

- I. Einleitung
- II. Systemübersicht
- III. Disziplinen

Unser Fahrzeug - OSCAR V4

Ostfalia-Cup Autonomous Robotic-Vehicle 4

Unser Team 2015

- Gründungsjahr 2009
- 4.Wettkampfteilnahme
- Gefördert durch
 Ostfalia HaW
 Fakultät Informatik
- 6 Mitglieder
- Standort Wolfenbüttel

Unsere Philosophie - "M.A.K.E."

Modellbasiert

Autonom

Komponentenbasiert

Effizient

I. Einleitung

II. Systemübersicht

- 1. Hardwarearchitektur
- 2. Softwarearchitektur
- 3. Energiebilanz & Herstellungskosten
- III. Disziplinen

Hardwarearchitektur – Sensorik

Hardwarearchitektur – Verarbeitende Hardware

Hardwarearchitektur – Aktorik

Fahrwerk

- •OSCAR V3
 - Nur eine Lenkbare Achse

Spurkreis (min.)	42,5cm
Parallele- Verschiebung	Nein

- ●OSCAR V4
 - 2 Lenkbare Achsen

Spurkreis (min.)	30cm
Parallele- Verschiebung	Ja

Hardwarearchitektur – Schnittstellen

Hardwarearchitektur – Alternativen

Alternative	Grund für Nichtberücksichtigung
Lasersensoren im Frontbereich	Schlechtes Preisleistungsverhältnis
Ultraschallsensoren im Frontbereich	Interferenzanfällig
Stereoview	Verarbeitungsintensiv
Nur ein Prozessorboard	Vorbild ist das KFZ-Boardnetz

- I. Einleitung
- II. Systemübersicht
 - 1. Hardwarearchitektur
 - 2. Softwarearchitektur
 - 3. Energiebilanz & Herstellungskosten
- III. Disziplinen

Softwarearchitektur

- Modellbasierte Softwareentwicklung
- Hochgradig skalier- und austauschbar
- Automatische C-Codegenerierung
- Linux basiertes Multitasking
- Modelbasiertes automatisches Testen
- Simulation

Systemarchitektur – schematisch

- Prozessüberwachung
- Steuerung
 - Aktuatorik / Sensorik
 - Modus Wahl

CAN Netzwerk Management

- MCP (Prozessüberwachung, Prozessteuerung)
 - Künstliche Intelligenz
 - Bildverarbeitung
 - Debugger

Softwarearchitektur – Alternativen

Alternative	Grund für Nichtberücksichtigung
Nicht modellbasiert	Widerspricht unserer Philosophie
Monolithischen Aufbau	Vorbild ist das KFZ-Boardnetz, Single Point of Failure

- I. Einleitung
- II. Systemübersicht
 - 1. Hardwarearchitektur
 - 2. Softwarearchitektur
 - 3. Energiebilanz & Herstellungskosten
- III. Disziplinen

Energiebilanz

Im Betrieb ca. ein Maximum von 21 Watt

Herstellungskosten – Materialkosten

Gesamtpreis von ca. 1250 Euro

- I. Einleitung
- II. Systemübersicht

III. Disziplinen

- 1. Fahren auf der Straße
- 2. Einparken
- 3. Hindernisse/Kreuzung

Wahrnehmung – Bildverarbeitung

Objekterkennung / Sensorfusion

- Kreuzungen
 - Mittels Kamera

- Objekte (mittels Sensorfusion)
 - Kamera
 - IR-Cluster
 - Ca. 60 cm vorher

Wahrnehmung – Alternativen

Alternative	Grund für Nichtberücksichtigung
Bild Transformieren	Entzerren ergab keine nennenswerten Vorteile, Birds-Eye-View befindet sich aktuell in der Erprobung, jedoch Rechenintensiv

Spurführung

- I. Einleitung
- II. Systemübersicht
- III. Disziplinen
 - 1. Fahren auf der Straße
 - 2. Einparken
 - 3. Hindernisse/Kreuzung

Einparken – **Begißierleitg Birthalbiets e**i bedeimmt

Legende

 $\Delta a = Abstand zur Fahrbahn$

s = Spurbreite

r = Radstand

 $\Delta I = L$ änge des Hindernis

α = max. Lenkeinschlag

Δd = Parklückenlänge

 $\Delta h = Abstand zum Hindernis$

Δah = Seitlicher Abstand zum Hindernis

- I. Einleitung
- II. Systemübersicht
- III. Disziplinen
 - 1. Fahren auf der Straße
 - 2. Einparken
 - 3. Hindernisse/Kreuzung

Hindernisse – Überholen

Kreuzungen

Sensorperformance

- Bilderzeugung und Bildverarbeitung:
 - 20 ausgewertete Bilder pro Sekunde
 - Bei $v = 1\frac{m}{s}$ → 5cm Fahrt pro Informationssatz
- Ultraschalldaten:
 - 58 Messungen pro Sekunde bei einer Reichweite von 50cm von Bilddaten zeitlich entkoppelt
 - Bei $v = 1\frac{m}{s}$ → Einmessen von Lücken auf 1,7cm genau
- Odometer:
 - Radumfang 20,8cm, 360 Inkremente
 - Streckenmessung auf 0,058cm genau
- Infrarotsensorcluster:
 - 7 Sensoren mit einer Reichweite von bis zu 70 cm
 - und einer Flächenabdeckung von 110°

Vielen Dank für Ihre Aufmerksamkeit!

