Egzamin tele

Dawid Gradowski PuckMoment

"In this world, is the destiny of mankind controlled by some transcendental entity or law? Is it like the hand of God hovering above?"

Contents

	Dyskretne przekształcenie Fouriera ciągu $f(t)$	1
	Dyskretne przekształcenie Fouriera ciągu $\boldsymbol{x}[n]$	2
	Filtracja sygnału	3
	Kod Hamminga	4
,	Przekształcenie Fouriera sygnału	6

Prolog

Wszystkie notatki robione na podstawie tego co było na pierwszym terminie egzaminu. Wszystkie przykłady zapamiętałem i przepisałem na kartkę, nigdy nie doszło do żadnego nielegalnie zrobionego zdjęcia.

1 Dyskretne przekształcenie Fouriera ciągu f(t)

Przykładowe zadanie:

$$f(t) = 2\cos(2\omega_0 t) + 3\cos(4\omega_0 t) + 7\cos(5\omega_0 t)$$

W tym zadaniu trzeba zapamiętać że:

$$\cos(\alpha t) \longleftrightarrow \pi(\delta(\omega - \alpha) + \delta(\omega + \alpha))$$
$$\sin(\alpha t) \longleftrightarrow j\pi(\delta(\omega + \alpha) - \delta(\omega - \alpha))$$

gdzie α to jakaś wartość.

Możemy sobie rozbić wzór naszej funkcji na części i zastosować wyżej wymienione reguły:

1.
$$2\cos(2\omega_0 t) \longleftrightarrow 2\pi(\delta(\omega - 2\omega_0) + \delta(\omega + 2\omega_0))$$
2.
$$3\cos(4\omega_0 t) \longleftrightarrow 3\pi(\delta(\omega - 4\omega_0) + \delta(\omega + 4\omega_0))$$
3.
$$7\cos(5\omega_0 t) \longleftrightarrow 7\pi(\delta(\omega - 5\omega_0) + \delta(\omega + 5\omega_0))$$

Teraz wystarczy to wszystki zsumować:

$$F(\omega) = 2\pi(\delta(\omega - 2\omega_0) + \delta(\omega + 2\omega_0)) + 3\pi(\delta(\omega - 4\omega_0) + \delta(\omega + 4\omega_0)) + 7\pi(\delta(\omega - 5\omega_0) + \delta(\omega + 5\omega_0))$$

2 Dyskretne przekształcenie Fouriera ciągu x[n]

Przykładowe zadanie:

$$x[n] = [2; 3; 1; 2]$$

Dla syngału dyskretnego x[n], n = 0, 1, ..., N - 1, DFT jest zdefiniowane jako:

$$X[k] = \sum_{n=0}^{N-1} x[n] \cdot e^{-j \frac{2\pi}{N} k n}$$
, dla $k=0,1,...,N-1$

do tego warto znać jeszcze wzór Eulera, z którego mamy:

$$e^{j\alpha} = \cos(\alpha) + i\sin(\alpha)$$

$$e^{-j\alpha} = \cos(\alpha) - j\sin(\alpha)$$

w naszym przykładzie $\alpha=\frac{2\pi}{N}kn$. Dlatego powyższy wzór możemy zapisać w następujący sposób:

$$X[k] = \sum_{n=0}^{N-1} x[n] \cdot e^{-j\frac{2\pi}{N}kn} = \sum_{n=0}^{N-1} x[n] \cdot (\cos(\frac{2\pi}{N}kn) - j\sin(\frac{2\pi}{N}kn))$$

Dla naszego przykładu:

$$x[n] = [2; 3; 1; 2] \text{ oraz } N = 4$$

obliczamy

$$X[k] = \sum_{n=0}^{3} x[n] \cdot e^{-j\frac{2\pi}{4}kn}, \, \text{dla } k = 0, 1, 2, 3$$

$$X[0] = \sum_{n=0}^{3} x[n] \cdot e^{-j\frac{2\pi}{4}0n} = 2 + 3 + 1 + 2 = 8$$

$$X[1] = \sum_{n=0}^{3} x[n] \cdot e^{-j\frac{2\pi}{4}1n} = \sum_{n=0}^{3} x[n] \cdot (\cos(\frac{2\pi}{4}n) - j\sin(\frac{2\pi}{4}n)) =$$

$$2 + 3 \cdot (\cos(\frac{2\pi}{4}1) - j\sin(\frac{2\pi}{4}1)) + (\cos(\frac{2\pi}{4}2) - j\sin(\frac{2\pi}{4}2)) + 2 \cdot (\cos(\frac{2\pi}{4}3) - j\sin(\frac{2\pi}{4}3)) =$$

$$2 + 3(\cos(\frac{\pi}{2}) - j\sin(\frac{\pi}{2})) + (\cos(\pi) - j\sin(\pi)) + 2(\cos\frac{3\pi}{2} - j\sin(\frac{3\pi}{2})) =$$

$$2 - 3j - 1 + 2j = 1 - 1j$$

$$\begin{split} X[2] &= \sum_{n=0}^{3} x[n] \cdot e^{-j\frac{2\pi}{4}2n} = \sum_{n=0}^{3} x[n] \cdot (\cos(\frac{2\pi}{4}2n) - j\sin(\frac{2\pi}{4}2n)) = \\ 2 + 3 \cdot (\cos(\frac{2\pi}{4}2) - j\sin(\frac{2\pi}{4}2)) + (\cos(\frac{2\pi}{4}4) - j\sin(\frac{2\pi}{4}4)) + 2 \cdot (\cos(\frac{2\pi}{4}6) - j\sin(\frac{2\pi}{4}6)) = \\ 2 + 3(\cos(\pi) - j\sin(\pi)) + (\cos(2\pi) - j\sin(2\pi)) + 2(\cos(3\pi) - j\sin(3\pi)) = \\ 2 + 3(\cos(\pi) - j\sin(\pi)) + (\cos(0) - j\sin(0)) + 2(\cos(\pi) - j\sin(\pi)) = \\ 2 - 3 + 1 - 2 = -2 \end{split}$$

$$\begin{split} X[3] &= \sum_{n=0}^{3} x[n] \cdot e^{-j\frac{2\pi}{4}3n} = \sum_{n=0}^{3} x[n] \cdot (\cos(\frac{2\pi}{4}3n) - j\sin(\frac{2\pi}{4}3n)) = \\ 2 + 3 \cdot (\cos(\frac{2\pi}{4}3) - j\sin(\frac{2\pi}{4}3)) + (\cos(\frac{2\pi}{4}6) - j\sin(\frac{2\pi}{4}6)) + 2 \cdot (\cos(\frac{2\pi}{4}9) - j\sin(\frac{2\pi}{4}9)) = \\ 2 + 3(\cos(\frac{3\pi}{2}) - j\sin(\frac{3\pi}{2})) + (\cos(3\pi) - j\sin(3\pi)) + 2(\cos\frac{9\pi}{2} - j\sin(\frac{9\pi}{2})) = \\ 2 + 3(\cos(\frac{3\pi}{2}) - j\sin(\frac{3\pi}{2})) + (\cos(\pi) - j\sin(\pi)) + 2(\cos\frac{\pi}{2} - j\sin(\frac{\pi}{2})) = \\ 2 + 3j - 1 - 2j = 1 + 1j \end{split}$$

więc odpowiedź to:

$$X[n] = [8, 1 - 1j, -2, 1 + 1j]$$

Jeśli ktoś ma problem z zapamiętaniem wartości trygonometrycznych to proponuje zapamiętać taką tabelke:

α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
$\sin(\alpha)$	$\frac{\sqrt{0}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{4}}{2}$	0
$\cos(\alpha)$	$\frac{\sqrt{4}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{0}}{2}$	-1

Co zapisane w normalny sposób daje

α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
$\sin(\alpha)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0
$\cos(\alpha)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1

3 Filtracja sygnału

Przykładowe zadanie:

Sygnal:
$$x[n] = [4; 1; 7; 3]$$

Filtr: $h[n] = [2; 4; 1]$

Długość przefiltrowanego sygnału to suma długości sygnału i filtra minus 1.

$$len(x) + len(h) - 1 = len(y)$$
$$4 + 3 - 1 = 6$$

Wzór ogólny przy ograniczonym zakresie wygląda następująco:

$$y[n] = \sum_{k=0}^{M-1} x[k] \cdot h[n-k]$$

gdzie, M - długość x oraz zakładamy, dla wartości x i h spoza zakresu przyjmujemy 0.

Obliczny sobie teraz nasz przykład:

$$\begin{split} y[0] &= x[0] \cdot k[0-0] = 4 \cdot 2 = 8 \\ y[1] &= x[0] \cdot k[1-0] + x[1] \cdot k[1-1] = 4 \cdot 4 + 1 \cdot 2 = 18 \\ y[2] &= x[0] \cdot k[2] + x[1] \cdot k[1] + x[2] \cdot k[0] = 4 \cdot 1 + 1 \cdot 4 + 7 \cdot 2 = 22 \\ y[3] &= x[1] \cdot k[2] + x[2] \cdot k[1] + x[3] \cdot k[0] = 1 \cdot 1 + 7 \cdot 4 + 3 \cdot 2 = 35 \\ y[4] &= x[2] \cdot k[2] + x[3] \cdot k[1] = 7 \cdot 1 + 3 \cdot 4 = 19 \\ y[5] &= x[3] \cdot k[2] = 3 \cdot 1 = 3 \end{split}$$

A więc otrzymujemy

$$y[n] = [8, 18, 22, 35, 19, 3]$$

4 Kod Hamminga

Przykładowe zadanie:

$$x[n] = [1, 0, 1, 0, 0, 1]$$

na 10 bitach

Rozwiązanie

Kod Hamminga pozwala nam na poprawienie jednego uszkodzonego bitu w wiadomości o długości p+m, gdzie: m oznacza ilość bitów oryginalnej wiadomości, a p ilość bitów parzystości w kodzie. W naszym przypadku mamy więc:

$$m=6$$
 oraz $p=4$

Ważne jest, że:

$$2^p > (p+m)+1$$

W naszym przypadku 2^4 jest większe niż (6+4)+1 więc kod Hamminga będzie działał.

Ważne jest rozmieszczenie bitów parzystości. Za pomocą p_x przedstawimy bity parzystości, a za pomocą m_x bity wiadomości.

Numer bita	1	2	3	4	5	6	7	8	9	10
Znaczenie	p_1	p_2	m_1	p_3	m_2	m_3	m_4	p_4	m_5	m_6

Można zauważyć, że p_x znajduje się na miejscu 2^{x-1} . Dlatego p_1 znajduje się na pozycji pierwszej, a p_4 na 8.

Bity parzystości oprócz przydzielonego z góry miejsca, mają również bity które im odpowiadają. Dla bitu p_1 będą to (1,3,5,7,9). Oznacza to, że na tych 5 bitach liczba jedynek musi być parzysta. Teraz pytanie skąd wziąć ten zbiór? Pierwsza liczba to zawsze jest miejsce w którym znajduje się bit parzystości. Liczba opisująca który to jest bit parzystości mówi nam co ile bitów następuje zmiana. Jeśli nie wiesz o co chodzi rozpiszę to ładnie.

Numer bita	1	2	3	4	5	6	7	8	9	10
p_1	1	0	1	0	1	0	1	0	1	0
p_2	0	1	1	0	0	1	1	0	0	1
p_3	0	0	0	1	1	1	1	0	0	0
p_4	0	0	0	0	0	0	0	1	1	1

Mając tą wiedze spróbujmy zakodować wiadomość. Nasza wiadomość to:

$$x[n] = [1, 0, 1, 0, 0, 1]$$

a więc dodając bity parzystości otrzymamy coś takiego:

Numer bita	1	2	3	4	5	6	7	8	9	10
Kod	p_1	p_2	1	p_3	0	1	0	p_4	0	1

Sprawdźmy co powinno być w miejscu p_1 :

Numer bita	1	2	3	4	5	6	7	8	9	10
Kod	p_1	p_2	1	p_3	0	1	0	p_4	0	1

Na pozycjach które psrawdzamy dla p_1 mamy na nieparzystą liczbę jedynek dlatego w miejscu p_1 wpisujemy jeden.

Numer bita	1	2	3	4	5	6	7	8	9	10
Kod	1	p_2	1	p_3	0	1	0	p_4	0	1

Teraz pozycja p_2 :

Numer bita	1	2	3	4	5	6	7	8	9	10
Kod	1	p_2	1	p_3	0	1	0	p_4	0	1

Liczba jedynek nieparzysta dlatego w miejscu p_2 wpisujemy 1:

Numer bita	1	2	3	4	5	6	7	8	9	10
Kod	1	1	1	p_3	0	1	0	p_4	0	1

Teraz pozycja p_3 :

Numer bita	1	2	3	4	5	6	7	8	9	10
Kod	1	1	1	p_3	0	1	0	p_4	0	1

Liczba jedynek nieparzysta dlatego w miejscu p_3 wpisujemy 1:

Numer bita	1	2	3	4	5	6	7	8	9	10
Kod	1	1	1	1	0	1	0	p_4	0	1

Teraz pozycja p_4 :

Numer bita	1	2	3	4	5	6	7	8	9	10
Kod	1	1	1	1	0	1	0	p_4	0	1

Liczba jedynek nieparzysta dlatego w miejscu p_4 wpisujemy 1:

Numer bita	1	2	3	4	5	6	7	8	9	10
Kod	1	1	1	1	0	1	0	1	0	1

Otrzymujemy na końcu taki kod:

$$k[n] = [1, 1, 1, 1, 0, 1, 0, 1, 0, 1]$$

5 Przekształcenie Fouriera sygnału

Przykładowe zadanie:

Sygnał: cos(4t)

Fala nośna: $2\cos(20t)$

Mamy wziąć pod uwagę fale nośną. Zadanie giga proste (przynajmniej rozwiązane przez czat takie się wydaje). Gdy uwzgędniamy fale nośną mamy wzór:

$$f(t) = (A+1) \cdot C$$

, gdzie A - sygnał, C - fala nośna

Gdy nie uwzględniamy fali nośnej mamy wzór:

$$f(t) = A \cdot C$$

, gdzie A - sygnał, C - fala nośna

Więc w naszym przypadku musimy użyć pierwszego wzoru:

$$f(t) = (\cos(4t) + 1) \cdot 2\cos(20t) = \cos(4t) \cdot 2\cos(20t) + 2\cos(20t) =$$

$$\cos(16t) + \cos(24t) + 2\cos(20t)$$

i od tego momentu na logike.