FUNDAMENTOS ELÉTRICOS

Situação de aprendizagem: ESTUFA DANIFICADA

NOME DO ALUNO:

Juan Manoel Marinho Nascimento

Etapa 1: Descreva o passo-a-passo para identificar a tensão, a corrente elétrica e a potência dos resistores do equipamento:

ANEXO 1 - ESQUEMÁTICO


```
In [11]: 

r1 = 10

r2 = 20

r3 = 30

r4 = 50

F1 = 70

V = F1
```

Paralelo

```
In [12]: req1 = (r2 * r3) / (r2 + r3 )
print req1,"0hm"

12 0hm
```

Serie

```
In [6]: reqT = r1 + req1 + r4
print reqT, "ohm"

72 ohm
```

1 de 3 01-04-2018 00:49

Corrente Total

Potencia Total

```
In [13]: Pt = V * It
         print Pt, "W"
         68.055555556 W
In [20]: potR1 = 9.7 * 0.97
         potR2 = 11.64 * 0.582
         potR3 = 11.64 * 0.388
         potR4 = 48.5 * 0.97
         print "Potencia W\n",potR1,"\n",potR2,"\n", potR3,"\n",potR4
         potenciaTotal = potR1+potR2+potR3+potR4
         Potencia W
         9.409
         6.77448
         4.51632
         47.045
In [22]: print "Potencia TOTAL: ",potenciaTotal,"W"
         Potencia TOTAL: 67.7448 W
```

Etapa 2: Usando o circuito da Etapa 1, preencha a tabela abaixo com os valores solicitados:

TABELA 1

Circuito	Resistencia (ohm)	Tensã $o(V)$	Corrente(A)	Potê $ncia(w)$
R1	10	9.7	0.97	9.409
R2	20	11.64	0.582	6.77
R3	30	11.64	0.388	4.51
R4	50	48.5	0.97	47.04
Equivalencia	72	70	0.972	68.05

Etapa 3:

2 de 3 01-04-2018 00:49

Usando o circuito abaixo, preencha a tabela 2 abaixo com os valores solicitados. Este circuito é o mesmo da Etapa 1, mas agora o Resistor R2 está em Curto Circuito, ou seja, ele se transforma num fio com resistência próxima a 0Ω (zero Ohms).

Dica: faça o cálculo da Resistência equivalente do Resistor R2=0 Ω em paralelo com R3=30 Ω . Qual o resultado???

TABELA 2

Circuito	Resistencia (ohm)	$Tens\~ao(V)$	Corrente(A)	Potê $ncia(w)$
R1	10	11,66	1,166	13, 59
R2	curto	curto	curto	curto
R3	30		1,166	
R4	50	58, 3	1,166	67, 97
Equivalencia	60	70	1,166	81,62

3 de 3 01-04-2018 00:49

It = 70 = 0,972A

circuito péril - D Reg T RI+Reg 1+R4 = 10+12+50 Keg T = 72 12 potência total

Pt=70-0,972=68,04W

tentar + VA, V2/V3, V4 V1= R1 . It = 10.0,972=9,72 V Vz=V3= Reg s. It= 12.0,972= 11,664 V V4=R4. It=50.0,972=48,6V

Covernite: I1, I2, I3, I4

$$I1 = 0, 972A$$
 $I2 = \frac{11,664}{20} = 0,5832A$
 $I3 = \frac{11,664}{30} = 0,3888A$
 $I4 = 0,972A$

V1= R1. It = 10-1,166= 11,66V

Vz=V3=Req 1. IL=0.1,166=0V

V4=R4-It=50-1,166=58.3V

Tenhall

Circuito paralelo

Req
$$1 = \frac{R2 \times R3}{R2 + R3} = \frac{0 \times 30}{0 + 30} = 0.D$$

reventa total

It = $\frac{40}{60} = 1,166 \text{ A}$

I4 = 58,3 = 1, 166 A

Potência

circuito péril -> Reg T

RI+Reg + R4 = 10+0+50=602

R2 - Jona de circuito carenito perie RegT = 10+30+50=901 powente: igual em todes es covente total IZ= = = = 0, 777 A Potência total Pt= 70.0,777 = 54,3900

Tembai VI=RI. It= 60.0,777=7,77V V3 = R3. It= 30.0,777= 23,311 V4=R4. It=50.0,777=38,85V

P3= V3. It= 23, 31.0, 777= 18,11W P4= V4. It = 38,85.0,777=30,18W Debora Rodrigues + Juan Marwel

P1= V1. It=7,77.0,777=6,03w