Graph Colorings Via The Borsuk-Ulam Theorem

Hossein Hajiabolhassan

Joint Work With Meysam Alishahi and Frédéric Meunier

Department of Mathematical Sciences Shahid Beheshti University Tehran, Iran

Institute for Research in Fundamental Sciences

October 29, 2014

CHROMATIC NUMBER

Chromatic number

The chromatic number $\chi(G)$ of a graph G is the smallest number of colors needed to color the vertices of G so that no two adjacent vertices share the same color.

CHROMATIC NUMBER

Chromatic number

The chromatic number $\chi(G)$ of a graph G is the smallest number of colors needed to color the vertices of G so that no two adjacent vertices share the same color.

CHROMATIC NUMBER

Chromatic number

The chromatic number $\chi(G)$ of a graph G is the smallest number of colors needed to color the vertices of G so that no two adjacent vertices share the same color.

Chromatic number

It is NP-hard to compute the chromatic number of a graph!

Hedetniemi's Conjecture, 1966

The Categorical Product

Let G and G' be two graphs. Their categorical product $G \times G'$ is the graph whose vertex set is $V(G) \times V(G')$ and whose edge set is $E(G \times G') = \{\{(u, u'), (v, v')\} : \{u, v\} \in E(G), \{u', v'\} \in E(G')\}.$

Hedetniemi's Conjecture, 1966

The Categorical Product

Let G and G' be two graphs. Their categorical product $G \times G'$ is the graph whose vertex set is $V(G) \times V(G')$ and whose edge set is $E(G \times G') = \{\{(u, u'), (v, v')\} : \{u, v\} \in E(G), \{u', v'\} \in E(G')\}.$

One can see that $\chi(G \times G') \leq \min\{\chi(G), \chi(G')\}.$

Hedetniemi's Conjecture, 1966

For any two graphs G and G', $\chi(G \times G') = \min\{\chi(G), \chi(G')\}.$

Hedetniemi's Conjecture, 1966

The Categorical Product

Let G and G' be two graphs. Their categorical product $G \times G'$ is the graph whose vertex set is $V(G) \times V(G')$ and whose edge set is $E(G \times G') = \{\{(u, u'), (v, v')\} : \{u, v\} \in E(G), \{u', v'\} \in E(G')\}.$

One can see that $\chi(G \times G') \leq \min\{\chi(G), \chi(G')\}.$

Hedetniemi's Conjecture, 1966

For any two graphs G and G', $\chi(G \times G') = \min\{\chi(G), \chi(G')\}.$

Zhu's Conjecture, 1992

For any two hypergraphs H and H', $\chi(H \times H') = \min{\{\chi(H), \chi(H')\}}$.

TOPOLOGICAL SPACES

Question

How is it possible to distinguish two distinct topological spaces?

TOPOLOGICAL SPACES

Question

How is it possible to distinguish two distinct topological spaces?

A Traditional Joke!

What is a topologist? Someone who cannot distinguish between a doughnut and a coffee cup.

Antipodal Points

Definition

Set $S^n = \{x : x \in \mathbb{R}^{n+1}, ||x|| = 1\}.$

Question

Is there a continuous mapping from S^n to \mathbb{R}^n ? YES!

Antipodal Points

Definition

Set $S^n = \{x : x \in \mathbb{R}^{n+1}, ||x|| = 1\}.$

Question

Is there a continuous mapping from S^n to \mathbb{R}^n ? YES!

Definition

The antipodal point of a point $x \in S^n$ is the point which is diametrically opposite to it, i.e., -x.

Antipodal Points

Definition

Set $S^n = \{x : x \in \mathbb{R}^{n+1}, ||x|| = 1\}.$

Question

Is there a continuous mapping from S^n to \mathbb{R}^n ? YES!

Definition

The antipodal point of a point $x \in S^n$ is the point which is diametrically opposite to it, i.e., -x.

• For every continuous mapping $f: S^n \longrightarrow \mathbb{R}^n$ there exists a point $x \in S^n$ with f(x) = f(-x).

• For every continuous mapping $f: S^n \longrightarrow \mathbb{R}^n$ there exists a point $x \in S^n$ with f(x) = f(-x).

• Let m > n. Is there a continuous mapping from S^m to S^n ? YES!

- Let m > n. Is there a continuous mapping from S^m to S^n ? YES!
- Z_2 -space, (Y, ω) :

$$Y \xrightarrow{\omega} Y \& \omega^2 = id_Y$$
.

- Let m > n. Is there a continuous mapping from S^m to S^n ? YES!
- Z_2 -space, (Y, ω) :

$$Y \xrightarrow{\omega} Y \& \omega^2 = id_Y$$
.

• (Y, ω) free: ω has no fixed point.

- Let m > n. Is there a continuous mapping from S^m to S^n ? YES!
- Z_2 -space, (Y, ω) :

$$Y \xrightarrow{\omega} Y \& \omega^2 = id_Y$$
.

• (Y, ω) free: ω has no fixed point.

- Let m > n. Is there a continuous mapping from S^m to S^n ? YES!
- Z_2 -space, (Y, ω) :

$$Y \xrightarrow{\omega} Y \& \omega^2 = id_Y$$

- (Y, ω) free: ω has no fixed point.
- Z_2 -map $f:(X,\nu)\longrightarrow (Y,\omega)$:
- f is continuous and $f(\nu(x)) = \omega(f(x))$:
- The images of two antipodal points should be antipodal:

$$\begin{array}{ccc} X & \xrightarrow{f} & Y \\ \\ \nu \downarrow & & \downarrow \omega \\ \\ X & \xrightarrow{f} & Y \end{array}$$

Theorem

(Borsuk-Ulam Theorem) For every $n \ge 0$, the following statements are equivalent, and true:

• For every continuous mapping $f: S^n \longrightarrow \mathbb{R}^n$ there exists a point $x \in S^n$ with f(x) = f(-x).

Theorem

(Borsuk-Ulam Theorem) For every $n \ge 0$, the following statements are equivalent, and true:

- For every continuous mapping $f: S^n \longrightarrow \mathbb{R}^n$ there exists a point $x \in S^n$ with f(x) = f(-x).
- There is no \mathbb{Z}_2 -map $f: \mathbb{S}^{n+1} \to \mathbb{S}^n$.

Theorem

(Borsuk-Ulam Theorem) For every $n \ge 0$, the following statements are equivalent, and true:

- For every continuous mapping $f: S^n \longrightarrow \mathbb{R}^n$ there exists a point $x \in S^n$ with f(x) = f(-x).
- There is no \mathbb{Z}_2 -map $f: S^{n+1} \to S^n$.
- For any covering U_1, \ldots, U_{n+1} of the sphere S^n by n+1 open sets (resp. closed sets), there is at least one set containing a pair of antipodal points.

APPLICATIONS

- Ham Sandwich Theorem
- Team-Splitting
- Consensus-Halving Problem (Cake Problem)
- Level of Rings $(-1 = a_1^2 + \cdots + a_n^2)$
- Graph Colorings
- Necklace Theorem

NECKLACE THEOREM

 Necklace Theorem. Every (open) necklace with d kinds of stones, an even number of each kind, can be divided between two thieves using no more than d cuts.

NECKLACE THEOREM

 Necklace Theorem. Every (open) necklace with d kinds of stones, an even number of each kind, can be divided between two thieves using no more than d cuts.

INDEX AND COINDEX

• The \mathbb{Z}_2 -index of (X, ν) : $ind_{\mathbb{Z}_2}(X) := \min\{n : X \xrightarrow{\mathbb{Z}_2} S^n\}$.

Index and Coindex

- The \mathbb{Z}_2 -index of (X, ν) : $\operatorname{ind}_{\mathbb{Z}_2}(X) := \min\{n : X \xrightarrow{\mathbb{Z}_2} S^n\}$.
- Theorem. Let X and Y be Z_2 space.

 - ② In other words, $ind_{Z_2}(X) > ind_{Z_2}(Y)$, then $X \not\stackrel{Z_2}{\longrightarrow} Y$.

Index and Coindex

- The \mathbb{Z}_2 -index of (X, ν) : $\operatorname{ind}_{\mathbb{Z}_2}(X) := \min\{n : X \xrightarrow{\mathbb{Z}_2} S^n\}$.
- Theorem. Let X and Y be Z_2 space.

 - ② In other words, $ind_{Z_2}(X) > ind_{Z_2}(Y)$, then $X \stackrel{Z_2}{\longrightarrow} Y$.
- The Z_2 -coindex of (X, ν) : $Coind_{Z_2}(X) := \max\{n : S^n \xrightarrow{Z_2} X\}$.

 - ② In other words, $Coind_{Z_2}(X) > Coind_{Z_2}(Y)$, then $X \not\stackrel{Z_2}{\longrightarrow} Y$.

TOPOLOGICAL COMBINATORICS

Various simplicial complexes can be assigned to a graph G such as box complexes B(G) and $B_0(G)$.

TOPOLOGICAL COMBINATORICS

Various simplicial complexes can be assigned to a graph G such as box complexes B(G) and $B_0(G)$.

Lower Bounds for Chromatic Number

$$\chi(G) \geq \operatorname{ind}(B(G)) + 2 \geq \operatorname{ind}(B_0(G)) + 1 \geq \operatorname{coind}(B_0(G)) + 1 \geq \operatorname{coind}(B(G)) + 2 \geq$$

TOPOLOGICAL COMBINATORICS

Various simplicial complexes can be assigned to a graph G such as box complexes B(G) and $B_0(G)$.

Lower Bounds for Chromatic Number

$$\chi(\textit{G}) \geq \operatorname{ind}(\textit{B}(\textit{G})) + 2 \geq \operatorname{ind}(\textit{B}_0(\textit{G})) + 1 \geq \operatorname{coind}(\textit{B}_0(\textit{G})) + 1 \geq \operatorname{coind}(\textit{B}(\textit{G})) + 2$$

Theorem (D. Kozlov, 2005)

For any two graphs G and G',

$$\chi(G \times G') \ge Coind(B(G \times G')) + 2 \ge \min\{Coind(B(G)), Coind(B(G'))\} + 2.$$

Tucker's Lemma

Definition

Let $X = (x_1, ..., x_n), Y = (y_1, ..., y_n) \in \{-1, 0, +1\}^n$. Set $X^+ = \{i \in [n]: x_i = +1\}$ and $X^- = \{i \in [n]: x_i = -1\}$. By $X \leq Y$, we mean $X^+ \subseteq Y^+$ and $X^- \subseteq Y^-$.

Tucker's Lemma

Definition

Let $X = (x_1, ..., x_n), Y = (y_1, ..., y_n) \in \{-1, 0, +1\}^n$. Set $X^+ = \{i \in [n] : x_i = +1\}$ and $X^- = \{i \in [n] : x_i = -1\}$. By $X \leq Y$, we mean $X^+ \subseteq Y^+$ and $X^- \subseteq Y^-$.

Tucker's Lemma, 1946

```
Let \lambda: \{-1,0,+1\}^n \setminus \{(0,\ldots,0)\} \longrightarrow \{\pm 1,\pm 2,\ldots,\pm (n-1)\}. Also, assume that for any X \in \{-1,0,+1\}^n \setminus \{(0,\ldots,0)\}, we have \lambda(-X) = -\lambda(X). Then there exist two vectors X,Y \in \{-1,0,+1\}^n \setminus \{(0,\ldots,0)\} such that X \preceq Y and also \lambda(X) = -\lambda(Y).
```


Tucker's Lemma

Definition

Let $X = (x_1, \dots, x_n), Y = (y_1, \dots, y_n) \in \{-1, 0, +1\}^n$. Set $X^+ = \{i \in [n]: x_i = +1\}$ and $X^- = \{i \in [n]: x_i = -1\}$. By $X \leq Y$, we mean $X^+ \subseteq Y^+$ and $X^- \subseteq Y^-$.

Tucker's Lemma, 1946

Let $\lambda: \{-1,0,+1\}^n \setminus \{(0,\ldots,0)\} \longrightarrow \{\pm 1,\pm 2,\ldots,\pm (n-1)\}$. Also, assume that for any $X \in \{-1,0,+1\}^n \setminus \{(0,\ldots,0)\}$, we have $\lambda(-X) = -\lambda(X)$. Then there exist two vectors $X, Y \in \{-1, 0, +1\}^n \setminus \{(0, \dots, 0)\}$ such that $X \leq Y$ and also $\lambda(X) = -\lambda(Y).$

Z_p -Tucker Lemma (G.M. Ziegler, 2002)

GENERALIZATION OF THE BORSUK-ULAM THEOREM

Tucker-Ky Fan's Lemma, 1952

```
Let \lambda : \{-1, 0, +1\}^n \setminus \{(0, \dots, 0)\} \longrightarrow \{\pm 1, \pm 2, \dots, \pm m\}. If
```

- 1. for any $X \in \{-1, 0, +1\}^n \setminus \{(0, ..., 0)\}$, we have $\lambda(-X) = -\lambda(X)$,
- 2. no two vectors X and Y are such that $X \leq Y$ and $\lambda(X) = -\lambda(Y)$, then there are n signed sets $X_1 \leq X_2 \leq \cdots \leq X_n$ such that $\{\lambda(X_1), \ldots, \lambda(X_n)\} = \{+c_1, -c_2, \ldots, (-1)^{n-1}c_n\}$, where $1 \leq c_1 < \cdots < c_n \leq m$. In particular, $m \geq n$.

Ky Fan's Lemma, 1952

If m open (closed) subsets F_1, F_2, \ldots, F_m of the d-sphere S^d cover S^d and if no one of them contain a pair of antipodal points, then there exist d+2 indices $I_1, I_2, \ldots, I_{d+2}$, such that $1 \le I_1 < I_2 < \cdots < I_{d+2} \le m$ and $F_h \cap -F_h \cap \cdots \cap (-1)^{d+1} F_{l+2} \neq \emptyset$.

APPLICATIONS IN GRAPH COLORINGS

- Chromatic Number
- Circular Chromatic Number
- Local Chromatic Number
- Semi-Matching Chromatic Number

HISTORY

HISTORY

Kneser Representation

For a hypergraph H, consider the graph KG(H) whose vertex set is E(H) and whose edge set consists of all disjoint pairs. For instance. if

$$V(H) = \{1, 2, 3, 4, 5\},\$$

$$E(H) = \{\{1,2\}, \{3,4\}, \{1,5\}, \{2,3\}, \{4,5\}\},$$

then

$$KG(H) = C_5.$$

Kneser Representations of Graphs

Kneser Representations of Graphs

Kneser Representations of Graphs

$$E(H)=\{\{1,2\},\{3,4\},\{1,5\},\{2,3\},\{4,5\}\}$$

1 2 3 4 5

$$E(H)=\{\{1,2\},\{3,4\},\{1,5\},\{2,3\},\{4,5\}\}$$

1 2 3 4 5

Alt(H)= The number of nonzero elements of a longest alternating subsequence which does not contain a positive OR negative hyperedge

Alt(H)= The number of nonzero elements of a longest alternating subsequence which does not contain a positive OR negative hyperedge

|V(H)|-Alt(H)

STRONG ALTERMATIC NUMBER

SAlt(H)= The number of nonzero elements of a longest alternating subsequence which does not contain a positive & negative hyperedge

|V(H)|-SAlt(H)+1

Definition

The altermatic number $\zeta(G)$ and the strong altermatic number $\zeta_s(G)$ of a graph G are defined, respectively, as follows:

$$\zeta(G) = \max_{H} \{ |V(H)| - Alt(H) : \mathrm{KG}(H) \text{ and } G \text{ are isomorphic} \}.$$

$$\zeta_s(G) = \max_H \{|V(H)| - SAlt(H) + 1 : \mathrm{KG}(H) \text{ and } G \text{ are isomorphic}\}.$$

Definition

The altermatic number $\zeta(G)$ and the strong altermatic number $\zeta_s(G)$ of a graph G are defined, respectively, as follows:

$$\zeta(G) = \max_{H} \{ |V(H)| - Alt(H) : \mathrm{KG}(H) \text{ and } G \text{ are isomorphic} \}.$$

$$\zeta_s(G) = \max_H \{|V(H)| - SA/t(H) + 1 : \mathrm{KG}(H) \text{ and } G \text{ are isomorphic}\}.$$

Theorem (M. Alishahi and H.H., 2013)

For any graph G, we have

$$\chi(G) \geq \zeta(G)$$
,

$$\chi(G) \geq \zeta_s(G)$$
.

Definition

The altermatic number $\zeta(G)$ and the strong altermatic number $\zeta_s(G)$ of a graph G are defined, respectively, as follows:

$$\zeta(G) = \max_{H} \{ |V(H)| - Alt(H) : \text{KG}(H) \text{ and } G \text{ are isomorphic} \}.$$

$$\zeta_s(G) = \max_H \{|V(H)| - SAIt(H) + 1 : KG(H) \text{ and } G \text{ are isomorphic}\}.$$

Theorem (M. Alishahi and H.H., 2014)

For any graph G, we have

$$\chi(G) \geq \operatorname{Coind}(B_0(G)) + 1 \geq \zeta(G),$$

$$\chi(G) \geq \operatorname{Coind}(B(G)) + 2 \geq \zeta_s(G).$$

Definition

Let G be a graph and \mathcal{H} be a family of graphs. By $KG(G,\mathcal{H})$, we denote the general Kneser graph whose vertex set is the set of all subgraphs of G isomorphic to some member of \mathcal{H} and in which two vertices are adjacent if the corresponding subgraphs are edge-disjoint.

Definition

Let G be a graph and \mathcal{H} be a family of graphs. By $\mathrm{KG}(G,\mathcal{H})$, we denote the general Kneser graph whose vertex set is the set of all subgraphs of G isomorphic to some member of \mathcal{H} and in which two vertices are adjacent if the corresponding subgraphs are edge-disjoint.

Definition

Let G be a graph and \mathcal{H} be a family of graphs. By $KG(G,\mathcal{H})$, we denote the general Kneser graph whose vertex set is the set of all subgraphs of G isomorphic to some member of \mathcal{H} and in which two vertices are adjacent if the corresponding subgraphs are edge-disjoint.

Definition

Let G be a graph and \mathcal{H} be a family of graphs. By $KG(G,\mathcal{H})$, we denote the general Kneser graph whose vertex set is the set of all subgraphs of G isomorphic to some member of \mathcal{H} and in which two vertices are adjacent if the corresponding subgraphs are edge-disjoint.

$$KG(C_5, 2K_2) = C_5$$

Definition

Let G be a graph and \mathcal{H} be a family of graphs. By $\mathrm{KG}(G,\mathcal{H})$, we denote the general Kneser graph whose vertex set is the set of all subgraphs of G isomorphic to some member of \mathcal{H} and in which two vertices are adjacent if the corresponding subgraphs are edge-disjoint.

A Representation For Some Graphs

- **1** Kneser Graphs: $KG(nK_2, rK_2)$, where nK_2 is a matching of size n.
- ② $\chi(KG(nK_2, rK_2)) = n 2r + 2$ (Lovász, 1978)

Definition

Let G be a graph and \mathcal{H} be a family of graphs. By $\mathrm{KG}(G,\mathcal{H})$, we denote the general Kneser graph whose vertex set is the set of all subgraphs of G isomorphic to some member of \mathcal{H} and in which two vertices are adjacent if the corresponding subgraphs are edge-disjoint.

A Representation For Some Graphs

- **1** Kneser Graphs: $KG(nK_2, rK_2)$, where nK_2 is a matching of size n.
- $\chi(KG(nK_2, rK_2)) = n 2r + 2 \text{ (Lovász, 1978)}$
- **3** Schrijver Graphs: $KG(C_n, rK_2)$, where C_n is a cycle of size n.
- $\chi(KG(C_n, rK_2)) = n 2r + 2$ (Schrijver, 1978)

Definition

Let G be a graph and \mathcal{H} be a family of graphs. By $\mathrm{KG}(G,\mathcal{H})$, we denote the general Kneser graph whose vertex set is the set of all subgraphs of G isomorphic to some member of \mathcal{H} and in which two vertices are adjacent if the corresponding subgraphs are edge-disjoint.

A Representation For Some Graphs

- **1** Kneser Graphs: $KG(nK_2, rK_2)$, where nK_2 is a matching of size n.
- $\chi(KG(nK_2, rK_2)) = n 2r + 2 \text{ (Lovász, 1978)}$
- **Schrijver Graphs**: $KG(C_n, rK_2)$, where C_n is a cycle of size n.
- $\chi(\text{KG}(C_n, rK_2)) = n 2r + 2$ (Schrijver, 1978)

Theorem (M. Alishahi and H.H., 2013-2014)

If rK_2 is a matching of size r and G is a sufficiently large dense graph or special sparse graph, then $\chi(\mathrm{KG}(G,rK_2))=|E(G)|-e\chi(G,rK_2)$.

Theorem (M. Alishahi and H.H., 2013)

If G is a multigraph such that the multiplicity of each edge is at least 2 and H is a simple graph, then $\chi(\mathrm{KG}(G,H))=|E(G)|-ex(G,H)$.

Theorem (M. Alishahi and H.H., 2013)

If G is a multigraph such that the multiplicity of each edge is at least 2 and H is a simple graph, then $\chi(\mathrm{KG}(G,H)) = |E(G)| - e\chi(G,H)$.

Theorem (M. Alishahi and H.H., 2014)

If G is a sufficiently large dense graph and \mathcal{T}_n is the family of the spanning trees of G, then $\chi(\mathrm{KG}(G,\mathcal{T}_n)) = |\mathrm{MinimumCUT}(G)|$.

Hedetniemi's Conjecture

Consider two graphs G and G'.

Theorem (M. Alishahi and H.H., 2014)

$$\chi(G \times G') \ge \zeta_s(G \times G') \ge \min\{\zeta_s(G), \zeta_s(G')\}.$$

Hedetniemi's Conjecture

Consider two graphs G and G'.

Theorem (M. Alishahi and H.H., 2014)

$$\chi(G \times G') \ge \zeta_s(G \times G') \ge \min\{\zeta_s(G), \zeta_s(G')\}.$$

Theorem (D. Kozlov, 2005)

 $\chi(\textit{G} \times \textit{G}') \geq \textit{Coind}(\textit{B}(\textit{G} \times \textit{G}')) + 2 \geq \min\{\textit{Coind}(\textit{B}(\textit{G})), \textit{Coind}(\textit{B}(\textit{G}'))\} + 2$

Hedetniemi's Conjecture

Consider two graphs G and G'.

Theorem (M. Alishahi and H.H., 2014)

$$\chi(G \times G') \ge \zeta_s(G \times G') \ge \min\{\zeta_s(G), \zeta_s(G')\}.$$

Theorem (D. Kozlov, 2005)

$$\chi(\textit{G} \times \textit{G}') \geq \textit{Coind}(\textit{B}(\textit{G} \times \textit{G}')) + 2 \geq \min\{\textit{Coind}(\textit{B}(\textit{G})), \textit{Coind}(\textit{B}(\textit{G}'))\} + 2$$

Question

Is it true that

$$Coind(B_0(G \times G')) + 1 \ge \min\{Coind(B_0(G)), Coind(B_0(G'))\} + 1?$$

HEDETNIEMI'S CONJECTURE

Consider two graphs G and G'.

Theorem (M. Alishahi and H.H., 2014)

$$\chi(G \times G') \ge \zeta_s(G \times G') \ge \min\{\zeta_s(G), \zeta_s(G')\}.$$

Theorem (D. Kozlov, 2005)

$$\chi(G \times G') \ge Coind(B(G \times G')) + 2 \ge \min\{Coind(B(G)), Coind(B(G'))\} + 2$$

Question

Is it true that

$$Coind(B_0(G \times G')) + 1 \ge \min\{Coind(B_0(G)), Coind(B_0(G'))\} + 1?$$

Theorem (H.H. and F. Meunier, 2014)

$$\chi(G \times G') \ge \min\{\zeta(G), \zeta(G')\}.$$

Semi-Matching Coloring

Definition:

A semi-matching coloring of a graph G is a proper coloring $c:V(G)\to\mathbb{N}$ such that for any two consecutive colors, the edges joining the colors form a matching. The minimum positive integer t for which there exists a semi-matching coloring $c:V(G)\to\{1,2,\ldots,t\}$ is called the semi-matching chromatic number of G and denoted by $\chi_m(G)$.

Semi-Matching Coloring

Definition:

A semi-matching coloring of a graph G is a proper coloring $c:V(G)\to\mathbb{N}$ such that for any two consecutive colors, the edges joining the colors form a matching. The minimum positive integer t for which there exists a semi-matching coloring $c:V(G)\to\{1,2,\ldots,t\}$ is called the semi-matching chromatic number of G and denoted by $\chi_m(G)$.

Conjecture (B. Omoomi and A. Pourmiri, 2008)

For any positive integers n and r, with $n \ge 2r \ge 4$, we have $\chi_I(\operatorname{KG}(nK_2, rK_2)) = 2\chi(\operatorname{KG}(nK_2, rK_2)) - 2 = 2n - 4r + 2$.

Semi-Matching Coloring

Definition:

A semi-matching coloring of a graph G is a proper coloring $c:V(G)\to\mathbb{N}$ such that for any two consecutive colors, the edges joining the colors form a matching. The minimum positive integer t for which there exists a semi-matching coloring $c:V(G)\to\{1,2,\ldots,t\}$ is called the semi-matching chromatic number of G and denoted by $\chi_m(G)$.

Conjecture (B. Omoomi and A. Pourmiri, 2008)

For any positive integers n and r, with $n \ge 2r \ge 4$, we have $\chi_I(\mathrm{KG}(nK_2, rK_2)) = 2\chi(\mathrm{KG}(nK_2, rK_2)) - 2 = 2n - 4r + 2$.

Theorem (H.H., 2011)

Let n and r be positive integers, where $n \ge 2r \ge 4$. If $n \le \frac{8}{3}r$, then $\chi_m(\mathrm{KG}(n\mathsf{K}_2,r\mathsf{K}_2)) = 2\chi(\mathrm{KG}(n\mathsf{K}_2,r\mathsf{K}_2)) - 2 = 2n - 4r + 2$.

References

- H. Hajiabolhassan, A generalization of Kneser's conjecture. Discrete Mathematics, 2663–2668 (311), 2011.
- M. Alishahi and H. Hajiabolhassan, On the chromatic number of general Kneser hypergraphs. ArXiv e-prints, February 2013.
- M. Alishahi and H. Hajiabolhassan, Chromatic number via Turán number. ArXiv e-prints, December 2013.
- M. Alishahi and H. Hajiabolhassan, Hedetniemi's conjecture via alternating chromatic number. ArXiv e-prints, March 2014.
- M. Alishahi and H. Hajiabolhassan, On chromatic number and minimum cut. ArXiv e-prints, July 2014.
- H. Hajiabolhassan and F. Meunier, Hedetniemi's conjecture for Kneser hypergraphs. ArXiv e-prints, October 2014.

Thank You!

I would like to show my greatest appreciation to Professor Carsten Thomassen. Although, I can't thank him enough for his tremendous support and help.

QUESTIONS?!

