1 Donsker's Theorem for $(C[0,1], \|\cdot\|_{\infty})$

Proposition 1.1

- Let $\xi_1, \xi_2, \ldots : \Omega \longrightarrow \mathbb{R}$ be a sequence of independent and identically distributed \mathbb{R} -valued random variables defined on the probability space $(\Omega, \mathcal{A}, \mu)$, with expectation value zero and common finite variance $\sigma^2 > 0$.
- Define the random variables:

$$\begin{cases} S_0 : \Omega \longrightarrow \mathbb{R} : \omega \longmapsto 0, & \text{and} \\ \\ S_n : \Omega \longrightarrow \mathbb{R} : \omega \longmapsto \sum_{i=1}^n \xi_i(\omega), & \text{for each } n \in \mathbb{N}. \end{cases}$$

• For each $n \in \mathbb{N}$, define $X^{(n)}: \Omega \longrightarrow C[0,1]$ as follows:

$$X^{(n)}(\omega)(t) := \frac{1}{\sigma \cdot \sqrt{n}} \left\{ S_{i-1}(\omega) + n \left(t - \frac{i-1}{n} \right) \xi_i(\omega) \right\}, \text{ for each } \omega \in \Omega, \ t \in \left[\frac{i-1}{n}, \frac{i}{n} \right], \ i = 1, 2, 3, \dots, n.$$

• For each $n \in \mathbb{N}$ and each $t \in [0,1]$, define $X_t^{(n)}: \Omega \longrightarrow \mathbb{R}$ as follows:

$$X_t^{(n)}(\omega) := X^{(n)}(\omega)(t), \text{ for each } \omega \in \Omega.$$

Then, the following statements are true:

(i) For each $\omega \in \Omega$ and each $n \in \mathbb{N}$,

$$X^{(n)}(\omega)\left(\frac{i}{n}\right) = \frac{1}{\sigma \cdot \sqrt{n}} \cdot S_i(\omega), \text{ for } i = 0, 1, 2, \dots, n.$$

(ii) For each $\omega \in \Omega$ and each $n \in \mathbb{N}$,

$$X^{(n)}(\omega)(t)$$
 is the linear interpolation from $\frac{1}{\sigma \cdot \sqrt{n}} S_{i-1}(\omega)$ to $\frac{1}{\sigma \cdot \sqrt{n}} S_i(\omega)$ over $t \in \left[\frac{i-1}{n}, \frac{i}{n}\right]$,

where i = 1, 2, ..., n.

(iii) For each $t \in [0, 1]$,

$$X_t^{(n)} \stackrel{d}{\longrightarrow} \sqrt{t} \cdot N(0,1), \text{ as } n \longrightarrow \infty.$$

(iv) For any $0 \le t_0 \le t_1 \le t_2 \le \cdots \le t_k \le 1$,

$$\left(X_{t_1}^{(n)} - X_{t_0}^{(n)}, \ldots, X_{t_k}^{(n)} - X_{t_{k-1}}^{(n)}\right) \stackrel{d}{\longrightarrow} N\left(\mu = \mathbf{0}, \Sigma = \operatorname{diag}(t_1 - t_0, \ldots, t_k - t_{k-1})\right), \text{ as } n \longrightarrow \infty.$$

(v) For any $0 \le t_1, t_2, \dots, t_k \le 1$,

$$\left(X_{t_1}^{(n)}, X_{t_2}^{(n)}, \ldots, X_{t_k}^{(n)}\right) \stackrel{d}{\longrightarrow} N\left(\mu = \mathbf{0}, \Sigma = \left[\min\{t_i, t_j\}\right]_{1 \le i, j \le k}\right), \text{ as } n \longrightarrow \infty.$$

Proof

- (i) Obvious.
- (ii) Obvious.
- (iii) The statement holds trivially for t = 0. We prove the statement for $t \in (0, 1]$. Now, for each $t \in (0, 1]$, note that

$$X_t^{(n)}(\omega) = \frac{1}{\sigma \cdot \sqrt{n}} \left\{ S_{\lfloor nt \rfloor}(\omega) + \left(nt - \lfloor nt \rfloor \right) \cdot \xi_{\lfloor nt \rfloor + 1}(\omega) \right\},\,$$

where $|\cdot|: \mathbb{R} \longrightarrow \mathbb{Z}$, defined by

$$\lfloor x \rfloor := \max \left\{ k \in \mathbb{Z} \mid k \le x \right\}, \text{ for each } x \in \mathbb{R},$$

is the round-down function.

Claim 1:

$$\frac{1}{\sigma \cdot \sqrt{n}} \cdot S_{\lfloor nt \rfloor} \stackrel{d}{\longrightarrow} \sqrt{t} \cdot Z, \text{ where } Z \sim N(0, 1).$$

Claim 2:

$$B_n := \frac{1}{\sigma \cdot \sqrt{n}} \cdot \left(nt - \lfloor nt \rfloor \right) \cdot \xi_{\lfloor nt \rfloor + 1} \stackrel{d}{\longrightarrow} 0.$$

The desired statement now follows by Slutsky's Theorem (Corollary, p.40, [3]).

Proof of Claim 1: Note that

$$\frac{1}{\sigma \cdot \sqrt{n}} \cdot S_{\lfloor nt \rfloor} \ = \ \frac{\sqrt{\lfloor nt \rfloor}}{\sqrt{n}} \left(\frac{1}{\sigma \cdot \sqrt{\lfloor nt \rfloor}} \cdot S_{\lfloor nt \rfloor} \right),$$

and

$$\frac{\sqrt{\lfloor nt \rfloor}}{\sqrt{n}} \longrightarrow \sqrt{t}$$
, as $n \longrightarrow \infty$.

Hence, Claim 1 follows by Slutsky's Theorem (Example 6, p.40, [3]), once we establish the following:

$$\frac{1}{\sigma \cdot \sqrt{\lfloor nt \rfloor}} \cdot S_{\lfloor nt \rfloor} \stackrel{d}{\longrightarrow} N(0,1), \text{ as } n \longrightarrow \infty.$$

Note that, for each fixed $t \in (0,1]$, $\{\lfloor nt \rfloor\}_{n \in \mathbb{N}}$ is a sequence of positive integers non-decreasing in $n \in \mathbb{N}$ and satisfying $\lim_{n \to \infty} \lfloor nt \rfloor = \infty$.

<u>Proof of Claim 2:</u> First, note that $E[B_n] = 0$. We now argue that $B_n \xrightarrow{p} 0$. To this end, let $\varepsilon > 0$ be given. Then,

$$\varepsilon^{2} \cdot P(|B_{n}| \geq \varepsilon) \leq E[B_{n}^{2} \cdot I_{\{|B_{n}| \geq \varepsilon\}}]$$

$$\leq E[B_{n}^{2}] = \operatorname{Var}(B_{n}) = \operatorname{Var}\left[\frac{1}{\sigma \cdot \sqrt{n}} \cdot \left(nt - \lfloor nt \rfloor\right) \cdot \xi_{\lfloor nt \rfloor + 1}\right]$$

$$= \frac{1}{n \cdot \sigma^{2}} \cdot \left(nt - \lfloor nt \rfloor\right)^{2} \cdot \operatorname{Var}(\xi_{\lfloor nt \rfloor + 1}) = \frac{1}{n \cdot \sigma^{2}} \cdot \left(nt - \lfloor nt \rfloor\right)^{2} \cdot \sigma^{2}$$

$$\leq \frac{1}{n},$$

which implies

$$\lim_{n\to\infty} P(|B_n| \ge \varepsilon) = 0, \text{ for each } \varepsilon > 0,$$

i.e. $B_n \xrightarrow{p} 0$, as $n \to \infty$ (Definition 2, Chapter 1, [3]), which is equivalent to $B_n \xrightarrow{d} 0$, as $n \to \infty$ (by Theorem 1, Chapter 1 and Theorem 2, Chapter 2, [3]). This proves Claim 2.

First, recall that, by the Central Limit Theorem, we have:

$$\frac{1}{\sigma\sqrt{n}}\cdot S_n \stackrel{d}{\longrightarrow} N(0,1), \text{ as } n \longrightarrow \infty.$$

By Theorem 2.6, [2], the above convergence is equivalent to:

For each subsequence $\{n_i\}_{i\in\mathbb{N}}$ of $\{1,2,\dots\}$, there exists a further subsequence $\{n_{i(k)}\}_{k\in\mathbb{N}}$ such that

$$\frac{1}{\sigma\sqrt{n_{i(k)}}} \cdot S_{n_{i(k)}} \stackrel{d}{\longrightarrow} N(0,1), \text{ as } k \longrightarrow \infty.$$

Note that $\lfloor \cdot \rfloor$ is non-decreasing over all of \mathbb{R} . Hence, for each fixed $t \in (0,1]$, $\{\lfloor nt \rfloor\}_{n \in \mathbb{N}}$ is a non-decreasing sequence of non-negative integers satisfying $\lfloor nt \rfloor \longrightarrow \infty$ as $n \longrightarrow \infty$.

$$E\left[X_{t}^{(n)}\right] = E\left[\frac{1}{\sigma \cdot \sqrt{n}} \left\{S_{i-1} + n\left(t - \frac{i-1}{n}\right)\xi_{i}\right\}\right]$$

$$= \frac{1}{\sigma \cdot \sqrt{n}} \left\{E\left[S_{i-1}\right] + n\left(t - \frac{i-1}{n}\right) \cdot E\left[\xi_{i}\right]\right\} = 0.$$

And, for each $n \in \mathbb{N}$, and each $t \in \left[\frac{i-1}{n}, \frac{i}{n}\right]$, $i = 1, 2, \dots, n$,

$$\operatorname{Var}\left[X_{t}^{(n)}\right] = \operatorname{Var}\left[\frac{1}{\sigma \cdot \sqrt{n}} \left\{S_{i-1} + n\left(t - \frac{i-1}{n}\right)\xi_{i}\right\}\right]$$

$$= \frac{1}{n\sigma^{2}} \left\{\operatorname{Var}\left[S_{i-1}\right] + n^{2}\left(t - \frac{i-1}{n}\right)^{2} \cdot \operatorname{Var}\left[\xi_{i}\right]\right\}$$

$$= \frac{1}{n\sigma^{2}} \left\{(i-1) \cdot \sigma^{2} + n^{2}\left(t - \frac{i-1}{n}\right)^{2} \cdot \sigma^{2}\right\}$$

$$= \frac{1}{n} \cdot \left\{(i-1) + n^{2}\left(t - \frac{i-1}{n}\right)^{2}\right\}.$$

Remark 1.2

By the Central Limit Theorem,

$$X_t^{(n)}$$

A Technical Lemmas

Definition A.1

Let Ω be a non-empty set and $\mathcal{P}(\Omega)$ denote the power set of Ω . An **outer measure** on Ω is a function $\varphi : \mathcal{P}(\Omega) \longrightarrow [0,\infty]$ satisfying the following conditions:

- $\varphi(\varnothing) = 0$.
- monotonicity: $\varphi(A) \leq \varphi(B)$, for every $A, B \in \mathcal{P}(\Omega)$ with $A \subset B$.
- countable sub-additivity:

$$\varphi\left(\bigcap_{i=1}^{\infty} A_i\right) \leq \sum_{i=1}^{\infty} \varphi(A_i), \text{ for any } A_1, A_2, \ldots \in \mathcal{P}(\Omega).$$

Definition A.2

Let Ω be a non-empty set and $\mathcal{P}(\Omega)$ denote the power set of Ω . Let $\varphi : \mathcal{P}(\Omega) \longrightarrow [0, \infty]$ be an outer measure on Ω . A subset $A \subset \Omega$ is said to be φ -measurable if

$$\varphi(E) = \varphi(A \cap E) + \varphi(A^c \cap E), \text{ for every } E \in \mathcal{P}(\Omega).$$

Theorem A.3

Let Ω be a non-empty set and $\mathcal{P}(\Omega)$ denote the power set of Ω . Let $\varphi:\mathcal{P}(\Omega)\longrightarrow [0,\infty]$ be an outer measure on Ω .

(i) A subset $A \subset \Omega$ is φ -measurable if and only if

$$\varphi(E) \geq \varphi(A \cap E) + \varphi(A^c \cap E), \text{ for every } E \in \mathcal{P}(\Omega).$$

- (ii) The collection $\mathcal{A}(\varphi)$ of φ -measurable subsets of Ω forms a σ -algebra of subsets of Ω .
- (iii) The restriction $\varphi \mid_{\mathcal{A}(\varphi)}$ of the outer measure φ to the σ -algebra $\mathcal{A}(\varphi)$ is a (countably additive) complete measure on the measurable space $(\Omega, \mathcal{A}(\varphi))$.

Lemma A.4

Every compact subset of a metric space is also a separable subset of that metric space.

PROOF Let (X, ρ) be a metric space and $K \subset X$ be a compact subset of X. For each $x \in X$ and positive r > 0, let

$$B(x,r) := \{ y \in X \mid \rho(x,y) < r \} \subset X,$$

i.e. B(x,r) is the open ball in X centred at x with radius r>0. For each $n\in\mathbb{N}$, the following forms an open cover of K:

$$C_n := \left\{ B\left(x, \frac{1}{n}\right) \subset X \mid x \in K \right\}.$$

Since K is compact, each C_n admits a finite subcover:

$$\mathcal{F}_n := \left\{ B\left(x_i^{(n)}, \frac{1}{n}\right) \subset X \mid x_i^{(n)} \in K, \ i = 1, 2, \dots, J_n \right\}.$$

Let

$$\mathcal{D}_n := \left\{ x_i^{(n)} \in K \mid i = 1, 2, \dots, J_n \right\} \subset K,$$

and let $\mathcal{D} := \bigcup_{n=1}^{\infty} \mathcal{D}_n \subset K$. We claim that \mathcal{D} is dense in K. Indeed, let $y \in K$. Since each \mathcal{F}_n is a (finite) open cover of K, we have:

$$y \in K \subset \bigcup_{i=1}^{J_n} B\left(x_i^{(n)}, \frac{1}{n}\right), \text{ for each } n \in \mathbb{N}.$$

Since $x_i^{(n)} \in \mathcal{D}$, for each $i = 1, 2, ..., J_n$ and for each $n \in \mathbb{N}$, the above inclusion shows that, for each $n \in \mathbb{N}$, there exists some $x \in \mathcal{D}$ such that $\rho(y, x) < \frac{1}{n}$. In particular, \mathcal{D} contains a sequence that converges to $y \in K$. Since $y \in K$ is an arbitrary element of K, we see that $\overline{D} \supset K$. Since $\mathcal{D} \subset K$ and K is compact, hence closed, we trivially have $\overline{D} \subset K$. We may now conclude that $\overline{D} = K$. This completes the proof of the Lemma.

Lemma A.5

Every countable union of separable subsets of a metric space is itself a separable subset of that metric space.

PROOF Let $S:=\bigcup_{i=1}^{\infty}S_i\subset X$ be a countable union of separable subsets S_i of a metric space X. For each fixed $i\in\mathbb{N}$, since S_i is separable, there exists countable $D_i\subset S_i$ which is dense in S_i . Let $D:=\bigcup_{i=1}^{\infty}D_i$. Then, D is a countable subset of S. The Lemma is proved once we establish that D is dense in S. To this end, let $x\in S=\bigcup_{i=1}^{\infty}S_i$. Then, $x\in S_i$ for some $i\in\mathbb{N}$. Since D_i is dense in S_i , there exists a sequence $\{y_k\}\subset D_i\subset D$ such that $y_k\longrightarrow x$, as $k\longrightarrow \infty$. This proves that D is indeed dense in S, and completes the proof of the Lemma.

Lemma A.6 (second theorem in Appendix M3, [2])

Let (S, ρ) be a metric space and $\Sigma \subset S$ a separable subset of S. Then, there exists a countable collection A of open subsets of S satisfying the following property: For each $x \in S$ and each open subset G of S,

$$x \in G \cap \Sigma \implies x \in A \subset \overline{A} \subset G$$
, for some $A \in \mathcal{A}$.

PROOF Let $D \subset \Sigma$ be a countable dense subset of Σ . Let

$$\mathcal{A} \ := \ \left\{ \begin{array}{ll} B(d,r) \ \subset \ S \end{array} \right| \begin{array}{ll} d \in D, \\ r \in \mathbb{Q}, \ r > 0 \end{array} \right\}.$$

Then, \mathcal{A} is a countable collection of open balls in S. Now, let $G \subset S$ be an arbitrary open subset of S and $x \in G \cap \Sigma$. First, choose $\varepsilon > 0$ such that $B(x,\varepsilon) \subset G$. Next, since $x \in \Sigma$ and D is dense in Σ , we may choose $d \in D$ such that $d \in B(x,\varepsilon/2)$, or equivalently $\rho(x,d) < \varepsilon/2$. Finally choose positive rational r > 0 such that $\rho(x,d) < r < \varepsilon/2$.

Now, note that $\overline{B(d,r)} \subset B(x,\varepsilon)$; indeed,

$$y \in \overline{B(d,r)} \quad \Longleftrightarrow \quad \rho(y,d) \leq r \quad \Longrightarrow \quad \rho(x,y) \ \leq \ \rho(x,d) + \rho(d,y) \ < \ \varepsilon/2 + r \ < \ \varepsilon/2 + \varepsilon/2 \quad \Longrightarrow \quad y \in B(x,\varepsilon).$$

Thus, we have

$$x \in B(d,r) \subset \overline{B(d,r)} \subset B(x,\varepsilon) \subset G.$$

This completes the proof of the Lemma.

Theorem A.7 (The Diagonal Method, Appendix A.14, [1])

Suppose that each row of the array

is a bounded sequence of real numbers. Then, there exists an increasing sequence

$$n_1 < n_2 < n_3 < \cdots \in \mathbb{N}$$

of positive integers such that the limit

$$\lim_{k \to \infty} x_{r,n_k} \text{ exists, for each } r = 1, 2, 3, \dots$$

PROOF From the first row, select a convergent subsequence

$$x_{1,n(1,1)}, x_{1,n(1,2)}, x_{1,n(1,3)}, \cdots$$

Here, we have $n(1,1) < n(1,2) < n(1,3) < \cdots \in \mathbb{N}$, and $\lim_{k \to \infty} x_{1,n(1,k)} \in \mathbb{R}$ exists. Next, note that the following subsequence of the second row:

$$x_{2,n(1,1)}, x_{2,n(1,2)}, x_{2,n(1,3)}, \cdots$$

is still a bounded sequence of real numbers, and we may thus select a convergent subsequence:

$$x_{2,n(2,1)}, x_{2,n(2,2)}, x_{2,n(2,3)}, \cdots$$

Here, we have $n(2,1) < n(2,2) < n(2,3) < \cdots \in \{n(1,k)\}_{k \in \mathbb{N}}$, and $\lim_{k \to \infty} x_{2,n(2,k)} \in \mathbb{R}$ exists. Continuing inductively, we obtain an array of positive integers

$$n(1,1)$$
 $n(1,2)$ $n(1,3)$ \cdots $n(2,1)$ $n(2,2)$ $n(2,3)$ \cdots \vdots \vdots \vdots

which satisfies: For each $r \in \mathbb{N}$, we have

- each row is an increasing sequence of positive integers, i.e. $n(r,1) < n(r,2) < n(r,3) < \cdots$
- the $(r+1)^{\text{th}}$ row is a subsequence of the r^{th} row, i.e. $\{n(r+1,k)\}_{k\in\mathbb{N}}\subset\{n(r,k)\}_{k\in\mathbb{N}}$, and
- $\lim_{k \to \infty} x_{r,n(r,k)} \in \mathbb{R}$ exists.

Note that the first two properties together imply:

$$n(k,k) < n(k,k+1) < n(k+1,k+1), \text{ for each } k \in \mathbb{N}.$$

Now, define $n_k := n(k, k)$, for $k \in \mathbb{N}$. We then see that

$$n_k := n(k,k) < n(k+1,k+1) =: n_{k+1},$$

i.e., $\{n_k\}_{k\in\mathbb{N}}$ is a strictly increasing sequence of positive integers. Lastly, for each $r\in\mathbb{N}$, consider the sequence

$$x_{r,n_1}, x_{r,n_2}, x_{r,n_3}, \cdots$$

Note that, for each $r \in \mathbb{N}$,

$$x_{r,n_r}, x_{r,n_{r+1}}, x_{r,n_{r+2}}, \cdots$$

is a subsequence of $\{x_{r,n(r,k)}\}_{k\in\mathbb{N}}$. We saw above that $\lim_{k\to\infty}x_{r,n(r,k)}$ exists, which in turn implies that $\lim_{k\to\infty}x_{r,n_k}$ exists. Since $r\in\mathbb{N}$ is arbitrary, the proof of the Theorem is now complete.

Donsker's Theorems (Functional Central Limit Theorems)

Study Notes October 27, 2015 Kenneth Chu

References

- [1] BILLINGSLEY, P. Probability and Measure, third ed. John Wiley & Sons, 1995.
- [2] BILLINGSLEY, P. Convergence of Probability Measures, second ed. John Wiley & Sons, 1999.
- [3] FERGUSON, T. S. A Course in Large Sample Theory, first ed. Texts in Statistical Science. CRC Press, 1996.