

Self-Supervised Reinforcement Learning for Recommender Systems (2020)

- Xin Xin
- Alexandros Karatzoglou
- Ioannis ArapakisJoemon M. Jose

Explicado por: Vicente Díaz y Martín Vinay

Tabla de contenido

- Contexto
- Marco teórico
- Trabajo relacionado
- Modelo propuesto
- Experimentos
- Principales resultados
- Contribuciones

Contexto

Recomendación secuencial

 Su objetivo es generar la recomendación del siguiente ítem a partir de una secuencia de interacciones usuario-ítem.

 Es uno de los casos más comunes dentro de los sistemas recomendadores.

• Entrenamiento *self-supervised*: aprende a predecir el mismo tipo de data.

$$x_{1:t} = \{x_1, x_2, ..., x_{t-1}, x_t\} \longrightarrow \mathcal{X}_{t+1}$$

Recomendación secuencial

Problemas:

- Este tipo de *approach* tiende a ser subóptimo, al solo hacer un *fit* entre las predicciones y las señales de supervisión.
- Interacciones son de variados tipos (ej. clicks y compras), información comúnmente no incluida en estos modelos.

Reinforcement learning recommendation

Ventajas:

Maximiza satisfacción a largo plazo.

 Modelos con objetivos flexibles (ej. diversidad y novedad)

Problemas:

 Política aprendida en entrenamiento offline no es óptima al no haber exploración.

 Falta de datos y recompensas negativas

Next item recommendation

Next item recommendation

Reinforcement Learning (MDP)

 \mathcal{A} : Espacio discreto de acciones t.q. $a_t = x_{t+1} \in \mathcal{A}$

 ${\mathcal S}$: Espacio continuo de estados t.q. $s_t = G(x_{1:t}) \in {\mathcal S}$

 $P: \mathcal{S} imes \mathcal{A} imes \mathcal{S} o \mathbb{R}$ es la probabilidad de transicion de estados

 $R: \mathcal{S} imes \mathcal{A}
ightarrow \mathbb{R}$ es una funcion de premio/ \emph{reward}

 γ : factor de descuento para recompensa futura

Se busca una politica $\pi_{ heta}(a|s)$ que maximice el reward dado un estado $s \in \mathcal{S}$ sobre las posibles acciones \mathcal{A}

Q-Learning

Ecuación de Bellman

Trabajo relacionado

Algoritmos recomendación secuencial

- Primeros modelos:
 - Cadenas de Markov: problema en modelar señales de secuencias complejas.
 - o Factorización matricial: no modela el orden de las interacciones user-item

Estado de arte (deep learning):

- Gated recurrent units (GRU)
- Basados en CNN: Caser y NItNet
- Self-attention with Transformers: SASRec

Modelo propuesto

Frameworks

Los autores presentan dos modelos:

- SQN (Self-supervised Q learning): A partir de los estados embebidos se extiende un head self-supervised y un head de RL. La función de pérdida de estas cabezas es compartida. La recomendación final es a partir de la self-supervised head.
- **SAC** (Self-supervised Actor-Critic): Similar al modelo SQN, pero el *head* RL actúa como crítico sobre el actor (*head self-supervised*).

SQN: Self-supervised Q learning

SAC: Self-supervised Actor-Critic

(c) SAC architecture. CE stands for cross-entropy.

 $L_a = L_s imes Q(s_t, a_t)$

Acciones con alto valor de Q, deberían recibir pesos incrementados en la *self-supervised head*, y viceversa

Modelo propuesto

Experimentos realizados

Datasets

Table 1: Dataset statistics.

Dataset	RC15	RetailRocket
#sequences	200,000	195,523
#items	26,702	70,852
#clicks	1,110,965	1,176,680
#purchase	43,946	57,269
	YOOCHO SE Personalization Solutions	retailrocket

Ambas empresas prestan servicios en el área de e-commerce.

Baselines

Modelos del estado del arte para recomendación secuencial regenerativa:

Research questions

RQ1

How do the proposed methods **perform** when **integrated** with existing recommendation models?

RQ2

How does the **RL** component **affect performance**, including the reward setting and the discount factor?

RQ3

What is the performance if we **only use Q-learning** for recommendation?

Principales resultados

RQ1: Model performance

Table 2: Top-k recommendation performance comparison of different models (k = 5, 10, 20) on RC15 dataset. NG is short for NDCG. Boldface denotes the highest score. * denotes the significance p-value < 0.01 compared with the corresponding baseline.

Models	purchase					click						
Wiodels	HR@5		HR@10	NG@10	HR@20	NG@20	HR@5	NG@5	HR@10	NG@10	HR@20	NG@20
GRU	0.3994	0.2824	0.5183	0.3204	0.6067	0.3429	0.2876	0.1982	0.3793	0.2279	0.4581	0.2478
GRU-SQN	0.4228^{*}	0.3016*	0.5333^{*}	0.3376^*	0.6233^{*}	0.3605^*	0.3020^{*}	0.2093^*	0.3946*	0.2394*	0.4741^{*}	0.2587^{*}
GRU-SAC	0.4394*	0.3154*	0.5525*	0.3521^*	0.6378*	0.3739*	0.2863	0.1985	0.3764	0.2277	0.4541	0.2474
Caser	0.4475	0.3211	0.5559	0.3565	0.6393	0.3775	0.2728	0.1896	0.3593	0.2177	0.4371	0.2372
Caser-SQN	0.4553^*	0.3302*	0.5637^*	0.3653*	0.6417^{*}	0.3862^*	0.2742	0.1909	0.3613	0.2192	0.4381	0.2386
Caser-SAC	0.4866*	0.3527^*	0.5914*	0.3868*	0.6689*	0.4065*	0.2726	0.1894	0.3580	0.2171	0.4340	0.2362
NItNet	0.3632	0.2547	0.4716	0.2900	0.5558	0.3114	0.2950	0.2030	0.3885	0.2332	0.4684	0.2535
NItNet-SQN	0.3845^*	0.2736*	0.4945^{*}	0.3094*	0.5766*	0.3302*	0.3091*	0.2137^*	0.4037^*	0.2442^{*}	0.4835^{*}	0.2645^{*}
NItNet-SAC	0.3914*	0.2813*	0.4964*	0.3155*	0.5763*	0.3357^*	0.2977^*	0.2055^*	0.3906	0.2357^*	0.4693	0.2557^*
SASRec	0.4228	0.2938	0.5418	0.3326	0.6329	0.3558	0.3187	0.2200	0.4164	0.2515	0.4974	0.2720
SASRec-SQN	0.4336	0.3067^*	0.5505	0.3435^{*}	0.6442^{*}	0.3674*	0.3272*	0.2263*	0.4255^{*}	0.2580^{*}	0.5066*	0.2786*
SASRec-SAC	0.4540*	0.3246*	0.5701*	0.3623*	0.6576*	0.3846*	0.3130	0.2161	0.4114	0.2480	0.4945	0.2691

RQ1: Model performance

Table 2: Top-k recommendation performance comparison of different models (k = 5, 10, 20) on RC15 dataset. NG is short for NDCG. Boldface denotes the highest score. * denotes the significance p-value < 0.01 compared with the corresponding baseline.

Models	purchase						click					
TYTOGETS	HR@5	NG@5	HR@10	NG@10	HR@20	NG@20	HR@5	NG@5	HR@10	NG@10	HR@20	NG@20
GRU	0.3994	0.2824	0.5183	0.3204	0.6067	0.3429	0.2876	0.1982	0.3793	0.2279	0.4581	0.2478
GRU-SQN	0.4228^{*}	0.3016^{*}	0.5333^{*}	0.3376^{*}	0.6233^*	0.3605^*	0.3020^{*}	0.2093^{*}	0.3946*	0.2394*	0.4741^{*}	0.2587^{*}
GRU-SAC	0.4394*	0.3154*	0.5525*	0.3521^*	0.6378*	0.3739*	0.2863	0.1985	0.3764	0.2277	0.4541	0.2474
Caser	0.4475	0.3211	0.5559	0.3565	0.6393	0.3775	0.2728	0.1896	0.3593	0.2177	0.4371	0.2372
Caser-SQN	0.4553^*	0.3302^*	0.5637^*	0.3653^*	0.6417^{*}	0.3862^*	0.2742	0.1909	0.3613	0.2192	0.4381	0.2386
Caser-SAC	0.4866*	0.3527^*	0.5914*	0.3868*	0.6689*	0.4065*	0.2726	0.1894	0.3580	0.2171	0.4340	0.2362
NItNet	0.3632	0.2547	0.4716	0.2900	0.5558	0.3114	0.2950	0.2030	0.3885	0.2332	0.4684	0.2535
NItNet-SQN	0.3845^{*}	0.2736^{*}	0.4945^{*}	0.3094*	0.5766*	0.3302^*	0.3091*	0.2137*	0.4037*	0.2442^{*}	0.4835*	0.2645*
NItNet-SAC	0.3914*	0.2813*	0.4964*	0.3155*	0.5763^{*}	0.3357*	0.2977^*	0.2055^*	0.3906	0.2357^*	0.4693	0.2557^*
SASRec	0.4228	0.2938	0.5418	0.3326	0.6329	0.3558	0.3187	0.2200	0.4164	0.2515	0.4974	0.2720
SASRec-SQN	0.4336	0.3067^{*}	0.5505	0.3435^{*}	0.6442^{*}	0.3674*	0.3272^{*}	0.2263*	0.4255^{*}	0.2580^{*}	0.5066*	0.2786^{*}
SASRec-SAC	0.4540*	0.3246*	0.5701*	0.3623*	0.6576*	0.3846*	0.3130	0.2161	0.4114	0.2480	0.4945	0.2691

RQ2: RL parameters

Figure 4: Effect of reward settings on RetailRocket

• Para la comparación de desempeño se eligió un $r_p / r_c = 5$.

RQ2: RL parameters

Figure 6: SAC with different discount factors

Para la comparación de desempeño se eligió un γ = 0.5.

RQ3: Only Q-learning

Figure 8: Comparison of NDCG when only using Q-learning for recommendations.

Contribuciones

Contribuciones

Las contribuciones de este *paper* son:

- Un modelo basado en self-supervised reinforcement learning for sequential recommendation.
- Dos frameworks (SQN y SAC) para co-entrenar la cabeza supervisada y la cabeza RL.
- Resultados experimentales efectivos en dos datasets del mundo real del e-commerce.

Contribuciones 29

Referencias

- Hado V Hasselt. 2010. Double Q-learning. In Advances in Neural Information Processing Systems. 2613–262.
- Balázs Hidasi and Alexandros Karatzoglou. 2018. Recurrent neural networks with top-k gains for session-based recommendations. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management. ACM, 843–852.
- Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. 2015.
 Session-based recommendations with recurrent neural networks. arXiv preprint arXiv:1511.06939 (2015).
- Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recommendation.
 In 2018 IEEE International Conference on Data Mining (ICDM). IEEE, 197–206.

Referencias 30

Self-Supervised Reinforcement Learning for Recommender Systems (2020)

- Xin Xin
- Alexandros Karatzoglou
- loannis ArapakisJoemon M. Jose

Explicado por: Vicente Díaz y Martín Vinay