(a)
$$a_1 = 1$$
, $a_2 = 1$, $a_{n+2} = a_n + a_{n+1}$, $n \ge 1$

(b) We assumed
$$\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = L$$
, so $\lim_{n \to +\infty} \frac{a_{n+2}}{a_{n+1}} = L$.

Now
$$\frac{a_{n+2} = a_n + a_{n+1}}{a_{n+1}} = \frac{a_n}{a_{n+1}} + 1.$$

So
$$\lim_{n\to+\infty} \frac{a_{n+2}}{a_{n+1}} = \lim_{n\to+\infty} \left(\frac{a_n}{a_{n+1}} + 1 \right)$$
.

$$L^{2} = \frac{1}{L} + 1$$

$$L^{2} = 1 + L$$

By graduatic formula, $L = 1\pm \sqrt{5}$. Since all the terms in

the sequence are positive, L= 1+15.