基于因子分析和 BP 神经网络的 江苏省城市人居环境质量综合评价

◎周 川

【摘要】城市人居环境是城市居民 生存和发展的基础, 是衡量社会进步 与文化发展的重要标志。本文运用因 子分析和 BP 神经网络, 从人居环境和 软环境的角度构建了江苏省城市人居 环境质量综合评价体系。研究发现:

【关键词】因子分析; BP神经网络; 城市人居环境;评价体系

一、文献综述

从现有的关于城市人居环境评价文 献来看,大多数学者都着重于对城市 自然环境、居住环境等客观影响因素 的分析,例如李王鸣等[1](1999)通过 问卷调查选择了29项指标,分别从近 接居住环境、社区环境以及城市环境 三个方面制定了杭州市人居环境评价 指标体系;陈浮[2](2000)选择了建筑 质量、环境安全、经过规划、公共服务、 社会文化环境等指标,通过居民满意 度调查,对不同指标赋予相应的权重, 构建了南京市城市人居环境评价指标 体系: 李华生等[3](2005)采用人居环 境质量的主客观评价与组合模型,构 建了城市人居环境建设水平评价体系。 少数学者考虑到了经济、社会、文化 等因素对人居环境质量的影响, 但评 价方法过于简单。例如, 周田志等[4] (2004)从城市经济发展水平、经济 发展潜力、社会安全保障条件、生态 环境水平、市民生活质量水平和市民 生活便捷程度6个方面,通过求均值 对中国 50 个城市的人居环境进行评价 与排序。

为了全面考虑经济、社会、文化等 因素,同时降低指标过多带来的评价 难度,本文将选择因子分析法筛选出 公共因子,消除不重要因素,降低影 响因子,最大限度地减少原始因素中 包含的信息损失, 并实现有效降维。 然后建立 BP 神经网络,建立公因子与 城市人居环境质量的非线性映射关系, 全面评价江苏省城市人居环境质量。

二、人居环境质量评价指标体系

城市人居环境可划分为两部分:人 居硬环境和人居软环境[5]。其中,人居 硬环境是指为居民服务的各类基础设 施的总和,以居民的活动为载体,包 括居住条件、生态环境、基础设施以 及公共服务设施三项内容; 人居软环 境是一种无形的环境,是居民在利用 和发挥硬环境系统功能中形成的一切 非物质形态的总和,如生活情趣、社 会秩序、安全和归属感、生活方便舒 适程度、信息交流与沟通等。

(见表 1)

本文选取的指标数据分别来源于 《江苏省统计年鉴》(2018)和江苏 省13个地级市2018年统计年鉴。由 于选取的指标数据单位不一致,并且 指标数量级较大, 因此本文对部分数 据做如下处理:

其中, ai 代表经过处理后的数据, 范围为[0,1], Ai, 代表第j个地级市i个 指标的取值。由于需要处理的指标是 正指标, 因此可以通过上述公式进行 处理。 经过处理后, 指标的波动幅度 减小, 相对大小关系没有发生变化, 不影响下文进行实证分析结果。本文 采用 SPSS 22.0 软件对数据进行 KMO 测量和 Bartlett 球形测试。结果如表 2 所示, 因此拒绝其零假设, 认为适合 于因子分析。

(见表2)

综合考虑指标变量之间的相关系数 矩阵,特征值和方差贡献率,提取相 关因子。 从表 3 可以看出, 人居硬环 境指标中前3个因子可以代表83.792% 的信息,人类住区软环境指数中前两 个因子的累积方差贡献率为75.716%, 可以代表大部分信息。 因此, 人居环

	单位			
	人□密度 X ₁	万人/平方公里		
	年末移动电话用户X₂	万户		
	互联网宽带接入用户X₃	万户		
	交通便利程度 X ₄	公里/万平方米		
人居硬环境 	每万人拥有卫生机构数X ₅	个		
	建成区绿化覆盖率 X ₆	%		
	道路清扫率 X_7	%		
	城市污水日处理能力 X ₈	万吨		
人居软环境	人均拥有公共图书馆藏量 X ₉	个		
	每万人拥有公共图书馆建筑面积 X ₁₀	个		
	教育文化娱乐消费支出占比X ₁₁	%		
	可支配收入占地区生产总值比重X ₁₂	万元		
	第三产业占比 X ₁₃	%		
	恩格尔系数 X ₁₄	%		
	社保占财政支出X₁₅	%		

表 1 江苏省人居环境质量综合评价指标体系

北极艺 社会文化

人居硬环境排	旨标	人居软环境指标			
KMO测度 0.590		KMO测度	0.643		
巴特利特球形检验 显著性	0.000	巴特利特球形检 验显著性	0.000		

表 2 KMO 测度和巴特利特球形检验结果

境硬环境指数提取出3个共同因素, 而人居环境软环境指数提取出2个共 同因素。

(见表3)

在下文中,通过建立因子载荷矩阵进一步阐明因子变量的经济含义,并挖掘因子的潜在信息,并命名提取的因子。如表 4 所示,从栖息地硬环境指数中提取的第一个因子对 X2、X3、X8 指标有很大的载荷。这些指标反映了城市基础设施的建设,因此被称为城市基础设施因素;第二个因素对 X5、X6、X7 指标的载荷很大,反映了城市自然环境的构建,因此被称为自然环

文化资源的投入,因此被称为文化环境因素;第二个因子在 X12、X14、X15 指标上有较大的载荷,这些指标反映了城市居民的生活质量以及社会保障情况,故命名为社保环境因素。

(见表4)

通过因子分析,共计得出5个因子,计算出人居环境软硬环境的综合得分: (1)南京,苏州,无锡,常州等城市的人居环境和硬环境综合得分,最后四个是南通,宿迁,扬州,镇江;(2)各城市人居软环境综合差距较小,其中南京、苏州、淮安以及常州市区位于前列,南通、盐城、泰州以及徐

州市排名较后; (3)综合来看,人居 硬环境与软环境的建设并不同步,每 个城市都有着自身的优点与特征,比 如南京市区与苏州市区基础设施建设 更为齐备,更加文化底蕴,南京市区与常州市区自然环境更加优越,无锡市区和南通市区的生活环境相对宽松,宿迁市区和连云港市区人民的生活压力较小。(见图1)

下面将运用这些公共因子代替原有 指标变量,尝试应用 BP 神经网络模型 进行江苏省 13 个地级市城市人居环境 综合评价。

三、人居环境质量综合评价实证

1.BP 神经网络模型

本文设定 BP 神经元网络有 5 个输入神经元, 1 个输出神经元以及 13 个隐层神经元,因此输入层为

 $x_i^1 = \sigma(\sum_{j=0}^5 w_{ij}^0 x_j + w_{i0}^0), i = 1, 2 \cdots$

输出层为

 $y_i^1 = \sum_{j=0}^{5} w_{ij}^0 x_j + w_{i0}^0, i = 1, 2 \cdots$

输出神经元评价集设为五个等级, 分别为好($y \ge 4.5$)、较好($3.5 \le y$ < 4.5)、一般($2.5 \le y < 3.5$)、较 差($1.5 \le y < 2.5$)以及差(y < 1.5)。

	人居硬环境指标				人居软环境指标				
因子	特征根	方差贡献率(%)	累计方差贡献率(%)	因子	特征根	方差贡献率(%)	累计方差贡献率(%)		
1	4.055	50.681	50.681	1	3.808	54.399	54.399		
2	1.835	21.242	71.923	2	1.492	21.317	75.716		
3	1.652	18.262	90.185						

表 3 相关系数矩阵的特征值和方差贡献率

	人居碩	环境指标	人居软环境指标			
指标	因子1	因子2	因子3	指标	因子1	因子2
X2	.959			Х9	.884	
Х3	.940			X10	.969	
X8	.901			X11	.656	
X5		875		X13	.848	
X6		.831		X12		.748
X7		752		X14		.701
X1			.874	X15		.612
X4			.823			

表 4 旋转后因子载荷结果

				1		
得分	评价结果	基础设施	自然环境	居住环境	文化环境	社保环境
4.8	好	1	1	6	1	5
4.2	较好	2	12	9	2	11
3.9	较好	3	11	1	5	13
3.5	+较好	4	2	7	3	7
3.3	一般	9	4	12	4	3
3.2	一般	5	13	10	8	2
2.9	一般	7	9	13	12	4
2.8	一般	6	5	5	13	9
2.7	一般	8	8	8	11//	12
2.7	一般	11	6	11	9	1
2.5	一般	10	10	2	10	8
2.1	较差	12	3	4	7	6
1.9	较差	13	7	3/	6	10
	4.8 4.2 3.9 3.5 3.3 3.2 2.9 2.8 2.7 2.7 2.5 2.1	4.8 好 4.2 较好 3.9 较好 3.5 +较好 3.3 一般 3.2 一般 2.9 一般 2.8 一般 2.7 一般 2.7 一般 2.5 一般 2.1 较差	4.8 好 1 4.2 较好 2 3.9 较好 3 3.5 +较好 4 3.3 一般 9 3.2 一般 5 2.9 一般 7 2.8 一般 6 2.7 一般 8 2.7 一般 11 2.5 一般 10 2.1 较差 12	4.8 好 1 1 4.2 较好 2 12 3.9 较好 3 11 3.5 +较好 4 2 3.3 一般 9 4 3.2 一般 5 13 2.9 一般 7 9 2.8 一般 6 5 2.7 一般 8 8 2.7 一般 11 6 2.5 一般 10 10 2.1 较差 12 3	4.8 好 1 1 6 4.2 较好 2 12 9 3.9 较好 3 11 1 3.5 +较好 4 2 7 3.3 一般 9 4 12 3.2 一般 5 13 10 2.9 一般 7 9 13 2.8 一般 6 5 5 2.7 一般 8 8 8 2.7 一般 11 6 11 2.5 一般 10 10 2 2.1 较差 12 3 4	4.8 好 1 1 6 1 4.2 较好 2 12 9 2 3.9 较好 3 11 1 5 3.5 +较好 4 2 7 3 3.3 -般 9 4 12 4 3.2 -般 5 13 10 8 2.9 -般 7 9 13 12 2.8 -般 6 5 5 13 2.7 -般 8 8 11 2.7 -R 11 6 11 9 2.5 -R 10 10 2 10 2.1 较差 12 3 4 7

表 5 江苏省 13 个地级市人居环境质量综合评分结果以及各影响因素得分排名

激励函数采用 Sigmoid 函数为

$$\sigma(x) = \frac{1}{(1 + e^{-x})}$$

BP 神经网络训练参数设定为学习 速率为0.9,最大迭代次数为100次, 输出结果如图 2 所示:

(见图2)

2.BP 神经网络评价结果及分析

根据图 3, 从综合得分来看, 排在 前四位的是南京市区、苏州市区、徐 州市区以及常州市区,位于后四位的 分别是淮安市区、连云港市区、盐城 市区和宿迁市区;从空间分布来看, 苏南地区人居环境要普遍优于苏中、 苏北地区。

(见表5)

结合人居硬环境与软环境各指标得 分来看, 盐城市区和宿迁市区人居环 境质量综合评分排名靠后的主要原因 是基础设施落后。由于其优越的基础 设施,自然环境和文化环境,南京, 苏州, 常州和徐州的总体得分相对较 高。南京, 苏州和徐州的居住环境排 名较低,可能是由于苏州的人口密度 相对较大。 城市过于拥挤, 而常州市 区与徐州市区其社保环境的建设还有 待提高,可能是由于居民可支配收入 相对较低, 社保覆盖面较窄。

四、结语

本文对城市人居环境的质量进行了 综合评价,其目的是: (1)让人们能

图 1 江苏省 13 个地级市人居硬环 境与软环境质量综合得分

图 2 GA 优化 BP 神经网络均方差 误差变化曲线

够有效辨识居住城市的质量状况; (2) 在分析中进一步探索人居环境质量的 科学评价指标和评价方法:(3)从艰 苦的生活环境和软环境的角度探讨影 响人居环境质量的因素,以提出更有 效的措施和建议。 但鉴于数据的不可 得以及BP神经网络权重设定的局限 性,许多影响因素并未进行研究分析, 评价体系还有待进一步深入并完善。

参考文献:

[1] 李王鸣, 叶信岳, 孙于. 城市人 居环境评价: 以杭州城市为例 [J]. 经济 地理,1999,(2):38-43.

[2] 陈浮. 城市人居环境与满意度

评价研究[J]. 城市规划,2000,(07):25-

[3] 李华生,徐瑞祥,高中贵,彭 补拙.城市尺度人居环境质量评价 研究——以南京市为例[J].人文地 理,2005,(01):1-5.

[4] 周志田, 王海燕, 杨多贵. 中国 适宜人居城市研究与评价 [J]. 中国人 口・资源与环境,2004,(01):29-32.

[5] 宁越敏, 查志强. 大都市人居环 境评价和优化研究——以上海市为例 [J]. 城市规划 ,1999,(06):14-19+63.

作者:

周川, 江苏理工学院。