1 (a) The drag force D on an object of cross-sectional area A, moving with a speed v through a fluid of density ρ , is given by

$$D = \frac{1}{2} C \rho A v^2$$

where C is a constant.

Show that C has no unit.

[2]

- **(b)** A raindrop falls vertically from rest. Assume that air resistance is negligible.
 - (i) On Fig. 1.1, sketch a graph to show the variation with time *t* of the velocity *v* of the raindrop for the first 1.0s of the motion.

Fig. 1.1

[1]

(ii) Calculate the velocity of the raindrop after falling 1000 m.

velocity =
$$m s^{-1}$$
 [2]

(c)	In practice, air resistance on raindrops is not negligible because there is a drag force.
	This drag force is given by the expression in (a).

(i)	State an equation	relating the	the forces	acting (on the	raindrop	when it is	s falling	at
	terminal velocity.								

[1]

- (ii) The raindrop has mass 1.4×10^{-5} kg and cross-sectional area 7.1×10^{-6} m². The density of the air is 1.2 kg m⁻³ and the initial velocity of the raindrop is zero. The value of C is 0.60.
 - 1. Show that the terminal velocity of the raindrop is about $7 \,\mathrm{m \, s^{-1}}$.

[2]

2. The raindrop reaches terminal velocity after falling approximately 10 m. On Fig. 1.1, sketch the variation with time t of velocity v for the raindrop. The sketch should include the first 5 s of the motion.

[2]