Search-Based Procedural Content Generation: A Taxonomy and Survey http://ccq.doc.gold.ac.uk/wp-content/uploads/2016/03/togelius_tciaig12.pdf

- search-based-procedural content generation -> applying evolutionary and other metaheuristic search algorithms to automatically generate content for games
- Al focuses on creative and artistic side of game design
- Algorithms that can produce content on their own can potentially save significant expense
- PCG refers to creating game content automatically through algorithmic means -> all aspects of game other than NPC behavior and engine itself
- -> terrain, maps, levels, stories, dialogue, quests, characters, rule-sets, dynamics and weapons
- NPC Al already well documented
- rich literature on pcg of textures
- PCG algorithms create specific content based on short description (seed)
- generation process often (not always) random
- pcg desirable because
 - content can be compressed until needed -> low memory consumption
 - avoid expense of manually creating game content
 - PCG might allow emergence of completely new types of games with game mechanics built around content generation -> games with infinite replay value
 - PCG can augment limited human imagination -> inspiration for human designers
- PCG WIKI http://pcg.wikidot.com/
- PCG BOOK http://pcqbook.com/
- OFFLINE VS ONLINE
- Online
 - instantly generates, fast, predictable runtime & quality
- Offline
 - algorithm suggest layouts which are then edited by human designer before shipping
- NECESSARY VS OPTIONAL CONTENT
- Necessary
 - required by the player to progress
 - always needs to be correct -> intractable dungeon / unplayable rule set / unbeatable monsters not acceptable
 - appropriate difficulty
- Optional
 - content that the player can choose to avoid
 - acceptable if unusable weapons and floor layouts are generated
- -> analysis of what content is optional should be done on a game-for-game basis
- Borderlands randomly generated weapons
- RANDOM SEEDS VS PARAMETER VECTORS
- Random Seed
 - seed as input for random number generator
- Parameter Vector
 - multidimensional vector of real valued parameters that specify properties of content as input

- e.g. dungeon generator -> #rooms, branching factor of corridors, clustering of item locations, etc.
- degrees of control

- STOCHASTIC VS DETERMINISTIC GENERATION

- amount of randomness in content generation
- right amount of variation
- Stochastic
 - mutation, random seed rely on stochasticity -> search-based classified as stochastic
- Deterministic
 - always produce same content given same parameters

- CONSTRUCTIVE VS GENERATE-AND-TEST

- Constructive
 - generates content once and is done with it
 - needs to make sure that content is correct / good enough while being constructed
 - e.g. use of fractals to generate terrains
 - markov chain algorithm
- Generate-and-Test
 - generate and test mechanism
 - candidate content instance is generated and then tested according to some criteria
 - process continues on until content is good enough
 - evolutionary algorithms

- Search-Based Content Procedural Content Generation

- test function does not simply accept or reject, rather grades using one or a vector of real number
- fitness / evaluation function
- aim to produce new content with higher value through previously assigned fitness value
- genotype instructions for creating a level
- phenotype actual game level
- direct / indirect encodings
- well studied case: candidates represented as vectors of real numbers
 - dimensionality -> too short / curse of dimensionality
 - high locality -> small change to genotype -> small change to phenotype & fitness
 - representation capable of representing all interesting solutions

- EVALUATION FUNCTIONS

what should be optimized? measures e.g. emotions

Direct

- features extracted from generated content and directly mapped to fitness
- element of personalization possible
- theory-driven -> designer guided by intuition and/or theory of player experience
- data-driven -> based on data collected e.g. questionnaires or physiological measurements

- Simulated

- based on artificial agent playing through parts of a game involving content being evaluated
- features extracted from observed gameplay

- static -> static agent
- dynamic -> dynamic agent -> incorporates change / learning
- generally more computationally expensive than direct
- dynamic time consuming, ruling out online content generation

- Interactive

- score content based on interaction with a player in the game
- fitness evaluated during actual gameplay
- data collected explicitly (questionnaires) / implicitly by measuring
- explicit needs to be well integrated into the game
- implicit noisy, inaccurate, low resolution and/or delayed, multimodal data -> may be technically infeasible and/or expensive

SURVEY

- Rules and Mechanics

- Hom & Marks evolved two-player board game rules
 - rule represented directly as expression trees ZOG game description language
 - evaluation function simulation-based, static and theory-driven
- Tongelius & Schmidhuber rulesets evolved offline for grid-based games in which player moves an agent (Pac-Man)
 - Rulesets represented as fixed-length parameter vectors
 - evaluation function simulation-based, dynamic and theory-driven
 - evolutionary reinforcement learning algorithm learns ruleset
- Browne developed Ludi system for offline design of rules for board games using genetic programming
 - game rules represented directly as expression trees
 - evaluation function complex combination of direct measures and static simulation-based measures
- Smith & Mateas provide representation of game rules for simple games
 - game rules and ontologies represented indirectly as answer sets in answer set programming (ASP) -> form of constraint programming
 - generate-and-test procedure
- Salge & Mahlmann propose simulation-based evaluation function based on information-theoretic concept of relevant information
 - relevant information of game mechanic defined as minimum amount of information needed to realize optimal strategy

- Puzzles

- Oranchak constructed genetic algorithm-based puzzle generator for Shinro (Japanese number puzzle)
 - puzzles directly encoded as matrices
 - evaluation function simulation-based through solver
- Ashlock generated chess mazes and chromatic puzzles using evolutionary computation
 - puzzles represented directly
 - evaluation function: simulation-based and theory-driven
 - dynamic programming approach tries to solve each puzzle

Tracks and Levels

- Togelius et al. designed system for offline/online generation of tracks for simple racing game
 - Tracks represented as fixed-length parameter vectors
 - racing track created by interpreting parameter vector as parameters for b-spline
 - evaluation function simulation-based, static and personalized

- candidate tracks evaluated by neural network-based car controller
- Pedersen et al. modified open-source clone of Super Mario Bros to allow personalized level generation
 - levels represented as short parameter vector describing number, size and placement of gaps
 - evaluation function direct, data-driven personalized using neural network converting level information to emotional state predictors
- Sorenson & Pasquier devised indirect game level representation for number of different but related genres
 - representation based on "design elements" (e.g. platforms, enemies)
 - design elements laid out spatially in genome to simplify crossover
 - Levels first tested on general validity -> if test fails relegated to second population using FI-2Pop evolutionary algorithm designed for constraint satisfaction problems
 - evaluation function direct or weakly simulation-based theory-driven
- Jennings-Teats et al. describe initial work towards creating platform game levels that adapt difficulty to human player during runtime
 - generation process based on generate-and-test with optimization mechanisms
 - level parts evaluated by a number of critics based on acquired difficulty ratings of level segments

- Terrains and Maps

- Frade et al. evolved terrains for Chapas
 - terrain represented indirectly as expression trees which were evolved with genetic programming using approach similar to CPPN encoding
 - evaluation function direct and theory-driven scores maps depending on largest connected area of flat terrain
- Togelius et al. designed method for generating maps for RTS games
 - positions of bases and resources directly represented as coordinates
 - other terrain features represented more indirectly
 - collection of direct and lightly simulation-based theory-driven evaluation functions used
 - functions directly motivated by gameplay considerations and to a large extent based on A* search algorithm
 - multiobjective evolutionary algorithm MOEA
- constructive methods not search based
 - generation based on fractals
 - diamond-square algorithm
 - agent-based simulated erosion
 - cellular automata
 - Diorama map generator using answer set programming
- Ashlock et al. proposed indirect search-based method for landscape generation based on evolvable L-system representation
 - uses approach to evolve fractal landscapes to fit specific shapes

- Narrative and Storytelling

- constructive and generate-and-test approaches
- core mechanism version of classical AI planning
- Wardrip-Fruin's book
- Optional Content
- Weapons
- Hastings et al. developed multiplayer game built on search-based PCG Galactic Arms Race

- Weapons represented indirectly as variable-size vectors of real values
- evaluation function interactive, implicit and distributed
- weapon evaluated based on user usage
- Same authors added a method that enables more directly player-controlled weapon generation
 - players allow to perturb individual genes of their choice

- Buildings

- Marin et al. designed system for interactively evolving buildings for Subversion
 - buildings represented indirectly in custom mark-up language, describing each building from bottom up as stack of three-dimensional objects
 - explicit interactive evaluation function user selects two parents -> system produces 16 offspring buildings

- Camera Control

- Burelli & Yannakakis devised method for controlling in-game camera movements to keep specified objects or characters in view / out of view
 - camera configurations evaluated by calculating visibility of selected objects
- Yannakakis et al. introduce notion of affect-driven camera control within games, associating player affective to camera profiles and player physiology
 - affective models constructed using neuroevolutionary preference learning on questionnaire data
 - camera profiles represented as set of 3 parameters: distance height from player character and frame-to-frame coherence
 - direct, data-driven evaluation function represented by neural network predictor of emotion

- Trees

- Talton et al. developed system for offline manual exploration of design spaces of 3D-models
 - system lets user view and navigate space
 - interactive evaluation function
 - tree models represented as fixed-length vectors of real-numbers
 - underlying algorithm comparable to estimation of distribution algorithm EDA

- Major research challenges in SBPCG

- Which type of content are suitable to generate?
 - which types can be generated well, fast and reliable enough
- How can we avoid catastrophic failure?
 - PCG reliability
- How can we speed up generation?
 - speed up generation process as much as possible
- How is game content represented?
 - useful to have a set of principles and best practices for content representation
- How can player models be incorporated into evaluation functions?
 - advantageous to move to data-driven evaluation functions based on experiments on real players
- Can we combine interactive and theory-driven evaluation functions?
 - combine interactive evaluation of content with data-driven evaluation functions, allowing models to inform each other

- Can we combine search-based PCG with top-down approaches?
 - hybrid approaches
- How can we best assess the quality and potential of content generators?
 - assess other properties of content generators

PCGRL: Procedural Content Generation via Reinforcement Learning https://arxiv.org/pdf/2001.09212.pdf

- search policies that generate game content
- at each step policy asked to take action that leads to highest expected final level quality
- advantages over existing methods
 - generating a new level once a model has been trained is much faster since no search needs to be performed
 - comes at cost of having a long training phase
 - no training data necessary
 - incremental nature of trained policies makes them more suitable for interactive and mixed initiative approaches
- iterative content generation
 - start with a level populated by random tiles
 - at each step agents is allowed to make a small change
 - change will be judged by the system with respect to a target goal for the level and assigned a reward
 - system also determines termination
- 3 part framework
- Problem module
 - stores information about generated level such as goal, reward function
- Representation module
 - responsible for transforming current level into a viable observation for the agent
- Change percentage
 - limits number of changes agent can affect in the content over the course of an episode

Search-based procedural content generation for GVG-LG

https://reader.elsevier.com/reader/sd/pii/S1568494619306908?token=4EC17E933F D0626A5C9DC4F76D3708E02ABA89DF97BE1DAFDC3746CCA2F045567958F86 E88D5A403EC58CF6C9719E2D8

- PCG refers to the algorithmic generation of game content with limited human intervention
- constructive, generate and test, machine learning based
- level generation requires variation, coherent style, speed and correctness
- re-usability and cost of generators are problematic
- FI2PO algorithm
 - maintains set of two populations feasible / infeasible
 - feasible -> solutions that satisfy constraint, infeasible vice versa
 - levels represented as 2D array of tiles
 - each tile consists of array of strings representing all sprites
 - generator uses one-point crossover which swaps 2 chromosomes around a random tile

- create, destroy and swap mutations
- simulation-based fitness and constraint evaluation
- Fitness metrics
 - Aesthetics
 - Density
 - Reachability
 - Number of room structures
 - Symmetry
 - Balance
 - Difficulty
 - Number of enemies in a level
 - Enemy sparsity
 - Percentage of empty spaces
 - Number of isolated elements
 - Number of goal sprites

Computational Creativity for Valid Rube Goldberg Machines - http://computationalcreativity.net/iccc2018/sites/default/files/papers/ICCC_2018_paper_19.pdf

- "RGMs should work but they also need to capture attention. The more theatrical and funny your machine is, the better it will score!"
- artificial intelligence system to create novel science experiments
- RGM good at engaging students and helping them gain deeper understanding of difficult concepts

An Angry Birds Level Generator with Rube Goldberg Machine Mechanisms http://www.ice.ci.ritsumei.ac.jp/~ruck/PAP/cog2019-abdullah.pdf

- method for generating levels that feature a domino effect, allowing them to be completed by one shot of a bird
- RGM machine intentionally designed to perform a simple task in an indirect and over-complicated fashion
- machines consist of a series of simple devices that are linked together to produce a domino effect
- each device triggers next one and original goal is achieved after many steps
- RGM educational effectiveness in motivation
- innovative humorous unconventional nature
- RGM have strong potential in entertaining people who watch them
- levels generated using predefined set of objects -> segments
- segments chained using information of previous segments output destination
- process repeated until desired number of segments or max level boundary reached
- level generated as combination of segments containing various objects
- input object that eventually results in movement of output object
- position of segment of interest determined by output destination of preceding one
- structures generated as set of several layers stacked on top of each other
- layer consists of blocks of same type but with different materials
- blocks in a layer are arranged symmetrically according to its base layer

- evaluation factors: stability, running time, expressivity, perfect-shot rate
- dynamic measure

Generating Angry Birds-Like Levels With Domino Effects Using Constrained Novelty Search

- generate Angry Birds levels featuring RGM mechanism using Constrained Novelty Search (CNS)
- level must satisfy several rules
 - structure stable
 - all pigs must be destroyed when structure collapses
 - when collapsing one object outside boundary flying
- variables for structures
 - structure boundary
 - input / output object
 - input / output direction
 - output position
- genotype 2-dim array with integer-type identifiers corresponding to objects
- simulation process to evaluate individuals
- feasible individual scored upon novelty score
- diversity measured through visual distance
- Fitness function consisting of
 - stability, destroyed pigs and object flying outside boundary
- structure selection based on connecting sections in- and outputs
- -> higher diversity to previous algorithm

Thesis Proposal

- eng?
- für wen?
- PCG
- mehr Nebenbedingungen?
- RGM wie genau generieren?
- objekte?
- andere arbeiten
- framework oder selber -> UNITY
- paper mit ideen suchen ähnliche themenrichtung