ML Development: Model Validation

MLOps: ML Development

The MLOps Personas

ML Engineer

ML Researcher

Data Scientist

Data Engineer

Software Engineer

DevOps

Business Analyst

Model-centricError Analysis

Model Design

- Weight initialization: Random Uniform
- Activation: ReLU
- Loss function: CEE
- Hidden layers: 3
- Units per layer: {p, p+1, p+1, p+3, 10}
- Optimizer: SGD
- Dropout layers, L₄

Hyperparameters

- Learning rate
- Batch size
- Dropout rate

Error Analysis

Model-centric

Data-centric

Model Validation Methods

Training / Test **Split**

Leave-one-out Cross-validation

NestedCross-validation

k-Fold Cross-validation

Leave-one-group-out
Cross-validation

Time-seriesCross-validation

Train/Test **Splits**

k-Fold Cross-Validation

Leave-One-Out Cross-Validation

Leave-One-Group-Out Cross-Validation

Anomaly Detection

Time Series Cross-Validation

k-Fold

Time Series

Credit: Andrew Ng

Credit: Andrew Ng

- Analyze model errors on development set
- Apply data augmentation
- Improve false negative cases
- Conduct small and isolated experiments

- Analyze model errors on development set
- Apply data augmentation
- Improve false negative cases
- Conduct small and isolated experiments

- Analyze model errors on development set
- Apply data augmentation
- Improve false negative cases
- Conduct small and isolated experiments

- Analyze model errors on development set
- Apply data augmentation
- Improve false negative cases
- Conduct small and isolated experiments

DeepLearning.Al | Manding Al

Data-Centric AI Competition

Join the data-centric Al movement!

Click here to enter the contest!

About the competition

A collaboration between DeepLearning.Al and Landing Al, the Data-Centric Al Competition aims to elevate data-centric approaches to improving the performance of machine learning models.

In most machine learning competitions, you are asked to build a high-performance model given a fixed dataset. However, machine learning has matured to the point that high-performance model architectures are widely available, while approaches to engineering datasets have lagged. The Data-Centric Al Competition inverst he traditional format and instead asks you to improve a dataset given a fixed model. We will provide you with a dataset to improve by applying data-centric techniques such as fixing incorrect labels, adding examples that represent edge cases, apply data augmentation, etc.

Contestants must submit their altered dataset for evaluation by September 4, 2021. 6PM PT (We picked this date because it is the birthday of John McCarthy, who had coined the term artificial intelligence!) The top three winners from each of the two categories (Best Performance Overall and Most Innovative) will be invited to a private event with Andrew Ng to share ideas about how to grow the data-centric movement, and will be highlighted in

Rank	Submission	Accuracy
	Baseline	0.64421
	DeepLearning.Al	
	(https://www.deeplearning.ai)	
1	iter3_002	0.85826
Aug 22, 2021	Divakar Roy	
	https://www.linkedin.com/in/droyed/	
2	baseline-cleaned-Naugmented	0.85744
Jul 21, 2021	Innotescus	
	https://innotescus.io/	
3 Aug 28, 2021	syn-annsub_24	0.85455
	Synaptic-AnN	
Aug 20, 2021	https://www.linkedin.com/in/nidhish-s-	
	shah/	
	https://www.linkedin.com/in/asfandyarazh	
	ar/	
4	syn-annsub-21-gray	0.85083
Aug 27, 2021	Synaptic-AnN	
	https://www.linkedin.com/in/nidhish-s-	
	shah/	
	https://www.linkedin.com/in/asfandyarazh	
	ar/	
5	jktubs_98_20_10_Edge	0.84959
	Jens Kramer	
Aug 31, 2021	habitan (format Haliandle and for format habitan	
	https://www.linkedin.com/in/jens-kramer-	

- Analyze model errors on development set
- Apply data augmentation
- Improve false negative cases
- Conduct small and isolated experiments

	Actual Yes	Actual No
Predicted Yes	True Positive	False Positive
Predicted No	False Negative	True Negative

- Analyze model errors on development set
- Apply data augmentation
- Improve false negative cases
- Conduct small and isolated experiments

Error

Blurry images

Image defects in corners

High false positive rate

Experiment

- → Add random blur
- → Random crop
- → Increase confidence threshold

