PHYSICAL REVIEW D — PREVIEW LAYOUT

Brane-world unification with early-time ρ^2 and dark radiation

Ricardo Maldonado (corresponding: sales@rank.vegas)

Abstract

From a higher-D action via Gauss-Codazzi and Israel junction conditions we obtain the SMS equations. In FRW the Friedmann relation acquires a ρ^2 term and a dark-radiation piece; the brane tension λ sets a GW spectral break f_br $\propto \lambda^{1/4}$ and correlates with ΔN_eff_p We use the NANOGrav 15-yr KDE spectrum and a Planck-2018 N_eff prior; late-time GR is preceding $\frac{8\pi G}{3}\rho(1+\frac{p}{2\lambda})+\frac{\Lambda_4}{3}+\frac{C}{a^4}$ (k=0)

$$f_{\rm br}(\lambda) \propto \lambda^{1/4}, \qquad \frac{c}{\rho_{\gamma,0}} = \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} \Delta N_{\rm eff}$$

Methods: Convert the official NANOGrav 15-yr KDE free-spectrum to CSV; impose Planck-2018 N_eff prior; compute posteriors in $(\lambda, \Delta N_eff)$. For LISA we include uploaded Rtab and an analytic RC&L instrument(+confusion) variant. Late-time consistency follows from the $\rho \ll \lambda$ limit (PPN/binary pulsars).

PTA→LISA overlay (uploaded Rtab vs instrument)

References (selected)

Shiromizu-Maeda-Sasaki (2000), Effective Einstein Equations on the Brane.

Randall-Sundrum (1999), Large hierarchy from a small extra dimension.

NANOGrav Collaboration (2023), 15-yr dataset and SGWB evidence.

Planck Collaboration (2018), Planck 2018 results (N_eff with BAO).

Robson-Cornish-Liu (2019), LISA sensitivity curves.