

ADL HW2

• Model (1%)

- Describe the model architecture and how it works on text summarization.
 - T5 is a transformer-based encoder-decoder architecture designed for various sequence-to-sequence tasks, including text summarization.
 - Key Components:
 - Encoder-Decoder Structure:
 - **Encoder:** Processes the input text (maintext) and encodes it into continuous representations.
 - **Decoder:** Generates the output text (title) by predicting one token at a time, using both the encoder's representations and its own previously generated tokens.

Self-Attention Mechanisms:

• Both the encoder and decoder use self-attention layers to capture dependencies between tokens in the input and output sequences.

Cross-Attention:

• The decoder incorporates cross-attention layers to focus on relevant parts of the input sequence when generating each output token.

Function in Text Summarization:

- **Input Processing:** The encoder transforms the main text into a context-aware representation.
- **Sequence Generation:** The decoder generates the summary by attending to the encoder's output and previously generated tokens.
- **Learning Objective:** The model is trained to minimize the difference between the generated summary and the reference summary, effectively learning to produce concise and informative summaries.

• Preprocessing (1%)

• Describe your preprocessing (e.g. tokenization, data cleaning and etc.)

Data Preprocessing Steps

1. Tokenization:

- Inputs (maintext):
 - Tokenized using the AutoTokenizer associated with the model.
 - Converts text into token IDs that the model can process.
- Targets (title):
 - Tokenized similarly, using tokenizer.as_target_tokenizer() to ensure correct handling.

2. Truncation and Padding:

- Inputs:
 - Truncated to a maximum length of **256 tokens** to handle long texts and fit GPU memory constraints.
 - Uses truncation=True to cut off sequences longer than the maximum length.

Targets:

• Truncated to a maximum length of **64 tokens** to focus on concise summaries.

3. Label Preparation:

The tokenized target sequences are assigned to the "labels" key in the model inputs.

• Ensures the model computes the loss between its predictions and the actual summaries during training.

4. Data Cleaning:

- The code assumes that the dataset is already clean.
- No explicit steps for data cleaning like removing special characters or handling missing values are included.

5. Dataset Column Removal:

- Original columns are removed after preprocessing to keep only the necessary tokenized data for training.
- Hyperparameter (1%)
 - Describe your hyperparameter you use and how you decide it.
 - 1. Number of Training Epochs (num_train_epochs = 10):
 - Trains the model over 10 full passes of the training dataset.
 - Chosen to provide enough iterations for learning without overfitting.
 - 2. Batch Size (batch_size = 8):
 - Small batch size to accommodate GPU memory limitations.
 - Effective batch size becomes batch_size * gradient_accumulation_steps = 64.

3. Gradient Accumulation Steps (gradient_accumulation_steps = 8):

- Accumulates gradients over 8 steps before updating model weights.
- Allows for a larger effective batch size without exceeding memory limits.

4. Maximum Sequence Lengths:

- **Inputs** (max_length=256): Captures sufficient context from the main text.
- Targets (max_length=64): Focuses on generating concise summaries.

5. Optimizer Settings:

- **Optimizer:** Adafactor, suitable for large models like T5.
- Learning Rate (1r=None):

- Relies on a relative learning rate with warmup (relative_step=True, warmup_init=True).
- Automatically adjusts learning rate based on training progress.
- Learning Curves (1%)
 - Plot the learning curves (ROUGE versus training steps)

• Stratgies (2%)

• Describe the detail of the following generation strategies:

1. Greedy Search:

- Mechanism:
 - At each decoding step, selects the token with the highest probability.
- Characteristics:
 - **Deterministic Output:** Always produces the same summary for a given input.
 - **Limitations:** May lead to suboptimal summaries due to lack of exploration.

2. Beam Search:

Mechanism:

- Keeps track of the top k (beam width) most probable sequences at each step.
- Explores multiple hypotheses simultaneously.

Parameters:

• num_beams: Number of beams (e.g., 5).

Characteristics:

- **Balanced Exploration:** Increases the chance of finding a better overall summary.
- **Computational Cost:** More beams require more computation.

3. Top-k Sampling:

Mechanism:

• At each step, samples the next token from the top k most probable tokens.

Parameters:

• top_k: Limits the number of tokens to sample from (e.g., 50).

Characteristics:

- **Controlled Randomness:** Introduces diversity while limiting unlikely tokens.
- **Use Cases:** Creative tasks where variability is desired.

4. Top-p (Nucleus) Sampling:

Mechanism:

• Samples from the smallest possible set of tokens whose cumulative probability exceeds p.

Parameters:

• top_p: Cumulative probability threshold (e.g., 0.9).

Characteristics:

- **Adaptive Sampling:** The size of the token pool varies dynamically.
- **Advantages:** Balances the need for diversity with maintaining coherence.

5. Temperature:

Mechanism:

• Adjusts the probability distribution by scaling logits before applying softmax.

Parameters:

• **temperature**: Controls the randomness (e.g., 0.7).

Characteristics:

- **Lower Temperature (<1):** Makes the model more confident and outputs more common tokens.
- **Higher Temperature (>1):** Flattens the distribution, increasing randomness.

• Hyperparameters (4%)

Experiments with Different Generation Strategies

1. Greedy Search Experiments:

- Setting 1:
 - Parameters: num_beams=1, do_sample=False
 - **Results:** Lower ROUGE scores; summaries lacked depth.
- Setting 2:
 - Parameters: Adjusted max_length=64
 - **Results:** Slight improvement but still inferior to beam search.

2. Beam Search Experiments:

- Setting 1: Beam Width 3
 - Parameters: num_beams=3, do_sample=False
 - **Results:** Improved ROUGE scores over greedy search.
- Setting 2: Beam Width 5
 - Parameters: num_beams=5, do_sample=False
 - **Results:** Best ROUGE scores: summaries were coherent and informative.

3. Top-k Sampling Experiments:

• Setting 1: **k=50**

- Parameters: do_sample=True , top_k=50
- **Results:** Diverse but less coherent summaries; lower ROUGE scores.
- Setting 2: **k=100**
 - **Parameters:** do_sample=True , top_k=100
 - **Results:** Increased diversity; slight improvement in ROUGE scores but still below beam search.

4. Top-p Sampling Experiments:

- Setting 1: p=0.9
 - **Parameters:** do_sample=True , top_p=0.9
 - **Results:** Summaries sometimes strayed off-topic; lower ROUGE scores.
- Setting 2: p=0.8
 - Parameters: do_sample=True, top_p=0.8
 - **Results:** Slightly more coherent; marginally better ROUGE scores.

5. Temperature Experiments:

- Setting 1: temperature=0.7
 - **Results:** Summaries were more coherent; ROUGE scores improved.
- Setting 2: temperature=1.0
 - **Results:** Baseline: standard randomness.
- Setting 3: temperature=1.5
 - Results: Increased randomness; summaries were less coherent; ROUGE scores decreased.

Final Generation Strategy

Based on the experimental results, the final generation strategy combines **Beam Search** with **Temperature Adjustment**:

- Parameters:
 - Beam Search:

- num_beams=5
- do_sample=False

• Temperature:

• temperature=0.7

• Additional Parameters:

- max_length=64 (to ensure concise summaries)
- early_stopping=True (to stop generation when an end-of-sequence token is
 generated)