Comparison between local binary CNN and vanilla CNN

Jianhao Peng, Hanchao Yu, You Wu

ianhao2@illinois.edu, nanchao2@illinois.edu youw3@illinois.edu

- Local Binary Pattern(LBP) is widely used in the face recognition community as a feature of images.
- It is basically a weighted sum of a geometric sequence.

•
$$LBP(x_c, y_c) = \sum_{n=0}^{L-1} s(i_n, i_c) \times 2^n$$

•
$$LBP(x_c, y_c) = \sum_{n=0}^{L-1} s(i_n, i_c) \times 2^n$$

• Where (x_c, y_c) is the center pixel.

Constraints:

•
$$LBP(x_c, y_c) = \sum_{n=0}^{L-1} s(i_n, i_c) \times 2^n$$

- Constraints:
 - Fixed base.

•
$$LBP(x_c, y_c) = \sum_{n=0}^{L-1} s(i_n, i_c) \times 2^n$$

- Constraints:
 - Fixed base. 2 in the above case.

•
$$LBP(x_c, y_c) = \sum_{n=0}^{L-1} s(i_n, i_c) \times 2^n$$

- Constraints:
 - Fixed base. 2 in the above case.
 - Fixed pivot.

•
$$LBP(x_c, y_c) = \sum_{n=0}^{L-1} s(i_n, i_c) \times 2^n$$

- Constraints:
 - Fixed base. 2 in the above case.
 - Fixed pivot. (x_c, y_c)

•
$$LBP(x_c, y_c) = \sum_{n=0}^{L-1} s(i_n, i_c) \times 2^n$$

- Constraints:
 - Fixed base. 2 in the above case.
 - Fixed pivot. (x_c, y_c)
 - Fixed ordering of neighbor pixels.

• The LBP function can actually be implemented via convolution!

•

$$LBP(x_c, y_c) = \sum_{n=0}^{8-1} s(i_n, i_c) \times 2^n$$

The LBP function can actually be implemented via convolution!

•

$$LBP(x_c, y_c) = \sum_{n=0}^{8-1} s(i_n, i_c) \times 2^n$$

•
$$F(\mathbf{x}) = \sum_{i=1}^{8} \sigma(\mathbf{b}_i * \mathbf{x}) \times \mathbf{V}_i$$

The LBP function can actually be implemented via convolution!

•

$$LBP(x_c, y_c) = \sum_{n=0}^{8-1} s(i_n, i_c) \times 2^n$$

•
$$F(\mathbf{x}) = \sum_{i=1}^{8} \sigma(\mathbf{b_i} * \mathbf{x}) \times \mathbf{V_i}$$

• Where $V = [2^7, 2^6, ..., 2^0]$ is the weight vector.

• Equivalent form of LBP function:

•
$$F(\mathbf{x}) = \sum_{i=1}^{8} \sigma(\mathbf{b}_i * \mathbf{x}) \times \mathbf{V}_i$$

• Benefits:

• Equivalent form of LBP function:

•
$$F(\mathbf{x}) = \sum_{i=1}^{8} \sigma(\mathbf{b}_i * \mathbf{x}) \times \mathbf{V}_i$$

- Benefits:
 - Flexible base! Learn V_i by a NN.
 - Learnable ordering of neighbor pixels
 - · Learnable pivot.

• Equivalent form of LBP function:

•
$$F(\mathbf{x}) = \sum_{i=1}^{8} \sigma(\mathbf{b}_i * \mathbf{x}) \times \mathbf{V}_i$$

- Benefits:
 - Flexible base! Learn V_i by a NN.
 - Learnable ordering of neighbor pixels
 - Learnable pivot.

Theoretical guarantee of LBC module

Theorem 3.5. Let $\mathbf{B} \in \mathbb{R}^{m \times N}$ be a Bernoulli random matrix with the same subgaussian parameter c in (6), and $\mathbf{x} \in \mathbb{R}^N$ be a fixed vector and $\|\mathbf{x}\|_2 > 0$, with $N = p \cdot h \cdot w$. Let $\boldsymbol{\xi} = \mathbf{B}\mathbf{x} \in \mathbb{R}^m$. Then, for all $t \in (0,1)$, there exists a matrix \mathbf{B} and an index $i \in [m]$ such that

$$\mathbb{P}\left(\xi_i \ge \underbrace{\sqrt{(1-t)}\|\mathbf{x}\|_2}\right) \ge 1 - 2\exp(-\tilde{c}t^2m) \tag{8}$$

Theoretical guarantee of LBC module

Theorem 3.5. Let $\mathbf{B} \in \mathbb{R}^{m \times N}$ be a Bernoulli random matrix with the same subgaussian parameter c in (6), and $\mathbf{x} \in \mathbb{R}^N$ be a fixed vector and $\|\mathbf{x}\|_2 > 0$, with $N = p \cdot h \cdot w$. Let $\boldsymbol{\xi} = \mathbf{B}\mathbf{x} \in \mathbb{R}^m$. Then, for all $t \in (0,1)$, there exists a matrix \mathbf{B} and an index $i \in [m]$ such that

$$\mathbb{P}\left(\xi_i \ge \underbrace{\sqrt{(1-t)}\|\mathbf{x}\|_2}_{>0}\right) \ge 1 - 2\exp(-\tilde{c}t^2m) \tag{8}$$

Conclusion:

LBC module is a good approximation of Convolution layer in NN

Input: p-channel tensor

Filter size: kH * kW

Number of different filters:

q [depth of next layer]

Number of Weights:

p * kH * kW * q

Input: p-channel tensor

Filter size: kH * kW

Number of different filters:

q [depth of next layer]

Number of Weights:

p * kH * kW * q

Input: p-channel tensor

Filter size: kH * kW

Number of different filters:

q [depth of next layer]

Number of Weights:

p * kH * kW * q

Input: p-channel tensor

Number of binary filters:

m

Number of Weights:

m * q

Input: p-channel tensor

Filter size: kH * kW

Number of different filters:

q [depth of next layer]

Input: p-channel tensor

Number of binary filters:

m

Number of Weights:

p * kH * kW * q

Number of Weights:

m * q

different number of binary filers

$number_of_b = 256$

$number_of_b = 128$

different number of binary filers

$number_of_b = 256$

$number_of_b = 256$

$number_of_b = 128$

Observation:

- Increasing the number of binary filters slightly increases the test accuracy. (~1%)
- 2. The training procedure was not significantly affected.
- Both training and test accuracy/loss saturated, but didn't show overfitting.
- 4. In their paper, their claim to have a higher (+4% of ours) accuracy.

different number of depth

Depth = 15

Depth = 10

Depth = 5

different number of depth

Depth = 15

Depth = 10

Depth = 5

Observation:

- 1. The deeper the better.
- 2. Overfitting does not occur

different sparsity

Sparsity = 0.5

Sparsity = 0.3

Sparsity = 0.1

different sparsity

Sparsity = 0.5

Sparsity = 0.3

Sparsity = 0.1

Observation:

- 1. Accuracy leap happens at almost the same training step.
- No significant accuracy/loss difference with various sparsity.

Future Works

- 1. Fine tuning the learning rate, and hopefully the model can keep searching the optimum.
- 2. Try using the shared weight configuration in the paper, to see how this help with training/model size.
- 3. It still have time, test on other dataset to verify our observation and speculation

The End

Thank you!