

Lecture 1: Introduction

Introduction

- ☐ Integrated circuits: many transistors on one chip.
- □ Very Large Scale Integration (VLSI):
 - How to design VLSI systems
- ☐ Complementary Metal Oxide Semiconductor
 - Fast, cheap, low power transistors
- ☐ Today: How to build your own simple CMOS chip
 - CMOS transistors
 - Building logic gates from transistors
 - Transistor layout and fabrication
- Rest of the course: How to build a good CMOS chip

Introduction

- ☐ Why is designing digital ICs different today than it was before?
- ☐ Will it change in future? https://en.wikipedia.org/wiki/Transistor_count

Processor	Transistor count	Date of introduction	Designer	Process	Area
10-core Core i7 Broadwell-E	3,200,000,000	2016	Intel	14 nm	246 mm²
POWER9	8,000,000,000	2017	IBM	14 nm	695 mm²
IBM z14 Storage Controller	9,700,000,000	2017	IBM	14 nm	696 mm²
IBM z14	6,100,000,000	2017	IBM	14 nm	696 mm²
Centriq 2400	18,000,000,000	2017	Qualcomm	10 nm	398 mm ²
Apple A11 Bionic (hexa-core ARM64 "mobile SoC")	4,300,000,000	2017	Apple	10 nm	89 mm²
8-core Ryzen	4,800,000,000	2017	AMD	14 nm	192 mm²
32-core AMD Epyc	19,200,000,000	2017	AMD	14 nm	768 mm ² (4 x 192 mm ²)
Apple A12 (hexa- core ARM64 "mobile SoC")	6,900,000,000	2018	Apple	7 nm	

What does it take to design VLSI systems?

1. idea (need) engineering principles Same 2. write you learned so far specifications 3. design system 4. analyze/ Specification model satisfactory Function system Architecture Design Function 5. Fabrication Logic Design 6. test / work Function as modeled? Circuit Design Function Timing Physical Design

0: Introduction

1. Applications / Ideas

2. Specifications

- Instruction set
- Interface (I/O pins)
- Organization of the system
- Functionality of each unit and how it to communicate to other unit

FIG 1.49 Instruction encoding formats

3/4. Design and Analysis

mask layout patterns

find wire routes

device layout

0: Introduction

CMOS VLSI Design 4th Ed.

Design development is facilitated using Computer-Aided Design (CAD) tools

5. Fabrication

6. Evaluate design and compare to model

- Check signal integrity
- Power consumption
- Input/output behavior

- Does the chip function as it is supposed to be?
- Does it work at desired clock frequency? (can we overclock?)

Silicon Lattice

- ☐ Transistors are built on a silicon substrate
- □ Silicon is a Group IV material
- ☐ Forms crystal lattice with bonds to four neighbors

Dopants

- □ Silicon is a semiconductor
- ☐ Pure silicon has no free carriers and conducts poorly
- Adding dopants increases the conductivity
- Group V: As, extra electron (n-type)
- ☐ Group III: B(Boron) missing electron, called hole (p-type)

p-n Junctions

- □ A junction between p-type and n-type semiconductor forms a diode.
- Current flows only in one direction

p-type n-type

anode cathode

nMOS Transistor

- ☐ Four terminals: gate, source, drain, body
- □ Gate oxide body stack looks like a capacitor
 - Gate and body are conductors
 - SiO₂ (oxide) is a very good insulator
 - Called metal oxide semiconductor (MOS)
 capacitor
 Source Gate Drain
 - Even though gate is no longer made of metal

nMOS Operation

- Body is usually tied to ground (0 V)
- When the gate is at a low voltage:
 - P-type body is at low voltage
 - Source-body and drain-body diodes are OFF
 - No current flows, transistor is OFF

nMOS Operation Cont.

- When the gate is at a high voltage:
 - Positive charge on gate of MOS capacitor
 - Negative charge attracted to body
 - Inverts a channel under gate to n-type
 - Now current can flow through n-type silicon from source through channel to drain, transistor is ON

pMOS Transistor

- □ Similar, but doping and voltages reversed
 - Body tied to high voltage (V_{DD})
 - Gate low: transistor ON
 - Gate high: transistor OFF
 - Bubble indicates inverted behavior

Power Supply Voltage

- \Box GND = 0 V
- \Box In 1980's, $V_{DD} = 5V$
- V_{DD} has decreased in modern processes
 - High V_{DD} would damage modern tiny transistors
 - Lower V_{DD} saves power
- \Box $V_{DD} = 3.3, 2.5, 1.8, 1.5, 1.2, 1.0, 0.9, 0.8...$

$$P_{\text{switching}} = CV_{DD}^2 f_{\text{sw}}$$

Transistors as Switches

- □ We can view MOS transistors as electrically controlled switches
- Voltage at gate controls path from source to drain

pMOS
$$g \rightarrow \begin{bmatrix} s \\ s \end{bmatrix}$$

g = 0

g = 1

CMOS Inverter

CMOS NAND Gate

Α	В	Υ
0	0	
0	1	
1	0	
1	1	

CMOS NOR Gate

А	В	Υ
0	0	1
0	1	0
1	0	0
1	1	0

3-input NAND Gate

- Y pulls low if ALL inputs are 1
- ☐ Y pulls high if ANY input is 0

CMOS Fabrication

- ☐ CMOS transistors are fabricated on silicon wafer
- ☐ Lithography process similar to printing press
- On each step, different materials are deposited or etched
- □ Easiest to understand by viewing both top and cross-section of wafer in a simplified manufacturing process

Photo masking

(lens system between mask and wafer)

Fabrication video

☐ From Sand to Silicon the Making of a Chip Intel

Inverter Cross-section

- ☐ Typically use p-type substrate for nMOS transistors
- Requires n-well for body of pMOS transistors

GND

Well and Substrate Taps

- Substrate must be tied to GND and n-well to V_{DD}
- Metal to lightly-doped semiconductor forms poor connection called Shottky Diode
- ☐ Use heavily doped well and substrate contacts / taps

Inverter Mask Set

- ☐ Transistors and wires are defined by *masks*
- Cross-section taken along dashed line

Detailed Mask Views

- Six masks
 - n-well
 - Polysilicon
 - n+ diffusion
 - p+ diffusion
 - Contact
 - Metal

Fabrication

- ☐ Chips are built in huge factories called fabs
- ☐ Contain clean rooms as large as football fields

Courtesy of International Business Machines Corporation. Unauthorized use not permitted.

Fabrication Steps

- ☐ Start with blank wafer
- ☐ Build inverter from the bottom up
- First step will be to form the n-well
 - Cover wafer with protective layer of SiO₂ (oxide)
 - Remove layer where n-well should be built
 - Implant or diffuse n dopants into exposed wafer
 - Strip off SiO₂

p substrate

Oxidation

- ☐ Grow SiO₂ on top of Si wafer
 - 900 1200 C with H₂O or O₂ in oxidation furnace

p substrate

SiO₂

Photoresist

- ☐ Spin on photoresist
 - Photoresist is a light-sensitive organic polymer
 - Softens where exposed to light

n authotrata

Photoresist SiO₂

p substrate

Lithography

- ☐ Expose photoresist through n-well mask
- ☐ Strip off exposed photoresist

Photoresist SiO₂

p substrate

Etch

- ☐ Etch oxide with hydrofluoric acid (HF)
 - Seeps through skin and eats bone; nasty stuff!!!
- Only attacks oxide where resist has been exposed

Photoresist SiO₂

0: Introduction

Strip Photoresist

- Strip off remaining photoresist
 - Use mixture of acids called piranha etch
- Necessary so resist doesn't melt in next step

SiO₂

p substrate

n-well

- n-well is formed with diffusion or ion implantation
- Diffusion
 - Place wafer in furnace with arsenic gas
 - Heat until As atoms diffuse into exposed Si
- ☐ Ion Implantation
 - Blast wafer with beam of As ions
 - Ions blocked by SiO₂, only enter exposed Si

SiO₂

Strip Oxide

- ☐ Strip off the remaining oxide using HF
- Back to bare wafer with n-well
- Subsequent steps involve similar series of steps

n well

p substrate

Polysilicon

- □ Deposit very thin layer of gate oxide
 - < 20 Å (6-7 atomic layers)</p>
- ☐ Chemical Vapor Deposition (CVD) of silicon layer
 - Place wafer in furnace with Silane gas (SiH₄)
 - Forms many small crystals called polysilicon
 - Heavily doped to be good conductor

Polysilicon Patterning

☐ Use same lithography process to pattern polysilicon

Self-Aligned Process

- ☐ Use oxide and masking to expose where n+ dopants should be diffused or implanted
- N-diffusion forms nMOS source, drain, and n-well contact

N-diffusion

- □ Pattern oxide and form n+ regions
- ☐ Self-aligned process where gate blocks diffusion
- □ Polysilicon is better than metal for self-aligned gates because it doesn't melt during later processing

N-diffusion cont.

- ☐ Historically dopants were diffused
- □ Usually ion implantation today
- But regions are still called diffusion

N-diffusion cont.

☐ Strip off oxide to complete patterning step

P-Diffusion

☐ Similar set of steps form p+ diffusion regions for pMOS source and drain and substrate contact

0: Introduction

CMOS VLSI Design 4th Ed.

Contacts

- Now we need to wire together the devices
- ☐ Cover chip with thick field oxide
- ☐ Etch oxide where contact cuts are needed

- ☐ Sputter on aluminum over whole wafer
- ☐ Pattern to remove excess metal, leaving wires

p+ n+ n+ p+ p+ n+ n well
p substrate

Metal

Thick field oxide

Manufacturing in the Fab

Advanced Metallization

Advanced Metallization

Layout

- ☐ Chips are specified with set of masks
- Minimum dimensions of masks determine transistor size (and hence speed, cost, and power)
- \Box Feature size f = distance between source and drain
 - Set by minimum width of polysilicon
- ☐ Feature size improves 30% every 3 years or so
- Normalize for feature size when describing design rules
- \square Express rules in terms of $\lambda = f/2$
 - E.g. λ = 0.3 μ m in 0.6 μ m process

Simplified Design Rules

- Metal and diffusion have minimum width and spacing of 4 λ .
- Contacts are $2 \lambda \times 2 \lambda$ and must be surrounded by 1λ on the layers above and below.
- Polysilicon uses a width of 2 λ .
- Polysilicon overlaps diffusion by 2 λ where a transistor is desired and has a spacing of 1 λ away where no transistor is desired.
- Polysilicon and contacts have a spacing of 3 λ from other polysilicon or contacts.
- N-well surrounds pMOS transistors by 6 λ and avoids nMOS transistors by 6 λ .

Simplified Design Rules

Conservative rules to get you started

Inverter Layout

- ☐ Transistor dimensions specified as Width / Length
 - Minimum size is $4\lambda / 2\lambda$, sometimes called 1 unit
 - In f = 0.6 μ m process, this is 1.2 μ m wide, 0.6 μ m long

$$\begin{split} I_{ds} &= \frac{Q_{\text{channel}}}{L/v} \\ &= \mu C_{\text{ox}} \frac{W}{L} \Big(V_{gs} - V_t - V_{ds}/2 \Big) V_{ds} \\ &= \beta \Big(V_{GT} - V_{ds}/2 \Big) V_{ds} \\ \beta &= \mu C_{\text{ox}} \frac{W}{I}; \ V_{GT} = V_{gs} - V_t \end{split}$$

Summary

- MOS transistors are stacks of gate, oxide, silicon
- Act as electrically controlled switches
- Build logic gates out of switches
- Draw masks to specify layout of transistors
- Now you know everything necessary to start designing schematics and layout for a simple chip!

Textbooks

Videos

Grading

- 80% written Exam
- ☐ 10% Witten Assignment, including homework
- 10% Lab Report