Math 239 - Lecture 12

Graham Cooper

June 1st, 2015

Ambiguity

AB works like $A \times B$ if it is unambiguous. $A \cup B$ is unambigious if $A \cap B = \emptyset$

Gemerating Series:

$$A = \{1,11\} B = \{00,000\}$$

$$\Phi_{AB}(x) = \Phi_A(x)\Phi_B(x)$$
$$= (x + x^2)(x^2 + x^5)$$

$$S = \{0,111\}^*$$

$$\Phi_S(x) = \sum_{n \ge 0} \Phi_{\{0,111\}^n}(x)$$
$$= \sum_{n \ge 0} (x + x^3)^n = \frac{1}{1 - (x + x^3)}$$

Theorems

Theorem (sum and product lemmas for strings) Let A, B be sets of strings.

- 1. If $A \cap B = \emptyset$ then $\Phi_{A \cup B}(x) = \Phi_A(x) + \Phi_b(x)$
- 2. If AB is unambiguous, then $\Phi_{AB}(x) = \Phi_A(x)\Phi_B(x)$
- 3. If A^* is unambiguous, then $\Phi_{A^*}(x) = \frac{1}{1 \Phi_A(x)}$

Proofs

- 1. Sum Lemma
- 2. There is a bijection between $A \times B$ and AB when AB is unambiguous, $(a,b) \to ab$. (The inverse is possible due to the unambiguity of AB). The product lemma applies.
- 3. Since A^* is unambiguous by sum lemma, $\Phi_{A^*}(x) = \sum_{n\geq 0} \Phi_{A^n}(x) = \sum_{n\geq 0} (\Phi_A(x))^n = \frac{1}{1-\Phi_A(x)}$ Since the constant term of $\Phi_A(x)$ is 0. If const term is not 0, then $\epsilon \in A \ln A^*$, we acn get $\epsilon = \epsilon \epsilon \epsilon = \epsilon \epsilon \epsilon = \ldots$

Basic Decompositions

3 basic unambiguous decomposition rules for the sets of al strings

- 1. $\{0,1\}^*$ cut any string after every bit, only one way
- 2. $\{0\}^*(\{1\}\{0\}^*)^*$ cut any string just before each 1. 00|1|10|1000
- 3. Block decomposition $\{0\}^*(\{1\}\{1\}^*\{0\}\{0\}^*)^*\{1\}^*\ 00|111100|100|111|11100|10|111|$ Cut off any string after each block of 0's

Restrictions on Substrings

Example: Let S be the set of all strings with no 3 consectutive 0's. Start with $\{0\}^*(\{1\}\{0^*\})^*$ where can we find 000?

In $\{0\}^*$ remove all instances of 000 in $\{0\}^*$ to get $\{\epsilon, 0, 00\}$ So $S = \{\epsilon, 0, 00\}(\{1\}\{\epsilon, 0, 00\})^*$

This is unambiguous since we are removing elements from an unambiguous expression.

$$\Phi_S(x) = (1 + x + x^2) \frac{1}{1 - (x(1+x+x^2))}$$
$$= \frac{1+x+x^2}{1-x-x^2-x^3}$$

The number of strings in S of length n is $[x^n] \frac{1+x+x^2}{1-x-x^2-x^3}$

In general, start with one of the 3 basic decompositions. Remove parts of it that violate our conditions

If we start with block decomp,
$$\{0\}^* \to \{\epsilon, 0, 000\}$$

 $\{0\}\{0\}^* \to \{0\}\{\epsilon, 0\} \to \{0, 00\}$
 $S = \{\epsilon, 0, 00\}(\{1\}\{1\}^*\{0, 00\}^*)^*\{1\}^*$
 $\Phi_S(x) = (1 + X + x^2) \frac{1}{1 - X \frac{1}{1 - x}(x + x^2)} \frac{1}{1 - x}$
 $= (1 + x + x^2) \frac{1 - x}{1 - x - (x)(x + x^2)} \frac{1}{1 - x} = \frac{1 + x + x^2}{1 - x - x^2 - x^3}$