

Licence d'Education Enseignement Secondaire : Mathématiques et Informatiques.

Module : Mécanique du point matériel

Série I : Rappels mathématiques

Exercice 1:

Soit $(\vec{\iota}, \vec{\jmath}, \vec{k})$ une base orthorhombique directe

$$\vec{A} = \vec{\imath} + \vec{\jmath}$$
, $\vec{B} = \vec{\jmath} - \vec{k}$, $\vec{C} = 2\vec{\jmath} + \vec{k}$

- 1. Calculez $\|\vec{A}\|$, $\|\vec{B}\|$ puis \vec{A} . \vec{B}
- 2. Déterminez $cos\theta$ puis θ l'angle que fait les vecteurs \vec{A} et \vec{B}
- 3. Déterminez les composantes du vecteur $\vec{X} = \vec{A} \wedge \vec{B}$
- 4. Retrouvez θ à partir de la norme $\|\vec{A} \wedge \vec{B}\|$
- 5. Calculez $(\vec{A} \wedge \vec{B}) \wedge \vec{C}$ puis $\vec{A} \wedge (\vec{B} \wedge \vec{C})$ puis déduire

Exercice 2:

Un point M de l'espace peut être représenté soit par:

- Les coordonnées cartésiennes (x,y,z) de base $(\vec{e}_x,\vec{e}_y,\vec{e}_z)$
- Les coordonnées cylindriques (ρ,θ,z) de base $(\vec{e}_{\rho},\vec{e}_{\theta},\vec{e}_{z})$
- Les coordonnées sphériques (r,θ,φ) de base $(\vec{e}_r,\vec{e}_\theta,\vec{e}_\varphi)$
- 1. Donner l'expression des bases $(\vec{e}_{\rho}, \vec{e}_{\theta}, \vec{e}_{z})$ et $(\vec{e}_{\tau}, \vec{e}_{\theta}, \vec{e}_{\varphi})$ en fonction de $(\vec{e}_{x}, \vec{e}_{y}, \vec{e}_{z})$
- 2. Soit le référentiel R(O, x, y, z) de base cartésienne $(\vec{e}_x, \vec{e}_y, \vec{e}_z)$. Calculer

a-
$$\frac{d\vec{e}_{\rho}}{d\theta}\Big|_{R}$$
; $\frac{d\vec{e}_{\theta}}{d\theta}\Big|_{R}$ dans $(\vec{e}_{x}, \vec{e}_{y}, \vec{e}_{z})$. En déduire leurs expressions dans $(\vec{e}_{\rho}, \vec{e}_{\theta}, \vec{e}_{z})$
b- $\frac{\partial \vec{e}_{r}}{\partial \theta}$; $\frac{\partial \vec{e}_{r}}{\partial \varphi}$; $\frac{\partial \vec{e}_{\theta}}{\partial \theta}$; $\frac{\partial \vec{e}_{\theta}}{\partial \varphi}$; $\frac{\partial \vec{e}_{\theta}}{\partial \varphi}$ les exprimer dans la base $(\vec{e}_{r}, \vec{e}_{\theta}, \vec{e}_{\varphi})$

b-
$$\frac{\partial \vec{e}_r}{\partial \theta}$$
; $\frac{\partial \vec{e}_r}{\partial \varphi}$; $\frac{\partial \vec{e}_\theta}{\partial \theta}$; $\frac{\partial \vec{e}_\theta}{\partial \varphi}$; $\frac{\partial \vec{e}_\varphi}{\partial \varphi}$ les exprimer dans la base $(\vec{e}_r, \vec{e}_\theta, \vec{e}_\varphi)$

$$c - \frac{d\vec{e}_r}{dt} \bigg|_R; \frac{d\vec{e}_{\theta}}{dt} \bigg|_R; \frac{d\vec{e}_{\varphi}}{dt} \bigg|_R$$

- Déterminer, l'expression du vecteur déplacement élémentaire dOM dans les trois systèmes de coordonnées. En déduire:
 - a) L'élément de surface ds normal à $ec{e}_z$ et l'élément de volume dV d'un cylindre.
 - b) L'élément de surface ds normal à e, et celui de volume dV d'une sphère.
- 4. a) Exprimer la vitesse d'un point M dans les systèmes de coordonnées cartésiennes, cylindriques et sphériques
 - b) Exprimer l'accélération d'un point M dans les systèmes de coordonnées cartésiennes, cylindriques et sphériques

Exercice 3:

$$f(x, y, z) = x^2yz \text{ et } \vec{A} = 3x^2y\vec{i} + yz^2\vec{j} - xz\vec{k}$$

- 1. Calculez $\frac{\partial^2 (f\vec{A})}{\partial y \partial z}$ au point (1,-2,1)
- 2. Calculez df
- 3. Calculez $\overrightarrow{grad}f$
- 4. Calculez $div \vec{A}$
- 5. Calculez \overrightarrow{rot} \overrightarrow{A}

Exercice 4:

On considère un point matériel M se déplaçant dans un référentiel R(O,x,y,z) muni de la base $(\vec{i},\vec{j},\vec{k})$. Les coordonnées du point M sont données par :

$$X(t) = 1 + t$$
; $Y(t) = 1 + t^2$; $Z(t) = 0$, t étant le temps.

- 1) Donner l'équation de la trajectoire de M dans R. En déduire sa nature.
- 2) Calculer la vitesse $\vec{V}(M/R)$ et l'accélération $\vec{\gamma}(M/R)$ du point M. En déduire leurs normes.
- 3) Exprimer, dans la base $(\vec{i}, \vec{j}, \vec{k})$, les vecteurs de la base de Frenet $\vec{\tau}$ et \vec{n} .
- 4) Calculer le rayon de courbure R_c .

Exercice 5:

Une particule se déplace avec une accélération donnée par :

$$\vec{v} = 2e^{-t}\vec{i} + 5\cos t\vec{j} - 3\sin t\vec{k}$$

Si au temps t=0 la particule est située à (1,-3,2) et si sa vitesse est alors

$$4\vec{i} - 3\vec{j} + 2\vec{k}$$
 trouver

- a- La vitesse
- b- Le déplacement de la particule pour un temps t>0

Exercice 6: Facultatif

Un point matériel M se déplace dans le plan (xoy) d'un repère fixe R(O, x, y, z).

La position de M est repérée par les paramètres ρ et θ tels que: $\rho(t) = \rho_0 e^{\theta(t)}$ où t est le temps, ρ_0 est une constante et $\theta(t) = \omega t$ avec $\omega = cte$.

Tous les résultats doivent être exprimés dans la base $(\vec{e}_{\rho}, \vec{e}_{\theta}, \vec{e}_{z})$.

- 1. a. Donner l'expression du vecteur position \overrightarrow{OM} en fonction de ρ_0 , ω et t.
 - b. Déterminer le vecteur vitesse $\vec{v}(M/R)$ de M et calculer son module.
 - c. Déterminer le vecteur unitaire tangent $\vec{e_t}$ à la trajectoire de M.
 - d. Calculer l'expression de la composante tangentielle $\vec{\gamma}_t$ de l'accélération $\vec{\gamma}(M/R)$ de M par rapport à R.
- 2. a. Sachant que la base $(\vec{e}_t, \vec{e}_n, \vec{e}_z)$ est une base orthonormée et directe, déterminer le vecteur unitaire \vec{e}_n normale à la trajectoire.
 - b. Déterminer l'expression du vecteur accélération de M par rapport à R et calculer son module.
- 3. a. Sachant que $\vec{\gamma}(M/R) = \gamma_t \vec{e}_t + \gamma_n \vec{e}_n$, calculer l'expression de l'accélération normale γ_n .
 - b. En déduire le rayon de courbure R_c de la trajectoire de M à l'instant t.
- 4. Calculer la distance parcourue par M sur sa trajectoire entre les instants t=0s et $t=\frac{1}{\omega}$.

M. Bellioua.

Licence d'Education Enseignement Secondaire : Mathématiques et Informatiques.

Module : Mécanique du point matériel

Série II : Cinématique et changement de référentiels.

Exercice 1:

Une roue de rayon R roule sans glisser selon un axe rectiligne $\overrightarrow{O_x}$. Un point B, situé à la périphérie de la roue, coı̈ncide à l'instant initial avec l'origine θ du repère. Le centre $\mathcal C$ de la roue a une vitesse $\overrightarrow{v_0}$ positive, constante et parallèle à ()=

- générale de la trajectoire. 2. Calculer la vitesse \vec{v} du point B et étudier ses variations.
- 3. Calculer l'accélération \overrightarrow{a} du point B et préciser son orientation.
- .4. En introduisant un référentiel d'origine $\mathcal C$ en translation par rapport au précédent, montrer qualitativement comment il est possible de retrouver les résultats de la deuxième question.

 $\overline{v_o}$

Exercice 2:

Soient $\Re(O_{r}xyz)$ un référentiel absolu muni de la base $(\overline{t}\,,\,\overline{f}\,,\,\overline{k})$ et $\Re_1(O_{1}$, x_1 , y_1 , $ar{z}_1)$ le référentiel relatif muni de la base $(ec{e_p}\ ,\ ec{e_p},\ ec{k})$. Un point M est assujetti à se déplacer sur une Tige $(T_{\mathbf{1}}).$ La tige $(T_{\mathbf{1}})$ est solidaire en $O_{\mathbf{1}}$ avec une Tige (T) en rotation d'angle (t) autour de l'axe (Oz) (voir figure). La tige (T_1) est située dans le plan vertical $(ec{e_{
ho}}\,,\,ec{k})\,.$ Le point O_1 est repéré par : $\vec{OO_1} = \rho \vec{e_p}$ et le point M est repéré sur la tige (T_1) par :

 $\vec{O_1M} = \vec{V_0} \vec{nu}$ ($\vec{V_0} = cic$). Le vecteur unitaire \vec{u} fait un angle constant α avec le vecteur $\vec{e_o}$.

N.B : Toutes les expressions vectorielles doivent être exprimées dans la base $(\vec{e_{\rm p}}$, $\vec{e_{\rm p}}$, $\vec{k})$.

- I- Etude de la cinématique de M par calcul direct
- 1- Exprimer \vec{u} en fonction de $\vec{e_{\rm p}}$, \vec{k} et α .
- 2- Donner l'expression du vecteur position \vec{OM} .
- 3- Déterminer $\overline{V}(M/R)$ la vitesse de M dans le repère \Re .
- 4- Déterminer $\overline{\gamma}(M/R)$ l'accélération de M dans le repère \Re .
- II- Etude de la cinématique de M par décomposition de mouvement
- 1- Vérifier que la vitesse de rotation de \Re_1 par rapport à \Re est donnée par $\vec{\Omega}(R_1/R) = \vec{\phi} \vec{i}$.
- 2- Déterminer $\vec{V}(M/R_1)$ la vitesse relative de M.
- 3- Déterminer $\vec{V}_e(M)$ la vitesse d'entrainement de M.
- 4- En déduire $\vec{V}(M/R)$ la vitesse absolue de M.
- 5- Déterminer $\gamma(M/R_1)$ l'accélération relative de M.
- 6- Déterminer $\overline{\gamma}_e(M)$ l'accélération d'entrainement de M.
- 7- Déterminer $\gamma_c(M)$ l'accélération de Coriolis de M.
- 8- En déduire $\gamma_a(M)$ l'accélération absolue de M.

Exercice 3:

Un système est constitué de deux tiges OO' et O'M , de longueurs respectivement L et D , reliées entre elles par une articulation parfaite en O'.

Soit R(O,X,Y,Z) un repère orthonormé direct de base $(\vec{i},\vec{j},\vec{k})$ lié au point O. Le point O' décrit par rapport à O, une trajectoire circulaire de rayon L, dans le plan XOY, avec une vitesse angulaire $\vec{\Omega}$. Dans le même plan, le point M est en rotation autour de O', avec la vitesse angulaire $\vec{\omega}$.

Soit R'(O',X',Y',Z') un repère orthonormé direct de base $(\overrightarrow{\iota'},\overrightarrow{\jmath'},\overrightarrow{k'})$ lié au point mobile O'. L'axe O'X' est confondu avec la direction OO' (voir figure 2). Les angles $\theta(t)et$ $\varphi(t)$ évoluent de manière quelconque.

- 1. Exprimer les vecteurs unitaires $\vec{\iota}', \vec{j}'$ et \vec{k}' du repère R' dans la base $(\vec{\iota}, \vec{j}, \vec{k})$, en déduire $\frac{d\vec{\iota}'}{dt}$, $\frac{d\vec{\jmath}'}{dt}$ et $\frac{d\vec{k}'}{dt}$ en fonction de $\dot{\varphi}, \vec{\iota}', \vec{j}'$ et \vec{k}' .
- 2. Exprimer les vecteurs vitesses rotations $\vec{\Omega}(R'/R)$ et $\vec{\omega}$ dans la base $(\vec{\imath}', \vec{\jmath}', \vec{k'})$.
- 3. Donner, dans la base relative $(\vec{\iota}', \vec{j}', \vec{k}')$, les vecteurs positions $\overrightarrow{O'M}$ et \overrightarrow{OM} .
- 4. Calculer directement le vecteur vitesse et le vecteur accélération du point M dans le référentiel R(O,X,Y,Z), on les exprimera dans la base $(\vec{i'}, \vec{j'}, \vec{k'})$.
- 5. Déterminer, dans la base $(\vec{\iota'}, \vec{J'}, \vec{k'})$, les expressions des vecteurs :
 - a) Vitesse relative et accélération relative de M.
 - b) Vitesse, accélération d'entraînement et accélération de Coriolis.

