(Group) Iterative Hard Thresholding for GLM in Statistical Genetics

Benjamin Chu, Kevin Keys, Janet Sinsheimer, and Kenneth Lange Dept. of Biomathematics, University of California, Los Angeles, CA, USA

UCLA

Contacts: biona001@ucla.edu, kevin.keys@ucsf.edu, jsinshei@ucla.edu, klange@ucla.edu Git Repository: https://github.com/biona001/IHT.jl

Background:

Individual variations in the DNA sequence are termed **single nucleotide polymorphisms** (SNPs), and they can be identified experimentally via **Genome Wide Association Studies** (GWAS). These studies aim to answer one main question:

Q: Which genetic variants explain variations in a trait?

Figure 1: Traditional analysis assigns a p-value for each SNP based on a linear regression that test if slope \neq 0

Problems with Traditional Analysis (See Figure 1):

- Individual SNP association testing ignores joint effects of multiple SNPs and suffers high multiple testing burden. Q: What is the best multivariate model selection method to use?
- GWAS dataset sizes are growing rapidly (100+ GB). Q: How to analyze them efficiently?
- SNPs are sometimes rare with small effect size. Q: How to separate weak signals from noise?

IHT: ℓ_0 Sparsity without Shrinkage

Figure 2: Biological meaning = IHT potentially captures variants with small effect size

Using IHT to find GLM coefficients via MLE

Iterative hard-thresholding (IHT) performs *feature selection* for $\mathbf{X}^{n\times p}$ when $p\gg n$. First we expand the framework of IHT to any generalized linear model. Then we modified the thresholding operator to enforce sparsity on the group-level as well as within groups.

(Group) IHT algorithm

Let $L(\beta)$ be the loglikelihood, $\mathbf{v} = -\nabla L(\beta)$ the negative score (gradient), $J(\beta)$ the expected (Fisher) information matrix, and $S_{R,k}$ a predictor set with at most R active groups and k active predictors per group. We maximize the loglikelihood iteratively via:

$$eta^{(n+1)} = \mathcal{P}_{S_{R,k}}\left(eta^{(n)} + s\mathbf{v}
ight)$$
 $s = rac{||\mathbf{v}||_2^2}{\mathbf{v}^T J(eta^{(n)})\mathbf{v}} = ext{ step size, } \mathcal{P}_{S_{R,k}}(\mathbf{v}) ext{ projects } \mathbf{v} ext{ to } S_{R,k}$

Results

IHT Reconstruction Results			
eta_{true}	etanormal	etalogistic	$eta_{poisson}$
2.15035	2.15076	2.31195	2.15246
1.42043	1.41833	1.51125	1.42261
-1.28871	-1.28929	-1.36258	-1.2846
-1.04068	-1.04139	-1.07631	-1.04235
0.546087	0.548324	0.700991	0.545524
0.360115	0.360985	0.417808	0.358854
0.331856	0.335209	0.388734	0.329764
0.279001	0.278694	0.304497	0.279266
0.103375	0.103152	Not Found	0.100905
0.0344145	0.0363563	Not Found	0.0329963

Simulated result with n=5000 subjects and p=100,000 SNPs. $\beta_{true} \sim N(0,1)$ and responses were simulated via canonical link.

Figure 3: Speed and memory benchmark on 100000 SNPs

Figure 4: Cross-validation finds $k_{\text{normal}}^{\text{estimate}} = 10$ and $k_{\text{logistic}}^{\text{estimate}} = 9$

Summary of Results

- We applied IHT to perform multivariate model selection on genetics data.
- IHT can recover small effect sizes without shrinkage.
- Computational time increases linearly with data size.
- Memory usage remains relatively constant with data size.
- ullet Cross Validation works well to determine the true model size k_{true} .

Acknowledgements

- This research was supported by NIH Training Grant in Genomic Analysis and Interpretation T32HG002536
- This research was supported by Google Summer of Code 2018 with NumFOCUS, Julia cohort