### Towards Practical First-Order Model Counting

Ananth K. Kidambi<sup>1</sup> Guramrit Singh<sup>1</sup> **Paulius Dilkas**<sup>2,3</sup> Kuldeep S. Meel<sup>4,2</sup>

<sup>1</sup>IIT Bombay, India

<sup>2</sup>University of Toronto, Canada

<sup>3</sup>Vector Institute, Canada

<sup>4</sup>Georgia Tech, USA

SAT 2025

#### Motivation

#### Example Setting

- $\blacktriangleright$  Let  $\triangle$  be a set of cardinality n
- ▶ Suppose we want to count all  $P \subseteq \Delta^2$  (as a function of n) that are:
  - functions,
  - bijections,
  - partial orders,
  - symmetric,
  - transitive,
  - etc.

#### Motivation

#### **Example Setting**

- ▶ Let  $\triangle$  be a set of cardinality n
- ▶ Suppose we want to count all  $P \subseteq \Delta^2$  (as a function of n) that are:
  - functions,
  - bijections,
  - partial orders,
  - symmetric,
  - transitive,
  - etc.
- Propositional model counting (#SAT) is #P-complete
- But many of these counting problems have efficient solutions
- ► And we can find them using first-order model counting
  - ▶ i.e., reasoning about sets, subsets, and arbitrary elements without grounding them

# First-Order Model Counting

#### The Problem with CRANE

### A Solution Produced for the Bijection-Counting Problem

$$f(m,n) = \sum_{l=0}^{n} {n \choose l} (-1)^{n-l} g(l,m),$$
  

$$g(l,m) = g(l-1,m) + mg(l-1,m-1)$$

#### The Problem with CRANE

### A Solution Produced for the Bijection-Counting Problem

$$f(m,n) = \sum_{l=0}^{n} {n \choose l} (-1)^{n-l} g(l,m),$$
  

$$g(l,m) = g(l-1,m) + mg(l-1,m-1)$$

#### Issues

Completeness: what are the base cases of g?

Usability: how do I compute, e.g., f(7,7)?

1. Use Crane to compile  $\phi$  into a set of equations  ${\cal E}$ 

- 1. Use Crane to compile  $\phi$  into a set of equations  $\mathcal{E}$
- 2. Simplify them, e.g.,

$$g(l,m) = \sum_{k=0}^{m} [0 \le k \le 1] {m \choose k} g(l-1, m-k)$$

becomes

$$g(l,m) = g(l-1,m) + mg(l-1,m-1)$$

- 1. Use Crane to compile  $\phi$  into a set of equations  $\mathcal E$
- 2. Simplify them, e.g.,

$$g(l,m) = \sum_{k=0}^{m} [0 \le k \le 1] {m \choose k} g(l-1, m-k)$$

becomes

$$g(l, m) = g(l-1, m) + mg(l-1, m-1)$$

3. Identify a sufficient set of base cases

• e.g., 
$$\{g(0, m), g(l, 0)\}$$

g(0, m)

4. For each base case: g(I, 0)













#### **Benchmarks**

► Friends & Smokers

$$(\forall x, y \in \Delta. \ S(x) \land F(x, y) \to S(y)) \land (\forall x \in \Delta. \ S(x) \to C(x))$$

#### **Benchmarks**

► Friends & Smokers

$$(\forall x, y \in \Delta. \ S(x) \land F(x, y) \to S(y)) \land (\forall x \in \Delta. \ S(x) \to C(x))$$

Functions

$$(\forall x \in \Gamma. \exists y \in \Delta. P(x,y)) \land (\forall x \in \Gamma. \forall y, z \in \Delta. P(x,y) \land P(x,z) \rightarrow y = z)$$

#### **Benchmarks**

► Friends & Smokers

$$(\forall x, y \in \Delta. \ S(x) \land F(x, y) \to S(y)) \land (\forall x \in \Delta. \ S(x) \to C(x))$$

Functions

$$(\forall x \in \Gamma. \exists y \in \Delta. P(x,y)) \land (\forall x \in \Gamma. \forall y, z \in \Delta. P(x,y) \land P(x,z) \rightarrow y = z)$$

Bijections

$$(\forall x \in \Gamma. \exists y \in \Delta. P(x,y)) \land (\forall y \in \Delta. \exists x \in \Gamma. P(x,y)) \land (\forall x \in \Gamma. \forall y, z \in \Delta. P(x,y) \land P(x,z) \rightarrow y = z) \land (\forall x, z \in \Gamma. \forall y \in \Delta. P(x,y) \land P(z,y) \rightarrow x = z)$$

### Friends & Smokers



### Bijections



#### **Functions**



### Summary

TODO: and future work