HW4 - Generative Models

1. Model Architecture

The implemented model follows the **Generative Adversarial Network (GAN)** framework, consisting of a **Generator (G)** and a **Discriminator (D)**. The architecture is as follows:

- Z is some random noise (Gaussian/Uniform).
- Z can be thought as the latent representation of the image.

Generator Architecture

The **generator** transforms a latent vector **z** (sampled from a Gaussian distribution) into a realistic image through a series of **transposed convolutional layers**:

- Input: A 256-dimensional latent vector Z
- Projection & Reshape: 4×4×1024
- **Deconv 1**: 8×8×512 (ConvTranspose2d + BatchNorm + ReLU)
- **Deconv 2**: 16×16×256 (ConvTranspose2d + BatchNorm + ReLU)
- **Deconv 3**: 32×32×128 (ConvTranspose2d + BatchNorm + ReLU)
- **Decony 4**: 64×64×3 (ConvTranspose2d + Tanh activation)
- **Output**: A 64×64×3 RGB image

The final activation function is **Tanh**, ensuring pixel values are scaled between -1 and 1.

Discriminator Architecture

The **discriminator** is a convolutional neural network (CNN) that classifies whether an input image is **real** or **fake**:

- **Input**: 64×64×3 RGB image
- **Conv 1**: 32×32×64 (Conv2d + LeakyReLU)
- **Conv 2**: 16×16×128 (Conv2d + BatchNorm + LeakyReLU)
- **Conv 3**: 8×8×256 (Conv2d + BatchNorm + LeakyReLU)
- **Conv 4**: 4×4×512 (Conv2d + BatchNorm + LeakyReLU)
- **Conv 5**: 1×1×1 (Conv2d + Sigmoid)
- Output: A single value indicating the probability of the input being real or fake.

The activation function in the last layer is **Sigmoid**, which outputs a probability score.

2. Training Procedure

The GAN is trained using the min-max adversarial loss:

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{oldsymbol{x} \sim p_{ ext{data}}(oldsymbol{x})}[\log D(oldsymbol{x})] + \mathbb{E}_{oldsymbol{z} \sim p_{oldsymbol{z}}(oldsymbol{z})}[\log (1 - D(G(oldsymbol{z})))]$$

Each training step consists of:

1. **Discriminator Training**:

- o Given real images x, compute D(x) and maximize log(D(x)).
- o Given fake images G(z), compute D(G(z)) and log(1-D(G(z))).

2. Generator Training:

- Generate fake images G(z).
- Maximize log(D(G(z))), i.e., make the discriminator think generated images are real.

3. Hyperparameters

- Latent Space Dimension: z=256
- Batch Size: 64
- **Number of Channels**: 3 (RGB images)
- Generator Feature Maps: 64
- Discriminator Feature Maps: 64
- **Epochs**: 300
- Learning Rate: 0.0002
- Adam Optimizer:
 - \circ $\beta 1 = 0.5$
 - \circ $\beta 2=0.999$

4. Optimization & Regularization

- Weight Initialization:
 - Normal distribution with mean 0 and std 0.02 for convolutional layers.
 - BatchNorm layers initialized with mean 1 and std 0.02.
- Leaky ReLU in Discriminator: Slope = 0.2
- **Batch Normalization**: Applied to stabilize training.

5. Implementation Details

- Dataset: Images were preprocessed using Resize (64x64),
 CenterCrop, Normalize ([0.5, 0.5, 0.5]).
- Training Setup: Implemented in PyTorch, utilizing CUDA when available.

Discriminator Loss Analysis (Red Plot)

- Initially, the **discriminator loss is relatively high**, which is expected because the discriminator is learning to differentiate between real and fake images.
- The loss **gradually decreases**, indicating that the discriminator is getting better at distinguishing real from fake samples.
- However, **sharp spikes** occur periodically, which suggests:
 - The generator temporarily improves and fools the discriminator.
 - The discriminator adapts quickly and corrects itself, leading to sudden loss increases.
- The overall **trend shows oscillations**, which is typical in GAN training, as the generator and discriminator compete.
- The **final loss values are quite low**, indicating that the discriminator has learned to identify fake samples efficiently.

Generator Loss Analysis (Blue Plot)

- At the beginning, the **generator loss is extremely high (~13)**, indicating that the generator is producing very poor images.
- As training progresses, the loss decreases but later begins to oscillate and increase.
 - o This suggests that the generator is struggling to fool the discriminator.
- Around **epoch 100 onwards**, periodic **sharp dips** appear, indicating:
 - Some iterations where the generator successfully fools the discriminator (lower loss).
 - o The discriminator quickly adapts, pushing the generator loss back up.
- The overall increasing trend after 100 epochs suggests the discriminator is overpowering the generator, preventing it from improving significantly.

Interpretation & Training Stability

- The observed **instability** (loss fluctuations) is a common issue in GAN training due to the adversarial nature of the model.
- The generator's increasing loss indicates that the discriminator might have become too strong, making it difficult for the generator to produce realistic images.

Summary of Attempts and Conclusions

1. Overview

In this HW4, a Generative Adversarial Network (GAN) was trained on a dataset of flower images. The model was evaluated under two different settings of the **latent space dimension**: **100** and **256**. We were interested to assess the effect of latent space size on the quality, diversity, and realism of generated images.

2. Comparison of Results

2.1 Latent Dimension = 100

- **Epoch 20**: The generated images were blurry, lacking clear structures and well-defined colors.
- **Epoch 80**: Image quality improved significantly, with distinguishable floral patterns, although still containing some artifacts.
- **Epoch 100-160**: The generated flowers became sharper, with more vibrant colors and diversity.
- **Epoch 180-300**: The model captured fine textures, but some images still exhibited noticeable distortions. However, the overall quality and diversity of the flowers were satisfactory.

Latent Space Interpolation: The transition between different latent points was smooth, but some intermediate images displayed unnatural blending artifacts.

2.2 Latent Dimension = 256

- **Epoch 20**: Images were slightly more detailed than those from the latent dimension 100 experiment, but still blurry.
- **Epoch 80**: The generated flowers displayed more realistic textures, sharper edges, and better color blending.
- **Epoch 100-160**: Fine details, such as petal edges and vein structures, became visible. The colors appeared more natural and balanced.
- **Epoch 180-300**: The generated flowers showed significant improvement, with distinct species characteristics, higher color fidelity, and better spatial consistency.

Latent Space Interpolation: The transition between different points in latent space was smoother, with fewer blending artifacts, indicating better representation of the learned features.

3. Observations and Analysis

1. Higher Latent Space Dimension Improves Image Quality

- The images generated with latent dim = 256 were more realistic, with richer textures and sharper details than those produced with latent dim = 100.
- A larger latent space provides more expressive power for the generator, allowing it to capture fine-grained details better.

2. Training Stability and Convergence

- The discriminator loss exhibited oscillations in both cases, indicating the adversarial nature of GAN training.
- The generator loss, particularly in the **latent dim = 100** case, showed higher fluctuations, suggesting that it struggled more to generate realistic images.
- The model with **latent dim = 256** converged more smoothly and exhibited better training stability.

3. Mode Collapse and Diversity

- In both cases, mode collapse was not evident, meaning the generator was able to produce diverse floral images rather than a limited set of repeating patterns.
- The diversity in generated images was higher with latent dim = 256, as it allowed for more variation in color and structure.

4. Smoothness of Latent Space Interpolation

- The latent dim = 256 model demonstrated a smoother and more natural transition between different points in latent space.
- The latent dim = 100 model had more abrupt changes and blending artifacts between latent points, suggesting that the representation capacity was more constrained.

4. Challenges and Improvements

Challenges Encountered:

- Some generated images still had visible artifacts, especially in early epochs.
- The discriminator learned faster than the generator at times, leading to suboptimal training dynamics.

Potential Improvements:

- **Use Progressive Growing of GANs (PGGAN):** This can improve fine-grained texture learning.
- **Spectral Normalization in Discriminator:** This helps stabilize training and prevents discriminator overpowering.
- **Adjust Learning Rate Scheduling:** Dynamic adjustment of learning rate based on convergence metrics could help stabilize training.
- **Experiment with Different Latent Space Sizes:** Trying values between 100 and 256 (e.g., 128, 192) may provide a good balance of expressiveness and training stability.

5. Conclusion

- Larger latent space (256) led to more detailed and realistic images, demonstrating its advantage in capturing fine features.
- Training stability was slightly better with larger latent dimensions, as it allowed for smoother generator updates.
- Both models successfully captured floral patterns, but the 256-dimensional latent space provided a significant improvement in sharpness, color richness, and diversity.