SI231 Matrix Computations Lecture 8: Least Squares Revisited

Ziping Zhao

Fall Term 2020-2021

School of Information Science and Technology ShanghaiTech University, Shanghai, China

Lecture 8: Least Squares Revisited

- Part I: regularization
- Part II: sparsity
 - ℓ_0 minimization
 - greedy pursuit, ℓ_1 minimization, and variations
 - majorization-minimization for ℓ_2 - ℓ_1 minimization
 - dictionary learning
- Part III: LS with errors in A
 - total LS
 - robust LS, and its equivalence to regularization

Part I: Regularization

Sensitivity to Noise

- Question: how sensitive is the LS solution when there is noise?
- Model:

$$\mathbf{y} = \mathbf{A}\mathbf{\bar{x}} + \boldsymbol{\nu},$$

where $\bar{\mathbf{x}}$ is the true result; $\mathbf{A} \in \mathbb{R}^{m \times n}$ has full column rank; $\boldsymbol{\nu}$ is noise, modeled as a random vector with mean zero and covariance $\gamma^2 \mathbf{I}$.

ullet Mean square error (MSE) analysis: from $\mathbf{x}_{\mathsf{LS}} = \mathbf{A}^\dagger \mathbf{y} = \bar{\mathbf{x}} + \mathbf{A}^\dagger oldsymbol{
u}$ we get

$$E[\|\mathbf{x}_{\mathsf{LS}} - \bar{\mathbf{x}}\|_{2}^{2}] = E[\|\mathbf{A}^{\dagger}\boldsymbol{\nu}\|_{2}^{2}] = E[\operatorname{tr}(\mathbf{A}^{\dagger}\boldsymbol{\nu}\boldsymbol{\nu}^{T}(\mathbf{A}^{\dagger})^{T})] = \operatorname{tr}(\mathbf{A}^{\dagger}E[\boldsymbol{\nu}\boldsymbol{\nu}^{T}](\mathbf{A}^{\dagger})^{T}]$$
$$= \gamma^{2}\operatorname{tr}(\mathbf{A}^{\dagger}(\mathbf{A}^{\dagger})^{T}) = \gamma^{2}\operatorname{tr}((\mathbf{A}^{T}\mathbf{A})^{-1})$$
$$= \gamma^{2}\sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}(\mathbf{A})}$$

• Observation: the MSE becomes very large if some $\sigma_i(\mathbf{A})$'s are close to zero.

Toy Demonstration: Curve Fitting

The same curve fitting example in Lecture 3: Least Squares. The "true" curve is the true f(x) with model order n=4. In practice, the model order may not be known and we may have to guess. The fitted curve above is done by LS with a guessed model order n=16.

ℓ_2 -Regularized LS

• Intuition: replace $\mathbf{x}_{\mathsf{LS}} = \mathbf{A}^{\dagger}\mathbf{y} = (\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\mathbf{y}$ by

$$\mathbf{x}_{\mathsf{RLS}} = (\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I})^{-1} \mathbf{A}^T \mathbf{y},$$

for some $\lambda > 0$, where the term $\lambda \mathbf{I}$ is added to improve the system conditioning, thereby attempting to reduce noise sensitivity

- how may we make sense out of such a modification?
- ℓ_2 -regularized LS: find an x that solves

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2 + \lambda \|\mathbf{x}\|_2^2$$

for some pre-determined $\lambda > 0$.

- the solution is uniquely given by $\mathbf{x}_{\mathsf{RLS}} = (\mathbf{A}^T\mathbf{A} + \lambda \mathbf{I})^{-1}\mathbf{A}^T\mathbf{y}$
- the formulation says that we try to minimize both $\|\mathbf{y} \mathbf{A}\mathbf{x}\|_2^2$ and $\|\mathbf{x}\|_2^2$, and λ controls which one should be more emphasized in the minimization

Toy Demonstration: Curve Fitting

The fitted curve is done by ℓ_2 -regularized LS with a guessed model order n=18 and with $\lambda=0.1.$

Part II: Sparsity

The Sparse Recovery Problem

Problem: given $\mathbf{y} \in \mathbb{R}^m$, $\mathbf{A} \in \mathbb{R}^{m \times n}$, m < n, find a sparsest $\mathbf{x} \in \mathbb{R}^n$ such that

$$y = Ax$$
.

ullet by sparsest, we mean that ${\bf x}$ should have as many zero elements as possible.

A Sparsity Optimization Formulation

let

$$\|\mathbf{x}\|_0 = \sum_{i=1}^n \mathbb{1}\{x_i \neq 0\}$$

denote the cardinality function

- commonly called the " ℓ_0 -norm", though it is not a norm.
- Minimum ℓ_0 -norm formulation:

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{x}\|_0$$
s.t. $\mathbf{y} = \mathbf{A}\mathbf{x}$. (*)

- Question: suppose that $y = A\bar{x}$, where \bar{x} is the vector we seek to recover. Can the min. ℓ_0 -norm problem recover \bar{x} in an exact and unique fashion?
 - an answer lies in the notion of spark, which may be seen as a strong definition of rank

Spark

Spark: the spark of A, denoted by $\operatorname{spark}(A)$, is the minimal number of linearly dependent columns of A, i.e.,

$$\operatorname{spark}(\mathbf{A}) = \min_{\mathbf{x} \neq \mathbf{0}} \|\mathbf{x}\|_0 \text{ s.t. } \mathbf{A}\mathbf{x} = \mathbf{0}.$$

- let $\operatorname{spark}(\mathbf{A}) = k$. Then, k is the smallest number such that there exists a linearly dependent $\{\mathbf{a}_{i_1}, \dots, \mathbf{a}_{i_k}\}$ for some $\{i_1, \dots, i_k\} \subseteq \{1, \dots, n\}^1$.
 - $\{\mathbf{a}_{i_1},\ldots,\mathbf{a}_{i_{k-1}}\}$ is linearly independent for any $\{i_1,\ldots,i_{k-1}\}\subseteq\{1,\ldots,n\}$
- Comparison with rank: the rank of A, denoted by rank(A), is the maximal number of linearly independent columns of A.
- let $rank(\mathbf{A}) = r$. Then, k is the largest number such that there exists a linearly independent $\{\mathbf{a}_{i_1}, \dots, \mathbf{a}_{i_r}\}$ for some $\{i_1, \dots, i_r\} \subseteq \{1, \dots, n\}$.
 - $\{\mathbf{a}_{i_1},\ldots,\mathbf{a}_{i_{r+1}}\}$ is linearly dependent for any $\{i_1,\ldots,i_{r+1}\}\subseteq\{1,\ldots,n\}$
- Kruskal rank: this is an alternative definition of rank. The Kruskal rank of \mathbf{A} , denoted by $\operatorname{krank}(\mathbf{A})$, has its definition equivalent to $\operatorname{krank}(\mathbf{A}) = \operatorname{spark}(\mathbf{A}) 1$.

¹We leave it implicit that $i_k \neq i_j$ for any $k \neq j$.

Spark

• if any collection of m vectors in $\{\mathbf{a}_1,\ldots,\mathbf{a}_n\}\subseteq\mathbb{R}^m$, with $n\geq m$, is linearly independent, then

$$\operatorname{spark}(\mathbf{A}) = m + 1, \quad \operatorname{rank}(\mathbf{A}) = m.$$

- an example is Vandemonde matrices with distinct roots
- some specifically designed bases also have this property
- but there also exist instances in which rank and spark are very different
 - let $\{\mathbf v_1,\dots,\mathbf v_r\}\in\mathbb R^m$ be linearly independent, and let $\mathbf A=[\ \mathbf v_1,\dots,\mathbf v_r,\mathbf v_1\].$
 - we have $rank(\mathbf{A}) = r$, but $spark(\mathbf{A}) = 2$
- to conclude, spark may be seen as a stronger definition of rank, and

$$\operatorname{krank}(\mathbf{A}) = \operatorname{spark}(\mathbf{A}) - 1 \le \operatorname{rank}(\mathbf{A})$$

Perfect Recovery Guarantee of the Min. ℓ_0 -Norm Problem

Theorem 8.1. Suppose that $y = A\bar{x}$. Then, \bar{x} is the unique solution to the minimum ℓ_0 -norm problem if

$$\|\bar{\mathbf{x}}\|_0 < \frac{1}{2} \operatorname{spark}(\mathbf{A}).$$

- Implication: any collection of $2\|\bar{\mathbf{x}}\|_0$ columns of \mathbf{A} is linearly independent
 - for $\bar{\mathbf{x}}'$ with $\|\bar{\mathbf{x}}'\|_0 = \|\bar{\mathbf{x}}\|_0$, $\mathbf{A}\bar{\mathbf{x}}' \neq \mathbf{A}\bar{\mathbf{x}}$
- Implication: if $\bar{\mathbf{x}}$ is sufficiently sparse, then the minimum ℓ_0 -norm problem (*) perfectly recovers $\bar{\mathbf{x}}$
- Proof sketch:
 - 1. let \mathbf{x}^* be a solution to the min. ℓ_0 -norm problem. Let $\mathbf{e} = \bar{\mathbf{x}} \mathbf{x}^*$.
 - 2. $\mathbf{0} = \mathbf{A}\bar{\mathbf{x}} \mathbf{A}\mathbf{x}^* = \mathbf{A}\mathbf{e}; \|\mathbf{e}\|_0 \le \|\bar{\mathbf{x}}\|_0 + \|\mathbf{x}^*\|_0 \le 2\|\bar{\mathbf{x}}\|_0.$
 - 3. $\mathbf{Ae} = \mathbf{0}, \|\mathbf{e}\|_{0} \le 2\|\bar{\mathbf{x}}\|_{0} \implies \operatorname{spark}(\mathbf{A}) \le \|\mathbf{e}\|_{0} \le 2\|\bar{\mathbf{x}}\|_{0}$

Perfect Recovery Guarantee of the Min. ℓ_0 -Norm Problem

• coherence: the coherence of A is defined as

$$\mu(\mathbf{A}) = \max_{j \neq k} \frac{|\mathbf{a}_j^T \mathbf{a}_k|}{\|\mathbf{a}_j\|_2 \|\mathbf{a}_k\|_2}.$$

- measures how similar the columns of A are in the worst-case sense.
- a weaker version of Theorem 8.1:

Corollary 8.1. Suppose that $y = A\bar{x}$. Then, \bar{x} is the unique solution to the minimum ℓ_0 -norm problem if

$$\|\bar{\mathbf{x}}\|_0 < \frac{1}{2}(1 + \mu(\mathbf{A})^{-1}).$$

- Implication: perfect recovery may depend on how incoherent A is.
- proof idea: show that $\operatorname{spark}(\mathbf{A}) \geq 1 + \mu(\mathbf{A})^{-1}$

On Solving the Minimum ℓ_0 -Norm Problem

Question: How should we solve the minimum ℓ_0 -norm problem

$$\min_{\mathbf{x}} \|\mathbf{x}\|_0$$

s.t. $\mathbf{y} = \mathbf{A}\mathbf{x}$,

or can it be efficiently solved?

- ℓ_0 -norm minimization does not lead to a simple solution as in 2-norm min.
- ullet the minimum ℓ_0 -norm problem is NP-hard in general
 - what does that mean?
 - * given any \mathbf{y}, \mathbf{A} , the problem is unlikely to be exactly solvable in polynomial time (i.e., in a complexity of $\mathcal{O}(n^p)$ for any p > 0)

Brute Force Search for the Minimum ℓ_0 -Norm Problem

- ullet notation: ${f A}_{\mathcal I}$ denotes a submatrix of ${f A}$ obtained by keeping the columns indicated by ${\mathcal I}$
- we may solve the ℓ_0 -norm minimization problem via brute force search:

```
 \begin{array}{l} \text{input: } \mathbf{A}, \mathbf{y} \\ \text{for all } \mathcal{I} \subseteq \{1, 2, \dots, n\} \text{ do} \\ \text{ if } \mathbf{y} = \mathbf{A}_{\mathcal{I}} \tilde{\mathbf{x}} \text{ has a solution for some } \tilde{\mathbf{x}} \in \mathbb{R}^{|\mathcal{I}|} \\ \text{ record } (\tilde{\mathbf{x}}, \mathcal{I}) \text{ as one of candidate solutions} \\ \text{end} \\ \text{output: a candidate solution } (\tilde{\mathbf{x}}, \mathcal{I}) \text{ whose } |\mathcal{I}| \text{ is the smallest} \\ \end{array}
```

- example: for n=3, we test $\mathcal{I}=\{1\}, \mathcal{I}=\{2\}, \mathcal{I}=\{3\}, \mathcal{I}=\{1,2\}, \mathcal{I}=\{2,3\}, \mathcal{I}=\{1,3\}, \mathcal{I}=\{1,2,3\}$
- ullet manageable for very small n, too expensive even for moderate n
- how about a greedy search that searches less?

Greedy Pursuit

• consider a greedy search called the orthogonal matching pursuit (OMP)

```
Algorithm: OMP input: \mathbf{A}, \mathbf{y} set \mathcal{I} = \emptyset, \hat{\mathbf{x}} = \mathbf{0} repeat  \mathbf{r} = \mathbf{y} - \mathbf{A}\hat{\mathbf{x}}   k = \arg\max_{j \in \{1, \dots, n\}} |\mathbf{a}_j^T \mathbf{r}| / \|\mathbf{a}_j\|_2   \mathcal{I} := \mathcal{I} \cup \{k\}   \hat{\mathbf{x}} := \arg\min_{\mathbf{x} \in \mathbb{R}^n, \ x_i = 0 \ \forall i \notin \mathcal{I}} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2  until a stopping rule is satisfied, e.g., \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2 is sufficiently small output: \hat{\mathbf{x}}
```

note: there are many other greedy search strategies

Perfect Recovery Guarantee of Greedy Pursuit

- again, a key question is the conditions under which OMP admits perfect recovery
- there are many such theoretical conditions, not only for OMP but also for other greedy algorithms
- one such result is as follows:

Theorem 8.2. Suppose that $y = A\bar{x}$. Then, OMP recovers \bar{x} if

$$\|\bar{\mathbf{x}}\|_0 < \frac{1}{2}(1 + \mu(\mathbf{A})^{-1}).$$

 proof idea: show that OMP is guaranteed to pick a correct column at every stage.

Convex Relexation

Another approximation approach is to replace $\|\mathbf{x}\|_0$ by a convex function:

$$\min_{\mathbf{x}} \|\mathbf{x}\|_1$$

s.t. $\mathbf{y} = \mathbf{A}\mathbf{x}$.

- also known as basis pursuit in the literature
- convex, a linear program
- no closed-form solution (while the minimum 2-norm problem has)
- but the success of this minimum 1-norm problem, both in theory and practice, has motivated a large body of work on computationally efficient algorithms for it

Illustration of 1-Norm Geometry

- ullet Fig. A shows the 1-norm ball of radius r in \mathbb{R}^2 . Note that the 1-norm ball is "pointy" along the axes.
- Fig. B shows the 1-norm recovery solution. The point $\bar{\mathbf{x}}$ is a "sparse" vector; the line \mathcal{H} is the set of all \mathbf{x} that satisfy $\mathbf{y} = \mathbf{A}\mathbf{x}$.

Convex Relexation

if replace $\|\mathbf{x}\|_0$ by the $\|\mathbf{x}\|_2$:

$$\min_{\mathbf{x}} \|\mathbf{x}\|_2$$

s.t. $\mathbf{y} = \mathbf{A}\mathbf{x}$.

- also known as method of frames
- convex, a quadratic program
- closed-form solution (the minimum energy solution)
- but cannot promote sparsity

Illustration of 1-Norm Geometry

- The 1-norm recovery problem is to pick out a point in ${\mathcal H}$ that has the minimum 1-norm. We can see that $\bar{\mathbf x}$ is such a point.
- Fig. C shows the geometry when 2-norm is used. We can see that the solution $\hat{\mathbf{x}}$ may not be sparse.

Perfect Recovery Guarantee of the Min. 1-Norm Problem

- again, researchers studied conditions under which the minimum 1-norm problem admits perfect recovery
- this has been an exciting topic, with many provable conditions such as the restricted isometry property (RIP), the nullspace property (NSP), ...
 - see the literature for details, and here is one: [Yin'13]
- a simple one is as follows:

Theorem 8.3. Suppose that $y = A\bar{x}$. Then, \bar{x} is the unique solution to the minimum 1-norm problem if

$$\|\bar{\mathbf{x}}\|_0 < \frac{1}{2}(1 + \mu(\mathbf{A})^{-1}).$$

Toy Demonstration: Sparse Signal Reconstruction

- Sparse vector $\mathbf{x} \in \mathbb{R}^n$ with n = 2000 and $\|\mathbf{x}\|_0 = 50$.
- m=400 noise-free observations of $\mathbf{y}=\mathbf{A}\mathbf{x}$, a_{ij} is randomly generated.

(a) Sparse source signal

(b) Recovery by 1-norm minimization

(c) Sparse source signal

(d) Recovery by 2-norm minimization

Application: Compressive sensing (CS)

• Consider a signal $\tilde{\mathbf{x}} \in \mathbb{R}^n$ that has a sparse representation $\mathbf{x} \in \mathbb{R}^n$ in the domain of the representation matrix $\mathbf{\Psi} \in \mathbb{R}^{n \times n}$ (e.g. DCT or wavelet), i.e.,

$$\tilde{\mathbf{x}} = \mathbf{\Psi} \mathbf{x}$$

where x is sparse.

Left: the original image $\tilde{\mathbf{x}}$. Right: the corresponding coefficient \mathbf{x} in the wavelet domain, which is sparse. Source: [Romberg-Wakin'07]

• compressive sensing is also called compressive sampling

Application: CS

ullet To acquire ${f x}$, we use a sensing matrix ${f \Phi} \in \mathbb{R}^{m imes n}$ to observe ${f x}$

$$y = \Phi \tilde{x} = \Phi \Psi x$$
.

Here, we have $m \ll n$, i.e., much few observations than the no. of unknowns

- ullet Such a y will be good for compression, transmission and storage.
- $\tilde{\mathbf{x}}$ is recovered by recovering \mathbf{x} :

$$\min \|\mathbf{x}\|_0$$

s.t. $\mathbf{y} = \mathbf{A}\mathbf{x}$,

where $\mathbf{A} = \mathbf{\Phi}\mathbf{\Psi}$

ullet how to choose Φ ? CS research suggests that i.i.d. random Φ (a universial sensing matrix) will work well!

Application: CS

$$egin{array}{lll} y_1 = & igcite{iga}}}} & igcite{igan}}}}} } } } igait} } } } } } } } } } } } } } } }$$

(a) measurements $(y_i = \langle ilde{\mathbf{x}}, \mathbf{\Phi}(i,:)
angle)$ via i.i.d. random $\mathbf{\Phi}$

Source: [Romberg-Wakin'07]

original (25k wavelets)

(b) original image

perfect recovery

(c) ℓ_1 recovery

Variations

- when y is contaminated by noise, or when y = Ax does not exactly hold, some variants of the previous min. 1-norm formulation may be considered:
 - basis pursuit denoising: given $\epsilon > 0$, solve

$$\min_{\mathbf{x}} \|\mathbf{x}\|_1 \quad \text{s.t. } \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 \le \epsilon$$

- ℓ_1 -regularized LS: given $\lambda > 0$, solve

$$\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_1$$

- Lasso: given $\tau > 0$, solve

$$\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} \quad \text{s.t. } \|\mathbf{x}\|_{1} \le \tau$$

• when outliers exist in y (i.e., some elements of y are badly corrupted), we also want the residual r = y - Ax to be sparse; so,

$$\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_1 + \lambda \|\mathbf{x}\|_1.$$

Toy Demonstration: Noisy Sparse Signal Reconstruction

- Sparse signal $\mathbf{x} \in \mathbb{R}^n$ with n = 2000 and $\|\mathbf{x}\|_0 = 20$.
- m=400 noisy observations of $\mathbf{y}=\mathbf{A}\mathbf{x}+\boldsymbol{\nu}$, both a_{ij} and ν_i are randomly generated.
- 1-norm regularized LS $\min_{\mathbf{x}} \|\mathbf{y} \mathbf{A}\mathbf{x}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{1}$ is used with $\lambda = 0.1$.

Toy Demonstration: Curve Fitting

The same curve fitting problem in Lecture 3: Least Squares. The guessed model order is n=18.

$$\ell_2$$
- ℓ_2 min.: $\min \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_2^2$

$$\ell_1$$
- ℓ_1 min.: $\min \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_1 + \lambda \|\mathbf{x}\|_1$

Total Variation (TV) Denoising

• Scenario:

- estimate $\mathbf{x} \in \mathbb{R}^n$ from a noisy measurement $\mathbf{x}_{\mathrm{cor}} = \mathbf{x} + \boldsymbol{\nu}$.
- $-\mathbf{x}$ is known to be piecewise linear, i.e., for most i we have

$$x_i - x_{i-1} = x_{i+1} - x_i \iff -x_{i+1} + 2x_i - x_{i+1} = 0.$$

- equivalently, $\mathbf{D}\mathbf{x}$ is sparse, where

$$\mathbf{D} = \begin{bmatrix} -1 & 2 & 1 & 0 & \dots \\ 0 & -1 & 2 & 1 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \dots & \dots & -1 & 2 & 1 \end{bmatrix}.$$

TV denoising: estimate x by solving

$$\min_{\mathbf{x}} \|\mathbf{x}_{cor} - \mathbf{x}\|_2^2 + \lambda \|\mathbf{D}\mathbf{x}\|_1$$

TV denoised signals for various λ 's.

TV denoised signals via ℓ_2 regularization and for various λ 's.

Application: Magnetic Resonance Imaging (MRI)

Problem: MRI image reconstruction.

Fig. a shows the original test image. Fig. b shows the sampling region in the frequency domain. Fourier coefficients are sampled along 22 approximately radial lines. Source: [Candès-Romberg-Tao'06]

Application: MRI

Fig. c is the recovery by filling the unobserved Fourier coefficients to zero. Fig. d is the recovery by a TV minimization problem. Source: [Candès-Romberg-Tao'06]

Efficient Computations of the $\ell_2-\ell_1$ Minimization Solution

ullet consider the $\ell_2-\ell_1$ minimization problem

$$\min_{\mathbf{x}} \ \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_1.$$

- as mentioned, the problem is convex and there are many optimization algorithms custom-designed for it
 - some keywords for such algorithms: majorization-minimization (MM), ADMM,
 fast proximal gradient (or the so-called FISTA), Frank-Wolfe,...
- Aim: get some flavor of one particular algorithm, namely, MM, that is sufficiently "matrix" and is suitable for large-scale problems

MM for $\ell_2 - \ell_1$ Minimization: LS as an Example

to see the insight of MM, we start with the plain old LS

$$\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2.$$

ullet observe that for a given $\bar{\mathbf{x}}$, one has

$$\|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} = \|\mathbf{y} - \mathbf{A}\bar{\mathbf{x}} - \mathbf{A}(\mathbf{x} - \bar{\mathbf{x}})\|_{2}^{2}$$

$$= \|\mathbf{y} - \mathbf{A}\bar{\mathbf{x}}\|_{2}^{2} - 2(\mathbf{x} - \bar{\mathbf{x}})^{T}\mathbf{A}^{T}(\mathbf{y} - \mathbf{A}\bar{\mathbf{x}}) + \|\mathbf{A}(\mathbf{x} - \bar{\mathbf{x}})\|_{2}^{2}$$

$$\leq \|\mathbf{y} - \mathbf{A}\bar{\mathbf{x}}\|_{2}^{2} - 2(\mathbf{x} - \bar{\mathbf{x}})^{T}\mathbf{A}^{T}(\mathbf{y} - \mathbf{A}\bar{\mathbf{x}}) + c\|\mathbf{x} - \bar{\mathbf{x}}\|_{2}^{2}$$

for any $\mathbf{x} \in \mathbb{R}^n$ and for any $c \geq \sigma_{\max}^2(\mathbf{A})$

MM for $\ell_2 - \ell_1$ Minimization: LS as an Example

• let $c \ge \sigma_{\max}^2(\mathbf{A})$, and let

$$g(\mathbf{x}, \bar{\mathbf{x}}) = \|\mathbf{y} - \mathbf{A}\bar{\mathbf{x}}\|_{2}^{2} - 2(\mathbf{x} - \bar{\mathbf{x}})^{T}\mathbf{A}^{T}(\mathbf{y} - \mathbf{A}\bar{\mathbf{x}}) + c\|\mathbf{x} - \bar{\mathbf{x}}\|_{2}^{2}$$

we have

$$\|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 \le g(\mathbf{x}, \bar{\mathbf{x}}), \quad \text{for any } \mathbf{x}, \bar{\mathbf{x}} \in \mathbb{R}^n$$

 $\|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 = g(\mathbf{x}, \mathbf{x}), \quad \text{for any } \mathbf{x} \in \mathbb{R}^n$

also,

$$\arg\min_{\mathbf{x}\in\mathbb{R}^n} g(\mathbf{x},\bar{\mathbf{x}}) = \frac{1}{c}\mathbf{A}^T(\mathbf{y} - \mathbf{A}\bar{\mathbf{x}}) + \bar{\mathbf{x}}$$

• Idea: given an initial point $\mathbf{x}^{(0)}$, do

$$\mathbf{x}^{(k+1)} = \arg\min_{\mathbf{x} \in \mathbb{R}^n} \ g(\mathbf{x}, \mathbf{x}^{(k)}) = \frac{1}{c} \mathbf{A}^T (\mathbf{y} - \mathbf{A} \mathbf{x}^{(k)}) + \mathbf{x}^{(k)}, \quad k = 1, 2, \dots$$

– note: not very interesting at this moment as the above iteration is the same as gradient descent with step size 1/c

MM for $\ell_2 - \ell_1$ Minimization: General MM Principle

- the example shown above is an instance of MM
- general MM principle:
 - consider a general optimization problem

$$\min_{\mathbf{x} \in \mathcal{C}} f(\mathbf{x})$$

and suppose that f is hard to minimize directly

- let $g(\mathbf{x}, \bar{\mathbf{x}})$ be a surrogate function that is easy to minimize and satisfies

$$f(\mathbf{x}) \le g(\mathbf{x}, \bar{\mathbf{x}})$$
 for all $\mathbf{x}, \bar{\mathbf{x}}, \qquad f(\mathbf{x}) = g(\mathbf{x}, \mathbf{x})$ for all \mathbf{x}

- MM algorithm: $\mathbf{x}^{(k+1)} = \arg\min_{\mathbf{x} \in \mathcal{C}} \ g(\mathbf{x}, \mathbf{x}^{(k)}), k = 1, 2, \dots$
- as a basic result, $f(\mathbf{x}^{(0)}) \geq f(\mathbf{x}^{(1)}) \geq f(\mathbf{x}^{(2)}) \dots$
- suppose that f is convex and C is convex. MM is guaranteed to converge to an optimal solution under some mild assumption [Razaviyayn-Hong-Luo'13]

MM for $\ell_2 - \ell_1$ Minimization: General MM Principle

MM for $\ell_2 - \ell_1$ Minimization

ullet now consider applying MM to the $\ell_2-\ell_1$ minimization problem

$$\min_{\mathbf{x}} \ \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_1.$$

• let $c \ge \sigma_{\max}^2(\mathbf{A})$, and let

$$g(\mathbf{x}, \bar{\mathbf{x}}) = \frac{1}{2} \left(\|\mathbf{y} - \mathbf{A}\bar{\mathbf{x}}\|_{2}^{2} - 2(\mathbf{x} - \bar{\mathbf{x}})^{T} \mathbf{A}^{T} (\mathbf{y} - \mathbf{A}\bar{\mathbf{x}}) + c\|\mathbf{x} - \bar{\mathbf{x}}\|_{2}^{2} \right) + \lambda \|\mathbf{x}\|_{1}$$

- simply plug the same surrogate for $\|\mathbf{y} \mathbf{A}\mathbf{x}\|_2^2$ we saw previously
- it can be shown that

$$\mathbf{x}^{(k+1)} = \operatorname{soft}\left(\frac{1}{c}\mathbf{A}^{T}(\mathbf{y} - \mathbf{A}\mathbf{x}^{(k)}) + \mathbf{x}^{(k)}, \lambda/c\right)$$

where soft is called the soft-thresholding operator and is defined as follows: if $\mathbf{z} = \operatorname{soft}(\mathbf{x}, \delta)$ then $z_i = \operatorname{sign}(x_i) \max\{|x_i| - \delta, 0\}$

Dictionary Learning

- previously A is assumed to be given
- how about learning a fat A from data, as in matrix factorization?
- Dictionary learning (DL): given $\tau > 0$ and $\mathbf{Y} \in \mathbb{R}^{m \times n}$, solve

$$\min_{\mathbf{A} \in \mathbb{R}^{m \times k}, \mathbf{B} \in \mathbb{R}^{k \times n}} \sum_{i=1}^{n} \|\mathbf{y}_i - \mathbf{A}\mathbf{b}_i\|_2^2$$
s.t. $\|\mathbf{b}_i\|_0 \le \tau$, $i = 1, \dots, n$

- DL considers $k \geq m$, and A is called an overcomplete dictionary
- DL is handled by alternating optimization—the same approach in matrix fac.

Dictionary Learning

A collection of n=500 random image blocks. Source: [Aharon-Elad-Bruckstein'06].

Dictionary Learning

The learned dictionary (k=421). Source: [Aharon-Elad-Bruckstein'06].

Part III: LS with Errors in A

LS with Errors in A

- Scenario: errors exist in the system matrix A
- Aim: mitigate the effects of the system matrix errors on the LS solution
- there are many ways to do so, and we look at two
- Total LS (TLS):

$$\min_{\mathbf{x} \in \mathbb{R}^n, \ \boldsymbol{\Delta}_{\mathbf{A}} \in \mathbb{R}^{m \times n}} \ \|\mathbf{y} - (\mathbf{A} + \boldsymbol{\Delta}_{\mathbf{A}})\mathbf{x}\|_2^2 + \|\boldsymbol{\Delta}_{\mathbf{A}}\|_F^2$$

- minimally perturb the system matrix by $\Delta_{\mathbf{A}}$ for best fitting in the Euclidean sense
- Robust LS:

$$\min_{\mathbf{x} \in \mathbb{R}^n} \max_{\mathbf{\Delta}_{\mathbf{A}} \in \mathcal{U}} \|\mathbf{y} - (\mathbf{A} + \mathbf{\Delta}_{\mathbf{A}})\mathbf{x}\|_2^2$$

for some pre-determined uncertainty set $\mathcal{U} \subset \mathbb{R}^{m \times n}$

robustify the LS via a worst-case means

Total LS

$$\min_{\mathbf{x} \in \mathbb{R}^n, \ \boldsymbol{\Delta}_{\mathbf{A}} \in \mathbb{R}^{m \times n}} \ \|\mathbf{y} - (\mathbf{A} + \boldsymbol{\Delta}_{\mathbf{A}})\mathbf{x}\|_2^2 + \|\boldsymbol{\Delta}_{\mathbf{A}}\|_F^2$$

- does not seem to have a closed-form solution at first sight
- turns out to have a closed-form solution under some mild assumptions
- assume **A** to be of full column rank with $m \ge n+1$
- let C = [A y], and let v_{n+1} be the (n+1)th right singular vector of C. If

$$rank(\mathbf{C}) = n + 1, \quad v_{n+1,n+1} \neq 0,$$

then

$$\mathbf{x}_{\mathsf{TLS}} = -\frac{1}{v_{n+1,n+1}} \begin{bmatrix} v_{1,n+1} \\ \vdots \\ v_{n,n+1} \end{bmatrix}$$

is a TLS solution

- see [Golub-Van Loan'13] for further discussion on issues like $v_{n+1,n+1} \neq 0$

Proof Sketch of the TLS Solution

- idea: turn the TLS problem to a low-rank matrix approximation problem
- by a change of variables

$$\mathbf{C} = [\mathbf{A} \ \mathbf{y}] \in \mathbb{R}^{m \times (n+1)}, \qquad \mathbf{D} = [\mathbf{\Delta}_{\mathbf{A}} \ (\mathbf{A} + \mathbf{\Delta}_{\mathbf{A}}) \mathbf{x}] \in \mathbb{R}^{m \times (n+1)},$$

the TLS problem can be formulated as

$$\min_{\mathbf{x}, \mathbf{D}} \|\mathbf{C} - \mathbf{D}\|_F^2 \qquad \text{s.t. } \mathbf{D} \begin{bmatrix} \mathbf{x} \\ -1 \end{bmatrix} = \mathbf{0}$$
 (†)

- the constraint in (†), together with $m \ge n + 1$, implies $rank(\mathbf{D}) \le n$
- or, we can equivalently rewrite (†) as

$$\min_{\mathbf{x}, \mathbf{D}} \|\mathbf{C} - \mathbf{D}\|_F^2 \qquad \text{s.t. } \operatorname{rank}(\mathbf{D}) \le n, \ \mathbf{D} \begin{bmatrix} \mathbf{x} \\ -1 \end{bmatrix} = \mathbf{0}$$

Proof Sketch of the TLS Solution

• consider a *relaxation* of (†):

$$\min_{\mathbf{D}} \|\mathbf{C} - \mathbf{D}\|_F^2 \qquad \text{s.t. } \operatorname{rank}(\mathbf{D}) \le n, \tag{\ddagger}$$

where we drop the constraint $\mathbf{D} \begin{bmatrix} \mathbf{x} \\ -1 \end{bmatrix} = \mathbf{0}$

- let \mathbf{D}^* be a solution to (‡). If there exists an \mathbf{x}^* such that $\mathbf{D}^* \begin{bmatrix} \mathbf{x}^* \\ -1 \end{bmatrix} = \mathbf{0}$, (\mathbf{D}^* , \mathbf{x}^*) is also a solution to (†) and \mathbf{x}^* is a TLS solution
- let $\mathbf{C} = \sum_{i=1}^{n+1} \sigma_i \mathbf{u}_i \mathbf{v}_i^T$ be the SVD
- by the Eckart-Young-Mirsky theorem, a solution to (‡) is $\mathbf{D}^* = \sum_{i=1}^n \sigma_i \mathbf{u}_i \mathbf{v}_i^T$.
- ullet as a basic fact of SVD, we have $\mathbf{D}^{\star}\mathbf{v}_{n+1} = \mathbf{0}$.
- thus, if $v_{n+1,n+1} \neq 0$, we have the desired TLS solution

Robust LS

$$\min_{\mathbf{x} \in \mathbb{R}^n} \max_{\mathbf{\Delta}_{\mathbf{A}} \in \mathcal{U}} \|\mathbf{y} - (\mathbf{A} + \mathbf{\Delta}_{\mathbf{A}})\mathbf{x}\|_2$$

- consider the case of $\mathcal{U} = \{ \mathbf{\Delta}_{\mathbf{A}} \in \mathbb{R}^{m \times n} \mid \|\mathbf{\Delta}_{\mathbf{A}}\|_2 \le \lambda \}$ for some $\lambda > 0$
- the robust LS problem can be shown to be equivalent to

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2 + \lambda \|\mathbf{x}\|_2$$

- Observations and Implications:
 - the equivalent form of the robust LS is very similar to (but not exactly the same as) the previous ℓ_2 -regularized LS
 - robustification is equivalent to regularization
- it can be shown that the same equivalence holds if we replace the uncertainty set by $\mathcal{U} = \{ \Delta_{\mathbf{A}} \in \mathbb{R}^{m \times n} \mid \|\Delta_{\mathbf{A}}\|_F \leq \lambda \}$

Proof Sketch of the Robust LS Equivalence Result

• by the definition of induced norms, we have

$$\|\mathbf{\Delta}_{\mathbf{A}}\|_2 \le \lambda \quad \Longleftrightarrow \quad \|\mathbf{\Delta}_{\mathbf{A}}\mathbf{x}\|_2 \le \lambda \|\mathbf{x}\|_2 \quad \text{for all } \mathbf{x} \in \mathbb{R}^n$$

ullet then, for any $\mathbf{x} \in \mathbb{R}^n$ and for any $oldsymbol{\Delta}_{\mathbf{A}} \in \mathcal{U}$,

$$\|\mathbf{y} - (\mathbf{A} + \mathbf{\Delta}_{\mathbf{A}})\mathbf{x}\|_{2} \leq \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2} + \|\mathbf{\Delta}_{\mathbf{A}}\mathbf{x}\|_{2}$$

$$\leq \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2} + \lambda \|\mathbf{x}\|_{2}, \qquad (*)$$

and note that the 1st equality above holds if $\mathbf{y} - \mathbf{A}\mathbf{x} = -\alpha \mathbf{\Delta}_{\mathbf{A}}\mathbf{x}$ for some $\alpha \geq 0$, and the 2nd equality above holds if \mathbf{x} is the 1st right singular vector of $\mathbf{\Delta}_{\mathbf{A}}$

ullet consider the case of $\mathbf{x} \neq \mathbf{0}$, $\mathbf{y} - \mathbf{A}\mathbf{x} \neq \mathbf{0}$. It can be verified that

$$\mathbf{\Delta}_{\mathbf{A}} = -\frac{\lambda}{\|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2 \|\mathbf{x}\|_2} (\mathbf{y} - \mathbf{A}\mathbf{x})\mathbf{x}^T$$

attains the equalities in (*) and lies in ${\mathcal U}$

the other cases of x are handled in a similar fashion

More Robust LS Equivalences

• denote $\mathcal{U}_{q,p} = \{ \Delta_{\mathbf{A}} \in \mathbb{R}^{m \times n} \mid \|\Delta_{\mathbf{A}}\mathbf{x}\|_p \leq \lambda \|\mathbf{x}\|_q \ \forall \mathbf{x} \}$, where $p, q \geq 1$. We have $\min_{\mathbf{x} \in \mathbb{R}^n} \max_{\Delta_{\mathbf{A}} \in \mathcal{U}_{q,p}} \|\mathbf{y} - (\mathbf{A} + \Delta_{\mathbf{A}})\mathbf{x}\|_p = \min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_p + \lambda \|\mathbf{x}\|_q$

- proof: almost the same as the previous case
- some interesting special cases:

$$\min_{\mathbf{x} \in \mathbb{R}^n} \max_{\mathbf{\Delta_A} \in \mathcal{U}_{2,1}} \|\mathbf{y} - (\mathbf{A} + \mathbf{\Delta_A})\mathbf{x}\|_2 = \min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2 + \lambda \|\mathbf{x}\|_1$$

$$\min_{\mathbf{x} \in \mathbb{R}^n} \max_{\substack{\mathbf{\Delta_A} \in \mathbb{R}^{m \times n} \\ \|\boldsymbol{\delta}_i\|_1 < \lambda \ \forall i}} \|\mathbf{y} - (\mathbf{A} + \mathbf{\Delta_A})\mathbf{x}\|_1 = \min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_1 + \lambda \|\mathbf{x}\|_1$$

note
$$\mathcal{U}_{1,1} = \{ \boldsymbol{\Delta}_{\mathbf{A}} \in \mathbb{R}^{m \times n} \mid \|\boldsymbol{\delta}_i\|_1 \leq \lambda \,\, \forall i \}$$

- Implication: ℓ_1 regularization may also be seen as an act of robustification
- suggested reading: [Bertsimas-Copenhaver'17], including extension to PCA

More on LS

cf. Chapter 6 in [Golub-Van Loan'13]

References

[Yin'13], W. Yin, Sparse Optimization Lecture: Sparse Recovery Guarantees, 2013. Available online at http://www.math.ucla.edu/~wotaoyin/summer2013/slides/Lec03_SparseRecoveryGuarantees.pdf

[Romberg-Wakin'07] J. Romberg and M. Walkin, Compressed Sensing: A tutorial, in IEEE SSP Workshop, 2017. Available online at http://web.yonsei.ac.kr/nipi/lectureNote/Compressed%20Sensing%20by%20Romberg%20and%20Wakin.pdf

[Candès-Romberg-Tao'06] E. J. Candès, J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," *IEEE Trans. Information Theory*, vol. 52, no. 2, pp. 489–509, 2006.

[Aharon-Elad-Bruckstein'06] M. Aharon, M. Elad, and A. Bruckstein, "K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation," *IEEE Trans. Image Process.*, vol. 54, no. 11, pp. 4311–4322, 2006.

[Razaviyayn-Hong-Luo'13] M. Razaviyayn, M. Hong, and Z.-Q. Luo, "A unified convergence analysis of block successive minimization methods for nonsmooth optimization," *SIAM Journal on Optimization*, vol. 23, no. 2, pp. 1126–1153, 2013.

[Golub-Van Loan'13] G. H. Golub and C. F. Van Loan, *Matrix Computations*, 4th edition, JHU Press, 2013.

[Bertsimas-Copenhaver'17] D. Bertsimas and M. S. Copenhaver, "Characterization of the equivalence of robustification and regularization in linear and matrix regression," *European Journal of Operational Research*, 2017.