Practice Midterm 2 Answer Key

Practice Midterm 2a

Ι.	11	L —	3

- 2. 13 + i
- 3. 4
- 4. -i
- 5. i
- 6. True.

Proof. Let $x \in X$. From xIx it follows that I is reflexive.

If $x, y, z \in X$ satisfy xIy and xIz, then from x = y and y = z we obtain x = z, so that xIz. Therefore, I is transitive.

Given $x, y \in X$ such that xIy and yIx, it immediately follows that x = y, whence I is antisymmetric.

7. True.

Proof. Symmetry and reflexivity are clear.

Suppose that $(m,n) \sim (m',n')$ and $(m',n') \sim (m'',n'')$. Adding the equalities

$$m + n' = m' + n$$
 and $m' + n'' = m'' + n'$

and subtracting m' + n' yields

$$m + n'' = m'' + n.$$

We conclude that \sim is transitive.

8. Answers will vary.

Practice Midterm 2b

1.
$$-4 + 3i$$

$$2. -5 + 3i$$

$$3. -11 - 60i$$

- 4. *i*
- 5. -1

6. True.

Proof. Let $(p,q) \in \mathbb{Z}^2$. From pq = pq it follows that $(p,q) \sim (p,q)$, whence \sim is reflexive.

Suppose that $(p,q) \sim (p',q')$ and $(p',q') \sim (p'',q'')$. If p'=0. Thus,

$$pq' = p'q$$
 and $p'q'' = p''q'$.

If p'=0, then it immediately follows that p=p''=0 and consequently that $(p,q) \sim (p'',q'')$. Hence suppose that $p \neq 0$. Multiplying the preceding equalities together provides

$$pp'q'q'' = p'p''qq'.$$

and dividing through by p'q' yields pq'' = p''q, so that $(p,q) \sim (p'',q'')$. Therefore, \sim is transitive. Finally, the symmetry of \sim follows directly from that of the relation = on \mathbb{Z} .

7. True.

Proof. Let $m \in \mathbb{N}$. Since $m^1 = m$, it follows that R is reflexive.

Suppose that $m, n, p \in \mathbb{N}$ such that mRn and nRp. Thus, there are $k, \ell \in \mathbb{N}$ with $m^k = n$ and $n^\ell = p$. Raising each side of the first equality to the power of ℓ provides

$$m^{k\ell} = n^{\ell} = p$$

from which follows mRp. Thus, R is transitive.

Now suppose that $m, n \in \mathbb{N}$ satisfy mRn and nRm and let $k, \ell \in \mathbb{N}$ such that $m^k = n$ and $n^\ell = m$. If either k or ℓ is equal to 0, then m = n = 1 and we are done. Otherwise, $m^k = n$ yields $m \le n$, while $n^\ell = m$ provides $n \le m$, and we conclude that m = n. Therefore, R is antisymmetric. \square

8. Answers will vary.

Practice Midterm 2c

$$1. -12 + 18i$$

2.
$$-\frac{1}{5} + \frac{2}{5}i$$

3.
$$-3 - i$$

4.
$$\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}$$

5.
$$\frac{3}{10} + \frac{i}{10}$$

6. True.

Proof. Let $m \in \mathbb{N}$. As m < m we deduce that \leq is reflexive.

Suppose that $m, n, p \in \mathbb{N}$ with $m \leq n$ and $n \leq p$. As $m \leq p$ it follows that \leq is transitive.

Let $m, n \in \mathbb{N}$. If $m \leq n$ and $n \leq m$, then m = n and we conclude that \leq is antisymmetric.

7. True.

Proof. Let $A \subseteq X$. Since $A \subseteq A$ it follows that \subseteq is reflexive.

Suppose that $A, B, C \subseteq X$ with $A \subseteq B$ and $B \subseteq C$. It follows that $A \subseteq C$ and we deduce that \subseteq is transitive.

If $A, B \subseteq X$ with $A \subseteq B$ and $B \subseteq A$, then A = B and we conclude that \subseteq is antisymmetric. \square

8. Answers will vary.