Gradient Flows and Diffusion Semigroups in Metric Spaces under Lower Curvature Bounds

Giuseppe Savaré* Dipartimento di Matematica, Università di Pavia

Abstract

We present some new results concerning well-posedness of gradient flows generated by λ -convex functionals in a wide class of metric spaces, including Alexandrov spaces satisfying a lower curvature bound and the corresponding L^2 -Wasserstein spaces. Applications to the gradient flow of Entropy functionals in metric-measure spaces with Ricci curvature bounded from below and to the corresponding diffusion semigroup are also considered. These results have been announced during the workshop on "Optimal Transport: theory and applications" held in Pisa, November 2006.

Let (X, d) be a complete and separable metric space. A (constant speed, minimal) geodesic is a curve $\mathsf{x} : [0,1] \to X$ such that $\mathsf{d}(\mathsf{x}_s,\mathsf{x}_t) = |\dot{\mathsf{x}}| \, |s-t|, \, \forall \, s,t \in [0,1], \, |\dot{\mathsf{x}}|$ denoting its (constant) metric velocity.

Definition 1 (λ -convexity) A functional $\phi: X \to (-\infty, +\infty]$ is λ -convex, $\lambda \in \mathbb{R}$, if every couple of points $x_0, x_1 \in D(\phi) := \{u \in X : \phi(u) < +\infty\}$ can be connected by a geodesic x such that

$$\phi(\mathbf{x}_t) \le (1 - t)\phi(\mathbf{x}_0) + t\phi(\mathbf{x}_1) - \frac{1}{2}\lambda t(1 - t)d^2(\mathbf{x}_0, \mathbf{x}_1) \qquad \forall t \in [0, 1].$$
(1)

In contrast with the well known case when X is an Hilbert space [3], in arbitrary metric spaces λ -convexity is generally not sufficient to obtain the existence of a λ -contracting gradient flow, and it is a common belief that some "Riemannian-like" structure for X should also be required. When X is a non positively curved (NPC) Alexandrov space (i.e., the squared distance map $u \mapsto \frac{1}{2} d^2(u, v)$ is 1-convex, see e.g. [4]), then a generation result reproducing the celebrated Crandall-Ligget argument has been proved by [7] and it has been refined in various directions in [1]. In this note we consider the case of spaces satisfying (in a suitable synthetic way) only a lower bound on the curvature. Besides Alexandrov spaces (considered by a completely different method in the unpublished [9] and, when X is compact and positively curved, in the recent [8]), our approach covers more general situations, as the Wasserstein space $\mathscr{P}_2(X)$, when the Riemannian manifold X has points with negative sectional curvature. In particular our conditions are preserved by the Wasserstein construction and avoid compactness of the sublevels of ϕ .

Let us recall the metric definition of gradient flow for a λ -convex functional (see [1, Chap. 4]).

Definition 2 (Gradient flow) Let $\phi: X \to (-\infty, +\infty]$ be proper, l.s.c., and λ -convex. The gradient flow of ϕ with initial value $u_0 \in \overline{D(\phi)}$ is a locally Lipschitz curve $u: t \in (0, +\infty) \mapsto u_t \in D(\phi)$ such that

$$\frac{d}{dt}\frac{1}{2}\mathsf{d}^2(u_t,v) + \frac{\lambda}{2}\mathsf{d}^2(u_t,v) \le \phi(v) - \phi(u_t) \quad \text{for a.e. } t \in (0,+\infty), \quad \forall \, v \in D(\phi); \qquad \lim_{t \downarrow 0} u_t = u_0. \tag{2}$$

Existence of gradient flows will be proved by the so called *Minimizing Movements* variational scheme.

^{*}e-mail: giuseppe.savare@unipv.it, web: http://www.imati.cnr.it/~savare

Definition 3 (The "Minimizing Movements" approximation scheme) A recursive minimizing sequence $\{U_{\tau}^n\}_{n\in\mathbb{N}}$ with step $\tau>0$ and initial datum $U^0\in X$ is any solution of the family of problems

$$U_{\tau}^{0} := U^{0}, \qquad U_{\tau}^{n} \in \underset{V}{\operatorname{argmin}} \left(\frac{1}{2\tau} \mathsf{d}^{2}(U_{\tau}^{n-1}, V) + \phi(V) \right) \quad n = 1, 2, \cdots.$$
 (3)

A discrete solution $\overline{U}_{\tau}:[0,+\infty)\to X$ is defined by setting $\overline{U}_{\tau}(t)\equiv U_{\tau}^n$ if $t\in((n-1)\tau,n\tau]$. The variational scheme is generically solvable if there exists a minimizing sequence $\{U_{\tau}^n\}_{n\in\mathbb{N}}$ for every U^0 in a dense subset of $D(\phi)$ and for a vanishing sequence of time steps τ (depending on U^0).

Definition 4 (Semi-concavity of the squared distance function) We say that X is a K-SC (SemiConcave) space, $K \ge 1$, if for every geodesic \times and any $y \in X$

$$d^{2}(x_{t}, y) \ge (1 - t)d^{2}(x_{0}, y) + td^{2}(x_{1}, y) - Kt(1 - t)d^{2}(x_{0}, x_{1}) \qquad \forall t \in [0, 1].$$

$$(4)$$

Examples

- PC spaces: X is Positively Curved (PC) in the sense of Alexandrov iff it is K-SC with K = 1.
- ALEXANDROV SPACES: if X is an Alexandrov space whose curvature is bounded from below by a negative constant $-\kappa$ and $D=\operatorname{diam}(X)<+\infty$, then X is K-SC with $\mathsf{K}=D\sqrt{\kappa}/\operatorname{tanh}(D\sqrt{\kappa})$. This class includes all bounded and complete Riemannian manifolds whose sectional curvature is bounded from below.
- PRODUCT AND L^2 SPACES: if (X_i, d_i) is a (even countable) collection of K-SC spaces, then $X := \Pi_i X_i$ with the usual product distance is K-SC. If μ is a finite measure on some separable measure space Ω then $\mathscr{X} := L^2_{\mu}(\Omega; X)$ endowed with the distance $\mathsf{d}^2_{\mathscr{X}}(x, y) := \int_{\Omega} \mathsf{d}^2(x(\omega), y(\omega)) d\mu(\omega)$
- space Ω then $\mathscr{X}:=L^2_{\mu}(\Omega;X)$ endowed with the distance $\mathsf{d}^2_{\mathscr{X}}(x,y):=\int_{\Omega}\mathsf{d}^2(x(\omega),y(\omega))\,d\mu(\omega)$ Wasserstein space: $\mathscr{P}_2(X)$ is the set of all Borel probability measures μ on X with $\int_X\mathsf{d}^2(x,x_0)\,d\mu<+\infty$ for some $x_0\in X$, endowed with the L^2 -Wasserstein distance [11, 1]. $\mathscr{P}_2(X)$ is K-SC iff X is K-SC.

Definition 5 ((Upper) angles) Let x^1 , x^2 be two geodesics emanating from the same initial point $x_0 := x_0^1 = x_0^2$. Their upper angle $\triangleleft_{\mathbf{u}}(x^1, x^2) \in [0, \pi]$ is defined by

$$\cos\left(\triangleleft_{\mathbf{u}}(\mathsf{x}^1,\mathsf{x}^2)\right) := \liminf_{s,t \downarrow 0} \frac{\mathsf{d}^2(\mathsf{x}_0,\mathsf{x}_s^1) + \mathsf{d}^2(\mathsf{x}_0,\mathsf{x}_t^2) - \mathsf{d}^2(\mathsf{x}_s^1,\mathsf{x}_t^2)}{2\mathsf{d}(\mathsf{x}_0,\mathsf{x}_s^1)\mathsf{d}(\mathsf{x}_0,\mathsf{x}_t^2)}. \tag{5}$$

Definition 6 (Local Angle Condition (LAC)) X satisfies the local angle condition (LAC) if for any triple of geodesics x^i , i = 1, 2, 3, emanating from the same initial point x_0 the corresponding angles $\theta^{ij} := \triangleleft_{\mathbf{u}}(\mathbf{x}^i, \mathbf{x}^j) \in [0, \pi]$ satisfy one of the following equivalent conditions:

- 1. $\theta^{12} + \theta^{23} + \theta^{31} < 2\pi$.
- 2. There exists an Hilbert space H and vectors $w^i \in H$ such that $\langle w^i, w^j \rangle_H = \cos(\theta^{ij})$ $1 \le i, j \le 3$.
- 3. For every choice of $\xi_1, \xi_2, \xi_3 \ge 0$ one has $\sum_{i,j=1}^3 \cos(\theta^{ij}) \xi_i \xi_j \ge 0$.

Examples

- A BANACH SPACE X satisfies (LAC) iff X is a HILBERT SPACE.
- RIEMANNIAN MANIFOLDS AND ALEXANDROV SPACES with curvature bounded below satisfy (LAC).
- PRODUCT SPACES: $X := \prod_i X_i$ satisfies (LAC) iff each (X_i, d_i) does satisfy it.
- L^2 SPACES: The space $L^2_{\mu}(\Omega;X)$ satisfies (LAC) iff X satisfies it.
- WASSERSTEIN SPACE: The L^2 -Wasserstein space $\mathscr{P}_2(X)$ satisfies (LAC) iff X does.
- Let (e_i) be an orthonormal basis of of \mathbb{R}^4 and let X be the cone $\{\sum_{i=1}^4 x_i e_i : x_i \geq 0\} \subset \mathbb{R}^4$ with the distance $d^2(x,y) := |x|^2 + |y|^2 2|x| |y| \cos\left(\frac{1}{3}\sqrt{2}\pi |x/|x| y/|y||\right)$. The geodesics $\mathbf{x}_t^e := te$, $e \in X, \ t \in [0,1]$, emanating from the origin satisfy (LAC) since $\mathbf{x}_t = \mathbf{x}_t = \mathbf{x}_t$

Main results

Let us recall that the *Metric Slope* of ϕ at $u \in D(\phi)$ is $|\partial \phi|u := \limsup_{v \to u} (\phi(u) - \phi(v))^+ / \mathsf{d}(u, v)$.

Theorem 7 (Generation result for gradient flows) Let X be a K-SC space satisfying (LAC) and let $\phi: X \mapsto (-\infty, +\infty]$ be proper, l.s.c., and λ -convex. If (3) is generically solvable, then

 λ -contractive semigroup. For every $u_0 \in \overline{D(\phi)}$ there exists a unique gradient flow $u := S[u_0]$ according to definition 2. The map $u_0 \mapsto S_t[u_0]$ is a λ -contracting continuous semigroup on $D(\phi)$, i.e.

$$S_{t+h}[u_0] = S_h[S_t[u_0]], \quad \mathsf{d}(S[u_0](t), S[v_0](t)) \le e^{-\lambda t} \mathsf{d}(u_0, v_0) \qquad \forall u_0, v_0 \in \overline{D(\phi)}. \tag{6}$$

Uniform error estimate. For every time interval [0,T] there exists a "universal" constant $C_{K,\lambda,T}$ (only depending on K, λ, T) such that for every discrete solution $\overline{U}_{\tau}, \tau \in (0, \frac{1}{2\lambda^{-}}),$

$$\sup_{t \in [0,T]} \mathsf{d}^2(u_t, \overline{U}_\tau(t)) \le \begin{cases} C_{\mathsf{K},\lambda,T} \big(\phi(u_0) - \inf_X \phi \big) \cdot \sqrt{\tau} & \text{if } u_0 = U_\tau^0 \in D(\phi), \\ C_{\mathsf{K},\lambda,T} |\partial \phi|^2(u_0) \cdot \tau & \text{if } u_0 = U_\tau^0 \in D(|\partial \phi|). \end{cases}$$
(7)

Regularizing effect. S_t maps $\overline{D(\phi)}$ into $D(|\partial \phi|) \subset D(\phi)$ for every t > 0, $t \mapsto e^{\lambda t} |\partial \phi|(u_t)$ is nonincreasing, $t \mapsto \phi(u_t)$ is (locally semi-, if $\lambda < 0$) convex, and, when $\lambda \geq 0$,

$$\phi(u_t) \le \phi(v) + \frac{1}{2t} d^2(u_0, v), \qquad |\partial \phi|^2(u_t) \le |\partial \phi|^2(v) + \frac{1}{t^2} d^2(u_0, v) \qquad \forall v \in X.$$
 (8)

Energy identity. The right limits $|\dot{u}_{t+}| := \lim_{h \downarrow 0} \frac{d(u_t, u_{t+h})}{h}$ and $\frac{d}{dt_+}\phi(u_t) := \lim_{h \downarrow 0} \frac{\phi(u_{t+h}) - \phi(u_t)}{h}$ exist for every $t \geq 0$, are finite if t > 0, and coincide with the corresponding left ones for $t \in (0, +\infty) \setminus \mathcal{C}$, \mathcal{C} being at most countable. They satisfy the differential energy identity

$$\frac{d}{dt_{\perp}}\phi(u_t) = -|\dot{u}_{t+}|^2 = -|\partial\phi|^2(u_t) \qquad \forall t \ge 0.$$
(9)

Asymptotic behavior. If $\lambda > 0$, then ϕ admits a unique minimum point \bar{u} and for $t \geq t_0 \geq 0$ we have

$$\frac{\lambda}{2} d^2(u_t, \bar{u}) \le \phi(u_t) - \phi(\bar{u}) \le \frac{1}{2\lambda} |\partial \phi|^2(u_t), \qquad d^2(u_t, \bar{u}) \le d^2(u_{t_0}, \bar{u}) e^{-\lambda(t - t_0)},$$
 (10a)

$$\frac{\lambda}{2} d^{2}(u_{t}, \bar{u}) \leq \phi(u_{t}) - \phi(\bar{u}) \leq \frac{1}{2\lambda} |\partial \phi|^{2}(u_{t}), \qquad d^{2}(u_{t}, \bar{u}) \leq d^{2}(u_{t_{0}}, \bar{u}) e^{-\lambda(t - t_{0})}, \qquad (10a)$$

$$\phi(u_{t}) - \phi(\bar{u}) \leq \left(\phi(u_{t_{0}}) - \phi(\bar{u})\right) e^{-2\lambda(t - t_{0})}, \qquad |\partial \phi|(u_{t}) \leq |\partial \phi|(u_{t_{0}}) e^{-\lambda(t - t_{0})}. \qquad (10b)$$

Applications to metric-measure spaces. Let (X, d, γ) be a metric-measure space with $\gamma \in$ $\mathscr{P}(X)$. On the Wasserstein space $\mathscr{X} = \mathscr{P}_2(X)$ we consider the Relative Entropy functional $\phi(\mu) = \operatorname{Ent}(\mu|\gamma) := \int_X \rho \log \rho \, d\gamma$ if $\mu = \rho \cdot \gamma \ll \gamma$, $\phi(\mu) := +\infty$ otherwise. According to [10, 6], X satisfies the lower Ricci curvature bound $\underline{\mathbb{C}urv}(X,\mathsf{d},\gamma) \geq \lambda$ iff the functional $\phi =$ $\operatorname{Ent}(\cdot|\gamma)$ is λ -geodesically convex in $\mathscr{P}_2(X)$. X is non-branching if two geodesics x, y with $x_0 = y_0$ and $x_{\bar{t}} = y_{\bar{t}}$ for some $\bar{t} \in (0,1)$ must coincide.

Theorem 8 (Markov semigroup and diffusion kernels) Let us suppose that X is K-SC, satisfies (LAC) and $\underline{\mathbb{C}urv}(X, \mathsf{d}, \gamma) \geq \lambda$. There exists a unique λ -contracting gradient flow S_t generated by $\phi = \operatorname{Ent}(\cdot|\gamma)$ on $\mathscr{X}_{\gamma} := \{ \mu \in \mathscr{P}_2(X) : \operatorname{supp} \mu \subset \operatorname{supp} \gamma \}$ as a limit of the (always solvable) Minimizing Movement scheme. S_t enjoys all the properties stated in Theorem 7 and, if X is non-branching, it satisfies the linearity condition

$$S_t[\alpha\mu_0 + \beta\mu_1] = \alpha S_t[\mu_0] + \beta S_t[\mu_1] \qquad \forall \mu_0, \mu_1 \in \mathscr{P}_2(X), \quad \alpha, \beta \ge 0, \quad \alpha + \beta = 1. \tag{11}$$

 γ is an invariant measure and the kernels $\nu_{x,t} := S_t[\delta_x] \ll \gamma$ satisfy the Chapman-Kolmogorov

$$\nu_{x,t+s}(E) = \int_X \nu_{y,t}(E) \, d\nu_{x,s}(y) \quad \forall E \in \mathscr{B}(X), \quad x \in \operatorname{supp} \gamma, \ t, s > 0; \qquad S_t[\mu] = \int_X \nu_{x,t} \, d\mu(x). \tag{12}$$

 S_t can be uniquely extended to a Markov (i.e. linear, order preserving, strongly continuous, contraction) semigroup \mathscr{S}_t in $L^p(\gamma)$ such that $\mathscr{S}_t[\rho_0]\gamma = S_t[\rho_0\gamma]$ for every $\rho_0 \in L^p(\gamma)$ with $\rho_0\gamma \in \mathscr{P}_2(X)$. **Remark 9** When $X = \mathbb{R}^d = \operatorname{supp} \gamma$, there exists a λ -convex potential $V : \mathbb{R}^d \to \mathbb{R}$ such that $\gamma = e^{-V} \mathcal{L}^d$ and the gradient flow $\mu_t = u_t \mathcal{L}^d$ generated by $\operatorname{Ent}(\cdot|\gamma)$ satisfies the Fokker-Planck equation [5, 2]

$$\partial_t u_t - \nabla \cdot (\nabla u_t + u_t \nabla V) = 0 \quad \text{in } \mathbb{R}^d \times (0, +\infty).$$
 (13)

Stability of gradient flows. Let now consider a sequence $(X^k, \mathsf{d}^k, \gamma^k)$, $\gamma^k \in \mathscr{P}_2(X^k)$, of metric measure spaces converging to (X, d, γ) in the *measured* Gromov-Hausdorff distance. That means [10, 6] that a sequence of (separable and complete) coupling semidistances $\hat{\mathsf{d}}^k$ on the disjoint union $X^k \sqcup X$ exists s.t.

$$\lim_{k \to \infty} \hat{\mathsf{d}}_W^k(\gamma^k, \gamma) = 0, \qquad \hat{\mathsf{d}}_W^k \text{ being the } L^2\text{-Wasserstein distance in } \mathscr{P}_2(X^k \sqcup X) \text{ induced by } \hat{\mathsf{d}}^k. \tag{14}$$

A sequence $\mu^k \in \mathscr{P}_2(X^k)$ converges to $\mu \in \mathscr{P}_2(X)$ if $\lim_{k \to \infty} \hat{\mathsf{d}}_W^k(\mu^k, \mu) = 0$.

Theorem 10 Let us assume that each metric space X^k is K-SC, it satisfies (LAC) and the lower Ricci bound $Curv(X^k, \mathsf{d}^k, \gamma^k) \geq \lambda$ for suitable constants λ , K independent of k. If $\mu_0^k \in \mathscr{P}_2(X^k)$ is a sequence converging to $\mu_0 \in \mathscr{P}_2(X)$ with equibounded relative entropy $\sup_k \operatorname{Ent}(\mu^k|\gamma^k) < +\infty$, then for every $t \geq 0$ the solution $\mu_t^k := S_t^k[\mu_0^k]$ of the "Entropy gradient flow" given by Theorem 8 converges to the measure $\mu_t = S_t[\mu_0] \in \mathscr{P}_2(X)$ which is the (unique) Entropy gradient flow in $\mathscr{P}_2(X)$ with initial datum μ_0 .

References

- [1] L. Ambrosio, N. Gigli, and G. Savaré, Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005.
- [2] L. Ambrosio and G. Savaré, *Gradient flows of probability measures*, in Handbook of Evolution Equations (III), Elsevier, 2006.
- [3] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Publishing Co., Amsterdam, 1973. North-Holland Mathematics Studies, No. 5. Notas de Matemática (50).
- [4] D. Burago, Y. Burago, and S. Ivanov, A course in metric geometry, vol. 33 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2001.
- [5] R. JORDAN, D. KINDERLEHRER, AND F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), pp. 1–17.
- [6] J. Lott and C. Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. Math., (to appear).
- [7] U. F. Mayer, Gradient flows on nonpositively curved metric spaces and harmonic maps, Comm. Anal. Geom., 6 (1998), pp. 199–253.
- [8] S.-I. Ohta, Gradient flows on wasserstein spaces over compact alexandrov spaces, preprint, 2007.
- [9] G. Perelman and A. Petrunin, Quasigeodesics and gradient curves in alexandrov spaces. unpublished manuscript.
- [10] K.-T. Sturm, On the geometry of metric measure spaces. I, Acta Math., 196 (2006), pp. 65–131.
- [11] C. VILLANI, *Topics in optimal transportation*, vol. 58 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2003.