BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACION

MAESTRIA EN CIENCIAS DE LA COMPUTACION

Área: Sistemas Distribuidos

Programa de Asignatura: Especificación y Verificación

Código:

Tipo: Optativa

Créditos: 9

Fecha: Noviembre 2012

BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA **FACULTAD DE CIENCIAS DE LA COMPUTACION**

1. DATOS GENERALES

Nombre del Programa Educativo:	Maestría en Ciencias de la Computación
Modalidad Académica:	Escolarizada
Nombre de la Asignatura:	Especificación y Verificación
Ubicación:	Segundo o Tercer semestre (Optativa)

2. REVISIONES Y ACTUALIZACIONES

Autores:	Dr. Miguel Ángel León Chávez M.C. José de Jesús Lavalle Martínez
Fecha de diseño:	Noviembre 2012
Fecha de la última actualización:	No aplica, Materia nueva
Revisores:	No aplica, Materia nueva
Sinopsis de la revisión y/o actualización:	No aplica, Materia nueva

BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACION

3. OBJETIVOS:

General:

El alumno aprenderá conceptos que le impartirán especificar y verificar formalmente (EyVF) sistemas de software, el contenido sienta las bases para poder EyVF sistemas secuenciales, concurrentes, distribuidos y orientados a objetos.

ESPECIFICOS:

El estudiante aprenderá la importancia de los métodos formales para la especificacióny verificación de sistemas de software.

El estudiante conocerá el concepto de máquinas de estados y su utilización en la EyVF de ejemplos concretos planteados en el curso.

El estudiante trabajará con los lenguajes LOTOS y SDL, utilizandolos en la EyVF de sistemas concurrentes, distribuidos y orientados a objetos planteados en el curso

BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA

.4. CONTENIDO

1 LNIDO		
Unidad	Contenido Temático/Actividades de	
I MAQUINAS DE ESTADOS	aprendizaje 1.1. El concepto de máquina de estados 1.2. Enfoque básico de disefio 1.3. Representaciones alternativas de una máquina de estados 1.5. Problemas de reconocimiento de palabras y máquinas de estado finito 1.6. Ejemplos	
IILOTOS	2.1. Sincronización con intercambio de datos de valor 2.2. Definición de procesos parametrizados con datos parámetro 2.3. Paso de valores vía composición secuencial 2.4. Operador de elección generalizado 2.5. Comparación con CSP y CCS 2.6. Ejemplos	
III SDL (Lenguaje de Especificacióny Descripción))	3.1. Estructura 3.2. Comunicación 3.3. Comportamiento 3.4. Tipos de datos abstractos 3.5. Herencia 3.6. Notación 3.7. Ejemplos	

BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACION

Bibliografía		
Básica	Complementaria	
I Michael A. Harrison, "Introduction to formal language theory" Addison - Wesley Publishing Company, 1978. 2 Kenneth J. Turner, "Using formal description techniques, an Introductions to Estelle LOTOS and SDL", John Willey& Sons Incorporated, 1993. 3 Colín Fidge, "A comparative introduction to CSP, CCS y LOTOS", Technical Report No.93-24, The University ofQueensland, Australia, April 1994.		

5. CRITERIOS DE EVALUACIÓN

Criterios	Porcentaje
Exámenes	30%
Participación en clase	
Tareas	20%
Exposiciones	20%
Simulaciones	
 Trabajo de investigación y/o de intervención 	
 Prácticas de laboratorio 	
Visitas guiadas	
 Reporte de actividades académicas y culturales 	
Mapas conceptuales	
Portafolio	
Proyecto final	30%
Otros	
Total	100%