Lógica

Mauro Polenta Mora

Ejercicio 9

Consigna

Sea el conjunto $\mathcal{T}(PROP)$ de los árboles etiquetados con elementos de PROP y la función:

$$ARBOL: PROP \rightarrow \mathcal{T}(PROP)$$

que asocia cada proposición de PROP con su árbol (vista en el teórico).

(a) Defina una función $CantAt: PROP \to \mathbb{N}$ tal que $CantAt(\varphi)$ sea la cantidad de átomos que ocurren en φ .

Por ejemplo, $CantAt((p_1 \wedge (\neg p_2))) = 2$.

(b) Defina la función $CantNodos: \mathcal{T}(PROP) \to \mathbb{N}$ tal que $CantNodos(ARBOL(\varphi))$ sea la cantidad de nodos del árbol de φ .

Por ejemplo, $CantNodos(ARBOL((p_1 \wedge (\neg p_2)))) = 4.$

(c) Considere la función sub del Ejercicio 5. Demuestre que $|sub(\varphi)| \leq CantNodos(ARBOL(\varphi))$.

Resolución (parte a)

Esta parte la podemos resolver usando el ERP en PROP. Veamos como hacerlo:

- 1. $CantAt(\varphi) = 1 \text{ con } \varphi \in AT$
- 2. $CantAt((\alpha * \beta)) = CantAt(\alpha) + CantAt(\beta) \operatorname{con} \alpha, \beta \in PROP$
- 3. $CantAt((\neg \alpha)) = CantAt(\alpha) \text{ con } \alpha \in PROP$

Observación: En este caso comparado con el ejercicio anterior, ignoramos el paso de las funciones H y vamos directo a la definición de CantAt. Es muy claro ver como pasamos de definirlas explicitamente a definir CantAt directamente

Resolución (parte b)

Para esta parte tendremos que usar el ERP en $\mathcal{T}(PROP)$. Definamos primero el esquema (ya que no lo hemos visto todavía) y luego apliquemoslo a la resolución del ejercicio.

ERP para $\mathcal{T}(PROP)$

Sea B un conjunto, y:

- 1. una función $H_{\mathcal{T}(AT)}: \mathcal{T}(AT) \to B$, y
- 2. para cada conectivo $* \in C_2$, una función $H_* : \mathcal{T}(PROP) \times B \to B$, y:
- 3. una función $H_{\neg}: \mathcal{T}(PROP) \times B \to B$

Entonces, existe una única función $F: \mathcal{T}(PROP) \to B$ tal que:

- 1. $F(\mathcal{T}(\varphi)) = H_{\mathcal{T}(AT)}(\mathcal{T}(\varphi)) \text{ con } \varphi \in AT$
- 2. $F(\mathcal{T}(\alpha * \beta)) = H_*(\mathcal{T}(\alpha * \beta), F(\mathcal{T}(\alpha * \beta))) \text{ con } \alpha, \beta \in PROP$
- 3. $F(\mathcal{T}(\neg \alpha)) = H_{\neg}(\mathcal{T}(\neg \alpha), F(\mathcal{T}(\neg \alpha)))$ con $\alpha \in PROP$

Donde $\mathcal{T}(\varphi)$ es el árbol etiquetado de φ para cualquier $\varphi \in PROP$.

ATENCIÓN: El resto del ejercicio se basa en si esto está correcto o no. Entiendo que debería ser correcto, pero no lo tengo 100% confirmado.

Continuación del ejercicio

Con esto podemos definir CantNodos de la siguiente forma:

- 1. $CantNodos(\mathcal{T}(\varphi)) = 1 \text{ con } \varphi \in AT$
- 2. $CantNodos(\mathcal{T}(\alpha * \beta)) = 1 + CantNodos(\mathcal{T}(\alpha)) + CantNodos(\mathcal{T}(\beta)) \text{ con } \alpha, \beta \in PROP$
- 3. $CantNodos(\mathcal{T}(\neg \alpha)) = 1 + CantNodos(\mathcal{T}(\alpha)) \text{ con } \alpha \in PROP$

Resolución (parte c)

Queremos demostrar que:

$$|sub(\varphi)| \le CantNodos(ARBOL(\varphi)) \quad \forall \varphi \in PROP$$

Para aclarar, observemos que $|sub(\varphi)|$ es el cardinal del conjunto de subfórmulas de φ .

Para demostrar esto, vamos a usar el PIP sobre PROP:

Definición de $sub: PROP \rightarrow 2^{PROP}$

Se hizo en la clase 5 de teórico:

- 1. $sub(\varphi) = \{\varphi\} \text{ con } \varphi \in AT$
- 2. $sub((\alpha * \beta)) = sub(\alpha) \cup sub(\beta) \cup \{(\alpha * \beta)\}\$
- 3. $sub((\neg \alpha)) = sub(\alpha) \cup \{(\neg \alpha)\}\$

PASO BASE

$$P(\varphi): sub(\varphi) \leq CantNodos(ARBOL(\varphi)) \text{ con } \varphi \in AT$$

Por la regla 1 de ambas las funciones que estamos usando tenemos que:

- 1. $|sub(\varphi)| = |\{\varphi\}| = 1$
- 2. $CantNodos(ARBOL(\varphi)) = 1$

Por lo que se cumple la propiedad.

PASO INDUCTIVO

(H)
$$P((\varphi)) : sub(\varphi) \leq CantNodos(ARBOL(\varphi)) \text{ con } \varphi \in PROP$$

PARTE 1

$$(\mathrm{T}) \ P((\varphi_1 * \varphi_2)) : sub(\varphi_1 * \varphi_2) \leq CantNodos(ARBOL(\varphi_1 * \varphi_2)) \ \mathrm{con} \ \varphi_1, \varphi_2 \in PROP$$

Para demostrar esto, vamos a usar la definición de sub y CantNodos:

1.
$$|sub(\varphi_1 * \varphi_2)| = |sub(\varphi_1) \cup sub(\varphi_2) \cup \{(\varphi_1 * \varphi_2)\}| = |sub(\varphi_1)| + |sub(\varphi_2)| + |\{(\varphi_1 * \varphi_2)\}| = |sub(\varphi_1)| + |sub(\varphi_2)| + 1$$

$$2. \ \ CantNodos(ARBOL(\varphi_1 * \varphi_2)) = 1 + CantNodos(ARBOL(\varphi_1)) + CantNodos(ARBOL(\varphi_2)) + CantNodos(A$$

Ahora comparemos ambos valores:

$$|sub(\varphi_1)| + |sub(\varphi_2)| + 1 \leq 1 + CantNodos(ARBOL(\varphi_1)) + CantNodos(ARBOL(\varphi_2)) \iff |sub(\varphi_1)| + |sub(\varphi_2)| + 1 \leq 1 + CantNodos(ARBOL(\varphi_1)) + CantNodos(ARBOL(\varphi_2)) + 1 \leq 1 + CantNodos(ARBOL(\varphi_1)) + CantNodos(ARBOL(\varphi_2)) + 1 \leq 1 + CantNodos(ARBOL(\varphi_2)) + CantNodos(ARBOL($$

Pero por hipótesis tenemos que:

- $\begin{array}{ll} 1. \ |sub(\varphi_1)| \leq CantNodos(ARBOL(\varphi_1)) \\ 2. \ |sub(\varphi_2)| \leq CantNodos(ARBOL(\varphi_2)) \end{array}$

Entonces por estas observaciones, la propiedad se cumple

PARTE 2

$$\text{(T)} \ \ P((\neg \varphi_1)) : sub(\neg \varphi_1) \leq CantNodos(ARBOL(\neg \varphi_1)) \text{ con } \varphi_1 \in PROP$$

Para demostrar esto, vamos a usar la definición de sub y CantNodos:

- 1. $|sub(\neg \varphi_1)| = |sub(\varphi_1) \cup \{(\neg \varphi_1)\}| = |sub(\varphi_1)| + 1$
- 2. $CantNodos(ARBOL(\neg \varphi_1)) = 1 + CantNodos(ARBOL(\varphi_1))$

Ahora comparemos ambos valores:

$$|sub(\varphi_1)| + 1 \leq 1 + CantNodos(ARBOL(\varphi_1)) \iff |sub(\varphi_1)| \leq CantNodos(ARBOL(\varphi_1))$$

Donde lo último se cumple por hipótesis. Esto prueba la propiedad para todo $\varphi \in PROP$