Lab 2: From Genomics to Sequence Alignment

Intro to Genomics and Sequence Alignment Techniques

As. Univ. Drd. Ing. Bozdog Alexandru

Learning Objectives

- ✓ Define genus, genome, sequences
- ✓ ADN \rightarrow ARN \rightarrow protein
- Recognize biological file formats
- ✓ Understanding sequence alignment
- ✓ Practical application with BLAST, Clustal and Biopython

What is Genomics?

- Study of the whole DNA of an organism
- Fields of interest: Structural, Functional, Comparative, Translational
- Data obtained from high-throughput sequencing
- Relevance → medicine, evolution, biotechnology

Central Dogma

DNA → **RNA** → **Protein**

• Transcription and Translation

Each level - different alphabet

Flow of information = flow of data

Central Dogma

Sequences and Biological formats

Туре	Alphabet	Format	Example
DNA	ATCG	FASTA / FASTQ	>TP53 ATGCGTAAC
RNA	AUCG	FASTA	AUGCGAU
Protein	20 aa	FASTA / PDB	MKTAYIAKQ

Ribbon Diagrams

Why sequence alignment?

- Detect homology (common origin)
- Identify mutations, insertions, deletions

- Deduce function and structure
- Build phylogenetic trees

What is Sequence Alignment

- Rearranging sequences to maximize similarity
- Introducing gaps (–) for insertions/deletions

Calculating an optimal score

Ancestral sequence:

Sequence derived from ancestral sequence:

mismatches indels

Alignment:

Types of Alignment

Туре	Purpose	Algorithm	Use case
Global	Full length	Needleman-Wunsch	Similar genes
Local	Best fit region	Smith-Waterman	Motifs, domains
Semi-global	No edge loss	Hybrid	NGS Reads

Scores and Substitution Matrices

$$S = \sum_{i=1}^{L} s(x_i, y_i) - \sum$$
 penalizări pentru gap-uri

unde:

- s(x_i, y_i) este scorul din matrice (ex. BLOSUM);
- penalizările provin din evenimentele de inserţie/deleţie.

- DNA: +1 match / -1 missmatch
- Protein: Matrices (Blossum / PAL)
- Gap penalties: linear, afine
- Goal: Maximize score

Α	С	G	Т	
-1	-2	-2	1	
-2	-2	-2	-1	
-2	-2	-2	0	

Dynamic programming

- Initiate matrix
- PRecurently: S(i, j) =
 max(diag+match, stânga+gap,
 sus+gap)
- ③ Backtracking → Optimal Alignment
- 4O(n×m) Complexity

Counting all possible paths from top left to bottom right of a m X n matrix

The all possible paths from top left to bottom right is: 20

Local vs Global Alignment

• Global: Covers complete sequence

• Local: covers only maximum score region

• **BLAST** = quick Smith-Waterman

Local Alignment

Multiple Sequence Alignment

 2 or more sequences aligned simultaneously

- Heuristics: progressive(Clustal Ω), consistency(T-Coffee)
- Identify conserved motifs, domains, evolutionary relationships

Tools and Libraries

from Bio import pairwise2

Type1 alignment: continuous match

Type2 alignment: discontinuous matches in the same subject

CLI: needle, water, blastn, clustalo

Python (Biopython): pairwise2, AlignIO,
Bio.Blast.NCBIWWW

Results : Alignment, Score, E-value

Alignment Evaluation

Metric	Semnification	Interpretation
Score	Sum of matches - penalties	Algorithm specific
% Identity	Exact matches - length	Similarity Degree
E-value	Probability Score appears by chance	Smaller = More significant
Consensus	Dominant character per column	MSA/ conservation

Use Cases & Conclusions

- Identify mutations and SNP-s
- Construct phylogenetic trees
- Predict proteic domains
- Drug repositioning
- Metagenomic analysis

- Genomics = data source
- ✓ Sequence alignment = First step of analysis
- Instruments: BLAST, Clustal, Biopython
- Next lab: Aligning NGS reads and variant analysis