Package 'volesti'

August 8, 2018

ype Package	
cicense GPL (>= 2)	
Title Volume approximation using VolEsti and CV algorithms.	
Description Package provides C++ code and a Rcpp interface for volume approxiation. The main function takes as input a H-polytope or a V-polytope and apply VolEsti or CV algorithm.	
Maintainer Fisikopoulos Vissarion < vissarion.fysikopoulos@oracle.com >, Chalkis Apostolos < tolis.chal@gmail.com >	
Version 1.0	
Date 2018-08-08	
<pre>SugReports https://github.com/vissarion/volume_approximation/issues</pre>	
ystemRequirements C++11	
Depends Rcpp (>= 0.12.17), RcppEigen, lpSolveAPI, BH	
mports Rcpp (>= 0.12.17)	
cinkingTo Rcpp, RcppEigen, BH	
RoxygenNote 6.0.1	
Author Fisikopoulos Vissarion [cph, cre, aut], Chalkis Apostolos [cph, ctb, aut] (Contribution and development, as part of Google Summer of Code 2018 program)	
R topics documented:	
CheBall	
ndex	(

2 demoVolume

CheBall

Compute the Chebychev ball of a H-polytope, P := Ax <= b

Description

Compute the Chebychev ball of a H-polytope, P:= Ax<=b

Usage

```
CheBall(A, b)
```

Arguments

A the matrix of the H-polytope

b the vector with the constants of the hyperplanes

Value

The Chebychev center of the Polytope discribed by the matrix A and the vector b

Examples

```
CheBall(A,b)
```

demoVolume

Run some experiments

Description

Run volesti or CV algorithm to approximate the volume of some cubes, simplices, skinny_cubes, cross polytopes, birkhoff polytopes.

Usage

```
demoVolume(algo)
```

Value

Print the computed volumes and the total time

Examples

```
#test volesti
demoVolume("volesti")
#test CV
demoVolume("CV")
```

ineToMatrix 3

ineToMatrix

functiion to get a ine file and return matrix A in ine format for VolEsti()

Description

functiion to get a ine file and return matrix A in ine format for VolEsti()

Usage

```
ineToMatrix(P)
```

Arguments

Ρ

It is in format, read.cs('path/to/file.ine'). The ine file describies the H-polytope

Value

The numerical matrix in ine format of read.cs('path/to/file.ine')

Examples

```
ineToMatrix(read.cs('path/to/data/cube40.ine'))
```

modifyMat

takes a numerical matrix in ine format and return numerical matrix A and vector b: Ax<=b

Description

takes a numerical matrix in ine format and return numerical matrix A and vector b: Ax<=b

Usage

```
modifyMat(A)
```

Arguments

Α

the numerical matrix in ine format of the H-polytope

Value

```
numerical matrix A and vector b: Ax<=b
```

Examples

```
modifyMat(A)
```

4 volume

volume	The main R function for volume approximation of a convex H-Polytope

Description

The main R function for volume approximation of a convex H-Polytope

Usage

```
volume(Inputs)
```

Arg

rguments			
	<pre>list("argument"=value)</pre>		
		A list that includes alla the parameters of the algorithm	
	path	The path to an ine or ext file that describes the H-polytope. If path is given then "matrix" and "vector" inputs are not needed	
	matrix	The matrix A of the polytope. If it is in ine format then the input "vector" is not needed	
	vector	The vector b that containes the constants of the hyperplanes	
	Walk_length	Optional. Declare the number of the steps for the random walk, default is $10 + \mathrm{d}/10$	
	error	Optional. Declare the goal for the approximation error. Default is 1 for volesti and 0.2 for CV.	
	Chebychev	Optional. A d+1 vector that containes the chebychev center in the first d coordinates and the radius of the chebychev ball in the last coordinate	
	annealing	Optional. A boolean parameter to use CV algorithm. Default value is false.	
	win_len	Optional. The size of the window for the ratios' approximation in CV algorithm. Default value is win_len= $4*(dimension^2)+500$	
	С	Optional. a constant for the upper boud of variance/mean^2 in schedule annealing	
	N	optional. The number of points we sample in each step of schedule annealing in CV algorithm. Default value is N=500*C+(dimension^2)/2	
	ratio	Optional. parameter of schedule annealing, larger ratio means larger steps in schedule annealing. Default value is ratio=1-1/dimension	
	frac	Optional. the fraction of the total error to spend in the first gaussian. Default value is $frac=0.1$	
	ball_walk	Optional. Boolean parameter to use ball walk, only for CV algorithm .Default value is False	
	delta	Optional. The radius for the ball walk	
	verbose	Optional. A boolean parameter for printing. Default is False	
	vpoly	A boolean parameter, has to be true when a V-polytope is given as input	

volume 5

coordinate Optional. A boolean parameter for the hit-and-run. True for Coordinate Direc-

tions HnR, false for Random Directions HnR. Default value is True

rounding Optional. A boolean parameter to activate the rounding option. Default value is

False

test Optional. A boolean parameter. Declare if the current excecution is a test or not.

Default value is False

Value

The approximation of the volume of an H-polytope

Examples

VolEsti(list("path"=/path/to/ine/file, "verbose"=TRUE))

Index

```
CheBall, 2
demoVolume, 2
ineToMatrix, 3
modifyMat, 3
volume, 4
```