Листок №NT-1

Цепные дроби

2022.01

Задача 1. Охотник стоит в точке плоскости с координатой (0,0), а в остальных точках с целыми координатами сидят одинаковые зайцы. Докажите, что в каком бы направлении ни выстрелил охотник, он обязательно попадет в зайца.

Задача 2. Найдите $\sup (\sin x + \sin \sqrt{2}x)$.

Задача 3. Десятичная запись числа 2^n может начинаться с любой последовательности цифр.

Определение 1. Будем говорить, что дробь $\frac{p}{a}$ приближает число α с коэффициентом качества δ , если $0 < \left| \alpha - \frac{p}{a} \right| \leqslant \frac{\delta}{a}.$

Задача 4. Число α может быть сколь угодно качественно приближено дробью тогда и только тогда, когда оно иррационально.

Задача 5. Докажите, что число $e = \sum_{i=1}^{n}$ иррационально.

Определение 2. Число α будем называть k-приближсаемым, если для любого $\delta>0$ существует такая дробь $\frac{p}{a}$, что $0 < \left| \alpha - \frac{p}{a} \right| \leqslant \frac{\delta}{a^k}.$

Если же такой дроби для некоторого $\delta > 0$ не существует, будем называть число k-неприближаемым.

Задача 6. а) Число $\sqrt{2}$ является 2-неприближаемым.

б) Алгебраическое число степени k является k-неприближаемым (теорема Лиувилля).

Задача 7. Число $\sum \frac{1}{10^{i!}}$ трансцендентно.

Задача 8. Любое иррациональное число обладает бесконечным число 2-приближений с коэффициентом 1 (в частности, является $(2 - \varepsilon)$ -приближаемым).

Задача 9*. Множество всех $(2 + \varepsilon)$ -приближаемых чисел *имеет меру ноль*¹.

Определение 3. Пусть a_0 — целое число, a_i — натуральные числа. Выражение вида

$$[a_0; a_1; \ldots] := a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \ldots}}$$

называется цепной дробью; число $\frac{p_n}{q_n} = [a_0; \dots; a_n]$ называется n-й подходящей дробью или конвергенmo u.

Задача 10. а) Вычислите [3; 7; 15; 1] (с точностью до 7 знаков после запятой) и [1; 1; . . .];

б) разложите в цепную дробь числа 10/7, $\sqrt{3}$, $\sqrt{5}$.

Задача 11. Для любой бесконечной цепной дроби $[a_0; \ldots]$ последовательность конвергент сходится к некоторому действительному числу.

Задача 12. а) Ненулевое рациональное число может разложено в цепную дробь ("алгоритм Евклида"), причем ровно двумя способами: вида $[a_0; \ldots; a_n]$ и $[a_0; \ldots; a_n-1; 1]$.

б) Иррациональное число может разложено в цепную дробь ровно одним способом.

Задача 13. а) $[a_0; a_1; \dots; a_n; z]$ — дробно-линейная функция от z. **б)*** Функция $\frac{az+b}{cz+d}$ $(a,b,c,d\in\mathbb{Z})$ представима в виде $[a_0;\dots;a_n;z]\iff \det\begin{pmatrix} a & b \\ c & d \end{pmatrix}=\pm 1.$

1	2	3	4	5	6 a	6	7	8	9	10 a	10 6	11	12 a	12 6	13 a	13 6

 $^{^{1}}$ Т. е. для каждого положительного δ существует покрытие этого множества не более чем счетным числом интервалов, сумма длин которых не превосходит δ .

Задача 14. Если разложение иррационального числа в цепную дробь периодично, то это квадратичная иррациональность 2 .

Задача 15. Пусть α — положительное число. Рассмотрим последовательность векторов (e_i) : $e_1 = (1\ 0), e_2 = (0\ 1); e_{i+1} = e_{i-1} + a_{i-2}e_i$ где в качестве a_{i-2} берется наибольше натуральное число, при котором e_{i+1} остается с той же стороны от прямой $y = \alpha x$, что и e_{i-1} ("алгоритм вытягивания носов").

б) Вектора (e_{2k-1}) и (e_{2k}) являются вершинами выпуклой оболочки части \mathbb{Z}^2 под и над прямой $y = \alpha x$ соответственно.

B)
$$\alpha = [a_0; a_1; \ldots], e_{n+2} = (q_n p_n).$$

r) *п*-я подходящая дробь является наилучшим (в смысле коэффициента качества приближения $q|\alpha-\frac{p}{q}|$) приближением к α среди дробей со знаменателем, не превосходящим q_n .

Задача 16. а)
$$\det \begin{pmatrix} q_n & q_{n+1} \\ p_n & p_{n+1} \end{pmatrix} = (-1)^{n+1}.$$
 б) У любого иррационального числа α бесконечно много прибли-

жений, таких что $\left|\alpha - \frac{p}{a}\right| < \frac{1}{2a^2}$.

Задача 18. Числитель и знаменатель подходящей дроби для $[1;1;\ldots;1]$ — два последовательных числа Фибоначчи (в частности, $\lim \frac{F_{n+1}}{F_n} = [1;1;\ldots]$).

Задача 19*. Последовательность (a_i) удовлетворяет некоторой линейной рекурренте тогда и только тогда, когда ее производящая функция $a_0 + a_1 t + a^2 t^2 + \dots$ рациональна.

Определение 4. $\Pi ymu \ \mathcal{A}u\kappa a$ — это пути из точки (0,0) в точку (2n,0), состоящие из шагов (1,1) и (1,-1)и не опускающиеся ниже прямой y=0. Количество таких путей — это n-е число Каталана.

 $\Pi y m u \; Mou \kappa u + a = 2$ то пути из точки (0,0) в точку (n,0), состоящие из шагов (1,1), (1,0) и (1,-1)и не опускающиеся ниже прямой y=0. Количество таких путей называется n-м числом Моцкина.

Задача 20. а) Производящая функция для чисел Каталана равна (обобщенной) цепной дроби

$$\frac{1}{1 - \frac{t}{1 - \frac{t}{1 - \dots}}}.$$

б) Ее k-я конвергента дает производящую функцию для путей Дика, не поднимающихся выше прямой y = k...

в) ...и она же равна производящей функции для плоских корневых деревьев³, имеющих высоту не более k.

Задача 21. а) Производящая функция для чисел Моцкина равна (обобщенной) цепной дроби $\frac{1}{1-t-\frac{t^2}{1-t-\frac{t^2}{1-t}}}.$

$$\frac{1}{1-t-\frac{t^2}{1-t-\frac{t^2}{1-\cdots}}}.$$

б) Ее k-я конвергента дает производящую функцию для путей Моцкина, не поднимающихся выше прямой y = k.

(Упражнение: придумайте несколько комбинаторных интерпретаций чисел Моцкина, аналогичных вашим любимым интерпретациям чисел Каталана; попробуйте описать подмножества этих объектов, соответствующие конвергентам цепной дроби.)

14	15 a	15 6	15 B	15 г	16 a	16 6	17	18	19	20 a	20 6	20 B	21 a	21 б

²Как мы увидим позже, верно и обратное ("теорема Лагранжа").

³Ср. с задачей 7 листка «Числа Каталана».

Определение 1. Пусть d — целое число, свободное от квадратов. *Нормой* элемента $z = x + y\sqrt{d} \in \mathbb{Z}[\sqrt{d}]$ называется целое число $N(z) = x^2 - dy^2$.

Задача 1. Норма мультипликативна: N(zw) = N(z)N(w).

Определение 2. Пусть d — целое число, свободное от квадратов. Диофантово уравнение $x^2 - dy^2 = 1$ называется уравнением Пелля.

Решением уравнения Пелля мы будем называть как пару целых чисел $(x\ y)$, так и соответствующий элемент единичной нормы $x+y\sqrt{d}$ кольца $\mathbb{Z}[\sqrt{d}]$.

Задача 2. а) Если уравнение Пелля имеет нетривиальное (отличное от $(\pm 1\ 0)$) решение, то оно имеет бесконечно много решений.

б) Если уравнение Пелля имеет нетривиальное решение, то группа его положительных решений изоморфна \mathbb{Z} .

Задача 3*. Пусть $N=(1\ 0); P$ и Q — пара точек на гиперболе $x^2-dy^2=1.$ Проведем через точку N секущую, параллельную хорде PQ.

- а) Эта секущая пересекает гиперболу еще ровно в одной точке¹.
- **б)** Построенная точка соответствует произведению элементов единичной нормы, соответствующих точкам P и Q.

Задача 4. Решите уравнение **a)** $x^2 - 3y^2 = -2$; **б)** $x^2 - 3y^2 = -1$.

Задача 5. Найдите формулу для k-го треугольного числа, являющегося точным квадратом.

Определение 3. Значением $\kappa в a d p a m u u h o u d p o p m u$ с (симметричной) матрицей Q на векторе v называется число (v,Qv). Таким образом, матрица $\begin{pmatrix} a & b/2 \\ b/2 & c \end{pmatrix}$ задает квадратичную форму $ax^2 + bxy + cy^2$.

Задача 6*. Отображение Q квадратично тогда и только тогда, когда отображение $(u,v)\mapsto Q(u+v)-Q(u)-Q(v)$ билинейно².

Задача 7. Как меняется квадратичная форма при замене координат с матрицей С?

Задача 8. а) Существует лишь конечное число целочисленных квадратичных форм с ac < 0 и фиксированным дискриминантом -d < 0.

б) Целочисленная квадратичная форма $\begin{pmatrix} 1 & 0 \\ 0 & -d \end{pmatrix}$ имеет нетривиальный автоморфизм (т. е. существует обратимая целочисленная замена координат, при которой эта форма не меняется).

Указание. Рассмотрите алгоритм вытягивания носов для \sqrt{d} .

- в) Уравнение Пелля имеет нетривиальное решение.
- г) Разложение числа \sqrt{d} в цепную дробь периодично.

д)* Разложение иррационального числа в цепную дробь периодично тогда и только тогда, когда это квадратичная иррациональность ("теорема Лагранжа").

Задача 9. У числа \sqrt{d} бесконечно много приближений, таких что $|\alpha - \frac{p}{q}| < \frac{1}{(2\sqrt{d}-\varepsilon)q^2}$.

Задача 10*. а) Период цепной дроби числа \sqrt{d} без последнего числа — палиндром.

б) Уравнение $x^2 - dy^2 = -1$ имеет решение тогда и только тогда, когда период цепной дроби числа \sqrt{d} имеет нечетную длину.

1	2 a	2 6	3 a	3 6	4 a	4 6	5	6	7	8 a	8 б	8 B	8 г	8 д	9	10 a	10 б

 $^{^{1}}$ Если отрезок PQ оказался вертикальным, то надо считать, что вторая точка совпадает с N (в этом случае наша "секущая" как раз касается гиперболы).

²Это можно считать определением квадратичного отображения — а доказывать, соответственно, что любое квадратичное отображение задается некоторой симметричной матрицей.

В этом листке мы будем часто использовать следующие обозначения:

 p_n-n -е простое число $(p_1=2,p_2=3,p_3=5,\dots); P$ — множество всех простых чисел $(P=\{p_1,p_2,p_3,\dots\});$ $\pi(x)$ — количество простых чисел, не превосходящих $x \in \mathbb{N}$; $\log x$ — двоичный логарифм x (т. е. $\log_2 x$).

История определения асимптотики функции $\pi(x)$ такова:

- 1. Евклид: $\pi(x) \to \infty$ при $x \to \infty$;
- 2. Эйлер: $\frac{\pi(x)}{x} \to 0$ при $x \to \infty$; 3. Чебышёв (1848 г.): Если предел $\frac{\pi(x)\ln(x)}{x}$ существует, то он равен 1;
- 4. Адамар и Валле-Пуссен (1896 г.): $\frac{\pi(x) \ln(x)}{x} \to 1$ при $x \to \infty$.

Задача 1. Докажите, что при $n \in \mathbb{N}$ **а)** $p_{n+1} \leqslant p_1 \cdot p_2 \cdot \dots \cdot p_n + 1;$ **б)** $p_n \leqslant 2^{2^{n-1}}$.

Задача 2. Докажите, что $\pi(x) \geqslant \log \log x$ при $x \geqslant 2$.

Определение 1. Пусть $n \in \mathbb{N}$. Определим функцию $F^n \colon \mathbb{N} \to \mathbb{N}$ следующим образом: F^n есть количество натуральных чисел, не превосходящих x, все простые делители которых принадлежат множеству $\{p_1, p_2, \ldots, p_n\}.$

Задача 3. а) Найдите $F^3(57)$; **б)** Найдите $F^n(x)$ при $x < p_{n+1}$.

Задача 4. Докажите, что $F^n(x) \leqslant 2^n \cdot \sqrt{x}$.

Задача 5. Докажите следующие утверждения:

а) простых чисел бесконечно много; б) $\pi(x) \ge 0.5 \cdot \log x$; в)* ряд $\frac{1}{p_1} + \frac{1}{p_2} + \dots$ расходится.

Задача 6. Докажите следующие утверждения: a)
$$\prod_{\substack{n б) $\prod_{\substack{n+1 в) $\prod_{\substack{p \leqslant x, \\ p \in P}} p < 2^{2x}.$$$$

Задача 7. Докажите следующие утверждения:

- a) $(\pi(x) \pi([\sqrt{x}])) \cdot \log \sqrt{x} < 2x;$
- **б)** существует такое $c_1 \in \mathbb{R}$, что $\pi(x) \leqslant c_1 \cdot \frac{x}{\log x}$ при $x \geqslant 2$.

Задача 8. Пусть $n \in \mathbb{N}, p$ — простое число. Докажите, что p входит в каноническое разложение числа n!в степени $\sum\limits_{i=1}^m [n/p^i],$ где $m=[\log_p n].$

Задача 9. Пусть p — простое число, α_p — степень, в которой p входит в каноническое разложение числа C_{2n}^n . Докажите, что $\alpha_p \leqslant [\log_p 2n]$.

Задача 10. Докажите следующие утверждения: а) $\frac{2^{2n}}{2n+1} \leqslant C_{2n}^n$; б) $C_{2n}^n \leqslant \prod_{p \leqslant 2n, p \choose p} [\log_p 2n]$.

Задача 11. Докажите следующие утверждения:

- a) $2n \log(2n + 1) \le \pi(2n) \cdot \log 2n$;
- **б)** существует такое положительное $c_2 \in \mathbb{R}$, что $\pi(x) \geqslant c_2 \cdot \frac{x}{\log x}$ при $x \geqslant 2$.

$$0.9 \cdot \frac{x}{\log x} \leqslant \pi(x) \leqslant 4.1 \cdot \frac{x}{\log x}$$
.

Задача 12*. Докажите, что для всякого достаточно большого $x \in \mathbb{N}$ справедливы неравенства $0.9 \cdot \frac{x}{\log x} \leqslant \pi(x) \leqslant 4.1 \cdot \frac{x}{\log x}.$ **Задача 13*.** Докажите, что при всяком достаточно большом $n \in \mathbb{N}$ между n и 5n обязательно найдется простое число.

Задача 14. В обозначениях задачи 9 докажите следующие утверждения:

- **a)** $\alpha_p \le 1 \text{ при } p > \sqrt{2n};$ **6)** $\alpha_p = 0 \text{ при } 2n/3$
- **Задача 15*.** (Постулат Бертрана) Докажите, что при всяком достаточно большом $n \in \mathbb{N}$ между n и 2nобязательно найдется простое число.

$\begin{bmatrix} 1 \\ a \end{bmatrix}$	1 6	2	3 a	3 6	4	5 a	5 6	5 B	6 a	6 6	6 B	7 a	7 б	8	9	10 a	10 б	11 a	11 б	12	13	14 a	14 б	15