Solución analítica del segundo coeficiente del virial para el potencial de Mie utilizando el método de brackets

Diego Navia ^{1*}, Iván González^{1†}, Daniel Salinas^{2‡}

¹Universidad de Valparaíso

²Universidad Técnica Federico Santa María

*diego.navia@alumnos.uv.cl, †ivan.gonzalez@uv.cl, ‡daniel.salinas@sansano.usm.cl

Introducción

En este trabajo presentamos una expresión analítica para el segundo coeficiente del virial asociado al potencial de Mie (n-m), en particular se estudian algunas situaciones relevantes donde el cuociente $\left(\frac{m}{n}\right)$ corresponde a una cantidad racional, en tal situación se muestra que las soluciones son representables como una combinación lineal de funciones hipergeométricas de la forma ${}_pF_p\left(\cdot\right)$. El cálculo de este coeficiente se realiza mediante una técnica de integración muy eficiente llamada Método de Brackets (MoB)[1], el cual resuelve de manera directa la integral que define el segundo coeficiente del virial sin necesidad de procedimientos de cálculo auxiliares.

Formalismo

La evaluación del segundo coeficiente del virial esta asociado a la siguiente integral definida:

$$B(T) = -2\pi \int_{0}^{\infty} \left[e^{-\frac{u(r)}{kT}} - 1 \right] r^{2} dr. \tag{1}$$

En la expresión anterior, u(r) corresponde al potencial intermolecular entre las partículas del sistema dada por el potencial de Mie:

$$u(r) = \epsilon A \left[\left(\frac{\sigma}{r} \right)^n - \left(\frac{\sigma}{r} \right)^m \right] \quad \text{con } (n > m > 3) \text{ y } A = \left(\frac{n}{n-m} \right) \left(\frac{n}{m} \right)^{\left(\frac{m}{n-m} \right)}$$

La solución obtenida con aplicación directa de MoB [1] a integral en Ec. (1) es la siguiente:

$$B\left(T^{*}\right) = -\frac{2\pi\sigma^{3}}{n\left(T^{*}\right)^{\frac{3}{n}}} \sum_{k>0} \frac{\Gamma\left(\frac{km-3}{n}\right)}{k!} \left(\frac{1}{T^{*}}\right)^{\left(\frac{n-m}{n}\right)k} \quad \text{siendo } \frac{1}{T^{*}} = \frac{A\epsilon}{kT}$$

Se discutirán algunos casos relevantes para (n, m) enteros.

Referencias

- [1] I. Gonzalez and V. Moll, Definite integrals by method of brackets. Part 1, Advances in Applied Mathematics, Vol. 45, Issue 1, 50-73 (2010).
- [2] R.J. Sadus. Second virial coefficient properties of the n-m Lennard-Jones/Mie potential. J. Chem. Phys. 149, 074504 (2018).