Job Shop

Generated by Doxygen 1.8.14

Contents

1	Data	Struct	ure Index												1
	1.1	Data S	Structures				 	 	 	 	 		 		 1
2	File	Index													3
	2.1	File Lis	st				 	 	 	 	 		 		 3
3	Data	Struct	ure Docur	nentatio	n										5
	3.1	BLIST	Struct Ref	ference			 	 	 	 	 		 		 5
		3.1.1	Detailed	Descript	ion		 	 	 	 	 		 		 5
		3.1.2	Field Doo	cumenta	tion		 	 	 	 	 		 		 5
			3.1.2.1	machir	ie .		 	 	 	 	 		 		 6
			3.1.2.2	makes	pan		 	 	 	 	 		 		 6
			3.1.2.3	order			 	 	 	 	 		 		 6
	3.2	JOB S	truct Refer	rence .			 	 	 	 	 		 		 6
		3.2.1	Detailed	Descript	ion		 	 	 	 	 		 		 7
		3.2.2	Field Doo	cumenta	tion		 	 	 	 	 		 		 7
			3.2.2.1	estime			 	 	 	 	 		 		 7
			3.2.2.2	magic			 	 	 	 	 		 		 7
			3.2.2.3	mhtime	.		 	 	 	 	 		 		 7
			3.2.2.4	next			 	 	 	 	 		 		 7
			3.2.2.5	order			 	 	 	 	 		 		 8
			3.2.2.6	prev			 	 	 	 	 		 		 8
			3.2.2.7	proces	s_tim	e	 	 	 	 	 		 		 8
			3228	start											8

ii CONTENTS

		3.2.2.9 step
3.3	JOBM	ACHINEPAR Struct Reference
	3.3.1	Detailed Description
	3.3.2	Field Documentation
		3.3.2.1 job
		3.3.2.2 machine
3.4	MACH	INEORDER Struct Reference
	3.4.1	Detailed Description
	3.4.2	Field Documentation
		3.4.2.1 machines
		3.4.2.2 size
3.5	NEIGH	BOR Struct Reference
	3.5.1	Detailed Description
	3.5.2	Field Documentation
		3.5.2.1 next
		3.5.2.2 prev
3.6	ONEM	ACHINE_BRANCH_AND_BOUND_ASSISTANT Struct Reference
	3.6.1	Detailed Description
	3.6.2	Field Documentation
		3.6.2.1 active
		3.6.2.2 bound
3.7	ONEM	ACHINestime Struct Reference
	3.7.1	Detailed Description
	3.7.2	Field Documentation
		3.7.2.1 estime
		3.7.2.2 mhtime
		3.7.2.3 process_time
3.8	PAIR	ASSISTANT_TYPE Struct Reference
	3.8.1	Detailed Description
	3.8.2	Field Documentation
		3.8.2.1 job num
		3.8.2.2 mach num
		3.8.2.3 proc time
		3.8.2.4 start time
		3.8.2.5 step
3.9	SEQUI	ENCE Struct Reference
	3.9.1	Detailed Description
	3.9.2	Field Documentation
		3.9.2.1 job

CONTENTS

4	File	Docume	entation		17
	4.1	bottle.c	: File Refere	ence	17
		4.1.1	Detailed D	Description	18
		4.1.2	Macro De	finition Documentation	18
			4.1.2.1	TRY_COUNT	18
		4.1.3	Typedef D	Occumentation	19
			4.1.3.1	blist_t	19
			4.1.3.2	mo_t	19
			4.1.3.3	neighbor_t	19
		4.1.4	Function [Documentation	19
			4.1.4.1	clear_and_backup_seq()	19
			4.1.4.2	clear_seq()	20
			4.1.4.3	cp_mo()	20
			4.1.4.4	cp_neighbor()	21
			4.1.4.5	cp_seq()	21
			4.1.4.6	critical()	21
			4.1.4.7	eval()	22
			4.1.4.8	re_optimization_phase_1()	22
			4.1.4.9	re_optimization_phase_2()	23
			4.1.4.10	restore_neighbor()	24
			4.1.4.11	save_times()	25
			4.1.4.12	set_seq()	25
			4.1.4.13	shifting_bottle_neck()	25
		4.1.5	Variable D	Occumentation	27
			4.1.5.1	best_makespan	27
	4.2	bottle.h	r File Refer	ence	27
		4.2.1	Detailed D	Description	28
		4.2.2	Macro De	finition Documentation	28
			4.2.2.1	INFINITAS	28
			4.2.2.2	MAX	28

iv CONTENTS

| | | 4.2.2.3 | MAXJOB | |
 | 28 |
|-----|-----------|---------------|-------------------|-------|------|------|------|------|------|------|------|----|
| | | 4.2.2.4 | MAXMACHINE | |
 | 29 |
| | 4.2.3 | Typedef [| Documentation . | |
 | 29 |
| | | 4.2.3.1 | job_t | |
 | 29 |
| | | 4.2.3.2 | onemach_time | s_t . |
 | 29 |
| | | 4.2.3.3 | sequence_t | |
 | 29 |
| | 4.2.4 | Function | Documentation | |
 | 29 |
| | | 4.2.4.1 | one_machine() | |
 | 29 |
| | | 4.2.4.2 | prestissimo() . | |
 | 30 |
| | | 4.2.4.3 | run_bottle_nec | k() . |
 | 31 |
| | 4.2.5 | Variable I | Documentation | |
 | 32 |
| | | 4.2.5.1 | job | |
 | 32 |
| | | 4.2.5.2 | job_size | |
 | 32 |
| | | 4.2.5.3 | machine_size | |
 | 33 |
| | | 4.2.5.4 | terminate_flag | |
 | 33 |
| 4.3 | commo | on_definition | on.c File Referen | ce . |
 | 33 |
| | 4.3.1 | Variable I | Documentation | |
 | 33 |
| | | 4.3.1.1 | job | |
 | 33 |
| | | 4.3.1.2 | job_size | |
 | 34 |
| | | 4.3.1.3 | machine_size | |
 | 34 |
| | | 4.3.1.4 | terminate_flag | |
 | 34 |
| 4.4 | eval.c | File Refere | ence | |
 | 34 |
| | 4.4.1 | Detailed | Description | |
 | 35 |
| | 4.4.2 | Typedef [| Documentation . | |
 | 35 |
| | | 4.4.2.1 | job_machine_t | |
 | 35 |
| | 4.4.3 | Function | Documentation | |
 | 35 |
| | | 4.4.3.1 | eval() | |
 | 35 |
| | 4.4.4 | Variable I | Documentation | |
 | 36 |
| | | 4.4.4.1 | magicnum | |
 | 36 |
| 4.5 | io.c File | e Referenc | ce | |
 | 36 |

CONTENTS

	4.5.1	Detailed Description	37
	4.5.2	Typedef Documentation	37
		4.5.2.1 pair_ass_t	37
	4.5.3	Function Documentation	37
		4.5.3.1 getprob()	37
		4.5.3.2 machine_sort_cmp()	38
		4.5.3.3 prestissimo()	39
		4.5.3.4 starttime_sort_cmp()	39
		4.5.3.5 write_file()	40
	4.5.4	Variable Documentation	41
		4.5.4.1 best_makespan	41
4.6	main.c	File Reference	41
	4.6.1	Detailed Description	41
	4.6.2	Function Documentation	42
		4.6.2.1 main()	42
4.7	onema	chine.c File Reference	42
	4.7.1	Detailed Description	43
	4.7.2	Macro Definition Documentation	43
		4.7.2.1 ONEMACH_BBNODES	43
	4.7.3	Typedef Documentation	43
		4.7.3.1 onemach_bb_ass_t	44
	4.7.4	Function Documentation	44
		4.7.4.1 cp_onemach_time()	44
		4.7.4.2 lower_bound()	44
		4.7.4.3 make_span()	45
		4.7.4.4 make_value()	46
		4.7.4.5 mwr_schedule()	46
		4.7.4.6 one_machine()	46
_			
Index			49

Chapter 1

Data Structure Index

1.1 Data Structures

Here are the data structures with brief descriptions:

BLIST																				 			5
JOB .																				 			6
JOBM	ACHIN	NEPAF	₹.																	 			8
MACH	INEO	RDER																		 			9
NEIGH	IBOR																			 			10
ONEM																							
ONEM																							
PAIR_	ASSIS	STANT	_T	ΥPI	E															 			14
SEQU	ENCE																						15

2 Data Structure Index

Chapter 2

File Index

2.1 File List

Here is a list of all files with brief descriptions:

bottle.c		
	Core algorithms	17
bottle.h		
	Header file for the whole project	27
common	_definition.c	33
eval.c		
	Makespan	34
io.c		
	10	36
main.c		
	Enterpoint	41
onemach	nine.c	
	One-machine sequencing	42

File Index

Chapter 3

Data Structure Documentation

3.1 BLIST Struct Reference

Collaboration diagram for BLIST:

Data Fields

- int machine
- int makespan
- int order [MAXJOB]

3.1.1 Detailed Description

Store the bottle informnation.

3.1.2 Field Documentation

3.1.2.1 machine

int machine

Machine number of this bottle.

3.1.2.2 makespan

int makespan

Makespan of this bottle.

3.1.2.3 order

int order[MAXJOB]

Job order of this bottle.

The documentation for this struct was generated from the following file:

• bottle.c

3.2 JOB Struct Reference

#include <bottle.h>

Collaboration diagram for JOB:

3.2 JOB Struct Reference 7

Data Fields

- int estime [MAXMACHINE]
- int mhtime [MAXMACHINE]
- int magic [MAXMACHINE]
- int order [MAXMACHINE]
- int process_time [MAXMACHINE]
- int step [MAXMACHINE]
- int next [MAXMACHINE]
- int prev [MAXMACHINE]
- int start [MAXMACHINE]

3.2.1 Detailed Description

Data representation for a job.

3.2.2 Field Documentation

3.2.2.1 estime

int estime[MAXMACHINE]

Earlist starting time of this job on each machine. Which is simply the sum of this job's processing times on the machine before [order[machine]] in this jobs prescribed ordering.

3.2.2.2 magic

int magic[MAXMACHINE]

The number generated and managed by the God in the computer. Every one who changed the name of this feild will be seen as an evil and will be cursed by the God.

3.2.2.3 mhtime

int mhtime[MAXMACHINE]

Minimum halting time of this job after [machine num]. Which is simply the sum of this job's processing times on the machine after [order[machine]] in this jobs prescribed ordering.

3.2.2.4 next

int next[MAXMACHINE]

Next job on machine [i].

3.2.2.5 order

```
int order[MAXMACHINE]
```

Required machine order for the job.

3.2.2.6 prev

```
int prev[MAXMACHINE]
```

Previous job blah blah.

3.2.2.7 process_time

```
int process_time[MAXMACHINE]
```

Process time of each machine.

3.2.2.8 start

```
int start[MAXMACHINE]
```

Start time of this job on each machine.

3.2.2.9 step

```
int step[MAXMACHINE]
```

Solution step indexed by machine.

The documentation for this struct was generated from the following file:

• bottle.h

3.3 JOBMACHINEPAR Struct Reference

Collaboration diagram for JOBMACHINEPAR:

- int job
- int machine

3.3.1 Detailed Description

Auxiliary struct to calcuate the makespan.

3.3.2 Field Documentation

3.3.2.1 job

int job

3.3.2.2 machine

int machine

The documentation for this struct was generated from the following file:

• eval.c

3.4 MACHINEORDER Struct Reference

Collaboration diagram for MACHINEORDER:

- int size
- int machines [MAXMACHINE]

3.4.1 Detailed Description

Machine order type.

3.4.2 Field Documentation

3.4.2.1 machines

int machines[MAXMACHINE]

Sequenced machine list.

3.4.2.2 size

int size

Sequenced machine number.

The documentation for this struct was generated from the following file:

• bottle.c

3.5 **NEIGHBOR Struct Reference**

Collaboration diagram for NEIGHBOR:

- int next [MAXMACHINE]
- int prev [MAXMACHINE]

3.5.1 Detailed Description

A temporary struct to store a sequence.

3.5.2 Field Documentation

3.5.2.1 next

int next[MAXMACHINE]

You will be either silly or able to understand the name's mean.

3.5.2.2 prev

int prev[MAXMACHINE]

Same as the previous one.

The documentation for this struct was generated from the following file:

• bottle.c

3.6 ONEMACHINE_BRANCH_AND_BOUND_ASSISTANT Struct Reference

Collaboration diagram for ONEMACHINE_BRANCH_AND_BOUND_ASSISTANT:

- · int active
- int bound

3.6.1 Detailed Description

Info of node of a branch and bound tree.

3.6.2 Field Documentation

3.6.2.1 active

int active

Wether this node is active

3.6.2.2 bound

int bound

See "JOBTYPE" for more info.

The documentation for this struct was generated from the following file:

· onemachine.c

3.7 ONEMACHINestime Struct Reference

#include <bottle.h>

Collaboration diagram for ONEMACHINestime:

- int estime [MAXJOB]
- int mhtime [MAXJOB]
- int process_time [MAXJOB]

3.7.1 Detailed Description

Store the time info for every job runs on the same machine.

3.7.2 Field Documentation

3.7.2.1 estime

```
int estime[MAXJOB]
```

See "JOBTYPE" for more info.

3.7.2.2 mhtime

```
int mhtime[MAXJOB]
```

See "JOBTYPE" for more info.

3.7.2.3 process_time

```
int process_time[MAXJOB]
```

See "JOBTYPE" for more info.

The documentation for this struct was generated from the following file:

· bottle.h

3.8 PAIR_ASSISTANT_TYPE Struct Reference

Collaboration diagram for PAIR_ASSISTANT_TYPE:

Data Fields

- int start_time
- int job_num
- int mach_num
- int proc_time
- int step

3.8.1 Detailed Description

A temporary struct for converting the internal representation of the solution to the format required by those sore-heads.

3.8.2 Field Documentation

3.8.2.1 job_num

int job_num

Serial number of the job of this node.

3.8.2.2 mach_num

int mach_num

Serial number of the machine of this node.

3.8.2.3 proc_time

int proc_time

Process time (a.k.a duration) of this node.

3.8.2.4 start_time

int start_time

Start time of this node.

3.8.2.5 step

int step

Serial number of the order of this node in the job.

The documentation for this struct was generated from the following file:

io.c

3.9 SEQUENCE Struct Reference

#include <bottle.h>

Collaboration diagram for SEQUENCE:

• int job [MAXJOB]

3.9.1 Detailed Description

Job sequences on a machine.

3.9.2 Field Documentation

3.9.2.1 job

int job[MAXJOB]

Job sequences on a machine.

The documentation for this struct was generated from the following file:

bottle.h

Chapter 4

File Documentation

4.1 bottle.c File Reference

Core algorithms.

```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include "bottle.h"
```

Include dependency graph for bottle.c:

Data Structures

- struct BLIST
- struct MACHINEORDER
- struct NEIGHBOR

Macros

• #define TRY_COUNT 10

18 File Documentation

Typedefs

- typedef struct BLIST blist_t
- typedef struct MACHINEORDER mo_t
- typedef struct NEIGHBOR neighbor_t

Functions

- static void shifting_bottle_neck (sequence_t *seq, mo_t *machine_order, int *try_time_set)
- The major implementation of the Shifting Bottleneck Procedure, with a backtracing method.
- static void clear_and_backup_seq (sequence_t *seq, int mach, int *save)
- static void clear_seq (sequence_t *seq, int machine)
- static void cp_mo (mo_t *new, mo_t *origin)
- static void cp seq (sequence t *new, sequence t *origin)
- static void cp_neighbor (neighbor_t *new)
- static void re_optimization_phase_1 (sequence_t *seq, mo_t *mo, int *makespan)
- static void set_seq (sequence_t *seq, int mach, int *order)
- static void save_times (void)
- static void re_optimization_phase_2 (sequence_t *seq, mo_t *mo, int *makespan)
- static void restore neighbor (neighbor t *old)
- static int critical (int machine, int makespan)
- int eval (sequence_t *seq)

Variables

• int best makespan = INFINITAS

Store the best makespan value.

4.1.1 Detailed Description

Core algorithms.

Core algorithms to solve the JSSP.

Author

Name1e5s

4.1.2 Macro Definition Documentation

4.1.2.1 TRY_COUNT

#define TRY_COUNT 10

4.1 bottle.c File Reference

4.1.3 Typedef Documentation

```
4.1.3.1 blist_t
```

```
typedef struct BLIST blist_t
```

Store the bottle informnation.

```
4.1.3.2 mo_t
```

```
typedef struct MACHINEORDER mo_t
```

Machine order type.

```
4.1.3.3 neighbor_t
```

```
typedef struct NEIGHBOR neighbor_t
```

A temporary struct to store a sequence.

4.1.4 Function Documentation

4.1.4.1 clear_and_backup_seq()

Store current sequence of machine N in the given address. Then just clear the sequence.

Parameters

seq	Sequence to be cleared.
machine	Current machine number.
save	Address to save the old sequence. A NULL address means the old sequence won't be stored.

20 File Documentation

Here is the caller graph for this function:

4.1.4.2 clear_seq()

Clear the sequence.

Parameters

seq	Sequence to be cleared.
machine	Current machine number.

Here is the caller graph for this function:

4.1.4.3 cp_mo()

Copy the origin machine order to new. Here is the caller graph for this function:

4.1 bottle.c File Reference 21

4.1.4.4 cp_neighbor()

Store neighbor to a neighbor_t varible. Here is the caller graph for this function:

4.1.4.5 cp_seq()

Copy the origin sequence order to new. Here is the caller graph for this function:

4.1.4.6 critical()

Test wether the machine is the critical machine, which means the end of the procedure of this machine is also the end of all the operations.

Parameters

machine	Machine number to be tested.
makespan	The given makespan

Returns

If the machine is the critical machine, return 1. Else return 0.

22 File Documentation

Here is the caller graph for this function:

4.1.4.7 eval()

Evaluate the makespan of the given sequence.

Parameters

seq	The sequence of job.
-----	----------------------

Returns

The makespan of the sequence.

Here is the caller graph for this function:

4.1.4.8 re_optimization_phase_1()

The re-optimization... Phase 1

Parameters

seq	The sequence
machine_order	Machine order
makespan	Current makespan

4.1 bottle.c File Reference 23

Here is the call graph for this function:

Here is the caller graph for this function:

4.1.4.9 re_optimization_phase_2()

The re-optimization... Phase 2

Parameters

seq	The sequence
machine_order	Machine order
makespan	Current makespan

24 File Documentation

Here is the call graph for this function:

Here is the caller graph for this function:

4.1.4.10 restore_neighbor()

Load neighbor from a neighbor_t varible. Here is the caller graph for this function:

4.1 bottle.c File Reference 25

4.1.4.11 save_times()

Save current start time of each operation. Here is the caller graph for this function:

```
save_times shifting_bottle_neck run_bottle_neck prestissimo main
```

4.1.4.12 set_seq()

Set sequence by the given order.

Parameters

seq	Sequence to be set.
machine	The machine which the sequence relies on.
order	The given order.

Here is the caller graph for this function:

4.1.4.13 shifting_bottle_neck()

The major implementation of the Shifting Bottleneck Procedure, with a backtracing method.

26 File Documentation

The basic idea of the algorithm can be described as follows: It sequences the machines one by one successively, taking each time the machine identified as a bottleneck among the machine not yet sequenced. Every time after a new machine is sequenced, all previously sequenced sequence will be locally re-optimized. Bottleneck identification and the local re-optimization are both based on solving a one machine scheduling problem, which is more easy than the JSSP. In this implementation a backtracing trick is introduced to improve the quality of the solution, which give us a method to use a slightly more time to run the basic shifting bottleneck procedure more times.

Parameters

seq	The given sequence list. Will be updated when find a better makespan.
machine_order	Machine order.
try_time_set	Backtracing depth set.

Returns

When the procedure is done. You should find the start time of the solution at the "start" field of the struct array job.

Here is the call graph for this function:

Here is the caller graph for this function:

4.2 bottle.h File Reference 27

4.1.5 Variable Documentation

4.1.5.1 best_makespan

```
best_makespan = INFINITAS
```

Store the best makespan value.

4.2 bottle.h File Reference

Header file for the whole project.

This graph shows which files directly or indirectly include this file:

Data Structures

- struct JOB
- struct SEQUENCE
- struct ONEMACHINestime

Macros

- #define MAXJOB 30
- #define MAXMACHINE 30
- #define INFINITAS 0x7fffffff
- #define MAX(a, b) ((a) > (b) ? (a) : (b))

Typedefs

- typedef struct JOB job_t
- typedef struct SEQUENCE sequence_t
- typedef struct ONEMACHINestime onemach_times_t

28 File Documentation

Functions

- · void prestissimo (void)
- void run_bottle_neck (void)
- int one_machine (onemach_times_t one, int *bestorder)

Variables

- job_t job [MAXJOB]
- int job_size
- int machine_size
- · int terminate flag

4.2.1 Detailed Description

Header file for the whole project.

A Simple Old-fashion Implementation Of The Well-known Shifting Bottleneck Procedure For Job Shop Scheduling Problem(JSSP). The codes are based on "The Shifting Bottleneck Procedure for Job Shop Scheduling" by J. Adams et al.

Author

Name1e5s

4.2.2 Macro Definition Documentation

4.2.2.1 INFINITAS

```
#define INFINITAS 0x7fffffff
```

A integer that can be seen as infinity – should be bigger than the biggest makespan of all the instances. Hence, 0x7fffffff (a.k.a INT_MAX) is a good choice

4.2.2.2 MAX

```
#define MAX(  a, \\ b ) \text{ ((a) } > \text{(b) ? (a) : (b))}
```

A regular macro that returns the bigger value bewteen a and b.

4.2.2.3 MAXJOB

```
#define MAXJOB 30
```

The most jobs this program can handle.

4.2 bottle.h File Reference 29

4.2.2.4 MAXMACHINE

```
#define MAXMACHINE 30
```

The most machines this program can handle.

4.2.3 Typedef Documentation

```
4.2.3.1 job_t
```

```
typedef struct JOB job_t
```

Data representation for a job.

```
4.2.3.2 onemach_times_t
```

```
typedef struct ONEMACHINestime onemach_times_t
```

Store the time info for every job runs on the same machine.

4.2.3.3 sequence_t

```
typedef struct SEQUENCE sequence_t
```

Job sequences on a machine.

4.2.4 Function Documentation

4.2.4.1 one_machine()

The one-machine sequencing algorithm from "The one-machine sequencing problem" by Jacques Carlier.

one	Representation of the machine.
bestorder	Best job order

Returns

makespan

Here is the call graph for this function:

Here is the caller graph for this function:

4.2.4.2 prestissimo()

```
void prestissimo (
```

Convert internal solution representation structure to the format required by those nitpickers and print it.

filename	Instance file path
----------	--------------------

4.2 bottle.h File Reference 31

Here is the call graph for this function:

Here is the caller graph for this function:

4.2.4.3 run_bottle_neck()

Driver of the Shifting Bottleneck Procedure We can change here to have a balance bewteen run time and

makespan...Here is the call graph for this function:

Here is the caller graph for this function:

4.2.5 Variable Documentation

4.2.5.1 job

job

Data representation of all the jobs. All operations runs on this varible.

4.2.5.2 job_size

job_size

Job number in this instance.

4.2.5.3 machine_size

machine_size

Machine number in this instance.

4.2.5.4 terminate_flag

terminate_flag

Should we stop???

4.3 common_definition.c File Reference

#include "bottle.h"

Include dependency graph for common_definition.c:

Variables

- job_t job [MAXJOB]
- int job_size
- int machine_size
- · int terminate_flag

4.3.1 Variable Documentation

4.3.1.1 job

job_t job[MAXJOB]

Data representation of all the jobs. All operations runs on this varible.

4.3.1.2 job_size

int job_size

Job number in this instance.

4.3.1.3 machine_size

int machine_size

Machine number in this instance.

4.3.1.4 terminate_flag

int terminate_flag

Should we stop???

4.4 eval.c File Reference

makespan

#include "bottle.h"
Include dependency graph for eval.c:

Data Structures

• struct JOBMACHINEPAR

Typedefs

• typedef struct JOBMACHINEPAR job_machine_t

4.4 eval.c File Reference 35

Functions

• int eval (sequence_t *seq)

Variables

```
• int magicnum = 0
```

4.4.1 Detailed Description

makespan

Function to calcuate makespan.

Author

Name1e5s

4.4.2 Typedef Documentation

```
4.4.2.1 job_machine_t
```

```
typedef struct JOBMACHINEPAR job_machine_t
```

Auxiliary struct to calcuate the makespan.

4.4.3 Function Documentation

```
4.4.3.1 eval()
```

```
int eval (
          sequence_t * seq )
```

Evaluate the makespan of the given sequence.

Returns

The makespan of the sequence.

Here is the caller graph for this function:

4.4.4 Variable Documentation

4.4.4.1 magicnum

```
magicnum = 0
```

The number generated and managed by the God in the computer. Every one who changed the name of this feild will be seen as an evil and will be cursed by the God.

4.5 io.c File Reference

IO.

```
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "bottle.h"
Include dependency graph for io.c:
```


4.5 io.c File Reference 37

Data Structures

struct PAIR_ASSISTANT_TYPE

Typedefs

typedef struct PAIR_ASSISTANT_TYPE pair_ass_t

Functions

- static void getprob (void)
- static void write_file (char *file_name, int ans, pair_ass_t *pairs, float times)
- int machine_sort_cmp (const void *a, const void *b)
- int starttime_sort_cmp (const void *a, const void *b)
- void prestissimo (void)

Variables

• int best_makespan

Store the best makespan value.

4.5.1 Detailed Description

IO.

Functions to handle input and output.

Author

Name1e5s

4.5.2 Typedef Documentation

```
4.5.2.1 pair_ass_t
typedef struct PAIR_ASSISTANT_TYPE pair_ass_t
```

A temporary struct for converting the internal representation of the solution to the format required by those sore-heads.

4.5.3 Function Documentation

```
4.5.3.1 getprob()
```

Read instance file.

Parameters

file_name Ins

Here is the caller graph for this function:

4.5.3.2 machine_sort_cmp()

Function to compare machine number of two pairs for qsort.

Parameters

а	The first pair.
b	The second pair.

Returns

If machine number of a is lesser than b, then return a positive value, else return a non-positive value.

Here is the caller graph for this function:

4.5 io.c File Reference 39

4.5.3.3 prestissimo()

```
void prestissimo ( void )
```

Convert internal solution representation structure to the format required by those nitpickers and print it.

Parameters

filename Instance file pa	ath
---------------------------	-----

Here is the call graph for this function:

Here is the caller graph for this function:

4.5.3.4 starttime_sort_cmp()

```
int starttime_sort_cmp (  {\rm const\ void\ *\ a,}   {\rm const\ void\ *\ b\ )}
```

Function to compare start time of two pairs for qsort.

Parameters

а	The first pair.
b	The second pair.

Returns

If start time of a is lesser than b, then return a positive value, else return a non-positive value.

Here is the caller graph for this function:

4.5.3.5 write_file()

Print result to file...

Parameters

file_name	Instance file path
pairs	Pair to be printed

Here is the caller graph for this function:

4.6 main.c File Reference 41

4.5.4 Variable Documentation

4.5.4.1 best_makespan

int best_makespan

Store the best makespan value.

4.6 main.c File Reference

Enterpoint.

```
#include <stdio.h>
#include <stdlib.h>
#include "bottle.h"
```

Include dependency graph for main.c:

Functions

• int main (int argc, char **argv)

4.6.1 Detailed Description

Enterpoint.

Enterpoint of the program.

Author

Name1e5s

4.6.2 Function Documentation

4.6.2.1 main()

```
int main (  \mbox{int $argc$,} \\ \mbox{char $**$ $argv$ )}
```

Here is the call graph for this function:

4.7 onemachine.c File Reference

One-machine sequencing.

```
#include <stdio.h>
#include <string.h>
#include "bottle.h"
```

Include dependency graph for onemachine.c:

Data Structures

• struct ONEMACHINE_BRANCH_AND_BOUND_ASSISTANT

Macros

• #define ONEMACH BBNODES 300

Typedefs

typedef struct ONEMACHINE_BRANCH_AND_BOUND_ASSISTANT onemach_bb_ass_t

Functions

- static void cp_onemach_time (onemach_times_t *new, onemach_times_t *origin)
- static void mwr_schedule (onemach_times_t one, int *order)
- static int lower_bound (onemach_times_t one, int *jset, int jset_size)
- static int make_span (onemach_times_t one, int *order, int *jset, int *jset_size, int *cjob, int *pjob, int *make)
- static int make_value (onemach_times_t one, int *order)
- int one_machine (onemach_times_t one, int *bestorder)

4.7.1 Detailed Description

One-machine sequencing.

One-machine Sequencing Algorithm from Jacques Carlier

Author

TJenica

4.7.2 Macro Definition Documentation

4.7.2.1 ONEMACH_BBNODES

#define ONEMACH_BBNODES 300

Nodes number of the branch and bound tree to solve the one machine sequencing problem.

4.7.3 Typedef Documentation

4.7.3.1 onemach_bb_ass_t

```
typedef struct ONEMACHINE_BRANCH_AND_BOUND_ASSISTANT onemach_bb_ass_t
```

Info of node of a branch and bound tree.

4.7.4 Function Documentation

4.7.4.1 cp_onemach_time()

Copy origin onemach_times struct to new By practice, change from memcpy to just write what we want to do is very important... Here is the caller graph for this function:

4.7.4.2 lower_bound()

Find the lower bound of the given machine on the given job order.

one	The representation of the given machine.
job_set	The set of job.
job_set_size	The size of job_set

Returns

Lowerbound of the machine. Which is just the sum of minimum estime and minimum mhtime and the sum of all the process time.

Here is the caller graph for this function:

4.7.4.3 make_span()

Test if the job order is feasible and compute the make_span.

Parameters

one	The representation of the given machine.
order	The given job order.
job_set	The set of job on the machine.
job_set_size	The size of job_set.
critical_job_order	
terminate_job_order	
make	The make_span.

Returns

If the order is OK return 1,else return 0.

Here is the caller graph for this function:

4.7.4.4 make_value()

Compute the makespan of the given job order.

Parameters

one	Representation of the machine. order The given job order.
-----	---

Here is the caller graph for this function:

4.7.4.5 mwr_schedule()

Algorithm to find the most work remaining schedule by Schrage Here is the caller graph for this function:

4.7.4.6 one_machine()

The one-machine sequencing algorithm from "The one-machine sequencing problem" by Jacques Carlier.

one	Representation of the machine.
bestorder	Best job order

Returns

makespan

Here is the call graph for this function:

Here is the caller graph for this function:

Index

active	clear_and_backup_seq
ONEMACHINE_BRANCH_AND_BOUND_ASSI←	bottle.c, 19
STANT, 12	clear_seq
	bottle.c, 20
BLIST, 5	common_definition.c, 33
machine, 5	job, <mark>33</mark>
makespan, 6	job_size, 33
order, 6	machine_size, 34
best_makespan	terminate_flag, 34
bottle.c, 27	cp_mo
io.c, 41	bottle.c, 20
blist_t	cp_neighbor
bottle.c, 19	bottle.c, 20
bottle.c, 17	cp_onemach_time
best_makespan, 27	onemachine.c, 44
blist_t, 19	cp_seq
clear and backup seq, 19	bottle.c, 21
clear seq, 20	critical
cp_mo, 20	bottle.c, 21
cp_neighbor, 20	bottle.c, 21
cp_seq, 21	estime
critical, 21	JOB, 7
eval, 22	ONEMACHINestime, 13
mo t, 19	eval
neighbor_t, 19	bottle.c, 22
re_optimization_phase_1, 22	eval.c, 35
re_optimization_phase_2, 23	eval.c, 34
restore_neighbor, 24	eval, 35
save_times, 24	job_machine_t, 35
set_seq, 25	magicnum, 36
shifting_bottle_neck, 25	magicilam, 30
TRY_COUNT, 18	getprob
bottle.h, 27	io.c, 37
INFINITAS, 28	10.0, 37
job, 32	INFINITAS
job_size, 32	bottle.h, 28
job_t, 29	io.c, 36
MAXJOB, 28	best_makespan, 41
MAXMACHINE, 28	getprob, 37
MAX, 28	machine_sort_cmp, 38
machine_size, 32	pair_ass_t, 37
one_machine, 29	prestissimo, 38
onemach_times_t, 29	starttime sort cmp, 39
prestissimo, 30	write file, 40
run bottle neck, 31	write_iiie, 40
sequence t, 29	JOBMACHINEPAR, 8
• —	
terminate_flag, 33	job, 9
bound ONEMACHINE_BRANCH_AND_BOUND_ASSI↔	machine, 9
STANT. 12	JOB, 6 estime, 7
CIANI. IC	Courre. /

50 INDEX

magic, 7 mhtime, 7 next, 7 order, 7 prev, 8 process_time, 8 start, 8 step, 8 job bottle.h, 32 common_definition.c, 33 JOBMACHINEPAR, 9 SEQUENCE, 16 job_machine_t	makespan BLIST, 6 mhtime JOB, 7 ONEMACHINestime, 13 mo_t bottle.c, 19 mwr_schedule onemachine.c, 46 NEIGHBOR, 10 next, 11 prev, 11 neighbor_t bottle.c, 19
eval.c, 35 job_num PAIR_ASSISTANT_TYPE, 14	next JOB, 7
job_size bottle.h, 32 common_definition.c, 33	NEIGHBOR, 11 ONEMACH_BBNODES
job_t bottle.h, 29	onemachine.c, 43 ONEMACHINE_BRANCH_AND_BOUND_ASSISTA ← NT, 11
lower_bound onemachine.c, 44	active, 12 bound, 12 ONEMACHINestime, 12
MACHINEORDER, 9 machines, 10 size, 10	estime, 13 mhtime, 13 process_time, 13
MAXJOB bottle.h, 28 MAXMACHINE	one_machine bottle.h, 29 onemachine.c, 46
bottle.h, 28 MAX	onemach_bb_ass_t onemachine.c, 43
bottle.h, 28 mach_num PAIR_ASSISTANT_TYPE, 14	onemach_times_t bottle.h, 29 onemachine.c, 42
machine BLIST, 5 JOBMACHINEPAR, 9	cp_onemach_time, 44 lower_bound, 44 make_span, 45
machine_size bottle.h, 32 common_definition.c, 34	make_value, 45 mwr_schedule, 46 ONEMACH_BBNODES, 43
machine_sort_cmp io.c, 38 machines	one_machine, 46 onemach_bb_ass_t, 43 order
MACHINEORDER, 10 magic	BLIST, 6 JOB, 7
JOB, 7 magicnum eval.c, 36 main main.c, 42 main.c, 41	PAIR_ASSISTANT_TYPE, 14 job_num, 14 mach_num, 14 proc_time, 15 start_time, 15
main, 42 make_span onemachine.c, 45	step, 15 pair_ass_t io.c, 37
make_value onemachine.c, 45	prestissimo bottle.h, 30

INDEX 51

```
io.c, 38
prev
    JOB, 8
    NEIGHBOR, 11
proc_time
    PAIR_ASSISTANT_TYPE, 15
process_time
    JOB, 8
    ONEMACHINestime, 13
re_optimization_phase_1
    bottle.c, 22
re_optimization_phase_2
    bottle.c, 23
restore_neighbor
    bottle.c, 24
run_bottle_neck
    bottle.h, 31
SEQUENCE, 15
    job, 16
save times
    bottle.c, 24
sequence_t
    bottle.h, 29
set_seq
    bottle.c, 25
shifting_bottle_neck
    bottle.c, 25
size
    MACHINEORDER, 10
start
    JOB, 8
start time
    PAIR_ASSISTANT_TYPE, 15
starttime_sort_cmp
    io.c, 39
step
    JOB, 8
    PAIR_ASSISTANT_TYPE, 15
TRY_COUNT
    bottle.c, 18
terminate flag
    bottle.h, 33
    common_definition.c, 34
write file
    io.c, 40
```