groups is given as follows:

- 1. $\mathbb{Z}/p\mathbb{Z}$, p is a prime.
- 2. $A_n, n \ge 5$.
- 3. simple groups of Lie type.
- 4. 26 sporadic simple groups.

Eg 1.7.1.
$$G = S_4, G_1 = A_4, G_2 = V_4, G_3 = \langle (1\ 2)(3\ 4) \rangle, G_4 = \{1\} \rightsquigarrow \text{length}(S_4) = 4.$$
 factors: C_2, C_3, C_2, C_2 .

Eg 1.7.2. $G = \mathbb{Z}/12\mathbb{Z} = \langle \bar{1} \rangle$.

- $G_1 = \langle \bar{2} \rangle, G_2 = \langle \bar{4} \rangle, G_3 = \langle \bar{0} \rangle \rightarrow \text{length}(3), \text{ factors: } C_2, C_2, C_3.$
- $G_1' = \langle \bar{2} \rangle, G_2' = \langle \bar{6} \rangle, G_3' = \langle \bar{0} \rangle \rightsquigarrow \text{length}(3), \text{ factors: } C_2, C_3, C_2.$
- $G_1'' = \langle \bar{3} \rangle, G_2'' = \langle \bar{6} \rangle, G_3'' = \langle \bar{0} \rangle \Rightarrow \text{length}(3), \text{ factors: } C_3, C_2, C_2.$

Eg 1.7.3. Let
$$|G| = p^n$$
. We know $\forall 0 \le k \le n$, $\exists G_k \triangleleft G$ with $|G_k| = p^k$ and $G_i \le G_{i+1}$. length $(G) = n$, factors: C_p, \ldots, C_p . $(n \text{ times})$

Theorem 14 (Jorden-Hölder theorem). If G has a composition series, then any two composition series have the same length and the same factors up to permutation.

Lemma 1 (Zassenhaus lemma). Let $H' \triangleleft H \leq G, K' \triangleleft K \leq G$. Then $(H \cap K')H' \triangleleft (H \cap K)H', (H' \cap K)K' \triangleleft (H \cap K)K'$ and

$$(H \cap K)H'/(H \cap K')H' \cong (H \cap K)K'/(H' \cap K)K'.$$

Theorem 15 (Schreier theorem). Any two normal series of G have equivalent refinements. refinements: inserting a finite number of subgroups into the normal series.

Proof. For two normal series:

$$\{1\} = H_r \triangleleft H_{r-1} \triangleleft \cdots \triangleleft H_1 \triangleleft H_0 = G$$

$$\{1\} = K_s \triangleleft K_{r-1} \triangleleft \cdots \triangleleft K_1 \triangleleft K_0 = G$$

We define

$$H_{ij} = (H_i \cap K_j)H_{i+1}$$
$$K_{ji} = (H_i \cap K_j)K_{j+1}.$$

Then we have

 $K_{ji} = K_{j(i+1)}.$

$$\{1\} = H_{(r-1)s} \lhd H_{(r-1)(s-1)} \lhd \cdots \lhd H_{(r-1)0} = H_{r-1} = H_{(r-2)s} \lhd \cdots \lhd H_{10} = H_1 = H_{0s} \lhd \cdots \lhd H_{00} = G$$

$$\{1\} = K_{(s-1)r} \lhd K_{(s-1)(r-1)} \lhd \cdots \lhd K_{(s-1)0} = K_{s-1} = K_{(s-2)r} \lhd \cdots \lhd K_{10} = K_1 = K_{0r} \lhd \cdots \lhd K_{00} = G$$
 Both have size $= rs$. By lemma, $H_{ij}/H_{i(j+1)} \cong K_{ji}/K_{j(i+1)}$. Note that if $H_{ij} = H_{i(j+1)}$, then

proof of Jorden-Hölder theorem. Let

$$\begin{cases} \{1\} = G_n \lhd \cdots \lhd G_1 \lhd G_0 = G & (*) \\ \{1\} = G'_m \lhd \cdots \lhd G'_1 \lhd G'_0 = G & (**) \end{cases}$$

be two composition series.

By Schreier theorem, we get two refined equivalent series (*)', (**)'. Since (*), (**) are already composition series, (*) = (*)', (**) = (**)' So (*), (**) are equivalent.

proof of lemma. First prove $(H \cap K')H' \lhd (H \cap K)H'$.

•
$$\forall g \in H \cap K, gK'g^{-1} = K' \leadsto (gHg^{-1}) \cap (gK'g^{-1}) = H \cap K' \text{ and } gH'g^{-1} = H'. \text{ So}$$

$$g(H \cap K')H'g^{-1} = (H \cap K')H'$$

• $\forall g \in H', ab \in (H \cap K')H',$

To prove

$$(H \cap K)H'/(H \cap K')H' \cong (H \cap K)K'/(H' \cap K)K'.$$

$$(H \cap K)H'/(H \cap K')H' \cong (H \cap K)(H \cap K')H'/(H \cap K')H'$$

$$\cong (H \cap K)/(H \cap K) \cap (H \cap K')H'$$

$$\cong (H \cap K)/K \cap (H \cap K')H'$$

$$\cong (H \cap K)/(H' \cap K)(H \cap K')$$

 $(K \cap (H \cap K')H' = (H' \cap K)(H \cap K')$, tricky) By symmetry,

$$(H \cap K)K'/(H' \cap K')K' \cong (H \cap K)/(H' \cap K)(H \cap K')$$

Prop 1.7.1. Let $|G| < \infty$. Then G is solvable \iff all composition factors are cyclic of prime order.

Proof. " \Leftarrow ": by def.

"\Rightarrow": If
$$G_i/G_{i+1} \cong C_n$$
 with $n = p_1^{m_1} p_2^{m_2} \dots p_r^{m_r}$.

Observation. Let $K \triangleleft G$. 把 K, G/K 拆成兩個 composition series 的話, 就可以把兩串接起來,長度就是加起來。

Ex 1.7.1. Let $\{1\} = G_n \triangleleft G_{n-1} \triangleleft \cdots \triangleleft G_1 \triangleleft G_0 = G$ be a composition series of G and $K \triangleleft G$. Then after we eliminate equalities,

- 1. $\{1\} = (K \cap G_n) \triangleleft (K \cap G_{n-1}) \triangleleft \cdots \triangleleft (K \cap G_1) \triangleleft (K \cap G_0) = K$ is a composition series of K.
- 2. $\{\bar{1}\} = KG_n/K \triangleleft KG_{n-1}/K \triangleleft \cdots \triangleleft KG_1/K \triangleleft KG_0/K = G/K$ is a composition series of G/K.

Ex 1.7.2. Let $\begin{cases} H \lhd G \\ K \lhd G \end{cases}$ with $H \neq K$ s.t. G/H, G/K are simple. Then $H/H \cap K, K/K \cap H$ are simple too.

Ex 1.7.3. Let $\{1\} = G_n \triangleleft G_{n-1} \triangleleft \cdots \triangleleft G_1 \triangleleft G_0 = G$ be a composition series of length n. Show by induction on n that for every composition series of G:

$$\{1\} = H_m \triangleleft H_{n-1} \triangleleft \cdots \triangleleft H_1 \triangleleft H_0 = G,$$

we have m = n and

$$\{H_{n-1}/H_n,\ldots,H_0/H_1\}=\{G_{n-1}/G_n,\ldots,G_0/G_1\}$$

Ex 1.7.4. Exhibit all composition series for $Q_8, D_4, \mathbb{Z}/8\mathbb{Z}, \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ respectively.

1.7.2 Modules over a PID

Def 37. Let R be a ring with 1. A R-modulue is an abelian group M (written additively) on which R acts linearly. $R \times M \to M$ $(r, x) \mapsto rx$

- 1. r(x+y) = rx + ry $r \in R, x, y \in M$
- 2. $(r_1 + r_2)x = r_1x + r_2x$ $r_1, r_2 \in R, x \in M$
- 3. $(r_1r_2)x = r_1(r_2x)$ $r_1, r_2 \in R, x \in M$
- $4. \ 1x = x \quad x \in M$

Eg 1.7.4. A k-vector space is a k-module.

Eg 1.7.5. An abelian group G can be regarded as a \mathbb{Z} -module

$$\mathbb{Z} \times G \to G$$

$$(n,a) \mapsto na \quad \text{by} \quad na = \begin{cases} \underbrace{a + \dots + a}_{n \text{ times}} & \text{if } n \ge 0 \\ \underbrace{(-a) + \dots + (-a)}_{n \text{ times}} & \text{if } n < 0 \end{cases}$$

Eg 1.7.6. Let *I* be an ideal of *R*. Then *I* can be regarded as an *R*-module since $\forall r \in R, a \in I$, $ra \in I$.

Def 38. A submodule N of M is an additive subgroup of M s.t. $\forall r \in R, a \in N, ra \in N$.

Prop 1.7.2. Let $\phi \neq S \subseteq M$. The submodule generated by S is defined to be

$$\begin{split} \langle S \rangle_R &= \left\{ \sum_{\text{finite}} r_i x_i \middle| x_i \in S, r_i \in R \right\} = \text{the least submodule containg } S \\ &= \bigcap_{S \subset N \subset M} N \end{split}$$

Def 39. An R-module M is said to be finitely generated if $\exists x_1, \ldots, x_n \in M$ s.t. $M = \langle x_1, \ldots, x_n \rangle_R = Rx_1 + Rx_2 + \ldots Rx_n$

Eg 1.7.7. R is generated by 1 as an R-module.

Def 40. An additive group homo. $\varphi: M_1 \to M_2$ is called an R-module homo. if

$$\varphi(rx) = r\varphi(x) \quad \forall r \in R, x \in M_1$$

Def 41. An integral domain R is called a principal ideal domain (PID) if $\forall I$ ideal in R, $\exists a \in R$ s.t. $I = \langle a \rangle_R$.

Eg 1.7.8. \mathbb{Z} is a PID.

For $I \subseteq \mathbb{Z}$, I is an additive subgroup, so $I = m\mathbb{Z} = \langle m \rangle_{\mathbb{Z}}$.

Def 42. M is said to be a free module of rank n if $M \cong R^n = R \oplus \cdots \oplus R$ (or $R \times \cdots \times R$)

Theorem 16. If R is a PID, then any submodule of R^n is free of rank $\leq n$.

Proof. By induction on n. If n=1, notice that any submodule is an ideal I by the closure of submodule. Then since R is a PID, $\forall I \subseteq R, \exists a \in R \text{ s.t. } I = \langle a \rangle_R = Ra \cong R$ (as a R-module).

Let n > 1 and N be a submodule of \mathbb{R}^n . Consider

$$\pi_1: \frac{R^n \to R}{(r_1, \dots, r_n) \mapsto r_1}$$
 and $\pi = \pi_1 \Big|_{N}: N \to R$

case 1: Im $\pi = \{0\}$. In this case, $N \subseteq \ker \pi_1 \cong \mathbb{R}^{n-1}$. By induction hypothesis, N is free of rank $\leq n-1 < n$.

case 2: $\operatorname{Im} \pi = \langle a \rangle$, say $\pi(x) = a$. Claim: $N = Rx \oplus \ker \pi, \ker \pi \subseteq \ker \pi_1 \cong R^{n-1}$.

- $Rx \cap \ker \pi = \{0\}$: $rx \in Rx \cap \ker \pi \implies \pi(rx) = 0$, then $r\pi(x) = 0$. But integral domain doesn't have zero divisors, so r = 0 and hence rx = 0.
- $N \supseteq Rx \oplus \ker \pi$: Obvious since $Rx, \ker \pi \subseteq N$.
- $N \subseteq Rx \oplus \ker \pi$: $\forall y \in N, \pi(y) = r_0 a$ for some $r_0 \in R$, $\pi(y r_0 x) = 0 \implies y r_0 x \in \ker \pi$.

Recall that the elementary matrices are

- $D_i(u) = \text{diag}(1, ..., 1, u, 1, ..., 1).$ $D_i(u) \in GL(n, R)$ if u is a unit.
- $B_{ij}(a) = I_n + ae_{ij}, a \in R, i \neq j.$ $B_{ij}(a)^{-1} = B_{ij}(-a) \implies B_{ij}(a) \in GL(n, R).$
- $P_{ij} = I_n e_{ii} e_{jj} + e_{ij} + e_{ji}$.

Fact 1.7.1. If R is a PID and $\langle a,b\rangle_R = \langle d\rangle_R$, then $d = \gcd(a,b)$.

Proof.

- $a \in \langle d \rangle_R \implies a = rd$ for some $r \in R \implies d \mid a. \ v \in \langle d \rangle_R \implies d \mid b.$
- Let $c \mid a, c \mid b$, say $a = k_1 c, b = k_2 c$. $d \in \langle a, b \rangle_R \implies d = x_1 a + x_2 b$ for some $x_1, x_2 \in R$. So $d = x_1 k_1 c + x_2 k_2 c = (x_1 k_1 + x_2 k_2)c \implies c \mid d$.

Theorem 17. Let R be a PID and $A \in M_{n \times m}(R)$. Then $\exists P \in GL_n(R)$ and $Q \in GL_m(R)$ s.t.

$$PAQ = \begin{pmatrix} d_1 & & & & & & \\ & d_2 & & & & & \\ & & \ddots & & & & \\ & & & d_r & & & \\ & & & 0 & & \\ & & & \ddots & \\ & & & 0 \end{pmatrix} \text{ with } d_i \mid d_{i+1} \quad \forall i = 1, \dots, r-1$$

Proof. Define the length l(a) of $a \neq 0$ to be r if $a = p_1 p_2 \dots p_r$ where p_1, \dots, p_r are prime elements. prime elements: $p \mid ab \implies p \mid a$ or $p \mid b$.

- 1. We may assume $a_{11} \neq 0$ and $l(a_{11}) \leq l(a_{ij}) \forall a_{ij} \neq 0$. (換一換就上去了...XD)
- 2. We may assume $\begin{cases} a_{11} \mid a_{1k} & \forall k=2,\ldots,m \\ a_{11} \mid a_{k1} & \forall k=2,\ldots,n \end{cases}$. If $a_{11} \nmid a_{1k}$, then we can interchange 2nd and kth columns to assume $a=a_{11} \nmid a_{12}=b$.

Let
$$d = \gcd(a, b) \implies \begin{cases} l(d) < l(a) \\ d = ax + by \text{ for some } x, y \in R \end{cases} \implies 1 = \frac{a}{d}x + \frac{b}{d}y$$
. Write $b' = \frac{b}{d}, a' = -\frac{a}{d}$. Then
$$\begin{pmatrix} -a' & b' \\ y & -x \end{pmatrix} \begin{pmatrix} x & b' \\ y & a' \end{pmatrix} = I_2$$

反正就是移一下減掉,length 會一直變小 \Longrightarrow 這個操作會停.

3. 有這個 $\begin{cases} a_{11} \mid a_{1k} & \forall k = 2, ..., m \\ a_{11} \mid a_{k1} & \forall k = 2, ..., n \end{cases}$ 就可以全部消掉變成

$$\begin{pmatrix} a_{11} & 0 & \dots & 0 \\ 0 & b_{22} & \dots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & b_{n2} & \dots & b_{nm} \end{pmatrix}$$

4. May assume $a_{11} \mid b_{kl} \quad \forall k, l$. 不是的話就把該 row 往第一 row 加上去,重複前面的操作, $l(a_{11})$ 總是變小,因此會停.

5. 遞迴下去...

最後就弄出想要的矩陣了.

1.8 Week 8

1.8.1 Fundamental theorem of finitely generated abelian groups

Theorem 18 (Structure theorem of finitely generated module over a PID). Let R be a PID and M be a finitely generated R-module. Then $M \cong R/d_1R \oplus \cdots \oplus R/d_lR \oplus R^s, d_i \in R$ with $d_i \mid d_{i+1} \quad \forall i=1,\ldots,l-1$ for some $s \in \mathbb{Z}^{\geq 0}$.

Proof. Let $M = \langle x_1, \dots, x_n \rangle_R$ and consider

$$\varphi: R^n \to M$$
$$e_i \to x_i$$

By 1st isom. thm., $R^n/\ker \varphi \cong M$.

We know $\ker \varphi \cong R^m \ (e'_i \mapsto f_i, e'_i \in R^m)$ for some $m \leq n$ and $\forall x \in \ker \varphi \quad \exists! x_1, \dots, x_m \in R$ s.t. $x = \sum_{i=1}^m x_i f_i$.

Note that $\ker \varphi \subseteq R^n$. So we can write $f_i = \sum_{j=1}^n a_{ji} e_j \quad \forall i = 1, \dots, m$. Then $x = \sum x_i \sum a_{ji} e_j = \sum (\sum a_{ji} x_i) e_j$.

 $R \text{ is a PID} \implies \exists P \in GL_n(R), Q \in GL_m(R) \text{ s.t.}$

$$PAQ = \begin{pmatrix} d_1 & & & \\ & \ddots & & \\ & & d_r & \\ & & 0 & \\ & & & \ddots \end{pmatrix} \quad \text{with} \quad d_i \mid d_{i+1} \quad \forall i = 1, \dots, r-1$$

So consider $[w_i] = Qe_i$. Since P, Q invertible, $R^n = \bigcap Rw_i$, $\ker \varphi = \bigcap d_iRw_i$ Hence

$$M \simeq R/ker\varphi = \bigoplus Rw_i/\bigoplus d_iRw_i = \bigoplus R/d_iR$$

 $R \rightarrow Rw_i/Rd_i'w_i$

 $1 \rightarrow \overline{w_i}$

 $r \rightarrow \overline{rw_i}$

Remark 11. If R is commutative, then " $R^n \cong R^m \implies n = m$."

Theorem 19. Let G be a finitely generated abelian group. Then Then $G \cong \mathbb{Z}/d_1\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/d_l\mathbb{Z} \oplus R^s, d_i \in \mathbb{Z}$ with $d_i \mid d_{i+1} \quad \forall i = 1, \ldots, l-1$ for some $s \in \mathbb{Z}^{\geq 0}$.

Since G can be regarded as a f.g. \mathbb{Z} -module and \mathbb{Z} is a PID, it follows from the main theorem.

 $\operatorname{Tor}(G) = \mathbb{Z}/d_1\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/d_l\mathbb{Z} \leq G \text{ and } G/\operatorname{Tor}(G) \cong \mathbb{Z}^s \text{ (free part of } G).$

Fact 1.8.1. If $d = p_1^{m_1} p_2^{m_2} \dots p_s^{m_s}$, then $\mathbb{Z}/d\mathbb{Z} \cong \mathbb{Z}/p_1^{m_1} \mathbb{Z} \oplus \mathbb{Z}/p_2^{m_2} \mathbb{Z} \oplus \dots \oplus \mathbb{Z}/p_s^{m_s} \mathbb{Z}$.

Theorem 20 (Chinese Remainder theorem). Let R be a commutative ring with 1 and I_1, \ldots, I_n be ideals of R. Then

$$\varphi: R \to R/I_1 \times \cdots \times R/I_n$$
 is a ring homo. $r \mapsto (\overline{r}, \dots, \overline{r})$

and

- (1) if I_i, I_j are coprime $\forall i \neq j$, then $I_1 I_2 \dots I_n = I_1 \cap I_2 \cap \dots \cap I_n$.
- (2) φ is surjective $\iff I_i, I_j$ are coprime $\forall i \neq j$.

(3) φ is injective $\iff I_1 \cap I_2 \cap \cdots \cap I_n = \{0\}.$

So if I_i, I_j are coprime $\forall i \neq j$, then

$$R/I_1I_2\dots I_n\cong R/I_1\times\dots\times R/I_n.$$

 I_i, I_j are coprime $\iff I_i + I_j = R$.

Proof. we only need to prove (1), (2).

(1) By induction on n. n = 2, need $I_1 \cap I_2 \subseteq I_1 I_2$. Indeed, $I_1 \cap I_2 = (I_1 \cap I_2)R = (I_1 \cap I_2)(I_1 + I_2) \subseteq I_1 I_2$.

For n > 2, since $I_i + I_n = R$ $\forall i = 1, ..., n - 1$, $\exists x_i \in I_i, y_i \in I_n$ s.t. $x_i + y_i = 1$ $\forall i = 1, ..., n - 1$.

So $x_1x_2...x_{n-1} = (1-y_1)(1-y_2)...(1-y_{n-1}) = 1-y, y \in I_n \implies I_1I_2...I_{n-1} + I_n = R$. Now, $I_1I_2...I_n = (I_1...I_{n-1})I_n = (I_1...I_{n-1}) \cap I_n = I_1 \cap \cdots \cap I_n$.

(2) " \Rightarrow ": WLOG, we may let $I_i = I_1, I_j = I_2$. We have $x \in R$ s.t.

$$\varphi(x) = (\overline{1}, \overline{0}, \dots, \overline{0})$$
 i.e. $\overline{x} = \overline{1}$ in R/I_1

Write $x \equiv 1 \pmod{I_1}$. Since $1 - x \in I_1, x \in I_2$ and $(1 - x) + x = 1, I_1 + I_2 = R$. " \Leftarrow ": $\forall y \in \text{RHS}, y = (\overline{r_1}, \dots, \overline{r_n})$. If we may find that $x_i \in R$ s.t. $\varphi(x_i) = (\overline{0}, \dots, \overline{1}, \overline{0}, \dots, \overline{0})$, then

$$\varphi\left(\sum_{i=1}^{n} r_i x_i\right) = y$$

It is enough to show, for example, $\exists x \in R \text{ s.t. } \varphi(x) = (\overline{1}, \overline{0}, \dots, \overline{0}).$

Since $I_1 + I_i = R$ $\forall i = 2, ..., n, \exists x_i \in I_1, y_i \in I_i \text{ s.t. } x_i + y_i = 1 \forall i = 2, ..., n.$

So let $x = y_2 \dots y_n = (1 - x_2) \dots (1 - x_n)$. We have $x \in I_2, \dots, I_n$ and $x \equiv 1 \pmod{I_1}$.

Eg 1.8.1. |G| = 72 and G is abelian:

$$72 = 2 \times 36 = 3 \times 24 = 2 \times 2 \times 18 = 6 \times 12 = 2 \times 6 \times 6$$

Invariant factors

Elementary divisors

Def 43. The exponent of G with $|G| < \infty$ is

$$\operatorname{Exp}(G) := \min \left\{ m \in \mathbb{N} | g^m = 1 \quad \forall g \in G \right\}$$

Ex 1.8.1.

- 1. Let G be abelian with |G| = n. Show that if $d \mid n$, then $\exists H \leq G$ s.t. |H| = d.
- 2. If n = 540, d = 90, then construct all possible G and corresponding H.
- **Ex 1.8.2.** Let G be abelian with $|G| < \infty$. Show that G is cyclic $\iff \operatorname{Exp}(G) = |G|$.

Ex 1.8.3. Let $f_i(x) \in \mathbb{Z}[x], i = 1, ..., k$ with deg $f_i = d$ and $p_1, ..., p_k$ be distinct primes. Show that $\exists f(x) \in \mathbb{Z}[x]$ with deg f = d s.t. $\overline{f}(x) = \overline{f_i}(x)$ in $\mathbb{Z}/p_i\mathbb{Z}[x]$ $\forall i = 1, ..., k$.

$$f(x) = a_d x^d + \dots + a_0, \overline{f}(x) = \overline{a_d} x^d + \dots + \overline{a_0}$$

1.8.2 Sylow theorems

Def 44. Let $|G| = p^{\alpha}r$ with $p \nmid r$.

- 1. If $H \leq G$ with $|H| = p^{\alpha}$, then we call H a Sylow p-subgroup of G.
- 2. $Syl_p(G)$ = the set of all Sylow *p*-subgroups of G.
- 3. $n_p = |\operatorname{Syl}_p(G)|$.

Lemma 2 (Key lemma). Let $P \in \text{Syl}_p(G)$ and Q be a p-subgroup of G. Then $Q \cap N_G(P) = Q \cap P$.

Proof. By Lagrange theorem, $H = Q \cap N_G(P)$ is also a p-subgroup of $N_G(P)$ since $|H| \mid |Q|$.

Since
$$\begin{cases} P \lhd N_G(P) \\ H \leq N_G(P) \end{cases} \implies HP \leq N_G(P)$$
, we have

$$|HP| = \frac{|H||P|}{|H \cap P|} = p^{\alpha + k - s}$$

where $|H \cap P| = p^s, s \leq k$. Then $p^{\alpha+k-s} \mid |N_G(P)| \mid |G| = p^{\alpha}r$.

So
$$k = s \implies H = H \cap P \implies H < P \cap Q$$
.

Theorem 21 (Sylow I). $\forall 0 \le k \le \alpha, \exists H \le G \text{ s.t. } |H| = p^k. \text{ In particular, } \mathrm{Syl}_p(G) \ne \phi.$

Proof. By induction on |G|. If |G| = 1, then k = 0, $H = \{1\}$.

Assume $|G| > 1, k \ge 1, \alpha \ge 1$.

case 1: $p \mid |Z_G|$. By Cauchy theorem, $\exists a \in Z_G$ with $\operatorname{ord}(a) = p$. Then $\langle a \rangle \triangleleft G$ and $|G/\langle a \rangle| = p^{\alpha-1}r \leq |G|$. If k = 1, then $H = \langle a \rangle$. Otherwise, we may assume that $1 \leq k - 1 \leq \alpha - 1$. By induction hypothesis, $\exists H' = G/\langle a \rangle$ s.t. $|H'| = p^{k-1}$. By 3rd isom. thm., we can write $H' = H/\langle a \rangle$ and thus $|H| = p^k$.

case 2: $p \nmid |Z_G|$. By the class equation, $|G| = |Z_G| + \sum_{i=1}^m \frac{|G|}{|Z_G(a_i)|}, a_i \in Z_G$.

In this cases, $\exists a_j$ s.t. $p \not \mid \frac{|G|}{|Z_G(a_j)|} \Longrightarrow p^{\alpha} \mid |Z_G(a_j)|$. And $Z_G(a_j) \subsetneq G$ since $a_j \notin Z_G$. By induction hypothesis, $\exists H \leq Z_G(a_j) \leq G$ s.t. $|H| = p^k$.

Theorem 22 (Sylow II). Let $P \in \operatorname{Syl}_p(G)$ and Q be a p-subgroup of G. Then $\exists a \in G$ s.t. $Q \leq aPa^{-1}$. In particular, $\forall P_1, P_2 \in \operatorname{Syl}_p(G), \exists a \in G$ s.t. $P_2 = aP_1a^{-1}$.

Proof. Let $X = \{ \text{ left cosets of } P \}$ and consider $\begin{picture}(Q \times X \to X) \\ (a, xP) \mapsto axP \end{picture}.$

Observe that $xP \in \text{Fix } Q \iff axP = xP \quad \forall a \in Q \iff x^{-1}axP = P \quad \forall a \in Q \iff x^{-1}ax \in P \quad \forall a \in Q \iff x^{-1}ax \in Q \iff x \in Q \iff$

We know $|\operatorname{Fix} Q| \equiv |X| \pmod{p}$ and $p \nmid r \implies |\operatorname{Fix} Q| \neq 0 \iff \exists a \in G, Q \leq aPa^{-1}$.

In particular,
$$\begin{cases} P_2 \le aP_1a^{-1} \\ |P_2| = |aP_1a^{-1}| \end{cases} \implies P_2 = aP_1a^{-1}.$$

Theorem 23 (Sylow III). $n_p \equiv 1 \pmod{p}$ and $n_p \mid r$.

$$\begin{array}{ll} \textit{Proof.} & \bullet \; \operatorname{Consider} \; \stackrel{P \times \operatorname{Syl}_p(G) \to \operatorname{Syl}_p(G)}{(a, \quad Q) \mapsto aQa^{-1}} \; \text{where} \; P \in \operatorname{Syl}_p(G). \\ \\ P' \in \operatorname{Fix} P \iff aP'a^{-1} = P' \quad \forall a \in P \iff P \leq N_G(P') \cap P = P' \cap P \iff P' = P. \\ \\ \operatorname{So} \; \operatorname{Fix} P = \{P\} \implies n_p \equiv |\operatorname{Fix} P| = 1 \; (\operatorname{mod} \; p). \end{array}$$

- Consider $G \times \operatorname{Syl}_p(G) \to \operatorname{Syl}_p(G) \Longrightarrow \text{There is only one orbit } \operatorname{Syl}_p(G).$ We know $|\operatorname{Syl}_p(G)| = \frac{|G|}{|G_Q|}$ and $G_Q = N_G(Q)$. Then $n_p = \frac{|G|}{|G_Q|} \mid |G|$. So $n_p \mid p^{\alpha}r \Longrightarrow n_p \mid r$.
- **Prop 1.8.1.** Let |G| = pq where p, q are primes with $\begin{cases} p < q \\ q \not\equiv 1 \pmod{p} \end{cases}$. Then $G \cong C_{pq}$.

$$\begin{array}{l} \textit{Proof. } n_p = 1 + kp \mid q \implies n_p = 1 \text{ i.e. } H \in \operatorname{Syl}_p(G) \implies H \lhd G. \\ n_q = 1 + kq \mid p \implies n_q = 1 \text{ i.e. } K \in \operatorname{Syl}_q(G) \implies K \lhd G. \\ \text{Since } \gcd(p,q) = 1, \ H \cap K = 1. \ \text{Hence } G = H \times K \cong C_p \times C_q \cong C_{pq}. \end{array} \qquad \square$$

Eg 1.8.2. Consider $|G| = 255 = 3 \times 5 \times 17$.

- 1. 找兩個 normal subgroup (17, 5 or 3)
- 2. quot 掉後發現剩下的是 abelian $\leadsto [G,G]$ 在裡面
- 3. [G, G] = 1
- 4. 唱 f.g. xxx thm. 得到 $G \cong \mathbb{Z}_3 \times \mathbb{Z}_5 \times \mathbb{Z}_{17}$.
- 5. 中國剩飯定理 $G \cong C_{255}$.

Ex 1.8.4. If $|G| = 7 \times 11 \times 19$, then *G* is abelian.

Eg 1.8.3. No group G of order $48 = 2^4 \times 3$ is simple.

- 1. $n_2 = 1 + 2k \mid 3 \leadsto n_2 = 1 \text{ or } 3.$
- 2. $n_2 = 1$ then OK.
- 3. Assume $n_2 = 3$. Let $P \in \text{Syl}_2(G), X = \{ \text{ left cosets of } P \} (|X| = 3)$.
- 4. Consider $(A, X) \mapsto X \rightarrow X \Rightarrow \varphi : G \rightarrow S_3$.
- 5. 考慮 $\ker \varphi$.

Ex 1.8.5. No group G of order 36 is simple.

Ex 1.8.6. No group G of order 30 is simple.

Ex 1.8.7. Let |G| = 385. Show that $\exists P \in \text{Syl}_7(G)$ s.t. $P \leq Z_G$.

1.9 Week 9

1.9.1 Classification

To classify groups of small orders:

- |G| = 1: $G = \{1\}$
- |G| = 2: $G \cong C_2$
- |G| = 3: $G \cong C_3$
- |G| = 4: $G \cong \mathbb{Z}_4$ or $\mathbb{Z}_2 \times \mathbb{Z}_2$
- |G| = 5: $G \cong C_5$
- |G|=6: $n_3=1, n_2=1$ or 3. Let $H\in \mathrm{Syl}_3(G)$ and $H\triangleleft G$. Let $K\in \mathrm{Syl}_2(G)$. Also $H\cap K=\{1\}$ and HK=G then $G\cong K\times_{\tau}H$
 - If τ is trivial: $G \cong K \times H \cong C_2 \times C_3 \cong C_6$
 - $-\tau: b \mapsto \phi_2: \langle a \rangle \to \langle a \rangle: G \cong K \times_{\tau} H \cong \langle a, b \mid a^3 = 1, b^2 = 1, bab^{-1} = a^2 = a^{-1} \rangle \cong D_3$
- |G| = 7: $G \cong C_7$
- |G| = 8:
 - If abelian: \mathbb{Z}_8 or $\mathbb{Z}_4 \times \mathbb{Z}_2$ or $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$
 - If non-abelian:
 - * $\exists a \in G \text{ with } \operatorname{ord}(a) = 8$
 - * Not each $a \in G$ with $a^2 = 1$, otherwise G is abelian.
 - * $\exists a \in G \text{ with } \operatorname{ord}(a) = 4$: Let $H = \langle a \rangle$ and $H \triangleleft G$ since [G : H] = 2. Pick $b \in G \setminus H$ and $K = \langle b \rangle$
 - · ord(b) = 2: $H \cap K = \{1\}$ and HK = G then $G \cong K \times_{\tau} H$, $\tau : b \mapsto \phi : a \mapsto a^3$: $G \cong K \times_{\tau} H \cong \langle a, b \mid a^4 = 1, b^2 = 1, bab^{-1} = a^3 = a^{-1} \rangle \cong D_4$
 - · ord(b) = 4: $H \cap K = \langle a^2 = b^2 \rangle$. Then consider $bab^{-1} \in H \implies bab^{-1} = 1, a, a^2, a^3$
 - 1. 1, a obviously wrong.
 - 2. $bab^{-1} = a^2$: $a = a^2aa^{-2} = b^2ab^{-2} = a^4 \implies a^3 = 1$ 矛盾
 - 3. So $bab^{-1} = a^3 = a^{-1}$.

$$G \cong \langle a, b \mid a^4 = 1, b^4 = 1, a^2 = b^2, bab^{-1} = a^3 = a^{-1} \rangle \cong Q_8$$

- |G| = 9: $G \cong \mathbb{Z}_9$ or $\mathbb{Z}_3 \times \mathbb{Z}_3$
- |G| = 10: $G \cong K \times H \cong C_2 \times C_5 \cong C_{10}$ or $G \cong D_5$
- |G| = 11: $G \cong C_{11}$
- |G| = 12: Claim: If |G| = 12, then either G has a normal Sylow 3-subgroup or $G \cong A_4$.

Proof. By Sylow 3, $n_3 = 1 + 3k \mid 4 \implies n_3 = 1$ or 4.

- If $n_3 = 1$, then G has a normal Sylow 3-subgroup.
- Otherwise, let $P \in \operatorname{Syl}_3(G)$ and $X = \{ \text{left cosets of } P \}$, |X| = 4. Consider $G \times X \to X$ defined by $(a, xP) \mapsto axP$ with $\phi : G \to S_4$. And $\ker \phi \leq P$, |P| = 3 and $P \not \subset G$ (since $n_3 = 4$), so $\ker \phi = \{1\}$.

And since $n_3 = 4$, there are 8 elements of order 3 which corresponds to 8 3-sycles in A_4 , thus $|\operatorname{Im} \phi \cap A_4| \geq 8$. But $|\operatorname{Im} \phi \cap A_4| \mid |A_4| = 12 \implies \operatorname{Im} \phi = A_4$

Now, for the case where $\exists H \in \operatorname{Syl}_3(G)$ and $H \triangleleft G$. Let $K \in \operatorname{Syl}_2(G)$, then $K \cap H = \{1\}$ and $KH = G \implies G \cong K \times_{\tau} H$ for some $\tau : K \to \operatorname{Aut}(H) = \{\operatorname{id}, \phi_2\}$

- $-\tau$ is trivial: \mathbb{Z}_{12} or $\mathbb{Z}_2 \times \mathbb{Z}_6$.
- $-\langle b \rangle = K \cong \mathbb{Z}_4: \ \tau(b) = \phi_2 \implies G = \langle a, b \mid a^3 = 1, b^4 = 1, bab^{-1} = a^{-1} \rangle \not\cong D_6, A_4$
- $-\langle b \rangle = K \cong \mathbb{Z}_2 \times \mathbb{Z}_2$: Let $K = \langle b, c \mid b^2 = 1, c^2 = 1, bc = cb \rangle$, then $\tau : b \mapsto \phi_2$ and $c \mapsto \mathrm{id}$ (the other cases are equivalent to this one), $G = \langle a, b, c \mid a^3 = 1, b^2 = 1, c^2 = 1, bc = cb, bab^{-1} = a^{-1}, cac^{-1} = a \rangle \cong \langle a, b \mid a^3 = 1, b^2 = 1, bab^{-1} = a^{-1} \rangle \times \langle c \rangle \cong D_3 \times C_2 \cong D_6$

Fact 1.9.1. For odd $n, D_{2n} \cong D_n \times \mathbb{Z}/2\mathbb{Z}$.

Proof.

$$D_{2n} = \langle a, b \mid a^{2n} = 1, b^2 = 1, bab^{-1} = a^{-1} \rangle$$

$$H = \langle a^2, b \mid (a^2)^n = 1, b^2 = 1, b(a^2)b^{-1} = a^{-2} \rangle \cong D_n$$

$$K = \langle a^n \rangle \cong C_2$$

And n is odd, so $H \cap K = \{1\}$ and $D_{2n} \cong D_n \times C_2$

- |G| = 13: $G \cong C_{13}$
- |G| = 14: $G \cong C_{14}$ or D_7
- |G| = 15: $G \cong C_{15}$

Ex 1.9.1. Assume that K is cyclic and H is an arbitrary group. Let $\tau_1: K \to \operatorname{Aut}(H)$, $\tau_2: K \to \operatorname{Aut}(H)$ with $\tau_1(K) \sim \tau_2(K)$ (conjugate). If $|K| = \infty$, then assume that τ_1 and τ_2 are injective. Show that $K \times_{\tau_1} H \cong K \times_{\tau_2} H$.

Ex 1.9.2. Classify G if $|G| = p^3$ with p an odd prime and each nontrivial element of G has order p.

Ex 1.9.3. Classify groups of order 30.

1.9.2 Free groups

A free group generate by a non-empty set X is that there are no relations satisfied by any of elements in X.

Def 45. A free group on X is a group F with an inclusion map $i: X \to F$ satisfying the following universal property: For any group G and any map $f: X \to G$, exists a unique group homo $\varphi: F \to G$ that the following diagram commutes.

Theorem 24. F exists and is unique up to isomorphism. (Denote it as F(X) = F).

Proof. For X, we create a new disjoint set $X^{-1} = \{x^{-1} : x \in X\}$ and an element $1 \notin X \cup X^{-1}$.

Define
$$F(X) = \{1\} \cup \left\{ x_1^{\delta_1} x_2^{\delta_2} \cdots x_m^{\delta_m} : m \in \mathbb{N}, x_i \in X, \delta_i = \pm 1, x_{i+1}^{\delta_{i+1}} \neq \left(x_i^{\delta_i} \right)^{-1} \right\}$$
, and

$$x_1^{\delta_1} x_2^{\delta_2} \cdots x_m^{\delta_m} = y_1^{\epsilon_1} y_2^{\epsilon_2} \cdots y_m^{\epsilon_m} \iff n = m \text{ and } \delta_i = \epsilon_i \text{ and } x_i = y_i, \forall i$$

For each $y \in X \cup X^{-1}$, we define $\sigma_y : F(X) \to F(X)$ by

$$\sigma_y(x_1^{\delta_1} x_2^{\delta_2} \cdots x_m^{\delta_m}) = \begin{cases} y x_1^{\delta_1} x_2^{\delta_2} \cdots x_m^{\delta_m} & \text{if } x_1^{\delta_1} \neq y^{-1} \\ x_1^{\delta_1} x_2^{\delta_2} \cdots x_m^{\delta_m} & (m \ge 2) \\ 1 & (m = 1) \end{cases} \quad \text{if } x_1^{\delta_1} = y^{-1}$$

Then σ_y is a permutation of F(X), since if $\sigma_y(x_1^{\delta_1}x_2^{\delta_2}\cdots x_m^{\delta_m}) = \sigma_y(y_1^{\epsilon_1}y_2^{\epsilon_2}\cdots y_m^{\epsilon_m})$.

 $\text{m = n: either } x_1^{\delta_1} = y_1^{\epsilon_1} = y^{-1} \text{ or not, then either } x_2^{\delta_1} x_3^{\delta_2} \cdots x_m^{\delta_m} = y_2^{\epsilon_1} y_3^{\epsilon_2} \cdots y_m^{\epsilon_m} \text{ or } y x_1^{\delta_1} x_2^{\delta_2} \cdots x_m^{\delta_m} = y y_1^{\epsilon_1} y_2^{\epsilon_2} \cdots y_m^{\epsilon_m}.$ Both of them leads to $x_1^{\delta_1} x_2^{\delta_2} \cdots x_m^{\delta_m} = y_1^{\epsilon_1} y_2^{\epsilon_2} \cdots y_m^{\epsilon_m}.$

m = n+2: Omimi

Also σ_y is onto since omimi. And notice that $\sigma_{y^{-1}} \circ \sigma_y = id_{F(X)}$

Define $A = \langle \sigma_x : x \in X \rangle \leq S_{F(X)}$, and define $\phi : F(X) \to A$ by $\phi(1) = id_{F(X)}$ and $x_1^{\delta_1} \cdots x_m^{\delta_m} \mapsto \sigma_{x_1}^{\delta_1} \cdots \sigma_{x_m}^{\delta_m}$. The it is omimi that ϕ is a bijection. So we define $x :: X \cdot y :: X = \phi^{-1}(\phi(x) \circ \phi(y))$.

The ϕ in the universal property could be defined as $\phi(x_1^{\delta_1}x_2^{\delta_2}\cdots x_m^{\delta_m})=f(x_1)^{\delta_1}\cdots f(x_m)^{\delta_m}$. \square

Prop 1.9.1. Let $G = \langle a_1, \dots, a_n \rangle$ and $X = \{x_1, \dots, x_m\}$. Then $G \cong F(X)/K$ for some normal subgroup K. K is called the subgroup of relations connecting the generators.

Define $f = x_i :: X_i \to a_i :: G$. By universal property, $\exists \phi = x_i :: F(X) \mapsto a_i :: G$. Then $F(x)/\ker \phi \cong G$.

Def 46. Let $X = \{x_1, x_2, \dots, x_n\}$ and $R \subset F(X)$. Let N(R) be the smallest normal subgroup of F(X) containing R, Then G = F(X)/N(R) is written as $\langle x_1, \dots, x_n |$ elements of $R \rangle$, which is called a presentation of G. If $|R| < \infty$, then G is said to be finitely presented.

Eg 1.9.1.

$$D_n = \left\langle \begin{bmatrix} \cos\frac{2\pi}{n} & -\sin\frac{2\pi}{n} \\ \sin\frac{2\pi}{n} & \cos\frac{2\pi}{n} \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \right\rangle$$

We find that $x^n, y^2, xyxy \in \ker \phi$. Then $R = \{x^n, y^2, xyxy\} \subseteq \ker \phi \implies N(R) \le \ker \phi$. By factor theorem, $\exists \bar{\phi} :: F(X)/N(R) \to D_n$. But notice that

since $xyxy=1 \implies xy=yx^{-1}$, so every element could be turn into x^iy^j . Hence $\bar{\phi}$ is an isomorphism.

Prop 1.9.2. Let $X = \{x_1, x_2, \dots, x_n\}$. Then $F(X)/[F(X), F(X)] \cong \mathbb{Z}^n$.

Proof. Define $f = x_i :: X \mapsto e_i :: \mathbb{Z}^n$. Then $\phi = x_i :: F(X) \mapsto e_i :: \mathbb{Z}^n$. By 1st isomorphism theorem $F(X)/\ker \phi \cong \mathbb{Z}^n$ which is abelian, so $[F(X), F(X)] \leq \ker \phi$. By factor theorem, 一個 \mathbb{Z} 圖.

Claim that $\bar{\phi}$ is 1-1.

Proof. Since F(X)/[F(X),F(X)] is abelian, $\forall a \in F(X)/[F(X),F(X)]$, we can write $a=\bar{x}_1^{n_1}\bar{x}_2^{n_2}\cdots\bar{x}_m^{n_m}$. If $\bar{\phi}(\bar{a})=(m_1,\cdots,m_n)=0$ in \mathbb{Z}^n , then $m_i=0,\,\forall i\implies a=1$

2 Multilinear algebra

2.1 Week 11

2.1.1 Bilinear forms & Groups preserving bilinear forms

Def 47. Let V be a vector space over a field F.

• A function $f: V \times V \to F$ is called a bilinear form if

$$\begin{cases} f(rx_1 + x_2, y) &= rf(x_1, y) + f(x_2, y) \\ f(x, ry_1 + y_2) &= rf(x, y_1) + f(x, y_2) \end{cases} \quad \forall x_1, x_2, x, y_1, y_2, y \in V, r \in F$$

• $B_F(V,V) = \{ \text{ bilinear forms on } V \}$ can be regarded as a vector space over F.

Theorem 25. Let dim V = n and $\beta = \{v_1, \dots, v_n\}$ be a basis for V. Then \exists an isomorphism $\psi_{\beta}: B_F(V, V) \to M_{n \times n}(F)$.

Proof. For
$$v, w \in V$$
, write $v = \sum_i a_i v_i, w = \sum_j b_j v_j$, i.e. $[v]_\beta = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}, [w]_\beta = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$.

For
$$f \in B_F(V, V)$$
, $f(v, w) = \sum_i \sum_j a_i b_j f(v_i, v_j) = \begin{pmatrix} a_1 & \dots & a_n \end{pmatrix} \begin{pmatrix} f(v_i, v_j) \end{pmatrix} \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$.

Define $\psi_{\beta}(f) = A$ with $A_{ij} = f(v_i, v_j)$.

- ψ_{β} is a linear transformation.
- ψ_{β} is 1-1.
- ψ_{β} is onto: $\forall A \in M_{n \times n}(F)$, we define $f(v, w) = [v]_{\beta}^t A[w]_{\beta}$.

Def 48. Let $f \in B_F(V, V)$

- f is said to be symmetric if $f(v, w) = f(w, v) \quad \forall v, w \in V$.
- f is said to be skew-symmetric if $f(v, w) = -f(w, v) \quad \forall v, w \in V$.
- f is said to be alternating if $f(v,v) = 0 \quad \forall v \in V$.

Remark 12.

- Alternating \implies skew-symmetric.
- If $\operatorname{char} F \neq 2$, skew-symmetric \Longrightarrow alternating.
- If char F = 2, symmetric = skew-symmetric.
- $\forall f \in B_F(V, V)$ with char $F \neq 2$,

$$f_s(u, v) = \frac{1}{2} (f(u, v) + f(v, u))$$
$$f_a(u, v) = \frac{1}{2} (f(u, v) - f(v, u))$$

and $f(u, v) = f_s(u, v) + f_a(u, v)$.

So we only need to study "symmetric" & "alternating".

Ex 2.1.1.

1. If A and B are congruent $(B = Q^t A Q)$ in $M_{n \times n}(F)$, then they define the same bilinear form.

2.
$$f$$
 is $\begin{cases} \text{symmetric} \\ \text{skew-symmetric} \end{cases} \iff \psi_{\beta}(f)$ is $\begin{cases} \text{symmetric}(A^t = A) \\ \text{skew-symmetric}(A^t = -A) \end{cases}$

Observation. Let $f \in B_F(V, V)$ and $v_0 \in V$.

$$L_f(v_0) = f(v_0, \cdot) \in V' = \operatorname{Hom}(V, F)$$
: the dual space of V
 $R_f(v_0) = f(\cdot, v_0) \in V'$

The left radical of $f : \operatorname{lrad}(f) = N(L_f) = \{ v \in V \mid f(v, w) = 0 \quad \forall w \in V \}.$ The right radical of $f : \operatorname{rrad}(f) = N(R_f) = \{ w \in V \mid f(v, w) = 0 \quad \forall v \in V \}.$

Ex 2.1.2.

- 1. $\operatorname{rank}(\psi_{\beta}(f)) = \operatorname{rank}(R_f) = \operatorname{rank}(L_f)$.
- 2. If dim V = n, then TFAE ($\implies f$: non degenerate)
 - (a) rank(f) = n.
 - (b) $\forall v \in V, v \neq 0, \exists w \in V \text{ s.t. } f(v, w) \neq 0.$
 - (c) $lrad(f) = \{0\}.$
 - (d) $L_f: V \to V'$ is isom.

(also, right)

Theorem 26 (Principal Axis theorem). Let dim V = n and char $F \neq 2$. If $f \in B_F(V, V)$ is symmetric, then $\exists \beta$ s.t. $\psi_{\beta}(f)$ is diagonal.

Proof. It is sufficient to find $\beta = \{v_1, \dots, v_n\}$ s.t. $f(v_i, v_i) = 0 \quad \forall i \neq j$.

If f = 0, then done! Assume $f \neq 0$. By induction on n: If n = 1, done. Let n > 1.

Claim 1: $\exists v_1 \in V \text{ s.t. } f(v_1, v_1) \neq 0.$ Assume that $f(v, v) = 0 \quad \forall v \in V.$

$$f(v,w) = \frac{1}{2} (f(v+w,v+w) - f(v,v) - f(w,w)) = 0.$$

So f = 0, which is a contradiction.

Now let $v_1 \in V$ with $f(v_1, v_1) \neq 0$. Let $W = \langle v_1 \rangle_F$ and $W^{\perp} = \{ w \in V \mid f(v_1, w) = 0 \} \subseteq V$. Claim 2: $V = W \oplus W^{\perp}$

- $V = W + W^{\perp}$: For all $v \in V$, let $a = f(v, v_1)/f(v_1, v_1)$, then $v = av_1 + (v av_1) \triangleq w + w'$ where $w \in W$ and $f(w', v_1) = f(v av_1, v_1) = f(v, v_1) af(v_1, v_1) = 0$. So $w' \in W^{\perp}$ and thus $V = W + W^{\perp}$.
- $W \cap W^{\perp} = \{0\}$: obviously since if $av_1 \in W$, $f(av_1, v_1) = 0 \iff a = 0 \iff av_1 = 0$.

Since $f\Big|_{W^{\perp}\times W^{\perp}}$ is a symmetric bilinear form on W^{\perp} and $\dim W^{\perp} < \dim V$. By induction hypothesis, $\exists \{v_2, \ldots, v_n\}$ a basis for W^{\perp} s.t. $f(v_i, v_j) = 0 \quad \forall i \neq j$. Then $\beta = \{v_1, \ldots, v_n\}$.

 $^{^1{\}rm The}$ argument in class requires char $F\geq 4,$ omimi...

Theorem 27 (Sylvester's theorem). Let $f \in B_{\mathbb{R}}(V, V)$ be symmetric with dim V = n. Then $\exists \beta$

The triple (# of 1, # of -1, # of 0) is well-defined. (called the signature of f)

Proof. Assume
$$V^+ = \langle v_1, \dots, v_p \rangle_F, V^- = \langle v_{p+1}, \dots, v_r \rangle_R, V^\perp = \langle v_{r+1}, \dots, v_n \rangle_F.$$
 $(V = V^+ \oplus V^- \oplus V^\perp)$

Claim: If W is a subspace of V s.t. f is positive-definite on W, then W, V^-, V^{\perp} are independent. Let $\langle w_1, w_2, \dots, w_s \rangle$ be a basis of W. If

$$a_1w_1 + a_2w_2 + \dots + a_sw_s = b_{p+1}v_{p+1} + \dots + b_rv_r + c_{r+1}v_{r+1} + \dots + c_nv_n.$$

Let $w \triangleq a_1w_1 + \dots + a_sw_s, v \triangleq b_{p+1}v_{p+1} + \dots + b_rv_r + c_{r+1}v_{r+1} + \dots + c_nv_n$. Since w = v, f(w,w) = f(v,v). but $f(w,w) = \sum a_i^2 \geq 0$ and $f(v,v) = -\sum b_i^2 \leq 0$. Hence $a_i = 0, b_i = 0$. Since v_{r+1}, \dots, v_n is linear independent, $c_i = 0$. Therefor these vectors are linear independent.

Ex 2.1.3. Let $f \in B_F(V, V)$ with char $F \neq 2$. If f is skew-symmetric, then $\exists \beta$ s.t.

Ex 2.1.4. Study Hermitian form

 $T: V \xrightarrow{\sim} V, f \in B_F(V, V)$. T preserves f if $f(T(v), T(w)) = f(v, w) \quad \forall v, w \in V$. In matrix form, let β be a basis for $V, M = [T]_{\beta}, A = \psi_{\beta}(f)$, then $A = M^t AM$.

- $f \in B_{\mathbb{R}}(V, V)$ symmetric, non-degenerate: $\exists \beta$ s.t. $\psi_{\beta}(f) = \begin{pmatrix} I_p \\ -I_q \end{pmatrix}$.

 Then $\{\mathsf{T}: V \xrightarrow{\sim} V \text{ preserves } f\} \leftrightarrow \left\{M \in \mathrm{GL}_n(\mathbb{R}) \middle| M^t \begin{pmatrix} I_p \\ -I_q \end{pmatrix} M = \begin{pmatrix} I_p \\ -I_q \end{pmatrix}\right\} = \mathrm{O}(p,q)$.
- $f \in B_{\mathbb{R}}(V, V)$ skew-symmetric, non-degenerate: n = 2k, $\exists \beta$ s.t. $\psi_{\beta}(f) = J$. Then $\{ \mathsf{T} : V \xrightarrow{\sim} V \text{ preserves } f \} \leftrightarrow \{ M \in \mathrm{GL}_n(\mathbb{R}) | M^t J M = J \}$, where

$$J = \begin{pmatrix} 0 & I_k \\ -I_k & 0 \end{pmatrix}$$

2.1.2 Tensor product

From now on, R is assumed to be commutative with 1.

Def 49. Let M_1, \ldots, M_n, L be R-modules.

A function $F: M_1 \times \cdots \times M_n \to L$ is said to be *n*-multilinear if $\forall i$,

$$f(x_1, \dots, rx_i + x_i', \dots, x_n) = rf(x_1, \dots, x_i, \dots, x_n) + f(x_1, \dots, x_i', \dots, x_n) \quad \forall r \in R, x_i, x_i' \in M_i$$

If n = 2, f is called a bilinear map.

Def 50. Let M, N be R-modules. A tensor product of M and N is an R-module $M \otimes_R N$ with a bilinear map $\rho: M \times N \to M \otimes_R N$ satisfying the following universal property:

for any R-mondule W and any bilinear map $f: M \times N \to W, \exists !$ R-module homomorphism $\varphi: M \otimes_R N \to W,$

$$M \times N \xrightarrow{\rho} M \otimes_R N$$

$$\downarrow^{\varphi}$$

$$W$$

Theorem 28 (Main theorem). $M \otimes_R N$ exists and is unique up to isom.

Proof. Let $X = M \times N$. First we construct the free module $V_1 = \bigoplus_{(x,y) \in X} R \cdot (x,y)$.

Notice that in V_1 ,

- $(x_1, y_1) + (x_2, y_2) \neq (x_1 + x_2, y_1 + y_2).$
- $r(x,y) \neq (rx,ry)$.
- $r(r_1(x_1, y_1) + \dots + r_n(x_n, y_n)) = rr_1(x_1, y_1) + \dots + rr_n(x_n, y_n).$

$$\text{Let } V_0 = \left\langle \begin{array}{c} (x_1 + x_2, y) - (x_1, y) - (x_2, y), \\ (x, y_1 + y_2) - (x, y_1) - (x, y_2), \\ r(x, y) - (rx, y), r(x, y) - (x, ry) \end{array} \right| x_1, x_2, x \in M, y_1, y_2, y \in N, r \in R \right\rangle_R.$$

Define $M \otimes_R N = V_1/V_0$ which is an R-module and $\rho: M \times N \to M \otimes_R N$ which is R-bilinear. (check yourself)

Universal property: $\forall (x,y) \in M \times N$, $R(x,y) \to W$ $r(x,y) \mapsto rf(x,y)$. So, by the universal property of \oplus , \exists ! R-module homo. $\varphi_1: V_1 \to W$:

$$M \times N \xrightarrow{i} V_1$$

$$\downarrow^{\varphi_1}$$

$$W$$

Claim: $V_0 \subseteq \ker \varphi_1$. (check yourself) Then by factor theorem,

$$\exists ! \varphi : V_1/V_0 \longrightarrow W$$

$$M \times N$$

Eg 2.1.1. $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z} = 0$.

Eg 2.1.2. $\mathbb{R}[x,y] \cong \mathbb{R}[x] \otimes_{\mathbb{R}} \mathbb{R}[y]$.

Proof. $\mathbb{R}[x] \times \mathbb{R}[y] \to \mathbb{R}[x,y]$ is bilinear $\Rightarrow \exists ! \varphi : \mathbb{R}[x] \otimes_{\mathbb{R}} \mathbb{R}[y] \to \mathbb{R}[x,y]$ $f(x) \otimes g(y) \mapsto f(x)g(y)$.

Conversely, $h(x,y) = \sum_{i=1}^{\infty} a_{ij}x^{i}y^{j} \mapsto \sum_{i=1}^{\infty} a_{ij}x_{i} \otimes y_{i}$.

Prop 2.1.1. If $M = \langle x_1, \dots, x_n \rangle_R$ and $N = \langle y_1, \dots, y_m \rangle_R$. Then

$$M \otimes_R N = \langle x_i \otimes y_j \mid i = 1, \dots, n; j = 1, \dots, m \rangle_R$$

In particular, if R is a field F, then $\dim_F M \otimes_F N = (\dim_F M)(\dim_F N)$.

Proof. Note that
$$M \otimes_R N = \langle x \otimes y \mid x \in M, y \in N \rangle$$
. Let $x = \sum_i a_i x_i, y = \sum_j b_j y_j$. Then $x \otimes y = \sum_i \sum_j a_i b_j x_i \otimes y_j$.

Some canonical isomorphisms:

• $(M \otimes_R N) \otimes_R L \cong M \otimes_R (N \otimes_R L)$.

Proof. $\forall z \in L$, $M \times N \to M \otimes_R (N \otimes_R L)$ is bilinear. $\exists !$ R-mod homo. $\varphi_z : M \otimes_R N \to M \otimes_R (N \otimes_R L)$. Similarly, $M \otimes_R N \times L \to M \otimes_R (N \otimes_R L)$ is bilinear. (The right is due to φ_z linear, and the left is because $x \otimes (y \otimes (rz_1 + z_2)) = rx \otimes (y \otimes z_1) + x \otimes (y \otimes z_2)$.) Hence exists unique R-mod homo. $\varphi: (M \otimes_R N) \otimes_R L \to M \otimes_R (N \otimes_R L)$. By the symmetric construction, we have φ^{-1} and $\varphi^{-1} \circ \varphi = \varphi \circ \varphi^{-1} = 1$, so the two are isomorphic. \square

• $(M \oplus M') \otimes_R N \cong (M \otimes_R N) \oplus (M' \otimes_R N)$. The mapping $\psi :: (M \oplus M') \times N \to (M \otimes_R N) \oplus (M' \otimes_R N)$ by $\psi = ((x, x'), y) \mapsto (x \otimes y, x' \otimes y)$ is biliear, hence exists R-mod homomorphism $\varphi :: (M \oplus M') \otimes_R N \to (M \otimes_R N) \oplus (M' \otimes_R N)$. On the other hand, The mapping $(x, y) :: M \times N \mapsto (x, 0) \otimes y :: (M \oplus M') \otimes_R N$ is bilinear. So exists $\phi_1 :: M \otimes N \to (M \oplus M') \otimes_R N$, similarly there exists $\phi_2 :: M' \otimes N \to (M \oplus M') \otimes_R N$. Now by the universal property of direct sum, there exists $\phi :: (M \otimes_R N) \oplus (M' \otimes_R N) \to (M \oplus M') \otimes_R N$. After a careful examine, we have

$$\varphi = (x, x') \otimes y \mapsto (x \otimes y, x' \otimes y), \phi = (x \otimes y, x' \otimes y) \mapsto (x, x') \otimes y$$

Thus $\phi = \varphi^{-1}$ and hence the two are isomorphic.

Ex 2.1.5.

- 1. $R \otimes_R M \cong M$.
- 2. $M \otimes_R N \cong N \otimes_R M$.

Ex 2.1.6. $R/I \otimes_R N \cong N/IN$ where $IN := \{ \sum a_i x_i \mid a_i \in I, x_i \in N \}.$

Ex 2.1.7. Compute $\dim_{\mathbb{Q}}(\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q})$, $\dim_{\mathbb{R}}(\mathbb{R} \otimes_{\mathbb{R}} \mathbb{C})$, $\dim_{\mathbb{R}}(\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C})$, $\dim_{\mathbb{C}}(\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C})$

2.2 Week 12

2.2.1 Tensor product II

By universal property, we get $\{R\text{-bilinear maps } M \times N \to L\} \leftrightarrow \operatorname{Hom}_R(M \otimes_R N, L)$. Similarly,

$$\operatorname{Hom}\left(\bigoplus_{s\in\Lambda}M_s,L\right)\cong\prod_{s\in\Lambda}\operatorname{Hom}\left(M_s,L\right)$$
$$\operatorname{Hom}\left(N,\prod_{s\in\Lambda}M_s\right)\cong\prod_{s\in\Lambda}\operatorname{Hom}\left(N,M_s\right)$$

Fact 2.2.1. $f \in \operatorname{Hom}_R(M, M'), g \in \operatorname{Hom}_R(N, N') \leadsto f \otimes g \in \operatorname{Hom}_R(M \otimes N, M' \otimes N')$ by $(f \otimes g)(x \otimes y) = f(x) \otimes g(y).$

Proof. Define
$$h: M \times N \to M' \otimes_R N'$$

 $(x,y) \mapsto f(x) \otimes g(y)$

Restrition and extension of scalars.

Let $f: R \to S$ be a ring homomorphism and R, S be commutative with 1. Then S can be regarded as an *R*-module. $\begin{pmatrix} R \times S \to S \\ (r,x) \mapsto f(r)x \end{pmatrix}$.

If M is a S-module, then M is also an R-module. $\begin{pmatrix} R \times M \to M \\ (r,a) \mapsto f(r)a \end{pmatrix}.$ If N is an R-module, then $S \otimes_R N$ an S-module. $\begin{pmatrix} S \times (S \otimes_R N) \to S \otimes_R N \\ (r, x \otimes a) \mapsto rx \otimes a \end{pmatrix}.$

Eg 2.2.1 (Important example). Let V be a real vector space. The complexification of V is $V^{\mathbb{C}} := \mathbb{C} \otimes_{\mathbb{R}} V$ which is a \mathbb{C} -vector space.

Ex 2.2.1. Let $K \subseteq L$ be an inclusion of fields and let E be a vector space over K. Show that $E^L := L \otimes_K E$ satisfies the following universal property: For any vector space U over L and any *K*-linear map $f: E \to U$, $\exists ! L$ -linear map φ :

$$\varphi: 1 \otimes x :: E^L \xrightarrow{f} f(x) :: U$$

$$x :: E$$

Ex 2.2.2. $E \to E^L$ is a covariant functor from the category of vector spaces over K to the category of vector spaces over L.

$$\mathbf{Eg}\ \mathbf{2.2.2.}\quad \mathbb{Z}^n\cong\mathbb{Z}^m\leadsto\mathbb{Q}\otimes_{\mathbb{Z}}\mathbb{Z}^n\cong\mathbb{Q}\otimes_{\mathbb{Z}}\mathbb{Z}^m\leadsto n=m.$$

Eg 2.2.3.
$$G \cong \mathbb{Z}/d_1\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/d_l\mathbb{Z} \oplus \mathbb{Z}^s, \mathbb{Q} \otimes_{\mathbb{Z}} G = \mathbb{Q}^s$$
.

Let M, N and U be R-module. Then

$$\operatorname{Hom}_R(M \otimes_R N, U) \cong \operatorname{Hom}_R(N, \operatorname{Hom}_R(M, U))$$

Proof.

- For $f \in \operatorname{Hom}_R(M \otimes_R N, U)$ and $a \in N$, define $f_a = x :: M \mapsto f(x \otimes a) :: U$.
 - linear: easy.
 - $-\overline{f}: a \mapsto f_a$ is an R-mod homo.: easy.
 - $-\tau: f \mapsto \overline{f}$ is an R-mod homo.: $\tau(rf+g)(a)(x) = (rf+g)_a(x) = (rf+g)(x \otimes a) = rf(x \otimes a) + g(x \otimes a) = \cdots = r\tau(f)(a)(x) + \tau(g)(a)(x)$

- For $g \in \operatorname{Hom}_R(N, \operatorname{Hom}_R(M, U))$, define $g' = (x, a) :: M \times N \mapsto g(a)(x) :: U$.
 - -g' is R-bilinear: easy.
 - $-\exists ! \tilde{g} : x \otimes a \mapsto g(a)(x).$
 - $-\sigma: g \mapsto \tilde{g}$ is an R-mod homo.: easy.
- $\sigma \tau = id$, $\tau \sigma = id$: easy...

Ex 2.2.3. Hom_R (M, \cdot) , $M \otimes_R \cdot$ are covariant functors from the category of R-modules to itself. (is an adjoint pair)

Fact 2.2.2. $\operatorname{Hom}_R(R,M) \cong M$. By $f \mapsto f(1)$.

Def 51. An exact sequence $A \xrightarrow{f_1} B \xrightarrow{f_2} \cdots$ is a sequence satisfied im $f_k = \ker f_{k+1}$.

- $0 \to \mathbb{Z} \xrightarrow{2} \mathbb{Z}$.
- $\mathbb{Q} \to \mathbb{Q}/\mathbb{Z} \to 0$.

Let V, W be vector spaces over F. Then $V^* \otimes_F W \cong \operatorname{Hom}_F(V, W)$.

Proof. Let $\alpha = \{e_1, \dots, e_n\}$ and $\beta = \{f_1, \dots, f_m\}$ be bases for V and W respectively. Via α, β , $\text{Hom}_F(V, W) \cong \left\langle E_{ij} \middle| \begin{array}{c} i = 1, \dots, m \\ j = 1, \dots, n \end{array} \right\rangle_F$. $V^* \otimes W \cong \left\langle e_j^* \otimes f_i \middle| \begin{array}{c} i = 1, \dots, m \\ j = 1, \dots, n \end{array} \right\rangle_F$.

2.2.2 Tensor algebra

Def 52.

- Let R be a commutative ring with 1. An R-algebra is a ring A which is also an R-module s.t. the multiplication map $A \times A \to A$ is R-bilinear. (r(ab) = (ra)b = a(rb))
- Let A be an R-algebra. A grading of A is a collection of R-submodules $\{A_n\}_{n=0}^{\infty}$ (n-th homogeneous part) s.t.

$$A = \bigoplus_{n=0}^{\infty} A_n$$
 and $A_n A_m \subseteq A_{n+m}$ $\forall n, m$

- A graded R-algebra is an R-algebra with a chosen grading.
- \mathfrak{M}_R is the category of R-modules.
- \mathfrak{Gr}_R is the category of graded R-algebras. $(f:A\to A')$ with $f(A_n)\subseteq A'_n$

Eg 2.2.4. $A = R[x], A_n = \langle x^n \rangle_R$. If $I = \langle x+1 \rangle_A$, I is not graded. $I = \langle x^2 \rangle_A$ is graded.

Def 53. An ideal I is graded in a graded ring A if and only if $I = \bigoplus I \cap A_n$.

²This is not mentioned in class

Ex 2.2.4. TFAE

- (1) I is graded.
- (2) $\forall a \in I \text{ write } a = a_{k_1} + a_{k_2} + \dots + a_{k_m}, a_{k_i} \in A_{k_i} \implies a_{k_i} \in I.$ $(a_{k_i} \text{ is the homogenuous component of } a)$
- (3) A/I is a graded ring with $(A/I)_n = (A_n + I)/I \cong A_n/I \cap A_n$.

Ex 2.2.5.

- (1) If I is a f.g. graded ideal, then I has a finite system of generators consisting of homogeneous elements alone.
- (2) I, J are graded $\implies I + J, IJ, I \cap J$ are graded.

Observation: Let $\{M_i\}_{i=1}^{\infty}$ be a collection of R-modules.

- $M_1 \otimes_R M_2$ exists.
- $(M_1 \otimes_R M_2) \otimes_R M_3 \cong M_1 \otimes_R (M_2 \otimes_R M_3) \implies M_1 \otimes_R M_2 \otimes_R M_3$ is well-defined. Universal property: for any R-module L and a 3-multilinear map $f: M_1 \times M_2 \times M_3 \to L$. (拆括號曜)
- By induction, $M_1 \otimes \cdots \otimes M_n$ is well-defined and satisfies the universal property. (n-multilinear map)

Goal: For a given R-module M, we intend to construct an graded R-algebra T(M) containing M that is "universal" w.r.t. R-algebras containing M.

That is, a tensor algebra is a pair (T(M), i) where T(M) is an R-algebra and $i :: M \to T(M)$, such that for any R-algebra A containing M, which is to say that exist a R-module homomorphism $\varphi : M \to A$, then exists an R-algebra homomorphism $\psi :: T(M) \to A$ such that $\varphi = \psi \circ i$.

Construction:

• $\forall k \in \mathbb{N}, T^k(M) := \underbrace{M \otimes \cdots \otimes M}_{k \text{ times}}$, each $x_1 \otimes x_2 \otimes \cdots \otimes x_k \in T^k(M)$ is called a k-tensor.

$$T^0(M) := R$$
 and

$$T(M) := \bigoplus_{k=0}^{\infty} T^k(M) = R \oplus T^1(M) \oplus \dots$$

• define multiplication on T(M) by:

$$T^{i}(M) \times T^{j}(M) \longrightarrow T^{i+j}(M)$$

 $(x_{1} \otimes \cdots \otimes x_{i}, y_{1} \otimes \cdots \otimes y_{j}) \longmapsto x_{1} \otimes \cdots \otimes x_{i} \otimes y_{1} \otimes \cdots \otimes y_{j}$

• Distribution law: easy.

Proving the universal property: For any R-algebra A containing M and an R-module homo. $\varphi: M \to A$. $\forall k \geq 2$, we define $f_k: M \times \cdots \times M \to A$

$$f_k: M \times \cdots \times M \to A$$

 $(x_1, \dots, x_k) \mapsto \varphi(x_1) \dots \varphi(x_k)$

 f_k is k-multilinear \rightsquigarrow

$$\exists! \tilde{f}_k : M \otimes \cdots \otimes M \to A$$
$$x_1 \otimes \cdots \otimes x_k \mapsto \varphi(x_1) \dots \varphi(x_k)$$

By the universal property of \bigoplus , exists a unique R-module homo. $\tilde{\varphi}::T(M)\to A$ which make the following diagram commutes.

 $\tilde{\varphi}: T(M) \xrightarrow{f_k} A$ $T^k(M)$

 $\tilde{\varphi}$ is an R-algebra homomorphism.

Def 54. T(M) is called the tensor algebra of M.

Ex 2.2.6. T is a covariant functor from \mathfrak{M}_R to \mathfrak{Gr}_R .

Prop 2.2.1. Let V be a vector space over F with a basis $\beta = \{v_1, \dots, v_n\}$. Then

$$\{v_{i_1} \otimes \cdots \otimes v_{i_k} \mid \forall j = 1, \dots, k, \ i_j = 1, \dots, n\}$$

forms a basis for $T^k(V)$. $\dim_F T^k(V) = n^k$.

T(V) can be regarded as a non-commutative polynomial algebra over F.

 \odot Symmetrization (char F = 0)

$$V \times \cdots \times V \longrightarrow T^n(V)$$

$$(x_1,\ldots,x_n) \longmapsto \frac{1}{n!} \sum_{\tau \in S_n} x_{\tau(1)} \otimes \cdots \otimes x_{\tau(n)}$$

is n-multilinear.

The symmetrizer operator $\sigma: T^n(V) \to T^n(V), \ \tilde{S}^n(V) := \sigma(T^n(V)) \subseteq T^n(V).$

Claim: $T^n(V) = \tilde{S}^n(V) \oplus C^n(V)$ where

$$C^n(V) = C(V) \cap T^n(V)$$
 $C(V) = \langle v \otimes w - w \otimes v \mid v, w \in V \rangle$

2.3 Week 13

2.3.1 Symmetric and Exterior algebra

Symmetric algebra Define

$$\begin{array}{ccc} S:\mathfrak{M}_R\to\mathfrak{Gr}_R & & \\ M\mapsto T(M)/C(M) & & S(M):=T(M)/C(M) \end{array}$$

where C(M) is the gradded two-sided ideal generated by $u \otimes v - v \otimes u$ with $u, v \in M$.

• $C^k(M) := C(M) \cap T^k(M)$ is the submodule of $T^k(M)$ generated by all

$$x_1 \otimes \ldots \otimes x_k - x_{\sigma(1)} \otimes \ldots \otimes x_{\sigma(k)} \quad \forall x_i \in M, \sigma \in S_k.$$

" \subseteq ": $x_1 \otimes \ldots \otimes x_s \otimes (u \otimes v - v \otimes u) \otimes y_1 \otimes \ldots \otimes y_t \in C(M) \cap T^k(M)$ with s + 2 + t = k. " \supset ": bubble sort

• $k \geq 2, S^k(M) = T^k(M)/C^k(M) = \langle \overline{x}_1 \otimes \ldots \otimes \overline{x}_k \mid x_i \in M \rangle_R \text{ with } \overline{x}_1 \otimes \ldots \otimes \overline{x}_k = \overline{x}_{\sigma(1)} \otimes \ldots \otimes \overline{x}_{\sigma(k)} \quad \forall \sigma \in S_k$

Hence, $S(M) = \bigoplus_{k=0}^{\infty} S^k(M)$ is a graded commutative R-algebra.

Def 55. $f: M \times \cdots \times M \to L$ is a symmetric k-multilinear map if f is k-multilinear and

$$f(x_1, \dots, x_k) = f(x_{\sigma(1)}, \dots, x_{\sigma(k)}) \quad \forall \sigma \in S_k$$

- $k \geq 2$, $S^k(M)$ is universal w.r.t. symmetric k-multilinear maps on M: By the universal property of $T^k(M)$, $\exists !$ R-module homo. $\tilde{f}: T^k(M) \to L$. Now $C^k(M) \subseteq \ker \tilde{f} \implies \exists !$ R-module homo. $\bar{f}: S^k(M) \to L$ by factor thm.
- S(M) satisfies the universal property for maps to a commutative R-algebra: given a commutative R-algebra A and $f: M \to A$ R-module homo.,

$$M \xrightarrow{f} A$$

$$\downarrow \qquad \uparrow \qquad \uparrow$$

$$T(M) \xrightarrow{\exists ! f'} \uparrow$$

• $S: \mathfrak{M}_R \to \mathfrak{Gr}_R$ is a covariant functor.

$$-\varphi:M\to N$$
: R-module homo. $\leadsto T(\varphi):T(M)\to T(N)\to T(N)/C(N)=S(N)$

Ex 2.3.1. Let E be a vector space over F with dim E = n.

- 1. Show that $S(E) \cong F[x_1, \dots, x_n]$.
- 2. Compute $\dim_F S^k(E)$.

Exterior algebra $(\operatorname{char} R \neq 2)$

$$\begin{array}{c} \Lambda:\mathfrak{M}_R\to\mathfrak{Gr}_R\\ M\mapsto \Lambda(M)=T(M)/A(M) \end{array}$$

where A(M) is the two sided graded generated by $v \otimes v \quad \forall v \in M$.

• $A^k(M) := A(M) \cap T^k(M)$ is the submodule of $T^k(M)$ generated by all $x_1 \otimes \ldots \otimes x_k$ with $x_i = x_j$ for some $i \neq j$.

(Note:
$$(x_1+x_2)\otimes(x_1+x_2) = x_1\otimes x_1 + x_1\otimes x_2 + x_2\otimes x_1 + x_2\otimes x_2 \leadsto x_1\otimes x_2 + x_2\otimes x_1 \in A(M)$$
)

• $\Lambda^k(M) \cong T^k(M)/A^k(M) = \langle \overline{x_1 \otimes \ldots \otimes x_k} \mid x_i \in M \rangle$ with $\overline{x_1 \otimes \ldots \otimes x_k} = \overline{0}$ if $x_i = x_j$ for some $i \neq j$. We use $x_1 \wedge \cdots \wedge x_k := \overline{x_1 \otimes \ldots \otimes x_k}$. Note: $x_1 \wedge x_2 = -x_2 \wedge x_1$.

Def 56. $f: M \times \cdots \times M \to L$ is an alternating k-multilinear map if f is k-multilinear and $f(x_1, \ldots, x_k) = 0$ when $x_i = x_j$ for some $i \neq j$.

• $k \geq 2$, $\Lambda^k(M)$ is universal w.r.t. alternating k-multilinear maps on M:

• $\Lambda(M)$ satisfies the universal property for maps to an R-algebra A with $a^2 = 0 \quad \forall a \in A$: given an R-algebra A and $f: M \to A$ R-module homo.,

$$\begin{array}{c}
M \xrightarrow{f} A \\
\downarrow \qquad \uparrow \\
T(M) \longrightarrow \Lambda(M)
\end{array}$$

- $\Lambda: \mathfrak{M}_R \to \mathfrak{Gr}_R$ is a covariant functor.
 - $-\varphi:M\to N$: R-module homo. $\leadsto T(\varphi):T(M)\to T(N)\to T(N)/A(N)=\Lambda(N)$

Ex 2.3.2. Let V be a vector space over F with dim V = n and $\varphi : V \to V$ be a linear transformation.

- (1) Compute $\Lambda^k(V)$.
- (2) Determine the map $\Lambda^k(\varphi): \Lambda^k(V) \to \Lambda^k(V)$.

Symmetrization and Skew-symmetrization

$$T^{k}(V) \xrightarrow{} T^{k}(V)$$

$$\operatorname{Sym} = \sigma : x_{1} \otimes \ldots \otimes x_{k} \longmapsto \frac{1}{k!} \sum_{\tau \in S_{k}} x_{\tau(1)} \otimes \ldots \otimes x_{\tau(k)}$$

$$\operatorname{Alt} = \sigma' : x_{1} \otimes \ldots \otimes x_{k} \longmapsto \frac{1}{k!} \sum_{\tau \in S_{k}} \operatorname{sgn}(\tau) x_{\tau(1)} \otimes \ldots \otimes x_{\tau(k)}$$

 $\tilde{S}^k(V) = \sigma(T^k(V)) \quad \tilde{\Lambda}^k(V) = \sigma'(T^k(V))$

- $\sigma^2 = \sigma \text{ easy } \rightsquigarrow T^k(V) = \operatorname{Im} \sigma \oplus \ker \sigma = \tilde{S}^k(V) \oplus \ker \sigma.$
- $\ker \sigma = C^k(V)$. $C^k(V) \subseteq \ker \sigma$ is obvious. Assume \supseteq , i.e., $\exists t \in \ker \sigma$ s.t. $t \notin C^k(V)$. Recall $q: T^k(V) \twoheadrightarrow S^k(V)$, since q is the quotient map. Also $q|_{\tilde{S}^k(V)} \twoheadrightarrow S^k(V)$, since if q(x) = y, then it could be easily checked that $q(\sigma(x)) = y$, so exists $t' \in \tilde{S}^k(V)$ satisfies $q(t') = q(t) \neq 0$. But then $q(t-t') = 0 \implies t-t' \in \ker q = C^k(V) \subseteq \ker \sigma$ and because of $\sigma(t) = 0 \implies \sigma(t') = 0$. Hence $t' \in \ker \sigma$. But then $t' \in S^k(V) \subseteq \operatorname{Im} \sigma \implies t' \in \operatorname{Im} \sigma \cap \ker \sigma$, which leads to an contradiction since σ is a projection.

Ex 2.3.3.
$$T^k(V) = \tilde{\Lambda}^k(V) \oplus A^k(V)$$
.

3 Introduction to the linear representation theory of finite groups

3.1 Week 14

3.1.1 Generallities on linear representations

Notation

- G: finite group
- V: vector space of finite dim over $\mathbb C$
- GL(V): the group of all linear isom. $V \to V$

Def 57. A group homo. $\rho: G \to \operatorname{GL}(V)$ is called a linear representation of G. dim V is called the degree of ρ . (V is a representation space)

For a fixed basis $\beta = \{e_i\},\$

(R is a matrix representation)

Eg 3.1.1. A representation of degree 1 of G is $\rho: G \to \mathrm{GL}(\mathbb{C}) \cong \mathbb{C}^{\times}$.

 $\operatorname{ord}(g)$ is finite $\rightsquigarrow \rho(g)^m = 1$ for some $m \in \mathbb{N} \rightsquigarrow \rho(g)$ is a root of unity, i.e. $|\rho(g)| = 1$.

Note: So, $\rho: G \to S^1$, S^1 is the unit circle.

- 1. $G = \mathbb{Z}/p\mathbb{Z}, \, \rho : \overline{1} :: G \mapsto \zeta_p :: S^1 \text{ with } \zeta_p^p = 1.$
- 2. $G = S_3, V = \mathbb{C}e_1 \oplus \mathbb{C}e_2 \oplus \mathbb{C}e_3$.

A permutation representation is $\rho : \tau :: S_3 \mapsto (\rho(\tau) : e_i \mapsto e_{\tau(i)}) :: GL(V)$.

3. $G = S_3, V = \bigoplus_{\sigma \in S_3} \mathbb{C}e_{\sigma}$. The regular representation is

$$\rho^{\text{reg}} : \tau :: G \mapsto (\rho^{\text{reg}}(\tau) : e_{\sigma} \mapsto e_{\tau\sigma}) :: GL(V).$$

For general G, with $V = \bigoplus_{g \in G} \mathbb{C}e_g$,

$$\rho^{\text{reg}}: h :: G \mapsto (\rho^{\text{reg}}(h): e_q \mapsto e_{hq}) :: GL(V).$$

Def 58.

- $\rho:g::G\mapsto \mathrm{id}::\mathrm{GL}(V)$: trivial representation.
- $\rho: G \hookrightarrow \mathrm{GL}(V)$: faithful representation.
- ρ, ρ' are said to be equivalent if \exists a linear isom. $\mathsf{T}: V \xrightarrow{\sim} V'$ s.t.

$$\begin{array}{c|c} V & \stackrel{\sim}{\longrightarrow} & V' \\ \rho(g) \!\!\! \downarrow & & \!\!\! \downarrow \!\!\! \rho'(g) \\ V & \stackrel{\sim}{\longrightarrow} & V' \end{array}$$

46

Remark 13. When we choose two bases β , β' for V,

$$G \xrightarrow{\rho} \operatorname{GL}(V) \qquad G \xrightarrow{\rho'} \operatorname{GL}(V)$$

$$R \xrightarrow{\beta \downarrow \wr} GL_n(\mathbb{C}) \qquad GL_n(\mathbb{C})$$

then ρ, ρ' are equivalent.

Let $T: e_i :: V \mapsto e_i' :: V$. For $g \in G, R(g) = (a_{ij})$.

 $T \circ \rho(g) = \rho'(g) \circ T$

Def 59. Let $\langle \cdot, \cdot \rangle$ be a positive definite Hermitian form on V.

Then $T: V \to V$ is called a unitary operator if $\langle T(x), T(y) \rangle = \langle x, y \rangle \quad \forall x, y \in V$.

or $\forall \beta$: orthonormal basis, $[T]_{\beta}^*[T]_{\beta} = [T]_{\beta}[T]_{\beta}^* = I_n$.

Theorem 29. $\forall \rho: G \to \operatorname{GL}(V), \exists \text{ a matrix representation } R: G \to U_n.$

Proof. We only need to G-invariant positive definite Hermitian form on V. $(\forall g \in G, \langle \rho(g)x, \rho(g)y \rangle = \langle x, y \rangle \quad \forall x, y \in V)$

We start with an arbitrary positive definite Hermitian form $\langle \cdot, \cdot \rangle'$ on V.

Define a new form $\langle \cdot, \cdot \rangle$ by

$$\langle x, y \rangle := \frac{1}{|G|} \sum_{g \in G} \langle \rho(g)(x), \rho(g)(y) \rangle'$$

which is a positive definite Hermitian form, since

$$\begin{split} \langle \rho(g)x, \rho(g)y \rangle &\triangleq \frac{1}{|G|} \sum_{h \in G} \langle (\rho(h) \circ \rho(g))(x), (\rho(h) \circ \rho(g))(y) \rangle' \\ &= \frac{1}{|G|} \sum_{gh \triangleq h' \in G} \langle (\rho(h'))(x), (\rho(h'))(y) \rangle' \triangleq \langle x, y \rangle \end{split}$$

So with the basis of this hermitian form, every $\rho(g)$ has a matrix representation R(g) which is unitary.

Def 60. Let $\rho: G \to \operatorname{GL}(V)$, For $W \subset V$ (we use \subset to denote subspace), if $\forall x \in W$, $\rho(g)(x) \in W$, $\forall g \in G$, then W is said to be G-invariant and

$$\begin{array}{c} \rho^W:G\to \mathrm{GL}(W)\\ g\mapsto \rho(g)\big|_W \end{array}$$

is called a subrepresentation of ρ .

W is G-invariant $\leadsto \rho(g)|_{W}: W \xrightarrow{\sim} W$.

Eg 3.1.2. Let ρ be the regular rep. of S_3 .

 $W^{\circ} = \{ \alpha_1 e_1 + \cdots + \alpha_6 e_6 \mid \alpha_1 + \cdots + \alpha_6 = 0 \}$ is G-invariant.

 $W^1 = \langle e_1 + \dots + e_6 \rangle_{\mathbb{C}}$ is G-invariant.

Theorem 30. Let $\rho: G \to \operatorname{GL}(V)$ and $W \subset V$ be G-invariant. Then $\exists W^{\circ} \subset V$ is still G-invariant and $V = W \oplus W^{\circ}$.

Proof. We can pick an arbitrary W' with $V = W \oplus W'$ and $\pi_1 : V \to W$ is the projection to W. Then $W' = \ker \pi_1$.

Now we need π_1 preserves the G action (G-equivariant). Define

$$\pi^{\circ} = \frac{1}{|G|} \sum_{g \in G} \rho(g)^{-1} \circ \pi_1 \circ \rho(g) : V \to W$$

- well-defined: $\rho(g)(V) \subset V \leadsto \pi_1 \circ \rho(g)(V) \subset W \leadsto \rho(g)^{-1} \circ \pi_1 \circ \rho(g)(V) \subseteq W$.
- surjective: $\forall y \in W, (\rho(g)^{-1} \circ \pi_1 \circ \rho(g))(y) = (\rho(g)^{-1} \circ \rho(g))(y) = y \text{ since } \rho(g)(y) \in W. \text{ Also, } \pi^{\circ}(y) = y, \forall y \in W \implies (\pi^{\circ})^2 = \pi^{\circ}. \text{ So } \pi^{\circ} \text{ is a projection and hence } V = \operatorname{Im} \pi^{\circ} \oplus \ker \pi^{\circ}.$
- G-equivariant: $\forall q' \in G$,

$$\pi^{\circ} \circ \rho(g')(x) = \frac{1}{|G|} \sum_{g \in G} \rho(g)^{-1} \circ \pi_1 \circ \rho(g)(\rho(g')(x))$$
$$= \rho(g') \frac{1}{|G|} \sum_{gg' \in G} \rho(gg')^{-1} \circ \pi_1 \circ \rho(gg')(x)$$
$$= (\rho(g') \circ \pi^{\circ})(x)$$

• $W^{\circ} := \ker \pi^{\circ}$ is G-invariant: $\forall x \in W^{\circ}$, $\pi^{\circ}(\rho(g)(x)) = \rho(g)(\pi^{\circ}(x)) = \rho(g)(0) = 0$. So $\rho(g)(x) \in W^{\circ}$.

$$V \xrightarrow{\pi^{\circ}} W$$

$$\rho(g) \downarrow \qquad \qquad \downarrow \rho(g)$$

$$V \xrightarrow{\pi^{\circ}} W$$

Remark 14. If $W \subset V$ is G-invariant, then W^{\perp} is also G-invariant. (w.r.t. a G-invariant positive definite Hermitian form)

Def 61. $\rho: G \to GL(V)$ is irreducible if ρ has no proper notrivial subrepresentations.

Theorem 31. Each $\rho: G \to GL(V)$ is a direct sum of irreducible subrepresentations.

Proof. By induction on dim V. For dim V=1, then ρ is irreducible.

For dim V>1, if ρ is irreducible, then done. Otherwise, $\exists W,W^{\circ}$ are G-invariant s.t. $V=W\oplus W^{\circ}$ with dim $W\geq 1$, dim $W^{\circ}\geq 1$. By induction hypothesis, $\rho^W,\rho^{W^{\circ}}$ are the direct sum of irreducible subrepresentations, and $\rho=\rho^W\oplus\rho^{W^{\circ}}$, done.

Remark 15. Let $\rho: G \to GL(V)$ and $\rho': G \to GL(V')$.

- $\rho \oplus \rho' : G \to \mathrm{GL}(V \oplus V')$. 矩陣是左上右下
- $\rho \otimes \rho' : G \to \operatorname{GL}(V \otimes V')$. 矩陣是密密麻麻 $(\sum_{i,j} r_{ip}, r'_{iq}(e_i \otimes e'_j))$

3.1.2 Character Theory I

Main goal: To determine all equivalence classes of irreducible representations of a finite group G.

Def 62.

$$G \xrightarrow{\rho} \operatorname{GL}(V)$$

$$\downarrow \downarrow \beta = \{e_i\}$$

$$\operatorname{GL}_n(\mathbb{C})$$

The character χ_{ρ} if ρ is the map $\chi_{\rho}: G \to \mathbb{C}$ defined by $\chi_{\rho}(g) = \operatorname{Tr}(R(g))$.

Remark 16.

1. χ_{ρ} is independent of the choice of $\beta = \{e_i\}$ For another basis $\beta' = \{e'_i\}$. (Notice that $\operatorname{Tr}(BA) = \operatorname{Tr}(AB)$)

2.
$$\rho \cong \rho' \leadsto \chi_{\rho} = \chi_{\rho'}$$
. equivalent

Def 63.

- The degree of χ_{ρ} is defined to the degree of ρ (= dim V).
- χ_{ρ} is an irreducible character if ρ is irreducible.

Basic facts:

- 1. $\chi_{\rho}(1) = n$.
- 2. χ_{ρ} is a class function, i.e., it is constant on each conjugacy class.
- 3. $\chi_{\rho}(g^{-1}) = \overline{\chi_{\rho}(g)}$: Assume that the eigenvalues of R(g) are $\lambda_1, \ldots, \lambda_n$. Then the eigenvalues of $R(g^{-1})$ are $\lambda_1^{-1}, \ldots, \lambda_n^{-1}$.

$$0 = \det(\lambda I_n - A) = \det(\lambda I_n (A^{-1} - \lambda^{-1} I_n) A) = \det(\lambda I_n) \det(A^{-1} - \lambda^{-1} I_n) \det(A)$$
$$\det(A^{-1} - \lambda^{-1} I_n) = 0, \text{ Then } a^m = 1 \implies R(a)^m = I_n \implies |\lambda_i| = 1 \implies \lambda^{-1} = 1$$

So $\det(A^{-1} - \lambda^{-1}I_n) = 0$. Then $g^m = 1 \Longrightarrow R(g)^m = I_n \Longrightarrow |\lambda_i| = 1 \Longrightarrow \lambda_i^{-1} = \overline{\lambda_i}$. Thus $\chi_{\rho}(g^{-1}) = \operatorname{Tr}(R(g)^{-1}) = \overline{\lambda_1 + \dots + \lambda_n} = \overline{\chi_{\rho}(g)}$.

- 4. $\chi_{\rho \oplus \rho'} = \chi_{\rho} + \chi_{\rho'}$.
- 5. $\chi_{\rho\otimes\rho'}=\chi_{\rho}\chi_{\rho'}$.

Def 64. $C(G,\mathbb{C})$ is the vector space of complex functions on G.

 $\chi_{\rho} \in \mathcal{C}(G) \subset \mathcal{C}(G,\mathbb{C})$ is the vector space of complex class functions of G.

Remark 17. Assume that $\{C_1, \ldots, C_k\}$ is the set of distinct conjugacy classes in G. Then $\{f_i(C_j) = \delta_{ij} \mid \forall i = 1, \ldots, k\}$ forms a basis for $\mathcal{C}(G)$ over \mathbb{C} .

- $\forall f \in \mathcal{C}(G)$, let $f(C_i) = a_i$, then $f = \sum a_i f_i$.
- $\sum a_i f_i = 0$, pick $x_i \in C_i$, then $(\sum a_i f_i)(x_i) = a_i = 0 \quad \forall i = 1, \dots k$.

So dim $\mathcal{C}(G) = k$.

Def 65. $\phi, \psi \in \mathcal{C}(G, \mathbb{C})$, then

$$\langle \phi, \psi \rangle := \frac{1}{|G|} \sum_{g \in G} \phi(g) \overline{\psi(g)}$$

is a positive definite Hermitian form on $\mathcal{C}(G,\mathbb{C})$.

Theorem 32 (Main theorem). The set of all irreducible characters of G forms an orthonormal basis for $\mathcal{C}(G)$ over \mathbb{C} . So there are only k irreducible representations up to equivalent.

Lemma 3 (Schur's lemma). Let $\rho: G \to GL(V)$ and $\rho': G \to GL(V')$ be two irr. rep. of G.

$$\begin{array}{c|c} V & \xrightarrow{\quad \quad } V' \\ \rho(g) & & \downarrow \rho'(g) & (\mathsf{T}: G\text{-equivariant}) \\ V & \xrightarrow{\quad \quad } V' \end{array}$$

Then

- 1. ρ, ρ' are not equivalent $\Longrightarrow T = 0$.
- 2. $V = V', \rho = \rho' \implies \mathsf{T} = \lambda 1_V \text{ for some } \lambda \in \mathbb{C}.$

Proof.

- Assume T ≠ 0. We only needs to prove that T is an isomorphism, and then ρ, ρ' would be isomorphic by definition. Since T is G-equivariant, ker T ≤ V and Im T ≤ V' are G-invariant. ρ is irreducible ⇒ ker T = 0 or V, but if ker T = V then T = 0, so ker T = 0.
 Similarly, ρ' is irreducible ⇒ Im T = 0 or V. And by the fact that T ≠ 0, Im T = V.
 Thus T is an isom, and consequently ρ, ρ' are equivalent.
- 2. Since the vector field is over \mathbb{C} , T has an eigenvalue. Let λ be an eigenvalue of T, say $\mathsf{T}(v) = \lambda v$ with $v \neq 0$ in V. Put $\mathsf{T}' = \mathsf{T} \lambda 1_V$. Then

$$\rho(g) \circ \mathsf{T}' = \rho(g) \circ (\mathsf{T} - \lambda 1_V) \stackrel{*}{=} \rho(g) \circ \mathsf{T} - \rho(g) \circ \lambda 1_V = \mathsf{T} \circ \rho(g) - \lambda 1_V \rho(g) = \mathsf{T}' \rho(g)$$

Which * is due to the linearity of $\rho(g)$. Hence T' is also G-equivariant.

But $v \in \ker \mathsf{T}'$, i.e., T' is not 1-1. Similar as in 1., $\ker \mathsf{T}' = \{0\}$ or $V \implies \ker \mathsf{T}' = V \implies \mathsf{T}' = 0 \implies T = \lambda 1_V$.

Coro 3.1.1. Assume ρ, ρ' is the same as above. Let $L: V \to V'$ be a linear transformation. Define

$$\mathsf{T} = \frac{1}{|G|} \sum_{g \in G} \rho'(g)^{-1} \mathsf{L}\rho(g).$$

One could easily checks that T is G-equivariant (i.e., $T \circ \rho(g) = \rho'(g) \circ T$). Then

- 1. ρ, ρ' are not equivalent $\Longrightarrow T = 0$.
- 2. $V = V', \rho = \rho' \implies \mathsf{T} = \lambda 1_V, \ \lambda = \mathrm{Tr}(\mathsf{T})/\dim V = \mathrm{Tr}(\mathsf{L})/\dim V.$

Remark 18. Let
$$\rho \to_{\beta} R : G \to \operatorname{GL}_n(\mathbb{C})$$
 and $R(g) = [r_{ij}(g)]$ $\rho' \to_{\beta'} R' : G \to \operatorname{GL}_{n'}(\mathbb{C})$ and $R'(g) = [r'_{ij}(g)]$

and let the matrix representation of L is $[\mathsf{L}]_{\beta}^{\beta'} = [x_{\mu\nu}] \in M_{n'\times n}(\mathbb{C})$

Then consider the matrix representation of T, which is $[\mathsf{T}]^{\beta'}_\beta = \left[x^\circ_{tl}\right]$ with

$$x_{tl}^{\circ} = \frac{1}{|G|} \sum_{\substack{g \in G \\ i=1,\dots,n \\ j=1,\dots,n'}} r'_{tj}(g^{-1}) x_{ji} r_{il}(g)$$

In case 1., $x_{tl}^{\circ} = 0, \forall t, l$. Since it hold for every L, which is independent of ρ, ρ' , fixing i, j and setting $x_{ij} = 1$ and 0 otherwise, we gets

$$\frac{1}{|G|} \sum_{g \in G} r'_{tj}(g^{-1}) r_{il}(g) = 0, \quad \forall i, j, t, l$$

In case 2., $\mathsf{T} = \lambda 1_V$, i.e. $x_{tl}^{\circ} = \lambda \delta_{tl}$. $\lambda = \frac{\mathrm{Tr}(\mathsf{L})}{n} = \frac{1}{n} \sum_{i=1}^{n} x_{ii} = \frac{1}{n} \sum_{i,j} \delta_{ji} x_{ji}$ Hence,

$$\frac{1}{|G|} \sum_{g,i,j} r'_{tj}(g^{-1}) x_{ji} r_{il}(g) = \frac{1}{n} \sum_{i,j} \delta_{ji} x_{ji} \delta_{tl}$$

But notice that this equality hold for any L, which is independent of ρ , ρ' . So if we fix i, j and set $x_{ji} = 1$, and $x_{j'i'} = 0$ otherwise, we get

$$\frac{1}{|G|} \sum_{g \in G} r_{tj}(g^{-1}) r_{il}(g) = \frac{1}{n} \delta_{ji} \delta_{tl}$$

Prop 3.1.1.

- 1. If χ_{ρ} is irreducible, then $\langle \chi_{\rho}, \chi_{\rho} \rangle = 1$.
- 2. If two irreducible representations ρ, ρ' are not equivalent, then $\langle \chi_{\rho}, \chi_{\rho'} \rangle = 0$.

Proof.

1. Let $R(g) = [r_{ij}(g)]$ be the matrix representation of $\rho(g)$. Then

$$\langle \chi_{\rho}, \chi_{\rho} \rangle \triangleq \frac{1}{|G|} \sum_{g} \chi_{\rho}(g) \overline{\chi_{\rho}(g)} = \frac{1}{|G|} \sum_{g} \chi_{\rho}(g) \chi_{\rho}(g^{-1})$$
$$= \frac{1}{|G|} \sum_{g} \sum_{i,j} r_{ii}(g) r_{jj}(g^{-1}) = \sum_{i,j} \frac{1}{n} \delta_{ij} \delta_{ij} = 1$$

2. Let $R(g) = [r_{ij}(g)], R'(g) = [r'_{ij}(g)]$ be the matrix representation of $\rho(g), \rho'(g)$. Then

$$\langle \chi_{\rho}, \chi_{\rho'} \rangle \triangleq \frac{1}{|G|} \sum_{g} \chi_{\rho}(g) \overline{\chi'_{\rho}(g)} = \frac{1}{|G|} \sum_{g} \chi_{\rho}(g) \chi_{\rho}(g^{-1})$$

$$= \frac{1}{|G|} \sum_{g} \sum_{i,j} r_{ii}(g) r'_{jj}(g^{-1}) = 0$$

Remark 19. $\langle \chi_{\rho}, \chi_{\rho} \rangle = 1 \implies \rho$ is irr.

Proof. We write $\rho = \rho_1^{\oplus m_1} \oplus \cdots \oplus \rho^{\oplus m_l}$ where ρ_1, \ldots, ρ_l are non-equivalent irr. rep.

$$\chi_{\rho} = \sum_{i=1}^{l} m_i \chi_{\rho_i}$$

$$1 = \langle \chi_{\rho}, \chi_{\rho} \rangle = \sum_{i=1}^{l} m_i^2 \implies \exists m_i = 1 \text{ and } m_j = 0 \text{ for } j \neq i$$

So $\rho \cong \rho_i$.

3.2 Week 15

3.2.1 Character Theory II

Prop 3.2.1. Let $\rho: G \to \operatorname{GL}(V)$ and $\rho = \rho^{W_1} \oplus \cdots \oplus \rho^{W_k}$ where $\rho_i = \rho^{W_i}$ is irr. $\forall i. \ (V \cong W_1 \oplus \cdots \oplus W_k)$

If $\tilde{\rho}: G \to \mathrm{GL}(\tilde{W})$ is an irr. rep. then the number of ρ_i isomorphic to $\tilde{\rho}$ is equal to $\langle \chi_{\rho}, \chi_{\tilde{\rho}} \rangle$.

Proof. We know $\chi_{\rho} = \chi_{\rho_1} + \cdots + \chi_{\rho_k}$, so

$$\langle \chi_{\rho}, \chi_{\tilde{\rho}} \rangle = \sum_{i=1}^{k} \langle \chi_{\rho_i}, \chi_{\tilde{\rho}} \rangle$$

Recall $\rho_i \cong \tilde{\rho} \implies \langle \chi_{\rho_i}, \chi_{\tilde{\rho}} \rangle = 1$, otherwise $\langle \chi_{\rho_i}, \chi_{\tilde{\rho}} \rangle = 0$.

Remark 20.

- 1. The number of W_i isomorphic to \tilde{W} does not depend on the chosen decomposition. (= $\langle \chi_{\varrho}, \chi_{\tilde{\varrho}} \rangle$)
- 2. If $\chi_{\rho} = \chi_{\rho'}$, then $\rho \cong \rho'$: $\langle \chi_{\rho}, \chi_{\tilde{\rho}} \rangle = \langle \chi_{\rho'}, \chi_{\tilde{\rho}} \rangle$ The type of irr. subrep of ρ is the same as ρ' .
- 3. If χ_1, \ldots, χ_l are distinct irr. characters of G, then since x_1, \ldots, x_l are orthonormal w.r.t. $\langle \cdot, \cdot \rangle$ in $\mathcal{C}(G), x_1, \ldots, x_l$ are linearly indep. over \mathbb{C} in $\mathcal{C}(G)$.

But dim C(G) = k = # of conjugacy classes in G. So $l \leq k$ i.e. we conclude that there are at most k mutually non-equivalent irr. rep. of G, say $\rho_1, \ldots, \rho_l, l \leq k$.

For any $\rho: G \to \mathrm{GL}(V)$, $\rho \cong \rho_1^{\oplus m_1} \oplus \cdots \oplus \rho_l^{\oplus m_l}$ where $m_i = \langle \chi_{\rho}, \chi_{\rho_i} \rangle \in \mathbb{Z}^{\geq 0}$.

Theorem 33 (Orthogonality relations for χ 's). The set of all irr. characters of G forms an orthonormal basis $\mathcal{C}(G)$ over \mathbb{C} . In particular, the number of irr. rep. of G is equal to # of conjugacy classes in G. (up to equivalence)

Proof. Let $\chi_i = \chi_{\rho_i}, i = 1, \dots, l$ be all irr. characters of G and $\mathcal{D} = \langle \chi_1, \dots, \chi_l \rangle_{\mathbb{C}} \subseteq \mathcal{C}(G)$. Then $\mathcal{C}(G) = \mathcal{D} \oplus \mathcal{D}^{\perp}$. Claim: $\mathcal{D}^{\perp} = \{0\}$.

Let $\varphi \in \mathcal{D}^{\perp}$, i.e. $\langle \varphi, \chi_i \rangle = 0, \forall i = 1, \dots, l$.

Write $\rho^{\text{reg}} \cong \rho_1^{\oplus m_1} \oplus \cdots \oplus \rho_l^{\oplus m_l} \implies \chi^{\text{reg}} = m_1 \chi_1 + \cdots + m_k \chi_l$. By assumption, $\langle \varphi, \chi_\rho \rangle = 0$.

For each i, define $\mathsf{T}_{\rho_i} \in \mathrm{Hom}_{\mathbb{C}}(V, V)$ by

$$\mathsf{T}_{\rho_i} \triangleq \frac{1}{|G|} \sum_{g \in G} \overline{\varphi(g)} \rho_i(g)$$

Then we have

$$\operatorname{Tr}(\mathsf{T}_{\rho_i}) = \frac{1}{|G|} \sum_{g \in G} \overline{\varphi(g)} \chi_{\rho}(g) = \overline{\langle \varphi, \chi_{\rho} \rangle} = 0$$

Also, for all $h \in G$.

$$\rho_{i}(h)^{-1} \circ \mathsf{T}_{\rho_{i}} \circ \rho_{i}(h) = \frac{1}{|G|} \sum_{g \in G} \overline{\varphi(g)} \rho_{i}(h)^{-1} \circ \rho_{i}(g) \circ \rho_{i}(h)$$

$$\stackrel{*}{=} \frac{1}{|G|} \sum_{g \in G} \overline{\varphi(h^{-1}gh)} \rho_{i}(h^{-1}gh)$$

$$= \frac{1}{|G|} \sum_{g \in G} \overline{\varphi(g)} \rho_{i}(g) = \mathsf{T}_{\rho_{i}}$$

Where * is because φ is a class function. So T_{ρ_i} is G-equivariant. By Schur's lemma, $\mathsf{T}_{\rho_i} = \lambda_i 1_{W_i}$ where $\rho_i : G \to \mathrm{GL}(W_i)$.

But $\operatorname{Tr} \mathsf{T}_{\rho_i} = 0 \implies \lambda_i = 0 \implies \mathsf{T}_{\rho_i} = 0.$

Also, because $\rho \cong \rho_1^{\oplus m_1} \oplus \cdots \oplus \rho_l^{\oplus m_l}$, if we define

$$\mathsf{T}_{\rho^{\mathrm{reg}}} \triangleq \frac{1}{|G|} \sum_{g \in G} \overline{\varphi(g)} \rho^{\mathrm{reg}}(g) \implies \mathsf{T}_{\rho^{\mathrm{reg}}} = \mathsf{T}_{\rho_1}^{\oplus m_1} \oplus \cdots \oplus \mathsf{T}_{\rho_k}^{\oplus m_k} = 0$$

Finally, let $\rho = \rho^{\text{reg}} : G \to GL(V)$ with $V = \bigoplus_{g \in G} \mathbb{C}e_g$. Then $\mathsf{T}_{\rho} = 0 \implies \mathsf{T}_{\rho}(e_1) = 0$ and

$$0 = \mathsf{T}_{\rho}(e_1) = \frac{1}{|G|} \sum_{g \in G} \overline{\varphi(g)} \rho(g)(e_1) = \frac{1}{|G|} \sum_{g \in G} \overline{\varphi(g)} e_g$$

Since $\{e_g\}$ is a basis, $\overline{\varphi(g)} = 0 \quad \forall g$. That is, $\varphi \equiv 0$.

Prop 3.2.2. Each irr. rep. $\rho_i: G \to \mathrm{GL}(W_i)$ is contained in ρ^{reg} with multiplicity equal to $\dim W_i = m_i, i = 1, \ldots, k$.

In particular,
$$\bigoplus_{g \in G} \mathbb{C}e_g \cong \underbrace{W_1 \oplus \cdots \oplus W_1}_{m_1 \text{times}} \oplus \cdots \oplus \underbrace{W_1 \oplus \cdots \oplus W_k}_{m_k \text{times}}$$
. So $|G| = m_1^2 + \cdots + m_k^2$.

Proof. Let $\chi^{\text{reg}} := \chi_{\rho^{\text{reg}}}$ and $\chi_i = \chi_{\rho_i}, i = 1, \dots, k$. Then

$$\langle \chi^{\text{reg}}, \chi_i \rangle = \frac{1}{|G|} \sum_{g \in G} \chi^{\text{reg}}(g) \chi_i(g^{-1}) = \frac{1}{|G|} |G| \chi_i(1) = m_i$$

Theorem 34 (Divisibility). $\forall i = 1, ..., k, \quad \chi_i(1) = m_i \mid |G|$.

Proof. First, we shall proof that for each $\rho = \rho_i$, $\chi = \chi_i$ and j, we have

$$\mathsf{T} \triangleq \sum_{g \in C_j} \rho(g) = \frac{|C_j| \chi(g_0)}{m_i} \mathsf{I}_{m_i}, \quad \text{for any } g_0 \in C_j$$

Observe that $\forall h \in G$,

$$\rho(h)^{-1} \circ \mathsf{T} \circ \rho(h) = \sum_{g \in C_j} \rho(h^{-1}gh) = \sum_{g' \in C_j} \rho(g') = \mathsf{T}$$

So T is G-equivariant w.r.t. ρ .

By Schur's lemma, $\mathsf{T} = \lambda \mathsf{I}_{m_i}$ for some $\lambda \in \mathbb{C}$. And $\lambda = \mathrm{Tr}(\mathsf{T})/m_i = \sum_{g \in C_j} \chi(g)/m_i = |C_j|\chi(g_0)/m_i$ for any $g_0 \in C_j$, thus $\sum_{g \in C_j} \rho(g) = \frac{|C_j|\chi(g_0)}{m_j} \mathsf{I}$ for any $g_0 \in C_j$.

Define $\lambda_{\mu}(C_i) \triangleq |C_i|\chi_{\mu}(g_i)/m_{\mu}$. Now, for a $g \in C_l$, define $a_{i,j,l} \triangleq \#\{(g_i,g_j) \in C_i \times C_j \mid g_ig_j = g\}$, which is indep. of the choice of g.

We claim that $\lambda_{\mu}(C_i)\lambda_{\mu}(C_j) = \sum_{l=1}^k a_{i,j,l}\lambda_{\mu}(C_j), \forall i,j,\mu$. Then

$$\lambda_{\mu}(C_{i}) \begin{bmatrix} \lambda_{\mu}(C_{1}) \\ \vdots \\ \lambda_{\mu}(C_{k}) \end{bmatrix} = A \begin{bmatrix} \lambda_{\mu}(C_{1}) \\ \vdots \\ \lambda_{\mu}(C_{k}) \end{bmatrix}, \text{ where } A \triangleq \begin{bmatrix} a_{i,1,1} & \dots & a_{i,1,k} \\ \vdots & \ddots & \vdots \\ a_{i,k,1} & \dots & a_{i,1,k} \end{bmatrix}$$

So $\lambda_{\mu}(C_j)$ is an eigenvalue of A, i.e., $\lambda = \lambda_{\mu}(C_j)$ satisfies $\det(\lambda I - A) = 0$. And thus $\lambda_{\mu}(C_i)$ is an algebraic integer.

We proof the claim by the following calculating.

$$\lambda_{\mu}(C_{i})\lambda_{\mu}(C_{j})I_{m_{\mu}} = \left(\lambda_{\mu}(C_{i})I_{m_{\mu}}\right)\left(\lambda_{\mu}(C_{j})I_{m_{\mu}}\right) = \left(\sum_{g \in C_{i}} \rho(g)\right)\left(\sum_{g' \in C_{j}} \rho(g')\right)$$

$$= \sum_{\substack{g \in C_{i} \\ g' \in C_{j}}} \rho(gg') = \sum_{l=1}^{k} \sum_{\bar{g} \in C_{l}} a_{i,j,l}\rho(\bar{g})$$

$$= \sum_{l=1}^{k} a_{i,j,l} \sum_{\bar{g} \in C_{l}} \rho(\bar{g})$$

$$= \sum_{l=1}^{k} a_{i,j,l}\lambda_{\mu}(C_{l})I_{m_{\mu}}$$

Finally,

$$\begin{aligned} \frac{|G|}{m_i} &= \frac{|G|}{m_i} \langle \chi_i, \chi_i \rangle \\ &= \frac{|G|}{m_i} \frac{1}{|G|} \sum_{g \in G} \chi_i(g) \chi_i(g^{-1}) \\ &= \sum_{g \in G} \frac{\chi_i(g)}{m_i} \chi_i(g^{-1}) \\ &= \sum_{j=1}^k \sum_{g \in C_j} \frac{\chi_i(g)}{m_i} \chi_i(g^{-1}) \\ &= \sum_{j=1}^k \frac{|C_j| \chi_i(g_j)}{m_i} \chi_i(g_j^{-1}) \\ &= \sum_{i=1}^k \lambda_i(C_j) \chi_i(g_j^{-1}) \end{aligned}$$

and thus is an algebraic integer.

Also, $|G|/m_i \in \mathbb{Q}$, so we conclude that $|G|/m_i \in \mathbb{Z} \implies m_i \mid |G|$.

Ex 3.2.1.

- 1. Show that if $g \in G$ and $g \neq 1$, then $\sum_{i=1}^{k} m_i \chi_i(g) = 0$.
- 2. Show that each character χ of G with $\chi(g) = 0 \quad \forall g \neq 1$ is an integral multiple of χ^{reg} .

Ex 3.2.2.

- 1. Let $|G| < \infty$. Then G is abelian \iff each irr. rep. of G is of degree 1.
- 2. {the deg 1 rep. of G} = {the irr. rep. of G/[G,G]}.

3.2.2 Applications

1.
$$G = S_3 = D_3$$
, $6 = 1^2 + 1^2 + 2^2$.

Classes 1 (1 2) (1 2 3)
size 1 3 2

$$\chi_1$$
 1 1 1
 χ_2 1 -1 1
 χ_3 2 0 -1

The permutation representation

$$\deg 4: \ \tilde{\rho} = \rho^W \otimes \rho^W \leadsto \chi_{\tilde{\rho}} = \chi_3 \cdot \chi_3 = (4, 0, 1).$$

By inner product with χ_1, χ_2, χ_3 , we can find $\chi_{\tilde{\rho}} = \chi_1 + \chi_2 + \chi_3 \leadsto \tilde{\rho} = \rho_1 \oplus \rho_2 \oplus \rho_3$.

2.
$$G = D_4 = \langle x, y \mid x^4 = 1, y^2 = 1, yxy^{-1} = x^{-1} \rangle$$
. $|G| = 8 = 1^2 + 1^2 + 1^2 + 1^2 + 2^2$.

Classes	1	y	x	x^2	xy
size	1	2	2	1	2
χ_1	1	1	1	1	1
χ_2	1	-1	1	1	-1
χ_3	1	1	-1	1	-1
χ_4	1	-1	-1	1	1
χ_5	2	0	0	-2	0

$$\chi^{\text{reg}} = (8, 0, 0, 0, 0) = \chi_1 + \chi_2 + \chi_3 + \chi_4 + 2\chi_5.$$

3.
$$G = D_n$$
, $(n \text{ even})$ $[G, G] = H = \langle x^2 \rangle$

4.
$$G = D_n$$
, $(n \text{ odd})$ $[G, G] = H = \langle x \rangle$

5.
$$G = S_4$$
.

Classes	1	$(1\ 2)$	$(1\ 2\ 3)$	$(1\ 2\ 3\ 4)$	$(1\ 2)(3\ 4)$
size	1	6	8	6	3
χ_1	1	1	1	1	1
χ_2	1	-1	1	-1	1
χ_3	2	0	-1	0	2
χ_4	3	1	0	-1	-1
χ_5	3	-1	0	1	-1

6.
$$G = A_4$$
, $[A_4, A_4] = V_4$.

Classes	1	$(1\ 2\ 3)$	$(1\ 3\ 2)$	$(1\ 2)(3\ 4)$
size	1	4	4	3
χ_1	1	1	1	1
χ_2	1	ω	ω^2	1
χ_3	1	ω^2	ω	1
χ_4	3	0	0	-1

Theorem 35 (Product of groups). For $\rho: G \to \operatorname{GL}(V)$ and $\rho': G' \to \operatorname{GL}(V')$, write $\rho \otimes \rho': G \times G' \to \operatorname{GL}(V \otimes V')$. If $\{\rho_i\}$ are irreducible representations of G, $\{\rho'_j\}$ are irreducible representations of G', then $\{\rho_i \otimes \rho'_j\}$ are exactly the irreducible representations of $G \times G'$.

Proof. It is evidence that $\rho_i \otimes \rho'_j$ is a homomorphism, and hence a representation.

Notice that $\chi_{\rho\otimes\rho'}=\chi_{\rho}\odot\chi_{\rho'}$ where $\chi_{\rho}\odot\chi_{\rho'}(g,g')=\chi_{\rho}(g)\chi_{\rho'}(g')$

Now we calculate

$$\langle \chi_{\rho_1} \otimes \chi_{\rho'_1}, \chi_{\rho_2} \otimes \chi_{\rho'_2} \rangle = \frac{1}{|G||G'|} \sum_{g,g'} \chi_{\rho_1}(g) \chi_{\rho'_1}(g') \chi_{\rho_2}(g) \chi_{\rho'_2}(g')$$

$$= \left(\frac{1}{|G|} \sum_g \chi_{\rho_1}(g) \chi_{\rho_2}(g)\right) \left(\frac{1}{|G'|} \sum_{g'} \chi_{\rho'_1}(g') \chi_{\rho'_2}(g')\right)$$

$$= \langle \chi_{\rho_1}, \chi_{\rho_2} \rangle \langle \chi_{\rho'_1}, \chi_{\rho'_2} \rangle$$

So $\langle \chi_{\rho} \otimes \chi_{\rho'}, \chi_{\rho} \otimes \chi_{\rho'} \rangle = 1$ hence each $\chi_{\rho} \otimes \chi_{\rho'}$ is irreducible. And $\langle \chi_{\rho_1} \otimes \chi_{\rho'_1}, \chi_{\rho_2} \otimes \chi_{\rho'_2} \rangle = 0$ if $\rho_1 \otimes \rho'_1 \neq \rho_2 \otimes \rho'_2$, and thus these representations are not isomorphic.

Finally we proof that any irreducible representations of $G \times G'$ is isomorphic to some $\rho \otimes \rho'$.

Let $\{\rho_1, \ldots, \rho_k\}, \{\rho'_1, \ldots, \rho'_{k'}\}$ be the sets of irreducible representations of G, G' respectively. Write $\chi_i = \chi_{\rho_i}, \chi'_i = \chi_{\rho'_i}$.

Let $\mathcal{D} \triangleq \mathcal{C}(G \times G') = \langle \chi_i, \chi'_j \mid i = 1, \dots, k, j = 1, \dots, k' \rangle_{\mathbb{C}} =$. We claim that $\mathcal{D}^{\perp} = \{0\}$.

Let $f \in \mathcal{D}^{\perp}$. Then

$$0 = \frac{1}{|G \times G'|} \sum_{(g,g') \in G \times G'} f(g,g') \overline{\chi_i(g)} \chi'_j(g')$$
$$= \frac{1}{|G'|} \sum_{g'} \left(\frac{1}{|G|} \sum_g f(g,g') \overline{\chi_i(g)} \right) \chi'_j(g')$$
$$= \left\langle \frac{1}{|G|} \sum_g f(g,\cdot) \overline{\chi_i(g)}, \chi'_j \right\rangle$$

Since ρ'_j are othonogal basis of $\mathcal{C}(G')$, we have $\frac{1}{|G|}\sum_g f(g,g')\overline{\chi_i(g)}=0$ for all g'. Again,

$$0 = \frac{1}{|G|} \sum_{q} f(g, g') \overline{\chi_i(g)} = \langle f(\cdot, g'), \chi_i \rangle$$

Hence f(g, g') = 0 for all g, g', which implies $f \equiv 0$.

Ex 3.2.3. Determine all irr. rep. of C_n .

Ex 3.2.4. Calculate the character table of Q_8 .

Ex 3.2.5. Calculate the character table of $\mathbb{Z}/2\mathbb{Z} \times S_4$ and $S_3 \times S_4$.

To calculate S_5 , $|S_5| = 120 = 1^2 + 1^2 + 4^2 + 4^2 + 5^2 + 5^2 + 6^2$.

4 Extensions of Groups

4.1 Week 16

4.1.1 Extensions of abelian groups

Def 66. If a group E contains a normal subgroup N and $E/N \cong G$, then we call E an extension of N by G, denoted by $1 \to N \to E \to G \to 1$.

Ques: When N and G are given, how to obtain all extensions of N by G.

Now assume that N is abelian.

Def 67. $1 \to N \to E \xrightarrow{p} G \to 1$. $l: G \to E$ is a lifting if $p \circ l = \mathrm{id}_G$ and l(1) = 1.

Remark 21. $G \cong E/N = \{xN \mid x \in E\}, p \circ l(\bar{x}) = \bar{x}, l(\bar{x}) \text{ is a representative of } xN = \bar{x}.$

Prop 4.1.1.

- 1. $\forall \bar{x} \in G, \theta_{\bar{x}} : N \to N, a \mapsto l(\bar{x})al(\bar{x})^{-1}$. is independent of the choice of l.
- 2. $\theta: G \to \operatorname{Aut}(N), \bar{x} \mapsto \theta_{\bar{x}}$ is a group homomorphism.

Proof.

- 1. Suppose $l':G\to E$ is another lifting. Then $l(\bar x)N=l'(\bar x)N$. So $l'(\bar x)=l(\bar x)b$ for some $b\in N.\ \forall a\in N,\ l'(\bar x)al'(\bar x)^{-1}=l(\bar x)bab^{-1}l(\bar x)^{-1}=l(\bar x)al(\bar x)^{-1}$ since N is abelian.
- 2. $\theta_{\bar{x}\bar{y}}(a) = l(\bar{x}\bar{y})al(\bar{x}\bar{y})^{-1}$.

$$\begin{cases} p \circ l(\bar{x}\bar{y}) = \bar{x}\bar{y} \\ p \circ (l(\bar{x})l(\bar{y})) = \bar{x}\bar{y} \end{cases} \rightsquigarrow l(\bar{x}\bar{y}), l(\bar{x})l(\bar{y}) \text{ are liftings of } \bar{x}\bar{y}$$

Def 68. An extension $1 \to N \to E \to G \to 1$ splits if \exists a lifting $l: G \to E$ is a group homo.

Prop 4.1.2. TFAE

- 1. $1 \to N \to E \to G \to 1$ splits.
- 2. \exists a subgroup $K \leq E$ s.t. $K \cong G$ and $\begin{cases} K \cap N = \{1\} \\ NK = E \end{cases} \longrightarrow E \cong N \rtimes K (\cong N \rtimes G).$

Proof. (1) \Rightarrow (2): Let K = Im l which is a subgroup since l is a group homo.

- l is an isomorphism from G to K: If $l(\bar{x}) = l(\bar{y})$, then $p \circ l(\bar{x}) = p \circ l(\bar{y}) \leadsto \bar{x} = \bar{y}$. So l is 1-1.
- E = NK: $\forall x \in E, \bar{x} = p(x) \leadsto y = l(\bar{x})$ and $p(x) = p(y) \leadsto \exists a \in N \text{ s.t. } x = ay$.
- $K \cap N = \{1\}: a = l(\bar{x}) \in K \cap N \leadsto 1 = p(a) = p(l(\bar{x})) = \bar{x} \leadsto a = l(1) = 1.$

 $(2) \Rightarrow (1)$:

• $p|_{K}: K \to G$ is an isom.: onto: p(K) = p(NK) = p(E) = G, 1-1: $\ker(p|_{K}) = N \cap K = \{1\}$.

• $l = (p|_K)^{-1}$ is a group homo.

Observation: Let $l:G\to E$ be a lifting. Then $E=\bigcup_{\bar x\in G}Nl(\bar x), \forall x,y\in E$, write $x=al(\bar x),y=bl(\bar y),a,b\in N,\bar x,\bar y\in G$.

$$xy = (al(\bar{x})bl(\bar{y})) = al(\bar{x})bl(\bar{x})^{-1}l(\bar{x})l(\bar{y}) = a\theta_{\bar{x}}(b)l(\bar{x})l(\bar{y})$$

Notice that $l(\bar{x})l(\bar{y})$ and $l(\bar{x}\bar{y})$ are liftings, so we can write $l(\bar{x})l(\bar{y}) = f(\bar{x},\bar{y})l(\bar{x}\bar{y})$ for some $f(\bar{x},\bar{y}) \in N$.

Ex 4.1.1. $B^2(G, N) \leq Z^2(G, N)$.

Ex 4.1.2. Show that there are inequivalent extensions of N by G with isomorphic middle groups. (Hint: $N = \mathbb{Z}/p\mathbb{Z}$ with p is odd, $E = \mathbb{Z}/p^2\mathbb{Z}$, $a :: N \mapsto x^p :: E$ and please give another morphism $N \to E$ by yourself.)

Def 69. Given $1 \to N \to E \xrightarrow{p} G \to 1$ and $l: G \to E$, a factor set is a function $f: G \times G \to N$ s.t. $\forall \bar{x}, \bar{y} \in G, l(\bar{x})l(\bar{y}) = f(\bar{x}, \bar{y})l(\bar{x}\bar{y})$.

Prop 4.1.3. Let $1 \to N \to E \xrightarrow{p} G \to 1$ and $l: G \to E$. If f is a factor set, then

- (1) $f(x,1) = 1 = f(1,y) \quad \forall x, y \in G.$
- (2) (cocycle identity) $\forall x, y, z \in G, f(x, y) f(xy, z) = \theta_x(f(y, z)) f(x, yz).$ (i.e. f(x, y) + f(xy, z) = xf(y, z) + f(x, yz))

Proof.

- (1) Trivial since $l(x)l(1) = l(1 \cdot x)$.
- (2) By associativity. (l(x)l(y))l(z) = l(x)(l(y)l(z)). (l(x)l(y))l(z) = f(x,y)l(xy)l(z) = f(x,y)f(xy,z)l(xyz), and $l(x)(l(y)l(z)) = l(x)f(y,z)l(yz) = l(x)f(y,z)l^{-1}(x)l(x)l(yz) = \theta_x(f(y,z))f(x,yz)l(xyz)$. Thus $f(x,y)f(xy,z) = \theta_x(f(y,z))f(x,yz)$.

Theorem 36. Let $\sigma: G \to \operatorname{Aut}(N), x \mapsto \sigma_x$ be a group homo. and $f: G \times G \to N$ satisfies (1),(2) in Prop. 4.1.3. Then $\exists 1 \to N \to E \to G \to 1$ and $l: G \to E$ s.t. $\theta = \sigma$ and f is the corresponding factor set.

Proof. • Define $E = N \times G$ equipped with the operation

$$(a,x)(b,y) = (a\sigma_x(b)f(x,y), xy)$$

associativity:

$$((a,x)(b,y))(c,z) = (a\sigma_x(b)f(x,y),xy)(c,z)$$

$$= (a\sigma_x(b)f(x,y)\sigma_{xy}(c)f(xy,z),xyz)$$

$$= (a\sigma_x(b)\sigma_{xy}(c)f(x,y)f(xy,z),xyz) \quad (\because N \text{ abelian})$$

and

$$(a,x)((b,y)(c,z)) = (a,x)(b\sigma_y(c)f(y,z))$$

$$= (a\sigma_x(b)\sigma_y(c)f(y,z))f(x,yz),xyz)$$

$$= (a\sigma_x(b)\sigma_{xy}(c)\sigma_x(f(y,z))f(x,yz),xyz)$$

$$= (a\sigma_x(b)\sigma_{xy}(c)f(x,y)f(xy,z),xyz)$$

- indentity: (1,1).

- inverse:
$$(a,x)^{-1} = (\sigma_{x^{-1}}(a^{-1}f(x,x^{-1})^{-1}),x^{-1}).$$

- $p: E \to G, (a, x) \mapsto x$ is a group homo by def.
- $i: N \to E, a \mapsto (a, 1)$ is a group homo. $(a, 1)(b, 1) = (a\sigma_1(b)f(1, 1), 1) = (ab, 1)$.
- $\ker p = \operatorname{Im} i$.
- Fix $l: G \to E, a \in N, x \in G$, say l(x) = (b, x).

$$l(x)(a,1)l(x)^{-1} = (b,x)(a,1)(b,x)^{-1} = (b\sigma_x(a),x)\left(\sigma_{x^{-1}}(a^{-1}f(x,x^{-1})^{-1}),x^{-1}\right)$$
$$= (b\sigma_x(a)\cdot(\sigma_x\circ\sigma_{x^{-1}})\left(b^{-1}f(x,x^{-1})^{-1}\right)\cdot f(x,x^{-1}),1)$$
$$= (\sigma_x(a),1)$$

So $\theta_x = \sigma_x$.

• Let $l: G \to E, x \mapsto (1, x)$. Check $l(x)l(y)l(xy)^{-1} = (f(x, y), 1)$. Then f is the corresponding factor set.

Prop 4.1.4. Let $1 \to N \to E \xrightarrow{p} G \to 1$ with two liftings $l_1 : G \to E$, $l_2 : G \to E$ with $f_1 : G \times G \to N$, $f_2 : G \times G \to N$ respectively.

Then $\exists h : G \to N$ with h(1) = 1 and $\forall x, y \in G, f_2(x, y) f_1(x, y)^{-1} = \theta_x(h(y)) h(xy)^{-1} h(x)$. $(f_2(x, y) - f_1(x, y) = xh(y) - h(xy) + h(x))$

Proof. For $x \in G$, $\exists h(x) \in N$ s.t. $l_2(x) = h(x)l_1(x)$. Since $l_1(1) = l_2(1) = 1$, h(1) = 1.

Now, $l_2(x)l_2(y) = f_2(x,y)l_2(x,y) = f_2(x,y)h(xy)l_1(x,y)$. and

$$l_2(x)l_2(y) = h(x)l_1(x)h(y)l_1(y) = h(x)l_1(x)h(y)l_1^{-1}(x)l_1(x)l_1(y)$$

= $h(x)\theta_x(h(y))l_1(x)l_1(y) = f_1(x,y)h(x)\theta_x(h(y))l_1(x,y)$

So $f_2(x,y)f_1(x,y)^{-1} = \theta_x(h(y))h(xy)^{-1}h(x)$.

Remark 22. A map which has the form $\tilde{h}: G \times G \to N, (x,y) \mapsto xh(y) - h(xy) + h(x)$ is called a coboundary map.

Def 70. $Z^2(G, N) =$ the abelian group of all factor sets.

 $B^2(G, N)$ = the abelian group of all coboundary maps.

 $H^{2}(G, N) = Z^{2}(G, N)/B^{2}(G, N)$

 $\textbf{Def 71.} \quad \text{Two extensions } \begin{cases} 1 \to N \to E \to G \to 1 \\ 1 \to N \to E' \to G \to 1 \end{cases} \quad \text{are equivalent if exists an isomorphism } \varphi:$

 $E \xrightarrow{\sim} E'$ which let the following diagram comutes.

$$1 \longrightarrow N \longrightarrow E \longrightarrow G \longrightarrow 1$$

$$\downarrow^{1_N} \qquad \varphi \downarrow^{\wr} \qquad \downarrow^{1_G}$$

$$1 \longrightarrow N \longrightarrow E' \longrightarrow G \longrightarrow 1$$

Theorem 37. Two extensions $\begin{cases} 1 \to N \to E \to G \to 1 \\ 1 \to N \to E' \to G \to 1 \end{cases}$ are equivalent \iff

Exists mappings $l: G \to E, l': G \to E'$ with two factor sets f, f' respectively satisfies $f - f' \in B^2(G, N)$.

Proof. " \Rightarrow ": Choose $l: G \to E$ which has a corresponding factor set $f: G \times G \to N$. Now define $l': G \to E'$ by $l' = \varphi \circ l$. Since $p' \circ l' = p' \circ \varphi \circ l = p \circ l = 1$, l' is a lifting. Let $f': G \times G \to N$ be its factor set.

Since $1_N = 1_N \circ \varphi$, $\varphi|_N = 1_N$. And

$$l(x)l(y) = f(x,y)l(xy)$$

$$\Rightarrow \varphi(l(x)l(y)) = \varphi(f(x,y)l(xy))$$

$$\Rightarrow l'(x)l'(y) = \varphi(f(x,y))l'(xy)$$

$$\Rightarrow f'(x,y) = \varphi(f(x,y))$$

But $f(x,y) \in N$, $\varphi(f(x,y)) = \varphi|_N(f(x,y)) = f(x,y)$. So f(x,y) = f'(x,y), hence $f - f' = 0 \in$ $B^2(G,N)$.

Ex 4.1.3.

- (1) Show that $f' f \in B^2(G, N)$.
- (2) "←": Show all details of the following steps:
 - $\begin{array}{l} \bullet & \begin{cases} 1 \to N \to E \to G \to 1 \\ 1 \to N \to E(N,G,f,\theta) \to G \to 1 \end{cases} \quad \text{are equivalent.} \\ \bullet & \text{Similarly } \begin{cases} 1 \to N \to E' \to G \to 1 \\ 1 \to N \to E(N,G,f',\theta') \to G \to 1 \end{cases} \quad \text{are} \end{array}$
 - are equivalent.
 - $f' f \rightsquigarrow h : G \rightarrow N$,

4.1.2 1st and 2nd group cohomology

Let N be an abelian group and G be a group with a group homo $\sigma: G \to \operatorname{Aut}(N)$ $(G \curvearrowright N)$

 $e(G, N) = \{ \text{equivalence classes of } N \text{ by } G \}$

$$Z^{2}(G,N) = \{ f : G \times G \to N \mid f(1,v) = f = f(u,1), f(u,v) + f(uv,w) = uf(v,w) + f(u,vw) \quad u,v,w \in G \}$$

$$B^{2}(G,N) = \{ f : G \times G \to N \mid \exists h : G \to N \text{ with } h(1) = 1 \text{ s.t. } f(u,v) = uh(v) - h(uv) + h(u) \quad u,v \in G \}$$

$$H^{2}(G,N) = Z^{2}(G,N)/B^{2}(G,N)$$

Then $e(G, N) \leftrightarrow H^2(G, N)$.

Def 72.

• $\varphi \in Aut(E)$ stabilizes $1 \to N \to E \to G \to 1$ if

• $\operatorname{Stab}_{E}(G, N) = \{\operatorname{stabilizing automorphisms}\} \leq \operatorname{Aut}(E)$

Def 73.

- A derivation is a function $d: G \to N$ s.t. $d(uv) = ud(v) + d(u) \quad \forall u, v \in G$.
- $Der(G, N) = \{derivations : G \to N\}$ is an abelian group with pointwise addition.

Theorem 38. Let $1 \to N \to E \to G \to 1$ with $\theta = \sigma$. Then $\operatorname{Stab}_E(G, N) \cong \operatorname{Der}(G, N)$. So $\operatorname{Stab}_E(G, N)$ is abelian.

Proof.

• Let $\varphi \in LHS$ and fix $l: G \to E$.

$$1 \longrightarrow N \longrightarrow E \longrightarrow G \longrightarrow 1$$

$$\downarrow_{1_N} \qquad \varphi \downarrow_{\wr} \qquad \downarrow_{1_G} \qquad \qquad \varphi(al(u)) = \varphi(a)\varphi(l(u)) = ad(u)l(u)$$

$$1 \longrightarrow N \longrightarrow E \longrightarrow G \longrightarrow 1$$

- For another $l': G \to E$, say l'(u) = g(u)l(u), where $g(u) \in N$, we have

$$d'(u) = \varphi(l'(u))(l'(u))^{-1} = \varphi(g(u)l(u))(g(u)l(u))^{-1}) = g(u)\varphi(l(u))l(u)^{-1}g(u)^{-1} = d(u).$$

 $-d \in RHS$,

$$\begin{split} d(uv) &= \varphi(l(uv))l(uv)^{-1} \\ &= \varphi(f(u,v)^{-1}l(u)l(v))l(v)^{-1}l(u)^{-1}f(u,v) \\ &= f(u,v)^{-1}d(u)l(u)d(v)l(v)l(v)^{-1}l(u)^{-1}f(u,v) \\ &= f(u,v)^{-1}d(u)\left(l(u)d(v)l(u)^{-1}\right)f(u,v) \\ &= \left(ud(v)\right)d(u) \end{split}$$

· Conversely,

Ex 4.1.4. proof it

• group homo: $\varphi_2 \circ \varphi_1(al(u)) = \varphi_2(ad_1(u)l(u)) = ad_1(u)\varphi_2(l(u)) = ad_1(u)d_2(u)l(u)$. That is, $\varphi_2 \circ \varphi_1 \mapsto d_1d_2$.

Def 74.

- $\operatorname{Inn}_E(G, N) = \{ \varphi \in \operatorname{Stab}_E(G, N) \mid \varphi : E \to E, x \mapsto a_0 x a_0^{-1} \text{ for some } a_0 \in N \}.$
- $PDer(G, N) = \{d \in Der(G, N) \mid d(u) = ua_1 a_1 \text{ for some } a_1 \in N\}.$

Ex 4.1.5. Show that $\operatorname{Inn}_E(G, N) \cong \operatorname{PDer}(G, N)$.

 $\operatorname{Stab}_{E}(G, N)/\operatorname{Inn}_{E}(G, N) \cong \operatorname{Der}(G, N)/\operatorname{PDer}(G, N) = H^{1}(G, N).$

Ex 4.1.6. Fix $1 \to N \to E \to G \to 1$. Show that if $H^2(G, N) = 0, H^1(G, N) = 0$, then for $l: G \to E$ with K = l(G), we get that K and K' are conjugate.

Def 75. Let R be a commutative ring with 1 and G be a group. The group ring

$$R[G] = \left\{ \sum_{g \in G} r_g g \,\middle|\, \text{only finitely many } r_g\text{'s} \neq 0 \text{ in } R \right\}$$

forms an R-algebra via

$$\begin{split} \sum_{g \in G} r_g g + \sum_{g \in G} r_g' g &= \sum_{g \in G} (r_g + r_g') g \\ \left(\sum_{g \in G} r_g g\right) \left(\sum_{g' \in G} r_g' g'\right) &= \sum_{g, g' \in G} (r_g r_g') g g' \\ r\left(\sum_{g \in G} r_g g\right) &= \sum_{g \in G} (r r_g) g \end{split}$$

Remark 23.

- 1. $\{\rho: G \to \mathrm{GL}(V)\} \leftrightarrow \{V: \mathbb{C}[G]\text{-module}\}.$
 - ρ : irr $\leftrightarrow V$: simple $\mathbb{C}[G]$ -module (i.e. no nontrivial proper submodule)
 - $W \subset V$: G-invariant $\leftrightarrow W : \mathbb{C}[G]$ -submodule.
- 2. N: abelian $\leadsto N : \mathbb{Z}$ -module and $G \curvearrowright N$. $\Longrightarrow N : \mathbb{Z}[G]$ -module.

Def 76. $G \cap \mathbb{Z}$ trivially. i.e. $g \cdot n = n \quad \forall g \in G, n \in \mathbb{Z}$, then $\mathbb{Z} : \mathbb{Z}[G]$ -module.

- $B_0 = \mathbb{Z}[G][$]: the free $\mathbb{Z}[G]$ -module on the symbol [].
- $B_1 = \bigoplus_{u \in G} \mathbb{Z}[G][u]$: the free $\mathbb{Z}[G]$ -module on the set G.
- $B_2 = \bigoplus_{u,v \in G} \mathbb{Z}[G][u|v]$: the free $\mathbb{Z}[G]$ -module on the set $G \times G$.
- $B_3 = \bigoplus_{u,v,w \in G} \mathbb{Z}[G][u|v|w]$: the free $\mathbb{Z}[G]$ -module on the set $G \times G \times G$.

. . .

Now apply $\operatorname{Hom}(\cdot, N)$ to it:

. . .

Theorem 39. $\operatorname{Ext}^1_{\mathbb{Z}[G]}(\mathbb{Z},N) := \ker d_2^*/\ker d_1^* \cong \operatorname{Der}(G,N)/\operatorname{PDer}(G,N) = H^1(G,N).$

Proof.

- $g \in \ker d_2^* \subseteq \operatorname{Hom}(B_1, N) \implies g \circ d_2 = 0. \dots$
- ...
- Let $t \in \text{Hom}(B_0, N)$, say $t([]) = a_0 \in N$.

$$d_1^*(t)([u]) = t \circ d_1([u]) = t(u[] - []) = ut([]) - t([]) = ua_0 - a_0$$

Then $d(u) := d_1^*(t)([u]) \implies d \in PDer(G, N)$.

• ...

Remark 24. $\operatorname{Ext}^2_{\mathbb{Z}[G]}(\mathbb{Z},N) \cong H^2(G,N).$

5 Fields

5.1 Week 1

Def 77. Let R be a commutative ring with 1, and I be an ideal of R, then

- I is called a maximal ideal if for any ideal J satisfied $I \subseteq J$ then J = I or J = R.
- I is called a *prime ideal* if $I \neq R$ and $ab \in I \implies a \in I$ or $b \in I$.

Prop 5.1.1. Suppose R is a ring and $I \subseteq R$ is an ideal, then

- 1. I is maximal $\iff R/I$ is a field.
- 2. I is a prime ideal \iff R/I is an integral domain.

Proof.

- 1. " \Rightarrow ": For any $\bar{r} \in R/I$ with $\bar{r} \neq 0$, then $r \notin I$. Consider $\langle r \rangle + I$ which contains I and is not equal to I because $r \notin I$. Since I is maximal, $\langle r \rangle + I = R$, and thus exists $x \in R, y \in I$ such that xr + y = 1, so $\bar{x}\bar{r} = \bar{1}$. Hence every non-zero element has multiply inverse and R/I is a field.
 - " \Leftarrow ": If J is an ideal such that $I \subsetneq J$, pick $x \in J \setminus I$, then $\bar{x} \neq 0$, so exists $r \in J$ such that $\bar{x}\bar{r} = 1$. Then $xr + I = 1 + I \implies \exists y \in I \text{ s.t. } xr + y = 1$. So $1 \in J$, and because J is an ideal, J = R.
- 2. By the fact that $(ab \in I \implies a \in I \text{ or } b \in I) \iff (\bar{a}\bar{b} = 0 \implies \bar{a} = 0 \text{ or } \bar{b} = 0)$ the proof is complete.

Prop 5.1.2. If $f(x) \in K[x]$ is irreducible, where K is a ring, then $\langle f(x) \rangle$ is maximal ideal.

Proof. We know that K[x] is a principle ideal domain, so if $\langle f(x) \rangle \subseteq J$, then J is generated by a element, say g(x). Since $f(x) \in J$, we could write f(x) = g(x)h(x). By the fact that f(x) is irreducible, either g(x) is an unit then J = R, or h(x) is an unit then $J = \langle f(x) \rangle$.

Eg 5.1.1. $f(x) = x^2 + 1$ has roots $\alpha = \pm \sqrt{-1}$, so $\mathbb{R}(\sqrt{-1}) \cong \mathbb{R}[x]/\langle x^2 + 1 \rangle$.

Theorem 40. Let $f(x) \in K[x]$ be monic, irreducible and of degree n. Then exists L/K and $\alpha \in L$ satisfied $f(\alpha) = 0, L = K(\alpha)$ and [L : K] = n.

Proof. Since f(x) is irreducible, by prop. 5.1.2 $\langle f(x) \rangle$ is a maximal ideal. Then by prop. 5.1.1 $L = K[x]/\langle f(x) \rangle$ is a field, and K is a subfield of L by the inclusion map $\alpha \mapsto \bar{\alpha}$. The map is 1-1 since $\bar{1} \neq 0$ and a field homomorphism is either a 1-1 map or a zero (全洪) map.

Notice that $L \cong K[\bar{x}]$, where \bar{x} is the coset $x + \langle f(x) \rangle$. Now let $\alpha = \bar{x}$, and it is easy to see that $f(\alpha) = f(x) + \langle f(x) \rangle = 0$. Also $L \cong K[\bar{x}] \cong K(\alpha)$. Finally, $m_{\alpha,K} \mid f$ and by the fact that f is monic and irreducible, $m_{\alpha,K} = f$ and thus $[L:K] = \deg m_{\alpha,K} = \deg f = n$.

Theorem 41. Let $f(x) \in K[x]$ be of degree n > 0. Then exists L/K satisfied f splits over L, that is,

$$f(x) = \lambda(x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n)$$
 with $\alpha_1, \alpha_2, \cdots, \alpha_n \in L, \lambda \in K$

In fact, L can be chosen to be the smallest field over which f splits and in this case $[L:K] \leq n!$. L is called a *splitting field* for f over K.

Proof. By induction on n, n = 1 is trivial, simply pick L = K.

For n > 1, let p(x) be an monic irreducible factor of f(x). By theorem 40, exists an extension $K(\alpha_1)$ satisfied $p(\alpha_1) = 0$. By division algorithm, $f(x) = (x - \alpha_1)f_1(x)$ where $f_1(x) \in K(\alpha_1)[x]$ and deg $f_1 = n - 1$. Using the induction hypothesis, we know that there exists L, which is an extension of $K(\alpha_1)$ and satisfied f_1 splits over L. Hence exists $\alpha_2, \alpha_3, \dots, \alpha_n \in L$ satisfied $f_1(x) = \lambda(x - \alpha_2) \dots (x - \alpha_n)$, thus $f(x) = \lambda(x - \alpha_1)(x - \alpha_2) \dots (x - \alpha_n)$. Compare the coefficient of x^n we know that $\lambda \in K$.

More over, observe that $K(\alpha_1, \dots, \alpha_n)$ is the smallest field containing K and $\{\alpha_1, \dots, \alpha_n\}$. So if we choose $L = K(\alpha_1, \alpha_2, \dots, \alpha_n)$, then

$$[L:K] = [K(\alpha_1, \alpha_2, \cdots, \alpha_n) : K(\alpha_1, \alpha_2, \cdots, \alpha_{n-1})] \cdots [K(\alpha_1) : K] \le n!$$

Since $[K(\alpha_1, \alpha_2, \dots, \alpha_k) : K(\alpha_1, \alpha_2, \dots, \alpha_{k-1})] = [K(\alpha_1, \alpha_2, \dots \alpha_{k-1})(\alpha_k) : K(\alpha_1, \alpha_2, \dots, \alpha_{k-1})]$ and α_k is a root of $p(x) \in K(\alpha_1, \alpha_2, \dots, \alpha_{k-1})[x]$ where $f(x) = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_{k-1})p(x)$.

Eg 5.1.2. Find a splitting field L for $x^8 - 2$ over \mathbb{Q} and determine $[L : \mathbb{Q}]$.

Remark 25. $\mathbb{Q}[x]/\langle x^8 - 2 \rangle = \mathbb{Q}(\bar{x}) \cong \mathbb{Q}(\sqrt[8]{2}) \cong \mathbb{Q}(\sqrt[8]{2}\zeta)$

Prop 5.1.3. Let K, L be two fields and $\tau : K \to L$ be a nontrivial homomorphism. We define $\bar{\tau} : K[x] \to \tau(K)[x] \subseteq L[x]$ by

$$a_n x^n + \ldots + a_0 \mapsto \bar{\tau}(f) \triangleq \tau(a_n) x^n + \ldots + \tau(a_0)$$

which is an isomorphism. Also, f is irreducible implies $\bar{\tau}(f)$ is irreducible in $\tau(K)[x]$.

Lemma 4. Let $K(\alpha)/K$ be algebraic and $\tau: K \to L$ be a nontrivial homo, then exists an extension σ of τ from $K(\alpha)$ to L if and only if exists $\beta \in L$ satisfied $\bar{\tau}(m_{\alpha,K})(\beta) = 0$.

In this case $m_{\beta,\tau(K)} = \bar{\tau}(m_{\alpha,K})$.

Proof. "\(\Rightarrow\)": Let $\beta = \sigma(\alpha)$ and $m_{\alpha,K} = x^n + a_{n-1}x^{n-1} + \ldots + a_0$. Then $\bar{\tau}(m_{\alpha,K})(\beta) = \beta^n + \tau(a_{n-1})\beta^{n-1} + \cdots + \tau(a_0) = \tau(\alpha^n + a_{n-1}\alpha^{n-1} + \cdots + a_0) = 0$

" \Leftarrow ": Observe that $m_{\beta,\tau(K)} = \bar{\tau}(m_{\alpha,K})$ since $\bar{\tau}(m_{\alpha,K})(\beta) = 0$ and $\bar{\tau}(m_{\alpha,K})$ is monic and irreducible by prop 5.1.3. σ is then given by the following diagram.

$$K[x] \xrightarrow{\sim} \tau(K)[x]$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$K(\alpha) \iff K[x] / \langle m_{\alpha,K} \rangle \xrightarrow{\sim} \tau(K)[x] / \langle m_{\beta,\tau(K)} \rangle \iff \tau(K)(\beta) \subseteq L$$

Coro 5.1.1. Let $K(\alpha)/K$ be an algebraic extension and $\tau: K \hookrightarrow L$. If $\bar{\tau}(m_{\alpha,K})$ has r distinct roots in L, then there are exactly r extensions of τ .

Theorem 42. Let $\tau: K \to K'$ be an isomorphism of fields. If L is a splitting field for f over K and L' is a splitting field for $\bar{\tau}(f)$ over K', then $L \cong L'$

Proof. By induction on $n = \deg f$. When n = 1, L = K, L' = K', so $L \cong L'$.

Now if n > 1, assume $f(\alpha) = 0$ for $\alpha \in L$. Then $\bar{\tau}(m_{\alpha,K}) \mid \bar{\tau}(f)$ and by the fact that L' is a splitting field for $\bar{\tau}(f)$, exists $\beta \in L'$ satisfied $\bar{\tau}(m_{\alpha,K})(\beta) = 0$. By lemma 4, exists $\tau_{\circ} : K(\alpha) \xrightarrow{\sim} K'(\beta)$ with $\tau_{\circ}|_{K} = \tau$.

Now, write $f = (x - \alpha)f_{\circ}$, then $\bar{\tau}(f) = \bar{\tau}_{\circ}(f) = (x - \tau_{\circ}(\alpha))\bar{\tau}_{\circ}(f_{\circ}) = (x - \beta)\bar{\tau}_{\circ}(f_{\circ})$. Then L and L' is a splitting field for f_{\circ} over $K(\alpha)$ and $\bar{\tau}_{\circ}(f_{\circ})$ over $K(\beta)$ respectively. By induction hypothesis, $L \cong L'$.

Eg 5.1.3. $L = \mathbb{Q}(\sqrt{2}, \sqrt{3}).$

5.2 Week 2

Def 78. A polynomial $f(x) \in K[x]$ is said to be *separable* if its irreducible factors have no multiple roots in a splitting field L.

Def 79. If $f(x) = a_n x^n + ... + a_1 x + a_0$, then define $f'(x) \triangleq n a_n x^{n-1} + ... + 2a_2 x + a_1$.

Theorem 43. Let $f(x) \in K[x]$ be monic, irreducible of positive degree, then all the roots of f(x) in a splitting field are simple if and only if gcd(f(x), f'(x)) = 1.

Proof. "\(\Rightarrow\)": We can write $f(x) = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n)$ where α_i are distinct root of f. Then $f'(x) = \sum_{i=1}^n f(x)/(x - \alpha_i)$ and we have $(x - \alpha_i) \nmid f(x)$ for all i.

"\(\infty\)": Assume $f(x) = (x - \alpha)^k g(x)$ with $k \ge 2$. Then $f'(x) = k(x - \alpha)^{k-1} g(x) + (x - \alpha)^k g'(x)$ which implies $(x - \alpha) \mid f(x)$. So $(x - \alpha) \mid \gcd(f(x), f'(x))$ and thus $\gcd(f(x), f'(x)) \ne 1$.

Remark 26. The following are equivalent:

- 1. α is a multiple root of f(x).
- 2. α is a common root of f(x) and f'(x).
- 3. $m_{\alpha,K} \mid f(x)$ and $m_{\alpha,K} \mid f'(x)$.

Theorem 44. There is a finite field K with $|K| = q \iff q = p^n$ for some prime p and $n \in \mathbb{N}$. In this situation, K is unique up to isomorphism, denote by \mathbb{F}_{p^n} .

Proof. " \Rightarrow ": Let $p = \operatorname{char} K$ and $[K : \mathbb{Z}/p\mathbb{Z}] = n$, then $|K| = p^n$.

" \Leftarrow ": Let K be a splitting field for $f(x) = x^{p^n} - x$ over \mathbb{F}_p . We claim that the set of all roots of f(x) forms a field. Since if α, β are two roots of f, obviously $\alpha\beta, \alpha\beta^{-1}$ are also roots, and by $(\alpha \pm \beta)^{p^n} = \alpha^{p^n} \pm \beta^{p^n} = \alpha \pm \beta$ because char K = p. $\alpha \pm \beta$ are also roots, hence the roots form a field. By definition, K is the smallest field containing \mathbb{F}_p and roots of f(x), so K is exactly the set of roots of f(x).

Also, f'(x) = -1 has no root, so f(x) has no multiple roots which implies $|K| = p^n$.

Moreover, if K' is another finite field with $|K'| = p^n$, then for all $\alpha \in K'$, $\alpha^{p^n} = \alpha$, so α is a root of f(x), which implies that K' is a splitting field for f(x) over \mathbb{F}_p . By theorem 42, $K \cong K'$. \square

Theorem 45. Let $n \in \mathbb{N}$ and \mathbb{F}_q be a finite field. Then exists a unique extension $\mathbb{F}_{q^n}/\mathbb{F}_q$ satisfied $[\mathbb{F}_{q^n}:\mathbb{F}_q]=n$, and Aut $\Big(\mathbb{F}_{q^n}/\mathbb{F}_q\Big)=\langle\sigma_q\rangle$ with $\sigma_q=\alpha::\mathbb{F}_{q^n}\mapsto\alpha^q::\mathbb{F}_{q^n}.$ σ_q is called the *Frobenius homomorphism*.

Proof. By theorem 44, $q=p^r$ for some prime p and $r \in \mathbb{N}$, so $q^n=p^{nr}$ which is a power of a prime. Again by theorem 44, \mathbb{F}_{q^n} is the splitting field for $x^{p^{nr}}-x$ over \mathbb{F}_p . Since $x^q-x\mid x^{q^n}-x$, $\mathbb{F}_q\subseteq \mathbb{F}_{q^n}$ and thus $[\mathbb{F}_{q^n}:\mathbb{F}_q]=n$.

Then we proof that σ_q is indeed in Aut $(\mathbb{F}_{q^n}/\mathbb{F}_q)$. We check that

$$\sigma_q(\alpha + \beta) = (\alpha + \beta)^q = \alpha^q + \beta^q = \sigma_q(\alpha) + \sigma_q(\beta)$$
$$\sigma_q(\alpha\beta) = (\alpha\beta)^q = \alpha^q \beta^q = \sigma_q(\alpha)\sigma_q(\beta)$$

Now σ_q is nontrivial since σ_q send 1 to 1, so σ_q is 1-1 and hence an isomorphism since \mathbb{F}_q is finite. Also, for all $\alpha \in \mathbb{F}_q$, $\sigma_q(\alpha) = \alpha^q = \alpha$, hence σ_q fixes \mathbb{F}_q .

Finally we prove that the order of σ_q is n. Assume not, so $\operatorname{ord}(\sigma_q) = m < n$. Then $\sigma_q^m = \operatorname{id} \implies x^{q^m} - x = 0$ for each $x \in \mathbb{F}_{q^n}$. But $x^{q^m} - x = 0$ has at most $q^m < q^n$ roots, which leads to a contradiction.

Remark 27. By theorem 10, the multiplication group of \mathbb{F}_q is cyclic, so $\mathbb{F}_q^{\times} = \langle \alpha \rangle \subseteq \mathbb{F}_q(\alpha) \setminus \{0\} \subseteq \mathbb{F}_{q^n} \setminus \{0\}$, hence $\mathbb{F}_{q^n} = \mathbb{F}_q(\alpha)$.

Lemma 5. Every irreducible polynomial f(x) in $\mathbb{F}_{p^n}[x]$ is separable.

Proof. Without lost of generality, assume f(x) is monic.

Since σ_p is an isomorphism, $\mathbb{F}_{p^n} = \mathbb{F}_{p^n}^p = \{\alpha^p \mid \alpha \in \mathbb{F}_{p^n}\}$. Now assume f(x) has a multiple root α , then $m_{\alpha,\mathbb{F}_p} = f(x)$ since f is irreducible. By theorem 43 we also have $f(x) = m_{\alpha,\mathbb{F}_p} \mid f'(x)$, but $\deg f'(x) < \deg f(x)$ so we must have $f'(x) \equiv 0$.

Write $f(x) = a_n x^n + \ldots + a_1 x + a_0$, then $f'(x) \equiv 0$ implies $k a_k = 0_{\mathbb{F}_p}$ for each k, which means that if $a_k \neq 0 \implies p \mid k$. So

$$f(x) = a_{mp}x^{mp} + a_{(m-1)p}x^{(m-1)p} + \dots + a_px^p + a_0 = (a_{mp}x^m + \dots + a_px + a_0)^p$$

Theorem 46. $x^{p^n} - x$ equals the product of all monic irreducible polynomials in $\mathbb{F}_p[x]$ of degree d where d runs through all divisors of n.

Def 80. Möbius μ -function

5.3 Week 3

Prop 5.3.1. The following are equivalent.

- 1. K has no nontrivial algebraic extension.
- 2. For all irreducible polynomial in K[x] has degree 1.
- 3. Every polynomial of positive degree in K[x] has at least one root in K.
- 4. Every polynomial of positive degree in K[x] splits over K.

Lemma 6. In a commutative ring R with 1, any proper ideal $I \subseteq R$ is contained in a maximal ideal.

Proof. Consider $S = \{J \subseteq R \mid I \subseteq J\} \neq \emptyset$ since $I \in S$. Define a partial order on S by $J_1 \prec J_2 \iff J_1 \subseteq J_2$.

Given a chain $\{J_i \mid i \in \Lambda\}$, let $J = \bigcup_{i \in \Lambda} J_i$ which is a proper ideal, since if $x, y \in J$, then $x \in J_1, y \in J_2$. Let $\tilde{J} = \max(J_1, J_2)$, then $x, y \in \tilde{J}$ which implies $x + y \in \tilde{J}$. So J is a least upper bound for this chain.

By Zorn's leemma, exists a max element in S which is a max ideal in R containing I. \Box

Theorem 47. If K is a field, then exists an algebraic closure L of K.

Proof. Let $S = \{x_f \mid f(x) \in K[x] \text{ with } \deg f \geq 1\}$ be the set of variables indexed by non-constant polynomial in K[x]. Consider the polynomial ring K[S] and $I = \langle f(x_f) : f \in K[x] \text{ with } \deg f \geq 1 \rangle$, which is an ideal in K[S]. We claim that $I \neq K[S]$. If not then $1 \in I \implies 1 = \sum_{i=1}^n g_i f_i(x_{f_i})$. Write $x_i \triangleq x_{f_i}$ for $i = 1, 2, \dots, n$. Also, by definition g_i only involves a finite number of variable in S, so we could set $g_i \in K[x_1, x_2, \dots, x_m]$ with $m \geq n$. That is, $1 = \sum_{i=1}^n g_i(x_1, x_2, \dots, x_m) f_i(x_i)$. Let Σ be a splitting field for $f(x) = f_1(x) f_2(x) \dots f_n(x)$ and define $\alpha_i \in \Sigma$ which satisfied $f_i(\alpha_i) = 0$ and $a_i = 0$ for $n + 1 \leq i \leq m$. Then $1 = \sum_{i=1}^n g(\alpha_1, \alpha_2, \dots, \alpha_m) f_i(\alpha_i) = 0$ which leads to an contradiction.

By lemma 6, exists a maximal ideal M satisfied $I \subseteq M$.

Consider $K \hookrightarrow F_1 \triangleq K[S]/M$, and then for all $f \in K[x]$, $f(\bar{x}_f) = \bar{0}$ in F_1 . By induction, exists $F_1 \subseteq F_2 \subseteq F_3 \subseteq \cdots$ which satisfied $f(x) \in F_n[x]$ has a root in F_{n+1} Let $F = \bigcup_{i=1}^{\infty} F_i$ which is algebraically closed since if $f(x) \in F[x]$ then $f(x) \in F_m[x]$ for some m and thus f(x) has a root in $F_{m+1} \subseteq F$.

Finally $L \triangleq \{\alpha \in F \mid \alpha \text{ is algebraic over } K\}$ is an algebraic closure of K.

Lemma 7. If L_1/K is algebraic and $\tau: K \to L_2$ is a non-zero homomorphism with L_2 being algebraically closed, then τ extends to $\sigma: L_1 \to L_2$.

Proof. Consider $S = \{(M, \theta) \mid K \subset M \subset L_1, \theta : M \to L_2 \text{ with } \theta|_K = \tau\}$ which is not an empty set since $(K, \tau) \in S$.

Define a partial order on S, $(M_1, \theta_1) \prec (M_2, \theta_2) \iff M_1 \subseteq M_2, \theta_2|_{M_1} = \theta_1$. Given any chain $\{(M_i, \theta_i) : i \in \Lambda\}$, let $N = \bigcup_{i=1}^{\infty} M_i$ and $\theta = \alpha :: N \mapsto \theta_i(\alpha)$ if $\alpha \in M_i$. This map is well defined, and is a least upper bound for this chain. By Zorn's lemma, exists a max element (M, σ) in S. \square

Theorem 48. Any two algebraic closures L_1, L_2 of K are isomorphic.

Proof. Consider the inclusion map $\mathrm{id}_K :: K \hookrightarrow L_1$. By Lemma 7, τ could be extend to $\sigma :: L_2 \to L_1$ such that $\sigma|_K = \mathrm{id}_K$. Also, L_2 is algebraically closed which implies $\sigma(L_2)$ is algebraically closed. So for any $\alpha \in L_1$, α is algebraic over K and thus over $\sigma(L_2)$, which implies $\alpha \in \sigma(L_2)$, so σ is onto, hence σ is an isomorphism between L_1 and L_2 .

Eg 5.3.1. Let p be a prime.

• Any finite field L with char L = p

5.4 Separable extension

Def 81.

- α is separable over K if $m_{\alpha,K}$ is separable over K.
- L/K is called a separable extension if $\forall \alpha \in L$, α is separable over K.

Def 82. K is said to be *perfect* if either char K = 0 or "char K = p and $K = K^p$ ".

Eg 5.4.1. If char K = p and K/\mathbb{F}_p is algebraic, then K is perfect.

Proof. Consider $\sigma_p: K \to K$ which is a monomorphism which fixes \mathbb{F}_p . Since K/\mathbb{F}_p is algebraic, σ_p is an automorphism, so $K = K^p$.

Fact 5.4.1. K is perfect if an only if $\forall f(x) \in K[x], K[x]$ is separable.

Also, we can find that any irreducible polynomial $f(x) \in K[x]$ is not separable over K if and only if char K = p > 0 and $f(x) = g(x^p)$ for some $g(x) \in K[x]$.

Prop 5.4.1. Give $K(\alpha)/K$ with degree $m_{\alpha,K} = d$ and $\tau :: K \to L \neq 0$. If α is separable over K and $\bar{\tau}(m_{\alpha,K})$ splits over L, then there are exactly d monomorphisms $\sigma :: K(\alpha) \to L$ with $\sigma\big|_K = \tau$. Otherwise, if α is not separable or $\bar{\tau}(m_{\alpha,K})$ doesn't split over L, then there are r < d such monomorphisms.

Proof. Observe that $m_{\alpha,K}$ is separable over K if an only if $\bar{\tau}(m_{\alpha,K})$ is separable over $\tau(K)$, since if $m_{\alpha,K} = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_d)$, then $\bar{\tau}(m_{\alpha,K}) = (x - \tau'(\alpha_1))(x - \tau'(\alpha - 2)) \cdots (x - \tau'(\alpha_n))$. where $\tau' :: \Sigma \xrightarrow{\sim} \Sigma'$ and $\alpha_i \neq \alpha_j \iff \tau'(\alpha_i) \neq \tau'(\alpha_j)$.

Prop 5.4.2. Let [K':K] = d and $\tau :: K \to L \neq 0$. If K'/K is separable and $\forall \alpha \in K'$, $\bar{\tau}(m_{\alpha,K})$ splits over L, then there are exactly d monomorphisms $\sigma :: K' \to L$ with $\sigma|_{k} = \tau$. Otherwise exists r < d of such monomorphisms.

Proof. By induction on d, if d = 1 we could simply let $\sigma = \tau$.

Now for d > 1, let $\alpha \in K' \setminus K$. By prop 1, exists exactly $[K(\alpha) : K]$ monomorphisms $\tau_1 : K(\alpha) \to L$. Now, we need to check two condition:

1. $K'/K(\alpha)$ is separable:

Lemma 8. If $K(\alpha_1, \alpha_2, \alpha_n)/K$ is algebraic and L is a splitting field of $f(x) = m_{\alpha_1, K} m_{\alpha_2, K} \cdots m_{\alpha_n, K}$ over K, then for all $\beta \in K(\alpha_1, \alpha_2, \cdots, \alpha_n)$, $m_{\beta, K}$ also splits over L.

Proof. Let L = K(R) with R being the set of all roots of f(x). Pick any root γ of $m_{\beta,K}$. Observe the following diagram:

Theorem 49. Given $K(\alpha_1, \alpha_2, \dots, \alpha_n)/K$, if α_i is separable over $K_{i-1} \triangleq K(\alpha_1, \dots, \alpha_{i-1})$, then $K(\alpha_1, \alpha_2, \dots, \alpha_n)/K$ is separable.

Proof. Let L be a splitting field of $f(x) = \prod m_{\alpha_i,K}$.

Theorem 50.

L/K is separable $\iff L/M, M/K$ are separable

\mathbf{Index}

F			Р	
Frobenius homomorphism	66	perfect		69
I				
Ideal			S	
maximal ideal	63	seperable		66
prime ideal	63	splitting field		63