Examenul de bacalaureat național 2015

Proba E. c)

Matematică *M_tehnologic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 3

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$m_g = \sqrt{16 \cdot 9} =$	3 p
	$= 4 \cdot 3 = 12$	2 p
2.	f(2) = 2 + m	2p
	$2+m=0 \Leftrightarrow m=-2$	3 p
3.	2x+1=5	3 p
	x = 2	2p
4.	Mulțimea A are 9 elemente, deci sunt 9 cazuri posibile	1p
	În mulțimea A sunt 4 multipli de 2, deci sunt 4 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{4}{9}$	2p
5.	$x_M = 2$	3 p
	$y_M = 3$, unde punctul M este mijlocul segmentului AB	2 p
6.	$\sin^2 x = 1 - \cos^2 x = 1 - \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{1}{4}$	3 p
	Cum $x \in \left(0, \frac{\pi}{2}\right)$, obținem $\sin x = \frac{1}{2}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 1 & 3 \\ 2 & 1 \end{vmatrix} = 1 \cdot 1 - 2 \cdot 3 =$	3p
	=1-6=-5	2 p
b)	$C(-1) = \begin{pmatrix} -1 & 1 \\ 2 & 3 \end{pmatrix}, A + C(-1) = \begin{pmatrix} 0 & 4 \\ 4 & 4 \end{pmatrix} \Rightarrow \det(A + C(-1)) = -16$	3p
	$\det B = \begin{vmatrix} -4 & 0 \\ 0 & 4 \end{vmatrix} = -16, \det \left(A + C(-1) \right) = \det B$	2p
c)	$C(x) \cdot A = \begin{pmatrix} x+2 & 3x+1 \\ 8 & 9 \end{pmatrix}, \ A \cdot C(x) = \begin{pmatrix} x+6 & 10 \\ 2x+2 & 5 \end{pmatrix}, \ C(x) \cdot A - A \cdot C(x) = \begin{pmatrix} -4 & 3x-9 \\ 6-2x & 4 \end{pmatrix}$	3р
	$\begin{pmatrix} -4 & 3x - 9 \\ 6 - 2x & 4 \end{pmatrix} = \begin{pmatrix} -4 & 0 \\ 0 & 4 \end{pmatrix} \Leftrightarrow x = 3$	2p
2.a)	$f(1) = 1^3 + 2 \cdot 1^2 - 6 \cdot 1 + 3 =$	3 p
	=1+2-6+3=0	2 p
b)	Câtul este $X-1$	3p
	Restul este 0	2p

Probă scrisă la matematică *M_tehnologic*

Barem de evaluare și de notare

c)
$$x_1 + x_2 + x_3 = -2$$
, $x_1x_2 + x_1x_3 + x_2x_3 = -6$, $x_1x_2x_3 = -3$
 $x_1 + x_2 + x_3 + \frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} = (x_1 + x_2 + x_3) + \frac{x_2x_3 + x_1x_3 + x_1x_2}{x_1x_2x_3} = -2 + \frac{-6}{-3} = 0$
2p

SUBIECTUL al III-lea (30 de puncte)

1.a)	$f'(x) = 3x^2 - 3 =$	3p
	$=3(x^2-1)=3(x-1)(x+1), x \in \mathbb{R}$	2p
b)	$\lim_{x \to +\infty} \frac{f(x) - x^3}{x} = \lim_{x \to +\infty} \frac{-3x + 1}{x} =$	2p
	=-3	3р
c)	$f'(x) \le 0$, pentru orice $x \in [-1,1]$	2p
	$f(1) \le f(x) \le f(-1)$, deci $-1 \le f(x) \le 3$, pentru orice $x \in [-1,1]$	3 p
2.a)	$\int_{2}^{3} \left(f(x) - \frac{1}{x} \right) dx = \int_{2}^{3} 2x dx = x^{2} \Big _{2}^{3} =$	3p
	=9-4=5	2p
b)	$F'(x) = (x^2 + \ln x + 2015)' =$	2p
	$=2x+\frac{1}{x}=f(x)$, pentru orice $x \in (0,+\infty)$, deci F este o primitivă a funcției f	3p
c)	$V = \pi \int_{1}^{2} (f(x) - 2x)^{2} dx = \pi \int_{1}^{2} \frac{1}{x^{2}} dx =$	3p
	$=\pi\left(-\frac{1}{x}\right)\Big _{1}^{2}=\frac{\pi}{2}$	2p