Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP04/018302

International filing date: 08 December 2004 (08.12.2004)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-124304

Filing date: 20 April 2004 (20.04.2004)

Date of receipt at the International Bureau: 17 February 2005 (17.02.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2004年 4月20日

出 願 番 号 Application Number:

特願2004-124304

[ST. 10/C]:

[JP2004-124304]

出 願 人 Applicant(s):

株式会社ブリヂストン

2005年 2月 4日

特許庁長官 Commissioner, Japan Patent Office

特許願

【書類名】

```
【整理番号】
             2004P10429
【提出日】
             平成16年 4月20日
【あて先】
             特許庁長官 今井
                         康夫 殿
【国際特許分類】
             G09F 9/37
【発明者】
  【住所又は居所】
             東京都国分寺市戸倉4-5-16
  【氏名】
             櫻井
                   良
【発明者】
  【住所又は居所】
             東京都東村山市秋津町3-20-80
  【氏名】
             庄子 隆徳
【発明者】
             東京都西東京市東町6-1-6-201
  【住所又は居所】
  【氏名】
             平岡
                 英敏
【発明者】
  【住所又は居所】
             東京都小平市小川東町3-3-6
  【氏名】
             小林 太一
【特許出願人】
  【識別番号】
             000005278
  【氏名又は名称】
             株式会社 ブリヂストン
【代理人】
  【識別番号】
             100072051
  【弁理士】
  【氏名又は名称】
             杉村 興作
【先の出願に基づく優先権主張】
  【出願番号】
             特願2003-422865
  【出願日】
             平成15年12月19日
【手数料の表示】
  【予納台帳番号】
             074997
  【納付金額】
             16,000円
【提出物件の目録】
  【物件名】
             特許請求の範囲 1
  【物件名】
             明細書 1
  【物件名】
             図面 1
  【物件名】
             要約書 1
  【包括委任状番号】
               9712186
```


【請求項1】

少なくとも一方が透明である2枚の基板間に画像表示媒体を封入し、画像表示媒体に電界を与え、画像表示媒体を移動させて画像を表示する画像表示パネルを備える画像表示装置の製造方法において、一方の基板に設けた電極と他方の基板に設けた電極とを、画像表示パネルの画像表示部の外側の部分で電気的に接続するにあたり、基板に設けた電極間の距離よりも小さい直径を有する導電性のスペーサ粒子を含む接着剤を基板間の所定の部分に設け、接着剤を設けた部分の基板を圧着することで、一方の基板に設けた電極と他方の基板に設けた電極とを接続したことを特徴とする画像表示装置の製造方法。

【請求項2】

接着剤に含まれる導電性のスペーサ粒子の直径が5~50 μ mである請求項1記載の画像表示装置の製造方法。

【請求項3】

少なくとも一方が透明である 2 枚の基板間に画像表示媒体を封入し、画像表示媒体に電界を与え、画像表示媒体を移動させて画像を表示する画像表示パネルを備える画像表示装置の製造方法において、一方の基板に設けた電極と他方の基板に設けた電極とを、画像表示パネルの画像表示部の外側の部分で電気的に接続するにあたり、導電性のスペーサ粒子を含む接着剤を基板間の所定の部分に設けるとともに、導電性のスペーサ粒子を含む接着剤が設けられた隣接する電極間にスペーサを設けることで、一方の基板に設けた電極と他方の基板に設けた電極とを接続したことを特徴とする画像表示装置の製造方法。

【請求項4】

画像表示パネルが、基板間に、隔壁により互いに隔離されたセルを形成するものである場合、スペーサを隔壁の形成と同時に形成する請求項3記載の画像表示装置の製造方法。

【請求項5】

少なくとも一方が透明である2枚の基板間に画像表示媒体を封入し、画像表示媒体に電界を与え、画像表示媒体を移動させて画像を表示する画像表示パネルを備える画像表示装置の製造方法において、一方の基板の表面および裏面に電極を配置し、電極同士をスルーホールで電気的に接続してなる基板を準備し、準備した一方の基板と他方の基板とを重ね合わせ、一方の基板の裏面の電極に外部回路の接続端子を接続したことを特徴とする画像表示装置の製造方法。

【請求項6】

電極を表面および裏面に形成した一方の基板が背面基板である請求項5記載の画像表示装置の製造方法。

【請求項7】

画像表示媒体が粒子群または粉流体である請求項1~6のいずれか1項に記載の画像表示装置の製造方法。

【書類名】明細書

【発明の名称】画像表示装置の製造方法

【技術分野】

[0001]

本発明は、少なくとも一方が透明である2枚の基板間に画像表示媒体を封入し、画像表示媒体に電界を与え、画像表示媒体を移動させて画像を表示する画像表示パネルを備える画像表示装置の製造方法に関するものである。

【背景技術】

[0002]

従来より、液晶(LCD)に代わる画像表示装置として、電気泳動方式、エレクトロクロミック方式、サーマル方式、2色粒子回転方式等の技術を用いた画像表示装置が提案されている。

[0003]

これら従来技術は、LCDと比較すると、通常の印刷物に近い広い視野角が得られる、 消費電力が小さい、メモリー機能を有している等のメリットがあることから、次世代の安 価な画像表示装置に使用可能な技術として考えられており、携帯端末用画像表示、電子ペ ーパー等への展開が期待されている。特に最近では、分散粒子と着色溶液から成る分散液 をマイクロカプセル化し、これを対向する基板間に配置して成る電気泳動方式が提案され 、期待が寄せられている。

[0004]

しかしながら、電気泳動方式では、液中を粒子が泳動するために液の粘性抵抗により応答速度が遅くなるという問題がある。さらに、低比重の溶液中に酸化チタン等の高比重の粒子を分散させているため沈降しやすくなっており、分散状態の安定性維持が難しく、画像繰り返し安定性に欠けるという問題を抱えている。また、マイクロカプセル化にしても、セルサイズをマイクロカプセルレベルにして、見かけ上、上述した欠点が現れにくくしているだけであって、本質的な問題は何ら解決されていない。

[0005]

一方、溶液中での挙動を利用する電気泳動方式に対し、溶液を使わず、導電性粒子と電荷輸送層とを基板の一部に組み入れる方式も提案され始めている(例えば、非特許文献 1 参照)。しかし、電荷輸送層、さらには電荷発生層を配置するために構造が複雑化するとともに、導電性粒子に電荷を一定に注入することは難しいため、安定性に欠けるという問題もある。

[0006]

上述した種々の問題を解決するための一方法として、前面基板及び背面基板の間に、隔壁により互いに隔離されたセルを形成し、セル内に画像表示媒体を封入し、画像表示媒体に電界を与え、クーロン力等により画像表示媒体を移動させて画像を表示する画像表示パネルを備える画像表示装置が知られている。

【非特許文献1】趙 国来、外3名、"新しいトナーディスプレイデバイス(I)"、1999年7月21日、日本画像学会年次大会(通算83回)"Japan Hardcopy'99"論文集、p.249-252

【発明の開示】

【発明が解決しようとする課題】

[0007]

上述した従来の画像表示装置に備えられる画像表示パネルでは、背面基板に設けた電極と透明な前面基板に設けた電極とを接続して、例えば背面基板の端部において外部回路の接続端子と接続する必要がある。図14(a)~(d)はそれぞれ従来の画像表示装置における画像表示パネルの製造方法の一例を示す図である。まず、図14(a)に示すように、各画像表示部を形成するセルに電源を供給するための電極B1~B4と外部回路の接続端子と接続するための電極A1~A4とを設けた背面基板51を準備するとともに、図14(b)に示すように、各画像表示部を形成するセルに電源を供給するための透明な電

極F1~F4を設けた透明な前面基板52を準備する。次に、図14(c)に示すように、背面基板51上の画像表示部の外側に異方導電性の接着剤53を塗布して設ける。異方導電性の接着剤53にあっては、〇を付した電極A1~A4と前面基板52の電極F1~F4とを接続する箇所のみ導電性を有している。最後に、図14(d)に示すように、背面基板51上に前面基板52を接着剤53を介して重ね合わせて、前面基板52の電極F1~F4を背面基板51の電極A1~A4から電気的に取り出している。なお、54は画像表示部を示す。

[0008]

[0009]

本発明の目的は上述した問題点を解消して、電極の確実な接続を行うことができ、高い信頼性を達成することのできる画像表示装置の製造方法を提供しようとするものである。 また、本発明の他の目的は上述した問題点を解消して、加工を容易にし、非表示面を狭くすることができる画像表示装置の製造方法を提供しようとするものである。

【課題を解決するための手段】

[0010]

本発明の第1発明に係る画像表示装置の製造方法は、少なくとも一方が透明である2枚の基板間に画像表示媒体を封入し、画像表示媒体に電界を与え、画像表示媒体を移動させて画像を表示する画像表示パネルを備える画像表示装置の製造方法において、一方の基板に設けた電極と他方の基板に設けた電極とを、画像表示パネルの画像表示部の外側の部分で電気的に接続するにあたり、基板に設けた電極間の距離よりも小さい直径を有する導電性のスペーサ粒子を含む接着剤を基板間の所定の部分に設け、接着剤を設けた部分の基板を圧着することで、一方の基板に設けた電極と他方の基板に設けた電極とを接続したことを特徴とするものである。

[0011]

また、本発明の第1発明に係る画像表示装置の製造方法の好適例としては、接着剤に含まれる導電性のスペーサ粒子の直径が5~50μmであることがある。

[0012]

本発明の第2発明に係る画像表示装置の製造方法は、少なくとも一方が透明である2枚の基板間に画像表示媒体を封入し、画像表示媒体に電界を与え、画像表示媒体を移動させて画像を表示する画像表示パネルを備える画像表示装置の製造方法において、一方の基板に設けた電極と他方の基板に設けた電極とを、画像表示パネルの画像表示部の外側の部分で電気的に接続するにあたり、導電性のスペーサ粒子を含む接着剤を基板間の所定の部分に設けるとともに、導電性のスペーサ粒子を含む接着剤が設けられた隣接する電極間にスペーサを設けることで、一方の基板に設けた電極と他方の基板に設けた電極とを接続したことを特徴とするものである。

[0013]

また、本発明の第2発明に係る画像表示装置の製造方法の好適例としては、画像表示パネルが、基板間に、隔壁により互いに隔離されたセルを形成するものである場合、スペーサを隔壁の形成と同時に形成することがある。

[0014]

本発明の第3発明に係る画像表示装置の製造方法は、少なくとも一方が透明である2枚 の基板間に画像表示媒体を封入し、画像表示媒体に電界を与え、画像表示媒体を移動させ て画像を表示する画像表示パネルを備える画像表示装置の製造方法において、一方の基板 の表面および裏面に電極を配置し、電極同士をスルーホールで電気的に接続してなる基板 を準備し、準備した一方の基板と他方の基板とを重ね合わせ、一方の基板の裏面の電極に 外部回路の接続端子を接続したことを特徴とするものである。

加えて、本発明に係る画像表示装置に用いる画像表示媒体の好適例としては、粒子群ま たは粉流体であることがある。

[0015]

さらにまた、本発明の第3発明に係る画像表示装置の製造方法の好適例としては、電極 を表面および裏面に形成した一方の基板が背面基板であることがある。

【発明の効果】

[0016]

本発明の第1発明に係る画像表示装置の製造方法では、一方の基板に設けた電極と他方 の基板に設けた電極とを、画像表示パネルの画像表示部の外側の部分で電気的に接続する にあたり、基板に設けた電極間の距離よりも小さい直径を有する導電性のスペーサ粒子を 含む接着剤を基板間の所定の部分に設け、接着剤を設けた部分の基板を圧着することで、 電極の確実な接続を行うことができ、高い信頼性を達成することができる。

[0017]

また、本発明の第2発明に係る画像表示装置の製造方法は、一方の基板に設けた電極と 他方の基板に設けた電極とを、画像表示パネルの画像表示部の外側の部分で電気的に接続 するにあたり、導電性のスペーサ粒子を含む接着剤を基板間の所定の部分に設けるととも に、導電性のスペーサ粒子を含む接着剤が設けられた隣接する電極間にスペーサを設ける ことで、電極の確実な接続を行うことができ、高い信頼性を達成することができる。

[0018]

さらに、本発明の第3発明に係る画像表示装置の製造方法は、一方の基板の表面および 裏面に電極を配置し、電極同士をスルーホールで電気的に接続してなる基板を準備し、準 備した一方の基板と他方の基板とを重ね合わせ、一方の基板の裏面の電極に外部回路の接 続端子を接続することで、加工を容易にし、非表示面を狭くすることができる。

【発明を実施するための最良の形態】

[0019]

まず、画像表示パネルの基本的な構成について説明する。本発明で用いる画像表示パネ ルでは、対向する2枚の基板間に画像表示媒体を封入した画像表示パネルに何らかの手段 でその基板間に電界が付与される。高電位に帯電した基板部位に向かっては低電位に帯電 した画像表示媒体がクーロン力などによって引き寄せられ、また、低電位に帯電した基板 部位に向かっては高電位に帯電した画像表示媒体がクーロン力などによって引き寄せられ 、それら画像表示媒体が対向する基板間を往復運動することにより、画像表示がなされる 。従って、画像表示媒体が、均一に移動し、かつ、繰り返し時あるいは保存時の安定性を 維持できるように、画像表示パネルを設計する必要がある。ここで、画像表示媒体として 用いる粒子あるいは粉流体にかかる力は、粒子同士あるいは粉流体同士のクーロン力によ り引き付けあう力の他に、電極や基板との電気影像力、分子間力、液架橋力、重力などが 考えられる。

[0020]

本発明の画像表示装置で用いる画像表示パネルの例を、図1(a)、(b)に基づき説 明する。図1(a)、(b)に示す例では、2種以上の色の異なる画像表示媒体としての 粒子3 (ここでは白色粒子3 Wと黒色粒子3 Bを示す)を、基板1に設けた電極5と基板 2に設けた電極6との間に電圧を印加することにより発生する電界に応じて、基板1、2 と垂直に移動させ、黒色粒子3Bを観察者に視認させて黒色の表示を行うか、あるいは、 白色粒子3Wを観察者に視認させて白色の表示を行っている。なお、図1(b)に示す例 では、図1(a)に示す例に加えて、基板1、2との間に例えば格子状に隔壁4を設け表

示セルを画成している。以上の説明は、画像表示媒体として白色粒子3Wを白色粉流体に、黒色粒子3Bを黒色粉流体に、それぞれ置き換えた場合も同様に適用することが出来る。

[0021]

本発明の画像表示装置の製造方法の特徴は、透明な前面基板2と背面基板1との重ね合わせの方法にある。特に、第1発明及び第2発明では重ね合わせの際の前面基板2に設けた前面電極6と背面基板1に設けた背面電極5との接続方法に特徴があり、第2発明では重ね合わせの際の背面基板1に対する背面電極5の配置の方法に特徴がある。以下、この特徴をさらに詳細に説明する。

[0022]

<第1発明の説明>

図2(a)~(e)はそれぞれ本発明の第1発明に係る画像表示装置の製造方法の一例を示す図である。まず、図2(a)に示すように、各画像表示部を形成するセルに電源を供給するための電極B1~B4と外部回路の接続端子と接続するための電極A1~A4とを設けた背面基板1を準備するとともに、図2(b)に示すように、各画像表示部を形成するセルに電源を供給するための透明な電極F1~F4を設けた透明な前面基板2を準備する。次に、図2(c)に示すように、背面基板1上の画像表示部の外側に、何らかの手段で異方導電性を有するよう構成した接着剤12を塗布して設ける。このように異方導電性を有する接着剤12にあっては、〇を付した電極A1~A4と前面基板2の電極F1~F4とを接続する箇所のみ導電性を有している。次に、図2(d)に示すように、背面基板1上に前面基板2を接着剤12を介して重ね合わせて、前面基板2の電極F1~F4を背面基板1の電極A1~A4から電気的に取り出している。なお、13は画像表示部を示す。

[0023]

本発明の第1発明に係る画像表示装置の製造方法の特徴は、図2(c)に示す異方導電性を有する接着剤12として、前面基板2および背面基板1に設けた電極A1~A4、B1~B4、および、F1~F4の間の距離よりも小さい直径を有する導電性のスペーサ粒子を含ませた接着剤を使用して、両電極間に導電性のスペーサ粒子を接触させて電気的接続を行わせる点と、図2(e)に示すように、接着剤12を設けた部分の基板(斜線で示した部分)を押圧して圧着することで、前面基板2に設けた電極F1~F4と背面基板1に設けた電極A1~A4とを接続する点である。

[0024]

このようにして製造した本発明の第1発明に係る画像表示パネルにあっては、図3(a)、(b)に示すように、圧着して例えば樹脂からなる可とう性のある前面基板2を変形させて電極F1~F4と電極A1~A4とを接続することにより、電極間の距離より小さい直径の導電性のスペーサ粒子14が使用できる。そのため、図3(b)に示すように、導電性のスペーサ粒子14が電極間にまたがって電極間をショートさせることはなく、電気的および機械的に信頼性が高い接続が可能となる。一方、導電性のスペーサ粒子14を使用した場合でも大きい直径の導電性のスペーサ粒子14を使用すると、図4(a)、(b)に示すように、圧着することができないとともに、電極間のショートが起こってしまい、画像表示ができなくなる。導電性のスペーサ粒子14の直径は、電極間の距離よりも小さければ良く、画像表示装置の設計によって異なるが、通常、導電性のスペーサ粒子14の直径は5~50 μ mであることが好ましい。

[0025]

<第2発明の説明>

図5(a)~(d)はそれぞれ本発明の第2発明に係る画像表示装置の製造方法の一例を示す図である。まず、図5(a)に示すように、各画像表示部を形成するセルに電源を供給するための電極B1~B4と外部回路の接続端子と接続するための電極A1~A4とを設けた背面基板1を準備するとともに、図5(b)に示すように、各画像表示部を形成するセルに電源を供給するための透明な電極F1~F4を設けた透明な前面基板2を準備

する。次に、図5 (c)に示すように、背面基板1上の画像表示部の外側に、何らかの手段で異方導電性を有するよう構成した接着剤12を塗布して設ける。このように異方導電性を有する接着剤12にあっては、〇を付した電極A1~A4と前面基板2の電極F1~F4とを接続する箇所のみ導電性を有している。次に、図5 (d)に示すように、背面基板1上に前面基板2を接着剤12を介して重ね合わせて、前面基板2の電極F1~F4を背面基板1の電極A1~A4から電気的に取り出している。なお、13は画像表示部を示す。

[0026]

本発明の第2発明に係る画像表示装置の製造方法の特徴は、図5(a)に示す異方導電性を有する接着剤12として、接着剤中に導電性のスペーサ粒子を含ませた接着剤を使用して、前面基板2および背面基板1に設けた電極A1~A4、B1~B4、および、電極F1~F4の間に導電性のスペーサ粒子を接触させて電気的接続を行う点と、図6(a)、(b)に示すように、導電性のスペーサ粒子14を含む接着剤12が設けられた隣接する電極間(ここでは、基板2上の電極F3とF4との間、および、基板1上の電極A3とA4との間)にスペーサ16を設けることで、電極F3とA3との間、および、電極F4とA4との間のみを電気的に接続している点である。スペーサ16を設けることで、導電性のスペーサ粒子12の大きさに拘わらず(もちろん基板間の間隔よりも大きいスペーサ粒子は使用できないが)、隣接する電極間のショートを防ぐことができる。なお、このスペーサ16は隔壁となるリブ形成と同時に形成することで、従来の製造工程に追加の工程を付加することなく、スペーサ16を形成することができる。

[0027]

実際に、図7に示すように、電極5間にスペーサ16を設け、導電性のスペーサ粒子14を含む接着剤12を塗布した本発明例(電極の幅Lと電極間の間隔Sとの関係が、L/S=50/50、100/100、200/200 (μ m) の場合)、および、図8に示すように、電極5間に何も設けずに、導電性のスペーサ粒子14を含む接着剤12を塗布した比較例(電極の幅Lと電極間の間隔Sとの関係が、L/S=50/50、100/100、200/200 (μ m) の場合)について、上下基板の電極間の接続不良と同じ基板上で隣り合う電極間の短絡不良とを求めた。結果を以下の表1に示す。表1の結果から、比較例では隣接する電極の距離が短いと短絡してしまうことから、スペーサ16の短絡防止効果を確認することができた。

[0028]

【表1】

		実施例	比較例
L/S		スペーサあり	スペーサなし
50/50	接触不良	1 p p m以下	0.01%
	短絡不良	1 p p m以下	2 0 %
100/100	接触不良	1 p p m以下	0.0001%
	短絡不良	1 p p m 以下	1 %
200/200	接触不良	1 p p m以下	1 p p m以下
	短絡不良	1 p p m 以下	1 p p m 以下

[0029]

<第3発明の説明>

本発明の第3発明に係る画像表示装置の製造方法の特徴は、従来は、図9(a)~(c)に示すように、背面基板1の片面にのみ背面電極5(電極A1~A4、B1~B4に対応)を設けていたのに対し、図10(a)~(c)に示すように、背面基板1の表面に従来と同様に背面電極5-1を設けるとともに、背面基板1の裏面にも背面電極5-2を設け、さらに、背面電極5-1と背面電極5-2とをスルーホール5-3(内部に導電材料が設けてある)で電気的に接続した点である。そのため、背面基板1の裏面に設けた背面

電極5-2を外部回路の接続端子との接続に使用することができる。

[0030]

このようにして画像表示装置を製造することで、従来は、図15(a)に示すように、前面基板と背面基板とを重ね合わせる際に外部回路の接続端子との接続用に露出させる電極A1~A4、B1~B4のW部を必要とせず、図11(a)に示すように、前面基板2と背面基板1とを重ね合わせることができる。その結果、図11(b)に示すように、切断加工を基板の4辺を切断するだけで済ませることができる。そして、図11(c)に示すように、背面基板1の裏面に存在する背面電極5-2に対し、外部回路15の接続端子を接続するだけで、画像表示装置を得ることができる。そのため、加工も簡単で、しかも、非表示面を狭くすることができる。

[0031]

以下、本発明の画像表示装置を構成する各部材について詳細に説明する。

基板については、少なくとも一方の基板は装置外側から画像表示媒体の色が確認できる透明な前面基板 2 であり、可視光の透過率が高くかつ耐熱性の良い材料が好適である。背面基板 1 は透明でも不透明でもかまわない。基板材料を例示すると、ポリエチレンテレフタレート、ポリエーテルサルフォン、ポリエチレン、ポリカーボネート、ポリイミド、アクリルなどのポリマーシートや、金属シートのように可とう性のあるもの、および、ガラス、石英などの可とう性のない無機シート(電極の接続のために曲げる必要のない側の基板材料として用いることができる)が挙げられる。電極接続のために曲げる必要のある側の基板の厚みは、 $2\sim400$ μ mが好ましく、さらに $5\sim300$ μ mが好適であり、薄すぎると、強度、基板間の間隔均一性を保ちにくくなり、400 μ mより厚いと、曲げによる応力が強くなり電極の接続の点で不都合がある。

[0032]

電極 5、 6 については、視認側であり透明である必要のある前面基板 2 側に設ける前面電極 6 は、透明かつパターン形成可能である導電性材料で形成され、例示すると、酸化インジウム、アルミニウム、金、銀、銅などの金属類や I T O 、導電性酸化錫、導電性酸化 亜鉛等の透明導電性金属酸化物類、ポリアニリン、ポリピロール、ポリチオフェンなどの 導電性高分子類が挙げられ、真空蒸着、塗布などの形成手法が例示できる。なお、電極厚 みは、導電性が確保でき光透過性に支承がなければ良く、 $3\sim1000$ nm、好ましくは $5\sim400$ nmが好適である。背面基板 1 側に設ける背面電極 5 の材質や厚みなどは上述した前面電極 6 と同様であるが、透明である必要はない。なお、この場合の外部電圧入力は、直流あるいは交流を重畳しても良い。

[0033]

隔壁4については、その形状は表示にかかわる画像表示媒体の種類により適宜最適設定され、一概には限定されないが、隔壁の幅は $1\sim100\mu$ m、好ましくは $1\sim50\mu$ mに、隔壁の高さは $10\sim500\mu$ m、好ましくは $10\sim200\mu$ mに調整される。また、隔壁を形成するにあたり、対向する両基板の各々にリブを形成した後に接合する両リブ法、片側の基板上にのみリブを形成する片リブ法が考えられる。本発明では、いずれの方法も好適に用いられる。

[0034]

これらのリブからなる隔壁により形成される表示セルは、図12に示すごとく、基板平面方向からみて四角状、三角状、ライン状、円形状、六角状が例示され、配置としては格子状やハニカム形状や網目状が例示される。表示側から見える隔壁断面部分に相当する部分(表示セルの枠部の面積)はできるだけ小さくした方が良く、画像表示の鮮明さが増す。ここで、隔壁の形成方法を例示すると、スクリーン印刷法、サンドブラスト法、フォトリソ法、アディティブ法が挙げられる。このうち、レジストフィルムを用いるフォトリソ法が好適に用いられる。

[0035]

次に、画像表示パネルで表示のために使用される画像表示媒体として用いる粒子群について説明する。

本発明で用いる画像表示パネルで表示のための粒子群は、負又は正帯電性の着色粒子群で、クーロン力により移動するものであればいずれでも良いが、特に、球形で比重の小さい粒子から構成される粒子群が好適である。粒子群は単一の色のものであり、白色又は黒色の粒子群が好適に用いられる。粒子群を構成する粒子の平均粒子径は $0.1\sim50\mu$ mが好ましく、特に $1\sim30\mu$ mが好ましい。粒子径がこの範囲より小さいと粒子の電荷密度が大きすぎて電極や基板への鏡像力が強すぎ、メモリー性はよいが、電界を反転した場合の追随性が悪くなる。反対に粒子径がこの範囲より大きいと、追随性は良いが、メモリー性が悪くなる。

[0036]

粒子は、帯電性能等が満たされれば、いずれの材料から構成されても良い。例えば、樹脂、荷電制御剤、着色剤、無機添加剤等から、あるいは、着色剤単独等で形成することができる。

樹脂の例としては、ウレタン樹脂、ウレア樹脂、アクリル樹脂、ポリエステル樹脂、アクリルウレタン樹脂、アクリルウレタンシリコーン樹脂、アクリルウレタンフッ素樹脂、アクリルフッ素樹脂、シリコーン樹脂、アクリルシリコーン樹脂、エポキシ樹脂、ポリスチレン樹脂、スチレンアクリル樹脂、ポリオレフィン樹脂、ブチラール樹脂、塩化ビニリデン樹脂、メラミン樹脂、フェノール樹脂、フッ素樹脂、ポリカーボネート樹脂、ポリスルフォン樹脂、ポリエーテル樹脂、ポリアミド樹脂等が挙げられ、2種以上混合することもできる。特に、基板との付着力を制御する観点から、アクリルウレタン樹脂、アクリルウレタンリコーン樹脂、アクリルウレタンフッ素樹脂、アクリルフッ素樹脂、アクリルウレタンシリコーン樹脂、アクリルウレタンフッ素樹脂、フッ素樹脂、シリコーン樹脂が好適である。

[0037]

荷電制御剤としては、特に制限はないが、負荷電制御剤としては例えば、サリチル酸金属錯体、含金属アゾ染料、含金属(金属イオンや金属原子を含む)の油溶性染料、4級アンモニウム塩系化合物、カリックスアレン化合物、含ホウ素化合物(ベンジル酸ホウ素錯体)、ニトロイミダゾール誘導体等が挙げられる。正荷電制御剤としては例えば、ニグロシン染料、トリフェニルメタン系化合物、4級アンモニウム塩系化合物、ポリアミン樹脂、イミダゾール誘導体等が挙げられる。その他、超微粒子シリカ、超微粒子酸化チタン、超微粒子アルミナ等の金属酸化物、ピリジン等の含窒素環状化合物及びその誘導体や塩、各種有機顔料、フッ素、塩素、窒素等を含んだ樹脂等も荷電制御剤として用いることもできる。

[0038]

着色剤としては、以下に例示するような、有機または無機の各種、各色の顔料、染料が 使用可能である。

[0039]

黒色顔料としては、カーボンブラック、酸化銅、二酸化マンガン、アニリンブラック、活性炭等がある。黄色顔料としては、黄鉛、亜鉛黄、カドミウムイエロー、黄色酸化鉄、ミネラルファーストイエロー、ニッケルチタンイエロー、ネーブルイエロー、ナフトールイエローS、ハンザイエローG、ハンザイエロー10G、ベンジジンイエローG、ベンジジンイエローG、ベンジジンイエローので、タートラジンイエローのでは、赤色黄鉛、モリブデンオレンジ、パーマネントオレンジGTR、ピラゾロンオレンジ、バルカンオレンジ、インダスレンブリリアントオレンジRK、ベンジジンオレンジG、インダスレンブリリアントオレンジGK等がある。赤色顔料としては、ベンガラ、カドミウムレッド、鉛丹、硫化水銀、カドミウム、パーマネントレッド4R、リソールレッド、ピラゾロンレッド、ウォッチングレッド、カルシウム塩、レーキレッドD、ブリリアントカーミン6B、エオシンレーキ、ローダミンレーキB、アリザリンレーキ、ブリリアントカーミン3B等がある。

[0040]

紫色顔料としては、マンガン紫、ファーストバイオレットB、メチルバイオレットレーキ等がある。青色顔料としては、紺青、コバルトブルー、アルカリブルーレーキ、ビクト

[0041]

体質顔料としては、バライト粉、炭酸バリウム、クレー、シリカ、ホワイトカーボン、タルク、アルミナホワイト等がある。また、塩基性、酸性、分散、直接染料等の各種染料として、ニグロシン、メチレンブルー、ローズベンガル、キノリンイエロー、ウルトラマリンブルー等がある。これらの着色剤は、単独或いは複数組み合わせて用いることができる。特に黒色着色剤としてカーボンブラックが、白色着色剤として酸化チタンが好ましい

[0042]

粒子の製造方法については特に限定されないが、例えば、電子写真のトナーを製造する場合に準じた粉砕法および重合法が使用出来る。また、無機または有機顔料の粉体の表面に樹脂や荷電制御剤等をコートする方法も用いられる。

[0043]

また、用いる粒子は平均粒子径d(0.5)が、0.1~50 μ mの範囲であり、均一で揃っていることが好ましい。平均粒子径d(0.5)がこの範囲より大きいと表示上の鮮明さに欠け、この範囲より小さいと粒子同士の凝集力が大きくなりすぎるために粒子の移動に支障をきたすようになる。

[0044]

更に、各粒子の粒子径分布に関して、下記式に示される粒子径分布Spanを5未満、好ましくは3未満とする。

Span= (d(0.9) - d(0.1)) / d(0.5)

(但し、d (0.5)は粒子の50%がこれより大きく、50%がこれより小さいという粒子径を μ mで表した数値、d (0.1)はこれ以下の粒子の比率が10%である粒子径を μ mで表した数値、d (0.9)はこれ以下の粒子が90%である粒子径を μ mで表した数値である。)

Spanを5以下の範囲に納めることにより、各粒子のサイズが揃い、均一な粒子移動が可能となる。

[0045]

さらにまた、各粒子の相関について、使用した粒子の内、最大径を有する粒子のd(0.5)に対する最小径を有する粒子のd(0.5)の比を 50以下、好ましくは 10以下とすることが肝要である。

[0046]

なお、上記の粒子径分布および粒子径は、レーザー回折/散乱法などから求めることができる。測定対象となる粒子にレーザー光を照射すると空間的に回折/散乱光の光強度分布パターンが生じ、この光強度パターンは粒子径と対応関係があることから、粒子径および粒子径分布が測定できる。

ここで、粒子径および粒子径分布は、体積基準分布から得られたものである。具体的には、Mastersizer2000(Malvern Instruments Ltd.) 測定機を用いて、窒素気流中に粒子を投入し、付属の解析ソフト(Mie理論を用いた体積基準分布を基本としたソフト)にて、粒子径および粒子径分布の測定を行なうことができる。

[0047]

また、ここで繰り返し耐久性を更に向上させるためには、該粒子を構成する樹脂の安定性、特に、吸水率と溶剤不溶率を管理することが効果的である。

基板間に封入する粒子を構成する樹脂の吸水率は、3重量%以下、特に2重量%以下とすることが好ましい。なお、吸水率の測定は、ASTM-D570に準じて行い、測定条件は23℃で24時間とする。

該粒子を構成する樹脂の溶剤不溶率に関しては、下記関係式で表される粒子の溶剤不溶

率を50%以上、特に70%以上とすることが好ましい。

溶剤不溶率(%)=(B/A)×100

(但し、Aは樹脂の溶剤浸漬前重量、Bは良溶媒中に樹脂を25℃で24時間浸漬した後の重量を示す)

この溶剤不溶率が50%未満では、長期保存時に粒子表面にブリードが発生し、粒子との付着力に影響を及ぼし粒子の移動の妨げとなり、画像表示耐久性に支障をきたす場合がある。

なお、溶剤不溶率を測定する際の用の溶剤(良溶媒)としては、フッ素樹脂ではメチルエチルケトン等、ポリアミド樹脂ではメタノール等、アクリルウレタン樹脂ではメチルエチルケトン、トルエン等、メラミン樹脂ではアセトン、イソプロパノール等、シリコーン樹脂ではトルエン等が好ましい。

[0048]

次に、本発明の画像表示装置で画像表示媒体として用いる粉流体について説明する。なお、本発明の画像表示装置で用いる粉流体の名称については、本出願人が「電子粉流体(登録商標)」の権利を得ている。

[0049]

本発明で用いる「粉流体」は、気体の力も液体の力も借りずに、自ら流動性を示す、流体と粒子の特性を兼ね備えた両者の中間状態の物質である。例えば、液晶は液体と固体の中間的な相と定義され、液体の特徴である流動性と固体の特徴である異方性(光学的性質)を有するものである(平凡社:大百科事典)。一方、粒子の定義は、無視できるほどの大きさであっても有限の質量をもった物体であり、重力の影響を受けるとされている(丸善:物理学事典)。ここで、粒子でも、気固流動層体、液固流動体という特殊状態があり、粒子に底板から気体を流すと、粒子には気体の速度に対応して上向きの力が作用し、この力が重力とつりあう際に、流体のように容易に流動できる状態になるものを気固流動層体と呼び、同じく、流体により流動化させた状態を液固流動体と呼ぶとされている(平凡社:大百科事典)。このように気固流動層体や液固流動体は、気体や液体の流れを利用した状態である。本発明では、このような気体の力も、液体の力も借りずに、自ら流動性を示す状態の物質を、特異的に作り出せることが判明し、これを粉流体と定義した。

[0050]

すなわち、本発明で用いる粉流体は、液晶(液体と固体の中間相)の定義と同様に、粒子と液体の両特性を兼ね備えた中間的な状態で、先に述べた粒子の特徴である重力の影響を極めて受け難く、高流動性を示す特異な状態を示す物質である。このような物質はエアロゾル状態、すなわち気体中に固体状もしくは液体状の物質が分散質として安定に浮遊する分散系で得ることができ、画像表示パネルで固体状物質を分散質とするものである。

[0051]

本発明で用いる画像表示パネルは、少なくとも一方が透明な、対向する2枚の基板間に、画像表示媒体として例えば気体中に固体粒子が分散質として安定に浮遊するエアロゾル状態で高流動性を示す粉流体を封入するものであり、このような粉流体は、低電圧の印加でクーロン力などにより容易に安定して移動させることができる。

[0052]

粉流体とは、先に述べたように、気体の力も液体の力も借りずに、自ら流動性を示す、 流体と粒子の特性を兼ね備えた両者の中間状態の物質である。この粉流体は、特にエアロ ゾル状態とすることができ、本発明の画像表示装置では、画像表示媒体として例えば気体 中に固体状の物質が分散質として比較的安定に浮遊する状態で用いられる。

[0053]

エアロゾル状態の範囲は、粉流体の最大浮遊時の見かけ体積が未浮遊時の2倍以上であることが好ましく、更に好ましくは2.5倍以上、特に好ましくは3倍以上である。上限は特に限定されないが、12倍以下であることが好ましい。

粉流体の最大浮遊時の見かけ体積が未浮遊時の2倍より小さいと表示上の制御が難しくなり、また、12倍より大きいと粉流体を装置内に封入する際に舞い過ぎてしまうなどの

取扱い上の不便さが生じる。なお、最大浮遊時の見かけ体積は次のようにして測定される。すなわち、粉流体が透過して見える密閉容器に粉流体を入れ、容器自体を振動或いは落下させて、最大浮遊状態を作り、その時の見かけ体積を容器外側から測定する。具体的には、直径(内径)6 cm、高さ10 cmのポリプロピレン製の蓋付き容器(商品名アイボーイ:アズワン(株)製)に、未浮遊時の粉流体として1/5の体積相当の粉流体を入れ、振とう機に容器をセットし、6 cmの距離を3往復/secで3時間振とうさせる。振とう停止直後の見かけ体積を最大浮遊時の見かけ体積とする。

[0054]

また、本発明で用いる画像表示パネルは、粉流体の見かけ体積の時間変化が次式を満たすものが好ましい。

 $V_{1} \circ / V_{5} > 0.8$

ここで、 V_5 は最大浮遊時から 5 分後の見かけ体積(cm^3)、 V_{10} は最大浮遊時から 10 分後の見かけ体積(cm^3)を示す。なお、本発明の画像表示装置は、粉流体の見かけ体積の時間変化 V_{10}/V_5 が 0.85 よりも大きいものが好ましく、0.9 よりも大きいものが特に好ましい。 V_{10}/V_5 が 0.8 以下の場合は、通常のいわゆる粒子を用いた場合と同様となり、本発明のような高速応答、耐久性の効果が確保できなくなる。

[0055]

また、粉流体を構成する粒子物質の平均粒子径(d (0.5))は、好ましくは0.1 $\sim 20 \mu$ m、更に好ましくは0.5 $\sim 15 \mu$ m、特に好ましくは0.9 $\sim 8 \mu$ mである。0.1 μ mより小さいと表示上の制御が難しくなり、20 μ mより大きいと、表示はできるものの隠蔽率が下がる。なお、粉流体を構成する粒子物質の平均粒子径(d (0.5))は、次の粒子径分布Spanにおけるd (0.5)と同様である。

[0056]

粉流体を構成する粒子物質は、下記式に示される粒子径分布Spanが5未満であることが好ましく、更に好ましくは3未満である。

粒子径分布Span=(d (0.9) - d (0.1) / d (0.5) ここで、d (0.5) は粉流体を構成する粒子物質の50%がこれより大きく、50%がこれより小さいという粒子径を μ mで表した数値、d (0.1) はこれ以下の粉流体を構成する粒子物質の比率が10%である粒子径を μ mで表した数値、d (0.9) はこれ以下の粉流体を構成する粒子物質が90%である粒子径を μ mで表した数値である。粉流体を構成する粒子物質の粒子径分布Spanを5以下とすることにより、サイズが揃い、均一な粉流体移動が可能となる。

[0057]

なお、以上の粉流体を構成する粒子物質の粒子径分布および粒子径は、レーザー回折/ 散乱法などから求めることができる。測定対象となる粉流体にレーザー光を照射すると空 間的に回折/散乱光の光強度分布パターンが生じ、この光強度パターンは粒子径と対応関 係があることから、粒子径および粒子径分布が測定できる。この粒子径および粒子径分布 は、体積基準分布から得られる。具体的には、Mastersizer2000(Malvern Instruments Lt d.)測定機を用いて、窒素気流中に粉流体を投入し、付属の解析ソフト(Mie理論を用いた 体積基準分布を基本としたソフト)にて、測定を行うことができる。

[0058]

粉流体の作製は、必要な樹脂、荷電制御剤、着色剤、その他添加剤を混練り粉砕しても、モノマーから重合しても、既存の粒子を樹脂、荷電制御剤、着色剤、その他添加剤でコーティングしても良い。以下、粉流体を構成する樹脂、荷電制御剤、着色剤、その他添加剤を例示する。

[0059]

樹脂の例としては、ウレタン樹脂、アクリル樹脂、ポリエステル樹脂、ウレタン変性アクリル樹脂、シリコーン樹脂、ナイロン樹脂、エポキシ樹脂、スチレン樹脂、ブチラール樹脂、塩化ビニリデン樹脂、メラミン樹脂、フェノール樹脂、フッ素樹脂などが挙げられ、2種以上混合することもでき、特に、基板との付着力を制御する上から、アクリルウレ

タン樹脂、アクリルウレタンシリコーン樹脂、アクリルウレタンフッ素樹脂、ウレタン樹脂、フッ素樹脂が好適である。

[0060]

荷電制御剤の例としては、正電荷付与の場合には、4級アンモニウム塩系化合物、ニグロシン染料、トリフェニルメタン系化合物、イミダゾール誘導体などが挙げられ、負電荷付与の場合には、含金属アゾ染料、サリチル酸金属錯体、ニトロイミダゾール誘導体などが挙げられる。

[0061]

着色剤の例としては、塩基性、酸性などの染料が挙げられ、ニグロシン、メチレンブルー、キノリンイエロー、ローズベンガルなどが例示される。

[0062]

無機系添加剤の例としては、酸化チタン、亜鉛華、硫化亜鉛、酸化アンチモン、炭酸カルシウム、鉛白、タルク、シリカ、ケイ酸カルシウム、アルミナホワイト、カドミウムイエロー、カドミウムレッド、カドミウムオレンジ、チタンイエロー、紺青、群青、コバルトブルー、コバルトグリーン、コバルトバイオレット、酸化鉄、カーボンブラック、マンガンフェライトブラック、コバルトフェライトブラック、銅粉、アルミニウム粉などが挙げられる。

[0063]

しかしながら、このような材料を工夫無く混練り、コーティングなどを施しても、エアロゾル状態を示す粉流体を作製することはできない。エアロゾル状態を示す粉流体の決まった製法は定かではないが、例示すると次のようになる。

[0064]

まず、粉流体を構成する粒子物質の表面に、平均粒子径が20~100nm、好ましくは20~80nmの無機微粒子を固着させることが適当である。更に、その無機微粒子がシリコーンオイルで処理されていることが適当である。ここで、無機微粒子としては、二酸化珪素(シリカ)、酸化亜鉛、酸化アルミニウム、酸化マグネシウム、酸化セリウム、酸化鉄、酸化銅等が挙げられる。この無機微粒子を固着させる方法が重要であり、例えば、ハイブリダイザー(奈良機械製作所(株)製)やメカノフュージョン(ホソカワミクロン(株)製)などを用いて、ある限定された条件下(例えば処理時間)で、エアロゾル状態を示す粉流体を作製することができる。

[0065]

ここで繰り返し耐久性を更に向上させるためには、粉流体を構成する樹脂の安定性、特に、吸水率と溶剤不溶率を管理することが効果的である。隔壁で仕切られたセル内に封入する粉流体を構成する樹脂の吸水率は、3重量%以下、特に2重量%以下とすることが好ましい。なお、吸水率の測定は、ASTM-D570に準じて行い、測定条件は23℃で24時間とする。粉流体を構成する樹脂の溶剤不溶率に関しては、下記関係式で表される粉流体の溶剤不溶率を50%以上、特に70%以上とすることが好ましい。

溶剤不溶率 $(\%) = (B/A) \times 100$

(但し、Aは樹脂の溶剤浸漬前重量、Bは良溶媒中に樹脂を25℃で24時間浸漬した後の重量を示す)

[0066]

この溶剤不溶率が50%未満では、長期保存時に粉流体を構成する粒子物質表面にブリードが発生し、粉流体との付着力に影響を及ぼし粉流体の移動の妨げとなり、画像表示耐久性に支障をきたす場合がある。なお、溶剤不溶率を測定する際の溶剤(良溶媒)としては、フッ素樹脂ではメチルエチルケトン等、ポリアミド樹脂ではメタノール等、アクリルウレタン樹脂では、メチルエチルケトン、トルエン等、メラミン樹脂ではアセトン、イソプロパノール等、シリコーン樹脂ではトルエン等が好ましい。

[0067]

本発明に画像表示媒体として用いる画像表示媒体は帯電性を有するものである。したがって、帯電電荷を保持するために、その体積固有抵抗が1×10¹⁰Ω・cm以上の絶縁

性のものであることが好ましく、さらには以下に述べる方法で評価した電荷減衰の遅い画 像表示媒体が好ましい。

[0068]

すなわち、画像表示媒体を、別途、プレス、加熱溶融、キャスト等により、厚み 5-100 μ mのフィルム状にする。そして、そのフィルム表面と 1 mmの間隔をもって配置されたコロナ放電器に、8 K V の電圧を印加してコロナ放電を発生させて表面を帯電させ、その表面電位の変化を測定し判定する。この場合、0.3 秒後における表面電位の最大値が300 V より大きく、好ましくは400 V より大きくなるように、画像表示媒体の構成材料を選択、作製することが肝要である。

[0069]

なお、上記表面電位の測定は、例えば図13に示したQEA社製CRT2000を用いることにより行うことができる。この装置の場合は、前述したフィルムを表面に配置したロールのシャフト両端部をチャック21にて保持し、小型のスコロトロン放電器22と表面電位計23とを所定間隔離して併設した計測ユニットを上記フィルムの表面と1mmの間隔を持って対向配置し、上記フィルムを静止した状態のまま、上記計測ユニットをフィルムの一端から他端まで一定速度で移動させることにより、表面電荷を与えつつその表面電位を測定する方法が好適に採用される。なお、測定環境は温度 25 ± 3 ℃、湿度 55 ± 5 RH%とする。

[0070]

また、画像表示媒体の帯電量は当然その測定条件に依存するが、画像表示パネルにおける画像表示媒体の帯電量はほぼ、初期帯電量、隔壁との接触、基板との接触、経過時間に伴う電荷減衰に依存し、特に接触に伴う、画像表示媒体の帯電挙動の飽和値が支配因子となっているということが分かっている。

[0071]

本発明者らは鋭意検討の結果、ブローオフ法において同一のキャリア粒子を用いて、それぞれの帯電量測定を行うことにより、画像表示媒体の適正な帯電特性値の範囲を評価できることを見出し、これを表面電荷密度によって規定することにより、画像表示装置として適当な粒子または粉流体の帯電量を予測できることを見出した。

[0072]

測定方法について詳しくは後に述べるが、ブローオフ法によって、粒子とキャリア粒子とを、十分に接触させ、それぞれその飽和帯電量を測定することにより該画像表示媒体の単位重量あたりの帯電量を測定することができる。そして、該画像表示媒体の平均粒子径と比重を別途求めることにより該画像表示媒体の表面電荷密度を算出することができる。

[0073]

画像表示パネルにおいては、用いる画像表示媒体を構成する粒子物質(以下、併せて粒子という)の粒子径は小さく、重力の影響はほぼ無視できるほど小さいため、粒子の比重は粒子の動きに対して影響しない。しかし、粒子の帯電量においては、同じ粒子径の粒子で単位重量あたりの平均帯電量が同じであっても、粒子の比重が 2 倍異なる場合に保持する帯電量は 2 倍異なることとなる。従って、画像表示装置に用いられる粒子の帯電特性は粒子の比重に無関係な表面電荷密度(単位: μ C / m 2)で評価するのが好ましいことが分かった。

[0074]

そして、2種の粒子あるいは2種の粉流体を画像表示媒体として用いる画像表示パネルでは、粒子間あるいは粉流体間においてこの表面電荷密度の範囲および表面電荷密度の差が適当な範囲にある時、2種類の粒子あるいは2種の粉流体はお互いの接触により十分な帯電量を保持し、電界により移動する機能を保持するのである。

[0075]

ここで、表示用パネル内で互いに近接して存在する2種の粒子あるいは2種の粉流体の 帯電性を十分なものにするために、2種の粒子あるいは2種の粉流体の表面電荷密度はあ る程度の差が必要であるが、大きいほどよいというものではない。粒子移動による画像表 示装置においては粒子の粒子径が大きいときは主に電気影像力が粒子の飛翔電界(電圧)を決定する因子となる傾向が強いため、この粒子を低い電界(電圧)で動かすためには帯電量が低いほうがよいこととなる。また、粒子の粒子径が小さいときは分子間力・液架橋力等の非電気的な力が飛翔電界(電圧)決定因子となることが多いため、この粒子を低い電界(電圧)で動かすためには帯電量が高いほうがよいこととなる。しかし、これは粒子の表面性(材料・形状)にも大きく依存するため一概に粒子径と帯電量で規定することはできない

[0076]

本発明者らは平均粒子径が $0.1\sim50\mu$ mの粒子あるいは平均粒子径が $0.1\sim30\mu$ mの粒子物質から構成される粉流体においては、同一のキャリア粒子を用いてブローオフ法により測定した 2 種の粒子あるいは 2 種の粉流体の表面電荷密度の絶対値が $10\sim150\mu$ C/m² の範囲であり、表面電荷密度の差の絶対値が $20\sim150\mu$ C/m² である場合に画像表示パネルとして好適と成り得ることを見出した。

[0077]

本発明で用いる画像表示パネルにおける基板と基板の間隔は、画像表示媒体が飛翔移動できて、コントラストを維持できる間隔であれば良いが、通常 $10~60~\mu$ m、好ましくは $10~20~\mu$ mに調整される。

対向する基板間の空間における画像表示媒体の体積占有率は、5~70%が好ましく、 さらに好ましくは5~60%である。70%を超える場合には画像表示媒体の移動の支障 をきたし、5%未満の場合にはコントラストが不明瞭となり易い。

[0078]

更に、基板間の画像表示媒体を取り巻く空隙部分の気体の管理が重要であり、表示安定性向上に寄与する。具体的には、空隙部分の気体の湿度について、25℃における相対湿度を60%RH以下、好ましくは50%RH以下、更に好ましくは35%RH以下とすることが重要である。

この空隙部分とは、図1(a)、(b)において、対向する基板1、基板2に挟まれる部分から、電極5、6、粒子群(あるいは粉流体)3の占有部分、隔壁4(存在する場合)の占有部分、装置シール部分を除いた、いわゆる粒子群(あるいは粉流体)が接する気体部分を指すものとする。

空隙部分の気体は、先に述べた湿度領域であれば、その種類は問わないが、乾燥空気、乾燥窒素、乾燥アルゴン、乾燥へリウム、乾燥二酸化炭素、乾燥メタンなどが好適である。この気体は、その湿度が保持されるように装置に封入することが必要であり、例えば、画像表示媒体の充填、基板の組み立てなどを所定湿度環境下にて行い、さらに、外からの湿度侵入を防ぐシール材、シール方法を施すことが肝要である。

【産業上の利用可能性】

[0079]

本発明の画像表示パネルを備えた画像表示装置は、ノートパソコン、PDA、携帯電話、ハンディターミナル等のモバイル機器の表示部、電子ブック、電子新聞等の電子ペーパー、看板、ポスター、黒板等の掲示板、電卓、家電製品、自動車用品等の表示部、ポイントカード、ICカード等のカード表示部、電子広告、電子POP、電子値札、電子楽譜、RF-ID機器の表示部などに好適に用いられる。

【図面の簡単な説明】

[0800]

【図1】(a)、(b)はそれぞれ本発明の画像表示装置で用いる画像表示パネルの一例の構成を示す図である。

【図2】(a)~(e)はそれぞれ本発明の第1発明に係る画像表示装置の製造方法の一例を示す図である。

【図3】 (a)、(b) はそれぞれ本発明の第1発明に係る画像表示パネルの一例を説明するための図である。

【図4】(a)、(b)はそれぞれ従来の画像表示パネルの一例を説明するための図

である。

- 【図5】(a)~(d)はそれぞれ本発明の第2発明に係る画像表示装置の製造方法の一例を示す図である。
- 【図6】(a)、(b)はそれぞれ本発明の第2発明に係る画像表示パネルの一例を説明するための図である。
 - 【図7】本発明の第2発明で説明のために用いる実施例を示す図である。
 - 【図8】本発明の第2発明で説明のために用いる比較例を示す図である。
- 【図9】 (a) ~ (c) はそれぞれ従来の画像表示装置における背面基板の一例を説明するための図である。
- 【図10】(a)~(c)はそれぞれ本発明の第3発明に係る画像表示装置における背面基板の一例を説明するための図である。
- 【図11】(a)~(c)はそれぞれ本発明の第3発明に係る画像表示装置の製造方法の一例を説明するための図である。
- 【図12】本発明の画像表示装置で用いる画像表示パネルにおける隔壁の形状の一例を示す図である。
- 【図13】体積固有抵抗の測定方法を説明するための図である。
- 【図14】 (a) \sim (d) はそれぞれ従来の画像表示装置における画像表示パネルの製造方法の一例を示す図である。
- 【図15】(a)~(c)はそれぞれ従来の画像表示装置の製造方法における問題を説明するための図である。

【符号の説明】

[0081]

- 1 背面基板
- 2 前面基板
- 3 粒子
- 3 W 白色粒子(白色粉流体)
- 3 B 黑色粒子(黑色粉流体)
- 4 隔壁
- 5、5-1、5-2 背面電極
- 5-3 スルーホール
- 6 前面電極
- 11 セル
- 12 接着剤
- 13 画像表示部
- 14 導電性のスペーサ粒子
- 15 外部回路
- 16 スペーサ
- 21 チャック
- 22 スコロトロン放電器
- 23 表面電位計

【書類名】図面【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

7/

【図8】

出証特2005-3006915

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【図15】

【書類名】要約書

【要約】

【課題】電極の確実な接続を行うことができ、高い信頼性を達成することのできる画像表示装置の製造方法、および、加工を容易にし、非表示面を狭くすることができる画像表示装置の製造方法を提供する。

【解決手段】少なくとも一方が透明である2枚の基板間1、2に画像表示媒体を封入し、画像表示媒体に電界を与え、画像表示媒体を移動させて画像を表示する画像表示パネルを備える画像表示装置の製造方法において、一方の基板1に設けた電極5と他方の基板2に設けた電極6とを、画像表示パネルの画像表示部の外側の部分で電気的に接続するにあたり、基板に設けた電極間の距離よりも小さい直径を有する導電性のスペーサ粒子14を含む接着剤12を基板間の所定の部分に設け、接着剤を設けた部分の基板を圧着することで、一方の基板に設けた電極と他方の基板に設けた電極とを接続する。

【選択図】図3

ページ: 1/E

認定·付加情報

特許出願の番号

特願2004-124304

受付番号

5 0 4 0 0 6 7 2 0 8 8

書類名

特許願

担当官

第四担当上席 0093

作成日

平成16年 4月23日

<認定情報・付加情報>

【特許出願人】

【識別番号】

000005278

【住所又は居所】

東京都中央区京橋1丁目10番1号

【氏名又は名称】

株式会社ブリヂストン

【代理人】

申請人

【識別番号】

100072051

【住所又は居所】

東京都千代田区霞が関3-2-4 霞山ビル7階

【氏名又は名称】

杉村 興作

特願2004-124304

出願人履歴情報

識別番号

[000005278]

1. 変更年月日 [変更理由]

氏 名

1990年 8月27日 新規登録

更理由」 新規住 所 東京

東京都中央区京橋1丁目10番1号

株式会社ブリヂストン