Capacitive Keyboard Encoder

FEATURES

- 128 Key Keyboard Encoder: 112 Fully Decoded Keys, 16 Discrete Function Keys
- 112 Keys With 4 Modes, 10 Bit Output
- Key Validation Logic Protects Against Bounce
- N-Key Roll Over or 2-Key Roll Over
- Internal ROM Allows Any Keys to Control SHIFT CTRL, SHIFT LOCK and ALPHA LOCK
- ALPHA LOCK and SHIFT LOCK Indicator Lines
- Any Key Down (AKD) Strobe
- Single +5 Volt Power Supply
- Programable Coding of Standard and Special Function Keys
- Zener Diode Protection on All I/O Pins
- Low Power Consumption, Less Than 2 MW per Key
- Usable with Capacitive, Magnetic, Inductive, Hall Effect, or Mechanical Keyboard Switches
- Inputs and Outputs TTL and CMOS Compatible
- Internal Oscillator

DESCRIPTION

The General Instrument AY-3-4592 is a unique dual pulse scanning encoder and keyboard controller for 112 keys in four modes and 16 programable discrete function keys. ROM programing permits any keys to control the shift control and lock functions The AY-3-4592 can be used with capacitive, inductive (magnetic) or switch closure type switches since it works on pulse detection.

The AY-3-4592 is fabricated with General Instrument N-Channel MOS technology on a single chip containing a 4592 bit ROM, a 128 bit shift register and an internal oscillator.

PIN FUNCTIONS

Pin No.	Name	Symbol	Function										
1	Ground	GND	Ground Pin										
2-10	Data Out	D1-D9	Data C	Data Outputs, D1 through D9									
11	Data Out	D10	Data Output D10. See AY-3-4592 options for complete description										
12	Key Inhibit	KBINH	Logic "1" on KBINH will inhibit the processing of Key closures and prevent new output codes. See AY-3-4592 options for other custom options.										
13	Lockout/rollover	LO/RO	High for 2 Key Rollover operation, low for N Key Rollover operation. This input is a high impedance Schmitt trigger with thresholds of approximately ¼ (low) and ¾ (high) of V _{CC} . This allows easy interfacing with very slow RC circuits for such functions as "repeat delay". LO/RO is internally "anded" with AKD/STB; if either is low, N Key rollover is automatically selected.										
14-16	Y-Address	YA, YB, YC	Y Address lines select one of eight Y inputs through external multiplexer. Scan sequence is Y7 to Y0										
17-27, 30-32	X Outputs	X0-X13, X5-X7	X output drivers for Matrix scanning. Scan sequence is X15 to X0. Each drive generates 8 pairs of pulses each scanning cycle.										
28, 29	X15, 14	X15, X14	X15 is programed as a "discrete output" key in the standard part. Optionally it may be programed as an error flag or as a Matrix drive line. See AY-3-4592 options. Unlike X0-X13, neither X14 nor X15 have associated ROM output codes. These lines are used to enable separate discrete keys to be debounced using an addressable latch as illustrated in figure 2.										
33	Alpha Lock Indicator	ALI	ALI will indicate if op code XX101 is selected. (See operation codes). In the standard device there is no other function. If alpha lock is selected as an option, op code XX101 will result in bit 6 being replaced by bit 9 when a key is depressed.										
34	Shift Lock Indicator	SLI	SLI will indicate if op code XX011 is selected (see operation codes). In the standard device this op code will also select the shift lock function.										
35	Key Pressed	KPD	KPD is used to shift the threshold of the external sense amplifier in order to provide hysteresis to improve noise immunity. In addition KPD may be inverted to provide the data input to the 8 bit latches for decoding X14 and X15. When a key closure is detected KPD is generated causing the 8 bit latch output to go high. See figure 2.										
36	CLOCK	CLK			or tie point for re shown be		rnal oscillato	or. Nomina	al frequencies				
				C =	150pf	C =	220pf	C=	500pf				
			R	Freq	Scan time	Freq	Scan time	Freq	Scan time				
			5K	1 3 MHz	1 5 msec	1 2 MHz	1 7 msec	71 MHz	2 8 msec				
			10K	8 MHz	2 3 msec	.8 MHz	2 7 msec	45 MHz	4 3 msec				
			25K	4 MHz	4 8 msec	3 MHz	6 0 msec	20 MHz	10 0 msec				
37	Reset	POR			ternal registe d in Figure 1		flops. Sugge	ested circu	it for power on				
38	Matrix Input	MATIN	Input f key.	rom exterr	al multiplex	er. Senses	signal from	X-Y scan	of depressed				
39	Any Key Down Strobe	AKD	AKD is	e one key i	•	•	Vhen a key is depressed, A	•	AKD goes high. o low for 2				
40	Power	V _{cc}	1	supply +5	√ input								

GENERAL AY-3-4592

OPERATION

Keys are connected in a 16 x 8 matrix. Scanning of the matrix is performed by the encoder in conjunction with an external, multiplexer. The encoder provides a 3 bit binary address (YA, YB, YC) used to scan each of eight possible sense lines (Y-lines). The drive lines (X-lines) are each pulsed low by the encoder. If a key is closed, the pulse is coupled from the drive to the sense lines, amplified, and sent to the encoder. When used to encode reactive switches, a detection circuit is necessary between the output of the multiplexer and the MATIN input to the encoder. In this manner, each matrix cross-point is interrogated in turn. Each matrix cross-point is given a unique binary code that is determined by the internal scan counters. This code is used to address a ROM which generates the output codes (such as ASCII or other customer defined codes). The output of the ROM is entered into an output holding register when the key is determined to be a valid key closure. Only the cross-points on X0 through X13 can have output codes: X14 and X15 can be used for scanning discrete keys.

An internal oscillator controls the matrix scanning rate. The minimum scanning time is 1.7 ms, at a 1.2 MHz clock. This allows a burst typing speed equivalent to over 250 words/min. When a key is depressed, a matrix address from an X driver and Y input line representing that key is loaded into a 7 bit latch. On the second keyboard scan, the matrix address and the stored address are compared. If the two addresses match, the ROM 10 bit word at that address is loaded into the data holding register. This data remains valid until the next key is depressed. The internal error flag is set, if this option was utilized, whenever there is a mismatch between 7 bit addresses.

Two negative pulses must be detected during the $\overline{\text{MATIN}}$ timing window for the depression to be recognized.

Keyboard Selection

The AY-3-4592 keyboard encoder can be used with a wide variety of available keyboards. An external multiplexing circuit and one external sense amplifier can be tailored to the user's specific requirements. As shown in Figure 1, the sense amplifier detects changes in voltage caused by variations in the switch impedance as a key is depressed and released. Given the key switch impedances for depressed and released states, the values of Rx and Rh can be chosen to guarantee switch closure detection and noise margins. Rx is chosen to match the capacitor or reactor time constants. For example, given a variable capacitance keyboard switch with C1 = 100pf, and C2 = 10pf for depressed and released positions respectively, with a 1.5MHz oscillator and Rx = 10 Kohm, a depressed key would make a 4.7 volt pulse while a raised key would produce a 2.6 volt pulse. The potentiometer would then be set for best noise immunity with minimum pulse

width, 90ns for all keys. The hysteresis resistor, Rh, is chosen at roughly ten times the value of Rx to provide increased noise immunity for detected key depressions.

Operation Codes

Depending on the internal programing of the AY-3-4592, keys may have one of three different functions. Keys on matrix line X0 through X13 have, in addition to the output code bits, a function flag bit (FFB). If the FFB is programed as a zero, the key produces a data output when depressed.

When FFB is a one, the key is a "function" key for which bits 1-5 determine the function. These bits are referred to as the op code and are used to provide special functions such as shift, shift lock, alpha lock, etc. Bits 6-10 are not used.

Op codes may be programed to provide data outputs as well as change the mode of operation Data when outputted is not latched as are normal coded outputs.

Bits 1-3 indicate what operation the key will perform; per table 1. Bit 4 programed as one indicates a down-coded key, for which the 10 data bits programed in the shift mode level of ROM are outputted when the key is depressed.

Bit 5 programed as one indicates an up-coded key for which the 10 data bits programed in the control mode level of ROM are outputted when the key is released.

Neither bit 4 nor 5 will have any effect on the operational control of bits 10-3

	Table 1									
	Or	o-Co	de		Function					
5	4	3	2	_1						
х	Х	0	0	0	Function key (with up/down codes)*					
х	Х	0	0	1	Right Shift Key					
x	Х	0	1	0	Left Shift Key					
x	Х	0	1	1	Shift Lock Key or Discrete Key (output SLI)					
x	Х	1	0	0	Control Key					
х	Х	1	0	1	Alpha Lock Key or Discrete Key (output ALI)					
х	0	1	1	0	Error Reset Key or discrete key (output X15)					
х	Х	1	1	1	Discrete Key (output D10)					

^{*}If the op-code is 00000 the key has no internal function but KPD will go low when it is processed.

OPTIONS

Pin or Function	Option
X15	X15 may be programed as
	1) an X-output to provide a second set of 8 discrete lines
	2) a discrete output which indicates when a function key with op code XX110 is depressed
	3) an Error Flag Indicator (EFI). See Error Flag
	In the AY-3-4592 STD X15 is a discrete output
Error Flag	When this option is selected, the AY-3-4592 has the capability of detecting multiple key depressions during the same scan cycle. When selected, the error flag may be programed to generate KBINH and or appear at the X15 output. The error flag may be reset by three methods. If the automatic reset is selected/the flag will be reset when the error causing Key is released.
	Op-code XX110 may be programed on a function key to reset the error flag.
	If pin 12 is programed for KBINH error flag will be reset by pulsing pin 12 high. The reset will occur on the negative edge of the KBINH signal; the pulse must be at least 16 clock cycles.
	Error flag causes KBINH and is automatically reset.
Alpha Lock	When programed for Alpha lock, the function key with op-code XX101 will cause the bit 6 output to be replaced by bit 9. Bit 9 is not altered. Alpha lock is normally used to force printing of upper case characters irrespective of the shift function. Op Code XX101 will also cause an output on ALI (pin 33).
	When Alpha lock is not programed, op code XX101 will result in an output on ALI (pin 33).
	Op code XX101 may be programed for momentary action, or latched push-on, push-off alternating action. ALI may be programed for normally low or high output.
	Op code XX101 is momentary action. ALI is normally low.
Shift Lock	The AY-3-4592 STD is not programed for Alpha lock, although there will be an output on ALI. When programed for shift lock, the function key with op-code XX011 will cause normal electronic shift action. Op code XX011 will also cause an output on SLI (pin 34).
	If shift lock is not programed, op code XX011 will simply cause an output on SLI. SLI may be programed for normally low or high output.
	The AY-3-4592 STD is programed for shift lock operation with SLI normally low.
KBINH	KBINH, Keyboard Inhibit, may be programed to be caused by Pin 12 high, by the error flag, or both. In addition, function keys with up or down codes may be programed, as a group, to be inhibited by KBINH. This is the KCI Out option.
	When pin 12 is programed to cause KBINH, a high input on pin 12 will inhibit processing of common keys.
	If a key is depressed while the KBINH signal is present, output and output strobe will be generated when KBINH is released.
	The AY-3-4592 STD has KBINH actuated by pin 12 high, and by the error flag. The KCI In option is used, that is, the function key operation is independent of KBINH.
D10	D10, pin 11, may be programed as the output for the memory bit 10 or as a discrete output. As a discrete output, pin 10 is switched from its normal state (programable as high or low) by the function key with opcode XX111.
	The AY-3-4592 STD is programed for D10 as a discrete key, normally low.
Key Type	Keys may be either normally open or normally closed. The AY-3-4592 STD is designed for normally open keys.

GENERAL INSTRUMENT

ELECTRICAL CHARACTERISTICS

Maximum Ratings*

V _{CC} 0.3 Volts to	+7.0 Volts
Maximum voltage with respect to V _{CC}	
Storage Temperature 65°C	to +150°C
Operating Temperature	0 to 70°C

Standard Conditions (unless otherwise noted)

 V_{CC} = 5.0V ±5% T_A = 0° to 70°C

*Exceeding these ratings could cause permanent damage to the device. This is a stress rating only and functional operation of this device at these conditions is not implied—operating ranges are specified in Standard Conditions. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Data labeled "typical" is presented for design guidance only and is not guaranteed.

Characteristic	Symbol	Min.	Тур.**	Max.	Unit	Condition
Data Output "1" Voltage	V _{OH}	3.5	_	_	V	$I_{OH} = 50\mu A, 25 pf$
Data Output "0" Voltage	V _{OL}	- 1	_	0.5	V	I _{OI} = 1.6mA
All Inputs "1" Voltage	ViH	2.2	-	-	l v	except POR, 2KRO
All Inputs "0" Voltage	V _{IL}	-	-	0.8	Ιv	except POR, 2KRO
All Inputs Leakage	I _{IH}	-	-	10	μΑ	V _{ID} = 5V
X Output "1" Voltage	X _{OH}	3.5	-	-	ĺν	$I_{OH} = 50 \mu A$, 100pf
X Output "0" Voltage	X _{OL}	-	-	0.5	V	I _{OL} = 1.6mA
AKd Output Voltage	V _A	ا -	_	0.6	l v	I _{OL} = 3.2mA
MATIN Input Voltage	v _x	- 1	_	0.4	l v	OL .
POR, 2KRO high threshold	V _{SH}	-	1.3	-	l v	Schmitt trigger
POR, 2KRO low threshold	V _{SL}	- 1	3.7	-	V	Schmitt trigger
Power Supply Current	I _{cc}	-	35	60	mA	Vcc = 5.3V
Clock Frequency	φ	200	_	1200	kHz	
Matrix Delay	t ₁	۱ -	-	250	ns	
Input pulse width	t ₂	90	-	-	ns	
X Output pulse width	t _x	1.7	-	-	μs	
X Output fall time	t _{XF}	-	_	150	ns	$V_{OH} = 4.3V, V_{OL} = 0.4V$
X Output rise time	t _{XR1}	-	_	150	ns	$V_{OH} = 2.4V, V_{OL} = 0.4V$
X Output rise time	t _{XR2}	_	_	500	ns	$V_{OH} = 3.5V, V_{OL} = 0.4V$
X Output rise time	txnz	-	-	1500	ns	$V_{OH} = 4.3V, V_{OL} = 0.4V$
KPD-X Output set time		500	_	_	ns	
X Output-KPD hold time	T _{KX}	100	_	_	ns	
·	t _{xK}	ŀ	_	_	113	
Data out to AKD time	toA	1.7	-	-	μs	

^{**}Typical values are at +25°C and nominal voltages.

TIMING DIAGRAMS

CODE CHART / AY-3-4592-STD

XXY	F		ORMAL			SHIFT			CONTROL			CONTROL-	
	В	HEX	BINARY		HEX	BINARY		HEX	BINARY		HEX	BINARY	
000	1	001	0000000001	Right Shift	3FF	1111111111		3FF	1111111111		3FF	1111111111	
001	i	005	0000000010	Left Shift	3FF	1111111111		3FF	1111111111		3FF	1111111111	
002	1	003	0200000011	Shift Lock	3FF	1111111111		3FF	1111111111		3FF	1111111111	
003	1	. 004	0000000100	Control	3FF	111111111		3FF	1111111111		3F F	1111111111	
004	1	005	0000000101	ALI	3FF	1111111111		3FF	1111111111		3FF	1111111111	
005	1	006	0000000110	X15	3FF	1111111111		3FF	1111111111		3FF	1111111111	
006	1	007	0000000111	D10	3FF	1111111111		3F F	1111111111		3FF	1111111111	
007	0	OCE	0011001110	1	ODE	0011011110	!	OCE	0011001110	1	00E	0011011110	!
010	0	1E4	0111100100	ESC	1 E 4	0111100100	ESC @	164	0111100100	ESC	1E4	0111100100	ES NUL
011	0	OCD	0011021101	2	18F	0110111111		000	0011001101	2	1FF 0DD	0111111111	NOL
012 013	0	0CD 188	0011001101	w	00D 1 A 8	0110101000	w	0CD 1E8	0011001101	ÉTB	168	0011011101	ETB
014	ŏ	186	0110001110	9	1AE	0110101110	ä	166	0111101110	DC1	186	0111101110	DC1
015	ò	180	0110001100	Š	1 AC	0110101100	s	iec	0111101100	DC3	iĒČ	0111101100	DC3
016	ŏ	19E	0110011110	a	186	0110111110	A	1FE	0111111110	SOH	iFE	0111111110	SOH
017	0	185	0110000101	Z	1 4 5	0110100101	z	165	0111100101	SUB	185	0111100101	SUB
050	0	175	0101111111	NUL	17F	0101111111	NUL	17F	0101111111	NUL	17F	0101111111	NUL
021	0	ОСВ	0011001011	4	008	0011011011	\$	OCB	0011001011	4	008	0011011011	\$
022	0	000	0011001100	3	ODC	0011011100	#	occ	0011001100	3	000	0011011100	#
023	0	180	0110001101	r	140	0110101101	R	160	0111101101	DC2	1ED	0111101101	DC2
024 025	0	19A 19B	0110011010	e	18A 188	0110111010	E D	1FA 1FB	0111111010	ENQ EOT	1FA 1FB	0111111010	ENQ EOT
025	0	187	0110011011	d x	147	0110100111	X	167	0111111011 0111100111	ETB	1F B 1E 7	0111111011	ETB
027	o	190	01100111100	X C	180	0110111100	ĉ	1FC	01111111100	ETX	1FC	0111111100	ETX
030	ő	17E	0101111110	SOH	17E	0101111110	SOH	17E	0101111110	SOH	17E	0101111110	SOH
031	ŏ	170	0101111101	STX	170	0101111101	STX	170	0101111101	STX	170	0101111101	STX
032	Ō	OCA	0011001010	5	ODA	0011011010	%	OCA	0011001010	5	OD A	0011011010	%
033	0	188	0110001011	t	1 A B	0110101011	T	168	0111101011	DC4	1 E B	0111101011	DC4
034	0	199	0110011001	f	189	0110111001	F	159	0111111001	ACK	1F9	0111111001	ACK
035	0	198	0110011000	9	188	0110111000	G	1F8	0111111000	BEL	1F.8	0111111000	BEL
036	0	189	0110001001	v.	1 A 9	0110101001	V B	1E9	0111101001	SYN	1E9	0111101001	SYN STX
037	0	19D 17C	0110011101	b	18D 17C	0110111101	ETX	1FD 17C	0111111101	STX	1FD	0111111101	ETX
040 041	0	008	0101111100	ETX 7	009	0011011001	Ė	008	0101111100	7	17C 0D9	0101111100	£1^
042	a	009	0011001001	6	009	0011011001	è	009	2011001001	6	009	0011011001	ļ
043	ő	186	0110000110	v	1 4 6	0110100110	Ý	166	0111100110	ĒΜ	1E6	0111100110	ĒМ
044	0	197	0110010111	ĥ	187	0110110111	н	1F7	0111110111	BS	1F7	0111110111	BS
045	ù	191	0110010001	n	181	0110110001	N	1F1	0111110001	so	1F1	0111110001	so
046	0	0 C 9	0011001001	6	0 C 3	0011000011	<_	009	0011001001	6	0Ç3	0011000011	<_
047	O	ODF	0011011111	SP	00F	0011011111	SP	ODF	0011011111	SP	ODF	0011011111	SP
050	0	178	0101111011	EOT	178	0101111011	EOT	178	0101111011	EOT	178	0101111011	EOT
051	0	007	0011000111	8	0D5 0D8	0011010101	7	0C7	0011000111	8 7	005 008	0011010101	-
052 053	ð	0C8 18A	0011001000	7	1 4 4	0110101010	u	1EA	0011001000	NAK	1EA	0011011000	NAK
054	ō	195	0110010101	J	185	0110110101	Ĵ	155	0111110101	ENQ	165	0111110101	ENQ
055	Ö	194	0110010100	k	184	0110110130	K	154	0111110100	VT	164	0111110100	VT
056	ō	192	0110010010	m	185	0110110010	М	1F2	0111110010	CR	1F2	0111110010	CR
057	0	0D3	0011010011		003	0011000011	<	003	0011010011		0 C 3	0011000011	<
060	0	17A	0101111010	ENQ	17A	0101111010	ENQ	174	0101111010	ENQ	17A	0101111010	ENQ
061	0	006	0011000110	9	007	0011010111	S	006	0011000110	9	007	0011010111	9
062	0	007	0011000111	8	700	0011010111	•	007	0011000111	8	007	0011010111	
063	0	196	0110010110	į	186	0110110110	I O	1F6 1F0	0111110110	HT SI	1F6 1F0	0111110110	HT SI
064 065	O U	190 194	0110010000	o K	180 184	0110110000	ĭ	1F0 1F4	0111110000	VT	1F 0 1E 4	0111110000	ESC
066	Ü	194	0110010100	î	183	0110110010	Ĺ	1F3	011111010	FF	153	0111110010	FF
067	0	192	0110010010	m	142	0110100010	1	1F2	0111110010	CR	182	0111100010	GS
070	ö	179	0101111001	ACK	179	0101111001	ACK	179	0101111001	ACK	179	0101111001	ACK
071	ŏ	GCF	0011001111	ø	006	0011010110)	ocr	0011001111	ø	006	0011010110)
072	þ	006	0011000110	9	006	0011010110)	006	0011000110	9	006	0011010110)
073	0	178	0101111000	BEL	178	0101111000	BEL	178	0101111000	BEL	178	0101111000	BEL

CODE CHART / AY-3-4592-STD

XXY	F	NORMAL	••••	SHIFT	CONT	CONTROL			SHIFT/CONTROL			
	8	HEX BINARY	HEX	BINARY			BINARY		·-aniiri/ ·Ex	BINARY		
074	0									0		
075	Ö	18F 0110001111 0C4 0011000100	P 1AF	0110101111						0111101111	DLE	
076	ŏ	193 0110010011	005	0011000r01			11000100			0011000101	:	
077	ő	001 001101001	L 1A3	0110100011						0111100011	FS	
080	ŏ	002 0011010010	. 001	0011000001			11010001			0011000001	>	
081	ŏ		- 1AO	0110100000						0110100000	-	
082	ŏ	191 0110010001 18F 0110001111	n 1A1 P 1DF	0110100001						0111100001	RS	
083	ŏ			0110111111						011111111	NUL	
084	ŏ	1A4 0110100100 008 0011011000	1 1 1 2	0110100010						0111100010	GS	
085	ŏ	004 0011000100	000	0011011101			11011000			0011011101		
086	ŭ	000 0011010000	/ 004	0011010100			11000100			0011010100	+	
087	ō	177 0101110111	BS 177	0011003000			11010000			0011000000	?	
090	ŏ	002 0011000010	= 904	0101110111						0101110111	BS	
091	õ	005 0011000101	- 0D4	0011010101						0011010100	±	
092	ō	176 0101110110	HT 176	0101110110			11000101			0011010101	T	
093	ō	143 0110100011	\ 083	0010000011						0101110110	HT	
094	ó	175 0101110101	LF 175	0101110101						0111100011	FS	
095	ő	144 0110100100	1 084	0010000100						0101110101	LF	
096	0	1F2 0111110010	CR 1F2	0111110010						0111100100	ESC CR	
097	0	142 0110100010	1 082	0010000010						0111110010	GS	
100	0	080 0010000000	DEL 080	0010000000						0111100010	DEL	
101	0	174 0101110100	VT 174	0101110100						0010000000	VT	
102	0	002 0011010010	- 1AO	0110100000						0111100000	US	
103	0	173 0101110011	FS 173	0101110011						0101110011	FS	
104	0	1F5 0111110101	LF 1F5	0111110101						0111110101	LF	
105	0	18F 0110111111	@ 1A3	0110100011						011111111	NUL	
106	0	141 0110100001	081	0010000001						0111100001	RS	
107	0	140 0110100000	0^2	0011000010) ==					0011000010	=	
110	0	172 0101110010	CR 172	0101110010) CR					0101110010	CR	
111	0	1F6 0111110110	HT 1F6	0111110110) HT					0111110110	HT	
112	0	002 0011010010	- 005	001:000010) =					0011000010	=	
113	0	171 0101110001	SO 171	0101110001						0101110001	so	
114	0	190 0110010000	0 140	0110100000) –					0111100000	US	
115	0	144 0110100100	[1A2	0110100010) }		10100100	1 1		0110100010	1	
116	0	1F7 0111110111	BS 1F7	0111110111		1F7 01	11110111			0111110111	BS	
117	0	160 0101100000	US 160	0101100000		160 01	01100000	US 1		0101100000	US	
120 121	0	170 0101110000	SI 170	010111000		170 01	31110000	SI 1	70	0101110000	SI	
122	0	008 0011001000	7	1211001000		DC8 00			CB	0011001000	7	
123	0	1F4 0111110100 16F 010112111	VT 1F4	0111110100					F 4	0111110100	VT	
124	0		DLE 16F	2101101111						0101101111	DLE	
125	ŏ		4 008	0011001011						0011001011	4	
126	ŏ	003 0011010011 00E 0011001110	003	0011013011			11010011			0011010011		
127	õ	OCF 0011001111	0 OCF	0011001110			11001110			0011001110	1	
130	ŏ	16E 0101101110	DC1 16E	0131101110						0011001111	0	
131	ō	006 0011000110	9 006	0011030110						0101101110	DC1	
132	ō	007 0011000111	8 007	0011000110						0011000110	9	
133	Ü	OCA J011071010	5 0CA	0011000111						0011000111	8	
134	ō	009 0011001001	6 009	0011001001						0011001010	5	
135	ō	000 0011001101	2 000	0011001001						0011001001	6	
136	0	OCC 9011091100	3 000	0011001100						0011001101	2	
137	0	001 0011010001	001	0011010001						0011001100	3	
OPTION	SARE	Error Flag — Programmed	00.	00		טוי זעט	11010001	U	0.1	0011010001		

OPTIONS ARE Error Flag — Programmed X15 — Discrete output, normally low

KBINH — Set by high on pin 12 or error flag. Function keys not inhibited by KBINH

Error Flag — Reset by releasing error-causing key

Shift Lock - Operational SLI normally low Alpha Lock - Inhibited ALI normally low, set by OP code XX101

D10 — Discrete output, normally low

Key Type - Normally open

NOTE Bit 9 — Programmed to allow alpha lock implementation using external logic

Bit 8 — Programmed low for "mono mode" keys, for which the output is the same in all modes

Bits 1-7 — "Inverted" ASCII data bits

