Contents

	Intr	oduction	1
1	Intr	oduction	2
	1.1	Motivation	2
	1.2	Observations	2
2	Cata	aclysmic variable stars	4
	2.1	Non magnetic cataclysmic variables	4
	2.2	Magnetic cataclysmic variables	4
		2.2.1 Polars	4
		2.2.2 Intermediate polars	4
		2.2.3 Galactic population of cataclysmic variables	4
	2.3	Others important creatures	4
	2.4	GXRE	4
3	Mod	del of post shock region	5
	3.1	Thermal bremstalung	5
	3.2	PSR	5

Introduction

Stars and high energies? Yes, that's not a bad question, at all. Let your imagination soar. By sitting on the old rocker looking at the sky with couple of good old whiskey you can easily start thinking about the universe. You are looking at heck of a different kinds of cosmic objects, but suddenly you see almost only the stars. Almost all the shiny dots on the sky are stars and these stars are only the closest ones from our Galaxy. Yes, you can see few other galaxies by naked eye, but none of the exotic cosmic objects you are imaging about. They are too faint to be observed easily, because they are far, far away.

Think about distances in the universe. One of the most accurate explanation is that from Douglas (1979): "Space," it says, "is big. Really big. You just won't believe how vastly, hugely, mindbogglingly big it is. I mean, you may think it's a long way down the road to the chemist's, but that's just peanuts to space..." Adams (1979)

Consider this, sometimes you want to study processes in these extreme, very faint objects, but they are too faint, too far in the universe. You are looking for "laboratory" which similar processes, but closer. The X-ray binary stars are this kind of laboratories. In this work are several types of X-ray binaries disused, but closer look is taken to intermediate polars.

1.1 Motivation

1.2 Observations

Figure 1.1: AAA Mirabel (2002)

CHAPTER 2

Cataclysmic variable stars

- 2.1 Non magnetic cataclysmic variables
- 2.2 Magnetic cataclysmic variables
- **2.2.1** Polars
- 2.2.2 Intermediate polars
- 2.2.3 Galactic population of cataclysmic variables
- 2.3 Others important creatures
- **2.4 GXRE**

Chapter 3

Model of post shock region

- 3.1 Thermal bremstalung
- 3.2 **PSR**

Bibliography

Adams, D. 1979, The Hitchhiker's Guide to the Galaxy (Great publishing house of Ursa Minor Beta)

Mirabel, I. F. 2002, ASP Conference Series

BIBLIOGRAPHY

Appendix

this will be the appendix

Table 1: Estimated WD masses from previous reports ...

	Taoro	1. E3HII	idolo 1. Estimated MD masses mon previous reports	ord mon	vious ich	5110	
System	Suzaku	Swift	Swift RXTE	RXTE	Ginga	ASCA	ASCA This work
	XIS+HXD	BAT	PCA+HEXTE	PCA	LAC	SIS	XMM & Integral
	M_{WD}	M_{WD}	M_{WD}	M_{WD}	M_{WD}	M_{WD}	M_{WD}
FO Aqr							
XY Ari							
MU Cam							
BG CMi							
V709 Cas							
TV Col							
TX Col							
YY Dra							
PQ Gem							
EX Hya							
NY Lup							
V2400 Oph							
AO Psc							
V1223 Sgr							
RX J2133							
IGR J17303							