Introducción a la programación con MatLAB

Módulo 02 - Variables, números y operadores

Autor1 - Autor2 - Autor31

¹ Universidad Tecnológica Nacional Facultad Regional Buenos Aires

día mes 2018

Variables

Matlab no requiere ningún tipo de comando para declarar variables. Sencillamente crea la variable mediante asignación directa de su valor.

Ej. Ejecutar las siguiente líneas. Obtener conclusiones.

El valor asignado a una variable es permanente, hasta que no se cambie de forma expresa o hasta que no se salga de la presente sesión de MATLAB.

Importante

Los nombres de las variables comienzan con una letra.

Importante

Matlab es sensible a mayúsculas y minúsculas.

IEEE Sección Argentina

Para representar a un vector de n elementos se puede definir en Matlab una variable de las siguientes formas :

$$V = [V_1, V_2, V_3, ..., V_N]$$

 $V = [V_1 V_2 V_3 ... V_N]$

Workspace

Sección Argentina

Ej. Ejecutar las siguiente líneas. Obtener conclusiones.

$$V = [4,9,81]$$

resultado = sqrt(V)

IEEE

3/18

UTN.BA Programación en MatLAB día mes 2018

Formas de definir variables vectoriales

variable = [a :b]	Vector cuyos primero y último elementos son a y b, respectivamente. Los elementos intermedios se diferencian en una unidad
variable = [a :s :b]	Vector cuyos primero y último elementos son a y b, y los elementos intermedios se diferencian en la cantidad s especificada por el incremento
variable = linespace[a :b :n]	Vector cuyos primero y último elementos son a y b, y que tiene en total n elementos uniformemente espaciados entre sí
variable = logespace[a :b :n]	Vector cuyos primero y último elementos son los especificados y que tiene en total n elementos en escala logarítmica uniformemente espaciados entre sí

IEEE Sección Argentina

Ej. Ejecutar las siguiente líneas. Obtener conclusiones.

$$V = [4,9,81]$$

resultado = V'

Comando

Traspuesta: variable'

Selección de elementos de un vector

x(n)	Devuelve el enésimo elemento del vector x
x(a :b)	Devuelve los elementos del vector x situados entre el
	a-ésimo y el bésimo, ambos inclusive
	Devuelve los elementos del vector x situados entre el
x(a :p :b)	a-ésimo y el bésimo, ambos inclusive, pero
	separados de p en p unidades (a>b)
	Devuelve los elementos del vector x situados entre el
x(b :-p :a)	b-ésimo y el a-ésimo, ambos inclusive, pero separados de
	p en p unidades y empezando por el bésimo (b>a)

IEEE Sección Argentina

Para representar a un vector de n elementos se puede definir en Matlab una variable de las siguientes formas :

$$V = [V_{11}, V_{12}, V_{13}; V_{21}, V_{22}, V_{23}; V_{31}, V_{32}, V_{33}]$$
$$v = [V_{11} V_{12} V_{13}; V_{21} V_{22} V_{23}; V_{31} V_{32} V_{33}]]$$

Workspace

Command Window

IEEE Sección Argentina

Formas de definir variables vectoriales

A(m,n)	Define el elemento (m,n) de la matriz A (fila m y columna n)
A(a :b,c :d)	efine la submatriz de A formada por las filas que hay entre
	la a-ésima y la b-ésima y por las columnas que hay
	entre la c-ésima y la d-ésima
A(a :p :b,c :q :d)	Define la submatriz de A formada por las filas que
	hay entre la a- ésima y la b-ésima tomándolas de p en p, y
	por las columnas que hayentre la c-ésima y
	la d-ésima tomándolas de q en q
A(a :b, :)	Define la submatriz de A formada por todas las columnas de A
	y por las filas que hay entre la a-ésima y la b-ésima
A(a, :)	Define la fila a-ésima de la matriz A

IEEE Sección Argentina

Matrices especiales

zeros(m,n)	Crea una matriz de m x n de ceros
ones(m,n)	Crea una matriz de m x n de unos
rand(m,n)	Crea una matriz de m x n aleatoria
magic(m)	Crea una matriz aleatoria especial
eye(m,n)	Crea la matriz de m x n con unos en la diagonal principal y ceros en el resto

Ej. Ejecutar las siguiente líneas. Obtener conclusiones.

```
V = magic(4)
```


Funciones sobre matrices

flipud(A)	Devuelve la matriz cuyas filas están colocadas en orden inverso
fliplr(A)	Devuelve la matriz cuyas columnas están colocadas en orden inverso
rot90(A)	Rota 90 grados la matriz A
size(A)	Devuelve el orden (tamaño) de la matriz A
tril(A)	Devuelve la parte triangular inferior de la matriz A
triu(A)	Devuelve la parte triangular superior de la matriz A
inv(A)	Devuelve la matriz inversa de A

IEEE Sección Argentina

Variables carácter

Una variable carácter es un arreglo de caracteres incluidos entre comillas simples que MATLAB trata de forma vectorial. Sintaxis :

c = ' cadenadecaracteres'

Variables carácter

Funciones sobre caracteres

lower('cadena')	Convierte la cadena a minúsculas
upper('cadena')	Convierte la cadena a mayúsculas
strcmp(c1,c2)	Compara las cadenas s1 y s2 y devuelve 1 si son
	iguales y 0 en caso contrario
strcmp(c1,c2,n)	Compara las cadenas s1 y s2 y devuelve 1 si son iguales sus n
	primeros caracteres y 0 en caso contrario
int2str(entero)	Convierte el número entero en cadena
disp('cadena')	Muestra la cadena y continúa el proceso de MATLAB

Números

Se puede trabajar con diferentes tipos de números y expresiones numéricas :

- Números enteros
- Números racionales
- Números reales
- Números complejos

Operaciones permitidas con números

х+у	Suma
x-y	Diferencia
x*y o xy	Producto
x/y	División
x^y	Potencia

Todas las operaciones con números enteros se realizan de forma exacta

Números

Números irracionales y reales especiales

pi	Número $\pi = 3,1415926$
exp(1)	Número e = 2,7182818
Inf	Infinito (por ejemplo 1/0)
NaN	Indeterminación (por ejemplo 0/0)
realmin	Menor número real positivo utilizable
realmax	Mayor número real positivo utilizable

Números

Números complejos

Trabajar con números complejos está perfectamente implementado en MATLAB. La letra i o una j minúsculas representan el número imaginario.

Algunas funciones a tener en cuenta sobre los números complejos son

Función	Significado
abs(Z)	Módulo del complejo Z
angle(Z)	Argumento del complejo Z
conj(Z)	Conjugado del complejo Z
real(Z)	Parte real del complejo Z
imag(Z)	Parte imaginaria del complejo Z

Ejercicio práctico 1

- Cree los siguientes números complejos :
 - A = 1 + i
 - B = 2 3i
 - C = 8 + 2i
- Cree un vector D de números complejos cuyos componentes reales son 2,4 y 6 y cuyos componentes imaginarios son -3, 8 y -16
- Encuentre la magnitud (valor absoluto) de cada uno de los vectores que creo en el problema 1
- Encuentre el ángulo desde la horizontal de cada uno de los números que creó en el problema 1
- 5 Encuentre la conjugada compleja del vector D
- Use el operador transpuesto para encontrar la conjugada compleja del vector D
- Multiplique A por su conjugada compleja y luego saque la raíz cuadrada de su respuesta.

Consultas

Bibliografía

