

Description

Image

Caption

Medium carbon steel is the material of cheap tools. Low alloy steels are much superior and only a little more expensive -- quality tools are low alloy. © Granta Design

The material

Medium carbon steel (0.25-0.7% carbon) hardens when quenched - a quality that gives great control over properties. "Hardenability" measures the degree to which it can be hardened in thick sections; plain carbon steels have poor hardenability - additional alloying elements are used to increase it (see Low alloy steels). Medium carbon steels are used on an enormous scale for railroad tracks; there are many other lower-volume applications.

Composition (summary)

Fe/0.3 - 0.7%C

General propertie	

487	-	493	lb/ft^3			
* 0.236	-	0.263	USD/lb			
1610						
29	-	31.3	10^6 psi			
11.2	-	12.3	10^6 psi			
22.9	-	24.7	10^6 psi			
0.285	-	0.295				
44.2	-	131	ksi			
59.5	-	174	ksi			
44.2	-	255	ksi			
4	-	39	% strain			
120	-	565	HV			
* 33.2	-	87	ksi			
* 10.9	-	83.7	ksi.in^0.5			
* 2.2e-4	-	0.00119				
0.50-0		0.70-0	۰.			
			°F			
			°F			
* -90.7	-	-27.7	°F			
Good co	Good conductor					
26	-	31.8	BTU.ft/h.ft^2.F			
	* 0.236 1610 29 11.2 22.9 0.285 44.2 59.5 44.2 4 120 * 33.2 * 10.9 * 2.2e-4 2.52e3 * 698 * -90.7 Good co	* 0.236 - 1610 29 - 11.2 - 22.9 - 0.285 - 44.2 - 59.5 - 44.2 - 4 - 120 - 33.2 - * 10.9 - * 2.2e-4 - 2.52e3 - * 698 - * -90.7 - Good conduction	* 0.236			

.

DT11/11 0F

. . . .

Specific heat capacity Thermal expansion coefficient	0.105 5.56	-	0.124 7.78	BTU/lb.°F µstrain/°F
Electrical properties Electrical conductor or insulator? Electrical resistivity	Good conductor 15 - 22 uohr			µohm.cm
Optical properties Transparency	Opaque		22	допп.ст
Processability Castability	2	_	3	
Formability Machinability	4 3		5 4	
Weldability Solder/brazability	5 5			
Eco properties Embodied energy, primary production CO2 footprint, primary production Recycle	* 2.72e3 * 1.72		3.01e3 1.9	kcal/lb lb/lb

Supporting information

Design guidelines

Hardenability measures the degree to which it can be hardened in thick sections; plain carbon steels have poor hardenability - additional alloying elements are used to increase it (see Low alloy steels).

Technical notes

The two standard classifications for steels, the AISI and the SAE standards, have now been merged. In the SAE-AISI system, each steel has a four-digit code. The first two digits indicate the major alloying elements. The second two give the amount of carbon, in hundredths of a percent. Thus the plain carbon steels have designations starting 10xx, 11xx, 12xx or 14xxx, depending on how much manganese, sulfur and phosphorus they contain. The common low-carbon steels have the designations 1015,1020, 1022, 1117,1118; the common medium carbon steels are 1030,1040, 1050, 1060, 1137, 1141, 1144 and 1340; the common high alloy steels are 1080and 1095. More information on designations and equivalent grades can be found on the Granta Design website at www.grantadesign.com/designations

Phase diagram

Phase diagram description

Medium carbon steels are alloys of iron (Fe) with 0.3 - 0.7% carbon (C), for which this is the phase diagram.

Typical uses

General construction; general mechanical engineering; automotive; tools; axles; gears; bearings; cranks; shafts; gears; bells; cams, knives and scissors.

Links

Reference

ProcessUniverse

Producers