NODEJS & V8

@SYSU

张秋怡

- ▶ 12 级软件工程
- ▶ 校招进入 alinode (阿里云)
 - https://alinode.aliyun.com
- 目前工作
 - ▶ Node.js 管理解决方案(alinode)的开发
 - 内外部客户的性能优化技术支持
- joyeec9h3@gmail.com

Node.js 是什么?

```
const http = require('http');
const hostname = '127.0.0.1';
const port = 3000;
const server = http.createServer((req, res) => {
  res.statusCode = 200;
  res.setHeader('Content-Type', 'text/plain');
  res.end('Hello World\n');
});
server.listen(port, hostname, () => {
  console.log(`Server running at http://${hostname}:${port}/`);
});
```

Before We Start

Node.js 是什么?

Credit: BusyRich @ Twitter

- ▶ 核心包括 libuv + cares(DNS)+ OpenSSL(crypto) + V8(执行JavaScript) 等
- ▶ 本身主要由 C/C++ 组成,部分是 JavaScript 写的
- ▶ 用户在使用 Node.js 时,代码主要是 JavaScript 的,也可以写 C/C++ 的 addon,暴露 binding 和 JavaScript 互相调用

What is libuy?

What is libuy?

What is V8?

- ▶ Chrome 里的 JavaScript 引擎
- Designed by Lars Bak
 - ▶ HotSpot JVM 的设计者
- ▶ JavaScript 引擎大战的导火索

JavaScript 引擎大战

Credit: MS Edge Blog

Chakra (IE/Edge/WP)

Credit: Luke Wagner's Blog

SpiderMonkey (FireFox)

Credit: WebKit's blog

JavaScriptCore (Safari/iOS WebView)

Credit: V8's blog

V8 (Chrome/Android WebView)

异曲同工

- ▶ 解释器+多 tier 的 JIT 编译
 - ▶ 首先你要将源代码解析成 AST(抽象语法树),字符串 -> 树形数据结构

解释器?

- ▶ 遍历 AST,编译到 bytecode
- ▶ 可以想象成一个大大的 while loop,对 bytecode 做 switch 并解释执行
- ▶ CPython, Lua, 第一个 JavaScript 引擎……大部分的动态语言的第一个实现

```
while(true) {
  bytecode = fetch_code();
  switch (bytecode.opcode):
    case 'ADD':
      add(bytecode.operand);
      break;
    case 'LOAD':
      load(bytecode.operand);
```

JIT 编译?

- 加载到可执行内存(类似 shellcode)
 - ▶ 为什么 iOS 上的 Chrome 不能跑 V8?
- 耗费内存和运算时间
 - 不做优化,直接翻译(V8 的 baseline JIT ~ stack machine)
 - ▶ 放在解释器后面,先直接解释跑起来,再编译部分热点到机器码
- ▶ 多tier的JIT
 - ▶ 有的不优化,编译速度快,出来的代码执行效率一般
 - 有的进行优化,编译速度慢,出来的代码效率高
 - ▶ 优化力度不一样,编译时<u>间不一样</u>
 - ▶ 对的写法 + 对的优化 = 比 C++ 还快的 JavaScript
 - ▶ 优化 JIT 和 AOT 比也是耍流氓......
- 各种各样的非系统级语言
 - Java, C#...

JIT 编译

- ▶ 遍历 AST, (生成 IR 后再)生成机器码,也可以在 bytecode 上做
- ▶ bytecode (一堆数据,0/1) / AST -> 机器码 (一堆数据,0/1)

JIT 编译

- ▶ V8 最近才加上解释器 Ignition,并且只在内存<500M的Android上开启
- ▶ 不能说 JavaScript 是解释型语言,因为你电脑上的 V8 只有编译器
- ▶ 动态特性 (eval, .etc) 逃回 runtime 处理
- Baseline JIT + Optimizing JIT
 - 热点启用
 - ▶ 默认 Crankshaft
 - Ignition & WebAssembly 使用 TurboFan (WIP)
- ▶ 想要快,让代码落到 Crankshaft 进行优化
 - ▶ 写得跟 C 一样朴实的 JavaScript

```
// Flags for Crankshaft.
DEFINE_BOOL(crankshaft, true, "use crankshaft")

// Flags for TurboFan.
DEFINE_BOOL(turbo, false, "enable TurboFan compiler")
```

V8 Hidden Classes

▶ 弄几个快速的特化版本......

```
return lhs / rhs;
                                           function divideBy2 (lhs) {
                                             return lhs >> 1;
function divideSomeNumbersBy2 (lhsArray,
 for (var i = 0, l = lhsArray.length; i
                                           function divideBy4 (lhs) {
    resultArray[i] = divideBy2(lhsArray[
                                             return lhs >> 2;
                                           }
function divideSomeNumbersBy4 (lhsArray, resultArray) {
 for (var i = 0, l = lhsArray.length; i < l; i++) {
    resultArray[i] = divideBy4(lhsArray[i]);
function divideSomeNumbersByUnknown (lhsArray, divisor, resultArray) {
 for (var i = 0, l = lhsArray.length; i < l; i++) {</pre>
    resultArray[i] = divideByNumber(lhsArray[i], divisor);
                                                                         Credit: JSIL's wiki
```

function divideByNumber (lhs, rhs) {

- ▶ 运行的时候跳一跳,万一中了呢?
 - > 只要代码写的朴实,经常中

```
function divideSomeNumbers (lhsArray, divisor, resultArray) {
  if (lhsArray.length !== resultArray.length)
    throw new Error("Arrays must be the same size");
  // Inline cache
  if (divisor === 2) {
    return divideSomeNumbersBy2(lhsArray, resultArray);
  } else if (divisor === 4)
    return divideSomeNumbersBy4(lhsArray, resultArray);
  } else {
    // Cache miss! A JIT would likely record the miss here, and consider
    // updating the cache. It'd notice eventually if most trips through
    // the cache are misses, or if the cache has too many entries.
    // In these cases the IC might be removed entirely for performance.
    return divideSomeNumbersByUnknown(lhsArray, divisor, resultArray);
```

- ▶ 上面的是 JSIL 的实现例子
- V8 里 Inline Cache everything!
 - 比如,最频繁的,对象属性的访问

```
ClassicObject.prototype.getX = function () {
  return this.x; // (1)
};
```

```
mov eax, [ebp+0x8] ;; load this from the stack
mov edx, eax ;; receiver in edx
mov ecx, "x" ;; property name in ecx
call LoadIC_Initialize ;; invoke IC stub
```

- ▶ 上面的是 JSIL 的实现例子
- V8 里 Inline Cache everything!
 - 比如,最频繁的,对象属性的访问

替换 stub!

Credit: Vyacheslav Egorov

Polymorphic Inline Cache

看上去很美,那我们要怎么知道会有哪些情况出现呢?

Figure 2. Inline cache after first send

Figure 3. Polymorphic inline cache

Megamorphic Inline Cache

- 太多种例外情况出现了,怎么办?
 - ▶ 放到一个固定大小的 hash table
 - 放不下了就丢掉老的呗

初始状态

运行一段时间后

清空不可达对象


```
function foo() {
  var bar = global.bar = {
    a: 1
  };

bar.x = { c: 3 };

var baz = { b: 2 };
...
}
```

```
bar.x = null;
delete f;
var d = new SomeClass(10);
需要分配新对象,但是内存不够用了
```


V8 对 GC 的不同阶段采用不同的策略,是上述几种类型的混合体

对象寿命 object lifetime

小整数(SMI)结构

32 位系统,字长 4 字节

整数 31 位有符号整数 (31-bit signed integer)

0

(无法用 31 位表示的整数将被封装为对象)

最后一位是 tag, 0 表示整数,

1表示指针

指针

地址

1

(因为 4 字节对齐的地址一定能被 4 整除, 倒数第二位是 0)

64位系统,字长8字节

整数 32 位有号整数 (32-bit signed integer)

31个0

0

(无法用 32 位表示的整数将被封装为对象)

指针

地址

0

(因为8字节对齐的地址一定能被8整除,倒数第二三位是0)

V8 堆内外内存分布

堆内存 Heap Memory 分散的页 分散的页 分散的页 连续的页 帮助从操作系统 获取和归还内存页 戴超 **Memory Allocator New Space** Old Space Code Space Map Space (write 里面都是编译好的代码 大多数对象在此分配 保存着堆上对象的结构 主要从 New Space 晋升而来, munmap 总有一半不在实际使用中 也有部分对象在此分配 64 位内存大于 1GB 的机器默认 分散的页(加大版) 通常为 1~20 MB barrier) Old Space 上限1.4GB, 可通过 --max-old-space-size 调节 操作系统 左边是新生代 右边是老生代 Large Object Space (young generation), (old generation) 用 Mark-Sweep-Compact 回收 用 Scavenge 回收 里面都是大对象 外部内存 External Memory (由外部代码管理) Isolate::AdjustAmountOfExternalAllocatedMemory 上报外部内存大小到 V8 Connection Buffer Node.js V8 回收对象时,调用外部代码注册的 WeakCallback, 外部代码负责在 WeakCallback 中清理自己维护的内存 各种 Node.is 和 C++ addon 维护的内存...

Tricolor Marking

初始状态,所有非根对象都是白色

将根对象引用的对象标记为灰色, push 进栈

pop 一个对象出来,标记为黑,将它引用的 对象标记为灰色并 push 进栈

当栈清空的时候,剩下依然标记为白色的 对象就可以回收了

COURSES

相关课程

- ▶ 操作系统:理解 libuv 和 V8 底层,文件系统,编译链接,进程线程,.etc
 - ▶ 课程没有讲 coroutine?
 - ▶ 建议做 PINTOS,有的老师会当作业
- ▶ 编译原理: 理解 V8
 - ▶ 课程没有讲 JIT 编译和 GC? (可能后端一带而过)
 - ▶ 推荐选法师,推荐看斯坦福 Alex Aiken 的视频
 - ▶ 你知道 FJL 给 12 计应出的期末试卷就是斯坦福的试卷改改数据么?
- ▶ 计算机体系结构 / 计算机组成原理: 汇编, 理解 V8 底层优化
 - ▶ 建议阅读 CSAPP / CAAQA
 - CAAQA 好像是体系结构的课本?

COURSES

相关课程

- ▶ 计算机网络:libuv,Node.js 底层
 - 建议课后自己写一个可以 CGI 的 HTTP Server 玩
 - ▶ http://tinyhttpd.sourceforge.net/代码风格诡异,凑合看看
 - ▶ HTTP 大部分就是个解析字符串的活,还特别暴力
 - 然后你就知道 Node.js 依赖的 http_parser 是干嘛的了
 - 进阶:用 epoll/IOCP 之类配合 Socket (UDP/TCP)和文件系统改进你的 server,然后你就知道 libuv 是干嘛的了
- ▶ Web 安全: crypto,OpenSSL
 - 把老蔡布置的所有作业都独立做掉,你就入门了
 - 上完你就知道 Node.js 的 crypto API 是干嘛用的, 依赖的 OpenSSL 是干啥的了
 - ▶ 其实利用 buffer overflow 攻击写的 shell code 和 JIT 编译异曲同工

Q&A