S. Christensen

P. Le Borne, B. Schroeter, B. Schultz

Sheet QF08

Mathematical Finance: QF

Exercises (for discussion on Monday, 08.01.2024)

Exercise 1. Consider the market

Find all stopping times (with respect to the filtration given by the tree), with $\tau \leq 2$.

Hint: There are 5.

Exercise 2. In the setting of the previous exercise, answer the following questions:

- (a) For which of these stopping times does \hat{S}^1_{τ} have the highest expectation? We call this an optimal stopping time and name it τ^* . Calculate $E(\hat{S}^1_{\tau^*})$.
- (b) For each equivalent martingale measure Q and all stopping times τ find $E_Q(\hat{S}^1_{\tau})$.

Exercise 3. The process X is given by the tree.

- 1. Compute the Snell envelope U of X.
- 2. Calculate $Y := 1_{\{X_- \neq U_-\}} \bullet U$.

Exercise 4. Let $X = (X_n)_{n \in \{0,1,2,3,4\}}$ be a stochastic process with $X_0 = 0$. Assume that X_1, \ldots, X_4 are independent and uniformly distributed on [0,1]. Let $(\mathcal{F}_n)_{n \in \{0,1,2,3,4\}}$ be the filtration generated by X and let \mathcal{T} denote the set of $\{0,1,2,3,4\}$ -valued stopping times associated to the filtration. Find a $\tau \in \mathcal{T}$ such that $E(X_\tau) = \sup_{\tau \in \mathcal{T}} E(X_\tau)$.