Trignometric Functions and Equations

EE24BTECH11001- ADITYA TRIPATHY

A: FILL IN THE BLANKS

- 1) Suppose $\sin^3 x \sin 3x = \sum_{m=0}^n C_m \cos x$ is an identity in x, where C_0, C_1, \dots, C_n are constants and $C_n \neq 0$ then the value of n is (1981 - 2Marks)
- 2) The solution set of the system of equations $x + y = \frac{2\pi}{3}$, $\cos x + \cos y = \frac{3}{2}$, where x and y (1987 - 2Marks)are real, is
- 3) The set of all x in the interval $[0, \pi]$ for which $2\sin^2 x 3\sin x + 1 \ge 0$, is (1987 - 2Marks)
- 4) The sides of a triangle in a given circle subtend angles α , β , γ . The minimum value of arithmetic mean of $\cos\left(\alpha + \frac{\pi}{2}\right)$, $\cos\left(\beta + \frac{\pi}{2}\right)$, $\cos\left(\gamma + \frac{\pi}{2}\right)$ is equal to (1987 - 2Marks)
- 5) The value of $\sin \frac{\pi}{14} \sin \frac{3\pi}{14} \sin \frac{5\pi}{14} \sin \frac{7\pi}{14}$ $\sin \frac{9\pi}{14} \sin \frac{11\pi}{14} \sin \frac{13\pi}{14}$ is equal to

(1991 - 2Marks)

- 6) If $K = \sin\left(\frac{\pi}{18}\right)\sin\left(\frac{5\pi}{18}\right)\sin\left(\frac{7\pi}{18}\right)$ then the numerical value of K is (1993 2Marks) 7) If A > 0, B > 0 and $A + B = \frac{\pi}{3}$, then the maximum value $\tan A \tan B$ is (1993 2Marks) 8) General value of θ satisfying the equation $\tan^2 \theta + \sec 2\theta = 1$ is (1996 1Mark)

- 9) The real roots of the equation $\cos^7 x + \sin^4 x = 1$ in the interval $(-\pi, \pi)$ are (1997 2Marks)

B: True / False

- 1) If $\tan A = \frac{1-\cos B}{\sin B}$, then $\tan 2A = \tan B$ (1981 - 1Mark)
- 2) There exists a value of θ between 0 and 2π that satisfies the equation $\sin^4 \theta 2 \sin^2 \theta 1 =$ (1984 - 1Mark)

C:MCQs with One Correct Answer

1) If $\tan \theta = -\frac{4}{3}$ then $\sin \theta$ is

(1979)

- a) $\frac{-4}{5}$ but not $\frac{4}{5}$ b) $\frac{4}{5}$ or $\frac{-4}{5}$ c) $\frac{4}{5}$ but not $\frac{-4}{5}$

- d) None of These

2) If
$$\alpha + \beta + \gamma = 2\pi$$
 (1979)

- a) $\tan \frac{\alpha}{2} + \tan \frac{\beta}{2} + \tan \frac{\gamma}{2} = \tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2}$
- b) $\tan \frac{\alpha}{2} \tan \frac{\beta}{2} + \tan \frac{\beta}{2} \tan \frac{\gamma}{2} + \tan \frac{\alpha}{2} = 1$ c) $\tan \frac{\alpha}{2} + \tan \frac{\beta}{2} + \tan \frac{\gamma}{2} = -\tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2}$
- d) None of These
- 3) Given $A = \sin^2 \theta + \cos^4 \theta$ then for all real values of θ (1980)
 - a) $1 \le A \le 2$

 - b) $\frac{3}{4} \le A \le 1$ c) $\frac{13}{16} \le A \le 1$ d) $\frac{3}{4} \le A \le \frac{13}{16}$
- 4) The equation $2\cos^2 \frac{x}{2}\sin^2 x = x^2 + x^{-2}$ (1980)
 - a) no real solution

- b) one real solution
- c) more than one real solution
- d) None of these
- 5) The general solution to the trignometric equation $\sin x + \cos x = 1$ is given by (1981 2Marks)
 - a) $x = 2n\pi; n = 0, \pm 1, \pm 2 \cdots$

 - b) $x = 2n\pi + \frac{\pi}{2}, n = 0, \pm 1, \pm 2 \cdots$ c) $x = n\pi + (-1)^n \frac{\pi}{4}, n = 0, \pm 1, \pm 2 \cdots$
 - d) none of these
- 6) The value of the expression $\sqrt{3}\csc 20^{\circ} \sec 20^{\circ}$ is equal to (1988 2*Marks*)

 - b) $2 \sin 20^{\circ} / \sin 40^{\circ}$
 - c) 4
 - d) $2 \sin 20^{\circ} / \sin 40^{\circ}$