CLAIMS

1	 A handpiece, comprising: 		
2	a handpiece assembly including a handpiece housing and a		
3	cooling fluidic medium valve member; and		
4	an electrode assembly coupled to the handpiece housing, the		
5	electrode assembly including a least one RF electrode that is		
6	capacitively coupled to a skin surface when at least a portion of the RF		
7	electrode is in contact with the skin surface.		
1	2. The handpiece of claim 1, further comprising:		
2	a fluid delivery member coupled to the cooling fluidic medium		
3	valve member, wherein the fluid delivery member is configured to		
4	provide an atomizing delivery of a cooling fluidic medium to the RF		
5	electrode.		
1	3. The handpiece of claim 2, wherein the fluid delivery		
2	member is positioned in the handpiece housing.		
1	4. The handpiece of claim 2, wherein the fluid delivery		
2	member is positioned in the electrode assembly.		
1	5. The handpiece of claim 2, wherein the fluid delivery		
2	member includes a nozzle.		
1	6. The handpiece of claim 2, wherein the fluid delivery		
2	member is configured to deliver a controllable amount of cooling fluidic		
3	medium to the RF electrode.		
1	7. The handpiece of claim 2, wherein the fluid delivery		
2	member is configured to controllably deliver the cooling fluidic medium		
3	to a back surface of the RF electrode.		

- 1 8. The handpiece of claim 2, wherein the fluid delivery
 2 member is configured to controllably deliver fluid to a backside of the
 3 RF electrode to evaporatively cool the RF electrode and conductively
 4 cool a skin surface in contact with the front side of the RF electrode.
- 9. The handpiece of claim 2, wherein the fluid delivery
 member is configured to controllably deliver a cooling fluidic medium to
 a back surface of the RF electrode at substantially any orientation of
 the front surface of the RF electrode relative to a direction of gravity.
- 1 10. The handpiece of claim 1, wherein the electrode
 2 assembly is sufficiently sealed to minimize flow of a cooling fluidic
 3 medium from a back surface of the RF electrode to a skin surface in
 4 contact with a front surface of the RF electrode.
- 1 11. The handpiece of claim 1, wherein the electrode 2 assembly includes a vent.
- 1 12. The handpiece of claim 1, wherein the cooling fluidic 2 medium valve member is configured to provide a pulsed delivery of a 3 cooling fluidic medium.
- 1 13. The handpiece of claim 1, wherein the cooling fluidic 2 medium valve member includes a solenoid valve.
- 1 14. The handpiece of claim 1, wherein the RF electrode 2 includes a conductive portion and a dielectric portion.
- 1 15. The handpiece of claim 14, wherein the conductive2 portion includes metal.

1	16.	The handpiece of claim 14, wherein the conductive
2	portion inclu	udes copper.
	17. includes pol	The handpiece of claim 14, wherein the dielectric portion yimide.

- 1 18. The handpiece of claim 14, wherein the RF electrode 2 includes a copper polyimide composite material.
- 19. The handpiece of claim 1, further comprising:
 leads coupled to the RF electrode.
- 1 20. The handpiece of claim 1, wherein the RF electrode 2 includes a flex circuit.
- 1 21. The handpiece of claim 20, wherein the flex circuit is 2 configured to isolate flow of a cooling fluidic medium from a back 3 surface of the RF electrode to a front surface of the RF electrode.
- 1 22. The handpiece of claim 20, wherein the flex circuit is 2 configured to create a reservoir for a cooling fluidic medium that 3 gathers at a back surface of the RF electrode.
- 1 23. The handpiece of claim 20, wherein the flex circuit 2 includes trace components.
- 24. The handpiece of claim 20, wherein the flex circuit
 include a force sensor coupled to the flex circuit.
- 1 25. The handpiece of claim 20, wherein the flex circuit 2 includes a thermal sensor.

2

1 2	26. includes a di	The handpiece of claim 20, wherein the flex circuit electric that forms a portion of the RF electrode.
1	27.	The handpiece of claim 1, further comprising:
2	a forc	e sensor coupled to the RF electrode.

- 1 28. The handpiece of claim 27, wherein the force sensor is 2 configured to detect an amount of force applied by the RF electrode 3 against a surface.
- 1 29. The handpiece of claim 27, wherein the force sensor is 2 configured to zero out gravity effects of the weight of the electrode 3 assembly.
 - 30. The handpiece of claim 27, wherein the force sensor is configured to zero out gravity effects of the weight of the electrode assembly in any orientation of a front surface of the RF electrode relative to a direction of gravity.
- 1 31. The handpiece of claim 27, wherein the force sensor is 2 configured to provide an indication of RF electrode contact with a skin 3 surface.
- 1 32. The handpiece of claim 27, wherein the force sensor is 2 configured to provide a signal indicating that a force applied by the RF 3 electrode to a contacted skin surface is below a minimum threshold.
- 1 33. The handpiece of claim 27, wherein the force sensor is 2 configured to provide a signal indicating that a force applied by the RF 3 electrode to a contacted skin surface is above a maximum threshold.
- 1 34. The handpiece of claim 27, further comprising:

2	a tare button coupled to the force sensor.
1 2	35. The handpiece of claim 1, wherein the RF electrode is spring loaded.
1 2	36. The handpiece of claim 35, wherein the spring is pre-loaded.
1 2 3	37. The handpiece of claim 35, wherein the spring is configured to bias the RF electrode in a direction toward the handpiece housing.
1 2	38. The handpiece of claim 1, further comprising: a shroud coupled to the handpiece.
1 2	39. The handpiece of claim 1, further comprising: a RF electrode identifier.
1 2 3	40. The handpiece of claim 1, wherein the RF electrode includes a conductive portion with a dielectric positioned around at least a portion of a periphery of the conductive portion.
1 2 3	41. The handpiece of claim 1, wherein the RF electrode includes a conductive portion with a dielectric positioned around an entirety of a periphery of the conductive portion.
1 2 3	42. The handpiece of claim 1, wherein the electrode assembly includes a cooling fluidic medium channel with an inlet and an outlet.
1	43. The handpiece of claim 42, wherein the outlet of the

a cross-sectional area of the inlet.

electrode.

1 2 3	44. The handpiece of claim 1, wherein the electrode assembly is moveable within at least a portion of the handpiece housing.
1 2 3	45. The handpiece of claim 1, wherein the electrode assembly is slideably moveable within at least a portion of the handpiece housing.
1 2	46. The handpiece of claim 1, wherein the electrode assembly is rotatably moveable relative to the handpiece housing.
1 2	47. The handpiece of claim 1, wherein the RF electrode is rotatably positioned in the electrode assembly.
1 2	48. The handpiece of claim 1, wherein the electrode assembly is coupled to the handpiece housing in a stationary position.
1 2 3 4 5 6 7 8	49. A handpiece, comprising: a handpiece assembly including a handpiece housing and a cooling fluidic medium valve member with an inlet and an outlet; and an electrode assembly removably coupled to the handpiece housing, the electrode assembly including a least one RF electrode with a front surface and a back surface, wherein the RF electrode is capacitively coupled to a skin surface when at least a portion of the RF electrode is in contact with the skin surface.
1 2 3 4	50. The handpiece of claim 49, further comprising: a fluid delivery member coupled to the cooling fluidic medium valve member, wherein the fluid delivery member is configured to provide an atomizing delivery of a cooling fluidic medium to the RF

2

3

1

2

3

1	51.	The handpiece of claim 50, wherein the fluid delivery
2	member is	positioned in the handpiece housing.

- 52. The handpiece of claim 50, wherein the fluid delivery
 member is positioned in the electrode assembly.
- 1 53. The handpiece of claim 50, wherein the fluid delivery 2 member includes a nozzle.
- 1 54. The handpiece of claim 50, wherein the fluid delivery 2 member is configured to deliver a controllable amount of cooling fluidic 3 medium to the RF electrode.
 - 55. The handpiece of claim 50, wherein the fluid delivery member is configured to controllably deliver the cooling fluidic medium to the back surface of the RF electrode.
 - 56. The handpiece of claim 50, wherein the fluid delivery member is configured to controllably deliver fluid to a backside of the RF electrode to evaporatively cool the RF electrode and conductively cool a skin surface in contact with the front side of the RF electrode.
- 1 57. The handpiece of claim 50, wherein the fluid delivery 2 member is configured to controllably deliver a cooling fluidic medium to 3 the back surface of the RF electrode at substantially any orientation of 4 the front surface of the RF electrode relative to a direction of gravity.
- 1 58. The handpiece of claim 49, wherein the electrode 2 assembly is sufficiently sealed to minimize flow of a cooling fluidic 3 medium from the back surface of the RF electrode to a skin surface in 4 contact with the front surface of the RF electrode.

2

3

4

1

2

3

4

1	59.	The handpiece of claim 49, wherein the electrode
2	assembly inc	cludes a vent.

- 1 60. The handpiece of claim 49, wherein the cooling fluidic 2 medium valve member is configured to provide a pulsed delivery of a 3 cooling fluidic medium.
- 1 61. The handpiece of claim 49, wherein the cooling fluidic 2 medium valve member includes a solenoid valve.
 - 62. The handpiece of claim 50, wherein the fluid delivery member is configured to deliver a sufficient amount of cooling fluidic medium to controllably maintain the back surface of the RF electrode at a desired temperature.
 - 63. The handpiece of claim 50, wherein the fluid delivery member is configured to controllably deliver a sufficient of cooling fluidic medium to the back surface of the RF electrode and maintain a substantially uniform temperature of the front surface of the RF electrode.
- 1 64. The handpiece of claim 49, further comprising:
- a thermal sensor coupled to the RF electrode.
- The handpiece of claim 49, further comprising:
 a plurality of thermal sensors coupled to the RF electrode.
- 1 66. The handpiece of claim 49, further comprising:
- 2 four thermal sensors coupled to the RF electrode.
- 1 67. The handpiece of claim 64, wherein the sensor is 2 positioned at the back surface of the RF electrode.

1	68. The handpiece of claim 64, wherein the sensor is
2	electrically isolated from the RF electrode.
1	69. The handpiece of claim 64, wherein the sensor is selected
2	from a thermocouple, thermistor, infrared photo-emitter and a
3	thermally sensitive diode.
1	70. The handpiece of claim 49, wherein the outlet of the
2	cooling fluidic medium valve member is distanced from the back
3	surface of the RF electrode.
1	71. The handpiece of claim 49, wherein a geometry and a
2	positioning of the fluid delivery member are selected to provide a
3	substantially uniform distribution of fluid on the back surface of the RF
4	electrode.
1	72. The handpiece of claim 49, wherein the RF electrode has
2	a thickness in the range of 0.010 to 1.0 mm.
1	73. A handpiece, comprising:
2	a handpiece assembly including a handpiece housing;
3	an insert at least partially positionable in the handpiece housing
4	an RF electrode coupled to the insert, the RF electrode including
5	a back surface facing the handpiece housing and an opposing front
6	surface; and
7	a cooling fluidic medium dispensing assembly coupled to the
8	handpiece housing and the insert.

to a cooling fluidic medium valve member.

74.

1 2

3

medium dispensing assembly includes a fluid delivery member coupled

The handpiece of claim 73, wherein the cooling fluidic

1

2

1	75.	The handpiece of claim 74, wherein the cooling fluidie
2	medium valv	re member is positioned in the handpiece housing.

- 76. The handpiece of claim 74, wherein the cooling fluidic
 medium valve member is positioned in the electrode assembly.
- 1 77. The handpiece of claim 74, wherein the fluid delivery 2 member is positioned in the handpiece housing.
- 78. The handpiece of claim 74, wherein the fluid delivery
 member is positioned in the insert.
 - 79. The handpiece of claim 74, wherein the fluid delivery member includes a nozzle.
- 1 80. The handpiece of claim 74, wherein the fluid delivery 2 member is configured to deliver a controllable amount of cooling fluidic 3 medium to the RF electrode.
 - 81. The handpiece of claim 74, wherein the fluid delivery member is configured to controllably deliver a cooling fluidic medium to the back surface of the RF electrode.
- 1 82. The handpiece of claim 74, wherein the fluid delivery 2 member is configured to controllably deliver fluid to a backside of the 3 RF electrode to evaporatively cool the RF electrode and conductively 4 cool a skin surface in contact with the front side of the RF electrode.
- 1 83. The handpiece of claim 74, wherein the fluid delivery 2 member is configured to controllably deliver a cooling fluidic medium to 3 the back surface of the RF electrode at substantially any orientation of 4 the front surface of the RF electrode relative to a direction of gravity.

2

3

4

1	84.	The handpiece of claim 74, wherein the RF electrode is
2	sufficiently s	sealed to minimize flow of a cooling fluidic medium from
3	the back sur	face of the RF electrode to a skin surface in contact with
4	the front sur	rface of the RF electrode.

- 1 85. The handpiece of claim 53, wherein the insert includes a vent.
- 1 86. The handpiece of claim 74, wherein the cooling fluidic 2 medium valve member is configured to provide a pulsed delivery of a 3 cooling fluidic medium.
- 1 87. The handpiece of claim 74, wherein the cooling fluidic 2 medium valve member includes a solenoid valve.
 - 88. The handpiece of claim 73, wherein the front surface of the RF electrode is configured to conductively cool a skin surface in contact with the front surface of the RF electrode at substantially any orientation of the front surface of the RF electrode relative to a direction of gravity.
- 1 89. The handpiece of claim 74, wherein the front surface of 2 the RF electrode and the cooling fluidic medium delivery member are 3 configured to conductively cool a skin surface in contact with the front 4 surface of the RF electrode at substantially any orientation of the front 5 surface of the RF electrode relative to a direction of gravity.
- 1 90. The handpiece of claim 73, wherein the RF electrode 2 includes a conductive portion and a dielectric.

1	91. The handpiece of claim 73, wherein the RF electrode		
2	includes a conductive portion with a dielectric positioned around at		
3	least a portion of a periphery of the conductive portion.		
1	92. The handpiece of claim 73, wherein the RF electrode		
2	includes a conductive portion with a dielectric positioned around an		
3	entirety of a periphery of the conductive portion.		
3	entifiety of a periphery of the conductive portion.		
1	93. The handpiece of claim 73, wherein the insert is		
2	removably coupled to the handpiece housing.		
	O.4. The learned is an of plains O.2. further comprising:		
1	94. The handpiece of claim 93, further comprising:		
2	a non-volatile memory coupled to the insert.		
1	95. The handpiece of claim 94, wherein the non-volatile		
2	memory is an EPROM.		
1	96. The handpiece of claim 73, further comprising:		
2	a non-volatile memory coupled to the handpiece housing.		
1	97. The handpiece of claim 96, wherein the non-volatile		
2	memory is an EPROM.		
2	memory is an Errori.		
1	98. The handpiece of claim 73, wherein the handpiece		
2	housing includes a microprocessor.		
1	99. The handpiece of claim 94, wherein the non-volatile		
2	memory provides control of current delivered to the RF electrode.		
1	100. The handpiece of claim 94, wherein the non-volatile		
2	memory provides control of duty cycle of the cooling fluidic medium		

delivery member.

4

1 2 3	101. The handpiece of claim 94, wherein the non-volatile memory provides control of energy delivery duration time from the RF electrode.
1	102. The handpiece of claim 94, wherein the non-volatile
2	memory controls the temperature of the front surface of the RF
3	electrode relative to a target temperature.
1	103. The handpiece of claim 94, wherein the non-volatile
2	memory provides a maximum number of firings of the RF electrode.
1 2	104. The handpiece of claim 94, wherein the non-volatile memory provides a maximum allowed voltage deliverable by the RF electrode.
3	electione.
1	105. The handpiece of claim 94, wherein the non-volatile
2	memory provides a history of RF electrode use.
1	106. The handpiece of claim 94, wherein the non-volatile
2	memory is configured to provide a controllable duty cycle to the
3	cooling fluidic medium delivery member for the delivery of cooling
4	fluidic medium to the back surface of the RF electrode.
1	107. The handpiece of claim 94, wherein the non-volatile
2	memory is configured to provide a controllable delivery rate of cooling
3	fluidic medium delivered from the cooling fluidic medium delivery
4	member to the back surface of the RF electrode.
1	108. The handpiece of claim 74, wherein the RF electrode and
2	the fluid delivery member are configured to provide a uniform heat

removal from the front surface of the RF electrode when the front

surface of the RF electrode is applied to a skin surface.

2

1	109. The handpiece of claim 74, wherein the RF electrode and
2	the fluid delivery member are configured to provide a uniform heat
3	removal from that portion of the front surface of the RF electrode
4	applied to a skin surface.

- 1 110. The handpiece of claim 74, wherein the RF electrode and 2 the fluid delivery member are configured to provide a uniform heat 3 removal from that portion of the front surface of the RF electrode 4 applied to a skin surface at substantially any orientation of the from 5 surface of the RF electrode relative to a direction of gravity.
 - 111. The handpiece of claim 74, wherein the RF electrode and the fluid delivery member are configured to conductively cool a skin surface in contact with the front surface of the RF electrode.