

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013

4,007		
KOD UCZNIA	Etap:	rejonowy
	Data:	10 stycznia 2013 r.
	Czas pracy:	•
Informacje dla ucznia		
,	usza, w wyznaczonym miejscu	ı wpisz swój kod ustal
przez komisję.		
2. Sprawdź, czy arkusz kon	kursowy zawiera 8 stron i 13	zadań.

- 3. Czytaj uważnie wszystkie zadania i polecenia.
- 4. Rozwiązania zapisuj długopisem lub piórem. Nie używaj korektora.
- **5.** W zadaniach od 2. do 9. postaw "×" przy prawidłowym wskazaniu PRAWDY lub FAŁSZU.
- **6.** Staraj się nie popełniać błędów przy zaznaczaniu odpowiedzi, ale jeśli się pomylisz, błędne zaznaczenie otocz kółkiem **3** i zaznacz inną odpowiedź znakiem "×".
- **7.** Rozwiązania zadań otwartych zapisz czytelnie w wyznaczonych miejscach. Pomyłki przekreślaj.
- **8.** Zapisy w brudnopisie nie będą sprawdzane i oceniane, chyba że wskażesz w nim fragmenty, które należy ocenić.
- **9.** Nie wolno Ci korzystać z kalkulatora.

liczba punktów możliwych do uzyskania: 60 liczba punktów umożliwiająca kwalifikację do kolejnego etapu: 50

WYPEŁNIA KOMISJA KONKURSOWA

Nr zadania	1	2	3	4	5	6	7	8	9	10	11	12	13	Razem
Liczba punktów możliwych do zdobycia	20	3	3	3	3	3	3	3	3	4	4	4	4	60
Liczba punktów uzyskanych przez uczestnika konkursu														

Podpisy przewodniczącego i członków komisji:

I.	Przewodniczący	6.	Członek -
	Członek -		
	Członek -		
	Członek -		
	Członek		
	Członek -		

Zadanie 1. (0-20)

Rozwiąż krzyżówkę, wpisując w odpowiednie miejsca liczby opisane w pytaniach. Jeżeli liczba zawiera inne znaki niż cyfry, to zostały one dopisane, a Twoim zadaniem jest wpisanie jedynie cyfr. Zaznaczone pola rozwiązanej krzyżówki zawierają kolejne cyfry rozwinięcia dziesiętnego liczby Φ, tzw. "złotej liczby".

- b) Największa ujemna liczba trzycyfrowa.
- c) Liczba odwrotna do 0,125.
- d) Największy wspólny dzielnik liczb 630 i 420.
- e) Mianownik najmniejszej z wymienionych liczb:

$$-\frac{1}{9}$$
; $-\frac{1}{7}$; $-\frac{1}{5}$; $-\frac{1}{3}$.

- f) Liczba π z dokładnością do 0,01.
- g) Liczba zer w zapisie liczby jeden miliard.
- h) Spośród liczb 512125, 858585, 321321 podzielna przez 15 jest liczba ...
- i) Sześcian parzystej liczby pierwszej.
- j) Największa dwucyfrowa liczba pierwsza.
- k) Wartość liczby: $2^{(3-2+1)}$
- 1) Liczba naturalna, której nie można wstawić za *x*

w wyrażeniu:
$$\frac{1}{81-x^2}$$

- m) Dzielnik w ilorazie: $\frac{4321}{8765}$
- n) Wartość wyrażenia: $\frac{\sqrt{243}}{\sqrt{3}}$
- o) Objętość ostrosłupa o takiej samej podstawie i wysokości, jaką ma graniastosłup o objętości 735 j³.
- p) Wartość współczynnika b funkcji liniowej y = 2x b, dla której liczba 242 jest miejscem zerowym tej funkcji.
- q) Pole powierzchni kuli, której pole przekroju zawierającego środek tej kuli wynosi 120 j².
- r) Wartość współczynnika przy x funkcji liniowej, której wykres jest równoległy do wykresu funkcji $y = \frac{4}{5}x + 1$.
- s) Wykładnik n w wyrażeniu $8^4 = 2^n$
- t) Przybliżenie liczby 99555 z dokładnością do tysięcy.

W zadaniach od 2. do 9. oceń, czy podane zdania są prawdziwe czy falszywe. Zaznacz właściwą odpowiedź.

Zadanie 2. (0-3)

Jeżeli 10 pomp w ciągu dziesięciu minut wypompowuje 10 ton wody, to

- I. 25 pomp wypompowuje 25 ton wody w ciągu 10 minut.
 - □ PRAWDA □ FAŁSZ
- II. 5 pomp wypompowuje 10 ton wody w ciągu 20 minut.
 - □ PRAWDA □ FAŁSZ
- III. 10 pomp wypompowuje 5 ton wody w ciągu 5 minut.
 - □ PRAWDA □ FAŁSZ

Zadanie 3. (0-3)

W pewnym miesiącu trzy niedziele wypadły w dni parzyste.

- I. Dwudziesty tego miesiąca wypada w piątek.
 - □ PRAWDA □ FAŁSZ
- II. Trzydziesty tego miesiąca wypada w niedzielę.
 - □ PRAWDA □ FAŁSZ
- III. Poniedziałków w tym miesiącu musi być 5.
 - □ PRAWDA □ FAŁSZ

Zadanie 4. (0-3)

Liczba n nazywa się średnią harmoniczną liczb a i b, jeżeli $\frac{2}{n} = \frac{1}{a} + \frac{1}{b}$.

- I. Średnia harmoniczna liczb przeciwnych jest równa 0.
 - □ PRAWDA □ FAŁSZ
- II. Jeżeli średnia harmoniczna liczb a i b jest równa ich średniej arytmetycznej, to a = b.
 - □ PRAWDA □ FAŁSZ
- III. Średnia harmoniczna liczb odwrotnych jest odwrotnością ich średniej arytmetycznej.
 - □ PRAWDA □ FAŁSZ

Zadanie 5. (0-3)

Dla dowolnej liczby naturalnej n

- I. $2^{n-1} + 2^{n-1} + 2^{n-1} + 2^{n-1} = 2^{4n-4}$
- □ PRAWDA □ FAŁSZ
- II. $5^{n-1} + 5^{n-1} + 5^{n-1} + 5^{n-1} + 5^{n-1} = 5^n$
- □ PRAWDA □ FAŁSZ
- III. $6^{n-1} + 6^{n-1} + 6^{n-1} + 6^{n-1} + 6^{n-1} + 6^{n-1} + 6^{n-1} = 6^{6n}$
 - □ PRAWDA □ FAŁSZ

Działanie 🛭 dla liczb rzeczywistych określono następującym wzorem:
$a \otimes b = a + b + a \cdot b$. Wtedy:

- I. $a \otimes 0 = a$. \square PRAWDA
- II. $6 \otimes (-6) = 0$.
 - □ PRAWDA □ FAŁSZ

□ FAŁSZ

- III. $(a-1)\otimes(a+1)=(a\otimes a)-1$.
- □ PRAWDA □ FAŁSZ

Zadanie 7. (0-3)

Na planie sporządzonym w skali 1:2000 plac ma kształt kwadratu o polu $225~{\rm cm}^2$.

- I. Obwód tego placu w rzeczywistości wynosi 1200 m.
 - □ PRAWDA □ FAŁSZ
- II. Pole tego placu w rzeczywistości przekracza 10 ha.
 - □ PRAWDA □ FAŁSZ
- III. Pole placu na planie wykonanym w skali 1 : 5000 wynosi 90 cm².
 - □ PRAWDA □ FAŁSZ

Zadanie 8. (0-3)

Dane jest wyrażenie $W = \frac{2n+15}{n}$.

- I. Istnieje liczba parzysta *n*, dla której wyrażenie *W* przyjmuje wartość będącą liczba naturalną.
 - □ PRAWDA □ FAŁSZ
- II. Istnieją dokładnie 4 liczby naturalne *n*, dla których wyrażenie *W* przyjmuje wartość będącą liczbą naturalną.
 - □ PRAWDA □ FAŁSZ
- III. Istnieje liczba całkowita n, dla której wartość wyrażenia W wynosi zero.
 - \square PRAWDA \square FAŁSZ

Zadanie 9. (0-3)

Funkcja F określona jest w następujący sposób: każdej liczbie rzeczywistej x spełniającej warunek $-3 \le x \le 3$ funkcja przyporządkowuje największą liczbę całkowitą, nie większą niż x.

- I. Funkcja F jest funkcją rosnącą.
- □ PRAWDA □ FAŁSZ
- II. Najmniejszą wartością tej funkcji jest liczba –3.
 - □ PRAWDA □ FAŁSZ
- III. Dla każdej liczby x spełniającej warunek $0 \le x < 1$ funkcja przyjmuje wartość zero.
 - □ PRAWDA □ FAŁSZ

Zadanie 10. (0-4)

Ania w ciągu godziny pokonała rowerem trasę o długości 10,5 km. Na pierwszym odcinku trasy biegnącej ścieżką rowerową, średnia prędkość jazdy Ani wynosiła 18 km/h, a na drugim, prowadzącym przez las 8 km/h. Oblicz, który odcinek trasy był dłuższy – pierwszy (na ścieżce rowerowej) czy drugi (przez las)?

BRUDNOPIS

BRUDNOPIS

Zadanie 11. (0-4)

Cena biletu na mecz wynosiła 45 zł. Gdy cenę obniżono, okazało się, że na mecz przychodzi o 50% widzów więcej, a dochód ze sprzedaży biletów wzrósł o 25%. O ile obniżono cenę biletu?

BRUDNOPIS

Zadanie 12. (0-4)

Dwie ściany prostopadłościanu o wspólnej krawędzi długości 15 cm są prostokątami podobnymi w skali k=1,5. Oblicz pole powierzchni i objętość tej bryły.

BRUDNOPIS

Zadanie 13. (0-4)

W ćwiartkę koła wpisano półkola, jak pokazano na rysunku. Wykaż, że pola figur F_1 i F_2 są równe.

