ENG1005: Lecture 20

Lex Gallon

May 12, 2020

Contents

tepeated eigenvalues §5.7.4	J
Remarks	1
Parametric curves	2
Parametric curves Examples	2
Cangent vectors Example	2
Example	3
unctions of several variables §9.6, 9.6.1	3
Definition	3
Examples	3
Parametric surfaces Definition	3
Definition	3

Video link

Click here for a recording of the lecture.

Repeated eigenvalues §5.7.4

If A is an $n \times n$ matrix, then the characteristic polynomial of A is

$$c(\lambda) = |A - \lambda \mathbb{I}_n| = (\lambda - \lambda_1)^{m_1} (\lambda - \lambda_2)^{m_2} + \dots + (\lambda - \lambda_p)^{m_p}$$

where

- (i) the λ_i , $1 \leq i \leq p \leq n$, are the distinct roots $(\lambda_i \neq \lambda_j \text{ for } i \neq j)$ of $c(\lambda)$ (in general, they are complex).
- (ii) and the m_i , $1 \le i \le p$, is the algebraic multiplicity of the root λ_i .

Remarks

- (a) If p < n, then A may not possess a complete set of eigenvectors.
- (b) If $m_i > 1$, then the number n_i of linearly independent eigenvectors with associated eigenvalue λ_i satisfies

$$1 \le n_i \le m_i$$

Parametric curves

A parametric curve in \mathbb{R}^3 (can do this in \mathbb{R}^n also) is a set of the form

$$C = \{\mathbf{r}(t)|t \in (a,b)\}$$
 (note whether interval is open or closed doesn't matter)

where

$$\mathbf{r}(t) = (x(t), y(t))$$

We call $\mathbf{r}(t)$ the **parametrisation** of the curve \mathcal{C} (i.e. $\mathbf{r}(t)$ is NOT the curve).

The parametric curve C is said to be continuous (differentiable) if the parametrisation $\mathbf{r}(t)$ is continuous (differentiable).

If $\mathbf{r}(t)$ is differentiable, then we define

$$\mathbf{r}'(t) = (x'(t), y'(t))$$

Examples

1. $\mathbf{r}(t) = (\cos(t), \sin(t)), \ 0 \le t \le 2\pi.$ Let $x = \cos(t), \ y = \sin(t), \ \text{and then note that}$

$$x^2 + y^2 = 1$$

So this parametrisation clearly traces out a circle.

2. $\mathbf{r}(t)=(t,t^2),\ t\in\mathbb{R}$ Let x=t and $y=t^2$ and then note that

$$y = x^2$$

So this parametrisation traces a parabola.

Tangent vectors

The approximate tangent vector is given by

$$\frac{\Delta \mathbf{r}}{\Delta t} = \frac{\mathbf{r}(t + \Delta t) - \mathbf{r}(t)}{\Delta t}$$

So clearly, the tangent is given by

$$\lim_{\Delta t \to 0} \frac{\mathbf{r}(t + \Delta t) - \mathbf{r}(t)}{\Delta t} = \mathbf{r}'(t)$$

So $\mathbf{r}'(t)$ gives a tangent vector to the parametric curve \mathcal{C} at the point $\mathbf{r}(t)$.

Example

$$\mathbf{r}(t) = (\cos(t), \sin(t)), \ 0 \le t \le 2\pi$$

Note: I already know that the tangent vector of a circle is at 90 degrees to the radius vector.

$$\mathbf{r}'(t) = (-\sin(t), \cos(t))$$

If this is indeed perpendicular to the radius vector then we would expect the dot product to be zero:

$$\Rightarrow \mathbf{r}(t) \cdot \mathbf{r}'(t) = (\cos(t), \sin(t)) \cdot (-\sin(t), \cos(t))$$
$$= -\cos(t)\sin(t) + \sin(t)\cos(t)$$
$$= 0$$

Functions of several variables §9.6, 9.6.1

Definition

A function of n variables, denoted $f(\mathbf{x})$, $(\mathbf{x} = (x_1, x_2, ..., x_n))$ is a rule that associates to each point $\mathbf{x} \in D \subset \mathbb{R}^n$, D is called the domain, a number $f(\mathbf{x}) \in \mathbb{R}$; symbolically, we write

$$f: D \subset \mathbb{R}^n \to \mathbb{R}: \mathbf{x} \mapsto f(\mathbf{x})$$

Note that $f(\mathbf{x})$ is usually defined by a formula.

Examples

- (a) $f(x,y) = \ln(x^2 + y^2)$. We can assume $D = \mathbb{R}^2 \setminus \{(0,0)\}$
- (b) $f(x, y, z) = e^{xyz}, D = \mathbb{R}^3$

Parametric surfaces

Definition

A parametric surface inf \mathbb{R}^3 is a set S that is defined by

$$S = {\mathbf{r}(u, v)}|(u, v) \subset D \subset \mathbb{R}^2$$

where $\mathbf{r}(u, v) = (x(u, v), y(u, v), z(u, v)).$

We call $\mathbf{r}(u, v)$ the **parametrisation** (or parametric equation) of S.

An important special case of a parametric surface is the graph of a function f(x,y) that is defined by

