Synteza układu modyfikacji adresu dla układów sekwencyjnych z wbudowanymi pamięciami ROM

UKŁADY FPGA Z WBUDOWANYMI PAMIĘCIAMI (FLEX 10K10)

IMPLEMENTACJA AUTOMATÓW ZA POMOCĄ PAMIĘCI ROM

Niestety taka realizacja wiąże się z ogromnymi wymaganiami na pojemność pamięci

$$M = 2^{(x+q)} \times (q+y)$$

UKŁADY MIKROPROGRAMOWANE

MODYFIKACJA ADRESU

Pojemność ROM:

$$M=2^{(a+c)}\times(q+y)$$

T P W

JAK TO ZREALIZOWAĆ ???

T P W

JAK TO ZREALIZOWAĆ ???

☐ Funkcja G reprezentuje modyfikator adresu

☐ Funkcja H opisuje zawartość pamięci

T P W

ALGORYTM SYNTEZY AUTOMATU (algebra podziałów)

- 1. Wybór zbioru U (wstępne kodowanie)
- 2. Określenie podziałów:

$$P(U), P_g = P(V)$$

3. Szukanie podziału $\Pi_g \ge P_g$

$$P(U) \bullet \Pi_g \le P_F$$

(czasami istnieje potrzeba wprowadzenia zbioru W)

4. Obliczenie funkcji G oraz H

PRZYKŁAD

√ Wej					
Stany	I ₁	l ₂	l ₃	l ₄	Wyj- ścia
S ₁	S ₁	S ₂	S ₄		W
S ₂			S ₅	S ₄	Y J
S_3	S_3	S ₂	S ₁	S ₃	Ś C
S ₄	S ₂		S ₄	S ₁	I A
S_5	S_3	S ₁	S ₄	S ₂	

Odpowiednie zakodowanie stanów i wejść może pomóc w podziale zmiennych wejściowych na zbiory U i V

	I ₁	l ₂	l ₃	l ₄
S ₁	S ₁	S ₂	S ₄	
S ₂	\ }-\		S ₅	S ₄
S ₄	S ₂		S ₄	S ₁
S_3	S_3	S ₂	S ₁	S_3
S ₅	S ₃	S ₁	S ₄	S ₂

☐ Po przestawieniu wierszy i kolumn pojawiają się możliwości zakodowania i podziału zmiennych wejściowych

$U = \{x_1, x_2, q_1\}$ $V = \{q_2, q_3\}$	}	l ₂	l ₃	I ₄
S ₁	S ₁	S ₂	S ₄	
S ₂		42	S ₅	S ₄
S ₄	S ₂		S ₄	S ₁
S_3	S_3	S ₂	S ₁	S ₃
S_5	S_3	S ₁	S_4	S ₂

q_1	q_2	q_3	x ₁ x ₂ 00	01	11	10
S ₁ 0	0	0	1	2	3	
S ₂ 0	0	1	-	\ <u>-</u> -2	4	5
S ₄ 0	1	0	6	<u> </u>	7	8
S ₃ 1	1	1/	9	10	11	12
S ₅ 1	0	1	13	14	15	16

$$P(U)|P_F = ((1)(6); (2); (3,7)(4); (5)(8); (9,13); (10)(14); (11)(15); (12)(16))$$

$$U = \{x_1, x_2, q_1\}$$
$$V = \{q_2, q_3\}$$

P(V) = (1,2,3; 4,5,13,14,15,16; 6,7,8; 9,10,11,12)

ZPT

W

$$U = \{x_1, x_2, q_1\}$$
 $V = \{q_2, q_3\}$

$$V = \{q_2, q_3\}$$

$$P(U)|P_F = ((1)(6); (2); (3,7)(4); (5)(8); (9,13); (10)(14); (11)(15); (12)(16))$$

$$P(V) = (1,2,3; \overline{4,5,13,14,15,16}; \overline{6,7,8}; \overline{9,10,11,12})$$

Пд

 $x_1 x_2 = 00$

01

11

10

	1, 2, <mark>(</mark> , 16	3	6,	7, 8	
4, 5, 13, 14, 15	, 16	9,	10,	11, <i>'</i>	12

Przyjmujemy: $W = \{x_1\}$

$$V' = \{x_1, q_2, q_3\}$$

$$P(V') = (\overline{1,2}; \overline{3}; \overline{13,14}; \overline{4,5,15,16}; \overline{6}; \overline{7,8}; \overline{9,10}; \overline{11,12})$$

$$P(U)|P_F = ((1)(6); (2); (3,7)(4); (5)(8); (9,13); (10)(14);$$

(11)(15); (12)(16))

$$\Pi_g = (\overline{1,2,3,7,8,9,10,11,12}; \overline{4,5,6,13,14,15,16})$$

Uwaga: jest to inne rozwiązanie niż w książce Synteza układów logicznych ale oba rozwiązania są dobre

	l ₁	l ₂	l ₃	l ₄
S ₁	S ₁	S ₂	S ₄	
S ₂		1	S ₅	S ₄
S ₄	S ₂	4	S ₄	S ₁
S ₃	S_3	S ₂	S ₁	S ₃
S ₅	S_3	S ₁	S ₄	S ₂

q_1	q_2	q ₃ x ₁	⁴ 2 00	01	11	10
S ₁ 0	0	0	1	2	3	
S ₂ 0	0	1			4	5
S ₄ 0	1	0	6		7	8
S ₃ 1	1	1	9	10	11	12
S ₅ 1	0	1	13	14	15	16

$$P(U) = (1,6; 2; 3,4,7; 5,8; 9,13; 10,14; 11,15; 12,16)$$

$$\Pi_g = (\overline{1,2,3,7,8,9,10,11,12}; \overline{4,5,6,13,14,15,16})$$

$$P(U) \bullet \Pi_G = (1; 6; 2; 3,7; 4; 5; 8; 9; 13; 10; 14; 11; 15; 12; 16)$$

		l ₂	I ₃	I ₄
S ₁	S ₁	S ₂	S ₄	
S ₂		-	S ₅	S ₄
S ₄	S ₂	<u> </u>	S ₄	S ₁
S ₃	S ₃	S ₂	S ₁	S ₃
S ₅	S ₃	S ₁	S ₄	S ₂

	q_1	q_2	q_3
S ₁	0	0	0
S ₂	0	0	1
S ₄	0	1	0
S_3	1	1	1
S_5	1	0	1

x ₁ x ₂ 00	01	11	10
1	2	3	
		4	5
6	4/2	7	8
9	10	11	12
13	14	15	16

P(U) •
$$\Pi_G$$
 = (1; 6; 2; 3,7; 4; 5; 8; 9; 13; 10; 14; 11; 15; 12; 16)

X ₁	X ₂	q_1	g	
0	0	0	0	S ₁
0	0	0	1	S ₂
0	1	0	0	S ₂
1	1	0	0	S ₄
1	1	:		
	0	0 0	0 0 0 0 0 0 1 0	0 0 0 0 0 0 0 1 0 1 0 0

PRZYKŁADOWE BENCHMARKI

TEST	Wejścia	Wyjścia	Stany
d14	3	5	7
cse	7	7.7	16
ex4	6	9	14
mark1	5	16	15
s1	8	6	20
tbk	6	3	32
sse	7/57/	7	16

IMPLEMENTACJA AUTOMATU W UKŁADZIE EPF 10K10

Benchmark	ROM Implementation #bit	Finplemen (r	AM implementation	
			#LCs	#bits
d14	2		21	256
cse	3 1)	92	2	5632
ex4	5312	28	2	3328
mark1	10243	40	2	5120
s1		137	96	5632
tbk	41)	759 ²⁾	333	4093
sse	22528 1)	52	3	5632

- 1) Implement on not possible not enough memory recourses
- 2) Implementation not possible not enough CLB recourses

ODWZOROWANIE UKŁADU TBK

tbk: 16 384 bitów lub 759 komórek log.

tbk: 4093 bitów oraz 333 komórek log.

Przed dekompozycją

Po dekompozycji