

Basic Electrical Technology

RL Transient

Recap

Network Reduction Tehniques

- Y-∆ Transformation
- Source Transformation

Circuit Analysis Techniques

- Mesh Current Method
- Node Voltage Method

Theorems

- Thevenin's Theorem
- Superposition Theorem
- Max. Power Transfer Theorem

Next What?

oSo far studied about DC resistive network.

OCurrents & voltages were **independent** of time.

oIn other words, current (response) changed instantly as voltage (cause) changed.

- Will the behaviour be same if inductor or capacitor was present in a circuit?
- Answer is NO.
- \circ In inductor, $\mathbf{v}_{L} = \mathbf{L} \, \mathbf{di/dt}$

(Notice that I have not consdered the -ve sign because the direction of the voltage will be taken care of in the circuit diagram I'll draw)

Current through an inductor doesn't change instantly but voltage can.

What is Transient?

Growth of Current in an Inductive Circuit

Applying KVL,

$$V - R \ i - L \frac{di}{dt} = 0$$

Initial Conditions,

$$At t = 0 sec, i = 0 A$$

Final current & voltage equation,

$$i = \frac{V}{R} \left(1 - e^{-\frac{Rt}{L}} \right)$$

$$v_L = V e^{-\left(\frac{R}{L}\right)t}$$

Growth of current in an inductive circuit

Time Constant (\tau): Time taken by the current through the inductor to reach its final steady state value, had the initial rate of rise been maintained constant

$$au = rac{L}{R}$$

Growth of current in an inductive circuit

The table shows how the current i(t) builds up in a R-L circuit.

Actual time (t) in sec	Growth of current in inductor (Eq.10.15)
t = 0	i(0)=0
$t = \tau \left(= \frac{L}{R} \right)$	$i(\tau) = 0.632 \times \frac{V_s}{R}$
$t=2\tau$	$i(2\tau) = 0.865 \times \frac{V_s}{R}$
$t=3\tau$	$i(3\tau) = 0.950 \times \frac{V_s}{R}$
$t = 4 \tau$	$i(4\tau) = 0.982 \times \frac{V_s}{R}$
$t=5\tau$	$i(5\tau) = 0.993 \times \frac{V_s}{R}$

Note: Here **V**_s is the source voltage applied (which is same as **V** of previous slide)

Growth of current in an inductive circuit

Time Constant indicates how fast or slow the system response reaches its steady state from the instant of switching the circuit

Illustration 1

A series R-L circuit having resistance 10 Ω is connected to a 5 V dc voltage source through a switch. At t=0 sec, the switch is turned on.

Find

- i. The maximum current that will flow in the circuit.
- ii. The inductance if 0.2 A current flows in the circuit at 1 ms after the voltage source is switched on.

Assume that initially no energy is stored in the inductor.

Ans:

i.
$$I_0 = 0.5 A$$

ii. L = 20 mH (approx.)

Decay of current in an Inductive Circuit

➤ Initial current is through inductor is

$$I_0 = V/R$$

ightharpoonup At t = 0, switch is moved from position a to b

Applying KVL,

$$L\frac{di}{dt} + R i = 0$$

Using initial conditions and then solving

$$i = I_0 e^{\left(\frac{-Rt}{L}\right)}$$

$$v_L = -V e^{-\left(\frac{Rt}{L}\right)}$$

Decay of current in an Inductive Circuit

Decay of current in an Inductive Circuit

Time Constant indicates how first or slow the system response decays after the source is removed.

Some Remarks

 \triangleright Current flowing through an inductor **cannot** change instantaneously (i.e. $i(0^-) = i(0^+)$).

➤ Voltage across an inductor can change abruptly.

➤ Inductor acts as **short-circuit** when current flowing through it does not change.

Illustration 2

A coil of resistance 5 Ω and inductance of 20 mH is connected to a battery of voltage 12 V for a long time. At t = 0, the coil is short circuited. Find the time taken for the current to reach the value 1.2 A.

Ans: 2.77 ms

Illustration 3

In the circuit shown below, both the switches, $S_1 \& S_2$, are open initially. At t = 0 sec, S_1 is closed (& S_2 remains open). At t = 4 ms S_2 is closed. Sketch the inductor current i(t) for $0 \le t \le 25$ ms.

