Pull Request Details

Claire Yung

July 2023

1 Ice Melt Parameterization

From Holland and Jenkins (1999), hereafter HJ99, the stability parameter introduced by McPhee (1981) is

$$\eta_* = \left(1 + \frac{\zeta_N u_*}{f L_O R_c}\right)^{-1/2} \tag{1}$$

In L530 of MOM_ice_shelf.F90, n_star_term is defined as

where in L454, hBL_neut was defined as (in some conditions, if the model Hml not used)

hBL_neut = (VK*ustar_h) / absf

Therefore $n_{star_{term}}$ can be identified as $\frac{\zeta_N k^2}{fR_c u_*^2}$ where k is the von Kármán constant (in the model, this is denoted as VK).

Now L_O (Obukhov length) in McPhee (1981) is defined as

$$L = \frac{\rho_0 u_*^3}{gk\overline{\rho'}w'} \tag{2}$$

where $\overline{\rho'w'}g/\rho_0$ can be recognised as the turbulent buoyancy flux, which in the model is wB_flux, i.e. $L_O = u_*^3/(k \times \text{wB_flux})$.

Therefore, the n_star_term is $\frac{\zeta_N k u_*}{f R_c L_O \mathtt{wB_flux}}$.

Now on line L536, $1/\eta_*$ is defined as

Using the above working, the right-hand side equates to

$$\left(1 - \frac{\zeta_N u_* k}{f L_O R_c}\right)^{1/2} \tag{3}$$

which is almost the same as the reciprocal of the HJ99 η_* , in Eqn. (1) except there is an extra factor of the von Kármán constant in the algebraic term. I therefore think there should be a modification made to the definition of n_star_term on L530 to remove the extra VK: