Ce document est mis à disposition selon les termes de la licence Creative Commons « Attribution – Partage dans les mêmes conditions 4.0 International ». https://www.immae.eu/cours/

Chapitre 13: Fonctions hyperboliques

Pour les graphiques, le plan est rapporté à un repère orthonormé (O, \vec{i}, \vec{j}) .

I Les fonctions hyperboliques directes

A) Définition

Définition:

Pour tout $x \in \mathbb{R}$, on pose :

$$\operatorname{ch} x = \frac{e^x + e^{-x}}{2} \quad \operatorname{sh} x = \frac{e^x - e^{-x}}{2} \quad \operatorname{th} x = \frac{\operatorname{sh} x}{\operatorname{ch} x} \quad \text{et pour } x \neq 0, \operatorname{coth} x = \frac{\operatorname{ch} x}{\operatorname{sh} x}$$
 (13.1)

Déjà, on a la formule :

$$\operatorname{ch}^{2} x - \operatorname{sh}^{2} x = 1 \tag{13.2}$$

En effet : pour tout $x \in \mathbb{R}$, $\operatorname{ch}^2 x - \operatorname{sh}^2 x = (\operatorname{ch} x - \operatorname{sh} x)(\operatorname{ch} x + \operatorname{sh} x) = e^{-x}e^x = 1$

B) Étude de la fonction sh (sinus hyperbolique)

- On voit tout de suite qu'elle est impaire, strictement croissante et de classe \mathcal{C}^{∞} sur \mathbb{R} .
- De plus, on voit immédiatement aussi que :

$$(\sinh)'(x) = \cosh x, \quad \lim_{x \to +\infty} \sinh x = +\infty, \quad \lim_{x \to +\infty} \frac{\sinh x}{x} = +\infty, \quad \sinh(0) = 0 \tag{13.3}$$

- Ainsi, sh est une bijection continue et strictement croissante de $\mathbb R$ dans $\mathbb R$.
- $\bullet\,$ DL à n'importe quel ordre en 0 :

$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + o(x^n)$$
 (13.4)

et

$$e^{-x} = 1 - x + \frac{x^2}{2!} + \dots + (-1)^n \frac{x^n}{n!} + o(x^n)$$
(13.5)

donc

$$\operatorname{sh} x = x + \frac{x^3}{3!} + \dots + \frac{x^{2p+1}}{(2p+1)!} + o(x^{2p+2})$$
(13.6)

C) Étude de la fonction ch (cosinus hyperbolique)

• On voit tout de suite qu'elle est paire et de classe \mathcal{C}^{∞} sur \mathbb{R} .

• On a sans difficulté :

$$(\operatorname{ch})'(x) = \operatorname{sh} x, \quad \lim_{x \to +\infty} \operatorname{ch} x = +\infty, \quad \lim_{x \to +\infty} \frac{\operatorname{ch} x}{x} = +\infty, \quad \operatorname{ch}(0) = 1 \tag{13.7}$$

- Il en résulte que ch constitue une bijection continue strictement croissante de \mathbb{R}_+ dans $[1, +\infty[$.
- DL à un ordre quelconque en 0:

$$ch x = 1 + \frac{x^2}{2!} + \dots + \frac{x^{2p}}{(2p)!} + o(x^{2p})$$
(13.8)

D) Graphes comparés des fonctions sh et ch

- Les sens de variation, les tangentes au point d'abscisse 0 et les branches infinies (qui sont des branches paraboliques verticales) sont immédiatement tirés des études précédentes.
- De plus, comme (sh" = sh, la fonction sh est convexe sur \mathbb{R}_+ et concave sur \mathbb{R}_- , ce qui donne la position de la courbe par rapport à sa tangente au point d'abscisse 0 (position que l'on retrouve localement grâce au DL)
- Enfin, comme $\operatorname{ch} x \operatorname{sh} x = e^{-x}$, $\operatorname{ch} x \operatorname{sh} x$ est positif et tend vers 0 en $+\infty$
- Notons enfin que la courbe représentative de ch ressemble à une parabole mais n'en est pas une (c'est une chaînette : c'est la forme que prend effectivement une chaînette lorsqu'elle est pendue par deux bouts...)

E) Justification du terme hyperbolique

- Les fonctions cos et sin s'appellent des fonctions circulaires parce que le cercle d'équation $x^2+y^2=1$ peut se paramétrer en $\begin{cases} x=\cos t \\ y=\sin t \end{cases}$ $(t\in\mathbb{R})$
- La branche « droite » de l'hyperbole $x^2-y^2=1$ peut quant à elle se paramétrer en $\begin{cases} x=\operatorname{ch} t\\ y=\operatorname{sh} t \end{cases}$ $(t\in\mathbb{R}).$

En effet : \diamond Si M a pour coordonnées $(\operatorname{ch} t, \operatorname{sh} t), t \in \mathbb{R}$, comme on a $\operatorname{ch} t > 0$ et $\operatorname{ch}^2 t - \operatorname{sh}^2 t = 1$, M appartient donc bien à la branche droite de l'hyperbole.

⋄ Réciproquement, si M(x, y) appartient à cette branche droite, alors : Soit $t \in \mathbb{R}$ tel que $y = \operatorname{sh} t$ (il en existe un, et même un seul). Mais comme $\operatorname{ch}^2 t - \operatorname{sh}^2 t = 1$ et $x^2 - y^2 = 1$, on a alors $x^2 = \operatorname{ch}^2 t$, et, comme x > 0, $x = \operatorname{ch} t$.

F) Fonction th (tangente hyperbolique)

• th
$$x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^{2x} - 1}{e^{2x} + 1}$$

• th est de classe \mathcal{C}^{∞} sur \mathbb{R} , impaire.

•
$$(th)'(x) = \frac{ch^2 x - sh^2 x}{ch^2 x} = 1 - th^2 x = \frac{1}{ch^2 x}$$

•
$$\lim_{x \to +\infty} \text{th } x = \lim_{x \to +\infty} \frac{e^{2x} - 1}{e^{2x} + 1} = 1$$

De ces trois derniers points, on tire que th constitue une bijection continue et strictement croissante de \mathbb{R} dans] -1,1[

• DL en 0 :

th admet un DL en 0 à tout ordre, et on obtient les premiers termes de la même façon qu'avec la fonction tangente :

$$th x = x + ax^3 + bx^5 + o(x^5)$$
 car th est impaire et $(th)'(0) = 1$ (13.9)

$$th' x = 1 + 3ax^2 + 5bx^4 + o(x^4)$$
(13.10)

$$th^{2} x = x^{2} (1 + ax^{3} + o(x^{2}))^{2} = x^{2} (1 + 2ax^{2} + o(x^{2}))$$
(13.11)

$$1 - th^{2} x = 1 - x^{2} - 2ax^{4} + o(x^{2}) = (th)'(x)$$
(13.12)

Donc
$$\begin{cases} 3a = -1 \\ 5b = -2a \end{cases}$$
, soit
$$\begin{cases} a = \frac{-1}{3} \\ b = \frac{2}{15} \end{cases}$$

Ainsi, th $x = x - \frac{1}{3}x^3 + \frac{2}{15}x^5 + o(x^5)$

G) Fonction coth (cotangente hyperbolique)

- Elle est de classe C^{∞} sur \mathbb{R}^* , impaire.
- $(\coth)'(x) = \frac{\sinh^2 x \cosh^2 x}{\sinh^2 x} = 1 \coth^2 x = \frac{-1}{\sinh^2 x}$
- Et autres propriétés tirées de $\coth x = \frac{1}{\operatorname{th} x}$ pour $x \in \mathbb{R}^*$

H) Graphes de th et coth

II Formulaire

On tire tout de suite des définitions les formules suivantes :

$$ch x + sh x = e^x$$
 $ch x - sh x = e^{-x}$ $ch^2 x - sh^2 x = 1$ (13.13)

Formules d'addition :

$$\operatorname{ch}(a+b) = \operatorname{ch} a \times \operatorname{ch} b + \operatorname{sh} a \times \operatorname{sh} b \qquad \operatorname{sh}(a+b) = \operatorname{sh} a \times \operatorname{ch} b + \operatorname{ch} a \times \operatorname{sh} b \tag{13.14}$$

Démonstration (De la première égalité) :

On a

$$\operatorname{ch} a \times \operatorname{ch} b + \operatorname{sh} a \times \operatorname{sh} b = \frac{1}{4} \left((e^{a} + e^{-a})(e^{b} + e^{-b}) + (e^{a} - e^{-a})(e^{b} - e^{-b}) \right)$$

$$= \frac{1}{4} \left(e^{a+b} + e^{a-b} + e^{-a+b} + e^{-a-b} + e^{a+b} - e^{-a+b} - e^{a-b} + e^{-a-b} \right)$$

$$= \frac{1}{4} \left(2e^{a+b} + 2e^{-a-b} \right) = \operatorname{ch}(a+b)$$

$$(13.15)$$

La démonstration de la deuxième égalité est analogue.

De (13.14), on tire:

$$th(a+b) = \frac{th a + th b}{1 + th a \times th b}$$
(13.16)

En effet:

$$\operatorname{th}(a+b) = \frac{\operatorname{sh} a \times \operatorname{ch} b + \operatorname{sh} b \times \operatorname{ch} a}{\operatorname{ch} a \times \operatorname{ch} b + \operatorname{sh} b \times \operatorname{sh} a} = \frac{\operatorname{th} a + \operatorname{th} b}{1 + \operatorname{th} a \times \operatorname{th} b}$$
(13.17)

(dernière égalité obtenue en divisant « en haut et en bas » par $\operatorname{ch} a \times \operatorname{ch} b)$

De (13.14) et (13.16), on tire alors :

$$ch(2a) = ch^{2} a + sh^{2} a = 1 + 2 sh^{2} a = 2 ch^{2} a - 1$$
(13.18)

$$\operatorname{sh}(2a) = 2\operatorname{sh} a \times \operatorname{ch} a \tag{13.19}$$

$$th(2a) = \frac{2 th(a)}{1 + th^2 a} \tag{13.20}$$

Ces dernières formules donnent alors, pour tout $x \in \mathbb{R}$ et en posant $t = \operatorname{th} \frac{x}{2}$

$$\operatorname{ch} x = \frac{1+t^2}{1-t^2} \qquad \operatorname{sh} x = \frac{2t}{1-t^2} \qquad \operatorname{th} x = \frac{2t}{1+t^2}$$
 (13.21)

En effet : On a $ch(2a) = ch^2 a + sh^2 a = \frac{ch^2 a + sh^2 a}{ch^2 a - sh^2 a} = \frac{1 + th^2 a}{1 - th^2 a}$ (en divisant haut et bas par $ch^2 a$) De même pour sh(2a), puis poser ensuite x = 2a

Enfin, il faut savoir retrouver ce que l'on obtient par addition et par soustraction à partir de (13.14):

$$\operatorname{ch}(a+b) + \operatorname{ch}(a-b) = 2\operatorname{ch} a \times \operatorname{ch} b \tag{13.22}$$

$$\operatorname{ch}(a+b) - \operatorname{ch}(a-b) = 2\operatorname{sh} a \times \operatorname{sh} b \tag{13.23}$$

$$\operatorname{sh}(a+b) + \operatorname{sh}(a-b) = 2\operatorname{sh} a \times \operatorname{ch} b \tag{13.24}$$

$$\operatorname{sh}(a+b) - \operatorname{sh}(a-b) = 2\operatorname{ch} a \times \operatorname{sh} b \tag{13.25}$$

Ces quatre formules permettent de linéariser des produits (c'est-à-dire les transformer en sommes), ce qui est utile dans de nombreux cas. Réciproquement, en posant au besoin $\begin{cases} x = a + b \\ y = a - b \end{cases}$, on transforme des sommes en produits.

Moyen mnémotechnique à partir des formules de la trigonométrie circulaire : les signes qui précèdent un sinus carré ou un produit de deux sinus, ou une tangente carrée ou un produit de deux tangentes sont échangé, le reste est pareil.

III Fonctions hyperboliques inverses

A) Argsh (Argument sinus hyperbolique)

sh réalise une bijection de classe \mathcal{C}^{∞} strictement croissante de \mathbb{R} dans \mathbb{R} , dont la dérivée ne s'annule pas.

On appelle Argsh la réciproque de cette bijection. Argsh est donc de classe \mathcal{C}^{∞} et strictement croissante.

Dérivée:

$$\forall x \in \mathbb{R}, \operatorname{Argsh}'(x) = \frac{1}{\operatorname{sh}'(\operatorname{Argsh}(x))} = \frac{1}{\operatorname{ch}(\operatorname{Argsh}(x))} = \frac{1}{\sqrt{1 + \operatorname{sh}^2(\operatorname{Argsh}(x))}}$$
(13.26)

Donc
$$\forall x \in \mathbb{R}, \operatorname{Argsh}'(x) = \frac{1}{\sqrt{1+x^2}}$$

Propriétés diverses:

- Argsh est impaire (car sh l'est)
- Argsh $x \sim x$

Expression logarithmique:

Soient $x, y \in \mathbb{R}$. On a les équivalences :

$$y = \operatorname{Argsh} x \iff \operatorname{sh} y = x \iff \frac{e^y - e^{-y}}{2} = x \iff e^{2y} - 2xe^y - 1 = 0$$
 (13.27)

Résolution de l'équation $u^2 - 2xu - 1 = 0$ (d'inconnue u) :

Les racines sont $x \pm \sqrt{1+x^2}$.

Donc, en reprenant les équivalences :

$$y = \operatorname{Argsh} x \iff e^y = x - \sqrt{1 + x^2} \text{ ou } e^y = x + \sqrt{1 + x^2}$$

$$\iff e^y = x + \sqrt{1 + x^2}$$

$$\iff y = \ln\left(x + \sqrt{1 + x^2}\right)$$
(13.28)

Ainsi, $\forall x \in \mathbb{R}, \operatorname{Argsh} x = \ln\left(x + \sqrt{1 + x^2}\right)$

B) Argch (Argument cosinus hyperbolique)

ch réalise une bijection de classe \mathcal{C}^{∞} strictement croissante de $[0, +\infty[$ dans $[1, +\infty[$. On appelle Argch sa réciproque.

Arg
ch est de classe \mathcal{C}^{∞} sur]1, +\infty[, et :

$$\forall x \in]1, +\infty[, \operatorname{Argch}'(x) = \frac{1}{\operatorname{ch}'(\operatorname{Argch}(x))} = \frac{1}{\operatorname{sh}(\underbrace{\operatorname{Argch}(x)}_{>0})} = \frac{1}{\sqrt{\operatorname{ch}^2(\operatorname{Argch}(x)) - 1}}$$
(13.29)

Soit
$$\forall x \in]1, +\infty[, \operatorname{Argch}'(x)] = \frac{1}{\sqrt{x^2 - 1}}$$

Expression logarithmique:

Soit $x \in [1, +\infty[$. Posons $y = \operatorname{Argch} x$. y est l'unique réel positif dont le ch vaut x, c'est-à-dire $\frac{e^y + e^{-y}}{2} = x$ On a les équivalences :

$$\frac{e^y + e^{-y}}{2} = x \iff e^{2y} + 1 - 2xe^y = 0 \iff e^y = x + \sqrt{x^2 - 1} \text{ ou } e^y = x - \sqrt{x^2 - 1}$$
 (13.30)

Or,
$$x + \sqrt{x^2 - 1} \ge x \ge 1$$
 et $x - \sqrt{x^2 - 1} \le 1$ (car $(x + \sqrt{x^2 - 1})(x - \sqrt{x^2 - 1}) = 1$)

De plus, $y \ge 0$ donc $e^y \ge 1$

Donc en reprenant les équivalences :

$$e^y = x + \sqrt{x^2 - 1}$$
 ou $e^y = x - \sqrt{x^2 - 1} \iff e^y = x + \sqrt{x^2 - 1}$
 $\iff y = \ln\left(x + \sqrt{x^2 - 1}\right)$

$$(13.31)$$

Ainsi,
$$\forall x \in [1, +\infty[, \operatorname{Argch} x = \ln(x + \sqrt{x^2 - 1})]$$

C) Argth (Argument tangente hyperbolique)

Argth est définie sur] -1,1[, de classe \mathcal{C}^{∞} , strictement croissante, et est impaire.

$$\lim_{1} \operatorname{Argth} = +\infty, \qquad \operatorname{Argth} 0 = 0, \qquad \operatorname{Argth} x \underset{0}{\sim} x \tag{13.32}$$

$$\forall x \in]-1, 1[, \text{Argth}'(x) = \frac{1}{\text{th}'(\text{Argth } x)} = \frac{1}{1 - \text{th}^2(\text{Argth } x)} = \frac{1}{1 - x^2}$$
 (13.33)

Expression logarithmique:

On peut faire par résolution de l'équation $x=\operatorname{th} y=\frac{e^y-e^{-y}}{e^y+e^{-y}}...$

Autre méthode:

Pour tout $x \in]-1,1[$, on a :

$$\frac{1}{1-x^2} = \frac{1}{1-x} \times \frac{1}{1+x} = \frac{1}{2} \left(\frac{1}{1-x} + \frac{1}{1+x} \right)$$
 (13.34)

Une primitive de $x \mapsto \frac{1}{1-x^2}$ est donc $x \mapsto \frac{1}{2} (\ln|1+x| - \ln|1-x|)$

$$\forall x \in]-1, 1[, \frac{1}{2} (\ln|1+x| - \ln|1-x|) = \frac{1}{2} \ln|\frac{1+x}{1-x}| = \frac{1}{2} \ln\left(\frac{1+x}{1-x}\right)$$
 (13.35)

Donc Argth et $x \mapsto \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$ ne diffèrent que d'une constante. Or, elles sont toutes deux nulles en $0, \, \operatorname{donc} \left[\forall x \in]-1, 1[, \operatorname{Argth} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right) \right].$

IV Argcoth (Argument cotangente hyperbolique)

Arg
coth est définie sur $\mathbb{R}\setminus[-1,1]$, à valeurs dans \mathbb{R}^*

$$\forall x \in \mathbb{R} \setminus [-1, 1], \operatorname{Argcoth}'(x) = \frac{1}{1 - x^2}$$
(13.36)

Expression logarithmique:

On a:

$$\forall x \in \mathbb{R} \setminus [-1, 1], \operatorname{Argcoth} x = \frac{1}{2} \ln \left| \frac{1+x}{1-x} \right| + \operatorname{cte} = \frac{1}{2} \ln \left(\frac{x+1}{x-1} \right)$$
 (13.37)

