## [天体形成研究会]

重元素の超微細構造線を用いた中-高温銀河間ガスの観測可能性

渡邊歩, 吉川耕司, 岡本崇

2018 11/3 (水) 渡邉 歩

## missing baryon 問題:観測されないバリオン成分

H, Lyαの観測

(Rauch+1997)



#### 現在の宇宙のエネルギー成分内訳

バリオン(通常の物質) 4.56% ダークマター 22.7% ダークエネルギー 72.8%

 $\Omega_{\rm b0} \sim 0.05$ 宇宙初期のバリオン は約5%

 $\Omega_{\rm IGM}$   $\sim$  0.05 バリオンの大部分は IGM(銀河間ガス)と して存在

CMBの観測

(Planck 2013)

#### 多様なバリオン 成分の観測

- 銀河(恒星+ガス+BH+…)
- CGM(銀河周辺のガス)
- ・ ICM(銀河団間ガス) …などなど

現在のバリオン成分  $\Omega_{\rm b0} \sim 0.025$ 全部合計しても 5%に届かず、約半分 が未観測のバリオン (missing baryon) CGM 5±3% である



### ▶ missing baryon はどこにあるのか: 数値計算で予測されるWHIM

#### 宇宙論的流体力学シミュレーション

- ・宇宙膨張を考慮し、宇宙論的な時間・空間スケールにおけるガス(バリオン)とダークマターの振る舞いを計算
  - ・宇宙初期の密度ゆらぎが成長し、宇宙大規模構造が形成される
- ・星形成,フィードバックのモデルを組み込むことで、銀河形成も取り扱うことができる



▶ missing baryon はどこにあるのか: 数値計算で予測されるWHIM



- ▶ 現在に近づくにつれて、T>10<sup>5</sup> [K] の高温ガスが増加
- ・hot gas (T>10<sup>7</sup>[K]):銀河団に付随しX線を放射するガスとして観測
- ・<u>T=10<sup>5</sup>-10<sup>7</sup> [K]</u>のガスは Warm-Hot Intergalactic Medium : <u>WHIM</u>と命名 された

#### ▶ missing baryon はどこにあるのか: 数値計算で予測されるWHIM

- ▶ WHIMは時間経過とともに増加し、 z=0では<u>バリオンの30-50%(</u>質量比)を占 める
- ⇒ missing baryon の有力候補と考 えられるようになった

ガス成分の時間進化 (Davé+2001)



# ▶ WHIMについて: 数値計算から分かった性質

- ・温度  $T=10^5 \sim 10^7 [K]$
- 密度  $\delta = 1 \sim 10^4 \, (n_H = 10^{-6} 10^{-2} \, \text{cm}^{-3})$
- ・重力崩壊による衝撃波加熱により生じる
- ・ダークマターハロー近傍に加えて、 ダークマターのフィラメント構造に 沿うように分布
- ⇒ ダークマターの大規模構造分布を 知る手掛かりにもなる

#### 各成分の空間分布 (z=0)



Yoshikawa+2001の計算データより

#### 1. 研究背景:なぜ重元素の超微細構造線によるWHIMの観測か

- ▶ WHIMの観測の現状:未だ観測が不十分
- (1) 連続放射 (熱制動放射) による観測
  - ⇒ hot gas(T>10<sup>7</sup>[K])よりも温度が低く、密度が小さいため困難
- (2) <u>ガス中の重元素のatomic ionのスペクトル線(Lyαなど)による観測</u>
  - ●主流の観測手段
  - ガス中に最も多く存在する水素はほとんど電離しているため C,N,O,Neなどの重元素イオンを主に用いる。
  - 観測波長は<u>紫外線</u> (C<sub>IV</sub>,N<sub>V</sub>,O<sub>VI</sub>,O<sub>IV</sub>,O<sub>V</sub>,Ne<sub>VIII</sub>) および <u>soft-X線</u> (O<sub>VII</sub>, O<sub>VIII</sub>, Ne<sub>VI</sub>, Ne<sub>IX</sub>)
- ⇒観測機器精度の不足、前景放射との分離の困難などにより、現在 でも信頼度が高い観測例はほとんどない

#### 1. 研究背景:なぜ重元素の超微細構造線によるWHIMの観測か

- 超微細構造線によるWHIMの観測: 有望な(?)新しい観測手段の提案
- Sunyaev & Docenko (2007): 先行研究で提案
- 重元素の超微細構造線(HFS線)は電波領域にあり、高温ガスの観測手法としては、UV, soft-X線波長域以外の新たな手段
- 観測はまだ試みられていないが、SKA(2023~)などの次世代電波望遠鏡による将来の観測が期待される
- SD07では、 $^{14}N_{VII}$ イオンのHFS吸収線を使えば、WHIMが現行の電波望遠鏡GBTでも $3\sigma$ で観測可能という結論。 ただし、オーダー評価による粗い見積もり

⇒より定量的に観測可能性を評価したい(本研究)

#### 2. 研究の目的と手法

#### 目的

WHIMを含む銀河間ガス(IGM)をHFS線で観測したと きに

- ・どの程度の信号強度があるか(観測可能性)
- ・観測されるスペクトルとガスの物理状態との関係 を知りたい

#### 手法

数値計算によってHFS線スペクトルを疑似的に作成し、解析する

▶ 超微細構造(HyperFine Structure)とは:電子系角運動量-核スピン相互作用により生じる非常に小さなエネルギー差の電子準位

#### 例:水素原子のエネルギー準位



#### 水素原子の21cm線遷移過程



#### <u>3. HFS線の性質</u>

- ▶ HFS線観測に適した重元素同位体イオン: <sup>14</sup>N<sub>VII</sub>, <sup>14</sup>N<sub>v</sub>イオンが有力
- 原子性イオンのHFS線は、核種と電子数によって異なる
- ⇒ どの元素同位体、どの電離階数のイオンが観測に適しているか?
- 核スピンIが non-zeroのイオン のみがHFS線を持つ
- ⇒ HFS線を持つI ≠ 0の同位体はマイナー な同位体が多い

しかし、窒素Nのメジャーな同位体 $^{14}N$ は $I \neq 0$ のため、存在比が大きい

※WHIMの温度では、水素とヘリウムはほとんど電離しているため、HFS線の観測には向いていない



- ▶ HFS線観測に適した重元素同位体イオン: <sup>14</sup>N<sub>VII</sub>, <sup>14</sup>N<sub>V</sub>イオンが有力
- WHIMの温度域では、窒素の6階電離(N<sub>VII</sub>)と4階電離(N<sub>V</sub>) イオンの存在度が高い
- $\Rightarrow$  この2つのイオンを計算に用いる  $(F = 0 \leftrightarrow 1$ の遷移)

室素のionization fractionの温度依存性

|                                   | $^{14}\mathrm{N_{VII}}$ | $^{14}\mathrm{N_V}$ |
|-----------------------------------|-------------------------|---------------------|
| HFS線の振動数<br>v <sub>ul</sub> [GHz] | 53.04                   | 4.239               |



- ▶ HFS準位のlevel populationに対する仮定: CRE(衝突・輻射平衡)
- HFS準位のlevel populationによって、HFS線が吸収線・輝線のどちらになるか決まる。
- level populationを決める物理過程
- ▶ 電子衝突による励起・脱励起
- ▶ 輻射場による励起・脱励起



#### 水素原子の21cm線遷移過程



level population: F=0,1にあるイオンの割合

### ▶ HFS準位のlevel populationに対する仮定: CRE(衝突・輻射平衡)

●CMB光子および電子衝突による励起・脱励起の平衡状態:

$$n_u \left( A_{ul} + B_{ul} J + n_e C_{ul}(T) \right) = n_l \left( B_{lu} J + n_e C_{lu}(T) \right)$$

 $J = B_{\nu_{ul}}(T_{CMB})$ : HFS線振動数におけるCMB輻射強度

A,B: HFS遷移に関するEinstein係数 C(T): 電子衝突によるHFS遷移率係数

● upper / lower 準位の占有比に変形

$$\frac{n_u}{n_l} \sim \frac{g_u}{g_l} \frac{N + n_e/n_{\rm cr}}{1 + N + n_e/n_{\rm cr}}$$

$$J = \frac{2hv_{ul}^{3}}{c^{2}} \frac{1}{e^{hv_{ul}/k_{B}T_{R-1}}} = \frac{2hv_{ul}^{3}}{c^{2}} N$$

 $n_{\rm cr} \equiv A_{ul} / C_{ul}(T)$  : 臨界密度

$$(1)$$
  $n_e \ll n_{\rm cr}$  のとき  $\frac{n_u}{n_l} \sim \frac{g_u}{g_l} \frac{N}{1+N} \rightarrow ({\rm CMB})$ 輻射強度で決まる

$$(2) n_e \gg n_{\rm cr}$$
 のとき  $\frac{n_u}{n_l} \sim \frac{g_u}{g_l} (1 - n_{cr}/n_e)$  →電子密度で決まる

#### 4. 疑似スペクトル計算の詳細 : HFS線スペクトルの作成

# 宇宙論的輻射輸送方程式

- ガス雲によるHFS線吸収とHFS線放射の両方を考慮
- 宇宙膨張の効果を取り入れた1次元輻射輸送方程式:

$$\left(\frac{1}{c}\frac{\partial}{\partial t} + \frac{\partial}{\partial s} - \frac{\nu \dot{a}}{c}\frac{\partial}{\partial v}\right) I_{\nu}(s,t) = -\left(\chi_{\nu}(s,t) + \frac{3}{c}\frac{\dot{a}}{a}\right) I_{\nu}(s,t) + \underline{\eta_{\nu}(s,t)}$$
HFS線吸収 光子数密度減少

形式解 
$$I_{\nu} = I_{\nu}^{0} \exp[-\tau_{\nu}] + I_{\nu}^{(em)}$$





 $v'_{\text{gas}} = v \left( 1 + z(x') \right) \left( 1 + \frac{v_{\text{gas}//}(x')}{c} \right)$ 



$$I_{\nu}^{0} = I_{\nu_{\rm ini}}^{(0)} (1 + z_{\rm ini})^{-3}$$
:背景光源の輻射強度

$$au_{\nu} = \int_{x_{\mathrm{obs}}}^{x_{\mathrm{ini}}} dx' \frac{\chi_{\nu'_{\mathrm{gas}}}(x')}{1+z(x')}$$
: HFS線吸収に対する光学的厚み

$$I_{v}^{(em)} = \int_{x_{\text{obs}}}^{x_{\text{ini}}} dx' \frac{\eta_{v'_{\text{gas}}}(x')}{(1+z(x'))^4} \exp\left[-\int_{x'}^{x_{\text{ini}}} dx'' \frac{\chi_{v''_{\text{gas}}}(x'')}{1+z(x'')}\right]$$
: HFS線放射による輻射強度

# 4. 疑似スペクトル計算の詳細 : HFS線スペクトルの作成

# **•**

#### HFS線吸収率·放射率

- HFS線吸収率  $\chi_{\nu} = \frac{h\nu}{4\pi} \phi_{ul}(\nu) (n_l B_{lu} n_u B_{ul}) = \frac{g_u}{g_l} \frac{c^2 A_{ul}}{8\pi \nu^2} \phi_{ul}(\nu) \frac{1 \frac{g_l u_u}{g_u n_l}}{1 + \frac{n_u}{n_l}} (n_l + n_u)$
- HFS線放射率  $\eta_{\nu} = \frac{h\nu}{4\pi} \phi_{ul}(\nu) n_u A_{ul} = \frac{h\nu A_{ul}}{4\pi} \phi_{ul}(\nu) \frac{1}{1 + \frac{n_l}{n_u}} (n_l + n_u)$   $n_l + n_u = n(^{14}N_{ion})$

 $A_{ul}$ :Einstein係数,  $\phi_{ul}(\nu)$ :line profile関数,  $n_l$ ,  $n_u$ : HFS遷移の上下準位

line profile function ⇒ Doppler profile

$$\phi_{ul}(v) = \frac{1}{\Delta v_D \sqrt{\pi}} \exp \left[ -\left(\frac{v - v_{ul}}{\Delta v_D}\right)^2 \right] , \qquad \Delta v_D = \frac{v_{ul}}{c} \sqrt{\frac{2k_B T}{m_{\rm ion}}}$$

|                                             | Frequency $ u_{ul}$ [GHz] | Doppler parameter $b \text{ [km/s]}$ $(T = 10^6 \text{ [K]})$ | Doppler width $\Delta \nu_D [\text{MHz}]$ $(T = 10^6 [\text{K}])$ |
|---------------------------------------------|---------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|
| <sup>14</sup> N <sub>VII</sub> (H-like ion) | 53.04                     | 34                                                            | 6                                                                 |
| $^{14}\mathrm{N_V}$ (Li-like ion)           | 4.239                     | 34                                                            | 0.5                                                               |

### ▶ モデル設定:密度・温度ごとのシグナルを調べる

- ●密度・温度・奥行き方向の長さをパラメータとする。
- ➤ 金属量:密度の関数 Z = f(p)
- ➤ HFSイオンは<sup>14</sup>N<sub>VII</sub>と<sup>14</sup>N<sub>V</sub>
- ▶ 同位体存在比:f<sub>14N</sub> = 0.99771 (原始太陽系での値, Asplund et al. 2011)
- $rac{>}$  ガス雲のbulk motion無視 ( $v_{\rm gas}=0$ )
- ▶ ガス雲の赤方偏移:z=0



- ► モデル設定:密度・温度ごとのシグナルを調べる
- ●背景光源の設定
- (A) 光源天体がない方向を観測した場合
- ⇒ 背景輻射場はCMB :  $I_{\nu}^{0} = I_{\nu}^{CMB}$
- $I_{\nu} = I_{\nu}^{CMB} \exp[-\tau_{\nu}] + I_{\nu}^{(em)}$  輝線と吸収線の両方がありうる
- (B) QSOなどの明るい背景天体を観測した場合
- ⇒背景輻射場がHFS輝線輻射に比べて十分大きいと仮定

$$I_{\nu}^{bright \, src} \gg I_{\nu}^{(em)}$$
 と近似

$$I_{\nu} = I_{\nu}^{bright \, src} \exp[-\tau_{\nu}]$$
 吸収線のみ

- ▶ 結果:ケース(A) CMB背景光源の場合
- (1) <sup>14</sup>N<sub>VII</sub>のHFSスペクトルの等価幅
  - 等価幅EW (Equivalent Width)

$$EW \equiv \int \frac{\left| I_{\nu} - I_{\nu}^{(CMB)} \right|}{I_{\nu}^{(CMB)}} d\nu = \int |\delta_{\nu}| d\nu$$





・EW = EW<sub>em</sub> + EW<sub>abs</sub> と分けて、それぞれ計算

WHIMの領域では 放射と吸収と同程度か 放射が支配的

- ▶ 結果:ケース(A) CMB背景光源の場合
- (2) <sup>14</sup>N<sub>v</sub>のHFSスペクトルの等価幅
- 等価幅EW (Equivalent Width)

$$EW \equiv \int \frac{\left| I_{\nu} - I_{\nu}^{(CMB)} \right|}{I_{\nu}^{(CMB)}} d\nu = \int |\delta_{\nu}| d\nu$$





・EW = EW<sub>em</sub> + EW<sub>abs</sub> と分けて、それぞれ計算

WHIMの領域では 放射が支配的

- ▶ 結果:ケース(A) CMB背景光源の場合
- ●大規模構造ガス分布中での結果
- 宇宙論的構造形成シミュレーション(Okamoto+2014など)のガス 分布データを用い、どのようなガスがHFS線で観測できるか検証



▶ 結果:ケース(A) CMB背景光源のサーム モデル計算の結果 大規模構造ガス分布中での結果 EW(ρ,T,Z<sub>met</sub>)を使用



- ► モデル設定:密度・温度ごとのシグナルを調べる
- ●背景光源の設定
- (A) 光源天体がない方向を観測した場合
- ⇒ 背景輻射場はCMB :  $I_{\nu}^{0} = I_{\nu}^{CMB}$
- $I_{\nu} = I_{\nu}^{CMB} \exp[-\tau_{\nu}] + I_{\nu}^{(em)}$  輝線と吸収線の両方がありうる
- (B) QSOなどの明るい背景天体を観測した場合
- ⇒背景輻射場がHFS輝線輻射に比べて十分大きいと仮定

$$I_{\nu}^{bright\ src} \gg I_{\nu}^{(em)}$$
 と近似

$$I_{\nu} = I_{\nu}^{bright \, src} \exp[-\tau_{\nu}]$$
 吸収線のみ

# ▶ 結果:ケース(B)明るい天体を背景光源とする場合

● 14NVIIの等価幅 EW

$$EW \equiv \int \frac{\left| I_{\nu} - I_{\nu}^{(b.s.)} \right|}{I_{\nu}^{(b.s.)}} d\nu = \int a_{\nu} d\nu$$

- → (A)では吸収・放射相殺が起こっていたため
- ◆ T~10<sup>6.3</sup> K付近で値が大きい
- → ionization fraction が大きい領域



# ▶ 結果:ケース(B)明るい天体を背景光源とする場合

● 14NVの等価幅 EW

$$EW \equiv \int \frac{\left| I_{\nu} - I_{\nu}^{(b.s.)} \right|}{I_{\nu}^{(b.s.)}} d\nu = \int a_{\nu} d\nu$$

- $\Phi n_H \sim 10^{-3} \text{cm}^{-3}$ で、ケース(A)とオーダーが変わらない
- → (A)で吸収放射相殺が起きていなかったため
- ◆ T~10<sup>5.3</sup>K付近で値が大きい
- → ionization fraction が大きい領域



- ▶ 結果:ケース(B)明るい天体を背景光源とする場合
- 大規模構造ガス分布におけるはモデル計算の結果

ガスの空間分布 (z=0) 厚さΔL  $EW(\rho, T, Z_{met})$  を使用 ス 変度 $\log(1+\delta)$  14NVIIの $EW(\log)$  14NVIIの $EW(\log)$ 



# ▶ 結果:ケース(B)明るい天体を背景光源とする場合

シミュレーションのガス分布(z=0)を用いた<sup>14</sup>N<sub>VII</sub> HFS線の擬似観測結果

銀河団周辺におけるガス密度分布(スライス) 吸収線がGBT100時間観測におけるS/N



HFS吸収線スペクトルと 視線方向の物理量の例



# ▶ 結果:ケース(B)明るい天体を背景光源とする場合

● シミュレーションのガス分布(z=0)を用いた <sup>14</sup>N<sub>VII</sub> HFS線の擬似観測結果

Cosmological filament に沿った視線の場合: filamentの高密度領域の一部もトレースしている



HFS吸収線スペクトルと 視線方向の物理量の例



### まとめ

- igodownWHIMの新たな観測手段として、電波領域( $\lambda=0.1$ mm-10cm)の超微細構造(HFS)線に着目。トレーサーに適した重元素イオンとして $^{14}N_{VII}$ と $^{14}N_{V}$ を採用。
- 一様なガス雲に対して、HFS線スペクトルのモデル計算を行い、 線吸収や線放射がどの程度生じるか調べた。
- →先行研究と比較して、より定量的に調べた。
- $\bigcirc$  EWの比較から、 $^{14}N_V$ イオンによるHFS線のシグナルは $^{14}N_{VII}$ の場合に比べて非常に小さいことが分かった。
- ●擬似観測の結果から、<sup>14</sup>N<sub>VII</sub>イオンのHFS線は、銀河群の裾野やフィラメント領域で受かりやすく、現行の望遠鏡(GBT)でも同定できそうなシグナル強度を持つことが分かった。
- ●HFS吸収線スペクトルはガスの密度・速度構造を反映して複雑な形をしているので、スペクトルをsingle lineとしてfittingするのは困難。 →個々のスペクトルの形に対し、トレースしているガス雲の物理量を引き。 出すのは難しい。→統計的な結果について調べたい。