Architecture synthesis for linear time-invariant filters

Antoine Martinet

2 February - 31 Jully, 2015

Table of Contents

- Signal processing and filters
 - Architecture generation

Table of Contents

- Signal processing and filters
 - Architecture generation

Table of Contents

- Signal processing and filters
 - Architecture generation

Architecture generation

toto is happier.

,										
1	0	0	0	0	$m_{1,1}$	0	0	0	0	0
$j_{2,1}$	1	0	0	0	0	$m_{2,2}$	0	0	0	0
$j_{3,1}$	<i>j</i> 3,2	1	0	0	0	0	$m_{3,3}$	0	0	0
<i>j</i> 4,1	<i>j</i> 4,2	<i>j</i> 4,3	1	0	0	0	0	$m_{4,4}$	0	0
<i>j</i> 5,1	<i>j</i> 5,2	<i>j</i> 5,3	<i>j</i> 5,4	1	0	0	0	0	m _{5,5}	0
$k_{1,1}$	1	0	0	0	$p_{1,1}$	0	0	0	0	$q_{1,1}$
$k_{2,1}$	0	1	0	0	0	p _{2,2}	0	0	0	$q_{2,1}$
$k_{3,1}$	0	0	1	0	0	0	<i>p</i> _{3,3}	0	0	$q_{3,1}$
$k_{4,1}$	0	0	0	1	0	0	0	$p_{4,4}$	0	$q_{4,1}$
L .	0	0	0	0	0	0	0	0	P _{5.5}	$q_{5.1}$
$k_{5,1}$		-								75,1

Conclusion

To conclude

- Two algorithms derived from the state of the art
- Improvement using the dual-constrained approach
- Better results for the PPXA than other methods
- Further work to do considering the choice of convex sets according to the type of data

References

Small bibliography

P.L.Combettes L.Briceño Arias.

A monotone+skew splitting model for composite monotone inclusions in duality. In arXiv:1011.5517, 2010.

J.C.Pesquet P.L.Combettes.

A proximal decomposition method for solving convex variational inverse problems. In *Inverse problems 24*, 2008.

Any question?