1

Assignment 3

Gorantla Pranav Sai- CS20BTECH11018

Download all python codes from

https://github.com/pranav-159/ ai1103_Probability_and_Random_variables/ blob/main/Assignment_3/codes/ experimental_verification_gate46.py

and latex-tikz codes from

https://github.com/pranav-159/ ai1103_Probability_and_Random_variables/ blob/main/Assignment_3/Assignment3.tex

1 Problem(gate46)

Consider the random process

$$X(t) = U + Vt$$
,

where U is a zero-mean Gaussian random variable and V is a random variable distributed between 0 and 2. Assume that U and V are statistically independent. The mean value of the random process at t=2 is.......

2 Solution(gate46)

Here U is a gaussian random variable of mean 0 and Let us consider V is uniformly distributed random variable in (0, 2).

Random Variable	U	V	X(t)
Expected Value	0	1	t

TABLE 0: Random Variables and Expected Values

Using table 0 we can deduce that,

E[X(t)] = E[U + Vt]	(2.0.1)
E[X(t)] = E[U] + tE[V]	(2.0.2)
$E\left[X(t)\right] = 0 + t$	(2.0.3)
$E\left[X(t)\right] = t$	(2.0.4)
E[X(2)] = 2	(2.0.5)

 \therefore mean of random process X(t) at 2 is 2.