Particle Swarm Optimization (2)

Winter 2024

Outline

- Tuning parameters
- Constriction factor
- Topology and neighborhood
 - RBDO application
- Binary and discrete PSO
- Diversity among particles
- Constraint handling
- PSO versus GA

Tuning Parameters

$$\vec{v}_i(t+1) = w \times \vec{v}_i(t) + r_1 c_1 (\vec{x}_{pBest} - \vec{x}_i(t)) + r_2 c_2 (\vec{x}_{gBest} - \vec{x}_i(t))$$

- Swarm size
- Inertia weight, w
- Acceleration constants, c_1 and c_2
- Velocity limit, v^{max}

Swarm Size

- Population sizes ranging from 10 to 100 are the most common.
- It has been learned that PSO needed <u>smaller</u> <u>populations</u> than other evolutionary algorithms to reach high quality solutions

Inertia weight

- Larger value results in smoother, more gradually changes in direction (exploration)
- Smaller value allows particle to settle into the optima (exploitation)
- The inertia weight is typically set up to vary linearly from 1 to 0 during the course

$$w(t) = \overline{w} - \frac{t}{T}(\overline{w} - \underline{w})$$

t: current iteration; T: total iterations

w: upper bound; \underline{w} : lower bound

Settings of Acceleration Constants

$$\vec{v}_i(t+1) = w \times \vec{v}_i(t) + r_1 c_1 (\vec{x}_{pBest} - \vec{x}_i(t)) + r_2 c_2 (\vec{x}_{gBest} - \vec{x}_i(t))$$

 c_1 : self confidence (cognition) factor

 c_2 : swarm confidence (social) factor

- Full model $(c_1, c_2 > 0$, usually between 1 and 4)
- Cognition only $(c_1 > 0 \text{ and } c_2 = 0)$
- Social only $(c_1 = 0 \text{ and } c_2 > 0)$
- Selfless $(c_1 = 0, c_2 > 0, \text{ and gBest} \neq i)$

Velocity Limit

$$v^{\text{max}} = m_v \times x_{range}$$
$$0.1 \le m_v \le 1.0$$

- It restricts the velocity to prevent oscillation
- The constant m_v may differ for different dimensions $m_v = [0.8 \ 0.2 \ 0.5]$
- This does not restrict the location to the range of $[-v^{max}, v^{max}]$

Alternative: Constriction Factor

$$\vec{v}_{i}(t+1) = k \times [\vec{v}_{i}(t) + r_{1}c_{1}(\vec{x}_{pBest} - \vec{x}_{i}(t)) + r_{2}c_{2}(\vec{x}_{gBest} - \vec{x}_{i}(t))]$$

$$k = \frac{2}{|2 - \varphi - \sqrt{\varphi^{2} - 4\varphi}|} \text{ where } \varphi = c_{1} + c_{2}, \varphi > 4$$

- In this way, the amplitude of the trajectory's oscillations decreases over time; hence, <u>v^{max} may</u> not be necessary
- In the literature, $c_1 = c_2 = 2.05$, $\varphi = 4.10$
- If $c_1 = c_2$, we only need to specify one parameter

Swarm Topology

- In PSO, there have been several basic topologies used in the literature
 - Fully-connected
 - Ring
 - Star
 - Tree
 - Mesh

theconservation.com

Particle Neighborhood

- The neighborhood of a particles may be determined by
 - Pre-specified ID
 - Relative geographic positions in the search space
 - Ranks of particles in terms of fitness values

Particle Neighborhood (1)

Pre-specified ID

Particle Neighborhood (2)

Relative geographic positions

Particle Neighborhood (3)

Ranks of particles in terms of fitness values

Guiding Direction: Reliability-based Design Optimization

$$\min_{\mathbf{X}} C_{t}(\mathbf{X}, \mathbf{Z})$$

st.
$$P_f(\mathbf{X}, \mathbf{Z}) \leq \widetilde{P}_f$$

$$x_i \subseteq \mathbf{X} \in \mathbf{L} = \{l_1, l_2, ... l_r\}$$

X: design vector

Z: uncertainty vector

 $\widetilde{P_f}$: target failure probability

L: dimension list

Guiding Direction: Boundary-approaching PSO

$$\vec{v}_i(t+1) = w \times \vec{v}_i(t) + r_1 c_1(\vec{x}_L - \vec{x}_i(t)) + r_2 c_2(\vec{x}_G - \vec{x}_i(t)) + r_3 c_3(\vec{x}_B - \vec{x}_i(t))$$

position of the particle with the shortest distance to the boundary, i.e., with the probability of failure smaller than but closest to the target.

Yang, I-Tung and Hsieh, Y.H. (2011). "Reliability-based design optimization with discrete design variables and non-smooth performance functions: AB-PSO algorithm."

Binary PSO

- PSO can also be used to solve binary problems
- Two steps need special caution
 - Initialization of swarm
 - If U(0,1)>0.5, $x_i=0$; otherwise, $x_i=1$
 - Using velocity as a probability to transfer from real-valued to binary representation
 - See next page

Real-valued to Binary (1)

• After updating the velocity, use the following sigmoid function to transfer it to binary values

Restrict
$$|v_{i}(t)| \le v^{\max} (\approx 4)$$

$$\sigma(v_{i}(t)) = \frac{1}{1 + e^{-v_{i}(t)}}$$

$$\begin{cases} x_{i}(t) = 0 & \text{if } r > \sigma(v_{i}(t)) \\ x_{i}(t) = 1 & \text{otherwise} \end{cases} r \sim U(0,1)$$

 σ (.) serves as a threshold

Real-valued to Binary (1): example

Suppose v=(2.37, -1.96, 0.12)

v	$\sigma(v)$	r=rand()	X
2.37	0.914511	0.636208	1
-1.96	0.123467	0.687621	0
0.12	0.529964	0.468063	1

Note that x is no longer = x + v; x is in the binary domain whereas v is in the real-valued domain.

Restrict
$$|v_i(t)| \le v^{\max} \ (\approx 4)$$

$$\sigma(v_i(t)) = \frac{1}{1 + e^{-v_i(t)}}$$

$$\begin{cases} x_i(t) = 0 & \text{if } r > \sigma(v_i(t)) \\ x_i(t) = 1 & \text{otherwise} \end{cases} r \sim U(0,1)$$

Real-valued to Binary (2)

• Use the following rule to update location X

$$\begin{split} & \text{if } (0 \leqq v_{id} \leqq \alpha) \\ & x_{id} \left(t+1\right) = x_{id} \left(t\right) \\ & \text{elseif } (\alpha < v_{id} \leqq (1+\alpha)/2) \\ & x_{id} \left(t+1\right) = p Best_{id} \left(t\right) \\ & \text{elseif } ((1+\alpha)/2 < v_{id} \leqq 1) \\ & x_{id} \left(t+1\right) = g Best_{id} \left(t\right) \\ & \text{end} \end{split}$$

Velocity has to be normalized to the range (0,1) before updating

α is a specified parameter between 0 and 1. The smaller the value, the faster the convergence.

Real-valued to Binary (2): example

Suppose x=(1, 1, 1), v=(0.12, 0.88, 0.63)

pBest=(0, 1, 0), gBest=(1, 0, 0), α is specified as 0.5

v	logical expression	source	X
0.12	$v < \alpha$	from x	1
0.88	$v > (1+\alpha)/2$	from gBest	0
0.63	$v < (1+\alpha)/2$	from pBest	0

Now, x is no longer = x + v; x is in the binary domain whereas v is in the real-valued domain.

$$\begin{split} &\text{if } (0 \! \leq \! \nu_{id} \leq \! \alpha) \\ &x_{id} \left(t \! + \! 1\right) = x_{id} \left(t\right) \\ &\text{elseif } (\alpha < \! \nu_{id} \leq \! (1 \! + \! \alpha) \! / \! 2) \\ &x_{id} \left(t \! + \! 1\right) = pBest_{id} \left(t\right) \\ &\text{elseif } ((1 \! + \! \alpha) \! / \! 2 < \! \nu_{id} \leq 1) \\ &x_{id} \left(t \! + \! 1\right) = gBest_{id} \left(t\right) \\ &\text{end} \end{split}$$

Discrete PSO

- Various ways to solve discrete problems using PSO
 - Rounding
 - Discretizing
 - Binary encoding
 - Permutation problem

Discrete PSO (1)

• Rounding:

- Round the result to the nearest integer or
- With probabilities proportional to the distance of the number to each of the integers

Options	Distance	Inverse	Prob.	Cumulative Prob.
0	1.6	0.625	10.55%	10.55%
1	0.6	1.667	28.14%	38.69%
2	0.4	2.500	42.21%	80.90%
3	1.4	0.714	12.06%	92.96%
4	2.4	0.417	7.04%	100.00%
		5.923		

Discrete PSO (2)

• Discretizing: Convert continuous values into discrete ranges

Discrete PSO (3)

- Binary encoding, similar to GA e.g., (1, 7, 4) ~ [001 111 100]
- Then, use binary PSO for each bit

Discrete PSO (4): permutation

- Permutation problem (non-repeated integers)
 [2 1 5 3 4]
- Transform the real-valued location to permutation representation

```
X=[0.42 0.28 0.98 0.36 0.51]
```

Ordinary discretizing leads to infeasible solutions

```
[3 2 5 2 3]
```

Trick: sorting order: always a feasible sequence [2 4 1 5 3]

Diversity among Particles

- It has been revealed that PSO converge fast but a multi-peaks search space may trap PSO to local optima
- It may occur that all particles move to the same local optima and the velocities are decayed to 0
- Thus, diversity should be properly maintained

Maintain Diversity (1)

- Spatial particle extension
 - Each particle is conceptualized as being surrounded by a sphere of some radius
 - When one spatially extended particle collides with another, it bounces off

Maintain Diversity (2)

- Dissipative PSO
 - When particles are in equilibrium (same locations, same pBest) or close-to-equilibrium state, introduce external chaos to velocity and location with certain probabilities p_{ν} and p_{l}

If
$$r < p_v, v_i(t) = rand() \times v^{\text{max}}$$

If $r < p_l, x_i(t) = rand(\underline{x}, \overline{x})$
 $r \sim U(0,1)$

Maintain Diversity (3)

• Craziness:

particle may change direction suddenly (analogous to mutation in GA)

$$v_i(t+1) = rand() \times v^{\text{max}}$$
 if $r \le p_{crazy}$
 $v_i(t+1) = v_i(t+1)$ otherwise
 $r \sim U(0,1)$

Constraints Handling in PSO

- Unlike GA, PSO has to check whether or not variables exceed their ranges, why?
- How to treat constraints in PSO?
- Several alternatives
 - Change the velocity to 0 if the resulting location will violate the constraint; Do not move particle
 - Use various strategies to direct particles back to feasible range
 - Adopt penalty functions; refer to GA

Constraint Handling (1)

• Bouncing strategy $d' = d \times r \ (r \le 1.0)$

billiard ball

Constraint Handling (2)

Adhere strategy

sticky ball

Constraint Handling (3)

• Re-entering strategy

Constraint Handling (4)

- Penalty: refer to "Genetic Algorithms (2)"
 - StaticFixed during process
 - Dynamic
 Change along with progress; usually small to big
 - Adaptive
 Determined according to the current performance

PSO vs. GA

- By their natures, PSO seems good at continuous optimization whereas GA is specialized in discrete problems
- In PSO, particles are eternal until termination
- PSO is considered easier for coding than GA

PSO vs. GA

	GA	PSO	
General feature	Random search	Random search	
	Population-based	Population-based	
Individual memory	None	Yes; through pBest	
Individual operator	Mutation	pBest updating	
Social operator	Selection	gBest	
	Crossover		
Balance	Tunable	Higher w: Exploration	
Exploitation/		Lower w: Exploitation	
Exploration			