Multi-class Classification of Bird Species Using Birdsongs

SC1015 Mini Project | FCMA Team 3

Introduction - Data Set

Data Set: British Birdsong Dataset (Kaggle)

Data Base: Xeno-Canto Author: Rachael Tatman

- 264 samples
- 88 unique species
- 3 samples per species

metadata.xls

- Label video ID with species
- Contributor of Audio
- Country of Origin

Introduction - Problem Definition

To identify bird species based on their birdsong

Birdsong: birdsong as a unique identity of bird species

Conservation: identify endangered species

Appreciation: knowing the presence of the species

Exploratory Data Analysis

Data Processing

feature_12_128_40 feature

feature_12_12_12

feature_0_32_13

feature_0_32_0

feature_0_16_13

Number of sample to feature ratio affects performance of model

$$z = \frac{x - \mu}{\sigma}$$

We are interested in ensuring **mean = 0**, and **standard deviation = 1**

Model Testing

$$p(guess) = \frac{1}{88} \cdot 100$$
$$= 1.14\%$$

- Optimal K: 2
- Train Accuracy: 62.56%
- **Test Accuracy:** 20.75%
- CV Score: 21.97%

Not worth investigating KNN

- Train accuracy: 100.0%
- Test accuracy: 22.64%
- CV score: 28.03%

CV score always higher than test suggests limitation in data set

Data Processing I

Data Processing II - Data Augmentation

Transformation: horizontal flip, noise on each sample

Initial Sample Size: 264 Final Sample Size: 792

Discrete Integer Representation

Class	Label	
А	0	
В	1	
С	2	

One-hot Encoded Label

Class	Label [A, B, C]
А	[1, 0, 0]
В	[0, 1, 0]
С	[0, 0, 1]

CNN Parameters

CNN Parameters - Compilation

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 494, 367, 32)	1,184
max_pooling2d (MaxPooling2D)	(None, 247, 183, 32)	0
conv2d_1 (Conv2D)	(None, 245, 181, 128)	36,992
max_pooling2d_1 (MaxPooling2D)	(None, 122, 90, 128)	0
conv2d_2 (Conv2D)	(None, 120, 88, 128)	147,584
max_pooling2d_2 (MaxPooling2D)	(None, 60, 44, 128)	0
conv2d_3 (Conv2D)	(None, 58, 42, 128)	147,584
max_pooling2d_3 (MaxPooling2D)	(None, 29, 21, 128)	0
flatten (Flatten)	(None, 77952)	0
dense (Dense)	(None, 1024)	79,823,872
dense_1 (Dense)	(None, 88)	90,200

CNN Performance

CNN - Confusion Matrix and Score Metrics

- Test Accuracy score: 55.97%
- Test Precision score: 57.58%
- Test Recall score: 53.52%
- Test Set F-score score: 51.56%

Learning Outcomes

Data Set: require much larger data set to avoid overfitting

Hyperparameter: further tuning is required

Number of Epochs: implement EarlyStop callback

Features used: experiment different domains of features