

CS 4740: Cloud Computing
Fall 2024
Lecture 4

Yue Cheng

Some material taken/derived from:

- Princeton COS-418 materials created by Michael Freedman and Wyatt Lloyd.
- MIT 6.824 by Robert Morris, Frans Kaashoek, and Nickolai Zeldovich.
- @ 2024 released for use under a CC BY-SA license.

Recap: Parallelism vs. concurrency

"Concurrency is about dealing with lots of things at once."
Parallelism is about doing lots of things at once."

Recap: Shared memory

 Shared memory: multiple processes to share data via memory

 Applications must locate and and map shared memory regions to exchange data

Recap: Shared memory vs. Message passing

- Shared memory: multiple processes to share data via memory
- Applications must locate and and map shared memory regions to exchange data

- Message passing: exchange data explicitly via message passing
- Application developers define protocol and exchanging format, number of participants, and each exchange

Recap: Shared memory vs. Message passing

- Easy to program; just like a single multithreaded machines
- Hard to write highperformance apps:
 - Cannot control which data is local or remote (remote mem. access much slower)
- Hard to mask failures

Recap: Shared memory vs. Message passing

- Easy to program; just like a single multithreaded machines
- Message passing: can write very highperformance apps

- Hard to write highperformance apps:
 - Cannot control which data is local or remote (remote mem. access much slower)
- Hard to mask failures

- Hard to write apps:
 - Need to manually decompose the app, and move data
- Need to manually handle failures

Shared memory: Pthread

 A POSIX standard (IEEE 1003.1c) API for thread creation and synchronization

 API specifies behavior of the thread library, implementation is up to development of the library

• Common in UNIX (e.g., Linux) OSes

Shared memory: Pthread

```
void *myThreadFun(void *vargp) {
    sleep(1);
    printf("Hello world\n");
    return NULL;
}

int main() {
    pthread_t thread_id_1, thread_id_2;
    pthread_create(&thread_id_1, NULL, myThreadFun, NULL);
    pthread_create(&thread_id_2, NULL, myThreadFun, NULL);
    pthread_join(thread_id_1, NULL);
    pthread_join(thread_id_2, NULL);
    exit(0);
}
```

Message passing: MPI

- MPI Message Passing Interface
 - Library standard defined by a committee of vendors, implementers, and parallel programmers
 - Used to create parallel programs based on message passing
- Portable: one standard, many implementations
 - Available on almost all parallel machines in C and Fortran
 - De facto standard platform for the HPC community

Message passing: MPI

```
int main(int argc, char **argv) {
      MPI Init(NULL, NULL);
      // Get the number of processes
      int world size;
      MPI Comm size(MPI COMM WORLD, &world size);
      // Get the rank of the process
      int world_rank;
      MPI Comm rank(MPI COMM WORLD, *world rank);
      // Print off a hello world message
      printf("Hello world from rank %d out of %d processors\n",
            world rank, world size);
      // Finalize the MPI environment
      MPI Finalize();
```

Message passing: MPI

mpirun -n 4 -f host_file ./mpi_hello_world

```
int main(int argc, char **argv) {
      MPI Init(NULL, NULL);
      // Get the number of processes
      int world size;
      MPI Comm size(MPI COMM WORLD, &world size);
      // Get the rank of the process
      int world_rank;
      MPI Comm rank(MPI COMM WORLD, *world rank);
      // Print off a hello world message
      printf("Hello world from rank %d out of %d processors\n",
            world rank, world size);
      // Finalize the MPI environment
      MPI Finalize();
```

MapReduce

The big picture (motivation)

 Datasets are too big to process using a single computer

The big picture (motivation)

 Datasets are too big to process using a single computer

 Good parallel processing engines are rare (back then in the late 90s)

The big picture (motivation)

- Datasets are too big to process using a single computer
- Good parallel processing engines are rare (back then in the late 90s)
- Want a parallel processing framework that:
 - is **general** (works for many problems)
 - is easy to use (no locks, no need to explicitly handle communication, no race conditions)
 - can automatically parallelize tasks
 - can automatically handle machine failures

Context (Google circa 2000)

- Starting to deal with massive datasets
- But also addicted to cheap, commodity hardware
 - Young company, expensive hardware not practical
- Only a few expert programmers can write distributed programs to process them
 - Scale so large jobs can complete despite failures

Context (Google circa 2000)

- Starting to deal with massive datasets
- But also addicted to cheap, commodity hardware
 - Young company, expensive hardware not practical
- Only a few expert programmers can write distributed programs to process them
 - Scale so large jobs can complete despite failures
- Key question: how can every Google engineer be imbued with the ability to write parallel, scalable, distributed, fault-tolerant code?
- Solution: abstract out the redundant parts
- Restriction: relies on job semantics, so restricts which problems it works for

Application: Word Count

SELECT count(word), word FROM data GROUP BY word

Deal with multiple files?

1. Compute word counts from individual files

Deal with multiple files?

1. Compute word counts from individual files

2. Then merge intermediate output

Deal with multiple files?

1. Compute word counts from individual files

2. Then merge intermediate output

3. Compute word count on merged outputs

What if the data is too big to fit in one computer?

- 1. In parallel, send to worker:
 - Compute word counts from individual files
 - Collect results, wait until all finished

What if the data is too big to fit in one computer?

- 1. In parallel, send to worker:
 - Compute word counts from individual files
 - Collect results, wait until all finished
- 2. Then merge intermediate output

What if the data is too big to fit in one computer?

- 1. In parallel, send to worker:
 - Compute word counts from individual files
 - Collect results, wait until all finished
- 2. Then merge intermediate output

3. Compute word count on merged intermediates

MapReduce: Programming interface

- map(k1, v1) \rightarrow list(k2, v2)
 - Apply function to (k1, v1) pair and produce set of intermediate pairs (k2, v2)

- reduce(k2, list(v2)) \rightarrow list(k3, v3)
 - Apply aggregation (reduce) function to values
 - Output results

MapReduce data flows

input.csv (in HDFS) color, shape, size red, circle, 3 red, square, 5 blue, oval, 1 green, square, 3

```
input.csv (in GFS)
color, shape, size
red, circle, 3
red, square, 5
blue, oval, 1
green, square, 3
def map(key, value):
    emit(value.color, value)

Map will be called 4 times (once for each line of the input file).
```



```
input.csv (in GFS)
                               value1
                          key1
                               green, square, 3
color, shape,
                  size
                                 def map(key, value):
red, circle,
                                    emit(value.color, value)
red, square,
                  5
blue, oval,
                  1
green, square,
                                 key2
                                         value2
                                 green
                                         green, square, 3
key
       value
               circle, 3
red
       red,
red
       red,
               square,
       blue,
blue
               oval,
green
       green,
               square,
```

How to count the number of occurrences for each unique color?

Intermediate data is **grouped** and **sorted** by key.

square,

circle,

square,

How to count the number of occurrences for each unique color?

```
input.csv (in GFS)
color, shape,
                 size
                                def map(key, value):
red,
       circle,
                                  emit(value.color, value)
red, square,
                 5
                 1
blue, oval,
green, square,
                                def reduce(key, values):
                                  count = 0
key
       value
              oval,
blue
       blue,
```

Intermediate data is grouped and **sorted** by key.

green,

red,

red,

green

red

red

for row in values: count = count + 1emit(key, count)

Reduce will be called 3 times (once for each group). The call could happen in one reduce task (or be split over many).

MapReduce visualization

How to count the number of occurrences for each unique color?

```
input.csv (in GFS)
color, shape,
                  size
                                 def map(key, value):
red, circle,
                                    emit(value.color, value)
red, square,
                  5
                  1
blue, oval,
green, square,
                                 def reduce(key, values):
                                    count = 0
key2
       value2
                                    for row in values:
               oval,
blue
       blue,
                                      count = count + 1
       green, square,
green
                                    emit(key, count)
       red,
               circle, 3
red
red
       red.
               square,
                                        key3
                                              value3
Intermediate data is grouped
                                        blue
    and sorted by key.
                                        green
                                        red
```

Multiple reducers (for big intermediate data)

Cluster of machines

Each reduce task produces one output file.

A reduce task might take multiple keys.

All intermediate rows with the same key go to the same reducer.

Multiple reducers (for big intermediate data)

Cluster of machines

Each reduce task produces one output file.

A reduce task might take multiple keys.

All intermediate rows with the same key go to the same reducer.

Reducer collects all intermediate files of its assigned keys (groups).

Multiple reducers (for big intermediate data)

Reducer dumps final results to HDFS.

same reducer.

output file 2

MapReduce: Word Count

```
map(key, value):
   for each word w in value:
       EmitIntermediate(w, "1");
reduce(key, values):
   int result = 0;
   for each v in values:
       results += ParseInt(v);
   Emit(AsString(result));
```

Word Count execution

Word Count execution

Y. Cheng UVA CS4740 Fall '24

Word Count execution

Y. Cheng UVA CS4740 Fall '24

44

Stragglers

Stragglers

 Tail execution time means some executors (always) finish late (tail latency)

Q: How can MapReduce work around this?

 Hint: its approach to fault-tolerance provides the right tool

Resilience against stragglers?

- If a task is going slowly (i.e., straggler):
 - Launch second copy of task (backup task) on another node
 - Take the output of whichever finishes first

Resilience against stragglers

Cluster of machines (still hasn't finished) Mapper DataNode > 2X avg running time Input file Mapper Job tracker DataNode Input file Mapper DataNode Input file

Resilience against stragglers

Would backup tasks cause correctness issue in MapReduce jobs?

Discussion: MapReduce eval (paper)

