EJERCICIOS DE FUNCIONES

1.-Determine el dominio y el recorrido de cada una de las siguientes funciones.

a)
$$f(x) = \frac{3x-2}{x+3}$$

(b)
$$f(x) = \sqrt{\frac{2-x}{3x+1}}$$

c)
$$f(x) = \frac{4 - x^2}{x + 3}$$

c)
$$f(x) = \frac{4-x^2}{x+3}$$
 (d) $f(x) = \frac{2x}{x+1} - 3x$

2.-Sea
$$F: [1,4] \rightarrow IR$$
 tal que $F(x) = \frac{4x-1}{2x+3}$ determine el recorrido

3.- Sea
$$f: A \rightarrow [1,3]$$
 tal que $f(x) = 3x + \frac{1}{x}$ determine A de modo que f sea una función

4.-Sea
$$F(x) = \sqrt{x^2 - 3x - 2}$$
 determine en cada caso:

a) Los interceptos con los ejes coordenados (si es que existen)

b)
$$\frac{F(x+h) - F(h)}{h}$$

c)
$$F(x^2) - 3$$

d)
$$F(x^2 - 3)$$

e)
$$(F(x))^2 - 2$$

5.-Represente gráficamente las siguientes funciones :

a)
$$f(x) = 3x - 2$$

b)
$$f(x) = \sqrt{4 - x^2}$$

c)
$$f(x) = \frac{2x-3}{x+1}$$

d)
$$f(x) = \sqrt{\frac{2x-3}{x+1}}$$

e)
$$f(x) = \sqrt{4 - x^2}$$

f)
$$f(x) = |3x + 2|$$

g)
$$f(x) = \begin{cases} 2x - 3 & six < 2 \\ x^2 & x \ge 2 \end{cases}$$

h)
$$f(x) = x^2 - 4x + 4$$

6.- Determine si las siguientes funciones son invectivas.

a)
$$f(x) = \frac{3x-2}{x^2-1}$$

b)
$$f(x) = \frac{3x}{x+2} + \frac{2}{x}$$

c)
$$f(x) = \sqrt{1 - 2x^2}$$

d)
$$f(x) = -\sqrt{x^2 - 3}$$

e)
$$f(x) = \sqrt{\frac{2x-4}{1-x}}$$

f)
$$f(x) = |2x - 1|$$

7.-Si $F:[1,2] \to IR$ determine el recorrido máximo para que la función $f(x) = \frac{2x+1}{x}$ sea epiyectiva (o sobre).

8.-En cada caso determine máximo dominio y recorrido para que f sea biyectiva y determine $f^{-1}(x)$

$$a) f(x) = \frac{2-x}{x+3}$$

b)
$$f(x) = \sqrt{2x^2 - 5}$$

$$c) f(x) = x(2-x)$$

d)
$$f(x) = \frac{5}{x} - \frac{1}{x^2}$$

9. Defina $(g \circ f)(x)$ haciendo las restricciones correspondientes si es necesario:

a)
$$f(x) = 4x - 1$$
, $g(x) = 2 - x$

b)
$$f(x) = \frac{2x+1}{x}$$
, $g(x) = 4x+2$

c)
$$f(x) = 1 + \frac{3}{x-2}$$
, $g(x) = \sqrt{4+x}$

d)
$$f(x) = 4x + 2$$
, $g(x) = x^2 + 1$

10.- Se desea construir una caja sin tapa con base rectangular a partir de una hoja rectangular de 10 cm de ancho por 20 de largo, recortando un cuadrado en cada esquina y doblando los lados hacia arriba. Determine una fórmula para calcular el volumen como una función de x, donde x es la longitud del lado del cuadrado.

11. Se va a construir una ventana cuadrada coronada de un triángulo equilátero. Determine una fórmula para determinar el área de la ventana.

- 12. En cada caso represente la región encerrada por las funciones f(x) y g(x)
- a) la región encerrada por las funciones $f(x) = x^2 x$; g(x) = (2 x)

b) sobre
$$f(x) = x + 2$$
 y bajo $g(x) = \sqrt{4 - x^2}$

c)) limitada por
$$f(x) = 3x^2$$
 y $g(x) = \frac{2}{3}\sqrt{9 - x^2}$

- 13. Si $f: A \to B$ y $g: B \to C$ son biyectivas entonces
- a) $g \circ f$ es biyectiva
- b) $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$
- 14. Se inscribe un cilindro circular recto de radio r y altura h en un cono de altura 9 y base 4 Expresar el volumen del cilindro en función del radio

Resp.
$$V = \frac{\pi(r^2)(18 - 9r)}{2}$$

15:Se desea tender tender un cable desde una central eléctrica situada a la orilla de un río de 900mts de ancho hasta una fábrica situada a 3000mts río abajo en la otra orilla. Si el costo de tender el cable por tierra es de \$4 por metro y de \$5 por agua Determinar la función costo

Resp:
$$C(x) = 4(3000 - x) + 5 \sqrt{x^2 + 900^2}$$