Fondamenti di controlli automatici Un goliardico riassunto

Ollari Dmitri

29 dicembre 2022

Indice

1	Cor	ıtrollo	attivo di un processo
	1.1	Gener	alità sul concetto di Sistema
		1.1.1	Modello matematico
		1.1.2	Sistema statico e dinamico
		1.1.3	Insieme dei behaviors
		1.1.4	Linearità
		1.1.5	Stazionarietà
	1.2	Contro	ollo in azione diretta o in retroazione
		1.2.1	Controllo ad azione diretta
		1.2.2	Controllo in retroazione
		1.2.3	Confronto tra controllo ad azione diretta e in retroazione
		1.2.4	Esamina delle strategie di controllo in condizioni di perturbazione
2	Mo	dellisti	ica ed equazioni differenziali lineari
	2.1	Cenni	di modellistica
		2.1.1	Ripassino di circuiti elettrici
		2.1.2	Esempio RLC
		2.1.3	Esempio di schema meccanico
	2.2	Equaz	zioni differenziali lineari

Elenco delle figure

1.1	Esempio di controllo diretto	4
1.2	Esempio controllo in retroazione	4
2.1	Resistore	5
2.2	Induttore	5
2.3	Condensatore	5
2.4	Esemplo circuito RIC	6

Capitolo 1

Controllo attivo di un processo

1.1 Generalità sul concetto di Sistema

Un sistema è un complesso in cui si possono definire grandezze che prendono il nome di variabili(nel tempo).

1.1.1 Modello matematico

Il modello matematico descrive un sistema con equazioni e parametri, le due distinzioni principali sono:

• MIMO: sistemi multivariabili

• SISO: sistemi scalari

1.1.2 Sistema statico e dinamico

Un sistema è statico quando l'uscita al tempo t dipende soltanto dal valore all'ingresso al tempo t.

Un sistema è dinamico quando l'uscita al tempo t dipende dal segnale all'ingresso compreso nel periodo $(-\infty, t)$.

Nel caso di sistemi dinamici vengono introdotti i concetti di:

- sistma in quiete
- sistema in condizioni asintotiche
- sistema a regime

1.1.3 Insieme dei behaviors

 β è l'insieme di tutte le possibili coppie causa effetto associate al sistema.

1.1.4 Linearità

Un sistema si dice lineare se rispetta il principio di sovrapposzione degli effetti.

1.1.5 Stazionarietà

Un sistema si dice stazionario (invariante nel tempo) se il ritardo (differenza di tempo) T che si ha tra segnale A e segnale B sia $\forall T \in \mathbb{R}$

1.2 Controllo in azione diretta o in retroazione

Il controllo attivo è distinguibile in:

- \bullet azione diretta (feedforward) o ad anello aperto o in catena aperta
- retroazione(feedback) o ad anello chiuso o in catena chiusa

1.2.1 Controllo ad azione diretta

L'azione di comando dipende da:

- obiettivo perseguito
- informazioni dul modello del sistema controllato
- disturbi agenti sul sistema

1.2.2 Controllo in retroazione

- obiettivo perseguito
- informazioni sul modello del sistema di controllo
- disturbi agenti sul sistema
- variabile controllata

1.2.3 Confronto tra controllo ad azione diretta e in retroazione

Figura 1.1: Esempio di controllo diretto

Nel caso di controllo diretto come nelal figura qui sopra, la y si ottiene facendo:

$$y = Pu = P(C_d r) = PC_d r \tag{1.1}$$

Figura 1.2: Esempio controllo in retroazione

Nel caso si un controllo retrazionato la y si ottiene:

$$y = \frac{PC_r}{1 + PC_r} \cdot r \tag{1.2}$$

1.2.4 Esamina delle strategie di controllo in condizioni di perturbazione

Nel caso di controllo diretto l'errore si aggira intorno al $\pm 20\%$.

Nel caso di sistema retroazionato l'errore di inseguimento si aggira tra in 0.415% e il 0.621%.

Capitolo 2

Modellistica ed equazioni differenziali lineari

2.1 Cenni di modellistica

Mediante la modellistica si costruiscono modelli matematici dei sistemi partendo da leggi fondamentali o partendo da dati sperimentali.

2.1.1 Ripassino di circuiti elettrici

Figura 2.1: Resistore

$$V_R = Ri (2.1)$$

$$\xrightarrow{i}$$
 \circ $\xrightarrow{V_L}$ \circ

Figura 2.2: Induttore

$$V_L = L\frac{di}{dt} = LDi (2.2)$$

Figura 2.3: Condensatore

$$V_C = \frac{Q}{C} = \frac{1}{C} \int_{-\infty}^t i(t)dt \Rightarrow DV_C = \frac{i}{C}$$
 (2.3)

Figura 2.4: Esempio circuito RLC

2.1.2 Esempio RLC

$$V_i = V_L + V_R + V_C \tag{2.4}$$

$$V_i(t) = LDi(t) + Ri(t) + \frac{1}{C} \int_{-\infty}^t i(t)dt$$
(2.5)

Posso trasformare il tutto con le equazioni differenziali in:

$$LD^2i + RDi + \frac{1}{C}i = Dv_i \tag{2.6}$$

Costruendo un modello matematico del circuito RLC si ottiene:

$$(LCD^2 + RCD + 1)v_u = v_i (2.7)$$

2.1.3 Esempio di schema meccanico

Penso di balzarlo perchè non faccio meccanica.

2.2 Equazioni differenziali lineari

I sistemi scalari si possono rappresentare mediante equazioni differenziali lineari.