IL TEOREMA DI IMMERSIONE ISOMETRICA DI JOHN NASH

webpage: loi.sc.unica.it

ASPETTI TOPOLOGICI

Vvarietà differenziabile di dimensione n

$$C^r(V, \mathbb{R}^q) = \{ f : V \to \mathbb{R}^q \text{ di classe } C^r \}$$

$$C^{\infty}(V, \mathbb{R}^q) = \{ f : V \to \mathbb{R}^q \text{ di classe } C^{\infty} \}$$

$$\operatorname{Imm}_r(V, \mathbb{R}^q) = \{ \text{immersioni } f : V \to \mathbb{R}^q \text{ di classe } C^r \}$$

$$\operatorname{Imm}(V, \mathbb{R}^q) = \{ \text{immersioni } f : V \to \mathbb{R}^q \text{ di classe } C^{\infty} \}$$

$$\operatorname{Emb}_r(V, \mathbb{R}^q) = \{ \text{embeddings } f : V \to \mathbb{R}^q \text{ di classe } C^r \}$$

$$\operatorname{Emb}(V, \mathbb{R}^q) = \{ \text{embeddings } f : V \to \mathbb{R}^q \text{ di classe } C^{\infty} \}$$

 $C^r(V, \mathbb{R}^q), r \geq \infty$ sarà munito della topologia fine o di Whitney.

Teorema(Whitney, Ann. of Math. 45, 1944):

$$\forall V^n \exists w_1 \in \text{Imm}(V, \mathbb{R}^{2n-1}), w_2 \in \text{Emb}(V, \mathbb{R}^{2n})$$

ASPETTI METRICI

$$\operatorname{Met}_r(V) = \{ \text{metriche su } V \text{ di classe } C^r \}$$

$$Met(V) = \{ metriche su \ V \ di classe \ C^{\infty} \}$$

$$BS(V) = \{ \text{forme bilineari simmetriche } C^{\infty} \text{ su } V \}$$

 $Met_r(V)$ e Met(V) saranno muniti della topologia fine o di Whitney.

Sia V una varietà differenziabile di dimensione n e $g \in \text{Met}_r(V), r \geq 0$.

Problema locale: Sia $v \in V$ un punto fissato. Trovare un intorno U di v, un numero naturale q e $f \in Emb_r(U, \mathbb{R}^q)$ tale che:

$$g_f =: f^*(g_{eucl}) = g_{|U}.$$

Problema globale: Trovare un un numero naturale q e $f \in Imm_r(V, \mathbb{R}^q)$ (risp. $f \in Emb_r(V, \mathbb{R}^q)$)

$$g_f =: f^*(g_{eucl}) = g.$$

tale che:

Domanda: Sia nel problema locale che in quello globale quale è il minimo q?

PRE-NASH

Siano $x_1, \ldots x_n$ coordinate locali di V in un intorno di $v \in V$ e $\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n}$ i campi coordinati associati allora

$$g_{ij} = g(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j}) = \sum_{k=1}^q \frac{\partial f_k}{\partial x_i} \frac{\partial f_k}{\partial x_j}.$$

Sistema di $s_n = \frac{n(n+1)}{2}$ PDE dove $f = (f_1, \dots f_q) : V \to \mathbb{R}^q$

sono le funzioni incognite.

Teorema (Schlaefli (1873)–Janet (1926)–Burstin (1931)): Sia (V, g) una varietà Riemanniana analitica e sia $v \in V$. Allora esiste un intorno U di v e un embedding analitico e isometrico $f: U \to \mathbb{R}^{s_n}, \ s_n = \frac{n(n+1)}{2}$.

Osservazione: La dimensione dello spazio Euclideo è ottimale.

I RISULTATI DI NASH

Teorema (Nash, Ann. of Math. 60, 1954): $Sia(V^n, g)$ una varietà Riemanniana completa, $g \in Met_0(V)$ e

$$f: V \to \mathbb{R}^{n+k}$$

 $k \geq 2$ un embedding g-strictly short i.e.

$$g - g_f > 0.$$

Allora esiste $f_1 \in Emb_1(V, \mathbb{R}^{n+k})$ tale che $g_{f_1} = g$. Inoltre f_1 può essere scelto arbitrariamente C^0 -vicino a f.

Un anno dopo (1955) N. Kuiper dimostra il teorema precedente con $k \geq 1$.

Osservazione: Il disco con la metrica iperbolica può essere embedded in modo C^1 e isometrico in \mathbb{R}^3 !! (Crocheting the Hyperbolic Plane, Mathematical Intelligencer, Vol. 23, No. 2, pp. 17-28, Spring 2001. David W. Henderson & Daina Taimi)

Come conseguenza del Teorema di Whitney e del Teorema di Nash-Kuiper otteniamo il seguente:

Corollario: Una varietà compatta (V^n, g) (g metrica C^{∞}) ammette un embedding C^1 e isometrico

$$f:V\to\mathbb{R}^{2n}.$$

Teorema (Nash, Ann. of Math. 63, 1956): $Sia\ (V^n, g)\ una\ variet\grave{a}\ Riemanniana\ di\ classe\ C^r,$ $r\geq 3.$ Allora esiste un embedding isometrico di $classe\ C^r$

$$f: (V,g) \to \mathbb{R}^q$$

 $per \ q \ge 3s_n + 4n, \ s_n = \frac{n(n+1)}{2}.$

POST-NASH

Teorema (Gromov, Partial Differential Relations, 1986): Una varietà Riemmanniana (V^n, g) di classe C^r con $r \geq 3$ ammette un embedding isometrico in \mathbb{R}^{s_n+2n+3} .

Teorema (Günther, Isometric imbeddings of Riemmannian manifold, 1990):

Una varietà Riemmanniana (V^n, g) di classe C^r con $r \geq 3$ ammette un embedding isometrico di classe C^r in \mathbb{R}^q , $q = \max(s_n + 2n, s_n + n + 5)$.

Osservazione: Non si sa se una varietà Riemanniana (V, g) di classe C^2 ammette un'immersione locale e C^2 in qualche spazio Euclideo!!!

D'ora in poi ci occuperemo solo del caso di varietà Riemanniane compatte (V,g) di classe C^{∞} e applicazioni $f:V\to\mathbb{R}^q$ di classe C^{∞} .

Alcuni vantaggi di avere V compatta:

- Un'immersione iniettiva C^{∞} $f: V \to \mathbb{R}^q$ è necessariamente un embedding;
- La topologia di Whitney su $C^{\infty}(V, \mathbb{R}^q)$ è quella standard del sup.

Alcuni vantaggi di avere $f: V \to \mathbb{R}^q$ e g di classe C^{∞} :

- $\bullet\,$ non si "perde" differenziabilità quando si passa da f a $g_f.$
- Ogni applicazione in $C^r(V, \mathbb{R}^q)$ può essere C^r -approssimata da applicazioni in $C^{\infty}(V, \mathbb{R}^q)$.

Teorema di Nash nel caso C^{∞} :

Una varietà Riemanniana compatta (V, g) ammette un embedding isometrico in \mathbb{R}^{3s_n+4n} . Cioè esiste un'immersione iniettiva

$$f:V\to\mathbb{R}^q$$

 $di \ classe \ C^{\infty} \ tale \ che$

$$g_f = g$$
.

Formulazione equivalente:

Consideriamo l'operatore differenziale

$$\mathcal{D}: \operatorname{Imm}(V, \mathbb{R}^q) \to \operatorname{Met}(V), \ f \mapsto g_f.$$

Il Teorema di Nash è equivalente al seguente:

Teorema : $se \ q = 3s_n + 4n \ allora \ \mathcal{D} \ \dot{e} \ suriettivo.$

APPLICAZIONI FREE (z-embeddings)

Un'applicazione $z \in C^{\infty}(V, \mathbb{R}^q)$ è detta free se gli $n+s_n$ vettori in \mathbb{R}^q

$$\frac{\partial z}{\partial x_i}(v), \ \frac{\partial^2 z}{\partial x_i \partial x_j}(v), \quad i \le j, \quad i, j = 1 \dots n$$

sono linearmente indipendenti per ogni $v \in V$ (la definizione non dipende dalla scelta del sistema di coordinate $x_1, \ldots x_n$).

Denotiamo con Free $(V, \mathbb{R}^q) \subset \text{Imm}(V^n, \mathbb{R}^q) \ (q \geq s_n + n)$ l'insieme delle applicazioni free da V in \mathbb{R}^q .

Teorema N1 (IFT per \mathcal{D}):

Sia $z \in \text{Free}(V, \mathbb{R}^q)$. Allora esiste un intorno $U_{g_z}^{\infty} \subset \text{Met}(V)$ tale che per ogni $g' \in U_{g_z}^{\infty}$ esiste $z' \in \text{Imm}(V, \mathbb{R}^q)$ tale che $g_{z'} = g'$.

Teorema N2: Se $q \geq s_n + 2n$ allora Free (V, \mathbb{R}^q) è denso in $C^{\infty}(V^n, \mathbb{R}^q)$.

APPLICAZIONI FULL E y-EMBEDDINGS

Un embedding $F = (F_1, \dots F_m) : V \to \mathbb{R}^m$ è detto full se per ogni $v \in V$ e per ogni sistema di coordinate locali $x_1, \dots x_n$ intorno a v

$$\frac{\partial F_k(v)}{\partial x_i} \frac{\partial F_k(v)}{\partial x_j}, \quad k = 1, \dots m$$

generano lo spazio delle forme bilineari su T_vV .

Denotiamo con Full (V, \mathbb{R}^m) lo spazio di tutte le $f \in C^{\infty}(V, \mathbb{R}^m)$ full.

Teorema N3: Se $m \geq s_n + n$ allora Full (V, \mathbb{R}^m) è denso in $\text{Imm}(V, \mathbb{R}^m)$.

Teorema N4 (Nash's twist): $\forall F \in \text{Full}(V, \mathbb{R}^m) \cap \text{Imm}(V, \mathbb{R}^m)$ esiste un C^0 -intorno $V_{g_F}^0$ di g_F tale che ogni $g \in V_{g_F}^0$ può essere C^{∞} -approssimata da $g_y \in \text{Met}(V), y \in \text{Emb}(V, \mathbb{R}^{2m})$.

DIMOSTRAZIONE DEL TEOREMA DI NASH

Reassunto ingredienti ((V, g) varietà Riemanniana compatta):

- 1) $\exists w \in \text{Emb}(V, \mathbb{R}^{2n})$ (Whitney).
- 2) $\forall g' \in \text{Met}(V) \ \exists f_1 \in \text{Emb}_1(V, \mathbb{R}^{2n}) \ \text{tale che } g' = g_{f_1} \ (\underline{\text{Nash-Kuiper}}).$
- 3) $\forall z \in \text{Free}(V, \mathbb{R}^{s_n+2n}) \ \exists U_{g_z}^{\infty} \subset \text{Met}(V) \ \text{tale che}$ $\forall g' \in U_{g_z} \ \exists z' \in \text{Imm}(V, \mathbb{R}^q) \ \text{tale che} \ g_{z'} = g' \ (\text{IFT per } \mathcal{D}).$
- **4)** Free (V, \mathbb{R}^{s_n+2n}) denso in $C^{\infty}(V, \mathbb{R}^{s_n+2n})$.
- **5)** Full (V, \mathbb{R}^{s_n+n}) denso in $C^{\infty}(V, \mathbb{R}^{s_n+n})$.
- **6)** $\forall F \in \text{Full}(V, \mathbb{R}^m) \cap \text{Imm}(V, \mathbb{R}^m)$ esiste un C^0 intorno $V_{g_F}^0$ di g_F tale che ogni $\forall g \in V_{g_F}^0$ esiste una successione $g_{y_j} \in \text{Met}(V), y_j \in \text{Emb}(V, \mathbb{R}^{2m})$ tale che $g_{y_j} \to_{C^{\infty}} g$ (Nash's twist).

Dimostrazione:

Sia $w \in \text{Emb}(V, \mathbb{R}^{2n})$ (esiste per 1)) e $i : \mathbb{R}^{2n} \to \mathbb{R}^{s_n+n}$ l'embedding canonico.

5) applicato a $i \circ w \in \text{Emb}(V, \mathbb{R}^{s_n+n}) \Rightarrow \exists F_1 \in \text{Full}(V, \mathbb{R}^{s_n+n}) \cap \text{Emb}(V, \mathbb{R}^{s_n+n}).$

 $\exists \lambda \in \mathbb{R} \text{ tale che } F = \lambda F_1 \text{ sia } g\text{-short, cioè } g - g_F \in \text{Met}(V).$

Sia $j: \mathbb{R}^{2n} \to \mathbb{R}^{s_n+2n}$ l'embedding canonico.

- **2)** applicato a $j \circ w \in \text{Emb}(V, \mathbb{R}^{s_n+2n}) \Rightarrow \exists f_1 \in \text{Emb}_1(V, \mathbb{R}^{s_n+2n}) \text{ t.c. } g_{f_1} = g g_F.$
- **4**) $\Rightarrow \exists z_j \in \text{Free}(V, \mathbb{R}^{s_n+2n}) \cap \text{Emb}(V, \mathbb{R}^q)$ tale che $z_j \to_{C^1} f_1 \Rightarrow g_{z_j} \to_{C^0} g_{f_1} \Rightarrow g g_{z_j} \to_{C^0} g_F$ $\Rightarrow \exists z \in \text{Free}(V, \mathbb{R}^{s_n+2n}) \cap \text{Emb}(V, \mathbb{R}^q)$ tale che $g g_z \in V_{g_F}^0$.
- $\mathbf{6}) \Rightarrow \exists y_j \in \operatorname{Emb}(V, \mathbb{R}^{2s_n+2n}) \text{ t.c.} \Rightarrow g_{y_j} \to_{C^{\infty}} g g_z$ $\Rightarrow g g_{y_j} \to_{C^{\infty}} g_z \Rightarrow \exists y \in \operatorname{Emb}(V, \mathbb{R}^{2s_n+2n}) \text{ tale}$ $\text{che } g g_y \in U_{g_z}^{\infty}. \quad \mathbf{3}) \Rightarrow \exists z' \in \operatorname{Emb}(V, \mathbb{R}^{s_n+2n}) \text{ t.c.}$ $g g_y = g_{z'}.$

 $f=(y,z')\in \mathrm{Emb}(V,\mathbb{R}^{2s_n+2n}\oplus\mathbb{R}^{s_n+2n}=\mathbb{R}^{3s_n+4n})$ è t.c. $g_f=g_y+g_{z'}=g$.

DIMOSTRAZIONI DEI TEOREMI N1, N2, N3, N4

La dimostrazione dei Teoremi N2 e N3 si basa sulla teoria dei jets e sul teorema di trasversalità di Thom (vedi B. Andrews, Notes on the isometric embedding problem and the Nash-Moser implicit function theorem).

Per la dimostrazione del Teorema N1 rinviamo al libro di Gromov, *Partial Differential Relations*.

Per la dimostrazione del Teorema N4 rinviamo sempre all'articolo sopra citato di B. Andrews.