

Этикетка

КСНЛ.431271.009 ЭТ

Микросхема интегральная 1564ЛЕ4УЭП Функциональное назначение: три логических элемента «ЗИЛИ-НЕ»

Схема расположения выводов Номера выводов показаны условно

Условное графическое обозначение

Таблица назначения выводов

No	Обозначение	Назначение	№	Обозначение	Назначение
вывода	вывода	вывода	вывода	вывода	вывода
1	A1	Вход	9	Y3	Выход
3	B1	Вход	11	A3	Вход
4	A2	Вход	12	В3	Вход
5	B2	Вход	13	C3	Вход
6	C2	Вход	14	Y1	Выход
7	Y2	Выход	15	C1	Вход
8	0V	Общий	16	V_{cc}	Питание

Для микросхем 1564ЛЕ4УЭП выводы 2 и 10 – свободные

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = 25\pm10$ °C)

1.1 Основные электрические параг	истры (при $t = 23 \pm 10$	<u>c) </u>	
Наименование параметра, единица измерения, режим измерения	Буквенное	Норма	
	обозначение	не менее	не более
1	2	3	4
1. Максимальное выходное напряжение низкого уровня, В, при:			
$U_{CC}=2,0 \text{ B}, U_{IL}=0,3 \text{ B}, U_{IH}=1,5 \text{ B}, I_0=20 \text{ MKA}$	U _{OL max}	-	0,10
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B, I_{O} = 20 MKA		-	0,10
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} = 4,2 B, I_{O} = 20 mkA		-	0,10
при:			
$U_{CC} = 4.5 \text{ B}, U_{IL} = 0.9 \text{ B}, U_{IH} = 3.15 \text{ B}, I_{O} = 4.0 \text{ mA}$		-	0,26
$U_{CC} = 6.0 \text{ B}, U_{IL} = 1.2 \text{ B}, U_{IH} = 4.2 \text{ B}, I_{O} = 5.2 \text{ mA}$		-	0,26

1	2	2	4
2. Минимальное выходное напряжение высокого уровня, В, при:			
$U_{CC}=2.0 \text{ B}, U_{IH}=0.3 \text{ B}, I_{O}=20 \text{ MKA}$	$ m U_{OHmin}$	1,9	-
U_{CC} =4,5 B, U_{IH} =0,9 B, I_{O} = 20 mKA		4,4	-
U_{CC} =6,0 B, U_{IH} = 1,2 B, I_{O} = 20 mkA		5,9	-
при:			
$U_{CC} = 4.5 \text{ B}, U_{IH} = 0.9 \text{ B}, I_{O} = 4.0 \text{ MA}$		3,98	-
$U_{CC} = 6.0 \text{ B}, U_{IH} = 1.2 \text{ B}, I_0 = 5.2 \text{ mA}$		5,48	-
3. Входной ток низкого уровня, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{IL}	-	/-0,1/
4. Входной ток высокого уровня, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{IH}	-	0,1
5.Ток потребления, мкА, при:			
U _{CC} = 6.0 B, U _{II} = 0 B, U _{IH} = U _{CC}	I_{CC}	_	1,2
OCC 0,0 B, OIL 0 B, OIH OCC	1CC	_	1,2
6. Динамический ток потребления, мА, при:			
$U_{CC} = 6.0 \text{ B}, f = 10 \text{ M}\Gamma_{II}, \hat{U}_{IL} = 0 \text{ B}, U_{IH} = \hat{U}_{CC}$	I_{OCC}	-	0,25
7. Время задержки распространения при	t_{PHL}		
включении и выключении, нс, при:	$t_{ m PLH}$		
$U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ m}\Phi$		-	80
$U_{CC} = 4.5 \text{ B}, C_L = 50 \text{ m}\Phi$		-	17
$U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ п}\Phi$		-	14
8. Входная емкость, пФ	C_{I}	-	10
$U_{CC} = 0 B$			

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото	Γ
серебро	Γ

Цветных металлов не содержится

- 2 НАДЕЖНОСТЬ
- 2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых

ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) $^{\circ}$ C не менее 100000ч., а в облегченном режиме: при $U_{CC} = 5B \pm 10\%$ - не менее 120000ч.

 $^{-}$ 2.2 Гамма – процентный срок сохраняемости ($T_{C\gamma}$) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных, - в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям AEЯР.431200.424-14ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие. Срок гарантии исчисляется с даты изготовления, нанесенной на микросхему.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 1564ЛЕ4УЭП соответствуют техническим условиям АЕЯР.431200.424-14ТУ и признаны годными для эксплуатации.

Приняты по о	от	
(извещение, акт и др.)	(дата)	
Место для штампа ОТК		Место для штампа ПЗ
Место для штампа « Перепроверк	ка произведена	»
Приняты по (извещение, акт и д	р.) от (дата)	
Место для штампа ОТК		Место для штампа ПЗ

5. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 200 В.

Наиболее чувствительные к статическому электричеству последовательности (пары выводов): выход – общий, вход-выход.

Остальные указания по эксплуатации – в соответствии с АЕЯР.431200.424 ТУ.