Lab 03 Report - Leonid Lygin

Task 1 - Bootloader

Here's a screenshot of boot log with services:

```
3.776389) calds: using avx51262 recovery algorithm
3.776672 async.tx: abi initialized (async)
3.76672 async.tx: abi initialized (async)
3.69349 [Art-15 (vda)): mounted filesystem with ordered data mode. Opts:
[Mull] 5.69359 [Art-15 (vda)): mounted filesystem with ordered data mode. Opts:
[Mull] 5.69359 [Art-15 (vda)): mounted filesystem with ordered data mode. Opts:
[Mull] 5.69359 [Art-15 (vda)): mounted filesystem with ordered data mode. Opts:
[Mull] 5.69359 [Art-15 (vda)): mounted filesystem with ordered data mode. Opts:
[Mull] 5.69359 [Art-15 (vda)): mounted filesystem with ordered data mode. Opts:
[Mull] 5.69359 [Art-15 (vda)]: mounted filesystem with ordered data mode. Opts:
[Mull] 5.69359 [Art-15 (vda)]: mounted filesystem with ordered data mode. Opts:
[Mull] 5.69359 [Art-15 (vda)]: mounted filesystem with ordered data mode. Opts:
[Mull] 5.69359 [Art-15 (vda)]: mounted filesystem with ordered data mode. Opts:
[Mull] 5.69359 [Art-15 (vda)]: mounted filesystem with ordered data mode. Opts:
[Mull] 5.69359 [Art-15 (vda)]: mounted filesystem with ordered data mode. Opts:
[Mull] 5.69359 [Art-15 (vda)]: mounted filesystem with ordered data mode. Opts:
[Mull] 5.69359 [Art-15 (vda)]: mounted filesystem with ordered data mode. Opts:
[Mull] 5.69359 [Art-15 (vda)]: mounted filesystem with ordered data mode. Opts:
[Mull] 5.69359 [Art-15 (vda)]: mounted filesystem with ordered data mode. Opts:
[Mull] 6.69359 [Art-15 (vda)]: mounted filesystem with ordered data mode. Opts:
[Mull] 6.69359 [Art-15 (vda)]: mounted filesystem with ordered data mode. Opts:
[Mull] 6.69359 [Art-15 (vda)]: mounted filesystem with ordered data mode. Opts:
[Mull] 6.69359 [Art-15 (vda)]: mounted filesystem with ordered data mode. Opts:
[Mull] 7.69359 [Art-15 (vda)]: mounted filesystem with ordered data mode. Opts:
[Mull] 7.69359 [Art-15 (vda)]: mounted filesystem with ordered data mode. Opts:
[Mull] 7.69359 [Art-15 (vda)]: mounted filesystem with ordered data mode. Opts:
[Mull] 7.69359 [Art-15 (vda)]: mounted filesystem with ordered data mode. Opt
```

GRUB config changes that were required (not including whole config for brevity):

- 1. Change GRUB_TIMEOUT to 5
- 2. Change GRUB_TIMEOUT_STYLE to menu

Task 2 - Name resolution

My DNS hosting allows configuration only through a web interface, so here's a screenshot (digitalocean):

DNS records

Туре	Hostname	Value	TTL (seconds)	
CNAME	sna-alias.ionagamed.ru	is an alias of sna.ionagamed.ru.	43200	More ∨
А	sna.ionagamed.ru	directs to 52.59.167.12	3600	More ∨

Here's a dig output for the alias, showing both the CNAME and the A records:

```
$ dig sna-alias.ionagamed.ru
; <<>> DiG 9.10.6 <<>> sna-alias.ionagamed.ru
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 20271
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 1
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
;sna-alias.ionagamed.ru.
                                         ΙN
;; ANSWER SECTION:
sna-alias.ionagamed.ru. 43200
                                IN
                                         CNAME
                                                 sna.ionagamed.ru.
sna.ionagamed.ru.
                        3596
                                 IN
                                                 52.59.167.12
;; Query time: 0 msec
;; SERVER: 192.168.1.1#53(192.168.1.1)
;; WHEN: Mon Sep 09 14:10:03 MSK 2019
;; MSG SIZE rcvd: 85
```

Task 3 - HTTPD

3.1 Application setup

I have chosen to create a simple WebSocket-capable application. It can be found on my github: https://github.com/ionagamed/sna-labs. I have cloned the repo, then copied ./lab03/app to /srv, and then created a systemd unit which would run it. After that systemd needs to reload unit data, and then we can start and enable the service.

```
ubuntu@ip-172-31-40-194:/srv/sna-app$ cat /etc/systemd/system/sna-app.service
1
2
     [Unit]
     Description=SNA websocket application
3
4
     [Service]
5
     Type=simple
6
     ExecStart=/srv/sna-app/run.py
    WorkingDirectory=/srv/sna-app
8
9
     [Install]
10
    WantedBy=multi-user.target
11
     ubuntu@ip-172-31-40-194:/srv/sna-app$ sudo systemctl daemon-reload
12
     ubuntu@ip-172-31-40-194:/srv/sna-app$ sudo systemctl restart sna-app
13
     ubuntu@ip-172-31-40-194:/srv/sna-app$ sudo systemctl enable sna-app
14
     Created symlink /etc/systemd/system/multi-user.target.wants/sna-app.service → /etc/system«
15
```

3.2 Reverse proxy

I have chosen nginx . To install, simply use apt :

```
$ sudo apt-get install nginx
```

/etc/nginx/nginx.conf (after removing some gunk):

```
1
     user www-data;
     worker_processes auto;
2
     pid /run/nginx.pid;
 3
     include /etc/nginx/modules-enabled/*.conf;
4
5
6
     events {
7
             worker connections 768;
     }
8
9
     http {
10
             server {
11
                     listen 443 ssl http2 default_server;
12
                     location / {
13
                              proxy_pass http://localhost:9000;
14
                     }
15
16
                     location /ws {
17
                              proxy_pass http://localhost:9000;
                              proxy_http_version 1.1;
18
19
                              proxy_set_header Upgrade $http_upgrade;
                              proxy_set_header Connection "upgrade";
20
                     }
21
                     ssl certificate /etc/letsencrypt/live/sna.ionagamed.ru/cert.pem;
22
                      ssl_certificate_key /etc/letsencrypt/live/sna.ionagamed.ru/privkey.pem;
23
             }
24
25
             server {
26
                     listen 80;
27
                      return 301 https://$host$request_uri;
28
             }
29
30
31
             sendfile on;
             tcp_nopush on;
32
33
             tcp_nodelay on;
34
             keepalive_timeout 65;
             types_hash_max_size 2048;
35
             include /etc/nginx/mime.types;
36
             default_type application/octet-stream;
37
             ssl_protocols TLSv1 TLSv1.1 TLSv1.2; # Dropping SSLv3, ref: P00DLE
38
39
             ssl_prefer_server_ciphers on;
             access_log /var/log/nginx/access.log;
40
             error_log /var/log/nginx/error.log;
41
             gzip on;
42
     }
43
```

The important lines are 11-29: there we specify two listening ports - 443 for SSL, and 80 for a redirect to SSL. Locations / and /ws are separate, because /ws uses WebSockets and

requires additional headers to upgrade the connection.

3.3 SSL

Using letsencrypt CA with automatic certificate management from certbot (but not automatic configuration management, we have to point nginx to the certificates manually in lines 22-23 of the config).

Installing certbot:

```
$ sudo apt-get install certbot python-certbot-nginx
```

Generating certificates:

```
ubuntu@ip-172-31-40-194:~$ sudo certbot certonly --nginx
Saving debug log to /var/log/letsencrypt/letsencrypt.log
Plugins selected: Authenticator nginx, Installer nginx
No names were found in your configuration files. Please enter in your domain
name(s) (comma and/or space separated) (Enter 'c' to cancel): sna.ionagamed.ru,sna-alias.ionag
Obtaining a new certificate
Performing the following challenges:
http-01 challenge for sna.ionagamed.ru
http-01 challenge for sna-alias.ionagamed.ru
Using default address 80 for authentication.
Using default address 80 for authentication.
Waiting for verification...
Cleaning up challenges
```

IMPORTANT NOTES:

- Congratulations! Your certificate and chain have been saved at: /etc/letsencrypt/live/sna.ionagamed.ru/fullchain.pem Your key file has been saved at: /etc/letsencrypt/live/sna.ionagamed.ru/privkey.pem Your cert will expire on 2019-12-08. To obtain a new or tweaked version of this certificate in the future, simply run certbot again. To non-interactively renew *all* of your certificates, run "certbot renew"
- If you like Certbot, please consider supporting our work by:

```
Donating to ISRG / Let's Encrypt: https://letsencrypt.org/donate
Donating to EFF: https://eff.org/donate-le
```

Task 4 - CROND

My only cron job is updating the forementioned TLS certificates for letsencrypt using certbot.

/etc/crontab:

```
SHELL=/bin/sh
PATH=/usr/local/sbin:/usr/local/bin:/sbin:/usr/sbin:/usr/bin
MAILTO=ionagamed@gmail.com

# m h dom mon dow user command
0 */12 * * * root /usr/bin/certbot -g renew
```

(the comment here is for reference)

Configuring emails:

```
$ apt-get install mailutils sendmail
```

From here, emails will be sent to MAILTO from the crontab.

Judging by the logs, STARTTLS is used (/var/log/mail.log):

```
Sep 9 11:59:01 ip-172-31-40-194 sm-mta[7421]: x89Bx1iP007421: from=<root@ip-172-31-40-194  
Sep 9 11:59:01 ip-172-31-40-194 sendmail[7420]: x89Bx1VC007420: to=ionagamed@gmail.com, c
    Sep 9 11:59:01 ip-172-31-40-194 sm-mta[7423]: STARTTLS=client, relay=gmail-smtp-in.l.goog
    Sep 9 11:59:01 ip-172-31-40-194 sm-mta[7423]: x89Bx1iP007421: to=<ionagamed@gmail.com>, c
```

Task 5 - FTPD

At first I wanted to use docker, but network setup with manual NAT turned out to be a hassle, so this is done on two separate machines (shell commands have a "fake" hostname). m1 would be the "internet" machine, and m2 would run in the DMZ.

Downloading source:

```
m2$ wget https://security.appspot.com/downloads/vsftpd-3.0.3.tar.gz
m2$ tar xzf vsftpd-3.0.3.tar.gz
```

This package does not use automake, and, subsequently, it is enough to run:

```
m2$ make
m2$ sudo make install
```

Oh, turns out it needs some man directory, let's create it and hope everyting doesn't break:

```
m2$ mkdir -p /usr/local/man/man8
m2$ mkdir -p /usr/local/man/man5
m2$ sudo make install
```

Yeah, it worked.

Let's add a user for ftp:

```
m2$ useradd -m ftp
```

Also a directory for the default secure_chroot_dir:

```
m2$ mkdir -p /usr/share/empty
```

Finally, let's run the daemon in the foreground (for testing purposes):

```
m2$ vsftpd
```

Validating that it works:

```
local$ nc <ip> 21
220 (vsFTPd 3.0.3)
```

For the NAT to work with this server configuration, we need to add two rules to the gateway - source NAT and destination NAT, and the first one would be done using iptables' MASQUERADE

```
m1$ iptables -t nat -A PREROUTING -p tcp -m tcp --dport 21 -j DNAT --to-destination 18.197.202. m1$ iptables -t nat -A POSTROUTING -p tcp -m tcp --dport 21 -j MASQUERADE
```

And also we need to enable forwaring in the kernel:

```
m1$ echo 1 > /proc/sys/net/ipv4/ip_forward
```

After all that, testing:

local\$ nc sna.ionagamed.ru 21
220 (vsFTPd 3.0.3)

We have got the greeting, hooray.