《数学建模及其 MATLAB 实现》第四次课程作业

李鹏达 10225101460

问题 1

某银行经理计划用一笔资金进行有价证券的投资,可供购买的证券以及其信用等级、到期年限、到期税前收益如下表所示。按照规定,市政证券的收益可以免税,其它证券的收益需要缴 50% 的税额。此外还有以下限制:

- 1. 政府及代办机构的证券总计至少要购买 400 万元;
- 2. 所购证券的平均信用等级不超过 1.4 (信用等级数字越小, 信用程度越高);
- 3. 所购证券的平均到期年限不超过5年。

证券信息表

证券名称	证券种类	信用等级	到期年限	到期税前收益%
A	市政	2	9	4.3
B	代办机构	2	15	5.4
C	政府	1	4	5.0
D	政府	1	3	4.4
E	市政	5	2	4.5

问题

- 1. 若该经理有 1000 万元资金, 应如何投资?
- 2. 如果能够以 2.75% 的利率借到不超过 100 万元资金,该经理应如何操作?
- 3. 在 1000 万元资金情况下, 若证券 A 的税前收益增加为 4.5%, 投资是否改变? 若证券 C 的税前收益减少 为 4.8%, 投资是否改变?

解答

1.

设 x_A, x_B, x_C, x_D, x_E 分别为证券 A, B, C, D, E 的购买金额(万元),设总收益为 Z,则该问题的目标为最大化总收益,即

 $\max Z = 0.043x_A + 0.5 \times 0.054x_B + 0.5 \times 0.05x_C + 0.5 \times 0.044x_D + 0.045x_E$ 存在的约束条件为:

s.t.
$$\begin{cases} x_A + x_B + x_C + x_D + x_E \le 1000 & (资金限制) \\ x_B + x_C + x_D \ge 400 & (限制 1) \\ \frac{2 \cdot x_A + 2 \cdot x_B + 1 \cdot x_C + 1 \cdot x_D + 5 \cdot x_E}{x_A + x_B + x_C + x_D + x_E} \le 1.4 & (限制 2) \\ \frac{9 \cdot x_A + 15 \cdot x_B + 4 \cdot x_C + 3 \cdot x_D + 2 \cdot x_E}{x_A + x_B + x_C + x_D + x_E} \le 5 & (限制 3) \\ x_A, x_B, x_C, x_D, x_E \ge 0 & (非负约束) \end{cases}$$

在 Lingo 中建立模型,求解得到最优解。

```
inax = 0.043 * x_A + 0.5 * 0.054 * x_B + 0.5 * 0.05 * x_C + 0.5 * 0.044 * x_D + 0.045 * x_E;

x_A + x_B + x_C + x_D + x_E <= 1000;

x_B + x_C + x_D >= 400;

(2 * x_A + 2 * x_B + 1 * x_C + 1 * x_D + 5 * x_E) / (x_A + x_B + x_C + x_D + x_E) <= 1.4;

(9 * x_A + 15 * x_B + 4 * x_C + 3 * x_D + 2 * x_E) / (x_A + x_B + x_C + x_D + x_E) <= 5;</pre>
```

图 1: 在 Lingo 中建立模型

lapsed runtime seconds:		0. 16	
odel Class:		NLP	
otal variables:	5		
onlinear variables:	5		
nteger variables:	0		
otal constraints:	5		
onlinear constraints:	2		
otal nonzeros:	23		
onlinear nonzeros:	10		
	Variable X_A X_B X_C X_D X_E	Value 218. 1818 0. 000000 736. 3636 0. 000000 45. 45455	Reduced Cost 0.000000 0.3018182E-01 0.000000 0.6363636E-03 0.000000
	Row	Slack or Surplus	Dual Price
	1	29. 83636	1.000000
	2	0. 000000	0. 2983636E-01
	3	336. 3636	0.000000
	4	0.000000	6. 181818
	5	0.000000	2, 363636

图 2: 求解得到最优解

最优解为

$$x_A = 218.1818$$

 $x_B = 0.000000$
 $x_C = 736.3636$
 $x_D = 0.000000$
 $x_E = 45.45455$

2.

如果能够以 2.75% 的利率借入不超过 100 万元的资金,设借款金额为 y,则总资金为 1000 + y 万元。此时的目标函数为:

$$\max Z = (4.3\% \cdot x_A + 5.4\% \cdot 0.5 \cdot x_B + 5.0\% \cdot 0.5 \cdot x_C + 4.4\% \cdot 0.5 \cdot x_D + 4.5\% \cdot x_E) - 2.75\% \cdot y$$

并且资金约束更新为:

$$\begin{cases} x_A + x_B + x_C + x_D + x_E \le 1000 + y \\ 0 \le y \le 100 \end{cases}$$

更新 Lingo 模型并求解最优解。

```
ingo Model - Lingo1
max = 0.043 * x_A + 0.5 * 0.054 * x_B + 0.5 * 0.05 * x_C + 0.5 * 0.044 * x_D + 0.045 * x_E - 0.0275 * y;

x_A + x_B + x_C + x_D + x_E <= 1000 + y;

y <= 100;

x_B + x_C + x_D >= 400;

(2 * x_A + 2 * x_B + 1 * x_C + 1 * x_D + 5 * x_E) / (x_A + x_B + x_C + x_D + x_E) <= 1.4;

(9 * x_A + 15 * x_B + 4 * x_C + 3 * x_D + 2 * x_E) / (x_A + x_B + x_C + x_D + x_E) <= 5;</pre>
```

图 3: 更新后的 Lingo 模型

Var	iable	Value	Reduced Cost
	X_A	240. 0000	0. 000000
	X_B	0. 000000	0. 3018182E-01
	X_C	810.0000	0. 000000
	X_D	0. 000000	0. 6363636E-03
	X_E	50. 00000	0. 000000
	Y	100. 0000	0. 000000

图 4: 最优解

最优解为

$$x_A = 240.0000$$

 $x_B = 0.000000$
 $x_C = 810.0000$
 $x_D = 0.000000$
 $x_E = 50.00000$
 $y = 100.0000$

3.

(1) 如果证券 A 的税前收益增加为 4.5%,则目标函数变为:

 $\max Z = 4.5\% \cdot x_A + 5.4\% \cdot 0.5 \cdot x_B + 5.0\% \cdot 0.5 \cdot x_C + 4.4\% \cdot 0.5 \cdot x_D + 4.5\% \cdot x_E$ 重新求解得到最优解:

Var	iable	Value	Reduced Cost
	X_A	218. 1818	0. 000000
	X_B	0. 000000	0. 3436364E-01
	X_C	736. 3636	0. 000000
	X_D	0. 000000	0. 2727273E-03
	X_E	45. 45455	0. 000000

图 5: 最优解

与1中的最优解相同,因此投资不改变。

(2) 如果证券 C 的税前收益下降为 4.8%,则目标函数变为:

$$\max Z = 4.3\% \cdot x_A + 5.4\% \cdot 0.5 \cdot x_B + 4.8\% \cdot 0.5 \cdot x_C + 4.4\% \cdot 0.5 \cdot x_D + 4.5\% \cdot x_E$$

重新求解得到最优解:

Variable		Value	I
	X_A	336. 0000	
	X_B	0. 000000	
	X_C	0. 000000	
	X_D	648. 0000	
	X_E	16. 00000	

Reduced Cost

- 0.000000
- 0.3064000E-01
- 0. 4400000E-03
 - 0.000000
 - 0.000000

图 6: 最优解

投资需要改变,新的最优解为

 $x_A = 336.0000$

 $x_B = 0.000000$

 $x_C = 0.000000$

 $x_D = 648.0000$

 $x_E = 16.00000$

问题 2

问题描述

有 4 名同学到一家公司参加三个阶段的面试。公司要求每个同学都必须首先参加秘书初试,然后到部门主管复试,最后到经理处参加面试,并且不允许插队(即在任何一个阶段 4 名同学的顺序是一样的)。由于 4 名同学的专业背景不同,所以每人在三个阶段的面试时间也不同,如下表所示(单位:分钟):

同学	秘书初试 (分钟)	主管复试 (分钟)	经理面试 (分钟)
同学 A	13	15	20
同学 B	10	20	18
同学 C	20	16	10
同学 D	8	10	15

这 4 名同学约定他们全部面试完成后一起离开公司。假定现在时间是早上 8:00,问他们最早何时能离开公司?

解答

设二元变量 x_{ik} 表示同学 i 在同学 k 之前面试; s_{ij} 表示同学 i 在第 j 个阶段面试的开始时间; t_{ij} 表示同学 i 在第 j 个阶段面试的结束时间。其中,i,k=A,B,C,D; j=1,2,3。

该问题的目标为最小化最后一个同学面试结束的时间,即

$$\min R = \max_{i} (s_{i3} + t_{i3}), \quad i = A, B, C, D$$

每位同学只有在完成上一轮面试后才能进行下一轮面试,约束条件为

$$s_{ij} + t_{ij} \le s_{ij+1}, \quad i = A, B, C, D, \quad j = 1, 2$$

对于同一轮面试,同学之间不能插队,约束条件为

$$\begin{cases} s_{ij} + t_{ij} \le s_{kj}, & \text{if } x_{ik} = 1\\ s_{kj} + t_{kj} \le s_{ij}, & \text{if } x_{ik} = 0 \end{cases}$$

移项得

$$\begin{cases} s_{ij} + t_{ij} - s_{kj} \le 0, & \text{if } x_{ik} = 1 \\ s_{kj} + t_{kj} - s_{ij} \le 0, & \text{if } x_{ik} = 0 \end{cases}$$

考虑到 $s_{ij}+t_{ij}-s_{kj} \leq s_{ij+1}-s_{kj} \leq R$ 必然成立,因此可以将上述约束条件化为

$$\begin{cases} s_{ij} + t_{ij} - s_{kj} \le R \cdot (1 - x_{ik}) \\ s_{kj} + t_{kj} - s_{ij} \le R \cdot x_{ik} \end{cases}$$

我们发现,目标函数可以化为线性约束,即

$$\begin{cases} \min R \\ s_{i3} + t_{i3} \le R, \quad i = A, B, C, D \end{cases}$$

所有约束条件为

$$\begin{cases} R \geq s_{i3} + t_{i3}, & i = A, B, C, D \\ s_{ij} + t_{ij} \leq s_{ij+1}, & i = A, B, C, D, & j = 1, 2 \\ s_{ij} + t_{ij} - s_{kj} \leq R \cdot (1 - x_{ik}), & i = A, B, C, D, & j = 1, 2 \\ s_{kj} + t_{kj} - s_{ij} \leq R \cdot x_{ik}, & i = A, B, C, D, & j = 1, 2 \\ s_{ij} \geq 0, & i = A, B, C, D, & j = 1, 2, 3 \\ t_{ij} \geq 0, & i = A, B, C, D, & j = 1, 2, 3 \\ x_{ik} \in \{0, 1\}, & i = A, B, C, D, & k = A, B, C, D \end{cases}$$

在 Lingo 中建立模型,求解得到最优解。

📆 Lingo Model - Lingo1 SETS: PEOPLE / A, B, C, D /; STAGES / 1, 2, 3 /; PS(PEOPLE, STAGES): T, S; PP(PEOPLE, PEOPLE) | &1 #LT# &2: X; ENDSETS DATA: $T = 13 \ 15 \ 20 \ 10 \ 20 \ 18 \ 20 \ 16 \ 10 \ 8 \ 10 \ 15;$ ENDDATA MIN = R;@FOR (PEOPLE (I): R >= S(I, 3) + T(I, 3)); @FOR(PP(I, K): @BIN(X(I, K))); @FOR(PS(I, J) | J #LE# 2: $S(I, J) + T(I, J) \le S(I, J + 1);$); @FOR (STAGES (J): @FOR (PP(I, K): $S(I, J) + T(I, J) - S(K, J) \le R * (1 - X(I, K));$ $S(K, J) + T(K, J) - S(I, J) \le R * X(I, K);$););

图 7: 在 Lingo 中建立模型

Local optimal sol	ution found.	
Objective value:		84. 00000
Objective bound:		84. 00000
Infeasibilities:		0.000000
Extended solver s	steps:	23
Total solver iter	cations:	666
Elapsed runtime s	0. 10	
Model Class:		MIQP
	图 8: 最优解	
S(B, 3)	5b. 00000	0. 00000

S(B, 3)	56. 00000	0. 000000
S(C, 1)	31.00000	0.000000
S(C, 2)	56.00000	0.000000
S(C, 3)	74.00000	0.000000
S(D, 1)	0.000000	0. 9999970
S(D, 2)	8.600000	0.000000
S(D, 3)	18.60000	0.000000
X(A, B)	1. 000000	83. 99950
X(A, C)	1. 000000	0.000000
X(A, D)	0.000000	-83. 99950
X(B, C)	1. 000000	83. 99950
X(B, D)	0.000000	0.000000
X(C, D)	0. 000000	D > A & 0B0090 C

图 9: 最优解的排序方式

最少需要 83 分钟, 即 9:23 离开公司。面试的顺序为: 同学 D, 同学 A, 同学 B, 同学 C。