Building Accurate Workload Models Using Markovian Arrival Processes

Giuliano Casale

Department of Computing Imperial College London Email: g.casale@imperial.ac.uk

ACM SIGMETRICS Tutorial - June 7th, 2011

Outline

Main topics covered in this tutorial:

- Phase-type (PH) distributions
- Moment matching
- Markovian arrival processes (MAP)
- Inter-arrival process fitting

Important topics not covered in this tutorial:

- Queueing applications, matrix-geometric method, ...
- Non-Markovian workload models (e.g., Pareto, matrix exponential process, ARMA processes, fBm, wavelets, ...)
- Maximum-Likelihood (ML) methods, EM algorithm, ...
- ...

1. PH DISTRIBUTIONS

Continuous-Time Markov Chain (CTMC) Notation

- m states
- $\lambda_{i,j} \geq 0$: (exponential) transition rate from state i to j
- $\lambda_i = \sum_{j=1}^m \lambda_{i,j}$: total outgoing rate from state *i*
- Infinitesimal generator matrix:

$$\mathbf{Q} = \begin{bmatrix} -\lambda_1 & \lambda_{1,2} & \dots & \lambda_{1,m} \\ \lambda_{2,1} & -\lambda_2 & \dots & \lambda_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_{n,1} & \lambda_{n,2} & \dots & -\lambda_m \end{bmatrix}, \ \mathbf{Q} \mathbb{1} = \mathbf{0}, \ \mathbb{1} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$

- $\pi(t) = \pi(0)e^{\mathbf{Q}t}$: state probability vector at time t
 - $\pi_i(t)$: probability of the CTMC being in state i at time t
 - $\pi(0)$: initial state probability vector

Example 1.1: CTMC Transient Analysis

$$\mathbf{Q} = \begin{bmatrix} -4 & 4 & 0 & 0 \\ 4 & -7 & 2 & 1 \\ 2 & 3 & -5 & 0 \\ 2 & 0 & 0 & -2 \end{bmatrix}$$
Transient analysis:
$$\pi(t) = \pi(0)e^{\mathbf{Q}t} = \pi(0)\sum_{k=0}^{\infty} \frac{(\mathbf{Q}t)^k}{k!}$$

Initial state:

$$\pi(0) = [0.9, 0.0, 0.1, 0.0]$$

$$oldsymbol{\pi}(t) = oldsymbol{\pi}(0)e^{\mathbf{Q}t} = oldsymbol{\pi}(0)\sum_{k=0}^{\infty}rac{(\mathbf{Q}t)^k}{k!}$$

Transient Probabilities

Phase-Type Distribution (PH)

• **Q**: CTMC with m = n + 1 states, last is absorbing $(\lambda_{n+1} = 0)$

$$\mathbf{Q} = \begin{bmatrix} \mathbf{T} & \mathbf{t} \\ \mathbf{0} & 0 \end{bmatrix} = \begin{bmatrix} -\lambda_1 & \lambda_{1,2} & \dots & \lambda_{1,n} & \lambda_{1,n+1} \\ \lambda_{2,1} & -\lambda_2 & \dots & \lambda_{2,n} & \lambda_{2,n+1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \lambda_{n,1} & \lambda_{n,2} & \dots & -\lambda_n & \lambda_{n,n+1} \\ \hline 0 & 0 & \dots & 0 & 0 \end{bmatrix}$$

- T: PH subgenerator matrix, T1 < 0
- $\mathbf{t} = -\mathbf{T}\mathbb{1}$: exit vector
- ullet "No mass at zero" assumption: $\pi(0)=[lpha,0]$, $lpha\mathbb{1}=1$

References: [Neu89]

Example 1.2: Absorbing State Probability

Initial state: $\pi(0) = [\alpha, 0.0] = [0.9, 0.0, 0.1, 0.0]$

$$\mathbf{Q} = \begin{bmatrix} -4 & 4 & 0 & 0 \\ 4 & -7 & 2 & 1 \\ 2 & 3 & -5 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \mathbf{T} = \begin{bmatrix} -4 & 4 & 0 \\ 4 & -7 & 2 \\ 2 & 3 & -5 \end{bmatrix}, \mathbf{t} = -\mathbf{T}\mathbb{1} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

PH: Fundamental Concepts

Basic idea: model $F(t) = Pr(\text{event occurs in } X \leq t \text{ time units})$ as the probability mass absorbed in t time units in \mathbf{Q} .

- Semantics: entering the absorbing state models the occurrence of an event, e.g., the arrival of a TCP packet, the completion of a job, a non-exponential state transition in a complex system
- Understanding the absorption dynamics:

$$m{\pi}(t) = m{\pi}(0)e^{\mathbf{Q}t} = m{\pi}(0) \left[egin{array}{c|c} \sum\limits_{k=0}^{\infty} rac{(\mathbf{T}t)^k}{k!} & \sum\limits_{k=1}^{\infty} rac{\mathbf{T}^{k-1}t^k}{k!}\mathbf{t} \ \hline \mathbf{0} & 1 \end{array}
ight]$$

• Using the definition $\mathbf{t} = -\mathbf{T}\mathbb{1}$, we get

$$\boldsymbol{\pi}(t) = [\alpha e^{\mathsf{T}t}, \pi_{n+1}(t)], \quad \pi_{n+1}(t) = 1 - \alpha e^{\mathsf{T}t} \mathbb{1}$$

where $\pi_{n+1}(t)$ is the probability mass absorbed in t time units.

PH: Fundamental Formulas

PH distribution:
$$F(t) = \Pr(\text{event occurs in } X \leq t) \stackrel{\text{\tiny def}}{=} 1 - \alpha e^{\mathsf{T}t} \mathbb{1}$$

- PH representation: (α, T)
- Probability Density function: $f(t) = \alpha e^{\mathsf{T}t}(-\mathsf{T})\mathbb{1}$
- (Power) Moments: $E[X^k] = \int_0^{+\infty} t^k f(t) dt = k! \alpha (-\mathbf{T})^{-k} \mathbb{1}$
- $(-\mathbf{T})^{-1} = [\tau_{i,j}] \ge 0$
 - $\tau_{i,j}$: mean time spent in state j if the PH starts in state i
- Median/Percentiles: no simple form, determined numerically.

Example 1.3: a 3-state PH distribution

$$oldsymbol{lpha} = [1,0,0], \ oldsymbol{\mathsf{T}} = egin{bmatrix} -(\lambda+\mu) & \lambda & \mu \\ 0 & -\lambda & \lambda \\ 0 & 0 & -\lambda \end{bmatrix}, oldsymbol{\mathsf{t}} = egin{bmatrix} 0 \\ 0 \\ \lambda \end{bmatrix}, \ \lambda \geq 0.$$

- Case $\mu \to +\infty$: $E[X^k] = k! \lambda^{-k}$ (Exponential, $c^2 = 1$).
- Case $\mu = \lambda$: $E[X^k] = (k+1)!\lambda^{-k}$ (Erlang-2, $c^2 = 1/2$)
- Case $\mu = 0$: $E[X^k] = \frac{(k+2)!}{2} \lambda^{-k}$ (Erlang-3, $c^2 = 1/3$).
- No choice of μ delivers $c^2 > 1$

Remarks: Squared coefficient of variation: $c^2 \stackrel{\text{def}}{=} Var[X]/E[X]^2$

PH: "Family Picture" - $n \le 2$ states

	c^2	α	Т	Subset of
Exponential	1	[1]	$[-\lambda]$	Hyper-Exp.
Erlang	$\frac{1}{2}$	[1, 0]	$\begin{bmatrix} -\lambda & \lambda \\ 0 & -\lambda \end{bmatrix}$	Нуро-Ехр.
Нуро-Ехр.	$\left[\frac{1}{2},1\right)$	[1, 0]	$\begin{bmatrix} -\lambda_1 & \lambda_1 \\ 0 & -\lambda_2 \end{bmatrix}$	Coxian/APH
Hyper-Exp.	$[1,+\infty)$	$[\alpha_1, \alpha_2]$	$\begin{bmatrix} -\lambda_1 & 0 \\ 0 & -\lambda_2 \end{bmatrix}$	Coxian/APH
Coxian/APH	$\left[\frac{1}{2},+\infty\right)$	[1, 0]	$\begin{bmatrix} -\lambda_1 & p_1 \lambda_1 \\ 0 & -\lambda_2 \end{bmatrix}$	General
General	$\left[\frac{1}{2},+\infty\right)$	$[\alpha_1, \alpha_2]$	$\begin{bmatrix} -\lambda_1 & p_1 \lambda_1 \\ p_2 \lambda_2 & -\lambda_2 \end{bmatrix}$	

Remarks: $\alpha_1 + \alpha_2 = 1$, $c^2 \stackrel{\text{def}}{=} Var[X]/E[X]^2$

PH: "Family Picture" - Examples — n = 3 states

	c^2	α	Т
Hyper-Erlang	$\left[\frac{1}{2},+\infty\right)$	$[\alpha_1, \alpha_2, 0]$	$\begin{bmatrix} -\lambda_1 & 0 & 0 \\ 0 & -\lambda_2 & \lambda_2 \\ 0 & 0 & -\lambda_2 \end{bmatrix}$
Coxian/APH	$\left[\frac{1}{3},+\infty\right)$	[1,0,0]	$egin{bmatrix} -\lambda_1 & p_1\lambda_1 & 0 \ 0 & -\lambda_2 & p_2\lambda_2 \ 0 & 0 & -\lambda_3 \end{bmatrix}$
Circulant	$\left[\frac{1}{3},+\infty\right)$	$[\alpha_1, \alpha_2, \alpha_3]$	$\begin{bmatrix} -\lambda_1 & p_{12}\lambda_1 & 0 \\ 0 & -\lambda_2 & p_{23}\lambda_2 \\ p_{31}\lambda_3 & 0 & -\lambda_3 \end{bmatrix}$
General	$\left[\frac{1}{3},+\infty\right)$	$[\alpha_1, \alpha_2, \alpha_3]$	$\begin{bmatrix} -\lambda_1 & p_{12}\lambda_1 & p_{13}\lambda_1 \\ p_{21}\lambda_2 & -\lambda_2 & p_{23}\lambda_2 \\ p_{31}\lambda_3 & p_{32}\lambda_3 & -\lambda_3 \end{bmatrix}$

Remarks: $\alpha_1 + \alpha_2 + \alpha_3 = 1$, $c^2 \stackrel{\text{def}}{=} Var[X]/E[X]^2$

Example 1.4: Reducing to Coxian Form

Algorithms exist to reduce a PH to Coxian form.

- With n = 2 states (PH(2) models) this can be done analytically
- Hyper-Exponential: $\alpha' = [0.99, 0.01], \ \mathbf{T}' = \begin{bmatrix} -25 & 0 \\ 0 & -5 \end{bmatrix},$ $F'(t) = 1 0.99e^{-25t} 0.01e^{-5t}$
- Coxian: $\alpha = [1, 0]$, $\mathbf{T} = \begin{bmatrix} -\lambda_1 & p_1 \lambda_1 \\ 0 & -\lambda_2 \end{bmatrix}$
- Symbolic analysis gives that in the 2-state Coxian

$$F(t) = 1 - M_1 e^{-\lambda_1 t} - (1 - M_1) e^{-\lambda_2 t}, \quad M_1 \stackrel{\text{def}}{=} 1 - \frac{\lambda_1 p_1}{\lambda_1 - \lambda_2}$$

• Thus the two models are equivalent if $\lambda_1=25$, $\lambda_2=5$, and $p_1=0.008$ such that $M_1=0.99$.

Example 1.4: Reducing to Coxian Form

Compare moments of Hyper-Exponential and Coxian:

	Hyper-Exp	Coxian
E[X]	$41.600 \cdot 10^{-3}$	$41.600 \cdot 10^{-3}$
$E[X^2]$	$3.968 \cdot 10^{-3}$	$3.968 \cdot 10^{-3}$
$E[X^3]$	$860.160 \cdot 10^{-6}$	$860.160 \cdot 10^{-6}$
$E[X^4]$	$444.826 \cdot 10^{-6}$	$444.826 \cdot 10^{-6}$
:	i:	÷

Key message: differences between (α', \mathbf{T}') and (α, \mathbf{T}) are deceptive! In general, (α, \mathbf{T}) is a redundant representation.

Redundancy problem: how many degrees of freedom in PH distributions? How to cope with redundant parameters?

Example 1.5: Fallacies About Degrees of Freedom

- Coxian, 3 parameters: $\alpha' = [1,0]$, $\mathbf{T'} = \begin{bmatrix} -1.0407 & 0.3264 \\ 0 & -8.0181 \end{bmatrix}$
- Fit PH(2) with 4 parameters: $\alpha = [1, 0]$, $\mathbf{T} = \begin{bmatrix} -\lambda_1 & p_1 \lambda_1 \\ p_2 \lambda_2 & -\lambda_2 \end{bmatrix}$
- Numerically search $(\lambda_1, \lambda_2, p_1, p_2)$ that minimize the distance from Coxian's $E[X], E[X^2], E[X^3]$ and from $E[X^4] = 50$

$$\mathbf{T} = \begin{bmatrix} -13.4252 & 13.3869 \\ 0.0018 & -1.0431 \end{bmatrix}$$

... returned PH has $E[X^4] = 21.34$, why is it approximately the same as the Coxian's $E[X^4] = 21.41$?

- Key message: 4 parameters \neq freedom to assign $E[X^4]$
- For fixed E[X], $E[X^2]$, $E[X^3]$, the feasible region of the PH(2) parameters yields the same $E[X^4]$ (up to numerical tolerance).

PH: Degrees of Freedom

- PH Moments: $E[X^k] = k!\alpha(-\mathbf{T})^{-k}\mathbb{1}$
- A of order n, characteristic polynomial:
 - $\phi(\theta) = \det(\theta I A)$
 - $\phi(A) = A^n + m_1 A^{n-1} + \ldots + m_{n-1} A + m_n I = 0$
- $A = (-\mathbf{T})^{-1}$ implies that PH moments are linearly-dependent

$$\frac{E[X^n]}{n!} + m_1 \frac{E[X^{n-1}]}{(n-1)!} + \ldots + m_{n-1} E[X] + m_n = 0$$

- Thus, a PH offers up to 2n-1 degrees of freedom (df) for fitting a workload distribution $(n-1 \text{ moments} + n \text{ terms } m_j)$.
- n = 2 states $\Rightarrow 3$ df, $n = 3 \Rightarrow 5$ df, $n = 4 \Rightarrow 7$ df, ...

References: [TelH07],[CasZS07]

PH: Algebra of Random Variables and Closure Properties

- PH: the smallest family of distributions on \Re^+ that is closed under a finite number of mixtures and convolutions.
- $X_1 \sim (\alpha, T)$ of order n, t = -T1
- $X_2 \sim (\beta, \mathbf{S})$ of order m, $\mathbf{s} = -\mathbf{S} \mathbb{1}$
- $Z = g(X_1, X_2) \sim (\gamma, \mathbf{R})$

	Convolution	Mixture	Minimum	Maximum
Z	$\sum_i X_i$	X_i w.p. p_i	$\min(X_i)$	$\max(X_i)$
γ	$[oldsymbol{lpha},0]$	$[p_1\alpha,p_2\beta]$	$[lpha\otimesoldsymbol{eta}]$	$[oldsymbol{lpha}\otimesoldsymbol{eta},0,0]$
R	$\begin{bmatrix} T & t \cdot \boldsymbol{\beta} \\ 0 & S \end{bmatrix}$	$\begin{bmatrix}T & 0 \\ 0 & S\end{bmatrix}$	T⊕S	$\begin{bmatrix} T \oplus S & t \otimes I_m & I_n \otimes s \\ 0 & S & 0 \\ 0 & 0 & T \end{bmatrix}$

• $\otimes \stackrel{\text{def}}{=} \mathsf{Kronecker}$ product, $\oplus \stackrel{\text{def}}{=} \mathsf{Kronecker}$ sum

PH: Kronecker operators

- A of order n, B of order m
- Kronecker sum: $\mathbf{A} \oplus \mathbf{B} = \mathbf{I}_n \otimes \mathbf{B} + \mathbf{A} \otimes \mathbf{I}_m$

$$\mathbf{A} \oplus \mathbf{B} = \begin{bmatrix} a_{1,1} + b_{1,1} & b_{1,2} & a_{1,2} & 0 \\ b_{2,1} & a_{1,1} + b_{2,2} & 0 & a_{1,2} \\ a_{2,1} & 0 & a_{2,2} + b_{1,1} & b_{1,2} \\ 0 & a_{2,1} & b_{2,1} & a_{2,2} + b_{2,2} \end{bmatrix}$$

Kronecker product:

$$\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} a_{1,1}b_{1,1} & a_{1,1}b_{1,2} & a_{1,2}b_{1,1} & a_{1,2}b_{1,2} \\ a_{1,1}b_{2,1} & a_{1,1}b_{2,2} & a_{1,2}b_{2,1} & a_{1,2}b_{2,2} \\ a_{2,1}b_{1,1} & a_{2,1}b_{1,2} & a_{2,2}b_{1,1} & a_{2,2}b_{1,2} \\ a_{2,1}b_{2,1} & a_{2,1}b_{2,2} & a_{2,2}b_{2,1} & a_{2,2}b_{2,2} \end{bmatrix}$$

References: [Bre78]

Example 1.6: BPEL Workflow

End-to-end resp. times:

$$\mathbf{T} = \begin{bmatrix} -5 & 5p & \frac{5}{3}q & \frac{10}{3}q & 0\\ 0 & -7 & 0 & 0 & 0\\ 0 & 0 & -1 & 1 & 0\\ 0 & 0 & 0 & -2 & 2\\ 0 & 0 & 0 & 0 & -3 \end{bmatrix}$$

Web service response time distributions:

- A: $\alpha \equiv [1], T \equiv [-5]$
- B: $\alpha \equiv [1], T \equiv [-7]$
- C: $\alpha \equiv \left[\frac{1}{3}, \frac{2}{3}\right], \mathbf{T} \equiv \begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix}$
- D: $\alpha \equiv [1], \mathbf{T} \equiv [-3]$

Prediction:

2. MOMENT MATCHING

Includes joint work with Evgenia Smirni (IBM Research, William & Mary)

PH: Moment Bounds and Approximate Fitting

- Feasibility constraints for PH fitting:
 - $\lambda_{i,j} \in \Re_0^+$, $\alpha_i \in \Re_0^+$, $\alpha \mathbb{1} = 1$, $\lambda_i = \sum_{j=1}^m \lambda_{i,j}$
 - $\mathbf{t} = -\mathbf{T}\mathbb{1} \ge 0$ and $\mathbb{1}^T \mathbf{t} > 0$
 - $\mathbf{T} + \mathbf{t} \cdot \boldsymbol{\alpha}$ is irreducible
- Moment bounds are available for some PH models to determine if a set of empirical moments can be fitted exactly, e.g.:
 - PH(n): $c^2 \ge \frac{1}{n}$ (and Erlang has the smallest c^2)
 - PH(2): $c^2 > 1 \Rightarrow E[\tilde{X}^3] > \frac{3}{2} \frac{E[\tilde{X}^2]^2}{E[\tilde{X}]}$
 - ..
- What can we fit with a PH? What is the best approximating PH for an infeasible set of moments?

References: [AldS87],[TelH03],[OsoH06]

PH: Spectral Characterization

- Spectral analysis based on Jordan canonical forms
- θ_i : eigenvalue of $(-\mathbf{T})^{-1}$ with algebraic multiplicity q_i
- For diagonalizable $(-\mathbf{T})^{-1}$

$$E[X^k] = k! \sum_{i=1}^n M_{i,1} \theta_i^k, \qquad F(t) = 1 - \sum_{i=1}^n M_{i,1} e^{-t/\theta_i}$$

where $\sum_{i=1}^{m} M_{i,1} = 1$

- Special case: $M_{i,1} = \alpha_i$ for hyper-exponential distributions.
- Tail Behavior: $F(t) pprox 1 M_{i_{max},1} e^{-t/\theta_{i_{max}}}$, $\theta_{i_{max}} \geq \theta_i \ orall i$

References: [CasZS07]

Example 2.1: Approximating Heavy-Tail Distributions

- Heavy-Tail distribution: $\lim_{t\to\infty} e^{\mu t} F(t) = \infty$, $\forall \mu > 0$
- Multiple decay rates in PH enable approximating non-exponential tails
- Moment matching usually fits the tail better than the body

Example: Radius-Auth trace 08-30-07.12-59-AM, http://iotta.snia.org

PH: Exact Moment Matching Method

- For $n \leq 3$ states, α and \mathbf{T} can be expressed directly as a function of 2n-1 empirical moments $E[\widetilde{X}^k]$ by means of canonical forms.
- Canonical form: non-redundant form of α and \mathbf{T} , same expressive power but 2n-1 parameters.

	n=2 states	n=3 states	$n \ge 4$ states
α	(1,0)	$(\alpha_1,\alpha_2,1-\alpha_1-\alpha_2)$	unknown
Т	$\begin{bmatrix} -\lambda_1 & p\lambda_1 \\ 0 & -\lambda_2 \end{bmatrix}$	$\begin{bmatrix} -\lambda_1 & 0 & q\lambda_1 \\ \lambda_2 & -\lambda_2 & 0 \\ 0 & \lambda_3 & -\lambda_3 \end{bmatrix}$	unknown

• For n=3, it is possible to reduce the number of parameters to 2n-1 by setting either q=0, $\lambda_1=\lambda_2$, or $\alpha_2=0$ depending on the numerical values of the moments.

References: [HorT09]

Example 2.2: Exact Moment Matching – PH(2)

• Symbolic analysis of $\phi(A)$, $A = (-\mathbf{T})^{-1}$, shows that

$$\begin{cases} m_1 = -(\lambda_1^{-1} + \lambda_2^{-1}) = \frac{E[\widetilde{X}^3] - 3E[\widetilde{X}]E[\widetilde{X}^2]}{3(2E[\widetilde{X}]^2 - E[\widetilde{X}^2])} \\ m_2 = (\lambda_1 \lambda_2)^{-1} = \frac{\frac{3}{2}E[\widetilde{X}^2]^2 - E[\widetilde{X}]E[\widetilde{X}^3]}{3(2E[\widetilde{X}]^2 - E[\widetilde{X}^2])} \\ p = \lambda_2(E[\widetilde{X}] - \lambda_1^{-1}) \end{cases}$$

- Solving for $(\lambda_1, \lambda_2, p)$ we obtain the canonical form
- Symbol solution is feasible, but yields very complex expressions
 MATLAB Code: same model of Example 1.4

PH: Prony's Method

Exact moment matching method for $c^2 > 1$

• Obtain $m_1, ..., m_n$ by solving the linear system

$$\begin{cases} \frac{E[\widetilde{X}^{n}]}{k!} + m_{1} \frac{E[\widetilde{X}^{n-1}]}{(n-1)!} + \dots + m_{n} = 0 \\ \frac{E[\widetilde{X}^{n+1}]}{(k+1)!} + m_{1} \frac{E[\widetilde{X}^{n}]}{n!} + \dots + m_{n} E[\widetilde{X}] = 0 \\ \vdots & \vdots \\ \frac{E[\widetilde{X}^{2n-1}]}{(2k-1)!} + m_{1} \frac{E[\widetilde{X}^{2n-2}]}{(2k-2)!} + \dots + m_{n} \frac{E[\widetilde{X}^{n-1}]}{(n-1)!} = 0 \end{cases}$$

- Obtain θ_i as roots of $\phi(\theta) = \theta^n + m_1 \theta^{n-1} + \ldots + m_{n-1} \theta + m_n$
- Obtain $M_{i,1}$ from the spectral charization given θ_i and $E[\widetilde{X}^k]$.
- Output: $\alpha = (M_{1,1}, \dots, M_{K,1}), \mathbf{T} = -\operatorname{diag}(\theta_1^{-1}, \dots, \theta_K^{-1})$

References: [CasZS08b]

Example 2.3: Prony's Method

Trace: LBL-TCP-3, http://ita.ee.lbl.gov MATLAB Code, PH(3):

```
\begin{split} E=&[1,5.3109e-003,89.7845e-006,3.0096e-006,163.1872e-009,12.9061e-009];\\ f=&factorial(0:6);\\ A=&[E(4:-1:1)./f(4:-1:1);E(5:-1:2)./f(5:-1:2);\ E(6:-1:3)./f(6:-1:3);1,0,0,0];\ b=&[0;0;0;1];\\ m=&(A\backslash b)',\ theta=&roots(m)'\\ M=&([theta*f(2);theta.^2*f(3);theta.^3*f(4)]\backslash E(2:4)')' \end{split}
```

$$\boldsymbol{\alpha} = [M_{1,1}, M_{2,1}, M_{3,1}] = [26.2074, 384.7137, 589.0789] \cdot 10^{-3};$$

$$\mathbf{T} = -\mathsf{diag}(\theta_1^{-1}, \theta_2^{-1}, \theta_3^{-1}) = -\mathsf{diag}(49.9628, 110.5089, 451.3770)$$

PH: Approximate Moment Matching

- Relatively few techniques for approximate moment matching
- Limited understanding of moment bounds for $n \ge 3$
- Kronecker product composition for PH (KPC-PH):
 - $X_1 \sim (\alpha, \mathbf{T})$ of order $n, X_2 \sim (\beta, \mathbf{S})$ of order m
 - $X = X_1 \otimes X_2 \sim (\gamma, \mathbf{R}), \ \gamma \stackrel{\text{def}}{=} \alpha \otimes \beta, \ \mathbf{R} \stackrel{\text{def}}{=} (-\mathbf{T}) \otimes \mathbf{S}$
 - (γ, \mathbf{R}) is PH only if $\mathbf{S} = -\mathsf{diag}(\lambda_1, \dots, \lambda_n)$
- Divide-and-conquer approximate moment matching:

$$E[X^k] = k!(\boldsymbol{\alpha} \otimes \boldsymbol{\beta})(-((-\mathbf{T}) \otimes \mathbf{S}))^{-k}(\mathbb{1}_n \otimes \mathbb{1}_m)$$

$$= k!(\boldsymbol{\alpha}(-\mathbf{T})^{-k}\mathbb{1}_n)(\boldsymbol{\beta}(-\mathbf{S})^{-k}\mathbb{1}_m)$$

$$= E[X_1^k]E[X_2^k]/k!$$

References: [CasZS08]

Example 2.4: KPC-PH - Increased Degrees of Freedom

- X_1 : PH(2), $E[X_1] = 1$, $E[X_1^2] = 10$, $E[X_1^3] = 200$
- X_2 : PH(2), $E[X_2] = 1$, $E[X_2^2] = 10$, $E[X_2^3] = 3200$
- Y_1 : PH(2), $E[Y_1] = 1$, $E[Y_1^2] = 3.2691$, $E[Y_1^3] = 200$
- Y_2 : PH(2), $E[Y_2] = 1$, $E[Y_2^2] = 30.589$, $E[Y_2^3] = 3200$
- Z_1 : PH(2), $E[Z_1] = 1$, $E[Z_1^2] = 20$, $E[Z_1^3] = 200$
- Z_2 : PH(2), $E[Z_2] = 1$, $E[Z_2^2] = 5$, $E[Z_2^3] = 3200$

	$X_1 \otimes X_2$	$Y_1 \otimes Y_2$	$Z_1\otimes Z_2$
E[X]	1.0000	1.0000	1.0000
$E[X^2]$	$5.0000 \cdot 10^{1}$	$5.0000 \cdot 10^{1}$	$5.0000 \cdot 10^{1}$
$E[X^3]$	$1.0667 \cdot 10^{5}$	$1.0667 \cdot 10^{5}$	$1.0667 \cdot 10^{5}$
$E[X^4]$	$7.2362 \cdot 10^{8}$	$7.2362 \cdot 10^{8}$	$3.7813 \cdot 10^{8}$
$E[X^5]$	$5.2745 \cdot 10^{12}$	$6.3130\cdot 10^{12}$	$1.6796 \cdot 10^{12}$
$E[X^6]$	$4.8979 \cdot 10^{16}$	$6.6129 \cdot 10^{16}$	$8.9531 \cdot 10^{15}$
:	:	:	:

PH: Generalized KPC-PH Technique

Generalization:

- $X = \bigotimes_{j=1}^J X_j \sim (\bigotimes_{j=1}^J \alpha_j, (-1)^{J-1} \bigotimes_{j=1}^J \mathbf{T}_j)$
- X is PH if J-1 subgenerators are diagonal
- $E[X^k] = k! \prod_{j=1}^J \frac{E[X_j^k]}{k!}$

KPC-Toolbox: http://www.cs.wm.edu/MAPQN/kpctoolbox.html

- Support for exact and approximate moment matching
- ullet Determine $(lpha_j, {f T}_j)$ by numerical optimization
- ullet Search on moments directly instead of $(lpha, {\sf T})$ parameters

References: [CasZS08]

Example 2.5: KPC-Toolbox Fitting

- Internet Traffic Archive Trace: BC-Aug-p89, http://ita.ee.lbl.gov
- Prony's method fails if n > 3: $\theta_2 = 0.0026 + i0.0179$
- How to find a perturbation of the moment sets that delivers more accurate result?

KPC-PH, PH(4): $\mathbf{T} = -\operatorname{diag}(283.677, 1114.3, \\ 39.630, 155.67)$ $\boldsymbol{\alpha} = [0.66082, 0.31138, \\ 0.01889, 0.00890]$

PH: Other Publicly Available Tools for PH Fitting

- ${\sf EMpht (1996) -- http://home.imf.au.dk/asmus/pspapers.html:}$
 - EM algorithm for ML fitting, based on Runge-Kutta methods
 - Local optimization technique
- jPhase (2006) http://copa.uniandes.edu.co/software/jmarkov/index.html:
 - Java library ML and canonical form fitting algorithms
- PhFit (2002) http://webspn.hit.bme.hu/ \sim telek/tools.htm:
 - Separate fit of distribution body and tail
 - Both continuous and discrete ML distributions
- G-FIT (2007) http://ls4-www.cs.uni-dortmund.de/home/thummler/gfit.tgz:
 - Hyper-Erlang PHs used as building block
 - Automatic aggregation of large traces, dramatic speed-up of computational times compared to EMpht

3. MARKOVIAN ARRIVAL PROCESS

Time Series Analysis

Notation:

- $\{t_0 \stackrel{\text{def}}{=} 0, t_1, t_2, t_3, \ldots\}$: sequence of arrival times of events in the real system
- $X_k \stackrel{\text{def}}{=} t_k t_{k-1}$: inter-arrival time between arrival of the (k-1)-th and the k-th events.
- t_k and X_k may not be directly observable, e.g., aggregate data

Stochastic Process Descriptions

- Inter-arrival process: models sequence of values X_k
 - Natural description for unaggregated traces
 - Enables reasoning on individual events (e.g., response time distributions, covariance of successive arrivals, ...)
- Counting process: models number of arrivals in interval [0, t]
 - Preferred for aggregate data (e.g., packet counts)
 - ullet Enables reasoning on the volumes of events at timescale t
- The two descriptions are equivalent in theory; in practice they carry independent information when fitted on a dataset

Sequence of PH Inter-Arrival Times

- PH-Renewal process:
 - for k = 1, 2, 3, ...
 - ullet initialize a PH with subgenerator ${f T}$ according to lpha
 - generate X_k as the time to absorption in (α, T)
 - $t_k = t_{k-1} + X_k$ is the arrival time of the k-th event
- Limitation: every time the PH is restarted independently of the past. No way to define time-varying patterns, e.g., periodicities, burstiness, ...

References: [Neu89]

PH-R: Counting Process

- PH-Renewal Process State (N(t), J(t))
- N(t): event counter increased upon arrival/restart events
- J(t): PH state within current level

$$\boldsymbol{\pi}^{c}(0) = \begin{bmatrix} \boldsymbol{\alpha} \\ \boldsymbol{0} \\ \boldsymbol{0} \\ \vdots \end{bmatrix} \mathbf{Q}^{c} = \begin{bmatrix} \mathbf{T} & \mathbf{t} \cdot \boldsymbol{\alpha} & \mathbf{0} & \mathbf{0} & \dots \\ \mathbf{0} & \mathbf{T} & \mathbf{t} \cdot \boldsymbol{\alpha} & \mathbf{0} & \dots \\ \mathbf{0} & \mathbf{0} & \mathbf{T} & \mathbf{t} \cdot \boldsymbol{\alpha} & \dots \\ \vdots & \vdots & \vdots & \ddots & \ddots \end{bmatrix} \xrightarrow{N(t) = 0} N(t) = 1$$

Markovian Arrival Process (MAP)

- MAP: generalizes the PH-Renewal construction by considering restarts that depend on the exit state of the previous sample.
 - A technical device to introduce "memory" in the time series.
- MAP Counting Process:

$$m{\pi^c(0)} = egin{bmatrix} m{lpha} \ m{0} \ m{0} \ m{0} \end{bmatrix} m{Q}^c = egin{bmatrix} m{D}_0 & m{D}_1 & m{0} & m{0} & \dots \ m{0} & m{D}_0 & m{D}_1 & m{0} & \dots \ m{0} & m{D}_0 & m{D}_1 & \dots \ m{0} & m{N}(t) = 1 \ m{0} & m{N}(t) = 2 \ m{0} & m{0} & m{D}_1 & \dots \ m{0} & m{0} & m{D}_1 & \dots \ m{0} & m{N}(t) = 2 \ m{0} & m{0} & m{0} & m{0} & m{0} \ m{0} & m{0} & m{0} \ m{0} & m{0} \ m{0} & m{0} \ \m{0} \ m{0} \ m{0} \ \m{0} \ \m$$

- \mathbf{D}_0 : same as \mathbf{T} , transitions do not increase N(t)
- \mathbf{D}_1 : generalizes $\mathbf{t} \cdot \boldsymbol{\alpha}$, transitions increase N(t) by 1
- Batch MAP (BMAP): \mathbf{D}_b , b > 1, increasing N(t) by b units

References: [Neu89]

Example 3.1: Sequence of MAP(2) Inter-Arrival Times

$$\boldsymbol{D}_0 = \begin{bmatrix} -10 & 3 \\ 5 & -5 \end{bmatrix}, \boldsymbol{D}_1 = \begin{bmatrix} 5 & 2 \\ 0 & 0 \end{bmatrix}$$

- k=1; start in a random state according to α , e.g., state 2.
- $\bullet \ X_k = 0$
- $X_k = X_k + r$, $r \sim \exp(5)$. Jump to state 1.
- $X_k = X_k + r$, $r \sim \exp(10)$.
- $u \sim \text{uniform}(0,1)$.
 - if $u \in [0, \frac{3}{10})$ jump to state 2
 - if $u \in \left[\frac{3}{10}, \frac{3+5}{10}\right)$: save X_k ; $X_{k+1} = 0$; restart from state 1.
 - if $u \in [\frac{3+5}{10}, \frac{3+5+2}{10}]$: save X_k ; $X_{k+1} = 0$; restart from state 2

• . . .

Example 3.2: Temporal Dependence in MAPs

$$\mathbf{D}_0 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -10 & 0 \\ 0 & 0 & -100 \end{bmatrix}, \mathbf{D}_1 = \begin{bmatrix} p & 1-p & 0 \\ 0 & 10p & 10(1-p) \\ 100(1-p) & 0 & 100p \end{bmatrix}$$

MAP: "Family Picture" - $n \le 2$ states

Name	\mathbf{D}_0	D_1
Poisson	$[-\lambda]$	$[\lambda]$
Erlang Renewal Process	$\begin{bmatrix} -\lambda & \lambda \\ 0 & -\lambda \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \\ \lambda & 0 \end{bmatrix}$
Hyper-exp. Renewal Process	$\begin{bmatrix} -\lambda_1 & 0 \\ 0 & -\lambda_2 \end{bmatrix}$	$\begin{bmatrix} p\lambda_1 & q\lambda_1 \\ p\lambda_2 & q\lambda_2 \end{bmatrix}$
Interrupted Poisson Process	$\begin{bmatrix} -\lambda_1 & \lambda_{1,2} \\ \lambda_{2,1} & -\lambda_2 \end{bmatrix}$	$\begin{bmatrix} \lambda_{1,1}^* & \lambda_{1,2}^* \\ 0 & 0 \end{bmatrix}$
MMPP	$\begin{bmatrix} -\lambda_1 & \lambda_{1,2} \\ \lambda_{2,1} & -\lambda_2 \end{bmatrix}$	$\begin{bmatrix} \lambda_{1,1}^* & 0 \\ 0 & \lambda_{2,2}^* \end{bmatrix}$
Acyclic MAP(2)	$\begin{bmatrix} -\lambda_1 & \lambda_{1,2} \\ 0 & -\lambda_2 \end{bmatrix}$	$\begin{bmatrix} \lambda_{1,1}^* & 0 \\ \lambda_{2,1}^* & \lambda_{2,2}^* \end{bmatrix}$
MAP(2)	$\begin{bmatrix} -\lambda_1 & \lambda_{1,2} \\ \lambda_{2,1} & -\lambda_2 \end{bmatrix}$	$\begin{bmatrix} \lambda_{1,1}^* & \lambda_{1,2}^* \\ \lambda_{2,1}^* & \lambda_{2,2}^* \end{bmatrix}$

Remarks: p + q = 1

MAP: "Family Picture" - Examples - n = 3 states

Name	\mathbf{D}_0	D_1
	$\begin{bmatrix} -\lambda_1 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} \lambda_1 p & \lambda_1 q & \lambda_1 r \end{bmatrix}$
Hyper-Exp. Renewal	$\begin{bmatrix} 0 & -\lambda_2 & 0 \end{bmatrix}$	$\lambda_1 p \lambda_2 q \lambda_2 r$
	$\begin{bmatrix} 0 & 0 & -\lambda_3 \end{bmatrix}$	$\begin{bmatrix} \lambda_3 p & \lambda_3 q & \lambda_3 r \end{bmatrix}$
Circulant MMPP(3)	$\begin{bmatrix} -\lambda_1 & 0 & \lambda_{1,1} \end{bmatrix}$	$\begin{bmatrix} \lambda_{1,1}^* & 0 & 0 \end{bmatrix}$
	$\lambda_{2,1}$ $-\lambda_2$ 0	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\begin{bmatrix} 0 & \lambda_{3,2} & -\lambda_3 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & \lambda_{3,3}^* \end{bmatrix}$
	$\begin{bmatrix} -\lambda_1 & \lambda_{1,2} & \lambda_{1,3} \end{bmatrix}$	$\begin{bmatrix} \lambda_{1,1}^* & 0 & 0 \end{bmatrix}$
MMPP(3)	$\lambda_{2,1}$ $-\lambda_2$ $\lambda_{2,3}$	$\left[\begin{array}{ccc c} 0 & \lambda_{2,2}^* & 0 \end{array}\right]$
	$\begin{bmatrix} \lambda_{3,1} & \lambda_{3,2} & -\lambda_3 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & \lambda_{3,3}^* \end{bmatrix}$
Hyper-Exp. MAP	$\begin{bmatrix} -\lambda_1 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} \lambda_{1,1}^* & \lambda_{1,2}^* & \lambda_{1,3}^* \\ \vdots & \ddots & \ddots & \ddots \end{bmatrix}$
	$0 -\lambda_2 0$	$ \lambda_{2,1}^* \lambda_{2,2}^* \lambda_{2,3}^* $
	$\begin{bmatrix} 0 & 0 & -\lambda_3 \end{bmatrix}$	$\begin{bmatrix} \lambda_{3,1}^{\hat{\tau}} & \lambda_{3,2}^{\hat{\tau}} & \lambda_{3,3}^{\hat{\tau}} \end{bmatrix}$
MAP(3)	$\begin{bmatrix} -\lambda_1 & \lambda_{1,2} & \lambda_{1,3} \end{bmatrix}$	$ \lambda_{1.1}^* \lambda_{1.2}^* \lambda_{1.3}^* $
	$\begin{vmatrix} \lambda_{2,1} & -\lambda_2 & \lambda_{2,3} \end{vmatrix}$	$ \lambda_{2,1}^* \lambda_{2,2}^* \lambda_{2,3}^* $
	$\begin{bmatrix} \lambda_{3,1} & \lambda_{3,2} & -\lambda_3 \end{bmatrix}$	$\begin{bmatrix} \lambda_{3,1}^* & \lambda_{3,2}^* & \lambda_{3,3}^* \end{bmatrix}$

Remarks: p + q + r = 1

MAP: Stationarity

What is the (marginal) distribution of each sample?

$$X_1\sim(oldsymbollpha_1, oldsymbol D_0), \ oldsymbollpha_1=oldsymbollpha_1$$
 $X_2\sim(oldsymbollpha_2, oldsymbol D_0), \ oldsymbollpha_2=oldsymbollpha_1e^{oldsymbol D_0x_1}oldsymbol D_1 \ ext{if} \ X_1=x_1$...

• Since $(\alpha_1, \mathbf{D}_0) \neq (\alpha_2, \mathbf{D}_0)$ in general, how to choose α to generate stationary and identically distributed samples?

MAP: Interval-Stationary Initialization

 MAP samples X₁, X₂,... are stationary and identically distributed as (α, T) if and only if

$$lpha = \int_0^{+\infty} lpha \mathrm{e}^{\mathsf{D}_0 t} \mathsf{D}_1 dt = lpha (-\mathsf{D}_0)^{-1} \mathsf{D}_1 \stackrel{ ext{ iny def}}{=} lpha \mathsf{P}$$

- ullet lpha: eigenvector corresponding to the unit eigenvalue of ${f P}$
- $P = [p_{i,j}]$: discrete-time Markov chain (DTMC) embedded at restart instants, i.e., $p_{i,j} = \Pr[X_{k+1} \text{ starts in state } j | X_k \text{ starts in state } i]$
- ullet lpha : equilibrium probability vector of the DTMC ${f P}$
- $\mathbf{P}^h = [q_{i,j}]$: estimate initial state for non-successive samples $q_{i,j} = \Pr[X_{k+h} \text{ starts in state } j | X_k \text{ starts in state } i]$

MAP: Key Formulas for Inter-Arrival Times

- MAP representation: (**D**₀, **D**₁)
- Embedded chain: $\mathbf{P} = (-\mathbf{D}_0)^{-1}\mathbf{D}_1$
- Interval-stationary initial vector: $oldsymbol{lpha} = oldsymbol{lpha} \mathbf{P}$

Distribution of samples:

- (Marginal) Distribution: $F(t) = 1 \alpha e^{\mathbf{D}_0 t} \mathbb{1}$
- (Marginal) Density: $f(t) = \alpha e^{\mathbf{D}_0 t} (-\mathbf{D}_0) \mathbb{1} = \alpha e^{\mathbf{D}_0 t} \mathbf{D}_1 \mathbb{1}$
- (Marginal) Moments: $E[X^k] = k!\alpha(-\mathbf{D}_0)^{-k}\mathbb{1}$
- Degrees of freedom of distribution: 2n-1

MAP: Key Formulas for Inter-Arrival Times

Sequence of samples:

• Joint Density Function:

$$\Pr(X_1 = x_1, X_2 = x_2, \dots, X_q = x_q) = \alpha e^{\mathbf{D}_0 x_1} \mathbf{D}_1 e^{\mathbf{D}_0 x_2} \mathbf{D}_1 \dots e^{\mathbf{D}_0 x_q} \mathbf{D}_1 \mathbb{1}$$

- $D_1 o D_1 P^{h-1}$ for samples spaced by h lags
- Joint Moments:

$$E[X_1^{k_1}X_2^{k_2}\cdots X_q^{k_q}] = k_1!\cdots k_q!\alpha(-\mathbf{D}_0)^{-k_1}\mathbf{P}(-\mathbf{D}_0)^{-k_2}\cdots(-\mathbf{D}_0)^{-k_q}\mathbb{1}$$

- $\mathbf{P} \to \mathbf{P}^h$ for samples spaced by h lags
- Analysis often limited to second-order properties.
- Autocorrelation function:

$$\rho_h = \frac{E[X_1 X_{1+h}] - E[X]^2}{E[X^2] - E[X]^2} = \frac{\alpha (-\mathbf{D}_0)^{-1} \mathbf{P}^h (-\mathbf{D}_0)^{-1} \mathbb{1} - \alpha (-\mathbf{D}_0)^{-1} \mathbb{1}}{2\alpha (-\mathbf{D}_0)^{-2} \mathbb{1} - \alpha (-\mathbf{D}_0)^{-1} \mathbb{1}}$$

References: [TelH07]

MAP: Spectral Analysis

- Characteristic polynomial method applies also to powers \mathbf{P}^h
- γ_i : *i*-th largest eigenvalue of **P**, algebraic multiplicity r_i
- for k=0 it can be shown that $ho_0=\frac{1}{2}\left(1-\frac{1}{c^2}\right) \neq 1$
- Assume P diagonalizable, then

$$\rho_k = \sum_{i=2}^m A_{t,1} \gamma_i^k, \qquad \sum_{j=2...r_i} A_{t,1} = \rho_0$$

- Assume n=2 states, then $\rho_k=\rho_0\gamma_2^k$ (geometric decay)
- Degrees of freedom for autocorrelation coefficients: 2n-3

References: [CasMS07]

Example 3.3: MAP(2) Autocorrelation Patterns

Example 3.4: MAP(n) Autocorrelation Patterns

Examples exist also for cases such as:

- $c^2 > 1$, $\rho_1 > 0.50$, $c^2 < 1$, $\rho_1 > 0.30$
- Exponential distribution $c^2 = 1$, but not Poisson $\rho_k \neq 0$

References: [Nie98]

4. INTER-ARRIVAL PROCESS FITTING

Includes joint work with Evgenia Smirni (IBM Research, William & Mary)

Example 4.1: Redundancy of MAP Representation

- MAP $(\mathbf{D}_0, \mathbf{D}_1)$ defined by $2n^2 n$ parameters
- Degrees of freedom: difficult problem, typically at most n^2
- Example: redundancy in MAP(2)s

$$\begin{aligned} \mathbf{D}_0 &= \begin{bmatrix} -2 & 1 \\ 5 & -10 \end{bmatrix}, \mathbf{D}_1 = \begin{bmatrix} 1 & 0 \\ 0 & 5 \end{bmatrix} \\ \mathbf{D}_0' &= \begin{bmatrix} -1.4174 & 0 \\ 0 & -10.5826 \end{bmatrix}, \mathbf{D}_1' = \begin{bmatrix} 1.2543 & 0.1632 \\ 5.8368 & 4.7457 \end{bmatrix} \end{aligned}$$

	$(\mathbf{D}_0,\mathbf{D}_1)$	$(\mathbf{D}_0',\mathbf{D}_1')$
E[X]	0.6000	0.6000
$E[X^2]$	0.8267	0.8267
$E[X^3]$	1.7440	1.7440
:	:	:

	$(\mathbf{D}_0,\mathbf{D}_1)$	$(\mathbf{D}_0',\mathbf{D}_1')$
ρ_1	0.0381	0.0381
ρ_2	0.0127	0.0127
ρ_3	0.0042	0.0042
i	:	÷

References: [TelH07]

MAP(2): 3 Canonical Forms

- PH-Renewal– $(\gamma_2 = 0)$: $\mathbf{D}_0 = \mathbf{T}$, $\mathbf{D}_1 = -\mathbf{T} \mathbb{1} \alpha$, \mathbf{T} is Coxian
- Positive autocorrelation decay– $\gamma_2 \stackrel{\text{def}}{=} pq > 0$:

$$\mathbf{D}_0 = \begin{bmatrix} -\lambda_1 & (1-p)\lambda_1 \\ 0 & -\lambda_2 \end{bmatrix}, \mathbf{D}_1 = \begin{bmatrix} p\lambda_1 & 0 \\ (1-q)\lambda_2 & q\lambda_2 \end{bmatrix}$$

$$lpha = [(1-q), (q-pq)]/(1-pq), \ p, q
eq 1$$

• Negative autocorrelation decay – $\gamma_2 \stackrel{\text{def}}{=} pq < 0$:

$$\mathbf{D}_0 = \begin{bmatrix} -\lambda_1 & (1-p)\lambda_1 \\ 0 & -\lambda_2 \end{bmatrix}, \mathbf{D}_1 = \begin{bmatrix} 0 & p\lambda_1 \\ q\lambda_2 & (1-q)\lambda_2 \end{bmatrix}$$

$$\alpha = [q, (1 - q + pq)]/(1 + pq), \ q \neq 0$$

References: [BodHGT08],[HeiML06],[HeiHG06]

MAP(2): Exact Fitting

• Symbolic analysis of $\phi(A)$, $A = (-\mathbf{D}_0)^{-1}$, shows that

$$\begin{cases} -(\lambda_1^{-1} + \lambda_2^{-1}) = \frac{E[\widetilde{X}^3] - 3E[\widetilde{X}]E[\widetilde{X}^2]}{3(2E[\widetilde{X}]^2 - E[\widetilde{X}^2])} \\ (\lambda_1 \lambda_2)^{-1} = \frac{\frac{3}{2}E[\widetilde{X}^2]^2 - E[\widetilde{X}]E[\widetilde{X}^3]}{3(2E[\widetilde{X}]^2 - E[\widetilde{X}^2])} \\ (1 - p)\lambda_2^{-1} + (1 - q)\lambda_1^{-1} = E[\widetilde{X}](1 - \gamma_2) \\ pq = \gamma_2 \end{cases}$$

- Generalization of PH(2) moment matching formulas
- Solving for $(\lambda_1, \lambda_2, p, q)$ gives the canonical form
- Symbol solution is feasible and useful for fast evaluation, but yields very complex expressions

Example 4.2: Reducing to MAP(2) Canonical Form

• Same MAPs of Example 4.1:

```
\begin{split} & \text{E=}[0.6000,\,0.8267,\,1.7440];\,\,\%\,\,\textbf{2n-1=3}\,\,\textbf{independent}\,\,\textbf{moments}\\ & \text{g2=}1/3;\,\,\%\,\,\textbf{autocorrelation}\,\,\textbf{decay}\,\,\textbf{rate}\\ & \text{D=}3^*(2^*\text{E}(1)^2\text{-E}(2));\,\,\text{m1=}(\text{E}(3)\text{-}3^*\text{E}(1)^*\text{E}(2))/\text{D},\,\,\text{m2=}(1.5^*\text{E}(2)^2\text{-E}(1)^*\text{E}(3))/\text{D},\\ & \text{[x,fval]}\,\,=\,\,\text{fsolve}(@(x)\,\,[\text{-sum}(1./x(1:2))\,\,-\,\,\text{m1;1./prod}(x(1:2))\,\,-\,\,\text{m2;}\,\,\text{prod}(x(3:4))\text{-g2;}\\ & \text{((1-x(3)./x(2))}\,\,+\,\,(1-x(4))./x(1))/(1\text{-g2})\text{-E}(1)],\text{rand}(1,4));\\ & \text{lam}\,\,=\,\,x(1:2);\,\,\text{p=x}(3);\,\,\text{q=x}(4);\\ & \text{Output:}\,\,\,\text{lam}\,\,=\,\,[\,\,10.5826\,\,1.4174],\,\,\text{p}\,\,=\,\,0.4725,\,\,\text{q}\,\,=\,\,0.7055 \end{split}
```

• Canonical form $\gamma_2 > 0$

$$\mathbf{D}_0 = \begin{bmatrix} -10.5826 & 5.5826 \\ 0 & -1.4174 \end{bmatrix}, \ \mathbf{D}_1 = \begin{bmatrix} 5 & 0 \\ 0.4174 & 1 \end{bmatrix}$$

- Moments: E[X] = 0.6000, $E[X^2] = 0.8267$, $E[X^3] = 1.7440$
- Autocorrelation decay rate: $\gamma_2 = 0.333$

MAP: Approximate Inter-Arrival Process Fitting

KPC readily generalizes to MAP random variables

•
$$X = \bigotimes_j^J X_j \sim ((-1)^{J-1} \bigotimes_j^J \mathbf{D}_0^{(j)}, \bigotimes_j^J \mathbf{D}_1^{(j)})$$

• X is a MAP if J-1 $\mathbf{D}_0^{(j)}$ are diagonal (hyper-exp. moments)

Moments and Joint Moments:

•
$$E[X^k] = k! \prod_{j=1}^J \frac{E[X_j^k]}{k!}$$

•
$$E[X_i^k X_{i+h}^u] = k! u! \prod_{j=1}^J \frac{E[X_{i,i}^k X_{i,i+h}^u]}{k! u!}, \forall \text{ lags } i, h$$

•
$$E[X_i^k X_{i+h}^u X_{i+h+l}^v] = k! u! v! \prod_{j=1}^J \frac{E[X_{i,i}^k X_{j,i+h}^u X_{j,i+h+l}^v]}{k! u! v!}$$
, \forall lags i, h, l

• ..

References: [CasZS07]

MAP: KPC-Toolbox

Autocorrelation decay rates and embedded chain:

•
$$\gamma_i = \prod_{j=1}^J \gamma_{j,i}$$
, $\mathbf{P} = \bigotimes_{j=1}^J \mathbf{P}_j$

Second-order properties follow recursively from those of $X \otimes Y$:

$$1 + c^{2} = \frac{1}{2}(1 + c_{X}^{2})(1 + c_{Y}^{2})$$

$$\rho_{k} = \left(\frac{c_{X}^{2}}{c^{2}}\right)\rho_{k}^{X} + \left(\frac{c_{Y}^{2}}{c^{2}}\right)\rho_{k}^{Y} + \left(\frac{c_{X}^{2}c_{Y}^{2}}{c^{2}}\right)\rho_{k}^{X}\rho_{k}^{Y}$$

KPC-Toolbox – MAP Fitting:

- Optimization-based second-order and third-order fitting
- $X_j \sim \text{MAP}(2)$, known feasibility region for c^2 and ρ_k
- ullet Fitting of c^2 and ho_k disjoint from first-order and third-order
- Residual df spent to fit third-order moments $E[X_iX_{i+h}X_{i+h+l}]$

References: [CasZS08]

Example 4.3: Feasible ρ_1 Values

- KPC trades number of states for greater fitting flexibility, e.g.,
- X MAP(2): $\rho_1 \leq \frac{1}{2}$
- $X, Y MAP(2)s, X \otimes Y KPC(4)$: $\rho_1 \leq \frac{2}{3}$

Example 4.4: Second-Order vs Third-Order Fitting

- Second-Order: approximately match $E[X_i X_{i+h}]$ (equiv. ρ_h)
- Third-Order: approx. match $E[X_iX_{i+h}]$ and $E[X_iX_{i+h}X_{i+h+l}]$

References: [AndN02],[CasZS07]

Example 4.5: KPC MAP Fitting

Comparison of inter-Arrival and counting process methods:

- KPC: second-order and third-order fit of inter-arrival process
- Superposition (cf. Appendix): fit Hurst coefficient for counts

References: [AndN02],[CasZS07]

CONCLUSION

Summary

- PHs and MAPs are tractable models for characterizing empirical data using Markov chains
- PHs and MAPs closed under several operations (mixture, convolution, KPC, ...)
- Models with $n \le 3$ states are analytically tractable by means of canonical forms
- Larger models can be dealt with using divide-and-conquer approximate moment matching

APPENDIX COUNTING PROCESS FITTING

MAP: Counting Process Statistics

- $\mathbf{Q} = \mathbf{D}_0 + \mathbf{D}_1$: CTMC for state J(t)
- Time-stationary initialization: π , equilibrium solution of **Q**
- $\pi_i^c(t)$: state probabilities for level N(t) = j
- Kolmogorov forward equations for Q^c:

$$egin{cases} \dot{oldsymbol{\pi}}_0^{oldsymbol{c}}(t) = oldsymbol{\pi}_0^{oldsymbol{c}}(t) oldsymbol{\mathsf{D}}_0 \ \dot{oldsymbol{\pi}}_j^{oldsymbol{c}}(t) = oldsymbol{\pi}_j^{oldsymbol{c}}(t) oldsymbol{\mathsf{D}}_0 + oldsymbol{\pi}_{j-1}^{oldsymbol{c}}(t) oldsymbol{\mathsf{D}}_1, & j \geq 1 \end{cases}$$

• Solving with $\dot{\boldsymbol{\pi}}_0^c(0) = \boldsymbol{\pi}, \ \dot{\boldsymbol{\pi}}_j^c(0) = \boldsymbol{0}, \ j \geq 1$ yields

$$E[N(t)] = \lambda t = t/E[X], \qquad \lambda \stackrel{\text{def}}{=} \pi \mathbf{D}_1 \mathbb{1}, \qquad \mathbf{d}_i \stackrel{\text{def}}{=} (\mathbb{1}\pi - \mathbf{Q})^{-i} \mathbf{D}_1 \mathbb{1}$$
$$Var[N(t)] = (\lambda - 2\lambda^2 + 2\pi \mathbf{D}_1 \mathbf{d}_1)t - 2\pi \mathbf{D}_1 (\mathbf{I} - e^{\mathbf{Q}t}) \mathbf{d}_2$$

• Covariance of counts in slots of length u spaced by k-1 slots: $Cov[N(u), N((k+1)u) - N(ku)] = \pi \mathbf{D}_1(\mathbf{I} - e^{\mathbf{Q}u})e^{\mathbf{Q}(k-1)u}(\mathbf{I} - e^{\mathbf{Q}u})\mathbf{d}_2$

MAP: Process Superposition

MAP is closed under superposition, not true for PH-Renewal

- N(t): counting process for MAP $(\mathbf{D}_0, \mathbf{D}_1)$
- N'(t): counting process for MAP $(\mathbf{D}'_0, \mathbf{D}'_1)$
- ullet $(oldsymbol{\mathsf{D}}_0\oplusoldsymbol{\mathsf{D}}_0',oldsymbol{\mathsf{D}}_1\oplusoldsymbol{\mathsf{D}}_1')$ has counting process $\mathit{N}(t)+\mathit{N}'(t)$
- Widely applicable, e.g., superposition of network traffic flows

Example: superposition of Erlang-n flows (PH-Renewal) \neq i.i.d.

MAP: Approximate Counting Process Fitting

• Autocorrelation of counts in arrivals in slots of length *u*:

$$\rho^{c}(k; u) \stackrel{\text{def}}{=} Cov[N(u), N((k+1)u) - N(ku)]/Var[N(u)]$$

- Long-Range Dependence (LRD) / variance at multiple time-scales: $\rho^c(k; u) \sim k^{-2(1-H)}$ as $k \to +\infty$ (Hurst coeff.)
- Andersen-Nielsen: Match H by superposing 2-states processes

Example:

- Time scale: $\tau_j = 10^{-j}$ units
- Superposed process: 3

$$(\bigoplus_{j=0}^{3} \tau_{j} \mathbf{D}_{0}, \bigoplus_{j=0}^{3} \tau_{j} \mathbf{D}_{1})$$

References: [AndN98]

REFERENCES

References and Additional Readings 1/2

[AldS87] D. Aldous and L. Shepp. The least variable phase type distribution is Erlang. *Comm. Stat.-Stochastic Models*, 3(3):467–473, 1987.

[AndN98] A. T. Andersen and B. F. Nielsen. A Markovian approach for modeling packet traffic with long-range dependence. *IEEE JSAC*, 16(5):719–732, 1998.

[AndN02] A. T. Andersen and B. F. Nielsen. On the use of second-order descriptors to predict queueing behavior of MAPs. *Naval Res. Log.*, 49(4):391–409, 2002.

[BauBK10] Falko Bause, Peter Buchholz, Jan Kriege. ProFiDo - The Processes Fitting Toolkit Dortmund. QEST 2010: 87-96.

[BuchK09] P. Buchholz, Jan Kriege. A Heuristic Approach for Fitting MAPs to Moments and Joint Moments. In *Proc of QEST*, 2009: 53-62, 2009.

[BodHGT08] L. Bodrog and A. Heindl and G. Horváth and M. Telek. A Markovian Canonical Form of Second-Order Matrix-Exponential Processes. *European Journal of Operations Research*, 190(457-477), 2008.

[Bre78] J. Brewer. Kronecker products and matrix calculus in system theory. *IEEE Trans. on Circuits and Systems*, 25(9):772–781, 1978.

[CasZS07] G. Casale, E. Zhang, and E. Smirni. Characterization of moments and autocorrelation in MAPs. *ACM Perf. Eval. Rev.*, 35(1):27–29, 2007.

[CasZS08] G. Casale, E. Zhang, and E. Smirni. KPC-toolbox: Simple yet effective trace fitting using markovian arrival processes. In *Proc. of QEST*, 83–92, 2008. [CasZS08b] G. Casale, E. Z. Zhang, and E. Smirni. Interarrival times characterization and fitting for Markovian traffic analysis. Technical Report WM-CS-2008-02, College

of William and Mary, 2008.

References and Additional Readings 2/2

[HeiHG06] A. Heindl, G. Horvath, and K. Gross. Explicit Inverse Characterizations of Acyclic MAPs of Second Order. EPEW workshop, 108-122, 2006.

[HeiML06] A. Heindl, K. Mitchell, and A. van de Liefvoort. Correlation bounds for second-order MAPs with application to queueing network decomposition. *Performance Evaluation*, 63(6):553–577, 2006.

[HorT09] G. Horvath, M. Telek. On the canonical representation of phase type distributions. *Performance Evaluation*, 66(8):396–409, (2009).

[MaiO92] R. S. Maier and C. A O'Cinneide. A closure characterisation of phase-type distributions. *J. App. Probab.*, 29:92–103, 1992.

[Neu89] M. F. Neuts. Structured Stochastic Matrices of M/G/1 Type and Their Applications. Marcel Dekker, New York, 1989.

[Nie98] B. F. Nielsen. Note on the Markovian Arrival Process, Nov 1998.

http://www2.imm.dtu.dk/courses/04441/map.pdf

[OsoH06] T. Osogami, M. Harchol-Balter. Closed form solutions for mapping general distributions to quasi-minimal PH distributions. *Performance Evaluation*, 63(6): 524-552, 2006.

[TelH03] M. Telek and A. Heindl. Matching moments for acyclic discrete and continuous phase-type distributions of second order. International Journal of Simulation, 3:47–57, 2003.

[TelH07] M. Telek and G. Horváth. A minimal representation of Markov arrival processes and a moments matching method. *Performance Evaluation*, 64(9-12):1153-1168, 2007.