ISYE 6051 : Homework 8 3/17/2021

Table of Contents

11.1a Stepwise 11.1b LASSO 11.1c

11.1a Stepwise Regression

Stepwise regression is designed to select the predictor variables that are significantly relevant to use with the response variable. In this case, as in the other problems, the Crime variable will be the response variable for this model.

3 versions of the stepwise regression function (forward, backward and both) were used to compare the predictors selected using the smallest value of AIC to select a model to prevent overfitting.

```
CODE: Step Forward
#library uploads
install.packages("MASS")
library(MASS)
#Read in Data
crimedf <- read.table("uscrime.txt", header = TRUE)</pre>
head(crimedf)
#Stepwise Regression
#Create a Linear Regression model with predictors
#Response (intercept-only) model
step crime <- Im(Crime ~1, data = crimedf)
#All Predictors model
all stepcrime <- Im(Crime~., data=crimedf)
step forward <- step(step crime, direction = "forward", scope=formula(all stepcrime,
trace = 0)
step forward$anova
step forward$coefficients
```

OUTPUT:

Start: AIC=561.02 Crime ~ 1

94
.39
.84
.54
.34
.85
.82
.02
.32
49
.52
.96
.64
.65
.90
.97
88.86

Step: AIC=532.94 Crime ~ Po1

	Df Sum of Sq		RSS	AIC
+ Ineq	1	739819	2887807	524.22
+ M	1	616741	3010885	526.18
+ M.F	1	250522	3377104	531.57
+ NW	1	232434	3395192	531.82
+ So	1	219098	3408528	532.01
+ Wealth	1	180872	3446754	532.53
<none></none>			3627626	532.94
+ Po2	1	146167	3481459	533.00
+ Prob	1	92278	3535348	533.72
+ LF	1	77479	3550147	533.92
+ Time	1	43185	3584441	534.37
+ U2	1	17848	3609778	534.70
+ Pop	1	5666	3621959	534.86
+ U1	1	2878	3624748	534.90
+ Ed	1	767	3626859	534.93

Step: AIC=524.22 Crime ~ Po1 + Ineq

	Df 0f 0	DOO	AIO
+ Ed	Df Sum of Sq 1 587050	RSS 2300757	AIC 515.53
+ M.F	1 454545	2433262	518.17
+ Prob	1 280690	2607117	521.41
+ LF	1 260571	2627236	521.77
+ Wealth	1 213937	2673871	522.60
+ M	1 181236	2706571	523.17
+ Pop	1 130377	2757430	524.04
<none></none>		2887807	524.22
+ NW	1 36439	2851369	525.62
+ So	1 33738	2854069	525.66
+ Po2	1 30673	2857134	525.71
+ U1	1 2309	2885498	526.18
+ Time	1 497	2887310	526.21
+ U2	1 253	2887554	526.21
Step: AIC=	515 53		
	1 + Ineq + Ed		
	oq <u></u>		
	Df Sum of Sq	RSS	AIC
+ M	1 239405	2061353	512.37
+ Prob	1 234981	2065776	512.47
+ M.F	1 117026	2183731	515.08
<none></none>		2300757	515.53
+ Wealth	1 79540	2221218	515.88
+ U2	1 62112	2238646	516.25
+ Time	1 61770	2238987	516.26
+ Po2	1 42584	2258174	516.66
+ Pop	1 39319	2261438	516.72
+ U1	1 7365	2293392	517.38
+ LF	1 7254	2293503	517.39
+ NW	1 4210	2296547	517.45
+ So	1 4135	2296622	517.45
01 410	540.07		
Step: AIC=	512.37 1 + Ineq + Ed + M		
Chine ~ PO	i i ilieq i Eu + ivi		
	Df Sum of Sq	RSS	AIC
+ Prob	1 258063	1803290	508.08
+ U2	1 200988	1860365	509.55
+ Wealth	1 163378	1897975	510.49
<none></none>		2061353	512.37
+ M.F	1 74398	1986955	512.64
+ U1	1 50835	2010518	513.20
+ Po2	1 45392	2015961	513.32
+ Time	1 42746	2018607	513.39
	-		

+ NW	1	16488	2044865	513.99
+ Pop	1	8101	2053251	514.19
+ So	1	3189	2058164	514.30
+ LF	1	2988	2058365	514.30

Step: AIC=508.08

Crime ~ Po1 + Ineq + Ed + M + Prob

	Df	Sum of Sq	RSS	AIC
+ U2	1	192233	1611057	504.79
+ Wealth	1	86490	1716801	507.77
+ M.F	1	84509	1718781	507.83
<none></none>			1803290	508.08
+ U1	1	52313	1750977	508.70
+ Pop	1	47719	1755571	508.82
+ Po2	1	37967	1765323	509.08
+ So	1	21971	1781320	509.51
+ Time	1	10194	1793096	509.82
+ LF	1	990	1802301	510.06
+ NW	1	797	1802493	510.06

Step: AIC=504.79 Crime ~ Po1 + Ineq + Ed + M + Prob + U2

	Df	Sum of Sq	RSS	AIC
<none></none>			1611057	504.79
+ Wealth	1	59910	1551147	505.00
+ U1	1	54830	1556227	505.16
+ Pop	1	51320	1559737	505.26
+ M.F	1	30945	1580112	505.87
+ Po2	1	25017	1586040	506.05
+ So	1	17958	1593098	506.26
+ LF	1	13179	1597878	506.40
+ Time	1	7159	1603898	506.58
+ NW	1	359	1610698	506.78

> step_forward\$anova

Step	Df	Deviance	Resid.	Df Resid. Dev	AIC
1	NA	NA	46	6880928	<mark>561.0235</mark>
2	+ Po1	-1 3253301.8	45	3627626	<mark>532.9352</mark>
3	+ Ineq	-1 739818.6	44	2887807	<mark>524.2154</mark>
4	+ Ed	-1 587049.8	43	2300757	<mark>515.5343</mark>
5	+ M	-1 239404.6	42	2061353	<mark>512.3701</mark>
6	+ Prob	-1 258062.5	41	1803290	<mark>508.0839</mark>
7	+ U2	-1 192233.4	40	1611057	504.7859

```
> step_forward$coefficients
(Intercept) Po1 Ineq Ed M Prob
-5040.50498 115.02419 67.65322 196.47120 105.01957 -3801.83628
U2
89.36604
```

The smallest AIC is reflected when the stepwise forward function traverses through all of the predictors (first fitting the intercept(response) only and then adding factors) and presents Po1, Ineq, Ed, M, Prob and U2 as the significant predictors to fit a model with the response variable of Crime.

Crime~-5040.5 115.02 67.65 196.5 105.02 -3801.84 (values rounded up)

```
CODE: Stepwise backward

step_backward <- step(step_crime, direction = "backward",
scope=formula(all_stepcrime, trace = 0))
step_backward$anova
step_backward$coefficients
```

OUTPUT: >step backward\$anova Step Df Deviance Resid. Df Resid. Dev AIC 1 NA NA 31 1354946 514.6488 2 - So 28.57405 32 1354974 512.6498 3 1 10340.66984 - Time 33 1365315 511.0072 4 - LF 1 10533.15902 34 1375848 509.3684 5 - NW 1 11674.63991 35 1387523 507.7655 6 - Po2 1 16706.34095 1404229 506.3280 36 7 - Pop 1 22345.36638 37 1426575 505.0700 8 - Wealth 1 26493.24677 38 1453068 503.9349 > step_backward\$coefficients (Intercept) М Ed Po₁ M.F U1 93.32155 180.12011 102.65316 22.33975 -6086.63315 -6426.10102 U2 Ineq Prob 187.34512 61.33494 -3796.03183

Unlike the Stepwise Forward functionality, Stepwise Backward has a smaller AIC (which is generally considered to be better to prevent overfitting) and more prediction variables are selected M, Ed, Po1, M.F. U1, U2, Ineq and Prob. The backward functionality first takes all of the predictors and traverses through them using a predictor -1 process until the lowest AIC is achieved.

Crime~-6426.1 93.32 180.12 102.65 22.34 -6086.63 187.35 61.33 -3796.03

code: Stepwise Both
step_both <- step(step_crime, direction = "both", scope=formula(all_stepcrime), trace =
0)
step_both\$anova
step_both\$coefficients</pre>

>step_both\$anova Step Df Deviance Resid. Df Resid. Dev AIC	OUTPUT:							
Step Df Deviance Resid. Df Resid. Dev AIC	>step_both\$anova							
1 NA NA 46 6880928 561.0235 2 + Po1 -1 3253301.8 45 3627626 532.9352 3 + Ineq -1 739818.6 44 2887807 524.2154 4 + Ed -1 587049.8 43 2300757 515.5343 5 + M -1 239404.6 42 2061353 512.3701 6 + Prob -1 258062.5 41 1803290 508.0839 7 + U2 -1 192233.4 40 1611057 504.7859 > step_both\$coefficients (Intercept) Po1 Ineq Ed M Prob -5040.50498 115.02419 67.65322 196.47120 105.01957 -3801.83628 U2 89.36604	1 NA NA 46 6880928 561.0235 2 + Po1 -1 3253301.8 45 3627626 532.9352 3 + Ineq -1 739818.6 44 2887807 524.2154 4 + Ed -1 587049.8 43 2300757 515.5343 5 + M -1 239404.6 42 2061353 512.3701 6 + Prob -1 258062.5 41 1803290 508.0839 7 + U2 -1 192233.4 40 1611057 504.7859 > step_both\$coefficients (Intercept) Po1 Ineq Ed M Prob -5040.50498 115.02419 67.65322 196.47120 105.01957 -3801.83628 U2							

Similar to the Stepwise Forward function, Stepwise Both finds an AIC of 504.7859. Similar to the forward function predictors are added that add significant value. An added step in process is that the both function also removes predictors that no longer add significant value. The final list of predictors is Po1, Ineq, Ed, M, Prob and U2. This is also similar to my findings in homework 8.2 where the p-values for these same 6 predictors showed the best fit.

Crime~-5040.50 115.02 67.65 196.47 105.02 -3801.84

11.1b LASSO

Similar to Stepwise Regression, LASSO creates a model that selects fewer predictors in order to avoid overfitting. This model will also focus on Crime as the response variable and finding the best set of prediction variables. Using plotting there were 6 predictors that had a linear correlation value with the Crime response near 1 – Ineq, Wealth, U2, NW, Po2 and ED.

Running a simple linear regression using these predictors produced a model that showed the fit of the selected predictors. 2 of the 6 predictors chosen as part of the plotting correlation show significant association with Crime – M, Ed, Ineq and Prob.

CODE:

```
reg <- Im(Crime~., data=crimedf)
> summary(reg)
```

OUTPUT:

Call:

Im(formula = Crime ~ ., data = crimedf)

Residuals:

Min 1Q Median 3Q Max -395.74 -98.09 -6.69 112.99 512.67

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-5.984e+03	1.628e+03	-3.675	0.000893 ***
M	8.783e+01	4.171e+01	2.106	0.043443 *
So	-3.803e+00	1.488e+02	-0.026	0.979765
Ed	1.883e+02	6.209e+01	3.033	0.004861 **
Po1	1.928e+02	1.061e+02	1.817	0.078892 .
Po2	-1.094e+02	1.175e+02	-0.931	0.358830
LF	-6.638e+02	1.470e+03	-0.452	0.654654
M.F	1.741e+01	2.035e+01	0.855	0.398995
Pop	-7.330e-01	1.290e+00	-0.568	0.573845
NW	4.204e+00	6.481e+00	0.649	0.521279
U1	-5.827e+03	4.210e+03	-1.384	0.176238
U2	1.678e+02	8.234e+01	2.038	0.050161.
Wealth	9.617e-02	1.037e-01	0.928	0.360754
Ineq	7.067e+01	2.272e+01	3.111	0.003983 **
Prob	-4.855e+03	2.272e+03	-2.137	0.040627 *
Time	-3.479e+00	7.165e+00	-0.486	0.630708

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 209.1 on 31 degrees of freedom Multiple R-squared: 0.8031, Adjusted R-squared: 0.7078

F-statistic: 8.429 on 15 and 31 DF, p-value: 3.539e-07

The glmnet function was now used to evaluate predictors using LASSO regression where alpha=1. For brevity, all of the output of Lambda values is not reflected for 1-99. Samples are displayed

```
CODE:

lasso_crime <- glmnet(scale(matrixcrime), dataresponse, family = "mgaussian", alpha=1)
> lasso_crime
>cv.lasso_crime <- cv.glmnet(matrixcrime, dataresponse, alpha=1)
>plot(cv.lasso_crime, xvar = "lambda", label=T)

>abline(v=cv.lasso_crime$lambda.min, col = "red", lty=2)
>abline(v=cv.lasso_crime$lambda.1se, col="blue", lty=2)
>coef(cv.lasso_crime, s = cv.lasso_crime$lambda.min)

Call: glmnet(x = scale(matrixcrime), y = dataresponse, family = "mgaussian", alpha = 1)
```

```
OUTPUT:
Df % Dev
                  Lambda
      0.00
                  263.100
1
2
      1 8.03
                  239.700
3
      1 14.69
                  218.400
4
      1 20.22
                  199.000
5
      1 24.82
                  181.300
6
      1 28.63
                  165.200
7
      1 31.80
                  150.600
8
      1 34.43
                  137.200
9
      1 36.61
                  125.000
10
      1 38.42
                  113.900
...
50
      12 79.48
                  2.756
51
      12 79.52
                  2.511
      12 79.55
                  2.288
52
53
      13 79.58
                  2.085
54
      13 79.61
                  1.900
55
      13 79.63
                  1.731
56
      13 79.65
                  1.577
57
      14 79.66
                  1.437
58
      14 79.67
                  1.309
59
      15 79.69
                  1.193
93
      15 80.30
                  0.050
94
      15 80.30
                  0.046
```

```
coef(cv.lasso_crime, s = cv.lasso_crime$lambda.min)
16 x 1 sparse Matrix of class "dgCMatrix"
(Intercept) -3828.8353017
         56.1008808
M
So
         30.7597658
Ed
         70.8167194
Po1
         103.2100909
Po2
LF
M.F
          16.7898439
Pop
NW
           0.3226147
U1
U2
         24.9099830
Wealth
Ineq
          37.7315902
Prob
        -3179.3760049
Time
```

15 14 15 15 15 13 12 12 10 9 5 4 1 1 0

The plot shows Lambda between 3 and 4 therefore 4 significant predictors – M, Ed, Po1, and Ineq – were chosen to run a simple linear regression using scaled data from uscrime.txt.

OUTPUT: Call: Im(formula = Crime ~ M + Ed + Po1 + Ineq, data = scale crime) Residuals: 1Q Median 3Q Max Min -1.37276 -0.23757 0.01956 0.35609 1.49145 Coefficients: Std. Error Pr(>|t|)Estimate t value -1.506e-16 8.355e-02 0.000 1.000000 (Intercept) 0.032714 * M 2.470e-01 1.119e-01 2.209 Ed 4.803e-01 1.325e-01 3.626 0.000773 *** Po₁ 9.974e-01 1.105e-01 9.029 2.16e-11 ***

```
Ineq 6.611e-01 1.575e-01 4.197 0.000137 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5728 on 42 degrees of freedom
Multiple R-squared: 0.7004, Adjusted R-squared: 0.6719
F-statistic: 24.55 on 4 and 42 DF, p-value: 1.595e-10
```

R^2 is 0.6719 so this is an adequate fit. Each of the variables could definitely be a predictor for crime rates – number of males, education, police expenditures and income inequality. However, running a model with 8 predictors -M, So, ED, Po1, M.F, NW, U2 and Ineq (adding the southern state indicator, number of men versus women, age and racial factors) - gave an R^2 of 0.6787 which is slightly better set of predictors for the documented crime rate.

11.1c Elastic net

Elastic net uses both LASSO regression (where predictor variable coefficients can go to 0) and Ridge regression (where predictor variable coefficients can go close to 0).

```
#11.1c Elastic net
set.seed(17)
crimedfScaled <- scale(crimedf)</pre>
#Define alpha from 0 to 1 in order to look at Ridge and LASSO
alpha sequence <- seq(from = 0, to = 1, by = 0.01)
cv error <- rep(NA, times = length(alpha sequence))
for(i in 1:length(alpha sequence)){
 cv enet <- cv.glmnet( x = as.matrix(crimedfScaled[,c(Crime~., M + So + Ed + Po1 +
M.F + NW + U2 + Ineq)]),
               y = as.matrix(crimedfScaled[,16]),
               family = "gaussian", alpha = alpha sequence[i],
               nfolds = 5)
 cv error[i] <- min(cv enet$cvm)
plot( alpha sequence, cv error,
   xlab = "alpha", ylab = "Cross-validation",
   type = "b")
abline(v = 0, col = "blue")
text(x = 0.05, y = cv error[1], labels = "Ridge", col = "blue")
points(x = 0, y = cv error[1], col = "blue", pch = 16)
abline(v = 1, col = "red")
```

```
text( x = 0.95, y = cv_error[length(cv_error)], labels = "LASSO", col = "red"
)
points(x = 1, y = cv_error[length(cv_error)], col = "red", pch = 16)
```


An alpha value of ~ 0.7 provides the best fit with 8 predictors.