# Bits, Nibbles, Bytes und Zahlensysteme

#### Kaufmännisches Rechnen

**WS-LAT** 

### 28. Februar 2025

### 1 Bits und Bytes

- Das kleinste Speicherelement eines Computers ist das Bit (binary digit).
- Ein Bit kann zwei Zustände haben: **0** oder **1** (binäres System).
- Ein Byte besteht aus 8 Bits und ist die kleinste adressierbare Speichereinheit in vielen Computersystemen.

| Einheit  | Größe in Bits |
|----------|---------------|
| 1 Bit    | 1 Bit         |
| 1 Nibble | 4 Bits        |
| 1 Byte   | 8 Bits        |

• Ein Nibble besteht aus 4 Bits und entspricht einer hexadezimalen Ziffer (0-F).

# 2 Binäres und Hexadezimales Zahlensystem

- Das dezimale System (Basis 10) verwendet die 10 Ziffern 0 bis 9.
  - Jede Stelle in einer Binärzahl entspricht einer Zehnerpotenz, z. B.:

\* 
$$1010 = 1 * 10^3 + 0 * 10^2 + 1 * 10^1 + 0 * 10^0 = 1000 + 0 + 10 + 1$$



- Das binäre System (Basis 2) verwendet nur die Ziffern 0 und 1.
  - Jede Stelle in einer Binärzahl entspricht einer Zweierpotenz, z. B.:

\* 
$$1010 = 1 * 2^3 + 0 * 2^2 + 1 * 2^1 + 0 * 2^0 = 8 + 0 + 2 + 1 = 10$$
  
\*  $1100 = 1 * 2^3 + 1 * 2^2 + 0 * 2^1 + 0 * 2^0 = 8 + 4 + 0 + 0 = 12$   
\*  $11 = 100 = 120$ 

| Binär (Basis 2) |    |    |    |    |
|-----------------|----|----|----|----|
| 24              | 23 | 22 | 21 | 2° |
| 1               | 0  | 1  | 1  | 1  |
| 16              | 8  | 7  | 2  | 1  |
| Summe           |    |    |    |    |
| Y               |    |    |    |    |
| 23              |    |    |    |    |

- Das hexadezimale System (Basis 16) verwendet die Ziffern 0-9 und A-F:
  - 0-9 entspricht 0-9 im Dezimalsystem.
  - A-F entspricht 10-15 im Dezimalsystem.
  - Hexadezimalzahlen werden oft mit **0x** oder **h** gekennzeichnet (z. B. 0x2F oder 2Fh).
  - Jede Stelle einer Hexadezimalzahl, entspricht einer Potenz von 16, z. B.:

\* A3F1 = 
$$10 * 16^3 + 3 * 16^2 + 15 * 16^1 + 1 * 16^0$$
  
=  $40.960 + 768 + 240 + 1 = 41.969$ 

| Hexadezimal (Basis 16) |        |                 |                 |                                 |   |  |
|------------------------|--------|-----------------|-----------------|---------------------------------|---|--|
| <b>16</b> <sup>5</sup> | 164    | 16 <sup>3</sup> | 16 <sup>2</sup> | 16 <sup>1</sup> 16 <sup>0</sup> |   |  |
| С                      | В      | 3               | Е               | 6                               | Α |  |
| 1.048.576              | 985.39 | 4.096           | 556             | 16                              | Τ |  |
| Summe                  |        |                 |                 |                                 |   |  |
| $\sim$                 |        |                 |                 |                                 |   |  |
| 13319786               |        |                 |                 |                                 |   |  |

### Beispiel für eine binäre zu hexadezimale Umwandlung:

• Binär: 1010 1100  $\rightarrow$  8+0+2+0=10; 8+4+0+0=12  $\rightarrow$  Hexadezimal: AC (A=10, C=12)

# 3 Speichergrößen: KB, MB, TB, PB vs. KiB, MiB, TiB, PiB

- In der Informatik werden Speichergrößen oft in **Kilobyte (KB), Megabyte (MB), Terabyte (TB), Petabyte (PB)** angegeben.
- Diese Begriffe basieren ursprünglich auf Zweierpotenzen (1 KB = 1024 Byte), werden aber im Marketing oft als Zehnerpotenzen (1 KB = 1000 Byte) verwendet.

• Zur eindeutigen Unterscheidung gibt es die **binären Präfixe** der IEC-Norm:

| Dezimale Einheit |           | Größe in Bytes          | Binäre Einheit   |          | Größe in Bytes          |
|------------------|-----------|-------------------------|------------------|----------|-------------------------|
| 1 KB (Kilobyte)  | $10^3$    | 1.000 B                 | 1 KiB (Kibibyte) | $2^{10}$ | 1.024 B                 |
| 1 MB (Megabyte)  | $10^6$    | 1.000.000 B             | 1 MiB (Mebibyte) | $2^{20}$ | 1.048.576 B             |
| 1 GB (Gigabyte)  | $10^9$    | 1.000.000.000 B         | 1 GiB (Gibibyte) | $2^{30}$ | 1.073.741.824 B         |
| 1 TB (Terabyte)  | $10^{12}$ | 1.000.000.000.000 B     | 1 TiB (Tebibyte) | $2^{40}$ | 1.099.511.627.776 B     |
| 1 PB (Petabyte)  | $10^{15}$ | 1.000.000.000.000.000 B | 1 PiB (Pebibyte) | $2^{50}$ | 1.125.899.906.842.624 B |

### 3.1 Umrechnung durch wiederholtes Multiplizieren / Dividieren mit 1000/1024

Sie können zwischen den Einheiten durch wiederholtes Multiplizieren / Dividieren mit 1000/1024 umrechnen. Beispiel:

- 42 TB \* 1000 \* 1000 \* 1000 \* 1000 = 42.000.000.000.000 B / 1024 / 1024 / 1024 / 1024 = 38,1987774743 TiB
  ≈ 39 TiB
- 42 TB \* 1000 \* 1000 \* 1000 \* 1000 = 42.000.000.000.000 B / (1024 \* 1024 \* 1024 \* 1024) = 38,1987774743 TiB ≈ 39 TiB
- 42 TB \* 10 = 42.000.000.000.000 B / 2

≈ 39 TiB

### Warum ist das wichtig?

- Betriebssysteme wie Windows nutzen oft die **dezimale Darstellung** (1 KB = 1000 Byte).
- Linux und andere Unix-Systeme nutzen häufig die binäre Darstellung (1 KiB = 1024 Byte).
- Dies kann zu Verwirrung führen, z. B. zeigt eine **1 TB Festplatte** unter Windows **1.000 GB**, unter Linux aber nur **931 GiB**.

### 3.2 Aufgaben

- 1. Ein Unternehmen betreibt ein Rechenzentrum, in dem pro Sekunde 1 Gb/s an Datenverkehr verarbeitet wird.
  - a) Wie viele GByte werden pro Stunde verarbeitet?
  - b) Wie viele GiB entspricht das in einer Stunde auf volle GiB gerundet?
- 2. Ein Server speichert täglich 850 GByte an Logdateien. Die Logdateien müssen für 30 Tage gespeichert bleiben, bevor sie gelöscht werden.
  - a) Wie viele Terrabyte (TB) Speicher ist nötig?
  - b) Wie groß wäre der Speicherbedarf in Tebibyte (TiB)?
  - c) Wie viele Mebibyte (MiB) entsprechen der gesamten Speichermenge?
- 3. Ein Unternehmen speichert seine täglichen Produktionsdaten mit einem Volumen von 15 TiB in einem Cloud-Backup-System. Das Backup-System zeigt die Datenkapazität jedoch in TB.
  - a) Wie viele TB entsprechen den 15 TiB?
  - b) Das Unternehmen plant, die Speichermenge auf zwei Monate auszudehnen. Wie viel Speicherplatz in TB wird dann benötigt?
  - c) Wievielen PiB entspricht das rund?

### 4 Fazit

- Bits und Bytes sind die Grundlage der digitalen Speicherung.
- Das binäre und hexadezimale Zahlensystem wird in der Informatik intensiv genutzt.
- Speichergrößen haben unterschiedliche Konventionen (dezimal vs. binär).
- Die richtige Interpretation ist wichtig für Speicherberechnungen und technische Vergleiche.

## 5 Lösungen

- 1. Lösungswege: 1 Gb/s  $\star$  60 s/min  $\star$  60 min/h = 3.600 Gb/s
  - $3.600 \text{ Gbs/s} \times 1.000 \times 1.000 \times 1.000 / 8 \text{ bit/Byte} = 450.000.000.000 B(yte)$ 
    - a) 450.000.000.000 B(yte)/ (1.000 \* 1.000 \* 1.000) = 450 GB
    - b) 450.000.000.000 B(yte)/  $(1.024 * 1.024 * 1.024) \approx 420$  GiB
- 2. Lösungswege: 850 GB \* 30d = 25.500 GB
  - a) 25.500 GB / 1.000 = 25,5 TB
  - b) 25.500 GB  $\star$  10<sup>9</sup> / 2<sup>40</sup> = 23,1921148951 TiB  $\approx$  24 TiB
  - c) 23,1921148951 TiB \* (1024 \* 1024) = 24.318.695,0682 MiB  $\approx 24.318.695$
- 3. Lösungswege:
  - a) 15 TiB \* (1.024 \* 1.024 \* 1.024 \* 1.024) / (1.000 \* 1.000 \* 1.000 \* 1.000) = 16,4926744166 TB  $\approx$  17 TB
  - b) 16,4926744166 TB \* 31d \* 2 Monate = 1.022,54581383 TB  $\approx 1.023$  TB<sup>1</sup>
  - c) 1.022,54581383 TB \*  $10^{12}$  /  $2^{50}$  = 0,908203125001 PiB  $\approx$  1 PiB

<sup>&</sup>lt;sup>1</sup>Sie müssen mit der maximalen Anzahl an Tagen pro Monat rechnen: Beim Übergang von Juli auf August und Dezember auf Januar folgen jeweils 2 Monate mit 31 Tagen aufeinander.