Bài tập cuối chương VII

A. TRẮC NGHIỆM

Câu 1 trang 19 SBT Toán 7 tập 1: Tam thức bậc hai nào có biệt thức $\Delta = 1$ và hai

nghiệm là:
$$x_1 = \frac{3}{2} \text{ và } x_2 = \frac{7}{4}$$
?

A.
$$8x^2 - 26x + 21$$
;

B.
$$4x^2 - 13x + \frac{21}{2}$$
;

C.
$$4x^2 + 4x - 15$$
;

D.
$$2x^2 - 7x + 6$$
.

Lời giải

Đáp án đúng là B

Sử dụng máy tính cầm tay ta tính được các tam thức bậc hai f (x) = $8x^2 - 26x + 21$

và g (x) =
$$4x^2 - 13x + \frac{21}{2}$$
 đều có hai nghiệm phân biệt $x_1 = \frac{3}{2}$ và $x_2 = \frac{7}{4}$.

Xét f (x):
$$\Delta = (-26)^2 - 4.8.21 = 4$$

Xét g (x):
$$\Delta = (-13)^2 - 4.4.\frac{21}{2} = 1$$

Vậy đáp án đúng là B.

Câu 2 trang 19 SBT Toán 7 tập 1: Tam thức bậc hai nào dương với mọi $x \in \square$?

A.
$$2x^2 - 4x + 2$$
;

B.
$$3x^2 + 6x + 2$$
;

C.
$$-x^2 + 2x + 3$$
;

D.
$$5x^2 - 3x + 1$$
.

Lời giải

Đáp án đúng là D

+) Ta có f (x) =
$$2x^2 - 4x + 2 = 2(x - 1)^2 > 0$$
 với mọi x \neq 1. Do đó A sai.

+) Tam thức bậc hai f (x) =
$$3x^2 + 6x + 2$$
 có hai nghiệm phân biệt $x_1 = \frac{-3 + \sqrt{3}}{3}$ và

$$x_2 = \frac{-3 - \sqrt{3}}{3}$$
, $a = 3 > 0$ nên f (x) > 0 khi x < $\frac{-3 - \sqrt{3}}{3}$ hoặc x > $\frac{-3 + \sqrt{3}}{3}$. Do đó B

sai.

+) Tam thức bậc hai f (x) = $-x^2 + 2x + 3$ có hai nghiệm phân biệt $x_1 = 3$ và $x_2 = -1$, a = -1 < 0 nên f (x) > 0 khi -1 < x < 3. Do đó C sai.

+) Tam thức bậc hai f (x) = $5x^2 - 3x + 1$ có $\Delta = (-3)^2 - 4.5.1 = -11 < 0$, a = 5 > 0 nên f (x) > 0 với mọi $x \in \Box$. Do đó D đúng.

Vậy đáp án D đúng.

Câu 3 trang 19 SBT Toán 7 tập 1: Khẳng định nào sau đây đúng với tam thức bậc hai $f(x)=10x^2-3x-4$?

A. f(x) > 0 với mọi x không thuộc khoảng (-1; 1),

B. f(x) < 0 với mọi x thuộc khoảng (-1; 1),

C.
$$f(x) \ge 0$$
 với mọi x thuộc khoảng $\left(-\frac{1}{2}; \frac{4}{5}\right)$

D. Các khẳng định trên đều sai.

Lời giải

Đáp án đúng là D

Tam thức bậc hai $f(x) = 10x^2 - 3x - 4$ có hai nghiệm phân biệt $x_1 = \frac{4}{5}$ và $x_2 = \frac{-1}{2}$,

va = 10 > 0 nen:

$$f\left(\;x\;\right)>0\;\text{v\'oi}\;x<\frac{-1}{2}\;\text{hoặc}\;x>\frac{4}{5}\;\text{. Do đ\'o khẳng định A sai.}$$

$$f\left(\right.x\left. \right) <0$$
 với $\frac{-1}{2} < x < \frac{4}{5}$. Do đó khẳng định B sai.

$$f(x) \ge 0$$
 với $x \le \frac{-1}{2}$ hoặc $x \ge \frac{4}{5}$. Do đó khẳng định C sai.

Vậy khẳng định D đúng.

Câu 4 trang 19 SBT Toán 7 tập 1: Trong trường hợp nào tam thức bậc hai $f(x) = ax^2 + bx + c$ có $\Delta > 0$ và a < 0?

A

B

(

D.

Lời giải

Đáp án đúng là B

Tam thức bậc hai $f(x)=ax^2+bx+c$ có $\Delta>0$ và a<0 khi f(x) cắt trục hoành tại hai điểm phân biệt và đường cong hướng xuống dưới. Do đó B đúng.

Câu 5 trang 20 SBT Toán 7 tập 1: Cho đồ thị của hàm số bậc hai y = f(x) như Hình 1.

Hình 1

Tập nghiệm của bất phương trình $f(x) \ge 0$ là:

- A. (1;2);
- B. [1;2];
- C. $(-\infty;1)\cup(2;+\infty);$
- D. $(-\infty;1] \cup [2;+\infty)$.

Lời giải

Đáp án đúng là D

Tập nghiệm của bất phương trình $f(x) \ge 0$ là $(-\infty;1] \cup [2;+\infty)$.

Câu 6 trang 20 SBT Toán 7 tập 1: Bất phương trình nào có tập nghiệm là (2; 5)?

A.
$$x^2 - 7x + 10 > 0$$
;

B.
$$x^2 - 7x + 10 < 0$$
;

C.
$$x^2 + 13x - 30 > 0$$
;

D.
$$x^2 + 13x - 30 < 0$$
.

Lời giải

Đáp án đúng là B

+) Tam thức bậc hai f (x) = $x^2 - 7x$ +10 có Δ = (- 7) $^2 - 4.1.10$ = 9 > 0 nên f(x) có hai nghiệm phân biệt $x_1=2$ và $x_2=5$, và a=1>0 nên ta có:

$$f(x) > 0 \text{ v\'oi } x < 2 \text{ hoặc } x > 5.$$

$$f(x) < 0 \text{ v\'oi } 2 < x < 5.$$

Do đó A sai, B đúng.

+) Tam thức bậc hai f (x) = $x^2 + 13x - 30$ có $\Delta = 13^2 - 4.1.(-30) = 289 > 0$ nên f(x)

hai nghiệm phân biệt $x_1=2$ và $x_2=-15$, và a=1>0 nên ta có:

$$f(x) > 0 \text{ v\'oi } x < -15 \text{ hoặc } x > 2.$$

$$f(x) < 0 \text{ v\'oi} -15 < x < 2.$$

Do đó C, D sai.

Vậy đáp án đúng là B.

Câu 7 trang 20 SBT Toán 7 tập 1: Tập xác định của hàm số

$$y = \frac{1}{\sqrt{9x^2 - 3x - 2}} + \sqrt{3 - x}$$
 là:

A.
$$\left(-\infty; -\frac{1}{3}\right) \cup \left(\frac{2}{3}; +\infty\right)$$

B.
$$\left(-\infty; -\frac{1}{3}\right) \cup \left(\frac{2}{3}; 3\right)$$

C.
$$\left(-\infty; -\frac{1}{3}\right) \cup \left(3; +\infty\right)$$

D.
$$\left(-\frac{1}{3};3\right]$$

Lời giải

Đáp án đúng là B

Hàm số trên xác định khi và chỉ khi $3 - x \ge 0$ và $9x^2 - 3x - 2 > 0$

- +) Ta có $3 x \ge 0$ khi và chỉ khi $x \le 3$ (1)
- +) Xét tam thức bậc hai f (x) = $9x^2 3x 2$ có $\Delta = (-3)^2 4.9.(-2) = 81 > 0$ nên

f(x) có hai nghiệm phân biệt $x_1 = \frac{2}{3}$ và $x_2 = \frac{-1}{3}$, và a = 9 > 0 nên f(x) > 0 với

$$\left(-\infty; \frac{-1}{3}\right) \cup \left(\frac{2}{3}; +\infty\right)$$
 (2)

Từ (1) và (2) suy ra tập xác định của hàm số trên là $\left(-\infty; -\frac{1}{3}\right) \cup \left(\frac{2}{3}; 3\right]$.

Vậy đáp án đúng là B.

Câu 8 trang 20 SBT Toán 7 tập 1: Với giá trị nào của tham số m thì phương trình $(2m+6)x^2+4mx+3=0$ có hai nghiệm phân biệt?

A.
$$m < -\frac{3}{2} hoặc m > 3;$$

B.
$$-\frac{3}{2} < m < 3$$
;

C. m < -3 hoặc -3 < m <
$$-\frac{3}{2}$$
 hoặc m > 3;

D.
$$-3 < m < -\frac{3}{2}$$
 hoặc $m > 3$.

Lời giải

Đáp án đúng là A

+) $2m + 6 = 0 \Leftrightarrow m = -3$, khi đó phương trình trở thành $-12x + 3 = 0 \Rightarrow x = \frac{1}{4}$. Suy ra phương trình chỉ có một nghiệm duy nhất. Do đó không thỏa mãn.

+)
$$2m + 6 \neq 0 \Leftrightarrow m \neq -3$$

Khi đó phương trình $(2m+6)x^2 + 4mx + 3 = 0$ có hai nghiệm phân biệt khi và chỉ khi

$$\Delta = (4m)^2 - 4.3.(2m + 6) > 0$$
 hay $2m^2 - 3m - 9 > 0$

Tam thức bậc hai f (x) = $2m^2 - 3m - 9$ có hai nghiệm phân biệt $x_1 = 3$ và $x_2 = \frac{-3}{2}$,

$$a = 2 > 0$$
 nên f (x) > 0 với x < $\frac{-3}{2}$ hoặc x > 3 (2)

Từ điều kiện (1) và (2) suy ra m < - 3 hoặc $-3 < m < -\frac{3}{2}$ hoặc m > 3.

Vậy đáp án đúng là C.

Câu 9 trang 20 SBT Toán 7 tập 1: Giá trị nào là nghiệm của phương trình

$$\sqrt{x^2 + x + 11} = \sqrt{-2x^2 - 13x + 16}?$$

A.
$$x = -5$$

B.
$$x = \frac{1}{3}$$

C. Cả hai câu A, B đều đúng;

D. Cả hai câu A, B đều sai.

Lời giải

Đáp án đúng là C

Bình phương hai vế của phương trình đã cho, ta được:

$$x^2 + x + 11 = -2x^2 - 13x + 16$$

$$\Rightarrow 3x^2 + 14x - 5 = 0$$

$$\Rightarrow$$
 x = $\frac{1}{3}$ hoặc x = -5.

Thay lần lượt các giá trị trên vào phương trình đã cho, ta thấy $x = \frac{1}{3}$ hoặc x = -5 đều thỏa mãn.

Vì vậy phương trình đã cho có hai nghiệm $x = \frac{1}{3}$ và x = -5

Vậy đáp án đúng là C.

Câu 10 trang 20 SBT Toán 7 tập 1: Khẳng định nào đúng với phương trình

$$\sqrt{2x^2 - 3x - 1} = \sqrt{3x^2 - 2x - 13}?$$

- A. Phương trình có hai nghiệm phân biệt cùng dấu;
- B. Phương trình có hai nghiệm phân biệt trái dấu;
- C. Phương trình có một nghiệm;
- D. Phương trinh vô nghiệm.

Lời giải

Đáp án đúng là B

Bình phương hai vế của phương trình đã cho, ta được:

$$2x^2 - 3x - 1 = 3x^2 - 2x - 13$$

$$\Rightarrow$$
 $x^2 + x - 12 = 0$

$$\Rightarrow$$
 x = 3 hoặc x = -4.

Thay lần lượt các giá trị trên vào phương trình đã cho, ta thấy x=3 hoặc x=-4 đều thỏa mãn.

Suy ra phương trình đã cho có hai nghiệm x = 3 và x = -4. Vậy hai nghiệm của phương trình đã cho là hai nghiệm phân biệt trái dấu.

Đáp án đúng là B.

Câu 11 trang 20 SBT Toán 7 tập 1: Khẳng định nào đúng với phương trình

$$\sqrt{5x^2 + 27x + 36} = 2x + 5?$$

- A. Phương trình có một nghiệm;
- B. Phương trình vô nghiệm;
- C. Tổng các nghiệm của phương trình là -7;
- D. Các nghiệm của phương trình đều không bé hơn $-\frac{5}{2}$.

Lời giải

Đáp án đúng là A

Bình phương hai vế của phương trình đã cho, ta được:

$$5x^2 + 27x + 36 = 4x^2 + 20x + 25$$

$$\Rightarrow$$
 x² + 7x + 11 = 0

$$\Rightarrow$$
 $x = \frac{-7 + \sqrt{5}}{2}$ hoặc $x = \frac{-7 - \sqrt{5}}{2}$.

Thay lần lượt các giá trị trên vào phương trình đã cho, ta thấy chỉ có $x = \frac{-7 + \sqrt{5}}{2}$

thỏa mãn.

Vì vậy đáp án A đúng.

Câu 12 trang 20 SBT Toán 7 tập 1: Cho đồ thị của hai hàm số bậc hai $f(x) = ax^2 + bx + c$ và $g(x) = dx^2 + ex + h$ như Hình 2.

Hình 2

Khẳng định nào đúng với phương trình $\sqrt{ax^2 + bx + c} = \sqrt{dx^2 + ex + h}$?

A. Phương trình có hai nghiệm phân biệt là x = 1 và x = 6,

B. Phương trình có 1 nghiệm là x = 1;

C. Phương trình có 1 nghiệm là x = 6;

D. Phương trình vô nghiệm.

Lời giải

Đáp án đúng là B

Xét phương trình $\sqrt{ax^2 + bx + c} = \sqrt{dx^2 + ex + h}$

Bình phương hai vế ta được f(x) = g(x)

Đồ thị hàm số f (x) và g (x) giao nhau tại hai điểm x = 1 và x = 6. Tuy nhiên tại x = 6 thì g (x) < 0 và f (x) < 0 nên không thỏa mãn.

Vậy phương trình có 1 nghiệm là x = 1.

B. TỰ LUẬN

Bài 1 trang 21 SBT Toán 7 tập 1: Dựa vào đồ thị của hàm số bậc hai y = f(x) sau đây, hãy xét dấu của tam thức bậc hai f(x).

a)

Lời giải

a) Dựa vào hình vẽ ta thấy:

Đồ thị hàm số nằm phía trên trục hoành khi $x < \frac{1}{2}$ hoặc x > 3 hay f(x) > 0 khi $x \in \left(-\infty; \frac{1}{2}\right) \cup (3; +\infty)$.

Đồ thị hàm số nằm phía dưới trục hoành khi $\frac{1}{2} < x < 3$ hay f(x) < 0 khi $x \in \left(\frac{1}{2}; 3\right)$

Vậy f (x) dương trong hai khoảng $\left(-\infty;\frac{1}{2}\right)$ và (3; + ∞), f(x) âm khi x $\in \left(\frac{1}{2};3\right)$.

b) Dựa vào hình vẽ ta thấy:

Đồ thị hàm số nằm phía trên trục hoành khi -3 < x < 5 hay f(x) > 0 khi $x \in (-3; 5)$ Đồ thị hàm số nằm phía dưới trục hoành khi x < -3 hoặc x > 5 hay f(x) < 0 khi $x \in (-\infty; -3) \cup (5; +\infty)$

Vậy f (x) dương trong khoảng (-3; 5), âm trong hai khoảng ($-\infty$;-3) và (5; $+\infty$).

c) Đồ thị hàm số nằm phía trên trục hoành khi $x \neq 3$.

Vậy f (x) dương với mọi $x \neq 3$.

d) Đồ thị hàm số nằm phía dưới trục hoành với mọi $x \in \mathbb{R}$.

Vậy f (x) âm với mọi $x \in \mathbb{R}$.

Bài 2 trang 21 SBT Toán 7 tập 1: Xét dấu của các tam thức bậc hai sau:

a)
$$f(x) = -7x^2 + 44x - 45$$
;

b)
$$f(x) = 4x^2 + 36x + 81$$
;

c)
$$f(x) = 9x^2 - 6x + 3$$
;

d)
$$f(x) = -9x^2 + 30x - 25$$
;

e)
$$f(x) = x^2 - 4x + 3$$
;

g)
$$f(x) = -4x^2 + 8x - 7$$
.

Lời giải

- a) Tam thức bậc hai $f(x) = -7x^2 + 44x 45$ có $\Delta = 44^2 4.(-7).(-45) = 676 > 0$ suy
- ra f(x) có hai nghiệm phân biệt $x_1 = 5$ và $x_2 = \frac{9}{7}$, a = -7 < 0 nên f(x) dương trong

khoảng
$$\left(\frac{9}{7};5\right)$$
, âm trong hai khoảng $\left(-\infty;\frac{9}{7}\right)$ và $\left(5;+\infty\right)$.

b) Tam thức bậc hai $f(x) = 4x^2 + 36x + 81$ có $\Delta = 36^2 - 4.4.81 = 0$ suy ra f(x) có một

nghiệm duy nhất
$$x = \frac{-9}{2}$$
, $a = 4 > 0$ nên f(x) dương với mọi $x \neq \frac{-9}{2}$.

- c) Tam thức bậc hai $f(x) = 9x^2 6x + 3$ có $\Delta = (-6)^2 4.9.3 = -72 < 0$ và a = 9 > 0 nên f(x) dương với mọi $x \in \mathbb{R}$.
- d) Tam thức bậc hai $f(x) = -9x^2 + 30x 25$ có $\Delta = 30^2 4.(-9).(-25) = 0$ suy ra

$$f(x) \text{ c\'o m\^ot nghiệm duy nhất } x = \frac{5}{3} \text{ , } a = -9 < 0 \text{ n\^en } f \text{ (} x \text{) \^am v\'ot mọi } x \neq \frac{5}{3}.$$

- e) Tam thức bậc hai $f(x) = x^2 4x + 3$ có $\Delta = (-4)^2 4.1.3 = 4$ suy ra f(x) có hai nghiệm phân biệt $x_1 = 3$ và $x_2 = 1$, a = 1 > 0 nên
- f (x) âm trong khoảng (1;3), f(x) dương trong hai khoảng ($-\infty$;1) và (3;+ ∞).
- g) Tam thức bậc hai $\,f\left(x\right)\!=\!-4x^2+8x-7\,$ có $\Delta=8^2-4.(\,-4).(\,-7)=-48<0$,

$$a = -4 < 0$$
 nên f (x) âm với mọi $x \in \mathbb{R}$.

Bài 3 trang 21 SBT Toán 7 tập 1: Giải các bất phương trình bậc hai sau:

a)
$$x^2 - 10x + 24 \ge 0$$
;

b)
$$-4x^2 + 28x - 49 \le 0$$
;

c)
$$x^2 - 5x + 1 > 0$$
;

d)
$$9x^2 - 24x + 16 \le 0$$
;

e)
$$15x^2 - x - 2 < 0$$
;

g)
$$-x^2 + 8x - 17 > 0$$
;

h)
$$-25x^2 + 10x - 1 < 0$$
;

i)
$$4x^2 + 4x + 7 \le 0$$
.

Lời giải

a)
$$x^2 - 10x + 24 \ge 0$$
;

Tam thức bậc hai f (x) = $x^2 - 10x + 24$ có $\Delta = (-10)^2 - 4.1.24 = 4 > 0$ suy ra f(x) có hai nghiệm phân biệt $x_1 = 6$ và $x_2 = 4$ và a = 1 > 0 nên f (x) > 0 với $x \le 4$ hoặc $x \ge 6$. Vậy bất phương trình đã cho có tập nghiệm $S = (-\infty; 4] \cup [6; +\infty)$

b)
$$-4x^2 + 28x - 49 \le 0$$
;

Tam thức bậc hai f (x) = $-4x^2 + 28x - 49$ có $\Delta = 28^2 - 4.(-4).(-49) = 0$ suy ra f(x) có một nghiệm $x = \frac{7}{2}$, a = -4 < 0 nên f (x) ≤ 0 với mọi $x \in \mathbb{R}$.

Vậy bất phương trình đã cho có tập nghiệm $S = \mathbb{R}$.

c)
$$x^2 - 5x + 1 > 0$$
;

Tam thức bậc hai f (x) = $x^2 - 5x + 1$ có $\Delta = (-5)^2 - 4.1.1 = 21$ suy ra f(x) có hai

nghiệm phân biệt $x_1=\frac{5+\sqrt{21}}{2}$ và $x_2=\frac{5-\sqrt{21}}{2}$, a=1>0 nên f (x) > 0 với x <

$$\frac{5-\sqrt{21}}{2}$$
 hoặc $x > \frac{5+\sqrt{21}}{2}$.

Vậy bất phương trình đã cho có tập nghiệm $S = \left(-\infty; \frac{5-\sqrt{21}}{2}\right) \cup \left(\frac{5+\sqrt{21}}{2}; +\infty\right)$

d)
$$9x^2 - 24x + 16 \le 0$$
;

Tam thức bậc hai f (x) = $9x^2 - 24x + 16$ có $\Delta = (-24)^2 - 4.9.16 = 0$ suy ra f(x) có một

nghiệm
$$x = \frac{4}{3}$$
, $a = 9 > 0$ nên f(x) ≤ 0 khi $x = \frac{4}{3}$.

Vậy bất phương trình đã cho có tập nghiệm $S = \left\{ \frac{4}{3} \right\}$

e)
$$15x^2 - x - 2 < 0$$
;

Tam thức bậc hai f (x) = $15x^2 - x - 2$ có $\Delta = (-1)^2 - 4.15$.(-2) = 121 suy ra f(x) có

hai nghiệm phân biệt
$$x_1=\frac{2}{5}$$
 và $x_2=\frac{-1}{3}, \ a=15>0$ nên f (x) <0 với $\frac{-1}{3}< x<\frac{2}{5}$.

Vậy bất phương trình đã cho có tập nghiệm $S = \left(\frac{-1}{3}; \frac{2}{5}\right)$

g)
$$-x^2 + 8x - 17 > 0$$
;

Tam thức bậc hai f (x) = $-x^2 + 8x - 17$ có $\Delta = 8^2 - 4$.(-1).(-17) = -4 < 0, a = -1 < 0 nên f (x) âm với mọi $x \in \mathbb{R}$.

Vậy bất phương trình vô nghiệm.

h)
$$-25x^2 + 10x - 1 < 0$$
;

Tam thức bậc hai f (x) = $-25x^2 + 10x - 1$ có $\Delta = 10^2 - 4$.(-25).(-1) = 0 suy ra f(x) có một nghiệm $x = \frac{1}{5}$, a = -25 < 0 nên f (x) < 0 khi $x \neq \frac{1}{5}$.

Vậy bất phương trình đã cho có tập nghiệm $S = \mathbb{R} \setminus \frac{1}{5}$.

i)
$$4x^2 + 4x + 7 \le 0$$
.

Tam thức bậc hai f (x) = $4x^2 + 4x + 7$ có $\Delta = 4^2 - 4.4.7 = -96 < 0$, a = 4 > 0 nên f (x) dương với mọi x $\in \mathbb{R}$.

Vậy bất phương trình vô nghiệm.

Bài 4 trang 22 SBT Toán 7 tập 1: Dựa vào đồ thị của hàm số bậc hai được cho, hãy giải các bất phương trình sau:

a)
$$f(x) \ge 0$$

b)
$$f(x) > 0$$

c) $f(x) \le 0$

d)
$$f(x) < 0$$

e)
$$f(x) < 0$$

g) $f(x) \le 0$

Lời giải

a) Ta thấy đồ thị hàm số f (x) cắt trục hoành tại hai điểm $x=\frac{3}{2}$ và x=4, khi $\frac{3}{2} \le x \le 4$ thì đồ thị hàm số nằm trên trục hoành nên f $(x) \ge 0$ khi $\frac{3}{2} \le x \le 4$.

Vậy
$$f(x) \ge 0$$
 khi $x \in \left[\frac{3}{2}; 4\right]$.

b) f(x) > 0 khi đồ thị hàm số f(x) nằm trên trục hoành hay x < -1 hoặc x > 3.

Vậy
$$f(x) > 0$$
 khi $(-∞; -1) \cup (3; +∞)$.

c) Dựa vào hình vẽ ta thấy:

Đồ thị hàm số cắt trực hoành tại x = 1.

Với $x \ne 1$ đồ thị hàm số nằm hoàn toàn phía trên trục hoành.

Do đó $f(x) \le 0$ khi x = 1.

Vậy $f(x) \le 0$ khi x = 1.

d) f(x) < 0 vô nghiệm vì ta thấy đồ thị hàm số f(x) hoàn toàn nằm trên trục hoành.

Vậy không tồn tại giá trị của x để f(x) < 0.

e) Dựa vào hình vẽ ta thấy:

Đồ thị hàm số cắt trục hoành tại x = 3.

Đồ thị nằm hoàn toàn phía dưới trục hoành với $x \neq 3$.

Do đó f(x) < 0 khi $x \ne 3$.

Vậy f(x) < 0 khi $x \neq 3$.

g) Ta có thể thấy đồ thị hàm số f (x) hoàn toàn nằm dưới trục hoành nên f $(x) \le 0$ với mọi $x \in \mathbb{R}$.

Vậy f(x) ≤ 0 với mọi $x \in \mathbb{R}$.

Bài 5 trang 22 SBT Toán 7 tập 1: Giải các phương trình sau:

a)
$$\sqrt{3x^2 + 7x - 1} = \sqrt{6x^2 + 6x - 11}$$
;

b)
$$\sqrt{x^2 + 12x + 28} = \sqrt{2x^2 + 14x + 24}$$
;

c)
$$\sqrt{2x^2 - 12x - 14} = \sqrt{5x^2 - 26x - 6}$$
;

d)
$$\sqrt{11x^2 - 43x + 25} = -3x + 4$$
;

e)
$$\sqrt{-5x^2 - x + 35} = x + 5$$
;

g)
$$\sqrt{11x^2 - 64x + 97} = 3x - 11$$
.

Lời giải

a)
$$\sqrt{3x^2 + 7x - 1} = \sqrt{6x^2 + 6x - 11}$$

Bình phương hai vế của phương trình đã cho, ta được:

$$3x^2 + 7x - 1 = 6x^2 + 6x - 11$$

$$\Rightarrow 3x^2 - x - 10 = 0$$

$$\Rightarrow$$
 $x = \frac{-5}{3}$ hoặc $x = 2$.

Thay lần lượt các giá trị trên vào phương trình đã cho, ta thấy chỉ có x = 2 thỏa mãn.

Vậy phương trình đã cho có nghiệm x = 2.

b)
$$\sqrt{x^2 + 12x + 28} = \sqrt{2x^2 + 14x + 24}$$

Bình phương hai vế của phương trình đã cho, ta được:

$$x^2 + 12x + 28 = 2x^2 + 14x + 24$$

$$\Rightarrow x^2 + 2x - 4 = 0$$

$$\Rightarrow x = -1 + \sqrt{5} \text{ hoặc } x = -1 - \sqrt{5}$$
.

Thay lần lượt các giá trị trên vào phương trình đã cho, ta thấy chỉ có $x=-1+\sqrt{5}$ thỏa mãn.

Vậy phương trình đã cho có nghiệm $x = -1 + \sqrt{5}$.

c)
$$\sqrt{2x^2 - 12x - 14} = \sqrt{5x^2 - 26x - 6}$$

Bình phương hai vế của phương trình đã cho, ta được:

$$2x^2 - 12x - 14 = 5x^2 - 26x - 6$$

$$\Rightarrow 3x^2 - 14x + 8 = 0$$

$$\Rightarrow$$
 x = 4 hoặc x = $\frac{2}{3}$

Thay lần lượt các giá trị trên vào phương trình đã cho, ta thấy x = 4 và $x = \frac{2}{3}$ đều

không thỏa mãn. Vậy phương trình đã cho vô nghiệm.

d)
$$\sqrt{11x^2 - 43x + 25} = -3x + 4$$

Bình phương hai vế của phương trình đã cho, ta được:

$$11x^2 - 43x + 25 = 9x^2 - 24x + 16$$

$$\Rightarrow 2x^2 - 19x + 9 = 0$$

$$\Rightarrow$$
 x = 9 hoặc x = $\frac{1}{2}$

Thay lần lượt các giá trị trên vào phương trình đã cho, ta thấy chỉ có $x = \frac{1}{2}$ thỏa mãn.

Vậy phương trình đã cho có nghiệm $x = \frac{1}{2}$.

e)
$$\sqrt{-5x^2 - x + 35} = x + 5$$

Bình phương hai vế của phương trình đã cho, ta được:

$$-5x^2 - x + 35 = x^2 + 10x + 25$$

$$\Rightarrow 6x^2 + 11x - 10 = 0$$

$$\Rightarrow$$
 x = $\frac{2}{3}$ hoặc x = $\frac{-5}{2}$

Thay lần lượt các giá trị trên vào phương trình đã cho, ta thấy $x = \frac{2}{3}$ hoặc $x = \frac{-5}{2}$ đều thỏa mãn.

Vậy phương trình đã cho có nghiệm $x = \frac{2}{3}$ và $x = \frac{-5}{2}$.

g)
$$\sqrt{11x^2 - 64x + 97} = 3x - 11$$
.

Bình phương hai vế của phương trình đã cho, ta được:

$$11x^2 - 64x + 97 = 9x^2 - 66x + 121$$

$$\Rightarrow 2x^2 + 2x - 24 = 0$$

$$\Rightarrow$$
 x = 3 hoặc x = -4

Thay lần lượt các giá trị trên vào phương trình đã cho, ta thấy x = 3 và x = -4 đều không thỏa mãn.

Vậy phương trình đã cho vô nghiệm.

Bài 6 trang 22 SBT Toán 7 tập 1: Tìm tập xác định của các hàm số sau:

a)
$$y = \sqrt{-x^2 + 6x - 2}$$
;

b)
$$y = \frac{2x}{x-2} + \sqrt{-x^2 + 3x - 2}$$

Lời giải

a)
$$y = \sqrt{-x^2 + 6x - 2}$$
;

Hàm số trên xác định khi và chỉ khi $-x^2 + 6x - 2 \ge 0$

Tam thức bậc hai f (x) = $-x^2 + 6x - 2$ có hai nghiệm phân biệt $x_1 = 3 + \sqrt{7}$ và

$$x_2 = 3 - \sqrt{7}$$
, $a = -1 < 0$ nên f (x) ≥ 0 khi $3 - \sqrt{7} \le x \le 3 + \sqrt{7}$.

Vậy tập xác định của hàm số trên là D = $\left[3 - \sqrt{7}; 3 + \sqrt{7}\right]$.

b)
$$y = \frac{2x}{x-2} + \sqrt{-x^2 + 3x - 2}$$

Hàm số trên xác định khi và chỉ khi $x - 2 \neq 0$ và $-x^2 + 3x - 2 \geq 0$.

+) Ta có $x - 2 \neq 0$ khi và chỉ khi $x \neq 2$ (1)

+) Tam thức bậc hai f (x) = $-x^2 + 3x - 2$ có hai nghiệm phân biệt $x_1 = 1$ và $x_2 = 2$, a = -1 < 0 nên f (x) ≥ 0 khi $1 \le x \le 2$ (2)

Từ (1) và (2) suy ra tập xác định của hàm số là [1;2).

Vậy tập xác định của hàm số là D = [1;2).

Bài 7 trang 22 SBT Toán 7 tập 1: Tìm các giá trị của tham số m để:

- a) $f(x) = (m-3)x^2 + 2mx m$ là một tam thức bậc hai âm với mọi $x \in \square$;
- b) $f(x) = (m-2)x^2 + 2(m+3)x + 5(m-3)$ là một tam thức bậc hai có nghiệm;
- c) Phương trình $2x^2 + (3m-1)x + 2(m+1) = 0$ vô nghiệm,
- d) Bất phương trình $2x^2 + 2(m-3)x + 3(m^2-3) \ge 0$ có tập nghiệm là \square .

Lời giải

- a) f (x) là một tam thức bậc hai âm với mọi x $\in \mathbb{R}$ khi và chỉ khi a = m 3 < 0 và Δ ' < 0.
- +) Ta có: m-3 < 0 khi và chỉ khi m < 3.

+)
$$\Delta' = m^2 + (m-3).m = 2m^2 - 3m < 0$$
 khi và chỉ khi $0 < m < \frac{3}{2}$

Vậy để $f(x) = (m-3)x^2 + 2mx - m$ là một tam thức bậc hai âm với mọi $x \in \mathbb{R}$ thì

$$0 < m < \frac{3}{2}$$
.

- b) f (x) là một tam thức bậc hai có nghiệm khi và chỉ khi m $2 \neq 0$ và $\Delta' \geq 0$.
- +) Ta có m 2 \neq 0 khi và chỉ khi m \neq 2
- +) Ta có $\Delta' = (m+3)^2 5.(m-3).(m-2) = -4m^2 + 31m 21 \ge 0$ tức là

$$\frac{3}{4} \le m \le 7.$$

Vậy $\frac{3}{4} \le m \le 2$ và $2 \le m \le 7$ thì f(x) là một tam thức bậc hai có nghiệm.

c) Phương trình vô nghiệm khi và chỉ khi

$$\Delta = (\ 3m-1\)^2 - 16(\ m+1\) < 0\ hay\ 9m^2 - 22m - 15 < 0\ tức\ là\ \frac{-5}{9} < m < 3.$$

Vậy $\frac{-5}{9}$ < m < 3 thì phương trình đã cho vô nghiệm.

d) Xét tam thức bậc hai $f(x) = 2x^2 + 2.(m - 3)x + 3(m^2 - 3)$ có a = 2 > 0 và $\Delta' = (m - 3)^2 - 6(m^2 - 3) = m^2 - 6m + 9 - 6m^2 + 18 = -5m^2 - 6m + 27$ Suy ra $f(x) \ge 0$ với mọi $x \in \mathbb{R}$ khi a = 2 > 0 và $\Delta' = -5m^2 - 6m + 27 \le 0$ tức là $m \le -3$ hoặc $m \ge \frac{9}{5}$.

Vậy m ≤
$$-3$$
 hoặc m ≥ $\frac{9}{5}$.

Bài 8 trang 22 SBT Toán 7 tập 1: Người ta thử nghiệm ném một quả bóng trên Mặt Trăng. Nếu quả bóng được ném lên từ độ cao h_0 (m) so với bề mặt của Mặt Trăng với vận tốc v_0 (m/s) thì độ cao của bóng sau t giây được cho bởi hàm số

$$h\left(t\right) = -\frac{1}{2}gt^2 + v_0t + h_0\,\text{v\'oi}\,\,g = 1,625\,\,\text{m/s}^2\,\,\text{l\`a}\,\,\text{gia t\'oc}\,\,\text{trọng trường của Mặt Trăng}.$$

- a) Biết độ cao ban đầu của quả bóng vào các thời điểm 8 giây và 12 giây lần lượt là 30 m và 5 m, hãy tìm vận tốc ném; độ cao ban đầu của quả bóng và viết công thức h(t).
- b) Quả bóng đạt độ cao trên 29 m trong bao nhiều giây?

Lưu ý: Đáp số làm tròn đến hàng phần trăm.

Lời giải

a) Ta có h (t) =
$$-0.8125t^2 + v_0t + h_0$$

Ta có h(8) = 30 và h(12) = 5

$$Do~\textrm{d\'o}~\begin{cases} -52 + 8v_{_0} + h_{_0} = 30 \\ -117 + 12v_{_0} + h_{_0} = 5 \end{cases} ~hay~ \begin{cases} v_{_0} = 10 \\ h_{_0} = 2 \end{cases}$$

Vậy h (t) =
$$-0.8125t^2 + 10t + 2$$
.

b) Quả bóng đạt độ cao trên 29 m khi và chỉ khi $-0.8125t^2 + 10t + 2 > 29$ hay $-0.8125t^2 + 10t - 27 > 0$

Xét tam thức bậc hai $f(t) = -0.8125t^2 + 10t - 27$, có a = -0.8125 < 0 và $\Delta = 10^2 - 4.(-0.8125).(-27) = 12.25 > 0$ suy ra f(t) có hai nghiệm phân biệt $t_1 = 8.31$ và 4.

Do đó f(t) > 0 khi 4 < t < 8,31.

Vậy quả bóng ở độ cao trên 29m trong khoảng ít hơn 8,31-4=4,31 giây.

Bài 9 trang 23 SBT Toán 7 tập 1: Một người phát cầu qua lưới từ độ cao y_0 mét, nghiêng một góc α so với phương ngang với vận tốc đầu v_0 .

Phương trình chuyển động của quả cầu là:

$$y = \frac{-g}{2v_0^2 \cos^2 \alpha} x^2 + \tan(\alpha) x + y_0 \text{ v\'oi } g = 10 \text{ m/s}^2$$

Viết phương trình chuyển động của quả cầu nếu $\alpha=45^{\circ}$, $y_{0}=0,3m$ và $v_{0}=7,67$ m/s. b) Để cầu qua được lưới bóng cao 1,5 m thì người phát cầu phải đứng cách lưới bao

Lưu ý: Đáp số làm tròn đến hàng phần trăm.

Lời giải

xa?

a) Ta có

$$y = \frac{-g}{2v_0^2 \cos^2 \alpha} x^2 + \tan(\alpha) x + y_0$$

Thay $\alpha = 45^{\circ}$, $y_0 = 0.3$ và $v_0 = 7.67$ vào phương trình trên ta được:

$$y = \frac{-10}{2.7.67^2 \cdot \cos^2 45^\circ} + \tan 45^\circ \cdot x + 0.3 \text{ hay } y = -0.17x^2 + x + 0.3.$$

b) Với x là khoảng cách từ người phát cầu đến lưới thì cầu phát được qua lưới khi và chỉ khi y (x) > 1,5 hay $-0.17x^2 + x + 0.3 > 1.5$ hay $-0.17x^2 + x - 1.2 > 0$.

Xét tam thức bậc hai $f(x) = -0.17x^2 + x - 1.2$ có $\Delta = 1^2 - 4.(-0.17).(-1.2) = 0.184 > 0$ nên f(x) có hai nghiệm phân biệt $x_1 \approx 4.20$ và $x_2 \approx 1.68$.

Ta có a = -0.17 < 0 suy ra f(x) > 0 khi 1.68 < x < 4.20.

Vậy người phát cầu cần đứng cách lưới trong khoảng từ 1,68 m đến 4,20 m.

Bài 10 trang 23 SBT Toán 7 tập 1: Cho tam giác ABC và ABD cùng vuông tại A như Hình 3 có AB = x, BC = 5 và BD = 6.

- a) Biểu diễn độ dài canh AC và AD theo x.
- b) Tìm x để chu vi của tam giác ABC là 12.
- c) Tìm x để AD = 2AC

Lời giải

a) Vì x là khoảng cách AB nên x > 0

Áp dụng định lí Phytagoras cho tam giác ABC:

$$AB^2 + AC^2 = BC^2$$

$$\Rightarrow$$
 AC² = 5² - x²

Như vậy AC =
$$\sqrt{25-x^2}$$

Áp dụng định lí Phytagoras cho tam giác ABD:

$$AB^2 + AD^2 = BD^2$$

$$\Rightarrow$$
 AD² = 6² - x²

Như vậy AD =
$$\sqrt{36 - x^2}$$

b) Giải phương trình AB + AC + BC = 12

$$\Rightarrow x + 5 + \sqrt{25 - x^2} = 12$$

$$\Rightarrow \sqrt{25 - x^2} = 7 - x$$

$$\Rightarrow 25 - x^2 = (7 - x)^2$$

$$\Rightarrow 2x^2 - 14x + 24 = 0$$

$$\Rightarrow$$
 x = 4 hoặc x = 3

Thay lần lượt các giá trị trên vào phương trình AB + AC + BC = 12 ta thấy x = 4 và x = 3 đều thoả mãn. Vậy x = 4 hoặc x = 3 để chu vi tam giác ABC là 12.

c) Ta có AD = 2AC

$$\Rightarrow \sqrt{36 - x^2} = 2\sqrt{25 - x^2}$$

$$\Rightarrow 36 - x^2 = 100 - 4x^2$$

$$\Rightarrow 3x^2 - 64 = 0$$

$$\Rightarrow x = \frac{8\sqrt{3}}{3} \text{ hoặc } x = -\frac{8\sqrt{3}}{3} \text{ mà } x > 0 \text{ nên } x = \frac{8\sqrt{3}}{3}.$$

Thay $x = \frac{8\sqrt{3}}{3}$ vào phương trình AD = 2AC thấy thỏa mãn. Vậy $x = \frac{8\sqrt{3}}{3}$.