Учебно-методическое объединение вузов Республики Беларусь в области информатики и радиоэлектроники Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

СИСТЕМНОЕ ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЛОКАЛЬНЫХ КОМПЬЮТЕРНЫХ СЕТЕЙ

Учебная программа для специальности I-40 02 01 Вычислительные машины, системы и сети

СОГЛАСОВАНО
Председатель УМО вузов Республики
Беларусь по образованию в области
информатики и радиоэлектроники
М. П. Батура

СОСТАВИТЕЛИ:

Д.А.Пынькин, ассистент кафедры ЭВМ Учреждения образования «Белорусский государственный университет информатики и радиоэлектроники»

И.И.Глецевич, ассистент кафедры ЭВМ Учреждения образования «Белорусский государственный университет информатики и радиоэлектроники»

РЕЦЕНЗЕНТЫ:

Д.А.Костюк, доцент кафедры ЭВМ и систем Учреждения образования «Брестский государственный технический университет», кандидат технических наук, доцент;

А.А.Дудкин, ведущий научный сотрудник ОИПИ НАН Беларуси, кандидат технических наук.

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ В КАЧЕСТВЕ УЧЕБНОЙ:

Кафедрой электронных вычислительных машин Учреждения образования «Белорусский государственный университет информатики и радиоэлектроники» (протокол №37 от 31.03.2010) (кафедра – разработчик программы);

Научно-методическим советом по направлению I-40 Вычислительная техника УМО вузов Республики Беларусь по образованию в области информатики и радиоэлектроники (протокол №2 от 28.09.2010);

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

ХАРАКТЕРИСТИКА УЧЕБНОЙ ДИСЦИПЛИНЫ

Учебная программа «Системное программное обеспечение локальных компьютерных сетей» разработана для студентов высших учебных заведений по специальности I-40 02 01 Вычислительные машины, системы и сети в соответствии с требованиями Образовательного стандарта ОСРБ I-40 02 01-2007 и учебным планом специальности I-40 02 01 Вычислительные машины, системы и сети.

Изучение данной дисциплины является актуальным, поскольку интеграция с сетевыми технологиями происходит во все более возрастающем количестве программных и аппаратных комплексов, стирается граница между локальным и сетевым подходами в архитектуре прикладных программных продуктов, появляются новые сетевые технологии, как информационного, так и вычислительного характера, возрастает значение и роль параллельных вычислений в задачах, ориентированных на конечного пользователя. В связи с этим возникает необходимость подготовки специалистов, разбирающихся в системном программном обеспечении, обеспечивающем взаимодействие компьютерных систем, а также умеющих создавать такое программное обеспечение.

В настоящее время взаимодействие компьютерных систем в локальных и глобальных компьютерных сетях базируется на схожих технологиях и принципах работы. Поэтому основное внимание уделено изучению наиболее распространенных технологий, а также типовых архитектур и алгоритмов, применяющихся при создании системного сетевого программного обеспечения, с учетом знаний, накопленных студентами к старшим курсам. Цели и задачи дисциплины формулируются исходя из вышесказанного.

ЦЕЛИ, ЗАДАЧИ, РОЛЬ ДИСЦИПЛИНЫ

Цель дисциплины: всестороннее изучение основных вопросов, связанных с с функционированием сетевого программного обеспечения компьютерных сетей.

Задача дисциплины: подготовить специалиста в области сетевых технологий, разбирающегося в принципах работы и умеющего создавать системное и прикладное сетевое программное обеспечение.

Базовыми дисциплинами для курса «Системное программное обеспечение локальных компьютерных сетей» являются дисциплины «Системное программное обеспечение вычислительных машин» и «Вычислительные комплексы, системы и сети».

ТРЕБОВАНИЯ К УРОВНЮ ОСВОЕНИЯ СОДЕРЖАНИЯ ДИСЦИПЛИНЫ

В результате изучения данной дисциплины развиваются следующие компетенции:

академические:

- иметь навыки организации проведения исследования, информационного обеспечения, а также системного и сравнительного анализа;
- владеть базовыми научно-теоретическими знаниями и применять их для решения теоретических и практических задач;
- владеть междисциплинарным подходом при решении проблем;
- иметь навыки, связанные с использованием технических устройств, управлением информацией и работой с компьютером;
- уметь работать самостоятельно;
- быть способным порождать новые идеи (креативность);

социально-личностные:

- уметь работать в коллективе;
- использовать знания основ социологии, физиологии и психологии труда;
- иметь способность находить правильные решения в условиях чрезвычайных ситуаций;
- владеть навыками здоровьесбережения;
- уметь работать в команде;

профессиональные:

- определение целей проектирования объектов профессиональной деятельности, критериев эффективности проектных решении, ограничений;
- системный анализ объекта проектирования и предметной области, их взаимосвязей;
- проектирование архитектуры аппаратно-программных комплексов и их компонентов;
- выбор средств вычислительной техники (BT), средств программирования с целью их применения для эффективной реализации аппаратно-программных комплексов;
- разработка (на основе действующих стандартов) документации для различных категорий специалистов, участвующих в создании, эксплуатации и сопровождении объектов профессиональной деятельности;
- оценка надежности и качества функционирования объекта проектирования;
- создание автоматизированных систем и производство программных продуктов заданного качества в заданный срок;
- тестирование и отладка аппаратно-программных комплексов;
- разработка программы и методики испытаний, проведение испытаний объектов профессиональной деятельности;
- комплексирование аппаратных и программных средств, создание вычислительных систем, комплексов и сетей;
- организация внедрения объекта проектирования и разработки в опытную или промышленную эксплуатацию;
- анализ, теоретическое и экспериментальное исследование методов, алгоритмов, программ, аппаратно-программных комплексов и систем;

 анализ и исследование методов и технологий, применяемых на всех этапах жизненного цикла объектов профессиональной деятельности.

В результате изучения дисциплины обучаемый должен: знать:

- основные возможности сетевых операционных систем;
- основные протоколы обмена и интерфейсы, используемые при построении глобальных и корпоративных компьютерных сетей;
- области применения, достоинства и недостатки наиболее распространенных сетевых протоколов;
- наиболее распространенные методы и алгоритмы взаимодействия программного обеспечения в компьютерных сетях;
- принципы построения сетевого программного обеспечения;
- особенности и принципы построения распределенных систем;
 уметь:
 - выбирать, настраивать, а также разрабатывать необходимые программные и аппаратные сетевые средства;
 - по техническим требованиям выбирать способ взаимодействия между компьютерными системами;
 - разрабатывать протоколы и интерфейсы в рамках поставленной задачи;
 - создавать сетевое системное и прикладное программное обеспечение;
 - диагностировать и устранять проблемы возникающие при взаимодействии сетевого программного обеспечения.

МЕТОДЫ (ТЕХНОЛОГИИ) ОБУЧЕНИЯ

Основные методы (технологии) обучения, отвечающие целям и задачам дисциплины:

- элементы проблемного обучения (проблемное изложение, вариативное изложение, частично-поисковый метод), реализуемые на лекционных занятиях;
- элементы учебно-исследовательской деятельности, реализация творческого подхода, реализуемые на практических (лабораторных) занятиях;
- проектные технологии, используемые при проектировании конкретного объекта, реализуемые на практических (лабораторных) занятиях.

ДИАГНОСТИКА КОМПЕТЕНЦИЙ СТУДЕНТА

Учебным планом специальности в качестве формы итогового контроля по дисциплине «Системное программное обеспечение локальных компьютерных сетей» предусмотрен зачет. Оценка учебных достижений студента осуществляется на зачете с помощью письменного ответа на вопросы, входящие в программу дисциплины.

Для текущего контроля и самоконтроля знаний и умений студентов по данной дисциплине можно использовать следующий диагностический инструментарий:

- проведение коллоквиума;

- письменные контрольные работы;
- устный опрос;
- проведение текущих опросов по отдельным разделам (темам) дисциплины;
- решение проблемных (творческих) задач, предполагающих неформализованный ответ.

ПРИМЕРНЫЙ ТЕМАТИЧЕСКИЙ ПЛАН ДИСЦИПЛИНЫ

Программа рассчитана на объем 96 аудиторных учебных часов. Примерное распределение аудиторных часов по видам занятий: лекций — 64 часов, лабораторных занятий — 32 часов.

	Всего	Лек-	Лабора-	
Наименование раздела, темы	аудит.	ции,	торные	
	часов	Ч	занятия, ч	
Введение в сетевое программное	2	2		
обеспечение	2	<u> </u>		
Раздел 1. Сетевое программное обеспечение	62	38	24	
Тема 1. Основные сетевые и транспортные	6	6		
протоколы стека ТСР/ІР	0	0		
Тема 2. Элементарные сокеты	12	8	4	
Тема 3. Сетевое системное программное	18	8	10	
обеспечение	10	O	10	
Тема 4. Модель сетевого взаимодействия	20	10	10	
клиент-сервер	20	10	10	
Тема 5. Протоколы безопасного сетевого	4	4		
взаимодействия	Т			
Тема 6. Типовые сетевые угрозы	2	2		
безопасности				
Раздел 2. Распределенные системы	32	24	8	
Тема 7. Основы разработки параллельных	14	8	6	
приложений в стандарте МРІ	14 0		17	Ů
Тема 8. Введение в принципы	2	2		
распределенных систем	2			
Тема 9. Именование в распределенных	2	2		
системах	2			
Тема 10. Процессы в распределенных	1	1		
системах	1	1		
Тема 11. Синхронизация в распределенных	3	3		
системах	3	<i>J</i>		
Тема 12. Непротиворечивость и репликация	2	2		
в распределенных системах	2	<u> </u>		
Тема 13. Сетевые и распределенные	2	2		
файловые системы	<u> </u>	<u> </u>		

	Всего	Лек-	Лабора-
Наименование раздела, темы	аудит.	ции,	торные
	часов	Ч	занятия, ч
Тема 14. Отказоустойчивость в	14. Отказоустойчивость в		
распределенных системах	2	2	
Тема 15. Кластерные, облачные и GRID-	4	2	2
системы	–	2	2
Итого:	96	64	32

СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

ВВЕДЕНИЕ

Цели и задачи дисциплины. Сетевое программное обеспечение. Иерархия протоколов. Функции различных уровней протоколов.

Раздел 1. СЕТЕВОЕ ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ

Тема 1. ОСНОВНЫЕ СЕТЕВЫЕ И ТРАНСПОРТНЫЕ ПРОТОКОЛЫ СТЕКА ТСР/IP

Протоколы IPv4, IPv6, ICMP, UDP, TCP. Особенности работы основных протоколов.

Тема 2. ЭЛЕМЕНТАРНЫЕ СОКЕТЫ

Понятие сокета. Сокеты Berkley. Типы сокетов. Системные вызовы для работы по сети. Режимы передачи данных. Управление режимами передачи данных.

Тема 3. СЕТЕВОЕ СИСТЕМНОЕ ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ

Особенности реализации сетевых утилит ping, traceroute. Порт-сканнеры. Типы сканирования. Снифферы. Особенности работы протоколов сетевого уровня на примерах сетевых утилит.

Тема 4. МОДЕЛЬ СЕТЕВОГО ВЗАИМОДЕЙСТВИЯ КЛИЕНТ-СЕРВЕР

Клиенты и серверы. Архитектура клиент-сервер. Виды архитектур. Архитектура клиентского и серверного сетевого программного обеспечения. Алгоритмы и задачи проектирования клиентского программного обеспечения. Алгоритмы и задачи проектирования серверного программного обеспечения. Примеры реализации. Введение в клиент-серверные технологии Веб.

Тема 5. ПРОТОКОЛЫ БЕЗОПАСНОГО СЕТЕВОГО ВЗАИМОДЕЙСТВИЯ Протоколы TLS, SSL. Примеры использования.

Тема 6. ТИПОВЫЕ СЕТЕВЫЕ УГРОЗЫ БЕЗОПАСНОСТИ Классификация угроз безопасности. Типовые угрозы безопасности.

Раздел 2. РАСПРЕДЕЛЕННЫЕ СИСТЕМЫ

Тема 7. ОСНОВЫ РАЗРАБОТКИ ПАРАЛЛЕЛЬНЫХ ПРИЛОЖЕНИЙ В СТАНДАРТЕ МРІ

Введение в MPI – интерфейс передачи сообщений. Структура программ MPI. Парная межпроцессная коммуникация. Коллективные взаимодействия процессов. Группы процессов и коммуникаторы. Виртуальные топологии. Файловый ввод-вывод.

Тема 8. ВВЕДЕНИЕ В ПРИНЦИПЫ РАСПРЕДЕЛЕННЫХ СИСТЕМ

Введение. Задачи. Концепции аппаратных и программных решений. Прозрачность. Открытость. Масштабируемость. Мультипроцессорные ОС. Мультикомпьютерные ОС. Сетевые ОС. Программное обеспечение промежуточного уровня. Связь в распределенных системах.

Тема 9. ИМЕНОВАНИЕ В РАСПРЕДЕЛЕННЫХ СИСТЕМАХ

Имена, идентификаторы, адреса. Пространства имен. Разрешение имен. Примеры систем разрешения имен.

Тема 10. ПРОЦЕССЫ В РАСПРЕДЕЛЕННЫХ СИСТЕМАХ Перенос кода. Программные агенты.

Тема 11. СИНХРОНИЗАЦИЯ В РАСПРЕДЕЛЕННЫХ СИСТЕМАХ

Проблемы синхронизации. Синхронизация времени в распределенных системах. Логические часы. Алгоритмы голосования в распределенных системах. Алгоритмы взаимного исключения в распределенных системах.

Тема 12. НЕПРОТИВОРЕЧИВОСТЬ И РЕПЛИКАЦИЯ В РАСПРЕДЕЛЕННЫХ СИСТЕМАХ

Модели непротиворечивости. Репликация данных. Проблемы непротиворечивости при репликации и методы решения.

Тема 13. СЕТЕВЫЕ И РАСПРЕДЕЛЕННЫЕ ФАЙЛОВЫЕ СИСТЕМЫ Понятие сетевых и распределенных файловых систем. Пример сетевой файловой системы. Пример распределенной файловой системы.

Тема 14. ОТКАЗОУСТОЙЧИВОСТЬ В РАСПРЕДЕЛЕННЫХ СИСТЕМАХ Понятие отказоустойчивости. Модели отказов. Отказоустойчивость процессов. Восстановление.

Тема 15. ОБЛАЧНЫЕ И GRID-СИСТЕМЫ

Введение в архитектуру современных распределенных систем. Понятие кластера. GRID-системы. Облачные вычисления.

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ТЕМ ЛАБОРАТОРНЫХ РАБОТ

- 1. Изучение системных утилит для тестирования и анализа сетевых протоколов: telnet, netcat, netstat, tcpdump, nmap, wireshark и других.
- 2. Знакомство с программированием сокетов. Простейшая программасервер с использованием протокола TCP (например возвращающая данные клиента). Использование системных утилит (telnet, netcat) в качестве клиента.
- 3. Клиент-серверная программа для передачи файла по сети с использованием протокола ТСР.
- 4. Изучение внеполосного (срочного) режима передачи данных в протоколе TCP.
- 5. Клиент-серверная программа для передачи файла по сети с использованием протокола UDP.
- 6. Организация параллельной обработки запросов на сервере с помощью мультиплексирования.
- 7. Организация параллельной обработки запросов на сервере с помощью потоков.
- 8. Организация параллельной обработки запросов на сервере с помощью процессов.
 - 9. Изучение протокола ICMP и особенностей его программирования.
 - 10. Изучение протокола IP и особенностей его программирования.
 - 11. Изучение широковещательного режима передачи данных.
 - 12. Изучение режима многоадресного режима передачи данных.
- 13. Приложение MPI и процедура его запуска. Изучение парных коммуникаций MPI.
- 14. Изучение коллективных операций МРІ. Изучение групп и коммуникаторов в МРІ.
 - 15. Изучение файловых операций в МРІ.
 - 16. Запуск приложения на кластере с помощью PBS и в GRID-сети.

ПРИМЕРНЫЙ ПЕРЕЧЕНЬ КОМПЬЮТЕРНЫХ ПРОГРАММ

- 1. Любая операционная система с поддержкой API сокетов Berkeley (Linux, Windows, Mac OS, FreeBSD, Solaris).
- 2. Программное обеспечение MPI (mvapich, mpich или OpenMPI).
- 3. Учебный вычислительный кластер под управлением PBS (например torque) и GRID-сайта (например Unicore).

КРИТЕРИИ ОЦЕНОК РЕЗУЛЬТАТОВ УЧЕБНОЙ ДЕЯТЕЛЬНОСТИ СТУДЕНТА

Оценка	Показатели оценки
Незачет	Недостаточно полный объем знаний в рамках образовательного
	стандарта; знание части основной литературы, рекомендованной
	учебной программой дисциплины; использование научной
	терминологии, изложение ответа на вопросы с существенными и
	логическими ошибками; слабое владение инструментарием
	учебной дисциплины, некомпетентность в решении стандартных
	(типовых) задач; неумение ориентироваться в основных теориях,
	концепциях и направлениях изучаемой дисциплины; пассивность
	на практических и лабораторных занятиях, низкий уровень
	культуры исполнения заданий.
Зачет	Достаточный объем знаний в рамках образовательного стандарта;
	усвоение основной литературы, рекомендованной учебной
	программой дисциплины; использование научной терминологии,
	логическое изложение ответа на вопросы, умение делать выводы
	без существенных ошибок; владение инструментарием учебной
	дисциплины, умение его использовать в решении стандартных
	(типовых) задач; умение под руководством преподавателя решать
	стандартные (типовые) задачи; умение ориентироваться в
	основных теориях, концепциях и направлениях по изучаемой
	дисциплине и давать им оценку; работа под руководством
	преподавателя на практических, лабораторных занятиях,
	допустимый уровень исполнения заданий.

ЛИТЕРАТУРА

ОСНОВНАЯ

- 1. Тенненбаум Э., Компьютерные сети, СПб.:Питер, 2003, 992 с.
- 2. Тенненбаум Э., Ван Стеен М., Распределенные системы. Принципы и парадигмы, Спб.:Питер, 2003, 877 с.
- 3. Стивенс У. Р., Феннер Б., Рудофф Э.М., UNIX: разработка сетевых приложений. 3-е изд. СПб.:Питер, 2007, 1039 с.
- 4. Под ред. Садыхова Р.Х., Средства параллельного программирования в ОС Linux: Учебное пособие, Мн.: ЕГУ, 2004, 476 с.
- 5. Камер Д.Э., Стивенс Д.Л., Сети TCP/IP, том 3. Разработка приложений типа клиент/сервер для Linux/POSIX, М.:Издательский дом "Вильямс", 2002, 592 с.
- 6. Скляров И.С., Программирование боевого софта под Linux, БХВ-Петербург, 2007, 416 с.
- 7. Реймонд Эрик С., Искусство программирования для UNIX.: Пер. С англ. М.: Издательский дом «Вильямс», 2005, 544 с.

- 8. Семенов Ю.А., Телекоммуникационные технологии [Электронный ресурс]. Электронные данные. Режим доступа: http://book.itep.ru/
- 9. Лапонина О.Р., Протоколы безопасного сетевого взаимодействия [Электронный ресурс]. Электронные данные. Режим доступа: http://www.intuit.ru/department/security/networksec2/

ДОПОЛНИТЕЛЬНАЯ

- 10.Вейрле К., Пельке Ф., Риттер Х., Мюллер Д., Бехлер М., Linux: сетевая архитектура. Структура и реализация сетевых протоколов в ядре/ пер. с англ. М.:Кудиц-Образ, 2006, 656 с.
- 11. Карпов В.Е., Коньков К.А., Основы операционных систем. Практикум. [Электронный ресурс]. Электронные данные. Режим доступа: http://www.intuit.ru/department/os/osintropractice/
- 12.Сычев А.В., Web-технологии [Электронный ресурс]. Электронные данные. Режим доступа: http://www.intuit.ru/goto/course/webtechno/
- 13. Антонов А.С., Параллельное программирование с использованием технологии MPI [Электронный ресурс]. Электронные данные. Режим доступа: http://www.intuit.ru/department/se/mpitech/
- 14.RFC Series Overview [Электронный ресурс]. Электронные данные. Режим доступа: http://www.rfc-editor.org/RFCoverview.html.