

Environmental stressors

• Disturbances in the environment force life to adapt and cope

...eventually they find their niche

Environmental stressors

Natural

Hypoxia Recipe: Oxygen is the main ingredient

- Diffusion
- Surface agitation (waves)
- Rivers & streams

Supply

Bacteria!

Respiration

Hypoxia Recipe: Location & season!

Coastal enclosed estuaries in summer = most susceptible!

- Increase light intensity & water temperature
- Nutrients (run-off, pollutants, etc.)

Warmer (fresher)

stratification

Cooler (more saline)

Photosynthesis

The stressor: Hypoxia

Нурохіа

Low dissolved oxygen (DO)

demand > supply HYAUG16 and IEC Run #8 Dissolved Oxygen Severity of impact Thresholds of "marginal", "moderate", "severe" derately severe 2.0 - 2.99 3.0 - 3.49 3.5 - 4.79 rim management goal cellent - Supportive of marine life 4.8+ Average oxygen concentration only tells part of the the story

Dissolved Oxygen in Long Island Sound Bottom Waters

16-18 August 2016

The stressor: Hypoxia

Нурохіа

Low dissolved oxygen (DO)

demand > supply

Diel-cycling hypoxia

Varies on a seasonal and <u>daily</u> time scale

Common effects of diel-cycling hypoxia

- mass mortality
- growth, calcification
- behavior
- early life stage development
- calcification
- immunoregulatory response

LIMITATION!

long time scales

Optimal "windows" for animals

This window can be **narrowed** by environmental stressors

In other words...
Goldie locks gets *even more* picky

Thermal windows for animals (may include time dependent shifts through acclimatization)

Respiration rate of marine invertebrates

0, 21 kPa Severe Moderate Normoxia Нурохіа Нурохіа (µmol·min-1·g-1) Regulator Conformer Anaerobiosis P_{O_2} (kPa)

Anaerobic metabolism
LESS or even NO OXYGEN UPTAKE!

Less efficient + high energy cost = <u>decrease</u> in **growth**, **reproduction**, and **survival**

Rational

To understand and identify effects of *dynamic environmental stressors*...

Need a dynamic response!!!

Heartbeat rate

Non-invasive

Infrared sensors

Important **sub-lethal**physiological implications
for whole animal
metabolism

Rational

To understand and identify effects of *dynamic environmental stressors*...

Need a dynamic response!!!

Heartbeat rate

Common effects of diel-cycling hypoxia

- mass mortality
- growth, calcification
- behavior
- early life stage development
- calcification
- immunoregulatory response

Non-invasive

Infrared sensors

Important **sub-lethal**physiological implications
for whole animal
metabolism

Methods

Bay scallops (*Argopecten irradians*) alter cardiac activity under exposure to *in-situ* diel-cycling dissolved oxygen

- 8 A. irradians per site
- 60 seconds of heartbeat data for each individual,
 cycle repeated every 10 minutes
- Dissolved oxygen and temperature recorded every
 15 minutes with dockside sensors

In-situ Heartbeat Deployments

- A.irradians heartbeat (bpm)
- Dissolved oxygen (mg L⁻¹)
- Temperature (°C)

In-situ Cardiac Activity: **Normoxic VS. Hypoxic conditions**

In-situ Cardiac Activity: **Normoxic VS. Hypoxic conditions**

In-situ Cardiac Activity: Diel-cycling hypoxia

In-situ Cardiac Activity: Diel-cycling hypoxia

Cardiac oscillations are driven by DO decline

- A.irradians heartbeat (bpm)
- Dissolved oxygen (mg L⁻¹)
- Temperature (°C)

In-situ Cardiac Activity: Diel-cycling hypoxia

- A.irradians heartbeat (bpm)
- Dissolved oxygen (mg L⁻¹)
- Temperature (°C)

- Cardiac activity always peaked when DO decline to 5 mg L⁻¹ during early to late mornings
- Evidence of a potential onset of:
 - decline of aerobic function
 - transition to anaerobic metabolism

Seatuck 10 65 30 -8 55 mg L⁻¹ 28 bpm °C 45 26 35 8/18 8/19 8/20 8/21 8/22

Cardiac response of diel-cycling dissolved oxygen (CRD_{DO}) **Nicoll Bay** Dissolved oxygen (mg L-1) 7.1 5.0 2.6 7.1 10.4 (± 2.3) (± 2.2) (± 2.3) (± 1.2) (± 1.1) IV Ш 23.80 30.71 41.96 32.97 23.80 (± 1.58) (± 2.50) (± 3.08) (± 2.32) (± 1.58)

Heartbeat rate (beats miniute-1)

Phase 1

Dissolved oxygen

Regulator response

 maintain oxygen uptake and aerobic metabolism as DO becomes less available

Heartbeat rate change: +10 bpm

Duration: 8 – 10 hours (longest phase)

Phase 2

Heartbeat rate

Dissolved oxygen

Transition to a **conformer** response

- Peak heartbeat rate at 5 mg L⁻¹
- May indicate an initiation of anaerobic metabolism

Heartbeat rate change: -10 bpm

Duration: 4 - 4.5 hours (shortest phase)

Phase 3

Heartbeat rate

"Stress and rest" (still a **conformer** response)

- Cardiac activity continues to decline to a minimum rate although DO increases
- Minimum heartbeat rate at 5 7 mg L⁻¹

Heartbeat rate change: -10 bpm

Duration: 5 – 6 hours

Phase 2 & 3

40% each day under anaerobic metabolism

Does repeated exposure affect...

- -Growth
- -Reproduction
- -Survival

Cardiac response of diel-cycling dissolved oxygen (CRD_{DO})

Phase 4

Cardiac and aerobic recovery

- Only phase when both heartbeat rate and DO increase
- Suggests an initial effort to restore aerobic function to "normal" heartbeat rates

Heartbeat rate change: +10 bpm

Duration: 4 – 6 hours

In a metaphorical sense...

As if these scallops reach the summit of Mt. Everest every morning

Summary & take home message

Yes.. scallops have hearts

- Bio-sensors give a unique view of ecosystem status <u>unachievable</u> by water quality sensors alone
- Help determine specific thresholds that can cause harm
- Offer a charismatic perspective to inspire broad audiences and spark change

