

## CORRECTED SEQUENCE LISTING

## RECEIVED

EDDS 8 8 YAM

TECH CENTER 1600/2900

23

<110> Conseiller, Emmanuel Debussche, Laurent Gallagher, William

<120> Polypeptide (MBP1) Capable Of Interacting With Oncogenic Mutants Of The P53 Protein

- <130> ST98033
- <140> 09/829,936
- <141> 2001-04-11
- <150> FR9812754
- <151> 1998-10-12
- <160> 33
- <170> PatentIn version 3.1
- <210> 1
- <211> 23
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Oligonucleotide 5'-1(p53)
- <400> 1

agatctgtat ggaggagccg cag

- <210> 2
- <211> 29
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Oligonucleotide 3' -393 (p53)

| <400><br>agatct | 2<br>catc agtctgagtc aggcccttc | 29 |
|-----------------|--------------------------------|----|
| <210>           | 3                              |    |
| <211>           | 15                             |    |
| <212>           | DNA                            |    |
| <213>           | Artificial Sequence            |    |
| <220><br><223>  | Oligonucleotide H175 3'        |    |
| <400>           | 3<br>gtgc ctcac                | 15 |
| ggggca          | gege eccae                     |    |
| <210>           | 4                              |    |
| <211>           |                                |    |
| <212>           |                                |    |
| <213>           | Artificial Sequence            |    |
| <220><br><223>  | Oligonucleotide W248 3'        |    |
| <400><br>gggcct | 4<br>ccag ttcat                | 15 |
| <210>           | 5                              |    |
| <211>           | 15                             |    |
| <212>           | DNA                            |    |
| <213>           | Artificial Sequence            |    |
| <220><br><223>  | Oligonucleotide H273 3'        |    |
| <400><br>acaaac | 5<br>atgc acctc                | 15 |
| <210>           | 6                              |    |
| <211>           | 15                             |    |
| <212>           | DNA                            |    |
| <213>           | Artificial Sequence            |    |

| <220>                                                                                                                                                              |     |  |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|--|--|--|--|--|--|
| <223> Oligonucleotide G281 3'                                                                                                                                      |     |  |  |  |  |  |  |  |  |  |  |
| <400> 6<br>gcgccggcct ctccc                                                                                                                                        | 15  |  |  |  |  |  |  |  |  |  |  |
| <210> 7                                                                                                                                                            |     |  |  |  |  |  |  |  |  |  |  |
| <211> 23                                                                                                                                                           |     |  |  |  |  |  |  |  |  |  |  |
| <212> DNA                                                                                                                                                          |     |  |  |  |  |  |  |  |  |  |  |
| <213> Artificial Sequence                                                                                                                                          |     |  |  |  |  |  |  |  |  |  |  |
| <220><br><223> Oligonucleotide 5'-73                                                                                                                               |     |  |  |  |  |  |  |  |  |  |  |
| <400> 7 agatctgtgt ggcccctgca cca                                                                                                                                  | 23  |  |  |  |  |  |  |  |  |  |  |
| <210> 8                                                                                                                                                            |     |  |  |  |  |  |  |  |  |  |  |
| <211> 1021                                                                                                                                                         |     |  |  |  |  |  |  |  |  |  |  |
| <212> DNA                                                                                                                                                          |     |  |  |  |  |  |  |  |  |  |  |
| <213> Artificial Sequence                                                                                                                                          |     |  |  |  |  |  |  |  |  |  |  |
| <220><br><223> Murine MBP1 C-term fragment                                                                                                                         |     |  |  |  |  |  |  |  |  |  |  |
| <220><br><221> CDS<br><222> (1)(885)                                                                                                                               |     |  |  |  |  |  |  |  |  |  |  |
| <pre>&lt;400&gt; 8 tgc acc tgc cct gat ggt tac cga aaa att gga ccc gaa tgt gtg gac Cys Thr Cys Pro Asp Gly Tyr Arg Lys Ile Gly Pro Glu Cys Val Asp 1 5 10 15</pre> | 48  |  |  |  |  |  |  |  |  |  |  |
| ata gat gag tgt cgt tac cgc tat tgc cag cat cga tgt gtg aac ctg<br>Ile Asp Glu Cys Arg Tyr Arg Tyr Cys Gln His Arg Cys Val Asn Leu<br>20 25 30                     | 96  |  |  |  |  |  |  |  |  |  |  |
| ccg ggc tcc ttt cga tgc cag tgt gag cca ggc ttc cag ttg gga cct<br>Pro Gly Ser Phe Arg Cys Gln Cys Glu Pro Gly Phe Gln Leu Gly Pro<br>35 40 45                     | 144 |  |  |  |  |  |  |  |  |  |  |
| aac aac cgc tct tgt gtg gat gtg aat gag tgt gac atg gga gcc cca<br>Asn Asn Arg Ser Cys Val Asp Val Asn Glu Cys Asp Met Gly Ala Pro<br>50 55 60                     | 192 |  |  |  |  |  |  |  |  |  |  |
| tgt gag cag cgc tgc ttc aac tcc tat ggg acc ttc ctg tgt cgc tgt<br>Cys Glu Gln Arg Cys Phe Asn Ser Tyr Gly Thr Phe Leu Cys Arg Cys<br>65 70 75 80                  | 240 |  |  |  |  |  |  |  |  |  |  |
| aac cag ggc tat gag ctg cac cgg gat ggc ttc tcc tgc agc gat atc<br>Page 3                                                                                          | 288 |  |  |  |  |  |  |  |  |  |  |

41.

| Asn Gln Gly Tyr Glu Leu His Arg Asp Gly Phe Ser Cys Ser Asp I<br>85 90 95                                                                       | :le                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| gat gag tgc ggc tac tcc agt tac ctc tgc cag tac cgc tgt gtc a<br>Asp Glu Cys Gly Tyr Ser Ser Tyr Leu Cys Gln Tyr Arg Cys Val A<br>100 105 110   | aac 336<br>Asn        |
| gag cca ggc cga ttc tcc tgt cac tgc cca caa ggc tac cag ctg c<br>Glu Pro Gly Arg Phe Ser Cys His Cys Pro Gln Gly Tyr Gln Leu L<br>115 120 125   | ctg 384<br>Leu        |
| gct aca agg ctc tgc caa gat att gac gag tgt gaa aca ggt gca c<br>Ala Thr Arg Leu Cys Gln Asp Ile Asp Glu Cys Glu Thr Gly Ala H<br>130 135 140   | tac 432<br>His        |
| caa tgt tct gag gcc caa acc tgt gtc aac ttc cat ggg ggt tac c<br>Gln Cys Ser Glu Ala Gln Thr Cys Val Asn Phe His Gly Gly Tyr A<br>145 150 155 1 | cgc 480<br>Arg<br>L60 |
| tgt gtg gac acc aac cgt tgt gtg gag ccc tat gtc caa gtg tca g<br>Cys Val Asp Thr Asn Arg Cys Val Glu Pro Tyr Val Gln Val Ser A<br>165 170 175   | gac 528<br>Asp        |
| aac cgc tgc ctc tgc cct gcc tcc aat ccc ctt tgt cga gag cag c<br>Asn Arg Cys Leu Cys Pro Ala Ser Asn Pro Leu Cys Arg Glu Gln P<br>180 185 190   | cct 576<br>Pro        |
| tca tcc att gtg cac cgc tac atg agc atc acc tca gag cga agt g<br>Ser Ser Ile Val His Arg Tyr Met Ser Ile Thr Ser Glu Arg Ser V<br>195 200 205   | ntg 624<br>/al        |
| cct gct gac gtg ttt cag atc cag gca acc tct gtc tac cct ggt g<br>Pro Ala Asp Val Phe Gln Ile Gln Ala Thr Ser Val Tyr Pro Gly A<br>210 215 220   | gcc 672<br>Ala        |
| tac aat gcc ttt cag atc cgt tct gga aac aca cag ggg gac ttc t<br>Tyr Asn Ala Phe Gln Ile Arg Ser Gly Asn Thr Gln Gly Asp Phe T<br>225 230 235   | cac 720<br>Tyr<br>240 |
| att agg caa atc aac aat gtc agc gcc atg ctg gtc ctc gcc agg c<br>Ile Arg Gln Ile Asn Asn Val Ser Ala Met Leu Val Leu Ala Arg P<br>245 250 255   | cca 768<br>Pro        |
| gtg acg gga ccc cgg gag tac gtg ctg gac ctg gag atg gtc acc a<br>Val Thr Gly Pro Arg Glu Tyr Val Leu Asp Leu Glu Met Val Thr M<br>260 265 270   |                       |
| aat tcc ctt atg agc tac cgg gcc agc tct gta ctg aga ctc acg g<br>Asn Ser Leu Met Ser Tyr Arg Ala Ser Ser Val Leu Arg Leu Thr V<br>275 280 285   | gtc 864<br>/al        |
| ttt gtg gga gcc tat acc ttc tgaagaccct cagggaaggg ccatgtgggg<br>Phe Val Gly Ala Tyr Thr Phe<br>290 295                                          | 915                   |
| gccccttccc cctcccatag cttaagcagc cccgggggcc tagggatgac cgttct                                                                                   | gctt 975              |
| aaaggaacta tgatgtgaag gacaataaag ggagaaagaa ggaaaa                                                                                              | 1021                  |
| <210> 9                                                                                                                                         |                       |
| <211> 295                                                                                                                                       |                       |

<211> 295

<212> PRT

<213> Artificial Sequence

<220> <223>

<223> Murine MBP1 C-term fragment

<400> 9

Cys Thr Cys Pro Asp Gly Tyr Arg Lys Ile Gly Pro Glu Cys Val Asp 1 5 10 15

Ile Asp Glu Cys Arg Tyr Arg Tyr Cys Gln His Arg Cys Val Asn Leu 20 25 30

Pro Gly Ser Phe Arg Cys Gln Cys Glu Pro Gly Phe Gln Leu Gly Pro 35 40 45

Asn Asn Arg Ser Cys Val Asp Val Asn Glu Cys Asp Met Gly Ala Pro 50 60

Cys Glu Gln Arg Cys Phe Asn Ser Tyr Gly Thr Phe Leu Cys Arg Cys 65 70 75 80

Asn Gln Gly Tyr Glu Leu His Arg Asp Gly Phe Ser Cys Ser Asp Ile 85 90 95

Asp Glu Cys Gly Tyr Ser Ser Tyr Leu Cys Gln Tyr Arg Cys Val Asn 100 105 110

Glu Pro Gly Arg Phe Ser Cys His Cys Pro Gln Gly Tyr Gln Leu Leu 115 120 125

Ala Thr Arg Leu Cys Gln Asp Ile Asp Glu Cys Glu Thr Gly Ala His 130 135 140

Gln Cys Ser Glu Ala Gln Thr Cys Val Asn Phe His Gly Gly Tyr Arg 145 150 155 160

Cys Val Asp Thr Asn Arg Cys Val Glu Pro Tyr Val Gln Val Ser Asp 165 170 175

Asn Arg Cys Leu Cys Pro Ala Ser Asn Pro Leu Cys Arg Glu Gln Pro 180 185 190

Ser Ser Ile Val His Arg Tyr Met Ser Ile Thr Ser Glu Arg Ser Val 195 200 205

Pro Ala Asp Val Phe Gln Ile Gln Ala Thr Ser Val Tyr Pro Gly Ala Page 5



210 215 220

Tyr Asn Ala Phe Gln Ile Arg Ser Gly Asn Thr Gln Gly Asp Phe Tyr 225 230 235 240

Ile Arg Gln Ile Asn Asn Val Ser Ala Met Leu Val Leu Ala Arg Pro 245 250 255

Val Thr Gly Pro Arg Glu Tyr Val Leu Asp Leu Glu Met Val Thr Met 260 265 270

Asn Ser Leu Met Ser Tyr Arg Ala Ser Ser Val Leu Arg Leu Thr Val 275 280 285

Phe Val Gly Ala Tyr Thr Phe 290 295

<210> 10

<211> 39

<212> DNA

<213> Artificial Sequence

<220> <223> Oligonucleotide c-myc 5'

<400> 10 gatccatgga gcagaagctg atctccgagg aggacctga

<210> 11

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide c-myc 3'

<400> 11
gatctcaggt cctcctcgga gatcagcttc tgctccatg

gateteaggt ectectegga gateagette tyeteeat

<210> 12

<211> 45

<212> DNA

<213> Artificial Sequence

39

39

```
<220>
<223> 5' MCS oligonucleotide
<400> 12
                                                                       45
gatctcggtc gacctgcatg caattcccgg gtgcggccgc gagct
<210>
      13
<211>
      37
<212> DNA
<213> Artificial Sequence
<220>
<223>
      3' MCS oligonucleotide
<400> 13
                                                                       37
cgcggccgca cccgggaatt gcatgcaggt cgaccga
<210>
      14
<211>
      22
<212> DNA
<213>
      Artificial Sequence
<220>
      Oligonucleotide 3' mMBP1
<400>
      14
                                                                       22
cggtactggc agaggtaact gg
<210>
      15
<211>
      1513
<212> DNA
<213> Artificial Sequence
<220>
<223>
      MBP1 murine (complete sequence)
<220>
<221>
      CDS
<222>
      (49)..(1377)
<400> 15
gctgtggcag aaacccctga cttctgccca ccacctccca gcctcagg atg ctc cct
                                                                       57
                                                     Met Leu Pro
```

| ttt<br>Phe        | gcc<br>Ala<br>5   | tcc<br>Ser        | tgc<br>Cys        | ctc<br>Leu        | ccc<br>Pro        | ggg<br>Gly<br>10  | tct<br>Ser        | ttg<br>Leu        | ctg<br>Leu        | ctc<br>Leu        | tgg<br>Trp<br>15  | gcg<br>Ala        | ttt<br>Phe        | ctg<br>Leu        | ctg<br>Leu        | 105 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----|
| ttg<br>Leu<br>20  | ctc<br>Leu        | ttg<br>Leu        | gga<br>Gly        | gca<br>Ala        | gcg<br>Ala<br>25  | tcc<br>Ser        | cca<br>Pro        | cag<br>Gln        | gat<br>Asp        | ccc<br>Pro<br>30  | gag<br>Glu        | gag<br>Glu        | ccg<br>Pro        | gac<br>Asp        | agc<br>Ser<br>35  | 153 |
| tac<br>Tyr        | acg<br>Thr        | gaa<br>Glu        | tgc<br>Cys        | aca<br>Thr<br>40  | gat<br>Asp        | ggc<br>Gly        | tat<br>Tyr        | gag<br>Glu        | tgg<br>Trp<br>45  | gat<br>Asp        | gca<br>Ala        | gac<br>Asp        | agc<br>Ser        | cag<br>Gln<br>50  | cac<br>His        | 201 |
| tgc<br>Cys        | cgg<br>Arg        | gat<br>Asp        | gtc<br>Val<br>55  | aac<br>Asn        | gag<br>Glu        | tgc<br>Cys        | ctg<br>Leu        | acc<br>Thr<br>60  | atc<br>Ile        | ccg<br>Pro        | gag<br>Glu        | gct<br>Ala        | tgc<br>Cys<br>65  | aag<br>Lys        | ggt<br>Gly        | 249 |
| gag<br>Glu        | atg<br>Met        | aaa<br>Lys<br>70  | tgc<br>Cys        | atc<br>Ile        | aac<br>Asn        | cac<br>His        | tac<br>Tyr<br>75  | ggg<br>Gly        | ggt<br>Gly        | tat<br>Tyr        | t.tg<br>Leu       | tgt<br>Cys<br>80  | ctg<br>Leu        | cct<br>Pro        | cgc<br>Arg        | 297 |
| tct<br>Ser        | gct<br>Ala<br>85  | gcc<br>Ala        | gtc<br>Val        | atc<br>Ile        | agt<br>Ser        | gat<br>Asp<br>90  | ctc<br>Leu        | cat<br>His        | ggt<br>Gly        | gaa<br>Glu        | gga<br>Gly<br>95  | cct<br>Pro        | cca<br>Pro        | ccg<br>Pro        | cca<br>Pro        | 345 |
| gcg<br>Ala<br>100 | gcc<br>Ala        | cat<br>His        | gct<br>Ala        | caa<br>Gln        | caa<br>Gln<br>105 | cca<br>Pro        | aac<br>Asn        | cct<br>Pro        | tgc<br>Cys        | ccg<br>Pro<br>110 | cag<br>Gln        | ggc<br>Gly        | tac<br>Tyr        | gag<br>Glu        | cct<br>Pro<br>115 | 393 |
| gat<br>Asp        | gaa<br>Glu        | cag<br>Gln        | gag<br>Glu        | agc<br>Ser<br>120 | tgt<br>Cys        | gtg<br>Val        | gat<br>Asp        | gtg<br>Val        | gac<br>Asp<br>125 | gag<br>Glu        | tgt<br>Cys        | acc<br>Thr        | cag<br>Gln        | gct<br>Ala<br>130 | ttg<br>Leu        | 441 |
| cat<br>His        | gac<br>Asp        | tgt<br>Cys        | cgc<br>Arg<br>135 | cct<br>Pro        | agt<br>Ser        | cag<br>Gln        | gac<br>Asp        | tgc<br>Cys<br>140 | cat<br>His        | aac<br>Asn        | ctt<br>Leu        | cct<br>Pro        | ggc<br>Gly<br>145 | tcc<br>Ser        | tac<br>Tyr        | 489 |
| cag<br>Gln        | tgc<br>Cys        | acc<br>Thr<br>150 | tgc<br>Cys        | cct<br>Pro        | gat<br>Asp        | ggt<br>Gly        | tac<br>Tyr<br>155 | cga<br>Arg        | aaa<br>Lys        | att<br>Ile        | gga<br>Gly        | ccc<br>Pro<br>160 | gaa<br>Glu        | tgt<br>Cys        | gtg<br>Val        | 537 |
| gac<br>Asp        | ata<br>Ile<br>165 | gat<br>Asp        | gag<br>Glu        | tgt<br>Cys        | cgt<br>Arg        | tac<br>Tyr<br>170 | cgc<br>Arg        | tat<br>Tyr        | tgc<br>Cys        | cag<br>Gln        | cat<br>His<br>175 | cga<br>Arg        | tgt<br>Cys        | gtg<br>Val        | aac<br>Asn        | 585 |
| ctg<br>Leu<br>180 | ccg<br>Pro        | ggc<br>Gly        | tct<br>Ser        | ttt<br>Phe        | cga<br>Arg<br>185 | tgc<br>Cys        | cag<br>Gln        | tgt<br>Cys        | gag<br>Glu        | cca<br>Pro<br>190 | ggc<br>Gly        | ttc<br>Phe        | cag<br>Gln        | ttg<br>Leu        | gga<br>Gly<br>195 | 633 |
| cct<br>Pro        | aac<br>Asn        | aac<br>Asn        | cgc<br>Arg        | tct<br>Ser<br>200 | tgt<br>Cys        | gtg<br>Val        | gat<br>Asp        | gtg<br>Val        | aat<br>Asn<br>205 | gag<br>Glu        | tgt<br>Cys        | gac<br>Asp        | atg<br>Met        | gga<br>Gly<br>210 | gcc<br>Ala        | 681 |
|                   | tgt<br>Cys        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 729 |
| tgt<br>Cys        | aac<br>Asn        | cag<br>Gln<br>230 | ggc<br>Gly        | tat<br>Tyr        | gag<br>Glu        | ctg<br>Leu        | cac<br>His<br>235 | cgg<br>Arg        | gat<br>Asp        | ggc<br>Gly        | ttc<br>Phe        | tcc<br>Ser<br>240 | tgc<br>Cys        | agc<br>Ser        | gat<br>Asp        | 777 |
|                   | gat<br>Asp<br>245 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 825 |

Page 8

| aac ga<br>Asn G1<br>260 | g cca<br>u Pro        | ggc<br>Gly        | cga<br>Arg        | ttc<br>Phe<br>265 | tcc<br>Ser        | tgt<br>Cys        | cac<br>His        | tgc<br>Cys        | cca<br>Pro<br>270 | caa<br>Gln        | ggc<br>Gly        | tac<br>Tyr        | cag<br>Gln        | ctg<br>Leu<br>275 | 873  |
|-------------------------|-----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| ctg gc<br>Leu Al        | t aca<br>a Thr        | agg<br>Arg        | ctc<br>Leu<br>280 | tgc<br>Cys        | caa<br>Gln        | gat<br>Asp        | att<br>Ile        | gac<br>Asp<br>285 | gag<br>Glu        | tgt<br>Cys        | gaa<br>Glu        | aca<br>Thr        | ggt<br>Gly<br>290 | gca<br>Ala        | 921  |
| cac ca<br>His Gl        | a tgt<br>n Cys        | tct<br>Ser<br>295 | gag<br>Glu        | gcc<br>Ala        | caa<br>Gln        | acc<br>Thr        | tgt<br>Cys<br>300 | gtc<br>Val        | aac<br>Asn        | ttc<br>Phe        | cat<br>His        | ggg<br>Gly<br>305 | ggt<br>Gly        | tac<br>Tyr        | 969  |
| cgc tg<br>Arg Cy        | t gtg<br>s val<br>310 | gac<br>Asp        | acc<br>Thr        | aac<br>Asn        | cgt<br>Arg        | tgt<br>Cys<br>315 | gtg<br>Val        | gag<br>Glu        | ccc<br>Pro        | tat<br>Tyr        | gtc<br>Val<br>320 | caa<br>Gln        | gtg<br>Val        | tca<br>Ser        | 1017 |
| gac aa<br>Asp As<br>32  | n Arg                 | tgc<br>Cys        | ctc<br>Leu        | tgc<br>Cys        | cct<br>Pro<br>330 | gcc<br>Ala        | tcc<br>Ser        | aat<br>Asn        | ccc<br>Pro        | ctt<br>Leu<br>335 | tgt<br>Cys        | cga<br>Arg        | gag<br>Glu        | cag<br>Gln        | 1065 |
| cct tc<br>Pro Se<br>340 | a tcc<br>r Ser        | att<br>Ile        | gtg<br>Val        | cac<br>His<br>345 | cgc<br>Arg        | tac<br>Tyr        | atg<br>Met        | agc<br>Ser        | atc<br>Ile<br>350 | acc<br>Thr        | tca<br>Ser        | gag<br>Glu        | cga<br>Arg        | agt<br>Ser<br>355 | 1113 |
| gtg cc<br>Val Pr        | t gct<br>o Ala        | gac<br>Asp        | gtg<br>Val<br>360 | ttt<br>Phe        | cag<br>Gln        | atc<br>Ile        | cag<br>Gln        | gca<br>Ala<br>365 | acc<br>Thr        | tct<br>Ser        | gtc<br>Val        | tac<br>Tyr        | cct<br>Pro<br>370 | ggt<br>Gly        | 1161 |
| gcc ta<br>Ala Ty        | c aat<br>r Asn        | gcc<br>Ala<br>375 | ttt<br>Phe        | cag<br>Gln        | atc<br>Ile        | cgt<br>Arg        | tct<br>Ser<br>380 | gga<br>Gly        | aac<br>Asn        | aca<br>Thr        | cag<br>Gln        | ggg<br>G1y<br>385 | gac<br>Asp        | ttc<br>Phe        | 1209 |
| tac at<br>Tyr Il        | t agg<br>e Arg<br>390 | caa<br>Gln        | atc<br>Ile        | aac<br>Asn        | aat<br>Asn        | gtc<br>Val<br>395 | agc<br>Ser        | gcc<br>Ala        | atg<br>Met        | ctg<br>Leu        | gtc<br>Val<br>400 | ctc<br>Leu        | gcc<br>Ala        | agg<br>Arg        | 1257 |
| cca gt<br>Pro Va<br>40  | 1 Thr                 | gga<br>Gly        | ccc<br>Pro        | cgg<br>Arg        | gag<br>Glu<br>410 | tac<br>Tyr        | gtg<br>Val        | ctg<br>Leu        | gac<br>Asp        | ctg<br>Leu<br>415 | gag<br>Glu        | atg<br>Met        | gtc<br>Val        | acc<br>Thr        | 1305 |
| atg aa<br>Met As<br>420 | t tcc<br>n Ser        | ctt<br>Leu        | atg<br>Met        | agc<br>Ser<br>425 | tac<br>Tyr        | cgg<br>Arg        | gcc<br>Ala        | agc<br>Ser        | tct<br>Ser<br>430 | gta<br>Val        | ctg<br>Leu        | aga<br>Arg        | ctc<br>Leu        | acg<br>Thr<br>435 | 1353 |
| gtc tt<br>Val Ph        | t gtg<br>e Val        | gga<br>Gly        | gcc<br>Ala<br>440 | tat<br>Tyr        | acc<br>Thr        | ttc<br>Phe        | tgaa              | agaco             | ct o              | aggg              | gaag              | gg co             | catg              | tgggg             | 1407 |
| gcccct                  | tccc                  | cctc              | cata              | ag ct             | taaç              | gcago             | ccc               | gggg              | gcc               | tagg              | ggato             | gac o             | cgtto             | tgctt             | 1467 |
| aaagga                  | acta ·                | tgat              | gtgaa             | ag ga             | acaat             | taaag             | g gga             | agaaa             | agaa              | ggaa              | aaa               |                   |                   |                   | 1513 |
| <210>                   | 16                    |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |      |
| <211>                   | 443                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |      |
|                         | PRT                   | c: - ·            | .ı -              |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |      |
| <213>                   | Artı.                 | гісіа             | ai Se             | equer             | ice               |                   |                   |                   |                   |                   |                   |                   |                   |                   |      |
| <220><br><223>          | мвр1                  | mur               | ine (             | (comp             | olete             | e sec             | quenc             | ce)               |                   |                   |                   |                   |                   |                   |      |

Met Leu Pro Phe Ala Ser Cys Leu Pro Gly Ser Leu Leu Leu Trp Ala 10 15 Phe Leu Leu Leu Leu Gly Ala Ala Ser Pro Gln Asp Pro Glu Glu 20 25 30 Pro Asp Ser Tyr Thr Glu Cys Thr Asp Gly Tyr Glu Trp Asp Ala Asp 35 40 45 Ser Gln His Cys Arg Asp Val Asn Glu Cys Leu Thr Ile Pro Glu Ala 50 60 Cys Lys Gly Glu Met Lys Cys Ile Asn His Tyr Gly Gly Tyr Leu Cys 65 70 75 80 Leu Pro Arg Ser Ala Ala Val Ile Ser Asp Leu His Gly Glu Gly Pro 85 90 95 Pro Pro Pro Ala Ala His Ala Gln Gln Pro Asn Pro Cys Pro Gln Gly 100 105 110 Tyr Glu Pro Asp Glu Gln Glu Ser Cys Val Asp Val Asp Glu Cys Thr 115 120 125 Gln Ala Leu His Asp Cys Arg Pro Ser Gln Asp Cys His Asn Leu Pro 130 135 140 Gly Ser Tyr Gln Cys Thr Cys Pro Asp Gly Tyr Arg Lys Ile Gly Pro 145 150 155 160 Glu Cys Val Asp Ile Asp Glu Cys Arg Tyr Arg Tyr Cys Gln His Arg 165 170 175 Cys Val Asn Leu Pro Gly Ser Phe Arg Cys Gln Cys Glu Pro Gly Phe 180 185 190 Gln Leu Gly Pro Asn Asn Arg Ser Cys Val Asp Val Asn Glu Cys Asp 195 200 205 Met Gly Ala Pro Cys Glu Gln Arg Cys Phe Asn Ser Tyr Gly Thr Phe 210 215 220 Leu Cys Arg Cys Asn Gln Gly Tyr Glu Leu His Arg Asp Gly Phe Ser 235 230 235 Cys Ser Asp Ile Asp Glu Cys Gly Tyr Ser Ser Tyr Leu Cys Gln Tyr 245 250 255 Page 10

Arg Cys Val Asn Glu Pro Gly Arg Phe Ser Cys His Cys Pro Gln Gly Tyr Gln Leu Leu Ala Thr Arg Leu Cys Gln Asp Ile Asp Glu Cys Glu Thr Gly Ala His Gln Cys Ser Glu Ala Gln Thr Cys Val Asn Phe His 305 Gly Tyr Arg Cys Val Asp Thr Asn Arg Cys Val Glu Pro Tyr Val 320 Gln Val Ser Asp Asn Arg Cys Leu Cys Pro Ala Ser Asn Pro Leu Cys Arg Glu Gln Pro Ser Ser Ile Val His Arg Tyr Met Ser Ile Thr Ser 350 Thr Ser

Glu Arg Ser Val Pro Ala Asp Val Phe Gln Ile Gln Ala Thr Ser Val 355 360 365

Tyr Pro Gly Ala Tyr Asn Ala Phe Gln Ile Arg Ser Gly Asn Thr Gln 370 380

Gly Asp Phe Tyr Ile Arg Gln Ile Asn Asn Val Ser Ala Met Leu Val 385 390 395 400

Leu Ala Arg Pro Val Thr Gly Pro Arg Glu Tyr Val Leu Asp Leu Glu 405 410 415

Met Val Thr Met Asn Ser Leu Met Ser Tyr Arg Ala Ser Ser Val Leu 420 425 430

Arg Leu Thr Val Phe Val Gly Ala Tyr Thr Phe 435 440

<210> 17

<211> 21

<212> DNA

<213> Artificial Sequence

<220> <223> Oligonucleotide 3' hMBP1

| <400><br>ctccgc     | 17<br>tccg aggtgatggt | С            |            |            |            | 21  |
|---------------------|-----------------------|--------------|------------|------------|------------|-----|
| <210>               | 18                    |              |            |            |            |     |
| <211>               | 21                    |              |            |            |            |     |
| <212>               | DNA                   |              |            |            |            |     |
| <213>               | Artificial Sequ       | uence        |            |            |            |     |
| <220><br><223>      | Oligonucleotide       | e 5' hMBP1   |            |            |            |     |
| <400><br>tgtagc     | 18<br>tact ccagctacct | С            |            |            |            | 21  |
| <210>               | 19                    |              |            |            |            |     |
| <211>               | 1122                  |              |            |            |            |     |
| <212>               | DNA                   |              |            |            |            |     |
| <213>               | Artificial Sequ       | uence        |            |            |            |     |
| <220><br><223>      | Human MBP1 cDNA       | A (partial s | sequence)  |            |            |     |
| <400>               | 19<br>gccg agccgccaga | gccgcgggcc   | gcgggggtgt | cgcgggccca | accccaggat | 60  |
| gctccc              | ctgc gcctcctgcc       | tacccgggtc   | tctactgctc | tgggcgctgc | tactgttgct | 120 |
| cttggg              | atca gcttctcctc       | aggattctga   | agagcccgac | agctacacgg | aatgcacaga | 180 |
| tggcta <sup>.</sup> | tgag tgggacccag       | acagccagca   | ctgccgggat | gtcaacgagt | gtctgaccat | 240 |
| ccctga              | ggcc tgcaaggggg       | aaatgaagtg   | catcaaccac | tacgggggct | acttgtgcct | 300 |
| gccccg              | ctcc gctgccgtca       | tcaacgacct   | acacggcgag | ggacccccgc | caccagtgcc | 360 |
| tcccgc              | tcaa caccccaacc       | cctgcccacc   | aggctatgag | cccgacgatc | aggacagctg | 420 |
| tgtgga <sup>.</sup> | tgtg gacgagtgtg       | cccaggccct   | gcacgactgt | cgccccagcc | aggactgcca | 480 |
| taactt              | gcct ggctcctatc       | agtgcacctg   | ccctgatggt | taccgcaaga | tcgggcccga | 540 |
| gtgtgt              | ggac atagacgagt       | gccgctaccg   | ctactgccag | caccgctgcg | tgaacctgcc | 600 |
| tggctc              | cttc cgctgccagt       | gcgagccggg   | cttccagctg | gggcctaaca | accgctcctg | 660 |
| tgttga <sup>.</sup> | tgtg aacgagtgtg       | acatgggggc   | cccatgcgag | cagcgctgct | tcaactccta | 720 |
| tgggac              | cttc ctgtgtcgct       | gccaccaggg   | ctatgagctg | catcgggatg | gcttctcctg | 780 |
| cagtga <sup>.</sup> | tatt gatgagtgta       | gctactccag   | ctacctctgt | cagtaccgct | gcgtcaacga | 840 |
| gccagg              | ccgt ttctcctgcc       | actgcccaca   | gggttaccag | ctgctggcca | cacgcctctg | 900 |

```
960
ccaagacatt gatgagtgtg agtctggtgc gcaccagtgc tccgaggccc aaacctgtgt
caacttccat gggggctacc gctgcgtgga caccaaccgc tgcgtggagc cctacatcca
                                                                    1020
                                                                    1080
ggtctctgag aaccgctgtc tctgcccggc ctccaaccct ctatgtcgag agcagccttc
                                                                    1122
atccattgtg caccgctaca tgaccatcac ctcggagcgg ag
<210>
       20
<211>
      684
<212> DNA
<213> Artificial Sequence
<220>
       Human MBP1 cDNA (partial sequence)
<223>
<400>
       20
                                                                      60
tgtagctact ccagctacct ctgtcagtac cgctgcgtca acgagccagg ccgtttctcc
tgccactgcc cacagggtta ccagctgctg gccacacgcc tctgccaaga cattgatgag
                                                                     120
                                                                     180
tgtgagtctg gtgcgcacca gtgctccgag gcccaaacct gtgtcaactt ccatgggggc
                                                                     240
taccgctgcg tggacaccaa ccgctgcgtg gagccctaca tccaggtctc tgagaaccgc
tgtctctgcc cggcctccaa ccctctatgt cgagagcagc cttcatccat tgtgcaccgc
                                                                     300
                                                                     360
tacatgacca tcacctcgga gcggagcgtg cccgctgacg tgttccagat ccaggcgacc
                                                                     420
tccgtctacc ccggtgccta caatgccttt cagatccgtg ctggaaactc gcagggggac
                                                                     480
ttttacatta qqcaaatcaa caacqtcagc qccatqctqq tcctcqcccg gccggtgacg
                                                                     540
ggcccccggg agtacgtgct ggacctggag atggtcacca tgaattccct catgagctac
                                                                     600
cgggccagct ctgtactgag gctcaccgtc tttgtagggg cctacacctt ctgaggagca
                                                                     660
ggagggagcc accetecetg cagetaccet agetgaggag cetgttgtga ggggcagaat
                                                                     684
gagaaaggca ataaagggag aaag
<210> 21
<211> 1480
<212> DNA
<213> Artificial Sequence
<220>
<223>
       Human MBP1 (complete sequence)
<220>
<221>
       CDS
       (59)..(1387)
                                                                      58
aagccagccg agccgccaga gccgcgggcc gcgggggtgt cgcgggccca accccagg
```

Page 13



| atg ctc<br>Met Leu<br>1   | ccc tgc<br>Pro Cys        | gcc<br>Ala:<br>5 | tcc<br>Ser        | tgc<br>Cys        | cta<br>Leu        | ccc<br>Pro        | ggg<br>Gly<br>10 | tct<br>Ser        | cta<br>Leu        | ctg<br>Leu        | ctc<br>Leu        | tgg<br>Trp<br>15 | gcg<br>Ala        | 106 |
|---------------------------|---------------------------|------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|-----|
| ctg cta<br>Leu Leu        | ctg ttg<br>Leu Leu<br>20  | ctc<br>Leu       | ttg<br>Leu        | gga<br>Gly        | tca<br>Ser        | gct<br>Ala<br>25  | tct<br>Ser       | cct<br>Pro        | cag<br>Gln        | gat<br>Asp        | tct<br>Ser<br>30  | gaa<br>Glu       | gag<br>Glu        | 154 |
| ccc gac<br>Pro Asp        | agc tac<br>Ser Tyr<br>35  | acg<br>Thr       | gaa<br>Glu        | tgc<br>Cys        | aca<br>Thr<br>40  | gat<br>Asp        | ggc<br>Gly       | tat<br>Tyr        | gag<br>Glu        | tgg<br>Trp<br>45  | gac<br>Asp        | cca<br>Pro       | gac<br>Asp        | 202 |
| agc cag<br>Ser Gln<br>50  | cac tgc<br>His Cys        | cgg<br>Arg       | gat<br>Asp        | gtc<br>Val<br>55  | aac<br>Asn        | gag<br>Glu        | tgt<br>Cys       | ctg<br>Leu        | acc<br>Thr<br>60  | atc<br>Ile        | cct<br>Pro        | gag<br>Glu       | gcc<br>Ala        | 250 |
| tgc aag<br>Cys Lys<br>65  | ggg gaa<br>Gly Glu        | Met              | aag<br>Lys<br>70  | tgc<br>Cys        | atc<br>Ile        | aac<br>Asn        | cac<br>His       | tac<br>Tyr<br>75  | ggg<br>Gly        | ggc<br>Gly        | tac<br>Tyr        | ttg<br>Leu       | tgc<br>Cys<br>80  | 298 |
| ctg ccc<br>Leu Pro        | cgc tcc<br>Arg Ser        | gct<br>Ala<br>85 | gcc<br>Ala        | gtc<br>Val        | atc<br>Ile        | aac<br>Asn        | gac<br>Asp<br>90 | cta<br>Leu        | cac<br>His        | ggc<br>Gly        | gag<br>Glu        | gga<br>Gly<br>95 | CCC<br>Pro        | 346 |
| ccg cca<br>Pro Pro        | cca gtg<br>Pro Val<br>100 | Pro              | ccc<br>Pro        | gct<br>Ala        | caa<br>Gln        | cac<br>His<br>105 | ccc<br>Pro       | aac<br>Asn        | ccc<br>Pro        | tgc<br>Cys        | cca<br>Pro<br>110 | cca<br>Pro       | ggc<br>Gly        | 394 |
| tat gag<br>Tyr Glu        | ccc gac<br>Pro Asp<br>115 | gat<br>Asp       | cag<br>Gln        | gac<br>Asp        | agc<br>Ser<br>120 | tgt<br>Cys        | gtg<br>Val       | gat<br>Asp        | gtg<br>Val        | gac<br>Asp<br>125 | gag<br>Glu        | tgt<br>Cys       | gcc<br>Ala        | 442 |
| cag gcc<br>Gln Ala<br>130 | ctg cac<br>Leu His        | gac<br>Asp       | tgt<br>Cys        | cgc<br>Arg<br>135 | ccc<br>Pro        | agc<br>Ser        | cag<br>Gln       | gac<br>Asp        | tgc<br>Cys<br>140 | cat<br>His        | aac<br>Asn        | ttg<br>Leu       | cct<br>Pro        | 490 |
| ggc tcc<br>Gly Ser<br>145 | tat cag<br>Tyr Gln        | Cys '            | acc<br>Thr<br>150 | tgc<br>Cys        | cct<br>Pro        | gat<br>Asp        | ggt<br>Gly       | tac<br>Tyr<br>155 | cgc<br>Arg        | aag<br>Lys        | atc<br>Ile        | ggg<br>Gly       | ccc<br>Pro<br>160 | 538 |
| gag tgt<br>Glu Cys        |                           |                  |                   |                   |                   |                   |                  |                   |                   |                   |                   |                  |                   | 586 |
| tgc gtg<br>Cys Val        | aac ctg<br>Asn Leu<br>180 | cct Pro          | ggc<br>Gly        | tcc<br>Ser        | ttc<br>Phe        | cgc<br>Arg<br>185 | tgc<br>Cys       | cag<br>Gln        | tgc<br>Cys        | gag<br>Glu        | ccg<br>Pro<br>190 | ggc<br>Gly       | ttc<br>Phe        | 634 |
| cag ctg<br>Gln Leu        | ggg cct<br>Gly Pro<br>195 | aac<br>Asn       | aac<br>Asn        | cgc<br>Arg        | tcc<br>Ser<br>200 | tgt<br>Cys        | gtt<br>Val       | gat<br>Asp        | gtg<br>Val        | aac<br>Asn<br>205 | gag<br>Glu        | tgt<br>Cys       | gac<br>Asp        | 682 |
| atg ggg<br>Met Gly<br>210 | gcc cca<br>Ala Pro        | tgc<br>Cys       | gag<br>Glu        | cag<br>Gln<br>215 | cgc<br>Arg        | tgc<br>Cys        | ttc<br>Phe       | aac<br>Asn        | tcc<br>Ser<br>220 | tat<br>Tyr        | ggg<br>Gly        | acc<br>Thr       | ttc<br>Phe        | 730 |
| ctg tgt<br>Leu Cys<br>225 |                           | His              |                   |                   |                   |                   |                  |                   |                   |                   |                   |                  |                   | 778 |
| tgc agt<br>Cys Ser        |                           |                  |                   |                   |                   |                   | Ser<br>250       |                   | Tyr               |                   |                   |                  |                   | 826 |

| cgc<br>Arg        | tgc<br>Cys        | gtc<br>Val        | aac<br>Asn<br>260 | gag<br>Glu        | cca<br>Pro        | ggc<br>Gly        | cgt<br>Arg        | ttc<br>Phe<br>265 | tcc<br>Ser        | tgc<br>Cys        | cac<br>His        | tgc<br>Cys        | cca<br>Pro<br>270 | cag<br>Gln        | ggt<br>Gly        | 874  |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| tac<br>Tyr        | cag<br>Gln        | ctg<br>Leu<br>275 | ctg<br>Leu        | gcc<br>Ala        | aca<br>Thr        | cgc<br>Arg        | ctc<br>Leu<br>280 | tgc<br>Cys        | caa<br>Gln        | gac<br>Asp        | att<br>Ile        | gat<br>Asp<br>285 | gag<br>Glu        | tgt<br>Cys        | gag<br>Glu        | 922  |
| tct<br>Ser        | ggt<br>Gly<br>290 | gcg<br>Ala        | cac<br>His        | cag<br>Gln        | tgc<br>Cys        | tcc<br>Ser<br>295 | gag<br>Glu        | gcc<br>Ala        | caa<br>Gln        | acc<br>Thr        | tgt<br>Cys<br>300 | gtc<br>Val        | aac<br>Asn        | ttc<br>Phe        | cat<br>His        | 970  |
| ggg<br>Gly<br>305 | ggc<br>Gly        | tac<br>Tyr        | cgc<br>Arg        | tgc<br>Cys        | gtg<br>Val<br>310 | gac<br>Asp        | acc<br>Thr        | aac<br>Asn        | cgc<br>Arg        | tgc<br>Cys<br>315 | gtg<br>Val        | gag<br>Glu        | ccc<br>Pro        | tac<br>Tyr        | atc<br>Ile<br>320 | 1018 |
| cag<br>Gln        | gtc<br>Val        | tct<br>Ser        | gag<br>Glu        | aac<br>Asn<br>325 | cgc<br>Arg        | tgt<br>Cys        | ctc<br>Leu        | tgc<br>Cys        | ccg<br>Pro<br>330 | gcc<br>Ala        | tcc<br>Ser        | aac<br>Asn        | cct<br>Pro        | cta<br>Leu<br>335 | tgt<br>Cys        | 1066 |
| cga<br>Arg        | gag<br>Glu        | cag<br>Gln        | cct<br>Pro<br>340 | tca<br>Ser        | tcc<br>Ser        | att<br>Ile        | gtg<br>Val        | cac<br>His<br>345 | cgc<br>Arg        | tac<br>Tyr        | atg<br>Met        | acc<br>Thr        | atc<br>Ile<br>350 | acc<br>Thr        | tcg<br>Ser        | 1114 |
| gag<br>Glu        | cgg<br>Arg        | agc<br>Ser<br>355 | gtg<br>Val        | ccc<br>Pro        | gct<br>Ala        | gac<br>Asp        | gtg<br>Val<br>360 | ttc<br>Phe        | cag<br>Gln        | atc<br>Ile        | cag<br>Gln        | gcg<br>Ala<br>365 | acc<br>Thr        | tcc<br>Ser        | gtc<br>Val        | 1162 |
| tac<br>Tyr        | ccc<br>Pro<br>370 | ggt<br>Gly        | gcc<br>Ala        | tac<br>Tyr        | aat<br>Asn        | gcc<br>Ala<br>375 | ttt<br>Phe        | cag<br>Gln        | atc<br>Ile        | cgt<br>Arg        | gct<br>Ala<br>380 | gga<br>Gly        | aac<br>Asn        | tcg<br>Ser        | cag<br>Gln        | 1210 |
| ggg<br>G1y<br>385 | gac<br>Asp        | ttt<br>Phe        | tac<br>Tyr        | att<br>Ile        | agg<br>Arg<br>390 | caa<br>Gln        | atc<br>Ile        | aac<br>Asn        | aac<br>Asn        | gtc<br>Val<br>395 | agc<br>Ser        | gcc<br>Ala        | atg<br>Met        | ctg<br>Leu        | gtc<br>Val<br>400 | 1258 |
|                   |                   |                   |                   |                   |                   | ggc<br>Gly        |                   |                   |                   |                   |                   |                   |                   |                   |                   | 1306 |
|                   |                   |                   |                   |                   |                   | ctc<br>Leu        |                   |                   |                   |                   |                   |                   |                   |                   |                   | 1354 |
| agg<br>Arg        | ctc<br>Leu        | acc<br>Thr<br>435 | gtc<br>Val        | ttt<br>Phe        | gta<br>Val        | ggg<br>Gly        | gcc<br>Ala<br>440 | tac<br>Tyr        | acc<br>Thr        | ttc<br>Phe        | tgag              | ggago             | ag (              | gaggg             | gagcca            | 1407 |
| ccct              | ccct              | tgc a             | agcta             | accct             | ta go             | ctgag             | gago              | cto               | jttgt             | gag               | gggd              | agaa              | atg a             | agaaa             | aggcaa            | 1467 |
| taaa              | aggga             | aga a             | aag               |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 1480 |
|                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |      |

<210> 22

<211> 443

<212> PRT

<213> Artificial Sequence

<220> <223> Human MBP1 (complete sequence) Met Leu Pro Cys Ala Ser Cys Leu Pro Gly Ser Leu Leu Leu Trp Ala 1 10 15 Leu Leu Leu Leu Leu Gly Ser Ala Ser Pro Gln Asp Ser Glu Glu 20 25 30 Pro Asp Ser Tyr Thr Glu Cys Thr Asp Gly Tyr Glu Trp Asp Pro Asp 35 40 45 Ser Gln His Cys Arg Asp Val Asn Glu Cys Leu Thr Ile Pro Glu Ala 50 60 Cys Lys Gly Glu Met Lys Cys Ile Asn His Tyr Gly Gly Tyr Leu Cys 65 70 75 80 Leu Pro Arg Ser Ala Ala Val Ile Asn Asp Leu His Gly Glu Gly Pro 85 90 95 Pro Pro Pro Val Pro Pro Ala Gln His Pro Asn Pro Cys Pro Pro Gly 100 105 110 Tyr Glu Pro Asp Asp Gln Asp Ser Cys Val Asp Val Asp Glu Cys Ala 115 120 125 Gln Ala Leu His Asp Cys Arg Pro Ser Gln Asp Cys His Asn Leu Pro 130 135 140



Gly Ser Tyr Gln Cys Thr Cys Pro Asp Gly Tyr Arg Lys Ile Gly Pro 145

Glu Cys Val Asp Ile Asp Glu Cys Arg Tyr Arg Tyr Cys Gln His Arg 175

Cys Val Asn Leu Pro Gly Ser Phe Arg Cys Gln Cys Glu Pro Gly Phe 185

Gln Leu Gly Pro Asn Asn Arg Ser Cys Val Asp Val Asn Glu Cys Asp 200

Met Gly Ala Pro Cys Glu Gln Arg Cys Phe Asn Ser Tyr Gly Thr Phe 225

Cys Arg Cys His Gln Gly Tyr Glu Leu His Arg Asp Gly Phe Ser 240

 Cys
 Ser
 Asp
 Ile
 Asp
 Glu
 Cys
 Ser
 Tyr
 Ser
 Tyr
 Leu
 Cys
 Gln
 Tyr

 Arg
 Cys
 Val
 Asp
 Glu
 Pro
 Gly
 Arg
 Phe
 Ser
 Cys
 His
 Cys
 Pro
 Gln
 Gly

 Tyr
 Gln
 Leu
 Ala
 Thr
 Arg
 Leu
 Cys
 Glu
 Asp
 Ile
 Asp
 Glu
 Cys
 Glu

 Ser
 Gly
 Ala
 His
 Gln
 Cys
 Ser
 Glu
 Ala
 Glu
 Thr
 Arg
 Cys
 Arg
 Cys
 Arg
 Cys
 Leu
 Cys
 Pro
 Ala
 Ser
 Arg
 Cys
 Arg
 Tyr
 Met
 Thr
 Jie
 Cys
 Arg
 Pro
 Ala
 A

9

Gly Asp Phe Tyr Ile Arg Gln Ile Asn Asn Val Phe Ala Met Leu Val 385 390 395 400

Tyr Pro Gly Ala Tyr Asn Ala Phe Gln Ile Arg Ala Gly Asn Ser Gln 370 375 380

Leu Ala Arg Pro Val Thr Gly Pro Arg Glu Tyr Val Leu Asp Leu Glu 405 410 415

Met Val Thr Met Asn Ser Leu Met Ser Tyr Arg Ala Ser Ser Val Leu 420 425 430

Arg Leu Thr Val Phe Val Gly Ala Tyr Thr Phe 435 440

<210> 23

<211> 817

<212> DNA

<213> Artificial Sequence

<220> <223> Murine MBP1 cDNA (partial sequence)

| <400><br>gctgtg | 23<br>gcag       | aaacccctga   | cttctgccca   | ccacctccca | gcctcaggat | gctccctttt | 60  |
|-----------------|------------------|--------------|--------------|------------|------------|------------|-----|
| gcctcc          | tgcc             | tccccgggtc   | tttgctgctc   | tgggcgtttc | tgctgttgct | cttgggagca | 120 |
| gcgtcc          | ccac             | aggatcccga   | ggagccggac   | agctacacgg | aatgcacaga | tggctatgag | 180 |
| tgggat          | gcag             | acagccagca   | ctgccgggat   | gtcaacgagt | gcctgaccat | cccggaggct | 240 |
| tgcaag          | ggtg             | agatgaaatg   | catcaaccac   | tacgggggtt | atttgtgtct | gcctcgctct | 300 |
| gctgcc          | gtca             | tcagtgatct   | ccatggtgaa   | ggacctccac | cgccagcggc | ccatgctcaa | 360 |
| caacca          | aacc             | cttgcccgca   | gggctacgag   | cctgatgaac | aggagagctg | tgtggatgtg | 420 |
| gacgag          | tgta             | cccaggcttt   | gcatgactgt   | cgccctagtc | aggactgcca | taaccttcct | 480 |
| ggctcc          | tacc             | agtgcacctg   | ccctgatggt   | taccgaaaaa | ttggacccga | atgtgtggac | 540 |
| atagat          | gagt             | gtcgttaccg   | ctattgccag   | catcgatgtg | tgaacctgcc | gggctctttt | 600 |
| cgatgc          | cagt             | gtgagccagg   | cttccagttg   | ggacctaaca | accgctcttg | tgtggatgtg | 660 |
| aatgag          | tgtg             | acatgggagc   | cccatgtgag   | cagcgctgct | tcaactccta | tgggaccttc | 720 |
| ctgtgt          | cgct             | gtaaccaggg   | ctatgagctg   | caccgggatg | gcttctcctg | cagcgatatc | 780 |
| gatgag          | tgcg             | gctactccag   | ttacctctgc   | cagtacc    |            |            | 817 |
| <210>           | 24               |              |              |            |            |            |     |
| <211>           | 24               |              |              |            |            |            |     |
| <212>           | DNA              |              |              |            |            |            |     |
| <213>           | Art              | ificial Sequ | ience        |            |            |            |     |
|                 |                  |              |              |            |            |            |     |
| <220><br><223>  | sens             | se-GAPDH oli | gonucleotic  | de         |            |            |     |
|                 |                  |              |              |            |            |            |     |
| <400><br>cggagt | 24<br>caac       | ggatttggtc   | gtat         |            |            |            | 24  |
|                 |                  |              |              |            |            |            |     |
| <210>           | 25               |              |              |            |            |            |     |
| <211>           | 24               |              |              |            |            |            |     |
| <212>           | DNA              |              |              |            |            |            |     |
| <213>           | Art <sup>-</sup> | ificial Sequ | ience        |            |            |            |     |
| <220><br><223>  | ant <sup>-</sup> | isense-GAPDH | ı oligonucle | eotide     |            |            |     |
|                 |                  |              |              |            |            |            |     |

. N .

24

<400> 25 agccttctcc atggtggtga agac

```
<210> 26
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
      antisense-beta-actin oligonucleotide
<223>
<400> 26
                                                                     25
cggttggcct tggggttcag ggggg
<210> 27
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
      sense-MBP1 oligonucleotide
<223>
<400> 27
                                                                     21
gccctgatgg ttaccgcaag a
<210> 28
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
      antisense MBP1 oligonucleotide
<223>
<400> 28
                                                                     21
agcccccatg gaagttgaca c
<210> 29
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223>
      sense-beta-actin oligonucleotide
<400> 29
```



tgc gag cag cgc tgc ttc aac tcc tat ggg acc ttc ctg tgt cgc tgc cys Glu Gln Arg Cys Phe Asn Ser Tyr Gly Thr Phe Leu Cys Arg Cys 70 75 80cac cag ggc tat gag ctg cat cgg gat ggc ttc tcc tgc agt gat att His Gln Gly Tyr Glu Leu His Arg Asp Gly Phe Ser Cys Ser Asp Ile 288 gat gag tgt agc tac tcc agc tac ctc tgt cag tac cgc tgc gtc aac Asp Glu Cys Ser Tyr Ser Ser Tyr Leu Cys Gln Tyr Arg Cys Val Asn 100 105336 gag cca ggc cgt ttc tcc tgc cac tgc cca cag ggt tac cag ctg ctg 384 Glu Pro Gly Arg Phe Ser Cys His Cys Pro Gln Gly Tyr Gln Leu Leu 115 120 gcc aca cgc ctc tgc caa gac att gat gag tgt gag tct ggt gcg cac Ala Thr Arg Leu Cys Gln Asp Ile Asp Glu Cys Glu Ser Gly Ala His 130 135 140 432 cag tgc tcc gag gcc caa acc tgt gtc aac ttc cat ggg ggc tac cgc Gln Cys Ser Glu Ala Gln Thr Cys Val Asn Phe His Gly Gly Tyr Arg 480 150 tgc gtg gac acc aac cgc tgc gtg gag ccc tac atc cag gtc tct gag Cys Val Asp Thr Asn Arg Cys Val Glu Pro Tyr Ile Gln Val Ser Glu 528 aac cgc tgt ctc tgc ccg gcc tcc aac cct cta tgt cga gag cag cct 576 Page 20

240

Asn Arg Cys Leu Cys Pro Ala Ser Asn Pro Leu Cys Arg Glu Gln Pro 624 tca tcc att gtg cac cgc tac atg acc atc acc tcg gag cgg agc gtg Ser Ser Ile Val His Arg Tyr Met Thr Ile Thr Ser Glu Arg Ser Val 200 ccc gct gac gtg ttc cag atc cag gcg acc tcc gtc tac ccc ggt gcc Pro Ala Asp Val Phe Gln Ile Gln Ala Thr Ser Val Tyr Pro Gly Ala 672 720 tac aat gcc ttt cag atc cgt gct gga aac tcg cag ggg gac ttt tac Tyr Asn Ála Phe Glň Ile Arg Ála Gly Asn Ser Glň Gly Ásp Phe Tyr 225 230 235 240 att agg caa atc aac aac gtc agc gcc atg ctg gtc ctc gcc cgg ccg Ile Arg Gln Ile Asn Asn Val Ser Ala Met Leu Val Leu Ala Arg Pro 768 gtg acg ggc ccc cgg gag tac gtg ctg gac ctg gag atg gtc acc atg Val Thr Gly Pro Arg Glu Tyr Val Leu Asp Leu Glu Met Val Thr Met 816 265 270 aat tcc ctc atg agc tac cgg gcc agc tct gta ctg agg ctc acc gtc Asn Ser Leu Met Ser Tyr Arg Ala Ser Ser Val Leu Arg Leu Thr Val 864 915 ttt gta ggg gcc tac acc ttc tgaggagcag gagggagcca ccctccctgc Phe Val Gly Ala Tyr Thr Phe 290 agctacccta gctgaggagc ctgttgtgag gggcagaatg agaaaggcaa taaagggaga 975 1035 aaqaaaqtcc tqqtqqctqa ggtgggcggg tcacactgca ggaagcctca ggctggggca gggtggcact tgggggggca ggccaagttc acctaaatgg gggtctctat atgttcaggc 1095 ccaggggccc ccattgacag gagctgggag ctctgcacca cgagcttcag tcaccccgag 1155 aggagaggag gtaacgagga gggcggactc caggccccgg cccagagatt tggacttggc 1215 1275 tggcttgcag gggtcctaag aaactccact ctggacagcg ccaggaggcc ctgggttcca ttcctaactc tgcctcaaac tgtacatttg gataagccct agtagttccc tgggcctgtt 1335 1358 tttctataaa acgaggcaac tgg <210> 31 <211> 295 <212> **PRT** <213> Artificial Sequence <220> <223> Human MBP1 C-term fragment <400> 31 Cys Thr Cys Pro Asp Gly Tyr Arg Lys Ile Gly Pro Glu Cys Val Asp

Page 21



Ile Asp Glu Cys Arg Tyr Arg Tyr Cys Gln His Arg Cys Val Asn Leu 20 25 30 Pro Gly Ser Phe Arg Cys Gln Cys Glu Pro Gly Phe Gln Leu Gly Pro 35 40 45 Asn Asn Arg Ser Cys Val Asp Val Asn Glu Cys Asp Met Gly Ala Pro 50 60 Cys Glu Gln Arg Cys Phe Asn Ser Tyr Gly Thr Phe Leu Cys Arg Cys 65 70 75 80 His Gln Gly Tyr Glu Leu His Arg Asp Gly Phe Ser Cys Ser Asp Ile  $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$ Asp Glu Cys Ser Tyr Ser Ser Tyr Leu Cys Gln Tyr Arg Cys Val Asn 100 105 110 Glu Pro Gly Arg Phe Ser Cys His Cys Pro Gln Gly Tyr Gln Leu Leu 115 120 125 Ala Thr Arg Leu Cys Gln Asp Ile Asp Glu Cys Glu Ser Gly Ala His 130 135 140 Gln Cys Ser Glu Ala Gln Thr Cys Val Asn Phe His Gly Gly Tyr Arg 145 150 155 160 Cys Val Asp Thr Asn Arg Cys Val Glu Pro Tyr Ile Gln Val Ser Glu 165 170 175 Asn Arg Cys Leu Cys Pro Ala Ser Asn Pro Leu Cys Arg Glu Gln Pro 180 Ser Ser Ile Val His Arg Tyr Met Thr Ile Thr Ser Glu Arg Ser Val 195 200 205 Pro Ala Asp Val Phe Gln Ile Gln Ala Thr Ser Val Tyr Pro Gly Ala 210 215 220 Tyr Asn Ala Phe Gln Ile Arg Ala Gly Asn Ser Gln Gly Asp Phe Tyr 225 230 235 240 Ile Arg Gln Ile Asn Asn Val Ser Ala Met Leu Val Leu Ala Arg Pro 245 250 255 Val Thr Gly Pro Arg Glu Tyr Val Leu Asp Leu Glu Met Val Thr Met Page 22

 $\tilde{\mathcal{L}}$ 

Asn Ser Leu Met Ser Tyr Arg Ala Ser Ser Val Leu Arg Leu Thr Val 280 Phe Val Gly Ala Tyr Thr Phe <210> 32 <211> 1663 <212> DNA <213> Artificial Sequence <220> murine fibulin 2 c-term fragment <220> <221> <222> CDS (1)..(999)<400> 32 gag ggc tct gaa tgt gtg gat gtg aat gag tgt gag aca ggt gtg cat Glu Gly Ser Glu Cys Val Asp Val Asn Glu Cys Glu Thr Gly Val His 1 10 15 48 cgc tgt ggc gag ggc caa ctg tgc tat aac ctc cct gga tcc tac cgc Arg Cys Gly Glu Gly Gln Leu Cys Tyr Asn Leu Pro Gly Ser Tyr Arg 20 25 30 96 tgt gac tgc aag ccc ggc ttc cag agg gat gca ttc ggc agg act tgc Cys Asp Cys Lys Pro Gly Phe Gln Arg Asp Ala Phe Gly Arg Thr Cys 35 40 45 144 att gat gtg aac gaa tgc tgg gtc tcg ccg ggc cgc ctg tgc cag cac Ile Asp Val Asn Glu Cys Trp Val Ser Pro Gly Arg Leu Cys Gln His 50 60192 aca tgt gag aac aca ccg ggc tcc tac cgc tgc tcc tgc gct gct ggc Thr Cys Glu Asn Thr Pro Gly Ser Tyr Arg Cys Ser Cys Ala Ala Gly 65 70 75 80 240 ttc ctt ttg gcc gca gat ggc aaa cat tgt gaa gat gtg aac gag tgc Phe Leu Leu Ala Ala Asp Gly Lys His Cys Glu Asp Val Asn Glu Cys 85 90 95 288 gag act cgg cgc tgc agc cag gaa tgt gcc aac atc tat ggc tcc tat Glu Thr Arg Arg Cys Ser Gln Glu Cys Ala Asn Ile Tyr Gly Ser Tyr 100 105 110336 cag tgc tac tgc cgt cag ggc tac cag ctg gca gag gat ggg cat acc Gln Cys Tyr Cys Arg Gln Gly Tyr Gln Leu Ala Glu Asp Gly His Thr 115 120 125384 tgc aca gac atc gat gag tgt gca cag ggc gcg ggc att ctc tgt acc Cys Thr Asp Ile Asp Glu Cys Ala Gln Gly Ala Gly Ile Leu Cys Thr 130 135 140 432



| ·                                                                                                                                                     |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| ttc cgc tgt gtc aac gtg cct ggg agc tac cag tgt gca tgc cca gag<br>Phe Arg Cys Val Asn Val Pro Gly Ser Tyr Gln Cys Ala Cys Pro Glu<br>145 150 155 160 | 480  |
| caa ggg tat aca atg atg gcc aac ggg agg tcc tgc aag gac ctg gat<br>Gln Gly Tyr Thr Met Met Ala Asn Gly Arg Ser Cys Lys Asp Leu Asp<br>165 170         | 528  |
| gag tgt gca ctg ggc acc cac aac tgc tct gag gct gag acc tgc cac<br>Glu Cys Ala Leu Gly Thr His Asn Cys Ser Glu Ala Glu Thr Cys His<br>180 185 190     | 576  |
| aat atc cag ggg agt ttc cgc tgc ctg cgc ttt gat tgt cca ccc aac<br>Asn Ile Gln Gly Ser Phe Arg Cys Leu Arg Phe Asp Cys Pro Pro Asn<br>195 200 205     | 624  |
| tat gtc cgt gtc tca caa acg aag tgc gag cgc acc aca tgc cag gat<br>Tyr Val Arg Val Ser Gln Thr Lys Cys Glu Arg Thr Thr Cys Gln Asp<br>210 215 220     | 672  |
| atc acg gaa tgt caa acc tca cca gct cgc atc acg cac tac cag ctc<br>Ile Thr Glu Cys Gln Thr Ser Pro Ala Arg Ile Thr His Tyr Gln Leu<br>230 235 240     | 720  |
| aat ttc cag aca ggc cta ctg gta cct gca cat atc ttc cgc atc ggc<br>Asn Phe Gln Thr Gly Leu Leu Val Pro Ala His Ile Phe Arg Ile Gly<br>245 250 255     | 768  |
| cct gct ccc gcc ttt gct ggg gac acc atc tcc ctg acc atc acg aag<br>Pro Ala Pro Ala Phe Ala Gly Asp Thr Ile Ser Leu Thr Ile Thr Lys<br>260 265 270     | 816  |
| ggc aat gag gag ggc tac ttc gtc aca cgc aga ctc aat gcc tac act<br>Gly Asn Glu Glu Gly Tyr Phe Val Thr Arg Arg Leu Asn Ala Tyr Thr<br>275 280 285     | 864  |
| ggt gtg gta tcc ctg cag cgg tct gtt ctg gag ccg cgg gac ttt gcc<br>Gly Val Val Ser Leu Gln Arg Ser Val Leu Glu Pro Arg Asp Phe Ala<br>290 295 300     | 912  |
| cta gat gtg gag atg aag ctt tgg cgc cag ggc tct gtc act acc ttc<br>Leu Asp Val Glu Met Lys Leu Trp Arg Gln Gly Ser Val Thr Thr Phe<br>305 310 315 320 | 960  |
| ctg gcc aag atg tac atc ttc ttc acc act ttt gcc cca tgaggtgaca<br>Leu Ala Lys Met Tyr Ile Phe Phe Thr Thr Phe Ala Pro<br>325 330                      | 1009 |
| tgtcaggcaa tccctccagg tgatgcctgg gcggtgggca gctgcgccac tcctaagtgg                                                                                     | 1069 |
| ctttttgctg tgactctgta acttaactta atcatgctga gctggttggt cttgagtctc                                                                                     | 1129 |
| taccctagag ggagggagat gcaccccagc aggcactgag tacaggccag ggtcacccga                                                                                     | 1189 |
| ggctagatgg tgacctgcaa actggaaaca gccatagggg gcttctgaac tccactcctc                                                                                     | 1249 |
| aactatggct acagctgaca ttccattcct tcatccactg tgttcctcaa ttaaaaaaaa                                                                                     | 1309 |
| aaatcagctg tgcatggtag cacagacctt taatcctagc actggggagg cagaggtagg                                                                                     | 1369 |
| tagatctctg agttccaggc cagcctggtc tacactggga gttctaacca gccagagcta                                                                                     | 1429 |
| catagagaga ccctatctca acaaggaaaa aacgaaagaa atctctgtga gttccaggco                                                                                     | 1489 |

Page 24

agcctggtct acgctgggag ttctaaccag ccagagctac atagagagat cctatctcaa 1549
caaggaaaaa tgaaagaaat cattttaaaa ggttttttt tttgctgttg ttgtttaatg 1609
ataagagtag cacatataca ttattaaaaa tgatcaaata gcacagaaag gtta 1663

<210> 33

<211> 333

<212> PRT

<213> Artificial Sequence

<220>

<223> Murine fibulin 2 c-term fragment

<400> 33

Glu Gly Ser Glu Cys Val Asp Val Asn Glu Cys Glu Thr Gly Val His  $1 \hspace{1cm} 10 \hspace{1cm} 15$ 

Arg Cys Gly Glu Gly Gln Leu Cys Tyr Asn Leu Pro Gly Ser Tyr Arg 20 25 30

Cys Asp Cys Lys Pro Gly Phe Gln Arg Asp Ala Phe Gly Arg Thr Cys 35 40 45

Ile Asp Val Asn Glu Cys Trp Val Ser Pro Gly Arg Leu Cys Gln His 50 60

Thr Cys Glu Asn Thr Pro Gly Ser Tyr Arg Cys Ser Cys Ala Ala Gly 65 70 75 80

Phe Leu Leu Ala Ala Asp Gly Lys His Cys Glu Asp Val Asn Glu Cys 85 90 95

Glu Thr Arg Arg Cys Ser Gln Glu Cys Ala Asn Ile Tyr Gly Ser Tyr 100 105 110

Gln Cys Tyr Cys Arg Gln Gly Tyr Gln Leu Ala Glu Asp Gly His Thr 115 120 125

Cys Thr Asp Ile Asp Glu Cys Ala Gln Gly Ala Gly Ile Leu Cys Thr 130 135 140

Phe Arg Cys Val Asn Val Pro Gly Ser Tyr Gln Cys Ala Cys Pro Glu 145 150 155 160

Gln Gly Tyr Thr Met Met Ala Asn Gly Arg Ser Cys Lys Asp Leu Asp 165 170 175



Glu Cys Ala Leu Gly Thr His Asn Cys Ser Glu Ala Glu Thr Cys His 180 185 190

Asn Ile Gln Gly Ser Phe Arg Cys Leu Arg Phe Asp Cys Pro Pro Asn  $195 \hspace{1cm} 200 \hspace{1cm} 205$ 

Tyr Val Arg Val Ser Gln Thr Lys Cys Glu Arg Thr Thr Cys Gln Asp 210 220

Ile Thr Glu Cys Gln Thr Ser Pro Ala Arg Ile Thr His Tyr Gln Leu 225 230 235 240

Asn Phe Gln Thr Gly Leu Leu Val Pro Ala His Ile Phe Arg Ile Gly 245 250 255

Pro Ala Pro Ala Phe Ala Gly Asp Thr Ile Ser Leu Thr Ile Thr Lys 260 265 270

Gly Asn Glu Glu Gly Tyr Phe Val Thr Arg Arg Leu Asn Ala Tyr Thr 275 280 285

Gly Val Val Ser Leu Gln Arg Ser Val Leu Glu Pro Arg Asp Phe Ala 290 295 300

Leu Asp Val Glu Met Lys Leu Trp Arg Gln Gly Ser Val Thr Thr Phe 305 310 315 320

Leu Ala Lys Met Tyr Ile Phe Phe Thr Thr Phe Ala Pro 325 330