Ordinary Differential Equations - 104131

Homework Page No. 6

1. Draw the phase portrait of the following systems:

(a)
$$\vec{x}'(t) = \begin{pmatrix} 3 & 2 \\ -5 & 1 \end{pmatrix} \vec{x}$$

(b)
$$\vec{x}'(t) = \begin{pmatrix} 0 & -1 \\ 2 & 3 \end{pmatrix} \vec{x}$$

(c)
$$\vec{x}'(t) = \begin{pmatrix} -4 & -2 \\ 5 & 3 \end{pmatrix} \vec{x}$$

(d)
$$\vec{x}'(t) = \begin{pmatrix} -4 & -2 \\ 3 & 1 \end{pmatrix} \vec{x}$$

(e)
$$\vec{x}'(t) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \vec{x}$$

2. Solve the following equations using power series, meaning find a recursive formula for the coefficients.

(a)
$$(1-x^2)y'' + 2y = 0$$

(b)
$$y'' - xy' + y = 0$$

(c)
$$(1-x)y'' - xy' + y = 0$$

Solutions: 2.a.

$$y(x) = \sum_{n=0}^{\infty} a_n x^n$$

$$y'(x) = \sum_{n=0}^{\infty} n a_n x^{n-1} = \sum_{n=0}^{\infty} (n+1) a_{n+1} x^n$$

$$y''(x) = \sum_{n=0}^{\infty} n(n-1) a_n x^{n-2} = \sum_{n=0}^{\infty} (n+1) n a_{n+1} x^{n-1} = \sum_{n=0}^{\infty} (n+2)(n+1) a_{n+2} x^n$$

$$(1-x^2)y'' + 2y = 0$$

$$y'' - x^2y'' + 2y = 0$$

$$\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n - x^2 \sum_{n=0}^{\infty} n(n-1)a_nx^{n-2} + 2\sum_{n=0}^{\infty} a_nx^n = 0$$

$$\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n + \sum_{n=0}^{\infty} -n(n-1)a_nx^n + \sum_{n=0}^{\infty} 2a_nx^n = 0$$

$$\sum_{n=0}^{\infty} ((n+2)(n+1)a_{n+2} - n(n-1)a_n + 2a_n)x^n = 0$$

$$\sum_{n=0}^{\infty} ((n+2)(n+1)a_{n+2} - (n^2 - n - 2)a_n)x^n = 0$$

$$\sum_{n=0}^{\infty} ((n+2)(n+1)a_{n+2} - (n-2)(n+1)a_n)x^n = 0$$

$$(n+2)(n+1)a_{n+2} - (n-2)(n+1)a_n = 0 \quad n \ge 0$$

$$a_{n+2} = \frac{(n-2)(n+1)}{(n+2)(n+1)}a_n \quad n \ge 0$$

$$a_{n+2} = \frac{n-2}{n+2}a_n \quad n \ge 0$$

b.

$$y(x) = \sum_{n=0}^{\infty} a_n x^n$$

$$y'(x) = \sum_{n=0}^{\infty} n a_n x^{n-1} = \sum_{n=0}^{\infty} (n+1) a_{n+1} x^n$$

$$y''(x) = \sum_{n=0}^{\infty} n(n-1) a_n x^{n-2} = \sum_{n=0}^{\infty} (n+1) n a_{n+1} x^{n-1} = \sum_{n=0}^{\infty} (n+2)(n+1) a_{n+2} x^n$$

$$y'' - xy' + y = 0$$

$$\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n - x \sum_{n=0}^{\infty} na_n x^{n-1} + \sum_{n=0}^{\infty} a_n x^n = 0$$

$$\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n + \sum_{n=0}^{\infty} -na_n x^n + \sum_{n=0}^{\infty} a_n x^n = 0$$

$$\sum_{n=0}^{\infty} ((n+2)(n+1)a_{n+2} - na_n + a_n)x^n = 0$$

$$\sum_{n=0}^{\infty} ((n+2)(n+1)a_{n+2} - (n-1)a_n)x^n = 0$$

$$(n+2)(n+1)a_{n+2} - (n-1)a_n = 0 \quad n \ge 0$$

$$a_{n+2} = \frac{n-1}{(n+2)(n+1)}a_n \quad n \ge 0$$

c.

$$y(x) = \sum_{n=0}^{\infty} a_n x^n$$

$$y'(x) = \sum_{n=0}^{\infty} n a_n x^{n-1} = \sum_{n=0}^{\infty} (n+1) a_{n+1} x^n$$

$$y''(x) = \sum_{n=0}^{\infty} n(n-1) a_n x^{n-2} = \sum_{n=0}^{\infty} (n+1) n a_{n+1} x^{n-1} = \sum_{n=0}^{\infty} (n+2)(n+1) a_{n+2} x^n$$

$$(1-x)y'' - xy' + y = 0$$

$$y'' - xy'' - xy' + y = 0$$

$$\sum_{n=0}^{\infty} (n+2)(n+1) a_{n+2} x^n - x \sum_{n=0}^{\infty} (n+1) n a_{n+1} x^{n-1} - x \sum_{n=0}^{\infty} n a_n x^{n-1} + \sum_{n=0}^{\infty} a_n x^n = 0$$

$$\sum_{n=0}^{\infty} (n+2)(n+1) a_{n+2} x^n - \sum_{n=0}^{\infty} (n+1) n a_{n+1} x^n - \sum_{n=0}^{\infty} n a_n x^n + \sum_{n=0}^{\infty} a_n x^n = 0$$

$$\sum_{n=0}^{\infty} ((n+2)(n+1) a_{n+2} - (n+1) n a_{n+1} - n a_n + a_n) x^n = 0$$

$$\sum_{n=0}^{\infty} ((n+2)(n+1) a_{n+2} - (n+1) n a_{n+1} - (n-1) a_n) x^n = 0$$

$$(n+2)(n+1) a_{n+2} - (n+1) n a_{n+1} - (n-1) a_n = 0 \quad n \ge 0$$

$$a_{n+2} = \frac{(n+1) n a_{n+1} + (n-1) a_n}{(n+2)(n+1)} \quad n \ge 0$$

Remarks:

- 1. An initial condition is just a_0, a_1 since $y(0) = a_0$ and $y'(0) = a_1$. This means that a_0, a_1 determine the solution.
- 2. In 2.a we see that for n=2 we get $a_4=0$ and therefore $a_{2n}=0$ for $n\geq 2$. We also see that if $a_1=0$ then $a_{2n+1}=0$ for $n\geq 0$ and in this case we have a solution which is a polynomial which is $a_0+a_2x^2=a_0-a_0x^2$.
- 3. In 2.b we see that for n = 1 we get $a_3 = 0$ and so $a_{2n+1} = 0$ for $n \ge 1$. And if $a_0 = 0$ then $a_{2n} = 0$ for $n \ge 0$ and in this case we have a solution which is a polynomial a_1x .