Roll No	
---------	--

www.rgpvCriline.irf 02

B.E. IV Semester Examination, December 2014

Electro-Magnetic Theory

Time: Three Hours

Maximum Marks: 70

- *Note:* i) Answer five questions. In each question part A, B, C is compulsory and D part has internal choice.
 - ii) All parts of each questions are to be attempted at one place.
 - iii) All questions carry equal marks, out of which part A and B (Max.50 words) carry 2 marks, part C (Max.100 words) carry 3 marks, part D (Max.400 words) carry 7 marks.
 - iv) Except numericals, Derivation, Design and Drawing etc.

Unit - I

- 1. a) Explain Coulomb's law?
 - b) Define electric dipole and dipole moment?
 - c) What is electric field intensity?
 - d) State and prove Gauss's law?

OR

A potential field in free space is expressed as $V = \frac{60 \sin \theta}{r^2}$ volts. Find the electric flux density and hence the volume charge density at the point (r = 3m, θ = 60°, ϕ = 25°) in spherical co-ordinates.

www.rgp**\dmin**e_in****

- 2. a) Explain uniqueness theorem.
 - b) Explain Biot-savart's law?
 - c) What is amperes circuital law?
 - d) Write a short note on image theory?

OR

Give a mathematical analysis for solution of Laplace's equation in Cartesian co-ordinate system?

Unit - III

- 3. a) Write Maxwell's equations in differential and integral forms for free space and harmonically time varying fields.
 - b) Derive continuity equation.
 - c) Explain Faraday's law.
 - d) State and prove poynting vector theorem.

EC-402

[2]

OR

Derive wave equations for conducting and non-conducting medium?

Unit - IV

- 4. a) Define linear, circular and elliptic polarization.
 - b) Explain Hoss tangent.
 - c) Discuss plane wave propagation in a good conductor?
 - d) Discuss the concept of skin depth? Find the skin depth d at a frequency of 1-6 MHz in aluminium where $\sigma = 38.2$ Ms/m and $\mu_r = 1$. Also find the propagation constant and wave velocity.

OR

Discuss surface current density and transmission line analogy.

Unit - V

- 5. a) Define Brewsters angle.
 - b) Explain total internal reflection.
 - c) Discuss retarded potential.
 - d) What is normal and oblique incidence? A perpendicularly polarized wave propagates from a region having $\varepsilon_r = 8.5$, $\mu_r = 1$, $\sigma = 0$ to free space with an angle of incidence of 15°. The incident field is 1.0 μ V/m, find the reflected and transmitted electric field incident, reflected and transmitted magnetic field.

OR

Discuss surface impedance of a conductor. Explain magnetic vector potential. www.rgpvonline.in
