UNIT # 07 (PART - II)

IONIC EQUILIBRIUM

EXERCISE #1

9.
$$pH = 1$$
 $pH = 2$ $[H^+] = 0.1$ $[H^+] = 0.01$ $V = 50$

[H⁺] of mixture is[H⁺]=
$$\frac{N_1V_1 + N_2V_2}{V_1 + V_2}$$
 $\Rightarrow \frac{50(0.1 + 0.01)}{100}$

$$[H^*] \Rightarrow \frac{0.11}{2} \Rightarrow 0.055$$

pH = 1.26

11.
$$pH = 7$$
 [H^{+}] = 10^{-7} , [OH^{-}] = 10^{-7} new pH after addition of base $pH = 12$ [H^{+}] = 10^{-12} [OH^{-}] = 10^{-2}

 $[OH^{\scriptscriptstyle +}]$ concentration increase 10^5 times.

13. Relative strength =
$$\sqrt{\frac{K_{a_1}}{K_{a_2}}} = \sqrt{\frac{3 \times 10^{-4}}{1.8 \times 10^{-5}}} \implies 4:1$$

16. HCOOH + KOH
$$\begin{array}{ccc} 40 \text{mL}, 0.5 \text{(M)} & \xrightarrow{50 \text{mL}, 0.2 \text{M}} & \text{HCOOH} + \text{H}_2\text{O} \\ \text{after reaction is forms Buffer solution} \end{array}$$

[HCOOK] =
$$\frac{10}{90}$$
 [HCOOK] = $\frac{10}{90}$

$$pH = pK_a + log \frac{[salt]}{[acid]}$$
 $pH = pK_a$

$$pH = 4 - log (1.8)$$
 $pH = 3.75$

$$K_a = \frac{K_w}{K_H}$$
 $K_H = CH^2 \Rightarrow 0.1 \quad (0.03)^2$ $K_a = \frac{10^{-14}}{9 + 10^{-5}}$ $K_a = \approx 1 \quad 10^{-10}$

22.
$$CH_3COOH + NaOH \longrightarrow CH_3COONa + H_2O$$

100 mL, 0.4 M 100 mL, 0.2M
40 20

After reaction

$$[CH_3COOH] = \frac{20}{250}, [CH_3COONa] = \frac{20}{200}$$

$$pH = pK_a + log \frac{[salt]}{[acid]}$$

 $pH = pK_a$ $[H^+] = K_a = 1.8 10^{-5}$

24.
$$CH_3COONa + HCl \longrightarrow CH_3COOH + NaCl$$
 at equivalence the $[CH_3COOH] = \frac{20}{200} \Rightarrow 0.1$

$$\begin{split} pH &= \frac{1}{2} pK_a - \frac{1}{2} log C \\ pH &= \frac{1}{2} [5 log 2 - log 10^{-1}] \\ pH &= \frac{1}{2} [6 - log 2] \Rightarrow pH = 3 - log \sqrt{2} \end{split}$$

28.
$$pH = pK_a + log \frac{HCO_3^-}{H_2CO_3}$$

 $7 = 7 - log + log \frac{HCO_3^-}{H_2CO_3} \frac{HCO_3^-}{(H_2CO_3)} = 4$
% $HCO_3^- = \frac{4}{5} \times 100 \Rightarrow 80 \%$

30.
$$2\text{NaOH} + \text{H}_3\text{PO}_4 \longrightarrow \text{Na}_3\text{PO}_3$$

 $50\text{mL}, 0.1\text{M} \qquad 60\text{mL}, 0.15$
0 7.33
 $\text{H}_3\text{PO}_4 \qquad \Longrightarrow \qquad \text{H}^+ \text{H}_2\text{PO}_4^-$
[mass H⁺ obtain from first ionization of H_3PO_4]
 $\text{pH} = \frac{1}{2}\text{pK}_a - \frac{1}{2}\text{logC} = \frac{1}{2}\text{pK}_a - \frac{1}{2}\text{logC}$
= 1.5 + 1.17 = 2.67

32.
$$Mg(NO_3)_2 + 2NaF \longrightarrow MgF_2 + 2NaNO_3$$

2.5 5 0 2.5
 $(MgF_2) = \frac{2.5}{35}$
 $MgF_2 \longrightarrow Mg^{+2} + 2F$
Ionic product

41. AgCNS
$$\longrightarrow$$
 Ag⁺ + CNS
 $(1-\delta_1)$ $(\delta+\delta_2)$ δ_1
AgCl \longrightarrow Ag⁺ + Cl
 $(1-\delta_2)$ $(\delta+\delta_2)$ δ_2
 $\left(K_{sp}\right)_{AgCNS} = (\delta_1)(\delta_1 + \delta_2)$ (i)
 $\left(K_{sp}\right)_{AgCl} = (\delta_2)(\delta_1 + \delta_2)$ (ii)
adde equation (i) and (ii)

$$\begin{split} &(\delta_1 + \, \delta_2)^2 = \left(K_{sp}\right)_{AgCNS} + \left(K_{sp}\right)_{AgCl} \\ &(\delta_1 + \, \delta_2) = &\sqrt{\left(K_{sp}\right)_{AgCNS} + \left(K_{sp}\right)_{AgCl}} = &\sqrt{1.0 \times 10^{-12} + 1.7 \times 10^{-10}} \\ &(AgT) = &(\delta_1 + \, \delta_2) = &1.3 & 10^{-5} & divide eq. ii from i \end{split}$$

$$\frac{[\text{Cl}^-]}{[\text{CNS}^-]} = \frac{\delta_2}{\delta_1} = \frac{1.7 \times 10^{-10}}{1.0 \times 10^{-12}} \Rightarrow 1.7 \quad 10^2$$

47. IP > K_{sp} I.P. = (Ca⁺²) (F)²
I.P.
$$\Rightarrow$$
 (10⁻²) (10⁻³)² \Rightarrow 10⁻⁸ IP > K_{sp}

53.
$$pH = p^{Hln} + log \frac{In^{-}}{HI_{A}}$$
 $6 = 5 + log \frac{In^{-}}{HIn}$ $\frac{In^{-}}{HIn} = 10$

54. At Half way [HIn] = In⁻

$$pH = 5.5 + log \frac{[salt]}{[acid]} \qquad 5.5 = pK_a + log \frac{[salt]}{[acid]}$$

$$log \frac{[salt]}{[acid]} = 0.75 \Rightarrow \frac{[salt]}{[acid]} = 5.62$$

IONIC EQUILIBRIUM

EXERCISE # 2

HCl + NaCl 1 ml, 0.1 99 ml $[H^+] = \frac{0.1}{100} \Rightarrow 0.001$ pH = 3

6. $HF + H_2O \Longrightarrow F^- + H_3O^+$ $pK_{a} + pK_{b} = pK_{w}$ $pK_{a} = 3.17$ K_a $K_b = K_w$ $pK_a = 14 - 10.83$ $K_a = 6.75 10^{-4}$

9. $h = \sqrt{\frac{K_h}{C}}$ $h = \sqrt{\frac{K_w}{K_L \times C}}$ $h = \sqrt{\frac{10^{-14} \times 8.0}{1.3 \times 10^{-9} \times 1}} \qquad h = 2.48 \%$

13. $K_{sp} = s^2$ $s = \sqrt{K_{sp}} = \sqrt{6.4 \times 10^{-5}}$ $s = 8 \text{ mol/m}^3$ **15.** $AgNO_3$ + $NH_3 \longrightarrow [Ag(NH_3)_2]$

 $5 10^{-8} (x - 1.6) 0.8$

 $K_s = \frac{[Ag(NH_3)_2]^+}{(AgNO_3)(NH_3)}$

 $10^{8} = \frac{0.8}{(5 \times 10^{-8})(x - 1.6)^{2}} \qquad (x - 1.6)^{2} = 0.16$

 $pH = pK_a + log \frac{[salt]}{[acid]}$ $pH = 4.2 + log \frac{1}{1}$

pH = 4.2 $C_6H_5COOH + NaOH \longrightarrow C_6H_5COONa + H_2O$

 $pH = 7 + \frac{1}{2}pKa + \frac{1}{2}log C$

 $pH = 7 + 2.1 + \frac{1}{2} \log \frac{2}{200}$

25. CH₃COOH + NaOH → CH₃COONa + H₂O 0.1At 1/3 neutralization

 $pH = pKa + log \frac{(salt)}{(scid)}$

 $pH_1 = pKa + log \frac{1/3}{2/3}$...(1)

at 2/3 neutralization

 $pH_2 = pKa + log \frac{2/3}{1/3}$...(2)

 $pH_1 - pH_2 = log \frac{1}{2} - log 2$

 $10^{-2} = \frac{\alpha^2}{1 - \alpha} \qquad \alpha \Rightarrow 0.09 \qquad pH=1.02$

IONIC EQUILIBRIUM

EXERCISE #3

COMPREHENSION BASED QUESTIONS Comprehension # 1

Suppose volume of $HCO_3^- = V mL$ 1. millimoles of $HCO_3^- = 5V$ millimoles of $H_2CO_3 = 20$

> $pH = pK_a + log \frac{[HCO_3^-]}{[H_2CO_3]}$ $7.40 = 6.11 + \log \frac{V}{4}$

If CO_2 escapes, $[H^+]$ decreases, hence pH increases. 3. (यदि CO2 मुक्त होती है, तो [H1] घटते है अत: pH बढ़ती है) Comprehension # 2

1. Phosphoric acid with three ionisable hydrogens ions is a tribasic acid. H-atoms are attached to O-atoms, (फॉस्फोरिक अम्ल, तीन आयनीकृत हाइड्रोजन आयनों के साथ त्रिक्षारीय अम्ल है। H-परमाणु ऑक्सीजन परमाणु से जुडे होते है।)

If first step is only taken (यदि केवल प्रथम पद को लिया 2. जाये।)

 $pH = \frac{1}{2}[pK_{a_1} - \log c]$ $c = [H_3PO_4] = 0.05 \%$

 $= \frac{0.05 \times 10}{98} \text{mol L}^{-1}(M) = 5.1 \quad 10^{-3} \text{ M}$

 $-\log c = 2.3$, $pK_{a_1} = 2.12$ pH = 2.21

3. $\frac{[H^+]^3[PO_4^{3-}]}{[H_2PO_4]} = K_{a_1}K_{a_2}K_{a_3}$

 $3\log [H^{+}] + \log[PO_{4}^{3-}]$

= $\log K_{a_1} + \log K_{a_2} + \log K_{a_3} - \log [H_3PO_4]$

 $3pH-log[PO_4^{3-}]=log[H_3PO_4]=pK_{a_1}+pK_{a_2}+pK_{a_3}$ $21 - \log[PO_4^{3-}] - 3 = 2.12 + 7.21 + 12.32$ $log[PO_4^{3-}] = -3.65$

 $[PO_4^{3-}] = 2.24 10^{-4} M$

 $Zn_{3}(PO_{4})_{2} \Longrightarrow 3Zn^{2+} + 2PO_{4}^{3-}$

 $\begin{array}{l} K_{_{\mathrm{sp}}} = \ [Zn^{2+}]^3 \ [PO_{_4}^{\ 3-}]^2 \\ 9.1 \quad \ 10^{-33} = \ [Zn^{2+}]^3 \ (2.2 \quad \ 10^{-4})^2 \end{array}$ $[Zn^{2+}]^3 = 1.88 \quad 10^{-25} \quad [Zn^{2+}] = 5.73 \quad 10^{-9} \text{ M}$

IONIC EQUILIBRIUM

EXERCISE # 4[A]

1.(i)
$$H_2O \stackrel{Ka}{\longleftarrow} H^+ + OH^-$$

 $10^{-7} 10^{-7}$

$$K_a = \frac{[H^+][OH^-]}{[H_2O]} = \frac{10^{-7} \times 10^{-7}}{1000 / 8} = \frac{10^{-14}}{55.5} = 1.8 \ 10^{-16}$$

(ii)
$$K_a K_b = 10^{-14}$$

$$\textbf{2.} \qquad \textbf{K}_{_{a}} = \textbf{C}\alpha^{^{2}} \Rightarrow \frac{\alpha_{_{2}}}{\alpha_{_{1}}} = \sqrt{\frac{\textbf{C}_{_{1}}}{\textbf{C}_{_{2}}}} = \sqrt{\frac{1}{1/100}} = 10$$

3.
$$K_a = C\alpha^2$$

$$\frac{\alpha_1}{\alpha_2} = \sqrt{\frac{Ka_1}{Ka_2}} = \sqrt{\frac{1.8 \times 10^{-5}}{6.2 \times 10^{-10}}}$$

4.(a) pH =
$$\frac{1}{2}$$
 pK_a $-\frac{1}{2}$ log C

$$4.50 2 = pK_a - log (0.1)$$

 $9 - 1 = pK$ $pK = 8$

$$9 - 1 = pK_a$$
 $pK_a = 8$ $K_a = 10^{-8}$

5.(c)
$$[H^{+}] = \sqrt{KaC} = \sqrt{1.8 \times 10^{-6}} = 3 - \log 1.8 = 2.87$$

(e)
$$[H^{+}] = 10^{-8} + 10^{-7} = 10^{-7} [0.1 + 1]$$

pH = 7 -log 1.1 = 6.95

(f)
$$[OH^{-}] = 10^{-10} + 10^{-7} = 10^{-7} [1.001]$$

POH = 7 -log 1.001 = 6.99

$$pH = 7.0004$$

(g)
$$[H^{+}] = \sqrt{KaC} = \sqrt{1.8 \times 10^{-5} \times 10^{-6}}$$

$$[H^{+}] = \sqrt{1.8 \times 10^{-11}} = \sqrt{18 \times 10^{-12}} = 4.24 \quad 10^{-6}$$

$$pH = 6 - \log 4.24 = 5.37$$

6.
$$pK_w = 14 - \log 2.56 = 13.59 \approx 13.6$$

$$pH = \frac{pK_w}{2} = 6.795$$

pH =
$$\frac{}{2}$$
 =6.795
10. pH = 11.5 [H⁺] = $10^{-11.5}$
[OH⁻] = $10^{-2.5}$

$$[OH^{-}] = 10^{-2.5}$$

$$\frac{10^{-5}}{C} = 1.8 \quad 10^{-5}$$
 $C = \frac{1}{1.8} = 0.556 \text{ M}$

11.
$$C = 10^{-2}, [H^{+}] = 10^{-3}$$

$$K_a = \frac{10^{-3} \times 10^{-3}}{10^{-2} - 10^{-3}} = \frac{10^{-3}}{9} = 1.1 \quad 10^{-4}$$

13.
$$CHCl_2COOH \longrightarrow H^+ + CHCl_2COO^-$$

0.01

$$0.01 - x$$

$$0.01 + x x$$

$$\frac{x(0.01+x)}{0.01-x} = 2.55 \quad 10^{-2}$$

$$0.01 - x$$

 $0.01 x + x^2 = 2.55$ $10^{-4} - 2.55$ $10^{-2} x$

$$x^2 + 0.355x - 0.000255 = 0$$

$$x = \frac{-0.0355 \pm \sqrt{0.04775}}{2} = 1.1 \quad 10^{-2}$$

$$CHCl_{2}COO^{-} = 6.126 10^{-2}$$

14. For weak acid

$$[H^{+}] = \sqrt{K_{1}C_{1} + K_{2}C_{2}... + K_{w}}$$

$$= \sqrt{1.8 \times 10^{-5} \times 0.02 + 6.4 \times 10^{-5} \times .01 + 10^{-14}}$$

$$= \sqrt{100 \times 10^{-8}}$$

$$[H^{+}] = 10^{-3}$$

$$K_{a} = \frac{[H^{+}][ACO^{-}]}{[ACOH]_{2}}$$

$$[ACO^{\Theta}] = 3.6 \cdot 10^{-4}$$

same
$$[C_{2}H_{5}O_{2}^{\Theta}] = 6.4 \cdot 10^{-4}$$

15. HCN is a weak acid so H due to it can neglect As comparision to HF

$$[H^{\dagger}] = \sqrt{KC} = \sqrt{6.7 \times 10^{-4} \times 0.1} = \sqrt{67 \times 10^{-6}}$$

$$pH = -\log [8.18 \quad 10^{-3}] = 3 - \log [8.18]$$

$$pH = 2.087$$

16.
$$H_2S \longrightarrow 2H^+ + S^{-2}$$

$$[H^{+}] = 2 \quad 10^{-4}, \quad [H_{2}S] = 0.1 \text{ M}$$

$$K = K_1 K_2 K^2 = 10^{-7} 10^{-7}$$

 $K = 10^{-21}$

$$\Rightarrow 10^{-21} = \frac{[2 \times 10^{-4}]^2 [S^{-2}]}{[0.1]} \quad 10^{-21} = 4 \quad 10^{-8} [S^{-2}]$$

$$\frac{1}{4} \times 10^{-14} = [S^{-2}]$$
 2.5 $10^{-15} = [S^{-2}]$

17.(i)
$$H_3PO_4 \longrightarrow H^+ + H_2PO_4^- K_1 = 7.225 \quad 10^{-3}$$

(ii)
$$0.01 \text{ M C} \quad (1-\alpha) \quad C\alpha_1 \quad C\alpha_1$$

 $H_2PO_4 \longrightarrow HPO_4^{-2} + H^+ \quad K_2 = 6.8 \quad 10^{-8}$

$$7.225 10^{-3} = \frac{C\alpha_1^2}{(1-\alpha_1)} = \frac{0.01 \times \alpha_1^2}{1-\alpha}$$

$$(1 - \alpha) \quad 0.7225 = \alpha^2$$

$$(1 - \alpha)$$
 $0.7225 = \alpha_1^2$
 $\alpha_1^2 + 0.7225 \alpha - 0.7225 = 0$

$$\alpha_1 = 0.562$$

$$\Rightarrow [H^{+}] = 0.01 \quad 0.562 \quad [H^{+}] = 5.6 \quad 10^{-3}$$

$$[H_{2}PO_{4}^{\Theta}] \approx 5.6 \quad 10^{-3} \quad RxN. \text{ (ii)}$$

$$[H_2PO_4^{\circ}] \approx 5.6 \cdot 10^{-3}$$

6.8
$$10^{-8} = \frac{[\text{HPO}_4^{-2}][\text{H}^+]}{[\text{H}_2\text{PO}_4^-]}$$
 from [i] reaction.

$$\Rightarrow$$
 [HPO₄⁻²] = 6.8 10⁻⁸ M RxN. (iii)

4.5
$$10^{-13} = \frac{[PO_4^{-3}][H^+]}{[HPO_4^{-2}]}$$

$$\frac{4.5 \times 10^{-13} \times 6.8 \times 10^{-8}}{5.6 \times 10^{-3}} = [PO_4^{-3}]$$

$$5.464 \quad 10^{-18} = [PO_4^{-3}]$$

20.
$$NH_4Cl \longrightarrow NH_4^+ + Cl^-$$

 $NH_4OH \longrightarrow NH_4^+ + OH^-$

$$K_b = \frac{[NH_4^+][OH^-]}{[NH_4OH]}$$

 $[NH_4^+]$ = is due to salt because NH_4OH ionise in less amount due to common ions effect

$$1.8 10^{-5} = \frac{0.1 \times [OH^{-}]}{0.05}$$

$$9 10^{-6} = [OH^{-}]$$

1.8
$$10^{-5} = \frac{0.1 \times [OH^{-}]}{0.05}$$
 9 $10^{-6} = [OH^{-}]$
21. $HC_{2}H_{3}O_{2} + NaOH \longrightarrow CH_{3}COO^{\Theta} + H_{2}O$
50ml, 0.2M 50ml, 0.1M
10m mol 5m mol

OH₃-C-OH + OH⁰
$$\Longrightarrow$$
 CH₃COO⁰ + H₂O
10 5
5 0 5

pH = pK₃=5 - log 1.8 pH = 4.74

22.
$$(NH_4)_2SO_4$$

Molarity
$$(NH_4)_2SO_4 = \left(\frac{x}{100}\right)$$

Molarity of
$$NH_4^+ = \left(\frac{2x}{100}\right)$$

Molarity of NH₄OH =
$$\left(\frac{0.1}{100}\right) = 10^{-3}$$

$$14 - 9.26 = 4.24 + \log \left(\frac{2x/100}{0.1/100} \right)$$

$$0 = \log (20x) \Rightarrow 1 = 20x$$

$$x = 1/20 \text{ mole}$$
 $x = 0.05 \text{ mole}$

30.
$$CH_3COO^{\circ} + H_2O \Longrightarrow CH_3COOH + OH^{\circ}$$

 $0.08 \qquad K_b = \frac{10^{-14}}{1.8 \times 10^{-5}}$

$$\frac{x^2}{0.08} = \frac{10}{1.8} \times 10^{-10} \qquad \qquad x^2 = \frac{0.8}{1.8} \times 10^{-10} \\ x^2 = 0.44 \quad 10^{-10} \qquad \qquad x = 0.66 \quad 10^{-5}$$

32.
$$C_5H_6N^+ + H_2O \rightleftharpoons C_5H_5NOH + H^+$$

 $pH = \frac{1}{2} [pK_w - pK_b - log C]$

$$2.699 = \frac{1}{2} [14 - pK_b + 0.6]$$

$$2.398 = 14.6 - pK_b$$

 $pK_b = 14.6 - 5.398 = 9.802$
 $K_b = 10^{-9.802}$

38.
$$pH = \frac{pK_1 + pK_2}{2}$$

 $pH = \frac{11 + 7 - 2 \log 4.5}{2} = 9 - \log 4.5 = 8.54$

40.
$$CH_3COOH+OH^{\Theta}\longrightarrow CH_3COO^-+H_2O$$
 (WASB)
 $pH = \frac{1}{2}[pK_w + pK_a + \log C]$
 $= \frac{1}{2}[14 + 5 - \log 1.9 + \log \frac{1}{20}]$
 $= \frac{1}{2}[19 - \log 1.9 - \log 20]$
 $pH = \frac{1}{2}[19 - \log 20 \quad 1.9] = 8.78$
 $pOH = 5.28 \quad [OH^{\Theta}] = 10^{-5.28}$
 $[OH^{\Theta}] = 10^{-6} \quad 10^{0.72} \quad [OH^{\Theta}] = 5.24 \quad 10^{-6}$

IONIC EQUILIBRIUM

EXERCISE # 4[B]

1.
$$Q^+ + H_2O \rightleftharpoons QOH + H^+ \qquad k_{w}/k_1$$

$$\frac{n_1}{V} = n'_1$$

$$\frac{n_2}{V} = n_2'$$

$$n'_2 - y$$

$$\frac{k_w}{k_1} = \frac{x(x+y)}{n_1' - x} \simeq \frac{x(x+y)}{n_1'}$$
(i)

$$\frac{k_w}{k_2} = \frac{y(x+y)}{n_2' - y} \simeq \frac{y(x+y)}{n_2'}$$
(ii)
Assuming (माना) $x << n_1' & y << n_2'$

Assuming (माना)
$$x \le n_1' & y \le n_2'$$

$$x (x + y) = \frac{k_w}{k_1} n_1' & y (x + y) = \frac{k_w}{k_2} n_2'$$

$$(x + y)^2 = k_w \left[\frac{n_1'}{k_1} + \frac{n_2'}{k_2} \right] = \frac{k_w (k_2 n_1' + k_1 n_2')}{k_1 k_2}$$

$$[H^+] = (x + y) = \sqrt{\frac{k_w}{k_1 k_2 V} (k_2 n_1 + k_1 n_2)}$$

$$pH = -log [H^+]$$

$$pH = \frac{1}{2}log\left[\left(\frac{k_{1}k_{2}}{k_{w}}\right)\frac{V}{(k_{2}n_{1} + k_{1}n_{2})}\right]$$

2.
$$Na_4Y+H_2O \rightleftharpoons Na_3HY+NaOH \frac{k_w}{k_4} = 1.818 \times 10^{-4}$$

0.1

$$\frac{x^2}{0.1 - x} = 1.818 \quad 10^{-4} \Rightarrow 5500.55x^2 + x - 0.1 = 0$$

$$x = 4.17 \quad 10^{-3}$$

$$\begin{aligned} &\text{Na}_3\text{HY+H}_2\text{O} & \longrightarrow &\text{Na}_2\text{H}_2\text{Y+NaOH} \frac{k_w}{k_3} = 1.445 \times 10^{-8} \\ &\text{x} \\ &\text{x-y} & \text{y} & \text{y+x} \\ &\text{since y $<<$ x } & \text{x-y} \tilde{\underline{\quad}} & \text{x}, & \text{x+y} \tilde{\underline{\quad}} & \text{x} \end{aligned}$$

$$1.445 \qquad 10^{-8} = \frac{y.x}{x} = y$$

$$Na_2H_2Y+H_2O \Longrightarrow NaH_3Y+NaOH \frac{k_w}{k_2} = 4.7 \times 10^{-12}$$

4.7
$$10^{-12} = \frac{z.x}{y}$$
 $z = 1.628 10^{-17}$

$$NaH_3Y+H_2O \rightleftharpoons H_4Y+NaOH \qquad \frac{k_w}{k_1} = 9.8 \times 10^{-13}$$

9.8
$$10^{-13} = \frac{\text{t.x}}{\text{z}}$$
 $t = 3.82 \quad 10^{-27}$

$$t = 3.82 \quad 10^{-27}$$

fraction (भिन्न) =
$$\frac{t}{0.1}$$
 = 3.82 10^{-26}

- 3. $s=[Zn(OH)_2(aq)]+Zn(OH)^++Zn^{+2}+Zn(OH)_3^-+Zn(OH)_4^{-2}$ $s=k_1 + \frac{k_1k_2}{[OH^-]} + \frac{k_1k_2k_3}{[OH^-]^2} + k_1k_4[OH^-] + k_1k_4k_5[OH^-]^2$ $s{=}10^{-6}{+}\frac{10^{-13}}{[OH^{-}]}{\,+}\frac{10^{-17}}{[OH^{-}]^2}{\,+}10^{-3}[OH^{-}]{+}10^{-2}\,[OH^{-}]^2$
- pH = 5, pOH = 9, $[OH^{-}] = 10^{-9}$ $s = 10^{-6} + 10^{-4} + 10 + 10^{-12} + 10^{-20} = 10 M$
- pH = 9, pOH = 5, $[OH^{-}] = 10^{-5}$ (b) $s=10^{-6}+10^{-8}+10^{-7}+10^{-8}+10^{-12} = 1.12$
- $pH = 13, pOH = 1, [OH^{-}] = 10^{-1}$ (c) $s = 10^{-6} + 10^{-12} + 10^{-15} + 10^{-4} + 10^{-4} = 2$ 10⁻⁴ M 7.
- 4. Given:

$$Ag + \frac{1}{2} Cl_2 \longrightarrow AgCl \quad \Delta G_1 = -109.7 \text{kJ/mole}^{-1}$$

$$Ag \longrightarrow Ag^{+} + e^{-}$$
 $\Delta G_{2} = 77.2 \text{ kJ/mole}^{-1}$

$$e^- + \frac{1}{2} Cl_2 \longrightarrow Cl^- \Delta G_3 = -131.2 \text{kJ/mole}^{-1}$$

so for reaction (अत: अभिक्रिया के लिए)

AgCl
$$\longrightarrow$$
 Ag⁺+Cl⁻ Δ G =- Δ G₁+ Δ G₂ + Δ G₃ Δ G = 55.7 kJ/mole

$$\Delta G = - RT \ln K_{sp}$$

 $55.7 \quad 10^{-3} = -8.314 \quad 298 \ln K_{sp}$
 $K_{sp} = 1.723 \quad 10^{-10}$
 $1.723 \quad 10^{-10} = [Ag^{+}] [Cl^{-}] = s \quad 0.05$
 $s = 3.446 \quad 10^{-9} M$

$$Na_{3}HY + H_{2}O \Longrightarrow Na_{2}H_{2}Y + NaOH^{\frac{k_{w}}{k_{3}}} = 1.445 \times 10^{-8} \qquad \textbf{5.} \qquad Cu_{3}(AsO_{4})_{2} \Longleftrightarrow 3Cu^{+2} + 2AsO_{4}^{-3} \ K_{sp} = 8 \ 10^{-36} + 10^{$$

Let solubility of $Cu_3(AsO_4)_2$ & $Pb_3(AsO_4)_2$ is x & y respectively. (माना Cu₃(AsO₄)₂ व Pb₃(AsO₄)₂ की विलेयता क्रमश: x व y है।)

108
$$x^3 (x + y)^2 = 8 10^{-36}$$
(i)

$$108 \text{ y}^3 (x + y)^2 = 4.096 \quad 10^{-36} \quad \dots \text{(ii)}$$

$$\frac{\text{(i)}}{\text{(ii)}} \Rightarrow \frac{x^3}{y^3} = \frac{8}{4.096} \Rightarrow x = 1.25 \text{ y}$$

putting this in equation (ii) (इसे समीकरण(ii)में रखने पर) $108 \text{ y}^3 (2.25 \text{ y})^2 = 4.096 \quad 10^{-36}$

$$y = 2.3 10^{-8} x = 1.25 y = 2.875 10^{-8}$$

 $[Cu^{+2}] = 3x = 8.825 10^{-8}$

$$[Pb^{+2}] = 3y = 7.1 \quad 10^{-8}$$

6.(a) $Al(OH)_3 \implies Al^{+3} + 3OH^- K_{sn}$

$$Al(OH)_4^- \longrightarrow Al^{+3} + 4OH^- K$$

$$Al(OH)_3 + OH^- \longrightarrow Al(OH)_4 - \frac{K_{sp}}{K} = 38.46$$

$$38.46 = \left[\frac{\text{Al(OH}^{-})_4}{[\text{OH}^{-}]}\right] = \frac{10^{-3}}{[\text{OH}^{-}]}$$

$$[OH^{-}] = 2.6 \quad 10^{-5}$$

$$pOH = 4.585$$

$$pH = 9.415$$

(b)
$$K_{sp} = [Al^{+3}] [OH^{-}]^{3}$$

$$5^{-1}$$
 $10^{-33} = [1 \ 10^{-3}] [OH^{-1}]^3$

$$[OH^{-}] = 1.7 10^{-10}$$

$$pOH = 9.767$$

$$pH = 4.23$$

7. HCl
$$\rightarrow$$
 0.09 M

$$\text{CH}_3\text{COOH}$$
 \rightarrow C_1 = 0.1 M, α_1 , K_{a_1} = 10^{-5}

$$Cl_2CHCOOH \rightarrow C_2 = 0.09 \text{ M}, \alpha_2, K_{a_2} = ?$$

$$pH = 1, [H^{+}] = 0.1$$

$$0.1 = 0.09 + C_1 \alpha_1 + C_2 \alpha_2$$

$$C_1 \alpha_1 + C_2 \alpha_2 = 0.01$$
(i)

$$C_1$$
 $C_1 - C_1\alpha_1$
 $C_1\alpha_1$
 C_1

$$Cl_2HCCOOH \Longrightarrow Cl_2HCCOO^- + H^+$$

$$C_2 - C_2 \alpha_2$$
 $C_2 \alpha_2$ 0.1

$$K_{a_1} = \frac{(C_1 \alpha_1)(0.1)}{C_1(1 - \alpha_1)} \stackrel{\sim}{=} \alpha_1 \quad 0.1 = 10^{-5}$$

$$\alpha_1 = 10^{-4}$$

putting this in equation (i)(इसे समीकरण (i) में रखने पर) 10^{-4} 0.1 + 0.09 α_2 = 0.01 $\alpha_2 = 0.111$

$$K_{a_2} = \frac{(C_2\alpha_2)(0.1)}{C_2(1-\alpha_2)} = \frac{(0.111)(0.1)}{1-0.111} = 1.248 \quad 10^{-2}$$

8.
$$C = \frac{10 \times 0.935 \times 1000}{17 \times 100} = 5.5 \text{ M}$$

$$K_a = C\alpha^2 \Rightarrow 5.5 \quad 10^{-6} = 5.5 \quad \alpha^2$$

$$\alpha = 10^{-3}$$

$$[OH^-] = C\alpha = 5.5 \quad 10^{-3}$$

$$pOH = 2.26 , pH = 11.74$$

9.
$$\ln \frac{k_{w_2}}{k_{w_1}} = \frac{\Delta H}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$
$$\ln \frac{5.474 \times 10^{-14}}{1.08 \times 10^{-14}} = \frac{\Delta H}{8.314} \left(\frac{1}{298} - \frac{1}{323} \right)$$

 $\Delta H = 51952.6 J = 51.95 kJ/mole$

10. In begining
$$[H^+] = \sqrt{K_a C}$$

$$[H^+] = \sqrt{1.8 \times 10^{-5}} = 0.004242$$

$$pH = 2.372$$

On doubling pH, new pH(pH दुगुनी करने पर, नयी pH) = 4.744

$$[H^{+}] = 1.8 \quad 10^{-5}$$

$$CH_{3}COOH \iff CH_{3}COO^{-} + H^{+}$$

$$C$$

$$C - C\alpha \qquad C\alpha \qquad C\alpha$$

$$K_a = \frac{(C\alpha)^2}{C(1-\alpha)}$$
, $C\alpha = [H^+] = 1.8 \quad 10^{-5}$

1.8
$$10^{-5} = \frac{(1.8 \times 10^{-5})^2}{C - C\alpha}$$

 $C - C\alpha = 1.8 \quad 10^{-5}$ $C = 3.6 10^{-5}$

$$V = \frac{1}{C} = 2.77 \quad 10^4 L$$

11.(a)PV = nRT

$$1 \quad 0.959 = n \quad 0.0821 \quad 298$$

 $n = 0.03919$

volume of $H_2O = 1$ mL (per volume of H_2O) $(H_2O \text{ an } \text{आयतन} = 1 \text{ mL } (H_2O \text{ an } \text{प्रति } \text{आयतन}))$

$$C = \frac{n}{V} = \frac{0.03919}{10^{-3}} = 39.19 \text{ M}$$

$$pk_b = 3.39 \Rightarrow k_b = 4 \quad 10^{-4}$$

$$[OH^-] = \sqrt{K_bC} = 0.1252M$$

$$pOH = 0.9023 \qquad pH = 13.097$$

M = 0.1252 for NaOH (NaOH के लिए 0.1252) (b)

12.
$$k_1 = 7.5 10^{-3}, k_2 = 6.2 10^{-8}, k_3 = 10^{-12}$$

(a)
$$H_3PO_4 + NaOH \longrightarrow NaH_2PO_4 + H_2O$$

6 3
3 - 3

$$pH = pk_1 = 2.12$$

$$pH_3PO_4 + NaOH \longrightarrow NaH_2PO_4 + H_2O$$

$$6 \qquad 6$$

$$pH = \frac{pk_1 + pk_2}{2} = 4.66$$

(c)
$$H_3PO_4 + NaOH \longrightarrow NaH_2PO_4 + H_2O$$

 $4.8 \quad 7.2$
 $- \quad 2.4 \quad 4.8$
 $NaH_2PO_4 + NaOH \longrightarrow Na_2HPO_4 + H_2O$
 $4.8 \quad 2.4$
 $2.4 \quad - \quad 2.4$

$$\begin{array}{rcl} & pH & = pk_2 = \textbf{7.2} \\ \text{(d)} & H_3PO_4 + NaOH \longrightarrow NaH_2PO_4 + H_2O \\ & 4 & 10 \end{array}$$

$$- \qquad \qquad 6 \qquad \qquad 4$$

$$NaH_{2}PO_{4} + NaOH \longrightarrow Na_{2}HPO_{4} + H_{2}O$$

$$2 - 2$$

pH = pk₃ = **12**

13. For
$$H_2CO_3 \rightarrow k_1 = 4.2 \quad 10^{-7}$$
, $k_2 = 4.8 \quad 10^{-11}$
 $H_3PO_4 \rightarrow k_1 = 7.5 \quad 10^{-3}$, $k_2 = 6.2 \quad 10^{-8}$, $k_3 = 10^{-12}$

(a)
$$Na_2CO_3 + HCl \longrightarrow NaHCO_3 + NaCl$$

2 2

$$pH = \frac{pk_1 + pk_2}{2} = 8.347$$

(b)
$$Na_3PO_4 + HCl \longrightarrow Na_2HPO_4 + NaCl$$

 0.8 1.6
 0.8 0.8
 $Na_2HPO_4 + HCl \longrightarrow NaH_2PO_4 + NaCl$
 0.8 0.8

$$pH = \frac{pk_1 + pk_2}{2} = 4.66$$

(c)
$$Na_3PO_4 + NaH_2PO_4 \longrightarrow 2Na_2HPO_4$$

5 5 10

$$pH = \frac{pk_2 + pk_3}{2} = 9.6$$

$$pH = \frac{pk_2 + pk_3}{2} = 9.6$$
(d) $H_3PO_4 + Na_3PO_4 \longrightarrow Na_2HPO_4 + NaH_2PO_4$
4 4
- - 4
$$pH = pk_2 = 7.2$$

14. BOH + HCl
$$\longrightarrow$$
 BCl + H₂O 4

At end point m moles of BOH = m moles of HCl (अन्त बिन्द् पर BOH के m moles)

$$0.16 \quad V = 4$$

$$V = 25 \text{ mL}$$

Total volume (कुल आयतन) = 40 + 25 = 65 mL

$$[BCl] = \frac{4}{65}$$

since BCl is SAWB

$$pH = 7 - \frac{1}{2}pk_b - \frac{1}{2}logC$$

$$5.23 = 7 - \frac{1}{2} pk_b - \frac{1}{2} log \frac{4}{65}$$

$$pk_{b} = 4.75$$

Now on further adding NaOH (अब पुन: NaOH को मिलाने पर)

$$pOH = pk_b + log \frac{2.2}{1.8} = 4.837 \implies pH = 9.1628$$

15.(a) pH = pK_a + log
$$\frac{0.06}{0.05}$$

$$pH = 3.744 + log 1.2 = 3.823$$

(b) On diluting solution 10 times (विलयन को 10 गुना तनु करने पर)

$$[HCOOH] = 0.005, [HCOONa] = 0.006$$

0.005

$$0.005 (1 - \alpha)$$
 0.005α $0.005\alpha + 0.006$

$$K_a = 1.8 10^{-4} = \frac{(0.005\alpha + 0.006)(0.005\alpha)}{0.005(1-\alpha)}$$

$$\frac{0.005\alpha^2 + 0.006\alpha}{1 - \alpha} = 1.8 \quad 10^{-4}$$

$$1 - \alpha$$

$$\Rightarrow 27.77\alpha^2 + 34.33\alpha - 1 = 0$$

$$\alpha = 0.0285$$

$$[H^+] = 0.005\alpha = 1.425 \quad 10^{-4}$$

$$pH = 3.846$$

(c) On further diluting solution by 10 times (विलयन को पुन: 10 गुना तनु करने पर)

[HCOOH] = 0.0005, [HCOONa] = 0.0006

HCOOH ← + HCOO-

0.0005

 $0.0005(1-\alpha)$ 0.0005α $0.0005\alpha+0.0006$

$$K_a = 1.8 \quad 10^{-4} = \frac{(0.0005\alpha + 0.0006)(0.0005\alpha)}{0.0005(1 - \alpha)}$$

$$=\frac{0.0005\alpha^2+0.0006\alpha}{1-\alpha}=1.8 \quad 10^{-4}$$

$$2.77\alpha^2 + 4.33\alpha - 1 = 0 \Rightarrow \alpha = 0.2047$$

$$[H^+] = 0.0005\alpha = 1.0235 \quad 10^{-4}$$

$$pH = 3.9899$$

16. Initial (प्रारम्भ में) pOH = pK_b = 4.744

Let x mole of NaOH has been added so (माना NaOH के x मोल मिलाये है, अत:)

$$[NH_4^+] = 0.1 + x, [NH_3] = 0.1 - x$$

pOH = 5.744

$$5.744 = 4.744 + \log \frac{0.1 + x}{0.1 - x}$$

$$1 = \log \frac{0.1 + x}{0.1 - x}$$

$$\frac{0.1 + x}{0.1 - x} = 10 \implies x = \frac{0.9}{11} = 0.0818$$
 moles

17.
$$Na_3PO_4 + H_2O \longrightarrow Na_2HPO_4 + NaOH$$

$$K = \frac{K_w}{K_3} = 0.0222$$

$$Na_2HPO_4 + H_2O \longrightarrow NaH_2PO_4 + NaOH$$

$$K = \frac{K_w}{K_2} = 1.58 \quad 10^{-7}$$

$$NaH_2PO_4 + H_2O \longrightarrow H_3PO_4 + NaOH$$

$$K = \frac{K_w}{K_o} = 1.4 \quad 10^{-12}$$

since equilibrium constant of 2^{nd} & 3^{rd} reaction is very less, [OH $^-$] will mainly come from 1st reaction. (चूंकि 2^{nd} व 3^{rd} अभिक्रिया का साम्य नियताकं बहुत कम

$$Na_3PO_4 + H_2O \longrightarrow Na_2HPO_4 + NaOH 0.1$$

$$\frac{x^2}{0.1 - x} = 0.0222 \implies 45x^2 + x - 0.1 = 0$$

$$x = 3.73 10^{-2}$$

$$[OH^{-}] = x = 3.73 \quad 10^{-2} M$$

 $Na_2HPO_4 + NaOH \longrightarrow NaH_2PO_4 + NaOH$

1.58
$$10^{-7} = \frac{(y+x)}{(x-y)}y \approx y$$

$$NaH_2PO_4 + H_2O \xrightarrow{37} H_3PO_4 + NaOH$$

$$y-z$$
 z $z+x$ $y-z^{-}$ y , $z+x^{-}$ x

1.4
$$10^{-12} = \frac{z(x+z)}{(y-z)} = \frac{z \times x}{y} = \frac{z \times 3.73 \times 10^{-2}}{1.58 \times 10^{-7}}$$

$$z = 5.93 10^{-18}$$

$$[H_3PO_4] = z = 5.93 10^{-18} M$$

18. pH = 8,
$$[H^+]$$
 = 10^{-8} , $[OH^-]$ = 10^{-6}

$$HCO_3^- \rightleftharpoons H^+ + CO_3^{-2} \qquad K = 5 \quad 10^{-13}$$

$$K = 5 \quad 10^{-13}$$

0.0005

$$0.0005 - y - z$$
 10^{-8}

$$HCO_3^- + H_2O \Longrightarrow H_2CO_3 + OH^- K = \frac{K_w}{K_1} = 2 \quad 10^{-8}$$

0.0005

$$0.0005 - y - z$$
 z 10^{-6}

since equilibrium constant for first reaction is very less y << z (चूंकि प्रथम कोटि अभिक्रिया के लिए साम्य नियतांक बहुत कम है v << z)

$$2 \qquad 10^{-8} = \frac{z(10^{-6})}{0.0005 - z}$$

$$51 z = 0.0005, \Rightarrow z = 9.8 \quad 10^{-6}$$

$$[H_0CO_0] = 9.8 10^{-6} M$$

$$[HCO_3^-] = 0.0005 - 9.8 \quad 10^{-6} = 4.9 \quad 10^{-4} M$$

$$5 \quad 10^{-3} = \frac{10^{-8} \times y}{4.9 \times 10^{-4}}$$

$$[CO_3^{-2}] = y = 2.45 10^{-8} M$$

19.
$$Fe^{+3} + H_2O \longrightarrow Fe(OH)^{+2} + H^+ k = 6.5 \quad 10^{-3}$$

$$0.95x \ 0.05x \ 0.05x$$

6.5
$$10^{-3} = \frac{(0.05)^2 x}{0.05}$$
 $x = 2.47$

$$[H^{+}] = 0.05x = 0.1235$$

$$pH = 0.908$$

20. pH = pK₂ + log
$$\frac{\text{salt}}{\text{acid}}$$

$$6.7 = 7.2 + \log \frac{y}{0.005}$$

$$y = 1.58 10^{-3} \text{ mole}$$

21. When indicator is half in ionic form pH(जब आधा सूचक आयिनक रूप में है pH) = pK_3 = 7.2

$$pH = 7.2 + log 5 = 7.898$$

now with this pH (अब इस pH में)

$$7.898 = pK_{a_1} + log 4 = pK_{a_1} = 7.2959$$

again when 50% of new indicator is in ionic form (पुन: जब नया सूचक 50% आयनिक रूप में है।)

$$pH = pK_{a_1} = 7.2959$$

4 m mole of H⁺ ion will produce (H⁺ आयन के 4m mol बनेगें।)

$$[H^+] = \frac{4 \times 10^{-3}}{0.1} = 0.04$$

$$PO_4^{\, -3} \quad + \ H^{\scriptscriptstyle +} \longrightarrow \ HPO_4^{\, -2} \qquad \quad \frac{1}{k_3}$$

$$HPO_4^{-2} + H^+ \longrightarrow H_2PO_4^- \frac{1}{k_2}$$

so now they form a buffer solution of HPO_4^{-2} & $H_{2}PO_{4}^{-1}$ (अत: अब यह HPO_{4}^{-2} व $H_{2}PO_{4}^{-1}$ का बफर विलयन बनाते हैं।)

pH =
$$pk_2 + log \frac{0.08}{0.02}$$
 $(k_2 = 6.3 10^{-8})$

$$pH = 7.2 + log 4 = 7.8$$

At equivalence point (तुल्यांक बिन्दु पर) 23.

meq. of
$$HA = meq.$$
 of $NaOH = 3.612$

NaA + HCl
$$\longrightarrow$$
 HA + HCl

$$pH = pK_a + log \frac{[S]}{[A]}$$

$$4.92 = pK_a + \log \frac{1.356}{1.806}$$

$$pK_{3} = 5.044$$

Now NaOH + HA
$$\longrightarrow$$
 NaA

[NaA] =
$$\frac{2}{20}$$
 = 0.1

$$pH = 7 + \frac{1}{2}pK_a + \frac{1}{2}\log C = 7 + \frac{5.044}{2} + \frac{1}{2}\log 0.1$$

$$pH = 9$$

24. In begining let x m mole of BOH are present (प्रारम्भ में माना BOH के x m mole उपस्थित हैं।)

$$\frac{3x}{4}$$
 $\frac{x}{4}$

$$pOH = pk_b + log \frac{1}{3}$$

$$14 - 9.24 = pk_b - log 3$$

$$pk_{b} = 5.237$$

$$k_b = 5.8 10^{-6}$$

pH at one fourth neutralization (एक चौथाई **25**. (a) उदासीनीकरण पर pH)

$$(pH)_1 = pk_a + log \frac{x/4}{3x/4} = pk_a + log$$

3

pH at three fourth neutralization (तीन चौथाई उदासीनीकरण पर pH)

$$(pH)_2 = pk_a + log \frac{3x/4}{x/4} = pk_a + log$$

3

$$\Delta pH = (pH)_2 - (pH)_1 = 2 \log 3 =$$

0.9542

(b)
$$4.45 = pk_a + log \frac{x/3}{2x/3} = pk_a - log 2$$

 $pk_a = 4.751$

(c)
$$\Delta pH = 2$$
 i.e. $(pH)_1 = pk_a + 1$, $(pH)_2 = pk_a - 1$
For $pk_a + 1 \Rightarrow \frac{[S]}{[A]} = 10$
 $\frac{x}{a-x} = 10 \Rightarrow x = 10a - 10x$
 $x = \frac{10a}{11}$
i.e. $\frac{10^{th}}{11}$ stage

For
$$pk_a - 1 \Rightarrow \frac{[S]}{[A]} = \frac{1}{10}$$
$$\frac{x}{a - x} = \frac{1}{10}$$
$$x = \frac{a}{11}$$

i.e.
$$\frac{1}{11}^{th}$$
 stage

26. $Zn(OH)_{2(s)} = Zn^{+2}_{(aq)} + 2OH_{(aq)} K_{sp}$ $Zn(OH)_{2(s)} + 2OH^{-} \longrightarrow [Zn(OH)_{4}]^{-2} K_{C}$ dissolved Zn(OH), is present in form of Zn+2 & $[Zn(OH)_{4}^{-2}]$ so solubility $s = [Zn^{+2}] + [Zn(OH)_{\alpha}]^{-2}$ (घुलित $Zn(OH)_2$, Zn^{+2} व $[Zn(OH)_4^{-2}]$ के रूप में उपस्थित

अत: विलेयता s =
$$[Zn^{+2}] + [Zn(OH)_4]^{-2}$$
)

$$s = \frac{K_{\rm sp}}{[OH^-]^2} + K_{\rm C}[OH^-]^2$$

For min. solubility (न्यूनतम विलेयता के लिए)

$$\frac{ds}{d[OH^{-}]} = 0 \implies \frac{-2K_{sp}}{[OH^{-}]^{3}} + 2K_{c}[OH^{-}] = 0$$

$$[OH^{-}] = \left(\frac{K_{sp}}{K_{C}}\right)^{1/4}$$

$$[OH^{-}] = 9.8 \quad 10^{-5}$$

pOH = 4.00869
pH = **9.9913**

$$\Delta pH = (pH)_2 - (pH)_1 = 2 \log 3 = 27. \quad AgCl_{(s)} \iff Ag^+ + Cl^- K_{sp}$$

$$Ag^{+} + 2NH_{3} \iff Ag(NH_{3})_{2}^{+}K_{1} \quad K_{2}$$

$$\begin{array}{lll} \operatorname{AgCl}_{(s)} + 2\operatorname{NH}_3 & \longrightarrow & \operatorname{Ag}(\operatorname{NH}_3)_2^+ + \operatorname{Cl}^-, \ \ K = K_{sp} \ K_1 K_2 \\ 0.2 \end{array}$$

$$0.2-2x$$
 x x

$$K = \frac{x^2}{(0.2-2x)} = K_{sp}K_1K_2 = 0.002828$$

$$\frac{x}{0.2-2x} = 0.05318$$

$$x = 0.009613$$

Solubility (विलेयता) = 9.6 10⁻³ M

28.
$$[Cl^{-}] = 0.02 \text{ M}$$

$$Ag(CN)_{2}^{-} \xrightarrow{} Ag^{+} + 2CN^{-}$$
 $K_{inst} = 4 \quad 10^{-19}$
 0.05
 $0.05 - x = 0.05$ $x = 2x$

$$4 \qquad 10^{-19} = \frac{x.(2x)^2}{0.05}$$

$$\frac{4x^3}{0.05} = 4 \quad 10^{-19} \Rightarrow x = 1.7 \quad 10^{-7}$$

[Ag] [Cl] = $1.7 10^{-7} 0.02 = 3.4 10^{-9} > K_{sp}$ so AgCl will precipitate. (अत: AgCl अवक्षेपित होगा।)

29. After mixing with equal volume (समान आयतन के साथ मिलाने के पश्चात्)

$$[Ag^{+}] = 0.01 \text{ M}, HCN = 0.01 \text{ M}$$

$$HCN \rightleftharpoons H^+ + CN^- K_a$$

$$Ag^+ + CN^- \rightleftharpoons AgCN_{(s)} \qquad \frac{1}{K_{sp}}$$

$$HCN + Ag^{+} \longrightarrow H^{+} + AgCN_{(s)}$$

$$K = \frac{K_a}{K_{cm}} = 2.25 \quad 10^6$$

since K value is very high almost all of reactant will convert into product

(चूंकि K मान बहुत उच्च है लगभग सभी क्रियाकारक उत्पाद में परिवर्तित होगें।)

$$\frac{0.01}{x^2} = 2.25 \quad 10^6 \qquad X = 6.6 \quad 10^{-5}$$

$$[Ag^{+}] = 6.66 \quad 10^{-5} M$$

30. MA
$$\longrightarrow$$
 M⁺² + A⁻²

S

Let solubility is s. (माना विलेयता s है।)

But some amount of A^{-2} will undergo hydrolysis. Let x is the amount of A^{-2} left in solution.

(लेकिन A^{-2} की कुछ मात्रा जल अपघटित होगी। माना x विलयन में शेष A^{-2} की मात्रा है)

$$A^{-2} + H_2O \implies HA^- + OH^- \qquad \frac{k_v}{k_z}$$

$$HA^- + H_2O \Longrightarrow H_2A + OH^- \Longrightarrow \frac{k_v}{k_1}$$

$$\frac{k_w}{k_2} = \frac{[HA^-][OH^-]}{[A^{-2}]} \Rightarrow [HA^-] = \frac{k_w[A^{-2}]}{k_2[OH^-]}$$

$$\frac{k_{w}}{k_{1}} = \frac{[H_{2}A][OH^{-}]}{[HA^{-}]} \Rightarrow [H_{2}A] = \frac{k_{w}[HA^{-}]}{k_{1}[OH^{-}]}$$

$$[H_2A] = \frac{k_w^2}{k_1k_2} \frac{[A^{-2}]}{[OH^{-}]^2}$$

From mass balance (द्रव्यमान सन्तुलन से)

$$s = x + \frac{k_w}{k_2} \frac{[A^{-2}]}{[OH^{-}]} + \frac{k_w^2 [A^{-2}]}{k_1 k_2 [OH^{-}]^2}$$

$$s = x + \frac{[H^+]x}{k_0} + \frac{[H^+]^2 x}{k_1 k_0}$$

$$x = \frac{s}{1 + \frac{[H^+]}{k_2} + \frac{[H^+]^2}{k_1 k_2}}$$

$$k_{sp} = [M^{+2}] [A^{-2}] = s . x = \frac{s^2}{1 + \frac{[H^+]}{k_2} + \frac{[H^+]^2}{k_1 k_2}}$$

$$s = \sqrt{k_{\rm sp} \left(1 + \frac{[H^+]}{k_2} + \frac{[H^+]^2}{k_1 k_2}\right)}$$

1. \therefore pH = 1; H⁺ = 10⁻¹ = 0.1 M pH = 2; H⁺ = 10⁻² = 0.01 M \therefore M₁ = 0.1 V₁ = 1 M₂ = 0.01 V₂ = ?

From

$$M_1V_1 = M_2V_2$$

0.1 1 = 0.01 V_2
 $V_2 = 10$ litre

 \therefore volume of water added = 10 - 1 = 9 litre.

- 2. $H^+ = C\alpha$; $\alpha = \frac{[H^+]}{C}$ or $\alpha = \frac{10^{-3}}{0.1} = 10^{-2}$ $Ka = C \alpha^2 = 0.1 \quad 10^{-2} \quad 10^{-2} = 10^{-5}$
- 3. $\operatorname{Cr}(OH)_3(s) \rightleftharpoons \operatorname{Cr}^{3+} (\operatorname{aq.}) + 3OH^-(\operatorname{aq.})$ $27S^4 = K_{sp}$

$$S \, = \, \left(\frac{K_{sp}}{27}\right)^{\!1/4} = \, \left(\frac{1.6 \times \! 10^{-30}}{27}\right)^{\!1/4}$$

4. pH = 5 means $[H^+] = 10^{-5}$

$$HA \iff H^+ + A^{-1}$$

$$t = 0 \quad c \quad 0 \quad 0$$

teq $c(1-\alpha)$ $c\alpha$ $c\alpha$

$$K_a = \frac{[H^+][A^-]}{[HA]} = \frac{(c\alpha)^2}{c(1-\alpha)} = \frac{[H^+]^2}{c-[H^+]}$$

But, [H⁺] << C

$$\therefore K_a = (10^{-5})^2 = 10^{-10}$$

5. AgBr \Longrightarrow Ag⁺ + Br⁻

$$K_{sp} = [Ag^{+}] [Br^{-}]$$

For precipitation to occur

Ionic product > Solubility product

$$[Br^-] = \frac{K_{sp}}{[Aq^+]} = \frac{5 \times 10^{-13}}{0.05} = 10^{-11}$$

i.e., precipitation just starts when $10^{\text{-}11}$ moles of KBr is added to 1ℓ AgNO $_{\!_3}$ solution

- \therefore Number of moles of $Br^{\scriptscriptstyle -}$ needed from KBr = $10^{\scriptscriptstyle -11}$
- \therefore Mass of KBr = 10^{-11} 120 = 1.2 10^{-9} g

6. $H_2CO_3(aq) + H_2O(\ell) \rightleftharpoons HCO_3^-(aq) + H_3O^+(aq)$ 0.034-x x x

$$K_1^{} = \frac{[HCO_3^-][H_3O^+]}{[H_2CO_3]} = -\frac{x \times x}{0.034 - x}$$

$$\Rightarrow 4.2 \quad 10^{-7} \simeq \frac{x^2}{0.034} \Rightarrow x = 1.195 \quad 10^{-4}$$

As H_2CO_3 is a weak acid so the concentration of H_2CO_3 will remain 0.034 as 0.034 >> x.

$$x = [H^+] = [HCO_2^-] = 1.195 10^{-4}$$

Now,
$$HCO_3^-$$
 (aq) + $H_2O(\ell) \rightleftharpoons CO_3^{2-}$ (aq) + H_3O^+ (aq)

As HCO_3^- is again a weak acid (weaker than H_2CO_3) with $x \gg y$.

$$K_2 = \frac{[CO_3^{2-}][H_3O^+]}{[HCO_2^-]} = \frac{y \times (x+y)}{(x-y)}$$

Note: $[H_3O^+] = H^+$ from first step(x) and from second step(y) = (x + y)

[As $x \gg y$ so $x + y \approx x$ and $x - y \approx x$]

So,
$$K_2 \simeq \frac{y \times x}{x} = y$$

$$\Rightarrow K_2 = 4.8 \quad 10^{-11} = y = [CO_3^{2-}]$$

So the concentration of $[H^+] \simeq [HCO_3^-]$ = concentrations obtained from the first step. As the first step. As the dissociation will be very low in second step so there will beno change in these concentrations.

$$[H^{+}] = [HCO_{3}^{-}] = 1.195 10^{-4} & [CO_{3}^{2-}] = 4.8 10^{-11}$$

7. AgBr \rightleftharpoons Ag⁺ = Br⁻

$$K_{sp} = [Ag^{\dagger}] [Br]$$

For precipitation to occur Ionic product > Solubility product

$$[Br^{-}] = \frac{K_{sp}}{[Ag^{+}]} = \frac{5 \times 10^{-13}}{0.05} = 10^{-11}$$

i.e., precipitation just starts when 10^{-11} moles of KBr is added to 1ℓ AgNO $_3$ solution

 \therefore Number of moles of Br = 10^{-11}

$$\therefore$$
 Mass of KBr = 10^{-11} 120 = 1.2 10^{-9} g

8.
$$Na_2CO_3 \longrightarrow 2Na^+ + CO_3^{2^-}$$

 $1 \ 10^{-4}M \ 1 \ 10^{-4}M \ 1 \ 10^{-4}M$
 $K_{SP}(BaCO_3) = [Ba^{2^+}] [CO_3^{2^-}]$

$$[Ba^{2+}] = \frac{5.1 \cdot 10^{-9}}{1 \times 10^{-4}} = 5.1 \cdot 10^{-5} \text{ M}$$

9. In corresponds to choice (c) which is correct answer.

$$BA + H_2O \rightleftharpoons BOH + HA$$

Base Acid

Now pH is given by

$$pH = \frac{1}{2} pK_w + \frac{1}{2} pKa - \frac{1}{2} pK_b$$

Substituting given values, we get

$$pH = \frac{1}{2}(14 + 4.80 - 4.78) = 7.01$$

10. Let s = solubility

$$AgIO_3 \longrightarrow Ag^+ + IO_3^-$$

s s

$$K_{sp} = [Ag^{\dagger}] [IO_3^{-}] = s \quad x = s^2$$

Given $K_{sp} = 1 \quad 10^{-8}$

$$\therefore \qquad s \; = \; \sqrt{K_{\rm sp}} \; = \sqrt{1 \times 10^{-8}}$$

 $= 1.0 \quad 10^{-4} \text{ mol/lit}$

 $= 1.0 10^{-4} 283 g/lit$

(: Molecular mass of Ag $IO_3 = 283$)

$$= \ \frac{1.0 \times 10^{-4} \times 283 \times 100}{1000} \ \text{gm/100ml}$$

 $= 2.83 10^{-3} \text{ gm}/100 \text{ ml}$

11.
$$MX_2 \rightleftharpoons M^{++} + 2X^{-}$$

Where s is the solubility of MX_{2}

then
$$K_{sp} = 4s^3$$
; $(2s)^2 = 4 \cdot 10^{-12} = 4s^3$; $s = 1 \cdot 10^4$

$$\therefore$$
 [M⁺⁺] = s = 1 [M⁺⁺] = 10 10⁻⁴

12.
$$pH = -log[H^+] = log \frac{1}{[H^+]}$$

$$5.4 = \log \frac{1}{[H^+]}$$

On solving, $[H^+] = 3.98 10^{-6}$

13.
$$MX_4 \rightleftharpoons M^{4+} + 4X^-$$

 $S 4S$
 $K_{CD} = [s] [4s]^4 = 256 s^5$

$$\therefore s = \left(\frac{K_{sp}}{256}\right)^{1/5}$$

14.
$$Mg(OH)_2 \longrightarrow [Mg^{2+}] + 2[OH^-]$$

$$K_{sp} = [Mg] [OH]^2 = [x] [2x]^2 = x.4x^2 = 4x^3.$$

15.
$$AB_2 \rightleftharpoons A^{+2} + 2B^{-1}$$

$$[A] = 1.0 \quad 10^{-5}, [B] = [2.0 \quad 10^{-5}],$$

$$K_{sn} = [B]^2[A] = [2 \quad 10^{-5}]^2 [1.0 \quad 10^{-5}] = 4 \quad 10^{-15}$$