

Sharif University of Technology

Department of Computer Engineering

Low Power Digital System Design

Clock Gating

A. Ejlali

Clock Gating

• Clocks typically consume a large fraction of overall power in synchronous systems (30%–40%).

• Clock transitions initiate signal transitions in combinational logic.

Clock Gating (Cont.)

• Clock gating involves dynamically shutting off the clock to portions of a design that are idle or are not performing useful computation.

Granularity of the Gated-Clock Blocks

- Module-Level Clock Gating
 - This involves shutting off an entire block or module in the design.
- Register-Level Clock Gating
 - The clock to a single register or set of registers is gated.
- Cell-Level Clock Gating
 - The cell designer usually introduces cell-level clock gating.

Module-Level Clock Gating

- Usually used by the system or RTL designer.
 - RT-level technique: this kind of clock gating must be incorporated into the RTL code.
- This technique is very effective especially when a block is used only for a specific mode of operation.
- Example:
 - Transceiver: the receiver can be shut off during transmit stages or vice versa.

Register-Level Clock Gating

Traditional Implementation

Clock-gated Implementation

A Comparison Between Clock-Gating Techniques

	Clock Gating	
	Module-Level	Register-Level
Power saving per clock-gate	High	Low
Opportunities to shut off clocks	Less	More
Insertion of clock-gates	Human effort	Automated

Difficulties in Clock Gating

- •Clock gating can cause serious clocking problems:
 - Glitches on the enable signal
 - Glitches on FF clock input
 - Clock skew
 - Timing errors

Glitches on the enable signal

Solutions:

Skew problem in the gate-based architecture

Time constraints (without Skew):

$$d_{FF} + d_{\max} < T - t_S$$

$$d_{FF} + d_{\min} > t_H$$

Time constraints (with Skew):

$$d_{FF} + d_{\max} < T - t_S - C_S$$

$$d_{FF} + d_{\min} > t_H + C_S$$

• Clock gating increases C_{S} .

 t_S = Setup Time t_H =Hold Time C_S =Clock Skew

Skew problem in the latch-based architecture

 d_{CLK} = clock-to-output delay of the latch

Skew problem in the latch-based architecture (Cont.)

 d_{in} = input-to-output delay of the latch

References

- Bill Moyer, "Low-Power Design for Embedded Processors", *Proceedings of the IEEE*, 2001.
- W.-Z. Shen, et. al., "Transistor Reordering Rules for Power Reduction in CMOS Gates", *ASPDAC*, 1995.
- C. Piguet, Low-Power CMOS Circuits, Technology, Logic Design and CAD Tools, Chapter 11, 2006.