0.1 循环行列式

循环行列式关于单位根的计算公式见命题??.

例题 0.1 设 a, n 是给定互素正整数, 按 Euild 除法 (带余除法), 存在唯一确定的整数对 (s, t) 使得 $a = sn + t, 0 \le t \le n - 1$.

令

$$u_i = \begin{cases} s+1, & 0 \le i < t \\ s, & t \le i \le n-1 \end{cases}$$

若t与n互素, 计算

$$D_n = \begin{vmatrix} u_0 & u_1 & \cdots & u_{n-1} \\ u_{n-1} & u_0 & \cdots & u_{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ u_1 & u_2 & \cdots & u_0 \end{vmatrix}$$

证明 记 $f(x) \triangleq \sum_{i=1}^{n} u_i x^i, w_j \triangleq e^{\frac{2\pi j i}{n}}, j = 0, 1, 2, \cdots, n-1$, 则由命题??可知

$$D_n = \prod_{k=0}^n f(w_k) = f(1) \prod_{k=0}^{n-1} f(w_k).$$

由条件可知

$$f(1) = \sum_{i=0}^{t-1} (s+1) + \sum_{i=t}^{n-1} s = (s+1)t + (n-t)s = ns + t = a.$$

从而

$$D_n = a \prod_{k=0}^{n-1} f(w_k) = a \prod_{k=0}^{n-1} \left[\sum_{i=0}^{t-1} (s+1) w_k^i + \sum_{i=t}^{n-1} s w_k^i \right]$$
$$= a \prod_{k=0}^{n-1} \left[\sum_{i=0}^{t-1} w_k^i + s \sum_{i=0}^{n-1} w_k^i \right] = a \prod_{k=0}^{n-1} \left(\frac{1 - w_k^t}{1 - w_k} + s \frac{1 - w_k^n}{1 - w_k} \right).$$

由 $w_k^n = 1, w_k = w_1^k$ 可知

$$D_n = a \prod_{i=0}^{n-1} \frac{1 - w_1^{kt}}{1 - w_1^k}.$$

由群论可知 $\{1, w_1, \cdots, w_1^{n-1}\}$ 是一个循环群且 w_1 的阶为 n, 再根据群论的 Lagrange 定理及 (t, n) = 1 可知, w_1^t 的 阶为 $\frac{n}{(n,t)} = n$. 因此 $w_1^t = w_1$, 故 $\langle w_1 \rangle = \{1, w_1, w_1^2, \cdots, w_1^{n-1}\} = \{1, w_1^t, w_2^{tt}, \cdots, w_1^{(n-1)t}\}$. 于是 $w_1^k = w_1^{tk}, k = 1, 2, \cdots, n-1$, 故

$$D_n = a \prod_{k=0}^{n-1} \frac{1 - w_1^{kt}}{1 - w_1^k} = a.$$

例题 0.2 计算:

$$D_n = \begin{vmatrix} a & a+d & \cdots & a+(n-1)d \\ a+(n-1)d & a & \cdots & a+(n-2)d \\ \vdots & \vdots & & \vdots \\ a+d & a+2d & \cdots & a \end{vmatrix}.$$

证明 记
$$f(x) = \sum_{j=0}^{n-1} (a+jd)w_k^j$$
, 其中 $w_k = e^{\frac{2\pi k i}{n}}$, $k = 0, 1, 2, \dots, n-1$. 由命题**??**可知

$$D_{n} = f(w_{0}) f(w_{1}) \cdots f(w_{n-1}) = \prod_{k=0}^{n-1} \sum_{j=0}^{n-1} (a+jd) w_{k}^{j} = \frac{2an+n(n-1)d}{2} \prod_{k=1}^{n-1} \sum_{j=0}^{n-1} (a+jd) w_{k}^{j}$$

$$\frac{\text{#} \oplus \text{#} \oplus$$

注意到 w_k-1 , $k=1,2,\cdots,n-1$ 是 $(x+1)^n-1=0$ 的 n-1 个复根, 这些根和 $w_0-1=0$ 一起就是 $(x+1)^n-1=0$ 的全部复根. 从而由 Vieta 定理可得, $(x+1)^n-1$ 的一次项系数乘 $(-1)^{n-1}$ 为

$$(-1)^{n-1}n = \sum_{0 \leqslant i_1 < i_2 < \dots < i_{n-1} \leqslant n-1} (w_{i_1} - 1)(w_{i_2} - 1) \cdots (w_{i_{n-1}} - 1) = \prod_{k=1}^{n-1} (w_k - 1).$$

故

$$D_n = \frac{2an + n(n-1)d}{2} \cdot (dn)^{n-1} \prod_{k=1}^{n-1} \frac{1}{w_k - 1} = (-1)^{n-1} \cdot \frac{2a + (n-1)d}{2} \cdot (nd)^{n-1}.$$