Assignment 6: The Fourier Transform

D. Zack Garza

November 1, 2019

Contents

1	Problem 1	1
2	Problem 2 2.1 Part (a) 2.2 Part (b) 2.2.1 (i) 2.2.2 (ii)	2
3	Problem 3 3.1 (a)	3
4	Problem 4 4.1 (a)	4
5	Problem 5	6
6	Problem 6	6

1 Problem 1

Assuming the hint, we have

$$\lim_{|\xi| \to \infty} \hat{f}(\xi) = \lim_{\xi' \to 0} \frac{1}{2} \int_{\mathbb{R}^n} (f()) - f(x - \xi')) \exp(-2\pi i x \cdot \xi) \ dx$$

But as an immediate consequence, this yields

$$\left| \hat{f}(\xi) \right| = \left| \int_{\mathbb{R}^n} (f(x) - f(x - \xi')) \exp(-2\pi i x \cdot \xi) \, dx \right|$$

$$\leq \int_{\mathbb{R}^n} |f(x) - f(x - \xi')| |\exp(-2\pi i x \cdot \xi)| \, dx$$

$$\leq \int_{\mathbb{R}^n} |f(x) - f(x - \xi')| \, dx$$

$$\to 0,$$

which follows from continuity in L^1 since $f(x - \xi') \to f(x)$ as $\xi' \to 0$. It thus only remains to show that the hint holds, and that $\xi' \to 0$ as $\xi \to \infty$.

2 Problem 2

2.1 Part (a)

Assuming an interchange of integrals is justified, we have

$$\widehat{(}f * g)(\xi) := \int \int f(x - y)g(y) \exp(-2\pi x \cdot \xi) \ dy \ dx$$

$$= ? \int \int f(x - y)g(y) \exp(-2\pi x \cdot \xi) \ dx \ dy$$

$$= \int \int f(t) \exp(-2\pi i(x - y) \cdot \xi)g(y) \exp(-2\pi i y \cdot \xi) \ dx \ dy$$

$$(t = x - y, \ dt = \ dx)$$

$$= \int \int f(t) \exp(-2\pi i t \cdot \xi)g(y) \exp(-2\pi i y \cdot \xi) \ dt \ dy$$

$$= \int f(t) \exp(-2\pi i t \cdot \xi) \left(\int g(y) \exp(-2\pi i y \cdot \xi) \ dy \right) \ dt$$

$$= \int f(t) \exp(-2\pi i t \cdot \xi) \widehat{g}(\xi) \ dt$$

$$= \widehat{g}(\xi) \int f(t) \exp(-2\pi i t \cdot \xi) \ dt$$

$$= \widehat{g}(\xi) \widehat{f}(\xi).$$

It thus remains to show that this swap is justified.

2.2 Part (b)

We'll use the following lemma: if $\hat{f} = \hat{g}$, then f = g almost everywhere.

2.2.1 (i)

By part 1, we have

$$\widehat{f * g} = \widehat{f}\widehat{g} = \widehat{g}\widehat{f} = \widehat{g * f},$$

and so by the lemma, f * g = g * f.

Similarly, we have

$$\widehat{(f\ast g)\ast h} = \widehat{f\ast g}\ \widehat{h} = \widehat{f}\ \widehat{g}\ \widehat{h} = \widehat{f}\ \widehat{g\ast h} = f\ast (g\ast h).$$

2.2.2 (ii)

Suppose that there exists some $I \in L^1$ such that f * I = f. Then $\widehat{f * I} = \widehat{f}$ by the lemma, so $\widehat{f} \widehat{I} = \widehat{f}$ by the above result.

But this says that $\hat{f}(\xi)\hat{I}(\xi) = \hat{f}(\xi)$ almost everywhere, and thus $\hat{I}(\xi) = 1$ almost everywhere. Then $\lim_{|\xi| \to \infty} \hat{I}(\xi) \neq 0$, which by Problem 1 shows that I can not be in L^1 , a contradiction.

3 Problem 3

3.1 (a)

3.1.1 (i)

Let g(x) = f(x - y). We then have

$$\begin{split} \hat{g}(\xi) &\coloneqq \int g(x) \exp(-2\pi i x \cdot \xi) \ dx \\ &= \int f(x-y) \exp(-2\pi i x \cdot \xi) \ dx \\ &= \int f(x-y) \exp(-2\pi i (x-y) \cdot \xi) \exp(-2\pi i y \cdot \xi) \ dx \\ &= \exp(-2\pi i y \cdot \xi) \int f(x-y) \exp(-2\pi i (x-y) \cdot \xi) \ dx \\ &= \exp(-2\pi i y \cdot \xi) \int f(t) \exp(-2\pi i t \cdot \xi) \ dt \\ &= \exp(-2\pi i y \cdot \xi) \hat{f}(\xi). \end{split}$$

3.1.2 (ii)

Let $h(x) = \exp(2\pi ix \ cdoty) f(x)$. We then have

$$\hat{h}(\xi) := \int \exp(2\pi i x \cdot y) f(x) \exp(-2\pi i x \cdot \xi) \ dx$$

$$= \int \exp(2\pi i x \cdot y - 2\pi i x \cdot \xi) f(x) \ dx$$

$$= \int f(\xi - y) \exp(-2\pi i x \cdot (\xi - y)) \ dx$$

$$= \hat{f}(\xi - y).$$

3.2 (b)

We'll use the fact that if $\langle \cdot, \cdot \rangle$ is an inner product on a vector space V and A is an invertible linear transformation, then for all $\mathbf{x}, \mathbf{y} \in V$ we have

$$\langle A\mathbf{x}, \ \mathbf{y} \rangle = \left\langle \mathbf{x}, \ A^T\mathbf{y} \right\rangle$$

where A^{-T} denotes the transpose of the inverse of A (or $(A^{-1})^*$ if V is complex).

We then have

$$\frac{1}{|\det T|} \hat{f}(T^{-T}\xi) = \frac{1}{|\det T|} \int f(x) \exp(-2\pi i x \cdot T^{-T}\xi) \ dx$$

$$x \mapsto Tx, \ dx \mapsto |\det T| \ dx$$

$$= \frac{1}{|\det T|} \int f(Tx) \exp(-2\pi i Tx \cdot T^{-T}\xi) |\det T| \ dx$$

$$= \int f(Tx) \exp(-2\pi i x \cdot \xi) \ dx$$

$$\text{since } Tx \cdot T^{-T}\xi = T^{-1}Tx \cdot \xi = x \cdot \xi$$

$$= \widehat{(f \circ T)}(\xi).$$

4 Problem 4

4.1 (a)

4.1.1 (i)

Let g(x) = xf(x). Then if an interchange of the derivative and the integral is justified, we have

$$\begin{split} \frac{\partial}{\partial \xi} \hat{f}(\xi) &\coloneqq \frac{\partial}{\partial \xi} \int f(x) \exp(-2\pi i x \cdot \xi) \ dx \\ &=_{?} \int f(x) \frac{\partial}{\partial \xi} \exp(-2\pi i x \cdot \xi) \ dx \\ &= \int f(x) 2\pi i x \exp(-2\pi i x \cdot \xi) \ dx \\ &= 2\pi i \int x f(x) \exp(-2\pi i x \cdot \xi) \ dx \\ &\coloneqq 2\pi i \hat{g}(\xi). \end{split}$$

It thus remains to show that this interchange is justified. TODO

4.1.2 (ii)

We have

$$\hat{h}(\xi) \coloneqq \int \frac{\partial f}{\partial x}(x) \exp(-2\pi i x \cdot \xi) \ dx$$

$$= f(x) \exp(-2\pi i x \cdot \xi) \Big|_{x=-\infty}^{x=\infty} - \int f(x)(2\pi i \xi) \exp(-2\pi i x \cdot \xi) \ dx$$
(integrating by parts)
$$= -\int f(x)(-2\pi i \xi) \exp(-2\pi i x \cdot \xi) \ dx$$
(since $f(\infty) = f(-\infty) = 0$)
$$= 2\pi i \xi \int f(x) \exp(-2\pi i x \cdot \xi) \ dx$$

$$\coloneqq 2\pi i \xi \hat{f}(\xi).$$

4.2 (b)

Let $G(x) = \exp(-\pi x^2)$ and ∂_{ξ} be the operator that differentiates with respect to ξ . Then

$$\partial_\xi \left(\frac{\hat{G}(\xi)}{G(\xi)} \right) = \frac{G(\xi) \partial_\xi \hat{G}(\xi) - \hat{G}(\xi) \partial_\xi G(\xi)}{G(\xi)^2},$$

and the claim is that this is zero. This happens precisely when the numerator is zero, and note the following facts:

- $\partial_{\xi}G(\xi) = -2\pi\xi G(\xi)$ by computing directly,
- $\partial_{\xi} \hat{G}(\xi) = -2\pi \xi \hat{G}(\xi)$, which follows from the following computation

$$\partial_{\xi} \hat{G}(\xi) := \partial_{\xi} \int G(x) \exp(-2\pi i x \cdot \xi) \ dx$$

$$= \int G(x) \partial_{\xi} \exp(-2\pi i x \cdot \xi) \ dx$$

$$= \int G(x) (-2\pi i x) \exp(-2\pi i x \cdot \xi) \ dx$$

$$= i \int 2\pi x G(x) \exp(-2\pi i x \cdot \xi) \ dx$$

$$= i \int \partial_{x} G(x) \exp(-2\pi i x \cdot \xi) \ dx$$

$$= i \widehat{\partial_{x} G(x)}(\xi).$$

$$G(\xi)\partial_{\xi}\hat{G}(\xi) - \hat{G}(\xi)\partial_{\xi}G(\xi).$$

- 5 Problem 5
- 6 Problem 6