ASSIGNMENT NUMBER 3, 21.630 Spring 2013

Due Wednesday, February 6, 2013

- 1. Let $T\in [0,\infty),\ g:[0,T]\to \mathbb{R}$ be continuous, and $f:\mathbb{R}\to \mathbb{R}$ be continuous and bounded.
- A) For each positive integer, n, define $X^{(n)}$ by $X^{(n)}(t) = g(0)$ if t < 0 and

$$X^{(n)}(t) = g(t) + t \int_0^t f(X^{(n)}(s - 1/n))ds$$

if $0 \le t \le T$. Prove that there is a subsequence, $X^{(k_n)}$, that converges uniformly on [0,T]. Define it's limit to be X.

- B) Prove that $X^{(k_n)}(t-1/k_n)$ converges uniformly to X on [0,T].
- C) Prove that

$$X(t) = g(t) + t \int_0^t f(X(s))ds$$

for all $t \in [0, T]$.

2. Let $t_0 \in \mathbb{R}$, $A \in \mathbb{R}$, and $B \geq 0$. Define $\mathcal{F} : \mathcal{C}[t_0, \infty) \to \mathcal{C}[t_0, \infty)$ by

$$\mathcal{F}[X](t) = A + B \int_{t_0}^t X(s) ds.$$

Also define

$$\overline{X}(t) = Ae^{B(t-t_0)}.$$

- A) Show that if $X \leq Y$ (meaning $X(t) \leq Y(t)$ for all $t \in [t_0, \infty)$), then $\mathcal{F}[X] \leq \mathcal{F}[Y]$.
- B) Show that

$$\mathcal{F}[\overline{X}] = [\overline{X}].$$

C) Assume that $X \in \mathcal{C}[t_0, \infty)$ satisfies

$$X \leq \mathcal{F}[X]$$
.

Define a sequence, $\{X^{(n)}\}$, by $X^{(0)}=X$ and $X^{(n+1)}=\mathcal{F}[X^{(n)}]$. Show that $X^{(n+1)}\geq X^{(n)}$ for all $n\geq 1$. Then show that $X\leq \overline{X}$. You may assume that $X^{(n)}$ converges pointwise to \overline{X} to do this. Note: this is an important result.

We'll prove it in class another way.

3. Assume that f is continuous on $[t_0, \infty) \times \mathbb{R}^N$ and satisfies

$$|f(t,x)| \le a(t) + b(t)|x|$$

for all $(t,x) \in [t_0,\infty) \times \mathbb{R}^N$ where a and b are continuous functions on $[t_0,\infty)$. Show that every solution of $\frac{dX}{dt}(t) = f(t,X(t))$ may be extended to the interval $[t_0,\infty)$. Hint: Use problem 2.

4. Suppose that $p \in (0,1]$ and $X : [0,\infty) \to \mathbb{R}$ is continuous and satisfies

$$|X(t)| \le \int_0^t |X(s)|^p ds$$

for all $t \in [0, \infty)$. Show that if p = 1 then X(t) = 0 for all $t \in [0, \infty)$ (using problem 2 this is very short). Now consider $p \in (0, 1)$. Does X have to vanish? Either prove it does or give a counterexample to show it does not.