MATH5210 ANALYSIS

Exam Rework Philip Nelson

3

Use the definition of convergence to prove: If a_n is a bounded sequence and $\lim_{n\to\infty} b_n = 0, \text{ then } \lim_{n\to\infty} a_n b_n = 0.$

Proof: Assume a_n is a bounded sequence, let M be the upper bound of a_n s.t. $M > a_n$, and let b_n be a sequence s.t. $\lim_{n \to \infty} b_n = 0$. Then for all $\epsilon > 0$ there exists $N \in \mathbf{N}$ s.t. $n \ge N$ and $|b_n - 0| = |b_n| < \frac{\epsilon}{M}$

Using the definition of convergence

$$|a_n - A| < \epsilon$$

$$\Rightarrow |a_n b_n - 0| < \epsilon$$

$$\Rightarrow |a_n b_n| < \epsilon$$

$$\Rightarrow |M b_n| < \epsilon$$

$$< |M \frac{\epsilon}{M}| = \epsilon$$

Therefore if a_n is a bounded sequence and $\lim_{n\to\infty} b_n = 0$, then $\lim_{n\to\infty} a_n b_n = 0$.

6

Prove that the sequence defined recursively by $a_1 = 2, a_{n+1} = \sqrt{6 + a_n}$ converges to 3.

Proof: