NOM: Prénom:

Questions de cours

	• $M = \frac{\phi_{\text{ray}}}{\pi r_{\text{v}}^2}$ [1] = $\frac{300}{\pi \times 0.5^2}$ = 382 W m ⁻² [0.5] • $M = \sigma T^4$ [1] $\rightarrow T = (M/\sigma)^{1/4} = (382/5.67 \ 10^{-8})^{1/4} = 286.5 \text{ K soit } 13.5 \text{ °C } [0.5]$	3	
2	• $R_{\rm v} = \frac{e}{\lambda S_{\rm v}} [0.5] = \frac{0.004}{1 \times \pi \times 0.5^2} = 5.1 \ 10^{-3} \ {\rm K W^{-1}} [0.5]$ • Loi de Fick $[0.5]$ • $J_{\rm Q} = -\lambda \frac{\partial T}{\partial x} [1] = -\lambda \frac{T_{\rm ext} - T_{\rm int}}{e} = -1 \times \frac{13.5 - 19}{0.004} = 1375 \ {\rm W m^{-2}} [0.5]$	3	
		6	

1^{er} principe – Vitesse quadratique moyenne

	/					
1	• Équilibre mécanique du piston mobile [0.5] $P_{\rm Bi} = P_0$ [0.5]	1				
2	• Équilibre thermique entre A et B via la cloison diatherme [0.5] $T_{\text{Bi}} = T_{\text{Ai}} = T_{\text{i}}$ [0.5]					
3	• $v_{\rm Ar} = \sqrt{\frac{3RT_{\rm Ai}}{M_{\rm Ar}}}$ [0.5] $\approx 500~{\rm m~s^{-1}}$ [0.5] $v_{\rm O_2} = \sqrt{\frac{3RT_{\rm Ai}}{M_{\rm O_2}}}$ [0.5] $\approx 560~{\rm m~s^{-1}}$ [0.5]					
4	• $P_{Ai} = n_A R T_{Ai}/V_A$ [0.5] = 2 × 8.31 × 400/(4 10 ⁻²) = 166 200 Pa [0.5] • $V_{Bi} = n_B R T_{Ai}/P_0$ [0.5] = 1 × 8.31 × 400/10 ⁵ = 33.3 10 ⁻³ m ³ soit 33.3 L [0.5]					
5	On chauffe l'argon contenu dans le compartiment A à volume constant ; d'après le 1 ^{er} principe l'énergie interne du gaz U_A augmente de même que T_A puisque $\Delta U_A = C_V \Delta T_A$ [0.5]. La paroi fixe étant diatherme, le dioxygène est à la température $T_{Bf} = T_{Af} = T_f$ à l'équilibre [0.5]. La transformation du dioxygène se faisant à $P_B = P_0$ constante, le volume de B augmente. [0.5]					
6	• Équilibre mécanique du piston mobile $P_{\mathrm{Bf}} = P_0$ [0.5]	0.5				
7	• Équilibre thermique entre A et B via la cloison diatherme $T_{ m Bf} = T_{ m Af} = T_{ m f}$ [0.5]	0.5				
8	• Équation état du GP: • $P_{Af} = \frac{n_A R T_f}{V_A}$ [0.5] • $V_{Bf} = \frac{n_B R T_{Bf}}{P_0} = \frac{n_B R T_f}{P_0}$ [0.5]	1				
9	• isobare : $P_{\text{ext}} = P_0$ [0.5] $\rightarrow W_{\text{B}} = \int P_{\text{ext}} dV = -P_0 (V_{\text{Bf}} - V_{\text{Bi}})$ [1]	1.5				
10	• 1er principe : $Q_A = \Delta U_{A+B} - W_B$ [0.5] avec (i) $\Delta U_{A+B} = (3/2 \ n_A + 5/2 \ n_B) \ (T_f - T_i)$ [0.5] et (ii) $W_B = -P_0 \ (V_{Bf} - V_{Bi})$ [0.5], il vient $Q = (3/2 \ n_A + 5/2 \ n_B) \ (T_f - T_i) + P_0 \ (V_{Bf} - V_{Bi})$ [0.5]	2				
11	• $W_{\rm B} = -P_0 (V_{\rm Bf} - V_{\rm Bi}) = -n_B R (T_{\rm f} - T_{\rm i})$ [1] $\rightarrow Q = (3/2 \ n_{\rm A} + 7/2 \ n_{\rm B}) (T_{\rm f} - T_{\rm i})$ $T_{\rm f} = T_{\rm i} + \frac{2 \ Q}{(3 \ n_{\rm A} + 7 \ n_{\rm B}) R}$ [1]	2				
12	• le système A évolue à volume constant : $\Delta U_{\rm A} = Q_{\rm A} = C_{\rm V} (T_{\rm f} - T_{\rm i}) = 3/2 \ n_{\rm A} (T_{\rm f} - T_{\rm i})$ [1]	1				
13	• le système B évolue à pression constante : $\Delta H_{\rm B} = Q_{\rm B} = C_{\rm P} \left(T_{\rm f} - T_{\rm i} \right) = 7/2 \ n_{\rm A} \left(T_{\rm f} - T_{\rm i} \right)$ [1]	1				
14	• avec le résultat intermédiaire de la question 11, on voit que $Q = Q_A + Q_B$ [1] • L'énergie thermique apportée par la résistance est répartie sur A et B. [1]	2				
15	• Effet Joule : $Q = rI^2\Delta t$ [1]	1				
16	• $Q = 1.3 \times 2^2 \times 10^3 = 5200 \text{ J} [0.5]$	0.5				
	• $T_{\rm f} = 127 + \frac{2 \times 5200}{(3 \times 2 + 7 \times 1) \times 8.31} = 127 + 96 = 223 ^{\circ}{\rm C} [0.5]$					
17	• $P_{\text{Af}} = \frac{2 \times 8.31 \times (223 + 273)}{0.040} = 206 \ 088 \approx 2 \ 10^5 \ \text{Pa} $ soit 2 bar [0.5]	1.5				
	• $V_{\text{Bf}} = \frac{1 \times 8.31 \times (223 + 273)}{10^5} = 0.041 \text{ m}^3 \text{ soit } 41 \text{ L} \text{ [0.5]}$					
			·			

22

NOM: Prénom:

Étude d'un cycle en diagramme (P,T)

	Étude d'un cycle en diagramme (P,T)								
1	P \	$\xrightarrow{Q=0}^{\text{iso}} V$	$ \begin{array}{ccc} \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{array} $	amme (P,T) : : $P = \frac{nR}{V}T$: $P^{1-\gamma}T^{\gamma} = K$ $P = KT^{\gamma/\gamma-1}$	is	$\begin{array}{c c} so T & Q=0 \\ \hline & iso P \\ \hline & iso P \end{array}$	2 1 2		
	[0.5] par courbe $[0.5] + [0.5]$ [0.5] par courbe								
2	P/P_0 4 D C [0.5] par courbe [0.5] par point à peu près bien placé [1] si échelles respectées								
3	• $c_{\rm Vm} = 3/2$	R [0.5] • ϵ	$e_{\rm Pm} = 5/2 \ R \ [0.5]$	$\bullet \ \gamma = c_{\rm Vm}/c_{\rm Vm} = 5$	/3 [0.5]		1.5		
	• A \rightarrow B isochore réversible : • $W_{AB} = 0$ [0.5] • $Q_{AB} = C_V (2T_0 - T_0) = 3/2 \ RT_0$ [0.5] • $\Delta U_{AB} = Q_{AB} = 3/2 \ RT_0$ [0.5]					1.5			
	• B \rightarrow C isotherme réversible : • $\Delta U_{\rm BC} = 0$ [0.5] • $W_{\rm BC} = R T_{\rm B} \ln 2 = 2 \ln 2 R T_{\rm 0}$ [0.5] • $Q_{\rm BC} = - W_{\rm BC} = - 2 \ln 2 R T_{\rm 0}$ [0.5]					1.5			
4	• C \rightarrow D isobare réversible : • $Q_{\rm CD} = C_{\rm P} \Delta T [0.5] = C_{\rm P} (4^{0.4} - 2) T_0 = 5/2 (4^{0.4} - 2) R T_0 = - 0.65 R T_0 [0.5]$ • $W_{\rm CD} = -P_0 \Delta V [0.5] = -4 P_0 (4^{-0.6} - 0.5) V_0 = + 0.26 R T_0 [0.5]$ • $\Delta U_{\rm CD} = Q_{\rm CD} + W_{\rm CD} = - 0.39 R T_0$ ou • $\Delta U_{\rm CD} = C_{\rm V} (T_{\rm D} - T_{\rm C}) = 3/2 (4^{0.4} - 2) R T_0 = - 0.39 R T_0 [0.5]$					2.5			
	• D \rightarrow A adiabatique réversible : • $Q_{\mathrm{DA}} = 0$ [0.5] • $\Delta U_{\mathrm{DA}} = W_{\mathrm{DA}} = C_{\mathrm{V}} (T_{\mathrm{A}} - T_{\mathrm{D}}) = 3/2 (1 - 4^{0.4}) R T_{\mathrm{0}} = -1.11 R T_{\mathrm{0}}$ [0.5]					1			
1	A	\rightarrow B (isoV)	$B \to C \text{ (isoT)}$	$\mathrm{C} \to \mathrm{D} \; (\mathrm{isoP})$	$D \to A (Q = 0)$				
	ΔU	$3/2 R T_0$	0	$-0.39 R T_0$	$-1.11~R~T_0$		1		
	Q	$3/2 R T_0$	$-2 \ln 2 R T_0$	$-0.65 R T_0$	0	[1]	1		
	W	0	$+ 2 \ln 2 R T_0$	$+ 0.26 R T_0$	$-1.11 R T_0$				
5	• le cycle récepteur car $W_{\text{cycle}} = 0.53 R T_0 > 0$ [1]						1		
6	• $\Delta U_{cycle} = 0$ car U fonction d'état [1]						1		
7	ullet Oui, les variations de U ne dépendent pas du chemin suivi [1]								
							22		
						Total	/50		