## Chapitre 11

# **Produit Scalaire**



The real world applications of the dot product

### 11.1 Vecteurs dans l'espace

#### Décomposition d'un vecteur dans l'espace

- Relation de Chasles (rappel) :  $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{BC}$
- $\bullet$   $\underline{Base}$  : une base de l'espace est la donnée de 3 vecteurs linéairement indépendants
- <u>Décomposition d'un vecteur dans une base</u> : dans la base  $(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ , le vecteur  $\overrightarrow{u}$  peut s'écrire (grâce à la relation de Chasles) de façon <u>unique</u> :  $\overrightarrow{u} = x$ .  $\overrightarrow{i} + y$ .  $\overrightarrow{j} + z$ .  $\overrightarrow{k}$
- <u>Coordonnées d'un vecteur</u> : le vecteur  $\overrightarrow{u}$  s'écrit donc  $\overrightarrow{u} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$
- <u>Repère</u> : un repère de l'espace est d'une base et d'un centre O ; on le note  $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$

#### Remarque, exemple:

- donner une base  $(\overrightarrow{i},\overrightarrow{j},\overrightarrow{k})$  signifie que :  $\overrightarrow{i}=\begin{pmatrix}1\\0\\0\end{pmatrix}$  ,  $\overrightarrow{j}=\begin{pmatrix}0\\1\\0\end{pmatrix}$  et  $\overrightarrow{j}=\begin{pmatrix}0\\1\\0\end{pmatrix}$
- donner un repère  $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$  signifie en plus que  $O = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$
- donner les coordonnées des points N et M et et des vecteurs  $\overrightarrow{NM}$  et  $\overrightarrow{HB}$  :



repère orthonormé  $(D; \overrightarrow{DH}, \overrightarrow{DC}, \overrightarrow{DA})$ 

### 11.2 Définition - Propriété

- <u>Analytique</u>:  $\vec{u}.\vec{v} \begin{pmatrix} x \\ y \\ z \end{pmatrix}. \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = xx' + yy' + zz'$
- $\bullet \ \ \underline{\textit{Vectorielle (identit\'e du parall\'e logramme)}} : \vec{u}.\vec{v} = \tfrac{1}{2}(||\overrightarrow{u+v}||^2 ||\vec{u}||^2 ||\vec{v}||^2)$
- $\underline{G\acute{e}om\acute{e}trique}: \vec{u}.\vec{v} = ||\vec{u}||.||\vec{v}||.\cos(\widehat{\vec{u},\vec{v}})$

### Remarque, exemple:

- vérifier que ces 3 définitions sont équivalentes
- vérifier que :  $\vec{u} \cdot \vec{v} = \frac{1}{2}(||\overrightarrow{u+v}||^2 ||\vec{u}||^2 ||\vec{v}||^2) = \frac{1}{2}(||\vec{u}||^2 + ||\vec{v}||^2 ||\overrightarrow{u-v}||^2) = \frac{1}{4}(||\overrightarrow{u+v}||^2 ||\overrightarrow{u-v}||^2)$
- $A \begin{pmatrix} 6 \\ 8 \\ 2 \end{pmatrix}$  et  $B \begin{pmatrix} 4 \\ 9 \\ 1 \end{pmatrix}$  et  $C \begin{pmatrix} 5 \\ 7 \\ 3 \end{pmatrix}$ 
  - $\bullet$  déterminer la mesure géométrique de  $\widehat{BAC}$
  - on projette orthogonalement A,B,et C sur le plan z=0 respectivement en A', B' et C' déterminer la mesure géométrique  $\widehat{B'A'C'}$
  - que constatez vous?





T<sup>ale</sup> S - math13net 2024 - 2025

**Propriété**:  $\vec{u}$ ,  $\vec{v}$ ,  $\vec{w}$  3 vecteurs de l'espace et  $\lambda$  un réel

- $commutativit\acute{e}: \vec{u}.\vec{v} = \vec{v}.\vec{u}$
- $ditributivit\acute{e}: \vec{u}(\vec{v}+\vec{w}) = \vec{u}.\vec{v} + \vec{u}.\vec{w}$
- **bilinéarité** :  $\lambda(\vec{u}.\vec{v}) = (\lambda \vec{u}).\vec{v} = \vec{u}.(\lambda \vec{v})$
- $\underline{Si}\ \vec{u}$  et  $\vec{v}$  sont de même direction et de même sens  $\underline{Alors}\ \vec{u}.\vec{v} = ||\vec{u}||.||\vec{v}||$
- $\underline{Si}\ \vec{u}$  et  $\vec{v}$  sont de même direction et de sens contraires  $\underline{Alors}\ \vec{u}.\vec{v} = -||\vec{u}||.||\vec{v}||$
- orthogonalité :  $\vec{u}.\vec{v} = 0 \Leftrightarrow \vec{u}$  et  $\vec{v}$  sont orthogonaux
- une égalité très utile :  $\vec{u} \cdot \vec{u} = ||\vec{u}||^2$
- propriété de  $\vec{0}$ : c'est le seul vecteur orthogonal à lui-même :  $\vec{u} \cdot \vec{u} = ||\vec{u}||^2 = 0 \Leftrightarrow \vec{u} = \vec{0}$

#### Remarque, exemple:

• le vecteur nul  $\vec{0}$  est orthogonal à tous vecteurs; c'est d'ailleurs le seul

• 
$$\vec{u} \begin{pmatrix} 2 \\ -\frac{1}{2} \\ 5 \end{pmatrix}$$
 et  $\vec{v} \begin{pmatrix} -\frac{2}{5} \\ 3 \\ \alpha \end{pmatrix}$ ; trouver  $\alpha$  pour que  $\vec{u}.\vec{v} = \vec{0}$ 

• A 
$$\begin{pmatrix} 2 \\ -5 \\ 1 \end{pmatrix}$$
 et B  $\begin{pmatrix} 0 \\ 2 \\ 6 \end{pmatrix}$  et la droite d définit par C  $\begin{pmatrix} -2 \\ 3 \\ 1 \end{pmatrix}$  et  $\vec{w} \begin{pmatrix} -4 \\ 1 \\ -3 \end{pmatrix}$  mq (AB) et d sont perpendiculaires

• A 
$$\begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix}$$
, B  $\begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix}$ , C  $\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$ , D  $\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$ , E  $\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$ 

Mq A, B, C ne sont pas alignés et que  $\overrightarrow{DE}$  est normal au plan (ABC)

#### 11.3 Vecteur, droite et plan dans l'espace

**Propriété**: dans le repère 
$$(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$$
, soit A  $\begin{pmatrix} x_A \\ y_A \\ z_A \end{pmatrix}$  et B  $\begin{pmatrix} x_B \\ y_B \\ z_B \end{pmatrix}$  et  $\overrightarrow{u}$   $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$  et  $\overrightarrow{v}$   $\begin{pmatrix} d \\ e \\ f \end{pmatrix}$ 

• coordonnées du vecteur  $\overrightarrow{AB}$ :  $\begin{pmatrix} x_B - x_A \\ y_B - y_A \\ z_B - z_A \end{pmatrix}$ 

- <u>équation de la droite</u> passant par A et dirigée par le vecteur  $\overrightarrow{u}$ :  $\begin{cases} x = x_A + k.a \\ y = y_A + k.b \\ z = z_A + k.c \end{cases}$
- <u>équation du plan</u> passant par A et dirigée par  $\overrightarrow{u}$  et  $\overrightarrow{v}$ :  $\begin{cases} x = x_A + k.a + k'.d \\ y = y_A + k.b + k'.e \\ z = z_A + k.c + k'.f \end{cases}$

 $T^{ale} S$  - math 13 net 2024 - 2025

## 11.4 Équation cartésienne d'1 plan

#### Définition - Propriété :

•  $vecteur\ normal\ à\ un\ plan: \vec{n}$  est normal à  $\mathscr{P}\ \underline{si}$  toute droite dirigée par  $\vec{n}$  est orthogonale à  $\mathscr{P}$ 

• l'équation du plan  $\mathscr{P}$  passant par A et normal à  $\vec{n} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$  est par :  $\overrightarrow{AM} \cdot \vec{n} = \vec{0}$  où  $M \in \mathscr{P}$  équation analytique d'1 plan : ceci donne 1 équation de la forme : ax + by + cz + d = 0

• droite orthogonale à un plan :

1 droite  $\Delta$  est orthogonale à 1 plan  $\mathscr{P} \Leftrightarrow \exists d_1$ ,  $d_2$  sécantes de  $\mathscr{P}$  orthogonales à  $\Delta$ 

• soient 2 plans  $\mathscr{P}_1$  de vecteur normal  $\vec{n}_1$  et  $\mathscr{P}_2$  de vecteur normal  $\vec{n}_2$ :  $\boxed{\mathscr{P}_1 \bot \mathscr{P}_2 \Leftrightarrow \vec{n}_1 \bot \vec{n}_2}$ 



#### Remarque, exemple:

#### • <u>Preuve 2</u>:

- $\Rightarrow$  <u>Si</u>  $\Delta \perp \mathscr{P}$  <u>Alors</u>  $\Delta$  est orthogonale à toutes droites de  $\mathscr{P}$
- $\Leftarrow \underline{Si} d_1$  et  $d_2$  sécantes de  $\mathscr{P}$  sont orthogonales à  $\Delta$ 
  - <u>Alors</u> soit  $\vec{n}$  la direction de  $\Delta$ ,  $\vec{u}_1$  la direction de  $d_1$  et  $\vec{u}_2$  la direction de  $d_2$
  - par définition, on a :  $\vec{n} \perp u_1$  et  $\vec{n} \perp u_2$
  - $d_1$  et  $d_2$  sont sécantes  $\Rightarrow u_1$  et  $u_2$  sont non colinéaires (on dit "libres") ils donnent la direction de  $\mathscr P$
  - $\forall d \in \mathscr{P}$  de vecteur directeur  $\vec{u}$ ,  $\exists a, b \in \mathbb{R}$  tq  $a\vec{u}_1 + b\vec{u}_2 = \vec{u}$
  - clairement,  $\vec{n} \cdot \vec{u} = \vec{n} \cdot (a\vec{u}_1 + b\vec{u}_2) = \vec{n} \cdot a\vec{u}_1 + \vec{n} \cdot b\vec{u}_2 = \vec{0} \Rightarrow \vec{n} \perp \vec{u}$  et donc  $\Delta \perp d$

 $T^{ale} S - math 13net$  2024 - 2025

• <u>Ex 1</u>: déterminer l'équation de  $\mathscr P$  passant par  $A\begin{pmatrix}2\\0\\1\end{pmatrix}$  et normal à  $\vec n\begin{pmatrix}1\\-2\\1\end{pmatrix}$ 

• <u>Ex 3 :</u> déterminer l'équation du plan médiateur de A et B avec  $A \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$  et normal à  $\vec{n} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$