

FACULTAD DE CIENCIAS EXACTAS, NATURALES Y AMBIENTALES CATÁLOGO STEM • ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA

EJERCICIOS RESUELTOS NO. 6: INDEPENDENCIA LINEAL Y CONJUNTO GENERADOR

Andrés Merino • Periodo 2025-1

EJERCICIO 1. En el espacio vectorial \mathbb{R}^2 , sean:

$$v_1 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 2 \\ -3 \end{pmatrix} \quad y \quad v_3 = \begin{pmatrix} 0 \\ 2 \end{pmatrix}.$$

¿Son los vectores v_1 , v_2 y v_3 linealmente independientes?

Solución. Tomemos α_1, α_2 y $\alpha_3 \in \mathbb{R}$ y planteamos el siguiente sistema lineal homogéneo

$$\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 = 0_V$$

o equivalentemente

$$\alpha_1 + 2\alpha_2 = 0;$$

 $3\alpha_1 - 3\alpha_2 + 2\alpha_3 = 0;$

cuya matriz adjunta en forma escalonada por filas es

$$\begin{pmatrix} 1 & 2 & 0 & | & 0 \\ 0 & -9 & 2 & | & 0 \end{pmatrix}.$$

Entonces, $\alpha_1 = -2\alpha_2$ y $\alpha_3 = \frac{9}{2}\alpha_2$, donde $\alpha_2 \in \mathbb{R}$. Escogiendo $\alpha_2 = 2$, encontramos la solución no trivial $\alpha_1 = -4$, $\alpha_2 = 2$ y $\alpha_3 = 9$. Por lo tanto, ν_1 , ν_2 y ν_3 son linealmente dependientes.

EJERCICIO 2. En el espacio vectorial \mathbb{R}^3 , sean:

$$v_1 = \begin{pmatrix} 2 \\ 2 \\ 3 \end{pmatrix}, \quad v_2 = \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix} \quad y \quad v_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}.$$

¿Son los vectores v_1 , v_2 y v_3 linealmente independientes?

Solución. Tomemos α_1, α_2 y $\alpha_3 \in \mathbb{R}$ y planteamos el siguiente sistema lineal homogéneo

$$\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 = 0_V$$

o equivalentemente

$$2\alpha_1 - \alpha_2 = 0;$$

 $2\alpha_1 - 2\alpha_2 + \alpha_3 = 0;$
 $3\alpha_1 + \alpha_2 = 0;$

cuya matriz adjunta en forma escalonada reducida por filas es

$$\begin{pmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \end{pmatrix}.$$

Entonces, el sistema posee solución única, es decir, $\alpha_1 = \alpha_2 = \alpha_3 = 0$. Por lo tanto, ν_1, ν_2 y ν_3 son linealmente independientes.

EJERCICIO 3. En el espacio vectorial $\mathbb{R}_2[t]$, sean:

$$p_1(t) = t^2 + 1$$
, $p_2(t) = t - 2$ y $p_3(t) = t + 3$.

¿Son los vectores $p_1(t)$, $p_2(t)$ y $p_3(t)$ linealmente independientes?

Solución. Tomemos α_1, α_2 y $\alpha_3 \in \mathbb{R}$ y planteamos la combinación lineal nula

$$\alpha_1 p_1(t) + \alpha_2 p_2(t) + \alpha_3 p_3(t) = Ot^2 + Ot + O,$$

a partir de lo cual se tiene que

$$\alpha_1(t^2+1) + \alpha_2(t-2) + \alpha_3(t+3) = 0t^2 + 0t + 0,$$

agrupando términos, se obtiene

$$\alpha_1 t^2 + (\alpha_2 + \alpha_3)t + (\alpha_1 - 2\alpha_2 + 3\alpha_3) = 0t^2 + 0t + 0$$

es decir, se obtiene el sistema lineal homogéneo

cuya matriz adjunta en forma escalonada reducida por filas es

$$\begin{pmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \end{pmatrix}.$$

Entonces, el sistema posee solución única, es decir, $\alpha_1 = \alpha_2 = \alpha_3 = 0$. Por lo tanto, $\mathfrak{p}_1(t)$, $\mathfrak{p}_2(t)$ y $\mathfrak{p}_3(t)$ son linealmente independientes.

EJERCICIO 4. ¿Cuáles de los siguientes conjuntos de vectores generan a \mathbb{R}^3 ?

$$I. \ S = \{(1,1,0), (3,4,2)\}$$

II.
$$S = \{(1,1,0), (0,1,0), (2,2,2)\}$$

Solución.

ı. Sea $(a,b,c) \in \mathbb{R}^3$, queremos examinar si existen $\alpha_1, \alpha_2 \in \mathbb{R}$ tales que

$$\alpha_1(1,1,0) + \alpha_2(3,4,2) = (a,b,c).$$

La ecuación anterior conduce al sistema lineal

$$\alpha_1 + 3\alpha_2 = \alpha;$$

 $\alpha_1 + 4\alpha_2 = b;$
 $2\alpha_2 = c;$

de donde, resolviendo obtenemos

$$\begin{pmatrix} 1 & 3 & | & a \\ 1 & 4 & | & b \\ 0 & 2 & | & c \end{pmatrix} \sim \begin{pmatrix} 1 & 3 & | & a \\ 0 & 1 & | & -a+b \\ 0 & 0 & | & 2a-2b+c \end{pmatrix},$$

con lo cual, notamos que, si $2a-2b+c \neq 0$, el sistema no tiene solución. Por lo tanto no existe solución para cualquier elección de a, b, c, y se concluye que S no genera a \mathbb{R}^3 .

II. Sea $(a, b, c) \in \mathbb{R}^3$, queremos examinar si existen $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$ tales que

$$\alpha_1(1,1,0) + \alpha_2(0,1,0) + \alpha_3(2,2,2) = (a,b,c).$$

La ecuación anterior conduce al sistema lineal

de donde, resolviendo obtenemos

$$\begin{pmatrix} 1 & 0 & 2 & | & a \\ 1 & 1 & 2 & | & b \\ 0 & 0 & 2 & | & c \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & | & a-c \\ 0 & 1 & 0 & | & -a+b \\ 0 & 0 & 1 & | & \frac{c}{2} \end{pmatrix},$$

con lo cual, notamos que, existe solución para cualquier elección de a,b,c,y por lo tanto $\mathbb{R}^2=gen(S)$.