Как понять, что реализация не подходит?

плохо написал – иди переписывай!

Алгоритм

Вход: значения

Вычисления: код

Выход: значение

Качество кода?

Оформление кода:

• Единообразное оформление: стандарт?

Читабельность кода:

• Чтобы понять мог реализацию другой программист ?

<u>Сложный код:</u> – длинное нечитабельное и не структурированное полотно?

НО на кого это влияет?

- --пользователь **не видит код**
- --ошибки искать и другому разобраться сложно!

Какой алгоритм плохой?

Медленно работает

- Быстрая машина это дорого, а большинство пользовательских и рабочих точно не дорогие
- Мобильные устройства не настолько производительны, как компьютеры
- Интернет может сбоить, быть медленным
- Может требоваться быстрый отклик или мы теряем пользователей и деньги

Много жрет памяти

(чаще всего оперативную)

- Не хватает места другим приложениям
- Не хватает места другим исполняемым приложениям: работают медленно
- Данных может быть очень много и дублирование данных или попытка хранения в быстрой памяти проблема

Оценка сложности алгоритма

По ПАМЯТИ: сколько занимает памяти

- 1 переменная 1 пункт сложности
- Массив размером n n пунктов сложности
- Строка длинной n n пунктов сложности

По ВРЕМЕНИ: сколько операций нужно выполнить

- 1 операция 1 пункт сложности: присвоить/сравнить
- 1 итерация = k операций в итерации k пунктов сложности
- Условие = t логических операций и действий t пунктов сложности

Примеры

Память:

int i, j, n;
int A[100];
char B[n];

3 переменных	3 пункта
Массив 10 элементов	10 пунктов
Строка п символов	n пунктов

Время

```
for i = 1 to n {
    j++;
    k=n;
```

Операции	Цикл
1 (i = 1)	n - итераций
{1	2 пункта внутри итерации
1}	Итого: 2n+1

J		
while $(A[i] + A[i-1]$	>	0) {
A[i+1] = A[i];		
i = i - 1;		
1		

Операции	Цикл
{3	n - итераций
2	7 пункта внутри итерации
2}	Итого: 2n+1

}	
if (i<0 8	&& (i/2=0))
then j=	n;

Условие	подробнее
4	i/2=0 - 2 операции

Примеры

```
int i, j, n=100;
int A[n]=1;
char B[n];
for i = 1 to n do
   j++;
i=n;
while (A[i] + A[i-1] > 0) {
    A[i + 1] = A[i];
    i = i - 1;
    if (i<0 && (i/2=0)) then j=n;
```

Память = М	Время = Т
+3	+1
+n=100	+n
+n=100	
	+1
	{+n=100}
	+1
	{+3
	+2
	+2
	4+1 = 5}=12
	Итераций цикла: n
n+n+3	12n+1+n+n+1
M(n)=2n+3	T(n)=14n+2

Примеры

```
int n=10;
int A[n];
int key, i, j;
for i = 0 to n-1 do
   A[j] = i;
for i = 0 to n-1 do
   for j = 0 to n-1 do
       A[i]=A[i]+A[j];
```

Память = М	Время = Т
1	+1
+n=10	
+3	
	+1
	{+n=10}
	+1
	{+1
	{+2} – n итераций}
	n - итераций
	=n(2n+1)
1+n+3	n(2n+1)+1+n+1+1
M(n)=n+4	T(n)=2n ² +2n+3

Функции сложности

- M(n) сложность по памяти
- **T(n)** сложность по времени
- Зависят от размера входных данных **n**
- Размерность мы можем получать во время исполнения программы
- Функция как и реализация может быть простой (x=2 «прямая», аналогично код без циклом и без массивов M(n) = 3 / T(n) = 6)

Функция сложности – функция!

- **M(n)** сложность по памяти **T(n)** сложность по времени
 Вспомним типовые функции:
- x^2
- $Log_2 x$
- x*Log₂ x
- x³
- \bullet a^{x}
- и так далее

Функция сложности

M(n) – сложность по памяти более предсказуема и чаще всего определена размером входных данных

T(n) – сложность по времени зависит в большей степени от программиста и его творческого порыва!

Далее будем чаще говорить именно о временной сложности - сложности алгоритма!

Обычно алгоритмы классифицируют в соответствии с их временной сложностью. Можно выделить следующие их типы:

- 1. Постоянный сложность оценивается как O(1).
- 2. Логарифмический сложность оценивается как O(log(n))
- 3. Линейный оценка равна O(n).
- 4. Квадратный $O(n^2)$
- 5. Кубический, полиноминальный $O(n^3)$, $O(n^m)$.
- 6. Экспоненциальный $O(t^{p(n)})$, t- константа, p(n) некоторая полиномиальная функция.
- 7. Факториальный *O*(*n*!). Обладает наибольшей временной сложностью среди всех известных типов.

Для того, чтобы визуально представить себе различную скорость роста функций, достаточно взглянуть на следующий график:

Логарифмическая сложность присуща алгоритмам, которые сводят большую задачу к набору меньших задач, уменьшая на каждом шаге размер задачи на постоянную величину. Например, двоичный поиск в массиве, когда на каждом шаге размер массива сокращается вдвое.

Линейное время выполнения свойственно тем алгоритмам, в которых осуществляется небольшая обработка каждого входного элемента.

Оценка nlog(n) возникает в тех случаях, когда алгоритм решает задачу, разбивая её на меньшие подзадачи и решая их независимо друг от друга, а затем объединяя решение.

Квадратичное время выполнения свойственно алгоритмам, обрабатывающим все пары элементов данных.

Кубическое время соответсвует алгоритмам, которые обрабатывают все тройки элементов данных.

Экспоненциальное и факториальное время присуще алгоритмам, которые выполняют перебор всевозможных сочетаний элементов.

Показательный пример

```
int n=10;
int A[n];
int key, i, j;
```

T(n) – как описать?

Распишем итерации первого цикла

Итерация №	Операций
1	1
2	2
3	3
4	4
5	5
***	•••
i=n	n

Вычисление

for
$$i = 1$$
 to n do
for $j = 1$ to **i** do

$$A[i]=A[i]+A[j];$$

С помощью суммы арифметической прогрессии:

$$T(n) = (1+n)n/2 =$$

= $(n^2+n)/2$

- Внутренний цикл **for** зависит от внешнего
- Как мы видим (см таблицу ранее) число операций в итерации внутреннего цикла изменяется с шагом +1
- Описать число операций двух циклов можно с помощью суммы арифметической прогрессии

Пример

```
int n=10;
int A[N];
int key, i, j;
//получаем массив А
i=N;
while (A[i] + A[i-1] > N)
    A[i-1] = A[i];
    i = i - 1;
```

• Не зная какой будет массив А, вывести функцию времени невозможно

Как тогда оценить сложность по времени?

- Минимально: цикл не выполнится ни разу, значит условие проверится 1 раз=3 операции
- Максимально: цикл выполнится N раз = 7N

Иллюстрация оценки

Максимальная и минимальная оценки функции похожи на асимптоты

Асимптотическая оценка сложности

Порядок роста описывает то, как сложность алгоритма растет с увеличением размера входных данных. Чаще всего он представлен в виде О-нотации (om нем. «Ordnung» — порядок): O(f(n)), где f(n) — формула, выражающая сложность алгоритма. В формуле может присутствовать переменная n, представляющая размер входных данных.

$$T(n)=2n^2+2n+3$$

порядок роста
$$n^2$$
 или $O(n^2)$

$$T(n)=1290n^3+12n^2-3586$$

порядок роста
$$n^3$$
 или $O(n^3)$

$$T(n)=2n^2 \log n + 142n^2 - n$$

порядок роста
$$n^2 \log n$$
 или $O(n^2 \log n)$

$$T(n)=1290n^3+2n^2\log n-142n^2-n+386$$
 порядок роста n^3 или $O(n^3)$

Асимптотическая оценка сложности

Figure 2.3: Illustrating the big (a) O, (b) Ω , and (c) Θ notations

(a)
$$O(g(n)) = \begin{cases} T(n) & \exists c>0, n_0>0 \\ \forall n>n_0 & 0 \leq +(n) \leq c \cdot g(n) \end{cases}$$
(b) $S(g(n)) = \begin{cases} T(h) & \exists c>0, n_0>0 \\ \forall n>n_0 & 0 \leq c \cdot g(n) \leq T(n) \end{cases}$
(b) $S(g(n)) = \begin{cases} T(h) & \exists c>0, n_0>0 \\ \forall n>n_0 & 0 \leq c \cdot g(n) \leq T(n) \end{cases}$

$$(c) \Theta(g(h)) = \begin{cases} T(h) : \exists c_{1} > 0, c_{2} > 0, n_{n} > 0 \end{cases}$$

$$TO 4 HA A$$

$$\forall h > n_{n} \quad 0 \in c_{k} g(h) \in T(h) \leq c_{1} \cdot g(h)$$

$$T_{1}(h) = O(f(h))$$
 Свойства О
$$T_{2}(h) = O(g_{2}(h))$$
 С-константа!

- 1) Сложность суммы $T_1 + T_2 = O(max(s, M), g_2(M)))$ большая из функции поридрея росая
- 2) Сложность произведения $T_1 T_2 = O(g_{\cdot}(n) \cdot g_{\cdot}(n))$ трезмертив
- 3) Умножение на константу $C \cdot T_1 = O(g_1(n))$ му муризверение не константу се мочно отбросить = 7 не верене в рассіє = 7 не верене в рассіє = 7
- 4) Cymma c константой $T_1 + C = O(g_n(h))$ MM cymme c Nousaurai $\to e\bar{e}$ evenue or spacess
- 5) Teopema o CB934 Θ, Σ, O $T(n) \sim \Theta(g(n)) \iff \int T(n) \sim D(g(n))$ Tornal eyeuns $J \Leftrightarrow \text{wrps, colonergaex c eyeuxous}$ chuzy u cleepsy!

Зачем оценивать алгоритмы?

Устройство 1:

109 операций/сек

Объем данных: N= **10**⁷

Алгоритм: n^2

Время: **10⁷** ***10⁷/ 10**⁹

= **10**⁵ сек > суток

Устройство 2:

10⁷ операций/сек

Объем данных: N= **10**⁷

Алгоритм: n*log n

Время: **10⁷** log **10⁷**/

 $10^7 = 23,25$ cek <

минуты

Зачем оценивать алгоритмы?

Время выполнения алгоритма с определённой сложностью в зависимости от размера входных данных при скорости **10**⁶ операций в секунду:

размер сложность	10	20	30	40	50	60
n	0,00001 сек.	0,00002 сек.	0,00003 сек.	0,00004 сек.	0,00005 сек.	0,00005 сек.
n²	0,0001 сек.	0,0004 сек.	0,0009 сек.	0,0016 сек.	0,0025 сек.	0,0036 сек.
n³	0,001 сек.	0,008 сек.	0,027 сек.	0,064 сек.	0,125 сек.	0,216 сек.
n ⁵	0,1 сек.	3,2 сек.	24,3 сек.	1,7 минут	5,2 минут	13 минут
2 ⁿ	0,0001 сек.	1 сек.	17,9 минут	12,7 дней	35,7 веков	366 веков
3 ⁿ	0,059 сек.	58 минут	6,5 лет	3855 веков	2x10 ⁸ веков	1,3х10 ¹³ веков