CSC2515 Fall 2022: Introduction to Machine Learning Homework 3

Collaborators: Chen Dan and Hongbo Zhou

Student Name: Yulin Wang ID Number: 1003942326

2022-11-23

Q1. Backpropagation

(a)

The dimension of $W^{(1)}$: $d \times d$

The dimension of $W^{(2)}$: $1 \times d$

The dimension of z_1 : $d \times 1$

The dimension of z_2 : $d \times 1$

(b)

Since the number of parameters in this network is the number of total elements in $W^{(1)}$ and $W^{(2)}$, so it can be calculated by:

$$dim(W^{(1)}) + dim(W^{(2)}) = d^2 + d$$

(c)

$$\bar{y} = \frac{\partial \mathcal{L}}{\partial y} = y - t$$

$$\bar{W}^{(2)} = \bar{y} \frac{\partial y}{\partial W^{(2)}} = \bar{y} z_2^{\mathsf{T}} = (y - t) z_2^{\mathsf{T}}$$

$$\bar{z}_2 = \bar{y} \frac{\partial y}{\partial z_2} = W^{(2)^{\mathsf{T}}} \bar{y} = W^{(2)^{\mathsf{T}}} (y - t)$$

$$\bar{h} = \bar{z}_2 \frac{\partial z_2}{\partial h} = \bar{z}_2 = W^{(2)^{\mathsf{T}}} (y - t)$$

$$\bar{z}_1 = \bar{h} \frac{\partial h}{\partial z_1} = \bar{h} \circ \sigma'(z_1) = W^{(2)^{\mathsf{T}}} (y - t) \circ \sigma'(z_1) \quad \text{, where } \circ \text{ means element-wise product}$$

$$\bar{W}^{(1)} = \bar{z}_1 \frac{\partial z_1}{\partial W^{(1)}} = \bar{z}_1 x^{\mathsf{T}} = \bar{h} \circ \sigma'(z_1) x^{\mathsf{T}} = W^{(2)^{\mathsf{T}}} (y - t) \circ \sigma'(z_1) x^{\mathsf{T}}$$

$$\bar{x} = \bar{z}_1 \frac{\partial z_1}{\partial x} + \bar{z}_2 \frac{\partial z_2}{\partial x} = W^{(1)} \bar{z}_1 + \bar{z}_2 = W^{(1)} W^{(2)^{\mathsf{T}}} (y - t) \circ \sigma'(z_1) + W^{(2)^{\mathsf{T}}} (y - t)$$

Q2. Multi-Class Logistic Regression

(a)

$$\begin{split} \frac{\partial y_k}{\partial z_{k'}} &= \frac{\partial}{\partial z_{k'}} \big\{ \frac{e^{z_k}}{\sum_{k'=1}^K e^{z_{k'}}} \big\} \\ &= \frac{\frac{\partial e^{z_k}}{\partial z_{k'}} \cdot \sum_{k'=1}^K e^{z_{k'}} - \frac{\partial \sum_{k'=1}^K e^{z_{k'}}}{\partial z_{k'}} \cdot e^{z_k}}{\{\sum_{k'=1}^K e^{z_{k'}}\}^2} \end{split}$$

Case 1: When k = k', we have:

$$\frac{\partial e^{z_k}}{\partial z_{k'}} = \frac{\partial e^{z_k}}{\partial z_k} = e^{z_k}; \frac{\partial \sum_{k'=1}^K e^{z_{k'}}}{\partial z_{k'}} = \frac{\partial \sum_{k'=1}^K e^{z_{k'}}}{\partial z_k} = \frac{\partial e^{z_k}}{\partial z_k} = e^{z_k}$$

Thus,

$$\begin{split} \frac{\partial y_k}{\partial z_{k'}} &= \frac{e^{z_k} \cdot \sum_{k'=1}^K e^{z_{k'}} - e^{z_k} \cdot e^{z_k}}{\{\sum_{k'=1}^K e^{z_{k'}}\}^2} \\ &= \frac{e^{z_k} \cdot \{\sum_{k'=1}^K e^{z_{k'}} - e^{z_k}\}}{\{\sum_{k'=1}^K e^{z_{k'}}\}^2} \\ &= \frac{e^{z_k}}{\sum_{k'=1}^K e^{z_{k'}}} \cdot \frac{\sum_{k'=1}^K e^{z_{k'}} - e^{z_k}}{\sum_{k'=1}^K e^{z_{k'}}} \\ &= y_k \cdot (1 - \frac{e^{z_k}}{\sum_{k'=1}^K e^{z_{k'}}}) \\ &= y_k \cdot (1 - y_k) \\ &= y_k - y_k^2 \end{split}$$

Case 2: When $k \neq k'$, we have:

$$\frac{\partial e^{z_k}}{\partial z_{k'}} = 0; \frac{\partial \sum_{k'=1}^K e^{z_{k'}}}{\partial z_{k'}} = \frac{\partial e^{z_{k'}}}{\partial z_{k'}} = e^{z_{k'}}$$

Thus,

$$\begin{aligned} \frac{\partial y_k}{\partial z_{k'}} &= \frac{0 - e^{z_{k'}} \cdot e^{z_k}}{\left\{\sum_{k'=1}^K e^{z_{k'}}\right\}^2} \\ &= -\frac{e^{z_{k'}}}{\sum_{k'=1}^K e^{z_{k'}}} \cdot \frac{e^{z_k}}{\sum_{k'=1}^K e^{z_{k'}}} \\ &= -y_{k'} y_k \end{aligned}$$

(b)

Since

$$\begin{split} \frac{\partial \mathcal{L}_{CE}(t, y(x; W))}{\partial w_k} &= \frac{\partial - \sum_{i=1}^{K} t_i log y_i}{\partial w_k} \\ &= \sum_{i=1}^{K} \{ \frac{\partial - t_i log y_i}{\partial y_i} \cdot \frac{\partial y_i}{\partial z_k} \cdot \frac{\partial z_k}{\partial w_k} \} \end{split}$$

and we have

$$\frac{\partial -t_i log y_i}{\partial y_i} = -\frac{t_i}{y_i} \quad ; \ i=1,...,K$$

$$\frac{\partial y_i}{\partial z_k} = y_k - y_k^2 \quad \text{for } i=k; \quad \frac{\partial y_i}{\partial z_k} = -y_i y_k \quad \text{for } i \neq k \qquad \text{,from part (b)}$$

$$\frac{\partial z_k}{\partial w_k} = x$$

Thus,

$$\begin{split} \frac{\partial \mathcal{L}_{CE}(t,y(x;W))}{\partial w_k} &= \sum_{i=1}^K \{ \frac{\partial -t_i log y_i}{\partial y_i} \cdot \frac{\partial y_i}{\partial z_k} \cdot \frac{\partial z_k}{\partial w_k} \} \\ &= \sum_{i\neq k}^K \{ -\frac{t_i}{y_i} \cdot -y_i y_k \cdot x \} + \{ -\frac{t_k}{y_k} \cdot (y_k - y_k^2) \cdot x \} \\ &= \sum_{i\neq k}^K t_i y_k x + (-t_k x + t_k y_k x) \\ &= y_k x \sum_{i\neq k}^K t_i + t_k y_k x - t_k x \\ &\text{; since t is a one-hot encoding of the output, so } \sum_{i=1}^K t_i = 1 \text{ and } \sum_{i\neq k}^K t_i = 1 - t_k \\ &= y_k x (1 - t_k) + t_k y_k x - t_k x \\ &= y_k x - t_k y_k x + t_k y_k x - t_k x \end{split}$$

 $= y_k x - t_k x$ $= (y_k - t_k) x$

$$\frac{\partial f(z;w)}{\partial z} = \frac{\partial \varphi(z)^T w}{\partial z} = \varphi'(z)^T w$$

$$\left\|\frac{\partial_{\tau}f(z;w)}{\partial z}\right\|_{2}^{2}=\left\|\varphi(z)^{T}w\right\|_{2}^{2}=\left(\varphi(z)^{T}w\right)^{T}\varphi(z)^{T}w=w^{T}\varphi(z)\varphi(z)^{T}w$$

$$R(w) = \int_{\mathcal{B}} \left| \left| \frac{dfes(w)}{dn} \right| \right|^{2} dn$$

$$= \int_{\mathcal{B}} w^{T} p(x) p(x)^{T} w dn \qquad ; from part (b)$$

$$= w^{T} \int_{\mathcal{B}} p(x) f(x)^{T} dn w$$

$$= w^{T} \int_{\mathcal{B}} ||p(x)||^{2} dn w$$

3.1 d

$$R(w) = W^{T} \int_{0}^{1} |p'(x)|^{2} dx W$$

$$= W^{T} \int_{0}^{1} |dx W ; \text{ since } p'(x) = 0 \text{ , then } p'(x) = 1$$

$$= W^{T} W$$

$$0 \ g_{1}(z) = \sin(2\pi z) = 2\pi \cos(2\pi z) , \text{ and } \int_{0}^{1} \cos^{2}(2\pi kz) dz = \frac{1}{2} \text{ for } k = 1, 2, 3, ...$$

$$\rightarrow \int_{0}^{1} |g_{1}(z)|^{2} dz = \int_{0}^{1} |2\pi \cos(2\pi z)|^{2} dz = 4\pi^{2} \int_{0}^{1} \cos^{2}(2\pi z) dz = 4\pi^{2} \cdot \frac{1}{2} = 2\pi^{2}$$

(3)
$$J_2(z) = \sin(20\pi z) = 20\pi\cos(20\pi z)$$
, and $\int_0^1 \cos^2(2\pi kz) dz = \frac{1}{2} \text{ for } k = 1, 2, 3, ...$

$$\rightarrow \int_0^1 |g_2(z)|^2 dz = \int_0^1 |20\pi\cos(2\pi z)|^2 dz = 400\pi^2 \int_0^1 \cos^2(2\pi kz) dz = 400\pi^2 \cdot \frac{1}{2} = 200\pi^2$$

```
31 f>
       $(0) = [ sincl . 200), ..., sinck. 200), ..., sincp. 200)].
   \rightarrow \phi_{i\omega} \phi_{i\omega}^{\dagger} = [sin'(1.2n\omega), ..., sin'(2.2n\omega), ..., sin'(2.2n\omega)]^{\dagger}[sin'(1.2n\omega), ..., sin'(2.2n\omega), ..., sin'(2.2n\omega)]
                   [sin'(1.210)] --- sin'(1.210)sin'(k.210) --- sin'(1.210)sin'(p.210)
            sn'ck-2me)sm'cl-2me) ··· [sin'ck-2me]
                                                                        --- sin'ck-27x)sin'c p. 27x)
             sin'c p. 2008) sin'cl · 2008) · · · sin'c p. 2008 sin'ck · 2008)
                                                                                       [sin'49.200)]
                    4 n Cos (21x)
                                             MOSCORED DAKCE CORKED
                                                                                ZROSUNO ZAPOSOAPE)
             ZAKOSCIAKE) ZACOSCIAGI
                                               mikosinke)
                                                                                ZAKOSCIAKE): ZAPOSCIAPE)
             unpasconpe)·unascene) ··· unpasconpe)·unkascente) ··· 4n°p°as²cunpe)
                   since S' Ox contro ox contro da = 0 when k = k'
                    4 Ti Cas (2 TX)
                                               mikrosinka)
Thus.
```

It behaves as an le regularizer and its smoothness depends on the number of terms it has, which is k here.

 $R(w) = w^{T} \int_{\mathcal{B}} g'(\omega) g'(\omega)^{T} dv w = w^{T} (2\pi^{2} \int_{i=1}^{L} i^{2}) w = ||w||_{L^{2}(2\pi^{2} + \frac{L}{i+1})}^{L^{2}} ||w||_{L^{2}(2\pi^{2} + \frac{L}{i+1})}^{L^{2}}||w||_{L^{2}(2\pi^{2} + \frac{L}{i+1})}^$

3. [

9>

3) 4

Since
$$P(w) = \frac{1}{\omega \pi \omega^{\frac{1}{2}} \int |\Sigma_w|} \exp(-\frac{1}{2}w^{\frac{1}{2}} \sum_{w}^{-1} w)$$
 and $P(D|\Sigma_w, w) = \frac{1}{14} \frac{1}{\omega \pi \omega^{\frac{1}{2}}} \exp(-\frac{(\frac{1}{4} - w^{\frac{1}{2}} \omega)^{\frac{1}{2}}}{2\omega^{\frac{1}{2}}})$

So $P(w|D) = \frac{1}{14} \frac{p(y_1|w) \cdot p(w)}{p(Q)}$ $\swarrow \frac{1}{14} \frac{p(y_1|w) \cdot p(w)}{p(Q)}$

Then.

$$\hat{W}_{nap} = \underset{w}{\operatorname{argmax}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} P(\xi_{i}|w) P(w)$$

$$= \underset{w}{\operatorname{argmax}} \log \left\{ \int_{\overline{2\pi} G^{*}}^{\frac{\pi}{2}} e^{-\frac{\pi}{2}} e^{-\frac{\pi}{2}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\xi_{i} - w^{*}z_{i})^{*} \right\}$$

$$= \underset{w}{\operatorname{argmax}} \log \left\{ \int_{\overline{2\pi} G^{*}}^{\frac{\pi}{2}} e^{-\frac{\pi}{2}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\xi_{i} - w^{*}z_{i})^{*} \right\}$$

$$= \underset{w}{\operatorname{argmax}} \log \left\{ \int_{\overline{2\pi} G^{*}}^{\frac{\pi}{2}} e^{-\frac{\pi}{2}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\xi_{i} - w^{*}z_{i})^{*} \right\}$$

$$= \underset{w}{\operatorname{argmax}} \left\{ -\frac{1}{2} w^{*} \sum_{i} w^{*} - \frac{\frac{\pi}{2}}{2} (\xi_{i} - w^{*}z_{i})^{*} \right\}$$

$$= \underset{w}{\operatorname{argmix}} \left\{ \frac{1}{2} w^{*} \sum_{i} w^{*} + \frac{1}{2} e^{-\frac{\pi}{2}} (\xi_{i} - w^{*}z_{i})^{*} \right\}$$

$$= \underset{w}{\operatorname{argmix}} \left\{ \frac{1}{2} w^{*} \sum_{i} w^{*} + \frac{1}{2} e^{-\frac{\pi}{2}} (\xi_{i} - w^{*}z_{i})^{*} \right\}$$

32 6>

$$\hat{W}_{MP} = \underset{W}{\operatorname{argmin}} \left\{ \begin{array}{l} \frac{1}{2} w^{T} Z_{w}^{T} w + \frac{1}{26^{2}} \sum_{j=1}^{N} (y_{j} - w^{T} Z_{j})^{2} \\ = \underset{W}{\operatorname{argmin}} \left\{ \begin{array}{l} \frac{1}{2} w^{T} w + \frac{1}{26^{2}} \sum_{j=1}^{N} (y_{j} - w^{T} Z_{j})^{2} \\ = \underset{W}{\operatorname{argmin}} \left\{ \begin{array}{l} \frac{1}{26w^{T}} \|w\|_{2}^{2} + \frac{1}{26^{2}} \sum_{j=1}^{N} (y_{j} - w^{T} Z_{j})^{2} \\ \end{array} \right\} \\ = \underset{W}{\operatorname{argmin}} \left\{ \frac{1}{26w^{T}} \|w\|_{2}^{2} + \frac{1}{26^{2}} \sum_{j=1}^{N} (y_{j} - w^{T} Z_{j})^{2} \right\}$$

$$\widehat{W}_{NN} = \underset{W}{\operatorname{argmax}} \underbrace{\prod_{j=1}^{N} P(x_{j}|w) P(w)}$$

$$= \underset{W}{\operatorname{argmax}} \underbrace{\log \left\{ \underbrace{\frac{1}{2} P(x_{j}|w) P(w)}_{N} P(w) \right\}}_{W}$$

$$= \underset{W}{\operatorname{argmax}} \underbrace{\log \left\{ \underbrace{\frac{1}{2} b \exp \left(-\frac{\|w\|_{1}}{b} \right) \cdot \underbrace{\prod_{j=1}^{N} \left(\lim_{j=1}^{N} \frac{1}{|w|_{1}} \right) \exp \left(-\frac{2k_{j} - w_{i}^{*} g_{i}^{*}}{2k_{i}^{*}} \right) \right\}}_{= \underset{W}{\operatorname{argmax}} \underbrace{\log \left\{ \underbrace{\frac{1}{2} b \cdot (2n)^{2} \int_{SA}^{N} \left(\frac{1}{b} - w_{i}^{*} g_{i}^{*}}{2k_{i}^{*}} \right) + \left(-\frac{1|w|_{1}}{b} - \frac{\sum_{j=1}^{N} (k_{j} - w_{i}^{*} g_{j}^{*}}{2k_{i}^{*}} \right) \right\}}_{= \underset{W}{\operatorname{argmax}}}$$

$$= \underset{W}{\operatorname{argmax}} \underbrace{\left\{ -\frac{1|w|_{1}}{b} + \frac{\sum_{j=1}^{N} (k_{j} - w_{i}^{*} g_{j}^{*}}{2k_{i}^{*}} \right\}}_{2k_{i}^{*}}$$

$$= \underset{W}{\operatorname{argmax}} \underbrace{\left\{ -\frac{1|w|_{1}}{b} + \frac{\sum_{j=1}^{N} (k_{j} - w_{i}^{*} g_{j}^{*}}{2k_{i}^{*}} \right\}}_{2k_{i}^{*}}$$

3.2 d>

- 10 The MAP estimates with Governon is related to the Le regularized estimators.
- 3 The MAP estimates with Laplace priors is related to the L1 regularized estimators.

Q4. Handwritten Digit Classification

4.0

```
94 def plot means(train data, train labels):
95
        means = []
        for i in range(0, 10):
96
 97
            i_digits = get_digits_by_label(train_data, train_labels, i)
 98
            # Compute mean of class i
            i_mean = np.mean(i_digits, axis=0)
 99
100
            i_mean = i_mean.reshape((8,8))
101
            means.append(i mean)
        # Plot all means on same axis
103
104
        all concat = np.concatenate(means, 1)
        plt.imshow(all concat, cmap='gray')
106
       plt.show()
  2 train_data, train_labels, test_data, test_labels = load_all_data_from_zip
  3 # Plot the means.
  4 plot means(train data, train labels)
       10
             20
                  30
                       40
                            50
                                 60
                                       70
```

4.1.1

```
For K = 1, the train classification accuracy is: 1.0.

For K = 1, the test classification accuracy is: 0.96875.

For K = 15, the train classification accuracy is: 0.9594285714285714.

For K = 15, the test classification accuracy is: 0.9585.
```

4.1.2

We can choose to weight tied K-NN by distance. Typically we can weight the neighbors so that the nearest points to the unobserved point have a greater weight, and then compare the ties again.

4.1.3

```
The optimal K is: 3. The validation accuracy is: 0.9634285714285713. For the optimal K = 3, the train classification accuracy is: 0.9834285714285714. For the optimal K = 3, the test classification accuracy is: 0.96975.
```

4.2.1 MLP - Neural Network Classifier

Taking overfitting into consideration, we used the GridSearchCV from sklearn.model_selection to find the optimal parameters.

Here are the potential parameters:

```
params = {
    'hidden_layer_sizes': [(64, 64), (64, 100), (64, 64, 64)],
    'activation': ['relu', 'logistic', 'tanh'],
    'learning_rate_init': [0.001, 0.01, 0.1],
    'max_iter': [100, 200, 300]
}
```

The optimal set of hyper-parameters for MLP-NN Classifier is: 'activation': 'relu', 'hidden layer sizes': (64, 64, 64), 'learning rate init': 0.01, 'max iter':100

4.2.2 SVM classifier

Similarly, we used the GridSearchCV from sklearn.model_selection to find the optimal parameters. Here are the potential parameters:

```
params= {
     'kernel': ['linear', 'poly', 'rbf', 'sigmoid'],
     'gamma': ['auto', 'scale']
}
```

The optimal set of hyper-parameters for SVM Classifier is: 'gamma': 'scale', 'kernel': 'rbf'

4.2.3 AdaBoost Classifier

Similarly, we used the GridSearchCV from $sklearn.model_selection$ to find the optimal parameters. Here are the potential parameters:

```
params = {
    'n_estimators': [50, 75, 100],
    'learning_rate': [0.001, 0.01, 0.1]
}
```

The optimal set of hyper-parameters for AdaBoost Classifier is: 'learning rate': 0.001, 'n estimators': 100

4.3 Model Comparison

4.3.1 ROC (Receiver Operating Characteristics) curve

4.3.2 Confusion Matrix

1	The	CC	onfus	ion	mati	rix o	of 3-	-NN (class	sifie	er:	The	C	onfus	sion	mati	rix o	of M	LP-N	N cla	assif	ier:
	[[4	00	0	0	0	0	0	0	0	0	0]	[[3	96	0	0	0	3	1	0	0	0	0]
	[0	400	0	0	0	0	0	0	0	0]]	0	399	0	0	0	0	0	1	0	0]
	[4	0	389	0	1	1	2	2	1	0]	ī	4	0	378	3	2	1	6	3	3	0 j
	[0	1	3	383	0	8	1	1	2	1]	ī	1	1	5	371	0	11	0	7	3	1]
	[0	1	0	0	391	0	1	1	0	6]	ī	0	1	0	0	397	0	2	0	0	0 j
	[2	0	1	8	0	385	1	1	2	0]	Ī	2	0	0	4	0	391	1	2	0	0]
	[2	5	1	0	1	1	388	0	2	0]	[2	3	2	0	2	0	391	0	0	0]
	[0	2	1	0	2	0	0	389	0	6]	Ī	1	0	1	0	1	0	0	397	0	0]
	[1	2	1	4	2	14	1	2	368	5]	[2	5	1	3	0	10	1	5	369	4]
	[0	1	0	1	5	0	0	7	0	386]]	[0	0	0	0	6	2	1	15	1	375]]
	mb -	-	<i>6</i>		L -		- F GT	T) ('	1	: <i>c</i> :		ml .							1-5-			
			onfus	sion		rix o			lassi							matı				ost		sifier:
	The [[3	99	1	0	0	0	0	/M с:	0	0	0]	The	61	0	4	1	5	6	10	1	10	2]
		99	1 399	0	0	0	0	0	0	0	0] 0]				4 4	1 2	5 4	6 2	10 1	1 2	10 3	2] 2]
		9 9 0 0	1	0 0 391	0 0 3	0 0 0	0 0 1	0 1 3	0 0 0	0 0 2	0] 0] 0]		61	0	4 4 314	1 2 15	5 4 14	6 2 13	10 1 13	1 2 6	10 3 14	2] 2] 5]
		99 0 0	1 399 0 1	0 0 391 5	0 0 3 379	0 0 0	0 0 1 6	0 1 3 0	0 0 0 3	0 0 2 5	0] 0] 0] 1]		61 0 4 1	0 380 2 4	4 4 314 28	1 2 15 310	5 4 14 0	6 2	10 1 13 2	1 2 6 9	10 3 14 14	2] 2] 5] 10]
		9 9 0 0	1 399 0 1	0 0 391 5 0	0 0 3 379 0	0 0 0 0 397	0 0 1 6	0 1 3	0 0 0	0 0 2 5 0	0] 0] 0] 1]		61 0 4 1 2	0 380 2	4 4 314 28 7	1 2 15 310 5	5 4 14	6 2 13 22 4	10 1 13 2 7	1 2 6 9 3	10 3 14 14 6	2] 2] 5] 10] 8]
		99 0 0 0 0	1 399 0 1 0	0 0 391 5 0	0 0 3 379 0 6	0 0 0 0 397 0	0 0 1 6 0 391	0 1 3 0 2 1	0 0 0 3 0	0 0 2 5 0	0] 0] 0] 1] 1]		61 0 4 1	0 380 2 4	4 4 314 28 7 6	1 2 15 310	5 4 14 0	6 2 13 22	10 1 13 2	1 2 6 9	10 3 14 14	2] 2] 5] 10]
		99 0 0 0 0 1	1 399 0 1 0 0	0 0 391 5 0 0	0 0 3 379 0 6	0 0 0 0 397 0 4	0 0 1 6 0 391	0 1 3 0	0 0 0 3 0 1	0 0 2 5 0	0] 0] 0] 1] 1] 0]	[[3 [[[[[61 0 4 1 2	0 380 2 4 6	4 4 314 28 7	1 2 15 310 5	5 4 14 0 352	6 2 13 22 4	10 1 13 2 7	1 2 6 9 3	10 3 14 14 6	2] 2] 5] 10] 8]
		99 0 0 0 0	1 399 0 1 0	0 0 391 5 0	0 0 3 379 0 6	0 0 0 0 397 0	0 0 1 6 0 391	0 1 3 0 2 1	0 0 0 3 0	0 0 2 5 0	0] 0] 0] 1] 1]	[[3 [[[[[61 0 4 1 2	0 380 2 4 6	4 4 314 28 7 6	1 2 15 310 5 34	5 4 14 0 352 5	6 2 13 22 4 325	10 1 13 2 7 12	1 2 6 9 3 2	10 3 14 14 6 8	2] 2] 5] 10] 8] 2]

1 389]]

0 14 10

0 11 18 334]]

4.3.3 Accuracy

```
The accuracy of 3-NN classifier:
0.96975
The accuracy of MLP-NN classifier:
0.966
The accuracy of SVM classifier:
0.97875
The accuracy of AdaBoost classifier:
0.8475
```

4.3.4 Precision & 4.3.5 Recall

Classificatio	n report for	3-NN cla	ssifier:		Classification	n report for	MLP-NN c	lassifier:	
	precision	recall	fl-score	support		precision	recall	f1-score	support
0.0 1.0 2.0 3.0	0.98 0.97 0.98 0.97	1.00 1.00 0.97 0.96	0.99 0.99 0.98 0.96	400 400 400	0.0 1.0 2.0 3.0	0.97 0.98 0.98 0.97	0.99 1.00 0.94 0.93	0.98 0.99 0.96 0.95	400 400 400 400
4.0 5.0 6.0 7.0 8.0 9.0	0.97 0.94 0.98 0.97 0.98	0.98 0.96 0.97 0.97 0.92	0.98 0.95 0.98 0.97 0.95	400 400 400 400 400 400	4.0 5.0 6.0 7.0 8.0 9.0	0.97 0.94 0.97 0.92 0.98 0.99	0.99 0.98 0.98 0.99 0.92 0.94	0.98 0.96 0.98 0.96 0.95	400 400 400 400 400 400
accuracy macro avg weighted avg	0.97 0.97	0.97 0.97	0.97 0.97 0.97	4000 4000 4000	accuracy macro avg weighted avg	0.97 0.97	0.97 0.97	0.97 0.97 0.97	4000 4000 4000

Classificatio	on report for	SVM clas	sifier:		Classification report for ADA classifier:						
	precision	recall	f1-score	support		precision	recall	f1-score	support		
0.0	0.99	1.00	1.00	400	0.0	0.92	0.90	0.91	400		
1.0	0.99	1.00	0.99	400	1.0	0.93	0.95	0.94	400		
2.0	0.98	0.98	0.98	400	2.0	0.79	0.79	0.79	400		
3.0	0.96	0.95	0.96	400	3.0	0.78	0.78	0.78	400		
4.0	0.97	0.99	0.98	400	4.0	0.83	0.88	0.86	400		
5.0	0.97	0.98	0.97	400	5.0	0.80	0.81	0.81	400		
6.0	0.98	0.98	0.98	400	6.0	0.87	0.85	0.86	400		
7.0	0.98	0.98	0.98	400	7.0	0.91	0.90	0.90	400		
8.0	0.98	0.96	0.97	400	8.0	0.78	0.79	0.78	400		
9.0	0.98	0.97	0.98	400	9.0	0.86	0.83	0.85	400		
accuracy			0.98	4000	accuracy			0.85	4000		
macro avg	0.98	0.98	0.98	4000	macro avg	0.85	0.85	0.85	4000		
weighted avg	0.98	0.98	0.98	4000	weighted avg	0.85	0.85	0.85	4000		

4.3.5 Summary

Among the four classifiers with their optimal set of hyper-parameters, the SVM classifier performed the best and the AdaBoost classifier performed the worst. This does not exactly match my expectation. Since I expected the MLP-NN classifier performed the best and the K-NN classifier performed the worst.

The SVM classifier performed the best, which might because that we tuned an appropriate kernel functions o that a non-linear decision surface is able to transformed to a linear equation in high dimensions. While the AdaBoost classifier performed the worst, which might because that our tuned parameters did not perform well in turning a weak-learner into a stronger one. Moreover, the K-NN and MLP-NN had a good performance, with a very close accuracy, which is only slightly smaller than that of SVM.

The computation cost ranking is:

MLP-NN classifier > SVM classifier > AdaBoost classifier > K-NN classifier