MEMBERSHIP INFERENCE ATTACKS AGAINST SELF-SUPERVISED SPEECH MODELS

Wei-Cheng Tseng, Wei-Tsung Kao, Hung-yi Lee Graduate Institute of Communication Engineering, National Taiwan University

Wei-Cheng Tseng

Wei-Tsung Kao

Hung-yi Lee

Motivation

- Self-supervised learning (SSL) models now becomes an important component of speech processing.
- To deploy SSL models to products, it is inevitable for us to make sure whether there are potential privacy issues in SSL models or not.
- In this paper, we study and propose a basic method to perform membership inference attack to SSL speech models.

Membership inference attack (MIA)

- Given a model and an exact datapoint, the adversary want to know whether this datapoint was used to train the model or not
- Serves as canary of more severe privacy issues

Proposed black-box MIA framework

Utterance-level MIA: seen utterance during pretraining?

Speaker-level MIA: seen speaker during pretraining?

Experiment setup

- 1. SSL speech models:
 - HuBERT, wav2vec 2.0, CPC and TERA
- 2. Dataset: LibriSpeech
 - seen: train-clean-100
 - unseen: dev-clean, dev-other, test-clean, test-other
- 3. Predefined vector similarity metric function:
 - utterance-level attack: 1 (cosine similarity)
 - speaker-level attack: cosine similarity
- 4. *k* parameter used to train the DNN:
 - utterance-level attack: 500 (utterances)
 - speaker-level attack: 1 (speaker)
- 5. Evaluation: Adversarial advantage: True Positive Rate False Negative Rate

Utterance-level MIA result

Speaker-level MIA result

Choice of the auxiliary dataset

The proposed attack is robust to the choices of the auxiliary dataset.

Effect of the model size

Speaker-level: Larger model -> lower attack performance

Effect of the pre-training corpus size

Smaller pre-training corpus -> lower attack performance

Conclusion

- 1. We propose the first membership inference attack against SSL speech models under black-box access.
- 2. SSL models are vulnerable to speaker-level and utterance-level attacks to reveal sensitive membership information.
- 3. The proposed attack is robust to the choice of the auxiliary datasets.
- 4. We also conduct ablation study on how the model size and the corpus size affect the attack performance.

Ablation study

- 1. Size of the model:
 - a. HuBERT-{Large, XLarge} pretrained on LibriLight
 - b. Wav2vec2-{Base, Large} pretrained on LibriSpeech-960hr
- 2. Size of pre-training datasets:
 - a. Wav2vec2-Large pretrained on {LibriSpeech-960hr, LibriLight}
 - b. Tera pretrained on {LibriSpeech-100hr, LibriSpeech-960hr}
- 3. Choices of unseen data:
 - a. LibriSpeech dev and test set
 - b. VCTK dataset

Effect of the model size

Utterance-level: No consistent results

Speaker-level: Larger model -> lower attack performance

Model	Model size ablation						
Model	Base Large		X-Large				
Utterance-level MIA							
HuBERT	_	0.7002	0.7069				
wav2vec 2.0	0.7423	0.7080					
Speaker-level MIA							
HuBERT	_	0.9433	0.86				
wav2vec 2.0	0.9900	0.9167	_				

Effect of the pre-training corpus size

Smaller pre-training corpus -> lower attack performance

Madal	Dataset size ablation					
Model	LS-100 LS-960		LL-60K			
Utterance-level MIA						
wav2vec 2.0	<u></u>	0.7080	0.7134			
TERA	0.5772	0.7317	_			
Speaker-level MIA						
wav2vec 2.0	_	0.9167	0.9333			
TERA	0.9000	0.9833	_			

Effect of unseen dataset

The proposed attack is robust to the choices of unseen dataset.

	HuBERT	wav2vec 2.0	TERA	CPC		
LibrSpeech						
utterance speaker	0.7598 0.9867	0.7423 0.9900	0.7317 0.9833	0.5948 0.9767		
VCTK						
utterance speaker	0.7692	0.7757 1	0.6276 1	0.7716 1		