Teoria Sygnałów w zadaniach

Tomasz Grajek, Krzysztof Wegner

Politechnika Poznańska

Wydział Elektroniki i Telekomunikacji

Katedra Telekomunikacji Multimedialnej i Mikroelektroniki

pl. M. Skłodowskiej-Curie 5

60-965 Poznań

www.et.put.poznan.pl

www.multimedia.edu.pl

Copyright © Krzysztof Wegner, 2019 Wszelkie prawa zastrzeżone ISBN 978-83-939620-1-3 Wydrukowano w Polsce Zadanie 1. Oblicz splot sygnałów $f(t) = A \cdot \Pi\left(\frac{t-T}{T}\right)$ i $h(t) = \mathbb{1}(t) \cdot e^{-a \cdot t}$

Wzór na slot sygnałów

$$y(t) = \int_{-\infty}^{\infty} f(\tau) \cdot h(t - \tau) \cdot d\tau \tag{1}$$

Wzory sygnałów pod całką

$$f(\tau) = A \cdot \Pi\left(\frac{\tau}{T}\right)$$
$$h(t - \tau) = \mathbb{1}(t) \cdot e^{-a \cdot (t - \tau)}$$

$$f(\tau) = \begin{cases} 0 & \tau \in (-\infty; 0) \\ A & \tau \in (0; T) \\ 0 & \tau \in (T; \infty) \end{cases}$$
$$h(t - \tau) = \begin{cases} e^{-a \cdot (t - \tau)} & \tau \in (-\infty; t) \\ 0 & \tau \in (t; \infty) \end{cases}$$

Wykresy obu funkcji w dziedzinie τ dla różnych wartości t:

Po wymnożeniu obu funkcji, dla przykładowych wartości t, otrzymujemy (ciągła, czerwona linia):

Z wykresu widać, że dla różnych wartości t otrzymujemy różny kształt funkcji podcałkowej $f(\tau)$ · $h(t-\tau)$. W związku z tym, wyznaczymy splot oddzielnie dla posczególnych przedziałów wartości t

Przedział 1 Dla wartości t spełniających warunek t < 0 otrzymujemy:

$$y(t) = \int_{-\infty}^{\infty} 0 \cdot d\tau$$
$$= 0$$

Przedział 2 Dla wartości tspełniających warunki $t \geq 0$ i t < Totrzymujemy

$$f(\tau) \cdot h(t - \tau) = \begin{cases} 0 & \tau \in (-\infty; 0) \\ A \cdot e^{-a \cdot (t - \tau)} & \tau \in (0; t) \\ 0 & \tau \in (t; \infty) \end{cases}$$

Wartość splotu y(t) wyznaczamy ze wzoru:

$$y(t) = \int_{-\infty}^{\infty} f(\tau) \cdot h(t - \tau) \cdot d\tau$$

$$= \int_{-\infty}^{0} 0 \cdot d\tau + \int_{0}^{t} \left(A \cdot e^{-a \cdot (t - \tau)} \right) \cdot d\tau + \int_{t}^{\infty} 0 \cdot d\tau$$

$$= 0 + A \cdot \int_{0}^{t} \left(e^{-a \cdot t} \cdot e^{a \cdot \tau} \right) \cdot d\tau + 0$$

$$= A \cdot e^{-a \cdot t} \cdot \int_{0}^{t} \left(e^{a \cdot \tau} \right) \cdot d\tau$$

$$= A \cdot e^{-a \cdot t} \cdot \frac{1}{a} \cdot e^{a \cdot \tau} \Big|_{0}^{t}$$

$$= \frac{A}{a} \cdot e^{-a \cdot t} \cdot \left(e^{a \cdot t} - e^{a \cdot 0} \right)$$

$$= \frac{A}{a} \cdot e^{-a \cdot t} \cdot \left(e^{a \cdot t} - 1 \right)$$

$$= \frac{A}{a} \cdot \left(e^{a \cdot t} \cdot e^{-a \cdot t} - 1 \cdot e^{-a \cdot t} \right)$$

$$= \frac{A}{a} \cdot \left(e^{a \cdot t - a \cdot t} - e^{-a \cdot t} \right)$$

$$= \frac{A}{a} \cdot \left(e^{0} - e^{-a \cdot t} \right)$$

$$= \frac{A}{a} \cdot \left(e^{0} - e^{-a \cdot t} \right)$$

Przedział 3 Dla wartości t spełniających warunki $t \geq T$ otrzymujemy

$$f(\tau) \cdot h(t - \tau) = \begin{cases} 0 & \tau \in (-\infty; 0) \\ A \cdot e^{-a \cdot (t - \tau)} & \tau \in (0; T) \\ 0 & \tau \in (T; \infty) \end{cases}$$

Wartość splotu y(t) wyznaczamy ze wzoru:

$$\begin{split} y(t) &= \int_{-\infty}^{\infty} f(\tau) \cdot h(t - \tau) \cdot d\tau \\ &= \int_{-\infty}^{0} 0 \cdot d\tau + \int_{0}^{T} \left(A \cdot e^{-a \cdot (t - \tau)} \right) \cdot d\tau + \int_{T}^{\infty} 0 \cdot d\tau \\ &= 0 + A \cdot \int_{0}^{T} \left(e^{-a \cdot t} \cdot e^{a \cdot \tau} \right) \cdot d\tau + 0 \\ &= A \cdot e^{-a \cdot t} \cdot \int_{0}^{T} \left(e^{a \cdot \tau} \right) \cdot d\tau \\ &= A \cdot e^{-a \cdot t} \cdot \frac{1}{a} \cdot e^{a \cdot \tau} \Big|_{0}^{T} \\ &= \frac{A}{a} \cdot e^{-a \cdot t} \cdot \left(e^{a \cdot T} - e^{a \cdot 0} \right) \\ &= \frac{A}{a} \cdot e^{-a \cdot t} \cdot \left(e^{a \cdot T} - 1 \right) \end{split}$$

Podsumowując:

$$y(t) = f(\tau) \cdot h(t - \tau) = \begin{cases} 0 & t \in (-\infty; 0) \\ \frac{A}{a} \cdot (1 - e^{-a \cdot t}) & t \in (0; T) \\ \frac{A}{a} \cdot e^{-a \cdot t} \cdot \left(e^{a \cdot T} - 1\right) & t \in (T; \infty) \end{cases}$$

