Departamento de Electrónica, Telecomunicações e Informática

Introdução à Arquitetura de Computadores

LEI, LEAE, 1º Ano, 2º semestre LEC, 2º Ano, 2º semestre

Dossiê Pedagógico

Índice

1.	Enquadramento da disciplina na Licenciatura em Engenharia Informática do DETI	2
2.	Objectivos da disciplina	2
3.	Conhecimentos prévios	2
4.	Bibliografia Básica	2
5.	Programa	3
ı	– Introdução: sistemas de computação de uso geral. Microprocessadores	3
ı	II – Representação da informação e operações básicas	3
ı	III – Circuitos Lógicos	3
ľ	V – O Modelo de Von Neumann	3
١	V – A arquitetura MIPS	3
١	VI – A linguagem assembly e o assembler	4
١	VII — Organização interna do processador	4
١	VIII – Comunicação com o exterior: entrada e saída de dados	4
6.	Avaliação	5
F	Regras gerais	5
ļ	Avaliação na época de recurso	5
٦	Trabalhadores estudantes	5
7.	Calendário previsto das aulas teóricas	6
8.	Programa da componente laboratorial	9
9.	Regras gerais de funcionamento da disciplina	10
F	Regime de faltas	10
E	E-mails	10
E	Esclarecimento de dúvidas. Funcionamento das OT	10
ı	lícitos	10
10.	Equipa docente	10

1. Enquadramento da disciplina na Licenciatura em Engenharia Informática, na Licenciatura em Engenharia Aeroespacial e na Licenciatura em Engenharia Computacional

A disciplina de Introdução à Arquitetura de Computadores é uma disciplina da Licenciatura em Engenharia Informática (LEI), da Licenciatura em Engenharia Aeroespacial (LEAE) e ainda oferecida como opção na Licenciatura em Engenharia Computacional (LEC). A disciplina é lecionada no 2º semestre do 1º ano (2º ano no caso da LEC), com uma escolaridade semanal de 2h de aulas teórico-práticas (TP) e 2h de aulas práticas (P). O volume de trabalho exigido pela disciplina é de 6 ECTS, correspondendo a 162 (6x27h) horas de trabalho no total do semestre.

Considerando que 10% do esforço será dedicado à preparação para exame, e atendendo a que o semestre tem 15 semanas de aulas, resulta que o número médio de horas por semana dedicados à disciplina é de 11h. Assim, para além das 4h de aulas, espera-se que os alunos dediquem semanalmente 7h horas de estudo adicional à disciplina.

A disciplina de *Introdução à Arquitetura de Computadores* (IAC) é a primeira do elenco de disciplinas obrigatórias da área científica de Arquitectura dos Sistemas Computacionais. A organização dos computadores digitais numa perspetiva funcional, através da descrição do reportório de instruções e da programação em *assembly*, e estrutural (descrição da estrutura interna básica dos processadores), é do que se ocupa IAC. Os conhecimentos aqui adquiridos fornecem a base necessária para o estudo de Sistemas Operativos no semestre seguinte.

2. Objetivos da disciplina

- Conhecer as formas de representação da informação nos computadores digitais, com relevo para a representação da informação numérica e as operações aritméticas básicas.
- Conhecer as operações lógicas e as componentes eletrónicas que as realizam.
- Compreender o funcionamento dos sistemas com memória e o funcionamento dos principais dispositivos de armazenamento de informação.
- Compreender a organização interna dos computadores digitais.
- Compreender os mecanismos de comunicação do computador com o exterior.
- Adquirir familiariedade com a arquitectura de processadores através da programação em assembly.

3. Conhecimentos prévios

IAC pressupõe que os alunos nela inscritos têm já um conhecimento dos princípios básicos de Programação adquiridos na disciplina Fundamentos de Programação do 1º semestre e consolidados em Programação Orientada a Objetos que decorre em simultâneo com IAC.

4. Bibliografia Básica

- D.M.Harris, S.L.Harris, *Digital Design and Computer* Architecture, 2nd. Edition, Morgan Kaufmann, 2013.
- D.A.Patterson, J.Hennessy, Computer Organization and Design the hardware/softwareinterface, Elsevier, 2009.
- Y.N. Patt, S.J.Patel, Introduction to Computing Systems from bits & gates to C & beyond,
 2nd edition, McGraw_Hill Education, Indian Edition.2005.

5. Programa

I – Introdução: sistemas de computação de uso geral. Microprocessadores.

II – Representação da informação e operações básicas

- Representação da informação: o bit como unidade de informação. Tipos de dados inteiros

 inteiros positivos e inteiros com sinal; representações em sinal e módulo, complemento
 para um e complemento para dois: gama de representação. Conversão decimal-binário e
 binário-decimal. Notação hexadecimal.
- Aritmética binária: adição e subtração.
- Representação de informação não numérica. O código ASCII.
- Representação em vírgula flutuante. Breve referência ao Standard IEEE 754.
- Operações lógicas: AND, OR, NOT, Exclusive OR.
- Álgebra de Boole. Axiomas e teoremas. Formas canónicas. Simplificação de funções booleanas.

III – Circuitos Lógicos

- Portas lógicas: NOT, OR, NOR, AND, NAND.
- Blocos combinatórios básicos: descodificadores, multiplexers, full-adder.
- Dispositivos básicos de armazenamento de informação: R-S latch, Flip-Flop D. Registos.
- Memória: espaço de endereçamento. Células de memória: tecnologias SRAM e DRAM.

IV – O Modelo de VonNeumann

- As componentes básicas: Memória, Unidade de Processamento Central (CPU), Entrada e Saída de dados, Unidade de Controlo.
- Estrutura de um processador MIPS. Ciclo básico de processamento das instruções.
- Organização da memória central dos sistemas de computação. Ciclos básicos de acesso à memória.
- Traços gerais da evolução da arquitetura dos sistemas de computação e das tecnologias de implementação.
- Os diferentes níveis de utilização dos sistemas de computação: aplicação, linguagem de programação de alto nível, assembly, serviços do sistema de operação.
- Função e estrutura. Arquitetura como visão funcional básica comum a uma "família" de processadores. Modelo de programação e repertório de instruções.

V – A arquitetura MIPS

- Modelo de programação. Reportório de instruções; as principais classes de instruções: processamento (aritméticas e lógicas), transferência da informação e controlo do fluxo de execução.
- Instruções aritméticas e lógicas da arquitetura MIPS. Códigos de instrução.
- Instruções de acesso à memória e modos de endereçamento.
- Tradução das estruturas de decisão *if* e *if_then_else* para *assembly*: instruções de salto condicional e incondicional.
- Tradução das estruturas de controlo de fluxo: *for, while e do...while*. Acesso sequencial a elementos de *arrays*.
- Procedimentos de invocação e retorno. Passagem de parâmetros. Utilização da stack. Convenções de salvaguarda do conteúdo dos registos.

VI – A linguagem assembly e o assembler

- A linguagem assembly.
 - Instruções
 - Diretivas
 - Exemplos
- O processo de tradução dos programas assembly em binário executável.

VII – Organização interna do processador

- Unidades operativas e unidade de controlo; construção de um *datapath* genérico para uma arquitectura tipo MIPS;
- Análise dos blocos constituintes necessários à execução de cada tipo de instruções básicas: Tipo R; *load* e *store*; Salto condicional; Montagem de um *datapath* completo para execução de instruções no modo *single-cycle*.
- Desenho da unidade de controlo da ALU; A unidade de controlo principal; Exemplos de funcionamento do datapath incluindo a unidade de controlo;
- Limitações das arquiteturas *single-cycle*; Versão de referência de uma arquitetura *multicycle*; Exemplos do processamento das instruções numa arquitetura *multicycle*;
- Unidade de controlo para datapath multicycle; Diagrama de estados da unidade de controlo.
- Sinais de controlo e valores do *datapath multicycle*; Exemplo com execução sequencial de algumas instruções.

VIII – Comunicação com o exterior: entrada e saída de dados

- Entradas e saídas mapeadas em memória *versus* instruções específicas para entrada e saída de dados.
- O sistema de interrupções. Programação com interrupções. Entradas/Saídas com interrupção.

6. Avaliação

Regras gerais

A nota final obtém-se da média ponderada das componentes de avaliação prática e teórica com os pesos de 40% e 60%, respetivamente.

A avaliação teórica consta de dois momentos de avaliação:

- Um teste escrito presencial (T1) com um peso de 40% na nota final, a realizar no dia de 12 de abril.
- Um teste escrito presencial (T2) com um peso de 60% na nota final a realizar na época de exames.

$$NT = Nota_T1 \times 0.40 + Nota_T2 \times 0.60$$

De acordo com o ponto 3 do artigo 30º do Regulamento de estudos da UA, publicado no Diário da República, 2º série, em 3 de setembro de 2021, os alunos que desejem submeter-se a exame final à componente teórica devem manifestar essa intenção ao docente responsável até final da segunda semana de aulas. Adicionalmente, e de acordo com o ponto 4 do mesmo artigo, os alunos podem alterar a sua escolha até duas semanas antes do primeiro teste da componente teórica.

A avaliação prática consta de três componentes:

- Uma componente de avaliação contínua com o peso de 10%, baseada na assiduidade e interesse manifestado nas aulas práticas.
- Um teste escrito presencial a realizar nas aulas práticas dos dias 21 e 22 de abril com o peso de 50%.
- Um teste escrito presencial a realizar na época de exames com o peso de 50%.

$$NP = Nota_AC^*0.10 + Nota_P1 \times 0.40 + Nota_P2 \times 0.50$$

Nota mínima

Em cada uma das duas componentes de avaliação é necessário obter pelo menos 7,0 valores para obter aprovação à disciplina.

Avaliação na época de recurso

O exame da componente teórica na época de recurso incide sobre toda a matéria lecionada no âmbito da disciplina constituindo a classificação nele obtida a nota final dessa componente.

A nota obtida na componente prática é mantida para a época de recurso sempre que seja igual ou superior à nota mínima exigida (7,0). Sempre que houver lugar à realização de um exame prático de recurso a nota prática anterior é anulada. A nota obtida na componente prática na época de recurso não é mantida para o ano letivo seguinte.

Trabalhadores estudantes

Os alunos com o estatuto de trabalhador-estudante que pretendam usufruir do mesmo modelo de avaliação dos estudantes em regime ordinário deverão estar inscritos numa turma prática e realizar os testes prático 1 e teórico-prático 1.

7. Calendário previsto das aulas teóricas

Aula	Data	Tema
1	9/Mar	I - Introdução: Apresentação dos objetivos e programa da disciplina e do
		seu enquadramento curricular. Bibliografia. Avaliação.
		II - Representação da informação nos computadores. O sistema binário.
		Representação de inteiros.
2	11/Mar	Representação em sinal e módulo e em complemento para 2.
3	16/Mar	Adição e subtração binárias. Conversão de decimal para binário e de
		binário para decimal.
		Representação hexadecimal.
4 18/Mar Representação de valores reais.		Representação de valores reais. Vírgula fixa e vírgula flutuante. O
		standard IEEE de vírgula flutuante. Adição e multiplicação em vírgula
		flutuante.
5	23/Mar	Lógica binária. As operações lógicas básicas.
6	25/Mar	Álgebra de Boole. Axiomas e teoremas. Formas canónicas.
7	30/Mar	Minimização de funções booleanas.
8	01/Abr	Gates e circuitos combinatórios. Os blocos combinatórios básicos:
		codificadores e descodificadores, <i>multiplexers</i> ; somadores.
9	06/Abr	Circuitos sequenciais. Latch R-S e flip-flops D.
10	08/Abr	Registos. Máquinas e diagramas de estado.
11	12/Abr	1º Teste Teórico-Prático
12	20/Abr	Memória: espaço de endereçamento. Endereçagem das células de
		memória. Tecnologias de memória: SRAM e DRAM.
13	22/Abr	III - O Modelo de VonNeumann
		As componentes básicas: Memória, Unidade de Processamento, Entrada
		e Saída de dados, Unidade de Controlo.
14	04/Mai	Estrutura de um processador MIPS. Ciclo básico de processamento das
		instruções.
		Organização da memória central dos sistemas de computação. Ciclos
		básicos de acesso à memória.
		Os diferentes níveis de utilização dos sistemas de computação: aplicação,
		linguagem de programação de alto nível, Assembly, serviços do sistema
		de operação.
		Função e estrutura. Arquitetura como visão funcional básica comum de
		uma "família" de processadores. Modelo de programação e repertório de
15	00/110:	instruções.
15	06/Mai	IV- A arquitectura MIPS: Aspectos chave da arquitectura do MIPS;
		Instruções e classes de instruções; Princípios básicos de projecto de uma
		arquitetura; Instruções aritméticas;
16	11/Mai	Codificação de Instruções: Tipo-R, Tipo-I e Tipo-J
10	11/ IVIai	Programa em Memória: Execução; Interpretação do código máquina
		Mais Instruções:
		Lógicas: and, or, xor e nor;
		De deslocamento (<i>shift</i>): lógico e aritmético;
		be desired (sinjer). Togico e diffilication,
17	13/Mai	Multiplicação/Divisão de Inteiros.
- '	10/11/01	'Saltos' condicionais e incondicionais.
		Controlo de fluxo de execução em <i>Assembly</i> :
L	1	

		Fluxo condicional: if, if/else;
		Ciclos de repetição: while e for.
18	18/Mai	Arrays - Acesso a elementos
		Uso de índices; <i>Array</i> de inteiros
		Código ASCII; Array de bytes
		Funções
		Invocação e retorno (Caller/Callee)
		Convenções: Passagem de argumentos e retorno
19	20/Mai	Uso do Stack
		Salvaguarda de registos (MIPS)
		Recursividade*
		Modos de Endereçamento (Addressing)
		Tipo-R: Só-Registos
		Tipo-I: Imediato, Endereço-Base, PC-Relativo
20	25 /N4ai	Tipo-J: Pseudo-Direto
20	25/Mai	Mais Assembly
		Ponteiro: definição e propriedades
		Uso de arrays com ponteiros
		Índices versus ponteiros; Exemplos.
		Instruções <i>signed/unsigned</i> ; Resumo.
21	27/Mai	Assembling & Loading
		Fases de tradução dum Programa
		Mapa de Memória
		Segmentos de Texto e de Dados
		O Assembler: Diretivas; Pseudo Instruções.
		O Código Executável (<i>Linking</i> e <i>Loading</i>)
22	01/Jun	MicroArquitetura MIPS Single-cycle
		Tipos de Implementações
		Arquitetura dum CPU MIPS
		Datapath e Controlo
		Fases de projeto dum CPU
		Datapath
		Subconjunto de Instruções
		Execução de Instruções: <i>Load, Store</i> , Tipo-R e <i>Branch</i>
23	03/Jun	Unidade de Controlo
		Descodificador da ALU; Exemplo de ALU Principal
		Descodificador Principal
		Exercício: Execução da instrução <i>or</i>
		Instruções adicionais: addi e j(ump)
24	08/Jun	Resolução de problemas sobre uArquiteturas Single-cycle.
25	15/Jun	MicroArquitetura MIPS Multicycle
		Performance Single-cycle: Caminho Crítico; Tempo de Execução
		Arquitetura Multicycle
		Limitações do datapath Single-cycle; Multicycle versus Single-cycle.
		Datapath

		Elementos de Estado: Memória Única		
		Execução de instruções: lw, sw, tipo-R e beq		
26	17/Jun	Unidade de Controlo: Máquina de Estados (FSM)		
		Mais Instruções: <i>addi</i> e <i>j</i>		
		Performance <i>multicycle</i> : caminho crítico; tempo de execução		
27	22/Jun	Resolução de problemas sobre uArquiteturas Multicycle.		

8. Programa da componente laboratorial

Aula	5ªs	6ªs	Descrição
1	10/Mar	11/Mar	Representação Informação. Operações Aritméticas.
2	17/Mar	18/Mar	Representação Informação. Operações Aritméticas.
			Representação de números negativos.
3	24/Mar	25/Mar	Álgebra de Boole. Operações lógicas. Simplificação
			Algébrica.
4	31/Mar	1/Abr	Introdução ao software <i>DesignWorks</i> . Blocos básicos
			combinatórios.
5	07/Abr	08/Abr	Blocos básicos combinatórios.
6	11/Abr	12/Abr	Circuitos sequenciais, registos e memórias.
7	21/Abr	22/Abr	1º Teste Prático
8	05/Mai	06/Mai	Introdução ao <i>assembly</i> do MIPS. Simulador do MIPS:
			MARS.
9	19/Mai	13/Mai	Codificação de estruturas de controlo de fluxo.
10	26/Mai	20/Mai	Processamento de arrays em assembly.
11	02/Jun	27/Mai	Processamento de arrays em assembly.
12	09/Jun	03/Jun	Simulação do datapath single-cycle do MIPS.
13	22/Jun	17/Jun	Invocação e retorno de funções em assembly.

9. Regras gerais de funcionamento da disciplina

Regime de faltas

- Todos os estudantes que, não usufruindo do estatuto de trabalhador-estudante no corrente ano letivo, faltem injustificadamente a mais de 20% das aulas práticas reprovam automaticamente à disciplina ficando impedidos de se apresentar a qualquer prova da mesma durante o corrente ano letivo.
- A justificação de faltas deve ser entregue na secretaria do DETI, no prazo máximo de 10 dias de acordo com o regulamento de Estudos, a qual remeterá cópia para o docente coordenador da disciplina.
- Consideram-se faltas justificadas as indicadas no Artigo 23º do Regulamento de Estudos.

E-mails

- Os e-mails sobre questões relativas à componente prática da disciplina devem ser dirigidos ao docente responsável pela turma:
- Os e-mails sobre questões relativas à componente teórico-prática da disciplina ou sobre questões relacionadas com o funcionamento da disciplina devem ser dirigidos ao responsável da disciplina: Pedro Lavrador (plavrador @ ua.pt)
- Só será dada resposta a e-mails que, no corpo da mensagem, indiquem explicitamente o nome e o número mecanográfico do remetente.

Esclarecimento de dúvidas. Funcionamento das OT

- Para o esclarecimento de dúvidas, durante o período letivo, deverá ser utilizado o período de Orientação Tutorial (OT) para o efeito discriminado no horário da disciplina.
- O dia imediatamente anterior aos momentos de avaliação não poderá ser usado para esclarecimento de dúvidas.

Ilícitos

A cópia, no todo ou em parte, de qualquer material entregue para avaliação é considerada fraude. Sem prejuízo de outras medidas, nomeadamente as previstas nos nºs 11 e 12 do art. 30º do Regulamento de Estudos da Universidade de Aveiro, a deteção dessa prática implica a atribuição de nota 0 (zero) ao elemento de avaliação em causa.

10. Equipa docente

Pedro Lavrador (plavrador @ ua.pt). Artur Carneiro Pereira (artur @ ua.pt). António Navarro (navarro @ ua.pt)