

Funções Exponenciais e Trigonométricas

Aula 1 POTENCIAÇÃO E RADICIAÇÃO

Prof. Ms. Jefferson Ricart Pezeta

Apresentação

Caros(as) alunos(as)

Nesse material você poderá observar assuntos que foram aprendidos ao longo da sua vida escolar, tanto no Ensino Fundamental como no Ensino Médio, e passarão a perceber que aquela máxima "estudei tais coisas para quê? " passará a ser aos poucos desmitificada. Também aprenderá novas abordagens especificas para o ensino superior.

Assim sendo, espero que o aprendizado ao longo do semestre seja muito valioso, e possa ajudá-los a seguir com sucesso sua vida de estudante Universitário, assim como sua vida profissional,

Abs

Prof. Ms. Jefferson Ricart Pezeta

ENTENDENDO NOSSAS AULAS

Todas as aulas serão divididas em 5 etapas: Esquentando o Cérebro, Chacoalhando o Cérebro, Formatando o Cérebro, Aperfeiçoando o Cérebro e Turbinando o Cérebro. Todas essas etapas estão com seus escopos descritos abaixo

- a. Esquentando o cérebro: Nessa etapa, vocês trabalharão sempre em um cenário a partir de um texto, o qual tem como finalidade estimular o resgate de conteúdos já vistos na educação Básica. Convém lembrar que todo o conteúdo proposto na ementa já foi visto alguma vez por vocês na escola. Deverão nesse momento trabalhar em duplas, em tempo que pode variar de 10 a 20 minutos, dependendo da complexidade do assunto, sem qualquer interferência do professor, tentando solucionar a proposta descrita no cenário
- **b.** Chacoalhando o Cérebro: Nessa etapa, o professor intervirá com explicações e resgates de conteúdos, é a aula propriamente dita, onde os assuntos serão abordados e detalhados, com um tempo que pode variar de 30 minutos a uma hora.
- c. Formatando o Cérebro: Uma vez que você trabalhou no "Esquentando o Cérebro" e, posteriormente, teve explicações sobre a matéria no "Chacoalhando o Cérebro", deverá voltar ao texto proposto inicialmente e rever as estratégias utilizadas. Deverá trabalhar na mesma dupla. Terá um tempo de 10 a 15 minutos para rever suas estratégias de resolução no problema proposto no cenário. Apenas após esse tempo é que o professor entrará em ação e fará a correção do problema na lousa e discutirá o mesmo, permitindo então que que você formate e organize seus conhecimentos.
- **d. Aperfeiçoando o Cérebro:** A vez do aluno definitivamente trabalhar. Qualquer que seja a metodologia aplicada, ela nunca suprirá a necessidade do aluno de treinar, de praticar, pois é o treino e a prática constante que o levará ao aperfeiçoamento dos conteúdos aprendidos. Nessa etapa você deverá resolver uma lista de exercícios, sempre em dupla, iniciando em sala de aula e continuando em casa.
- **e. Turbinando o Cérebro:** Ferramentas adicionais, como vídeos e livros, principalmente os disponíveis na biblioteca virtual, serão oferecidos para que vocês possam turbinar seus conhecimentos.

ESQUENTANDO O CÉREBRO

Nossas aulas terão sempre um texto inicial cujo objetivo será introduzir o assunto a ser estudado ao longo do capítulo, facilitando sua compreensão quando da explicação por parte do professor.

Junte-se em duplas, leia o texto e tente resolvê-lo. Vocês terão 15 minutos para chegarem a uma conclusão. Vamos lá?

"Em um teste para estágio de uma empresa foi solicitada a resolução da expressão abaixo. Será que você acertaria? Você tem 10 minutos para tentar!

Calcule o valor de x

$$2x^{2} \cdot 3x - \frac{6x^{9}}{2x^{6}} - 2 \cdot (x)^{3} = \frac{6\sqrt{2} + 8\sqrt{2}}{\sqrt{2}} + \sqrt[3]{125} + \sqrt{32} \cdot \sqrt{2}$$

CHACOALHANDO O CÉREBRO

POTENCIAÇÃO

A operação de potenciação representa multiplicarmos um mesmo número numa quantidade de fatores (números que se multiplicam) igual ao expoente. Em uma potenciação temos:

Exemplos:

a)
$$3^3 \rightarrow 3.3.3 \rightarrow 27$$

b)
$$\left(\frac{2}{5}\right)^2 \to \frac{2}{5} \cdot \frac{2}{5} \to \frac{25}{4}$$

Expoente Negativo

Para calcularmos uma potência de expoente negativo devemos:

- a) Inverter a base
- b) Fazer o oposto do expoente.

Lembramos que, por oposto, devemos entender como sendo o número com "sinal" invertido. Ou seja, o oposto de 2 é -2, o oposto de -5 é 5.

Exemplos:

a)
$$3^{-2} \to \left(\frac{1}{3}\right)^2 \to \frac{1}{9}$$

b)
$$\left(\frac{2}{5}\right)^{-3} \rightarrow \left(\frac{5}{2}\right)^3 \rightarrow \frac{125}{8}$$

RADICIAÇÃO

Consiste em calcularmos qual o número que multiplicado por ele mesmo, conforme o índice do radical, resulta no radicando, o número que está dentro do radical.

Exemplos:

a)
$$\sqrt{64} = 8 \leftrightarrow 8.8 = 64$$

b)
$$\sqrt[3]{27} = 3 \leftrightarrow 3.3.3 = 27$$

c)
$$\sqrt[4]{16} = 2 \leftrightarrow 2.2.2.2 = 16$$

OPERAÇÕES COM POTÊNCIAS.

Algumas operações com potências recebem algumas propriedades as quais facilitam a obtenção dos resultados> São elas:

a) Multiplicação de Potências de mesma base: Deve-se manter a base e somar os expoentes. Exemplos:

a.
$$a^3 \cdot a^5 = a^{3+5} = a^8$$

b.
$$2^4 \cdot 2^7 = 2^{11}$$

b) Divisão de Potências de mesma base: Deve-se manter a base e subtrair os expoentes. Exemplos:

a.
$$2^5: 2^3 = 2^{5-3} = 2^2$$

b.
$$3^7: 3^9 = 3^{7-9} = 3^{-2}$$

c) Potência de Potência: Conserva-se a base e multiplica-se o expoente. Exemplos:

a.
$$\left(3^{5}\right)^{2} = 3^{5.2} = 3^{10}$$

b.
$$(2^4)^{-3} = 2^{4 \cdot (-3)} = 2^{-12}$$

Atenção: as operações a seguir são diferentes. É preciso estar atento:

$$(2^3)^2 = 2^{3.2} = 2^6 \neq 2^{3^2} = 2^{3.3} = 2^9$$

Operações com Radicais

Assim como as potências, os radicais também têm suas propriedades as quais podem ajudar na resolução de exercícios.

a) Adição e Subtração de Radicais.

Somente é possível se os radicais forem semelhantes. Por radical semelhante entende-se que tenham o mesmo radicando e o mesmo índice. Mas cuidado, as vezes os radicandos parecem diferentes, mas se você efetuar a decomposição verá que são semelhantes. Observe os exemplos abaixo.

a.
$$3\sqrt{2} + 5\sqrt{2} = (3+5)\sqrt{2} = 8\sqrt{2}$$

b.
$$8\sqrt[3]{7} - 10\sqrt[3]{7} = -2\sqrt[3]{7}$$

c.
$$5\sqrt{2} + 7\sqrt[6]{8} = 5\sqrt{2} + 7\sqrt[6:3]{2^{3:3}} = 5\sqrt{2} + 7\sqrt{2} = 12\sqrt{2}$$

b) Multiplicação e Divisão de Radicais.

Somente é possível se os radicais possuírem o mesmo índice. Você deve manter o índice e multiplicar os radicandos. Exemplos:

a.
$$\sqrt[3]{5}$$
. $\sqrt[3]{3} = \sqrt[3]{5.3} = \sqrt[3]{15}$

b.
$$\sqrt{2} \cdot \sqrt{5} = \sqrt{2.5} = \sqrt{10}$$

c.
$$\sqrt[5]{12}$$
: $\sqrt[5]{4} = \sqrt[5]{12}$: $\sqrt{4} = \sqrt[5]{3}$

Quando os índices forem diferentes, deve-se tirar o MMC entre os índices. Exemplos:

a.
$$\sqrt{5}$$
. $\sqrt[3]{3} \rightarrow mmc$ (2,3) = 6 $\rightarrow \sqrt[6]{5^{6:2}}$. $\sqrt[6]{3^{6:3}} = \sqrt[6]{5^3}$. $\sqrt[6]{3^2} = \sqrt[6]{125}$. $\sqrt[6]{9} = \sqrt[6]{125.9} = \sqrt[6]{1125}$

b.
$$\frac{\sqrt{3}}{\sqrt[5]{2}} \to mmc(2,5) = 10 \to \frac{\sqrt[10]{3^{10:2}}}{\sqrt[10]{2^{10:5}}} = \frac{\sqrt[10]{3^5}}{\sqrt[10]{2^2}} = \sqrt[10]{\frac{243}{4}}$$

FORMATANDO O CÉREBRO

Pois bem, após os conceitos e exemplos sobre os assuntos dessa aula, volte ao exercício proposto em **"ESQUENTANDO O CÉREBRO"** e refaça-o, tentando perceber se realmente seus conceitos estavam corretos. Reúnam-se com a mesma dupla. Vocês terão 10 minutos para reverem o exercício e/ou refazê-lo. Após esses 10 minutos o professor discutirá o exercício com vocês.

APERFEIÇOANDO O CÉREBRO

Pois bem, chegou a hora de praticarem. Vocês deverão iniciar os exercícios abaixo propostos em duplas. Nesse momento o professor não irá interferir ou tirar dúvidas. Procure discutir com outros pares caso ocorram dúvidas. Por uma questão de tempo, o professor não irá corrigir todos os exercícios, mas abrirá a próxima aula tirando todas as dúvidas que vocês tiverem. O gabarito com os resultados encontra-se ao final dos exercícios.

POTENCIACÃO

- 1. Calcule as seguintes potências:
 - a) 34
- h) (1,2)²
- b) 1¹²
- c) 15°

- d) $\left(\frac{2}{2}\right)^4$

- g) $(-0.5)^3$

- 3. Aplicando as propriedades das potências, escreva cada expressão como uma única potência.
 - a) 35 · 32 · 31
 - b) 76 + 73
 - c) (-4)4 · (-4) · (-4)2
 - d) $\left(-\frac{2}{5}\right)^5 \cdot \left(-\frac{2}{5}\right)^4$
 - e) $[(+10)^3]^2$
 - f) $(3,5)^{10} + (3,5)^7$

 - h) $\{[(-3)^2]^3\}^4$
 - i) (5²)⁴
- Sabendo que x = 5⁴, y = 5³ e z = 5⁶, reduza as expressões a uma única poténcia.
 - a) x·y
- c) $\frac{y \cdot z}{x}$
- b) x·z
- 6. Simplifique cada expressão utilizando as propriedades da potenciação.

 - b) $\frac{128 \cdot (2^4)^3}{256 \cdot 1024 + 8}$
 - c) $\frac{128 \cdot 10^4 \cdot 10^{-4} \cdot 10^6}{32 \cdot 10^3 \cdot 10^5 \cdot 10^{-4}}$

Resolução

- f) -64
- g) -0,125
- 1.
- h) 1,44
- a) 3¹⁰
- f) $(3,5)^3$

- a) 81
- i) -49

g) -9

c) 1

b) 1

- c) $(-4)^7$
- h) $(-3)^{24}$

- d) $\frac{16}{81}$ k) $-\frac{125}{64}$ d) $\left(-\frac{2}{5}\right)^9$
- i) 58
- e) $\frac{27}{125}$ m) 1 e) 10^6

5.

6.

a)
$$5^4 \cdot 5^3 = 5^{4+3} = 5^7$$

a)
$$\frac{3^5 \cdot (3^4)^2}{3^8 \cdot 3^3} = \frac{3^5 \cdot 3^8}{3^{11}} = \frac{3^{13}}{3^{11}} = 3^2 = 9$$

b)
$$5^4 \cdot 5^6 = 5^{4+6} = 5^{10}$$

c)
$$\frac{5^3 \cdot 5^6}{5^4} = \frac{5^{3+6}}{5^4} = \frac{5^9}{5^4} = 5^9$$

c)
$$\frac{5^3 \cdot 5^6}{5^4} = \frac{5^{3+6}}{5^4} = \frac{5^9}{5^4} = 5^5$$
 b) $\frac{2^7 \cdot 2^{12}}{2^8 \cdot 2^{10} \div 2^3} = \frac{2^{19}}{2^{18} \div 2^3} = \frac{2^{19}}{2^{15}} = 2^4 = 16$

d)
$$\frac{(5^4)^3 \cdot 5^6}{(5^3)^5} = \frac{5^{12} \cdot 5^6}{5^{15}} = \frac{5^{18}}{5^{15}} = 5^{18}$$

d)
$$\frac{\left(5^4\right)^3 \cdot 5^6}{\left(5^3\right)^5} = \frac{5^{12} \cdot 5^6}{5^{15}} = \frac{5^{18}}{5^{15}} = 5^3$$
 c) $\frac{2^7 \cdot 10^6}{2^5 \cdot 10^4} = 2^{7-5} \cdot 10^{6-4} = 2^2 \cdot 10^2 = 4 \cdot 100 = 400$

8. Calcule as potências.

- a) 2⁻³
- b) 3⁻²
- j) $(-8)^{-2}$
- c) $\left(\frac{3}{4}\right)^{-3}$
- $k) \left(-\frac{1}{10}\right)^{-3}$
- d) $\left(\frac{1}{10}\right)^{-4}$

- 1) $\left(-\frac{1}{8}\right)^{-2}$ **12.** Calcule o valor das expressões.

e)
$$(-10)^{-5}$$

f) $(0,3)^{-2}$
g) $(-4)^{-3}$
m) $\left(-\frac{5}{3}\right)^{-3}$
n) $(-0,4)^{-4}$
a) $\frac{10^{-4} \cdot 10^{6}}{10^{-3}}$
b) $\frac{22 \cdot 10^{-2}}{11 \cdot 10^{-1}}$

- h) $\left(-\frac{2}{5}\right)^{-4}$ o) -0.1^{-6} c) $\frac{\left(16\cdot10^{-7}\right)\cdot\left(4\cdot10^{-5}\right)}{128\cdot10^{-8}\cdot10^{-2}}$

Resolução

8.

f)
$$\left(\frac{3}{10}\right)^{-2} = \left(\frac{10}{3}\right)^2 = \frac{100}{9}$$

a)
$$\left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

a)
$$\left(\frac{1}{2}\right)^3 = \frac{1}{8}$$
 g) $\left(-\frac{1}{4}\right)^3 = -\frac{1}{64}$

b)
$$\left(\frac{1}{3}\right)^2 = \frac{1}{9}$$

h)
$$\left(-\frac{5}{2}\right)^4 = \frac{625}{16}$$

I)
$$(-8)^2 = 64$$

c)
$$\left(\frac{4}{2}\right)^3 = \frac{64}{27}$$

i)
$$-\left(\frac{1}{5}\right)^2 = -\frac{1}{25}$$

b)
$$\left(\frac{1}{3}\right)^2 = \frac{1}{9}$$
 b) $\left(-\frac{5}{2}\right)^4 = \frac{625}{16}$ c) $\left(\frac{4}{3}\right)^3 = \frac{64}{27}$ i) $-\left(\frac{1}{5}\right)^2 = -\frac{1}{25}$ l) $\left(-8\right)^2 = 64$ m) $\left(-\frac{3}{5}\right)^3 = -\frac{27}{125}$

d)
$$(10)^4 = 10000$$

$$j)\left(-\frac{1}{8}\right)^2 = \frac{1}{64}$$

c)
$$\left(\frac{4}{3}\right)^2 = \frac{64}{27}$$
 i) $-\left(\frac{1}{5}\right)^2 = -\frac{1}{25}$ d) $(10)^4 = 10\,000$ j) $\left(-\frac{1}{8}\right)^2 = \frac{1}{64}$ n) $\left(-\frac{4}{10}\right)^{-4} = \left(-\frac{10}{4}\right)^4 = \left(-\frac{5}{2}\right)^4 = \frac{625}{16}$

e)
$$\left(-\frac{1}{10}\right)^5 = -\frac{1}{100\ 000}$$

k)
$$(-10)^3 = -1000$$

e)
$$\left(-\frac{1}{10}\right)^5 = -\frac{1}{100000}$$
 k) $\left(-10\right)^3 = -1000$ o) $-\left(\frac{1}{10}\right)^{-6} = -(10)^6 = -1000000$

12.

a)
$$\frac{10^{-4+6}}{10^{-3}} = \frac{10^2}{10^{-3}} = 10^{2-(-3)} = 10^{2+3} = 10^5$$

b)
$$\frac{22}{11} \cdot \frac{10^{-2}}{10^{-1}} = 2 \cdot 10^{-2 - (-1)} = 2 \cdot 10^{-2 + 1} = 2 \cdot 10^{-1} = 2 \cdot \frac{1}{10} = \frac{2}{10} = \frac{1}{5}$$

c)
$$\frac{2^4 \cdot 10^{-7} \cdot 2^2 \cdot 10^{-5}}{2^7 \cdot 10^{-8} \cdot 10^{-2}} = \frac{2^4 \cdot 2^2}{2^7} \cdot \frac{10^{-7} \cdot 10^{-5}}{10^{-8} \cdot 10^{-2}} = \frac{2^6}{2^7} \cdot \frac{10^{-7 - 5}}{10^{-8 - 2}} =$$

$$= \frac{1}{2} \cdot \frac{10^{-12}}{10^{-10}} = \frac{1}{2} \cdot 10^{-12 - (-10)} = \frac{1}{2} \cdot 10^{-2} = \frac{1}{2} \cdot \frac{1}{10^2} = \frac{1}{2} \cdot \frac{1}{100} = \frac{1}{200}$$

Radiciação

- 1. Determine o valor das raízes quando possível.
 - a) √-1
- h) √256
- b) ∜81
- i) √-27
- c) √-32
- j) √144
- d) ∛-125
- k) –∛8
- e) √64
- -√-1
- f) ∜-16
- g) √0,49
- 2. Determine o valor das expressões.
 - a) $\sqrt{49} \sqrt[4]{81} + \sqrt[3]{-27}$
 - b) $\sqrt[4]{10000} 3 \cdot \sqrt[9]{-1} + \sqrt[3]{-125}$
 - c) $-\sqrt{1,44} + \sqrt{0,25} \sqrt[3]{-0,001}$
 - d) $\sqrt[3]{8} \sqrt[4]{81} \sqrt[13]{-1} + \sqrt[3]{1000}$

Resolução

- 1.
- a) -1
- b) 3
- 2.
- c)-2
- a)
- d) -5
- 7 3 3 =
- e) 4
- =7-6=1
- f) -2
- g) 0,7
- b)
- h) 4
- $10 3 \cdot (-1) 5 =$
- i) -3
- = 10 + 3 5 =
- = 13 5 = 8
- j) 12
- k)-2
- c)
- d)

- I) 1
- -1,2+0,5-(-0,1) = 2-3-(-1)+10 =

- = -1,2+0,5+0,1=
- = 2 3 + 1 + 10 =

- m) $\frac{3}{5}$
- =-1,2+0,6=-0,6
- = 13 3 = 10

Propriedades da Radiciação

- 1. Aplicando as propriedades dos radicais, reduza a um só radical ou simplifique quando possível.
 - a) √3 · √12
- b) $\frac{\sqrt[6]{8}}{\sqrt[6]{7}}$
- g) $\sqrt{5x} \cdot \sqrt{3x^2}$
- c) \$\sqrt{\psi \sqrt{35}}
- h) $\frac{\sqrt[4]{x^4}}{\sqrt[4]{2}}$
- d) ¹√2⁸
- 1) $\sqrt[3]{\sqrt{2x}}$
- e) $\sqrt{\sqrt{15}}$
- 2. Determine o valor de x nas igualdades.
 - a) $\sqrt[6]{\sqrt[3]{32}} = \sqrt[6]{2}$ c) $\sqrt[6]{16} = \sqrt[6]{4}$
- - b) $\sqrt[10]{7^{12}} = \sqrt[5]{7^x}$ d) $\sqrt[7]{2a^4} = \sqrt[9]{a^2}$

- Decomponha o radicando em fatores primos e, em seguida, simplifique os radicais.
 - a) ∜16
- d) $\sqrt[4]{\frac{36x^2}{49}}$
- b) ¹⁸√729
- e) √√1024
- c) ¥256
- f) \$\sqrt{81}
- 4. (UFPR) Qual o valor de x, se x é igual a:

- a) 1
- b) -1
- c) 2
- d) -2
- e) n.d.a.
- Calcule √√√1.

Resolução

- 1.
- a) √36
- a) x = 2
- b) $\sqrt[6]{\frac{8}{7}}$
 - $10\sqrt{32} = 10 \div \sqrt{2^{5+5}} = \sqrt[2]{2}$
- c) ²⁰√35
- b) x = 4
- d) $\sqrt[3]{2^2}$ ou $\sqrt[3]{4}$ $\sqrt{15\sqrt{7^{12}}} = \sqrt{15+3}\sqrt{7^{12+3}} = \sqrt[5]{7^4}$ a) $\sqrt[8]{16} = \sqrt[8+4]{2^{4+2}} = \sqrt[2]{2}$
- e) ∜15
- f) $\sqrt[3]{7}$ c) x = 3
- g) $\sqrt{15 \, x^3}$ $\sqrt[6]{2^4} = \sqrt[6+2]{2^{4+2}} = \sqrt[3]{2^2} = \sqrt[3]{4}$
- h) $\sqrt[7]{\frac{x^4}{2y}}$ d) x = 6
- i) ²√2x
- $\sqrt[9]{a^2} = \sqrt[9.2]{a^{2\cdot 2}} = \sqrt[18]{a^4}$

- b) $\sqrt[18]{729} = \sqrt[18 \div 6]{3^{6 \div 6}} = \sqrt[3]{3}$
- c) $\sqrt[12]{2^8} = \sqrt[12 \div 4]{2^{8 \div 4}} = \sqrt[3]{2^2} = \sqrt[3]{4}$
- d) $\sqrt[4]{\frac{6^2 \cdot x^2}{7^2}} = \sqrt[4+2]{\frac{6^{2+2} \cdot x^{2+2}}{7^{2+2}}} = \sqrt{\frac{6x}{7}}$
- e) $\sqrt[10]{2^{10}} = \sqrt[10 \div 10]{2^{10 \div 10}} = 2$
- f) $\sqrt[8]{3^4} = \sqrt[8 \div 4]{3^{4 \div 4}} = \sqrt{3}$

4. Alternativa c.

$$\sqrt{\sqrt[3]{4096}} = \sqrt[12]{4096} = 2$$

5.
$$\sqrt[5]{\sqrt{1}} = \sqrt[5]{1} = \sqrt[5]{1} = 1$$

TURBINANDO O CÉREBRO

Quer melhorar seus conhecimentos. Aqui vão algumas dicas:

a. Assista à animação em vídeo **"Donald no País da Matemágica"** disponível em https://www.youtube.com/watch?v=wbftu093Yqk