Série 8

Exercice 1. Montrer qu'une isometrie φ de partie lineaire φ_0 verifie

$$\forall P, Q \in \mathbb{R}^2, \ \overrightarrow{\varphi(P)\varphi(Q)} = \varphi_0(\overrightarrow{PQ})$$

Exercice 2. Soit $\mathcal{P} = (P_1, \dots, P_n)$ un ensemble ordonne de points du plan et $\Lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n_{\geq 0}$ un vecteur de reels positifs ou nuls tels que

$$\sum_{i} \lambda_i = 1.$$

Le barycentre des points \mathcal{P} affectes des poids Λ est le point

$$\operatorname{Bar}(\mathcal{P}, \Lambda) = \sum_{i=1}^{n} \lambda_i P_i.$$

Par exemple si n=2 et $\lambda_1=\lambda_2=1/2$ le barycentre est le milieu.

1. Montrer que le barycentre $Bar(\mathcal{P}, \Lambda)$ est l'unique point $G \in \mathbb{R}^2$ qui verifie

$$\sum_{i} \lambda_i \overrightarrow{GP_i} = \overrightarrow{0}.$$

2. Soit $\varphi \in \text{Isom}(\mathbb{R}^2)$ une isometrie. Montrer que φ preserve les barycentres :

$$Bar(\varphi(\mathcal{P}), \Lambda) = \varphi(Bar(\mathcal{P}, \Lambda)).$$

Exercice 3. Une application affine $\varphi: \mathbb{R}^2 \to \mathbb{R}^2$ est une application de la forme

$$\varphi: P \mapsto t \circ \varphi_0(P)$$

ou t est une translation et $\varphi_0: \mathbb{R}^2 \to \mathbb{R}^2$ est une application lineaire.

- 1. Montrer plus generalement que la propriete de preserver les barycentres est vraie pour toute application affine.
- 2. Montrer que toute application $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$ qui preserve les barycentres est une application affine; on pourra commencer par se ramener au cas ou $\varphi(\mathbf{0}) = \mathbf{0}$ et montrer qu'alors φ est lineaire.

Exercice 4. Soit X un ensemble et $\phi \in \text{Bij}(X)$ une bijection sur cet ensemble; l'ensemble des points fixes de ϕ est defini par

$$Fix(\phi) = \{x \in X, \ \phi(x) = x\}.$$

1. Montrer que si $\psi \in \text{Bij}(X)$ est une autre bijection et $\text{Ad}(\psi)(\phi) = \psi \circ \phi \circ \psi^{-1}$ alors

$$Fix(Ad(\psi)(\phi)) = \psi(Fix(\phi))$$

ie. l'ensemble des points fixes du conjugue par ψ est le transforme par ψ de l'ensemble des points fixes.

Exercice 5. Soit $\phi \in \text{Isom}(\mathbb{R}^2)_0$ une application lineaire inversible.

- 1. Montrer que Fix(ϕ) est un sous-espace vectoriel de \mathbb{R}^2 et donc qu'il est soit $\{\mathbf{0}\}$, \mathbb{R}^2 ou bien une droite lineaire $\mathbb{R}.\vec{u}$ avec $\vec{u} \in \mathbb{R}^2 \{\mathbf{0}\}$. Que vaut ϕ dans le second cas?
- 2. On suppose que $Fix(\phi) = \mathbb{R} \cdot \vec{u}$ avec $\vec{u} \neq 0$. Montrer que

$$\vec{u}^{\perp} = \{\vec{x} \in \mathbb{R}^2, \ \langle \vec{u}, \vec{x} \rangle = 0\} = \mathbb{R}.\vec{v}, \ \vec{v} \neq \mathbf{0}.$$

- 3. Montrer que $\phi(\vec{v}) \in \vec{u}^{\perp}$ et que $\phi(\vec{v}) = -\vec{v}$.
- 4. Montrer que pour tout $\vec{w} \in \mathbb{R}^2$, on a

$$\phi(\vec{w}) = \vec{w} - 2 \frac{\langle \vec{w}, \vec{v} \rangle}{\langle \vec{v}, \vec{v} \rangle} \vec{v}.$$

Pour cela on remarquera que (\vec{u}, \vec{v}) forme une base orthogonale de \mathbb{R}^2 et on exprimera \vec{w} dans cette base. Comment appelle-t-on ϕ ?

5. Montrer reciproquement qu'une application de la forme

$$\phi(\vec{w}) = \vec{w} - 2 \frac{\langle \vec{w}, \vec{v} \rangle}{\langle \vec{v}, \vec{v} \rangle} \vec{v}$$

avec \vec{v} non-nul est une isometrie lineaire.

6. Montrer que $\phi \circ \phi = \mathrm{Id}_{\mathbb{R}^2}$ et que si on remplace \vec{v} par un multiple non-nul $\lambda . \vec{v}$ alors l'application correspondance reste la meme.

Exercice 6. Donner la matrice de la symetrie orthogonale σ par rapport a la droite d'equation

$$2x + 3y = 0.$$

Remarque 0.1. Une isometrie lineaire ϕ dont l'ensemble des points fixes est une droite est la symetrie orthogonale par rapport a cette droite. Une isometrie lineaire ϕ dont l'ensemble des points fixes est $\{0\}$ ou \mathbb{R}^2 est une rotation.