business impact analysis (BIA), 104–105	Canada, Personal Information Protection and
asset value, 112-115	Electronic Documents Act in, 147
disaster recovery, 1032	Capability Maturity Model (CMM),
overview, 108–109	197–199
risk assessment, 109-112	Capability Maturity Model Integration
steps, 112	(ČMMĬ), 1107–1109
business process compromise (BPC) attacks,	capacitance detectors, 927
59–60	CAPTCHA data, 723
business process recovery, 1033-1034	card badge readers, 925
Business Software Alliance (BSA), 154, 226	care-of addresses in mobile IP, 793
business strategy, aligning security to, 13–16 business-to-business (B2B) transactions	carrier sense multiple access (CSMA), 490–491
in SAML, 780	carrier sense multiple access with collision
business-to-consumer (B2C) transactions	avoidance (CSMA/CA), 491
in SAML, 780	carrier sense multiple access with collision
business unit leads on incident response	detection (CSMA/CD), 491
teams, 1001	carriers in steganography, 265
business units in incident notifications, 1004	CART acronym in threat intelligence, 941
BYE messages in SIP, 689–690	CAs (certificate authorities), 360–362
BYOD (bring your own devices), 220	CASBs (cloud access security brokers),
bytecode in Java programming language,	275–276
1122–1123	cascading errors, 62
	CASE (computer-aided software engineering)
C	tools, 1087
C programming language, 1121–1122	catastrophes, 1043
cable modems, 686–687	categorize step in Risk Management
cable traps, 921	Framework, 174–175
cabling	CBC-MAC (CCM), 578
bandwidth and throughput, 654-655	CBEST standard, 156
coaxial cable, 649	CBKE (Certificate-Based Key Establishment)
fiber-optic cable, 650–651	protocol, 572
forensics field kits, 1015	CBR (constant bit rate) in ATM, 551
overview, 648	CCDs (charged-coupled devices), 914
problems, 651–653	CCM (CBC-MAC), 578
twisted-pair cabling, 649–650	CCPA (California Consumer Privacy Act),
CABs (change advisory boards)	141–142
policies for, 891	CCTV (closed-circuit TV) systems,
purpose, 93	913–916
software development tools, 1138	CD (continuous delivery) in software
cache poisoning, ARP table, 516–517	security, 1140–1141
Caesar, Julius, 318	CDDI (Copper Distributed Data
Caesar cipher, 318–319	Interface), 497
California Consumer Privacy Act (CCPA),	CDIs (constrained data items) in Clark-Wilson
141–142	model, 400
call-processing managers, 688	CDMA (code division multiple access),
call trees in disaster recovery plans, 1056	584–585
cameras in CCTV systems, 916	CDNs (content distribution networks),
CAN (Controller Area Network) bus, 627	308, 674

ceilings	channels
considerations, 437	access points, 565
dropped, 442	for attacks, 474
RFI issues, 450	CHAP (Challenge Handshake Authentication
cell suppression in database systems, 288	Protocol), 698
Center for Internet Security (CIS) framework	charged-coupled devices (CCDs), 914
CIS Controls Measures and Metrics	Check phase in Plan-Do-Check-Act
document, 92	loop, 875
security controls, 172, 185–187	checkers, password, 722
centralized patch management, 904-905	checklist tests in disaster recovery plans,
Centripetal Networks, 151	1062–1063
CEOs (chief executive officers), 19–21	chemical fire extinguishers, 459
CER (crossover error rate) in biometric	chests for data protection, 222
authentication, 724–725	Cheyenne Mountain complex, 436
CERT (Computer Emergency Response	chief executive officers (CEOs), 19–21
Team), 993	chief financial officers (CFOs), 19-20
CERT Advisory for privacy issues, 1014	chief human resources officers (CHROs), 990
CERT/CC (Computer Emergency Response	chief information officers (CIOs),
Team Coordination Center), 901	19–21, 990
certificate authorities (CAs), 360-362	chief information security officers (CISOs)
Certificate-Based Key Establishment (CBKE)	IMPs, 990
protocol, 572	incident notifications, 1004
certificate revocation lists (CRLs), 361–362	incident response teams, 1001
certificates in PKI, 359–360	role, 22
certifications, 40–41	chief operations officers (COOs), 990
CFOs (chief financial officers), 19-20	chief privacy officers (CPOs), 21
chain of custody for evidence, 1010-1011	chief security officers (CSOs), 22
Challenge Handshake Authentication	Chinese Remainder
Protocol (CHAP), 698	Theorem (RSA-CRT), 372
change	Chinese Wall model, 402–403
data loss prevention for, 270	chipping code in DSSS, 562
digital asset management, 262	chips in DSSS, 562
monitoring, 92–93	chosen-ciphertext attacks, 369
change advisory boards (CABs)	chosen-plaintext attacks, 368–369
policies for, 891	CHROs (chief human resources officers), 990
purpose, 93	CI (continuous integration) in software
software development tools, 1138	security, 1140–1141
change control analysts, 24	CIA triad, 7–8
change management, 891	CIDR (classless interdomain routing), 512
vs. configuration management, 895	CIOs (chief information officers), 19-21, 990
documentation, 893	cipher locks, 920–921
practices, 891–892	ciphers in cryptology, 318–321
runbooks, 1006	ciphertext-only attacks, 368
software development, 1092–1094	CIR (committed information rate) in frame
software security, 1145	relay, 547–548
change management boards, 223	circuit-level proxies, 953–957
channel service unit/data service	circuit switching in WANs, 545–547
unit (CSU/DSU), 543-545	circumventing locks, 922–924

CIS (Center for Internet Security) framework	CMF (collection management framework)
CIS Controls Measures and Metrics	forensics investigations, 1016–1017
document, 92	logs, 978
security controls, 172, 185–187	threat intelligence, 942
Cisco Systems, 151	CMM (Capability Maturity Model), 197–199
CISOs. See chief information security	CMMI (Capability Maturity Model
officers (CISOs)	Integration), 1107–1109
civil investigations, 162	CO ₂ fire suppression, 458
civil law, 126–129	coaxial cable, 649
Clark-Wilson model, 400, 403	COBIT 2019 framework, 172, 187-189
classes	code and coding
IP addresses, 510	bloat, 833
object-oriented programming, 1125–1127	obfuscation, 905
classification	repositories, 1143–1144
artificial intelligence tools, 977	reviews, 833–834
data retention, 236	secure practices, 1134–1136
incidents, 1002–1003	testing, 834–835
information, 215–219	code division multiple access (CDMA),
classless interdomain routing (CIDR), 512	584–585
classless IP addresses, 512	code law, 126
clean desk policy, 442-443	Code of Ethics, 44–45
cleanroom methodology in software	Codecov platform, 1141
development, 1105	CoE (Council of Europe), 139
clearing media, 259	cognitive passwords, 723
client-based systems, 284	cohesion in software, 1130–1132
client/server systems, 284	COI (community of interest) as threat data
clipping levels for failed logon attempts, 721	source, 943
close stage in change management, 892	cold sites in disaster recovery, 1045–1047
CLOSE-WAIT state in TCP connections, 951	collection
closed-circuit TV (CCTV) systems, 913–916	data, 231–232
CLOSING state in TCP connections, 951	evidence, 1010–1012
cloud access security brokers (CASBs), 275-276	Collection Limitation Principle in OECD, 142
cloud-based systems	collection management framework (CMF)
asset provisioning, 228	forensics investigations, 1016–1017
backups, 1038	logs, 978
deployment models, 305	threat intelligence, 942
FIM systems, 756	collision free hashing algorithms, 351–352
frame relay, 548	collisions
IaaS, 304	CSMA, 490
overview, 301–302	hashing functions, 353
PaaS, 302–304	medium access control, 492–494
SaaS, 302–303	collusion, 34
XaaS, 304–305	COM domain in DNS, 527
clustered servers in quality of service, 1051	combi smart cards, 734
clustering for artificial intelligence tools, 978	combination locks, 920
CM. See configuration management (CM)	Command and Control
CMDB (configuration management	Cyber Kill Chain model, 388, 994
database), 895	MITRE ATT&CK framework, 389

commercial off-the-shelf (COTS) software	laws and regulations, 125-130
description, 153	liability and ramifications, 158–161
security concerns, 1146	licensing and intellectual property
committed information rate (CIR) in frame	requirements, 147–154
relay, 547–548	monitoring, 93–94
common controls in Risk Management	overview, 125
Framework, 175	policies, 39–40
common law, 126–130	requirements, 155–161
Common Weakness Enumeration (CWE)	compromise assessments, 17
initiative, 1088	computer-aided software engineering (CASE)
communication	tools, 1087
audit results, 839-840	computer-assisted crimes, 130-131
in disaster recovery plans, 1056-1057	Computer Emergency Response Team
employees, 266	(CERT), 993
object-oriented programming, 1126	Computer Emergency Response Team
communications channels	Coordination Center (CERT/CC), 901
chapter questions, 709-712	Computer Ethics Institute, 45–46
chapter review, 707-709	"computer is incidental" crimes, 130–131
data, 702–704	computer surveillance, 1020
multimedia collaboration, 693–696	computer system connections, 479
overview, 681	computer-targeted crimes, 130–131
remote access, 696–702	concentrators, 655
third-party connectivity, 705–706	concurrency management in software, 1142
virtualized networks, 704–705	conference call bridges in H.323, 689
voice. See voice communications	confidential classification level, 216–217
community clouds, 305	confidentiality
community of interest (COI) as threat data	asymmetric key cryptography, 336
source, 943	audit logs, 745
community strings in SNMP, 522–524	Bell-LaPadula model, 398
comparability of security metrics, 854–855	business continuity, 102–103
compartmentalizing information in forensics	CIA triad, 8, 64
investigation interviews, 1019	cryptosystems, 323–324, 330
compensating controls in risk responses,	customer relations, 174–175
85, 87–88	DNS over HTTPS, 621
compiled code, software escrow for, 1143	forensics investigation interviews, 1019
compilers, 1119–1122	overview, 4–5
complete characteristic of threat	TLS, 602
intelligence, 941	VPNs, 605
complexities in cybercrimes, 132–134	configuration management (CM)
compliance	automation, 895
audits, 844	baselining, 894
chapter questions, 165–169	vs. change management, 895
chapter review, 162–165	identity and access, 799
checks, 838	overview, 893–894
cybercrimes, 130–139	preventive and detective measures, 944
data breaches, 139–147	provisioning, 894–895
identity and access, 796–797	secure software, 1142
investigation requirements, 161–162	unmanaged patching threat, 904

configuration management database	control planes in SDNs, 633-634
(CMDB), 895	control zones, 803
confusion in symmetric key cryptography, 331	controlled unclassified data, 216-217
congestion	Controller Area Network (CAN) bus, 627
TCP vs. UDP, 503, 506	controllers, data, 244
throughput, 654	controls
connection-oriented protocols	assessments. See testing
description, 479	CPTED, 430–431
TCP, 503–504	data states, 254–258
connectionless protocols	defined, 9
description, 479	digital asset management, 261-262
UDP, 503–504	frameworks, 172, 183–189
connections in TCP vs. UDP, 506	overview, 253–254
connectivity for federated identity, 754–755	preventive and detective measures, 944
consent provision in GDPR, 144–145	scoping and tailoring, 258
consistency in ACID properties, 286	standards, 258
constant bit rate (CBR) in ATM, 551	threat modeling, 387
constrained data items (CDIs) in Clark-	controls for risk response
Wilson model, 400	assessments, 88–91
construction issues, 436–439	selection, 82–83
consultants, 39	types, 83–88
consumer-grade products for meeting	controls for secure software
applications, 694	application testing, 1139-1140
contact smart cards, 733	code repositories, 1143–1144
contactless smart cards, 733–734	continuous integration and delivery,
containerization, 298–299	1140–1141
content-dependent access control in database	development platforms, 1137–1138
systems, 287	overview, 1136–1137
content distribution networks (CDNs),	SOAR, 1141–1142
308, 674	software configuration management, 1142
content reviews, periodic, 43	tool sets, 1138
context-dependent access control for database	controls for site and facilities
systems, 287–288	data processing facilities, 443–446
context in ABAC, 774	distribution facilities, 446–447
contingency category in PACE plans, 1057	environmental issues, 461
contingency strategies in business continuity,	fire safety, 454–460
104–105	storage facilities, 447–448
contingency suppliers in disaster recovery, 1046	utilities, 448–454
continuous delivery (CD) in software security,	work area security, 441–443
1140–1141	Convention on Cybercrime, 139
continuous improvement in risk management,	converged protocols, 627–628
95–96	cookies for web services, 613
continuous integration (CI) in software	coordinators in WPANs, 570
security, 1140–1141	COOs (chief operations officers), 990
continuous lighting, 912	copper cable, 649–650
continuous monitoring, 981–982	Copper Distributed Data
contractors, 39	Interface (CDDI), 497
contractual requirements compliance, 156–158	Copyright Directive, 155

copyrights, 149–150	crimes. See also incidents
core RBAC, 772	crime scene control, 1010
corrective controls in risk response, 85, 87	detection goals, 424
cost approach in executive summaries, 874	evidence collection and handling, 1008
cost/benefit comparisons in risk assessment,	incident investigations, 1006–1008
64, 82	incident response, 992
costs	investigation requirements, 162
outsourced security services, 974	criminal law system, 127, 129
smart cards, 734	critical data backups, 1037
COTS (commercial off-the-shelf) software	criticality of data, 215
description, 153	criticality values in disaster recovery, 1032
security concerns, 1146	CRLs (certificate revocation lists),
Council of Europe (CoE), 139	361–362
Counter Mode Cipher Block Chaining	cross-certification, 361
Message Authentication Code Protocol, 578	cross-sectional photoelectric cells, 927
countermeasures	crossover error rate (CER) in biometric
defined, 9	authentication, 724–725
risk responses, 81–83	crosstalk in cabling, 653
coupling in software, 1130–1132	CRUD (create, read, update, and delete)
coverage for backups, 863	actions for database systems, 285–287
covert channels, 401	cryptanalysis, 317
covert timing channels, 401	cryptographic hash chaining, 831
CPOs (chief privacy officers), 21	cryptology. See also encryption
CPTED. See Crime Prevention Through	asymmetric key, 335–342
Environmental Design (CPTED)	attacks against, 367–375
crackers for passwords, 722	chapter questions, 379–383
create, read, update, and delete (CRUD)	chapter review, 375–378
actions for database systems, 285–287	cryptosystems, 323–325
credential management	definitions and concepts, 321–323
accountability, 741–745	ECC, 342–343
just-in-time access, 738	hardware vs. software systems, 602
overview, 736	history, 317–321
password managers, 736-737	hybrid encryption methods, 346–350
password resets, 737–738	integrity, 351–358
password synchronization, 737	IP telephony, 692
profile updates, 740	Kerckhoffs' Principle, 324–325
registration and proofing of identity,	life cycle, 328
738–740	methods overview, 328
session management, 740–741	one-time pads, 325–328
unmanaged patching threat, 904	overview, 317
Crime Prevention Through Environmental	PKI, 359–367
Design (CPTED)	quantum, 344–346
landscaping, 908	symmetric key, 329–335
maintenance, 433	cryptoprocessors for bus encryption, 408
natural access control, 428-431	cryptosystems
natural surveillance, 431	components, 323–324
overview, 427–428	description, 321
territorial reinforcement, 431–432	strength, 325

cryptovariables, 322	confidentiality, 5
CSMA (carrier sense multiple access),	education and training, 40–44
490–491	guidelines, 32
CSMA/CA (carrier sense multiple access with	implementation, 32–33
collision avoidance), 491	integrity, 5–6
CSMA/CD (carrier sense multiple access with	miscellaneous terms, 8–10
collision detection), 491	nonrepudiation, 6–7
CSOs (chief security officers), 22	organizational processes, 17–18
CSU/DSU (channel service unit/data	organizational roles and responsibilities
service unit), 543–545	18–25
culture	overview, 3–4
data prevention strategies, 269	personnel security, 33-40
DevOps, 1104	principles, 10–12
employee matches, 35	procedures, 32
internal audits, 841	professional ethics, 44–46
risk analysis teams, 76, 78	security overview, 25–27
security awareness, 867	security policies, 27–29
current in electrical power, 670	standards, 29–31
custodians, data, 244	cyberthreat hunting, 943
customary law system, 128	ey sertiment muniming, y 15
customers	D
confidentiality for, 174–175	D AMDS (Digital AMDS) 594
incident notifications to, 1004	D-AMPS (Digital AMPS), 584
CWE (Common Weakness Enumeration)	D channels in ISDN, 686
initiative, 1088	DAC (discretionary access control)
Cyber Kill Chain framework, 387–389,	challenges, 768
994–995	characteristics, 776
cyber-physical systems, 306	overview, 766–767
cybercrimes and data breaches	DACs (dual-attached concentrators)
common schemes, 137	in FDDI, 498
complexities, 132–134	damage assessment in disaster recovery
evolution of attacks, 134–138	plans, 1058
international issues, 138–139	DASs (data acquisition servers)
overview, 130–132	in SCADA systems, 294
cybercriminals, 60	DASs (dual-attachment stations)
cybersecurity analysts	in FDDI, 498
incident response teams, 1001	DAST (dynamic application security
	testing), 1139
tasks and responsibilities, 886	data
Cybersecurity Framework, 172, 182	acquisition, 230
cybersecurity governance	archival, 239–240
aligning security to business strategy, 13–16 authenticity, 6	backups, 861-862, 1034-1041
	classification, 215–216
availability, 6	collection, 231–232
balanced security, 7–8	destruction, 240–244
baselines, 31–32	roles, 244–245
chapter questions, 48–52	sharing, 238–239
chapter review, 46–48	storage, 232–233
concepts and terms, 4–10	use, 237–238

data acquisition servers (DASs) in SCADA	data leaks, 267
systems, 294	data life cycle
data analysts, 24	data acquisition, 230
data at rest	data archival, 239–240
description, 59	data collection, 231-232
overview, 254–255	data destruction, 240–244
data breaches	data loss prevention, 269
Codecov, 1141	data retention, 233-236
European Union Laws, 142-144	data roles, 244-245
GDPR, 144	data sharing, 238–239
import/export controls, 145–146	data storage, 232–233
overview, 139–141	data use, 237–238
PII, 140–141	e-discovery, 236–237
privacy, 147	overview, 230
transborder data flow, 146–147	data link layer
U.S. laws, 141–142	functions and protocols, 484–485
data communications, 702	OSI model, 480–483
application layer, 474–475	protocols, 646
data link layer, 480–483	data localization laws, 146–147, 232
functions and protocols, 483-485	data loss prevention (DLP)
layers together, 485–487	approaches, 267
network layer, 480	awareness programs, 867
network reference models,	data flows, 268–269
470–471	endpoint, 273–274
network sockets, 703	hybrid, 274
overview, 469–470	inventories, 267–268
physical layer, 483	network, 272–273
presentation layer, 475–476	overview, 265–267
protocols, 471–474	protection strategies, 269–271
remote procedure calls, 703–704	SOAR, 1142
session layer, 477–478	Data-Over-Cable Service Interface
transport layer, 479–480	Specifications (DOCSIS), 687
data controllers in GDPR, 143	data owners, 22–23
data custodians, 23	data processing facilities, 443–446
data diodes, 293, 831	data processors in GDPR, 143
Data Encryption Standard	Data Protection Directive (DPD), 143
(DES), 321	data protection methods
data flows in data loss prevention,	cloud access security brokers, 275–276
268–269	data loss prevention, 265–274
data hiding in object-oriented	digital asset management, 261–263
programming, 1128	Digital Rights Management, 263–265
data historians, 293	overview, 258–261
data in motion/transit	Data Protection Officers (DPOs)
description, 59	in GDPR, 144
overview, 254–256	Data Quality Principle in OECD, 142
data in use	data retention
description, 59	overview, 233
overview, 254, 256–258	policies, 234–236

data security	deferred commitment in object-oriented
chapter questions, 277–279	programming, 1127
chapter review, 276–277	defined level in CMMI, 1108
controls, 253–258	degaussing media, 243, 261
overview, 253	degrees, 40–41
protection methods. See data protection	delay time for locks, 918, 920
methods	delayed loss risk, 63
supply chain risk management, 100	delaying mechanisms in site
data sovereignty laws, 232	planning, 424
data states in controls, 254–258	Deliver, Service and Support (DSS) domain
data structures in TCP, 509	in COBIT 2019, 189
data subjects in GDPR, 143	delivery stage in Cyber Kill Chain model,
database management systems (DBMSs),	388, 994
285–286	
	Delphi technique, 77
database systems, 285	deluge water sprinkler systems, 460
ACID properties, 286	DeMarco, Tom, 283
backups, 861	demilitarized zones (DMZs) for firewalls
directory services, 747	dual-homed, 959
securing, 286–288	functions, 945–946
dating evidence, 1010	screened subnet, 960
DBMSs (database management systems),	denial-of-service (DoS) attacks
285–286	STRIDE model, 388
DCs (domain controllers) in directory	wireless communications, 578
services, 747–748	Denis Trojan, 389
DCSs (distributed control systems), 290, 293	deny lists in IDS/IPS, 968–969
DDoS (distributed denial-of-service) attacks	Department of Defense Architecture
CDNs for, 674	Framework (DoDAF), 173, 195
DNS, 619–620	depositories, protecting, 222
PaaS for, 303	deprovisioning accounts, 800
DDR (dial-on-demand routing), 686	depth of field in CCTV systems, 915
decision stage in forensics investigations,	DES (Data Encryption Standard), 321
1016–1017	design
decommissioning assets, 229-230	assessments, 814–815
dedicated lines for WANs, 541-543, 552	network security, 597–599
defaults	SDLC, 1080, 1083–1087
network, 598	secure. See secure design principles
secure, 396–397, 422	site and facility security, 417-418
third-party connectivity, 706	software. See secure software; software
web services, 611	development
defects per KLOC, 395	Design function in SAMM, 1109
defense in depth	Design practice in Good Practice
controls for, 84	Guidelines, 106
design principle, 390–392	desktop virtualization, 699–701
HTTPS, 614	destroying data, 240–244
network security, 598	detection
physical security, 906	fire safety, 454–457
site and facility security, 419	Framework Core, 182
third-party connectivity, 706	incidents, 995–996

detective controls in risk responses, 85, 87	digital forensics
deterrent controls in risk responses, 85, 87	artifacts, 1020–1021
deterrents in physical security, 908	field kits, 1015
development platforms for software,	interviews, 1018–1019
1137–1138	investigation techniques, 1016-1018
development stage in SDLC,	overview, 1015–1016
1080, 1087–1089	reporting and documenting, 1021–1022
device locks, 922-923	surveillance, 1019–1020
devices	undercover investigations, 1020
access control, 802	Digital Millennium Copyright
industrial control systems, 291–293	Act (DMCA), 154
IP telephony, 688	Digital Rights Management (DRM), 263-265
management software, 226	Digital Signature Algorithm (DSA), 357–358
DevOps, 1103–1104	Digital Signature Standard (DSS), 352, 357
DevSecOps	digital signatures for message verification,
software development, 1104	356–358
software security, 1144–1145	digital subscriber lines (DSLs), 648, 683-685
DFS (Dynamic Frequency Selection), 574	digital transmission, 644–645
DGAs (domain generation algorithms) in	digital video recording (DVR) systems, 913
DNS, 617–618	digital zoom in CCTV systems, 915
DHCP (Dynamic Host Configuration	dignitary wrongs category in civil law, 128
Protocol)	diode lasers in fiber-optic cable, 651
IP addresses, 501	dips in electric power, 451
overview, 517–519	direct-attached storage for backups, 1038
DHCPACK packets, 518-519	direct sequence spread spectrum (DSSS),
DHCPDISCOVER packets, 518–519	562–563
DHCPOFFER packets, 518–519	directors of security operations in incident
DHCPREQUEST packets, 518–519	response teams, 1001
diagonal filters in QKD, 344	directory permissions, testing, 821
diagrams, network, 668-670	directory roles in identity management,
dial-on-demand routing (DDR), 686	748–750
dial-up connections, 684	directory services, 747–748
dialog management, 477	disassembly tools in forensics field kits, 1015
Diameter protocol, 793–795	disaster recovery (DR)
dictionary attacks on passwords, 721	availability issues, 1049-1053
differential backups, 1035-1036	description, 101, 1029-1030
differential cryptanalysis attacks,	incident response, 992
369–370	overview, 867–869
differential power analysis for smart	process overview, 1053–1055
cards, 735	disaster recovery plans (DRPs)
differentiated service in QoS, 551	assessment, 1058
Diffie, Whitfield, 337–340	communications, 1056–1057
Diffie-Hellman algorithm, 337–340	contents, 1055
diffusion in symmetric key cryptography,	description, 101
331–332	lessons learned, 1061
digital acquisition of evidence, 1012	personnel, 1055–1056
Digital AMPS (D-AMPS), 584	responses, 1055
digital certificates in PKI, 359–360	restoration, 1058–1060

disaster recovery plans (DRPs) (cont.)	DMZs (demilitarized zones) for firewalls
storing, 1042	dual-homed, 959
testing, 1061–1065	functions, 945–946
training and awareness, 1060-1061	screened subnet, 960
disasters	DNP3 (Distributed Network Protocol 3),
business continuity, 1065–1071	626–627
business process recovery, 1033-1034	DNS. See Domain Name Service (DNS)
chapter questions, 1073–1076	DNs (distinguished names)
chapter review, 1071-1073	directory services, 747–748
data backups, 1034–1041	LDAP, 749
description, 1043	DNS over HTTPS (DoH), 621
documentation, 1041–1042	DNSSEC (DNS security)
human resources, 1042-1043	overview, 620–621
overview, 1029	threats, 529–531
reciprocal agreements, 1047-1048	Do phase in Plan-Do-Check-Act loop, 875
recovery site strategies, 1043–1047	DOCSIS (Data-Over-Cable Service Interface
recovery strategies overview, 1029–1033	Specifications), 687
redundant sites, 1048–1049	documentation
disc tumbler locks, 919	audits, 839–840
discovery step in penetration testing, 824	backups, 863
discrepancies in identity, 798–799	change management, 262, 893
discretionary access control (DAC)	digital forensics, 1021–1022
challenges, 768	disaster recovery, 1041–1042
characteristics, 776	forensics field kits, 1015
overview, 766–767	incident response, 992
disposal of digital asset management, 262	software vulnerability scans, 901
disruption prevention in site planning, 424	DoDAF (Department of Defense Architecture
distance-vector routing protocols, 535	Framework), 173, 195
distinguished names (DNs)	dogs, 929
directory services, 747–748	DoH (DNS over HTTPS), 621
LDAP, 749	Domain-based Message Authentication,
distributed control systems (DCSs), 290, 293	Reporting and Conformance (DMARC)
distributed denial-of-service (DDoS) attacks	system, 625
CDNs for, 674	domain controllers (DCs) in directory
DNS, 619–620	services, 747–748
PaaS for, 303	domain generation algorithms (DGAs)
Distributed Network Protocol 3 (DNP3),	in DNS, 617–618
626–627	Domain Name Service (DNS)
distributed systems, 307-309	attack prevention, 617–620
distribution facilities, 446-447	DNS over HTTPS, 621
divestitures, 17-18	DNSSEC, 620–621
DKIM (DomainKeys Identified Mail), 625	domains, 526-527
DLP. See data loss prevention (DLP)	filters, 621
DMARC (Domain-based Message	MITRE ATT&CK framework, 389
Authentication, Reporting and	overview, 524–526, 616
Conformance) system, 625	resolution components, 527–528
DMCA (Digital Millennium	splitting, 530
Copyright Act), 154	threats, 529–531

DomainKeys Identified Mail (DKIM), 625	due care issues
domains	disaster recovery plans, 1060
collision and broadcast, 492-494	liability, 158–159
DNS, 526–527	due diligence, 158–159
doors	dumpster diving, 260–261
considerations, 437	Dunn, Andy, 885
data processing facilities, 443	durability in ACID properties, 286
lock delay feature, 920	duress codes, 931–932
types, 440–441	Dutch Data Protection Authority, 397
DoS (denial-of-service) attacks	DVR (digital video recording)
STRIDE model, 388	systems, 913
wireless communications, 578	Dyn attack, 307
double-blind penetration tests, 826	dynamic analysis
double tagging attacks on VLANs, 632	antimalware software, 970
downstream liability, 39, 161	application security, 1139
downstream suppliers in risk management, 98	dynamic application security
downtime in high availability, 1050	testing (DAST), 1139
DPD (Data Protection Directive), 143	Dynamic Frequency Selection (DFS), 574
DPOs (Data Protection Officers)	Dynamic Host Configuration
in GDPR, 144	Protocol (DHCP)
DR. See disaster recovery (DR)	IP addresses, 501
draft IEEE 802.11i, 576	overview, 517–519
DRI International Institute, Professional	dynamic mapping in NAT, 532
Practices for Business Continuity	dynamic passwords, 729–732
Management, 106	dynamic ports, 507
drive-by downloads, 865	dynamic routing protocols, 534–535
drives, self-encrypting, 407	dynamic separation of duty (DSD)
DRM (Digital Rights Management), 263–265	relations, 773
dropped ceilings, 442	Dyre Trojan, 604
	Dyle Hojan, 004
DRPs. See disaster recovery plans (DRPs)	E
dry pipe water sprinkler systems, 460	Ľ
DSA (Digital Signature Algorithm), 357–358	E-carriers for WANs, 542
DSD (dynamic separation of duty)	e-discovery, 236–237
relations, 773	e-mail
DSLAMs (DSL access multiplexers), 683	authorization, 624
DSLs (digital subscriber lines), 648, 683–685	DKIM, 625
DSS (Deliver, Service and Support) domain in	DMARC, 625
COBIT 2019, 189	gateways, 663
DSS (Digital Signature Standard), 352, 357	IMAP, 623–624
DSSS (direct sequence spread spectrum),	
562–563	MIME, 625–626
dual-attached concentrators (DACs)	overview, 621–622
in FDDI, 498	phishing, 864
	POP, 623
dual-attachment stations (DASs)	SPF, 624
in FDDI, 498	threats, 623
dual control, 34	E2EE (end-to-end encryption) vs. link
dual-homed firewalls, 959, 963	encryption, 600–602
dual-use goods, 145	EAC (electronic access control) tokens, 925

EAP (Extensible Authentication Protocol)	802.15.4 standard, 570-571
VPNs, 699	802.16 standard, 569
WPA Enterprise, 577	EIGRP (Enhanced Interior Gateway
EAP and Transport Layer Security (EAP-	Routing Protocol), 536
TLS), 580–581	EKs (endorsement keys) in Trusted
EAP-TLS (Extensible Authentication	Platform Modules, 405
Protocol-Transport Layer Security)	Elastic Stack product, 979
authentication framework, 501	electric power
EAP-Tunneled Transport Layer Security	backup, 448–450
(EAP-TTLS), 580	considerations, 438
ECC (elliptic curve cryptography),	fallback plans, 448
328, 342–343	issues, 450–452
Economic Espionage Act, 141	overview, 670–672
economic wrongs category in civil law, 128	protecting, 452–453
edge computing systems, 308–309	electrical wires in transmission media, 643
EDI (electronic data interchange), 538	electromagnetic analysis for smart cards, 735
EDLP (endpoint DLP), 273–274	electromagnetic interference (EMI)
EDM (Evaluate, Direct and Monitor) domain	coaxial cable, 649
in COBIT 2019, 189	electric power, 450
EDNS(0) technique in DNS, 620	electromechanical IDSs, 926
EDR. See endpoint detection	electronic access control (EAC) tokens, 925
and response (EDR)	electronic data interchange (EDI), 538
EDRM (Electronic Discovery	Electronic Discovery Reference Model
Reference Model), 237	(EDRM), 237
EDU domain in DNS, 527	electronic monitoring of passwords, 721
education. See training	electronic vaulting for backups, 1038–1039
EF (exposure factor), 74	electronically stored information (ESI),
effectiveness monitoring for risk, 91–92	236–237
egress	elevation of privilege category in STRIDE
filtering, 948	model, 388
monitoring, 981	elliptic curve cryptography (ECC), 328,
80/20 Pareto principle, 179	342–343
802.1AE standard, 500-501	embedded systems, 306
802.1AR standard, 501	Embedding Business Continuity practice in
802.1x standard, 579-581	Good Practice Guidelines, 105
802.11 standard, 565-566, 575-576	emergency category in PACE plans, 1057
802.11a standard, 566-567	emergency changes, 892
802.11ac standard, 567	emergency management, 931
802.11ax standard, 567-568	emergency response groups, 1057
802.11b standard, 566	emergency response procedures, 868–869
802.11e standard, 573	EMI (electromagnetic interference)
802.11f standard, 574	coaxial cable, 649
802.11g standard, 567	electric power, 450
802.11h standard, 574	Emotet Trojan, 604
802.11i standard, 576–578	employees. See personnel safety and security
802.11j standard, 574	emtocells in Li-Fi standard, 568
802.11n standard, 567	emulating services in honeypots, 974
802.11w standard, 578	emulation buffers in antimalware, 970

Encapsulating Security Payload (ESP), 608	enrollment in biometric authentication, 725
encapsulation	enterprise architecture frameworks
multilayer protocols, 628	military-oriented, 195–196
object-oriented programming,	models, 172–173
1127–1128, 1130	need for, 191-192
OSI, 472–473	overview, 189–191
TCP, 509	The Open Group Architecture Framework,
encryption. See also cryptology	194–195
bus, 407–408	Zachman Framework, 192-194
code repositories, 1144	enterprise security architecture
data at rest, 255	description, 13
data in motion, 255–256	vs. ISMS, 26
homomorphic, 258	enterprise security program in business
hybrid methods, 346–350	continuity management, 106-108
Internet of Things, 307	entry points in physical security, 439-441
Kerberos, 785–789	enumeration step in penetration testing, 824
link vs. end-to-end encryption,	environmental issues
600–602	business continuity planning, 1071
meeting applications, 694	CPTED, 427–433
mobile devices, 243	digital asset management, 262
network sockets, 703	disaster recovery, 1059
overview, 256–258	site and facilities, 461
passwords, 722	Environmental Protection Agency (EPA), 434
end-of-life (EOL) of assets, 229	EOL (end-of-life) of assets, 229
end-of-support (EOS) of assets, 229	EOS (end-of-support) of assets, 229
end-to-end encryption (E2EE) vs. link	EPA (Enhanced Performance
encryption, 600–602	Architecture), 627
end-user environment in business continuity	EPA (Environmental Protection Agency), 434
planning, 1071	ephemeral keys in TLS, 604
End User License Agreement	ephemeral ports, 507
(EULA), 153	equipment malfunction in risk
endorsement keys (EKs) in Trusted Platform	management, 54
Modules, 405	equipment warranty, 672
endpoint detection and response (EDR)	erasing media, 259
breach attack simulations, 828	escrow, software, 1070, 1143
defense in depth, 391	ESI (electronically stored information),
effectiveness monitoring, 91–92	236–237
HIDSs, 968	ESMTP (Extended SMTP), 622
security operations centers, 940	ESP (Encapsulating Security
endpoint DLP (EDLP), 273–274	Payload), 608
endpoint security, 673–674	ESTABLISHED state in TCP
Enhanced Interior Gateway Routing	connections, 951
Protocol (EIGRP), 536	Ethernet
Enhanced Performance	data link layer, 481–482
Architecture (EPA), 627	layer 2 protocol, 494–495
Enigma machine, 320	local area networks, 499
ENISA (European Union Agency for	Metro Ethernet, 539-540
Cybersecurity), 106	Token Ring, 495–496

ethics	Extended SMTP (ESMTP), 622
professional, 44–46	Extended TACACS (XTACACS), 790–791
vulnerability disclosures, 872	extended teams in incident response plans,
EULA (End User License Agreement), 153	1000-1001
European Union Agency for Cybersecurity (ENISA), 106	Extensible Access Control Markup Language (XACML), 781
European Union Laws, 142–144	Extensible Authentication Protocol (EAP)
Evaluate, Direct and Monitor (EDM) domain	VPNs, 699
in COBIT 2019, 189	WPA Enterprise, 577
evaluation	Extensible Authentication Protocol-Transport
business impact analysis, 110-112	Layer Security (EAP-TLS) authentication
change management procedure, 891	framework, 501
framework steps, 201	Extensible Markup Language (XML),
program effectiveness, 43–44	615, 777
Everything as a Service (XaaS), 304–305	exterior lighting, 911–912
evidence	exterior routing protocols, 536–537
acquiring, 1012	external audits, 842–843
admissibility, 1013–1014	external labeling in digital asset
collecting, 1008–1012	management, 263
identification guidelines, 1009–1010	external parties issues in data loss
incident investigations, 1006–1007	prevention, 267
order of volatility, 1016	external perimeter security
preserving, 1013	bollards, 910–911
storage, 447–448	fencing, 908–910
evolution of attacks, 134–138	lighting, 911–912
evolutionary prototypes in software	overview, 906–908
development, 1096	surveillance devices, 913
examination stage in forensics investigations,	visual recording devices, 913-916
1016–1017	extranets, 537–538
exception handling, 871	Extreme Programming (XP), 1102
executive succession planning, 1043	
executive summaries in reports, 872–875	F
executives	Facebook breach, 20
incident notifications for, 1004	facial scans, 728
risk reporting for, 94–95	Facilitated Risk Analysis Process (FRAP), 68
roles, 19–22	facilities. See site and facility security
exercises for disaster recovery plans,	facility safety officers, 434
1061–1062	Factor Analysis of Information Risk (FAIR)
exigent circumstances, 1011	framework, 172, 179
exploitation	factors in ISO/IEC 27004, defined, 852
Cyber Kill Chain model, 388, 994	fail-safe devices, 931
penetration testing, 824	fail safe systems for locks, 921
exploratory methodology in software	failed logon attempts, 721–723
development, 1104	failing securely
exposure, defined, 9	network security, 598
exposure factor (EF), 74	secure design, 396–397
extended detection and response (XDR)	site and facility security, 422
platforms, 968	third-party connectivity, 706
	web services, 612

failover capability in quality of service, 1051	fencing, 908–910
Failure Modes and Effect Analysis (FMEA), 69–71	FHSS (frequency hopping spread spectrum), 561–563
FAIR (Factor Analysis of Information Risk)	Fiber Distributed Data Interface (FDDI)
framework, 172, 179	technology, 496–499
fairness issue in forensics investigation	fiber-optic cable, 650–651
interviews, 1019	Fibre Channel over Ethernet (FCoE) protocol
false acceptance rate (FAR) in biometric	628–629
authentication, 724–725	field kits for digital forensics, 1015
false negatives in anomaly-based IDS/IPS, 967	field of view in CCTV systems,
false positives in anomaly-based IDS/IPS, 967	913, 915
false rejection rate (FRR) in biometric authentication, 724–725	fifth-generation (5G) mobile wireless, 586–587
FAR (false acceptance rate) in biometric	fifth-generation programming languages,
authentication, 724–725	1119–1120
FAST (Federation Against Software Theft), 154	file descriptor attacks, 821
fault generation attacks on smart cards, 734	file permissions, 821
fault injection attacks in cryptography, 372	File Transfer Protocol (FTP)
fault tolerance in availability, 1051	application-level proxies, 954
fault tree analysis in risk assessment, 71–72	sessions, 951
FCoE (Fibre Channel over Ethernet) protocol,	filters
628–629	DNS, 621
FCS (frame check sequence) numbers in	firewalls. See firewalls
WANs, 546	QKD, 344–345
FDDI (Fiber Distributed Data Interface)	FIM (federated identity management)
technology, 496–499	systems
FDDI rings in MANs, 538	overview, 752–754
FDE (full-disk encryption), 407	with third-party service,
FDM (frequency-division multiplexing), 544	754–756
FDMA (frequency division multiple	FIN-WAIT-1 state in TCP connections, 951
access), 584	FIN-WAIT-2 state in TCP connections, 951
Federal Copyright Act, 149–150	findings in reports, 873
Federal Emergency Management Agency	fines for executive management, 20
(FEMA), 1054	fingerprint detection in antimalware
Federal Information Processing Standard	software, 969
(FIPS) 140-2, 406–407	fingerprints, 726
Federal Risk and Authorization Management	FIPS (Federal Information Processing
Program (FedRAMP), 156, 1146	Standard) 140-2, 406-407
Federal Rules of Evidence (FRE), 1014	fire codes for door placement, 440
federated identity management (FIM) systems	fire detection considerations, 438
overview, 752–754	fire extinguishers, 455
with third-party service, 754-756	fire prevention, 454
Federation Against Software Theft (FAST), 154	fire rating for cabling, 653
FedRAMP (Federal Risk and Authorization	fire resistance ratings, 456
Management Program), 156, 1146	fire-resistant material, 439
Feistel, Horst, 332	fire safety
FEMA (Federal Emergency Management	detection, 454–457
Agency), 1054	overview, 454

fire sensors, 445	Foundational controls, 187
fire suppression	Fourth Amendment issues, 1011
considerations, 438	fourth-generation (4G) mobile wireless,
fire types, 458–459	586–587
heat-activated, 456–457	fourth-generation programming languages,
overview, 454, 457–459	1119–1120
smoke activated, 456	fractional T lines, 542
water sprinklers, 459-460	fragmentation in firewalls, 948, 965-966
firewalls	frame check sequence (FCS) numbers in
appliances, 958	WANs, 546
architecture, 959–965	frame relay for WANs, 547-548, 552
bastion hosts, 965	frames
comparisons, 958	description, 483
configuring, 965–966	packets, 509
demilitarized zones, 945–946	TCP, 509
dual-homed, 959	Framework Core, 182–183
next-generation, 957–958	Framework Profile in Cybersecurity
overview, 945–946	Framework, 182
packet-filtering, 946–949	frameworks
proxy, 952–957	chapter questions, 205-209
screened host, 959–960	chapter review, 203–205
screened subnet, 960–962	CIS controls, 185–187
stateful, 949–952	CMM, 197–199
virtual, 964	COBIT 2019, 187–189
first-generation (1G) mobile wireless,	description, 15
585–586	enterprise architecture, 189–196
first-generation programming languages, 1118	information security, 179–189
five nines availability, 1050	ITIL, 196–197
fixed focal length in CCTV systems, 914–915	overview, 171–173
fixed mounting cameras in CCTV	process steps, 199–203
systems, 916	risk, 172–179
floods, SYN, 508	security controls, 183–189
flooring considerations, 438	security programs, 180–183
fluorescent lighting interference, 450	Six Sigma, 197
FMEA (Failure Modes and Effect Analysis),	framing risk, 57
69–71	Franklin, Benjamin, 317
foams for fire suppression, 459	FRAP (Facilitated Risk Analysis Process), 68
focal length in CCTV systems, 914–915	fraud
foot-candles	IP telephony, 692
CCTV systems, 916	PBX systems, 666
lighting, 911	FRE (Federal Rules of Evidence), 1014
footprints of satellites, 589	free space transmission media, 644
forensics. See digital forensics	freeware, 153
Forrester report, 1134	frequency analysis attacks in
forward secrecy in TLS, 604	cryptography, 370
forwarding planes in SDNs, 633-634	frequency division multiple
forwarding proxies, 663–664	access (FDMA), 584
forwarding tables for bridges, 656–657	frequency-division multiplexing (FDM), 544

frequency hopping spread spectrum (FHSS),	generators, 449–450
561–563	Generic Routing Encapsulation (GRE), 606
frequency in wireless signals, 559	Geneva, Switzerland, QKD in, 346
FRR (false rejection rate) in biometric	geosynchronous satellites, 588-590
authentication, 724–725	GET methods in HTTP, 614
FTP (File Transfer Protocol)	Get Out of Jail Free Cards, 824
application-level proxies, 954	glare protection, 912
sessions, 951	glass in data processing facilities, 446
full backups, 1035-1036	Glenny, Misha, 939
full-disk encryption (FDE), 407	Global System for Mobile Communication
full-duplex	(GSM), 584
session layer, 478	GML (Generalized Markup Language), 776
TCP, 508	goals
full-interruption tests in disaster recovery	audits, 839
plans, 1064	disaster recovery, 1053-1054
full knowledge in penetration testing, 825	GOC domain in DNS, 527
full RBAC, 773	Gold Masters, 225
full tunnels in VPNs, 697	Good Practice Guidelines (GPG),
functional analysis in BIA, 109	105–106
functional model in software development	Goodman, Marc, 597
design, 1084	Google trademark case, 150
functional policies, 28	governance committees, 18
functional requirements in software	Governance function in SAMM, 1109
development, 1083	governance objectives in COBIT 2019, 189
fuzzing in application security testing,	governance, risk, and compliance (GRC)
1139–1140	programs, 155
	GPG (Good Practice Guidelines), 105–106
G	grades of locks, 923
G.fast standard, 684	Graham-Denning model, 402–403
gamification, 42–43	Gramm-Leach-Bliley Act, 141, 147
garbage collectors in programming	gray box testing, 826
languages, 1122	GRC (governance, risk, and compliance)
gas lines, 438	programs, 155
gatekeepers in H.323, 689	GRE (Generic Routing Encapsulation), 606
gates, 910	Gretzky, Wayne, 997
-	groups for separation of duties, 394
gateways characteristics, 665	GSM (Global System for Mobile
H.323, 689	Communication), 584
gauge for fencing, 909	guaranteed service in QoS, 551
General Data Protection Regulation (GDPR)	Guaranteed Time Slot (GTS) reservations in
	WPANs, 570
compliance monitoring, 93 entities, 143–144	guards, 928–929
FIM systems, 754	guests in virtualized systems, 296
legal systems, 126	guidelines
privacy issues, 147, 158, 397	coding, 1136
general hierarchies in RBAC, 772	overview, 32
General Personal Data Protection Law, 144	Guidelines on the Protection of Privacy and
Generalized Markun Language (GML) 776	Transborder Flows of Personal Data, 142–144

Health Information Technology for Economic
and Clinical Health (HI-TECH) Act, 141
Health Insurance Portability and
Accountability Act (HIPAA), 147
hearsay evidence, 1014
Heartbleed security bug, 257, 370
heat-activated fire suppression, 456–457
heating, ventilation, and air
conditioning (HVAC)
considerations, 438
data processing facilities, 446
fire suppression, 459
overview, 453–454
heavy timber construction material, 439
heavyweight methods in software
development, 1101
Hellman, Martin, 337–340
Hello messages in TLS, 603
help desk tasks and responsibilities, 886
heuristic detection in antimalware software,
969, 971
hexadecimal values, 1121
HI-TECH (Health Information Technology
for Economic and Clinical Health) Act, 141
hiding data in steganography, 264–265
HIDSs (host-based intrusion detection
systems), 967
hierarchical RBAC, 772–773
hierarchical storage management (HSM) for
backups, 898–899
High Assurance Internet Protocol Encryptor
(HAIPE), 609
high availability (HA), 1050–1053
high coupling in software, 1131–1132
High-level Data Link Control (HDLC)
frames, 550
high-level languages, 1118–1121
high-performance computing (HPC) systems,
288–289
high privacy risk in software
development, 1082
High-Speed Serial Interface (HSSI), 552
Hinckley, Gordon B., 171
hints for passwords, 720
HIPAA (Health Insurance Portability and
Accountability Act), 147
hiring candidates, 35–36
history of changes, documenting, 262

HMAC (hash MAC), 355, 358	human resource managers on incident
HMI (human-machine interface), 291-294	response teams, 1001
holistic risk management, 54-55	human resources (HR)
hollow-core doors, 440	disasters, 1042-1043
home IP address in mobile IP, 793	proofing of identity, 739
homomorphic encryption, 258	human sensors for incident detection, 995
honeyclients, 975	human vulnerabilities, 902-903
honeynets, 975	humidity
honeypots, 974–976	data processing facilities, 446
hop devices, 601	HVAC systems, 453
hop sequences in FHSS, 561–563	hygrometers, 461
Hopper, Grace, 851	HVAC. See heating, ventilation, and air
hopping attacks in VLANs, 632	conditioning (HVAC)
horizontal enactment for privacy, 147	hybrid clouds, 305
host addresses in IP addresses, 510	hybrid controls in Risk Management
host-based intrusion detection systems	Framework, 175
(HIDSs), 967	hybrid data loss prevention, 274
hostage alarm feature for combination	hybrid encryption methods, 346
locks, 920	asymmetric and symmetric together,
HOSTS file in DNS, 528, 530	346–349
hosts in virtualized systems, 296	session keys, 349–350
hot sites	hybrid FIM systems, 756
disaster recovery, 1044-1046	hybrid flow in OIDC, 784
vs. redundant sites, 1049	hybrid RBAC, 773
hot washes	hybrid smart cards, 734
event debriefing, 869	hybrid teams for incident response, 991
lessons learned, 1061	hygrometers, 461
hotel key cards, 921	Hypertext Markup Language (HTML),
HPC (high-performance computing)	776–777
systems, 288–289	hypertext transfer protocol (HTTP), 613-614
HR (human resources)	Hypertext Transfer Protocol
disasters, 1042–1043	Secure (HTTPS), 614
proofing of identity, 739	hypervisors in virtual machines, 296–298
HRU (Harrison-Ruzzo-Ullman) model,	т
402–404	I
HSM (hierarchical storage management)	IaaS (Infrastructure as a Service),
for backups, 898–899	228, 302, 304
HSMs (hardware security modules), 406–407	IAM (identity and access management), 745
HSSI (High-Speed Serial Interface), 552	ICMP. See Internet Control Message Protocol
HTML (Hypertext Markup Language),	(ICMP)
776–777	ICSs. See industrial control systems (ICSs)
HTTP (hypertext transfer protocol),	ICVs (Integrity Check Values), 501, 575–576
613–614	IDaaS (Identity as a Service), 754
HTTPS (Hypertext Transfer Protocol	IDC (International Data Corporation), 154
Secure), 614	identification, 214
hubs, 655–656	authentication. See authentication
human interaction in risk management, 54	credential management, 736–745
human-machine interface (HMI), 291–294	crime scenes, 1009–1010

identification (cont.)	IDEs (integrated development environments)
description, 716	in software development, 1137
directory services, 747–750	iDevIDs (initial device identities), 501
FIM systems, 752–754	IDFs (intermediate distribution facilities),
forensics investigations, 1016–1017	446–447
identity management, 745–754	IdPs (identity providers)
life cycle of assets, 222–223	OpenID Connect, 783
proofing, 738–740	SAML, 780
single sign-on, 750–752	IDSs. See intrusion detection systems (IDSs)
identify function in Framework Core, 182	IEC (International Electrotechnical
identities and access fundamentals	Commission) 27000 Series, 180–182
access control and markup languages, 776–781	IETF (Internet Engineering Task Force) RFC 4987, SYN flood attacks, 508
authorization. See authorization	if this, then that (IFTTT) programming
chapter questions, 759–763	rules, 774
chapter review, 756–758	IGMP (Internet Group Management
overview, 715–717	Protocol), 500
remote access control, 789–795	IGP (Interior Gateway Protocol), 533
identity and access management (IAM), 745	IGRP (Interior Gateway Routing
attribute-based access control, 774	Protocol), 536
authorization. See authorization	IGs (implementation groups) in CIS
chapter questions, 805–809	controls, 187
chapter review, 804-805	IIoT (Industrial Internet of Things) devices, 570
discretionary access control, 766-768	IKE (Internet Key Exchange), 608
life cycle management, 795–800	illogical processing, 62
mandatory access control, 768-771	illumination in CCTV systems, 913, 916
overview, 765	images
physical and logical access, 801-803	evidence, 1012-1013
provisioning life cycle, 795–800	system, 896
risk-based access control, 775–776	IMAP (Internet Message Access Protocol),
role-based access control, 771–773	623–624
rule-based access control, 774	impact in incidents classification, 1002
Identity as a Service (IDaaS), 754	implementation
identity-based access control, 767	change management, 892
identity management (IdM)	cybersecurity governance, 32-33
directory roles, 748–750	data loss prevention, 270-271
directory services, 747–748	disaster recovery goals, 1054
federated identity management systems,	frameworks, 200
752–754	Good Practice Guidelines, 106
federated identity with third-party services,	Risk Management Framework, 175–176
754–756	SAMM, 1109
overview, 745–747	software, 1133
single sign-on, 750–752	implementation attacks in cryptography,
identity providers (IdPs)	370–372
OpenID Connect, 783	implementation groups (IGs) in CIS
SÂML, 780	controls, 187
identity repositories, 739	Implementation Tiers in Cybersecurity
identity stores, 748	Framework, 182

implicit denies in firewalls, 965	reporting, 997–998
implicit flow in OIDC, 784	response plans, 1000-1006
import/export controls for data breaches,	response teams, 991
145–146	responses, 996
IMPs (incident management policies),	runbooks, 1006
990, 1000	supply chain risk management, 100
IMSI (International Mobile Subscriber	incombustible material, 439
Identity) catchers, 588	income approach for executive summaries, 874
in-rush current for electric power, 451	incomplete level in CMMI, 1107
inactivity, session termination from, 741	incremental backups, 1036–1037
incident assessment in site planning, 424	Incremental software development,
incident investigations	1096–1097
chapter questions, 1024–1027	incremental testing for federated identity, 755
chapter review, 1022-1024	indexing for data retention, 236
digital forensics, 1015–1022	indicators in ISO/IEC 27004, 852
evidence collection and handling,	indicators of attack (IOAs), 999
1008–1015	indicators of compromise (IOCs)
law enforcement involvement, 1007	incident remediation, 999
motive, opportunity, and means,	threat data sources, 942
1007-1008	Individual Participation Principle
overview, 1006–1007	in OECD, 142
privacy issues, 1014	industrial control systems (ICSs)
incident management in business	devices, 291–293
continuity, 1066	distributed control systems, 293
incident management policies (IMPs),	overview, 289–290
990, 1000	SCADA systems, 294
incident responders, tasks and	security, 294–295
responsibilities, 886	Industrial Internet of Things (IIoT)
incident response plans (IRPs)	devices, 570
classifications, 1002–1003	industrial, scientific, and medical (ISM)
notifications, 1003–1004	bands, 565–566
operational tasks, 1004–1005	industry standards, compliance with, 156–158
overview, 1000	inference in database systems, 287
roles and responsibilities, 1000–1002	information disclosure category in STRIDE
runbooks, 1006	model, 388
incidents	information security
classification, 1002–1003	access control, 801
Cyber Kill Chain framework, 994–995	bus encryption, 407–408
detection, 995–996	classification, 215–219
investigations. See incident investigations	frameworks, 179–189
lessons learned, 999–1000	hardware security modules, 406–407
management overview, 989–994	identification, 215–219
mitigating, 996–997	overview, 214, 404
notifications, 1003–1004	secure processing, 408
operational tasks, 1004–1005	self-encrypting drives, 407
overview, 989	trusted execution environments, 408–410
recovery, 998	Trusted Platform Modules, 404–406
remediating, 999	vulnerabilities, 59

Information Security Continuous Monitoring	integrity
(ISCM), 981–982	Biba model, 399
information security management	CIA triad, 8
systems (ISMSs)	in cryptography, hashing functions,
commercial software certifications, 1146	351–354
description, 12	in cryptography, message verification,
vs. enterprise security architecture, 26	354–358
ISO/IEC 27000 series, 180	in cryptography, overview, 351
security operations centers, 939	cryptosystems, 323
Information Systems Audit and Control	overview, 5–6
Association (ISACA), 187	Integrity Check Values (ICVs), 501, 575–576
information systems availability in business	integrity verification procedures (IVPs) in
continuity planning, 1067–1070	Clark-Wilson model, 400
information systems risk management (ISRM)	Intel trade secrets theft, 149
policies, 56	intellectual property (IP)
information systems view (Tier 3) in risk	data breaches, 139
management, 55	internal protection, 152-153
Information Technology Infrastructure	requirements. See licensing and intellectual
Library (ITIL), 196–197	property requirements
informational model in software development	intelligence cycle in threat intelligence,
design, 1084	941–942
informative policies, 30	intentional category in civil law, 127
Infrastructure as a Service (IaaS),	interface testing, 837
228, 302, 304	interference
infrastructure WLANs, 565	coaxial cable, 649
ingress filtering, 948	electric power, 450–451
initial level in CMMI, 1107	twisted-pair cabling, 649–650
initial device identities (iDevIDs), 501	Interior Gateway Protocol (IGP), 533
initialization vectors (IVs)	Interior Gateway Routing
802.11 standard, 575–576	Protocol (IGRP), 536
symmetric key cryptography,	interior routing protocols, 535–536
334–335	intermediate distribution facilities (IDFs),
inputs, reviewing, 876–877	446–447
inside attacks in risk management, 54	Intermediate System to Intermediate System
installation stage in Cyber Kill Chain model,	(IS-IS), 536
388, 994	internal actors, 61–62
instantiation in object-oriented	internal audits, 840–842
programming, 1125	internal labeling in digital asset
INT domain in DNS, 527	management, 263
integrated development environments (IDEs)	internal partitions, 442
in software development, 1137	internal protection of intellectual property,
integrated product teams (IPTs), 1105	152–153
Integrated Services Digital Network (ISDN),	internal security controls, 924
685–686	internal sources of threat data, 942–943
integration issues in federated identity,	International Data Corporation (IDC), 154
754–755	International Electrotechnical Commission
integration testing in software	(IEC) 27000 Series, 180–182
development, 1091	international issues in cybercrimes, 138–139

International Mobile Subscriber Identity	Internet Protocol telephony, 687–688
(IMSI) catchers, 588	H.323, 689
International Organization for	issues, 692
Standardization (ISO)	SIP, 689–691
ISO 7498-1, 472	Internet Security Association and Key
ISO 22301:2019, 105–106	Management Protocol (ISAKMP), 608
ISO 28000:2007, 224	Internet Small Computer Systems
ISO/IEC 14443, 735	Interface (iSCSI), 629
ISO/IEC 27000 series, 172, 180–182	internetworks, 657
ISO/IEC 27001, 1146	interoperability
ISO/IEC 27004, 852	data loss prevention, 270
ISO/IEC 27005, 177–179	ISO/IEC 14443, 735
ISO/IEC 27031:2011, 105–106	interpreters, 1119–1122
ISO/IEC 27034, 1146	interviews in forensics investigations,
ISO/IEC 27037, 1009	1018–1019
network reference model, 470	Intra-Site Automatic Tunnel Addressing
Internet Control Message Protocol (ICMP)	Protocol (ISATAP), 514
attacks using, 520–522, 537	intranets, 537–538
message types, 520–521	intraorganizational configuration
overview, 520	in SIP, 691
stateful firewalls, 952	intrasite tunneling mechanisms, 514
Internet Engineering Task Force (IETF) RFC	intrusion detection systems (IDSs)
4987, SYN flood attacks, 508	anomaly-based, 967–968
Internet Group Management Protocol	audits, 743
(IGMP), 500	characteristics, 928
Internet growth, increase of attacks from, 134	_
	dogs, 929
Internet Key Exchange (IKE), 608	overview, 925–928, 967
Internet Message Access Protocol (IMAP),	patrol forces and guards, 928–929
623–624	physical security, 908
Internet of Things (IoT)	rule-based, 967
devices, 570	whitelisting and blacklisting,
issues, 306–307	968–969
Internet Protocol (IP)	intrusion prevention systems (IPSs)
addresses. See IP addresses	anomaly-based, 967–968
L2TP, 606–607	overview, 967
Internet protocol networking	rule-based, 967
ARP, 515–517	whitelisting and blacklisting,
DHCP, 517–519	968–969
DNS, 524–531	inventories
ICMP, 520–522	data loss prevention, 267–268
IP addresses, 510-515	digital asset management, 262
NAT, 531–533	hardware, 224
overview, 502–503	software, 224–227
routing protocols, 533-537	investigations
SNMP, 522–524	incidents. See incident investigations
TCP, 503–509	requirements, 161–162
Internet Protocol Security (IPSec)	INVITE messages in SIP, 689–690
transport adjacency, 609	invocation property in Biba model, 399
VPNs, 607–609	IOAs (indicators of attack), 999

IOCs (indicators of compromise)	ISDN (Integrated Services Digital Network),
incident remediation, 999	685–686
threat data sources, 942	island-hopping attacks, 133
IoT (Internet of Things)	ISM (industrial, scientific, and medical)
devices, 570	bands, 565-566
issues, 306–307	ISMSs. See information security management
IP addresses	systems (ISMSs)
DHCP, 501	ISO. See International Organization for
DNS, 524–531	Standardization (ISO)
multicasting, 500	isochronous networks, 687
NAT, 531–533	isolation in ACID properties, 286
overview, 510–512	ISRM (information systems risk management)
packet-filtering firewalls, 948	policies, 56
three-way-handshake process, 951	issue-specific policies, 28
IP convergence, 628	IT engineers, tasks and responsibilities, 886
IP (intellectual property)	IT Governance Institute (ITGI), 187
data breaches, 139	IT support specialists on incident response
internal protection, 152–153	teams, 1001
requirements. See licensing and intellectual	iterated tunneling in IPSec, 609
property requirements	ITGI (IT Governance Institute), 187
IP (Internet Protocol)	ITIL (Information Technology Infrastructure
addresses. See IP addresses	Library), 196–197
L2TP, 606–607	IVPs (integrity verification procedures) in
networking, 502–503	Clark-Wilson model, 400
IP version 4 (IPv4), 510	IVs (initialization vectors)
IP version 6 (IPv6), 510, 512–514	802.11 standard, 575–576
IPSec (Internet Protocol Security)	symmetric key cryptography,
transport adjacency, 609	334–335
VPNs, 607–609	т
IPTs (integrated product teams), 1105	J
IPv4 (IP version 4), 510	JAD (Joint Application Development),
IPv6 (IP version 6), 510, 512–514	1104–1105
iris lenses in CCTV systems, 915–916	Java programming language, 1121–1122
iris scans, 727	bytecode, 1122–1123
IRPs. See incident response plans (IRPs)	protection mechanisms, 1123-1124
IS-IS (Intermediate System to Intermediate	Java Virtual Machine (JVM), 1122–1123
System), 536	JavaScript Object Notation (JSON), 615
ISACA (Information Systems Audit and	JavaScript programming language, 1121
Control Association), 187	Jigsaw ransomware, 604
ISAKMP (Internet Security Association and	JIT (just-in-time) access, 738
Key Management Protocol), 608	jitter in IP telephony, 687–688
ISATAP (Intra-Site Automatic Tunnel	job rotation, 34, 889–890
Addressing Protocol), 514	Joint Application Development (JAD),
(ISC) ² Code of Ethics, 44–45	1104–1105
ISCM (Information Security Continuous	journaling, remote, 1039
Monitoring), 981–982	JSON (JavaScript Object Notation), 615
iSCSI (Internet Small Computer Systems	jumbograms in IPv6, 514
Interface), 629	jump boxes, 700

jurisdiction in incident response, 993	TLS, 604
just-in-time (JIT) access, 738	ZigBee, 572
JVM (Java Virtual Machine), 1122–1123	keyspaces for cryptology, 322
17	keystream generators in symmetric key
K	cryptography, 333
k-means clustering, 978	keystroke dynamics, 728
k-nearest neighbors (KNN), 977	kill chains in threat modeling, 386
Kanban development methodology,	kill switches in VPNs, 697
1102–1103	knowledge-based authentication (KBA)
KBA (knowledge-based authentication)	description, 718
description, 718	passwords, 720–723
passwords, 720–723	known-plaintext attacks in cryptography, 368
KDCs (Key Distribution Centers)	Koolhaas, Rem, 417
Kerberos, 785–788	KPIs (key performance indicators), 155,
PKI, 365	856–857
Kelling, George L., 433	KRIs (key risk indicators), 855-857
Kerberos protocol	
authentication process, 785–788	L
components, 785	L2F (Layer 2 Forwarding) protocol, 606
key management, 365	L2TP (Layer 2 Tunneling Protocol),
overview, 784–785	606–607
passwords, 789	labels
weaknesses, 788–789	digital asset management, 263
Kerckhoffs, Auguste, 324–325	evidence, 1010
Kerckhoffs' principle, 324–325	IPv6, 514
kernel flaws in cryptography, 819	MAC, 768–769
key distillation in quantum	laminated windows, 441
cryptography, 344	
	landscaping, 908
Key Distribution Centers (KDCs)	language in reports, 871
Kerberos, 785–788 PKI, 365	LANs. <i>See</i> local area networks (LANs) LAST-ACK state in TCP connections, 951
key escrow in PKI, 366	last full backups, 1035–1036
key exchange protocol in RSA, 340	latency in cabling, 654
key management in PKI, 364–367	law enforcement involvement in incident
key override feature for combination	investigations, 1007
locks, 920	laws and regulations
key performance indicators (KPIs),	data breaches, European Union, 142–144
155, 856–857	data breaches, U.S., 141–142
key risk indicators (KRIs), 855–857	legal systems, 126–130
keycard entry systems, 442	overview, 125–126
keys	security programs, 434
asymmetric key cryptography, 335	layer 2
cryptography, 322–323, 367–370	local area networks, 494–499
Diffie-Hellman algorithm, 337–338	security standards, 500–502
hybrid methods, 347–348	Layer 2 Forwarding (L2F) protocol, 606
RSA, 340–341	Layer 2 Tunneling Protocol (L2TP),
session, 349–350	606–607
symmetric key cryptography, 329	layer 3 and 4 switches, 659

layers	levels
encryption, 600–601	classification, 216–219
OSI reference model. See Open Systems	CMMI, 1107–1108
Interconnection (OSI) reference model	programming languages, 1120
LDAP (Lightweight Directory Access	LGPD (Lei Geral de Proteção de Dados), 144
Protocol), 747, 749	Li-Fi standard, 568
LEAP (Lightweight Extensible Authentication	liability
Protocol), 580	civil law, 129
leased lines for WANs, 541-543	compliance, 158–161
least privilege principle	outsourced security services, 974
configuration management, 799	libraries
description, 888	object-oriented programming, 1129–1130
endpoint security, 673	software, 1132–1133
network security, 598	licensing and intellectual property
overview, 394–395	requirements
privileged accounts, 889	copyrights, 149–150
site and facility security, 421	internal protection of intellectual property,
software tracking, 225	152–153
third parties, 705–706	overview, 147–148
web services, 611	patents, 151–152
least significant bits (LSBs) in	software, 225–226
steganography, 265	software piracy, 153–154
LEDs (light-emitting diodes) in fiber-optic	trade secrets, 148–149
cable, 651	trademarks, 150
legacy systems for federated identity, 755	life cycle
legal counsels in incident response	business continuity planning, 1065–1067
teams, 1001	cryptology, 328
legal departments, advice from, 157	data. See data life cycle
legal requirements	life cycle of assets
compliance, 156–158	decommissioning, 229–230
physical security programs, 434	inventories, 224–227
site planning, 427	overview, 222–223
legal systems	ownership, 223
civil law, 126, 129	provisioning, 227–228
common law, 126–130	retention, 228–230
customary law system, 128	life safety goals in site planning, 423
mixed law system, 128–129	light detectors in fiber-optic cable, 651
religious law system, 128	light-emitting diodes (LEDs) in fiber-optic
legality issues in evidence admissibility,	cable, 651
1013–1014	light frame construction material, 438
legally recognized obligations, 161	light sources for fiber-optic cable, 651
Lei Geral de Proteção de Dados (LGPD), 144	lighting
length of passwords, 720	CCTV systems, 916
lenses in CCTV systems, 915–916	EMI, 450
LEO (low Earth orbit) satellites, 588–590	photoelectric IDSs, 926–927
lessons learned	physical security, 911–912
disaster recovery plans, 1061	Lightweight Directory Access Protocol
incidents, 999–1000	(LDAP), 747, 749

Lightweight Extensible Authentication	evidence, 1014
Protocol (LEAP), 580	managing, 978–979
lightweight methods in software	protecting, 744–745
development, 1101	requirements factor, 978–979
limited RBAC, 772–773	reviews, 828–831
Linder, Doug, 1117	SIEM, 744, 979–980
	a a
line conditioners for electric power, 451	standards, 979
line noise	tampering, 831
cabling, 652	Long-Term Evolution (LTE), 587
electric power, 450	loose coupling in software, 1131
line-of-succession plans, 1043	loosely coupled microservices, 299
linear bus topology, 488	loss issues in risk management, 54, 63
link encryption vs. end-to-end encryption,	low coupling in software, 1131
600–602	low Earth orbit (LEO) satellites, 588-590
link keys in ZigBee, 572	low privacy risk in software development, 1083
link-state routing protocols, 535	LSASS (Local Security Authority Subsystem
LISTEN state in TCP connections, 951	Service), 372–374
LLC (Logical Link Control), 481–482	LSBs (least significant bits)
1 1	
loads, construction, 436	in steganography, 265
local area networks (LANs)	LTE (Long-Term Evolution), 587
Ethernet, 494–495	Lucifer project, 321
FDDI, 496–498	lux values in CCTV systems, 916
medium access control, 489–494	M
protocols summary, 498–499	M
security standards, 500-502	m of n control
	1 - /
security standards, 500-502	description, 34
security standards, 500–502 Token Ring, 495–496 topologies, 487–490	description, 34 PKI, 366–367
security standards, 500–502 Token Ring, 495–496 topologies, 487–490 transmission methods, 499–500	description, 34 PKI, 366–367 MAC (mandatory access control) model
security standards, 500–502 Token Ring, 495–496 topologies, 487–490 transmission methods, 499–500 Local Security Authority Subsystem Service	description, 34 PKI, 366–367 MAC (mandatory access control) model characteristics, 776
security standards, 500–502 Token Ring, 495–496 topologies, 487–490 transmission methods, 499–500 Local Security Authority Subsystem Service (LSASS), 372–374	description, 34 PKI, 366–367 MAC (mandatory access control) model characteristics, 776 overview, 768–771
security standards, 500–502 Token Ring, 495–496 topologies, 487–490 transmission methods, 499–500 Local Security Authority Subsystem Service (LSASS), 372–374 Locard, Edmond, 1020	description, 34 PKI, 366–367 MAC (mandatory access control) model characteristics, 776 overview, 768–771 MAC Security (MACSec) standard, 500–501
security standards, 500–502 Token Ring, 495–496 topologies, 487–490 transmission methods, 499–500 Local Security Authority Subsystem Service (LSASS), 372–374 Locard, Edmond, 1020 Locard's exchange principle, 1020–1021	description, 34 PKI, 366–367 MAC (mandatory access control) model characteristics, 776 overview, 768–771 MAC Security (MACSec) standard, 500–501 machine language, 1118, 1121
security standards, 500–502 Token Ring, 495–496 topologies, 487–490 transmission methods, 499–500 Local Security Authority Subsystem Service (LSASS), 372–374 Locard, Edmond, 1020 Locard's exchange principle, 1020–1021 lock bumping, 924	description, 34 PKI, 366–367 MAC (mandatory access control) model characteristics, 776 overview, 768–771 MAC Security (MACSec) standard, 500–501 machine language, 1118, 1121 machine learning (ML), 977
security standards, 500–502 Token Ring, 495–496 topologies, 487–490 transmission methods, 499–500 Local Security Authority Subsystem Service (LSASS), 372–374 Locard, Edmond, 1020 Locard's exchange principle, 1020–1021 lock bumping, 924 Lockheed Martin Cyber Kill Chain, 387–389	description, 34 PKI, 366–367 MAC (mandatory access control) model characteristics, 776 overview, 768–771 MAC Security (MACSec) standard, 500–501 machine language, 1118, 1121 machine learning (ML), 977 MACSec Security Entity (SecY), 501
security standards, 500–502 Token Ring, 495–496 topologies, 487–490 transmission methods, 499–500 Local Security Authority Subsystem Service (LSASS), 372–374 Locard, Edmond, 1020 Locard's exchange principle, 1020–1021 lock bumping, 924 Lockheed Martin Cyber Kill Chain, 387–389 locks	description, 34 PKI, 366–367 MAC (mandatory access control) model characteristics, 776 overview, 768–771 MAC Security (MACSec) standard, 500–501 machine language, 1118, 1121 machine learning (ML), 977 MACSec Security Entity (SecY), 501 Madrid Agreement, 150
security standards, 500–502 Token Ring, 495–496 topologies, 487–490 transmission methods, 499–500 Local Security Authority Subsystem Service (LSASS), 372–374 Locard, Edmond, 1020 Locard's exchange principle, 1020–1021 lock bumping, 924 Lockheed Martin Cyber Kill Chain, 387–389 locks administrative responsibilities, 922	description, 34 PKI, 366–367 MAC (mandatory access control) model characteristics, 776 overview, 768–771 MAC Security (MACSec) standard, 500–501 machine language, 1118, 1121 machine learning (ML), 977 MACSec Security Entity (SecY), 501
security standards, 500–502 Token Ring, 495–496 topologies, 487–490 transmission methods, 499–500 Local Security Authority Subsystem Service (LSASS), 372–374 Locard, Edmond, 1020 Locard's exchange principle, 1020–1021 lock bumping, 924 Lockheed Martin Cyber Kill Chain, 387–389 locks administrative responsibilities, 922 circumventing, 922–924	description, 34 PKI, 366–367 MAC (mandatory access control) model characteristics, 776 overview, 768–771 MAC Security (MACSec) standard, 500–501 machine language, 1118, 1121 machine learning (ML), 977 MACSec Security Entity (SecY), 501 Madrid Agreement, 150
security standards, 500–502 Token Ring, 495–496 topologies, 487–490 transmission methods, 499–500 Local Security Authority Subsystem Service (LSASS), 372–374 Locard, Edmond, 1020 Locard's exchange principle, 1020–1021 lock bumping, 924 Lockheed Martin Cyber Kill Chain, 387–389 locks administrative responsibilities, 922 circumventing, 922–924 grades, 923	description, 34 PKI, 366–367 MAC (mandatory access control) model characteristics, 776 overview, 768–771 MAC Security (MACSec) standard, 500–501 machine language, 1118, 1121 machine learning (ML), 977 MACSec Security Entity (SecY), 501 Madrid Agreement, 150 magnetic tapes for backups, 860
security standards, 500–502 Token Ring, 495–496 topologies, 487–490 transmission methods, 499–500 Local Security Authority Subsystem Service (LSASS), 372–374 Locard, Edmond, 1020 Locard's exchange principle, 1020–1021 lock bumping, 924 Lockheed Martin Cyber Kill Chain, 387–389 locks administrative responsibilities, 922 circumventing, 922–924 grades, 923 mechanical, 918–922	description, 34 PKI, 366–367 MAC (mandatory access control) model characteristics, 776 overview, 768–771 MAC Security (MACSec) standard, 500–501 machine language, 1118, 1121 machine learning (ML), 977 MACSec Security Entity (SecY), 501 Madrid Agreement, 150 magnetic tapes for backups, 860 mail transfer agents (MTAs), 622
security standards, 500–502 Token Ring, 495–496 topologies, 487–490 transmission methods, 499–500 Local Security Authority Subsystem Service (LSASS), 372–374 Locard, Edmond, 1020 Locard's exchange principle, 1020–1021 lock bumping, 924 Lockheed Martin Cyber Kill Chain, 387–389 locks administrative responsibilities, 922 circumventing, 922–924 grades, 923	description, 34 PKI, 366–367 MAC (mandatory access control) model characteristics, 776 overview, 768–771 MAC Security (MACSec) standard, 500–501 machine language, 1118, 1121 machine learning (ML), 977 MACSec Security Entity (SecY), 501 Madrid Agreement, 150 magnetic tapes for backups, 860 mail transfer agents (MTAs), 622 mailbox data, backups for, 862
security standards, 500–502 Token Ring, 495–496 topologies, 487–490 transmission methods, 499–500 Local Security Authority Subsystem Service (LSASS), 372–374 Locard, Edmond, 1020 Locard's exchange principle, 1020–1021 lock bumping, 924 Lockheed Martin Cyber Kill Chain, 387–389 locks administrative responsibilities, 922 circumventing, 922–924 grades, 923 mechanical, 918–922	description, 34 PKI, 366–367 MAC (mandatory access control) model characteristics, 776 overview, 768–771 MAC Security (MACSec) standard, 500–501 machine language, 1118, 1121 machine learning (ML), 977 MACSec Security Entity (SecY), 501 Madrid Agreement, 150 magnetic tapes for backups, 860 mail transfer agents (MTAs), 622 mailbox data, backups for, 862 main distribution facilities (MDFs), 446 maintenance
security standards, 500–502 Token Ring, 495–496 topologies, 487–490 transmission methods, 499–500 Local Security Authority Subsystem Service (LSASS), 372–374 Locard, Edmond, 1020 Locard's exchange principle, 1020–1021 lock bumping, 924 Lockheed Martin Cyber Kill Chain, 387–389 locks administrative responsibilities, 922 circumventing, 922–924 grades, 923 mechanical, 918–922 overview, 917–918	description, 34 PKI, 366–367 MAC (mandatory access control) model characteristics, 776 overview, 768–771 MAC Security (MACSec) standard, 500–501 machine language, 1118, 1121 machine learning (ML), 977 MACSec Security Entity (SecY), 501 Madrid Agreement, 150 magnetic tapes for backups, 860 mail transfer agents (MTAs), 622 mailbox data, backups for, 862 main distribution facilities (MDFs), 446 maintenance CPTED, 433
security standards, 500–502 Token Ring, 495–496 topologies, 487–490 transmission methods, 499–500 Local Security Authority Subsystem Service (LSASS), 372–374 Locard, Edmond, 1020 Locard's exchange principle, 1020–1021 lock bumping, 924 Lockheed Martin Cyber Kill Chain, 387–389 locks administrative responsibilities, 922 circumventing, 922–924 grades, 923 mechanical, 918–922 overview, 917–918 Locky ransomware, 604 logical access, 717, 801–803	description, 34 PKI, 366–367 MAC (mandatory access control) model characteristics, 776 overview, 768–771 MAC Security (MACSec) standard, 500–501 machine language, 1118, 1121 machine learning (ML), 977 MACSec Security Entity (SecY), 501 Madrid Agreement, 150 magnetic tapes for backups, 860 mail transfer agents (MTAs), 622 mailbox data, backups for, 862 main distribution facilities (MDFs), 446 maintenance CPTED, 433 data, 238
security standards, 500–502 Token Ring, 495–496 topologies, 487–490 transmission methods, 499–500 Local Security Authority Subsystem Service (LSASS), 372–374 Locard, Edmond, 1020 Locard's exchange principle, 1020–1021 lock bumping, 924 Lockheed Martin Cyber Kill Chain, 387–389 locks administrative responsibilities, 922 circumventing, 922–924 grades, 923 mechanical, 918–922 overview, 917–918 Locky ransomware, 604 logical access, 717, 801–803 logical acquisition of evidence, 1012	description, 34 PKI, 366–367 MAC (mandatory access control) model characteristics, 776 overview, 768–771 MAC Security (MACSec) standard, 500–501 machine language, 1118, 1121 machine learning (ML), 977 MACSec Security Entity (SecY), 501 Madrid Agreement, 150 magnetic tapes for backups, 860 mail transfer agents (MTAs), 622 mailbox data, backups for, 862 main distribution facilities (MDFs), 446 maintenance CPTED, 433 data, 238 frameworks, 201
security standards, 500–502 Token Ring, 495–496 topologies, 487–490 transmission methods, 499–500 Local Security Authority Subsystem Service (LSASS), 372–374 Locard, Edmond, 1020 Locard's exchange principle, 1020–1021 lock bumping, 924 Lockheed Martin Cyber Kill Chain, 387–389 locks administrative responsibilities, 922 circumventing, 922–924 grades, 923 mechanical, 918–922 overview, 917–918 Locky ransomware, 604 logical access, 717, 801–803 logical acquisition of evidence, 1012 Logical Link Control (LLC), 481–482	description, 34 PKI, 366–367 MAC (mandatory access control) model characteristics, 776 overview, 768–771 MAC Security (MACSec) standard, 500–501 machine language, 1118, 1121 machine learning (ML), 977 MACSec Security Entity (SecY), 501 Madrid Agreement, 150 magnetic tapes for backups, 860 mail transfer agents (MTAs), 622 mailbox data, backups for, 862 main distribution facilities (MDFs), 446 maintenance CPTED, 433 data, 238 frameworks, 201 maintenance hooks in software
security standards, 500–502 Token Ring, 495–496 topologies, 487–490 transmission methods, 499–500 Local Security Authority Subsystem Service (LSASS), 372–374 Locard, Edmond, 1020 Locard's exchange principle, 1020–1021 lock bumping, 924 Lockheed Martin Cyber Kill Chain, 387–389 locks administrative responsibilities, 922 circumventing, 922–924 grades, 923 mechanical, 918–922 overview, 917–918 Locky ransomware, 604 logical access, 717, 801–803 logical acquisition of evidence, 1012 Logical Link Control (LLC), 481–482 logon attempts, failed, 721–723	description, 34 PKI, 366–367 MAC (mandatory access control) model characteristics, 776 overview, 768–771 MAC Security (MACSec) standard, 500–501 machine language, 1118, 1121 machine learning (ML), 977 MACSec Security Entity (SecY), 501 Madrid Agreement, 150 magnetic tapes for backups, 860 mail transfer agents (MTAs), 622 mailbox data, backups for, 862 main distribution facilities (MDFs), 446 maintenance CPTED, 433 data, 238 frameworks, 201 maintenance hooks in software development, 1091
security standards, 500–502 Token Ring, 495–496 topologies, 487–490 transmission methods, 499–500 Local Security Authority Subsystem Service (LSASS), 372–374 Locard, Edmond, 1020 Locard's exchange principle, 1020–1021 lock bumping, 924 Lockheed Martin Cyber Kill Chain, 387–389 locks administrative responsibilities, 922 circumventing, 922–924 grades, 923 mechanical, 918–922 overview, 917–918 Locky ransomware, 604 logical access, 717, 801–803 logical acquisition of evidence, 1012 Logical Link Control (LLC), 481–482 logon attempts, failed, 721–723 logs	description, 34 PKI, 366–367 MAC (mandatory access control) model characteristics, 776 overview, 768–771 MAC Security (MACSec) standard, 500–501 machine language, 1118, 1121 machine learning (ML), 977 MACSec Security Entity (SecY), 501 Madrid Agreement, 150 magnetic tapes for backups, 860 mail transfer agents (MTAs), 622 mailbox data, backups for, 862 main distribution facilities (MDFs), 446 maintenance CPTED, 433 data, 238 frameworks, 201 maintenance hooks in software development, 1091 malicious code in advanced persistent
security standards, 500–502 Token Ring, 495–496 topologies, 487–490 transmission methods, 499–500 Local Security Authority Subsystem Service (LSASS), 372–374 Locard, Edmond, 1020 Locard's exchange principle, 1020–1021 lock bumping, 924 Lockheed Martin Cyber Kill Chain, 387–389 locks administrative responsibilities, 922 circumventing, 922–924 grades, 923 mechanical, 918–922 overview, 917–918 Locky ransomware, 604 logical access, 717, 801–803 logical acquisition of evidence, 1012 Logical Link Control (LLC), 481–482 logon attempts, failed, 721–723	description, 34 PKI, 366–367 MAC (mandatory access control) model characteristics, 776 overview, 768–771 MAC Security (MACSec) standard, 500–501 machine language, 1118, 1121 machine learning (ML), 977 MACSec Security Entity (SecY), 501 Madrid Agreement, 150 magnetic tapes for backups, 860 mail transfer agents (MTAs), 622 mailbox data, backups for, 862 main distribution facilities (MDFs), 446 maintenance CPTED, 433 data, 238 frameworks, 201 maintenance hooks in software development, 1091

man-in-the-middle (MitM) attacks	MAUs (Multistation Access Units), 495
cryptography, 374–375	maximum tolerable downtime (MTD)
data in motion, 59, 256	BIA, 113–114
Diffie-Hellman algorithm, 338-339	disaster recovery, 1030-1033
managed level in CMMI, 1107	spare servers for, 672
managed security services providers (MSSPs),	maximum tolerable period of disruption
973–974	(MTPD), 113
managed service accounts (MSAs), 800	maximum transmission units (MTUs)
managed services in software security, 1148	MAC mechanisms, 489–494
Management Frame Protection (MFP), 578	routers, 661
Management Information Base (MIB) in SNMP, 522–524	"McAfee 2019 Cloud Adoption and Risk Report," 303
management objectives in COBIT 2019, 189	McNulty, Paul, 125
management review and approval, 875–877	MCUs (multipoint control units) in H.323, 689
managers, risk reporting for, 95	MD5 (Message Digest 5)
mandatory access control (MAC) model	description, 352
characteristics, 776	passwords, 722
overview, 768–771	MDFs (main distribution facilities), 446
mandatory vacations, 35, 890	MEA (Monitor, Evaluate and Assess) domain
manmade threats in site planning, 423	in COBIT 2019, 189
MANs (metropolitan area networks),	means in criminal investigations, 1008
538–540	measurements in ISO/IEC 27004, 852
mantraps, 441	measuring security, 851
manual iris lenses in CCTV systems, 915	account management, 858–860
manual penetration tests (MPTs), 1140	backup verification, 860–862
manual tests in software development, 1091	chapter questions, 879–881
market approach in executive	chapter review, 877–879
summaries, 874	disaster recovery and business continuity,
markup languages, 776–778	867–869
Mary, Queen of Scots, 319	key performance and risk indicators,
masks in IP addresses, 511–512	855–857
masquerading firewalls, 965	management review and approval,
master keying feature for combination	875–877
locks, 920	metrics, 852–855
master keys in ZigBee, 572	process data overview, 857-858
matrices	quantifying, 851–853
access control, 766–767	reporting, 869–875
classification, 1002-1003	training, 863–867
notification, 1003-1004	mechanical locks, 918-922
qualitative risk, 76–77	Media Access Control (MAC) addresses
role, 799	ARP, 515–517
Mattermost service, 1057	bridges, 656
maturity models for risk, 96	DHCP, 519
maturity software development models	switches, 658-659
CMMI, 1107–1109	Media Access Control (MAC) in data link
overview, 1106	layer, 481–482
SAMM, 1109–1110	media for storage, 447

medium access control (MAC)	microprobing attacks on smart cards, 735
collision and broadcast domains, 492-494	microservices, 299–301
CSMA, 490–491	middle management, awareness
overview, 489–490	programs for, 42
polling, 494	MIL domain in DNS, 527
token passing, 491–492	military-oriented architecture frameworks,
meeting applications, 694–695	195–196
Meltdown attacks, 257, 372	Miller, Charlie, 627
members in object-oriented	MIME (Multipurpose Internet Mail
programming, 1125	Extensions), 625–626
memory cards in ownership-based	MIMO (multiple input, multiple output)
authentication, 732–733	standard, 567, 585
memory for Trusted Platform Modules,	Mirai botnet, 307
405–406	mission/business process view (Tier 2) in risk
mergers and acquisitions (M&A), 17	management, 55
mesh size for fencing, 909	mission critical data in disaster recovery, 1032
mesh topology for local area networks,	misuse cases
488–489	data loss prevention, 271
message authentication code (MAC),	testing, 835–836
355–356, 603–604 Massaga Digget 5 (MD5)	misuse of data in risk management, 54
Message Digest 5 (MD5)	Mitchell, Joni, 213
description, 352	mitigation
passwords, 722	incidents, 996–997
message digests, 354–355	software security, 1144–1145
messages ICMP, 520–521	mitigation risk strategy ISO/IEC 27005, 178
integrity verification, 354–358	overview, 79 MitM (man-in-the-middle) attacks
object-oriented programming,	
1127–1128 TCP, 509	cryptography, 374–375 data in motion, 59, 256
meta-directories, 748	
methodologies	Diffie-Hellman algorithm, 338–339 MITRE corporation
description, 15	ATT&CK framework, 389–390
reports, 873	Common Weakness Enumeration
methods in object-oriented	initiative, 1088
programming, 1127	mixed law systems, 128–129
Metro Ethernet, 539–540	ML (machine learning), 977
metropolitan area networks (MANs),	MLS (multilevel security) systems
538–540	Bell-LaPadula, 398
Metropolitan Transit Authority (MTA), 433	description, 769
MFA (multifactor authentication)	MO (modus operandi) in criminal
strong authentication, 719	investigations, 1008
VPNs, 697	mobile devices and communications
MFP (Management Frame Protection), 578	disaster recovery plans, 1062
MIB (Management Information Base) in	endpoint security, 673–674
SNMP, 522–524	forensics investigations, 1021
micro-segmentation, 629	generations, 585–587
microcontrollers in embedded systems, 306	hacking, 588
•	~

mobile devices and communications (<i>cont.</i>) multiple access technologies, 584–585 overview, 582–583	MTA (Metropolitan Transit Authority), 433 MTAs (mail transfer agents), 622 MTD (maximum tolerable downtime) BIA, 113–114
protecting, 220–221 mobile hot sites in disaster recovery, 1049	disaster recovery, 1030–1033
mobile IP, 793	spare servers for, 672
Modbus system, 627	MTPD (maximum tolerable period of
modems, cable, 686–687	disruption), 113
moderate privacy risk in software	MTUs (maximum transmission units)
development, 1082	MAC mechanisms, 489–494
modularity in object-oriented programming,	routers, 661
1127–1128	multi-user MIMO (MU-MIMO) technology,
modus operandi (MO) in criminal	567–568
investigations, 1008	multicast transmission method, 499
MOM (motive, opportunity, and means) in	multifactor authentication (MFA)
incident investigations, 1007–1008	strong authentication, 719
Monitor, Evaluate and Assess (MEA) domain	VPNs, 697
in COBIT 2019, 189	multihomed devices, 959
monitoring	multilayer protocols, 626–627
continuous, 981–982	multilayered switches, 658
egress, 981	multilevel security (MLS) systems
frameworks, 201	Bell-LaPadula, 398
ingress, 948	description, 769
passwords, 721	multimedia collaboration, 693–694
Risk Management Framework, 176–177	meeting applications, 694–695
UEBA, 981	unified communications, 695–696
monitoring risk	multimode fiber-optic cable, 651
change, 92–93	multiparty key recovery in PKI, 366
compliance, 93–94	multiple access technologies in mobile
continuous improvement, 95–96	communications, 584–585
description, 58	multiple input, multiple output (MIMO)
effectiveness, 91–92	standard, 567, 585
maturity models, 96	multiple processing sites in disasters
reporting, 94–95	recovery, 1049
monitors in Token Ring, 496	multiplexing functionalities, 544
monoalphabetic substitution ciphers, 318	multipoint control units (MCUs) in H.323, 689
monoammonium phosphate for fire	Multiprotocol Label Switching (MPLS)
suppression, 458	Metro Ethernet, 540
motion detectors, 927	routing tags and labels, 659
motive, opportunity, and means (MOM) in	Multipurpose Internet Mail Extensions
incident investigations, 1007–1008	(MIME), 625–626
MPLS (Multiprotocol Label Switching)	Multistation Access Units (MAUs), 495
Metro Ethernet, 540	muscle memory in disaster recovery, 1060
routing tags and labels, 659	mutual aid agreements in disasters
MPTs (manual penetration tests), 1140	recovery, 1047
MSAs (managed service accounts), 800	mutual authentication
MSSPs (managed security services providers),	description, 719
973-974	802.11, 580

N	NDAs (nondisclosure agreements)
	incident response teams, 1001
NAC (network access control) devices, 667–668	trade secrets, 148
	NDLP (network DLP), 272–273
importance, 697	NDR (network detection and response)
namespaces	products
directory services, 747	forensics investigations, 1021
DNS, 525	HIDSs, 968
LDAP, 749	security operations centers, 940
Nappo, Stephane, 989	Near Field Communication (NFC) with
NAS (network-attached storage) for	smart cards, 735
backups, 1038	near-line devices for backups, 898-899
NAT (network address translation),	need-to-know principle
512–513, 531–533	description, 394
nation-state actors, 60–61	overview, 888
National Institute of Standards and	negligence
Technology (NIST)	breaches from, 266
Cybersecurity Framework, 182	civil law category, 127
Digital Signature Standard, 357	negligent insiders, 61
enterprise architecture frameworks,	NET domain in DNS, 527
190–191	network access control (NAC)
passwords, 720–721	devices, 667–668
Risk Management Framework, 172–177	importance, 697
SHA, 352	network address translation (NAT),
SP 800-30, 67–68, 173	512–513, 531–533
SP 800-34, 104–105, 1059	network administrators, tasks and
SP 800-37, 173	responsibilities, 886
SP 800-39, 55, 173	network-attached storage (NAS) for
SP 800-53, 172, 175, 183–185	backups, 1038
SP 800-57, 367	network-based intrusion detection systems
SP 800-60, 174	(NIDSs), 967
SP 800-63B, 720–721	network components, 643
SP 800-82, 290, 294	CDNs, 674
SP 800-88, 240	chapter questions, 677–679
SP 800-111, 255	chapter review, 674–676
SP 800-137, 981–982	devices. <i>See</i> network devices
SP 800-161, 97	endpoint security, 673–674
SP 800-190, 298–299	
National Security Agency (NSA)	transmission media, 643–655 network detection and response (NDR)
DES standard, 321	products
HAIPE, 609	forensics investigations, 1021
natural access control in CPTED, 428-431	HIDSs, 968
natural environmental threats in site	security operations centers, 940
planning, 423	network devices
natural languages, 1119–1120	
natural surveillance in CPTED, 431-432	bridges, 656–657
natural threats, 62	gateways, 662–663
naturalness in object-oriented	hardware operation, 670–672 NACs, 667–668
programming, 1127	network diagramming, 668–670

network devices (cont.)	MANs, 538-540
overview, 655 PBXs, 665–667	overview, 469 WANs, 540–552
proxy servers, 663–664	networks
repeaters, 655–656	diagramming, 668–670
routers, 660–662	testing, 818
switches, 657–660	virtualized, 704–705
network DLP (NDLP), 272–273	New Zealand, Privacy Act in, 147
network forensics, 1021	newly observed domains (NODs) as threat
network keys in ZigBee, 572	data source, 943
network layer	next-generation firewalls (NGFWs), 957–958
functions and protocols, 484	NFC (Near Field Communication) with
OSI model, 480	smart cards, 735
network reference models, 470–471	NGFWs (next-generation firewalls), 957–958
network security	NIDSs (network-based intrusion detection
chapter questions, 638–641	systems), 967
chapter review, 635–638	NIST. See National Institute of Standards and
design principles, 597–599	Technology (NIST)
DNS, 616–621	NMT (Nordic Mobile Telephone), 584
e-mail, 621–626	NODs (newly observed domains) as threat
link encryption vs. end-to-end encryption,	data source, 943
600–602	noise
multilayer protocols, 626–627	cabling, 652
overview, 597	database systems, 288
protocol overview, 611	digital transmission, 645
segmentation. See network segmentation	electric power, 450
TLS, 602–605	non-symbolic AI approach, 976–978
VPNs, 605–611	nonces for one-time passwords, 731
web services, 611–616	nondisasters
network segmentation	availability, 1049–1053
overview, 629	description, 1043
risk mitigation, 295	nondisclosure agreements (NDAs)
SD-WANs, 635	incident response teams, 1001
SDNs, 632–635	trade secrets, 148
VLANs, 630–632	nonfunctional requirements in software
VxLANs, 632	development, 1083
network sockets, 703	noninterference model, 400–401, 403
Network Time Protocol (NTP), 829-830	nonpersistent VDI, 701
networking fundamentals	nonplenum cables, 653
chapter questions, 555-558	nonpracticing entities (NPEs), 152
chapter review, 552-555	nonrecursive queries in DNS, 527
data communications. See data	nonrepudiation
communications	cryptosystems, 324
Internet protocol networking. See Internet	overview, 6–7
protocol networking	nonvolatile RAM (NVRAM) in Trusted
intranets and extranets, 537–538	Platform Modules, 405
local area networks. See local area	NORAD (North American Aerospace
networks (LANs)	Defense Command), 436

Nordic Mobile Telephone (NMT), 584	OCTAVE (Operationally Critical Threat,
normal changes, 892	Asset, and Vulnerability Evaluation)
normal management in business	framework, 68, 172, 178–179
continuity, 1066	OECD (Organisation for Economic
normalization in data retention, 236	Co-operation and Development), 142-144
North American Aerospace Defense	OEMs (original equipment manufacturers), 229
Command (NORAD), 436	OEPs (occupant emergency plans), 931
notifications for incidents, 1003-1004	OFDM (orthogonal frequency division
Novell Red color, 150	multiplexing), 561, 563–564
NPEs (nonpracticing entities), 152	OFDMA (orthogonal frequency division
NSA (National Security Agency)	multiple access), 585
DES standard, 321	Office of Management and Budget,
HAIPE, 609	"Safeguarding Against and Responding
NTP (Network Time Protocol), 829–830	to the Breach of Personally Identifiable
nuisance category in civil law, 127	Information," 140
NVRAM (nonvolatile RAM) in Trusted	offline media for backups, 1038
Platform Modules, 405	offsite backups, 1037
	offsite locations in disasters recovery, 1047
0	OIDC (OpenID Connect), 783–784
O87M (aparation and maintenance) in life	on-premise FIM systems, 755–756
O&M (operation and maintenance) in life	onboarding personnel security, 37–38
cycle of assets, 223	ONC (Open Network Computing), 703
OASIS (Organization for the Advancement of Structured Information Standards), 781	one-time pads in cryptology, 325–328
	one-time passwords (OTPs), 729–732
OAuth standard, 782–783 Obama, Barack, 182	one-to-many identification, 718
	one-to-one identification, 718
object-oriented programming (OOP) abstraction, 1129	one-way hashing functions, attacks against,
benefits, 1127	353–354
classes and objects, 1125–1127	one-way RSA functions, 341–342
encapsulation, 1130	ONF (Open Networking Foundation),
libraries, 1129–1130	634–635
messages, 1127–1128	online backups, 1035
overview, 1124–1125	Online Certificate Status Protocol (OCSP), 362
vs. procedural programming,	online encryption vs. end-to-end encryption,
1125–1126	600–602
relationships, 1128	online safety, 866–867
objectives in Spiral methodology, 1098	online UPS systems, 452–453
objectivity in forensics investigation	onsite backups, 1037
interviews, 1019	Ontario Information Commissioner, 397
objects in ABAC, 774	OOP. See object-oriented
obligations, legally recognized, 161	programming (OOP)
occupant emergency plans (OEPs), 931	open message format in asymmetric key
Occupational Safety and Health	cryptography, 336
Administration (OSHA), 434	open network architectures, 472
OceanLotus attack, 389–390	Open Network Computing (ONC), 703
OCs (optical carriers) for WANs, 543	Open Networking Foundation (ONF),
OCSP (Online Certificate Status	634–635
Protocol), 362	open proxies, 663

Open Shortest Path First (OSPF) protocol,	Operations function in SAMM, 1109
535–536	operations management. See security operations
open-source intelligence (OSINT)	security operations management
social engineering, 903	opportunity in criminal investigations, 1008
threat data sources, 942	optical carriers (OCs) for WANs, 543
open-source software, securing,	optical discs for logs, 745
1146–1147	optical fiber
open system authentication (OSA), 575	fiber-optic cable, 651
open systems, 474	transmission media, 643
Open Systems Interconnection (OSI)	optical zoom in CCTV systems, 915
reference model, 470–471, 648	optimizing level in CMMI, 1108
application layer, 474–475	orchestration in SOAR, 980
attacks, 474	order of volatility for evidence, 1016
data link layer, 480–483	ORG domain in DNS, 527
functions and protocols,	Organisation for Economic Co-operation and
483–485	Development (OECD), 142–144
layers together, 485-487	Organization for the Advancement of
network layer, 480	Structured Information
physical layer, 483	Standards (OASIS), 781
presentation layer, 475–476	organization view (Tier 1) in risk
protocols, 471–474	management, 55
session layer, 477–478	organizational change, data loss
transport layer, 479–480	prevention in, 270
open trust model in ZigBee, 572	organizational CIS controls, 187
Open Web Application Security Project	organizational code of ethics, 45
(OWASP)	organizational processes, 17–18
SAMM, 1109–1110	organizational roles and responsibilities, 18-19
Threat Dragon, 1087	auditors, 25
web applications, 1134–1135	change control analysts, 24
OpenFlow interface, 634–635	data analysts, 24
OpenID Connect (OIDC), 783–784	data custodians, 23
Openness Principle in OECD, 142	data owners, 22–23
operate steps in frameworks, 201	executive management, 19-22
operation and maintenance (O&M) in life	security administrators, 24
cycle of assets, 223	system owners, 23–24
operational prototypes in software	users, 25
development, 1096	organizational security policies, 27-29
operational tasks in incident handling,	organizational units (OUs) in LDAP, 749
1004–1005	organized cybercrime gangs, 134
operational technology (OT), 290,	organizing steps for frameworks, 200
292–293, 295	original equipment manufacturers (OEMs), 229
Operationally Critical Threat, Asset, and	orthogonal frequency division multiple access
Vulnerability Evaluation (OCTAVE)	(OFDMA), 585
framework, 68, 172, 178-179	orthogonal frequency division multiplexing
operations and maintenance phase	(OFDM), 561, 563–564
change control, 1092–1094	OSA (open system authentication), 575
change management, 1092	OSHA (Occupational Safety and Health
SDLC, 1080, 1091–1094	Administration), 434

OSI model. See Open Systems	packet jitter, 681
Interconnection (OSI) reference model	packet switching in WANs, 546–547
OSINT (open-source intelligence)	packets
social engineering, 903	firewalls, 945
threat data sources, 942	TCP, 509
OSPF (Open Shortest Path First) protocol,	TCP vs. UDP, 506
535–536	Padding Oracle On Downgraded Legacy
OT (operational technology), 290,	Encryption (POODLE) attacks, 602
292–293, 295	padlocks, 917
OTPs (one-time passwords), 729–732	pair programming in Extreme
OUs (organizational units) in LDAP, 749	Programming, 1102
out-of-band method in symmetric key	palm scans, 727
cryptography, 330	PAM (privileged account management), 889
outside attacks in risk management, 54	pan, tilt, or zoom (PTZ) capabilities in CCTV
outsourced security services, 973–974	systems, 916
outsourced software, 1147	panic bars, 440
outsourcing business continuity	panic buttons, 931
planning, 1068	PanOptis lawsuit, 151
overflows	PAP (Password Authentication Protocol),
description, 819	697–698
software development, 1089–1090	paper records, protecting, 221
overlays in SDNs, 635	parallel tests in disaster recovery plans, 1064
overwriting	parameter validations in APIs, 1132
data, 243	Pareto principle, 179
media, 259–260	Paris Convention, 150
OWASP (Open Web Application	partial knowledge in penetration
Security Project)	testing, 825
SAMM, 1109–1110	partitions
Threat Dragon, 1087	database systems, 288
web applications, 1134–1135	physical security, 442
owners	pass the hash attacks, 372
assets, 223	passive infrared (PIR) IDSs, 927
data, 244	passive nariated (1116) 1150s, 727 passive patch management, 904
OAuth, 782	passive paten management, 704 passive relocking function for safes, 222
	Password Authentication Protocol (PAP),
risk reporting for, 95	697–698
ownership-based authentication	password-guessing attacks, 789
cryptographic keys, 732	
memory cards, 732–733 one-time passwords, 729–732	password managers, 736–737 passwords
overview, 729	checkers, 722
smart cards, 733–735	
smart cards, /33–/3)	cognitive, 723
P	failed logon attempts, 721–723
	hashing and encrypting, 722 Kerbergs protocol, 789
PaaS (Platform as a Service), 228, 302–304	Kerberos protocol, 789
PACE (Primary, Alternate, Contingency, and	knowledge-based authentication, 720 one-time, 729–732
Emergency) communications plans, 1057	
package supplies in forensics field kits, 1015	passphrases, 723
packet-filtering firewalls, 946–949	PBX systems, 666

passwords (cont.)	peripheral switch controls for device locks, 921
policies, 720–722	Perl programming language, 1121
resets, 737–738	permanent teams for incident response, 991
synchronization, 737	permanent virtual circuits (PVCs), 549
TACACS, 791	permissions
vulnerabilities, 60	DAC, 767
PAT (port address translation), 532	setting, 739
patch management, 903	testing, 821
centralized, 904–905	persistent memory in Trusted Platform
reverse engineering patches, 905	Modules, 405
unmanaged patching, 904	persistent VDI, 701
patent trolls, 152	Personal Data Protection Act (PDPA), 144
patents, 151–152	Personal Digital Cellular (PDC), 584
paths in URLs, 614	personal health information (PHI)
patrol forces, 928–929	breaches, 255
payloads	Personal Information Protection and
IPv6, 514	Electronic Documents Act, 147
steganography, 265	personal liability of executive
PBXs (Private Branch Exchanges), 665–667	management, 20
PCI DSS (Payment Card Industry Data	personally identifiable information (PII)
Security Standard), 156	components, 140–141
PCRs (platform configuration registers) in	U.S. laws, 141
Trusted Platform Modules, 406	personnel
PDC (Personal Digital Cellular), 584	disaster recovery plans, 1055–1056
PDPA (Personal Data Protection Act), 144	testing, 818
PDUs (protocol data units)	personnel safety and security
description, 473	access controls, 924–925
TCP, 509	breaches from, 266
PEAP (Protected EAP), 580	candidate screening and hiring, 35-36
peer-to-peer systems, 307	compliance policies, 39–40
Peltier, Thomas, 68	duress, 931–932
penetration tests	emergency management, 931
application security, 1140	employment agreements and policies,
knowledge of targets, 825–826	36–37
overview, 822–824	incident response, 993
process, 824–825	onboarding, transfers, and termination
red team exercises, 902	processes, 37–38
software development, 1090	overview, 33–35, 929–930
vs. vulnerability tests, 826–827	privacy policies, 40
people as vulnerabilities, 60	threats, 138
perfect forward secrecy in TLS, 604	training and awareness, 930-931
performance-based approach in site	travel, 930
planning, 424	vendors, consultants, and contractors, 39
performance metrics, 854	perturbation in database systems, 288
Perimeter Intrusion Detection and Assessment	pervasive systems
System (PIDAS), 910	embedded, 306
perimeter security, 803	Internet of Things, 306–307
periodic content reviews, 43	overview, 305

Petya ransomware, 604	PIR (passive infrared) IDSs, 927
PGP (Pretty Good Privacy), 367	piracy, software, 153–154
PHI (personal health information)	pirated software, dangers in, 225
breaches, 255	PKCS (Public Key Cryptography
phishing awareness programs, 42, 864-865	Standards), 626
phone calls in PBXs, 665–667	PKI. See public key infrastructure (PKI)
photoelectric IDS systems, 926–927	plaintext, 321
phreakers, 666	Plan-Do-Check-Act loop, 875
physical damage in risk management, 54	plans
physical destruction of data, 244	audits, 839
physical layer	backups, 863
functions and protocols, 485	business continuity, 104–105
OSI model, 483	change management, 891
physical security and controls	
	forensics investigation interviews, 1019 frameworks, 200
auditing, 929	
data loss prevention, 269	incident response, 1000–1006
devices, 802	OEPs, 931
digital asset management, 261	Plan-Do-Check-Act loop, 875
external perimeter, 906–916	Spiral methodology, 1098
facilities, 802–803, 916–924	Platform as a Service (PaaS), 228,
information access, 801	302–304
internal controls, 924	platform configuration registers (PCRs) in
intrusion detection systems, 925–929	Trusted Platform Modules, 406
mobile devices, 220–221	platforms for secure software,
overview, 220, 801, 906	1137–1138
paper records, 221	PLCs (programmable logic controllers),
personnel access controls, 924–925	290–291
risk responses, 83–84, 86–87	plenum areas
safes, 221–222	cabling, 653
physical security programs	fire suppression, 459
construction, 436–439	PMs (project managers) in software
design overview, 433–435	development, 1080
entry points, 439–441	point-to-point links in WANs, 541–543
facilities, 435–436	Point-to-Point Tunneling
physical surveillance in digital forensics,	Protocol (PPTP), 606
1019–1020	poisoning of ARP cache tables, 516–517
physical testing, 818	polarized filters in QKD, 344–345
physiological biometric authentication, 724	policies
PIDAS (Perimeter Intrusion Detection and	acceptable use, 226, 664, 858
Assessment System), 910	compliance, 39–40
piggybacking, 925	data retention, 234–236
PII (personally identifiable information)	employment, 36–37
components, 140–141	IMPs, 990, 1000
U.S. laws, 141	passwords, 720–722
pin tumbler locks, 918	privacy, 40
PINs	security, 27–29
memory cards, 732	security operations centers, 940
smart cards, 733	types, 30 types

Policy and Program Management	preservation
practice, 105	evidence, 1013
policy engines for data loss prevention, 270	forensics investigations, 1016–1017
polling, MAC, 494	preset locks, 917
polyalphabetic substitution ciphers, 318–320	preshared keys (PSKs) in 802.11 standard, 575
polyvinyl chloride (PVC) jacket covering, 653	pressurized conduits for cabling, 653
POODLE (Padding Oracle On Downgraded	pretexting, 865
Legacy Encryption) attacks, 602	Pretty Good Privacy (PGP), 367
POP (Post Office Protocol), 623	preventive and detective measures
port address translation (PAT), 532	anomaly-based intrusion detection and
portable code, 1122	prevention, 967–968
portable fire extinguishers, 455	antimalware software, 969-972
portals, TLS, 610	artificial intelligence tools, 976–978
portlets for web portal functions, 753–754	firewalls. See firewalls
ports	intrusion detection and prevention systems
device locks, 921	overview, 967
packet-filtering firewalls, 948	outsourced security services, 973–974
TCP, 504	process, 944–945
three-way-handshake process, 951	vs. recovery strategies, 1033
types, 507	rule-based intrusion detection and
positive drains, 448	prevention, 967
POST methods in HTTP, 614	sandboxes, 972–973
Post Office Protocol (POP), 623	whitelisting and blacklisting, 968–969
powders for fire suppression, 458	preventive controls
power, electrical. See electric power	business continuity, 104–105
power supplies	risk responses, 85–87
considerations, 438	PRI (Primary Rate Interface) ISDN, 685–686
data processing facilities, 446	Primary, Alternate, Contingency, and
PP (Professional Practices) in Good Practice	Emergency (PACE) communications
Guidelines, 105–106	plans, 1057
PPTP (Point-to-Point Tunneling	primary category in PACE plans, 1057
Protocol), 606	primary images for evidence, 1012
preaction water sprinkler systems, 460	Primary Rate Interface (PRI) ISDN, 685–686
prediction with artificial intelligence	principals in KDC, 785
tools, 977	principle of least privilege. See least privilege
prefabricated buildings in disasters	principle
recovery, 1049	principles in SAML, 780
preparation step	priorities in disaster recovery goals, 1054
Risk Management Framework, 174	privacy
software vulnerability scans, 901	classification level, 216–217
preparedness metrics, 855	compliance issues, 147
presence information in unified	control assessments, 90–91
communications, 695	data loss prevention, 270
presentation layer functions and protocols, 483–484	incident investigations, 1014
OSI model, 475–476	policies, 40 requirements, 158
presentation stage in forensics investigations,	-
1016–1018	retina scan issues, 727 SDLC assessments, 1082
1010-1010	vs. security. 21

privacy by design, 397	programming languages and concepts.
network security, 599	See also software development
site and facility security, 423	assemblers, compilers, and interpreters,
third-party connectivity, 706	1120–1122
web services, 612	levels, 1120
Privacy by Design: Delivering the Promises	object-oriented programming,
report, 397	1124–1130
Private Branch Exchanges (PBXs),	overview, 1117–1120
665–667	runtime environments, 1122–1124
private clouds, 301, 305	Project Athena, 784
private keys	project management in SDLC, 1081
asymmetric key cryptography, 335	project managers (PMs) in software
hybrid methods, 347	development, 1080
RSA, 340–341	project sizing factor in risk assessment, 64
private portions in objects, 1128	proofing of identity, 738–740
privilege escalation	protect function in Framework Core, 182
identity and access, 799-800	Protected EAP (PEAP), 580
software development, 1089	protocol data units (PDUs)
privileged account management (PAM), 889	description, 473
PRNGs (pseudorandom number generators),	TCP, 509
327, 370	prototypes in software development, 1096
proactive searching in threat hunting, 943	provisioning
probationary periods in employment, 37	assets, 227–228
procedural programming vs. object-oriented	configuration management, 894-895
programming, 1125–1126	identity and access, 796
procedures, 32	users, 739
process enhancement, 16	Provisioning Service Provider (PSP)
process reengineering, 16	in SPML, 778
processes	Provisioning Service Target (PST)
organizational, 17–18	in SPML, 778
race conditions, 717	proximate causes, 161
vulnerabilities, 59–60, 902	proximity detectors, 927
processing speed in biometric	proxy firewalls
authentication, 726	application-level, 954-955, 957
processors	circuit-level, 954–956
data, 244–245	overview, 952–953
security extensions, 410	proxy servers
professional ethics, 44–46	characteristics, 665
Professional Practices for Business Continuity	overview, 663–664
Management, 106	SIP, 690
Professional Practices (PP) in Good Practice	pseudorandom number generators (PRNGs)
Guidelines, 105–106	327, 370
profile updates, 740	PSKs (preshared keys) in 802.11
program effectiveness evaluation,	standard, 575
43–44	PSP (Provisioning Service Provider)
programmable locks, 920	in SPML, 778
programmable logic controllers (PLCs), 290–291	PST (Provisioning Service Target) in SPML, 778

PSTNs (public switched telephone networks),	quantifiability of security metrics, 854
582–583, 682–683	quantifying security, 851-853
PTZ (pan, tilt, or zoom) capabilities in CCTV	quantitative risk analysis
systems, 916	description, 72
public algorithms vs. secret, 369	vs. qualitative, 78–79
public classification level, 216–217	results, 75–76
public clouds, 301, 305	steps, 73–75
public disclosure in incident response, 993	quantitatively managed level in CMMI, 1108
public key cryptography, 328	quantum cryptography, 344–346
Public Key Cryptography	quantum key distribution (QKD), 344
Standards (PKCS), 626	queries
public key infrastructure (PKI)	DNS, 527–528, 616
certificate authorities, 360–362	URLs, 615
code repositories, 1144	quorum authentication
digital certificates, 359–360	description, 34
key management, 364–367	PKI, 366–367
overview, 359	
registration authorities, 362	R
steps, 362–364	RA (Requesting Authority) in SPML, 778
public keys	race conditions
asymmetric key cryptography, 335	
hybrid methods, 347–348	description, 821
RSA, 340–341	processes, 717 PAD (Panid Application Dayslanment)
public relations factor in incident response	RAD (Rapid Application Development)
teams, 1001	methodology, 1099–1100
public switched telephone networks (PSTNs),	radio frequency interference (RFI)
582–583, 682–683	electric power, 450
Purpose Specification Principle in OECD, 142	twisted-pair cabling, 649–650 RADIUS (Remote Authentication Dial-In
PVC (polyvinyl chloride) jacket covering, 653	User Service)
PVCs (permanent virtual circuits), 549	
Python programming language, 1121–1122	network devices, 501 overview, 789–790
7 1 0 0 0 0 0	vs. TACACS, 791–793
Q	
	rainbow tables for passwords, 721–722
QA (quality assurance) in software	raking locks, 922–923
development, 1080 QKD (quantum key distribution), 344	ramifications with compliance, 158–161 random access memory (RAM) for Trusted
QoS (Quality of Service)	Platform Modules, 405
ATM, 551–552	
	random numbers in cryptology, 327
availability, 1050–1051 qualitative risk analysis	random password generation, 736 random values in quantum cryptography, 345
description, 72	ransomware
overview, 76–78	
quality, defined, 1117	cryptography, 375 protecting backups from, 897–898
quality assurance (QA) in software	TLS, 604
development, 1080	
Quality of Service (QoS)	Rapid Application Development (RAD) methodology, 1099–1100
ATM, 551–552	rapid prototyping in software
availability, 1050–1051	development, 1096
avanaUnity, 1070-1071	development, 1070

RARP (Reverse Address Resolution	rectilinear filters in QKD, 344
Protocol), 519	recursive queries in DNS, 527, 616
RAs (registration authorities), 360, 362	red teaming
RB-RBAC (rule-based access control), 774	exercises, 902
RBAC (role-based access control) model, 771	penetration tests, 827–828
characteristics, 776	redirect servers in SIP, 691
core, 772	reduced-function devices (RFDs), 570
hierarchical, 772–773	reduction analysis in threat modeling,
RDP (Remote Desktop Protocol)	386–387
overview, 700	redundancy for quality of service, 1050-1051
threat intelligence, 943	redundant lighting, 912
RDS (Remote Desktop Services), 943	redundant sites, 1048–1049
reactive searching in threat hunting, 943	REEs (rich execution environments), 408-409
real power, 671	reference monitors, 766
Real-time Transport Protocol (RTP), 689, 691	references for candidates, 37
real user monitoring (RUM) vs. synthetic	reflection attacks in DNS, 620
transactions, 832	registered ports, 507
realms in Kerberos, 785	registered trademarks, 150
rebar, 439	registrar servers in SIP, 689–690
reciprocal agreements in disasters recovery,	registration authorities (RAs), 360, 362
1047–1048	registration of accounts, 738-740
recommendations in reports, 873	regression analysis in artificial intelligence
reconnaissance stage in Cyber Kill Chain	tools, 977
model, 387, 994	regression testing in software
recording forensics investigation	development, 1091
interviews, 1019	regulations. See laws and regulations
recover function in Framework Core, 182	regulatory investigation requirements, 162
recovery	regulatory policies, 30
data loss prevention, 269	reinforcing bar, 439
incidents, 998	relevance
risk responses, 85, 87	evidence admissibility, 1013
recovery point objective (RPO)	security metrics, 854
disaster recovery, 1031-1032	relevant characteristic in threat
high availability, 1052	intelligence, 941
recovery strategies	reliability
availability, 1049–1053	disaster recovery, 1051-1052
business process recovery, 1033-1034	evidence admissibility, 1013–1014
data backups, 1034–1041	TCP vs. UDP, 506
documentation, 1041–1042	religious law system, 128
overview, 1029-1033	relocation teams in disaster recovery
vs. preventive measures, 1033	plans, 1056
reciprocal agreements, 1047–1048	relocking function for safes, 222
recovery site strategies, 1043–1047	remanence, data, 240–244
redundant sites, 1048-1049	remediate phase in software vulnerability
recovery teams in disaster recovery plans, 1056	scans, 901
recovery time objective (RTO)	remediation
disaster recovery, 1031-1033	incidents, 999
high availability, 1052	vulnerabilities, 871

remote access	Representational State Transfer (REST),
desktop virtualization, 699–701	615–616
Diameter, 793–795	repudiation category in STRIDE model, 388
overview, 696, 789	reputation-based protection for antimalware
RADIUS, 789–790	software, 971
TACACS, 790–793	reputation factor
VPNs, 697–699	disaster recovery, 1054
Remote Authentication Dial-In User	outsourced security services, 974
Service (RADIUS)	request methods in HTTP, 614
network devices, 501	Requesting Authority (RA) in SPML, 778
overview, 789–790	requests in change management, 891
vs. TACACS, 791–793	requirements gathering in SDLC, 1080,
Remote Desktop Protocol (RDP)	1082–1083
overview, 700	resets for passwords, 737-738
threat intelligence, 943	residual risk vs. total risk, 81
Remote Desktop Services (RDS), 943	resilience
remote desktops, 700	data loss prevention, 272
remote journaling for backups, 1039	system, 1051
remote logging, 831	resolvers in DNS, 527–528
remote procedure calls (RPCs), 703–704	resource owners in OAuth, 782
remote terminal units (RTUs)	resource protection
DNP3, 626	backups, 896–899
industrial controls, 290	overview, 895–896
SCADA systems, 294	source files, 896
removal tools in forensics field kits, 1015	system images, 896
repeaters	resource records in DNS, 525
characteristics, 665	resource servers in OAuth, 782
description, 655–656	respond function in Framework Core, 182
replay attacks	responses
cryptography, 372–374	disaster recovery plans, 1055
description, 787	incidents, 996
replication	physical security, 908
backups, 1039-1040	risk. See risk responses
logs, 831	site planning, 424
reports	SOAR, 980
digital forensics, 1021–1022	responsibility
executive summaries, 872–875	description, 161
incident response, 993	disaster recovery goals, 1053
incidents, 997–998	organizational. See organizational roles and
overview, 869–870	responsibilities
penetration testing, 825	responsive area illumination, 912
risk, 94–95	REST (Representational State Transfer),
security results, 870–872	615–616
technical, 872–873	restoration
repositories	backups, 1037, 1041-1042
backups, 1039	disaster recovery plans, 1058–1060
code, 1143–1144	restoration teams in disaster recovery
identity, 739	plans, 1056

restricted areas, 443	overview, 63–64
results, analyzing, 870-872	preventive and detective measures, 944
retention	responses. See risk responses
assets, 228–230	SDLC, 1082–1083
data, 233–236	teams, 66–67
retina scans, 727	risk-based access control, 775–776
reusability in object-oriented	risk-level acceptance in SDLC, 1082
programming, 1127	risk management
reuse methodology in software	assessment. See risk assessment
development, 1105	business continuity. See business
Reverse Address Resolution	continuity (BC)
Protocol (RARP), 519	chapter questions, 118–123
reverse engineering attacks	chapter review, 116–118
in cryptography, 371	concepts, 53–54
reverse engineering patches, 905	holistic, 54–55
reverse proxies, 664	information systems risk management
reviews	policy, 56
audits, 743–744	overview, 53
change management, 892	process, 57–58
RFDs (reduced-function devices), 570	risk analysis, 72–79
RFI (radio frequency interference)	supply chain, 96–101
electric power, 450	teams, 56–57
twisted-pair cabling, 649–650	threats, 60–63
rich execution environments (REEs), 408–409	vulnerabilities, 58–60, 62–63
right to be forgotten provision in GDPR, 144	Risk Management Framework, 172–177
right to be informed provision in GDPR, 144	risk responses
right to restrict processing provision in	control assessments, 88–91
GDPR, 144	control types, 83–88
ring topology, 489	countermeasure selection and
RIP (Routing Information Protocol), 535	implementation, 81–83
risk	overview, 79–80
defined, 9	risk management response, 57
FAIR, 179	total risk vs. residual risk, 81
frameworks, 172–179	Rivest, Ron, 340, 352
ISO/IEC 27005, 177–179	roaming 802.11f standard, 574
metrics, 854	robustness of security metrics, 854
OCTAVE, 178–179	role-based access control (RBAC) model, 771
Spiral methodology, 1098–1099	characteristics, 776
risk analysis	core, 772
qualitative, 72, 76–78	hierarchical, 772–773
quantitative, 72–76, 78–79	roles and responsibilities
software security, 1144–1145	data, 244–245
risk assessment	definitions, 799
approaches, 72–76	incident response plans, 1000–1002
asset valuation, 65–66	organizational. <i>See</i> organizational roles and
business impact analysis, 109–112	responsibilities
methodologies, 67–72	separation of duties, 394
monitoring risk, 91–96	software development, 1080
	tasks and responsibilities, 886

rollback plans, 905	S
rolling hot sites, 1049	
root account, 859	S/MIME (Secure MIME), 626
round-trip time (RTT) in latency, 654	SaaS (Software as a Service), 228, 302–303
route flapping, 535	SABSA (Sherwood Applied Business Security
routers	Architecture), 14–15, 173
vs. bridges, 657	SACs (single-attached concentrators) in
characteristics, 665	FDDI, 498
overview, 660–662	Safe Harbor Privacy Principles, 143
Routing Information Protocol (RIP), 535	"Safeguarding Against and Responding
routing policies in BGP, 537	to the Breach of Personally Identifiable
routing protocols	Information," 140
attacks, 537	safes, 221–222
autonomous systems, 533–534	safety issues
distance-vector vs. link-state, 535	disaster recovery, 1059
dynamic vs. static, 534–535	fires, 454.–457
exterior, 536–537	personnel. See personnel safety and security
interior, 535–536	sags in electric power, 451
RPC security (RPCSEC), 704	salvage teams in disaster recovery plans, 1056
RPCs (remote procedure calls), 703–704	SAML (Security Assertion Markup Language)
RPO (recovery point objective)	779–780
disaster recovery, 1031–1032	SAMM (Software Assurance Maturity Model)
high availability, 1052	1109–1110
RSA algorithm, 340–342	sandboxes
RSA-CRT (Chinese Remainder	antimalware, 969–970, 972–973
Theorem), 372	Java Virtual Machine, 1123
RSA SecurID, 730–732	sanitized media, 259
RTCP (RTP Control Protocol), 691	Sarbanes-Oxley Act (SOX), 20
RTEs (runtime environments), 1122–1124	SAs (security associations) in IPSec, 608
RTO (recovery time objective)	SASL (Simple Authentication and Security
disaster recovery, 1031–1033	Layer), 624
high availability, 1052	SASs (single-attachment stations)
RTP Control Protocol (RTCP), 691	in FDDI, 498
RTP (Real-time Transport Protocol),	SAST (static application security
689, 691	testing), 1139
RTT (round-trip time) in latency, 654	satellite communications, 589–590
RTUs (remote terminal units)	SCADA (supervisory control and data
DNP3, 626	acquisition) systems, 290, 294
industrial controls, 290	scalability
SCADA systems, 294	Kerberos, 785
Ruff, Howard, 1029	packet-filtering firewalls, 948
rule-based access control (RB-RBAC), 774	stateful firewalls, 952
rule-based IDS/IPS, 967	scans
rules in PKI key management, 366–367	devices, 226
RUM (real user monitoring) vs. synthetic	facial, 728
transactions, 832	iris, 727
runbooks for incidents, 1006	palm, 727
runtime environments (RTEs), 1122–1124	retina, 727
101111111111111111111111111111111111111	software vulnerabilities, 901

scenarios for backups, 863	secure design principles, 390
schemes in URLs, 613	defaults, 396
Schneier, Bruce, 385	defense in depth, 390–391
Scientific Working Group on Digital	failing securely, 396–397
Evidence (SWGDE), 1009	least privilege, 394-395
SCIFs (sensitive compartmented	privacy by design, 397
information facilities), 443	separation of duties, 393-394
SCM (software configuration	shared responsibility, 392-393
management), 1142	simplicity, 395–396
scope creep in project management, 1081	trust but verify, 392
scope of audits, 839	zero trust, 392
scope values in OIDC, 784	secure enclaves in trusted execution
scoping controls, 258	environments, 408
SCPs (service control points), 683	Secure Hash Algorithm (SHA)
screen sharing in meeting applications, 694	description, 352
screened host firewalls,	passwords, 722
959–960, 963	Secure MIME (S/MIME), 626
screened subnet firewalls, 960–962	Secure Shell (SSH)
screening candidates, 35–36	code repositories, 1144
screens in information access control, 801	communications channels, 701–702
script kiddies, 60, 135	secure software
scrubbing logs, 744	acquired software, 1145–1148
Scrum methodology, 1101–1102	APIs, 1132
scytale ciphers, 318	application security testing, 1139–1140
SD-WAN (software-defined wide area	assemblers, compilers, and interpreters,
networking), 635	1120–1122
SDLC. See software development	assessments, 1144–1145
life cycle (SDLC)	change management, 1145
SDN. See software-defined	chapter questions, 1150–1153
networking (SDN)	chapter review, 1148–1150
sealing systems, 405	code repositories, 1143–1144
second-generation (2G) mobile wireless,	cohesion and coupling, 1130–1132
585–586	configuration management, 1142
second-generation programming	continuous integration and delivery,
languages, 1118	1140–1141
secondary storage in information	controls, 1136–1144
access control, 801	development platforms, 1137–1138
SecOps, 887	libraries, 1132–1133
secret algorithms vs. public, 369	object-oriented programming, 1124–1130
secret classification level, 216–218	overview, 1117
secret keys	programming languages and concepts,
hybrid methods, 348	1117–1120
RSA, 340–341	risk analysis and mitigation, 1144–1145
symmetric key cryptography, 329	runtime environments, 1122–1124
secure defaults	secure coding practices, 1134–1136
network security, 598	SOAR, 1141–1142 source code vulnerabilities, 1133–1134
third-party connectivity, 706 web services, 611	
WCD SELVICES, UT I	tool sets, 1138

security	security operations, 939
aligning to business strategy, 13–16	antimalware software, 969–972
assessments. See assessments	artificial intelligence tools, 976–978
endpoint, 673–674	chapter questions, 984–988
network. See network security	chapter review, 982-984
policies, 27–29	firewalls. See firewalls
vs. privacy, 21	honeypots and honeynets, 974-976
security administrators, 24	intrusion detection and prevention systems
security architects, tasks and	overview, 967–969
responsibilities, 886	logging and monitoring, 978-982
security architectures, 385	outsourced security services, 973-974
chapter questions, 413-416	preventive and detective measures overview,
chapter review, 411–413	944–945
encryption locations, 411	sandboxes, 972–973
information systems, 404–410	security operations centers, 939-943
secure design principles, 390-397	security operations centers (SOCs)
security models, 397–404	cyberthreat hunting, 943
security requirements, 404	elements, 940–941
threat modeling, 385-390	overview, 939
Security Assertion Markup Language (SAML),	threat data sources, 942-943
779–780	threat intelligence, 941-942
security associations (SAs) in IPSec, 608	security operations management, 885
security champions, 43	accountability, 887–888
security controls. See controls	change management, 891–893
security directors, tasks and	chapter questions, 934–938
responsibilities, 886	chapter review, 932–934
security effectiveness in control	configuration management, 893-895
assessments, 90–91	foundational concepts overview, 885–887
security film windows, 441	job rotation, 889–890
security information and event	need-to-know and least privilege, 888
management (SIEM) systems	patch management, 903–906
event data, 831	personnel safety and security, 929-932
forensics investigations, 1021	physical security. See physical security and
incidents, 990–991	controls
logs, 744, 979–980	privileged account management, 889
security operations centers, 940	resource protection, 895–899
security managers, tasks and	separation of duties and responsibilities,
responsibilities, 886	888–889
security models	service level agreements, 890
Bell-LaPadula, 398–399	vulnerability management, 900–903
Biba, 399–400	security orchestration, automation, and
Brewer and Nash, 402	response (SOAR) platform
Clark-Wilson, 400	components, 980
Graham-Denning, 402	secure software, 1141–1142
Harrison-Ruzzo-Ullman, 402-404	security programs in frameworks,
noninterference, 400–401	172, 180–183
overview, 397–398	Security Safeguards Principle in OECD, 142
summary, 403	security zones in CPTED, 429–430

SecY (MACSec Security Entity), 501	service-oriented architecture (SOA)
SEDs (self-encrypting drives), 407	description, 780–781
segmentation, network, 295, 703	web services, 612–613
segments in TCP, 509	Service Provisioning Markup Language
SEI (Software Engineering Institute), 993	(SPML), 777–779
select step in Risk Management	Service Set IDs (SSIDs), 565
Framework, 175	services in supply chain risk management, 99
self-encrypting drives (SEDs), 407	Session Initiation Protocol (SIP), 689–691
self-healing SONETs, 539	session keys, 349–350
self-service	session layer
password resets, 737	functions and protocols, 484
profile updates, 740	OSI model, 477–478
Sender Policy Framework (SPF), 624	session management, 740–741
senior management, awareness	severity levels for incidents, 1003
programs for, 41–42	SGML (Standard Generalized Markup
sensitive classification level, 216–217	Language), 776
sensitive compartmented information	SHA (Secure Hash Algorithm)
facilities (SCIFs), 443	description, 352
sensitive data	passwords, 722
classification, 215	shallow depth of focus in CCTV systems, 915
data loss prevention, 266, 270	Shamir, Adi, 340
sensors in incident detection, 995–996	Shannon, Claude, 332
separation of duties (SoD) principle	shared key authentication (SKA), 575
network security, 599	shared portions in objects, 1128
overview, 888–889	shared responsibility principle
purpose, 34	network security, 599
role-based access control, 773	security design, 392–393
security architectures, 393-394	site and facility security, 420–421
site and facility security, 421	third-party connectivity, 706
software development, 1090	web services, 612
third-party connectivity, 706	shareware, 153
web services, 612	sharing data, 238–239
sequels for tabletop exercises, 1063	Shedd, William G.T., 53
sequence numbers in TCP, 508	Sherwood Applied Business Security
server-based systems, 284–285	Architecture (SABSA), 14–15, 173
serverless systems, 299–301	shielded twisted pair (STP) cable, 649
servers	Shkreli, Martin, 20
clustered, 1051	Shortest Path Bridging (SPB) protocol, 657
OAuth, 782	shoulder surfing, 5
proxy, 663–664	side-channel attacks
service availability risk from unmanaged	cryptography, 371–372
patching threats, 904	description, 257
service bureaus in disaster recovery, 1045	smart cards, 734–735
service control points (SCPs), 683	SIEM systems. See security information and
service level agreements (SLAs)	event management (SIEM) systems
high availability, 1050	signal switching points (SSPs), 682
overview, 890	signal transfer points (STPs), 683
supply chain risk management, 101	Signaling System 7 (SS7) protocol, 682

signature-based detection in antimalware	locks, 917–923
software, 969, 971	overview, 417, 916–917
signature dynamics, 727–728	physical security programs, 433-441
signatures in antimalware software, 969	planning steps, 423–427
Simple Authentication and Security	principles, 418–423
Layer (SASL), 624	privacy by design, 423
simple integrity axiom in Biba model, 399	separation of duties, 421
Simple Mail Transfer Protocol (SMTP), 622	shared responsibility, 420–421
Simple Network Management Protocol	simplicity, 422
(SNMP), 522–524	threat modeling, 418–419
Simple Object Access Protocol (SOAP),	trust but verify, 420
614–615, 780	zero trust, 419–420
simple security rule in Bell-LaPadula, 398	Site Security Design Guide, 906
simplex communication, 831	situational awareness, 744
simplex mode in session layer, 478	6to4 tunneling method, 514
simplicity	Six Sigma methodology, 197
network security, 599	SKA (shared key authentication), 575
secure design principles, 395-396	Slack service, 1057
security metrics, 854	SLAs (service level agreements)
site and facility security, 422	high availability, 1050
third-party connectivity, 706	overview, 890
Simpson, O.J., 129–130	supply chain risk management, 101
simulation tests in disaster recovery	SLE (single loss expectancy)
plans, 1064	key risk indicators, 857
simulations for breach attacks, 828	quantitative risk analysis, 73–75
single-attached concentrators (SACs)	slot locks, 921
in FDDI, 498	smart cards
single-attachment stations (SASs)	access codes, 921
in FDDI, 498	attacks on, 734–735
single loss expectancy (SLE)	ownership-based authentication, 733–735
key risk indicators, 857	smart phones, 688
quantitative risk analysis, 73–75	smoke-activated fire suppression, 456
single mode in fiber-optic cable, 651	smoke detectors, 445
single sign-on (SSO)	SMTP (Simple Mail Transfer Protocol), 622
identity management, 750–752	Smyth, Robin, 20
replay attacks, 372–373	SNMP (Simple Network Management
SIP (Session Initiation Protocol), 689–691	Protocol), 522–524
site and facility security	snooping in DHCP, 519
access control, 802–803	Snowden, Edward, 62
backups, 1040–1041	SOA (service-oriented architecture)
chapter questions, 463–465	description, 780–781
chapter review, 461–462	web services, 612–613
controls. See controls for site and facilities	SOAP (Simple Object Access Protocol),
CPTED, 427–433	614–615, 780
defaults, 422	SOAR (security orchestration, automation,
defense in depth, 419	and response) platform
design overview, 417–418	components, 980
least privilege, 421	secure software, 1141–1142

social engineering	software development
awareness programs, 42	Agile methodologies, 1100–1103
cryptography attacks, 375	chapter questions, 1112–1116
description, 5, 60	chapter review, 1110-1111
human vulnerabilities, 902–903	cleanroom methodology, 1105
passwords, 721	DevOps, 1103–1104
training, 864–865	DevSecOps, 1104
social network vulnerabilities, 60	exploratory methodology, 1104
sockets	Incremental methodology, 1096–1097
description, 504	Joint Application Development
network, 703	methodology, 1104
SOCKS proxy firewalls, 956	maturity models, 1106–1110
SOCs. See security operations	methodologies overview, 1095
centers (SOCs)	methodologies summary, 1106
SoD principle. See separation	overview, 1079
of duties (SoD) principle	prototypes, 1096
soft controls for risk responses, 83	Rapid Application Development
soft tokens in one-time passwords, 732	methodology, 1099–1100
software	reuse methodology, 1105
antimalware, 969–972	roles, 1080
backups in business continuity	SDLC. See software development
planning, 1070	life cycle (SDLC)
cryptography systems, 602	Spiral methodology, 1098–1099
escrow, 1070, 1143	Waterfall methodology, 1095–1096
licensing, 226	software development life cycle (SDLC)
meeting applications, 695	design phase, 1083–1087
piracy, 153–154	development phase, 1087–1089
secure. See secure software	operations and maintenance phase,
smart card attacks, 735	1091–1094
supply chain risk management, 99	overview, 1079–1080
tracking, 224–227	phases summary, 1094
vulnerabilities, 901	project management, 1081
Software as a Service (SaaS),	requirements gathering phase, 1082-1083
228, 302–303	testing phase, 1089–1091
Software Assurance Maturity Model (SAMM),	Software Engineering Institute (SEI), 993
1109–1110	software engineers, 1080
software configuration	software guard in MAC, 770
management (SCM), 1142	Software Requirements
software-defined networking (SDN)	Specification (SRS), 1083
approaches, 634-635	solar window film windows, 441
control and forwarding planes, 633–634	solid-core doors, 440
overview, 632–633	something a person does authentication
secure software, 1136	factor, 718
software-defined security (SDS), 1136	something a person has authentication
software-defined wide area	factor, 718–719
networking (SD-WAN), 635	something a person is authentication factor, 718
software developers, tasks and	something a person knows authentication
responsibilities, 886	factor, 718