Linear Algebra Notes

Andi Gu

This is an abridged note on Friedberg's Linear Algebra, selected sections from chapters 5 and 7.

Subspace Invariance

We make a few definitions. The characteristic polynomial of a linear operator T is:

$$f(t) = \det([T]_{\beta} - t\mathbf{I})$$

It turns out that the basis β we chose is completely arbitrary and it does not matter which basis we express T with respect to. To see this, we find the characteristic polynomial of T with respect to β' , another basis.

$$f'(t) = \det([T]'_{\beta} - t\mathbf{I})$$

We are careful to differentiate between the identity matrix \mathbf{I} and the identity linear transformation I.

$$= \det\left([I]_{\beta}^{\beta'}[T]_{\beta}[I]_{\beta'}^{\beta} - t\mathbf{I}\right)$$
$$= \det\left([I]_{\beta}^{\beta'}([T]_{\beta} - t\mathbf{I})[I]_{\beta'}^{\beta}\right)$$

Since det(AB) = det(A) det(B)

$$= \det([I]_{\beta}^{\beta'}[I]_{\beta'}^{\beta}) \det([T]_{\beta} - t\mathbf{I})$$

$$= \det(\mathbf{I}) \det([T]_{\beta} - t\mathbf{I})$$

$$= \det([T]_{\beta} - t\mathbf{I})$$

Thus we can speak of the characteristic polynomial of T without worrying about choosing a basis. The eigenvalues of a linear transformation are found by solving for $f(\lambda) = 0$.

Also, the restriction of a linear operator T to a subspace W is simply the linear transformation T_W with a domain and range restricted to W that outputs T(w) for all $w \in W$.

Eigenspaces

The characteristic polynomial of any $n \times n$ square matrix will always be degree n, and will thus always have n eigenvalues (not necessarily unique). Say a particular eigenvalue λ_i has multiplicity k_i . Let the eigenspace associated with λ_i be E_i . Clearly, the matrix is diagonalizable if and only if $\dim(E_i) = k_i$.

Invariant Subspaces

Let T be a linear operator on a vector space V. A subspace of W of V is said to be a T-invariant subspace of V if $(\forall w \in W)(T(w) \in W)$. We define a T-cyclic subspace of v as $\{v, T(v), T^2(v), \ldots\}$ – clearly, this is T-invariant and is notably the *smallest* T-invariant subspace that contains v. We claim that $\{v, T(v), \ldots, T^{k-1}(v)\}$ is a basis for this T-cyclic subspace, where k is its dimension.

Let W be the T-cyclic subspace generated by v. Then the restriction of T to W, T_W has a characteristic polynomial $(-1)^k \sum_{i=0}^k a_i t^i$, where the coefficients a_i are defined as follows: $T^k(v) + \sum_{i=0}^{k-1} a_i T^i(v) = 0$, and $a_k = 1$. This definition of a_i is guaranteed to be valid because $T^k(v) \in W$, and can therefore be expressed as a linear combination of $\beta = \{T^i(v)\}$. This is true because then we have:

$$[T]_{\beta} = \begin{bmatrix} 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & \dots & 0 & -a_1 \\ 0 & 1 & \dots & 0 & -a_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & -a_{k-1} \end{bmatrix}$$

By working along the last column, we can verify that:

$$f(t) = (-1)^k \sum_{i=0}^k a_i t^i \tag{1}$$

Characteristic Polynomial of T_W

Let W be the T-cyclic subspace generated by v, and define a basis β for W, extending it to a basis γ for V. Then:

$$[T]_{\gamma} = \begin{bmatrix} [T_W]_{\beta} & X \\ 0 & Y \end{bmatrix}$$
 where X and Y are arbitrary

Using an identity for the determinant of a 'block' form of a matrix, we can see $\det([T]_{\gamma} - tI) = \det([T]_{\beta} - tI) \cdot \det(Y - tI)$, so that

$$f(t) = g(t) \cdot \det(Y - tI)$$
 where g is the characteristic polynomial of T_W (2)

Cayley-Hamilton

We prove the remarkable result that $f(T) = T_0$ (T_0 being the zero transformation), where f(t) is the characteristic equation of T. That is, evaluating the characteristic equation of T on itself gives the zero transformation. We do this by showing $(\forall v \in V)(f(T)(v) = 0)$. We look at the T-cyclic subspace generated by v called W, and define the characteristic equation g(t) of T_W . By equation (1):

$$g(T)(v) = (-1)^k \left(\sum_{i=0}^k a_i T^i(v)\right)$$

¹This can be proved by finding the subspace Z spanned by $\beta = \{v, T(v), \dots T^j(v)\}$ where j is the largest integer that ensures β is linearly independent, so that Z is a subset of the T-cyclic subspace.

We recall that a_i were defined by $\sum_{i=0}^{k-1} a_i T^i(v) = T^k(v)$, and $a_k = 1$.

$$= 0$$

We also note that g(t) is a factor of f(t) by equation (2). Then:

$$f(T)(v) = g(T)(v) \cdot h(T)(v)$$
 with h arbitrary
= 0

Jordan Canonical Form

The problem is that not all matrices are diagonalizable – their eigenspaces do not form complete bases for the entire space V. We extend the notion of an eigenspace, which was before $\{v \mid (T-\lambda I)(v)=0\}$, to a 'generalized' eigenspace corresponding to an eigenvalue λ such that $\{v \mid (T-\lambda I)^p(v)=0\}$ for any finite positive integer p. We use K_{λ} to denote this eigenspace.² At this point we note something important which is used quite a bit in the proceeding proofs. Composition of linear transformations involving only T and T will generally commute, since TT = TT and T = TT. For example, $(T - \lambda I)^p = T(T - \lambda I)^p$ – this can be seen by expanding both sides.

First, we show K_{λ} is a T-invariant subspace of V and contains E_{λ} (this second assertion is trivially true, the subset of K_{λ} with p=1 is E_{λ}). Then, we show that $(\forall v \in K_{\lambda})T(x) \in K_{\lambda}$, by simply showing $(T - \lambda I)^p(T(x)) = 0$ for some p:

$$(T - \lambda I)^p(T(x)) = T((T - \lambda I)^p(x))$$

Clearly there is exists a p such that $(T - \lambda I)^p(x) = 0$ since $x \in W$.

$$= T(0)$$
$$= 0$$

We also show that for $\mu \neq \lambda$, the restriction of $T - \mu I$ to K_{λ} is one to one. We do this by showing $(T - \mu I)(x) = 0$ for $x \in K_{\lambda}$ must imply x = 0.3 So we start by assuming $(T - \mu I)(x) = 0$ for some $x \in K_{\lambda}$ and $x \neq 0$, and proceed by contradiction. Then let p be the smallest integer that satisfies $0 = (T - \lambda I)^p(x)$, so that $y = (T - \lambda I)^{p-1}(x) \neq 0$. Then:

$$(T - \mu I)(y) = (T - \mu I)(T - \lambda I)^p(x)$$
$$= (T - \lambda I)^p(T - \mu I)(x)$$
$$= 0$$

Thus $y \in E_{\mu}$ and $y \in E_{\lambda}$, but we know $E_{\lambda} \cap E_{\mu} = \{0\}$, so y = 0. But we defined y to be non-zero (by our setting of p).

There are two smaller things to prove before we can proceed to the essential theorem. First, $\dim(K_{\lambda}) \leq m$ and $K_{\lambda} = \ker((T - \lambda I)^m)$ where m is the multiplicity of λ . The first claim is easy to

²Perhaps a good intuition for this is to interpret $T - \lambda I$ as returning the 'residual' of some vector with respect to the true eigenvector associated with λ . Then the generalized eigenspace is all vectors that are 'close enough' to the true eigenspace of λ , since taking their residual many times results in zero.

³Again going with our intuition of K_{λ} , this means that if one vector is close to an eigenvector with eigenvalue λ , it is close to that eigenvector *only*. In other words, K_{λ} and K_{μ} are mutually exclusive.

show – the characteristic polynomial g(t) of $T_{K_{\lambda}}$ is of degree $\dim(K_{\lambda})$ and has λ as its only root, as shown above. Also, it is a factor of the characteristic polynomial of T, which has the factor $(t - \lambda)$ exactly m times – thus $\dim(K_{\lambda}) \leq m$, the result we sought. The second is not much harder: clearly $\ker((T - \lambda I)^m) \subseteq K_{\lambda}$ by definition. Going the other way, $g(T_{K_{\lambda}}) = 0$ – since g only has λ as roots, $T_{K_{\lambda}} - \lambda I = 0$, and $(T - \lambda I)^{\dim K_{\lambda}}(x) = 0$ for $x \in K_{\lambda}$, and since $\dim K_{\lambda} \leq m$, this implies that $(T - \lambda I)^m(x) = 0$ for $x \in K_{\lambda}$, therefore $K_{\lambda} \subseteq \ker((T - \lambda I)^m)$.

Forming a Basis with General Eigenspaces

This is an essential proof. We wish to show that $x \in V$ can be expressed as a sum $\sum_{i=1}^{k} v_i$, where $v_i \in K_{\lambda_i}$ (there are k distinct eigenvalues of T). Essentially, that $\bigcup_i K_{\lambda_i} = V$.

We proceed by induction over k, the number of distinct eigenvalues of T. In the base case of k = 1, if the multiplicity of λ_1 is m, then $f(T) = (T - \lambda_1 I)^m = 0$ by Cayley-Hamilton, so $\ker((T - \lambda I)^m) = V = K_{\lambda_1}$.

Next, the induction step is as follows. Assume the result holds for all k' < k. Then the characteristic polynomial of T is $f(t) = (t - \lambda_k)^m g(t)$. Let $W = \operatorname{im}((T - \lambda_k I)^m)$. Then we note that $K_{\lambda_i} \subseteq W$, since clearly $(T - \lambda_k I)^m$ maps K_{λ_i} into itself (i.e. $\forall x \in K_{\lambda_i} : (T - \lambda_k I)^m x \in K_{\lambda_i}$), and the restriction of $T - \lambda_k I$ to K_{λ_i} is one-to-one (as proved above), then $(T - \lambda_k I)^m$ must map K_{λ_i} onto itself (so that $(T - \lambda_k I)^m x \in K_{\lambda_i} \iff x \in K_{\lambda_i}$). Therefore $E_{\lambda_i} \subseteq K_{\lambda_i} \subseteq W$ for i < k, so $\lambda_i | i < k$ is among the eigenvalues of T_W .

Now, we show that λ_k is not an eigenvalue of T_W . We proceed by contradiction – assume there is a $v \in W$ such that $Tv = \lambda_k v \implies (T - \lambda_k I)v = 0 \implies (T - \lambda_k I)^m v = 0 \implies v \notin W$. Thus, we have a contradiction, and in short, the eigenvalues of T_W are $\lambda_1, \ldots, \lambda_{k-1}$. Since T_W has k-1 distinct eigenvalues, we can apply the induction hypothesis and so $\forall x \in V : \exists v_i \in K_{\lambda_i} : (T - \lambda_k I)^m x = \sum_{i=1}^{k-1} v_i$. Since $(T - \lambda_k I)^m$ maps K_{λ_i} onto itself, $\exists w_i \in K_{\lambda_i} : (T - \lambda_k I)^m w_i = v_i$, so:

$$(T - \lambda_k I)^m x = \sum_{i=1}^{k-1} (T - \lambda_k I)^m w_i$$
$$0 = (T - \lambda_k I)^m \left(x - \sum_{i=1}^{k-1} w_i \right)$$

Thus $x - \sum_{i=1}^{k-1} w_i \in K_{\lambda_k}$, so if we let $w_k = x - \sum_{i=1}^{k-1} w_i$ where $w_k \in K_{\lambda_k}$, we get our desired result:

$$x = \sum_{i=1}^{k-1} w_i + w_k = \sum_{i=1}^{k} w_i$$

⁴Of course, we can make a weaker statement that $K_{\lambda} = \ker((T - \lambda I)^p)$ for any $p \ge m$, but $(T - \lambda I)^p$ does not grow after p > m.