Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Sistemas de Computação

SSC 140 - SISTEMAS OPERACIONAIS I

Aula 14 - Gerenciamento de Memória

Profa, Sarita Mazzini Bruschi

Slides de autoria de Luciana A. F. Martimiano baseados no livro Sistemas Operacionais Modernos de A. Tanenbaum

Gerenciamento de Memória Troca de Páginas

- Se todas as páginas estiverem ocupadas, uma página deve ser retirada: página vítima;
- Exemplo:
 - Dois processos P1 e P2, cada um com 4 páginas virtuais;
 - Memória principal com 6 páginas;

Gerenciamento de Memória Troca de Páginas Memória Virtual P1 Tabela de Páginas P1 0 A 1 B 2 C 3 D Simplificada Mem<u>ória</u> Principal 0 D 1 A 2 F 3 E 4 G В Mem<u>ória</u> Virtual P2 Tabela de Páginas P2 0 **E** 1 **F** Simplificada 3 páginas de cada processo 3 v 2 **G** 3 **H** ٧ → P2 tenta acessar página 3! Falta de Página!

Gerenciamento de Memória Troca de Páginas Memória Virtual P1 Tabela de Páginas P1 Simplificada 0 A 1 B 2 C 3 D 1 V 5 V Memória Principal 0 D 1 A 2 F 3 E 4 H 5 B 0 V Mem<u>ória</u> Virtual P2 Tabela de Páginas P2 3 páginas de Simplificada 0 E 1 F 2 G 3 H cada processo → Página 2 (virtual) é escolhida como vítima!

Gerenciamento de Memória
Troca de Páginas - Paginação

Algoritmos:
Otimo;
NRU;
FIFO;
Segunda Chance;
Relógio;
LRU;
Working set;
WSClock;

Gerenciamento de Memória Troca de Páginas - Paginação

- Algoritmo Ótimo:
 - Retira da memória a página que tem menos chance de ser referenciada;
 - □ Praticamente impossível de se saber;
 - Impraticável;
 - Usado em simulações para comparação com outros algoritmos;

7

Gerenciamento de Memória Troca de Páginas - Paginação

- Algoritmo Not Recently Used Page Replacement (NRU) ou Não Usada Recentemente (NUR)
 - Troca as páginas não utilizadas recentemente:
 - 02 bits associados a cada página → R (referência) e M (modificação)
 - Classe 0 (R = 0 e M = 0) → não referenciada, não modificada;
 - Classe 1 (R = 0 e M = 1) → não referenciada, modificada;
 - Classe 2 (R = 1 e M = 0) → referenciada, não modificada;
 - □ Classe 3 (R = 1 e M = 1) → referenciada, modificada;
 - R e M são atualizados a cada referência à memória;

Gerenciamento de Memória Troca de Páginas - Paginação

■ NRU:

- Periodicamente, o bit R é limpo para diferenciar as páginas que não foram referenciadas recentemente;
 - □ A cada *tick* do relógio ou interrupção de relógio;
 □ Classe 3 → Classe 1;
- Vantagens: fácil de entender, eficiente para implementar e fornece bom desempenho;

9

Gerenciamento de Memória Troca de Páginas - Paginação

- Algoritmo First-in First-out Page Replacement (FIFO)
 - SO mantém uma listas das páginas correntes na memória;
 - A página no início da lista é a mais antiga e a página no final da lista é a mais nova;
 - Simples, mas pode ser ineficiente, pois uma página que está em uso constante pode ser retirada;
 - Pouco utilizado;

10

Gerenciamento de Memória Troca de Páginas - Paginação

■ Algoritmo da Segunda Chance

- FIFO + bit R;
- Página mais velha é candidata em potencial;

Se o bit R==0, então página é retirada da memória, senão, R=0 e se dá uma nova chance à página colocando-a no final da lista;

Se página A com R==1; e falta de página em tempo 10; Então R=0 e página A vai para final da lista;

Gerenciamento de Memória Troca de Páginas - Paginação

□ Algoritmo do Relógio

- Lista circular com ponteiro apontando para a página mais antiga
- Algoritmo se repete até encontrar R=0;

Se R=0

- troca de página

- desloca o ponteiro

- desloca o ponteiro

- continua busca

12

Gerenciamento de Memória Troca de Páginas - Paginação □ Algoritmo do Relógio Α L В К С When a page fault occurs, the page the hand is pointling to is inspected. The action taken depends on the R bit: R = 0: Evict the page R = 1: Clear R and advance hand J D Е F Н G

Gerenciamento de Memória Troca de Páginas - Paginação

- Algoritmo Least Recently Used Page Replacement (LRU) ou Menos Recentemente Usada (MRU)
 - Troca a página menos referenciada/modificada recentemente;
 - Alto custo
 - Lista encadeada com as páginas que estão na memória, com as mais recentemente utilizadas no início e as menos utilizadas no final;
 - A lista deve ser atualizada a cada referência da memória;

14

Gerenciamento de Memória Troca de Páginas - Paginação

- Algoritmo Least Recently Used Page Replacement (LRU)
 - Pode ser implementado tanto por hardware quanto por software:
 - Hardware: MMU deve suportar a implementação LRU;
 - Contador em hardware (64 bits);
 - Após cada referência à memória, o valor do contador é armazenado na tabela de páginas;
 - Quando ocorre falta de página, o SO examina todos os contadores e escolhe a página que tem o menor valor
 - Software: duas maneiras
 - NFU (Not frequently used) ou LFU (least frequently used);
 - Aging (Envelhecimento);

15

Gerenciamento de Memória Troca de Páginas - Paginação

- □ Software: NFU ou LFU (least)
 - Para cada página existe um contador → iniciado com zero e incrementado a cada referência à pagina;
 - Página com menor valor do contador é candidata a troca;
 - Esse algoritmo não se esquece de nada
 - Problema: pode retirar páginas que estão sendo referenciadas com freqüência;
 - Compilador com vários passos: passo 1 tem mais tempo de execução que os outros passos → páginas do passo 1 terão mais referências armazenadas;

16

Gerenciamento de Memória Troca de Páginas - Paginação

- □ Software: Algoritmo aging (envelhecimento)
 - Modificação do NFU, resolvendo o problema descrito anteriormente;
 - Além de saber <u>quantas vezes</u> a página foi referenciada, também controla <u>quando</u> ela foi referenciada:
 - Geralmente, 8 bits são suficientes para o controle se as interrupções de relógio (clock ticks) ocorrem a cada 20ms (10-3);

17

Gerenciamento de Memória Troca de Páginas - Paginação ■ Algoritmo aging Bits R para páginas 0-5 $\begin{array}{c|c} clock \ tick \ 0 \\ \hline 1 \ 0 \ 1 \ 0 \ 1 \ 1 \end{array}$ clock tick 3 clock tick 1 1 1 0 0 1 0 clock tick 2 clock tick 4 0 10000000 11000000 11100000 11110000 01111000 1 00000000 10000000 11000000 01100000 10110000 2 10000000 00100000 00100000 01000000 10001000 3 00000000 00000000 10000000 01000000 00100000 4 10000000 11000000 01100000 10110000 01011000 5 10000000 01000000 10100000 01010000 00101000 b) c)

Gerenciamento de Memória Troca de Páginas - Paginação □ Algoritmo Working Set (WS): ■ Paginação por demanda → páginas são carregadas na memória somente quando são necessárias; ■ Pré-paginação → Working set □ Carregar um conjunto de páginas que um processo está efetivamente utilizando (referenciando) em um determinado tempo te antes de ele ser posto em execução; w(k,t) WS P1 P3 P4 P7 P8 P4 tt lempo

Gerenciamento de Memória Troca de Páginas - Paginação

- □ Algoritmo Working Set (WS):
 - Objetivo principal: reduzir a falta de páginas
 u Um processo só é executado quando todas as páginas necessárias no tempo te estão carregadas na memória;
 - SO gerencia quais páginas estão no Working Set;
 - Para simplificar → o working set pode ser visto como o conjunto de páginas que o processo referenciou durante os últimos t segundos de tempo;
 - Utiliza bit R e o tempo de relógio (tempo virtual) da última vez que a página foi referenciada;

20

Gerenciamento de Memória Troca de Páginas - Paginação

- □ Algoritmo *WSClock*:
 - Clock + Working Set;
 - Lista circular de molduras de páginas formando um anel a cada página carregada na memória;
 - Utiliza bit R e o tempo da última vez que a página foi referenciada;
 - Bit M utilizado para agendar escrita em disco;

22

Gerenciamento de Memória Troca de Páginas - Paginação

- □ Algoritmo WSClock:
 - Se todas estiverem com M==1; então escreve página atual no disco, e troca a página;
 - Melhor desempenho → menos acessos ao disco:

26