

- □ 제 4장. 일반화 선형모형
 - □ GLM의 성분
 - 2 이항자료에 대한 일반화 선형모형
 - 5 도수 자료에 대한 일반화 선형모형
 - : 포아송 회귀

宣音개요 및 목표

분할표 분석은 반응변수와 설명변수가 범주형일 때 적용했던 연관성 분석법입니다. 이번 강의는 통계모형을 이용한 범주형 자료 분석에 대해서 학습합니다. 통계모형을 이용해서 분석하면 단순한 유의성 검정이 아닌 모수 추정을 통해서 더 많은 정보를 얻을 수 있습니다.

- 범주형 자료분석에서 통계모형 적용의 필요성에 대해 설명할 수 있다.
- 2 일반화선형모형 GLM의 구성요소를 설명할 수 있다.
- ③ 이항자료와 도수자료에 대한 일반화 선형모형을 설명할 수 있다.

- I GLM의 성분
- 2 이항자료에 대한 일반화 선형모형
- 5 도수 자료에 대한 일반화 선형모형
 - : 포아송 회귀

01 제 4장. 일반화 선형모형

GLM의 성분

1. GLM의 성분 구성Ω소

- GLM (Generalized Linear Model)
 - 여러 설명변수들의 효과를 동시에 분석해야 하는 복잡한 상황에 유용함

모형을 이용한 분석에는 모수 추정에 역점을 두며, 단순한 유의성 검정보다 더 많은 정보 제공

- 범주형 및 연속형 반응변수에 대해서
 잘 알려진 통계모형들을 포괄하는 일반화된형태의 통계모형
- 회귀모형, ANOVA 모형, 로지스틱회귀모형 등은 GLM의 특별한 경우임

2. 개Ω

- GLM
 - 전통적인 회귀모형을 반응변수가 정규분포를 따르지 않는 경우로 확장한 것임
- GLM을 적용하기 위해서는 반응변수가 지수족 분포(Exponential Family Of Distributions)를 따라야만 함
- -모든 GLM의 세 가지 공통 요소
 - 랜덤성분 (Random Component)
 - 체계적 성분 (Systematic Component)
 - 연결함수 (Link Function)

■ 1. 랜덤성분 (Random Component)

- ▶ 반응변수 Y를 결정
- Y_1, Y_2, \dots, Y_n 을 정규분포, 포아송분포, 이항분포 등에서 추출된 랜덤 표본으로 가정
- $\mu_i = E(Y_i)$ 가 설명변수들에 의해서 어떻게 영향을 받는지 모형 설정
- Exponential Family 분포

$$f(y_{i}; \theta_{i}) = a(\theta_{i})b(y_{i})\exp[y_{i}Q(\theta_{i})]$$

- 예: Poisson 분포

$$f(y; \mu) = \frac{e^{-\mu}\mu^y}{y!} = \exp(-\mu) \left(\frac{1}{y!}\right) \exp[y(\log \mu)], \ y = 0, 1, 2, \dots$$

■ 2. 체계적 성분 (Systematic Component)

• 설명변수 $\{x_j\}$ 의 선형식인 선형예측식(Linear Predictor)으로 구성 $\alpha+\beta_1x_1+\beta_2x_2+\cdots+\beta_kx_k$

□ 3. 연결함수

- Y에 대한 기댓값 $\mu = E(Y)$ 는 설명변수들의 값에 따라 달라짐
- ullet 랜덤성분과 체계적 성분(선형예측식)을 연결하는 함수 $g(\cdot)$ 를 말함

$$g(\mu) = \alpha + \beta_1 x_1 + \cdots + \beta_k x_k$$

☑ 연결함수의 예

• $q(\mu)=\mu$: 항등연결 (Identity Link) $\mu=\alpha+\beta_1x_1+\cdots+\beta_kx_k$

• $g(\mu) = \log(\mu)$: 로그연결 "평균의 로그를 모형화하는 것으로 빈도와 같이 기대값이 음이 아닌 자료에 적합"

$$\log(\mu) = \alpha + \beta_1 x_1 + \cdots + \beta_k x_k$$

로그연결을 사용하는 GLM을 로그선형모형(Loglinear Model)이라고 함

☑ 연결함수의 예

•
$$g(\mu) = \log\left(\frac{\mu}{1-\mu}\right)$$
: 로짓연결 (Logit Link)

$$\log\left(\frac{\mu}{1-\mu}\right) = \alpha + \beta_1 x_1 + \cdots + \beta_k x_k$$

logit = log of odds

☑ 연결함수의 예

- 표준연결함수 (Canonical Link)
 - Exponential Family 분포

$$f(y_{i}; \theta_{i}) = a(\theta_{i})b(y_{i})\exp[y_{i}Q(\theta_{i})]$$

- Canonical Link : $g(\mu_i) = Q(\theta_i)$

$$g(\mu) = \log(\mu) \rightarrow \log(\mu_i) = \sum_j \beta_j x_{ij}, i = 1, \dots, n$$

Note 1

GLM은 보통의 회귀분석을 다음 두 가지 관점에서 일반화한 것으로 볼 수 있음

- ① Y에 대하여 정규분포 이외에 다른 확률분포를 허용함
- ② 단순한 μ 에 대한 모형화가 아닌 μ 의 함수인 $g(\mu)$ 에 대한 모형화가 가능함

Note 2

- GLM의 모수추정 과정에서는 선택된 랜덤성분에 대하여 ML(최대가능도 추정법) 방법을 사용
- 랜덤성분의 확률분포로 정규분포 이외의 분포도 가능함
- 회귀모형, 분산분석 모형, 범주형 자료에 대한 모형들은 GLM의 특별한 경우
- 동일 ML 추정법을 사용하여 모든 GLM에 대한 모형 적합이 가능함
- SAS PROC GENMOD, R glm함수 등을 통해서 분석

02 제 4장. 일반화 선형모형

이항자료에 대한 일반화 선형모형

알아보기

• 반응변수 Y의 분포는 성공확률, $P(Y=1) = \pi$ 이고, 실패확률 $P(Y=0) = 1 - \pi$ 인 경우

•
$$E(Y) = \pi$$
, $Var(Y) = \pi(1 - \pi)$

•설명변수 x가 변함에 따라 $\pi = \pi(x)$ 가 영향을 받는 경우의 모형 적합에 대해서 살펴봄

1. 선형확률모형

☑ 통계 모형

- $\pi(x) = \alpha + \beta x$
 - : 성공확률이 x에 따라 선형적으로 변함
- 이항확률분포에 대하여 항등연결함수를 갖는 GLM

$$(\mu = E(Y) = \pi)$$

1. 선형확률모형

☑ 단점

- $Var(Y) = \pi(x)(1-\pi(x))$: x 값에 따라 변화함
 - → 최소제곱 추정법은 Optimal 안됨
 - → 최대가능도 추정법(ML)을 이용하여 GLM을 적합함
- x의 값이 대단히 크거나 작은 경우에는 $\pi(x) < 0$ 이나 $\pi(x) > 1$ 인 경우가 발생 가능

☑ 개요

- 코 고는 것이 심장병의 위험요인이 될 수 있는 지를 알아보기 위해 2,484명을 대상으로 조사한 자료
- ▪배우자들의 보고를 근거로 코 고는 정도에 따라 4범주로 분류

```
Y = 심장병 발병 여부
(1 = 발병, 0 = 발병하지 않음)
```

$$x = 코고는 정도 (코 고는 범주에 대하여 $(0, 2, 4, 5)$ 할당)$$

■ 코 골기와 심장병과의 관계

코고는 정도	심장병							
	유	무	비율	선형적합	로짓모형	프로빗적합		
전혀 아니다.	24	1355	0.017	0.017	0.021	0.020		
가끔	35	603	0.055	0.057	0.044	0.046		
거의 매일 밤	21	192	0.099	0.093	0.093	0.095		
매일 밤	30	224	0.118	0.116	0.132	0.131		

〈참고〉 그룹화(grouped) 또는 그룹화되지 않은(ungrouped) 이항자료 구분

☑ ML방법에 의한 적합

- 항등연결함수를 사용하는 경우
 - $\rightarrow \hat{\pi}(x) = 0.017 + 0.0198x$ (PROC GENMOD 이용)
- 코를 골지 않는 사람(x=0)에 대한 심장병 확률:
 - $\hat{\pi}(x) = 0.017 + 0.0198(0)$ (PROC GENMOD 이용) = 0.017
- R 예제 : 교재 95쪽 참고

- ☑ 보통의 최소제곱법을 이용하는 경우
 - 2,484개의 이진형태인 0과 1로 입력한 후 최소제곱법으로 적합
 - $\hat{\pi}(x) = 0.0169 + 0.0200x$
 - ■모형 적합이 잘 된 경우에 최소제곱 추정값과 ML 추정값은 비슷하게 됨

■ GLM 적합을 위한 PROC GENMOD

```
DATA glm;
INPUT snoring disease total;
CARDS;
0 24 1379
2 35 638
4 21 213
5 30 254
RUN;
PROC GENMOD;
 MODEL disease/total=snoring / dist=bin link=identity;
RUN;
```


☑ 프로그램 수행 결과

Analysis Of Maximum Likelihood Parameter Estimates							
Parameter	DF	Estimate	Standard Error	Wald 95% Confidence Limits		Wald Chi-Square	Pr > ChiSq
Intercept	1	0.0172	0.0034	0.0105	0.024	25.18	<.0001
snoring	1	0.0198	0.0028	0.0143	0.0253	49.97	<.0001
Scale	0	1	0	1	1		

□ 아이디어

- $\pi(x)$ 와 $\pi(x)$ 와 $\pi(x)$ 관계는 대개 비선형 형태로 볼 수 있음
- x의 일정한 변화량은 π 가 구간의 중앙에 있을 때보다 0이나 1에 가까이 있을 때 π 에 대한 영향을 덜 미치게 됨

$$\pi(x) = \frac{\exp(\alpha + \beta x)}{1 + \exp(\alpha + \beta x)}$$

$$\Leftrightarrow \log\left(\frac{\pi(x)}{1 - \pi(x)}\right) = \alpha + \beta x$$

$$\log(\pi/(1-\pi)) = \log it(\pi)$$

☑ 로지스틱 회귀함수의 형태

☑ 로지스틱 회귀모형 적합결과

■ 코 고는 정도와 심장병과의 연관성 자료에 대한 로지스틱 회귀모형 적합결과

$$\log it [\hat{\pi}(x)] = \log \left(\frac{\hat{\pi}(x)}{1 - \hat{\pi}(x)} \right) = -3.87 + 0.40x$$

코 고는 정도가 심해질수록 심장병 발병 가능성이 높아짐

☑ 모형적합 결과

☑ 로지스틱회귀(link = logit 사용)의 적합결과

Analysis Of Maximum Likelihood Parameter Estimates

Parameter	DF	Estimate	Standard Error	Wald 95% (Lim:	Confidence its	Wald Chi-Square	Pr ≥ ChiSq
Intercept snoring	1 1	-3.8662 0.3973	0.1662 0.0500	-4.1920 0.2993	-3.5405 0.4954	541.06 63.12	<.0001 <.0001
Scale	0	1.0000	0.0000	1.0000	1.0000		

NOTE: The scale parameter was held fixed.

- R 예제 : 교재 94쪽 프로그램 참고

Note

- 로지스틱 회귀모형에 대해서는 5강에서 자세히 다름
- 분할표에 대한 검정에서는 H_0 하에서 추정 기대도수를 구하여 X^2 , G^2 통계량을 통해 가설 검정
- 주어진 사례의 경우: H_0 : 로지스틱 회귀모형을 따름 $X^2 = 2.05$, $G^2 = 1.95$, df = 4 2 = 2
 - \rightarrow H_0 를 기각할 만한 뚜렷한 증거는 없음

4. 프로빗 회귀모형

☑ 프로빗모형 (Probit Model)

- $probit[\pi(x)] = \Phi^{-1}(\pi(x)), \Phi(\cdot)$ 는 표준정규분포의 cdf
- -probit(0.05) = -1.645, probit(0.975) = 1.96
- $probit[\hat{\pi}(x)] = -2.061 + 0.188x$: 모형적합결과

R 예제: 교재 95쪽 참고, link=probit

4. 프로빗 회귀모형

- $lacksymbol{\square}$ 코골이 수준 x=0인 경우
 - $probit[\hat{\pi}(0)] = -2.061$
 - $\hat{\pi}(0) = \Phi(-2.061) = 0.020$
 - $-probit[\hat{\pi}(5)] = -2.061 + 0.188(5) = -1.121$
 - $\hat{\pi}(5) = \Phi(-1.121) = 0.131$

4. 프로빗 회귀모형

Note

- 자료에 대한 프로빗 곡선과 로지스틱회귀곡선은 유사함
- 프로빗모형은 1934년 독성학 연구에서 처음 도입
- 오늘날 로지스틱회귀모형이
 프로빗 모형에 비해서 더 많이 활용
 - → 로지스틱회귀모형의 모수는 오즈비와 연관됨
- 사례
 - : 대조 연구 자료에 적용하여 오즈비를 추정할 수 있음

03 제 4장. 일반화 선형모형

도수자료에 대한 일반화 선형모형: 포아송 회귀

1. 포아송 분포 (Poisson Distribution)

☑ 포아송 분포

 도수와 같이 음이 아닌 임의의 정수값을 취할 때 보통 포아송 분포를 가정하여 분석함

$$P(y) = \frac{e^{-\mu}\mu^y}{y!}, \quad y = 0, 1, 2, \dots$$

•
$$E(Y) = Var(Y) = \mu$$
, $\sigma(Y) = \sqrt{\mu}$

1. 포아승 분포 (Poisson Distribution)

- ☑ 포아송 분포의 성질
 - 도수가 커질수록 분산도 커짐
 - 평균이 증가할수록 치우친 정도는 감소하여 점차 좌우대칭인 종모양을 나타냄
 - 실제 데이터 분석에서 종종 $\sigma^2 > \mu$ 인 경우를 볼 수 있는 데 이를 과대산포(Overdispersion)라고 함

2. 포아송 회귀모형

- ☑ 포아송 회귀모형이란?
 - ullet Y는 포아송 분포를 따르고, x 를 설명변수로 가정함
 - ■모형
 - ① 항등연결함수 : $\mu = \alpha + \beta x$
 - ② 로그연결함수 : $\log(\mu) = \alpha + \beta x$
 - → 로그선형 모형(Loglinear Model)이라고 함 (Part 7의 내용)

$$\mu = \exp(\alpha + \beta x) = e^{\alpha} (e^{\beta})^x$$

☑ 연구 개요

- 각 암 참게는 집을 갖고 있으며 이 집에 붙어사는 숫 참게를 가지고 있음
- •이 숫 참게를 부수체(Satellite)라고 부름

반응변수: 암 참게의 부수체 수

설명변수: 암 참게의 등딱지 너비

(암 참게의 크기)

■ 암 참게의 등딱지 너비와 부수체 수 관계

[암컷 게의 등딱지 폭에 따른 부수체 수]

[암컷 게의 부수체 수에 대한 평활]

- 포아송 로그 선형 적합
 - $\log(\mu) = \alpha + \beta x$ 을 ML방법으로 적합 (SAS PROC GENMOD 이용) [• R 예제 : 교재 99쪽 참고
 - $-\log(\hat{\mu}) = \hat{\alpha} + \hat{\beta}x = -3.305 + 0.164x$ ($\hat{\beta} = 0.020$)
 - → Â> 0이므로 등딱지 너비가 증가함에 따라 부수체수도 증가함
 - $\rightarrow \hat{\mu} = \exp(-3.305 + 0.164x)$

평균적으로 너비가 대략 2cm 증가하면 부수체 수가 하나씩 증가함

- ☑ 포아송 회귀모형: 항등연결
 - $\mu = \alpha + \beta x$ 을 이용

$$\hat{\mu} = \hat{\alpha} + \hat{\beta}x = -11.5 + 0.550x$$

($\hat{\beta} \cong ASE=0.550$)

평균적으로 너비가 대략 2cm 증가하면 부수체 수가 하나씩 증가함

☑ SAS 프로그램

```
□ DATA crab;
 INPUT color spine width satell weight
 CARDS:
 2 3 28,3 8 3,05
 3 3 22.5 0 1.55
 1 1 26.0 9 2.30
     중간생략
  1 1 28.0 0 2.63
 4 3 27.0 0 2.63
 2 2 24.5 0 2.00
□ PROC GENMOD:
    MODEL sateII = width/dist=poi_link=log type1;
```

4. 과대산포 : 예측된 것보다 큰 분산

■ 과대 산포

- 포아송 분포를 따를 경우 평균과 분산은 같음 $E(Y) = Var(Y) = \mu$

- 모형의 랜덤성분에 의해 예측되는 분산보다 더 큰 분산을 갖는 현상을 과대산포(Overdispersion)라고 함

4. 과대산포 : 예측된 것보다 큰 분산

☑ 부수체 수의 표본평균과 표본 분산

너비	경우 수	부수체 수	표본평균	표본분산
< 23.25	14	14	1.00	2.77
23.25 - 24.25	14	20	1.43	8.88
24.25 - 25.25	28	67	2.39	6.54
25.25 - 26.25	39	105	2.69	11.38
26.25 - 27.25	22	63	2.86	6.88
27.25 - 28.25	24	93	3.87	8.81
28.25 - 29.25	18	71	3.94	16.88
> 29.25	14	72	5.14	8.29

4. 과대산포 : 예측된 것보다 큰 분산

- 과대 산포 결과
 - 개체들간의 이질성으로 발생할 수 있음
 - 암컷의 부수체 수에 너비, 무게, 색깔, 등뼈의 상태 등이 모두 영향을 줄 때 너비만 고려한 모형을 적용하면 분산이 커질 수 있음
 - 과대산포는 도수에 포아송 회귀모형을 적용할 때 흔히 나타남
 - → 이는 포아송 분포에서 분산이 평균과 같기 때문임

수고하셨습니다.