Generating Solution Sequences for Strategies In The Prisoners Dilemma Using Genetic Improvement Algorithms

Toby Devlin - C1432293

This Presentation

- 1 Project Scope
- 2 The Genetic Algorithm and its Components
- 3 Analysis and Outcomes
- 4 Final Conclusions & Discussion

1 - Project Scope

Project Description

When playing a given Iterated Prisoner's Dilemma strategy as an opponent, what is the best ordered sequence of moves to play in order for us to obtain the highest possible average score per move across the game?

Are there any patterns in these solution sequences?

Example

Game 1 Tit For Tat: Solution:	1 C D	2 D D	3 D D	4 D D	5 D D	final score 4 9	per turn 0.8 1.8
Game 2	1	2	3	4	5	final score	per turn
Tit For Tat:	C	D	C	D	D	7	1.4
Solution:	D	C	D	D	D	12	2.4
Game 3	1	2	3	4	5	final score	per turn
Tit For Tat:	C	D	C	D	C	10	2.0
Solution:	D	C	D	C	D	15	3.0
Game 4	1	2	3	4	5	final score	per turn
Tit For Tat:	C	D	C	C	C	11	2.2
Solution:	D	C	C	C	D	16	3.2
Game 5	1	2	3	4	5	final score	per turn
Tit For Tat:	C	C	C	C	C	12	2.4
Solution:	C	C	C	C	D	17	3.4
Game 6	1	2	3	4	5	final score	per turn
Tit For Tat:	C	C	C	C	C	15	3.0
Solution:	C	C	C	C	C	15	3.0

2 - The Genetic Algorithm and its Components

Core Concept

Axelrod Dojo

- Actively developed at Cardiff Uni
- Contains 3+ optimization techniques
- Allowed me to investigate VCS
- Flexible for game theory models

Extended Algorithm

Optimal Parameters

3 - Analysis and Outcomes

Raw Results & Metadata

	generation	score_mean	score_median	score_pop_var	score_range	best_score	best_sequence
2401	2	2.80574	2.8950	0.338914	2.635	3.140	DDCDDCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
2402	3	2.80780	2.9600	0.447188	2.850	3.375	$\tt CCCCCCCCCCCCCCCCCCCCCCCCCDDDCDDCDCDCCDC$
2403	4	2.83276	3.0000	0.529338	2.865	3.390	${\tt DCDDDDDCDDCCDDCDDCCDDCDDCDCDCDCCCCD}$
2404	5	2.94730	3.1300	0.609064	2.895	3.425	$\tt CCCCCCDDCCCCCDDDCDDCDDCDDCCDCCCDDDDDCDD$
2405	6	3.06512	3.2525	0.601824	2.885	3.445	${\tt DCDDDDDCDDCCDDCDDDCCDDCDDDCDCCCDCDDDDDCDD}$

	inspects_source	long_run_time	makes_use_of	manipulates_source	manipulates_state	memory_depth	stochastic	opponent_name
φ	False	False	{}	False	False	inf	False	φ
π	False	False	{}	False	False	inf	False	π
e	False	False	0	False	False	inf	False	e
ALLCorALLD	False	False	{}	False	False	1	True	ALLCorALLD
Adaptive	False	False	{game}	False	False	inf	False	Adaptive
Adaptive_Pavlov_2006	False	False	{}	False	False	inf	False	Adaptive_Pavlov_2006

Interesting results

- 1 Effectiveness of solutions
- 2 Difference with expected results
- 3 Trends in complexity

4 - Final Conclusions & Discussion

Unclear Conclusions

Unclear Conclusions Nuanced Problem

Unclear Conclusions
Nuanced Problem
Initial Populations

Unclear Conclusions Nuanced Problem Initial Populations Efficient Algorithms

General Knowledge Gained

General Knowledge Gained

Complex Problems

- Approximation methods
- Leveraging code

Data Analysis

- Distributed computing
- Techniques

General Knowledge Gained

Complex Problems

- Approximation methods
- Leveraging code

Writing Reports

- Overcoming personal difficulties
- Managing time

Independent learning

- Citing others work
- Identifying useful sources

Data Analysis

- Distributed computing
- Techniques

Value Added With This Report

- D55,1,14,1,2,1,1,1,10,1,9,1,2,1,1,1,2,1,5,2,1,1,1,2,7,2,4,1,1,3,2,2,1,1,1... for 1 opponent(s):
 Bush_Mosteller@_6* (score: 3.67)

 D57,2,1,1,5,1,1,3,1,1,2,2,13,1,1,1,1,1,6,2,3,2,1,1,2,2,4,1,5,2,3,1,1,1,3... for 1 opponent(s):
 Bush_Mosteller@_2* (score: 3.59)
 - C196,4 with 3 opponents
 - C194,6 with 1 opponent
 - C193,7 with 2 opponents
 - C100,100 with 8 opponents
 - C5,195 with 3 opponents
 - C2,1,1,196 with 1 opponent
 - C2,198 with 2 opponents
 - C1,1,1,1,... with 17 opponents

- C1,1,1,197 with 1 opponent
- C1,2,1,196 with 1 opponent
- C1,199 with 11 opponents
- $\bullet~$ D1,198,1 with 21 opponents
- D1,196,3 with 1 opponent
- D1,194,5 with 2 opponents
- $\bullet~$ D1,4,195 with 4 opponents
- \bullet D1,3,196 with 4 opponents
- $\bullet~$ D1,2,197 with 9 opponents
- $\bullet~$ D2,197,1 with 3 opponents

Jan 16, 2018 – May 11, 2018	Contributions: Additions $ullet$ $C1,4,3,2=CDDI$	DDCCCDD
Contributions to master, excluding merge commit 20x 1.5x 500	$C1, (2,1)^{2}, 2, 1 = CDDC$ $\{D[i, 5-i]\} i \in [2, 4] = \{DDC$	CDDCDDC
2016 April Ady Octobe GitToby 1 commit 399 ++ 58 Jan 21 Feb 04 Feb 18 Mar 04 Mar 18 April April April A	<pre>import random class MyMember(ga.MemberBase): def _construct_from_params(self, construction_parameters=None): # Starting point is a bunch of 5 numbers [0-9] self.vars = [random.randrange(10) for _ in range(5)] def mutate(self): # Mutation involves adding a number between -2 and 2 to a random variable</pre>	Rank 0 Cy 1 Tri 2 S 3 Def 4

Rank	Name	Median score	Cooperation rating	Wins	
0	Cycler: C1,199	4.9625	0.005	4.0	
1	Tricky Defector	2.23625	0.2475	1.5	
2	SolutionB1	1.7675	0.71775	2.0	
3	Defector Hunter	1.508125	0.995	0.0	
4	Willing	1.5	0.849	0.5	

Questions?