

University of Tehran

COLLEGE OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

NEURAL NETWORK & DEEP LEARNING STOCK MARKET PREDICTION USING RNN, LSTM, GRU

SIAVASH SHAMS

MOHAMMAD HEYDARI

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
UNIVERSITY OF TEHRAN

May. 2022

1 CONTENTS

Stock Market Prediction	3
1.1	3
1.2	11
13	18

STOCK MARKET PREDICTION

1.1 Below we can see Google and Apple, day to day stock closing prices from 2010 to 2018.

• LSTM

Layer (type)	Output Shape	Param #
lstm (LSTM)	(None, 30, 64)	19712
lstm_1 (LSTM)	(None, 64)	33024
dense (Dense)	(None, 2)	130
Total params: 52,866 Trainable params: 52,8 Non-trainable params:		

We will train our model using Adam optimizer with 100 epochs.

• RNN

Layer (type)	Output Shape	Param #
simple_rnn (SimpleRNN)	(None, 30, 64)	4928
simple_rnn_1 (SimpleRNN)	(None, 64)	8256
dense_1 (Dense)	(None, 2)	130
Total params: 13,314		
Total params: 13,314 Trainable params: 13,314		
Non-trainable params: 0		

Total training time: 26.431206941604614 seconds

• GRU

Layer (type)	Output Shape	Param #
gru (GRU)	(None, 30, 64)	14976
gru_1 (GRU)	(None, 64)	24960
dense_1 (Dense)	(None, 2)	130
Total params: 40,066 Trainable params: 40,066 Non-trainable params: 0		

Total training time: 81.92196726799011 seconds

By looking at the results we conclude that GRU outperforms the other two memory cells

Performance: GRU > LSTM > RNN

also training time is least for RNN and GRU comes second, and LSTM takes the longest. We can see that as the memory unit complexity (number of parameters) gets bigger, it requires more training time.

Training time: LSTM > GRU > RNN

1.2

• GRU + MAPE

Total training time: 145.55148577690125 seconds

• MAPE + RNN

• MAPE + LSTM

As we can see from the results, the MAPE loss function doesn't improve GRU and LSTM but reduces performance of RNN, as it has a constant gradient it suffers from vanishing gradient and thus the model is not trained well for RNN

1.3

LSTM + Adagrad

Total training time: 149.08284449577332 seconds

• LSTM + RMSprop

Total training time: 205.3320653438568 seconds

• ADAgrad + RNN

Total training time: 59.3671555519104 seconds

• RMSprop +RNN

Total training time: 63.164148807525635 seconds

• ADAgrad + GRU

Total training time: 137.29109835624695 seconds

• RMSprop + GRU

Total training time: 137.48347330093384 seconds

As we can see from the results both ADAgrad and RMSprop optimizers get outperformed by Adam, because Adam uses both first and second moments and benefits from advantages of two other optimizers, so it is generally the best choice.

Also, Adam takes noticeably less time to train.

Optimiser	Year	Learning Rate	Gradient
Momentum	1964		✓
AdaGrad	2011	✓	
RMSprop	2012	✓	
Adadelta	2012	✓	
Nesterov	2013		✓
Adam	2014	✓	✓
AdaMax	2015	✓	✓
Nadam	2015	✓	✓
AMSGrad	2018	✓	✓

• LSTM + 0.1 Dropout

RNN + dropout 0.1

GRU + 0.1 dropout

By comparing the results to part 2 we can see that adding dropout decreased performance of LSTM and GRU units but improved RNN unit.

Dropout is a regularization technique, and is most effective at preventing overfitting. However, there are several places when dropout can hurt performance.

- when the network is small relative to the dataset, regularization is usually unnecessary. If the model capacity is already low, lowering it further by adding regularization will hurt performance.
- when training time is limited. Usually, dropout hurts performance at the start of training, but results in the final "converged" error being lower. Therefore, if you don't plan to train until convergence, you may not want to use dropout.