Experimental Physics EP1 MECHANICS

- Energy and Work -

Rustem Valiullin

https://www.physgeo.uni-leipzig.de/en/fbi/applied-magnetic-resonance

Different forms of energy

- Kinetic
- Potential
- Mechanical
- Electromagnetic
- Chemical
- Internal (heat)
- ... many more

Dimension: M L² T⁻²

1 Joule = 1 kg $m^2 s^{-2}$

Amalie Emmy Noether

The invariance of physical systems with respect to time translation (in other words, that the laws of physics do not vary with time) gives the law of conservation of energy.

Work

$$dW = \vec{F} \cdot d\vec{s} = Fds \cos \theta$$

$$[W] = \frac{\text{kg m}^2}{\text{s}^2}$$

$$dW = \begin{cases} Fds, \theta = 0 \\ 0, \theta = \pi/2 \\ -Fds, \theta = \pi \end{cases}$$

$$\int dW = W = \int \vec{F} d\vec{s}$$

$$d\vec{s} = \hat{i}dx + \hat{j}dy + \hat{k}dz$$

Kinetic energy

$$E_k = \frac{mv^2}{2} - \text{kinetic energy}$$

Object	Mass (kg)	Speed (m/s)	Kinetic Energy (J)
Earth orbining the Son.	538 × 10 ²⁷	2.08×10^{7}	2.65 × 10 ³⁰
Moon ortions the Earth	7.55 X 10 ⁻²	3.02 × 10 ⁶	392 x 10F
Bookes moving as excape speed?	500	3.12 8:107	344.9:107
Automobile at 55-mi/h.	2.666	25	6.7 × 167
Rosening addition	79	10	3.5 × 16 ⁸
Street dropped from 35 m.	2.6	3-8	90.80 NO NO
Griff half or ornearsal sevent-	6.640	44	4.5 × 50°
Raindrop as transital spend	35×10°	9.40	1.4 × 1075
Checken merjennie im zur	5.5 × 10° F	500	系名区 101年

$$W = \int_{A}^{B} \vec{F} d\vec{s}$$

$$W = \int_{A}^{B} m \frac{d\vec{v}}{dt} d\vec{s} = \int_{t_{A}}^{t_{B}} m \frac{d\vec{v}}{dt} \vec{v} dt$$

$$\vec{v} d\vec{v} = \frac{1}{2} d(\vec{v} \cdot \vec{v}) = \frac{1}{2} dv^{2}$$

$$W = \int_{t_{A}}^{t_{B}} \frac{m}{2} \frac{dv^{2}}{dt} dt$$

$$W = \frac{mv_{B}^{2}}{2} - \frac{mv_{A}^{2}}{2}$$

Work- kinetic energy theorem

$$\Delta E_k = W$$

$$W = \int \vec{F} d\vec{s} = FS$$

$$W = \frac{mv_f^2}{2} - \frac{mv_0^2}{2} = \frac{mv_f^2}{2}$$

$$v_f = \sqrt{\frac{2FS}{m}}$$

Regenerative brake

Work done by kinetic friction

$$W_f = \int_A^B \vec{f}_k d\vec{s} = -f_k S$$

$$\Delta E_k = -f_k S$$

$$W_f = \int_A^B m \frac{d\vec{v}}{dt} d\vec{s} = \int_{t_A}^{t_B} m \frac{dv^2}{dt} dt$$

$$E_{k,final} = E_{k,initial} - f_k S$$

$$W_f = \frac{mv_f^2}{2} - \frac{mv_0^2}{2}$$

Work done by spring

$$F = -kx$$
 Hook's law

$$W_{s} = \int_{x_{initial}}^{x_{final}} F dx = \int_{x_{initial}}^{x_{final}} (-kx) dx$$

$$W_s = \int_{x_i=0}^{+x_f} (-kx) dx = -\frac{k}{2} x^2 \Big|_{0}^{x_f} = -\frac{k}{2} x_f^2$$

$$W_s = \int_{x_i=x_f}^{0} (-kx) dx = -\frac{k}{2} x^2 \Big|_{x_f}^{0} = \frac{k}{2} x_f^2$$

$$W_s = -\frac{k}{2} x^2 \Big|_{x_i}^{x_f} = -\frac{k}{2} x_f^2 - \frac{k}{2} x_i^2$$

Work done by gravitation

$$W_g = \int_A^B m\vec{g} \cdot d\vec{s} = mgS \cos \theta$$

$$\begin{cases} W_{g,u} = -mgh \\ W_{g,d} = mgh \end{cases}$$

Power

$$P = \frac{d(\vec{F}\vec{s})}{dt} = \vec{F}\frac{d\vec{s}}{dt} + \vec{s}\frac{d\vec{F}}{dt} = \vec{F} \cdot \vec{v}$$

For constant force

$$P_{av} = W/\Delta t$$

$$P = \frac{dW}{dt}$$

$$[P] = \text{Watt} = \frac{\text{kg m}^2}{\text{s}^3}$$

- 1 Watt = 1 J/s
- 1 Horsepower = 1 hp = 746 W
- 1 kilowatt-hour = 1 kWh = 3.6×10^6 J

Physics of bicycle

1 Horsepower = 1 hp = 746 W

v, km/h	P, W	
20	90	
40	?	

$$\vec{f} - \vec{D} = m\vec{a}$$

For the constant velocity case

$$f = D = kv^2$$
$$P = fv = kv^3$$

$$P = fv = kv^3$$

$$\frac{P_1}{P_2} = \left(\frac{v_1}{v_2}\right)^3$$

Taking account of friction

$$-F_n + mg\cos\theta = 0$$

$$f_k = \mu_k F_n$$

$$W = FL = \mu_k mgL \cos \theta$$

To remember!

- ➤ Work is energy transferred to/from an object by applying a force to this object.
- <u>Kinetic energy</u> is associated with the motion of an object. Change in the kinetic energy is due to work done on the object.
- > <u>Frictional</u>, <u>gravitational</u> and <u>spring</u> forces can do work.
- Power is the rate at which work is done on an object.

Conservative forces

$$dW = \vec{F} \cdot d\vec{s}$$

$$W = \oint \vec{F}_{\text{conservative}} d\vec{s} = 0$$

Loop integral: integration over a closed curve or loop

$$\begin{cases} W = 0 = W_{12}^a + W_{21}^b \\ W = 0 = W_{12}^c + W_{21}^b \end{cases} \implies W_{12}^a = W_{12}^c$$

$$dW = \vec{F} \cdot d\vec{s} = -dU$$

Field forces

$$dW = \vec{F} \cdot d\vec{s} = m \frac{dv}{dt} v dt = d \left(\frac{mv^2}{2} \right) = dE_k$$

$$dW_{gr} = -mgdh = -d(mgh) = -dU_{gr}$$

$$dW_{sp} = -kxdx = -d\left(\frac{kx^2}{2}\right) = -dU_{sp}$$

$$dW_C = \frac{kq_1q_2}{r^2}dr = -d\left(\frac{kq_1q_2}{r}\right) = -dU_C$$

Equilibrium

$$U_{sp} = \frac{kx^2}{2} \qquad F = -\frac{dU}{dx}$$

Mapping the potential field

 $U_0 = Mg(L_1 - L_2) + mgL_1$

 $U_{v} = 2Mg\Delta L - mgy + U_{0}$

$$y_{eq} = d \frac{m/2M}{\sqrt{1 - m^2/4M^2}}$$

$$U(y)-?$$

$$l^2 + y^2 = d^2$$
$$\Delta L = l - d$$

$$\Delta L = l - a$$

$$y_{eq} = 7.54 \text{ m}$$

Conservation of mechanical energy

$$W_{\mathrm{total}} = \int \vec{F} \cdot d\vec{s} = -\Delta U = \Delta E_k$$

$$\Delta E_k + \Delta U = 0$$

$$E \equiv E_k + U = const$$

Mechanical energy

$$\vec{F} = \vec{F}_{nc} + \sum \vec{F}_{i} \qquad W_{\text{total}} = \int \vec{F} \cdot d\vec{s} = \int \vec{F}_{nc} \cdot d\vec{s} + \sum \int \vec{F}_{i} d\vec{s}$$

$$W_{total} = W_{nc} + \sum W_i = W_{nc} - \sum \Delta U_i = \Delta E_k$$

$$W_{nc} = \sum \Delta U_i + \Delta E_k = \Delta E$$

Work done by nonconservative forces is equal to change of mechanical energy.

A mass on a spring under gravitation

A mass on a spring: dynamics (no gravity!)

$$E = \frac{mv^2}{2} + U(y) \Rightarrow v = \sqrt{\frac{2(E - U(y))}{m}}$$

$$v = \frac{dy}{dt} = \sqrt{\frac{2(E - U(y))}{m}} \Rightarrow \frac{dy}{\sqrt{2(E - U(y))}} = \frac{1}{\sqrt{m}} dt$$

$$U(y) = \frac{ky^2}{2} \qquad E = ? \qquad E = \frac{ka^2}{2}$$

$$\frac{dy}{\sqrt{a^2 - y^2}} = \sqrt{\frac{k}{m}} dt \qquad \int_{-a}^{y'} \frac{dy}{\sqrt{a^2 - y^2}} = \int_{0}^{t} \sqrt{\frac{k}{m}} dt$$

$$\frac{a \cos \theta d\theta}{\sqrt{a^2 - a^2 \sin^2 \theta}} = \arcsin \frac{y'}{a} - \frac{3\pi}{2} = \sqrt{\frac{k}{m}} t$$

$$\int_{-a}^{y'} |y = a \sin \theta|_{3\pi/2}^{\arcsin y'/a}$$

$$y = a \sin(\sqrt{k/m} \cdot t + \theta_0)$$

Harmonic oscillator

$$E_k + U = \text{const}$$

$$\frac{1}{2}kx^2 + \frac{1}{2}mv^2 = \text{const}$$

$$kx\frac{dx}{dt} + mv\frac{dv}{dt} = 0$$

$$\ddot{x} + \omega_0^2 x = 0$$

$$\omega_0^2 \equiv \sqrt{k/m}$$

$$x = x_0 \cos(\omega_0 t + \delta)$$

Harmonic oscillator with gravity

$$E = \frac{1}{2}mv^2 + mgy + \frac{1}{2}ky^2 = \text{const}$$

$$s = y - y_{eq}$$

$$\ddot{s} + \omega_0^2 s = 0$$

$$y = y_{eq} + y_0 \cos(\omega_0 t + \delta)$$

$$y_{eq} = -\frac{mg}{k}$$

Physics of pendulum

$$E_i = mgh + 0 \qquad E_f = 0 + mv^2/2$$

$$h + L' = L \qquad L' = L\cos\theta_0$$

$$v^2 = 2gh = 2gL(1 - \cos\theta_0)$$

$$T - mg = mv^2/L = 2g(1 - \cos\theta_0)$$

$$mg\sin\theta = m\frac{dv}{dt}$$
 $s = L\theta$

$$v = \frac{ds}{dt} = L\frac{d\theta}{dt}$$
 $\frac{dv}{dt} = \frac{dv}{d\theta}\frac{d\theta}{dt}$ $\frac{dv}{d\theta}\frac{v}{L} = g\sin\theta$

Physics of pendulum

$$E = \frac{1}{2}mv^{2} + mgh = \text{const}$$

$$s \approx L\theta \qquad h \approx s\theta = \frac{1}{2}L\theta^{2}$$

$$v\dot{v} + g\dot{h} = 0$$

$$L\dot{\theta}L\ddot{\theta} + gL\theta\dot{\theta} = 0$$

$$\ddot{\theta} + \frac{g}{L}\theta = 0$$

$$\omega_{0} = \sqrt{\frac{g}{L}}$$

$$\theta = \theta_{0}\cos(\omega_{0}t)$$

The virial theorem

Virial:
$$-\frac{1}{2}\sum_{i=1}^{N}\sum_{j=1}^{N}\mathbf{F}_{ij}\cdot\mathbf{r}_{i}$$

$$-\frac{1}{2}\sum_{i=1}^{N}\mathbf{F}_{i}\cdot\mathbf{r}_{i}$$

$$\overline{E_k} = -\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \overline{\mathbf{F}_{ij} \cdot \mathbf{r}_i}$$

Time average

$$\langle E_k \rangle = -\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \langle \mathbf{F}_{ij} \cdot \mathbf{r}_i \rangle$$

Ensemble average

$$\overline{f(t)} = \frac{1}{T} \int_{0}^{T} f(t)dt$$

The virial theorem: gravitational field

$$\overline{E_k} = -\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \overline{\mathbf{F}_{ij} \cdot \mathbf{r}_i}$$

$$F_{ij} = \frac{Gm_i m_j}{r_{ij}^2} \qquad U_{ij} = -\frac{Gm_i m_j}{r_{ij}}$$

$$2\overline{E}_k = -\overline{U}$$

$$\vec{F} = m\vec{a}$$

$$F = \frac{GmM}{R^2} = \frac{mv^2}{R} \qquad \frac{mv^2}{2} = \frac{GmM}{2R}$$

$$U = -\frac{GmM}{R}$$

The virial theorem: Selected examples

$$-\frac{1}{2}(-kx)x = \frac{1}{2}kx^2 = U_{sp}$$

$$\overline{E_k} = \overline{U_{sp}}$$

$$\overline{U_{sp}} = \frac{\int_0^T U_{sp} dt}{\int_0^T dt} = \frac{k}{4}a^2$$

$$2\overline{E}_{k} = -\overline{U} \qquad \overline{E}_{k} = \overline{U}_{Sp}$$
 gravity spring

$$U \propto x^n \qquad \overline{E_k} = \frac{n}{2}\overline{U}$$

$$\overline{E_k} - ?$$

$$\overline{E_k} = \frac{1}{2}\overline{U}$$

$$\overline{E_k} = \frac{1}{2}mgh$$

To remember!

- > Work done by <u>conservative forces</u> along a closed trajectory is zero.
- >Under action of conservative forces <u>mechanical energy</u> of the object does not change.
- > Mechanical energy is <u>sum</u> of kinetic and potential energies.
- ➤ Work done by <u>nonconservative forces</u> equals the change of mechanical energy.

