La mesure de Yang-Mills en 2 dimensions

Buisine Léo Ecole Normale Superieure of Paris

 $March\ 4,\ 2025$

Contents

1	Introduction			
	1.1	Variete differentielle	4	
	1.2	Fibre vectoriel		
	1.3	Connexion		
	1.4	Fibre principaux		
	1.5	La mesure de Yang-Mills		
	Construction de la mesure Calcul de la fonction de partition		;	
•	Calcul de la fonction de partition			
4	Etude asymptotique		,	

Introduction

1.1 Variete differentielle

Definition 1.1.1. Variete differentielle : variete topologique separe localement modelee sur \mathbb{R}^n de maniere lisse, aka munit de cartes et de changements de cartes (un atlas).

Definition 1.1.2. Espace tangent T_pM , l'espace des tangeantes a M en p. Si M est lisse de dim n, alors T_pM est homeomorphe a \mathbb{R}^n .

Example. Un groupe de Lie G est un groupe munit d'une structure de variete differentielle compatible. $\mathfrak{g}=T_eG$ est l'algebre de Lie associee.

1.2 Fibre vectoriel

Definition 1.2.1. Un fibre vectoriel de base M de rang k est une variete E munie d'une surjection lisse $\pi: E \to M$ qui ressemble localement a $M \times \mathbb{R}^k$. On note $E_x \equiv \pi^{-1}(x)$ la fibre au dessus de x.

Example. Le fibre tangeant $TM = \bigcup T_pM$. Le fibre cotangeant T^*M en prenant le dual.

Definition 1.2.2. Soit E, π, M un fibre. Une section locale de E est une application $\sigma: U \subset M \to E$ tq $\pi \circ \sigma = \mathrm{id}$. On note $\Gamma(M)$ l'espace des sections de M.

Example. Les champs de vecteurs sur M: $\Gamma(TM)=\chi(M)$. Les 1-formes differentielles sur M: $\Gamma(T^*M)=\Omega^1(M)$. Par exemple, si $X\in\chi(M),\ X_p=\sum_{i=1}^n X_i(x)\frac{\partial}{\partial x^i}$ et si $\omega\in\Omega^1(M),\ \omega_p=\sum_{i=1}^n \omega_i(p)\mathrm{d}x_i$

1.3 Connexion

 ∇ est la generalisation des derivees directionelles $\nabla_X S$, avec $X \in \chi(M), S \in \Gamma(E)$

Definition 1.3.1. Une connexion sur (E, π, M) est au choix

• Une application bilineaire $\nabla : \chi(M) \times \Gamma(E) \to \Gamma(E)$ qui verifie

$$\nabla_{f,X}S = f\nabla_X S$$

$$\nabla_X(fS) = f\nabla_X s + (Xf).s$$
(1.1)

• Une application lineaire $\nabla: \Gamma(E) \to \Omega^1(M,E)$ definit par $S \to (X \to \nabla_X S)$ qui verifie la formule de Leibniz juste au dessus

Theorem 1.3.1. L'espace A des connexions sur E est un espace affine de direction $\Omega^1(M, End(E))$. En d'autres termes, si ∇ est une connexion et $A \in \Omega^1(M, End(E))$, aors $A + \nabla$ est une connexion.

1.4 Fibre principaux

 ${\cal G}$ groupe de Lie. Il agit sur lui meme par conjugaison, et sur son algebre par le releve de la conjugaison.

Definition 1.4.1. Soit G un groupe de Lie. Un G-fibre principal est une variete diff P munie d'une action libre a droite $P \times G \to P$, $(p,g) \to p.g$ dont les fibres $\pi^{-1}(x), x \in M$ sont les orbites de P sous l'action de G.

Definition 1.4.2. Section: comme avant

Definition 1.4.3. Soit (P, π, M) un G-fibre principal. Une connexion sur P est une application $p \in P \to H_p \subset T_p P$ qui verifie

- 1. $T_pP = H_p \oplus V_p$ ou $V_p = \ker((\mathrm{d}\pi)_p)$
- 2. H_p , $p \in P$ est stable par action de G.
- 3. $p \to H_p$ est lisse.

Soit $X \in \mathfrak{g}$. On lui associe le champs de vecteurs fondamental \tilde{X} sur P defini par

$$\tilde{X}_p = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} p.e^{tX} \tag{1.2}$$

Definition 1.4.4. 2eme def. (P, π, M) . Une connexion sur P est une 1-forme differentielle $\omega \in \Omega^1(P, \mathfrak{g})$ tq

- 1. $\omega(\tilde{X}_p) = X$ pour tout $p \in P, X \in \mathfrak{g}$
- 2. $(R_a)^{-1}\omega = \operatorname{Ad}(g^{-1})\omega$ pour tout $g \in G$.

Theorem 1.4.1. Les deux definitions coincident.

Theorem 1.4.2. L'espace A des connexions sur P est un espace affine de direction $\Omega^1(M, ad(p))$ (c'est un fibre vectoriel de fibre \mathfrak{g})

Definition 1.4.5. Soit ω une connexion sur P. Sa courbure est la 2-forme $\Omega \in \Omega^2(P, \mathfrak{g})$ definie par $\Omega = \mathrm{d}\omega + \frac{1}{2}[\omega \wedge \omega]$ ou $[\omega \wedge \omega]$ est definie par $[\omega \wedge \omega](x, y) = 2[\omega(x), \omega(y)]$. ω est dite plate si $\Omega = 0$.

1.5 La mesure de Yang-Mills

La Theorie de Yang Mills est une theorie de jauge (des equa diff sur des sections de fibre) non-abelienne. La theorie de YM avec $G = SU(2) \times U(1) \times SU(3)$ est le modele standard (U(1) pour la charge electrique, SU(3) pour la couleur, et SU(2) pour la charge faible). L'espace temps est la variete, l'espace des champs est le G-fibre principal.

La mesure de Yang Mills euclidienne est une mesure sur ${\mathcal A}$ definie par

$$d\mu_{YM}(\omega) = \frac{1}{Z} e^{-\frac{1}{2T}S_{YM}(\omega)} d\omega$$
 (1.3)

Avec Z la fonction de partition, T la constante de couplage et S l'action de Yang Mills definie par

$$S_{YM}(\omega) = ||\Omega||^2 = \frac{1}{2} \int_M \langle \Omega \wedge *\Omega \rangle$$
 (1.4)

Construction de la mesure

Calcul de la fonction de partition

Etude asymptotique