

Elektronika dan Instrumentasi:

Elektronika Digital 2 –

Gerbang Logika, Aljabar Boolean

Yusron Sugiarto

Materi Kuliah

Minggu ke-	Materi	Doşen Pengampu	Keterangan
1	Pengenalan	YSO	Elektronika Analog
2	Komponen Pasif dan Aktif	YSO	Elektronika Analog
3	Adaptor, Transistor	YSO	Elektronika Analog
4	Ор Атр	YSO	Elektronika Analog
5	Elektronika Digital (Pencacah Biner,	DFA	Elektronika Digital
	Sistem Bilangan), Gerbang Logika dan		
	Penggunaannya		
6	Kode, Dekode, Enkode, 7 Segment, Flip	DFA	Elektronika Digital
	Flop		
7	Pencacah, ADC, DAC	DFA	Elektronika Digital
UT\$			Elektronika Digital
8	Pengenalan Instrumentasi, Review	DFA	Instrumentasi
9	Sistem Pengukuran	DFA	Instrumentasi
10	Pengukuran Kecepatan dan	YHD	Instrumentasi
	Percepatan		
11	Pengukuran Tekanan	YHD	Instrumentasi
12	Pengukuran Temperatur	YHD	Instrumentasi
13	Pengukuran Aliran	YHD	Instrumentasi
14	Aneka Pengukuran Aplikatif	YHD	Instrumentasi

Rangkaian Logika

Ada beberapa operasi-operasi dasar pada suatu rangkaian logika dan untuk menunjukkan suatu perilaku dari operasi-operasi tersebut biasanya ditunjukkan dengan menggunakan suatu tabel kebenaran. Tabel kebenaran berisi statemen-statemen yang hanya berisi:

- Benar yang dilambangkan dengan huruf "T" kependekan dari "True" atau bisa juga dilambangkan dengan angka 1. Atau
- Salah yang dilambangkan dengan huruf "F" kependekan dari "False" atau bisa juga dilambangkan dengan angka 0.

Apa itu Gerbang Logika

- Gerbang logika adalah piranti dua keadaan, yaitu mempunyai keluaran dua keadaan: keluaran dengan nol volt yang menyatakan logika 0 (atau rendah) dan keluaran dengan tegangan tetap yang menyatakan logika 1 (atau tinggi).
- Gerbang logika dapat mempunyai beberapa masukan yang masing-masing mempunyai salah satu dari dua keadaan logika, yaitu 0 atau 1.
- Gerbang-gerbang logika yang khususnya dipakai di dalam sistem digital, dibuat dalam bentuk IC (Integrated Circuit) yang terdiri atas transistor-transistor, diode dan komponen-komponen lainnya. Gerbang-gerbang logika ini mempunyai bentuk-bentuk tertentu yang dapat melakukan operasi-operasi INVERS, AND, OR serta NAND, NOR, dan XOR (Exclusive OR). NAND merupakan gabungan AND dan INVERS sedangkan NOR merupakan gabungan OR dan INVERS.

Gerbang Dasar

- BUFFER
- NOT
- OR
- AND

Gerbang Dasar: BUFFER

 Buffer adalah gerbang logika yang digunakan untuk menyangga kondisi logika. Kondisi logika dari keluaran gerbang ini akan sama dengan kondisi logika dari masukkanya. Simbol gerbang logika ini ditunjukkan pada gambar dibawah ini.

Masukkan	Keluaran
A	A
0	0
1	1

Gerbang Dasar: NOT

Gerbang NOT ini disebut inverter (pembalik).
Rangkaian ini mempunyai satu masukan dan satu
keluaran. Gerbang NOT bekerja membalik sinyal
masukan, jika masukannya rendah, maka keluarannya
tinggi, begitupun sebaliknya.

Gerbang Dasar: NOT

Simbol dan Tabel Kebenaran

Masukan A	Keluaran A*
1	0
0	1

Gerbang Dasar: OR

 Gerbang OR diterjemahkan sebagai gerbang "ATAU" artinya sebuah gerbang logika yang keluarannya berlogika "1" jika salah satu atau seluruh inputnya berlogika "1".

Gerbang Dasar: OR

Simbol dan Tabel Kebenaran

Ir	Output	
Α	В	Y / L
0 (off)	0 (off)	0 (padam)
0 (off)	1 (on)	1 (nyala)
1 (on)	0 (off)	1 (nyala)
1 (on)	1 (on)	1 (nyala)

Gerbang Dasar: OR

Rangkaian Dioda Equivalent dan Timing Diagram

Berdasarkan gambar diatas, jika A dan B terhubung dengan Ground (Logika 0) maka output (Y) memiliki nilai tegangan sebesar 0 volt (Logika 0) karena pada A dan B tidak terdapat tegangan.

Sekarang jika A dan B tidak terhubung ke ground (A = 1, B = 1) maka seolah-olah disini tidak ada diode, dengan demikian pada output (Y) memiliki nilai tegangan VCC (logika 1)

Gerbang OR dengan banyak Input

Tabel Kebenaran OR - 3 input

INPUT			Output
Α	В	С	Х
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Contoh:

- Bagaimana cara mengaplikasikan gerbang OR 4 masukan dengan menggunakan gerbang OR 2 masukan?
- Penyelesaian :

Gerbang Dasar: AND

 Gerbang AND merupakan jenis gerbang digital keluaran 1 jika seluruh inputnya 1. Gerbang AND diterjemahkan sebagai gerbang "DAN" artinya sebuah gerbang logika yang keluarannya berlogika "1" jika input A dan input B dan seterusnya berlogika "1".

Gerbang Dasar: AND

Simbol dan Tabel Kebenaran

In	Output	
Α	A B	
0 (off)	0 (off)	0 (padam)
0 (off)	1 (on)	0 (padam)
1 (on)	0 (off)	0 (padam)
1 (on)	1 (on)	1 (nyala)

Gerbang Dasar: AND

Rangkaian Dioda Equivalent dan Timing Diagram

Berdasarkan gambar diatas, jika A dan atau B terhubung dengan Ground (Logika 0) maka arus listrik akan mengalir dari sumber arus (VCC) melalui resistor (R) menuju ke diode. Karena diode mengalirkan arus listrik, maka output (Y) akan terhubung ke ground sehingga output (Y) memiliki nilai tegangan sebesar 0 volt (Logika 0). Dan sebaliknya jika

A dan B tidak terhubung ke ground (A = 1, B = 1) maka seolah-olah disini tidak ada diode, dengan demikian pada output (Y) memiliki nilai tegangan VCC (logika 1)

Gerbang AND dengan banyak Input

	INPUT			
Α	В	С	D	Х
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Tabel Kebenaran AND - 4 input

Contoh:

- Susunlah gerbang AND 4 masukan dengan menggunakan gerbang AND 2 masukan.
- Penyelesaian :

Gerbang Kombinasional

- NOR
- NAND
- X-OR
- X-NOR

Gerbang Kombinasional: NOR

 Gerbang NOR adalah gerbang kombinasi dari gerbang NOT dan gerbang OR. Dalam hal ini ada empat kondisi yang dapat dianalisis dan disajikan pada tabel kebenaran.

Inpu	Output	
Α	В	F
0	0	1
0	1	0
1	0	0
1	1	0

Gerbang Kombinasional: NAND

 Gerbang NAND adalah gerbang kombinasi dari gerbang NOT dan gerbang AND. Dalam hal ini ada empat kondisi yang dapat dianalisis dan disajikan pada tabel kebenaran.

Inpu	Output	
A B		Υ
0	0	1
0	1	1
1	0	1
1	1	0

Gerbang NAND dengan Banyak Input

<u>Tabel Kebenaran NAND - 3 input</u>

	INPUT		
Α	В	С	Output X
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Gerbang Kombinasional: X-OR

 Gerbang X-OR (dari kata exclusive-or) akan memberikan keluaran 1 jika kedua masukannya mempunyai keadaan yang berbeda.

Inp	Output		
Α	A B		
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Gerbang Kombinasional: X-NOR

 X-NOR dibentuk dari kombinasi gerbang OR dan gerbang NOT yang merupakan inversinya atau lawan X-OR, sehingga dapat juga dibentuk dari gerbang X-OR dengan gerbang NOT.

Inp	Output	
Α	A B	
0	0	1
0	1	0
1	0	0
1	1	1

Contoh Kombinasi Gerbang Logika

Gerbang asal/asli	Pembalik tambahkan pada keluaran	Fungsi logika baru
	+	= NAND
	+ —>	= AND
1	+	= NOR
□	+	□ OR

					-	-
Simbol $(+)$	berarti	penambahan	pada	pcta.	10	П

Tambahkan pemba- lik pada masukan	mbahkan pemba- Gerbang k pada masukan asal		Fungsi logika baru	
→>+		=	NOR	
→ >		=	NAND	
→ >>		=	OR	
→ >	⊅ ~	=	AND	

Simbol (+) berarti penambahan pada peta ini.

Contoh Kombinasi Gerbang Logika

Tambahkan pembalik pada masukan	Gerbang asal	Tambahkan pembalik pada keluaran	Fungsi logika baru
→>>		+=	OR
→ → +		+	AND
→ → +		+ =	NOR
→ → +		+	NAND

Simbol (+) berarti penambahan pada peta ini

Contoh IC Gerbang Logika

No	NAMA	TIPE IC	Simbol Logika	Persamaan	Tabel Kebenaran
1	AND	7408	A B	X=A.B	INPUT Output A B X
2	OR	7432	A X	X=A+B	INPUT Output A B X O 0 O O O O O O O
3	NOT	7404	<u>A</u> X	X= A	INPUT Output A X 0 1 1 0
4	NAND	7400	A X	X=A.B	INPUT Output A B X 0 0 1 0 1 1 1 0 1 1 1 0

Contoh IC Gerbang Logika

No	NAMA	TIPE IC	Simbol Logika	Persamaan	Tabel Kebenaran
5	NOR	7402	A X X	X= A+B	INPUT Output A B X 0 0 1 0 1 0 1 0 0 1 1 0
6	Ex-OR	7486	A X	Х=А⊕В	INPUT OUTPUT A B X 0 0 0 0 0 1 1 1 0 1 1 1 0
7	Ex-NOR		A X	X=A⊕B	INPUT OUTPUT A B X

Contoh IC Gerbang Logika

Aljabar Boolean

- Aljabar Boolean adalah rumusan matematika untuk menjelaskan hubungan logika antara fungsi pensaklaran digital. Aljabar boolean memiliki dasar dua macam nilai logika. Hanya bilangan biner yang terdiri dari angka o dan 1 maupun pernyataan rendah dan tinggi.
- Keluaran dari satu atau kombinasi beberapa buah gerbang dapat dinyatakan dalam suatu ungkapan logika yang disebut ungkapan Boole. Teknik ini memanfaatkan aljabar Boole dengan notasi-notasi khusus dan aturan-aturan yang berlaku untuk elemen-elemen logika termasuk gerbang logika
- Aljabar boolean mendefinisikan aturan-aturan untuk memanipulasi ekspresi simbol logika biner. Ekspresi logika simbol biner yang terdiri dari variabel biner dan operator-operator seperti AND, OR dan NOT (contoh: A+B+C). Nilai-nilai dari ekspresi boolean dapat ditabulasikan dalam tabel kebenaran (Truth Table)

Teori Dasar Aljabar Boolean

- AND: Q = AB \longrightarrow AB
- $\bullet \quad \text{OR: } Q = A + B$
- NAND: $Q = \overline{AB}$
- NOR: $Q = \overline{A + B}$

- INV: $Q = \overline{A}$
- BUF: Q = A

*	
Α	1
в —	\rightarrow Q

Α	В	Q
0	0	0
1	0	0
0	1	0
1	1	1

Α	В	Q
0	0	0
1	0	1
0	1	1
1	1	1

Α	В	Q
0	0	0
1	0	1
0	1	1
1	1	0

Teori Dasar Aljabar Boolean

Boolean Postulates in 0 and 1

Boolean Theorems in One Variable

OR	AND	NOT	OR	AND	NOT
0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 1	$0 \cdot 0 = 0$ $0 \cdot 1 = 0$ $1 \cdot 0 = 0$ $1 \cdot 1 = 1$	$\frac{\overline{0}}{1} = 1$	A + 0 = A A + 1 = 1 A + A = A $A + \overline{A} = 1$	$A \cdot 0 = 0$ $A \cdot 1 = A$ $A \cdot A = A$ $A \cdot \overline{A} = 0$	Ā = A

Boolean Theorems in More Than One Variable

Commutation rules:	Association rules:	DeMorgan's theorems:
A + B = B + A	A + (B + C) = (A + B) + C	$\overline{A + B} = \overline{A} \cdot \overline{B}$
$A \cdot B = B \cdot A$	$A \cdot (B \cdot C) = (A \cdot B) \cdot C$	$\overline{A \cdot B} = \overline{A} + \overline{B}$
Absorption rules: $A + (A \cdot B) = A$ $A \cdot (A + B) = A$	Distribution rules: $A \cdot (B + C) = (A \cdot B) + (A \cdot C)$ $A + (B \cdot C) = (A + B) \cdot (A + C)$	

Teori Dasar Aljabar Boolean

Elementer	1. x + 0 = x	1d. x . 1 = x
	2. x + x' = 1	2d. x. x' = 0
	3. x + x = x	3d. x . x = x
	4. x + 1 = 1	4d. x. 0 = 0
	5, (x')' = x	
Commutative	6. x + y = y + x	$6d. x \cdot y = y \cdot x$
Associative	7. $x+(y+z)=(x+y)+z$	7d. $x(yz)=(xy)z$
Distributive	8. $x(y+z)=xy+xz$	8d. $x+(yz)=(x+y)(x+z)$
Teori De Morgan	9. (x + y)' = x'y'	9d. $(xy)' = x' + y'$
Absorption	10. x + xy = x	$10d. \ x(x+y) = x$

fppt.com

Teori De Morgan

Secara umum teori De Morgan dapat ditulis sebagai:

$$F'(X1,X2,...,Xn,0,1,+,\circ) = F(X1',X2',...,Xn',1,0,\circ,+)$$

Dualitas suatu pernyataan logika didapatkan dengan mengganti 1 dengan 0, 0 dengan 1, + dengan °, ° dengan +, dengan semua variabel tetap

$$F(X1,X2,...,Xn,0,1,+,\circ) \Leftrightarrow F(X1,X2,...,Xn,1,0,\circ,+)$$

Bukti teori De Morgan: (x + y)' = x'y'

Dengan tabel kebenaran

X	y	x + y	(x+y)'	x,	y '	x'y'
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

Teori De Morgan

$$\overline{A} + \overline{B} = \overline{A}\overline{B}$$
 (or, $A + B = \overline{A}\overline{B}$)
 $\overline{AB} = \overline{A} + \overline{B}$ (or, $AB = \overline{A} + \overline{B}$)

TABEL KEBENARAN (TRUTH TABLE)

A	В	С	A'B	A'BC'	A+B	(A+B)C	A'BC'+(A+B)C
0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	1	0	1	1	1	0	1
0	1	1	1	0	1	1	1
1	0	0	0	0	1	0	0
1	0	1	0	0	1	1	1
1	1	0	0	0	1	0	0
1	1	1	0	0	1	1	1

Aplikasi soal Aljabar Boole

Dari Postulat dan Teorema Aljabar Boolean diatas tujuan utamanya adalah untuk penyederhanaan :

- Ekspresi Logika
- Persamaan Logika
- Persamaan Boolean (Fungsi Boolean)
 yang inti-intinya adalah untuk mendapatkan
 Rangkaian Logika(Logic Diagram) yang paling sederhana.

Contoh 1

Sederhanakan $A \cdot (A \cdot B + C)$

Penyelesaian

$$A.(A.B+C) = A.A.B+A.C$$
 (T3a)

$$= A . B + A . C$$
 (T4b)

$$= A . (B + C)$$
 (T3a)

Contoh 2

Sederhanakan
$$A' \cdot B + A \cdot B + A' \cdot B'$$

$$A \cdot B + A' \cdot B' = (A' + A) \cdot B + A' \cdot B'$$
 (T3a)

$$= 1.B + A'.B'$$
 (T8a)

$$= B + A' . B'$$
 (T7b)

$$= B + A' \tag{T9a}$$

rhanakan A + A . B' + A' . B

Penyelesaian

$$A + A \cdot B' + A' \cdot B = (A + A \cdot B') + A' \cdot B$$

$$= A + A' \cdot B$$

(T6a)

$$= A + B$$

(T9a)

Contoh penyederhanaan

SOAL LATIHAN

Sederhanakan fungsi berikut:

- 1. F1(A,B,C) = A'B'C' + ABC' + AB'C' + A'B'C + AB'C
- 2. F2(A,B,C,D) = A'B'C'D + A'B'CD + A'BCD + ABCD + ABCD' + AB'C'D + AB'CD + AB'CD'
- 3. G(A,B,C) = [A'B'C' + ABC' + AB'C' + A'B'C + AB'C]'

Bentuk kanonis Sum Of Product (SOP) & Product Of Sum (POS)

Α	В	С	F1
0	0	0 0	
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Dalam bentuk SOP:

F1=A'BC+AB'C'+AB'C+ABC'+ABC
=
$$\sum$$
(m3,m4,m5,m6,m7)
= \sum (3,4,5,6,7)

Dalam bentuk POS:

F1=(A+B+C)(A+B+C')(A+B'+C)
=
$$\Pi(M0,M1,M2)$$

= $\Pi(0,1,2)$

Tuliskan bentuk SOP & POS

Α	В	С	Р	
0	0	0	1	
0	0	1	1	
0	1	0	0	
0	1	1	0	
1	0	0	1	
1	0	1	1	
1	1	0	0	
1	1	1	0	

Bentuk SOP:

$$P = A'B'C' + A'B'C + AB'C' + AB'C$$

= $\sum (m0, m1, m4, m5)$
= $\sum (0, 1, 4, 5)$

Bentuk POS:

$$P = (A+B'+C)(A+B'+C')(A'+B'+C)(A'+B'+C')$$

= $\Pi(M2,M3,M6,M7)$
= $\Pi(2,3,6,7)$

Pemetaan antar SOP & POS

1. Minterm to Maxterm conversion: rewrite minterm shorthand using maxterm shorthand replace minterm indices with the indices not already used

E.g.,
$$F(A,B,C) = \Sigma m(3,4,5,6,7) = \Pi M(0,1,2)$$

2. Maxterm to Minterm conversion: rewrite maxterm shorthand using minterm shorthand replace maxterm indices with the indices not already used

E.g.,
$$F(A,B,C) = \Pi M(0,1,2) = \Sigma m(3,4,5,6,7)$$

Minterm expansion of F to Minterm expansion of F': in minterm shorthand form, list the indices not already used in F

E.g.,
$$F(A,B,C) = \Sigma m(3,4,5,6,7)$$
 \longrightarrow $F'(A,B,C) = \Sigma m(0,1,2)$
= $\Pi M(0,1,2)$ \longrightarrow $= \Pi M(3,4,5,6,7)$

 Minterm expansion of F to Maxterm expansion of F': rewrite in Maxterm form, using the same indices as F

E.g.,
$$F(A,B,C) = \Sigma m(3,4,5,6,7)$$
 \longrightarrow $F'(A,B,C) = \Pi M(3,4,5,6,7)$
= $\Pi M(0,1,2)$ \longrightarrow $\Sigma m(0,1,2)$

Standard SOP & POS

Sum of Product (SOP)

Product of Sum (POS)

Bentuk Nonstandar

Bentuk Nonstandar (tidak dalam SOP maupun POS)

Fig. 2-4 Three- and Two-Level implementation

Implementasi

Implementasi tiga level vs. Implementasi dua level

Implementasi dua level lebih disukai karena alasan delay

Penyederhanaan dengan menggunakan Peta-K (Karnaugh Map)

Peta-K dengan 2 variabel

x \y	0	1
0	m 0	m1
1	m2	m3

Peta-K dengan 3 & 4 variabel

Peta-K dengan 3 variabel

$$F1 = \sum (3,4,5,6,7) = x + yz$$

Peta-K dengan 4 variabel

a-re dengan

Peta-K dengan 5 variabel

	_			D)			DE	
F(A,B,C,D,E)=Σ		4	5	7	6	2	3	1	0	AB `
3,15,17,21,25,2		12	13	15	14	10	11	9	8	
=BE+AD'E		20	29	31	30	26	27	25	24	Α
		20	21	23	22	18	19	17	16	, ,
D D			=	E				E		
1 1	1	' - -			С	1		l	1	
1	1									

Untuk peta-K dengan 6 variabel, baca buku teks

Soal Latihan I:

Sederhanakan ekspresi logika dibawah dengan Aljabar Boolean :

1.
$$AB' + BC + C'A$$

2.
$$A'(BC + AB + BA')$$

3.
$$ABC + AB + A$$

4.
$$(A' + AB) (A'B)$$

5.
$$BC + AD + ABCD + ADC + A$$

Soal Latihan II:

BUATLAH TABEL KEBENARAN DARI PERSAMAAN LOGIKA DIBAWAH:

(a)
$$X \cdot Y + X' \cdot Y + X' \cdot Y' = X' + Y$$

(b)
$$A \cdot B \cdot C + A \cdot C + B \cdot C = A + B + C$$

(c)
$$(X' \cdot Y + Y' \cdot X) + X \cdot Y = (X \cdot Y')$$

(d)
$$A \cdot B \cdot D + A' \cdot B' \cdot D + A \cdot B' \cdot D' = A \cdot (B' \cdot D' + B \cdot D)$$