ERNEST

EFFICIENT PERFORMANCE PREDICTION FOR ADVANCED ANALYTICS ON APACHE SPARK

Shivaram Venkataraman, Zongheng Yang Michael Franklin, Benjamin Recht, Ion Stoica

WORKLOAD TRENDS: ADVANCED ANALYTICS

WORKLOAD TRENDS: ADVANCED ANALYTICS

KEYSTONE-ML TIMIT PIPELINE

KEYSTONE-ML TIMIT PIPELINE

PROPERTIES

Numerically Intensive

Iterative (each iteration many jobs)

Long Running → Expensive

CLOUD COMPUTING CHOICES

t2.nano, t2.micro, t2.small m4.large, m4.xlarge, m4.2xlarge, m4.4xlarge, m3.medium, c4.large, c4.xlarge, c4.2xlarge, Basic tier: A0, A1, A2, A3, A4 Optimized Compute: D1, D2, D3, D4, D11, D12, D13 D1v2, D2v2, D3v2, D11v2,... n1-standard-1, ns1-standard-2, ns1-standard-4, ns1-standard-8, ns1-standard-16, ns1highmem-2, ns1-highmem-4, ns1-highmem-8,

Instance Types and Number of Instances

d2.2xlarge, i2.4xlarge, d2.xlarge d2.2xlarge, d2.4xlarge,...

Compute Intensive: A10, A11,...

highcpu-32, f1-micro, g1-small...

AMAZON EC2

MICROSOFT AZURE

GOOGLE CLOUD ENGINE

TYRANNY OF CHOICE

USER CONCERNS

"What is the cheapest configuration to run my job in 2 hours?"

Given a budget, how fast can I run my job?

"What kind of instances should I use on EC2?"

DO CHOICES MATTER? MATRIX MULTIPLY

Matrix size: 400K by 1K

CORES = 16 MEMORY = 244 GB COST = \$2.66/HR

DO CHOICES MATTER?

Matrix Multiply: 400K by 1K

DO CHOICES MATTER?

r3.4xlarge instances, QR Factorization:1M by 1K

APPROACH

CHALLENGES

Performance Model

Black Box Jobs

Regular Structure + Few Iterations

Model Building Overhead

MODELING JOBS

COMPUTATION PATTERNS

COMMUNICATION PATTERNS

ONE-TO-ONE

CONSTANT

TREE DAG

LOG

ALL-TO-ONE

LINEAR

BASIC MODEL

Computation (linear)
$$time = x_1 + x_2 * \frac{input}{machines} + x_3 * \log(machines) + x_4 * (machines)$$
Serial

Serial

Tree DAG

Execution

Collect Training Data

Fit Linear Regression

DOES THE MODEL MATCH REAL APPLICATIONS?

Number of data items: n, Number of processors: p, Constant number of features

Algorithm	Compute	
	O(n/p)	O(n²/p)
GLM Regression	>	
KMeans	>	
Naïve Bayes	>	
Pearson Correlation	>	
PCA	~	
QR (TSQR)	~	

	Comn	nunication	
O(1)	O(p)	O(log(p))	Other
	~	~	
~	~		O(center)
	~		
		~	
	~	~	
		~	

COLLECTING TRAINING DATA

Grid of input, machines

Associate cost with each experiment

Baseline: Cheapest configurations first

OPTIMAL DESIGN OF EXPERIMENTS

Given a Linear Model

$$y_i = a_i^T x + w_i, \quad i = 1, \dots, m,$$

 λ_i - Fraction of times each experiment is run

Minimize
$$\mathbf{tr}((\sum_{i=1}^{m} \lambda_i a_i a_i^T)^{-1})$$

subject to $\lambda_i \geq 0, \lambda_i \leq 1$
 $\sum_{i=1}^{m} c_i \lambda_i \leq B$

Lower variance ->
Better model

Bound total cost

OPTIMAL DESIGN OF EXPERIMENTS

Use off-the-shelf solver (CVX)

USING ERNEST

ERNEST

EVALUATION

OBJECTIVES

Optimal number of machines
Prediction accuracy
Model training overhead
Importance of experiment design
Choosing EC2 instance types
Model extensions

WORKLOADS

Keystone-ML Spark MLlib ADAM GenBase Sparse GLMs Random Projections

OBJECTIVES

Optimal number of machines
Prediction accuracy
Model training overhead
Importance of experiment design
Choosing EC2 instance types
Model extensions

WORKLOADS

Keystone-ML
Spark MLlib
ADAM
ADAM
GenBase
Sparse GLMs
Random Projections

NUMBER OF INSTANCES: KEYSTONE-ML

TIMIT Pipeline on r3.xlarge instances, 100 iterations

ACCURACY: KEYSTONE-ML

TIMIT Pipeline on r3.xlarge instances, Time Per Iteration

ACCURACY: SPARK MLLIB

TRAINING TIME: KEYSTONE-ML

TIMIT Pipeline on r3.xlarge instances, 100 iterations

EXPERIMENT DESIGN

7 data points
Up to 16 machines
Up to 10% data

ACCURACY, OVERHEAD: GLM REGRESSION

MLlib Regression: < 15% error

IS EXPERIMENT DESIGN USEFUL?

Detecting when the model is wrong

Model extensions

MORE DETAILS

Amazon EC2 variations over time

Straggler mitigation strategies

http://shivaram.org/publications/ernest-nsdi.pdf

Python-based implementation

Experiment Design, Predictor Modules

OPEN SOURCE

Example using SparkML + RCV1

https://github.com/amplab/ernest

IN CONCLUSION

Workload Trends: Advanced Analytics in the Cloud Computation, Communication patterns affect scalability

Ernest: Performance predictions with low overhead End-to-end linear model Optimal experimental design

Workloads / Traces ?
Shivaram Venkataraman shivaram@cs.berkeley.edu