Recurrence Relation

-2

The recurrence can also be represented by sequence and terms as we see: 0, 2, 4, 6, 8 is a sequence of even numbers.

if we go through the sequence like $t_0, t_1, t_2, t_3, ..., t_n$. Where,

$$t_0 = 0$$
 $t_1 = t_0 + 2 = 2$

$$t_2=t_1+2=4$$

...

$$t_n = t_{n-1} + 2$$

if T(n) denotes the time complexity of the algorithm .

$$T(n) = \begin{cases} T(n-1) + 2 & when n \geq 1 \\ 0 & when n = 0 \end{cases}$$

There are two types of recurrence relation:

- → Linear Recurrences.
- \rightarrow Non Linear Recurrences.

Linear Recurrences

Linear recurrence equation for a sequence $\{t_0, t_1, \dots, t_n\}$ expresses the final term t_n as a linear combination of its previous terms in a polynomial form.

Linear rucurrence looks like:

$$a_0t_n + a_1t_{n-1} + a_2t_{n-2} + \cdots + a_kt_{n-k} = f(n)$$

$$f(n) = \sum_{i=0}^{k} a_i \times \sum_{i=n}^{n-k} t_i$$

where, k and a_i terms are constant and a_0 , a_k are non – zero and k being the order of the recurrence equation.

Division of Linear Recurrences

Linear Recurrences Based on Order Based on Coefficient Based on Homogeneity Homogeneous Constant Coefficient First Order Recurrence Equations Recurrence Equations Recurrence Equations Non – Homogeneous Variable Coefficient Second Order Recurrence Equations Recurrence Equations Recurrence Equations Higher Order Recurrence Equations

A. Based On Order

The number of preceding terms used for computing the present term of a sequence is called the order of a recurrence equation.

1. First Order Recurrence Equation:

The general form of a first – order recurrence equation is as follows:

$$a_0t_n + a_1t_{n-1} = f(n)$$

If t_n is computed using only one previous term, then the recurrence equation is called a first – order linear equation.

How find whether an equation is first order or not?

Lets take an equation: $t_n - t_{n-1} - 7t_{n-2} = 0$.

Hence order will be = n - (n - 2) = 2 i. e., Difference between the highest and lowest subscripts of the dependent variable in a recurrence equation.

if we see the factorial,

$$t_0 = 1$$

$$t_1 = t_0 \times 1 = 1$$

$$t_2 = t_1 \times 2 = 2$$

.....

$$t_n = t_{n-1} \times n$$

By above we take the above to compute, we get:

$$t_n - nt_{n-1} = 0$$

Hence, n - (n - 1) = 1 i. e. first order.

Also if we take the time complexity T(n), hence per T(n-1) it takes constant time c i. e. T(1) in stack.

Therefore, T(n) = T(n-1) + T(1) or T(n) = T(n-1) + C, where C is constant. and C represents 1 unit of time and T(1) = 1, hence C = T(1).

And it is not $n \times T(n-1)$ as the multiplication takes in stack for a constant time, hence only it matters is T(n-1), i. e. the recursive use of stack's push and pop.

Hence it goes like:

$$T(n) =$$

$$\Rightarrow T(n-1) + T(1)$$

$$\Rightarrow T(n-2) + T(1) + T(1)$$

$$\Rightarrow T(n-3) + T(1) + T(1) + T(1)$$

We can further represent the above as : $-t_n = t_{n-1} + 1$ (For single sequence `t`) or, $t_n - t_{n-1} = 1$.

Hence here also we get : n - (n - 1) = 1, i. e. first - order recurrence equation.

2. Second Order Recurrence Equation:

The generic form of a second – order recurrence equation is given as follows:

$$a_0t_n + a_1t_{n-1} + a_2t_{n-2} = f(n)$$

Fibonacci series which is invented by Leonardo Fibonacci, also known as Leonardo Bonacci an italian mathematician.

The series states:

The base or starting numbers are 0 and 1. That is:

$$fib(0) = 0$$

$$fib(1) = 1$$

$$fib(2) = fib(0) + fib(1) = 0 + 1 = 1$$

$$fib(3) = fib(2) + fib(1) = 1 + 1 = 2$$

$$fib(4) = fib(3) + fib(2) = 2 + 1 = 3$$

... ...

We can relate this with Recurrence Equation:

$$fib(n) = fib(n-1) + fib(n-2).$$

$$or, T(n) = T(n-1) + T(n-2).$$

Hence for single sequence `t`:

$$t_n = t_{n-1} + t_{n-2}$$
.

And fibonacci series is `second order of recurrence`.

$$i.e.t_n - t_{n-1} - t_{n-2} = 0$$

 $\Rightarrow n - (n-2) = 2$, hence second order of recurrence.

3. Higher Order Recurrence Equation:

Higher – order linear recurrence equations of order k can be formulated as follows:

$$a_0t_n + a_1t_{n-1} + \cdots + a_kt_{n-k} = f(n)$$

i. e.,

$$f(n) = \sum_{i=0}^{k} a_i \times \sum_{i=n}^{n-k} t_i$$

Here a_i and k are constants.

B. Based on Homogeneity

A. Homogeous Recurrence Equation:

Suppose we have a recurrence equation:

$$a_0t_n + a_1t_{n-1} + \cdots + a_kt_{n-k} = f(n)$$
 and if $f(n) = 0$, it is called a homogeneous equation.

Homogeneity test: Substitute t_n and all its factors t_{n-1} , t_{n-2}, \ldots, t_{n-k} with zero.

Eg: Fibonacci Series:

$$t_n = t_{n-1} + t_{n-2}$$

Substituting t_n , t_{n-1} , t_{n-2} with zero we get:

$$\mathbf{0} = \mathbf{0} + \mathbf{0}$$

Therefore, $t_n = t_{n-1} + t_{n-2}$ is a homogeneous equation.

B. Non - Homogeous Recurrence Equation:

Suppose we have a recurrence equation:

$$a_0t_n + a_1t_{n-1} + \cdots + a_kt_{n-k} = f(n)$$
 and if $f(n) \neq 0$, it is called a non – homogeneous equation.

Lets take factorial:

$$t_n = t_{n-1} + 1$$

Applying the homogeneity test:

$$0 = 0 + 1$$
 $= 1$

Hence, for factorial it is non - homogeneous in nature.

C. Based on Coefficient

In the generic linear recurrence equation : $a_0t_n+a_1t_{n-1}+\cdots+a_kt_{n-k}=f(n)$, the terms a_i can be constants or variables .

Based on this scenario, we can classify linear recurrence equations into two types:

- 1) linear recurrence equations with constants coefficients.
- 2) linear recurrence equations with variable coefficients.

Example:

$$t_n = n \times t_{n-2}$$

This recurrence equation is dependent on the variable n and does not have constant coefficients. However, in algorithm study, these kinds of equations are rare and mostly constant coefficient linear recurrence equations are encountered.

Non – Linear Recurrences

The non — linear recurrence equation of a sequence $\{t_0, t_1, \dots, t_n\}$ expresses t_n as a non — linear combination of its previous terms. In algorithm study, a unique form of non — linear recurrence equations, called divide — and — conquer recurrences is often encountered.

The divide - and - conquer recurrences are of the following form:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

Here a is the number of subproblems, `n` is the size of the problem, $\frac{n}{b}$ is the size of the subproblem, and f(n) is the cost of work done for non – recursive calls, which accounts for the division of a problem into sub problems and combination of the results of those sub problems.

Some of Divide and Conquer recurrences are:

Merge Sort, Quick Sort, Binary Search etc.
