Teoria degli Algoritmi

Corso di Laurea Magistrale in Matematica Applicata a.a. 2020-21

Gabriele Tolomei

Dipartimento di Informatica Sapienza Università di Roma tolomei@di uniroma1 it

Lecture 4: Reducibility

March 11, 2021

Table of Contents

Introduction

- 2 The (Actual) Halting Problem
- Mapping Reducibility

Table of Contents

Introduction

- 2 The (Actual) Halting Problem
- 3 Mapping Reducibility

 So far, we have established the TM as our reference model of computation

- So far, we have established the TM as our reference model of computation
- We discuss what it means for a problem/function to be computed (either totally or partially)

- So far, we have established the TM as our reference model of computation
- We discuss what it means for a problem/function to be computed (either totally or partially)
- We also presented a typical problem the halting problem that is computationally undecidable

- So far, we have established the TM as our reference model of computation
- We discuss what it means for a problem/function to be computed (either totally or partially)
- We also presented a typical problem the halting problem that is computationally undecidable
- In the following, we will show how to prove that a problem is computationally undecidable by means of a specific technique called reduction

 Intuitively, a reduction is a way of translating one problem into another in such a way that the latter can be used to solve the former

- Intuitively, a **reduction** is a way of translating one problem into another in such a way that the latter can be used to solve the former
- Reduction is a pretty common practice in our every-day lives

- Intuitively, a reduction is a way of translating one problem into another in such a way that the latter can be used to solve the former
- Reduction is a pretty common practice in our every-day lives
- For example: Suppose that you want to find a way around a new city
 - You know that having a map of the city would solve your problem...

- Intuitively, a reduction is a way of translating one problem into another in such a way that the latter can be used to solve the former
 - Reduction is a pretty common practice in our every-day lives
- For example: Suppose that you want to find a way around a new city
 - You know that having a map of the city would solve your problem...
 - Therefore, your original problem reduces to finding a map of the city!

• Reducibility always involves two problems: A and B

- Reducibility always involves two problems: A and B
- If A reduces to B, we can use a solution to B to solve A

- Reducibility always involves two problems: A and B
- If A reduces to B, we can use a solution to B to solve A
- In our example above:
 - A is the original problem of finding a way around a new city

- Reducibility always involves two problems: A and B
- If A reduces to B, we can use a solution to B to solve A
- In our example above:
 - A is the original problem of finding a way around a new city
 - B is the problem of finding a map

- Reducibility always involves two problems: A and B
- If A reduces to B, we can use a solution to B to solve A
- In our example above:
 - A is the original problem of finding a way around a new city
 - B is the problem of finding a map

Note

Reducibility does **not** say anything about solving A or B, but just about the solvability of A in the presence of a solution to B

Reducibility occurs often in mathematical problems:

Examples

The problem of measuring the area of a rectangle (A) reduces to the problem of finding the size of its length and width (B).

March 11, 2021

Reducibility occurs often in mathematical problems:

Examples

The problem of measuring the area of a rectangle (A) reduces to the problem of finding the size of its length and width (B).

The problem of solving a system of linear equations (A) reduces to inverting the matrix of coefficients (B).

Reducibility plays a crucial role in classifying problems according to their (un)decidability

- Reducibility plays a crucial role in classifying problems according to their (un)decidability
- Actually, it allows us to also further classify the set of decidable problems into classes of complexity (more on this later)

- Reducibility plays a crucial role in classifying problems according to their (un)decidability
- Actually, it allows us to also further classify the set of decidable problems into classes of complexity (more on this later)
- When A is reducible to B (often denoted as $A \leq B$) it means that solving A cannot be harder than solving B (because a solution to B gives a solution to A)

- Reducibility plays a crucial role in classifying problems according to their (un)decidability
- Actually, it allows us to also further classify the set of decidable problems into classes of complexity (more on this later)
- When A is reducible to B (often denoted as $A \leq B$) it means that solving A cannot be harder than solving B (because a solution to B gives a solution to A)

Corollary

• If $A \leq B$ and B is **decidable** then A is also **decidable**

- Reducibility plays a crucial role in classifying problems according to their (un)decidability
- Actually, it allows us to also further classify the set of decidable problems into classes of complexity (more on this later)
- When A is reducible to B (often denoted as $A \leq B$) it means that solving A cannot be harder than solving B (because a solution to B gives a solution to A)

Corollary

- If $A \leq B$ and B is **decidable** then A is also **decidable**
- If A < B and A is undecidable then B is also undecidable

Table of Contents

1 Introduction

- 2 The (Actual) Halting Problem
- Mapping Reducibility

000000

• We have already proved that $HALT_{ACC}$ (equivalently, A_{TM}) is undecidable

0000000

- We have already proved that $HALT_{ACC}$ (equivalently, A_{TM}) is undecidable
- We call this "the halting problem": the problem of determining if a TM halts and accepts a given input

0000000

The (Actual) Halting Problem

- We have already proved that $HALT_{ACC}$ (equivalently, A_{TM}) is undecidable
- We call this "the halting problem": the problem of determining if a TM halts and accepts a given input
- In fact, the actual halting problem is subtly different from that!

- We have already proved that HALT_{ACC} (equivalently, A_{TM}) is undecidable
- We call this "the halting problem": the problem of determining if a TM halts and accepts a given input
- In fact, the actual halting problem is subtly different from that!
- We refer to HALT as the problem of determining if a TM halts (either accepting or rejecting) a given input

$$HALT(\langle M, x \rangle) = egin{cases} 1 & ext{if } M(x) = 1 \lor M(x) = 0 \ 0 & M(x) = \bot \end{cases}$$

Theorem

The function HALT is **not** total and computable. Analogously, the language it defines $H_{TM} = \{ \langle M, x \rangle \mid M \text{ is a TM, } M(x) = 1 \lor M(x) = 0 \}$ is **undedicidable**

Theorem

The function HALT is **not** total and computable. Analogously, the language it defines $H_{TM} = \{ \langle M, x \rangle \mid M \text{ is a TM, } M(x) = 1 \lor M(x) = 0 \}$ is **undedicidable**

Note

HALT is of course **partially** computable, i.e., H_{TM} is **recognizable**. A recognizer for H_{TM} is a TM that works as follows: it just runs M(x) and if this ever halts (either accepting or rejecting) will output 1, otherwise it will loop forever

The (Actual) Halting Problem is Undecidable

• To prove the theorem above, we again look for a contradiction

The (Actual) Halting Problem is Undecidable

- To prove the theorem above, we again look for a contradiction
- We assume that H_{TM} is decidable and we use that assumption to show that A_{TM} would be decidable as well

The (Actual) Halting Problem is Undecidable

- To prove the theorem above, we again look for a contradiction
- We assume that H_{TM} is decidable and we use that assumption to show that A_{TM} would be decidable as well
- The idea is to reduce a problem A which we know is undecidable (A_{TM}) to another problem B which we assume to be decidable (H_{TM}) and get to a contradiction

The (Actual) Halting Problem is Undecidable: Proof

• Let's assume we have a **decider** M_1 for H_{TM} , i.e., a TM that decides H_{TM}

- Let's assume we have a **decider** M_1 for H_{TM} , i.e., a TM that decides H_{TM}
- If that is the case, we can use M_1 to construct another **decider** M_2 , which decides A_{TM}

- Let's assume we have a **decider** M_1 for H_{TM} , i.e., a TM that decides H_{TM}
- If that is the case, we can use M_1 to construct another **decider** M_2 , which decides A_{TM}
- To get the idea of how to build M_2 , pretend you are M_2 : your task is to decide A_{TM}

- Let's assume we have a **decider** M_1 for H_{TM} , i.e., a TM that decides H_{TM}
- If that is the case, we can use M_1 to construct another **decider** M_2 , which decides A_{TM}
- To get the idea of how to build M_2 , pretend you are M_2 : your task is to decide A_{TM}
- M_2 takes an input in the form of $\langle M, x \rangle$ and must output 1 if M halts and accepts x, or 0 if M either halts and rejects or loop forever on x

- Let's assume we have a **decider** M_1 for H_{TM} , i.e., a TM that decides H_{TM}
- If that is the case, we can use M_1 to construct another **decider** M_2 , which decides A_{TM}
- To get the idea of how to build M_2 , pretend you are M_2 : your task is to decide A_{TM}
- M_2 takes an input in the form of $\langle M, x \rangle$ and must output 1 if M halts and accepts x, or 0 if M either halts and rejects or loop forever on x
- The problem for M_2 , of course, is it can't loop forever (it is a decider!)

 How could M₂ take advantage of the assumption of the existence of a decider M₁ for H_{TM}?

- How could M₂ take advantage of the assumption of the existence of a decider M₁ for H_{TM}?
- M_2 could first run M_1 on $\langle M, x \rangle$ to test if M halts on x:
 - If M_1 indicates that M does not halt on x, M_2 can output 0

- How could M₂ take advantage of the assumption of the existence of a decider M₁ for H_{TM}?
- M_2 could first run M_1 on $\langle M, x \rangle$ to test if M halts on x:
 - If M_1 indicates that M does not halt on x, M_2 can output 0
 - If M_1 , instead, indicates that M halts on x, M_2 can run safely M on x and will output whatever M will (1 if M accepts, 0 if it rejects)

- How could M₂ take advantage of the assumption of the existence of a decider M₁ for H_{TM}?
- M_2 could first run M_1 on $\langle M, x \rangle$ to test if M halts on x:
 - If M_1 indicates that M does not halt on x, M_2 can output 0
 - If M_1 , instead, indicates that M halts on x, M_2 can run safely M on x and will output whatever M will (1 if M accepts, 0 if it rejects)
- Thus, if M_1 exits, we can use it to decide A_{TM}

- How could M₂ take advantage of the assumption of the existence of a decider M₁ for H_{TM}?
- M_2 could first run M_1 on $\langle M, x \rangle$ to test if M halts on x:
 - If M_1 indicates that M does not halt on x, M_2 can output 0
 - If M₁, instead, indicates that M halts on x, M₂ can run safely M on x and will output whatever M will (1 if M accepts, 0 if it rejects)
- Thus, if M_1 exits, we can use it to decide A_{TM}
- Since we know that A_{TM} is undecidable, M_1 cannot exist and therefore H_{TM} is undecidable as well

H_{TM} is undecidable.

Let's assume for the purpose of obtaining a contradiction that a TM M_1 exists and decides H_{TM} . We construct another TM M_2 that decides A_{TM} , therefore getting to a contradiction.

 M_2 ="On input $\langle M, x \rangle$, i.e., an encoding of a TM M and a string x:

1 Run TM M_1 on input $\langle M, x \rangle$;

H_{TM} is undecidable.

Let's assume for the purpose of obtaining a contradiction that a TM M_1 exists and decides H_{TM} . We construct another TM M_2 that decides A_{TM} , therefore getting to a contradiction.

 M_2 ="On input $\langle M, x \rangle$, i.e., an encoding of a TM M and a string x:

- **1** Run TM M_1 on input $\langle M, x \rangle$;
- 2 If M_1 returns 0, it means M does not halt on x, therefore M_2 returns 0 as well;

H_{TM} is undecidable.

Let's assume for the purpose of obtaining a contradiction that a TM M_1 exists and decides H_{TM} . We construct another TM M_2 that decides A_{TM} , therefore getting to a contradiction.

 M_2 ="On input $\langle M, x \rangle$, i.e., an encoding of a TM M and a string x:

- **1** Run TM M_1 on input $\langle M, x \rangle$;
- ② If M_1 returns 0, it means M does not halt on x, therefore M_2 returns 0 as well;
- If M_1 returns 1, it means M halts on x, therefore M_2 can safely simulate M on x until it halts;

H_{TM} is undecidable.

Let's assume for the purpose of obtaining a contradiction that a TM M_1 exists and decides H_{TM} . We construct another TM M_2 that decides A_{TM} , therefore getting to a contradiction.

 M_2 ="On input $\langle M, x \rangle$, i.e., an encoding of a TM M and a string x:

- **1** Run TM M_1 on input $\langle M, x \rangle$;
- ② If M_1 returns 0, it means M does not halt on x, therefore M_2 returns 0 as well;
- 3 If M_1 returns 1, it means M halts on x, therefore M_2 can safely simulate M on x until it halts;
- 4 If M halts and accepts, M_2 returns 1; otherwise (M halts and rejects), M_2 returns 0."

Table of Contents

1 Introduction

- 2 The (Actual) Halting Problem
- Mapping Reducibility

 We have shown how to use the reducibility technique to prove that a problem is undecidable

- We have shown how to use the reducibility technique to prove that a problem is undecidable
- Now, we formalize the notion of reducibility which will be used later on in the context of complexity theory

- We have shown how to use the reducibility technique to prove that a problem is undecidable
- Now, we formalize the notion of reducibility which will be used later on in the context of complexity theory
- We choose to define reducibility according to the definition of mapping reducibility (a.k.a. many-to-one reducibility)

Roughly speaking, being able to reduce problem A to problem B using
mapping reducibility means that there exists a total computable
function converting instances of problem A to instances of problem B

- Roughly speaking, being able to reduce problem A to problem B using mapping reducibility means that there exists a total computable function converting instances of problem A to instances of problem B
- If we have such a mapping function called reduction we can solve probelm A using a solver for problem B

- Roughly speaking, being able to reduce problem A to problem B using mapping reducibility means that there exists a total computable function converting instances of problem A to instances of problem B
- If we have such a mapping function called reduction we can solve probelm A using a solver for problem B
- The reason is that any instance of A can be solved by:
 - Using the reduction to convert it to an instance of B;
 - 2 Applying the solver for B

Computable Functions (Again)

A TM computes a function by starting with the input (to that function) on its tape and halting with the output (of that function) on its tape

Computable Functions (Again)

A TM computes a function by starting with the input (to that function) on its tape and halting with the output (of that function) on its tape

Definition

A function $f: \Sigma^* \mapsto \Sigma^*$ is a **total computable function** if some Turing machine M, on **every** input x, **halts and outputs** f(x)

• All usual arithmetic operations on integers are total computable functions. For example, add(m, n) = m + n

- All usual arithmetic operations on integers are total computable functions. For example, add(m, n) = m + n
- Transformations of TM encodings are total computable functions. For example, the function f that takes as input $x = \langle M \rangle$ and outputs $f(x) = \langle M' \rangle$

- All usual arithmetic operations on integers are total computable functions. For example, add(m, n) = m + n
- Transformations of TM encodings are total computable functions. For example, the function f that takes as input $x = \langle M \rangle$ and outputs $f(x) = \langle M' \rangle$

Note

We can always build a TM M' starting from (the encoding of) another TM M in a finite and definite amount of steps. This is because every TM is fully specified by its **transition function**, which is finite!

 Anything that a TM can do without looping, including running deciders, is permissible

- Anything that a TM can do without looping, including running deciders, is permissible
- If the form of the input is wrong (e.g., if the TM is expecting $\langle M, x \rangle$ but gets something else), then it clears the tape and halts (i.e., outputs ϵ)

Definition

A problem (language) A is **mapping reducibile** to problem (language) B, i.e., $A \leq_m B$, if there exists a **total computable function** $f : \Sigma^* \mapsto \Sigma^*$, where **for every** $x \in A$ it holds:

$$x \in A \iff f(x) \in B$$

The function f is called a **reduction** of A to B

Definition

A problem (language) A is **mapping reducibile** to problem (language) B, i.e., $A \leq_m B$, if there exists a **total computable function** $f : \Sigma^* \mapsto \Sigma^*$, where **for every** $x \in A$ it holds:

$$x \in A \iff f(x) \in B$$

The function f is called a **reduction** of A to B

Note

To prove that f is a mapping reduction we need to show that:

- $x \in A \Longrightarrow f(x) = x' \in B$: f maps elements of A to elements of B
- $x \notin A \Longrightarrow f(x) = x' \notin B$: f maps element of \overline{A} to elements of \overline{B}

4 D > 4 B > 4 E >

 A mapping reduction of A to B provides a way to translate questions about membership testing in A to membership testing in B

- A mapping reduction of A to B provides a way to translate questions about membership testing in A to membership testing in B
- To test if $x \in A$, we use the reduction f to map x to f(x) and test whether $f(x) \in B$

- A mapping reduction of A to B provides a way to translate questions about membership testing in A to membership testing in B
- To test if $x \in A$, we use the reduction f to map x to f(x) and test whether $f(x) \in B$
- Of course, if one problem is mapping-reducible to another, previously solved, problem, we can therefore obtain a solution to the original problem

Mapping Reducibility: Consequences

Theorem

If $A \leq_m B$ and B is **decidable**, then A is also **decidable**

Mapping Reducibility: Consequences

Theorem

If $A \leq_m B$ and B is **decidable**, then A is also **decidable**

Proof.

We let M_B be the decider for B and f the reduction from A to B. We therefore describe a decider M_A for A as follows:

 M_A = "On input x:

- **1** Compute f(x);
- **2** Run M_B on f(x) and if M_B accepts then **accepts**; otherwise **rejects**."

Mapping Reducibility: Consequences

Theorem

If $A \leq_m B$ and B is **decidable**, then A is also **decidable**

Proof.

We let M_B be the decider for B and f the reduction from A to B. We therefore describe a decider M_A for A as follows:

 M_A = "On input x:

- **1** Compute f(x);
- **2** Run M_B on f(x) and if M_B accepts then **accepts**; otherwise **rejects**."

If $x \in A$ then $f(x) \in B$ (because f is a reduction from A to B), M_B and thus M_A accept.

If $x \notin A$ then $f(x) \notin B$, M_B and thus M_A reject.

 M_A is a decider for A

Corollary

If $A \le_m B$ and A is undecidable then B is also undecidable

Corollary

If $A \le_m B$ and A is undecidable then B is also undecidable

Proof.

We build a TM M_f that computes the mapping reduction f as follows: $M_f =$ "On input \langle an instance of problem $A \rangle$:

- Construct an instance of problem B;
- **2** Output \langle the instance of problem $B\rangle$ "

Corollary

If $A \le_m B$ and A is undecidable then B is also undecidable

Proof.

We build a TM M_f that computes the mapping reduction f as follows: $M_f =$ "On input \langle an instance of problem $A\rangle$:

- \bullet Construct an instance of problem B;
- ② Output (the instance of problem B)"

Note

Rather than accept or reject, the TM M_f corresponding to the mapping outputs the result of the reduction

Corollary

If $A \leq_m B$ and B is recognizable then A is also recognizable

Corollary

If $A \leq_m B$ and B is recognizable then A is also recognizable

Corollary

If $A \leq_m B$ and A is unrecognizable then B is also unrecognizable

Example

We have already used a reduction from A_{TM} to H_{TM} to prove the latter is **undecidable**. In particular, this reduction shows how a decider for H_{TM} could be used to build a decider also for A_{TM} , which we know is, in fact, undecidable.

We want to find a reduction f that takes as input $\langle M, x \rangle$ and transforms it into $\langle M', x \rangle$, such that:

$$\langle M, x \rangle \in A_{TM} \iff \langle M', x \rangle \in H_{TM}$$

The mapping reduction f can be computed by the following TM M_f

The mapping reduction f can be computed by the following TM M_f M_f = "On input $\langle M, x \rangle$:

- **1** Construct the following **new** TM M':
 - M' = "On input z:
 - \bigcirc Call M on z;
 - ② If M(z) = 1 (i.e., if M accepts z), then M'(z) = 1 as well;
 - **3** If M(z) = 0 (i.e., if M rejects z), then M'(z) enters in a loop"
- **2** Finally, output $\langle M', x \rangle$ "

Note

If $M(z) = \perp M'(z) = \perp$ as well, and there is no need of doing anything!

The mapping reduction f can be computed by the following TM M_f M_f = "On input $\langle M, x \rangle$:

- Construct the following new TM M':
 M' = "On input z:
 - \bigcirc Call M on z;
 - ② If M(z) = 1 (i.e., if M accepts z), then M'(z) = 1 as well;
 - 3 If M(z) = 0 (i.e., if M rejects z), then M'(z) enters in a loop;
- **2** Finally, output $\langle M', x \rangle$."

Note

Building the TM M' can be done in a finite number of steps (i.e., does not loop) so M_f can't loop either. M' itself may not halt, in fact it will not on some inputs, but the point is we can build its (finite) representation using a total computable function f implemented by M_f .

The mapping reduction f can be computed by the following TM M_f M_f = "On input $\langle M, x \rangle$:

- **1** Construct the following **new** TM M': M' = "On input z:
 - \bigcirc Call M on z;
 - ② If M(z) = 1 (i.e., if M accepts z), then M'(z) = 1 as well;
 - 3 If M(z) = 0 (i.e., if M rejects z), then M'(z) enters in a loop;
- **2** Finally, output $\langle M', x \rangle$."

Note

If $\langle M,x\rangle\in A_{TM}$, then M accepts x so does M' and thus halts on x, i.e., $\langle M',x\rangle\in H_{TM}$

The mapping reduction f can be computed by the following TM M_f M_f = "On input $\langle M, x \rangle$:

- **1** Construct the following **new** TM M': M' = "On input z:
 - \bigcirc Call M on z:
 - ② If M(z) = 1 (i.e., if M accepts z), then M'(z) = 1 as well;
 - 3 If M(z) = 0 (i.e., if M rejects z), then M'(z) enters in a loop;
- **2** Finally, output $\langle M', x \rangle$."

Note

If $\langle M, x \rangle \in A_{TM}$, then M accepts x so does M' and thus halts on x, i.e., $\langle M', x \rangle \in H_{TM}$

If $\langle M, x \rangle \notin A_{TM}$, then M rejects or loops on x and in either case M' loops on x, i.e., $\langle M', x \rangle \notin H_{TM}$

March 11, 2021

Upon receiving its input $\langle M, x \rangle$, the TM M_A works as follows:

1 It computes the reduction f by running the TM M_f , which transforms $\langle M, x \rangle$ into $f(\langle M, x \rangle) = \langle M', x \rangle$, where M' loops whenever M rejects;

Upon receiving its input $\langle M, x \rangle$, the TM M_{Δ} works as follows:

- 1 It computes the reduction f by running the TM M_f , which transforms $\langle M, x \rangle$ into $f(\langle M, x \rangle) = \langle M', x \rangle$, where M' loops whenever M rejects;
- ② It runs M_H on $\langle M', x \rangle$;

Upon receiving its input $\langle M, x \rangle$, the TM M_{Δ} works as follows:

- 1 It computes the reduction f by running the TM M_f , which transforms $\langle M, x \rangle$ into $f(\langle M, x \rangle) = \langle M', x \rangle$, where M' loops whenever M rejects;
- ② It runs M_H on $\langle M', x \rangle$;
- § If M_H outputs 1 (i.e., accepts), then M_A outputs 1;

Upon receiving its input $\langle M, x \rangle$, the TM M_{Δ} works as follows:

- 1 It computes the reduction f by running the TM M_f , which transforms $\langle M, x \rangle$ into $f(\langle M, x \rangle) = \langle M', x \rangle$, where M' loops whenever M rejects;
- ② It runs M_H on $\langle M', x \rangle$;
- § If M_H outputs 1 (i.e., accepts), then M_A outputs 1;
- 4 If M_H outputs 0 (i.e., rejects), then M_A outputs 0; SAPIENZA

Teoria degli Algoritmi a.a. 2020-21

36 / 37

Upon receiving x, i.e., an input instance of problem A, the TM M_A works as follows:

1 It transforms $x \in A$ into $f(x) \in B$, using M_f ;

Upon receiving x, i.e., an input instance of problem A, the TM M_A works as follows:

- 1 It transforms $x \in A$ into $f(x) \in B$, using M_f ;
- 2 It runs M_B (solver of problem B) on f(x);

Upon receiving x, i.e., an input instance of problem A, the TM M_A works as follows:

- \blacksquare It transforms $x \in A$ into $f(x) \in B$, using M_f ;
- 2 It runs M_B (solver of problem B) on f(x):
- \bullet If M_B outputs 1 (i.e., accepts), then M_A outputs 1;

March 11, 2021

Upon receiving x, i.e., an input instance of problem A, the TM M_A works as follows:

- 1 It transforms $x \in A$ into $f(x) \in B$, using M_f ;
- 2 It runs M_B (solver of problem B) on f(x);
- 3 If M_B outputs 1 (i.e., accepts), then M_A outputs 1;
- 4 If M_B outputs 0 (i.e., rejects), then M_A outputs 0;

