libVNF: building VNFs made easy

Priyanka Naik, Akash Kanase, Trishal Patel, Mythili Vutukuru

Dept. of Computer Science and Engineering Indian Institute of Technology, Bombay

SoCC'18 11th October, 2018

NFV ecosystem

NFV: Network Function Virtualization

VNF: Virtual Network Function

NFV ecosystem

- Will they give good performance?
- Is it easy to build them?

Orchestrator **VNF VNF VNF VNF** VM VM VM VM Hypervisor

NFV: Network Function Virtualization

VNF: Virtual Network Function

VNF code developed by VNF developer

VNF code developed by VNF developer

38% EPC code → read/write packets

VNF code developed by VNF developer

38% EPC code → read/write packets

VNF Processing logic

VNF Framework

What is required from VNF frameworks?

- Requirement 1: Support for both L3 and Transport VNF
- Requirement 2: Flexibility of network stack
- Requirement 3: Support for distributed state management

What is required from VNF frameworks?

- Requirement 1: Support for both L3 and Transport VNF
- Requirement 2: Flexibility of network stack
- Requirement 3: Support for distributed state management

Layer 3 VNFs

Network address translator

Layer 3 Load balancer

Layer 3 VNFs

Network address translator

Layer 3 Load balancer

Layer 3 VNFs

Network address translator

Layer 3 Load balancer

Frameworks: netbricks, YANFF

Layer 3 VNFs

Network address translator

Layer 3 Load balancer

Frameworks: netbricks, YANFF

Transport Layer VNFs

Layer 3 VNFs Network address Laver 3 Load balancer translator Header manipulations N/W layer Data link layer

Frameworks: netbricks, YANFF

Layer 3 VNFs

Network address translator

Layer 3 Load balancer

Frameworks: netbricks, YANFF

Request processing Connection termination N/W layer Data link layer

Frameworks: mTCP, TLDK

Transport Layer VNFs

Netbricks: Taking the v out of nfv. In Proc. of OSDI'16

YANFF: https://www.openhub.net/p/yanff

mTCP: A highly scalable user-level tcp stack for multicore systems. In Proc. of NSDI'14

TLDK: https://wiki.fd.io/view/TLDK

Layer 3 VNFs

Network address translator

Layer 3 Load balancer

Frameworks: netbricks, YANFF

Netbricks: Taking the v out of nfv. In *Proc. of OSDI'16*

YANFF: https://www.openhub.net/p/yanff

mTCP: A highly scalable user-level tcp stack for multicore systems. In Proc. of NSDI'14

TLDK: https://wiki.fd.io/view/TLDK

Transport Layer VNFs

Frameworks: mTCP, TLDK

Are these frameworks enough?

Existing transport-layer frameworks are event-driven

Existing transport-layer frameworks are event-driven

Pros:

Existing transport-layer frameworks are event-driven

Pros:

Efficient for multi-core scalability

Existing transport-layer frameworks are event-driven

Pros:

Efficient for multi-core scalability

Existing transport-layer frameworks are event-driven

Pros:

Efficient for multi-core scalability

Cons:

Existing transport-layer frameworks are event-driven

Pros:

Efficient for multi-core scalability

Cons:

Needs explicit request state storage

Existing frameworks do not provide this support

What is required from VNF frameworks?

- Requirement 1: Support for both Layer 3 and Transport VNF
- Requirement 2: Flexibility of network stack
- Requirement 3: Support for distributed state management

Flexibility of network stack

Kernel Stack

Flexibility of network stack

Kernel Stack

Application VNF

Kernel network

stack

vNIC

Kernel Bypass Stack

Application VNF
+ userspace stack
DPDK/netmap
vNIC

Flexibility of network stack

Kernel Stack

Application VNF

Kernel network | stack | vNIC

Kernel Bypass Stack

Application VNF
+ userspace stack
DPDK/netmap
vNIC

Easy switch between stacks

What is required from VNF frameworks?

- Requirement 1: Support for both L3 and Transport VNF
- Requirement 2: Flexibility of network stack
- Requirement 3: Support for distributed state management

State Synchronization

State Migration openNF, split/merge

Support for distributed state management

None of above support transport layer VNFs

Stateless network functions: Breaking the tight coupling of state and processing. In *Proc. of NSDI'17* Split/merge: System support for elastic execution in virtual middleboxes. In *Proc. of NSDI'13* Opennf: Enabling innovation in network function control. In *Proc. of SIGCOMM'14*

Summary of VNF Frameworks

Requirement/ Framework	netbricks	Flick	StatelessNF	Split-Merge/ OpenNF	libVNF
Layer 3 + App- layer support	no	yes	no	no	yes
Flexibility of network stack	no	no	no	no	yes
Distributed State Management	no	no	yes	yes	yes

Netbricks: Taking the v out of nfv. In Proc. of OSDI'16

Flick: Developing and running application-specific network services. In *Proc. of USENIX ATC'16*Stateless network functions: Breaking the tight coupling of state and processing. In *Proc. of NSDI'17*Split/merge: System support for elastic execution in virtual middleboxes. In *Proc. of NSDI'13*

Opennf: Enabling innovation in network function control. In Proc. of SIGCOMM'14

libVNF Design Goals

R: Requirement

Need for request state

Need for request state

VNF processing layer **REQUEST OBJECT** network stack (mTCP) (connection) DPDK and netmap layer (packet)

Evaluation

- Overhead of libVNF
- Scalability with cores
- Benefits of libVNF

VNF A, C: 4 core, 4GB RAM

VNF B: 4 GB RAM, cores varied

Evaluation

- Overhead of libVNF
- Scalability with cores
- Benefits of libVNF

Overhead check

Overhead check

<5% overhead of libVNF
DPDK~ netmap performance

Evaluation

- Overhead of libVNF
- Scalability with cores
- Benefits of libVNF

Core scalability

Core scalability

scales linearly with cores

Evaluation

- Overhead of libVNF
- Scalability with cores
- Benefits of libVNF

Building VNFs

VNF	Performance Overhead of libVNF	LoC Saved
IMS (IP Multimedia Subsystem)	3.4%	42%
EPC (LTE-Evolved Packet Core)	5.5%	38%
Layer 3 Load Balancer	14%	52%

Building VNFs

VNF	Performance Overhead of libVNF	LoC Saved
IMS (IP Multimedia Subsystem)	3.4%	42%
EPC (LTE-Evolved Packet Core)	5.5%	38%
Layer 3 Load Balancer	14%	52%

Low overhead in app-layer VNF Higher overhead in L3 VNF

Summary

- Library to ease building of VNFs
- Expressive to build L3 and App-layer VNF
- Supports multiple network stacks
- Low performance overhead

https://github.com/networkedsystemsIITB/libVNF ppnaik@cse.iitb.ac.in

Thank You

Setup

Setup

Data Store VM: 6 core, 16GB RAM

LB: 1 core, 4GB RAM

36