MA 361: Probability Theory

Naman Mishra

August 2024

Contents

1	Review		
	1.1	Discrete probability	3

The course

Grading

• Homework: 20%

• Two midterms: 15% each

• Final: 50%

Lecture 1.
Thursday
August 01

Chapter 1

Review

1.1 Discrete probability

Definition 1.1 (Discrete probability space). A discrete probability space is a pair (Ω, p) where Ω is a finite or countable set called *sample space* and $p: \Omega \to [0,1]$ is a function giving the *elementary probabilities* of each $\omega \in \Omega$ such that

$$\sum_{\omega \in \Omega} p(\omega) = 1.$$

Examples.

• "Toss a fair n times" is modeled as

$$\Omega = \{0,1\}^n$$

with

$$p(\omega) \equiv \frac{1}{2^n}.$$

• "Throw r balls randomly into m bins" is modeled as

$$\Omega = [m]^r$$

with p given by the multinomial distribution (assuming uniformity).

• "A box has N coupons, draw one of them."

$$\Omega = [N]$$
$$p = \omega \mapsto \frac{1}{N}.$$

• "Toss a fair coin countably many times." The set of outcomes is clear: $\Omega = \{0,1\}^{\mathbb{N}}$. What about the elementary probabilities?

Probabilities of some events are also fairly intuitive. For example, the event

$$A = \{ \underline{\omega} \in \Omega \mid \omega_1 = 1, \omega_2 = 1, \omega_3 = 0 \}$$

has probability 1/8. Similarly $B = \{\underline{\omega} \in \Omega \mid \omega_1 = 1, \omega_2 = 0\}$ has probability 1/4. Where does this come from?

What about this event:

$$C = \{ \underline{\omega} \in \Omega \mid \frac{1}{n} \sum_{i=1}^{n} \omega_i \to 0.6 \}$$

What about:

$$D = \{\underline{\omega} \in \Omega \mid \sum_{i=1}^{n} \omega_i = \frac{n}{2} \text{ for infinitely many } n\}^1$$

• "Draw a number uniformly at random from [0,1]." Ω is obviously [0,1]. Again some events have obvious probabilities.

$$A = [0.1, 0.3] \implies \Pr(A) = 0.2$$

Similarly

$$B = [0.1, 0.2] \cup (0.7, 1) \implies \Pr(B) = 0.4$$

What about $C = \mathbb{Q} \cap [0,1]$? What about D, the $\frac{1}{3}$ -Cantor set?

The $\frac{1}{3}$ -Cantor set is given by the limit of the following sequence of sets.

$$K_0 = [0, 1]$$

 $K_1 = [0, 1/3] \cup [2/3, 1]$
 $K_2 = [0, 1/9] \cup [2/9, 1/3] \cup [2/3, 7/9] \cup [8/9, 1]$
:

where each K_{n+1} is obtained by removing the middle third of each interval in K_n .²

The resolution for the above examples is achieved by taking the 'obvious' cases as definitions.

What we wish for:

What we agree on:

(#)
$$Pr([a, b]) = b - a$$
 for all $0 \le a \le b \le 1$.

(*) If
$$A \cap B = \emptyset$$
, then $\Pr(A \cup B) = \Pr(A) + \Pr(B)$.

(**) If
$$A_n \downarrow A$$
, then $\Pr(A_n) \downarrow \Pr(A)$.

Question: Does there exist a Pr: $2^{[0,1]} \rightarrow [0,1]$ that satisfies (#), (*) and (**)? **No.**

$${}^{1}\operatorname{Pr}(C) = 0$$
 and $\operatorname{Pr}(D) = 1$.

 $^{{}^{2}\}operatorname{Pr}(C) = \operatorname{Pr}(D) = 0.$

Question: Does there exist a Pr: $2^{[0,1]} \rightarrow [0,1]$ that satisfies (#) and (*) and even translational invariance? Yes.

However, it is not unique.

What about the same for a probability measure on $[0,1]^2$ that is translation and rotation invariant?

What about $[0,1]^3$?

Lack of uniqueness is a huge issue. The way out is the following: restrict the class of sets on which Pr is defined to a σ -algebra.

Definition 1.2 (σ -algebra). Given a set Ω , a collection $\mathcal{F} \subseteq 2^{\Omega}$ is called a σ -algebra if

- (i) $\varnothing \in \mathcal{F}$. (ii) $A \in \mathcal{F} \implies A^c \in \mathcal{F}$. (iii) If $A_1, A_2, \ldots \in \mathcal{F}$, then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$.

This gives us a modified question.

Question: Does there exist any σ -algebra \mathcal{F} on [0,1] and a function $\Pr: \mathcal{F} \to \mathbb{R}$ [0,1] that satisfies (#), (*) and (**)?

Answer: Yes, and it is sort-of unique.

Exercise 1.3. Prove that (**) is equivalent to the following: if $(B_n)_{\mathbb{N}}$ are pairwise disjoint, then

$$\Pr(\bigcup B_n) = \sum \Pr(B_n).$$

A σ -algebra that works for our case is the *smallest* one that contains all intervals.

Exercise 1.4. If $\{\mathcal{F}_i\}_{i\in I}$ are σ -algebras on Ω , then $\bigcap_{i\in I}\mathcal{F}_i$ is also a σ -algebra.

This allows us to make sense of the word 'smallest' above.

Definition 1.5. Let $S \subseteq 2^{\Omega}$. The smallest σ -algebra containing S is given by the intersection of all σ -algebras on Ω that contain S.

This will contain S since 2^{Ω} itself is a σ -algebra.

Definition 1.6 (Borel σ -algebra). The Borel σ -algebra on [0,1] is the smallest σ -algebra containing all intervals in [0, 1]. It is denoted by $\mathcal{B}_{[0,1]}$.

³The Banach-Tarski paradox gives a "no" for the 3D case.