Teoria dos Grafos

Grafos: Tipos, matrizes e graus de um grafo.

Leon Ferreira Bellini

RA 22218002–8

e

Guilherme Ormond Sampaio
RA 22218007-7

1 Introdução

Um grafo representa de forma simples e eficaz as interdependências entre os elementos de um conjunto. A utilidade da aplicação de grafos tem se mostrado presente em variadas micro e macroestruturas, como a podendo representar cidades, linhas ferroviárias, fluxo de dados ou até mesmo circuitos eletrônicos. A forma de como é representado pode ser dita como didática e facilmente compreendida. Foi elaborado um algorítmo para que fossem aplicados os diversos conceitos aprendidos em aula, este algorítmo sendo desenvolvido em **Python**, linguagem a qual permite que o programa funcione em variadas plataformas como *GNU/Linux* e *Windows*.

Figura 1: Circuito eletrônico representado na forma de grafo. – Grafos: Conceitos, algorítmos e aplicações (2014)

2 O conceito de grafos

2.1 Vértices, arestas e função de incidência φ

Para que haja um grafo é necessário obter o conjunto de **vértices**, dado por $\mathbf{N} = \{v1, v2, \dots, vn\}$, estes também chamados de nós, os quais representam os componentes, itens ou elementos que receberão, ou não, ligações entre si, tais ligações chamadas de **arestas**, as quais também formam um conjunto, dado por $\mathbf{E} = \{e1, e2, \dots, en\}$.

Existe, também, uma **função de incidência** φ (phi), a qual associa um par de vértices para cada aresta, como por exemplo, $\varphi(e) = \{a, b\}$, ou seja, e incide em a e b.

Pode se dizer, então, que um grafo pode ser representado como:

$$G = (N, M, \varphi)$$

Figura 2: Exemplo de como alguns grafos podem ser representados – Grafos: Conceitos, algorítmos e aplicações (2014)

2.1.1 Casos Específicos

• Grafo Finito: V e E são finitos.

• Grafo Trivial: Possui apenas um vértice.

• Grafo Nulo: Não possui arestas.

2.1.2 Laços

Um laço é uma aresta que possui sua origem e destino em um mesmo vértice, ou seja, incide em um único vértice.

Exemplo:

As arestas e6 e e7 são laços.

2.2 Representação matricial de um grafo

Para fins de representação não-gráfica dos grafos utiliza-se da matriz de adjacência ou da matriz de incidência.

2.2.1 Matriz de adjacência |A|

A matriz de adjacência consiste em uma matriz com \mathbf{n} -linhas e \mathbf{n} -colunas, sendo \mathbf{n} cada vértice do grafo. Os elementos da matriz representam as arestas do grafo, portanto, trata-se da relação de conexões entre seus vértices.

Exemplo:

Sendo o elemento aij o número de arestas entre a linha Vi e a coluna Vj.

Note que por os elementos das linha e colunas se repetirem ocorre um espelhamento diagonal das arestas, ou seja, para a análise do grafo basta observar uma de suas metades.

O algoritmo de análise de grafos trabalha a partir dessa matriz, e para a sua análise foi considerado apenas uma de suas metades.

2.2.2 Matriz de incidência |M|

A matriz de adjacência **M** (**G**) é uma matriz com |**V**| linhas e |**E**| colunas, tal que seus elementos (**aij**) representam quantas vezes a aresta **ej** incide no vértice **Vi**.

Exemplo:

Note que, por uma aresta estar conectada sempre em dois pontos, a soma dos elementos de cada coluna é 2.

2.3 Grafo simples

Um grafo é simples se não possui laços ou arestas múltiplas, logo, tendo-se como exemplo um grafo **G** possuindo $\mathbf{V}=\{v1,v2,v3,v4\}$ e $\mathbf{E}=\{e1,e2,e3,e4,e5\}$, sua matriz de adjacência **A** pode ser dada por:

$$A(G) = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

obs: Note que a diagonal principal da matriz indica se existem ou não, laços. Um número maior que 1 indicaria que existem mais de uma aresta ligando os dois vértices. Podem existir vértices de grau 0 em grafos simples.

2.3.1 Grafo bipartido

É um tipo de grafo simples o qual, uma vez que seus vértices são divididos em subconjuntos \mathbf{X} e \mathbf{Y} , possui cada aresta com uma de suas pontas no conjunto \mathbf{X} e outra em \mathbf{Y} .

Figura 3: $X = \{V1, V2\} Y = \{V3, V4\}$

Um grafo é dado por **Bipartido completo** quando cada vértice em X é adjacente a todo vértice em Y. É escrito através da letra $\mathbf{K}mn$, sendo $|\mathbf{x}| = \mathbf{m}$ e $|\mathbf{y}| = \mathbf{n}$.

Figura 4: $X = \{V1, V2\} Y = \{V3, V4, V5\}$

2.4 Graus de um vértice

Cada vértice V de um grafo G = (V, E) possui um número n de arestas incidentes. Esse número n é denotado como o grau do vértice.

		V1	V2	V3	V4	V5			Grau
A(G):	V1	0	1	1	0	0		V1	2
	V2	1	1	0	1	1	Graus:	V2	5
	V3	1	0	0	0	1	Graus:	V3	2
	V4	0	1	0	0	1		V4	2
	V5	0	1	1	1	0		V5	3

Note que os laços incidem duas vezes no vértice, portanto ele equivale a 2 graus, como o caso da aresta **e7**.

Para calcular o grau em uma matriz adjacência basta somar todos os elementos da linha ou coluna ignorando o elemento da diagonal principal + 2 * o elemento da diagonal principal, que indica os laços.

2.5 Sequência gráfica

A sequência de graus de um grafo **G** = (**V**, **E**) é a sequência não-crescente do grau de todos os vértices **V** desse grafo.

Para o caso da figura anterior a sequência seria:

5, 3, 2, 2, 2

3 Conclusão