Cálculo- Época de recurso - Proposta de correção

LEIA ATENTAMENTE

• Se pretende realizar P2 deve responder às questões 6, 8, 9, 10 e 11.

Justifique cuidadosamente todas as suas respostas.

P₂ — 20 valores —

6. (5 valores)

Indique se a afirmação é verdadeira ou falsa.

(a) Se f é contínua e $G(x)=\int_1^{\ln x}f(t)\,dt$ então $G'(x)=f(\ln x)$.

Falso. Considere-se a função auxiliar definida para $x \geq 1$ por

$$F(x) = \int_1^{\ln x} f(t) dt.$$

Pelo Teorema Fundamental do Cálculo F'(x)=f(x). Ora, $G(x)=F(\ln x)$, logo, pela derivada da função composta

$$G'(x) = [G(x)]' = [F(\ln x)]' = (\ln x)'F'(\ln x) = \frac{1}{x}f(\ln x) \neq f(\ln x).$$

(b)
$$\int_{-1}^{1} \sqrt{1-x^2} \, dx = \frac{\pi}{2}$$
.

Verdade. A representação gráfica da curva definida por $y=\sqrt{1-x^2},\,x\in[-1,1]$ é o arco da circunferência de centro (0,0), raio r=1 que está acima do eixo dos xx. Assim, o valor do integral do lado direito é a medida da área limitada pela curva anterior e o eixo horizontal, isto é, a área do semicírculo: $\frac{1}{2}\pi\,r^2=\frac{\pi}{2}$.

(c) Se f é contínua e $\lim_{x\to +\infty} f(x)=0$ então $\int_1^{+\infty}\,f(x)\,dx$ é convergente.

Falso. Por exemplo, a função definida em \mathbb{R}^+ por $f(x)=rac{1}{x}$ verifica $\lim_{x o +\infty}f(x)=0$ e, no entanto, o integral

$$\int_{1}^{+\infty} f(x) dx = \int_{1}^{+\infty} \frac{1}{x} dx$$

é divergente.

(d) Se $\sum_{n\geq 1}u_n$ é convergente então $\lim_n(u_1+u_2+\cdots+u_n)=0$

Falso. Considere-se, por exemplo, a série geométrica $\sum_{n\geq 1}\left(rac{1}{2}
ight)^{n-1}$ (de razão $r=rac{1}{2}<1$) que é convergente .

Esta série tem por soma

$$\frac{1}{1-\frac{1}{2}} = 2 \neq 0.$$

(e) Se $f(x)=\sum_{n\geq 0}rac{1}{n!}(x-1)^n,\,x\in\mathbb{R},\,$ então $f^{(300)}(1)=rac{1}{300!}\,.$

Falso. Se f admite expansão em série de potências de x-1, então essa é a sua série de Taylor em torno de a=1. Assim,

$$f(x) = \sum_{n>0} f^{(n)}(1) \frac{(x-1)^n}{n!}$$

com $f^{(n)}(1)$ a derivada de ordem n no ponto a=1. Donde se conclui que $f^{(n)}(1)=1$. Em particular, para n=300 vem $f^{(300)}(1)=1$.

7. (3 valores)

Obtenha uma estimativa para $\int_0^9 f(x) dx$ quando de f se conhecem os valores a seguir tabelados:

Usando, por exemplo, somas de Riemann "à esquerda" com 3 subintervalos de igual amplitude $\Delta=3$ vem

$$\int_0^9 f(x) dx \approx f(0) \times (3-0) + f(3) \times (6-3) + f(6) \times (9-6) = 3 \times (32+22+15) = 207.$$

8. (3 valores)

Integrando em ordem a y, calcule a área da região limitada por $x=y^2$ e y=x-2.

Considere-se a representação gráfica ao lado. Os pontos de interseção das curvas obtêm-se resolvendo a igualdade $y^2=y+2$: y=-1 ou y=2. Assim, a medida da área da região limitada por $x=y^2$ e y=x-2 é

$$\int_{-1}^{2} \left[(y+2) - y^2 \right] dy = \left[\frac{1}{2} y^2 + 2y - \frac{1}{3} y^3 \right]_{-1}^{2}$$
$$= 2 + 4 - \frac{8}{3} - \left(\frac{1}{2} - 2 - \frac{1}{3} \right) = \frac{9}{2}$$

9. (2 valores)

Quando f é uma função de classe C^1 e positiva no intervalo [a,b], prova-se que a medida da área da superfície gerada pela rotação da curva definida por y=f(x), entre x=a e x=b, em torno do eixo das abcissas pode ser calculado por

$$S = \int_{a}^{b} 2\pi f(x) \sqrt{1 + [f(x)]^{2}} dx.$$

Determine a medida área da superfície gerada pela rotação da curva definida por $y=\sqrt{x^2-1}$, com $1\leq x\leq 2$.

Com $f(x)=\sqrt{x^2-1}$ tem-se $\sqrt{1+[f(x)]^2}=|x|=x$ pois $x\in [1,2]$. Então

$$S = \int_{1}^{2} 2\pi \sqrt{x^{2} - 1} x \, dx = \pi \int_{1}^{2} 2x (x^{2} - 1)^{1/2} \, dx$$
$$= \pi \left[\frac{2}{3} (x^{2} - 1)^{3/2} \Big|_{1}^{2} = 2 \pi \sqrt{3}. \right]$$

10. (4 valores)

Considere a série $\ln \frac{1}{2} + \ln \frac{2}{3} + \ln \frac{3}{4} + \dots + \ln \frac{n}{n+1} + \dots$

(a) Defina o termo geral da sucessão geradora da série.

O termo geral da sucessão geradora da série é $u_n = \ln \frac{n}{n+1}$.

(b) Indique o termo de ordem 5 da sucessão das somas parciais.

A sucessão das somas parciais é

$$\begin{split} s_1 &= u_1 = \ln \frac{1}{2} \\ s_2 &= u_1 + u_2 = \ln \frac{1}{2} + \ln \frac{2}{3} = \ln \left(\frac{1}{2} \times \frac{2}{3} \right) = \ln \frac{1}{3} \\ s_3 &= u_1 + u_2 + u_3 = \ln \frac{1}{2} + \ln \frac{2}{3} + \ln \frac{3}{4} = \ln \left(\frac{1}{2} \times \frac{2}{3} \times \frac{3}{4} \right) = \ln \frac{1}{4} \\ &\vdots \\ s_n &= u_1 + u_2 + \dots + u_n = \ln \frac{1}{n+1}. \end{split}$$

Em particular, para $n=5,\,s_5=\ln\frac{1}{6}$

(c) Estude a natureza da série.

Atendendo à alínea anterior, tem-se $s_n = \ln \frac{1}{n+1}$. Por definição, a soma da série é calculada por

$$\lim_n s_n = \lim_n \left(\ln \frac{1}{n+1} \right) \longrightarrow -\infty$$

como este limite não existe não existe, a série diverge.

11. (3 valores)

Escreva a função definida por $f(x) = \frac{2}{3-x}$ na forma de uma série de potências, incluindo um domínio apropriado.

Observe-se, por exemplo, que

$$f(x) = \frac{2}{3-x} = \frac{2}{3} \frac{1}{1-\frac{x}{3}}$$

Ora $\dfrac{1}{1-\frac{x}{3}}$ é a soma de uma série geométrica de razão $r=\frac{x}{3}$, desde que $\left|\dfrac{x}{3}\right|<1$, isto é,

$$\frac{1}{1-\frac{x}{3}} = \frac{2}{3} \, \sum_{n \geq 1} \left(\frac{x}{3}\right)^{n-1}, \qquad \mathrm{com} \, \left|\frac{x}{3}\right| < 1.$$

Assim,

$$f(x) = \frac{2}{3} \sum_{n \ge 1} \left(\frac{x}{3}\right)^{n-1}, \quad |x| < 3.$$

x	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$	π	$3\pi/2$
senx	0	1/2	$\sqrt{2}/2$	$\sqrt{3}/2$	1	0	-1
$\cos x$	1	$\sqrt{3}/2$	$\sqrt{2}/2$	1/2	0	-1	0

$$ch x = \frac{e^x + e^{-x}}{2}$$
 $sh x = \frac{e^x - e^{-x}}{2}$