Team Reference Document

Heltion

March 8, 2024

Contents 1 Contest Number Theory 1 18 Chinese Remainder Theorem 2 Graph 1 Miller Rabin Pollard Rho Primitive Root 2.1.2 6 Numerical 216.1 21 Global Minimum Cut 7 Convolution 3 Data Structure 10 7.2.17.2.2Arithmetic Primes with root $3 \dots \dots \dots \dots \dots \dots \dots$ 8 Geometry 24 4 String 15Manacher Suffix Array Aho-Corasick Automaton

1 Contest

1.1 Makefile

1.2 debug.h

```
#include <bits/stdc++.h>
   using namespace std:
   template <class T, size_t size = tuple_size <T>::value>
   string to_debug(T, string s = "")
     requires(not ranges::range<T>);
   string to_debug(auto x)
      requires requires(ostream& os) { os << x; }
7
8
      return static cast < ostringstream > (ostringstream() << x).str();</pre>
9
10
11
   string to_debug(ranges::range auto x, string s = "")
      requires(not is_same_v < decltype(x), string >)
12
13
      for (auto xi : x) { s += ", " + to_debug(xi); }
14
      return "[" + s.substr(s.empty() ? 0 : 2) + "]";
15
16
17
    template <class T, size_t size>
    string to_debug(T x, string s)
      requires (not ranges::range<T>)
19
20
      [&] < size_t... I > (index_sequence < I...>) {
21
       ((s += ", " + to_debug(get < I > (x))), ...);
22
      }(make_index_sequence < size > ());
      return "(" + s.substr(s.empty() ? 0 : 2) + ")";
^{24}
25
   #define debug(...)
26
      cerr << __FILE__ ":" << __LINE__ \
27
28
           << ":||(" #__VA_ARGS__ ")||=||" << to_debug(tuple(__VA_ARGS__)) << "\n"</pre>
```

1.3 Template

```
#include <bits/extc++.h>
using namespace std;
using namespace __gnu_pbds;
#ifndef ONLINE_JUDGE
#include "debug.h"
#else
#define debug(...) void(0)
```

```
#endif
template <typename T>
using RBTree = tree<T,

null_type,
less<T>,
rb_tree_tag,
tree_order_statistics_node_update>;

using i64 = int64_t;
int main() {
    cin.tie(nullptr)->sync_with_stdio(false);
    cout << fixed << setprecision(20);
}</pre>
```

1.4 Clang-foramt

2 Graph

2.1 Connected Components

2.1.1 Strongly Connected Components

Returns strongly connected components in topologically order.

```
vector < vector < int >> strongly_connected_components (const vector < vector < int >> &
        g) {
      int n = g.size();
      vector < bool > done(n):
      vector < int > pos(n, -1), stack;
      vector < vector < int >> res:
      function < int(int) > dfs = [&](int u) {
       int low = pos[u] = stack.size();
        stack.push_back(u);
        for (int v : g[u]) {
          if (not done[v]) {
            low = min(low, ~pos[v] ? pos[v] : dfs(v));
12
          }
13
14
        if (low == pos[u]) {
15
          res.emplace_back(stack.begin() + low, stack.end());
          for (int v : res.back()) {
            done[v] = true;
18
          stack.resize(low);
19
20
       return low;
.21
22
      for (int i = 0; i < n; i += 1) {
23
        if (not done[i]) {
25
          dfs(i);
26
27
      ranges::reverse(res);
```

```
return res;
}

2.1.2 Two-vertex-connected Components

vector<vector<int>>> & g) {
   int n = g.size();
   vector<int> pos(n, -1), stack;
   vector<vector<int>>> res;
   function<int(int, int)> dfs = [&](int u, int p) {
```

```
int low = pos[u] = stack.size(), son = 0;
6
7
        stack.push_back(u);
        for (int v : g[u]) {
8
         if (v != p) {
9
            if (~pos[v]) {
10
              low = min(low, pos[v]);
11
12
              int end = stack.size(), lowv = dfs(v, u);
13
              low = min(low, lowv);
14
              if (lowv >= pos[u] and (~p or son++)) {
15
                res.emplace_back(stack.begin() + end, stack.end());
16
                res.back().push back(u):
17
                stack.resize(end):
18
19
20
          }
21
22
23
       return low;
24
      for (int i = 0: i < n: i += 1) {
25
        if (pos[i] == -1) {
26
27
          dfs(i, -1);
28
          res.emplace_back(move(stack));
29
30
31
      return res:
32
```

2.1.3 Two-edge-connected Components

```
vector<vector<int>>> bcc(const vector<vector<int>>& g) {
  int n = g.size();
  vector<int>> pos(n, -1), stack;

  vector<vector<int>> res;
  function<int(int, int)> dfs = [&](int u, int p) {
   int low = pos[u] = stack.size(), pc = 0;
   stack.push_back(u);
  for (int v : g[u]) {
   if (~pos[v]) {
```

```
10
            if (v != p or pc++) {
11
              low = min(low, pos[v]);
12
            }
          } else {
13
14
            low = min(low, dfs(v, u));
15
16
17
        if (low == pos[u]) {
         res.emplace_back(stack.begin() + low, stack.end());
19
          stack.resize(low);
20
       return low;
21
      for (int i = 0: i < n: i += 1) {
       if (pos[i] == -1) {
25
          dfs(i, -1);
26
27
28
     return res;
29 | }
```

2.1.4 Three-edge-connected Components

```
vector < vector < int >> three_edge_connected_components (const vector < vector < int
  int n = g.size(), dft = -1;
  vector < int > pre(n, -1), post(n), path(n, -1), low(n), deg(n);
  DisjointSetUnion dsu(n);
  function < void(int, int) > dfs = [&](int u, int p) {
    int pc = 0;
    low[u] = pre[u] = dft += 1;
    for (int v : g[u]) {
      if (v != u \text{ and } (v != p \text{ or } pc++)) {
        if (pre[v] != -1) {
          if (pre[v] < pre[u]) {</pre>
             deg[u] += 1;
             low[u] = min(low[u], pre[v]);
          } else {
             deg[u] -= 1;
             for (int& p = path[u]; p != -1 and pre[p] <= pre[v] and pre[v] <=
                  post[p];) {
               dsu.merge(u, p);
               deg[u] += deg[p];
               p = path[p];
          }
        } else {
          dfs(v. u):
          if (path[v] == -1 \text{ and } deg[v] \leq 1) {
            low[u] = min(low[u], low[v]);
             deg[u] += deg[v];
          } else {
```

12

13

14

17

21

22

```
if (deg[v] == 0) {
                                                                                         15
28
                   v = path[v];
                                                                                          16
                                                                                          17
30
                 if (low[u] > low[v]) {
                                                                                          18
32
                   low[u] = min(low[u], low[v]);
                   swap(v, path[u]);
33
                                                                                          21
                 for (; v != -1; v = path[v]) {
35
36
                   dsu merge(u, v):
                                                                                          23
                   deg[u] += deg[v];
                                                                                          24
                                                                                          25
                                                                                          26
39
40
41
42
        post[u] = dft;
                                                                                          30
43
                                                                                          31
44
      for (int i = 0; i < n; i += 1) {
                                                                                          32
45
                                                                                          33
        if (pre[i] == -1) {
46
          dfs(i. -1):
                                                                                          34
47
                                                                                          35
48
49
      vector < vector < int >> res(n):
50
      for (int i = 0; i < n; i += 1) {
                                                                                          38
        _res[dsu.find(i)].push_back(i);
                                                                                          39
52
53
                                                                                          40
      vector < vector < int >> res;
                                                                                          41
54
      for (auto& res_i : _res) {
        if (not res_i.empty()) {
56
57
          res.emplace_back(move(res_i));
58
                                                                                          45
59
                                                                                          46
60
      return res:
61
                                                                                          47
                                                                                          ^{1}48
```

Euler Walks

29

31

34

37

38

```
152
   optional < vector < vector < pair < int , bool >>> undirected_walks (int n, const
                                                                                         53
        vector<pair<int, int>>& edges) {
                                                                                         54
      int m = ssize(edges):
                                                                                         55
      vector < vector < pair < int , bool>>> res;
3
                                                                                         56
4
      if (not m) {
                                                                                         57
       return res:
5
                                                                                         58
6
                                                                                         59
7
      vector < vector < pair < int , bool>>> g(n);
                                                                                         60
8
      for (int i = 0; i < m; i += 1) {
        auto [u, v] = edges[i];
9
        g[u].emplace_back(i, true);
10
        g[v].emplace_back(i, false);
11
                                                                                         64
12
                                                                                         65
      for (int i = 0; i < n; i += 1) {
13
        if (g[i].size() % 2) {
14
```

```
}
 vector<pair<int, bool>> walk:
  vector < bool > visited(m):
  vector < int > cur(n);
  function < void(int) > dfs = [&](int u) {
    for (int& i = cur[u]; i < ssize(g[u]);) {
      auto [j, d] = g[u][i];
      if (not visited[j]) {
        visited[j] = true;
        dfs(d ? edges[j].second : edges[j].first);
        walk.emplace_back(j, d);
      } else {
        i += 1:
      }
  for (int i = 0; i < n; i += 1) {
   dfs(i):
   if (not walk.empty()) {
     ranges::reverse(walk);
      res.emplace_back(move(walk));
 return res;
optional < vector < vector < int >>> directed_walks(int n, const vector < pair < int,
   int>>& edges) {
  int m = ssize(edges);
  vector < vector < int >> res;
  if (not m) {
   return res:
  vector < int > d(n);
  vector < vector < int >> g(n);
  for (int i = 0; i < m; i += 1) {
   auto [u, v] = edges[i];
   g[u].push_back(i);
   d [v] += 1:
  for (int i = 0; i < n; i += 1) {
    if (ssize(g[i]) != d[i]) {
      return {}:
  vector < int > walk:
  vector < int > cur(n);
  vector < bool > visited(m):
  function < void (int) > dfs = [&](int u) {
   for (int& i = cur[u]; i < ssize(g[u]);) {
      int j = g[u][i];
      if (not visited[i]) {
```

51

return {}:

```
visited[i] = true:
            dfs(edges[j].second);
69
            walk.push_back(j);
70
          } else {
71
           i += 1;
72
73
74
      for (int i = 0: i < n: i += 1) {
75
        if (not walk.empty()) {
78
          ranges::reverse(walk);
          res.emplace_back(move(walk));
79
80
81
82
      return res;
83
```

2.3 Dominator Tree

int n = g.size();

1

```
vector < int > pos(n, -1), p, label(n), dom(n), sdom(n), dsu(n), par(n);
4
      vector < vector < int >> rg(n), bucket(n);
5
      function < void(int) > dfs = [&](int u) {
       int t = p.size();
6
        p.push back(u):
7
        label[t] = sdom[t] = dsu[t] = pos[u] = t;
8
        for (int v : g[u]) {
9
          if (pos[v] == -1) {
10
11
            dfs(v):
            par[pos[v]] = t;
12
13
          rg[pos[v]].push_back(t);
14
15
16
      };
      function < int(int, int) > find = [%](int u, int x) {
17
18
        if (u == dsu[u]) {
          return x ? -1 : u;
19
        int v = find(dsu[u], x + 1);
21
22
        if (v < 0) 
          return u:
23
24
        if (sdom[label[dsu[u]]] < sdom[label[u]]) {</pre>
25
26
          label[u] = label[dsu[u]];
27
        dsu[u] = v:
        return x ? v : label[u];
29
30
31
      dfs(s):
      iota(dom.begin(), dom.end(), 0);
```

vector < int > dominator (const vector < vector < int > & g, int s) {

```
for (int i = ssize(p) - 1: i >= 0: i -= 1) {
34
       for (int | rg[i]) {
35
          sdom[i] = min(sdom[i], sdom[find(j, 0)]);
36
37
       if (i) {
         bucket[sdom[i]].push_back(i);
38
39
40
       for (int k : bucket[i]) {
         int i = find(k, 0):
         dom[k] = sdom[j] == sdom[k] ? sdom[j] : j;
43
       if (i > 1) {
44
         dsu[i] = par[i];
46
47
     for (int i = 1; i < ssize(p); i += 1) {</pre>
       if (dom[i] != sdom[i]) {
         dom[i] = dom[dom[i]]:
51
52
     vector < int > res(n, -1);
     res[s] = s:
     for (int i = 1; i < ssize(p); i += 1) {
56
       res[p[i]] = p[dom[i]];
57
     return res;
59
```

2.4 Directed Minimum Spanning Tree

```
struct Node {
     Edge e;
     int d;
     Node *1. *r:
     Node(Edge e) : e(e), d(0) { l = r = nullptr; }
     void add(int v) {
      e.w += v:
       d += v;
     void push() {
       if (1) {
       1->add(d):
13
       if (r) {
        r->add(d);
       }
17
       d = 0;
18
19
   Node* merge(Node* u, Node* v) {
    if (not u or not v) {
       return u ?: v;
```

```
if (u \rightarrow e.w \rightarrow v \rightarrow e.w) {
25
       swap(u, v);
26
27
      u->push();
      u \rightarrow r = merge(u \rightarrow r, v);
28
      swap(u->1, u->r):
30
      return u:
31
32
    void pop(Node*& u) {
33
      u->push():
      u = merge(u -> 1, u -> r);
34
35
   pair < i64, vector < int >> directed_minimum_spanning_tree(int n, const vector <
36
        Edge > & edges, int s) {
37
      i64 \text{ ans} = 0;
      vector < Node *> heap(n), edge(n);
38
      RollbackDisjointSetUnion dsu(n), rbdsu(n);
      vector<pair<Node*, int>> cycles;
      for (auto e : edges) {
41
^{42}
        heap[e.v] = merge(heap[e.v], new Node(e));
43
      for (int i = 0: i < n: i += 1) {
44
        if (i == s) {
45
          continue:
46
47
        for (int u = i;;) {
48
          if (not heap[u]) {
49
            return {};
50
51
          ans += (edge[u] = heap[u])->e.w:
52
          edge[u]->add(-edge[u]->e.w);
53
          int v = rbdsu.find(edge[u]->e.u):
54
          if (dsu.merge(u, v)) {
55
            break:
56
57
          int t = rbdsu.time();
58
          while (rbdsu.merge(u, v)) {
59
            heap[rbdsu.find(u)] = merge(heap[u], heap[v]);
60
            u = rbdsu.find(u):
61
            v = rbdsu.find(edge[v]->e.u);
62
63
          cycles.emplace_back(edge[u], t);
64
          while (heap[u] and rbdsu.find(heap[u]->e.u) == rbdsu.find(u)) {
65
            pop(heap[u]);
66
67
68
        }
69
      for (auto [p, t] : cycles | views::reverse) {
71
        int u = rbdsu.find(p->e.v);
72
        rbdsu.rollback(t):
73
        int v = rbdsu.find(edge[u]->e.v);
        edge[v] = exchange(edge[u], p);
74
```

2.5 K Shortest Paths

```
struct Node {
     int v. h:
     i64 w:
      Node *1. *r:
     Node(int v, i64 w): v(v), w(w), h(1) { 1 = r = nullptr; }
6
    Node* merge(Node* u, Node* v) {
     if (not u or not v) {
        return u ?: v:
10
     if (u->w > v->w) {
12
        swap(u, v);
13
14
      Node* p = new Node(*u):
      p \rightarrow r = merge(u \rightarrow r, v);
      if (p \rightarrow r \text{ and } (not p \rightarrow 1 \text{ or } p \rightarrow 1 \rightarrow h 
17
        swap(p->1, p->r);
18
19
     p -> h = (p -> r ? p -> r -> h : 0) + 1;
     return p;
21
    struct Edge {
22
23
     int u, v, w;
24 };
    template <tvpename T>
    using minimum_heap = priority_queue < T, vector < T>, greater < T>>;
    vector < i64> k shortest paths (int n. const vector < Edge > & edges, int s. int t.
        int k) {
      vector < vector < int >> g(n);
29
      for (int i = 0: i < ssize(edges): i += 1) {</pre>
30
        g[edges[i].u].push_back(i);
31
      vector < int > par(n, -1), p;
      vector<i64> d(n. -1):
34
      minimum_heap <pair < i64, int >> pq;
35
      pq.push({d[s] = 0, s});
      while (not pq.empty()) {
        auto [du, u] = pg.top():
38
        pq.pop();
39
        if (du > d[u]) {
40
          continue:
```

```
p.push_back(u);
        for (int i : g[u]) {
          auto [_, v, w] = edges[i];
          if (d[v] == -1 \text{ or } d[v] > d[u] + w) {
45
46
            pq.push({d[v] = d[u] + w, v});
47
48
49
50
      if (d[t] == -1) {
51
        return vector < i64 > (k, -1);
52
53
      vector < Node *> heap(n);
54
      for (int i = 0; i < ssize(edges); i += 1) {</pre>
55
        auto [u. v. w] = edges[i]:
        if (~d[u] and ~d[v] and par[v] != i) {
          heap[v] = merge(heap[v], new Node(u, d[u] + w - d[v]));
58
59
60
      for (int u : p) {
61
        if (u != s) {
          heap[u] = merge(heap[u], heap[edges[par[u]].u]);
63
      minimum_heap <pair < i64, Node *>> q;
66
      if (heap[t]) {
68
        q.push({d[t] + heap[t]->w, heap[t]});
      vector < i64 > res = {d[t]};
70
71
      for (int i = 1; i < k and not q.empty(); i += 1) {
        auto [w, p] = q.top();
72
        q.pop();
73
        res.push back(w):
75
        if (heap[p->v]) {
          q.push(\{w + heap[p->v]->w, heap[p->v]\});
76
77
        for (auto c : \{p \rightarrow 1, p \rightarrow r\}) {
78
          if (c) {
79
             q.push(\{w + c->w - p->w, c\});
80
81
83
      res.resize(k, -1);
85
      return res:
```

2.6 Global Minimum Cut

```
vector < bool > in(n);
     vector < int > add:
     vector < i64 > s(n):
     i64 st = 0:
      for (int i = 0; i < n; i += 1) {
       int k = -1:
       for (int j = 0; j < n; j += 1) {
12
         if (not in[i]) {
           if (k == -1 \text{ or } s[j] > s[k]) {
16
17
         }
       add.push back(k):
       st = s[k];
       in[k] = true:
       for (int j = 0; j < n; j += 1) {
         s[i] += w[i][k];
24
      for (int i = 0: i < n: i += 1) {
     int x = add.rbegin()[1], y = add.back();
      if (x == n - 1) {
       swap(x, y);
      for (int i = 0; i < n; i += 1) {
       swap(w[y][i], w[n - 1][i]);
       swap(w[i][y], w[i][n - 1]);
      for (int i = 0; i + 1 < n; i += 1) {
       w[i][x] += w[i][n - 1]:
38
       w[x][i] += w[n - 1][i];
     w.pop_back();
     return min(st, stoer_wagner(w));
42 }
```

2.7 Minimum Perfect Matching on Bipartite Graph

```
cm[c] = r:
vector < int > cols(n):
iota(cols.begin(), cols.end(), 0);
for (int r = 0; r < n; r += 1) {
 if (rm[r] != -1) {
    continue;
  vector < i64 > d(n);
  for (int c = 0; c < n; c += 1) {
   d[c] = resid(r, c):
  vector < int > pre(n. r):
  int scan = 0, label = 0, last = 0, col = -1:
  [&]() {
    while (true) {
      if (scan == label) {
        last = scan;
        i64 min = d[cols[scan]]:
        for (int j = scan; j < n; j += 1) {
         int c = cols[i]:
          if (d[c] <= min) {
            if (d[c] < min) {
              min = d[c]:
              label = scan;
            swap(cols[j], cols[label++]);
         }
        for (int i = scan: i < label: i += 1) {
          if (int c = cols[i]; cm[c] == -1) {
            col = c:
            return;
          }
        }
      int c1 = cols[scan++], r1 = cm[c1]:
      for (int j = label; j < n; j += 1) {</pre>
        int c2 = cols[i]:
        i64 len = resid(r1, c2) - resid(r1, c1);
        if (d[c2] > d[c1] + len) {
          d[c2] = d[c1] + len;
          pre\lceil c2 \rceil = r1:
          if (len == 0) {
            if (cm \lceil c2 \rceil == -1) {
              col = c2:
              return;
            swap(cols[i], cols[label++]);
       }
     }
```

12 13

14

15

16 17

18 19

20

22

 $\frac{23}{24}$

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60 61

62

63

```
64
         }
65
       }();
66
       for (int i = 0; i < last; i += 1) {
67
         int c = cols[i]:
         pi[c] += d[c] - d[col];
69
70
       for (int t = col: t != -1:) {
          col = t:
          int r = pre[col]:
73
          cm[col] = r;
74
          swap(rm[r], t);
75
76
     i64 res = 0:
     for (int i = 0; i < n; i += 1) {
79
       res += w[i][rm[i]];
81
     return {res, rm};
82 }
```

2.8 Matching on General Graph

```
vector < int > matching(const vector < vector < int > > & g) {
     int n = g.size();
3
     int mark = 0;
      vector < int > matched(n, -1), par(n, -1), book(n);
      auto match = [&](int s) {
       vector < int > c(n), type(n, -1);
       iota(c.begin(), c.end(), 0);
       queue < int > q;
       q.push(s);
10
       type[s] = 0;
        while (not q.empty()) {
         int u = q.front();
          q.pop();
14
          for (int v : g[u])
15
           if (type[v] == -1) {
              par[v] = u;
              tvpe[v] = 1;
              int w = matched[v]:
              if (w == -1) {
                [&](int u) {
                  while (u != -1) {
                    int v = matched[par[u]];
                    matched[matched[u] = par[u]] = u;
24
                    u = v;
25
                }(v):
                return;
28
29
              q.push(w);
              type[w] = 0;
```

```
} else if (not type[v] and c[u] != c[v]) {
              int w = [\&](int u, int v) {
                mark += 1;
                while (true) {
                  if (u != -1) {
                    if (book[u] == mark) {
                      return u:
                                                                                       10
                    }
                                                                                       11
                    book[u] = mark:
                    u = c[par[matched[u]]];
                                                                                       13
                                                                                       14
                  swap(u, v);
                                                                                       15
               }
                                                                                       16
                                                                                       17
              }(u, v):
              auto up = \lceil k \rceil (int u, int v, int w) {
                while (c[u] != w) {
                                                                                       19
                  par[u] = v;
                                                                                       20
                                                                                       21
                  v = matched[u];
                                                                                       22
                  if (type[v] == 1) {
                                                                                       23
                    q.push(v);
                    type[v] == 0;
                                                                                       24
                                                                                       25
                  if (c[u] == u) {
                    c[u] = w;
                                                                                       28
                  if (c[v] == v) {
                    c[v] = w;
                                                                                       30
                                                                                       31
                                                                                       32
                  u = par[v];
                }
              };
              up(u, v, w);
                                                                                       35
                                                                                       36
              up(v, u, w);
              for (int i = 0; i < n; i += 1) {
                                                                                       37
                c[i] = c[c[i]];
                                                                                       39
                                                                                       40
            }
                                                                                       41
                                                                                       42
      for (int i = 0; i < n; i += 1) {
       if (matched[i] == -1) {
                                                                                       44
          match(i);
                                                                                       45
                                                                                       46
                                                                                       47
     return matched;
                                                                                       48
76
                                                                                       49
```

Maximum Flow

31

32 33

34

35

36

37

38 39

40

41

42

43

44

45

 46

47

48

49

50

51

52

53 54

55

56

57

58

59

60

61

62

63

64

65 66

67

68

69 70

71

7273

74

75

```
struct HighestLabelPreflowPush {
1
                                                                                        55
2
     int n:
     vector < vector < int >> g;
```

```
vector < Edge > edges;
HighestLabelPreflowPush(int n) : n(n), g(n) {}
int add(int u, int v, i64 f) {
 if (u == v) {
    return -1;
 }
 int i = ssize(edges);
  edges.push_back({u, v, f});
  g[u].push_back(i);
  edges.push_back({v, u, 0});
  g[v].push_back(i + 1);
 return i;
i64 max_flow(int s, int t) {
  vector < i64 > p(n):
  vector<int> h(n), cur(n), count(n * 2);
  vector<vector<int>> pq(n * 2);
  auto push = [&](int i, i64 f) {
    auto [u, v, _] = edges[i];
    if (not p[v] and f) {
      pq[h[v]].push_back(v);
    edges[i].f -= f;
    edges[i ^ 1].f += f;
    p[u] -= f;
   p[v] += f;
 h[s] = n;
  count[0] = n - 1;
  p[t] = 1;
  for (int i : g[s]) {
    push(i, edges[i].f);
  for (int hi = 0;;) {
    while (pq[hi].empty()) {
      if (not hi --) {
        return -p[s];
      }
    int u = pq[hi].back();
    pq[hi].pop_back();
    while (p[u] > 0) {
      if (cur[u] == ssize(g[u])) {
        h[u] = n * 2 + 1:
        for (int i = 0; i < ssize(g[u]); i += 1) {
          auto [_, v, f] = edges[g[u][i]];
          if (f \text{ and } h[u] > h[v] + 1) {
            h[u] = h[v] + 1;
            cur[u] = i:
          }
        count[h[u]] += 1;
        if (not(count[hi] -= 1) and hi < n) {
```

51 52

```
if (h[i] > hi and h[i] < n) {</pre>
59
                     count[h[i]] -= 1;
                     h[i] = n + 1:
60
                  }
                 }
62
63
              hi = h[u];
64
65
            } else {
              int i = g[u][cur[u]];
               auto [_, v, f] = edges[i];
68
               if (f and h[u] == h[v] + 1) {
                 push(i, min(p[u], f));
69
70
               } else {
                 cur[u] += 1:
72
              }
            }
73
          }
74
75
        return i64(0):
76
77
78
    }:
80
    struct Dinic {
81
      int n:
82
      vector < vector < int >> g;
83
      vector < Edge > edges;
      vector < int > level:
      Dinic(int n): n(n), g(n) {}
86
      int add(int u, int v, i64 f) {
       if (u == v) {
          return -1;
88
89
90
        int i = ssize(edges);
        edges.push_back({u, v, f});
91
92
        g[u].push back(i):
        edges.push_back({v, u, 0});
93
        g[v].push_back(i + 1);
94
        return i:
95
96
      i64 max_flow(int s, int t) {
97
        i64 flow = 0;
98
        queue < int > q;
99
        vector < int > cur:
100
101
        auto bfs = [\&]() {
          level.assign(n. -1):
102
103
          level[s] = 0;
          q.push(s);
104
105
          while (not q.empty()) {
            int u = q.front();
106
107
            q.pop();
            for (int i : g[u]) {
108
              auto [_, v, c] = edges[i];
109
```

for (int i = 0; i < n; i += 1) {

57

58

61

66

67

71

79

```
if (c and level[v] == -1) {
110
111
                 level[v] = level[u] + 1;
112
                 q.push(v);
113
114
            }
          }
115
116
          return ~level[t]:
117
        auto dfs = [%](auto% dfs, int u, i64 limit) -> i64 {
118
19
          if (u == t) {
            return limit:
20
121
122
          i64 res = 0;
123
          for (int& i = cur[u]: i < ssize(g[u]) and limit: i += 1) {
124
            int i = g[u][i]:
125
            auto [_, v, f] = edges[j];
126
            if (level[v] == level[u] + 1 and f) {
              if (i64 d = dfs(dfs. v. min(f. limit)): d) {
                limit -= d;
129
                 res += d:
130
                 edges[j].f -= d;
131
                 edges[j ^ 1].f += d;
132
133
            }
134
135
          return res;
136
137
        while (bfs()) {
          cur.assign(n, 0);
          while (i64 f = dfs(dfs, s, numeric_limits < i64>::max())) {
140
            flow += f:
141
142
143
        return flow;
144
45 };
```

Minimum Cost Maximum Flow

Constraints: there is no edge with negative cost.

```
struct MinimumCostMaximumFlow {
     template <tvpename T>
     using minimum_heap = priority_queue<T, vector<T>, greater<T>>;
3
     int n:
     vector < Edge > edges;
     vector < vector < int >> g;
     MinimumCostMaximumFlow(int n) : n(n), g(n) {}
     int add edge(int u. int v. i64 f. i64 c) {
       int i = edges.size();
10
       edges.push_back({u, v, f, c});
11
       edges.push_back({v, u, 0, -c});
       g[u].push_back(i);
```

```
g[v].push back(i + 1);
 return i;
pair < i64, i64 > flow(int s. int t) {
  constexpr i64 inf = numeric_limits < i64 > :: max();
  vector < i64 > d, h(n);
  vector < int > p:
  auto dijkstra = [&]() {
    d.assign(n. inf):
    p.assign(n, -1);
    minimum_heap <pair < i64, int >> q;
    q.emplace(d[s] = 0, s);
    while (not q.empty()) {
     auto [du, u] = q.top();
      a.pop():
      if (du > d[u]) {
        continue:
      for (int i : g[u]) {
        auto [_, v, f, c] = edges[i];
        if (f \text{ and } d[v] > d[u] + h[u] - h[v] + c) {
          q.emplace(d[v] = d[u] + h[u] - h[v] + c, v);
    return ~p[t];
  i64 f = 0, c = 0;
  while (dijkstra()) {
    for (int i = 0: i < n: i += 1) {
      h[i] += d[i];
    vector < int > path;
    for (int u = t; u != s; u = edges[p[u]].u) {
      path.push_back(p[u]);
    i64 mf = edges[ranges::min(path, {}, [&](int i) { return edges[i].f; })
       7.f:
    f += mf:
    c += mf * h[t];
    for (int i : path) {
      edges[i].f -= mf;
      edges[i ^ 1].f += mf;
  return {f, c};
```

15

 $\frac{16}{17}$

18

19

20

21

22

23

24

 25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

41

42

43

44

45

 46

47

49

50

51

53

54

55

56

57

58

59

3 Data Structure

3.1 Disjoint Set Union

```
struct DisjointSetUnion {
     vector < int > dsu:
     DisjointSetUnion(int n) : dsu(n, -1) {}
     int find(int u) { return dsu[u] < 0 ? u : dsu[u] = find(dsu[u]): }
     void merge(int u, int v) {
      u = find(u):
      v = find(v);
       if (u != v) {
        if (dsu[u] > dsu[v]) {
           swap(u, v);
         dsu[u] += dsu[v]:
13
         dsu[v] = u;
14
15
    }
16
   struct RollbackDisjointSetUnion {
     vector<pair<int, int>> stack;
     vector < int > dsu:
     RollbackDisjointSetUnion(int n) : dsu(n, -1) {}
     int find(int u) { return dsu[u] < 0 ? u : find(dsu[u]): }
     int time() { return ssize(stack); }
     bool merge(int u, int v) {
24
       if ((u = find(u)) == (v = find(v))) {
         return false:
       if (dsu[u] < dsu[v]) {</pre>
          swap(u, v);
       stack.emplace_back(u, dsu[u]);
       dsu[v] += dsu[u];
       dsu[u] = v:
       return true:
     void rollback(int t) {
       while (ssize(stack) > t) {
         auto [u, dsu_u] = stack.back();
         stack.pop back():
         dsu[dsu[u]] -= dsu_u;
40
         dsu[u] = dsu_u;
41
42
43
```

3.2 Sparse Table

```
1 struct SparseTable {
```

```
vector < vector < int >> table :
      SparseTable() {}
3
      SparseTable(const vector < int > & a) {
4
                                                                                       10
        int n = a.size(), h = bit_width(a.size());
                                                                                       11
5
        table resize(h):
        table[0] = a;
                                                                                       13
7
        for (int i = 1: i < h: i += 1) {
                                                                                       14
          table[i].resize(n - (1 << i) + 1);
          for (int i = 0: i + (1 << i) <= n: i += 1) {
10
            table[i][j] = min(table[i - 1][j], table[i - 1][j + (1 << (i - 1))]); |17
11
12
13
       }
14
      int querv(int 1. int r) {
15
       int h = bit width(unsigned(r - 1)) - 1:
        return min(table[h][l], table[h][r - (1 << h)]);
                                                                                       23
17
                                                                                       24
18
19
   };
    struct DisjointSparseTable {
                                                                                       26
20
                                                                                       27
      vector < vector < int >> table :
21
22
      DisjointSparseTable(const vector < int > & a) {
        int h = bit width(a.size() - 1), n = a.size():
23
        table resize(h. a):
                                                                                       30
24
        for (int i = 0; i < h; i += 1) {
^{25}
          for (int j = 0; j + (1 << i) < n; j += (2 << i)) {
26
            for (int k = j + (1 << i) - 2; k >= j; k -= 1) {
                                                                                       33
27
              table[i][k] = min(table[i][k], table[i][k + 1]);
28
                                                                                       34
                                                                                       35
29
            for (int k = j + (1 << i) + 1; k < j + (2 << i) and k < n; k += 1) {
30
              table[i][k] = min(table[i][k], table[i][k - 1]);
31
                                                                                       38
32
                                                                                       39
33
       }
                                                                                       40
34
35
                                                                                       41
      int query(int 1, int r) {
                                                                                       42
36
       if (1 + 1 == r) {
          return table[0][1];
38
39
                                                                                       45
        int i = bit width(unsigned(1 ^ (r - 1))) - 1:
40
        return min(table[i][1], table[i][r - 1]);
41
42
43
                                                                                       49
                                                                                       <sup>1</sup>50
                                                                                       51
```

3.3 Treap

```
struct Node {

static constexpr bool persistent = true;

static mt19937_64 mt;

Node *1, *r;

u64 priority;

int size, v;

i64 sum;
```

```
Node(const Node& other) { memcpv(this, &other, sizeof(Node)); }
   Node(int v) : v(v), sum(v), priority(mt()), size(1) { l = r = nullptr; }
   Node* update(Node* 1, Node* r) {
    Node* p = persistent ? new Node(*this) : this:
    p \rightarrow r = r;
    p \rightarrow size = (1 ? 1 \rightarrow size : 0) + 1 + (r ? r \rightarrow size : 0):
    p \rightarrow sum = (1 ? 1 \rightarrow sum : 0) + v + (r ? r \rightarrow sum : 0);
    return p:
};
mt19937 64 Node::mt:
pair < Node * , Node * > split_by_v(Node * p , int v) {
 if (not p) {
    return {}:
  if (p \rightarrow v < v) {
    auto [1, r] = split_bv_v(p \rightarrow r, v);
    return {p->update(p->1, 1), r};
  auto [1, r] = split_by_v(p->1, v);
  return {1, p->update(r, p->r)};
pair < Node * , Node * > split_by_size(Node * p, int size) {
  if (not p) {
    return {};
  int l_size = p->1 ? p->1->size : 0;
   if (1 size < size) {
    auto [1, r] = split_by_size(p->r, size - 1_size - 1);
    return {p->update(p->1, 1), r};
  auto [1, r] = split by size(p->1, size):
  return {1, p->update(r, p->r)};
Node* merge(Node* 1. Node* r) {
 if (not 1 or not r) {
    return 1 ?: r:
  if (1->priority < r->priority) {
    return r->update(merge(1, r->1), r->r);
  return 1 \rightarrow \text{update}(1 \rightarrow 1, \text{merge}(1 \rightarrow r, r));
```

3.4 Lines Maximum

```
struct Line {
   mutable i64 k, b, p;
   bool operator<(const Line& rhs) const { return k < rhs.k; }
   bool operator<(const i64& x) const { return p < x; }
};</pre>
```

```
| struct Lines : multiset < Line . less <>> {
      static constexpr i64 inf = numeric_limits<i64>::max();
                                                                                       16
      static i64 div(i64 a, i64 b) { return a / b - ((a ^ b) < 0 and a % b); }
                                                                                       17
9
      bool isect(iterator x, iterator v) {
10
        if (y == end()) {
          return x->p = inf, false;
11
12
        if (x->k == y->k) {
13
14
          x -> p = x -> b > y -> b ? inf : -inf;
15
          x - p = div(y - b - x - b, x - k - y - k);
16
17
18
        return x->p >= y->p;
19
      void add(i64 k, i64 b) {
20
21
        auto z = insert(\{k, b, 0\}), y = z++, x = y;
        while (isect(y, z)) {
22
          z = erase(z):
23
24
        if (x != begin() and isect(--x, y)) {
                                                                                       34
25
26
          isect(x, y = erase(y));
27
        while ((y = x) != begin() and (--x)->p >= y->p) {
29
          isect(x, erase(y));
30
31
32
      optional < i64 > get(i64 x) {
        if (empty()) {
                                                                                       42
          return {};
                                                                                       43
34
35
        auto it = lower bound(x):
        return it->k * x + it->b;
                                                                                       46
37
                                                                                       47
38
39
```

3.5 Segments Maximum

```
153
   struct Segment {
                                                                                         54
      i64 k, b;
      i64 get(i64 x) { return k * x + b; }
4
    struct Segments {
      struct Node {
6
        optional < Segment > s;
7
        Node *1, *r;
      };
10
      i64 tl, tr;
11
      Node* root:
      Segments(i64 tl, i64 tr) : tl(tl), tr(tr), root(nullptr) {}
13
      void add(i64 1, i64 r, i64 k, i64 b) {
       function \langle void(Node*\&, i64, i64, Segment)\rangle rec = [\&](Node*\& p, i64 t1, i64 |_{67}
             tr, Segment s) {
```

```
if (p == nullptr) {
      p = new Node();
    i64 tm = midpoint(tl, tr):
    if (t1 >= 1 \text{ and } tr <= r) {
     if (not p->s) {
        p \rightarrow s = s;
        return;
      auto t = p->s.value();
      if (t.get(t1) >= s.get(t1)) {
        if (t.get(tr) >= s.get(tr)) {
          return:
        if (t.get(tm) >= s.get(tm)) {
           return rec(p->r, tm + 1, tr, s);
        p - > s = s;
        return rec(p->1, tl, tm, t);
      if (t.get(tr) <= s.get(tr)) {</pre>
        p \rightarrow s = s:
        return:
      if (t.get(tm) <= s.get(tm)) {
        p \rightarrow s = s;
        return rec(p->r, tm + 1, tr, t);
      return rec(p->1, t1, tm, s);
    if (1 <= tm) {
      rec(p->1, t1, tm, s);
    if (r > tm) {
      rec(p->r, tm + 1, tr, s);
 rec(root, t1, tr, {k, b});
optional < i64 > get(i64 x) {
 optional < i64 > res = {};
 function < void (Node*, i64, i64) > rec = [&](Node* p, i64 tl, i64 tr) {
    if (p == nullptr) {
      return:
    i64 tm = midpoint(tl, tr);
    if (p \rightarrow s) {
     i64 y = p->s.value().get(x);
      if (not res or res.value() < y) {</pre>
    if (x <= tm) {
```

51

3.6 Segment Beats

```
struct Mv {
      static constexpr i64 inf = numeric_limits<i64>::max() / 2;
      i64 mv, smv, cmv, tmv;
4
     bool less:
      i64 def() { return less ? inf : -inf; }
      i64 mmv(i64 x, i64 y) { return less ? min(x, y) : max(x, y); }
     Mv(i64 x, bool less) : less(less) {
       mv = x:
9
       smv = tmv = def():
10
11
      void up(const Mv& ls. const Mv& rs) {
12
13
       mv = mmv(ls.mv, rs.mv);
       smv = mmv(1s.mv == mv? ls.smv: ls.mv.rs.mv == mv? rs.smv: rs.mv)
14
       cmv = (ls.mv == mv ? ls.cmv : 0) + (rs.mv == mv ? rs.cmv : 0):
15
16
      void add(i64 x) {
17
       mv += x:
18
19
        if (smv != def()) {
20
          smv += x;
21
        if (tmv != def()) {
23
          tmv += x:
24
25
26
   struct Node {
27
     Mv mn. mx:
      i64 sum, tsum;
30
      Node *ls. *rs:
      Node(i64 x = 0) : sum(x), tsum(0), mn(x, true), mx(x, false) { ls = rs =
31
        nullptr: }
      void up() {
32
33
       sum = ls -> sum + rs -> sum;
34
       mx.up(ls->mx, rs->mx);
       mn.up(ls->mn.rs->mn):
36
37
     void down(int tl, int tr) {
       if (tsum) {
38
39
         int tm = midpoint(tl, tr);
```

```
ls->add(tl, tm, tsum):
    rs->add(tm, tr, tsum);
    tsum = 0:
 if (mn.tmv != mn.def()) {
  ls->ch(mn.tmv, true);
   rs->ch(mn.tmv. true):
   mn.tmv = mn.def();
 if (mx.tmv != mx.def()) {
   ls->ch(mx.tmv, false);
   rs->ch(mx.tmv, false);
   mx.tmv = mx.def();
bool cmp(i64 x, i64 y, bool less) { return less ? x < y : x > y; }
void add(int tl, int tr, i64 x) {
 sum += (tr - tl) * x:
 tsum += x;
 mx.add(x):
 mn.add(x);
void ch(i64 x. bool less) {
 auto &lhs = less ? mn : mx, &rhs = less ? mx : mn;
 if (not cmp(x, rhs.mv, less)) {
   return;
 sum += (x - rhs.mv) * rhs.cmv;
 if (lhs.smv == rhs.mv) {
  lhs.smv = x:
 if (lhs.mv == rhs.mv) {
  lhs.mv = x:
 if (cmp(x, rhs.tmv, less)) {
    rhs.tmv = x:
 rhs.mv = lhs.tmv = x:
void add(int t1, int tr, int 1, int r, i64 x) {
 if (t1 >= 1 \text{ and } tr <= r)
    return add(tl, tr, x);
 down(tl, tr);
 int tm = midpoint(tl, tr);
 if (1 < tm) {
   ls->add(tl, tm, l, r, x);
 if (r > tm) {
  rs->add(tm, tr, 1, r, x);
 up();
```

90

91

41

42

43

51

54

55

64

72

73

81

```
void ch(int tl. int tr. int l. int r. i64 x. bool less) {
     auto &lhs = less ? mn : mx, &rhs = less ? mx : mn;
     if (not cmp(x, rhs.mv, less)) {
      return:
    if (t1 >= 1 and tr <= r and cmp(rhs.smv, x, less)) {
      return ch(x. less):
     down(tl. tr):
     int tm = midpoint(tl, tr);
     if (1 < tm) {
      ls->ch(tl, tm, 1, r, x, less);
    if (r > tm) {
      rs->ch(tm, tr, 1, r, x, less):
    up();
   i64 get(int tl, int tr, int l, int r) {
    if (t1 >= 1 \text{ and } tr <= r)
      return sum:
     down(tl. tr):
     i64 res = 0;
     int tm = midpoint(tl, tr);
     if (1 < tm) {
      res += ls->get(tl, tm, l, r);
    if (r > tm) {
      res += rs->get(tm, tr, 1, r);
    return res;
|};
```

3.7 Tree

94

95

96 97

98 99

100

101

102

103 104

105

106

 $\frac{107}{108}$

109

110

111

112

113

114

 $\frac{115}{116}$

 $\frac{117}{118}$

119

120

121

122

123

124

125

126

3.7.1 Least Common Ancestor

```
.14
   struct LeastCommonAncestor {
                                                                                      15
     SparseTable st;
                                                                                      16
3
      vector < int > p, time, a, par;
                                                                                      17
      LeastCommonAncestor(int root, const vector<vector<int>>& g) {
                                                                                      18
4
       int n = g.size();
                                                                                      19
5
       time.resize(n, -1);
                                                                                      20
7
       par.resize(n, -1);
        function < void(int) > dfs = [&](int u) {
8
          time[u] = p.size():
                                                                                      22
                                                                                      23
          p.push_back(u);
10
          for (int v : g[u]) {
                                                                                      24
11
            if (time[v] == -1) {
12
              par[v] = u;
13
```

```
dfs(v):
15
16
         }
17
       }:
18
       dfs(root);
19
       a.resize(n);
       for (int i = 1: i < n: i += 1) {
         a[i] = time[par[p[i]]];
22
23
       st = SparseTable(a);
24
25
     int query(int u, int v) {
       if (u == v) {
27
         return u:
28
       if (time[u] > time[v]) {
30
         swap(u, v);
31
32
       return p[st.query(time[u] + 1, time[v] + 1)];
33
34
  |};
```

3.7.2 Link Cut Tree

```
template <class T, class E, class REV, class OP>
struct Node {
 T t. st:
  bool reversed;
  Node* par;
  array < Node*, 2> ch;
  Node(T t = E()()) : t(t), st(t), reversed(false), par(nullptr) { ch.fill(}
      nullptr); }
  int get_s() {
   if (par == nullptr) {
      return -1:
    if (par -> ch \lceil 0 \rceil == this) {
      return 0;
    if (par \rightarrow ch[1] == this) {
      return 1;
   return -1;
  void push_up() { st = OP()(ch[0] ? ch[0] -> st : E()(), OP()(t, ch[1] ? ch ) }
      [1]->st : E()()); }
  void reverse() {
   reversed ^= 1:
    st = REV()(st);
  void push_down() {
    if (reversed) {
```

10

11 12

```
swap(ch[0], ch[1]);
   if (ch[0]) {
     ch [0] -> reverse();
   if (ch[1]) {
      ch [1] -> reverse();
   reversed = false;
void attach(int s, Node* u) {
 if ((ch[s] = u)) {
   u \rightarrow par = this;
 push_up();
void rotate() {
 auto p = par;
 auto pp = p->par;
 int s = get_s();
 int ps = p->get_s();
 p->attach(s, ch[s ^ 1]);
 attach(s ^ 1, p);
 if (~ps) {
   pp->attach(ps, this);
 par = pp;
void splay() {
 push_down();
 while (~get_s() and ~par->get_s()) {
   par->par->push_down();
   par -> push_down();
   push_down();
   (get_s() == par->get_s() ? par : this)->rotate();
   rotate():
 if (~get_s()) {
   par -> push_down();
   push_down();
   rotate();
void access() {
 splay();
 attach(1, nullptr);
 while (par != nullptr) {
   auto p = par;
   p->splay();
   p->attach(1, this);
   rotate();
```

28

 29

30

31

32

33

34

35

36 37

38

39

40

41

42

43

44

45

46

47

48

51

52

53

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

76

77

78

}

```
void make root() {
81
        access();
82
        reverse();
83
        push_down();
84
85
      void link(Node* u) {
        u->make root():
        access():
88
        attach(1, u):
89
      void cut(Node* u) {
91
        u->make_root();
        access();
93
        if (ch \lceil 0 \rceil == u) 
          ch \lceil 0 \rceil = u - > par = nullptr:
       push_up();
}
95
96
97
98
      void set(T t) {
        access():
        this \rightarrow t = t:
101
        push_up();
102
103
     T query(Node* u) {
104
        u->make_root();
        access():
106
        return st;
107
08 };
```

4 String

4.1 **Z**

```
vector<int> fz(const string& s) {
   int n = s.size();
   vector<int> z(n);
   for (int i = 1, j = 0; i < n; i += 1) {
      z[i] = max(min(z[i - j], j + z[j] - i), 0);
      while (i + z[i] < n and s[i + z[i]] == s[z[i]]) {
       z[i] += 1;
   }
   if (i + z[i] > j + z[j]) {
      j = i;
   }
} return z;
}
```

4.2 Lyndon Factorization

```
vector < int > lyndon_factorization(string const& s) {
      vector < int > res = \{0\}:
3
      for (int i = 0, n = s.size(); i < n;) {
       int j = i + 1, k = i;
        for (; j < n \text{ and } s[k] <= s[j]; j += 1) {
         k = s[k] < s[j] ? i : k + 1;
7
        while (i \le k) {
8
          res.push_back(i += j - k);
10
11
12
      return res;
13
```

4.3 Border

```
15
                                                                                      16
   vector<int> fborder(const string& s) {
     int n = s.size();
      vector < int > res(n):
                                                                                      19
      for (int i = 1; i < n; i += 1) {
                                                                                      20
       int& j = res[i] = res[i - 1];
       while (j and s[i] != s[j]) {
                                                                                      22
         i = res[i - 1];
                                                                                      23
                                                                                      24
       i += s[i] == s[i]:
10
11
     return res;
                                                                                      27
```

4.4 Manacher

```
vector < int > manacher(const string& s) {
     int n = s.size();
      vector < int > p(n);
3
      for (int i = 0, j = 0; i < n; i += 1) {
4
       if (i + p[i] > i) {
5
         p[i] = min(p[j * 2 - i], j + p[j] - i);
8
        while (i \ge p[i]) and i + p[i] < n and s[i - p[i]] == s[i + p[i]]) {
          p[i] += 1;
10
                                                                                      41
       if (i + p[i] > j + p[j]) {
11
12
          j = i;
                                                                                      43
13
14
15
      return p;
16 | }
```

4.5 Suffix Array

```
pair < vector < int >, vector < int >> binary_lifting (const string & s) {
     int n = s.size(), k = 0;
     vector < int > p(n), rank(n), q, count;
     iota(p.begin(), p.end(), 0);
     ranges::sort(p, {}, [&](int i) { return s[i]; });
     for (int i = 0; i < n; i += 1) {
       rank[p[i]] = i and s[p[i]] == s[p[i - 1]] ? rank[p[i - 1]] : k++;
     for (int m = 1; m < n; m *= 2) {
       q.resize(m);
       iota(q.begin(), q.end(), n - m);
       for (int i : p) {
        if (i >= m) {
           q.push_back(i - m);
       count.assign(k, 0);
       for (int i : rank) {
         count[i] += 1;
       partial_sum(count.begin(), count.end(), count.begin());
       for (int i = n - 1; i \ge 0; i = 1) {
         p[count[rank[q[i]]] -= 1] = q[i];
       auto previous = rank:
       previous.resize(2 * n, -1);
       for (int i = 0; i < n; i += 1) {
         rank[p[i]] = i and previous[p[i]] == previous[p[i - 1]] and previous[p[
             [i] + m] == previous[p[i - 1] + m] ? rank[p[i - 1]] : k++;
     vector < int > lcp(n);
     k = 0:
     for (int i = 0; i < n; i += 1) {
       if (rank[i]) {
         k = max(k - 1, 0);
         int j = p[rank[i] - 1];
         while (i + k < n \text{ and } j + k < n \text{ and } s[i + k] == s[j + k]) {
         lcp[rank[i]] = k;
     return {p, lcp};
45 }
```

4.6 Aho-Corasick Automaton

```
constexpr int sigma = 26;
   struct Node {
      int link:
                                                                                        11
      array < int , sigma > next;
4
                                                                                        12
      Node(): link(0) { next.fill(0): }
                                                                                        13
6
                                                                                        14
   struct AhoCorasick : vector < Node > {
7
                                                                                        15
8
      AhoCorasick(): vector < Node > (1) {}
                                                                                        16
      int add(const string& s, char first = 'a') {
9
                                                                                        17
       int p = 0:
10
        for (char si : s) {
11
          int c = si - first:
12
          if (not at(p).next[c]) {
13
                                                                                        21
            at(p) next[c] = size();
14
            emplace_back();
15
                                                                                        23
16
                                                                                        24
            = at(p).next[c];
17
                                                                                        25
18
19
20
      void init() {
21
        queue < int > q;
^{22}
                                                                                        30
        for (int i = 0; i < sigma; i += 1) {
                                                                                        31
          if (at(0).next[i]) {
24
                                                                                        32
            q.push(at(0).next[i]);
25
26
                                                                                        34
27
        while (not q.empty()) {
28
          int u = q.front();
29
          q.pop();
30
                                                                                        38
          for (int i = 0: i < sigma: i += 1) {
31
32
            if (at(u).next[i]) {
              at(at(u).next[i]).link = at(at(u).link).next[i];
33
              q.push(at(u).next[i]);
34
35
            } else {
                                                                                        43
              at(u).next[i] = at(at(u).link).next[i]:
36
                                                                                        44
37
38
39
40
                                                                                        48
41
```

4.7 Suffix Automaton

```
1  struct Node {
2   int link, len;
3   array < int, sigma > next;
4   Node() : link(-1), len(0) { next.fill(-1); }
5  };
```

```
struct SuffixAutomaton : vector < Node > {
  SuffixAutomaton() : vector < Node > (1) {}
  int extend(int p, int c) {
   if (~at(p).next[c]) {
      // For online multiple strings.
      int q = at(p).next[c];
      if (at(p).len + 1 == at(q).len) {
        return q;
      int clone = size();
      push_back(at(q));
      back().len = at(p).len + 1;
      while ("p and at(p).next[c] == q) {
        at(p).next[c] = clone:
        p = at(p).link:
      at(q).link = clone;
      return clone:
    int cur = size():
    emplace_back();
    back().len = at(p).len + 1:
    while ("p and at(p).next[c] == -1) {
      at(p).next[c] = cur;
      p = at(p).link;
    if (~p) {
      int q = at(p).next[c];
      if (at(p).len + 1 == at(q).len) {
        back().link = q;
      } else {
        int clone = size();
        push back(at(g)):
        back().len = at(p).len + 1;
        while ("p and at(p).next[c] == q) {
          at(p).next[c] = clone;
          p = at(p).link;
        at(q).link = at(cur).link = clone;
   } else {
      back().link = 0;
    return cur:
```

4.8 Palindromic Tree

```
struct Node {
int sum, len, link;
array < int, sigma > next;
```

51 };

```
Node(int len) : len(len) {
        sum = link = 0;
       next.fill(0);
8
   struct PalindromicTree : vector < Node > {
     int last:
     vector < int > s;
     PalindromicTree() : last(0) {
       emplace_back(0);
       emplace_back(-1);
       at(0).link = 1:
     int get link(int u. int i) {
       while (i < at(u).len + 1 \text{ or } s[i - at(u).len - 1] != s[i])
         u = at(u).link:
       return u:
     void extend(int i) {
       int cur = get link(last, i):
        if (not at(cur).next[s[i]]) {
         int now = size():
         emplace back(at(cur).len + 2):
         back().link = at(get_link(at(cur).link, i)).next[s[i]];
         back().sum = at(back().link).sum + 1:
          at(cur).next[s[i]] = now;
       last = at(cur).next[s[i]];
32
33
```

Number Theory

7

10

11 12

15 16

17

19

20

21

 22

23 24

25

27

28

30 31

5.1 Gaussian Integer

```
i64 div_floor(i64 x, i64 y) {
     return x / y - (x \% y < 0);
2
3
   i64 div_ceil(i64 x, i64 y) {
     return x / y + (x \% y > 0);
6
7
   i64 div_round(i64 x, i64 y) {
    return div_floor(2 * x + y, 2 * y);
9
10
   struct Gauss {
    i64 x. v:
11
    i64 norm() { return x * x + y * y; }
     bool operator!=(i64 r) { return y or x != r; }
13
     Gauss operator () { return {x, -y}; }
     Gauss operator-(Gauss rhs) { return {x - rhs.x, y - rhs.y}; }
```

```
Gauss operator*(Gauss rhs) { return {x * rhs.x - v * rhs.v. x * rhs.v + v *
          rhs.x}; }
     Gauss operator/(Gauss rhs) {
       auto [x, v] = operator*("rhs):
       return {div_round(x, rhs.norm()), div_round(y, rhs.norm())};
20
     Gauss operator % (Gauss rhs) { return operator - (rhs*(operator/(rhs))): }
21
22
```

Modular Arithmetic

5.2.1 Sart

Find x such that $x^2 \equiv y \pmod{p}$. Constraints: p is prime and $0 \le u \le p$.

```
i64 sart(i64 v. i64 p) {
     static mt19937_64 mt;
     if (y <= 1) {
      return v:
     if (power(y, (p - 1) / 2, p) != 1) {
       return -1:
     uniform_int_distribution uid(i64(0), p - 1);
     i64 x, w;
11
     do {
12
      x = uid(mt):
       w = (x * x + p - y) \% p;
     \} while (power(w, (p - 1) / 2, p) == 1);
      auto mul = \lceil k \rceil (pair<i64, i64> a, pair<i64, i64> b) { return pair((a.first *
          b.first + a.second * b.second % p * w) % p, (a.first * b.second + a
         second * b.first) % p): }:
     pair < i64, i64 > a = \{x, 1\}, res = \{1, 0\};
      for (i64 r = (p + 1) >> 1; r; r >>= 1, a = mul(a, a)) {
       if (r & 1) {
19
          res = mul(res, a);
22
     return res.first;
```

5.2.2 Logarithm

Find k such that $x^k \equiv y \pmod{n}$. Constraints: 0 < x, y < n.

```
1 | i64 log(i64 x, i64 v, i64 n) {
   if (y == 1 \text{ or } n == 1) 
      return 0:
     if (not x) {
```

```
return y ? -1 : 1;
8
      i64 \text{ res} = 0, k = 1 \% n;
      for (i64 d; k != y and (d = gcd(x, n)) != 1; res += 1) {
9
10
       if (v % d) {
          return -1;
11
12
        n /= d;
13
14
        y /= d;
15
       k = k * (x / d) % n;
16
      if (k == y) {
17
       return res;
18
19
      unordered map < i64. i64> mp:
21
      i64 px = 1, m = sqrt(n) + 1;
      for (int i = 0; i < m; i += 1, px = px * x % n) {
       mp[v * px % n] = i;
^{24}
      i64 ppx = k * px % n;
25
      for (int i = 1; i <= m; i += 1, ppx = ppx * px % n) {
26
27
       if (mp.count(ppx)) {
          return res + i * m - mp[ppx];
29
30
31
      return -1;
32
```

5.3 Chinese Remainder Theorem

```
tuple < i64, i64, i64 > exgcd(i64 a, i64 b) {
     i64 x = 1, y = 0, x1 = 0, y1 = 1;
      while (b) {
4
       i64 q = a / b;
       tie(x, x1) = pair(x1, x - q * x1);
       tie(y, y1) = pair(y1, y - q * y1);
       tie(a, b) = pair(b, a - q * b);
7
8
9
     return {a, x, y};
10
    optional < pair < i64, i64 >> linear_equations (i64 a0, i64 b0, i64 a1, i64 b1) {
11
12
      auto [d, x, y] = exgcd(a0, a1);
      if ((b1 - b0) % d) {
13
       return {}:
14
     i64 = a0 / d * a1, b = (i128)(b1 - b0) / d * x % (a1 / d);
      if (b < 0) {
17
       b += a1 / d:
18
19
     b = (i128)(a0 * b + b0) \% a;
20
      if (b < 0) {
21
       b += a;
```

```
23 | }
24 | return {{a, b}};
25 | }
```

5.4 Miller Rabin

```
bool miller rabin(i64 n) {
     static constexpr array<int, 9> p = {2, 3, 5, 7, 11, 13, 17, 19, 23};
     if (n == 1) {
       return false:
     if (n == 2) {
       return true:
     if (not(n % 2)) {
       return false:
11
     int r = countr zero(u64(n - 1)):
     i64 d = (n - 1) >> r;
     for (int pi : p) {
       if (pi >= n) {
16
         break:
17
       i64 x = power(pi, d, n);
       if (x == 1 or x == n - 1) {
         continue:
21
       for (int j = 1; j < r; j += 1) {
        x = (i128)x * x % n;
         if (x == n - 1) {
           break:
         }
       if (x != n - 1) {
         return false;
30
31
32
     return true;
33 };
```

5.5 Pollard Rho

```
vector < i64 > pollard_rho(i64 n) {
    static mt19937_64 mt;
    uniform_int_distribution uid(i64(0), n);
    if (n == 1) {
        return {};
    }
    vector < i64 > res;
    function < void(i64) > rho = [&](i64 n) {
```

```
if (miller rabin(n)) {
          return res.push_back(n);
10
11
        i64 d = n:
12
13
        while (d == n) {
          d = 1:
14
          for (i64 \text{ k} = 1, y = 0, x = 0, s = 1, c = uid(mt); d == 1; k <<= 1, y =
15
             x, s = 1)
            for (int i = 1; i <= k; i += 1) {
16
              x = ((i128)x * x + c) \% n;
17
              s = (i128)s * abs(x - y) % n;
18
              if (not(i \% 127) or i == k) {
19
               d = gcd(s, n);
20
                if (d!= 1) {
21
                  break:
23
24
^{25}
26
27
28
        rho(d);
29
       rho(n / d):
      rho(n);
32
      return res;
33
```

5.6 Primitive Root

Constraints: $n = 2, 4, p^k, 2p^k$ where p is odd prime.

```
i64 phi(i64 n) {
     auto pd = pollard_rho(n);
     ranges::sort(pd);
4
     pd.erase(ranges::unique(pd).begin(), pd.end());
      for (i64 pi : pd) {
       n = n / pi * (pi - 1);
7
8
     return n;
9
10
   i64 minimum_primitive_root(i64 n) {
     i64 pn = phi(n);
11
12
      auto pd = pollard_rho(pn);
     ranges::sort(pd);
13
     pd.erase(ranges::unique(pd).begin(), pd.end());
14
      auto check = [\&](i64 r) {
       if (gcd(r, n) != 1) {
16
         return false;
17
18
       for (i64 pi : pd) {
19
         if (power(r, pn / pi, n) == 1) {
20
           return false:
21
^{22}
```

5.7 Sum of Floor

Returns $\sum_{i=0}^{n-1} \lfloor \frac{ai+b}{m} \rfloor$.

```
u64 sum_of_floor(u64 n, u64 m, u64 a, u64 b) {
  u64 ans = 0;
  while (n) {
    ans += a / m * n * (n - 1) / 2;
    a %= m;
  ans += b / m * n;
    b %= m;
  u64 y = a * n + b;
  if (y < m) {
    break;
  }
  tie(n, m, a, b) = tuple(y / m, a, m, y % m);
}
  return ans;
}</pre>
```

5.8 Minimum of Remainder

Returns $\min\{(ai+b) \bmod m : 0 \le i < n\}$.

```
u64 \text{ min of mod}(u64 \text{ n. } u64 \text{ m. } u64 \text{ a. } u64 \text{ b. } u64 \text{ c} = 1. \ u64 \text{ p} = 1. \ u64 \text{ d} = 1)
     if (a == 0) {
      return b:
     if (c % 2) {
        if (b >= a) {
           u64 t = (m - b + a - 1) / a;
           u64 d = (t - 1) * p + q;
           if (n \le d) 
              return b:
           n -= d;
13
           b += a * t - m;
        b = a - 1 - b;
     } else {
        if (b < m - a) 
           u64 t = (m - b - 1) / a;
```

13 14

```
u64 d = t * p;
19
          if (n <= d) {
20
21
            return (n - 1) / p * a + b;
22
23
          n -= d;
^{24}
          b += a * t;
25
                                                                                        11
^{26}
        b = m - 1 - b;
27
28
      u64 res = min_of_mod(n, a, m % a, b, c += 1, (d - 1) * p + q, d * p + q);
                                                                                        13
      return c % 2 ? m - 1 - res : a - 1 - res:
                                                                                        14
30
31 }
                                                                                        15
```

5.9 Stern Brocot Tree

```
struct Node {
2
      int a. b:
      vector<pair<int, char>> p;
      Node(int a, int b) : a(a), b(b) {
                                                                                      24
4
       // acd(a, b) == 1
                                                                                      25
6
        while (a != 1 or b != 1) {
         if (a > b) {
7
                                                                                      27
           int k = (a - 1) / b:
                                                                                      28
8
           p.emplace_back(k, 'R');
           a -= k * b:
10
          } else {
11
            int k = (b - 1) / a;
12
            p.emplace_back(k, 'L');
13
14
            b = k * a;
15
16
       }
17
18
      Node(vector < pair < int, char >> p, int _a = 1, int _b = 1) : p(p), a(_a), b(_b
        for (auto [c, d] : p | views::reverse) {
19
          if (d == 'R') {
           a += c * b;
21
22
          } else {
23
            b += c * a:
24
25
^{26}
27
   };
```

5.10 Nim Product

```
struct NimProduct {
2  array < array < u64, 64>, 64> mem;
3  NimProduct() {
```

```
for (int i = 0: i < 64: i += 1) {
      for (int j = 0; j < 64; j += 1) {
        int k = i & j;
        if (k == 0) 
          mem[i][j] = u64(1) << (i | j);
        } else {
          int x = k & -k:
          mem[i][j] = mem[i ^ x][j] ^ mem[(i ^ x) | (x - 1)][(j ^ x) | (i & (
              x - 1))]:
  u64 nim_product(u64 x, u64 y) {
    u64 res = 0:
    for (int i = 0; i < 64 and x >> i; i += 1) {
      if ((x >> i) % 2) {
        for (int j = 0; j < 64 and y >> j; j += 1) {
          if ((v >> j) \% 2) {
            res ^= mem[i][j];
        }
      }
    return res;
};
```

6 Numerical

6.1 Golden Search

```
template <int step>
   f64 golden_search(function < f64(f64) > f, f64 l, f64 r) {
     f64 ml = (numbers::phi - 1) * 1 + (2 - numbers::phi) * r;
     f64 mr = 1 + r - ml:
     f64 fml = f(ml), fmr = f(mr):
     for (int i = 0; i < step; i += 1)
       if (fml > fmr) {
         1 = m1:
         fml = fmr:
         fmr = f(mr = (numbers::phi - 1) * r + (2 - numbers::phi) * 1);
         r = mr:
         mr = ml;
         fmr = fml:
16
         fml = f(ml = (numbers::phi - 1) * 1 + (2 - numbers::phi) * r);
17
18
     return midpoint(1, r);
19 }
```

18

6.2 Adaptive Simpson

```
32
   f64 simpson(function < f64(f64) > f, f64 1, f64 r) {
                                                                                    33
     return (r - 1) * (f(1) + f(r) + 4 * f(midpoint(1, r))) / 6:
                                                                                    34
3
                                                                                    35
   f64 adaptive_simpson(const function < f64(f64) > & f, f64 1, f64 r, f64 eps) {
4
     f64 m = midpoint(1, r);
     f64 s = simpson(f, l, r);
     f64 sl = simpson(f, l, m);
7
     f64 sr = simpson(f, m, r);
     f64 d = s1 + sr - s:
                                                                                    41
     if (abs(d) < 15 * eps) {
                                                                                    42
       return (sl + sr) + d / 15;
11
12
     return adaptive_simpson(f, 1, m, eps / 2) + adaptive_simpson(f, m, r, eps /
13
                                                                                     46
14 }
                                                                                    47
```

6.3 Simplex

Returns maximum of cx s.t. $ax \leq b$ and $x \geq 0$.

```
struct Simplex {
                                                                                        54
     int n. m:
                                                                                        55
      f64 z:
                                                                                        56
      vector < vector < f64>> a:
4
      vector < f64 > b. c:
      vector < int > base;
      Simplex(int n, int m): n(n), m(m), a(m), vector(f64)(n), b(m), c(n), base(f60)
7
         n + m), z(0) { iota(base.begin(), base.end(), 0); }
      void pivot(int out. int in) {
8
                                                                                        62
        swap(base[out + n], base[in]);
        f64 f = 1 / a[out][in];
10
                                                                                        64
1.1
        for (f64& aij : a[out]) {
          aii *= f:
12
13
                                                                                        67
        b[out] *= f:
14
15
        a[out][in] = f;
        for (int i = 0; i <= m; i += 1) {
16
17
          if (i != out) {
                                                                                        71
            auto& ai = i == m ? c : a[i];
18
                                                                                        72
            f64\& bi = i == m ? z : b[i]:
19
                                                                                        73
            f64 f = -ai[in]:
20
                                                                                        74
            if (f < -eps \text{ or } f > eps) {
21
                                                                                        75
              for (int j = 0; j < n; j += 1) {
22
23
                ai[j] += a[out][j] * f;
^{24}
              ai[in] = a[out][in] * f;
25
                                                                                        79
              bi += b[out] * f;
26
                                                                                        80
27
                                                                                        81
28
                                                                                        82
```

```
bool feasible() {
  while (true) {
    int i = ranges::min_element(b) - b.begin();
    if (b[i] > -eps) {
      break:
    int k = -1;
    for (int j = 0; j < n; j += 1) {
     if (a[i][j] < -eps and (k == -1 \text{ or } base[j] > base[k])) {
    }
    if (k == -1) {
      return false:
    pivot(i, k);
  return true;
bool bounded() {
  while (true) {
    int i = ranges::max_element(c) - c.begin();
    if (c[i] < eps) {</pre>
      break:
    int k = -1;
    for (int j = 0; j < m; j += 1) {
      if (a[i][i] > eps) {
        if (k == -1) {
          k = i:
        } else {
          f64 d = b[j] * a[k][i] - b[k] * a[j][i];
          if (d < -eps or (d < eps and base[j] > base[k])) {
            k = i;
    if (k == -1) {
      return false;
   pivot(k, i);
 return true;
vector < f64 > x() const {
 vector<f64> res(n):
  for (int i = n; i < n + m; i += 1) {
    if (base[i] < n) {</pre>
      res[base[i]] = b[i - n];
```

30

31

48

```
83 | return res;
84 | }
85 | };
```

6.4 Green's Theorem

$$\oint_C (Pdx + Qdy) = \iint_D (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dx dy.$$

6.5 Double Integral

$$\iint_D f(x,y)dxdy = \iint_D f(x(u,v),y(u,v)) \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} dudv.$$

7 Convolution

7.1 Fast Fourier Transform on \mathbb{C}

```
void fft(vector < complex < f64 >> & a, bool inverse) {
      int n = a.size():
      vector < int > r(n);
      for (int i = 0; i < n; i += 1) {
       r[i] = r[i / 2] / 2 | (i % 2 ? n / 2 : 0);
      for (int i = 0; i < n; i += 1) {
        if (i < r[i]) {</pre>
          swap(a[i], a[r[i]]);
10
11
      for (int m = 1; m < n; m *= 2) {
12
        complex < f64 > wn(exp((inverse ? 1.i : -1.i) * numbers::pi / (f64)m));
13
        for (int i = 0; i < n; i += m * 2) {
14
          complex < f64 > w = 1:
15
          for (int j = 0; j < m; j += 1, w = w * wn) {
16
            auto &x = a[i + j + m], &y = a[i + j], t = w * x;
17
            tie(x, y) = pair(y - t, y + t);
18
19
20
      if (inverse) {
        for (auto& ai : a) {
          ai /= n;
26
^{27}
```

7.2 Formal Power Series on \mathbb{F}_n

```
void fft(vector<i64>& a, bool inverse) {
     int n = a.size();
      vector < int > r(n);
      for (int i = 0; i < n; i += 1) {
       r[i] = r[i / 2] / 2 | (i \% 2 ? n / 2 : 0);
      for (int i = 0; i < n; i += 1) {
       if (i < r[i]) {</pre>
          swap(a[i], a[r[i]]);
10
11
      for (int m = 1: m < n: m *= 2) {
12
13
       i64 wn = power(inverse ? power(g, mod - 2) : g, (mod - 1) / m / 2);
        for (int i = 0: i < n: i += m * 2) {
14
15
          for (int j = 0; j < m; j += 1, w = w * wn % mod) {
16
            auto &x = a[i + j + m], &y = a[i + j], t = w * x % mod;
            tie(x, y) = pair((y + mod - t) \% mod, (y + t) \% mod);
18
19
20
21
      if (inverse) {
       i64 inv = power(n, mod - 2);
       for (auto& ai : a) {
          ai = ai * inv % mod:
26
27
```

7.2.1 Newton's Method

$$h = g(f) \leftrightarrows G(h) = f - g^{-1}(h) \equiv 0.$$
$$h = h_0 - \frac{G(h_0)}{G'(h_0)}.$$

7.2.2 Arithmetic

- For f = pg + q, $p^T = f^T g^T 1$.
- For $h = \frac{1}{f}$, $h = h_0(2 h_0 f)$.
- For $h = \sqrt{f}$, $h = \frac{1}{2}(h_0 + \frac{f}{h_0})$.
- For $h = \log f$, $h = \int \frac{df}{f}$.
- For $h = \exp f$, $h = h_0(1 + f \log h_0)$.

7.2.3 Interpolation

$$g(x) = \prod_{i} (x - x_i)$$
$$f(x) = \sum_{i=0}^{n-1} y_i (\prod_{j \neq i} \frac{x - x_j}{x_i - x_j}).$$

$$f(x) = \sum_{i=0}^{n-1} \frac{y_i}{g'(x_i)} \prod_{j \neq i} (x - x_j).$$

7.2.4 Primes with root 3

 $469762049 = 7 \times 2^{26} + 1$. $4179340454199820289 = 29 \times 2^{57} + 1.$

Circular Transform

$$A_{ij} = w_k^{ij}, A_{ij}^{-1} = \frac{1}{k} w_k^{-ij}.$$

7.4 Truncated Transform

$$\sum_{j=0}^{n-1} \frac{i}{\prod_{k=0}^{j} m_k} \mod n \quad \text{for} \quad 0 \le i < \prod_{j=0}^{n-1} m_k.$$

Geometry

Pick's Theorem

Area = $\#\{\text{points inside}\} + \frac{1}{2}\#\{\text{points on the border}\} - 1$.

2D Geometry

P: point, L: line, G: convex hull or polygon, C: Circle.

```
template <typename T>
                                                                                             54
2 \mid T \text{ eps} = 0;
                                                                                             55
   template <>
                                                                                             56
    f64 eps < f64 > = 1e-9;
    template <typename T>
   int sign(T x) {
                                                                                             59
      return x < -eps < T > ? -1 : x > eps < T > ;
                                                                                             60
8
                                                                                             61
    template <tvpename T>
                                                                                             62
10
    struct P {
11
      T x, v;
                                                                                             64
      explicit P(T x = 0, T y = 0) : x(x), y(y) {}
                                                                                             65
      P 	ext{ operator} * (T 	ext{ k}) \{ 	ext{ return } P(x * k, y * k); \}
                                                                                             66
      P 	ext{ operator} + (P p) \{ 	ext{ return } P(x + p.x, y + p.y); \}
                                                                                             67
      P operator - (P p) { return P(x - p.x, y - p.y); }
15
      P operator -() { return P(-x, -y); }
16
                                                                                             69
      T len2() { return x * x + y * y; }
17
                                                                                             70
      T cross(P p) { return x * p.y - y * p.x; }
                                                                                             71
19
      T dot(P p) { return x * p.x + y * p.y; }
                                                                                             72
      bool operator == (P p) { return sign(x - p.x) == 0 and sign(y - p.y) == 0; }
                                                                                             73
      int arg() { return y < 0 or (y == 0 \text{ and } x > 0) ? -1 : x or y; }
                                                                                             74
      P rotate90() { return P(-y, x); }
                                                                                             75
23
24 template <typename T>
```

```
bool argument(P<T> lhs, P<T> rhs) {
      if (lhs.arg() != rhs.arg()) {
       return lhs.arg() < rhs.arg();</pre>
28
29
     return lhs.cross(rhs) > 0;
30
   template <tvpename T>
   struct L {
32
33
     P < T > a. b:
      explicit L(P<T> a = {}), P<T> b = {}) : a(a), b(b) {}
      P<T> v() { return b - a; }
      bool contains(P<T> p) { return sign((p - a).cross(p - b)) == 0 and sign((p
          - a).dot(p - b)) <= 0; }
      int left(P<T> p) { return sign(v().cross(p - a)); }
      optional <pair <T. T>> intersection(L 1) {
       auto y = v().cross(l.v());
       if (sign(y) == 0) {
40
         return {}:
43
       auto x = (1.a - a).cross(1.v()):
        return y < 0 ? pair(-x, -y) : pair(x, y);
46
   template <typename T>
    struct G {
49
      vector < P < T >> g;
      explicit G(int n) : g(n) {}
      explicit G(const\ vector < P < T >> & g) : g(g) {}
      optional < int > winding (P<T> p) {
       int n = g.size(), res = 0;
        for (int i = 0: i < n: i += 1) {
          auto a = g[i], b = g[(i + 1) \% n];
         L 1(a. b):
          if (l.contains(p)) {
            return {};
          if (sign(1.v().v) < 0 and 1.left(p) >= 0) {
            continue:
          if (sign(1.v().y) == 0) {
            continue:
          if (sign(1.v().v) > 0 and 1.left(p) \le 0) {
            continue:
          if (sign(a.y - p.y) < 0 and sign(b.y - p.y) >= 0) {
            res += 1:
          if (sign(a.y - p.y) >= 0 and sign(b.y - p.y) < 0) {
            res -= 1;
       return res;
```

27

31

37

39

41

42

44

```
return sign((p - g[0]).cross(g[i] - g[0])) <= 0; });
G convex() {
                                                                                       int s = L(g[i-1], g[i]).left(p);
                                                                               128
  ranges::sort(g, {}, [&](P<T> p) { return pair(p.x, p.y); });
                                                                               129
                                                                                       if (s == 0) {
  vector < P < T >> h:
                                                                               130
                                                                                         return {}:
  for (auto p : g) {
    while (ssize(h) >= 2 and sign((h.back() - h.end()[-2]).cross(p - h.back | 32
                                                                                      return s > 0:
        ())) <= 0) {
      h.pop_back();
                                                                               134
                                                                                     int most(const function <P<T>(P<T>)>& f) {
                                                                                       int n = g.size():
    h.push_back(p);
                                                                                       auto check = [\&](int i) { return sign(f(g[i]).cross(g[(i + 1) % n] - g[i
                                                                                           1)) >= 0: }:
  int m = h.size():
                                                                                       P < T > f0 = f(g[0]):
  for (auto p : g | views::reverse) {
                                                                                       bool check0 = check(0);
    while (ssize(h) > m and sign((h.back() - h.end()[-2]).cross(p - h.back
                                                                                       if (not check0 and check(n - 1)) {
        ())) <= 0) {
                                                                                        return 0:
      h.pop_back();
                                                                               141
                                                                               42
                                                                                       return *ranges::partition_point(views::iota(0, n), [&](int i) -> bool {
                                                                                         if (i == 0) {
    h.push_back(p);
                                                                               44
                                                                                           return true;
  h.pop back():
                                                                               145
  return G(h);
                                                                               146
                                                                                         bool checki = check(i);
                                                                                         int t = sign(f0.cross(g[i] - g[0])):
// Following function are valid only for convex.
                                                                                         if (i == 1 \text{ and } checki == check0 \text{ and } t == 0)
T diameter2() {
                                                                               49
                                                                                           return true;
 int n = g.size():
                                                                               150
                                                                                         return checki ^ (checki == check0 and t <= 0);
  T res = 0:
  for (int i = 0, j = 1; i < n; i += 1) {
                                                                               152
                                                                                      });
    auto a = g[i], b = g[(i + 1) \% n];
                                                                               153
    while (sign((b - a).cross(g[(j + 1) % n] - g[j])) > 0) {
                                                                               154
                                                                                     pair < int , int > tan(P < T > p) {
     j = (j + 1) \% n:
                                                                                      return {most([&](P<T> x) { return x - p; }), most([&](P<T> x) { return p
                                                                                           - x: })}:
    res = max(res, (a - g[i]).len2());
                                                                               156
                                                                                     pair < int , int > tan(L < T > 1) {
    res = max(res, (a - g[j]).len2());
                                                                               157
                                                                                       return {most([&](P<T> _) { return 1.v(); }), most([&](P<T> _) { return -1
  return res;
                                                                                           .v(); })};
                                                                               159
optional <br/>
<br/>bool> contains(P<T> p) {
                                                                               160 };
  if (g[0] == p) {
                                                                               161
    return {}:
                                                                                  template <tvpename T>
                                                                               63 | vector <L<T>> half (vector <L<T>> ls. T bound) {
  if (g.size() == 1) {
                                                                               164
                                                                                    // Ranges: bound ^ 6
                                                                                     auto check = [](L < T > a, L < T > b, L < T > c) {
    return false;
                                                                                       auto [x, y] = b.intersection(c).value();
  if (L(g[0], g[1]).contains(p)) {
                                                                                      a = L(a.a * v. a.b * v):
    return {};
                                                                                       return a.left(b.a * y + b.v() * x) < 0;
                                                                               168
                                                                               169
  if (L(g[0], g[1]).left(p) <= 0) {</pre>
                                                                               170
                                                                                    ls.emplace back(P(-bound, (T)0), P(-bound, -(T)1)):
                                                                                     ls.emplace_back(P((T)0, -bound), P((T)1, -bound));
    return false;
                                                                                     ls.emplace back(P(bound, (T)0), P(bound, (T)1));
  if (L(g[0], g.back()).left(p) > 0) {
                                                                                     ls.emplace_back(P((T)0, bound), P(-(T)1, bound));
    return false;
                                                                               74
                                                                                     ranges::sort(ls, [\&](L<T> lhs, L<T> rhs) {
                                                                                       if (sign(lhs,v(),cross(rhs,v())) == 0 and sign(lhs,v(),dot(rhs,v())) >= 0
  int i = *ranges::partition_point(views::iota(2, ssize(g)), [&](int i) {
                                                                                           0) {
```

78

79

80 81

82

83 84

85

86

87

88

89

90

91

92

93

 $\frac{94}{95}$

96

99

100

101

102

103

104

105

106

 $107 \\ 108$

 $\frac{109}{110}$

111

112

113

114

115

 $\frac{116}{117}$

118

119

120

121

122

123

 $\frac{124}{125}$

126

```
return lhs.left(rhs.a) == -1;
                                                                               190
                                                                                       if (not q.empty() and sign(q.back().v().cross(ls[i].v())) <= 0) {</pre>
                                                                               191
                                                                               192
  return argument(lhs.v(), rhs.v());
                                                                                         return {};
});
                                                                               193
                                                                                       q.push_back(ls[i]);
                                                                               194
deque < L < T >> q;
for (int i = 0; i < ssize(ls); i += 1) {
                                                                               195
                                                                                     while (q.size() > 1 \text{ and } check(q[0], q.back(), q.end()[-2])) {
  if (i and sign(ls[i - 1].v().cross(ls[i].v())) == 0 and sign(ls[i - 1].v
      ().dot(ls[i].v())) == 1) {
                                                                                      q.pop_back();
    continue:
                                                                                     while (q.size() > 1 and check(q.back(), q[0], q[1])) {
                                                                               199
  while (q.size() > 1 and check(ls[i], q.back(), q.end()[-2])) {
                                                                              200
                                                                                       q.pop_front();
    q.pop_back();
                                                                              201
                                                                              202
                                                                                     return vector <L <T>>(q.begin(), q.end());
  while (q.size() > 1 and check(ls[i], q[0], q[1])) {
                                                                               203 }
    q.pop_front();
```

176

177

 $178 \\ 179$

180

181

182

183

184

185

186

187