

機

台大電機系 葉丙成

微博: weibo.com/yehbo 臉書: facebook.com/prof.yeh

部落格: pcyeh.blog.ntu.edu.tw

丙紳機率第五週

人們再度想起了

被微積分支配的恐懼

與積分鬼打牆

積不出來時

的無比屈辱~~~

本週主題概述

- 6-1: 連續機率分佈 II
- 6-2: 期望值 I

6-1: 連續機率分佈 II (CONTINUOUS PROBABILITY DISTRIBUTIONS)

第六週

Normal 機率分佈(常態分佈)

- 常態分佈在自然界很常出現
 - Ex: 人口身高分佈、體重分佈
- 亦常被用作「很多隨機量的總合」的機率模型
 - Ex: 100 人吃飯時間的總合
 - -原因:來自最後會講到的「中央極限定理」

Normal 機率分佈(常態分佈)

- 常態分佈,亦常被稱作 Gaussian (高斯)機率分佈(瞧那高斯的威能啊!!)
- $X \sim Gaussian(\mu, \sigma)$,

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

也常有人用 $X\sim N(\mu,\sigma^2)$ 來表示

Normal 機率分佈(常態分佈)

- · CDF 是多少?
 - 很難算,積分根本算不出來!
 - 用數值積分法去建表?很難啊,因為不同的 μ,σ 就會造就 出不同的 常態分佈 PDF,每個都要建一個表會要命啊!
- 怎麼辦?
 - 有沒有辦法找到一組特別 μ,σ,先針對這組的 CDF 建表, 然後想辦法把別的常態分佈的 CDF 跟這組 CDF 牽上關係?
 - 若能牽扯上,再利用這表去算出別的常態分佈的 CDF 值?

Standard Normal Distribution

標準常態分佈

• $Z \sim N(0, 1)$,

$$f_Z(z) = \frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}}$$

Standard Normal Distribution 標準常態分佈

• $Z \sim N(0, 1)$,

$$f_Z(z) = \frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}}$$

- CDF 表示為 $\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du$
 - 看不出來,只能以數值方法近似出來後建表 給人家查
 - 網路上或是工程計算機上常能找到

Standard Normal Distribution

標準常態分佈

• 例:*F_Z*(1.325) =?

	۰,,, ۰				5,	, 🔾				
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

1.325

$$F_Z(1.325) = \frac{0.9066 + 0.9082}{2} = 0.9074$$

Standard Normal Distribution

標準常態分佈

•
$$\Phi(z)$$
 的性質: $\Phi(-z) = 1 - \Phi(z)$

任意 μ , σ 下的 CDF?

- 任意 μ,σ 下的CDF,我們要把它跟N(0,1)牽上關係
- 「關係!」:對任何 $X \sim N(\mu, \sigma^2)$ 而言, $\frac{X-\mu}{\sigma} \sim N(0, 1)$

證明:
$$f_X(x) =$$

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$\frac{\sigma}{\sqrt{\sigma}} = \frac{d}{\sqrt{\sigma}} = \frac{d$$

任意 μ , σ 下的 CDF?

• 對任何 $X \sim N(\mu, \sigma^2)$ 而言, $F_X(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$

證明:

$$\underbrace{F_{X}(x)}_{=P(X \leq x)} = \underbrace{P(X - \mu \leq x - \mu)}_{=P(X - \mu \leq x - \mu)} \\
= \underbrace{P(X - \mu \leq x - \mu)}_{=\Phi(X - \mu)} \\
= \Phi\left(\frac{x - \mu}{\sigma}\right)^{\lambda(\sigma_{1})}$$

V70

任意 μ , σ 下的 CDF?

Ex: 已知 10 名水源阿伯每日拖車總重量總和

 $X \sim N(500(100^2))$ (公斤), 問本日總重量少於 700

$$F_X(700) = P(X \le 700)$$

$$= P\left(\frac{X - \mu}{\sigma} \le \frac{700 - \mu}{\sigma}\right)$$

$$= P\left(\frac{X - \mu}{\sigma} \le \frac{700 - 500}{100} = \frac{200}{100} = 2\right)$$

$$= \Phi(2) = 0.977$$

本節回顧

- 常態分佈為何重要?
- · 常態分佈的 CDF 有精確的函數形式嗎?
- · 每個不同的常態分佈都有不同的 CDF 怎麼辦?
- 為什麼要特別提標準常態分佈?
- 任何常態分佈的隨機變數都可以跟標準常態 分佈牽上關係?這樣有什麼意義?

6-2: 期望值 I (EXPECTATION)

第六週

先說一下大數法則

- 丢一個銅板得正面機率是多少?
- 丢 3 次, 記錄實驗中得正面的次數比例為 2/3
- 丢 10 次,得正面的次數比例為 6/10
- 丢 100 次,得正面的次數比例為 53/100
- 丢 10000 次,得正面的次數比例為 5012/10000
- 大數法則:想知道某事件發生的機率?作很多次實驗,記錄實驗中出現那個事件多少次。當實驗次數接近無窮 多次時,這個比例就會越來越接近實際的機率!

期望值 (Expectation)

- 做隨機實驗時,我們很希望能有某種估算
- 平均值是我們平常最常普遍的估算值
- 作兩次實驗的平均值是 $?^{\frac{X_1+X_2}{2}} = ?$
- 作十次實驗的平均值是? $\frac{X_1+X_2+\cdots+X_{10}}{10}$ =?
- 不管我們做多少次實驗,平均值都是一個隨機變數,那不就 不能拿來估算?
- 所幸!當做的實驗次數趨近於無窮多時,這麼多次的實驗的平均值 會收斂到一個常數!我們就用它來當作這機率分佈的估算值吧!

期望值 (Expectation)

• 若考慮某機率分佈,作實驗很多次若隨機實驗之樣本空間為 $\{1,2,...,n\}$ 。作實驗N次,記錄各結果出現次數,分別為 $N_1,N_2,...,N_n$

• 平均值 (Mean):

- Ex: 3, 7, 3, 5, ...,
$$6 \Rightarrow mean = \underbrace{\frac{3+7+3+5+\cdots+6}{N}}_{N} = \sum_{x=1}^{n} \underbrace{\frac{x \cdot N_{x}}{N}}_{N}$$

• 根據大數法則:

$$- \underbrace{\lim_{N \to \infty} \frac{N_x}{N}} = \underbrace{P_X(x)} \Rightarrow \underbrace{\lim_{N \to \infty} mean} = \lim_{N \to \infty} \sum_{x=1}^n x \underbrace{N_x} = \underbrace{\sum_{x=1}^n x \cdot P_X(x)}$$

期望值 (Expectation)

- Mean 值又稱作期望值 MY=E[7]
- 對離散隨機變數 X 而言,我們定義其期望值

期望值雖是很常用來估算隨機變數的常數值,但小心不要 被誤導。期望值不等於隨機會發生的值

隨機變數的函數之期望值

- · 對於任一離散隨機變數 X 而言,其 任意函數 g(X) 亦是一隨機變數,亦有期望值
- g(X) 期望值定義為

$$E[g(X)] = \sum_{x=-\infty} g(x) \cdot P_X(x)$$

00

期望值運算的性質

• Ex:
$$E[3|X^2] = \sum_{x=-\infty}^{\infty} 3x^2 \cdot P_X(x)$$

$$=3\cdot\sum_{x=-\infty}^{\infty}x^2\cdot P_X(x)=3\cdot E[X^2]$$

•
$$E[\alpha g(X)] = \sum_{x=-\infty}^{\infty} \alpha g(x) \cdot P_X(x)$$

期望值運算的性質

•
$$E[\alpha g(X) + \beta h(X)]$$

$$=\sum_{x=-\infty}^{\infty} \left[\alpha g(x) + \beta h(x)\right] \cdot P_X(x)$$

$$=\alpha \cdot \sum_{x=-\infty}^{\infty} g(x) \cdot P_X(x) + \beta \cdot \sum_{x=-\infty}^{\infty} h(x) \cdot P_X(x)$$

$$= \alpha \cdot E[g(X)] + \beta \cdot E[h(X)]$$

Ex:
$$E[6(X) + 8(X^2)] = 6 E[X] + 8 E[X^2]$$

期望值運算的性質

• $E[\alpha]$

$$= \sum_{x=-\infty}^{\infty} \alpha \cdot \underline{P_X(x)} = \alpha \cdot \underline{\sum_{x=-\infty}^{\infty} P_X(x)} = \alpha$$

Ex: E[6] = 6

常見的隨機變數函數期望值

• X的 n^{th} moment: $E(\Upsilon)$

$$E[X^n] = \sum_{x=-\infty}^{\infty} x^n \cdot P_X(x)$$

- $Ex: E[X^2] 是 X 的 2^{nd} moment$
- $Ex: E[X^5] 是 X 的 5th moment$
- X的變異數 (variance):

$$E[(X - \mu_X)^2] = \sum_{x = -\infty}^{\infty} (x - \mu_X)^2 \cdot P_X(x)$$

變異數 (Variance) 🕜 🕜 🕝

• 變異數隱含關於隨機變數 X 多「亂」的資訊

• 變異數的開根號便是標準差 (standard deviation): σχ $\sqrt{Variance}$

Variance 便利算法

•
$$\sigma_X^2 = E[(X - \mu_X)^2] = \frac{E}{X^2 - 2\mu_X \cdot X} \times \frac{E[X^2 - 2\mu_X \cdot X + \mu_X^2]}{X^2 + E[-2\mu_X X] + E[\mu_X^2]}$$

= $E[X^2] - 2\mu_X \cdot E[X] + \mu_X^2 = E[X^2] - \mu_X^2$

常見離散分佈之期望值/變異數

• $X \sim Bernouli(p)$:

$$\begin{array}{l}
 \mu_X = 1 \cdot p + 0 \cdot (1 - p) = \underline{p} \\
 > \sigma_X^2 = E[X^2] - \mu_X^2 = \sum_{x=0}^1 x^2 \cdot p_X(x) - \mu_X^2 \\
 = 1^2 \cdot p + 0^2 \cdot (1 - p) - p^2 = p(1 - p)
\end{array}$$

• $X \sim BIN(n, p)$:

$$\triangleright \mu_X = np$$

$$> \sigma_X^2 = np(1-p)$$

Ex: $X \sim BIN(5, 0.2)$

$$\Rightarrow \mu_X = 5 \cdot 0.2 \stackrel{?}{=} 1$$

$$\sigma_X^2 = 5 \cdot 0.2 (1 - 0.2) = 0.8$$

常見離散分佈之期望值/變異數

$$\triangleright \mu_X = \sum_{x=0}^{\infty} x \cdot p_X(x) = \underbrace{\sum_{x=0}^{\infty} x \cdot (1-p)^{x-1} \cdot p}_{} = \underbrace{\sum_{x=0}^{\infty} x \cdot (1-p)^{x-1} \cdot p}_{} = \underbrace{\sum_{x=0}^{\infty} x \cdot p_X(x)}_{} = \underbrace{\sum_{x=0}$$

$$> \sigma_X^2 = E[X^2] - \mu_X^2 = \frac{1-p}{p^2}$$

• $X \sim PASKAL(k, p)$:

$$> \mu_X = \frac{k}{p}$$

常見離散分佈之期望值/變異數

• $X \sim POI(\alpha)$:

$$>\mu_X=\alpha$$

$$\succ \sigma_X^2 = \alpha$$

• $X \sim UNIF(a, b)$:

$$> \mu_X = \frac{a+b}{2}$$

$$> \sigma_X^2 = \frac{1}{12}(b-a)(b-a+2)$$

機率推導的奧義:「湊」字訣

•
$$P_X(x) = \frac{\alpha^x}{x!} e^{-\alpha}, x = 0, 1, 2, \dots, \sum_{x=0}^{\infty}$$

•
$$E[X] = \sum_{x=0}^{\infty} \underbrace{x \cdot \frac{\alpha^x}{x!}} e^{-\alpha} = \sum_{x=1}^{\infty} \underbrace{\frac{\alpha^x}{(x-1)!}} e^{-\alpha} = 0$$

$$\frac{x' = x - 1}{= \alpha \cdot \sum_{\underline{x}' = x - 1 = 1 - 1}^{\infty - 1} \underline{\underline{\alpha}^{x'}} e^{-\alpha} = \alpha \cdot \sum_{\underline{x}' = 0}^{\infty - 1} \underline{\underline{\alpha}^{x'}} e^{-\alpha} = \alpha \cdot 1 = \alpha$$

$$\sigma_X^2 = E[X^2] - \mu_X^2 = E[X^2] - \alpha^2, \quad E[X^2] = \sum_{x=1}^{\infty} x^2 \cdot \frac{\alpha^x}{x!} e^{-\alpha} = ?$$

本節回顧

- 為何想知道期望值?
- 根據大數法則,期望值等於?
- 隨機變數的函數期望值該怎麼求?
- · 變異數 (Variance) 的意義是?
- 機率(數學)證明的一大要訣?

