A Quick Review of Data Structure

- Data storing and manipulation.
- ▶ Sorting and searching, given *n* numbers stored in an array, binary search can be applied when they are sorted.
- ▶ We have $O(n \log n)$ "preprocessing" time, we can search fast in $O(\log)$ time.
- ▶ What if "dynamic" insertion and deletin are needed.

Membership problem

- ▶ $S = \{a_1, a_2, \dots, a_n\}$
- operations are
 - ▶ membership of $a, a \in S$?
 - ▶ delete a, if $a \in S$, remove a from S.
 - ▶ insert a, if $a \notin S$, $S = \{a_1, a_2, ..., a_n\} \cup \{a\}$.
- ▶ Abstract data type, implementation details are ignore.

Implementation I: Unsorted Array

- ▶ Query: *O*(*n*).
- ▶ Deletion: Search then delete, thus O(n) and O(1).
- ▶ Insertion: Search and insert, thus O(n) and O(1).

Implementation II: Sorted Array

- Preprocessing, i.e., sorting helps
- ▶ Query: *O*(log *n*).
- ▶ Deletion: Search then delete, thus $O(\log n) + O(n)$.
- ▶ Insertion: Search and insert, thus $O(\log n) + O(n)$.
- Fast searching but maintaining the data structure costs a lot. It doesn't improve the worst case time bound.

Implementation III: Linked List

- ► The big cost was for maintaining data structure, we replace the sorted array by sorted linked list. Deletion or insertion, we don't have to move data around.
- Query: O(n), since binary search doesn't work.
- ▶ Deletion: O(n) + O(1).
- ▶ Insertion: O(n) + O(1).
- Linked structure avoids moving data around, but binary search won't work since we don't know where is the middle.
- ► Add link pointing to the middle. draw a figure

Implementation IV: Tree structure

- ▶ Query: $O(\log n)$ since tree height is $O(\log n)$.
- ▶ Deletion: $O(\log n) + O(\log n)$, still remember the deletion algorithm?
- ▶ Insertion: $O(\log n) + O(1)$.
- ▶ A problem, a sequence of insertions and deletions could cause the tree unbalance, thus we cannot have the $O(\log n)$ bound to the height of the tree.
- Need method to re-balance the tree if it is out of balance.

Balance Tree

- ▶ Height Balance Tree.
 - AVL-Tree.
 - ▶ Red-Black Tree.
 - ▶ 2-3 Tree or 2-3-4 Tree.
- Weight Balance Tree.

2-3-4 Tree and Concatenable Queue

- Contenable Queue
 - ▶ Store an order list $S = \{a_1, a_2, \dots, a_n\}$.
 - Operations are:
 - membership, insertion, and deletion.
 - delete min or max.
 - concatenate two lists S_1 and S_2 .
 - ▶ Split S into S_1 and S_2 .
- ▶ In what cases that we need a concatenable queue?

2-3-4 Tree

- There are internal nodes and external nodes (leaves).
- ► Internal nodes can be a 2-node (a node has two children), 3-node, and 4-node.
- Internal nodes store branching information and external nodes store data.
- External nodes are at the same depth.
- draw figures