Линейные методы МАКСИМОВСКАЯ классификации АНАСТАСИЯ

Задача классификации

Задача классификации — задача, в которой имеется множество объектов, разделённых некоторым образом на классы. Задано конечное множество объектов, для которых известно, к каким классам они относятся.

Линейный классификатор — алгоритм классификации, основанный на построении линейной разделяющей поверхности.

Бинарная классификация — это задача классификации элементов заданного множества в две группы.

Целевая переменная в задаче классификации – класс, к которому принадлежит наблюдение.

Основные термины

- $\triangleright \mathbb{X} = \mathbb{R}^d$ пространство объектов
- $ightharpoonup
 floor = \{+1, -1\}$ множество допустимых ответов
- > « + 1» положительный класс
- ➤ « 1» отрицательный класс

Линейная модель

$$a(x) = w_0 + \sum_{j=1}^{d} w_j x_j$$

Параметры линейной регрессии – веса (коэффициенты w_j). Вес w_0 называется свободным коэффициентом или сдвигом (bias). Заметим, что после знака суммы написано скалярное произведение. Также добавим в выборку w_{d+1} признак, равный единице, тогда необходимость в свободном коэффициенте отпадет. Перепишем формулу в более компактном виде:

$$a(x) = \langle w, x \rangle$$

Линейный классификатор

$$a(x) = \langle w, x \rangle$$

Что можем сделать, чтобы стало -1 или +1? Взять знак!

$$a(x) = \operatorname{sign}\langle w, x \rangle$$

Напоминание

Геометрическая интерпретация

Уравнение вида < w, x > = 0 определяет гиперплоскость (прямая на картинке).

- \triangleright Если $\sum_{j=1}^{n} w_j x_j > 0$, то $sign(\sum_{j=1}^{n} w_j x_j) = +1$ объект будет отнесен к положительному классу
- ightharpoonup Если $\sum_{j=1}^n w_j x_j < 0$, то $\mathrm{sign}(\sum_{j=1}^n w_j x_j) = -1$ объект будет отнесен к отрицательному классу

Возьмем функционал качества error rate:

$$Q(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) \neq y_i]$$

Его будем минимизировать:

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) \neq y_i] = \frac{1}{\ell} \sum_{i=1}^{\ell} [\operatorname{sign}\langle w, x_i \rangle \neq y_i] \to \min_{w}$$

- > Функционал дискретный
- Не можем минимизировать градиентными методами или вывести аналитическое решение

> Попробуем перейти к минимизации гладкого функционала

Перепишем наш функционал:

$$Q(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [\underbrace{y_i \langle w, x_i \rangle}_{M_i} < 0] \to \min_{w}$$

- > M = y < w, x > Отступ
- M>0 целевая переменная и скалярное произведение одного знака, значит, класс правильно предсказан
- ► M < 0 целевая переменная и скалярное произведение не одного знака, значит, класс неверно предсказан</p>

- \triangleright Абсолютная величина отступа |M| по сути, расстояние до разделяющей гиперплоскости
- > Абсолютная величина отступа отражает уверенность прогноза

Ранжирование объектов по возрастанию отступа:

- ▶ Если отступ очень большой и отрицательный модель ошиблась, но очень уверена в своем прогнозе
- > Зачастую это выброс

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [\underbrace{y_i \langle w, x_i \rangle}_{M_i} < 0]$$

Данный функционал оценивает ошибку алгоритма с помощью функции потерь L(M) = [M < 0]

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [\underbrace{y_i \langle w, x_i \rangle}_{M_i} < 0]$$

Данный функционал оценивает ошибку алгоритма с помощью функции потерь L(M) = [M < 0]

Хотим гладкий функционал – оценим эту функцию сверху:

$$L(M) \le \tilde{L}(M)$$

> После этого можно получить верхнюю оценку на функционал:

$$Q(a, X) \leqslant \frac{1}{\ell} \sum_{i=1}^{\ell} \tilde{L}(y_i \langle w, x_i \rangle) \to \min_{w}$$

 $ightarrow ilde{L}(M)$ выберем гладкой и будем оптимизировать

$$0 \le \frac{1}{l} \sum_{i=1}^{l} [y_i < w_i x_i > < 0] \le \frac{1}{l} \sum_{i=1}^{l} \tilde{L}(y_i < w_i x_i >) \to \min_{w}$$

- ▶ Теперь верхнюю оценку можно будет минимизировать с помощью, например, градиентного спуска
- ► Если верхнюю оценку удастся приблизить к нулю, то и доля неправильных ответов тоже будет близка к нулю

Несколько примеров:

- 1. $\tilde{L}(M) = \log (1 + e^{-M})$ логистическая функция потерь
- 2. $\tilde{L}(M)=(1-M)_+=\max(0,1-M)$ кусочно-линейная функция потерь (используется в методе опорных векторов) \bigvee
- 3. $\tilde{L}(M) = (-M)_+ = \max(0, -M)$ кусочно-линейная функция потерь (соответствует персептрону Розенблатта)
- 4. $\tilde{L}(M) = e^{-M}$ экспоненциальная функция потерь
- 5. $\tilde{L}(M) = 2/(1 + e^M)$ сигмоидная функция потерь **5**

Рис. 1. Верхние оценки на пороговую функцию потерь.

> Accuracy - доля правильных ответов

$$\operatorname{accuracy}(a, x) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) = y_i].$$

> Матрица ошибок (confusion matrix):

	y = 1	y = -1
a(x) = 1	True Positive (TP)	False Positive (FP)
a(x) = -1	False negative (FN)	True Negative (TN)

> Перепишем в контексте матрицы ошибок (confusion matrix):

$$accuracy = \frac{TP + TN}{TP + FP + FN + TN}$$

> Точность (precision) и полнота (recall):

$$\begin{aligned} & \operatorname{precision} = \frac{\operatorname{TP}}{\operatorname{TP} + \operatorname{FP}}; \\ & \operatorname{recall} = \frac{\operatorname{TP}}{\operatorname{TP} + \operatorname{FN}}. \end{aligned}$$

Истинный позитив, верна *H*₁

Ложный позитив, ошибка I рода, ложная тревога

Ложный негатив, ошибка II рода, халатная беспечность

Истинный негатив, верна H_0

Точность и полнота

▶ F-мера:

$$F = \frac{2 * \operatorname{precision} * \operatorname{recall}}{\operatorname{precision} + \operatorname{recall}}$$

➤ Для задач, связанных с выбором подмножества (выделение лояльных клиентов банка, например) можно использовать прирост концентрации (lift). Если при рассылке предложений о кредите клиентам из подмножества и всем клиентам будет получаться одна и та же доля откликнувшихся, то подмножество не будет представлять особой ценности.

$$lift = \frac{precision}{(TP + FN)/\ell}$$

Улучшение доли положительных объектов в данном подмножестве относительно доли в случайно выбранном подмножестве такого же размера.

> ROC-AUC (Area under receiver operating characteristic):

$$FPR = \frac{FP}{FP + TN};$$

$$TPR = \frac{TP}{TP + FN}.$$

> Индекс Джини:

$$FPR = \frac{FP}{FP + TN};$$

$$TPR = \frac{TP}{TP + FN}.$$

$$Gini = 2AUC - 1$$

▶ Это площадь между ROC-кривой и

диагональю, соединяющей точки (0,0) и (1,1).

Крутая статься про Gini: <u>URL</u>

Задачи

Пример построения ROC-кривой

	b(x)	0.2	0.4	0.1	0.7	0.05	
	у	-1	+1	-1	+1	+1	
2)	6 (t) () [7	41	2.5	+ - 0		a (x) zt	
		 		TPR	- D+3	, — ט i	# P = 0
	0. T	- 5	. 2.12 2.か	t = 0).4; 1+2	- ^3 · [
	0.1	<u>-1</u>	2.4	t = 0	2 1	1 3	, U
		<u> </u>		75	1 1/2		

Пример построения ROC-кривой

Пример построения PR-кривой

