

Space Travel on a Shoestring: CubeSat Beyond LEO

Massimiliano Vasile, Willem van der Weg, Marilena Di Carlo Department of Mechanical and Aerospace Engineering University of Strathclyde, Glasgow

5th Interplanetary CubeSat Workshop, Oxford, 24-25 May 2016

INTRODUCTION

EXPLORING SPACE: AN EXPENSIVE BUSINESS

- Standard exploration mission cost: £ 100-2000 M
- Cassini: \$ 3.4 billion total program cost

New type of spacecraft:

- Small, light and simple
- COTS and spare parts
- No dedicated launch
- No dedicated ground infrastructure
- Ingenious low-cost solutions

LOW COST ACCESS TO SPACE

- Increasing interest in nano and pico spacecraft
- Low cost fabrication does not imply low cost transportation
- Launch as auxiliary payload on planned missions:
 - . Standard injection orbit (Geosynchronous Transfer Orbit, GTO)
 - No date selection
- New low-cost transfer solutions are required:

Can we go beyond LEO with CubeSats?

TRANSFER TO THE MOON

OBJECTIVES AND ASSUMPTIONS

- Achieve spacecraft capture around the Moon with a transfer time of about 3 years
- S/C: hybrid propulsion system combining **electric engine** and **solar sail**
- Release in standard GTO
- Spacecraft parameters:

	High Performance S/C	Low Cost S/C
Specific impulse [s]	4500	4500
Thrust level [mN]	10	1.6
Wet mass [kg]	4	4
Area to Mass Ratio [m²/kg]	2, 4, 6	0.5, 1

CONCEPTUAL DESIGN

3U cube satellite:

- service module (communications, power, attitude control, data handling)
- propulsion module (electric engine)
- deployable storage module (storage of solar sail with integrated solar cells)

System Model

Modified version of the Circular Restricted 3-Body Problem
 (CR3BP) including solar radiation pressure acceleration, a_{SRP}:

$$\frac{d^2\mathbf{r}}{dt^2} + 2\boldsymbol{\omega} \times \frac{d\mathbf{r}}{dt} + \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r}) = \mathbf{a}_{SRP} - \nabla V(\mathbf{r})$$

$$V = -\left(\frac{1-\mu}{r_1} + \frac{\mu}{r_2}\right)$$

 Control of the reflecting surface: maximisation of the increase of energy of the spacecraft

$$\beta = \arctan\left(\frac{3\tan\alpha}{4} + \frac{\sqrt{9\tan^2\alpha + 8}}{4}\right), \quad \alpha = \arccos\left(\mathbf{e}_{v}\cdot\mathbf{S}\right) - \frac{\pi}{2}$$

LOW-THRUST MODEL

CAMELOT: Computational Analytic Multi-fidElity Low-thrust Optimisation Toolbox

Analytical propagator based on analytical formulas for the perturbed Keplerian motion (first order expansion in the perturbing acceleration):

. low-thrust acceleration

- . J2, J3, J4, J5 harmonic of the Earth's gravity field
- . atmospheric drag perturbation
- solar radiation pressure (eclipses)
- . Sun and Moon perturbations

TRANSFER DESIGN

- Spacecraft into planar halo orbit at the Earth-Moon L1 libration point
- 2. Backward propagation from halo to Earth along stable manifold
 - coasting phase (reflective surface is pointed such that the energy of the spacecraft is increased from Earth to halo)
 - manoeuvres to connect the initial Earth orbit and the state obtained from coasting backwards from the halo
- 3. Forward propagation from halo to the Moon
 - reflective surface and maneuvers used to reduce energy for capture

INITIAL EARTH ORBIT

- Release in GTO for both high performance and low cost S/C
- Initial orbit:
 - . High performance S/C: GTO
 - . Low cost S/C: **continuous low-thrust propulsion** to increase perigee to GEO radius
- From GTO or GEO perigee orbit: apogee and perigee raising manoeuvres to hop onto a stable invariant manifold leading to L1

Low cost S/C continuous low-thrust propulsion:

- ToF = 54 days
- $\Delta V = 1.9 \text{ km/s}$
- $m_{fuel} = 0.17 \text{ kg}$

TRANSFER TO THE MOON: RESULTS

HIGH PERFORMANCE SPACECRAFT

- Different manifold lines on the manifold tubes are used to attempt connection between halo and Earth GTO
- ΔV costs:

Transfer	Area to Mass Ratio [m²/kg]		
Time [years]	2	4	6
0.5	1,244	1,111	1,081
1	1,105	1,046	1,072
1.5	1,034	997	985
2	984	960	916
1.5	913	883	812
3	936	854	747
	'		

LOW COST SPACECRAFT

- Different manifold lines on the manifold tubes are used to attempt connection between halo and enlarged GTO
- ΔV costs:

- Total cost: ΔV + cost for continuous **low-thrust propulsion to** reach enlarged GTO (ΔV = 1.9 km/s)

LOW COST SPACECRAFT TRANSFER

- 72 manoeuvres
- $-\Delta V = (0.351 + 1.9) \text{ km/s} = 2.24 \text{ km/s}$
- Total transfer time: 701 days
- Coasting period where reflective sail is used: 1 year
- Cost for capture: 20 m/s

LUNAR ORBIT LONGEVITY

What are the best conditions near the L1 libration point for longer duration orbit about the Moon?

- 3-years propagation from:

$$\mathbf{x} = [X_{L1} \ y \ 0 \ \dot{x} \ 0 \ 0]^T$$
 for different values of y and \dot{x}

- Orbit 'stability':

$$\frac{x_{L1} < x < x_{L2}}{\sqrt{x_{Moon}^2 + y_{Moon}^2}} > R_{Moon}$$

LUNAR ORBIT LONGEVITY

Event causing the orbit propagation to halt (left) and orbit lifetime in non-dimensional time unit (right):

TRAJECTORY DESIGN FOR OTHER CUBESAT MISSIONS

CUBESAT TRAJECTORY DESIGN

Small satellites propulsion technology:

- cold gas
- simple **electric engine** (arcjet, resistojet)
- solar sail

Arcjet thrusters, IRS, Stuttgart.

Low-thrust trajectory design for CubeSat:

- CAMELOT (Computational Analytic Multi-fidElity Low-thrust Optimisation Toolbox)
- Quick assessment and optimisation of low-thrust orbital transfers
- Trajectory design exploiting natural dynamics for limited-resource spacecraft

CUBESAT TRAJECTORY DESIGN

Small spacecraft orbital transfers:

- GTO-GEO transfer
- Orbit raising from LEO
- De-orbiting at end-of-life

Exploitation of natural dynamics:

- Variation of right ascension: J2
- Eccentricity variation: J3, J4, J5, SRP

CONCLUSIONS

CONCLUSIONS

- Transfer to the Moon through L1 halo orbit
- High area-to-mass ratio hybrid propulsion spacecraft (electric engine, solar sail)
- Control of the reflective surface to increase or decrease spacecraft energy
- Transfer to the Moon realised in less than 3 years

We can go beyond LEO with CubeSats.

