

Datenbanken

Informatik, ICS und als Wahlfach

3. Datenbankmodelle

Prof. Dr. Markus Goldstein

SoSe 2022

Inhalt

3.1 Datenbankmodell

- 3.2 Relationales Datenmodell
- 3.2.1 Grundlagen
- 3.2.2 Schlüssel im RDMBS
- 3.3 NoSQL (andere Datenmodelle)
- 3.4 Datentypen

Fallstudie - Kiosk

- Sie haben nun ein konzeptionelles Datenmodell für Ihren Kiosk erstellt. Jetzt möchten Sie dieses Modell als Datenbank nutzen. Hierfür gibt es unterschiedliche Datenbanksoftware-Anbieter.
- Jeder Datenbanksoftware liegt ein sogenanntes Datenbankmodell zu Grunde, dass verwendet wird, um die Datensätze und deren Beziehungen abzulegen.

Datenbankmodelle

Datenbankmodell (engl. database model)

- logisches Beziehungsgebilde
- Beschreibung der Art und Weise der Verbindung von Datensätzen

Traditionelle Datenbankmodelle

Hierarchisch: nur einen Elternknoten (→ 1:1 und 1:N)

- Netzwerk (Erweiterung; auch N:M)
- Relational (RDBM)
- Objektorientiert
- Objekt-relational (Mischform aus Relational und OO)

Datenbankmodelle

Datenbankmodell (engl. database model)

- logisches Beziehungsgebilde
- Beschreibung der Art und Weise der Verbindung von Datensätzen

"Neue" Datenbankmodelle (seit 2005): NoSQL

- Spaltenbasiert (engl. wide column)
- Dokumentenorientiert
- Graph
- Key-Value

Inhalt

3.1 Datenbankmodell

- 3.2 Relationales Datenmodell
- 3.2.1 Grundlagen
- 3.2.2 Schlüssel im RDMBS
- 3.3 NoSQL (andere Datenmodelle)
- 3.4 Datentypen

Relationales Datenmodell

Theorie

- Streng mathematisch (Relationale Algebra)
- Entitätstypen werden als Relationen (Tabellen) gespeichert
- Beziehungen zwischen Entitäten werden über Referenzattribute (Fremdschlüssel) in Tabellenspalten gespeichert
- Definition Relation:
 Teilmenge der Produktmenge der Wertebereiche der Attribute

Relation

Beispiel - Kartenspiel

- F = {Karo, Herz, Pik, Kreuz}
- C = {7, 8, 9, 10, Bube, Dame, König, Ass}
 - → Produktmenge F x C entspricht vollständigem Poker-Blatt (kartesisches Produkt)

Relation als Teilmenge der Produktmenge

z.B. Full House: {(Pik, Ass), (Kreuz, Ass), (Herz, Ass), (Herz, König), (Karo, König)}

→ Darstellung als Tabelle

Farbe	Karte
Pik	Ass
Kreuz	Ass
Herz	Ass
Herz	König
Karo	König

RDBM - Speicherung

Darstellung des Entitätstyps "Lehrer"

Relation (Mathematische Darstellung)

Als Tabelle

RDBM - Speicherung

Schreibweise als Relation im Allgemeinen

Tabellenname (<u>Attribut1</u>, Attribut2, ...)

Primärschlüssel werden unterstrichen

```
Darstellung mit Daten (= Relation) als Tupel ( ) einer Menge { }:
Tabellenname (<u>Attribut1</u>, Attribut2, ...) {
  (WertA1, WertA2, ...), (WertB1, WertB2, ...),
  ...
}
```

RDBM - Speicherung

Komplexe Entitätstypen werden in kleinere zerlegt

Vor- und Nachteil zugleich (vergl. Kapitel 2)

RDBM - Grundbegriffe

Grundbegriffe

- Relation repräsentiert einen Entitätstypen und ist umgesetzt als Tabelle
- Ein Attribut repräsentiert eine Eigenschaft eines Entitätstyps und wird zur Tabellenspalte
 - Wertebereich/Domäne fasst mögliche Werte eines Attributs zusammen (s. Datentypen)
- Ein Tupel ist Element einer Relation, wird zur Tabellenzeile und repräsentiert eine konkrete Entität.

RDBM - Übersicht

Zusammenfassung der Begrifflichkeiten

- Relation → Darstellung als Tabelle
- Reihenfolge der Zeilen(/Spalten) spielt keine Rolle

Schlüssel

Ein **Schlüssel** (engl. key) ist jede identifizierende Attributmenge, die minimal ist.

- Einfach: ein Attribut
- oder zusammengesetzt: Attributkombination (composite key)
 (Im relationalen Datenmodell gibt es keinen identifizierenden Beziehungstyp mehr)

Eigenschaften

- Eindeutige Identifizierung von Tabellenzeilen
- Minimal heißt, Untermenge nicht (mehr) ausreichend zur eindeutigen Identifizierung
- Evtl. mehrere Schlüsselkandidaten (engl. candidate key)

Spezielle Schlüssel

Primärschlüssel (engl. primary key) ist ein ausgewählter Schlüsselkandidat der für die Identifizierung einzelner Tupel verwendet wird.

- Empfehlungen: Auswahl des Schlüssels mit minimaler Anzahl Zeichen Auswahl passend zur Semantik Einführung eines Surrogats, falls der PK als FK verwendet wird
- Nicht ausgewählte Schlüsselkandidaten
 - Alternativ- (engl. alternate key) bzw.
 - Sekundärschlüssel (engl. secondary key)

Definition Fremdschlüssel

Fremdschlüssel (engl. foreign key) ist eine Attributmenge, die einen Primärschlüssel einer (anderen) Relation referenziert

- Primärschlüssel aus Tabelle A wird als (Verweis-) Attribut in Tabelle B aufgenommen
- bewirkt logische Verbindung von Tabellen (also z.B.: "hierhin gehört Teil A")
- Darstellung: Nicht unterstrichen (aber ggf. kursiv oder mit Symbol ↑)

Fremdschlüssel – einfaches Beispiel

Fremdschlüssel zur Repräsentation von Beziehungstypen

<u>KundelD</u>	Name	↑AutoID ↑	
33	Müller	1	
34	Fröhlich	3	
35	Dampf	1	
		<u>AutoID</u>	Name
		1	TukTuk
		2	Merzädes
		3	CMW

Fremdschlüssel - Zweck

Fremdschlüssel zur Repräsentation von Beziehungstypen

Fremdschlüssel – Zweck II

Fremdschlüssel zur Herstellung von Verbundinformationen (JOINs)

Integritätsbedingung RDBM

Datenintegrität muss trotz Aufteilung gewährleistet sein:

- Entitätsintegrität (engl. entity integrity)
 - Jedes (Primär-)Schlüsselattribut muss einen Wert haben (NOT NULL)
 - Kombination der Attributwerte (=Primärschlüssel) muss innerhalb einer Tabelle eindeutig sein.

- Referenzielle Integrität (engl. referential integrity)
 - Fremdschlüsselwerte müssen in referenzierter Tabelle als Primärschlüsselwerte existieren
 - oder Fremdschlüsselattribut hat keinen Wert (NULL)
 (→ nur bei Optionalität)
 - Umgangssprachlich: "broken links" sind verboten!

Integritätsbedingung RDBM

Datenintegrität wird durch RDBMS unterstützt

- Entitätsintegrität (unterstützt jedes RDBMS)
 Einfügen eines nicht-existierenden Wertes (NULL) oder ändern auf einen solchen wird abgelehnt. Doppelte Einträge werden auch abgelehnt.
- Referenzielle Integrität (unterstützt nicht jedes RDBMS)
 - Was passiert bei Änderung/Löschung eines Primärschlüsselwertes?
 ON DELETE ...
 - ... RESTRICT → Ablehnung (oft Standard)
 - CASCADE → Fremdschlüsselwert bei Änderung des Primärschlüsselwerts anpassen bzw. löschen
 - SET NULL → Fremdschlüsselwert auf NULL setzen (nur bei Optionalität möglich!)

Integritätsbedingung RDBM

Vorsicht bei ON DELETE CASCADE

Hier im Beispiel: Alle Lieferungen werden mit gelöscht!

(angelehnt an Thomas Kudraß, Taschenbuch Datenbanken, 2. Auflage, Hanser Verlag 2015, S. 74)

Inhalt

- 3.1 Datenbankmodell
- 3.2 Relationales Datenmodell
- 3.2.1 Grundlagen
- 3.2.2 Schlüssel im RDMBS
- 3.3 NoSQL (andere Datenmodelle)
- 3.4 Datentypen

NoSQL Datenbankmodelle

NoSQL Eigenschaften

- das Datenmodell ist nicht-relational ("not-only-SQL")
- keine Relationen/Tabellen
- Sammelbegriff für nicht-relationale Datenmodelle

- NoSQL Modell ist oft frei von einem mathematischen Schema
 - Schemaverantwortung in Anwendungsprogramm
 - Höhere Flexibilität
 - Oft verwendet f
 ür sehr große Datenmengen ("Big Data")
- NoSQL DBMS nutzen oft einfache API
- i.d.R. keine SQL-Schnittstelle sondern REST oder andere

RDBM vs. NoSQL

Übersicht

Quelle: in Anlehnung an Edlich et al., NoSQL – Einstieg in die Welt nichtrelationaler Web 2.0 Datenbanken, Hanser 2. Auflage 2011, p. 6

Key-Value Datenbankmodell

Einfachstes Datenbankmodell. Eintrag besteht aus

- Key Schlüssel (eindeutig)
- Value Wert (eigentliche Daten), beliebig, z.B.
 - Zeichenketten
 - Arrays, Listen, Mengen
 - Binärdaten
- Konzept in Java: "Hash Map"
- Werte haben kein festes Schema
- Auf Festplatte und in-memory (nur im Arbeitsspeicher)
- Einfache API: put/ get/ delete

Key-Value Datenbankmodell

Beispiele

Kunden

Key	Value
customer:1:name	Muscle Inc.
customer:1:phone	(234) 567-8901
customer:1:city	New York

Telefonbuch

Key	Value
Mike	(123) 456-7890
Tom	+49 176 678901
Tina	(345) 678-9012
Adele	(456) 789-0123

IP-Forwarding

Key	Value
202.45.12.34	01:23:36:0f:a2:33
202.45.123.4	00:25:33:da:4c:01
245.12.33.45	02:03:33:10:e2:b1

Spaltenorientiertes Datenbankmodell

- Daten werden spaltenweise gespeichert, nicht als Tupel (zeilenweise)
- Umgangssprachlich: "Jedes Attribut hat eine eigene Tabelle"
- Vergleich zu RDBMS

Spaltenbasiert	Relational
1, 2, 3, Tom, Mary, Paul, 42, 18, 36	1, Tom, 42, 2, Mary, 18, 3, Paul, 36

Vorteile	Nachteile
Schnelles Lesen einzelner Spalten (→ "Analytics")	Langsames Aktualisieren und Einfügen
Kompression/Aggregation	Langsames Lesen von ganzen Tupeln
Für sehr große Datenmengen	

Spaltenorientiertes Datenbankmodell

Beispiel

ld	Product	Name	Date	Price
1	Beer	Thomas	2017-02-27	2
2	Beer	Thomas	2017-02-28	2
3	Vodka	Thomas	2017-02-28	10
4	Whiskey	Chris	2017-02-28	5
5	Whiskey	Chris	2017-02-28	5
6	Vodka	Michael	2017-02-29	10

ld	Product
1	Beer
2	Beer
3	Vodka
4	Whiskey
5	Whiskey
6	Vodka

ld	Price
1	2
2	2
3	10
4	5
5	5
6	10

ld	Name
1	Thomas
2	Thomas
3	Thomas
4	Chris
5	Chris
6	Michael

ld	Date
1	2017-02-27
2	2017-02-28
3	2017-02-28
4	2017-02-28
5	2017-02-28
6	2017-02-29

Spaltenorientiertes Datenbankmodell

Beispiel: Kompression

ld	Product
1-2	Beer
3	Vodka
4-5	Whiskey
6	Vodka

ld	Name
1-3	Thomas
5	Chris
6	Michael

ld	Price
1-2	2
3	10
4-5	5
6	10

ld	Date
1	2017-02-27
2-5	2017-02-28
6	2017-02-29

- Technische Realisierung: Map von Maps → Spaltenwerte dürfen fehlen ("NULL" → Eintrag in einer Spalte fehlt)
- "Verteilen" von Tabellen auf mehrere Server möglich
- Schnelles Bearbeiten von Spalten

Graph als Datenbankmodell

Ein Graph ist ein mathematisches Modell

- Knoten sind Entitäten (nicht Entitätstyp!)
 - Attribute am Knoten speicherbar
- Kanten sind Beziehungen zwischen einzelnen Entitäten
 - Kanten sind gerichtet: Beziehung nur in eine Richtung
 - Bei gegenseitiger Beziehung: weitere Kante
 - Kanten können Rollennamen bekommen
- Viel flexibler als RDBMS, da Beziehungen zwischen Entitäten, nicht nur zwischen Entitätstypen

Graph als Datenbankmodell

Beispiel

- Graphdatenbanken Eigenschaften
 - Effiziente Speicherung
 - Implementieren von Algorithmen ("Kennt Markus John über Umwege?")
 - Eigene Abfragesprache für Graphen (kein Standard)

Dokumentbasiertes Datenbankmodell

Datenbanken speichern Dokumente

- Struktur wird durch die Anwendung festgelegt
- Unterschiedliche Dokumente in einer Datenbank müssen nicht die gleiche Struktur aufweisen (großer Unterschied zu RDBM)
- Dokument über Primärschlüssel identifiziert (Surrogat "id")
- Dokumente sind oft in JSON definiert

```
"id": 1,
    "name": "A green door",
    "price": 12.50,
    "tags": ["home", "green"]
}
```

Exkurs: JSON

JSON besteht aus (nur) zwei Strukturelementen

Variablen: Sammlung von Name/Wert-Paaren

```
string: value z.B. "id": 1
```

Komplexe Strukturen: Liste von Werten, Unterobjekte

```
liste: [value1, value2,...] z.B. ["home", "green"]
unterobjekt: {...}
```

Werte sind vom Typ

- Zeichenkette (String)
- (Komma)zahl
- Boolean (true or false)
- Liste [...]

- NULL
- Object {}
 Objekte können also Unterobjekte von anderen Objekten sein

Exkurs: JSON

Beispiele

Style

```
{"height": 250, "color": "blue"}
```

Mitarbeiter

```
{"employees": [
          {"firstName": "John","lastName":"Doe","age":30},
          {"firstName": "Anna","lastName":"Smith","age":21},
          {"firstName": "Peter","lastName":"Jones"},
]}
```

- Peter hat kein Alter (Schemafreiheit!)
- Referenzen möglich über
 - Fremdschlüssel
 - Einfache Unterdokumente/Unterobjekte (Vorsicht: Redundanz!)

Aufgaben

Bitte bearbeiten Sie jetzt die Aufgaben in Moodle zum Kapitel 3.

Teil B

Inhalt

- 3.1 Datenbankmodell
- 3.2 Relationales Datenmodell
- 3.2.1 Grundlagen
- 3.2.2 Schlüssel im RDMBS
- 3.3 NoSQL (andere Datenmodelle)
- 3.4 Datentypen

Datentypen

Attributwerte werden unter Verwendung von Datentypen gespeichert

- Angabe der Datentypen bei der Modellierung
- Definition der Datentypen beim Anlegen der Tabelle

Datentypen haben unterschiedliche Größe (in Bit)

- Auswahl der Datentypen hat Auswirkung auf Speicherbedarf der Datenbank
- Ziel ist die Verwendung der Datentypen mit minimalem Speicherbedarf
- ABER: Datentypen unter Berücksichtigung zukünftiger Werte

Datentypen

Jedem Attribut (Spalte) wird ein Datentyp zugewiesen

Vergleiche Kiosk-Beispiel

Schülerin	Klasse	Geschlecht	Sparte	Artikel	Preis	Zahlung	MWST	Laden	Datum	Zeit	Kommentar
Joel Brandeis	2f00	m	Lebensmitte		SFr. 2.80			Migros Höngg	6.4.00		Kasse 1
Joel Brandeis	2f00	m	Lebensmitte		SFr. 1,20			Epa 8001 Zürich	2.2.01	12:24	Nasse I
Joel Brandeis	2f00	m	Lebensmitte		SFr. 4,85			Coop Zürich-Linth	26.6.95		
Alana Gerdes	2b01	w			SFr. 4,00			Epa Aarau	11.4.00		Kasse 3
Alana Gerdes	2b01 2b01			Farmer-Stengel Tageskarte Zone 10			300001	Looren Apotheke Witikonerstrasse 397 8053 Z			0230 0001 00004006 00142
		W	Transport		SFr. 5,20		004400		1.9.99		0230 0001 00004006 00142
Alana Gerdes	2b01	w	Kleider	Nachtwollhemd	SFr. 30,00			Migros Ebmatingen	22.3.01	9:22	
Caroline Diethelm	2b01	w		Toni Vollrahm	SFr. 2,10			Coop Zuerich	3.3.00	15:55	
Caroline Diethelm	2b01	w	Lebensmitte	Tragtasche	SFr. 0,30	bar	235289	Studentenladen	25.7.00	12:54	
Caroline Diethelm	2b01	w	Lebensmitte	Rohschinken	SFr. 15,42	bar	231074	coop Dietikon 8953	1.9.00	16:19	Fr. B. Holzer Kasse 01
Caroline Diethelm	2b01	w	Transport	Tageskarte	SFr. 5,20	bar	231102	Migros Rigiplatz 8006 Zürich	2.9.00	9:35	Frau B. Holzer Kasse 1
Caroline Diethelm	2b01	w	Lebensmitte	Barclay	SFr. 4,70	bar	231074	Coop Zürichbergstrasse 8032 Zürich	17.3.01	13:39	R.Budel, Kasse 1
Caroline Diethelm	2b01	w	Lebensmitte	Paprikachips	SFr. 3,95	bar	231074	COOP Zuerich-Linth ,Cl. Römerhof	7.4.00	7:40	
Caroline Diethelm	2b01	w	Lebensmitte	Zwiebeln gehackt	SFr. 1,90	Bar	251030	Body Shop 8001 Zürich 2606922	10.12.99	15:02	
Caroline Diethelm	2b01	w	Lebensmitte	DIM SUM Poulet	SFr. 4,50	Karte		Selecta Automat	10.10.00	14:50	
Caroline Diethelm	2b01	w	Lebensmitte	Edelnuss Misch.	SFr. 3,90	bar	231074	Coop Zürich-Linth St. Annahof Volkiland	10.3.00	17:05	
Caroline Diethelm	2b01	w	Papeterie	Papeterie	SFr. 1,40	Karte	231074	Coop Zürichbergstr.	5.8.00	11:36	M.Mueller
Caroline Diethelm	2b01	w	Lebensmitte	Toni Vm Past	SFr. 1,60	Bar	231074	Coop 8706 Feldmeilen	7.9.00	12:31	
Caroline Diethelm	2b01	w	Lebensmitte	Nektarinen Gelb	SFr. 0,50	bar	231102	Migros Höschgasse Zürich	31.8.00	14:40	
Caroline Diethelm	2b01	w	Lebensmitte	Truffes-Cake gross	SFr. 27,00	Bar	231102	M Rigiplatz	3.9.99		Kasse 2
Caroline Diethelm	2b01	w	Papeterie	Mäppchen	SFr. 1,90	bar	231124	Beach Mountain	24.7.00	15:16	
Caroline Diethelm	2b01	w	Lebensmitte	Melonen	SFr. 1,80	Bar	380507	EPA Bellevue Zürich	3.4.00	17:57	
Caroline Diethelm	2b01	w	Kleider	Hose Figura	SFr. 6,50	Bar	231074	COOP Zürich-Linth	17.7.99	10:12	
Caroline Diethelm	2b01	w	Unterhaltung	Notting Hill	SFr. 11,00		231074	Coop Zürich-Linth	4.9.99	13:50	Balkon links Grosse Bühne Reihe 10 Platz 779
0 1 5 4 1	01.04			e: 0.30 A	05 000		201122	TE 81 1 4	24.2.24	0.00	

Nummerische Datentypen

Numerische Datentypen

- Ablage von numerischen Werten (Zahlenwerte)
- Nicht jede Zahl hat einen Wert (z. B. Postfach oder Hausnummer)
 NULL vs Wert "0"
- Vorzeichenbehaftet (SIGNED) oder vorzeichenlos (UNSIGNED)

Je nach Bereich der Attributwerte

- Ganzzahlige Werte-4,-3,-2,-1,0,1,2,3,4,... z.B. Anzahl Teilnehmer
- Kommazahlen
 3.14159265359, 0.5 z.B. PI oder Preis

Ganzzahlige Datentypen

- BOOLEAN (1 Byte)
 - Wahrheitswerte wahr oder falsch
 - Ablage als 1 = wahr oder 0 = falsch

- TINYINT (1 Byte)
 - Sehr kleine Werte
 - -128 bis 127 (0 bis 255 UNSIGNED)

- SMALLINT (2 Byte)
 - -32.768 bis 32.767 (0 bis 65.535 UNSIGNED)

Ganzzahlige Datentypen II

- MEDIUMINT (3 Byte)
 - -8.388.608 bis 8.388.607
 - (0 bis 16.777.215 UNSIGNED)
- INT bzw. INTEGER (4 Byte)
 - -2.147.483.648 bis 2.147.483.647
 - (0 bis 4.294.967.295 UNSIGNED)
- BIGINT (8 Byte)
 - Sehr große Zahlen
 - -9.223.372.036.854.775.808 bis 9.223.372.036.854.775.807
 - (0 bis 18.446.744.073.709.551.615 UNSIGNED)

Kommazahlen

Unterscheidung nach Fließkomma und Festkommazahl

- Festkommazahl hat immer den gleichen Exponenten
 - → Dezimalpunkt ist immer an gleicher Stelle z.B. Preise, Ausmaße, etc.
- Fließkommazahl hat wechselnde Exponenten
 - → Komma ,wandert' je nach Exponent Beispiel: $0.01 * 10^{1} = 0.1 * 10^{0} = 1.0 * 10^{-1} = 10.0 * 10^{-2}$
 - Berechnete Werte
 - Exponentialdarstellung bzw. wissenschaftliche Notation 1 * 10¹ entspricht 1E+1 1 * 10⁻¹ entspricht 1E-1

Fließkommazahlen

- FLOAT (4 Byte)
 - Kleine Fließkommazahlen mit einfacher Genauigkeit
 - Wertebereich
 -3.402823466E+38 bis -1.175494351E-38
 0
 1.175494351E-38 bis 3.402823466E+38
- DOUBLE (8 Byte)
 - Fließkommazahlen mit doppelter Genauigkeit
 - Wertebereich
 -1.7976931348623157E+308 bis -2.2250738585072014E-308
 0
 2.2250738585072014E-308 bis 1.7976931348623157E+308

Festpunktzahlen

DECIMAL(M,D)

- Angabe von exakten Zahlen
- Festlegung der Länge sowie der Nachkommastellen
 - M = Anzahl Gesamtstellen der Zahl (1 64)
 Standard: M = 10
 - D = Anzahl Stellen nach dem Komma (0 30)
 Standard: D = 0
- Beispiel: Angabe des Datentyps für das Attribut Preis
 - DECIMAL(7,2) UNSIGNED
 - \rightarrow Preise von 0.00 99 999.99

Datums-Datentyp

Speicherung von Datums- und Zeitwerten

- Dienen zur Berechnung von Datums- und Zeitwerten
- DATETIME, DATE und TIMESTAMP gehören zusammen
 - DATETIME speichert Datum und Uhrzeit
 '1000-01-01 00:00:00' bis '9999-12-31 23:59:59
 - DATE speichert nur Datum
 '1000-01-01' bis '9999-12-31'
 - TIMESTAMP speichert Zeitstempel im UNIX-Format
 '1970-01-01' bis '2037-12-31' mit Sekundenbruchteilen (microseconds)

YEAR

Werte von '1901' bis '2155'

TIME

Erfassung von Zeiten (auch >24h): '-838:59:59' bis '838:59:59'

String Datentypen

Speicherung von **alphanumerischen Zeichenketten (String)** z.B. Name, Vorname, etc.

Unterscheidung in feste und variable Länge

CHAR(N)

- Ablage von Zeichenketten der festen Länge N
- 0 <= N <= 255
- Ungenutzte Zeichen werden mit Leerzeichen aufgefüllt

VARCHAR(N)

- Ablage von Zeichenketten mit variabler Länge bis zu N
- N <= 255
- Ungenutzte Zeichen werden nicht abgelegt
- Leerzeichen am Ende werden entfernt

String Datentypen

Speicherplatzbedarf CHAR vs. VARCHAR

- CHAR benötigt 1 Byte pro Zeichen
 - Auch Leerzeichen benötigen Platz
 - Verschwendung bei vielen kleineren Strings
- VARCHAR benötigt 1 Byte zusätzlich pro Spalte
 - Spart Platz bei variabler Länger der Strings
 - Überflüssig bei String mit fester Länge
- Speicherplatzbedarf mit UTF-8 ggf. höher

Wert	CHAR (4)	Erforderlicher Speicherplatz	VARCHAR (4)	Erforderlicher Speicherplatz
1.1		4 Byte	* *	1 Byte
'ab'	'ab '	4 Byte	'ab '	3 Byte
'abcd'	'abcd'	4 Byte	'abcd'	5 Byte
'abcdefgh'	'abcd'	4 Byte	'abcd'	5 Byte

Längere String Datentypen

Speichern von längeren Texten (Strings der Länge L) mit **TEXT-Typen**

- TINYTEXT (L+1 Byte, wobei L < 2⁸)
- **TEXT** (L+1 Byte, wobei L < 2¹⁶)
- MEDIUMTEXT (L+1 Byte, wobei L < 2²⁴)
- und LONGTEXT (L+1 Byte, wobei L < 2³²)

- Analog hierzu binäre Datentypen
 - TINYBLOB, BLOB, MEDIUMBLOB, LONGBLOB
 - BLOB: Binary Large Object

String Datentypen ENUM

Spalten mit fest vorgegebenen Werten: Aufzählung

- ENUM('s1', 's2', 's3',...) Enumeration
 - Nur Werte aus der Liste und NULL werden akzeptiert sonst Fehlerwert → " (keine Fehlermeldung!)
 - z.B. Spalte Geschlecht ENUM('w', 'm'),
 → mögliche Werte: NULL, ", 'm', 'w'
- SET('s1', 's2', 's3',..) Menge
 - Nur Werte aus der Liste und NULL werden akzeptiert sonst Fehlerwert → " (keine Fehlermeldung!)
 - z.B. Spalte Führerscheinklasse SET('A', 'B', 'C', …),
 → mögliche Werte: NULL, ", 'A','B','C','A,B','B,C','A,C', 'A,B,C',…
 - VORSICHT: Verletzt ggf. 1. Normalform