Candidate CHARTS Model Summary

Brad Johnson Liz Holzenthal Rusty Permenter Kevin Hodgens

USACE Engineering Research and Devlelopment Center

Oct, 2024

Model Objectives

The CHART effort requires simple, stable, and computationally efficient hydrodynamics framework that can be customized to meet USACE needs

First incarnation model:

- One-dimensional
- Phase-averaged but low-frequency resolving
- Based on NLSW
- Heuristic wet/dry
- Emphasis on simple and efficient
- Somewhat numerically diffusive, but requires additional 'viscosity' if we extend to short waves-see angry wave fronts for 10 sec waves

Model Formulation

$$\frac{\partial h}{\partial t} + \frac{\partial q}{\partial x} - \frac{k}{\mu} \frac{\partial \hat{P}}{\partial z} = 0$$

$$\frac{\partial q}{\partial t} + \frac{\partial}{\partial x} \left\{ \frac{q^2}{h} + \frac{S_{xx}}{\rho} \right\} = -gh \frac{\partial \eta}{\partial x} - \frac{\tau_b}{\rho} + \frac{\tau_s}{\rho}$$

Represents

- A NLSW set (hydrostatic, depth-uniform, etc)
- Infiltration by Darcy's law
- Steady Waves through rad stress, no IG generation, no W/C interaction
- Quadratic wind stress
- Quadratic current-dominated bottom shear stress

(ロ) (個) (達) (達) (達) (2)

(ERDC) CHARTS Oct, 2024 3/10

Numerical Apparatus

FD Soln:

- Time: 1st order by Fisher's method
- Pressure: 2nd order centered, except at boundaries
- Advective: 1st order upwinding

Left boundary options

- Generation
- Transmitting
- Gen/Trans
- Reflective
- User-defined water level

Right boundary options

- Reflective
- Tail-water

(ERDC) CHARTS Oct, 2024 4/10

Runup on Planar Slope

Left and Right MBC

Fully reflective BC on Left and Right + initial displacement of η

6 / 10

Wind-driven Setup

(ERDC)

Ponding

Overtopping capture, but no infiltration

(ERDC)

Wave forcing

A one-line wave model:

$$H_{i+1} = \min\left(\left\{H_i^2 \frac{c_i n_i}{c_{i+1} n_{i+1}}\right\}^{1/2}, \gamma h_i\right)$$

Oct, 2024 9 / 10

Next Steps

Major concerns

- No morphology
- Overtopping doesn't include impact of waves (other than forced MWL)
- No 2DH
- ullet Runtimes: 1 day simulation \sim 1 min
- No account for reflective structures
- Not perfectly conservative

Minor concerns

- No infiltration
- Constant waves at boundary
- ullet no impact on waves on au_b

Kill or Continue?

(ERDC) CHARTS Oct, 2024 10 / 10