Algorithme	Principe			Fonction Opency			Performance			
	- cet algorithme est basé sur la detection de contours						dans cette partie on traite	les performances des alg	orithmes	
Detection d'obstacle	Les diffrentes algorithmes de detection de c	contours					Computing Time	The number of feature points	The number of matching points (left/right)	False match rate
	Harris Corner Detector	Principe = les coins sont associ 2. Spatial derivative calculation 3. Structure tensor setup 4. Harris response calculation 5. Non-maximum suppression		img - Input image, it should be grayscale and float32 type. blockSize - It is the size of neighbourhood considered for corner detection ksize - Aperture parameter of Sobel derivative used. k - Harris detector free parameter in the equation. Dans une approche d'améliorer la précision on utilise la commande cv2.cornerSubPix()			Matching is used to describe things which are of the same colour or design dans les conditions statique 10.556951 (indoor image) 8.844036 (outdoor image	utilise deux images pour une caméra stéreo) dans les condition statiques 800/800 (indoor image	413/413(indoor image) 305/305 (outdoor image)	2.2%(9/413)(indoor image) 2.3%(7/305) (outdoor image)
	Shi-Tomasi Corner Detector	utilise la même matrice que la méthode Harris mais en calculant à la fin le minimum	http://opencv-python-tutroals. readthedocs. io/en/latest/py_tutorials/py_fe ature2d/py_shi_tomasi/py_shi_ tomasi.html#shi-tomasi	Bans the approach a unknown a pre-	asion on unise to	animanae evz.eemeroust ixy				
Not free to use	SIFT (Scale-Invariant Feature Transform)	-Tansformer une image en ense caractéristiques qui sont invaria géométriques usuelles (homothe moins fiables aux transformation https://drive.google.com/open?id	nts par transformations étie, rotation) et de manière ns affines et à l'illumination	sift.detect(): finds the keypoint in the	e images Each key	rpoint is a special structure which h	54.328028(indoor image)			0.99%(7/710)(indoor image) 0.78%(9/1156)
	SURF (Speeded-Up Robust Features)	- Considérer comme un SIFT plu SURF sont obtenues avec un fil des points d'intérets SURF algoi computational efficiency by the u image.	us rapide/les descripteur tre gaussien centré au niveau rithm greatly improves the	surf.detect() : finds the keypoint in the surf.compute() : compute the keypoint the use of those functions is not free (image! its using a gaussia	n window	18.257477 21.924250	792/936 1341/1125	201/201 150/150	1.0%(2/201) 2.0%(3/150)
	FAST (Features From Accelerated Segment Test)	L'algorithme fonctionne en 2 éta 1- test de segment basé sur les 2-permet d'affiner et de limiter le https://drive.google.com/open?id	· luminosités relatives est appilo es résultats par la méthode sup		·					