CSCI 301 HW 3

Isaac Boaz

April 26, 2023

Proposition. If A, B, and C are sets, then $A - (B \cap C) = (A - B) \cup (A - C)$

Proof. By definition of set equality, $A = B \iff A \subseteq B \land B \subseteq A$.

Proving $A - (B \cap C) \subseteq (A - B) \cup (A - C)$

Suppose $x \in A - (B \cap C)$

By definition of difference, $x \in A \land x \notin (B \cap C)$

By definition of intersection, x could be in B or C, but not both.

WLOG Suppose $x \in B$.

Then $x \in B \land x \notin C$.

By definition of complement, $x \in (A - C)$.

By definition of union, $x \in (A - B) \cup (A - C)$

Therefore $A - (B \cap C) \subseteq (A - B) \cup (A - C)$

Proving $(A - B) \cup (A - C) \subseteq A - (B \cap C)$

Suppose $y \in (A - B) \cup (A - C)$

By definition of union, $y \in (A - B) \lor y \in (A - C)$

WLOG suppose $y \in (A - B)$

By definition of difference, $y \in A \land y \notin B$

Thus $y \in A \land y \notin (B \cap C)$

Thus by definition of difference $y \in A - (B \cap C)$

Therefore $(A - B) \cup (A - C) \subseteq A - (B \cap C)$

Therefore
$$A - (B \cap C) = (A - B) \cup (A - C)$$

Proposition. If
$$n \in \mathbb{Z}$$
, then $\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \cdots + \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!}$
Note: $\frac{1}{2!} + \frac{3}{3!} + \frac{3}{4!} + \cdots + \frac{n}{(n+1)!} = \sum_{i=1}^{n} \frac{i}{(i+1)!}$

Proof. By mathematical induction.

Proof. By mathematical induction. Basis Step: Observe at $n=1, \frac{1}{2!}=1-\frac{1}{2!}$ is true. Inductive Step: Suppose $\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\cdots+\frac{n}{(n+1)!}=1-\frac{1}{(n+1)!}$ Then $\sum_{i=1}^n\frac{i}{(i+1)!}+\frac{n+1}{(n+2)!}=1-\frac{1}{(n+1)!}+\frac{n+1}{(n+2)!}=1-\frac{(n+2)!}{(n+1)!(n+2)!}+\frac{(n+1)(n+1)!}{(n+1)!(n+2)!}=1-\frac{(n+1)!(n+2)!}{(n+1)!(n+2)!}+\frac{(n+1)(n+1)!}{(n+1)!(n+2)!}=1-\frac{(n+2)-(n+1)}{(n+1)!(n+2)!}=1-\frac{(n+2)-(n+1)}{(n+2)!}=1-\frac{1}{(n+2)!}$

Then
$$\sum_{i=1}^{n} \frac{i}{(i+1)!} + \frac{n+1}{(n+2)!} = 1 - \frac{1}{(n+1)!} + \frac{n+1}{(n+2)!}$$

$$= 1 - \frac{(n+2)!}{(n+1)!(n+2)!} + \frac{(n+1)(n+1)!}{(n+1)!(n+2)!}$$

$$=1-\frac{(n+1)!(n+2)!}{(n+1)!(n+2)!}+\frac{(n+1)!(n+1)!}{(n+1)!(n+2)!}$$

$$=1-\frac{(n+1)!(n+2)-(n+1)!}{(n+1)!(n+2)!}=1-\frac{(n+2)-(n+1)!}{(n+2)!}$$

$$=1-\frac{1}{(n+2)!}$$

Therefore
$$\sum_{i=1}^{n} \frac{i}{(i+1)!} + \frac{n+1}{(n+2)!} = 1 - \frac{1}{(n+2)!}$$

Proposition. If $n \in \mathbb{Z}$, then $\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{2^n} \ge 1 + \frac{n}{2}$.

Proof. By mathematical induction.

Basis Step: Observe at
$$n = 1$$
, $\frac{1}{1} + \frac{1}{2} \ge 1 + \frac{1}{2}$ is true. Inductive Step: Suppose $\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2^n} \ge 1 + \frac{n}{2}$ That is to say, suppose $\sum_{i=1}^{2^n} \frac{1}{i} \ge 1 + \frac{n}{2}$.

Then $\sum_{i=1}^{2^n} \frac{1}{i} + \sum_{i=2^n}^{2^{n+1}} \ge 1 + \frac{n}{2} + \sum_{i=2^n+1}^{2^{n+1}} \frac{1}{i}$

There are 2^n terms in the sum $\sum_{i=2^n+1}^{2^{n+1}} \frac{1}{i}$, and they are all $\geq \frac{1}{2^{n+1}}$, so their sum is $\geq \frac{2^n}{2^{n+1}} = \frac{1}{2}$. Thus $\sum_{i=1}^{2^{n+1}} \frac{1}{i} \geq 1 + \frac{n}{2} + \sum_{i=2^n+1}^{2^{n+1}} \frac{1}{i} \geq 1 + \frac{n}{2} + \frac{1}{2} = 1 + \frac{n+1}{2}$. Hence, we have shown that $\sum_{i=1}^{2^n} \frac{1}{i} \geq 1 + \frac{n}{2}$ holds for all $n \in \mathbb{Z}$

Thus
$$\sum_{i=1}^{2^{n+1}} \frac{1}{i} \ge 1 + \frac{n}{2} + \sum_{i=2^{n+1}}^{2^{n+1}} \frac{1}{i} \ge 1 + \frac{n}{2} + \frac{1}{2} = 1 + \frac{n+1}{2}$$