

Plant for processing of magnetic strip or smart data cards - has a facility for printing embossing and entering personal data in memory or onto magnetic strip Patent Assignee: ORGA KARTENSYSTEME GMBH

Inventors: KRUPKE F; MEYER-WITTRECK U; ROBKE S; RUBBELKE H; MAYER-

WITTRECK U; ROEBKE S; RUEBBELKE H

Patent Family

Patent Number	Kind	Date	Application Number			Week	
EP 863481	A1	19980909	EP 98103915		19980305		\Box
DE 19709561	A1	19980917	DE 1009561		19970308		
DE 19709561	C2	19991118	DE 1009561	A	19970308	199953	
US 6082617	A	20000704	US 9835855	A	19980306	200036	
BR 9801199	A	20001205	BR 981199	A	19980306	200101	

Priority Applications (Number Kind Date): DE 1009561 A (19970308)

Patent Details

Patent	Patent Kind		Page	Main IPC	Filing Notes				
EP 863481	A1	G	30	G06K-017/00					
Designated States (Regional): AL AT BE CH DE DK ES FI FRGB GR IE IT LI LT LU LV MC MK NL PT RO SE SI									
DE 19709561	A1			G06K-013/02					
DE 19709561	C2			G06K-013/02					
US 6082617	A			G06F-007/08					
BR 9801199	A			G06K-017/00					

Abstract:

EP 863481 A

The processing system is for use in producing smart cards and/or cards with data stored on magnetic strips. The machine can enter personal data into memory and also provide permanent data using laser or thermal printing or by embossing. The automated machine has the cards in a magazine (1) and are transferred by handling units (2) that operate in x-and-y-planes to a number of work-stations (M1, M2) that have processing units (3).

USE- Processing of smart and magnetic strip data cards.

ADVANTAGE - Compact and flexible.

Dwg.4/18

Derwent World Patents Index © 2001 Derwent Information Ltd. All rights reserved. Dialog® File Number 351 Accession Number 12042133

19 BUNDESREPUBLIK **DEUTSCHLAND**

[®] Pat ntschrift _® DE 197 09 561 C 2

(5) Int. Cl.⁶: G 06 K 13/02

G 06 F 3/06 B 42 D 15/10

DEUTSCHES PATENT- UND MARKENAMT Aktenzeichen:

197 09 561.5-53

(2) Anmeldetag:

8. 3.97

(3) Offenlegungstag:

17. 9.98

(45) Veröffentlichungstag

der Patenterteilung: 18. 11. 99

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(73) Patentinhaber:

Orga Kartensysteme GmbH, 33104 Paderborn, DE

(72) Erfinder:

Mayer-Wittreck, Udo, 33397 Rietberg, DE; Rübbelke, Hermann, 33129 Delbrück, DE; Krupke, Frank, 59494 Soest, DE; Röbke, Steffen, 33098 Paderborn, DE

(56) Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

DE

30 49 607 A1

US

48 29 445

(4) Anlage zur Bearbeitung von Chip- und/oder Magnetstreifenkarten

- Anlage zur Bearbeitung von Chip- und/oder Magnetstreifenkarten (K) bestehend aus den folgenden Kompo-
 - mindestens einem Kartenvorratsmagazin (1) zur Aufnahme von zu bearbeitenden Karten,
 - zwei oder mehreren Chip- und/oder Magnetstreifen-Bearbeitungsstationen (3) zum Aufbringen von Daten/Informationen auf den Chip (Halbleiterbaustein) und/oder auf den Magnetstreifen der Karten (K),
 - mindestens einer Kartenkörper-Bearbeitungsstation (4) zum Aufbringen von nicht änderbaren Daten/Informationen auf den Kartenkörper,
 - einem Kartentransportsystem, das die Karten von dem Kartenvorratsmagazin (1) hin zur Chip- und/oder Magnetstreifen-Bearbeitungsstation (3) und anschließend hin zu der oder den Kartenkörper-Bearbeitungsstationen (4) und von diesen wieder weiter transportieri. dadurch gekennzeichnet, daß
 - dieselbe eine Kartentransportebene (x, y) mit einer Bearbeitungsablauf-Achse (y) und einer senkrecht dazu verlaufenden Bearbeitungs-Parallelisierungs-Achse (x) aufweist, wobei Bearbeitungsstationen (3, 4) unterschiedlichen Bearbeitungstyps beabstandet hintereinander entlang der Bearbeitungsablauf-Achse (y) angeordnet sind, und mehrfach ausgeführte Bearbeitungsstationen (3, 4) eines Bearbeitungstyps parallel nebeneinander entlang der Bearbeitungs-Parallelisierungsachse (x) als Bearbeitungsmodul (M3, M4) angeordnet sind,
 - die Anlage aus separaten, hintereinander entlang der Bearbeitungsablauf-Achse (y) angeordneten, trennbar und auswechselbar miteinander verbundenen Modulen (M1, M2, M3, M4, M5) mit jeweils einem eigenen Tragge-
 - nebeneinander-entlang-der-Bearbeitungs-Parallelisierungsachse (x) angeordnete Kartenvorratsmagazine (1) aufweist,
 - einem ersten Kartenverteilmodul (M2) mit einer Kartenverteilvorrichtung (2), die entlang Bearbeitungs-Parallelisierungsachse (x) verfahrbar ist, und in der Lage ist, nach dem Anfahren jeweils einer Kartenempfangs- oder Kartenausgabeposition eine Chip- und/oder Magnetstreifenkarte (K) von einem Kartenvorratsmagazin (1) und/oder einer Bearbeitungsstation (3, 4) zu empfangen, aufzunehmen und an eine Bearbeitungsstation (3, 4) auszugeben,

- einem Chip- und/oder Magnetstreifen-Bearbeitungsmodul (M3), das zwei oder mehrere nebeneinander entlang der Bearbeitungs-Parallelisierungsachse (x) angeordnete Chip- und/oder Magnetstreifen-Bearbeitungsstationen (3) aufweist,
- einem zweiten Kartenverteilmodul (M2) mit einer Kartenverteilvorrichtung (2), die entlang Bearbeitungs-Parallelisierungsachse (x) verfahrbar ist, und in der Lage ist, nach dem Anfahren jeweils einer Kartenempfangs- oder Kartenausgabeposition eine Chip- und/oder Magnetstreifenkarte (K) von einer Bearbeitungsstation (3, 4) zu empfangen, aufzunehmen und an eine Bearbeitungsstation (3, 4) auszugeben,
- mindestens einem Kartenkörper-Bearbeitungsmodul (M4) das eine oder mehrere nebeneinander entlang der Bearbeitungs-Parallelisierungsachse (x) angeordnete Kartenkörper-Bearbeitungsstationen (4) aufweist.

stell (MT) aufgebaut ist, und zwar - einem Kartenvorratsmodul (M1) das ein oder mehrere

Beschreibung

Die Erfindung bezieht sich auf eine Anlage zur Bearbeitung von Chip- und/oder Magnetstreifenkarten- eine sogenannte Kartenpersonalisierungsanlage. Mit einer derartigen Anlage werden einerseits karten-/benutzerspezifische Daten auf den Chip (Halbleiterbaustein) und/oder den Magnetstreifen aufgezeichnet und andererseits karten-/benutzerspezifische Daten auf den Kartenkörper aufgebracht. Hierzu weist eine solche Anlage eine Chip- und/oder Magnetstrei- 10 fen-Bearbeitungsstation, in der die Chip und ggf. die Magnetstreifen-Bearbeitung in bekannter Weise integriert ist, und eine Kartenkörper-Bearbeitungsstation auf. Während die auf den Chip bzw. den Magnetstreifen aufgezeichneten Daten in der Regel änderbar sind, da die entsprechenden 15 Speichermedien mehrfach beschreibbar sind, sind die auf den Kartenkörper aufgebrachten Daten nicht änderbar. Die nicht änderbaren Daten werden beispielsweise durch Laserbeschriftung, Thermotransferdruck oder durch Prägen (Embossing) auf den Kartenkörper aufgebracht. Das Format dieser Karten ist durch internationale Normen standardisiert (siehe ISO 7810).

Eine derartige Anlage ist zum Beispiel aus der DE 30 49 607 A1 bekannt. Bei dieser Anlage durchlaufen die Karten, welche aus einem die zu bearbeitenden Karten 25 enthaltenden Kartenvorratsmagazin entnommen werden, nacheinander erst die Chip- und/oder Magnetstreifen-Bearbeitungsstation, wo die änderbaren Daten aufgezeichnet werden, und dann die Kartenkörper-Bearbeitungsstation, wo die nicht änderbaren Daten aufgebracht werden. Dabei wird 30 nach dem Aufzeichnen der Daten auf den Chip- und/oder Magnetstreifen überprüft, ob die Aufzeichnung ordnungsgemäß erfolgt ist. Dies kann in der Chip- und/oder Magnetstreifen-Bearbeitungsstation oder in einer separaten Kontrollstation erfolgen. Karten, bei denen die Datenaufzeich- 35 nung auf den Chip- und/oder Magnetstreifen nicht ordnungsgemäß erfolgte, werden der Kartenkörper-Bearbeitungsstation, wo die nicht änderbaren Daten aufgezeichnet werden, nicht mehr zugeführt. Diese Karten werden ausgesondert. Ein Problem bei einer derartigen Anlage ist aller- 40 dings der Kartendurchsatz, da die Bearbeitungszeiten in der Chip- und/oder Magnetstreifen-Bearbeitungsstation und der Kartenkörper-Bearbeitungsstation wesentlich voneinander verschieden sind. Ein typisches Beispiel: Bearbeitungszeit für Aufzeichnung der Daten auf einen Mikroprozessorchip 45 ca. 20 sec; Bearbeitungszeit für das Aufbringen von alphanumerischen Zeichen durch Laserbeschriftung auf den Kartenkörper ca. 6 sec. Die langsame "Chip-Personalisierung" begrenzt hier den Kartendurchsatz.

Eine weitere Anlage ist aus der EP 0 256 921 A1 be- 50 kannt. Allerdings gestattet diese Anlage nur das Aufzeichnen von Daten auf den Chip- und/oder Magnetstreifen und nicht das Aufbringen von nicht änderbaren Daten auf den Kartenkörper. Diese Anlage umfaßt somit nur einen Typ von Bearbeitungsstation, wenn man die Chip und Magnetstrei- 55 ten in der Draufsicht, fen-Bearbeitung als in einer Bearbeitungsstation integriert betrachtet. Da die Aufzeichnung der Daten in einer Chipund/oder Magnetstreifen-Bearbeitungsstation sehr viel länger dauert als die Zeit für die Entnahme einer Karte aus dem Kartenvorratsmagazin, den Transport dieser Karte zur Chip-60 und/oder Magnetstreifen-Bearbeitungsstation und die Übergabe dieser Karte an dieselbe, wird in dieser Anlage die Chip- und/oder Magnetstreifen-Bearbeitungsstation mehrfach ausgeführt, d. h. während die zuerst transportierte Karte sich zur Datenaufzeichnung in einer Chip- und/oder 65 Magnetstreifen-Bearbeitungsstation befindet, werden bereits die nächsten Chip- und/oder Magnetstreifen-Bearbeitungsstationen aufgefüllt usw. Zu diesem Zweck weist die

Anlage mehrere nebeneinander angeordnete Chip- und/oder Magnetstreifen-Bearbeitungsstationen auf. Ein linear vor diesen Stationen verfahrbarer Greifer entnimmt die zu bearbeitenden Karten aus dem Kartenvorratsmagazin, transportiert sie zu den Chip- und/oder Magnetstreifen-Bearbeitungsstationen und steckt sie in diese hinein, wobei die Chip- und/oder Magnetstreifen-Bearbeitungsstationen sukzessive aufgefüllt werden. Ist eine Karte fertig, so zieht der Greifer diese Karte aus der Chip- und/oder Magnetstreifen-Bearbeitungsstation heraus und transportiert sie zu einem Ablagemagazin. Für das Aufbringen von nicht änderbaren Daten auf den Kartenkörper, z. B. mittels Laserbeschriftung, müßten die Karten aus dem Ablagemagazin entnommen und einer anderen Anlage zugeführt werden.

Aus der US 4,829,445 ist ebenfalls eine mehrere Bearbeitungsstationen umfassende Anlage (für die Halbleiterverpackung) bekannt. Die Verteilung von Zwischenerzeugnissen von und zu den Bearbeitungsstationen erfolgt über ein weit verzweigtes Verteilnetz mit Kreuzungspunkten, wobei die zu bearbeitenden Zwischenerzeugnisse auf Trägerwagen von einer Bearbeitungsstation zur nächsten transportiert werden.

Die vorstehend beschriebenen Anlagen haben den Nachteil, daß ihr Aufbau (Montage) sehr umständlich ist. Darüber hinaus sind die bekannten Anlagen kaum oder nur sehr umständlich erweiterbar und umkonfigurierbar. Außerdem benötigen diese Anlagen viel Platz, insbesondere dann, wenn eine Parallelbearbeitung bestimmter Bearbeitungsschritte vorgesehen ist.

Aufgabe der vorliegenden Erfindung ist es, eine Anlage zur Bearbeitung von Chip- und/oder Magnetstreifenkarten zu schaffen, die sowohl mehrere Chip- und/oder Magnetstreifen-Bearbeitungsstationen als auch mindestens eine Kartenkörper-Bearbeitungsstation aufweist und dabei kompakt und konstruktiv einfach aufzubauen ist sowie flexibel erweiterbar und umkonfigurierbar ist.

Diese Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des Patentanspruches 1 gelöst. Die sich daran anschließenden Unteransprüche enthalten vorteilhafte und förderliche Ausgestaltungen der Erfindung.

Mit der erfindungsgemäßen Anlage wird den Monteuren und Servicetechnikern die Arbeit erleichtert, da diese aufgrund der modularen Bauweise einfacher aufzubauen und umzukonfigurieren ist. Der Kunden erhält in vorteilhafter Weise eine Anlage, die später nach Bedarf aufgrund des modularen Aufbaus einfach zu erweitern oder umzukonfigurie-

Auf den beigefügten Zeichnungen wird die Erfindung nachfolgend näher beschrieben und die Vorteile erläutert. Es

Fig. 1 eine perspektivische Ansicht der Anlage,

Fig. 2 eine Seitenansicht der Anlage,

Fig. 3 eine Draufsicht auf die Anlage,

Fig. 4 eine schematische Ansicht der Anlagenkomponen-

Fig. 5 eine Seitenansicht von Teilen der modular aufgebauten Anlage vor dem Zusammenbau (von rechts nach links: Kartenvorratsmodul, Kartenverteilmodul, Chip- und/ oder Magnetstreifen-Bearbeitungsmodul),

Fig. 6 eine-Seitenansicht-von-Teilen-der-modular-aufgebauten Anlage vor dem Zusammenbau (von rechts nach links: Chip- und/oder Magnetstreifen-Bearbeitungsmodul, Kartenverteilmodul, Kartenkörper-Bearbeitungsmodul hier Laserstationsmodul),

Fig. 7 eine Seitenansicht von Teilen der modular aufgebauten Anlage vor dem Zusammenbau (von rechts nach links: Kartenkörper-Bearbeitungsmodul, Kartenverteilmodul, Bilderkennungsmodul),

4

Fig. 8 eine Seitenansicht von Teilen der modular aufgebauten Anlage vor dem Zusammenbau (von rechts nach links: Bilderkennungsmodul, Kartenablagemodul mit drei Ablagemagazinen),

Fig. 9 eine schematische Darstellung der Vereinzelung einer Karte aus dem Kartenvorratsmagazin,

Fig. 10 eine schematische Darstellung der Kartenübergabe von einem Kartenvorratsmagazin zur Kartenverteilvorrichtung,

Fig. 11 eine Seitenansicht der zum Kartenvorratsmagazin 10 gehörenden Kartenvereinzelungsvorrichtung,

Fig. 12 eine Seitenansicht der Kartenverteilvorrichtung, Fig. 13 eine Ansicht in Bearbeitungsablaufrichtung der auf einem Zahnriemen montierten Kartenverteilvorrichtung,

Fig. 14 eine schematische Seitenansicht der Kartenüber- 15 gabe von einer Kartenverteilvorrichtung an eine Bearbeitungsstation,

Fig. 15 eine schematische Seitenansicht der Laserbeschriftungsstation,

Fig. 16 eine Draufsicht der zur Laserbeschriftungsstation 20 gehörenden Kartentransport- und Positioniervorrichtung,

Fig. 17 eine Seitenansicht der zur Laserbeschriftungsstation gehörenden Kartentransport- und Positioniervorrichtung zur Verdeutlichung der Kartenwendeoption,

Fig. 18 eine schematische Ansicht der Bilderkennungs- 25 station.

Die Anlage weist erfindungsgemäß eine Kartentransportebene (x, y) mit einer Bearbeitungsablauf-Achse (y) und einer Bearbeitungs-Parallelisierungs-Achse (x) auf. Dabei sind Bearbeitungsstationen (3, 4) unterschiedlichen Bearbeitungstyps beabstandet hintereinander entlang der Bearbeitungsablauf-Achse (y) angeordnet und mehrfach ausgeführte Bearbeitungsstationen (3, 4) eines Bearbeitungstyps parallel nebeneinander jeweils entlang der Bearbeitungs-Parallelisierungsachse (x) als Bearbeitungsmodul (M3, M4) 35 angeordnet. In Bearbeitungsrichtung vor und hinter einem Bearbeitungsmodul (M3, M4) bestehend aus zwei oder mehreren Bearbeitungsstationen (3, 4) desselben Bearbeitungstyps ist jeweils mindestens eine zum Kartentransportsystem gehörende Kartenverteilvorrichtung (2) angeordnet 40 ist, die entlang der Bearbeitungs-Parallelisierungsachse (x) verfahrbar ist, und in der Lage ist, nach dem Anfahren jeweils einer Kartenempfangs- bzw. Kartenausgabeposition eine Karte (K) von einem Kartenvorratsmagazin (1) oder einer Bearbeitungsstation (3, 4) zu empfangen, aufzunehmen 45 bzw. an eine Bearbeitungsstation (3, 4) auszugeben.

Die Anlage ist erfindungsgemäß aus separaten, hintereinander entlang der Bearbeitungsablauf-Achse (y) angeordneten, trennbar und auswechselbar miteinander verbundenen Modulen (M1, M2, M3, M4, M5) mit jeweils einem eigenen 50 Traggestell (MT) aufgebaut; und zwar aus

- einem Kartenvorratsmodul (M1), das ein oder mehrere nebeneinander entlang der Bearbeitungs-Parallelisierungsachse (x) angeordnete Kartenvorratsmagazine 55 (1) aufweist,
- einem ersten Kartenverteilmodul (M2) mit einer Kartenverteilvorrichtung (2), die entlang Bearbeitungs-Parallelisierungsachse (x) verfahrbar ist, und in der-Lage-ist, nach dem-Anfahren-jeweils-einer-Karten-60 empfangs- oder Kartenausgabeposition eine Karte (Chip- und/oder Magnetstreifenkarte) (K) von einem Kartenvorratsmagazin (1) und/oder einer Bearbeitungsstation (3, 4) zu empfangen, aufzunehmen und an eine Bearbeitungsstation (3, 4) auszugeben,
- einem Chip- und/oder Magnetstreifen-Bearbeitungsmodul (M3), das zwei oder mehrere nebeneinander entlang der Bearbeitungs-Parallelisierungsachse (x)

angeordnete Chip- und/oder Magnetstreifen-Bearbeitungsstationen (3) aufweist,

- einem zweiten Kartenverteilmodul (M2) mit einer Kartenverteilvorrichtung (2), die entlang Bearbeitungs-Parallelisierungsachse (x) verfahrbar ist, und in der Lage ist, nach dem Anfahren jeweils einer Kartenempfangs- oder Kartenausgabeposition eine Karte (K) von einer Bearbeitungsstation (3, 4) zu empfangen, aufzunehmen und an eine Bearbeitungsstation (3, 4) auszugeben,

 mindestens einem Kartenkörper-Bearbeitungsmodul (M4), das ein oder mehrere nebeneinander entlang der Bearbeitungs-Parallelisierungsachse (x) angeordnete Kartenkörper-Bearbeitungsstationen (4) aufweist.

Das auf den Zeichnungen dargestellte Ausführungsbeispiel der erfindungsgemäßen Anlage umfaßt 10 Chip- und/ oder Magnetstreifen-Bearbeitungsstationen (3), 3 Laserstationen als Kartenkörper-Bearbeitungsstationen (4) zum Aufbringen der nicht änderbaren Daten auf den Kartenkörper sowie 6 Kartenvorratsmagazine (1) mit integrierter Vereinzelungsvorrichtung (10) zur Vereinzelung der magazinierten Karten (K). Jede Chip- und/oder Magnetstreifen-Bearbeitungsstation (3) ist in bekannter Weise dazu in der Lage, die Richtigkeit der aufgezeichneten Daten zu überprüfen. In Bearbeitungs-Ablaufrichtung der Bearbeitungsablauf-Achse (y) hinter dem Laserbeschriftungsmodul (Kartenkörper-Bearbeitungsmodul) (M4) ist zusätzlich ein Bilderkennungsmodul (M5) zur Überprüfung der Richtigkeit und Qualität der auf den Kartenkörper aufgebrachten Daten/Informationen angeordnet. Nach erfolgter Bildauswertung wird automatisch entschieden, ob eine Karte (K) in ein als Ablagemagazin für korrekt bearbeitete Karten oder in ein als Ausschußmagazin für fehlerhafte Karten dienendes Magazin (6) transportiert wird. In dem Ausführungsbeispiel sind jeweils drei Ablagemagazine/Ausschußmagazine konstruktiv als Kartenablagemodul (M6) zusammengefaßt.

Der modulare Aufbau ermöglicht die Integration von mehreren Chip- und/oder Magnetstreifen-Bearbeitungsstationen (3) und mindestens einer Kartenkörper-Bearbeitungsstation (4) in einer Anlage bei kompakter Bauweise. Darüber hinaus kann die Anlage aufgrund ihres modularen Charakters einfach und schnell aufgebaut werden. Von besonderem Vorteil ist die Flexibilität dieser modularen Anlage bzgl. Erweiterbarkeit und Umkonfigurierbarkeit. Der Abnehmer (Kunde/Betreiber) der Anlage wird somit in die Lage versetzt, sich eine Anlage nach seinen Bedürfnissen nach dem Baukastenprinzip zusammenzustellen. Er kann dabei jeweils auf verschiedene, miteinander kombinierbare Anlagemodule (M1, M2, M3, M4, M5) zurückgreifen. So kann beispielsweise bei der erfindungsgemäßen Anlage das Laserbearbeitungsmodul (M4) gegen ein Embossiermodul (nicht dargestellt) mit wenigstens einer Hochprägestation oder gegen ein Thermosublimationsdrucker-Modul ausgetauscht werden. Für diesen Zweck wird einfach die Verbindung zwischen dem Laserbearbeitungsmodul (M4) und den beiden angrenzenden Kartenverteilmodulen (M2) gelöst, das Laserbearbeitungsmodul (M4) herausgenommen und das andere Kartenkörperbearbeitungsmodul eingesetzt. Es ist ebenso in einfacher Weise möglich, eine bestehende Anlage um ein oder mehrere Bearbeitungsmodule zu erweitern. So könnte beispielsweise die Anlage zwischen dem Kartenverteilmodul (M2) und dem Laserbearbeitungsmodul (M4) aufgetrennt werden und ein Bearbeitungsmodul mit einem oder mehreren Thermosublimationsdruckern und ein weiteres Kartenverteilmodul eingefügt werden. Damit wäre es z. B. möglich, vor der Laserbeschriftung farbige Photos der Karteninhaber aufzubringen. Genauso einfach kann die er5

findungsgemäße Anlage um ein Bilderkennungsmodul (M5) oder ein Kartenablagemodul (M6) erweitert werden.

Die Traggestelle (MT) der Module (M1, .., M6) sind bevorzugt aus Aluminiumprofilen gebildet, die untereinander in einfacher Weise zum Zusammenbau der Anlage verschraubbar sind. Jedes Traggestell (MT) weist dabei eine eigene Modul-Aufnahmeplattform (Montageplatte) (MT1) auf. Zum Einstellen der Kartenbearbeitungs-Transportebene der Station/en jedes Moduls (M1, .., M6) auf die eine Kartentransportebene (x, y) der Anlage weist jedes Traggestell 10 (MT) höhenverstellbare Füße (MT2) auf. Die Stationen (1, 2, 3, 4, 5, 6) eines Moduls (M1, .., M6) sind dabei auf der Aufnahmeplattform (MT1) des Traggestells (MT) entfernbar und auswechselbar montiert. Dies schafft wiederum mehr Flexibilität und erleichtert Service und Wartung. Weiterhin ist es vorgesehen, daß die Stationen (1, 2, 3, 4, 5, 6) eines Moduls (M1, .., M6) auf der Aufnahmeplattform (MT1) an unterschiedlichen Positionen entlang der Bearbeitungs-Parallelisierungsachse (x) montierbar sind. Dies ist beispielsweise dadurch realisiert, daß die Aufnahmeplattform 20 (MT1) ein Lochfeld zur Aufnahme von Befestigungsschrauben zur Montage der Stationen des Moduls an verschiedenen Positionen und/oder mit verschiedenen Abständen zueinander aufweist. Durch die Wahl der entsprechenden Löcher wird dann die Station an der gewünschten Position 25 montiert. Weiterhin ist es vorgesehen, daß die Station eines Moduls auf der Aufnahmeplattform (MT1) entlang der Bearbeitungs-Parallelisierungsachse (x) verschiebbar gehalten sind. Mit diesen Maßnahmen kann in einfacher Weise die Zahl der Stationen in einem Modul verändert werden und 30 die Position an veränderte Anlagenkonstellationen angepaßt werden.

Nachfolgend soll die gesamte Anlage im Detail zum besseren Verständnis beschrieben werden. Die 6 Kartenvorratsmagazine (1) mit jeweils ihren Vereinzelungsvorrichtungen 35 (10) sind nebeneinander entlang der Bearbeitungs-Parallelisierungsachse (x) angeordnet. Ein Kartenvorratsmagazin (1) kann je nach Ausführung bis zu 400 Karten aufnehmen. Der Magazinschacht ist bei größeren Magazinen vorzugsweise zumindest auf einem Teilbereich gegenüber der Vertikalen 40 schräg oder gekrümmt verlaufend ausgebildet, so daß ein Teil der Gewichtskraft der übereinanderliegenden Karten von dem Magazinschacht aufgefangen wird und somit die jeweils zu vereinzelnde, unterste Karte (K) gewichtsmäßig entlastet wird.

Durch die Anordnung von mehreren Kartenvorratsmagazinen (1)/Vereinzelungsvorrichtungen (10) entlang der Bearbeitungs-Parallelisierungsachse (x), auf die die zu bearbeitenden Karten einer Sorte verteilt werden, lassen sich die Kartentransportwege/zeiten für die sich in Bearbeitungs- 50 Ablaufrichtung der Bearbeitungsablauf-Achse (y) hinter den Kartenvorratsmagazinen (1) befindliche Kartenverteilvorrichtung (2) zur Beschickung der Chip- und/oder Magnetstreifen-Bearbeitungsstationen (3) minimieren. Zur Steuerung des Verfahrweges der Kartenverteilvorrichtung 55 (2) zu den jeweiligen Kartenempfangs- und Ausgabepositionen enthält die computergestützte Anlagensteuerung einen entsprechenden Steueralgorithmus, der die verschiedenen Wegstrecken von den einzelnen Kartenvorratsmagazine (1) -zu-den-verschiedenen-Chip--und/oder-Magnetstreifen-Bear--60beitungsstationen (3) berücksichtigt. Beim Starten der Kartenbearbeitung werden die Chip- und/oder Magnetstreifen-Bearbeitungsstationen (3) nacheinander mit Karten (K) aufgefüllt. Meldet eine Chip- und/oder Magnetstreifen-Bearbeitungsstation (3), das sie mit der Bearbeitung einer Karte 65 fertig ist und bereit ist, die nächste Karte zu empfangen, so entscheidet der Steueralgorithmus unter Berücksichtigung der momentanen Position der Kartenverteilvorrichtung (2)

darüber, aus welchem Kartenvorratsmagazin (1) eine Karte für die freigewordene Chip- und/oder Magnetstreifen-Bearbeitungsstation (3) zu entnehmen ist.

Darüber hinaus ist es auch möglich, daß in den Kartenvorratsmagazinen (1) jeweils verschiedene Kartensorten
(z. B. im 1. Magazin Bankarten der Bank A, im 2. Magazin
Bankkarten der Bank B usw.) magaziniert sind. In diesem
Fall werden die Karten solange immer aus einem Kartenvorratsmagazin (1) entnommen und auf die verschiedenen
Chip- und/oder Magnetstreifen-Bearbeitungsstationen (3)
verteilt bis der dieser Kartensorte gehörende Auftrag abgearbeitet ist.

Die Verwendung von 6 Kartenvorratsmagazinen (1) ist nur speziell in diesem Ausführungsbeispiel so. Es sind auch erfindungsgemäße Anlagen mit einer anderen Anzahl von Kartenvorratsmagazinen oder auch nur mit einem einzigen Kartenvorratsmagazin vorgesehen, von dem dann die verschiedenen Chip- und/oder Magnetstreifen-Bearbeitungsstationen (3) über die Kartenverteilvorrichtung (2) mit Karten versorgt werden.

Die Kartenvorratsmagazine (1) mit ihren Vereinzelungsvorrichtungen (10) bilden konstruktiv ein Kartenvorratsmodul (M1), das trennbar mit der Anlage verbunden ist. Die Kartenvorratsmagazine (1) mit ihren integrierten Vereinzelungsvorrichtungen (10) sind wiederum abnehmbar und austauschbar auf der Montageplatte (MT1) des Kartenvorratsmoduls (M1) angeordnet. Dieses Kartenvorratsmodul (M1) wird als Komponente der Anlage mit dieser verbunden, indem das Kartenvorratsmodul (M1) an das erste Kartenverteilmodul (M2) – siehe weiter unten – "angedockt" wird.

Die Vereinzelung einer Karte (K) aus dem Kartenvorratsmagazin (1) erfolgt durch die Vereinzelungsvorrichtung (10) – vgl. Fig. 11 –, auf der das Kartenvorratsmagagzin (1) mit seinem Magazinschacht aufgesetzt ist. Dabei wird die zu vereinzelnde Karte (K) mittels eines von einem Kurbeltrieb (10B) angetriebenen Schiebers (10A) an motorisch angetriebene Auszugsrollen (10C) übergeben, die die Karte dann unter dem Kartenstapel herausziehen. Dies ist schematisch in Fig. 9 dargestellt. Die Übergabe der vereinzelten Karte (K) an eine sich in Kartenempfangsposition befindende Kartenverteilvorrichtung (2) ist in Fig. 10 schematisch dargestellt. Nachdem die vereinzelte Karte (K) die Lichtschranke (10D) in der zum Kartenvorratsmagazin (1) gehörenden Vereinzelungsvorrichtung (10) passiert hat, wird der Antrieb der Auszugsrollen (10C) ausgeschaltet.

Die Kartenverteilvorrichtung (2) - vgl. Fig. 12 - weist einen entlang der Bearbeitungs-Parallelisierungsachse (x) motorisch verfahrbaren Schlitten (2A) auf, auf dem ein Kartenaufnahme-Gehäuse (2B) montiert ist, wobei hier Gehäuse nicht ein geschlossenes Gehäuse bedeuten muß, sondern wie in diesem Ausführungsbeispiel von zwei Gehäuseseitenteilen gebildet ist. In dem Kartenaufnahme-Gehäuse (2B) sind 3 motorisch antreibbare Transportrollen-Paare, welche jeweils aus zwei übereinander angeordneten, zwischen sich jeweils die Karten im Reibkontakt in Höhe der Kartentransport-Ebene (x, y) aufnehmenden Transportrollen (2C) bestehen. Diese Transportrollen (2C) sind auf senkrecht zur Bearbeitungsablauf-Achse (y) angeordneten Achsen drehbar gelagert. Dabei ist jeweils eine Transportrolle (2C)—eines Transportrollen-Paares motorisch antreibbar. Vorzugsweise ist die Antriebsrichtung der Transportrollen (2C) umkehrbar, so daß die Kartenverteilvorrichtung (2) in der Lage ist, in beide Richtungen Karten zu empfangen oder auszugeben. Bei der Kartenübergabe von der Vereinzelungsvorrichtung/Kartenvorratsmagazin (10, 1) an die Kartenverteilvorrichtung (2) werden die Karten jeweils von den Auszugsrollen (10C) der Vereinzelungsvorrichtung (10) an die Einzugsrollen (2D) der Kartenverteilvorrichtung (2)

6

zum Weitertransport übergeben. In der Kartenempfangsposition rollen die Karten quasi angestoßen durch den Schieber (10A) der Vereinzelungsvorrichtung (10) durch bis in die Kartenverteilvorrichtung (2). Dies geht im Vergleich zu dem in der EP 0 256 921 A1 beschriebenen Greifer wesentlich schneller und schonender für die empfindliche Kartenoberfläche. In dem Kartenaufnahme-Gehäuse (2B) der Kartenverteilvorrichtung (2) ist mindestens ein Sensor vorgesehen, der meldet, ob eine eingezogene Karte (K) ordnungsgemäß aufgenommen bzw. ausgegeben wurde. Erst nach einer 10 ordnungsgemäßen Sensormeldung kann die Kartenverteilvorrichtung (2) entlang der Bearbeitungs-Parallelisierungsachse (x) verfahren werden. Damit ist sichergestellt, daß die Kartenverteilvorrichtung (2) nicht verfahren wird, wenn die Karte z. B. noch teilweise in der Vereinzelungsvorrichtung (10) und erst teilweise in der Kartenverteilvorrichtung (2) steckt. In dem dargestellten Ausführungsbeispiel sind für die Kartenverteilvorrichtung (2) drei Lichtschranken (2E, 2F, 2G) als Sensoren vorgesehen, deren Funktion erläutert worden soll: Die karteneingangsseitig vor den Transportrol- 20 len (2CD) angeordnete Lichtschranke (2E) startet unmittelbar nach Detektion einer an die Kartenverteilvorrichtung (2) übergebenen Karte (K) den Antrieb (2I) für die Transportrollen (2C) für den weiteren Einzug und Transport der Karte (K). Nachdem die Karte (K) die Lichtschranke (2E) durch- 25 laufen hat, wird eine Meldung erzeugt, die das Verfahren der Kartenverteilvorrichtung (2) entlang der Bearbeitungs-Parallelisierungsachse (x) freischaltet. Die kartenausgangsseitige Lichtschranke (2F) erzeugt eine Meldung, wenn die Karte die Lichtschranke (2F) durchlaufen hat, damit wird 30 wiederum das Verfahren der Kartenverteilvorrichtung (2) freigeschaltet. Außerdem schaltet die kartenausgabeseitige Lichtschranke (2F) unmittelbar nach Detektion einer empfangenen Karte den Antrieb (2I) für die Transportrollen (2C) aus, wenn die Kartenverteilvorrichtung (2) noch nicht die 35 vorgesehene Ausgabeposition erreicht hat. Die mittlere Lichtschranke (2G) erzeugt eine Meldung, wenn sich eine Karte zwischen den beiden äußeren Lichtschranken (2E, 2F) befindet. Dies ist wichtig, um beim erstmaligen Starten der Anlage festzustellen, ob die Kartenverteilvorrichtung (2) frei und damit in der Lage ist, eine Karte zu empfangen. Falls vor dem erstmaligen Starten der Anlage eine der Lichtschranken (2E, 2F, 2G) meldet, daß noch eine Karte in der Kartenverteilvorrichtung (2) vorhanden ist (aus .welchen Gründen auch immer), wird der Bediener der Anlage vor- 45 zugsweise aufgefordert, diese Karte manuell zu entnehmen. Zum Führen/Lagejustage der Karten auf Kartentransportebene (x, y) beim Empfangen oder Ausgeben weist das Kartenaufnahme-Gehäuse (2B) der Kartenverteilvorrichtung (2) karteneingangs- und ausgangsseitig jeweils eine Karten- 50 führungseinrichtung (2H) auf. In dem dargestellten Beispiel ist diese von zwei im Abstand übereinander angeordneten Führungsrollen, deren Drehachsen senkrecht zur Bearbeitungsablauf-Achse (y) verlaufen, gebildet. Der Abstand zwischen den Führungsrollen ist größer als eine und kleiner 55 als zwei Kartendicken. Damit wird sichergestellt, daß leicht schräg zur Kartentransportebene empfangene oder auszugebende Karten wieder auf die Kartentransportebene (x, y) geführt werden. Kartenausgangsseitig weist das Kartenaufnahme-Gehäuse (2B) einen sich von der Lichtschranke (2F), zwischen den Führungsrollen nach außen hin offen erstrekkenden Schlitz auf, wodurch es möglich ist, daß die Kartenverteilvorrichtung (2) bereits dann verfahren werden kann, wenn eine Karte eigentlich schon an die Chip- und/oder Magnetstreifen-Bearbeitungsstation (3) ausgegeben wurde, 65 aber das hintere Ende der Karte sich noch zwischen den Führungsrollen befindet. Hierdurch wird unnötige Wartezeit eingespart.

In Fig. 13 ist dargestellt, wie die Kartenverteilvorrichtung (2) in dem Ausführungsbeispiel verfahren wird. Dabei wird der Schlitten (2A) der Kartenverteilvorrichtung (2) über eine Montageplatte (20A) unmittelbar auf einem umlaufenden, motorisch antreibbaren Riemen (Zahnriemen) (20B) montiert. Der Zahnriemen (20B) ist zwischen zwei Begrenzungspositionen verfahrbar. Für diesen Zweck sind zwei sich im Abstand der Verfahrstrecke gegenüberliegende Endschalter (20D, 20D*) vorgesehen, die von dem Schlitten (2A) beim Erreichen der linken oder rechten Begrenzungsposition betätigt werden, wodurch der Antrieb (20C) für den Zahnriemen (20B) abgeschaltet wird. Zwischen diesen beiden Begrenzungspositionen fährt der Zahnriemen (20B) mit der Kartenverteilvorrichtung (2) jeweils die von der Anlagensteuerung vorbestimmte Kartenempfangs- bzw. Kartenausgabeposition an. Bei der Anlage gemäß dem Ausführungsbeispiel beträgt die max. Verfahrgeschwindigkeit für die Kartenverteilvorrichtung (2) ca. 2,5 m/s; die max. Beschleunigung beträgt ca. 10 m/s². Damit ist die Kartenverteilvorrichtung (2) in der Lage, den max. Verfahrweg - von in dieser speziellen Ausführung der Anlage ca. 1 m - in ungefähr 1s zurückzulegen. Bei einer Kartentransportgeschwindigkeit von 200-400 mm/s durch die Transportrollen (2C) der Kartenverteilvorrichtung (2) ist diese in der Lage, die 85 mm langen Karten in einer Zeit < 0,5 s an eine Bearbeitungsstation zu übergeben. Durch die Verwendung von unterschiedlich langen Zahnriemen (20B) mit einer entsprechenden Führungsschiene kann die maximal mögliche Verfahrstrecke der Kartenverteilvorrichtung (2) flexibel an unterschiedliche Parallelisierungstiefen, sprich die Zahl der mehrfach parallel nebeneinander ausgeführten Bearbeitungsstationen (3, 4), die von der Kartenverteilvorrichtung (2) mit Karten bedient werden müssen, angepaßt werden. Darüber hinaus ist es auch vorgesehen, auf dem Zahnriemen zwei Kartenverteilvorrichtungen (nicht dargestellt) zu montieren, wobei eine Aufteilung der Verfahrstrecke vorgenommen wird. Die Kartenverteilvorrichtung (2) inklusive Zahnriemen (20B), Antrieb etc. bilden konstruktiv ein Kartenverteilmodul (M2), das als Komponente der Anlage mit dieser trennbar und austauschbar verbunden ist. Das Kartenverteilmodul (M2) zwischen Kartenvorratsmodul (M1) und Chipund/Magnetstreifen-Bearbeitungsmodul (M3) ist baugleich zu dem Kartenverteilmodul (M2), das zwischen dem Chipund/Magnetstreifen-Bearbeitungsmodul (M3) und dem Laserbearbeitungs-Modul (M4) angeordnet ist; und - in dem Ausführungsbeispiel – ebenso baugleich zu dem Kartenverteilmodul, das zwischen Laserbearbeitungs-Modul (M4) und dem Bilderkennungs-Modul (M5) angeordnet ist. Das Kartenverteilmodul (M2) kann in "Sandwich-Bauweise" in einfacher Weise zwischen zwei Module (M1, M3, M4, M5) eingebaut werden.

Nachfolgend sollen noch 3 weitere (nicht dargestellte) Ausführungsformen zur Verfahrbarkeit der Kartenverteilvorrichtung beschreiben werden. In einer ersten alternativen Ausführungsform ist der Schlitten der Kartenverteilvorrichtung auf mindestens einer parallel zur Bearbeitungs-Parallelisierungsachse angeordneten Führungsschiene verfahrbar gehalten. Dabei wird der Schlitten mit einem umlaufenden, parallel zur Führungsschiene verlaufenden, motorisch zwi--schen-zwei-Begrenzungspositionen-transportierbaren_Riemen verbunden und ist mit diesem verfahrbar. In der zweiten alternativen Ausführungsform ist der Schlitten der Kartenverteilvorrichtung ebenfalls auf mindestens einer parallel zur Bearbeitungs-Parallelisierungsachse angeordneten Führungsschiene verfahrbar gehalten. Dabei wird der Schlitten mit zwei parallel zur Führungsschiene verlaufenden, motorisch antreibbaren Zugsseilen verbunden und von diesen verfahren. In der dritten alternativen Ausführungsform wird der Schlitten der Kartenverteilvorrichtung über eine parallel zur Bearbeitungs-Parallelisierungsachse angeordnete, motorisch antreibbare Gewindespindel verfahren.

In Fig. 14 ist von rechts nach links schematisch die Übergabe einer Karte (K) von der Kartenverteilvorrichtung (2) an eine als Black-Box dargestellte Chip- und/oder Magnetstreifen-Bearbeitungsstation (3) gezeigt. Hinter der Bearbeitungsstation (3) befindet sich ebenfalls eine Kartenverteilvorrichtung (2), in der sich nun die zuvor bearbeitete Karte (K') für den Weitertransport befindet. Die parallel nebenein- 10 ander angeordneten Chip- und/oder Magnetstreifen-Bearbeitungsstationen (3) bilden konstruktiv das Chip- und/oder Magnetstreifen-Bearbeitungsmodul (M3). In einer nicht dargestellten Ausführungsform der Anlage ist es vorgesehen, zwei baugleiche Chip- und/oder Magnetstreifen-Bearbeitungs-Module mit jeweils gleicher Anzahl von Chipund/oder Magnetstreifen-Bearbeitungsstationen (3) in Bearbeitungs-Ablaufrichtung hintereinander ohne Zwischenschaltung eines Kartenverteilmoduls (M2) wieder als Chipund/oder Magnetstreifen-Bearbeitungsmodul (M3') zusammengefaßt anzuordnen, um den Kartendurchsatz noch weiter zu erhöhen. Der Kartentransport zwischen hintereinander angeordneten Chip- und/oder Magnetstreifen-Bearbeitungsmodulen erfolgt durch diese selbst. Nach dem Aufzeichnen der Daten in einer dieser Chip- und/oder Magnet- 25 streifen-Bearbeitungsstationen (3) werden die Karten (K) an die sich anschließende Kartenverteilvorrichtung (2) übergeben und weiter an eine freie bzw. an die am schnellsten frei werdende der drei Laserstationen (4) transportiert.

In Fig. 15 ist eine Seitenansicht der Laserbeschriftungs- 30 station (4) gezeigt. Die Laserstrahlerzeugung erfolgt in räumlich von der Anlage getrennten Laseranlagen (in dem Ausführungsbeispiel ein Neodym-YAG-Laser, λ = 1,06 µm). Die Laserstrahlung wird über eine Glasfiber (nicht dargestellt) dem aus justagegründen gegenüber der 35 Kartentransportebene (x, y) höhenverstellbaren Laserbeschriftungskopf (40) der Laserstation (4) zugeführt. Der Laserbeschriftungskopf (40) ist auf einer auf Halteschienen (40B) höhenverstellbar befestigten Montageplatte (40A) montiert. In der Montageplatte (40A) befindet sich ein Plan- 40 feldobjektiv (40C) zur Fokussierung der Laserstrahlung (LS) auf die Karte (K). Die Einkoppelung der Laserstrahlung (LS) über die Glasfiber geschieht durch eine am Laserbeschriftungskopf (40) angeordnete Einkoppelvorrichtung (40D) mit Einkoppellinse für den divergent aus der Glasfi- 45 ber austretenden Laserstrahl. Der die Einkoppellinse nahezu parallel verlassende Laserstrahl (LS) trifft zur Kartenbeschriftung über ein Ablenkspiegel-Paar (40E) auf das Planfeldobjektiv (40C) und dann auf die Karte (K).

Teil der Laserstation (4) ist eine speziell hierfür entwikkelte Transport- und Positioniervorrichtung (41) für die Karten (K) - vgl. Fig. 16 und 17. Diese Transport- und Positioniervorrichtung (41) weist einen Montagerahmen (41B) mit einem Einführschlitz (41C) und einem diesem fluchtend gegenüberliegenden Ausgabeschlitz (41C*) auf, wobei in Kar- 55 tentransportrichtung hinter dem Einführschlitz (41C) eine Eingangszentriereinrichtung und vor dem Ausgabeschlitz (41C*) eine Ausgangszentriereinrichtung jeweils für die Zentrierung der Karten auf die Kartentransportebene (x, y) rung der Karte ohne die Aufsicht auf die Kartenseiten (Vorder- wie auch Rückseite) auch nur teilweise zu verdecken. Damit ist ein vollkommen unverdecktes Beschriftungs- und Sichtfenster gegeben. Dies ist essentiell für eine uneingeschränkte Laserbeschriftung auf der gesamten Kartenfläche. 65 Zwischen dem Einführschlitz (41C) und dem Ausgabeschlitz (41C*) und parallel zur Kartentransportrichtung ist eine Reihe von nebeneinander am Montagerahmen (41B)

drehbar gelagerten Führungsrollen (41D) für die Karten angeordnet, deren Drehachsen senkrecht zur Kartentransportebene (x, y) verlaufen. Den Führungsrollen (41D) beabstandet gegenüberliegend befindet sich ein ca. über die Länge der Führungsrollen-Reihe erstreckender Transportriemen (41E). Dieser Transportriemen (41E) wird zwischen einer motorisch angetriebenen Antriebsrolle (41F) und einer Abtriebsrolle (41G), deren Drehachsen senkrecht zur Kartentransportebene (x, y) verlaufen, gehalten. Dabei werden die Karten (K) zum Transport und zur Positionierung mit ihren Längsseiten (K1, K2) seitlich zwischen den Führungsrollen (41D) und dem Transportriemen (41E) gehalten. Dies ermöglicht es, daß die Kartenseiten vollkommen unverdeckt sind. Die Transport- und Positioniervorrichtung (41) ermöglicht es außerdem, die Karte (K) zu wenden, wodurch ein Beschriften der Rückseite ermöglicht wird - siehe Fig. 17 -. Zu diesem Zweck ist der Montagerahmen (41B) mit dem Einführschlitz (41C) dem Ausgabeschlitz (41C*), den Führungsrollen (41D) und dem Transportriemen (41E) in einem Gehäuse (41A) um eine Achse parallel zur Kartentransportrichtung um 180° drehbar gelagert. Dabei ist an dem Montagerahmen (41B) koaxial zur Kartentransportrichtung eine Drehscheibe (41H) montiert, die form- und/oder kraftschlüssig über einen Antriebsriemen (41I) mit einem Antriebsmotor (41J) verbunden ist. Die Transport und Positioniervorrichtung (41) kann die Karten in der gewendeten und in der nicht gewendeten Stellung von der Kartenverteilvorrichtung (2) empfangen und an die nächste Kartenverteilvorrichtung (2) ausgeben. Die drei Laserstationen (4) bilden konstruktiv das Laserbeschriftungsmodul (M4), das als Komponente der Anlage mit dieser trennbar und austauschbar verbunden ist.

In Fig. 18 ist eine in Bearbeitungs-Ablaufrichtung hinter dem Laserbeschriftungsmodul (M4) angeordnete Bilderkennungsstation (5) zur Überprüfung der Richtigkeit und Qualität der auf den Kartenkörper aufgebrachten Daten (Hans Mustermann, Kontonr.: ...) dargestellt. Diese besteht aus zwei von oben und unten auf die Karte (K) blickenden Kameras (50), vorzugsweise CCD-Kameras. Mit diesen Kameras (50) kann die Richtigkeit der auf die Karten aufgelaserten kartenspezifischen Daten durch einen Vergleich des jeweils ausgewerteten Bildes mit dem jeweils zu einer Karte gehörenden Datensatz überprüft werden. Neben der Richtigkeit kann auch die Qualität der Laserbeschriftung (Kontrast, Kantenschärfe etc.) überprüft werden. Karten mit einer falschen oder mangelhaften Laserbeschriftung werden aussortiert. Zum Transport- und zur Positionierung der von den Laserstationen (4) empfangenen Karten weist die Bilderkennungsstation (5) eine Transport und Positioniervorrichtung (51) auf. Auch hierbei - ebenso wie in der Laserstation - ist es wichtig, daß die von den Kameras (50) zu begutachtenden Karten nicht von Teilen der Transport- und Positioniervorrichtung (51) verdeckt werden. Aus diesem Grunde wird in vorteilhafter Weise für die Transport- und Positioniervorrichtung (51) der Bilderkennungsstation (5) eine zur Transport- und Positioniervorrichtung (41) der Laserstation (4) baugleiche Vorrichtung eingesetzt. Wenn - wie in dem Ausführungsbeispiel - zwei Kameras (50), eine für die Kartenvorderseite und eine für die Kartenrückseite, eingesetzt werangeordnet-ist.-Diese-Vorrichtung-gestattet, die-Positionie--60-den, kann bei der-Transport- und Positioniervorrichtung (51) auf die Wendeoption verzichtet werden. Als fehlerhaft erkannte Karten werden in einem Ausschußmagazin abgelegt. Nach der Bilderkennungsstation (5) werden die Karten in

eines der Magazine (6) abgelegt. Welche der Magazine (6) für die "Gut-Karten" und welche für die "Schlecht-Karten" verwendet werden, kann von dem Bediener der Anlage über die Anlagensteuerung flexibel festgelegt werden.

An dieser Stelle soll noch auf einen weiteren Vorteil der

12

Patentansprüche

erfindungsgemäßen Anlage hingewiesen werden. Bei der Bearbeitung ("Personalisierung") von Karten mit dieser Anlage wird gewährleistet, daß die Reihenfolge der fertigen Katen in dem /den "Gut-Karten"-Ablagemagazinen der Reihenfolge der in die Anlage eingespielten Datensätze (Z. B.: fortlaufende Kartennummern) entspricht, auch wenn - was aus den verschiedensten Gründen niemals auszuschließen ist - das Aufbringen der Daten in der Chip- und/oder Magnetstreifen-Bearbeitungsstation (3) oder der Laserstation (4) fehlerhaft oder unzureichend war. Das Einhalten der 10 richtigen Kartenreihenfolge ist unbedingt notwendig, wenn nachfolgende, automatisierte Verarbeitungsschritte (z. B. in Versandanlagen für die Karten) dieses voraussetzen. Wie vorstehend bereits erwähnt, wird in den Chip- und/oder Magnetstreifen-Bearbeitungsstationen (3) unmittelbar über- 15 prüft, ob die Daten korrekt auf den Chip bzw. auf den Magnetstreifen aufgezeichnet wurden. Ist z.B. wegen eines fehlerhaften Chips oder Magnetstreifens ein Aufzeichnen der Daten auf eine Karte nicht möglich, so werden alsdann nur noch die Datensätze/Karten, die in der Reihenfolge zwi- 20 schen der zuletzt abgelegten "Gut-Karte" und der "Schlecht-Karte" liegen, abgearbeitet. Aus dem Kartenvorratsmagazin (1) wird eine jungfräuliche Karte entnommen und auf diese der karten-/benutzerspezifische Datensatz der "Schlecht-Karte" aufgebracht. Danach wird wieder die normale Bear- 25 beitung durchgeführt. Dasselbe gilt auch für Fehler bei der Laserbeschriftung, die in der Bilderkennungsstation (5) erkannt werden.

Die "Schlecht-Karten" werden in einem Ausschußmagazin abgelegt. Um in dem Fall von "Schlecht-Karten" die Be- 30 arbeitungsstationen (3, 4) nicht mit diesen "Schlecht-Karten" zu "verstopfen", ist dem Chip- und/oder Magnetstreifen-Bearbeitungsmodul (M3) und dem Laserbeschriftungsmodul (M4) jeweils eine Park- und/oder Bypass-Station (3*, 4*) - vgl. Fig. 3 - zugeordnet. Wenn z. B. in einer Chip- 35 und/oder Magnetstreifen-Bearbeitungsstation (3) festgestellt wird, daß der Chip einer Karte nicht in Ordnung ist und somit auf diese Karte keine Daten aufgezeichnet werden können, dann muß diese Karte ins Ausschußmagazin befördert werden. Wenn nun alle sich an das Chip- und/oder Magnetstreifen-Bearbeitungsmodul (M3) anschließenden Laserstationen (4) mit zu beschriftenden Karten besetzt sind, so wird die "Schlecht-Karte" über die Bypass-Station (4*) von den Kartenverteilvorrichtungen (2) an den Laserbeschriftungsstationen (4) vorbei ins Ausschußmagazin (6) be- 45 fördert - ggf. wird die "Schlecht-Karte" in der Bypass-Station (4*) zwischengeparkt. Für den Fall, daß die Park-/Bypass-Station (4*) schon mit einer "Schlecht-Karte" blockiert ist, kann die Parkstation (3*) genutzt werden.

Anstelle von Kartenablagemodulen (M6) kann die Anlage auch eine Kuvertiermaschiene zur lösbaren Fixierung/
Verpackung der bearbeiteten Karten auf/in einem Träger aufweisen; oder aber die Anlage übergibt die fertigen Karten an eine solche Maschine, wobei "Schlecht-Karten" über eine Weiche ausgesondert werden.

Zusätzlich oder anstelle der Laserstation (4) kann die Anlage als Kartenkörper-Bearbeitungsstation eine Hochprägestation (Embossierstation), einen Thermotransferdrucker, einen Thermosublimationsdrucker für Farbdrucke oder einen-Tintenstrahldrucker-aufweisen-Je-nach-Bearbeitungszeit dieser Stationen im Verhältnis zu den anderen Bearbeitungsstationen sind diese entlang der Bearbeitungs-Parallelisierungsachse (x) mehrfach ausgeführt.

In Fig. 1 ist noch das Bedienterminal (BT, Monitor) der Anlagensteuerung für den Operator dargestellt sowie zwei 65 Etiketten-Drucker (ED) zum Drucken von Losnummern-Etiketten, die jeweils auf die Magazine mit den fertig bearbeiteten Karten geklebt werden.

- 1. Anlage zur Bearbeitung von Chip- und/oder Magnetstreifenkarten (K) bestehend aus den folgenden Komponenten:
 - mindestens einem Kartenvorratsmagazin (1) zur Aufnahme von zu bearbeitenden Karten,
 - zwei oder mehreren Chip- und/oder Magnetstreifen-Bearbeitungsstationen (3) zum Aufbringen von Daten/Informationen auf den Chip (Halbleiterbaustein) und/oder auf den Magnetstreifen der Karten (K),
 - mindestens einer Kartenkörper-Bearbeitungsstation (4) zum Aufbringen von nicht änderbaren Daten/Informationen auf den Kartenkörper,
 - einem Kartentransportsystem, das die Karten von dem Kartenvorratsmagazin (1) hin zur Chipund/oder Magnetstreifen-Bearbeitungsstation (3) und anschließend hin zu der oder den Kartenkörper-Bearbeitungsstationen (4) und von diesen wieder weiter transportiert,

dadurch gekennzeichnet, daß

- dieselbe eine Kartentransportebene (x, y) mit einer Bearbeitungsablauf-Achse (y) und einer senkrecht dazu verlaufenden Bearbeitungs-Parallelisierungs-Achse (x) aufweist, wobei Bearbeitungsstationen (3, 4) unterschiedlichen Bearbeitungstyps beabstandet hintereinander entlang der Bearbeitungsablauf-Achse (y) angeordnet sind, und mehrfach ausgeführte Bearbeitungsstationen (3, 4) eines Bearbeitungstyps parallel nebeneinander entlang der Bearbeitungs-Parallelisierungsachse (x) als Bearbeitungsmodul (M3, M4) angeordnet sind,
- die Anlage aus separaten, hintereinander entlang der Bearbeitungsablauf-Achse (y) angeordneten, trennbar und auswechselbar miteinander verbundenen Modulen (M1, M2, M3, M4, M5) mit jeweils einem eigenen Traggestell (MT) aufgebaut ist, und zwar
 - einem Kartenvorratsmodul (M1) das ein oder mehrere nebeneinander entlang der Bearbeitungs-Parallelisierungsachse (x) angeordnete Kartenvorratsmagazine (1) aufweist, einem ersten Kartenverteilmodul (M2) mit einer Kartenverteilvorrichtung (2), die entlang Bearbeitungs-Parallelisierungsachse (x) verfahrbar ist, und in der Lage ist, nach dem Anfahren jeweils einer Kartenempfangsoder Kartenausgabeposition eine Chipund/oder Magnetstreifenkarte (K) von einem Kartenvorratsmagazin (1) und/oder einer Bearbeitungsstation (3, 4) zu empfangen, aufzunehmen und an eine Bearbeitungsstation (3, 4) auszugeben,
 - einem Chip- und/oder Magnetstreifen-Bearbeitungsmodul (M3), das zwei oder mehrere nebeneinander entlang der Bearbeitungs-Parallelisierungsachse (x) angeordnete - Chip- und/oder Magnetstreifen-Bearbeitungsstationen (3) aufweist,
 - einem zweiten Kartenverteilmodul (M2) mit einer Kartenverteilvorrichtung (2), die entlang Bearbeitungs-Parallelisierungsachse (x) verfahrbar ist, und in der Lage ist, nach dem Anfahren jeweils einer Kartenempfangs- oder Kartenausgabeposition eine Chip- und/oder Magnetstreifenkarte (K) von

einer Bearbeitungsstation (3, 4) zu empfangen, aufzunehmen und an eine Bearbeitungsstation (3, 4) auszugeben,

- mindestens einem Kartenkörper-Bearbeitungsmodul (M4) das eine oder mehrere nebeneinander entlang der Bearbeitungs-Parallelisierungsachse (x) angeordnete Kartenkörper-Bearbeitungsstationen (4) aufweist.

- 2. Anlage nach Anspruch 1, dadurch gekennzeichnet, daß dieselbe in Bearbeitungs-Ablaufrichtung der Bearbeitungsablauf-Achse (y) hinter dem letzten Kartenköper-Bearbeitungsmodul (M4) ein Bilderkennungsmodul (M5) mit mindestens einer Bilderkennungsstation (5) zur Überprüfung der Richtigkeit und Qualität der auf den Kartenköper aufgebrachten Daten aufweist. 15
 3. Anlage nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß dieselbe in Bearbeitungs-Ablaufrichtung der Bearbeitungsablauf-Achse (y) hinter dem Bilderkennungsmodul (M5) mindestens ein 20 Kartenablagemodul (M6) mit wenigstens einem Ablagemagazin (6) und einem Ausschußmagazin (6) aufweist.
- 4. Anlage nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß jedes Traggestell (MT) ²⁵ eine Modul-Aufnahmeplattform (MT1) in Form einer Montageplatte aufweist.
- 5. Anlage nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Traggestelle (MT) der Module (M1, ..., M6) von Aluminiumprofilen gebildet 30 sind, wobei die Aluminium-Traggestelle (MT) der einzelnen Module miteinander verschraubbar sind.
- 6. Anlage nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß jedes Traggestell (MT) höhenverstellbare Füße (MT2) aufweist, um die Kartenbearbeitungs/Transport-Ebenen der Stationen (1, 2, 3, 4, 5, 6) eines jeden Moduls (M1, ..., M6) auf die Kartentransportebene (x, y) der Anlage einzustellen.
- 7. Anlage nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Stationen (1, 2, 3, 4, 40 5, 6) eines Moduls (M1, ..., M6) auf der Modul-Aufnahmeplattform (MT1) entfernbar und auswechselbar montiert sind.
- 8. Anlage nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Stationen (1, 2, 3, 4, 45 5, 6) eines Moduls (M1, ..., M6) auf der Modul-Aufnahmeplattform (MT1) an unterschiedlichen Positionen entlang der Bearbeitungs-Parallelisierungsachse (x) montierbar sind.
- 9. Anlage nach einem der vorstehenden Ansprüche, 50 dadurch gekennzeichnet, daß die Modul-Aufnahmeplatte (MT1) eines Moduls (M1, ..., M6) ein Befestigungslochfeld zur Aufnahme von Befestigungsschrauben zur Montage der Stationen (1, 2, 3, 4, 5, 6) des Moduls an verschiedenen Positionen und/oder mit verschiedenen Abständen zueinander aufweist.
- 10. Anlage nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Stationen (1, 2, 3, 4, 5, 6) eines Moduls (M1, ..., M6) auf der Modul-Aufnahmeplatiform (MT1) verschiebbar gehalten sind. 60 11. Anlage nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Kartenverteilvorrichtung (2) einen entlang der Bearbeitungs-Parallelisierungsachse (x) stufenlos oder schrittweise motorisch verfahrbaren Schlitten (2A) aufweist, auf dem ein Kartenaufnahme-Gehäuse (2B) montiert ist, wobei in dem Kartenaufnahme-Gehäuse (2B) für den Karteneinzug

und die Kartenausgabe motorisch antreibbare Trans-

portrollen (2C) auf senkrecht zur Bearbeitungsablauf-Achse (y) angeordneten Achsen drehbar gelagert sind.

12. Anlage nach Anspruch 11, dadurch gekennzeichnet, daß in dem Kartenaufnahme-Gehäuse (2B) mindestens 3 Paare von jeweils zwei übereinander angeordneten, zwischen sich jeweils die Karten (K) im Reibkontakt auf Kartentransport-Ebene (x, y) aufnehmenden Transportrollen (2C) vorgesehen sind, wobei jeweils eine Transportrolle (2C) eines Transportrollen-Paares motorisch antreibbar ist.

13. Anlage nach einem der Ansprüche 11 oder 12, dadurch gekennzeichnet, daß die Antriebsrichtung der Transportrollen (2C) umkehrbar ist.

14. Anlage nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, daß das Kartenaufnahme-Gehäuse (2B) der Kartenverteilvorrichtung (2) mindestens einen Sensor aufweist, der meldet, ob eine eingezogene Karte (K) ordnungsgemäß aufgenommen bzw. ordnungsgemäß ausgegeben wurde, und erst nach einer ordnungsgemäßen Sensormeldung die Kartenverteilvorrichtung (2) entlang der Bearbeitungs-Parallelisierungsachse (x) verfahrbar ist.

15. Anlage nach Anspruch 14, dadurch gekennzeichnet, daß karteneingangsseitig vor den Transportrollen (2C) und kartenausgangsseitig hinter den Transportrollen (2C) jeweils eine Lichtschranke (2E, 2F) vorgesehen ist, wobei

- unmittelbar nach der Detektion einer an die Kartenverteilvorrichtung (2) übergebenen Karte durch die karteneingangsseitige Lichtschranke (2E) der Antrieb (2I) für die Transportrollen (2C) gestartet wird, und nachdem die Chip- und/oder Magnetstreifenkarte (K) diese Lichtschranke (2E) durchlaufen hat, eine Meldung erzeugt wird, die das Verfahren der Kartenverteilvorrichtung (2) entlang der Bearbeitungs-Parallelisierungs-Achse (x) freischaltet,

- nachdem die Karte (2) die ausgangsseitige Lichtschranke (2F) durchlaufen hat, eine Meldung erzeugt wird, die das Verfahren der Kartenverteilvorrichtung (2) entlang der Bearbeitungs-Parallelisierungsachse (x) freischaltet.

16. Anlage nach Anspruch 15, dadurch gekennzeichnet, daß die kartenausgangsseitige Lichtschranke (2F) unmittelbar nach Detektion einer empfangenen Chipund/oder Magnetstreifenkarte (K) den Antrieb (2I) für die Transportrollen (2C) ausschaltet, wenn die Kartenverteilvorrichtung (2) die vorgesehene Ausgabeposition noch nicht erreicht hat.

17. Anlage nach einem der Ansprüche 11 bis 16, dadurch gekennzeichnet, daß das Kartenaufnahme-Gehäuse (2B) karteneingangs- und kartenausgangsseitig jeweils eine Karten-Führungseinrichtung (2H) zum Führen der Karten auf Kartentransportebene aufweist. 18. Anlage nach Anspruch 10, dadurch gekennzeichnet, daß die Karten-Führungseinrichtung (2H) von zwei in einem Abstand übereinander angeordneten Führungsrollen, deren Drehachsen parallel zur Bearbeitungs-Parallelisierungsachse (x) verlaufen, gebildet ist,-wobei-der-Abstand-zwischen den Führungsrollen größer als eine und kleiner als zwei Kartendicken ist. 19. Anlage nach einem der Ansprüche 11 bis 18, dadurch gekennzeichnet, daß der Schlitten (2A) der Kartenverteilvorrichtung (2) über eine Montageplatte (20A) unmittelbar auf einem umlaufenden, motorisch antreibbaren und zwischen zwei Begrenzungspositionen transportierbaren Riemen (20B) montiert ist.

20. Anlage nach Anspruch 19, dadurch gekennzeich-

net, daß der Riemen (20B) ein Zahnriemen ist.

21. Anlage nach einem der Ansprüche 11 bis 18, dadurch gekennzeichnet, daß der Schlitten der Kartenverteilvorrichtung auf mindestens einer parallel zur Bearbeitungs-Parallelisierungsachse (x) angeordneten Führungsschiene verfahrbar gehalten ist, wobei der Schlitten mit einem umlaufenden, parallel zur Führungsschiene verlaufenden, motorisch zwischen zwei Begrenzungspositionen transportierbaren Riemen verbunden und mit diesem verfahrbar ist.

22. Anlage nach einem der Ansprüche 11 bis 18, dadurch gekennzeichnet, daß der Schlitten der Kartenverteilvorrichtung auf mindestens einer parallel zur Bearbeitungs-Parallelisierungsachse (x) angeordneten Führungsschiene verfahrbar gehalten ist, wobei der Schlitten mit zwei parallel zur Führungsschiene verlaufenden, motorisch antreibbaren Zugseilen verbunden ist und von diesen verfahrbar ist.

23. Anlage nach einem der vorstehenden Ansprüche 11 bis 18, dadurch gekennzeichnet, daß der Schlitten 20 der Kartenverteilvorrichtung über eine parallel zur Bearbeitungs-Parallelisierungsachse (x) angeordnete, motorisch antreibbare Gewindespindel verfahrbar ist.

24. Anlage nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß dieselbe mindestens eine 25 Laserstation (4) als Kartenkörper-Bearbeitungsstation (4) aufweist.

25. Anlage nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß dieselbe 3 Kartenkörper-Bearbeitungsstationen (4) und 10 Chip- und/oder Ma- 30 gnetstreifen-Bearbeitungsstationen (3) aufweist.

26. Anlage nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß dieselbe mindestens eine Hochprägestation (Embossierstation) als Kartenkörper-Bearbeitungsstation (4) aufweist.

27. Anlage nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß dieselbe mindestens einen Thermotransferdrucker als Kartenkörper-Bearbeitungsstation (4) aufweist.

28. Anlage nach einem der vorstehenden Ansprüche, 40 dadurch gekennzeichnet, daß dieselbe mindestens einen Thermosublimationsdrucker als Kartenkörper-Bearbeitungsstation (4) aufweist.

29. Anlage nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß dieselbe mindestens einen Tintenstrahldrucker als Kartenkörper-Bearbeitungsstation (4) aufweist.

30. Anlage nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß mindestens ein Kartenvorratsmagazin (1), eine Chip- und/oder Magnetstrei- 50 fen-Bearbeitungsstation (3) und eine Kartenkörper-Bearbeitungsstation (4) fluchtend hintereinander angeord-

net sind

31. Anlage nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß baugleiche Bearbeitungs- 55 module (M3, M4) eines Bearbeitungstyps mit jeweils gleicher Anzahl von mehrfach ausgeführten Bearbeitungsstationen (3, 4) in Bearbeitungs-Ablaufrichtung der Bearbeitungsablauf-Achse (y) hintereinander ohne Zwischenschaltung-eines-Kartenverteilmoduls-(M2)-60 wiederum als Bearbeitungsmodul (M3', M4') zusammengefaßt sind.

32. Anlage nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß jedes Bearbeitungsmodul (M3, M4) eine Park- und/oder Bypass-Station (3*, 4*) 65

für Karten aufweist.

Hierzu 18 Seite(n) Zeichnungen

- Leerseite -

Nummer: Int, Cl.⁵: Veröffentlichungstag: DE 197 09 561 C2 G 06 K 13/02

Nummer: Int. Cl.⁵: Veröffentlichungstag: DE 197 09 561 C2 G 06 K 13/02 18. November 1999

Nummer: Int. Cl.6: Veröffentlichungstag: 18. November 1999

DE 197 09 561 C2 G 06 K 13/02

Nummer: Int. Cl.⁶: Veröffentlichungstag: **DE 197 09 561 C2 G 06 K 13/02**18. November 1999

Nummer: Int. Cl.⁶. Veröffentlichungstag: **DE 197 09 561 C2 G 06 K 13/02**18. November 1999

Chip -und/oder Magnetstreifen-Bearbeitungsmodul

Kartenverteilmodul

Fig. 5

Veröffentlichungstag:

DE 197 09 561 C2 G 06 K 13/02 18. November 1999

Laserbearbeitungs-Modul Chip -und/oder Magnetstreifen-Bearbeitungsmodul Kartennverteilmodul

Fig. 6

Nummer: Int. Cl.⁶. Veröffentlichungstag: DE 197 09 561 C2 G 06 K 13/02 18. November 1999

Fig. 7

DE 197 09 561 C2

G 06 K 13/02

Fig. 8

Veröffentlichungstag:

DE 197 09 561 C2 G 06 K 13/02

Nummer:

Int. Cl.⁶: Veröffentlichungstag:

DE 197 09 561 C2 G 06 K 13/02 18. November 1999

Veröffentlichungstag:

DE 197 09 561 C2 G 06 K 13/02

Veröffentlichungstag:

DE 197 09 561 C2 G 06 K 13/02

Fig. 12

Veröffentlichungstag:

DE 197 09 561 C2 G 06 K 13/02

: 18. November 1999

Veröffentlichungstag:

DE 197 09 561 C2 G 06 K 13/02

Nummer:

G 06 K 13/02 18. November 1999

DE 197 09 561 C2 Int. Cl.6: Veröffentlichungstag:

Fig. 15

Nummer: Int. Cl.⁶: Veröffentlichungstag: **DE 197 09 561 C2 G 06 K 13/02**18. November 1999

Fig. 16

DE 197 09 561 C2 G 06 K 13/02 18. November 1999

Veröffentlichungstag: 18.

Fig. 17

Veröffentlichungstag:

DE 197 09 561 C2 G 06 K 13/02

