

University of Asia Pacific

TRANSDUCERS

Md. Khairul Alam Lecturer, EEE, UAP

CONTENTS

- > WHAT IS TRANSDUCER
- > ELECTRICAL TRANSDUCER
- > CLASSIFICATION OF TRANSDUCERS
- > SELECTION CRITERIA OF THE TRANSDUCERS
- > BASIC CONSTRUCTION OF TRANSDUCERS
- > RESISTANCE TEMPERATURE DETECTOR
- > STRAIN GUAGE
- > APPLICATIONS, ADVATAGES AND DISADVANTAGES

WHAT IS TRANSDUCER

A transducer is an electronic device that converts energy from one form to another (mechanical, visual, acoustic, electrical, thermal, chemical).

Example:

- Microphones,
- > Loudspeakers,
- > Thermometers

TRANSDUCER

- Sensors (transducer which converts a measurable quantity (sound pressure level, optical intensity, magnetic field, etc) to an electrical voltage or an electrical current).
- Actuators (transducer which converts an electrical signal into another form of energy, such as sound, pressure, light, mechanical movement).

Transducers specifications

- Range
- Span
- Error
- Accuracy
- Sensitivity
- Nonlinearity
- Resolution
- Stability
- Dead band/time
- Response time

Sensing Element: The physical quantity or its rate of change is sensed and responded to by this part of the transistor.

Transduction Element: The output of the sensing element is passed on to the transduction element. This element is responsible for converting the non-electrical signal into its proportional electrical signal.

ELECTRICAL TRANSDUCERS

- The electrical transducers is one which converts the nonelectrical quantity into the equivalent electrical quantity.
- Non-electrical quantity such as force, displacement, stress, temperature.
- Electrical quantity such as current, voltage

CLASSIFICATION OF TRANSDUCERS

- > On the basis of transduction form used.
- > As primary and secondary transducers.
- > As passive and active transducers.
- > As analog and digital transducers.
- > As transducers and inverse transducers

ON THE BASIS OF TRANSDUCTION FORM USED

- Resistive Transducers.
 - Photoconductive Cell
 - **Thermistor**
- Capacitive Transducers.
 - Capacitor microphone
 - Dielectric gauge
- Inductive Transducers.
 - Magnetic circuit transducer
- Voltage and current Generating Transducers.
 - Hall effect pickup

Passive and Active Transducers

If transducers derive the power require for transduction from an power source, then this kind of transducer are known as passive transducer

Example:

- (1) LDR
- (2) FSR
- When there is no need for any source then these type of transducers are Active transducers

Example:

- (1)Thermocouple
- (2)Piezoelectric crystal

Inverse Transducers

These type of transducers convert a electrical quantity into non-electrical quantity

Example

- Piezoelectric crystal
- > Analog ammeter
- ➤ Voltmeter

Potentiometer

- > Angular and
- Linear Position

Strain Gauge

Convert physical deformation in the shape to resistance.

Photoresistor

Phototransistor

Thermistors

Thermoelectric sensors

- ✓ **Seebeck effect** (When two dissimilar metal wires are connected at one end forming a junction, and that junction is heated, a voltage is generated across the junction (see the figure below).
- ✓ Peltier effect (electrical current would produce heating or cooling at the junction of two dissimilar metals)

Thermocouple

Peltier plate

SELECTION CRITERIA OF THE TRANSDUCERS

- Operating principle
- Sensitivity
- Operating range
- Accuracy
- **Errors**
- > Environmental capability
- Insensitive to unwanted Signal
- > Stability

APPLICATION

- > Audio/video equipment
- > Pressure indication
- > Measurement of displacement
- Alarms

Thank You