

Practices in Visual Computing II (Spring 2025) Assignment 3

Image Generation with Diffusion Model

Due: Friday, 14th March, 23:55 pm

Overview

In this assignment, you will be implementing **DDPM** (**Denoising Diffusion Probabilistic Models**), a type of generative model used for image synthesis. Note that the DDPM described here is a simplified version. If there are any discrepancies between these instructions and the **DDPM paper**, please follow this assignment. You can still refer to the DDPM paper for further understanding.

1 Preliminary

Understanding the theory behind diffusion models significantly simplifies their implementation. To gain a solid foundation, it is highly recommended to watch the following YouTube video and review the DDPM paper before proceeding with the next sections. These resources will provide a clearer intuition about how diffusion models work.

- YouTube Video: How I Understand Diffusion Models by Jia-Bin Huang.
- DDPM Paper: Denoising Diffusion Probabilistic Models.

Forward Process

Denoising Diffusion Probabilistic Model (DDPM) is one of the latent-variable generative models consisting of a Markov chain. In this Markov chain, we define a forward process that gradually adds noise to data $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ so that \mathbf{x}_0 becomes pure white Gaussian noise at t = T. Each transition of the forward process is:

$$q(\mathbf{x}_t \mid \mathbf{x}_{t-1}) := \mathcal{N}\left(\mathbf{x}_t; \sqrt{1-\beta_t}\,\mathbf{x}_{t-1}, \beta_t\mathbf{I}\right),$$

where a variance schedule β_1, \ldots, β_T controls the step sizes.

Because of the properties of Gaussian distributions, we can directly sample \mathbf{x}_t at an arbitrary timestep t from real data \mathbf{x}_0 in closed form:

$$q(\mathbf{x}_t \mid \mathbf{x}_0) = \mathcal{N}\left(\mathbf{x}_t; \sqrt{\bar{\alpha}_t} \, \mathbf{x}_0, (1 - \bar{\alpha}_t) \, \mathbf{I}\right),$$

where $\alpha_t := 1 - \beta_t$ and $\bar{\alpha}_t := \prod_{s=1}^t \alpha_s$.

Reverse Process

If we can reverse the forward process, i.e., sample $\mathbf{x}_{t-1} \sim q(\mathbf{x}_{t-1} \mid \mathbf{x}_t)$ iteratively until t = 0, we can generate \mathbf{x}_0 close to the true data distribution $q(\mathbf{x}_0)$ from Gaussian noise $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$. This reverse process is a denoising chain that gradually transforms noise into a real-looking sample.

The reverse process is also a Markov chain with learned Gaussian transitions:

$$p_{\theta}(\mathbf{x}_{0:T}) := p(\mathbf{x}_T) \prod_{t=1}^{T} p_{\theta}(\mathbf{x}_{t-1} \mid \mathbf{x}_t),$$

where $p(\mathbf{x}_T) = \mathcal{N}(0, \mathbf{I})$ and

$$p_{\theta}(\mathbf{x}_{t-1} \mid \mathbf{x}_t) := \mathcal{N}(\mathbf{x}_{t-1}; \ \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t), \ \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t, t)).$$

Training

To learn this reverse process, we minimize the KL divergence between $p_{\theta}(\mathbf{x}_{t-1} \mid \mathbf{x}_t)$ and $q(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0) = \mathcal{N}(\tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t, \mathbf{x}_0), \sigma_t^2 \mathbf{I})$, which is also Gaussian when conditioned on \mathbf{x}_0 :

$$\mathcal{L} = E_q \left[\sum_{t>1} D_{\mathrm{KL}} \left(q(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0) \parallel p_{\theta}(\mathbf{x}_{t-1} \mid \mathbf{x}_t) \right) \right].$$

A standard parameterization sets $\Sigma_{\theta}(\mathbf{x}_t, t) = \sigma_t^2 \mathbf{I}$ as untrained time-dependent constants. Thus, the objective becomes:

$$\mathcal{L} = E_q \left[\frac{1}{2 \sigma_t^2} \| \tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t, \mathbf{x}_0) - \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t) \|^2 \right] + C.$$

Empirically, predicting the noise ϵ injected into data (rather than directly predicting μ , which is the mean of the true reverse process) often yields better results. Therefore, in practice, we use a noise prediction network ϵ_{θ} and a simplified objective:

$$\mathcal{L}_{\text{simple}} := E_{t,\mathbf{x}_0,\boldsymbol{\epsilon}} \Big[\|\boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} \big(\mathbf{x}_t(\mathbf{x}_0,t), t \big) \|^2 \Big],$$

where

$$\mathbf{x}_t(\mathbf{x}_0, t) = \sqrt{\bar{\alpha}_t} \, \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \, \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I}).$$

Sampling

Once ϵ_{θ} is trained, we can sample from the model by gradually denoising white Gaussian noise. The DDPM sampling procedure iteratively transforms $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$ into a sample \mathbf{x}_0 .

2 Workspace Initialization (0 Points)

We will use the **AFHQ** (**Animal Faces-HQ**) dataset, which contains 16,130 high-quality images at a resolution of 512×512. It has three classes (Cat, Dog, and Wildlife), each with around 5,000 images, offering a diverse collection across various breeds. To begin training, simply run:

python training.py

You do not need to worry about handling or downloading the dataset, as the provided code does so automatically.

3 Scheduler (10 Points)

In a diffusion model, noise scheduling is critical for both the forward (adding noise) and reverse (denoising) processes. We need to compute:

- β (beta)
- $\alpha = 1 \beta$
- $\hat{\alpha}_t = \prod_{s=1}^t \alpha_s$ (cumulative product of α)
- σ (sigma)

Defining β

The values of β specify how much noise is added at each step, and different definitions influence the overall noise growth schedule.

Linear Mode:

$$\beta_t = \beta_1 + \frac{t-1}{T-1}(\beta_T - \beta_1), \quad t = 1, \dots, T.$$

This defines β_t as increasing linearly from β_1 to β_T over T steps.

Quadratic Mode:

$$\beta_t = \left(\sqrt{\beta_1} + \frac{t-1}{T-1}(\sqrt{\beta_T} - \sqrt{\beta_1})\right)^2, \quad t = 1, \dots, T.$$

Here, β_t follows a quadratic schedule, starting with smaller increments and increasing more rapidly toward the end.

Defining α and $\hat{\alpha}$

Once β_t is set:

$$\alpha_t = 1 - \beta_t$$

$$\hat{\alpha}_t = \prod_{s=1}^t \alpha_s.$$

 α_t decreases as β_t increases, and the cumulative product $\hat{\alpha}_t$ shrinks with each step, indicating how much of the original signal remains.

Defining σ

 σ_t controls the noise reintroduced during the reverse process. Two common definitions follow:

Small σ Approach:

$$\sigma_t = \sqrt{\frac{(1 - \hat{\alpha}_{t-1})}{(1 - \hat{\alpha}_t)}} \, \beta_t.$$

This keeps variance relatively low at each reverse step.

Large σ Approach:

$$\sigma_t = \sqrt{\beta_t}$$
.

A larger variance can lead to more stochasticity in generation, potentially yielding more diverse samples.

4 Forward and Reverse Diffusion (10 Points)

In diffusion models, the forward process adds noise to data, and the reverse process removes it.

Add Noise (add_noise)

For a clean sample \mathbf{x}_0 at t=0, to get a noisy version \mathbf{x}_t at an arbitrary t:

$$\mathbf{x}_t = \sqrt{\hat{\alpha}_t} \, \mathbf{x}_0 + \sqrt{1 - \hat{\alpha}_t} \, \boldsymbol{\epsilon},$$

where $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ and

$$\hat{\alpha}_t = \prod_{s=1}^t \alpha_s, \quad \alpha_s = 1 - \beta_s.$$

Since $\hat{\alpha}_t$ gets smaller with t, most of the original data is destroyed by large t.

Reverse Step (step)

Let \mathbf{x}_t be the noisy sample at step t. Given a model-predicted noise $\boldsymbol{\epsilon}_{\theta}$, the mean for the reverse step is:

$$\boldsymbol{\mu}_t = \frac{1}{\sqrt{\alpha_t}} \Big(\mathbf{x}_t - \left(\frac{1 - \alpha_t}{\sqrt{1 - \hat{\alpha}_t}} \right) \boldsymbol{\epsilon}_{\theta} \Big).$$

We can sample \mathbf{x}_{t-1} as:

$$\mathbf{x}_{t-1} = \begin{cases} \boldsymbol{\mu}_t + \sigma_t \, \boldsymbol{\eta}, & t > 0, \\ \boldsymbol{\mu}_t, & t = 0, \end{cases} \quad \boldsymbol{\eta} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}).$$

Here, σ_t can be chosen as $\sqrt{\beta_t}$ (large) or via the smaller approach above.

5 U-Net Model (0 Points)

U-Net is central to denoising in many diffusion models. Although its encoder-decoder structure can optionally predict a denoised sample x_0 , in practice, most diffusion formulations use U-Net to predict the added noise $\hat{\epsilon}(x_t, t)$.

5.1 Architecture and Forward Pass

Downsampling and Upsampling. U-Net uses a series of Down blocks to progressively reduce spatial resolution, capturing higher-level features. Each Down block applies convolution with stride 2, followed by normalization (e.g., GroupNorm) and a nonlinear activation (e.g., SiLU). In parallel, Up blocks restore the original resolution via nearest-neighbor interpolation and convolution, merging skip-connected features from the Down blocks to recover fine-grained details.

Residual Blocks and Self-Attention. Each stage contains Residual Blocks that can incorporate optional self-attention. Self-attention allows every spatial position to leverage global context, complementing local convolutional operations.

Time Embedding. A scalar timestep t is encoded by sinusoidal embeddings, then transformed by an MLP. The resulting time-dependent vector is injected into the Residual Blocks, conditioning the network on the current diffusion step.

Noise Prediction. At each diffusion step t, the noisy input x_t (along with the time embedding) passes through Down blocks, a bottleneck layer, and Up blocks. A final convolutional layer outputs $\hat{\epsilon}$, the predicted noise. This prediction is then used to iteratively denoise x_t , guiding it toward the original data distribution.

6 Residual Block (10 Points)

A **Residual Block** is a fundamental component in many CNN-based architectures, facilitating deeper networks by making gradient flow more efficient. See Table 1 for a detailed breakdown of the Residual Block structure, including input/output shapes and layer configurations.

Key Components

- Normalization and Activation (GroupNorm + SiLU)
- Convolutional Layers (Conv2D)
- Dropout
- Time Embedding Injection: Integrates temporal/context embedding.
- Shortcut Connection (1×1 Conv / Identity): Adds input back to the output, enabling residual learning.

7 Time Embedding Block (5 Points)

The **Time Embedding** block maps a scalar timestep t to a higher-dimensional feature vector, combining sinusoidal encodings with an MLP.

Blocks	Layers	Dropout	Conv Params	Input Shape	Output Shape
Block 1	GroupNorm	-	-	$[B, C_i, H, W]$	$[B, C_i, H, W]$
	SiLU	-	-	B, C_i, H, W	B, C_i, H, W
	Conv2D	-	K=3, S=1, P=1	$B, C_i, H, W]$	$[B, C_o, H, W]$
Time Inject	Add Time Emb	-	-	$[B, C_o, H, W]$	$[B, C_o, H, W]$
Block 2	GroupNorm	-	-	$[B, C_o, H, W]$	$[B, C_o, H, W]$
	SiLU	-	-	B, C_o, H, W	$[B, C_o, H, W]$
	Dropout	0.1	-	B, C_o, H, W	$[B, C_o, H, W]$
	Conv2D	-	K=3, S=1, P=1	B, C_o, H, W	$[B, C_o, H, W]$
Shortcut	1×1 Conv / ID	-	K=1, S=1, P=0	$B, C_i, \overline{H, W}$	B, C_o, H, W

Table 1: Residual Block Structure with Input/Output Shapes. C_i = Input channels, C_o = Output channels, H = Height, W = Width. Conv Params: K = kernel size, S = stride, P = padding.

Key Components

• Sinusoidal Embeddings (sin_emb): Inspired by positional encodings in Transformers. Each timestep t is represented with multiple frequencies:

$$\omega_i = \exp\left(-rac{2 imes \log(\mathtt{max_period})}{n} imes i
ight), \quad i \in [1,\dots,n/2].$$

The embedding becomes:

$$emb(t) = \left[\cos(t \cdot \omega_1), \sin(t \cdot \omega_1), \dots, \cos(t \cdot \omega_{n/2}), \sin(t \cdot \omega_{n/2})\right].$$

• Multi-Layer Perceptron (MLP): A two-layer network with a SiLU activation that transforms the sinusoidal features into a higher-dimensional representation.

Step	Layer / Operation	Parameters	Input Shape	Output Shape
Sinusoidal	sin_emb (cos,sin)	freq=256, max_period=10000	[B] or $[B,1]$	$[B,\mathtt{freq}]$
MLP	Linear + SiLU + Linear	${\rm hidden_dim}{=}H$	$[B,\mathtt{freq}]$	[B,H]

Table 2: Time Embedding Block Structure. The sinusoidal embedding first encodes the scalar t, and an MLP projects it to a hidden dimension H.

8 Diffusion Module (10 Points)

This module defines the **loss function** and **sampling function** in a typical diffusion model.

Loss Computation (get_loss)

- Randomly pick a timestep t from $[1, \ldots, T]$.
- Noise the original sample \mathbf{x}_0 to \mathbf{x}_t :

$$\mathbf{x}_t = \sqrt{\hat{\alpha}_t} \, \mathbf{x}_0 + \sqrt{1 - \hat{\alpha}_t} \, \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}).$$

• The model predicts $\hat{\epsilon}$ from \mathbf{x}_t and t, and we compute an MSE loss:

$$\mathcal{L} = \|\hat{\boldsymbol{\epsilon}} - \boldsymbol{\epsilon}\|^2.$$

Minimizing this encourages the model to accurately invert the forward (noising) process.

Sampling (sample)

To generate new samples, start with noise $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ and apply the reverse step for each $t = T, T - 1, \ldots, 1$ until reaching t = 0. The final \mathbf{x}_0 is a generated image.

9 Evaluation (0 Points)

Evaluation involves generating sample images and computing the Frechet Inception Distance (FID) to measure image quality.

Sampling Images

python evaluate.py sample --ckpt_path <path_to_ckpt> --save_dir <save_dir>

Replace <path_to_ckpt> with your checkpoint path and <save_dir> with where to save results.

Calculating FID

python evaluate.py fid --save_path <path_to_GI> --gt_path <path_to_GT>

Here, <path_to_GI> is the directory with your generated images, and <path_to_GT> is the directory containing ground-truth images.

What is FID? FID compares the distribution of generated images with that of real images; lower values indicate higher similarity to real data.

10 Demo (15 Points)

At the demo session:

- 1. We will check if you implemented and can run the code properly.
- 2. Your model must produce reasonable results (An FID under 20).
- 3. You will need to explain part of your code during the demo.
- 4. We will test your understanding with a conceptual question.

Note: Submit your code, training logs, and 10 generated samples to Canvas before the deadline. You may not change them during the demo session.