Classifying Text by Time Period Zachary Kelly, Sasha Casada.

& Nathan Le

GOALS & MOTIVATIONS

Goals:

- \diamond If texts can be dated by **content** \rightarrow use ML to date **historical texts**?
- Can existing machine learning models help?

Motivations:

- Interest in Natural Language Processing (NLP).
 - Could we explore a problem that could utilize <u>NLP</u> & <u>ML</u>?
- **Real-world application** of course content.

APPROACH

*Tokenization: Systematically breaking down a text into units (often called words, or subwords), and in the process, removing irrelevant features like capitalization, whitespace, punctuation, etc.

MODELS

NAIVE BAYES

- Classifies extremely quickly.
- 2. Views all features as being **independant**.

RANDOM FOREST

- Can handle high dimensional data well.
- 2. Reduces **overfitting**.
- 3. Robust against **noise**.

ADABOOST

- 1. Reduces **overfitting**.
- 2. Robust against **noise**.
- 3. Handles class imbalance well

VECTORIZATION

Word Vector: A vector such that words are mapped to indices.

Vectorization Algorithms: Assign a <u>numeric feature value</u> per <u>word</u> *w* in the <u>word vector</u>.

Example using BoW:

- Ex. 1 ("The dog sat, the cat sat too.")
- Ex. 2 ("The dog and the cat and the other cat all sat.")

Text #	f_0 'the'	f_1 'dog'	f2 'cat'	f ₃ 'sat'
Ex. 1	2	1	1	1
Ex. 2	3	1	2	1

VECTORIZATION ALGORITHMS

Bag-of-Words (BoW): "The <u>frequency</u> of <u>occurrence</u> of each word is used as a numeric feature for training a classifier."

Term-Frequency Inverse Document Frequency (TF-IDF):

- "Numerically reflects how <u>important</u> a word is to a document."
- TF-IDF value increases <u>proportionally</u> to the number of times a word appears in the document, and is <u>offset</u> by the number of documents in the corpus that contain the word.

$$W_{i,j} = t f_{i,j} \times \log \frac{(N)}{df_i}$$

DATA GENERATION, TRAIN, & TEST PIPELINE

VALIDATION

Randomized Search with **cross validation** across a <u>range</u> of values for each of the values:

- Naive Bayes (Hyperparameters):
 - alpha (0, 1]
- Random Forests (Hyperparameters):
 - *n_estimators* [200, # unique words * 1/3]
 - min_samples_split [2, 10]
 - min _samples_leaf [1, 4]
- AdaBoost (Hyperparameters):
 - *n_estimators* [50, 500]
 - *learning_rate* [0.001, 1.0]

- max_features [`auto', `sqrt']
- max_depth `[10, 110]
- bootstrap [true, false]

base_estimator [1, 15]

NAIVE BAYES

RANDOM FOREST

ADABOOST

RANDOM FOREST

RESULTS

Model	Base	Tuned	Performance Delta
AdaBoost	0.5189	0.7270	0.2081
Naive Bayes	0.6527	0.7054	0.0527
Random Forest	0.7568	0.7773	0.0205

- Random Forest: Best Performing
 - We see the smallest gain in parameter tuning
- AdaBoost: Second Best (Most Potential)
 - Potentially more gains from more trees
- Naive Bayes: Fastest + Simplest
 - on Simpler model (probably no further gains) but very fast.

RESULTS (cont.)

Features Random Forests

Features AdaBoost


```
f14294_supplanted
   f15057 boarded
      f3322_boldly
f10190_subscription
   f12677_insistent
        f1556 built
    f19006_nerved
    f6535_beseech
   f10771_creative
   f11481_calumny
  f13376_broadway
  f808_opportunity
f1933_commanded
      f2908_absurd
    f1260_occurred
          f580_laid
```

CRITIQUES, CHALLENGES & REFLECTIONS

- Unbalanced Dataset (Classes)
 - Date imbalance (severe class imbalance)
 - Unverifiable examples
- Feature Standardization Approach
 - ~100 texts arbitrary, could be missing important features
- Boundary Classification
 - Is there really a way to tell texts written in 1899/1900 apart?

SUMMARY & FURTHER WORK

- Can Texts Be Dated Purely By Content?
 - Yes!
- Can Existing Machine Learning Models Help?
 - Yes!
- Are They Accurate?
 - o ~70%!
- Could We Apply This To Date Historical Texts?
 - o A question for further applied research.

Further Work:

Feature Embedding; Sample Rebalancing; Deep Learning; Feature Semantic Analysis

REFERENCES

- Project gutenberg. Project Gutenberg. (1977). https://www.gutenberg.org/
- 2. Liebeskind, C., & Liebeskind, S. (2020). Deep learning for period classification of Historical Hebrew texts.

 Journal of Data Mining & Digital Humanities, 2020.

 https://doi.org/10.46298/jdmdh.5864
- 3. Gaudin, R. et al. (2014, July 6). Openzim/Gutenberg:
 Scraper for downloading the entire ebooks
 repository of project gutenberg. GitHub.
 https://github.com/openzim/gutenberg