Here's what I put together for the R code with the data given by Christian. -Jason

#STAT 201

#Group Final Project

#Christian Price, Joseph Lyon, Jason Biesinger, Jesse Van Horn, Jon Wilson, Rex Henretta #Fall 2015

#Data

knocking=read.table(header=TRUE,text="

Run AirFuelRatio OctaneLevel AmountOfKnock

1	Lean	Booster1	30
2	Rich	Booster2	58
3	Stoichiome	tric Regular	82
4	Lean	Regular	75
5	Stoichiome	tric Booster1	70
6	Lean	Booster1	30
7	Lean	Booster2	55
8	Stoichiome	tric Booster2	75
9	Rich	Booster1	46
10	Lean	Regular	72
11	Rich	Regular	61
12	Rich	Regular	64
13	Stoichiome	etric Booster2	76
14	Lean	Booster2	58
15	Rich	Booster1	43
16	Stoichiome	etric Regular	85
17	Stoichiome	etric Booster1	70
18	Rich	Booster2	57
")			

#fit the model

out.knocking=aov(AmountOfKnock~AirFuelRatio+OctaneLevel+AirFuelRatio:OctaneLevel,data=knocking)

#Inference

anova(out.knocking)

#95% Conf Interval

TukeyHSD(out.knocking)

#Mean by factor

by(knocking\$AmountOfKnock,knocking\$AirFuelRatio,mean)

```
by(knocking$AmountOfKnock,knocking$OctaneLevel,mean)
#Standard Deviation by factor
by(knocking$AmountOfKnock,knocking$AirFuelRatio,sd)
by(knocking$AmountOfKnock,knocking$OctaneLevel,sd)
#Best plot for Air/Fuel Ratio
main.effect<-c(53.33333,54.83333,76.33333) # from
by(knocking$AmountOfKnock,knocking$AirFuelRatio,mean)
se<-sqrt(993.50 / 2) # Mean Sq Residuals / number of replicates
mp<-barplot(main.effect,names=c("Lean","Rich","Stoichiometric"),
       col=c("blue", "green", "black"),
      ylab="Amount of Knock",xlab="Air / Fuel Ratio",
      ylim=c(0,100)
arrows(mp,main.effect-se,mp,main.effect+se,
       code=3,angle=90,col="gray")
#Best plot for Octane Level
main.effect<-c(73.16667,48.16667,63.16667) #from
by(knocking$AmountOfKnock,knocking$OctaneLevel,mean)
se<-sqrt(950.00 / 2) # Mean Sq Residuals / number of replicates
mp<-barplot(main.effect,names=c("Regular","Booster #1","Booster #2"),
       col=c("red","brown","yellow"),
       ylab="Amount of Knocking",xlab="Octane Level",
      ylim=c(0,100)
arrows(mp,main.effect-se,mp,main.effect+se,
       code=3,angle=90,col="gray")
#QQ plot
qqnorm(resid(out.knocking))
resid(out.knocking)
#Interaction
interaction.plot(knocking$AirFuelRatio,knocking$OctaneLevel,knocking$AmountOfKnock,type='
b')
```

```
Regular
  11 Rich
                               64
+ 12 Rich
                    Regular
+ 13 Stoichiometric Booster2
                               76
                   Booster2
                               58
                    Booster1
                               43
+ 16 Stoichiometric Regular
                               85
+ 17 Stoichiometric Boosterl
                               70
+ 18 Rich
                   Booster2
                               57
+ ")
> out.knocking=aov(AmountOfKnock~AirFuelRatio+OctaneLevel+AirFuelRatio:OctaneLe$
> anova (out.knocking)
Analysis of Variance Table
Response: AmountOfKnock
                        Df Sum Sq Mean Sq F value
                        2 1987.0 993.50 380.489 2.018e-09 ***
AirFuelRatio
                        2 1900.0 950.00 363.830 2.463e-09 ***
OctaneLevel
AirFuelRatio:OctaneLevel 4 552.0 138.00 52.851 2.987e-06 ***
Residuals
                        9
                           23.5
                                   2.61
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

the p-values are all less than 0.05

