VI. ANÁLISE DE SISTEMAS

- Capítulo que aborda:
 - Sistemas de Transmissão
 - Largura de Banda de Transmissão
 - Perdas e Ganhos de Potências
 - Filtros

1

Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VI. ANÁLISE DE SISTEMAS

- Transmissão: "processo pelo qual uma forma de onda transita de uma fonte para um determinado destino, desejavelmente sem sofrer alteração de forma"
- Filtragem: "operação que, propositadamente, altera o espectro do sinal e, consequentemente, a sua forma"

Modelados de forma semelhante por funções entrada saída - sinal que se obtém à saída designa-se por resposta do sistema ao sinal de entrada

VI. ANÁLISE DE SISTEMAS

Ver definição no Cap. III ...

Sistemas LIT (Lineares e Invariantes no Tempo)

- Sistemas com características próprias possuindo uma função de transferência, H(f), em que [H(f)] representa a característica de amplitude do sistema
- As exponenciais complexas, ou seja, os sinais oscilatórios no tempo passam pelo sistema sem alteração de forma a menos de um factor multiplicativo constante...
- "qualquer sinal vê cada uma das suas componentes espectrais passar no sistema sem alteração de forma mas com alteração de amplitude consoante a frequência"

3

Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VI. ANÁLISE DE SISTEMAS

FUNÇÃO DE TRANSFERÊNCIA:

Resposta em Frequência do sistema, H(f)

$$Y(f) = H(f) \cdot X(f)$$
$$|Y(f)| = |H(f)| \cdot |X(f)|$$

VI. ANÁLISE DE SISTEMAS

FUNÇÃO DE TRANSFERÊNCIA:

Sinal de Potência (Sinal Periódico)

$$|C_y(nf_0)|^2 = |H(nf_0)|^2 \cdot |C_x(nf_0)|^2$$

$$S_y = \sum_{n=-\infty}^{\infty} |H(nf_0)|^2 \cdot |C_x(nf_0)|^2$$

Sinal de Energia (Sinal Não Periódico)

$$|Y(f)|^2 = |H(f)|^2 \cdot |X(f)|^2$$

 $E_y = \int_{-\infty}^{\infty} |H(f)|^2 |X(f)|^2$

5

Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VI. ANÁLISE DE SISTEMAS

DEFINIÇÕES:

Banda de Transmissão de um Sistema:

É o intervalo de frequências positivas no qual o ganho do sistema é não inferior a $\frac{1}{2}$ do ganho máximo.

Largura de Banda de um Sistema:

 \acute{E} a amplitude da banda de transmissão desse sistema.

Frequências de Corte de um Sistema:

São as frequências positivas limites da banda de transmissão do sistema.

VI. ANÁLISE DE SISTEMAS

SISTEMAS DE PRIMEIRA ORDEM

- Sistemas que facilmente podem ser modelados por circuitos eléctricos RC
- Qual a equação que rege estes circuitos?
- Função de Transferência do sistema de primeira ordem?

$$H(f) = \frac{1}{1 + j2\pi fRC}$$

_

Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VI. ANÁLISE DE SISTEMAS

SISTEMA DE PRIMEIRA ORDEM:

VI. ANÁLISE DE SISTEMAS

SISTEMA DE PRIMEIRA ORDEM:

Representar a característica de amplitude e característica de potência?

$$H(f) = \frac{0.2}{1 + j\left(\frac{f - 50 \times 10^6}{2 \times 10^6}\right)}$$

VI. ANÁLISE DE SISTEMAS

PERDAS DE TRANSMISSÃO E DECIBÉIS

- Os sistemas de transmissão, além de distorcer o sinal, também reduzem a potência do sinal introduzindo uma perda de transmissão
- Estudar os conceitos de ganho e perda de transmissão, e decibel como medida de razão de potências
 - por forma a relacionar as potências à entrada e à saída de um sistema de transmissão

11

Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VI. ANÁLISE DE SISTEMAS

GANHO DE POTÊNCIA

 Consideremos um sistema que introduz uma ganho de potência por forma que a potência média do sinal à saída seja proporcional à potência média de entrada

Ganho de potência é definido por:

$$g = \frac{P_s}{P_e}$$

VI. ANÁLISE DE SISTEMAS

GANHO DE POTÊNCIA

- Sistemas amplificadores possuem normalmente valores de g muito elevados, para melhor lidar com esses valores é usual a utilização de uma escala logarítmica
- Ganho em decibéis (dB)

$$g_{dB} = 10 \log_{10} g$$

• Dado um valor de ganho em dB o valor linear correspondente é:

$$g = 10^{\frac{g_{dB}}{10}}$$

13

Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VI. ANÁLISE DE SISTEMAS

POTÊNCIA DE SINAIS EXPRESSA EM dB

- A potência de um sinal pode também ser expressa em dB se se considerar relativa a uma potência fixa
- A potência de referência em telecomunicações para se expressar potências em dB é o miliwatt, ao que corresponde uma unidade designada por dBm (mas podem-se usar outras unidades)

$$P_{dBm} = 10 \log_{10} \frac{P}{1 \text{ mW}}$$

VI. ANÁLISE DE SISTEMAS

POTÊNCIA DE SINAIS E GANHOS EM dB

- Como relacionar a potência do sinal em dBm e o ganho em dB?
- Formula mais simples de relacionamento dado que envolve unicamente somas e subtracções

$$P_{s_{dBm}} = g_{dB} + P_{e_{dBm}}$$

15

Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VI. ANÁLISE DE SISTEMAS

PERDA OU ATENUAÇÃO DE SINAIS

- Todo o meio de transmissão passivo envolve uma perda de potência, logo P_s < P_e
- Neste caso é preferível trabalhar em termos de atenuação de transmissão (L)

$$L = \frac{1}{g} = \frac{P_e}{P_s}$$

$$L_{dB} = -g_{dB} = 10 \log_{10} \frac{P_e}{P_s}$$

VI. ANÁLISE DE SISTEMAS

PERDA OU ATENUAÇÃO DE SINAIS

 Da mesma forma é possível relacionar as potências dos sinais e as atenuações por:

$$P_{s_{dBm}} = P_{e_{dBm}} - L_{dB}$$

 No caso de linhas de transmissão, cabos coaxiais, fibras, etc. é usual apresentar um coeficiente de atenuação (α) em dB por unidade de comprimento

$$L_{dB} = \alpha d$$

17

18

Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VI. ANÁLISE DE SISTEMAS

PERDA OU ATENUAÇÃO DE SINAIS

 Percursos com grandes atenuações exigem amplificação, processo que é realizado através da introdução de amplificadores repetidores ao longo do percurso

Um sistema de transmissão por fios eléctricos é utilizado para ligar um emissor com um receptor a cem quilómetros de distância. O valor da potência média do sinal que chega ao receptor é de um watt e o sistema de transmissão tem um amplificador a cada quilómetro do percurso, que amplifica o sinal cem vezes. O cabo atenua a potência do sinal 20 dB a cada quilómetro.

Qual a potência media do sinal no emissor (em dBm)?

$$g_{dB} = 10 \log_{10} g$$

$$L_{dB} = \alpha d$$

$$P_{dBm} = 10 \log_{10} \frac{P}{1 \text{ mW}}$$

$$g = \frac{P_s}{P_e}$$

$$L \doteq \frac{1}{g} = \frac{P_e}{P_s}$$

$$L_{dB} = -g_{dB} = 10 \log_{10} \frac{P_e}{P_s}$$

$$P_{s_{dBm}} = g_{dB} + P_{e_{dBm}}$$

$$P_{s_{dBm}} = P_{e_{dBm}} - L_{dB}$$

19

Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VI. ANÁLISE DE SISTEMAS

FILTROS

- Podem ser usados para separar o sinal portador de informação de contaminações indesejáveis (interferências, ruídos, contaminações...)
- Modelados de forma semelhante aos sistemas de transmissão (diferem no objectivo)
- Filtros ideais caracterizados por fornecerem transmissão isenta de distorção em uma ou mais bandas de frequência

VI. ANÁLISE DE SISTEMAS

- Largura de Banda deste filtro passa-banda ideal = f_s f_i
- Para um filtro passa-baixo ideal temos f_i=0
- Para um filtro passa-alto ideal temos $f_i>0$ e $f_s=\infty$

21

Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VI. ANÁLISE DE SISTEMAS

FILTROS REAIS

- Os filtros ideias são irrealizáveis, não é possível obter transições abruptas
- Exemplo de um filtro passa-banda típico

Banda de Transmissão; Largura de Banda = fs - fi (também designada

largura de banda – is - ii (taliibelii desigii (largura de banda de meia potência

VI. ANÁLISE DE SISTEMAS

FILTROS REAIS

- Bandas de Rejeição: onde |H(f)|² está consistentemente abaixo de 10% do seu valor máximo
- Bandas de Transição: "... o filtro (ou o sistema) nem deixa passar nem rejeita as correspondentes componentes de frequência..."

Comunicação de Dados

23

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

VI. ANÁLISE DE SISTEMAS

FILTROS (OU SISTEMAS) DE ORDEM SUPERIOR

- Filtros (e sistemas de transmissão) podem ser de ordem superior aos sistemas de primeira ordem anteriormente referidos
- Uma classe desses filtros é denominada por filtros de Butterworth de ordem n
- Quanto maior for a ordem do filtro mais "perfeito" é o filtro

VI. ANÁLISE DE SISTEMAS

 Com n=1 - mesma característica de um sistema de primeira ordem

25

27

Considere um sistema de transmissão possuindo a seguinte função de transferência:

$$H(f) = 3 / [16 + j(2x10^2 f / 5x10^4)^2]$$

- a) Calcule a Largura de Banda do sistema.
- b) Esquematize graficamente a sua característica de amplitude.

É um filtro Butterworth atenuador de segunda ordem.

É um filtro amplificador passa banda.

É um filtro Butterworth de segunda ordem, passa-alto.

É um filtro atenuador passa baixo.

Largura de Banda?

$$|H(f)| = \frac{1}{\sqrt{1 + \left(\frac{f}{B_T}\right)^{2n}}}$$

VI. ANÁLISE DE SISTEMAS

EXEMPLOS DE COMPOSIÇÃO DE FILTROS

$$H(f) = H_1(f) \cdot H_2(f)$$

29