

EKSAMEN I KJ 2050, GRUNNKURS I ANALYTISK KJEMI (7,5 sp)

Torsdag 13. desember 2007 kl. 9.00 – 13.00.

Oppgavesettet er på to sider. Tillatte hjelpemidler: lommekalkulator.

Alle oppgaver skal besvares, men i *oppgave 4 besvares deloppgave a, samt en av de to valgfrie b-deloppgavene.* Sensurfrist 14. januar 2008.

Kontaktpersoner under eksamen: Øyvind Mikkelsen (928 99 450)

Oppgave 1. (7p + 10p)

a. Gi en detaljert beskrivelse av hvordan Ca²⁺ i en vannprøve kan bestemmes ved komplekstitrering. Angi mulige interferenser, og vurder om noen av interferensene eventuelt enkelt kan maskeres bort og hvordan.

b. En Ca^{2+} (0,03 M) løsning skal titreres mot EDTA (0,06M). Beregn relativ titrerfeil hvis pH = 12 (det sees bort fra eventuell felling), og gjenværende Ca^{2+} konsentrasjon etter titrering er $1.5*10^{-7}$ M. Vurdere om metoden er god eller dårlig. Beregn så teoretisk gjenværende Ca^{2+} konsentrasjonen ved ekvivalenspunktet under de gitte betingelsene. Sammenlign svaret som er funnet for den relative titrerfeilen mot teoretisk gjenværende Ca^{2+} konsentrasjon. Er det over- eller undertitrert? Hvordan blir forholdet mellom teoretisk gjenværende Ca^{2+} konsentrasjon og angitt gjenværende konsentrasjon ($1.5*10^{-7}$ M) hvis pH justeres til 11? Kommenter svaret.

$$\begin{array}{ll} DATA \; (H_4X = EDTA) \\ HX^{3^-} = H^+ + X^{4^-} & K_1 = 5.5 \, * \, 10^{-11} \\ Ca^{2^+} + X^{4^-} = CaX^{2^-} & K_{Ca} = 5.0 \, * \, 10^{10} \end{array}$$

Oppgave 2. (7p + 6p)

a. Beskriv detaljert fremgangsmåte for iodometrisk titrering av kobber (Cu²⁺).

b. Det er også mulig å bestemme kobber ved hjelp av elektrogravimetri. Beskriv kort fremgangsmåte for dette illustrert med figur, og diskuter metoden mot den iodometrisk titreringen.

Oppgave 3. (5p + 10p)

a. Et analysefirma har fått i oppdrag å kartlegge spredningsmønsteret fra en lokal metallforurensingskilde i et lokalt drikkevann med tilhørende elver. Skisser kort en mulig fremgangsmåte for hvordan oppdraget kan utføres.

Enten

b. I forbindelse med studier av metallers bindingsform (specieringsstudier) har man både metoder som i stor grad og metoder som i liten grad selv kan forårsake forskyvning av specielikevektene i prøven under selve analysen. Beskriv kort prinsippene for to analytiske metoder som kan brukes til å studere spesifikke ion, og som i liten grad forskyver specielikevektene. Angi omtrentlig deteksjonsgrense for disse teknikkene.

Eller

b. Beskriv prinsippene som danner grunnlag for atomabsorpsjonspektrofotometri (AAS), og hvilket bruksområde metoden har. Lag så en enkel tabell der det tydelig fremgår hva slags fraksjoner / specier av en prøve som måles ved følgende teknikker; flamme atomabsorpsjonspektrofotometri, synlig absorpsjonsspektrometri (dvs. prøve er i væskeform i en kyvette), ICP-MS, stripping differensialpuls voltammetri, potensiometri. Angi også omtrentlig deteksjonsgrense for disse teknikkene i tabellen.

Oppgave 4(5p + 5p)

- a. Gjør rede for hvilke hensyn som er viktig å ta i fellingstitreringer og hvorfor?
- b. Skisser kort prinsippene for Volhart titreringen og Mohr titrering.

Oppgave 5. (10p)

Kryss av for riktig eller uriktig påstand

	Riktig	Galt
Ved iod titrering i basisk miljø kan følgende forstyrrende reaksjon skje; $I_2 + OH^- \Leftrightarrow IO^- + I^- + H^+$		
Innstilling av iod ved tiosulfat er gitt ved reaksjonen; $2 \Gamma + 2 S_2 O_3^{2-} \rightarrow I_2 + S_4 O_6^{2-}$		
Jern(III) danner rødfarget kompleks med tiocyanat som kan utnyttes til spektro- fotometrisk bestemmelse av treverdig jern.		
Den spektrofotometrisk bestemmelse i utsagnet over må foregå i sterkt basisk miljø for å hindre hydrolyse.		
En måte å bestemme sulfat på er å felle det som BaSO ₄ .		
DGT står for Diffusion Gradients in Thin films		
DGT er ikke en analyseteknikk i seg selv, men en form for prøvetaking.		
I kromatografi benyttes anionbyttere til å skille metall komplekser på bakgrunn av deres stabilitet, mens organiske og uorganiske komplekser kan separeres ved kationbyttere.		
Oppløsningen (R_s) mellom to topper i et kromatogram avtar med roten av platetallet (N) .		
Ved specieringstudier kan kromatografiske metoder innvirke på specielikevektene og forrykke disse.		