ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 36

Information Theory and Coding Feb. 1, 2022

Final exam solutions

Problem 1.

(a)
$$I(X;Y) = \sum_{x,y} p_{XY}(xy) \log \frac{p_{XY}(xy)}{p_X(x)p_Y(y)}$$
$$= \sum_{xy} p_X(x)W(y|x) \log \frac{W(y|x)}{p_Y(y)}$$
$$= \sum_{x} p_X(x)D(W_{Y|X=x}||p_Y).$$

(b) For any distribution q_Y on \mathcal{Y}

$$\sum_{x} p_{X}(x)D(W_{Y|X=x}||q_{Y}) - I(X;Y) = \sum_{x,y} p_{XY}(x,y) \log \frac{p_{Y}(y)}{q_{Y}(y)}$$

$$= \sum_{y} p_{Y}(y) \log \frac{p_{Y}(y)}{q_{Y}(y)}$$

$$= D(p_{Y}||q_{Y})$$

$$> 0.$$

We obtain the desired result as a special case when $q_Y = W_{Y|X=x_0}$.

- (c) Using (b), and noting that $D(W_{Y|X=x}||W_{Y|X=x_0}) \le C_1b(x)$, we find $I(X;Y) \le C_1\sum_x p_X(x)b(x) = C_1E[b(X)]$.
- (d) Noting that $D(\cdot||\cdot) \ge 0$, we see that each term in the right hand side of (a) is a lower bound to I(X;Y).
- (e) For the given distribution note that $p_Y = \delta W_{Y|X=x_1} + (1-\delta)W_{Y|X=x_0}$. Using (d) we can lower bound I(X;Y) by $\delta D(W_{Y|X=x_1}||p_Y)$. Noting that $E[b(X)] = \delta b(x_1)$ the result follows.
- (f) By (c) we see that $\sup_{p_X} I(X;Y)/E[b(X)] \leq C_1$. Now choose x_1 be the x that achieves the maximum that defines C_1 , so that $C_1 = D(W_{Y|X=x_1}||W_{Y|X=x_0})/b(x_1)$. Using (d) with $\delta \to 0$ we see that the $\sup_{p_X} I(X;Y)/E[b(X)] \geq C_1$.

PROBLEM 2. (a) The constraints that define \mathcal{Y} fix k of the coordinates of y^n , allowing n-k coordinates to be free. Thus $|\mathcal{Y}(f^n,s^n)|=2^{n-k}$.

- (b) For each $y^n \in \mathcal{Y}$ the probability that $\operatorname{read}(y^n) \neq w$ is $1 2^{-nR}$. Since these events are independent the probability of $\operatorname{read}(y^n) \neq w$ for all $y^n \in \mathcal{Y}$ is $(1 2^{-nR})^{|\mathcal{Y}|} = (1 2^{-nR})^{2^{n-k}}$.
- (c) Using (b) and upper bounding $1 2^{-nR}$ by $\exp(-2^{-nR})$ we see that the probability in (b) is upper bounded by $\exp(-2^{n-k}2^{-nR})$. Noting that k = qn the result follows.

(d) Given R < 1 - p, fix q_0 such that $p < q_0 < 1 - R$. Let A be the event that for all $y^n \in \mathcal{Y}(F^n, S^n)$, read $(y^n) \neq w$, and let B be the event at that $K/n < q_0$. We then have

$$\Pr(A) \le \Pr(A \cap B) + \Pr(B^c) \le \Pr(A|B) + \Pr(B^c).$$

- By the law of large numbers $K/n \to p$ as n gets large. Thus $\Pr(B^c) \to 0$ since $q_0 > p$. Moreover, by (c), $\Pr(A|B) \le \exp\left(-2^{n(1-R-q_0)}\right)$ which also approaches 0 as n gets large since $q_0 < 1 - R$. Consequently $\Pr(A) \to 0$ as n gets large.
- (e) Given the randomly constructed read() as above, define write (w_n, f^n, s^n) as follows: if there is a $y^n \in \mathcal{Y}(f^n, s^n)$ with read $(y^n) = w$, set write() = y^n , otherwise randomly choose write(). Note that in the first case $\hat{w}_n = w_n$. Thus $\Pr(\hat{W}_n \neq W_n)$ is upper bounded by the probability we found in (d), which can be made less than ϵ by choosing n large enough.
- (f) No. Even if f^n we revealed to both the reader and writer there are only n-K memory locations that they can use to store data. For R > 1-p, by the law of large numbers $nR \le n-K$ is a small probability event, so there is a small probability that nR bits of data can be stored in n-K locations.
- PROBLEM 3. (a) Blocklength of enc is 2n. Also, enc encodes $k_1 + k_2$ bits of information to 2n channel symbols, so $R = (k_1 + k_2)/2n = (R_1 + R_2)/2$.
 - (b) $w_H(x) = w_H(x_1) + w_H(x_1 + x_2)$. By the triangle inequality $w_H(x_1) + w_H(x_1 + x_2) \ge w_H(x_1 + x_1 + x_2) = w_H(x_2)$.
 - (c) If $x_2 = 0$, we clearly have $w_H(x) = 2w_H(x_1)$. Otherwise, by (b) we have $w_H(x) \ge w_H(x_2)$. In either case the claim $w_H(x) \ge 2w_H(x_1)\mathbb{1}(x_2 = 0) + w_H(x_2)\mathbb{1}(x_2 \ne 0)$ holds.
 - (d) Recall that for linear encoders the minimum distance is equal to the minimum weight. Note that the codewords of enc are of the form x above with x_i a codeword of enc_i for i = 1, 2. A non-zero codeword x of enc must that either $x_1 \neq 0$ or $x_2 \neq 0$. Thus by (c), we see that the minimum weight codeword of enc has weight at least min $\{2d_1, d_2\}$, and thus $d \geq \min\{2d_1, d_2\}$. Moreover, with x_1 a minimum weight codeword of enc₁ and x_2 a minimum weight codeword of enc₂, observe that both $[x_1, x_1]$ and $[0, x_2]$ are non-zero codewords of enc, thus $d \leq \min\{2d_1, d_2\}$.
 - (e) The encoder that corresponds to generator M_i takes one bit and repeats it 2^i times. Thus it is of rate $1/2^i$ and has minimum distance 2^i . Consequently, n_i , R_i and d_i satisfy: $n_{i+1} = 2n_i$, $R_{i+1} = (R_i + 2^{-i})/2$ and $d_{i+1} = \min\{2d_i, 2^i\}$, starting with $n_1 = 2$, $R_1 = 1$, $d_1 = 1$. We thus see that $n_i = 2^i$, $d_i = 2^{i-1}$, and $R_i = (i+1)/2^i$.
- PROBLEM 4. (a) Suppose a scheme that achieves (R, D) with R < R(D). The same scheme must achieve R and $E[\log d(X^n, Y^n)] \le \log D$. Since $\log d(X^n, Y^n)$ is an additive distortion, we know from the standard converse that $R \ge R(D)$. Hence, it is a contradiction and $R \ge R(D)$ must hold.
 - (b) Let $\tilde{R}(D) := \inf_{p_{y|x}: E[\log d(X,Y)] \leq D} I(X;Y)$. We know $\tilde{R}(D)$ is convex and $R(D) = \tilde{R}(\log(D))$. Hence, $R(\lambda D_1 + (1-\lambda)D_2) = \tilde{R}(\log(\lambda D_1 + (1-\lambda)D_2)) \stackrel{(*)}{\leq} \tilde{R}(\lambda \log(D_1) + \log((1-\lambda)D_2)) \stackrel{(**)}{\leq} \lambda R(D_1) + (1-\lambda)R(D_2)$. (*) follows from concavity of $\log(.)$ and due to the fact that $\tilde{R}(.)$ is non-increasing. (**) follows from convexity of $\tilde{R}(D)$.

- (c) Since $\sum_i \mathbbm{1}(x_i=x,y_i=y) \leq np_{XY}(x,y)(1+\epsilon)$ for every ϵ -typical (x^n,y^n) and $d(x,y) \geq 1$ for all $(x,y),\ d(x^n,y^n) = \prod_i d(x_i,y_i)^{\frac{1}{n}} \leq \prod_{x,y} d(x,y)^{p_{XY}(x,y)(1+\epsilon)} = \exp\left(E[\log d(X,Y)](1+\epsilon)\right) = D^{1+\epsilon}$ for every ϵ -typical (x^n,y^n) .
- (d) $E[d(X^n, Y^n)] = E[d(X^n, Y^n)|(X^n, Y^n) \text{ is not } \epsilon\text{-typical}]] \Pr((X^n, Y^n) \text{ is not } \epsilon\text{-typical}]$ $+ E[d(X^n, Y^n)|(X^n, Y^n) \text{ is } \epsilon\text{-typical}] \Pr((X^n, Y^n) \text{ is } \epsilon\text{-typical}])$ $\leq d_{\max} \Pr((X^n, Y^n) \text{ is not } \epsilon\text{-typical}]) + E[d(X^n, Y^n)|(X^n, Y^n) \text{ is } \epsilon\text{-typical}]$

From the course, we know $\epsilon' := d_{\max} \Pr((X^n, Y^n) \text{ is not } \epsilon\text{-typical}]) \to 0 \text{ if } R > R(D).$ Part (c) implies $E[d(X^n, Y^n)|(X^n, Y^n) \text{ is } \epsilon\text{-typical}] \leq D^{1+\epsilon}$. Hence, $E[d(X^n, Y^n)] \leq \epsilon' + D^{1+\epsilon}$.