Práctico 4 - Sistemas No Lineales

En este práctico se analiza cómo obtener soluciones de un sistema no lineal f(x) = 0Es decir: cómo hallar raíces de una función f

Ejercicio 1

Teorema 0.0.1 (Punto Fijo). Si X es un espacio métrico completo $y \varphi : X \to X$ una r-contracción con r < 1. Entonces φ tiene un único punto fijo α , y la sucesión $\{x_n\}_{n \in \mathbb{N}}$ generada mediante $x_{n+1} = \varphi(x_n)$ converge a α . El resultado no depende del elemento inicial $x_0 \in X$.

Vamos a probar el Teorema 0.0.1 en cuatro etapas:

- 1. Probar que toda r-contracción es continua. Luego, φ es continua.
- 2. Probar que la sucesión $\{x_n\}_{n\in\mathbb{N}}$ es de Cauchy. Como X es completo entonces $\lim_n x_n = \alpha \in X$.
- 3. Probar que α es punto fijo de φ , es decir que $\varphi(\alpha) = \alpha$
- 4. Finalmente, probar unicidad del punto fijo: si $\beta = \varphi(\beta)$, entonces $\alpha = \beta$.

Ejercicio 2

Demostrar el siguiente Corolario del Teorema 0.0.1 anterior: Si $g:[a,b] \to [a,b]$ tiene derivada continua en [a,b] y |g'(x)| < 1, $\forall x \in [a,b]$, entonces g es una contracción y por lo tanto existe un único punto fijo $c \in [a,b]$ de g.

Ejercicio 3

Demostrar el siguiente

Teorema 0.0.2 (Orden de un MIG). Sea α punto fijo de $g \in \mathbb{C}^p$, y x_0 elegido de modo que la sucesión $\{x_n\}_{n\in\mathbb{N}}$ dada por el MIG $x_{n+1}=g(x_n)$ converge a α . Si las derivadas i-ésimas de g verifican:

$$\begin{cases} g^{(i)}(\alpha) = 0, \ \forall i = 1, \dots, p - 1 \\ g^{(p)}(\alpha) \neq 0 \end{cases}$$

Entonces la sucesión $\{x_n\}_{n\in\mathbb{N}}$ tiene orden de convergencia p y velocidad $\beta = \frac{1}{n!}|g^{(p)}(\alpha)| \neq 0$.

Ejercicio 4

- 1. Utilizando el Teorema de Órdenes, enunciar condiciones suficientes para las cuales el método de Newton tiene orden de convergencia cuadrático o superior.
- 2. ¿En qué casos el orden es exactamente cuadrático?
- 3. Dar un ejemplo de función en la que el método de Newton converge linealmente (orden uno).
- 4. Dar un ejemplo de función en la que el método de Newton no converge (para ningún x_0 inicial).

Ejercicio 5

- 1. Estimar $\sqrt{2}$ aplicando el método de Newton a la función $f: f(x) = x^2 2$.
- 2. Estudie la evolución del error, analizando si el orden y la velocidad de convergencia coinciden con los respectivos valores teóricos.

Ejercicio 6

En lo que sigue asumiremos que la raíz α buscada verifica $f'(\alpha) \neq 0$. Es decir que es raíz simple.

- 1. Calcular el orden de convergencia del método de la secante.
- 2. Comparar el desempeño del método de la secante con el de Newton (también conocido como el método de la tangente). Considerar el orden de convergencia y cantidad de operaciones.
- 3. ¿Puede ocurrir que el método de Newton sea convergente a la raíz pero el de la Secante no?

Ejercicio 7

Para resolver la ecuación x + ln(x) = 0 se proponen los tres MIG siguientes con $x_0 = 1/2$:

$$i x_{n+1} = -ln(x_n)$$

ii
$$x_{n+1} = e^{-x_n}$$

iii
$$x_{n+1} = \frac{x_n + e^{-x_n}}{2}$$

Elegir el MIG más adecuado. Justificar.

Ejercicio 8 (Examen, agosto de 2013)

Se desea resolver la ecuación de punto fijo x = f(x), con f de clase C^2 , utilizando el siguiente método M:

$$(M): \begin{cases} x_0 \in \mathbb{R} \\ x_{k+1} = x_k + a(x_k - f(x_k)) \end{cases}$$

1. Hallar $a \in \mathbb{R}$ para maximizar el orden de convergencia del método M. Asumir que existe solución $\alpha = f(\alpha)$ y además verifica $f'(\alpha) \neq 1$.

En las partes siguientes se utilizará el método M con el valor de a hallado anteriormente.

- 2. Sea $f(x) = \frac{2}{x}$. Hallar el mayor intervalo I tal que $\sqrt{2} \in I$ y el método converge siempre que x_0 pertenezca al intervalo I.
- 3. Sea $x_0 = 1$ y $e_k = |x_k \sqrt{2}|$ el error en el paso k. Hallar c tal que $e_{k+1} \le ce_k^2$. Sugerencia: Utilizar que $x_n \in [1,2]$ para todo n, y que $\frac{2}{r^3} < 2$ si $1 \le x \le 2$.
- 4. Utilizando la parte anterior, determinar una cantidad suficiente de iteraciones para asegurar un error menor que 10^{-5} .

2