ECSE210L: Design and Analysis of Algorithms

Tutorial 7 (Week 7: February, 17 - 21, 2020)

Instructors: Shakti Sharma and Raghunath Reddy M

(Q1) In the following, we are given instances of weighted interval selection / activity schedule problem. Every interval/activity has starting and ending points (start time and end time) and further every interval/activity has a value associated with it. Find a set S of disjoint intervals/activities such that the total value of intervals/activities in S is maximum.

<i>a</i>)	Interval/activity	a	b	С	d	е	f
	Start point	0	1	5	2	8	9
	End point	4	6	7	10	11	12
	Value	2	4	4	7	2	1

<i>b</i>)	Interval/activity	a	b	\mathbf{c}	d	e	f	g	h
	Start point	0	1	3	3	4	5	6	8
	End point	6	4	5	8	7	9	10	11
	Value	2	1	1	3	4	1	1	2

- $(\mathbf{Q2})$ Find an optimal solution for each of the following instances of the 0-1 Knapsack problem.
 - a) Take the size and profit as in the following table. Further, Knapsack size is 8.

Item	A	В	С	D	Е	F
Profit	7	8	14	5	10	15
Size	2	1	5	2	4	3

b) Take the size and profit as in the following table. Further, Knapsack size is 12.

Item	A	В	С	D	Е
Profit	24	13	23	15	16
Size	5	6	4	8	7