Group work proposal for Bayesian thinking - part B Understanding the temperature-dependence of predator-prey interactions

Participants: Pengjuan Zu, Mikaela Tillman, Nico Neuenreiter, Lukas Heiland, Frank

Pennekamp

Expert: Florian Hartig

Software: R, BayesianTools package, Stan

Datasets: Dauggard et al. 2019, Delong & Lyons 2020

The goal of the group work is to understand the temperature-dependence of predator prey interactions by fitting dynamic models to two datasets that have measured changes in predator and prey densities across a temperature gradient. The first dataset has quantified the functional response, i.e., the consumption of prey by a predator across a prey density gradient across three temperatures, while the second dataset has collected time-series data of predator and prey densities across six temperatures. In contrast to the analyses published, we aim to characterize the temperature-dependence of key parameters like the space clearance rate constant, the space clearance rate exponent and the handling time in a hierarchical fashion, meaning we will fit the temperature-dependence across all temperatures simultaneously, rather than for each temperature in isolation.

Work flow:

\checkmark	Prepare data for analysis
\checkmark	Familiarize ourselves with the two datasets (exploratory analysis)
\checkmark	Implement fitting of ODEs in Bayesian context using BT package and Stan
	Reproduce the estimated parameters from the two publications (fitting ODEs to each
	temperature in isolation)
	Implement fitting in a hierarchical framework, where the temperature dependency of certain parameters of interest is fitted, while other parameters are fitted as random effects
	Describe the workflow to fit ODEs, potential pitfalls and advantages

We will first work with the functional response dataset and then move to the time series dataset.

Expected outcomes:

- R scripts to fit ordinary differential equations to data in a Bayesian context
- Group members will implement code in R / BayesianTools and Stan simultaneously to learn about potential advantages / disadvantages of both languages
- How-to-guide to fit ODEs in a Bayesian context