

TEACHING PLAN

Database Management System (CS237)

Faculty	Mrs. Sushma Vankhede			Division	В
Contact	sushmav@nuv.ac.in	Office Hours	10.00 AM t	o 6.00 PM	
School	School of Engineering and Technology				
Program	B.Tech Computer Science and Engineering				
Semester	Spring			Credits	3
Academic Year	2022-23				
Lecture time & Weekdays	16.00 to 17.00, Wednesday	Location	507		
	15.00 to 16.00, Thursday				
	11.00 to 12.00, Friday				
Pre-requisites	Introduction to Computer Programming				
Course Description	This course introduces students to bas				
	applications. Throughout the course stu	idents are intro	duced to Data	abase and	Database
	Management System, advantages and disadvantages of the different database models,				e models,
	comparison of relational model w				
	Understanding constraints and controve				
	as well as the rules guiding transacti			•	_
	diagrams like ER, Sequence, and Activity. The designed system will produce the 'reports' for specific queries.				'reports'
Course Abstract *	The Database Management System course introduce to get the knowledge rega				
	the database concepts. Also, it includes the database design to implementation of				
	database based on real time problems.				
Course Objectives	1. To introduce fundamental concepts of				
	2. To design and create the Database m				
	3. To understand the Normalization tec	-			-
	4. To Learn the query processing system		n manageme	ent and red	covery
	techniques and managing transactions in database				
	5. To empower and expose the students with database implementation using SQL and				SQL and
Looming Outoons	PL/SQL languages.	f do t l		DDMC	
Learning Outcomes	1.Students will be able to understand the fundamental concepts of DBMS.2. Students will be able to. apply analytical skills to map out the conceptual design for a				
	real-life problem	icai skiiis to map	out the con-	ceptual de	sign for a
	3. Students will be able to improve the	databasa dasign	by normaliz	ation	
	4. Students will be able to evaluate the				ic data
	model and physical design to meet sys	_		to a specifi	ic data
		_	•	ed product	ts for
	5. Students will be able to evaluate Oracle features and Oracle related products for maintaining the integrity and performance of databases.				
Typology of Course	Theory/Project base.				
Course Outline	Unit I: Data and Information				
(Units, Hours, Textbooks,	Data and Information: Limitations of Ma	anual Data Proce	essing, Advan	tages of D	BMS over
Reference Books)	traditional computer file-based proces		-	_	
,	DBMS: DDL, DML, Entities, Sets and attributes. Data Base Tables: Keys - Primary,				
	Secondary, Composite.			•	••
	Unit II: Relational Model and Entity-Rela	ationship Mode	<u> </u>		

	Structure of relational databases, Domains, Relations, Relational algebra – fundamental operators and syntax, relational algebra queries. Entity Relationship model: Basic concepts, Design process, constraints, Keys, Design issues, E-R diagrams, weak entity sets, extended E-R features – generalization, specialization, aggregation, reduction to E-R database schema.
	Unit III: Relational Database Design Functional Dependency – definition, trivial and non-trivial FD, closure of FD set, closure of attributes, irreducible set of FD, Normalization – 1Nf, 2NF, 3NF, Decomposition using FD-dependency preservation, BCNF, Multivalued dependency, 4NF, Join dependency and 5NF.
	Unit IV: Query and Transaction Management Query Processing & Query Optimization: Overview, measures of query cost. Transaction Management: Transaction concepts, properties of transactions, serializability of transactions, testing for serializability, System recovery, Two Phase Commit protocol, Recovery and Atomicity, Log-based recovery, concurrent executions of transactions and related problems, locking mechanism, solution to concurrency related problems, deadlock, two-phase locking protocol, Isolation, Intent locking.
	Unit V: SQL and PL/SQL Concepts SQL Concepts: Basics of SQL, DDL, DML, DCL, structure – creation, alteration, defining constraints – Primary key, foreign key, unique, not null, check, IN operator, aggregate functions, Built-in functions –numeric, date, string functions, set operations, subqueries, correlated sub-queries, join, Exist, Any, All, view and its types., transaction control commands. PL/SQL Concepts: Cursors, Stored Procedures, Stored Function, Database Triggers.
Pedagogy	This course will be based on Project based learning, in which students will be assigned course project in which they need to apply the knowledge gained during the theoretical and practical sessions. Also, there will be flip class-room method will be applied where students will give presentation on allotted topics
Expectations from Students *	1) Maintain silence in class. 2) Students should attend 100% classes. 3) Don't distract or harass others 4) Participate in class discussions 5) Turn in and do well in Assignments/Homework 6) Demonstrate in class presentation/discussions 7) Pass in Midterm and Final exam 8) Arrive to class on time 9) Maintain 80% attendance (minimum) 10) No plagiarism at all 11) Come prepared to class
Assessment / Evaluation	Quiz-1: 15 Marks (01/02/2022) Quiz-2: 15 Marks (19/04/2022) Assignment-I: 15 Marks (15/02/2022) Assignment-II: 15 Marks (20/04/2022) Presentation: 20 Marks (13/02/2022 to 21/04/2022) Viva: 20 Marks (17/04/2022 to 05/05/2022) Note: Above mention dates are tentative dates.
Attendance Policy	Students should attend 80% classes.
Project / Assignment Details *	Students should identify the problem definition and design Web application as course project.
Course Material	Text Books: 1. An introduction to Database Systems by C J Date -Wesley.

	 Database System Concepts by Abraham Silberschatz, Henry F. Korth & S. Sudarshan - McGraw Hill. 		
	Reference Books:		
	 Understanding SQL by Martin Gruber, - BPB 		
	MySQL(TM): The Complete Reference by Vikram Vaswani.		
	3. ORACLE PL/SQL by example. Benjamin Rosenzweig, Elena Silvestrova, Pearson		
	Education 3rd		
	Learning Websites:		
	 https://docs.oracle.com/en/database/index.html 		
	 https://docs.oracle.com/en-us/iaas/mysql-database/doc/getting-started- mysql-database-service.html 		
	3. https://www.oracle.com/in/database/technologies/appdev/plsql.html		
Additional Information *	This is core course.		

Session Plan

Tania Titla	Cassian	Tamia 9 Cubtania Dataila	Doodings	^ atiiti.a.a*	luca a cuto at
Topic Title	Session	Topic & Subtopic Details	Readings,	Activities*	Important
	No.		Cases,		Dates
	_		etc.		
Data and	1	Introduction to DBMS, Terminologies:			
Information	_	data, database, DBMS, DBS			
	2	DBS requirements from DBMS,			
		Limitations of Manual Data Processing			
		over DBMS			
	3	Advantages of DBMS over traditional			
		computer file-based processing			
		approach			
	4	View of Data: 3- tier architecture,			
		instances and schemas, introduction to			
		relational model, field, record,			
	5	Data Independence , DBMS users			
	6	Functions of DBA Functions of DBA			
		Elements of DBMS: DDL, DML, Entities,			
		Sets and attributes. Data Base Tables:			
		Keys - Primary, Secondary, Composite.			
	7	DBMS storage structures: Primary			
		memory, secondary memory, Media			
Relational Model	8				
and Entity		Introduction to data models, Structure			
Relationship		of relational databases, Domains,			
Model		Relations,			
	9	Relational algebra – fundamental			
		operators and syntax,			
	10	relational algebra queries.			
	11	Tuple Relational Calculus and Domain			
		Relational Calculus			
	12	ER- model,E-R diagram elements			
	13	Associative entity, Generalization and			
		Specialization			
	14	Participation constraints, limitations			
		and advantages of ER model.			
	15	Reduction of E-R model to relational			
	13	schema.			
		Suitellid.			

	16	Case study examples	
	17	Case study examples	
Relational	18	Functional Dependency – definition,	
Database Design		trivial and non-trivial FD,	
	19	closure of FD set, closure of attributes,	
	13	irreducible set of FD,	
	20	Normalization – 1NF, 2NF, 3NF	
	21	Decomposition using FD dependency	
	21	preservation	
	22	Normalization – BCNF, Multivalued	
	22	dependency	
	23	Normalization – 4NF, Join dependency	
0 0	24	Normalization – 5NF	
Query Processing	25	Query Processing & Query	
and Transaction		Optimization: Overview, measures of	
Management		query cost.	
	26	Transaction Concept, ACID properties	
	27	Transaction Processing, States of	
		transaction	
	28	DBMS Schedule	
	29	Concurrency: Serializable, Concurrency:	
		Non- serializable transactions	
	30	Deadlock: Avoidance and prevention,	
		commit, rollback and save point in	
		transaction	
	31	Locks – exclusive and shared locks	
	32	2 phase locking	
	33	Failure, Recovery and Atomicity	
	34	Log based recovery, Recovery with	
		concurrent transactions	
SQL and PL/SQL	35	SQL Concepts: Basics of SQL, DDL, DML,	
Concepts		DCL, TCL, DQL	
	36	DDL commands, DML commands	
	37	Data retrieval commands, GROUP BY &	
	0.	HAVING clauses	
	38	defining constraints – Primary key,	
	33	foreign key, unique, not null, check	
	39	IN operator, aggregate functions, Built-	
		in functions –numeric, date, string	
		functions, set operations	
	40	Data from multiple tables: Joins,	
	- 1 0	Subqueries, Exist, Any, All, view	
	41	Transaction Control Commands	
	42	Introduction to PLSQL Concepts	
		·	
	43	Stored Procedures, Stored functions	
	44	Cursor	
	45	Database Triggers	

