

Jakob Mayer, Jakob Murauer, Johanna Strebl

QC Praktikum

- Abschlussvortrag zum Praktikum Quantencomputing, WiSe 22/23
- Prüfer: Prof. Dr. Dieter Kranzlmüller
- Betreuer:innen: S. Grundner-Culemann, K. Staudacher, M. To
- Datum des Vortrags: 17. Oktober 2022

Aufgabe

- Lösung eines Logicals mit Kombinationen aus Name, Dokument, Zeit und Drucker
- Lösung durch explizite
 Bedingungen und implizite
 Bedingung, dass jeder Wert genau
 1 Mal vorkommen muss
- Problem soll mit Grover gelöst werden
- Naïve Lösung benötigt 54 Q-Bits
- Wie braucht man weniger Q-Bits??

		Dokument		Zeit			Drucker			
		skript	QCPrak_01	meine_notizer	12:34	12:36	12:43	Manet	Mergenthaler	$\operatorname{Bullock}$
le	Sophia									
Name	Korbinian									
Z	Michelle									
	Manet									
Ort	Mergenthaler							1		
\cup	Bullock							1		
Zeit	12:34									
	12:36				1					
	12:43				1					

Schritt 1: Encoding

- Für jede Variable eine Belegung festlegen
 - o 00 bleibt unbelegt, einfacher für Ausschlussverfahren
- Alle Bedingungen so encodieren, dass die Erfüllung ein Ancilla Q-Bit auf 1 flippt
- Beispiel Korbinian & Zeit:

Triggert bei 01 Korbinian druckt um 12:34

Triggert bei 10
Korbinian druckt um 12:36

Triggert bei 11
Korbinian druckt um 12:43

Schritt 1: Encoding

- Darstellung des Encodierung anhand des ersten Logical und ersten Constraint
- "QFT Vortrag ist am Montag"
 - Montag = 1 (01)
 - Dienstag = 2 (10)
 - Mittwoch = 3 (11)
- Richtung: Oben nach unten (entgegengesetzt von Qiskit: Lösung muss von rechts nach links gelesen werden)

Einzigartigkeit

- "QFT Vortrag ist am Montag"
 - Montag = 1 (01)
 - Dienstag = 2 (10)
 - Mittwoch = 3 (11)
- Richtung: Oben nach unten (entgegengesetzt von Qiskit: Lösung muss von rechts nach links gelesen werden)

Einzigartigkeit

- Spielregel: jeder
 Wert muss genau
 einmal vorkommen
- 00 ist unbelegt
- Check, dass kein
 Wert mehr als
 einmal vorkommt

Schritt 2: Erfüllung aller Constraints

- Jedes Constraint 1 Ancilla Qubit
- Erfülltes Constraint ⇒ Ancilla Qubit auf |1>
- Alle Constraints erfüllt

 Phasen-Flip
- Funktioniert sehr gut
- |00> muss nicht explizit ausgeschlossen werden

Schritt 2: Erfüllung aller Constraints

- 1 Ancilla Qubit pro Constraint ineffizient
- Lösung: Anzahl der erfüllten Bedingungen mit QFT-Incementer zählen
- Bsp.: 15 Constraints = 4 Zähl Qubits
- |15> ⇒ Phasen-Flip

Angewendet

plus1 Qubit für Phasen-Flip "recycled"

- Ideen
 - Für QFT-Incrementer reicht 1 Basiswechsel

Ergebnisse für Logical 4.1

- 18 Qubits encodieren
- 5 Qubits QFT-Adder
- 402 Iterationen


```
sorted(result.get_counts().items(), key=lambda x:x[1], reverse=True)
 ✓ 0.4s
[('101011111110010101', 1024)]
```

Verworfene Ideen

- Vier 2 Q-Bit Register und am Ende 3 gleich wahrscheinliche Ergebnisse
 - Funktioniert nicht, da man nicht encoden kann, dass jeder Name, jedes
 Dokument, jede Zeit und jeder Drucker insgesamt genau einmal vorkommen muss

Name	Dokument	Zeit	Drucker	Wskt.	
01	10	10	10	33%	
10	01	11	11	33%	
11	11	01	01	33%	

- Nur n-1 Personen erhalten Register, Bedingungen "anders rum" im Ausschlussverfahren encodieren
 - z.B. "Michelle druckt nicht um 12:43 (11) == ENTWEDER
 Sophia ODER Korbinian drucken um 12:43
 - Funktioniert theoretisch, wird aber sehr sehr aufwändig (vor allem beim paar-weisen Vergleich)

