Examen Técnico: Data Scientist

Duración: 4 horas **Instrucciones**:

- Responde cada sección siguiendo las instrucciones proporcionadas.
- Crea un repositorio Git público y haz commit regularmente del progreso.
- Usa Python 3, SQL, Pandas, y herramientas relacionadas según corresponda.
- Documenta claramente tus pasos, decisiones y supuestos en cada ejercicio.
- Incluye **pruebas unitarias** y scripts modularizados en Python.

Ejercicio 0: Generación de Datos Sintéticos

Tareas

1. Escribe un script en Python que genere un conjunto de datos con al menos **50,000 filas** siguiendo este esquema:

```
{
   "order_id": "uuid",
   "customer_id": "random_int(1, 10_000)",
   "product_id": "random_int(1, 1_000)",
   "quantity": "random_int(1, 20)",
   "price": "random_float(1.0, 500.0)",
   "discount": "random_float(0.0, 0.3)",
   "order_date": "random_date(2023-01-01, 2024-12-31)",
   "shipping_priority": "random_choice(['Low', 'Medium', 'High'])",
   "region": "random_choice(['North', 'South', 'East', 'West'])"
}
```

- Asegúrate de que:
 - o order_id sea único.
 - order_date esté distribuido con un patrón de estacionalidad y tendencia creciente (más órdenes en 2024).
 - o discount esté correlacionado inversamente con price.
 - shipping_priority sea proporcional a region (por ejemplo, más alta prioridad en "North").

- 2. Introduce ruido y valores faltantes en un 5% de las filas siguiendo estos criterios:
 - o En al menos tres columnas aleatorias por fila.
 - Opciones para ruido: eliminar valores, introducir cadenas como "NULL", o números extremos (ej. -9999).
- Guarda el dataset generado en raw_sales_data.csv.

Ejercicio 1: Procesamiento de Datos

Usando el archivo raw_sales_data.csv:

Tareas

- 1. Propón y describe brevemente una estrategia para manejar los datos faltantes, considerando tanto la imputación como la eliminación.
- 2. Limpia y procesa los datos:
 - Identifica valores inválidos o fuera de rango.
 - Realiza imputaciones dinámicas según patrones detectados (por ejemplo, completar price basado en el promedio de productos similares).
- 3. Calcula:
 - o Ingreso total por cliente considerando descuentos.
 - Producto más vendido por región y ingreso total generado por cada región.
 - Distribución de prioridad de envío por región.
- 4. Guarda el dataset limpio y procesado en cleaned_sales_data.csv.

Ejercicio 2: Análisis con SQL

Dado el esquema de base de datos (puedes usar sqlite3):

- Tabla: customers
 - customer_id (PK)
 - o name
 - email
 - o region
- Tabla: orders
 - order_id (PK)
 - o customer_id (FK)
 - o order_date
 - o shipping_priority

- Tabla: order_details
 - order_detail_id (PK)
 - o order_id (FK)
 - o product_id
 - o quantity
 - o price
 - discount

Tareas

- 1. Escribe consultas para:
 - o Calcular el **ingreso total por cliente**, ordenado de mayor a menor.
 - Encontrar el producto más vendido en cada región considerando el volumen total (quantity * price).
 - o Calcular el ingreso promedio por cliente y región para cada mes.
 - Identificar a los top 5 clientes con más ingresos generados en el último año, junto con el número de órdenes realizadas.
- 2. Documenta cualquier optimización aplicada a las consultas (uso de índices, subconsultas, etc.).

Ejercicio 3: Visualización y Reportes

Usando los datos limpios de cleaned_sales_data.csv:

- 1. Genera un reporte con:
 - Ingresos mensuales totales por región.
 - o Top 10 productos con mayores ingresos (por precio y cantidad).
 - Relación entre prioridad de envío y descuento aplicado.
- Visualiza:
 - Gráfica de barras para ingresos mensuales por región.
 - Mapa de calor que muestre la correlación entre quantity, price, y discount.
- 3. Describe brevemente cualquier patrón detectado (ejemplo: estacionalidad, diferencias regionales).

Ejercicio 4: Modelado Predictivo

Usando cleaned_sales_data.csv:

- 1. Realiza un análisis exploratorio avanzado:
 - Identifica estacionalidad y tendencias.
 - o Detecta outliers y evalúa su impacto en las ventas.
- 2. Define una estrategia para predecir el **ingreso diario total**:
 - o Divide los datos en entrenamiento (80%) y prueba (20%).
 - Implementa modelos:
 - Regresión lineal múltiple considerando quantity, price, discount, y region.
 - Modelo basado en Random Forest o Gradient Boosting para capturar relaciones no lineales.
 - Opcional: Usa técnicas de feature engineering, como generación de variables temporales.
- 3. Evalúa los modelos usando:
 - MAE, R^2, y análisis de residuales.
 - o Describe el rendimiento y si el modelo es aplicable en un entorno real.