Matplotlib Exercises

** * NOTE: ALL THE COMMANDS FOR PLOTTING A FIGURE SHOULD ALL GO IN THE SAME CELL. SEPARATING THEM OUT INTO MULTIPLE CELLS MAY CAUSE NOTHING TO SHOW UP. * **

Exercises

Follow the instructions to recreate the plots using this data:

Data

** Import matplotlib.pyplot as plt and set %matplotlib inline if you are using the jupyter notebook. What command do you use if you aren't using the jupyter notebook?**

```
In [3]: 1
```

Exercise 1

- ** Follow along with these steps: **
 - ** Create a figure object called fig using plt.figure() **
 - ** Use add_axes to add an axis to the figure canvas at [0,0,1,1]. Call this new axis ax. **
 - ** Plot (x,y) on that axes and set the labels and titles to match the plot below:**

```
In [4]:
```

Out[4]: <matplotlib.text.Text at 0x111534c50>

Exercise 2

** Create a figure object and put two axes on it, ax1 and ax2. Located at [0,0,1,1] and [0.2,0.5,.2,.2] respectively.**

^{**} Now plot (x,y) on both axes. And call your figure object to show it.**

Exercise 3

** Create the plot below by adding two axes to a figure object at [0,0,1,1] and [0.2,0.5,.4,.4]**

^{**} Now use x,y, and z arrays to recreate the plot below. Notice the xlimits and y limits on the inserted plot:**

Exercise 4

** Use plt.subplots(nrows=1, ncols=2) to create the plot below.**

** Now plot (x,y) and (x,z) on the axes. Play around with the linewidth and style**

** See if you can resize the plot by adding the figsize() argument in plt.subplots() are copying and pasting your previous code.**

Out[32]: <matplotlib.text.Text at 0x1141b4ba8>

Great Job!