10.02.2023, 14:22 OneNote

Нумерационное кодирование

5 января 2023 г. 1:24

Имеем:

- 1. Последовательность на выходе источника ${f x}$ длины ${f n}$: $x\in X^n$
- 2. Алфавит из M символов (индексы от 0 до M-1): $X = \{0, 1, \dots, M-1\}$
- 3. Вводим такую величину, как композиция вектор, в котором каждое число говорит о том, сколько раз встретился символ. Например, $au_0(m{x})$ говорит о том, сколько раз встретился 0 в последовательности $m{x}$. $\tau(\boldsymbol{x}) = (\tau_0(\boldsymbol{x}), \dots, \tau_{M-1}(\boldsymbol{x}))$

Кодирование:

- 1. Кодовое слово состоит из двух частей: $m{c} = (m{c}_1, m{c}_2)$
- 2. c_1 описывает $au= au(m{x})$, т.е. описывает композицию, содержащую информацию о том, сколько раз какой символ встречался в последовательности на выходе источника
- 3. c_2 описывает номер **x** в лексикографически упорядоченном списке всех возможных $\{\mathbf{x}\}$, которые имеют такую же композицию $au = au(oldsymbol{x})$ (например, есть строка из 10 букв с, 3 букв b и 1 буквы а, {x} - это все перестановки из них, отсортированные

лексикографически, там надо найти х и передать его индекс)

Способы передачи композиции (как закодировать c_1):

- 1. Можно передать прямым кодом, но будет затрачено очень много бит плохой подход
- 2. Можно представить композицию как двоичную последовательность вида $0^{ au_0}10^{ au_1}1,\dots,10^{ au_{M-1}}$, которая имеет длину (n+M-1) и вес (кол-во единиц) (M-1). Ищем все варианты строк такой же длины и такого же веса, лексикографически упорядочиваем их и кодируем равномерным кодом номер последовательности
- 3. Берем Q ненулевых компонент au и упорядочиваем их по убыванию. Кодируем эту упорядоченную последовательность с равномерными вероятностями арифметическим кодером. Далее при помощи арифметического кодера кодируем буквы, которые соответствуют композиции. Первая буква кодируется с вероятностью 1/М, вторая - с вероятностью 1/(М-1), т.к. первая уже не берется в расчет, и т.д.

То же самое из презентации:

- **1** Кодируем каждый $\tau_i(\mathbf{x})$, кроме i = M 1, прямым кодом, используя $\lceil \log(n+1) \rceil$ бит.
- **②** Представим композицию $au_0({m x}),..., au_{M-1}({m x})$ как двоичную последовательность вида $0^{\tau_0}(1), ..., 1_{M-1}(A)$ как дом тить последовательность вида $0^{\tau_0}(1)^{\tau_1}1, ..., 10^{\tau_{M-1}}$, которая имеет длину (n+M-1) и вес (количество единиц) M-1.

 Количество строк такой же длины и веса: $N_{\tau}(n,M) = \binom{n+M-1}{M-1}$.

 - Лексикографически упорядочиваем все строки.
 - Кодируем равномерным кодом номер последовательности, используя $\lceil N_{\tau}(n,M) \rceil$ бит.
- ullet Упорядочим Q ненулевых компонент au по убыванию, т.е., $au_0 \in \{1,..,n\}$, $au_1 \in \{1,.., au_0\}$, $au_2 \in \{1,.., au_1\}$ и т.д.
 - ▶ au_Q кодируем АК с вероятностью $\dfrac{1}{n}\dfrac{1}{ au_0}\dfrac{1}{ au_1}\dfrac{1}{ au_2}...\dfrac{1}{ au_{Q-2}}.$ ▶ При помощи АК кодируем буквы, которые соответствуют
 - компонентам композиции с вероятностью $\frac{1}{M}\frac{1}{M-1}\frac{1}{M-2}\frac{1}{M-2}\dots\frac{1}{M-Q+2}$.

Далее надо закодировать вторую часть кодового слова ($oldsymbol{c}_2$)

Рассмотрим на примере для M=3, $au=(au_0, au_1, au_2)$

В этом случае количество всех возможных ${f x}$ для $au({m x})$ будет:

$$N(\tau) = \binom{n}{\tau_0} \binom{n-\tau_0}{\tau_1} =$$

$$\frac{n!}{\tau_0!(n-\tau_0)!}\frac{(n-\tau_0!)}{\tau_1!(n-\tau_0-\tau_1)!} = \frac{n!}{\tau_0!\tau_1!\tau_2!}$$

В общем случае для алфавита объемом М имеем:

$$N(\tau) = \frac{n!}{\tau_0!\tau_1!\dots\tau_{M-1}!}$$

Эта величина покажет, сколько нужно бит, чтобы передать $m{c}_2$, т.е. номер $m{x}$ в лексикографически упорядоченном списке всех возможных {х}

Это делается с помощью арифметического кодера

Берем из кодируемого сообщения длиной п по одному символу и кодируем с учетом композиции, т.е. зная, сколько раз каждый символ встречается в сообщении. Вероятность для каждого символа будет:

т этого символа $n-\kappa$ ол - во уже пройденных символов

В процессе, как мы понимаем, обновляется п и композиция. С каждым символом п уменьшается на 1, а в композиции соответствующее символу значение уменьшается на 1

IF_WE_CANNOT_DO_AS_WE_WOULD_WE_SHOULD_DO_AS_WE_CAN

t	X	$\hat{p}(x)$	Композиция $ au(x)$
0		_	12,5,5,4,4,4,3,3,2,2,2,1,1,1,1
1	Π	1/50	12,5,5,4,4,4,3,3,2,2,2,1,1,1,0
2	F	1/49	12,5,5,4,4,4,3,3,2,2,2,1,1,0
3	_	12/48	11,5,5,4,4,4,3,3,2,2,2,1,1
4	W	5/47	11,4,5,5,4,4,4,3,3,2,2,2,1,1

5	Е	4/46	11,4,5,5,3,4,4,3,3,2,2,2,1,1
6	_	10/45	10,4,5,5,3,4,4,3,3,2,2,2,1,1

$$G = \frac{12!(5!)^2(4!)^3(3!)^2(2!)^3}{50!}$$

$$L = \lceil -\log G
ceil + 1 = 151$$
 бит.

При таком подходе, если п устремить к бесконечности, получим, что избыточность будет минимальной достижимой, а скорость кода будет близка к энтропии