O método *branch-and-bound* para o problema da mochila binária

Prof. Me. Alex Paranahyba de Abreu

Pesquisa Operacional para a Engenharia de Produção 1 04/07/2025

Objetivos da aula

- ► Revisar os conceitos de programação inteira;
- ▶ Explorar o problema da mochila binária;
- ► Fixar os conceitos por meio da resolução de exercícios.

Bibliografia

▶ ARENALES, M.; ARMENTANO, V.; MORABITO, R.; YANASSE, H. Pesquisa Operacional: Para cursos de engenharia. 2a ed. Rio de Janeiro: Elsevier, 2015.

Revisão: programação inteira

▶ Modelagem de problemas com programação linear inteira.

$$min c^T x$$
s.a $Ax = b$

$$x \in \mathbb{Z}_+^n$$

Revisão: exemplo

▶ Exemplo de um problema de programação inteira.

max
$$5x_1 - 1x_2$$

s.a $7x_1 - 5x_2 \le 13$
 $3x_1 + 2x_2 \le 17$
 $x_1, x_2 \in \mathbb{Z}_+$

Revisão: relaxação linear

▶ Relaxação linear do problema de programação inteira.

$$P = \max \quad 5x_1 - 1x_2$$
s.a $7x_1 - 5x_2 \le 13$
 $3x_1 + 2x_2 \le 17$
 $x_1, x_2 \in \mathbb{R}_+$

Revisão: ramificação

Revisão: solução dos problemas

$$P_1 = \max$$
 $5x_1 - 1x_2$
s.a $7x_1 - 5x_2 \le 13$
 $3x_1 + 2x_2 \le 17$
 $x_1 \le 3$
 $x_1, x_2 \in \mathbb{R}_+$

$$P_2 = \max$$
 $5x_1 - 1x_2$
s.a $7x_1 - 5x_2 \le 13$
 $3x_1 + 2x_2 \le 17$
 $x_1 \ge 4$
 $x_1, x_2 \in \mathbb{R}_+$

Revisão: solução dos problemas

$$P_{3} = \max \quad 5x_{1} - 1x_{2}$$
s.a
$$7x_{1} - 5x_{2} \le 13$$

$$3x_{1} + 2x_{2} \le 17$$

$$x_{1} \le 3$$

$$x_{2} \le 1$$

$$x_{1}, x_{2} \in \mathbb{R}_{+}$$

$$P_{4} = \max \quad 5x_{1} - 1x_{2}$$
s.a
$$7x_{1} - 5x_{2} \le 13$$

$$3x_{1} + 2x_{2} \le 17$$

$$x_{1} \le 3$$

$$x_{2} \ge 2$$

 $x_1, x_2 \in \mathbb{R}_+$

Revisão: ramificação

Revisão: principais estratégias

- Estratégias de busca: em largura ou em profundidade;
- Estratégias de ramificação: "mais" fracionária ou melhor potencial;
- ▶ Motivos de "poda": infactibilidade, integralidade, qualidade.

O problema da mochila binária

Definição

O problema da mochila binária (0-1) envolve escolher itens únicos a serem colocados em uma mochila de forma a maximizar uma função de utilidade sem exceder a sua capacidade.

O problema da mochila binária

Definição

O problema da mochila binária (0-1) envolve escolher itens únicos a serem colocados em uma mochila de forma a maximizar uma função de utilidade sem exceder a sua capacidade.

Contexto de exemplo:

- ▶ Uma empresa quer selecionar projetos para serem realizados;
- \triangleright Exitem *n* projetos candidatos;
- \blacktriangleright Cada projeto *i* possui um custo a_i e retorno esperado p_i ;
- ightharpoonup A empresa possui um orçamento b.

▶ Identificar as **variáveis** do problema: x_i é igual a 1 se o projeto i é selecionado, ou 0 caso contrário.

- ▶ Identificar as **variáveis** do problema: x_i é igual a 1 se o projeto i é selecionado, ou 0 caso contrário.
- ▶ Identificar o **objetivo** do problema: Maximizar o retorno esperado dos projeto selecionados ($\max f(x) = p_1x_1 + p_2x_2 + ... + p_nx_n$).

- ▶ Identificar as **variáveis** do problema: x_i é igual a 1 se o projeto i é selecionado, ou 0 caso contrário.
- ▶ Identificar o **objetivo** do problema: Maximizar o retorno esperado dos projeto selecionados ($\max f(x) = p_1x_1 + p_2x_2 + ... + p_nx_n$).
- ▶ Identificar as **restrições** do problema: O custo dos projetos selecionados devem atender o orçamento $(a_1x_1 + a_2x_2 + ... + a_nx_n \le b)$.

$$\max f(x) = \sum_{i=1}^{n} p_i x_i$$
s.a
$$\sum_{i=1}^{n} a_i x_i \le b,$$

$$x_i \in \{0, 1\}, \qquad i \in \{1, 2, ..., n\}.$$

A resolução desse problema pode ser feita por meio do método branch-and-bound.

O problema da mochila binária: relaxação linear

$$\max f(x) = \sum_{i=1}^{n} p_i x_i$$

$$\text{s.a} \quad \sum_{i=1}^{n} a_i x_i \le b,$$

$$0 \le x_i \le 1, \qquad i \in \{1, 2, ..., n\}.$$

Ou seja, resolve-se a relaxação linear e:

- ▶ ramifique, se a solução é fracionária; ou
- ▶ não ramifique, se a solução é inteira, pior que a atual ou não existe.

O problema da mochila binária: relaxação linear

$$\max f(x) = \sum_{i=1}^{n} p_i x_i$$
s.a
$$\sum_{i=1}^{n} a_i x_i \le b,$$

$$0 \le x_i \le 1, \qquad i \in \{1, 2, ..., n\}.$$

Ou seja, resolve-se a relaxação linear e:

- ramifique, se a solução é fracionária; ou
- ▶ não ramifique, se a solução é inteira, pior que a atual ou não existe.

A relaxação linear do problema da mochila binária pode ser resolvido por inspeção. $^{1}\,$

¹KELLERER, H.; PFERSCHY, U.; PISINGER, D. *Knapsack Problems*. 1a ed. Berlin: Springer, 2004.

1. Calcule a "utilidade relativa" $u_i = p_i/a_i$ de cada item i;

- 1. Calcule a "utilidade relativa" $u_i = p_i/a_i$ de cada item i;
- 2. Ordene os itens de forma decrescente da utilidade relativa $(u_{[1]} \geq u_{[2]} \geq \ldots \geq u_{[n]})$, onde [i] é o item que está na posição i;

- 1. Calcule a "utilidade relativa" $u_i = p_i/a_i$ de cada item i;
- 2. Ordene os itens de forma decrescente da utilidade relativa $(u_{[1]} \geq u_{[2]} \geq \ldots \geq u_{[n]})$, onde [i] é o item que está na posição i;
- 3. Na ordem definida, selecione os itens (fazendo $x_i = 1$) até que atingir a capacidade da mochila (sem violá-la);

- 1. Calcule a "utilidade relativa" $u_i = p_i/a_i$ de cada item i;
- 2. Ordene os itens de forma decrescente da utilidade relativa $(u_{[1]} \geq u_{[2]} \geq \ldots \geq u_{[n]})$, onde [i] é o item que está na posição i;
- 3. Na ordem definida, selecione os itens (fazendo $x_i = 1$) até que atingir a capacidade da mochila (sem violá-la);
- 4. Se todos os itens foram escolhidos, solução ótima **inteira** encontrada.

- 1. Calcule a "utilidade relativa" $u_i = p_i/a_i$ de cada item i;
- 2. Ordene os itens de forma decrescente da utilidade relativa $(u_{[1]} \ge u_{[2]} \ge \ldots \ge u_{[n]})$, onde [i] é o item que está na posição i;
- 3. Na ordem definida, selecione os itens (fazendo $x_i = 1$) até que atingir a capacidade da mochila (sem violá-la);
- 4. Se todos os itens foram escolhidos, solução ótima **inteira** encontrada.
- 5. Senão, defina a variável do primeiro item que não coube como a fração necessária para completar a capacidade da mochila.

Exemplo. Uma companhia de extração de petróleo tem disponível 5 bombas de submersão e deseja usá-las para aumentar a quantidade extraída de petróleo. A energia para o funcionamento das bombas é fornecida por um único gerador, cuja potência máxima é 8 kVA. A potência consumida e a eficiência de extração de cada bomba são apresentadas na tabela a seguir. Deseja-se determinar quais bombas devem ser usadas, de modo a maximizar a eficiência total da extração.

Bomba	1	2	3	4	5
Eficiência	4 2	15	12	16	18
Consumo (kVA)		3	2	4	6

i	1	2	3	4	5
p_i a_i	4	15	12	16	18
$\frac{u_i}{u_i}$		<u>.</u>		4	

i	1	2	3	4	5
p_i a_i	4 2	15 3	12 2	16 4	18 6
u_i					

max
$$f(x) = 4x_1 + 15x_2 + 12x_3 + 16x_4 + 18x_5$$

s.a $2x_1 + 3x_2 + 2x_3 + 4x_4 + 6x_5 \le 8$,
 $x_1, x_2, x_3, x_4, x_5 \in \{0, 1\}$.

i	1	2	3	4	5
p_i a_i	$\frac{4}{2}$	15 3	$\begin{array}{c} 12 \\ 2 \end{array}$	16 4	18 6
u_i					

$$\max f(x) = 4x_1 + 15x_2 + 12x_3 + 16x_4 + 18x_5$$

s.a
$$2x_1 + 3x_2 + 2x_3 + 4x_4 + 6x_5 \le 8,$$

$$0 \le x_1, x_2, x_3, x_4, x_5 \le 1.$$

i	1	2	3	4	5
p_i a_i	4 2	15 3	12 2	16 4	18 6
u_i	2	5	6	4	3

i	1	2	3	4	5
p_i a_i	4 2	15 3	12 2	16 4	18 6
u_i	2	5	6	4	3

$$3 \rightarrow 2 \rightarrow 4 \rightarrow 5 \rightarrow 1$$

i	1	2	3	4	5
p_i a_i	4 2	15 3	12 2	16 4	18 6
u_i	2	5	6	4	3

$$3 \rightarrow 2 \rightarrow 4 \rightarrow 5 \rightarrow 1$$

- ▶ Se fizermos $x_3 = 1$ e $x_2 = 1$, temos um consumo acumulado de $a_3 + a_2 = 5$;
- ▶ Com a folga de 3, a capacidade será violada se adicionarmos o item 4;
- Assim, apenas uma fração desse item será adicionada;
- ▶ Para completar a capacidade, faça $x_4 = (b (a_3 + a_2))/a_4 = (8 5)/4 = 0.75;$
- \blacktriangleright A solução ótima da relaxação linear é x=(0,1,1,0.75,0) com f(x)=39.

Como incorporar isso no branch-and-bound

- ▶ A partir de uma solução fracionária x = (0, 1, 1, 0.75, 0);
- ► Com a solução da relaxação linear, ramifica-se uma variável fracionária;
- ightharpoonup Em um nó fixa-se $x_4 = 0$ e em outro $x_4 = 1$;
- ▶ Resolva cada nó por inspeção com/sem o item 4;
- Nesse exemplo vamos resolver usando busca em largura e ramificação na variável mais fracionária.

Árvore branch-and-bound: ramificação no nível 0

Resolvendo o nó 1 $(x_4 = 0)$

\overline{i}	1	2	3	4	5
p_i a_i	4 2	15 3	12 2	16 4	18 6
u_i	2	5	6	4	3

$$3 \rightarrow 2 \rightarrow \cancel{4} \rightarrow 5 \rightarrow 1$$

- ► Com $x_4 = 0$, $x_3 = 1$ e $x_2 = 1$ temos um consumo acumulado de $a_3 + a_2 = 5$;
- ► Com a folga de 3, a capacidade será violada se adicionarmos o item 5;
- Assim, apenas uma fração desse item será adicionada;
- ▶ Para completar a capacidade, faça $x_5 = (b (a_3 + a_2))/a_5 = (8 5)/6 = 0.5;$
- A solução ótima desse nó é x = (0, 1, 1, 0, 0.5) com f(x) = 36.

Resolvendo o nó 2 $(x_4 = 1)$

\overline{i}	1	2	3	4	5
p_i a_i	4 2	15 3	12 2	16 4	18 6
u_i	2	5	6	4	3

$$3 \rightarrow 2 \rightarrow \textcircled{4} \rightarrow 5 \rightarrow 1$$

- ► Com $x_4 = 1$ e $x_3 = 1$ temos um consumo acumulado de $a_4 + a_3 = 6$;
- ► Com a folga de 2, a capacidade será violada se adicionarmos o item 2;
- Assim, apenas uma fração desse item será adicionada;
- ▶ Para completar a capacidade, faça $x_2 = (b (a_4 + a_3))/a_2 = (8 6)/3 = 0.7;$
- A solução ótima desse nó é x = (0, 0.7, 1, 1, 0) com f(x) = 38.

Árvore branch-and-bound: ramificação no nível 1

Árvore branch-and-bound: ramificação no nível 1

Árvore branch-and-bound: até o nível 2

- ▶ Atualize a melhor solução inteira encontrada e seu valor objetivo:
- $ightharpoonup \bar{x} = (1, 1, 1, 0, 0) e f(\bar{x}) = 31.$

Árvore branch-and-bound resultante

Exemplo resolvido

- \blacktriangleright Fim do método branch-and-bound: todos os nós foram explorados;
- ▶ Solução ótima $x^* = (1, 0, 1, 1, 0)$, com valor ótimo $f(x^*) = 32$;
- ▶ Utiliza-se as bombas 1, 3 e 4;
- ▶ Toda a capacidade do gerador é consumida;
- ► A eficiência máxima de extração é 32.

Conclusão da aula

- ▶ Revisamos a modelagem de problemas com programação inteira;
- ▶ Revisamos os conceitos do método branch-and-bound;
- Modelamos o problema da mochila binária;
- ► Exploramos uma forma de resolver a relaxação linear do problema;
- ▶ Utilizamos esse método para resolver o problema de programação inteira.

Materiais

- ▶ Slides e exercícios:
- ▶ https://abreualexp.github.io/ufscar/tema4.html

- ▶ Obrigado pela atenção!
- ► Dúvidas?