LifLF – Théorie des langages formels Sylvain Brandel

2019 – 2020

sylvain.brandel@univ-lyon1.fr

CM 5

CARACTÉRISATION

- Propriété de stabilité des langages reconnus par des automates finis.
- Théorème

La classe des langages acceptés par les automates finis est stable par :

- Union
- Concaténation
- Fermeture itérative
- Complément
- Intersection

ordre de la démonstration

- Preuve constructive
 - Construction de l'automate pour chaque opération

Union

$$L_1 = L(M_1)$$
 $(K_1, \Sigma, \Delta_1, s_1, F_1)$ \rightarrow Même Σ $L_2 = L(M_2)$ $(K_2, \Sigma, \Delta_2, s_2, F_2)$ \rightarrow Hyp. $K_1 \cap K_2 = \emptyset$

Posons s tel que $s \notin K_1$ et $s \notin K_2$.

$$\rightarrow M_{\cup}: (\{s\} \cup K_1 \cup K_2, \Sigma, \Delta_1 \cup \Delta_2 \cup \{(s, \varepsilon, s_1), (s, \varepsilon, s_2)\}, s, F_1 \cup F_2)$$

$$w \in L(M_{\cup}) \Leftrightarrow (s,w) \vdash_{M} (s_{1},w) \vdash_{M}^{*} (f_{1},\varepsilon) (f_{1} \in F_{1})$$

$$\qquad \qquad \longleftarrow L_{1}$$

$$(s,w) \vdash_{M} (s_{2},w) \vdash_{M}^{*} (f_{2},\varepsilon) (f_{2} \in F_{2}) \qquad \longleftarrow L_{2}$$

$$\Leftrightarrow w \in L_1 \cup L_2$$

Concaténation

• Etoile de Kleene

$$L_1 = L(M_1)$$
 $(K_1, \Sigma, \Delta_1, S_1, F_1)$

$$→$$
 M_K : $(K_1 ∪ \{s\}, Σ, Δ_1 ∪ \{(s, ε, s_1)\} ∪ \{(f_i, ε, s_1) | f_i ∈ F_1\}, s, F_1 ∪ \{s\})$

Complément

$$L_1 = L(M_1)$$
 $(K_1, \Sigma, \Delta_1, S_1, F_1)$

$$\rightarrow M_{\neg}: (K_1, \Sigma, \Delta_1, s_1, \neg F_1) \ avec \ \neg F_1 = K_1 - F_1$$

Attention M₁ doit être déterministe

Intersection

$$L_1 = L(M_1)$$
 $(K_1, \Sigma, \Delta_1, s_1, F_1)$ \rightarrow Même Σ $L_2 = L(M_2)$ $(K_2, \Sigma, \Delta_2, s_2, F_2)$ \rightarrow Hyp. $K_1 \cap K_2 = \emptyset$

Deux méthodes :

$$- L(M_1) \cap L(M_2) = \overline{L(M_1)} \cup \overline{L(M_2)}$$

- Automate produit
 - M_{\cap} : $(K_1 \times K_2, \Sigma, \{((p_1, p_2), \sigma, (q_1, q_2)) \mid (p_1, \sigma, q_1) \in \Delta_1 \ et \ (p_2, \sigma, q_2) \in \Delta_2\}, (s_1, s_2), F_1 \times F_2)$
 - Quadratique en le nombre d'états

Lien avec les langages rationnels Inclusion des classes de langages

Théorème

La classe des langages acceptés par les automates finis contient les langages rationnels.

Exemple

 $(ab \cup aba)^*$

$$a \longrightarrow a$$

$$b \longrightarrow \bigcirc \xrightarrow{b} \bigcirc$$

$$ab \longrightarrow \underbrace{ \begin{array}{c} a \\ \end{array}} \underbrace{ \begin{array}{c} \varepsilon \\ \end{array}} \underbrace{ \begin{array}{c} b \\ \end{array}} \underbrace{ \begin{array}{c} b \\ \end{array}} \underbrace{ \begin{array}{c} b \\ \end{array}} \underbrace{ \begin{array}{c} c \\ \end{array}}$$

aba
$$\xrightarrow{a}$$
 $\xrightarrow{\varepsilon}$ \xrightarrow{b} $\xrightarrow{\varepsilon}$ \xrightarrow{a} \bigcirc

Lien avec les langages rationnels Inclusion des classes de langages

Exemple

 (ab ∪ aba)*

 $ab \cup aba$

Théorème

Un langage est rationnel ssi il est accepté par un automate fini.

Preuve

On suppose qu'on a numéroté (ordonné) les états.

Soit $M = (K, \Sigma, \Delta, s, F)$ un automate fini (déterministe ou non).

$$K = \{q_1, q_2, ..., q_n\}, s = q_1$$

Le langage reconnu par M est la réunion de tous les langages reconnus en parcourant tous les chemins possibles dans le graphe.

 \rightarrow À chaque chemin allant de s à f ($\in F$), on associe le langage trouvé.

- On pose R(i, j, k) = l'ensemble des mots obtenus par lecture de l'automate M
 - en partant de l'état q_i ,
 - en arrivant dans l'état q_i (avec le mot vide),
 - en ne passant que par des états dont le numéro est inférieur ou égal à k.
- R(i,j,k) est un langage
- $R(i,j,k) = \{w \mid (q_i,w) \vdash_M^* (q_j,\varepsilon) \text{ sans passer par des états dont le numéro est supérieur à } k\}$

$$R(i,j,n) = \{ w \mid (q_i,w) \vdash_M^* (q_j,\varepsilon) \}$$

$$L(M) = \bigcup_{i|a_i \in F} R(1,i,n)$$

- R(i,j,k) est un langage rationnel dont on peut calculer la représentation par récurrence sur k.
- Preuve

$$R(i,j,k) = R(i,j,k-1) \cup R(i,k,k-1) \cdot (R(k,k,k-1))^* \cdot R(k,j,k-1)$$

Exemple

- Pour simplifier on « arrange » le graphe :
 - Un seul état final
 - Pas de retour de f vers le graphe
 - Pas de retour du graphe vers l'état initial

Exemple

- $-R(i,j,0) \rightarrow \text{\'etiquettes}$ sur les flèches.
- Principe : calculer R(1, 6, 6)

$$R(1,6,6) = R(1,6,5) \cup R(1,6,5) R(6,6,5)^* R(6,6,5)$$

= $R(1,6,4) \cup R(1,5,4) R(5,5,4)^* R(5,6,4) \cup ... \cup ...$

Fastidieux \Rightarrow on calcule les R(i, j, k) de proche en proche.

- \rightarrow On supprime q_1 (ce qui revient à calculer R(i, j, 1))
- \rightarrow On supprime q_2 (ce qui revient à calculer R(i, j, 2))

. . .

