Cancer Dose-Response Data Collection and Cleansing

Bayesian Benchmark Dose (BBMD) Modeling and Probabilistic Extrapolations

Population and Individual Risk Estimation And Uncertainty Contribution Characterization

Data Collection

- 880 Toxicity values and study information Wignall et al. (2014)
- 3,064 Toxicity values and study information Wignall et al. (2018)

Data Cleaning - 255 Caner slope factors (CSFs)

- At least 3 dose-response (D-R) data points
- Oral administration only

No. of D-R **Cancer Organ Types** data points Liver 150 Stomach/Forest... Bladder Systemic 100 Gastrointestinal Vascular System Kidnevs 50 Thvroid Adrenal Glands Others 100

Model Comparison to Traditional Approaches

Benchmark Dose Software (BMDS) + Traditional method

Population Risk Estimation

- Risk-Specific Dose (RSD): dose causing a specific extra risk of cancer across the population
- RSD based on a one-in-a-million extra risk (10⁻⁶ risk)
 - Probabilistic calculation incorporating uncertainty and variability
 - Traditional linear extrapolation: 10⁻⁵ / HED

Individual Risk Estimation

- HD_M^I: the human dose at which a fraction (or incidence) I of the population shows an effect of magnitude (or severity) M or greater for the adverse effect
 - o I = 1%
 - \circ M = 1×10⁻², 1×10⁻⁴, 1×10⁻⁶

Uncertainty Contribution Characterization

- Fraction of the overall variance that is contributed by uncertainties to quantify the D-R relationship
 - BMD model choice
 - o BMD model parameters
 - Interspecies toxicokinetics and toxicodynamics
 - Intraspecies variability