Applied Macroeconometrics 2021

Assignment Part I "Time series econometrics"

Exercise 1. Multivariate time series modelling

Aruba is an island and a constituent country of the Netherlands in the southern Caribean sea. Before COVID-19, about three-quarters of the Aruban gross national product was earned through tourism and related activities. Most tourists came from North America, with a market-share of 73.3%, followed by Latin America with 15.2% and Europe with 8.3%.

The spreadsheet tourism series.xlsx has monthly series of stay-over visitors, visitor's nights, cruise visitors and ship calls.

- Design informative graphs of and describe patterns in the series of cruise visitors and stay-over visitors to Aruba.
- How would you proceed modelling the relationship between the two variables?

Calculate natural logarithms and apply seasonal adjustment filters, X-13 ARIMA SEATS and CAMPLET (the program and a brief manual are available at www.camplet.net; for a brief description see Abeln and Jacobs (JBCR 2019)) to the two visitors series.

- Compare outcomes for the seasonally adjusted series data.
- Do the seasonal adjustment filters produce similar seasonal patterns?

- What happens if the last year of quarterly observations is discarded in the seasonal adjustment?
- Do the seasonally adjusted data lead to changes in your modelling approach described above?

Exercise 2. Stationarity and Granger-causality

- Test both visitors series for unit roots using ADF and KPSS tests.

 What are your findings?
- Test the two seasonally adjusted visitors series for Granger-causality.

 What do you find? Do you think this outcome is plausible? Motivate your answer.

Exercise 3. VAR and VECM

Columns 2–5 and 6–9 of Table 1 show two types of impulse responses with standard deviation between brackets of the VAR model of the logs of seasonally adjusted series, with a constant and a trend and three lags.

- Which columns give orthogonalized IRs (OIRs) and which generalized IRs? What is the ordering used in the OIRs? Can you comment on the plausibility of this assumption?
- Rewrite a vector autoregressive (VAR) system with three lags in z_t , which consists of two variables, as a Vector Error Correction Model.
- What are the possible outcomes and implications for the rank of the parameter matrix of z_{t-1} in the Vector Error Correction Model?

	Response of stav-over visito
esponses	Response of critise visitors:
Table 1: Impulse responses	·
	Besponse of critise visitors:

	Response of	Besponse of cruise visitors:	Response of stav-over visitors	x-over visitors:	Response of	Besponse of cruise visitors:	Response of st	Besponse of stav-over visitors:
Period	cruise visitors	stay-over visitors	cruise visitors s	stay-over visitors	cruise visitors	stay-over visitors	cruise visitors	stay-over visitors
-	0 1600	06000	0000	77.7	0.1800	0000	0000	20.0
_	0.1000	00000-	-0.0003	0.0477	0.1000	0.0000	-0.0003	0.0477
	(0.0092)	(0.0131)	(0.0039)	(0.0028)	(0.0092)	(0.0000)	(0.0039)	(0.0028)
2	0.0716	0.0315	0.0049	0.0256	0.0716	0.0329	0.0049	0.0257
	(0.0141)	(0.0146)	(0.0045)	(0.0042)	(0.0141)	(0.0134)	(0.0045)	(0.0042)
က	0.0498	0.0135	0.0043	0.0267	0.0498	0.0144	0.0043	0.0268
	(0.0146)	(0.0148)	(0.0049)	(0.0046)	(0.0146)	(0.0142)	(0.0049)	(0.0046)
4	0.0160	-0.0118	-0.0013	0.0254	0.0160	0.0115	-0.0013	0.0253
	(0.0137)	(0.0100)	(0.0050)	(0.0037)	(0.0137)	(0.0100)	(0.0050)	(0.0038)
5	-0.0004	-0.0155	-0.0016	0.0208	-0.0004	-0.0155	-0.0016	0.0208
	(0.0118)	(9600.0)	(0.0049)	(0.0042)	(0.0118)	(0.0097)	(0.0049)	(0.0042)
9	-0.0065	-0.0209	-0.0028	0.0188	-0.0065	-0.0211	-0.0028	0.0188
	(0.0101)	(0.0096)	(0.0048)	(0.0044)	(0.0101)	(0.0096)	(0.0048)	(0.0044)
7	-0.0049	-0.0203	-0.0029	0.0173	-0.0049	-0.0204	-0.0029	0.0173
	(0.0065)	(0.0088)	(0.0043)	(0.0046)	(0.0065)	(0.0088)	(0.0043)	(0.0046)
∞	-0.0026	-0.0177	-0.0025	0.0158	-0.0026	-0.0177	-0.0025	0.0158
	(0.0043)	(0.0078)	(0.0038)	(0.0048)	(0.0043)	(0.0078)	(0.0038)	(0.0048)
6	0.0001	-0.0152	-0.0021	0.0148	0.0001	-0.0152	-0.0021	0.0147
	(0.0037)	(0.0071)	(0.0033)	(0.0050)	(0.0037)	(0.0071)	(0.0033)	(0.0050)
10	0.0015	-0.0131	-0.0018	0.0137	0.0015	-0.0131	-0.0018	0.0137
	(0.0037)	(0.0066)	(0.0030)	(0.0051)	(0.0037)	(0.0066)	(0.0030)	(0.0051)

- Do the graphs of the series and the impulse responses in Table 1 suggest the existence of a long-run cointegrating relation between cruise visitors and stay-over visitors (both seasonally adjusted and in logs)?
- Carry out a co-integration test. What do you find?

Exercise 4. State Space Forms

- Write VAR(2) and MA(2) and ARMA(2,2) processes in state-space form (SSF).
- Download the seasonally adjusted U.S. real GDP series.
- (5 points) Estimate a Beveridge-Nelson trend-cycle decomposition model, assuming a unit root plus drift for the trend (τ_t) , an AR(2) process for the cycle (c_t) , and uncorrelated innovations (η_t, ν_t) .