Practice questions

Problems provided as practice questions for the midterm.

1. Sort the following terms from *slowest* growing to *fastest* growing. If two terms are equivalent asymptotically, draw a circle around them in your ordering.

$$(\log n)^2 + n \quad 3^{2n} \quad n^{1/4} \quad n^{\log_3 7} \quad 2^{3n} \quad 1000(\log n)^2 \quad 2^{\log_2 n} \quad n \log_5 n \quad 5^{\log_3 n}$$

2. (2pts each) In each of the following cases, indicate if f = O(g), $f = \Omega(g)$, $f = \Theta(g)$.

	f(n)	g(n)	0	Ω	θ
(a.)	$n^2 \log n$	$1500n^2 + 10n$			
(b.)	$1.2 + 1.2^2 + \dots + 1.2^n$	1.2^{n+2}			
(c.)	$\log_2 n$	$\log_8 n$			
(d.)	3^n	n^{10}			
(e.)	$n^{\log_4 5}$	$n^{\log_2 5}$			

- 3. Maximum independent set: for a sequence of n numbers $x_1, ..., x_n$, find the set that has the largest sum and does not include consecutive pairs in O(n) time. For example, the answer to the input 6, 4, 8, 2, 3, 5 is 6+8+5. Try to solve this problem without any hint. But if you are indeed stuck, look at the hint¹.
- 4. You are given a strong of n characters s[1,...,n], which is a corrupted text in which punctuation has vanished (e.g., "itwasthebestoftime..."). You need to reconstruct the document using a dictionary, which is available in the form of a boolean function $dict(\cdot)$: for any string w, dict(w) returns true if w is a valid word, otherwise it returns false. Give a dynamic programming algorithm that determines whether the string $s[\cdot]$ can be reconstructed as a sequence of valid words. The run time should be at most $O(n^2)$, assuming a dict call takes unit time. Try to solve this problem without any hint. If you are truly stuck, consider the hint².
- 5. Given two strings $x = x_1 x_2 \cdots x_n$ and $y = y_1 y_2 \cdots y_m$, we wish to find the length of their longest common substring, that is, the largest k for which there are indices i and j with $x_i x_{i+1} \cdots x_{i+k-1} = y_j y_{j+1} \cdots y_{j+k-1}$. Show how to do this in time O(mn). Try to solve this problem without any hint. If you are truly stuck, consider the hint³
- 6. We use Huffman's algorithm to obtain an encoding of alphabet $\{a, b, c\}$, with frequencies f_a, f_b, f_c . In each of the following cases, either give an example of frequencies $\{f_a, f_b, f_c\}$ that would yield the specified code, or explain why the code cannot possibly be obtained (no matter what the frequencies are).

a Code: $\{0, 10, 11\}$

¹Let L(i) be the maximum sum achievable considering sequence $x_1,...,x_i$

²Let L(i) be the answer to the question, can s[1,...,i] be reconstructed as a sequence of valid words? Now if we know L(1), L(2), ..., L(i-1), how can we use them to figure out L(i)?

³Let L(i,j) be the longest common substring between $x_1x_2 \cdots x_i$ and $y_1y_2 \cdots y_j$ terminating at i and j.

b Code: {0,1,00}c Code: {10,01,00}

- 7. Under a Huffman encoding of n symbols with frequencies f_1, f_2, \ldots, f_n , what is the longest codeword could possibly be? Give an example set of frequencies that would produce this case.
- 8. A server has n customers waiting to be served. The service time required by each customer is t_i minutes for customer i. So if, for example, the customers are served in the order of increasing t_i , then the i-th customer has to wait for $\sum_{j=1}^{i} t_j$ minutes. We wish to minimize the total wait time

$$T = \sum_{i=1}^{n} (\text{time spent waiting by customer } i)$$

. Prove the greedy algorithm that serves the customer in increasing order of t_i gives the optimal solution.