CS 70 Discussion 5A

October 2, 2024

Polynomials

Coefficient Representation: n values $c_0, c_1, ..., c_{n-1} \in \mathbb{R}$ define a unique degree $\leq n-1$ polynomial:

$$f(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_{n-1} x^{n-1}$$

Point Representation: n distinct points $(a_0, b_0), (a_1, b_1), \dots, (a_{n-1}, b_{n-1}) \in \mathbb{R}^2$ define a unique degree $\leq n-1$ polynomial.

Lagrange Interpolation

Goal: Given n distinct points $(a_0, b_0), (a_1, b_1), ..., (a_{n-1}, b_{n-1}) \in \mathbb{R}^2$, how do we generate our unique degree $\leq n-1$ polynomial f(x)? **Solution**:

$$f(x) = \sum_{i=0}^{n-1} b_i \Delta_i(x)$$

$$\Delta_i(x) = \frac{\prod_{j \neq i} (x - a_j)}{\prod_{j \neq i} (a_i - a_j)}$$

 $\Delta_i(x)$ is often referred-to as a *delta polynomial*. Also, note our construction for a polynomial is similar to the construction of the unique solution x for CRT.

Secret Sharing

Goal: We have a secret. We want a group of n people to only be able to learn the secret if at least m people agree to unlock the secret.

Solution:

- 1. Generate a random polynomial of degree m-1 where f(0) is our secret.
- 2. Pick *n* distinct points on our polynomial where each *x*-coordinate is > 0.
- 3. Give each person a unique one of the *n* points.
- 4. Two cases:
 - ▶ $\geq m$ people agree: m points uniquely define a degree $\leq m-1$ polynomial, so construct f(x) with Lagrange interpolation and get the secret at f(0).
 - < m people agree: We need at least m points to retrieve our polynomial, or else we still can't narrow-down to exactly 1 unique polynomial (i.e. we still have infinite possibilities for f(0)).
 </p>

Galois Field

Problem: We have numerical instability with all our arithmetic operations during Lagrange interpolation (floating-point operations are imprecise on computers).

Solution: We use modular arithmetic. We define our polynomial within GF(p), where p is some large prime. Simply, this means that every arithmetic operation in this space is done mod p:

- $a-b=c \to a-b \equiv d \pmod{p}$
- - ▶ b^{-1} is modular inverse of $b \pmod{p}$

Now, we don't need to worry about floating-point numbers. Also, Lagrange interpolation works fine in GF(p), as we only perform additions, subtractions, multiplications, and divisions to construct our polynomial.