# 整环 Domain 讨论班

梁家浩

华南理工大学数学学院

2024.3.11

### **Contents**

- ① 环 (Ring) 的概念和细分
  - 环的概念和基本性质
  - 环的分类

② 素理想与极大理想

梁家浩 (.com) SCUT 2024.3.11 2/11

环 (Ring) 的概念和细分

3/11

## 环的定义

#### 环

#### 集合 R 上定义了两种二元运算 $+,\cdot$ 使得

- (R,+) 是交换群.
- (R,·) 是半群.
- 满足左右分配律

$$\forall a,b,c \in R, a (b+c) = ab + ac, (b+c) a = ba + ca$$

则称  $(R, +, \cdot)$  是一个环 (ring).

#### 有大量环的例子

- $\mathbb{Z}, \mathbb{Z}\left[\sqrt{d}\right], \mathbb{Z}_m, \mathbb{Q}, \mathbb{R}, \mathbb{R}^n, C^k\left[a, b\right], C^{\infty}\left[a, b\right], \mathbb{P}^{n \times n}...$
- 环上的多项式也是环  $R\left[x\right]:\mathbb{Z}\left[x\right],\mathbb{Q}\left[x\right],\mathbb{P}\left[x\right],\mathbb{P}\left[x,y\right],\mathbb{Z}_{m}\left[x\right]...$



# 幺元 (identity)、单位 (unit)、零因子

### 定义

#### 对于环 R, 定义

- $R^* := R \{0\}$
- 单位: R\* 中的可逆元
- 单位群: 单位全体构成一个群  $U(R) := \left\{ a \in R^* | \exists a^{-1} \in R^*, aa^{-1} = a^{-1}a = 1 \right\}$
- 幺元  $1 \in R$ : 指  $(R, \cdot)$  中存在的幺元。
- 零因子: 若存在

$$a, b \in R^*, ab = 0$$

则称 a 为左零因子,b 称为右零因子,统称零因子。

- 环 Z<sub>4</sub> 存在零因子 [2].
- Gauss 整环  $\mathbb{Z}[i]$  的单位群  $\{1,i,-1,-i\}$
- 练习: 求环  $\mathbb{Z}[\sqrt{5}], \mathbb{Z}_9$  的单位群。

梁家浩 (.com) SCUT 2024.3.11

### 环的细分 (根据 $R^*$ 乘法运算的性质

假设 R 是一个环,有以下定义

- 若 R\* 关于乘法运算封闭 (即无零因子), 则 R 称为无零因子环.
- ❷ 若 R\* 包含幺元,则称 R 是幺环。
- lacktriangle 若  $R^*$  关于乘法可交换,则称 R 是交换环 commutative ring。
- **◎** 若  $R^* = U(R)$ ,则称 R 是**除环** Division ring。
- 若同时满足 1.2.3 则称为整环 domain=integral domain(环论主要研讨的 对象)。
- 同时满足 1.2.3.4 则称为域 field。

|       | 封闭 | 单位元 | 逆元 | 交换       |
|-------|----|-----|----|----------|
| 幺环    |    | •   |    |          |
| 交换环   |    |     |    | •        |
| 无零因子环 | •  |     |    |          |
| 整环    | •  | •   |    | •        |
| 除环/体  | •  | •   | •  |          |
| 域     | •  | •   | •  | 知平@02422 |

# 代表性的例子



素理想与极大理想

梁家浩 (.com) SCUT 2024.3.11 8/11

### 极大理想

#### Definition

环 A 的**极大理想**是环 A 的真理想 m, 使真包含其的理想必为环本身.

等价地,交换幺环 A 的极大理想是环 A 的所有真理想中极大元,其中两个理想的序关系为  $I_1 \leq I_2 \Leftrightarrow I_1 \subset I_2$ .

#### 定理

对任意环, 其极大理想均存在.

### 定理

对交换幺环 A,  $\mathfrak{m}$  是极大理想当且仅当商环  $A/\mathfrak{m}$  是域.

### 素理想与极大理想

### Definition (素理想)

交换幺环 A 的真理想  $\mathfrak p$  称为素理想, 对任意  $x,y\in A$ ,  $xy\in \mathfrak p$ , 有  $x\in \mathfrak p$  或  $y\in \mathfrak p$  成立.

上述定义是如下素数性质在一般交换环上的推广: 对整数 x,y 和素数 p, 如  $p\mid xy$ , 有  $p\mid x$  或  $p\mid y$  成立. 当 A 为整数环  $\mathbb Z$  时, 它的素理想即是由某个素数生成的理想或零理想.

### 性质

交换幺环 A 的理想 I 是素理想,当且仅当商环 A/I 是整环.

### 命题

极大理想是素理想.

# Thank you!