Lab 2: Αναγνώριση φωνής με το Kaldi toolkit

3 Δεκεμβρίου 2018

Kaldi: Γενικές πληροφορίες

- Εργαλείο για αναγνώριση φωνής (πρόσφατα και άλλα tasks)
- Γραμμένο σε C++
- Εκτενής χρήση FSTs (επεκτείνει τη βιβλιοθήκη OpenFST)
- Πολλές έτοιμες διαδικασίες για γνωστά datasets: Wall Street Journal, LibriSpeech, Tedlium, SwitchBoard, TIMIT

- Άλλες λύσεις για αναγνώριση φωνής: HTK, CMUSphinx
- Το εγχειρίδιο του HTK (HTKBook) περιέχει πολλές πληροφορίες για αναγνώριση φωνής ανεξάρτητες του λογισμικού

Kaldi: Βασικά scripts

- Διαδικασία πρότυπο για όλες τις υπόλοιπες: wsj
 - path.sh : συμπεριλαμβάνει όλα τα C++ scripts του Kaldi στο PATH
 - cmd.sh : ορίζει πού θα τρέχουν τα bash scripts της διαδικασίας (cpu, gpu, cluster). Θέτω πάντα όλες του τις μεταβλητές σε **run.pl**
 - φάκελος steps: περιέχει βασικά bash scripts που τρέχουμε κατά τη διαδικασία παραγωγής των μοντέλων
 - φάκελος utils: βοηθητικά scripts (bash, perl, etc.)

Kaldi: Βασικά scripts

- Πώς τρέχω ένα C++ script?
 - $\Sigma \epsilon \dot{\nu} \alpha$ terminal: source path.sh $\dot{\eta}$. ./path.sh
- Βασικοί τύποι αρχείων Kaldi:
 - .ark: binary αρχείο που περιέχει δεδομένα (π.χ. MFCCs)
 - .scp: text αρχείο-δείκτης. Δείχνει πού περιέχονται τα δεδομένα για κάθε πρόταση μέσα στο αντίστοιχο αρχείο .ark
- Πώς δουλεύουν τα C++ scripts που χειρίζονται αρχεία Kaldi?
 - feat-to-dim ark:my_ark_file.ark ark:output.ark
 - feat-to-dim ark:my_ark_file.ark ark,t:output.txt
 - feat-to-dim ark:my_ark_file.ark ark,t:- (αν βάλω παύλα τυπώνει στο stdout)
 - feat-to-dim scp:my_scp_file.scp ark,t:-

Προπαρασκευή για USC-TIMIT

- 4 ομιλητές (2 άντρες, 2 γυναίκες)
- 1835 προτάσεις συνολικά
- Task: Αναγνώριση φωνημάτων (phoneme recognition)

- Προπαρασκευή:
 - wav.scp
 - text
 - utt2spk
 - spk2utt (με το utils/utt2spk_to_spk2utt.pl)

Kaldi: Γράφος HCLG

- Σύνθεση 4 γράφων
 - Grammar
 - Lexicon
 - Context dependency
 - Hidden Markov Model
- Για τη δημιουργία του χρειαζόμαστε:
 - Γλωσσικό μοντέλο
 - Ακουστικό μοντέλο
- FSTs που χρειάζεται να δημιουργήσουμε εμείς με το IRSTLM:
 - Grammar: G.fst
 - Lexicon: L.fst

Προετοιμασία γλωσσικού μοντέλου

- Περιεχόμενα data/local/dict:
 - silence_phones.txt
 - optional_silence.txt
 - nonsilence_phones.txt
 - extra_questions.txt
 - lexicon.txt (Προσοχή: λεξικό φωνημάτων, διαφορετικό από της προπαρασκευής)
 - lm_train.text
- Εντολές:
 - build-lm.sh
 - compile-lm
 - prepare_lang.sh

Εξαγωγή ακουστικών χαρακτηριστικών MFCCs

- Configuration file: mfcc.conf
- Εντολές: make_mfcc.sh, compute_cmvn_stats.sh

$$f_c^j = 2595 \cdot \log\left(1 + \frac{f^j}{700}\right), j = 1 \dots Q$$

Συστοιχία φίλτρων κλίμακας Mel

Εκπαίδευση ακουστικού μοντέλου – Alignment - Decoding

- Εκπαίδευση ακουστικών μοντέλων:
 - steps/train_mono.sh
 - steps/train_deltas.sh
 - (steps/train_lda_mllt.sh)
- Alignment:
 - steps/align_si.sh
- Decoding:
 - steps/decode.sh

Ακουστικά μοντέλα

- monophone model (δεν περιέχει πληροφορία για προηγούμενα ή επόμενα φωνήματα)
- triphone model (περιέχει πληροφορία γειτονικών φωνημάτων)
 - Εκθετικά μεγαλύτερο σε μέγεθος
 - Phonetic decision tree: δέντρο το οποίο μειώνει το πλήθος όλων των δυνατών καταστάσεων αποκλείοντας αδύνατους συνδυασμούς γειτνίασης
- LDA-MLLT (Linear Discriminant Analysis Maximum Likelihood Linear Transformation)
 - Μείωση διαστάσεων των χαρακτηριστικών με LDA
 - Εύρεση μοναδικού μετασχηματισμού για κάθε ομιλητή
 - Μειώνει τη διαφορά ανάμεσα στους ομιλητές

Ακουστικό μοντέλο GMM-HMM