- 6.2 正切函数的图像与性质
- 1. (1) 求函数 $y = \tan \frac{x}{a}$ 的最小正周期

因为 $\tan x$ 的周期为 π , 所以有 $\frac{\pi}{\frac{1}{|a|}} = |a|\pi$

(2) 求函数 $y = \tan x - \cot x$ 的最小正周期

解:

$$y = \frac{\sin x}{\cos x} - \frac{\cos x}{\sin x} = -2\frac{\cos 2x}{\sin 2x} = -2\cot 2x$$
 最小正周期为 $\frac{\pi}{2}$

- 2. 下列不等式中成立的是? _____**B**_____
 - A. tan(1) < tan(4) **B.** cot(1) < cot(4) C. sin(1) < sin(4) D. cos(1) < cos(4)

解:

注意到 $\sin 1 > 0$, $\sin 4 < 0$ 以及 $\cos 1 > 0$, $\cos 4 < 0$ 可以知道 C,D 错误由于 $\tan 4 = \tan (4 - \pi + \pi) = \tan (4 - \pi) < \tan 1$ 故 A 错 $\cot 4 = \cot (4 - \pi + \pi) = \cot (4 - \pi) > \cot 1$

3. 求函数 $y = \tan(3x + \frac{\pi}{4})$ 的单调递增区间

解:

$$k\pi - \frac{\pi}{2} < 3x + \frac{\pi}{4} < k\pi + \frac{\pi}{2}, k \in \mathbb{Z}$$

 $x \in (\frac{k\pi}{3} - \frac{\pi}{4}, \frac{k\pi}{3} + \frac{\pi}{12}), k \in \mathbb{Z}$

4. 求函数 $y = \tan(2x - \frac{\pi}{4})$ 的对称中心

先求 $y = \tan x$ 的对称中心, 设对称中心为 (a,0) 根据对称中心的定义, 应该有 f(x)+f(2a-x)=0, 由此可知 $2a=k\pi$, 即 $y = \tan x$ 的对称中心为 $(\frac{k\pi}{2},0), k \in Z$ 因此只需要

$$2x - \frac{\pi}{4} = \frac{k\pi}{2}$$

即

$$x = \frac{k\pi}{4} + \frac{\pi}{8}$$

即对称中心为 $(x = \frac{k\pi}{4} + \frac{\pi}{8}, 0), k \in \mathbb{Z}$

- 5. (1) 函数 $y = \tan(|x|)$ 的图像关于 x = 0 对称
 - (2) 函数 $y = \tan x + \cot x$ 的奇偶性是 <u>奇函数</u>

A. $y = \tan x$ B. $y = \cos x$ C. $y = \tan \frac{x}{2}$ D. $y = -\tan x$

- 7. 求下列函数的定义域
 - (1) $\tan x \cdot \cot x$

解:

定义域是 $\tan x$ 的定义域和 $\cot x$ 定义域的交 $\{x | x \in R, x \neq \frac{k\pi}{2}, k \in Z\}$

 $(2) \quad y = \frac{1}{1 + \tan 2x}$

解:

- 1. $\tan 2x \neq -1 \Longrightarrow x \neq -\frac{\pi}{8} + \frac{k\pi}{2}$
- 2. $x \neq \frac{\pi}{4} + \frac{k\pi}{2}$ 因此定义域为 $\{x | x \in R, x \neq -\frac{\pi}{8} + \frac{k\pi}{2} \mathbf{1} x \neq \frac{\pi}{4} + \frac{k\pi}{2}, k \in Z\}$
- (3) $y = \lg(\tan x + 1)$

1.
$$\tan x + 1 > 0 \Longrightarrow x \in (-\frac{\pi}{4} + k\pi, \frac{\pi}{2} + k\pi)$$

- - (2) 已知 $x \in [-\frac{\pi}{6}, \frac{\pi}{4}]$, 求函数 $y = \sec^2 x + \tan x + 2$ 的值域

解:

$$y = \frac{1}{\cos^2 x} + \tan x + 2$$

$$= \frac{\sin^2 x + \cos^2 x}{\cos^2 x} + \tan x + 2$$

$$= \tan^2 x + \tan x + 3$$

$$= (\tan x + \frac{1}{2})^2 + \frac{11}{4}$$

由于 $x \in [-\frac{\pi}{6}, \frac{\pi}{4}]$, 可知 $\tan x \in [-\frac{\sqrt{3}}{3}, 1]$, 所以 $y \in [\frac{11}{4}, 5]$

9. 函数 $y = a \tan x + b$ 在区间 $[k\pi - \frac{\pi}{3}, k\pi + \frac{\pi}{3}]$ 的最大最小值分别为 $\sqrt{3} + 1, \sqrt{3} - 1$, 求实数 a,b

解:

$$\sqrt{3}a + b = \sqrt{3} + 1$$
$$-\sqrt{3}a + b = \sqrt{3} - 1$$
$$\implies b = \sqrt{3}, a = \frac{\sqrt{3}}{3}$$

或者

$$\sqrt{3}a + b = \sqrt{3} - 1$$
$$-\sqrt{3}a + b = \sqrt{3} + 1$$
$$\implies b = \sqrt{3}, a = -\frac{\sqrt{3}}{3}$$

图 1: $y = \sin x$ 和 $y = \tan x$ 图像

只需要求 $\sin x = \tan x$ 在 $[-2\pi, 2\pi]$ 上的根的个数即可

即 $\cos x = 1$ 或者 $\sin x = 0$

解:

设相邻的两个点为 (x_1,a) , (x_2,a) 问题要求的是 $|x_1-x_2|$, 因为 $\tan \omega x$ 在所属的一个周期里单调,出现相等只能发生在两个周期之间,所以 $|x_1-x_2|$ 等于 $\tan \omega x$ 的最小正周期 $\frac{\pi}{\omega}$

12. 函数 $y = A \tan(\omega x + \phi), A > 0, \omega > 0, |\phi| < \frac{\pi}{2}$ 的图像与 x 轴相交的两相邻点坐标分别为 $(\frac{5\pi}{6}, 0), (\frac{\pi}{6}, 0),$ 且经过点 (0, -3), 求函数表达式。

解:

由
$$T = \frac{5\pi}{6} - \frac{\pi}{6} = \frac{2\pi}{3}$$
 得

$$\omega = \frac{\pi}{T} = \frac{3}{2}$$

将 $(\frac{\pi}{6},0)$ 代入得

$$\phi = -\frac{\pi}{4}$$

将 (0,-3) 代入得

$$A = 3$$

所以函数为 $y = 3\tan(\frac{3}{2}x - \frac{\pi}{4})$

13. 如图,墙上有一壁画,最高点 A 离地面高 4 米,最低点 B 离地面 2 米,观察者从距离墙 x(x>1) 米,离地面高 $a(1 \le a \le 2)$ 米的 C 处观赏该壁画,设观赏视角 $\angle ACB = \theta$

(1) 若 a = 1.5, 问:观察者离墙多远时,视角 θ 最大?

解:

设
$$\theta_1 = \angle BCD$$
, $\theta_2 = \angle ACD$, 则 $\tan \theta_1 = \frac{2-a}{x}$, $\tan \theta_2 = \frac{4-a}{x}$ 而 $\theta = \theta_2 - \theta_1$ 由

$$\tan\theta = \tan(\theta_2 - \theta_1) = \frac{\tan\theta_2 - \tan\theta_1}{1 + \tan\theta_1 \tan\theta_2} = \frac{\frac{2}{x}}{1 + \frac{(2-a)(4-a)}{x^2}} = \frac{2x}{x^2 + (2-a)(4-a)}$$

当
$$a = 1.5$$
 时, $\tan \theta = \frac{2x}{x^2 + 1.25}$, $x > 1$. 因为

$$\frac{1}{\tan \theta} = \frac{1}{2}(x + \frac{1.25}{x}) \ge \sqrt{1.25}$$

可得
$$\tan \theta \le \frac{1}{\sqrt{1.25}}$$

(2) 若 $\tan \theta = \frac{1}{2}$, 当 a 变化时, 求 x 的取值范围?

解:

当
$$\tan \theta = \frac{1}{2}$$
 时

$$(x-2)^2 = 4 - (2-a)(4-a), 1 \le a \le 2$$

可知
$$4-(2-a)(4-a) \in [1,4], \Longrightarrow x \in [3,4]$$

14. 一幢高楼上安放了一块高约 10 米的 LED 广告屏,一测量爱好者在与高楼底部同一水平线上的 C 处测广告屏顶端 A 处的仰角为 31.80 度,再向大楼前进 20 米到 D 处,测得广告屏顶端 A 处的仰角为 37.78 度,人的高度忽略不计:

(1) 求大楼的高度 (从地面到广告屏顶端)(精确到 1 米)

解:

设房高为 y,D 距离房子距离为 x,则有

$$\frac{y}{x} = \tan(37.78^{\circ})$$
$$\frac{y}{x+20} = \tan(31.80^{\circ})$$

 $\implies y = 61.97$

(2) 若大楼的前方是一片公园空地,空地上可以安放一些长椅,为使坐在其中一个长椅上的观看广告最清晰(长椅的高度忽略不计),长椅需安置在距大楼底部 E 处多远? 已知视角 $\angle AMB$ (M 为观测者的位置,B 为广告屏底部)越大,观看得越清晰.

解:

设距离为 x, $\tan \angle AMB = \tan(\angle AME - \angle BME)$, 则

$$y = \tan \angle AMB$$

$$= \frac{\tan \angle AME - \tan \angle BME}{1 + \tan \angle AME \tan \angle BME}$$

$$= \frac{\frac{62}{x} - \frac{52}{x}}{1 + \frac{62*52}{x^2}}$$

$$= \frac{10x}{x^2 + 3224}$$

$$= \frac{10}{x + \frac{3224}{x}} \le \frac{5}{\sqrt{3224}}$$

 $\implies x = \sqrt{3224}$