È la versione 6 del protocollo IP, ha un nuovo formato di pacchetto (IPv6 e IPv4 non sono compatibili). La differenza principale (motivo per cui è stato inventato) è che ha un grande spazio di indirizzamento rispetto a IPv4:

 Questo comporta un header modificato che però permette varie funzionalità tra cui la gestione del roaming, sicurezza integrata (IPsec) ed è stata rivista semplificata e ottimizzata per il multicast.

Indirizzamento

2001:0db8:0000:ef11:0000:0000:c100:004d

Spazio di indirizzamento a 128 bit, rappresentati in esadecimale, diviso in gruppi da 2byte ciascuno. Esiste una notazione compressa:

- si tolgono gli 0 più a sinistra
- togliere la sequenza di 0 più lunga, sostituendola con ::

2001:db8:0:ef11::c100:4d

Scope

Tutti gli indirizzi hanno uno scope che specifica in quale parte della rete è valido, si divide in:

- globale
- locale
- interface

- Loopback --> ::1/128 usato per accedere ai servizi che stano funzionando sull'host stesso
- Global Unicast Address --> tutti gli indirizzi che iniziano con 2000::/3 . Denotano tutti gli indirizzi pubblici che possono essere assegnati a delle interfacce di un host, hanno

lo stesso scopo degli ip pubblici in IPv4

• Link-Local Address --> tutti gli indirizzi fe80::/10 utilizzati per le operazioni di Neighbor Discovery protocol e altri protocolli tipo DHCPv6. IPv6 richiede che sia assegnato un indirizzo link-local su ogni interfaccia di rete, anche se è già assegnato un indirizzo globale

Subnetting

Gli ultimi (meno significativi) 64 bit sono fissi e sono detti **Interface ID**, mentre i primi 64 bit specificano il Network Prefix.

Il prefix è delegato da IANA e dagli ISP

Header

La dimensione dell'header IPv6 è fissa a 40byte per aumentare la velocità di parsing:

- Tolto il campo fragment
- tolto il checksum --> perchè sia il livello2 che il livello 4 lo fanno già

I campi che compongono l'header sono:

- **Version** --> 6
- Flow --> serve per indicare il traffico, specifica che un pacchetto fa parte di un flusso di pacchetti
- Payload Lenght --> dimensione del payload che segue
- Next header --> specifica il tipo del prossimo header (se c'è) o quello del livello superiore
- Hop Limit -->numero massimo di Hop che un pacchetto può attraversare
- Indirizzi

I campi opzionali del IPv6 vengono accodati come payload del pacchetto, proprio per questo l'ordine è importante.

I router non fanno frammentazione, lo fanno gli host. Se al router arriva un pacchetto troppo grande per il link, manda un errore ICMP6.

Neighbor Discovery Protocol

Non esiste ARP. Il NDP utilizza ICMP (e il multicast), spostanco così il lavoro dal livello 2 al livello 3, rendendo il protocollo indipendente dal mezzo trasmissivo. Questo oltretutto viene fatto anche in maniera autenticata, grazie al layer di sicurezza.

Questo protocollo rende possibile scoprire i router, i parametri dei link, qual'è il prefisso a me assegnato e permette il tracciamento del cambiamento di indirizzi.

Questo protocollo introduce nuovi pacchetti ICMP:

• Neighbor sollecitation --> sapendo l'ip di destinazione prende i 24 bit meno significativi e genera il sollicitated-node-address accodandolo direttamente al prefisso ff02::1:ff00:0/104

IPv6 unicast address

- Neighbor Advertisment --> serve per rispondere a una sollecitation
- Redirect --> ugualmente a Ipv4
- Router Sollecitation --> serve per sapere quali sono gli indirizzi globali disponibili per l'assegnamento
- Router advertisment --> invia i dati per la configurazione automatica di IPv6

Configurazione Globale

- 1. Creare un link-local Address --> l'interfaceID viene creato in maniera casuale o derivato dal mac address, i primi 64 bit sono sempre fe80::
- 2. Controllo se ci sono duplicati nella rete locale --> l'indirizzo generato automaticamente è un *candidato*, mando una neighbor sollecitation a l'indirizzo appena generato, se non ricevo risposte allora diventa fisso
- 3. Ricerca del router --> l'interface ID rimane quello Link-Local, si manda una router sollecitation e trovo i prefissi e la subnet delegati dal mio ISP. Ho una router ADV che mi manda: l'indirizzo del router, 0 o più link-prefix, infomrazioni su come generare l'interfaceID
- 4. Creo un Global Unicast Address: attraverso il dhcp opppure attraverso SLACC --> configurazione automatica, o staticamente