Systems Theory

Dr. Steve Weller

steven.weller@newcastle.edu.au School of Electrical Engineering and Computer Science The University of Newcastle, Callaghan, NSW 2308 Australia

Controllability, stabilizability and reachability

• Important question that lies at the heart of control using state-space models:

"Can we steer the state, via the control input, to certain locations in the state space?"

- **□** Controllability
 - can initial state be driven back to origin?
- **□** Stabilizability
 - can all states be taken back to origin?
- □ Reachability
 - can a certain state be reached *from* origin?

Controllability

Issue of *controllability* concerns whether a given initial state x_0 can be steered to the origin in finite time using the input u(t)

Definition 1:

- A state x_0 is said to be *controllable* if there exists a finite time interval [0, T] and an input $\{u(t), t \in [0, T]\}$ such that x(T) = 0
- If all states are controllable, then the system is said to be completely controllable

Reachability

Converse to controllability is *reachability*:

Definition 2:

- A state $\overline{x} \neq 0$ is said to be *reachable* (from the origin) if, given x(0) = 0, there exist a finite time interval [0, T] and an input $\{u(t), t \in [0, T]\}$ such that $x(T) = \overline{x}$.
- If all states are reachable, the system is said to be *completely* reachable

Controllability and reachability—not quite the same

For continuous-time, linear time-invariant systems:

complete controllability \iff complete reachability

Following example illustrates subtle difference in discrete-time...

* consider the following shift-operator state space model:

$$x[k+1] = 0$$

- system is completely controllable since every state goes to origin in one time-step
- but no non-zero state is reachable, so system is not completely reachable

Controllability or reachability?

- In view of the subtle distinction between controllability and reachability in discrete-time, we will use the term *controllability* in the sequel to cover the stronger of the two concepts
 - ⇒ discrete-time proofs for the results are a little easier
- We will thus present results using the following discrete-time model, written in terms of the delta operator:

$$\delta x[k] = \mathbf{A}_{\delta} x[k] + \mathbf{B}_{\delta} u[k]$$
$$y[k] = \mathbf{C}_{\delta} x[k] + \mathbf{D}_{\delta} u[k]$$

A test for controllability

We now present a simple algebraic test for controllability that can easily be applied to a given state-space model

Theorem 2: Consider the state-space model

stated for delta model, but holds for shift and continuous-time models too

$$x k = A x k + B u k$$

 $y k = C x k + D u k$

(i) The set of all controllable states is the range space of the *controllability* matrix $\Gamma_c[\mathbf{A}, \mathbf{B}]$, where

$$_{C}[A;B]^{\frac{4}{3}} = B AB A^{2}B ::: A^{n-1}B$$

(ii) The model is completely controllable if and only if $\Gamma_c[\mathbf{A}, \mathbf{B}]$ has full row rank

Example: A completely controllable system

Consider a state-space model with

$$A = \begin{pmatrix} 3 & 1 \\ 2 & 0 \end{pmatrix}; B = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

The controllability matrix is given by

$$_{c} [A; B] = [B; AB] = \begin{bmatrix} 1 & 4 \\ 1 & 2 \end{bmatrix}$$

- rank Γ_c [**A**, **B**] = 2
- \Rightarrow the system is completely controllable
- □ *Observation*: complete controllability of a system is independent of **C** and **D**

Example: A non-completely controllable system

For

$$A = \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix}; B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

the controllability matrix is given by:

$$_{C} [A; B] = [B; AB] = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$$

- rank $\Gamma_c[\mathbf{A}, \mathbf{B}] = 1$ since row 2 = -row 1
- $\Rightarrow \Gamma_c[\mathbf{A}, \mathbf{B}]$ is *not* full row rank
- \Rightarrow system is *not* completely controllable

Controllability—a word of caution

- Controllability is a black and white issue: a model either is completely controllable or it's not
- Knowing that a system is controllable (or not) is a valuable piece of information, but...
- knowing that a system is controllable really tells us nothing about the *degree* of controllability, i.e., about the difficulty that might be involved in achieving a certain objective
 - for example: how much energy is required to drive system state to origin?
 - this issue lies at the heart of the fundamental design trade-offs in control

Controllable-uncontrollable decomposition

If a system is not completely controllable, it can be decomposed into a controllable and a completely uncontrollable subsystem

However these states behave, it's independent of input u[k]

Partitioning the state-space model

Key to the controllable–uncontrollable decomposition is the transformation of A, B, and C into suitably partitioned form:

$$\frac{\overline{x}_{c} [k]}{\overline{x}_{nc} [k]} = \frac{\overline{A}_{c}}{0} \frac{\overline{A}_{12}}{\overline{A}_{nc}} \frac{\overline{x}_{c} [k]}{\overline{x}_{nc} [k]} + \frac{\overline{B}_{c}}{0} u [k]$$

$$y [k] = \overline{C}_{c} \overline{C}_{nc} \frac{\overline{x}_{c} [k]}{\overline{x}_{nc} [k]} + D u [k]$$

Controllable decomposition

Lemma 1: Consider a system having rank $\{\Gamma_c[\mathbf{A}, \mathbf{B}]\} = \mathbf{k} < \mathbf{n}$. Then there exists a similarity transformation T such that $\overline{x} = \mathbf{T}^{-1}x$,

$$\overline{A} = T^{-1}AT$$
;

$$\overline{B} = T^{-1}B$$

and $\overline{\mathbf{A}}, \overline{\mathbf{B}}$ have the form

$$\overline{A} = \begin{array}{cc} \overline{A}_{C} & \overline{A}_{12} \\ 0 & \overline{A}_{nC} \end{array} ;$$

$$\overline{B} = 0$$

where $\overline{\mathbf{A}}_c$ has dimension k and $(\overline{\mathbf{A}}_c, \overline{\mathbf{B}}_c)$ is completely controllable.

Details of actually computing matrix *T* not considered here

Controllable subspace

Output has a component $C_{nc} \overline{x}_{nc} [k]$ that does not depend on the manipulated input u[k], so...

⇒ caution must be exercised when controlling a system which is not completely controllable

• same holds when *model* used for control design is not completely controllable

Definition 3: The *controllable subspace* of a state-space model is composed of all states generated through every possible linear combination of the states in \bar{x}_c

stability of controllable subspace

stability of all eigenvalues of \overline{A}_c

Uncontrollable models in control design

• Uncontrollable models are often a very convenient way of describing *disturbances* when modeling for control design

Example: constant disturbance can be modeled by the following state-space model:

$$\underline{\mathbf{x}}_{\mathbf{d}} = 0$$

• uncontrollable and non-stabilizable

⇒ very common to employ uncontrollable models in control-system design

Stabilizability

Definition 4: The *uncontrollable subspace* of a state-space model is composed of all states generated through every possible linear combination of the states in \bar{x}_{rc}

stability of uncontrollable subspace

stability of all eigenvalues of \overline{A}_{nc}

A state-space model is said to be *stabilizable* if its uncontrollable subspace is stable.

In other words: system is stabilizable only if those states that cannot be controlled decay to origin "by themselves"

Canonical forms

If a system is completely controllable, there exist similarity transformations that convert it into special "standard forms", or *canonical forms*:

- ☐ controllability canonical form
- ☐ controller canonical form
- These canonical forms present **A** and **B** matrices in highly structured ways
- Physical interpretation of states is lost
- © Can be written directly from knowledge of system poles

Controllability canonical form

Lemma 2: Consider a completely controllable state-space model for a single-input, single-output (SISO) system. Then there exists a similarity transformation that converts the state-space model into the following *controllability canonical form*:

$$A^{0} = \begin{cases} 2 & 3 & 3 \\ 0 & 0 & 1 \\ 61 & 0 & 1 \\ 60 & 1 & 1 \\ 60 & 1 & 1 \\ 60 & 1 & 1 \\ 60 &$$

where $\lambda^n + \alpha_{n-1}\lambda_{n-1} + \ldots + \alpha_1\lambda + \alpha_0 = \det(\lambda \mathbf{I} - \mathbf{A})$ is the characteristic polynomial of \mathbf{A} .

Controller canonical form

Lemma 3: Consider a completely controllable state-space model for a SISO system. Then there exists a similarity transformation that converts the state-space model into the following *controller canonical form*:

where $\lambda^n + \alpha_{n-1}\lambda_{n-1} + \ldots + \alpha_1\lambda + \alpha_0 = \det(\lambda \mathbf{I} - \mathbf{A})$ is the characteristic polynomial of \mathbf{A} .

Observability, detectability and reconstructibility

$$x[k] = A x[k] + B u[k]$$

$$y[k] = C x[k] + D u[k]$$

☐ Observability

What do observations of output tell us about *initial* state of system?

□ Detectability

• Do observations of output tell us everything "important" about the internal state of system? (Yes, if non-observable states decay to origin)

□ Reconstructibility

- Can we establish *current* state of system from past output response?
- Same as observability for continuous-time systems, but subtly different for discrete-time systems

Observability

Observability is concerned with what can be said about the initial state when given measurements of the plant output

Definition 5:

- A state $x_0 \neq 0$ is said to be *unobservable* if, given $x(0) = x_0$, and u[k] = 0 for $k \geq 0$, then y[k] = 0 for $k \geq 0$
 - state is doing something "interesting", (or at least is non-zero!), yet output is zero
- The system is said to be *completely observable* if there exists no non-zero initial state that it is unobservable

Reconstructability

Reconstructability is concerned with what can be said about x(T), on the basis of the past values of the output, i.e., y[k] for $0 \le k \le T$

For *continuous-time* LTI systems:

complete reconstructability \iff complete observability

Observability vs. reconstructibility

Consider discrete-time system:

$$x k + 1 = 0$$
 $x 0 = x_0$
 $y k = 0$

- we know for certain that x[T] = 0 for all $T \ge 1 \Rightarrow$ system is reconstructable
- \bigstar but $y[k] = 0 \ \forall k$, irrespective of the value of $x_0 \Rightarrow$ completely unobservable

In view of the subtle difference between observability and reconstructability, we will use the term observability in the sequel to cover the stronger of the two concepts

A test for observability

A test for observability of a system is established in the following theorem.

Theorem 3: Consider the state model

holds for discrete (shift) and continuous-time models too

$$x k = A x k + B u k$$

 $y k = C x k + D u k$

(i) The set of all unobservable states is equal to the null space of the *observability* $matrix \Gamma_0[\mathbf{A}, \mathbf{C}]$, where

(ii) The system is completely observable if and only if $\Gamma_0[\mathbf{A}, \mathbf{C}]$, has full column rank n

Example: A completely observable system

Consider the following state space model:

$$A = \begin{pmatrix} 3 & 2 \\ 1 & 0 \end{pmatrix}; \quad B = \begin{pmatrix} 1 \\ 0 \end{pmatrix}; \quad C = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Then

$$_{\circ} [A; C] = \begin{array}{c} C \\ CA \end{array} = \begin{array}{c} 1 & 1 \\ 4 & 2 \end{array}$$

Hence, rank $\Gamma_0[\mathbf{A}, \mathbf{C}] = 2$, and the system is completely observable.

Example: A non-completely observable system

Consider

$$A = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}; \quad B = \begin{pmatrix} 1 \\ 0 \end{pmatrix}; \quad C = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Here

$$_{\circ}$$
 [A ; C] = $\begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}$

Hence, rank $\Gamma_0[\mathbf{A}, \mathbf{C}] = 1 < 2$, and the system is *not* completely observable.

The controllable—observable duality

It's no coincidence that:

complete controllability

 $\Gamma_c[\mathbf{A}, \mathbf{B}]$ has full row rank

complete observability

 $\Gamma_o[\mathbf{A}, \mathbf{C}]$ has full column rank

as the following Theorem shows:

Theorem 4 Consider a state-space model described by the (A, B, C, D). Then

(A, B, C, D) completely controllable

 $(\mathbf{A}^T, \mathbf{C}^T, \mathbf{B}^T, \mathbf{D}^T)$ completely observable

the so-called *dual system*

Observable-unobservable decomposition

If a system is not completely observable, it can be decomposed into an observable and a completely unobservable subsystem

Partitioning of A, B, and C

Decomposition of state-space into observable and non-observable parts relies on suitable partitioning of (similarity transformed) state-space matrices:

$$\frac{\overline{x}_{o} [k]}{\overline{x}_{no} [k]} = \frac{\overline{A}_{o}}{\overline{A}_{21}} \frac{0}{\overline{A}_{n0}} \frac{\overline{x}_{o} [k]}{\overline{x}_{no} [k]} + \frac{\overline{B}_{o}}{\overline{B}_{no}} u [k]$$

$$y [k] = \overline{C}_{o} 0 \frac{\overline{x}_{o} [k]}{\overline{x}_{no} [k]} + D u [k]$$

Observable decomposition

Lemma 4: If $\operatorname{rank}\{\Gamma_o[\mathbf{A}, \mathbf{C}]\} = k < n$, there exists a similarity transformation T such that with $\overline{x} = \mathbf{T}^{-1}x$, $\overline{\mathbf{A}} = \mathbf{T}^{-1}\mathbf{A}\mathbf{T}$, $\overline{\mathbf{C}} = \mathbf{C}\mathbf{T}$, then $\overline{\mathbf{C}}$ and $\overline{\mathbf{A}}$ take the form

$$\overline{A} = \frac{\overline{A}_{\circ}}{\overline{A}_{21}} \frac{0}{\overline{A}_{RO}}$$
 $\overline{C} = \overline{C}_{\circ} 0$

where $\overline{\mathbf{A}}_0$ has dimension k and the pair $(\overline{\mathbf{C}}_0, \overline{\mathbf{A}}_0)$ is completely observable

Observable subspace

Definition 6: The observable subspace of a state-space model is composed of all states generated through every possible linear combination of the states in \bar{x}_0

stability of controllable subspace

stability of all eigenvalues of $\overline{\mathbf{A}}_0$

Detectability

Definition 7: The *unobservable subspace* of a state-space model is composed of all states generated through every possible linear combination of the states in \bar{x}_{n0} .

stability of unobservable subspace

stability of all eigenvalues of $\overline{\mathbf{A}}_{n_0}$

A state-space model is said to be *detectable* if its unobservable subspace is stable.

In other words: system is observable only if those states that cannot be observed decay to origin "by themselves"

* while non-stabilizable models are frequently used to model disturbances in control-system design, this is *not* true for non-detectable models.

Canonical decomposition

- Dual to controller and controllability canonical forms are *observer* and *observability* canonical forms
 - Precise forms aren't important here
- Can also combine controllable and observable decompositions into a canonical decomposition with subsystems which are:
 - Controllable and observable (A_{co}, B_1, C_1)
 - Controllable, not observable
 - Observable, not controllable
 - Not observable, not controllable

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{co} & 0 & \mathbf{A}_{13} & 0 \\ \mathbf{A}_{21} & \mathbf{A}_{22} & \mathbf{A}_{23} & \mathbf{A}_{24} \\ 0 & 0 & \mathbf{A}_{33} & 0 \\ 0 & 0 & 0 & \mathbf{A}_{44} \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} \mathbf{B}_1 \\ \mathbf{B}_2 \\ 0 \\ 0 \end{bmatrix}$$

$$\boldsymbol{B} = \begin{vmatrix} \boldsymbol{B}_1 \\ \boldsymbol{B}_2 \\ 0 \\ 0 \end{vmatrix}$$

Only controllable and observable parts of system appear in transfer function!

$$\boldsymbol{C} = \begin{bmatrix} \boldsymbol{C}_1 & 0 & \boldsymbol{C}_2 & 0 \end{bmatrix}$$

Pole-zero cancellations

Systems which are either non-completely controllable and/or non-completely observable are associated with transfer functions having *pole-zero cancellations*

Then combined system:

- \diamond has a pole at β that is not observable from y(t)
- \clubsuit has a zero at α that is not controllable from u(t)

The big picture

- *Controllability*: can we use input to steer system state to origin in finite time?
 - Stabilizability: not controllable, but uncontrollable states well behaved
- *Observability*: can we infer system state from measurements of output?
 - Detectability: not observable, but unobservable states decay to origin
- Algebraic tests for controllability and observability
- Non-observable and/or non-controllable systems have transfer functions with pole-zero cancellations

Drinking from a firehose...