习题课上总结的一些题

- 一. 求矩阵的 m 次方。(这里之所以写 m 是为了与矩阵的阶数 n 区别开来,以防混淆)
- 1. 数学归纳法。即依次求出 A, A^2, A^3, \cdots 。一般不用,但也有特殊情况(例如 17-18 年半期测试的一大题的第四小题,当然这个题有两种解法,任选其一;15-16 年的期末试题三大题的第二小题的最后一问)。
 - 2. 对角矩阵的 m 次方。(显然不会单独出题)

设
$$A = \begin{bmatrix} a_{11} & & & & \\ & a_{22} & & & \\ & & \ddots & & \\ & & & a_{nn} \end{bmatrix}$$
,则 $A^m = \begin{bmatrix} a_{11}^m & & & \\ & a_{22}^m & & \\ & & \ddots & \\ & & & a_{nn}^m \end{bmatrix}$.

3. 如果一个 n 阶方阵 A主对角线上以及主对角线的一侧元素全为 0,那么必有 $A^k = 0$,其中 $k \ge n$ 。即 A 是下边的几种形状之一: (一定要注意是针对主对角线,副对角线该结论不成立,第二次习题课讲这里时讲错了,后边已更正)

$$\begin{bmatrix} 0 & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & 0 & a_{23} & \cdots & a_{2n} \\ 0 & 0 & 0 & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 \\ a_{21} & 0 & 0 & \cdots & 0 \\ a_{31} & a_{32} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & 0 \end{bmatrix}$$

例如: 若
$$A = \begin{bmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 1 & 3 & 0 \end{bmatrix}$$
,则 $A^2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 6 & 0 & 0 \end{bmatrix}$, $A^3 = \underline{\qquad 0 \qquad}$.

解:

由矩阵的乘法:

$$A^{2} = \begin{bmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 1 & 3 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 1 & 3 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 6 & 0 & 0 \end{bmatrix}$$
$$A^{3} = A^{2}A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 6 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 1 & 3 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

 \Diamond

4. 一般来说,上边的 2,3 不会单独出题,因为太过简单,都是组合起来出题。

二项式定理:
$$(a+b)^n = \sum_{i=0}^n C_n^i a^i \cdot b^{n-i}$$
, 式中: C_n^i 为组合数, $C_n^i = \frac{n!}{i!(n-i)!}$ 。

例如: 若
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix}$$
, 则 $A^m = \underline{\qquad}$.

解:

由题得:
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 2 & 3 \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{bmatrix} = I + B$$

由 3 的结论可知:
$$B^k=0, k\geq 3$$
。计算得: $B^2=\begin{bmatrix} 0 & 0 & 8 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ 所以

$$\begin{split} A^m &= (I+B)^m = C_m^0 I^m B^0 + C_m^1 I^{m-1} B^1 + C_m^2 I^{m-2} B^2 + C_m^3 I^{m-3} \frac{\mathbf{B^3}}{\mathbf{B^3}} + \dots + C_m^0 I^0 \frac{\mathbf{B^m}}{\mathbf{B^m}} \\ &= I^m B^0 + m I^{m-1} B^1 + \frac{m(m-1)}{2} I^{m-2} B^2 = I + m B + \frac{m(m-1)}{2} B^2 \\ &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + m \begin{bmatrix} 0 & 2 & 3 \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{bmatrix} + \frac{m(m-1)}{2} \begin{bmatrix} 0 & 0 & 8 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \\ &= \begin{bmatrix} 1 & 2m & 4m^2 - m \\ 0 & 1 & 4m \\ 0 & 0 & 1 \end{bmatrix} \end{split}$$

5. 如果一个 n 阶方阵 A 的秩 r(A) = 1,那么 A 一定可以写成一个列向量与一个行向量的乘积,即(我们以 3 阶的方阵为例,最后把结果推广到 n 阶):

设 3 阶方阵
$$A$$
 的秩 $r(A)=1$,设 $\alpha=\begin{bmatrix}x_1&x_2&x_3\end{bmatrix}^T$, $\beta=\begin{bmatrix}y_1&y_2&y_3\end{bmatrix}^T$,则

$$A = \alpha \beta^T = \begin{bmatrix} x_1 y_1 & x_1 y_2 & x_1 y_3 \\ x_2 y_1 & x_2 y_2 & x_2 y_3 \\ x_3 y_1 & x_3 y_2 & x_3 y_3 \end{bmatrix} (至于这里的 \ x \ 和 \ y \ 的具体值,我们并不关心。)$$

 $l = \alpha^T \beta = \beta^T \alpha = x_1 y_1 + x_2 y_2 + x_3 y_3$. 可以看出 l 是矩阵 A 的对角线元素之和(又称 A 的迹)。 $A^2 = (\alpha \beta^T)^2 = \alpha (\beta^T \alpha) \beta^T = l \alpha \beta^T = l A, A^3 = AA^2 = AlA = l A^2 = l l A = l^2 A \cdots, \Rightarrow A^m = l^{m-1} A$ 。

例如: (对 2,3,4,5 综合运用)

设
$$A = \begin{bmatrix} 3 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 9 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$
,则 $A^m = \underline{\qquad}$

解:

经观察, 我们可将矩阵按下列方式进行分块:

$$A = \begin{bmatrix} 3 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 9 \\ 0 & 0 & 1 & 3 \end{bmatrix} = \begin{bmatrix} A_{11} & \mathbf{0} \\ \mathbf{0} & A_{22} \end{bmatrix} \quad A_{11} = \begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix} \quad A_{22} = \begin{bmatrix} 3 & 9 \\ 1 & 3 \end{bmatrix}$$

A 分块后是对角矩阵,所以: $A^m = \begin{bmatrix} A_{11}^m & \mathbf{0} \\ \mathbf{0} & A_{22}^m \end{bmatrix}$ (注: 2 的结论)

对于 A₁₁:

$$A_{11} = \begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = 3I + B$$
 和 4 一样了,此时 $B^k = 0, k \ge 2$

$$A_{11}^m = (3I + B)^m = C_m^0 B^0 (3I)^m + C_m^1 B^1 (3I)^{m-1} + C_m^2 B^2 (3I)^{m-2} + \dots + C_m^m B^m (3I)^0$$

$$= 3^m I + 3^{m-1} mB$$

$$= \begin{bmatrix} 3^m & m3^{m-1} \\ 0 & 3^m \end{bmatrix}$$

对于 A_{22} ,经过高斯消元法变换 (r_1-3r_2) 后: $\begin{bmatrix} 3 & 9 \\ 0 & 0 \end{bmatrix}$,可以看出 $r(A_{22})=1$,符合本条的描述,所以

$$l=3+3=6$$

$$A_{22}^m = l^{m-1}A = 6^{m-1} \begin{bmatrix} 3 & 9 \\ 1 & 3 \end{bmatrix}$$

所以:

$$A^{m} = \begin{bmatrix} A_{11}^{m} & \mathbf{0} \\ \mathbf{0} & A_{22}^{m} \end{bmatrix} = \begin{bmatrix} 3^{m} & m \cdot 3^{m-1} & 0 & 0 \\ 0 & 3^{m} & 0 & 0 \\ 0 & 0 & 3 \cdot 6^{m-1} & 9 \cdot 6^{m-1} \\ 0 & 0 & 6^{m-1} & 3 \cdot 6^{m-1} \end{bmatrix}$$

6. 用相似矩阵的性质来做,即若 $A \sim B$, 则 $A^m \sim B^m$ (例如 17-18 年半期测试的一大题的第四小题)。 但通常有一些矩阵隐含了此属性,也可以用此方法来做,要注意辨别。(例如: 课本的 140 页第 9 题,答案在 224 页)

 \Diamond

- 二、特殊矩阵的特征值求法
- 1. 对角阵,上下三角阵的行列式均为对角线的元素。(由这些特殊行列式的算法很容易看出来)
- 2. 设 $A = [a_{ij}]$ 是三阶矩阵,则 (下式不做推导,感兴趣的可以自己算一下)

$$|\lambda E - A| = \begin{bmatrix} \lambda - a_{11} & -a_{12} & -a_{13} \\ -a_{21} & \lambda - a_{22} & -a_{23} \\ -a_{31} & -a_{32} & \lambda - a_{33} \end{bmatrix} = \lambda^3 - \sum a_{ii}\lambda^2 + S_2\lambda - |A|$$

式中:
$$S_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$$
.

若 r(A) = 1(再复习一下一的第五点),则 $|A| = 0, S_2 = 0$,代入到上式有

$$|\lambda E - A| = \lambda^3 - \sum a_{ii}\lambda^2 = \lambda^2 \left(\lambda - \sum a_{ii}\right)$$

做推广,对于 n 阶矩阵 A,若 r(A)=1,则 $|\lambda E-A|=\lambda^{n-1} (\lambda-\sum a_{ii})$ 例如:

已知 $a \neq 0$,求矩阵

$$\begin{bmatrix} 1 & a & a & a \\ a & 1 & a & a \\ a & a & 1 & a \\ a & a & a & 1 \end{bmatrix}$$

的特征值、特征向量。

解:

方法一:(直接计算) 由特征多项式:

$$\begin{vmatrix} \lambda E - A \end{vmatrix} = \begin{vmatrix} \lambda - 1 & -a & -a & -a \\ -a & \lambda - 1 & -a & -a \\ -a & -a & \lambda - 1 & -a \\ -a & -a & -a & \lambda - 1 \end{vmatrix} = [\lambda - (3a+1)] (\lambda + a - 1)^3$$

得 A 的特征值是 3a + 1, 1 - a。

当 $\lambda = 3a + 1$ 时,由 [(3a + 1)E - A] = 0,即

$$\begin{bmatrix} 3a & -a & -a & -a \\ -a & 3a & -a & -a \\ -a & -a & 3a & -a \\ -a & -a & -a & 3a \end{bmatrix} \rightarrow \begin{bmatrix} 3 & -1 & -1 & -1 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 3 & -1 \\ -1 & -1 & -1 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -3 & 1 & 1 \\ 1 & 1 & -3 & 1 \\ 1 & 1 & 1 & -3 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

可得基础解系为 $\alpha_1 = (1,1,1,1)^T$, 所以 $\lambda = 3a+1$ 的特征向量为 $k_1\alpha_1, (k_1 \neq 0)$ 。

当 $\lambda = 1 - a$ 时, 由 [(1 - a)E - A] = 0, 即

得基础解系 $\alpha_2 = (-1,1,0,0)^T$, $\alpha_3 = (-1,0,1,0)^T$ $\alpha_4 = (-1,0,0,1)^T$, 所以 $\lambda = 1-a$ 的特征向量为 $k_2\alpha_2 + k_3\alpha_3 + k_4\alpha_4$, 式中 k_2,k_3,k_4 是不全为 0 的任意常数。

方法二: (转换法)

由题得:

由于 r(B) = 1, 所以有

$$|\lambda E - B| = \lambda^{4-1} \left(\lambda - \sum_{i=1}^{4} a_{ii}\right) = \lambda^3 \left(\lambda - 4a\right)$$

所以矩阵 B 的特征值为 0,0,0,4a, 所以由特征值的性质,A 的特征值为 3a+1,1-a,1-a,1-a。

下边同方法一。

n 阶矩阵

$$A = \begin{bmatrix} a & 1 & 1 & \cdots & 1 \\ 1 & a & 1 & \cdots & 1 \\ 1 & 1 & a & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & a \end{bmatrix}$$

则 $r(A) = _____.$ 解:

由上题可快速写出 A 的特征值为 $n+a-1,a-1,a-1,\cdots,a-1$. 因为 A 是实对称矩阵, 所以 $A\sim \Lambda$, 且 Λ 由 A 的特 征值所构成,相似矩阵具有相同的秩,所以 $r(\Lambda) = r(A)$,所以

$$\Lambda = egin{bmatrix} n+a-1 & & & & \\ & a-1 & & & \\ & & \ddots & & \\ & & & a-1 \end{bmatrix}$$

这里 n 是 A 的阶数, 所以不会等于 0。所以

设 α 为n维单位列向量,E为n阶单位矩阵,则

 $A.E - \alpha \alpha^T$ 不可逆

 $B.E + \alpha \alpha^T$ 不可逆

 $C.E + 2\alpha\alpha^T$ 不可逆 $D.E - 2\alpha\alpha^T$ 不可逆

 \Diamond

解:

注意: 单位向量指的是向量的模(长度)为1,要与[1,1,1]区分开来。

 $\alpha \alpha^T \alpha = \alpha (\alpha^T \alpha) = 1 \alpha$, 所以 $\alpha \alpha^T$ 有一个特征值 1.

 α 为 n 维单位列向量, 所以 $r(\alpha\alpha^T)=1$, 所以由第一题的结论, $\alpha\alpha^T$ 的特征值为 $1,0,0,\cdots,0$ 。

E 为 n 阶单位矩阵, 所以 E 也为实对称矩阵 (特征值为 1), 实对称矩阵相加减依然为实对称矩阵, 所以上述选项中每一项 均为实对称矩阵。

又由矩阵可逆则行列式一定不为 0 (不可逆则行列式一定为 0, 充要条件), 矩阵的行列式等于特征值的乘积。

A.c 的特征值为 $1-1,1-0,1-0,\cdots,1-0$ 即 $0,1,1,\cdots,1$, 所以 $|E-\alpha\alpha^T|=0\times1\cdots1=0$, 即不可逆。 同理可以看出其他选项的行列式均不为 0, 即可逆。

2. 抽象矩阵特征值和特征向量的求法

设 A 是三阶矩阵,且矩阵 A 的各行元素之和均为 5,则矩阵 A 必有特征向量 解:

由题得:

$$\begin{cases} a_{11} + a_{12} + a_{13} = 5 \\ a_{21} + a_{22} + a_{23} = 5 \\ a_{31} + a_{32} + a_{33} = 5 \end{cases} \Rightarrow \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \\ 5 \end{bmatrix} \Rightarrow A \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 5 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

所以矩阵 A 必有特征值 5 且必有特征向量 $k[1,1,1]^T$, $(k \neq 0)$ 。

已知 $A \ge 3$ 阶矩阵,如果非齐次线性方程组 Ax = b 有通解 $5b + k_1\eta_1 + k_2\eta_2$,其中 η_1, η_2 是 Ax = 0 的 基础解系,求A的特征值和特征向量。

班序号: 学院: 学号: 姓名: 王松年 6

解:

非齐次线性方程组 Ax=b 的通解为 Ax=b 的特解加上 Ax=0 的通解。

由解得结构可知 5b 是方程组 Ax = b 的一个解,即 A(5b) = b,所以 $Ab = \frac{1}{5}b$ 。即 $\frac{1}{5}$ 是 A 的特征值, $k_1b, (k_1 \neq 0)$ 是相应 的特征向量。

 η_1, η_2 是 Ax = 0 的基础解系,所以必有 $A\eta_1 = 0 = 0\eta_1, A\eta_2 = 0 = 0\eta_2$,所以 η_1, η_2 是 A 关于 $\lambda = 0$ 的线性无关的特征

向量,所以特征值 0 对应的特征向量为 $k_2\eta_1+k_3\eta_2, (k_2,k_3$ 不全为0)。 综上所述,A 的特征值为 $\frac{1}{5},0,0$,对应的特征向量分别是 $k_1b,(k_1\neq 0)$, $k_2\eta_1+k_3\eta_2,(k_2,k_3$ 不全为0) \Diamond

2014-2015 年第一学期

 \Diamond

一、填空题

1. 若已知行列式 $\begin{vmatrix} 1 & 3 & a \\ 5 & -1 & 1 \\ 3 & 2 & 1 \end{vmatrix}$ 的代数余子式 $A_{21} = 1$,则 a =______。

解:

$$A_{21} = (-1)^{2+1} \times (3 \times 1 - 2 \times 1) = 1$$
, 解得 $a = 2$.

解:

B 为 3 阶非零矩阵且 AB=0 即 B 的非零列向量为 Ax=0 的解,即 Ax=0 有非零解,即 |A|=0,把 |A| 按第三列展开。

$$|A| = \begin{vmatrix} 1 & 2 & -2 \\ 2 & 5 & 0 \\ 3 & t & 4 \end{vmatrix} = -2 \times (-1)^{1+3} \begin{vmatrix} 2 & 5 \\ 3 & t \end{vmatrix} + 4 \begin{vmatrix} 1 & 2 \\ 2 & 5 \end{vmatrix} = -2(2t - 15) + 4 = 0 \quad \Rightarrow \quad t = \frac{17}{2}$$

3. 设 3 阶方阵 $A=(\alpha_1,\alpha_2,\alpha_3)$ 的行列式 |A|=3, 矩阵 $B=(\alpha_2,2\alpha_3,-\alpha_1)$,则行列式 |A-B|=_____。解:

对 A 的第三列乘 2 得: $|\alpha_1 \alpha_2 2\alpha_3| = 2|A|$, 对该表达式第一列乘负一: $|-\alpha_1 \alpha_2 2\alpha_3| = -2|A|$, 交换一二两列, $|\alpha_2 \alpha_1 2\alpha_3| = 2|A|$, 交换二三两列, $|\alpha_2 2\alpha_3 \alpha_1| = -2|A|$, 所以 |B| = -2|A|.

$$|A - B| = |\alpha_1 - \alpha_2 - \alpha_2 - 2\alpha_3 - \alpha_3 + \alpha_1| = |\alpha_1 - \alpha_2 - 2\alpha_3 - \alpha_3 + \alpha_1| + |-\alpha_2 - \alpha_2 - 2\alpha_3 - \alpha_3 + \alpha_1|$$

$$= |\alpha_1 - \alpha_2 - 2\alpha_3 - \alpha_3| + |-\alpha_2 - 2\alpha_3 - \alpha_3 + \alpha_1|$$

$$= |\alpha_1 - \alpha_2 - \alpha_3| + |\alpha_1 - 2\alpha_3 - \alpha_3| + |-\alpha_2 - 2\alpha_3 - \alpha_3| + |-\alpha_2 - 2\alpha_3 - \alpha_1|$$

$$= |A| + 0 + 0 - |B| = 3|A| = 9$$

4. 已知 3 阶矩阵 A 的特征值为 -1,3,2, A^* 是 A 的伴随矩阵,则矩阵 A^3+2A^* 主对角线元素之和为____。

由题得: $|A| = \prod_{i=1}^{3} \lambda_i = -1 \times 3 \times 2 = -6$ 。所以 A^* 的特征值为: $\frac{|A|}{\lambda_i}$ 。由特征值的性质: $A^3 + 2A^*$ 的特征值为 $\lambda_i^3 + 2\frac{|A|}{\lambda_i}$. 所以 $A^3 + 2A^*$ 主对角线元素之和为

$$trace(A^3 + 2A^*) = \sum_{i=1}^{3} \left(\lambda_i^3 + 2\frac{|A|}{\lambda_i}\right) = 36$$

5. 已知实二次型 $f(x_1,x_2,x_3)=a(x_1^2+x_2^2+x_3^2)+4x_1x_2+4x_1x_3+4x_2x_2$ 经正交变换 x=py 可化为标准形: $f=6y^2,$ 则 a=_____。

任意二次型 x^TAx 经过正交变换化为标准型时,标准型中平方项的系数即为二次型矩阵 A 的特征值, 即 6,0,0 是 A 的特征值, 而 A 的对角线元素是 a,a,a,由特征值性质 $trace(A)=a+a+a=\sum_{i=1}^3\lambda=6$,所以 a=2。

6. 设
$$(1,1,1)^T$$
 是矩阵
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & a & 2 \\ 2 & 2 & b \end{bmatrix}$$
 的一个特征向量,则 $a-b=$ _____。

解:

由特征向量的定义有

$$A \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \lambda \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} 6 \\ a+2 \\ b+4 \end{bmatrix} = \begin{bmatrix} \lambda \\ \lambda \\ \lambda \end{bmatrix} \quad \Rightarrow \quad \begin{cases} \lambda = 6 \\ a = 4 \\ b = 2 \end{cases} \quad \Rightarrow \quad a-b=2$$

 \Diamond

 \Diamond

 \Diamond

二. 设多项式 $f(x) = \begin{bmatrix} x & x & -2 & 1 \\ x & x & -2 & 1 \\ 2 & 1 & x & 4 \end{bmatrix}$, 分别求该多项式的三次项、常数项。

解:

Matlab 算出的结果为: $f(x) = 8x^4 - 14x^3 + 11x^2 - 53x + 14$ (作为参考) 取列为自然排列。分析得: 行数按 2134 和 4231 排列时, 对应的项为 x^3 。即

$$(-1)^{\tau(2134)}a_{21}a_{12}a_{33}a_{44} + (-1)^{\tau(4231)}a_{41}a_{22}a_{33}a_{14} = (-12 - 2)x^3 = -14x^3$$

同理,取列为自然排列。分析得行数按: 3142、3412 和 3421 排列时为常数项,即

$$(-1)^{\tau(3142)}a_{31}a_{12}a_{43}a_{24} + (-1)^{\tau(3412)}a_{31}a_{42}a_{13}a_{24} + (-1)^{\tau(3421)}a_{31}a_{42}a_{23}a_{14} = -6 + 4 + 16 = 14$$

三. 设 A 的伴随矩阵 $A^* = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 1 & 0 & 2 & 0 \end{bmatrix}$, 且 $ABA^{-1} = BA^{-1} + 3I$,求 B。

解:

由题得: $|A^*| = 2 \times 2 \times 2 \times 8 = 64$

$$ABA^{-1} = BA^{-1} + 3I \quad \Rightarrow \quad AB = B + 3A \quad \Rightarrow \quad A^*AB = A^*B + 3A^*A$$

$$A^*A = |A|A^{-1}A = |A|I \quad |A^*| = ||A|A^{-1}| = |A|^n|A|^{-1} = |A|^{n-1} = |A|^{4-1} = 64 \quad |A| = 4$$

所以 $4B = A^*B + 3 \times 4$ \Rightarrow $B = 12(4 - A^*)^{-1}$.

求逆的过程略。

最后的结果为:

$$B = \begin{bmatrix} 6 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 3 & 0 & 6 & 0 \\ 0 & 4.5 & 0 & -3 \end{bmatrix}$$

四. λ 为何值时,方程组 $\begin{cases} 2x_1 + \lambda x_2 - x_3 = 1 \\ \lambda x_1 - x_2 + x_3 = 2 \end{cases}$ 有无穷多组解?并在有无穷多解时,写出方程组的通 $4x_1 + 5x_2 - 5x_3 = -1$

解。

班序号: 学院: 学号: 姓名: 王松年 9

解:

$$i\vec{c} A = \begin{bmatrix} 2 & \lambda & -1 \\ \lambda & -1 & 1 \\ 4 & 5 & -5 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix},$$

$$|A| = \begin{vmatrix} 2 & \lambda & -1 \\ \lambda & -1 & 1 \\ 4 & 5 & -5 \end{vmatrix} = \frac{c_3 + c_2}{4} \begin{vmatrix} 2 & \lambda & \lambda - 1 \\ \lambda & -1 & 0 \\ 4 & 5 & 0 \end{vmatrix} = (\lambda - 1)(5\lambda + 4)$$

可以看出 $\lambda \neq 1$ 且 $\lambda \neq -\frac{4}{5}$ 时即 $|A| \neq 0$ 时,方程有唯一解。 $\lambda = 1$ 时·

$$[A|B] = \begin{bmatrix} 2 & 1 & -1 & 1 & 1 & \frac{r_2 - \frac{1}{2}r_1}{1 & -1 & 1 & \frac{r_3 - 2r_1}{2} & \frac{r_3 - 2r_1}{2} & \frac{2}{3} & \frac{3}{2} & \frac$$

 \Diamond

 \Diamond

所以 $\lambda = 1$ 时有无穷多解, $x_1 = 1, x_2 = x_3 - 1$.

所以通解为 $x=[1,-1,0]^T+k[0,1,1]^T, (k\in R)$ $\lambda=-\frac{4}{5}$ 时, $r(A)\neq r(A,B)$,此时无解。

- (1) 求向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 的秩与一个最大线性无关组:
- (2) 将其余向量用极大线性无关组线性表示。

解:

$$(\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}) = \begin{bmatrix} 1 & 1 & 1 & 4 \\ 1 & -1 & 3 & -2 \\ 2 & 1 & 3 & 5 \\ 3 & 1 & 5 & 6 \end{bmatrix} \xrightarrow{r_{2}-r_{1} \\ r_{3}-2r_{1} \\ r_{4}-3r-1}} \begin{bmatrix} 1 & 1 & 1 & 4 \\ 0 & -2 & 2 & -6 \\ 0 & -1 & 1 & -3 \\ 0 & -2 & 2 & -6 \end{bmatrix} \xrightarrow{r_{3}-\frac{1}{2}r_{2} \\ r_{4}-r_{2}} \begin{bmatrix} 1 & 1 & 1 & 4 \\ 0 & -2 & 2 & -6 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{r_{2}\times\frac{1}{2}} \begin{bmatrix} 1 & 1 & 1 & 4 \\ 0 & 1 & -1 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\frac{r_{1}-r_{2}}{1} \xrightarrow{r_{1}-r_{2}} \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & -1 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

(2) 取 (α_1, α_2) , 由最简阶梯型矩阵可以看出:

$$\begin{cases} \alpha_3 = 2\alpha_1 - \alpha_2 \\ \alpha_4 = \alpha_1 + 3\alpha_2 \end{cases}$$

六. 设实二次型

$$f(x_1, x_2, x_3) = X^T A X = ax_1^2 + 2x_2^2 - 2x_3^2 + 2bx_1x_3 \quad (b > 0)$$

的矩阵 A 的特征值之和为 1,特征值之积为-12。

- (1) 求 a, b 的值;
- (2) 利用正交变换将二次型 f 化为标准型,并写出所用正交变换。

解:

由题得:
$$A = \begin{bmatrix} a & 0 & b \\ 0 & 2 & 0 \\ b & 0 & -2 \end{bmatrix}, |A| = 2(-2a - b^2)$$

由题得:
$$A = \begin{bmatrix} a & 0 & b \\ 0 & 2 & 0 \\ b & 0 & -2 \end{bmatrix}, |A| = 2(-2a - b^2)$$
 (1) 由特征值的性质有:
$$\begin{cases} trace(A) = a + 2 - 2 = 1 \\ \prod\limits_{i=1}^{3} \lambda_i = -12 = |A| = 2(-2a - b^2) \end{cases} \Rightarrow \begin{cases} a = 1 \\ b > 0 \end{cases}$$

(2) $|\lambda E - A| = \begin{vmatrix} \lambda - 1 & 0 & -2 \\ 0 & \lambda - 2 & 0 \\ -2 & 0 & \lambda + 2 \end{vmatrix} = (\lambda - 2)[(\lambda - 1)(\lambda + 2) - 4] = 0 \quad \Rightarrow \quad \lambda_1 = \lambda_2 = 2, \lambda_3 = -3$

 $\lambda_1 = \lambda_2 = 2$ 时:

$$[\lambda E - A] = \begin{vmatrix} 1 & 0 & -2 \\ 0 & 0 & 0 \\ -2 & 0 & 4 \end{vmatrix} \quad \Rightarrow \quad \begin{cases} x_1 = 2x_3 \\ x_2 \in R \end{cases}$$

分别取 $[x_2,x_3]^T=[1,0]^T$ 和 $[0,1]^T$ 得: $\alpha_1=[0,1,0]^T,\alpha_2=[2,0,1]^T$,可以看出 α_1 与 α_2 正交。 $\lambda_3 = -3$ 时:

$$[\lambda E - A] = \begin{vmatrix} -4 & 0 & -2 \\ 0 & -5 & 0 \\ -2 & 0 & -1 \end{vmatrix} \quad \Rightarrow \quad \begin{cases} x_1 = -\frac{1}{2}x_3 \\ x_2 = 0 \end{cases}$$

取 $x_3 = -2$ 得: $\alpha_3 = [1,0,-2]^T$ 。因为对称矩阵对应于不同特征值的特征向量正交,所以 $[\alpha_1,\alpha_2,\alpha_3]$ 为正交向量组。 单位化:

$$\begin{cases} \gamma_1 = \frac{\alpha_1}{\|\alpha_1\|} = [0, 1, 0]^T \\ \gamma_2 = \frac{\alpha_2}{\|\alpha_2\|} = \left[\frac{2}{\sqrt{5}}, 0, \frac{1}{\sqrt{5}}\right]^T \\ \gamma_3 = \frac{\alpha_3}{\|\alpha_3\|} = \left[\frac{1}{\sqrt{5}}, 0, -\frac{2}{\sqrt{5}}\right]^T \end{cases} \Rightarrow Q = \begin{bmatrix} 0 & \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \end{bmatrix}$$

所以 f 可经正交变换 x = Qy 化为标准型:

$$f = 2y_1^2 + 2y_2^2 - 3y_3^2$$

 \Diamond

七. 设 A 为 n 阶矩阵,且 $A^2 - A - 2I = 0$ 。

- (1) 证明: r(A-2I) + r(A+I) = n.
- (2) 证明: 矩阵 A + 2I 可逆, 并求 $(A + 2I)^{-1}$ 。

证明:

(1) 由题得: $A^2 - A - 2I = (A - 2I)(A + I) = 0$. 所以由矩阵秩的性质有: r(A+2I) + r(A+I) < n。 r((A-2I)-(A+I)) = r(-3I) < r(A-2I) + r(-(A+I)) = r(A-2I) + r((A+I)), for n < r(A-2I) + r((A+I))所以 r(A-2I)+r(A+I)=n.

(2) 由题得: $A^2 - A - 2I = 0$, 所以

$$A^{2}+2A - 2A - A - 2I = 0$$

$$A(A+2I) - 3A - 6I + 6I - 2I = 0$$

$$A(A+2I) - 3(A+2I) = (A-3I)(A+2I) = -4I$$

$$-\frac{1}{4}(A-3I)(A+2I) = I$$

所以 A + 2I 可逆, $(A + 2I)^{-1} = -\frac{1}{4}(A - 3I)$

2. 设 X_0 是线性方程组 Ax = b ($b \neq 0$) 的一个解, X_1, X_2 是导出组 Ax = 0 的一个基础解系。令 $\xi_0 = X_0, \xi_1 = X_0 + X_1, \xi_2 = X_0 + X_2$,证明: ξ_0, ξ_1, ξ_2 线性无关。证明:

设

$$k_0\xi_0 + k_1\xi_1 + k_2\xi_2 = 0 \tag{1}$$

要证明 ξ_0, ξ_1, ξ_2 线性无关, 根据定义, 只需证明 $k_1 = k_2 = k_3 = 0$ 。

由题得: $AX_0 = b$, $AX_1 = AX_2 = 0$, 因为 X_1, X_2 为 AX = 0 的基础解系,所以 X_1, X_2 线性无关。把题中条件代入 (1) 式:

$$k_1X_0 + k_2X_0 + k_2X_1 + k_3X_0 + k_3X_2 = (k_1 + k_2 + k_3)X_0 + k_2X_1 + k_3X_2 = 0$$
(2)

(2) 式两边同时左乘矩阵 A:

$$(k_1 + k_2 + k_3)AX_0 + k_2AX_1 + k_3AX_2 = (k_1 + k_2 + k_3)b = 0$$

因为 $b \neq 0$,所以 $k_1 + k_2 + k_3 = 0$. 代入 (2) 式得: $k_2 X_1 + k_3 X_2 = 0$,因为 X_1, X_2 线性无关,所以 $k_2 = k_3 = 0$ 。所以 $k_1 = 0 - k_2 - k_3 = 0$ 。

所以
$$\xi_0, \xi_1, \xi_2$$
 线性无关。

八. 设 3 阶方阵 A 的特征值-1,1 对应的特征向量分别为 α_1,α_2 ,向量 α_3 满足 $A\alpha_3=\alpha_2+\alpha_3$.

- (1) 证明: $\alpha_1, \alpha_2, \alpha_3$ 线性无关;
- (2) 设 $P = [\alpha_1, \alpha_2, \alpha_3]$, 求 $P^{-1}AP$ 。

解:

由题得: $A\alpha_1 = -\alpha_1, A\alpha_2 = \alpha_2$ 。

(1) 设

$$k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3 = 0 (1)$$

要证明 $\alpha_1, \alpha_2, \alpha_3$ 线性无关, 只需证明 $k_1 = k_2 = k_3 = 0, (1)$ 式两边同左乘 A:

$$k_1 A \alpha_1 + k_2 A \alpha_2 + k_3 A \alpha_3 = -k_1 \alpha_1 + k_2 \alpha_2 + k_3 (\alpha_2 + \alpha_3) = -k_1 \alpha_1 + (k_2 + k_3) \alpha_2 + k_3 \alpha_3 = 0$$
 (2)

(1) 式滅 (2) 式: $-2k_1\alpha_1-k_3\alpha_2=0$,因为 α_1 和 α_2 是分属于不同的特征值的特征向量,所以 α_1 和 α_2 线性无关。即 $\begin{cases} -2k_1=0 \\ -k_3=0 \end{cases} \Rightarrow k_1=k_3=0,$ 代入到 (1) 式: $k_2\alpha_2=0$,又因为特征向量不为 0,所以 $k_2=0$ 。

综上所述: $k_1=k_2=k_3=0$, 所以 $\alpha_1,\alpha_2,\alpha_3$ 线性无关。

(2) 由题得:

$$AP = [A\alpha_1, A\alpha_2, A\alpha_3] = [-\alpha_1, \alpha_2, \alpha_2 + \alpha_3] = [\alpha_1, \alpha_2, \alpha_3] \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = P\Lambda$$

所以
$$\Lambda = P^- 1AP = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
。

2015-2016 年第一学期

一、填空题

解:

把第二行加到第一行上:

$$D = \begin{vmatrix} 1 & a & 0 & 0 \\ -1 & 2 - a & a & 0 \\ 0 & -2 & 3 - a & a \\ 0 & 0 & -3 & 4 - a \end{vmatrix} = \begin{vmatrix} 1 & a & 0 & 0 \\ 0 & 2 & a & 0 \\ 0 & -2 & 3 - a & a \\ 0 & 0 & -3 & 4 - a \end{vmatrix} = 1 \times (-1)^{1+1} \begin{vmatrix} 2 & a & 0 \\ -2 & 3 - a & a \\ 0 & -3 & 4 - a \end{vmatrix} = A$$

把 A 的第二行加到第一行上:

$$A = \begin{vmatrix} 2 & a & 0 \\ 0 & 3 & a \\ 0 & -3 & 4 - a \end{vmatrix} = 2 \times (-1)^{1+1} \begin{vmatrix} 3 & a \\ -3 & 4 - a \end{vmatrix} = 24$$

 \Diamond

2. 设 $A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 2 & 2 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 4 \end{bmatrix}$, 求 $A^2 - 2A$ 的秩 $r(A^2 - 2A)$.

解.

由题得: $A^2-2A=A(A-2E)$,可以看出 A 是满秩方阵,即 A 可逆。满秩方阵一定可逆,所以 $r(A^2-2A)=r(A(A-2E))=r(A-2E)$ 。

$$A - 2E = \begin{bmatrix} -1 & 1 & 1 & 1 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 2 \end{bmatrix} \xrightarrow{r_2 \times \frac{1}{2}} \begin{bmatrix} -1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 2 \end{bmatrix} \xrightarrow{r_3 - r_2} \begin{bmatrix} -1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 2 \end{bmatrix} \xrightarrow{r_4 - r_3} \begin{bmatrix} -1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

所以 r(A-2E)=3, 所以 $r(A^2-2A)=3$

3. 设 $\alpha_1, \alpha_2, \alpha_3$ 是非齐次线性方程组 Ax = b 的解,若 $\sum_{i=1}^3 c_i \alpha_i$ 也是 Ax = b 的解,则 $\sum_{i=1}^3 c_i =$ _____。解:

由题得: $A\alpha_1 = b, A\alpha_2 = b, A\alpha_3 = b, A\sum_{i=1}^3 c_i\alpha_i = A(c_1\alpha_1 + c_2\alpha_2 + c_3\alpha_3) = b.$

所以
$$A\alpha_1 + A\alpha_2 + A\alpha_3 = 3b$$
, 即 $A\left(\frac{1}{3}\alpha_1 + \frac{1}{3}\alpha_2 + \frac{1}{3}\alpha_3\right) = b = A(c_1\alpha_1 + c_2\alpha_2 + c_3\alpha_3)$, 所以 $\sum_{i=1}^3 c_i = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = 1$ 。 \diamondsuit

4. 已知矩阵
$$A = \begin{bmatrix} 3 & 2 & -1 \\ a & -2 & 2 \\ 3 & b & -1 \end{bmatrix}$$
,若 $\alpha = (1, -2, 3)^T$ 是其特征向量,则 $a + b = \underline{\hspace{1cm}}$ 。

解:

设 α 对应的特征值为 λ 。由特征向量的定义:

$$A\alpha = \lambda \alpha \quad \Rightarrow \quad \begin{bmatrix} -4 \\ a+10 \\ -2b \end{bmatrix} = \begin{bmatrix} \lambda \\ -2\lambda \\ 3\lambda \end{bmatrix} \quad \Rightarrow \quad \begin{cases} \lambda = -4 \\ a = -2 \\ b = 6 \end{cases} \quad \Rightarrow \quad a+b=4$$

 \Diamond

 \Diamond

 \Diamond

13

5. 任意 3 维实列向量都可以由向量组 $\alpha_1=(1,0,1)^T,\alpha_2=(1,-2,3)^T\alpha_3=(t,1,2)^T$ 线性表示,则 t 应满足条件____。

解:

任意 3 维实列向量都可以由向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性表示,则 $e_1=[1,0,0]^T,e_2=[0,1,0]^T,e_3=[0,0,1]^T$ 也可由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示,而 e_1,e_2,e_3 可以表示任意三维实列向量,即向量组 $\alpha_1,\alpha_2,\alpha_3$ 和 e_1,e_2,e_3 可以相互线性表示,所以 $r(\alpha_1,\alpha_2,\alpha_3)=r(e_1,e_2,e_3)=3$. 所以 $|\alpha_1,\alpha_2,\alpha_3|=2t-6\neq 0$,即 $t\neq 3$ 。

6. 若矩阵
$$A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & \lambda \end{bmatrix}$$
 正定,则 λ 满足的条件为_____。

解:

由题得: A 为对称矩阵, 如果 A 正定, 则 |A| > 0, 所以 $|A| = \lambda - 5 > 0 \Rightarrow \lambda > 5$.

二、计算题

1. 若行列式
$$D =$$
 $\begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & 3 & 4 & 6 \\ 3 & 4 & 1 & 2 \\ 2 & 2 & 2 & 2 \end{vmatrix}$, 求 $A_{11} + 2A_{21} + A_{31} + 2A_{41}$, 其中 A_{ij} 为元素 a_{ij} 的代数余子式。

解:

由题得:

$$A_{11} + 2A_{21} + A_{31} + 2A_{41} = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 6 \\ 1 & 4 & 1 & 2 \\ 2 & 2 & 2 & 2 \end{vmatrix} = 2 \begin{vmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 6 \\ 1 & 4 & 1 & 2 \\ 1 & 1 & 1 & 1 \end{vmatrix}$$

把第一行的负二倍加到第二行, 把第一行的负一倍分别加到第三、四行。

$$2\begin{vmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 6 \\ 1 & 4 & 1 & 2 \\ 1 & 1 & 1 & 1 \end{vmatrix} = 2\begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & -1 & -2 & -2 \\ 0 & 2 & -2 & -2 \\ 0 & -1 & -2 & -3 \end{vmatrix} = 4\begin{vmatrix} -1 & -2 & -2 \\ 1 & -1 & -1 \\ -1 & -2 & -3 \end{vmatrix}$$

把第一行的负一倍加到第三行:

$$\begin{vmatrix} -1 & -2 & -2 \\ 1 & -1 & -1 \\ -1 & -2 & -3 \end{vmatrix} = 4 \begin{vmatrix} -1 & -2 & -2 \\ 1 & -1 & -1 \\ 0 & 0 & -1 \end{vmatrix} = 4 \times (-1) \times ((-1) \times (-1) - (-2) \times 1) = -12$$

2.

已知矩阵
$$X$$
 满足方程 X $\begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 2 \\ -1 & 0 & 3 \end{bmatrix} = \begin{bmatrix} -1 & 2 & 0 \\ 3 & 0 & 5 \end{bmatrix}$,求矩阵 X 。

解:

由题得:

$$\begin{bmatrix} 1 & 0 & -2 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ -1 & 0 & 3 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{r_3 + r_1} \begin{bmatrix} 1 & 0 & -2 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix} \xrightarrow{r_2 - 2r_3} \begin{bmatrix} 1 & 0 & 0 & 3 & 0 & 2 \\ 0 & 1 & 0 & -2 & 1 & -2 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

所以
$$X = \begin{bmatrix} -1 & 2 & 0 \\ 3 & 0 & 5 \end{bmatrix} \begin{bmatrix} 3 & 0 & 2 \\ -2 & 1 & -2 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -7 & 2 & -6 \\ 14 & 0 & 11 \end{bmatrix}$$

3. 设向量组 $\alpha_1 = (1, -1, 2, 4)$, $\alpha_2 = (0, 3, 1, 2)$, $\alpha_3 = (3, 0, 7, 14)$, $\alpha_4 = (1, -1, 2, 0)$, $\alpha_5 = (2, 1, 5, 6)$, 求向量组的秩、极大线性无关组,并将其余向量由极大无关组线性表示出。解:

$$(\alpha_1,\alpha_2,\alpha_3,\alpha_4) = \begin{bmatrix} 1 & 0 & 3 & 1 & 2 \\ -1 & 3 & 0 & -1 & 1 \\ 2 & 1 & 7 & 2 & 5 \\ 4 & 2 & 14 & 0 & 6 \end{bmatrix} \xrightarrow{\substack{r_2+r_1 \\ r_3-2r_1 \\ r_4-4r_1}} \xrightarrow{\begin{array}{c} 1 \\ r_2+r_1 \\ r_4-4r_1 \\ \end{array}} \begin{bmatrix} 1 & 0 & 3 & 1 & 2 \\ 0 & 3 & 3 & 0 & 3 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 2 & 2 & -4 & -2 \end{bmatrix} \xrightarrow{\begin{array}{c} r_3-\frac{1}{3}r_2 \\ r_4-\frac{2}{3}r_2 \\ \end{array}} \xrightarrow{\begin{array}{c} 1 & 0 & 3 & 1 & 2 \\ 0 & 3 & 3 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -4 & 0 \end{bmatrix}$$

$$\xrightarrow{\begin{array}{c} r_2 \times \frac{1}{3} \\ r_4 \times (-\frac{1}{4}) \\ \end{array}} \xrightarrow{\begin{array}{c} 1 & 0 & 3 & 1 & 2 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ \end{array}} \xrightarrow{\begin{array}{c} r_3 \to r_4 \\ \end{array}} \xrightarrow{\begin{array}{c} 1 & 0 & 3 & 0 & 2 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ \end{array}} \xrightarrow{\begin{array}{c} r_3 \to r_4 \\ \end{array}} \xrightarrow{\begin{array}{c} 1 & 0 & 3 & 0 & 2 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ \end{array}}$$

所以该向量组的秩为 3,极大线性无关组为 $(\alpha_1,\alpha_2,\alpha_4),(\alpha_1,\alpha_3,\alpha_4),(\alpha_1,\alpha_4,\alpha_5),(\alpha_2,\alpha_3,\alpha_4),(\alpha_2,\alpha_3,\alpha_5),(\alpha_2,\alpha_4,\alpha_5).$ 由 $(\alpha_1,\alpha_2,\alpha_4)$ 表示 α_3,α_5 : 由最简阶梯型矩阵可以看出

$$\begin{cases} \alpha_3 = 3\alpha_1 + \alpha_2 + 0\alpha_4 = 3\alpha_1 + \alpha_2 \\ \alpha_5 = 2\alpha_1 + \alpha_2 + 0\alpha_4 = 2\alpha_1 + \alpha_2 \end{cases}$$

三、解答题

1. 当
$$k$$
 为何值时,线性方程组
$$\begin{cases} kx_1+x_2+x_3=k-3\\ x_1+kx_2+x_3=-2\\ x_1+x_2+kx_3=-2 \end{cases}$$
 有唯一解,无解和有无穷多解?当方程组有无

 \Diamond

穷多解时求出所有解。

解:

(系数矩阵是方阵,也可以用行列式来做这个题。具体看 14-15 年期末试题的第四题,推荐这种方法) 增广矩阵

$$\begin{bmatrix} k & 1 & 1 & | & k-3 \\ 1 & k & 1 & | & -2 \\ 1 & 1 & k & | & -2 \end{bmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{bmatrix} 1 & k & 1 & | & -2 \\ k & 1 & 1 & | & k-3 \\ 1 & 1 & k & | & -2 \end{bmatrix} \xrightarrow{r_2 - kr_1} \begin{bmatrix} 1 & k & 1 & | & -2 \\ 0 & 1 - k^2 & 1 - k & | & 3(k-1) \\ 0 & 1 - k & k - 1 & | & 0 \\ 0 & 1 - k^2 & 1 - k & | & 3(k-1) \end{bmatrix} \xrightarrow{r_3 - (1+k)r_2} \begin{bmatrix} 1 & k & 1 & | & -2 \\ 0 & 1 - k & k - 1 & | & 0 \\ 0 & 0 & (1-k)(k+2) & | & 3(k-1) \end{bmatrix}$$

讨论:

(1) 解不存在: 即存在矛盾方程 (增广矩阵主元列在最右列)。即对于 r_3

$$\begin{cases} (1-k)(k+2) = 0 \\ 3(k-1) \neq 0 \end{cases} \Rightarrow k = -2$$

(2) 存在唯一解: 主元列三个元素都不为 0. 即

$$\begin{cases} 1 \neq 0 \\ 1 - k \neq 0 \\ (1 - k)(k + 2) \neq 0 \end{cases} \Rightarrow k \neq 1 \mathbb{E} k \neq -2$$

 $k \neq 1$ 且 $k \neq -2$,继续对阶梯矩阵进行初等行变换

所以方程组存在唯一解时: $k \neq 1$ 且 $k \neq -2$, 解为

$$\mathbf{x} = \begin{bmatrix} -\frac{5k+1}{k+2} \\ \frac{3}{k+2} \\ \frac{3}{k+2} \end{bmatrix} , \quad k \neq 1 \, \mathbb{L} k \neq -2$$

(3) 存在无穷解: 至少存在一个自由变量。由阶梯矩阵可以看出

$$\begin{cases} (k-1)(k+2) = 0 \\ 3(k-1) = 0 \end{cases} \Rightarrow k = 1$$

把 k=1 代入阶梯矩阵:

$$\begin{bmatrix} 1 & 1 & 1 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \Rightarrow \quad x = \begin{bmatrix} -2 - c_1 - c_2 \\ c_1 \\ c_2 \end{bmatrix}$$

 \Diamond

所以
$$x$$
的解为 $x = \begin{bmatrix} -2\\0\\0 \end{bmatrix} + \begin{bmatrix} -1\\1\\0 \end{bmatrix} c_1 + \begin{bmatrix} -1\\0\\1 \end{bmatrix} c_1 \quad c_1, c_2 \in R.$

2. 设 3 阶实对称矩阵 A 的特征值为 $\lambda_1 = -1, \lambda_2 = \lambda_3 = 1$, 对应于 λ_1 的特征向量 $\alpha_1 = (0, 1, 1)^T$ 。

- (1) 求 A 对应于特征值 1 的特征向量;
- (2) 求 A;
- (3) 求 A^{2016} 。

解:

(1) 由于 A 是实对称矩阵,所以对于 A 的不同特征值的特征向量正交,所以设特征值 1 对应的特征向量是 $\alpha=[x_1,x_2,x_3]$ 。 所以有:

$$\alpha_1^T \alpha = x_2 + x_3 = 0 \quad \Rightarrow \quad x_2 = -x_3$$

分别取
$$\begin{bmatrix} x_1 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 得 $\alpha_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\alpha_3 = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$.

 α_2, α_3 即为 A 对应于特征值 1 的特征向量。

(2) 由特征值定义: $A\alpha_i = \lambda_i \alpha_i$ 。所以:

$$A[\alpha_1, \alpha_2, \alpha_3] = [\lambda_1 \alpha_1, \lambda_2 \alpha_2, \lambda_3 \alpha_3] \Rightarrow$$

$$A = [\lambda_1 \alpha_1, \lambda_2 \alpha_2, \lambda_3 \alpha_3][\alpha_1, \alpha_2, \alpha_3]^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & -1 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & -1 \\ 1 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

$$\left(\vec{x} \, \psi \colon \left[\alpha_1, \alpha_2, \alpha_3 \right]^{-1} = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ 1 & 0 & 0 \\ 0 & -\frac{1}{2} & \frac{1}{2} \end{bmatrix} \right)$$

(3) 由 (2) 得: $A^2 = E_3$ (E 表示单位矩阵。) 所以 $A^{2016} = (A^2)^{1008} = E_3$

学院:

4x.

 \Diamond

3. 设
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & 0 & a \\ 0 & a & -1 \end{bmatrix}, A^T$$
 为矩阵 A 的转置,已知 $r(A) = 2$,且二次型 $f(x) = x^T A^T A x$.

- (1) 求 a;
- (2) 写出二次型 f(x) 的矩阵 $B = A^T A$;
- (3) 求正交变换 x = Qy 将二次型 f(x) 化为标准型,并写出所用的正交变换。

解:

(1) 由题得:

$$A \xrightarrow{r_3 + r_1} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & a + 1 \\ 0 & 0 & -1 - a \end{bmatrix}$$

r(A) = 2, 所以 1 + a = 0 且 -1 - a = 0 解得: a = -1。

(2)

$$B = A^{T} A = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 1 & 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & 0 & -1 \\ 0 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 2 & 2 \\ 2 & 2 & 4 \end{bmatrix}$$

(3)

$$|\lambda E - B| = \begin{vmatrix} \lambda - 2 & 0 & -2 \\ 0 & \lambda - 2 & -2 \\ -2 & -2 & \lambda - 4 \end{vmatrix} = \lambda(\lambda - 2)(\lambda - 6) \quad \Rightarrow \quad \lambda_1 = 0, \lambda_2 = 2, \lambda_3 = 3$$

 $\lambda_1 = 0$ 时:

$$[\lambda E - A] = \begin{vmatrix} -2 & 0 & -2 \\ 0 & -2 & -2 \\ -2 & -2 & -4 \end{vmatrix} \Rightarrow \begin{cases} x_1 = -x_3 \\ x_2 = -x_3 \end{cases}$$

取 $x_3 = 1$ 得: $\alpha_1 = [1, 1, -1]^T$.

 $\lambda_2=2$ 时:

$$[\lambda E - A] = \begin{vmatrix} 0 & 0 & -2 \\ 0 & 0 & -2 \\ -2 & -2 & -2 \end{vmatrix} \quad \Rightarrow \quad \begin{cases} x_1 = -x_2 \\ x_3 = 0 \end{cases}$$

取 $x_2 = 1$ 得: $\alpha_2 = [1, -1, 0]^T$.

 $\lambda_3 = 6$ 时:

$$[\lambda E - A] = \begin{vmatrix} 4 & 0 & -2 \\ 0 & 4 & -2 \\ -2 & -2 & 2 \end{vmatrix} \Rightarrow \begin{cases} x_1 = \frac{1}{2}x_3 \\ x_2 = \frac{1}{2}x_3 \end{cases}$$

取 $x_3=2$ 得: $\alpha_3=[1,1,2]^T$. 因为对称矩阵对应于不同特征值的特征向量正交, 所以 $[\alpha_1,\alpha_2,\alpha_3]$ 为正交向量组。

单位化:

$$\begin{cases} \gamma_1 = \frac{\alpha_1}{\|\alpha_1\|} = \left[\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right]^T \\ \gamma_2 = \frac{\alpha_2}{\|\alpha_2\|} = \left[\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right]^T \\ \gamma_3 = \frac{\alpha_3}{\|\alpha_3\|} = \left[\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right]^T \end{cases} \Rightarrow Q = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \end{bmatrix}$$

所以 f 可经正交变换 x = Qy 化为标准型:

$$f = 2y_2^2 + 6y_3^2$$

四、证明题

- 1. 设 A 为 n 阶实对称矩阵,且满足 $A^{2} 3A + 2E = 0$,其中 E 为单位矩阵,试证:
- (1)A + 2E 可逆;
- (2)A 为正定矩阵。

证明:

(1) 由题得: $A^2 - 3A + 2E = 0$, 所以:

$$A^{2}+2A - 2A - 3A + 2E = 0$$

$$A(A+2E) - 5A - 10E + 10E + 2E = 0$$

$$A(A+2E) - 5(A+2E) = (A-5E)(A+2E) = -12E$$

$$-\frac{1}{12}(A-5E)(A+2E) = E$$

$$\lambda^2 - 3\lambda + 2 = 0 \quad \Rightarrow \quad \lambda_1 = 1 > 0, \lambda_2 = 2 > 0$$

所以 A 为正定矩阵。

证明:

2. 设向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,向量 β 可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示,向量 γ 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示, 证明向量组 $\alpha_1, \alpha_2, \alpha_3, \beta + \alpha$ 线性无关。

向量 β 可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示,即存在一组不全为 0 的 $k_i(1 < i < 3)$,使得

$$\beta = k_1 \alpha_1 + k_2 \alpha_2 + k_3 \alpha_3 \tag{1}$$

 \Diamond

反证: 假设向量组 $\alpha_1, \alpha_2, \alpha_3, \beta + \alpha$ 线性相关。则存在一组不全为 0 的 $l_i(1 \le i \le 3)$ 和 l_i 使得

$$l_1\alpha_1 + l_2\alpha_2 + l_3\alpha_3 + l(\beta + \gamma) = 0 \tag{2}$$

若 l=0, 则 $l_1lpha_1+l_2lpha_2+l_3lpha_3+l(eta+\gamma)=l_1lpha_1+l_2lpha_2+l_3lpha_3=0,$ 此时 $lpha_1,lpha_2,lpha_3$ 线性相关,与题中的条件矛盾,所以 $l \neq 0$ 。所以 (1) 式可变形为

$$\beta + \gamma = -\frac{1}{l}(l_1\alpha_1 + l_2\alpha_2 + l_3\alpha_3)$$

代入 (1) 式:

$$\gamma = -\frac{1}{l}(l_1\alpha_1 + l_2\alpha_2 + l_3\alpha_3) - k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3$$

可以看出此时 γ 可以由 $lpha_1,lpha_2,lpha_3$ 线性表示,与题目矛盾,所以假设错误,即向量组 $lpha_1,lpha_2,lpha_3,eta+lpha$ 线性无关。

2016-2017 年第一学期

一、填空题

解:

(注意爪型行列式的做法) 对行列式做如下变换: 第一行减去 z 倍的第四行, 第一行减去 y 倍的第三行, 第一行减去 x 倍的第二行, 得到如下行列式:

$$\begin{vmatrix} 1 - x^2 - y^2 - z^2 & 0 & 0 & 0 \\ a & 1 & 0 & 0 \\ b & 0 & 1 & 0 \\ c & 0 & 0 & 1 \end{vmatrix} = 1 - x^2 - y^2 - z^2$$

 \Diamond

2. 设 A 的伴随矩阵 $A^*=\begin{bmatrix}1&2&3&4\\0&2&3&4\\0&0&2&3\\0&0&0&2\end{bmatrix}$, 则 $r(A^2-2A)=$ ______。

解:

 $|A^*| = |A|^{n-1} \ \ \text{得:} \ \ |A^*| = 2^3 = |A|^3. \ \text{所以} \ \ |A| = 2 \neq 0. \ \text{即} \ A \ \text{可逆}.$ 所以 $r(A^2 - 2A) = r(A(A-2)) = r(A-2) = r(|A|(A^*)^{-1} - 2) = r((A^*)^{-1} - E) = 3.$ (求逆和秩的过程略) \diamondsuit

3. 已知线性方程组 $\begin{cases} x_1 + 2x_2 + x_3 = 2 \\ ax_1 - x_2 - 2x_3 = -3 \end{cases}$ 与线性方程 $ax_2 + x_3 = 1$ 有公共的解,则 a 的取值范围

为。

解:

注意同解与公共解的区别:

对于方程组 (1) 和方程组 (2), 如果 α 既是方程组 (1) 的解, 也是方程组 (2) 的解, 则称 α 是方程组 (1) 和方程组 (2) 的 公共解。

对于方程组 (1) 和方程组 (2), 如果 α 是方程组 (1) 的解,则 α 一定是方程组 (2) 的解,反之如果 α 是方程组 (2) 的解,则 α 一定是方程组 (1) 的解,则称,方程组 (1) 和方程组 (2) 同解。

关于公共解,通常有如下解法:(假设方程组 (1) 有两组不同的基础解系 ξ_1,ξ_2 ,方程组 (2) 有两组不同的基础解系 η_1,η_2)方法 1: 分别求出方程组 (1) 和 (2) 的通解: 即 (1) 得到通解为: $k_1\xi_1+k_2\xi_2$,(2) 的通解为 $l_1\eta_1=l_2\eta$ 。令两个方程组的通解相等,找出对应的 k 和 l 的关系。

方法 2: 求出其中一个通解, 代入到另外一个方程组中, 找出相应的系数所满足的关系式进一步求出公共解。

方法 3: 联立两个方程组得到一个新的方程组 (3), 求出 (3) 的解即为公共解。

显然, 此题用方法 3 更合适: 联立两个方程组, 得到增广矩阵:

$$[A|B] = \begin{bmatrix} 1 & 2 & 1 & 2 \\ a & -1 & -2 & -3 \\ 0 & a & 1 & 1 \end{bmatrix}$$

讨论: a=0 时: 显然 r(A)=r(A|B), 即线性方程组有解, 即这两个线性方程组有公共解。 $a \neq 0$ 时 对增广矩阵进一步进行高斯消元·

$$\begin{array}{c} \xrightarrow{r_2-ar_1} \\ 0 & -1-2a & -2-a & -3-2a \\ 0 & a & 1 & 1 \\ \end{array} \right] \xrightarrow{r_2 \Leftrightarrow r_3} \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & a & 1 & 1 \\ 0 & -1-2a & -2-a & -3-2a \\ \end{bmatrix} \xrightarrow{r_3+\frac{1+2a}{a}r_3} \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & a & 1 & 1 \\ 0 & 0 & -\frac{a^2-1}{a} & -\frac{2a^2+a-1}{a} \\ \end{bmatrix}$$

当 $-\frac{a^2-1}{a}=0$ 且 $-\frac{2a^2+a-1}{a}\neq 0$ 时,无解,此时没有公共解,解得 a=1. 所以 a=1 时无公共解,所以 $a\neq 1$ 。
 4. 设 $\alpha_1=(a,1,1)^T,\alpha_2=(1,b,-1)^T,\alpha_3=(1,-2,c)^T$ 是正交向量组,则 a+b+c=____。解:

由题得:

$$\begin{cases} \alpha_1 \alpha_2^T = a + b - 1 = 0 \\ \alpha_1 \alpha_3^T = a - 2 + c = 0 \\ \alpha_2 \alpha_3^T = 1 - 2b - c = 0 \end{cases} \Rightarrow \begin{cases} a = 1 \\ b = 0 \\ c = 1 \end{cases}$$

5. 设 3 阶实对称矩阵 A 的特征值分别为 1,2,3 对应的特征向量分别为 $\alpha_1=(1,1,1)^T,\alpha_2=(2,-1,-1)^T,\alpha_3$,则 A 的对应于特征值 3 的一个特征向量 $\alpha_3=$ ____。

设 $\alpha_3 = [x_1, x_2, x_3]^T$, 实对称矩阵对应于不同特征值的特征向量是正交的, 所以:

$$\begin{cases} \alpha_1 \alpha_3^T = x_1 + x_2 + x_3 = 0 \\ \alpha_2 \alpha_3^T = 2x_1 - x_2 - x_3 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = 0 \\ x_2 = -x_3 \end{cases}$$

由题得:

解:

$$f(x) = x^T B x = \begin{bmatrix} x_1, x_2, x_3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & \lambda \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 & 2x_1 + 2x_2 & 4x_1 + 6x_2 + \lambda x_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_1^2 + 2x_2^2 + \lambda x_3^2 + 2x_1x_2 + 4x_1x_3 + 6x_2x_3$$

所以其对应的二次型矩阵为: $A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & \lambda \end{bmatrix}$,A 为对称矩阵,如果 A 正定,则 |A| > 0,所以 $|A| = \lambda - 5 > 0 \implies \lambda > 5$. \diamondsuit

二、计算题

1. 若行列式
$$D = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & 3 & 4 & 6 \\ 0 & 4 & 1 & 2 \\ 0 & 2 & 2 & 2 \end{vmatrix}$$
, 求 $A_{11} - 2A_{21} + A_{31} - 2A_{41}$, 其中 A_{ij} 为元素 a_{ij} 的代数余子式。

解:

$$A_{11} - 2A_{21} + A_{31} - 2A_{41} = \begin{vmatrix} 1 & 2 & 3 & 4 \\ -2 & 3 & 4 & 6 \\ 1 & 4 & 1 & 2 \\ -2 & 2 & 2 & 2 \end{vmatrix} = 2 \begin{vmatrix} 1 & 2 & 3 & 4 \\ -2 & 3 & 4 & 6 \\ 1 & 4 & 1 & 2 \\ -1 & 1 & 1 & 1 \end{vmatrix} = \begin{vmatrix} r_{2} + 2r_{1} \\ r_{3} - r_{1} \\ r_{4} + r_{1} \\ 3 & 4 & 5 \end{vmatrix} = \begin{vmatrix} r_{1} - 7r_{2} \\ r_{3} - 3r_{2} \\ 1 & -1 & -1 \\ 3 & 4 & 5 \end{vmatrix} = 4 \times 1 \times (-1)^{1+2} (17 \times 8 - 7 \times 21) = 44$$

 \Diamond

2. 设
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$
, B 为三阶矩阵,且满足方程 $A^*BA = I + 2A^{-1}B$,求矩阵 B 。

解:

由题得: $|A|=1, A^*=|A|A^{-1}=A^{-1}$. 对题中方程两边同时左乘 A 得:

$$BA = A + 2B$$

$$B = A(A - 2E)^{-1} = A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 2 & 3 \\ 0 & -1 & 3 \\ 0 & 0 & -1 \end{bmatrix}^{-1} = \begin{bmatrix} -1 & -4 & -18 \\ 0 & -1 & -6 \\ 0 & 0 & -1 \end{bmatrix}$$

(求逆的过程略。
$$(A-2E)^{-1}=egin{bmatrix} -1 & -2 & -9 \\ 0 & -1 & -3 \\ 0 & 0 & -1 \end{pmatrix}$$
) \diamondsuit

3. 设向量组 $\alpha_1 = (3,1,4,3)^T$, $\alpha_2 = (1,1,2,1)^T$, $\alpha_3 = (0,1,1,0)^T$, $\alpha_4 = (2,2,4,2)^T$, 求向量组的所有的极大线性无关组。

解:

$$(\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}) = \begin{bmatrix} 3 & 1 & 0 & 2 \\ 1 & 1 & 1 & 2 \\ 4 & 2 & 1 & 4 \\ 3 & 1 & 0 & 2 \end{bmatrix} \xrightarrow{r_{2} \leftrightarrow r_{1}} \begin{bmatrix} 1 & 1 & 1 & 2 \\ 3 & 1 & 0 & 2 \\ 4 & 2 & 1 & 4 \\ 3 & 1 & 0 & 2 \end{bmatrix} \xrightarrow{r_{4} - r_{2}} \begin{bmatrix} 1 & 1 & 1 & 2 \\ 3 & 1 & 0 & 2 \\ 4 & 2 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{r_{2} - 3r_{1}} \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & -2 & -3 & -4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\xrightarrow{r_{3} - r_{2}} \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & -2 & -3 & -4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

 \Diamond

所以该向量组的秩为 2, 极大线性无关组为 $(\alpha_1,\alpha_2),(\alpha_1,\alpha_3),(\alpha_1,\alpha_4),(\alpha_2,\alpha_3),(\alpha_3,\alpha_4).$

- 三、解答题
- 1. 令 $\alpha = (1,1,0)^T$, 实对称矩阵 $A = \alpha \alpha^T$.
- (1) 把矩阵 A 相似对角化;

解:

由题得:
$$A = \alpha \alpha_T = (1, 1, 0)^T (1, 1, 0) = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
。所以
$$|\lambda E - A| = \begin{vmatrix} \lambda - 1 & -1 & 0 \\ -1 & \lambda - 1 & 0 \\ 0 & 0 & \lambda \end{vmatrix} = \lambda [(\lambda - 1)^2 - 1] = 0 \quad \Rightarrow \quad \lambda_1 = 2, \lambda_2 = \lambda_3 = 0$$

 $\lambda_1 = 2$ 时:

$$[\lambda E - A] = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{\tilde{\mathfrak{sh}}\tilde{\mathfrak{A}}\tilde{\mathfrak{L}}, \ \tilde{\mathfrak{S}}\mathfrak{R}^{\tilde{\mathfrak{S}}}} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \quad \Rightarrow \quad \alpha_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

 \Diamond

可以看出, $\lambda_1=2$ 时: 代数重数等于几何重数。

 $\lambda_2 = \lambda_3 = 0$ 时:

$$[\lambda E - A] = \begin{bmatrix} -1 & -1 & 0 \\ -1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\stackrel{\textbf{a} \not \text{mil} \vec{\tau}, \ \vec{\sigma} \not \text{Res}}{\vec{\sigma}}} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \Rightarrow \quad \alpha_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \alpha_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

可以看出, $\lambda_2 = \lambda_2 = 0$ 时: 代数重数等于几何重数。

所以 A 可以相似对角化:即存在可逆矩阵 P,使得 $P^{-1}AP=\Lambda=\begin{bmatrix}0&&\\&0&\\&2\end{bmatrix}$,其中 $P=\begin{bmatrix}1&0&1\\-1&0&1\\0&1&0\end{bmatrix}$

(2) 由特征值的性质: $6I - A^{2017}$ 的特征值为: $6 - \lambda_i^{2017}$, 所以

$$|6I - A^{2017}| = \prod_{i=1}^{3} (6 - \lambda_i^{2017}) = 36 \times (6 - 2^{2017})$$

(1) 求矩阵 A;

(2) 求正交线性变换 x = Qy, 把二次型 $f(x) = x^T Ax$ 化为标准型.

解:

对于对角矩阵,其特征值为对角线上的元素。因为 A 与 B 相似,所以 A 与 B 有相同的特征值。

(1) 由特征值的性质

$$\begin{cases} trace(A) = a + 3 + 0 = \sum_{i=1}^{3} \lambda_i = 2 - 4 + 5 = 3 \\ |A| = (-1) \times (-1)^{1+2} \begin{vmatrix} -1 & b \\ 4 & 0 \end{vmatrix} + 4 \begin{vmatrix} -1 & 3 \\ 4 & b \end{vmatrix} = -8b - 48 = \prod_{i=1}^{3} \lambda_i = 2 \times (-4) \times 5 = -40 \end{cases} \Rightarrow \begin{cases} a = 0 \\ b = -1 \end{cases}$$

(2)

 $\lambda_1 = 2$ 时:

$$[\lambda E - A] = \begin{bmatrix} 2 & 1 & -4 \\ 1 & -1 & 1 \\ -4 & 1 & 2 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} x_1 = x_3 \\ x_2 = 2x_3 \end{cases}$$

取 $x_3 = 1$ 得 $\alpha_1 = [1, 2, 1]^T$ 。

 $\lambda_2 = -4$ 时:

$$[\lambda E - A] = \begin{bmatrix} -4 & 1 & -4 \\ 1 & -7 & 1 \\ -4 & 1 & -4 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} x_1 = -x_3 \\ x_2 = 0 \end{cases}$$

取 $x_3 = -1$ 得 $\alpha_2 = [1, 0, -1]^T$ 。

 $\lambda_3 = 5$ 时:

$$[\lambda E - A] = \begin{bmatrix} 5 & 1 & -4 \\ 1 & 2 & 1 \\ -4 & 1 & 5 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} x_1 = x_3 \\ x_2 = -x_3 \end{cases}$$

取 $x_3=1$ 得 $\alpha_2=[1,-1,1]^T$ 。因为对称矩阵对应于不同特征值的特征向量正交,所以 $[\alpha_1,\alpha_2,\alpha_3]$ 为正交向量组。

单位化:

$$\begin{cases} \gamma_1 = \frac{\alpha_1}{\|\alpha_1\|} = \left[\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right]^T \\ \gamma_2 = \frac{\alpha_2}{\|\alpha_2\|} = \left[\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right]^T \\ \gamma_3 = \frac{\alpha_3}{\|\alpha_3\|} = \left[\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right]^T \end{cases} \Rightarrow Q = \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{6}} & 0 & -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \end{bmatrix}$$

所以 f 可经正交变换 x = Qy 化为标准型:

$$f = 2y_1^2 - 4y_2^2 + 5y_3^2$$

3. 在对观测数据拟合的时候经常遇到线性方程组 Ax = b 是矛盾方程的情形,是没有解的。此时我们转而解 $A^TAx = A^Tb$,我们称 $A^TAx = A^Tb$ 是原线性方程组的正规方程组。称正规方程组的解为原方程组的最小

二乘解。设
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 3 \\ 8 \\ 2 \end{bmatrix}.$$

- (1) 证明 Ax = b 无解;
- (2) 求 Ax = b 的最小二乘解。

解:

(1) 由题得:

$$[A|B] \xrightarrow{r_2-r_1} \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 2 \\ 0 & -1 & 1 & 7 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

可以看出 $r(A) = 3 \neq r(A|B) = 4$,所以 Ax = b 无解。
(2)

$$A^{T}A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 3 & 2 \\ 3 & 3 & 1 \\ 2 & 1 & 2 \end{bmatrix}$$
$$A^{T}b = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 8 \\ 2 \end{bmatrix} = \begin{bmatrix} 14 \\ 6 \\ 10 \end{bmatrix}$$

高斯消元步骤略 (考试必须写上)。最后解得: $x_1 = 8, x_2 = -6, x_3 = 0$

四、证明题

1. 已知 $\alpha_1, \alpha_2, \alpha_3$ 是线性无关的向量组,若 $\alpha_1, \alpha_2, \alpha_3, \beta$ 线性相关,证明 β 可以由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示并且表示方法唯一。

证明:

 $\alpha_1, \alpha_2, \alpha_3, \beta$ 线性相关,则存在一组不全为 0 的 $l_i(1 \le i \le 3)$ 和 l_i 使得

$$l_1\alpha_1 + l_2\alpha_2 + l_3\alpha_3 + l\beta = 0 \tag{1}$$

 \Diamond

 \Diamond

若 $l=0, 则 l_1\alpha_1+l_2\alpha_2+l_3\alpha_3+l\beta=l_1\alpha_1+l_2\alpha_2+l_3\alpha_3=0$, 此时 $\alpha_1,\alpha_2,\alpha_3$ 线性相关,与题中的条件矛盾,所以 $l\neq 0$ 。所以 (1) 式可变形为

$$\beta = -\frac{1}{l}(l_1\alpha_1 + l_2\alpha_2 + l_3\alpha_3)$$

即 β 可以由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示。

 β 可以由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示,不妨设任意两组不全为 0 的数 $m_i, n_i, (1 \le i \le 3)$,使得

$$\beta = m_1 \alpha_1 + m_2 \alpha_2 + m_3 \alpha_3 \tag{2}$$

$$\beta = n_1 \alpha_1 + n_2 \alpha_2 + n_3 \alpha_3 \tag{3}$$

(2) 式滅 (3) 式: $0 = (m_1 - n_1)\alpha_1 + (m_2 - n_2)\alpha_2 + (m_3 - n_3)\alpha_3$, 因为 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,所以有 $m_1 - n_1 = 0, m_2 - n_2 = 0, m_3 - n_3 = 0$, 即 $m_1 = n_1, m_2 = n_2, m_3 = n_3$, 由于 m_i 和 n_i 的任意性,所以可证得表示方法唯一。

- 2. 已知 A, B 是同阶实对称矩阵。
- (1) 证明如果 $A \sim B$,则 $A \simeq B$,也就是相似一定合同;
- (2) 举例说明反过来不成立。

证明:

(1) 因为 $A \sim B$,所以 A,B 具有相同的特征值,记为 $\lambda_i, (1 \leq i \leq n)$ 。对于实对称矩阵 A 存在正交矩阵 Q,使得 $Q^{-1}AQ_1$ 为对角矩阵。即存在正交矩阵 Q_1 ,使得 $Q_1^{-1}AQ_1 = \Lambda = \begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{bmatrix}$,对于正交矩阵 Q_1 ,有 $Q_1^{-1} = Q_1^T$,即 $Q_1^TAQ_1 = \Lambda$,

所以 A 合同于 Λ , 同理 B 合同于 Λ , 所以 A 合同于 B。

(2) 反过来描述: A,B 是同阶实对称矩阵, $A \simeq B$, 则 $A \sim B$ 。

由惯性定理(157 页)知:如果: $A=\begin{bmatrix}1\\2\end{bmatrix}$, $B=\begin{bmatrix}1\\3\end{bmatrix}$,A,B 为对角阵,且 $A\simeq B$,但 A 和 B 的特征值不同,即 A 与 B 不相似。

2017-2018 年第一学期

一、填空题

1. 设 A_{ij} 是三阶行列式 $D = \begin{vmatrix} 2 & 2 & 2 \\ 1 & 2 & 3 \\ 4 & 5 & 6 \end{vmatrix}$ 第 i 行第 j 列元素的代数余子式,则 $A_{31} + A_{32} + A_{33} =$ ______。

解:

$$A_{31} + A_{32} + A_{33} = \begin{vmatrix} 2 & 2 & 2 \\ 1 & 2 & 3 \\ 1 & 1 & 1 \end{vmatrix} = 0$$

 \Diamond

 \Diamond

2. 设 $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 2 & 3 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}, 则 r(A + AB) = ______.$

解:

$$A \xrightarrow{r_3 - 2r_1} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \xrightarrow{r_3 - r_2} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$$

r(A) = 3, 满秩。所以 r(A + AB) = r(A(E + B)) = r(E + B)

$$B = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 0 & 0 & 0 \end{bmatrix}$$

$$E + B = \begin{bmatrix} 2 & 2 & 3 \\ 2 & 5 & 6 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{r_2 - r_1} \begin{bmatrix} 2 & 2 & 3 \\ 0 & 3 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

所以 r(E+B) = 3, 所以 r(A+AB) = r(E+B) = 3

3. 设 $A = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 2 & 2 \end{bmatrix}$, 记 A^* 是 A 的伴随矩阵,则 $(A^*)^{-1} =$ _____。

解:

解:

$$(A^*)^{-1} = (|A|A^{-1})^{-1} = \frac{A}{|A|}, \text{ } \mathbf{b}$$
 \mathbb{A} $|A| = 8$

4. 已知 3 阶方阵 A 的秩为 2,设 $\alpha_1=(2,2,0)^T,\alpha_2=(3,3,1)^T$ 是非齐次线性方程组 Ax=b 的解,则导出 Ax=0 的基础解系为_____。

因为 α_1, α_2 是非齐次线性方程组 Ax = b 的解,所以 $A\alpha_1 = b, A\alpha_2 = b$,且 α_1, α_2 不相等,所以 $\alpha_1 - \alpha_2$ 是 AX = 0 的基础解系。(实际上 $k(\alpha_1 - \alpha_2)$ 都是导出组的基础解系。)

5. 若 3 阶矩阵 A 相似于 B,矩阵 A 的特征值是 1,2,3 那么行列式 |2B+I|=____。(其中 I 是 3 阶单位矩阵)

解:

$$A$$
 相似于 B , 所以 A 与 B 的特征值相等。所以 $2B+I$ 的特征值为 $2\lambda_i+1$, 所以 $|2B+I|=\prod\limits_{i=1}^3(2\lambda_i+1)=105$

6. 设二次型 $f(x_1, x_2, x_3) = 2x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 + 2tx_2x_3$ 的秩为 2,则 t =______。

解:

二次型对应的矩阵为:

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & t \\ 0 & t & 1 \end{bmatrix}$$

 \Diamond

A 的秩为 2, 即 |A| = 0, 解得: $t = \pm \frac{1}{\sqrt{2}}$

二、计算题

1. 计算行列式
$$D = \begin{vmatrix} 3 & 1 & -1 & 2 \\ -5 & 1 & 3 & -4 \\ 2 & 0 & 1 & -1 \\ 1 & -5 & 3 & -3 \end{vmatrix}$$
.

解:

$$D \stackrel{\substack{c_1 + 3c_3 \\ c_2 + c_3 \\ c_4 + c_3}}{=} \begin{vmatrix} 0 & 0 & -1 & 0 \\ 4 & 4 & 3 & 2 \\ 5 & 1 & 1 & 1 \\ 10 & -2 & 3 & 3 \end{vmatrix} = (-1) \times (-1)^{1+3} \begin{vmatrix} 4 & 4 & 2 \\ 5 & 1 & 1 \\ 10 & -2 & 3 \end{vmatrix} = -2 \begin{vmatrix} 2 & 2 & 1 \\ 5 & 1 & 1 \\ 10 & -2 & 3 \end{vmatrix} \stackrel{\substack{c_1 - 2c_3 \\ c_2 - 2c_3}}{=} -2 \begin{vmatrix} 0 & 0 & 1 \\ 3 & -1 & 1 \\ 4 & -8 & 3 \end{vmatrix} = -2 \times 1 \times (-1)^{1+3} \times [3 \times (-8) - (-1) \times 4] = 40$$

2. 解矩阵方程 $(2I - B^{-1}A)X^T = B^{-1}$, 其中 I 是 3 阶单位矩阵, X^T 是 3 阶矩阵 X 的转置矩阵,

$$A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}.$$

解.

由题得: $(2I - B^{-1}A)X^T = B^{-1}$, 所以:

$$X^{T} = (2I - B^{-1}A)^{-1}B^{-1} = [B(2I - B^{-1}A)]^{-1}$$

= $(2B - A)^{-1}$

$$C = 2B - A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$C^{-1} = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$
所以 $X = C^T = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & -2 & 1 \end{bmatrix}$
3. 求线性方程组
$$\begin{cases} 2x_1 - x_2 + 4x_3 - 3x_4 = -4 \\ x_1 + x_3 - x_4 = -3 \\ 3x_1 + x_2 + x_3 = 1 \\ 7x_1 + 7x_3 - 3x_4 = 3 \end{cases}$$
的通解。

解:

增广矩阵

$$\begin{bmatrix} 2 & -1 & 4 & -3 & | & -4 \\ 1 & 0 & 1 & -1 & | & -3 \\ 7 & 0 & 7 & -3 & | & 3 \end{bmatrix} \xrightarrow{r_2 - \frac{1}{2}r_1} \begin{bmatrix} 2 & -1 & 4 & -3 & | & -4 \\ 0 & \frac{1}{2} & -1 & \frac{1}{2} & | & -1 \\ 0 & \frac{7}{2} & -7 & \frac{15}{2} & | & 17 \end{bmatrix} \xrightarrow{r_3 - 7r_2} \begin{bmatrix} 2 & -1 & 4 & -3 & | & -4 \\ 0 & \frac{1}{2} & -1 & \frac{1}{2} & | & -1 \\ 0 & 0 & 0 & 4 & | & 24 \end{bmatrix}$$

$$\xrightarrow{r_1 \times \frac{1}{2}} \begin{bmatrix} 1 & -\frac{1}{2} & 2 & -\frac{3}{2} & | & -2 \\ 0 & 1 & -2 & 1 & | & -2 \\ 0 & 0 & 0 & 1 & | & 6 \end{bmatrix} \xrightarrow{r_2 - r_3} \begin{bmatrix} 1 & -\frac{1}{2} & 2 & 0 & | & 7 \\ 0 & 1 & -2 & 0 & | & -8 \\ 0 & 0 & 0 & 1 & | & 6 \end{bmatrix} \xrightarrow{r_1 + \frac{1}{2}r_2} \begin{bmatrix} 1 & 0 & 1 & 0 & | & 3 \\ 0 & 1 & -2 & 0 & | & -8 \\ 0 & 0 & 0 & 1 & | & 6 \end{bmatrix}$$

由最简阶梯型矩阵可以看出:

$$x_1 = 3 - x_3$$
 $x_2 = x_3 - 8$ $x_3 = x_3$ $x_4 = 6$

$$x = \begin{bmatrix} 3 - C \\ C - 8 \\ C \\ 6 \end{bmatrix} = \begin{bmatrix} 3 \\ -8 \\ 0 \\ 6 \end{bmatrix} + \begin{bmatrix} -1 \\ 1 \\ 1 \\ 0 \end{bmatrix} C , C \in R$$

三、解答题

- 1. 设 1 为矩阵 $A = \begin{bmatrix} 1 & 2 & 3 \\ x & 1 & -1 \\ 1 & 1 & x \end{bmatrix}$ 的特征值,其中 x > 1.
- (1) 求 x 及 A 的其他特征值。
- (2) 判断 A 能否对角化,若能对角化,写出相应的对角矩阵 Λ 。

解:

(1) 设 α_1 为特征值 1 对应的特征向量,所以 $\alpha_1 \neq 0$ 由题得: $A\alpha_1 = \alpha_1$,即 $(A - E)\alpha_1 = 0$,即 (A - E)x = 0 有非零解。 所以由存在唯一性定理: |A - E| = 0,所以

$$|A - E| = \begin{vmatrix} 0 & 2 & 3 \\ x & 0 & -1 \\ 1 & 1 & x - 1 \end{vmatrix} = -x \begin{vmatrix} 2 & 3 \\ 1 & x - 1 \end{vmatrix} + \begin{vmatrix} 2 & 3 \\ 0 & -1 \end{vmatrix} = (2x - 1)(x - 2) = 0$$

由题得: x > 1, 所以解得 x = 2。

(2) 把 x = 2 代入得:

$$|\lambda E - A| = \begin{vmatrix} \lambda - 1 & -2 & -3 \\ -2 & \lambda - 1 & 1 \\ -1 & -1 & \lambda - 2 \end{vmatrix} \xrightarrow{c_1 - c_2} \begin{vmatrix} \lambda + 1 & -2 & -3 \\ -(\lambda + 1) & \lambda - 1 & 1 \\ 0 & -1 & \lambda - 2 \end{vmatrix} = (\lambda + 1) \begin{vmatrix} 1 & -2 & -3 \\ -1 & \lambda - 1 & 1 \\ 0 & -1 & \lambda - 2 \end{vmatrix} \xrightarrow{r_2 + r_1} (\lambda + 1) \begin{vmatrix} 1 & -2 & -3 \\ 0 & \lambda - 3 & -2 \\ 0 & -1 & \lambda - 2 \end{vmatrix}$$
$$= (\lambda + 1)[(\lambda - 3)(\lambda - 2) - 2] = 0$$

解得: $\lambda_1 = 1, \lambda_2 = 4, \lambda_3 = -1$ 。

因为 A 为三阶,并且有 3 个不同的特征值,所以可以相似对角化, $\Lambda=\begin{bmatrix}1\\4\\-1\end{bmatrix}$ 。(不唯一,只要对角线元素是这三个就可以)

- 2. $\ \ \ \mathcal{C} \ \ f(x_1, x_2, x_3) = 2x_1^2 + 2x_2^2 + 3x_3^2 + 2x_1x_2$
- (1) 写出该二次型的矩阵 A;

- (2) 求正交矩阵 Q 使得 $Q^TAQ = Q^{-1}AQ$ 为对角型矩阵;
- (3) 给出正交变换, 化该二次型为标准型。

解:

(1) 由题得:

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

(2)

$$|\lambda E - A| = \begin{vmatrix} \lambda - 2 & -1 & 0 \\ -1 & \lambda - 2 & 0 \\ 0 & 0 & \lambda - 2 \end{vmatrix} = (\lambda - 2)[(\lambda - 2)^2 - 1] = 0 \quad \Rightarrow \quad \lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 3$$

 $\lambda_1 = 1$ 时:

$$[\lambda E - A] = \begin{bmatrix} -1 & -1 & 0 \\ -1 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} x_1 = -x_2 \\ x_3 = 0 \end{cases}$$

取 $x_2 = -1$ 得 $\alpha_1 = [1, -1, 0]^T$ 。

 $\lambda_2=2$ 时:

$$[\lambda E - A] = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} x_1 = x_2 = 0 \\ x_3 \in R \end{cases}$$

取 $x_3 = 1$ 得 $\alpha_2 = [0, 0, 1]^T$ 。

 $\lambda_3=3$ 时:

$$[\lambda E - A] = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} x_1 = x_2 \\ x_3 = 0 \end{cases}$$

取 $x_2=1$ 得 $\alpha_3=[1,1,0]^T$ 。因为对称矩阵对应于不同特征值的特征向量正交,所以 $[\alpha_1,\alpha_2,\alpha_3]$ 为正交向量组。单位化:

$$\begin{cases} \gamma_1 = \frac{\alpha_1}{\|\alpha_1\|} = \left[\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right]^T \\ \gamma_2 = \frac{\alpha_2}{\|\alpha_2\|} = [0, 0, 1]^T \\ \gamma_3 = \frac{\alpha_3}{\|\alpha_3\|} = \left[\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right]^T \end{cases} \Rightarrow Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \end{bmatrix}$$

所以 f 可经正交变换 x = Qu 化为标准型:

$$f = y_1^2 + 2y_2^2 + 3y_3^2$$

 \Diamond

3. $\exists \exists \exists \alpha_1 = (1, 4, 0, 2)^T, \alpha_2 = (2, 7, 1, 3)^T, \alpha_3 = (0, 1, -1, a)^T \not \exists \beta_4 = (3, 10, b, 4)^T.$

(1)a,b 为何值时, β 不能表示成 $\alpha_1,\alpha_2,\alpha_3$ 的线性组合?

(2)a,b 为何值时, β 可由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示? 并写出该表达式。

解:

记 $A = [\alpha_1, \alpha_2, \alpha_3]$,则

$$[A|\beta] = \begin{bmatrix} 1 & 2 & 0 & | & 3 \\ 4 & 7 & 1 & | & 10 \\ 0 & 1 & -1 & | & b \\ 2 & 3 & a & | & 4 \end{bmatrix} \xrightarrow{r_2 - 4r_1} \begin{bmatrix} 1 & 2 & 0 & | & 3 \\ 0 & -1 & 1 & | & -2 \\ 0 & 1 & -1 & | & b \\ 0 & -1 & a & | & 2 \end{bmatrix} \xrightarrow{r_3 + r_2} \begin{bmatrix} 1 & 2 & 0 & | & 3 \\ 0 & -1 & 1 & | & -2 \\ 0 & 0 & 0 & | & b - 2 \\ 0 & 0 & a - 1 & | & 0 \\ 0 & 0 & 0 & | & b - 2 \end{bmatrix}$$

$$\xrightarrow{r_3 \leftrightarrow r_2} \begin{bmatrix} 1 & 2 & 0 & | & 3 \\ 0 & -1 & 1 & | & -2 \\ 0 & 0 & a - 1 & | & 0 \\ 0 & 0 & 0 & | & b - 2 \end{bmatrix}$$

- (1) 可以看出 $b \neq 2, a \in R$ 时, $Ax = \beta$ 无解, 即 β 不能表示成 $\alpha_1, \alpha_2, \alpha_3$ 的线性组合。
- (2)b=2 时, β 可由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示。

当 $a \neq 1, r(A) = r(A, \beta) = 3$, 此时: $Ax = \beta$ 有唯一解, 即 β 可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示的方法唯一。

$$\xrightarrow{r_3 \times \frac{1}{a-1}} \left[\begin{array}{ccc|c} 1 & 2 & 0 & 3 \\ 0 & -1 & 1 & -2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right] \xrightarrow{r_2 - r_3} \left[\begin{array}{ccc|c} 1 & 2 & 0 & 3 \\ 0 & -1 & 0 & -2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right] \xrightarrow{r_1 + 2r_2} \left[\begin{array}{ccc|c} 1 & 0 & 0 & -1 \\ 0 & -1 & 0 & -2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right]$$

此时 $Ax=\beta$ 的解为 $x_1=-1, x_2=2, x_3=0$,所以 $\beta=x_1\alpha_1+x_2\alpha_2+x_3\alpha_3=-\alpha_1+2\alpha_2+0\alpha_3=-\alpha_1+2\alpha_2$. a=1 时 $r(A,\beta)=r(A)=2<3$,所以 β 可由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示的方法唯一。

所以解得 $x_1 = -1 - 2x_3, x_2 = x_3 + 2$,令 $x_3 = k, k \in R$,则 $\beta = x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3 = -(1+2k)\alpha_1 + (2+k)\alpha_2 + k\alpha_3$ ◇ 四、证明题

1. 设 A, B 均为 n 阶方阵,证明: 若 A, B 相似则 |A| = |B|,举例说明反过来不成立。证明:

若 A 与 B 相似,则依定义有: 存在一个可逆矩阵 P,使得 $A=P^{-1}BP$,两边同时求行列式: $|A|=|P^{-1}BP|=|P^{-1}|\cdot|B|\cdot|P|=|B|\cdot|P^{-1}P|=|B|\cdot|E|=|B|$ 。

反过来描述:如果 |A| = |B|,则 A 和 B 相似。

例如: $A\begin{bmatrix}1&0\\0&1\end{bmatrix}$,|A|=1, $B=\begin{bmatrix}1&1\\0&1\end{bmatrix}$,|B|=1,所以 |A|=|B|,但是:假设存在一个可逆矩阵 P, $P^{-1}AP=P^{-1}EP=E\neq B$,即 |A|=|B|,但是 A, B 不相似。

- 2. 设 A 为 $m \times n$ 实矩阵,证明 Ax = 0 与 $(A^TA)x = 0$ 是同解方程,进一步得出 $r(A) = r(A^TA)$ 。解:
 - (1) 若 x_0 为 Ax = 0 的解,则 $Ax_0 = 0$,对等式两边同时左乘 A^T : $A^T Ax_0 = 0$,即 x_0 为 $A^T Ax = 0$ 的解。

若 x_1 为 $A^TAx = 0$ 的解:则 $A^TAx_1 = 0$,等式两边同时左乘 x_1^T : $x_1^TA^TAx_1 = (Ax_1)^T(Ax_1) = 0$,所以 $Ax_1 = 0$,所以 Ax = 0 的解。(注:这里就认为 x 是一个列向量,所以 Ax 也是列向量,用<mark>向量内积</mark>的性质。)

综上所述: Ax = 0 与 $A^T Ax = 0$ 同解。

(2)Ax = 0 与 $A^TAx = 0$ 同解,则它们解的空间维数相同。又因为解的空间维数 = 未知量的个数-系数矩阵的秩。两个方程的未知数个数相同,所以系数矩阵相同,即 $r(A) = r(A^TA)$

2018-2019 年第一学期

一、填空题

1. 设 A 为 5 阶方阵满足 $|A|=2,A^*$ 是 A 的伴随矩阵,则 $|2A^{-1}A^*A^T|=$ _____。

解:

原式 =

$$2^{5}|A^{-1}| \cdot |A^{*}| \cdot |A^{T}| = 2^{5} \cdot |A|^{-1} \cdot |A|^{5-1} \cdot |A| = 2^{9} = 512$$

 \Diamond

 \Diamond

2. 已知向量组 $\alpha_1=(1,3,1), \alpha_2=(0,1,1), \alpha_3=(1,4,k)$ 线性无关,则实数 k 满足的条件是_____。解:

 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,即 $r(\alpha_1, \alpha_2, \alpha_3) = 3$,记 $A = (\alpha_1, \alpha_2, \alpha_3)$,则 $|A| \neq 0$

$$|A| = \begin{vmatrix} 1 & 0 & 1 \\ 3 & 1 & 4 \\ 1 & 1 & k \end{vmatrix} \stackrel{c_3 - c_1}{=} \begin{vmatrix} 1 & 0 & 0 \\ 3 & 1 & 1 \\ 1 & 1 & k - 1 \end{vmatrix} = k - 2 \neq 0 \quad \Rightarrow k \neq 2$$

3. 设 A 为 m 阶阵,存在非零的 m 维列向量 B,使 AB=0 的充分必要条件是_____。解:

B 非零, 说明 Ax = 0 有非零解, 由存在唯一性定理: |A| = 0, 或 r(A) < m。

4. 设 $A=(a_{ij})_{3\times 3}$,其特征值为 1,-1,2, A_{ij} 是元素 a_{ij} 的代数余子式, A^* 是 A 的伴随矩阵,则 A^* 的主对角线元素之和即 $A_{11}+A_{22}+A_{33}=$ ____。

解:

解:

二次型矩阵
$$A=\begin{bmatrix}1&t&-1\\t&4&2\\-1&2&4\end{bmatrix}$$
,二次型正定,即 A 正定,即 A 的所有顺序主子是大于 0 . 即

$$D_{1} = 1$$

$$D_{2} = \begin{vmatrix} 1 & t \\ t & 4 \end{vmatrix} = 4 - t^{2} > 0 \quad \Rightarrow \quad -2 < t < 2$$

$$D_{3} = \begin{vmatrix} 1 & t & -1 \\ t & 4 & 2 \\ -1 & 2 & 4 \end{vmatrix} = 8 - 4t - 4t^{2} > 0 \quad -2 < t < 1$$

综上所述: -2 < t < 1.

6. 设 3 维列向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,3 阶方阵 A 满足 $A\alpha_1 = -\alpha_1, A\alpha_2 = \alpha_2, A\alpha_3 = \alpha_2 + \alpha_3$ 。则行列式 $|A| = _____$ 。

解:

由题得: $A\alpha_1 = -\alpha_1, A\alpha_2 = \alpha_2, A\alpha_3 = \alpha_2 + \alpha_3$ 所以

$$A(\alpha_1 \ \alpha_2 \ \alpha_3) = (-\alpha_1 \ \alpha_2 \ \alpha_2 + \alpha_3)$$

班序号: 学院: 学号: 姓名:王松年 36

即

$$|A(\alpha_1 \ \alpha_2 \ \alpha_3)| = |A| \cdot |\alpha_1 \ \alpha_2 \ \alpha_3| = |-\alpha_1 \ \alpha_2 \ \alpha_2 + \alpha_3|$$

$$|-\alpha_1 \ \alpha_2 \ \alpha_2 + \alpha_3| = \frac{c_3 - c_2}{|-\alpha_1|} |-\alpha_1 \ \alpha_2 \ \alpha_3| = -|\alpha_1 \ \alpha_2 \ \alpha_3|$$

$$|A| = -1$$

 \Diamond

二、计算题

1. 已知
$$D = \begin{vmatrix} 1 & 1 & 1 & 1 \\ -1 & 2 & 2 & 3 \\ 1 & 4 & 3 & 9 \\ -1 & 8 & 5 & 27 \end{vmatrix}$$
, 求 $A_{13} + A_{23} + A_{33} + A_{43}$, 其中 A_{ij} 为元素 a_{ij} 的代数余子式。

解:

-48.

$$A_{13} + A_{23} + A_{33} + A_{43} = \begin{vmatrix} 1 & 1 & 1 & 1 \\ -1 & 2 & 1 & 3 \\ 1 & 4 & 1 & 9 \\ -1 & 8 & 1 & 27 \end{vmatrix}$$

可以看出该式为范德蒙行列式,其中 $x_1=-1, x_2=2, x_3=1, x_4=3$,所以上式 $=(x_4-x_3)(x_4-x_2)(x_4-x_1)(x_3-x_2)(x_3-x_2)(x_2-x_1)=-48$

2. 已知
$$A = \begin{bmatrix} 1 & 3 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$
, 且 X 满足 $AX = X + A$,求 X 。

解:

由题得: AX = X + A, 所以 (A - E)X = A, 所以 $X = (A - E)^{-1}A$

$$B = A - E = \begin{bmatrix} 0 & 3 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$[B|E] \xrightarrow{r_1 \Leftrightarrow r_2} \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 3 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{r_2 \Leftrightarrow r_3} \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 3 & 1 & 1 & 0 & 0 \end{bmatrix} \xrightarrow{r_3 - 3r_2} \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & -3 \end{bmatrix}$$

所以
$$(A-E)^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & -3 \end{bmatrix}, X = (A-E)^{-1}A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & -3 \end{bmatrix} \begin{bmatrix} 1 & 3 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & -2 \end{bmatrix}$$

3. 设矩阵
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & -1 & b \\ 2 & 3 & a & 3 \\ 3 & 5 & 1 & 5 \end{bmatrix}$$
 A^* 是 A 的伴随矩阵,求 $r(A), r(A^*)$ 和 A 的列向量组的极大线性无关

组。

解:

$$A \xrightarrow{r_3 - 2r_1} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & -1 & b \\ 0 & 1 & a - 2 & 1 \\ 0 & 2 & -2 & 2 \end{bmatrix} \xrightarrow{r_2 \leftrightarrow r_4} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & -2 & 2 \\ 0 & 1 & a - 2 & 1 \\ 0 & 1 & -1 & b \end{bmatrix} \xrightarrow{r_3 - \frac{1}{2}r_2} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & -2 & 2 \\ r_4 - \frac{1}{2}r_2 \end{pmatrix} \xrightarrow{r_3 - \frac{1}{2}r_2} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & -2 & 2 \\ 0 & 0 & a - 1 & 0 \\ 0 & 0 & 0 & b - 1 \end{bmatrix}$$
$$r(A^*) = \begin{cases} n, & r(A) = n; \\ 1, & r(A) = n - 1 \\ 0, & r(A) < n - 1. \end{cases}$$

上式中: n 为 A 的阶数。

- (1)a = 1 且 b = 1 时: $r(A) = 2 < 4 1 = 3, r(A^*) = 0$ 。 极大线性无关组: $(\alpha_1, \alpha_2), (\alpha_1, \alpha_3), (\alpha_1, \alpha_4), (\alpha_2, \alpha_3), (\alpha_3, \alpha_4)$.
- (2)a = 1 且 $b \neq 1$ 时: r(A) = 3 = 4 1, $r(A^*) = 1$ 。 极大线性无关组: $(\alpha_1, \alpha_2, \alpha_4), (\alpha_1, \alpha_3, \alpha_4), (\alpha_2, \alpha_3, \alpha_4)$.
- $(3)a \neq 1 \text{ 且 } b = 1 \text{ 时: } r(A) = 3 = 4 1, \\ r(A^*) = 1. \text{ 极大线性无关组: } (\alpha_1, \alpha_2, \alpha_3), (\alpha_1, \alpha_3, \alpha_4), (\alpha_2, \alpha_3, \alpha_4).$
- $(4)a \neq 1$ 且 $b \neq 1$ 时: $r(A) = 4, r(A^*) = 4$ 。极大线性无关组: $(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$.

三、解答题

1. 设
$$\begin{cases} \lambda x_1 + x_2 + x_3 = \lambda - 2 \\ x_1 + \lambda x_2 + x_3 = 2 \\ x_1 + x_2 + \lambda x_3 = 2 \end{cases}$$
 , λ 为何值时,该方程组无解、唯一解、无穷解?并且在有唯一解时求

 \Diamond

出解;有无穷多解时,求出全部解并用向量表示。

解:

(系数矩阵是方阵,也可以用行列式来做这个题。具体看 14-15 年期末试题的第四题,推荐这种方法) 增广矩阵

$$\begin{bmatrix} \lambda & 1 & 1 & \lambda & -2 \\ 1 & \lambda & 1 & 2 \\ 1 & 1 & \lambda & 2 \end{bmatrix} \xrightarrow{r_1 \Leftrightarrow r_2} \begin{bmatrix} 1 & \lambda & 1 & 2 \\ \lambda & 1 & 1 & \lambda - 2 \\ 1 & 1 & \lambda & 2 \end{bmatrix} \xrightarrow{r_2 \to r_1} \begin{bmatrix} 1 & \lambda & 1 & 2 \\ 0 & 1 - \lambda^2 & 1 - \lambda & -\lambda - 2 \\ 0 & 1 - \lambda & \lambda - 1 & 0 \end{bmatrix}$$

$$\xrightarrow{r_2 \Leftrightarrow r_3} \begin{bmatrix} 1 & \lambda & 1 & 2 \\ 0 & 1 - \lambda & \lambda - 1 & 0 \\ 0 & 1 - \lambda^2 & 1 - \lambda & -\lambda - 2 \end{bmatrix} \xrightarrow{r_3 - (\lambda + 1)r_2} \begin{bmatrix} 1 & \lambda & 1 & 2 \\ 0 & 1 - \lambda & \lambda - 1 & 0 \\ 0 & 0 & (\lambda - 1)(-2 - \lambda) & -\lambda - 2 \end{bmatrix}$$

讨论:

(1) 解不存在: 即存在矛盾方程 (增广矩阵主元列在最右列)。即对于 r_3

$$\begin{cases} (\lambda - 1)(-2 - \lambda) = 0 \\ -\lambda - 2 \neq 0 \end{cases} \Rightarrow \lambda = 1$$

(2) 存在唯一解: 主元列三个元素都不为 0. 即

$$\begin{cases} 1 \neq 0 \\ 1 - \lambda \neq 0 \\ (\lambda - 1)(-2 - \lambda) \neq 0 \end{cases} \Rightarrow \lambda \neq 1 \mathbb{H} \lambda \neq -2$$

 $\lambda \neq 1$ 且 $\lambda \neq -2$,继续对阶梯矩阵进行初等行变换

所以方程组存在唯一解时: $\lambda \neq 1$ 且 $\lambda \neq -2$, 解为

$$\mathbf{x} = \begin{bmatrix} \frac{\lambda - 3}{\lambda - 1} \\ \frac{1}{\lambda - 1} \\ \frac{1}{\lambda - 1} \end{bmatrix} , \quad \lambda \neq 1 \, \mathbb{H} \, \lambda \neq -2$$

(3) 存在无穷解: 至少存在一个自由变量。由阶梯矩阵可以看出

$$\begin{cases} (\lambda - 1)(-2 - \lambda) = 0 \\ -2 - \lambda = 0 \end{cases} \Rightarrow \lambda = -2$$

把 $\lambda = -2$ 代入阶梯矩阵:

$$\begin{bmatrix} 1 & -2 & 1 & 2 \\ 0 & 3 & -3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{r_2 \times \frac{1}{3}} \begin{bmatrix} 1 & -2 & 1 & 2 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{r_1 + 2r_2} \begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

由最简阶梯型矩阵可以看出:

$$x_1 = 2 + x_3$$
 $x_2 = x_3$ $x_3 = x_3$

 $x_3 = C, C \in R$,则

$$x = \begin{bmatrix} 2+C \\ C \\ C \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} C , C \in R$$

 \Diamond

- 2. 设实二次型 $f(x_1, x_2, x_3) = 4x_1x_2 4x_1x_3 + 4x_2^2 + 8x_2x_3 3x_3^2$ 。
- (1) 写出该二次型的矩阵 A;
- (2) 求正交矩阵 P,使得 $P^{-1}AP$ 为对角型矩阵;
- (3) 给出正交变换,将该二次型化为标准型;
- (4) 写出二次型的秩,正惯性指标和负惯性指标。

解:

(1) 由题得:

$$A = \begin{bmatrix} 0 & 2 & -2 \\ 2 & 4 & 4 \\ -2 & 4 & 3 \end{bmatrix}$$

(2)

$$|\lambda E - A| = \begin{vmatrix} \lambda & -2 & 2 \\ -2 & \lambda - 4 & -4 \\ 2 & -4 & \lambda - 3 \end{vmatrix} = (\lambda - 1)(\lambda^2 - 36) = 0 \quad \Rightarrow \quad \lambda_1 = 1, \lambda_2 = 6, \lambda_3 = -6$$

 $\lambda_1 = 1$ 时:

$$[\lambda E - A] = \begin{bmatrix} 1 & -2 & 2 \\ -2 & -3 & -4 \\ 2 & -4 & -2 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} x_1 = -2x_3 \\ x_2 = 0 \end{cases}$$

取 $x_3 = 1$ 得 $\alpha_1 = [-2, 0, 1]^T$ 。

$$\lambda_2 = 6$$
 时:

$$[\lambda E - A] = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 2 & -4 \\ 2 & -4 & 9 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} x_1 = \frac{1}{2}x_3 \\ x_3 = \frac{5}{2}x_3 \end{cases}$$

取 $x_3 = 2$ 得 $\alpha_2 = [1, 5, 2]^T$ 。

 $\lambda_3 = -6$ 时:

$$[\lambda E - A] = \begin{bmatrix} -6 & -2 & 2 \\ -2 & -10 & -4 \\ 2 & -4 & -3 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} x_1 = \frac{1}{2}x_3 \\ x_3 = -\frac{1}{2}x_3 \end{cases}$$

取 $x_3=2$ 得 $\alpha_3=[1,-1,2]^T$ 。因为对称矩阵对应于不同特征值的特征向量正交,所以 $[\alpha_1,\alpha_2,\alpha_3]$ 为正交向量组。单位化:

$$\begin{cases} \gamma_1 = \frac{\alpha_1}{\|\alpha_1\|} = \left[-\frac{2}{\sqrt{5}}, 0, -\frac{1}{\sqrt{5}} \right]^T \\ \gamma_2 = \frac{\alpha_2}{\|\alpha_2\|} = \left[\frac{1}{\sqrt{30}}, \frac{5}{\sqrt{30}}, \frac{2}{\sqrt{30}} \right]^T \\ \gamma_3 = \frac{\alpha_3}{\|\alpha_3\|} = \left[\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}} \right]^T \end{cases} \Rightarrow P = \begin{bmatrix} -\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{30}} & \frac{1}{\sqrt{6}} \\ 0 & \frac{5}{\sqrt{30}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{30}} & \frac{2}{\sqrt{6}} \end{bmatrix}$$

所以 P 即为所求的正交矩阵, $P^{-1}AP=\Lambda=\begin{bmatrix} 1 & & \\ & 6 & \\ & & -6 \end{bmatrix}$

(3) 由 (2) 得: f 可经正交变换 x = Py 化为标准型:

$$f = y_1^2 + 6y_2^2 - 6y_3^2$$

四、证明题

- 1. 设 n 阶矩阵 A 满足 $A^2 + 3A 4I = 0$, 其中 I 为 n 阶单位矩阵。
- (1) 证明: A, A + 3I 可逆,并求他们的逆;
- (2) 当 $A \neq I$ 时,判断 A + 4I 是否可逆并说明理由。

解:

- (1) 由题得: $A^2 + 3A 4I = 0$, 所以 A(A+3I) = 4I, 所以 A, A+3I 可逆, A 的逆为 $\frac{1}{4}(A+3I), A+3I$ 的逆为 $\frac{1}{4}A$ 。
- (2) 不可逆, 理由:

由题得: $A^2+3A-4I=(A+4I)(A-I)=0$, 假设 A+4I 可逆,则等式两端同时左乘 $(A+4I)^{-1}$ 得 A-I=0, 即 A=I 与题目中 $A\neq I$ 矛盾,所以假设不成立。即 A+4I 不可逆。

2. 若同阶矩阵 A 与 B 相似,即 $A \sim B$,证明 $A^2 \sim B^2$ 。反过来结论是否成立并说明理由。证明:

若 A 与 B 相似,则依定义有: 存在一个可逆矩阵 P,使得 $A=P^{-1}BP$,所以: $A^2=P^{-1}BP\cdot P^{-1}BP=P^{-1}B^2P$ 。所以 $A^2\sim B^2$ 。

反过来描述:如果 $A^2 \sim B^2$,则 A 和 B 相似。

不成立。理由如下:

例如: $A\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}$, $A^2 = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}$, $B = \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}$, $B^2 = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}$, 所以 $A^2 = B^2$, 由相似的性质 $A^2 \sim B^2$ 但是:假设存在一个可逆矩阵 $P, P^{-1}AP = P^{-1}EP = E \neq B$,即 $A^2 \sim B^2$,但是 A, B 不相似。

3. 设 λ_1, λ_2 是 A 的两个互异的特征值, $\alpha_{11}, \cdots, \alpha_{1s}$ 是对应于 λ_1 的线性无关的特征向量, $\alpha_{21}, \cdots, \alpha_{2t}$ 是对应于 λ_2 的线性无关的特征向量,证明:向量组 $\alpha_{11}, \cdots, \alpha_{1s}, \alpha_{21}, \cdots, \alpha_{2t}$ 线性无关。证明:

由题得: $A\alpha_{1i} = \lambda_1\alpha_{1i}, (1 \leq i \leq s), A\alpha_{2j} = \lambda_1\alpha_{1j}, (1 \leq j \leq t)$ 。 设

$$k_1\alpha_{11} + \dots + k_s\alpha_{1s} + k_{s+1}\alpha_{21} + \dots + k_{s+t}\alpha_{2t} = 0 \tag{1}$$

班序号: 学院: 学号: 姓名: 王松年 34

要证明向量组 $\alpha_{11}, \dots, \alpha_{1s}, \alpha_{21}, \dots, \alpha_{2t}$ 线性无关,只需证明 $k_1 = k_2 = \dots = k_s = k_{s+1} = \dots = k_{s+t} = 0$ 即可。在 (1) 式左边同乘 A:

 $k_1 A \alpha_{11} + \dots + k_s A \alpha_{1s} + k_{s+1} A \alpha_{21} + \dots + k_{s+t} A \alpha_{2t} = \lambda_1 (k_1 \alpha_{11} + \dots + k_s \alpha_{1s}) + \lambda_2 (k_{s+1} \alpha_{21} + \dots + k_{s+t} \alpha_{2t}) = 0$ (2)

 $(2) - \lambda_2(1)$ 得: $(\lambda_1 - \lambda_2)(k_1\alpha_{11} + \dots + k_s\alpha_{1s}) = 0$, 因为 λ_1, λ_2 是 A 的两个互异的特征值,所以 $\lambda_1 - \lambda_2 \neq 0$,所以 $k_1\alpha_{11} + \dots + k_s\alpha_{1s} = 0$,又因为 $\alpha_{11}, \dots, \alpha_{1s}$ 是对应于 λ_1 的线性无关的特征向量,所以: $k_1 = k_2 = \dots = k_s = 0$ 。代入到 (1) 式得:

 $k_{s+1}\alpha_{21}+\cdots+k_{s+t}\alpha_{2t}=0$,因为 $\alpha_{21},\cdots,\alpha_{2t}$ 是对应于 λ_2 的线性无关的特征向量,所以 $k_{s+1}=k_{s+2}=\cdots=k_{s+t}=0$ 综上所述: $k_1=k_2=\cdots=k_s=k_{s+1}=k_{s+2}=\cdots=k_{s+t}=0$,所以向量组 $\alpha_{11},\cdots,\alpha_{1s},\alpha_{21},\cdots,\alpha_{2t}$ 线性无关。

2019-2020 年第一学期

一、填空题

1. 设 A 是 3 阶方阵,E 是 3 阶单位矩阵,已知 A 的特征值为 1,1,2,则 $\left|\left(\left(\frac{1}{2}A\right)^*\right)^{-1} - 2A^{-1} + E\right| = _____.$

解:

由题得:
$$|A| = \prod_{i=1}^3 \lambda_i = 2, A^*$$
 的特征值为 $\frac{|A|}{\lambda} = \frac{2}{\lambda}$.
由伴随矩阵的性质: $\left(\frac{1}{2}A\right)^* = \left(\frac{1}{2}\right)^{3-1}A^* = \frac{A^*}{4}$, 所以 $\left(\left(\frac{1}{2}A\right)^*\right)^{-1} - 2A^{-1} + E$ 的特征值为
$$\left(\frac{1}{4} \cdot \frac{2}{\lambda_i}\right)^{-1} - 2\lambda_i^{-1} + 1 = 2\lambda_i - \frac{2}{\lambda_i} + 1$$

所以:

$$\left| \left(\left(\frac{1}{2}A \right)^* \right)^{-1} - 2A^{-1} + E \right| = \prod_{i=1}^3 \left(2\lambda_i - \frac{2}{\lambda_i} + 1 \right) = 4$$

 \Diamond

 \Diamond

2. 已知 $A = \begin{bmatrix} 1 & -2 & 3k \\ -1 & 2k & -3 \\ k & -2 & 3 \end{bmatrix}$ 的秩为 2,则 k =_____。

解:

若 k=0, 则

$$A = \begin{bmatrix} 1 & -2 & 0 \\ -1 & 0 & -3 \\ 0 & -2 & 3 \end{bmatrix} \xrightarrow{r_2 + r_1} \begin{bmatrix} 1 & -2 & 0 \\ 0 & -2 & -3 \\ 0 & -2 & 3 \end{bmatrix} \xrightarrow{r_3 - r_2} \begin{bmatrix} 1 & -2 & 0 \\ 0 & -2 & -3 \\ 0 & 0 & 6 \end{bmatrix}$$

所以 $r(A) = 3 \neq 2$, 即 $k \neq 0$. 对 A 接着进行化简:

$$A \xrightarrow{r_2 + r_1} \begin{bmatrix} 1 & -2 & 3k \\ 0 & 2k - 2 & 3k - 3 \\ 0 & 2k - 2 & 3 - 3k^2 \end{bmatrix} = B$$

若 k=1, 则

$$B = \begin{bmatrix} 1 & -2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

 $r(A) = 1 \neq 2$, 所以 $k \neq 1$, 继续对 A 进行化简:

$$B \xrightarrow{r_{2} \times \frac{1}{k-1}} \begin{bmatrix} 1 & -2 & 3k \\ 0 & 2 & 3 \\ 0 & 2 & -3 - 3k \end{bmatrix}$$

如果要使 r(A) = 2, 则

$$\frac{2}{2} = \frac{3}{-3-3k} \quad \Rightarrow k = -2$$

也可以使用 |A|=0 来做。

4. 若线性方程组
$$\begin{cases} x_1 + x_2 = -a_1 \\ x_2 + x_3 = a_2 \\ x_3 + x_4 = -a_3 \\ x_4 + x_1 = a_4 \end{cases}$$
 有解, a_1, a_2, a_3, a_4 应满足的条件是 $a_1 + a_2 + a_3 + a_4 = 0$ 。

解:

增广矩阵

$$\begin{bmatrix} 1 & 1 & 0 & 0 & -a_1 \\ 0 & 1 & 1 & 0 & a_2 \\ 0 & 0 & 1 & 1 & -a_3 \\ 1 & 0 & 0 & 1 & a_4 \end{bmatrix} \xrightarrow{r_4-r_1} \begin{bmatrix} 1 & 1 & 0 & 0 & -a_1 \\ 0 & 1 & 1 & 0 & a_2 \\ 0 & 0 & 1 & 1 & -a_3 \\ 0 & -1 & 0 & 1 & a_1 + a_4 \end{bmatrix} \xrightarrow{r_4+r_2} \begin{bmatrix} 1 & 1 & 0 & 0 & -a_1 \\ 0 & 1 & 1 & 0 & a_2 \\ 0 & 0 & 1 & 1 & -a_3 \\ 0 & 0 & 1 & 1 & a_1 + a_2 + a_4 \end{bmatrix}$$

$$\xrightarrow{r_4-r_3} \begin{bmatrix} 1 & 1 & 0 & 0 & -a_1 \\ 0 & 1 & 1 & 0 & a_2 \\ 0 & 0 & 1 & 1 & -a_3 \\ 0 & 0 & 0 & a_1 + a_2 + a_3 + a_4 \end{bmatrix}$$

若方程有解: $a_1 + a_2 - a_3 + a_4 = 0$

5. 已知 n 阶方阵 A 对应于特征值 λ 的全部的特征向量为 $c\alpha$, 其中 c 为非零常数,设 n 阶方阵 P 可逆,则 $P^{-1}AP$ 对应于特征值 λ 的全部的特征向量为_____。

由题得: $A(c\alpha) = \lambda(c\alpha)$ 等式两边同时左乘 P^{-1} :

$$P^{-1}AE(c\alpha) = P^{-1}APP^{-1}(c\alpha) = (P^{-1}AP)(P^{-1}c\alpha) = \lambda(P^{-1}c\alpha)$$

 \Diamond

所以 $P^{-1}AP$ 对应于特征值 λ 的全部的特征向量为 $P^{-1}c\alpha=cP^{-1}\alpha$

6. 已知实对称矩阵 $A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 3 & 3 \\ 1 & 3 & x \end{bmatrix}$ 的正惯性指数为 3,则 x 的取值范围为_____。

解:

A 为实对称矩阵,且 A 的正惯性指数为 3,所以 A 正定,所以 A 的所有顺序主子式大于 0. 所以 |A|=2(3x-9)-3>0 $\Rightarrow x>3.5$

二、计算题

1. 设
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
. 求满足 $AX = XA$ 的全部的矩阵 X 。

解:

设
$$X = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$
,

$$AX = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} d & e & f \\ g & h & i \\ 0 & 0 & 0 \end{bmatrix}$$
$$XA = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & a & b \\ 0 & d & e \\ 0 & g & h \end{bmatrix}$$

AX = XA, \mathbb{P}

$$\begin{bmatrix} d & e & f \\ g & h & i \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & a & b \\ 0 & d & e \\ 0 & g & h \end{bmatrix} \Rightarrow \begin{cases} d = 0 & a = e & b = f \\ g = 0 & h = d = 0 & i = e = a \\ 0 = 0 & g = 0 & h = 0 \end{cases}$$

所以
$$x = \begin{bmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{bmatrix}$$
, 其中 a,b,c 是任意常数。

2. 求线性方程组
$$\begin{cases} x_1 + 3x_2 + 2x_3 + 3x_4 = 0 \\ 2x_1 + 4x_2 + x_3 + 3x_4 = 0 \end{cases}$$
 的一个基础解系。
$$2x_1 + 4x_2 + 4x_4 = 0$$

解:

由题得: 增广矩阵

$$A = \begin{bmatrix} 1 & 3 & 2 & 3 \\ 2 & 4 & 1 & 3 \\ 2 & 4 & 0 & 4 \end{bmatrix} \xrightarrow{r_2 - 2r_1} \begin{bmatrix} 1 & 3 & 2 & 3 \\ 0 & -2 & -3 & -3 \\ 0 & -2 & -4 & -2 \end{bmatrix} \xrightarrow{r_3 - r_2} \begin{bmatrix} 1 & 3 & 2 & 3 \\ 0 & -2 & -3 & -3 \\ 0 & 0 & -1 & 1 \end{bmatrix} \xrightarrow{r_1 + 2r_3} \begin{bmatrix} 1 & 3 & 0 & 5 \\ 0 & -2 & 0 & -6 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

$$\xrightarrow{r_2 \times \left(-\frac{1}{2}\right)} \begin{bmatrix} 1 & 3 & 0 & 5 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -1 \end{bmatrix} \xrightarrow{r_1 - 3r_2} \begin{bmatrix} 1 & 0 & 0 & -4 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

所以
$$x_1=4x_4, x_2=-3x_4, x_3=x_4$$
,令 $x_4=1$,得基础解系: $\xi=[4,-3,1,1]^T$ 。

- (1) 求 $|A_1|, |A_2|$
- (2) 求 $|A_n|$ 。

解:

(1)

$$|A_{1}| = \begin{vmatrix} a_{1} & b_{1} \\ c_{1} & d_{1} \end{vmatrix} = a_{1}d_{1} - c_{1}b_{1}$$

$$|A_{2}| = \begin{vmatrix} a_{2} & 0 & 0 & b_{2} \\ 0 & a_{1} & b_{1} & 0 \\ 0 & c_{1} & d_{1} & 0 \\ c_{2} & 0 & 0 & d_{2} \end{vmatrix} = a_{2} \begin{vmatrix} a_{1} & b_{1} & 0 \\ c_{1} & d_{1} & 0 \\ 0 & 0 & d_{2} \end{vmatrix} - b_{2} \begin{vmatrix} 0 & a_{1} & b_{1} \\ 0 & c_{1} & d_{1} \\ c_{2} & 0 & 0 \end{vmatrix} = a_{2}d_{2} \begin{vmatrix} a_{1} & b_{1} \\ c_{1} & d_{1} \end{vmatrix} - b_{2}c_{2} \begin{vmatrix} a_{1} & b_{1} \\ c_{1} & d_{1} \end{vmatrix} = (a_{2}d_{2} - b_{2}c_{2})|A_{1}|$$

$$= (a_{2}d_{2} - b_{2}c_{2})(a_{1}d_{1} - c_{1}b_{1})$$

(2) 用数学归纳法:

由 (1) 得:

$$n=1: \quad |A_1|=a_1d_1-c_1b_1=\prod_{i=0}^1(a_id_i-c_ib_i)$$
 $n=2: \quad |A_2|=(a_2d_2-c_2b_2)\,|A_1|=\prod_{i=0}^2(a_id_i-c_ib_i)$

则 n = k - 1 时,有 $|A_n| = \prod_{i=0}^{k-1} (a_i d_i - c_i b_i)$. 当 n = k 时,按第一列展开,得:

 $|A_k| = a_{11}A_{11} + a_{2k1}A_{2k1}$

三、解答题

1. 设向量组 $\alpha_1 = (1, -4, -3)^T$, $\alpha_2 = (-3, 6, 7)^T$, $\alpha_3 = (-4, -2, 6)^T$, $\alpha_4 = (3, 3 - 4)^T$, 求向量组的秩, 并写出一个极大线性无关组, 并将其余向量由极大无关组线性表示出。解:

 \Diamond

由题得:

$$(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}) = \begin{bmatrix} 1 & -3 & -4 & 3 \\ -4 & 6 & -2 & 3 \\ -3 & 7 & 6 & -4 \end{bmatrix} \xrightarrow{\substack{r_{2}+4r_{1} \\ r_{3}+3r_{1}}} \begin{bmatrix} 1 & -3 & -4 & 3 \\ 0 & -6 & -18 & 15 \\ 0 & -2 & -6 & 5 \end{bmatrix} \xrightarrow{\substack{r_{3}-\frac{1}{3}r_{2} \\ 0 & 0 & 0 & 0}} \begin{bmatrix} 1 & -3 & -4 & 3 \\ 0 & -6 & -18 & 15 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\xrightarrow{r_{2}\times\left(-\frac{1}{6}\right)} \begin{bmatrix} 1 & -3 & -4 & 3 \\ 0 & 1 & 3 & -2.5 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{\substack{r_{1}+3r_{2} \\ 0 & 0 & 0 & 0}} \begin{bmatrix} 1 & 0 & 5 & -4.5 \\ 0 & 1 & 3 & -2.5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

所以 $r(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = 2$,极大线性无关组有两个向量: $(\alpha_1, \alpha_2), (\alpha_1 \alpha_3), (\alpha_1, \alpha_4), (\alpha_2, \alpha_3), (\alpha_2, \alpha_4), (\alpha_3, \alpha_4).$ (任写一个即可) 以 (α_1, α_2) 为例: $\alpha_3 = 5\alpha_1 + 3\alpha_2, \alpha_4 = -4.5\alpha_1 - 2.5\alpha_2$ 。

2. 已知 3 阶方阵 $A = \begin{bmatrix} -1 & a+2 & 0 \\ a-2 & 3 & 0 \\ 8 & -8 & -1 \end{bmatrix}$ 可以相似对角化且 A 得到特征方程有一个二重根,求 a 的

值。其中 $a \leq 0$.

解:

由题得:

$$|\lambda E - A| = \begin{vmatrix} \lambda + 1 & -(a+2) & 0 \\ 2 - a & \lambda - 3 & 0 \\ -8 & 8 & \lambda + 1 \end{vmatrix} = (\lambda + 1)[(\lambda + 1)(\lambda - 3) + (2 + a)(2 - a)] = (\lambda + 1)[(\lambda - 1)^2 - a^2] = 0$$

$$\Rightarrow \lambda_1 = -1, \lambda_2 = 1 + a, \lambda_3 = 1 - a.$$

依题意:有二重根且可以相似对角化且 a < 0.

讨论:

 $(1)\lambda_1 = \lambda_2$, 即 -1 = 1 + a, $a = -2 \le 0$, 此时 $\lambda_3 = 1 - a = 3$, 代入到 $\lambda E - A$ 得:

$$[\lambda E - A] = \begin{bmatrix} \lambda + 1 & 0 & 0 \\ 4 & \lambda - 3 & 0 \\ -8 & 8 & \lambda + 1 \end{bmatrix}$$

对于重根 -1:

$$[\lambda E - A] = \begin{bmatrix} 0 & 0 & 0 \\ 4 & -4 & 0 \\ -8 & 8 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \Rightarrow \quad \alpha_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \quad \alpha_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

对于根 3:

$$[\lambda E - A] = \begin{bmatrix} 4 & 0 & 0 \\ 4 & 0 & 0 \\ -8 & 8 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \end{bmatrix} \quad \Rightarrow \quad \alpha_3 = \begin{bmatrix} 0 \\ -1 \\ 2 \end{bmatrix}$$

可以看出 $\alpha_1, \alpha_2, \alpha_3$ 线性无关, 即 A 可相似对角化, 即 a = -2 符合题意。

- $(2)\lambda_1 = \lambda_3$, 即 -1 = 1 a, a = 2 > 0, 不符合题意。
- $(3)\lambda_2 = \lambda = 3$, 即 1 + a = 1 a, a = 0。此时 $\lambda_2 = \lambda_3 = 1$. 把 a = 0 代入到 $[\lambda E A]$ 得:

$$[\lambda E - A] = \begin{bmatrix} \lambda + 1 & -2 & 0 \\ 2 & \lambda - 3 & 0 \\ -8 & 8 & \lambda + 1 \end{bmatrix}$$

对于重根 1:

$$[\lambda E - A] = \begin{bmatrix} 2 & -2 & 0 \\ 2 & -2 & 0 \\ -8 & 8 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \quad \Rightarrow \quad \alpha_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

 \Diamond

对于重根 1, 其代数重数与几何重数不相等, 所以不能相似对角化。

综上所述: a = -2.

- 3. 设三元二次型 $f(x_1, x_2, x_3) = 4x_2^2 + 4x_3^2 2x_1x_2 + 4x_1x_3$.
- (1) 写出该二次型的矩阵 A;
- (2) 用正交变换 x = Qy 把该二次型化为标准型。

解:

(1) 由题得:

$$A = \begin{bmatrix} 0 & -1 & 2 \\ -1 & 4 & 0 \\ 2 & 0 & 4 \end{bmatrix}$$

(2)

$$|\lambda E - A| = \begin{vmatrix} \lambda & 1 & -2 \\ 1 & \lambda - 4 & 0 \\ -2 & 0 & \lambda - 4 \end{vmatrix} = -2[2(\lambda - 4)] + (\lambda - 4)[\lambda(\lambda - 4) - 1] = (\lambda - 4)(\lambda - 5)(\lambda + 1) \quad \Rightarrow \quad \lambda_1 = 4, \lambda_2 = 5, \lambda_3 = -1$$

 $\lambda_1 = 4$ 时:

$$[\lambda E - A] = \begin{bmatrix} 4 & 1 & -2 \\ 1 & 0 & 0 \\ -2 & 0 & 0 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} x_1 = 0 \\ x_2 = 2x_3 \end{cases}$$

取 $x_3 = 1$ 得 $\alpha_1 = [0, 2, 1]^T$ 。 $\lambda_2 = 5$ 时:

$$[\lambda E - A] = \begin{bmatrix} 5 & 1 & -2 \\ 1 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} x_1 = \frac{1}{2}x_3 \\ x_2 = -\frac{1}{2}x_3 \end{cases}$$

取 $x_3 = 2$ 得 $\alpha_2 = [1, -1, 2]^T$.

 $\lambda_3 = -1$ 时:

$$[\lambda E - A] = \begin{bmatrix} -1 & 1 & -2 \\ 1 & -5 & 0 \\ -2 & 0 & -5 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} x_1 = -\frac{5}{2}x_3 \\ x_2 = -\frac{1}{2}x_3 \end{cases}$$

取 $x_3 = -2$ 得 $\alpha_3 = [5, 1, -2]^T$. 因为对称矩阵对应于不同特征值的特征向量正交,所以 $[\alpha_1, \alpha_2, \alpha_3]$ 为正交向量组。单位化:

$$\begin{cases} \gamma_1 = \frac{\alpha_1}{\|\alpha_1\|} = \left[0, \frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right]^T \\ \gamma_2 = \frac{\alpha_2}{\|\alpha_2\|} = \left[\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right]^T \\ \gamma_3 = \frac{\alpha_3}{\|\alpha_3\|} = \left[\frac{5}{\sqrt{30}}, \frac{1}{\sqrt{30}}, -\frac{2}{\sqrt{30}}\right]^T \end{cases} \Rightarrow Q = \begin{bmatrix} 0 & \frac{1}{\sqrt{6}} & \frac{5}{\sqrt{30}} \\ \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{30}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{6}} & -\frac{2}{\sqrt{30}} \end{bmatrix}$$

所以 f 可经正交变换 x = Qy 化为标准型:

$$f = 4y_1^2 + 5y_2^2 - y_3^2$$

 \Diamond

 \Diamond

四. 证明题

证明:

1. 设 A 为 m 阶正定矩阵,B 为 $m \times n$ 实矩阵, B^T 为 B 的转置矩阵,试证: B^TAB 为正定矩阵的充分必要条件是 B 的秩 r(B)=n。

必要性: 如果 B^TB 正定,则存在任意非零实列向量 $x \neq 0$,使得 $x^TB^TBx > 0$,即 $(Bx)^TA(Bx) > 0$,所以 $Bx \neq 0$ 。所以 Bx = 0 只有零解,即 r(B) = n。

充分性: 如果 B 的秩为 r(B)=n,则线性方程组 Bx=0 只有零解,所以存在任意非零实列向量 x,使得 $Bx\neq 0$ 。又因为 A 为正定矩阵,由正定矩阵的定义得: $(Bx)^TABx>0$,即 $x^TB^TABx=x^T(B^TAB)x>0$ 。因为 x 为任意非零实列向量,所以依正定矩阵的定义,矩阵 (B^TAB) 正定。

2. 设 α, β 是 n 维列向量,证明 $r(\alpha \alpha^T + \beta \beta^T) \leq 2$ 。证明:

由秩的性质:

$$r(\alpha \alpha^T + \beta \beta^T) \le r(\alpha \alpha^T) + r(\beta \beta^T) \le \min(r(\alpha), r(\alpha^T)) + \min(r(\beta), r(\beta^T)) \le 1 + 1 = 2$$