Acceleration

SIE 449/549: Optimization for Machine Learning

Afrooz Jalilzadeh

Department of Systems and Industrial Engineering University of Arizona

First-order Method

► Consider the following optimization problem

$$\min_{x} f(x)$$

where $f: \mathbb{R}^n \to \mathbb{R}$ is convex and **differentiable**

▶ Gradient descent: choose initial $x_0 \in \mathbb{R}^n$, repeat:

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

▶ If $\nabla f(x)$ is Lipschitz with constant L and $\alpha = 1/L$, then:

$$f(x_k) - f(x^*) \le \frac{L}{2k} ||x_0 - x^*||^2 = \mathcal{O}(1/k)$$

Question: Is O(1/k) the optimal rate, among methods that only use gradient information, like gradient descent?

Gradient Method

- ▶ Consider a smooth (differentiable), convex function f, with $dom(f) = \mathbb{R}^n$, such that ∇f Lipschitz continuous with constant L > 0
- ▶ Given an initial point $x_0 \in \mathbb{R}^n$, we are allowed to use any algorithm that produces iterates satisfying:

$$x_{k+1} \in x_0 + span\{\nabla f(x_0), \dots, \nabla f(x_k)\}$$

- We call such an algorithm a (smooth) first-order method
- ▶ We can lower bound the convergence rate of first-order methods by $1/k^2$:

$$\frac{3L\|x_0-x^*\|^2}{32(k+1)^2} \leq f(x_k) - f(x^*)$$

Question: Can we achieve the lower bound with a practical first-order method?

Polyak's momentum

Momentum gradient descent, or the heavy-ball algorithm

▶ Idea: Combines the current gradient with a history of the previous step to accelerate the convergence of the algorithm

gradient descent

▶ Introduces a *momentum* term $\beta(x_k - x_{k-1})$, where β is a hyperparameter

heavy-ball method

Nesterov's Accelerated Gradient Method

- ▶ Gap: Heavy-ball method was shown to achieve the lower bounds for some class of problems. Can we change the method to achieve rate of $\mathcal{O}(1/k^2)$ for first-order methods under convexity and L-smoothness assumption?
- ► The Heavy-ball method:

$$x_{k+1} = x_k - \alpha \nabla f(x_k) + \beta (x_k - x_{k-1})$$

Can be equivalently written as a two-step procedure:

- ▶ In Heavy-ball, we compute the gradient of f at x_k
- ▶ What if we compute the gradient at a point that looks *more similar* to the motions we perform, even after the gradient calculation in heavy-ball?
- Nesterov's suggestion:

Heavy ball vs Nesterov's Acceleration

$$x_{k+1} = x_k - \alpha \nabla f(x_k) + \beta (x_k - x_{k-1})$$

$$x_{k+1} = x_k - \alpha \nabla f(x_k) + \beta (x_k - x_{k-1}) \qquad x_{k+1} = x_k - \alpha \nabla f(x_k + \beta (x_k - x_{k-1})) + \beta (x_k - x_{k-1})$$

Nesterov's Accelerated Gradient Method

Algorithm 1 Nesterov's Accelerated Gradient Method

Initialization: pick
$$x_0 \in \mathbb{R}^n$$
 arbitrarily, let $x_{-1} = x_0$ for $k = 0, 1, 2, \dots$ do
$$y = x_k + \frac{k-2}{k+1}(x_k - x_{k-1})$$

$$x_{k+1} = y - \alpha \nabla f(y)$$

end for

- ▶ In the definition of y, the second term $\frac{k-2}{k+1}(x_k x_{k-1})$ is like a momentum term which continues to push us in the direction pointing from x_{k-1} to x_k
- ▶ The weight $\frac{k-2}{k+1}$ gets closer and closer to 1 as k gets larger, this term helps accelerate the convergence of the algorithm when it is close to the optimum
- ▶ If f is smooth and convex with L-Lipschitz continuous gradient, then the accelerated gradient method with a fixed step size $\alpha = 1/L$ satisfies

$$f(x_k) - f(x^*) \le \frac{2L||x_0 - x^*||^2}{(k+1)^2}$$

Accelerated Proximal Gradient Method, aka FISTA

$$\min_{x} f(x) \triangleq g(x) + h(x)$$

- g is convex, differentiable, $dom(g) = \mathbb{R}^n$, and ∇g is Lipschitz continuous with L
- h is convex and its proximal map can be easily computed

Proximal Gradient Method:
$$x_{k+1} = prox_{h,\alpha} (x_k - \alpha \nabla g(x_k))$$

Algorithm 2 FISTA

Initialization: pick
$$x_0 \in \mathbb{R}^n$$
 arbitrarily, $t_0 = 1$, $y_0 = x_0$ for $k = 0, 1, 2, ...$ do

$$x_{k+1} = prox_{h,\alpha} (y_k - \alpha \nabla g(y_k))$$

$$t_{k+1} = \frac{1 + \sqrt{1 + 4t_k^2}}{2}$$

$$y_{k+1} = x_{k+1} + \left(\frac{t_k - 1}{t_{k+1}}\right) (x_{k+1} - x_k)$$

end for

$$\alpha = 1/L$$
 then convergence rate $f(x_k) - f(x^*) \le \frac{2L||x_0 - x^*||^2}{(k+1)^2}$

Application: Image deblurring

Consider the following linear inverse problem:

$$Ax = b + w$$

where $A \in \mathbb{R}^{m \times m}$, $b \in \mathbb{R}^m$ are known, w is an unknown noise (or perturbation) vector, and x is the "true" and unknown signal/image to be estimated

- ▶ In image blurring problems, for example, $b \in \mathbb{R}^m$ represents the blurred image, and $x \in \mathbb{R}^m$ is the unknown true image
- ▶ Both *b* and *x* are formed by stacking the columns of their corresponding two-dimensional image
- ▶ The matrix A describes the blur operator
- ► The problem of estimating *x* from the observed blurred and noisy image *b* is called an image deblurring problem

Application: Image deblurring

Minimize the data error:

$$\min_{\mathbf{x}} \|A\mathbf{x} - \mathbf{b}\|_2$$

- ▶ In many applications, such as image deblurring, A is ill-conditioned $\left(\frac{\lambda_{\max}}{\lambda_{\min}}>>1\right)$, hence the solution usually has a huge norm and is thus meaningless
 - ⇒ regularization methods are required to stabilize the solution
- ▶ Most images have a sparse representation $\implies \ell_1$ regularization

► Image deblurring problem can be solved by Proximal Gradient and also FISTA*

^{*}Beck, Amir, and Marc Teboulle. "A fast iterative shrinkage-thresholding algorithm for linear inverse problems." SIAM journal on imaging sciences 2.1 (2009): 183-202.

Application: Image deblurring

Figure 1: Proximal gradient for 100 and 200 iterations

Figure 2: FISTA for 100 and 200 iterations