Las propiedades algebraicas y de orden de los números reales.

49. Sean $a, b \in \mathbb{R}$. Demuestra:

(1) si
$$a + b = 0$$
, $b = -a$;

(3)
$$(-1)a = -a;$$

(2)
$$-(-a) = a$$
;

$$(4) (-1)(-1) = 1.$$

Solución. (1) Supuesto que a + b = 0, sumando -a en ambos lados de la ecuación obtenemos que

$$b = 0 + b = ((-a) + a) + b = (-a) + (a + b) = (-a) + 0 = -a.$$

(2) Por definición -(-a) + (-a) = 0, sumando a en ambos lados, obtenemos que (-(-a) + (-a)) + a = 0 + a = a. Así,

$$a = (-(-a) + (-a)) + a = -(-a) + ((-a) + a) = -(-a) + 0 = -(-a).$$

(3) Sabemos que $a \cdot 0 = 0 \ \forall a \in \mathbb{R}$, que 1 + (-1) = 0 y $1 \cdot a = 0$. Por ende,

$$0 = 0 \cdot a = (1 + (-1))a = 1 \cdot a + (-1) \cdot a = a + (-1)a$$

De aquí que

$$-a = -a + 0 = -a + \underbrace{(a + (-1)a)}_{=0 \text{ por lo anterior}} = (-a + a) + (-1)a = 0 + (-1)a = (-1)a$$

(4) Por el apartado anterior, (-1)(-1) = -(-1) y por el segundo apartado tenemos que -(-1) = 1. Por tanto, (-1)(-1) = 1.

50. Sean $a, b \in \mathbb{R}$. Demuestra:

(1)
$$-(a+b) = (-a) + (-b);$$

(3)
$$1/(-a) = -(1/a);$$

(2)
$$(-a) \cdot (-b) = a \cdot b$$
:

(4)
$$-(a/b) = (-a)/b \text{ si } b \neq 0.$$

Solución. Solo resolvemos los primeros dos apartados. (1) Por el Ejercicio 49.(3)

$$-(a+b) = (-1)(a+b) = (-1)a + (-1)b = (-a) + (-b)$$

(2) Basta observar que:

$$(-a)(-b) = [(-1)a] [(-1)b]$$
 Ejercicio 49.(3)
 $= ([(-1)a](-1))b$ asoc.
 $= ([a(-1)](-1))b$ conm.
 $= (a[(-1)(-1)])b$ asoc.
 $= (a 1)b$ Ejercicio 49.(4)
 $= ab$ neutro.

51. Resuelve las siguientes ecuaciones justificando paso por paso refiriéndote a la propiedad o teorema empleados:

(1)
$$2x + 5 = 8$$
;

(3)
$$x^2 - 1 = 3$$
;

(2)
$$x^2 = 2x$$
;

(4)
$$(x-1)(x+2) = 0$$
.

Solución. Resolveremos solo la primera:

$$2 \cdot x + 5 = 8 \iff (2 \cdot x + 5) + (-5) = 8 + (-5)$$
 sum. -5
$$\iff 2 \cdot x + (5 + (-5)) = 3$$
 asoc.
$$\iff 2 \cdot x = 3$$
 cancelamos
$$\iff (2 \cdot x) \cdot \frac{1}{2} = 3 \cdot \frac{1}{2}$$
 mult. $\frac{1}{2}$
$$\iff (x \cdot 2) \cdot \frac{1}{2} = \frac{3}{2}$$
 conm. prod.
$$\iff x \cdot (2 \cdot \frac{1}{2}) = \frac{3}{2}$$
 asoc. prod.
$$\iff x \cdot 1 = \frac{3}{2}$$
 cancelamos
$$\iff x = \frac{3}{2}$$
 elem. neutro

52. Si $a \in \mathbb{R}$ satisface $a \cdot a = a$, prueba que entonces a = 0 o a = 1.

Solución. Sea $a \in \mathbb{R}$ tal que $a \cdot a = a$,

sumando a ambos lados (-a), deducimos que $a \cdot a - a = a - a = 0$,

en virtud de la propiedad distributiva, a(a-1)=0,

por ende a=0 o a-1=0, equivalentemente, a=0 o a=1 (porque \mathbb{R} es lo que se dice un dominio de integridad, carece de divisores de cero).

53. Sean $a, b \in \mathbb{R}$ no nulos. Demuestra que $1/(a \cdot b) = (1/a) \cdot (1/b)$.

Solución. Dado que

$$\left(\frac{1}{a} \cdot \frac{1}{b}\right) \cdot (a \cdot b) = \left(\frac{1}{b} \cdot \frac{1}{b}\right) \cdot (a \cdot b) = \frac{1}{b} \cdot \left(\frac{1}{a} \cdot a\right) \cdot b = \frac{1}{b} \cdot 1 \cdot b = \frac{1}{b} \cdot b = 1,$$

y lo mismo se puede repetir para obtener que (ab)((1/a)(1/b)) = 1, deducimos que (1/a)(1/b) = 1/(ab), por la unicidad del elemento recíproco.

54. Demuestra que no existe $s \in \mathbb{Q}$ tal que $s^2 = 6$.

Solución. Supongamos, por reducción al absurdo, que $\exists m, n \in \mathbb{Z}, n \neq 0$, tales que $(m/n)^2 = 6$.

Asumamos sin pérdida de generalidad que m y n son positivos y coprimos.

Dado que $m^2 = 6n^2 = 2(3n^2)$,

deducimos que m^2 es par y por ende también lo es m (si m fuese impar, sería m=2k+1 para cierto $k \in \mathbb{N}$, u por tanto $m^2=4m^2+4m+1$, el cual es también claramente impar).

Dado que m es par, podemos escribirlo en la forma m=2p para cierto $p \in \mathbb{N}$. Con ello, $m^2=6n^2 \iff 4p^2=2(3n^2)$, o bien $2p^2=3n^2$.

Por consiguiente, $3n^2$ es par, pero entonces n es par por el mismo razonamiento hecho antes.

Así, m es par y n es par, lo cual contradice que sean coprimos, absurdo.

55. Demuestra que no existe $t \in \mathbb{Q}$ tal que $t^2 = 3$.

Solución. Se prueba de manera análoga al ejercicio anterior.

56. Demuestra las siguientes afirmaciones:

- (1) si $x, y \in \mathbb{Q}$, entonces $x + y, xy \in \mathbb{Q}$;
- (2) si $x \in \mathbb{Q}$ e $y \in \mathbb{R} \setminus \mathbb{Q}$, entonces $x + y \in \mathbb{R} \setminus \mathbb{Q}$;
- (3) si $x \in \mathbb{Q} \setminus \{0\}$ e $y \in \mathbb{R} \setminus \mathbb{Q}$, demuestra que $xy \in \mathbb{R} \setminus \mathbb{Q}$.

Solución. (1) Sean $x, y \in \mathbb{Q}$, de manera que existen $p, q, r, s \in \mathbb{Z}$, $r, s \neq 0$, tales que x = p/q e y = r/s. Con ello,

$$x+y = \frac{p}{q} + \frac{r}{s} = \frac{ps}{qs} + \frac{rq}{qs} = \frac{ps+rq}{qs},$$

el cual es un número racional ya que $ps + rq, qs \in \mathbb{Z}, qs \neq 0$.

Por otra parte,

$$xy = \frac{p}{q}\frac{r}{s} = \frac{pr}{qs},$$

el cual es también claramente un número racional.

(2) Sean ahora $x \in \mathbb{Q}$ e $y \in \mathbb{R} \setminus \mathbb{Q}$, de forma que existen $p, q \in \mathbb{Q}$, $q \neq 0$, tales que x = p/q. Supongamos, por reducción al absurdo, que $x + y \in \mathbb{Q}$, de forma que existirán $r, s \in \mathbb{Q}$, $s \neq 0$, tales que x + y = r/s. Entonces,

$$y = (x+y) - x = \frac{r}{s} - \frac{p}{q} = \frac{rq - sq}{sq},$$

que es racional, lo cual es absurdo.

57. Sea $K = \{s + t\sqrt{2} : s, t \in \mathbb{Q}\}$. Demuestra que posee las propiedades:

- (1) si $x, y \in K$, entonces $x + y \in K$ y $xy \in K$;
- (2) si $x \in K$ es no nulo, entonces $1/x \in K$.

Se dice así que el conjunto K es un subcuerpo de $\mathbb R$ con la suma y producto usuales, el cual se denota usualmente $\mathbb Q[\sqrt{2}]$.

Solución. Basta considerar que, dados dos elementos $x, y \in K$, existirán, por definición, $s, t, u, v \in \mathbb{Q}$ tales que $x = s + t\sqrt{2}$ y $y = u + v\sqrt{2}$, de forma que

$$x + y = (s + t\sqrt{2}) + (u + v\sqrt{2}) = (s + u) + (t + v)\sqrt{2} \in K$$

en virtud de la propiedad asociativa de la suma y la distributiva. De la misma forma,

$$xy = (s + t\sqrt{2})(u + v\sqrt{2}) = su + sv\sqrt{2} + tu\sqrt{2} + 2tv = (su + 2tv) + (sv + tu)\sqrt{2} \in K$$

en virtud de las propiedades conmutativa del producto y distributiva.

Para la segunda propiedad, dado $x \in K \setminus \{0\}$, digamos representado por $x = s + t\sqrt{2}$ para ciertos $s, t \in \mathbb{Q}$ ambos no nulos, entonces empleando las mismas técnicas que se suelen emplear para hallar la expresión del inverso de un número complejo en coordenadas cartesianas, observamos que

$$\frac{1}{s + t\sqrt{2}} = \frac{(s - t\sqrt{2})}{(s + t\sqrt{2})(s - t\sqrt{2})} = \frac{s - t\sqrt{2}}{s^2 - 2t^2}$$

siempre que $s^2-2t^2\neq 0$, esto es, $s^2\neq 2t^2$; sin embargo, dado que $s,t\in \mathbb{Q}$, esto no puede ocurrir salvo que s=t=0, caso que hemos descartado, pues si no se verificaría que $|s|/|t|=\sqrt{2}$, y esto es absurdo, sabemos que $\sqrt{2}$ es irracional.