Natural

1. Algoritma Mencari Volume Tabung

Judul

Menghitung volume tabung berdasarkan jari-jari dan tinggi tertentu. Algoritma menerima masukan jari-jari dan tinggi, lalu menghitung volumenya, dan mencetak hasilnya.

Deklarasi:

- Jari jari = real (tipe data bilangan pecahan)
- Tinggi = real (tipe data bilangan pecahan)
- Volume = real (tipe data bilangan pecahan)
- PHI = 3.14

Deskripsi:

- 1. Baca Jari_jari dan Tinggi
- 2. Hitung Volume = PHI * Jari_jari * Jari_jari * Tinggi
- 3. Tampilkan Volume ke layar
- 4. Selesai

Pseudocode

Mulai

- 1. Deklarasikan variabel:
 - radius (untuk menyimpan jari-jari tabung)
 - tinggi (untuk menyimpan tinggi tabung)
- volume (untuk menyimpan hasil perhitungan volume tabung)
- pi (nilai konstanta Pi = 3.14159)
- 2. Input nilai jari-jari (radius) dari pengguna
- 3. Input nilai tinggi (tinggi) dari pengguna
- 4. Hitung volume menggunakan rumus:

volume = pi * radius^2 * tinggi

5. Tampilkan hasil volume kepada pengguna Selesai

natural

2. Algoritma Mencari Volume Kubus

Judul

Menghitung volume kubus berdasarkan panjang sisi. Algoritma menerima masukan panjang sisi, lalu menghitung volumenya, dan mencetak hasilnya.

Deklarasi:

- Sisi = real (tipe data bilangan pecahan)
- Volume = real (tipe data bilangan pecahan)

Deskripsi:

- 1. Baca Sisi
- 2. Hitung Volume = Sisi * Sisi * Sisi
- 3. Tampilkan Volume ke layar
- 4. Selesai

Pseudocode

Mulai

Deklarasikan variabel `sisi` Deklarasikan variabel `volume`

Tampilkan "Masukkan panjang sisi kubus:" Baca input 'sisi'

Hitung volume dengan rumus: volume = sisi * sisi * sisi

Tampilkan "Volume kubus adalah: " + volume Selesai

