

微积分I

3学分、经管类外招

数学系王伟文

课程网页二维码

课程要求

按时出勤、提交作业,有事请假。根据教学规定<mark>缺</mark> 勤/缺作业超过1/3不能参加期末考试;

上课请带上笔和草稿纸

微信上搜索雨课堂小程序,认证登陆后找到课程: 2024-微积分I

作业要求

- 每次提交作业不能超过3张A4纸,每一张标注学号和 姓名;
- 每两周提交一次作业。每次课后,作业及提交时间在 课程网页公布;
- · 不符合提交要求将拒收;
- · 除了解答正确与否,作业完成度也很重要的评价标准。

完成度>准确性

微积分学也称为微分积分学(拉丁语: Calculus),主要包括微分学和积分学两个部分,是研究极限、微分、积分和无穷级数等的一个数学分支。本质上,微积分学是一门研究连续变化的学问。[维基百科]

三国时代数学家刘徽的割圆术

微积分学也称为微分积分学(拉丁语: Calculus),主要包括微分学和积分学两个部分,是研究极限、微分、积分和无穷级数等的一个数学分支。本质上,微积分学是一门研究连续变化的学问。[维基百科]

黎曼积分求不规则图形面积

微积分学也称为微分积分学(拉丁语: Calculus),主要包括微分学和积分学两个部分,是研究极限、微分、积分和无穷级数等的一个数学分支。本质上,微积分学是一门研究连续变化的学问。[维基百科]

经济学中的边际效应:是指每新增(或减少) 一个单位的商品或服务,它对商品或服务的 收益增加(或减少)的效用 [维基百科]

劳动力-产能曲线

切线斜率即是边际效应

如何求曲线中一点的斜率?

求曲线一点切线的斜率

成绩与投入时间成正比

Young man, in mathematics you don't understand things. You just get used to them.

John von Neumann

基本知识回顾

- ◆ 一元一次方程及不等式
- ◆一元二次方程及不等式
- ◆ 数轴与平面直角坐标系
- ◆直角坐标系中的直线表示

一元二次方程都可化为 $ax^2+bx+c=0$ (a
eq 0) ,它的解是:

$$x=rac{-b\pm\sqrt{b^2-4ac}}{2a}$$

直线的一般式方程能够表示坐标平面内的任何直线。

$$Ax+By+C=0$$
 (A,B不全为零即A^2+B^2 \neq 0)该直线的斜率为 $k=-rac{A}{B}$ (当B=0时没有斜率)

随堂练习

求出以下方程中的未知数x

(1)
$$3x - 1 = 0$$
 (2) $2x = 4$

(2)
$$2x = 4$$

(3)
$$(x-1)(x-4)=0$$

(4)
$$x^2 - 5x + 4 = 0$$

(3)
$$(x-1)(x-4) = 0$$
 (4) $x^2 - 5x + 4 = 0$ (5) $2x^2 - 2x - 4 = 0$

• 求出以下不等式中的未知数*x*的取值范围

$$(1) 3x - 1 > 0 (2) 5x \le 4$$

(2)
$$5x \le 4$$

(3)
$$-3x \ge 12$$

$$(4) (x-1)(x-4) > 0$$

(4)
$$(x-1)(x-4) > 0$$
 (5) $(x-1)(x-2) \le 0$ (6) $-x^2 + 3x + 4 > 0$

$$(6) - x^2 + 3x + 4 > 0$$

• 作出以下直线的简图,并写出对应的斜率

(1)
$$y = x + 1$$

(2)
$$y = -x + 1$$

(1)
$$y = x + 1$$
 (2) $y = -x + 1$ (3) $x - 2y + 1 = 0$

(一) 集合的概念

把一些**确定的、彼此不同的事物**作为一个整体来看待时,这个整体便称为是一个**集**合。

组成集合的那些个体称为集合的元素。

例如 某游戏中,某个英雄的所有技能构成一个集合,单独的技能即为该集合的元素。

(一) 集合的概念

通常用大写字母 $A \times B \times C$ 等表示集合,用小写字母 $a \times b \times c$ 等表示集合的元素。

如果a是集合A的元素,则记作 $a \in A$,读作a属于A;如果a不是集合A的元素,则记作 $a \notin A$,读作a不属于A。

(二) 集合的表示

(1) <u>列举法</u>:按任意顺序列出该集合的所有元素,并用 花括号"{}"括起来

亚瑟技能={誓约之盾,回旋打击,圣剑裁决,圣光守护}

(2) <u>描述法</u>:集合A的任意一个元素a满足都某一个条件或法则P(a),则集合A可以记为 $A = \{a | P(a)\}$

某一直线上的所有点: $\{(x,y)|x-y=0\}$

偶数: $\{x | x = 2n, n$ 为整数 $\}$

(三)全集、空集与子集

(1) 全集: 所有研究对象构成的集合,是一个相对的概念,依赖于研究对象,一般用U表示。

研究对象是咱们班的同学 VS 研究对象是咱们学院的同学

(三)全集、空集与子集

(1) 全集: 所有研究对象构成的集合,是一个相对的概念,依赖于研究对象,一般用U表示。

研究对象是咱们班的同学 VS 研究对象是咱们学院的同学

(2) 空集:空集不包括任何元素,记为⊘。

(三)全集、空集与子集

(1) 全集: 所有研究对象构成的集合,是一个相对的概念,依赖于研究对象,一般用U表示。

研究对象是咱们班的同学 VS 研究对象是咱们学院的同学

(2) 空集:空集不包括任何元素,记为⊘。

(3) <u>子集</u>: 所有属于集合A的元素均属于集合B,则称集合A包含于集合B,集合A是集合B的子集,记为 $A \subseteq B$,且若有 $A \neq B$ 则称集合A是集合B的真子集,记为 $A \subset B$ 。

(三)全集、空集与子集

关于子集的几个论断

- *A* ⊆ *A*, 任意集合是其自身的子集
- ∅⊆ *A*, 空集是任何集合的子集
- 若 $A \subseteq B, \ B \subseteq C, 则<math>A \subseteq C$

如何判断两个集合是否相等?

(四)集合运算:并、交、补、差

• <u>并集</u>:由所有属于集合A和集合B的元素所构成的集合 称为集合A与B的<u>并集</u>,记为 $A \cup B$ 。

如何用描述法表示?

(四)集合运算:并、交、补、差

• <u>并集</u>:由所有属于集合A和集合B的元素所构成的集合 称为集合A与B的并集,记为 $A \cup B$ 。

基本性质:

$$A \cup \emptyset = A$$
, $A \cup U = U$, $A \cup A = A$
 $A \subseteq A \cup B$, $B \subseteq A \cup B$

(四)集合运算:并、交、补、差

• <u>交集</u>:由既属于集合A也属于集合B的元素所构成的集合A与B的交集,记为 $A \cap B$ 。

基本性质: $A \cap B \subseteq A$, $A \cap B \subseteq B$

$$A \cap \emptyset = \emptyset$$
, $A \cap U = A$, $A \cap A = A$

(四)集合运算:并、交、补、差

• $\underline{\underline{E}}$: 由属于集合A $\underline{\underline{C}}$ $\underline{\underline{C}$ $\underline{\underline{C}}$ $\underline{\underline$

基本性质: $A-B=\emptyset \Leftrightarrow A\subseteq B$

(四)集合运算:并、交、补、差

• $\frac{\mathbf{1} \cdot \mathbf{1}}{\mathbf{1} \cdot \mathbf{1}}$: 在全集U中,不属于集合A的元素所构成的集合 称为集合A补集,记为 \bar{A} 。

基本性质: $A \cup \overline{A} = U$, $A \cap \overline{A} = \emptyset$

(四)集合运算:并、交、补、差

交换律:
$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

结合律:
$$(A \cup B) \cup C = A \cup (B \cup C)$$

$$(A \cap B) \cap C = A \cap (B \cap C)$$

分配律:
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

对偶律:
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

练习 设
$$A = \{1,2,3\}, B = \{1,3,5\}, U = \{1,2,3,4,5,6\}, 求$$
 $(1)A \cup B; (2)A \cap B; (3)A - B; (4)\overline{A}$

解:
$$A \cup B = \{1,2,3,5\}$$
 $A \cap B = \{1,3\}$

$$A - B = \{2\}$$
 $\bar{A} = \{4,5,6\}$

(五)笛卡尔乘积

行集: $A = \{1, 2, 3, ..., 14\}$ 列集: $B = \{1, 2, 3, ..., 29, 30\}$

座位: $A \times B = \{(1,1), (1,2), ..., (14,30)\}$ 笛卡尔乘积

 $(2,1) \neq (1,2)$

(五)笛卡尔乘积

• <u>笛卡尔乘积</u>: 给定两个集合 $A \times B$, 对于任意 $x \in A$, $y \in B$, 所有**二元有序组**(x,y)构成的集合,称为集合A与集合B的<u>笛卡尔乘积</u>,记为 $A \times B$,即 $A \times B = \{(x,y) | x \in A, y \in B\}$

练习 设 $A = \{1,2,3\}, B = \{1,3,5\}, 求A \times B$

解:

$$A \times B = \{(1,1), (1,3), (1,5), (2,1), (2,3), (2,5), (3,1), (3,3), (3,5)\}$$