Book Rating Prediction

Project definition

- Many factors to determine the book rating
- Currently: Book rating system in Google
- Not accurate enough
 - Numbers of accounts created for rating
 - Affected by noise factors
 - Need to identify what are the main factors to rate the book
- Goal: Design a better predictor
 - More accurate book rating prediction

Model Design and Analysis

1. Regression Trees

- Check the specific record
 - \circ Check "xxx" word \rightarrow check the record \rightarrow (Contained): Tend to the specific score
- Advantages:
 - Visualize the step to make decision
 - Filter out noise attributes
 - Easy to set the priority
 - \circ Lazy method \rightarrow no need the hypothesis

Model Design and Analysis

2. Artificial Neural Networks

- Some data information has been set up
 - 4 layers in total
 - 1st layer: 128 neurons
 - Activation Function = RELU
 - Optimizer = Adam

Layer (type)	Output Shape	Param #
dense_11 (Dense)	(None, 128)	2044672
dense_12 (Dense)	(None, 64)	8256
dense_13 (Dense)	(None, 64)	4160
dense 14 (Dense)	(None, 1)	65

Total params: 2,057,153
Trainable params: 2,057,153
Non-trainable params: 0

Model Design and Analysis

2. Artificial Neural Networks

- 80% Training, 20% for validation data
- Epochs: Set as 150 → Stabilize the mean-squared error → Accurate results
 - (Actually after 100 starts to become stable)
- Advantages:
 - Have the ability to learn by themselves
 - (e.g. Non-linear and complex relationships)
 - Can predict the unseen data by the initial input

Data Preprocessing

12 attributes(Include target)

4 types of data

Attributes	Туре	Example		
publication_date	Date	10/1/2006		
bookID	Identifier	28193		
isbn	Identifier	380818957		
isbn13	Identifier	9780380818952		
Average_rating (Target)	Numerical	3.76		
num_pages	Numerical	167		
ratings_count	Numerical	1840		
text_reviews_count	Numerical	245		
title	Text / Categorical	When Santa Fell to Earth		
authors	Text / Categorical	Cornelia Funke/Paul Howard/Oliver G. Latsch		
language_code	Text / Categorical	eng		
publisher	Text / Categorical	Chicken House / Scholastic		

Data cleaning

- Remove extra white spaces of column's name
 - E.g. "num_pages"
- Remove the record if
 - target (average_rating) is not a float number
 - target is not within 0-5
 - numerical data type attributes contain non-integer

Attributes	Туре	Example
isbn	Identifier	380818957
average_rating (target)	Numerical	3.76
num_pages	Numerical	167
ratings_count	Numerical	1840
text_reviews_count	Numerical	245

Data preprocessing - publication_date

Data range from "1/1/1900" to "9/30/2006"

Since timestamp counts the date starting from 1 Jan 1970.

To avoid -ve value, this project will transform to

Attributes	Value
Year	2006
Month	9
Week	39
Day	30

Data preprocessing - duplication check

The International Standard Book Number (ISBN) is a numeric commercial book identifier which is intended to be unique.

- Use "isbn" to check the uniqueness
- Remove identifier's attributes

Attributes	Туре	Example
bookID	Identifier	28193
isbn	Identifier	380818957
isbn13	Identifier	9780380818952

Data preprocessing - language code

Some language labels contain similar meanings

- Original
 - "en-US", "en-GB", "en-CA", "eng"
- Transform to
 - o "eng"

Data preprocessing - one hot encoding

Convert categorical data into multiple columns depending on the categories in a column.

Only contain 1 or 0 correspondings to the categorical label

BookID	Before encoding		english	chinese	japanese
1	english	Encode->	1	0	0
2	chinese		0	1	0
3	japanese		0	0	1

Data preprocessing - one hot encoding

3 attributes adopted one hot encoding

Attributes	Туре	Example
		Cornelia Funke/Paul Howard/Oliver G.
authors	Text / Categorical	Latsch
language_code	Text / Categorical	eng
publisher	Text / Categorical	Chicken House / Scholastic

For "authors", "publisher", first split by "/"

BookID	Before encoding	E de .	Tommy	Judy	Mary
1	Tommy /Judy	Encode->	1	1	0

Data preprocessing Book title - count frequency

Break the title into Bag Of Words, 4 methods tried

1) count frequency

BookID	Before encoding	-	intro	to	nn	ml	data
1	Intro to NN to ML	Encode- >	1	2	1	1	0

Data preprocessing Book title - TF-IDF by library sklearn

Find out the importance of a word in book title over all the words across different book titles

- 2) by sklearn without stopwords
- 2.1) by sklearn with stopwords (English)

Data preprocessing Book title - TF-IDF by MapReduce

3)

	Input/Output value	Example
Mapper input	{ <bookid>: <title>}</td><td>{"25260": "horizon problem", "24394": "one hercule poirot #23"}</td></tr><tr><td>Mapper output /
Reducer input</td><td>{<word>: {<bookID>: <word count>}}</td><td>{'one': {24394: 1},
'hercule': {24394: 1}}</td></tr><tr><td>Reducer output : tfidf</td><td>{<bookID>: {<word>: {<TF>, <IDF>, <TFIDF>}}}</td><td>{24394: {'one': {'TF': 1.0, 'IDF': 1.0, 'TFIDF': 1.0}, 'hercule': {'TF': 1.0, 'IDF': 1.0, 'TFIDF': 1.0}}</td></tr></tbody></table></title></bookid>	

Performance evaluation

- Create 8 files for testing
- mean-squared error _↓: Better output
- Find the lowest mean-squared error (MSE)
- N2.1 TF-IDF sklearn with stopwards : using method of preprocessing
 - → BEST algorithm

<model used><preprocessing method of "title"> xxxxx.ipynb
T = Regression tree, N = Neural network

Summary and Discussion

- Cost Function:
 - Neural Networks are better than Regression Trees
- Calculation/Running time:
 - Library's TF-IDF is faster than using MapReduce.
- Models Training Time:
 - Regression Trees are better than Neural Networks
 - Tree method is lazy learner

