Control 1

P1. Considere el sistema

donde x_1, x_2, x_3, x_4 son las incógnitas y $\alpha, \beta \in \mathbb{R}$ son parámetros.

- (i) (5,0 ptos.) Determine los valores o condiciones sobre los parámetros α y β de modo que el sistema:
 - tenga infinitas soluciones
 - no tenga soluciones
 - tenga solución única.
- (ii) (1,0 pto.) Para $\alpha = 1$ y $\beta = 2$, encuentre, de ser posible, la solución del sistema.

P2. a) Dadas las rectas L_1 y L_2 definidas por

$$L_1: \begin{pmatrix} 0\\1\\0 \end{pmatrix} + t \begin{pmatrix} 1\\1\\1 \end{pmatrix}, t \in \mathbb{R} \quad \mathbf{y} \quad L_2: \begin{cases} x-z-1=0\\y+z-2=0 \end{cases}$$

se pide:

- (i) (1,0 pto.) Demostrar que $L_1 \cap L_2 = \phi$.
- (ii) (1,5 ptos.) Deducir la ecuación cartesiana del plano que contiene a L_1 y es paralelo a L_2 .
- (iii) (1,5 ptos.) Encontrar la distancia entre las rectas L_1 y L_2 .
- b) (2,0 ptos.) Se $A \in \mathcal{M}_{nn}(\mathbb{R})$ y $p \in \mathbb{N}$, $p \geq 2$. Pruebe que A^p es invertible si y sólo si A es invertible.

P3. Sean $n \in \mathbb{N}$, $n \geq 1$ y W definido por

$$W = \{ A \in \mathcal{M}_{nn}(\mathbb{R}) / A \text{ es simétrica y } \sum_{i=0}^{n} a_{ii} = 0 \}.$$

- a) (2,0 ptos.) Probar que W es s.e.v. de $\mathcal{M}_{nn}(\mathbb{R})$.
- b) Considere n=3 y las matrices de $\mathcal{M}_{33}(\mathbb{R})$

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad B = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad C = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \quad D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \quad E = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

1

- b.1) (2,0 ptos.) Pruebe que $\{A, B, C, D, E\}$ es l.i.
- b.2) (2,0 ptos.) Pruebe que $W = \langle \{A, B, C, D, E\} \rangle$

Pauta Control 1

P1.

(i) Escalonando la matriz aumentada asociada al sistema se tiene

$$\begin{pmatrix}
1 & -\alpha & 0 & -\beta & 0 \\
0 & \alpha & 1 & \beta & \alpha \\
\beta & \alpha & \beta & 0 & \beta \\
\alpha & 0 & \beta & 0 & 0
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
1 & -\alpha & 0 & -\beta & 0 \\
0 & \alpha & 1 & \beta & \alpha \\
0 & \alpha(1+\beta) & \beta & \beta^{2} & \beta \\
0 & \alpha^{2} & \beta & \alpha\beta & 0
\end{pmatrix}$$

$$\longrightarrow
\begin{pmatrix}
1 & -\alpha & 0 & -\beta & 0 \\
0 & \alpha & 1 & \beta & \alpha \\
0 & 0 & -1 & -\beta & \alpha \\
0 & 0 & \beta - \alpha & 0 & -\alpha^{2}
\end{pmatrix}
\begin{bmatrix}
1,0
\end{bmatrix}$$

$$\longrightarrow
\begin{pmatrix}
1 & -\alpha & 0 & -\beta & 0 \\
0 & \alpha & 1 & \beta & \alpha \\
0 & 0 & -1 & -\beta & \beta & \alpha \\
0 & \alpha & 1 & \beta & \alpha \\
\beta - \alpha(1+\beta) & \beta - \alpha(1+\beta) \\
0 & 0 & 0 & -\beta(\beta - \alpha) & -\alpha^{2} + (\beta - \alpha)(\beta - \alpha - \alpha\beta)
\end{pmatrix}
\begin{bmatrix}
1,0
\end{bmatrix}$$

Entonces,

- Si $\alpha = \beta$ y $\alpha \neq 0$ no existe solución pués en la fila 4 se produce una igualdad imposible $(0 = -\alpha^2 \neq 0)$.
- Si $\alpha = \beta = 0$ existen infinitas soluciones pues en la última fila se producen sólo ceros. [1,0]
- Si $\alpha \neq \beta$ y $\beta = 0$ también existen infinitas soluciones pues nuevamente se producen sólo ceros en la última fila.
- Si $\alpha \neq \beta$ y $\alpha = 0$ existen infinitas soluciones pues las filas 2 y 3 quedan incompatibles. [1,5]
- Por último si $\alpha \neq \beta$, $\alpha \neq 0$, $\beta \neq 0$ la solución es única. [0,5]

En resumen,

- 1) El sistema tiene infinitas soluciones si $\alpha = \beta = 0$ o cuando $\alpha \neq \beta$ y $\beta = 0$ o cuando $\alpha \neq \beta$ y $\alpha = 0$.
- 2) El sistema no tiene solución si $\alpha = \beta$ y $\alpha = 0$.
- 3) El sistema tiene solución única si $\alpha \neq \beta$, $\alpha \neq 0$, $\beta \neq 0$.
- (ii) Para $\alpha=1$ y $\beta=2$ se tiene que $\alpha\neq\beta,\,\alpha\neq0,\,\beta\neq0$ por lo que existe solución única. La matriz ampliada queda:

$$\left(\begin{array}{ccc|cccc}
1 & -1 & 0 & -2 & 0 \\
0 & 1 & 1 & 2 & 1 \\
0 & 0 & -1 & -2 & -1 \\
0 & 0 & 0 & -2 & -2
\end{array}\right)$$

Entonces

$$x_4 = 1$$

 $-x_3 - 2 = -1 \Rightarrow x_3 = -1$
 $x_2 - 1 + 2 = 1 \Rightarrow x_2 = 0$
 $x_1 - 0 + 0 - 2 = 0 \Rightarrow x_1 = 2$

Así la solución del sistema es

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ -1 \\ 1 \end{pmatrix} [1,0]$$

P2. a) Las rectas L_1 y L_2 están definidas por

$$L_1: \begin{pmatrix} 0\\1\\0 \end{pmatrix} + t \begin{pmatrix} 1\\1\\1 \end{pmatrix}, t \in \mathbb{R} \quad \mathbf{y} \quad L_2: \begin{cases} x-z-1=0\\y+z-2=0 \end{cases}$$

(i) Para demostrar que $L_1 \cap L_2 = \phi$ bastará probar que el sistema para L_1 y L_2 no tiene solución. Así

$$L_1: \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \Rightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} t \\ 1+t \\ t \end{pmatrix}$$

Reemplazando en L_2 queda

$$x-z-1 = t-t-1 = 0 \Rightarrow -1 = 0$$

 $y+z-2 = 1+t+t-2 = 0 \Rightarrow t = 1/2$

donde el primer resultado es una contradicción. Se sigue que $L_1 \cap L_2 = \phi$. [1,0]

Observación: También puede escribirse la ecuación vectorial para L_2 y probar que el sistema que resulta para L_1 y L_2 no tiene solución.

(ii) El plano Π pedido debe contener a L_1 y ser paralelo a L_2 . Entonces como posición podemos usar $P:\begin{pmatrix} 0\\1\\0 \end{pmatrix} \in L_1 \subseteq \Pi$ y como vectores directores $d_1=\begin{pmatrix} 1\\1\\1 \end{pmatrix}$ de L_1 y d_2 de L_2 donde d_2 puede determinarse como $d_2=n_1\times n_2$ en que n_1 y n_2 son los vectores directores de los planos que determinan L_2 . Así

$$n_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \text{ y } n_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

entonces

$$d_2 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{vmatrix} \begin{pmatrix} i & j & k \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{vmatrix} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$

Entonces

$$\Pi: P + \lambda d_1 + \mu d_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} [1,0]$$

y su ecuación cartesiana se deduce de

$$x = \lambda + \mu$$

$$y = 1 + \lambda - \mu$$

$$z = \lambda + \mu$$

de donde la ecuación cartesiana pedida será

$$\Pi: x - z = 0.$$
 [0,5]

2

(iii) La distancia entre L_1 y L_2 es la misma que entre cualquier punto de L_2 y el plano Π . Tomando, por ejemplo $Q = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \in L_2$ y $\Pi : x - z = 0$.

$$\operatorname{dist}(Q,\Pi) = \frac{|x_Q - z_Q|}{\sqrt{1+1}} = \frac{|1-0|}{\sqrt{2}} = \frac{1}{\sqrt{2}} [1,5]$$

donde se usó que la distancia de un punto $Q=\begin{pmatrix} x_0\\y_0\\z_0 \end{pmatrix}$ a un plano $\Pi:Ax+By+Cz=0$ es

 $dist(Q,\Pi) = \frac{|Ax_0 + By_0 + Cz_0|}{\sqrt{A^1 + B^2 + C^2}}$

Observación: Alternativamente la distancia se puede calcular tomando un punto $P \in L_1$ y otro $Q \in L_2$ y proyectar PQ según el vector unitario de Π .

Así la distancia entre L_1 y L_2 es $\left| \langle Q - P, \frac{n}{\|n\|} \rangle \right|$.

b) $A \in \mathcal{M}_{nn}(\mathbb{R}), p \in \mathbb{N}, p \geq 2.$

 A^p es invertible $\Leftrightarrow A$ es invertible

 \Rightarrow) A^p es invertible, entonces $\exists B \in \mathcal{M}_{nn}(\mathbb{R})$ tal que $BA^p = I$, entonces

$$BA^{p-1}A = I \Rightarrow (BA^{p-1})A = I$$

Entonces A es invertible y su inversa es BA^{p-1} tal que

$$(BA^{p-1})A = A(BA^{p-1}) = I.$$
 [1,5]

 \Leftarrow) Basta recordar que el producto de matrices invertible es invertible, con lo que $A^p = \underbrace{A \cdot \ldots \cdot A}_{p \text{ veces}}$ es invertible. [0,5]

P3.

a) $W = \{A \in \mathcal{M}_{nn}(\mathbb{R})/A \text{ es simétrica y } \sum_{i=0}^{n} a_{ii} = 0\}..W \text{ es un s.e.v. de } \mathcal{M}_{nn} \text{ si } (\forall \lambda \mu \in \mathbb{R})(\forall A, B \in W)$

$$(\lambda A + \mu B) \in W.$$

Primero debemos probar que si A y B son simétricas, entonces $(\lambda A + \mu B)$ es simétrica, es decir, debe probarse que

$$(\lambda A + \mu B)^T = (\lambda A + \mu B)$$

donde $A^T = A \vee B^t = B$.

En efecto

$$(\lambda A + \mu B)^T = (\lambda A)^T + (\mu B)^T = \lambda A^T + \mu B^T = (\lambda A + \mu B).$$
 [1,5]

Además, para $A, B \in W$, $\operatorname{tr}(\lambda A + \mu B) = \lambda \cdot 0 + \mu \cdot 0 = 0$. Claramente $(\lambda A + \mu B)$ satisface las dos condiciones de W y por lo tanto

$$(\lambda A + \mu B) \in W \Rightarrow W \text{ es un s.e.v. de } \mathcal{M}_{nn}(\mathbb{R}). [0,5]$$

b) Las matrices de $W \subseteq \mathcal{M}_{33}(\mathbb{R})$ (n=3) son

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad B = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad C = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \quad D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \quad E = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

b.1) Se deb probar que $\{A, B, C, D, E\}$ es l.i. es decir, si

$$\lambda_1 A + \lambda_2 B + \lambda_3 C + \lambda_4 D + \lambda_5 E = 0 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

entonces $\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 + \lambda_5 = 0$

En efecto

$$\lambda_1 \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} + \lambda_3 \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + \lambda_4 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} + \lambda_5 \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

se obtienen, para cada componente, las ecuaciones o resultados siguientes

$$\lambda_4 = 0$$
, $\lambda_1 = 0$, $\lambda_2 = 0$, $\lambda_1 = 0$, $\lambda_5 = 0$, $\lambda_3 = 0$, $\lambda_2 = 0$, $\lambda_3 = 0$

 $y - \lambda_4 - \lambda_5 = 0$ de donde $\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = \lambda_5 = 0$. [1,0]

b.2) Se debe probar que $W=\langle\{A,B,C,D,E\}\rangle$, es decir, para toda matriz $S\in W$ existen escalares $\lambda_1,\lambda_2,\lambda_3,\lambda_4,\lambda_5$ tales que

$$\lambda_1 A + \lambda_2 B + \lambda_3 C + \lambda_4 D + \lambda_5 E = S$$

donde S se puede escribir como $S=\begin{pmatrix} a & c & d \\ c & b & e \\ d & e & -a-b \end{pmatrix}$ que cumple con ser simétrica y de traza nula $(a,b,c,d,e\in\mathbb{R}$ cualquiera). [1,0] Sigue que

$$\lambda_{1} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \lambda_{2} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} + \lambda_{3} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + \lambda_{4} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} + \lambda_{5} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

$$= \begin{pmatrix} a & c & d \\ c & b & e \\ d & e & -a - b \end{pmatrix}$$

de donde la resolución es inmediata y se obtiene

$$\lambda_4 = a, \quad \lambda_1 = c, \quad \lambda_2 = d$$

$$\lambda_1 = c, \quad \lambda_5 = b, \quad \lambda_3 = e$$

$$\lambda_2 = d, \quad \lambda_3 = e, \quad \lambda_4 + \lambda_5 = a + b$$

Así hemos probado que $\forall S \in W, \exists \{\lambda_i\}_{i=1}^5 \subseteq \mathbb{R}$ tal que

$$S = \lambda_1 A + \lambda_2 B + \lambda_3 C + \lambda_4 D + \lambda_5 E$$
. [1,0]