6.3: Game Theory – Making Group Decisions

Al6125: Multi-Agent System

Assoc Prof Zhang Jie

Social Choice

- In the previous sub-module, we learned how agents make decisions in two-agent games
 - Nash Equilibrum
- In this sub-module, we will learn about how a group of agents make decisions
 - Social choice theory is concerned with group decision making.
 - Classic example of social choice theory: voting.
 - Formally, the issue is combining preferences to derive a social outcome.

Components of a Social Choice Model

- Assume a set Ag = {1, . . . , n} of voters.
 These are the entities who will be expressing preferences.
- Voters make group decisions wrt a set
 Ω = {ω₁, ω₂, . . .} of outcomes.
 Think of these as the candidates.
- If $|\Omega| = 2$, we have a *pairwise election*.

Preferences

- Each voter has preferences over Ω: an ordering over the set of possible outcomes Ω.
- Example. Suppose

```
\Omega = \{gin, rum, brandy, whisky\}
```

then we might have agent *mjw with preference* order:

```
\varpi_{mjw} = (brandy; rum; gin; whisky)

meaning

brandy \succ_{miw} rum \succ_{miw} gin \succ_{miw} whisky
```

Preference Aggregation

- The fundamental problem of social choice theory: given a collection of preference orders, one for each voter, how do we combine these to derive a group decision, that reflects <u>as closely as possible</u> the preferences of voters?
- Two variants of preference aggregation:
 - social welfare functions;
 - social choice functions.

Social Welfare Functions

- Let $\pi(\Omega)$ be the set of preference orderings over Ω .
- A social welfare function takes the voter preferences and produces a social preference order:

f:
$$\underline{\pi(\Omega)} \times ... \times \underline{\pi(\Omega)} \to \underline{\pi(\Omega)}$$

n times

- We let >* denote to the outcome of a social welfare function
- Example: beauty contest.

Social Choice Functions

- Sometimes, we just want to select one of the possible candidates, rather than a social order.
- This gives social choice functions:

f:
$$\underline{\pi(\Omega)} \times ... \times \underline{\pi(\Omega)} \to \Omega$$

n times

Example: presidential election.

Voting Procedures: Plurality

- Social choice function: selects a single outcome.
- Each voter submits preferences.
- Each candidate gets one point for every preference order that ranks them first.
- Winner is the one with largest number of points.
- Example: Political elections in UK.
- If we have only two candidates, then plurality is a simple majority election.

Anomalies with Plurality

- Suppose |Ag| = 100 and $\Omega = \{\omega_1, \omega_2, \omega_3\}$ with: 40% voters voting for ω_1 30% of voters voting for ω_2 30% of voters voting for ω_3
- With plurality, ω₁ gets elected even though a *clear* majority (60%) prefer another candidate!

Strategic Manipulation by Tactical Voting

Suppose your preferences are

$$\omega_1 \succ \omega_2 \succ \omega_3$$

while you believe 49% of voters have preferences

$$\omega_2 \succ \omega_1 \succ \omega_3$$

and you believe 49% have preferences

$$\omega_3 \succ \omega_2 \succ \omega_1$$

- You may do better voting for ω₂, even though this is not your true preference profile.
- This is tactical voting: an example of strategic manipulation of the vote.

Condorcet's Paradox

• Suppose $Ag = \{1; 2; 3\}$ and $\Omega = \{\omega_1, \omega_2, \omega_3\}$ with:

$$\omega_1 \succ_1 \omega_2 \succ_1 \omega_3$$
 $\omega_3 \succ_2 \omega_1 \succ_2 \omega_2$
 $\omega_2 \succ_3 \omega_3 \succ_3 \omega_1$

- For every possible candidate, there is another candidate that is preferred by a majority of voters!
- This is Condorcet's paradox: there are situations in which, no matter which outcome we choose, a majority of voters will be unhappy with the outcome chosen.

Sequential Majority Elections

 A variant of plurality, in which players play in a series of rounds: either a *linear* sequence or a tree (knockout tournament).

Sequential Majority Elections

Linear Sequential Pairwise Elections

- Here, we pick an ordering of the outcomes the agenda – which determines who plays against who.
- For example, if the agenda is:

$$\omega_2$$
, ω_3 , ω_4 , ω_1

• then the first election is between ω_2 and ω_3 , and the winner goes on to an election with ω_4 , and the winner of this election goes in an election with ω_1 .

Anomalies with Sequential Pairwise Elections

- Suppose:
 - 33 voters have preferences

$$\omega_1 \succ \omega_2 \succ \omega_3$$

33 voters have preferences

$$\omega_3 \succ \omega_1 \succ \omega_2$$

33 voters have preferences

$$\omega_2 \succ \omega_3 \succ \omega_1$$

Then for every candidate, we can fix an agenda for that candidate to win in a sequential pairwise election!

Majority Graphs

- This idea is easiest to illustrate by using a majority graph.
- A directed graph with:
 vertices = candidates
 an edge (i, j) if i would beat j is a simple majority election.
- A compact representation of voter preferences.

Majority Graph for the Previous Example

- with agenda (ω_3 , ω_2 , ω_1), ω_1 wins
- with agenda (ω_1 , ω_3 , ω_2), ω_2 wins
- with agenda (ω_1 , ω_2 , ω_3), ω_3 wins

Another Majority Graph

 Give agendas for each candidate to win with the following majority graph.

Condorcet Winners

- A Condorcet winner is a candidate that would beat every other candidate in a pairwise election.
- Here, ω₁ is a Condorcet winner.

Voting Procedures: Borda Count

- One reason plurality has so many anomalies is that it ignores most of a voter's preference orders: it only looks at the top ranked candidate.
- The Borda count takes whole preference order into account.
- For each candidate, we have a variable, counting the strength of opinion in favour of this candidate.
- If ω_i appears first in a preference order, then we increment the count for ω_i by k-1; we then increment the count for the next outcome in the preference order by k-2, ..., until the final candidate in the preference order has its total incremented by 0.
- After we have done this for all voters, then the totals give the ranking.

Desirable Properties of Voting Procedures

- Can we classify the properties we want of a "good" voting procedure?
- Two key properties:
- The Pareto property;
 - □ If everybody prefers $ω_i$ over $ω_j$, then $ω_i$ should be ranked over $ω_j$ in the social outcome.
- Independence of Irrelevant Alternatives (IIA).
 - under $ω_i$ is ranked above $ω_j$ in the social outcome should depend only on the relative orderings of $ω_i$ and $ω_j$ in voters profiles.

Arrow's Theorem

- For elections with more than 2 candidates, the only voting procedure satisfying the Pareto condition and IIA is a dictatorship, in which the social outcome is in fact simply selected by one of the voters.
- This is a negative result: there are fundamental limits to democratic decision making!

Strategic Manipulation

- We already saw that sometimes, voters can benefit by strategically misrepresenting their preferences, i.e., lying – tactical voting.
- Are there any voting methods which are nonmanipulable, in the sense that voters can never benefit from misrepresenting preferences?

The Gibbard-Satterthwaite Theorem

- The answer is given by the Gibbard-Satterthwaite theorem:
 - The only non-manipulable voting method satisfying the Pareto property for elections with more than 2 candidates is a dictatorship.
- In other words, every "realistic" voting method is prey to strategic manipulation . . .

Computationally Complexity to the Rescue!

- Gibbard-Satterthwaite only tells us that manipulation is possible in principle.
 - It does not give any indication of *how to misrepresent* preferences.
- Bartholdi, Tovey, and Trick showed that there are elections that are prone to manipulation in principle, but where manipulation was computationally complex.
- "Single Transferable Vote" is NP-hard to manipulate!