# Numerical Linear Algebra

### Kevin Corcoran

## $March\ 17,\ 2022$

| Contents                                                   |                  |                       |
|------------------------------------------------------------|------------------|-----------------------|
| 5: Final Project                                           | 1                |                       |
| 1       Part 1         1.1       SVD for image compression | 1<br>1<br>4<br>4 |                       |
| 5: Final Project                                           |                  | Wed 09 Mar 2022 09:35 |
| 1 Part 1                                                   |                  |                       |
| 1.1 SVD for image compression                              |                  |                       |
| The first 10 largest singular values                       |                  |                       |
|                                                            |                  |                       |
| 663180.2023                                                |                  |                       |
| 85706.5957                                                 |                  |                       |
| 62129.0257                                                 |                  |                       |
| 34664.6330                                                 |                  |                       |
| 31861.7923                                                 |                  |                       |
| 21872.7216                                                 |                  |                       |
| 19628.4428                                                 |                  |                       |
| 18434.9377                                                 |                  |                       |
| 13693.8154                                                 |                  |                       |
| 12815.2083                                                 |                  |                       |
| The singular value for $k = 20$                            |                  |                       |

 $\sigma_k \approx 7528.0246523376873.$ 

The singular value for k=40

 $\sigma_k \approx 5489.1246638996563.$ 

The singular value for k=80

 $\sigma_k \approx 3948.7799793164731.$ 

The singular value for k = 160

 $\sigma_k \approx 2668.2235780120509.$ 

The singular value for k = 320

 $\sigma_k \approx 1515.8659320175318.$ 

The singular value for k = 640

 $\sigma_k \approx 821.89312579199247.$ 

The singular value for k = 1280

 $\sigma_k \approx 513.56803215302216.$ 

The singular value for k=2560

 $\sigma_k \approx 179.11503509371889.$ 

The original image



Figure 1: Original

 $compressed\ images$ 



Figure 2: Sigma k

As we increase the number of singular values the image becomes clearer on reconstruction. Plotting the averaged Frobenius norm  ${\cal P}$ 

$$E_k = \frac{\|A - A_{\sigma_k}\|_F}{mn}.$$



Figure 3: Error

and the value of k, where the error  $E_k < 10^{-3}$ , is

$$k = 1280.$$

### 1.2 Iterative Methods

### 1.2.1 Gauss-Jacobi and Gauss-Seidel

Both algorithms "split" the matrix into a sum of parts. This split,

$$A = M - N$$
.

assuming M is invertible, induces an iterative method

$$\begin{aligned} Mx_{k+1} &= Nx_k + b \\ \Leftrightarrow x_{k+1} &= M^{-1}Nx_k + M^{-1}b \end{aligned}$$

So we'd like M to be a good approximation for A where Mx = y is cheap and easy to solve. The splitting A = M - N converges to

$$Ax = b$$
.

for A nonsingular and iff the spectral radius  $\rho(M^{-1}N) < 1$ 

The Jacobi method corresponds to the splitting M = D and N = -L - U where D is the diagonal part of A, and L and U are the lower and upper triangular part respectively. For a strictly diagonally dominant matrix A

$$|a_{ii}| > \sum_{j \neq i} |a_{ij}|$$
 for  $i = 1, \dots, n$ .

Then the iterative scheme,

$$T = M^{-1}N = -D^{-1}(L+U)$$
  

$$\Rightarrow ||T||_{\infty} < 1$$
  

$$\Rightarrow \rho(T) \le ||T||_{\infty} < 1$$

converges.

The Gauss-Seidel scheme, on the other hand, corresponds to the splitting M=D+L and N=-U. This algorithm uses updated values as soon as they become available, but has less clear convergence criteria. Though it manages to converge in the cases when Gauss-Jacobi fails. In both I set a maximum iteration of 1000 and exit when the error grows too large. I use the two norm and for trans huge function which returns the largest value for the data inputted data type

$$||Ax - b||_2 < \text{huge}(||Ax - b||_2).$$

Run the code for a 10 x 10 matrix A with D=2,5,10,100,1000 and plot the error  $||b-Ax||_2$  for each value of D and for both Jacobi and Gauss-Seidel



Figure 4: Error D=2



Figure 5: Error D = 5



Figure 6: Error D = 10



Figure 7: Error D = 100



Figure 8: error D = 1000

Jacobi didn't converge for D=2,5 since, in those cases, the matrix A was not diagonally dominant.

Running each algorithm with a matrix A full of ones, except on the diagonal where  $a_{ii} = i$ , Jacobi does not converge, but Gauss-Seidel converges in 1 step to

$$\begin{pmatrix} -8\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\end{pmatrix}.$$

The error on a log-linear plot



Figure 9: Aii

• Conjugate Gradient, and other similar algorithms, can be thought of as minimizing the objective function

$$\phi(x) = \frac{1}{2}x^T A x - x^T b.$$

The solution to which converges to Ax = b, and corresponds to the scheme

$$x_{k+1} = x_k + \alpha_k p_k.$$

for some direction  $p_k$ . For Steepest Descent (or Gradient Descent) this direction is the residual or the steepest slope. However, with Conjugate Gradient, the direction  $p_{k+1}$  is chosen to be A-conjugate to  $p_k$ .

$$p_{k+1}Ap_k = 0.$$

Conjugate Gradient converges in at most m steps since the vectors  $p_k$  are guaranteed to be linearly independent. Which means our solution  $x^*$  can be written as a linear combination of these vectors, and addition directions offer no more information. For well conditioned matrices, Conjugate Gradient can converge in as few as 2 steps

proof:

- Prove the smart conjugate gradient is equivalent to the basic conjugate gradient.
- Table comparing number of iterations until convergence between 3 algorithms.

Table 1: Number of Iterations

| D                  | 2   | 5   | 10  | 100  | 1000 |
|--------------------|-----|-----|-----|------|------|
| Jacobi             | DNC | DNC | 145 | 8    | 5    |
| Gauss-Seidel       | 58  | 16  | 10  | 5    | 4    |
| Conjugate Gradient | 2   | 2   | 2   | $^2$ | 2    |

Jacobi doesn't converge until it becomes diagonally dominant at D=10. Both Jacobi and Gauss-Seidel converge faster for larger diagonal elements. This is because the matrix becomes better conditioned.

• A diagonal pre-conditioner is not very useful for these matrices since they are already well conditioned (ie the maximum and minimum eigenvalues only differ by a small amount). Since the matrix is symmetric positive definite.

$$\kappa(A) = \frac{\lambda_1}{\lambda_m}.$$

• Running the algorithm again with a matrix A full of ones, except on the diagonal where  $a_{ii}=i$ , Conjugate Gradient takes more than 2 steps to converge.

For a 10 x 10 matrix it takes 10 iterations to converge to the solution

$$\begin{pmatrix} -8\\1\\\vdots\\1 \end{pmatrix}$$
.

For a  $100 \times 100$  matrix it takes 62 iterations to converge to the solution

$$\begin{pmatrix} -98\\1\\\vdots\\1\end{pmatrix}$$

These matrices take longer to converge since they are ill-conditioned. For the  $10 \times 10$  case, the largest eigenvalue  $\lambda_{10} \approx 15.3$  and the smallest is  $\lambda_1 \approx 0.23$ . For the  $100 \times 100$  case, the largest  $\lambda_{100} \approx 157.7$  and the smallest  $\lambda_1 \approx 0.15$