MATH 517, Homework 2

Colin Roberts September 8, 2017

Solutions

Problem 1. A metric space is called *separable* if it contains a countable dense subset. A collection $\{V_{\alpha}\}$ of open subsets of a metric space X is called a *base* of X if, for all $x \in X$ and every open set $G \subseteq X$ with $x \in G$ there exists α so that $x \in V_{\alpha} \subseteq G$.

Prove that every separable metric space has a *countable* base.

:

Proof. Let *X* be separable and $E = \{x_i\}_{i \in \mathbb{N}} \subseteq X$ be a countable dense subset. Then consider $B = \{N_r(x_i) | r \in \mathbb{Q} \text{ and } x_i \in E\}$ and note that *B* is countable. Let $x \in G \subseteq X$ with *G* open. Since *E* is dense, $x \in E$ or *x* is a limit point of *E*. If this arbitrary $x \in E$ then *B* is a countable base for *X* since there exists a rational r > 0 so that $N_r(x) \subseteq G$. Note that $N_r(X) \in B$ since $x \in E$ and *r* is rational. Otherwise we said that *x* is a limit point of *E*. If that is the case, then every neighborhood of *x* contains infinitely many points of *E*. Since *G* is open, $\exists N_\delta(x) \subseteq G$ with δ rational and $N_\delta(x)$ also contains infinitely many points of *E*. Now choose a point $x_i \in E$ with $d(x_i, x) < \frac{delta}{4}$, then $x \in N_{\delta/3}$ and $N_{\delta/3}(x_i) \subseteq G$. Thus *B* is a countable base. □

Problem 2. Suppose (X, d) is a metric space in which every infinite subset has a limit point. Prove that (X, d) is separable.

:

Proof. Fix a $\delta > 0$ and pick an $x_1 \in X$. Then we choose $F = x_1, ..., x_j \in X$ and try to choose x_{j+1} so that $d(x_i, x_{j+1}) \ge \delta$ for i = 1, ..., j. Suppose for a contradiction that we can create F with infinitely many points by the construction above, then for any $x \in X$ we have that $d(x, x_i) < \frac{\delta}{2}$ for some x_i . Using the triangle inequality we have that $d(x, x_i) \le d(x_j, x_i) + d(x, x_i)$ which means that $d(x, x_j) \ge d(x_j, x_i) - d(x_i, x_i) \ge \frac{\delta}{2}$ for any $j \ne i$. Thus x cannot be a limit point of F since if we choose a neighborhood $N_{\delta/2}(x)$ it only contains finitely many points of F.

it only contains finitely many points of F. Now we can choose $\delta = \frac{1}{n}$ and create finite sets $F_n = \{x_i \in X | d(x_i, x_j) \ge \frac{1}{n} \forall i \ne j\}$. Then consider the union $U = \bigcup_{n=1}^{\infty} F_n$ which is is a countable set. Let $x \in X$ and fix $\epsilon > 0$. If $x \in U$ then U is clearly dense. However, if $x \notin U$ then we have that $\exists N \in \mathbb{N}$ so that $\frac{1}{N} < \epsilon$. Then let $y \in U$ with $y \ne x$ be a point satisfying $d(x, y) < \frac{1}{N} < \epsilon$, which must exist for some set F_n with $n \ge N$.

Problem 3. Prove that every compact metric space *K* has a countable base, and that *K* is therefore separable.

:

Proof. Let *K* be compact and let $B_n = \{N_{1/n}(x_1), ..., N_{1/n}(x_{m_n}) | n \text{ is a fixed natural and } x_i \in K\}$ be a finite open cover of *K*. Then note that $\mathscr{B} = \{B_n\}_{n \in \mathbb{N}}$ is a countable cover of *K* since each B_n is a finite open cover. To be clear, x_{m_n} is always some finite integer. Then let $x \in G \subseteq X$ with *G* open. Since \mathscr{B} contains covers of *K*, $x \in N_{1/n}(x_i)$ for some x_{i_n} and *n* which satisfies $x \in N_{1/n}(x_{i_n}) \subseteq G$ since we can make 1/n arbitrarily small and we still have a cover of *K*. And thus \mathscr{B} is a countable base for *K*. □

Problem 4. Let *X* be a metric space in which every infinite subset has a limit point in *X*. Prove that *X* is compact.

:

Proof. Let *X* be a metric space in which every infinite subset has a limit point. By Ex. 2.23 and 2.24 we know that *X* has a countable base. Thus every open cover of *X* has a countable subcover $\{G_n\}_{n \in \mathbb{N}}$. If no finite subcollection of $\{G_n\}_{n \in \mathbb{N}}$ covers *X*, then $F_n = X \setminus (G_1 \cup ... \cup G_n)$ is nonempty for each *n* but $\cap_{n \in \mathbb{N}} F_n$ is empty. Let $E = \{x_i \in F_i | i \in \mathbb{N}\}$. For a contradiction, suppose *E* has a limit point *x*, thus $\forall \epsilon > 0$, $N_{\epsilon}(X) \cap E$ contains infinitely many points of *E*. But since $\{G_n\}_{n \in \mathbb{N}}$ is a base, we have $N_{\epsilon}(x) \subseteq G_i$ for some *i*. But $G_i \cap E$ can only possibly contain $x_1,...,x_i$ so we have that $N_{\epsilon}(x)$ contains only finitely many points. Thus *x* was not a limit point of *E* which contradicts our original statement. Thus *X* must be compact.

Problem 5. Let l^1 be the set of sequences $\vec{x} = \{x_n\}$ of real numbers such that $\sum_{n=1}^{\infty} |x_n| < \infty$. Define $d(\vec{x}, \vec{y}) = \sum_{n=1}^{\infty} |x_n - y_n|$, which is a metric on l^1 . Let $\vec{z} \in l^1$ be a fixed sequence of positive numbers, and prove that

$$E_{\vec{z}} := {\{\vec{x} \in l^1 : |x_n| \le z_n \text{ for all } n\}}$$

is compact.

:

Proof. Let $S \subseteq E_{\vec{z}}$ be infinite. Now consider the set $S_{|x|} = \{\sum_{n=1}^{\infty} |x_{\alpha_n}| : x_{\alpha} \in S\}$. Consider $\sup S_{|x|}$ which is some x_{α} . Then suppose that this sup is not a limit point of the set. Then we have that $\exists r_{\alpha} > 0$ so that for every $|x_{\beta}| \in S$ we have that $|x_{\alpha}| - |x_{\beta}| > r_{\alpha}$. Suppose this carries on infinitely, and thus there exists $r = \inf_{\alpha}(r_{\alpha})$ then note that for even a countable collection $|x_{\alpha_i}|, |x_{\beta_i}|$ we have that $\sum_{i=1}^{\infty} |x_{\alpha_i}| - |x_{\beta_i}| > \sum_{i=1}^{\infty} r$. But this contradicts $x_{\alpha} \in E_{\vec{z}}$ since every element of $E_{\vec{z}}$ are absolutely convergent series and subtracting two absolutely convergent series should be bounded. Thus we have that $S_{|x|}$ was not infinite, or we have that for some $|x_{\alpha}|$ that for all epsilon > 0 we have $N_{\varepsilon}|x_{\alpha}| \cap S_{|x|}$ is infinite. Thus we have that $S_{|x|}$ must contain a limit point. I claim that this means S must also have a limit point. \square