

Sensors and conditioning

F. Pépin www-pepin.ensea.fr

1

Electronics and packaging

- Notion of measurement
- 2. Constitution of a measurement chain
- 3. Characteristics of a measurement chain
- 4. Instrumentation amplifiers
- 5. Isolation amplifiers
- 6. Passive sensor conditioners
- 7. Signal conversion
- 8. Electronic noise
- 9. Temperature sensors
- 10. Integrated conditioners
- 11. Position and displacement sensors
- 12. Deformation sensors
- 13. Pressure and force sensors per test body
- 14. Piezoelectricity

1. Notion of measurement.

International System of Units (S.I.):

7 basic units: m, kg, s, K, A, cd, mol

Measuring: set of operations to determine the value of a quantity.

Metrology: field of knowledge related to the measurements.

2. Constitution of a measurement chain.

Objective:physical sizeelectrical size→

disruptive variables

3. Characteristics of a measurement chain.

- Static transfer characteristic.
 - obtained by calibration.
 - Measurement range (MS):

nominal range of measurand variations.

Limit of use of the sensor :

area of non-deterioration.

Static sensitivity:

$$\begin{bmatrix} S & \Delta \mathbf{y} \\ \Delta \mathbf{x} & \mathbf{x} \end{bmatrix}$$

- Zero offset
- Linearity:

describes the degree of agreement between the static calibration diagram and a line chosen as reference.

- Hysteresis.
- Resolution:

minimum increase in the input quantity causing a change in the output quantity.

- Derivatives
- Finesse:

allows to estimate the influence of the presence of the sensor and the chain of measurement on the value of the measurand.

- Dynamic features :
 - Sensitivity as a function of frequencyS(f)
 - Speed: response time.

Measurement errors.

x₀:true value

xi: measurement

resultError : $ei = xi - x_0$

- Systematic errors
- > Accidental errors

Experiment:n measurements x1...

	Cas 1	Cas 2	Cas 3	Cas 4
Justesse	non	non	oui	oui
Fidélité	oui	non	non	oui

4. Instrumentation amplifier.

- Objectives.
 - amplify the signal to make it more perceptible
 - Infinite input impedance
 - Zero output impedance
 - An output voltage proportional to the difference between the two inputs:

Reminder on the differential and common mode.

Instrumentation amplifier:

Circuit designed to amplify a signal in a hostile environment, characterized by deviations from the ideal (temperature, noise, voltage drop of the supply,...).

- Examples of realizations.
 - Three operational amplifier arrangement

Assembly with two operational amplifiers : in TD.

Example: the AD623 circuit

Single and Dual-Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier

Data Sheet AD623

FEATURES

Easy to use

Rail-to-rail output swing

Input voltage range extends 150 mV below ground (single supply)

Low power, 550 µA maximum supply current

Gain set with one external resistor

Gain range: 1 to 1000

High accuracy dc performance

0.10% gain accuracy (G = 1)

0.35% gain accuracy (G > 1)

Noise: 35 nV/√Hz RTI noise at 1 kHz

Excellent dynamic specifications

800 kHz bandwidth (G = 1)

20 μ s settling time to 0.01% (G = 10)

APPLICATIONS

Low power medical instrumentation

Transducer interfaces

Thermocouple amplifiers

Industrial process controls

Difference amplifiers

Low power data acquisition

		_			
Tabla 1	OTH	Downer	Unorades	for the	A 11673

Part No.	Total V _s (V dc)	Typical I _Q (μA)
AD8235	5.5	30
AD8236	5.5	33
AD8237	5.5	33
AD8226	36	350
AD8227	36	325
AD8420	36	85
AD8422	36	300
AD8426	36	325 (per channel)

Simplified internal diagram:

Usage:

Application examples:

Acquisition system for a passive sensor :

Interfacing a thermocouple:

Temperature measurement from -200°C to +200°C:

On-call circuit:

- Equivalent diagram
 - At the entrance

Commonly used scheme:

Rationale: Let the two input currents be:

$$i_{e1} = G_{11} v_{e1} + G_{12} v_{e2}$$

 $i_{e2} = G_{21} v_{e1} + G_{22} v_{e2}$

$$i_{e1} = \frac{G_{11} - G_{12}}{2} v_{ed} + (G_{11} + G_{12}) v_{ec}$$

$$i_{e2} = \frac{G_{21} - G_{22}}{2} v_{ed} + (G_{22} + G_{21}) v_{ec}$$

Hypothesis: symmetrical instrumentation amplifier

$$G_{11} = G_{22}$$
 et $G_{12} = G_{21}$

$$R_{ed} = \frac{2}{G_{11} - G_{12}} = -\frac{2}{G_{21} - G_{22}}$$

$$R_{ec} = \frac{1}{G_{11} + G_{12}} = \frac{1}{G_{22} + G_{21}}$$

$$R_{ec} = \frac{1}{G_{11} + G_{12}} = \frac{1}{G_{22} + G_{21}}$$

$$R_{ec} = \frac{1}{G_{11} + G_{12}} = \frac{1}{G_{22} + G_{21}}$$

$$R_{ec} = \frac{1}{G_{11} + G_{12}} = \frac{1}{G_{22} + G_{21}}$$

$$R_{ec} = \frac{1}{G_{11} + G_{12}} = \frac{1}{G_{22} + G_{21}}$$

$$R_{ec} = \frac{1}{G_{11} + G_{12}} = \frac{1}{G_{22} + G_{21}}$$

$$R_{ec} = \frac{1}{G_{11} + G_{12}} = \frac{1}{G_{22} + G_{21}}$$

$$R_{ec} = \frac{1}{G_{11} + G_{12}} = \frac{1}{G_{22} + G_{21}}$$

$$R_{ec} = \frac{1}{G_{11} + G_{12}} = \frac{1}{G_{22} + G_{21}}$$

$$R_{ec} = \frac{1}{G_{11} + G_{12}} = \frac{1}{G_{22} + G_{21}}$$

$$R_{ec} = \frac{1}{G_{11} + G_{12}} = \frac{1}{G_{22} + G_{21}}$$

$$R_{ec} = \frac{1}{G_{11} + G_{12}} = \frac{1}{G_{22} + G_{21}}$$

$$R_{ec} = \frac{1}{G_{11} + G_{12}} = \frac{1}{G_{22} + G_{21}}$$

$$R_{ec} = \frac{1}{G_{11} + G_{12}} = \frac{1}{G_{22} + G_{21}}$$

$$R_{ec} = \frac{1}{G_{11} + G_{12}} = \frac{1}{G_{22} + G_{21}}$$

$$R_{ec} = \frac{1}{G_{11} + G_{12}} = \frac{1}{G_{22} + G_{21}}$$

$$R_{ec} = \frac{1}{G_{11} + G_{12}} = \frac{1}{G_{22} + G_{21}}$$

$$R_{ec} = \frac{1}{G_{11} + G_{12}} = \frac{1}{G_{22} + G_{21}}$$

$$R_{ec} = \frac{1}{G_{11} + G_{12}} = \frac{1}{G_{22} + G_{21}}$$

$$R_{ec} = \frac{1}{G_{11} + G_{12}} = \frac{1}{G_{22} + G_{21}}$$

$$R_{ec} = \frac{1}{G_{11} + G_{12}} = \frac{1}{G_{22} + G_{21}}$$

$$R_{ec} = \frac{1}{G_{11} + G_{12}} = \frac{1}{G_{22} + G_{21}}$$

$$R_{ec} = \frac{1}{G_{11} + G_{12}} = \frac{1}{G_{22} + G_{21}}$$

$$R_{ec} = \frac{1}{G_{11} + G_{12}} = \frac{1}{G_{22} + G_{21}}$$

$$R_{ec} = \frac{1}{G_{11} + G_{12}} = \frac{1}{G_{22} + G_{21}}$$

$$R_{ec} = \frac{1}{G_{11} + G_{12}} = \frac{1}{G_{22} + G_{21}}$$

$$R_{ec} = \frac{1}{G_{11} + G_{12}} = \frac{1}{G_{22} + G_{21}}$$

$$R_{ec} = \frac{1}{G_{11} + G_{12}} = \frac{1}{G_{22} + G_{21}}$$

$$R_{ec} = \frac{1}{G_{11} + G_{12}} = \frac{1}{G_{22} + G_{21}}$$

$$R_{ec} = \frac{1}{G_{11} + G_{12}} = \frac{1}{G_{12} + G_{21}}$$

$$R_{ec} = \frac{1}{G_{11} + G_{12}} = \frac{1}{G_{12} + G_{21}}$$

$$R_{ec} = \frac{1}{G_{11} + G_{12}} = \frac{1}{G_{12} + G_{21}}$$

$$R_{ec} = \frac{1}{G_{11} + G_{12}} = \frac{1}{G_{12} + G_{21}}$$

$$R_{ec} = \frac{1}{G_{11} + G_{12}} = \frac{1}{G_{12} + G_{21}}$$

$$R_{ec} = \frac{1}{G_{11} + G_{12}} = \frac{1}{G_{12} + G$$

➤ In common mode (ve1 = ve2):

Red

AD623:

$$_{Red}$$
 = 2 Γ
 $_{Rec}$ = 2 Γ

On exit:

- ➤ Output resistor
- Voltage proportional to the voltage in differential mode
- > Common mode voltage.

Full diagram:

- Common mode rejection rate, guard circuit.
 - Definition of the common mode rejection rate (CMR)

$$TRMC = \frac{A_d}{A_c}$$

$$A_d = \frac{V_{sd}}{V_{ed}}$$

$$A_{C} = \frac{V_{sc}}{V_{ec}}$$

in dB:
$$TRMC = 20 \log \frac{A_d}{A_c}$$

Example: A
$$d = 100\text{ved} = 10 \text{ mV}$$

 $\text{vec} = 10 \text{ VTRMC} = 80 \text{ dB}$

A d . ved = 1 V and
$$\frac{A_d}{TRMC}$$
 . v_{ec} = 0,1 V

which is an error of 10%!

Functional analysis

Let's say the following diagram: r_1 r_2 $Z_{c\,b}$ Z_{ch} ve1 Z_d

By changing the layout of the components in the diagram:

$$Sir1 = r2$$
 and $Zch = ZcbVp = 0$

Case studied: r1 = 0

$$V_p = \left| \frac{r_2 /\!/ Z_d}{r_2 /\!/ Z_d + Z_{c \; b}} \right| \; \; . \; V_c$$

TRMC = $\frac{r_2//Z_d + Z_{cb}}{r_2//Z_d}$ and

r2 << Zd and Zcb:
$$TRMC = \left| \frac{Z_{cb}}{r_2} \right|$$

$$Z_{cb} = 1000 \text{ M}\Omega // 10 \text{ pF } r_2 = 100 \Omega$$

$$Z_{cb} = 1000 \text{ M}\Omega$$
 // $10 \text{ pF } r_2 = 100 \Omega$

$$TRMC = \frac{Z_{cb}}{r_2}$$

- ➤ for a continuous common mode signal, we have TRMC = 140dB
- \triangleright for f = 50 Hz, TRMC = 130 dB
- ➤ If the signal is brought by a 1m coaxial cable:

Solution: guard circuit

Characteristics of an instrumentation amplifier

Data Sheet AD623

DUAL SUPPLIES

Typical at 25°C dual supply, $V_s = \pm 5$ V, and $R_L = 10$ k Ω , unless otherwise noted.

Table 3.

	Test Conditions/	34	AD623	A	-	AD623ARM			AD623B			
Parameter	Comments	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	
GAIN	$G = 1 + (100 \text{ k/R}_G)$	30			E							
Gain Range		1		1000	1		1000	1		1000		
Gain Error ¹	G1 V _{OUT} = -4.8 V to +3.5 V											
	G > 1 V _{OUT} = 0.05 V to 4.5 V											
G = 1	P=000000000000000000000000000000000000		0.03	0.10		0.03	0.10		0.03	0.05	%	
G = 10			0.10	0.35		0.10	0.35		0.10	0.35	%	
G = 100			0.10	0.35		0.10	0.35		0.10	0.35	96	
G = 1000			0.10	0.35		0.10	0.35		0.10	0.35	96	
Nonlinearity	G1 Vorr = -4.8 V to +3.5 V											
	G > 1 Vour = -4.8 V to +4.5 V											
G = 1 to 1000	288209090000000000000000000000000000000		50			50			50		ppm	
Gain vs. Temperature											5000	
G = 1			5	10		5	10		5	10	ppm/°C	
G > 11	9	(3)	50		e e	50			50		ppm/°C	

	Test Conditions/		AD623	A	AI	D623Al	RM		AD623	В	
Parameter	Comments	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
VOLTAGE OFFSET	Total RTI error = Vosi + Voso/G										
Input Offset, Vosi			25	200		200	500		25	100	μV
Over Temperature				350			650			160	μV
Average Tempco			0.1	2		0.1	2		0.1	1	μV/°C
Output Offset, Voso			200	1000		500	2000		200	500	μV
Over Temperature				1500			2600			1100	μV
Average Tempco			2.5	10		2.5	10		2.5	10	μV/°C
Offset Referred to the Input vs. Supply (PSR)											
G = 1		80	100		80	100		80	100		dB
G = 10		100	120		100	120		100	120		dB
G = 100		120	140		120	140		120	140		dB
G = 1000		120	140		120	140		120	140		dB
INPUT CURRENT											
Input Bias Current			17	25		17	25		17	25	nA
Over Temperature				27.5			27.5			27.5	nA
Average Tempco			25			25			25		pA/°C
Input Offset Current			0.25	2		0.25	2		0.25	2	nA
Over Temperature				2.5			2.5			2.5	nA
Average Tempco			5			5			5		pA/°C
INPUT											
Input Impedance											
Differential			2 2			2 2			2 2		GΩ pl
Common-Mode			2 2			2 2			2 2		GΩ p
Input Voltage Range ²	$V_S = +2.5 \text{ V to } \pm 6 \text{ V}$	(–V _S) – 0.15		(+V _S) – 1.5	(–V _S) – 0.15		(+V₃) – 1.5	(–V _S) – 0.15		(+V _S) – 1.5	٧

Parameter	Test Conditions/		AD623	A	AD623ARM			AD623B			
	Comments	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Common-Mode Rejection at 60 Hz with 1 kΩ Source Imbalance		G.						39		92	
G = 1	Vcm = +3.5 V to -5.15 V	70	80		70	80		77	86		dB
G = 10	$V_{CM} = +3.5 \text{ V to } -5.15 \text{ V}$	90	100		90	100		94	100		dB
G = 100	V _{CM} = +3.5 V to -5.15 V	105	110		105	110		105	110		dB
G = 1000	V _{CM} = +3.5 V to -5.15 V	105	110		105	110		105	110		dB
OUTPUT		1						55			
Output Swing	$R_L = 10 \text{ k}\Omega,$ $V_S = \pm 5 \text{ V}$	(-V ₅) + 0.2		(+V ₅) - 0.5	(-V ₅) + 0.2		(+V _S) - 0.5	(-V _S) + 0.2		(+V _s) - 0.5	٧
	$R_L=100\;k\Omega$	(-V ₅) + 0.05		(+V _s) - 0.15	(-V ₂) + 0.05		(+V ₅) - 0.15	(-V _s) + 0.05		(+V ₅) - 0.15	٧
DYNAMIC RESPONSE Small Signal –3 dB Bandwidth		5			5			-24		26	
G = 1			800			800			800		kHz
G = 10			100			100			100		kHz
G = 100			10			10			10		kHz
G = 1000			2			2			2		kHz
Slew Rate	0000 H0000-0401-1		0.3			0.3			0.3		V/µs
Settling Time to 0.01%	$V_s = \pm 5 \text{ V}, 5 \text{ V step}$										- Oxiesa
G = 1	(6)		30			30			30		μς
G = 10			20			20			20		μs

SPECIFICATIONS COMMON TO DUAL AND SINGLE SUPPLIES

Table 4.

	Test Conditions/	AD623A			AD623ARM			AD623B			
Parameter	Comments	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
NOISE											
Voltage Noise, 1 kHz	Total RTI noise =										
	$\sqrt{(e_{ni})^2 + (2e_{no}/G)^2}$										
Input, Voltage Noise, en			35			35			35		nV/√Hz
Output, Voltage Noise, eno			50			50			50		nV/√Hz
RTI, 0.1 Hz to 10 Hz											
G = 1			3.0			3.0			3.0		μV p-p
G = 1000	20 MANY-0		1.5			1.5			1.5		μV p-p
Current Noise	f = 1 kHz		100			100			100		fA/√Hz
0.1 Hz to 10 Hz			1.5			1.5			1.5		pA p-p
REFERENCE INPUT	5				8					- 2	
R _{IN}			100 ± 20%			100 ± 20%			100 ± 20%		kΩ
I _{IN}	$V_{IN}+$, $V_{REF}=0$ V		50	60		50	60		50	60	μА
Voltage Range		$-V_s$		+1/5	$-V_s$		+Vs	-Vs		+Vs	٧
Gain to Output			1 ± 0.0002			1 ± 0.0002			1 ± 0.0002		٧
POWER SUPPLY											
Operating Range	Dual supply	±2.5		±6	±2.5		±6	±2.5		±6	٧
	Single supply	2.7		12	2.7		12	2.7		12	٧
Quiescent Current	Dual supply		375	550		375	550		375	550	μА
	Single supply		305	480		305	480		305	480	μА
Over Temperature	1982 S 0-70 G 7/3 G 9/4		-excisive	625		616709	625		5-0200	625	μА
TEMPERATURE RANGE				2000	2555		301101	10000		pere	00000
For Specified Performance		-40		+85	-40		+85	-40		+85	°C

Summary of errors

Application diagram:

Three types of errors:

- the initial errors, easily corrected by an adjustment
- errors that can be reduced by an intelligent system
- irreducible errors

5. Isolation amplifier.

Classic instrumentation amplifier:
 common mode voltage < supply voltage

 An isolation amplifier also ensures galvanic isolation between the source and the rest of the measurement chain.

But it is basically an instrumentation amplifier.

Application: medical equipment.

2 processes : TransformerOptical coupling

• Principle:

Example: AD210

Block diagram:

Features:

FEATURES

High CMV Isolation: 2500 V rms Continuous

±3500 V Peak Continuous

Small Size: 1.00" × 2.10" × 0.350"

Three-Port Isolation: Input, Output, and Power

Low Nonlinearity: ±0.012% max

Wide Bandwidth: 20 kHz Full-Power (–3 dB)

Low Gain Drift: ±25 ppm/°C max

High CMR: $120 \, dB \, (G = 100 \, V/V)$

Isolated Power: ±15 V @ ±5 mA

Uncommitted Input Amplifier

APPLICATIONS

Multichannel Data Acquisition

High Voltage Instrumentation Amplifier

Current Shunt Measurements

Process Signal Isolation

Example of assembly:

 The concept of isolation therefore allows for the definition of different masses.

Insulation voltage: between input ground and ground output

AD210 Features:

Model	AD210AN		
GAIN			
Range	1 V/V - 100 V/V		
Error	±2% max		
vs. Temperature(0°C to +70°C)	+25 ppm/°C max		
(-25°C to +85°C)	±50 ppm/°C max		
vs. Supply Voltage	±0.002%/V		
Nonlinearity ¹	±0.025% max		
INPUT VOLTAGE RATINGS			
Linear Differential Range	±10 V		
Maximum Safe Differential Input	±15 V		
Max. CMV Input-to-Output	*		
ac, 60 Hz, Continuous	2500 V rms		
dc, Continuous	±3500 V peak		
Common-Mode Rejection	*		
60 Hz, G = 100 V/V	*		
R _S ≤ 500 Ω Impedance Imbalance	120 dB		
Leakage Current Input-to-Output	*		
@ 240 V rms, 60 Hz	2 μA rms max		

INPUT IMPEDANCE Differential Common Mode	10 ¹² Ω 5 GΩ∥5 pF
INPUT BIAS CURRENT Initial, @ +25°C vs. Temperature (0°C to +70°C) (-25°C to +85°C)	30 pA typ (400 pA max) 10 nA max 30 nA max
INPUT DIFFERENCE CURRENT Initial, @ +25°C vs. Temperature(0°C to + 70°C) (-25°C to +85°C)	5 pA typ (200 pA max) 2 nA max 10 nA max
INPUT NOISE Voltage (l kHz) (10 Hz to 10 kHz) Current (1 kHz)	18 nV/√ Hz 4 μV rms 0.01 pA/√ Hz
FREQUENCY RESPONSE Bandwidth (-3 dB) G = 1 V/V G = 100 V/V Settling Time (±10 mV, 20 V Step) G = 1 V/V G = 100 V/V Slew Rate (G = 1 V/V)	* 20 kHz 15 kHz * 150 μs 500 μs 1 V/μs

OFFSET VOLTAGE (RTI)2			
Initial, @ +25°C	±15 ±45/G) mV max		
vs. Temperature (0°C to +70°C)	(±10 ±30/G) μV/°C		
(-25°C to +85°C)	(±10 ±50/G) μV/°C		
RATED OUTPUT ³			
Voltage, 2 kΩ Load	±10 V min		
Impedance	1Ω max		
Ripple (Bandwidth = 100 kHz)	10 mV p-p max		
ISOLATED POWER OUTPUTS ⁴			
Voltage, No Load	±15 V		
Accuracy	±10%		
Current	±5 mA		
Regulation, No Load to Full Load	See Text		
Ripple	See Text		
POWER SUPPLY			
Voltage, Rated Performance	+15 V dc ± 5%		
Voltage, Operating	+15 V dc ± 10%		
Current, Quiescent	50 mA		
Current, Full Load – Full Signal	80 mA		
TEMPERATURE RANGE			
Rated Performance	-25°C to +85°C		
Operating	-40°C to +85°C		
Storage	-40°C to +85°C		

6. Passive sensor conditioners.

Objectives:

```
Passive sensor: Zc= f(m mbeing the measurand Variation of Zc as a function of the measurand variation of an electrical quantity
```

by associating the sensor:

- a voltage source es or a current source is
- other impedances

Measurement converter: it is a part of the conditioner, whose role is to carry out this transformation.

Two types of output:

- Amplitude $vm = {}_{es} f(Zc, Zk)$

- Frequencyfm = f(Zc, Zk)

Passive sensor conditioner

Sensitivity:

Overall sensitivity:

$$S_{t} = \frac{\Delta v_{m}}{\Delta m} = \frac{\Delta v_{m}}{\Delta Z_{c}} \frac{\Delta Z_{c}}{\Delta m}$$
 Sensor sensitivity

Sensitivity added by the converter

Points to consider:

$$ightharpoonup$$
 Linearity: $\frac{\Delta v_{\rm m}}{\Delta Z_{\rm c}}$ indépendant de $Z_{\rm c}$

> Influence magnitudes

Bridge mounting :

→ Provide a differential measurement voltage

$$_{id} = f(_{R1}, _{R2}, _{R3}, _{R4}, _{Rs}, _{Rd})$$

$$_{id=0}$$
 ifR1 $_{R4} = _{R2 R3}$

then vm=0

Neglecting the influence of resistances Rs and Rd:

$$v_{m} = e_{s} \frac{R_{2} R_{3} - R_{1} R_{4}}{(R_{1} + R_{2})(R_{3} + R_{4})}$$

We will take $R_{1=R_{2}=R_{3}=R_{4}=R_{0}}$ at equilibrium.

• Sensor:
$$R_2 = R_0 + \Delta R_c$$

$$R_1 = R_3 = R_4 = R_0$$

$$v_{m} = \frac{e_{s}}{4 R_{o}} \frac{\Delta R_{c}}{1 + \frac{\Delta R_{c}}{2 R_{o}}}$$

With
$$x = \frac{\Delta x}{1}$$

$$v_{\mathbf{m}} = e_{\mathbf{S}} \frac{\mathbf{x}}{4} \frac{1}{1 + \frac{\mathbf{x}}{2}}$$

Non linear!

Two sensors, with identical variations:

$$R_2 = R_3 = R_o + \Delta R_c$$

$$R_1 = R_4 = R_0$$

$$v_{\mathbf{m}} = \frac{e_{\mathbf{S}}}{2} \frac{\mathbf{x}}{1 + \frac{\mathbf{x}}{2}}$$

Non-linear

Two sensors, with opposite variations:

$$R_2 = R_0 + \Delta R_c$$

$$R_1 = R_0 - \Delta R_c$$

$$v_{\mathbf{m}} = e_{\mathbf{S}} \frac{\mathbf{X}}{2}$$

Linear

Push-pull mounting: 4 sensors

$$R_2 = R_3 = R_o + \Delta R_c$$

$$R_1 = R_4 = R_0 - \Delta R_c$$

$$v_{\mathbf{m}} = e_{\mathbf{S}} \mathbf{x}$$

Linear

$$x = \frac{\Delta R_c}{R_o}$$

Application: strain gauges

Study of the influence of a parasitic quantity (g)

Sensor:

$$R_2 = R_o + S\Delta m + S_g \Delta g$$

A compensation sensor:

$$R_1 = R_o + S_g \Delta g$$

$$v_{m} = \frac{e_{s}}{4 R_{o}} \frac{s\Delta m}{1 + \frac{s\Delta m}{2 R_{o}} + \frac{s_{g}\Delta g}{R_{o}}}$$

Study of the influence of a parasitic quantity (g)

Push-pull assembly:

$$\Delta R_2 = \Delta R_3 = S \Delta m + Sg_{\Delta g} \Delta R_1$$

= $\Delta R_4 = -S \Delta m + Sg_{\Delta g}$

$$v_{m}=e_{s}\frac{s\Delta m}{R_{o}}\frac{1}{1+s_{g}\Delta g}$$

The sensitivity depends on the influence quantity

Example of compensation: g = temperature

$$\Delta g = T - T_0$$
 $(T_0 \rightarrow R_0)$

$$R(T) = R_{O(1 + \alpha_R.\Delta T)}$$
 so $S_g = R_O \alpha_R$

S(T): the sensitivity of the sensor is a function of the temperature

This gives
$$v_m = e_S \frac{S(T)}{R(T)} \Delta m$$

Compensation principle: temperature-sensitive source resistance Rs

Compensation principle: temperature-sensitive source resistance Rs

Before : $v_m = e_s \frac{S(T)}{R(T)} \Delta m$

$$v_{m} = e_{s} \frac{R_{eq}(T)}{R_{eq}(T) + R_{s}(T)} \frac{S(T)}{R(T)} \Delta m$$

but
$$R_{eq}(T) = R(T)$$

$$v_{m} = e_{s} \frac{S(T)}{R(T) + R_{s}(T)} \Delta m$$

$$v_m = e_S \frac{S(T)}{R(T) + R_S(T)} \Delta m$$

$$R(T) = R_0 (1 + \alpha_R . \Delta T)$$

$$R(T) = R_{O(1 + \alpha_R.\Delta T)}$$
 $R_{S}(T) = R_{SO(1 + \alpha_S.\Delta T)}$

Temperature coefficients

$$S(T) = S_0 (1 + \beta . \Delta T)$$

$$R_{so} = k R_{o}$$

We obtain:

$$\begin{aligned} v_m = e_S \, \frac{S_O}{R_O(1+k)} \, \frac{1+\beta \Delta T}{2} & \Delta m \\ 1 + \frac{\alpha_R + k \, \alpha_S}{1+k} \, \Delta T \end{aligned} \label{eq:vm}$$

It is neces§ary
$$\frac{\alpha_R + k \, \alpha_s}{1+k}$$

and
$$R_{so} = \frac{\alpha_R - \beta}{\beta - \alpha_s} R_o$$

• Elimination of disturbances due to bonding wires:

7. Signal conversion.

 Objective: transform an analog quantity into a "faithful" digital quantity

Unsigned word of n bits: an-1 an-2 a2 a1 a0

$$V_{m} = \frac{V_{REF}}{2^{n}} (a_{n-1}.2^{n-1} + a_{n-2}.2^{n-2} + ... + a_{1}.2^{1} + a_{0}.2^{0})$$

$$V_{m \text{ max}} = V_{REF} \cdot \left(1 - \frac{1}{2^n}\right)$$
 1 LSB (quantum) = $\frac{V_{REF}}{2^n}$

56

Signal conversion

The different codes:

- Unipolar operation: natural binary code
- > Bipolar operation: two's complement code

Ideal transfer function :

Signal conversion 57

- NAC (and DAC) specifications
 - Offset error, gain error

Gain and offset drift

Integral non-linearity:

Differential non-linearity :

• Missing code:

An analog-to-digital converter with a differential linearity of 1 LSB must be guaranteed without missing code.

Error budget

- The different types of converters :
 - Converters with successive approximations
 - Single ramp, double ramp, triple ramp converters
 - Flash" converters
 - Sigma-delta converter.

• Example 1: AD7870

LC²MOS Complete, 12-Bit, 100 kHz, Sampling ADCs

AD7870/AD7875/AD7876

FEATURES

Complete Monolithic 12-Bit ADC with:

2 μs Track/Hold Amplifier

8 μs A/D Converter

On-Chip Reference

Laser-Trimmed Clock

Parallel, Byte and Serial Digital Interface

72 dB SNR at 10 kHz Input Frequency

(AD7870, AD7875)

57 ns Data Access Time

Low Power: -60 mW typ

Variety of Input Ranges:

±3 V for AD7870

0 V to +5 V for AD7875

±10 V for AD7876

■ AD7870 Features:

AD7870/AD7875/AD7876—SPECIFICATIONS $(V_{DD} = +5 \text{ V} \pm 5\%, V_{SS} = -5 \text{$

A6ND = DGND = 0 V, f_{CLK} = 2.5 MHz external, unless otherwise stated. All Specifications T_{min} to T_{max} unless otherwise noted.)

	AD7870								
Parameter	J, A ¹	K, Bl	L, Cl	S ^l	T	Units	Test Conditions/Comments		
DC ACCURACY									
Resolution	12	12	12	12	12	Bits			
Minimum Resolution for which									
No Missing Codes are Guaranteed	12	12	12	12	12	Bits			
Integral Nonlinearity	±1/2	±1/2	±1/4	±1/2	±1/2	LSB typ			
Integral Nonlinearity		±1	±1/2		±1	LSB max			
Differential Nonlinearity		±1	±1		±1	LSB max			
Bipolar Zero Error	±5	±5	±5	±5	±5	LSB max			
Positive Full-Scale Error ⁴	±5	±5	±5	±5	±5	LSB max			
Negative Full-Scale Error ⁴	±5	±5	±5	±5	±5	LSB max			
ANALOG INPUT									
Input Voltage Range	±3	±3	±3	±3	±3	Volts			
Input Current	±500	±500	±500	±500	±500	μA max			

Example 2: AD7874

3 V/5 V, CMOS, 500 µA Signal Conditioning ADC

AD7714*

FEATURES

Charge Balancing ADC

24 Bits No Missing Codes

0.0015% Nonlinearity

Five-Channel Programmable Gain Front End

Gains from 1 to 128

Can Be Configured as Three Fully Differential

Inputs or Five Pseudo-Differential Inputs

Three-Wire Serial Interface

SPI™, QSPI™, MICROWIRE™ and DSP Compatible

3 V (AD7714-3) or 5 V (AD7714-5) Operation

Low Noise (<150 nV rms)

Low Current (350 μA typ) with Power-Down (5 μA typ) AD7714Y Grade:

+2.7 V to 3.3 V or +4.75 V to +5.25 V Operation

0.0010% Linearity Error

-40°C to +105°C Temperature Range

Schmitt Trigger on SCLK and DIN

Low Current (226 μA typ) with Power-Down (4 μA typ)

Lower Power Dissipation than Standard AD7714

Available in 24-Lead TSSOP Package

Low-Pass Filter with Programmable Filter Cutoffs

Ability to Read/Write Calibration Coefficients

APPLICATIONS

Portable Industrial Instruments

Portable Weigh Scales

Loop-Powered Systems

Pressure Transducers

■ AD7874 Features:

Parameter	A Versions ¹	Units
STATIC PERFORMANCE		
No Missing Codes	24	Bits min
	22	Bits min
	18	Bits min
	15	Bits min
	12	Bits min
Output Noise	See Tables I to IV	
Integral Nonlinearity	±0.0015	% of FSR max
Unipolar Offset Error	See Note 2	
Unipolar Offset Drift ³	0.5	μV/°C typ
	0.3	μV/°C typ
Bipolar Zero Error	See Note 2	
Bipolar Zero Drift ³	0.5	μV/°C typ
	0.3	μV/°C typ
Positive Full-Scale Error ⁴	See Note 2	
Full-Scale Drift ^{3, 5}	0.5	μV/°C typ
	0.3	μV/°C typ
Gain Error ⁶	See Note 2	
Gain Drift ^{3, 7}	0.5	ppm of FSR/°C typ
Bipolar Negative Full-Scale Error	±0.0015	% of FSR max
Bipolar Negative Full-Scale Drift ³	1	μV/°C typ
	0.6	μV/°C typ

8. Electronic noise.

Instrumentation amplifier AD623:

SPECIFICATIONS COMMON TO DUAL AND SINGLE SUPPLIES

Table 4.

	Test Conditions/	AD623A			AD623ARM			AD623B			C.
Parameter	Comments	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
NOISE											
Voltage Noise, 1 kHz	Total RTI noise =										
	$\sqrt{(e_{nt})^2 + (2e_{nv}/G)^2}$										
Input, Voltage Noise, en			35			35			35		nV/√Hz
Output, Voltage Noise, eno			50			50			50		nV/√Hz
RTI, 0.1 Hz to 10 Hz											
G = 1			3.0			3.0			3.0		μV p-p
G = 1000			1.5			1.5			1.5		μ∨р-р
Current Noise	f = 1 kHz		100			100			100		fA/√Hz
0.1 Hz to 10 Hz			1.5			1.5			1.5		pA p-p

Electronic noise 66

Reminders:

Purpose of a measurement chain: to provide as accurate a representation of the measurand as possible

BUT imperfections ... errorsBUDOET OF ERRORS

Reminders 67

Influence quantities:

- temperature
- humidity
- atmospheric pressure
- shocks and vibrations
- •
- Common mode disturbance

Electromagnetic disturbance (EMC)

Electronic noise (internal)

Self-calibration Self-test

68

9. Temperature sensors.

- 9.1. Temperature scales.
- Thermometer scale
- Thermodynamic (or absolute) scale: Kelvin (K)

Derived scales:

	Kelvin	Celsius	Rankin	Fahrenheit
	(K)	(°C)	(°R)	(°F)
Zéro absolu	0	-273,15	0	-459,67
Température d'équilibre du mélange eau-glace	273,15	0	491,67	32
sous pression atmosphérique normale				
Point triple de l'eau	273,16	0,01	491,69	32,02
Température d'ébullition de l'eau sous p.a.m.	373,15	100	471,67	212

- International Practical Temperature Scale
 - ➤ Choice of three physical quantities: resistance, e.m.f. of a thermocouple and black body radiation
 - ➤ 11 primary fixed points, 27 secondary points

Example: triple point of hydrogen: 13.31 K

Triple point of oxygen: 54.361K

Boiling point of water: 373.15 K

> interpolation formulas

Entre 0°C et 630,74 °C:
$$R(T) = R_o.(1 + a.T + b.T^2)$$

a et b : à partir de deux points fixes

9.2. Metallic temperature probes.

Resistance - temperature relationship :

$$R = \rho \cdot \frac{L}{S}$$
 $L = L_o \cdot (1 + a \cdot \theta)$ $S = S_o \cdot (1 + a \cdot \theta)^2$ $\theta \text{ en}^\circ C$
$$\rho = \rho_o \cdot (1 + \lambda \cdot \theta)$$

a : coefficient moyen de dilatation linéaire du matériau

λ : coefficient moyen de température de la résistivité du métal

$$R(\theta) = \frac{\rho_o.L_o}{S_o}.\frac{1 + \lambda.\theta}{1 + a.\theta}$$

a: de l'ordre de $10^{-5} (^{\circ}\text{C})^{-1}$

 λ : peu variable pour les métaux ≈4 10⁻⁴ (°C)⁻¹

$$R(\theta) = R_o \cdot (1 + (\lambda - a) \cdot \theta - \lambda \cdot a \cdot \theta^2)$$

In general:

$$R(\theta) = R_0 \cdot (1 + a \cdot \theta + b \cdot \theta^2)$$

- Desired characteristics for the metal:
 - high temperature coefficient for greater sensitivity,
 - high resistivity,
 - stability.

Note:

thelinearity of the resistance-temperature relationship is no longer an imperative for the choice of the metal.

	R(100°C)/R(0°C)	Résistivité à 0°C	Domaine d'utilisation
Platine	1,3850	$9,81\ 10^{-8}\ \Omega m$	-200 à 850 °C
Nickel	1,618	$5,75 \ 10^{-8} \ \Omega m$	-60 à 180 °C

- Platinum: The most inalterable, the most stainless and the most invariable.
 - melting temperature : 1769 °C
 - can be obtained very pure (99.999%): characteristics identical from one probe to another
 - simple law of variation
- DIN 43760 standard (published by AFNOR): governs temperature sensors for scientific and industrial use with a platinum or nickel wire resistance
 - > value table
 - > for platinum between 0°C and 850°C:

$$R(\theta) = 100.(1 + 3,90802.10^{-3}.\theta - 0,580195.10^{-6}.\theta^2)$$
 en Ω

9.3. Thermistors.

Semiconductor resistors:

- High sensitivity
- ➤ Non-linear
- > Range of application: -100°C to 450°C approx.
- Interchangeability has increased significantly (from 0.1 to 0.2°C)

• Resistance - temperature relationship

$$R = a.\exp\left(\frac{b}{T}\right) \text{ avec } b > 0$$

si
$$R_o$$
 connue à T_o :
$$R = R_o.exp \left(b \cdot \left(\frac{1}{T} - \frac{1}{T_o} \right) \right)$$

Coefficient de température
$$\alpha$$
 : $\alpha = \frac{1}{R(T)} \cdot \frac{dR}{dT} = -\frac{b}{T^2}$

- < 0 for a NTC</p>
- large if T small : use in the left part of the characteristic

- : -5.10-2 K-1 to -1.10-2 K-1 Note: for a platinum probe 3.9.10-3 K-1
- A thermistor is given by
 - a resistance value at a given temperature
 - the temperature coefficient at this temperature.

Example :_{R298K} = 12
$$\kappa$$

$$_{298K} = -5.10-2 \text{ K}-1$$

- Low thermal time constant
- Example of assembly

9.4. Sensors with diodes or transistors:

Sensitivity:

$$S = \frac{dv}{dT}$$

not constant as a function of temperature

→ Use of matched transistors

Voltage - temperature relationship

$$I = I_{S} \cdot \left(exp \left(\frac{q \cdot v}{k \cdot T} \right) - 1 \right)$$

T in K q elementary charge of the electron (1.6.10-19 C), k Boltzmann constant (1.38.10-23 J.K-1) Is saturation current

In direct polarization:

$$I = I_S.exp\left(\frac{q.v}{k.T}\right)$$

$$I_S = C.T^m.exp \left(-\frac{q.V_{\Phi}}{k.T}\right)$$

 $I_S = C.T^m.exp\left(-\frac{q.V_{\Phi}}{k.T}\right)$ V*: height of the band gap expressed in V (1.12 V for silicon) m close to 3 C constant independent of T.

$$\rightarrow$$
 $v = V_{\Phi} - \frac{k.T}{q} (m.\ln T - \ln \frac{I}{C})$

Sensitivity

$$v = V_{\Phi} - \frac{k.T}{q}(m.lnT - ln\frac{I}{C})$$

$$\frac{dv}{dT} = \frac{k}{q} (ln \frac{I}{C} - m.lnT) - \frac{m.k}{q}$$

$$\frac{dv}{dT} = \frac{v - V_{\Phi}}{T} - \frac{m.k}{q}$$

Numerical application:

$$v = 0.6 \text{ V} \quad V_{\Phi} = 1.12 \text{ V} \quad \frac{dv}{dT} = -2 \text{ mV.K}^{-1}$$

Use of matched transistors

Q1, Q2 I1, I2 v1, v2 current is identical

$$I_{1} = I_{s}.exp\left(\frac{q.v_{1}}{k.T}\right)$$

$$I_{2} = I_{s}.exp\left(\frac{q.v_{2}}{k.T}\right)$$

$$I_{2} = I_{s}.exp\left(\frac{q.v_{2}}{k.T}\right)$$

$$v_d = v_1 - v_2 = \frac{k.T}{q}.ln\frac{I_1}{I_2}$$

Example:
$$\frac{I_1}{I_2} = 2$$
 $v_d = 59,78.T$ en μV

Integrated sensors: for example the AD590.

Simplified diagram:

$$I_T = \left(\frac{k}{q}.\frac{2}{R}.Ln 8\right).T$$

avec R = 358 Ω , on obtient $1 \mu A.K^{-1}$

Technical documentation:

FEATURES

Linear current output: 1 µA/K

Wide temperature range: –55°C to +150°C

Probe-compatible ceramic sensor package

2-terminal device: voltage in/current out

Laser trimmed to ±0.5°C calibration accuracy (AD590M)

Excellent linearity: ±0.3°C over full range (AD590M)

Wide power supply range: 4 V to 30 V

Sensor isolation from case

Low cost

PIN CONFIGURATIONS

NC 1
V+ 2
TOP VIEW
V- 3 (Not to Scale)
NC 4

Figure 1. 2-Lead CQFP

Figure 2. 8-Lead SOIC

Figure 3. 3-Pin TO-52

Features:

		AD590J			AD590K		-
Parameter	Min	Тур	Max	Min	Тур	Max	Unit
POWER SUPPLY		17.59		1	Aller.		
Operating Voltage Range	4		30	4		30	V
OUTPUT							
Nominal Current Output @ 25°C (298.2K)		298.2			298.2		μA
Nominal Temperature Coefficient		1			1		μA/K
Calibration Error @ 25°C			±5.0			±2.5	°C
Absolute Error (Over Rated Performance Temperature Range)							100.000
Without External Calibration Adjustment			±10			±5.5	°C
With 25°C Calibration Error Set to Zero			±3.0			±2.0	°C
Nonlinearity							
For TO-52 and CQFP Packages			±1.5			±0.8	°C
For 8-Lead SOIC Package			±1.5			±1.0	°C
Repeatability ²			±0.1			±0.1	°C
Long-Term Drift ³			±0.1			±0.1	°C
Current Noise		40			40		pA/√Hz
Power Supply Rejection							
$4 \text{ V} \leq \text{V}_s \leq 5 \text{ V}$		0.5			0.5		μA/V
5 V ≤ V _s ≤ 15 V		0.2			0.2		μV/V
$15 \text{ V} \leq \text{V}_S \leq 30 \text{ V}$		0.1			0.1		μA/V
Case Isolation to Either Lead		1010			1010		Ω
Effective Shunt Capacitance		100			100		pF
Electrical Turn-On Time		20			20		μs
Reverse Bias Leakage Current (Reverse Voltage = 10 V)4		10			10		pA

9.5. Thermocouple.

Statement of the Seebeck effect (1821):

The circuit is the seat of an e.m.f. function of the two temperatures T1 and T2, but also of the two materials A and B:

e(T1, T2, A, B) e.m.f. thermocouple

Thermoelectric torque, or thermocouple

Application:

T2 constant, measurement of T1 through the e.m.f.

Properties:

- e(T1, T1)=0
- \bullet e(T1, T2) = -e(T2, T1)
- the electrical power is completely transformed into Joule effect

- Study of the Seebeck effect: the Peltier effect and the
 - → Thomson effect. Energy balance (electrical and

1. Joule effect:

$$\frac{dQ}{dt} = r.i^2$$

2. Thermal Conduction:

$$\frac{dQ}{dt} = -k \cdot S \cdot \frac{dT}{dx}$$

3. Peltier effect:

$$\frac{dQ}{dt} = \pi(A, B, T).i$$

Application: Peltier module

4. Thomson effect:

$$d\left(\frac{dQ}{dt}\right) = h_A \cdot i \cdot dT$$

• Thermocouple laws: T_2 = constant, T_1 = T to be measured

Assumptions: no Joule effect, no thermal conduction

$$\frac{dQ}{dt} = \pi(A, B, T).i \quad (= V.I)$$

$$d\left(\frac{dQ}{dt}\right) = h_A.i.dT$$

Energy balance

$$\frac{de}{dT} = \frac{\pi(A, B, T)}{T}$$

Entropic balance

$$\frac{d^2e}{dT^2} = \frac{h_A - h_B}{T}$$

• e.m.f. of a thermocouple :

Assumptions: no Joule effect, no thermal conduction

$$\frac{dQ}{dt} = \pi(A, B, T).i$$

$$d\left(\frac{dQ}{dt}\right) = h_A \cdot i \cdot dT$$

$$e(T_1, T_2) = e_{AB}^{T_1} - e_{AB}^{T_2} + \int_{T_1}^{T_2} (h_A - h_B) dT$$

Law of intermediate metals:

Part of the isothermal circuit

→ The e.m.f. is unchanged

Law of successive temperatures:

$$\underline{e(T_1, T_2)} = e_{AB}^{T_1} - e_{AB}^{T_2} + \int_{T_1}^{T_2} (h_A - h_B) . dT$$

$$\underline{e(T_1, T_0)} = e_{AB}^{T_1} - e_{AB}^{T_0} + \int_{T_1}^{T_0} (h_A - h_B) . dT$$

$$\underline{e(T_0, T_2)} = e_{AB}^{T_0} - e_{AB}^{T_2} + \int_{T_0}^{T_2} (h_A - h_B) . dT$$

$$e(T_1, T_2) = e_{AB}^{T_1} - e_{AB}^{T_0} + e_{AB}^{T_0} - e_{AB}^{T_2} + \int_{T_1}^{T_0} (h_A - h_B) . dT + \int_{T_0}^{T_2} (h_A - h_B) . dT$$

$$e(T_1,T_2)=e(T_1,T_0)+e(T_0,T_2)$$

• Use of a thermocouple :

$$e = e_{AB}^{T_{C}} + \int_{T_{C}}^{T_{A}} h_{A}.dT + e_{CB}^{T_{A}} + \int_{T_{A}}^{T_{V}} h_{C}.dT + 0 + \int_{T_{V}}^{T_{A}} h_{C}.dT + e_{BC}^{T_{A}} + \int_{T_{A}}^{T_{C}} h_{B}.dT$$

$$\text{but} \qquad e_{BC}^{T_A} + e_{CA}^{T_A} = e_{BA}^{T_A} = -e_{AB}^{T_A}$$

$$e = e_{AB}^{T_C} - e_{AB}^{T_A} + \int_{T_C}^{T_A} (h_A - h_B) dT = e(T_C, T_A)$$

Using a thermocouple (continued):

$$e = e_{AB}^{T_C} - e_{AB}^{T_A} + \int_{T_C}^{T_A} (h_A - h_B) dT = e(T_C, T_A)$$

and
$$e(T_C,0^{\circ}C) = e(T_C,T_A) + e(T_A,0^{\circ}C)$$

Compensation for the cold junction

- \triangleright Measurement of $e(_{TC},_{TA})$
- ➤ Calculation of e(_{TC},0°C)
- ➤ Table or relationship: determination of TC

- Common thermocouples :
 - type J: Iron / Copper-Nickel
 - -210°C to 800°C-8 .096 mV to 45.498 mV
 - type K : Nickel-Chromium/Nickel-Aluminium
 - -270°C to 1250°C-5 .354 mV to 50.633 mV

and others like:

- type R : Platinum-13%Rhodium / Platinum
 - -50°C to 1500°C-0 .226 mV to 17,445 mV

Integrated conditioners for type J and K: AD594 and AD595

Monolithic Thermocouple Amplifiers with Cold Junction Compensation

AD594/AD595

FEATURES

Pretrimmed for Type J (AD594) or Type K (AD595) Thermocouples

Can Be Used with Type T Thermocouple Inputs

Low Impedance Voltage Output: 10 mV/°C

Built-In Ice Point Compensation

Wide Power Supply Range: +5 V to ±15 V

Low Power: <1 mW typical

Thermocouple Failure Alarm

Laser Wafer Trimmed to 1°C Calibration Accuracy

Setpoint Mode Operation

Self-Contained Celsius Thermometer Operation

High Impedance Differential Input

Side-Brazed DIP or Low Cost Cerdip

Editing:

Sensitivity of this measurement chain

Thermocouple Temperature °C	Type J Voltage mV	AD594 Output mV	Type K Voltage mV	AD595 Output mV
-200	-7.890	-1523	-5.891	-1454
-180	-7.402	-1428	-5.550	-1370
-160	-6.821	-1316	-5.141	-1269
-140	-6.159	-1188	-4.669	-1152
-120	-5.426	-1046	-4.138	-1021
-100	-4.632	-893	-3.553	-876
-80	-3.785	-729	-2.920	-719
-60	-2.892	-556	-2.243	-552
-40	-1.960	-376	-1.527	-375
-20	995	-189	777	-189
-10	501	-94	392	-94
0	0	3.1	0	2.7
10	.507	101	.397	101
20	1.019	200	.798	200
25	1.277	250	1.000	250
30	1.536	300	1.203	300
40	2.058	401	1.611	401
50	2.585	503	2.022	503
60	3.115	606	2.436	605
80	4.186	813	3.266	810
100	5.268	1022	4.095	1015
120	6.359	1233	4.919	1219
140	7.457	1445	5.733	1420
160	8.560	1659	6.539	1620
180	9.667	1873	7.338	1817
200	10.777	2087	8.137	2015
220	11.887	2302	8.938	2213
240	12.998	2517	9.745	2413
260	14.108	2732	10.560	2614
280	15.217	2946	11.381	2817
300	16.325	3160	12.207	3022
320	17.432	3374	13.039	3227
340	18.537	3588	13.874	3434
360	19.640	3801	14.712	3641
380	20.743	4015	15.552	3849
400	21.846	4228	16.395	4057
420	22.949	4441	17.241	4266
440	24.054	4655	18.088	4476
460	25.161	4869	18.938	4686
480	26.272	5084	19.788	4896

Thermocouple Temperature °C	Type J Voltage mV	AD 594 Output mV	Type K Voltage mV	AD 595 Output mV
500	27.388	5300	20.640	5107
520	28.511	5517	21.493	5318
540	29.642	5736	22.346	5529
560	30.782	5956	23.198	5740
580	31.933	6179	24.050	5950
600	33.096	6404	24.902	6161
620	34.273	6632	25.751	6371
640	35.464	6862	26.599	6581
660	36.671	7095	27.445	6790
680	37.893	7332	28.288	6998
700	39.130	7571	29.128	7206
720	40.382	7813	29.965	7413
740	41.647	8058	30.799	7619
750	42.283	8181	31.214	7722
760	-	-	31.629	7825
780	-	-	32.455	8029
800	-	-	33.277	8232
820	-	-	34.095	8434
840	-	-	34.909	8636
860	-	-	35.718	8836
880	-	-	36.524	9035
900	-	-	37.325	9233
920	-	-	38.122	9430
940	-	-	38.915	9626
960	-	-	39.703	9821
980	-	-	40.488	10015
1000	-	-	41.269	10209
1020	-	-	42.045	10400
1040	-	-	42.817	10591
1060	-	-	43.585	10781
1080	-	-	44.439	10970
1100	_	-	45.108	11158
1120	-	-	45.863	11345
1140	-	-	46.612	11530
1160	-	-	47.356	11714
1180	-	-	48.095	11897
1200	-	-	48.828	12078
1220	-	-	49.555	12258
1240	-	-	50.276	12436
1250	-	-	50.633	12524

9.6. Influence of the mounting of a temperature sensor.

Industrial sensor:

10. Integrated conditioners.

Isolated Linearized 4-Wire RTD Input

Isolated Thermocouple Input

Model	Input Type	Input Range
5B37-J-01	Type J	-100°C to +760°C (-148°F to +1400°F)
5B37-K-02	Type K	-100°C to +1350°C (-148°F to +2462°F)
5B37-T-03	Type T	-100°C to +400°C (-148°F to +752°F)
5B37-E-04	Type E	0°C to +900°C (+32°F to +1652°F)
5B37-R-05	Type R	0°C to +1750°C (+32°F to +3182°F)
5B37-S-05	Type S	0°C to +1750°C (+32°F to +3182°F)
5B37-B-06	Type B	0°C to +1800°C (+32°F to +3272°F)
5B37-N-08	Type N	0°C to +1300°C (+32°F to +2372°F)
5B37-Custom	Type J, K, T, E, R, S, B, N, C	*

Isolated, Wide-Bandwidth Strain Gage Input

Isolated Current Output

11. Position and displacement sensors.

- Position or displacement control example : machine tool
- To measure another physical quantity example: force, acceleration

11.1. Potentiometer.

• Principle:

Note: linear or angular displacement

- > Simplicity of the principle
- > High signal level, therefore no specific circuit
- > Friction, therefore error of fineness and wear.
- Wound wire :

Low temperature coefficient Resolution:

n turns 2n-2positions

for example 10 m

Good linearity

Lifetime: 106 to 107 maneuvers.

Conductive track: higher temperature coefficient.

Note: Ratio-metric assembly to eliminate the influence of the supply voltage.

11.2. Inductive sensors.

- Principle: moving element = ferromagnetic core
 - Modification of the self-induction coefficient
 - ➤ Change of the coupling between the primary and secondary windings of a transformer.
- Plunger Core Coil :

→ Measurement of L to get the position of the core

Putting it into equation:

$$L = L_0 + L_F + 2.M$$

$$M = k.\sqrt{L_0.L_F}$$

$$0 \le k \le 1$$

$$L_0 = \mu_0.\frac{N_0^2.s_0}{l_0} \hspace{1cm} N_0 = N.\frac{l_0}{l}$$

$$N_0 = N.\frac{l_0}{1}$$

$$L_0 = \mu_0.\frac{N^2.s_0.l_0}{l^2} = \mu_0.\frac{N^2.s_0}{l^2}.(l-l_F)$$

$$L_F = \mu_0.\mu_r.\frac{N^2.s_F.l_F}{1^2}$$

$$L = \mu_0 \cdot \frac{N^2}{l^2} \left(s_0 \cdot (l - l_F) + \mu_r \cdot s_F \cdot l_F + k \cdot \sqrt{s_0 \cdot (l - l_F)} \cdot \sqrt{\mu_r \cdot s_F \cdot l_F} \right)$$

Non linear!

Differential transformer:

Modification of the coupling between the primary and each secondary. Editing:

$$\begin{split} e_1 &= \big(R_1 + j.L_1.\omega\big).I_1 + j\omega\big(M'(x) - M''(x)\big).I_2 \\ 0 &= \Big(R_2^{'} + R_2^{''} + R_m\Big)I_2 + j.\omega.\Big(L_2^{'} + L_2^{''}\Big)I_2 + j.\omega.\big(M'(x) - M''(x)\big).I_2 \\ v_m &= R_m.I_2 \end{split}$$

Si R_m très grande : $I_2 \approx 0$ donc

$$v_{m} = \frac{j.\omega.(M'(x) - M''(x))}{R_{1} + j.L_{1}.\omega}.e_{1}$$

$$v_{m} = \frac{j.\omega.(M'(x)-M''(x))}{R_{1}+j.L_{1}.\omega}.e_{1}$$

$$M'(x) = M(0) + a.x + b.x^2$$

$$M''(x) = M(0) + a.x - b.x^2$$

$$v_{\mathbf{m}} = \frac{-2 j a \omega e_1}{R_1 + j.L_1.\omega}.\mathbf{x}$$

$$\frac{\Delta v_{\rm m}}{\Delta x} = \frac{2.a.\omega.a_1}{\sqrt{R_1^2 + (L_1.\omega)^2}}$$

Assembly: synchronous demodulation.

Integrated conditioner:

LVDT Signal Conditioner

AD598

12. Deformation sensors.

Deformation:
$$\varepsilon = \frac{\Delta}{1}$$

$$\frac{\Delta R}{R_0} = K.\epsilon$$

K: gauge factor

Use:

- materials testing,
 - in other sensors.

12.1. Some relations of mechanics of continuous media.

· Constraint: vector field

$$\vec{\sigma}(M, \vec{n}) = \lim_{dS \to 0} \frac{d\vec{F}}{dS}$$

Normal and tangential stresses:

$$\vec{\sigma}_n\big(M,\vec{n}\big)$$
 et $\vec{\sigma}_t\big(M,\vec{n}\big)$

Stress Tensor

$$\vec{\sigma}(M, \vec{n}) = \begin{pmatrix} \vec{\sigma}_1(M, \vec{n}) \\ \vec{\sigma}_2(M, \vec{n}) \\ \vec{\sigma}_3(M, \vec{n}) \end{pmatrix} = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{pmatrix} \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix}$$

Main stress and direction:

by diagonalization of the matrix σ_{ij}

Deformation in the vicinity of a point

$$\vec{\epsilon}(M,\vec{n}) = \frac{|M'N'| - |MN|}{|MN|} = \frac{dl' - dl}{dl}$$

- Laws of behavior: elastic, isotropic and linear medium.
 - Young's modulus (Y): either a tensile test

$$(\sigma_{ij}) = \begin{pmatrix} \sigma_{11} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 with $\sigma_{11} = \sigma_{11}$

we have
$$\sigma_{11} = Y.\epsilon_{11}$$

Poisson's ratio:

$$\epsilon_{22}=\epsilon_{33}=-\nu.\epsilon_{11}$$

12.2. Metal gauges.

It is a passive sensor:deformation → resistance variation

Orderof magnitude of measurable deformations : $\pm 10^{-5} \text{à} \pm 10^{-1}$

$$\pm 10^{-5} \,\mathrm{\grave{a}} \pm 10^{-1}$$

Film screen gauges :

$$\frac{\Delta R}{R_0} = K.\epsilon$$

$$\epsilon = \frac{\Delta l}{l}$$

Grid width Base width

Strain sensors: metal gauges

Some examples of gauges:

Sensitivity calculation:

length I, n strands, section s = a .b

$$R = \rho \cdot \frac{n \cdot l}{s} \qquad \frac{\Delta R}{R} = \frac{\Delta \rho}{l \rho} + \frac{\Delta l}{l} - \frac{\Delta s}{s}$$
$$\frac{\Delta s}{s} = \frac{\Delta a}{a} + \frac{\Delta b}{b} = -2 \cdot \nu \cdot \frac{\Delta l}{l}$$
$$\frac{\Delta \rho}{\rho} = C \cdot \frac{\Delta V}{V} = (1 - 2 \cdot \nu) \cdot \frac{\Delta l}{l}$$

$$\frac{\Delta R}{R} = (1 + 2.\nu + C.(1 - 2.\nu)).\frac{\Delta 1}{1} = K.\frac{\Delta 1}{1}$$

- Influence of temperature:
 - On the gauge factor:

$$K(T) = K_0 \cdot (1 + \alpha_K \cdot (T - T_0))$$

$$\alpha_{\rm K} = 0.01\% / {\rm ^{\circ}C}$$

On the resistance of the gauge fixed on a structure.

4 variations to take into account:

$$\rho(T) = \rho_0 \cdot (1 + \alpha_\rho \cdot (T - T_0))$$

$$1(T) = 1_0 \cdot (1 + \lambda_j \cdot (T - T_0))$$

$$a(T) = a_0 \cdot (1 + \lambda_j \cdot (T - T_0)) \text{ et } b(T) = b_0 \cdot (1 + \lambda_j \cdot (T - T_0))$$

$$\text{structure}$$
Dilatation thermique de la $\frac{1}{1}$ fauge (λ_s) .

Influence of temperature (continued):

$$\begin{split} &\rho(T) = \rho_0. \Big(1 + \alpha_\rho. (T - T_0)\Big) \\ &1(T) = 1_0. \Big(1 + \lambda_j. (T - T_0)\Big) \\ &a(T) = a_0. \Big(1 + \lambda_j. (T - T_0)\Big) \quad \text{et} \quad b(T) = b_0. \Big(1 + \lambda_j. (T - T_0)\Big) \end{split}$$
 Dilatation thermique de la jauge (\lambda_s). structure

$$\frac{\Delta R}{R} = ((\alpha_{\rho} - \lambda_{j}) + K.(\lambda_{s} - \lambda_{j})) \Delta T$$

Self-compensating temperature gauge:

by a suitable choice and a specific heat treatment of the alloy constituting the gauge compared to the material of the structure.

12.3. Semi-conductive gauges.

Piezoresistivity: phenomenon linking the relative variation of the volume

of a metal or semiconductor to its relative variation of resistivity.

Semi-conductor :
$$\frac{\Delta \rho}{\rho} = \pi . \sigma = \pi . Y . \frac{\Delta l}{l}$$

 π : coefficient piézorésistif

$$\frac{\Delta R}{R} = (1 + 2.\nu + \pi.Y) \cdot \frac{\Delta l}{l} = K \cdot \frac{\Delta l}{l}$$

K: 50 to 100, but higher temperature coefficient compared to metal gauges.

13. Pressure and force sensors per test body.

13.1. Fluid pressure sensors.

- Direct measurement: by fixing strain gauges on the wall or on the pipe.
- Through a test body :

• Through a test body :

Pressure sensors 124

• Shape of the strain gauges :

Pressure sensors 125

• Example of an industrial sensor:

13.2. Force sensors.

Example of a test body:

Force sensors

Example of an industrial sensor:

Example of a load cell data sheet:

SUPPLIER: TECHNOLOGIES_AND_INDUSTRIAL_EQUIPMENT

TRADE MARK: L'ESSOR_FRANCAIS_ELECTRONIQUE MANUFACTURER: L'ESSOR_FRANCAIS_ELECTRONIQUE

DESIGNATION: F 121 TC MEASURED QUANTITY: force

MEASURING RANGE (N): 100 250 500 1000 2500 MODE OF ACTION: traction-compression

GENERAL SHAPE: cylinder
LENGTH or DIAMETER (mm): 20
HEIGHT (mm): 45
MASS: 100
MATERIAL:stainless steel

APPLIC. DEVICEEFFORT: threaded endsM6

OUTPUT SIGNAL: low level

NUMBER OF OUTPUT SIGNALS: 1

SENSITIVITY: 1.5 to 2mV/V/EM

POWER SUPPLY: 10Vdc
INPUT IMPEDANCE (Ohms): 350
OUTPUT IMPEDANCE (Ohms): 350

ELECTRICAL CONNECTION: cable gland and cable

TEMP. MIN. COMP. RANGE (°C): 0
TEMP. MAX. COMP. RANGE (°C): 60

TEMP. MINIMUM OPERATING TEMPERATURE (°C): -40

TEMP. MAX. USE (°C): 100
PROTECTION CLASS: IP65
ATMOSPH. EXPLOSIVE: noSAFETY
LIMIT CHARGE: 150%of EM

INTEGRATED OVERLOADING: no

TYPE OF TEST BODY: membrane in flexionTYPE

OF SENSITIVE ELEMENT: gauges... film weft

INCERTITUDE MEASURE (% EM): +/-0.35
DERIVE TEMP. ZERO (% EM/°C): +/-0.01
DERIV TEMP SENSIB(% mes/°C): +/-0.02
MAX TRANSV LOAD (% E.M.): 10%
MAX DECENTRATION (mm): +/-1mm

14. Piezoelectricity.

 Crystal structure: 7 primitive and 7 derived meshes Cubic mesh, rhombohedral mesh, ...

Example: Sodium chloride

Sodium ion (Na+)

Chloride ion (CI-)

O Sodium ion (Na) Chloride ion (Cl)

Polarization of a dielectric :

 $\overrightarrow{dm} = P \cdot \overrightarrow{dvP}$: polarization vectordv: volume

• Statement of piezoelectricity: appearance of an electrical polarization (or variation of a polarization) in certain anisotropic dielectrics when they are deformed under the action of a stress of suitable direction.

Armatures → appearance of charges → potential

differenceApplication: measurement of force, pressure,

acceleration.

Piezoelectricity 131

Ferroelectric bodies.

Barium titanate:

• Quartz:

At rest: barycentre of positive charges = barycenter of negative charges

so no polarization

• If constrained along the mechanical axis :

→ Polarization along the electrical axis.

Piezoelectric coefficients

Constraints:

- 1, 2 and 3: normal constraints
- 1, 2 and 3: tangential constraints

Piezoelectric coefficients (continued)

q1 : density of charges recovered along the electrical axis q2 : density of charges recovered along the mechanical axis q3 : density of charges recovered along the optical axis

$$\begin{split} q_1 &= h_{11}.\sigma_1 + h_{12}.\sigma_2 + h_{13}.\sigma_3 + h_{14}.\tau_4 + h_{15}.\tau_5 + h_{16}.\tau_6 \\ q_2 &= h_{21}.\sigma_1 + h_{22}.\sigma_2 + h_{23}.\sigma_3 + h_{24}.\tau_4 + h_{25}.\tau_5 + h_{26}.\tau_6 \\ q_3 &= h_{31}.\sigma_1 + h_{32}.\sigma_2 + h_{33}.\sigma_3 + h_{34}.\tau_4 + h_{35}.\tau_5 + h_{36}.\tau_6 \end{split}$$

For quartz, the coefficient matrix is of the form:

$$\begin{pmatrix} h_{11} & -h_{11} & 0 & h_{14} & 0 & 0 \\ 0 & 0 & 0 & 0 & -h_{14} & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{split} q_1 &= h_{11}.\sigma_1 + h_{12}.\sigma_2 + h_{13}.\sigma_3 + h_{14}.\tau_4 + h_{15}.\tau_5 + h_{16}.\tau_6 \\ q_2 &= h_{21}.\sigma_1 + h_{22}.\sigma_2 + h_{23}.\sigma_3 + h_{24}.\tau_4 + h_{25}.\tau_5 + h_{26}.\tau_6 \\ q_3 &= h_{31}.\sigma_1 + h_{32}.\sigma_2 + h_{33}.\sigma_3 + h_{34}.\tau_4 + h_{35}.\tau_5 + h_{36}.\tau_6 \end{split}$$

Example of piezoelectric sensors:

Force - FSN

Features:

	Bereich F _z Gamme F _z Range F _z	Überlast Surcharge Overload	Max. Biegemoment M _x , M _y Couple de flexion max. M _x , M _y Max. bending moment M _x , M _y	Steifheit Rigidite Rigidity	Kapazität Capacité Capacitance	Gewicht Poids Weight	H			min.
Туре	kN	kN	Nm	kN/μm	pF	g	d (mm)	D (mm)	H (mm)	L (mm)
9101A	0 20	25	15	≈1,8	23	8	6,5	14,5	8	30
9102A	0 50	60	60	≈3,5	37	21	10,5	22,5	10	34
9103A	0 100	120	130	≈6,0	54	38	13	28,5	11	37
9104A	0 140	160	240	≈7,5	55	57	17	34,5	12	40
Allgemeine	Daten	Do	onnées géné	rales		General L	Data			
Empfindlichkeit Linearität Hysterese		Lli Hy	Sensibilité Linéarité Hystérésis			Sensitivity Linearity Hysteresis		(pC/N %FSO %FSO	≈-4,3 <±2 <1
Ansprechschwelle			Seull de réponse			Threshold			N	<0,01
Isolationswiderstand Temperaturkoeffizient			Résistance d'Isolement Coefficient de température			Insulation resistance Temperature coefficient			TΩ % / °C	>10 0,01
· -			Gamme de température d'utilisation			Operating temperature range			°C	-50 <u>1</u> 20
Max. Schubkraft			Force de cisalliement max.			Max. shear force			kN	±0,1 Fv
*Fv = Vorsp	oannung / Préc	ontrainte / Prel	oad							

• Piezoelectric accelerometer :

Туре	Unit	8202A10	8203A50	
Acceleration Range	g	±2000	±1000	
Threshold nom. (noise 100µVrms)	grms	0,001	0,001	
Sensitivity	pC/g	-10	-50	
Resonant Frequency mounted, nom.	kHz	45	24	
Frequency Response ±5%	Hz	5 10000	5 4000	
Amplitude Non-linearity	%FSO	±1	±1	
Insulation Resistance (24°C)	Ω	≥1 x 10 ⁸	≥1 x 10 ⁸	
Capacitance	pF	500	1400	
Transverse Sensitivity nom., (max. 5%)	%	1,5	1,5	
Long Term Stability	%	±1	±1	
Environmental:				
Base Strain Sensitivity @ 250με	g/με	0,005	0,005	
Shock Limit (1ms pulse) gpk	5000	5000		
Temperature Coefficient of Sensitivity	%/°C	0,13	0,13	
Temperature Range Operating	°C	-70 245	-70 245	
Construction:				
Sensing Element	type	Ceramic Shear	Ceramic Shear	
Housing/Base	material	St. Stl.	St. Stl.	
Sealing-housing/connector	type	Hermetic/ceramic	Hermetic/ceramic	
Connector	type	10-32 neg	10-32 neg	
Weight	grams	14,5	44,5	
Mounting	type	10-32 UNF-2B thread	1/4 - 28 thread	

Mounting: charge amplifier

- Amplificateur de charge à un canal
- Entrée Piezotron[®] (Option)
- Saut de zéro compensé
- Affichage à cristaux liquides (128x128 pixels)
- Commande par menus
- Evaluation directe du signal
- Filtres passe-haut et passe-bas à réglage convivial
- Compatible avec l'amplificateur de charge de type 5011B
- Logiciel pour PC et Virtual Instrument Driver pour LabVIEW™

Entrée de charge							
Type de connecteur	BNC neg.						
Plage de mesure FS	рС	±2 2'200'000					
Erreur de mesure							
Plage FS <10 pC	%	<±3					
Plage FS <100 pC	%	<±1					
Plage FS ≥100 pC	%	<±0,5					
Dérive, mode de mesure DC (Long)							
à 25 °C	pC/s	<±0,03					
à 50 °C	pC/s	<±0,3					
Tension de mode commun	V	<±30					
max. entre masse d'entrée							
et masse de sortie							

KISTLER Chargemètre

Block diagram:

- TD n°8: We want to design a vibration sensor using a quartz blade, in other words a piezoelectric accelerometer.
- 1. We cut a quartz blade as follows:

A shear stress is applied on the two horizontal faces in the direction of the mechanical axis (i.e. 4) and the charges generated along the electrical axis are recovered.

The piezoelectric coefficients of quartz are:

h11 = 2,3 pC/N

Determine the amount of charge recovered as a function of the shear force (denoted F).

Pie zoel ectri city : TD

n°8

2. This blade is mounted as follows:

The objective is to measure the acceleration (noted b) of the sensor base. The quartz blade is mounted between a structure attached to the base and a seismic mass (of mass m). This blade is characterized by a mechanical rigidity noted k.

We give: m = 50 g k = 3 kN/mm

2.1. Show, with a simple model of this mechanical system, that the transfer function (in Laplace) giving the force on the quartz blade as a function of the acceleration of the base is:

$$\frac{F(p)}{\gamma_b(p)} = m \frac{1}{1 + \frac{m}{k} p^2}$$

2.2. Determine the transfer function giving the amount of charge recovered (noted Q) as a function of the acceleration.

What is the sensitivity of this sensor in the bandwidth (expressed in pC/g, g being the acceleration of gravity, g = 9.81 ms-2)? Numerical application.

Calculate the resonant frequency of this sensor.

$$\frac{F(p)}{\gamma_b(p)} = m \frac{1}{1 + \frac{m}{k} p^2}$$

3. This sensor is connected to a charge amplifier:

Assuming an ideal operational amplifier, determine the function of

transfer
$$\frac{Vs(p)}{b(p)}$$

Sketch its gain Bode diagram.

Determine the components to have a sensitivity of 1 mV/g, and allowing to measure an acceleration higher than 10 Hz.