REAL ANALYSIS QUALIFYING EXAM Old System - Fall 2003

Answer all eight questions. Throughout, (X, \mathcal{M}, μ) denotes a measure space, μ denotes a positive measure unless otherwise specified, and all functions are assumed to be measurable.

- **1.** LEt $\{f_n\}$ be a sequence of functions in $L^1[0,1]$ such that $f_n(t) \to 0$ for each $t \in [0,1]$. Is it true that $f_0^1 f_n(t) dt \to 0$?
- **2.(a)** Suppose $\sum_{n=1}^{\infty} \mu(A_n) < \infty$. Show that $A = \{x : x \in A_n \text{ for infinitely many } n\}$ has $\mu(A) = 0$.
- **3.** Suppose f is continuous on [0,1]. Show that

Riemann
$$\int_0^1 f \, dx$$
 = Lebesgue $\int_0^1 f \, dx$.

- **4.** Suppose $\mu(x) < \infty$ and \mathcal{B} is a σ -algebra contained in \mathcal{A} . Let $L^P(\mathcal{B}) := \{ f \in L^P(\mu) : f \text{ is } \mathcal{B}\text{-measurable for } 1 \leq p \leq \infty \text{. Prove:}$
 - (a) Given $f \in L^2(\mu)$, there is a unique (a.e. sense) $f^* \in L^2(\mathcal{B})$ such that $\int gf^*d\mu = \int gfd\mu \qquad \forall g \in L^2(\mathcal{B}).$
 - (b) For $f \in L^1 \cap L^2(\mu)$, f^* in (a) satisfies $||f^*|| 1 \le ||f||_4$.
 - (c) Given $f \in L^1(\mu)$, there is a unique $f^* \in L^1(\mathcal{B})$ such that

$$\int gf^*d\mu = \int gfd\mu \qquad \forall g \in L^{\infty}(\mathcal{B})$$

.

- **5.** If μ is an arbitrary positive measure and $f \in L^1(\mu)$ prove that $\{x: f(x) \neq 0\}$ has σ -finite measure.
- **6.** Suppose μ is a positive measure on x, $\mu(x) < \infty$, $f \in L^{\infty}(\mu)$, $||f||_{\infty} > 0$. Set $\alpha_n = \int_x |f|^n d\mu$. Prove that

$$\lim_{n \to \infty} \frac{\alpha_{n+1}}{\alpha_n} = ||f||_{\infty}.$$

- 7. Let $f_n(x) = e^{inx}$. Prove that
 - (a) $\{f_n\}_{n\in\mathbb{Z}}$ is orthonormal in $L^2([-\pi,\pi])$ with respect to the measure $\frac{dx}{2\pi}$.
 - (b) No subsequence of $\{f_n\}_{n=1}^{\infty}$ converges pointwise a.e. on $[-\pi,\pi]$.
- **8.** Suppose $1 \le p \le \infty$, $f \in L^P(\mathbb{R})$. Prove that $||f(x+h)-f(x)||_{L^P} \to 0$ as $h \to 0$.