Fundamentos de Computadores Subsistemas Combinacionales

Objetivos

- Conceptuales:
 - Escalabilidad de los diseños
 - Diseño modular
 - Diseños alternativos
 - Subsistemas de propósito específico
 - Subsistemas de propósito general y dispositivos lógicos programables

Objetivos

Procedimentales:

- Interpretación de hojas de características de subsistemas combinacionales y dispositivos lógicos programables
- Diseño de subsistemas combinacionales: decodificadores, codificadores, multiplexores, etc.
- Diseño y análisis de circuitos con subsistemas combinacionales: decodificadores, comparadores, multiplexores, etc.
- Diseño con dispositivos lógicos programables

Objetivos

- Actitudinales:
 - Importancia del diseño modular y reutilización de diseños.
 - Alternativas y evaluación de costes

Bibliografía

• Básica:

- [NELS96] Capítulos 4 y 5
- [GARC92] Capítulo 7
- [WAKE99] Capítulos 5 y 6
- [ALMO94] Capítulos 1, 2 y 3

Complementaria

- [FLOYD00] Capítulo 6
- [HAY96] Capítulo 4
- [MANO98] Capítulos 3 y 6
- [MAND02] Dispositivos programables. HDL.

Contenidos

- Generalidades sobre subsistemas combinacionales MSI
- Subsistemas de propósito específico
 - Decodificadores
 - Codificadores
 - Convertidores de código
 - Demultiplexores
 - Comparadores de magnitud
- Subsistemas de propósito general
 - Multiplexores
 - Dispositivos lógicos programables

CIRCUITOS INTEGRADOS MSI/LSI

Estas líneas de entrada y salida pueden clasificarse en:

- Líneas de datos
- Líneas de control

Una de las líneas de control más usadas es el Enable (Habilitador).

CIRCUITOS INTEGRADOS MSI/LSI

La habilitación de un subsistema por la línea de Enable, puede obtenerse cuando dicha línea de control tenga un nivel alto "1" o cuando tenga un nivel bajo "0". En el primer caso, se dice que el Enable es activo en alta, mientras que para el segundo caso, el Enable es activo en baja.

CIRCUITOS INTEGRADOS MSI/LSI

Podemos encontrar subsistemas que tengan múltiples entradas de habilitación (enables).

SUBSISTEMAS COMBINACIONES DE PROPÓSITO ESPECÍFICO Decodificadores

El decodificador es un circuito integrado de n entradas de dato y m salidas de datos, donde $m \le 2^n$. Cuando se cumple la igualdad, se dice que el decodificador es completo. Se especifican haciendo de la siguiente manera: *DEC* n:m o *DEC* de n a m.

Se caracterizan porque sólo se activa una salida por cada combinación de entrada

Entr	adas		Sali	idas	
A_1	A_0	O_0	O_1	O_2	O_3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

$$O_0 = A_1' \bullet A_0'$$

$$O_1 = A_1' \bullet A_0'$$

$$O_2 = A_1 \bullet A_0'$$

$$O_3 = A_1 \bullet A_0$$

SUBSISTEMAS COMBINACIONES DE PROPÓSITO ESPECÍFICO Decodificadores

En el caso de que las salidas del decodificador de 2 a 4 fueran activas en bajo.

Ent	radas		Salidas					
\mathbf{A}_1	A_0	O_0	O_1	O_2	O_3			
0	0	0	1	1	1			
0	1	1	0	1	1			
1	0	1	1	0	1			
1	1	1	1	1	0			

$$O_{0} = A_{1} + A_{0}$$

$$O_{1} = A_{1} + A_{0}'$$

$$O_{2} = A_{1}' + A_{0}'$$

$$O_{3} = A_{1}' + A_{0}'$$

SUBSISTEMAS COMBINACIONES DE PROPÓSITO ESPECÍFICO Decodificadores

Señales de habilitación en los decodificadores

E	ntrac	las		Sal	lidas	
Е	\mathbf{A}_1	A_0	O_0	O_1	O_2	O_3
0	X	X	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

$$O_{3} = A_{1} \bullet A_{0} \bullet E$$

$$O_{0} = A_{1} \bullet A_{0} \bullet E$$

$$O_{1} = A_{1} \bullet A_{0} \bullet E$$

$$O_{2} = A_{1} \bullet A_{0} \bullet E$$

$$O_{3} = A_{1} \bullet A_{0} \bullet E$$

SUBSISTEMAS COMBINACIONES DE PROPÓSITO ESPECÍFICO Decodificadores como generadores de funciones

Ejemplo: Implementar con un decodificador las siguientes funciones de conmutación

$$F_1 = \Sigma(0,3,6)$$

$$F_2 = \Pi(1,3,4,6)$$

Solución 1.- El decodificador tiene las salidas activas en alto.

SUBSISTEMAS COMBINACIONES DE PROPÓSITO ESPECÍFICO Decodificadores como generadores de funciones

Ejemplo: Implementar con un decodificador las siguientes funciones de conmutación

$$F_1 = \Sigma(0,3,6)$$

$$F_2 = \Pi(1,3,4,6)$$

Solución 2.- El decodificador tiene las salidas activas en bajo.

SUBSISTEMAS COMBINACIONES DE PROPÓSITO ESPECÍFICO Asociación de Decodificadores

SUBSISTEMAS COMBINACIONES DE PROPÓSITO ESPECÍFICO Decodificador Comercial

logic symbols (alternatives)†

FUNCTION TABLE

ENA	ABLE INP	UTS	SEL	ECTINA	UTS				OUT	PUTS			
Gf	G2A	G2B	C	B	A	YD	Y1	Y2	Ya	Y4	Y5	YG	Y7
×	H	Х	Х	×	Х	Н	Н	Н	Н	Н	H	Н	Н
×	Х	H	Х	7,	Х	Н	Н	Н	H	Н	Н	Н	Н
E.	Д	А	Х	3,	Х	Н	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	L	L.	L	Н	н	Н	Н	H	н	Н
Н	L	L	L	L	н	н	L	Н	H	Н	Н	н	Н
Н	L	L	L	Н	L	н	Н	L	Н	H	Н	Н	Н
H	j	İ	1	H	H	Н	H	Н	1	H	H	Н	Н
Н	I	1	Н	I	1	н	Н	Н	H	Ł	Н	Н	Н
Н	L	L	Н	L	Н	Н	Н	Н	H	Н	L	H	Н
- 11	L	L	81	П	L.	П	П	П	11	П	[]	£.	П
Н	L	L	Н	Н	H	н	Н	Н	H	Н	H	Н	:_

SUBSISTEMAS COMBINACIONES DE PROPÓSITO ESPECÍFICO Codificadores

Codificador binario

	Entr	ada	S		lida s
$\overline{I_0}$	I_1	I_2	I_3	O_1	O_0
1	0	0	0	0	0
0	1	0	0	0	1
0	0	1	0	1	0
0	0	0	1	1	1

SUBSISTEMAS COMBINACIONES DE PROPÓSITO ESPECÍFICO Codificadores

F	Entr	S	Sal	idas	
I_0	I_1	I_2	I_3	O_1	O_0
1	0	0	0	0	0
0	1	0	0	0	1
0	0	1	0	1	1
0	0	0	1	1	0

$$O_0 = I_1 + I_2$$

 $O_1 = I_2 + I_3$

SUBSISTEMAS COMBINACIONES DE PROPÓSITO ESPECÍFICO Codificadores de prioridad

-	Entr	adas	Salidas			
I_3	I_2	I_1	I_0	Е	O_1	O_0
1	X	X	X	0	1	1
0	1	X	X	0	1	0
0	0	1	X	0	0	1
0	0	0	1	0	0	0
0	0	0	0	1	0	0

SUBSISTEMAS COMBINACIONES DE PROPÓSITO ESPECÍFICO Codificador de prioridad comercial

198, LSTAN FUNCTION TABLE

			<u> </u>	YPŲ1	\$	•		-		Qι	JTPL	T\$	
EI	Ů.	1 :		_3_		5	Ģ	J	A2	A 1	AQ	GS	ΕQ
H	Х	X	X	X	Х	Х	×	X	Н	닉	H	Н	ŀ
l L	Н	Н	H	Н	H	Ħ	Н	П	11	-1	Н	11	Ĺ
L	Х	X	X	K	X	Х	X	L	ŀ	L	;	1	F
L,	×	×	Х	Х	Х	X	Ļ	Н	L	L			ı
L	λ	K	X	Х	X	L	H	Н] L	ч		i	F
L	×	Х	Х	Х	L	H	Н	Н] L	Н	H	l.	1.
L	λ	×	X	L	Н	H	Н	Н	H	Ŀ	L	! !.	-
L	Х	X	L	Н	11	Н	H	П	H	L	Н	L	-
L L	Х	L	Н	Н	H	М	Н	ĮН] н	H	L	L	÷
Ł	L	H	_4_	H	Н	Н	H	Н] 11	Н	11		t ·

SUBSISTEMAS COMBINACIONES DE PROPÓSITO ESPECÍFICO Convertidor de código

BINARIO/GRAY GRAY/BINARIO BCD/GRAY BCD/7-SEGMENTOS

SUBSISTEMAS COMBINACIONES DE PROPÓSITO ESPECÍFICO Convertidor de código

Convertidor BCD/7 segmentos

b_3	b_2	b_1	b_0	a	b	c	d	e	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	0	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	0	0	1	1

SUBSISTEMAS COMBINACIONES DE PROPÓSITO ESPECÍFICO Comparadores de magnitud

FUNCTION TABLE

	COMPARING IN PUTS				CASCADING INPUTE		ОПТРИТЯ			
A3 B3	A2. 52	A1. B1	A0. 80	A > 3	$\mathbf{A} < \mathbf{B}$	A = B	A > 6	A < 5	дык	
A3 > B5	Х	Х	Х	χ	Х	X	l ₄	L	L	
A3 < 83	X	3	τ	.x	X	X	Ĺ	Н	L	
A3 - B3	A2 > 82	, x	Х	х	χ	Х	Н	_	L	
V3 - 33	A2 < B2	×	X	X	X	N	L	н	L	
A3 = 32	A2 = 82	AL > 81	х	X	χ	Х	н	_	L	
A3 = 33	A2 = B2	A1 < 81	Х	x	X	Ж	L	14	Ļ	
47 = 33	A7 - 82	A1 = #1	A0 > 80	ĭ	Х	×	4	_	L	
AG - 33	A2 - D2	A1 - D1	A0 < 00	χ	×	×	L	н	L	
A9 - 39	A2 - B2	A1 - BI	A0 - B0	н	L	L	4	L	L	
A3 - 33	A2 = B2	A1 = B1	A0 = 80	L	F	L	i L	М	I	
A3 → B3	A2 - 82	41 - BF	A0 - 80	x	Ж	·	L	Ļ	⊣	
43 = B3	AZ = M2	AT - HI	A0 = 80	н	F	L	L	L	L	
A3 - 8\$	AZ - 02	A' - BI	A0 - 80	L	L	L	Н	Н	L	

SUBSISTEMAS COMBINACIONES DE PROPÓSITO ESPECÍFICO Asociación de comparadores

SUBSISTEMAS COMBINACIONES DE PROPÓSITO ESPECÍFICO Demultiplexor

Es un circuito MSI que disponde de n lineas de control y 2ⁿ + 1 líneas de datos. 2ⁿ líneas de datos son de salida (también llamadas canales) frente a una única línea de entrada. Se pueden designar mediante DEMUX 1:m, donde m es el número de canales.

Е	ntrac	las		Sal	idas	
Е	\mathbf{A}_1	A_0	O_0	O_1	O_2	O_3
0	X	X	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

SUBSISTEMAS COMBINACIONES DE PROPÓSITO GENERAL Multiplexores

$\overline{\mathbf{A}_1}$	A_0	Z
0	0	d_0
0	1	d_1
1	0	d_2
1	1	d_3

$$Z = d_0 A_1 A_0 + d_1 A_1 A_0 + d_2 A_1 A_0 + d_3 A_1 A_0$$

SUBSISTEMAS COMBINACIONES DE PROPÓSITO GENERAL Multiplexores

Los multiplexores pueden tener señales de habilitación

El teorema de expansión de Shannon estudiado en el tema 3 indica que cualquier función de conmutación completa de n variables puede ser expresada como

$$F(x_1,...,x_n) = \sum f(i)^* m_i(x_1,...,x_n)$$

 $Z = \sum d_i^* m_i(x_1,...,x_n)$

Ejemplo1 : Usando un multiplexor de 8 canales, implementar la función de conmutación $f=\Sigma(0,4,5,7)$

Ejemplo 2: Diseñar la función de conmutación $f=\Sigma(0,4,5,7)$ usando multiplexores de 4 canales.

Ejemplo 3. Diseñar la función de conmutación $f=\Sigma(0,4,5,7)$ usando multiplexores de 2 canales.

$$F(1,y,z) = d_0 y' + d_1 y$$

$$f(0,0,z) - 0$$

$$f(0,1,z) - 1 0$$

$$f(1,y,z) - 1 0$$

Otra solución: $F(x,y,z) = d_0 z' + d_1 z$

SUBSISTEMAS COMBINACIONES DE PROPÓSITO GENERAL Asociación de multiplexores

$$Z(A_2A_1A_0) = d_0 A_2' A_1'A_0' + d_1 A_2'A_1'A_0 + d_2 A_2'A_1A_0' + d_3 A_2'A_1A_0 + d_4A_2A_1'A_0' + d_5 A_2A_1'A_0 + d_6 A_2A_1A_0' + d_7 A_2A_1A_0$$

SUBSISTEMAS COMBINACIONES DE PROPÓSITO GENERAL Asociación de multiplexores

SUBSISTEMAS COMBINACIONES DE PROPÓSITO GENERAL Dispositivos lógicos programables

Plano AND fijo plano OR programable: ROM Plano AND programable y OR fijo:PAL

Planos AND y OR programables: PLA

SUBSISTEMAS COMBINACIONES DE PROPÓSITO GENERAL Dispositivos lógicos programables ROM

Capacidad(bits) = $2^n \times m$

SUBSISTEMAS COMBINACIONES DE PROPÓSITO GENERAL Dispositivos lógicos programables ROM

Una ROM de 2ⁿ x m, está formada por un decodificador de m líneas de entrada, 2ⁿ x m fusibles o interconexiones y m puertas OR. La siguiente figura esquematiza una ROM de 4x2.

Representación simplificada

X	Out		
	=		
0	HI		
1	In		

SUBSISTEMAS COMBINACIONES DE PROPÓSITO GENERAL Dispositivos lógicos programables La ROM como generador de funciones

Ejemplo 1: Implementar las funciones $f=\Sigma(1,3,5,7)$ y $g=\Sigma(0,2,4,5)$ haciendo uso de una ROM.

A_2	\mathbf{A}_1	A_0	\mathbf{D}_1	D_0
0	0	0	0	1
0	0	1	1	0
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	1
1	1	0	0	0
1	1	1	1	0

SUBSISTEMAS COMBINACIONES DE PROPÓSITO GENERAL Dispositivos lógicos programables Asociación de ROM

Ejemplo 1: Se dispone de ROM de 3X2 y se desea construir una ROM de 3x4.

SUBSISTEMAS COMBINACIONES DE PROPÓSITO GENERAL Dispositivos lógicos programables Asociación de ROM

Ejemplo 2 Se dispone de ROMs de 8x2, y se desea construir una ROM de 16x2.

Plano AND programable y plano OR fijo

Detalle de la generación de un término producto

Representación simplificada del término producto

Ejemplo: Usando la primera estructura PAL, implementar las funciones de conmutación siguientes $f=\Sigma(0,2,4,7)$, $g=\Sigma(0,1,2,6,7)$, $h=\Sigma(6,7)$.

H(x,y,z) = xyz' + xyz

Las expresiones para f y g son:

$$F(x,y,z) = x'z' + xyz + xy'z'$$

 $G(x,y,z) = x'y' + x'yz' + xy$

Este dispositivo tiene tanto el plano AND como el OR totalmente programables. La siguiente figura muestra la estructura de una PLA de 3 entradas y 3 salidas.

PLA

Ejemplo. Implementar las siguientes funciones en la PLA anterior

$$H = xz' + x' + y$$

