Diagrama do Sistema IoT

Objetivos de Aprendizagem

- Compreender a arquitetura de um sistema IoT e sua representação por meio de diagramas esquemáticos.
- Representar o fluxo de funcionamento da solução IoT, desde a captação dos dados até a ação sobre o ambiente.
- Integrar a solução IoT com plataformas de armazenamento e análise de dados.

1. Esquemático da Arquitetura do Sistema IoT

O primeiro passo na construção de um sistema IoT é definir sua **arquitetura**, representando graficamente a relação entre seus componentes. A arquitetura de um sistema IoT normalmente segue um modelo em **três camadas**:

1. Camada de Percepção (Sensoriamento e Atuação)

 Inclui sensores (temperatura, umidade, movimento, etc.), atuadores (motores, relés, LEDs) e dispositivos embarcados (ESP32, Arduino, Raspberry Pi).

2. Camada de Rede (Conectividade e Comunicação)

 Responsável por enviar dados da camada de percepção para a camada de aplicação. Inclui protocolos como Wi-Fi, Bluetooth, LoRa, MQTT e HTTP.

3. Camada de Aplicação (Processamento e Interface)

 Inclui plataformas na nuvem, bancos de dados, dashboards e aplicações que fazem a análise dos dados coletados.

Exemplo de Arquitetura IoT

A seguir, um exemplo de arquitetura de um **Sistema de Monitoramento de Estufa Inteligente**:

plaintext

CopiarEditar

```
[ Sensores IoT ] →
[ Microcontrolador ESP32 ] →
[ Rede Wi-Fi/LoRa ] →
[ Servidor MQTT ] → [ Plataforma de Armazenamento (Firebase/MySQL) ] →
[ Dashboard Web/Aplicação Móvel ]
```

Para complementar, os alunos podem criar um **diagrama esquemático** no Fritzing, Tinkercad, Lucidchart ou Draw.io.

2. Fluxo de Funcionamento da Solução IoT

O fluxo de funcionamento do sistema IoT deve ser bem definido para garantir a clareza na implementação. Esse fluxo pode ser representado por **diagramas de blocos** ou **fluxogramas**.

Etapas do Fluxo IoT

1. Coleta de Dados

 Sensores captam informações do ambiente e as enviam ao microcontrolador.

2. Processamento Local

 O microcontrolador faz o pré-processamento dos dados, aplicando filtros ou cálculos básicos.

3. Transmissão de Dados

 Os dados são enviados para a nuvem ou servidor local por meio de um protocolo adequado (MQTT, HTTP, LoRaWAN).

4. Armazenamento e Processamento na Nuvem

 Os dados são armazenados em um banco de dados (Firebase, InfluxDB, MySQL).

5. Análise e Visualização

• A plataforma de análise processa os dados e apresenta gráficos e alertas.

6. Ações Baseadas nos Dados

• Com base nas informações, o sistema pode acionar atuadores (acionar um motor, ativar uma notificação, enviar alertas).

Exemplo de Fluxograma

Os alunos podem criar um **fluxograma** para representar esse fluxo. Aqui está um exemplo simples:

```
[ Início ]

↓

[ Sensores coletam dados ]

↓

[ Microcontrolador processa os dados ]

↓

[ Dados enviados via MQTT para a nuvem ]

↓

[ Banco de Dados armazena informações ]

↓

[ Dashboard exibe informações ]

↓

[ Ação é tomada com base nos dados ]

↓

[ Fim ]
```

Os alunos podem utilizar ferramentas como **Draw.io**, **Lucidchart ou Microsoft Visio** para desenhar seus fluxogramas.

3. Integração com Plataformas de Armazenamento e Análise de Dados

Uma parte essencial do sistema loT é a integração com plataformas que possibilitam o armazenamento e análise dos dados coletados.

3.1 Escolha do Armazenamento

Os dados podem ser armazenados localmente ou na nuvem. A escolha depende da complexidade do projeto e do volume de dados.

Tipo	Tecnologia	Justificativa
Local	Memória Flash do ESP32, Cartão SD	Ideal para projetos offline ou com baixa latência
Nuvem	Firebase, AWS IoT, Google Cloud	Permite acesso remoto e escalabilidade
Banco de Dados	InfluxDB, MySQL, MongoDB	Estruturado para armazenar séries temporais e consultas

3.2 Processamento e Visualização

Após a coleta e armazenamento, os dados podem ser analisados e exibidos de maneira amigável. Algumas ferramentas comuns incluem:

Plataforma	Uso no Projeto	
Node-RED	Automação e controle gráfico dos dispositivos IoT	
Grafana	Visualização avançada de dados	
Power BI	Relatórios interativos e análise preditiva	
ThingSpeak	Processamento e exibição de séries temporais	

3.3 Exemplo de Integração IoT

Abaixo está um exemplo de fluxo de integração com armazenamento e análise:

```
[ Sensores IoT ] →

[ Microcontrolador ESP32 ] →

[ Servidor MQTT ]

→ [ Banco de Dados Firebase ] →

[ Dashboard Web (Grafana/Node-RED) ]

→ [ Relatórios no Power BI ]
```

Atividades Práticas

1. Criação do Diagrama da Arquitetura

• Os alunos devem desenhar um diagrama representando os principais componentes e sua interação.

2. Definição do Fluxo de Funcionamento

 Elaborar um fluxograma mostrando como os dados percorrem o sistema, desde a coleta até a análise.

3. Configuração de uma Plataforma de Armazenamento

 Implementação de um banco de dados simples no Firebase ou InfluxDB para receber dados de sensores.

4. Simulação de Envio de Dados

 Utilizar ferramentas como MQTT Explorer ou Node-RED para testar a comunicação entre sensores e armazenamento na nuvem.

Avaliação

- Entrega do diagrama da arquitetura do sistema loT.
- Apresentação do fluxo de funcionamento da solução.
- Demonstração da integração com uma plataforma de armazenamento e análise de dados.