

ANalysis Of VAriance (ANOVA) 2/2

Wdh: ANOVA - Idee

ANOVA 1: Zwei Medikamente zur Blutdrucksenkung und Placebo (Faktor X). Gibt es einen sign. Unterschied in der Wirkung (kontinuierlich Y)?

$$Y \sim X + \varepsilon$$
 1-weg ANOVA

• ANOVA 2: Zwei Medikamente zur Blutdrucksenkung, Placebo (Faktor X1) und Geschlecht (Faktor X2). Gibt es einen sign. Unterschied in der Wirkung (kontinuierlich Y) (evtl. geschlechterspezifisch)?

$$Y \sim X1 + X2 + \varepsilon$$
 2-weg ANOVA

Seminar für Statistik Markus Kalisch | 2

Wdh: 1-weg ANOVA

g: Anzahl Gruppen (3)

p: Anzahl Beob. pro Gruppe (10)

Ann: p in jeder Gruppe gleich

Streuung zwischen Gruppen:

"Between-Sum-of-Squares" (SS_B)
RSS der Gruppenmittelwerte (rote Kreuze)
um den totalen Mittelwert (blaue Linie)

$$SS_B = p * \sum_{i=1}^{g} (\overline{Y}_{i.} - \overline{Y}_{..})^2$$

Streuung innerhalb Gruppen:

"Within-Sum-of-Squares" (SS_W)
RSS der Einzelbeobachtungen
(schwarze Kreise) um die einzelnen
Mittelwerte (rote Kreuze)

$$SS_{W} = \sum_{i=1}^{g} \sum_{j=1}^{p} (Y_{ij} - \overline{Y}_{i.})^{2}$$

Teststatistik $\approx \frac{SS_B}{SS_W}$

Wdh: 1-weg ANOVA - Modell

- $Y_{ij} = \mu + \alpha_i + \varepsilon_{ij}$, $\varepsilon_{ij} \sim N(0, \sigma^2)$ iid Technische Nebenbedingung: $\sum_{i=1}^g \alpha_i = 0$ "Analyse der Varianzen" • H_0 : $\alpha_1 = \alpha_2 = \cdots = \alpha_g = 0$ • Teststatistik: $T = \frac{SS_B/(g-1)}{SS_W/(g*(p-1))} = \frac{MS_B}{MS_W}$ "Mean Squares"
- Theorie: Falls H₀ stimmt
 - "Degrees of freedom (Df)" $T \sim F_{g-1,g*(p-1)}$

Damit kann ein Hypothesentest mit den üblichen 6
 Schritten durchgeführt werden

Wdh: 1-weg ANOVA-Tabelle

$$g = 3, p = 10$$

2-weg ANOVA: Modell ohne Interaktion

- Oft gibt es mehr als einen Faktor.
- Bsp:
 - Medikament (Faktor M: M_1 Medikament, M_2 Placebo)
 - Geschlecht (Faktor G: G₁- Mann, G₂- Frau)
- Das einfachste Modell ist dann (ohne Interaktion):

Effekt von Medikament i

2-weg ANOVA: Modell mit Interaktion

3 Nullhypothesen:

- $H_{0,1}$: $\alpha_i = 0$ für alle $i \to \text{Kein Medikamenten-Effekt}$
- $H_{0,2}$: $\beta_i = 0 \ f \ddot{u}r \ alle \ j \rightarrow \text{Kein Geschlechter-Effekt}$
- $H_{0,3}$: $\delta_{ij} = 0$ für alle $i, j \to Kein Geschlechtsspezifischer Effekt von Medikament (keine Interaktion)$

Modell-Visualisierung: Ohne Interaktion

Modell-Visualisierung: Mit Interaktion

Interaktionsplot in R

Funktion 'interaction.plot'

2-weg ANOVA: Test 1 / 2

Keine WW: $Y_{ijk} = \mu + \alpha_i + \beta_j + \varepsilon_{ijk}$ WW: $Y_{ijk} = \mu + \alpha_i + \beta_j + \delta_{ij} + \varepsilon_{ijk}$

p: Gruppengrösse (10)

g: Anz. Geschlechter (2)

m: Anz. Medikamente (2)

$$SS_{M} = p * g * \sum_{i=1}^{m} (\overline{Y}_{i..} - \overline{Y}_{...})^{2}$$

$$SS_{G} = p * m * \sum_{j=1}^{m} (\overline{Y}_{j..} - \overline{Y}_{...})^{2}$$

$$SS_{MG} = p * \sum_{i=1}^{m} \sum_{j=1}^{g} (\overline{Y}_{ij.} - \overline{Y}_{i..} - \overline{Y}_{.j.} + \overline{Y}_{...})^{2}$$

$$SS_{Res} = \sum_{i=1}^{m} \sum_{j=1}^{g} \sum_{k=1}^{p} (Y_{ijk} - \overline{Y}_{ij.})^{2}$$

$$SS_{Res} = \sum_{i=1}^{m} \sum_{j=1}^{g} \sum_{k=1}^{p} (Y_{ijk} - \overline{Y}_{ij.})^{2}$$

2-weg ANOVA: Test 2 / 2

- Sum of Squares: SS_M , SS_G , SS_{MG} , SS_{Res}
- Degrees of Freedom

$$df_{M}$$
: $m-1$; df_{G} : $g-1$; df_{MG} : $(m-1)*(g-1)$; df_{Res} : $m*g*(p-1)$

Mean Squares:

$$MS_M = \frac{SS_M}{df_M}$$
; $MS_G = \frac{SS_G}{df_G}$; $MS_{MG} = \frac{SS_{MG}}{df_{MG}}$; $MS_{Res} = \frac{SS_{Res}}{df_{Res}}$

• Teststatistik und Verteilung unter $H_{0,1}$, $H_{0,2}$ und $H_{0,3}$:

Falls
$$H_{0,1}$$
 stimmt: $T_1 = \frac{MS_M}{MS_{Res}} \sim F_{df_M;df_{Res}}$
Falls $H_{0,2}$ stimmt: $T_2 = \frac{MS_G}{MS_{Res}} \sim F_{df_G;df_{Res}}$
Falls $H_{0,3}$ stimmt: $T_3 = \frac{MS_{MG}}{MS_{Res}} \sim F_{df_{MG};df_{Res}}$

2-weg ANOVA: Tabelle

Effektstärke: ANOVA & TukeyHSD

```
Tukey multiple comparisons of means
    95% family-wise confidence level
Fit: aov(formula = y \sim m * q, data = df)
$m
         diff
               1wr
                                      p adj
                               upr
P-M -1.566005 -2.164193 -0.9678171 1.03e-05
$g
        diff
                  lwr
                           upr p adi
M-F 2.893037 2.294849 3.491225
$`m:g`
              diff
                          lwr
                                     upr
                                              p adj
P:F-M:F -0.8633291 -1.9909120
                               0.2642538 0.1808921
         3.5957128
                   2.4681299
                               4.7232956 0.0000000
P:M-M:F
        1.3270321
                   0.1994492
                               2.4546150 0.0163777
        4.4590418 3.3314589
                               5.5866247 0.0000000
M:M-P:F
         2.1903611
                    1.0627783
P:M-P:F
                               3.3179440 0.0000683
P:M-M:M -2.2686807 -3.3962636 -1.1410978 0.0000409
```


Effektstärke: ANOVA & TukeyHSD

```
Tukey multiple comparisons of means
    95% family-wise confidence level
Fit: aov(formula = y \sim m * q, data = df)
$m
         diff
                    lwr
                                      p adj
                               upr
P-M -1.566005 -2.164193 -0.9678171 1.03e-05
$g
        diff
                  lwr
                          upr p adi
M-F 2.893037 2.294849 3.491225
$`m:g`
              diff
                          lwr
                                              p adj
                                     upr
P:F-M:F -0.8633291 -1.9909120
                               0.2642538 0.1808921
         3.5957128 2.4681299
                               4.7232956 0.0000000
        1.3270321 0.1994492
                               2.4546150 0.0163777
P:M-M:F
        4.4590418 3.3314589
                               5.5866247 0.0000000
M:M-P:F
         2.1903611 1.0627783
P:M-P:F
                               3.3179440 0.0000683
P:M-M:M -2.2686807 -3.3962636 -1.1410978 0.0000409
```


Effektstärke: ANOVA & TukeyHSD

```
Tukey multiple comparisons of means
    95% family-wise confidence level
Fit: aov(formula = y \sim m * q, data = df)
$m
         diff
                     lwr
                                       p adj
                                upr
P-M -1.566005 -2.164193 -0.9678171 1.03e-05
$g
        diff
                  lwr
                            upr p adi
M-F 2.893037 2.294849 3.491225
$`m:g`
              diff
                           lwr
                                      upr
                                               p adj
P:F-M:F -0.8633291 -1.9909120
                                0.2642538 0.1808921
                                4.7232956 0.0000000
         3.5957128
                    2.4681299
M:M-M:F
         1.3270321
                    0.1994492
                                2.4546150 0.0163777
P:M-M:F
         4.4590418
                   3.3314589
                                5.5866247
                                          0.0000000
M:M-P:F
         2.1903611
                   1.0627783
                                3.3179440 0.0000683
P:M-P:F
P:M-M:M -2.2686807 -3.3962636 -1.1410978 0.0000409
```


Interpretation: ANOVA & TukeyHSD vs. Lineare Regression

- Methoden technisch gesehen gleichwertig
 ABER: In der Praxis völlig unterschiedliche Interpretation
- ANOVA & TukeyHSD: "Totale Effekte"
- Lineare Regression: Effekte bzgl. Referenzlevel

Referenzlevel: Medikamentengruppe, Frauen

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	4.1792	0.2920	14.311	2.10e-14
mP	-0.8633	0.4130	-2.090	0.0458
gM	3.5957	0.4130	8.707	1.87e-09
mP:gM	-1.4054	0.5841	-2.406	0.0230

Wie gross ist E[Y] in Referenzgruppe?

(Keine Entsprechung in TukeyHSD)

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	4.1792	0.2920	14.311	2.10e-14
mP	-0.8633	0.4130	-2.090	0.0458
gM	3.5957	0.4130	8.707	1.87e-09
mP:gM	-1.4054	0.5841	-2.406	0.0230

Wie ändert sich E[Y], wenn man in der Referenzgruppe "Frauen" von "Medikament" zu "Placebo" wechselt?

(Entspricht P:F-M:F in TukeyHSD; VI & p-Wert wegen Korrektur für multiples Testen in TukeyHSD anders)

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	4.1792	0.2920	14.311	2.10e-14
mP	-0.8633	0.4130	-2.090	0.0458
gM	3.5957	0.4130	8.707	1.87e-09
mP:gM	-1.4054	0.5841	-2.406	0.0230

Wie ändert sich E[Y], wenn man in der Referenzgruppe "Medikament" von "Frauen" zu "Männer" wechselt?

(Entspricht M:M-M:F in TukeyHSD; VI & p-Wert wegen Korrektur für multiples Testen in TukeyHSD anders)


```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
              4.1792
                         0.2920
                                         2.10e-14
             -0.8633
                         0.4130
                                  -2.090
                                           0.0458
mΡ
                         0.4130
                                   8.707 1.87e-09
              3.5957
             -1.4054
                                  -2.406
                                           0.0230
                         0.5841
mP:qM
```


Um wieviel ist der Medikamenten-Effekt bei Männern anders als bei Frauen?

(Entspricht (P:M-M:M – P:F-M:F); kein entsprechendes VI oder p-Wert in TukeyHSD)

Mehr als zwei Faktorstufen (Bsp: Empfinden nach Schmerzmittel)

Residuenanalyse bei ANOVA

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \delta_{ij} + \varepsilon_{ijk}, \qquad \varepsilon_{ijk} \sim N(0, \sigma^2) iid$$

- 1. Daten in jeder Gruppe normalverteilt
- 2. Gleiche Varianz in Gruppen
- 3. Unabhängige Fehler ε_{ij}

In R: Funktion "plot" wie bei Linearer Regression

Vorteil: "Balanciertes Experiment" (gleiche Anzahl pro Gruppe): ANOVA ist robuster gegen Abweichungen obiger Annahmen

Randomized Block Design: Verallgemeinerung des gepaarten t-Test

- Gepaarter t-Test:
 Pro Person Medikament & Placebo
 Reihenfolge Medi / Placebo pro Person zufällig
- Randomized Block Design:
 Pro Person mehrere Medikamente & Placebo
 Reihenfolge Medi / Placebo pro Person zufällig
- Auswertung: 2-weg ANOVA
 Y ~ Medikament + Person
- Blockfaktor (hier "Person"): Nicht von Interesse; nur um Streuung zu reduzieren
- Konvention: Keine Interaktion mit Blockfaktor

Bsp: Randomized Block Design Medikament gegen Juckreiz

- 10 freiwillige Männer zw. 20 und 30
- Eine Behandlung pro Tag: Medikamentengabe; anschliessend Anwendung von Mittel, das starken Juckreiz auslöst (Juckbohne)
- Zielgrösse: Dauer des Juckreizes (in Sekunden)
- 5 Medikamente, 1 Placebo, einmal keine Behandlung
- Jede Person bekam jede Behandlung einmal;
 Reihenfolge zufällig

Bsp: Juckreiz

	Keine	Behandlung 8 1	Placebo	Papaverine	Morphine	Aminophylline	Pentobarbital	Tripelennamine
BG		174	263	105	199	141	108	141
JF		224	213	103	143	168	341	184
BS		260	231	145	113	78	159	125
SI		255	291	103	225	164	135	227
BW		165	168	144	176	127	239	194
TS		237	121	94	144	114	136	155
GM		191	137	35	87	96	140	121
SS		100	102	133	120	222	134	129
MU		115	89	83	100	165	185	79
05		189	433	237	173	168	188	317

Bsp: Juckreiz

```
Df Sum Sq Mean Sq F value Pr(>F)

m 6 53013 8835 2.855 0.01730

pers 9 103280 11476 3.708 0.00112

Residuals 54 167130 3095
```

95% family-wise confidence level

Es gibt sign. Unterschiede bzgl. Behandlungserfolg

Einzig zulässige Aussage: Papavarine ist sign. wirksamer als Placebo.

Unbalanciertes Design

- Bis jetzt "balanciertes" Design:
 Alle Zellen enthalten die gleiche Anzahl Stichproben
- Mit einem balancierten Design kann man den Effekt eines Faktors bestimmen und dabei die übrigen Faktoren ignorieren.
- Bei einem unbalancierten Design gilt diese bequeme Regel nicht mehr.

Faustregel: Balanciertes Design bevorzugen

Unbalanciertes Design: Beispiel

Laufzeit für eine gewisse Strecke in Sekunden; ungepaart In Rot: Anzahl Beobachtungen pro Zelle

	Energy Drink A	Energy Drink B
Men	40.6, 49.7, 42.1, 42.2, 39.0, 44.2, 44.1, 43.1, 44.7, 46.3	49.7, 48.1, 49.7, 52.0, 51.5, 49.9, 53.6, 53.0, 53.5, 51.1
Women		62.0, 60.3, 59.9, 61.2, 66.2, 56.5, 59.7, 63.0, 58.4, 61.7, 61.4, 62.6, 56.8, 55.2, 66.1, 60.6, 58.9, 59.1, 56.8, 62.5, 60.8, 57.1, 61.6, 65.9, 58.6, 60.6, 56.1, 53.6, 62.4, 62.2, 59.2, 62.9, 57.0, 58.5, 60.9, 63.4,

Unbalancierte Daten: Beispiel

- Wenn wir die Geschlechterstruktur ignorieren und den Effekt von Energy Drink schätzen, bekommen wir den falschen Effekt.
- Warum? Es gibt mehr Frauen mit Energy Drink B.
- Die Variablen "Geschlecht" und "Energy Drink" sind korreliert
- Wenn wir von Drink A zu Drink B wechseln, wechseln wir automatisch zu einer anderen Geschlechterstruktur
- In einem balancierten Design wäre das nicht passiert.
- Parameter können nicht nacheinander sondern müssen gleichzeitig geschätzt werden.
- Analog: Quadratsumme (SS) kann nicht mehr einfach den einzelnen erklärenden Variablen zugewiesen werden

Unbalancierte Daten: Modell Vergleich

- "Lösung" für das Problem der Quadratsummen: Modell Vergleiche
- Zur Wdh: SS_B ist die Reduktion der Sum of Squares, wenn der Faktor B dem Modell hinzugefügt wird.
- Balanciertes Design: SS_B ist immer gleich, egal ob A schon im Modell ist oder nicht
- Unbalanciertes Desgin: SS_B ist unterschiedlich, je nachdem welche anderen Variablen schon im Modell sind
- Notation: $SS(B \mid 1,A)$ ist **Reduktion der Sum of Squares** wenn wir das Modell (1,A,B) mit dem Modell (1,A) vergleichen.

Unbalancierte Daten

- Mögliche Variablen: (1, A, B, AB)
- Mögliche Vergleiche:
 - *SS*(*A* | 1)
 - *SS*(*B* | 1,*A*)
 - $SS(A \mid 1, B)$
 - $SS(AB \mid 1, A, B)$
 - $SS(A \mid 1, B, AB)$
 - · ...

• SS_E oder MS_E werden mit dem Modell berechnet, das alle Terme enthält

Terminologie von Software "SAS"

Sum of Squares: "Typ 1" & "Typ 3"

Typ 1: Sequentiell

Modell wird sequentiell aufgebaut

- *SS*(*A* | 1)
- $SS(B \mid 1, A)$

R:aov, summary

Typ 3: Adjustiert f ür alle übrigen Faktoren

Alle anderen Faktoren bleiben im Modell

- $SS(A \mid 1, B)$
- $SS(B \mid 1, A)$
- R:drop1
- Wird üblicherweise bevorzugt.

drop1 in R

Bsp: fm <- aov(y ~ drink)

Mit nur einem erklärenden Faktor sind Typ1 und Typ3 identisch

```
SS: Vgl. Modellvorhersagen von y~1 und y~drink
> fm <- aov(y~drink)</pre>
> summary(fm)
           Df Sum Sq Mean Sq F value Pr(>F)
                              41.69 1.33e-08 ***
                1146 1145.9
drink
                1869
                        27.5
Residuals
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
> drop1(fm)
Single term deletions
                                        RSSdrink: Residuenquadratsumme;
                                        vgl. Beobachtungen und Modellvorhersagen von y~drink
Model:
y ~ drink
      Df Sum of Sq
                      RSS
                   1869.0 233.93 Y~drink
<none>
           1145.9 3014.9 265.40 drink wurde "gedropt": y~1
drink
```

RSS1: Residuenquadratsumme;

vgl. Beobachtungen und Modellvorhersagen von y~1

Typ 1: Reihenfolge hat Einfluss falls unbalanciert

- Typ 3 (drop1): Reihenfolge egal, daher bevorzugt
- Typ 1 (summary): Reihenfolge hat Einfluss auf Ergebnis

```
> fit <- aov(y~gender+drink)
> summary(fit)
           Df Sum Sq Mean Sq F value Pr(>F)
gender 1 2024.0 2024.0 253.17 < 2e-16 ***
          1 455.2 455.2 56.94 1.58e-10 ***
drink
Residuals 67 535.6 8.0
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> fit2 <- aov(v~drink+gender)
> summary(fit2) ## Residuenquadratsummen & p-Werte sind unterschiedlich !!!
           Df Sum Sq Mean Sq F value Pr(>F)
drink
            1 1145.9 1146 143.3 <2e-16 ***
                       1333 166.8 <2e-16 ***
aender
           1 1333.4
Residuals
           67 535.6
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
>
```

Typ 3: Reihenfolge hat keinen Einfluss falls unbalanciert

- Typ 3 (drop1): Reihenfolge egal, daher bevorzugt
- Typ 1 (summary): Reihenfolge hat Einfluss auf Ergebnis

```
> drop1(fit, test = "F")
Single term deletions
Model:
v ~ gender + drink
      Df Sum of Sq
                       RSS AIC F value
                                          Pr(>F)
                    535.64 148.45
<none>
gender 1 1333.41 1869.05 233.93 166.789 < 2.2e-16 ***
drink 1 455.25 990.89 189.51 56.944 1.583e-10 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> drop1(fit2, test = "F")
Single term deletions
Model:
y ~ drink + gender
      Df Sum of Sq
                             AIC F value
                                          Pr(>F)
                       RSS
                    535.64 148.45
<none>
drink 1 455.25 990.89 189.51 56.944 1.583e-10 ***
gender 1 1333.41 1869.05 233.93 166.789 < 2.2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. '0.1 ' '1
```


Take home message: Balanciert vs. unbalanciert

- ANOVA hat eine "Schwäche", falls Daten unbalanciert
 → p-Werte in summary () hängen von Reihenfolge ab
 → p-Werte in drop1 () nicht → bevorzugen
- lm() hat keine vergleichbare Schwäche
 → output von summary() ist bzgl. Reihenfolge stabil