POBLACIÓN NORMAL	Estadígrafos de Prueba Utilizados	Observaciones
Diferencia de Medias Poblacionales $\mu_1-\mu_2$ $\sigma_1^2\ y\ \sigma_2^2\ conocidas$	$Z = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0,1)$	
Diferencia de Medias Poblacionales $\mu_1-\mu_2$ $\sigma_1^2\ y\ \sigma_2^2\ desconocidas\ e\ iguales$	$T = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{S_a^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \sim t_{n_1 + n_2 - 2}$	$S_a^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$
Diferencia de Medias Poblacionales $\mu_1-\mu_2\\ \sigma_1^2\ y\ \sigma_2^2\ desconocidas\ y\ distintas$	$T = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \sim t_v$	$v = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\left(\frac{S_1^2}{n_1}\right)^2 + \left(\frac{S_2^2}{n_2}\right)^2} - 2$
Cociente de Varianzas Poblacionales $rac{\sigma_2^2}{\sigma_1^2}$	$\frac{S_1^2}{S_2^2} \frac{\sigma_2^2}{\sigma_1^2} \sim F_{n_1 - 1; n_2 - 1}$	
Diferencia de Proporciones Poblacionales $\pi_1 - \pi_2$	$Z = \frac{(\bar{p}_1 - \bar{p}_2) - (p_1 - p_2)}{\sqrt{\hat{p}\hat{q}\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \to N(0,1)$	$\hat{p} = \frac{X_1 + X_1}{n_1 + n_2} = \frac{n_1 \bar{p}_1 + n_2 \bar{p}_2}{n_1 + n_2}$ $\hat{q} = 1 - \hat{p}$