Chapter 1: A Special Case of Fermat's Conjecture

Author: Meng-Gen Tsai Email: plover@gmail.com

Exercise 1.1-1.9: Define $N: \mathbb{Z}[i] \to \mathbb{Z}$ by $N(a+bi) = a^2 + b^2$.

Exercise 1.1. Verify that for all $\alpha, \beta \in \mathbb{Z}[i]$, $N(\alpha\beta) = N(\alpha)N(\beta)$, either by direct computation or using the fact that N(a+bi) = (a+bi)(a-bi). Conclude that if $\alpha \mid \gamma$ in $\mathbb{Z}[i]$, then $N(\alpha) \mid N(\gamma)$ in \mathbb{Z} .

Proof.

(1) Direct computation. Write $\alpha = a + bi$, $\beta = c + di$ where $a, b, c, d \in \mathbb{Z}$. Thus,

$$\begin{split} N(\alpha\beta) &= N((a+bi)(c+di)) \\ &= N((ac-bd) + (ad+bc)i) \\ &= (ac-bd)^2 + (ad+bc)^2 \\ &= (a^2c^2 - 2abcd + b^2d^2) + (a^2d^2 + 2abcd + b^2c^2) \\ &= a^2c^2 + b^2d^2 + a^2d^2 + b^2c^2, \\ N(\alpha)N(\beta) &= N(a+bi)N(c+di) \\ &= (a^2+b^2)(c^2+d^2) \\ &= a^2c^2 + b^2d^2 + a^2d^2 + b^2c^2. \end{split}$$

Therefore, $N(\alpha\beta) = N(\alpha)N(\beta)$. (Note that we also get the identity $(a^2 + b^2)(c^2 + d^2) = (ac - bd)^2 + (ad + bc)^2$.)

(2) Using the fact that N(a+bi)=(a+bi)(a-bi), or $N(\alpha)=\alpha\overline{\alpha}$ for any $\alpha\in\mathbb{Z}[i]$. Thus,

$$N(\alpha\beta) = \alpha\beta\overline{\alpha}\overline{\beta}$$
$$= \alpha\beta\overline{\alpha}\overline{\beta}$$
$$= \alpha\overline{\alpha}\beta\overline{\beta}$$
$$= N(\alpha)N(\beta).$$

(3) Show that if $\alpha \mid \gamma$ in $\mathbb{Z}[i]$, then $N(\alpha) \mid N(\gamma)$ in \mathbb{Z} . Write $\gamma = \alpha\beta$ for some $\beta \in \mathbb{Z}[i]$. So $N(\gamma) = N(\alpha)N(\beta) \in \mathbb{Z}$, or $N(\alpha) \mid N(\gamma)$ in \mathbb{Z} .

Exercise 1.2. Let $\alpha \in \mathbb{Z}[i]$. Show that α is a unit iff $N(\alpha) = 1$. Conclude that the only unit are ± 1 and $\pm i$.

Proof.

- (1) (\Longrightarrow) Since α is a unit, there is $\beta \in \mathbb{Z}[i]$ such that $\alpha\beta = 1$. By Exercise 1.1, $N(\alpha\beta) = N(1)$, or $N(\alpha)N(\beta) = 1$. Since the image of N is nonnegative integers, $N(\alpha) = 1$.
- (2) (\iff) By Exercise 1.1, $N(\alpha) = \alpha \overline{\alpha}$, or $1 = \alpha \overline{\alpha}$ since $N(\alpha) = 1$. That is, $\overline{\alpha} \in \mathbb{Z}[i]$ is the inverse of $\alpha \in \mathbb{Z}[i]$. (Or by (1), we solve the equation $N(\alpha) = a^2 + b^2 = 1$, and show that all four solutions (± 1 and $\pm i$) are unit.)

Conclusion: a unit $\alpha = a + bi$ of $\mathbb{Z}[i]$ is satisfying the equation $N(\alpha) = a^2 + b^2 = 1$ by (1)(2). That is, the only unit of $\mathbb{Z}[i]$ are ± 1 and $\pm i$. \square

Exercise 1.3. Let $\alpha \in \mathbb{Z}[i]$. Show that if $N(\alpha)$ is a prime in \mathbb{Z} then α is irreducible in $\mathbb{Z}[i]$. Show that the same conclusion holds if $N(\alpha) = p^2$, where p is a prime in \mathbb{Z} , $p \equiv 3 \pmod{4}$.

Proof.

- (1) Show that if $N(\alpha)$ is a prime in \mathbb{Z} then α is irreducible in $\mathbb{Z}[i]$. Write $\alpha = \beta \gamma$. Then $N(\alpha) = N(\beta)N(\gamma)$ is a prime in \mathbb{Z} . Since each integer prime is irreducible, $N(\beta) = 1$ or $N(\gamma) = 1$. So that β is unit or γ is unit by Exercise 1.2. Hence, α is irreducible.
- (2) Show that α is irreducible in $\mathbb{Z}[i]$ if $N(\alpha) = p^2$, where p is a prime in \mathbb{Z} , $p \equiv 3 \pmod{4}$. Assume $\alpha = \beta \gamma$ were not irreducible. Similar to (1), $N(\alpha) = N(\beta)N(\gamma) = p^2$. Since β and γ are proper factors of α ,

$$N(\beta) = N(\gamma) = p.$$

Since any square $a^2 \equiv 0, 1 \pmod{4}$, any $N(a+bi) = a^2 + b^2 \equiv 0, 1, 2 \pmod{4}$. Especially, $N(\beta) \equiv 0, 1, 2 \pmod{4}$, contrary to $N(\beta) = p \equiv 3 \pmod{4}$ by the assumption. Therefore, α is irreducible in $\mathbb{Z}[i]$.

Supplement.

- (1) The prime 2 is reducible in $\mathbb{Z}[i]$ (Exercise 1.4).
- (2) Every prime $p \equiv 1 \pmod{4}$ is reducible in $\mathbb{Z}[i]$ (Exercise 1.8).

Exercise 1.4. Show that 1-i is irreducible in \mathbb{Z} and that $2=u(1-i)^2$ for some unit u.

Proof.

- (1) 1-i is irreducible. Since N(1-i)=2 is a prime in \mathbb{Z} , 1-i is irreducible by Problem 1.3.
- (2) $2 = i(1-i)^2$ where i is unit in \mathbb{Z} .

Exercise 1.5. Notice that (2+i)(2-i) = 5 = (1+2i)(1-2i). How is this consistent with unique factorization?

Proof. Since 2+i=i(1-2i) and 2-i=(-i)(1+2i), the factorization is unique up to order and multiplication of primes by units. \square

Exercise 1.6. Show that every nonzero, non-unit Gaussian integer α is a product of irreducible elements, by induction on $N(\alpha)$.

Proof. Induction on $N(\alpha)$.

- (1) n = 2. Given $\alpha \in \mathbb{Z}[i]$ with $N(\alpha) = 2$. Since $N(\alpha) = 2$ is a prime in \mathbb{Z} , α is irreducible (Exercise 1.3).
- (2) Suppose the result holds for $n \leq k$. Given $\alpha \in \mathbb{Z}[i]$ with $N(\alpha) = k + 1$. There are only two possible cases.
 - (a) α is irreducible. Nothing to do.
 - (b) α is reducible. Write $\alpha=\beta\gamma$ where neither factor is unit. Since $N(\alpha)=N(\beta)N(\gamma)$ and neither factor is unit,

$$2 \le N(\beta), N(\gamma) \le k$$
.

By the induction hypothesis, each factor of α (β and γ) is a product of irreducible elements. So that α again is a product of irreducible elements.

In any cases, α is a product of irreducible elements.

By induction, the result is established. \square

Exercise 1.7. Show that $\mathbb{Z}[i]$ is a principal ideal domain (PID); i.e., every ideal I is principal. (As shown in Appendix 1, this implies that $\mathbb{Z}[i]$ is a UFD.)

Suggestion: Take $\alpha \in I - \{0\}$ such that $N(\alpha)$ is minimized, and consider the multiplies $\gamma \alpha, \gamma \in \mathbb{Z}[i]$; show that these are the vertices of an infinite family of squares which fill up the complex plane. (For example, one of the squares has vertices $0, \alpha, i\alpha,$ and $(1+i)\alpha;$ all others are translates of this one.) Obviously I contains all $\gamma \alpha;$ show by a geometric argument that if I contains anything else then minimality of $N(\alpha)$ would be contradicted.

Proof (without geometric intuition). Define N on $\mathbb{Q}[i]$ by $N(a+bi)=a^2+b^2$ where $a+bi\in\mathbb{Q}[i]$ as usual.

- (1) Show that $\mathbb{Z}[i]$ is a Euclidean domain. Given $\alpha = a + bi \in \mathbb{Z}[i]$ and $\gamma = c + di \in \mathbb{Z}[i]$ with $\gamma \neq 0$. It suffices to show there exist δ and ρ such that the identity $\alpha = \gamma \delta + \rho$ holds and either $\rho = 0$ or $N(\rho) < N(\gamma)$.
 - (a) Pick $\delta \in \mathbb{Z}[i]$. (Intuition: Pick the 'integer part' of $\frac{\alpha}{\gamma}$ as we did in integer numbers.) Write $\frac{\alpha}{\gamma} = r + si \in \mathbb{Q}[i]$. Then we pick $\delta = m + ni \in \mathbb{Z}[i]$ such that $|r m| \leq \frac{1}{2}$ and $|s n| \leq \frac{1}{2}$. Therefore,

$$N\left(\frac{\alpha}{\gamma} - \delta\right) = (r - m)^2 + (s - n)^2$$

$$\leq \frac{1}{4} + \frac{1}{4}$$

$$= \frac{1}{2}.$$

(b) Pick $\rho \in \mathbb{Z}[i]$. Clearly we can pick $\rho = \alpha - \gamma \delta \in \mathbb{Z}[i]$. Therefore, $\rho = 0$ or

$$\begin{split} N(\rho) &= N(\alpha - \gamma \delta) \\ &= N\left(\gamma\left(\frac{\alpha}{\gamma} - \delta\right)\right) \\ &= N(\gamma)N\left(\frac{\alpha}{\gamma} - \delta\right) \\ &\leq \frac{1}{2}N(\gamma) \\ &< N(\gamma). \end{split}$$

- (2) Show that every Euclidean domain R is a PID. Given any ideal I of R. Take $\alpha \in I \{0\}$ such that $N(\alpha)$ is minimized.
 - (a) $R\alpha \subseteq I$ clearly.
 - (b) Conversely, for any $\beta \in I$, there are $\delta, \rho \in R$ such that $\beta = \alpha \delta + \rho$, where either $\rho = 0$ or $N(\rho) < N(\alpha)$. Since $\rho = \beta \alpha \delta \in I$, we cannot have $N(\rho) < N(\alpha)$ by the minimality of $N(\alpha)$. Therefore, $\rho = 0$ and $\beta = \alpha \delta \in R\alpha$, or $R\alpha \supseteq I$.

By (1)(2), $\mathbb{Z}[i]$ is a PID. \square

Exercise 1.8. We will use the unique factorization in $\mathbb{Z}[i]$ to prove that every prime $p \equiv 1 \pmod{4}$ is a sum of two squares.

- (a) Use the fact that the multiplicative group $(\mathbb{Z}/p\mathbb{Z})^{\times}$ of integers mod p is cyclic to show that if $p \equiv 1 \pmod{4}$ then $n^2 \equiv -1 \pmod{p}$ for some $n \in \mathbb{Z}$.
- (b) Prove that p cannot be irreducible in $\mathbb{Z}[i]$. (Hint: $p \mid n^2+1 = (n+i)(n-i)$.)
- (c) Prove that p is a sum of two squares. (Hint: (b) shows that p = (a + bi)(c + di) with neither factor a unit. Take norms.)

Proof of (a). Since the multiplicative group $(\mathbb{Z}/p\mathbb{Z})^{\times}$ of integers mod p is cyclic, $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is generated by (a primitive root) $g \in \mathbb{Z}/p\mathbb{Z}$. $g^{p-1} = 1$, or

$$\left(g^{\frac{p-1}{2}} - 1\right)\left(g^{\frac{p-1}{2}} + 1\right) = 0$$

since p is odd. Since $\mathbb{Z}/p\mathbb{Z}$ is an integral domain, $g^{\frac{p-1}{2}}-1=0$ or $g^{\frac{p-1}{2}}+1=0$. g cannot satisfy $g^{\frac{p-1}{2}}-1=0$ since g is a generator of $(\mathbb{Z}/p\mathbb{Z})^{\times}$. So,

$$g^{\frac{p-1}{2}} + 1 = 0.$$

Let $n=g^{\frac{p-1}{4}}\in\mathbb{Z}$ since $p\equiv 1\pmod 4$. So $n^2+1=0\pmod p$. \square

Proof of (b). Since $n^2+1\equiv 0\pmod p$ by (a), $p\mid n^2+1=(n+i)(n-i)$. If p were irreducible in $\mathbb{Z}[i],\,p\mid (n+i)$ or $p\mid (n-i)$ by using the unique factorization in $\mathbb{Z}[i]$. Hence

$$\frac{n+i}{p} = \frac{n}{p} + \frac{1}{p}i \not\in \mathbb{Z}[i], \frac{n-i}{p} = \frac{n}{p} - \frac{1}{p}i \not\in \mathbb{Z}[i],$$

contrary to the assumption. Therefore, p is reducible in $\mathbb{Z}[i]$. \square

Proof of (c). Since p is reducible in $\mathbb{Z}[i]$ by (b), write p = (a + bi)(c + di) with neither factor a unit. Take norms,

$$p^2 = N(p) = N(a+bi)N(c+di).$$

Since neither factor of p is unit, N(a+bi)=p, or $a^2+b^2=p,$ or p is a sum of two squares. \square

Exercise 1.9. Describe all irreducible elements in $\mathbb{Z}[i]$.

Notice that α is irreducible if and only if $\overline{\alpha}$ is irreducible. (Write $\alpha = \beta \gamma$, then $\overline{\alpha} = \overline{\beta} \overline{\gamma}$. Besides, $\overline{\overline{\alpha}} = \alpha$.)

Proof. Show that all irreducible elements in $\mathbb{Z}[i]$ (up to units) are

- (1) 1+i.
- (2) $\pi = a + bi$ for each integer prime $p \equiv 1 \pmod{4}$ with $p = a^2 + b^2$.
- (3) p for each integer prime $p \equiv 3 \pmod{4}$.

Let α be any irreducible element in $\mathbb{Z}[i]$. Consider $N(\alpha) = \alpha \overline{\alpha}$. $N(\alpha) \neq 1$ since α is not unit. By the unique factorization theorem in \mathbb{Z} , $N(\alpha) \in \mathbb{Z}$ is a product of primes in \mathbb{Z} .

There are three possible cases.

- (a) $2 \mid N(\alpha)$. Write $(1+i)(1-i) \mid \alpha \overline{\alpha}$ in $\mathbb{Z}[i]$. Notice that 1+i, 1-i, α and $\overline{\alpha}$ are all irreducible (Exercise 1.4). By the unique factorization theorem in $\mathbb{Z}[i]$, $\alpha = 1+i$ (up to units).
- (b) $p \mid N(\alpha)$ for some prime $p \equiv 3 \pmod{4}$. Write $p \mid \alpha \overline{\alpha}$ in $\mathbb{Z}[i]$. Notice that p, α and $\overline{\alpha}$ are all irreducible (Exercise 1.3). By the unique factorization theorem in $\mathbb{Z}[i]$, $\alpha = p$ (up to units) or $\overline{\alpha} = p$ (up to units). So in any cases $\alpha = p$ (up to units). (Note that $\overline{p} = p$.)
- (c) $p \mid N(\alpha)$ for some prime $p \equiv 1 \pmod{4}$. For such p, there is an irreducible $\pi \in \mathbb{Z}[i]$ satisfying $p = \pi \overline{\pi}$ (Exercise 1.8). Now we write $\pi \overline{\pi} \mid \alpha \overline{\alpha}$ in $\mathbb{Z}[i]$. Notice that π , $\overline{\pi}$, α and $\overline{\alpha}$ are all irreducible. By the unique factorization theorem in $\mathbb{Z}[i]$, $\alpha = \pi$ or $\alpha = \overline{\pi}$. In any cases, $\alpha = a + bi$ for integer prime $p \equiv 1 \pmod{4}$ with $p = a^2 + b^2$.

Exercise 1.10 - 1.14: Let $\omega = e^{\frac{2\pi i}{3}} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$. Define $N: \mathbb{Z}[\omega] \to \mathbb{Z}$ by $N(a+b\omega) = a^2 - ab + b^2$.

Exercise 1.10. Show that if $a + b\omega$ is written in the form u + vi where u and v are real, then $N(a + b\omega) = u^2 + v^2$. Proof. By $\omega = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$, write

$$a + b\omega = \left(a - \frac{1}{2}b\right) + \left(\frac{\sqrt{3}}{2}b\right)i.$$

Here $u = a - \frac{1}{2}b \in \mathbb{R}$ and $v = \frac{\sqrt{3}}{2}b \in \mathbb{R}$. Hence $u^2 + v^2 = (a - \frac{1}{2}b)^2 + (\frac{\sqrt{3}}{2}b)^2 = a^2 - ab + b^2 = N(a + b\omega)$. \square

Exercise 1.11. Show that for all $\alpha, \beta \in \mathbb{Z}[\omega]$, $N(\alpha\beta) = N(\alpha)N(\beta)$, either by direct computation or by using Exercise 1.10. Conclude that if $\alpha \mid \gamma$ in $\mathbb{Z}[\omega]$, then $N(\alpha) \mid N(\gamma)$ in \mathbb{Z} .

Proof.

(1) Direct computation. Note that $1 + \omega + \omega^2 = 0$ or $\omega^2 = -1 - \omega$. Write $\alpha = a + b\omega, \beta = c + d\omega$ where $a, b, c, d \in \mathbb{Z}$. Thus,

$$\begin{split} N(\alpha\beta) &= N((a+b\omega)(c+d\omega)) \\ &= N(ac+(ad+bc)\omega+bd\omega^2) \\ &= N(ac+(ad+bc)\omega+bd(-1-\omega)) \\ &= N((ac-bd)+(ad+bc-bd)\omega) \\ &= (ac-bd)^2 - (ac-bd)(ad+bc-bd) + (ad+bc-bd)^2 \\ &= (a^2-ab+b^2)(c^2-cd+d^2), \\ N(\alpha)N(\beta) &= N(a+b\omega)N(c+d\omega) \\ &= (a^2-ab+b^2)(c^2-cd+d^2). \end{split}$$

- (2) Exercise 1.10. The result is established by Exercise 1.10 and Exercise 1.1.
- (3) Using the fact that $N(a+b\omega)=(a+b\omega)\overline{(a+b\omega)}$. Similar to the argument of Exercise 1.1.
- (4) Show that if $\alpha \mid \gamma$ in $\mathbb{Z}[\omega]$, then $N(\alpha) \mid N(\gamma)$ in \mathbb{Z} . Similar to the argument of Exercise 1.1.

Exercise 1.12. Let $\alpha \in \mathbb{Z}[\omega]$. Show that α is a unit iff $N(\alpha) = 1$, and find all units in $\mathbb{Z}[\omega]$. (There are six of them.)

Proof.

- (1) (\Longrightarrow) Since α is a unit, there is $\beta \in \mathbb{Z}[\omega]$ such that $\alpha\beta = 1$. By Exercise 1.11, $N(\alpha\beta) = N(1)$, or $N(\alpha)N(\beta) = 1$. Since the image of N is nonnegative integers, $N(\alpha) = 1$.
- (2) (\iff) By Exercise 1.10, $N(\alpha) = \alpha \overline{\alpha}$, or $1 = \alpha \overline{\alpha}$ since $N(\alpha) = 1$. That is, $\overline{\alpha} \in \mathbb{Z}[\omega]$ is the inverse of $\alpha \in \mathbb{Z}[\omega]$.
- (3) By (1), we solve the equation $N(\alpha) = a^2 ab + b^2 = 1$, or $4 = (2a b)^2 + 3b^2$. There are 2 possible cases.
 - (a) $2a b = \pm 1, b = \pm 1.$

(b) $2a - b = \pm 2$, $b = \pm 0$.

Solve these 6 pairs of equations yields the result $\pm 1, \pm \omega, \pm \omega^2$.

Exercise 1.13. Show that $1 - \omega$ is irreducible in $\mathbb{Z}[\omega]$, and that $3 = u(1 - \omega)^2$ for some unit u.

3 is not irreducible in $\mathbb{Z}[\omega]$.

Proof.

- (1) $N(1-\omega)=3$ is an integer prime. Similar to the argument in Exercise 1.3, $1-\omega$ is irreducible in $\mathbb{Z}[\omega]$.
- (2) Note that $1 + \omega + \omega^2 = 0$. So $(1 \omega)^2 = 1 2\omega + \omega^2 = 3(-\omega)$, or $(-\omega^2)(1 \omega)^2 = 3$. By Exercise 1.12, $-\omega^2$ is unit. Hence $3 = u(1 \omega)^2$ for some unit $u = -\omega^2$.

Exercise 1.14. Modify Exercise 1.7 to show that $\mathbb{Z}[\omega]$ is a PID, hence a UFD. Here the squares are replaced by parallelograms; one of them has vertices $0, \alpha, \omega\alpha, (\omega+1)\alpha$, and all others are translates of this one. Use Exercise 1.10 for the geometric argument at the end.

Similar to Exercise 1.7.

Proof (without geometric intuition). Define N on $\mathbb{Q}[\omega]$ by $N(a+b\omega)=a^2-ab+b^2$ where $a+b\omega\in\mathbb{Q}[\omega]$ as usual.

- (1) Show that $\mathbb{Z}[\omega]$ is a Euclidean domain. Given $\alpha = a + b\omega \in \mathbb{Z}[\omega]$ and $\gamma = c + d\omega \in \mathbb{Z}[\omega]$ with $\gamma \neq 0$. It suffices to show there exist δ and ρ such that the identity $\alpha = \gamma \delta + \rho$ holds and either $\rho = 0$ or $N(\rho) < N(\gamma)$.
 - (a) Pick $\delta \in \mathbb{Z}[\omega]$. (Intuition: Pick the 'integer part' of $\frac{\alpha}{\gamma}$ as we did in integer numbers.) Write $\frac{\alpha}{\gamma} = r + s\omega \in \mathbb{Q}[\omega]$. Then we pick $\delta = m + n\omega \in \mathbb{Z}[\omega]$ such that $|r m| \leq \frac{1}{2}$ and $|s n| \leq \frac{1}{2}$. Therefore,

$$N\left(\frac{\alpha}{\gamma} - \delta\right) \le |r - m|^2 + |r - m||s - n| + |s - n|^2$$
$$\le \frac{1}{4} + \frac{1}{4} + \frac{1}{4}$$
$$= \frac{3}{4}.$$

(b) $Pick \ \rho \in \mathbb{Z}[\omega]$. Clearly we can pick $\rho = \alpha - \gamma \delta \in \mathbb{Z}[\omega]$. Therefore, $\rho = 0$ or

$$\begin{split} N(\rho) &= N(\alpha - \gamma \delta) \\ &= N\left(\gamma\left(\frac{\alpha}{\gamma} - \delta\right)\right) \\ &= N(\gamma)N\left(\frac{\alpha}{\gamma} - \delta\right) \\ &\leq \frac{3}{4}N(\gamma) \\ &< N(\gamma). \end{split}$$

- (2) Show that every Euclidean domain R is a PID. Given any ideal I of R. Take $\alpha \in I \{0\}$ such that $N(\alpha)$ is minimized.
 - (a) $R\alpha \subseteq I$ clearly.
 - (b) Conversely, for any $\beta \in I$, there are $\delta, \rho \in R$ such that $\beta = \alpha \delta + \rho$, where either $\rho = 0$ or $N(\rho) < N(\alpha)$. Since $\rho = \beta \alpha \delta \in I$, we cannot have $N(\rho) < N(\alpha)$ by the minimality of $N(\alpha)$. Therefore, $\rho = 0$ and $\beta = \alpha \delta \in R\alpha$, or $R\alpha \supseteq I$.

By (1)(2), $\mathbb{Z}[i]$ is a PID. \square

Exercise 1.15. Here is a proof of Fermat's conjecture for n=4: If $x^4+y^4=z^4$ has a solution in positive integers, then so does $x^4+y^4=w^2$. Let x,y,w be a solution with smallest possible w. Then x^2,y^2,w is a primitive Pythagorean triple. Assuming (without loss of generality) that x is odd, we can write

$$x^2 = m^2 - n^2, y^2 = 2mn, w = m^2 + n^2$$

with m and n are relatively prime positive integers, not both odd.

(a) Show that

$$x = r^2 - s^2, n = 2rs, m = r^2 + s^2$$

with r and s are relatively prime positive integers, not both odd.

- (b) Show that r, s and m are pairwise relatively prime. Using $y^2 = 4rsm$, conclude that r, s and m are all squares, say a^2 , b^2 and c^2 .
- (c) Show that $a^4 + b^4 = c^2$, and that this contradicts minimality of w.

Proof of (a). Write $x^2 + n^2 = m^2$ by moving n^2 of $x^2 = m^2 - n^2$ to the left side. Notice that x is odd, and thus $x = r^2 - s^2$, n = 2rs, $m = r^2 + s^2$ with r and s are relatively prime positive integers, not both odd. \square

Proof of (b).

- (1) It suffices to show that (r, m) = 1. By assumption, (r, s) = 1. So $(r, s) = 1 \Rightarrow (r, s^2) = 1 \Rightarrow (r, r^2 + s^2) = 1$ and note that $m = r^2 + s^2$ to get the result.
- (2) $y^2 = 2mn = 2m(2rs) = 4rsm$ by (a). Since r, s and m are pairwise relatively prime, r, s and m are all squares.

Proof of (c). By (b), $r = a^2$, $s = b^2$, $m = c^2$. By (a), $m = r^2 + s^2$, or $c^2 = (a^2)^2 + (b^2)^2 = a^4 + b^4$. However, $w = m^2 + n^2 > m^2 > m = c^2 > c$, contrary to the minimality of w. □

Exercise 1.16-1.28: Let p be an odd prime, $\omega = e^{\frac{2\pi i}{p}}$.

Exercise 1.16. Show that

$$(1-\omega)(1-\omega^2)\cdots(1-\omega^{p-1})=p$$

by considering equation $t^p - 1 = (t - 1)(t - \omega)(t - \omega^2) \cdots (t - \omega^{p-1})$.

Proof. Note that $t^p - 1 = (t - 1)(t^{p-1} + t^{p-2} + \dots + t + 1)$. Cancel out t - 1 of Equation (2),

$$t^{p-1} + t^{p-2} + \dots + t + 1 = (t - \omega)(t - \omega^2) \cdots (t - \omega^{p-1}).$$

Put t=1 to get $p=(1-\omega)(1-\omega^2)\cdots(1-\omega^{p-1})$. \square

Exercise 1.17. Let $x^p + y^p = z^p$. Suppose that $\mathbb{Z}[\omega]$ is a UFD and $\pi \mid x + y\omega$, and π is a prime in $\mathbb{Z}[\omega]$. Show that π does not divide any of the other factors on the left side of

$$(x+y)(x+y\omega)(x+y\omega^2)\cdots(x+y\omega^{p-1})=z^p$$

by showing that if it did, then π would divide both z and yp (Hint: Use Exercise 1.16); but z and yp are relatively prime (assuming p divides none of x, y, z), hence zm + ypn = 1 for some $m, n \in \mathbb{Z}$. How is this a contradiction?

Proof. Write

$$z = u\pi_1^{e_1}\cdots\pi_m^{e_m}$$

where u is unit and π_k $(1 \le k \le m)$ are distinct primes in $\mathbb{Z}[\omega]$ and $e_k \in \mathbb{Z}^+$ $(1 \le k \le m)$. Since $\mathbb{Z}[\omega]$ is a UFD by assumption, the factorization of z is unique up to order and units.

(1) Show that $\pi \mid z$. Since $\pi \mid x + y\omega$, $\pi \mid z^p$. The factorization of z^p is

$$z^p = u^p \pi_1^{pe_1} \cdots \pi_m^{pe_m}.$$

 u^p is unit, and $\pi|z^p$ implies that $\pi=\pi_k$ for some k, that is, $\pi\mid z$.

- (2) Show that $\pi \mid yp$ if π were divide any of the other factors on the left side of $(x+y)(x+y\omega)(x+y\omega^2)\cdots(x+y\omega^{p-1})=z^p$. Say $\pi \mid x+y\omega^k$ for some $k \neq 1$. So that $\pi \mid ((x+y\omega)-(x+y\omega^k))$, or $\pi \mid y(\omega-\omega^k)$. Since $k \neq 1$, there are two possible cases.
 - (a) k > 1. $\pi \mid y\omega(1-\omega^{k-1})$. By Exercise 1.16, $\pi \mid y\omega p$, or $\pi \mid yp$ since ω is unit. $(\omega^{p-1}$ is the inverse of ω since $\omega \cdot \omega^{p-1} = 1$.)
 - (b) k = 0. $\pi \mid y(\omega 1)$, or $\pi \mid y(1 \omega)$. By Exercise 1.16, $\pi \mid yp$.

In any case, $\pi \mid yp$.

- (3) Note that z and yp are integers, and they are relatively prime by the assumption that p divides none of x, y, z. Therefore, on \mathbb{Z} we have zm + ypn = 1 for some $m, n \in \mathbb{Z}$.
- (4) zm + ypn = 1 is also true in $\mathbb{Z}[\omega]$. Therefore, by (1)(2) we have $\pi \mid (zm + ypn)$ or $\pi \mid 1$, or π is unit, contrary to the primality of π .

Exercise 1.18. Use Exercise 1.17 to show that if $\mathbb{Z}[\omega]$ is a UFD then $x + y\omega = u\alpha^p$, $\alpha \in \mathbb{Z}[\omega]$, u a unit in $\mathbb{Z}[\omega]$.

Proof.

(1) Write $z = u\pi_1^{e_1} \cdots \pi_m^{e_m}$ as Exercise 1.17. So

$$z^p = u^p \pi_1^{pe_1} \cdots \pi_m^{pe_m}.$$

- (2) Factorize $x + y\omega = vq_1^{f_1} \cdots q_n^{f_n}$, where v is unit and all q_h $(1 \le h \le n)$ are distinct primes in $\mathbb{Z}[\omega]$ and $f_h \in \mathbb{Z}^+$. Since $\mathbb{Z}[\omega]$ is a UFD, for every $q_h \mid x + y\omega$, there is some k(h) such that $q_h = \pi_{k(h)}$ and also $q_h^{f_h} = \pi_{k(h)}^{pe_{k(h)}}$ or $f_h = pe_{k(h)}$.
- (3) Hence,

$$x + y\omega = v \left(\pi_{k(1)}^{e_{k(1)}} \cdots \pi_{k(n)}^{e_{k(n)}} \right)^p,$$

where $\alpha = \pi_{k(1)}^{e_{k(1)}} \cdots \pi_{k(n)}^{e_{k(n)}} \in \mathbb{Z}[\omega]$ and v is unit.

Exercise 1.19. Dropping the assumption that $\mathbb{Z}[\omega]$ is a UFD but using the fact that ideals factor uniquely (up to order) into prime ideals, show that the principal ideal $(x + y\omega)$ has no prime ideal factor in common with any of the other principal ideals on the left side of the equation

$$(x+y)(x+y\omega)(x+y\omega^2)\cdots(x+y\omega^{p-1})=(z)^p$$

in which all factors are interpreted as principal ideals. (Hint: Modify the proof of Exercise 1.17 appropriately, using the fact that if A is an ideal dividing another ideal B, then $A \supseteq B$.)

Proof. Write

$$(z) = \pi_1^{e_1} \cdots \pi_m^{e_m}$$

where π_k $(1 \le k \le m)$ are distinct prime ideals of $\mathbb{Z}[\omega]$ and $e_k \in \mathbb{Z}^+$ $(1 \le k \le m)$. By assumption, the factorization of z is unique up to order.

(1) Show that $\pi \mid (z)$. Since $\pi \mid (x+y\omega), \pi \mid (z)^p$. The factorization of $(z)^p$ is

 $(z)^p = \pi_1^{pe_1} \cdots \pi_m^{pe_m}.$

 $\pi|(z)^p$ implies that $\pi=\pi_k$ for some k, that is, $\pi\mid(z)$.

- (2) Show that $\pi \mid (yp)$ if π were divide any of the other factors on the left side of $(x+y)(x+y\omega)(x+y\omega^2)\cdots(x+y\omega^{p-1})=(z)^p$. Say $\pi \mid (x+y\omega^k)$ for some $k \neq 1$. So that $x+y\omega \in \pi$ and $x+y\omega^k \in \pi$, or $y(\omega-\omega^k) \in \pi$. Since $k \neq 1$, there are two possible cases.
 - (a) k > 1. $y\omega(1 \omega^{k-1}) \in \pi$. By Exercise 1.16, $y\omega p \in \pi$, or $yp \in \pi$ since ω is unit. (ω^{p-1}) is the inverse of ω since $\omega \cdot \omega^{p-1} = 1$.)
 - (b) k = 0. $y(\omega 1) \in \pi$, or $y(1 \omega) \in \pi$. By Exercise 1.16, $yp \in \pi$.

In any case, $yp \in \pi$, or $\pi \mid (yp)$.

- (3) Note that z and yp are integers, and they are relatively prime by the assumption that p divides none of x, y, z. Therefore, on \mathbb{Z} we have zm + ypn = 1 for some $m, n \in \mathbb{Z}$.
- (4) zm + ypn = 1 is also true in $\mathbb{Z}[\omega]$. Therefore, by (1)(2) we have $z \in \pi$ and $yp \in \pi$. So $zm + ypn \in \pi$ since π is an ideal. So $1 \in \pi$ or $\pi = (1)$, contrary to the primality of π .

Exercise 1.20. Use Exercise 1.19 to show that $(x+y\omega) = I^p$ for some ideal I.

Proof.

(1) Write $(z) = \pi_1^{e_1} \cdots \pi_m^{e_m}$ as Exercise 1.17. So

$$(z)^p = \pi_1^{pe_1} \cdots \pi_m^{pe_m}.$$

- (2) Factorize $(x+y\omega)=q_1^{f_1}\cdots q_n^{f_n}$, where every q_h $(1\leq h\leq n)$ are distinct prime ideals of $\mathbb{Z}[\omega]$ and $f_h\in\mathbb{Z}^+$. By assumption that $\mathbb{Z}[\omega]$ is a Dedekind domain, for every $q_h\mid (x+y\omega)$, there is some k(h) such that $q_h=\pi_{k(h)}$ and also $q_h^{f_h}=\pi_{k(h)}^{pe_{k(h)}}$ or $f_h=pe_{k(h)}$.
- (3) Hence,

$$(x+y\omega) = \left(\pi_{k(1)}^{e_{k(1)}} \cdots \pi_{k(n)}^{e_{k(n)}}\right)^p,$$

where $I = \pi_{k(1)}^{e_{k(1)}} \cdots \pi_{k(n)}^{e_{k(n)}}$ is an ideal of $\mathbb{Z}[\omega]$.

Exercise 1.21. Show that every number of $\mathbb{Q}[\omega]$ is uniquely representable in the form

$$a_0 + a_1\omega + a_2\omega^2 + \dots + a_{p-2}\omega^{p-2}, a_i \in \mathbb{Q} \ \forall i$$

by show that ω is a root of the polynomial

$$f(t) = t^{p-1} + t^{p-2} + \dots + t + 1$$

and that f(t) is irreducible over \mathbb{Q} . (Hint: It is enough to show that f(t+1) is irreducible, which can be established by Eisenstein's criterion. It helps to notice that $f(t+1) = \frac{(t+1)^p-1}{t}$.)

Proof.

(1) Given any number $\alpha \in \mathbb{Q}[\omega]$. Show that

$$\alpha = a_0 + a_1\omega + a_2\omega^2 + \dots + a_{p-2}\omega^{p-2}, a_i \in \mathbb{Q} \ \forall i.$$

Since $\omega^p = 1$, we can write

$$\alpha = a'_0 + a'_1 \omega + a'_2 \omega^2 + \dots + a'_{p-2} \omega^{p-2} + a'_{p-1} \omega^{p-1}, a_i \in \mathbb{Q} \ \forall i.$$

Note that $\omega^{p-1} + \omega^{p-2} + \cdots + \omega + 1 = 0$, and thus we can replace ω^{p-1} by $-\omega^{p-2} - \cdots - \omega - 1$.

(2) Show that ω is a root of the polynomial $f(t) = t^{p-1} + t^{p-2} + \cdots + t + 1$. $f(\omega) = \omega^{p-1} + \omega^{p-2} + \cdots + \omega + 1 = 0$.

(3) Show that f(t) is irreducible over \mathbb{Q} . It suffices to show that f(t+1) is irreducible over \mathbb{Q} . Write $(t-1)f(t)=t^p-1$. So

$$tf(t+1) = (t+1)^p - 1 \qquad (\text{Put } t \mapsto t+1)$$

$$= \left(\sum_{k=0}^p \binom{p}{k} t^k\right) - 1 \qquad (\text{Binomial theorem})$$

$$= \sum_{k=1}^p \binom{p}{k} t^k,$$

$$f(t+1) = \sum_{k=1}^p \binom{p}{k} t^{k-1}$$

$$= t^{p-1} + pt^{p-2} + \dots + \frac{p(p-1)}{2}t + p.$$

By Eisenstein's criterion, f(t+1) is irreducible over \mathbb{Q} .

(4) To show the uniqueness, it suffices to show that the relation

$$0 = a_0 + a_1\omega + a_2\omega^2 + \dots + a_{p-2}\omega^{p-2}$$

implies all $a_i = 0$. Say $g(t) = a_0 + a_1t + a_2t^2 + \cdots + a_{p-2}t^{p-2} \in \mathbb{Q}[t]$. Clearly $g(\omega) = 0$. By the minimality of f(t), g(t) is identical zero, or all $a_i = 0$.

Exercise 1.22. Use Exercise 1.21 to show that if $\alpha \in \mathbb{Z}[\omega]$ and $p \mid \alpha$, then (writing $\alpha = a_0 + a_1\omega + \cdots + a_{p-2}\omega^{p-2}$, $a_i \in \mathbb{Z}$) all a_i are divisible by p.

Proof. Since $p \mid \alpha$, there is $\beta \in \mathbb{Z}[\omega]$ such that $\alpha = p\beta$. Write

$$\alpha = a_0 + a_1 \omega + \dots + a_{p-2} \omega^{p-2},$$

 $\beta = b_0 + b_1 \omega + \dots + b_{p-2} \omega^{p-2},$

where $a_i, b_j \in \mathbb{Z}$. By $\alpha = p\beta$ and Exercise 1.21, $a_i = pb_i$ for every $1 \le i \le p-2$. So all a_i are divisible by p. \square

Define congruence mod p for $\beta, \gamma \in \mathbb{Z}[\omega]$ as follows:

$$\beta \equiv \gamma \pmod{p}$$
 iff $\beta - \gamma = \delta p$ for some $\delta \in \mathbb{Z}[\omega]$.

(Equivalently, this is congruence mod the principal ideal $p\mathbb{Z}[\omega]$.

Exercise 1.23. Show that if $\beta \equiv \gamma \pmod{p}$, then $\overline{\beta} \equiv \overline{\gamma} \pmod{p}$ where the bar denotes complex conjugation.

Proof.

(1) Show that $\overline{\delta} \in \mathbb{Z}[\omega]$ for any $\delta \in \mathbb{Z}[\omega]$. Write

$$\delta = a_0 + a_1\omega + \dots + a_{p-1}\omega^{p-1}$$

where $a_0, \ldots, a_{p-1} \in \mathbb{Z}$. Take the complex conjugation to get

$$\overline{\delta} = \overline{a_0} + \overline{a_1} \cdot \overline{\omega} + \dots + \overline{a_{p-1}} \cdot \overline{\omega}^{p-1}$$

$$= a_0 + a_1 \overline{\omega} + \dots + a_{p-1} \overline{\omega}^{p-1} \qquad (\text{Every } a_k \in \mathbb{Z})$$

$$= a_0 + a_1 \omega^{p-1} + \dots + a_{p-1} \omega \in \mathbb{Z}[\omega]. \qquad (\omega^p = 1)$$

(2)
$$\beta \equiv \gamma \pmod{p}$$

$$\iff \beta - \gamma = \delta p \text{ for some } \delta \in \mathbb{Z}[\omega]$$

$$\iff \overline{\beta} - \overline{\gamma} = \overline{\delta} p \text{ for some } \delta \in \mathbb{Z}[\omega] \qquad \text{(Complex conjugation)}$$

$$\iff \overline{\beta} - \overline{\gamma} = \delta' p \text{ for some } \delta' \in \mathbb{Z}[\omega]$$

$$\iff \overline{\beta} \equiv \overline{\gamma} \pmod{p}$$

Exercise 1.24. Show that $(\beta + \gamma)^p \equiv \beta^p + \gamma^p \pmod{p}$ and generalize this to sums of arbitrarily many terms by induction.

Proof.

(1) Binomial theorem gives us

$$(\beta + \gamma)^p = \sum_{k=0}^p \binom{p}{k} \beta^k \gamma^{p-k} = \beta^p + \gamma^p + \sum_{k=1}^{p-1} \binom{p}{k} \beta^k \gamma^{p-k}.$$

- (2) Note that every binomial coefficient $\binom{p}{k}$ is divided by p in \mathbb{Z} for $1 \leq k \leq p-1$. Also, every term $\beta^k \gamma^{p-k}$ is in $\mathbb{Z}[\omega]$. So $(\beta+\gamma)^p \beta^p \gamma^p = \delta p$ for some $\delta \in \mathbb{Z}[\omega]$. Hence the result holds.
- (3) In general,

$$\left(\sum_{k=1}^{n} \alpha_k\right)^p \equiv \sum_{k=1}^{n} \alpha_k^p \pmod{p}.$$

Induction by $(\alpha_1 + \alpha_2)^p \equiv \alpha_1^p + \alpha_2^p \pmod{p}$ and $\left(\sum_{k=1}^{n+1} \alpha_k\right)^p \equiv \left(\sum_{k=1}^n \alpha_k\right)^p + \alpha_{n+1}^p \equiv \left(\sum_{k=1}^n \alpha_k^p\right) + \alpha_{n+1}^p \equiv \sum_{k=1}^{n+1} \alpha_k^p \pmod{p}$.

Exercise 1.25. Show that for all $\alpha \in \mathbb{Z}[\omega]$, α^p is congruent \pmod{p} to some $a \in \mathbb{Z}$. (Hint: Write α in terms of ω and use Exercise 1.24.)

Proof (Hint). Write

$$\alpha = a_0 + a_1\omega + \dots + a_{p-1}\omega^{p-1}$$

where $a_0, \ldots, a_{p-1} \in \mathbb{Z}$. By Exercise 1.24,

$$\alpha^{p} \equiv a_{0}^{p} + (a_{1}\omega)^{p} + \dots + (a_{p-1}\omega^{p-1})^{p}$$

$$\equiv a_{0}^{p} + a_{1}^{p}\omega^{p} + \dots + a_{p-1}^{p}(\omega^{p-1})^{p}$$

$$\equiv a_{0}^{p} + a_{1}^{p}\omega^{p} + \dots + a_{p-1}^{p}(\omega^{p})^{p-1}$$

$$\equiv a_{0}^{p} + a_{1}^{p} + \dots + a_{p-1}^{p}. \qquad (\omega^{p} = 1)$$

Here $a_0^p+a_1^p+\cdots+a_{p-1}^p\in\mathbb{Z}$, and thus α^p is congruent \pmod{p} to some integer. \square

Exercise 1.26-1.28: Now assume $p \geq 5$. We will show that if $x + y\omega = u\alpha^p \pmod{p}$, $\alpha \in \mathbb{Z}[\omega]$, u a unit in $\mathbb{Z}[\omega]$, x and y integers not divisible by p, then $x \equiv y \pmod{p}$. For this we will need the following result, proved by Kummer, on the units of $\mathbb{Z}[\omega]$:

Lemma: If u is a unit in $\mathbb{Z}[\omega]$ and \overline{u} is its complex conjugate, then u/\overline{u} is a power of ω . (For the proof, see Exercise 2.12.)

Exercise 1.26. Show that $x + y\omega \equiv u\alpha^p \pmod{p}$ implies

$$x + y\omega \equiv (x + y\omega^{-1})\omega^k \pmod{p}$$

for some $k \in \mathbb{Z}$. (Use the Lemma on units and Exercise 1.23 and 1.25. Note that $\overline{\omega} = \omega^{-1}$.)

Proof (Hint).

$$x + y\omega \equiv u\alpha^{p} \pmod{p}$$

$$\Longrightarrow x + y\omega \equiv ua \pmod{p} \text{ for some } a \in \mathbb{Z}$$

$$\Longrightarrow \overline{x + y\omega} \equiv \overline{u}a \pmod{p}$$

$$\Longrightarrow x + y\overline{\omega} \equiv \overline{u}a \pmod{p}$$

$$\Longrightarrow x + y\omega^{-1} \equiv \overline{u}a \pmod{p}$$

$$\Longrightarrow x + y\omega^{-1} \equiv u\omega^{-k}a \pmod{p} \text{ ($\overline{\omega} = \omega^{-1}$)}$$

$$\Longrightarrow x + y\omega^{-1} \equiv u\omega^{-k}a \pmod{p} \text{ (Lemma)}$$

$$\Longrightarrow ua \equiv (x + y\omega^{-1})\omega^{k} \pmod{p}$$

$$\Longrightarrow x + y\omega \equiv (x + y\omega^{-1})\omega^{k} \pmod{p}.$$

Exercise 1.27. Use Exercise 1.22 to show that a contradiction results unless $k \equiv 1 \pmod{p}$. (Recall that $p \nmid xy$, $p \geq 5$, and $\omega^{p-1} + \omega^{p-2} + \cdots + \omega + 1 = 0$.)

Proof. Exercise 1.26 shows

$$x + y\omega \equiv (x + y\omega^{-1})\omega^k \pmod{p}$$
.

Multiply ω on the both sides to get $x\omega + y\omega^2 \equiv y\omega^k + x\omega^{k+1} \pmod{p}$, or

$$p \mid (x\omega + y\omega^2 - y\omega^k - x\omega^{k+1}).$$

If k were satisfying $k \not\equiv 1 \pmod p$, then by Exercise 1.22 and $p \geq 5$ we have $p \mid x$ or $p \mid y$, contrary to the assumption that x and y are integers not divisible by p. \square

Exercise 1.28. Finally, show $x \equiv y \pmod{p}$.

Proof. In the argument of Exercise 1.27 we have

$$p \mid ((x-y)\omega + (y-x)\omega^2)$$

by replacing k=1. By Exercise 1.22 and $p\geq 5, \ x-y$ is divisible by p, or $x\equiv y\pmod p$ as integers. \square

Exercise 1.29. Let $\omega = \exp(\frac{2\pi i}{23})$. Verify that the product

$$(1 + \omega^2 + \omega^4 + \omega^5 + \omega^6 + \omega^{10} + \omega^{11})(1 + \omega + \omega^5 + \omega^6 + \omega^7 + \omega^9 + \omega^{11})$$

is divisible by 2 in $\mathbb{Z}[\omega]$, although neither factor is. It can be shown (Exercise 3.17) that 2 is an irreducible element in $\mathbb{Z}[\omega]$; it follows that $\mathbb{Z}[\omega]$ cannot be a

UFD.

Proof. Note that $\sum_{k=0}^{22} \omega^k = 0$. So

$$(1 + \omega^2 + \omega^4 + \omega^5 + \omega^6 + \omega^{10} + \omega^{11})(1 + \omega + \omega^5 + \omega^6 + \omega^7 + \omega^9 + \omega^{11})$$
$$= 2(\omega^5 + \omega^6 + \omega^7 + \omega^9 + \omega^{10} + 3\omega^{11} + \omega^{12} + \omega^{13} + \omega^{15} + \omega^{16} + \omega^{17})$$

is divisible by 2 in $\mathbb{Z}[\omega]$, although neither factor is. \square

Exercise 1.30-1.32: R is an integral domain (commutative ring with 1 and no zero divisors).

Exercise 1.30. Show that two ideals in R are isomorphic as R-modules iff they are in the same ideal class.

Proof. Given any two ideals A, B in an commutative integral domain R.

(1) (\Longrightarrow) Let $\varphi:A\to B$ be an R-module isomorphism. Given any nonzero $\alpha\in A,$ we have

$$\varphi(\alpha)A = \{\varphi(\alpha)a : a \in A\}$$

$$= \{\varphi(\alpha a) : a \in A\} \qquad (\varphi \text{ is a homomorphism})$$

$$= \{\alpha \varphi(a) : a \in A\} \qquad (\varphi \text{ is a homomorphism})$$

$$= \{\alpha b : b \in B\} \qquad (\varphi \text{ is an isomorphism})$$

$$= \alpha B.$$

Notice that $\varphi(\alpha) \neq 0$ since $\alpha \neq 0$ and φ is injective. Therefore, $A \sim B$.

- (2) (\iff) Given $A \sim B$, there are nonzero $\alpha, \beta \in R$ such that $\alpha A = \beta B$. Define a map $\varphi : A \to B$ by $\varphi(a) = b$ if $\alpha a = \beta b$.
 - (a) φ is well-defined.
 - (i) Existence of b. Since $\alpha a \in \alpha A = \beta B$, there is $b \in B$ such that $\alpha a = \beta b$.
 - (ii) Uniqueness of b. If $\alpha a = \beta b_1 = \beta b_2$, $\beta(b_1 b_2) = 0$. Since R is an integral domain and $\beta \neq 0$, $b_1 b_2 = 0$ or $b_1 = b_2$.
 - (b) φ is an R-module homomorphism.
 - (i) Show that $\varphi(a_1 + a_2) = \varphi(a_1) + \varphi(a_2)$. Write $\varphi(a_1) = b_1$ and $\varphi(a_2) = b_2$.

$$\varphi(a_1) = b_1 \text{ and } \varphi(a_2) = b_2$$

$$\Longrightarrow \alpha a_1 = \beta b_1 \text{ and } \alpha a_2 = \beta b_2 \qquad \text{(Definition of } \varphi\text{)}$$

$$\Longrightarrow \alpha a_1 + \alpha a_2 = \beta b_1 + \beta b_2 \qquad \text{(Add together)}$$

$$\Longrightarrow \alpha(a_1 + a_2) = \beta(b_1 + b_2)$$

$$\Longrightarrow \varphi(a_1 + a_2) = b_1 + b_2 = \varphi(a_1) + \varphi(a_2). \quad \text{(Definition of } \varphi\text{)}$$

(ii) Show that $\varphi(ra) = r\varphi(a)$. Write $\varphi(a) = b$.

$$\varphi(a) = b \Longrightarrow \alpha a = \beta b \qquad \text{(Definition of } \varphi)$$

$$\Longrightarrow r\alpha a = r\beta b \qquad \text{(Multiply } r)$$

$$\Longrightarrow \alpha(ra) = \beta(rb) \qquad (R \text{ is commutative})$$

$$\Longrightarrow \varphi(ra) = rb = r\varphi(a). \qquad \text{(Definition of } \varphi)$$

- (c) φ is injective. Given $\varphi(a) = 0$. Then $\alpha a = \beta b = \beta 0 = 0$. Since R is an integral domain and $\alpha \neq 0$, $\alpha = 0$.
- (d) φ is surjective. Given any $b \in B$. $\beta b \in \beta B = \alpha A$. There is $a \in A$ such that $\beta b = \alpha a$. Such a satisfies $\varphi(a) = b$.

Therefore, $\varphi:A\to B$ is an R-module isomorphism.

Exercise 1.31. Show that if A is an ideal in R and if αA is principal for some nonzero $\alpha \in R$, then A is principal. Conclude that the principal ideals form an ideal class.

Proof.

(1) Write $\alpha A = (b)$ for some $b \in \alpha A$. That is, there is $a \in A$ such that

$$b = \alpha a$$
.

(2) Show that A=(a) is principal. $(a)\subseteq A$ holds trivially since $a\in A$ and A is an ideal. Given any $x\in A$. $\alpha x\in \alpha A=(b)$, and thus there is $y\in R$ such that $\alpha x=by$. Replace b by $b=\alpha a$ to get $\alpha x=\alpha ay$ or

$$\alpha(x - ay) = 0.$$

Since $\alpha \neq 0$ and R is an integral domain, x - ay = 0 or $x = ay \in (a)$ or $A \subseteq (a)$. Hence A = (a) is principal.

(3) Show that the principal ideals form an ideal class. Given any $A=(a)\neq 0$ and $B=(b)\neq 0$, we have bA=aB=(ab) for $a,b\in R$ or $A\sim B$.

Exercise 1.32. Show that the ideal classes in R form a group iff for every ideal A there is an ideal B such that AB is principal.

Note. The Picard group of the spectrum of a Dedekind domain is its ideal class group.

Proof. Let [A] be the ideal class representing by a nonzero ideal A of R. Let

$$Pic(R) = \{[A] : A \text{ is an ideal of } R\}$$

be the set of all ideal classes. Define the operation $\cdot : \text{Pic}(R) \times \text{Pic}(R) \to \text{Pic}(R)$ by $[A] \cdot [B] \mapsto [AB]$.

- (1) (Closure) Show that the operation $[A] \cdot [B] \mapsto [AB]$ is well-defined. Trivial due to the definition of the ideal class. Note that $[A] \cdot [B] = [B] \cdot [A]$ by the commutativity of R.
- (2) (Associativity) Show that $([A] \cdot [B]) \cdot [C] = [A] \cdot ([B] \cdot [C])$. Trivial due to the definition of the ideal class.
- (3) (Identity element) Show that the non-zero principal ideals form the ideal class [1]. Exercise 1.30 and note that (1) is principal too.
- (4) Show that the set Pic(R) forms an (abelian) group with [1] as the identity element if and only if every [A] has an inverse in Pic(R). By (1)(2)(3), the set Pic(R) forms an (abelian) group iff every element has an inverse element. The conclusion is established.