Discrete Mathematics Solutions 2014 Section A

1. (a)
$$\sum_{r=0}^{3000} \frac{3000!}{r!(3000-r)!} = \sum_{r=0}^{3000} {3000 \choose r} = \mathbf{2^{3000}}$$
 [2]

(b)
$$\sum_{r=0}^{3000} 2^r + r^2 = \mathbf{2^{3001}} - \mathbf{1} + \frac{1}{6} (\mathbf{3000}) (\mathbf{3001}) (\mathbf{6001})$$
 [3]

2. (a)
$$13^5 = 371293$$

(b)
$$13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 = 154440$$
 [1]

(c)
$$\binom{5}{3} 8^2 \cdot 5^3 + \binom{5}{4} 8 \cdot 5^4 + 5^5 = \mathbf{108125}$$
 [3]

3. (a)
$$\binom{3+50}{3} = 23426$$
 [1]

- (b) After selecting 20 black and 15 blue markers we have 15 more markers to choose. ${3+15 \choose 3}=816$
- (c) There are $\binom{39+3}{3} = 11480$ ways to choose combinations including at least 11 red markers. Therefore the number of selections with at most 10 red markers is $\binom{53}{3} \binom{42}{3} = 11946$ [2]
- 4. (a) characteristic polynomial: $\lambda + \frac{2}{3}$ general solution to homogeneous part: $G(n) = a\left(\frac{-2}{3}\right)^n$ find particular solution: Try P(n) = M. We have

$$M = -\frac{2}{3}M + 2,$$
$$M = \frac{6}{5}.$$

general solution: $u_n = G(n) + P(n) = a\left(\frac{-2}{3}\right)^n + \frac{6}{5}$ solve for a:

$$u_0 = a + \frac{6}{5} = 20,$$

$$a = \frac{94}{5}$$

solution:
$$u_n = \frac{94}{5} \left(\frac{-2}{3}\right)^n + \frac{6}{5}$$
 [3]

(b) The sequence converges to $\frac{6}{5}$. [2]

Please turn over

5. (a) We have

$${2n \choose n} - {2 \choose n-1} = \frac{2n}{n!n!} - \frac{2n}{(n-1)!(n+1)!},$$

$$= \frac{2n(n+1)}{n!(n+1)!} - \frac{2n(n)}{n!(n+1)!},$$

$$= \frac{2n}{n!(n+1)!},$$

$$= \frac{1}{n+1} {2n \choose n} = C_n.$$

[2]

(b)

$$C_{n} = \frac{1}{n+1} {2n \choose n},$$

$$= \frac{1 \times 2 \times 3 \times 4 \times \dots \times (2n-2)(2n-1)(2n)}{(n+1)n!n!},$$

$$= \frac{1(2 \times 1)3(2 \times 2) \dots \times (2 \times (n-1))(2n-1)(2 \times n)}{(n+1)!(1 \times 2 \times 3 \times \dots \times (n-1) \times n)},$$

$$= \frac{(2 \times 1)(2 \times 3)(2 \times 5) \dots (2 \times (2n-1))}{(n+1)!}.$$

[3]

- 6. (a) In any graph G, the sum of the degrees of the vertices of G is equal to twice the number of edges. [2]
 - (b) The Handshaking Lemma implies that the sum of the degrees of the vertices in a graph is even, yet we have 1 + 2 + 3 + 4 + 5 = 15, which is odd. Hence [1, 2, 3, 4, 5] is not the degree sequence of any graph.
 - (c) The sum of the entries in column *i* is the degree of vertex *i*, hence if we sum the entries of the adjacency matrix we obtain the degree sum of the graph. In this case this sum is 10, hence *G* has **5** edges.

7. (a) We can assign permanent labels to the vertices as follows:

$$P(a) = 0,$$

$$P(b) = 7,$$

$$P(c) = 5,$$

$$P(d) = 4,$$

$$P(e) = 10,$$

$$P(q) = 10,$$

$$P(f) = 10,$$

$$P(h) = 15,$$

$$P(j) = 19,$$

$$P(i) = 15,$$

$$P(k) = 19,$$

$$P(l) = 24,$$

$$P(m) = 26.$$

A critical path is a, d, g, f, h, j, l, m, corresponding to the sequence of tasks $\mathbf{D}, \mathbf{E}, \mathbf{F}, \mathbf{H}, \mathbf{I}, \mathbf{M}$. It has length $\mathbf{26}$.

- (b) The earliest start time is **15**. The only path starting with J and ending at m has length 10. Hence the latest start time is 26 10 = 16.
- 8. (a) If v and w are two vertices of a connected graph G, then the maximum number of edge-disjoint vw-paths in G is equal to the size of the smallest vw-disconnecting set.

 [2]
 - (b) It is possible to find a set of three edge-disjoint ah-paths, for example abfh, aceh and adgh. Similarly, it is also possible to find an ah-disconnecting set of size three (for example, all the edges incident with a). Hence by the edge form of Menger's theorem, this ah-disconnecting set is as small as possible.

Section B

9. (a) (i)

$$C + O + L + S = 30,$$

$$10 \le C \le 15,$$

$$5 \le O \le 10,$$

$$5 \le L \le 10,$$

$$5 \le S \le 10.$$

[2]

[6]

(ii)
$$g(x) = (x^{10} + x^{11} + x^{12} + x^{13} + x^{14} + x^{15})(x^5 + x^6 + x^7 + x^8 + x^9 + x^{10})^3$$
. [2]

(iii) We have

$$\begin{split} g(x) &= (x^{10} + x^{11} + x^{12} + x^{13} + x^{14} + x^{15})(x^5 + x^6 + x^7 + x^8 + x^9 + x^{10})^3, \\ &= x^{25}(1 + x + x^2 + x^3 + x^4 + x^5)^4, \\ &= x^{25}(1 - x^6)^4(1 - x)^{-4}, \\ &= x^{25}(1 - 4x^6 + 6x^{12} - 4x^{18} + x^{24})\sum_{r=0}^{\infty} \binom{r+3}{r} x^r. \end{split}$$

The coefficient of x^{30} in this expression is $\binom{8}{5} = 56$.

- (b) (i) This sequence satisfies a homogeneous linear difference equation of order k if and only if p is a polynomial of degree less than k, and q is a polynomial of degree k whose constant term is nonzero. [2]
 - (ii) We have

$$g(x) = \frac{1}{1 + 4x^2},$$

= 1 - 4x² + 16x⁴ - 64x⁶ + ...

Hence the first four terms of the sequence are 1, 0, -4, 0. [2]

(c) (i)
$$2(1-x)^{-1}$$

(ii)
$$(1 - 2x)^{-1}$$
 [2]

(iii)
$$2\frac{x}{(1-x)^2}$$

Please turn over

10. (a) (i) characteristic polynomial: $\lambda^2 - 4\lambda + 3 = (\lambda - 3)(\lambda - 1)$, general solution to homogeneous part: $G(n) = a3^n + b$, find a particular solution: Try $P(n) = cn^2 + dn$. We have

$$cn^2 + dn = 4c(n-1)^2 + 4d(n-1) - 3c(n-2)^2 - 3d(n-2) - 20n + 26,$$
 coefficient of n : $d = -8c + 4d + 12c - 3d - 20$,
$$c = 5,$$
 constants: $0 = 4c - 4d - 12c + 6d + 26$,
$$40 - 26 = 2d$$
,
$$d = 7$$
.

Hence $P(n) = 5n^2 + 7n$ is a particular solution. general solution: $u_n = a3^n + b + 5n^2 + 7n$, solve for a, b:

$$u_0 = a + b = 10,$$

 $u_1 = 3a + b + 12 = 24.$

This gives a = 1, b = 9. solution: $\mathbf{u_n} = \mathbf{3^n} + \mathbf{5n^2} + \mathbf{7n} + \mathbf{9}$ [5]

(ii) characteristic polynomial: $\lambda^2 + 14\lambda + 49 = (\lambda + 7)^2$, general solution to the homogeneous part: $G(n) = a7^n + bn7^n$, find a particular solution: Try $P(n) = C3^n$. We have

$$C3^{n} = -C \cdot 14 \cdot 3^{n-1} - 49C3^{n-2} + \frac{500}{9}3^{n},$$

$$9C = -42C - 49C + 500,$$

$$100C = 500,$$

$$C = 5,$$

hence $P(n) = 5 \cdot 3^n$ is a particular solution. general solution: $u_n = G(n) + P(n) = a7^n + bn7^n + 5 \cdot 3^n$. solve for a, b:

$$u_0 = a + 5 = 7,$$

 $u_1 = 7a + 7b + 15 = -20.$

This gives a = 2, b = -7. solution: $\mathbf{u_n} = 2 \cdot 7^{\mathbf{n}} - \mathbf{n}7^{\mathbf{n+1}} + 5 \cdot 3^{\mathbf{n}}$.

(b) Applying the suggested substitution we have

$$2^{b_n} = \frac{(2^{b_{n-1}})^5}{(2^{b_{n-2}})^6},$$
$$= 2^{5b_{n-1} - 6b_{n-2}}.$$

Please turn over

[5]

whence

$$b_n = 5b_{n-1} - 6b_{n-2}.$$

The characteristic equation for this homogeneous difference equation is $\lambda^2 - 5\lambda + 6 = (\lambda - 2)(\lambda - 3)$. Hence the general solution is $b_n = c_1 2^n + c_2 3^n$. For initial conditions, we have $2^{b_0} = \frac{1}{4}$, so $b_0 = -2$, and $2^{b_1} = 2$, hence $b_1 = 1$. Thus $c_1 + c_2 = -2$, and $2c_2 + 3c_1 = 1$, which gives $c_1 = -7$, $c_2 = 5$. Hence we have the solution $b_n = -7(2^n) + 5(3^n)$, which gives $\mathbf{a_n} = 2^{-7(2^n) + 5(3^n)}$.

(c) (i) The homogeneous part of (1) is

$$u_n = Au_{n-1} + Bu_{n-2}. (1)$$

[1]

(ii) If P(n) is a particular solution of (1), and G(n) is a solution to the homogeneous part of (1) then we have

$$A(P(n-1) + G(n-1)) + B(P(n-2) + G(n-2)) + f(n)$$

$$= (AP(n-1) + BP(n-2) + f(n)) + (AG(n-1) + BG(n-2)),$$

$$= P(n) + G(n),$$

hence P(n) + G(n) is a solution of (1). [3]

- 11. (a) (i) Let $G = (V_1, V_2, E)$ be a bipartite graph. Then G has a complete matching if and only if for each subset $S \subseteq V_1$, the set $N(S) \subseteq V_2$ of vertices of V_2 that are adjacent to vertices in S satisfies $|N(S)| \ge |S|$. [3]
 - (ii) Let $G = (V_1, V_2, E)$ be a bipartite graph that does not satisfy Hall's conditions. Then there exists a set $S \subseteq V_1$ of n vertices (say) whose set $N(S) \subseteq V_2$ of neighbours has size m < n. By the pigeonhole principle, if we are joining each of the n vertices in S to a vertex in N(S), then one of the vertices in N(S) is joined to more than one vertex in S, since $\lceil \frac{n}{m} \rceil > 1$. Hence S contains no complete matching.
 - (b) (i) We use the Gale-Shapley algorithm:

Round 1	$M_1 \to W_3$,
rtodia i	$M_2 \rightarrow W_4$,
	2 1/
	$M_3 \to W_4$,
	$M_4 o W_3$,
	$M_5 o W_5$,
engagements:	$(M_1, W_3), (M_3, W_4), (M_5, W_5)$
Round 2	$M_2 \to W_1$,
	$M_4 o W_4$,
engagements:	$(M_1, W_3), (M_2, W_1), (M_3, W_4), (M_5, W_5)$
Round 3	$M_4 o W_5$,
engagements:	$(M_1, W_3), (M_2, W_1), (M_3, W_4), (M_4, W_5)$
Round 4	$M_5 o W_2$,
engagements:	$(\mathbf{M_1}, \mathbf{W_3}), (\mathbf{M_2}, \mathbf{W_1}), (\mathbf{M_3}, \mathbf{W_4}), (\mathbf{M_4}, \mathbf{W_5}), (\mathbf{M_5}, \mathbf{W_2})$

[7]

- (ii) Suppose \mathcal{M}_1 is a male optimal stable matching that is not female pessimal. Then for some woman W_1 who is married to a man M_1 in \mathcal{M}_1 , there is a matching \mathcal{M}_2 in which she marries a man M_2 whom she likes less than M_1 . Let W_2 be the wife of M_1 in \mathcal{M}_2 . Then $\{(M_1, W_2), (M_2, W_1)\}$ is an unstable pair, as woman W_1 prefers M_1 to M_2 , and M_1 prefers W_1 to W_2 (as she is his optimal partner). This contradicts the assumption that \mathcal{M}_2 is stable.
- (iii) Neither are stable.
 - A. $\{M_1, W_1\}, \{M_3, W_3\}$ is an unstable pair, as M_1 and W_3 rank each other above their current partners. [1]
 - B. $\{M_4, W_2\}, \{M_5, W_5\}$ is an unstable pair, as M_4 and W_5 rank each other above their current partners. [3]

- 12. (a) The graph (i) is not isomorphic as a labelled tree, as vertex 4 is not adjacent to vertex 7. [2]

 The graph (ii) is isomorphic to G as a labelled tree (in both cases 2 is adjacent to 1, 3 and 5, we have 5 is adjacent to 4 and 6 as well as 2, 4 is adjacent to 5 and 7, and 1, 3, 6 and 7 are leaves). [2]
 - (b) By Cayley's theorem, H has $5^{5-2} = 125$ spanning subtrees. [3]
 - (c) (i) One suitable choice of edges is **bf**, **bd**, **af**, **dc**, **de**. [3]
 - (ii) Travelling salesman problem: given a weighted complete graph G on n vertices, find a Hamiltonian cycle of G of minimum total weight. [2]
 - (iii) Given a graph G on n vertices, assign the weight 0 to each edge. Now add extra edges to G to obtain a complete graph, assigning the weight 1 to all the new edges. Use this weighted complete graph as an input to the machine. If the Hamilton cycle output by the machine has weight 0 then each of the edges used in this cycle were present in G, and hence G itself contains a Hamilton cycle. If the output of the machine has weight ≥ 1 then it is not possible to construct a Hamiltonian cycle using only edges of G, and hence G is not Hamiltonian. [3]
 - (iv) The edge db is the edge of smallest weight incident with d. Place the vertices d and b into a cycle. The next smallest edge incident to one of either d or b is bf; place f in the cycle following b. A next smallest edge adjacent to one vertex in the cycle is fa; place a in the cycle following f. Continuing in a similar manner we can select the edges dc and ce, resulting in the cycle a, d, c, e, b, f of total weight 20.
 - (v) Smallest edges incident with d are db and de of weights 2 and 3. A minimum spanning tree for the induced subgraph on vertices a, b, c, e, f has weight 13. Hence a lower bound for the TSP is 2+3+13=18. [3]