Zadanie 3. Największy wspólny dzielnik – NWD (10 pkt)

Algorytm opisany w Księdze VII *Elementów* Euklidesa pozwala szybko obliczyć największy wspólny dzielnik dwóch liczb naturalnych a i b - nwd(a,b), z których co najmniej jedna jest większa od 0. Oto rekurencyjny sposób obliczania nwd(a,b):

$$nwd(a,b) = \begin{cases} a & \text{dla } b = 0\\ nwd(b, a \mod b) & \text{dla } b \ge 1 \end{cases}$$

gdzie: mod - operator dzielenia modulo; wynikiem jego działania jest**reszta**z dzielenia <math>a przez b, na przykład 19 mod 7 = 5.

Przykład: nwd(16,12) = nwd(12,4) = nwd(4,0) = 4 – funkcja nwd jest wywoływana w tym przypadku 3 razy:

a	ъ	reszta = a mod b	wywołanie
16	12	4	(1)
12	. 4	0	(2)
4 🛦 (wynik)	0	-	(3)

a) Podaj liczbę wywołań funkcji dla a = 56 i b = 72 oraz dla a = 72 i b = 56.

b) Podaj w wybranej przez siebie notacji (lista kroków, schemat blokowy lub język programowania, który wybrałeś/aś na egzamin) **nierekurencyjny** algorytm obliczania wartości funkcji nwd(a,b) wraz ze specyfikacją.

Specyfikacja:		
Dane:	 	
Wynik:		

	Nr zadania	3a)	3 b)
Wypełnia egzaminator!	Maksymalna liczba pkt	2	8
	Uzyskana liczba pkt		