Discrete-Space Continuous-time Models

Devin S. Johnson

NOAA Fisheries Pacific Islands Fisheries Science Center Honolulu, Hawaii Email: devin.johnson@noaa.gov

ISEC2022 Workshop on Tidy Animal Movement June 25, 2022

Do we really care about a 3m movement in 2s?

Usually trying to relate use of a habitat that is measured on a, say 10-40km grid

Trying to model movement in continuous space/time relative to a raster grid of habitat can provide poor results

Do we really care about a 3m movement in 2s?

Usually trying to relate use of a habitat that is measured on a, say 10-40km grid

Trying to model movement in continuous space/time relative to a raster grid of habitat can provide poor results

Do we really care about a 3m movement in 2s?

Usually trying to relate use of a habitat that is measured on a, say 10-40km grid

Trying to model movement in continuous space/time relative to a raster grid of habitat can provide poor results

Do we really care about a 3m movement in 2s?

Usually trying to relate use of a habitat that is measured on a, say 10-40km grid

Trying to model movement in continuous space/time relative to a raster grid of habitat can provide poor results

Continuous-space movement:

Continuous-space movement:

Discrete-space movement:

Continuous-time \to just make the time steps smaller and smaller Movement path \mathcal{P} :

- Cells visited
- 2 Time stayed in each cell

Continuous-time \to just make the time steps smaller and smaller Movement path \mathcal{P} :

- Cells visited
- 2 Time stayed in each cell

- Some mathematics

Study area is partitioned into discrete "cells" $\mathcal{G} = \{1, \dots, n\}$

animals move from cell, i to cell j **only if** j is a "neighbor" of i,

i.e.,
$$j \in \mathcal{N}_i = \{j \in \mathcal{G} : i \sim j\}$$

Transition times $\{\tau_1, \ldots, \tau_K\}$

Residence time $\tau_{k+1} = r_{k+1} + \tau_k$

Embedded chain visited cells, G_1, \ldots, G_k

```
Study area is partitioned into discrete "cells" \mathcal{G} = \{1, \ldots, n\} animals move from cell, i to cell j only if j is a "neighbor" of i, i.e., j \in \mathcal{N}_i = \{j \in \mathcal{G} : i \sim j\}

Transition times \{\tau_1, \ldots, \tau_K\}

Residence time \tau_{k+1} = r_{k+1} + \tau_k

Embedded chain visited cells, G_1, \ldots, G_k

Path \mathcal{P} = [\tau_0, \mathbf{r}, \mathbf{G}]
```

Study area is partitioned into discrete "cells" $\mathcal{G}=\{1,\ldots,n\}$ animals move from cell, i to cell j only if j is a "neighbor" of i, i.e., $j\in\mathcal{N}_i=\{j\in\mathcal{G}:i\sim j\}$

Transition times $\{\tau_1, \ldots, \tau_K\}$

Residence time $\tau_{k+1} = r_{k+1} + \tau_k$

Embedded chain visited cells, G_1, \ldots, G_k

Study area is partitioned into discrete "cells" $\mathcal{G}=\{1,\ldots,n\}$ animals move from cell, i to cell j only if j is a "neighbor" of i, i.e., $j\in\mathcal{N}_i=\{j\in\mathcal{G}:i\sim j\}$ Transition times $\{\tau_1,\ldots,\tau_K\}$

Residence time $\tau_{k+1} = r_{k+1} + \tau_k$

Embedded chain visited cells, G_1, \ldots, G_k

Study area is partitioned into discrete "cells" $\mathcal{G}=\{1,\ldots,n\}$ animals move from cell, i to cell j only if j is a "neighbor" of i, i.e., $j\in\mathcal{N}_i=\{j\in\mathcal{G}:i\sim j\}$

Transition times $\{\tau_1, \ldots, \tau_K\}$

Residence time $\tau_{k+1} = r_{k+1} + \tau_k$

Embedded chain visited cells, G_1, \ldots, G_k

Study area is partitioned into discrete "cells" $\mathcal{G}=\{1,\ldots,n\}$ animals move from cell, i to cell j only if j is a "neighbor" of i, i.e., $j\in\mathcal{N}_i=\{j\in\mathcal{G}:i\sim j\}$

Transition times $\{\tau_1, \ldots, \tau_K\}$

Residence time $\tau_{k+1} = r_{k+1} + \tau_k$

Embedded chain visited cells, G_1, \ldots, G_k

Path $\mathcal{P} = [\tau_0, r, G]$

Spoiler Alert! P is a continuous-time Markov chain!

```
The Process: G(t) is the occupied cell for any t \in [0, T], i.e., G(t) = G_k for any t \in [\tau_k, \tau_{k+1}) G(t) is a discrete-state, continuous-time process!
```

Spoiler Alert! P is a continuous-time Markov chain!

The Process: G(t) is the occupied cell for any $t \in [0, T]$, i.e., $G(t) = G_k$ for any $t \in [\tau_k, \tau_{k+1})$ G(t) is a discrete-state, continuous-time process!

Spoiler Alert! P is a continuous-time Markov chain!

The Process: G(t) is the occupied cell for any $t \in [0, T]$, i.e., $G(t) = G_k$ for any $t \in [\tau_k, \tau_{k+1})$ G(t) is a discrete-state, continuous-time process!

- $[G(t+r) = j | G(t) = i] \approx r\lambda_{ij}$ (The probability goes to 0, but not too fast!)
- **2** [\geq 2 transitions before t + r|G(t) = i] ≈ 0 (Can't have transitions on top of one another!)
- **3** [0 transitions before t + r|G(t) = i] $\approx 1 r \sum_{j \in \mathcal{N}_i} \lambda_{ij}$ (Moves are mutually exclusive)

Spoiler Alert! P is a continuous-time Markov chain!

The Process: G(t) is the occupied cell for any $t \in [0, T]$, i.e., $G(t) = G_k$ for any $t \in [\tau_k, \tau_{k+1})$ G(t) is a discrete-state, continuous-time process!

- $[G(t+r) = j | G(t) = i] \approx r\lambda_{ij}$ (The probability goes to 0, but not too fast!)
- **2** [\geq 2 transitions before t + r|G(t) = i] \approx 0 (Can't have transitions on top of one another!)
- **3** [0 transitions before t + r|G(t) = i] $\approx 1 r \sum_{j \in \mathcal{N}_i} \lambda_{ij}$ (Moves are mutually exclusive)

Spoiler Alert! P is a continuous-time Markov chain!

The Process: G(t) is the occupied cell for any $t \in [0, T]$, i.e., $G(t) = G_k$ for any $t \in [\tau_k, \tau_{k+1})$ G(t) is a discrete-state, continuous-time process!

- $[G(t+r) = j | G(t) = i] \approx r\lambda_{ij}$ (The probability goes to 0, but not too fast!)
- **2** [\geq 2 transitions before t + r|G(t) = i] \approx 0 (Can't have transitions on top of one another!)
- **3** [0 transitions before t + r|G(t) = i] $\approx 1 r \sum_{j \in \mathcal{N}_i} \lambda_{ij}$ (Moves are mutually exclusive)

Spoiler Alert! P is a continuous-time Markov chain!

The Process: G(t) is the occupied cell for any $t \in [0, T]$, i.e., $G(t) = G_k$ for any $t \in [\tau_k, \tau_{k+1})$ G(t) is a discrete-state, continuous-time process!

- $[G(t+r) = j | G(t) = i] \approx r\lambda_{ij}$ (The probability goes to 0, but not too fast!)
- **2** [\geq 2 transitions before t + r|G(t) = i] \approx 0 (Can't have transitions on top of one another!)
- **3** [0 transitions before t + r|G(t) = i] $\approx 1 r \sum_{j \in \mathcal{N}_i} \lambda_{ij}$ (Moves are mutually exclusive)

First: $\Lambda_i = \sum_{j \in \mathcal{N}_i} \lambda_{ij}$ is the total rate of movement when in cell i

First: $\Lambda_i = \sum_{j \in \mathcal{N}_i} \lambda_{ij}$ is the total rate of movement when in cell i

Some useful properties:

1 Prob. animal moves to j given a move is made at time t:

$$egin{aligned} [G(t)=j|G(t-r)=i, \; ext{move at} \; t] &pprox rac{r\lambda_{ij}}{r\Lambda_i} \ &
ightarrow rac{\lambda_{ij}}{\Lambda_i} \end{aligned}$$

First: $\Lambda_i = \sum_{j \in \mathcal{N}_i} \lambda_{ij}$ is the total rate of movement when in cell i

Some useful properties:

 \bigcirc Prob. animal moves to j given a move is made at time t:

$$[G(t)=j|G(t-r)=i, ext{ move at } t]pprox rac{r\lambda_{ij}}{r\Lambda_i} \
ightarrow rac{\lambda_{ij}}{\Lambda_i}$$

First: $\Lambda_i = \sum_{j \in \mathcal{N}_i} \lambda_{ij}$ is the total rate of movement when in cell i

Some useful properties:

 \bigcirc Prob. animal moves to j given a move is made at time t:

$$[G(t)=j|G(t-r)=i, ext{ move at } t]pprox rac{r\lambda_{ij}}{r\Lambda_i} \
ightarrow rac{\lambda_{ij}}{\Lambda_i}$$

$$[r|G(t)=i] = Exponential(\Lambda_i)$$

First: $\Lambda_i = \sum_{j \in \mathcal{N}_i} \lambda_{ij}$ is the total rate of movement when in cell i

Some useful properties:

 \bigcirc Prob. animal moves to j given a move is made at time t:

$$[G(t)=j|G(t-r)=i, ext{ move at } t]pprox rac{r\lambda_{ij}}{r\Lambda_i} \
ightarrow rac{\lambda_{ij}}{\Lambda_i}$$

- **2** $[r|G(t)=i] = Exponential(\Lambda_i)$
 - ... Wait, what ??? (don't worry it' a CTMC property)

Enough Math! Let's fit a model

The $\mathcal{P} = \{ au_0 = 0, \mathbf{r}, \mathbf{G} \}$ is really a bivariate time-series

 $Z_{kj}=1$ if $j=G_k$ and 0 else. Likelihood is Poisson with 'data' $\{Z_{kj}\}$ and rates $\{r_k\lambda_{G_{k-1},j}\}$!!!

Enough Math! Let's fit a model

The $\mathcal{P} = \{\tau_0 = 0, \mathbf{r}, \mathbf{G}\}$ is really a bivariate time-series

The Likelihood

$$\mathcal{L}(\theta) = \prod_{k=1}^{K} [G_k \mid r_k, G_{k-1}] [r_k | G_{k-1}]$$

$$\propto \prod_{k=1}^{K} \prod_{j \in \mathcal{N}_{G_{k-1}}} (r_k \lambda_{G_{k-1}, j})^{Z_{kj}} \exp\{-r_k \lambda_{G_{k-1}, j}\}$$

 $Z_{kj} = 1$ if $j = G_k$ and 0 else.

Likelihood is Poisson with 'data' $\{Z_{kj}\}$ and rates $\{r_k\lambda_{G_{k-1},j}\}$!!!

Enough Math! Let's fit a model

The $\mathcal{P} = \{\tau_0 = 0, \mathbf{r}, \mathbf{G}\}$ is really a bivariate time-series

The Likelihood

$$\mathcal{L}(\theta) = \prod_{k=1}^{K} [G_k \mid r_k, G_{k-1}] [r_k | G_{k-1}]$$

$$\propto \prod_{k=1}^{K} \prod_{j \in \mathcal{N}_{G_{k-1}}} (r_k \lambda_{G_{k-1}, j})^{Z_{kj}} \exp\{-r_k \lambda_{G_{k-1}, j}\}$$

 $Z_{kj} = 1$ if $j = G_k$ and 0 else.

Likelihood is Poisson with 'data' $\{Z_{kj}\}$ and rates $\{r_k\lambda_{G_{k-1},j}\}$!!!

Log linear model

$$\log r_k \lambda_{ij} = log(r_k) + \mathbf{m}_i' \delta(\tau_k) + \mathbf{x}_{ij}' \gamma(\tau_k)$$

- m_i are "motility" covariates that control the tendency to stick in cell
 i once you arrive (i.e, "I don't know what's around me, but I like it
 here")
- \mathbf{x}_{ij} are "gradient" covariates that draws the animal to cell j once it arrives in i (i.e., "I can see it is better next door, I'm headed over there now!")

Log linear model

$$\log r_k \lambda_{ij} = log(r_k) + \mathbf{m}_i' \delta(\tau_k) + \mathbf{x}_{ij}' \gamma(\tau_k)$$

- m_i are "motility" covariates that control the tendency to stick in cell
 i once you arrive (i.e, "I don't know what's around me, but I like it
 here")
- \mathbf{x}_{ij} are "gradient" covariates that draws the animal to cell j once it arrives in i (i.e., "I can see it is better next door, I'm headed over there now!")

Log linear model

$$\log r_k \lambda_{ij} = \log(r_k) + \mathbf{m}_i' \delta(\tau_k) + \mathbf{x}_{ij}' \gamma(\tau_k)$$

- m_i are "motility" covariates that control the tendency to stick in cell
 i once you arrive (i.e, "I don't know what's around me, but I like it
 here")
- x_{ij} are "gradient" covariates that draws the animal to cell j once it arrives in i (i.e., "I can see it is better next door, I'm headed over there now!")

Log linear model

$$\log r_k \lambda_{ij} = log(r_k) + \mathbf{m}_i' \delta(\tau_k) + \mathbf{x}_{ij}' \gamma(\tau_k)$$

- m_i are "motility" covariates that control the tendency to stick in cell
 i once you arrive (i.e, "I don't know what's around me, but I like it
 here")
- \mathbf{x}_{ij} are "gradient" covariates that draws the animal to cell j once it arrives in i (i.e., "I can see it is better next door, I'm headed over there now!")

Some data analysis

Spatial covariates and NFS migration

Spatial habitat for NFS migration

Mean Sea Surface Temperature

Spatial habitat for NFS migration

Spatial habitat for NFS migration

Need Multiple Imputation because we don't directly observe $\mathcal{P}=f(\mu)!$

Need Multiple Imputation because we don't directly observe $\mathcal{P} = f(\mu)!$

- **1** Simulate track from $[\mu|\mathbf{y}]$ (crawl funcs.)
- **2** Convert μ to \mathcal{P} (ctmcmove func.)
- 3 Form 'model data' z, x_{ii} , m_{ii} , etc... (ctmcmove func.)
- 4 Fit CTMC model with glm(...) or mgcv::gam(...)
- **5** Save model object
- 6 repeat as necessary... (say 20-30 times)

Need Multiple Imputation because we don't directly observe $\mathcal{P} = f(\mu)!$

- **1** Simulate track from $[\mu|\mathbf{y}]$ (crawl funcs.)
- **2** Convert μ to \mathcal{P} (ctmcmove func.)
- 3 Form 'model data' z, x_{ij} , m_{ij} , etc... (ctmcmove func.)
- 4 Fit CTMC model with glm(...) or mgcv::gam(...)
- **5** Save model object
- 6 repeat as necessary... (say 20-30 times)

Need Multiple Imputation because we don't directly observe $\mathcal{P} = f(\mu)!$

- **1** Simulate track from $[\mu|y]$ (crawl funcs.)
- **2** Convert μ to \mathcal{P} (ctmcmove func.)
- 3 Form 'model data' z, x_{ii} , m_{ii} , etc... (ctmcmove func.)
- 4 Fit CTMC model with glm(...) or mgcv::gam(...)
- **5** Save model object
- 6 repeat as necessary... (say 20-30 times)

Need Multiple Imputation because we don't directly observe $\mathcal{P} = f(\mu)!$

- f 1 Simulate track from $[\mu|y]$ (crawl funcs.)
- **2** Convert μ to \mathcal{P} (ctmcmove func.)
- 3 Form 'model data' z, x_{ij} , m_{ij} , etc... (ctmcmove func.)
- 4 Fit CTMC model with glm(...) or mgcv::gam(...)
- **5** Save model object
- 6 repeat as necessary... (say 20-30 times)

Need Multiple Imputation because we don't directly observe $\mathcal{P} = f(\mu)!$

- f 1 Simulate track from $[\mu|{f y}]$ (crawl funcs.)
- **2** Convert μ to \mathcal{P} (ctmcmove func.)
- **3** Form 'model data' z, x_{ij} , m_{ij} , etc... (ctmcmove func.)
- 4 Fit CTMC model with glm(...) or mgcv::gam(...)
- **5** Save model object
- 6 repeat as necessary... (say 20-30 times)

Need Multiple Imputation because we don't directly observe $\mathcal{P} = f(\mu)!$

- f 1 Simulate track from $[\mu|{f y}]$ (crawl funcs.)
- **2** Convert μ to \mathcal{P} (ctmcmove func.)
- **3** Form 'model data' z, x_{ij} , m_{ij} , etc... (ctmcmove func.)
- 4 Fit CTMC model with glm(...) or mgcv::gam(...)
- Save model object
- 6 repeat as necessary... (say 20-30 times)

Need Multiple Imputation because we don't directly observe $\mathcal{P} = f(\mu)!$

- f 1 Simulate track from $[\mu|y]$ (crawl funcs.)
- **2** Convert μ to \mathcal{P} (ctmcmove func.)
- 3 Form 'model data' z, x_{ii} , m_{ii} , etc... (ctmcmove func.)
- 4 Fit CTMC model with glm(...) or mgcv::gam(...)
- **5** Save model object
- 6 repeat as necessary... (say 20-30 times)

First, let's get an "imputer"

```
fit <- crwMLE(...)
post_simulator <- crwSimulator(fit, predTime="10 mins", parIS=0)</pre>
```

First, let's get an "imputer"

```
fit <- crwMLE(...)
post_simulator <- crwSimulator(fit, predTime="10 mins", parIS=0)</pre>
```

From this we can make draws from $[\mu|\mathbf{y}]$ (at exactly 10 min intervals)

```
ctcrw_path <- crwPostIS(post.simulator, fullPost=F)

path <- list(
   t=ctcrw_path$TimeNum[ctcrw_path$locType=="p"],
   xy=as.matrix(
   ctcrw_path$alpha.sim[ctcrw_path$locType=="p",c("mu.x","mu.y")]
   )
)</pre>
```

```
# Discretize the space
ctmc <- ctmcmove::path2ctmc(</pre>
  xy=path$xy,t=path$t,
  rast=examplerast,
  zero.idx = zero.idx
# Create model data for estimation
glm_data <- ctmc2glm_alt(ctmc,raster.list=raster.list,</pre>
                          zero.idx = zero.idx)
```

Fitting in parallel!

```
fit_ctmc <- function(ind=1, model, post.simulator,</pre>
                      raster.list, zero.idx){
  examplerast <- raster.list[[1]][[1]]
  ctcrw_path <- crwPostIS(...)
  path <- list(t=..., xy=...)
  ctmc <- ctmcmove::path2ctmc(...)
  glm_data <- ctmc2glm_alt(...)</pre>
  fit <- gam(model, family="poisson",
             offset=log(tau), data=glm_data)
```

Fitting in parallel!

Execute over imputations in parallel

```
require(future.apply)
plan('multisession', workers=4)
mult.imp.fits <-</pre>
  future_lapply(1:25,
                 FUN=fit_ctmc,
                 model = model.
                 post.simulator=post.simulator,
                 raster.list=raster.list,
                 zero.idx=zero.idx)
```

returns a list with 25 fitted model objects

- ① Draw a posterior sample using MLE/MAP large sample $N(\hat{\beta}_r, \hat{\Sigma}_r)$, $r=1,\ldots,$ num_rep
- 2 extract/manipulate sample as desired (e.g., effects predictions)

3 Concatenate samples together for full inference

① Draw a posterior sample using MLE/MAP large sample $N(\hat{\beta}_r, \widehat{\Sigma}_r)$, $r=1,\ldots,$ num_rep

2 extract/manipulate sample as desired (e.g., effects predictions)

3 Concatenate samples together for full inference

- ① Draw a posterior sample using MLE/MAP large sample $N(\hat{\beta}_r, \widehat{\Sigma}_r)$, $r=1,\ldots,$ num_rep
- 2 extract/manipulate sample as desired (e.g., effects predictions)

3 Concatenate samples together for full inference

- ① Draw a posterior sample using MLE/MAP large sample $N(\hat{\beta}_r, \hat{\Sigma}_r)$, $r=1,\ldots,$ num_rep
- 2 extract/manipulate sample as desired (e.g., effects predictions)
- 3 Concatenate samples together for full inference

Habitat effects on cell transition

Habitat effects on cell transition

Habitat effects on cell transition

Rate matrix = $\mathbf{Q} = \{\lambda_{ij}\}$

Then we can obtain the transition matrix

$$\mathbf{P}(t) = [G(t)|G(0) = i] = \{\mathsf{mexp}(\mathbf{Q}t)\}_i$$

Moreover, (for λ_{ij} constant over time, plus some other mathy requirements),

$$\mathsf{P}(\infty)=\mathsf{u}\propto\{A_i/\Lambda_i\},$$

where A_i is the limiting distribution of the embedded chain (Markov Chain of just the cell transitions)

Why **u**? It's the long-run probability that the animal will be in any particular cell the area. Sounds like a **utilization distribution**¹

¹Wilson et al. (2018). Estimating animal utilization densities using continuous-time Markov chain models. Method Ecol and Evol 9:1232-1240

Rate matrix = $\mathbf{Q} = \{\lambda_{ij}\}$

Then we can obtain the transition matrix

$$P(t) = [G(t)|G(0) = i] = {mexp(Qt)}_i$$

Moreover, (for λ_{ij} constant over time, plus some other mathy requirements),

$$\mathsf{P}(\infty)=\mathsf{u}\propto\{A_i/\Lambda_i\},$$

where A_i is the limiting distribution of the embedded chain (Markov Chain of just the cell transitions)

Why u? It's the long-run probability that the animal will be in any particular cell the area. Sounds like a utilization distribution¹

¹Wilson et al. (2018). Estimating animal utilization densities using continuous-time Markov chain models. Method Ecol and Evol 9:1232-1240.

Rate matrix = $\mathbf{Q} = \{\lambda_{ij}\}$ Then we can obtain the transition matrix

$$P(t) = [G(t)|G(0) = i] = {mexp(Qt)}_i$$

Moreover, (for λ_{ij} constant over time, plus some other mathy requirements),

$$\mathbf{P}(\infty)=\mathbf{u}\propto\{A_i/\Lambda_i\},$$

where A_i is the limiting distribution of the embedded chain (Markov Chain of just the cell transitions)

Why **u**? It's the long-run probability that the animal will be in any particular cell the area. Sounds like a **utilization distribution**¹

¹Wilson et al. (2018). Estimating animal utilization densities using continuous-time Markov chain models. Method Ecol and Evol 9:1232-1240.

Rate matrix = $\mathbf{Q} = \{\lambda_{ij}\}$

Then we can obtain the transition matrix

$$P(t) = [G(t)|G(0) = i] = {mexp(Qt)}_i$$

Moreover, (for λ_{ij} constant over time, plus some other mathy requirements),

$$\mathbf{P}(\infty) = \mathbf{u} \propto \{A_i/\Lambda_i\},\,$$

where A_i is the limiting distribution of the embedded chain (Markov Chain of just the cell transitions)

Why \mathbf{u} ? It's the long-run probability that the animal will be in any particular cell the area. Sounds like a $\mathbf{utilization}$ distribution¹

¹Wilson et al. (2018). Estimating animal utilization densities using continuous-time Markov chain models. Method Ecol and Evol 9:1232-1240.

Where to from here?

- Residence times not exponentially distributed?
- Spatial-temporal covariates?
- Model selection?

Where to from here?

- Residence times not exponentially distributed?
- Spatial-temporal covariates?
- Model selection?

See:

Johnson, D. S., Pelland, N. & Sterling, J. T. (2021) A Continuous-time semi-Markov model for animal movement in a dynamic environment. Ann. Appl. Stat. 15:797–812

Additional reading and references

- Hooten, M. B., Johnson, D. S., Hanks, E. M., & Lowry, J. H. (2010). Agent-based inference for animal movement and selection. JABES, 15(4), 523-538.
- Johnson, D. S., Hooten, M. B., & Kuhn, C. E. (2013). Estimating animal resource selection from telemetry data using point process models. J. of Anim. Ecol., 82(6), 1155-1164.
- Hanks, E. M., Hooten, M. B., & Alldredge, M. W. (2015). Continuous-time discrete-space models for animal movement. The Ann. of Appl. Stat., 9:145-165.
- Hanks, E. M., & Hughes, D. A. (2016). Flexible discrete space models of animal movement. arXiv:1606.07986.
- Hooten, M. B., Johnson, D. S., McClintock, B. T., & Morales, J. M. (2017). Animal movement: statistical models for telemetry data. CRC Press. (Section 7.4)
- Wilson, K., Hanks, E., & Johnson, D. (2018). Estimating animal utilization densities using continuous-time Markov chain models. Methods in Ecology and Evolution, 9(5), 1232-1240.
- Johnson, D. S., Pelland, N. & Sterling, J. T. (2021) A Continuous-time semi-Markov model for animal movement in a dynamic environment. Ann. Appl. Stat. 15:797–812