Section - A 0-1 Sol 1(1) $y^2p - xyq = x(z-2y)$ Given pequation is of Jorn Pp + Qq = R => P=y2 => Q=-xy $\Rightarrow R = \kappa (z - 2y)$ The dagranges's Julesidiary equation are $\frac{dx}{p} = \frac{dy}{R}$ $\frac{1}{4^{2}} = \frac{dy}{-xy} = \frac{dz}{x(z-2y)}$ $\frac{dx}{y^2} = \frac{dy}{-xy}$ $\frac{dx}{y} = \frac{dy}{-x}$ x dz = -ydy $\int x dx = -\int y dy$ $\frac{2^2}{2} = -\frac{1}{2} + \frac{1}{2}$ $\chi^2 + y^2 = CI$

 $\int d(yz) = \int zy dy$ $yz = y^2 + Cz$ $v = yz - y^2$ $f(x^2 + y^2, yz - y^2) = 0$

 $\frac{\partial}{\partial x} \left(\frac{\partial z}{\partial x} \right)^2 + \left(\frac{\partial z}{\partial y} \right)^2 = 1$

According to Languages meoren.

$$\frac{\partial z}{\partial x} = P , \frac{\partial z}{\partial y} = 9$$

$$(P)^2 + (Q)^2 = 1$$

It is $\frac{1}{2}$ type I, equation whose solution is 2 = ax + by + C

where,

$$2 = ax + \sqrt{1-a^2} y^2 + C.$$

 $\int \frac{d}{dx} = \int \frac{dx}{dx} = \int$

 \Rightarrow thoughout $S = \infty$ $f_s(\infty) = \frac{e^{-\alpha x}}{x}, \quad x > 0$

By. diff. 2) enverse jourier sinc + ransformation

$$\int_{S}^{S} \left(\int_{S}^{S} (x) \right)^{2} = \int_{X}^{S} \left(\int_{S}^{S} (x) \sin (x x) dx \right)$$

1 (x) = 2 (x e-ax sim (xx)dx —)

Differentiating undo integral sign with respect to x $\frac{dI}{dx} = \frac{2}{\pi} \int_{0}^{\infty} \frac{dx}{dx} \left(\frac{1}{\alpha} e^{-\alpha x} \sin(\alpha x) \right) dx$

=
$$\frac{2}{\pi} \int_{0}^{\infty} \int_{0}^{\infty} d^{2} \cos (\alpha x) \cdot \alpha \cdot dx$$

$$\int e^{ax} \cos bz dz$$

$$= \frac{e^{ax}}{a^2+6^2} \left(a \cos bz + b \sin bz\right)$$

Here
$$x = \alpha$$
, $a = -a$, $b = x$

$$\frac{dI}{dx} = 2\pi \left[\frac{e^{-\alpha x}}{(-\alpha)^2 + x^2} \left[-\alpha \cos xx + 2\sin xx \right] \right]_0^{\infty}$$

$$= 2/\sqrt{\frac{e^{-\alpha}}{a^2+x^2}} \left[-\alpha \cos \alpha + \chi \sin \alpha \alpha \right] - \left[\frac{e^{\alpha}}{a^2+x^2} \left(-\alpha \cos \alpha + \chi \sin \alpha \alpha \right) \right] - \left[\frac{e^{\alpha}}{a^2+x^2} \left(-\alpha \cos \alpha + \chi \sin \alpha \alpha \right) \right]$$

$$\frac{dI}{dn} = \frac{2}{\pi} \left[\frac{\alpha}{\alpha^2 + n^2} \right]$$
 which is the Diff. eq. (3)

$$dI = \frac{2}{\pi} \frac{\alpha}{\alpha^2 + \chi^2} dx$$

or integration
$$I = \frac{2}{3} \int \frac{a}{a^2 + x^2} dx$$

i.
$$f(x) = \frac{2}{x} tau^{-1} (x/a)$$

Jol 3(i)
$$J(t) = 8im (2t) cos(t)$$

$$J(t) = 28imt coest coest$$

$$= 28imt coest$$

$$= 28imt [1-8im2t]$$

$$= 28imt - 28im3t$$

$$F(s) = \int e^{-st} J(t) dt$$

$$= -\int e^{-st} [2simt - 2sim3t] dt$$

$$\int e^{-st} 2simt - 2\int e^{-st} sim^3t dt$$

$$\therefore sim^3t = \frac{1}{4} [38imt - sim^3t]$$

$$J(s) = 2[\int e^{-st} simt dt - \frac{8e^{-st}}{2e^{-st}}] [72imt]$$

$$J(s) = 2 \left[\int_{0}^{\infty} e^{-st} \sin t \, dt - \int_{0}^{\infty} e^{-st} \, \frac{1}{4} \left[3 \sin t - \sin 3t \right] dt \right]$$

$$= \frac{1}{2} \int_{0}^{\infty} e^{-st} \sin t \, dt + \frac{1}{2} \int_{0}^{\infty} e^{-st} \sin 3t \, dt$$

$$= -\frac{1}{2} \left[\frac{3}{8^2 + 1} \right] + \frac{1}{2} \left[\frac{3}{3^2 + 9} \right]$$

$$=\frac{1}{2}\left[\frac{7}{5^{2}+9} + \frac{35^{2}}{5^{2}+1}\right] = \left[\frac{3^{2}+9}{5^{2}+1}\right] = \left[\frac{3^{2}+9}{5^{2}+1}\right] = \left[\frac{3^{2}+9}{5^{2}+1}\right]$$

$$O-3$$
 soli 3 (ii) $F(t) = tu(t-3)$, uis mit step function

$$= (t-3+3) u (t-3)$$

$$= (t-3) u (t-3)$$

$$= (t-3) u (t-3) + 3 u (t-3)$$

$$= (i)$$

Solving eq(i)

Comparing (t-3) u(t-3) with f(t-a)u(t-a)F(+)= + Lf(+)= 1/52 By second shift Property $L[(t-3) \ u(t-3)] = e^{-3s}$ Solving eq (ii) = 34 (+-3) :. L(u (t-a)) = c-as 3L (u(t-3)) $= 3 \times \frac{e^{-3}}{6}$ Put values) equa(i) 8 equais $=\frac{e^{-3s}}{s^2}+\frac{3e^{-3s}}{s}$ Q-4 (1) Solve: (12 + 12) 1/2 = sin2n complementary functions (cot) is obtaining by pulling $D^2 = M \qquad D^{1/2} = 1$ $(D^2+1)>0 \rightarrow D=\overline{1}$ · · (·) = (, cosx + cz sinx Pouticular Integral, P.I = $\frac{\sin 2x}{(D^2 + D^{12})} = \frac{\sin 2x}{(-1^2 + D^2)} = \frac{\sin 2x}{(D^2 - 1^2)}$ Tone whiting -1^2 for D^2 , y is not present so we taking o PJ = sin 2x = - sin 2x Juntal Johnson = Cicosx +Cz sinx-sinzx

Jely(b) Obtain foresier series for the function

$$F(x) = x + x^{2}, -x < x < x$$

$$\Rightarrow \text{dux confully communte the formier co-efficients}$$

$$a_{0} = \frac{1}{\pi} \int_{x}^{x} (x + x^{2}) dx$$

$$= \frac{1}{\pi} (2 \int_{x}^{x} x^{2} dx + 0)$$

$$= \left[\frac{2}{\pi} \cdot \frac{x^{3}}{3}\right]_{0}^{x}$$

$$= \frac{2\pi^{2}}{3}$$

$$= \frac{2\pi^{2}}{3}$$

$$= \frac{2\pi}{3}$$

Zj-G -6210100

Rey Column = X, Column uln=1

Key sole = Alsow
Proof element = 2
Aldeparts and 22 enters

8 Talob 2 ζ^{1} Values GB Basic Var. 422 xy x8 A2 \mathbf{x}_{t} 6= A 1/2 Хy 7/2 1/2 1 -1/2 1/2 X 0 -1/2 0 A2 5 -4 0 2 4 0 -2 Table 3 C^{1} 3 Bosic Vous. CB X 2 X4 Solution XS Values Ry b= 2B 33/10 1 3 \mathcal{K} 1/100 -3/10 -4/5 0 2/5 ralues t = (XB) 5/2 0 1/2 13/24 57 730 policy x, 75/2,

Table 4							1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
CB	Cj Basic Vou.	3	-1 y	2, Z	$\mathcal{O}_{\chi_{y}}$	χ _s	Values
030	X 4 X X ₅	0	9/4 3/4 5/2	-1/2	0	0	6 = (xB) 13/4 5/4
Zj-Cj		O	13/4	-7/	20	0	1/2
Table:	s Ci	_					
CB	Bousic Var.	3	- 1 y	2 Z,	0 * 4	0 25	Values
2 3 0	72 12 12 13	0	3/2 3/2	1	2/3	0	b=lzb) 5/2 5/2
2j-c		C	1/2	0	4/3	0	1/2
	Aus optin	ral pl	licy	id x	=5/2	. y=	= 0.

Z = 5/2Optimal value = U = 25/2