סדרות ופונקציות - טענות בלבד

80116 - אנליזה אלמנטרית רב-ממדית

מרצה: נועה ניצן

סוכם ע"י: שריה אנסבכר

סמסטר ב' תשפ"ג, האונ' העברית

תוכן העניינים

3	רות	סדו	1
3	קציות	פוני	2
4	מסילות	2.1	
5	פונקציות מרובות משתנים	2.2	

אשמח לקבל הערות והארות על הסיכומים על מנת לשפרם בעתיד, כל הערה ולו הפעוטה ביותר (אפילו פסיק שאינו במקום או רווח מיותר) תתקבל בברכה; אתם מוזמנים לכתוב לי לתיבת הדוא"ל: sraya.ansbacher@mail.huji.ac.il.

> : לסיכומים נוספים היכנסו אקסיומת השלמות - סיכומי הרצאות במתמטיקה https://srayaa.wixsite.com/math

2 פונקציות

1 סדרות

 $k \geq j \in \mathbb{N}$ לכל (לכל P_n סדרת נקודות הj את הקואורדינטה הj את הקואורדינטה ונסמן ב x_{nj} ולכל ונסמן ב x_{nj} ולכל ולכל אולכל ולכל (ולכל \mathbb{R}^k

.(\mathbb{R}^{-1} טענה 1.1 היא סדרה חסומה (ב- $(x_{nj})_{n=1}^\infty$ הסדרה הסדרה $k\geq j\in\mathbb{N}$ אם"ם לכל (\mathbb{R}^k - אם"ם סדרה חסומה (ב- $(P_n)_{n=1}^\infty$

.טענה גם אז היא מתכנסת $(P_n)_{n=1}^\infty$ אם .1.2 טענה 1.2 אם

.(\mathbb{R}^{-1}) אם"ם לכל ($x_{n,j}$) $_{n=1}^{\infty}$ הסדרה $k\geq j\in\mathbb{N}$ אם"ם לכל (\mathbb{R}^{k}) אם"ם אם סדרה מתכנסת ($x_{n,j}$) היא היא סדרה מתכנסת (ב- $x_{n,j}$)

-משפט 1.4. קבוצה $U\subseteq \mathbb{R}^k$ שכל איבריה ב- $U\subseteq \mathbb{R}^k$ משפט 1.4. קבוצה שנים $U\subseteq \mathbb{R}^k$ היא קבוצה טגורה אם לכל סדרת נקודות מתכנסת היא $U\subseteq \mathbb{R}^k$ שכל איבריה ב- $\lim_{n\to\infty} P_n\in U$

משפט 1.5. קבימת היא קבוצה היא קבוצה אם"ם לכל סדרת נקודות היא שכל איבריה ב- $K\subseteq\mathbb{R}^k$ שכל איבריה אבולה $K\subseteq\mathbb{R}^k$ שגבולה ב-K.

משפט 1.6. משפט בולצאנו-ויירשטראס

. מתכנסת מת-סדרה אז יש לה חסומה סדרה מתכנסת היא $(P_n)_{n=1}^\infty$ אם

2 פונקציות

f(U)-טענה P_0 של $U\subseteq D$ של סביבה מנוקבת אז קיימת היימת בנקודה $P_0\in D\subseteq \mathbb{R}^m$ יש גבול בנקודה $f:D\to \mathbb{R}^n$ אז קיימת סביבה מנוקבת $f:D\to \mathbb{R}^n$ של היא קבוצה חסומה.

משפט 2.2. תנאי היינה לגבול של פונקציה בנקודה

תהא $P_0\in\mathbb{R}^m$ פונקציה המוגדרת בסביבה מנוקבת U של נקודה $P_0\in\mathbb{R}^m$ על פונקציה המוגדרת בסביבה מנוקבת U של נקודה $\lim_{P\to P_0}f(P)=L\in\mathbb{R}^n$ ב-U המתכנסת ל- $\lim_{n\to\infty}f(P_n)=L$. $\lim_{n\to\infty}f(P_n)=L$

מסקנה 2.3. תנאי היינה לרציפות של פונקציה בנקודה

.($D\subseteq\mathbb{R}^m$) $P_0\in\mathbb{R}^m$ של נקודה של על בסביבה המוגדרת פונקציה פונקציה $f:D\to\mathbb{R}^n$

 $\lim_{n \to \infty} f\left(P_n
ight) =$ מתקיים פיים מחקיים ב-U ב-U ב-U ב-U ב-U המתכנסת שלכל סדרת נקודות הכרחי ומספיק לכך שf רציפה ב-U הוא שלכל סדרת נקודות U ב-U ב-U המתכנסת ל-U מתקיים U ב-U מתקיים U מתקיים U ב-U מתקיים U מתקיים U ב-U המתכנסת ל-U מתקיים U ב-U מתקיים U מתקיים U מתקיים U מתקיים U ב-U מתקיים U מתקיים U

משפט 2.4. משפט ההצבה בגבולות

. (בהתאמה) נקודות פנימיות (בהתאמה) ותהיינה $Q_0\in D_2$ ו ר $0\in D_1$ ותהיינה $D_1\subseteq \mathbb{R}^m$ וכאשר $g:D_2\to \mathbb{R}^k$ רו בהתאמה) ותהיינה ותהיינה ולינה ביימיות (בהתאמה)

על על P_0 על על U של סביבה מנוקפת קיימת קיימת פיימת פרf ו-f על f יש עבול ב-f יש עבול ב-f יש עבול ב-f אז ל-f על f אז ל-f על אז ל-f על מתקיים f מתקיים f

$$\lim_{P \to P_0} g\left(f\left(P\right)\right) = \lim_{Q \to Q_0} g\left(Q\right)$$

 $g\left(f\left(P_{0}
ight)
ight)=g\left(Q_{0}
ight)$ ומתקיים P_{0} ומתקיים פ-g וב- Q_{0} וב-תאמה) אז יום פ-g וב- Q_{0} וב-

4

2.1 מסילות

: יתקיים $t\in I$ ולכל $n\geq j\in\mathbb{N}$ מסילה תהא פונקציות כך $f_1,f_2,\ldots,f_n\in\mathbb{R}^I$ מסילה תהאינה $\gamma:I o\mathbb{R}^n$ משפט 2.5.

$$\gamma(t) = \begin{pmatrix} f_1(t) \\ f_2(t) \\ \vdots \\ f_n(t) \end{pmatrix}$$

תהא לכל f_j גזירה ב- t_0 אם"ם לכל $t_0\in I$ אם"ם לכל הנגזרת ב- t_0 אם ואז וקטור הנגזרת לכל הפונקציה לכל הפונקציה לכל הירה ב- t_0 אם הנגזרת של ב- t_0 הוא:

$$\begin{bmatrix} f_1'(t_0) \\ f_2'(t_0) \\ \vdots \\ f_n'(t_0) \end{bmatrix}$$

 $g'\left(t
ight)
eq0$ פינקציות בקטע [a,b] וגזירות בקטע (a,b) כך ש- $a,b\in\mathbb{R}$ וההיינה a< b אונהיינה בקטע (a,b) כך יהיי a< b אונהיינה בקטע (a,b) כך יהיי a< b לכל (a,b) לכל (a,b) אונהיינה בקטע (a,b) כך ש- $a,b\in\mathbb{R}$ וואירות בקטע (a,b) כך ש- $a,b\in\mathbb{R}$ יהיי

 $z: (t \in [a,b]$ מסילה מוגדרת ע"י (לכל $\gamma: [a,b]
ightarrow \mathbb{R}^2$ מסילה מוגדרת

$$\gamma\left(t\right) := \begin{pmatrix} g\left(t\right) \\ f\left(t\right) \end{pmatrix}$$

: כך שמתקיים כך $c\in(a,b)$ הקיימת נקודה

$$\frac{g(b) - g(a)}{g'(c)} \cdot \gamma'(c) = \gamma(b) - \gamma(a)$$

- כדי להוכיח את המשפט יש להשתמש במשפט הערך הממוצע של קושי, ע"פ משפט הערך הממוצע של קושי נובע קיימת $c \in (a,b)$

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

וממילא גם:

$$\frac{g(b) - g(a)}{g'(c)} \cdot f'(c) = f(b) - f(a)$$

ומכאן שע"פ המשפט הקודם (2.5) מתקיים:

$$\frac{g\left(b\right)-g\left(a\right)}{g'\left(c\right)}\cdot\gamma'\left(t_{0}\right)=\frac{g\left(b\right)-g\left(a\right)}{g'\left(c\right)}\cdot\begin{bmatrix}f'\left(c\right)\\g'\left(c\right)\end{bmatrix}=\begin{pmatrix}f\left(b\right)-f\left(a\right)\\g\left(b\right)-g\left(a\right)\end{pmatrix}=\gamma\left(b\right)-\gamma\left(a\right)$$

2 פונקציות

2.2 פונקציות מרובות משתנים

כל הפונקציות שנעסוק בהן בסעיף זה הן פונקציות מהצורה $f:D o \mathbb{R}$ כאשר ליין אטרח לציין את בכל פעם מחדש.

 $P_0 \in \mathbb{R}^n$ בנקודה $L \in \mathbb{R}$ יש גבול של-f יש פונקציה פונקציה ענה 2.7.

 $rac{L}{2} < f\left(P
ight) < rac{3L}{2}$ מתקיים $P \in U$ אז קיימת סביבה מנוקבת P_0 של U של P_0 עשל סביבה מנוקבת P_0 אז קיימת סביבה מנוקבת P_0 של P_0 כך שלכל P_0 מתקיים P_0 אז קיימת סביבה מנוקבת P_0 של P_0 אז קיימת סביבה מנוקבת P_0

 $A \in \mathbb{R}^m$ בנקודה $L \in \mathbb{R}$ יש גבול f יש פונקציה כך פונקציה כך מסקנה 2.8.

אז קיימת סביבה מנוקבת של P_0 שבה P_0 שבה של סיימת סביבה מנוקבת של חיובית אם אז חיובית אם P_0 שבה של סיימת סביבה מנוקבת של אז היימת סביבה מנוקבת של היימת היימ

משפט 2.9. "האנלוג הרציף של תנאי היינה"

$$\lim_{t \to a^{+}} \left(f \circ \gamma \right) (t) = L$$

- $\lim_{x \to a^+} \gamma\left(t\right) = \gamma\left(a\right) = P_0$ נזכור שמהגדרתה מסילה היא פונקציה רציפה ולכן
- $D\setminus\{P_0\}$ היא פונקציה שהתחום שלה הוא והטווח שלה היא פונקציה שהתחום שלה הוא $f\circ\gamma$

משפט 2.10. אריתמטיקה של גבולות

: ($P_0 \in \mathbb{R}^n$ עבור (עבור קיימים כך שקיימים gו- ו- gו-נק תהיינה תהיינה פונקציות

$$L_{1} := \lim_{P \to P_{0}} f\left(P\right), \ L_{2} := \lim_{P \to P_{0}} g\left(P\right)$$

:מתקיימים ארבעת הפסוקים הבאים

- L_1+L_2 יש גבול בנקודה P_0 וערכו יש גבול לפונקציה f+g יש .1
 - $L_1 \cdot L_2$ יש גבול בנקודה P_0 וערכו הוא $f \cdot g$ יש גבול.2
- $1 \over L_2$ או לפונקציה וערכו בנקודה אבול הנקודה לפונקציה אז לפונקציה לפונקציה אז בול בנקודה אז לפונקציה 3
- $rac{L_1}{L_2}$ אז לפונקציה $rac{f}{g}$ יש גבול בנקודה P_0 וערכו אז לפונקציה 4.

מסקנה 2.11. אריתמטיקה של רציפות

 $.P_0 \in \mathbb{R}^n$ בנקודה בנקוות רציפות פונקציות gו ו-

:מתקיימים ארבעת הפסוקים הבאים

- $.(f+g)\left(P_{0}\right)=f\left(P_{0}\right)+g\left(P_{0}\right)$ ר. ב-פונקציה f+gרציפה הפונקציה 1
 - $.(f\cdot g)\left(P_{0}
 ight)=f\left(P_{0}
 ight)\cdot g\left(P_{0}
 ight)$ ים ב-פר ב-פר רציפה ב-פר רציפה ב-2
- $.\left(rac{1}{g}
 ight)(P_0)=rac{1}{g(P_0)}$ -ו ר P_0 ים ביפה אז הפונקציה אז הפונקציה $rac{1}{g}$ רציפה ב-3 .3
- $.\left(rac{f}{g}
 ight)(P_0)=rac{f(P_0)}{g(P_0)}$ -1 אם P_0 ים הפונקציה $rac{1}{g}$ רציפה ה $g\left(P_0
 ight)
 eq 0$ אז הפונקציה.

g: ($P_0 \in \mathbb{R}^n$ עבור (עבור f משפט 2.12. תהיינה f משפט 2.12 משפט

$$L_{1} := \lim_{P \to P_{0}} f(P), \ L_{2} := \lim_{P \to P_{0}} g(P)$$

- 0 והוא P_0 יש גבול ב- P_0 והוא P_0 אז ל- P_0 יש גבול ב- P_0 והוא חסומה בסביבה מנוקבת של P_0 יש גבול ב- P_0
 - $L_1 \leq L_2$ אז $f\left(P
 ight) \leq g\left(P
 ight)$ מתקיים $P \in U$ אז של P_0 של של U אז סביבה מנוקבת .2
 - $f\left(P
 ight) < g\left(P
 ight)$ מתקיים $P \in U$ מתקיים של על על מנוקבת של מנוקבת אז קיימת סביבה מנוקבת U
- כפי שראינו באינפי' 1 גם כאן א"ש חזק בין f ל-g בסעיף 2 לא יגרום לא"ש חזק בין הגבולות ובסעיף 3 א"א לוותר להא"ש החזק.

משפט 2.13. משפט הכריך

 $A \in \mathbb{R}^n$ פונקציות המוגדרות בסביבה מנוקבת U של נקודה f פונקציות המוגדרות בסביבה מנוקבת

: כך שמתקיים P_0 מתקיים בנקודה P_0 מתקיים $f(P) \leq g(P) \leq h(P)$ מתקיים פולכל אם לכל

$$L := \lim_{P \to P_0} f(P) = \lim_{P \to P_0} h(P)$$

:אז גם ל-g יש גבול ב- P_0 ומתקיים

$$\lim_{P\to P_{0}}g\left(P\right) =L$$

משפט 2.14. משפט ויירשטראס הראשון

.K-ם חסומה f , $\emptyset \neq K \subseteq \mathbb{R}^n$ קומפקטית קבוצה בעל המוגדרת המוגדרת פונקציה f

משפט 2.15. עיקרון המקסימום והמינימום של ויירשטראס (משפט ויירשטראס השני)

 $f\left(K
ight)$ תהא K- פונקציה המוגדרת בעל קבוצה קומפקטית $f\left(K
ight)$ מקבלת מקסימום ומינימום ב-K (או במילים אחרות היא קטע סגור ב- \mathbb{R}).