Proseminar: Deep learning for NLP

A Fast and Accurate Dependency Parser using Neural Networks D. Chen, C. Manning

Tobias Pütz

22. June 2017

Outline

- Parsing
- 2 Dependency Parsing
- 3 Chen and Mannings Neural Network Dependency Parser
- 4 Recent development

What is Parsing?

 Parsing is the assignment of a syntactical structure to a string of symbols.

What is Parsing?

 Parsing is the assignment of a syntactical structure to a string of symbols.

The difficulty:

 Language is ambigous, for humans it is easy to disambiguate, machines have it harder.

One morning I shot an elephant in my pajamas.

What is Parsing?

 Parsing is the assignment of a syntactical structure to a string of symbols.

The difficulty:

 Language is ambigous, for humans it is easy to disambiguate, machines have it harder.

One morning I shot an elephant in my pajamas. How he got in my pajamas, I don't know. *GrouchoMarx*

Two approaches to Parsing

 Constituency Parsing: assigns a deep nested structure according to a set of rules

- S -> NP VP
- NP -> D NP
- VP -> V
- NP -> tree
- V -> is
- D -> a

② Dependency Parsing:

Two approaches to Parsing

- Constituency Parsing: assigns a deep nested structure according to a set of rules
- 2 Dependency Parsing: assigns a flat structure that puts focus on binary relations (head-dependent) between words

https://nlp.stanford.edu/software/nndep.shtml

Transition dependency Parser

- is very similar to bottom-up shift-reduce parsers
- has a runtime of O(n)
- tries to predict the **sequence of transitions** from the initial configuration c_0 to the final configuration c_n

Configuration: c = (s, b, A):

- s = Stack
- b = Buffer (input)
- A = set of dependency arcs (labels)

Configuration: c = (s, b, A):

- s = Stack
- b = Buffer (input)
- A = set of dependency arcs (labels)

Inital configuration:

- s = [root]
- b = $[w_1, w_2...w_n]$
- A = ∅

Configuration: c = (s, b, A):

- s = Stack
- b = Buffer (input)
- A = set of dependency arcs (labels)

Inital configuration:

- s = [root]
- b = $[w_1, w_2...w_n]$
- A = ∅

Actions in arc-standard system (Nivre, 2004):

- 1 LEFT-ARC(I): adds arc $s_1 - > s_2$ with label I to A and removes s_2
- 2 RIGHT-ARC(I): adds arc $s_2 - > s_1$ with label I to A and removes s_1
- **3** SHIFT: moves b_1 to the stack

Inital configuration:

- s = [root]
- b = $[w_1, w_2...w_n]$
- A = ∅

Final configuration:

- s = [root]
- b = ∅

Greedy transition dependency Parser

Transition	Stack	Buffer	A
	[ROOT]	[He has good control .]	Ø
SHIFT	[ROOT He]	[has good control .]	
SHIFT	[ROOT He has]	[good control .]	
LEFT-ARC(nsubj)	[ROOT has]	[good control .]	$A \cup \text{nsubj(has,He)}$
SHIFT	[ROOT has good]	[control .]	-
SHIFT	[ROOT has good control]	[.]	
LEFT-ARC(amod)	[ROOT has control]	[.]	$A \cup amod(control,good)$
RIGHT-ARC(dobj)	[ROOT has]	[.]	$A \cup dobj(has,control)$
RIGHT-ARC (root)	[ROOT]		$A \cup \text{root}(ROOT,has)$

Chen and Manning, 2014

How does the parser learn the right transitions?

http://greekmythology.wikia.com

- the parser learns from an Oracle
- the Oracle extracts the gold sequences of transitions out of a treebank
- the Oracle is used to train a multi-class classifier

- How does the parser decide?
 - 1 extract all relevant words, their POS, their position on stack/buffer and any labels connecting them
 - 2 concatenate them together according to feature templates
 - 3 look up the vectors for these indicator features

Configuration:

Stack			Buffer			Arcs
was	riding	home	on	my	bicycle	nsubj (I <- was)
<i>s</i> ₂	s ₁	b_1	b_2	<i>b</i> ₃	b ₄	a ₁

Features:

s _{1w} riding ⊙ b _{1t} verb	s _{2t} adj ⊙ s _{1t} noun	s _{1t} verb ⊙ b _{1t} noun	s1wriding	s ₂₁ nsubj	
0	0	1	1	1	

- How does the parser decide?
 - 1 extract all relevant words, their POS, their position on stack/buffer and any labels connecting them
 - 2 concatenate them together according to feature templates
 - 3 look up the vectors for these indicator features
 - 4 apply multi-class classification (SVMs are popular)

- How does the parser decide?
 - extract all relevant words, their POS, their position on stack/buffer and any labels connecting them
 - 2 concatenate them together according to feature templates
 - 3 look up the vectors for these indicator features
 - 4 apply multi-class classification (SVMs are popular)
- Why is this problematic?

- How does the parser decide?
 - extract all relevant words, their POS, their position on stack/buffer and any labels connecting them
 - 2 concatenate them together according to feature templates
 - 3 look up the vectors for these indicator features
 - 4 apply multi-class classification (SVMs are popular)
- Why is this problematic? The usual suspects:
 - 1 the features suffer from high sparsity

- How does the parser decide?
 - 1 extract all relevant words, their POS, their position on stack/buffer and any labels connecting them
 - 2 concatenate them together according to feature templates
 - 3 look up the vectors for these indicator features
 - 4 apply multi-class classification (SVMs are popular)
- Why is this problematic? The usual suspects:
 - 1 the features suffer from high sparsity
 - 2 the training data is incomplete

- How does the parser decide?
 - 1 extract all relevant words, their POS, their position on stack/buffer and any labels connecting them
 - 2 concatenate them together according to feature templates
 - 3 look up the vectors for these indicator features
 - 4 apply multi-class classification (SVMs are popular)
- Why is this problematic? The usual suspects:
 - 1 the features suffer from high sparsity
 - 2 the training data is incomplete
 - 3 the feature templates are handcrafted

- How does the parser decide?
 - extract all relevant words, their POS, their position on stack/buffer and any labels connecting them
 - 2 concatenate them together according to feature templates
 - 3 look up the vectors for these indicator features
 - 4 apply multi-class classification (SVMs are popular)
- Why is this problematic? The usual suspects:
 - 1 the features suffer from high sparsity
 - 2 the training data is incomplete
 - 3 the feature templates are handcrafted
 - the feature-concatenation and lookup is extremely time consuming

Chen and Mannings parser

- 1 Dense features through embeddings
- 2 The network
 - The input
 - The architecture
- 3 Training the network
- 4 Results

The Idea:

- words have semantic similarities and the word-vectors should reflect these
 - king should be similar to queen while being different from airplane

The Idea:

- words have semantic similarities and the word-vectors should reflect these
 - king should be similar to queen while being different from airplane
- POS tags and dependency labels also exhibit semantic similarity
 - NNS should be similar to NN while being different from VB
 - acomp should be similar to xcomp while being different from nsubj

Visualized POS embeddings

Chen and Manning, 2014

Visualized label embeddings

Chen and Manning, 2014

Word embeddings:

- each word is represented as a vector $e_i^w \in R^d$
- the word-embedding matrix is $E^w \in R^{d \times N_w}$

Word embeddings:

- each word is represented as a vector $e_i^w \in R^d$
- the word-embedding matrix is $E^w \in R^{d \times N_w}$

POS embeddings:

- each pos is represented as a vector $e_i^t \in R^d$
- the pos-embedding matrix is $E^t \in R^{d \times N_t}$

Word embeddings:

- each word is represented as a vector $e_i^w \in R^d$
- the word-embedding matrix is $E^w \in R^{d \times N_w}$

POS embeddings:

- each pos is represented as a vector $e_i^t \in R^d$
- the pos-embedding matrix is $E^t \in R^{d \times N_t}$

Label embeddings:

- each label is represented as a vector $e_i^l \in R^d$
- the label-embedding matrix is $E^I \in R^{d \times N_I}$

where N_w , N_t , N_I are the number of words/pos-tags/labels

- the sets are called Sw, SI, St
- Sw contains words, SI labels and St POS
- the selected embedding vectors are then concatenated
- Chen and Manning used a set of 48 embedding vectors

- the sets are called Sw, SI, St
- Sw contains words, SI labels and St POS
- the selected embedding vectors are then concatenated
- Chen and Manning used a set of 48 embedding vectors
 - the forms of the top 3 words on stack and buffer (6)

- the sets are called S^w, S^I, S^t
- Sw contains words, SI labels and St POS
- the selected embedding vectors are then concatenated
- Chen and Manning used a set of 48 embedding vectors
 - the forms of the top 3 words on stack and buffer (6)
 - the forms of their first and second left / right children (12)

- the sets are called S^w, S^I, S^t
- Sw contains words, SI labels and St POS
- the selected embedding vectors are then concatenated
- Chen and Manning used a set of 48 embedding vectors
 - the forms of the top 3 words on stack and buffer (6)
 - the forms of their first and second left / right children (12)
 - the **POS** for these words (18)

- the sets are called S^w, S^I, S^t
- Sw contains words, SI labels and St POS
- the selected embedding vectors are then concatenated
- Chen and Manning used a set of 48 embedding vectors
 - the forms of the top 3 words on stack and buffer (6)
 - the forms of their first and second left / right children (12)
 - the **POS** for these words (18)
 - the **dependency labels** of the **non-stack/buffer** words (12)

- the sets are called S^w, S^I, S^t
- Sw contains words, SI labels and St POS
- the selected embedding vectors are then concatenated
- Chen and Manning used a set of 48 embedding vectors
 - the forms of the top 3 words on stack and buffer (6)
 - the forms of their first and second left / right children (12)
 - the **POS** for these words (18)
 - the **dependency labels** of the **non-stack/buffer** words (12)
 - for non existent elements a special null token is introduced

Feature example:

Configuration:

Stack			Buffer			Arcs
was	riding	home	on	my	bicycle	nsubj (I <- was)
<i>s</i> ₂	<i>s</i> ₁	b_1	b_2	b_3	b_4	a ₁

Feature Sets:

```
S^w = \{\text{riding, null, null, null, was, I, null, ...}\}

S^t = \{\text{VBG, null, null, null, NBP, PRP, null, ...}\}

S^l = \{\text{null, null, null, null, null, nsubj, null, ...}\}
```

• The input layer is the concatenation of the embeddings $[x_w, x_t, x_l]$

- The input layer is the concatenation of the embeddings $[x_w, x_t, x_l]$
- which is mapped to a fully connected hidden layer h(x)

- The input layer is the concatenation of the embeddings $\left[x_{w}, x_{t}, x_{l}\right]$
- which is mapped to a fully connected hidden layer h(x)
- then the non-linearity ReLU is applied

- The input layer is the concatenation of the embeddings $\left[x_{w},x_{t},x_{l}\right]$
- which is mapped to a fully connected hidden layer h(x)
- then the non-linearity ReLU is applied
- in the paper they introduced the cube $\mathbf{g}(\mathbf{x}) = \mathbf{x}^3$ function, in more recent work this has been dropped

- The input layer is the concatenation of the embeddings $[x_w, x_t, x_l]$
- which is mapped to a fully connected hidden layer h(x)
- then the non-linearity ReLU is applied
- in the paper they introduced the cube $g(x) = x^3$ function, in more recent work this has been dropped
- the output is produced by a softmax layer $P(y|\mathbf{x}) = \frac{e^{\mathbf{W}_y^\mathsf{T} \mathbf{x} + \mathbf{b}_y}}{\sum_{k \in Y} e^{\mathbf{W}_k^\mathsf{T} \mathbf{x} + \mathbf{b}_k}}$

- The input layer is the concatenation of the embeddings $\left[x_{w},x_{t},x_{l}\right]$
- which is mapped to a fully connected hidden layer h(x)
- then the non-linearity ReLU is applied
- in the paper they introduced the cube $\mathbf{g}(\mathbf{x}) = \mathbf{x}^3$ function, in more recent work this has been dropped
- the output is produced by a softmax layer

The full network is then:

$$P(y|\mathbf{x}) = \frac{e^{\mathbf{W}_{y}^{\mathsf{T}}\mathbf{x} + \mathbf{b}_{y}}}{\sum_{k \in Y} e^{\mathbf{W}_{k}^{\mathsf{T}}\mathbf{x} + b_{k}}}$$

Chen and Manning 2014

• extract the **gold state sequences** from the treebank using a **fixed shortest stack** (left > shift) Oracle

- extract the **gold state sequences** from the treebank using a **fixed shortest stack** (left > shift) Oracle
- 2 initialize label and pos embeddings to small random values

- extract the gold state sequences from the treebank using a fixed shortest stack (left > shift) Oracle
- 2 initialize label and pos embeddings to small random values
- 3 set the word embeddings to pretrained values (in the paper: for english Collobert et al. 2011, for chinese trained with word2vec)

- extract the gold state sequences from the treebank using a fixed shortest stack (left > shift) Oracle
- 2 initialize label and pos embeddings to small random values
- 3 set the word embeddings to pretrained values (in the paper: for english Collobert et al. 2011, for chinese trained with word2vec)
- 4 feed the configuration forward through the network

- extract the gold state sequences from the treebank using a fixed shortest stack (left > shift) Oracle
- 2 initialize label and pos embeddings to small random values
- 3 set the word embeddings to pretrained values (in the paper: for english Collobert et al. 2011, for chinese trained with word2vec)
- 4 feed the configuration forward through the network
- **6** backpropagate the error, tune the weights using AdaGrad

The objective function

$$L(\theta) = -\sum_{i} \log p_{t_i} + \frac{\lambda}{2} ||\theta||^2$$

where

$$\theta = \{W_{1-n}, b_{1-n}, E^w, E^l, E^t\}$$

- usual cross-entropy loss function with a l2-regularization term
- I2-regularization penalizes big parameters

Results:

 the parser achieves state-of-the-art accuracy while being significantly faster than other state-of-the-art parsers

Parser	Dev		Test		Speed	Parser	Dev		Test		Speed
	UAS	LAS	UAS	LAS	(sent/s)	raisei	UAS	LAS	UAS	LAS	(sent/s)
standard	89.9	88.7	89.7	88.3	51	standard	90.2	87.8	89.4	87.3	26
eager	90.3	89.2	89.9	88.6	63	eager	89.8	87.4	89.6	87.4	34
Malt:sp	90.0	88.8	89.9	88.5	560	Malt:sp	89.8	87.2	89.3	86.9	469
Malt:eager	90.1	88.9	90.1	88.7	535	Malt:eager	89.6	86.9	89.4	86.8	448
MSTParser	92.1	90.8	92.0	90.5	12	MSTParser	91.4	88.1	90.7	87.6	10
Our parser	92.2	91.0	92.0	90.7	1013	Our parser	92.0	89.7	91.8	89.6	654

PTB with CoNLL dependecies

PTB with Stanford dependecies

Chen and Manning, 2014

Results:

the POS and Label embeddings have proven to be useful

Chen and Manning, 2014

Results:

- the parser achieves state-of-the-art accuracy while being significantly faster than other state-of-the-art parsers
- the POS and Label embeddings have proven to be useful
- the network learned complex features from the single embedding representations

Recent Development

Newer approaches have included:

- Beam search instead of greedy search (Straka et al. 2015, SyntaxNet)
- use of **dynamic oracles** that make the parser more robust to recover from bad decisions (Straka et al. 2015, SyntaxNet)
- search for global optima instead of local config to config optima

The End

Thank you for listening!

Questions?

Sources:

Chen, Danqi and Christopher D Manning. 2014. A fast and accurate dependency parser using neural networks. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). pages 740–750.

Nivre, Joakim 2008. Algorithms for deterministic incremental dependency parsing. In: Computational Linguistics 34.4, 2008, 513-553.

Nivre, Joakim. 2004. Incrementality in Deterministic Dependency Parsing. In Incremental Parsing: Bringing Engineering and Cognition Together. Workshop at ACL-2004, July 25, 2004, Barcelona, Spain, 50-57.

Milan Straka, Jan Hajič, Jana Straková and Jan Hajič jr. Parsing Universal Dependency Treebanks using Neural Networks and Search-Based Oracle. In Proceedings of the Fourteenth International Workshop on Treebanks and Linguistic Theories (TLT 14), December 2015.