S9-Memoria-del-Sistema

Lenin G. Falconí, Richard Dawkins, Jean LeCunn

Indicaciones

Indicaciones

Diseño de las Diapositivas

Sobre este Documento

Memoria Cache (E2, 11, 162)

Principios Básicos de las Memorias Caché (E2,11,163)(E2,7,133)

Principios Básicos de las Memorias Caché

(E2,11,163)(E2,7,133)

Principios Básicos de las Memorias Caché

(E2,11,163)(E2,7,133)

Función de Correspondencia (E2,11,170)(E2,7,137)

Algoritmo de Sustitución (E2,7,148)

Política de escritura

Tamaño de Línea

Número de Cachés (E2, 7, 150)

Referencias

Bibliografía

presentaciones .ORG desarrolladas por el profesor así como al archivo tutorialBeamer.org en el repositorio de GitHub de la clase. Recuerde que los archivos .ORG son archivos de texto así que los puede copiar y sustituir por su texto propio. Este documento tiene la propuesta de temas a tratar y

Para diseñar sus diapositivas puede consultar cualquiera de las

► Se ha de utilizar como base la bibliografía recomendada, pero puede consultar bibliografía adicional.

¿Para que sirve?

desarrollar por los estudiantes.

El objetivo principal de la memoria caché es mejorar la velocidad de acceso a los datos almacenados, combinando el acceso rápido a datos de una memoria más cara y de alta velocidad (memoria caché) con el almacenamiento más lento pero de mayor capacidad

de la memoria principal. **Funcionamiento**

La CPU transfiere palabras o bloques entre la caché y la memoria principal. La caché actúa como intermediaria rápida

- entre la CPU y la memoria principal, almacenando temporalmente datos que la CPU necesita frecuentemente.
- En el modelo simple de caché (como muestra la Figura 5.1a), la CPU realiza transferencias rápidas a la caché y transferencias más lentas a la memoria principal.

Niveles de Caché: Se organizan en varios niveles (L1, L2, L3). A medida que se avanza en los niveles, la velocidad disminuye, pero la capacidad aumenta.

- ► Caché de Nivel 1 (L1): La más rápida y de menor capacidad.
- Caché de Nivel 2 (L2): Un poco más lenta, pero con mayor capacidad.

Caché de Nivel 3 (L3): Menos rápida que L1 y L2, pero aún más rápida que la memoria principal.

1. Elementos de Diseño de la memoria Caché

2. Introducción a la Caché

► "La memoria caché mejora la velocidad de acceso al reducir la distancia entre el procesador y la memoria principal."

Los fallos de caché generan tráfico en el bus del sistema."

Figura 4.6. Organización típica de caché.

3. Parámetros de Diseño de la Caché

- "La función de correspondencia, el tamaño de línea y el algoritmo de sustitución son clave para el diseño de una caché eficiente."
- "La jerarquía de cachés puede mejorar el rendimiento en aplicaciones bien optimizadas."

 Table 5.1
 Elements of Cache Design

4. Tamaño Caché

- .^{El} tamaño de la caché impacta directamente en su velocidad y costo."
- "No existe un tamaño 'óptimo' único, ya que depende de la naturaleza de las tareas."

Table 5.2 Cache Sizes of Some Processors

Processor	Туре	Year of Introduction	L1 Cache ^a	L2 cache	L3 Cache
IBM 360/85	Mainframe	1968	16 to 32 kB	_	-
PDP-11/70	Minicomputer	1975	1 kB	-	-
IBM 3033	Mainframe	1978	64 kB	-	-
IBM 3090	Mainframe	1985	128 to 256 kB	-	-
Intel 80486	PC	1989	8 kB	-	-
Pentium	PC	1993	8 kB/8 kB	256 to 512 kB	-
PowerPC 620	PC	1996	32 kB/32 kB	-	-
IBM S/390 G6	Mainframe	1999	256 kB	8 MB	-
Pentium 4	PC/server	2000	8 kB/8 kB	256 kB	-
Itanium	PC/server	2001	16 kB/16 kB	96 kB	4 MB
Itanium 2	PC/server	2002	32 kB	256 kB	6 MB
IBM POWER5	High-end server	2003	64 kB	1.9 MB	36 MB
CRAY XD-1	Supercomputer	2004	64 kB/64 kB	1MB	-
IBM POWER6	PC/server	2007	64 kB/64 kB	4 MB	32 MB
IBM z10	Mainframe	2008	64 kB/128 kB	3 MB	24-48 MB
Intel Core i7 EE 990	Workstaton/ Server	2011	6 × 32 kB/32 kB	6 × 1.5 MB	12 MB
IBM zEnterprise 196	Mainframe/ Server	2011	24 × 64 kB/128 kB	24 × 1.5 MB	24 MB L3 192 MB L4
IBM z13	Mainframe/ server	2015	24 × 96 kB/128 kB	24 × 2 MB/2 MB	64 MB L3 480 MB L4
Intel Core i0-7900X	Workstation/ server	2017	8 × 32 kB/32 kB	8 × 1 MB	14 MB

^aTwo values separated by a slash refer to instruction and data caches.

5. Tipos de caché

"La caché lógica utiliza direcciones virtuales; la física, direcciones físicas." "La caché lógica puede ser más rápida pero requiere mayor gestión en cambios de contexto."

Figure 5.5 Logical and Physical Caches

- ▶ Se recomienda la tabla 5.3 página 170 de la 10ma edición
- ► (stallings2006) página 172

- ► (stallings2022computer) página 201 Capítulo 6
- Stallings, W. (2006). Organización y arquitectura de computadores.

 Pearson Educación.

https://books.google.com.ec/books?id=C3HTAAAACAAJ