Informatik.Softwaresysteme

Ausarbeitung spezielle Algorithmen

Schulze Methode

Algorithmus zum finden eines Eindeutigen Siegers

Abgabetermin: Bocholt, den 30.10.2018

Student:

Steffen Holtkamp Thebenkamp 18 46342 Velen

Matrikelnummer: 201620684

11

12

13

14

15

2

WESTFÄLISCHE HOCHSCHULE - BOCHOLT
Prof. Dr. Martin Guddat
Münsterstraße 265
46397 Bocholt

Dieses Werk einschließlich seiner Teile ist **urheberrechtlich geschützt**. Jede Verwertung außerhalb der engen

17 Grenzen des Urheberrechtgesetzes ist ohne Zustimmung des Autors unzulässig und strafbar. Das gilt insbeson-

dere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen sowie die Einspeicherung und Verarbeitung in

19 elektronischen Systemen.

In halts verzeichn is

Inhaltsverzeichnis

21	Abbild	ungsverzeichnis	II
22	Tabelle	enverzeichnis	III
23	Listing	${f s}$	IV
24	Abkürz	zungsverzeichnis	\mathbf{V}
25	1	Einleitung	1
26	1.1	Markus Schulze	1
27	1.2	Problemstellung	1
28	1.3	Anforderungen	1
29	2	Definition	1
30	2.1	Voraussetzungen	1
31	2.2	Theoretische Grundlagen	1
32	3	Beispiel 1	1
33	3.1	Ausgangssituation	1
34	3.2	Lösungsschritte	1
35	3.3	Ergebnis	2
36	4	Implementierung	2
37	5	Alternative Algorithmen	2
38	5.1	Bisherige Lösungsansätze	2
39	6	Bewertung der Methode	2
40	7	Bewertung Algorithmus	2
41	8	Fazit	2
42	8.1	Abgrenzung zu anderen Algorithmen	2
43	8.2	Einsatz	2
44	8.3	Zukunft	3
45	9	Alternative Algorithmen	3
46	9.1	Bisherige Lösungsansätze	3
47	Literat	urverzeichnis	4
48	\mathbf{A}	Anhang	i
49	A.1	Erster Anhang	i

Abbildungs verzeichnis

Abbildungsverzeichnis

Tabel lenverzeichnis

Tabellenverzeichnis

Listings

52 Listings

SCHULZE METHODE

 $Abk\"{u}rzungsverzeichnis$

Algorithmus zum finden eines Eindeutigen Siegers

Abkürzungsverzeichnis

54

1 Einleitung

56 1.1 Markus Schulze

- 57 Die Schulze Methode wurde nach seinem Erfinder Markus Schulze benannt und wird in Fachkreisen
- ⁵⁸ auch als SSchwartz Sequential droppingöder auch "path winner" Methode bezeichnet.
- 59 Er hat diese Methode zuerst 1997 erstmal in einer offenen Mail zur Diskussion gestellt Schulze
- 60 [2017].

61 1.2 Problemstellung

Welches Problem soll diese Methode lösen?

63 1.3 Anforderungen

Welche Anforderungen werden an einen solchen Algorithmus gestellt.

5 2 Definition

66 2.1 Voraussetzungen

67 Welche Rahmenbedingungen müssen erfüllt werden

68 2.2 Theoretische Grundlagen

- 69 Welche mathematische Berechnung wird zur Lösung dieses Problems eingesetzt? Welche Theorie wurde
- 70 entwickelt

71 3 Beispiel 1

72 3.1 Ausgangssituation

Welche Daten sind Vorhanden

74 3.2 Lösungsschritte

75 Bilder Tabellen um zur Lösung zu gelangen. Auch Mathematisch

4 Implementierung

6 3.3 Ergebnis

77 Welches Erkenntnis haben wir gezogen.

78 4 Implementierung

Wie implementieren wir es. Code Beispiele etc.

5 Alternative Algorithmen

81 5.1 Bisherige Lösungsansätze

⁸² Wie wurde dieses Problem bisher gelöst? Was ist an der Lösung schlecht und soll verbessert werden.

6 Bewertung der Methode

Bewertung auf Basis der sozialen Fragen, Anforderungen an Wahlalgorithmen.

5 7 Bewertung Algorithmus

- Wie lange bruahct der Algorithmus? Welche Laufzeitkomplexität? Fehler? Ergebnisse aus Implemen-
- 87 tierung

8 Fazit

8.1 Abgrenzung zu anderen Algorithmen

Was macht dieser Algorithmus besser als der andere. Welche Anforderungen erfüllt er mehr?

91 8.2 Einsatz

⁹² Wo wird dieser Algorithmus eingesetzt. Wie können wir ihn nutzen? Einschätzung des Algorithmus.

SCHULZE METHODE

Algorithmus zum finden eines Eindeutigen Siegers

$9\ Alternative\ Algorithmen$

93 8.3 Zukunft

Wie wird die Zukunft aussehen? Wer plant diesen Algorithmus einzusetzen?

95 9 Alternative Algorithmen

96 9.1 Bisherige Lösungsansätze

Wie wurde dieses Problem bisher gelöst? Was ist an der Lösung schlecht und soll verbessert werden.

SCHULZE METHODE

Algorithmus zum finden eines Eindeutigen Siegers

Literatur verzeichn is

101

Literaturverzeichnis

[Schulze 2017] Schulze, Markus: A New Monotonic, Clone-Independent, Reversal Symmetric, and 99 Condorcet-Consistent Single-Winner Election Method. http://m-schulze.9mail.de/schulze1. 100 pdf. Version: März 2017

 $A \ Anhang$

102 A Anhang

A.1 Erster Anhang