

Relatório

Experiência 1 - Curvas de Aprendizagem

PSI3531 - Aplicações de Filtragem Adaptativa (2020)

Matheus Bordin Gomes - 9838028

Essa experiência visa verificar experimentalmente o modelo teórico desenvolvido para o algoritmo LMS. A solução desse exercício foi implementada no script "exp1.m", juntamente com as funções "LMS_under_test.m"e "mean_tan.m".

1. Neste primeiro exercício, foram utilizados os seguintes parâmetros dados no enunciado, variando-se apenas o valor da frequência angular do sinal x[n]. Utilizou-se, primeiramente, $\omega_0=0.5\pi$ e, em sequência, $\omega_0=0.1\pi$. Como a frequência do sinal v[n] é $\omega_1=0.01\pi$, essa redução da frequência de x[n] no segundo caso representa uma aproximação da frequência dos dois sinais. No mais, foi utilizado o passo $\mu=0.01$ e 2000 iterações.

As curvas de e[n], $\Delta\omega_0$ e $\Delta\omega_1$ do primeiro caso ($\omega_0=0.5\pi$) podem ser vistas nas figuras 1 e 2.

Figura 1. Evolução do erro no caso em que $\omega_0 = 0.5\pi$.

Figura 2. Evolução da diferença dos coeficientes do filtro adaptativo para os coeficientes da resposta do sistema no caso em que $\omega_0 = 0.5\pi$.

Como o sinal x[n] é um cosseno com uma fase aleatória uniformemente distribuída no intervalo $[0,2\pi]$ e o filtro adaptativo tem dois coeficientes, $R_{\phi}=\begin{pmatrix} 0.5 & cos(\omega_0) \\ cos(\omega_0) & 0.5 \end{pmatrix}$. Nesse caso, temos que $R_{\phi}=\begin{pmatrix} 0.5 & 0 \\ 0 & 0.5 \end{pmatrix}$, com o autovalor $\lambda=0.5$.

Também foram determinadas as taxas de convergência para esse caso, calculando a média do coeficiente angular de $log(\Delta w_0)$ e $log(\Delta w_1)$ e $log(e^2)$. Obteve-se uma taxa de -0.00503, -0.00502 e -0.01116, respectivamente. Dessa forma, podemos ver que temos uma taxa de convergência igual a $\mu\lambda$, tirando o caso de e^2 , que por ser um valor quadrático tem o valor de convergência dobrado. Já para o segundo caso ($\omega_0 = 0.1\pi$), as curvas de e[n], Δw_0 e Δw_1 podem ser vistas nas figuras 3 e 4. Como a convergência desse caso foi mais lenta, utilizou-se 30000 iterações.

Figura 3. Evolução do erro no caso em que $\omega_0 = 0.1\pi$.

Figura 4. Evolução da diferença dos coeficientes do filtro adaptativo para os coeficientes da resposta do sistema no caso em que $\omega_0 = 0.1\pi$.

Nesse caso, temos que
$$R_{\phi} = \begin{pmatrix} 0.5 & 0.4755 \\ 0.4755 & 0.5 \end{pmatrix}$$
, com os autovalores $\lambda_1 = 0.02447$ e $\lambda_2 = 0.97553$.

Também foram determinadas as taxas de convergência para esse caso, calculando a média do coeficiente angular de $log(\Delta w_0)$ e $log(\Delta w_1)$ e $log(e^2)$. Obteve-se uma taxa de -0.00025, -0.00025 e -0.00050, respectivamente. Dessa forma, podemos ver que temos uma taxa de convergência igual a $\mu\lambda_1$, tirando o caso de e^2 , que por ser um valor quadrático tem o valor de convergência dobrado.

2. Neste exercício, foram calculadas as curvas de aprendizado de Δw_0 experimentais, a partir de 30 realizações do experimento com diferentes valores Θ e Ψ , e teóricas para os dois valores de ω_0 . As curvas de aprendizado de Δw_0 para $\omega_0=0.5\pi$ e para $\omega_0=0.1\pi$ podem ser vistas nas figuras 5 e 6, respectivamente.

Figura 5. Curva de aprendizado teórica e experimental de Δw_0 para $\omega_0=0.5\pi$.

Figura 6. Curva de aprendizado teórica e experimental de Δw_0 para $\omega_0=0.1\pi$.

Assim, podemos ver que em ambos os casos as curvas experimentais estão praticamente sobrepostas às curvas teóricas. Isso mostra que o modelo teórico do LMS se aproxima muito bem do resultado experimental, dado um número razoável de realizações do experimento.

3. Neste caso, tanto o sinal x[n] quanto o sinal v[n] são ruído branco Gaussiano com média nula, tal que a variância de x[n] é 1 e a de v[n] é 0.01.

As curvas de e[n], $\Delta\omega_0$ e $\Delta\omega_1$ podem ser vistas nas figuras 7 e 8.

Figura 7. Evolução do erro.

Figura 8. Evolução da diferença dos coeficientes do filtro adaptativo para os coeficientes da resposta do sistema.

Nesse caso a matriz R_{ϕ} foi calculada experimentalmente. Obteve-se que $R_{\phi} = \begin{pmatrix} 0.9982 & 0.0292 \\ 0.0292 & 0.9982 \end{pmatrix}$ com os autovalores $\lambda_1 = 0.96899$ e $\lambda_2 = 1.02741$.

Também foram determinadas as taxas de convergência para esse caso, calculando a média do coeficiente angular de $log(\Delta w_0)$ e $log(\Delta w_1)$ e $log(e^2)$. Obteve-se uma taxa de -0.00986, -0.01090 e -0.01113, respectivamente. Dessa forma, podemos ver que temos uma taxa de convergência próxima a $\mu\lambda$.

As curvas de aprendizado de Δw_0 podem ser vistas na figura 9. Observa-se que mesmo para esse caso em que os sinais são ruídos aleatórios, a aproximação do modelo teórica foi boa.

Figura 9. Curva de aprendizado teórica e experimental de Δw_0 .

4. Neste exercício foram calculadas as variâncias de $\Delta w_0[n]$, $\Delta w_1[n]$ e de $e_0[n] = e[n] - v[n]$ do item anterior. Os valores experimentais obtidos para $var\Delta w_0[n]$ e $var\Delta w_1[n]$ foram 0.00006 e 0.00003, respectivamente. Já o valor teórico é $0.5*\mu*\sigma_v=0.00005$. Por fim, o valor experimental calculado de vare[n]-v[n] foi de 0.02086.