高等数学 A 大练习 11

范围:第五章 向量代数与空间解析几何

Part 1 新知识巩固

二维下的情况 (直线方程)		三维下的情况(平面方程)	
一般式		一般式	
点斜式		点法式	
两点式		三点式	
点到直线		点到平面	
的距离		的距离	
平行直线		平行平面	
的距离		间的距离	
法向量		法向量	

特殊的,三维空间中直线的表示方式与二维的又有所不同:

直线的两面式方程、参数方程、标准方程

• 二次曲面复习

名称	标准式	缩略草图
椭圆锥面		

椭球面	
单叶双曲	
面	
双叶双曲	
面	
椭圆柱面	
双曲柱面	
抛物柱面	
椭圆抛物	
面	
双曲抛物	100
面	0
	-100 10 5 0 -5

• 三维空间中曲线的表示(参数方程、切线、法平面、弧长)

Part 2 补充习题练习

总习题八

1. 填空:

- (2) 设数 λ_1 、 λ_2 、 λ_3 不全为 0,使 $\lambda_1 a + \lambda_2 b + \lambda_3 c = 0$,则 a、b、c 三个向量是______的:
 - (3) $\mathcal{C} = (2,1,2), b = (4,-1,10), c = b \lambda a, \exists a \perp c, \exists \lambda = \ldots;$
 - (4) 设|a|=3, |b|=4, |c|=5, 且满足 a+b+c=0, 则 $|a\times b+b\times c+c\times a|=$
 - 2. 在 ν 轴上求与点 A(1, -3,7) 和点 B(5,7, -5) 等距离的点。
- 3. 已知 $\triangle ABC$ 的顶点为A(3,2,-1)、B(5,-4,7)和 C(-1,1,2),求从顶点 C 所引中线的长度、
- 4. 设 $\triangle ABC$ 的三边 $\overrightarrow{BC} = a \cdot \overrightarrow{CA} = b \cdot \overrightarrow{AB} = c$, 三边中点依次为 $D \cdot E \cdot F$, 试用向量 $a \cdot b \cdot c$ 表示 $\overrightarrow{AD} \cdot \overrightarrow{BE} \cdot \overrightarrow{CF}$, 并证明

$$\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF} = \mathbf{0}.$$

- 5. 试用向量证明三角形两边中点的连线平行于第三边,且其长度等于第三边长度的一半.
- 6. $\mathfrak{P}|a+b|=|a-b|, a=(3,-5,8), b=(-1,1,z), \bar{\mathfrak{X}}z.$
- 7. 设 $|a| = \sqrt{3}$, |b| = 1, $(a,b) = \frac{\pi}{6}$, 求向量 a + b 与 a b 的夹角.
- 8. 设 $a + 3b \perp 7a 5b, a 4b \perp 7a 2b, 求(a,b)$.
- 9. 设 a = (2, -1, -2), b = (1, 1, z), 向 z 为何值时(<math>a, b)最小? 并求出此最小值.

- 10. 设|a|=4,|b|=3, $(a,b)=\frac{\pi}{6}$,求以 a+2b 和 a-3b 为边的平行四边形的面积.
- 11. 设 a = (2, -3, 1), b = (1, -2, 3), c = (2, 1, 2),向量 r 满足 $r \perp a, r \perp b,$ $Prj_c r = 14,$ 求 r.
- 12. 设 a = (-1,3,2), b = (2,-3,-4), c = (-3,12,6),证明三向量 $a \setminus b \setminus c$ 共面,并用 a 和 b 表示 c.
- 13. 已知动点 M(x,y,z)到 xOy 平面的距离与点 M 到点(1, -1,2)的距离相等,求点 M 的轨迹的方程.
 - 14. 指出下列旋转曲面的一条母线和旋转轴:

(1)
$$z = 2(x^2 + y^2);$$

(2)
$$\frac{x^2}{36} + \frac{y^2}{9} + \frac{z^2}{36} = 1$$
;

(3)
$$z^2 = 3(x^2 + y^2);$$

(4)
$$x^2 - \frac{y^2}{4} - \frac{z^2}{4} = 1$$
.

- 15. 求通过点 A(3,0,0)和 B(0,0,1)且与 xOy 面成 $\frac{\pi}{3}$ 角的平面的方程.
- 16. 设一平面垂直于平面 z=0, 并通过从点(1,-1,1)到直线 $\begin{cases} y-z+1=0 \\ x=0 \end{cases}$ 的垂线, 求此平面的方程.
- 17. 求过点(-1,0,4),且平行于平面 3x-4y+z-10=0,又与直线 $\frac{x+1}{1}=\frac{y-3}{1}=\frac{z}{2}$ 相交的直线的方程
 - 18. 已知点 A(1,0,0)及点 B(0,2,1),试在 z 轴上求一点 C,使 $\triangle ABC$ 的面积最小.
 - 19. 求曲线 $\begin{cases} z = 2 x^2 y^2, \\ z = (x 1)^2 + (y 1)^2 \end{cases}$ 在三个坐标面上的投影曲线的方程.
 - 20. 求锥面 $z = \sqrt{x^2 + y^2}$ 与柱面 $z^2 = 2x$ 所围立体在三个坐标面上的投影.
 - 21. 画出下列各曲面所围立体的图形:
 - (1) 拋物柱面 $2y^2 = x$, 平面 z = 0 及 $\frac{x}{4} + \frac{y}{2} + \frac{z}{2} = 1$;
 - (2) 抛物柱面 $x^2 = 1 z$, 平面 y = 0, z = 0 及 x + y = 1;
 - (3) 圆锥面 $z = \sqrt{x^2 + y^2}$ 及旋转拋物面 $z = 2 x^2 y^2$;
 - (4) 旋转拋物面 $x^2 + y^2 = z$,柱面 $y^2 = x$,平面 z = 0 及 x = 1.