Partial Order: $\forall x,y,z\in A$: Reflexive: $x\mathcal{R}x$, Anti-symmetric: $x\mathcal{R}y,y\mathcal{R}x\implies x=y$, Transitive: $x\mathcal{R}y,y\mathcal{R}z\implies x\mathcal{R}z$. Total: $\forall x,y\in A,x\mathcal{R}y\vee y\mathcal{R}x$ Equivalence Relation: $\forall x,y,z\in A$: Reflexive: $x\mathcal{R}x$, Symmetric: $x\mathcal{R}y=y\mathcal{R}x$, Transitive: $x\mathcal{R}y,y\mathcal{R}z\implies x\mathcal{R}z$. Eq. Class: $[x]:=\{y\in A:x\sim y\}$ Induction: Base step: (i) P_1 is true. Inductive Hypothesis: (ii) Assume P_n is true for some $n\in\mathbb{N}$. Prove P_{n+1} is true. Then, P_n is true $\forall n\in\mathbb{N}$. Ordered Fields: A field with a partial order (\leq) s.t.: (i) If $x,y,z\in\mathbb{F},\ x< y\implies x+z< x+y,\ (ii)\ x,y\in\mathbb{F},\ x,y>0\implies xy>0$ Algebraic Number: a is algebraic if it solves $c_nx^n+\cdots+c_1x+c_0=0$ for some $n\in\mathbb{N},c_0,c_n\in\mathbb{Z},c_n\neq 0$ (e.g. $\sqrt[n]{2}$. Note: $\mathbb{Q}\subset\{algebraic\ numbers\}$) RZT: Suppose $c_0,\cdots,c_n\in\mathbb{Z},\ r\in\mathbb{Q}$ satisfies $c_nr^n+\cdots+c_1r+c_0=0$ for some $n\in\mathbb{N},\ c_n\neq 0$. Let $r=\frac{c}{a},c,d\in\mathbb{Z},d\neq 0$, be coprime. Then c,d divides c_0,c_n . LUBP: Given $A\in\mathbb{E}$ where \mathbb{E} is an ordered field, $\exists\sup A\in\mathbb{E}\iff A\neq\emptyset,A\subseteq\mathbb{E},A$ is bounded above. $\sup A:=\alpha,\exists\alpha,\beta\in\mathbb{E}\ s.t.\ \forall a\in A,\ a\leq\alpha\leq\beta$.

GLBP: Given $A \in \mathbb{E}$ where \mathbb{E} is an ordered field, $\exists \sup A \in \mathbb{E} \iff A \neq \emptyset$, $A \subseteq \mathbb{E}$, $A = \emptyset$ is bounded below. inf $A := \alpha$, $\exists \alpha, \beta \in \mathbb{E}$ s.t. $\forall a \in A, \ a \leq \beta \leq \alpha$.