592 Project Report

Philipp Beer

2021 - 05 - 10

Project Report 592 Project in Data Science

Philipp Beer Gradudate Program Data Science at UNIC, Nicosia Cyprus COMP-501DL Research Prof. Spyros Makridakis Prof. Ioannis Katakis

Introduction

M4 Competition Forecasting

Approach

Time Series Properties

ts fresh

Feature Extraction

Clustering

 ${\bf Deciding}\ {\bf k}$

Forecasting

Cross-Validation

Benchmarking

Challenges

Data Preprocessing

Computational Costs

Results

Conclusion

3

Results of Cross-Validation

M4 Daily Series - Error Metrics - cross validation

Results on M4 test set

M4 Daily Series - Error Metrics - M4 daily test set

results not better than random Uncertainty in the clustering

How to measure similarity

Ts representation

Distance metrics

Clustering algorithms

Limitations

Conclusions

this the old template

Flajolet-Martin Implemenation

https://552dlimages.s3-eu-west-1.amazonaws.com/unic_logo.png Philipp Beer

Counting cardinalities of Wikipedia entries

University of Nicosia COMP 552DL - Data Privacy and Ethics Prof. Dr. Thomas Liebig

Motivation

- counting cardinalities with limited resources (Big Data)
- flow monitoring from stationary sensors

Wikipedia Entry Cardinalities

- Wikipedia large variety of cardinalities across its entries
- readily available API for data ingestion

Flajolet-Martin Algorithm

Basic Estimation Approach

Hash Function

word is denoted as:

$$x = (x_0, x_1, \dots, x_p)$$

Elements of x are hashed via:

$$hash(x) = (M + N \sum_{j=0}^{p} ord(x_j) 128^j) \bmod 2^L$$

Resulting Integer

is considered in its bit form:

$$y = \sum_{k>0} bit(y,k) \, 2^k$$

where p(y) represents the postion of the least-significant set bit.

Bitmap

for each word in stream is stored in a

$$bitmap[0...L-1]$$

• Length of Bitmap

$$L > log_2(n/nmap) + 4$$

Expected Behavior

If n is the number of distinct elements in M then:

- bitmap[0] is accessed approximately n/2 times
- bitmap[1] is accessed n/4 times
- . . .

In consequence

$$i \gg \log_2 n$$

is expected to be zero

$$i \ll \log_2 n$$

is expected to be one

$$i \approx log_2 n$$

has a fringe of zeros and ones

Bias Factor

Flajolet and Martin identified a bias factor:

$$\varphi = 0.77351 \cdots$$

Standard Deviation

Flajolet and Martin prove that under reasonable probablistic assumptions:

$$\sigma(R) \approx 1.12$$

Therefore, result is typically 1 binary order of magnitude off (correction via nmap)

NMAP

Set of Hashing functions for each word

$$A = \frac{R_1 + R_2 + \dots + R_m}{m}$$

PCSA

Probabilistic Counting with Stochastic Averages

Modification to basic approach

• use hashing function in order to distribute each word into one of m lots via:

$$\alpha = h(x) \mod m$$

• update corresponding bitmap vector of alpha from h(x)

(floored)

Expectation

• distribution of records falls evenly into lots so that

$$(1/\varphi) 2^A$$

is a reasonable approximation

Implementation

Hash Function

Updating the bitmap

```
def update_bitmap(self, word: str) -> None:
2
            # calculate hash value
3
            for i in range(self.nmap):
                 # calculate hash with current set of values
                hash_val = self.hash_val(word=word,
                                         v=self.vs[i],
                                         w=self.ws[i])
                # find rightmost set bit in hash value
8
9
                r = self.rightmost_set_bit(hash_val)
                if r == None: # cases need to be ignored as element value is 0
10
11
                    continue
                assert type(r) == int, 'r must be int'
12
13
                if self.bitmaps[i, r] == 0:
                    self.bitmaps[i, r] = 1
```

Rightmost Set Bit

```
def rightmost_set_bit(self, v: int) -> int:
    # using bit operations to identify position
    # of least significant set bit
    if v == 0:
        return None
        return int(math.log2(v & (~v + 1)))
```

Basic Estimation Approach

```
def fm(self) -> int:
2
             # allowing for hashing of entire stream
            vbitmap_update = np.vectorize(self.update_bitmap)
3
             # contains hashed values for each element in stream
4
5
            vbitmap_update(self.data_stream)
6
            if self.optimization == 'reduce':
                 # reduce bitmap
                red_bitmap = self.reduce_bitmaps(self.bitmaps)
9
10
                R = self.leftmost_zero(red_bitmap)
                return self.C*2**R
11
            elif self.optimization == 'mean_r':
12
13
                R = np.zeros((self.nmap,))
                 for i in range(self.nmap):
14
15
                    R[i] = self.leftmost_zero(self.bitmaps[i, :])
                mean_R = np.mean(R)
16
17
                return self.C*2**mean_R
```

PCSA Approach

```
def pcsa_bitmap(self, word: str) -> None:
        hashedx = self.hash_val(word=word,
3
                                  v=self.m.
                                  w=self.n)
4
         alpha = hashedx % self.nmap
5
        beta = math.floor(hashedx/self.nmap)
6
         assert isinstance(beta, int), "index is integer"
         idx = self.rightmost_set_bit(beta)
8
9
         self.bitmaps[alpha, idx] = 1
10
    def fm_pcsa(self) -> int:
11
12
         # allowing for hashing of entire stream
         vbitmap_update = np.vectorize(self.pcsa_bitmap)
13
         # contains hashed values for each element in stream
14
        vbitmap_update(self.data_stream)
15
16
17
        for i in range(self.nmap):
             \mathbf{R} = 0
18
19
             while (self.bitmaps[i, R] == 1) and (R < self.L):</pre>
20
                 R += 1
             S += R
21
         return math.floor(self.nmap/self.phi*2**(S/self.nmap))
22
```

Results

Search Terms

Search Term	Size	True Unique Values
List of fatal dog attacks in the United States (2010s)	small	54
Weisswurst	small	265
university of nicosia	small	1035
data privacy	small	1049
Timeline of the Israeli–Palestinian conflict 2015	medium	1406
covid	medium	1657
List of Crusades to Europe and the Holy Land	medium	2464
michael jordan	medium	2529
List of University of Pennsylvania people	large	2928
Donald Trump	large	4633
2020 Nagorno-Karabakh war	large	4643
List of association football	large	5883

Low Count Entries

https://552dlimages.s3-eu-west-1.amazonaws.com/distribution_small.png

Medium Count Entries

https://552dlimages.s3-eu-west-1.amazonaws.com/distribution_med.png

Large Count Entries

https://552dlimages.s3-eu-west-1.amazonaws.com/distribution_large.png

Discussion

- basic estimation is consistent and provides better accuracy compared to PCSA implementation
- PCSA has large distribution
- \bullet methods perform worst with low count streams
- PCSA becomes more performant with increase of unique values
- PCSA has significant compute performance advantage

Next Steps

- \bullet improve hashing function for PCSA approach
- \bullet review LogLog, SuperLogLog, HyperLogLog and review their increase in accuracy (trade-offs performance / accuracy)