Computerpraktikum im GP II Lineare Regression Errata zur Version vom 16. Januar 2004

Seite (Formel)	richtig	falsch
S. 4	Verteilung	Vertielung
S. 5 (5)	$\langle F \rangle = \int_{-\infty}^{\infty} f(x) P(x) dx$	$\langle F \rangle = \int_{-\infty}^{\infty} f(x) x P(x) dx$
S. 9	bräuchten	brauchten
S. 16 (28)	$\sigma_{\bar{X}} pprox \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{X})^2}{n(n-1)}}$	$\sigma_{\bar{X}} pprox \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{X})}{n(n-1)}}$
S. 22 (41a)	$S' = S\sigma^4$	$S' = \frac{S}{\sigma^4}$
S. 22 (41b)	$\hat{b} = \frac{1}{S'} (n \sum_{i} x_i y_i - \sum_{i} x_i \sum_{i} y_i)$	$\hat{b} = \frac{1}{S'} \left(\sum_{i} x_i y_i - \sum_{i} y_i \right)$
S. 22 (42)	$\hat{d}_i = \dots = y_i - \hat{a} - \hat{b}x_i$	$\hat{d}_i = \dots = y_i - \hat{a} - \hat{b}x$
S. 23 (44)	$s^2 = \dots = \frac{1}{n-2} \sum_{i=1}^n (y_i - \hat{a} - \hat{b}x_i)^2$	$s^2 = \dots = \frac{1}{n-2} \sum_{i=1}^n (y_i - \hat{a} - \hat{b}x)^2$
S. 23	wollen wir in	wollen in
S. 24 (46a)	$S' = S\sigma^4$	$S' = \frac{S}{\sigma^4}$