Evaluation of Orbiter Performance and Nose Heating at Mach 3.8

February 26, 2020

1 Introduction

1.1 3-D orbiter shape

Figure 1: 3-D orbiter

1.2 Data from Published Texts

The equations used to plot the data in figure 2 were from [2]

Figure 2: Experimental models and predictions of C_L & C_D for M = 3.8

Table 1: Freestream conditions and expected stagnation conditions at wing/nose LE

Mach number	3.8	
Post-shock mach number	0.4407	
Pressure p^{-1}	1090.16 Pa	
Temperature T	227.13 K	
Density ρ	$0.0167 \; \mathrm{kg \cdot m^{-3}}$	
p_2/p_1 at M=3.8	16.68	
T_2/T_1 at M=3.8	3.743	
Isentropic p_o/p at M=0.44	1.142	
Isentropic T_o/T at M=0.44	1.035	
Stagnation pressure	$20765.98 \text{ Pa } (p \cdot p_2/p_1 \cdot p_o/p)$	
Stagnation temperature	883.303 K $(T \cdot T_2/T_1 \cdot T_o/T)$	

 p, T, ρ : at 100,000 ft from 1976 Digital Dutch Standard Atmospheric Calculator (URL: https://www.digitaldutch.com/atmoscalc/)

Isentropic relations and pressure/temp discontinuity across shock: From appendix A of Modern Compressible Flow by J.D. Anderson [1].

Figure 3: Entire grid of the orbiter

2 Methodology

2.1 Shots of the Orbiter grid

Figure 4: Entire grid of the orbiter

Figure 5: Nose of the orbiter

Figure 6: Midspan of the wing of the orbiter

2.2 Fluent setup

Table 2: General grid information

Cell count	1,375,480 Cells	
Min/max included angles	max : 179.844 deg min : 0.06222 deg	
Normal-to-wall spacing	$\Delta \mathbf{s} = 0.001$	
Boundary conditions	Inlet/hemispherical shell: pressure far-field	
	Outlet/back of hemispherical shell: pressure outlet	
	Orbiter surface (including backside): wall	
	Plane of Symmetry: symmetry	
Reference values	Area : $257.47 \text{ [m}^2\text{]}$	
	Density : $1.672e-2 \text{ [kgm}^{-3}$]	
	Enthalpy: 8.907e+5 [Jkg ⁻³] Length: 38.424 [m]	
	Gauage pressure: 0 [Pa]	
	Temperature: 227.13 [K]	
	Velocity : 1147.86 [m/s]	
	Viscosity : $1.789e-05 [kgm^{-1}s^{-1}]$	
	Ratio of specific heat: 1.4	
Submodels	Numerical Scheme: Implicit AUSM	
Method and Accuracy	Gradient: least-squares cell based	
	Flow: first order upwind	

3 Results

3.1 Proof of convergence history

Pleas see Appendix

3.2 Table of final lift and drag coefficients and related forces

Case	C_L [-]	C_D [-]
10	0.143	0.075
20	0.341	0.174
30	0.545	0.371
Adapted 20	0.342	0.173

3.3 Plot of lift and drag and L/D vs. AOA with peak L/D identified

Figure 7: Comparison of the C_L and C_D results from the experimental model and the CFD cases ran

Figure 8: Comparison of the lift-to-drag ratios from the experimental model and the CFD cases ran

3.4 Pressure and temperature contours with streamlines

3.4.1 AoA = 10°

Figure 9: Pressure contour at the symmetry plane of the orbiter at 10 degs AoA

Figure 10: Temperature contour at the symmetry plane of the orbiter at $10~{\rm degs}$ AoA

3.4.2 AoA = 20°

Figure 11: Pressure contour at the symmetry plane of the orbiter at 20 degs AoA

Figure 12: Temperature contour at the symmetry plane of the orbiter at 20 degs AoA

- 3.5 Results of grid adaptation
- 3.5.1 Side by side of contour plots
- 3.5.2 Side by side of mesh
- 3.5.3 Table of force coefficients
- 3.5.4 Fluent settings used to adapt grid

Appendix

Figure 13: Convergence history for AoA = 10°

Figure 14: Convergence history for AoA = 20°

Figure 15: Convergence history for AoA = 30°

Figure 16: Convergence history with adaption for $AoA = 20^{\circ}$; red dashed-line indicates where iterations for the refined mesh began.

References

- [1] John D. Anderson. Modern Compressible Flow with Historical Perspective. McGraw Hill Education, 2003.
- [2] Rui Dilão and João Fonseca. Dynamic guidance of gliders in planetary atmospheres. American Society of Civil Engineers, 1(29), 1 2016.