

ESc201, Lecture 26: Operational Amplifier **Schmitt Trigger:**

Hysteresis

− Width →

Let the output be high (+12V) and hence input has to be low (\leq - 4.8V). As v_i increases, nothing happens till v_i reaches 4.8V, when the output toggles from +12V to -12V. So the toggling from V_{OH} to V_{OL} does not happen at the same input. The loop formed is called Hysteresis.

Thus, the circuit has two stable states, giving the name "bistable circuit". For a change of state at the output, an appropriate trigger signal needs to be applied at the input.

-V_{sat} Within the Hysteresis width $(V_{IH} - V_{IL})$, the output is indeterminate and depends on the direction of change of the **Trigger input.** Is Hysteresis good or bad? Usually unwanted. But imagine the input has noise added. Then Hysteresis prevents

the output from chattering - good. Schmitt Trigger acts as an Effective Noise Suppressor

ESc201, Lecture 26: Operational Amplifier –Non-Inverting Schmitt Trigger

Due to positive feedback, the positive of V_i can change the state of the output.

To switch v_0 to V_{-sat} , V_+ must be pulled below ground, (which is the potential of V_-) and it would be possible only if v_i goes below $-(R_1/R_2)V_{+sat}$. This corresponds to the Threshold Low (V_{TL}) of the circuit.

Similarly when V_0 is at V_{-sat} , to cause a change in the state of the output V_i must be more positive than $-(R_1/R_2)V_{-sat}$. This corresponds to the Threshold High (V_{TH}) of the circuit. $(V_{TH} - V_{TL})$ is then the Hysteresis width.

This non-inverting Schmitt Trigger circuit is not much used unless it is followed by other circuits to perform some specific functions, for example:

Triangular Wave Generator

From Aloke K. Dutta

ESc201, Lecture 26: Operational **Amplifier - Other Applications**

A special case of non-inverting amplifier, also called Voltage Follower with infinite R₁ and zero R_2 . Hence $A_v = 1$.

Provides excellent impedance-level transformation while maintaining signal voltage level. Ideal voltage buffer does not require any input current and can drive any desired load resistance without loss of signal voltage. Unity-gain buffer is used in may sensor and data acquisition systems.

Log Amplifier or Temperature Sensor:
$$I_i = I_D = I_S(e^{V_D/V_T} - 1) \quad ; V_T = \frac{k_B T}{q}$$

$$\therefore \frac{v_i}{R} = I_S(e^{-v_O/V_T} - 1) \qquad \frac{v_i}{I_S R} + 1 = e^{-v_O/V_T}$$

which gives $-v_{o} = V_{T} \times \ln(1 + \frac{v_{i}}{RI_{S}}) \cong V_{T} \times \ln(\frac{v_{i}}{RI_{S}})$ which gives $-v_{o} = V_{T} \times \ln(1 + \frac{v_{i}}{RI_{S}}) \cong V_{T} \times \ln(\frac{v_{i}}{RI_{S}})$ But $I_{i} = I_{S}$ for i = 0, where the diode saturation current I_{S} is a function of temperature also. $v_{o} = -RI_{S}(e^{i} - 1) \cong -RI_{S} \times e^{i}$ **Antilog Amplifier**

$$v_0 = -RI_S(e^{v_i/V_T} - 1) \cong -RI_S \times e^{v_i/V_T}$$

ESc201, Lecture 26: Operational Amplifier

Example of summer/subtractor

$$v_{o} = -10v_{s_{1}} - 4v_{s_{2}} + 5v_{s_{3}} + 2v_{s_{4}}$$

$$R_{P} = R_{3} ||R_{4}||R_{5}$$
Chaose: $R_{c} = 10K$

Choose: $R_f = 10K$

Then by Superposition:

$$v_{0} = -(\frac{R_{f}}{R_{1}})v_{s_{1}} - (\frac{R_{f}}{R_{2}})v_{s_{2}} + (1 + \frac{R_{f}}{R_{1}||R_{2}}) \times \frac{R_{P}}{R_{3}}v_{s_{3}} + (1 + \frac{R_{f}}{R_{1}||R_{2}}) \times \frac{R_{P}}{R_{4}}v_{s_{4}}$$

$$\Rightarrow R_{1} = 1K \qquad \Rightarrow R_{2} = 2.5K \qquad \Rightarrow \frac{R_{P}}{R_{3}} = 0.33 \qquad \Rightarrow \frac{R_{P}}{R_{4}} = 0.133 \qquad \Rightarrow \frac{R_{4}}{R_{3}} = 2.5$$

Now choose: $R_3 = 1K \Rightarrow R_4 = 2.5K \Rightarrow \tilde{R}_P = 0.33K \Rightarrow R_5 = 0.625K$

The ratios can be so chosen that one gets an Analog to digital converter (ADC) Or simply a flash (fastest) ADC using a comparator is: v_X V_{REF}

 v_{REF}

Requires 2ⁿ-1 comparators and reference voltages for n-bit conversion.

Other types are Counting ADC, D-S, Successive Approximation, Single-Ramp, Dual-Ramp, etc.

NO NO NOTIFICATION OF TECHNOLOGY

ESc201, Lecture 25: Operational Amplifier

Digital to Analog Converters : (DAC)

MSB

 V_{REF}

2R

 $v_o = V_{REF}(b_1 2^{-1} + b_2 2^{-2} + ... + b_n 2^{-n})$

MSB

O VREF

2R

R

 v_{O}

Inverted R-2R Ladder

LSB

