What kinds of energy are there?

- a) Kinetic to Potential
- b) Potential to Kinetic
- c) Work to Kinetic
- d) Work to Potential

What energy transfer is taking place?

- a) Work to Kinetic
- b) Work to Potential and Kinetic
- c) Work to Potential
- d) Potential to Kinetic

What energy transfer is taking place?

A tow rope pulls a skier up a <u>rough</u> slope at <u>constant speed</u>. What energy transfer (or transfers) is taking place?

a.
$$W \rightarrow U_g$$

- b. Both A and E
- c. $W \rightarrow E_{th}$
- d. Both A and C.
- e. $W \rightarrow K$.

Quiz

A tow rope pulls a skier up a rough slope at constant speed. What energy transfer (or transfers) is taking place?

A child is on a playground swing, motionless at the highest point of his arc. What energy transformation takes place as he swings back down to the lowest point of his motion?

a.
$$K \rightarrow Ug$$

b.
$$E_{th} \rightarrow K$$

c.
$$K \rightarrow E_{th}$$

d.
$$Ug \rightarrow E_{th}$$

e.
$$Ug \rightarrow K$$

A skier is gliding down a slope at a constant speed. What energy transformation is taking place?

$$E K \rightarrow U$$

$$B U \rightarrow K$$

$$A$$
 $E_{th} \rightarrow K$

$$\begin{array}{ccc}
C & U \to E_{th} \\
D & K \to E_{th}
\end{array}$$

$$D K \rightarrow E_{th}$$

Work and Kinetic Energy

Before-and-after representation

Work and Kinetic Energy

$$K=rac{1}{2}mv^2$$
 Kinetic Energy

Before-and-after representation

Work and Kinetic Energy

$$K=rac{1}{2}mv^2$$
 Kinetic Energy

$$W = \int F ds$$
 Work

Before-and-after representation

Units?

Work Done by a Constant Force

$$W = \int_{s_i}^{s_f} F_s \, ds = \int_{s_i}^{s_f} F \cos \theta \, ds$$

 F_s is the component of F in the direction of motion. It causes the particle to speed up or slow down.

$$W = F\cos\theta \int_{s_i}^{s_f} ds = F\cos\theta (s_f - s_i) = F(\Delta r)\cos\theta$$

A crane lowers a girder into place at constant speed. Consider the work W_g done by gravity and the work W_T done by the tension in the cable. Which is true?

a.
$$W_{\rm g} > 0$$
 and $W_{\rm T} > 0$

b.
$$W_{\rm g} < 0 \text{ and } W_{\rm T} > 0$$

c.
$$W_{g} = 0$$
 and $W_{T} = 0$

d.
$$W_g < 0$$
 and $W_T < 0$

e.
$$W_{\rm g} > 0$$
 and $W_{\rm T} < 0$

Robert pushes the box to the left at constant speed. In doing so, Robert does _____ work on the box.

- d) zero
- e) positive

$$W = F\Delta r$$

$$W = F \cos \theta \Delta r$$

$$W = F \cos \theta \Delta r$$

$$W = -F\Delta r$$

The Dot Product

$$\vec{A} \cdot \vec{B} = AB \cos \alpha$$

Also called the scalar product because the result is a scalar

Compute the dot product of the two vectors

- a) 12
- b) -18
- c) 16
- d) 11

Dot Product using components

$$\vec{A} = A_x \hat{\imath} + A_y \hat{\jmath}$$

and $\vec{B} = B_x \hat{\imath} + B_y \hat{\jmath}$,

the dot product is the sum of the products of the components:

$$\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y$$

Compute the dot product of the two vectors

- a) 12
- b) -2
- c) -22
- d) 16
- e) 22

Work Done by a Constant Force

 F_s is the component of \vec{F} in the direction of motion. It causes the particle to speed up or slow down.

Work during a rocket launch

A 150,000 kg rocket is launched straight up. The rocket motor generates a thrust of 4,000,000 N. What is the rocket's speed at a height of 500 m? Ignore air resistance and mass losses.

Using the dot product to compute work

A 70-kg skier is gliding at 2.0 m/s when he starts down a very slippery 50-m long, 10 degree slope. What is his speed at the bottom?

Before:

$$x_0 = 0 \text{ m}$$

 $v_0 = 2.0 \text{ m/s}$
 $m = 70 \text{ kg}$

After:

$$x_1 = 50 \text{ m}$$

Find: v_1