Forward pass through model

Take the example sentence "The dog fetched the stick.", tokenize into [[cls], "The", "dog", "fetch", "##ed", "the", "stick", ".", [sep]]. Input vector $\mathbf{X} = \mathbf{E}_{token} + \mathbf{E}_{segment} + \mathbf{E}_{position} \in \mathbb{R}^{10 \times 768}$.

Output of layer 1 is $U_1 = U_1(\mathbf{X}) \in \mathbb{R}^{10 \times 768}$, output of layer k with $k \in [2...12]$ is $U_k = U_k(U_{k-1})$.

Calculate a weighted sum r_i for token j across all layers $i \in [1...12]$ as follows:

$$r_{j} = \eta \sum_{i=1}^{12} U_{i,j} \cdot \operatorname{softmax}(\lambda)_{i}$$
 (1)

with η a trainable scalar and λ a vector of trainable scalar mixing weights. Tokens [cls] and [sep] are not used. In case of subword tokenization, only the first subtoken of a word is used.

Next, r_i is passed through separate MLPs with 768 hidden dimensions and ELU non-linear activation:

$$H_{\text{arc-head},j} = \text{ELU}(W_{\text{arc-head}} r_j + b_{\text{arc-head}})$$

$$H_{\text{arc-dep},j} = \text{ELU}(W_{\text{arc-dep}} r_j + b_{\text{arc-dep}})$$

$$H_{\text{tag-head},j} = \text{ELU}(W_{\text{tag-head}} r_j + b_{\text{tag-head}})$$

$$H_{\text{tag-dep},j} = \text{ELU}(W_{\text{tag-dep}} r_j + b_{\text{tag-dep}})$$
(2)

These are then used to score all possible dependency arcs:

$$S_{\text{arc}} = H_{\text{arc-head}} \mathbf{W}_{\text{arc}} H_{\text{arc-dep}}^{\top} + \mathbf{b}_{\text{arc}}$$

$$S_{\text{dep}} = H_{\text{dep-head}} \mathbf{W}_{\text{dep}} H_{\text{dep-dep}}^{\top} + \mathbf{b}_{\text{dep}}$$
(3)

Then the Chu-Liu/Egmonds algorithm is used to obtain a valid dependency tree:

1. For each node $j \in \{1, ..., n-1\}$, select the head:

$$h_j = \arg \max_{i \in \{0,\dots,n-1\} \setminus \{j\}} \mathcal{S}_{arc}[i,j]$$

- 2. Let $\mathcal{T} = \{(h_j, j) \mid j = 1, \dots, n-1\}$ be the set of selected arcs.
- 3. If \mathcal{T} forms a valid tree (i.e., no cycles), return \mathcal{T} .
- 4. Otherwise, for each cycle $C \subseteq \mathcal{T}$:
 - (a) Contract the cycle C into a single supernode v_C .
 - (b) For each edge (i, j) where $i \notin C$ and $j \in C$, define adjusted score:

$$\tilde{\mathcal{S}}_{arc}[i, v_C] = \mathcal{S}_{arc}[i, j] - \mathcal{S}_{arc}[h_j, j] + \max_{k \in C} \mathcal{S}_{arc}[h_k, k]$$

- (c) Re-run the algorithm recursively on the contracted graph.
- (d) Expand the cycle C, replacing v_C with the original nodes and recovering the incoming arc to the cycle that preserves the maximal score.
- 5. Return the resulting tree \mathcal{T} with maximum total arc score.