1. SIFT Features

- Using CV2's SIFT algorithm to go through grayscale image and compute keypoints
- b. sift.detect() function finds the keypoint in the images. You can pass a mask if you want to search only a part of image. Each keypoint is a special structure which has many attributes like its (x,y) coordinates, size of the meaningful neighbourhood, angle which specifies its orientation, response that specifies strength of keypoints etc.
- c. https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/
 py_sift_intro.html (Sift explanation)
- 2. Matching detected keypoints between images
 - a. Tries to find the same keypoint and draw lines to connect them using k-NN or L2 Norm as a metric
- 3. Compute calibrated coordinates
 - a. Fetching keypoints, making calibrated matrices
- 4. Least Squares Estimator
 - a. Multiply x1 and x2 (grayscale images)
 - i. Each column of X1 multiplied with X2.transpose
 - b. Take the SVD of the above matrices stacked together
 - c. Output is the least squares estimate of the essential matrix

5. RANSAC

- a. We create a least squares E using 8 sample points from both images
- b. Using the E, we can use our test indices to find inliers
- c. Inliers are determined by checking whether their residuals are lower than the specified eps
- d. We maximize the number of inliers over all iterations (20K default)
- 6. Plot Epipolar Lines
 - a. Determine fundamental matrix using least squares E and calibration parameters
 - b. Compute epipolar lines using fundamental matrix and uncalibrated points
- 7. Pose Candidates
 - a. Decompose essential matrix into R and T using SVD
 - b. T1 and T2 are given
 - c. For a given estimate of E there are 2 possible solutions, obtained from the SVD
 - d. If determinant of R_1 is negative, bottom of main diagonal in z matrix is determinant of U * V
- 8. Reconstruct 3D
 - a. For each calibrated point, we triangulate a lambda using the given form

$$\underbrace{(q_i - Rp_i)}_{3 \times 2} \underbrace{\begin{pmatrix} \mu_i \\ \lambda_i \end{pmatrix}}_{2 \times 1} = \underbrace{T}_{3 \times 1}$$

b. The code filters out all the lambdas which are negative since negative depth isnt possible

- c. We then determine which of the R,T combinations have the highest added sum of lambas. The one with the highest sum is the combination that is chosen
- 9. Show reprojections
 - a. P2 and p1 projections are
 - b. For image 2: K * (inv(R)P2 inv(R)T)
 - c. For image 1: K * (RP1 + T)