

Sur la figure, la droite (d1) est perpendiculaire à la droite (d3) et la droite (d2) est perpendiculaire à la droite (d3). Que peut-on dire des droites (d1) et (d2) ? Justifier la réponse avec rigueur.

Pour cela recopier et compléter :

Propriété utilisée : si...alors...

La droite (d1) est ... La droite (d2) est

Donc

Les droites (d1) et (d2) sont

Exercice 2

Sur la figure, les droites (d1) et (d2) sont parallèles et la droite (d3) est perpendiculaire à la droite (d1). Que peut-on dire des droites (d2) et (d3) ? Justifier la réponse avec rigueur.

Pour cela recopier et compléter :

Propriété utilisée : si...alors...

Les droites (d1) et (d2) ...

La droite (d3) est

Donc:

Les droites (d1) et (d2) sont

Réponse

1° Les droites (d1) et (d2) sont parallèles.

2° Justification

Propriété utilisée :

Si deux droites sont perpendiculaires à une troisième droite, alors les deux droites sont parallèles.

La droite (d1) est perpendiculaire à la droite (d3)

La droite (d2) est perpendiculaire à la droite (d3)

Donc

Les droites (d1) et (d2) sont parallèles.

Avec les notations mathématiques :

(d1) \perp (d3) et (d2) \perp (d3)

Donc:

(d1) // (d2)

Réponse

1° Les droites (d3) et (d2) sont perpendiculaires

2° Justification:

Propriété utilisée :

Si deux droites sont parallèles et si une troisième droite est perpendiculaire à l'une alors elle est perpendiculaire à l'autre.

Les droites (d1) et (d2) sont parallèles.

La droite (d3) est perpendiculaire à la droite (d1)

Donc

La droite (d3) est perpendiculaire à (d2).

Avec les notations mathématiques :

(d1) // (d2) et $(d3) \perp (d1)$

Donc:

 $(d3) \perp (d2)$

Sur la figure ci-dessus les droites (AE) et (AB) sont perpendiculaires et (BF) et (AB) sont perpendiculaires.

1° Que peut-on dire des droites (AE) et (BF) ?

2° Justifier la réponse avec rigueur.

Exercice 4

Le quadrilatère ABCD a ses côtés [AB] et [CD] parallèles. La droite (EF) est perpendiculaire à (AB).

1° Que peut-on dire des droites (EF) et (DC) ?

2° Justifier la réponse avec rigueur.

<u>Réponse</u>

1° Les droites (AE) et (BF) sont parallèles.

2° Justification

Propriété utilisée :

Si deux droites sont perpendiculaires à une troisième droite, alors les deux droites sont parallèles.

La droite (AE) est perpendiculaire à la droite (AB) La droite (BF) est perpendiculaire à la droite (AB) Donc

Les droites (AE) et (BF) sont parallèles.

Avec les notations mathématiques :

(AE) \perp (AB) et (BF) \perp (AB)

Donc:

(AE) // (BF)

Réponse

1° Les droites (EF) et (DC) sont perpendiculaires

2° Justification:

Propriété utilisée :

Si deux droites sont parallèles et si une troisième droite est perpendiculaire à l'une alors elle est perpendiculaire à l'autre.

Les droites (AB) et (DC) sont parallèles.

La droite (EF) est perpendiculaire à la droite (AB)

Donc

La droite (EF) est perpendiculaire à (DC).

Avec les notations mathématiques :

(AB) // (DC) et (EF) \perp (AB)

Donc:

(EF) \perp (DC)

ABCD est un rectangle.

La droite (BE) est perpendiculaire à (AC).

La droite (DF) est perpendiculaire à (AC).

Démontrer que (BE) et (DF) sont parallèles.

<u>Réponse</u>

Propriété utilisée:

Si deux droites sont perpendiculaires à une troisième droite, alors les deux droites sont parallèles.

La droite (BE) est perpendiculaire à la droite (AC) La droite (DF) est perpendiculaire à la droite (AC)

Dono

Les droites (BE) et (DF) sont parallèles.

Avec les notations mathématiques :

(BE) \perp (AC) et (DF) \perp (AC)

Donc:

(BE) // (DF)

Exercice 6

ABCD est un carré.

Les droites (DE) et (BF) sont parallèles.

La droite (AB) perpendiculaire à (DF).

La droite (AG) est perpendiculaire à (DE).

Démontrer que (AG) est aussi perpendiculaire à (BF).

Réponse

Propriété utilisée:

Si deux droites sont parallèles et si une troisième droite est perpendiculaire à l'une alors elle est perpendiculaire à l'autre

Les droites (DE) et (BF) sont parallèles.

La droite (AG) est perpendiculaire à la droite (DE)

Donc

La droite (AG) est perpendiculaire à (BF).

Avec les notations mathématiques :

(DE) // (BF) et (AG) \perp (DE)

Donc:

 $(AG) \perp (BF)$

Tracer un segment [AB]

Tracer (d1) la perpendiculaire à (AB) passant par A. Coder l'angle droit en A.

Tracer (d2) la perpendiculaire à (AB) passant par B. Coder l'angle droit en B.

Placer un point C sur (d2).

Tracer (d3) la perpendiculaire à (d2) passant par C. Coder l'angle droit en C.

Placer D le point d'intersection de (d1) et (d3). Démontrer que le quadrilatère ABCD est un rectangle.

Pour cela:

1° Démontrer que : (d1) // (d2)2° Démontrer que : $(d1) \perp (d3)$

Exercice 8

Recopier et compléter la propriété suivante.

Si un quadrilatère possède trois angles droits alors le quatrième angle

Si un quadrilatère possède trois angles droits alors ce quadrilatère est

Réponse

1° Propriété utilisée :

Si deux droites sont perpendiculaires à une troisième droite, alors les deux droites sont parallèles.

(d1) \perp (AB) et (d2) \perp (AB)

Donc:

(d1) // (d2)

2° Propriété utilisée :

Si deux droites sont parallèles et si une troisième droite est perpendiculaire à l'une alors elle est perpendiculaire à l'autre.

(d1) // (d2) et (d3) \perp (d2)

Donc:

 $(d3) \perp (d1)$

Réponse

Propriété

Si un quadrilatère possède trois angles droits alors le quatrième angle est aussi un angle droit.

Si un quadrilatère possède trois angles droits alors ce quadrilatère est un rectangle.