

Hybrid System

Advisory Professor : 김형수 교수님

Advisory TA: 정문경 TA

Team Members: Ashar Alam, Mahshid Khodadad, 류준일, 류현준, 박지환, 조인준, 최지훈, 최호열

Department of Mechanical Engineering

Contents

- Section A
 - Key features of Hybrid System
 - Problem and Solution
 - System Overview
- Section B
 - Vibration Analysis
 - Heat Transfer Analysis
- Section C
 - Conclusion
 - Appendix

Section – A

System Overview

Hybrid System

Key Features

Independent Suspension

Modularity

Problem and Solution

- > Performance
- √ Precise ball picking
- ✓ < 5 mins

- > Cooling
- ✓ Passive cooling
- ✓ < 70°C

- > Creativity
- ✓ Independent suspension
- ✓ Modular design

Team Structure

Design & Manufacture

C-U OpenCV

Vision

Measurement & Control

Integration

Capstone Design: Evolution of Design

System

Whole Design

Detection

Picking

- ➤ Merits of Modularity
- ✓ Easy to repair
- ✓ Modifications would be easily implemented for Capstone Design II
- ✓ Design changes have a smooth and swift transition

System

Whole Design

Detection

Picking

System

Whole Design

Detection

Picking

System

Whole Design

Detection

Picking

System

Whole Design

Detection

Picking

Section – B

System Analysis

Suspension

Overview

Modelling

Video

Graphs

Ver #1

Ver #2

Ver #3

Ver #1: No suspension

Ver #2: MacPherson

strut

Ver #3: SLA

suspension

Suspension

Overview

Modelling

Video

Graphs

- ➤ Merits of suspension
- ✓ Better traction
- ✓ Precise detection

Suspension

Overview

Modelling

Video

Graphs

 ω = 60 rpm -> K< 118.44 N/m necessary \Rightarrow Our K value : $\frac{53.33 \text{ N/m}}{r = 2.114}$

Suspension

Overview

Modelling

Video

Graphs

 $\frac{A_{after}}{A_{before}}$:

 $-10dB \approx 0.316$

Vertical acceleration vs time

Heat Transfer

IR Camera

Calculation

Cost vs benefit

Hot Spots

Camera

Converter

MyRio

DYNAMIXEL Motor

Heat Transfer

IR Camera

Calculation

Cost vs benefit

Converter

Aluminum fin

Fan

Free Convection

- h = 8.97
- Q= 0.323 W
- $T_S = 40.6 \, ^{\circ}\text{C}$

Adiabatic case

- Using thermal resistance
- q = M tan(mL)
- $T_S = 36.71 \, ^{\circ}\text{C}$

Forced convection

- Using thermal resistance
- h = 20.5 $^{W}/_{m^2.K}$
- $T_S = 31.8 \, ^{\circ}\text{C}$

Heat Transfer

IR Camera

Calculation

Cost vs benefit

Theoretical calculation with fin gives $T_s = 36.7 \, ^{\circ}\text{C}$

Experimental T_s = 36.1 °C

1.5mm			
2.5mm	7mm 3mm	25.4mm	25.4mm >10mm

	Fin	Comparison	Fan	
Cost	2,000 KRW	X 7	15,000 KRW	
Battery Usage	0	X 2	2.16 W	
Cooling, ΔT_s	-3.9 ℃	X 2	-8.8 °C	
T_s	36.7 °C	2 vs 7	31.8 °C	

Hence, we decided to install only Fin

Section – C

Conclusion

Conclusion

- ✓ Independent Suspension
- ✓ Modular vehicle
- ✓ Minimizing cost by heat analysis
- ✓ Simple Blade Type Gripper

Thanks for listening

Questions or comments are welcome

Appendix

r	_	ω	_	$\sqrt{2}$
,	_	$\overline{\omega_n}$	_	٧Z

$$\omega_n = \sqrt{\frac{k}{m}} < \sqrt{2}\omega$$

m = 6kg, $\omega = 60rpm = 2\pi \ rad/s$

∴ k < 118.44 N/m

				NAME : Suspension Spring . NO. : E :		
SPRING TYPE : Co	mpression Coil Spring			<i>p</i> 2	•	
MATERIAL :	: SUS316					
Modulus of transv	erse elasticity (G)	7000		Number of active coils (Ne)	23	
Wire dian	neter (d)	0.8	mm	Free length(L)	38	mm
Center dian	neter (D _m)	14.2	mm	Displacement(I)	20	mm
Total number of	active coils (Nt)	15		Tensile stress(σ)	53	kg/mm ²
	·					
External c	diameter			Spring Pitch		
OD =	$d+D_m$	15.00	mm	$p = \frac{L}{N_e + 1}$	1.58	mm
Internal d	liameter			Maximum compression heigh	t	
ID = I	$D_m - d$	13.40	mm	$L_{min} = d \times N_t$	12.00	mm
Torsion	stress			Spring length		
$\tau = \sigma \times$	(0.33	17.49	kg/mm²	$ML = \pi \times D_m \times N_t$	669.16	mm
Initial te	ension					
$P_0 = \frac{1}{2}$	$\frac{\pi \times d^3 \times \tau}{8 \times D_m}$	0.25	kg			
Loa	nd					
P =	$l \times K$	1.3333	kg			
Spring co	onstant					
$K = \frac{1}{8 \times (6)}$	$\frac{G \times d^4}{2D - d)^3 \times N_e}$	53.33368	N/m			

Appendix: Vibration Analysis

Theory

$$\omega$$
 = 60 rpm -> K< 118.44 N/m necessary \Rightarrow Our K value : $\frac{53.33 \text{ N/m}}{r}$ = 2.114

Theory:

$$\frac{X_{after}}{X_{before}} = -10dB \approx 0.316$$

Experiment:

$$\frac{X_{after} \times \omega_n^2}{X_{before} \times \omega_n^2}$$

$$\frac{X_{after}}{X_{before}} = \frac{0.05}{0.15} \approx 0.33$$

Experiment

Appendix: Heat Transfer Analysis

Without fan or fin

$$T_{f} = \frac{T_{s} + T_{\infty}}{2}$$

$$Ra = G_{r}P_{r} = \frac{g\beta(T_{s} - T_{\infty})L^{3}}{v\alpha}$$

$$Nu = 0.54Ra^{\frac{1}{4}} = \frac{hL}{k}$$

$$Nu = 0.54Ra^{\frac{1}{4}} = \frac{hL}{k}$$

$$h_{side 1} = 33.20 \text{ W/}_{m^{2}.K}$$

$$h_{side 2} = 29.66 \text{ W/}_{m^{2}.K}$$

$$q = Mtanh(mL) = 0.323V$$

$$q = kA \frac{T_{s} - T_{b}}{t}$$

 $q = hA\Delta T = 0.323W$

With fin

$$Ra = G_r P_r = \frac{g\beta (T_S - T_\infty)L^3}{v\alpha} P_r$$

$$Nu = 0.54Ra^{\frac{1}{4}} = \frac{hL}{k}$$

∴
$$h_{side\ 1} = 33.20\ {}^{W}/m^{2}.K$$

∴ $h_{side\ 2} = 29.66\ {}^{W}/m^{2}.K$
 $q = Mtanh(mL) = 0.323W$
 $q = kA\frac{T_{s} - T_{b}}{t}$
 $T_{b} = 36.7^{\circ}C$
 $T_{s} = 36.71^{\circ}C$

With fan

$$r = 70mm$$
, flow rate = $0.0108 \frac{m^3}{s}$, $V = 0.7 \frac{m}{s}$
 $Re_x = \frac{Vx}{r}$
 $Nu = \frac{h_x x}{k} = 0.664 Re_x^{\frac{1}{2}} Pr^{\frac{1}{3}}$
 $\therefore h_x = 20.5 \frac{w}{m^2}.K$
 $q = hA\Delta T = 0.323W$
 $T_s = 31.8^{\circ}C$

Appendix: Free convection heat transfer (C) SMARING

