ЧАСЫ ЭЛЕКТРОННЫЕ НАРУЧНЫЕ ПРОГРАММИРУЕМЫЕ **«ЭЛЕКТРОНИКА ЧНП-01»**

Редакция электронного модуля ЧНП-01.01

Техническое описание

Данный документ содержит технические сведения, которые могут быть полезны в процессе написания программ для программируемых наручных электронных часов «Электроника ЧНП-01» редакции 01. Просим принять во внимание, что данная партия часов является опытной, поэтому возможно обнаружение ошибок, о которых просим сообщать через форму связи на сайте http://electronika-5.ru/.

Изм. 25.11.2014

Оглавление

ОБЩИЕ ТЕХНИЧЕСКИЕ СВЕДЕНИЯ ОБ УСТРОЙСТВЕ		
подключение элементов на плате часов		
Подключение жидкокристаллического индикатора	6	
Подключение барометра		
Подключение акселерометра		
Подключение прочих устройств		
ПОДКЛЮЧЕНИЕ СЛУЖЕБНОГО РАЗЪЕМА	12	

Общие технические сведения об устройстве

Отличительной особенностью наручных часов «Электроника ЧНП-01.01» является возможность пользовательской модификации рабочей программы. Данные 32-разрядного микроконтроллера STM32L100R8T6 построены на базе производства ST Microelectronics, выбранного по причине крайне важного для наручных часов ультранизкого энергопотребления, а так же наличия встроенного контроллера ЖКИ и часов реального времени. Допускается также использование других микроконтроллеров данной серии с аналогичной цоколевкой. Тактирование осуществляется от внутреннего генератора микроконтроллера или генератора LSE с резонатором частотой 32768Гц. Жидкокристаллический индикатор, примененный в часах, аналогичен индикатору часов «Интеграл ЧН-01» и обеспечивает отображение цифр и символов на 12 знакоместах в 2х строках (подробнее см. соответствующий раздел данного документа). Управление часами осуществляется при помощи 4 кнопок, расположенных на боковых поверхностях часов, по 2 с каждой стороны. Для подачи звукового сигнала предусмотрен пьезоэлектрический звукоизлучатель. Кроме того, в часах установлен датчик давления LPS25H и трехосевой акселерометр LIS3DH, соединенные с микроконтроллером по интерфейсу I²C. Питание электронной схемы часов осуществляется от литиевого элемента питания CR2032 (паспортная емкость 225 мкА·ч). Общая структурная схема часов представлена на рисунке 1.

Рисунок 1. Структурная схема часов «Электроника ЧНП-01.01»

Для записи и отладки рабочей программы микроконтроллера предназначен служебный разъем, описанный в соответствующем разделе данного документа. Возможна прошивка и отладка по интерфейсу SWD, а также прошивка по интерфейсу USART (в случае, если перемычки, отмеченные на плате надписью "I2C", разомкнуты).

При программировании данных электронных часов настоятельно рекомендуется использование фирменной документации ST Microelectronics, в частности RM0038 Reference manual, а так же документации на примененные микроконтроллер и датчики.

Подключение элементов на плате часов

Подключение жидкокристаллического индикатора

В устройстве применен миниатюрный жидкокристаллический индикатор, управляемый встроенным в микроконтроллер контроллером ЖКИ. Возможен вывод на ЖКИ цифровой, символьной и служебной информации. Обозначение сегментов ЖКИ и таблица соответствия выводов микроконтроллера и ЖКИ приведены ниже.

Рисунок 1. Расположение и нумерация выводов и сегментов индикатора

Примечание.

Часть знакомест отличаются от стандартного 7-сегментного шаблона:

- №№ 1, 2 имеют дополнительные сегменты (объединенные К, I у №1 и сегмент I у №2)
- № 3 имеет лишь объединенные сегменты D, E, F (в виде символа "L")
- №№ 4, 10 имеют объединенные сегменты A, D (невозможно отображение цифры "7")

• № 8 имеет объединенные сегменты A, D, E, G и не имеет сегмента F (возможно отображение лишь цифр "1", "2")

Кроме того, единые символы представляют знаки двоеточий и секунд.

Таблица 1 Соответствие выводов микроконтроллера STM32L100, выводов контроллера ЖКИ, выводов и сегментов жидкокристаллического индикатора

Номер вывода ЖКИ	Сегмент СОМ1	Сегмент СОМ2	Сегмент СОМ3	Вывод STM32L100	Вывод контроллера ЖКИ
1	COM1	-	-	PA9	COM1
2	a8,d8,e8,g8	c8	b8	PC11	29
3	f9	d9	e9	PC12	30
4	a9	c9	g9	PD2	31
5	b9	e10	h5,h6	PB3	7
6	f10	a10, d10	g10	PB4	8
7	b10	e11	c10	PB5	9
8	f11	d11	g11	PB6	16
9	a11	c11	b11	PC0	18
10	f12	d12	e12	PC1	19
11	a12	c12	g12	PC2	20
12	b12	e13	f13	PC3	21
13	a13	d13	g13	PA1	0
14	-	COM2	-	PA8	COM0
15	-	-	COM3	PA10	COM2
16	m5,m6	c13	b13	PA2	1
17	d7	b7	c7	PA3	2
18	e7	a7	g7	PA6	3
19	с6	j6	f7	PA7	4
20	d6	b6	g6	PC4	22
21	e6	a6	f6	PC5	23
22	h3,h4	j5	j7	PB0	5
23	c5	m2,m3	b5	PB1	6
24	d5	a5	g5	PB10	10
25	e5	j4	f5	PB11	11
26	c4	m4	b4	PB12	12
27	g4	a4,d4	f4	PB13	13
28	e4	h1,h2	d3,e3,f3	PB14	14
29	c2	m1	b2	PB15	15
30	g2	j3	a2	PC6	24
31	i2	j2	f2	PC7	25
32	d2	11	e2	PC8	26
33	c1	j1	b1	PC9	27
34	g1	k1,i1	a1	PA15	17
35	d1	e1	f1	PC10	28
36	-	COM2	-	PA8	COM0

Подключение барометра

На плате часов установлен пьезорезистивный датчик давления LPS25H производства ST Microelectronics, позволяющий проводить измерения в диапазоне от 26 до 126 кПа. Датчик имеет встроенный 24-разрядный АЦП и контроллер внешнего интерфейса. К микроконтроллеру часов датчик подключен по шине I2C в соответствии с таблицей ниже. Адрес датчика 0b1011101 (0x5D).

Таблица 2 **Подключение датчика давления к микроконтроллеру**

Вывод датчика	Обозначение	Подключение на плате	Примечание*
1	VDD_IO	VCC	Напряжение питания линий ввода-вывода
2	SCL	I2C1_SCL	Линия SCL интерфейса I2C (при CS=1)
3	reserved	GND	Подключен к GND согласно документации
4	SDA	I2C1_SDA	Линия SDA интерфейса I2C (при CS=1)
5	SA0	VCC	Выбор младшего разряда адреса (в данном случае выбрано 1: 1011101b)
6	CS	VCC	Выбор интерфейса (в данном случае I2C)
7	INT1		Не подключен
8	GND	GND	
9	GND	GND	
10	VDD	VCC	Напряжение питания

Примечание.

^{*} См. документацию на используемый датчик LPS25H.

Подключение акселерометра

На плате часов установлен техосевой линейный акселерометр LIS3DH производства ST Microelectronics. Датчик имеет встроенный 24-канальный АЦП и контроллер внешнего интерфейса. Помимо собственно измерений контроллер имеет возможность генерации прерывания по предварительно запрограммированному событию. К микроконтроллеру часов датчик подключен по шине I2C в соответствии с таблицей ниже. Адрес датчика 0b0011001 (0x19).

Таблица 3 **Подключение датчика давления к микроконтроллеру**

Вывод датчика	Обозначение	Подключение на плате	Примечание*
1	VDD_IO	VCC	Напряжение питания линий ввода-вывода
2	NC		Не подключен
3	NC		Не подключен
4	SCL	I2C1_SCL	Линия SCL интерфейса I2C (при CS=1)
5	GND	GND	Напряжение 0 В
6	SDA	I2C1_SDA	Линия SDA интерфейса I2C (при CS=1)
7	SA0	VCC	Выбор младшего разряда адреса (в данном
			случае выбрано 1: 0b0011001)
8	CS	VCC	Выбор интерфейса (в данном случае I2C)
9	INT2		Не подключен
10	reserved	GND	Подключен к GND согласно документации
11	INT1	PC13	Генерируемое прерывание
12	GND	GND	
13	ACD3	GND	
14	VDD	VCC	Напряжение питания
15	ACD2	GND	
16	ACD1	GND	

Внимание! Из-за особенностей цоколевки использованного микроконтроллера возможна одновременная реализация только одного из двух интерфейсов: USART1 или I2C1 (используется для связи микроконтроллера и датчиков на плате часов). Для соединения выводов микроконтроллера с подтягивающими резисторами линий I2C и датчиками предусмотрены 2 перемычки на плате. Соответственно, в штатном режиме работы они должны быть замкнуты (используется интерфейс I2C).

Подключение прочих устройств

На плате часов предусмотрены 4 кнопки управления (1 - правая-верхняя, 2 - правая-нижняя, 3 - левая-нижняя, 4 - левая-верхняя), 2 светодиода подсветки, расположенных под ЖКИ и звукоизлучающее устройство на основе пьезоизлучателя, включенного параллельно с катушкой индуктивности (образующийся колебательный контур имеет резонансную частоту около <math>4 к Γ ц). Таблица подключения представлена ниже.

Таблица 4
Подключение выводов микроконтроллера STM32L100 к устройствам на плате часов

Вывод STM32L100	Сигнал	Назначение
PA5	EXTI9_5	Кнопка «1»
PA4	EXTI4	Кнопка «2»
PA12	EXTI15_10	Кнопка «3»
PA11	EXTI15_10	Кнопка «4»
PA0		Светодиоды подсветки
PB9	TIM4_CH4	Звукоизлучающее устройство

Внимание! Из-за особенностей цоколевки использованного микроконтроллера возможна одновременная реализация только одного из двух интерфейсов: USART1 или I2C1 (используется для связи микроконтроллера и датчиков на плате часов). Для соединения выводов микроконтроллера с подтягивающими резисторами линий I2C и датчиками предусмотрены 2 перемычки на плате. Соответственно, в штатном режиме работы они должны быть замкнуты (используется интерфейс I2C).

Подключение служебного разъема

Для удобства отладки программы и её записи в память микроконтроллера на плате часов предусмотрен штырьковый разъем с шагом контактов 1.27 мм (или набор соответствующих ему контактных площадок), на который выведены интерфейсы SWD и USART/I2C (канал 1), а так же линии питания часов (Vcc, GND), инверсный сигнал сброса микроконтроллера NRST и сигнал выбора источника загрузки программы микроконтроллера BOOT0. Назначение контактов разъема приведено в таблице 5.

Внимание! Из-за особенностей цоколевки использованного микроконтроллера возможна одновременная реализация только одного из двух интерфейсов: USART1 (может использоваться для программирования микроконтроллера) или I2C1 (используется для связи микроконтроллера и датчиков на плате часов). Для соединения выводов микроконтроллера с подтягивающими резисторами линий I2C и датчиками предусмотрены 2 перемычки на плате. Соответственно, в штатном режиме работы они должны быть замкнуты (используется интерфейс I2C), при загрузке программы по интерфейсу USART – разомкнуты.

Таблица 5 **Назначение контактов служебного разъема**

Контакт разъема*	Обозначение	Примечание
1	VCC	Напряжение питания микроконтроллера 3В
2	GND	Уровень 0В
3	BOOT0	Управление источником загрузки *
4	NRST	Инверсный сброс микроконтроллера
5	SWCLK	Линия интерфейса SWD *
6	SWDIO	Линия интерфейса SWD *
7	I2C1_SCL	Линия интерфейсов USART или I2C (USART1_TX или
		I2C1_SCL) *
8	I2C1_SDA	Линия интерфейсов USART или I2C (USART1_RX или
		I2C1_SDA) *

Примечание.

^{*} См. документацию на используемый микроконтроллер (например, RM0038 Reference manual).