Paths in Graphs: Most Direct Route

Michael Levin

Higher School of Economics

Graph Algorithms Data Structures and Algorithms

Outline

- Paths and Distances
- 2 Breadth-first Search
- 3 Implementation and Analysis
- 4 Proof of Correctness
- 5 Shortest-path Tree

The most direct route

What is the minimum number of flight segments to get from Hamburg to Moscow?

The most direct route

What is the minimum number of flight segments to get from Hamburg to Moscow?

The most direct route

What is the minimum number of flight segments to get from Hamburg to Moscow?

Paths and lengths

Length of the path L(P) is the number of edges in the path.

Paths and lengths

Length of the path L(P) is the number of edges in the path.

$$L(D-E-S-A-B)=4$$

Paths and lengths

Length of the path L(P) is the number of edges in the path.

$$L(D - E - S - A - B) = 4$$

 $L(D - S - C - B) = 3$

$$d(D, B) = 3$$

$$d(D,B) = 3$$
$$d(C,A) = 2$$

$$d(D,B)=4$$

$$d(D,B)=4$$

$$d(D,B) = 4$$
$$d(C,A) = \infty$$

Distance layers

Distance layers

Outline

- Paths and Distances
- 2 Breadth-first Search
- 3 Implementation and Analysis
- 4 Proof of Correctness
- 5 Shortest-path Tree

Outline

- Paths and Distances
- 2 Breadth-first Search
- 3 Implementation and Analysis
- 4 Proof of Correctness
- Shortest-path Tree

Breadth-first search

BFS(G,S)

```
for all u \in V:
   dist[u] \leftarrow \infty
dist[S] \leftarrow 0
Q \leftarrow \{S\} {queue containing just S}
while Q is not empty:
   u \leftarrow \text{Dequeue}(Q)
   for all (u, v) \in E:
      if dist[v] = \infty:
         Enqueue(Q, v)
          \operatorname{dist}[v] \leftarrow \operatorname{dist}[u] + 1
```

Running time

Lemma

The running time of breadth-first search is O(|E| + |V|).

Proof

Running time

Lemma

The running time of breadth-first search is O(|E| + |V|).

Proof

Each vertex is enqueued at most once

Running time

Lemma

The running time of breadth-first search is O(|E| + |V|).

Proof

- Each vertex is enqueued at most once
- Each edge is examined either once (for directed graphs) or twice (for undirected graphs)

Outline

- Paths and Distances
- 2 Breadth-first Search
- 3 Implementation and Analysis
- 4 Proof of Correctness
- 5 Shortest-path Tree

Reachability

Definition

Node u is reachable from node S if there is a path from S to u

Lemma

Reachable nodes are discovered at some point, so they get a finite distance estimate from the source. Unreachable nodes are not discovered at any point, and the distance to them stays infinite.

Proof

) u

 $S \bigcirc$

lacksquare u — reachable undiscovered closest to S

Proof

- lacktriangleq u reachable undiscovered closest to S
- lacksquare $S-v_1-\cdots-v_k-u$ shortest path

- u reachable undiscovered closest to S■ $S - v_1 - \cdots - v_k - u$ — shortest path
- \mathbf{u} is discovered while processing \mathbf{v}_k

- u reachable undiscovered closest to S■ $S - v_1 - \cdots - v_k - u$ — shortest path
- \mathbf{u} is discovered while processing \mathbf{v}_k

- u reachable undiscovered closest to S■ $S - v_1 - \cdots - v_k - u$ — shortest path
- \mathbf{u} is discovered while processing \mathbf{v}_k

- u reachable undiscovered closest to S■ $S - v_1 - \cdots - v_k - u$ — shortest path
- \mathbf{u} is discovered while processing \mathbf{v}_k

- u reachable undiscovered closest to S■ $S - v_1 - \cdots - v_k - u$ — shortest path
- \mathbf{u} is discovered while processing \mathbf{v}_k

- u reachable undiscovered closest to S■ $S - v_1 - \cdots - v_k - u$ — shortest path
- \mathbf{u} is discovered while processing \mathbf{v}_k

■ *u* — first unreachable discovered

- *u* first unreachable discovered
- *u* was discovered while processing *v*

- *u* first unreachable discovered
- *u* was discovered while processing *v*
- *u* is reachable through *v*

Order Lemma

Lemma

By the time node u at distance d from S is dequeued, all the nodes at distance at most d have already been discovered (enqueued).

Consider the first time the order was broken

Consider the first time the order was broken $d' \leq d$

Consider the first time the order was broken $d' \leq d$

Consider the first time the order was broken $d' \leq d$

Lemma

When node u is discovered (enqueued), dist[u] is assigned exactly d(S, u).

Proof

■ Use mathematical induction

- Use mathematical induction
- Base: when S is discovered, dist[S] is assigned 0 = d(S, S)

- Use mathematical induction
- Base: when S is discovered, dist[S] is assigned 0 = d(S, S)
- Inductive step: suppose proved for all nodes at distance $\leq k$ from $S \rightarrow$ prove for nodes at distance k+1

Proof

■ Take a node v at distance k+1 from S

- Take a node v at distance k+1 from S
- v was discovered while processing u

- Take a node v at distance k+1 from S
- v was discovered while processing u
- $d(S, v) \leq d(S, u) + 1 \Rightarrow d(S, u) \geq k$

- Take a node v at distance k+1 from S
- v was discovered while processing u
- $d(S, v) \leq d(S, u) + 1 \Rightarrow d(S, u) \geq k$
- ullet v is discovered after u is dequeued, so d(S,u) < d(S,v) = k+1

- Take a node v at distance k+1 from S
- v was discovered while processing u
- $d(S, v) \leq d(S, u) + 1 \Rightarrow d(S, u) \geq k$
- ullet v is discovered after u is dequeued, so d(S,u) < d(S,v) = k+1
- So d(S, u) = k, and $\operatorname{dist}[v] \leftarrow \operatorname{dist}[u] + 1 = k + 1$

Queue: $d \mid d \mid d \mid \ldots \mid d \mid d \mid d + 1 \mid d + 1 \mid \ldots \mid d + 1 \mid$

Lemma

At any moment, if the first node in the queue is at distance d from S, then all the nodes in the queue are either at distance d from S or at distance d+1 from S. All the nodes in the queue at distance d go before (if any) all the nodes at distance d+1.

Proof

All nodes at distance d were enqueued before first such node is dequeued, so they go before nodes at distance d+1

- All nodes at distance d were enqueued before first such node is dequeued, so they go before nodes at distance d+1
- Nodes at distance d-1 were enqueued before nodes at d, so they are not in the queue anymore

- All nodes at distance d were enqueued before first such node is dequeued, so they go before nodes at distance d+1
- Nodes at distance d-1 were enqueued before nodes at d, so they are not in the queue anymore
- Nodes at distance > d + 1 will be discovered when all d are gone

Outline

- Paths and Distances
- 2 Breadth-first Search
- 3 Implementation and Analysis
- 4 Proof of Correctness
- 5 Shortest-path Tree

Shortest-path tree

Shortest-path tree

Lemma

Shortest-path tree is indeed a tree, i.e. it doesn't contain cycles (it is a connected component by construction).

- Only one outgoing edge from each node
- Distance to S decreases after going by edge

- Only one outgoing edge from each node
- Distance to S decreases after going by edge

- Only one outgoing edge from each node
- Distance to S decreases after going by edge

- Only one outgoing edge from each node
- Distance to S decreases after going by edge

- Only one outgoing edge from each node
- Distance to *S* decreases after going by edge

- Only one outgoing edge from each node
- Distance to S decreases after going by edge

- Only one outgoing edge from each node
- $lue{}$ Distance to S decreases after going by edge

Constructing shortest-path tree

BFS(G, S)

```
for all u \in V:
   dist[u] \leftarrow \infty, prev[u] \leftarrow nil
dist[S] \leftarrow 0
Q \leftarrow \{S\} {queue containing just S}
while Q is not empty:
   u \leftarrow \text{Dequeue}(Q)
   for all (u, v) \in E:
       if dist[v] = \infty:
          Enqueue(Q, v)
          \operatorname{dist}[v] \leftarrow \operatorname{dist}[u] + 1, \operatorname{prev}[v] \leftarrow u
```

Reconstructing Shortest Path

ReconstructPath(S, u, prev)

```
result \leftarrow empty
while u \neq S:
result.append(u)
u \leftarrow \text{prev}[u]
return Reverse(result)
```

 Can find the minimum number of flight segments to get from one city to another

- Can find the minimum number of flight segments to get from one city to another
- Can reconstruct the optimal path

- Can find the minimum number of flight segments to get from one city to another
- Can reconstruct the optimal path
- Can build the tree of shortest paths from one origin

- Can find the minimum number of flight segments to get from one city to another
- Can reconstruct the optimal path
- Can build the tree of shortest paths from one origin
- Works in O(|E| + |V|)