

UCB008 - APPLIED CHEMISTRY

Molecular Spectroscopy Series Lecture - IV

UV-Visible Spectroscopy – Terms

by

Prof. Ranjana Prakash

School of Chemistry and Biochemistry
Thapar Institute of Engineering and Technology
Patiala -147004, India

Ranjana Prakash

Learning Outcomes

At the end of this session participants should be able to:

• illustrate the terms used in UV-Visible Spectroscopy

Chromophore

 Isolated covalently bonded groups that shows characteristic absorption in UV-Visible region and even small structural changes brings about change in wavelength of absorption.

or

- The functional groups containing multiple bonds capable of absorbing radiations above 200 nm due to $n-\pi$ * and $\pi-\pi$ * transitions.
- Examples: C=C, C≡C, N=O, N=N, NO₂, C=O, C=N, C≡N, C=C,C=S,
 -CONH₂, -COOH, etc

Chromophore

- Non-conjugated alkenes show an absorption below 200 nm and therefore cannot be observed by conventional UV spectrophotometer.
- If these transitions are to be observed, vacuum UV spectrophotometer is required.
- Non-conjugated carbonyl group compound give a weak absorption band in the 200 300 nm due to $n=\pi^*$ transition.

Effect of conjugation on λ_{max}

Compound	λ _{max} (nm)
H ₂ C=CH ₂	180
	217
0	220
	220
	255
HO_3S $N=N$ Me Me	460

Effect of conjugation on λ_{max}

1,5 - hexadiene : λ_{max} = 178 nm

2,4 - hexadiene : λ_{max} = 227 nm

When double bonds are conjugated in a compound, λ_{max} is shifted to longer wavelength.

Effect of conjugation on λ_{max}

Ethylene has $\lambda_{max} = 171 \text{ nm}$

$$H_3C$$
 C
 C
 C

Acetone has $\lambda_{max} = 279 \text{ nm}$

Conjugation of C=C and carbonyl group shifts the λ_{max} of both groups to longer wavelength.

$$H_2C$$
 C
 CH_3

Crotonaldehyde has λ_{max} = 290 nm

Auxochrome

 The functional group with non-bonding electrons, that does not absorb radiation in UV/visible region, when attached to a chromophore increases the wavelength and intensity of absorption.

OR

 Any group which does not itself act as chromophore but its presence brings about a shift of absorption bands towards red end of the spectrum

Examples: -OH, -OR, -NH₂ -NHR, -NR₂ -SH etc.

Auxochrome

 Auxochrome when combined with chromophore, modifies the position of absorption band relative to the parent chromophore

Chromophore + Auxochrome

New chromophore having higher λ_{max}

Examples: -OH, -OR, -NH₂, -NHR, -NR₂, -SH etc.

 Auxochrome extends the conjugation of a chromophore by sharing its lone pair of electrons

Ranjana Prakash

Auxochrome

e.g. Benzene $\lambda_{max} = 255 \text{ nm}$

Phenol λ_{max} = 270 nm

Aniline $\lambda_{max} = 280 \text{ nm}$

In the next session.....

Absorption and Intensity Shifts in UV-Visible Spectroscopy