The Dollar Variance Risk Premium

Yong Ho Eom ¹ Woon Wook Jang² Sungjune Pyun^{1,3}

Keon Hee Lee¹

¹ Yonsei School of Business

²Yonsei University

³Presenter

SNU Seminar October 21 2024

The US market and the US Dollar

- The financial market of the United States plays a crucial role in the world
 - US market cap of equity and bonds exceeds 40% of the world
 - USD is the world's principal reserve currency
 - USD is also the primary invoicing currency in international trade (e.g., Goldberg and Tile 2009, Gopinath 2015)
- - The US holds a net dollar carry position, which earns a risk premium, potentially for bearing global uncertainty risk.
 (e.g., Lustig, Roussanov, and Verdelhan 2014)
 - The value of USD moves against the global business cycle (e.g., Bruno and Shin 2017; Maggiori 2017)

The dollar factor and the business cycle

- ▶ Bruno and Shin 2017: The dollar factor generates a global business cycle
 - Non-US firms frequently issue dollar-denominated bonds.

A non	-US firm
Local	USD- Denominated debt
currency	
	Local Currency

The dollar factor and the business cycle

- ▶ Bruno and Shin 2017: The dollar factor generates a global business cycle
 - Non-US firms frequently issue dollar-denominated bonds.

 USD appreciation leads to tighter credit condition around the world. Hence, dollar fluctuation generates a global business cycle

See also, Gopinath and Stein (2021), Bruno and Shin (2023), etc

• Dollar appreciates when global uncertainty increases

The US has a high exposure to the global factor

- ▶ Maggiori 2017: US has high exposure to global risk
 - Developed countries (e.g., US) have a better financed intermediary who will invest in risky assets.
 - \rightarrow Since their funding ability is greater they have a better incentive to take more risk
 - Emerging markets are capital constrained. Hence, instead, they take precautionary savings in safer USD bonds
 - This pattern will strengthen when global uncertainty increases
- ▷ Developed markets have a greater exposure to the global uncertainty risk. They will earn more and consume more
- □ Gopinath and Stein (2024), for example, show that a single dominant currency will emerge

The risk premium on dollar uncertainty

How does the risk premium on dollar uncertainty affect the risk premium of dollar investments?

- ▶ The US investor may require a higher risk premium for investing in a non-US currency (standard view)
 - USD is a safe haven. Because dollar uncertainty represents global uncertainty, US (global) investors may require a higher risk premium for international investments.
- The non-US investor may require a higher risk premium for investing in USD assets (alternative view)
 - Despite investing in a safe currency, international investments are riskier than local investments

Local currency appreciation and depreciation

- ▶ Whether market participants prefer currency de/appreciation depends on their net position on foreign currency.
 - The US holds a net negative position in dollar-denominated debt (Gourinchichas and Rey 2007, Caballero, Frahi, and Gourinchas 2008, Jiang, Krishnamurthy, and Lustig 2021)
 - ightarrow US prefers dollar depreciation and other countries prefers dollar appreciation (=local currency deprecation)
 - Local currency depreciation also stimulates economic growth by improving the current account (Rodrik 2008)
 - International investors suffer from local currency appreciation (e.g., Jansen, Shin, and von Peter 2024)
- ⇒ International investors dislike local currency appreciation

Asymmetric effects on marginal utility

- ▶ International investors dislike local currency appreciation
- ▶ Evidence shows that investors treat upside and downside risk differently

- ▷ Segal, Shaliastovich, and Yaron 2015; Feunou, Jahan-Parvar, and Okou 2018; Kilic and Shaliastovich 2019: Bollerslev 2022
- ▷ In the currency market, what corresponds to upside/downside risk is obscure.
- ➤ This implies that investors dislike local currency appreciation more than they like local currency depreciation.

A preview of the main findings

- ➤ The dollar variance risk premium (DVP) estimated from currency options (controlling for the US equity VRP) predicts USD appreciation.
 - suggest that non-US investors take dollar investments as "risky" even though a dollar position can hedge global risk.
- ➤ The risk premium required by US and non-US investors can be separated: we decompose the variance into appreciation and depreciation risk:
 - We find that a high risk premium on appreciative currency variance leads to future currency depreciation (for both USD and non-US currencies)
- ➤ The upside variance premium of safe (Japan and Switzerland) currencies and the downside variance risk premium of others risky currencies contains information on global/US risk premium.

Conclusion

Model setup

▶ When the market is complete, currency returns is represented by:

$$\Delta q_{t+1}^i = m_{t+1}^i - m_{t+1}$$

- Higher q^i means appreciation for currency i
- ullet m_{t+1}^i is the domestic SDF, m_{t+1} is the US SDF
- US is close to the world

$$\label{eq:definition} \rhd \ m^i_{t+1} - E_t[m^i_{t+1}] = \delta^i \sqrt{\frac{z^i_t}{2}} (v^i_{t+1} - 1) + \lambda^i \sqrt{\frac{z_t}{2}} (v_{t+1} - 1),$$

- v_{t+1}^i and v_{t+1} are i.i.d with Chi-square 1 (shocks to z)
- US SDF is denoted without superscript *i*
- We assume $\delta^i > \delta$ and $\lambda^i < \lambda$

Model setup

$$\Delta q_{t+1}^i - \textit{E}_t[\Delta q_{t+1}^i] = \underbrace{(\delta^i - \delta)}_{\text{Positive}} \sqrt{\frac{z_t^i}{2}} (v_{t+1}^i - 1) + \underbrace{(\lambda^i - \lambda)}_{\text{Negative}} \sqrt{\frac{z_t}{2}} (v_{t+1} - 1),$$

- \triangleright A higher q^i denotes higher currency value for i relative to USD
- \triangleright Because shocks to v^i and v_t are positively skewed:
 - A positive US/global variance shock appreciates USD and is likely to matter more to US investors
 - A positive foreign variance shock depreciates USD and is likely to be important for non-US investors

Conclusion

Model solution

The risk premium of investing in a non-US currency for the US investor:

$$\mathsf{Cov}_t(-m_{t+1}, \Delta q_{t+1}^i) = \delta \underbrace{(\delta - \delta^i)}_{\mathsf{Negative}} z_t^i + \lambda \underbrace{(\lambda - \lambda^i)}_{\mathsf{Positive}} z_t$$

- ▶ The foreign (non-US) currency will appreciate following periods of low non-US variance (z_t^i) and high US variance (z_t) .
- ▶ The two components cannot be identified by the variance risk premium on dollar because the dollar variance is positively related to both components:

$$\mathsf{Cov}_t(-m_{t+1}, \mathsf{Var}_{t+1}(\Delta q_{t+2}^i)) = (\delta^i - \delta)^2 z_t^i + (\lambda^i - \lambda)^2 z_t$$

Two components of the variance risk premium

 \triangleright Since uncertainty shocks are positively skewed, we can obtain the risk premium on z_i and z separately, using semi-variance and out-the-money option prices

(e.g., Fenuou et al 2017, Kilic and Shaliastovich 2019)

- z^i is related to the risk of foreign currency appreciation (upside DVP) and represents risk premium on USD investment.
- z is related to the risk of USD appreciation (downside DVP) and represents risk premium on non-USD investment.

Conclusion

Down and up currency variance risk premuim

$$CVRP = CVRP_t^U + CVRP_t^D$$
,

where

$$CVRP_t^U = Cov_t(m_{t+1}, (\delta - \delta^i)^2 z_{t+1}^i) = \delta(\delta^i - \delta)^2 \sigma z_t^i$$

$$CVRP_t^D = Cov_t(m_{t+1}, (\lambda - \lambda^i)^2 z_{t+1}) = \lambda(\lambda - \lambda^i)^2 \sigma z_t.$$

Empirically, these two components will be estimated from option prices and intraday trading data.

→ extension

Data sources

- ▶ Data on currency options from Bloomberg
- ▷ Intraday data from histdata.com
- Daily currency returns from Bloomberg
- ▷ AUD, CAD, CHF, EUR, GBP, JPY, and NZD against USD (2006-2022) – restricted by the availability of intraday data
- Show robustness using daily data using seven additional currencies − DKK, KRW, NOK, PLN, SEK, THB, and ZAR

Conclusion

Estimation

 \triangleright The currency variance risk premium ($CVRP_i$) of the currency pair between country i and USD

$$CVRP_{i,t} = E_t^Q[QV_{i,t}] - E^P[QV_{i,t}],$$
 (1)

- Q component from option prices, P component using HAR-RV
- ➤ The dollar variance risk premium (DVP) is the cross-currency average of CVRP

$$SRP = DVPU - DVPD$$

SRP = DVPU (USD depreciation) - DVPD (USD appreciation)

SRP using only European/USD pairs

SRP using only JPY/USD

SRP for safe (JPY, CHF) vs other currencies

→ extension

DVP and Equity VRP (Londono and Zhou 2018)

- Prediction: Unconditionally, the direction of the predictability of the DVP is unclear

	Dependent variable: currency returns							
	1-m	1-month		6-month		12-month		
DVP	-12.532***	-12.509***	-4.834***	-4.815***	-2.278***	-2.281***		
	(3.866)	(3.862)	(4.651)	(4.700)	(3.955)	(4.077)		
EVRP	1.643***	1.696***	1.368***	1.435***	0.929***	0.976***		
	(3.175)	(3.296)	(4.725)	(5.000)	(4.441)	(4.797)		
y us - y i	1.223**	1.963***	1.425**	2.402***	1.139**	1.892***		
	(2.011)	(2.554)	(2.252)	(2.855)	(2.247)	(3.019)		
Country FE	N	Υ	N	Υ	N	Υ		
Adj R ²	0.034	0.032	0.068	0.086	0.077	0.106		

Up and downside DVP

- If we decompose DVP into up (dollar depreciation) and downside components,
 - A high DVPU should lead to future dollar appreciation.
 - A high DVPD should lead to future dollar depreciation.

	Dependent variable: currency returns							
	1-m	onth	6-m	6-month		12-month		
DVP ^U	-79.351***	-83.062***	-40.511***	-44.085***	-24.437***	-26.971***		
	(5.926)	(6.223)	(5.587)	(6.212)	(5.763)	(6.766)		
DVP^{D}	52.996***	56.789***	33.237***	36.85***	21.916***	24.417***		
	(5.271)	(5.639)	(5.415)	(6.108)	(5.602)	(6.623)		
yus -yi	1.899***	3.235***	1.760***	3.073***	1.344***	2.314***		
	(3.431)	(4.748)	(2.887)	(3.745)	(2.795)	(3.882)		
Country FE	N	Y	N	Y	N	Υ		
Adj R ²	0.070	0.072	0.109	0.137	0.107	0.147		

Skewness risk premium

 $\, \triangleright \,$ We can replace the DVPU and DVPD by the difference between the two

		Dependent variable: currency returns						
	1-m	1-month		6-month		nonth		
DVP^U	-77.268***		-36.742***		-21.724***			
	(5.865)		(5.150)		(5.419)			
DVP^D	48.951***		25.921***		16.655***			
	(4.527)		(4.180)		(4.534)			
SRP		-60.886***		-30.512***		-18.822***		
		(5.306)		(4.669)		(4.978)		
DVP		-13.214***		-5.180***		-2.496***		
		(4.264)		(5.479)		(4.861)		
yus -yi	1.903***	1.917***	1.768***	1.772***	1.348***	1.350***		
	(3.407)	(3.411)	(2.843)	(2.846)	(2.781)	(2.784)		
EVRP	0.397	0.333	0.717***	0.710***	0.515***	0.521***		
	(0.812)	(0.681)	(2.914)	(2.894)	(3.001)	(3.042)		
Adj R ²	0.070	0.068	0.119	0.118	0.118	0.119		

Safe (JPY/CHF) vs risky currencies

- ▶ Much of the variation in USD valuation is driven by global risk
- ▶ We expect the downside component of non-safe CVRP to be the strongest predictor of non-US currency returns.

Panel A. DVP relative to risky currencies

	Dependent va	riable: currency returns
	1-month	12-month
$RDVP^{U}$	-43.056***	-14.843***
	(4.889)	(5.537)
$RDVP^{D}$	21.293***	10.429***
	(2.826)	(4.567)
RSRP	-30.974	*** -12.392***
	(4.042	2) (5.115)
RDVP	-10.174	*** -2.116***
	(3.903	3) (4.633)
yus - yi	1.933*** 1.924*	** 1.386*** 1.385***
	(3.266) (3.252	2) (2.830) (2.824)
EVRP	0.259 0.222	0.433*** 0.435***
	(0.527) (0.453	3) (2.672) (2.686)
Adj R ²	0.055 0.053	0.126 0.126

Danel B. DVD relative to safe currencies

Parier B. DVP relative to sale currencies								
	Deper	ndent variab	le: currency r	eturns				
	1-m	onth	12-m	nonth				
SDVP ^U	-10.660		8.392***					
SDVPD	(1.202) -22.383*		(2.663) -11.656***					
	(1.954)		(3.381)					
SSRP		3.841		9.952***				
SDVP		(0.424) -16.610***		(3.110) -1.924***				
y _{us} -y _i	0.920 (1.500)	(3.922) 0.977 (1.601)	1.181** (2.274)	(2.770) 1.183** (2.281)				
EVRP	1.415***	1.438***	0.561***	0.589***				
	(3.061)	(3.094)	(4.148)	(4.268)				
Adj R ²	0.030	0.031	0.082	0.084				

Predicting Dollar Index returns

- ▶ Much of the variation in USD valuation is driven by global risk
- Therefore, we would expect an identical pattern using the dollar index

		Dependent variable: Negative dollar index returns						
	1-m	onth	6-m	onth	12-n	nonth		
DVP^U	-47.281***	-47.281***			-15.614***			
	(3.421)		(3.812)		(3.110)			
DVP^D	28.342**		19.848***		13.257***			
	(2.144)		(3.463)		(2.807)			
SRP		-28.342**		-19.848***		-13.257***		
		(2.144)		(3.463)		(2.807)		
DVP		-18.939***		-5.336***		-2.357***		
		(7.003)		(4.740)		(3.700)		
Adj R ²	0.081	0.081	0.083	0.083	0.073	0.073		

Conclusion

- ▶ We provide an alternative explanation why a high DVP could lead to a dollar appreciation.
- ▶ The DVP contains information on the currency risk premium required by US and non-US investors
- Controlling for US risk, the DVP contains a risk premium required by the non-US investor
- ▷ Decomposing the DVP into upside and downside components, the downside DVP contains information on the risk premium of the US investor, and the upside contains non-US investor's risk premium
- ▷ For safe currencies, the upside and downside variance risk premiums are switched.

Extended Model

$$m_{t+1}^{i} - E_{t}[m_{t+1}^{i}] = \sum_{j \in \mathscr{I}} \delta_{j}^{i} \sqrt{\frac{z_{t}^{j}}{2}} (v_{t+1}^{j} - 1) + \lambda^{i} \sqrt{\frac{z_{t}}{2}} (v_{t+1} - 1),$$

- ▶ Each country has the highest exposure to own country's uncertainty risk (i.e., $\delta_i^j > \delta_i^k$ for all $k \neq j$)
- \triangleright Some countries (e.g., Japan) has a high exposure to global risk (λ^{Japan} is high).

Extended Model

$$m_{t+1}^i - E_t[m_{t+1}^i] = \sum_{j \in \mathscr{I}} \delta_j^i \sqrt{\frac{z_t^j}{2}} (v_{t+1}^j - 1) + \lambda^i \sqrt{\frac{z_t}{2}} (v_{t+1} - 1),$$

Case 1: Most countries

$$\mathit{CVRP}_t^U = \delta_i (\delta_i^i - \delta_i)^2 \sigma z_t^i + \sum_{j \neq i} \delta_j^i 1_{\delta_j^i > \delta_j} (\delta_j^i - \delta_j)^2 \sigma z_t^j$$

$$CVRP_t^D = \lambda(\lambda - \lambda^i)^2 \sigma z_t + \sum_{j \neq i} \delta_j^i 1_{\delta_j^i < \delta_j} (\delta_j^i - \delta_j)^2 \sigma z_t^j$$

Case 2 : Safe country

$$CVRP_t^U = \delta(\delta^i - \delta)^2 \sigma z_t^i + \lambda(\lambda - \lambda^i)^2 \sigma z_t + \sum_{j \neq i} \delta_j^i 1_{\delta_j^i > \delta_j} (\delta_j^i - \delta_j)^2 \sigma z_t^j$$

$$\textit{CVRP}_t^D = \sum_{i \neq j} \delta_j^i \mathbb{1}_{\delta_j^i < \delta_j} (\delta_j^i - \delta_j)^2 \sigma z_t^j$$

Does USD appreciate more to positive US variance shocks?

Table A1: Testing for asymmetric reaction to variance shocks

This table provides the results of the regression

$$\Delta q_{t+1}^i = \alpha_i + \beta_i \Delta VIX_{t+1}^2 + \gamma_i \mathbf{1}_{\Delta VIX_{t+1}^2 > 0} \Delta VIX_{t+1}^2 + \epsilon_{i,t+1},$$

where q^i is the log currency value of country i, VIX is the volatility index of the S&P 500 Index, and $1_{\Delta VIX_{t+1}^2>0}$ is an indicator variable that takes a value of 1 if the condition in the subscript is true. The regression is estimated currency-by-currency, using weekly returns and the index. The regression coefficients and the Newey-West adjusted standard errors (with a lag of 15) are reported in the table.

Currency	β_i Y_i	Adj-R ²	Currency	βi	\mathbf{Y}_{i}	Adj-R ²
AUD	-14.182*** -14.991***	0.322	DKK	-1.656	-6.682**	0.041
	(3.781) (3.403)			(0.619)	(2.392)	
CAD	-8.933*** -10.531***	0.269	KRW	-11.392***	-7.697***	0.258
	(4.076) (5.451)			(2.757)	(2.638)	
CHF	0.722 -4.353	0.003	NOK	-6.356***	-14.027**	0.135
	(0.269) (1.452)			(2.815)	(2.276)	
EUR	-1.412 -6.979**	0.041	PLN	-10.013**	-12.747***	0.166
	(0.527) (2.479)			(2.179)	(2.853)	
GBP	-2.279 -11.602***	0.101	SEK	-5.853**	-7.976**	0.084
	(0.984) (4.150)			(1.968)	(1.992)	
JPY	5.414*** 7.183**	0.094	THB	-0.245	-3.482**	0.018
	(3.018) (2.540)			(0.195)	(2.435)	
NZD	-10.711*** -13.246***	0.194	ZAR	-16.223**	-8.885	0.160
	(2.895) (3.343)			(2.245)	(1.096)	

Does USD appreciate more to positive US variance shocks?

Table A1: Testing for asymmetric reaction to variance shocks

This table provides the results of the regression

$$\Delta q_{t+1}^i = \alpha_i + \beta_i \Delta VIX_{t+1}^2 + \gamma_i \mathbf{1}_{\Delta VIX_{t+1}^2 > 0} \Delta VIX_{t+1}^2 + \epsilon_{i,t+1},$$

where q^i is the log currency value of country i, VIX is the volatility index of the S&P 500 Index, and $1_{\Delta VIX_{t+1}^2>0}$ is an indicator variable that takes a value of 1 if the condition in the subscript is true. The regression is estimated currency-by-currency, using weekly returns and the index. The regression coefficients and the Newey-West adjusted standard errors (with a lag of 15) are reported in the table.

Currency	β_i Y_i	Adj-R ²	Currency	β_i Y_i	Adj-R ²
AUD	-14.182*** -14.991**	* 0.322	DKK	-1.656 -6.682**	
	(3.781) (3.403)			(0.619) (2.392)	
CAD	-8.933*** -10.531**	* 0.269	KRW	-11.392*** -7.697**	* 0.258
	(4.076) (5.451)			(2.757) (2.638)	
CHF	0.722 -4.353	0.003	NOK	-6.356*** -14.027*	* 0.135
	(0.269) (1.452)			(2.815) (2.276)	
EUR	-1.412 -6.979**	0.041	PLN	-10.013** -12.747*	** 0.166
	(0.527) (2.479)			(2.179) (2.853)	
GBP	-2.279 -11.602**	* 0.101	SEK	-5.853** -7.976*	0.084
	(0.984) (4.150)			(1.968) (1.992)	
JPY	5.414*** 7.183**	0.094	THB	-0.245 -3.482*	0.018
	(3.018) (2.540)			(0.195) (2.435)	
NZD	-10.711*** -13.246**	* 0.194	ZAR	-16.223** -8.885	0.160
	(2.895) (3.343)			(2.245) (1.096)	

Predicting EUR/USD returns

Panel A. Us	ing upside an	d downside C\	/RP		Panel B.	Using ske	wness measi	ıres	
	D	ependent varia	ble: EUR/U	SD		De	pendent varia	able: EUR/	USD
	1-m	onth	12-r	month		1-m	onth	12-r	month
CVRP _{FII} U	-108.996**	-126.469***	-8.635	-14.080**	SRP _{EU}	-86.783**	-93.516***	-10.598	-12.967**
	(2.386)	(2.824)	(1.226)	(2.027)		(2.222)	(2.782)	(1.613)	(2.080)
CVRP _{FU} D	63.563*	64.248**	10.856*	11.057**	CVRP _{EU}	-22.886**	'-29.851**	0.814	-1.609
	(1.895)	(2.461)	(1.798)	(1.994)		(2.964)	(2.470)	(0.746)	(1.313)
CVRP.IP ^U		23.407**		6.507**	SRP_{JP}		20.719**		6.002*
		(1.976)		(2.032)			(2.111)		(1.751)
CVRP.PD		-21.115**		-5.328	CVRP _{JP}		0.763		0.523
		(2.023)		(1.321)			(0.210)		(0.507)
yus - yeu	0.618	1.445	2.129**	2.319**	yus - y F	0.796	1.445	2.103**	2.319**
	(0.425)	(0.874)	(2.118)	(2.087)		(0.559)	(0.874)	(2.107)	(2.087)
Adj R ²	0.066	0.085	0.085	0.103	Adj R ²	0.081	0.083	0.073	0.103