Construined optimization
we will focus on constrained sof problems to day:
$(p) \text{min}_{x \in \mathbb{R}^d} f(x) \text{st.} g_n(x) \leq 0 \forall n = 1,, n.$
we will assume each of f, g, are C' (continuously differentiable)
Similar results hold if we assure they are locally Lipschitz, but requires more technical arguments of Clarke subdifferentials etc. (See Lyn-Li'19)
Def A point xerd is called feasible for (P) if gi(x) so \ti=1,.,n.
A feasible post x is caued a KKT point (Kanush-Kulm-Thaker) if
1 Satisfies the KKT conditions: 3) = > < t.
$ \begin{array}{cccc} \hline O & \nabla f(x) + \sum_{i=1}^{n} J_{i} & \nabla g_{i}(f) = 0. \end{array} $
$ () \forall i=1,, n, \exists i(x) \cdot g_i(x) = 0. $
- Global minimum of (P) more not los a KKT point

- Global minimum of (P) may not be a KKI point.

- Under certain "regularity conditions", we can guarantee this.

Def. (Mangasania - Fromovitz COUStraint qualification [MFCD]
For feasible point x of (P), (P) sutirfies MFCQ @ X if
For feasible point x of (P), (P) sutirfies MFCQ @ X if there exists rend s.t. for all i e th) s.t. g:(41=0,
$ \langle \nabla g_i(x), \nabla \rangle > 0. $
Theorem If a fegsible point xell of (P) satisfies MFCQ,
and if x is a local minimum of (P), then
2 satisfies the KKT conditions for (P),
Proof is somewhat involved. Reference. Andreason, Evgrafor, Patriksson, Elgrafor, Elgrafor
Example. Consider $f(x; \theta)$ st:

(D) f(x,0) is C' fen of D for every XERd, (2) f(x,0) is L-positively homogeneous fersome L>0: f(x, x0)=x f(x,0) a zo.

Consider (P) min $\|\theta\|_2^2$ st. $y:f(x:,\theta) \ge 1$ $\forall i=1,...,n$. Corresponds to constraints $g:Qe:=1-y:f(x:,\theta) \le 0$.

Then every feasible point surisfies MFCQ:
-let Θ be s.t. $g_i(0) = 0 \Longrightarrow I = y_i f(x_i; \Theta)$.
- WM+ some V & < V, V9; 6)> >0.
$\nabla g_i(\theta) = -y_i \nabla f(x_i, \theta)$. By homogeneity, taking $V := -\theta$
yields $\langle r, \nabla g_i(\theta) \rangle = \langle \theta, y_i \nabla f(x_i; \theta) \rangle = y_i \cdot Lf(x_i; \theta)$ = L >0.
Pulling this tyether:
Proposition Let f(x; 0) be L-homogeneous and C'in O for every X.
Then every 10cal minimum of
(P) min 110112 st. Yof(x; 8) =1 for i=1,, n,
is a KKT point of problem (1).
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Many examples of neural nets satisfy this.

- Linear classifiers: $f(x, \theta) = \langle \theta, x \rangle$ clearly C', 1-homog

- Depth-D newal nets with activations $Q[t] = \max(0, t)^2$, q^-1 :

(and no bias terms) $\max(0, t)^2 = \max(0, t)^2$, q^-1 :

(b) 2-layor nets, $\max(0, t)^2 = \max(0, t)^2 = \max(0, t)^2$, q^-1 : $= \sum_{j=1}^{n} q_{+j} \sum_{j=1}^{n} \alpha_j Q[kw_j, \chi^2]$ Training both layers results in (2+1) - homog. nets. Need q=1 stuce (q+1)=(q-1) merx(ort) if q=1, but if 9=1 than l'is not continuous. - Holds for more general U if (1) honogeneous, (2) C!

- Similar arg. Shows 2-layer nets uf bias terms are homog. if ψ is homog., but bias terms break homogeneity for depth >2.

we will see that gradient descent/flow on the logistic & exponential
LOSSES has an implicit bias forwards solutions which satisfy the
KKT Ouditions for margin meximization.
Namely:
Thm I Lyu-Li'19; Si-tolgoray'20] Suppose I is the logistic or exponoutial loss
{(x,y)} having late, yiestle. Let f(x, 8) be L-homog. in & and
suppose $f(x, 0)$ is C^2 on \mathbb{R}^d . Then for step size a sufficiently small
if IT>0 st [(8")= t 2" l(y; f(x; ,8")) < t, then
$\mathbb{O}\left(\mathbb{C}(\mathfrak{S}^{(t)}) \to 0 \text{ as } t \to \infty$
$\frac{\partial}{\partial t} = 0^{(t)} = 0^{(t)} = 0^{(t)}$ and
JB70 S.t. B.D' satisfies the KKT conditions for
(P) $\min \ \Theta\ _{Z}^{2}: y_{i}f(x_{i};\Theta) \geq 1, \forall i=1,,n.$
Thus, KKT conditions for (lz)-margin mercinization characterize

the limiting behavior of a large class of neural hets.

let's write out the KKT conditions for linear classifier: (P) $\min_{z} \| \mathbf{w} \|^2$ st. $y_i < w_i, x_i > \geq 1$, i = 1..., n. for some $\lambda_1 \geq 0$,) $\nabla_{\overline{z}}^{1}/|w|^{2} + \sum_{i} \nabla(1-y_{i}\langle w, x_{i}\rangle) = 0$ $\omega = \sum_{i=1}^{n} \lambda_i y_i x_i.$ 7. (1- y; (w, x;)) =0 for all i. Since you xi>=1, this means for every example, either: (i) It = 0 and yikw, x>>1; then (xi, yi) doesn't contribute to w by (>). (ii) 7; >0 and y Lw, x; 7=1. These one "support vectors" Xi, since they lie " on the margin,

Visually: Green examples = support vec. + + 1
These contribute to max margin.

Blue examples do not.