TSMC 99-132

1	1.	A method for integrating low-K materials in semiconductor fabrication, comprising
2	the ste	ps of:
3		a. providing a semiconductor structure having a dielectric layer thereover; said
4	dielect	ric layer being comprised of a low-K material;
•		
5		b. patterning said dielectric layer to form pillar openings;
6		c. depositing a pillar layer over said semiconductor structure; thereby filling said
7	pillar c	openings with said pillar layer; and
8		d. planarizing said pillar layer to form pillars embedded in said dielectric layer.
	2.	The method of claim 1 wherein said pillar layer comprises a material selected from
	the gro	oup composed of: silicon nitride, silicon carbide, amorphous carbon, carbon,
	tungst	en, copper and aluminum.
	3.	The method of claim 1 wherein said pillars are formed prior to forming a dual

damascene contact structure.

TSMC 99-132

4.

	interlay	ver contacts.
1	5.	A method for integrating low-K materials in semiconductor fabrication, comprising
Ž	the ste	ps of:
3	dialage	a. providing a semiconductor structure having a dielectric layer thereover; said
4	dielecti	ric layer comprising an organic low-K material;
5		b. patterning said dielectric layer to form pillar openings;
6		c. depositing a pillar layer over said semiconductor structure; thereby filling said
7	pillar o	ppenings with said pillar layer;
8 .		d. planarizing said pillar layer to form pillars embedded in said dielectric layer;
9		e. patterning said dielectric layer to form via openings and trench openings;
10		f. forming an interconnect layer over said semiconductor structure; and

The method of claim 1 wherein said pillars are formed simultaneously with

11

1

2

g. planarazing said interconnect layer, stopping on said dielectric layer.

- 6. The method of claim 5 wherein said dielectric layer comprises a material selected from the group composed of: aerogel, xerogel, nanoglass, Flare, and amorphous CF_X .
- 7. The method of claim 5 wherein said pillar layer comprises a material selected from the group composed of: silicon nitride, silicon carbide, amorphous carbon, carbon, tungsten, copper and aluminum.
- 8. The method of claim 6 wherein said pillar layer comprises a material selected from the group composed of: silicon nitride, silicon carbide, amorphous carbon, carbon, tungsten, copper and aluminum.
- 9. The method of claim 5 wherein a barrier layer is formed over said semiconductor structure prior to forming said interconnect layer.
- 10. A method for integrating low-K materials in semiconductor fabrication, comprising the steps of:
 - a. providing a semiconductor structure having a conductive structure thereon; said

12.

4	semiconductor structure and said conductive structure having a dielectric layer thereover;
5	said dielectric layer being comprised of a low-K material;
6	b. patterning said dielectric layer to form pillar openings and via openings; said via
7	openings being over said conductive structures and said pillar openings forming a matrix
8	pattern surrounding said conductive structures;
•	
9	c. depositing a pillar and contact layer over said semiconductor structure; thereby
10	filling said pillar openings and said via openings with said pillar and contact layer;
11	d. planarizing said pillar and contact layer to form pillars and contacts embedded in
12	said dielectric layer; and
٠	
13	e. forming an interconnect pattern over said contacts.
	The method of claim 10 wherein said dielectric layer is comprised of a material
	selected from the group composed of: aerogel, xerogel, nanoglass, Flare, and amorphous
•	$CF_{x}.$
	01 X.

The method of claim 10 wherein said pillar and contact layer is comprised of a

TSMC 99-132

material selected from the group composed of: tungsten, copper and aluminum.

13. The method of claim 11 wherein said pillar layer is comprised of a material selected from the group composed of: tungsten, copper and aluminum.