# Práctica 1. "Análisis experimental de la eficiencia de algoritmos de ordenamiento"

Christian Miguel Hernández Mejía
Departamento de Ciencias e Ingeniería de la Computación,
Análisis de Algoritmos, ESCOM-IPN
(email: christian.mhm@outlook.com)

#### I. Introducción

El alumno realizará un análisis a posteriori de diversos algoritmos de ordenamiento. Implementará y comparará la eficiencia de estos algoritmos en los casos mejor, peor y promedio.

Para mostrar la eficiencia de diferentes algoritmos que solucionan un mismo problema, se consideró el problema de ordenamiento de una lista de números enteros. Los algoritmos que se implementarán son:

- 1. Ordenamiento por inseción
- 2. El método de la burbuja
- 3. Ordenamiento por mezcla
- 4. Ordenamiento rápido (Quick-sort)

#### II. MARCO TEÓRICO

### II-A. Algoritmo

El término de algoritmo se puede entender como la descripción de cómo resolver un problema. El conjunto de instrucciones que especifican la secuencia de operaciones a realizar, en orden, para resolver un sistema específico o clase de problemas, también se denomina algoritmo. En otras palabras un algoritmo es una .especie de fórmula"para la resolución de un problema.

Además de ser un conjunto finito de reglas que dan lugar a una secuencia de operaciones para resolver un tipo específico de problema, un algoritmo debe cumplir cinco importantes condiciones:

- 1. Finitud. Un algoritmo tiene que acabar tras un número finito de pasos.
- Definibilidad. Cada paso de un algoritmo debe de tener un significado preciso; las acciones a realizar han de estar especificadas en cada paso rigurosamente y sin ambigüedad.
- Conjunto de entradas. Debe existir un conjunto específico de objetos, cada uno de los cuales constituye los datos iniciales de un caso particular del problema que resuelve el algoritmo. A este conjunto se llama conjunto de entrada del algoritmo.
- 4. Conjunto de salidas. Debe existir un conjunto específico de objetos, cada uno de los cuales constituye la salida o respuesta que debe tener el algoritmo para los diferentes casos particulares del problema. Para cada entrada del algoritmo debe existir una salida asociada.

Efectividad. Un algoritmo debe ser efectivo. Esto significa que todas las operaciones realizadas en el algoritmo deben ser lo bastante básicas para poder ser efectuadas de modo exacto en un lapso finito por el procesador.

#### II-B. Análisis a priori y posteriori

El tiempo de ejecución de un algoritmo va a depender de diversos factores como son: los datos de entrada que le suministremos, la calidad del código generado por el compilador para crear el programa objeto, la naturaleza y rapidez de las instrucciones máquina del procesador concreto que ejecute el programa, y la complejidad intrínseca del algoritmo. Hay dos estudios posibles sobre el tiempo:

Deberá enviar al correo miriam.pescador@gmail.com, una carpeta comprimida con la implementación de los códigos python y el reporte en formato latex y pdf. El asunto del correo deberá decir "Practica 1 Analisis de Algoritmos [nombre completo del alumno comenzando con el apellido paterno]". La carpeta debe tener el nombre del alumno (comenzando por apellido paterno). La fecha límite de entrega es el próximo Martes 5 de febrero de 2019 a las 10:00 pm. Por cada día de retraso se penalizará al alumno con 15 % de la calificación obtenida.

#### II-C. Análisis del mejor y peor caso

El reporte en latex debe considerar las siguientes secciones:

- Introducción: descripción sobre la implementación de la práctica
- Marco teórico. En esta sección deberá poner los conceptos de:
  - Algoritmo
  - Análisis a priori y posteriori
  - Análisis del mejor y peor caso
  - Caso promedio

Incluya la bibliografía que fue consultada (use el formato de ejemplo para agregarlo a su reporte).

Implementación. Coloque en esta sección los algoritmos proporcionados en la plantilla de latex. Proporcione información sobre las características del equipo de cómputo donde realizó las pruebas (sistema operativo, tipo de procesador, memoria, etc.). Además deberá documentar las bibliotecas que empleo para la implementación de los algoritmos.

- Resultados. Incluya la tabla de resultados y graficas solicitadas.
- Conclusiones. Describa cuáles fueron los mejores algoritmos y para qué casos y/o número de datos de entrada.
   Proporcione una justificación del por qué se obtuvieron estos resultados.

# II-D. Caso promedio

# Algorithm 1: Insertion Sort Algorithm

```
Data: A: list of sortable items
1 begin
2
      InsertionSort(A)
      for i \leftarrow 2 to n do
3
          i \leftarrow i - 1;
4
          while j \ge 1 and A[j] > A[j+1] do
5
              swap(A[j], A[j+1]);
6
              j \leftarrow j-1;
7
      return A;
8
9 end
```

#### III. IMPLEMENTACIÓN

# Algorithm 2: Merge Sort Algorithm

```
1 MergeSort(A, p, r)

2 if p < r then

3 q \leftarrow \lfloor (p+r)/2 \rfloor;

4 MergeSort(A, p, q);

5 MergeSort(A, q+1, r);

6 Merge(A, p, q, r);

7 return A;
```

#### IV. RESULTADOS

# Algorithm 3: Bubble Sort Algorithm

```
Data: A : list of sortable items
1 begin
       n \leftarrow length(A);
2
       repeat
3
            swapped \leftarrow false;
4
           for i \leftarrow 1 to n do
5
               if A[i-1] > A[i] then
6
7
                    swap(A[i-1], A[i]);
                    swapped \leftarrow true;
8
           n \leftarrow n-1;
9
       until not swapped;
10
       return A;
11
12 end
```

## Algorithm 4: Quick Sort Algorithm

```
1 QuickSort(A, p, r)

2 if p < r then

3 q \leftarrow Partition(A, p, r);

4 QuickSort(A, p, q);

5 QuickSort(A, q + 1, r);

6 return A;
```

# Algorithm 5: Partition Algorithm

```
1 Partition(A, p, r)
\mathbf{z} \ x \leftarrow A[p];
3 i \leftarrow p-1 j \leftarrow r+1 while true do
        repeat
            j \leftarrow j - 1;
6
        until A[j] \leq x;
        repeat
         i \leftarrow i + 1;
        until A[j] \geq x;
9
        if i < j then
10
         exchange A[i] \leftrightarrow A[j];
11
        else
12
            return j;
13
```

#### V. CONCLUSIONES

La figura 1 muestra el comportamiento de las funciones.

# VI. REFERENCIAS REFERENCIAS

- [1] P. Moscato, On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms, Technical Report C3P Report 826, 1980
- [2] N. Krasnogor and J. Smith, A Memetic Algorithm With Self-Adaptive Local Search: TSP as a case study, Genetic Evolutionary Computation Conference pp. 987-994, 2000.



Figura 1. Comparación del comportamiento de los algoritmos

|      |           | Meio    | r Caso  |            |           | Peor    | Caso    |            | Caso promedio |         |         |            |  |
|------|-----------|---------|---------|------------|-----------|---------|---------|------------|---------------|---------|---------|------------|--|
| n    | insertion | merge   | bubble  | quick-sort | insertion | merge   | bubble  | quick-sort | insertion     | merge   | bubble  | quick-sort |  |
| 100  | 0.00004   | 0.00053 | 0.00002 | 0.00037    | 0.0043    | 0.00057 | 0.00317 | 0.00105    | 0.00222       | 0.00053 | 0.00223 | 0.00038    |  |
| 200  | 0.00007   | 0.00033 | 0.00004 | 0.00082    | 0.01701   | 0.00122 | 0.01415 | 0.00387    | 0.00222       | 0.00033 | 0.00223 | 0.00084    |  |
| 300  | 0.0001    | 0.00112 | 0.00004 | 0.00032    | 0.03562   | 0.00122 | 0.02891 | 0.00387    | 0.00320       | 0.00111 | 0.00823 | 0.0003     |  |
| 400  | 0.0001    | 0.00173 | 0.00008 | 0.00122    | 0.05302   | 0.00179 | 0.02871 | 0.00323    | 0.0237        | 0.00273 | 0.01655 | 0.0013     |  |
| 500  | 0.00013   | 0.00243 | 0.00003 | 0.00133    | 0.10576   | 0.00232 | 0.09013 | 0.02271    | 0.05189       | 0.00243 | 0.05567 | 0.00177    |  |
| 600  | 0.0002    | 0.00303 | 0.0001  | 0.00213    | 0.15838   | 0.00301 | 0.03013 | 0.03368    | 0.03169       | 0.00317 | 0.03367 | 0.00247    |  |
| 700  | 0.00028   | 0.00377 | 0.00013 | 0.00342    | 0.21945   | 0.00374 | 0.17438 | 0.04396    | 0.10799       | 0.00446 | 0.11606 | 0.00323    |  |
| 800  | 0.00025   | 0.00519 | 0.00018 | 0.00401    | 0.26834   | 0.00562 | 0.23518 | 0.05862    | 0.14652       | 0.00525 | 0.15862 | 0.00371    |  |
| 900  | 0.00033   | 0.00515 | 0.00018 | 0.00437    | 0.35936   | 0.00302 | 0.29328 | 0.03464    | 0.14032       | 0.00525 | 0.1986  | 0.00509    |  |
| 1000 | 0.00041   | 0.00557 | 0.00021 | 0.00481    | 0.45372   | 0.0069  | 0.3641  | 0.09321    | 0.22207       | 0.00686 | 0.23928 | 0.00636    |  |
| 1100 | 0.00047   | 0.00037 | 0.00025 | 0.00531    | 0.53393   | 0.0007  | 0.46322 | 0.07521    | 0.27688       | 0.00784 | 0.23726 | 0.00573    |  |
| 1200 | 0.00054   | 0.0073  | 0.00028 | 0.0051     | 0.6266    | 0.00772 | 0.55205 | 0.1391     | 0.27000       | 0.00764 | 0.37082 | 0.00373    |  |
| 1300 | 0.00054   | 0.00908 | 0.00028 | 0.00693    | 0.0200    | 0.0093  | 0.65278 | 0.16051    | 0.39148       | 0.00961 | 0.37662 | 0.00732    |  |
| 1400 | 0.00038   | 0.00908 | 0.00035 | 0.00765    | 0.89119   | 0.0093  | 0.03278 | 0.18674    | 0.39148       | 0.00901 | 0.50069 | 0.00749    |  |
| 1500 | 0.00068   | 0.00772 | 0.00033 | 0.00763    | 1.01579   | 0.01084 | 0.76023 | 0.13674    | 0.51282       | 0.01003 | 0.56856 | 0.00874    |  |
| 1600 | 0.00075   | 0.01070 | 0.00037 | 0.00832    | 1.12029   | 0.01084 | 0.83042 | 0.23823    | 0.51282       | 0.01021 | 0.50836 | 0.00874    |  |
| 1700 | 0.00073   | 0.01134 | 0.00041 | 0.00879    | 1.12029   | 0.01108 | 1.09936 | 0.25825    | 0.58059       | 0.01207 | 0.71479 | 0.00943    |  |
| 1800 | 0.00081   | 0.01210 | 0.00042 | 0.00913    | 1.45555   | 0.01222 | 1.05930 | 0.30539    | 0.80086       | 0.01176 | 0.83244 | 0.01017    |  |
| 1900 | 0.00087   | 0.01274 | 0.00043 | 0.00985    | 1.65317   | 0.01202 | 1.35414 | 0.34152    | 0.84467       | 0.01330 | 0.83244 | 0.01030    |  |
| 2000 | 0.00087   | 0.01307 | 0.00047 | 0.00983    | 1.86492   | 0.0138  | 1.57216 | 0.37403    | 0.93678       | 0.01577 | 1.02076 | 0.01102    |  |
| 2100 | 0.0009    | 0.01419 | 0.00052 | 0.01030    | 2.07778   | 0.01434 | 1.71545 | 0.37403    | 0.93078       | 0.01533 | 1.10654 | 0.01208    |  |
| 2200 | 0.00102   | 0.01340 | 0.00052 | 0.01114    | 2.36808   | 0.01573 | 2.01138 | 0.46115    | 1.10053       | 0.01029 | 1.21984 | 0.01237    |  |
| 2300 | 0.00102   | 0.01678 | 0.00033 | 0.0117     | 2.60396   | 0.01032 | 2.14048 | 0.5326     | 1.23108       | 0.01771 | 1.35991 | 0.01368    |  |
| 2400 | 0.00111   | 0.01078 | 0.00058 | 0.01277    | 2.76839   | 0.01714 | 2.31622 | 0.53824    | 1.3679        | 0.01773 | 1.53771 | 0.01300    |  |
| 2500 | 0.00104   | 0.01754 | 0.00038 | 0.01337    | 3.07651   | 0.01823 | 2.5726  | 0.59267    | 1.4527        | 0.01833 | 1.61062 | 0.01471    |  |
| 2600 | 0.0012    | 0.01937 | 0.00064 | 0.0136     | 3.20576   | 0.01963 | 2.79345 | 0.64369    | 1.67686       | 0.021   | 1.901   | 0.01502    |  |
| 2700 | 0.00117   | 0.01917 | 0.00068 | 0.01549    | 3.54211   | 0.021   | 2.97286 | 0.69076    | 1.80082       | 0.02003 | 2.01566 | 0.01705    |  |
| 2800 | 0.00125   | 0.02083 | 0.0007  | 0.01624    | 3.6332    | 0.02109 | 3.12996 | 0.73518    | 1.89767       | 0.02003 | 2.14826 | 0.01732    |  |
| 2900 | 0.00123   | 0.02063 | 0.00076 | 0.01673    | 4.05976   | 0.02103 | 3.47323 | 0.78996    | 2.01681       | 0.02359 | 2.23517 | 0.01732    |  |
| 3000 | 0.00123   | 0.02239 | 0.00074 | 0.01804    | 4.06279   | 0.02239 | 3.50375 | 0.86524    | 2.26116       | 0.02339 | 2.41566 | 0.01952    |  |
| 3100 | 0.00123   | 0.02233 | 0.00075 | 0.01879    | 4.47494   | 0.02257 | 3.80297 | 0.90849    | 2.35627       | 0.02333 | 2.61076 | 0.02265    |  |
| 3200 | 0.00127   | 0.0242  | 0.00082 | 0.01911    | 4.7359    | 0.02463 | 4.0139  | 0.97525    | 2.51247       | 0.0256  | 2.75704 | 0.02023    |  |
| 3300 | 0.00153   | 0.02475 | 0.00081 | 0.01932    | 5.19063   | 0.02812 | 4.37771 | 1.04426    | 2.65583       | 0.02644 | 2.96201 | 0.0207     |  |
| 3400 | 0.00153   | 0.02571 | 0.00088 | 0.0201     | 5.40068   | 0.0248  | 4.39921 | 1.11152    | 2.83969       | 0.0278  | 3.06315 | 0.0254     |  |
| 3500 | 0.00155   | 0.02635 | 0.00085 | 0.02037    | 5.69257   | 0.02558 | 4.89481 | 1.15419    | 3.11405       | 0.03025 | 3.3268  | 0.02127    |  |
| 3600 | 0.00166   | 0.02729 | 0.00088 | 0.0212     | 6.32146   | 0.02756 | 5.40779 | 1.20714    | 3.18333       | 0.03203 | 3.43907 | 0.02408    |  |
| 3700 | 0.00162   | 0.02726 | 0.0009  | 0.02144    | 6.72922   | 0.02818 | 5.71833 | 1.29738    | 3.35382       | 0.03001 | 3.82903 | 0.02388    |  |
| 3800 | 0.00165   | 0.02720 | 0.00096 | 0.02221    | 7.01805   | 0.03037 | 5.77196 | 1.37338    | 3.52107       | 0.03001 | 3.77971 | 0.02659    |  |
| 3900 | 0.00179   | 0.02988 | 0.00095 | 0.02239    | 7.37257   | 0.0295  | 6.35707 | 1.45912    | 3.68952       | 0.03225 | 4.11487 | 0.02469    |  |
| 4000 | 0.00178   | 0.03053 | 0.00102 | 0.02311    | 7.84179   | 0.03104 | 6.74234 | 1.53608    | 3.96538       | 0.03316 | 4.24705 | 0.03154    |  |
| 4100 | 0.00171   | 0.0317  | 0.00102 | 0.02334    | 8.25381   | 0.03132 | 6.92144 | 1.54054    | 4.20792       | 0.03848 | 4.50097 | 0.02815    |  |
| 4200 | 0.0019    | 0.03234 | 0.00103 | 0.02425    | 8.73565   | 0.03246 | 7.27616 | 1.66007    | 4.41867       | 0.03341 | 4.8266  | 0.0269     |  |
| 4300 | 0.00171   | 0.03317 | 0.00113 | 0.02448    | 8.92524   | 0.03366 | 7.73239 | 1.7482     | 4.54224       | 0.03428 | 4.93201 | 0.0295     |  |
| 4400 | 0.00171   | 0.03417 | 0.00113 | 0.02544    | 9.63271   | 0.03536 | 8.23683 | 1.87839    | 5.02727       | 0.0365  | 5.32899 | 0.03122    |  |
| 4500 | 0.00191   | 0.03486 | 0.00116 | 0.02911    | 9.55284   | 0.0349  | 8.01894 | 1.90951    | 4.9646        | 0.0359  | 5.39581 | 0.03057    |  |
| 4600 | 0.00218   | 0.03495 | 0.00113 | 0.02688    | 10.11988  | 0.03633 | 8.54337 | 1.96109    | 5.34844       | 0.03808 | 5.72692 | 0.03069    |  |
| 4700 | 0.00194   | 0.03456 | 0.00123 | 0.02779    | 11.08914  | 0.03691 | 9.39998 | 2.12763    | 5.61797       | 0.03763 | 5.83767 | 0.03039    |  |
| 4800 | 0.00219   | 0.03438 | 0.00113 | 0.02834    | 11.16658  | 0.03783 | 9.4803  | 2.14118    | 5.64035       | 0.03763 | 6.02284 | 0.03249    |  |
| 4900 | 0.00217   | 0.03728 | 0.00134 | 0.02863    | 11.0089   | 0.03763 | 9.55177 | 2.22659    | 6.02393       | 0.03948 | 6.46371 | 0.03479    |  |
| 5000 | 0.00227   | 0.03720 | 0.00125 | 0.03006    | 12.28414  | 0.04086 | 10.1651 | 2.37931    | 6.64304       | 0.03344 | 6.91255 | 0.03268    |  |
| 5000 | 0.00222   | 0.03077 | 0.00123 | 0.05000    | 12.20717  | Cuadro  | 10.1031 | 2.31731    | 0.04504       | 0.07277 | 0.71233 | 0.03200    |  |

Cuadro I

RESULTADOS DE LOS TIEMPOS DE EJECUCIÓN PARA CADA ALGORITMO.

|       | ı         | Maia       | C       |            | Door Coop |           |          |            | Cose mamodie |               |          |            |  |  |
|-------|-----------|------------|---------|------------|-----------|-----------|----------|------------|--------------|---------------|----------|------------|--|--|
| n     |           | Mejor Caso |         |            |           | Peor Caso |          |            |              | Caso promedio |          |            |  |  |
| 5400  | insertion | merge      | bubble  | quick-sort | insertion | merge     | bubble   | quick-sort | insertion    | merge         | bubble   | quick-sort |  |  |
| 5100  | 0.00237   | 0.03956    | 0.00135 | 0.03096    | 11.86569  | 0.03987   | 10.4662  | 2.42466    | 6.72113      | 0.04133       | 7.03041  | 0.03421    |  |  |
| 5200  | 0.00236   | 0.04077    | 0.00131 | 0.03315    | 13.30632  | 0.04147   | 11.21489 | 2.59864    | 6.70386      | 0.0448        | 7.63108  | 0.03405    |  |  |
| 5300  | 0.00213   | 0.04117    | 0.00134 | 0.03264    | 14.04131  | 0.04211   | 11.7817  | 2.70695    | 7.17953      | 0.04307       | 7.47832  | 0.03957    |  |  |
| 5400  | 0.00254   | 0.04234    | 0.00148 | 0.03314    | 13.94129  | 0.0412    | 11.6548  | 2.7586     | 7.15353      | 0.04206       | 7.84451  | 0.03617    |  |  |
| 5500  | 0.00253   | 0.0447     | 0.00147 | 0.03435    | 15.00754  | 0.04492   | 12.27709 | 2.95612    | 7.6462       | 0.04493       | 8.26441  | 0.03911    |  |  |
| 5600  | 0.00283   | 0.04385    | 0.00152 | 0.03478    | 15.552    | 0.04446   | 12.58985 | 3.0043     | 7.92725      | 0.04559       | 8.38686  | 0.03853    |  |  |
| 5700  | 0.00286   | 0.04309    | 0.00135 | 0.03518    | 15.69403  | 0.04464   | 13.50566 | 3.04532    | 8.18756      | 0.04703       | 8.70768  | 0.0415     |  |  |
| 5800  | 0.00251   | 0.04442    | 0.00159 | 0.037      | 16.68916  | 0.04683   | 14.2313  | 3.23257    | 8.43192      | 0.04967       | 9.07723  | 0.04069    |  |  |
| 5900  | 0.0023    | 0.04359    | 0.00157 | 0.03668    | 16.64704  | 0.04829   | 14.22058 | 3.43667    | 9.44975      | 0.05082       | 9.4771   | 0.04164    |  |  |
| 6000  | 0.00217   | 0.04554    | 0.00158 | 0.03845    | 17.01952  | 0.04752   | 14.54701 | 3.37739    | 9.27645      | 0.04884       | 9.89645  | 0.0417     |  |  |
| 6100  | 0.00247   | 0.04789    | 0.00172 | 0.04074    | 17.31442  | 0.04795   | 14.84847 | 3.59293    | 9.07768      | 0.04807       | 9.71356  | 0.04136    |  |  |
| 6200  | 0.0026    | 0.0486     | 0.00163 | 0.04097    | 18.12312  | 0.04911   | 15.50351 | 3.64618    | 9.24071      | 0.05033       | 9.6437   | 0.04816    |  |  |
| 6300  | 0.00262   | 0.04842    | 0.00157 | 0.04141    | 18.64095  | 0.05016   | 16.12714 | 3.93962    | 9.27637      | 0.04902       | 9.95995  | 0.04188    |  |  |
| 6400  | 0.00271   | 0.04996    | 0.00179 | 0.04151    | 19.37319  | 0.05058   | 16.47942 | 3.77345    | 9.93631      | 0.05178       | 10.75847 | 0.04356    |  |  |
| 6500  | 0.00262   | 0.04967    | 0.00177 | 0.04254    | 20.11301  | 0.05026   | 16.97366 | 3.96678    | 10.03201     | 0.05224       | 10.75388 | 0.04442    |  |  |
| 6600  | 0.00251   | 0.04976    | 0.00156 | 0.04275    | 20.34178  | 0.05639   | 17.85357 | 4.23023    | 10.15059     | 0.05082       | 11.16921 | 0.0445     |  |  |
| 6700  | 0.00265   | 0.0519     | 0.00181 | 0.04403    | 20.71048  | 0.05451   | 17.82014 | 4.23374    | 10.95488     | 0.05369       | 11.63749 | 0.04889    |  |  |
| 6800  | 0.00274   | 0.05208    | 0.00169 | 0.04384    | 21.66028  | 0.05441   | 18.50011 | 4.41793    | 12.01144     | 0.05828       | 12.44916 | 0.04896    |  |  |
| 6900  | 0.00298   | 0.05343    | 0.00165 | 0.04451    | 23.26109  | 0.05638   | 19.90725 | 4.57674    | 12.01715     | 0.0581        | 12.53111 | 0.04671    |  |  |
| 7000  | 0.00275   | 0.05329    | 0.00184 | 0.04507    | 22.72705  | 0.05628   | 19.63264 | 4.60645    | 12.35293     | 0.05872       | 13.16561 | 0.04884    |  |  |
| 7100  | 0.00286   | 0.0539     | 0.00184 | 0.04596    | 24.37205  | 0.05458   | 20.42626 | 4.86522    | 12.25438     | 0.05876       | 13.35385 | 0.05756    |  |  |
| 7200  | 0.0028    | 0.05526    | 0.00196 | 0.04779    | 24.18987  | 0.05807   | 20.61779 | 4.87488    | 12.67942     | 0.05921       | 13.27246 | 0.05239    |  |  |
| 7300  | 0.00309   | 0.05682    | 0.0018  | 0.04639    | 24.62426  | 0.0591    | 21.8431  | 5.27835    | 13.45548     | 0.06206       | 13.8651  | 0.05063    |  |  |
| 7400  | 0.00287   | 0.05816    | 0.00187 | 0.05104    | 27.16367  | 0.06561   | 22.8646  | 5.26104    | 13.84587     | 0.06383       | 15.10167 | 0.05092    |  |  |
| 7500  | 0.00278   | 0.05784    | 0.00198 | 0.04763    | 26.88516  | 0.05983   | 22.89381 | 5.27245    | 14.18588     | 0.06187       | 14.6137  | 0.05062    |  |  |
| 7600  | 0.00301   | 0.05918    | 0.0021  | 0.05059    | 28.53613  | 0.06141   | 24.12557 | 5.61043    | 14.52791     | 0.06305       | 15.11816 | 0.05327    |  |  |
| 7700  | 0.00319   | 0.05955    | 0.00203 | 0.04829    | 29.07954  | 0.06208   | 24.21112 | 5.74692    | 14.98472     | 0.06421       | 16.19176 | 0.05556    |  |  |
| 7800  | 0.00315   | 0.06092    | 0.00212 | 0.05033    | 28.44307  | 0.0653    | 24.41307 | 5.85094    | 15.47308     | 0.06503       | 16.02677 | 0.05547    |  |  |
| 7900  | 0.00342   | 0.06062    | 0.00208 | 0.04966    | 29.23592  | 0.06432   | 25.04833 | 5.9798     | 15.18051     | 0.06604       | 16.16633 | 0.05313    |  |  |
| 8000  | 0.00328   | 0.06111    | 0.00204 | 0.05005    | 30.75211  | 0.0643    | 25.97636 | 6.14224    | 15.54448     | 0.06713       | 16.49118 | 0.05889    |  |  |
| 8100  | 0.00332   | 0.06206    | 0.00201 | 0.0504     | 30.80202  | 0.0653    | 26.33753 | 6.31952    | 15.97047     | 0.06769       | 16.45164 | 0.05775    |  |  |
| 8200  | 0.00311   | 0.06295    | 0.00218 | 0.05198    | 31.72681  | 0.06687   | 27.08266 | 6.47782    | 17.08102     | 0.07063       | 17.84501 | 0.05852    |  |  |
| 8300  | 0.00327   | 0.06418    | 0.00218 | 0.05284    | 32.09278  | 0.0664    | 27.63708 | 6.65226    | 15.92664     | 0.06819       | 17.13532 | 0.05827    |  |  |
| 8400  | 0.00333   | 0.06778    | 0.00238 | 0.05333    | 33.99091  | 0.06932   | 28.27648 | 6.77881    | 16.55687     | 0.06765       | 17.66588 | 0.06222    |  |  |
| 8500  | 0.00326   | 0.0653     | 0.0021  | 0.05329    | 34.48587  | 0.06812   | 29.13349 | 6.88794    | 18.1185      | 0.07688       | 18.79843 | 0.06655    |  |  |
| 8600  | 0.00319   | 0.06568    | 0.00229 | 0.05437    | 35.8276   | 0.06928   | 29.91268 | 7.0183     | 17.98148     | 0.07137       | 18.83774 | 0.05994    |  |  |
| 8700  | 0.00349   | 0.06758    | 0.00224 | 0.05514    | 34.91012  | 0.07524   | 30.8944  | 7.26074    | 18.34017     | 0.07231       | 19.09481 | 0.06238    |  |  |
| 8800  | 0.00331   | 0.06791    | 0.00235 | 0.05574    | 36.11228  | 0.07296   | 30.76664 | 7.49378    | 18.66354     | 0.07023       | 19.63803 | 0.06563    |  |  |
| 8900  | 0.00338   | 0.07078    | 0.00235 | 0.05764    | 37.39638  | 0.07449   | 32.20866 | 7.60443    | 19.18721     | 0.07371       | 20.34648 | 0.06249    |  |  |
| 9000  | 0.00366   | 0.07034    | 0.00246 | 0.06042    | 38.28613  | 0.07523   | 32.41874 | 8.02558    | 19.40703     | 0.07691       | 20.64081 | 0.06493    |  |  |
| 9100  | 0.00355   | 0.07019    | 0.0024  | 0.05837    | 39.64623  | 0.07184   | 33.22122 | 8.14559    | 20.0592      | 0.07584       | 21.11805 | 0.06683    |  |  |
| 9200  | 0.00332   | 0.07164    | 0.00247 | 0.0593     | 40.91362  | 0.07271   | 34.31104 | 8.21484    | 20.65041     | 0.07901       | 21.49568 | 0.06535    |  |  |
| 9300  | 0.00352   | 0.0726     | 0.0025  | 0.05975    | 42.56315  | 0.07768   | 36.2567  | 8.41662    | 21.53621     | 0.07729       | 22.80341 | 0.06688    |  |  |
| 9400  | 0.00363   | 0.07372    | 0.00224 | 0.06057    | 42.47155  | 0.07475   | 36.24043 | 8.5558     | 21.83496     | 0.08142       | 24.43336 | 0.06622    |  |  |
| 9500  | 0.00351   | 0.07382    | 0.00237 | 0.06064    | 42.99277  | 0.0801    | 36.8555  | 8.49094    | 22.48074     | 0.07989       | 24.18705 | 0.06998    |  |  |
| 9600  | 0.00423   | 0.0751     | 0.00245 | 0.0603     | 45.39145  | 0.07999   | 37.42427 | 9.113      | 22.76934     | 0.08092       | 24.22564 | 0.06824    |  |  |
| 9700  | 0.00389   | 0.07531    | 0.00246 | 0.06426    | 45.52552  | 0.07937   | 39.15872 | 9.21488    | 22.96866     | 0.08162       | 24.776   | 0.0689     |  |  |
| 9800  | 0.00372   | 0.07562    | 0.00255 | 0.0641     | 45.653    | 0.08031   | 38.48726 | 9.41618    | 23.71929     | 0.08264       | 25.46123 | 0.07142    |  |  |
| 9900  | 0.00372   | 0.07643    | 0.00263 | 0.06566    | 46.11136  | 0.08125   | 39.65152 | 9.13532    | 24.24912     | 0.08025       | 25.7858  | 0.08048    |  |  |
| 10000 | 0.00363   | 0.07823    | 0.00258 | 0.06447    | 47.60412  | 0.07869   | 41.08169 | 9.64315    | 24.6981      | 0.09382       | 25.66132 | 0.07198    |  |  |
|       | 1 0.00000 | 0.0.020    | 0.00200 | 0.00117    |           | Cuadro II | .1.55157 | 7.0 1010   |              | 0.07302       |          | 0.0.170    |  |  |

Cuadro II

RESULTADOS DE LOS TIEMPOS DE EJECUCIÓN PARA CADA ALGORITMO.