LINFIT

Release Today

Ray

CONTENTS:

1 LINFIT	1
Python Module Index	3

CHAPTER

ONE

LINFIT

LINFIT

class mirspec.mirspec(wavelength, flux, flux_error)

Create a new mid-infrared spectrum object

Parameters

- wavelength Wavelength in microns or specified unit
- flux Flux in Jansky or specified unit
- flux_error Flux error in Jansky or specified unit

Return type Instance variable

Returns

spectrum variable with wavelength in microns and flux and flux error in Jansky.

```
linfit(sigma=1.5, l_min=5, l_max=15, max_interations=50)
```

Executes the fit of the equation $\log F_{\nu} = \operatorname{slope} \times \log \nu + \operatorname{intercept}$ by clipping the emission and absorption features where residual $> \sigma \times \operatorname{standard}$ deviation_{residual}

How to use:

```
Initiate a spectrum object
spec = mirspec(wavelength, flux, flux_error)
run the method
spec.linfit()
and call any of the resulting instance variables
spec.ten_flux
```

Parameters

- **sigma** Multiplicative number that determines that a point sigma*standard deviation of the residuals is excluded before next iteration, effectively clipping the spectrum
- 1_min Minimum wavelength to use
- 1_max Maximum wavelength to use
- max_interations Maximum number of times to iterate the fit

Return type Instance variables

Returns Results of the fit **slope**, **intercept**, the absorption corrected 10.5 microns flux (**ten_flux**) and the arrays containing the data of each iteration for **frequencies**, **fluxes**, **slopes**, **intercepts**, **residual_stds**.

2 Chapter 1. LINFIT

PYTHON MODULE INDEX

m

mirspec, 1