Probability Distributions

(Discrete) Uniform

Each integer value in a specified range is assigned the same value.

Possible values $\{a, a+1, \dots, b-1, b\}$

 $\text{lower bound } a \in \mathbb{Z},$

upper bound $b \in \mathbb{Z}$ s.t. a < b

Notation U(a,b)

Probability function $p(x) = \frac{1}{b-a+1}$

Expectation $\frac{a+b}{2}$

Variance $\frac{(b-a)(b-a+2)}{12}$

MGF $M(t) = \frac{1}{b-a+1} \sum_{k=a}^{b} e^{kt}$

${\bf Bernoulli}$

Represents the success of a single experiment as a binary outcome.

Possible values $\{0,1\}$

Parameters probability of success $0 \le p \le 1$

Notation Bern (p)

Probability function $p(x) = p^x (1-p)^{1-x}$

Expectation p

Variance p(1-p)

 $M(t) = 1 + p(e^t - 1)$

Binomial

Represents the number of successes in a fixed number of independent and repeated trials of the same Bernoulli experiment.

Represents the success of a single experiment as a binary outcome.

Parameters number of trials $n \in \mathbb{N}$, proba-

bility of success on a single trial

 $0 \le p \le 1$

Notation Bin(n, p)

Probability function $p(x) = \binom{n}{x} p^x (n-p)^{1-x}$

Expectation np

Variance np(1-p)

MGF $M(t) = \left[1 + p\left(e^{t} - 1\right)\right]^{n}$

Related Distributions

• If $X \sim \text{Bin}(n, p)$, then

$$X = \sum_{i=1}^{n} X_i,$$

where the X_i are independent and identically distributed random variables with probability p of success.

Continuous

Multivariate

Discrete

Continuous