-BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI INSTRUCTION DIVISION

FIRST SEMESTER Course Handout (Part II)

Date:07/01/2016

Course No. : MATH F422

Course Title : Numerical Methods for Partial Differential Equations

Instructor-in-charge : Sangita Yadav

Instructors : Sangita Yadav

1. Scope and Objective of the Course:

The study of differential equations is a fundamental subject area of Mathematics which links important strands of Pure Mathematics to Applied and Computational Mathematics. This course enables one to analyze a number of numerical algorithms for approximating the solution of a variety of generic problems which occur in applications. The course will begin with the description of the numerical techniques for PDEs, their Stability and Convergence. Particular emphasis in this course is to interconnect the theoretical results and computer implementation. Students will study not only the solid theoretical backgrounds in developing and understanding the algorithms but also a hands-on experience to implement the methods.

2. Text Book: T1. Computational Techniques for Fluid Dynamics 1, by Fletcher, C.A.J, Springer-Verlag

T2. Numerical Solution of Partial Differential Equations: Finite Difference Methods (Oxford Applied Mathematics & Computing Science Series) by G. D. Smith, Oxford University Press

3. Reference Books:

- 1. The Finite Difference Methods in Partial Differential Equations by R. Mitchell and S. D. F. Griffiths, Wiley and Sons, NY, 1980.
 - 2. Numerical methods of partial differential equations by Evans, G. Blackledge, J. and Yardley, P. Springer-Verlag, 1999.
 - 3. A friendly introduction to Numerical Analysis by Bradie, 1st Edition, Pearson education, 2007.

4.	Course Plan						
Lec. No.	Learner's Objective	Topic to be Covered	Ref. to Text /Ref. Ch./Sec	Prob.			
1	Review of Numerical Analysis	System of linear algebraic equations, central interpolation, difference methods for derivatives					
2-4	classifying second order	Classification of PDE, nature of well-posed problems, interpretation of PDEs by characteristics and physical basis, appropriate boundary/initial conditions	T1.2.1-2.4, 2.6				
5-7	computational solution	Discretization: spatial & time derivatives, approximation to derivatives, accuracy of discretization process, finite difference method for partial derivatives	T1.3.1-3.4				
8-11	Introduction to finite volume method	finite volume method for first order PDEs and second order PDEs, and application to Laplace equation	T1.5.2				

12-23	Systematic methods to	Explicit and Implicit Method, Derivative boundary	T2: P11-40	All
	find the numerical	condition, Crank-Nicolson Method		
	solution of Parabolic	Reduction of the local truncation error –the Douglas	T2: P44-48,	All
	equations and their	equation, three time level difference equation,	T1.4.4	
	convergence, stability	Deffered correction method, Richardson		
	and Cosistency.	Extrapolation		
	Understand the relative	Convergence of explicit method, stability by matrix	T2: P75-109	All
	strengths and weakness	method, Theorems on bounds for Eigen values,		
	of each computational method	Stability for derivative boundary condition, stability von Neumann method, Lax theorem		
24-31	Systematic methods to	Improvement of accuracy, Elliptic problems with	R2:.2.4	All
	find the numerical	irregular boundaries, SOR method for iterative		
	solution of elliptic	methods, rate of convergence, Stone's strongly implicit	T2:Chapter	
	equations and their	iterative method	5	
	convergence, stability			
	and Cosistency.			
32-35	Systematic methods to	Finite difference methods on a rectangular mesh: Lax-	T2 :P149-	All
	find the	Wendroff explicit method, CFL condition, Wendroff	155	
	numerical	Implicit method		
	solution of			
	Hyparabolic			
	equations			
36-37	How to deal Propagation	Discontinuous Initial Values, Discontinuous Initial	T2 :P156-	All
	of Discontinuities	Derivatives, Discontinuities and finite difference	158	
		approximations		
38-40		Explicit Methods and Implicit Methods, Simultaneous	T2:P173-	All
		first order equations.	182	

5. Evaluation Scheme								
S. No.	Components	Duration	Marks	Date & Time	Remarks			
i	Mid- Sem Test	90 min	35	17/3 2:00 -3:30 PM	СВ			
ii.	Lab Assignment* / Quizzes	IN LAB, KEEP SOME MARKS (SAY 2 OR 3) FOR EACH PROBLEM	20	To be announced / Surprise	СВ			
iii.	Comprehensive Exam	3 hrs	45	13/5 FN	CB +OB			

- **6. Problems:** Students are strongly advised to work out all the relevant problems in the text-book and do similar problems from the reference books. It is also recommended that the students should try out the algorithms on computers by using **MATLAB** to get a better understanding of the subject.
- 7. Only text book and hand written notes are allowed in open book exam.
- **8. Chamber Consultation Hours**: To be announced in the class.
- **9. MAKE-UP:** Make-up for any component of evaluation will be given only in genuine cases of absence. **No makeup will be given for lab examination and quizzes.**
- 10. Notices: All notices related to this course will be put only on the Notice Board of Dept. of Maths.
- * For Lab examination (Assignment): you have to write the numerical code in any one of the computer language.

Instructor-In-Charge