EXERCICES TIRÉS DE L'EXAMEN PARTIEL 2004

Problème no. 1 (20 points)

a) Un réseau monophasé est représenté par le schéma suivant:

- En utilisant S_{base} = 30 kVA et V_{base} = 240 V dans la zone de la source, tracer un schéma du réseau en p.u.
- Calculer le courant dans la charge en p.u. et en Ampère. (10 points)
- b) Une source de tension triphasée équilibrée 600 V, 60 Hz est connectée à une charge équilibrée en Y. La charge est constituée de trois inductances couplées. La réactance propre par phase est égale à j10 Ω . La réactance mutuelle entre deux phases est égale à j5 Ω .
- Déterminer les courants de séquence I₀, I₁, I₂. Déduire les courants de ligne I_a, I_b, I_c. (10 points)

Problème no. 2 (20 points)

Une ligne triphasée 500 kV, 60 Hz complètement transposée utilise trois faisceaux de deux conducteurs ACSR du type Joree 76/19 par faisceau. Les conducteurs dans un faisceau sont distancés de 0.46 m. Les faisceaux sont arrangés tel que montré dans la figure suivante.

- a) Calculer l'inductance série de la séquence directe L_1 en H/m. Déduire la réactance série de la séquence directe X_1 en Ω/km .
 - Calculer la résistance série R_1 en Ω/km . La température des conducteurs est de 50°C.
- b) Calculer la capacité shunt de la séquence directe C_1 en F/km. Déduire l'admittance shunt de la séquence directe Y_1 en S/km.
- c) Calculer le champ électrique maximal à la surface des conducteurs en kV/cm.

Problème no. 3 (20 points)

Considérons une ligne de transport triphasée non compensée 500 kV, 60 Hz, de longueur 300 km. En séquence directe, l'impédance série est $z = (0.03 + j0.35) \Omega/km$ et l'admittance shunt est $y = j4.4 \times 10^{-6} \text{ S/km}$.

À pleine charge, la ligne fournit à la charge une puissance de 1000 MW à une tension de 480 kV avec un facteur de puissance de 1.0.

Pendant les périodes de faible charge, on connecte une réactance shunt au bout de la ligne (bout connecté à la charge) pour réaliser une compensation shunt de 70%.

- a) Calculer la valeur de la réactance de compensation.
- b) Calculer le facteur de régulation sans compensation et avec compensation.

<u>Notes</u>: - Pour simplifier les calculs, on utilisera le modèle de «ligne moyenne» (circuit équivalent en pi nominal).

- La réactance de compensation est déconnectée lorsque la ligne est à pleine charge

Problème no. 4 (20 points)

On désire étudier l'écoulement de puissance dans le réseau suivant:

Les paramètres du réseau sont donnés dans le tableau suivant:

Barre	Туре	V (pu)	δ (degré)	P _G (pu)	Q _G (pu)	P _L (pu)	Q _L (pu)	Q _{Gmax} (pu)	Q _{Gmin} (pu)
1	Référence	1.0	0	(1 /	(1 /	0	0	(1 /	W 7
2	Charge			0	0	2.0	0.7		
3	Génération (Tension constante)	1.05		1.3		0.2	0.1	1.0	-0.7
4	Charge			0	0	0	0		
5	Charge			0	0	0	0		

Les paramètres des lignes sont donnés dans le tableau suivant:

Ligne	Connexion	R' (pu)	X' (pu)	G' (pu)	B' (pu)	S _{max} (pu)
1	2 - 4	0.036	0.4	0	0.43	3.0
2	2 - 5	0.018	0.2	0	0.22	3.0
3	4 - 5	0.009	0.1	0	0.11	3.0

Les paramètres des transformateurs sont donnés dans le tableau suivant:

Transformateur	Connexion	R (pu)	X (pu)	G _c (pu)	B _m (pu)	S _{max} (pu)	Rapport de prise (pu)	
1	1 - 5	0.006	0.08	0	0	1.5		
2	3 - 4	0.008	0.04	0	0	2.5		

Note: $S_{base} = 400 \text{ MVA}$ $V_{base} = 15 \text{ kV}$ aux barres 1, 3 $V_{base} = 345 \text{ kV}$ aux barres 2, 4, 5

- a) Pour chacune des barres, donner la nature de la barre et identifier les variables connues et inconnues.
- b) Tracer le réseau équivalent. Écrire la matrice des admittances Y_{bus} de ce réseau (il est suffisant de donner les éléments de la matrice sous forme brute, par exemple $\frac{1}{0.01+j0.02}+j0.05$)
- c) Les résultats d'écoulement de puissance obtenus avec *PowerWorld* sont donnés dans le diagramme et les tableaux suivants.

Line and Transformer Records														
	From Number	From Name	To Number	To Name	Circuit	Status	Xfrmr	From MW	From Myar	From MVA	Lim MVA	Max Percent	MW Loss	Mvar Loss
1	1	B1	5	B5	1	Closed	Yes	398.2	126.5	417.8	600.0	69.6	2.62	34.91
2	4	B4	2	B2	1	Closed	No	303.1	119.5	325.8	1200.0	27.1	11.88	-19.20
3	5	B5	2	B2	1	Closed	No	526.6	266.5	590.1	1200.0	49.2	17.73	125.16
4	4	B4	3	В3	1	Closed	Yes	-435.0	-261.8	507.7	1000.0	52.5	5.00	25.02
5	5	B5	4	B4	1	Closed	No	-131.0	-174.9	218.5	1200.0	18.2	0.97	-32.62

Commenter ces résultats.

Déterminer les pertes dans les équipements (lignes et transformateurs).

Y-a-t-il des anomalies dans les résultats obtenus? Si oui, proposer des moyens de correction.