

Ciência da Computação

Geometria Analítica e Álgebra linear

Prof^a Vanussa G. D. de Souza

29/03/2016

Exemplo

Construa a matriz B_{2x3} , definida por:

$$b_{ij} = \begin{cases} i+j, & i=j \\ j^2, & i \neq j \end{cases}$$

Determinantes

Estudando as matrizes quadradas, verificou-se que é possível associar a cada matriz quadrada um único número real, chamado *determinante* da matriz.

▶ Determinante de uma matriz quadrada de ordem 1 (matriz de primeira ordem):

O determinante da matriz $A = [a_{11}]$, indicado por det A ou $|a_{11}|$, \acute{e} o próprio elemento a_{11} .

Exemplos:

- a) se A = [-2] então det A = -2
- b) se B = $\left[\frac{1}{3} \right]$ então det B = $\frac{1}{3}$.

Determinantes

Determinante de matriz quadrada de ordem 2 ou matriz de segunda ordem:

O determinante de uma matriz $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ é igual a diferença entre o produto dos elementos da diagonal principal e o produto dos elementos da diagonal secundária.

$$\det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}.a_{22} - a_{12}.a_{21}$$

Exemplo:

$$\det \mathbf{M} = \begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} = 2.5 - 4.3 = 10 - 12 \Rightarrow \det \mathbf{M} = -2$$

Menor Complementar

O menor complementar Dij da matriz Anxn é o determinante da matriz obtida, eliminando a linha i e a coluna j de A.

Exemplo:

Dada a matriz quadrada A = $\begin{bmatrix} 1 & -3 & 4 \\ 0 & 1 & -2 \\ 2 & -1 & 3 \end{bmatrix}$, cada elemento dessa matriz possui um menor complementar.

Vamos calcular o menor complementar do elemento $a_{22} = 1$:

$$A = \begin{bmatrix} 1 & -3 & 4 \\ 0 & 1 & -2 \\ 2 & -1 & 3 \end{bmatrix}$$

$$D_{22} = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix} = 1 \cdot 3 - 2 \cdot 4 = 3 - 8 = -5$$

$$D_{22} = \begin{vmatrix} 1 & 4 \\ 2 & 3 \end{vmatrix} = 1 \cdot 3 - 2 \cdot 4 = 3 - 8 = -5$$

Cofator

Consideremos uma matriz A, de ordem n, e o elemento \mathbf{a}_{ij} de A.

O cofator de a_{ij} é o produto de (- 1) $^{i+j}$ pelo determinante da matriz obtida quando se elimina na matriz inicial a linha i e a coluna j. Este cofator \acute{e} indicado por c_{ij} .

Exemplo: Determine os cofatores dos elementos a_{12} e de a_{22} :

$$A = \begin{bmatrix} 1 & 5 & 0 \\ 4 & 3 & 4 \\ 6 & 0 & 2 \end{bmatrix},$$

$$C_{12} = (-1)^{1+2} \cdot D_{12}$$

Calculamos primeiro o menor complementar:

$$A = \begin{bmatrix} 1 & 5 & 0 \\ 4 & 3 & 4 \\ 6 & 0 & 2 \end{bmatrix} \quad \Box \qquad A' = \begin{bmatrix} 4 & 4 \\ 6 & 2 \end{bmatrix}$$

$$D_{12} = \det(A')$$

$$D_{12} = (4.2) - (4.6)$$

$$D_{12} = 8 - 24$$

$$D_{12} - 16$$

Substituindo temos:

$$c_{-12} = (-1)^{1+2} - (-16)$$

$$c_{12} = (-1)^3 \cdot (-16)$$

$$c_{12} = (-1).(-16)$$

$$c_{12} = 16$$

Portanto o cofator $c_{12}\,\acute{e}$ igual a 16.

Determinantes

Exercício:

Dada a matriz M = $\begin{bmatrix} 2 & 5 & 3 \\ 0 & -2 & -1 \\ 6 & 4 & -3 \end{bmatrix}$, calcule os seguintes cofatores:

- a) C₁₁
- b) C₁₂
- c) C₂₃

Matriz dos Cofatores

Seja Anxn , a matriz dos cofatores $\,\acute{\mathrm{e}}\,$ a matriz formada pelos respectivos cofatores de cada um dos termos da matriz original.

Exercício:

Qual a matriz dos cofatores da matriz A?

$$A = \begin{bmatrix} 0 & 2 & 1 \\ -1 & 4 & 1 \\ 1 & 2 & 3 \end{bmatrix}$$

$$c_{11} = (-1)^{1+1} \cdot 10 = 10$$

$$c_{12} = (-1)^{1+2} \cdot (-4) = 4$$

.

$$\overline{\mathbf{A}} = \begin{bmatrix} 10 & 4 & -6 \\ -4 & -1 & 2 \\ -2 & -1 & 2 \end{bmatrix}$$

Matriz Adjunta

A matriz Adjunta é a transposta da matriz dos cofatores.

$$Adj A = \frac{-t}{A}$$

Determinantes

▶ Determinante de matriz quadrada de ordem $n (n \ge 2)$:

Se $n \ge 2$, o determinante da matriz A será o número real que se obtém somando-se os produtos dos elementos de uma fila (linha ou coluna) qualquer pelos seus respectivos cofatores.

Este resultado é conhecido como Teorema de Laplace.

Exemplo:

Calcule o determinante da matriz abaixo usando o Teorema de Laplace:

$$C = \begin{pmatrix} -2 & 3 & 1 & 7 \\ 0 & -1 & 2 & 1 \\ 3 & -4 & 5 & 1 \\ 1 & 0 & -2 & -1 \end{pmatrix}$$

Exercício:

Calcule o determinante da matriz B, utilizando o teorema de Laplace:

$$B = \begin{pmatrix} 1 & 0 & 5 & 0 \\ 2 & -1 & 0 & 3 \\ 3 & 0 & 2 & 0 \\ 7 & 0 & 6 & 5 \end{pmatrix}$$

Propriedades do determinante

- ► Se A t é a transposta de uma matriz quadrada A, então det A = det A t.
- ► Se os elementos de uma fila (linha ou coluna) de uma matriz quadrada forem iguais a zero, seu determinante será nulo, det A = 0.
- ▶ Se uma matriz tem duas filas paralelas iguais e/ou proporcionais, então det A = 0.
- ▶ Se multiplicarmos todos os elementos de uma fila de uma matriz quadrada por um número, seu determinante ficará multiplicado por esse número.
- ▶ Um determinante não se altera quando somamos a uma fila outra fila paralela multiplicada por um número real qualquer. (Teorema de Jacobi)
- Se A e B são duas matrizes quadradas de ordem n, o determinante da matriz produto AB é igual ao produto dos determinantes das matrizes A e B, isto é, det (A.B) = (det A). (det B). (Teorema de Binet)
- O determinante de uma matriz triangular A (superior ou inferior) é igual ao produto dos elementos da diagonal principal.
- Quando trocamos as posições de duas filas paralelas, o determinante muda de sinal.

Matriz Inversa

Dadas A e B de ordem n, a matriz B é a inversa de A se

$$A.B = B.A = In.$$

Usamos a notação B = A -1.

Exemplo:

Verifique se a matriz A = $\begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}$ e a matriz B = $\begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$ são inversas entre si.

- Se a matriz A admite inversa (det A≠ 0), esta é única.
- ▶ Se a matriz A é não singular, sua inversa A ¹¹ também o é e a matriz inversa de A ¹¹ é Å.
- ▶ A matriz identidade, In, é não singular (det I = 1) e é sua própria inversa: I = I -1.
- ► Se a matriz A é não singular, sua transposta também o é. A matriz inversa de A^t é (A ⁻¹) t
- Se as matrizes A e B são não singulares e de mesma ordem, o produto AB é uma matriz não singular. A matriz inversa de AB é a matriz B-1 . A -1