1. Código

O código utilizado para o experimento descrito nesse relatório pode ser encontrado clicando-se aqui. O código foi projetado na linguagem Python, por tanto algumas mudanças no algoritmo fornecido foram feitas para que o programa funcionasse corretamente.

O código está modularizado, e cada método iterativo (Jacobi e SOR) estão em seus respectivos módulos, porém os testes foram realizados no módulo principal (*main.py*) para facilitar a organização.

2. Resultado dos Experimentos

Na tabela abaixo estão descritos os resultados dos experimentos realizados

Experimento	Resultados		
	Tempo (s)	Número de Iterações	Erro máximo
Método de Jacobi	33.80526066	2767	9.99E-08
Método SOR com ω = 1.00	40.82875752	2767	9.99E-08
Método SOR com ω = 1.95	4.177243233	297	9.59E-08
Método SOR com ω = 1.99	22.13020253	1437	9.93E-08

Figura 1: Resultados do Experimento

Observação: os tempos contidos na tabela são os tempos médios de 20 execuções do programa em um mesmo computador.

Abaixo se encontram os plots realizados para cada experimento:

Método de Jacobi:

Método SOR com fator de aceleração 1.0:

Método SOR com fator de aceleração 1.95:

Método SOR com fator de aceleração 1.99:

DCC008 - Turma X
DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO
INSTITUTO DE CIÊNCIAS EXATAS
UNIVERSIDADE FEDERAL DE JUIZ DE FORA

3. Análise dos resultados

Podemos ver facilmente pela tabela que o Erro Máximo tente a chegar ficar cada vez mais perto da Tolerância Máxima que estipulamos ($tol=10^{-7}$) a medida que o número de iterações aumenta. Para o método SOR, podemos observar também que, se levarmos em conta o tempo gasto para o resultado obtido, poderemos dizer que o $\omega=1.95$ teve um desempenho médio melhor e obteve resultados iguais aos outros dois valores de ω .