Regressão Linear Múltipla (Parte 1)

Onde estamos e para onde vamos?

Nas aula anteriores, aprendemos a fazer regressão linear com uma única variável:

Área da casa [m²] (x)	Custo em R\$ (y)
32	51.000
149	265.000
78	110.000
220	315.000

Variável 1 (característica 1): Área da casa

Modelo Utilizado:

$$f_{w,b} = wx + b$$

Onde estamos e para onde vamos?

Agora estudaremos regressão linear com múltiplas variáveis:

Área da casa [m^2] (x_1)	Número de quartos (x_2)	Andares (x_3)	Idade [anos] (x_4)	Custo em R\$ (y)
32	1	1	2	51.000
149	3	2	10	265.000
78	2	1	30	110.000
220	4	2	5	315.000

Variável 1 (característica 1): Área da casa

Variável 2 (característica 2): Número de quartos

Variável 3 (característica 3): Número de andares

Variável 4 (característica 4): idade da construção

Levando em conta mais características, é esperado que o modelo seja capaz de prever melhor o valor de uma casa?

Regressão Linear Múltipla

Regressão Linear Múltipla

Área da casa $[m^2](x_1)$	Número de quartos (x_2)	Andares (x_3)	Idade [anos] (x_4)	Custo em R\$ (y)
32	1	1	2	51.000
149	3	2	10	265.000
78	2	1	30	110.000
220	4	2	5	315.000

Notação:

$$x_j = j$$
-ésima característica $\hspace{0.2cm} o \hspace{0.2cm} j = 1, 2, \cdots, 4$

$$n = \text{número total de características} \rightarrow n = 4$$

$$\overrightarrow{x}^{(i)} = \text{características do } i\text{-ésimo exemplo de treinamento} \rightarrow \overrightarrow{x}^{(2)} = \begin{bmatrix} 149 & 3 & 2 & 10 \end{bmatrix}$$

$$\overrightarrow{x}_{j}^{(i)}=$$
 valor da característica j do i -ésimo exemplo de treinamento \rightarrow $\overrightarrow{x}_{2}^{(2)}=3$

Observação:

Para simplificar a notação, vamos tratar a sobre-barra como um elemento opcional de notação, tal que $\overrightarrow{x}_j^{(2)}=x_j^{(2)}$, por exemplo. \to (serve apenas para enfatizar que trata-se de um vetor).

Quiz

Seja o conjunto de dados abaixo. Quanto vale $\overrightarrow{x}_{4}^{(3)}$?

Área da casa [m²] (x_1)	Número de quartos (x_2)	Andares (x_3)	Idade [anos] (x_4)	Custo em R\$ (y)
32	1	1	2	51.000
149	3	2	10	265.000
78	2	1	30	110.000
220	4	2	5	315.000

Regressão Linear Múltipla

Antes, na regressão linear com uma única variável, tínhamos o seguinte modelo:

$$f_{w,b}(x) = wx + b$$

Agora, na regressão linear com múltiplas variáveis, teremos:

$$f_{w,b}(x) = w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4 + b$$

Exemplo:

$$f_{w,b}(x) = 0.1x_1 + 4x_2 + 10x_3 - 2x_4 + 80 \rightarrow \text{valor da casa em milhares de R}$$

 x_1 : Área da casa

 x_2 : Número de quartos

 x_3 : Número de andares

 $x_4\colon \mathsf{idade}\; \mathsf{da}\; \mathsf{construção}$

Olhando com detalhes o modelo

Área da casa [m^2] (x_1)	Número de quartos (x_2)	Andares (x_3)	Idade [anos] (x_4)	Custo em R\$ (y)
32	1	1	2	51.000
149	3	2	10	265.000
78	2	1	30	110.000
220	4	2	5	315.000

O que significam os coeficientes do modelo?

 $f_{w,b}(x) = 0.1x_1 + 4x_2 + 10x_3 - 2x_4 + 80 \quad \rightarrow \quad \text{valor da casa em milhares de R\$}$

- Note que cada m² adiciona R\$ 100 ao valor da casa
- Cada quarto adiciona R\$ 4000 ao valor da casa
- Ocada andar adiciona R\$ 10000 ao valor da casa
- Ocada ano reduz em R\$ 2000 o valor da casa
- R\$ 80000 seria o "valor base" de qualquer casa

Olhando com detalhes o modelo

Número de quartos (x_2)	Andares (x ₃)	Idade [anos] (x_4)	Custo em R\$ (y)
1	1	2	51.000
3	2	10	265.000
2	1	30	110.000
4	2	5	315.000
	1 3 2 	1 1 3 2 2 2 1 1	1 1 2 3 10 2 10 2 1 30

O modelo abaixo é bom para estimar o preço das casas?

$$f_{w,b}(x)=0.1x_1+4x_2+10x_3-2x_4+80 \rightarrow \text{valor da casa em milhares de R}$$

Para a primeira casa do conjunto de dados, temos:

$$f_{w,h}(x) = 0.1 \cdot 32 + 4 \cdot 1 + 10 \cdot 1 - 2 \cdot 2 + 80 = 93.2$$

Para as demais casas, temos

$$f_{w,h}(x) = 0.1 \cdot 149 + 4 \cdot 3 + 10 \cdot 2 - 2 \cdot 10 + 80 = 106.9$$

$$f_{w,b}(x) = 0.1 \cdot 78 + 4 \cdot 2 + 10 \cdot 1 - 2 \cdot 30 + 80 = 45.8$$

$$f_{w,h}(x) = 0.1 \cdot 220 + 4 \cdot 4 + 10 \cdot 2 - 2 \cdot 5 + 80 = 128.0$$

Olhando com detalhes o modelo

Área da casa [m^2] (x_1)	Número de quartos (x_2)	Andares (x_3)	Idade [anos] (x_4)	Custo em R\$ (y)
32	1	1	2	51.000
149	3	2	10	265.000
78	2	1	30	110.000
220	4	2	5	315.000
				l ,

Conclusão

Observando como o modelo em tela se comporta para os dados que temos, parece que um modelo mais assertivo poderia ter sido obtido.

Pergunta:

Como obter um modelo mais preciso?

Um modelo com n características

Um modelo com n características é dado por

$$f_{w,b}(x) = w_1 x_1 + w_2 x_2 + \dots + w_n x_n + b$$

Parâmetros do modelo:

$$\overrightarrow{w} = [w_1 \quad w_2 \quad \cdots \quad w_n]$$

 $b \rightarrow b$ não é um vetor, mas sim um escalar!

Características presentes no modelo:

$$\overrightarrow{x} = [x_1 \quad x_2 \quad \cdots \quad x_n]$$

Utilizando essa notação, note que podemos reescrever $f_{w,b}(x)$ na seguinte forma compacta:

$$f_{w,b}(x) = \overrightarrow{w} \cdot \overrightarrow{x} + b$$

onde · denota o produto escalar, tal que

$$\overrightarrow{w} \cdot \overrightarrow{x} = w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$

Vetorização

Vetorização

Agora que começamos utilizar vetores, antes de continuarmos nossos estudos sobre a Regressão Linear Múltipla, falaremos sobre o conceito de **Vetorização**.

Importância da Vetorização

Ao implementar um algoritmo de Aprendizado de Máquina, a vetorização provê dois benefícios principais:

- Seu código torna-se mais compacto.
- 2 Seu algoritmo é capaz de rodar de forma mais rápida e eficiente.

Um código escrito de forma vetorizada é também capaz de extrair máximo proveito de:

- bibliotecas numéricas modernas e otimizadas para cálculo matemático, como a biblioteca de Álgebra Linear NumPy, por exemplo.
- elementos de hardware voltados ao processamento intenso de dados, como GPUs (Graphical Processing Units), por exemplo.

Sejam os seguintes parâmetros e características de um modelo:

$$\overrightarrow{w}=\left[\begin{array}{ccc} w_1 & w_2 & w_3 \end{array}\right] \quad o \quad (n=3)$$

$$b \text{ (escalar)}$$

$$\overrightarrow{x}=\left[\begin{array}{ccc} x_1 & x_2 & x_3 \end{array}\right]$$

Em Álgebra Linear, a indexação (contagem de elementos) começa em 1.

Em código escrito em Python (NumPy), a indexação começa em 0.

Exemplo:

```
w = np.array([1.0, 2.5, -3.3])

b = 4

x = np.array([10, 20, 30])
```

Para acessar o primeiro elemento de w, usamos w[0]. Para acessar o segundo elemento de w, usamos w[1]. Para acessarmos o terceiro elemento de w, usamos w[2].

Idem para os elementos do vetor x.

Suponha que você quer implementar uma previsão feita pelo modelo

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = w_1 x_1 + w_2 x_2 + w_3 x_3 + b$$

Código sem vetorização:

$$f = w[0]*x[0] + w[1]*x[1] + w[2]*x[2] + b$$

Pergunta:

Seria fácil programar a linha de código acima se tivéssemos n=1000?

Código ainda sem vetorização, mas usando loop for:

Sabemos que

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = \left(\sum_{j=1}^{n} w_j x_j\right) + b$$

Portanto poderíamos usar o seguinte código: f = 0

```
for j in range(0,n):

f = f + w[j] * x[j]
f = f+h
```

Observação 1: Em Python, j in range(0,n) significa que j será $0,1,2,\cdots,n-1$. **Observação 2:** Em Python, o comando range(0,n) faz a mesma coisa que range(n)

Pergunta:

Apesar de ser melhor que a nossa primeira implementação, essa segunda seria ainda a forma mais otimizada para a realização dos cálculos?

Código COM vetorização:

Sabendo que

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = \overrightarrow{w} \cdot \overrightarrow{x} + b$$

podemos implementar tal operação matemática usando uma **única linha de código**: f = np.dot(w,x)+b

Observação:

Ao utilizarmos comandos da biblioteca NumPy, como f = np.dot(w,x)+b, por exemplo, estamos otimizando o nosso código, especialmente para os casos em que n é grande.

Isso acontece pois, por trás, a biblioteca **NumPy** utiliza **paralelismo de hardware** para a realização das operações matemáticas, mesmo que você esteja usando uma CPU comum ao invés de uma GPU.

17/20

Um segundo exemplo de Vetorização

Suponha que você deseja implementar o Método do Gradiente para um modelo com b=0, $\overline{w}=(w_1,w_2,\cdots,w_{16})$, derivadas $\overline{d}=(d_1,d_2,\cdots,d_{16})$ e $\alpha=0.1$, tal que $w_j=w_j-0.1d_j$

Código sem vetorização:

for j in range(0,16): w[j] = w[j] - 0.1*d[j]

Código COM vetorização:

w = w - 0.1*d

De olho no código!

Vamos agora aprender conceitos mais específicos acerca de Python, NumPy e Vetorização

Nome do arquivo que trabalharemos agora:

codigo - Python, NumPy e Vetorização.ipynb

Observação:

Trata-se de uma revisão bastante importante sobre criação de vetores e matrizes usando a biblioteca NumPv. O código também demonstra, por meio de um exemplo, a importância da vetorização.

19/20

Atividade de aula

Parte 1

Rode todo o "codigo - Python, NumPy e Vetorização.ipynb" sem fazer qualquer tipo de alteração. Certifique-se de que você o compreendeu.

Parte 2

Qual foi a diferença de tempo observada entre rodar comandos usando "loop for" versus vetorização?