

Processos estocásticos I

Universidade de Fortaleza

MESTRADO EM INFORMÁTICA APLICADA

Trabalho Final

Autor: Abílio Costa da Silva Júnior

Matricula: 1724333

Autor: Leonardo Cavalcante Paixão

Matricula: 16259993

1 Metodologia

Um projeto de um simulador de epidemias foi criado com objetivo emular um padrão de infecção de um grupo de indivíduos que dentro de uma matriz quadrada n por n na qual um dos individuo encontram-se em estado infectado e em uma posição aleatória dentro desta matriz. Uma serie de propriedades ainda foram implementadas, estas propriedades dizem respeito a movimentação espacial, taxa de mortalidade, imunidade, taxa de nascimento, etc.

O simulador foi desenvolvido conforme os requisitos descritos no documento que pode ser visto no apêndice A. Este foi inteiramente desenvolvido em linguagem JAVA versão 1.8., utilizando-se da interface de desenvolvimento, Eclipse versão Oxygen.3a (Release (4.7.3a) Build id: 20180405 - 1200). O simulador foi implementado com base em uma primitiva e simples máquina de estados, onde indivíduos passavam de sadios ao óbito ou de diversos outros estados descritos abaixo.

Possuímos em nosso simulador quatro tipos de indivíduos: indivíduos imunes, infectados, pseudo-imunes e sadios. Os indivíduos imunes não poderiam ser infectados pelos indivíduos infectados. Os indivíduos pseudo-imunes possuíam uma taxa de imunidade e os indivíduos sadios eram sempre infectados.

Além destas propriedades, o simulador possuía uma serie de métricas relativas ao nascimento, mortes e movimentação espacial por parte destes indivíduos, todos estes detalhes estão descritos no documento inicial no apêndice A.

O simulador java possuía cinco classes (1) que implementavam o simulador, estas foram separas conforme funcionalidades e função. A classe principal chamada Simulador.java era responsável pela simulação enquanto que as outras classes ficavam responsáveis pela aquisição dos dados gerados pela simulação, executar os eventos de nascimentos e mortes, utilidades gerais e etc.

Nome **Função** Simulador.java Executa a função de simulação, setup inicial da matriz, atualização temporal, movimentação espacial dos indivíduos, infecção. Dados.java Controla a quantidade de indivíduos que são criados e o tipo de indivíduos que são criados Individuo.java Classe que representa os indivíduos, seguintes propriedades: Posicao, tipo e idade. Controla a ocorrência dos eventos de acidentes, nasci-Eventos.java mentos e mortes. Utils.java Concentra alguns métodos que servem para facilitar o fluxo de trabalho, entre os mais importantes estão a escrita dos dados em disco depois finalização das simulações e impressão em console.

Table 1: Classes

De posse do simulador foram gerados uma serie de simulações variando o número

de posições possíveis dentro da matriz (n) e o número de interações (i) que teriam cada simulação. A variável n e i adotou os valores 10,100 e 1000 gerando assim estas de forma resumida na tabela 2

Foram gerados três simulações para combinação de n e i aexcencao desta regra foi quando foi necessário geração de valores com N muito alto. Isto se deve ao fato de que o algoritmo possuir uma velocidade cubica $(\Theta(n^3))$ então quando se utiliza valores de 1000 em diante o tempo para cada simulação estava durando entre 45 e 60 minutos. Devido a isso foram gerados apenas duas simulações para um valor de n igual a 1000, um com 100 interações e outro com 1000 interações.

Experimento	Variável n	Variável i
01	10	10
02	10	10
03	10	10
04	10	100
05	10	100
06	10	100
07	100	10
08	100	10
09	100	10
10	100	100
11	100	100
12	100	100
13	100	1000
14	100	1000
15	100	1000
16	1000	100
17	1000	1000

Table 2: Simulações

De posse das simulações geradas estávamos com 21 arquivos separados por virgulas (CSV) que continham os dados de: indivíduos imunes, indivíduos pseudoimunes, indivíduos infectados, indivíduos doentes, indivíduos acidentados, número de mortes e número de nascimentos. Para tratar esta quantidade de dados estes arquivos foram trazidos para serem analisados utilizando a linguagem R, uma linguagem destinada a análise de dados estatísticos.

Foram inicialmente solicitados os dados de média, desvio padrao e mediana dos dados. Estes valores, bem como outros valores mas que não foram utilizados no nosso estudo, foram extraídos das amostras utilizando a função stat.desc() os dados foram então separados e colocados em uma tabela na próxima sessão.

Foi necessário ainda verificar se o experimento se ajustava a uma distribuição normal, para verificar se a hipótese era verdadeira ou não, foi inicialmente realizada uma análise gráfica das curvas redistribuição e histogramas dos dados das simulações. Foi também realizado uma análise utilizando o teste Shapiro-Wilk, que

poderia nos dar um direcionamento para decidir quais dados poderiam se ajustar a distribuição normal.

Escolhemos então apenas uma das simulações para dar prosseguimento ao experimento. Com esta simulação realizamos uma separação dos dados, pegando uma amostra que corresponde a 95

A partir dos parâmetros de n e I resolvamos também alterar os dados de imunidade e verificar com quais valores podemos levar a população a situações analiticamente interessantes, como imunidade, morte, endemia etc.

2 Resultados

Os dados gerados de mediana (median), média (mean) e desvio padrão(std.dev), foram todos sumarizados no 3, separado por experimento. Dessa forma podemos analisar que os dados dos experimentos 01, 02 e 03 possuem valores sem grandes variações com as demais simulações.

Os dados dos experimentos 04, 05 e 06 possuem os valores na grandeza de *infectantes gerados* zerados, em todas as três simulações que utilizam a variável n igual a 10 e a variável i igual a 100. Os dados dos experimentos 07, 08 e 09 apresentam ainda algumas discrepâncias entre as três de simulações com mesmos valores de variáveis. O experimento 10, 11 e 12 não apresentou problemas na grandeza *infectantes gerados*, porem nestas três simulações foi apresentado um valor estranho de desvios padrões dos sadios destes experimentos. A partir destes experimentos percebemos o mesmo padrão para todas as grandezas em especial o comportamento das grandezas *infectantes gerados* e *sadios*.

Analisando agora os dados encontrados foram gerados dois gráficos para cada grandeza, foi escolhida duas simulações, com as seguintes variáveis (n=10, i=10) e (n=10, i=100). A partir dos dados das simulações citadas procuramos por curvas que tenham a aparência de sino, uma distribuição normal. E podemos verificar isso nas figuras 1,2, 3, 4, 5, 6 e 7.

Figure 1: Comparativo da grandeza imunes.

Além disso executamos testes de adequação ao padrão normal de todas as variáveis usando teste de Shapiro e Wilk. OS resultados foram sumarizados na tabela 3. Dentre todas as simulações buscamos por aquelas que nos apresentavam um p-value menos que 0,005. Encontramos o esperado nos dados do experimento 02, porem no experimento 05 encontramos apenasnas grandezas do numero de imunes, acidentados e nascimentos.

Figure 3: Comparativo da grandeza infectantes gerados.

Figure 4: Comparativo da grandeza doentes.

Figure 5: Comparativo da grandeza acidentes.

Figure 6: Comparativo da grandeza sadios.

Figure 7: Comparativo da grandeza nascimentos.

Grandeza	Experimento	P-Value
imunes	Experimento 02	0,3813
pseudo imunes	Experimento 02	0,8414
infectantes gerados	Experimento 02	0,9424
doentes	Experimento 02	0,8498
acidentados	Experimento 02	0,4816
sadios	Experimento 02	0,2504
nacimentos	Experimento 02	0,1269
imunes	Experimento 05	0,02057
pseudo imunes	Experimento 05	1,304E-07
infectantes gerados	Experimento 05	2, 2E – 16

Experimento 05

Experimento 05

Experimento 05

Experimento 05

2,2E-16

2,2E-16

0,1269

0,1782

doentes

sadios

acidentados

nacimentos

Table 3: VAlores dos testes de Shapiro-Wilk

Foi então escolhida a simulação do experimento 05 para ser realizado uma tentativa de prever o comportamento da população. Foi inicialmente separado os dados, os 95% de dados iniciais seriam a amostra das quais calcularíamos os comportamentos desejados. Os demais 5% seriam nossos dados de testes para garantirmos que nosso sistema de previsão estaria calibrado. Inicialmente tentamos com os dados de indivíduos imunes, utilizamos a função qnorm() do R, esta utiliza os parâmetros de média e desvio padrão para calcular os valores esperados. Ao executar o script tivemos um retorno de 69.88 e 51.992. Analisando os demais dados de testes temos 64, 62, 60, 61, 62, 59, 61, conforme visto o script retornou valores favoráveis. As demais previsões foram colocadas na tabela 4.

Table 4: Previsões

Grandeza	X1	X2	Dados
Imunes	69.888	51.992	64, 62, 60, 61, 62, 59, 61
Pseudo-imunes	43.46406	17.93594	3,0 34, 36, 32, 29, 39, 35
infectantes	-1.56317	2.48317	0, 0, 0, 0, 0, 0
doentes	-3.731664	6.071664	0, 0, 0, 0, 0, 0
acidentados	3.510204	12.5898	10, 12, 7, 8, 8, 6, 5
nascimentos	9.834144	26.54586	20, 19, 15, 17, 19, 26, 13

Foram detectadas três taxas que podem comprometer o comportamento da população, taxa de acidentes, taxa de mortalidade e taxa de imunidade. Foi as três variáveis foram alteradas para diversos valores em busca de comportamentos que pudessem levar a população a imunidade, este cenário já era possível na maioria das simulações. O cenário no qual a a população era levada a endemia só foi possível

quando a taxa de imunidade foi diminuída ao mínimo. E não foi encontrada uma variação das taxas na qual levasse a população a morte.

3 Apendice A

 Table 5: Experimento 01

	imunes	pseudo_imunes	infectantes_gerados (doentes	acidentados sadios	sadios	nacimentos
median	37.00	24.00	00.9	13.00	00.6	9.00 31.00	13.00
mean	mean 40.45	24.91	5.27	11.27	8.82	33.73	13.45
std.dev	9.36	2.88	1.79	4.98	3.34	3.34 7.31	7.38

Table 6: Experimento 02

nacimentos	12.00	11.36	5.30
sadios	9.00 50.00	52.36	11.60
acidentados sadios	00.6	7.91	3.53
doentes	13.00	11.64	5.33
infectantes_gerados doentes	5.00	5.00	2.19
pseudo_imunes	15.00	14.82	4.71
imunes	38.00	36.27	11.40
	median 38.00	mean 36.27	std.dev

Table 7: Experimento 03

nacimentos	12.00	11.18	6.23
sadios	8.00 37.00	39.27	6.40
acidentados sadios	8.00	6.82	3.34
doentes	15.00	13.36	6.73
infectantes_gerados doentes	00.9	6.18	2.86
pseudo_imunes	18.00	20.91	5.58
imunes	37.00	33.82	12.36
	median 37.00	mean	std.dev

Table 8: Experimento 04

nacimentos	19.00	18.32	4.78
sadios	8.00 13.00	14.51	4.96
acidentados sadios		8.44	2.68
doentes	0.00	2.91	4.28
infectantes gerados doentes	00.0	1.19	1.86
pseudo imunes	29.00	29.74	5.92
imunes	nedian 62.00	89.09	7.45
	median	mean 60.68	std.dev

Table 9: Experimento 05

nacimentos	18.00	18.20	5.09
sadios	21.00	22.41	4.65
acidentados sadios	8.00	8.06	2.76
doentes	0.00	1.18	2.98
infectantes_gerados doentes	00.00	0.47	1.24
pseudo_imunes	32.00	30.70	7.76
imunes	61.00	60.94	5.44
	median 61.00	mean 60.94	std.dev

Table 10: Experimento 06

nacimentos	19.00	18.52	4.73
sadios	9.00 29.00	30.99	7.22
acidentados sadios	00.6	8.70	2.88
doentes	0.00	3.01	6.74
infectantes_gerados (0.00	1.25	2.91
pseudo_imunes	32.00	29.92	7.08
imunes	62.00	59.43	11.61
	median 62.00	mean 59.43	std.dev

Table 11: Experimento 07

idios nacimentos	2771.00 1237.00	2917.45 1055.82	3.55 418.38
acidentados sa	945.00 277	855.18 291	285.01 953.55
doentes	1.00	1.00	1.00
infectantes_gerados doentes acidentados sadios	0.00	0.55	69.0
pseudo_imunes	1833.00	1681.36	610.64
imunes ps	5038.00	5134.00	std.dev 318.57
	median	mean	std.dev

Table 12: Experimento 08

sadios nacimentos	1010	1729.00	1050.18	402.18	
sadios	00 7020	945.00 2/96.00	2944.82	987.54	
acidentados	740	945.00	861.36	286.97	
doentes	04.0	74.00	22.27	13.33	
osendo imines infectantes gerados doentes acidentados	11.00	11.00	11.00	5.69	
pseudo imunes	1701 00	1/91.00	1578.45	712.78	
imines	111100	515/.00	5232.45	265.18	
		median	mean	std.dev	

Table 13: Experimento 09

nacimentos	1289.00	1072.82	424.76
sadios	951.00 3529.00	364.18 3703.27	287.86 1286.47
acidentados	951.00	864.18	287.86
doentes	7.00	7.45	3.67
infectantes_gerados doentes acidentados	4.00	3.36	1.50
pseudo_imunes	1887.00	1716.73	631.17
imunes p	nedian 4255.00	mean 4319.45	std.dev 605.51
	median	mean	std.dev

Table 14: Experimento 10

nacimentos	1892.00	1830.50	364.28
sadios	87.00	712.49	1901.87
acidentados	843.00	838.42	97.56
doentes	18.00 43.00	44.87	16.83
infectantes_gerados doentes acidentados	18.00	18.66	7.33
pseudo_imunes	3230.00	3095.33	512.02
imunes pse	nedian 6228.00	5769.18	1346.23
	median	mean	std.dev

Table 15: Experimento 11

	imunes pseu	pseudo_imunes	infectantes_gerados doentes	doentes	acidentados	sadios	nacimentos
dian	nedian 6229.00	3249.00	13.00	31.00	852.00	100.00	1900.00
mean 5	5990.26	3166.37	12.84	31.04	842.98	446.51	1840.29
1.dev	std.dev 714.65	326.26	4.44	9.78	62.96	1055.93	344.42

Table 16: Experimento 12

			•			;	•
	imunes ps	endo_imune	s infectantes_gerados doentes	doentes	acidentados	sadios	nacimentos
median	median 6225.00	3246.00	16.00	38.00	840.00	87.00	1898.00
mean	mean 5835.92	3125.92	16.65	40.43	836.95	623.47	1832.81
std.dev	std.dev 1164.21	429.69	5.79	13.18	98.32	98.32 1631.54	350.38

Table 17: Experimento 13

nacimentos	1902.00	1896.98	125.96
sadios	26.00	57.04	309.96
acidentados	844.00 26.00	844.43	40.89
doentes	46.00 113.00	116.18	53.75
infectantes_gerados doentes acidentados sadios nacimentos	46.00	47.71	22.41
pseudo_imunes	3190.00	3174.90	205.37
imunes ps	6214.00	mean 6204.63	std.dev 108.67
	median 6	mean	std.dev

Table 18: Experimento 14

nacimentos	1908.00	1901.46	126.04
sadios	97.00	132.92	359.05
acidentados	846.00	845.59	40.35
doentes	73.00	73.92	43.75
infectantes_gerados doentes	30.00	30.38	18.27
pseudo_imunes	3230.00	3214.95	197.15
imunes	nedian 6216.00	6199.55	std.dev 166.66
	median	mean 6	std.dev

Table 19: Experimento 15

pseudo_imunes infectantes_gerados doentes acidentados sadios nacimentos 3290.00 0.00 0.00 846.00 80.00 1914.00
imunes nedian 6224.00

Table 20: Experimento 16

sadios nacimentos	14.00 191235.00	38826.28 184725.73	4 33632.49
sadios	14.00	38826.28	9332.44 118152.44
acidentados	84595.00	84384.45	9332.44
doentes	5.00 13.00	13.13	4.93
imunes pseudo_imunes infectantes_gerados doentes acidentados	2.00	5.44	2.35
pseudo_imunes	328968.00	322377.00	24894.75
imunes	median 622971.00	592658.04	std.dev 90945.78
	median	mean	std.dev

Table 21: Experimento 17

sadios nacimentos	68.00 191325.00	190553.99	11982.18
sadios	68.00	3227.05	3045.27 31579.28
acidentados	84556.00	84543.10	3045.27
doentes	115.00 281.00	133.69 324.76	235.42
imunes pseudo_imunes infectantes_gerados doentes acidentados	115.00	133.69	97.15
pseudo_imunes	328799.00	327054.70	19342.77
imunes	median 623042.00	621820.98	11046.52
	median	mean 6	std.dev