PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATIO International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: WO 94/23048 (11) International Publication Number: **A2** C12N 15/86, 5/10, 15/48, 7/01, 7/04, 13 October 1994 (13.10.94) (43) International Publication Date: A61K 48/00 (81) Designated States: AU, CA, JP, US, European patent (AT, BE, (21) International Application Number: PCT/US94/03784 CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, 6 April 1994 (06.04.94) SE). (22) International Filing Date: Published (30) Priority Data: Without international search report and to be republished 6 April 1993 (06.04.93) US 08/043,311 upon receipt of that report. (71) Applicant (for all designated States except US): THE GOV-ERNMENT OF THE UNITED STATES OF AMERICA, as represented by THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES [US/US]; Box OTT, Bethesda, MD 20892 (US). (72) Inventors; and (75) Inventors/Applicants (for US only): EIDEN, Marybeth, V. [US/US]; 4302 Kentbury Drive, Bethesda, MD 20814 (US). WILSON, Carolyn, A. [US/US]; 2002 N. Kenmore Street, Arlington, VA 22202 (US). DEACON, Nicholas, J. [AU/AU]; 51 Elliot Avenue, Balwyn, VIC 3103 (AU). HOOKER, David, J. [AU/AU]; 12 Gloaming Ct., Mill Park, VIC 3082 (AU). (74) Agents: BASTIAN, Kevin, L. et al.; Townsend and Townsend Khourie and Crew, Steuart Street Tower, 20th floor, One

(54) Title: GIBBON APE LEUKEMIA VIRUS-BASED RETROVIRAL VECTORS

Market Plaza, San Francisco, CA 94105 (US).

(57) Abstract

The present invention provides replication-defective hybrid retroviral vectors comprising GaLV components and methods for preparing and using such vectors. The vectors comprise an envelope component, a core component and a defective genome, at least one of which is derived from GaLV. The vectors can comprise the minimal cis acting sequences from GaLV that allow packaging of the defective genome in a hybrid virion.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MIR	Mauritania
ΑŪ	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	BTU	Hungary	NO	Norway
BG	Bulgaria	DE	Ireland	NZ	New Zealand
BJ	Benin	π	Italy	PL	Poland
-		JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyngystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic	KF	of Korea	SE	Sweden
CG	Congo	***		SI	Slovenia
CB	Switzerland	KR	Republic of Korea		
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
cs	Czechoslovakia	LÜ	Luxembourg	TG	Togo
	Czech Republic	LV	Latvia	TJ	Taji kistan
	•	MC	Mogaco	TT	Trinidad and Tobago
		MD	Republic of Moldova	UA	Ukraine
			•	US	United States of America
	•			UZ	Uzbekistan
		-		VN	Viet Nam
		(1224			
CZ DE DK ES FI FR	Czech Republic Germany Denmark Spain Finland France Gabon			TT UA US UZ	Trinidad and Tobago Ukraine United States of Americ Uzbekistan

Gibbon Ape Leukemia Virus-based Retroviral Vectors

5

10

15

20

30

35

BACKGROUND OF THE INVENTION

The present invention relates generally to retroviral vectors. In particular, the invention relates to retroviral vectors comprising nucleic acid sequences from Gibbon Ape Leukemia Virus.

Considerable effort is now being directed to introducing engineered genes into mammalian cells for a variety of applications including gene therapy and the production of transgenic animals. Such strategies are dependent upon the development of effective means for safe delivery of genes to appropriate target cells and tissues.

Retroviral vectors are particularly useful for directing desired polynucleotides to the appropriate cells and integration of the polynucleotides in the host cell genome. For example, the majority of the approved gene transfer trials in the United States rely on replication-defective retroviral vectors harboring a therapeutic polynucleotide sequence as part of the retroviral genome (Miller et al. Mol. Cell. Biol. 10:4239 (1990); Kolberg R J. NIH Res. 4:43 (1992); Cornetta et 25 al. Hum. Gene Ther. 2:215 (1991)). As is known in the art, the major advantages of retroviral vectors for gene therapy are the high efficiency of gene transfer into certain types of replicating cells, the precise integration of the transferred genes into cellular DNA, and the lack of further spread of the sequences after gene transfer.

Unfortunately, many human cells are not efficiently infected by prior art retroviral vectors. Reduced susceptibility to retroviral infection is most likely due to inefficiencies in one of three stages of viral replication: 1) binding to retroviral receptors on the cell surface and early viral entry, 2) late entry and transport of the viral genome to the cell nucleus and integration of the viral genome into the target cell DNA, and 3) expression of the viral

PCT/US94/03784 WO 94/23048

5

10

15

20

30

35

These three stages are governed, respectively, by the viral envelope proteins, the viral core proteins, and the viral genome. All three of these components must function efficiently in a target cell to achieve optimal therapeutic gene delivery.

2

Gibbon Ape Leukemia Virus (GaLV) uses a cell surface internalization receptor that is different from those of the available retroviral vectors and thus allows infection of cells and tissues normally resistant to retroviral infection. The human receptor for GaLV has recently been cloned and shows a wide cell type and species distribution. Johann et al., J. Virol. 66:1635-1640 (1992). Indeed, GaLV can infect many mammalian species with the notable exception of mouse cells. The same receptor is used by simian sarcoma associated virus (SSAV), a strain of GaLV. Sommerfelt et al., Virol. 176:58-59 (1990).

The construction of hybrid virions having GaLV envelope proteins has been demonstrated. For instance, Wilson et al., J. Virol. 63:2374-2378 (1989), describe preparation of infectious hybrid virions with GaLV and human T-cell leukemia virus retroviral env glycoproteins and the gag and pol proteins of the Moloney murine leukemia virus (MoMLV). addition, Miller et al., J. Virol. 65:2220-2224 (1991), describe construction of hybrid packaging cell lines that 25 express GaLV envelope and MoMLV gag-pol proteins.

Existent retroviral vectors capable of infecting human cells all contain core and genome components that derive from MoMLV. For human cells which are resistant to efficient infection by such vectors at any of the three stages noted above, new vectors comprising improved envelope, core or regulatory sequences must be designed. Thus, there is a need to design retroviral vectors components which can be used to introduce genes into human cells not efficiently infected by the currently utilized retroviral vectors. The present invention addresses these and other needs.

10

15

20

25

30

35

SUMMARY OF THE INVENTION

The present invention provides recombinant DNA constructs comprising a defective viral genome having a polynucleotide sequence of interest and a GaLV component. For instance, the GaLV component may be a GaLV packaging site which directs packaging of the defective viral genome in an infectious, replication-defective virion. The packaging site typically consists of between about 150 base pairs and about 1500 base pairs and includes a sequence extending from about position 200 to about position 1290 of the sequence shown in Figure 1.

The construct may further comprise GaLV regulatory sequences which direct expression of the polynucleotide of interest. Typically, the regulatory sequences comprise a GaLV (e.g., GaLV SEATO or GaLV SF) 5' or 3' LTR promoter.

The invention also relates to mammalian cells comprising the defective viral genome described above. The mammalian cells may be packaging cells, in which case the cells will also contain retroviral gag, pol and env genes. These genes may be derived from MoMLV, GaLV SF or GaLV SEATO. Packaging cells conveniently used in the invention include PG13 and PA317.

The invention further provides isolated hybrid virions comprising GaLV (e.g., SF or SEATO) envelope proteins and an RNA genome comprising a polynucleotide sequence of interest and a GaLV component. The virions typically contain GaLV core proteins. MoMLV core proteins can also be used.

The invention also provides isolated recombinant DNA constructs comprising polynucleotide sequences which encode an infectious GaLV virion capable of infecting a mammalian cell and producing functional viral progeny. The infectious clones typically comprise about 97% GaLV SEATO sequences and 3% GaLV SF sequences.

Also disclosed are methods of introducing a polynucleotide of interest into human cells using the hybrid virions described above. The methods are preferably used as part of a gene therapy protocol for treating a human patient.

5

10

15

20

25

30

35

DEFINITIONS

A "hybrid virion" is a virion comprising genome, core, and envelope components derived from more than one virus. The term specifically includes "pseudovirions" which historically have been defined as containing the genome from one virus and the structural proteins from another.

A "packaging cell" is a genetically constructed mammalian tissue culture cell that produces the necessary viral structural proteins required for packaging. The cells are incapable of producing infectious virions until a defective genome is introduced into the cells. The genetic material for the viral structural proteins is not transferred with the virions produced by the cells, hence the virus cannot replicate.

A "replication-defective" virion or retroviral vector is one produced by a packaging cell as defined above. Such a virion infects a target cell but is incapable of producing progeny virions which can infect other cells.

Two polynucleotides or polypeptides are said to be "identical" if the sequence of nucleotides or amino acid residues in the two sequences is the same when aligned for maximum correspondence. Optimal alignment of sequences for comparison may be conducted by the local homology algorithm of Smith and Waterman Adv. Appl. Math. 2: 482 (1981), by the homology alignment algorithm of Needleman and Wunsch J. Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson and Lipman Proc. Natl. Acad. Sci. (U.S.A.) 85: 2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, WI), or by inspection. These references are incorporated herein by reference.

The percentage of sequence identity between two sequences is determined by comparing two optimally aligned sequences over a window of comparison of at least 20 positions. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the

10

15

20

25

30

35

number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison (i.e., the window size), and multiplying the result by 100 to yield the percentage of sequence identity.

For instance, a preferred method for comparing sequences uses the GAP program based on the algorithm of Needleman at al., supra. Typically, the default values for all parameters are selected. These are gap weight: 5.0, length weight: 0.30, average match: 1.0, and average mismatch: 0.0.

The term "substantial identity" means that a polynucleotide or polypeptide comprises a sequence that has at least 80% sequence identity, preferably 90%, more preferably 95% or more, compared to a reference sequence over a comparison window of about 20 bp to about 2000 bp, typically about 50 to about 1500 bp, usually about 350 bp to about 1200. The values of percent identity are determined using the GAP program, above.

Another indication that nucleotide sequences are substantially identical is if two molecules hybridize to each other under stringent conditions. Stringent conditions are sequence dependent and will be different in different circumstances. Generally, stringent conditions are selected to be about 5° C lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. Typically, stringent conditions will be those in which the salt concentration is about 0.2 molar at pH 7 and the temperature is at least about 60°C.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows the complete sequence of the GaLV SEATO genome, as published in Delassus, et al. (1989) Virol. 173:205-213.

Figures 2A-2F show the construction of the infectious GaLV clone of the invention.

Figure 3 shows packagable defective genomes of the present invention.

6

Figure 4 shows schematic diagrams of plasmids 395, 558, and 521.

Figure 5 shows schematic diagrams of plasmids 395, 559 and 537.

5

10

15

20

25

30

35

DESCRIPTION OF THE PREFERRED EMBODIMENTS

New hybrid retroviral vectors comprising GaLV components are provided by the present invention. The tissue specificity of the vectors is determined by the viral envelope proteins, the viral core proteins, and the viral genome, at least one of which is derived from GaLV. The vectors can comprise the minimal cis acting sequences (packaging signals) from GaLV that allow packaging of a defective genome in a replication-defective hybrid virion. In addition, the LTR of the defective genome can be derived from GaLV. For instance, the 3' LTR region of the hybrid retroviral vector can be selected from various GaLV sequences to provide desried tissue specific expression of the structural genes in the genome.

Replication-defective retroviral vectors are produced when a defective DNA viral genome is introduced into a packaging cell line. The defective genome contains the sequences required for integration into the target cell genome, for packaging of the genome into infectious virions, as well as those viral sequences required for expression of the therapeutic gene or other polynucleotide contained within the defective viral genome. The packaging cells comprise the gag, pol, and env genes which encode the viral core and envelope components. These core and envelope proteins assemble around the defective genome, thus producing retroviral vectors.

A number of standard techniques are used to ensure safety of retroviral vectors. For instance, the defective genome is introduced into the cell separately from the genes encoding the core and envelope components. In this way, recombination between the genome and the core and envelope genes, which would lead to the packaging of complete viral

10

15

20

25

30

35

genomes, is extremely unlikely. The resulting virions should therefore not comprise the gag, pol, and env genes and are thus replication-defective. Homologous recombination, however, between the inserts can lead to the production of infectious virions. Typically, the packaging cells are produced by introducing the gag, pol, and env genes on at least two separate plasmids. This scheme effectively prevents homologous recombination leading to reconstruction of infectious virus because the probability of multiple, independent homologous recombination events occurring is extremely low.

Retroviral vectors can also be designed to prevent synthesis of viral proteins by the integrated defective genome. For instance, if a portion of the gag gene is included to increase packaging efficiency, a stop codon can be introduced into the gene to prevent synthesis of gag proteins. Miller et al., BioTechniques 7:982-988 (1989), which is incorporated herein by reference.

In addition, the cells used to make packaging cells do not possess a cell receptor for GaLV and are thus not infectable by GaLV. Retroviral vector virions having the GaLV envelope therefore cannot reinfect the packaging cells and vector spread in the packaging cells is greatly reduced. Suitable packaging cells also have limited or no endogenous viral sequences. Cell lines for this purpose include the Mus dunni tail fibroblast cell line. This strategy decreases the potential for generation of recombinant vectors, which are often transmitted with higher efficiency than the parental vector.

Finally, replication-defective vectors of the invention are particularly safe because GaLV is evolutionarily derived from a xenotropic virus of an asian strain of mouse and does not appear to be closely related to human pathogenic viruses. Thus, in terms of containment, GaLV-based, replication-defective hybrid virions are as safe as prior art murine retroviral vectors and provide a safe vehicle for delivery of genes for human gene therapy.

5

10

15

20

25

30

35

The packaging cell lines of the invention can be used to provide infectious replication-defective hybrid virions for use in gene transfer in humans, hamsters, cows, cats, dogs, monkeys, chimpanzees, macaques, primates, and other species whose cells have host cell receptors for GaLV envelope proteins.

Generally, the nomenclature used hereafter and the laboratory procedures in cell culture, molecular genetics, and nucleic acid chemistry described below are those well known and commonly employed in the art. Standard techniques are used for recombinant nucleic acid methods, polynucleotide synthesis, and cell culture. Generally, enzymatic reactions, oligonucleotide synthesis, oligonucleotide modification, and purification steps are performed according to the manufacturers' specifications. The techniques and procedures are generally performed according to conventional methods in the art and various general references which are provided throughout this document. A basic text disclosing the general methods of use in this invention is Sambrook et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Publish., Cold Spring Harbor, NY 2nd ed. (1989), which is incorporated herein by reference.

A first step in the synthesis of retroviral vectors of the invention is obtaining an infectious GaLV DNA clone. Proviral DNA from at least three GaLV strains (GaLV SF, GaLV SEATO, and SSAV) has been cloned. A GaLV SF clone including both ends of the GaLV SF genome and the envelope gene but not an intact region of the genome encoding the core proteins is reported by Scott et al. Proc. Natl. Acad. Sci. USA 78:4213-4217 (1981). A partial clone containing the envelope and part of the genome but not the region encoding core proteins of SSAV is described by Gelman et al. Proc. Natl. Acad. Sci. USA 78:3373-3377(1981). Finally, Gelman et al. J. Virol. 44:269-275 (1982) disclose a partial clone of a third GaLV strain, SEATO, containing all but 350 bases of the core region of This clone has been sequenced in its entirety by Delassus et al. Virol. 173:205-213 (1989) (see Figure 1). deleted 350 bases were also sequenced but from a PCR fragment

10

15

20

25

30

35

generated from viral RNA expressed in a GaLV SF infected cell line. The sequence of an integrated form of a GaLV SEATO genome is also shown in Seq ID No. 1. All of the above references are incorporated herein by reference.

Example 1 describes the construction of an infectious GaLV clone comprising sequences from GaLV SEATO and GaLV SF. This construction can be used to prepare a number of retroviral vectors, as described in detail below.

Packaging Cells

packaging cells for use in the present invention may be made from any animal cell, such as CHO cells, NIH 3T3, mink lung cells, D17 canine cells, and MDBK cells. One or both of the core and envelope components can be encoded by GaLV genes. The core and envelope components, however, need not be derived from the same GaLV strain. Indeed, in some embodiments, the core components may be derived from a different species (e.g. MoMLV). For example, the PG13 murine packaging cell line produces virion particles having MoMLV core and GaLV envelope particles (see Miller, et al. (1991) J. Virol. 65:2220-2224).

To prepare a packaging cell line, an infectious clone of a desired retrovirus (e.g., GaLV SEATO) in which the packaging site (ψ) has been deleted is constructed. Cells comprising this construct will express all GaLV structural proteins but the introduced DNA will be incapable of being packaged. Alternatively, packaging cell lines can be produced by transforming a cell line with one or more expression plasmids encoding the appropriate core and envelope proteins. In these cells, the gag, pol, and env genes can be derived from the same or different retroviruses.

Although certain cells may express the receptor for a retroviral vector, the cells may not be efficiently infected because of a loss of optimum fit between the receptor and the envelope proteins. For example, altered glycosylation patterns may inhibit retroviral infection (Wilson et al., J. Virol. 65:5975-5982 (1991), which is incorporated herein by reference). In addition, retroviruses in the same receptor class can exhibit different host ranges due to single amino acid differences in target cell receptors.

5

10

15

20

25

30

35

In light of these considerations, it may be necessary to modify the envelope proteins of the hybrid virions to adjust the host range. The proteins may be modified to either allow infection of cells previously resistant to infection or to prevent infection of non-target cells.

One strategy for modifying envelope proteins is the use of an in vitro selection scheme. In this approach, an infectious clone of the retrovirus along with a selectable marker gene is introduced into target cells that are resistant to infection. Those cells which have been infected by retroviruses comprising mutations allowing infection of the cells are then identified by standard reverse transcriptase assays of the culture supernatant. The env gene of the adapted retrovirus is cloned and sequenced and used to construct new retroviral vectors capable of efficiently infecting the target cell. This strategy is particularly useful in isolating variants capable of infecting a number of human cells currently resistant to GaLV infection such as tumor infiltrating lymphocytes, bone marrow cells, stem cells, and hepatocytes.

Alternatively, if the gene encoding the cell receptor has been cloned, the gene can be inserted in a cell line which does not normally produce the receptor. Variant retroviruses capable of binding the receptor can then be identified in the same manner as described above. For instance, the human GaLV cell surface receptor has been cloned and sequenced. U.S. Patent No. 5,151,361, and Johann et al., J. Virol. 66:1635-1640 (1992), which are incorporated herein by reference. Thus, this gene can be used to identify new retroviral vectors expressing modified envelope proteins.

A third alternative to modifying the host range of a retrovirus vector is by directly modifying the envelope proteins. Modifications of the sequences encoding the polypeptides may be readily accomplished by a variety of well-known techniques, such as site-directed mutagenesis (see, e.g., Gillman and Smith, Gene 8:81-97, (1979) and Roberts, S. et al., Nature 328:731-734, (1987), which are incorporated

PCT/US94/03784 WO 94/23048

5

10

15

20

30

35

herein by reference). The effect of the modifications are evaluated by screening for the ability of the engineered virions to infect a target cell.

11

In addition, specific polynucleotide sequences encoding desired polypeptides can be fused to the env gene using methods known to those skilled in the art. Gene fusions comprising sequences encoding antibodies, SCF, IL-6 somatostatin and the like can thus be used as a targeting means. The fused gene can be inserted into an appropriate plasmid for transformation into the packaging cells.

In addition, the envelope protein can be modified for example, by introducing point mutations in the protein to yield moieties for coupling by organic chemical means (e.g., insertion of a cysteine residue to give a sulfhydryl group). Cell-specific targeting moieties can be coupled with glutaraldehyde, periodate, or maleimide compounds, or by other means known to those skilled in the art. Such couplings may also be made directly to wild-type or unmodified envelope proteins where coupling can be to a carbohydrate moiety, a sulfhydryl group, an amino group, or other group which may be available for binding.

A number of packaging cell lines suitable for the present invention are also available in the prior art. These Preferred existing cell lines lines include Crip and GPE-Am. 25 include PA317 (ATCC CRL 9078) which expresses MoMLV core and envelope proteins and PG13 (ATCC CRL 10,683) which produces virions having MoMLV core and GaLV envelope components. (See Miller et al. J. Virol. 65:2220-2224 (1991), which is incorporated herein by reference.) The PG13 packging cell line can be used in conjunction with the 521 plasmid and the 537 plasmid, both of which contain 5' MoMLV LTR and packaging signal sequences (see Example 3, herein).

Defective Genomes

The other component of retroviral vectors is a packagable defective genome comprising a polynucleotide sequence, typically a structural gene, of interest. defective genomes of the invention include a GaLV component which include minimal GaLV nucleotide sequences must be

10

15

20

25

30

35

present in the defective genome itself for the genome to integrate in the target cell genome and be packaged in infectious virions (i.e. the sequences are required in cis). Thus, the GalV component of the defective genomes of the invention may include the packaging site, ψ , and/or the long terminal repeated sequences (LTRs). The LTRs are positioned at either end of the proviral DNA and contain regulatory sequences (e.g., promoters, enhancers and polyadenylation sequences) which direct expression of the genes within the proviral DNA. The polynucleotide sequences of the GaLV component may be identical to sequences as shown, for instance, in SEQ ID. No 1, or may be substantially identical to that sequence as defined, above.

Typically, the proviral regulatory sequences drive expression of the inserted gene. In those embodiments where two inserted genes are included (e.g., a marker gene and the gene of interest) it is frequently desirable to include a virus internal ribosome entry site (IRES) to increase efficiency of expression (Ghattas et al., Mol. Cell. Biol. 11:5848-5859 (1991), which is incorporated herein by reference).

The promoter operably linked to the gene of interest may be constitutive, cell type-specific, stage-specific, and/or modulatable (e.g., by hormones such as glucocorticoids). Suitable promoters for the invention include those derived from genes such as early SV40, CMV major late, adenovirus immediate early, histone H4, β -actin, MMTV, and HSV-TIC.

Enhancers increase the rate of transcription from promoters, act on cis-linked promoters at great distances, are orientation independent, and can be located both upstream, (5'), and downstream, (3'), from the transcription unit. Enhancers inducible by hormones and metal ions and found only in specific tissues have been described. Proteins synthesized only in one tissue type, for example, actin and myosin in muscle, are frequently regulated by tissue specific enhancers. For tissue specific expression of the introduced genes of interest used in the retroviral vectors of the present

10

15

20

25

30

35

invention, tissue-specific enhancers are of particular interest.

A repetitive 45 base pair enhancer element in the U3 region of the GaLV LTR is important for tissue specific expression of the introduced genes. This enhancer region is present only once in the 3' LTR of GaLV SF but is present 3 times in the 3' LTR of GaLV SEATO. (See Quinn et al., Mol. Cell. Biol. 7:2735-2744, which is incorporated herein by reference). The sequence of the 3' LTR of GaLV SEATO with 3 repeats of the 45 bp enhancer region is shown in Seq. ID No.2. Thus, the origin of the 3' GaLV LTR region (from GaLV SEATO or GaLV SF) in a retroviral vector can influence the expression of the introduced gene in different tissues (see Example 4, herein).

To ensure efficient expression, 3' polyadenylation regions must be present to provide for proper maturation of the mRNA transcripts. The native 3'-untranslated region of the gene of interest is preferably used, but the polyadenylation signal from, for example, SV40, particularly including a splice site, which provides for more efficient expression, could also be used. Alternatively, the 3'-untranslated region derived from a gene highly expressed in a particular cell type could be fused with the gene of interest.

The retroviral vectors of the invention also contain GaLV-based regulatory elements that can direct expression of genes contained within the genome in a tissue/cell specific manner. In general, the GaLV regulatory elements are more efficient than the MoMLV elements in expressing genes in human cells. In addition, the regulatory sequences from different GaLV strains have different cell and tissue specificities. For instance, GaLV SF regulatory genes function efficiently in primate lymphoid cells (e.g., UCD 144) and GaLV SEATO regulatory genes function efficiently in human myeloid cells (e.g., HL60 cells), while MoMLV regulatory genes do not. Thus, tissue specificity of the vectors of the invention can be modified by selecting the appropriate GaLV strain. Tissue specificity of the regulatory genes from various GaLV strains

35

is determined using routine screening techniques well-known to those of skill in the art.

The 5' and 3' LTRs of one retrovirus or GaLV strain may be also used in a defective genome derived from another. For instance, the 3' LTR from SSAV can be substituted for the 5 3' LTR of an infectious clone of another GaLV strain. the U3 region of the 3' LTR is the template for the synthesis of the U3 region in both 5' and 3' LTRs of the progeny virus, the 3' LTR will be duplicated and transferred to the 5' LTR in the host cell. In this way optimal expression of the gene of 10 interest in the target cell can be achieved. In addition, in order to increase efficiency of packaging, the 5'LTR from one virus (e.g., MoMLV) can be used in combination with the 3' LTR of a second (e.g., GaLV). If the constructs comprise a MoMLV 5'LTR and a GaLV 3'LTR, they are efficiently 15 expressed in murine packaging cells (e.g., PG13) but result in proviral DNA comprising promoter sequences from GaLV which function more efficiently in human cells. These constructs are efficiently packaged in packaging cells such as PG13 because the 5' MoMLV LTR drives gene transcription in the 20 packaging cells. However, when the packaged retrovial vector is infected into an appropriate target cell, the 3' GaLV promoter drives gene transcription (see Example 3, herein). Examples of retroviral vectors with MoMLV 5' LTR's and packaging signals and 3'GaLV LTR's include plasmids 521 and 25 537, described in Example 3, herein. This type of retroviral vector has the advantages of both efficient packaging in cell lines such as PG13 and higher expression in various target cells (see Example 4, herein).

The cis-acting packaging sequences used in the defective viral genomes may be derived from GaLV SEATO. The minimal sequences required for efficient packaging of a GaLV-based defective genome are described herein. In particular, as shown in detail below, the first 910 to 1290 nucleotides from the 5' end of the GaLV SEATO genome can direct packaging of a defective genome by PG13 and PA317 cells. This result also shows that the sequences required for efficient packaging from GaLV are recognized by MoMLV core proteins. Thus, hybrid

10

15

20

25

30

35

retroviral vectors comprising both GaLV and MoMLV components can be conveniently constructed.

15

The GaLV SEATO sequences required for packaging of the defective genomes include the 5' LTR and extend to about position 1290 of the GaLV genome illustrated in Figure 1. sequences required for packaging also include the packaging site, ψ , which is typically defined negatively as a sequence which, when deleted from a viral genome, prevents efficient packaging of the genome. In the GaLV SEATO genome, ψ is located downstream of the 5' LTR beginning at about position The site usually comprises at least about 350 bp, preferably between about 500 bp and about 1500 bp, more preferably about 700 to about 1200 bp. One of skill will recognize that minor modifications to the packaging sequence shown in Figure 1 will not substantially affect the ability of the sequence to direct packaging. Thus, the term "GaLV" packaging site" as used herein refers to GaLV DNA sequences, or RNA sequences transcribed from them which are capable of directing packaging when present in cis in a GaLV genome or The term "GaLV SEATO packaging sites" defective genome. refers to those DNA or RNA sequences substantially identical (as determined above) to the disclosed sequences and which are functional in the defective GALV genomes of the present co invention.

The retroviral vectors of the invention are suitable for delivering a variety of polynucleotides to cells, including transgenes for augmenting or replacing endogenous genes in gene therapy or for the production of transgenic animals. Antisense polynucleotides can be used to control expression of target endogenous genes such as oncogenes. In addition, genes encoding toxins can be targeted for delivery to cancer cells. Other suitable sequences include those encoding growth substances to promote immune responses to cancers or infections, soluble factors to modulate receptor activity, and the like. The inserted polynucleotide of interest should be less than about 10 kb, preferably between about 7 and 8 kb.

25 .

30

35

In certain embodiments, homologous targeting constructs are used to replace an endogenous target gene. Methods and materials for preparing such constructs are known by those of skill in the art and are described in various references. See, e.g., Thomas et al., Cell 51:503 (1987) and Capecchi, Science 244:1288 (1989), which are incorporated herein by reference.

16

Homologous targeting constructs have at least one region having a sequence that substantially corresponds to, or is substantially complementary to, a predetermined endogenous 10 target gene sequence (e.g., an exon sequence, an enhancer, a promoter, an intronic sequence, or a flanking sequence of the target gene). Such a homology region serves as a template for homologous pairing and recombination with substantially identical endogenous gene sequence(s). In the targeting of 15 transgenes, such homology regions typically flank the replacement region, which is a region of the targeting transgene that is to undergo replacement with the targeted Thus, a segment of the targeting endogenous gene sequence. transgene flanked by homology regions can replace a segment of 20 the endogenous gene sequence by double crossover homologous recombination.

In addition, the constructs for both homologous targeting and random integration will comprise a selectable marker gene to allow selection of cells. Frequently, multiple selectable marker genes are incorporated, such as in positive-negative selection constructs for homologous gene targeting.

A selectable marker gene expression cassette typically comprises a promoter which is operational in the targeted host cell linked to a structural sequence that encodes a protein that confers a selectable phenotype on the targeted host cell, and a polyadenylation signal. A promoter included in an expression cassette may be constitutive, cell type-specific, stage-specific, and/or modulatable (e.g., by hormones such as glucocorticoids; MMTV promoter), but is expressed prior to and/or during selection.

When the selectable marker is contained in a homologous targeting construct, homologous recombination at

5

10

15

20

25

30

35

the targeted endogenous site(s) can be chosen to place the selectable marker structural sequence downstream of a functional endogenous promoter, and it may be possible for the targeting construct replacement region to comprise only a structural sequence encoding the selectable marker, and rely upon an endogenous promoter to drive transcription. Similarly, an endogenous enhancer located near a targeted endogenous site may be relied on to enhance transcription of selectable marker gene sequences in enhancerless constructs.

Suitable selectable marker genes include, for example: gpt (encoding xanthine-guanine phosphoribosyltransferase), which can be selected for with mycophenolic acid; neo (encoding neomycin phosphotransferase), which can be selected for with G418, and DFHR (encoding dihydrofolate reductase), which can be selected for with methotrexate. Other suitable selectable markers will be apparent to those in the art.

selection for correctly targeted recombinant cells will generally employ at least positive selection, wherein a selectable marker gene expression cassette encodes and expresses a functional protein (e.g., neo or gpt) that confers a selectable phenotype to targeted cells harboring the endogenously integrated expression cassette, so that, by addition of a selection agent (e.g., G418, puromycin, or mycophenolic acid) such targeted cells have a growth or survival advantage over cells which do not have an integrated expression cassette.

Cells harboring the transgene of interest either randomly integrated or integrated by homologous recombination may be further identified using techniques well known in the art. For instance, the cells can be screened using Southern blotting or the polymerase chain reaction (PCR). If targeted integration is being screened, the oligonucleotide probes or PCR primers should bracket recombination junctions that are formed upon transgene integration at the desired homologous site.

Gene Therapy

The retroviral vectors of the invention are particularly suitable for delivering polynucleotides to cells for gene therapy of a number of diseases. Current strategies for gene therapy are reviewed in Friedmann, Science 244:1275 (1989), which is incorporated herein by reference.

5

10

15

20

25

30

35

Delivery of the polynucleotide of interest may be accomplished in vivo by administration of the vectors to an individual patient, typically by systemic administration (e.g., intravenous, intraperitoneal, intramuscular, subdermal, or intracranial infusion). Alternatively, the vectors may be used to deliver polynucleotides to cells ex vivo such as cells explanted from an individual patient (e.g., tumor-infiltrating lymphocytes, bone marrow aspirates, tissue biopsy) or universal donor hematopoietic stem cells, followed by reimplantation of the cells into a patient, usually after selection for cells which have incorporated the polynucleotide.

The vectors may be used for gene therapy to treat congenital genetic diseases, acquired genetic diseases (e.g., cancer), viral diseases (e.g., AIDS, mononucleosis, herpesvirus infection, cytomegalovirus infection, papillomovirus infection) or to modify the genome of selected types of cells of a patient for any therapeutic benefit. Treatable disorders include hemophilia, thalassmias, ADA deficiency, familial hypercholesterolemia, inherited emphysema, cystic fibrosis, Duchenne's muscular dystrophy, lysosomal storage diseases, Gaucher's disease, and chronic granulomatous disease.

The vectors of the invention can be used to introduce polynucleotides into a variety of cells and tissues including myeloid cells, bone marrow cells, lymphocytes, hepatocytes, fibroblasts, lung cells, and muscle cells. For example, polynucleotides conferring resistance to a chemotherapeutic agent may be transferred to non-neoplastic cells, especially hematopoietic cells. Alternatively, polynucleotides comprising a toxin gene (e.g., ricin or diphtheria toxin) expression cassette or a negative selectable marker gene expression cassette may be selectively inserted

20

25

30

35

into neoplastic cells. Expression of the toxin gene or negative selection gene (followed by negative selection) selectively kills target cells. Polynucleotides which are not cytotoxic but which reverse or suppress the neoplastic phenotype (e.g. antisense inhibition of oncogene expression) also may be used to treat cancer, as well. Other uses include the introduction of immunomodifiers into bone marrow cells to treat cancers.

Transgenic Animals

As noted above, the vectors of the present invention are particularly useful for gene targeting mediated by homologous recombination between a targeting polynucleotide construct and a homologous chromosomal sequence. In addition to gene therapy, such strategies are also useful for the production of transgenic animals.

The ability to introduce new genes into the germ line of an animal has been extremely valuable for basic understanding of gene expression. The improvement of desired traits in agricultural or domesticated animals is also possible using these techniques. For example, potential new traits that may be introduced include sterility in meat producing strains of cattle, or fertility and milk production in dairy cows. Other commercially desirable properties include hardiness and rapid weight gain in livestock, or "show qualities" in domestic animals such as dogs and cats. For a review of the genetic engineering of livestock see, Pursel et al, Science 244:1281 (1989), which is incorporated herein by reference.

Typically, embryonic stem (ES) cells are used as the transgene recipients. Cells containing the newly engineered gene are injected into a host blastocyst, which is reimplanted into a recipient female. Some of these embryos develop into chimeric animals that possess germ cells partially derived from the mutant cell line. By breeding the chimeric animals it is possible to obtain a new line containing the introduced gene.

The following examples are provided by way of illustration, not limitation.

PCT/US94/03784

5

Example 1

Construction of GaLV infectious clone comprising GaLV SEATO and GaLV SF sequences.

To prepare the GaLV infectious clone, a missing fragment of about 250 kb from the pol gene of a GaLV SEATO clone was replaced with the corresponding sequence from GaLV SF. The following steps correspond to the numbered steps illustrated in Figures 2A-2F.

The steps illustrated in Figure 2A show repair of pol gene of GaLV-SEATO.

The approximately 8.5 kb permuted GaLV-SEATO 1 provirus (pGAS-2 Hd1) from pGAS-2 (Gelman et al., 1982, supra) was isolated by HindIII digestion and DEAE-cellulose membrane interception in an agarose gel. 15 approximately 250 bp GaLV-SF pol gene fragment of pGV-3 corresponding to the missing pol fragment of PGAS-2 was isolated by HindIII digestion and DEAE-cellulose membrane interception in an agarose gel. 20 The two DNA species were ligated at low 2 concentration to favor circularization over multimer formation. After ligated material was precipitated, Sal I 3 restriction was used to linearize the 25 construct. The construct was ligated into Sal I-restricted 4 and phosphatased pVZ-1 vector. DH5@F' cells were transformed. 5 Transformants were screened by alkaline lysis, 6. 30 plasmid mini-preps, and sequencing with "GVGAS 10" primer to check number and orientation of GaLV-SF pol fragment inserts within GaLV-SEATO sequence. A clone with correct construction was named intermediate Clone 66. 35

Figure 2B shows change of GaLV-SEATO insert orientation.

	7	The permuted proviral Clone 66 insert was
		isolated by Sal I digestion and DEAE-cellulose
		membrane interception on an agarose gel.
	8	The insert was re-ligated back into pVZ-1 Sal
5		I-cut and phosphatased vector to obtain
		opposite orientation. The opposite orientation
		clone was named intermediate Clone 120.
	Figu	res 2C and 2D illustrate the intermediate Clone
	66 and the unio	directional decrease in insert length using
10	Exonucleases I	II and VII.
	9	Intra-insert distances were estimated by known
		sequence and accurate restriction mapping. The
		goal was to decrease the 8.5 kb insert by 5.4
		kb, stopping at a point just 3' of the LTR-LTR
15		junction, leaving one LTR intact. The size of
		resulting clone (vector + insert) was ~ 6 kb.
	10	Not I restriction of Clone 66 and Clone 120 was
	•	used to check for absence of intra-insert
		sites. They were found to be absent. Clone 66
20		was linearized with Not I in the multiple
		cloning site.
	. 11	The Not I termini were filled in with cold
		$dCTP[\alpha S]$ and $dGTP[\alpha S]$ and DNA polymerase I
		(Klenow). α-thiodeoxyribonucleotides were used
25		to block these termini from Exonuclease III
		digestion.
	12	Clone 66 and Clone 120 were restricted with Xba
		I to check for absence of intra-insert sites.
		Clone 66 was restricted with Xba I in the
30	• •	multiple cloning site generating 5' overhang
		cohesive termini.
	13	Precisely timed Exonuclease III digestion
		destroyed the Xba I site but the Sal I site at
		5' insert end was left intact, and incomplete
35		Not I site was resistant to attack by
		Exonuclease III.
	14	Digestion with Exonuclease VII was used to
	N.	remove remaining single strand.

WU 94/23048		22
	15	The "ragged ends" were filled in with DNA
		polymerase (Klenow) and cold deoxynucleotide
		triphosphates.
	16	The blunt ended incomplete Not I site was
5		ligated to insert sequence.
J	17	DH5αF' cells were transformed.
	18	Transformants were screened by alkaline lysis,
		plasmid mini-preps, Sal I linearization and
		sequencing to determine (a) extent of insert
10		deletion and (b) quality of incomplete Not I
		sites and the true extent of protection given
		by $lpha$ -thiodeoxyribonucleotides from digestion
		into the vector by Exonuclease III or VII.
	19	Transformants were further screened by Not I
15		digestion, searching for complete Not I site.
	20	Clones that linearize with Not I were
		linearized to confirm presence of complete Not
		I site and accurately determine extent of
		insert deletion. One clone with desired
20		digestion to a point just 3' of the LTR-LTR
		junction and with a complete Not I site, was
		named intermediate Clone 66Exo52.
	_	re 2E shows the intermediate Clone 120:
Unid	irectional	decrease in insert length using Exonucleases
25 · III	and VII.	
	21	Intra-insert distance was estimated by known
		sequence and accurate restriction mapping. The
	٠	goal was to decrease the 8.5 kb insert by 2.6
		kb, stopping at a point just 3' of the LTR-LTR
30		junction leaving one LTR intact. Size of
		resulting clone was ~ 9 kb.
	22 to 32	The steps were preformed as described for steps

10-20. One clone with desired digestion to a point just 3' of the LTR-LTR junction and with a complete Not I site, was named Intermediate 35 Clone 120Exo55.

PCT/US94/03784

Figure 2F shows coupling of Clone 66Exo52 insert and Clone 120Exo55 insert: separation of LTR's and generation of infectious clone.

	33	Double digestion of both Clone 66Exo52 and
5		Clone 120Exo55 with Sal I and Not I was used to
		release inserts.
	34	Inserts were isolated by DEAE cellulose
		membrane interception in agarose gels.
	35	Ligation of Clone 66Exo52 insert, Clone
10		120Exo55 insert and Not I restricted
		pVZ-vector.
	36	ĎH5αF' cells were transformed.
	37	Screening of transformants by 32P-labelled
		probing of colonies, alkaline lysis plasmid
15		mini-preps, restriction analysis and sequencing
		to search for potential infectious clones with
		correct construction.
	38	Large scale plasmid preparation and restriction
		mapping of GaLV-SEATO infectious clone.
		•

20

The resulting cloned GaLV genome was subsequently shown to encode infectious GaLV virions.

25

Example 2

Construction of defective genomes comprising GaLV SF and GaLV SEATO packaging sites.

The steps used to prepare a defective genome

comprising GaLV SEATO sequences from the infectious clone in
Example 1 were as follows.

- 1. A 1667 bp Not I-Bgl II fragment from the 5' end of the infectious clone of GaLV SEATO was isolated.
- 2. A 3116 bp Bam HI-Xba I fragment corresponding to the
 Lac Z gene was isolated from the p1203 Lac Z plasmid
 (Ghattas et al., supra).

5

10

20

25

30

35

3. A 596 bp Xba I to Hind III fragment corresponding to the ECMV IRES (EMCV internal ribosome entry site) was isolated from pLZIC2 (Ghattas et al., supra).

- 4. A 890 bp Stu I- Sfu I fragment corresponding to the G418 resistance gene was isolated from pRcCMV plasmid (Invitrogen).
- 5. A 995 bp Stu I-Not I fragment corresponding to the 3' end of the GaLV SEATO infectious clone was isolated.
- 6. A linearized Not I pGem 13 plasmid (Promega, 318lbp) was isolated.
- 7. These fragments were ligated together to assemble the pGaLV SEATO 395 plasmid.

Figure 3 (top) shows the resulting defective genome.

Figure 3 (middle) shows a defective genome constructed in the same manner but using a Not I-Nco I fragment from the 5' end of the GaLV SEATO genome. Figure 3 (bottom) shows a construct prepared from GaLV SF sequences.

The pGaLV SEATO 395 plasmid was further modified by increasing the length of the 5' putative packaging region by 328 bp in creating the GaLV SEATO 558 construct. Plasmid 558 this represents a modified 395 plasmid which contains an additional 328 nucleotides of 5' GaLV SEATO sequences extending to the Bgl II site at position 1290 of the GaLV genome. (Plasmid 395 extends only to the Nco I site at position 910 of the GaLV genome.) The 558 plasmid construction was made using the 194 GaLV SF plasmid. The GaLV SF 194 plasmid contains a truncated GaLV SF genome cloned into the Promega pSP72 genome at the Eco RI site.

The steps in construction of the 558 plasmid are listed below.

- 1. A Pst I- Bgl II fragment of GaLV SEATO containing the 5' GaLV SEATO LTR and the GaLV SEATO packaging site was used to replace the corresponding region of the GaLV SF 194 plasmid partial genome.
- 2. A Barn HI-Xba I fragment containing the bacterial Lac Z gene but lacking an initiation codon was ligated, in reading frame, to the Bgl II site such that the Lac Z

PCT/US94/03784

5

10

15

20

25

30

35

gene initiated from the GaLV SEATO gag protein Therefore the β -galactosidase translation start codon. protein is a GaLV SEATO gag-Lac Z fusion protein.

- An Xba Ito Nsi I fragment containing the EMCV and a G418 gene was ligated to the Xba I site downstream of the Lac Z gene and the Nsi I in the 3' region of the GaLV SF 194 genome.
- The Nsi I- Sma I region at the 3' end of the 194 GaLV SF genome was replaced with a corresponding region of GaLV SEATO, such that the 3' U3 of the LTR contained GaLV SEATO derived sequences in place of the GaLV SF 194 sequences.

The schematic diagrams of plasmids 395 and 558 are compared in figure 4 and the nucleotide sequence of plasmid 558 is shown in Seq. ID No. 3.

Example 3

Construction of GALV defective genomes with improved packaging efficiency in murine packaging cell lines that express MoMLV structural proteins

In order to improve the efficiency of packaging in murine packaging cell lines such as PG13 and PA317, which express MoMLV structural proteins, we constructed GALV defective gemomes that have a MoMLV promoter at the 5' end and a GaLV promoter at the 3' end.

Two defective genomes, designated plasmid 521 and plasmid 537, having a MoMLV promoter at the 5' end and a GaLV promoter at the 3' end, were constructed. In order to construct plasmid 521, the 5' end of the 395 plasmid (Sfi I/filled in-Cla I) was replaced with the corresponding fragment of a similar MoMLV-based Lac Z genome (Sst II/filled In order to construct plasmid 537, the 3' Nsi in to Cla I). I- Not I (filled in) fragment of 521 was replaced with Nsi-Bgl II (filled in) fragment of GaLV SF 194.

For comparative purposes, a MoMLV defective genome plasmid similar in construction to the 521 plasmid, was prepared by replacing the Spe I- Sph I fragment of pLXSN (which contains the end of the MoMLV packaging region, the SV40 promoter and the 5' part of the G418 gene with the

5

10

15

20

25

30

35

corresponding region (also an Spe I-Sph fragment) of the 521 genome, thereby replacing the SV40 promoter with an IRES element. This defective genome is designated plasmid 560. Plasmids 521, 537, and 560 are shown schematically in figures 4 and 5. The nucleotide sequence of plasmid 521 is shown in Seq. ID No. 4 and the nucleotide sequence of plasmid 537 is shown in Seq. ID No. 5.

The 521 and 537 plasmid constructs provide a means of optimizing gene expression in the packaging cells while retaining GaLV-driven gene expression in target cells where GaLV promoters function more efficiently then the MoMLV Because the 521 and 537 constructs have a MoMLV promoter at the 5' end, cells transfected with these constructs (such as packaging cells PA317 and PG 13) have a MoMLV promoter (U3) driving gene transcription. On the other hand, when the genome is reverse transcribed after infection of the target cell, the GaLV U3 promoter in the 3' LTR is duplicated and replaces the MoMLV promoter at the 5' end. This has been demonstrated by sequence analysis of unintegrated vector DNA from 521 target cells (data not The DNA from these cells infected with the 521 construct after packaging in either PG13 or PA317 cells contains a 5' AND 3' GaLV SEATO U3 (data not shown). Therefore the 5' end of the 521 genome switches from a MoMLv U3 to a GaLV SEATO U3 in infected cells, which results in GaLV-driven gene expression in target cells.

Example 4

Effect of the number of 45 bp enhancer elements in the U3 region of the GaLV LTR on efficiency of gene expression in target cells

There are a variable number of repetitive 45 bp enhancer elements in the U3 region of the GaLV LTR. The 558 plasmid and the 521 plasmid U3 regions, derived from GaLV SEATO, each contain 3 repetitive 45 bp enhancer elements, whereas GaLV SF (eg. plasmids 537 and 559) has only one of these elements. The number of repeats may play a restrictive but potentially useful role in governing expression of downstream genes in different target cells. The experimental

data presented below suggests that the number of repetitive 45 bp enhancer elements in the U3 region of the LTR of GaLV can effect the efficiency of tissue/cell specific gene expression.

Following transfection of the 521, 537 or 560 plasmids into the PA317 or PGI3 cell lines, the MoMLV 5 promoters are used to express packagable genomes. For the 521 and 537 plasmids, however, the GaLV promoter is used to express β -galactosidase and G418 resistance in the target cell after infection with the packaged defective genomes. effect of three repeats of the 45 basepair enhancer region 10 versus only one copy of the enhancer region in the GaLV promoter is shown in the table below. The expression of the G418 indicator gene is measured by titering G418 resistant The data in the table below demonstrates the effect of varying the number of 45 bp enhancer region repeats on the 15 expression of genes driven by the GaLV LTRs in different cell types (see table).

Table: Efficiency of Gene Expression Directed by Retroviral Vectors in Various Target Cells

•	genome	537	558	560
	packaging cells:	PGI3	PGI3	PGI3
	promoter used	GaLV SF	Galv SEATO	MoMLV
25	target cells:	•	•	,
	mink fibroblasts	2x10 ^{2#}	5x10 ⁴	5.0
	murine NIH 3T3 cells	5x10 ⁴	5.0	5x10 ⁴
	BHK hamster cells	. 🕳	0.5x10	-
	HaK hamster cells	-	0.5×10^2	-
30	Bovine MDBK cells	5x10 ³	5x10 ⁴	5x10 ²
		-*	-*	-*
	Human KB cells	5x10 ⁴	5x10 ²	5x10
	Human HeLA cells	5x10 ⁴	5x10 ²	5x10 ²
35	Human 293 cells	5x10	5x10 ²	5x10 ⁴
		5x10 ^{3*}	5x10*	5x10 ^{3*}

[#] titer expressed as number of G418 resistant colonies obtained with I ml of PGI3 or PA317 supernatant

PCT/US94/03784

containing retroviral vectors with either the 537, 558 or 560 genomes

* genomes packaged in PA317 cells

5

10

Although the present invention has been described in some detail by way of illustration and example for purposes of clarity and understanding, it will be apparent that certain changes and modifications may be practiced within the scope of the appended claims.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT:
 - (A) NAME: The United States of America, as represented by The Secretary of the Department of Health and Human Services
 - (B) STREET: 6011 Executive Blvd., Suite 325
 - (C) CITY: Rockville (D) STATE: Maryland

 - (E) COUNTRY: U.S.A. (F) POSTAL CODE (ZIP): 20852
 - (G) TELEPHONE: (301) 496-7056
 - (H) TELEFAX: (301) 402-0220
 - (I) TELEX:
- (ii) TITLE OF INVENTION: Gibbon Ape Leukemia Virus-Based Retroviral Vectors
- (iii) NUMBER OF SEQUENCES: 5
- (iv) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk

 - (B) COMPUTER: IBM PC compatible
 (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
- (v) CURRENT APPLICATION DATA:
 (A) APPLICATION NUMBER: WO not yet assigned
 - (B) FILING DATE: 06-APR-1994
 - (C) CLASSIFICATION:
- (vii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Bastian,, Kevin L.
 - (B) REGISTRATION NUMBER: 34,774
 - (C) REFERENCE/DOCKET NUMBER: 15280-128-1PC
- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (415) 543-9600
 - (B) TELEFAX: (415) 543-5043

(2) INFORMATION FOR SEQ ID NO:1:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8535 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (ix) FEATURE:
 - (A) NAME/KEY: misc feature
 - (B) LOCATION: 1..8535
 - (D) OTHER INFORMATION: /standard_name= "GaLV SEATO Genome"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

AATGAAAGAA GTGTTTTTT TTAGCCAACT GCAGTAACGC CATTTTGCTA GGCACACCTA 60 AAGGATAGGA AAAATACAGC TAAGAACAGG GCCAAACAGG ATATCTGTGG TCATGCACCT 120 GGGCCCCGGC CCAGGCCAAG GACAGAGGGT TCCCAGAAAT AGATGAGTCA ACAGCAGTTT 180 CCAGCAAGGA CAGAGGGTTC CCAGAAATAG ATGAGTCAAC AGCAGTTTCC AGGGTGCCCC 240 TCAACCGTTT CAAGGACTCC CATGACCGGG AATTCACCCC TGGCCTTATT TGAACTAACC 300 AATTACCTTG CCTCTCGCTT CTGTACCCGC GCTTTTTGCT ATAAAAATAA GCTCAGAAAC 360 TCCACCGGA GCGCCAGTCC TTAGAGAGAC TGAGCCGCCC GGGTACCCGT GTGTCCAATA 420 ARACCTCTTG CTGATTGCAT CCGGAGCCGT GGTCTCGTTG TTCCTTGGGA GGGTTTCTCC 480 TAACTATTGA CCGCCCACTT CGGGGGTCTC ACATTTGGGG GCTCGTCCGG GATCGGAAAC 540 CCCACCCAGG GACCACCGAC CCACCAACGG GAGGTAAGCT GGCCAGCGAC CGTTGTGTGT 600 CTCGCTTCTG TGTCTAAGTC CGTAATTCTG ACTGTCCTTG TGTGTCTCGC TTCTGTGTCT 660 GAGACCGTAA CTCTGACTGC CCTTGTAAGT GCGCGCATTT TTTTGGTTTC AGTCTGTTCC 720 GGGTGAATCA CTCTGCGAGT GACGTGTGAG TAGCGAACAG ACGTGTTCGG GGCTCACCGC 780 CTGGTAATCC AGGGAGACGT CCCAGGATCA GGGGAGGACC AGGGACGCCT GGTGGACCCC 840 TCGGTAACGG GTCGTTGTGA CCCGATTTCA TCGCCCGTCT GGTAAGACGC GCTCTGAATC 900 TGATTCTCTC TCTCGGTCGC CTCGCCGCCG TCTCTGGTTT CTTTTTGTTT CGTTTCTGGA 960 AAGCCTCTGT GTCACAGTCT TTCTCTCCCA AATCATCAAT ATGGGACAAG ATAATTCTAC 1020 CCCTATCTCC CTCACTCTAA ATCACTGGAG AGATGTGAGA ACAAGGGCTC ACAATCTATC 1080 CGTGGAAATC AAAAAGGGAA AATGGCAGAC TTTCTGTTCC TCCGAGTGGC CCACATTCGG 1140 CGTGGGGTGG CCACCGGAGG GAACTTTTAA TCTCTCTGTC ATTTTTGCAG TTAAAAAGAT 1200 TGTCTTCAG GAGAACGGGG GACATCCGGA CCAAGTTCCA TATATCGTGG TATGGCAGGA 1260 CCTCGCCCAG AATCCCCCAC CATGGGTGCC AGCCTCCGCC AAGGTCGCTG TTGTCTCTGA 1320 1380 TACCCGAAGA CCAGTTGCGG GGAGGCCATC AGCTCCTCCC CGACCCCCCA TCTACCCGGC AACAGACGAC TTACTCCTCC TCTCTGAACC CACGCCCCCG CCCTATCCGG CGGCACTGCC 1440 ACCCCTCTG GCCCCTCAGG CGATCGGACC GCCGTCAGGC CAGATGCCCG ATAGTAGCGA 1500 TCCTGAGGGG CCAGCCGCTG GGACCAGGAG TCGCCGTGCC CGCAGTCCAG CAGACAACTC 1560 GGGTCCTGAC TCCACTGTGA TTTTGCCCCT CCGAGCCATA GGACCCCCGG CCGAGCCCAA 1620 1680 TGGCCTGGTC CCTCTACAAT ATTGGCCTTT TTCCTCAGCA GATCTTTATA ATTGGAAATC TAATCATCCC TCTTTTCTG AAAACCCAGC AGGTCTCACG GGGCTCCTTG AGTCTCTTAT 1740 GTTCTCCCAT CAGCCCACTT GGGACGATTG CCAACAGCTC CTACAGATTC TTTTCACCAC 1800 TGAGGAACGG GAAAGAATTC TCCTGGAGGC CCGCAAAAAT GTCCTTGGGG ACAATGGGGC 1860 CCCTACACAG CTCGAGAACC TCATTAATGA GGCCTTCCCC CTCAATCGAC CTCACTGGGA 1920 TTACAACACA GCCGCAGGTA GGGAGCGTCT TCTGGTCTAC CGCCGGACTC TAGTGGCAGG 1980 TCTCAAAGGG GCAGCTCGGC GTCCTACCAA TTTGGCTAAG GTAAGAGAGG TCTTGCAGGG 2040 ACCGGCAGAA CCCCCTTCGG TTTTCTTAGA ACGCCTGATG GAGGCCTATA GGAGATACAC 2100 TCCGTTTGAT CCCTCTTCTG AGGGACAACA GGCTGCGGTC GCCATGGCCT TTATCGGACA 2160 GTCAGCCCCA GATATCAAGA AAAAGTTACA GAGGCTAGAG GGGCTCCAGG ACTATTCCTT 2220 ACAAGATTTA GTAAAAGAGG CAGAAAAGGT GTACCATAAG AGAGAGACAG AAGAAGAAAG 2280 ACAAGAAAGA GAAAAAAAGG AGGCAGAAGA AAAGGAGAGG CGGCGCGATA GGCCGAAGAA 2340 AAAAAACTTG ACTAAAATTC TGGCCGCAGT AGTAAGTAGA GAAGGGTCCA CAGGTAGGCA 2400 GACAGGGAAC CTGAGCAACC AGGCAAAGAA GACACCTAGG GATGGAAGAC CTCCACTAGA · 2460 CARAGACCAG TGCGCATACT GTARAGAGAR GGGCCATTGG GCARGAGART GTCCCCGARA 2520 AAAACACGTC AGAGAAGCCA AGGTTCTAGC CCTAGATAAC TAGGGGAGTC AGGGTTCGGA 2580 CCCCTCCC GAACCTAGGG TAACACTGAC TGTGGAGGGG ACCCCCATTG AGTTCCTGGT 2640 CGACACCGGA GCTGAACATT CAGTATTGAC CCAACCCATG GGAAAAGTAG GGTCCAGACG 2700 GACGGTCGTG GAAGGAGCGA CAGGCAGCAA GGTCTACCCC TGGACCACAA AAAGACTTTT · 2760 AAAAATTGGA CATAAACAAG TGACCCACTC CTTCCTGGTC ATACCCGAGT GCCCTGCTCC 2820 2880 TCTGTTGGGC AGGGACCTCC TAACCAAACT AAAGGCCCAG ATCCAGTTTT CCGCTGAGGG CCCACAGGTA ACATGGGGAG AACGCCCTAC TATGTGCCTG GTCCTAAACC TGGAAGAAGA 2940 ATACCGACTA CATGAAAAGC CAGTACCCTC CTCTATCGAC CCATCCTGGC TCCAGCTTTT 3000 CCCCACTGTA TGGGCAGAAA GAGCCGGCAT GGGACTAGCC AATCAAGTCC CACCAGTGGT 3060 AGTAGAGCTA AGATCAGGTG CCTCACCAGT GGCTGTTCGA CAATATCCAA TGAGCAAAGA 3120 AGCTCGGGAA GGTATCAGAC CCCACATCCA GAAGTTCCTA GACCTAGGGG TCTTGGTGCC 3180 CTGTCGGTCG CCCTGGAATA CCCCTCTGCT ACCTGTAAAA AAGCCAGGGA CCAATGACTA 3240 TCGGCCAGTT CAAGACCTGA GAGAAATTAA TAAAAGGGTA CAGGATATTC ATCCCACAGT 3300 CCCAAACCCT TACAATCTTC TGAGTTCCCT TCCGCCTAGC TATACTTGGT ACTCAGTCTT 3360 AGATCTCAAG GATGCCTTTT TCTGCCTCAG GCTACATCCC AACAGCCAGC CGCTGTTCGC 3420 GTTCGAGTGG AAAGACCCAG AAAAAGGTAA CACAGGTCAG CTGACCTGGA CGCGGCTACC 3480 ACAAGGGTTC AAGAACTCTC CCACTCTCTT CGACGAGGCC CTCCACCGAG ATTTGGCTCC 3540 CTTTAGGGCC CTCAACCCCC AGGTGGTGTT ACTCCAATAT GTGGACGACC TCTTGGTGGC 3600

CGCCCCACA	TATGAAGACT	GCAAAAAAGG	AACACAGAAG	CTCTTACAGG	AGTTAAGTAA	3660
GTTGGGGTAC	CGGGTATCGG	CTAAGAAGGC	CCAGCTCTGC	CAGAGAGAAG	TCACCTATCT	3720
GGGGTACCTA	CTCAAGGAAG	GAAAAAGATG	GCTAACCCCA	GCCCGAAAGG	CTACTGTTAT	3780
GAAAATCCCT	GTTCCTACGA	CCCCAGACA	GGTCCGTGAA	TTTCTAGGCA	CTGCCGGATT	3840
CTGCAGGCTC	TGGATCCCTG	GGTTTGCTTC	CCTGGCTGCA	CCCTTGTACC	CCCTAACAAA	3900
AGAGAGCATC	CCTTTTATTT	GGACTGAGGA	ACATCAGCAG	GCTTTTGACC	ACATAAAAAA	3960
AGCCTTGCTG	TCAGCCCCTG	CATTGGCCCT	CCCAGACCTC	ACCAAGCCAT	TCACTCTATA	4020
TATAGATGAG	AGAGCCGGCG	TGGCCCGGGG	AGTGCTCACT	CAGACTTTAG	GACCCTGGCG	4080
GCGGCCAGTA	GCATATCTAT	CAAAAAAACT	GGATCCGGTG	GCCAGCGGGT	GGCCAACCTG	4140
CCTGAAAGCG	GTTGCAGCAG	TAGCACTCCT	TCTCAAAGAC	GCTGATAAGT	TAACCTTGGG	4200
ACAAAATGTG	ACTGTGATTG	CTTCCCATAG	CCTCGAAAGC	ATCGTGCGGC	AACCCCCGA	4260
CCGGTGGATG	ACCAATGCCA	GAATGACTCA	TTACCAGAGC	CTGCTGTTAA	ATGAAAGGGT	4320
ATCGTTTGCG	CCCCCTGCTG	TCCTAAACCC	AGCTACCCTA	CTTCCAGTCG	AGTCGGAAGC	4380
CACCCCAGTG	CACAGGTGCT	CAGAAATCCT	CGCCGAAGAA	ACTGGAACTC	GACGAGACCT	4440
AGAAGACCAA	CCATTGCCCG	GGGTGCCAAC	CTGGTATACA	GACGGTAGCA	GTTTCATCAC	4500
GGAAGGTAAA	CGGAGAGCAG	GGGCCCCGAT	CGTAGATGGC	AAGCGGACGG	TATGGGCTAG	4560
CAGCCTGCCA	GAAGGTACGT	CAGCCCAGAA	GGCTGAACTA	GTAGCCTTGA	CGCAGGCATT	4620
ACGCCTGGCC	GAAGGAAAAA	ACATCAACAT	CTACACGGAC	AGCAGGTATG	CTTTTGCCAC	4680
TGCTCATATT	CATGGGGCAA	TATATAAGCA	GAGGGGGCTG	CTCACTTCTG	CTGGAAAAGA	4740
TATCAAAAAC	AAAGAGGAAA	TTTTGGCCCT	GCTAGAGGCC	ATCCATCTCC	CTAGGCGGGT	4800
CGCCATTATC	CACTGTCCTG	GCCACCAGAG	GGGAAGTAAC	CCTGTGGCCA	CTGGGAACCG	4860
GAGGGCCGAC	GAGGCTGCAA	AGCAAGCCGC	CCTGTCGACC	AGAGTGCTGG	CAGGAACTAC	4920
AAAACCTCAA	GAGCCAATCG	AGCCCGCTCA	AGAAAAGACC	AGGCCGAGGG	AGCTCACCCC	4980
TGACCGGGGA	AAAGAATTCA	TTAAGCGGTT	ACATCAGTTA	ACTCACTTAG	GACCAGAAAA	5040
GCTTCTCCAA	CTAGTGAACC	GTACCAGCCT	CCTCATCCCG	AACCTCCAAT	CTGCAGTTCG	5100
CGAAGTCACC	AGTCAGTGTC	AGGCTTGTGC	CATGACTAAT	GCGGTCACCA	CCTACAGAGA	5160
GACCGGAAAA	AGGCAACGAG	GAGATCGACC	CGGCGTGTAC	TGGGAGGTAG	ACTTCACAGA	5220
					CTTTCTCCGG	5280
ATGGGTAGAA	GCTTTTCCTA	CCAAAACTGA	AACGGCCCTA	ATCGTCTGTA	TTATAAAAAA	5340
				•	ATGGCCCGGC	5400
					GGAAGTTACA	5460
TTGTGCGTAT	AGACCCCAGA	GCTCAGGTCA	GGTAGAAAGA	ATGAACAGAA	CAATTAAAGA	5520
GACCTTGACC	AAATTAGCCI	TAGAGACCGG	TGGAAAAGAC	TGGGTGACCC	CTCCTTCCCTT	5580
AGCGCTGCTI	AGGGCCAGGA	ATACCCCTGG	CCGGTTTGGT	TTAACTCCTI	TATGAAATTCT	5640
CTATGGAGGA	CCACCCCCA	TACTTGAGTO	TGGAGAAACT	TTGGGTCCC	G ATGATAGATT	5700

TCTCCCTGTC	TTATTTACTC	ACTTAAAGGC	TTTAGAAATT	GTAAGGACCC	AAATCTGGGA	5760
CCAGATCAAA	GAGGTGTATA	AGCCTGGTAC	CGTAACAATC	CCTCACCCGT	TCCAGGTCGG	5820
GGATCAAGTG	CTTGTCAGAC	GCCATCGACC	CAGCAGCCTT	GAGCCTCGGT	GGAAAGGCCC	5880
ATACCTGGTG	TTGCTGACTA	CCCCGACCGC	GGTAAAAGTC	GATGGTATTG	CTGCCTGGGT	5940
CCATGCTTCT	CACCTCAAAC	CTGCACCACC	TTCGGCACCA	GATGAGTCCT	GGGAGCTGGA	6000
AAAGACTGAT	CATCCTCTTA	AGCTGCGTAT	TCGGCGGCGG	CGGGACGAGT	CTGCAAAATA	6060
AGAACCCCCA	CCAGCCCATG	ACCCTCACTT	GGCAGGTACT	GTCCCAAACT	GGAGACGTTG	6120
TCTGGGATAC	AAAGGCAGTC	CAGCCCCCTT	GGACTTGGTG	GCCCACACTT	AAACCTGATG	6180
TATGTGCCTT	GGCGGCTAGT	CTTGAGTCCT	GGGATATCCC	GGGAACCGAT	GTCTCGTCCT	6240
CTAAACGAGT	CAGACCTCCG	GACTCAGACT	ATACTGCCGC	TTATAAGCAA	ATCACCTGGG	6300
GAGCCATAGG	GTGCAGCTAC	CCTCGGGCTA	GGACTAGAAT	GGCAAGCTCT	ACCTTCTACG	6360
TATGTCCCCG	GGATGGCCGG	ACCCTTTCAG	AAGCTAGAAG	GTGCGGGGG	CTAGAATCCC	6420
TATACTGTAA	AGAATGGGAT	TGTGAGACCA	CGGGGACCGG	TTATTGGCTA	TCTAAATCCT	6480
CAAAAGACCT	CATAACTGTA	AAATGGGACC	AAAATAGCGA	ATGGACTCAA	AAATTTCAAC	6540
ÁGTGTCACCA	GACCGGCTGG	TGTAACCCCC	TTAAAATAGA	TTTCACAGAC	AAAGGAAAAT 🕟	6600
TATCCAAGGA	CTGGATAACG	GGAAAAACCT	GGGGATTAAG	ATTCTATGTG	TCTGGACATC	6660
CAGGCGTACA	GTTCACCATT	CGCTTAAAAA	TCACCAACAT	GCCAGCTGTG	GCAGTAGGTC -	6720
CTGACCTCGT	CCTTGTGGAA	CAAGGACCTC	CTAGAACGTC	CCTCGCTCTC	CCACCTCCTC	6780
TTCCCCCAAG	GGAAGCGCCA	CCGCCATCTC	TCCCCGACTC	TAACTCCACA	GCCCTGGCGA	6840
CTAGTGCACA	AACTCCCACG	GTGAGAAAA	CAATTGTTAC	CCTAAACACT	CCGCCTCCCA	6900
CCACAGGCGA	CAGACTTTTT	GATCTTGTGC	AGGGGGCCTT	CCTAACCTTA	AATGCTACCA	6960
ACCCAGGGGC	CACTGAGTCT	TGCTGGCTTT	GTTTGGCCAT	GGGCCCCCT	TATTATGAAG	7020
CAATAGCCTC	ATCAGGAGAG	GTCGCCTACT	CCACCGACCT	TGACCGGTGC	CGCTGGGGGA	7080
CCCAAGGAAA	GCTCACCCTC	ACTGAGGTCT	CAGGACACGG	GTTGTGCATA	GGAAAGGTGC	7140
CCTTTACCCA	TCAGCATCTC	TGCAATCAGA	CCCTATCCAT	CAATTCCTCC	GGAGACCATC	7200
AGTATCTGCT	CCCCTCCAAC	CATAGCTGGT	GGGCTTGCAG	CACTGGCCTC	ACCCCTTGCC	7260
TCTCCACCTC	AGTTTTTAAT	CAGACTAGAG	ATTTCTGTAT	CCAGGTCCAG	CTGATTCCTC	7320
GCATCTATTA	CTATCCTGAA	GAAGTTTTGT	TACAGGCCTA	TGACAATTCT	CACCCCAGGA	7380
CTAAAAGAGA	GGCTGTCTCA	CTTACCCTAG	CTGTTTTACT	GGGGTTGGGA	ATCACGGCGG	7440
GAATAGGTAC	TGGTTCAACT	GCCTTAATTA	AAGGACCTAT	AGACCTCCAG	CAAGGCCTGA	7500
CAAGCCTCCA	GATCGCCATA	GATGCTGACC	TCCGGGCCCT	CCAAGACTCA	GTCAGCAAGT	7560
TAGAGGACTC	ACTGACTTCC	CTGTCCGAGG	TAGTGCTCCA	AAATAGGAGA	GGCCTTGACT	7620
TGCTGTTTCT	AAAAGAAGGT	GGCCTCTGTG	CGGCCCTAAA	GGAAGAGTGC	TGTTTTTACA	7680
TAGACCACTC	AGGTGCAGTA	CGGGACTCCA	TGAAAAAACT	CAAAGAAAAA	CTGGATAAAA	7740
GACAGTTAGA	GCGCCAGAAA	AGCCAAAACT	GGTATGAAGG	ATGGTTCAAT	AACTCCCCTT	7800

				N CONCORDED COM	CTCTTCCTCA	7860
GGTTCACTAC	CCTGCTATCA	ACCATCGCTG	GGCCCCTATT	ACTCCTCCTT	CIGITACICA	,000
TCCTCGGGCC	ATGCATCATC	AATAAGTTAG	TTCAATTCAT	CAATGATAGG	ATAAGTGCAT	7920
GTTAAAATTC	TGGTCCTTAG	ACAAAATATC	AGGCCCTAGA	GAACGAAGGT	AACCTTTAAT	7980
TTTGCTCTAA	GATTAGAGCT	ATTCACAAGA	GAAATGGGGG	AATGAAAGAA	GTGTTTTTT	8040
TTAGCCAACT	GCAGTAACGC	CATTTTGCTA	GGCACACCTA	AAGGATAGGA	AAAATACAGC	8100
TAAGAACAGG	GCCAAACAGG	ATATCTGTGG	TCATGCACCT	GGGCCCCGGC	CCAGGCCAAG	8160
GACAGAGGGT	TCCCAGAAAT	AGATGAGTCA	ACAGCAGTTT	CCAGCAAGGA	CAGAGGGTTC	8220
CCAGAAATAG	ATGAGTCAAC	AGCAGTTTCC	AGGGTGCCCC	TCAACCGTTT	CAAGGACTCC	8280
CATGACCGGG	AATTCACCCC	TGGCCTTATT	TGAACTAACC	AATTACCTTG	CCTCTCGCTT	8340
CTGTACCCGC	GCTTTTTGCT	ATAAAATAAG	CTCAGAAACT	CCACCCGGAG	CGCCAGTCCT	8400
TAGAGAGACT	GAGCCGCCCG	GGTACCCGTG	TGTCCAATAA	AACCTCTTGC	TGATTGCATC	8460
CGGAGCCGTG	GTCTCGTTGT	TCCTTGGGAG	GGTTTCTCCT	AACTATTGAC	CGCCCACTTC	8520
GGGGGTCTCA	CATTT					8535

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:

 - (A) LENGTH: 564 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (ix) FEATURE:

 - (A) NAME/KEY: LTR
 (B) LOCATION: 1..564
 (D) OTHER INFORMATION: /standard_name= "3' LTR of GaLV SEATO"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

AATGAAAGAA	GTGTTTTTT	TTAGCCAACT	GCAGTAACGC	CATTTTGCTA	GGCACACCTA	60
AAGGATAGGA	AAAATACAGC	TAAGAACAGG	GCCAAACAGG	ATATCTGTGG	TCATGCACCT	120
GGCCCCGGC	CCAGGCCAAG	GACAGAGGGT	TCCCAGAAAT	AGATGAGTCA	ACAGCAGTTT	180
CCAGCAAGGA	CAGAGGGTTC	CCAGAAATAG	ATGAGTCAAC	AGCAGTTTCC	AGCAAGGACA	240
GAGGGTTCCC	AGAAATAGAT	GAGTCAACAG	CAGTTTCCAG	AGGGTGCCCC	TCAACCGTTT	300
CAAGGACTCC	CATGACCGGG	AATTCACCCC	TGGCCTTATT	TGAACTAACC	AATTACCTTG	360
CCTCTCGCTT	CTGTACCCGC	GCTTTTTGCT	ATAAAAATAA	GCTCAGAAAC	TCCACCCGGG	420
CGCCAGTCCT	TAGAGAGACT	GAGCCGCCCG	GGTACCCGTG	TGTCCAATAA	AACCTCTTGC	480
TGATTGCATC	CGGAGCCGTG	GTCTCGTTGT	TCCTTGGGAG	GGTTTCTCCT	AACTATTGAC	540
CGCCCACTTC	GGGGGTCTCA	CATT				564

WO 94/23048

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9661 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION: 1..9613
- (D) OTHER INFORMATION: /standard_name= "p558 retoviral vector"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

60 ATTTAGGTGA CACTATAGAA CTCGAGGAAT TCTGAAAGAA GTGTTTTTCA AGTTAGCTGC AGTAACGCCA TTTTGCTAGG CACACCTAAA GGATAGGAAA AATACAGCTA AGAACAGGGC 120 CARACAGGAT ATCTGTGGTC ATGCACCTGG GCCCCGGCCC AGGCCAAGGA CAGAGGGTTC 180 CCAGAAATAG ATGAGTCAAC AGCAGTTTCC AGCAAGGACA GAGGGTTCCC AGAAATAGAT 240 GAGTCAACAG CAGTTTCCAG GGTGCCCCTC AACCGTTTCA AGGACTCCCA TCACCGGGAA 300 TTCACCCCTG GCCTTATTTG AACTAACCAA TTACCTTGCC TCTCGCTTCT GTACCCGCGC 360 TTTTTGCTAT AAAAATAAGC TCAGAAACTC CACCCGGAGC GCCAGTCCTT AGAGAGACTG 420 AGCCGCCCGG GTACCCGTGT GTCCAATAAA ACCTCTTGCT GATTGCATCC GGAGCCGTGG 480 540 TCTCGTTGTT CCTTGGGAGG GTTTCTCCTA ACTATTGACC GCCCACTTCG GGGGTCTCAC ATTTGGGGGC TCGTCCGGGA TCGGAAACCC CACCCAGGGA CCACCGACCC ACCAACGGGA 600 GGTAAGCTGG CCAGCGACCG TTGTGTGTCT CGCTTCTGTG TCTAAGTCCG TAATTCTGAC 660 TGTCCTTGTG TGTCTCGCTT CTGTCTCTGA GACCGTAACT CTGACTGCCC TTGTAAGTGC 720 GCGCATTTTT TTGGTTTCAG TCTGTTCCGG GTGAATCACT CTGCGAGTGA CGTGTGAGTA 780 GCGAACAGAC GTGTTCGGGG CTCACCGCCT GGTAATCCAG GGAGACGTCC CAGGATCAGG 840 GGAGGACCAG GGACGCCTGG TGGACCCCTC GGTAACGGGT CGTTGTGACC CGATTTCATC 900 GCCCGTCTGG TAAGACGCGC TCTGAATCTG ATTCTCTCTC TCGGTCGCCT CGCCGCCGTC 960 TCTGGTTTCT TTTTGTTTCG TTTCTGGAAA GCCTCTGTGT CACAGTCTTT CTCTCCCAAA 1020 TCATCAATAT GGGACAAGAT AATTCTACCC CTATCTCCCT CACTCTAAAT CACTGGAGAG 1080 ATGTGAGAAC AAGGGCTCAC AATCTATCCG TGGAAATCAA AAAGGGAAAA TGGCAGACTT 1140 TCTGTTCCTC CGAGTGGCCC ACATTCGGCG TGGGGTGGCC ACCGGAGGGA ACTTTTAATC 1200 TCTCTGTCAT TTTTGCAGTT AAAAAGATTG TCTTTCAGGA GAACGGGGGA CATCCGGACC 1260 AAGTTCCATA TATCGTGGTA TGGCAGGACC TCGCCCAGAA TCCCCCACCA TGGGTGCCAG 1320 CCTCCGCCAA GGTCGCTGTT GTCTCTGATA CCCGAAGACC AGTTGCGGGG AGGCCATCAG 1380 CTCCTCCCG ACCCCCATC TACCCGGCAA CAGACGACTT ACTCCTCCTC TCTGAACCCA 1440 CGCCCCGCC CTATCCGGCG GCACTGCCAC CCCCTCTGGC CCCTCAGGCG ATCGGACCGC 1500

CGTCAGGCCA	GATGCCCGAT	AGTAGCGATC	CTGAGGGGCC	AGCCGCTGGG	ACCAGGAGTC	1560
GCCGTGCCCG	CAGTCCAGCA	GACAACTCGG	GTCCTGACTC	CACTGTGATT	TTGCCCCTCC	1620
GAGCCATAGG	ACCCCGGCC	GAGCCCAATG	GCCTGGTCCC	TCTACAATAT	TGGCCTTTTT	1680
CCTCAGCAGA	TCCCGTCGTT	TTACAACGTC	GTGACTGGGA	AAACCCTGGC	GTTACCCAAC	1740
TTAATCGCCT	TGCAGCACAT	CCCCTTTCG	CCAGCTGGCG	TAATAGCGAA	GAGGCCCGCA	. 1800
CCGATCGCCC	TTCCCAACAG	TTGCGCAGCC	TGAATGGCGA	ATGGCGCTTT	GCCTGGTTTC	1860
CGGCACCAGA	AGCGGTGCCG	GAAAGCTGGC	TGGAGTGCGA	TCTTCCTGAG	GCCGATACTG	1920
TCGTCGTCCC	CTCAAACTGG	CAGATGCACG	GTTACGATGC	GCCCATCTAC	ACCAACGTAA	1980
CCTATCCCAT	TACGGTCAAT	CCGCCGTTTG	TTCCCACGGA	GAATCCGACG	GGTTGTTACT	2040
CGCTCACATT	TAATGTTGAT	GAAAGCTGGC	TACAGGAAGG	CCAGACGCGA	ATTATTTTTG	2100
ATGGCGTTAA	CTCGGCGTTT	CATCTGTGGT	GCAACGGGCG	CTGGGTCGGT	TACGGCCAGG	2160
ACAGTCGTTT	GCCGTCTGAA	TTTGACCTGA	GCGCATTTTT	ACGCGCCGGA	GAAAACCGCC	2220
TCGCGGTGAT	GGTGCTGCGT	TGGAGTGACG	GCAGTTATCT	GGAAGATCAG	GATATGTGGC	2280
GÇATGAGCGG	CATTTTCCGT	GACGTCTCGT	TGCTGCATAA	ACCGACTACA	CAAATCAGCG	2340
ATTTCCATGT	TGCCACTCGC	TTTAATGATG	ATTTCAGCCG	CGCTGTACTG	GAGGCTGAAG	△ 2400
TTCAGATGTG	CGGCGAGTTG	CGTGACTACC	TACGGGTAAC	AGTTTCTTTA	TGGCAGGGTG	~ 2460
AAACGCAGGT	CGCCAGCGGC	ACCGCGCCTT	TCGGCGGTGA	AATTATCGAT	GAGCGTGGTG	2520
GTTATGCCGA	TCGCGTCACA	CTACGTCTGA	ACGTCGAAAA	CCCGAAACTG	TGGAGCGCCG	2580
AAATCCCGAA	TCTCTATCGT	GCGGTGGTTG	AACTGCACAC	CGCCGACGGC	ACGCTGATTG	2640
AAGCAGAAGC	CTGCGATGTC	GGTTTCCGCG	AGGTGCGGAT	TGAAAATGGT	CTGCTGCTGC	2700
TGAACGGCAA	GCCGTTGCTG	ATTCGAGGCG	TTAACCGTCA	CGAGCATCAT	CCTCTGCATG	2760
GTCAGGTCAT	GGATGAGCAG	ACGATGGTGC	AGGATATCCT	GCTGATGAAG	CAGAACAACT	2820
TTAACGCCGT	GCGCTGTTCG	CATTATCCGA	ACCATCCGCT	GTGGTACACG	CTGTGCGACC	2880
GCTACGGCCT	GTATGTGGTG	GATGAAGCCA	ATATTGAAAC	CCACGGCATG	GTGCCAATGA	2940
ATCGTCTGAC	CGATGATCCG	CGCTGGCTAC	CGGCGATGAG	CGAACGCGTA	ACGCGAATGG	3000
TGCAGCGCGA	TCGTAATCAC	CCGAGTGTGA	TCATCTGGTC	GCTGGGGAAT	GAATCAGGCC	3060
ACGGCGCTAA	TCACGACGCG	CTGTATCGCT	GGATCAAATC	TGTCGATCCT	TCCCGCCCGG	3120
TGCAGTATGA	AGGCGGCGGA	GCCGACACCA	CGGCCACCGA	TATTATTTGC	CCGATGTACG	3180
CGCGCGTGGA	TGAAGACCAG	CCCTTCCCGG	CTGTGCCGAA	ATGGTCCATC	AAAAAATGGC	3240
TTTCGCTACC	TGGAGAGACG	CGCCCGCTGA	TCCTTTGCGA	ATACGCCCAC	GCGATGGGTA	3300
ACAGTCTTGG	CGGTTTCGCT	AAATACTGGC	AGGCGTTTCG	TCAGTATCCC	CGTTTACAGG	3360
GCGGCTTCGT	CTGGGACTGG	GTGGATCAGT	CGCTGATTAA	ATATGATGAA	AACGGCAACC	3420
CGTGGTCGGC	TTACGGCGGT	GATTTTGGCG	ATACGCCGAA	CGATCGCCAG	TTCTGTATGA	3480
ACGGTCTGGT	CTTTGCCGAC	CGCACGCCGC	ATCCAGCGCT	GACGGAAGCA	AAACACCAGC	3540
AGCAGTTTTT	CCAGTTCCGT	TTATCCGGGC	AAACCATCGA	AGTGACCAGC	GAATACCTGT	3600

TCCGTCATAG	CGATAACGAG	CTCCTGCACT	GGATGGTGGC	GCTGGATGGT	AAGCCGCTGG	3660
CAAGCGGTGA	AGTGCCTCTG	GATGTCGCTC	CACAAGGTAA	ACAGTTGATT	GAACTGCCTG	3720
AACTACCGCA	GCCGGAGAGC	GCCGGGCAAC	TCTGGCTCAC	AGTACGCGTA	GTGCAACCGA	3780
ACGCGACCGC	ATGGTCAGAA	GCCGGGCACA	TCAGCGCCTG	GCAGCAGTGG	CGTCTGGCGG	3840
AAAACCTCAG	TGTGACGCTC	CCCGCCGCGT	CCCACGCCAT	CCCGCATCTG	ACCACCAGCG	3900
AAATGGATTT	TTGCATCGAG	CTGGGTAATA	AGCGTTGGCA	ATTTAACCGC	CAGTCAGGCT	3960
TTCTTTCACA	GATGTGGATT	GGCGATAAAA	AACAACTGCT	GACGCCGCTG	CGCGATCAGT	4020
TCACCCGTGC	ACCGCTGGAT	AACGACATTG	GCGTAAGTGA	AGCGACCCGC	ATTGACCCTA	4080
ACGCCTGGGT	CGAACGCTGG	AAGGCGGCGG	GCCATTACCA	GGCCGAAGCA	GCGTTGTTGC	4140
AGTGCACGGC	AGATACACTT	GCTGATGCGG	TGCTGATTAC	GACCGCTCAC	GCGTGGCAGC	4200
ATCAGGGGAA	AACCTTATTT	ATCAGCCGGA	AAACCTACCG	GATTGATGGT	AGTGGTCAAA	4260
TGGCGATTAC	CGTTGATGTT	GAAGTGGCGA	GCGATACACC	GCATCCGGCG	CGGATTGGCC	4320
TGAACTGCCA	GCTGGCGCAG	GTAGCAGAGC	GGGTAAACTG	GCTCGGATTA	GGGCCGCAAG	4380
AAAACTATCC	CGACCGCCTT	ACTGCCGCCT	GTTTTGACCG	CTGGGATCTG	CCATTGTCAG	4440
ACATGTATAC	CCCGTACGTC	TTCCCGAGCG	AAAACGGTCT	GCGCTGCGGG	ACGCGCGAAT	4500
TGAATTATGG	CCCACACCAG	TGGCGCGGCG	ACTTCCAGTT	CAACATCAGC	CGCTACAGTC	4560
AACAGCAACT	GATGGAAACC	AGCCATCGCC	ATCTGCTGCA	CGCGGAAGAA	GGCACATGGC	4620
TGAATATCGA	CGGTTTCCAT	ATGGGGATTG	GTGGCGACGA	CTCCTGGAGC	CCGTCAGTAT	4680
CGGCGGAATT	GCAGCTGAGC	GCCGGTCGCT	ACCATTACCA	GTTGGTCTGG	TGTCAAAAAT	4740
AATAATAACC	GGGCAGGCCA	TGTCTGCCCG	TATTTCGCGT	AAGGAAATCC	ATTATGTACT	4800
ATTTCTAGAG	AATTCCCCCC	TCTCCCTCCC	CCCCCCTAA	CGTTACTGGC	CGAAGCCGCT	4860
TGGAATAAGG	CCGGTGTGCG	TTTGTCTATA	TGTTATTTTC	CACCATATTG	CCGTCTTTTG	4920
GCAATGTGAG	GGCCCGGAAA	CCTGGCCCTG	TCTTCTTGAC	GAGCATTCCT	AGGGGTCTTT	4980
CCCCTCTGCG	CAAAGGAATG	CAAGGTCTGT	TGAATGTCGT	GAAGGAAGCA	GTTCCTCTGG	5040
AAGCTTCTTG	AAGACAAACA	ACGTCTGTAG	CGACCCTTTG	CAGGCAGCGG	AACCCCCAC	5100
CTGGCGACAG	GTGCCTCTGC	GGCCAAAAGC	CACGTGTATA	AGATACACCT	GCAAAGGCGG	5160
CACAACCCCA	GTGCCACGTT	GTGAGTTGGA	TAGTTGTGGA	AAGAGTCAAA	TGGCTCTCCT	5220
CAAGCGTATT	CAACAAGGGG	CTGAAGGATG	CCCAGAAGGT	ACCCCATTGI	ATGGGATCTG	5280
ATCTGGGGCC	: TCGGTGCACA	TGCTTTACAT	GTGTTTAGTC	GAGGTTAAAA	AACGTCTAGG	5340
CCCCCGAAC	CACGGGGACG	TGGTTTTCCT	TTGAAAAACA	CGATGATAAT	ATGGCCAAGC	5400
TCCTAGGCTI	TTGCAAAAAG	CTCCCGGGAG	CTTGGATATC	CATTTTCGGA	TCTGATCAAG	5460
AGACAGGATG	AGGATCGTTT	CGCATGATTG	AACAAGATGG	ATTGCACGC	GGTTCTCCGG	5520
CCGCTTGGGT	GGAGAGGCTA	TTCGGCTATG	ACTGGGCACA	ACAGACAATO	GGCTGCTCTG	5580
ATGCCGCCGT	GTTCCGGCTG	TCAGCGCAGG	GGCGCCCGGT	TCTTTTTGTC	AAGACCGACC	5640
TGTCCGGTGC	CCTGAATGAA	CTGCAGGACG	AGGCAGCGC	GCTATCGTGC	CTGGCCACGA	5700

39

CGGGCGTTCC	TTGCGCAGCT	GTGCTCGACG	TTGTCACTGA	AGCGGGAAGG	GACTGGCTGC		5760
TATTGGGCGA	AGTGCCGGGG	CAGGATCTCC	TGTCATCTCA	CCTTGCTCCT	GCCGAGAAAG		5820
TATCCATCAT	GGCTGATGCA	ATGCGGCGGC	TGCATACGCT	TGATCCGGCT	ACCTGCCCAT		5880
TCGACCACCA	AGCGAAACAT	CGCATCGAGC	GAGCACGTAC	TCGGATGGAA	GCCGGTCTTG		5940
TCGATCAGGA	TGATCTGGAC	GAAGAGCATC	AGGGGCTCGC	GCCAGCCGAA	CTGTTCGCCA .		6000
GGCTCAAGGC	GCGCATGCCC	GACGGCGAGG	ATCTCGTCGT	GACCCATGGC	GATGCCTGCT		6060
TGCCGAATAT	CATGGTGGAA	AATGGCCGCT	TTTCTGGATT	CATCGACTGT	GGCCGGCTGG		6120
GTGTGGCGGA	CCGCTATCAG	GACATAGCGT	TGGCTACCCG	TGATATTGCT	GAAGAGCTTG		6180
GCGGCGAATG	GGCTGACCGC	TTCCTCGTGC	TTTACGGTAT	CGCCGCTCCC	GATTCGCAGC		6240
GCATCGCCTT	CTATCGCCTT	CTTGACGAGT	TCTTCTGAGC	GGGACTCTGG	GGTTCGCCTT		6300
GACTTGCTGT	TTCTAAAAGA	AGGTGGCCTC	TGTGCGGCCC	TAAAGGAAGA	GTGCTGTTTT		6360
TACATAGACC	ACTCAGGTGC	AGTACGGGAC	TCCATGAAAA	AACTCAAAGA	APAACTGGAT		6420
AAAAGACAGT	TAGAGCGCCA	GAAAAGCCAA	AACTGGTATG	AAGGATGGTT	CAATAACTCC		6480
CCTTGGTTCA	CTACCCTGCT	ATCAACCATC	GCTGGGCCCC	TATTACTCCT	CCTTCTGTTG		6540
CTCATCCTCG	GGCCATGCAT	CAATAAGTTA	GTTCAATTCA	TCAATGATAG	GATAAGTGCA		6600
TGTTAAAATT	CTGGTCCTTA	GACAAAATAT	CAGGCCCTAG	AGAACGAAGG	TAACCTTTAA	50*	6660
TTTTGCTCTA	AGATTAGAGC	TATTCACAAG	AGAAATGGGG	GAATGAAAGA	AGTGTTTTTT		6720
TTTAGCCAAC	TGCAGTAACG	CCATTTTGCT	AGGCACACCT	AAAGGATAGG	AAAAATACAG		6780
CTAAGAACAG	GGCCAAACAG	GATATCTGTG	GTCATGCACC	TGGGCCCCGG	CCCAGGCCAA		6840
GGACAGAGGG	TTCCCAGAAA	TAGATGAGTC	AACAGCAGTT	TCCAGCAAGG	ACAGAGGGTT		6900
CCCAGAAATA	GATGAGTCAA	CAGCAGTTTC	CAGCAAGGAC	AGAGGGTTCC	CAGAAATAGA	Ť.	6960
TGAGTCAACA	GCAGTTTCCA	GGGTGCCCCT	CAACCGTTTC	AAGGACTCCC	ATGACCGGGA		7020
ATTCACCCCT	GGCCTTATTT	GAACTAACCA	ATTACCTTGC	CTCTCGCTTC	TGTACCCGCG		7080
CTTTTTGCTA	TAAAATAAGC	TCAGAAACTC	CACCCGGAGC	GCCAGTCCTT	AGAGAGACTG		7140
AGCCGCCCGG	GTACCCGTGT	GATCAATAAA	ACCTCTTGCT	ACTTGCATCC	GAAGTCGTGG		7200
TCTCGCTGTT	CCTTGGGAAG	GTCTCCCCTA	ATTGATTGAC	CGCCCGGACT	GGGGGTCTCT		7260
CATTGGAATT	CATCGATGAT	ATCAGATCTG	CCGGTCTCCC	TATAGTGAGT	CGTATTAATT		7320
TCGATAAGCC	AGGTTAACCT	GCATTAATGA	ATCGGCCAAC	GCGCGGGGAG	AGGCGGTTTG		7380
CGTATTGGGC	GCTCTTCCGC	TTCCTCGCTC	ACTGACTCGC	TGCGCTCGGT	CGTTCGGCTG		7440
CGGCGAGCGG	TATCAGCTCA	CTCAAAGGCG	GTAATACGGT	TATCCACAGA	ATCAGGGGAT		7500
AACGCAGGAA	AGAACATGTG	AGCAAAAGGC	CAGCAAAAGG	CCAGGAACCG	TAAAAAGGCC		7560
GCGTTGCTGG	CGTTTTTCCA	TAGGCTCCGC	CCCCTGACG	AGCATCACAA	AAATCGACGC		7620
TCAAGTCAGA	GGTGGCGAAA	CCCGACAGGA	CTATAAAGAT	ACCAGGCGTT	TCCCCCTGGA		7680
AGCTCCCTCG	TGCGCTCTCC	TGTTCCGACC	CTGCCGCTTA	CCGGATACCT	GTCCGCCTTT		7740
CTCCCTTCGG	GAAGCGTGGC	GCTTTCTCAA	TGCTCACGCT	GTAGGTATCI	CAGTTCGGTG		7800

TAGGTCGTTC	GCTCCAAGCT	GGGCTGTGTG	CACGAACCCC	CCGTTCAGCC	CGACCGCTGC	7860
GCCTTATCCG	GTAACTATCG	TCTTGAGTCC	AACCCGGTAA	GACACGACTT	ATCGCCACTG	7920
GCAGCAGCCA	CTGGTAACAG	GATTAGCAGA	GCGAGGTATG	TAGGCGGTGC	TACAGAGTTC	7980
TTGAAGTGGT	GGCCTAACTA	CGGCTACACT	AGAAGGACAG	TATTTGGTAT	CTGCGCTCTG	8040
CTGAAGCCAG	TTACCTTCGG	AAAAAGAGTT	GGTAGCTCTT	GATCCGGCAA	ACAAACCACC .	8100
GCTGGTAGCG	GTGGTTTTTT	TGTTTGCAAG	CAGCAGATTA	CGCGCAGAAA	AAAAGGATCT	8160
CAAGAAGATC	CTTTGATCTT	TTCTACGGGG	TCTGACGCTC	AGTGGAACGA	AAACTCACGT	8220
TAAGGGATTT	TGGTCATGAG	ATTATCAAAA	AGGATCTTCA	CCTAGATCCT	TTTAAATTAA	8280
AAATGAAGTT	TTAAATCAAT	CTAAAGTATA	TATGAGTAAA	CTTGGTCTGA	CAGTTACCAA	8340
TGCTTAATCA	GTGAGGCACC	TATCTCAGCG	ATCTGTCTAT	TTCGTTCATC	CATAGTTGCC	8400
TGACTCCCCG	TCGTGTAGAT	AACTACGATA	CGGGAGGGCT	TACCATCTGG	CCCCAGTGCT	8460
GCAATGATAC	CGCGAGACCC	ACGCTCACCG	GCTCCAGATT	TATCAGCAAT	AAACCAGCCA	8520
GCCGGAAGGG	CCGAGCGCAG	AAGTGGTCCT	GCAACTTTAT	CCGCCTCCAT	CCAGTCTATT	8580
AATTGTTGCC	GGGAAGCTAG	AGTAAGTAGT	TCGCCAGTTA	ATAGTTTGCG	CAACGTTGTT	8640
GCCATTGCTA	CAGGCATCGT	GGTGTCACGC	TCGTCGTTTG	GTATGGCTTC	ATTCAGCTCC	8700
GGTTCCCAAC	GATCAAGGCG	AGTTACATGA	TCCCCCATGT	TGTGCAAAAA	AGCGGTTAGC	8760
TCCTTCGGTC	CTCCGATCGT	TGTCAGAAGT	AAGTTGGCCG	CAGTGTTATC	ACTCATGGTT	8820
ATGGCAGCAC	TGCATAATTC	TCTTACTGTC	ATGCCATCCG	TAAGATGCTT	TTCTGTGACT	8880
GGTGAGTACT	CAACCAAGTC	ATTCTGAGAA	TAGTGTATGC	GGCGACCGAG	TTGCTCTTGC	8940
CCGGCGTCAA	TACGGGATAA	TACCGCGCCA	CATAGCAGAA	CTTTAAAAGT	GCTCATCATT	9000
GGAAAACGTT	CTTCGGGGCG	AAAACTCTCA	AGGATCTTAC	CGCTGTTGAG	ATCCAGTTCG	9060
ATGTAACCCA	CTCGTGCACC	CAACTGATCT	TCAGCATCTT	TTACTTTCAC	CAGCGTTTCT	9120
GGGTGAGCAA	AAACAGGAAG	GCAAAATGCC	GCAAAAAAGG	GAATAAGGGC	GACACGGAAA	9180
TGTTGAATAC	TCATACTCTT	CCTTTTTCAA	TATTATTGAA	GCATTTATCA	GGGTTATTGT	9240
CTCATGAGCG	GATACATATT	TGAATGTATT	TAGAAAAATA	AACAAATAGG	GGTTCCGCGC	9300
ACATTTCCCC	GAAAAGTGCC	ACCTGACGTC	TAAGAAACCA	TTATTATCAT	GACATTAACC	9360
TATAAAAATA	GGCGTATCAC	GAGGCCCTTT	CGTCTCGCGC	GTTTCGGTGA	TGACGGTGAA	9420
AACCTCTGAC	ACATGCAGCT	CCCGGAGACG	GTCACAGCTT	GTCTGTAAGC	GGATGCCGGG	9480
AGCAGACAAG	CCCGTCAGGG	CGCGTCAGCG	GGTGTTGGCG	GGTGTCGGGG	CTGGCTTAAC	9540

PCT/US94/03784

TATGCGGCAT CAGAGCAGAT TGTACTGAGA GTGCACCATA TGGACATATT GTCGTTAGAA 9600 CGCGGCTACA ATTAATACAT AACCTTATGT ATCATACACA TACGATTTAG GTGACACTAT 9660 9661 A

41

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10306 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

- (A) NAME/KEY: misc_feature
 (B) LOCATION: 1..10258
 (D) OTHER INFORMATION: /standard_name= "p521 retroviral" vector"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

AAGCTTCGGC	CAAGTGCGGC	CCTTCCGTTT	CTTTGCTTTT	GAAAGACCCC	ACCCGTAGGT	60
GGCAAGCTAG	CTTAAGTAAC	GCCACTTTGC	AAGGCATGGA	AAAATACATA	ACTGAGAATA	120
GGAAAGTTCA	GATCAAGGTC	AGGAACAAAG	AAACAGCTGA	ATACCAAACA	GGATATCTGT	180
GGTAAGCGGT	TCCTGCCCCC	GGCTCAGGGC	CAAGAACAGA	TGAGACAGCT	GAGTGATGGG	240
CCAAACAGGA	TATCTGTGGT	AAGCAGTTCC	TGCCCCGGCT	CGGGGCCAAG	AACAGATGGT	300
CCCCAGATGC	GGTCCAGCCC	TCAGCAGTTT	CTAGTGAATC	ATCAGATGTT	TCCAGGGTGC	360
CCCAAGGACC	TGAAAATGAC	CCTGTACCTT	ATTTGAACTA	ACCAATCAGT	TCGCTTCTCG	420
CTTCTGTTCG	CGCGCTTCCG	CTCTCCGAGC	TCAATAAAAG	AGCCCACAAC	CCCTCACTCG	<u>&</u> 480
GCGCGCCAGT	CTTCCGATAG	ACTGCGTCGC	CCGGGTACCC	GTATTCCCAA	TAAAGCCTCT	540
TGCTGTTTGC	ATCCGAATCG	TGGTCTCGCT	GTTCCTTGGG	AGGGTCTCCT	CTGAGTGATT	600
GACTACCCAC	GACGGGGGTC	TTTCATTTGG	GGGCTCGTCC	GGGATTTGGA	GACCCCTGCC	660
CAGGGACCAC	CGACCCACCA	CCGGGAGGTA	AGCTGGCCAG	CAACCTATCT	GTGTCTGTCC	720
GATTGTCTAG	TGTCTATGTT	TGATGTTATG	CGCCTGCGTC	TGTACTAGTT	AGCTAACTAG	780
CTCTGTATCT	GGCGGACCCG	TGGTGGAACT	GACGAGTTCT	GAACACCCGG	CCGCAACCCA	840
GGGAGACGTC	CCAGGGACTT	TGGGGGCCGT	TTTTGTGGCC	CGACCTGAGG	AAGGGAGTCG	900
ATGTGGAATC	CGACCCCGTC	AGGATATGTG	GTTCTGGTAG	GAGACGAGAA	CCTAAAACAG	960
TTCCCGCCTC	CGTCTGAATT	TTTGCTTTCG	GTTTGGAACC	GAAGCCGCGC	GTCTTGTCTG	1020
CTGCAGCATC	GTTCTGTGTT	GTCTCTGTCT	GACTGTGTTT	CTGTATTTGT	CTGAAAATTA	1080
GGGCCAGACT	GTTACCACTC	CCTTAAGTTT	GACCTTAGGT	CACTGGAAAG	ATGTCGAGCG	1140
GATCGCTCAC	AACCAGTCGG	TAGATGTCAA	GAAGAGACGT	TGGGTTACCT	TCTGCTCTGC	1200
AGAATGGCCA	ACCTTTACGT	CGGATGGCCG	CGAGACGCCA	CCTTTAACCG	AGACCTCATC	1260
ACCCAGGTTA	AGATCAAGGT	CTTTTCACCT	GGCCCGCATG	GACACCCAGA	CCAGGTCCCC	1320

TACATCGTGA CO	CTGGGAAGC	CTTGGCTTTT	GACCCCCTC	CCTGGGTCAA	GCCCTTTGTA	1380
CACCCTAAGC CT	CCGCCTCC	TCTTCCTCCA	TCCGCCCCGT	CTCTCCCCCT	TGAACCTCCT	1440
CGTTCGACCC CG	CCTCGATC	CTCCCTTTAT	CCAGCCCTCA	CTCCTTCTCT	AGGCGGGAAT	1500
TCGTTAACTC GA	ACCCGCGGG	TCGACTCGCG	AAGATCTTTC	CGCAGCAGCC	GCCACCATGG	1560
TTACGGATTC GG	GATCCCGTC	GTTTTACAAC	GTCGTGACTG	GGAAAACCCT	GGCGTTACCC	1620
AACTTAATCG CO	CTTGCAGCA	CATCCCCCTT	TCGCCAGCTG	GCGTAATAGC	GAAGAGGCCC	1680
GCACCGATCG CO	CCTTCCCAA	CAGTTGCGCA	GCCTGAATGĢ	CGAATGGCGC	TTTGCCTGGT	1740
TTCCGGCACC AG	GAAGCGGTG	CCGGAAAGCT	GGCTGGAGTG	CGATCTTCCT	GAGGCCGATA	1800
CTGTCGTCGT CC	CCTCAAAC	TGGCAGATGC	ACGGTTACGA	TGCGCCCATC	TACACCAACG	1860
TAACCTATCC CA	ATTACGGTC	AATCCGCCGT	TTGTTCCCAC	GGAGAATCCG	ACGGGTTGTT	1920
ACTCGCTCAC AT	TTAATGTT	GATGAAAGCT	GGCTACAGGA	AGGCCAGACG	CGAATTATTT	1980
TTGATGGCGT T	AACTCGGCG	TTTCATCTGT	GGTGCAACGG	GCGCTGGGTC	GGTTACGGCC	2040
AGGACAGTCG TT	TTGCCGTCT	GAATTTGACC	TGAGCGCATT	TTTACGCGCC	GGAGAAAACC	2100
GCCTCGCGGT GA	ATGGTGCTG	CGTTGGAGTG	ACGGCAGTTA	TCTGGAAGAT	CAGGATATGT	2160
GGCGGATGAG CG	GCATTTTC	CGTGACGTCT	CGTTGCTGCA	TAAACCGACT	ACACAAATCA	2220
GCGATTTCCA TO	GTTGCCACT	CGCTTTAATG	ATGATTTCAG	CCGCGCTGTA	CTGGAGGCTG	2280
AAGTTCAGAT GT	rgcggcgag	TTGCGTGACT	ACCTACGGGT	AACAGTTTCT	TTATGGCAGG	2340
GTGAAACGCA GG	STCGCCAGC	GGCACCGCGC	CTTTCGGCGG	TGAAATTATC	GATGAGCGTG	2400
GTGGTTATGC CG	GATCGCGTC	ACACTACGTC	TGAACGTCGA	AAACCCGAAA	CTGTGGAGCG	2460
CCGAAATCCC GF	AATCTCTAT	CGTGCGGTGG	TTGAACTGCA	CACCGCCGAC	GGCACGCTGA	2520
TTGAAGCAGA AG	CCTGCGAT	GTCGGTTTCC	GCGAGGTGCG	GATTGAAAAT	GGTCTGCTGC	2580
TGCTGAACGG CA	AAGCCGTTG	CTGATTCGAG	GCGTTAACCG	TCACGAGCAT	CATCCTCTGC	2640
ATGGTCAGGT CA	ATGGATGAG	CAGACGATGG	TGCAGGATAT	CCTGCTGATG	AAGCAGAACA	2700
ACTITAACGC CO	STGCGCTGT	TCGCATTATC	CGAACCATCC	GCTGTGGTAC	ACGCTGTGCG	2760
ACCGCTACGG CO	CTGTATGTG	GTGGATGAAG	CCAATATTGA	AACCCACGGC	ATGGTGCCAA	2820
TGAATCGTCT GA	ACCGATGAT	CCGCGCTGGC	TACCGGCGAT	GAGCGAACGC	GTAACGCGAA	2880
TGGTGCAGCG CG	GATCGTAAT	CACCCGAGTG	TGATCATCTG	GTCGCTGGGG	AATGAATCAG	2940
GCCACGGCGC TA	AATCACGAC	GCGCTGTATC	GCTGGATCAA	ATCTGTCGAT	CCTTCCCGCC	3000
CGGTGCAGTA TO	GAAGGCGGC	GGAGCCGACA	CCACGGCCAC	CGATATTATT	TGCCCGATGT	3060
ACGCGCGCGT GG	GATGAAGAC	CAGCCCTTCC	CGGCTGTGCC	GAAATGGTCC	ATCAAAAAAT	3120
GGCTTTCGCT AC	CCTGGAGAG	ACGCGCCCGC	TGATCCTTTG	CGAATACGCC	CACGCGATGG	3180
GTAACAGTCT TO	GCGGTTTC	GCTAAATACT	GGCAGGCGTT	TCGTCAGTAT	CCCCGTTTAC	3240
AGGGCGGCTT CO	STCTGGGAC	TGGGTGGATC	AGTCGCTGAT	TAAATATGAT	GAAAACGGCA	3300
ACCCGTGGTC GG	GCTTACGGC	GGTGATTTTG	GCGATACGCC	GAACGATCGC	CAGTTCTGTA	3360
TGAACGGTCT GO	STCTTTGCC	GACCGCACGC	CGCATCCAGC	GCTGACGGAA	GCAAAACACC	3420

AGCAGCAGTT	TTTCCAGTTC	CGTTTATCCG	GGCAAACCAT	CGAAGTGACC	AGCGAATACC		3480
TGTTCCGTCA	TAGCGATAAC	GAGCTCCTGC	ACTGGATGGT	GGCGCTGGAT	GGTAAGCCGC		3540
TGGCAAGCGG	TGAAGTGCCT	CTGGATGTCG	CTCCACAAGG	TAAACAGTTG	ATTGAACTGC		3600
CTGAACTACC	GCAGCCGGAG	AGCGCCGGGC	AACTCTGGCT	CACAGTACGC	GTAGTGCAAC		3660
CGAACGCGAC	CGCATGGTCA	GAAGCCGGGC	ACATCAGCGC	CTGGCAGCAG	TGGCGTCTGG		3720
CGGAAAACCT	CAGTGTGACG	CTCCCCGCCG	CGTCCCACGC	CATCCCGCAT	CTGACCACCA		3780
GCGAAATGGA	TTTTTGCATC	GAGCTGGGTA	ATAAGCGTTG	GCAATTTAAC	CGCCAGTCAG	•	3840
GCTTTCTTTC	ACAGATGTGG	ATTGGCGATA	AAAAACAACT	GCTGACGCCG	CTGCGCGATC		3900
AGTTCACCCG	TGCACCGCTG	GATAACGACA	TTGGCGTAAG	TGAAGCGACC	CGCATTGACC		3960
CTAACGCCTG	GGTCGAACGC	TGGAAGGCGG	CGGGCCATTA	CCAGGCCGAA	GCAGCGTTGT		4020
TGCAGTGCAC	GGCAGATACA	CTTGCTGATG	CGGTGCTGAT	TACGACCGCT	CACGCGTGGC		4080
AGCATCAGGG	GAAAACCTTA	TTTATCAGCC	GGAAAACCTA	CCGGATTGAT	GGTAGTGGTC		4140
AAATGGCGAT	TACCGTTGAT	GTTGAAGTGG	CGAGCGATAC	ACCGCATCCG	GCGCGGATTG		4200
GCCTGAACTG	CCAGCTGGCG	CAGGTAGCAG	AGCGGGTAAA	CTGGCTCGGA	TTAGGGCCGC		4260
AAGAAAACTA	TCCCGACCGC	CTTACTGCCG	CCTGTTTTGA	CCGCTGGGAT	CTGCCATTGT	• -	4320
CAGACATGTA	TACCCCGTAC	GTCTTCCCGA	GCGAAAACGG	TCTGCGCTGC	GGGACGCGCG	•	4380
AATTGAATTA	TGGCCCACAC	CAGTGGCGCG	GCGACTTCCA	GTTCAACATC	AGCCGCTACA		4440
GTCAACAGCA	ACTGATGGAA	ACCAGCCATC	GCCATCTGCT	GCACGCGGAA	GAAGGCACAT		4500
GGCTGAATAT	CGACGGTTTC	CATATGGGGA	TTGGTGGCGA	CGACTCCTGG	AGCCCGTCAG		4560
TATCGGCGGA	ATTGCAGCTG	AGCGCCGGTC	GCTACCATTA	CCAGTTGGTC	TGGTGTCAAA		4620
AATAATAATA	ACCGGGCAGG	CCATGTCTGC	CCGTATTTCG	CGTAAGGAAA	TCCATTATGT	or.	4680
ACTATTTCTA	GAGAATTCCC	CCCTCTCCCT	cccccccc	TAACGTTACT	GGCCGAAGCC		4740
GCTTGGAATA	AGGCCGGTGT	GCGTTTGTCT	ATATGTTATT	TTCCACCATA	TTGCCGTCTT		4800
TTGGCAATGT	GAGGGCCCGG	AAACCTGGCC	CTGTCTTCTT	GACGAGCATT	CCTAGGGGTC		4860
TTTCCCCTCT	GCGCAAAGGA	ATGCAAGGTC	TGTTGAATGT	CGTGAAGGAA	GCAGTTCCTC		4920
TGGAAGCTTC	TTGAAGACAA	ACAACGTCTG	TAGCGACCCT	TTGCAGGCAG	CGGAACCCCC		4980
CACCTGGCGA	CAGGTGCCTC	TGCGGCCAAA	AGCCACGTGT	ATAAGATACA	CCTGCAAAGG		5040
CGGCACAACC	CCAGTGCCAC	GTTGTGAGTT	GGATAGTTGT	GGAAAGAGTC	AAATGGCTCT		5100
CCTCAAGCGT	ATTCAACAAG	GGGCTGAAGG	ATGCCCAGAA	GGTACCCCAT	TGTATGGGAT		5160
CTGATCTGGG	GCCTCGGTGC	ACATGCTTTA	CATGTGTTTA	GTCGAGGTTA	AAAAACGTCT		5220
AGGCCCCCG	AACCACGGGG	ACGTGGTTTT	CCTTTGAAAA	ACACGATGAT	AATATGGCCA		5280
AGCTCCTAGG	CTTTTGCAAA	AAGCTCCCGG	GAGCTTGGAT	ATCCATTTTC	GGATCTGATC		5340
AAGAGACAGG	ATGAGGATCG	TTTCGCATGA	TTGAACAAGA	TGGATTGCAC	GCAGGTTCTC		5400
CGGCCGCTTG	GGTGGAGAGG	CTATTCGGCT	ATGACTGGGC	ACAACAGACA	ATCGGCTGCT		5460
CTGATGCCGC	CGTGTTCCGG	CTGTCAGCGC	AGGGGCGCCC	GGTTCTTTTT	GTCAAGACCG		5520

ACCTGTCCGG	TGCCCTGAAT	GAACTGCAGG	ACGAGGCAGC	GCGGCTATCG	TGGCTGGCCA	5580
CGACGGGCGT	TCCTTGCGCA	GCTGTGCTCG	ACGTTGTCAC	TGAAGCGGGA	AGGGACTGGC	5640
TGCTATTGGG	CGAAGTGCCG	GGGCAGGATC	TCCTGTCATC	TCACCTTGCT	CCTGCCGAGA	5700
AAGTATCCAT	CATGGCTGAT	GCAATGCGGC	GGCTGCATAC	GCTTGATCCG	GCTACCTGCC	5760
CATTCGACCA	CCAAGCGAAA	CATCGCATCG	AGCGAGCACG	TACTCGGATG	GAAGCCGGTC .	5820
TTGTCGATCA	GGATGATCTG	GACGAAGAGC	ATCAGGGGCT	CGCGCCAGCC	GAACTGTTCG	5880
CCAGGCTCAA	GGCGCGCATG	CCCGACGGCG	AGGATCTCGT	CGTGACCCAT	GGCGATGCCT	5940
GCTTGCCGAA	TATCATGGTG	GAAAATGGCC	GCTTTTCTGG	ATTCATCGAC	TGTGGCCGGC	6000
TGGGTGTGGC	GGACCGCTAT	CAGGACATAG	CGTTGGCTAC	CCGTGATATT	GCTGAAGAGC	6060
TTGGCGGCGA	ATGGGCTGAC	CGCTTCCTCG	TGCTTTACGG	TATCGCCGCT	CCCGATTCGC	6120
AGCGCATCGC	CTTCTATCGC	CTTCTTGACG	AGTTCTTCTG	AGCGGGACTC	TGGGGTTCGC	6180
CTTGACTTGC	TGTTTCTAAA	AGAAGGTGGC	CTCTGTGCGG	CCCTAAAGGA	AGAGTGCTGT	6240
TTTTACATAG	ACCACTCAGG	TGCAGTACGG	GACTCCATGA	AAAAACTCAA	AGAAAAACTG	6300
GATAAAAGAC	AGTTAGAGCG	CCAGAAAAGC	CAAAACTGGT	ATGAAGGATG	GTTCAATAAC	6360
TCCCCTTGGT	TCACTACCCT	GCTATCAACC	ATCGCTGGGC	CCCTATTACT	CCTCCTTCTG	6420
TTGCTCATCC	TCGGGCCATG	CATCATCAAT	AAGTTAGTTC	AATTCATCAA	TGATAGGATA	6480
AGTGCATGTT	AAAATTCTGG	TCCTTAGACA	AAATATCAGG	CCCTAGAGAA	CGAAGGTAAC	6540
CTTTAATTTT	GCTCTAAGAT	TAGAGCTATT	CACAAGAGAA	ATGGGGGAAT	GAAAGAAGTG	6600
TTTTTTTTA	GCCAACTGCA	GTAACGCCAT	TTTGCTAGGC	ACACCTAAAG	GATAGGAAAA	6660
ATACAGCTAA	GAACAGGGCC	AAACAGGATA	TCTGTGGTCA	TGCACCTGGG	CCCCGGCCCA	6720
GGCCAAGGAC	AGAGGGTTCC	CAGAAATAGA	TGAGTCAACA	GCAGTTTCCA	GCAAGGACAG	6780
AGGGTTCCCA	GAAATAGATG	AGTCAACAGC	AGTTTCCAGC	AAGGACAGAG	GGTTCCCAGA	6840
AATAGATGAG	TCAACAGCAG	TTTCCAGGGT	GCCCCTCAAC	CGTTTCAAGG	ACTCCCATGA	6900
CCGGGAATTC	ACCCCTGGCC	TTATTTGAAC	TAACCAATTA	CCTTGCCTCT	CGCTTCTGTA	6960
CCCGCGCTTT	TTGCTATAAA	ATAAGCTCAG	AAACTCCACC	CGGAGCGCCA	GTCCTTAGAG	7020
AGACTGAGCC	GCCCGGGTAC	CCGTGTGTCC	AATAAAACCT	CTTGCTGATT	GCATCCGGAG	7080
CCGTGGTCTC	GTTGTTCCTT	GGGAGGGTTT	CTCCTAACTA	TTGACCGCCC	ACTTCGGGGG	7140
TCTCACATTT	GCGGCCGCCA	ATTCGCCCTA	TAGTGAGTCG	TATTACAATT	CACTGGCCGT	7200
CGTTTTACAA	CGTCGTGACT	GGGAAAACCC	TGGCGTTACC	CAACTTAATC	GCCTTGCAGC	7260
ACATCCCCCT	TTCGCCAGCT	GGCGTAATAG	CGAAGAGGCC	CGCACCGATC	GCCCTTCCCA	7320
ACAGTTGCGC	AGCCTGAATG	GCGAATGGAA	ATTGTAAACG	TTAATATTT	GTTAAAATTC	7380
GCGTTAAATA	TTTGTTAAAT	CAGCTCATTT	TTTAACCAAT	AGGCCGAAAT	CGGCAAAATC	7440
CCTTATAAAT	CAAAAGAATA	GACCGAGATA	GGGTTGAGTG	TTGTTCCAGT	TTGGAACAAG	7500
AGTCCACTAT	TAAAGAACGT	GGACTCCAAC	GTCAAAGGGC	GAAAAACCGT	CTATCAGGC	7560
GATGGCCCAC	TACGTGAACC	ATCACCCAAA	TCAAGTTTTT	TGCGGTCGAG	GTGCCGTAAA	7620

GCTCTAAATC	GGAACCCTAA	AGGGAGCCCC	CGATTTAGAG	CTTGACGGGG	AAAGCCGGCG		7680
AACGTGGCGA	GAAAGGAAGG	GAAGAAAGCG	AAAGGAGCGG	GCGCTAGGGC	GCTGGCAAGT		7740
GTAGCGGTCA	CCCTCCCCCT	AACCACCACA	CCCGCCGCGC	TTAATGCGCC	GCTACAGGGC		7800
GCGTCGCCTG	ATGCGGTATT	TTCTCCTTAC	GCATCTGTGC	GGTATTTCAC	ACCGCATATG		7860
GTGCACTCTC	AGTACAATCT	GCTCTGATGC	CGCATAGTTA	AGCCAGCCCC	GACACCCGCC		7920
AACACCCGCT	GACGCGCCCT	GACGGGCTTG	TCTGCTCCCG	GCATCCGCTT	ACAGACAAGC		7980
TGTGACCGTC	TCCGGGAGCT	GCATGTGTCA	GAGGTTTTCA	CCGTCATCAC	CGAAACGCGC		8040
GAGACGAAAG	GGCCTCGTGA	TACGCCTATT	TTTATAGGTT	AATGTCATGA	TAATAATGGT		8100
TTCTTAGACG	TCAGGTGGCA	CTTTTCGGGG	AAATGTGCGC	GGAACCCCTA	TTTGTTTATT		8160
TTTCTAAATA	CATTCAAATA	TGTATCCGCT	CATGAGACAA	TAACCCTGAT	AAATGCTTCA		8220
ATAATATTGA	AAAAGGAAGA	GTATGAGTAT	TCAACATTTC	CGTGTCGCCC	TTATTCCCTT		8280
TTTTGCGGCA	TTTTGCCTTC	CTGTTTTTGC	TCACCCAGAA	ACGCTGGTGA	AAGTAAAAGA		8340
TGCTGAAGAT	CAGTTGGGTG	CACGAGTGGG	TTACATCGAA	CTGGATCTCA	ACAGCGGTAA		8400
GATCCTTGAG	AGTTTTCGCC	CCGAAGAACG	TTTTCCAATG	ATGAGCACTT	TTAAAGTTCT		8460
GCTATGTCAT	ACACTATTAT	CCCGTATTGA	CGCCGGGCAA	GAGCAACTCG	GTCGCCGGGC		8520
GCGGTATTCT	CAGAATGACT	TGGTTGAGTA	CTCACCAGTC	ACAGAAAAGC	ATCTTACGGA		8580
TGGCATGACA	GTAAGAGAAT	TATGCAGTGC	TGCCATAACC	ATGAGTGATA	ACACTGCGGC		8640
CAACTTACTT	CTGACAACGA	TCGGAGGACC	GAAGGAGCTA	ACCGCTTTTT	TGCACAACAT		8700
GGGGGATCAT	GTAACTCGCC	TTGATCGTTG	GGAACCGGAG	CTGAATGAAG	CCATACCAAA		8760
CGACGAGCGT	GACACCACGA	TGCCTGTAGC	AATGCCAACA	ACGTTGCGCA	AACTATTAAC		8820
TGGCGAACTA	CTTACTCTAG	CTTCCCGGCA	ACAATTAATA	GACTGGATGG	AGGCGGATAA	His	8880
AGTTGCAGGA	CCACTTCTGC	GCTCGGCCCT	TCCGGCTGGC	TGGTTTATTG	CTGATAAATC		8940
	•	CTCGCGGTAT		•			9000
CTCCCGTATC	GTAGTTATCT	ACACGACGGG	GAGTCAGGCA	ACTATGGATG	AACGAAATAG		9060
					ACCAAGTTTA		9120
CTCATATATA	CTTTAGATTG	ATTTAAAACT	TCATTTTTAA	TTTAAAAGGA	TCTAGGTGAA		9180
GATCCTTTTT	GATAATCTCA	TGACCAAAAT	CCCTTAACGT	GAGTTTTCGT	TCCACTGAGC		9240
					TGCGCGTAAT		9300
CTGCTGCTTG	CAAACAAAAA	AACCACCGCT	ACCAGCGGTG	GTTTGTTTGC	CGGATCAAGA		9360
GCTACCAACT	CTTTTTCCGA	AGGTAACTGG	CTTCAGCAGA	GCGCAGATAC	CAAATACTGT		9420
		•	•		CGCCTACATA		9480
					CGTGTCTTAC		9540
CGGGTTGGAC	TCAAGACGAT	AGTTACCGGA	TAAGGCGCAG	CGGTCGGGCT	GAACGGGGG		9600
TTCGTGCACA	CAGCCCAGCT	TGGAGCGAAC	GACCTACACC	GAACTGAGAT	ACCTACAGCG		9660
TGAGCTATGA	GAAAGCGCCA	CGCTTCCCGA	AGGGAGAAAG	GCGGACAGGT	ATCCGGTAAG		9720

WO 94/23048 PCT/US94/03784

	_			000000000000000000000000000000000000000	CCTCCTATCT	9780
CGGCAGGGTC	GGAACAGGAG	AGCGCACGAG	GGAGCTTCCA	GGGGGAAACG	CCIGGIAICI	3700
TTATAGTCCT	GTCGGGTTTC	GCCACCTCTG	ACTTGAGCGT	CGATTTTTGT	GATGCTCGTC	9840
						0000
AGGGGGGCGG	AGCCTATCGA	AAAACGCCAG	CAACGCGGCC	TTTTTACGGT	TCCTGGCCTT	9900
ምምርርምርር ርር	TTTGCTCACA	TGTTCTTTCC	TGCGTTATCC	CCTGATTCTG	TGGATAACCG	9960
TATTACCGCC	TTTGAGTGAG	CTGATACCGC	TCGCCGCAGC	CGAACGACCG	AGCGCAGCGA	10020
	CACCAACCGG	AAGAGCGCCC	AATACGCAAA	CCGCCTCTCC	CCGCGCGTTG	10080
GCCGATTCAT	TAATGCAGCT	GGCACGACAG	GTTTCCCGAC	TGGAAAGCGG	GCAGTGAGCG	10140
						10200
CAACGCAATT	AATGTGAGTT	AGCTCACTCA	TTAGGCACCC	CAGGCTTTAC	ACTITATECT	10200
TCCGGCTCGT	ATGTTGTGTG	GAATTGTGAG	CGGATAACAA	TTTCACACAG	GAAACAGCTA	10260
1000001111						
TGACCATGAT	TACGCCAAGC	TATTTAGGTG	ACACTATAGA	ATACTC		10306

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 10970 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION: 1..10970
- (D) OTHER INFORMATION: /standard_name= "p537 retroviral vector"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

AAGCTTCGGC CAAGTGCG	C CCTTCCGTTT	CTTTGCTTTT	GAAAGACCCC	ACCCGTAGGT	60
GGCAAGCTAG CTTAAGTA	AC GCCACTTTGC	AAGGCATGGA	AAAATACATA	ACTGAGAATA	120
GGAAAGTTCA GATCAAGG	C AGGAACAAAG	AAACAGCTGA	ATACCAAACA	GGATATCTGT	180
GGTAAGCGGT TCCTGCCCC	CC GGCTCAGGGC	CAAGAACAGA	TGAGACAGCT	GAGTGATGGG	240
CCAAACAGGA TATCTGTGG	ET AAGCAGTTCC	TGCCCCGGCT	CGGGGCCAAG	AACAGATGGT	300
CCCCAGATGC GGTCCAGC	CC TCAGCAGTTT	CTAGTGAATC	ATCAGATGTT	TCCAGGGTGC	360
CCCAAGGACC TGAAAATG	AC CCTGTACCTT	ATTTGAACTA	ACCAATCAGT	TCGCTTCTCG	420
CTTCTGTTCG CGCGCTTC	CG CTCTCCGAGC	TCAATAAAAG	AGCCCACAAC	CCCTCACTCG	480
GCGCGCCAGT CTTCCGAT	AG ACTGCGTCGC	CCGGGTACCC	GTATTCCCAA	TAAAGCCTCT	540
TGCTGTTTGC ATCCGAATO	CG TGGTCTCGCT	GTTCCTTGGG	AGGGTCTCCT	CTGAGTGATT	600
GACTACCCAC GACGGGGG	C TTTCATTTGG	GGGCTCGTCC	GGGATTTGGA	GACCCCTGCC	660
CAGGGACCAC CGACCCAC	CA CCGGGAGGTA	AGCTGGCCAG	CAACCTATCT	GTGTCTGTCC	720
GATTGTCTAG TGTCTATG	TT TGATGTTATG	CGCCTGCGTC	TGTACTAGTT	AGCTAACTAG	780
CTCTGTATCT GGCGGACC	CG TGGTGGAACT	GACGAGTTCT	GAACACCCGG	CCGCAACCCA	840
GGGAGACGTC CCAGGGAC	TT TGGGGGCCGT	TTTTGTGGCC	CGACCTGAGG	AAGGGAGTCG	900
ATGTGGAATC CGACCCCG	C AGGATATGTG	GTTCTGGTAG	GAGACGAGAA	CCTAAAACAG	960
TTCCCGCCTC CGTCTGAA	TT TTTGCTTTCG	GTTTGGAACC	GAAGCCGCGC	GTCTTGTCTG	1020
CTGCAGCATC GTTCTGTG	TT GTCTCTGTCT	GACTGTGTTT	CTGTATTTGT	CTGAAAATTA	1080
GGGCCAGACT GTTACCAC	CC CCTTAAGTTT	GACCTTAGGT	CACTGGAAAG	ATGTCGAGCG	1140
GATCGCTCAC AACCAGTC	GG TAGATGTCAA	GAAGAGACGT	TGGGTTACCT	TCTGCTCTGC	1200
AGAATGGCCA ACCTTTAC	ET CGGATGGCCG	CGAGACGGCA	CCTTTAACCG	AGACCTCATC	1260
ACCCAGGTTA AGATCAAG	T CTTTTCACCT	GGCCCGCATG	GACACCCAGA	CCAGGTCCCC	1320
TACATCGTGA CCTGGGAA	GC CTTGGCTTTT	GACCCCCTC	CCTGGGTCAA	GCCCTTTGTA	1380
CACCCTAAGC CTCCGCCT	CC TCTTCCTCCA	TCCGCCCCGT	CTCTCCCCCT	TGAACCTCCT	1440
CGTTCGACCC CGCCTCGA	IC CTCCCTTAT	CCAGCCCTCA	CTCCTTCTCT	AGGCGGGAAT	1500

TCGTTAACTC GACCCGCGG TCGACTCGCG AAGATCTTTC CGCAGCAGCC GCCACCATGG 1560 TTACGGATTC GGATCCCGTC GTTTTACAAC GTCGTGACTG GGAAAACCCT GGCGTTACCC 1620 AACTTAATCG CCTTGCAGCA CATCCCCCTT TCGCCAGCTG GCGTAATAGC GAAGAGGCCC 1680 GCACCGATCG CCCTTCCCAA CAGTTGCGCA GCCTGAATGG CGAATGGCGC TTTGCCTGGT 1740 TTCCGGCACC AGAAGCGGTG CCGGAAAGCT GGCTGGAGTG CGATCTTCCT GAGGCCGATA 1800 CTGTCGTCGT CCCCTCAAAC TGGCAGATGC ACGGTTACGA TGCGCCCATC TACACCAACG 1860 TAACCTATCC CATTACGGTC AATCCGCCGT TTGTTCCCAC GGAGAATCCG ACGGGTTGTT 1920 ACTCGCTCAC ATTTAATGTT GATGAAAGCT GGCTACAGGA AGGCCAGACG CGAATTATTT 1980 TTGATGGCGT TAACTCGGCG TTTCATCTGT GGTGCAACGG GCGCTGGGTC GGTTACGGCC 2040 AGGACAGTCG TTTGCCGTCT GAATTTGACC TGAGCGCATT TTTACGCGCC GGAGAAAACC 2100 GCCTCGCGGT GATGGTGCTG CGTTGGAGTG ACGGCAGTTA TCTGGAAGAT CAGGATATGT 2160 GGCGGATGAG CGGCATTTTC CGTGACGTCT CGTTGCTGCA TAAACCGACT ACACAAATCA 2220 GCGATTTCCA TGTTGCCACT CGCTTTAATG ATGATTTCAG CCGCGCTGTA CTGGAGGCTG 2280 AAGTTCAGAT GTGCGGCGAG TTGCGTGACT ACCTACGGGT AACAGTTTCT TTATGGCAGG 2340 GTGAAACGCA GGTCGCCAGC GGCACCGCGC CTTTCGGCGG TGAAATTATC GATGAGCGTG 2400 GTGGTTATGC CGATCGCGTC ACACTACGTC TGAACGTCGA AAACCCGAAA CTGTGGAGCG 2460 CCGAAATCCC GAATCTCTAT CGTGCGGTGG TTGAACTGCA CACCGCCGAC GGCACGCTGA 2520 TTGAAGCAGA AGCCTGCGAT GTCGGTTTCC GCGAGGTGCG GATTGAAAAT GGTCTGCTGC 2580 TGCTGAACGG CAAGCCGTTG CTGATTCGAG GCGTTAACCG TCACGAGCAT CATCCTCTGC 2640 ATGGTCAGGT CATGGATGAG CAGACGATGG TGCAGGATAT CCTGCTGATG AAGCAGAACA 2700 ACTITAACGC CGTGCGCTGT TCGCATTATC CGAACCATCC GCTGTGGTAC ACGCTGTGCG 2760 ACCGCTACGG CCTGTATGTG GTGGATGAAG CCAATATTGA AACCCACGGC ATGGTGCCAA 2820 TGAATCGTCT GACCGATGAT CCGCGCTGGC TACCGGCGAT GAGCGAACGC GTAACGCGAA 2880 TGGTGCAGCG CGATCGTAAT CACCCGAGTG TGATCATCTG GTCGCTGGGG AATGAATCAG 2940 GCCACGGCGC TAATCACGAC GCGCTGTATC GCTGGATCAA ATCTGTCGAT CCTTCCCGCC 3000 CGGTGCAGTA TGAAGGCGGC GGAGCCGACA CCACGGCCAC CGATATTATT TGCCCGATGT 3060 ACGCGCGCGT GGATGAAGAC CAGCCCTTCC CGGCTGTGCC GAAATGGTCC ATCAAAAAAT 3120 GGCTTTCGCT ACCTGGAGAG ACGCGCCCGC TGATCCTTTG CGAATACGCC CACGCGATGG 3180 GTAACAGTCT TGGCGGTTTC GCTAAATACT GGCAGGCGTT TCGTCAGTAT CCCCGTTTAC 3240 AGGGCGGCTT CGTCTGGGAC TGGGTGGATC AGTCGCTGAT TAAATATGAT GAAAACGGCA 3300 ACCCGTGGTC GGCTTACGGC GGTGATTTTG GCGATACGCC GAACGATCGC CAGTTCTGTA 3360 TGAACGGTCT GGTCTTTGCC GACCGCACGC CGCATCCAGC GCTGACGGAA GCAAAACACC 3420 AGCAGCAGTT TTTCCAGTTC CGTTTATCCG GGCAAACCAT CGAAGTGACC AGCGAATACC 3480 TGTTCCGTCA TAGCGATAAC GAGCTCCTGC ACTGGATGGT GGCGCTGGAT GGTAAGCCGC 3540 TGGCAAGCGG TGAAGTGCCT CTGGATGTCG CTCCACAAGG TAAACAGTTG ATTGAACTGC 3600 CTGAACTACC GCAGCCGGAG AGCGCCGGGC AACTCTGGCT CACAGTACGC GTAGTGCAAC 3660 CGAACGCGAC CGCATGGTCA GAAGCCGGGC ACATCAGCGC CTGGCAGCAG TGGCGTCTGG 3720 CGGAAAACCT CAGTGTGACG CTCCCCGCCG CGTCCCACGC CATCCCGCAT CTGACCACCA 3780 GCGAAATGGA TTTTTGCATC GAGCTGGGTA ATAAGCGTTG GCAATTTAAC CGCCAGTCAG 3840 3900 GCTTTCTTTC ACAGATGTGG ATTGGCGATA AAAAACAACT GCTGACGCCG CTGCGCGATC AGTTCACCCG TGCACCGCTG GATAACGACA TTGGCGTAAG TGAAGCGACC CGCATTGACC 3960 CTAACGCCTG GGTCGAACGC TGGAAGGCGG CGGGCCATTA CCAGGCCGAA GCAGCGTTGT 4020 TGCAGTGCAC GGCAGATACA CTTGCTGATG CGGTGCTGAT TACGACCGCT CACGCGTGGC 4080 AGCATCAGGG GAAAACCTTA TTTATCAGCC GGAAAACCTA CCGGATTGAT GGTAGTGGTC 4140 AAATGGCGAT TACCGTTGAT GTTGAAGTGG CGAGCGATAC ACCGCATCCG GCGCGGATTG 4200 GCCTGAACTG CCAGCTGGCG CAGGTAGCAG AGCGGGTAAA CTGGCTCGGA TTAGGGCCGC 4260 AAGAAAACTA TCCCGACCGC CTTACTGCCG CCTGTTTTGA CCGCTGGGAT CTGCCATTGT 4320 CAGACATGTA TACCCCGTAC GTCTTCCCGA GCGAAAACGG TCTGCGCTGC GGGACGCGCG 4380 AATTGAATTA TGGCCCACAC CAGTGGCGCG GCGACTTCCA GTTCAACATC AGCCGCTACA 4440 GTCAACAGCA ACTGATGGAA ACCAGCCATC GCCATCTGCT GCACGCGGAA GAAGGCACAT . 4500 GGCTGAATAT CGACGGTTTC CATATGGGGA TTGGTGGCGA CGACTCCTGG AGCCCGTCAG 4560 TATCGGCGGA ATTGCAGCTG AGCGCCGGTC GCTACCATTA CCAGTTGGTC TGGTGTCAAA 4620 ARTARTARTA ACCGGGCAGG CCATGTCTGC CCGTATTTCG CGTAAGGAAA TCCATTATGT 4680 4740 ACTATTCTA GAGAATTCCC CCCTCTCCCT CCCCCCCCC TAACGTTACT GGCCGAAGCC GCTTGGAATA AGGCCGGTGT GCGTTTGTCT ATATGTTATT TTCCACCATA TTGCCGTCTT 4800 TTGGCAATGT GAGGGCCCGG AAACCTGGCC CTGTCTTCTT GACGAGCATT CCTAGGGGTC A 4860 TTTCCCCTCT GCGCAAAGGA ATGCAAGGTC TGTTGAATGT CGTGAAGGAA GCAGTTCCTC 4920 TGGAAGCTTC TTGAAGACAA ACAACGTCTG TAGCGACCCT TTGCAGGCAG CGGAACCCCC 4980 CACCTGGCGA CAGGTGCCTC TGCGGCCAAA AGCCACGTGT ATAAGATACA CCTGCAAAGG 5040 CGGCACAACC CCAGTGCCAC GTTGTGAGTT GGATAGTTGT GGAAAGAGTC AAATGGCTCT 5100 CCTCAAGCGT ATTCAACAAG GGGCTGAAGG ATGCCCAGAA GGTACCCCAT TGTATGGGAT 5160 CTGATCTGGG GCCTCGGTGC ACATGCTTTA CATGTGTTTA GTCGAGGTTA AAAAACGTCT 5220 AGGCCCCCG AACCACGGGG ACGTGGTTTT CCTTTGAAAA ACACGATGAT AATATGGCCA 5280 AGCTCCTAGG CTTTTGCAAA AAGCTCCCGG GAGCTTGGAT ATCCATTTTC GGATCTGATC 5340 AAGAGACAGG ATGAGGATCG TTTCGCATGA TTGAACAAGA TGGATTGCAC GCAGGTTCTC 5400 CGGCCGCTTG GGTGGAGAGG CTATTCGGCT ATGACTGGGC ACAACAGACA ATCGGCTGCT 5460 CTGATGCCGC CGTGTTCCGG CTGTCAGCGC AGGGGCGCCC GGTTCTTTTT GTCAAGACCG 5520 ACCTGTCCGG TGCCCTGAAT GAACTGCAGG ACGAGGCAGC GCGGCTATCG TGGCTGGCCA 5580 CGACGGGCGT TCCTTGCGCA GCTGTGCTCG ACGTTGTCAC TGAAGCGGGA AGGGACTGGC 5640 TGCTATTGGG CGAAGTGCCG GGGCAGGATC TCCTGTCATC TCACCTTGCT CCTGCCGAGA 5700 AAGTATCCAT CATGGCTGAT GCAATGCGGC GGCTGCATAC GCTTGATCCG GCTACCTGCC 5760 CATTCGACCA CCAAGCGAAA CATCGCATCG AGCGAGCACG TACTCGGATG GAAGCCGGTC 5820 TTGTCGATCA GGATGATCTG GACGAAGAGC ATCAGGGGCT CGCGCCAGCC GAACTGTTCG 5880 CCAGGCTCAA GGCGCGCATG CCCGACGGCG AGGATCTCGT CGTGACCCAT GGCGATGCCT 5940 GCTTGCCGAA TATCATGGTG GAAAATGGCC GCTTTTCTGG ATTCATCGAC TCTGGCCGGC 6000 TGGGTGTGGC GGACCGCTAT CAGGACATAG CGTTGGCTAC CCGTGATATT GCTGAAGAGC 6060 TTGGCGGCGA ATGGGCTGAC CGCTTCCTCG TGCTTTACGG TATCGCCGCT CCCGATTCGC 6120 AGCGCATCGC CTTCTATCGC CTTCTTGACG AGTTCTTCTG AGCGGGACTC TGGGGTTCGC 6180 CTTGACTTGC TGTTTCTAAA AGAAGGTGGC CTCTGTGCGG CCCTAAAGGA AGAGTGCTGT 6240 TTTTACATAG ACCACTCAGG TGCAGTACGG GACTCCATGA AAAAACTCAA AGAAAAACTG 6300 GATAAAAGAC AGTTAGAGCG CCAGAAAAGC CAAAACTGGT ATGAAGGATG GTTCAATAAC 6360 TCCCCTTGGT TCACTACCCT GCTATCAACC ATCGCTGGGC CCCTATTACT CCTCCTTCTG 6420 TTGCTCATCC TCGGGCCATG CATAGGGAAG GTGCCTCTTA CCCATCAACA TCTTTGCAAC 6480 CAGACCTTAC CCATCAATTC CTCTAAAAAC CATCAGTATC TGCTCCCCTC AAACCATAGC 6540 TGGTGGGCCT GCAGCACTGG CCTCACCCC TGCCTCTCCA CCTCAGTTTT TAATCAGTCT 6600 AAAGACTTCT GTGTCCAGGT CCAGCTGATC CCCCGCATCT ATTACCATTC TGAAGAAACC 6660 TTGTTACAAG CCTATGACAA ATCACCCCC AGGTTTAAAA GAGAGCCTGC CTCACTTACC 6720 CTAGCTGTCT TCCTGGGGTT AGGGATTGCG GCAGGTATAG GTACTGGCTC AACCGCCCTA 6780 ATTARAGGGC CCATAGACCT TCAGCAAGGC CTAACCAGCC TCCAAATCGC CATTGACGCT 6840 GACCTCCGGG CCCTTCAGGA CTCAATCAGC AAGCTAGAGG ACTCACTGAC TTCCCTATCT 6900 GAGGTAGTAC TCCAAAATAG GAGAGGCCTT GACTTACTAT TCCTTAAAGA AGGAGGCCTC 6960 TGCGCGGCCC TAAAAGAAGA GTGCTGTTTT TATGTAGACC ACTCAGGTGC AGTACGAGAC 7020 TCCATGAAAA AACTTAAAGA AAGACTAGAT AAAAGACAGT TAGAGCGCCA GAAAAACCAA 7080 AACTGGTATG AAGGGTGGTT CAATAACTCC CCTTGGTTTA CTACCCTACT ATCAACCATC 7140 GCTGGGCCCC TATTGCTCCT CCTTTTGTTA CTCACTCTTG GGCCCTGCAT CATCAATAAA 7200 TTAATCCAAT TCATCAATGA TAGGATAAGT GCAGTCAAAA TTTTAGTCCT TAGACAGAAA 7260 TATCAGACCC TAGATAACGA GGAAAACCTT TAATTTCGCT CTAAGATTAG AGCTATCCAC 7320 AAGAGAAATG GGGGAATGAA AGAAGTGTTT TTCAAGTTAG CTGCAGTAAC GCCATTCATA 7380 AGGCACGCCC AAAGCATAAA GGTTAAAGAA GAAAAAAACC GGGCCAAACA GGATATCTGT 7440 GGTCATACAC CTGGAACCCG GCCCAGGGCC AAACACAGAT GGTTCCCAGA AATAAAATGA 7500 GTCAACAGCA GTTTCCAGGG TGCCCCTCAA CTGTTTCAAG AAACTCCCAT GACCGGAGCT 7560 CACCCCTGAC TTATTTGAAC TAACCAATCA CCTTGCTTCT CGCTTCTGTA CCCGCGCTTT 7620 TTGCTATAAA AGGAGCTCAG AAATTCCACT CGGCGCGCCA GTCTTCCAAG AGACTGAGTC 7680 GCCCGGGTAC CCGTGTGATC AATAAAACCT CTTGCTACTT GCATCCGAAG TCGTGGTCTC 7740 GCTGTTCCTT GGGAAGGTCT CCCCTAATTG ATTGACCGCC CGGACTGGGG GTCTCTCATT 7800

51

GGAATTCATC	GATGATATCA	GCCAATTCGC	CCTATAGTGA	GTCGTATTAC	AATTCACTGG	7860
	ACAACGTCGT					7920
	CCCTTTCGCC					7980
	GCGCAGCCTG					8040
					AAATCGGCAA	8100
	AAATCAAAAG					8160
	CTATTAAAGA					8220
	CCACTACGTG			•		8280
	AATCGGAACC					8340
GGCGAACGTG	GCGAGAAAGG	AAGGGAAGAA	AGCGAAAGGA	GCGGGCGCTA	GGGCGCTGGC	8400
	GTCACGCTGC					8460
GGGCGCGTCG	CCTGATGCGG	TATTTTCTCC	TTACGCATCT	GTGCGGTATT	TCACACCGCA	8520
	TCTCAGTACA					8580
	CGCTGACGCG					8640
	CGTCTCCGGG	•				8700
GCGCGAGACG	AAAGGGCCTC	GTGATACGCC	TATTTTTATA	GGTTAATGTC	ATGATAATAA	8760
TGGTTTCTTA	GACGTCAGGT	GGCACTTTTC	GGGGAAATGT	GCGCGGAACC	CCTATTTGTT	8820
TATTTTTCTA	AATACATTCA	AATATGTATC	CGCTCATGAG	ACAATAACCC	TGATAAATGC	8880
TTCAATAATA	TTGAAAAAGG	AAGAGTATGA	GTATTCAACA	TTTCCGTGTC	GCCCTTATTC	8940
CCTTTTTTGC	GGCATTTTGC	CTTCCTGTTT	TTGCTCACCC	AGAAACGCTG	GTGAAAGTAA	9000
AAGATGCTGA	AGATCAGTTG	GGTGCACGAG	TGGGTTACAT	CGAACTGGAT	CTCAACAGCG 🥦	9060
GTAAGATCCT	TGAGAGTTTT	CGCCCGAAG	AACGTTTTCC	AATGATGAGC	ACTTTTAAAG	9120
TTCTGCTATG	TCATACACTA	TTATCCCGTA	TTGACGCCGG	GCAAGAGCAA	CTCGGTCGCC	9180
GGÇCGCGGTA	TTCTCAGAAT	GACTTGGTTG	AGTACTCACC	AGTCACAGAA	AAGCATCTTA	9240
CGGATGGCAT	GACAGTAAGA	GAATTATGCA	GTGCTGCCAT	AACCATGAGT	GATAACACTG	9300
CGGCCAACTT	ACTTCTGACA	ACGATCGGAG	GACCGAAGGA	GCTAACCGCT	TTTTTGCACA	9360
ACATGGGGGA	TCATGTAACT	CGCCTTGATC	GTTGGGAACC	GGAGCTGAAT	GAAGCCATAC	9420
CAAACGACGA	GCGTGACACC	ACGATGCCTG	TAGCAATGCC	AACAACGTTG	CGCAAACTAT	9480
TAACTGGCGA	ACTACTTACT	CTAGCTTCCC	GGCAACAATT	AATAGACTGG	ATGGAGGCGG	9540
ATAAAGTTGC	AGGACCACTT	CTGCGCTCGG	CCCTTCCGGC	TGGCTGGTTT	ATTGCTGATA	9600
AATCTGGAGC	CGGTGAGCGT	GGGTCTCGCG	GTATCATTGC	AGCACTGGGG	CCAGATGGTA	9660
AGCCCTCCCG	TATCGTAGTT	ATCTACACGA	CGGGGAGTCA	GGCAACTATG	GATGAACGAA	9720
ATAGACAGAT	CGCTGAGATA	GGTGCCTCAC	: TGATTAAGCA	TTGGTAACTG	TCAGACCAAG	9780
TTTACTCATA	TATACTTTAG	ATTGATTTAA	AACTTCATTI	TTAATTTAA	AGGATCTAGG	9840
TGAAGATCCT	TTTTGATAAT	CTCATGACCA	AAATCCCTTA	ACGTGAGTTI	TCGTTCCACT	9900

WO 94/23048 PCT/US94/03784

GAGCGTCAGA	CCCCGTAGAA	AAGATCAAAG	GATCTTCTTG	AGATCCTTTT	TTTCTGCGCG	9960
TAATCTGCTG	CTTGCAAACA	AAAAAACCAC	CGCTACCAGC	GGTGGTTTGT	TTGCCGGATC	10020
AAGAGCTACC	AACTCTTTTT	CCGAAGGTAA	CTGGCTTCAG	CAGAGCGCAG	ATACCAAATA	10080
CTGTCCTTCT	AGTGTAGCCG	TAGTTAGGCC	ACCACTTCAA	GAACTCTGTA	GCACCGCCTA	10140
CATACCTCGC	TCTGCTAATC	CTGTTACCAG	TGGCTGCTGC	CAGTGGCGAT	AAGTCGTGTC .	10200
TTACCGGGTT	GGACTCAAGA	CGATAGTTAC	CGGATAAGGC	GCAGCGGTCG	GGCTGAACGG	10260
GGGGTTCGTG	CACACAGCCC	AGCTTGGAGC	GAACGACCTA	CACCGAACTG	AGATACCTAC	10320
AGCGTGAGCT	ATGAGAAAGC	GCCACGCTTC	CCGAAGGGAG	AAAGGCGGAC	AGGTATCCGG	10380
TAAGCGGCAG	GGTCGGAACA	GGAGAGCGCA	CGAGGGAGCT	TCCAGGGGGA	AACGCCTGGT	10440
ATCTTTATAG	TCCTGTCGGG	TTTCGCCACC	TCTGACTTGA	GCGTCGATTT	TTGTGATGCT	10500
CGTCAGGGGG	GCGGAGCCTA	TCGAAAAACG	CCAGCAACGC	GGCCTTTTTA	CGGTTCCTGG	10560
CCTTTTGCTG	GCCTTTTGCT	CACATGTTCT	TTCCTGCGTT	ATCCCCTGAT	TCTGTGGATA	10620
ACCGTATTAC	CGCCTTTGAG	TGAGCTGATA	CCGCTCGCCG	CAGCCGAACG	ACCGAGCGCA	10680
GCGAGTCAGT	GAGCGAGGAA	GCGGAAGAGC	GCCCAATACG	CAAACCGCCT	CTCCCGCGC	10740
GTTGGCCGAT	TCATTAATGC	AGCTGGCACG	ACAGGTTTCC	CGACTGGAAA	GCGGGCAGTG	10800
AGCGCAACGC	AATTAATGTG	AGTTAGCTCA	CTCATTAGGC	ACCCCAGGCT	TTACACTTTA	10860
TGCTTCCGGC	TCGTATGTTG	TGTGGAATTG	TGAGCGGATA	ACAATTTCAC	ACAGGAAACA	10920
GCTATGACCA	TGATTACGCC	AAGCTATTTA	GGTGACACTA	TAGAATACTC		10970

5

25

WHAT IS CLAIMED IS:

 A recombinant DNA construct comprising a defective viral genome comprising a polynucleotide sequence of interest and a gibbon ape leukemia virus (GaLV) component.

53

- 2. The construct of claim 1, wherein the GaLV component includes a GaLV packaging site.
- 3. The construct of claim 2, wherein the packaging site consists of between about 150 base pairs and about 1500 base pairs.
- 4. The construct of claim 2, wherein the packaging site consists essentially of a sequence extending from about position 200 to about position 910 of the sequence shown in Figure 1.
- 5. The construct of claim 1, wherein the GaLV component includes regulatory sequences which direct expression of the polynucleotide of interest.
 - 6. The construct of claim 5, wherein the regulatory sequences are from a GaLV 3' LTR.
 - 7. The construct of claim 6, wherein the promoter is from GaLV SF.
- 8. A mammalian cell comprising the defective viral genome of claim 1.
 - 9. The cell of claim 8, further comprising retroviral gag and pol genes.
- 35 10. The cell of claim 9, wherein the gag and pol genes are from GaLV SF or GaLV SEATO.

PCT/US94/03784

WO 94/23048

15

30

35

- The cell of claim 9, wherein the gag and pol 11. genes are from MoMLV.
- The cell of claim 8, further comprising a 12. retroviral env gene. 5
 - The cell of claim 12, wherein the env gene is from GaLV SF or GaLV SEATO.
- The cell of claim 8, which is PG13 or PA317. 10
 - An isolated hybrid virion comprising GaLV envelope proteins and an RNA genome comprising a polynucleotide sequence of interest and a GaLV component.
 - The virion of claim 15, further comprising GaLV 16. core proteins.
- The virion of claim 15, further comprising 17. MoMLV core proteins. 20
 - The virion of claim 15, wherein the envelope proteins are GaLV SF proteins.
- The virion of claim 15, wherein the GaLV 25 sequence includes a packaging site.
 - The virion of claim 19, wherein the packaging site is transcribed from a sequence consisting of between about 150 base pairs and about 1500 base pairs.
 - The virion of claim 19, wherein the packaging 21. site is transcribed from a polynucleotide sequence extending from about position 200 to about position 910 of the sequence shown in Figure 1.
 - An isolated recombinant DNA construct comprising a polynucleotide sequence which encodes an

PCT/US94/03784

5

15

20

infectious GaLV virion capable of infecting a mammalian cell and producing infectious viral progeny.

- 23. The construct of claim 22, wherein the DNA construct comprises GaLV SF sequences and GaLV SEATO sequences.
- 24. The construct of claim 23, wherein the DNA construct comprises 97% GaLV SEATO sequences and 3% GaLV SF sequences.
 - 25. A method of introducing a polynucleotide of interest into human cells having a GaLV receptor, the method comprising:
 - contacting the cells with hybrid virions comprising GaLV envelope proteins and an RNA genome comprising the polynucleotide sequence of interest and a GaLV packaging site; and

selecting cells having the polynucleotide of interest.

- 26. The method of claim 25, further comprising implanting the cells in a human patient.
- 27. The method of claim 25, wherein the human cells are selected from the group consisting of bone marrow cells and tumor infiltrating cells.

TUS DAGE BLAMK (USPTO)

÷

GENETIC ORGANIZATION OF GALV

207

CCCCCCACTTOCCCCCCTCT CTCTCCCACTGACCTCTCACTACCCAACACCCTCTTCCCCCCCTCACCCCCTCAATCCACC 300 = 815 600 GROWN MATERIAL STREET OF THE S Alaproglamialioglyproprosorglygiames promassersorasprogluglypromisals glyproglamias arganemics from the content of the content SerPheSerGluAcePreAlaGlyLouThrGlyLouLouGluSerLouMerPheSerHieGlaPreThrTrpAspAspCysGlaGlaLouLouGlaIsleLouPheThrThrGluGluArg
TCTTTTTCTGAAAACCACCACGTCTCCACGCGCCTCCTTGAGTCTCTTATUTTCTCCCATCAGCCCACTTCCCCATCAGCTCTTTACAGATTCTTTTCACCACTGAGCACCC 1400
Gluary Lielevilev Glualaary Lynaen vellev Glyaseana Glyale Proth Folklev Glyase Levile Lease Gluale Phot Prolemana reproduct rease France Transparenter Galacter Transparenter Gal 1900
ClulvalvaGluAlaGluGluLvaGluArgargArgAspArgProLvalvalvalvalaniauThrLvallaLauAlaAlaValValderArgGluGlySerThrGlyArgGlmThrGlyA 1200 2100 The transmission of the contract of the contra 2500 2800 2900 3100 3200
TergimasporulyalvagivThrginlvaloulougingiulouserlvalougivTvrargvaiseraialvalyaliaginlouguaginarggiuvaiThrfyrlaugiyTyrlou
TATGAAGACTCCAAAAAAGGAACACAGAACTTTACAGGAGTTAAGTTAGGGGTACCCGTATCCGGTAGAAGGCCCAGGTTTTCCCAGAAAAGTCACCTATCTGGGGTACCTA 1300 ulvagiugivlugatettelauthtpromimatesaltahthevaiheelvalieptuvaiptothtthtppromeginvaimeggiupholougiythtmiagiyphocymatelou Cancanu mamagateeetameeecageeegamugetmetettatamaateeetetteetaegmeeegageeegageteetematttetmeesatteetaegste AlaTvrlouSertvetvalouAspProValAlaSerGlyTrpProThrCvalouLvaAlaValAlaAlaValAlaLouLouLouLvaAspAlaAsplyaLouThrLouGlyGlaAsaVal
LCATATCTATCAAAAAAACTUCATCCGGTUUCCAUCGGUTUGCCAACCTGCCTGAAACGGTTGCAGCAGTAGCACTCCTTCTAAAGACCCTGAAAAATGTG
1800 Thevalliaalasephinisepleng insertievalarg inproproabarg tronethranalaarghethrhis styrcinserlendendenarguniserphoala actuticattletteecatageetegaaageateutgegggaaceeecgggggatlaecaatgeeagaatgaeteattaecagageetectettaaatgaaageatecett 4000

COTED MARIO EERS. C....

208

DELASSUS. SONIGO. AND WAIN-HOBSON

·
ProlaufroClyValProThrTrbTyrThrabbGlySerSerPhelleThrGluClyLybargargalaGlyAlaFrolleValabbClyLybargThrValTrbAlaberSerLeuFre CCATTGCCCGGGTGCCLALCCTGGTATACAGACUGTACCAGTTTCATCAGGCAAUGTAAACCGAGAGCAGGGGGGGGGG
GluGlyThrSerAlaGinLyaAlaGluLeuVelAlaLeuThrGinAlaLeuArgLeuAlaGluGlyLyeAenileAenileTyrThrAppSerArgTyrAlaPheAleThrAigHielle GAAGGTACGTCAGCCCAGAAGGCTTGAACTAGTAGCCTTTGACGCAGGCATTACCCGTGGCCCAACGAAAAAACATCAACATTACACGCACAGCAGCAG
HisGivalslisTyrLysGirargGivLeuLeuThrSeralsGiyLvsAssilsLysAssLysGluGiullsLeuLeuGuMlsLeuLeuGuMlslisHisLeuPreargaialslisHis CATGGGGGAATATATAAGCAGAGGGGGGGTGGTGGGTGGG
NI STAR PROCESSION AND AND AND AND AND AND AND AND AND AN
Share He Charles and Control of the Charles and
1 AND ASSESSMENT THE STATE OF T
4700
AlaPheProThriveTheCluthralaiailleValcutioninglaiailleValcutioning
AlaPheProThrLysThrGluThrAlaLeulleVelCyeLysLyslieLeuGluGluIleLeuPreArgPheGLyliePreLysVelLeuGlySerAspaceGlyPreAlsPheVelAle CCTTTCCTACCAAAACTCAAACCCCCCTAATCGTCTGTAAAAAATATAGAACAATTCTACCCCCCTTCCCCTACCTA
GINVAISETGINGIVILAMAIATHTGINLAGGIVIIAAANTTOLYSLAWHIACTEALATTYTATEPTOGINSATSETGIVGINVAIGUATEPHETAAAATETTIIILAGTATTATAAACTCCCCCACACTCACGTCCCCCACACTCACCTCACCTCACCTCACCTCACCTCACCTCACCTCACCTCACCTCACCTCACCTCACCTCACCTCACCTCACCTCACCTCACCTCACCAACAA
iveloualelougiuthrgiygiylyeaspttpvelthtleuleupreloualelouleuparsalaarsashtat ProglyatsPhogiylouThtProtytgiuileloutytgiygiy AMTTACCCTTAGAGACCCGTGGAAAAGACTGGGTGACCCTGCTTACCGGTGGGTTACCGGCCAGAATACCCGTGCCCGGTTGGTT
Proproprolisiongluserglygluthrionglyproaspassargpholouprovallouphothrhialoubysalslougistlevolargthrgisiletrassglallelys ccacccccatacttgagtctggagaaactttgggtcccgatgatagagtttctgcttgtttattta
3300 GluvalTvrlvaProGlvThrValThrlleProHisProPhoGlnValGlyAspGibValLouValArgArgHisArgProSorSorLauGluProArgTrpLyaGlyProTyrLouVal GAGGTGTATAAGCGTGGTACCGTAACAATCCCTTCACCGTTCCACGTGCGGATCAAGTGGTTGTCACAGCGCACCAGCAGCGTTCACCCTTCCCTCCGAACCCCCAACAGCCCTTCACCCCAGCAGCGTTCACCCTCAGTGTGTGT
LeuLeuThrThrProThraiaVallysValaepGlyllealealeaTrpVelHieAleSerHieLeuLysPreAleProProSerAleProProSerAleProFreGulerGlu
TTCCTCACTACCCCCACCCCCCTAAAACTCCTATTCCTCC
Rieffoloulysionargilaargargargargargiuloralalys licioulousorCysValPmcCiyCiyCiyCiyThriorLouGlaasslyaassProNicCinProNotThrLouThrTrpGlaValLouGorGlaThrGlyaasVolValTrpaspThr catcetettaacttgcctattccccccccccccccccccc
LyaAlaValCinProProTesTheTesTesTheTesTesTesTesTesTesTesTesTesTesTesTesTes
APPPOPPMANAGEMENT TO A SALE AND A
Sept.
IleThrVellveTranscinanterClaterTractici and Tactici and Tactici and Tactici and Tactic a
TraileThrCiviagThrTraCiviagesP
A TANK A THE TANK A TH
LouvaiGluGloglyProproatgThtSerLoualeLouProprobtoLouProproatgGlualeProproSerLouProasserasserThraleLoualeThrSerAloGlo CCTTUTGGAACAAGGACCTCCTAGAACGTCCCTGCTGCTCCTCATCCTCCTCAACGGAACCGTACCGCTATCCTCCTCCTCCTCATCTCCCCCAACGGACCCTC
The ProThe Valar glya The Lauden The Proper of the The Clyangar gloud beautiful Glyalo Declaration and the Control of the Cont
Thre is served to leave you and also the property of the algorithm of the algorithm. Algorithm of the algorithm. Algorithm of the algorithm of
LouthflouthrGluvelBerglyHigGlyLouCyelleglyLysvalProphethrHigGlihHiglouCypashGlathrLouSerlleashIerSerglyAshHigGlityFLouLou CCTCACCCTCACTGAGGTCTCAGGACAGGGTGTCCCATAGGAAAGGTGCCCTTTACCCATCAGGATCTCTCCAATCAGGACGTATCCATCAATCA
ProserashtisserTryTryAlsCveSerThrGlyLouThrProCysLouSerThrSerValPheaseGlathrargasphaCyslloCinValGlaLoullaPreArgLieTyrTyr
Typprocluciuvallaulauginalatyraapaansermiaproarsthriyaaraulualavalserlauthriaualavallaulaugivlaugiyilethraabgiyilegiythritataccoccatataccaccatataaccaccatataaccaccatataaccacc
7000 ClySerThraisLeulielysGlyProlieAspleuGlmGlaGlyLeuThrSerLeuGlmLleAleLleAspaleAspleuArgalaLeuGlmAssSerValSerLysLeuGlwAssSer TUGTTCAACTGCCTTAATTAAAUCACCTATACACCTCCAGCAACGCTCCACAACCCTCCAGGATCGCCATAGATGCTGACCTTCCGCCCTCCAAGACTCAGTCAG
2100
C)-A)AVAIATEMENT AND
Jaco Jaco Landard Control and
CCTUCTATCANCTATCACCTCUCCCCCTATTACTCCCCCTCTCTTCCTCATCCTCCCCCCCC
7800 Th 1700 TO THE TOTAL CONTROL OF THE TOTAL C
TCCCAGAAATACATCAUTCAACACCACTTTCCAUCAACCACACACA
DR1 DR2 ATTEACCCCTCCCTTATTICACTACCTACCCTCCCTTCCTTCCT
LACCECCCULCTACCCCTGTGTCCAATAAAACCTCTTGCTGATTGCA 8000

FIGURE 2B CHANGE OF GALV SEATO INSERT ORIENTATION STEP

Sal Hith Sal

FIGURE 2C INTERMEDIATE CLONE 66: UNIDIRECTIONAL DECREASE IN INSERT LENGTH USING EXONUCLEASES III AND VII

STEP

THE THE BLANK (CO. 1-)

INTERMEDIATE CLONE GGExo52

FIGURE 2E

INTERMEDIATE CLONE 120: UNIDIRECTIONAL DECREASE IN INSERT LENGTH USING EXONUCLEASES III AND VII

STEP

INTERMEDIATE CLONE 120

INTERMEDIATE CLONE 120Exo55

FIGURE 2F COUPLING OF CLONE 66Exo52 INSERT AND
CLONE 120Exo55 INSERT: SEPARATION OF LTR'S AND
GENERATION OF POTENTIAL INFECTIOUS CLONE

STEP

Figure 3

GaLV genomes

4 3

GaLV genomes

