Analysis and Visualisation of Complex Agro-Environmental Data

Lesson 05

- Introduction to statistical inference
- Point and interval estimation
- Hypothesis testing
- Working examples and exercise

Lesson #5

- 1. Introduction to statistical inference
- 2. Point and interval estimation
- 3. Hypothesis testing
- 4. Working examples and exercise

Lesson #5

- 1. Introduction to statistical inference
- 2. Point and interval estimation
- 3. Hypothesis testing
- 4. Working examples and exercise

The process of drawing conclusion about unknown population properties, using a sample drawn from a population.

Population - a set of similar items or events which is of interest for some question or experiment.

- Needs to be defined in beforehand according to the questions to be addressed. Usually involves defining the *targets*, *time frame* or *locations*.
- Examples: farms from the 'Alentejo Litoral' NUT3; fire events from 2000 to 2020; brown trout populations from the Tagus catchment).

Sampling design

Sampling bias – Measurements are systematically off-target or sample is not representative of population of interest

Sampling bias

Parameters, estimators and estimates

Parameter

An *unknown* quantity of interest (e.g. mean farm size; proportion of burned area; population size of brown trout) – usually considered to be fixed (NOTE: Bayesian approaches are an exception: parameters are viewed as random variables).

Estimate (statistic)

The value returned from the estimator (e.g. sample mean value). Usually a **random variable** (i.e. follows a probability distribution – **sampling distribution**).

Estimator

A function based on sample values that estimates the parameter (e.g. sample mean, sample proportion, etc).

Parameter	Estimate	Estimator
Mean (μ)	$ar{X}$	$\frac{\sum_{i=1}^{n} x_i}{n}$
Median	Sample median	$x_{(n+1)/2}$ if n odd $(x_{n/2} + x_{(n/2)+1})/2$ if n even
Variance (σ^2)	S ²	$\sum_{i=1}^{n} \frac{(x_i - \bar{X})^2}{n - 1}$
Standard Deviation (σ)	S	$\sqrt{\sum_{i=1}^{n} \frac{(x_i - \bar{X})^2}{n-1}}$
Median absolute deviation (MAD)	Sample MAD	$median[x_i - median]$
Coefficient of Variation (CV)	Sample CV	$\frac{s}{\bar{X}} \times 100$
Standard Error of $ar{X}$ ($\sigma_{ar{X}}$)	$\mathcal{S}_{ar{X}}$	$\frac{s}{\sqrt{n}}$
95% confidence interval for μ		$\bar{X} - 1.96\sigma_{\bar{X}} \le \mu \le \bar{X} + 1.96\sigma_{\bar{X}}$

Lesson #5

- 1. Introduction to statistical inference
- 2. Point and interval estimation
- 3. Hypothesis testing
- 4. Working examples and exercise

Point estimation

Mean, median, mode, proportion, ...

Estimation accuracy versus precision:

- accuracy is related with systematic errors or bias;
- precision is related with the statistical error variability.

Multiple population bias simulation: https://markkurzejaumich.shinyapps.io/multiple_population_bias/

Interval estimation

confidence intervals for the mean

Population with **mean** = μ and **standard deviation** = σ :

Interval estimation

Standard z-score

$$z = \frac{x_i - \mu}{\sigma}$$

- measures how unusual is an observation
- converts any normal distribution to a Standard
 Normal Distribution or z-distribution N(0,1)

Standard Normal Distribution ($\mu = 0$ and $\sigma = 1$):

Theoretical values (provided in tables or sofware) are derived from this distribution.

Confidence intervals for the mean – in **theory**:

(St. dev. of the sample means;

 σ = st. dev. of the population)

Central Limit Theorem:

- \bar{X} approaches a normal distribution for increasing n
- \overline{X} is a good estimator of population mean

Sampling distribution:

- Convert \bar{X}_i to N(0,1): $z = \frac{X_i \mu}{\sigma_{\bar{x}}}$
- 95% of the sample means falls between:

$$\bar{X} - 1.96\sigma_{\bar{X}} \le \mu \le \bar{X} + 1.96\sigma_{\bar{X}}$$

Confidence intervals for the mean – in **practice**:

It is possible to estimate features of the **sampling distribution** based in one sample only:

- Now $s_{\bar{x}}$ is used to estimate the sampling distribution:
 - $t = \frac{\bar{X} \mu}{s_{\bar{X}}}$, that follows a **t-distribution**
- 95% of the sample means falls between:

$$\bar{X} - t_{0.05(n-1)} s_{\bar{X}} \le \mu \le \bar{X} + t_{0.05(n-1)} s_{\bar{X}}$$

Interval estimation - confidence intervals for the mean

95% confidence interval of a mean from a normally distributed sample:

$$\bar{X} - t_{0.05(n-1)} s_{\bar{X}} \le \mu \le \bar{X} + t_{0.05(n-1)} s_{\bar{X}}$$

- n-1 is also termed degree of freedom (df) for each df there is a different t-distribution
- $t_{0.05(n-1)}$ the value from the *t*-distribution with *n-1 df* (for a confidence of 0.95 that a sample interval computed that way, will contain the population mean).

Degrees of freedom

The number of observations in our sample that are "free to vary" when we are estimating the variance <=> knowing the mean and n-1 observations, the last observation is fixed (i.e., it is possible to determine). Rule: $df = number \ of \ observations - number \ of \ parameters$ included in the formula for the variance.

For **large sample sizes:** $t \rightarrow z$ and the confidence interval estimated with z is a good approximation: $\bar{X} - 1.96\sigma_{\bar{X}} \le \mu \le \bar{X} + 1.96\sigma_{\bar{X}}$

Interval estimation - confidence intervals for the mean

More correct interpretation of confidence interval:

95% of the intervals of repeated samples will cover the true mean value (**not** the probability of the true mean value to be within the interval).

True parameter value

t-distribution for different df

Interval estimation - confidence intervals for the variance

- The Central Limit Theorem does not apply to sample variance
- The probability distribution of the sample variance follows a χ^2 distribution
- Confident intervals for variances are based on the χ^2 distribution:

$$\chi^2 = \frac{(x-\mu)^2}{\sigma^2}$$
, corresponding to the square of the standard z score

- χ^2 is always positive, ranging from 0 to ∞ .
- Right skewed, approaching normality as df increases
- Variance confidence interval is given by

$$\frac{s^2(n-1)}{\chi^2_{0,025(n-1)}} \le \sigma^2 \le \frac{s^2(n-1)}{\chi^2_{0,975(n-1)}}$$
 $\chi^2_{0.025}$ value below which 2.5% of all χ^2 fall $\chi^2_{0.975}$ value above which 2.5% of all χ^2 fall

 χ^2 distribution for different df

Main methods of parameter estimation:

- Maximum Likelihood (MLE) the estimator that maximizes a likelihood function
- Ordinary Least Squares (OLS) the estimator that minimizes the sum of the squared differences between each value and the parameter,
- Resampling methods estimating standard errors and confidence intervals by subsampling the original sampling:
 - **Bootstrap** p samples of size n with replacement (good to estimate bias)
 - Jacknife sampling by sequentially removing each observation
- **Bayesian inference** estimation an alternative to the above classical or frequentist statistical inference that incorporates prior knowledge about the population, as degrees-of-belief.

Lesson #5

- 1. Introduction to statistical inference
- 2. Point and interval estimation
- 3. Hypothesis testing
- 4. Working examples and exercise

Main steps:

Steps	Actions	Decisions	
1	Define a null hypothesis H ₀	Usually an hypothesis of no effect (no differences).	
2	Select a test statistic that measures deviations from H_0 with a known sampling distribution: $statistic = \frac{estimate-null\ value}{standard\ error}$	 t test (z-test when n is big) F test (more than 2 means) χ² test for 2 categorical variables Other non-parametric tests 	
3	Specify an a priori maximum error significance level $P(\text{reject } H_0 \mid H_0 \text{ is True})$	0.01 level0.05 level	
Collect the sample(s) and compute statistic and <i>p</i> -value		Critical value from z , t , F , χ^2 tables (or software)	
5	Arrive at decision	 if p < 0.05, then reject H₀; if p > 0.05, then conclude there is no evidence that H₀ is false and retain it. 	

P-value = P (data | H_0) - the probability of observing our sample data, or data more extreme, under repeated identical experiments if the H_0 is true

Types I and II errors; true/false positives and negatives; power

Observed

Type I error

 $\alpha = P \text{ (reject } H_0 \mid H_0 \text{ is True)}$

Type II error

 β = P (fail to reject $H_0 \mid H_0$ is not True)

Power

 $1 - \beta = P$ (reject $H_0 \mid H_0$ is not True)

Power analysis

Process to assess whether a given study design is likely to yield meaningful findings

Real

		<i>H_o</i> is TRUE	H _o is FALSE	
	Reject H ₀	Type I error (false positive rate)	Correct outcome - Power (true positive rate)	
	Fail to reject H_0	Correct outcome (true negative rate)	Type II error (false negative rate)	

Which kind of error, type I or type II, is more importante in applied sciences?

Relevance of Type I and Type II errors

- Type I error is more conservative since it detects the effect (or pattern)
 of something that is not occurring.
- Type II errors imply the failure to detect an effect (or pattern) that in fact occurs => more relevant for applied sciences such as environmental and human health sciences.

Parametric hypothesis tests for single population

Example: does the population mean equal zero?

One-sample *t* test:

- 1. $H_0: \mu = 0$ (two-tailed test), $H_0: \mu \leq 0$ or $H_0: \mu \geq 0$ (one tailed test)
- 2. Take a probability sample from population
- 3. Compute t statistic: $t = \frac{\bar{x} \mu}{s_{\bar{x}}}$
- 4. Compare t value with the sampling distribution of t at e.g. $\alpha = 0.05$ with n-1 df

The equivalent of checking whether the 95% confidence interval for μ overlaps zero! (Compare this with the confidence interval estimation explained above).

Parametric hypothesis tests for 2 populations

Example: Is the population mean the same between two populations?

Two-sample *t* test:

- 1. $H_0: \mu_1 = \mu_2$ (two-tailed test), $H_0: \mu_1 \leq \mu_2$ or $H_0: \mu_1 \geq \mu_2$ (one tailed test)
- 2. Take a probability sample from population
- 3. Compute t statistic: $t = \frac{(\bar{x}_1 \bar{x}_2) (\bar{\mu}_1 \bar{\mu}_2)}{s_{\bar{x}_1} \bar{x}_2}$
- 4. Compare t value with the sampling distribution of t at e.g. $\alpha = 0.05$ with n-1 df

Parametric hypothesis testing for more than 2 groups

Analysis of Variance (ANOVA) - a family of analyses related with regression which may also be used to test hypothesis about group (treatment) means.

Two main aims of classical ANOVA:

- To examine the **relative contribution of different sources of variation** (factors or predictive variables) to the total amount of variability in the response variable;
- To test the **null hypothesis** that population group or treatment means are equal.

Parametric hypothesis testing for more than 2 groups

- Variations according to the number of factors envolved: one-way ANOVA, two-way ANOVA and N-way multivariate ANOVA.
- Other variants (e.g.):
 - Nested ANOVA for nested factors (e.g. sampling sites are nested within river catchments)
 - Repeated measures ANOVA when measurements are not independent (e.g. measuring the same individual throughout time).
- Post-hoc or multiple comparison tests most common: Tukey tests similar to t-test but corrects for multiple non-independent comparisons (includes a modified version for unequal sample sizes). Commonly used after ANOVA but can be used in their own.

Assumptions of parametric hypothesis testing

- **1. Normally distributed** populations but *t* test (and ANOVA) is robust to moderate violations results from normality tests are not recommended to discard these tests (better to assess through graphical methods). Data transformation might help.
- 2. Samples from populations with **equal variances** *t* test (and ANOVA) is also robust to moderate unequal variances if sample sizes are equal. The same data transformation also will help.
- 3. Observations are **sampled randomly** from clearly defined populations this will assure that observations are **independent and identically distributed** (*iid*).
- 4. There are **no outliers** strong effect on type I and II errors.

These assumptions are not met? => Non-parametric hypothesis testing

Hypothesis testing and big data

- Larger sample sizes are more likely to produce a statistically significant result.
- => even small and uninteresting effects can be statistically significant!

Check also here: https://www.bintel.io/blog/the-curse-of-big-data

Hypothesis testing and big data

Alternative approaches to classical hypothesis testing are needed:

- Shift the focus towards the **size of the estimated effect**, e.g. to assess if the estimated effect size has practical implications.
- Perform **sensitivity analysis** how does the estimated effect change when control variables are added and dropped.
- Use **Bayesian statistics**, which do not rely on arbitrary *p-values*

Hypothesis testing in Python

Null Hypothesis	Distributions	SciPy Functions for Test
The population mean has a given value.	Normal distribution (stats.norm), or Student's t distribution (stats.t)	stats.ttest_1samp
The means of two random variables are equal (independent or paired samples).	Student's t distribution (stats.t)	stats.ttest_ind, stats.ttest_rel
Two or more variables have equal variance in samples	F distribution (stats.f)	stats.barlett, stats.levene
Two or more groups have the same population mean (ANOVA).	F distribution	stats.f_oneway, stats.kruskal
The distribution of two random variables are equal.	Kolmogorov-Smirnov distribution	stats.kstest
	χ2 distribution (stats.chi2)	stats.chisquare
	χ2 distribution (stats.chi2)	stats.chi2_contingency
Two variables are not correlated.	Beta distribution (stats.beta, stasts.mstats.betai)	stats.pearsonr, stats.spearmanr

Next class

Lesson #5

- 1. Introduction to statistical inference
- 2. Point and interval estimation
- 3. Hypothesis testing
- 4. Working examples and exercise

References

Quinn, G., & Keough, M. (2002). Experimental Design and Data Analysis for Biologists. Cambridge: Cambridge University Press. doi:10.1017/CBO9780511806384

Johansson, R. (2019). Numerical Python. Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib. 2nd ed. Apress. doi.org/10.1007/978-1-4842-4246-9

Navlani, A., Fandango, F., & Idris, I. (2021) Python Data Analysis: Perform data collection, data processing, wrangling, visualization, and model building using Python, 3rd ed. Packt Publishing.

Exercise 5

In this exercise you will use again the dataset in EFIplus_medit.zip to perform some hypothesis testing

- 1. Standardize, using z-score, the "Mean Annual Temperature" (Temp_ann), calculate the new mean, SD and 95% confidence interval, and plot the histogram.
- 2. Test whether the means (or medians) of "Mean Annual Temperature" between presence and absence sites of *Salmo trutta fario* (Brown Trout) are equal using an appropriate test. Use both standardized and non-standardized values and compare results. Please state which is/are the null hypothesis of your test(s).
- 3. Test whether there are diferences in the mean elevation in the upstream catchment (Elevation_mean_catch) among the eight most sampled catchments. For which pairs of catchments are these diferences significant? Please state which is/are the null hypothesis of your test(s).
- 4. Which potential problems did you identified in the data that could limit the conclusions derived from the performed tests?