

Al Training Course Series

Neural Network Training Skills

Lecture 3

Presenter: Ren-Hong Yang

Advisor: Juinn-Dar Huang, Ph.D.

July 15, 2024

Outline (1/2)

- Introduction to Activation Functions
- Common Activation Functions
- Feature Normalization
- Batch Normalization Steps
- Other Normalization Methods
- Dropout and Dropblock

Outline (2/2)

- Introduction to Loss Functions
- Introduction to Momentum
- Introduction to Optimizers
- Common Optimizers
- Learning Rate Schedulers
- Data Augmentation
- References
- Homework

Introduction to Activation Functions

Neural Networks (1/3)

- Behavior of a neuron
 - calculate the "weighted sum" of its input and add a bias

- the above equation is a linear equation
- the output of the current layer is a linear combination of the output of the previous layer

Neural Networks (2/3)

Matrix operation

Neural Networks (3/3)

$$y = f(x)$$

Using parallel computing techniques to speed up matrix operation a^2

Why Activation Functions?

- Most data sets are huge, discrete, and nonlinear
 - cannot always be represented using linear equations
- For an NN without nonlinear structure, it can be simplified as a matrix multiplication and addition
 - lose huge nonlinear features
 - hard to converge during NN training
- Use activation functions to increase nonlinearity

Common Activation Functions

Sigmoid Function (1/2)

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\sigma(x)$$

$$0.8$$

$$0.6$$

$$0.4$$

$$0.2$$

$$-10$$

$$-5$$

$$0$$

$$5$$

$$10$$

- Most commonly used in logistic regression
 - ranges from 0 to 1

Sigmoid Function (2/2)

- Pros
 - continuous function, easy to find derivative
 - has upper and lower bound
- Cons
 - computationally complex due to exponential function and division operation
 - gradient vanishing
 - output is not zero-centered (always > 0)

Tanh Function (1/2)

- Variant of sigmoid function
 - $\tanh(x) = 2\sigma(2x) 1$

Tanh Function (2/2)

- Pros
 - alleviate zero-centered problem in sigmoid function
- Cons
 - still computationally complex
 - gradient vanishing as well

Softmax Function (1/2)

•
$$softmax(\vec{x})_i = \frac{e^{x_i}}{\sum_{j=1}^N e^{x_j}}, for i = 1, 2, ..., N$$

- Most commonly used in multi-class classification
 - output value ranges from 0 to 1
 - sums to 1 for each input vector (probability distribution)

Shape: (3, 32, 32)

Shape: (3,)

Shape: (3,)

Softmax Function (2/2)

- Pros
 - continuous function, easy to find derivative
 - map output of data to probability distribution
 - used in the final layer of a classifier
- Cons
 - computationally complex

ReLU Function (1/2)

ReLU (Rectified Linear Unit)

- Takes the maximum value of input
 - ranges from 0 to +∞

ReLU Function (2/2)

- Pros
 - high computation speed
 - alleviate gradient vanishing problem in positive interval
 - converge quickly when training
- Cons
 - dead ReLU problem (dying neuron issue)
 - output is killed in negative interval
 - gradient = 0 when input < 0</p>

ReLU6 Function

- Like ReLU, but has maximum value 6
- Large range of output values may exceed the floating-point precision of the processor
 - increase robustness when used with low-precision

Leaky ReLU Function (1/2)

• LeakyReLU(x) =
$$\begin{cases} x, x \ge 0 \\ 0.01x, x < 0 \end{cases}$$

- 0.01 is a hyperparameter
- Leaky ReLU alleviates dead ReLU problem in ReLU
 - preserve small gradients in negative interval

Leaky ReLU Function (2/2)

- Theoretically, Leaky ReLU has all advantages of ReLU
 - introduces similar nonlinearity as ReLU without dead ReLU problem
- Some papers indicate Leaky ReLU is not always better than ReLU

PReLU Function

Parametric Rectified Linear Unit

•
$$PReLU(x) = \begin{cases} x, x \ge 0 \\ ax, x < 0 \end{cases}$$

- a is a learnable parameter
- Different layers may require different types of nonlinearity

ELU Function

Exponential Linear Unit

•
$$ELU(x) = \begin{cases} x, & x \ge 0 \\ \alpha(e^x - 1), & x < 0 \end{cases}$$

 $-\alpha$ is a hyperparameter

- Alleviate dead ReLU problem in ReLU
 - preserve small gradients in negative interval
 - nonlinear in negative interval

Swish (SiLU) Function

- Sigmoid Linear Unit (SiLU): a special case of Swish
- $Swish(x) = x \cdot sigmoid(\beta x)$
- $SiLU(x) = x \cdot sigmoid(x)$
- Alleviate dead ReLU problem in ReLU
 - preserve small gradients in negative interval
 - smooth and non-monotonic function

GELU (Gaussian Error Linear Unit)

- Provide well defined gradient for negative inputs
 - Alleviate dying neuron issue
- Widely used in various Transformer-based models
- Computationally expensive

original function:

$$GELU(x) = x \times CDF(x) = x \times \frac{1}{2} \left(1 + erf\left(\frac{x}{\sqrt{2}}\right) \right)$$

approximate function:

$$GELU_{tanh}(x) = 0.5x \left(1 + \tanh\left(\sqrt{\frac{2}{\pi}} \left(x + 0.044715x^3\right)\right) \right)$$

Which One Is Popular?

- In most CNN applications, ReLU is most commonly used
 - high computation speed
 - converge quickly
 - preserve gradient
- In most Transformer applications, GELU is most commonly used

Activation Functions in PyTorch (1/4)

- nn.Sigmoid()
- nn.Tanh()
- nn.Softmax(dim=-1)
 - dim: every slice along dim will sum to 1

Activation Functions in PyTorch (2/4)

- nn.ReLU()
- nn.ReLU6()

Activation Functions in PyTorch (3/4)

- nn.LeakyReLU (negative_slope=0.01)
- nn.PReLU(num_parameters=1, init=0.25)
 - num_parameters: number of a to learn
 - init: the initial value of a
- nn.ELU(alpha=1.0)

Activation Functions in PyTorch (4/4)

nn.SiLU()

nn.GELU()

Introduction to Feature Normalization

Changing Landscape

Changing Landscape

Changing Landscape

Feature Normalization (1/2)

- For each dimension i
 - calculate mean(m_i) and standard deviation(σ_i)
- Normalize every element using m_i and σ_i

$$\widetilde{\boldsymbol{x}}_{i}^{\boldsymbol{r}} \leftarrow \frac{\boldsymbol{x}_{i}^{\boldsymbol{r}} - m_{i}}{\sigma_{i}}$$

Feature Normalization (2/2)

- Makes x1 and x2 have rough same range
 - w1 and w2 will have same impact on Loss function

Considering Deep Learning

Batch Normalization Steps

Batch and Batch Size

- In a training process, we train a batch (set) of data instead of a single data at once
 - train x^1 , x^2 , x^3 at the same time \rightarrow batch size =3

Hidden Layer 1 Output of Hidden Layer 1

Batch Normalization (1/4)

- Target: Normalize output of hidden layer 1 (z^1, z^2, z^3)
- Step 1: calculate mean (μ) and standard deviation
 (σ) in every batch (z¹, z², z³)

Hidden Layer 1 Output of Hidden Layer 1

Batch Normalization (2/4)

- Step 2: Normalize z^1 , z^2 , z^3 with mean, standard deviation
 - will get mean = 0 and deviation = 1 after Step 2

Batch Normalization (3/4)

 Step 3: Send normalized value to activation function and next layer

Batch Normalization (4/4)

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};

Parameters to be learned: \gamma, \beta

Output: \{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}

\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{mini-batch mean}
\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{mini-batch variance}
\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{normalize}
y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad // \text{scale and shift}
```


- When back propagation, impact of z^1 , z^2 , z^3 on mean and deviation will also be passed on
 - mean and deviation are also training parameters

Benefits of Batch Normalization

Reduces training time, and makes very deep net trainable

Less vanishing gradient

Learning is less affected by initialization

Other Normalization Methods

Layer Norm (LN)

- Like Batch Norm, but normalize input feature map (channel) dimension instead of batch dimension
 - independent of batch size
 - widely used in Transformer-based models

Instance Norm (IN)

- Normalize each individual content image
 - widely used in generator network for stylization task

Group Norm (GN)

- Separate the channels into groups, normalize each group of content images
 - between Instance Norm and Layer Norm
 - # of groups = 1 → Layer Norm
 - # of groups = C → Instance Norm

Normalization in PyTorch

- nn.BatchNorm1d(num_features)
- nn.BatchNorm2d(num_features)
- nn.BatchNorm3d(num_features)
- nn.LayerNorm(normalized_shape)
- nn.InstanceNorm1d(num_features)
- nn.InstanceNorm2d(num_features)
- nn.InstanceNorm3d(num_features)
- nn.GroupNorm(num_groups, num_channels)

Dropout and Dropblock

Overfitting

- Think of it as over-training
 - caused by model that has too many parameters and is too complicated
 - feature learned by machine is close to training data
 - > error becomes big when testing or validation

Dropout (1/5)

- Avoid overfitting in fully connected layer
 - discard hidden layer neurons every epoch with a certain probability when training
 - the discarded neurons won't transmit messages

Training:

- Each time before updating the parameters
 - Each neuron has p% to dropout

Dropout (2/5)

- Think of dropout as a way to reduce parameters
 - less parameters can avoid overfitting effectively
 - the whole model will become thinner
 - using the new network for training

Dropout (3/5)

- In testing, use the non-dropout model to inference
 - if the dropout rate is p%, all weights times 1-p%
 - assume that the dropout rate is 50%
 if a weight w = 1 by training, set w = 0.5 for testing

Testing:

Dropout (4/5) – Intuitive Reason

- When teams up, if everyone expect the partner will do the work, nothing will be done finally
- However, if you know your partner will dropout, you will do better
- When testing, no one dropout actually, so obtaining good results eventually

Dropout (5/5) – Intuitive Reason

- Why weights should multiply 1-p% when testing?
 - keeping the expected value of the output unchanged

Training of Dropout

Assume dropout rate is 50%

Testing of Dropout

No dropout

DropBlock (1/2)

- Similar to Dropout, but drops features in CNN kernel
 - randomly drop an element and its neighbors

DropBlock (2/2)

- What if we don't drop away adjacent elements?
 - after max or average pooling layer, effect of dropout

may be canceled

Dropout and DropBlock in PyTorch

- Dropout: nn.Dropout(p=0.5)
 - p: dropout rate
 - any input shape is allowed
- DropBlock: torchvision.ops.drop_block2d(input, p=0.5, block_size=3)
 - input: input tensor with shape (N, C, H, W)
 - p: dropblock rate
 - block_size: size of the block to drop

Introduction to Loss Functions

MAE (Mean Absolute Error)

- Widely used in Regression
- L1 loss
- Greater interpretability

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

MSE (Mean Square Error)

- Widely used in Regression
- L2 loss

- Outlier cause huge errors
 - avoid occasional large errors more than MAE

Cross Entropy (1/2)

- Measure the difference between two probability distributions
- Widely used in classification tasks
 - Target is a class instead of a value

$$H(p,q) = -\sum_{x} \underline{p(x)} \log \underline{q(x)}.$$

Cross Entropy (2/2)

		Model 1 (輸出)					
		機率輸出			實際One-hot encode		
	Target (Label)	男生	女生	其他	男生	女生	其他
data 1	男生	0.4	0.3	0.3	1	0	0
data 2	女生	0.3	0.4	0.3	0	1	0
data 3	男生	0.5	0.2	0.3	1	0	0
data 4	其他	0.8	0.1	0.1	0	0	1

模型1錯誤率: 1/4=0.25 Cross-entropy=6.966

Cross-entropy=2.310

		Model 2 (輸出)					
		機率輸出			實際One-hot encode		
	Target (Label)	男生	女生	其他	男生	女生	其他
data 1	男生	0.7	0.1	0.2	1	0	0
data 2	女生	0.1	0.8	0.1	0	1	0
data 3	男生	0.9	0.1	0	1	0	0
data 4	其他	0.4	0.3	0.3	0	0	1
	模型1錯誤率: 1/4=0.25						

Binary Cross-Entropy (BCE) Loss (1/3)

Binary classification

Binary Cross-Entropy (BCE) Loss (2/3)

Binary Cross-Entropy (BCE) Loss (3/3)

$$H_p(q) = -\frac{1}{N} \sum_{i=1}^{N} \underbrace{y_i \cdot log(p(y_i)) + (1 - y_i) \cdot log(1 - p(y_i))}_{\text{target prediction}}$$

Data	Model 1	Model 2
Cat (label = 0)	0.8	0.3
Cat (label = 0)	0.6	0.2
Dog (label = 1)	0.3	0.6

Loss of Model 1 = -(
$$log(1-0.8) + log(1-0.6) + log(0.3)$$
) /3 = **0.53**

Loss of Model 2 = -(
$$log(1-0.3) + log(1-0.2) + log(0.6)$$
) /3 = **0.15 (better)**

Weighted Binary Cross-Entropy (WBCE)

- Classify imbalanced datasets
 - 10% of training data are Dogs
 - 90% of training data are Cats
 - Classifier always outputs Cats → 90% accuracy
- Set $\beta = 9$
 - weight the smaller class (dog) to a higher loss value

$$BCE(\hat{p}, p) = -(p \cdot \log(p) + (1 - \hat{p}) \cdot \log(1 - p))$$

WBCE(
$$\hat{p}$$
, p) = $-(\beta \cdot p \cdot \log(p) + (1 - \hat{p}) \cdot \log(1 - p))$

MSE vs. Cross Entropy

 Cross Entropy punishes more than MSE when prediction is far away from target

Loss Functions in PyTorch

- nn.L1Loss()
- nn.MSELoss()
- nn.CrossEntropyLoss(weight=None)
 - weight: a manual rescaling weight given to each class
 - > 1D Tensor, size = # of classes
- nn.BCELoss(weight=None)
 - weight: a manual rescaling weight given to the loss of each **batch** element
 - > 1D Tensor, size = # of batches

Introduction to Momentum

Limitations of Gradient Descent Method

- Stuck in local minimum
 - gradient = 0, but isn't global minimum (lowest point of loss)
 - can't get good accuracy

$$w_i^{t+1} \leftarrow w_i^t - \eta \cdot rac{\partial L}{\partial w_i}$$

η: Learning Rate

Momentum in Real World

- In real world, the ball may not stop at the local minimum
 - everything has inertia and momentum

Momentum in Gradient Descent (1/3)

- Introduce momentum into machine learning
 - even if gradient = 0 is encountered, it's still possible to continue to move forward
 - greater chance of finding the global minimum

Momentum in Gradient Descent (2/3)

- Each time the weight is updated, the previous result (inertial direction) is considered
 - if last gradient is in the same direction as this time, $|V_t|$ will become larger
 - the update gradient of the W parameter will become faster
 - actually the weighted sum of the previous gradients

$$\begin{array}{c}
\hline{V_t} \leftarrow \beta V_{t-1} - \eta \frac{\partial L}{\partial w} \\
w \leftarrow w + V_t
\end{array}$$

t: update times

β: momentum weight

 η : learning rate

 V_t, V_{t-1} : momentum

Momentum in Gradient Descent (3/3)

Common
Gradient Descent

Gradient Descentwith Momentum

Introduction to Optimizers

Issue of Learning Rate (1/2)

- In gradient descent method or momentum update, learning rate is fixed
 - small learning rate requires many updates before stable
 - large learning rate may be difficult to converge

$$w_i^{t+1} \leftarrow w_i^t - \boxed{\eta} \cdot rac{\partial L}{\partial w_i}$$

$$\begin{array}{c}
\hline{V_t} \leftarrow \beta V_{t-1} - \overline{\eta} \frac{\partial L}{\partial w} \\
\hline
 w \leftarrow w + V_t
\end{array}$$

Issue of Learning Rate (2/2)

requires many updates!

difficult to converge!

Dynamic Learning Rate (LR)

- Adjust the learning rate during training
 - at beginning, far from the destination, use larger LR
 - after several epochs, close to the destination, reduce LR

Weight Decay

- e.g., L2 regularization
- Smooth functions are preferred
 - output is less sensitive to input
 - has less influence on noisy input

$$y = b + \sum_{i=1}^{n} w_i x_i + \Delta x_i$$

• Larger λ , consider the training error less

$$w_i^{t+1} \longleftarrow w_i^t - \eta \cdot rac{\partial L'}{\partial w_i}$$
 , where $L'(m{W}) = L(m{W}) + \lambda \cdot \sum\limits_{n=1}^N (w_n^t)^2$

$$\Longrightarrow w_i^{t+1} \longleftarrow w_i^t - \eta \cdot (rac{\partial L}{\partial w_i} + 2\lambda w_i^t)$$

Smaller w's are better!

$$\Longrightarrow w_i^{t+1} \longleftarrow \overbrace{(1-2\eta\lambda)} w_i^t - \eta \cdot rac{\partial L}{\partial w_i}$$
 Approach to 0!

Common Optimizers

SGD Optimizer

- Stochastic Gradient Descent
- Randomly choose a mini-batch (batch size = 1) instead of a whole batch to update gradient for each iteration

$$g_{t,i} = \nabla_{w_i} L\left(w_i^{(t)}\right)$$
 gradient of the i-th weight at t-th iteration $w_i^{(t+1)} = w_i^{(t)} - \eta g_{t,i}$

Adagrad Optimizer (1/2)

- Adaptive gradient
 - during the training process, adjust LR from large to small

$$w_i^{(t+1)} = w_i^{(t)} - \eta \frac{1}{\sqrt{G_{t,ii}} + \varepsilon} g_{t,i}$$

$$G_{t,ii} = \sum_{\tau=1}^t g_{\tau,i}^2$$

 $G_{t,ii} = \left| \sum_{\tau} g_{\tau,i}^2 \right|$ Accumulate squared gradients as increasing iterations

$$w_i^{(t+1)} = w_i^{(t)} - \eta \frac{1}{\sqrt{\sum_{\tau=1}^t \left(\nabla_{w_i} L\left(w_i^{(t)}\right)\right)^2 + \varepsilon}} g_{t,t}$$

 ε : a term to avoid denominator = 0 (set to 1e-7 usually)

Adagrad Optimizer (2/2)

$$w^{1} = w^{0} - \frac{\eta^{0}}{\sqrt{G_{0}} + \varepsilon} g_{0} \qquad G_{0} = \sqrt{(g^{0})^{2}}$$

$$w^{2} = w^{1} - \frac{\eta^{1}}{\sqrt{G_{1}} + \varepsilon} g_{1} \qquad G_{1} = \sqrt{(g^{0})^{2} + (g^{1})^{2}}$$

$$w^{3} = w^{2} - \frac{\eta^{2}}{\sqrt{G_{2}} + \varepsilon} g_{2} \qquad G_{2} = \sqrt{(g^{0})^{2} + (g^{1})^{2} + (g^{2})^{2}}$$

RMSprop Optimizer (1/2)

- Root Mean Square Prop
 - learning rate decrease too fast for Adagrad
 - replace sum (too large) with average

$$w_i^{(t+1)} = w_i^{(t)} - \eta \frac{1}{\sqrt{\sum [g_i^2]_t + \varepsilon}} g_{t,i}$$

$$\sum [g_i^2]_t = \alpha \sum [g_i^2]_{t-1} + (1-\alpha) g_{t,i}^2$$
 Average squared gradients of the last (t-1) iterations

 α : a hyperparameter for weighting the average of squared gradients of the last (t-1) iterations

RMSprop Optimizer (2/2)

Adam Optimizer

- Adaptive Moment Estimation
 - Momentum + RMSprop + correction
 - $-m_i^{(t)}$: moving average of gradients (the 1st moment)
 - $-v_i^{(t)}$: moving average of squared gradients (the 2nd moment)
 - $-\beta_1, \beta_2 \in [0, 1)$: a hyperparameter for exponential decay rates of these moving averages

$$m_{i}^{(t)} = \beta_{1} m_{i}^{(t-1)} + (1 - \beta_{1}) g_{t,i} \quad \widehat{m}_{i}^{(t)} = \frac{m_{i}^{(t)}}{1 - \beta_{1}^{t}} ; \hat{v}_{i}^{(t)} = \frac{v_{i}^{(t)}}{1 - \beta_{2}^{t}}$$

$$v_{i}^{(t)} = \beta_{2} v_{i}^{(t-1)} + (1 - \beta_{2}) g_{t,i}^{2} \quad w_{i}^{(t+1)} = w_{i}^{(t)} - \eta \frac{1}{\sqrt{\widehat{v}_{i}^{(t)} + \varepsilon}} \widehat{m}_{i}^{(t)}$$

Optimizers in PyTorch (1/2)

- SGD (optionally with momentum or weight decay)
 - torch.optim.SGD(model.parameters(), lr=<required parameter>, momentum=0, weight_decay=0)
- Adagrad (optionally with weight decay)
 - torch.optim.Adagrad(model.parameters(), Ir=0.01, weight_decay=0, eps=1e-10)
- RMSprop (optionally with momentum or weight decay)
 - torch.optim.RMSprop(model.parameters(), Ir=0.01,alpha=0.99, eps=1e-08, weight_decay=0, momentum=0)

Optimizers in PyTorch (2/2)

- Adam (optionally with L2 regularization)
 - torch.optim.Adam(model.parameters(), Ir=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0) $\frac{\beta_1}{\beta_2}$
- AdamW (Decoupled Weight Decay Regularization)
 - torch.optim.AdamW(model.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0.01)

$$w_i^{(t+1)} = w_i^{(t)} - \eta \left(\frac{1}{\sqrt{\hat{v}_i^{(t)} + \varepsilon}} \hat{m}_i^{(t)} + \lambda w_i^{(t)} \right)$$

- LAMB
 - torch_optimizer.Lamb(model.parameters(), Ir=0.1, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)

LAMB Optimizer

- Adam or AdamW don't work well for a large batch
- Layer-wise scaled by $\phi\left(\left\|w_i^{(t)}\right\|\right)$
- Layer-wise normalized to unit l₂-norm
- Scale the batch size of BERT pre-training to 64K without losing accuracy
- Reducing the BERT training time from 3 days to around 76 minutes

$$w_i^{(t+1)} = w_i^{(t)} - \eta \frac{\phi\left(\left\|w_i^{(t)}\right\|\right)}{\left\|r_i^{(t)} + \lambda w_i^{(t)}\right\|} \left(r_i^{(t)} + \lambda w_i^{(t)}\right)$$

$$r_i^{(t)} = \frac{1}{\sqrt{\hat{v}_i^{(t)} + \varepsilon}} \hat{m}_i^{(t)} ; \phi(z) = \min\{\max\{z, \gamma_l\}, \gamma_u\}$$
$$\sqrt{\hat{v}_i^{(t)} + \varepsilon} \qquad \gamma_l, \gamma_u : \text{lower and upper bound for } z$$

Learning Rate Schedulers

Learning Rate Scheduler

- Predefined framework that adjusts the learning rate between iterations as the training progresses
 - CosineAnnealingLR
 - CosineAnnealingWarmRestarts
 - CyclicLR
 - OneCycleLR
 - ReduceLROnPlateau

CosineAnnealingLR

- torch.optim.lr_scheduler.CosineAnnealingLR(
 optimizer, T_max = 32, eta_min = 1e-4)
 - T_max: maximum number of iterations (epochs)
 - eta_min: minimum learning rate

CosineAnnealingWarmRestarts

- torch.optim.lr_scheduler.CosineAnnealingWarmRestarts (optimizer, T_0 = 8, T_mult = 1, eta_min = 1e-4)
 - T 0: number of iterations for the first restart
 - T_mult: a factor increases Ti after a restart
 - eta_min: minimum learning rate

Warm Restart

Increasing LR causes the model to diverge

 Intentional divergence enables the model to escape local minimum and find an even better global minimum

CyclicLR (1/2)

- Use warm restart strategy
- Cyclical Learning Rate (CLR) Policy
- Change the learning rate after every batch
- torch.optim.lr_scheduler.CyclicLRCyclicLR(optimizer, base_lr = 0.0001, max_lr = 1e-3, step_size_up = 4, mode = "triangular")
 - base_Ir: initial LR, the lower boundary in the cycle
 - max_lr: upper LR boundaries in the cycle
 - step_size_up: number of training iterations in the increasing half of a cycle
 - mode: "triangular" or "triangular2" or "exp_range"

CyclicLR (2/2)

mode = "triangular"

OneCycleLR (1/2)

- 1cycle learning rate policy
 - achieve super-convergence

- Change the learning rate after every batch
- Use warm-up learning rate strategy
 - data are new for the model at the beginning of training
 - smaller LR (less weight update) to gain more knowledge
 - prevent overfitting to the first data

OneCycleLR (2/2)

- torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr = 1e-3, steps_per_epoch = 8, epochs = 4)
 - max_lr: upper learning rate boundaries in the cycle
 - steps_per_epoch: number of steps per epoch to train for
 - epochs: number of epochs to train for

ReduceLROnPlateau

- Reduce learning rate when a metric has stopped improving for a 'patience' number of epochs
- Update LR independent of epochs
- torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=2)
 - mode='min': Ir will be reduced when the quantity monitored has stopped decreasing
 - factor: factor by which the learning rate will be reduced new_lr = lr * factor
 - patience=2: ignore the first 2 epochs with no improvement, and will decrease the LR after the 3rd epoch if the loss still hasn't improved then

Data Augmentation

Insufficient Training Data

- Collecting large amounts of data is usually a big problem
 - some data is limited, e.g., medical images
 - if data is insufficient or the complexity is too low, it may also cause overfitting

Data Augmentation (1/5)

- Create new training materials under limited data
 - avoid overfitting
 - improve accuracy
- Common methods
 - geometric transformations
 - pad, resize, rotate, flip, crop
 - color space transformations
 - y gray scale, change the brightness, contrast, saturation or hue
 - increase noise
 - Gaussian blur

Data Augmentation (2/5)

Resize

Rotate

Data Augmentation (3/5)

Flip

Crop

Data Augmentation (4/5)

Gray scale

Color Jitter: brightness, contrast, saturation or hue

Data Augmentation (5/5)

Noise

Gaussian Blur

Advanced Augmentation (1/3)

- Fusion of different features in one training sample
 - adjust the label according to the mixing ratio
 - Mixup, Cutout, CutMix

Advanced Augmentation (2/3)

- Fuse more pictures together for training
 - mosaic method

aug_-319215602_0_-238783579.jpg

aug_1474493600_0_-45389312.jpg

aug_-1271888501_0_-749611674.jpg

aug_1715045541_0_603913529.jpg

aug_1462167959_0_-1659206634.jpg

aug_1779424844_0_-589696888.jpg

Advanced Augmentation (3/3)

Random Erasing

 randomly choose a rectangle region in the image and erase its pixels with random values or the ImageNet mean pixel value

Data Augmentation – Example

- Combine different data augmentation methods
- Code

Result

References

References (1/3)

- 台大李宏毅老師機器學習課程
 - http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML16.html
- 聊一聊深度學習的activation function
 - https://zhuanlan.zhihu.com/p/25110450
- Gradient descent with momentum
 - https://zhuanlan.zhihu.com/p/34240246
- Gradient descent optimization algorithms
 - https://reurl.cc/nz8Kkn
- Group Normalization
 - https://arxiv.org/abs/1803.08494

References (2/3)

- Regularization
 - https://hackmd.io/@allen108108/Bkp-RGfCE
- Adam: A Method for Stochastic Optimization
 - https://arxiv.org/abs/1412.6980
- Large Batch Optimization for Deep Learning: Training BERT in 76 minutes
 - https://arxiv.org/abs/1904.00962
- Learning Rate Scheduler
 - https://towardsdatascience.com/a-visual-guide-tolearning-rate-schedulers-in-pytorch-24bbb262c863

References (3/3)

- Warm-up strategy
 - https://chih-sheng-huang821.medium.com/%E6%B7%B1%E5%BA%A6%E5
 %AD%B8%E7%BF%92warm-up%E7%AD%96%E7%95%A5%E5%9C%A8%E5%B9%B9%E4%BB%80%E9%BA%BC-95d2b56a557f
- PyTorch documentation
 - https://pytorch.org/docs/stable/optim.html
 - https://pytorch.org/docs/stable/nn.html
 - https://pytorch.org/vision/main/auto_examples/plot_transf
 orms.html#sphx-glr-auto-examples-plot-transforms-py

Homework

Homework (1/4)

- Download the example file from FB club
 - copy it to your colab
 - data set: FashionMNIST
 - current accuracy: 55.57% (10 epochs)
 - press "Run all" to run the code
- Target
 - use the training techniques learned today to further improve your accuracy
- Download your code which achieve the best accuracy as a .py file and a .ipynb file and submit it
- Write a report about how you improve the accuracy

Homework (2/4)

Specifications

- Do not modify the number of epochs!
- Do not modify valid_size!
- Do not modify the base model architecture!
 - you cannot omit or modify the 3 layers of nn.Linear or add new layers of conv, linear, etc.
 - > you can add normalization, activation function or dropout layer
- You can try various methods to improve your accuracy, but you need to provide screenshot of your results in your report.
- Write down your best overall test accuracy at the beginning of your report. (e.g., Best accuracy: 90.28%)
- TA will run your code if needed!

Homework (3/4)

- Grading Policy
 - Overall Test Accuracy (60%)
 - → Accuracy ≥ 80% (30%)
 - \rightarrow Accuracy $\ge 84\% (30\% + 20\%)$
 - \rightarrow Accuracy \geq 89% (30% + 20% + 10%)
 - Report (40%)
 - try more training techniques and tune more hyperparameters!
 - Bonus (5%)
 - → Accuracy ≥ 90% or an excellent report!

Homework (4/4)

Deadline: 7/21 (Sun.) 23:59

- Submit the following files to rhyang.ee12@nycu.edu.tw
 - HW3_[帳號].py
 - e.g., HW3_M112rhyang.py
 - HW3_[帳號].ipynb
 - e.g., HW3_M112rhyang.ipynb
 - HW3_Report_[帳號].pdf
 - > e.g., HW3_Report_M112rhyang.pdf
 - 信件主旨:中文名字_HW3
 - › e.g., 楊荏宏_HW3

Thank you

