数字气压传感器 BMP085 的使用笔记

目 录

1.	序言	3
2.	使用气压传感器之前要考虑的问题	4
	2.1 气压与海拔高度的关系	4
	2.2 影响压力测量的因素	5
3.	BMP085 的一些关键参数	6
4.	MCU 控制 BMP085 的固件程序详解	8
	4.1 IIC 总线一些基本概念	9
	4.2 BMP085 发送控制命令方式	10
	4.3 BMP085 读取数据方式	. 11
	4.4 BMP085 控制程序总结	12
5.	关于 BMP085 的购买	13
参	考文献	13

1. 序言

为了能够在步态判断过程中准确地判断上楼步态与下楼步态,尝试引入气压 计,通过测试上下楼气压的变化间接算出水平面高度的变化,从而判断出上楼或 者下楼的步态。

当然,使用气压传感器的用途还有很多,借用一下 BMP085datasheet 上面的介绍,气压传感器还可以用到以下的场合: 盲区推估; 户外导航; 天气预测; 垂直运动速度测量。

其实气压传感器除了在一些关于气象、天气方面的应用以外,基本上都是用来测试海拔高度。从应用场合来看,盲区推估;户外导航;垂直运动速度测量也都是用到了测量海拔高度这个应用。所以要想用好气压传感器,正确理解气压和海拔高度的关系是很重要的,本文将在第二章介绍气压与海拔的一些基本关系。

希望通过阅读本文可以帮助大家很快的搭建基于气压计的项目应用。

2. 使用气压传感器之前要考虑的问题

作为一个物理量,气压的大小有着很深刻的物理含义。这里对具体的物理意义就不详细介绍了。主要说一下气压与海拔高度的关系。

2.1 气压与海拔高度的关系

海拔高度与大气压力的关系在大气物理学里面有明确的定义。根据不同的大气模型,会有不同的气压与海拔的对应关系。详细资料可以参考大气物理学的书籍[1]。

但是看大气物理学的书比家复杂,所以可以参考公式 2.-1-1。Pb 就是压力传感器测试出来的压力值,h 就是相应的海拔高度。**有一点特别需要注意,就是海拔高度与压力大小的关系受温度的影响。**很多情况下,压力传感器芯片的datasheet 会提供压力与海拔高度的对应关系,也可以用来借鉴。

$$P_s = P_b \exp[(\frac{-g_n}{R \times T_b}) \times (H - H_b)]$$

$$h = \frac{r \times H}{r - H}$$

Formula: 2-1-1

其中

 P_s : 大气静压

 P_b : 海平面气压 (相应层下界气压) $P_b=101325P_a$

R: 气体常数 $R = 287.05287 m^2 / k \cdot s^2$

 H_b : 海平面高度 (相应层下界高度) $H_b = 0m$

 g_n : 自由落体标准加速度 $g_n = 9.80665m/s^2$

 T_b : 相应层大气温度 $T_b = 288k = 15^{\circ}c$

H: 重力势高度

r: 地球半径

h: 我们想得到的高度h

2.2 影响压力测量的因素

影响压力测量的因素有很多,除了关键的海拔高度以及温度的影响,诸如空 气的流动(诸如风,空调等等)都影响空气压力的测量。

3. BMP085 的一些关键参数

相面结合 BOSCH 公司的 MEMES 气压传感器 BMP085 来介绍气压传感器的一些比较重要的参数。如 Table3-1 所示

Parameter	Symbol	Condition	Max	Unit
Operating temperature	TA	Operational	-40-85	${\mathbb C}$
Operating temperature	IA	TA Full accuracy		$^{\circ}$ C
Supply voltage	VDD	Ripple max	1.8-3.6	uA
Suppry voltage	VDIO		1.62-3.6	uA
		Ultra low power mode	3	uA
Supply current @1SPS At		Standard mode	5	uA
25℃		High resolution mode	7	uA
		Ultra high res. mode	12	uA
Peak current		During conversion	1000	uA
Standby current		At 25℃	0.1	uA
Serial data clock			3.4	MHz
Conversion time temperature		Standard mode	4.5	Ms
		Ultra low power mode	4.5	Ms
Conversion time		Standard mode	7.5	Ms
pressure		High resolution mode	13.5	Ms
		Ultra high res. mode	25.5	Ms
Absolute accuracy ^[1]		700-1100@0-65℃	±2.5	hPa
Pressure VDD=3.3V		300-700hPa@0-65℃	±3.0	hPa
Flessure VDD=3.3 V		300-1100hPa@-20-0℃	±4.0	hPa
Desclution of output data		Pressure	0.01	hPa
Resolution of output data		temperature	0.1	$^{\circ}\mathbb{C}$
Relative accuracy ^[2]		700-1100hPa@25℃	±0.2	hPa
pressure VDD=3.3V		0-65°C@P const	±0.5	hPa
Absolute accuracy		@25℃	±15	$^{\circ}$
temperature VDD=3.3V		@0−65°C	±2.0	${\mathbb C}$
Solder drift ^[3]		Minimum solder height 50uM	±10	hPa
Long term stability		12 months	±10	hPa

Table3-1 BMP085 参数表

- [1] absolute accuracy: 绝对精度,也就是在一个测量范围内的测量精度。举例来说,如果测量的气压从700hPa一直到1100hPa,理论上读数应该是变化了400hPa,但实际上的读数可能是400hPa±absolute accuracy。
- [2] relative accuracy: 相对精度,也就是在一个固定测量值的测量精度。举例来说,如果测量 500hPa 的气压,实际的测量值是 500hPa ± relative accuracy
- [3] Solder drift: 焊接影响,该器件对于焊接的要求比较高,如果焊接造成了一定的器件变形,等价于器件存在了一个内部的残余应力,所以会对实际测量产生一定的偏差。

4. MCU 控制 BMP085 的固件程序详解

BMP085 的控制程序编写思路如 Fig4.1 所示:

Fig4.1 firmware sequence about the measurement of temperature and pressure MCU 程序对于 BMP085 的控制可以包括读取数据与发送控制命令两类。

需要说明的是,MCU 与 BMP085 之间采用 IIC 总线进行通信,在编写程序之前需要对 IIC 总线进行熟悉。

4.1 IIC 总线一些基本概念

IIC 是 PHILIP 公司开发的一个总线标准,关于 IIC 总线可以参考下面的链接。

http://www.nxp.com/acrobat_download/literature/9398/39340011.pdf

IIC 总线有两条线组成 SDA 与 SCL, 时序关系如图 Fig4.2 所示

Fig4.2 timing sequence for IIC bus

对于 IIC 总线,有以下几个关键部分需要注意,参考 Fig4.2:

- (1) start condition:
- (2) address code
- (3) R/w bit
- (4) Ack bit
- (5) Data code
- (6) Stop condition:

上面几个关键部分的理解可以参考 IIC SPECIFICATION, 这里面就不具体介绍了。也可以参考 silicon lab 公司的应用笔记 AN113^[2]。

4.2 BMP085 发送控制命令方式

MCU对 BMP085 发送控制命令的方式如 Fig4.3 所示

Fig4.3 timing diagram for start pressure measurement

向 BMP085 发送命令的步骤如下

- 1) 发送模块地址+W(表示写操作),如 Fig4.3 中的 0xEE。
- 2) 发送寄存器地址(register address),如 Fig4.3 中的第一个 0xF4。
- 3) 发送寄存器的值(control register data),如 Fig4.3 中的第二个 0xF4。寄存器的值代表 BMP085 要进行的测量方式。不同的值分别代表,测量温度;低精度压力测量;中精度压力测量;高精度压力测量。如 Tab4.1 所示:

举例来说,向 BMP085 写寄存器地址 0xF4 代表要 BMP085 进行测量,具体进行什么测量(温度、高精度压力、中精度压力还是低精度压力)要由发向寄存器的值(control register data)决定,在 Fig4.3 中 control register 的值是 0xF4。对照 Tab4.1 可以看出,0xF4 代表要进行高精度的压力测量,需要测量时间 25.5ms。

Measurement	Control register value (register address 0xF4)	Max. conversion time [ms]
Temperature	0x2E	4.5
Pressure (osrs = 0)	0x34	4.5
Pressure (osrs = 1)	0x74	7.5
Pressure (osrs = 2)	0xB4	13.5
Pressure (osrs = 3)	0xF4	25.5

Tab4.1 Different register control value for different measurement

4.3 BMP085 读取数据方式

从 BMP085 读取数据的方法如图 Fig4.4 所示:

Fig4.4 timing diagram for reading the result of pressure from BMP085

从 BMP085 读取数据的步骤如下:

- 1) 发送模块地址+W(表示写操作),如 Fig4.4 中的 0xEE。
- 2) 送寄存器地址(register address),如 Fig4.4 中的第一个 0xF6。
- 3) 重新开始 IIC 传输(Restart)。

- 4) 发送模块地址+R (表示要进行读操作),如 Fig4.4 中的 0xEF。
- 5) 读取测量值的高 8 位 (MSB)。
- 6) 读取测量值的低 8 位(LSB)。

不同寄存器地址的意义如 Tab4.2 所示

寄存器名称	寄存器地址
E^2 PROM	0xAA To 0xBF
Temperature or pressure value(UT or UP)	0xF6(MSB)、0x F7(LSB) 、0xF8(XLSB)

Tab4.2 different register address

4.4 BMP085 控制程序总结

从 Fig4.4 与 Fig4.3 可以清楚地看出 MCU 控制 BMP085 的方法,这里再进行一些简单的概括。其实对 BMP085 的控制可以概括为两句话: 向固定的寄存器 (0xF4) 写特定值 (Tab4.1 中的 control register value),从特定的寄存器 (Tab4.2 中的寄存器地址)读返回值。每次通讯时的 Module address 都是一个固定的值,主要是为了符合 IIC 协议。

1) 向固定的寄存器(0xF4)写特定值(Tab4.1 中的 control register value)

其实就是向 0xF4 地址写不同的值从而完成温度测量或者不同的压力精度的测量。

2) 从特定的寄存器(Tab4.2 中的寄存器地址)读返回值

从 E²PROM 读取 Calibration 所需要的数据,共有 11 个 Word (双字节)。

从 0xF6, 0xF7, 0xF8 读取 UT 或者 UP, 具体是 UP 还是 UT 要由前面进行的操作决定(进行了温度转换就存有温度数据,进行了压力转换就存有压力数据)。

5. 关于 BMP085 的购买

BOSCH 公司的传感器在中国有两家代理:

公司名称	电话	备注
MOSTYLE (shanghai)	021-62590606	
MOSTYLE (Shenzhen)	0755-33358750	
Sports Technology	0755-83048424	

参考文献

[1] SERIAL COMMUNICATION WITH THE SMBUS $\,$ $\,$ AN117 $\,$ Silabs corporation