# VOLTAGE AND CURRENT DIVIDER THEOREM. BASIC CIRCUIT ANALYSIS METHOD.













# TOPIC OUTLINE

**Voltage Divider Theorem (VDT)** 

**Current Divider Theorem (IDT)** 



# **VOLTAGE DIVIDER THEOREM**



# **VOLTAGE DIVIDER THEOREM**

In a series circuit consisting of multiple resistors, the **voltage** across any resistor is **proportional** to its resistance relative to the equivalent resistance of the series combination.

#### **Formula**

$$v_N = v_{in} rac{R_N}{R_{eq}}$$

### Series Network



For the given series circuit, determine the voltage drops across each individual resistor.



### **Solution**

Total Resistance

$$v_1 = v_0 \frac{k_1}{N_0}$$
  $v_2 = v_0 \frac{k_1}{k_1}$ 

$$V_1 = |2 \frac{120}{670}$$
  $V_2 = |2 \frac{220}{670}$ 

$$v_1 = 2.15 V$$

$$v_2 = 3$$

ans

an

# **CURRENT DIVIDER THEOREM**



## **CURRENT DIVIDER THEOREM**

### Parallel Network

In a parallel circuit with multiple resistors, the **current** through any resistor is **inversely** proportional to its resistance relative to the equivalent resistance of the parallel combination. Formula

# $i_N = i_{in} \frac{R_{eq}}{}$



For the given parallel circuit, determine the current flowing through each individual resistor.



### Solution

$$\frac{1}{10} = \frac{1}{10} + \frac{1}{210} + \frac{1}{370}$$

$$\frac{1}{40} = \frac{7}{40}$$



For the given parallel circuit, determine the current flowing through each individual resistor.



$$\dot{lo} = 261.92 + 146.86 + 95.24$$
  
 $\dot{lo} = 500.02 \text{ m/s} \checkmark$ 

### Solution

$$=570 \text{ m} \frac{62.86}{120}$$





Analyze the given circuit to determine both the current through and the voltage drop across each resistor.



### Solution

1213



Analyze the given circuit to determine both the current through and the voltage drop across each resistor.



### Solution

$$\frac{VPT}{v_1 = v_0} \frac{R_1}{t_0}$$

$$v_1 = v_0 \frac{R_1}{t_0}$$

$$v_1 = q \frac{120}{120 + 132}$$

$$v_1 = 4.20 \text{ V}$$
ans







# **LABORATORY**

