

Лекция по эконометрике №8, 3 модуль

Системы одновременных уравнений -2

Демидова

Ольга Анатольевна

https://www.hse.ru/staff/demidova_olga

E-mail:demidova@hse.ru

01.03.2021

План лекции

- 1) Способы оценки систем одновременных уравнений
- 2) 2-х шаговый МНК
- 3) 3-х шаговый МНК
- 4) Внешне не связанные уравнения (SUR seemingly unrelated regressions)

Общий случай системы одновременных уравнений

Структурная форма системы уравнений

$$\begin{cases} \beta_{11}Y_{1t} + \beta_{12}Y_{2t} + \dots + \beta_{1m}Y_{mt} + \gamma_{11}X_{1t} + \dots + \gamma_{1k}X_{kt} = \varepsilon_{1t} \\ \beta_{21}Y_{1t} + \beta_{22}Y_{2t} + \dots + \beta_{2m}Y_{mt} + \gamma_{21}X_{1t} + \dots + \gamma_{2k}X_{kt} = \varepsilon_{2t} \\ \vdots \\ \beta_{m1}Y_{1t} + \beta_{m2}Y_{2t} + \dots + \beta_{mm}Y_{mt} + \gamma_{m1}X_{1t} + \dots + \gamma_{mk}X_{kt} = \varepsilon_{mt} \end{cases}$$

Общий случай системы одновременных уравнений

Проблемы идентификации коэффициентов структурной формы.

$$BY_t + \Gamma X_t = \varepsilon_t -$$
структурная форма,

$$Y_t = \Pi X_t + \nu_t$$
 — приведенная форма.

В приведенной форме тк коэффициентов.

В общем случае исходная система не идентифицируема.

Но если на коэффициенты структурной формы наложены дополнительные ограничения (например, много нулей), то иногда можно оценить коэффициенты структурной формы.

Условие порядка идентификации одного уравнения

Число исключенных из уравнения экзогенных переменных + число исключенных их уравнения эндогенных переменных ≥ число уравнений – 1. Или

Число нулевых коэффициентов в уравнении ≥ число уравнений – 1.

Это условие порядка легко проверить.

Условие ранга (необходимое и достаточное условие идентификации) – см. лекцию 7, модуль 3.

Виды уравнений

- •Если для уравнения выполняются условия порядка и ранга, причем условие порядка со знаком = , т.е. К-р = q-1, то это уравнение является точно идентифицируемым.
- •Если для уравнения выполняются условия порядка и ранга, причем условие порядка со знаком > , т.е. K-р > q-1, то это уравнение является сверхидентифицируемым.
- •Если для уравнения не выполняется условие порядка или условие ранга, то это уравнение называется не идентифицируемым.

Способы оценки систем одновременных уравнений

- •Если все уравнения точно идентифицируемы, то применяется косвенный метод наименьших квадратов. Оцениваются уравнения приведенной формы и из них выражаются коэффициенты структурной формы.
- •Если среди уравнений есть сверхидентифицируемые, то применяется двухшаговый МНК. Каждый Y в уравнении, кроме Y с коэффициентом 1, заменяется на оценку Y из уравнения регрессии на все X. И оценивается каждое уравнение регрессии.

Трехшаговый МНК. Общий вид системы уравнений

$$\begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \\ \vdots \\ \mathbf{y}_M \end{bmatrix} = \begin{bmatrix} \mathbf{Z}_1 & 0 & \dots & 0 \\ 0 & \mathbf{Z}_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \mathbf{Z}_M \end{bmatrix} \begin{bmatrix} \boldsymbol{\beta}_1 \\ \boldsymbol{\beta}_2 \\ \vdots \\ \boldsymbol{\beta}_M \end{bmatrix} + \begin{bmatrix} \boldsymbol{\epsilon}_1 \\ \boldsymbol{\epsilon}_2 \\ \vdots \\ \boldsymbol{\epsilon}_M \end{bmatrix}$$

$$y = ZB + \epsilon$$

$$E(\epsilon) = 0.$$

$$E(\epsilon \epsilon') = \Sigma$$

Z₁,..., **Z**_M включают экзогенные (**X**) и эндогенные (**Y**) переменные.

Трехшаговый МНК. Первый шаг

1 шаг (совпадает с 1-м шагом 2-х шагового МНК)

Инструментирование всех эндогенных переменных всеми экзогенными. Экзогенные переменные при этом не изменяются

$$\widehat{\mathbf{z}}_i = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{z}_i$$

Трехшаговый МНК. Второй шаг

2 шаг (совпадает с 2-м шагом 2-х шагового МНК)

Каждый Y в уравнении, кроме Y с коэффициентом 1, заменяется на оценку Y из уравнения регрессии на все X. И оценивается каждое уравнение регрессии.

Трехшаговый МНК. Третий шаг

3 шаг

- Сохраняются остатки каждого из оцененных на 2-м шаге М уравнений, из них составляется матрица Е.
- Находится состоятельная оценка ковариационной матрицы ошибок системы уравнений: $\widehat{\Sigma} = \frac{\mathbf{E}'\mathbf{E}}{n}$
- Используется формула обобщенного МНК для нахождения итоговых оценок:

$$\widehat{\mathbf{B}} = \left\{\widehat{\mathbf{Z}'}(\mathbf{\Sigma}^{-1} \otimes \mathbf{I})\widehat{\mathbf{Z}}
ight\}^{-1} \widehat{\mathbf{Z}'}(\mathbf{\Sigma}^{-1} \otimes \mathbf{I})\mathbf{y}$$

Трехшаговый МНК. Третий шаг

Оценка ковариационной матрицы оценок коэффициентов:

$$\mathbf{V}_{\widehat{\mathbf{B}}} = \left\{ \widehat{\mathbf{Z}}'(\widehat{\mathbf{\Sigma}}^{-1} \otimes \mathbf{I}) \widehat{\mathbf{Z}} \right\}^{-1}$$

Примечание: процесс оценки ковариационной матрицы и оценок коэффициентов может быть сделан итерационным.

Пример 1. Переменные

Наблюдения за 1920 - 1941

$$\begin{split} & \mathtt{consump} = \beta_0 + \beta_1 \, \mathtt{wagepriv} + \beta_2 \, \mathtt{wagegovt} + \epsilon_1 \\ & \mathtt{wagepriv} = \beta_3 + \beta_4 \, \mathtt{consump} + \beta_5 \, \mathtt{govt} + \beta_6 \, \mathtt{capital1} + \epsilon_2 \end{split}$$

yr	year
consump	consumption
profits	private profits
wagepriv	private wage bill
invest	investment
capital1	lagged value of capital stock
totinc	total income/demand
wagegovt	government wage bill
govt	government spending
taxnetx	indirect bus taxes + net export
wagetot	total US wage bill
year	calendar year - 1931
profits1	last year's private profits
totinc1	last year's total income/demand

Пример 1. Оценка уравнений по-отдельности

. reg3 (consump wagepriv wagegovt) (wagepriv consump govt capital1), ols

Multivariate regression

Equation	Obs	Parms	RMSE	"R-sq"	F-Stat	Р
consump wagepriv	22 22	2 3	1.60651 1.553524	0.9567 0.9489	210.15 111.33	0.0000

	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
consump						linh o
wagepriv	.9918122	.0678073	14.63	0.000	.8544216	1.129203
wagegovt	.6780964	.2147332	3.16	0.003	.2430055	1.113187
_cons	14.24549	2.045098	6.97	0.000	10.10173	18.38925
wagepriv						- 10-1
consump	.7742524	.0654305	11.83	0.000	.6416777	.9068272
govt	.4048119	.1969143	2.06	0.047	.0058257	.8037981
capital1	0443646	.0356482	-1.24	0.221	1165947	.0278656
_cons	1.668479	6.744839	0.25	0.806	-11.99786	15.33482

Пример 1. Оценка уравнений с помощью 2-х шагового МНК

. reg3 (consump wagepriv wagegovt) (wagepriv consump govt capital1), 2sls

Two-stage least-squares regression

Equation	Obs	Parms	RMSE	"R-sq"	F-Stat	P
consump wagepriv	22 22	2	1.911394 2.720166	0.9388 0.8432	89.83 21.67	0.0000

	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
consump						
wagepriv	.8012754	.1376629	5.82	0.000	.5223438	1.080207
wagegovt	1.029531	.3280273	3.14	0.003	.3648848	1.694178
_cons	19.3559	3.856336	5.02	0.000	11.54222	27.16958
wagepriv					/	
consump	.3752562	.2848669	1.32	0.196	2019389	.9524514
govt	1.155399	.5996727	1.93	0.062	0596528	2.370452
capital1	.0107234	.072061	0.15	0.883	1352862	.1567329
_cons	8.443596	12.61305	0.67	0.507	-17.11287	34.00007

Endogenous variables: consump wagepriv

Exogenous variables: wagegovt govt capital1

Пример 1. Оценка уравнений с помощью 3-х шагового МНК

. reg3 (consump wagepriv wagegovt) (wagepriv consump govt capital1), 3sls

Three-stage least-squares regression

Equation	Obs	Parms	RMSE	"R-sq"	chi2	Р
consump wagepriv	22 22	2 3	1.776297 2.372443	0.9388 0.8542	208.02	0.0000

	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
consump						
wagepriv	.8012754	.1279329	6.26	0.000	.5505314	1.052019
wagegovt	1.029531	.3048424	3.38	0.001	.432051	1.627011
_cons	19.3559	3.583772	5.40	0.000	12.33184	26.37996
wagepriv				k	7	
consump	.4026076	.2567312	1.57	0.117	1005764	.9057916
govt	1.177792	.5421253	2.17	0.030	.1152461	2.240338
capital1	0281145	.0572111	-0.49	0.623	1402462	.0840173
_cons	14.63026	10.26693	1.42	0.154	-5.492552	34.75306

Endogenous variables: consump wagepriv

Exogenous variables: wagegovt govt capital1

Пример 1. Сравнительный анализ оценок OLS, 2-х и 3-х шагового МНК

. est tab ols tsls threesls, star(0.1 0.05 0.01)

Variable	ols	tsls	threesls
consump			
wagepriv	.99181221***	.8012754***	.8012754***
wagegovt	.67809639***	1.0295312***	1.0295312***
_cons	14.245492***	19.3559***	19.3559***
wagepriv			
consump	.77425243***	.37525621	.40260759
govt	.4048119**	1.1553994*	1.1777921**
capital1	04436459	.01072338	02811446
_cons	1.6684789	8.4435958	14.630256
			

legend: * p<.1; ** p<.05; *** p<.01

Пример 2. Модель Клейна

Наблюдения за 1920 - 1941

year	year
C	consumption
р	private profits
wp	private wage bill
wg	government wage bill
w	total US wage bill
i	investment
k	capital stock
У	total income/demand
g	government spending
t	indirect bus taxes + net export
yr	calendar year - 1931

Пример 2. Модель Клейна

$$\begin{aligned} \mathbf{c} &= \beta_0 + \beta_1 \mathbf{p} + \beta_2 \mathbf{L}.\mathbf{p} + \beta_3 \mathbf{w} + \epsilon_1 \\ \mathbf{i} &= \beta_4 + \beta_5 \mathbf{p} + \beta_6 \mathbf{L}.\mathbf{p} + \beta_7 \mathbf{L}.\mathbf{k} + \epsilon_2 \\ \mathbf{w} \mathbf{p} &= \beta_8 + \beta_9 \mathbf{y} + \beta_{10} \mathbf{L}.\mathbf{y} + \beta_{11} \mathbf{y} \mathbf{r} + \epsilon_3 \end{aligned}$$

$$y = c + i + g$$

$$p = y - t - wp$$

$$k = L.k + i$$

$$w = wg + wp$$

Short name	Long name	Variable definition				
С	consump	Consumption				
p	profits	Private industry profits				
wp	wagepriv	Private wage bill				
wg	wagegovt	Government wage bill				
W	wagetot	Total wage bill				
i	invest	Investment				
k	capital	Capital stock				
У	totinc	Total income/demand				
g	govt	Government spending				
t	taxnetx	Indirect bus. taxes + net exports				
yr	year	Year—1931				

Пример 2. Модель Клейна. Оценка уравнений по-отдельности

. reg3 (c p L.p w) (i p L.p L.k) (wp y L.y yr), endog(w p y) exog(t wg g) ols

Multivariate regression

Equation	Obs	Parms	RMSE	"R-sq"	F-Stat	Р
С	21	3	1.02554	0.9810	292.71	0.0000
i	21	3	1.009447	0.9313	76.88	0.0000
qw	21	3	.7671466	0.9874	444.57	0.0000

		Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
С							
	р L1.	.1929343	.0912102	2.12	0.039 0.326	.0098223	.3760464
	w _cons	.7962188 16.2366	.0399439 1.302698	19.93 12.46	0.000	.716028 13.62133	.8764095 18.85188
i							uphulo
	p L1.	.4796356 .3330387	.0971146	4.94 3.30	0.000	.28467 .1305554	.6746012 .535522
	k L1.	1117947	.0267276	-4.18	0.000	1654525	0581369
	_cons	10.12579	5.465546	1.85	0.070	8467494	21.09833
wp						V	
	У L1.	.4394769 .14609	.0324076	13.56 3.90	0.000	.374416	.5045378
	yr _cons	.1302452 1.497043	.0319103 1.270031	4.08 1.18	0.000	.0661826 -1.052651	.1943077

Пример 2. Модель Клейна. Оценка уравнений с помощью 2-х шагового МНК

. reg3 (c p L.p w) (i p L.p L.k) (wp y L.y yr), endog(w p y) exog(t wg g) 2sls

Two-stage least-squares regression

Equation	Obs	Parms	RMSE	"R-sq"	F-Stat	P
c	21	3	1.135659	0.9767	225.93	0.0000
i	21	3	1.307149	0.8849	41.20	
wp	21	3	.7671548	0.9874	424.19	

		Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
C							
	P L1.	.0173022 .2162338	.1312046	0.13	0.896 0.076	246102 0231137	.2807064
	w _cons	.8101827 16.55476	.0447351 1.467979	18.11 11.28	0.000	.7203733 13.60767	.8999921 19.50185
i							
	p L1.	.1502219 .6159434	.1925335 .1809258	0.78 3.40	0.439	2363053 .2527198	.5367491 .9791671
	k L1.	1577876	.0401521	-3.93	0.000	2383963	077179
	_cons	20.27821	8.383247	2.42	0.019	3.448138	37.10828
wp					1		
	У L1.	.4388591 .1466739	.0396026	11.08 3.40	0.000	.3593535 .0600187	.5183646
	yr _cons	.1303956 1.500296	.0323884 1.275686	4.03 1.18	0.000 0.245	.0653733 -1.06075	.195418 4.061342

Endogenous variables: c i wp w p y

Exogenous variables: L.p L.k L.y yr t wg g

Пример 2. Модель Клейна. Оценка уравнений с помощью 3-х шагового МНК

. reg3 (c p L.p w) (i p L.p L.k) (wp y L.y yr), endog(w p y) exog(t wg g) 3sls

Three-stage least-squares regression

Equation	Obs	Parms	RMSE	"R-sq"	chi2	P
c	21	3	.9443305	0.9801	864.59	0.0000
i	21	3	1.446736	0.8258	162.98	
wp	21	3	.7211282	0.9863	1594.75	

		Coef.	Std. Err.	z	P> z	[95% Conf.	. Interval]
C							
	p						
		.1248904	.1081291	1.16	0.248	0870387	.3368194
	L1.	.1631439	.1004382	1.62	0.104	0337113	.3599992
	W	.790081	.0379379	20.83	0.000	.715724	.8644379
	_cons	16.44079	1.304549	12.60	0.000	13.88392	18.99766
i							
	р						
		0130791	.1618962	-0.08	0.936	3303898	.3042316
	L1.	.7557238	.1529331	4.94	0.000	.4559805	1.055467
	k						
	L1.	1948482	.0325307	-5.99	0.000	2586072	1310893
	_cons	28.17785	6.793768	4.15	0.000	14.86231	41.49339
qw							
-	У						
		.4004919	.0318134	12.59	0.000	.3381388	.462845
	L1.	.181291	.0341588	5.31	0.000	.1143411	.2482409
	yr	.149674	.0279352	5.36	0.000	.094922	.2044261
	_cons	1.797216	1.115854	1.61	0.107	3898181	3.984251
		L					

Endogenous variables: c i wp w p y Exogenous variables: L.p L.k L.y yr t wg g

Пример 2. Сравнительный анализ оценок OLS, 2-х и 3-х шагового МНК

. est tab ols twosls threesls, star(0.1 0.05 0.01)

	Variable	ols	twosls	threesls
С				
	р L1.	.19293435**	.01730217 .21623384*	.12489037
	w _cons	.79621877*** 16.236603***	.81018271*** 16.554759***	.79008096*** 16.440793***
i				
	р L1.	.4796356*** .3330387***	.15022192 .61594344***	01307908 .75572382***
	k L1.	1117947***	15778763***	19484825***
	_cons	10.125792*	20.278208**	28.177848***
wp				
	У L1.	.43947694***	.43885905*** .14667385***	.4004919*** .18129102***
	yr _cons	.13024517*** 1.497043	.13039562*** 1.500296	.14967403*** 1.7972162

legend: * p<.1; ** p<.05; *** p<.01

Внешне не связанные уравнения (SUR – seemingly unrelated regressions)

Частный случай системы одновременных уравнений, когда в правой части нет эндогенных переменных (Y), а только экзогенные (X).

Оценки SUR более эффективны, чем оценки оцененных по-отдельности уранений.

Пример 3.

Наблюдения для	74	машин
----------------	-----------	-------

make	Make and Model
price	Price
mpg	Mileage (mpg)
rep78	Repair Record 1978
headroom	Headroom (in.)
trunk	Trunk space (cu. ft.)
weight	Weight (lbs.)
length	Length (in.)
turn	Turn Circle (ft.)
displacement	Displacement (cu. in.)
gear_ratio	Gear Ratio
foreign	Car type

Пример 3. Оценка системы уравнений

. sureg (price foreign weight length) (mpg foreign weight) (displ foreign weight)

Seemingly unrelated regression

Equation	Obs	Parms	RMSE	"R-sq"	chi2	Р
price	74	3	1967.769	0.5488	89.74	0.0000
mpg	74	2	3.337283	0.6627	145.39	0.0000
displacement	74	2	39.60002	0.8115	318.62	0.0000

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
price						
foreign	3575.26	621.7961	5.75	0.000	2356.562	4793.958
weight	5.691462	.9205043	6.18	0.000	3.887307	7.495618
length	-88.27114	31.4167	-2.81	0.005	-149.8467	-26.69554
_cons	4506.212	3588.044	1.26	0.209	-2526.225	11538.65
mpg						
foreign	-1.650029	1.053958	-1.57	0.117	-3.715748	.4156902
weight	0065879	.0006241	-10.56	0.000	007811	0053647
_cons	41.6797	2.121197	19.65	0.000	37.52223	45.83717
displacement						
foreign	-25.6127	12.50621	-2.05	0.041	-50.12441	-1.100984
weight	.0967549	.0074051	13.07	0.000	.0822411	.1112686
_cons	-87.23548	25.17001	-3.47	0.001	-136.5678	-37.90317

Пример 3. Оценка уравнений по-отдельности

. reg price foreign weight length

Source	SS	df	MS	Number of obs	=	74
				F(3, 70)	=	28.39
Model	348565467	3	116188489	Prob > F	=	0.0000
Residual	286499930	70	4092856.14	R-squared	=	0.5489
				Adj R-squared	=	0.5295
Total	635065396	73	8699525.97	Root MSE	=	2023.1
'						
nrice	Coef	Std Frr	+	P> + [95% Co	nf T	intervall

price	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
foreign	3573.092	639.328	5.59	0.000	2297.992	4848.191
weight	5.774712	.9594168	6.02	0.000	3.861215	7.688208
length	-91.37083	32.82833	-2.78	0.007	-156.8449	-25.89679
_cons	4838.021	3742.01	1.29	0.200	-2625.183	12301.22

Пример 3. Оценка уравнений по-отдельности

. reg mpg foreign weight

Source	SS	df	MS	Numb	er of obs	=	74
				F(2,	71)	=	69.75
Model	1619.2877	2	809.643849	Prob	> F	=	0.0000
Residual	824.171761	71	11.608053	B R-sq	uared	=	0.6627
				- Adj	R-squared	=	0.6532
Total	2443.45946	73	33.4720474	1 Root	MSE	=	3.4071
·							
							-/
mpg	Coef.	Std. Err.	t	P> t	[95% Co	onf.	Interval]
						$\frac{1}{2}$	
foreign	-1.650029	1.075994	-1.53	0.130	-3.79	55	.4954422
weight	0065879	.0006371	-10.34	0.000	007858	33	0053175
_cons	41.6797	2.165547	19.25	0.000	37.3617	72	45.99768

Пример 3. Оценка уравнений по-отдельности

. reg displ foreign weight

Source	SS	df	MS	Number of obs	=	74
Model	499643.527	2	249821.763	F(2, 71) Prob > F	=	152.85 0.0000
Residual	116043.933	71	1634.42159	R-squared	=	0.8115
Total	615687.459	73	8434.07479	Adj R-squared Root MSE	=	0.8062 40.428

displacement	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
foreign	-25.6127	12.76769	-2.01	0.049	-51.07074	1546505
weight	.0967549	.0075599	12.80	0.000	.0816807	.111829
_cons	-87.23548	25.69627	-3.39	0.001	-138.4724	-35.99858

	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
price						
foreign	3575.26	621.7961	5.75	0.000	2356.562	4793.958
weight	5.691462	.9205043	6.18	0.000	3.887307	7.495618
length	-88.27114	31.4167	-2.81	0.005	-149.8467	-26.69554
_cons	4506.212	3588.044	1.26	0.209	-2526.225	11538.65
mpg						
foreign	-1.650029	1.053958	-1.57	0.117	-3.715748	.4156902
weight	0065879	.0006241	-10.56	0.000	007811	0053647
_cons	41.6797	2.121197	19.65	0.000	37.52223	45.83717
displacement						
foreign	-25.6127	12.50621	-2.05	0.041	-50.12441	-1.100984
weight	.0967549	.0074051	13.07	0.000	.0822411	.1112686
_cons	-87.23548	25.17001	-3.47	0.001	-136.5678	-37.90317

	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
price						
foreign	3575.26	621.7961	5.75	0.000	2356.562	4793.958
weight	5.691462	.9205043	6.18	0.000	3.887307	7.495618
length	-88.27114	31.4167	-2.81	0.005	-149.8467	-26.69554
_cons	4506.212	3588.044	1.26	0.209	-2526.225	11538.65
mpg						7
foreign	-1.650029	1.053958	-1.57	0.117	-3.715748	.4156902
weight	0065879	.0006241	-10.56	0.000	007811	0053647
_cons	41.6797	2.121197	19.65	0.000	37.52223	45.83717
displacement						
foreign	-25.6127	12.50621	-2.05	0.041	-50.12441	-1.100984
weight	.0967549	.0074051	13.07	0.000	.0822411	.1112686
_cons	-87.23548	25.17001	-3.47	0.001	-136.5678	-37.90317
	Т					
price	Coef.	Std. Err.	t	P> t	[95% Con	f. Interval]
foreign	3573.092	639.328	5.59	0.000	2297.992	4848.191
weight	5.774712	.9594168	6.02	0.000	3.861215	7.688208
length	-91.37083	32.82833	-2.78	0.007	-156.8449	-25.89679
_cons	4838.021	3742.01	1.29	0.200	-2625.183	

	Coef.	Std. Err.	Z	P> z	[95% Con-	f. Interval]	
price							
foreign	3575.26	621.7961	5.75	0.000	2356.562	4793.958	
weight	5.691462	.9205043	6.18	0.000	3.887307	7.495618	
length	-88.27114	31.4167	-2.81	0.005	-149.8467	-26.69554	
_cons	4506.212	3588.044	1.26	0.209	-2526.225	11538.65	
mpg							
foreign	-1.650029	1.053958	-1.57	0.117	-3.715748	.4156902	
weight	0065879	.0006241	-10.56	0.000	007811	0053647	
_cons	41.6797	2.121197	19.65	0.000	37.52223	45.83717	
displacement							
foreign	-25.6127	12.50621	-2.05	0.041	-50.12441	-1.100984	
weight	.0967549	.0074051	13.07	0.000	.0822411	.1112686	
_cons	-87.23548	25.17001	-3.47	0.001	-136.5678	-37.90317	
					· · · · · ·	1	
mpg	Coef.	Std. Err.	t	P> t	[95%	Conf. Inte	rval]
foreign	-1.650029	1.075994	-1.53	0.130	-3.7	7955 .49	54422
weight	0065879	.0006371	-10.34	0.000	0078	358300	53175

19.25

2.165547

41.6797

_cons

0.000

37.36172

45.99768

	 				 		_
	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interva	1]
price							
foreign	3575.26	621.7961	5.75	0.000	2356.562	4793.9	58
weight	5.691462	.9205043	6.18	0.000	3.887307	7.4956	18
length	-88.27114	31.4167	-2.81	0.005	-149.8467	-26.695	54
_cons	4506.212	3588.044	1.26	0.209	-2526.225	11538.	65
mpg							
foreign	-1.650029	1.053958	-1.57	0.117	-3.715748	.41569	02
weight	0065879	.0006241	-10.56	0.000	007811	00536	47
_cons	41.6797	2.121197	19.65	0.000	37.52223	45.837	17
displacement							
foreign	-25.6127	12.50621	-2.05	0.041	-50.12441	-1.1009	84
weight	.0967549	.0074051	13.07	0.000	.0822411	.11126	86
_cons	-87.23548	25.17001	-3.47	0.001	-136.5678	-37.903	17
displacement	Coef.	Std. Er	r.	t P>	t [95%	Conf.	Interval]
foreign	-25.6127	12.7676	9 -2	.01 0.	049 -51.0	7074	1546505
weight	.0967549	.007559	9 12	.80 0.	000 .081	6807	.111829
_cons	-87.23548				001 -138.		-35.99858
	07.25540	23.0302	,		130.	7/ 47	55.55050

Thank you for your attention!

20, Myasnitskaya str., Moscow, Russia, 101000 Tel.: +7 (495) 628-8829, Fax: +7 (495) 628-7931 www.hse.ru