Next-Next-Gen Notes Object-Oriented Maths

JP Guzman

October 3, 2017

Format: $characteristic((subjects), (dependencies)) \iff (conditions(dependencies)) \land (conditions(subjects))$ TODO all distance must take two parameters TODO define || abs and other missing refs

1 Mathematical Analysis

1.0.1 Formal Logic

(1)	$statement(s,()) \Longleftrightarrow well\text{-}formedString(s,())$
	$propositionig((p,t),()ig) \Longleftrightarrow \Big(statementig(p,()ig)\Big) \land$
(2)	
(3)	$operatorigg(o, \Big((p)_{n\in\mathbb{N}}\Big)igg) \Longleftrightarrow proposition\Big(o\Big((p)_{n\in\mathbb{N}}\Big), ()\Big)$
(3)	$ (b) = proposition (b) (p)_{n \in \mathbb{N}} (p)_{n \in $
	$operator(\neg,(p_1)) \Longleftrightarrow \Big(propositionig((p_1,true),()ig) \Longrightarrow ig((\neg p_1,false),()ig)\Big) \land$
	$\Big(propositionig((p_1,false),()ig)\Longrightarrow ig((\neg p_1,true),()ig)\Big)$
(4)	# an operator takes in propositions and returns a proposition
(5)	$operator(\neg) \iff \mathbf{NOT} \; ; \; operator(\lor) \iff \mathbf{OR} \; ; \; operator(\land) \iff \mathbf{AND} \; ; \; operator(\veebar) \iff \mathbf{XOR} $ $operator(\Longrightarrow) \iff \mathbf{IF} \; ; \; operator(\Longleftarrow) \iff \mathbf{OIF} \; ; \; operator(\iff) \iff \mathbf{IFF}$
(6)	$ \begin{array}{c} proposition \big((false \Longrightarrow true), true, ()\big) \land proposition \big((false \Longrightarrow false), true, ()\big) \\ \# \ truths \ based \ on \ a \ false \ premise \ is \ not \ false; \ ex \ falso \ quodlibet \ principle \end{array} $
(7)	$(\text{THM}): (a \Longrightarrow b \Longrightarrow c) \Longleftrightarrow (a \Longrightarrow (b \Longrightarrow c)) \Longleftrightarrow ((a \land b) \Longrightarrow c)$
(8)	$predicate(P,(V)) \iff \forall_{v \in V} \left(proposition((P(v),t),())\right)$
(9)	$0thOrderLogicig(P,()ig) \iff propositionig((P,t),()ig) \ \# individual proposition$
	$1stOrderLogic(P,(V)) \Longleftrightarrow \bigg(\forall_{v \in V} \Big(0thOrderLogic(v,()) \Big) \bigg) \land$

$\bigg(\forall_{v\in V}\bigg(proposition\Big(\big(P(v),t\big),()\Big)\bigg)\bigg)$ # propositions defined over a set of the lower order logical statements	(10)
$\begin{aligned} quantifier\big(q,(p,V)\big) &\Longleftrightarrow \Big(predicate\big(p,(V)\big)\Big) \wedge \\ & \left(proposition\Big(\big(q(p),t\big),()\Big) \right) \\ & \# \text{ a quantifier takes in a predicate and returns a proposition} \end{aligned}$	(11)
$\begin{aligned} \textit{quantifier} \big(\forall, (p, V) \big) &\Longleftrightarrow \textit{proposition} \bigg(\Big(\land_{v \in V} \big(p(v) \big), t \Big), () \Big) \\ & \# \text{ universal quantifier} \end{aligned}$	(12)
$\begin{aligned} quantifier\big(\exists,(p,V)\big) &\Longleftrightarrow proposition\bigg(\Big(\vee_{v\in V}\big(p(v)\big),t\Big),()\Big) \\ &\# \text{ existential quantifier} \end{aligned}$	(13)
$ \frac{quantifier\big(\exists!,(p,V)\big)}{\Longleftrightarrow} \exists_{x\in V} \bigg(P(x) \land \neg \Big(\exists_{y\in V\setminus \{x\}} \big(P(y)\big)\Big) \bigg) $ # uniqueness quantifier	(14)
$(\operatorname{THM}): \forall_x p(x) \Longleftrightarrow \neg \exists_x \neg p(x)$ $\# \text{ De Morgan's law}$	(15)
$(\text{THM}): \forall_x \exists_y p(x,y) = \forall_x \neg \forall_y \neg p(x,y) \neq \exists_y \forall_x p(x,y) = \neg \forall_y \neg \big(\forall_x p(x,y)\big) = \neg \forall_y \exists_x \neg p(x,y)$ # different quantifiers are not interchangeable	(16)
======== N O T = U P D A T E D ========	(17)
proof=truths derived from a finite number of axioms and deductions	(18)
elementary arithmetics=system with substitutions, and some notion of addition, multiplication, and prime nuumbers for encoding metamathematics	(19)
Gödel theorem \Longrightarrow axiomatic systems equivalent in power to elementary mathematics either has unprovable statements or has contradictions	(20)
$sequenceSet((A)_{\mathbb{N}},(A)) \Longleftrightarrow (Amapinputn)((A)_{\mathbb{N}} = \{A(1),A(2),A(3),\ldots\})$	(21)
TODO: define union, intersection, complement, etc.	(22)
======== N O T = U P D A T E D ========	(23)

1.1 Axiomatic Set Theory

======== N O T = U P D A T E D ========	(24)
ZFC set theory=standard form of axiomatic set theory	(25)
$A \subseteq B = \forall_x x \in A \Longrightarrow x \in B$	(26)
$(A=B)=A\subseteq B\land B\subseteq A$	(27)
$\in \mathbf{basis} \Longrightarrow \{x,y\} = \{y,x\} \land \{x\} = \{x,x\}$	(28)
\in and sets works following the 9 ZFC axioms:	(29)
$\forall_x \forall_y \big(x \in y \veebar \neg (x \in y)\big) \ \# \ \mathrm{E} : \in \mathrm{is} \ \mathrm{only} \ \mathrm{a} \ \mathrm{proposition} \ \mathrm{on} \ \mathrm{sets}$	(30)
$\exists_{\emptyset} \forall_y \neg y \in \emptyset \ \# \ \mathrm{E}$: existence of empty set	(31)
$\forall_x\forall_y\exists_m\forall_uu\in m\Longleftrightarrow u=x\vee u=y\ \#\ \text{C: pair set construction}$	(32)
$\forall_s \exists_u \forall_x \forall_y (x \in s \land y \in x \Longrightarrow y \in u) \ \# \ \text{C: union set construction}$	(33)
$x\!=\!\{\{a\},\{b\}\}\ \#\ { m from\ the\ pair\ set\ axiom}$	(34)
$u = \cup x = \cup \{\{a\}, \{b\}\} = \{a, b\}$	(35)
$\forall_x \exists !_y R(x,y) \ \# \ ext{functional relation} \ R$	(36)
$\exists_i \forall_x \exists !_y R(x,y) \Longrightarrow y \in i \ \# \ \text{C: image } i \text{ of set } m \text{ under a relation } R \text{ is assumed to be a set}$ $\Longrightarrow \{y \in m \mid P(y)\} \ \# \text{ Restricted Comprehension} \Longrightarrow \{y \mid P(y)\} \ \# \text{ Universal Comprehension}$	(37)
$\forall_{x \in m} P(x) = \forall_x \big(x \in m \Longrightarrow P(x) \big) \text{ $\#$ ignores out of scope} \neq \forall_x \big(x \in m \land P(x) \big) \text{ $\#$ restricts entirety}$	(38)
$\forall_m \forall_n \exists_{\mathcal{P}(m)} \big(n \subseteq m \Longrightarrow n \subseteq \mathcal{P}(m) \big) \ \# \ \text{C: existence of power set}$	(39)
$\exists_{I} \Big(\emptyset \in I \land \forall_{x \in I} \big(\{x\} \in I\big)\Big) \ \# \text{ I: axiom of infinity } ; I = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \ldots\}; I \cong \mathbb{N} \Longrightarrow \mathbb{N} \text{ is a set}$	(40)
$\forall_x \Big((\emptyset \notin x \land x \cap x' = \emptyset) \Longrightarrow \exists_y (\mathbf{set of each e} \in x) \Big) \# \mathbf{C}$: axiom of choice	(41)
$\forall_x x \neq \emptyset \Longrightarrow x \notin x \# F$: axiom of foundation covers further paradoxes	(42)
======== N O T = U P D A T E D ========	(43)

1.2 Classification of sets

```
space((set, structure), ()) \iff structure(set)
                                                       # a space a set equipped with some structure
# various spaces can be studied through structure preserving maps between those spaces
                                                                                                                            (44)
                                                          map(\phi, (A, B)) \iff (\forall_{a \in A} \exists !_{b \in B} (\phi(a, b))) \lor
                                                                                     (\forall_{a \in A} \exists !_{b \in B} (b = \phi(a)))
                                               # maps elements of a set to elements of another set
                                                                                                                            (45)
                                                         domain(A, (\phi, A, B)) \iff (map(\phi, (A, B)))
                                                                                                                            (46)
                                                      codomain\big(B,(\phi,A,B)\big) \Longleftrightarrow \Big(map\big(\phi,(A,B)\big)\Big)
                                                                                                                            (47)
                                         image(B,(A,q,M,N)) \iff (map(q,(M,N)) \land A \subseteq M) \land
                                                                           \left(B = \{n \in N \mid \exists_{a \in A} (q(a) = n)\}\right)
                                                                                                                            (48)
                                     preimage(A, (B, q, M, N)) \iff (map(q, (M, N)) \land B \subseteq N) \land B \subseteq M
                                                                         \left(A = \{ m \in M \mid \exists_{b \in B} (b = q(m)) \} \right)
                                                                                                                            (49)
                                                       injection(q,(M,N)) \iff (map(q,(M,N))) \land
                                                                            \forall_{u,v\in M} (q(u)=q(v) \Longrightarrow u=v)
                                                                         \# every m has at most 1 image
                                                                                                                            (50)
                                                     surjection(q,(M,N)) \iff (map(q,(M,N))) \land
                                                                                     \forall_{n \in N} \exists_{m \in M} (n = q(m))
                                                                      \# every n has at least 1 preimage
                                                                                                                            (51)
                                                 bijection(q,(M,N)) \iff (injection(q,(M,N))) \land
                                                                                   (surjection(q,(M,N)))
                                                        \# every unique m corresponds to a unique n
                                                                                                                            (52)
                                         isomorphicSets((A,B),()) \iff \exists_{\phi} \Big(bijection(\phi,(A,B))\Big)
                                                                                                                            (53)
                                       infiniteSet(S,()) \iff \exists_{T \subset S} (isomorphicSets((T,S),()))
                                                                                                                            (54)
                                            finiteSet(S,()) \iff \left(\neg infiniteSet(S,())\right) \lor \left(|S| \in \mathbb{N}\right)
                                                                                                                            (55)
         countablyInfinite(S,()) \iff (infiniteSet(S,())) \land (isomorphicSets((S,\mathbb{N}),()))
                                                                                                                            (56)
```

$$inverseMap(q^{-1},(q,M,N)) \Leftrightarrow (infiniteSet(S,())) \land (\neg isomorphicSets((S,\mathbb{N}),()))$$

$$inverseMap(q^{-1},(q,M,N)) \Leftrightarrow (infiniteSet(M,N)) \land (map(q^{-1},(N,M))) \land (map(q,(B,C))) \land (map(q,(B,C)))$$

1.3 Construction of number sets

 $S^x = id = S^0 \Longrightarrow x = additive identity = 0$ (72) $S^n(x) = 0 \Longrightarrow x = \mathbf{additive inverse} \notin \mathbb{N} \# \text{ git gud smh} - -$ (73) $\mathbb{Z} = \mathbb{N} \times \mathbb{N} / \sim$, s.t.: $(m,n)\sim(p,q)\iff m+q=p+n \# \text{ span } \mathbb{Z} \text{ using differences then group equal differences}$ (74) $\mathbb{N} \hookrightarrow \mathbb{Z} : \forall_{n \in \mathbb{N}} n \to [(n,0)] \# \mathbb{N} \text{ embedded in } \mathbb{Z}$ (75) $+_{\mathbb{Z}} = [(m +_{\mathbb{N}} p, n +_{\mathbb{N}} q)] \#$ well-defined and consistent (76) $multiplication \dots M^x = id \Longrightarrow x = multiplicative identity = 1 \dots multiplicative inverse \notin \mathbb{N}$ (77) $\mathbb{Q} = (\mathbb{Z} \times \mathbb{Z}^*) / \sim$, s.t.: $(x,y) \sim (u,v) \iff x \cdot v = u \cdot y$ (78) $\mathbb{Z} \hookrightarrow \mathbb{Q} \forall_{q \in \mathbb{Q}} q \rightarrow [(q,1)] ; \dots \{x \mid x^2 = 2\} \notin \mathbb{Q}$ (79) \mathbb{R} =almost homomorphisms on $\mathbb{Z}/\sim \#$ http://blog.sigfpe.com/2006/05/defining-reals.html (80)(81)

1.4 Topology

 $topology(\mathcal{O},(M)) \Longleftrightarrow (\mathcal{O} \subseteq \mathcal{P}(M)) \land \\ (\emptyset, M \in \mathcal{O}) \land \\ ((F \in \mathcal{O} \land |F| < |\mathbb{N}|) \Longrightarrow \cap F \in \mathcal{O}) \land \\ (C \subseteq \mathcal{O} \Longrightarrow \cup C \in \mathcal{O})$ # topology is defined by a set of open sets which provide the characteristics needed to define continuity, etc.
arbitrary unions of open sets always result in an open set
open sets do not contain their boundaries and infinite intersections of open sets may approach and
induce boundaries resulting in a closed set (82) $topologicalSpace((M,\mathcal{O}),()) \Longleftrightarrow topology(\mathcal{O},(M)) \text{ (83)}$ $open(S,(M,\mathcal{O})) \Longleftrightarrow (topologicalSpace((M,\mathcal{O}),())) \land \\ (S \subseteq M) \land (S \in \mathcal{O})$ # an open set do not contains its own boundaries (84) $closed(S,(M,\mathcal{O})) \Longleftrightarrow (topologicalSpace((M,\mathcal{O}),())) \land \\ (S \subseteq M) \land (S \in \mathcal{P}(M) \setminus \mathcal{O})$ # a closed set contains the boundaries an open set (85)

$$clopen(S,(M,\mathcal{O})) \Longleftrightarrow \left(closed(S,(M,\mathcal{O}))\right) \land \left(open(S,(M,\mathcal{O}))\right) \quad (86)$$

$$neighborhood(U,(a,\mathcal{O})) \Longleftrightarrow (a \in U \in \mathcal{O})$$
another name for open set containing a (87)

$$M = \{a,b,c,d\} \land \mathcal{O} = \{\emptyset,\{c\},\{a,b\},\{c,d\},\{a,b,c\},M\} \Longrightarrow$$

$$\left(open(X,(M,\mathcal{O})) \Longleftrightarrow X = \{\emptyset,\{c\},\{a,b\},\{c,d\},\{a,b,c\},M\}\right) \land$$

$$\left(closed(Y,(M,\mathcal{O})) \Longleftrightarrow Y = \{\emptyset,\{a,b,d\},\{c,d\},\{a,b\},\{d\},M\}\right) \land$$

$$\left(clopen(Z,(M,\mathcal{O})) \Longleftrightarrow Z = \{\emptyset,\{a,b\},\{c,d\},M\}\right) \quad (88)$$

1.5 Induced topology

$$distance(d,(M)) \iff \left(\forall_{x,y \in M} \left(d(x,y) = d(y,x) \in \mathbb{R}_0^+ \right) \right) \land$$

$$\left(\forall_{x,y \in M} \left(d(x,y) = 0 \iff x = y \right) \right) \land$$

$$\left(\forall_{x,y,z} \left(\left(d(x,z) \leq d(x,y) + d(y,z) \right) \right) \right)$$
behaves as distances should (90)

$$metricSpace((M,d),()) \iff distance(d,(M))$$
 (91)

 $chaoticTopology(M) = \{0, M\} ; discreteTopology = \mathcal{P}(M)$ (89)

$$openBall(B,(r,p,M,d)) \iff \left(metricSpace((M,d),()) \right) \land$$

$$\left(r \in \mathbb{R}^+, p \in M \right) \land$$

$$\left(B = \left\{ q \in M \, | \, d(p,q) < r \right\} \right)$$

$$(92)$$

$$\begin{split} & metricTopology \big(\mathcal{O}, (M, d)\big) \Longleftrightarrow \Big(metricSpace \big((M, d), ()\big)\Big) \land \\ & \Big(\mathcal{O} \!=\! \{U \!\in\! \mathcal{P}(M) \,|\, \forall_{p \in U} \exists_{r \in \mathbb{R}^+} \Big(openBall \big(B, (r, p, M, d)\big) \land B \subseteq U\Big)\}\Big) \end{split}$$

every point in the neighborhood has some open ball that is fully enclosed in the neighborhood (93)

$$metricTopologicalSpace((M, \mathcal{O}, d), ()) \iff metricTopology(\mathcal{O}, (M, d))$$
 (94)

$$limitPoint\big(p,(S,M,\mathcal{O},d)\big) \Longleftrightarrow \Big(metricTopologicalSpace\big((M,\mathcal{O},d),()\big)\Big) \land (S \subseteq M) \land \\ \forall_{r \in \mathbb{R}^+} \Big(openBall\big(B,(r,p,M,d)\big) \land B \cap S \neq \emptyset\Big)$$

every open ball centered at p contains some intersection with S (95)

$$interiorPoint(p,(S,M,\mathcal{O},d)) \Longleftrightarrow \Big(\underbrace{metricTopologicalSpace}\big((M,\mathcal{O},d),()\big) \Big) \land (S \subseteq M) \land \\ \Big(\exists_{r \in \mathbb{R}^+} \Big(openBall\big(B,(r,p,M,d)\big) \land B \subseteq S \Big) \Big)$$

there is an open ball centered at p that is fully enclosed in S (96)

$closure(\bar{S}, (S, M, \mathcal{O}, d)) \iff \bar{S} = S \cup \{p \in M \mid limitPoint(p, (S, M, \mathcal{O}, d))\}$ $dense(S, (M, \mathcal{O}, d)) \iff (S \subseteq M) \land \left(\forall_{p \in M} \left(p \in closure(\bar{S}, (S, M, \mathcal{O}, d))\right)\right)$ # every of point in M is a point or a limit point of S (98)

$$eucD(d,(n)) \iff (\forall_{i \in \mathbb{N} \land i \leq n} (x_i \in \mathbb{R})) \land \left(d = \sqrt[2]{\sum_{i=1}^n x_i^2}\right)$$
 (99)

$$subsetTopology(\mathcal{O}|_{N},(M,\mathcal{O},N)) \Longleftrightarrow topology(\mathcal{O},(M)) \land (N \subseteq M) \land (\mathcal{O}|_{N} = \{U \cap N \mid U \in \mathcal{O}\})$$
crops open sets outside N (101)

$$(\operatorname{THM}): \operatorname{subsetTopology} \big(\mathcal{O}|_N, (M, \mathcal{O}, N)\big) \wedge \operatorname{topology} \big(\mathcal{O}|_N, (N)\big) \Leftarrow \\ = = = = = = = = \operatorname{N} \operatorname{O} \operatorname{T} = \operatorname{U} \operatorname{P} \operatorname{D} \operatorname{A} \operatorname{T} \operatorname{E} \operatorname{D} = = = = = = = = \\ \operatorname{L1:} \ \emptyset \in \mathcal{O} \Longrightarrow U = \emptyset \Longrightarrow \emptyset \cap N = \emptyset \Longrightarrow \emptyset \in \mathcal{O}|_N \\ \operatorname{L2:} \ M \in \mathcal{O} \Longrightarrow U = M \Longrightarrow M \cap N = N \Longrightarrow N \in \mathcal{O}|_N \\ \operatorname{L3:} \ S, T \in \mathcal{O}|_N \Longrightarrow \exists_{U \in \mathcal{O}} (S = U \cap N) \wedge \exists_{V \in \mathcal{O}} (T = V \cap N) \Longrightarrow S \cap T = (U \cap N) \cap (V \cap N) \\ = (U \cap V) \cap N \wedge U \cap V \in \mathcal{O} \Longrightarrow S \cap T \in \mathcal{O}|_N \\ \operatorname{L4:} \ TODO: EXERCISE \\ = = = = = = = = = = \operatorname{N} \operatorname{O} \operatorname{T} = \operatorname{U} \operatorname{P} \operatorname{D} \operatorname{A} \operatorname{T} \operatorname{E} \operatorname{D} = = = = = = = = = = = = (102)$$

$$productTopology\Big(\mathcal{O}_{A\times B}, \big((A,\mathcal{O}_A),(B,\mathcal{O}_B)\big)\Big) \Longleftrightarrow \Big(topology\big(\mathcal{O}_A,(A)\big)\Big) \wedge \Big(topology\big(\mathcal{O}_B,(B)\big)\Big) \wedge \\ \Big(\mathcal{O}_{A\times B} = \{(a,b) \in A \times B \mid \exists_S (a \in S \in \mathcal{O}_A) \exists_T (b \in T \in \mathcal{O}_B)\}\Big) \\ \# \text{ open in cross iff open in each}$$
 (103)

1.6 Convergence

$$sequence(q,(M)) \Longleftrightarrow map(q,(\mathbb{N},M)) \quad (104)$$

 $sequenceConvergesTo((q,a),(M,\mathcal{O})) \Longleftrightarrow \Big(topologicalSpace\big((M,\mathcal{O}),()\big)\Big) \land \\ \Big(sequence\big(q,(M)\big)\Big) \land (a \in M) \land \Big(\forall_{U \in \mathcal{O}|a \in U} \exists_{N \in \mathbb{N}} \forall_{n > N} \big(q(n) \in U\big)\Big) \\ \# \ each \ neighborhood \ of \ a \ has \ a \ tail-end \ sequence \ that \ does \ not \ map \ to \ outside \ points \\ (105)$ $(THM): \ convergence \ generalizes \ to: \ the \ sequence \ q: \mathbb{N} \rightarrow \mathbb{R}^d \ converges \ against \ a \in \mathbb{R}^d \ in \ \mathcal{O}_S \ if: \\ \forall_{r > 0} \exists_{N \in \mathbb{N}} \forall_{n > N} \big(||q(n) - a|| < \epsilon\big) \ \# \ distance \ based \ convergence \\ (106)$

1.7 Continuity

$$(topologicalSpace((M, \mathcal{O}_{M}), ())) \Leftrightarrow (topologicalSpace((M, \mathcal{O}_{M}), ())) \land (topologicalSpace((N, \mathcal{O}_{N}), ())) \land (\forall_{V \in \mathcal{O}_{N}} (preimage(A, (V, \phi, M, N)) \in \mathcal{O}_{M}))$$
preimage of open sets are open (107)
$$homeomorphism(\phi, (M, \mathcal{O}_{M}, N, \mathcal{O}_{N})) \Leftrightarrow (inverseMap(\phi^{-1}, (\phi, M, N)))$$

$$(continuous(\phi, (M, \mathcal{O}_{M}, N, \mathcal{O}_{N}))) \land (continuous(\phi^{-1}, (N, \mathcal{O}_{N}, M, \mathcal{O}_{M})))$$
structure preserving maps in topology, ability to share topological properties (108)
$$isomorphicTopologicalSpace(((M, \mathcal{O}_{M}), (N, \mathcal{O}_{N})), ()) \Leftrightarrow$$

$$\exists_{\phi} (homeomorphism(\phi, (M, \mathcal{O}_{M}, N, \mathcal{O}_{N}))) \qquad (109)$$

1.8 Separation

$$T0Separate((M,\mathcal{O}),()) \Longleftrightarrow \Big(topologicalSpace((M,\mathcal{O}),())\Big) \land \\ \Big(\forall_{x,y\in M\land x\neq y}\exists_{U\in\mathcal{O}}\Big(\big(x\in U\land y\notin U\big)\lor \big(y\in U\land x\notin U\big)\Big)\Big) \\ \# \ \text{each pair of points has a neighborhood s.t. one is inside and the other is outside} \ (110)$$

$$T1Separate((M,\mathcal{O}),()) \Longleftrightarrow \Big(topologicalSpace((M,\mathcal{O}),())\Big) \land \\ \Big(\forall_{x,y\in M\land x\neq y}\exists_{U,V\in\mathcal{O}\land U\neq V}\Big(\big(x\in U\land y\notin U\big)\land \big(y\in V\land x\notin V\big)\Big)\Big) \\ \# \ \text{every point has a neighborhood that does not contain another point} \ (111)$$

$$T2Separate((M,\mathcal{O}),()) \Longleftrightarrow \Big(topologicalSpace((M,\mathcal{O}),())\Big) \land \\ \Big(\forall_{x,y\in M\land x\neq y}\exists_{U,V\in\mathcal{O}\land U\neq V}\big(U\cap V=\emptyset\big)\Big) \\ \# \ \text{every point has a neighborhood that does not intersect with a nhbhd of another point - Hausdorff space} \ (112)$$

$$(THM): T2Separate \Longrightarrow T1Separate \Longrightarrow T0Separate \ (113)$$

1.9 Compactness

$$openCover(C,(M,\mathcal{O})) \iff \Big(topologicalSpace((M,\mathcal{O}),())\Big) \land (C \subseteq \mathcal{O}) \land (\cup C = M)$$
collection of open sets whose elements cover the entire space (114)

$$finiteSubcover(\tilde{C}, (C, M, \mathcal{O})) \Longleftrightarrow (\tilde{C} \subseteq C) \land (openCover(C, (M, \mathcal{O}))) \land \\ (openCover(\tilde{C}, (M, \mathcal{O}))) \land (finiteSet(\tilde{C}, ())) \\ \# \text{ finite subset of a cover that is also a cover}$$
 (115)

$$compact((M,\mathcal{O}),()) \Longleftrightarrow \Big(topologicalSpace((M,\mathcal{O}),())\Big) \land$$

$$\left(\forall_{C\subseteq\mathcal{O}}\Big(openCover(C,(M,\mathcal{O}))\Longrightarrow \exists_{\widetilde{C}\subseteq C}\Big(finiteSubcover\big(\widetilde{C},(C,M,\mathcal{O})\big)\Big)\Big)\right)$$
every covering of the space is represented by a finite number of nhbhds (116)

$$compactSubset\big(N,(M,\mathcal{O}_d,d)\big) \Longleftrightarrow \Big(compact\big((M,\mathcal{O}),()\big)\Big) \wedge \Big(subsetTopology\big(\mathcal{O}|_N,(M,\mathcal{O},N)\big)\Big) \tag{117}$$

$$bounded(N,(M,d)) \iff \left(metricSpace((M,d),()) \right) \land (N \subseteq M) \land$$

$$\left(\exists_{r \in \mathbb{R}^+} \forall_{p,q \in n} \left(d(p,q) < r \right) \right)$$
(118)

$$(THM) \text{ HeineBorel: } \underbrace{metricTopologicalSpace}((M, \mathcal{O}_d, d), ()) \Longrightarrow$$

$$\forall_{S \in \mathcal{P}(M)} \bigg(\Big(closed\big(S, (M, \mathcal{O}_d)\big) \wedge bounded\big(S, (M, \mathcal{O}_d)\big) \Big) \Longleftrightarrow compactSubset\big(S, (M, \mathcal{O}_d)\big) \bigg)$$
when metric topologies are involved, compactness is equivalent to being closed and bounded (119)

1.10 Paracompactness

$$\begin{aligned} openRefinement\Big(\widetilde{C},(C,M,\mathcal{O})\Big) &\Longleftrightarrow \Big(openCover\big(C,(M,\mathcal{O})\big)\Big) \wedge \Big(openCover\Big(\widetilde{C},(M,\mathcal{O})\big)\Big) \wedge \\ \Big(\forall_{\widetilde{U} \in \widetilde{C}} \exists_{U \in C} \Big(\widetilde{U} \subseteq U\Big)\Big) \end{aligned}$$

a refined cover can be constructed by removing the excess nhbhds and points that lie outside the space (120)

$$(THM): finiteSubcover \Longrightarrow openRefinement (121)$$

$$locallyFinite(C,(M,\mathcal{O})) \Longleftrightarrow (openCover(C,(M,\mathcal{O}))) \land \\ \forall_{p \in M} \exists_{U \in \mathcal{O}|p \in U} (finiteSet(\{U_c \in C | U \cap U_c \neq \emptyset\},()))$$

each point has a neighborhood that intersects with only finitely many sets in the cover (122)

$$\begin{aligned} paracompact \big((M,\mathcal{O}), () \big) &\Longleftrightarrow \\ \forall_{C} \left(openCover \big(C, (M,\mathcal{O}) \big) \Longrightarrow \exists_{\widetilde{C}} \left(locallyFinite \Big(openRefinement \Big(\widetilde{C}, (C,M,\mathcal{O}) \Big), (M,\mathcal{O}) \Big) \right) \right) \\ & \# \text{ every open cover has a locally finite open refinement} \end{aligned} \tag{123}$$

$$(THM): metricTopologicalSpace \Longrightarrow paracompact \quad (124)$$

= \mathbf{N} \mathbf{O} \mathbf{T} = \mathbf{U} \mathbf{P} \mathbf{D} \mathbf{A} \mathbf{T} \mathbf{E} \mathbf{D} =

$$partitionOfUnitySubjCover\big(\mathcal{F},(C,M,\mathcal{O})\big) \Longleftrightarrow \Big(locallyFinite\big(C,(M,\mathcal{O})\big)\Big) \wedge (f \in \mathcal{F}) \wedge \\ \Big(continuous\bigg(f,\bigg(M,\mathcal{O},[0,1],subsetTopology\Big(\mathcal{O}|_{[0,1]},\big([0,1],\mathbb{R},standardTopology\Big)\Big)\Big)\bigg)\bigg)\bigg) \Big) \wedge \\ \Big(\exists_{U_f \in C} \forall_{p \in M} \big(f(p) \neq 0 \Longrightarrow p \in U_f\big)\Big) \wedge \\ \Big(\forall_{p \in M} \exists_{U \in \mathcal{O}|p \in U} \big((f_U)_n = \{f \in \mathcal{F}|p \in M \wedge f(p) \neq 0\}\big)\Big) \wedge \\ \Big(locallyFinite(C,M,\mathcal{O}) \Longrightarrow finiteSet\big((f_U)_n,()\big)\Big) \wedge \Big(|f(f_U)_{n+1}| + |f(f_U)_{n+1}| +$$

 $\left(\forall_{p \in M} \exists_{U \in \mathcal{O}|p \in U} \left(\sum_{i=1}^{|(f_U)_n|} (f_U)_i(p) = 1\right)\right)$

(125)

$$T2Separate\big((M,\mathcal{O}),()\big) \Longrightarrow \Big(paracompact\big((M,\mathcal{O}),()\big)\Big) \Longleftrightarrow$$

$$\forall_{C}\Big(openCover\big(C,(M,\mathcal{O})\big) \Longrightarrow partitionOfUnitySOTCover\big(\mathcal{F},(C,M,\mathcal{O})\big)\Big) \quad (127)$$

useful for defining integrals between overlapping neighborhoods

1.11 Connectedness and path-connectedness

$$connected((M,\mathcal{O}),()) \iff \left(topologicalSpace((M,\mathcal{O}),())\right) \land \left(\neg \exists_{A,B \in \mathcal{O} \setminus \emptyset} (A \cap B \neq \emptyset \land A \cup B = M)\right)$$
if there is some covering of the space that does not intersect (129)

$$(\text{THM}): \neg connected \left(\left(\mathbb{R} \setminus \{0\}, subsetTopology \left(\mathcal{O}_{standard}|_{\mathbb{R} \setminus \{0\}}, \left(\mathbb{R}, standardTopology, \mathbb{R} \setminus \{0\} \right) \right) \right), () \right) \\ \iff \left(A = (-\infty, 0) \in \mathcal{O}_{standard}|_{\mathbb{R} \setminus \{0\}} \right) \wedge \left(B = (0, \infty) \in \mathcal{O}_{standard}|_{\mathbb{R} \setminus \{0\}} \right) \wedge \left(A \cap B = \emptyset \right) \wedge \left(A \cup B = \mathbb{R} \setminus \{0\} \right)$$

$$(130)$$

$$(THM): \underline{connected}((M, \mathcal{O}), ()) \Longleftrightarrow \forall_{S \in \mathcal{O}} \left(\underline{clopen}(S, (M, \mathcal{O}) \Longrightarrow (S = \emptyset \lor S = M))\right)$$

$$(131)$$

$$pathConnected((M,\mathcal{O}),()) \Longleftrightarrow \left(subsetTopology(\mathcal{O}_{standard}|_{[0,1]}, (\mathbb{R}, standardTopology, [0,1]))\right) \land$$

$$\left(\forall_{p,q \in M} \exists_{\gamma} \left(continuous\left(\gamma, \left([0,1], \mathcal{O}_{standard}|_{[0,1]}, M, \mathcal{O}\right)\right) \land \gamma(0) = p \land \gamma(1) = q\right)\right)$$

$$(132)$$

$$(THM): pathConnected \Longrightarrow connected$$
 (133)

1.12 Homotopic curve and the fundamental group

```
=== N O T = U P D A T E D ====
                                                                                                                                                                       (134)
                                                 homotopic(\sim, (\gamma, \delta, M, \mathcal{O})) \iff (map(\gamma, ([0, 1], M)) \land map(\delta, ([0, 1], M))) \land
                                                                                                                        (\gamma(0) = \delta(0) \land \gamma(1) = \delta(1)) \land
(\exists_{H} \forall_{\lambda \in [0,1]}(continuous(H,(([0,1] \times [0,1],\mathcal{O}_{standard^2}|_{[0,1] \times [0,1]}),(M,\mathcal{O})) \wedge H(0,\lambda) = \gamma(\lambda) \wedge H(1,\lambda) = \delta(\lambda))))
                                                                      \# H is a continuous deformation of one curve into another
                                                                                                                                                                       (135)
                                                                                              homotopic(\sim) \Longrightarrow equivalenceRelation(\sim)
                                                                                                                                                                       (136)
                               loopSpace(\mathcal{L}_p, (p, M, \mathcal{O})) \iff \mathcal{L}_p = \{map(\gamma, ([0, 1], M)) | continuous(\gamma) \land \gamma(0) = \gamma(1)\})
                                                                                                                                                                       (137)
                                                                              concatination(\star,(p,\gamma,\delta)) \Longleftrightarrow (\gamma,\delta\!\in\!loopSpace(\mathcal{L}_p)) \land
                                                                                          (\forall_{\lambda \in [0,1]} ((\gamma \star \delta)(\lambda) = \begin{cases} \gamma(2\lambda) & 0 \le \lambda < 0.5 \\ \delta(2\lambda - 1) & 0.5 \le \lambda \le 1 \end{cases}))
                                                                                                                                                                       (138)
                                                                                              group((G, \bullet), ()) \iff (map(\bullet, (G \times G, G))) \land
                                                                                                                                      (\forall_{a,b\in G}(a\bullet b\in G))
                                                                                                                 (\forall_{a,b,c\in G}((a \bullet b) \bullet C = a \bullet (b \bullet c)))
                                                                                                                        (\exists_{e} \forall_{a \in G} (e \bullet a = a = a \bullet e)) \land
                                                                                                               (\forall_{a \in G} \exists_{a^{-1}} (a \bullet a^{-1} = e = a^{-1} \bullet a))
                                                                                             # characterizes symmetry of a set structure
                                                                                                                                                                       (139)
                        isomorphic(\cong, (X, \odot), (Y, \ominus))) \iff \exists_f \forall_{a,b \in X} (bijection(f, (X, Y)) \land f(a \odot b) = f(a) \ominus f(b))
                                                                                                                                                                       (140)
                                                                    fundamentalGroup((\pi_{1,p}, \bullet), (p, M, \mathcal{O})) \iff (\pi_{1,p} = \mathcal{L}_p / \sim) \land
                                                                                                                      (map(\bullet,(\pi_{1,p}\times\pi_{1,p},\pi_{1,p})))\wedge
                                                                                                                 (\forall_{A,B\in\pi_{1,p}}([A]\bullet[B]=[A\star B]))\wedge
                                                                                                                                   (group((\pi_{1,p}, \bullet), ()))
                               # an equivalence class of all loops induced from the homotopic equivalence relation
                                                                                                                                                                       (141)
                         fundamentalGroup_1 \not\cong fundamentalGroup_2 \Longrightarrow topologicalSpace_1 \not\cong topologicalSpace_2
                                                                                                                                                                       (142)
          there exists no known list of topological properties that can imply homeomorphisms
                                                                                                                                                                       (143)
                                                                                                CONTINUE @ Lecture 6: manifolds
                                                                                                                                                                       (144)
                                                     ======= N O T = U P D A T E D ========
                                                                                                                                                                       (145)
```

1.13 Measure theory

$$sigmaAlgebra\big(\sigma,(M)\big) \Longleftrightarrow \big(M \neq \emptyset\big) \land \big(\sigma \subseteq \mathcal{P}(M)\big) \land \\ (M \in \sigma) \land \Big(\forall_{A \in \sigma} \big(M \setminus A \in \sigma\big)\Big) \land \\ \Big(\Big(A \subseteq \sigma \land \neg uncountablyInfinite\big(A,()\big)\Big) \Longrightarrow \cup A \in \sigma\Big)$$

```
# behaves as measurable sets should; provides the sufficient structure for defining a measure \mu
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                (146)
                                                                                                                                                                                                                                                                                                                                 measurableSpace((M, \sigma), ()) \iff sigmaAlgebra(\sigma, (M))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                (147)
                                                                                                                                                                                                                 measurableSet(A,(M,\sigma)) \iff (measurableSpace((M,\sigma),())) \land (A \in \sigma)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                (148)
            measure\big(\mu,(M,\sigma)\big) \Longleftrightarrow \Big(measurableSpace\big((M,\sigma),()\big)\Big) \wedge \left(map\bigg(\mu,\bigg(\sigma,\left(\overline{\mathbb{R}}\right)_0^+\right)\bigg)\right) \wedge \Big(\mu(\emptyset)=0\Big) \wedge (\mu(\emptyset)=0) \wedge (\mu(
                                                                                                                                                                                                               \left( \left( (A)_{\mathbb{N}} \subseteq \sigma \land \forall_{i \in \mathbb{N}} \forall_{j \in \mathbb{N} \setminus \{i\}} \left( A_i \cap A_j = \emptyset \right) \right) \Longrightarrow \mu \left( \cup_{i \in \mathbb{N}} (A_i) \right) = \sum_{i \in \mathbb{N}} \left( \mu(A_i) \right) \right)
                                                                                                                                                                                                                                  # enforces meaningful concepts of measures such as precise additivity
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                (149)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 (THM): measure(\mu, (M, \sigma)) \Longrightarrow
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           (\forall_{A,B\in\sigma}(A\subseteq B\Longrightarrow\mu(A)\le\mu(B)))\land
                                                                                                                                                                                                                                                                                                                                                                                                                               \left( (A)_{\mathbb{N}} \subseteq \sigma \Longrightarrow \mu \left( \cup_{i \in \mathbb{N}} (A_i) \right) \le \sum_{i \in \mathbb{N}} \left( \mu(A_i) \right) \right) \wedge
                                                                                                                                                                                                                          \bigg( \big( (B)_{\mathbb{N}} \subseteq \sigma \wedge \forall_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \cup (B)_{\mathbb{N}} \big) \Longrightarrow \lim_{n \to \infty} \big( \mu(B_n) \big) = \mu(B) \bigg) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_{i+1} \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_i \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_i \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_i \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_i \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_i \big) \wedge B = \bigcup_{i \in \mathbb{N}} \big( B_i \subseteq B_i \big) \wedge B =
                                                                                                                                                                                                                                           \left( \left( (C)_{\mathbb{N}} \subseteq \sigma \land \forall_{i \in \mathbb{N}} (C_{i+1} \subseteq C_i) \land C = \cap (C)_{\mathbb{N}} \right) \Longrightarrow \lim_{n \to \infty} \left( \mu(C_n) \right) = \mu(C) \right)
                                                                                       # immediate implications of the measurable set A \in \sigma axioms and the measure \mu axioms
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                (150)
                                                                                                                                                                                                                                                                                                                                                              measureSpace((M, \sigma, \mu), ()) \iff measure(\mu, (M, \sigma))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                (151)
                                                                                                                                                                                                                                                                                                                                             finiteMeasure(\mu,(M,\sigma)) \iff (measure(\mu,(M,\sigma))) \land
                                                                                                                                                                                                                                                                                                                                                                                                               \left(\exists_{(A)_{\mathbb{N}}\subseteq\sigma}\left(\cup\left((A)_{\mathbb{N}}\right)=M\wedge\forall_{n\in\mathbb{N}}\left(\mu(A_n)<\infty\right)\right)\right)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               (152)
generatedSigmaAlgebra \big(\sigma(\zeta), (\zeta, M)\big) \Longleftrightarrow \Big(G = \{\sigma \subseteq \mathcal{P}(M) \mid sigmaAlgebra \big(\sigma, (M)\big)\}\Big) \land \big(\sigma(\zeta) = \cap G\big)
                                                                                                                                                                                                                                                                                                                                                                  # smallest \sigma-algebra containing the generating set \zeta
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               (153)
                                                                                                                                               (THM): \exists_{\zeta \subseteq M} \left( generatedSigmaAlgebra \left( \sigma(\zeta), (\zeta, M) \right) = sigmaAlgebra \left( \sigma, (M) \right) \right)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               (154)
                                                                                                                                                                                                            borelSigmaAlgebra \big(\sigma(\mathcal{O}), (M, \mathcal{O})\big) \Longleftrightarrow \Big(topologicalSpace\big((M, \mathcal{O}), ()\big)\Big) \land \\
                                                                                                                                                                                                                                                                                                                                                                                                                                             (generatedSigmaAlgebra(\sigma(\mathcal{O}), (\mathcal{O}, M)))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    # \sigma-algebra induced by a topology
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               (155)
                                                                                                                                  standardSigma(\sigma_s, ()) \iff \left(borelSigmaAlgebra\left(\sigma_s, \left(\mathbb{R}^d, standardTopology\right)\right)\right)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                (156)
```

$$lebesgueMeasure(\lambda, ()) \iff \left(measure\left(\lambda, \left(\mathbb{R}^d, standardSigma\right)\right) \right) \land$$

$$\left(\lambda \left(\times_{i=1}^d \left([a_i, b_i)\right)\right) = \sum_{i=1}^d \left(\sqrt[d]{\left(a_i - b_i\right)^2}\right) \right)$$
natural measure for \mathbb{R}^d (157)

$$measurableMap(f,(M,\sigma_{M},N,\sigma_{N})) \iff \left(measurableSpace((M,\sigma_{M}),())\right) \land \\ \left(measurableSpace((N,\sigma_{N}),())\right) \land \left(\forall_{B \in \sigma_{N}} \left(preimage(A,(B,f,M,N)) \in \sigma_{M}\right)\right) \\ \# \text{ preimage of measurable sets are measurable}$$

$$(158)$$

$$pushForwardMeasure(f \star \lambda_{M}, (f, M, \sigma_{M}, \mu_{M}, N, \sigma_{N})) \iff \left(measureSpace((M, \sigma_{M}, \mu_{M}), ())\right) \land \left(measurableSpace((N, \sigma_{N}), ())\right) \land \left(measurableMap(f, (M, \sigma_{M}, N, \sigma_{N}))\right) \land \left(\forall_{B \in N} \left(f \star \lambda_{M}(B) = \mu_{M} \left(preimage(A, (B, f, M, N))\right)\right)\right) \land \left(measure(f \star \lambda_{M}, (N, \sigma_{N}))\right) \right)$$
natural construction of a measure based primarily on measurable map (159)

$$nullSet\big(A,(M,\sigma,\mu)\big) \Longleftrightarrow \Big(measureSpace\big((M,\sigma,\mu),()\big)\Big) \wedge (A \in \sigma) \wedge \big(\mu(A) = 0\big) \tag{160}$$

$$almostEverywhere(p,(M,\sigma,\mu)) \Longleftrightarrow \Big(measureSpace((M,\sigma,\mu),())\Big) \land \Big(predicate(p,(M))\Big) \land \\ \Big(\exists_{A \in \sigma} \Big(nullSet(A,(M,\sigma,\mu)) \Longrightarrow \forall_{n \in M \setminus A} \big(p(n)\big)\Big)\Big)$$
the predicate holds true for all points except the points in the null set (161)

1.14 Lebesque integration

$$simpleTopology(\mathcal{O}_{simple}, ()) \iff \mathcal{O}_{simple} = subsetTopology(\mathcal{O}|_{\mathbb{R}_0^+}, (\mathbb{R}, standardTopology, \mathbb{R}_0^+))$$
 (162)

$$simpleSigma(\sigma_{simple}, ()) \iff borelSigmaAlgebra(\sigma_{simple}, (\mathbb{R}_{0}^{+}, simpleTopology))$$
 (163)

$$simpleFunction(s,(M,\sigma)) \Longleftrightarrow \left(measurableMap \bigg(s, \Big(M,\sigma, \mathbb{R}_0^+, simpleSigma \Big) \bigg) \right) \land \\ \left(finiteSet \bigg(image \bigg(B, \Big(M,s,M, \mathbb{R}_0^+ \Big) \bigg), () \bigg) \right) \right)$$

if the map takes on finitely many values on \mathbb{R}^+_0 (164)

$$characteristicFunction(X_A, (A, M)) \iff (A \subseteq M) \land \begin{pmatrix} map(X_A, (M, \mathbb{R})) \end{pmatrix} \land$$

$$\begin{pmatrix} \forall_{m \in M} \begin{pmatrix} X_A(m) = \begin{cases} 1 & m \in A \\ 0 & m \notin A \end{pmatrix} \end{pmatrix}$$
 (165)

$$\left(\text{THM}\right): simpleFunction(s, (M, \sigma_{M})) \Longrightarrow \left(finiteSet\left(image\left(Z, \left(M, s, M, \mathbb{R}_{0}^{+}\right)\right), ()\right)\right) \land \left(characteristicFunction\left(X_{A}, (A, M)\right)\right) \land \left(\forall_{m \in M}\left(s(m) = \sum_{z \in Z} \left(z \cdot X_{preimage\left(A, \left(\{z\}, s, M, \mathbb{R}_{0}^{+}\right)\right)}(m)\right)\right)\right)$$
(166)

 $exStandardSigma(\overline{\sigma_s}, ()) \iff \overline{\sigma_s} = \{A \subseteq \overline{\mathbb{R}} \mid A \cap R \in standardSigma\}$

ignores $\pm \infty$ to preserve the points in the domain of the measurable map (167)

$$nonNegIntegrable \big(f,(M,\sigma)\big) \Longleftrightarrow \Bigg(measurableMap \bigg(f, \Big(M,\sigma,\overline{\mathbb{R}},exStandardSigma\Big)\bigg) \bigg) \wedge \\ \Big(\forall_{m \in M} \big(f(m) \geq 0\big) \Big) \ \ (168)$$

$$nonNegIntegral\left(\int_{M}(fd\mu),(f,M,\sigma,\mu)\right) \Longleftrightarrow \left(measureSpace\left((M,\sigma,\mu),()\right)\right) \land \\ \left(measureSpace\left(\left(\overline{\mathbb{R}},exStandardSigma,lebesgueMeasure\right),()\right)\right) \land \\ \left(nonNegIntegrable(f,(M,\sigma))\right) \land \left(\int_{M}(fd\mu) = \sup\left(\left\{\sum_{z \in Z}\left(z \cdot \mu\left(preimage\left(A,\left(\{z\},s,M,\mathbb{R}_{0}^{+}\right)\right)\right)\right)\right\}\right) \\ \forall_{m \in M}(s(m) \leq f(m)) \land simpleFunction(s,(M,\sigma)) \land finiteSet\left(image\left(Z,\left(M,s,M,\mathbb{R}_{0}^{+}\right)\right),()\right)\}\right)) \\ \# \text{ lebesgue measure on } z \text{ reduces to } z \text{ (169)}$$

explicitIntegral
$$\iff \int (f(x)\mu(dx)) = \int (fd\mu)$$

alternative notation for lebesgue integrals (170)

$$(\text{THM}) : nonNegIntegral \left(\int (fd\mu), (f, M, \sigma, \mu) \right) \wedge nonNegIntegral \left(\int (gd\mu), (g, M, \sigma, \mu) \right) \Longrightarrow$$

$$(\text{THM}) \text{ Markov inequality: } \left(\forall_{z \in \mathbb{R}_0^+} \left(\int (fd\mu) \geq z \cdot \mu \left(preimage \left(A, \left([z, \infty), f, M, \overline{\mathbb{R}} \right) \right) \right) \right) \right) \wedge$$

$$\left(almostEverywhere \left(f = g, (M, \sigma, \mu) \right) \Longrightarrow \int (fd\mu) = \int (gd\mu) \right)$$

$$\left(\int (fd\mu) = 0 \Longrightarrow almostEverywhere \left(f = 0, (M, \sigma, \mu) \right) \right) \wedge$$

$$\left(\int (fd\mu) \leq \infty \Longrightarrow almostEverywhere \left(f < \infty, (M, \sigma, \mu) \right) \right)$$

$$(171)$$

(THM) Mono. conv.:
$$\left((f)_{\mathbb{N}} = \{ f_n \mid \land measurableMap \bigg(f_n, \Big(M, \sigma, \overline{R}, exStandardSigma \Big) \bigg) \land 0 \leq f_{n-1} \leq f_n \} \right) \land$$

$$\left(map \bigg(f, \Big(M, \overline{\mathbb{R}} \Big) \bigg) \right) \land \left(\forall_{m \in M} \Big(f(m) = \sup \big(f_n(m) \mid f_n \in (f)_{\mathbb{N}} \big) \big) \right) \Longrightarrow \left(\lim_{n \to \infty} \left(\int_M (f_n d\mu) \right) = \int_M (f d\mu) \right)$$

$$\# \text{ lengths now depend on } M, \sigma \text{ and limits can be pulled in or out of an integral }$$
 (172)

$$(\text{THM}): \operatorname{nonNegIntegral}\left(\int (fd\mu), (f, M, \sigma, \mu)\right) \wedge \operatorname{nonNegIntegral}\left(\int (gd\mu), (g, M, \sigma, \mu)\right) \Longrightarrow \\ \left(\forall_{\alpha \in \mathbb{R}_0^+} \left(\int \left((f + \alpha g)d\mu\right) = \int (fd\mu) + \alpha \int (gd\mu)\right)\right) \\ \text{$\#$ integral acts linearly and commutes finite summations } (173)$$

$$(\text{THM}): \left((f)_{\mathbb{N}} = \{ f_n \mid \land measurableMap \bigg(f_n, \bigg(M, \sigma, \overline{R}, exStandardSigma \bigg) \bigg) \land 0 \leq f_n \} \right) \Longrightarrow \left(\int \left(\left(\sum_{n=1}^{\infty} (f_n) \right) d\mu \right) = \sum_{n=1}^{\infty} \left(\int (f_n d\mu) \right) \right)$$

 $\# \sum_{n=1}^{\infty} f_n$ can be treated as $\lim_{n\to\infty} \sum_{i=1}^{n} f_n$ since $f_n \ge 0$ and it commutes with integral from monotone conv. (174)

$$integrable(f,(M,\sigma)) \Longleftrightarrow \left(measurableMap\Big(f,\Big(M,\sigma,\overline{\mathbb{R}},exStandardSigma\Big)\Big)\right) \land \\ \left(\forall_{m\in M}\Big(f(m)=max\big(f(m),0\big)-max\big(0,-f(m)\big)\Big)\right) \land \\ \left(measureSpace(M,\sigma,\mu) \Longrightarrow \left(\int \Big(max\big(f(m),0\big)d\mu\Big) < \infty \land \int \Big(max\big(0,-f(m)\big)d\mu\Big) < \infty \right)\right) \\ \# \text{ extra condition prevents the occurrence of the indeterminate } \infty - \infty \tag{175}$$

$$integral \left(\int (fd\mu), (f,M,\sigma,\mu) \right) \Longleftrightarrow \left(nonNegIntegral \left(\int (f^+d\mu), \left(max(f,0),M,\sigma,\mu \right) \right) \right) \wedge \left(nonNegIntegral \left(\int (f^-d\mu), \left(max(0,-f),M,\sigma,\mu \right) \right) \right) \wedge \left(integrable \left(f,(M,\sigma) \right) \right) \wedge \left(\int (fd\mu) = \int \left(f^+d\mu \right) - \int \left(f^-d\mu \right) \right)$$

$$(\text{THM}): \left(map(f, (M, \mathbb{C})) \right) \Longrightarrow \left(\int (fd\mu) = \int \left(Re(f)d\mu \right) - \int \left(Im(f)d\mu \right) \right) \tag{177}$$

$$(\text{THM}): \operatorname{integral}\left(\int (fd\mu), (f, M, \sigma, \mu)\right) \wedge \operatorname{integral}\left(\int (gd\mu), (g, M, \sigma, \mu)\right) \Longrightarrow \left(\operatorname{almostEverywhere}\left(f \leq g, (M, \sigma, \mu)\right) \Longrightarrow \int (fd\mu) \leq \int (gd\mu)\right) \wedge \left(\forall_{m \in M}\left(f(m), g(m), \alpha \in \mathbb{R}\right) \Longrightarrow \int \left((f + \alpha g)d\mu\right) = \int (fd\mu) + \alpha \int (gd\mu)\right)$$
(178)

$$\text{(THM) Dominant convergence: } \left((f)_{\mathbb{N}} = \{ f_n \, | \, \land measurableMap \bigg(f_n, \Big(M, \sigma, \overline{R}, exStandardSigma \Big) \big) \} \right) \land \\ \left(map(f, (M, \overline{\mathbb{R}})) \right) \land \left(almostEverywhere \bigg(f(m) = \lim_{n \to \infty} \big(f_n(m) \big), (M, \sigma, \mu) \bigg) \right) \land$$

$$\left(\frac{nonNegIntegral}{nonNegIntegral} \left(\int (gd\mu), (g, M, \sigma, \mu) \right) \right) \wedge \left(\left| \int (gd\mu) \right| < \infty \right) \wedge \left(\frac{almostEverywhere}{nonNegIntegral} \left(|f_n| \le g, (M, \sigma, \mu) \right) \right)$$
if all $f_n(m)$ are bounded by some integrable $|g(m)| \Longrightarrow$
then all $f_n(m)$ including f satisfy bounded and integrable properties
$$\left(\forall_{\phi \in \{f\} \cup (f)_{\mathbb{N}}} \left(\frac{integrable}{nonNegIntegrable} \left(\phi, (M, \sigma) \right) \right) \right) \wedge \left(\lim_{n \to \infty} \left(\int \left(|f_n - f| d\mu \right) = 0 \right) \right) \wedge \left(\lim_{n \to \infty} \left(\int \left(f_n d\mu \right) \right) = \int (fd\mu) \right)$$
(179)

1.15 Function spaces

(180) $curLp(\mathcal{L}^p,(p,M,\sigma,\mu)) \iff (p \in \mathbb{R}) \land (1 \le p < \infty) \land$ $(\mathcal{L}^p = \{ map(f, (M, \mathbb{R})) \mid measurableMap(f, (M, \sigma, \mathbb{R}, standardSigma)) \land \int (|f|^p d\mu) < \infty \})$ (181) $vectorSpace(V, (+, \cdot)) \iff (map(+, (V \times V, V))) \land (map(\cdot, (\mathbb{R} \times V, V))) \land$ $(\forall_{v,w\in v}(v+w=w+v))\wedge$ $(\forall_{v,w,x\in v}((v+w)+x=v+(w+x)))\wedge$ $(\exists_{\boldsymbol{\varrho}\in V}\forall_{v\in V}(v+\boldsymbol{\varrho}=v))\wedge$ $(\forall_{v \in V} \exists_{-v \in V} (v + (-v) = \boldsymbol{0})) \wedge$ $(\forall_{a,b\in\mathbb{R}}\forall_{v\in V}(a(b\cdot v)=(ab)\cdot v))\wedge$ $(\exists_{1\in\mathbb{R}}\forall_{v\in V}(1\cdot v=v))\wedge$ $(\forall_{a,b\in\mathbb{R}}\forall_{v\in V}((a+b)\cdot v=a\cdot v+b\cdot v))\wedge$ $(\forall_{a \in \mathbb{R}} \forall_{v,w \in V} (a \cdot (v+w) = a \cdot v + a \cdot w))$ # behaves similar as vectors should i.e., additive, scalable, linear distributive (182) $vecLp(\mathcal{L}^p, (+, \cdot, p, M, \sigma, \mu)) \Longleftrightarrow (curLp(\mathcal{L}^p, (p, M, \sigma, \mu))) \wedge (\forall_{f,g \in \mathcal{L}^p} \forall_{m \in M} ((f+g)(m) = f(m) + g(m))) \wedge (\forall_{f,g \in \mathcal{L}^p} \forall_{m \in M} ((f+g)(m) = f(m) + g(m))) \wedge (\forall_{f,g \in \mathcal{L}^p} \forall_{f,g \in \mathcal$ $(\forall_{f \in \mathcal{L}^p} \forall_{s \in \mathbb{R}} \forall_{m \in M} ((s \cdot f)(m) = (s)f(m))) \land (vectorSpace(\mathcal{L}^p, (+, \cdot)))$ (183) $seminorm(\wr \wr \cdot \wr \wr, (+, \cdot, p, M, \sigma, \mu)) \Longleftrightarrow (vecLp(\mathcal{L}^p, (+, \cdot, p, M, \sigma, \mu))) \land (map(\wr \wr \cdot \wr \wr, (\mathcal{L}^p, \mathbb{R}))) \land (map(\wr \wr \wr \wr (\mathcal{L}^p, \mathbb{R}))) \land (map(\wr \wr \cdot \wr \wr (\mathcal{L}^p, \mathbb{R}))) \land (map(\wr \wr \cdot \wr \wr (\mathcal{L}^p, \mathbb{R}))) \land (map(\wr \wr \cdot \wr (\mathcal{L}^p, \mathbb{R}))) \land (map(\wr \mathcal{L}^p, \mathbb{R}))) \land (map(\wr \mathcal{L}^p, \mathbb{R})) \land (map(\wr \mathcal{L}^p, \mathbb{R})) \land (map(\wr \mathcal{L}^p, \mathbb{R})) \land (map(\wr \mathcal{L}^p, \mathbb{R}))) \land (map(\wr \mathcal{L}^p, \mathbb{R})) \land (map(\wr \mathcal{L}^p, \mathbb{R})) \land (map(\wr \mathcal{L}^p, \mathbb{R}))) \land (map(\wr \mathcal{L}^p, \mathbb{R})) \land (map(\wr \mathcal{L$ $(\forall_{f \in \mathcal{L}^p} (0 \le \wr \wr f \wr \wr = (\int (|f|^p d\mu))^{1/p})) \land$ $(\forall_{f \in \mathcal{L}^p} \forall_{s \in \mathbb{R}} (\wr ls \cdot f \wr l) = (|s|) \wr lf \wr l)) \land$ $(\forall_{f,g\in\mathcal{L}^p}(\wr lf+g))=(\wr f)(l+l)(g)(l)$ (184) $(THM): seminorm(\wr \wr \cdot \wr \wr, (+, \cdot, p, M, \sigma, \mu)) \Longrightarrow$ $(\forall_{f \in \mathcal{L}^p} (\wr f \wr \wr = 0 \Longrightarrow almostEverywhere (f = \mathbf{0}, (M, \sigma, \mu))))$ # not an expected property from a norm (185) $norm(||\cdot||, (+, \cdot, p, M, \sigma, \mu)) \iff (seminorm(||\cdot||, (+, \cdot, p, M, \sigma, \mu))) \land (||f|| = 0 \implies f = 0)$ # some of the parameters can be omitted for defining norms on general vector spaces (186) $Lp(L^p,((+,\cdot,p,M,\sigma,\mu))) \iff (vecLp(\mathcal{L}^p,(+,\cdot,p,M,\sigma,\mu))) \wedge$ $(L^p = quotientSet(\mathcal{L}^p/\sim, (\mathcal{L}^p, almostEverywhere(=, (??M, ??\sigma, ??\mu)))))$ # functions in L^p have abs pow p and finite integral (187)14mins from end(188)

2 Statistics

2.1 Overview

# DELET THIS! gg indians	(189)
$randomExperiment(X,(\Omega)) \Longleftrightarrow \forall_{\omega \in \Omega}(outcome(\omega,(X)))$	(190)
$sampleSpace(\Omega,(X)) \Longleftrightarrow \Omega = \{\omega outcome(\omega,(X))\}$	(191)
$event(A,(\Omega)) \Longrightarrow A \subseteq \Omega \ \# \ { m that \ is \ of \ interest}$	(192)
$eventOccured(A,(\omega,\Omega)) \Longleftrightarrow \omega \in A, \Omega \land event(A,(\Omega))$	(193)
$algebra(\mathcal{F}_0,(\Omega)) \iff (\mathcal{F}_0 \subseteq \mathcal{P}(\Omega)) \land (\Omega = T) \land ($	
$(\Omega \in \mathcal{F}_0) \land \\ (\forall_{A \in \mathcal{F}_0} (A^C \in \mathcal{F}_0)) \land$	
$(\forall_{A,B\in\mathcal{F}_0}(A\cup B\in\mathcal{F}_0))$ # but this is unable to capture some countable events	(194)
$\sigma\text{-}algebra(\mathcal{F},(\Omega)) \iff (\mathcal{F}_0 \subseteq \mathcal{P}(\Omega)) \land$	
$(\Omega \in \mathcal{F}) \land \\ (\forall_{A \in \mathcal{F}} (A^C \in \mathcal{F})) \land$	
$(\forall_{F \subseteq \mathcal{F}}(\neg uncountablyInfinite(F,()) \Longrightarrow \cup F \in \mathcal{F}))$	(195)

3 Statistical Learning Theory

3.1 Overview

	(196)
$curve-fitting/explaining \neq prediction$	(197)
$ill-defined problem + solution space constraints \Longrightarrow well-defined problem$	(198)
x # input ; y # output	(199)
$S_n = \{(x_1, y_1), \dots, (x_n, y_n)\} $ # training set	(200)
$f_S(x)\!\sim\! y\; \# \; { m solution}$	(201)
$each(x,y) \in p(x,y) \ \# \text{ training data } x,y \text{ is a sample from an unknown distribution } p$	(202)
$V(f(x),y)\!=\!d(f(x),y)\;\#\; ext{loss function}$	(203)
$I[f] = \int_{X imes Y} V(f(x), y) p(x, y) dx dy \; \# \; ext{expected error}$	(204)

$I_n[f] = rac{1}{n} \sum_{i=1}^n V(f(x_i), y_i) \; \# \; ext{empirical error}$	(205)
$probabilisticConvergence(X,()) \Longleftrightarrow \forall_{\epsilon>0} \lim_{n \to \infty} Pxn - x \leq \epsilon = 0$	(206)
I-Ingeneralization error	(207)
well-posed := exists, unique, stable; elseill-posed	(208)

3.2 Background maths

$$\#$$
 refer to 2 functional analysis and 1 probability pdfs (209)

4 Machine Learning

4.0.1 Overview

X # input ; Y # output ; $S(X,Y)$ # dataset	
learned parameters = parameters to be fixed by training with the dataset	
hyperparameters = parameters that depends on a dataset	
validation = partitions dataset into training and testing partitions, then evaluates the accuracy of the parameters learned from the training partition in predicting the	
outputs of the testing partition # useful for fixing hyperparameters	
cross-validation = average accuracy of validation for different choices of testing partition	
$\mathbf{L1}\!=\!\mathbf{scales}$ linearly ; $\mathbf{L2}\!=\!\mathbf{scales}$ quadratically	
$d\!=\!$ distance=quantifies the the similarity between data points	
$d_{L1}(A,B) = \sum_{p} A_p - B_p \ \# \ ext{Manhattan distance}$	
$d_{L2}(A,B)\!=\!\sqrt{\sum_p{(A_p\!-\!B_p)^2}}~\#$ Euclidean distance	
\mathbf{kNN} classifier=classifier based on k nearest data points	
$s\!=\!{f class}$ score=quantifies bias towards a particular class	

$s_{linear} = f_{c \times 1}(x_{n \times 1}, W_{c \times n}, b_{c \times 1}) = W_{c \times n}x_{n \times 1} + b_{c \times 1} \# \text{ linear score function}$	(221)
$l \! = \! \mathbf{loss} \! = \! \mathbf{quantifies}$ the errors by the learned parameters	(222)
$l \! = \! rac{1}{ c_i } \sum_{c_i} l_i \; \# \; ext{average loss for all classes}$	(223)
$l_{SVM_i}\!=\!\sum_{y_i\neq c_i}\max(0,s_{y_i}\!-\!s_{c_i}+1)\;\#\;\text{SVM hinge class loss function:}$ $\#\;\text{ignores incorrect classes with lower scores including a non-zero margin}$	(224)
$l_{MLR_i} \!=\! -\log\!\left(rac{e^{s_{c_i}}}{\sum_{y_i}e^{y_i}} ight) \# ext{ Softmax class loss function}$	(205)
# lower scores correspond to lower exponentiated-normalized probabilities R =regularization=optimizes the choice of learned parameters to minimize test error	(225) (226)
$\lambda~\#$ regularization strength hyperparameter	(227)
$R_{L1}(W) = \sum_{W_i} W_i \ \# \ ext{L1 regularization}$	(228)
$R_{L2}(W) \! = \! \sum_{W_i} \! W_i^2 \; \# \; ext{L2 regularization}$	(229)
$L'\!=\!L\!+\!\lambda R(W)$ # weight regularization	(230)
$ abla_W L = \overrightarrow{\frac{\partial}{\partial W_i}} L = ext{loss gradient w.r.t. weights}$	(231)
$\frac{\partial L_E}{\partial W_I} = \frac{\partial L_L}{\partial W_I} \frac{\partial L_E}{\partial L_L} \# \text{ loss gradient w.r.t. input weight in terms of external and local gradients}$	(232)
$s\!=\!{f forward\ API}$; $rac{\partial L_L}{\partial W_I}\!=\!{f backward\ API}$	(233)
$W_{t+1}\!=\!W_{t}\!-\! abla_{W_{t}}L$ # weight update loss minimization	(234)
TODO:Research on Activation functions, Weight Initialization, Batch Normalization	(235)
review 5 mean var discussion/hyperparameter optimization/baby sitting learning	(236)

TODO loss L or l ??