

Rozpoczęto czwartek, 24 czerwca 2021, 18:00

Stan Ukończone

Ukończono czwartek, 24 czerwca 2021, 18:40

Wykorzystany 39 min. 50 sek.

czas

Punkty 3,00/6,00

Ocena 2,50 pkt. na 5,00 pkt. możliwych do uzyskania (50%)

Pytanie **1**

Zakończone

Ocena: 0,00 z 1,00

W układzie otwartym dla pulsacji odcięcia ω_0 argument transmitancji widmowej wynosi $\phi(\omega_0)=-\frac{5}{8}\pi$. Jakie opóźnienie w pomiarze uchybu regulacji spowoduje osiągnięcie przez układ zamknięty granicy stabilności. W obliczeniach przyjmij $\pi=3,14$. Wynik w sekundach podaj z dokładnością 4 cyfr po przecinku.

$$\omega_0 =$$
 6,4 $\frac{rad}{s}$

Nie udzielono odpowiedzi

Punkty: 1,00

Oblicz wartość ustaloną odpowiedzi układu y_{ust} . Podaj odpowiedź zaokrągloną do 4 miejsc po przecinku.

$$d(t)=1(t), u(t)=1(t)$$
 , $H(s)=\frac{k}{s}$, $G(s)=\frac{s+p}{2s+1}$ $k=$ 1,1, $\,p=$ 2,9

Zakończone

Ocena: 0,00 z 1,00

Dla układu o schemacie blokowym

w którym
$$G_1(s)=rac{2}{s+a}$$
 , $G_2(s)=rac{2}{s+2a}$,

zapisano równania stanu

$$\begin{bmatrix} x_1(k+1) \\ x_2(k+1) \end{bmatrix} = \begin{bmatrix} p & 0 \\ 0 & p^2 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u(k)$$
$$y(k) = \begin{bmatrix} c_1 & c_2 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix}$$

oblicz biegun \boldsymbol{p}

$$a=$$
5,9, $T=$ 0,27

Zakończone

Ocena: 1,00 z 1,00

W układzie opisanym równaniami

$$rac{d}{dt}egin{bmatrix} x_1(t) \ x_2(t) \end{bmatrix} = egin{bmatrix} 0 & 1 \ -a & -10 \end{bmatrix} egin{bmatrix} x_1(t) \ x_2(t) \end{bmatrix} + egin{bmatrix} 0 \ 1 \end{bmatrix} u(t)$$

$$y(t) = \left[egin{array}{cc} 1 & 1 \end{array}
ight] \left[egin{array}{c} x_1(t) \ x_2(t) \end{array}
ight]$$

zastosowano prawo sterowania $u(t)=v(t)-\begin{bmatrix} k_1 & k_2 \end{bmatrix}\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$. Transmitancja operatorowa układu zamkniętego jest równa $G_C(s)=rac{s+1}{s^2+20s+96}$. Oblicz

 k_1 . Wynik podaj z czterema cyframi po przecinku.

a = 11,2

Zakończone

Ocena: 1,00 z 1,00

Dany jest układ opisany równaniami

$$rac{d}{dt}egin{bmatrix} x_1(t) \ x_2(t) \end{bmatrix} = egin{bmatrix} -3 & a \ 0 & -5 \end{bmatrix} egin{bmatrix} x_1(t) \ x_2(t) \end{bmatrix} + egin{bmatrix} b \ 1 \end{bmatrix} u(t)$$

$$y(t) = \left[egin{array}{cc} 1 & c+1 \end{array}
ight] \left[egin{array}{c} x_1(t) \ x_2(t) \end{array}
ight]$$

dla jakiej wartości parametru c układ będzie nieobserwowalny. Wynik podaj z dokładnością czterech cyfr po przecinku.

 $a = 0.1 \ b = 0.7$

Odpowiedź:

Pytanie **6**

Zakończone

Ocena: 1,00 z 1,00

Dane jest równanie ruchu swobodnego układu

$$rac{d}{dt}egin{bmatrix} x_1(t) \ x_2(t) \end{bmatrix} = egin{bmatrix} 0 & 0 \ a & -7 \end{bmatrix} egin{bmatrix} x_1(t) \ x_2(t) \end{bmatrix}$$

Dla warunków początkowych, które nie należą do kierunków wektorów własnych, trajektorie prostoliniowe dla $t \to \infty$ kończą się na prostej o równaniu $x_2(t) = kx_1(t)$. Oblicz wartość k. Wynik podaj z dokładnością czterech cyfr po przecinku.

$$a = -1.7$$

