Analysis-1 Note

lin150117

Contents

1 Introduction

1.1 proposition, logic, simple set theory

There are some symbols we should to know:

$$P \vee Q$$
: or $\mid P \wedge Q$: and $\mid \neg P$: not \mid

xRy means $(x,y) \in R$, for $R \subset X \times Y$, which is called a relationship.

For
$$R \subset X \times Y$$
, define $R^{-1} := \{(y, x) \in Y \times X : xRy\}.$

For
$$S \subset Y \times Z$$
, define $S \circ R := \{(x,y) \in X \times Z : \exists y \in Y, s.t. xRy \land ySz\}$

Definition 1.1.1 (equivalent relationship). $\sim \subset X \times X$ is an equivalent relationship if

- (1) $\forall x \in X, x \sim x$
- (2) $\forall x, y \in X, x \sim y \Rightarrow y \sim x$
- (3) $x \sim y, y \sim z \Rightarrow x \sim z$

For an equivalent relationship, we can **define** $[x] := \{y \in X : y \sim x\}$ be the equivalent class of x. For that there is a map called **quotient mapping**

Definition 1.1.2 (partially ordered relation). $For \leq \subset X \times X$, if

- (1) $x \leqslant x$
- (2) $x \leqslant y, y \leqslant z \Rightarrow x \leqslant z$
- (3) $x \leqslant y, y \leqslant x \Rightarrow y = x$

we call it partial ordered relation

If $\forall x, y \in X$, $(x \leq y) \lor (y \leq x)$, we call it **total order** or **linear order**.

Definition 1.1.3. (X, \leqslant) is a partially ordered set for $A \subset X$, define

- 1. x < y iff $x \le y$ and $x \ne y$
- 2. $s \in X$ is an upper bound(lower bound) iff $\forall a \in A, a \leq s(s \leq a)$
- 3. $m \in A$ is a maximal(minimal) element iff $\exists a \in As.t.m < a(a < m)$
- 4. $m \in A$ is the greatest(least) element iff m is the upper(lower) bound and $m \in A$
- 1.2 Metric spaces, convergence of sequences, and continuous functions
- 1.3 Introduction
- 1.4 Basic definitions and examples

Definition 1.4.1. Let X be a set. A function $d: X \times X \to \mathbb{R}_{\geq 0}$ is called a **metric** if for all $x, y, z \in X$ we have

- $(1) \ d(x,y) = d(y,x)$
- (2) d(x,y) = 0 iff x = y
- (3) (Triangle inequality) $d(x, z) \le d(x, y) + d(y, z)$

The pair (X,d), or simply X is called a **metric space**. If $x \in X$ and $r \in (0,+\infty]$, the set

$$B_X(x,r) = \{ y \in X : d(x,y) < r \}$$

often abbreviated to B(x,r), is called the open ball with center x and radius r. If $r \in [0, +\infty)$,

$$\overline{B}_X(x,r) = \{ y \in X : d(x,y) \le r \}$$

also abbreviated to $\overline{B}(x,r)$ is called the **closed ball** with center x and radius r.

Unless otherwise stated, the metric on \mathbb{R}^n and \mathbb{C}^n (and their subsets) are assumed to be the **Euclidean metrics**.

Example 1. Let $X = X_1 \times \cdots \times X_N$ where each X_i is a metric space with metris d_i . Write $x = (x_1, \dots, x_N) \in X$ and $y = (y_1, \dots, y_N) \in X$. Then the following are metrics on X:

$$d(x,y) = d_1(x_1, y_1) + \dots + d_N(x_N, y_N)$$
(1)

$$\delta(x,y) = \max\{d_1(x_1,y_1), \cdots, d_N(x_N,y_N)\}\$$
(2)

$$\rho(x,y) = \sqrt{d_1(x_1,y_1)^2 + \dots + d_N(x_n,y_N)^2}$$
(3)

With respect to the metris δ , the open balls of X are "polydisks"

$$B_X(x,r) = B_{X_1}(x_1,r) \times \cdots \times B_{X_N}(x_N,r)$$

There is no standard choice of metric on the product of metric spaces. d, δ, ρ are all good, and they are equivalent in the following sense:

Definition 1.4.2. We say that two metrics d_1, d_2 on a set X are equivalent and write $d_1 \approx d_2$, if there exist $\alpha, \beta > 0$ such that for any $x, y \in X$ we have

$$d_1(x,y) \le \alpha d_2(x, \quad d_2(x,y) \le \beta d_1(x,y)$$

This is an equivalence relation. More generally, we may write $d_1 \lesssim d_2$ if $d_1 \leq \alpha d_2$ for some $\alpha > 0$. Then $d_1 \approx d_2$ iff $d_1 \lesssim d_2$ and $d_2 \lesssim d_1$.

Example 2. We have $\delta \leq \rho \leq d \leq N\delta$. So $\delta \approx \rho \approx \rho \approx d$.

Given finitely many metric spaces X_1, \dots, x_N , the metric on the product space $X = X_1 \times \dots \times X_N$ is chosen to be any one that is equivalent to the ones defined before. In the case that each X_i is a subset of \mathbb{R} or \mathbb{C} , we choose the metric on X to be the **Euclidean metric**

Definition 1.4.3. Let (X,d) be a metric space. Then a **metric subspace** is denotes an object (Y,d|Y) where $Y \subset X$ and $d|_Y$ is the restriction of d to Y, nemly for all $y_1, y_2 \in Y$ we set

$$d|_{Y}(y_1, y_2) = d(y_1, y_2)$$

1.5 Convergence of sequences

Definition 1.5.1. Let $(x_n)_{n\in\mathbb{Z}_+}$ be a sequence in a metric space X. Let $x\in X$. We say that x is a **limit** of x_n and write $\lim_{n\to\infty} x_n = x$, if: For every real number $\epsilon > 0$ there exists $N\in\mathbb{Z}_+$ such that for every $n\geq N$ we have $d(x_n,x)<\epsilon$.

Proposition 1. Any sequence $(x_n)_{n\in\mathbb{Z}_+}$ in a metric space X has at most one limit

Proposition 2 (Squeeze theorem). Suppose that (x_n) is a sequence in a metric space X, Let $x \in X$. Suppose that there is a sequence (a_n) in $\mathbb{R} \geq 0$ such that $\lim_{n\to\infty} a_n = 0$ and that $d(x_n, x) \leq a_n$ for all n. Then $\lim_{n\to\infty} x_n = x$

Definition 1.5.2. X is a metric space. We say X is **sequentially compact** if every sequence in X has a convergent subsequence.

Lemma 1 (Extreme Value Theorem). If X is sequentially compact, $f: X \to \mathbb{R}$ continuous. Then f attains its max and min on X. In particular f(x) is a bounded subset of \mathbb{R} .

Example 3. If $X = A_1 \cup \cdots A_n$, each A_i is sequentially compact, then X is sequentially compact.

Example 4. Finite set is sequentially compact.

Proposition 3. If X, Y are sequentially compact, then $X \times Y$ is sequentially compact.

Proof. Pick (x_n, y_n) in $X \times Y$. Since X is sequentially compact, x_n has subsequence, $x_{n_k} \to x \in X$. Since Y is sequentially compact, y_{n_k} has subsequence, $y_{n_{k_i}} \to y \in Y$. Then $(x_{n_{k_i}}, y_{n_{k_i}}) \to (x, y) \in X \times Y$.

Proposition 4. If $f: X \to Y$ continuous, X is sequentially compact, then f(X) is sequentially compact.

Example 5. If A is sequentially compact subset of \mathbb{R} , then $\sup A$, $\inf A \in A$.

Theorem 1.5.1. $[a,b] \subset \mathbb{R}$ is sequentially compact. Then $I_1 \times \cdots \times I_n$ is sequentially compact where $I_i = [a,b]$.

Definition 1.5.3. If (x_n) is a sequence in X. We say $x \in X$ is a **cluster/accumulation point** of (x_n) if x is a limit point of a subsequence of (x_n) .

Definition 1.5.4. Let (x_n) in $\overline{\mathbb{R}}$. $\alpha_n = \inf(x_n, x_{n+1}, \cdots), \beta_n = \sup(x_n, x_{n+1}, \cdots)$. Then we have $\alpha_n \leq x_n \leq \beta_n$. **Define**

$$\lim\inf x_n = \lim_{n \to \infty} \alpha_n = \sup \alpha_n$$

$$\limsup x_n = \lim_{n \to \infty} \beta_n = \inf \beta_n$$

Theorem 1.5.2. Let $S := \{ \text{cluster point of } x_n \text{ in } \overline{\mathbb{R}} \}, \ B := \limsup x_n, \ A := \liminf x_n. \ Then \ B = \max S, \ A = \min S. \ In \ particular, \ A, B \in S, \ so \ S \neq \emptyset$

Theorem 1.5.3. Let X be sequentially compact, (x_n) in X. The following are equivalent:

- (1) x_n converges.
- (2) (x_n) has only one cluster point.

Corollary 1. Let (x_n) in \mathbb{R}^N . The following is equivalent:

(1) (x_n) converges.

(2) (x_n) is bounded and has at most one cluster point.

Corollary 2. Let (x_n) in $\overline{\mathbb{R}}$, then (x_n) converges in $\overline{\mathbb{R}}$ iff $\lim \inf x_n = \lim \sup x_n$.

Corollary 3. If (x_n) in \mathbb{R} . Then (x_n) converges in \mathbb{R} iff (x_n) is bounded and $\limsup x_n = \limsup x_n$

Definition 1.5.5. A sequence (x_n) in X is called a Cauchy sequence if

 $\forall \epsilon > 0, \exists N \in \mathbb{Z}_+, s.t. \ \forall m, n \geq N, \ d(x+m, x_n) < \epsilon.$

 $\forall \epsilon > 0, \exists N, s.t. \ \forall n \geq N, \ d(x_n, x_N) < \epsilon.$

Cauchy sequence are bounded.

Proposition 5. Every convergent sequence in X is Cauchy sequence.

Definition 1.5.6. X is called **complete** if every Cauchy sequence in X converges.

Theorem 1.5.4. If (x_n) is Cauchy with at least one cluster point. Then (x_n) converges. Therefore, every sequentially compact space is complete.

Corollary 4. \mathbb{R}^N , $\mathbb{C}^N \cong \mathbb{R}^N$ are complete under Euclidean metric.

Definition 1.5.7. $A \subset X$. We say A is closed if the following is true:

If
$$(x_n) \in A$$
 converges to $x \in X$, then $x \in A$

Proposition 6. $A \subset X$, $d_A = d_X | A$.

(1) A is complete; (2) A is closed.

Then $(1) \Rightarrow (2)$ and if X is complete then $(2) \Rightarrow (1)$

Theorem 1.5.5. If X is a metric space. Then X is compact $\Leftrightarrow X$ is sequentially compact.

Definition 1.5.8. X is a topo. space. X is called **net-compact** if every net in X has a convergent subnet.

X is called **countably compact** if every countable open cover of X has a finite subcover.

Easy to see that:

 $compact \Rightarrow countably compact.$

Proposition 7. For topology space, net-compact \Leftrightarrow compact.

For metric space, Four compactness are equivalent.

Example 6 (Extreme Value Theorem). If X is compact, $f: X \to \mathbb{R}$ continuous, then f attains it max(and min).

It suffices to prove f(X) is bounded.

steps of proof:

Step1: Prove finiteness locally;

Step2: Use compactness to go from local to global.

Proposition 8. X is a topo. space. TFAE:

- (1) X is compact.
- (2) (Increasing chain property) If $(U_{\mu})_{\mu \in I}$ is an increasing net of open subsets of X, s.t. $\cup_{\mu \in I} U_{\mu} = X$, then $\exists \mu \in I$ s.t. $U_{\mu} = X$.
- (3) (Decreasing chain property) If $(U_{\mu})_{\mu \in I}$ is an dncreasing net of closd subsets of X, s.t. $\forall \mu \in I, E_{\mu} \neq \emptyset$, then $\cap_{\mu \in I} E_{\mu} \neq \emptyset$