See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231660788

Vibrational Analysis and Isotope Shifts of BEDT-TTF Donor for Organic Superconductors

ARTICLE in THE JOURNAL OF PHYSICAL CHEMISTRY	Y A · MARCH 1998		
Impact Factor: 2.69 · DOI: 10.1021/jp9728161			
CITATIONS	READS		
13	17		

2 AUTHORS, INCLUDING:

William A. Goddard

California Institute of Technology

1,332 PUBLICATIONS 68,216 CITATIONS

SEE PROFILE

Vibrational Analysis and Isotope Shifts of BEDT-TTF Donor for Organic Superconductors

Ersan Demiralp and William A. Goddard III*

Materials and Process Simulation Center, Beckman Institute (139-74), Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125

Received: August 28, 1997; In Final Form: November 17, 1997

Bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) is the best donor for 1-D and 2-D organic superconductors. Since coupling of vibrations with electronic states is critical to the nature of the superconductivity, it is essential to have a good understanding of the vibrational states. Many of the vibrational modes of BEDT-TTF were reported and assigned by Kozlov et al.⁵ and more were assigned by Eldridge et al.,⁶ who made very complete isotope experiments. However, there remain several disagreements between these assignments. We report here the isotopic shifts for neutral BEDT-TTF based on ab initio calculations [Hartree—Fock (HF) using the 6-31G** basis set] for all fundamental vibrational frequencies. On the basis of these results, we propose new assignments for the fundamental vibrational frequencies of BEDT-TTF that satisfy the isotopic substitutions: (i) D for all H, (ii) 13 C for the central carbons, (iii) 13 C for all the double bond carbons, and (iv) 34 S for all sulfurs. The boat deformation of the neutral BEDT-TTF reduces the point group symmetry from previously accepted D_{2h} (or D_2) to C_2 . This deformation explains the existing coincidence infrared (IR) and Raman spectrum.

1. Introduction

In the last two decades, more than 50 1-D and 2-D organic superconductors have been synthesized. All organic superconductors involve derivatives of the organic donor molecules tetrathiafulvalene (denoted as TTF), tetraselenafulvalene (denoted at TSeF), or some mixture of these two molecules, packed into quasi one- and two-dimensional arrays and complexed to appropriate electron acceptors. Bis(ethylenedithio)tetrathiafulvalene (denoted as BEDT-TTF or ET) is the best donor for the organic superconductors (see Figure 1). Using ET, more than 30 organic superconductors have been synthesized, leading to the highest T_c materials. However, the best T_c remains at 12.8 K for κ -(ET)₂Cu[N(CN)₂]Cl.

The isotopic shift of T_c indicates that the superconductivity involves electron-phonon coupling. However, there remains many questions about the relation between molecular properties and superconductivity. We found³ that for all known fulvalenebased superconductors, the neutral fulvalene donor distorts into a boat structure (the cation is planar), whereas the nonsuperconductors do not distort. We suggested^{3,4} that the coupling between charge transfer and the lowest boat deformation vibrational mode is responsible for the superconductivity. To test such ideas and to develop a more complete understanding of the mechanism for superconductivity, it is very important to know the character of the vibrational states. Such vibrational studies in the crystal will help identify the crucial electron phonon coupling and clarify the mechanism of the superconductivity. Hopefully this increased understanding can help to develop better organic superconductor materials.

Kozlov et al.⁵ reported the vibrational levels of ET and deuterium substituted ET/D₈. Recently, Eldridge et al.⁶ published extensive vibrational experiments with the isotopic

Figure 1. (a) Bis(ethylenedithio)tetrathiafulvalene (denoted as BEDT-TTF or ET). Side view for optimum structures of (b) planar and (c) boat ET.

substitutions: (i) D for all H, (ii) ¹³C for the central carbons, (iii) ¹³C for all the double-bond carbons, and (iv) ³⁴S for all sulfurs. Both groups made remarkable progress in identifying and assigning the vibrational modes of ET and isotopic substitutions; however, there remain many disagreements for the assignments of vibrational modes, particularly for deuterated ET. Since there are large isotopic shifts and the vibrational modes cross each other for deuterium substitutions, it is difficult to assign the corresponding modes purely from experiment. Recently, we published⁷ the frequencies for ET from ab initio HF calculations and derived the MSX force field calculations to describe the experimental frequencies by Kozlov et al.⁵ While

^{*} To whom correspondence should be addressed.

this material was in the process of publication, newer, much more complete studies of isotopically substituted ET were published by Eldridge et al.⁶ Consequently, we have reexamined all the vibrational modes of ET for all available isotopic substitutions, using ab initio quantum chemical calculations [Hartree-Fock (HF) with 6-31G** basis set] to obtain all modes of neutral ET and for the isotope shifts for these substitutions.

Generally the vibrational frequencies for HF ab initio wave functions are about 10% larger than the experimental frequencies. Thus, scaling the calculated frequencies by 0.9 makes the HF frequencies comparable with the experimental frequencies. We report here scaled HF frequencies for ET and its isotopic substitutions. We see that there is a consistent agreement between the scaled HF and the experimental frequencies. This remarkable agreement provides us with a good basis for independent assignments of the vibrational modes for ET and ET/D₈. This allowed us to propose a new set of assignments based on comparing the frequencies, assignments, and isotopic shifts from experiment with the scaled HF (from now on denoted as HF/S) frequencies, symmetries, intensities, and isotopic shifts from theory. The complete isotopic shifts for all the modes of ET should help to identify the crucial phonon mode(s) relevant to the superconductivity.

2. Calculations

Kozlov et al.5 reported the vibrational levels of ET and for deuterium substitutions. Recently, Eldridge et al.6 reported much more extensive vibrational experiments with isotopic substitutions: (i) D for all H, (ii) ¹³C for the central carbons, (iii) ¹³C for all the double-bond carbons, and (iv) ³⁴S for all sulfurs. Kozlov et al.⁵ and Eldridge et al.⁶ were aware that only the central C₂S₄ group of the ET is planar, but to simplify the assignments, they considered the ET to be totally flat, leading to D_{2h} symmetry with the fundamental mode distribution

$$\begin{split} \Gamma(\text{D2h}) &= 12 A_{\text{g}} + 7 A_{\text{u}} + 6 B_{1\text{g}} + 11 B_{1\text{u}} + 7 B_{2\text{g}} + 11 B_{2\text{u}} + \\ & 11 B_{2\text{g}} + 7 B_{3\text{u}} \ (1) \end{split}$$

Parts b and c of Figure 1 show the side view of planar and boat ET structures, respectively. Ab initio quantum chemical calculations^{3,4} show that neutral ET is nonplanar. The stable boat structure of ET has C_2 symmetry, leading to the mode distribution

$$\Gamma(C2) = 37A + 35B \tag{2}$$

The reduction of symmetry is as follows:

$$12A_g + 7A_u + 11B_{3g} + 7B_{3u} \rightarrow 37A$$
 (3a)

and

$$11B_{1u} + 6B_{1g} + 11B_{2u} + 7B_{2g} \rightarrow 35B$$
 (3b)

To clarify the vibrational spectrum of the neutral ET molecule, we first compared the experimental frequencies by Kozlov et al.5 and Eldridge et al.6 Although most of the frequencies matched numerically within the experimental resolution of 4 cm⁻¹, many assignments disagreed in the symmetry of the modes (in D_{2h}). C-H stretch modes around 2900 cm⁻¹, C-H₂ bend modes around 1400 cm⁻¹, and C-H₂ twist modes around 1150 cm⁻¹, five modes between 919 and 889 cm⁻¹, and C-H₂ rock modes at 687 cm⁻¹ were assigned to different symmetries for ET by Kozlov et al.5 and Eldridge et al.⁶ Almost all the modes of deuterated ET(D₈) from C-D stretch modes around 2200 to 600 cm⁻¹ except C=C stretch modes around 1500 cm⁻¹ were assigned to different symmetries by Kozlov et al.⁵ and Eldridge et al.⁶ From eqs 3a,b, we see that the symmetries of D_{2h} framework reduce to A and B modes, and both experimental spectra can be unified by considering the exact (C_2) symmetry of the molecule. However, we keep the D_{2h} approximation to compare with the experimental assignments.

Using the quantum mechanical Hessian,8 we substituted the isotopic masses to obtain the vibrational modes for isotopic substitutions.9 Table 1 shows the calculated and available experimental frequencies for neutral ET and D(8) substitutions. We report scaled frequencies, intensities, and isotopic shifts for the boat structures. Over the years, the comparison of the HF frequencies with the experimental frequencies for many molecules leads to an empirical scaling factor of 0.9. For the comparisons of the intensities and the symmetries between the HF and the experimental results, we included also the approximate D_{2h} symmetry in all tables and summed the same type (IR or Raman) of intensities of C_2 symmetry modes for the nearly degenerate pair modes such as A(A_g) and B(B_{1u}) at 2914 cm⁻¹ in the HF/S spectra. By comparing the experimental frequencies, the assignments, and the isotopic shifts with HF/S frequencies, symmetries, intensities, and isotopic shifts, we propose new sets of assignments for fundamental vibrational frequencies of ET and deuterated ET frequencies in Table 1. The agreement between HF/S and experimental frequencies is very good. We used the frequencies reported by Eldridge et al.6 when the difference between the reported frequencies by Eldridge et al.⁶ and Kozlov et al.⁵ is \sim 5 cm⁻¹. Table 2 shows the comparisons of HF/S and the experimental frequencies by Eldridge at al.⁶ for isotopic substitutions. There is a very good agreement between the experimental and the calculated frequencies for ¹³C and ³⁴S substitutions. For these substitutions, the order of modes is usually preserved and the shifts are small. Thus, it is relatively easy to assign the modes for these substitutions. The assignments in Table 2 for ¹³C and ³⁴S substitutions are the same as Eldridge et al.⁶ except the 956 and 976 cm⁻¹ modes for ¹³C(6) substitutions. We assigned the 956 cm⁻¹ mode to $A(B_{3g})$ and the 976 cm⁻¹ mode to $A(A_g)$ by comparing isotopic shifts. Using the calculated frequencies for the isotopic shifts, we obtained the shifts, $\Delta \nu = \nu_0 - \nu_{\rm iso}$ in Table 3.

3. Discussion

By comparing the HF/S frequencies, symmetries, intensities, and isotopic shifts, we propose new assignments which provide an excellent match between the theory and both sets of experimental results. We account for all the reported frequencies except two modes, at 625 cm⁻¹ and 860 and 827 cm⁻¹, in the neutral ET spectra. We believe these modes may be combination bands. Eldridge et al.⁶ were also not certain about the last two modes.

We start with the assignments of C-H stretch modes in Table 1. We assigned the strongest Raman mode at 2920 cm⁻¹ as $A(A_g)$ and its IR partner at 2922 cm⁻¹ as $B(B_{1u})$. Our calculated values are 2914 cm⁻¹ for both. We assigned the second strongest Raman mode at 2964 cm⁻¹ as A(A_u) and its IR partner at 2958 cm^{-1} as $B(B_{1g})$. The calculated values are 2961 cm^{-1} for both. Our calculated intensities agree with these assignments. We assigned the medium strength Raman mode at 2986 cm⁻¹ as $B(B_{2g})$ and its IR partner at 2983 cm⁻¹ as $B(B_{3u})$. We

TABLE 1: Calculated and Experimental Frequencies for Neutral and ET(D(8)) (Deuterium Substitutions). Calculated HF Frequencies Are for Boat (C_2 Symmetry) ET. HF/S Is $0.9 \times$ (HF Frequencies). The Frequencies Are in cm $^{-1}$, IR Intensities Are in km/mol (1 km/mol = 0.023666 D 2 Å $^{-2}$ amu $^{-1}$), Raman Intensities Are in Å 4 /amu. Experimental Values Are from Eldridge et al. 6 and Kozlov et al. 5 We Propose New Assignments by Comparing the Following Factors: Experimental Frequencies and Assignments, HF/S Frequencies, Symmetries, and Intensities

		ET					ET	T/D(8)			
			ν							ν	
		exp	o. assignmen	t	HF/ir	ntensity			ex	p. assignmer	ıt
symmetry $C_2(D_{2h})$	HF/S	this paper	Eldridge	Kozlov	IR	Raman	experiment spectra	HF/S	this paper	Eldridge	Kozlov
A (B3u)	2972	2983	2983	2958	14.88	100.11	IR, vw ^{a,b}	2206	2229	2174	2237
B (B2g) A (Au)	2972 2961	2986 2964	2986			123.11 265.90	Raman, m Raman, s	2206 2201	2233 2175	2175	
B (B1g)	2961	2958			0.38	203.90	IR, m	2201	2174		
A (Ag)	2914	2920	2920		0.50	610.52	Raman, vs	2121	2147	2147	
B (Blu)	2914	2922	2922	2958	79.91		IR, m	2121	2146	2146	2169
A (B3g)	2906		2964	2016	40.00	168.19		2113		2233	
B (B2u)	2906 1634	1551	2958 1551	2916 1552	12.92 0.57	345.11	Domon o	2113 1633	1551	2229 1551	1552
A (Ag) B (B1u)	1611	1509	1509	1505	1.48	0.26	Raman, s IR/Raman, s	1610	1509	1509	1506
A (Ag)	1595	1493	1493	1494	0.35	509.60	Raman, vs	1594	1493	1493	1494
A (Ag)	1448	1422	1408			25.43	Raman, w	1136	1116	1116	
B (Blu)	1448	1422	1409	1420	4.13	44.50	IR, w	1136	1112	1112	1110
A (B3g)	1435	1408 1409	1422 1422	1409 1406	16.13	41.63	Raman, m	1059 1059	1029 1031	1029 1031	
B (B2u) A (Ag)	1435 1319	1283	1283	1285	10.13	2.64	IR, s Raman, m	1059	1031	1031	1002 ?
B (Blu)	1319	1284	1284	1282	66.13	2.04	IR, s	1050	1042	1042	1011
A (B3g)	1290	1257	1257	1256		1.76	Raman, w	1031	1016	1016	1029
B (B2u)	1290	1261	1261	1259	6.56		IR, m	1030	1013	1013	1041
A (Au)	1189	1174	1126	1175	0.22	18.03	Raman, m	927	936	806	025
B (B1g) A (B3u)	1188 1134	1174 1126	1125 1174	1175 1125	0.33 4.92		IR, m IR, m	927 804	931 806	804 793	935 806
B (B2g)	1134	1125	1174	1123	4.92	14.70	Raman, w	803	804	793 794	805
A (B3g)	1018	1013	1013	1016	0.21	0.34	Raman, m	1010	987	7,74	984
B (B2u)	1016	997	997		7.07		IR, m	1016	990	931	990
A (B3g)	1013	1000	1000			0.61	Raman, m	1013	1018	936	1018
B (B1u)	984	992	992	996	0.04	7.76	IR, sh	873	905	987	905
A (Ag) A (Ag)	984 930	990 919	990 919	990 911		7.76 13.01	Raman, s Raman, m	873 787	881 793	985 742	794
B (Blu)	930	918	918	905	24.22	13.01	IR, s	787	794	742	793
B (B2u)	896	906	906	917	12.99	1.83	IR, s	863	879	905	879
A (B3g)	891	889	889	919	5.72	0.04	Raman, vw	824		881	
B (B1g)	870	890	860 ?	938	31.60	2.50	IR, s	746	742	670	741
A (Au)	870 855	875	827 ? 875 ^c	875	2.29	2.58 0.28	ID a	746 824	742 827	$678 \ 827^c$	827
B (B2u) B (B2u)	762	8/3	8/3	8/3	12.03	0.28	IR, s	692	693	821	821
B (B1u)	761	771	771	772	42.37	0.02	IR, s	761	772	772	772
A (B3g)	758	764	764^{c}		0.17	1.96	Raman, m	690	693		
A (B3g)	683	687	687	625		17.76	Raman, m	626	634	634	610
B (B2u)	683	687	687	624	2.57	44.70	IR, m	626	635	635	609
A (Ag) B (B1u)	644 644	654 654	$654^d \\ 654^d$	653 653	6.72	44.70	Raman, s IR, w	599 599	610 611	610 611	635 634
B (B2g)	561	034	034	033	4.54	11.88	IK, W	560	011	011	034
B (B1g)	546				7.57	5.07		543			
A (Au)	544				0.11			542			
A (Ag)	485	487	487	486	1.50	15.60	Raman, s	484	487	487	486
B (B2g)	461 459				1.52	2.59		414			
A (B3u) B (B1u)	439	500	500	499	1.53 6.24	0.43	IR, s	411 447	500	500	500
A (Ag)	435	440	440	440	0.01	14.54	Raman, m	434	440	440	439
B (B1u)	382	390	390	390	6.63	1.16	IR, m	380	388	388	388
B (B2u)	355	335	335	335	0.04	0.80	IR, w	340	327	327	326
A (B3g)	354	348	348	348	0.02	0.10	Raman, w	351	340	340	339
A (B3g) A (Ag)	345 321	335 309	335 309	334 308	0.09 1.02	8.42 4.00	Raman, w Raman, m	331 317	326 298	326 298	323 296
B (B1u)	294	277	277	278	3.16	0.17	IR, w	287	270	270	269
A (Au)	284	277	277	270	0.04	2.72	114, 11	308	277	270	20)
B (B2g)	278				0.28	0.05		291	262		
A (B3u)	270	2.50	2.50	2.55	0.04	0.20	TD.	286	258	27.5	2.55
B (B2u)	258	258	258	257	3.72	0.02	IR, w	254	256	256	257
A (B3u) B (B1g)	243 236				0.01 4.45	0.75 0.61		244 234	220 211		
A (B3g)	185	[190]	$190^{c,e}$	159	0.01	0.72	Raman, sh	182	156	156	155
A (Ag)	156	161	161	151	0.03	14.86	Raman, s	152	147	156	147
A (Au)	117	127	$125^{c,e}$	-	0.03	0.18	Raman, vw	116	125		
B (B1g)	116	96			0.00	0.28	Raman, m	114	88		
B (B2u)	54			30	1.14	0.87		53			30
A (Au) B (B2g)	48 39	30		127	0.16 2.71	0.19 0.37	IR/Raman, w/s	47 39	30		125
A (B3u)	38	30		96	7.24	0.37	in/Nailiali, W/S	39 35	30		88
B (B2g)	34			70	0.26	0.63		31			30
A (B3u)	18				2.21	1.28		17			

^a Relative intensities, vs very strong, s strong, m medium, w weak, vw very weak, sh shoulder, br broad. ^b These are the spectra and the relative intensities corresponding to our assignments. ^c Symmetries of these modes were not assigned by Eldridge et al. ⁶ ^d These modes were assigned $A(B_{3g})$ and $B(B_{2u})$ in ref 6, but later were reassigned to $A(A_g)$ and $B(B_{1u})$ in ref 10. ^e These observed shoulders in the spectra by Eldridge et al. ⁶ may be fundamental modes.

TABLE 2: Scaled HF and Experimental Frequencies for Isotopic Substitutions $^{13}C(6)$, $^{13}C(2)$, $^{34}S(8)$, and D(8). Scaling Factor for HF Frequencies Is 0.9. The Frequencies Are in cm $^{-1}$. Experimental Values Are from Eldridge et al.⁶

for HF F	requencies Is 0.	9. Th	e Freque	ncies Āi	re in ci	m ⁻¹ .	Experim	ental `	Values	Are fro	m Eld	ridge (et al. ⁶			
			ET			¹³ C(6)		¹³ C(2))		³⁴ S(8))		D(8)	
symmetry			ex	pt		ϵ	expt		e	xpt		e	expt		e	xpt
$C_2(D_{2h})$	mode	HF/S	IR	Raman	HF/S	IR	Raman	HF/S	IR	Raman	HF/S	IR	Raman	HF/S	IR	Raman
A (B3u)	C-H str.	2972	2983	•	2972	2983	2005	2972	2983	2005	2972	2983	2005	2206	2229	
B (B2g) A (Au)	C-H str. C-H str.	2972 2961		2986 2964	2972 2961		2986 2964	2972 2961		2986 2964	2972 2961		2986 2964	2206 2201		2233 2175
B (B1g)	C-H str.	2961	2958	2904	2961	2958	2904	2961	2958	2904	2961	2958	2904	2201	2174	2173
A (Ag)	C-H str.	2914	2,00	2920	2913	2,00	2920	2913	2,00	2920	2913	2,00	2920	2121		2147
B (B1u)	C-H str.	2914	2922		2913	2922		2913	2922		2913	2922		2121	2146	
A (B3g)	C-H str.	2906			2906			2906			2906			2113		
B (B2u) A (Ag)	C-H str. C=C str.	2906 1634		1551	2906 1570		1486	2906 1617		1522	2906 1633		1549	2113 1633		1551
B (B1u)	C=C str.	1611	1509	1331	1548	1452	1400	1610	1486	1322	1610	1508	1347	1610	1509	1331
A (Ag)	C=C str.	1595		1493	1532		1437	1547		1465	1594		1493	1594		1494
A (Ag)	CH ₂ bend	1448	4.400	1422	1447			1447		1422	1447	4 400	1422	1136		1116
B (B1u)	CH ₂ bend	1448	1422	1409	1447		1.409	1447		1409	1447	1423	1409	1136	1112	1020
A (B3g) B (B2u)	CH ₂ bend CH ₂ bend	1435 1435	1409	1408	1435 1435	1409	1408	1435 1435	1408	1408	1435 1435	1409	1408	1059 1059	1031	1029
A (Ag)	CH ₂ wag	1319	1.07	1283	1319	1.07	1283	1319	1.00	1283	1319	1.07	1283	1051	1001	1044
B B(1u)	CH ₂ wag	1319	1284		1319	1284		1319	1283		1319	1283		1050	1042	
A (B3g)	CH ₂ wag	1290	1261	1257	1290	1261	1257	1290	1261	1258	1290	1261	1257	1031	1012	1016
B (B2u) A (Au)	CH ₂ wag CH ₂ twist	1290 1189	1261	1174	1290 1188	1261	1174	1290 1188	1261	1174	1290 1188	1261	1174	1030 927	1013	936
B (B1g)	CH ₂ twist	1188	1174	1171	1188	1173	1171	1188	1172	1171	1188	1173	11/1	927	931	750
A (B3u)	CH ₂ twist	1134	1126		1134	1126		1134	1126		1134	1126		803	806	
B (B2g)	CH ₂ twist	1134		1125	1134		1125	1134		1125	1134		1125	804	0.07	804
A (B3g) B (B2u)	ring def. (I.P.) ^a ring def. (I.P.)	1018 1016	997	1013	985 985	963	1000	1015 1013	994	1011	1014 1014	996	1012	1010 1016	987	985
A (B3g)	ring def. (I.P.)	1013	221	1000	981	903	956	985	774	965	1014	770	999	1013		
B (B1u)	C-C str.	984	992		977			984			983	989		873	905	
A (Ag)	C-C str.	984		990	975		976	982		996	983		987	873		881
A (Ag) B (B1u)	CH ₂ rock CH ₂ rock	930 930	918	919	929 928	917	917	929 929	918	919	928 928	917	917	787 787	793	794
B (B2u)	CH ₂ rock CH ₂ wag	896	906		891	884		895	905		893	903		863	879	
A (B3g)	CH ₂ wag	891		889	887		883	890	, , ,	888	889		886	824		
B (B1g)	ring def. (I.P.)	870	890		843	878		869	889		866	887		746	742	
A (Au)	ring def. (I.P.)	870	075		843	0.10		869	974		865	071		746	927	742
B (B2u) B (B2u)	ring def. (I.P.) ring def. (I.P.)	855 762	875		831 743	848		831 760	874		850 757	871		824 692	827 693	
B (B1u)	ring def. (I.P.)	761	771		739	748		737	748		756	767		761	772	
A (B3g)	ring def. (I.P.)	758		764^{c}	737		747	757		763	754		759	690		693
A (B3g)	CH ₂ rock	683	607	687	682	607	687	683	607	687	677	601	680	626	625	634
B (B2u) A (Ag)	CH ₂ rock CH ₂ rock	683 644	687	654	682 644	687	654	682 644	687	654	676 638	681	648	626 599	635	610
B (B1u)	CH ₂ rock	644	654	051	644	653	051	644	654	051	638	648	010	599	611	010
B (B2g)	ring def. $(O.P.)^b$	561			542			545			559			560		
B (B1g)	ring def. (O.P.)	546			526			544			545			543		
A (Au) A (Ag)	ring def. (O.P.) ring def. (O.P.)	544 485		487	524 483		486	542 483		487	543 471		474	542 484		487
B (B2g)	ring def. (O.P.)	461		407	460		400	460		407	454		7/7	414		407
A (B3u)	ring def. (O.P.)	459			458			459			453			411		
B (B1u)	ring def. (O.P.)	446	500	4.40	444	487	440	444	486	4.40	435	497	420	447	500	440
A (Ag) B (B1u)	ring def. (O.P.) ring def. (O.P.)	435 382	390	440	434 380	388	440	434 380	388	440	422 372	381	428	434 380	388	440
B (B2u)	ring def. (O.P.)	355	335		354	330		354	335		347	331		340	327	
A (B3g)	ring def. (O.P.)	354		348	352		347	352		347	344		339	351		340
A (B3g)	ring def. (O.P.)	345		335	343		329	344		334	337		329	331		326
A (Ag)	ring def. (O.P.)	321	277	309	317	270	308	319	276	309	315	275	303	207	270	298
B (B1u) A (Au)	ring def. (O.P.) ring def. (O.P.)	294 284	277		293 280	278		293 282	276		288 281	275		287 277	270	
B (B2g)	ring def. (O.P.)	278			273			278			276			262		
A (B3u)	ring def. (O.P.)	270			264			265			268			258		
B (B2u)	ring def. (O.P.)	258	258		255	256		257	258		252	253		254	256	
A (B3u) B (B1g)	ring def. (O.P.) ring def. (O.P.)	243 236			237 232			242 236			241 235			220 211		
A (B3g)	ring def. (O.P.)	185	$[190]^{c,d}$		184			185			181			182		
A (Ag)	ring def. (O.P.)	156	,	161	155		160	156		161	153		159	152		156
A (Au)	ring def. (O.P.)	117	0.0	127^{e}	117			117			114			116	00	125^{e}
B (B1g) B (B2u)	ring def. (O.P.)	116 54	96		116 54			116 54			113 53			114 53	88	
A (Au)	ring def. (O.P.) ring def. (O.P.)	48			48			48			33 47			33 47		
B (B2g)	ring def. (O.P.)	39			39			39			38			39		
A (B3u)	ring def. (O.P.)	38	31^e	30^e	38			38			37			35	30^e	30^e
B (B2g)	ring def. (O.P.)	34			34 18			34 18			34 17			31		
A (B3u)	ring def. (O.P.)	18			18			18			1 /			17		

^a In-plane ring deformation mode. ^b Out-of-plane ring deformation mode. ^c Symmetries of these modes were not assigned by Eldridge et al. ⁶ These observed shoulders in the spectra by Eldridge et al. ⁶ may be fundamental modes. ^e These frequencies are from Kozlov et al. ⁵

TABLE 3: Isotopic Shifts, $\Delta \nu$, for Scaled HF and Experimental Frequencies for the Substitutions $^{13}C(6)$, $^{13}C(2)$, $^{34}S(8)$, and D(8). Scaling Factor for HF Frequencies Is 0.9. The Frequencies Are in cm⁻¹

	I	ΕΤ ν	¹³ C(6	δ) Δν	¹³ C(2	2) Δν	³⁴ S(8	$\Delta \nu$	Г	$O(8) \Delta \nu$
symmetry $C_2(D_{2h})$	HF/S	expt	HF/S	expt	HF/S	expt	HF/S	expt	HF/S	expt
A (B3u)	2972	2983	0	0	0	0	0	0	766	754
B (B2g)	2972	2986	0	0	0	0	0	0	767^{a}	753
A (Au)	2961	2964	0	0	0	0	0	0	760	789
B (B1g)	2961	2958	0	0	0	0	0	0	760	784
A (Ag)	2914	2920	0	0	0	0	0	0	792	773
B (B1u)	2914	2922	0	0	0	0	0	0	792	776
A (B3g)	2906		0		0		0		793	
B (B2u)	2906	1551	0	65	0	20	0	2	793	0
A (Ag) B (B1u)	1634 1611	1551 1509	64 63	65 57	17 1	29 23	1	2	1	0
A (Ag)	1595	1493	62^{a}	57 56	47	23 28	1 1	1 0	1 1	$+1^{b}(0)^{c}$
A (Ag) A (Ag)	1448	1422	0	30	0	0	0	0	311	306
B (B1u)	1448	1422	0		0	U	0	+1	311	310
A (B3g)	1435	1408	0	0	0	0	0	0	376	379
B (B2u)	1435	1409	Ö	Ő	Ö	1	Ö	0	376	378
A (Ag)	1319	1283	0	0	0	0	0	0	269	239
B (B1u)	1319	1284	0	0	0	1	0	1	268	242
A (B3g)	1290	1257	0	0	0	+1	0	0	259	241
B (B2u)	1290	1261	0	0	0	0	0	0	261	248
A (Au)	1189	1174	0	0	0	0	0	0	261	238
B (B1g)	1188	1174	0	1	0	2	0	1	261	243
A (B3u)	1134	1126	0	0	0	0	0	0	331	320
B (B2g)	1134	1125	0	0	0	0	0	1	331	321
A (B3g)	1018	1013	33	13	3	2	3	1	7	26
B (B2u)	1016	997	31	34	3	3	2	1	0	
A (B3g)	1013	1000	32	44	28	35	2	1	0	
B (B1u)	984	992	7		0		1	3	111	87
A (Ag)	984	990	9	14	2	+6	1	3	111	109
A (Ag)	930	919	1	2	0	0	1	2	143	125
B (B1u)	930	918	1	1	0	0	1	1	143	125
B (B2u)	896	906	5	22	1	1	3	3	33	27
A (B3g)	891	889	4	6	1	2	2 5	3	67	1.40
B (B1g) A (Au)	870 870	890	27 28	12	1	1	5 5	3	125 124	148
B (B2u)	855	875	28 25	27	1 24	1		4	31	48
B (B2u)	762	8/3	23 19	21	24	1	6 5	4	70	46
B (B1u)	761	771	22	23	24	23	5	4	0	+1 (0)
A (B3g)	758	764^{d}	21	17	1	1	5	5	68	71
A (B3g)	683	687	1	0	0	0	7	7	57	53
B (B2u)	683	687	1	0	1	0	7	6	57	52
A (Ag)	644	654	1	0	0	0	6	6	45	44
B (B1u)	644	654	1	1	Ö	Ö	6	6	45	43
B (B2g)	561		19		15		2		0	
B (B1g)	546		20		2		1		3	
A (Au)	544		20		3		1		3	
A (Ag)	485	487	2	1	1	0	14	13	1	0
B (B2g)	461		1		1		6		47	
A (B3u)	459		1		0		6		48	
B (B1u)	446	500	2	3	2	14	12	3	+1	0 (+1)
A (Ag)	435	440	1	0	1	0	12	12	1	0
B (B1u)	382	390	2	2	2	2	10	9	2	2
B (B2u)	355	335	1	5	1	0	8	4	15	8
A (B3g)	354	348	2	1	1	1	9	9	2	8
A (B3g)	345	335	2	6	1	1	7	6	13	9
A (Ag)	321 294	309 277	4	$^{1}_{+1}$	2	0 1	6	6 2	4 7	11 7
B (B1u)	294	211	1	+1	1	1	6	2	7	/
A (Au) B (B2g)	278		4 4		1 0		3 1		16	
A (B3u)	270		6		5		2		12	
B (B2u)	258	258	3	2	1	0	5	5	4	2
A (B3u)	243	230	6	4	1	U	2	5	23	2
B (B1g)	236		4		0		2 2		26	
A (B3g)	185	$[190]^{d,e}$	1		0		4		3	
A (Ag)	156	161	1	1	0	0	3	2	4	5
A (Au)	117	127	0	1	0	U	3	4	1	5 2
B (B1g)	116	96	0		0		3		2	8
B (B2u)	54	70	0		0		1		2	J
A (Au)	48		0		ő		1		1	
B (B2g)	39	30	0		0		1		0	0
A (B3u)	38		ő		ő		1		3	Ŭ
B (B2g)	34		Ö		Ö		0		3	

 $[^]a$ 1 cm $^{-1}$ differences between $\Delta \nu$ obtained from Table 2 and $\Delta \nu$ in Table 3 for some modes are due to rounding off the decimal points. b + sign shows the frequency increases for the isotopic substitution. c The shifts in the parentheses are from Kozlov et al. 5 d Symmetries of these modes were not assigned by Eldridge et al. 6 c These observed shoulders in the spectra by Eldridge et al. 6 may be fundamental modes.

calculated these modes at 2972 cm⁻¹ with intensities roughly consistent with the experiment. ET/D(8) modes were assigned by obtaining best fits between HF/S and experimental isotopic shifts. The medium Raman mode at 1408 cm⁻¹ is assigned to the A(B_{3g}) mode calculated at 1435 cm⁻¹, and the strong IR partner at 1409 cm⁻¹ is assigned to the B(B_{2u}) mode calculated at 1435 cm⁻¹. Consequently, the 1422 cm⁻¹ modes were assigned to the other $C-H_2$ bend modes with $A(A_g)$ and $B(B_{1u})$ symmetries. The good match between the experimental and HF/S isotopic shifts supports these assignments. All the modes between 1284 and 918 cm⁻¹ were clearly assigned by comparing the symmetries, intensities, and isotopic shifts. The following five modes between 906 and 827 cm⁻¹ are difficult to assign since the comparisons between HF/S experimental intensities and isotopic shifts appear not to be clear for these modes. We assigned the 906 cm⁻¹ mode to one of the strong IR mode and the 889 cm⁻¹ mode to the next HF/S A(B_{3g}) mode. We believe the 860 and 827 cm⁻¹ modes are not fundamental, and the experimental assignments were also uncertain. We assigned the strong IR mode at 890 cm $^{-1}$ as B(B_{1g}) with calculated value 870 cm^{-1} and the medium IR mode at 875 cm^{-1} as $B(B_{2u})$ with calculated value 855 cm $^{-1}$. The 771 cm $^{-1}$ B(B_{1u}) and 764 cm $^{-1}$ A(B_{3g}) modes were assigned by obtaining a good match between the HF/S and the experimental isotopic shifts and intensities. Three sets of pair modes around 625, 654, and 687 cm⁻¹ were reported by Kozlov et al.5 and Eldridge et al.6 However, we obtained only two pairs of modes at 644, 683 cm⁻¹ from HF/S results. Comparing the symmetries, the intensities, and the isotopic shifts, we assign them to the experimental frequencies 654, 687 cm⁻¹. We believe that the 625 cm⁻¹ mode may be a combination band. The modes between 500 and 258 cm⁻¹ were easily assigned by matching the symmetries and intensities. The strong Raman intensity 161 cm⁻¹ mode was assigned as A(A_g) with the calculated value 156 cm⁻¹. The experimental spectra by Eldridge et al.⁶ contain shoulders around 125 and 190 cm⁻¹. These modes may be fundamental modes, and there are some possible corresponding modes in the HF/S spectra. We assigned these low-frequency modes by obtaining the best fit of the isotopic shifts and the intensities between HF/S and the experimental results for ET and ET/D(8).

4. Summary

We reported and compared frequencies for all vibrational modes for neutral ET and the substitutions: (i) D for all H, (ii)

¹³C for the central carbons, (iii) ¹³C for all the double-bond carbons, and (iv) 34S for all sulfurs. By comparing experimental frequencies, assignments, and isotopic shifts with the scaled HF frequencies, symmetries, intensities, and isotopic shifts, we propose new sets of assignments for fundamental vibrational frequencies of ET and for isotopic substitutions. The agreement between the theoretical and experimental frequencies and isotopic shifts is excellent. These results should be useful in identifying the vibrational states responsible for the superconductivity of these systems.

Acknowledgment. This research was supported by NSF-CHE (95-22179). The facilities of the MSC are also supported by grants from DOE-BCTR, BP Chemical, Asahi Chemical, Saudi Aramco, Owens-Corning, Chevron Petroleum Technology Corp., Exxon, Chevron Research and Technology Corp., Avery-Dennison, and Beckman Institute.

References and Notes

- (1) Mori, H. Int. J. Mod. Phys. B 1994, 8, 1-45.
- (2) Williams, J. M.; Ferraro, J. R.; Carlson, K. D.; Geiser, U.; Wang, H. H.; Kini, A. M.; Whangbo, M.-H. Organic Superconductors (Including Fullerenes): Synthesis, Structure, Properties, and Theory; Prentice-Hall: Englewood Cliffs, NJ, 1992.
 - (3) Demiralp, E.; Goddard, W. A., III. Synth. Met. 1995, 72, 297.
- (4) Demiralp, E.; Dasgupta, S.; Goddard, W. A., III. J. Am. Chem. Soc. 1995, 117, 8154.
- (5) Kozlov, M. E.; Pokhodnia, K. I.; Yurchencko, A. A. Spectrochim. Acta 1989, 45A, 323.
- (6) Eldridge, J. E.; Homes, C. C.; Williams, J. M.; Kini, A. M.; Wang, H. H. Spectrochim. Acta 1995, 51A 947.
- (7) Demiralp, E.; Dasgupta, S.; Goddard, W. A., III. J. Phys. Chem. A
- (8) The quantum mechanical calculations were carried out using Gaussian 92: Frisch, M. J.; Trucks, G. W.; Head-Gordon, M.; Gill, P. M. W.; Wong, M. W.; Foresman, J. B.; Johnson, B. G.; Schlegel, H. B.; Robb, M. A.; Replogle, E. S.; Gomperts, R.; Andres, J. L.; Raghavachari, K.; Binkley, J. S.; Gonzalez, C.; Martin, R. L.; Fox, D. J.; Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Pople, J. A. Gaussian 92, Revision B; Gaussian, Inc.: Pittsburgh, PA, 1992.
- (9) Frequency calculations were performed by using MSC-PolyGraf V3.30. This is based on PolyGraf 3.21 from Molecular Simulations Inc., San Diego. It uses a vibrational module developed by Naoki Karasawa, Siddharth Dasgupta, and William Goddard.
- (10) Eldridge, J. E.; Xie, Y.; Wang, H. H.; Williams, J. M.; Kini, A. M.; Schlueter J. A. Spectrochim. Acta 1996, 52A, 45.