# **Datascience**

# 02 - Timeseries analysis



#### **Dávid Visontai**

ELTE, Physics of Complex Systems Department 2021.02.17.

#### What is timeseries?

A series of data points indexed (or listed or graphed) in time order.
 Successive, equally spaced points in time -> discrete-time data.



### **Explore timeseries data - Autocorrelation**

- Autocorrelation analysis to examine serial dependence
  - a. Degree of similarity between a given time series and a lagged version of itself
  - b. Relationship between a variable's current value and its past values.
  - c. It can be **positive** or **negative**



## **Explore timeseries data - Spectral analysis**

- Spectral analysis to examine cyclic behavior.
  - a. E.g. sun spot activity varies over 11 year cycles.
  - b. Celestial phenomena
  - c. Weather patterns
  - d. Neural activity
  - e. Commodity prices
  - f. Economic activity.



### **Explore timeseries data - Component analysis**

- Separation into components representing:
  - a. Trend
  - b. Seasonality
  - C. Speed of variation
  - d. Cyclical irregularity



#### Timeseries analysis to predict extreme events

Extreme events, though rare, can have an enormous negative impact on individuals, society, business, economies and infrastructure.

- River or coastal flooding, droughts and heatwaves, and stock market crashes.
- Prediction can help to prepare for the possible measure of such events, design the appropriate defence mechanisms and estimate the cost of it.



### Timeseries analysis to predict extreme events

- Extreme events are rare by definition, prediction of future events relies on extrapolation from a suitable model fitted to historical data.
- Extreme value analysis provides a statistical framework for this kind of analysis.

Standard statistical methods are designed to characterise the mean behaviour of a process or data sample and are therefore not generally useful for capturing this tail behaviour Subsequently, methods which focus specifically on tail events are

required.



## **Further readings**

- Rare events, LSTM, autoencoder
  - <u>Extreme Rare Event Classification using Autoencoders in Keras</u>
  - LSTM Autoencoder for Extreme Rare Event Classification in Keras
  - Step-by-step understanding LSTM Autoencoder layers | by Chitta Ranjan

- Trend estimation and decomposition of time series <u>Link1</u>, <u>Link2</u>
- Fourier transform explained: <a href="https://youtu.be/spUNpyF58BY">https://youtu.be/spUNpyF58BY</a>

### Statistical analysis of water discharge of surface

- Large amounts of historical surface water data are available from the United States
  Geological Survey (USGS) at <a href="https://waterdata.usgs.gov/nwis">https://waterdata.usgs.gov/nwis</a>
- The goal of the project is to
  - o **retrieve sample data** using the webpage manually, and then later automate the process by calling the web service as described at <a href="https://help.waterdata.usgs.gov/fag/automated-retrievals">https://help.waterdata.usgs.gov/fag/automated-retrievals</a>.
  - Discover rainy events, analyse their occurrences and draw conclusion from various aspects



# Statistical analysis of water discharge of surface

Large amounts of historical surface water data are available from the United States
 Geological Survey (USGS) at <a href="https://waterdata.usgs.gov/nwis">https://waterdata.usgs.gov/nwis</a>

