Real Analysis. Assignment 1. Due: Fri 3/3 13:00

Exercise 1. Direct calculation.

Let $a, b, c \in \mathbb{R}^3$, where a consists of the 3 last digits of your student ID, b consists of the 3 last digits of your phone number, and c consists of the 3 last digits of your birthday (MMDD).

For 3 metrics $d = d_1, d_3, d_\infty$ on \mathbb{R}^3 , directly calculate d(a, c), d(a, b), and d(b, c), and verify that triangle inequality $d(a, c) \leq d(a, b) + d(b, c)$ indeed holds.

Exercise 2. Check definition of "metric"

- (a) Let l^{∞} be the set of all bounded sequences of real numbers, and define $d_{\infty}((a_n),(b_n)):=\sup_n (|a_n-b_n|)$. Show that d_{∞} is indeed a metric on l^{∞} .
- (b) Let l^1 be the set of all sequences (a_n) satisfying $\sum_{n=1}^{\infty} |a_n| < \infty$, i.e. (a_n) corresponds to an absolutely convergent series. Define $d_1((a_n),(b_n)) := \sum_{n=1}^{\infty} |a_n b_n|$. Show that d_1 is indeed a metric on l^1 .
- (c) Let $c_0 := \{(a_n): \lim_{n\to\infty} a_n = 0\}$ be the set of all sequences converging to 0. Briefly explain why $l^1 \subset c_0 \subset l^{\infty}$. Bonus: use examples to show that $l^1 \neq c_0 \neq l^{\infty}$.

Exercise 3. Let (M,d) be a metric space. Define a new \tilde{d} by $\tilde{d}(x,y) := \frac{d(x,y)}{1+d(x,y)}$. Check that \tilde{d} is also a metric on M.

Exercise 4. (a) Consider \mathbb{R}^2 with the Euclidean metric. Use $\varepsilon - N$ definition to directly show that $(1/n, 1/n^2) \to (0,0)$ as $n \to \infty$.

(b) Let \tilde{d} be as defined in Exercise 3. Let $\{x_n\}$ be a sequence converging to x in the metric space (M, d). Show that in (M, \tilde{d}) , $\{x_n\}$ still converges to x.

Exercise 5. In a metric space (M,d), let $\{x_n\}$ be a sequence converging to x, and let $\{y_n\}$ converge to y. Show that $\lim_{n\to\infty} d(x_n,y_n) = d(x,y)$, using $\varepsilon - N$ definition and triangle inequality.

WARNING: the following "solution" is WRONG:

$$\lim_{n \to \infty} d(x_n, y_n) = d\left(\lim_{n \to \infty} x_n, \lim_{n \to \infty} y_n\right) = d(x, y)$$

because this assumed that d is a "continuous function"!