```
In [1]: pip install scikit-learn
       Requirement already satisfied: scikit-learn in c:\users\arati\anaconda3\lib\site-
       packages (1.4.2)
       Requirement already satisfied: numpy>=1.19.5 in c:\users\arati\anaconda3\lib\site
       -packages (from scikit-learn) (1.26.4)
       Requirement already satisfied: scipy>=1.6.0 in c:\users\arati\anaconda3\lib\site-
       packages (from scikit-learn) (1.13.1)
       Requirement already satisfied: joblib>=1.2.0 in c:\users\arati\anaconda3\lib\site
       -packages (from scikit-learn) (1.4.2)
       Requirement already satisfied: threadpoolctl>=2.0.0 in c:\users\arati\anaconda3\l
       ib\site-packages (from scikit-learn) (2.2.0)
       Note: you may need to restart the kernel to use updated packages.
        1. Import packages and observe dataset
In [2]: #Import numerical libraries
        import numpy as np
        import pandas as pd
In [3]: # import graphical plotting libraries
        import seaborn as sns
        import matplotlib.pyplot as plt
        %matplotlib inline
        #Import Linear Regression Machine Learning Libraries
        from sklearn import preprocessing
        from sklearn.preprocessing import PolynomialFeatures
        from sklearn.model selection import train test split
        from sklearn.linear_model import LinearRegression, Ridge, Lasso
        from sklearn.metrics import r2_score
```

In [41]: data=pd.read_csv(r"C:\Users\arati\Downloads\car-mpg.csv")

data

	mpg	cyl	disp	hp	wt	acc	yr	origin	car_type	car_name
O	18.0	8	307.0	130	3504	12.0	70	1	0	chevrolet chevelle malibu
1	15.0	8	350.0	165	3693	11.5	70	1	0	buick skylark 320
2	18.0	8	318.0	150	3436	11.0	70	1	0	plymouth satellite
3	16.0	8	304.0	150	3433	12.0	70	1	0	amc rebel sst
4	17.0	8	302.0	140	3449	10.5	70	1	0	ford torino
•••							•••			
393	27.0	4	140.0	86	2790	15.6	82	1	1	ford mustang gl
394	44.0	4	97.0	52	2130	24.6	82	2	1	vw pickup
395	32.0	4	135.0	84	2295	11.6	82	1	1	dodge rampage
396	28.0	4	120.0	79	2625	18.6	82	1	1	ford ranger
397	31.0	4	119.0	82	2720	19.4	82	1	1	chevy s-10
398 rows × 10 columns										

```
In [42]: data.info()
```

```
RangeIndex: 398 entries, 0 to 397
Data columns (total 10 columns):
    Column
          Non-Null Count Dtype
            -----
0
   mpg
            398 non-null
                           float64
           398 non-null int64
1
   cyl
   disp
           398 non-null float64
2
3
           398 non-null
                          object
   hp
           398 non-null
                           int64
4
   wt
5
   acc
           398 non-null float64
           398 non-null
                          int64
6
    yr
    origin
7
                           int64
            398 non-null
    car_type 398 non-null int64
8
    car_name 398 non-null
                           object
dtypes: float64(3), int64(5), object(2)
memory usage: 31.2+ KB
```

<class 'pandas.core.frame.DataFrame'>

Out[41]:

```
In [43]: # Drop 'car_name' if it exists
   if 'car_name' in data.columns:
        data = data.drop(['car_name'], axis=1)

# Replace numeric origin values with corresponding labels
   if 'origin' in data.columns:
        data['origin'] = data['origin'].replace({1: 'america', 2: 'europe', 3: 'asia

# Apply one-hot encoding to the 'origin' column
   if 'origin' in data.columns:
        data = pd.get_dummies(data, columns=['origin'], dtype=int)

# Replace '?' with NaN
data = data.replace('?', np.nan)
```

```
# Convert all columns to numeric where possible (non-numeric values will become
         data = data.apply(lambda x: pd.to_numeric(x, errors='coerce'))
         # Fill NaN values with the median of each column
         data = data.apply(lambda x: x.fillna(x.median()), axis=0)
In [25]:
         data.head()
Out[25]:
                                              yr car_type origin_america origin_asia origin_
            mpg cyl
                       disp
                               hp
                                     wt
                                         acc
         0
             18.0
                    8 307.0 130.0 3504 12.0 70
                                                        0
                                                                       1
                                                                                  0
             15.0
                    8 350.0 165.0 3693 11.5 70
                                                        0
                    8 318.0 150.0 3436 11.0 70
                                                        0
                                                                       1
                                                                                  0
         2
             18.0
             16.0
                    8 304.0 150.0 3433 12.0 70
                                                        0
         3
```

2. Model Building

8 302.0 140.0 3449 10.5 70

17.0

Here we would like to scale the data as the columns are varied which would result in 1 column dominating the others.

0

0

1

First we divide the data into independent (X) and dependent data (y) then we scale it.

```
In [26]: X = data.drop(['mpg'],axis = 1) # independent variable
y = data[['mpg']] # dependent variable

In [27]: #scaling the data
X_s = preprocessing.scale(X)
X_s = pd.DataFrame(X_s,columns=X.columns) #converting scaled data into dataframe
y_s = preprocessing.scale(y)
y_s = pd.DataFrame(y_s,columns = y.columns) #ideally train, test data should be

In [28]: X_s
```

Out[28]:		cyl	disp	hp	wt	acc	yr	car_type	origin_i			
	0	1.498191	1.090604	0.673118	0.630870	-1.295498	-1.627426	-1.062235	С			
	1	1.498191	1.503514	1.589958	0.854333	-1.477038	-1.627426	-1.062235	С			
	2	1.498191	1.196232	1.197027	0.550470	-1.658577	-1.627426	-1.062235	С			
	3	1.498191	1.061796	1.197027	0.546923	-1.295498	-1.627426	-1.062235	С			
	4	1.498191	1.042591	0.935072	0.565841	-1.840117	-1.627426	-1.062235	С			
	•••	•••	***	•••	***		•••	•••				
	393	-0.856321	-0.513026	-0.479482	-0.213324	0.011586	1.621983	0.941412	С			
	394	-0.856321	-0.925936	-1.370127	-0.993671	3.279296	1.621983	0.941412	-1			
	395	-0.856321	-0.561039	-0.531873	-0.798585	-1.440730	1.621983	0.941412	С			
	396	-0.856321	-0.705077	-0.662850	-0.408411	1.100822	1.621983	0.941412	С			
	397	-0.856321	-0.714680	-0.584264	-0.296088	1.391285	1.621983	0.941412	С			
	398 rows × 10 columns											
	4											
In [29]:	V S											
Out[29]:	7	mpg										
0.0.0[]		-0.706439										
		-1.090751										
		-0.706439										
		-0.962647										
	4	-0.834543										
	•••											
	393	0.446497										
	394	2.624265										
	395	1.087017										
	396	0.574601										
	397	0.958913										
	398 rd	ows × 1 colu	umns									
In [30]:	data.shape											
Out[30]:	(398, 11)											
In [31]:	<pre>#split into train, test set X_train,X_test, y_train,y_test = train_test_split(X_s, y_s, test_size = 0.20, r</pre>											

```
Out[31]: (318, 10)
```

2.a Simple Linear Model

```
In [32]: #Fit simple linear model and find coefficients
         regression model = LinearRegression()
         regression model.fit(X train, y train)
         for idx, col_name in enumerate(X_train.columns):
             print('The coefficient for {} is {}'.format(col name, regression model.coef
         intercept = regression model.intercept [0]
         print('The intercept is {}'.format(intercept))
        The coefficient for cyl is 0.24638776053571634
        The coefficient for disp is 0.2917709209866447
        The coefficient for hp is -0.18081621820393684
        The coefficient for wt is -0.667553060986813
        The coefficient for acc is 0.06537309205777046
        The coefficient for yr is 0.3481770259426718
        The coefficient for car_type is 0.3339231253960359
        The coefficient for origin_america is -0.08117984631927032
        The coefficient for origin_asia is 0.0698609820966492
        The coefficient for origin europe is 0.030003161242288048
        The intercept is -0.01800683137092324
```

2.b Regularized Ridge Regression

2.c Regularized Lasso Regression

```
In [37]: #alpha factor here is lambda (penalty term) which helps to reduce the magnitude

lasso_model = Lasso(alpha = 0.1)
lasso_model.fit(X_train, y_train)

print('Lasso model coef: {}'.format(lasso_model.coef_))
#As the data has 10 columns hence 10 coefficients appear here
```

```
Lasso model coef: [-0. -0. -0.07247557 -0.45867691 0. 0.2698134 0.11341188 -0.04988145 0. 0. ]
```

3. Score Comparison

```
In [38]: #Model score - r^2 or coeff of determinant
         \#r^2 = 1 - (RSS/TSS) = Regression error/TSS
         #Simple Linear Model
         print(regression_model.score(X_train, y_train))
         print(regression_model.score(X_test, y_test))
         print('**************************)
         #Ridge
         print(ridge_model.score(X_train, y_train))
         print(ridge_model.score(X_test, y_test))
         print('**************************')
         #Lasso
         print(lasso_model.score(X_train, y_train))
         print(lasso_model.score(X_test, y_test))
        0.8373422857977738
        0.8474768646673948
        *********
       0.837332956087454
       0.847263786646594
        ********
       0.8007202116330951
        0.8283046020148332
In [ ]:
In [ ]:
```