

PES University, Bengaluru-85 (Established under Karnataka Act No. 16 of 2013)

NOVEMBER 2020: IN SEMESTER ASSESSMENT, B.TECH, III-SEMESTER TEST - 2

UE19CS203 - STATISTICS FOR DATA SCIENCE SCHEME & SOLUTION

me: 1	.30 Hrs Answer All Questions Max Mark	s: 40
No.		Marks
a)	A statistics instructor believes that fewer than sixty percentages of her university students attended the opening ceremony of a university fest. She surveys 64 of her students and finds that 36 attended the fest. Write appropriate null and alternative hypothesis.	2
	Solution:	
	Null Hypothesis : p ≥0.6 (Each hypothesis 1 mark)	
	Alternate Hypothesis: p < 0.6	
b)	Globally the long-term proportion of newborns who are female is 51.46%. A researcher believes that the proportion of girls at birth changes under severe economic conditions. To test this belief randomly selected birth records of 5,000 babies born during a period of economic recession were examined. It was found in the sample that 52.55% of the newborns were girls. Determine whether there is sufficient evidence to support the researcher's belief.	4
	Solution:	
	$H_0: p = 0.5146$	
	$H_1: p \neq 0.5146$ (1 mark)	
	Let $p_0 = 0.5146$	
	$q_0 = 1 - p_0 = 1 - 0.5146 = 0.4854$	
	P hat = 0.5255	
	$Z \text{ statistic} = (p \text{ hat} - p_0) / \text{ sqrt}(p_0 * q_0 / n)$	
	= (0.5255 - 0.5146) / sqrt(0.5146 * 0.4854 / 5000) (1 mark) = 1.5352 or 1.54	
	Since it is a two tailed test, p-value = $2*P(Z<-1.5352) = 2*0.0618 = 0.1236$ (1 mark) Since p-value= $0.1236 \le 0.05$ is false, we Don't reject H ₀ . (1 mark)	
c)	To compare customer satisfaction levels of two competing service providers of a particular service, 174 customers of Service Provider1 and 355 customers of Service Provider2 were randomly selected and were asked to rate their service providers on a five-point scale, with 1 being least satisfied and 5 most satisfied. Average rating obtained by service provider 1 was 3.51 with a standard deviation of 0.51 from their customers and the average rating obtained by service provider 2 was 3.24 with a standard deviation of 0.52. Test at the 5% level of significance whether the data provide sufficient evidence to conclude that Service provider1 has a higher mean satisfaction rating than does Service provider 2.	4
	Solution:	

Given x bar = 3.51; $s_X = 0.51$ and y bar = 3.24; $s_Y = 0.52$ and $n_x = 174$; $n_y = 355$

Let μ_X = Mean service rating of Service Provider 1

Let μ_Y = Mean service rating of Service Provider 2

 $H_0: \mu_X - \mu_Y \le 0$

 $H_1: \mu_X - \mu_Y > 0$ (1 mark)

Let $\mu_X - \mu_Y = 0$

Z statistic =((x bar – y bar) – ($\mu_X - \mu_{Y_1}$) / sqrt($s_x^2/n_x + s_y^2/n_y$) = (3.51-3.24) – 0 / sqrt(0.51²/174 + 0.52 ²/355) = 5.684 (1 mark)

Since it is a right tailed test, p –value = $P(Z > 5.684) = 1 - P(Z \le 5.684)$

= 1 - 1 = 0 (1 mark)

Since p-value = $0 \le 0.05$, we reject H₀. (1 mark)

2. a) A man who got transferred to a new place is trying to determine which of the two routes to work has the shorter average driving time. Times in minutes for six trips on route A and five trips on route B are follows:

A: 16.0 15.7 16.4 15.9 16.2 16.3

B: 17.2 16.9 16.1 19.8 16.7

Can you conclude that the mean time is less for route A?

 μ X – represents mean time for route B.

 μ Y – represents mean time for route A.

 $H0: \mu X \leq \mu Y$

 $H1: \mu X > \mu Y \text{ or } \mathbf{1} \text{ mark}$

 $H 0 : \mu X - \mu Y \le 0$

 $H 1 : \mu X - \mu Y > 0$

Value	Rank	Sample	
15.7	1	Y	
15.9	2	Y	
16	3	Y	
16.1	4	\boldsymbol{X}	
16.2	5	Y	
16.3	6	Y	
16.4	7	Y	
16.7	8	\boldsymbol{X}	
16.9	9	X	
17.2	10	\boldsymbol{X}	
19.8	11	\boldsymbol{X}	1 mark

Here, W = 42 (Counting all X(route B) ranks) **1 mark**

Since m = 5 and n = 6, we find that the area to the left of W = 42 is 0.0152 1 mark

Since P < 0.05, we reject H0 and conclude that mean lifetime for route A is less.

1 mark

5

2

b) Given the following contingency table for hair colour and eye colour. Find the value of Chi-Square and is there any good association between the two.

Hair colour	Fair	Brown	Black
Eye colour			
Grey	20	10	20
Brown	25	15	20
Black	15	5	20

Solution:

Hair colour	Fair	Brown	Black	Row Sum
Eye colour				
Grey	20(Observed)	10(Observed)	20(Observed)	50
	20(Expected)	10(Expected)	20(Expected)	
Brown	25	15	20	60
	24(Expected)	12(Expected)	24(Expected)	
Black	15	5	20	40
	16(Expected)	8(Expected)	16(Expected)	
Column Sum	60	30	60	150

(Expected values – 2 marks)

Dof = (r-1)*(c-1) = (3-1)*(3-1)=2*2=4 **0.5 mark**

Calculated ψ 2 value = $\sum \sum (Observed - Expected)^2 / Expected$

$$=(20-20)^2/20 + (10-10)^2/10 + (20-20)^2/20 + (25-24)^2/24 + (15-12)^2/12 +$$

$$(20-24)^2/24 + (15-16)^2/16 + (5-8)^2/8 + (20-16)^2/16$$

$$= 1/24 + 9/12 + 16/24 + 1/16 + 9/8 + 1 = 3.6458$$
 1.5 marks

Calculated ψ 2 value = 3.6458

Tabulated Value = 9.488 **0.5 mark**

(at 5% level of significance with 4 degrees of freedom)

Since, Calculated value < Tabulated value,

Don't Reject Ho (Null hypothesis) 0.5 mark

3. a) Given the null hypothesis: that a process is producing no more than the maximum allowable rate of defective items. Write the Type II Error(as a statement).

Solution:

Ho = process producing no more than k defectives

Ho false means process producing more than k defectives.

Type II error = P(do not reject Ho when Ho is false)

Type II error: The process is not producing too many defectives when it actually is.

	b)	A copper smelting process is supposed to reduce the arsenic content of the copper to less than 1000 ppm. Let μ denote the mean arsenic content for copper treated by this process, and assume that the standard deviation of arsenic content is $\sigma = 100$ ppm. The sample mean arsenic content X of 75 copper specimens will be computed, and the null hypothesis $H0: \geq 1000$ will be tested against the alternate $H1: \mu < 1000$. i) A decision is made to reject $H0$ if $X \leq 980$. Find the level of this test. ii) Find the power of the test in part (i) if the true mean content is 965 ppm. Solution: Given $n = \text{sample size} = 75$ True mean $= 965$ $\sigma = 100$; $\alpha = 5\% = 0.05$ $H0: : \mu \geq 1000 H1: \mu < 1000$										
		i) $z = (\bar{x} - \mu)/\sigma/\sqrt{n} = (980 - 1000)/(100/\sqrt{75}) \approx -1.73$ The level of the test is the probability of rejecting the null hypothesis. Level = P(Z < -1.73) = 0.0418 2 marks										
		ii) The power is the probability of rejecting the null hypothesis when the alternative hypothesis is true $z = (\bar{x} - \mu)/(\sigma/\sqrt{n}) = (980 - 965)/(100/\sqrt{75}) \approx 1.30$ Power= P(Z < 1.30)=0.9032 2 marks										
	c)	A certain type of seed has always grown to a mean height of 9.5 inches, with a standard deviation of 1 inch. Based on past experiment, the mean height of a seed is known to be distributed approximately normal. A researcher wishes to find out whether some new enriched conditions would improve the mean height. He wants to use $\alpha = .01$ test and would like to have a 96% chance of rejecting the null hypothesis if the mean height is 10.5 inches. Determine the sample size for the test. Solution: Given $\alpha = .01$; $1 - \beta = 0.96$ i.e. $\beta = 0.04$ 1 mark										
		$\mu_{H0}=9.5$ and $\mu_{HA}=10.5$ 1 mark										
		We know that $n=(\sigma^{2*}(Z_{\alpha}+Z_{\beta})^{2})/(\mu_{HA}-\mu_{H0})^{2}$ 1 mark $n=12*(2.33+1.75)2/(10.5-9.5)2=16.65\approx 17$ $n=17$ 1 mark										
4.	a)	Find the	least-sq	uares regress	sion line for t	the given data:				5		
		X	2	2	6	8	10					
		у	0	1	2	3	3]				
		Solution:										
		X	у	x - x bar	y – y bar	$(x - x bar)^2$	(x – x ba	ur)*(y – y				
		2	0	-3.6	-1.8	12.96	6.48					
		2	1	-3.6	-0.8	12.96	2.88					
		6	2	0.4	0.2	0.16	0.08					
		8	3	2.4	1.2	5.76	2.88					

	10	3	4.4	1.2	19.36	5.28					
	(Table 1 mark)										
	x bar = 5.6 and y bar = 1.8 (0.5 mark)										
	$\sum (x-xbar)^2 = 51.2$; (0.5 mark)										
	$\sum (x-xbar)*(y-ybar) = 17.6 (0.5 \text{ mark})$										
	β_1 hat = $\sum (x-xbar)^*(y-ybar) / \sum (x-xbar)^2 = 17.6 / 51.2 = 0.34375$ (1 mark) β_0 hat = y bar - β_1 hat * x bar = 1.8 - 0.34375 * 5.6 = -0.125 (1 mark) Least Squares Regression Line is y hat = 0.34375 x - 0.125 (0.5 mark)										
b)	Find the uncertainties in the estimates of β_0 hat and β_1 hat of part a).										
	$\begin{split} & \sum (y\text{-ybar})^2 = (-1.8)^2 + (-0.8)^2 + (0.2)^2 + (1.2)^2 + (1.2)^2 = 6.8 \ \textbf{(1 mark)} \\ & \text{Correlation Coefficient} \ \ r = \sum (x\text{-xbar})^* (y\text{-ybar}) / \left(\text{sqrt}(\sum (x\text{-xbar})^2)^* \ \text{sqrt}(\sum (y\text{-ybar})^2)\right) \\ & r = 17.6 / \ \text{sqrt}(51.2) * \ \text{sqrt}(6.8) = 0.9432 \ \textbf{(1 mark)} \\ & \text{Error Uncertainty} \ \ s = \text{sqrt}(\ (\ (1\text{-r}^2)^* \ (\sum (y\text{-ybar})^2)/(n\text{-}2)\) = 0.5002 \ \textbf{(1 mark)} \\ & n=5 \\ & \text{s} \ \beta 0 \ \text{hat} = \ \text{s}^* \ \text{sqrt}\left((1/n) + (\ xbar\ ^2 / \sum (x\text{-xbar})^2)\) = 0.4509 \ \text{and} \ \textbf{(1 mark)} \\ & \text{s} \ \beta 1 \ \text{hat} = \ \text{s} / \ \text{sqrt}(\sum (x\text{-xbar})^2) = 0.5002 / \ \text{sqrt}(51.2) = 0.0699 \ \textbf{(1 mark)} \end{split}$										