ЛИНЕЙНЫЕ ПРОСТРАНСТВА

- 1. Определение линейного пространства.
- 2. Понятия линейной зависимости и линейной независимости элементов линейного пространства.
 - 3. Размерность и базис линейного пространства.
 - 4. Подпространства линейных пространств.
 - 5. Линейные операторы.
- 6. Собственные значения и собственные векторы линейного оператора.
 - 7. Евклидово пространство.
 - 8. Квадратичные формы.

1. Определение линейного пространства

Линейным (или **векторным**) **пространством** называется множество L элементов произвольной природы, если определены операция сложения элементов, ставящая в соответствие каждой паре элементов $\overline{x}, \overline{y} \in L$ единственный элемент $\overline{x} + \overline{y} \in L$, и операция умножения элементов на действительные числа, ставящая в соответствие каждому элементу $\overline{x} \in L$ и каждому числу $\alpha \in \mathbb{R}$ единственный элемент $\alpha \overline{x} \in L$, причем заданные операции удовлетворяют следующим δ аксиомам: для любых $\overline{x}, \overline{y}, \overline{z} \in L$ и любых $\alpha, \beta \in \mathbb{R}$

- 1) $\bar{x} + \bar{y} = \bar{y} + \bar{x}$ (коммутативность сложения);
- 2) (x + y) + z = x + (y + z) (ассоциативность сложения);
- 3) существует нейтральный (нулевой) элемент $0 \in L$ такой, что x + 0 = x для всех $x \in L$;
- 4) для каждого $x \in L$ существует *противоположный элемент* $-x \in L$ такой, что x + (-x) = 0;
 - 5) $1\bar{x} = \bar{x}$;
- 6) $\alpha(x+y) = \alpha x + \alpha y$ (дистрибутивность умножения на число относительно сложения элементов);
- 7) $(\alpha + \beta)x = \alpha x + \beta x$ (дистрибутивность умножения элемента на число относительно сложения чисел);
 - 8) $\alpha(\beta x) = (\alpha \beta)x$ (ассоциативность умножения на число).

Замечание. Элементы линейного пространства часто называют *векторами*.

Примеры линейных пространств

- 1) Множество \mathbb{R} всех действительных чисел с обычными операциями сложения элементов и умножения на число.
- 2) Множество всех векторов на плоскости V_2 , либо в пространстве V_3 , либо множество V_1 всех векторов, коллинеарных заданной прямой.
- 3) Множество $\mathcal{M}_{m\times n}(\mathbb{R})$ всех матриц фиксированного размера $m\times n$.
- 4) Множество $\mathbb{R}[x]$ всех многочленов с действительными коэффициентами.
- 5) Множество $\mathbb{R}_n[x]$ всех многочленов степени не выше n с действительными коэффициентами.
- 6) Множество всех функций с действительными значениями, определенных на некотором отрезке либо на \mathbb{R} .
- 7) Множество всех непрерывных функций с действительными значениями, определенных на некотором отрезке либо на \mathbb{R} .
- 8) Важнейший пример линейного пространства дает *пространство* \mathbb{R}^n *пространство* n-мерных векторов множество всех упорядоченных комбинаций n действительных чисел:

$$\mathbb{R}^n = {\overline{x} = (x_1; x_2; ...; x_n) : x_i \in \mathbb{R}, 1 \le i \le n},$$

в котором равенство *п*-мерных векторов, а также сложение и умножение на число понимаются поэлементно: если $\overline{x} = (x_1; x_2; ...; x_n)$, $\overline{y} = (y_1; y_2; ...; y_n)$, $\alpha \in \mathbb{R}$, то

$$\frac{1}{x} = y \iff \begin{cases}
x_1 = y_1, \\
x_2 = y_2, \\
..., \\
x_n = y_n;
\end{cases}$$

$$\frac{1}{x} + y = (x_1 + y_1; x_2 + y_2; ...; x_n + y_n);$$

$$\frac{1}{\alpha x} = (\alpha x_1; \alpha x_2; ...; \alpha x_n).$$

В частности, множество V_2 всех векторов на плоскости можно трактовать как множество \mathbb{R}^2 , так как при выбранном базисе на плоскости каждый вектор плоскости может быть задан упорядоченной парой чисел — своими координатами в данном базисе.

Аналогично, множество V_3 векторов в пространстве отождествляют с \mathbb{R}^3 .

Множество $\mathcal{M}_{m\times n}(\mathbb{R})$ матриц размера $m\times n$ с действительными элементами иногда обозначают $\mathbb{R}^{m\times n}$.

9) Существует линейное пространство, состоящее из одного элемента: $L = \{\overline{0}\}$. Такое линейное пространство называют **нулевым**.

2. Понятия линейной зависимости и линейной независимости элементов линейного пространства

Линейной комбинацией элементов $\overline{x_1}, \overline{x_2}, ..., \overline{x_n} \in L$ с числовыми коэффициентами $\alpha_1, \alpha_2, ..., \alpha_n$ называется элемент

$$\overline{y} = \alpha_1 \overline{x_1} + \alpha_2 \overline{x_2} + \dots + \alpha_n \overline{x_n} \in L.$$

Система (множество) элементов $\overline{x_1}, \overline{x_2}, ..., \overline{x_n} \in L$ называется **ли- нейно зависимой**, если существуют такие числа $\alpha_1, \alpha_2, ..., \alpha_n$, из которых хотя бы одно не равно 0, что $\alpha_1 \overline{x_1} + \alpha_2 \overline{x_2} + ... + \alpha_n \overline{x_n} = \overline{0}$.

Система (множество) элементов $\overline{x_1}, \overline{x_2}, ..., \overline{x_n} \in L$ называется линейно независимой, если равенство $\alpha_1 \overline{x_1} + \alpha_2 \overline{x_2} + ... + \alpha_n \overline{x_n} = \overline{0}$ возможно только в случае, когда все коэффициенты линейной комбинации равны 0, т. е. $\alpha_1 = \alpha_2 = ... = \alpha_n = 0$.

Теорема 1 (критерий линейной зависимости системы элементов). Система элементов $\overline{x_1}, \overline{x_2}, ..., \overline{x_n} \in L$ линейно зависима тогда и только тогда, когда хотя бы один из них является линейной комбинацией остальных.

Свойства линейно зависимых и линейно независимых систем элементов

1) Всякая система элементов, содержащая нулевой элемент, линейно зависима.

- 2) Если некоторые элементы системы образует линейно зависимую систему, то и вся система линейно зависима.
- 3) Если система элементов линейно независима, то и любая ее подсистема (часть) линейно независима.
- 4) Если элементы $\overline{x_1}, \overline{x_2}, ..., \overline{x_n} \in L$ линейно независимы и элемент $\overline{y} \in L$ не является их линейной комбинацией, то система элементов $\overline{x_1}, \overline{x_2}, ..., \overline{x_n}, \overline{y} \in L$ линейно независима.

3. Размерность и базис линейного пространства

Размерностью линейного пространства L называется такое число $\dim L = n, \ \text{что}$:

- 1) в L существует n линейно независимых элементов;
- 2) любая система из n+1 элемента линейно зависима.

Таким образом, размерность линейного пространства — это максимальное число линейно независимых элементов этого пространства.

Размерность нулевого линейного пространства считается равной 0.

Линейное пространство L называется *бесконечномерным* $(\dim L = \infty)$, если при любом натуральном n существует система n линейно независимых элементов этого пространства.

Базисом линейного пространства L называется такая упорядоченная система $\left\{\overline{e_1}; \overline{e_2}; ...; \overline{e_n}\right\}$, состоящая из n линейно независимых элементов этого пространства, такая, что любой элемент $x \in L$ может быть представлен в виде линейной комбинации базисных элементов:

$$\overline{x} = x_1 \overline{e_1} + x_2 \overline{e_2} + \dots + x_n \overline{e_n}.$$
 (1)

Представление (1) называется разложением элемента \overline{x} по базису $\{\overline{e_1}; \overline{e_2}; ...; \overline{e_n}\}$, а числа $x_1, x_2, ..., x_n$ – координатами элемента \overline{x} в базисе $\{\overline{e_1}; \overline{e_2}; ...; \overline{e_n}\}$; в этом случае пишут

$$\overline{x} = \{x_1; x_2; ...; x_n\}.$$

Теорема 1. Координаты любого элемента $x \in L$ в данном базисе $\{e_1; e_2; ...; e_n\}$ определяются однозначно.

Основное значение базиса заключается в том, что операции сложения и умножения элементов линейного пространства на числа при задании базиса сводятся к соответствующим операциям над координатами элементов.

Теорема 2. Пусть в линейном пространстве L задан базис $\{\overline{e_1};\overline{e_2};...;\overline{e_n}\}$. Тогда:

- 1) все координаты нулевого элемента равны 0;
- 2) два элемента равны тогда и только тогда, когда равны их соответствующие координаты в данном базисе;
- 3) при сложении двух элементов складываются их соответствующие координаты;
- 4) при умножении элемента на число все координаты умножаются на это число.

Теорема 3. Базис линейного пространства L состоит из n элементов тогда и только тогда, когда $\dim L = n$.

Замечание. Базис линейного пространства определяется неоднозначно.

Теорема 4. В n-мерном линейном пространстве всякая упорядоченная система, состоящая из n линейно независимых элементов, является базисом.

Преобразование координат вектора при изменении базиса

Пусть $\mathcal{E} = \left\{ \overline{e_1}; \overline{e_2}; ...; \overline{e_n} \right\}$ — базис линейного пространства L; $\mathcal{E}' = \left\{ \overline{e_1'}; \overline{e_2'}; ...; \overline{e_n'} \right\}$ — новый базис линейного пространства L, причем (любой вектор пространства L может быть представлен в виде линейной комбинации векторов базиса \mathcal{E})

$$\frac{\overline{e_{1}'}}{\overline{e_{2}'}} = t_{11}\overline{e_{1}} + t_{21}\overline{e_{2}} + \dots + t_{n1}\overline{e_{n}},
\overline{e_{2}'} = t_{12}\overline{e_{1}} + t_{22}\overline{e_{2}} + \dots + t_{n2}\overline{e_{n}},
\dots,
\overline{e_{n}'} = t_{1n}\overline{e_{1}} + t_{2n}\overline{e_{2}} + \dots + t_{nn}\overline{e_{n}}.$$

Матрица

$$T = T_{\mathcal{E} \to \mathcal{E}'} = \begin{pmatrix} t_{11} & t_{12} & \dots & t_{1n} \\ t_{21} & t_{22} & \dots & t_{2n} \\ \dots & \dots & \dots & \dots \\ t_{n1} & t_{n2} & \dots & t_{nn} \end{pmatrix}$$

называется матрицей перехода от базиса \mathcal{E} к базису \mathcal{E}' .

Согласно данному определению, i-й столбец матрицы перехода есть столбец координат i-го вектора нового базиса в старом. Поэтому говорят, что матрица перехода состоит из координат векторов нового базиса в старом, записанных по столбцам.

Замечание. Поскольку векторы $e_1'; e_2'; ...; e_n'$ линейно независимы, то матрица перехода является невырожденной матрицей: det $T \neq 0$.

Теорема 5. Если
$$X = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}$$
 и $X' = \begin{pmatrix} x_1' \\ x_2' \\ \dots \\ x_n' \end{pmatrix}$ — столбцы координат эле-

мента $x \in L$ в базисе \mathcal{E} и в базисе \mathcal{E}' соответственно, то X = TX'.

Следствие 1. $X' = T^{-1}X$, где T — матрица перехода от базиса \mathcal{E} к базису \mathcal{E}' .

Следствие 2. Матрица перехода от базиса \mathcal{E}' к базису \mathcal{E} – это матрица, обратная матрице перехода от базиса \mathcal{E} к базису \mathcal{E}' :

$$T_{\mathcal{E}'\to\mathcal{E}}=T_{\mathcal{E}\to\mathcal{E}'}^{-1}.$$

4. Подпространства линейных пространств

Непустое подмножество L' действительного линейного пространства L называется линейным подпространством пространства L, если для любых $\overline{x}, \overline{y} \in L'$ и $\alpha \in \mathbb{R}$ элементы $\overline{x} + \overline{y} \in L'$, $\alpha \overline{x} \in L'$. Подпространство само является линейным пространством, причем $\dim L' \leq \dim L$.

Примеры подпространств:

1. Простейшими примерами подпространств для любого линейного пространства L являются нулевое подпространство $\{\overline{0}\}$ и само пространство L. Эти подпространства называются **тривиальными**.

- 2. Пусть L множество всех непрерывных функций, тогда $L' = \mathbb{R}_n[x]$ множество всех многочленов степени не выше n является подпространством линейного пространства L.
- 3. Пусть $L = \mathbb{R}_5[x]$ множество многочленов степени не выше 5, тогда $L' = \mathbb{R}_4[x]$ множество многочленов степени не выше 4 является подпространством линейного пространства L.
- 4. Если $L = \mathcal{V}_3$ (множество всех векторов в пространстве), то $L' = \mathcal{V}_2$ (множество всех векторов на плоскости) является подпространством линейного пространства L, а $L'' = \mathcal{V}_1$ (множество векторов, коллинеарных заданной прямой) является подпространством L'.

Важный пример линейного подпространства дает следующее понятие.

Пусть $\overline{x}, \overline{y}, ..., \overline{z}$ – элементы линейного пространства L. **Линейной** оболочкой элементов $\overline{x}, \overline{y}, ..., \overline{z}$ называется множество всех линейных комбинаций этих элементов:

$$L(\overline{x}, \overline{y}, ..., \overline{z}) = {\{\alpha \overline{x} + \beta \overline{y} + ... + \gamma \overline{z} : \alpha, \beta, ..., \gamma \in \mathbb{R}\}}.$$

Линейную оболочку элементов $\overline{x}, \overline{y}, ..., \overline{z}$ обозначают $L(\overline{x}, \overline{y}, ..., \overline{z})$ либо $<\overline{x}, \overline{y}, ..., \overline{z}>$. Иногда также говорят, что линейная оболочка натянута на векторы $\overline{x}, \overline{y}, ..., \overline{z}$.

Свойства линейных оболочек

- 1) Линейная оболочка заданных элементов линейного пространства L является подпространством линейного пространства L.
- 2) Линейная оболочка L(x, y, ..., z) является наименьшим подпространством, содержащим элементы x, y, ..., z.
- 3) Размерность линейной оболочки L(x, y, ..., z) равна максимальному числу линейно независимых элементов в системе элементов $\overline{x}, \overline{y}, ..., \overline{z}$.

5. Линейные операторы

Пусть L_1 и L_2 — два линейных пространства. Если задано правило f, по которому каждому элементу $x \in L_1$ ставится в соответствие некоторый элемент $y \in L_2$, то говорят, что задан **оператор** (**отображение**, **преобразование**), действующий из L_1 в L_2 : $f:L_1 \to L_2$; при этом элемент y = f(x) называется **образом** элемента x, а элемент x = 1 прообразом элемента x = 1 (при данном отображении x = 1).

Замечание. Термин «преобразование» используется в случае, когда пространства L_1 и L_2 совпадают.

Отображение, при котором каждый элемент $\overline{y} \in L_2$ имеет единственный прообраз (иными словами, разным элементам $\overline{x_1}, \overline{x_2} \in L_1, \overline{x_1} \neq \overline{x_2}$, соответствуют разные образы $\overline{y_1}, \overline{y_2} \in L_2, \overline{y_1} \neq \overline{y_2}$) называется взаимно однозначным, или биективным.

Оператор $f: L_1 \to L_2$ называется **линейным**, если для любых элементов $\overline{x_1}, \overline{x_2}, \overline{x} \in L_1$ и любого числа $\alpha \in \mathbb{R}$ выполняются условия:

- 1) $f(\overline{x_1} + \overline{x_2}) = f(\overline{x_1}) + f(\overline{x_2});$
- 2) $f(\alpha \overline{x}) = \alpha f(\overline{x})$.

Оператор $f: L_1 \to L_2$ является линейным тогда и только тогда, когда для любых элементов $\overline{x_1}, \overline{x_2} \in L_1$ и любых $\alpha, \beta \in \mathbb{R}$ выполняется условие $f(\alpha \overline{x_1} + \beta \overline{x_2}) = \alpha f(\overline{x_1}) + \beta f(\overline{x_2})$.

Оператор $I: L \to L$, действующий по правилу I(x) = x, называется **тождественным оператором**.

Примеры линейных операторов:

1) Пусть $L_1 = \mathcal{V}_2$ — множество всех свободных векторов на плоскости. Будем рассматривать элементы этого линейного пространства как векторы, исходящие из начала координат — точки O.

Тогда примерами линейных операторов являются: поворот вектора на данный угол ϕ ; умножение вектора на данное число λ ; симметрия относительно прямой, проходящей через точку O; симметрия относительно точки O; проекция на одну из осей.

2) Пусть $L_1 = \mathbb{R}^{n \times 1}$ — множество матриц-столбцов (множество столбцов высоты n), а $A \in \mathbb{R}^{m \times n}$ — фиксированная матрица размера $m \times n$. Тогда f(X) = AX — линейное отображение, $f: \mathbb{R}^{n \times 1} \to \mathbb{R}^{m \times 1}$.

3) Пусть $L_1 = \mathbb{R}[x]$ — пространство многочленов с действительными коэффициентами. Рассмотрим отображение D — оператор дифференцирования, который ставит в соответствие каждому многочлену

$$a(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n \in \mathbb{R}[x]$$

его производную

$$a'(x) = a_0 n x^{n-1} + a_1 (n-1) x^{n-2} + \dots + a_{n-1} \in \mathbb{R}[x].$$

Оператор дифференцирования является линейным оператором $D: \mathbb{R}[x] \to \mathbb{R}[x]$.

Заметим, что $D: \mathbb{R}^n[x] \to \mathbb{R}^{n-1}[x]$.

4) В любом линейном пространстве L можно определить отображения I(x) = x и O(x) = 0, которые также являются линейными операторами.

Действия с линейными операторами

Суммой двух линейных операторов $f: L_1 \to L_2$ и $g: L_1 \to L_2$ называется оператор $h = f + g: L_1 \to L_2$, действующий так, что для любого $\overline{x} \in L_1$ справедливо $h(\overline{x}) = f(\overline{x}) + g(\overline{x})$.

Очевидно, что сумма линейных операторов f+g является линейным оператором и f+g=g+f (сложение операторов коммутативно).

Произведением линейного оператора $f: L_1 \to L_2$ на число λ называется оператор $h = \lambda f: L_1 \to L_2$, действующий по правилу $h(x) = \lambda f(x)$ для любого $x \in L_1$.

Легко проверить, что при умножении линейного оператора на число получается линейный оператор.

Произведением (композицией) линейного оператора $f: L_1 \to L_2$ на линейный оператор $g: L_2 \to L_3$ называется оператор $h = g \circ f: L_1 \to L_3$, действие которого заключается в последовательном применении операторов f и g, т. е. h(x) = g(f(x)) для любого $x \in L_1$.

Произведение оператора f на оператор g обозначают $h = g \circ f$ или h = gf. Произведение линейных операторов также является линейным оператором.

Замечание 1. Оператор, действующий первым, записывается справа.

Замечание 2. Как правило, $gf \neq fg$, т. е. операция умножения операторов не коммутативна.

Оператор $\phi: L \to L$ называется *обратным* к данному оператору $f: L \to L$, если $\phi \circ f = I$ и $f \circ \phi = I$. Оператор, обратный к оператору f, обозначается f^{-1} .

Если $f:L \to L$ — линейный оператор и оператор f^{-1} существует, то f^{-1} — тоже линейный оператор.

Если $f: L \to L$ — линейный оператор, то обратный оператор f^{-1} существует тогда и только тогда, когда f — взаимно однозначный оператор.

Матрицы линейных операторов

Пусть $f: L_1 \to L_2$ — линейный оператор и линейные пространства L_1 и L_2 конечномерны.

Выберем базисы: $\mathcal{E} = \left\{\overline{e_1}; \overline{e_2}; ...; \overline{e_n}\right\}$ – базис линейного пространства $L_1; \ \mathcal{F} = \left\{\overline{f_1}; \overline{f_2}; ...; \overline{f_m}\right\}$ – базис линейного пространства L_2 .

Элементы $f(\overline{e_1}), f(\overline{e_2}), ..., f(\overline{e_n})$ (образы базисных векторов линейного пространства L_1 при отображении f) являются элементами линейного пространства L_2 , а значит, их можно разложить по базису F:

$$f(\overline{e_1}) = a_{11}\overline{f_1} + a_{21}\overline{f_2} + \dots + a_{m1}\overline{f_m},$$

$$f(\overline{e_2}) = a_{12}\overline{f_1} + a_{22}\overline{f_2} + \dots + a_{m2}\overline{f_m},$$

$$f(\overline{e_n}) = a_{1n}\overline{f_1} + a_{2n}\overline{f_2} + \dots + a_{mn}\overline{f_m}.$$

Матрица

$$A_f = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix},$$

столбцы которой состоят из координат векторов $f(\overline{e_1}), f(\overline{e_2}), ..., f(\overline{e_n}),$ называется *матрицей линейного оператора* f.

Если
$$X=\begin{pmatrix}x_1\\x_2\\...\\x_n\end{pmatrix}$$
 и $Y=\begin{pmatrix}y_1\\y_2\\...\\y_m\end{pmatrix}$ — столбцы координат элемента $x\in L_1$ в

базисе \mathcal{E} и его образа $y = f(x) \in L_2$ в базисе \mathcal{F} соответственно, то $Y = A_f X$.

Действиям над линейными операторами соответствуют такие же действия над их матрицами (в соответствующих базисах):

- 1) $A_{f+g} = A_f + A_g$;
- **2)** $A_{\lambda f} = \lambda A_f (\lambda \text{число});$
- **3)** $A_{g \circ f} = A_g A_f;$
- **4)** $A_{f^{-1}} = (A_f)^{-1}$;
- **5)** матрица тождественного оператора является единичной: $A_I = E$.

Таким образом, линейные преобразования описываются с помощью матриц и действия над линейными преобразованиями сводятся к действиям над их матрицами.

Линейный оператор $f: L \to L$ называется **невырожденным**, если его матрица невырожденная, т. е. $\det A_f \neq 0$.

Линейный оператор $f:L\to L$ является невырожденным тогда и только тогда, когда f – взаимно однозначный оператор.

Преобразование матрицы линейного оператора при изменении базиса

Пусть $\mathcal{E} = \left\{\overline{e_1}; \overline{e_2}; ...; \overline{e_n}\right\}$ — базис линейного пространства L; $\mathcal{E}' = \left\{\overline{e_1'}; \overline{e_2'}; ...; \overline{e_n'}\right\}$ — новый базис линейного пространства L; $T = T_{\mathcal{E} \to \mathcal{E}'}$ — матрица перехода от базиса \mathcal{E} к базису $\mathcal{E}'.$

Если $f: L \to L$ — линейный оператор и A_f — матрица линейного оператора f в базисе \mathcal{E} , а A_f' — матрица линейного оператора f в базисе \mathcal{E}' , то

$$A_f' = T^{-1}A_fT.$$

6. Собственные значения и собственные векторы линейного оператора

Пусть $f:L \to L$ — линейный оператор, действующий в линейном пространстве L.

Ненулевой элемент $x \in L$ ($x \neq 0$) называется собственным вектором линейного оператора $f: L \to L$, если существует такое число λ , что $f(x) = \lambda x$. Число λ называется собственным значением (собственным числом) линейного оператора f, соответствующим собственному вектору x.

Свойства собственных векторов

- 1) Каждому собственному вектору соответствует единственное собственное значение.
- 2) Если $\overline{x_1}$ и $\overline{x_2}$ два собственных вектора линейного оператора f с одним и тем же собственным значением λ , то $\overline{x_1} + \overline{x_2}$ также является собственным вектором линейного оператора f с тем же собственным значением λ , т. е.

$$\frac{f(\overline{x_1}) = \lambda \overline{x_1}}{f(\overline{x_2}) = \lambda \overline{x_2}} \implies f(\overline{x_1} + \overline{x_2}) = \lambda (\overline{x_1} + \overline{x_2}).$$

3) Если \bar{x} — собственный вектор линейного оператора f с собственным числом λ , то любой вектор $\alpha \bar{x}$ (α — число) является собственным вектором линейного оператора f с тем же собственным значением λ , т. е.

$$f(\bar{x}) = \lambda \bar{x} \implies f(\alpha \bar{x}) = \lambda(\alpha \bar{x}).$$

Замечание. Из свойств 2, 3 следует, что множество собственных векторов данного линейного оператора f, соответствующих одному и тому же собственному числу λ , вместе с нулевым элементом образуют линейное подпространство линейного пространства L.

4) Собственные векторы $\overline{x_1}, \overline{x_2}, ..., \overline{x_k}$ линейного оператора f, соответствующие попарно различным собственным значениям $\lambda_1, \lambda_2, ..., \lambda_k$, линейно независимы.

Характеристический многочлен матрицы линейного оператора

Пусть $f: L \to L$ — линейный оператор, действующий в n-мерном линейном пространстве L. Зафиксируем некоторый базис $\mathcal E$ в пространстве L. Поскольку линейный оператор действует из L в L, будем рассматривать векторы и их образы в одном и том же базисе. Тогда матрица $A = A_f$ линейного преобразования состоит из столбцов координат образов базисных векторов в этом базисе.

Если \bar{x} — собственный вектор линейного оператора f с собственным числом λ , матрица A — матрица линейного оператора f в базисе \mathcal{E} , то $AX = \lambda X$, где X — столбец координат вектора \bar{x} в базисе \mathcal{E} .

Ненулевой столбец $X \in \mathbb{R}^n$, удовлетворяющий $AX = \lambda X$ при некотором λ , называется *собственным вектором* матрицы A, соответствующим *собственному значению* λ .

Для нахождения собственных чисел матрицы A (а, следовательно, и оператора f) нужно решить уравнение $\det(A - \lambda E) = 0$, т. е.

$$\begin{vmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{vmatrix} = 0.$$
 (1)

Уравнение (1) называется характеристическим уравнением матрицы A, а его корни называются характеристическими числами, или собственными значениями матрицы A.

Многочлен n-й степени, стоящий в левой части характеристического уравнения (1), называется **характеристическим многочленом** матрицы A.

Характеристический многочлен имеет n корней, вообще говоря, комплексных, с учетом их кратности.

Замечание. Собственными значениями линейного оператора в действительном линейном пространстве являются только действительные корни характеристического уравнения.

Приведение матрицы линейного оператора к диагональному виду

Матрица A_f линейного оператора называется *приводимой к диа-гональному виду*, если существует такая невырожденная матрица T (такое преобразование базиса), что матрица $B = T^{-1}A_fT$ является диагональной.

Теорема 2. Матрица A_f линейного оператора f приводима к диагональному виду тогда и только тогда, когда существует базис, состоящий из собственных векторов оператора f. На главной диагонали матрицы, записанной в этом базисе, стоят собственные числа:

$$A_f = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}.$$

3амечание. Не каждый линейный оператор n-мерного линейного пространства имеет n линейно независимых собственных векторов, а следовательно, не всегда матрицу линейного оператора можно привести к диагональному виду.

Если линейный оператор f, действующий в действительном линейном пространстве L, $\dim L = n$, имеет n различных действительных собственных значений, то существует базис пространства L из собственных векторов этого оператора, а следовательно, матрица A_f приводима к диагональному виду.

Замечание. Это условие является достаточным, но не является необходимым условием диагонализируемости матрицы линейного оператора. Матрица линейного оператора может быть приводима к диагональному виду и в том случае, когда среди собственных значений оператора есть совпадающие либо когда имеются комплексные корни характеристического уравнения матрицы линейного оператора, действующего в вещественном линейном пространстве.

7. Евклидово пространство

Eвклидовым пространством называется линейное пространство L, в котором определена операция скалярного умножения элементов:

каждой паре элементов $x, y \in L$ ставится в соответствие действительное число (x, y), которое называется скалярным произведением элементов x и y, причем эта операция удовлетворяет следующим 4 аксиомам: для любых $x, y, z \in L$ и любого $\alpha \in \mathbb{R}$

- 1) $(\bar{x}, \bar{y}) = (\bar{y}, \bar{x});$
- 2) $(\bar{x} + \bar{y}, \bar{z}) = (\bar{x}, \bar{z}) + (\bar{y}, \bar{z});$
- 3) $(\alpha \overline{x}, \overline{z}) = \alpha(\overline{x}, \overline{z});$
- 4) $(\bar{x}, \bar{x}) \ge 0$, причем $(\bar{x}, \bar{x}) = 0 \iff \bar{x} = \bar{0}$.

Замечание. В матричной форме записи скалярное произведение векторов из \mathbb{R}^n находится по формуле $(x, y) = X^T Y$, где X, Y - столбцы координат элементов x, y соответственно.

Примеры Евклидовых пространств:

- 1) Евклидовым пространством является множество V_3 свободных векторов в пространстве (или множество V_2 свободных векторов на плоскости) с обычным определением скалярного произведения. Для обычных векторов в трехмерном пространстве норма совпадает с длиной вектора
- 2) Евклидовым пространством является пространство \mathbb{R}^n , в котором скалярное произведение элементов задается формулой

$$(\overline{x}, \overline{y}) = x_1 y_1 + x_2 y_2 + \dots + x_n y_n,$$

где
$$\overline{x} = (x_1; x_2; ...; x_n), \overline{y} = (y_1; y_2; ...; y_n).$$

Можно показать, что в этом случае все 4 аксиомы скалярного произведения, указанные в определении 1, выполняются.

Векторы x и y евклидова пространства называются *ортогональ***ными**, если (x, y) = 0.

Замечание. Считается, что нулевой вектор ортогонален любому вектору.

Теорема 1. Если ненулевые векторы $\overline{e_1}, \overline{e_2}, ..., \overline{e_k}$ попарно ортогональны, то они линейно независимы.

Нормой вектора \overline{x} евклидова пространства называется *положи- тельное* число $\|\overline{x}\| = \sqrt{(\overline{x}, \overline{x})}$.

Свойства нормы вектора.

1)
$$\|\overline{x}\| = 0 \iff \overline{x} = \overline{0}.$$

2)
$$\|\alpha \overline{x}\| = |\alpha| \|\overline{x}\|$$
 для любого $\alpha \in \mathbb{R}$.

3)
$$(x, y) \le ||x||||y||$$
 (неравенство Коши – Буняковского).

4)
$$\|\overline{x} + \overline{y}\| \le \|\overline{x}\| + \|\overline{y}\|$$
 (неравенство треугольника).

Если $\|\bar{x}\| = 1$, то вектор \bar{x} называется **нормированным**.

Система векторов $e_1, e_2, ..., e_n$ называется *ормонормированной*, если все ее векторы нормированы и попарно ортогональны.

Теорема 2. Во всяком конечномерном евклидовом пространстве существует ортонормированный базис.

Процесс ортогонализации Грама – Шмидта

Процесс ортогонализации Грама — Шмидта используется для построения в евклидовом пространстве ортонормированного базиса на основании произвольного базиса этого пространства.

Пусть $\mathcal{F} = \left\{\overline{f_1}; \overline{f_2}; ...; \overline{f_n}\right\}$ — исходный базис n-мерного евклидова пространства. Ортонормированный базис $\mathcal{E} = \left\{\overline{e_1}; \overline{e_2}; ...; \overline{e_n}\right\}$ получается с помощью следующей процедуры:

1)
$$\overline{e_1} = \frac{\overline{f_1}}{\|\overline{f_1}\|};$$

2)
$$\overline{g_2} = \overline{f_2} - (\overline{f_2}, \overline{e_1})\overline{e_1}; \ \overline{e_2} = \frac{\overline{g_2}}{\|\overline{g_2}\|};$$

3)
$$\overline{g_3} = \overline{f_3} - (\overline{f_3}, \overline{e_1})\overline{e_1} - (\overline{f_3}, \overline{e_2})\overline{e_2}; \ \overline{e_3} = \frac{\overline{g_3}}{\|\overline{g_3}\|};$$

...;

$$n) \ \overline{g_n} = \overline{f_n} - (\overline{f_n}, \overline{e_1})\overline{e_1} - (\overline{f_n}, \overline{e_2})\overline{e_2} - \dots - (\overline{f_n}, \overline{e_{n-1}})\overline{e_{n-1}}; \ \overline{e_n} = \frac{\overline{g_n}}{\|\overline{g_n}\|}.$$

Координаты вектора евклидова пространства в ортонормированном базисе

Пусть $\{\overline{e_1},\overline{e_2},...,\overline{e_n}\}$ — ортонормированный базис в n-мерном евклидовом пространстве, $\overline{x}=\{x_1,x_2,...,x_n\}$ — координаты вектора \overline{x} в этом базисе, т. е.

$$\overline{x} = x_1 \overline{e_1} + x_2 \overline{e_2} + \dots + x_n \overline{e_n}.$$

Умножая обе части равенства скалярно на e_1 , получим

$$(\overline{x}, \overline{e_1}) = x_1(\overline{e_1}, \overline{e_1}) + x_2(\overline{e_2}, \overline{e_1}) + \dots + x_n(\overline{e_n}, \overline{e_1}) =$$

= $x_1 \cdot 1 + x_2 \cdot 0 + \dots + x_n \cdot 0 = x_1.$

Аналогично, $(\overline{x}, \overline{e_2}) = x_2; ...; (\overline{x}, \overline{e_n}) = x_n.$

Таким образом, координаты вектора в ортонормированном базисе равны скалярным произведениям вектора на базисные векторы.

Выражение скалярного произведения через координаты векторов в ортонормированном базисе

Пусть даны $x = \{x_1, x_2, ..., x_n\}, y = \{y_1, y_2, ..., y_n\}$ – координаты векторов x, y в *ортонормированном* базисе $\{e_1, e_2, ..., e_n\}$. Тогда

$$(\bar{x}, \bar{y}) = x_1 y_1 + x_2 y_2 + \dots + x_n y_n.$$

Замечание 1. В матричном виде $(x, y) = X^T Y$, где X, Y – столбцы координат элементов x, y соответственно.

Замечание 2. В произвольном базисе $\{\overline{f_1},\overline{f_2},...,\overline{f_n}\}$ эти формулы имеют более сложный вид. Если $\overline{x}=x_1\overline{f_1}+x_2\overline{f_2}+...+x_n\overline{f_n},$ $\overline{y}=y_1\overline{f_1}+y_2\overline{f_2}+...+y_n\overline{f_n},$ то

$$(\overline{x}, \overline{y}) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i y_j (\overline{f_i}, \overline{f_j}).$$

8. Квадратичные формы

Квадратичной формой от п действительных переменных $x_1, x_2, ..., x_n$ называется сумма вида

$$q(x_1; x_2; ...; x_n) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j,$$
 (1)

где коэффициенты a_{ij} квадратичной формы — некоторые действительные числа, причем $a_{ij}=a_{ji}$.

Таким образом, квадратичная форма может быть также записана в виде

$$q(x_1; x_2; ...; x_n) = a_{11}x_1^2 + a_{22}x_2^2 + ... + a_{nn}x_n^2 + 2a_{12}x_1x_2 + 2a_{13}x_1x_3 + ... + 2a_{n-1; n}x_{n-1}x_n.$$

Заметим, что к изучению квадратичных форм от двух и трех переменных приводит задача об определении формы кривых и поверхностей 2-го порядка. Первоначально теория квадратичных форм возникла именно из этих задач, но впоследствии нашла многочисленные применения в математике и ее приложениях.

Матрицей квадратичной формы называется матрица, составленная из ее коэффициентов, а именно, квадратичной форме (1) соответствует матрица

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}.$$

В матричном виде квадратичная форма (1) может быть записана как

$$q(X) = X^T A X$$
, где $X = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}$.

Матрицу A квадратичной формы всегда можно привести к диагональному виду

$$A' = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix},$$

где $\lambda_1, \lambda_2, ..., \lambda_n$ — собственные значения матрицы A. Следовательно, любую квадратичную форму можно привести к виду

$$q_1(x_1'; x_2'; ...; x_n') = \lambda_1(x_1')^2 + \lambda_2(x_2')^2 + ... + \lambda_n(x_n')^2.$$
 (2)

Если квадратичная форма записана в виде (2), то говорят, что она приведена к *каноническому виду*.

Алгоритм приведения квадратичной формы к каноническому виду

Чтобы определить преобразование переменных, приводящее квадратичную форму к каноническому виду, нужно выполнить следующие действия.

- 1) Записать матрицу квадратичной формы и найти собственные значения этой матрицы.
- 2) Найти собственные векторы матрицы квадратичной формы и нормировать их. Направления собственных векторов называются *главными направлениями* квадратичной формы.

Замечание. Если среди собственных значений матрицы есть совпадающие, необходимо выбирать соответствующие собственные векторы так, чтобы они были ортонормированы.

- 3) Записать матрицу T, составив ее из полученных нормированных векторов-столбцов.
- 4) Записать искомое преобразование переменных по формуле X = TX'.

Знакоопределенные квадратичные формы

Пусть $\bar{x} = \{x_1; x_2; ...; x_n\}$. Квадратичная форма $q(\bar{x})$ называется:

- 1) положительно определенной, если q(x) > 0 для всех $x \neq 0$;
- 2) отрицательно определенной, если q(x) < 0 для всех $x \neq \overline{0}$;
- 3) положительно полуопределенной, если $q(x) \ge 0$ для всех $x \ne 0$;
- 4) отрицательно полуопределенной, если $q(\bar{x}) \le 0$ для всех $\bar{x} \ne \bar{0}$;
- 5) знаконеопределенной, если существуют такие \bar{x} и \bar{y} что $q(\bar{x}) > 0$ и $q(\bar{y}) < 0$.

Замечание. Несложно видеть, что знакоопределенность квадратичной формы фактически означает постоянство знаков собственных значений ее матрицы.

Если квадратичная форма	то собственные значения ее
	матрицы
положительно определена,	все положительны;
отрицательно определена,	все отрицательны;
положительно полуопределена,	все неотрицательны;
отрицательно полуопределена,	все неположительны.

Пусть
$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{12} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{1n} & a_{2n} & \dots & a_{nn} \end{pmatrix}$$
 — матрица квадратичной

формы q(x).

Главными минорами квадратичной формы q(x) называются миноры матрицы A, стоящие в левом верхнем углу:

$$\Delta_1 = a_{11}; \quad \Delta_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{vmatrix}; \quad \Delta_3 = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{vmatrix}; \quad \dots; \quad \Delta_n = \det A.$$

Теорема 1 [критерий Сильвестра]. 1) Квадратичная форма q(x) является положительно определенной тогда и только тогда, когда все ее главные миноры положительны;

2) квадратичная форма q(x) является отрицательно определенной тогда и только тогда, когда ее главные миноры нечетного порядка отрицательны, а четного — положительны.