FILTROS PASSIVOS Parte II: Realização de Funções de Transferência por Funções de Acesso

Síntese de Circuitos – ENGC46

Professor: Maicon D. Pereira

Departamento de Engenharia Elétrica e de Computação

Universidade Federal da Bahia

(Material original de autoria da Prof^a Ana Isabela Cunha)

Resumo

- Realização de funções de transferência por funções de acesso.
- Redes com terminação simples
- Redes com terminação dupla
- Sensibilidade

- Esta técnica consiste em realizar uma função de acesso de uma rede LC, ao mesmo tempo em que são realizados os zeros da função de transferência desejada.
- Deve ser escolhida uma arquitetura adequada da rede LC e deve-se levar em conta as terminações: resistências de fonte e de carga.
- Podemos dividir os procedimentos em dois casos:
 - Redes LC com terminação simples (só resistência de carga, sendo a fonte ideal)
 - Redes duplamente terminadas.

Redes LC com terminação simples representada pelo quadripolo de parâmetros admitância:

$$I_1 = y_{11}V_1 + y_{12}V_2$$

$$I_2 = y_{21}V_1 + y_{22}V_2$$

Redes LC com terminação simples representada pelo quadripolo de parâmetros admitância:

$$T(s) = \frac{V_2}{V_1} = -\frac{y_{21}}{Y_L + y_{22}}$$

$$T(s) = \frac{V_2}{V_1} = -\frac{y_{21}}{Y_L + y_{22}}$$

$$T(s) = \frac{V_2}{V_1} = -\frac{y_{21}/Y_L}{1 + y_{22}/Y_L}$$

$$y_{21} = \frac{I_2}{V_1} \bigg|_{V_2 = 0}$$

 $y_{21} = \frac{I_2}{V_1}_{V_2=0}$ Não é uma função de acesso!

$$y_{22} = \frac{I_2}{V_2}\Big|_{V_1=0}$$
 É uma função de acesso!

- y₂₁ e y₂₂ têm o mesmo denominador.
- Se y₂₂ é par-ímpar ou ímpar-par, pode-se mostrar que y₂₁ é par-ímpar ou ímpar-par também.

$$\frac{y_{21}}{Y_L} = \frac{N_{21}}{D_{22}}$$
 $\frac{y_{22}}{Y_L} = \frac{N_{22}}{D_{22}}$
iguais

$$T(s) = \frac{V_2}{V_1} = \frac{N(s)}{D(s)} = \frac{N(s)}{D_1(s) + D_P(s)} = -\frac{y_{21}/Y_L}{1 + y_{22}/Y_L} = -\frac{N_{21}}{D_{22} + N_{22}}$$

Para y₂₂ par-ímpar:

 N_{22} é igual a parte par (termos em s com expoentes pares) do denominador de T(s): $D_p(s)$.

 D_{22} é igual a parte ímpar (termos em s com expoentes ímpares) do denominador de T(s): $D_1(s)$.

Para y₂₂ impar-par:

 N_{22} é igual a parte ímpar do denominador de T(s): $D_1(s)$.

 D_{22} é igual a parte par do denominador de T(s): $D_P(s)$.

Como saber se y₂₂ é par-ímpar ou ímpar-par?

• Inspecionar numerador de T(s) = N(s)/D(s). Lembrando que N(s) coincide com o numerador de y_{21}/y_L : N(s) = y_{21} tem a mesma forma que y_{22} : par-ímpar ou ímpar-par, então:

$$N(s) = N_{21}(s)$$
 é impar y_{22} é impar-par

$$N(s) = N_{21}(s)$$
 é par y_{22} é par-impar

Redes LC com terminação simples

Passo a passo: para obtenção e síntese da função de acesso $y_{22}(s)$ a partir de T(s).

1- Dada a função de transferência T(s) identificar se o numerador N(s) é par ou ímpar.

$$T(s) = \frac{N(s)}{D_{I}(s) + D_{P}(s)}$$

$$I(s) = \frac{N(s)}{D_{I}(s) + D_{P}(s)}$$

$$I(s) = \frac{N(s)}{D_{I}(s) + D_{P}(s)}$$

Redes LC com terminação simples

Passo a passo:

2- Construir a FA y_{22} utilizando a parte par e a parte ímpar do denominador de T(s), ou seja, $D_I(s)$ e $D_P(s)$:

$$T(s) = \frac{N(s)}{D_{I}(s) + D_{P}(s)}$$

$$y_{22}(s) = Y_{L} \frac{D_{P}(s)}{D_{I}(s)}$$

$$IMPAR \quad impar-par$$

$$y_{22}(s) = Y_{L} \frac{D_{I}(s)}{D_{I}(s)}$$

$$y_{22}(s) = Y_{L} \frac{D_{I}(s)}{D_{I}(s)}$$

$$y_{22}(s) = Y_{L} \frac{D_{I}(s)}{D_{I}(s)}$$

Redes LC com terminação simples

Passo a passo:

3 - Conceber arquitetura para realizar y_{22} de modo a realizar os pólos e os ZEROS DE TRANSMISSÃO de T(s): na etapa anterior, $y_{22}(s)$ é construída a partir do denominador de T(s) e só garantiria a realização dos pólos de T(s) mas não os zeros.

Redes LC com terminação simples

Passo a passo:

3.1 – Gerar ZEROS DE TRANSMISSÃO na origem ou no infinito: podem ser implementados por filtros passa-altas, passa-baixas e passa-faixa de Butterworth, Chebyshev, Bessel, Legendre.

Realização de ZERO DE TRANSMISSÃO: Se os componentes que realizam os zeros de T(s) estiverem em <u>série</u> com o restante da rede, devem funcionar como circuito aberto nas frequências destes zeros. Assim, o sinal não pode ser transmitido da fonte para a carga.

Realização de ZERO DE TRANSMISSÃO: Se os componentes que realizam os zeros de T(s) estiverem em <u>paralelo</u> com o restante da rede, devem funcionar como curto-circuito nas frequências destes zeros. Assim, o sinal não pode ser transmitido da fonte para a carga.

3.1 - ZERO DE TRANSMISSÃO na origem

3.1 - ZERO DE TRANSMISSÃO no infinito

Redes LC com terminação simples

Passo a passo:

3.2 – Gerar ZEROS DE TRANSMISSÃO finitos e não nulos no eixo imaginário: rejeita-faixa, qualquer seletividade de Cauer (elíptico) e Chebyshev Inverso.

3.2 - ZERO DE TRANSMISSÃO finitos não nulos no eixo j ω

Ressonância paralela:
$$Z_k(s) = \frac{s/C_k}{s^2 + \frac{1}{L_k C_k}} \rightarrow \infty$$
 para $\omega = \sqrt{\frac{1}{L_k C_k}}$

Ressonância série:
$$Y_k(s) = \frac{s/L_k}{s^2 + \frac{1}{LC}} \rightarrow \infty$$
 para $\omega = \sqrt{\frac{1}{L_k C_k}}$

Redes LC com terminação simples

Passo a passo:

Observação: Se a Função de Acesso y₂₂(s) não apresentar singularidades nas frequências dos zeros de transmissão imaginários de T(s), SERÁ NECESSÁRIO UTILIZAR O MÉTODO DO "ZERO-SHIFT" (que será explicado posteriormente).

Redes LC com terminação simples

Passo a passo:

4 - Extrair (dimensionando) os componentes de y₂₂: aplicar formas de Foster, de Cauer ou combinações delas.

ATENÇÃO: y_{22} é vista da saída com a entrada em curto: $y_{22} = \frac{12}{V_2}\Big|_{V_1=0}$

O último elemento da rede LC deve ficar em série com a fonte, do contrário será curto-circuitado na configuração para a extração dos componentes de y_{22} .

Redes LC com terminação simples

O MÉTODO DESCRITO PERMITE SINTETIZAR A FUNÇÃO DE TRANSFERÊNCIA ORIGINAL A MENOS DE UMA CONSTANTE MULTIPLICATIVA:

$$T_S(s) = sintetizada$$
 $T_S(s) = K.T(s)$ original

Resumo dos passos para síntese de redes LC com terminação simples:

- 1- Dada a função de transferência T(s) identificar se o numerador N(s) é par ou ímpar.
- 2- Construir a FA y_{22} utilizando a parte par e a parte ímpar do denominador de T(s).
- 3 Conceber arquitetura para realizar y_{22} de modo a realizar os ZEROS DE TRANSMISSÃO.
- 4 Dimensionar componentes de y_{22} .

Exemplo 1: Sintetizar a função de transferência abaixo para $R_L = 1$

Ω.

$$T(s) = \frac{s}{s^3 + 2s^2 + s + 1}$$

Passo 1: T(s) = $\frac{N(s)}{D(s)} = \frac{N(s)}{D_1(s) + D_P(s)} \rightarrow N(s) = s$, que é impar, então y₂₂ é impar-par.

Passo 2:
$$y_{22}$$
 é impar-par $\Rightarrow y_{22}(s) = Y_L \frac{N_{22}(s)}{D_{22}(s)} = Y_L \frac{D_1(s)}{D_P(s)}$

Elementos impares de D(s): $D_1(s) = s^3 + s$

Elementos pares de D(s): $D_P(s) = 2s^2 + 1$

$$y_{22}(s) = Y_{L} \frac{D_{I}(s)}{D_{P}(s)} = 1 \frac{s^{3} + s}{2s^{2} + 1}$$

Passo 3: ZEROS DE TRANSMISSÃO:

$$T(s) = \frac{s}{s^3 + 2s^2 + s + 1}$$

1 zero na origem

2 zeros no infinito

- Zeros na origem: C em série ou L em paralelo.
- Zeros no infinito: L em série ou C em paralelo.
- Zeros finitos não nulos: associação LC série ou paralelo.

Passo 3: ZEROS DE TRANSMISSÃO:

Proposta de rede para síntese de y22 com os zeros de transmissão de T(s):

Uma rede é concebida (passo 3.1) para abrigar os zeros de transmissão: Notem que o capacitor em série é o elemento mais à esquerda não sendo curto-circuitado na configuração para extração dos componentes de y₂₂.

Verificação da rede proposta para síntese de $y_{22}(s) \rightarrow$ curto circuitar a entrada (lado esquerdo do circuito):

$$\frac{y_{22}(s) \text{ a ser}}{\text{concebido}}: \quad y_{22}(s) = \frac{s^3 + s}{2s^2 + 1}$$

1 - y₂₂ não tem zero no infinito, tem um pólo 2 - y₂₂ tem ordem 3

 $3 - y_{22}$ tem zero na origem

Nova proposta de rede para síntese de y22 com os zeros de transmissão de T(s):

$$\frac{y_{22}(s) \text{ da rede}}{\text{proposta:}}$$
 $y_{22}(s) = (Y_{C3}//Y_{L2}) + Y_{C1}$

$$\frac{y_{22}(s) \text{ a ser}}{\text{concebido}}: \qquad y_{22}(s) = \frac{s^3 + s}{2s^2 + 1}$$

- C₁ realiza o pólo no infinito de y₂₂ e o zero de transmissão no infinito de T(s).
- C₃ auxilia na realização
 do zero na origem de y₂₂
 e do zero de transmissão
 na origem de T(s).
 - L₂ realiza o zero no infinito de T(s).

Passo 4: extração dos componentes de y₂₂. Percebe-se que pode-se fazê-lo aplicando diretamente a 2ª forma de Foster: expansão da admitância em franções parciais.

2ª forma de Foster:

$$Y(s) = \frac{1}{sL_0} + sC_{\infty} + \sum_{i} \frac{s/L_i}{\left(s^2 + \omega_{pi}^2\right)} \quad \Rightarrow \quad y_{22}(s) = \frac{s^3 + s}{2s^2 + 1} \quad \Rightarrow \quad \frac{C_1 - \text{p\'olo no infinito}}{L_2 \text{ e } C_3 - \text{Assoicação}}$$

$$L_C \text{ s\'erie}$$

2ª forma de Foster:

$$y_{22}(s) = \frac{s^3 + s}{2s^2 + 1} = \frac{1}{2} \frac{s(s^2 + 1)}{s^2 + \frac{1}{2}}$$
 $C_1 = \frac{y_{22}}{s} \Big|_{s \to \infty} = \frac{1}{2} F$

$$\omega_{p}^{2} = \frac{1}{L_{2}C_{3}} = \frac{1}{2} \longrightarrow \frac{1}{L_{2}} = \frac{\left(s^{2} + \frac{1}{2}\right)}{s} y_{22} = \frac{1}{2} \left(-\frac{1}{2} + 1\right) = \frac{1}{4} \longrightarrow L_{2} = 4 \text{ H}$$

$$\omega_p^2 = \frac{1}{L_2C_3} = \frac{1}{2}$$
 $C_3 = \frac{1}{2}F$

Circuito completo que realiza uma função proporcional a T(s).

$$T_s(s) = KT(s) = K \frac{s}{s^3 + 2s^2 + s + 1}$$

Redes LC com terminação simples

MÉTODO DO "ZERO-SHIFT"

Necessário quando os ZEROS DE TRANSMISSÃO:

- são finitos e não nulos no eixo imaginário
- não coincidem com singularidades de y₂₂

Durante a síntese de y_{22} por extração de componentes, o método Zero Shift propõe inspecionar a <u>existência de pólos</u> de y_{22} ou de sua inversa z_{22} = $1/y_{22}$ e se a <u>extração parcial</u> do componente que sintetiza um destes pólos pode levar ao <u>surgimento do par de zeros imaginários</u> desejado na FA remanescente.

31

MÉTODO DO "ZERO-SHIFT"

1° caso: y₂₂ tem zero na origem

Então $z_{22} = 1/y_{22}$ tem pólo na origem

Este pólo é realizado por um capacitor C_0 em série

Exemplo:

Exemplo:

Reatância que realiza pólo na origem:

Exemplo:

FA resultante da extração de C_0 :

Se só uma fração de x_{22} ($C_1 > C_0$) for extraída, o deslocamento dos zeros para a esquerda é menor:

FA resultante da extração de C₁:

 $z_{22a} = z_{22} - \frac{1}{sC_1}$

 ω

$$x_{22}(\omega) = z_{22}(\omega)/j$$

$$\mathbf{x_{22a}} = \mathbf{x_{22}} - \left(-\frac{1}{\omega C_1}\right)$$

Pode-se fazer um dos novos zeros coincidir com um zero de transmissão de T(s), contudo, este zero de transmissão tem que estar entre um pólo e um zero de $z_{22}(s)$, e à esquerda deste zero.

MÉTODO DO "ZERO-SHIFT"

1º caso: $z_{22} = 1/y_{22}$ tem pólo na origem

Extração de C_1 desloca zero de z_{22} para zero de transmissão em ω_z , fornecendo z_{22a} :

$$\frac{1}{C_1} = \left(SZ_{22} \right) \Big|_{S^2 = -\omega_z^2}$$

$$z_{22\alpha} = z_{22} - \frac{1}{sC_1}$$
 $z_{22\alpha}|_{s^2 = -\omega_z^2} = 0$

Atenção: o ZERO DE TRANSMISSÃO de T(s) tem que estar entre um pólo e um zero de z_{22} , e à esquerda deste zero.

Redes LC com terminação simples

MÉTODO DO "ZERO-SHIFT"

2º caso: y₂₂ tem zero no infinito

Então $z_{22} = 1/y_{22}$ tem pólo no infinito

Este pólo é realizado por um indutor L_∞ em série

Reatância que realiza pólo no infinito:

Extração de L∞:

$$x_{22}(\omega) = z_{22}(\omega)/j$$
 $z_{22\alpha} = z_{22} - sL_{\infty}$ $x_{22\alpha} = x_{22} - \omega L_{\infty}$

Fração de x_{22} ($L_1 < L_{\infty}$) extraída

 $\mathsf{x}_{22}(\omega) = \mathsf{z}_{22}(\omega)/\mathsf{j}$

FA resultante da extração de L_1 :

$$z_{22a} = z_{22} - sL_1$$

$$x_{22a} = x_{22} - \omega L_1$$

ω

O deslocamento dos zeros para a direita é menor: pode-se fazer um dos novos zeros coincidir com um zero de transmissão, contudo o zero de transmissão tem que estar entre um pólo e um zero de z22, e à direita deste.44

MÉTODO DO "ZERO-SHIFT"

2º caso: $z_{22} = 1/y_{22}$ tem pólo no infinito

Extração de L_1 desloca zero de z_{22} para zero de transmissão em ω_z , fornecendo z_{22a} :

$$\mathbf{L}_{1} = \left(\frac{\mathbf{Z}_{22}}{\mathbf{S}}\right)_{\mathbf{S}^{2} = -\omega_{z}^{2}}$$

$$z_{22\alpha} = (z_{22} - sL_1)$$
 $z_{22\alpha}|_{s^2 = -\omega_z^2} = 0$

Atenção: o ZERO DE TRANSMISSÃO de T(s) tem que estar entre um pólo e um zero de z_{22} , à direita deste.

Redes LC com terminação simples

Exemplo 2: Sintetizar T(s) para $R_L = 0.5 \Omega$

$$T(s) = \frac{s^2 + 4}{s^3 + 2s^2 + 2s + 2}$$

N(s) par: y_{22} é par-impar

$$y_1 = 2 S$$

 $y_{22} = 2\frac{2s^2 + 2}{s^3 + 2s}$

ZEROS DE TRANSMISSÃO de T(s)

um par em <u>+</u> j2

1 no infinito

Singularidades de
$$y_{22}$$
: $y_{22} = 2\frac{2s^2 + 2}{s^3 + 2s} = 4\frac{s^2 + 1}{s(s^2 + 2)}$

1 zero na infinito

1 par de zeros em <u>+</u> j

1 par de pólos em \pm

1 pólo na origem

y₂₂ não possui os zeros de transmissão de T(s): um par em <u>+</u> j2.

y₂₂ possui pólo na origem e zero no infinito, o que não permite mover seus zeros para valores maiores (para a direita), como necessário para sintetizar os zeros de transmissão em <u>+ j</u>2.

48

Realização de funções de transferência por funções de acesso

Singularidades de
$$z_{22} = 1/y_{22}$$
: $z_{22} = \frac{1}{4} \frac{s(s^2 + 2)}{s^2 + 1}$

1 zero na origem

2 zeros em $\pm j\sqrt{2}$

2 pólos em + j

1 pólo no infinito

A existência do pólo no infinito permite mover os zeros finitos de z_{22} para valores maiores (para a direita extraindo L_{∞} em série), correspondentes aos zeros de transmissão em \pm j2.

TOPOLOGIA X ZEROS DE TRANSMISSÃO

$$T(s) = \frac{s^2 + 4}{s^3 + 2s^2 + 2s + 2}$$

um par de zeros em <u>+</u> j2

1 zero no infinito

Rede proposta:

Para o zero no infinito e terminar a

Extração dos componentes de y_{22}

$$z_{22} = \frac{1}{4} \frac{s(s^2 + 2)}{s^2 + 1}$$

Extração de L_1 : FA remanescente z_{22a} terá um par de zeros em 2 rad/s (ω_z = $\pm j2$ rad/s)

$$L_{1} = \frac{z_{22}}{s} \bigg|_{s^{2} = -\omega_{z}^{2}} = \frac{1}{4} \frac{s^{2} + 2}{s^{2} + 1} \bigg|_{s^{2} = -4} = \frac{1}{4} \left(\frac{-4 + 2}{-4 + 1} \right) = \frac{1}{6} \frac{H}{50}$$

$$\mathbf{Z}_{22a} = \mathbf{Z}_{22} - \mathbf{sL}_1 = \frac{1}{4} \frac{\mathbf{s}^3 + 2\mathbf{s}}{\mathbf{s}^2 + 1} - \frac{\mathbf{s}}{6} = \frac{1}{12} \frac{\mathbf{s}^3 + 4\mathbf{s}}{\mathbf{s}^2 + 1} = \frac{1}{12} \frac{\mathbf{s}(\mathbf{s}^2 + 4)}{\mathbf{s}^2 + 1}$$

Zeros de transmissão em <u>+</u> j2 na FA remanescente, como esperado.

Continuar síntese, agora de y22a, usando a 2^a Forma de Foster: expansão da admitância em frações parciais (porque temos um L_2C_2 série em paralelo com L_3):

paralelo com L₃):
$$Y(s) = \frac{1}{sL_0} + sC_{\infty} + \sum_{i} \frac{s/L_i}{\left(s^2 + \omega_{pi}^2\right)} \text{ onde } \omega_{pi}^2 = \frac{1}{L_iC_i}$$

$$y_{22\alpha} = \frac{1}{z_{22\alpha}} = 12 \frac{s^2 + 1}{s(s^2 + 4)} = \frac{1}{sL_3} + \frac{s/L_2}{s^2 + 4} com \omega_p^2 = \frac{1}{L_2C_2} = 4$$

Pela 2^a Forma de Foster:

$$y_{22\alpha} = 12 \frac{s^2 + 1}{s(s^2 + 4)}$$

$$\frac{1}{L_3} = sy_{22\alpha}|_{s=0} = 12\frac{s^2 + 1}{s^2 + 4} = 3$$
 $L_3 = \frac{1}{3}H$

$$\frac{1}{L_2} = \frac{s^2 + 4}{s} y_{22\alpha} \bigg|_{s^2 = -4} = 12 \frac{s^2 + 1}{s^2} \bigg|_{s^2 = -4} = 9 \quad \blacksquare \quad L_2 = \frac{1}{9} H$$

$$\omega_p^2 = \frac{1}{L_2 C_2} = 4$$
 $C_2 = \frac{1}{4 L_2} = \frac{9}{4} F$

Redes LC com terminação simples

MÉTODO DO "ZERO-SHIFT"

3º caso: y₂₂ tem pólo na origem

Este pólo é realizado por um indutor L₀ em paralelo

 $b_0(\omega)$

Susceptância associada a L_0 e L_1 :

$$b_{22}(\omega) = y_{22}(\omega)/j$$

$$b_{1}(\omega) = -\frac{1}{\omega L_{1}}, \text{ com } L_{1} > L_{0}$$

$$b_0(\omega) = -\frac{1}{\omega L_0}$$

Susceptância associada a L_0 :

MÉTODO DO "ZERO-SHIFT"

3º caso: y₂₂ tem pólo na origem

Extração de L_1 desloca zero de y_{22} para zero de transmissão em ω_z :

$$\frac{1}{L_1} = \left(sy_{22}\right)_{s^2 = -\omega_z^2}$$

$$y_{22\alpha} = y_{22} - \frac{1}{sL_1}$$
 $y_{22\alpha}|_{s^2 = -\omega_z^2} = 0$

Redes LC com terminação simples

MÉTODO DO "ZERO-SHIFT"

4º caso: y₂₂ tem pólo no infinito

Este pólo é realizado por um capcitor C_∞ em paralelo

MÉTODO DO "ZERO-SHIFT"

4º caso: y₂₂ tem pólo no infinito

Extração de C_1 desloca zero de y_{22} para zero de transmissão em ω_z :

$$C_1 = \left(\frac{y_{22}}{s}\right)_{s^2 = -\omega_z^2}$$

$$y_{22a} = y_{22} - sC_1$$
 $y_{22a}|_{s^2 = -\omega_z^2} = 0$

MÉTODO DO "ZERO-SHIFT"

Resumindo:

- Pólos no infinito (para y(s) ou z(s)) permitem mover os zeros para a direita (ω → infinito).
- Pólos na origem (para y(s) ou z (s))
 permitem mover os zeros para a esquerda
 (ω → zero).

Síntese de redes LC com terminação dupla:

Síntese de redes LC com terminação dupla:

- Síntese deve considerar resistências de fonte e de carga.
- Como nas redes com terminação simples, a síntese de T(s) será reduzida à síntese de FA.
- Obter os parâmetros z₁₁ e z₂₂ ou y₁₁ e y₂₂ a partir de T(s).
- Sintetizar esses parâmetros com os métodos propostos ou o método zero-shift já estudados. de tal forma que os zeros de transmissão também sejam realizados.

Obtenção dos parâmetros z_{11} e z_{22} ou y_{11} e y_{22} a partir de T(s):

Para uma rede LC sem perdas e adotando $V_2 = V_0$:

$$Z_{in}(s) = R_{in}(s) + jX_{in}(s)$$

$$Z_{in}(s) = R_1 \frac{H_p + H_i - K_p - K_i}{H_p + H_i + K_p + K_i}$$

Onde H_{p(i)} e K_{p(i)} são as partes pares (ímpares) <u>dos</u> numeradores de H(s) e K(s) (obtidas de T(s)), que são dados por:

H(s) =
$$\sqrt{\frac{R_2}{4R_1}} \frac{V_{in}(s)}{V_o(s)} = \sqrt{\frac{R_2}{4R_1}} \frac{1}{T(s)}$$
 $|K(s)|^2 = |H(s)|^2 - 1$ $|K(j\omega)K(-j\omega) = |H(s)|^2 - 1$

$$\left|\mathsf{K}(\mathsf{s})\right|^2 = \left|\mathsf{H}(\mathsf{s})\right|^2 - 1$$

$$K(j\omega)K(-j\omega) = |H(s)|^2 - 1$$

Relacão de Z_{in} com os parâmetros z ou y da rede:

$$z_{11}(s) = R_1 \frac{H_p - K_p}{H_i + K_i}$$

$$z_{22}(s) = R_2 \frac{H_p + K_p}{H_i + K_i}$$
Ou
$$z_{22}(s) = R_2 \frac{H_p + K_p}{H_i + K_i}$$

$$z_{11}(s) = R_1 \frac{H_i - K_i}{H_p + K_p}$$

 $z_{22}(s) = R_2 \frac{H_i + K_i}{H_p + K_p}$

$$y_{11}(s) = \frac{1}{R_1} \frac{H_p + K_p}{H_i - K_i}$$

$$y_{11}(s) = \frac{1}{R_1} \frac{H_p + K_i}{H_p - K_p}$$

$$y_{22}(s) = \frac{1}{R_2} \frac{H_p - K_p}{H_i - K_i}$$

$$y_{22}(s) = \frac{1}{R_2} \frac{H_i - K_i}{H_p - K_p}$$

$$y_{11}(s) = \frac{1}{R_1} \frac{H_i + K_i}{H_p - K_p}$$
$$y_{22}(s) = \frac{1}{R_2} \frac{H_i - K_i}{H_p - K_p}$$

Atenção: Noque que z_{xx} e y_{xx} não são o inverso um do outro

A escolha dos conjuntos z_{xx} ou y_{xx} deve ser feita de tal forma a evitar o cancelamento dos elementos de maior grau de H(s) e K(s) que formam z ou y.

Passos para a síntese de T(s) para uma rede duplamente terminada:

- 1- Determinar as funções H(s) e K(s) a partir de T(s).
- 1.1 H(s) é escalonado de tal forma que $|H(j\omega)|=1$ nas frequência de mínimo de H(s).
- 2 Obter os valores de y_{11} e y_{22} ou z_{11} e z_{22} a partir de H(s) e K(s).
- 3 Sintetizar um dos parâmetros obtidos no passo 2 (y_{11} ou z_{11} , por exemplo) utilizando as técnicas de realização de redes LC com terminação simples.

4 – Determinar a resistência de terminação (R_2 , caso y_{11} ou z_{11} foi utilizado no passo 3, ou R_1 , caso y_{22} ou z_{22} foi utilizado) utilizando a mesma topologia de circuito, mas em reverso.

Observação: Dependendo de R_2 (ou R_1), o circuito reverso será uma versão com impedâncias escalonadas (C/α ou $L\alpha$) da versão original. Como o circuito reverso deve ser o mesmo que original (direto), a impedância R_2 (ou R_1) deve ser escalonada pelo mesmo fator α , ou seja, R_2/α . Alternativamente utiliza-se um transformador para escalonar R_2 (ou R_1).

5- Haverá a diferença de uma constante entre T(s) e $T_s(s)$. Obter T(s) com a expressão (válida para y_{11} ou z_{11} utilizado no passo 3):

 $T(s) = \sqrt{\frac{R_2/\alpha}{4R_1}} \frac{1}{H(s)}$

Exemplo 3: Realizar a função de transferência abaixo para R_1 = 1 Ω e R_2 = 2 Ω .

$$T(s) = \frac{s}{s^2 + s + 1}$$

Determinar a função H(s): identificar o valor da constante A, de tal forma que $|H(j\omega)|=1$ nas frequência de minímo de H(s).

$$H(s) = A \frac{1}{T(s)} = A \frac{s^2 + s + 1}{s}$$
 Freq. De mínimo $s = \pm j$.

$$|H(s)|^2 = A^2 \left| \frac{s^2 + s + 1}{s} \right|_{s=\pm i}^2 = A^2 \left| \frac{-1 + j + 1}{j} \right|^2 = 1 \rightarrow A = 1$$

Determinar as funções K(s):

$$|K(s)|^2 = K(j\omega)K(-j\omega) = |H(s)|^2 - 1$$

$$\left|\mathbf{H(s)}\right|^{2} - 1 = \left|\frac{\mathbf{s}^{2} + \mathbf{s} + 1}{\mathbf{s}}\right|^{2} - 1 \xrightarrow{\mathbf{s} = \mathbf{j}\omega} \left|\frac{-\omega^{2} + \mathbf{j}\omega + 1}{\mathbf{j}\omega}\right|^{2} - 1 = \frac{\left(\omega^{2} - 1\right)^{2}}{\omega^{2}}$$

$$K(j\omega)K(-j\omega) = \frac{\left(\omega^2 - 1\right)^2}{\omega^2} \bigg|_{\omega = s/j} = \frac{\left(s^2 + 1\right)^2}{-s^2} = \left(\frac{s^2 + 1}{s}\right)\left(\frac{s^2 + 1}{-s}\right)$$

$$K(s) = \frac{s^2 + 1}{s}$$

Determinação da FA:

$$H(s) = \frac{s^{2} + s + 1}{s} \rightarrow H_{p} = s^{2} + 1$$

$$K(s) = \frac{s^{2} + 1}{s} \rightarrow K_{p} = s^{2} + 1$$

$$Z_{22}(s) = R_{2} \frac{H_{p} + K_{p}}{H_{i} + K_{i}}$$

$$Z_{11}(s) = R_{1} \frac{H_{i} - K_{i}}{H_{p} + K_{p}}$$

$$z_{11}(s) = R_1 \frac{H_p - K_p}{H_i + K_i} = 0$$

$$z_{22}(s) = R_2 \frac{H_p + K_p}{H_i + K_i}$$

$$z_{11}(s) = R_1 \frac{H_i - K_i}{H_p + K_p}$$

$$z_{22}(s) = R_2 \frac{H_i + K_i}{H_p + K_p}$$

Atenção: A escolha inicial de z_{11} , implica em utilizar z_{22} correspondente para fazer a rede da realização reversa e sintetizar a terminação.

z₁₁(s) deve sintetizar os zeros de transmissão de T(s):

$$T(s) = \frac{s}{s^2 + s + 1}$$

Zeros de transmissão:

Um zero na origem → L paralelo
Um zero no infinito → C paralelo

Circuito proposto para sintetizar os zeros de transmissão e z₁₁(s).

$$z_{11}(s) = \frac{s}{2(s^2+1)}$$

Os componentes do circuito proposto para $z_{11}(s)$ podem ser sintetizados utilizando a segunda forma de Foster:

Segunda forma de Foster:

$$y_{11}(s) = \frac{1}{z_{11}(s)} = \frac{2(s^2+1)}{s}$$

$$y_{11}(s) = \frac{1}{z_{11}(s)} = \frac{2(s^2 + 1)}{s}$$
 $Y(s) = \frac{1}{sL_0} + sC_{\infty} + \sum_{i} \frac{s/L_i}{(s^2 + \omega_{pi}^2)}$

y₁₁ tem: pólo na origem \rightarrow L₀ existe. pólo no infinito → C_∞ existe.

Os componentes do circuito proposto para $z_{11}(s)$ podem ser sintetizados utilizando a segunda forma de Foster:

Segunda forma de Foster:

$$y_{11}(s) = \frac{1}{z_{11}(s)} = \frac{2(s^2+1)}{s}$$

$$y_{11}(s) = \frac{1}{z_{11}(s)} = \frac{2(s^2 + 1)}{s}$$
 $Y(s) = \frac{1}{sL_0} + sC_{\infty} + \sum_{i} \frac{s/L_i}{(s^2 + \omega_{pi}^2)}$

$$\frac{1}{L_0} = s.Y(s)|_{s=0} = \frac{1}{2} H$$

$$C_{\infty} = \frac{Y(s)}{s}\bigg|_{s\to\infty} = 2 F$$

Determinação de z_{22} e da resistência de terminação (que substitui R_2 na síntese).

$$z_{22}(s) = R_2 \frac{H_i + K_i}{H_p + K_p} = 2 \frac{s}{2(s^2 + 1)}$$
 $z_{22}(s)$ deve ser realization usando a topologia reversa de $z_{11}(s)$.

Z₂₂(s) deve ser realizado

Da segunda forma de Foster:

$$\frac{1}{L_0} = s.Y(s)|_{s=0} = s.\frac{1}{z_{11}(s)}|_{s=0} = 1 H$$

$$C_{\infty} = \frac{Y(s)}{s} \bigg|_{s \to \infty} = \frac{1}{s.Z_{11}(s)} \bigg|_{s \to \infty} = 1 F$$

Nota-se, que os componentes do circuito reverso estão escalonados por $\alpha = 2$ (C/ α e L α , sendo que C e L são os valores do circuito direto).

O circuito reverso (obtido de z_{22}) deve ser o mesmo que o circuito direto (obtido de z_{11}), assim a resistência de terminação será:

$$R_2' = \frac{R_2}{\alpha} = 1 \Omega$$

A função de transferência final é:

T(s) =
$$\sqrt{\frac{R_2/\alpha}{4R_1}} \frac{1}{H(s)} = \frac{0.5s}{s^2 + s + 1}$$

Para obter a resistência R_2 desejada, um transformador ideal, com $N_1:N_2=\frac{1}{\sqrt{2}}:1$, deve ser utilizado.

Sensibilidade em filtros passivos

- Filtros LC reais:
 - L e C apresentam variações nos valores nominais definidas pela tolerância.
 - Resposta do filtro não corresponde à reposta ideal.
- Função de sensibilidade:

$$S_{x}^{y} \equiv \lim_{\Delta x \to 0} \frac{\Delta y / y}{\Delta x / x} = \frac{x}{y} \frac{dy}{dx}$$
 unidade devido à variação em x por

Variação de y por unidade.

Onde y é o parâmetro de interesse (ω_0 ou Q, por exemplo) x é o componente não ideal (L ou C).

Sensibilidade em filtros passivos

- Caracaterísticas de filtros passivos:
 - Não há elementos de circuito predominantes na filtragem.
 - Não há elementos ativos que acentuem efeitos indesejados através de amplificação.
- Argumento para a baixa sensibilidade: para uma rede LC de duas portas com ganho em banda passante |T(jω)| ≤ 1, qualquer variação nos componentes passivos x (com valor nominal x₀) apenas reduz |T(jω)| por causa do limite do ganho em passante.

Referências e leituras recomendadas

Seções 6.3-6.4, Daryanani, Gobind, "Principles of Active Network Synthesis and Design," John Wiley & Sons, New York.

Capítulo 5, Noceti-Filho, Sidnei, "Filtros Seletores de Sinais," Editora da UFSC, Florianópolis, 2003.

Van Valkenburg, "Analog Filter Design," Oxford, New York