DSC 478 Project Proposal

Team Members: Serena Yang, Zhong Hua Xie, Jason Kates

Overview:

Nowadays, buying a car with a loan is a prevalent trend for most people; however, this will lead to a big challenge for financial institutions. Suppose the financial institutions' vehicle loans forecasting model is not good enough. In that case, it will most likely bring losses to the financial institutions since some of them may not be able to pay their loans. For this project, our team will apply some algorithms based on the users' background information, previous loan and credit history to make the best model and predict the test dataset to get prediction accuracy. We will mainly use Python for this project.

Data Schema and Size:

The dataset that we used was downloaded from the <u>Kaggle</u> website. Before we did data cleaning, the dataset contained 41 variables as shown below, including numeric and categorical, and 233k+ rows.

Numer	ic		Categ	Categorical		Da	ate	Binary		
Variable Name		Description		Typ e	Data clean	Variable Name		Description	Typ e	Data clean
UniqueID	Identifier for customers			С	Delete Column	PERFORM_CNS.SCO RE.DESCRIPTION	Bureaus	score description		Deleter
disbursed_ amount	Amount of Loan disbursed			N	mean	PRI.NO.OF.ACCTS		total loans taken by the custome me of disbursement	er	mean
asset_ cost		the asset			mean	PRI.ACTIVE. ACCTS	custome	active loans taken by the r at the time of disbursement		mean
ltv		Value of the a			mean	PRI.OVERDUE. ACCTS	disburse			mean
branch_id	disburse				mean	PRI.CURRENT. BALANCE	active lo	ncipal outstanding amount of the ans at the time of disbursement		mean
supplier_id	Vehicle Dealer where the loan was disbursed				mean	PRI.SANCTIONED. AMOUNT	the loan	ount that was sanctioned for all s at the time of disbursement		mean
manufacturer _id	Vehicle manufacturer(Hero, Honda, TVS etc.)				mean	PRI.DISBURSED. AMOUNT	loans at	ount that was disbursed for all th the time of disbursement		mean
Current_ pincode	custome				mean	SEC.NO.OF. ACCTS	at the tir	total loans taken by the custome me of disbursement	er	mean
Date.of.Birth		birth of the cu		D	Delete	SEC.ACTIVE. ACCTS	custome	active loans taken by the r at the time of disbursement		mean
Employment Type	,	d/Self Employ	,		Delete row	SEC.OVERDUE. ACCTS	disburse			mean
DisbursalDate		disbursement			Delete row	SEC.CURRENT. BALANCE	active lo	ncipal outstanding amount of the ans at the time of disbursement		mean
State_ID		disbursemen			Delete Column	SEC.SANCTIONED.A MOUNT	the loan	ount that was sanctioned for all sat the time of disbursement		mean
Employee_ code_ID		ee of the orga ged the disbu				SEC.DISBURSED. AMOUNT		ount that was disbursed for all th the time of disbursement	е	mean
MobileNo_ Avl_Flag	I	e no. was shar er then flagge	,	В	mean	PRIMARY.INSTAL.A MT	EMI Amo	ount of the primary loan		mean
Aadhar_flag	I	r was shared l er then flagge	,		mean	SEC.INSTAL.AMT		ount of the secondary loan		mean
PAN_flag	custome	as shared by t er then flagge	d as 1		mean	NEW.ACCTS.IN.LAST SIX.MONTHS	months	ns taken by the customer in last 6 before the disbursement	5	mean
VoterID_flag		was shared by er then flagge			mean	DELINQUENT.ACCTS IN.LAST.SIX.MONTH S		faulted in the last 6 months		mean
Driving_flag		s shared by the er then flagge			mean	AVERAGE.ACCT. AGE	Average	loan tenure		Deleter ow
Passport_flag		ort was shared er then flagged			mean	CREDIT.HISTORY.LEN	N Time sin	ce first loan		Delete row
Perform_ CNS.Score	Bureau	Score			mean	NO.OF_ INQUIRIES	·	done by the customer for loans		mean
						Loan_Default	Whether	r the user got laon		Delete row

For those missing values, we will delete the rows of missing categorical and date variables; fill in the mean value of those who got loan/didn't get for missing numerical and binary variables. After we did the data cleaning, there are about 225k+ rows left. We separated this dataset into two parts: 80% as the training dataset and 20% as the test dataset.

Analysis Approach:

Our analysis approach is to conduct as many classification models as possible to predict vehicle loan default based on loaner's information(attributes). Then compare the models using the ROC curve to determine which model is ideal for vehicle loan default prediction.

The list of classifiers we will be used for this project:

- Decision tree
- Logistic Regression
- KNN
- Naive Bayes
- PCA/Factor Analysis

Plan for Evaluation – Analysis of Results/Discussion:

- Compare the different models classification metrics for performance and accuracy
 - Also include confusion matrix for each model
- Graphically represent the models with Hyperparameter tuning
- Compare the models with the ROC curve

Plan Work Distribution:

For the project, West will be assigned to format, clean, and split the dataset into train and test datasets. Normalize numeric attribute into a set range, remove or fill out null entries, convert categorical attributes into dummy variables, and split the dataset by 80 and 20 for training and testing dataset.

After West did data preparation, each of the team members will do the classifiers assigned as below:

- West Logistic Regression
- Jason PCA/Factor Analysis
- Jason/West Decision Tree
- Serena Naive Bayes
- Serena KNN