Key Event Receipt Infrastructure KERI-2 A Secure Identifier Overlay for the Internet

Samuel M. Smith Ph.D. sam@prosapien.com version 2.29

https://github.com/SmithSamuelM/Papers

https://github.com/SmithSamuelM/Papers/blob/master/presentations/KERI2_Overview.web.pdf
https://github.com/SmithSamuelM/Papers/blob/master/whitepapers/KERI_WP_2.x.web.pdf
https://github.com/SmithSamuelM/keri
https://github.com/decentralized-identity/keri

Background References

Self-Certifying Identifiers:

- Girault, M., "Self-certified public keys," EUROCRYPT 1991: Advances in Cryptology, pp. 490-497, 1991 https://link.springer.com/content/pdf/10.1007%2F3-540-46416-6_42.pdf
- Mazieres, D. and Kaashoek, M. F., "Escaping the Evils of Centralized Control with self-certifying pathnames," MIT Laboratory for Computer Science, http://www.sigops.org/ew-history/1998/papers/mazieres.ps
- Kaminsky, M. and Banks, E., "SFS-HTTP: Securing the Web with Self-Certifying URLs," MIT, 1999 https://pdos.csail.mit.edu/~kaminsky/sfs-http.ps
- Mazieres, D., "Self-certifying File System," MIT Ph.D. Dissertation, 2000/06/01 https://pdos.csail.mit.edu/~ericp/doc/sfs-thesis.ps
- Smith, S. M., "Open Reputation Framework," vol. Version 1.2, 2015/05/13 https://github.com/SmithSamuelM/Papers/blob/master/whitepapers/open-reputation-low-level-whitepaper.pdf
- Smith, S. M. and Khovratovich, D., "Identity System Essentials," 2016/03/29 https://github.com/SmithSamuelM/Papers/blob/master/whitepapers/Identity-System-Essentials.pdf
- Smith, S. M., "Decentralized Autonomic Data (DAD) and the three R's of Key Management," Rebooting the Web of Trust RWOT 6, Spring 2018 https://github.com/SmithSamuelM/Papers/blob/master/whitepapers/DecentralizedAutonomicData.pdf
- TCG, "Implicit Identity Based Device Attestation," Trusted Computing Group, vol. Version 1.0, 2018/03/05

 https://trustedcomputinggroup.org/wp-content/uploads/TCG-DICE-Arch-Implicit-Identity-Based-Device-Attestation-v1-rev93.pdf
- Smith, S. M., "Key Event Receipt Infrastructure (KERI) Design and Build", arXiv, 2019/07/03 revised 2020/04/23 https://arxiv.org/abs/1907.02143
- Smith, S. M., "Key Event Receipt Infrastructure (KERI) Design", 2020/04/22 https://github.com/SmithSamuelM/Papers/blob/master/whitepapers/KERI_WP_2.x.web.pdf

Certificate Transparency:

- Laurie, B., "Certificate Transparency: Public, verifiable, append-only logs," ACMQueue, vol. Vol 12, Issue 9, 2014/09/08 https://queue.acm.org/detail.cfm?id=2668154
- Google, "Certificate Transparency," http://www.certificate-transparency.org/home
- Laurie, B. and Kasper, E., "Revocation Transparency," https://www.links.org/files/RevocationTransparency.pdf

Human Basis-of-Trust "in person"

I can know you – therefore I can trust you

"on the internet"

I can't really know you – therefore I can't really trust you

Replace human basis-of-trust with cryptographic root-of-trust.

With verifiable digital signatures from asymmetric key crypto – we may not trust in "what" was said, but we may trust in "who" said it.

We may verify that the controller of a private key, (the who), made a statement but not the validity of the statement itself.

The root-of-trust is consistent attribution via verifiable integral non-repudiable statements

We may build trust over time in what was said via histories of verifiably attributable (to whom) consistent statements i.e. reputation.

The Internet Protocol (IP) is bro-ken because it has no security layer.

Instead ...

We use **bolt-on** identity system security overlays. (DNS-CA ...)

Identity System Security Overlay

Establish authenticity of IP packet's message payload.

The overlay's security is contingent on the mapping's security.

Identifier Issuance

Administrative Identifier Issuance and Binding

Admin-Certifying Identifier Issuance

DNS Hijacking

A DNS hijacking wave is targeting companies at an almost unprecedented scale. Clever trick allows attackers to obtain valid TLS certificate for hijacked domains. https://arstechnica.com/information-technology/2019/01/a-dns-hijacking-wave-is-targeting-companies-at-an-almost-unprecedented-scale/

Self-Certifying Identifier Issuance and Binding

Self-Certifying Identifier Issuance

Identity System Security Overlay

Spanning Layer

Hourglass

Platform Locked Trust

Platform Locked Trust

Each trust layer only spans platform specific applications Bifurcates the internet trust map No spanning trust layer

Waist and Neck

Basic

Prefix				
Derivation	Public Key			

Self-Addressing

Prefix		
Derivation	Inception Digest	

Multi-Sig Self-Addressing

Prefix		
Derivation	Inception Digest	

Delegated Self-Addressing

Prefix			
Derivation	Inception Digest		

Self-Signing

Prefix				
Derivation	Inception Signature			

	_	Inceptio	n Statement	
	Inception Data			
De	erivation	Public Key	Configuration	Signature

Ledger Registration

Access identifier may have self-certifying primary root-of-trust but registered identifier does not, even if its format appears self-certifying.

Autonomic Identifier (AID) and Namespace (AN)

auto nomos = self rule

autonomic = self-governing, self-controlling, etc.

An autonomic namespace is

self-certifying and hence self-administrating.

ANs are portable = truly self-sovereign.

autonomic prefix = self-cert + UUID + URL = universal identifier

Autonomic Identity System

why, how – who controls what, when, and how?

Root-of-Trust

cryptographic autonomic identifier = why, how

Source-of-Truth

controller of the private key = who

Loci-of-Control

authoritative operation = what, when, how

Key Event Message

Event Digest Chaining

Establishment Events

Establishment Subsequence

Non-Establishment Events

Full Sequence nent Non-Es

Seal (Anchor)

seal provides evidence of authenticity

A *seal* anchors arbitrary data to an event in the key event sequence thereby providing proof of control authority for that data at the location of the anchoring event.

Seals make KERI both privacy preserving and data semantic agnostic.

Context independent extensibility via externally layered APIs for anchored data instead of context dependent extensibility via internal linked data or tag registries.

Interoperability is total w.r.t. establishment of control authority.

Minimally sufficient means.

Event Sequencing

Establishment Subsequence

Full Sequence nent Non-Es

Inconsistency and Duplicity

Inconsistency vs. Duplicity

inconsistency: lacking agreement, as two or more things in relation to each other *duplicity*: acting in two different ways to different people concerning the same matter

Internal vs. External Inconsistency Internally inconsistent log = not verifiable.

Log verification from self-certifying root-of-trust protects against internal inconsistency.

Externally inconsistent log with a purported copy of log but both verifiable = duplicitous.

Duplicity detection protects against external inconsistency.

Cate promises to provide a consistent pair-wise log.

Duplicity Game

How may Cate be duplicitous and not get caught?

Local Consistency Guarantee

private (one-to-one) interactions

highly available, private (one-to-one) interactions

Service promises to provide exact same log to everyone.

Global Consistency Guarantee

Breaking the promise of global consistency is a provable liability.

isolate network

Will

Validator

Log

log V1

Duplicity Game

How may Cate and/or service be duplicitous and not get caught?

global consistent, highly available, and public (one-to-any) interactions

KEY Event Based Provenance of Identifiers

KERI enables cryptographic proof-of-control-authority (provenance) for each identifier.

A proof is in the form of an identifier's key event receipt log (KERL).

KERLs are End Verifiable:

End user alone may verify. Zero trust in intervening infrastructure.

KERLs may be Ambient Verifiable:

Anyone may verify anylog, anywhere, at anytime.

KERI = self-cert root-of-trust + certificate transparency + KA²CE + recoverable + post-quantum.

KERI for the DIDified

KERI non-transferable ephemeral with derivation prefix ~ did:key

KERI private direct mode (one-to-one) ~ did:peer

KERI public persistent indirect mode (one-to-any) ~ did:sov etc

KERI = did:uni (did:un) (all of the above in one method)

Pre-Rotation

Digest of next key(s) makes pre-rotation post-quantum secure

Dead Exploit

Any copy of original history protects against successful dead exploit

Live Exploit

Difficulty of inverting next key(s) protects against successful live exploit

Key Infrastructure Valence

Repurposed Keys

	Interaction	
SN 2	payload	current
		C_X

$egin{array}{c c} SN & ext{payload} & ext{current} \ & \dot{m{C}}_X^1 \end{array}$	

	Ro	otation	
SN 4	current C_R^2	next digest C_R^3	$egin{pmatrix} ext{current} \ C_R^2 \ \end{pmatrix}$

	Interaction	
SN 5	payload	$\dot{m{C}}_X^2$

	Inc	eption	
SN	initial	next digest	current
0	C_I°	C_R	C_R°

		Ro	otation	
SN 1	current $oldsymbol{C_R^1}$	next digest C_R^2	payload	$oldsymbol{C_R^1}$

		Ro	otation	
SN	current C^2	next digest	payload	current 2
4	C_R	\mathbf{C}_R		C_R

Repurposed Keys

	Interaction	
SN 2	payload	current
		C_X

$egin{array}{c c} SN & ext{payload} & ext{current} \ & \dot{m{C}}_X^1 \end{array}$	

	Ro	otation	
SN 4	current C_R^2	next digest C_R^3	$egin{pmatrix} ext{current} \ C_R^2 \ \end{pmatrix}$

	Interaction	
SN 5	payload	$\dot{m{C}}_X^2$

	Inc	eption	
SN	initial	next digest	current
0	C_I°	C_R	C_R°

Rotation										
SN 1	current $oldsymbol{C_R^1}$	next digest C_R^2	payload	$egin{array}{c} ext{current} \ C_R^1 \ \end{array}$						

Rotation										
SN 4	current $oldsymbol{C_R^2}$	next digest C_R^3	payload	$egin{pmatrix} ext{current} \ C_R^2 \ \end{pmatrix}$						

Interaction Delegation

Rotation Delegation

Scaling Delegation via Interaction

 $\Delta \rightarrow X$: Delegation to X $\Delta \leftarrow A$: Delegation from A

Scaling Delegation via Rotation

 $\Delta \rightarrow X$: Delegation to X $\Delta \leftarrow A$: Delegation from A

Protocol Operational Modes

Direct Event Replay Mode (one-to-one)

Indirect Event Replay Mode (one-to-any)

Direct Mode: A to B

Direct Mode: B to A

Indirect Mode Promulgation Service

Indirect Mode Promulgation and Confirmation Services

Indirect Mode Full

Indirect Mode with Ledger Oracles

Separation of Control

Shared (permissioned) ledger = shared control over shared data.

Shared data = good, shared control = bad.

Shared control between controller and validator may be problematic for governance, scalability, and performance.

KERI = separated control over shared data.

Separated control between controller and validator may provide better decentralization, more flexibility, better scalability, lower cost, higher performance, and more privacy at comparable security.

State Verifier Engine

KERI Core — State Verifier Engine

Delegated State Verifier Engine

KERI Delegated Core — State Verifier Engine

Witness Designation

Witnessed Key Event Receipt

(KA²CE) Keri's Agreement Algorithm for Control Establishment

Produce Agreements with Guarantees

Agreement Constraints

Proper Agreement

$$F+1$$

Sufficient Agreement

$$M \leq N - F$$

$$F < M \le N - F$$

Intact Agreement

$$N \ge 2F + 1$$

One Agreement or None at All

$$|\widehat{N}| = N \qquad |\widehat{M}_1| = |\widehat{M}_2| = M$$

Overlapping Sets

$$\widehat{M}_1 \cup \widehat{M}_2 = \widehat{N}$$

$$\widehat{M}_1$$
 $\widehat{M}_1 \cap \widehat{M}_2$ \widehat{M}_2

One honest witness if:

$$|\widehat{M}_1 \cap \widehat{M}_2| \ge F + 1$$

$$\begin{aligned} \left| \widehat{M}_1 \cup \widehat{M}_2 \right| &= \left| \widehat{N} \right| = N \\ \left| \widehat{M}_1 \right| + \left| \widehat{M}_2 \right| &= \left| \widehat{M}_1 \cup \widehat{M}_2 \right| + \left| \widehat{M}_1 \cap \widehat{M}_2 \right| \\ 2M &= N + F + 1 \\ M &\geq \left\lceil \frac{N + F + 1}{2} \right\rceil \\ M &\leq N - F \end{aligned}$$

Immune Agreement

$$\frac{N+F+1}{2} \le M \le N-F$$

Example Values

m	m	ıın	ity
		uii	ııy

F	N	3F+1	$\left\lceil \frac{N+F+1}{2} \right\rceil$	N-F	M
1	4	4	3	3	3
1	5	4	4	4	4
1	6	4	4	5	4, 5
1	7	4	5	6	5, 6
1	8	4	5	7	5, 6, 7
1	9	4	6	8	6, 7, 8
2	7	7	5	5	5
2	8	7	6	6	6
2	9	7	6	7	6, 7
2	10	7	7	8	7, 8
2	11	7	7	9	7, 8, 9
2	12	7	8	10	8, 9, 10
3	10	10	7	7	7
3	11	10	8	8	8
3	12	10	8	9	8, 9
3	13	10	9	10	9, 10
3	14	10	9	11	9, 10, 11
3	15	10	10	12	10, 11, 12

Recovery from Live Exploit

Recovery from Live Exploit

Generic Event Formats

Generic Inception

$$\begin{split} \mathcal{E}_{0}^{C} = & \left\langle \boldsymbol{v}_{0}^{C}, \boldsymbol{C}, \boldsymbol{t}_{0}^{C}, \mathrm{icp}, \boldsymbol{K}_{0}^{C}, \hat{\boldsymbol{C}}_{0}^{C}, \boldsymbol{\eta}_{0}^{C} \left(\left\langle \boldsymbol{K}_{1}^{C}, \hat{\boldsymbol{C}}_{1}^{C} \right\rangle \right), \boldsymbol{M}_{0}^{C}, \hat{\boldsymbol{W}}_{0}^{C}, \left[data \right], \hat{\boldsymbol{s}}_{0}^{C} \right\rangle \hat{\boldsymbol{\sigma}}_{0}^{C} \\ & \hat{\boldsymbol{C}}_{0}^{C} = \left[\boldsymbol{C}^{0}, \dots, \boldsymbol{C}^{L_{0}^{C}-1} \right]_{0}^{C} \\ & \hat{\boldsymbol{C}}_{1}^{C} = \left[\boldsymbol{C}^{r_{1}}, \dots, \boldsymbol{C}^{r_{1}+L_{1}^{C}-1} \right]_{1}^{C} \\ & \hat{\boldsymbol{W}}_{0}^{C} = \left[\boldsymbol{W}_{0}^{C}, \dots, \boldsymbol{W}_{N_{0}^{C}-1}^{C} \right]_{0}^{C} \\ & \hat{\boldsymbol{s}}_{0}^{C} = \left[\boldsymbol{s}_{0}, \dots, \boldsymbol{s}_{S_{0}^{C}-1} \right]_{0}^{C} \\ & \hat{\boldsymbol{\sigma}}_{0}^{C} = \boldsymbol{\sigma}_{\boldsymbol{C}^{s_{0}}} \dots \boldsymbol{\sigma}_{\boldsymbol{C}^{s_{S_{0}^{C}-1}}} \end{split}$$

Generic Rotation

$$\begin{split} \mathcal{E}_{k}^{C} = & \left\langle \boldsymbol{v}_{k}^{C}, \boldsymbol{C}, \boldsymbol{t}_{k}^{C}, \boldsymbol{\eta}_{k}^{C} \left(\boldsymbol{\varepsilon}_{k-1}^{C} \right), \operatorname{rot}, \boldsymbol{K}_{l}^{C}, \hat{\boldsymbol{C}}_{l}^{C}, \boldsymbol{\eta}_{l}^{C} \left(\left\langle \boldsymbol{K}_{l+1}^{C}, \hat{\boldsymbol{C}}_{l+1}^{C} \right\rangle \right), \boldsymbol{M}_{l}^{C}, \hat{\boldsymbol{X}}_{l}^{C}, \hat{\boldsymbol{Y}}_{l}^{C}, \left[\operatorname{seals} \right], \hat{\boldsymbol{s}}_{kl}^{C} \right\rangle \hat{\boldsymbol{\sigma}}_{kl}^{C} \\ & \hat{\boldsymbol{C}}_{l}^{C} = \left[\boldsymbol{C}^{r_{l}^{C}}, \dots, \boldsymbol{C}^{r_{l+1}^{C} + l_{l+1}^{C} - 1} \right]_{l}^{C} \\ & \hat{\boldsymbol{C}}_{l+1}^{C} = \left[\boldsymbol{C}^{r_{l+1}^{C}}, \dots, \boldsymbol{C}^{r_{l+1}^{C} + l_{l+1}^{C} - 1} \right]_{l+1}^{C} \\ & \hat{\boldsymbol{X}}_{l}^{C} = \left[\boldsymbol{X}_{0}^{C}, \dots, \boldsymbol{X}_{O_{l}^{C} - 1}^{C} \right]_{l}^{C} \\ & \hat{\boldsymbol{Y}}_{l}^{C} = \left[\boldsymbol{Y}_{0}^{C}, \dots, \boldsymbol{Y}_{P_{l}^{C} - 1}^{C} \right]_{l}^{C} \\ & \hat{\boldsymbol{s}}_{kl}^{C} = \left[\boldsymbol{s}_{0}, \dots, \boldsymbol{s}_{\boldsymbol{s}_{kl}^{C} - 1} \right]_{kl}^{C} \\ & \hat{\boldsymbol{\sigma}}_{kl}^{C} = \boldsymbol{\sigma}_{C^{r_{l}^{C} + s_{0}}} \dots \boldsymbol{\sigma}_{C^{r_{l}^{C} + s_{0}^{C} - 1}^{C} \\ & \hat{\boldsymbol{s}}_{kl}^{C} = \boldsymbol{\sigma}_{C^{r_{l}^{C} + s_{0}}} \dots \boldsymbol{\sigma}_{C^{r_{l}^{C} + s_{0}^{C} - 1}^{C}} \end{split}$$

Generic Interaction

$$\varepsilon_{k}^{C} = \left\langle v_{k}^{C}, C, t_{k}^{C}, \eta_{k}^{C} \left(\varepsilon_{k-1}^{C} \right), \text{ixn}, [\text{seals}], \hat{s}_{kl}^{C} \right\rangle \hat{\sigma}_{kl}^{C}
K_{l}^{C}
\hat{C}_{l}^{C} = \left[C^{r_{l}^{C}}, \dots, C^{r_{l}^{C} + L_{l}^{C} - 1} \right]_{l}^{C}
\hat{s}_{kl}^{C} = \left[s_{0}, \dots, s_{s_{kl}^{C} - 1} \right]_{kl}^{C}
\hat{\sigma}_{kl}^{C} = \sigma_{C_{l}^{C} + s_{0}}^{C} \dots \sigma_{C_{l}^{C} + s_{s_{kl}^{C} - 1}}^{C}$$

Generic Delegating Event Formats

Generic Delegated Event Formats

Delegation Seal prefix digest sn

Rotation Delegation Data											
version	prefix	sn	ilk	digest	rotated threshold	rotated keys	next digest	tally	pruned witnesses	grafted witnesses	perms

signatures current

Inception Delegation

$$\begin{split} \widehat{\Delta}_{0}^{D} &= \left\{D, t_{0}^{D}, \eta_{k}^{C}\left(\widehat{\delta}_{0}^{D}\right)\right\} \\ \widehat{\delta}_{0}^{D} &= \left\langle\boldsymbol{v}_{0}^{D}, D, t_{0}^{D}, \operatorname{dip}, K_{0}^{D}, \widehat{D}_{0}^{D}, \boldsymbol{M}_{0}^{D}, \widehat{W}_{0}^{D}, \left\{perms\right\}\right\rangle \\ \widehat{D}_{0}^{D} &= \left[D^{0}, \dots, D^{L_{0}^{D-1}}\right]_{0}^{D} \\ \widehat{W}_{0}^{C} &= \left[W_{0}^{C}, \dots, W_{N_{0}^{C-1}}^{C}\right]_{0}^{C} \\ \boldsymbol{\varepsilon}_{0}^{D} &= \left\langle\boldsymbol{v}_{0}^{D}, D, t_{0}^{D}, \operatorname{dip}, K_{0}^{D}, \widehat{D}_{0}^{D}, \boldsymbol{M}_{0}^{D}, \widehat{W}_{0}^{D}, \left\{perms\right\}, \widehat{\Delta}_{k}^{C}, \widehat{s}_{0}^{D}\right\rangle \widehat{\sigma}_{0}^{D} \\ \widehat{\Delta}_{k}^{C} &= \left\{C, t_{k}^{C}, \eta_{0}^{D}\left(\boldsymbol{\varepsilon}_{k}^{C}\right)\right\} \\ \widehat{s}_{0}^{D} &= \left[\boldsymbol{s}_{0}, \dots, \boldsymbol{s}_{S_{0}^{D-1}}\right]_{0}^{D} \\ \widehat{\sigma}_{0}^{D} &= \boldsymbol{\sigma}_{D^{s_{0}}} \dots \boldsymbol{\sigma}_{D^{s_{S_{0}^{D-1}}}} \end{split}$$

Rotation Delegation

$$\begin{split} \widehat{\Delta}_{k}^{D} &= \left\{D, t_{k}^{D}, \eta_{k}^{C} \left(\widehat{\delta}_{k}^{D}\right)\right\} \\ \widehat{\delta}_{k}^{D} &= \left\langle v_{k}^{D}, D, t_{k}^{D}, \eta_{k}^{D} \left(\varepsilon_{k-1}^{D}\right), \operatorname{drt}, K_{l}^{D}, \widehat{D}_{l}^{D}, M_{l}^{D}, \widehat{X}_{l}^{D}, \widehat{Y}_{l}^{D}, \left\{perms\right\}\right\rangle \\ \widehat{D}_{l}^{D} &= \left[D^{r_{l}^{D}}, \dots, D^{r_{l}^{D} + L_{l}^{D} - 1}\right]_{l}^{D} \\ \widehat{X}_{l}^{D} &= \left[X_{0}^{D}, \dots, X_{O_{l}^{D} - 1}^{D}\right]_{l}^{D} \\ \widehat{Y}_{l}^{D} &= \left[Y_{0}^{D}, \dots, Y_{P_{l}^{D} - 1}^{D}\right]_{l}^{D} \\ \varepsilon_{k}^{D} &= \left\langle v_{k}^{D}, D, t_{k}^{D}, \eta_{k}^{D} \left(\varepsilon_{k-1}^{D}\right), \operatorname{drt}, K_{l}^{D}, \widehat{D}_{l}^{D}, M_{l}^{D}, \widehat{X}_{l}^{D}, \widehat{Y}_{l}^{D}, \left\{perms\right\}, \widehat{\Delta}_{k}^{C}, \widehat{s}_{kl}^{D}\right) \widehat{\sigma}_{kl}^{D} \\ \widehat{\Delta}_{k}^{C} &= \left\{C, t_{k}^{C}, \eta_{k}^{D} \left(\varepsilon_{k}^{C}\right)\right\} \\ \widehat{s}_{kl}^{D} &= \left[s_{0}, \dots, s_{S_{kl}^{D} - 1}\right]_{kl}^{D} \\ \widehat{\sigma}_{kl}^{D} &= \sigma_{c^{+r_{l}^{D} + s_{0}}} \dots \sigma_{c^{r_{l}^{D} + s_{S_{kl}^{D} - 1}}} \end{split}$$

Delegated Interaction

$$\varepsilon_k^D = \langle v_k^D, D, t_k^D, \eta_k^D(\varepsilon_{k-1}^D), \text{ixn}, [data], \widehat{s}_{kl}^D \rangle \widehat{\sigma}_{kl}^D$$

Witness Rotations

$$\begin{split} \widehat{W}_0 &= \begin{bmatrix} W_0 &, W_1 &, \cdots, W_{N-1} \end{bmatrix} \\ \widehat{W}_l &= \left(\widehat{W}_{l-1} - \widehat{X}_l \right) \cap \widehat{Y}_l \\ \widehat{X}_l &\subseteq \widehat{W}_{l-1} \quad \widehat{Y}_l \not\subset \widehat{W}_{l-1} \quad \widehat{X}_l \not\subset \widehat{W}_l \\ N_l &= N_{l-1} - O_l + P_l \\ M_l &\leq N_l \end{split}$$

$$\begin{aligned} \left| \hat{X}_{l} \right| &= O_{l} \quad \left| \hat{Y}_{l} \right| = P_{l} \quad \left| \hat{W}_{l} \right| = N_{l} \\ \widehat{U}_{l-1} &\subseteq \widehat{W}_{l-1} \quad \left| \hat{U}_{l-1} \right| \geq M_{l-1} \\ \widehat{U}_{l} &\subseteq \widehat{W}_{l} \quad \left| \hat{U}_{l} \right| \geq M_{l} \\ \left| \hat{U}_{l-1} \bigcup \widehat{U}_{l} \right| \leq M_{l-1} + M_{l} \end{aligned}$$

Complex Weighted Signing Thresholds

$$\widehat{C}_{l} = \begin{bmatrix} C_{l}^{1}, \dots, C_{l}^{L_{l}} \end{bmatrix}_{l}$$

$$\widehat{K}_{l} = \begin{bmatrix} U_{l}^{1}, \dots, U_{l}^{L_{1}} \end{bmatrix}_{l}$$

$$0 < U_l^j \le 1$$

$$\widehat{\boldsymbol{S}}_{k}^{l} = \left[\boldsymbol{S}_{0}, \dots, \boldsymbol{S}_{\boldsymbol{S}_{k}^{l}-1}\right]_{k}^{l}$$

$$\bar{U}_l = \sum_{i=s_0}^{s_{S_k-1}} U_l^i \ge 1$$

$$\widehat{C} = [C^1, C^2, C^3]$$

$$U_l^j = 1/K_l$$

$$\hat{K} = [1/2, 1/2, 1/2]$$

$$\widehat{K}_{l} = \left[\frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4} \right]_{l}$$

$$\widehat{K}_{l} = \left[\left[\frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4} \right], \left[\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \right], \left[1, 1, 1, 1 \right] \right]$$

BACKGROUND

Derivation Code Tables

Length of crypt material determines number of pad characters. One character table for one pad char. Two character table for two pad char.

One Character KERI Base64 Prefix Derivation Code Selector

Derivation Code	Prefix Description
0	Two character derivation code. Use two character table.
1	Four character derivation code. Use four character table.
2	Five character derivation code. Use five character table.
3	Six character derivation code. Use six character table.
4	Eight character derivation code. Use eight character table.
5	Nine character derivation code. Use nine character table.
6	Ten character derivation code. Use ten character table.

One Character KERI Base64 Prefix Derivation Code

Derivation Code	Prefix Description	Data Length Bytes	Pad Length	Derivat ion Code Length	Prefix Length Base64	Prefix Length Bytes
Α	Non-transferable prefix using Ed25519 public signing verification key. Basic derivation.	32	1	1	44	33
В	X25519 public encryption key. May be converted from Ed25519 public signing verification key.	32	1	1	44	33
С	Ed25519 public signing verification key. Basic derivation.	32	1	1	44	33
D	Blake3-256 Digest. Self-addressing derivation.	32	1	1	44	33
E	Blake2b-256 Digest. Self-addressing derivation.	32	1	1	44	33
F	Blake2s-256 Digest. Self-addressing derivation.	32	1	1	44	33
G	Non-transferable prefix using ECDSA secp256k1 public singing verification key. Basic derivation.	32	1	1	44	33
Н	ECDSA secp256k1 public signing verification key. Basic derivation.	32	1	1	44	33
ı	SHA3-256 Digest. Self-addressing derivation.	32	1	1	44	33
J	SHA2-256 Digest. Self-addressing derivation.	32	1	1	44	33

Two Character KERI Base64 Prefix Derivation Code

Derivation Code	Prefix Description	Data Length Bytes	Pad Length	Derivat ion Code Length	Prefix Length Base64	Prefix Length Bytes
0A	Ed25519 signature. Self-signing derivation.	64	2	2	88	66
0B	ECDSA secp256k1 signature. Self-signing derivation.	64	2	2	88	66
0C	Blake3-512 Digest. Self-addressing derivation.	64	2	2	88	66
0D	SHA3-512 Digest. Self-addressing derivation.	64	2	2	88	66
0E	Blake2b-512 Digest. Self-addressing derivation.	64	2	2	88	66
0F	SHA2-512 Digest. Self-addressing derivation.	64	2	2	88	66

Base64

Base64 Decode Binary from ASCII

Base64 Binary Decoding from ASCII

ASCII Char	Base 64 Index Deci mal	Base64 Index Hex	Base64 Index 6 bit Binary	ASCII Char	Base 64 Index Deci mal	Base 64 Index Hex	Base64 Index 6 bit Binary	ASCII Char	Base 64 Index Deci mal	Base 64 Index Hex	Base64 Index 6 bit Binary	ASCII Char	Base 64 Index Deci mal	Base 64 Index Hex	Base64 Index 6 bit Binary
Α	0	00	000000	Q	16	10	010000	g	32	20	100000	W	48	30	110000
В	1	01	000001	R	17	11	010001	h	33	21	100001	Х	49	31	110001
С	2	02	000010	S	18	12	010010	i	34	22	100010	У	50	32	110010
D	3	03	000011	Т	19	13	010011	j	35	23	100011	Z	51	33	110011
Е	4	04	000100	U	20	14	010100	k	36	24	100100	0	52	34	110100
F	5	05	000101	V	21	15	010101	I	37	25	100101	1	53	35	110101
G	6	06	000110	W	22	16	010110	m	38	26	100110	2	54	36	110110
Н	7	07	000111	X	23	17	010111	n	39	27	100111	3	55	37	110111
I	8	08	001000	Υ	24	18	011000	0	40	28	101000	4	56	38	111000
J	9	09	001001	Z	25	19	011001	р	41	29	101001	5	57	39	111001
K	10	0A	001010	а	26	1A	011010	q	42	2A	101010	6	58	3A	111010
L	11	0B	001011	b	27	1B	011011	r	43	2B	101011	7	59	3B	111011
М	12	0C	001100	С	28	1C	011100	S	44	2C	101100	8	60	3C	111100
N	13	0D	001101	d	29	1D	011101	t	45	2D	101101	9	61	3D	111101
0	14	0E	001110	е	30	1E	011110	u	46	2E	101110	-	62	3E	111110
Р	15	0F	001111	f	31	1F	011111	V	47	2F	101111	_	63	3F	111111

Certificate Transparency Problem

"The solution the computer world has relied on for many years is to introduce into the system trusted third parties (CAs) that vouch for the binding between the domain name and the private key. The problem is that we've managed to bless several hundred of these supposedly trusted parties, any of which can vouch for any domain name. Every now and then, one of them gets it wrong, sometimes spectacularly."

Pinning inadequate

Notaries inadequate

DNSSec inadequate

All require trust in 3rd party compute infrastructure that is inherently vulnerable

Certificate Transparency: (related EFF SSL Observatory)

Public end-verifiable append-only event log with consistency and inclusion proofs

End-verifiable duplicity detection = Ambient verifiability of duplicity

Event log is third party infrastructure but zero trust because it is verifiable.

Sparse Merkle Trees for revocation of certificates

Certificate Transparency Solution

Public end-verifiable append-only event log with consistency and inclusion proofs End-verifiable duplicity detection = ambient verifiability of duplicity Event log is third party infrastructure but it is not trusted because logs are verifiable. Sparse Merkle trees for revocation of certificates

(related EFF SSL Observatory)

