```
In [54]: from tpot import TPOTClassifier
    from sklearn.datasets import load_digits
    from sklearn.model_selection import train_test_split
    import numpy as np
    import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt

data = pd.read_csv('/Users/cestdrama/Desktop/emotion-demo.csv')
    data.head()
```

Out[54]:

	song	sadness	joy	analytical	target
0	喜欢你	0.688923	0.664950	0.000000	1
1	越难越爱	0.564981	0.694766	0.000000	0
2	多远都要在一起	0.565116	0.665297	0.536494	1
3	红日	0.606664	0.528863	0.880644	1
4	光辉岁月	0.599139	0.501519	0.000000	1


```
In [61]: X=data.drop(['target', 'song'], axis=1)
    print(X)
```

	sadness	joy	analytical
0	0.688923	0.664950	0.000000
1	0.564981	0.694766	0.000000
2	0.565116	0.665297	0.536494
3	0.606664	0.528863	0.880644
4	0.599139	0.501519	0.000000
5	0.667948	0.666117	0.000000
6	0.625493	0.744573	0.000000
7	0.000000	0.695544	0.000000
8	0.000000	0.774177	0.518298
9	0.572018	0.585796	0.683846
10	0.000000	0.630808	0.511728
11	0.583840	0.680206	0.609032
12	0.727683	0.695966	0.683663
13	0.661171	0.651805	0.675031
14	0.000000	0.628542	0.630370
15	0.644295	0.696204	0.630370
16	0.000000	0.647149	0.569618
17	0.666306	0.618635	0.550773
18	0.646752	0.709950	0.714973
19	0.000000	0.568379	0.000000

```
In [58]: y=data['target']
           print(y)
           0
                  1
           1
                  0
           2
                  1
           3
                  1
           4
                  1
           5
                  1
           6
                  1
           7
                  1
           8
                  1
           9
                  1
           10
                  0
           11
                  0
           12
                  0
           13
                  0
           14
                  0
           15
                  0
           16
                  0
           17
                  0
           18
                  0
           19
           Name: target, dtype: int64
```

```
In [67]: from sklearn import svm, datasets
         from sklearn.metrics import roc curve, auc ###计算roc和auc
         # from sklearn import cross validation
         from sklearn import model selection
         random state = np.random.RandomState(0)
         n samples, n features = X.shape
         X = np.c [X, random state.randn(n samples, 200 * n features)]
         # shuffle and split training and test sets
         X train, X test, y train, y test = model selection.train test split(X,
         y, test size=.3,random state=0)
         # Learn to predict each class against the other
         svm = svm.SVC(kernel='linear', probability=True, random state=random st
         ate)
         ###通过decision function()计算得到的y score的值,用在roc curve()函数中
         y score = svm.fit(X train, y train).decision function(X test)
         print(y score)
         # Compute ROC curve and ROC area for each class
         fpr,tpr,threshold = roc_curve(y_test, y_score) ###计算真正率和假正率
         roc auc = auc(fpr,tpr) ###计算auc的值
         plt.figure()
         lw = 2
         plt.figure(figsize=(10,10))
         plt.plot(fpr, tpr, color='darkorange',
                  lw=lw, label='ROC curve (area = %0.2f)' % roc auc,marker = 'o
         ') ###假正率为横坐标,真正率为纵坐标做曲线
         plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
         plt.xlim([0.0, 1.0])
         plt.ylim([0.0, 1.05])
         plt.xlabel('False Positive Rate')
         plt.ylabel('True Positive Rate')
         plt.title('Receiver operating characteristic example')
         plt.legend(loc="lower right")
         plt.show()
```

[0.13990091 0.17020458 0.14416387 0.16630812 0.15118074 0.13328378] <Figure size 432x288 with 0 Axes>

In []: