Learning Opportunity 1-5

- 1-5-1 Attempt to find the optimal production schedule (maximum profit) for OilCo by hand. See the problem description and production schedule in the 10 directory of the course repository.
- 1-5-2 This exercise will help you become familiar with Sage's linear solvers.

You wish to design a daily diet for AIMS students which has the absolute minimum cost. But you are not heartless and want to provide some nutrition and variety. The optimal diet should:

- 1. Provide at least 2000 Calories.
- 2. Provide at least 55 grams of protein.
- 3. Provide at least 800 milligrams of calcium.
- 4. To ensure variety, there is a daily maximum limit on the number of portions of each food.
- 5. The table below provides additional required information.

Food	Portion Size	Calories	Protein (g)	Calcium (mg)	Rand/Portion	Max Portions
Oats	28 g	110	4	2	3	4
Chicken	100 g	205	32	12	24	3
Eggs	2 large	160	13	54	13	2
Milk	250 ml	160	8	285	9	8
\mathbf{Cake}	170 g	420	4	22	20	2
Beans	260 g	260	14	80	6	2

Table .1: Food Specifications

- 1. Design and implement a model using Sage's linear programming solver. Solve the model to compute the minimum daily cost. Notice that this will assume the portions are divisible.
- 2. Read the Sage documentation (link on Course Calendar) to learn how to restrict your decision variables to integers, reflecting practicalities like it may be hard to serve half of a soft-boiled egg. Solve this model.
- 3. Comment on the different values for the two different models. Explain this difference in general terms. For example, which model is more constrained?

Full marks for two solutions and a well-written commentary.