

10-601B Introduction to Machine Learning

Neural Networks

Readings:

Bishop Ch. 5 Murphy Ch. 16.5, Ch. 28 Mitchell Ch. 4 Matt Gormley Lecture 15 October 19, 2016

Reminders

Outline

- Logistic Regression (Recap)
- Neural Networks
- Backpropagation

RECALL: LOGISTIC REGRESSION

Using gradient ascent for linear classifiers.

Key idea behind today's lecture:

- 1. Define a linear classifier (logistic regression)
- 2. Define an objective function (likelihood)
- 3. Optimize it with gradient descent to learn parameters
- 4. Predict the class with highest probability under the model

Using gradient ascent for linear classifiers

This decision function isn't differentiable:

$$h(\mathbf{x}) = \mathsf{sign}(oldsymbol{ heta}^T \mathbf{x})$$

Use a differentiable function instead:

$$p_{\boldsymbol{\theta}}(y = 1|\mathbf{x}) = \frac{1}{1 + \exp(-\boldsymbol{\theta}^T \mathbf{x})}$$

Using gradient ascent for linear classifier.

This decision function isn't differentiable:

$$h(\mathbf{x}) = \mathsf{sign}(oldsymbol{ heta}^T\mathbf{x})$$

Use a differentiable function instead:

$$p_{\boldsymbol{\theta}}(y = 1|\mathbf{x}) = \frac{1}{1 + \exp(-\boldsymbol{\theta}^T \mathbf{x})}$$

$$logistic(u) = \frac{1}{1 + e^{-u}}$$

Logistic Regression

Data: Inputs are continuous vectors of length K. Outputs are discrete.

$$\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^N$$
 where $\mathbf{x} \in \mathbb{R}^K$ and $y \in \{0, 1\}$

Model: Logistic function applied to dot product of parameters vill in a later 1

$$p_{\boldsymbol{\theta}}(y = 1|\mathbf{x}) = \frac{1}{1 + \exp(-\boldsymbol{\theta}^T \mathbf{x})}$$

Learning: finds the parameters that minimize some objective fu ${m heta}^* = \mathop{\rm argmin}_{m heta} J({m heta})$

Prediction: Output is the most probable class.

$$\hat{y} = \operatorname*{argmax} p_{\theta}(y|\mathbf{x})$$
$$y \in \{0,1\}$$

NEURAL NETWORKS

Learning highly non-linear functions

f: X € Y

- f might be non-linear function
- X (vector of) continuous and/or discrete vars
- Y (vector of) continuous and/or discrete vars

The XOR gate

Speech recognition

Perceptron and Neural Nets

From biological neuron to artificial neuron (perceptron)

Activation function

$$X = \sum_{i=1}^{n} x_i w_i$$

$$\mathbf{Y} = \begin{cases} +1, & \text{if } \mathbf{X} \ge \omega_0 \\ -1, & \text{if } \mathbf{X} < \omega_0 \end{cases}$$

- Artificial neuron networks
 - supervised learning
 - gradient descent

Connectionist Models

Consider humans:

- Neuron switching time
 - ~ 0.001 second
- Number of neurons
 - ~ 1010
- Connections per neuron
 - ~ 104-5
- Scene recognition time
 - ~ 0.1 second
- 100 inference steps doesn't seem like enough
 - much parallel computation

- Many neuron-like threshold switching units
- Many weighted interconnections among units
- Highly parallel, distributed processes

Motivation

Why is everyone talking about Deep Learning?

- Because a lot of money is invested in it...
 - DeepMind: Acquired by Google for \$400 million
 - DNNResearch: Three person startup (including Geoff Hinton) acquired by Google for unknown price tag
 - Enlitic, Ersatz, MetaMind, Nervana, Skylab:
 Deep Learning startups commanding
 millions of VC dollars
- Because it made the **front page** of the New York Times

Motivation

Why is everyone talking about Deep Learning?

Deep learning:

- Has won numerous pattern recognition competitions
- Does so with minimal feature engineering

This wasn't always the case!

Since 1980s: Form of models hasn't changed much, but lots of new tricks...

- More hidden units
- Better (online) optimization
- New nonlinear functions (ReLUs)
- Faster computers (CPUs and GPUs)

Background

A Recipe for Machine Learning

1. Given training $\mathsf{data}_{\{\boldsymbol{x}_i,\boldsymbol{y}_i\}_{i=1}^N}$

2. Choose each of these:

- Recision function $\hat{y} = f_{m{ heta}}(x_i)$

- Loss function $\ell(\hat{m{y}},m{y}_i)\in\mathbb{R}$

Face Face Not a face

Examples: Linear regression, Logistic regression, Neural Network

Examples: Mean-squared error, Cross Entropy

Background

A Recipe for Machine Learning

1. Given training $\mathsf{data}_{\{\boldsymbol{x}_i,\boldsymbol{y}_i\}_{i=1}^N}$

3. Define goal:

$$oldsymbol{ heta}^* = rg\min_{oldsymbol{ heta}} \sum_{i=1}^N \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$$

2. Choose each of these:

- Recision function $\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$
- Loss function $\ell(\hat{m{y}},m{y}_i)\in\mathbb{R}$

4. Train with SGD:

(take small steps opposite the gradient)

$$oldsymbol{ heta}^{(t+1)} = oldsymbol{ heta}^{(t)} - \eta_t
abla \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$$

Background

A Recipe for

Gradients

1. Given training $\{oldsymbol{x}_i, oldsymbol{y}_i\}_{i=1}^N$

Backpropagation can compute this gradient!

And it's a special case of a more general algorithm called reverse-mode automatic differentiation that can compute the gradient of any differentiable function efficiently!

2. Choose each these:

$$\hat{y} = f_{m{ heta}}(x_i)$$
 function efficiently!

- Loss function $\ell(\hat{m{y}}, m{y}_i) \in \mathbb{R}$

opposite the gradient)
$$\boldsymbol{\theta}^{(t)} = -\eta_t \nabla \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$$

A Recipe for

Goals for Today's Lecture

- 1 1. Explore a **new class of decision functions** (Neural Networks)
 - 2. Consider variants of this recipe for training

2. Choose each of these:

 $\hat{m{y}} = f_{m{ heta}}(m{x}_i)$

- Loss function $\ell(\hat{m{y}}, m{y}_i) \in \mathbb{R}$

Train with SGD:

ake small steps
opposite the
gradient)

$$oldsymbol{ heta}^{(t+1)} = oldsymbol{ heta}^{(t)} - \eta_t
abla \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$$

Linear Regression

Neural Network Model

Independent variables

Weights

HiddenL ayer

Weights

Dependent variable

"Combined logistic models"

Independent variables

Weights

HiddenL ayer

Weights

Dependent variable

Independent variables

Weights

HiddenL ayer

Weights

Dependent variable

Not really, no target for hidden units...

Independent variables

Weights

HiddenL ayer

Weights

Dependent variable

Jargon Pseudo-Correspondence

- Independent variable = input variable
- Dependent variable = output variable
- Coefficients = "weights"
- Estimates = "targets"

Logistic Regression Model (the sigmoid unit)

Neural Network

Neural Network

Decision Boundary

- 0 hidden layers: linear classifier
 - Hyperplanes

Decision Boundary

- 1 hidden layer
 - Boundary of convex region (open or closed)

Decision Boundary

- 2 hidden layers
 - Combinations of convex

Multi-Class Output

Deeper Networks

Next lecture:

Deeper Networks

Next lecture:

Deeper Networks

Different Levels of Abstraction

- We don't know the "right" levels of abstraction
- So let the model figure it out!

Feature representation

3rd layer "Objects"

2nd layer "Object parts"

1st layer "Edges"

Pixels

Different Levels of Abstraction

Face Recognition:

- Deep
 Network can build up increasingly higher levels of abstraction
- Lines, parts,regionsExample from Honglak Lee (NIPS)

Feature representation

3rd layer "Objects"

2nd layer "Object parts"

1st layer "Edges"

Pixels

Different Levels of Abstraction

ARCHITECTURES

Neural Network Architectures

Even for a basic Neural Network, there are many design decisions to make:

- 1. # of hidden layers (depth)
- 2. # of units per hidden layer (width)
- 3. Type of activation function (nonlinearity)
- 4. Form of objective function

Neural Network with sigmoid activation functions

Neural Network with arbitrary nonlinear activation functions

So far, we've assumed that the activation function (nonlinearity) is always the sigmoid

- A new change: modifying the nonlinearity
 - The logistic is not widely used in modern ANNS ↑

Alternate

1: tanh

Like logistic function but shifted to range [-1, +1]

Understanding the difficulty of training deep feedforward neural networks

Figure from Glorot & Bentio (2010)

A new change: modifying the nonlinearity

ralli often used in vision tasks

 $\max(0, w \cdot x + b)$.

Iternate 2: rectified linear unit

Linear with a cutoff at zero

(Implementation: clip the gradient when you pass zero)

- A new change: modifying the nonlinearity
 - reLU often used in vision tasks

Alternate 2: rectified linear unit

Soft version: log(exp(x)+1)

Doesn't saturate (at one end)

Sparsifies outputs Helps with vanishing gradient

Objective Functions for NNs

Regression:

- Use the same objective as Linear Regression
- Quadratic loss (i.e. mean squared error)

Classification:

- Use the same objective as Logistic Regression
- Cross-entropy (i.e. negative log likelihood)
- This requires probabilities, so we add an additional "softmax" layer at the end of our network

Forward

Quadratic
$$J = \frac{1}{2}(y - y^*)^2$$

Cross Entropy
$$J = y^* \log(y) + (1 - y^*) \log(1 - y)$$

Backward

Quadratic
$$J=\frac{1}{2}(y-y^*)^2$$

$$\frac{dJ}{dy}=y-y^*$$
 Cross Entropy
$$J=y^*\log(y)+(1-y^*)\log(1-y)$$

$$\frac{dJ}{dy}=y^*\frac{1}{y}+(1-y^*)\frac{1}{y-1}$$

Multi-Class Output

Multi-Class Output

Softmax:

$$y_k = \frac{\exp(b_k)}{\sum_{l=1}^K \exp(b_l)}$$

Cross-entropy vs. Quadratic loss

Figure 5: Cross entropy (black, surface on top) and quadratic (red, bottom surface) cost as a function of two weights (one at each layer) of a network with two layers, W_1 respectively on the first layer and W_2 on the second, output layer.

Background

A Recipe for Machine Learning

1. Given training $\mathsf{data}_{\{\boldsymbol{x}_i,\boldsymbol{y}_i\}_{i=1}^N}$

3. Define goal:

$$oldsymbol{ heta}^* = rg\min_{oldsymbol{ heta}} \sum_{i=1}^N \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$$

2. Choose each of these:

- Recision function $\hat{m{y}} = f_{m{ heta}}(m{x}_i)$
- Loss function $\ell(\hat{m{y}},m{y}_i)\in\mathbb{R}$

4. Train with SGD:

(take small steps opposite the gradient)

$$oldsymbol{ heta}^{(t+1)} = oldsymbol{ heta}^{(t)} - \eta_t
abla \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$$

Objective Functions

Matching Quiz: Suppose you are given a neural net with a single output, y, and one hidden layer.

gives...

- 1) Minimizing sum of squared errors...
- 2) Minimizing sum of squared errors plus squared Euclidean norm of weights...
- 3) Minimizing crossentropy...
- 4) Minimizing hinge loss...

- 5) ...MLE estimates of weights assuming target follows a Bernoulli with parameter given by the output value
- 6) ...MAP estimates of weights assuming weight priors are zero mean Gaussian
- 7) ...estimates with a large margin on the training data
- 8) ...MLE estimates of weights assuming zero mean Gaussian noise on the output value

B.
$$1=5$$
, $2=7$, $3=8$,

B.
$$1=8$$
, $2=6$, $3=8$,

BACKPROPAGATION

Background

A Recipe for Machine Learning

1. Given training $\mathsf{data}_{\{\boldsymbol{x}_i,\boldsymbol{y}_i\}_{i=1}^N}$

3. Define goal:

$$oldsymbol{ heta}^* = rg\min_{oldsymbol{ heta}} \sum_{i=1}^N \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$$

2. Choose each of these:

- Recision function $\hat{m{y}} = f_{m{ heta}}(m{x}_i)$
- Loss function $\ell(\hat{m{y}},m{y}_i)\in\mathbb{R}$

4. Train with SGD:

(take small steps opposite the gradient)

$$oldsymbol{ heta}^{(t+1)} = oldsymbol{ heta}^{(t)} - \eta_t
abla \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$$

Backpropagation

Question 1:

When can we compute the gradients of the parameters of an arbitrary neural network?

Question 2:

When can we make the gradient computation efficient?

Chain Rule

Given: y = g(u) and u = h(x)

Chain Rule:

$$\frac{dy_i}{dx_k} = \sum_{j=1}^{J} \frac{dy_i}{du_j} \frac{du_j}{dx_k}, \quad \forall i, k$$

Chain Rule

Given: y = g(u) and u = h(x)

Chain Rule:

$$\frac{dy_i}{dx_k} = \sum_{j=1}^{J} \frac{dy_i}{du_j} \frac{du_j}{dx_k}, \quad \forall i, k$$

Backpropaga tion is just repeated application of the chain rule from Calculus 101.

Chain Rule

Given: $\boldsymbol{y} = g(\boldsymbol{u})$ and $\boldsymbol{u} = h(\boldsymbol{x})$

Chain Rule:

$$\frac{dy_i}{dx_k} = \sum_{j=1}^{J} \frac{dy_i}{du_j} \frac{du_j}{dx_k}, \quad \forall i, k$$

Backpropagation:

- 1. Instantiate the computation as a directed acyclic graph, where each intermediate quantity is a node
- 2. At each node, store (a) the quantity computed in the forward pass and (b) the **partial derivative** of the goal with respect to that node's intermediate quantity.
- **3. Initialize** all partial derivatives to 0.
- 4. Visit each node in **reverse topological order**. At each node, add its contribution to the partial derivatives of its parents

This algorithm is also called **automatic differentiation in the** reverse-mode

Backpropagation

Simple Example: The goal is to compute $J = \cos(\sin(x^2) + 3x^2)$ on the forward pass and the derivative $\frac{dJ}{dx}$ on the backward pass.

Forward

$$J = cos(u)$$

$$u = u_1 + u_2$$

$$u_1 = sin(t)$$

$$u_2 = 3t$$

$$t = x^2$$

Backpropagation

Simple Example: The goal is to compute $J = \cos(\sin(x^2) + 3x^2)$ on the forward pass and the derivative $\frac{dJ}{dx}$ on the backward pass.

Forward

$$J = cos(u)$$

$$u = u_1 + u_2$$

$$u_1 = \sin(t)$$

$$u_2 = 3t$$

$$t = x^2$$

Backward

$$J = cos(u) \qquad \frac{dJ}{du} += -sin(u)$$

$$u = u_1 + u_2 \quad \frac{dJ}{du_1} += \frac{dJ}{du} \frac{du}{du_1}, \quad \frac{du}{du_1} = 1 \qquad \qquad \frac{dJ}{du_2} += \frac{dJ}{du} \frac{du}{du_2}, \quad \frac{du}{du_2} = 1$$

$$\frac{au}{du_1} = 1$$

$$\frac{dJ}{du_2} += \frac{dJ}{du_2}$$

$$\frac{du}{du_2} = 1$$

$$u_1 = sin(t)$$
 $\frac{dJ}{dt} += \frac{dJ}{du_1} \frac{du_1}{dt}, \quad \frac{du_1}{dt} = \cos(t)$

$$u_2 = 3t$$

$$\frac{dJ}{dt} += \frac{dJ}{du_2} \frac{du_2}{dt}, \quad \frac{du_2}{dt} = 3$$

$$\frac{dJ}{dx} += \frac{dJ}{dt}\frac{dt}{dx}, \quad \frac{dt}{dx} = 2x$$

Backpropagation

Case 1: Logistic Regression

Forward

$$J = y^* \log y + (1 - y^*) \log(1 - y) \quad \frac{dJ}{dy} = \frac{y^*}{y} + \frac{(1 - y^*)}{y - 1}$$

$$y = \frac{1}{1 + \exp(-a)}$$

$$a = \sum_{j=0}^{D} \theta_j x_j$$

Backward

$$\frac{dJ}{dy} = \frac{y^*}{y} + \frac{(1 - y^*)}{y - 1}$$

$$\frac{dJ}{da} = \frac{dJ}{dy}\frac{dy}{da}, \frac{dy}{da} = \frac{\exp(-a)}{(\exp(-a) + 1)^2}$$

$$\frac{dJ}{d\theta_i} = \frac{dJ}{da} \frac{da}{d\theta_i}, \ \frac{da}{d\theta_i} = x_j$$

$$\frac{dJ}{dx_j} = \frac{dJ}{da}\frac{da}{dx_j}, \, \frac{da}{dx_j} = \theta_j$$

/ U

Backpropagation

Backpropagation

Backpropagation

Case 2: Neural Network

Forward

$$J = y^* \log y + (1 - y^*) \log(1 - y) \quad \frac{dJ}{dy} = \frac{y^*}{y} + \frac{(1 - y^*)}{y - 1}$$

$$y = \frac{1}{1 + \exp(-b)}$$

$$b = \sum_{j=0}^{D} \beta_j z_j$$

$$z_j = \frac{1}{1 + \exp(-a_j)}$$

$$a_j = \sum_{i=0}^{M} \alpha_{ji} x_i$$

Backward

$$\frac{dJ}{dy} = \frac{y^*}{y} + \frac{(1 - y^*)}{y - 1}$$

$$\frac{dJ}{db} = \frac{dJ}{dy}\frac{dy}{db}, \frac{dy}{db} = \frac{\exp(-b)}{(\exp(-b) + 1)^2}$$

$$\frac{dJ}{d\beta_i} = \frac{dJ}{db} \frac{db}{d\beta_i}, \frac{db}{d\beta_i} = z_j$$

$$\frac{dJ}{dz_i} = \frac{dJ}{db} \frac{db}{dz_i}, \frac{db}{dz_i} = \beta_j$$

$$\frac{dJ}{da_j} = \frac{dJ}{dz_j} \frac{dz_j}{da_j}, \frac{dz_j}{da_j} = \frac{\exp(-a_j)}{(\exp(-a_j) + 1)^2}$$

$$\frac{dJ}{d\alpha_{ji}} = \frac{dJ}{da_j} \frac{da_j}{d\alpha_{ji}}, \ \frac{da_j}{d\alpha_{ji}} = x_i$$

$$\frac{dJ}{dx_i} = \frac{dJ}{da_j} \frac{da_j}{dx_i}, \ \frac{da_j}{dx_i} = \sum_{i=0}^{D} \alpha_{ji}$$

Chain Rule

Given: $\boldsymbol{y} = g(\boldsymbol{u})$ and $\boldsymbol{u} = h(\boldsymbol{x})$

Chain Rule:

$$\frac{dy_i}{dx_k} = \sum_{j=1}^{J} \frac{dy_i}{du_j} \frac{du_j}{dx_k}, \quad \forall i, k$$

Backpropagation:

- 1. Instantiate the computation as a directed acyclic graph, where each intermediate quantity is a node
- 2. At each node, store (a) the quantity computed in the forward pass and (b) the **partial derivative** of the goal with respect to that node's intermediate quantity.
- **3. Initialize** all partial derivatives to 0.
- 4. Visit each node in **reverse topological order**. At each node, add its contribution to the partial derivatives of its parents

This algorithm is also called **automatic differentiation in the** reverse-mode

Chain Rule

Given: $\boldsymbol{y} = g(\boldsymbol{u})$ and $\boldsymbol{u} = h(\boldsymbol{x})$

Chain Rule:

$$\frac{dy_i}{dx_k} = \sum_{j=1}^{J} \frac{dy_i}{du_j} \frac{du_j}{dx_k}, \quad \forall i, k$$

Backpropagation:

- 1. Instantiate the computation as a directed acyclic graph, where each node represents a Tensor.
- 2. At each node, store (a) the quantity computed in the forward pass and (b) the **partial derivatives** of the goal with respect to that node's Tensor.
- 3. Initialize all partial derivatives to 0.
- 4. Visit each node in **reverse topological order**. At each node, add its contribution to the partial derivatives of its parents

This algorithm is also called **automatic differentiation in the** reverse-mode

Backpropagation

Casa	2.
	_

Module 5

Module 4

Module 3

Module 2

Module 1

Forward

$$J = y^* \log y + (1 - y^*) \log(1 - y)$$

$$y = \frac{1}{1 + \exp(-b)}$$

$$b = \sum_{j=0}^{D} \beta_j z_j$$

$$z_j = \frac{1}{1 + \exp(-a_j)}$$

$$a_j = \sum_{i=0}^{M} \alpha_{ji} x_i$$

Backward

$$\frac{dJ}{dy} = \frac{y^*}{y} + \frac{(1-y^*)}{y-1}$$

$$\frac{dJ}{db} = \frac{dJ}{dy}\frac{dy}{db}, \frac{dy}{db} = \frac{\exp(-b)}{(\exp(-b) + 1)^2}$$

$$\frac{dJ}{d\beta_i} = \frac{dJ}{db} \frac{db}{d\beta_i}, \frac{db}{d\beta_i} = z_j$$

$$\frac{dJ}{dz_i} = \frac{dJ}{db}\frac{db}{dz_i}, \, \frac{db}{dz_i} = \beta_i$$

$$\frac{dJ}{da_j} = \frac{dJ}{dz_j} \frac{dz_j}{da_j}, \frac{dz_j}{da_j} = \frac{\exp(-a_j)}{(\exp(-a_j) + 1)^2}$$

$$\frac{dJ}{d\alpha_{ji}} = \frac{dJ}{da_j} \frac{da_j}{d\alpha_{ji}}, \ \frac{da_j}{d\alpha_{ji}} = x_i$$

$$\frac{dJ}{dx_i} = \frac{dJ}{da_j} \frac{da_j}{dx_i}, \ \frac{da_j}{dx_i} = \sum_{j=0}^{D} \alpha_{ji}$$

Background

A Recipe for

Gradients

1. Given training data $\{oldsymbol{x}_i,oldsymbol{y}_i\}_{i=1}^N$

Backpropagation can compute this gradient!

And it's a special case of a more general algorithm called reverse-mode automatic differentiation that can compute the gradient of any differentiable function efficiently!

2. Choose each these:

$$\hat{y} = f_{m{ heta}}(x_i)$$
 function efficiently!

- Loss function $\ell(\hat{m{y}}, m{y}_i) \in \mathbb{R}$

opposite the gradient)
$$\boldsymbol{\theta}^{(t)} = \boldsymbol{\eta}_t \nabla \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$$

Summary

1. Neural Networks...

- provide a way of learning features
- are highly nonlinear prediction functions
- (can be) a highly parallel network of logistic regression classifiers
- discover useful hidden representations of the input

2. Backpropagation...

- provides an efficient way to compute gradients
- is a special case of reverse-mode automatic differentiation