1. # Aligning the raw fast files:

The full pipeline till alignment is is <u>process-chip-seq.sh</u>

2. # Downloading the bed files and super enhancer coordinates:

downloaded from the reference papers

3. #This is just an intermediate step I had to do:

The original H1.bed file contained coordinates in hg19 format (from Hnisz et al. 2013) I aligned our FASTQ data to hg38 reference genome using the bowtie2 index This created a coordinate system mismatch - I was looking for hg19 coordinates in hg38-aligned data

The liftOver conversion fixed this mismatch by converting coordinates from hg19 to hg38

FASTQ files → Bowtie2 (hg38 reference) → BAM files (hg38 coordinates)

 $H1.bed (hg19) \rightarrow LiftOver \rightarrow H1_hg38.bed \rightarrow Signal quantification \rightarrow CORRECTED results$

Re-quantify signal with CORRECT hg38 coordinates echo "=== RE-RUNNING ANALYSIS WITH CORRECT COORDINATES ==="

multiBigwigSummary BED-file --BED H1 hg38 no chr.bed \

- -b /gpfs/data/khodadadilab/home/temp/Di-Stefano-Lab-Assignment/Task-2/align/CTRL_rep1.bw \ /gpfs/data/khodadadilab/home/temp/Di-Stefano-Lab-Assignment/Task-2/align/CTRL_rep2.bw \ /gpfs/data/khodadadilab/home/temp/Di-Stefano-Lab-Assignment/Task-2/align/DDX6_rep1.bw \ /gpfs/data/khodadadilab/home/temp/Di-Stefano-Lab-Assignment/Task-2/align/DDX6_rep2.bw \ -o h3k27ac CORRECTED signals.npz \
- (D 0 1 10107 00DDE0TED 11 11
- --outRawCounts h3k27ac CORRECTED data.tab

echo "Corrected analysis completed!"

4. #plotting the results:

Results were plotted using the file plot.r

What could be some possible reasons for different p-value

Potential Source of Divergence	Likely Choice in Paper	Choice in My run	Effect on <i>p</i> -value
Unit of replication	1 replicate per group (sgCTRL vs one DDX6 rep) → <i>n</i> = 1/group	Each of 684 SEs treated as an observation (after averaging 2 reps) $\rightarrow n = 684/\text{group}$	Huge increase in sample size \Rightarrow far smaller standard error $\Rightarrow p$ drops \gg
Variance estimate	With $n = 1$, must borrow/pool variance across bins (limma/trend) \rightarrow moderate t	Welch <i>t</i> on 684 values (high df)	Pooled region variance + high df ⇒ larger
Replicates included	Only "best" DDX6 replicate ("#5") shown	Both CTRL reps and both DDX6 reps averaged	Averaging lowers within-group $\sigma \Rightarrow p$ smaller
Signal transform	log ₂ (RPKM) (zeros possibly dropped)	log₂(RPKM + 1) (zeros kept)	Adding 1 compresses low CTRL values, increases mean gap ⇒ p smaller
Coordinate list	hg19 Hnisz SEs	Liftover hg38 SEs	Minor boundary shifts slightly change RPKM
Test direction	Likely one-tailed (expect ↑ in DDX6)	Two-tailed (default)	One-tailed halves <i>p</i> (cannot explain 10 ² gap alone)
Outlier handling	Boxplot caps whiskers at 1.5 × IQR (trims extreme highs)	Violin shows full distribution (keeps all)	Keeping high DDX6 points lowers σ & raises mean $\Rightarrow p$ smaller