

J.A.R.F.I.S.

(Just A Random Fine Intelligent System)

Contributors: Somya Panda, Andy Liang and Daryl Redmond

Contents

- Project Objective(s)
- Model Summaries
- Deep Learning Neural Network Approach
- Times-Series Approach
- Decision Tree & Random Sampling
- Postmortem/Next Steps

Project Objective(s)

 Determine which model yields the best predictive result when analyzing historical stock data

Model Summaries

- Neural Network
 - A LSTM RNN model to predict entry and exit points that might generate profitable trades
 - Sequential model with four layers
- Time-Series
 - Univariate time series modelling using ARIMA to forecast closing stock price.
 - Multivariate time series modelling with correlated assets and sentiment scores as dependent variables using ARIMA.
- Decision Tree & Random Sampling
 - Create a decision tree model to determine entry & exit point of the selected public equity
 - Determine the precision through multiple random sampling model

Neural Network Approach

Models have difficulty predicting stock returns

Historical returns to predict future returns

Standard deviation to predict future returns

Data Cleanup and Model Training

- Significant time was spent trying to generate results that generated trade recommendations when trying to predict future returns using historical returns
- A number of window time frames were tested
- Different train/test splits were tried
- Different optimizers and loss functions were test as well
- Finally, it was determined that a different approach should be taken
- Rather than predict returns, predict prices then calculate returns

Standard deviations to predict future prices the calculate returns

Model Evaluation

 A practical approach for model evaluation was our focus - does the model generate trade recommendations with a second dimension of profitability

- Trading signals:
 - If predicted return is greater than zero then generate buy signal
 - If predicted return is less than zero then generate sell signal
- Outcome predicted trading signals overlaid actual returns:
 - Predicted buy signals purchased 100 shares on that day at the actual closing price of the stock
 - Predicted sell signals sold those 100 shares on that day at the actual closing price of the stock
 - Between April 2018 and May 2021 the model generated over 100 entry and exit pairings
 - For a cumulative profit over \$12k

Time-Series Analysis Approach

Historical Stock Price

 Pulled 10 years historical data of Microsoft from Yahoo Finance (https://finance.yahoo.com/)

Time Series Modeling Using ARIMA

AutoRegressive Integrated Moving Average

In this project, we performed

- 1. Univariate Time Series Modeling
- 2. Univariate Time Series Modeling With Rolling Forecast
- 3. Multivariate Time Series Modeling With Correlated Assets
- 4. Multivariate Time Series Modeling With Sentiment Scores

Univariate Time Series Modeling

- ADF (Augmented Dickey-Fuller) Test for stationarity check
- Model parameters (p,d,q) (1,1,1) ACF & PACF graphs
- Train and evaluate model
- Performance
 - \circ MSE = 0.073
 - o RMSE = 0.270
 - MAPE = 0.042

Rolling Forecast Using Auto ARIMA

- Selects the best model parameters using a grid search
- Retrain model with new data points. Here new data points are taken from test data.
- Performance
 - \circ MSE = 0.000
 - o RMSE = 0.028
 - MAPE = 0.004

Multivariate Time Series Modeling With Correlated Assets

- Independent variables related stocks, indices and currency exchange
- Evaluate combination of p, d and q values to find the best parameters -(2,0,1)

```
model = ARIMA(endog=Y_train,
exog=X train ARIMA,
order=(2,0,1))
```

- Performance
 - \circ MSE = 0.001
 - o RMSE = 0.037

Correlation Matrix And Scatter Plot

Multivariate Time Series Modeling With Sentiment Scores

- Calculate percent change of the closing prices
- Pulled latest articles of Microsoft using NewsAPI (https://newsapi.org/)
- Compare current sentiment score with next day percent change closing price

Prediction Of Stock Price Using Sentiment Scores

Dep. Variable:

Model:

Method:

0.035 0.346 0.729 -0.056 0.080

ar.L1.Pct_change -0.1772 0.363 -0.488 0.625 -0.888 0.534

- Compound score is the dependent variable
- Evaluate combination of p, d and q values to find the best parameters - (1,0,0)

model ARIMA = ARIMA (endog=Y train, exog=X train, order=(1,0,0)

- Performance
 - MSE=0.000
 - RMSE=0.011

Comparison Between Percent Change In Closing Prices and Sentiment

Word Cloud

Decision Tree & Random Sampling Approach

Preparation & Cleanup

- Utilize yfinance to pull in historical price
- Remove columns that are unnecessary to the model
- Created 2 new columns that will help determine and predict entry and exit point
 - Daily Return
 - Rolling Volatility
- Split test and training variables and scaled the X variables
- Create model using DecisionTreeClassifier


```
ticker = 'MSFT'
start_date = '2011-01-01'
end_date = '2021-05-31'
stock_df = yf.download(ticker, start=start_date, end=end_date)
stock df['Daily Return'] = stock df['Close'].pct change().dropna()
stock_df['Adj Daily Return'] = stock_df['Close'].pct_change().dropna().shift()
#stock df['Daily Rolling Volatility'] = stock df['Daily Return'].rolling(window=10).std()
stock df['Adj Daily Rolling Volatility'] = stock df['Daily Return'].rolling(window=10).std().shift()
stock_df['Decision'] = np.where(stock_df['Adj Daily Return'] > 0, 'Entry' , 'Exit')
stock df.dropna(inplace=True)
stock_df.drop(['Close', 'High', 'Low', 'Adj Close', 'Volume'], axis=1, inplace=True)
stock_df.to_csv('Export Files\decision df.csv', index=False)
stock df.tail(20)
                                            D ►≡ M↓
```

```
X = stock_df.copy()
X.drop(['Decision', 'Daily Return', 'Adj Daily Return'], axis=1, inplace=True)
X.dropna(inplace=True)
X.tail(20)
```

```
y = stock_df['Decision'].values.reshape(-1,1)
y[:20]
```

▶ ■ M↓

```
    ▶ ■ MI

  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=78)
  scaler = StandardScaler()
  X scaler = scaler.fit(X train)
  X_train_scaled = X_scaler.transform(X_train)
  X test scaled = X scaler.transform(X test)
D ►≡ Mi
  model = tree.DecisionTreeClassifier()
  model = model.fit(X train scaled, y train)
```

predictions = model.predict(X_test_scaled)

Gradient Boosting Classifier

- Determine model's different learning rate by utilizing Gradient Boosting Classifier
- Set features up to 2

```
M↓
  learning rates = [0.05, 0.1, 0.25, 0.5, 0.75, 1]
  for learning rate in learning rates:
      model = GradientBoostingClassifier(
          n estimators=1000,
          learning_rate=learning_rate,
          max features=2.
          max depth=3,
          random state=78)
      model.fit(X_train_scaled,y_train.ravel())
      print("Learning rate: ", learning rate)
      # Score the model
      print("Accuracy score (training): {0:.5f}".format(
          model.score(
              X_train_scaled,
              v train.ravel())))
      print("Accuracy score (validation): {0:.5f}".format(
          model.score(
              X_test_scaled,
              y test.ravel())))
      print()
```

```
Learning rate: 0.05
Accuracy score (training): 0.87945
Accuracy score (validation): 0.51596
Learning rate: 0.1
Accuracy score (training): 0.96164
Accuracy score (validation): 0.52235
Learning rate: 0.25
Accuracy score (training): 1.00000
Accuracy score (validation): 0.51469
Learning rate: 0.5
Accuracy score (training): 1.00000
Accuracy score (validation): 0.50702
Learning rate: 0.75
Accuracy score (training): 1.00000
Accuracy score (validation): 0.53257
Learning rate: 1
Accuracy score (training): 1.00000
Accuracy score (validation): 0.50192
```

Decision Tree

Confusion Matrix

	Predicted Entry	Predicte	d Exit						
Actual Entry	213		187						
Actual Exit	203		180						
Accuracy Score: 0.50192									
Classification Report									
	precision	recall	f1-scor	e support					
Entry	0.51	0.53	0.5	2 400					
Exit	0.49	0.47	0.4	8 383					
accuracy			0.5	o 783					
macro avg	l mark manager	0.50	0.5	ø 783					
weighted avg	0.50	0.50	0.5	9 783					

Random Sampling Results

2.5		,									
Actual Entry	21	3	187								
Actual Exit	20	2	181								
Balance Accura	cy Score: 0	.50254						R	andom Ov	ersampling	
										, , , , , , , , , , , , , , , , , , ,	
Classification	Report (Im	nbalanced)									
	pre	rec	spe	f1	geo	iba	sup				
Entry	0.51	0.53	0.47	0.52	0.50	0.25	400				
Exit	0.49	0.47	0.53	0.48	0.50	0.25	383				
				2 22		2.24					
avg / total	0.50	0.50	0.50	0.50	0.50	0.25	783				
						Confusion M	atrix				
							Predicted	Entry	Predicted Exit		
						Actual Entry		163	237		
						Actual Exit		126	257		
Pandom Undersampling						Balance Acc	uracy Scor	. a	53926		
Random Undersampling						Darance Acc	uracy Scor	e. 0.	33320		
							· ·				
					Classificat	1on Report	(Imb	alanced)			

Entry Exit

avg / total

rec

0.41

0.67

0.54

pre

0.56

0.52

0.54

spe

0.67

0.41

0.54

0.47

0.59

0.53

iba

0.27

0.28

0.27

sup

400

383

783

geo

0.52

0.52

0.52

Confusion Matrix

Predicted Entry Predicted Exit

					Confusion Matrix									
	Predicted Entry Predicted Exit													
					Actual Entry 14		140	260						
					Actual	Exit	112		271					
Cluster Centroid					Balance Accuracy Score: 0.52879									
						Classification Report (Imbalanced)								
					pre	rec	spe	f1	geo	iba				
			Entry		0.35	0.71	0.43	0.50	0.24					
				Exit		0.71	0.35	0.59	0.50	0.26				
				avg / total		0.53	0.52	0.53	0.51	0.50	0.25			
Confusion Matrix	(
Predicted Entry Predicted Exit														
Actual Entry	200		200											
Actual Exit	193		190											
Balance Accuracy Score: 0.49804								Bal	anced R	andom I	Forest			
								-						
Classification Report (Imbalanced)														
	pre	rec	spe	f1	geo	iba	sup							
Entry	0.51	0.50	0.50	0.50	0.50	0.25	400							
Exit	0.49	0.50	0.50	0.49	0.50	0.25	383							
avg / total	0.50	0.50	0.50	0.50	0.50	0.25	783							

sup

400

383

783

Q & A

Postmortem/Next Steps

Test the model with different equities and equities from different sectors

Use different time frames to evaluate the model

 Incorporate different variables to enhance the models in determining entry/exit strategy

Insert more data point for sentiment analysis (API restriction to past 30 days)