

Lesson Objectives

By the end of this lesson, students will be able to:

- Identify key deep learning architectures and their applications.
- Understand the differences between FNNs, CNNs, RNNs, and Transformers.
- Implement a basic CNN model for image classification.
- Load and fine-tune a Transformer model for text classification.

What is a Deep Learning Architecture?

Deep learning architectures define **how neural networks process and learn from data**. Different architectures are optimized for different types of input data, such as structured numbers, images, or text.

Key Takeaway: The choice of architecture impacts model performance, efficiency, and suitability for specific AI tasks.

Traditional Deep Learning Architectures

Feedforward Neural Networks (FNNs)

Used primarily for structured/tabular data. These networks process inputs in a single direction, from input to output.

Convolutional Neural Networks (CNNs)

Designed for image processing, CNNs extract spatial patterns using convolutional layers.

Recurrent Neural Networks (RNNs)

Specialized for sequential data, where order matters.

Coding Walkthrough: Implementing a Simple CNN

In this walkthrough we are going to achieve two things:

- 1. **Train** a basic CNN to classify images from the **MNIST dataset**.
- 2. **Understand** how convolutional layers extract spatial features.

About the MNIST Dataset:

The MNIST dataset is a collection of **70,000 grayscale images of handwritten digits** (0-9), commonly used for training image classification models. Each image is 28x28 pixels and labeled with its corresponding digit. MNIST serves as a benchmark dataset for testing

different machine learning and deep learning techniques, making it an ideal starting point for working with Convolutional Neural Networks (CNNs).

Python Code:

```
Copy
import tensorflow as tf
from tensorflow import keras
import matplotlib.pyplot as plt
# Load MNIST dataset
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0 # Normalize pixel values
# Define a simple CNN model
model = keras.Sequential([
    keras.layers.Conv2D(32, (3,3), activation='relu', input_shape=(28, 28, 1)),
    keras.layers.MaxPooling2D((2,2)),
    keras.layers.Flatten(),
    keras.layers.Dense(64, activation='relu'),
    keras.layers.Dense(10, activation='softmax')
])
# Compile and train the model
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=[
model.fit(x_train[..., None], y_train, epochs=3, validation_data=(x_test[..., Non
```

Discussion Questions:

- What does each CNN layer do in this model?
- How does this architecture differ from a simple feedforward network?

The Rise of Transformers

Why Transformers?

- Overcame the limitations of RNNs in processing sequential data.
- Introduced the concept of **self-attention**, which allows models to focus on important words or pixels.

Sequential Proccessing in RNNs

Parallel Processing in Transformers

Key Takeaway: Transformers are faster than RNNs because they process all input tokens simultaneously using self-attention, whereas RNNs process tokens sequentially, making them slower and less efficient for long sequences.

Example Applications:

- Text Processing: GPT, BERT, T5
- Image Analysis: Vision Transformers (ViTs)

Coding Walkthrough: Fine-Tuning a Transformer for Text Classification

Objective:

• Load a pre-trained Transformer model (**DistilBERT**) and fine-tune it for sentiment classification.

Python Code:

Copy

from transformers import pipeline

Load a pre-trained Transformer model for text classification
classifier = pipeline("text-classification", model="distilbert-base-uncased-finet")

```
# Test with sample sentences
print(classifier("This movie was amazing!"))
print(classifier("T did not enjoy this product at all "))
```

Discussion Questions:

- What advantages do Transformers have over RNNs?
- Why are pre-trained models important in deep learning?

Summary & Key Takeaways

- Different deep learning architectures specialize in different data types.
- CNNs excel at image processing, while Transformers dominate text and multimodal tasks.
- Choosing the right architecture is essential for model performance and efficiency.
- Pre-trained models can reduce training time and improve results.

< Previous

© 2025 General Assembly Attributions

Next >