Honours Analysis Examples

Christopher Shen

Winter 2023

Contents

L	Leb	esgue integrals	3
	1.1	Characteristic and step functions	3
	1.2	Riemann integrals	5
	1.3	Lebesgue integrals	6
		1.3.1 Basic properties	6

1 Lebesgue integrals

1.1 Characteristic and step functions

- 1. Let ϕ and ψ be step functions. Show that the following are also step functions:
 - $\alpha \phi + \beta \psi$
 - $\max\{\phi,\psi\}$ and $\min\{\phi,\psi\}$
 - $\phi\psi$.

Firstly define step function ϕ wrt finite set $\{x_0, x_1, \dots, x_n\}$ and step function ψ wrt finite set $\{y_0, y_1, \dots, y_n\}$. Their linear combination is a step function wrt the union of these two finite sets.

The rest are proven similarly via construction.

2. Show that ϕ is a step function **if and only if**:

$$\phi(x) = \sum_{j=1}^{n} c_j \chi_{J_j}(x)$$

where c_j is some constant and J_j some interval.

From the definition of ϕ we can write:

$$\phi(x) = \sum_{j=1}^{n} c_j \chi_{(x_{j-1}, x_j)}(x) + \sum_{j=0}^{n} \phi(x_j) \chi_{\{x_j\}}$$

and the opposite direction is shown by the first example and the fact that a characteristic function is a step function.

3. Write step function $\phi = \chi_{[0,1]}$ in two ways.

We can write it as piecewise function. (def of chi)

But also as def 4.1 constants.

So integral either length of [0, 1] or sum of constants times subintervals.

4. Show that the following function is Lebesgue integrable:

$$f(x) = \frac{1}{[x][x+1]}$$

where [x] denotes the floor function.

So:

$$f = \sum_{j=1}^{\infty} \left| \frac{1}{j(j+1)} \right| \chi_{[j,j+1)}(x)$$

and integral value is 1.

5. Show that χ_E is integrable where $E \subset I$ and is bounded and <u>countable</u>.

$$E = \{e_1, e_2, \dots\}$$
 and so:

$$\chi_E = \sum_{j=1}^{\infty} e_j \chi_{\{e_j\}}(x)$$

which has integral of zero.

6. Cantor set is Lebesgue integrable.

1.2 Riemann integrals

1. Show that step functions are Riemann-integrable.

Because $\phi \leq \phi \leq \phi$ and using definition.

2. Show that if f is Riemann-integrable on [a,b] then f is bounded and has bounded support.

Further show that if f(x) = 0 when $x \notin [a, b]$ then our step functions are zero outside [a, b].

- 3. Show that the following functions are **not** Riemann-integrable:
 - $f(x) = e^{-|x|}$
 - $g(x) = x^{-\frac{1}{2}}\chi_{(0,1)}(x)$

Not quite sure about f yet, maybe because we cannot define a step function wrt to an infinite set?

The function g(x) has no upper step function.

4. Find infinitely countable $E \subset \mathbb{R}$ such that χ_E is Riemann-integrable.

Is every such χ_E is Riemann-integrable?

Consider $E = \{\frac{1}{n} : n \in \mathbb{N}\}.$

Consider the Dirichlet function.

- 1.3 Lebesgue integrals
- 1.3.1 Basic properties

1.