1 Плоская монохроматическая волна

2 Волновое уравнение

$$abla U - rac{1}{c^2} rac{\partial^2 ec{U}}{\partial t^2} = 0$$
 - волновое уравнение без поглощения

$$\nabla U - \beta \frac{\partial \vec{U}}{\partial t} - \frac{1}{c^2} \frac{\partial^2 \vec{U}}{\partial t^2} = 0$$
 - волновое уравнение с поглощением

U - компонента электрического поля / магнитоного поля / скорость / потенциал, c - имеет смысл фазовой скорости

Решение - в виде плоской монохроматической волны $U=U_0e^{(i\omega t-ik\vec{r})},$ если выполнено $\frac{\omega^2}{k^2}=c^2$

- 3 Фазовая и групповая скорости
- 4 Уравнение непрерывности и уравнение Эйлера
- 5 Скорость звука. Вектор Умнова. Плотность энергии в звуковой волне
- 6 Уравнение Ламэ

 $ho_0 rac{\partial^2 \vec{U}}{\partial t^2} = (\lambda + \mu) \nabla div \vec{U} + \mu \bigtriangleup \vec{U}$ - уравнение движения физически бесконечно малого объема изотропного (движение в любых направлениях) упругого тела при малых деформациях ho_0 - плотность до деформации, μ - модуль сдвига, $\lambda = K - \frac{2}{3}\mu$ - коэффициент Ламэ, K - модуль всестороннего сжатия, $\vec{U}(\vec{r},t)$ - вектор смещения элемента сплошной среды при деформации μ и K - переобозначения модулей упругости Юнга и Пуассона

- 7 Уравнения Максвелла в дифференциальной и интегральной формах
- 8 Граничные условия для векторов ЭМ поля
- 9 Вектор Пойнтинга. Плотность энергии ЭМ поля в вакууме

$$S = \frac{c}{4\pi} \left[\vec{E} \times \vec{H} \right]$$
 - плотность потока энергии СГС: $\left[\frac{\text{эрг}}{\text{с} \cdot \text{см}^2} \right]$ СИ: $\left[\frac{\mathcal{A} \times \vec{H}}{\text{c} \cdot \text{M}^2} \right]$

- |S| энергия, переносимая ЭМ волной через единичную площадку ($\bot S$) в единицу времени ???
- 10 Основные параметры плазмы (плазменная частота и дебаевский радиус)

$$r_{De} = \sqrt{\frac{kT_eT_i}{4\pi Ne^2(T_e+T_i)}} = \sqrt{\frac{kT}{4\pi Ne^2}}$$
 - расстояние, за которое волна спадет в e раз при прохождении через плазму / расстояние, которое проходит \overline{e} в плазме за время, порядка $\tau_p = \frac{2\pi}{\omega_p}$

СИ: $\left[\vec{\mathrm{K}}\vec{\mathsf{Д}}\vec{\mathsf{ж}} \right] \, T_e$ - температура электронов, T_i - температура ионов, $N, \, e$ и m - концетрация

электронов а также их заряд и масса, $k=\frac{R}{N_a}, N_a=\frac{m}{M}$

$$\omega_p = \frac{4\pi e^2 N}{m}$$
 - плазменная частота, СИ: $\left[\frac{\mathrm{pag}}{\mathrm{c}}\right]$???

Это частота собственных продольных колебаний пространственного заряда в однородной плазме в отсутствие магнитного поля

11 Комплексная диэлектрическая проницаемость холодной изотропной плазмы

Диэлектрическая проницаемость показывает, во сколько раз сила взаимодействия двух электрических зарядов в конкретной среде меньше, чем в вакууме, для которого она равна 1

$$\mathcal{E}(\omega)=1-rac{\omega_{pe}^2}{\omega(\omega-i
u_e)}-\chi$$
, где $\chi=rac{\omega_{pi}^2}{\omega(\omega-i
u_i)}$ - ионная составляющая, которой можно пренебречь

Вводятся абсолютная (\mathcal{E}_a) и относительная (\mathcal{E}_r) проницаемости. Величина \mathcal{E}_r безразмерна, а \mathcal{E}_a по размерности совпадает с электрической постоянной \mathcal{E}_0 - СИ: $\left\lceil \frac{\text{фарад}}{\text{м}} \right\rceil$