

## 自然语言处理基础 文本分类

2019.10.31







| 瓜蒂 | 形状 | 颜色 | 类别 |
|----|----|----|----|
| 脱落 | 圆形 | 深绿 | 熟  |
| 未脱 | 尖形 | 浅绿 | 生  |
| 未脱 | 圆形 | 浅绿 | 生  |
| 脱落 | 尖形 | 青色 | 熟  |
| 脱落 | 圆形 | 浅绿 | 熟  |
| 未脱 | 尖形 | 青色 | 生  |
| 脱落 | 尖形 | 深绿 | 熟  |
| 未脱 | 圆形 | 青色 | 熟  |
| 脱落 | 尖形 | 浅绿 | 生  |
| 未脱 | 圆形 | 深绿 | 熟  |

问题: 瓜蒂脱落、形状圆形、颜色青色, 判断生还是熟?

$$P(A_i|B) = ?$$

Ai代表生、熟,B代表给出的瓜的特征集合。





问题: 瓜蒂脱落、形状圆形、颜色青色, 判断生还是熟?

A1代表瓜生,B代表特征(脱落,圆形,青色), $P(A_i|B) = ?$ 

贝叶斯定理: 
$$P(A_i|B) = \frac{P(B|Ai) P(A_i)}{\sum_j P(B|Aj) P(Aj)}$$

瓜生 P(A1|B) = ?

瓜熟 P(A2|B) =?

$$P(A_i|B) \propto P(B|Ai)P(Ai)$$

条件独立性假设:

$$P(B|Ai) = P(B_0|Ai)P(B_1|Ai)P(B_2|Ai)$$

可得:  $P(A_i|B) \propto P(A_i) \prod_{k=1} P(B_k|A_i)$ 

| ert tit | TZJD | *=/7 | Memil |
|---------|------|------|-------|
| 瓜蒂      | 形状   | 颜色   | 类别    |
| 脱落      | 圆形   | 深绿   | 熟     |
| 未脱      | 尖形   | 浅绿   | 生     |
| 未脱      | 圆形   | 浅绿   | 生     |
| 脱落      | 尖形   | 青色   | 熟     |
| 脱落      | 圆形   | 浅绿   | 熟     |
| 未脱      | 尖形   | 青色   | 生     |
| 脱落      | 尖形   | 深绿   | 熟     |
| 未脱      | 圆形   | 青色   | 熟     |
| 脱落      | 尖形   | 浅绿   | 生     |
| 未脱      | 圆形   | 深绿   | 熟     |





瓜生 P(A1|B) = ?

瓜熟 P(A2|B) =?

问题: 瓜蒂脱落、形状圆形、颜色青色, 判断生还是熟?

$$P(B_0|A_1) = 1/4$$
  $P(B_1|A_1) = 1/4$   $P(B_0|A_1) = 1/4$   $P(A_1) = 2/5$ 

$$P(B_0|A_2) = 2/3$$
  $P(B_1|A_2) = 2/3$   $P(B_0|A_2) = 1/3$   $P(A_2) = 3/5$ 

$$P(A_1|B) = 0.25^3 * 0.4 = 0.00625$$

$$P(A_2|B) = 0.67 * 0.67 * 0.33 * 0.6 = 0.08889$$

 $P(A_1|B) < P(A_0|B)$  所以瓜熟可能性较大

| 瓜蒂 | 形状 | 颜色 | 类别 |
|----|----|----|----|
| 脱落 | 圆形 | 深绿 | 熟  |
| 未脱 | 尖形 | 浅绿 | 生  |
| 未脱 | 圆形 | 浅绿 | 生  |
| 脱落 | 尖形 | 青色 | 熟  |
| 脱落 | 圆形 | 浅绿 | 熟  |
| 未脱 | 尖形 | 青色 | 生  |
| 脱落 | 尖形 | 深绿 | 熟  |
| 未脱 | 圆形 | 青色 | 熟  |
| 脱落 | 尖形 | 浅绿 | 生  |
| 未脱 | 圆形 | 深绿 | 熟  |





| Text                             | Class | Doc |           |
|----------------------------------|-------|-----|-----------|
| Chinese Beijing Chinese          | ZH    | 1   |           |
| Chinese Chinese<br>Shanghai      | ZH    | 2   | Train set |
| Chinese Macao                    | ZH    | 3   |           |
| California LA Chinese            | US    | 4   |           |
| Chinese Chinese<br>California LA | ?     | 5   | Test set  |

 $P(ZH|B) = P(B_0|ZH)P(B_1|ZH)P(B_2|ZH) \dots P(B_3|ZH)P(ZH)$ 

 $P(B_0|ZH) = 5/8$ ,  $P(B_1|ZH) = 5/8$ ,  $P(B_2|ZH) = 0/8$ ...?

B0 Chinese, B1 Chinese

B2 California B3 LA





| Text                             | Class | Doc |           |
|----------------------------------|-------|-----|-----------|
| Chinese Beijing Chinese          | ZH    | 1   |           |
| Chinese Chinese<br>Shanghai      | ZH    | 2   | Train set |
| Chinese Macao                    | ZH    | 3   |           |
| California LA Chinese            | US    | 4   |           |
| Chinese Chinese<br>California LA | ?     | 5   | Test set  |

$$P(B_0|A_i) = \log(\frac{num \ of \ B_0 \ in \ A_i + 1}{num \ of \ A_i + Total \ num})$$
平滑处理





| Text                             | Class | Doc |           |
|----------------------------------|-------|-----|-----------|
| Chinese Beijing Chinese          | ZH    | 1   |           |
| Chinese Chinese<br>Shanghai      | ZH    | 2   | Train set |
| Chinese Macao                    | ZH    | 3   |           |
| California LA Chinese            | US    | 4   |           |
| Chinese Chinese<br>California LA | ?     | 5   | Test set  |

$$P(ZH|B) = P(B_0|ZH)P(B_1|ZH)P(B_2|ZH) \dots P(B_3|ZH)P(ZH)$$

$$P(B_0|ZH) = \log(\frac{5+1}{8+3}), \quad P(B_1|ZH) = \log(\frac{5+1}{8+3}), \quad P(B_2|ZH) = \log(\frac{1}{8+3})...?$$

B0 Chinese, B1 Chinese

B2 California B3 LA

# 情感分析



输入:章子怡宣布了二胎喜讯。

输出:情感倾向,正面|中性|负面

第一步: 分词

→ 章子怡 宣布 了 二胎 喜讯 。

中文可用jieba 实现分词,英文直接按照空格切分





### 特征提取:

词袋法:

S1 不 知道 你 在 说 什么。

S2 我就知道你不知道。

词表: 不就你什么我说知道在。

S1 [1 0 1 1 0 1 1 1]

S2 [1 1 1 0 1 0 2 0 1]



### 情感分析-特征提取



#### TF-IDF:

TF- term frequency : 
$$tf(x, w) = \frac{\text{单词x在文章}_{w} \text{中出现的次数}}{\text{文章}_{w} \text{中包含的单词个数}}$$

不 就 你 什么 我 说 知道 在 。

doc1 [1 0 1 1 0 1 1 1] doc2 [1 1 1 0 1 0 2 0 1]

tf(不, s1) = 1/7, tf(就, s1) = 0/7 ... tf(知道, s1) = 1/7

tf(不, s2) = 1/7, tf(就, s2) = 1/7 ... tf(知道, s2) = 2/7



### 情感分析-特征提取



#### TF-IDF:

inverse doc frequency: 
$$idf(x) = log(\frac{ 文章总数_{+1}}{ 包含_x 的文章个数_{+1}})$$



### 情感分析-特征提取



#### TF-IDF:

```
不 就 你 什么 我 说 知道 在 。
```

```
doc1 [1 0 1 1 0 1 1 1]
doc2 [1 1 1 0 1 0 2 0 1]
```

```
tf-idf(x,w) = tf(x,w) * idf(x)
```

```
Doc1 = [0, 0, 0, 0.025, 0, 0.025, 0, 0.025, 0]
```

Doc2 = [0, 0.025, 0, 0, 0.025, 0, 0, 0]

# Minage

### **Logistics Regression**



$$y = \frac{1}{e^{-(Wx+b)} + 1},$$

 $W \in (1 * N), x \in (N, ), b \in (1, ), y \in (1, )$ 

x为输入特征(N维向量,每一维度都是浮点数),y为标签(一般取值(0,1))

W, b为模型参数

# Minant

## **Logistics Regression**



$$y = \frac{1}{e^{-(Wx+b)} + 1},$$
$$e^{-(Wx+b)} \in (+\infty, 0)$$

# Minan

### **Logistics Regression**



$$y = \frac{1}{e^{-(Wx+b)} + 1},$$

$$e^{-(Wx+b)} \in (+\infty, 0)$$

$$e^{-(Wx+b)} + 1 \in (+\infty, 1)$$

# Minary

### **Logistics Regression**



$$y = \frac{1}{e^{-(Wx+b)} + 1},$$

$$e^{-(Wx+b)} \in (+\infty, 0)$$

$$e^{-(Wx+b)} + 1 \in (+\infty, 1)$$

$$y = \frac{1}{e^{-(Wx+b)} + 1} \in (0,1)$$



输入x, 如果y > 0.5, 结果为正例, 反之为负例



### Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

#### Parameters:

$$\theta_0, \theta_1$$

#### **Cost Function:**

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal:  $\underset{\theta_0,\theta_1}{\operatorname{minimize}} J(\theta_0,\theta_1)$ 





$$y = \frac{1}{e^{-(Wx+b)} + 1},$$

(x0, y0)为一个样本, $\hat{y}$ 为模型的输出结果, 损失函数 $Loss = (y_0 - \hat{y})^2$ 

也可以用 交叉熵 $Loss = -\sum_{k=1}^{N} p_k log q_k$ , 当 $p_k = q_k$ 时,Loss最小  $p_k$ 为真实标签分布, $q_k$ 为预测的结果分布





$$y = \frac{1}{e^{-(Wx+b)} + 1},$$

(xi, yi)为一个样本, ŷ为模型的输出结果,

损失函数
$$Loss = -\frac{1}{N}\sum_{i=1}^{N}y_{i}log(\hat{y}_{i}) + (1-y_{i})log(1-\hat{y}_{i}) = -\frac{1}{N}\sum_{i=1}^{N}(y_{i}wx_{i} - log(1+e^{wx_{i}}))$$

$$Loss = f(w) \rightarrow \min_{w \in R} f(w)$$

$$f(w) = f(w_0) + f'(w_0)(w - w_0) + \frac{1}{2}f''(w_0)(w - w_0)^2 + o(w^2)$$





$$y = \frac{1}{e^{-(Wx+b)} + 1},$$

(xi, yi)为一个样本, ŷ为模型的输出结果,

损失函数
$$Loss = -\frac{1}{N}\sum_{i=1}^{N}(y_iwx_i - log(1 + e^{wx_i}))$$

$$Loss = f(w) \rightarrow \min_{w \in R} f(w)$$

$$f(w) = f(w_0) + f'(w_0)(w - w_0) + o(w)$$





$$y = \frac{1}{e^{-(Wx+b)} + 1},$$

(xi,yi)为一个样本,ŷ为模型的输出结果,

损失函数
$$Loss = -\frac{1}{N}\sum_{i=1}^{N}(y_iwx_i - log(1 + e^{wx_i}))$$

Loss = 
$$f(w) \rightarrow \min_{w \in R} f(w)$$
  

$$f(w) = f(w_0) + f'(w_0)(w - w_0) + o(w) \approx f(w_0) + f'(w_0)(w - w_0)$$

$$= f(w_0) + f'(w_0)\Delta w \dots \Delta w = (w - w_0)$$

$$f(w) = f(w_0) + f'(w_0)\Delta w$$





$$y = \frac{1}{e^{-(Wx+b)} + 1},$$

(xi,yi)为一个样本,ŷ为模型的输出结果,

损失函数
$$Loss = -\frac{1}{N}\sum_{i=1}^{N}(y_iwx_i - log(1 + e^{wx_i}))$$

$$Loss = f(w) \rightarrow \min_{w \in R} f(w)$$

$$f(w) = f(w_0) + f'(w_0)(w - w_0) + o(w) \approx f(w_0) + f'(w_0)(w - w_0)$$
  
=  $f(w_0) + f'(w_0)\Delta w \dots \Delta w = (w - w_0)$ 

$$f(w) = f(w_0) + f'(w_0)\Delta w$$

要使
$$f(w) < f(w_0)$$
, 令  $\Delta w = -\alpha f'(w_0)$ 



$$y = \frac{1}{e^{-(Wx+b)} + 1},$$

(xi, yi)为一个样本, ŷ为模型的输出结果,

损失函数
$$Loss = -\frac{1}{N}\sum_{i=1}^{N}(y_iwx_i - log(1 + e^{wx_i}))$$

Loss = 
$$f(w) \rightarrow \min_{w \in R} f(w)$$
  
 $f(w) = f(w_0) + f'(w_0)(w - w_0) + o(w) \approx f(w_0) + f'(w_0)(w - w_0)$   
 $= f(w_0) + f'(w_0)\Delta w \dots \Delta w = (w - w_0)$ 

$$f(w) = f(w_0) + f'(w_0) \Delta w$$
  
要使 $f(w) < f(w_0)$ , 令  $\Delta w = -\alpha f'(w_0)$   
则有:  $f(w) = f(w_0) - \alpha (f'(w_0))^2$ 



$$y = \frac{1}{e^{-(Wx+b)} + 1},$$

(xi,yi)为一个样本,ŷ为模型的输出结果,

损失函数
$$Loss = -\frac{1}{N}\sum_{i=1}^{N}(y_iwx_i - log(1 + e^{wx_i}))$$

$$Loss = f(w) \rightarrow \min_{w \in R} f(w)$$

$$f(w) = f(w_0) + f'(w_0)(w - w_0) + o(w) \approx f(w_0) + f'(w_0)(w - w_0)$$
  
=  $f(w_0) + f'(w_0)\Delta w \dots \Delta w = (w - w_0)$ 

$$f(w) = f(w_0) + f'(w_0)\Delta w$$

要使
$$f(w) < f(w_0)$$
, 令  $\Delta w = -\alpha f'(w_0)$ 

则有: 
$$f(w) = f(w_0) - (f'(w_0))^2$$

所以,只要 $w-w_0=-\alpha f'(w_0)$ 则  $w=w_0-\alpha f'(w_0)$ 即可每次让f(w)更小





$$y = \frac{1}{e^{-(Wx + b)} + 1},$$

(xi,yi)为一个样本,ŷ为模型的输出结果,

损失函数
$$Loss = -\frac{1}{N}\sum_{i=1}^{N}(y_iwx_i - log(1 + e^{wx_i}))$$

$$Loss = f(w) \rightarrow \min_{w \in R} f(w)$$

则  $w = w_0 - \alpha f'(w_0)$  即可每次让f(w)更小

$$f'(w) = \frac{\partial \text{Loss}}{\partial w} = \frac{\partial (-\frac{1}{N} \sum_{i=1}^{N} (y_i w x_i - \log(1 + e^{w x_i}))}{\partial w} = -\frac{1}{N} \sum_{i=1}^{N} (x_i (y_i - \hat{y}_i))$$







 $h_{\theta}(x)$ 

(for fixed  $\theta_0, \theta_1$ , this is a function of x)

 $J(\theta_0, \theta_1)$ 

(function of the parameters  $\theta_0, \theta_1$ 







### LogisticsRegression-梯度下降法



机器学习 (Logistics Regression) 进行文本分类:

Step1:数据 (文本,标签) →向量化→ (X,y)

Step2:选择模型: 
$$y = \frac{1}{e^{-(wx+b)}+1}$$

Stop 为False

While Stop is False:

计算将
$$(x_i, y_i)$$
代入计算 $\hat{y}_k = \frac{1}{e^{-(Wx_i+b)}+1}$ 

得到损失: Loss

求导: 
$$f'(w_k) = \frac{\partial Loss}{\partial w_k}$$

优化: 
$$W_{k+1} = W_k - \alpha f'(W_k)$$

如果
$$|f(w_{k+1}) - f(w_k)| < \varepsilon$$

set Stop True

否则: k=k+1

最终的到模型参数 $(W_{k+1}, b)$ 





```
import ...
def read_train_valid(filname):...
def read_test(filename):...
def split text(text data):...
def vectorizer(train data, valid data, test data):...
def train valid(train data, train label, valid data, valid label):...
def predict(mode, test data):...
def run_step():
     选择相应的任务和文件
     读文件, train data, train label = some function(filename=")
             valid data, validlabel = some function(filename=")
            test_data, test_ids = some_function(filename=")
     将原始文本分词:
            train data = split function(train data)
           valid data = split function(valid data)
           test data = split function(test data)
     将分词后的文本变成向量:
```





### 参考资料

- 李航 《统计学习方法》
- 周志华《机器学习》

### 参考工具

- Scikit-Learn(机器学习包)
  - + Logistics Regression
  - + Naïve Bayes
- Jieba分词



## 谢谢大家

Thanks for Your Attention

