Análisis II - Matemática 3 Análisis Matemático II

Leandro M. Del Pezzo Idpezzo@dm.uba.ar

Teóricas - Verano 2022

Definición.

Sea F = (P, Q, R) un campo vectorial diferenciable definido en \mathbb{R}^3 . El rotor de F es el campo vectorial definido como

$$\mathsf{rot}(F) \coloneqq \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}, -\left(\frac{\partial R}{\partial x} - \frac{\partial P}{\partial z}\right), \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right).$$

Rotor

Una forma fácil calcular el rotor es mediante determinantes ya que

$$\operatorname{rot}(F) = \det \begin{pmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{pmatrix} \\
= \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}, -\left(\frac{\partial R}{\partial y} - \frac{\partial P}{\partial z} \right), \frac{\partial Q}{\partial y} - \frac{\partial P}{\partial y} \right).$$

Si notamos por $\nabla = (\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z})$ entonces

$$rot(F) = \nabla \times F$$

donde \times denota el producto vectorial de \mathbb{R}^3 .

Comentario: Si F(x, y, z) = (P(x, y), Q(x, y), 0) entonces

$$\mathsf{rot}(F) := \left(0, 0, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right).$$

Teorema (Forma vectorial del Teorema de Green).

Sea $D\subset\mathbb{R}^2$ una región donde vale Green y sea F=(P,Q,0) un campo vectorial \mathcal{C}^1 . Entonces

$$\iint_{P} \mathsf{rot}(F) dS = \iint_{P} \nabla \times F \cdot (0,0,1) dS = \int_{\partial P^{+}} (P,Q) d\sigma.$$

Teorema de Stoke Orientación del Borde se una superficie

Orientemos el Borde de una superficie de \mathbb{R}^3 . Al tener 3 dimensiones, la idea que usábamos en \mathbb{R}^2 de "caminando por el Borde de la superficie, la dejamos a nuestra izquierda" depende ahora de "hacia dónde apunta nuestra cabeza".

Teorema de Stoke Orientación del Borde se una superficie

Vamos a considerar que si $\mathcal{S}\subseteq\mathbb{R}^3$ es una superficie orientada con una cierta normal η , entonces la orientación positiva del Borde $\partial\mathcal{S}$, que vamos a notar por $\partial\mathcal{S}^+$, es aquella que se obtiene si al caminar por $\partial\mathcal{S}$ con la cabeza apuntando en el mismo sentido que la normal η , dejamos la superficie \mathcal{S} a nuestra izquierda.

Orientación del Borde se una superficie

En términos de parametrizaciones: Sea $\mathcal{S} \subseteq \mathbb{R}^3$ una superficie y $T\colon D\subseteq \mathbb{R}^2 \to \mathbb{R}^3$ una parametrización regular de \mathcal{S} . Consideremos la orientación que T induce en \mathcal{S} con su normal η_T . Supongamos además que D es una región donde vale el Teorema de Green y que $\sigma:[a,b]\to\mathbb{R}^2$ es una parametrización regular a trozos de ∂D^+ , es decir, con orientación positiva. Luego, $\gamma:[a,b]\to\mathbb{R}^3$ dada por

$$\gamma := T \circ \sigma$$

es una parametrización regular a trozos de $\partial \mathcal{S}$. Lo importante de esta parametrización es que da la orientación correcta a $\partial \mathcal{S}$. Es decir, γ parametriza $\partial \mathcal{S}^+$, dándole la orientación positiva compatible con $\eta_{\mathcal{T}}$.

Teorema.

Sea $S\subseteq\mathbb{R}^3$ una superficie y $T:D\subseteq\mathbb{R}^2\to\mathbb{R}^3$ una parametrización regular de S donde $D\subseteq\mathbb{R}^2$ es una región donde vale el Teorema de Green. Supongamos que T es de clase C^2 y que ∂S^+ es la orientación del Borde de S dada por $T(\partial D^+)$ que describimos arriba. Si F es un campo de clase C^1 definido en S, entonces

$$\iint_{S} \mathsf{rot}(\mathbf{F}) dS = \iint_{S} \langle \nabla \times \mathbf{F}, n \rangle \, dS = \int_{\partial S^{+}} \mathbf{F} d\sigma.$$

Ejemplo

Calcular

$$\int_{\mathcal{C}} -y^3 dx + x^3 dy - z^3 dz$$

donde

$$C = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1 \ y \ x + y + z = 1\}$$

orientada en el sentido contrario a la agujas del reloj en el plano xy.

Interpretación física del rotor

Un campo $F: \mathbb{R}^N \to \mathbb{R}$ es un campo gradiente si existe $f: \mathbb{R}^N \to \mathbb{R}$ tal que

$$F = \nabla f$$
.

Vimos que si F es un campo gradiente ($F = \nabla f$) y $\mathcal C$ es una curva orientada que empieza en un punto p y termina en un punto q, etonces

$$\int_C F d\sigma = f(q) - f(p).$$

Además, si $F \in C^1$, tenemos que rot(F) = 0.

Teorema de Campos Conservativos

Sea F un campo vectorial C^1 en \mathbb{R}^3 excepto tal vez en un número finito de puntos. Entonces la siguientes condiciones son equivalentes:

(i) Para cualquier curva cerrada simple y suave a trozos $\mathcal C$ se tiene

$$\int_{\mathcal{C}} F \, d\sigma = 0.$$

(ii) Para cualquier par de curvas simples, suaves a trozos C_1 , C_2 , con los mismos extremos y la misma orientación se tiene

$$\int_{\mathcal{C}} F \, d\sigma = \int_{\mathcal{C}} F \, d\sigma.$$

- (iii) F es el Gradiente de una función f, es decir $F = \nabla F$ (Si F tiene problemas en uno o mas puntos excepcionales donde no se puede definir, entonces f tampoco estara definida en e ste o estos puntos).
- (iv) $\nabla \times F = 0$

Teorema de Campos Conservativos

Definición.

Un campo vectorial C^1 que staisface una de las cuatro condiciones del teorema anterior se denomina campo vectorial conservativo.

Comentario: En el plano el teorema también vale pero los puntos expcionales no están permitidos.

Campos Conservativos Ejemplo

Ejemplo

Consideremos

$$F(x, y, z) = (y, x + z\cos(yz), y\cos(yz) + 2z)$$

¿Existe una f tal que $\nabla f = F$?