Présentation de la problématique

Objectif: créer un moteur de recommandations retournant 5 films similaires et intéressants pour le visiteur .

Comment recommander?

- Grâce au contenu (les films) uniquement.
 - Ce film est similaire à ces films.
- Via d'autres données (*utilisateurs*):
 - o Les utilisateurs qui aiment ce film aiment aussi...
 - Les utilisateurs similaire à vous aiment aussi...

Difficultés:

- Similarité: trouver une mesure bien définir ce qui est proche / loin.
- Popularité: trouver une mesure à équilibrer avec la similarité

Présentation de la problématique

Base de données IMDb: 5000 films, 28 features

1. Exploration, nettoyage et feature-engineering:

- Obtenir une base de données 'clean'
- Utilisable pour la recommandation de film

2. Pistes de modélisation:

- Choix de modéle:
 - i. K-means Cluster
 - ii. Unsupervised Nearest Neighbours
- Métriques

3. Modèle final

- Performances
- Améliorations

movie_id	0
movie_title	1
title_year	2
imdb_score	3
num_voted_users	4
color	5
content_rating	6
language	7
country	8
director_name	9
actor_1_name	10
actor_2_name	11
actor_3_name	12
genres	13
plot_keywords	14

Nettoyage des données

Gestion des NaN:

- Appel d'API (http://www.omdbapi.com): MAJ de données, remplissage de champs manquants
- Color: année charnière définie: généralisation de la couleur: 1955
 - o Rempli à **'color'** après 1955
 - o Rempli à 'black and white' avant 1955
- Language: lignes vides remplies à 'English' car 'country'='USA'
- **Remplacement** de NaN par "" dans les champs *string* ['plot_keywords','director_name','actor_1_name','actor_2_name','actor_3_name','content_rating']
- Suppression de:
 - o 2 lignes ayant 'country' & 'language' vides
 - o 4 lignes ayant 'title_year' vide

Gestion des valeurs erronées:

- Suppression duplicatas s'appuyant sur l'ID du film
- Homogénéisation des catégories de 'content_rating':
 - 'Passed' → 'Approved'
 - 'Unrated' → 'Not Rated'
- 'movie_title': suppression de caractères unicodes 'Avatar\xa0'
- Correction typage 'title_year': int → datetime: dt.year

Histogramme des sorties de films:

Évolution des likes facebook:

Évolution du nombre moyen de like par film, par an:

- Vieux films moins likés que les nouveaux
 - o à part quelques chef d'oeuvres: The Wizard of Oz, Seven Samurai, 12 angry men, etc.
- Valeurs inconsistantes dans le temps:
 - **Mesure subjective de succès**: 2 films à succès peuvent avoir un nombre de likes très différents selon l'année.
 - Conditions de départ inégales: avant/après internet, réseaux sociaux, campagne marketing, visibilité médiatique.
 Population 'connectée' augmente: les
 - nouveaux films ont encore plus de likes.
 - Fiabilité: s'il y a plusieurs groupes facebook (differentes typographie, ou différentes langues)

Nettoyage des données

Suppression colonnes:

- 'actor_1_facebook_likes'
- 'actor_2_facebook_likes'
- 'actor_3_facebook_likes'
- 'director_facebook_likes',
- 'movie_facebook_likes'
- 'cast_total_facebook_likes'
- 'num_user_for_reviews'
- 'num_critic_for_reviews'
- 'num_voted_users'

Choix: **suppression** 'budget', 'gross' car:

- 1. Pour utiliser 'budget' et 'gross', il faut:
 - Corriger avec l'inflation chaque année (FMI data)
 - Corriger les **monnaies** (€, francs, ancien franc)
 - Homogénéiser les monnaies: choisir une monnaie unique (\$ vu la DB)
 - Gérer les NaN: 389 NaN pour 'budget et 761 pour 'gross' (régression / suppression)
- 2. On a déjà un indicateur de succès fiable: imdb_score

'imdb_score' pondéré par 'num_voted_users'

$$IMDB_{score} = \frac{v}{v+m} * R + \frac{m}{v+m} * C$$

m = minimum num votes required = 100

 \Rightarrow

 $v = num \ voted \ users$

 $C = mean imdb_{score}$ on the whole database

 $R = imdb \ score \ _{initial}$

title_year	movie_title	budget	imdb_score
1997	Speed 2: Cruise Control	160000000.0	3.7
2003	The Cat in the Hat	109000000.0	3.8
2010	The Last Airbender	150000000.0	4.2
2015	Fantastic Four	120000000.0	4.3
2003	Charlie's Angels: Full Throttle	120000000.0	4.8

Top of the flop

title_year	movie_title	budget	imdb_score
2004	Super Size Me	65000.0	7.3
1964	A Fistful of Dollars	200000.0	8.0
2007	The Man from Earth	200000.0	8.0
1981	The Evil Dead	375000.0	7.6
2013	UnDivided	250000.0	7.8

Cheap success

• Database very English-oriented

- 26 genres de film
- Création d'un nouveau genre: 'Serie'
 Empty 'director_name'

Mot-clefs: 7977

plot_keywords	love	friend	murder	Ш	death	police	new york city	high school	alien	boy	school	revenge	fbi	friendship	drugs
count	189	159	153	139	125	117	89	85	77	71	69	68	65	64	64

- Final table:
 - o 132 films supprimés
 - o 13 features supprimées

1	data.count()	
mov	ie_id	4911
mov	ie_title	4911
tit	le_year	4911
imd	b_score	4911
num	voted_users	4911
cold	or	4911
cont	tent_rating	4911
lang	guage	4911
cour	ntry	4911
dire	ector_name	4911
acto	or_1_name	4911
acto	or_2_name	4911
acto	or_3_name	4911
genr	res	4911
plot	t keywords	4911

Feature engineering

• Encodage binaire des champs 'string': One Hot Encoding

0	genres	\Rightarrow	27 values	8 max per line
0	color	\Rightarrow	2 values	1 max per line
0	content_rating	\Rightarrow	16 values	1 max per line

• Encodage et **seuils** minimums - Filtre sur les features:

0	Nb de film min > 2	\Rightarrow	512 'director_name'	1 max per line
0	Nb de film min > 3	\Rightarrow	968 'actor_names'	3 max per line
0	Nb de film min > 5	\Rightarrow	785 'plot_keywords'	5 max per line
0	Nb de film min > 2	\Rightarrow	29 'language'	1 max per line
0	Nb de film min > 2	\Rightarrow	37 'country'	1 max per line

• Taille finale: 1 X.shape (4911, 2375)

- o 2 colonnes numériques: 'title_year' et 'imdb_score'
- o 2373 colonnes binaires

1. Mesure de similarité: Sélectionner les 15 films les plus proches du film en entrée Sur toute les features sauf le 'imdb_score'

a. K-means clustering:

- Séparer la base de données en clusters (idéalement des clusters: min 6 films et pas trop important)
- Sélectionner des films parmi le cluster du film en entrée

Similarité: films groupés par minimisation de variance intra-cluster

= maximisation de l'homogénéité des clusters

	cluster1	cluster2	cluster3	cluster4		cluster26	cluster27	cluster28	cluster29
cluster size	368	351	336	328	***	24	20	20	10

1 rows x 29 columns

Critique:

- o **clusters inégaux** maximiser le nombre de cluster ⇒ clusters à 1 film
- o clusters trop grand 368 films
- o **outliers** from 2 clusters might be closer together than the recommendations
- o réduire ⇒ + de clusters et + homogènes mais variance expliquée infime
- o Améliorations possibles:
 - faire des clusters par groupe de variables: clusters sur les 'genres', puis clusters sur les 'acteurs', etc.
 Puis s'intéresser aux intersections de clusters. Modèle moins simple.
 - faire du clustering sur certaines variables priorisées (ex: les genres), puis enchaîner par du Nearest
 Neighbour. Mais autant faire directement du Nearest Neighbour sans clustering, et éviter de prioriser.

b. Unsupervised Nearest Neighbours:

- Calcul de distance avec le film en entrée
- Sélectionner les films les plus proches

Aperçu: utilisant la distance euclidienne sur la matrice brute:

movie_title	title_year	language	country	director_name	actor_1_name	actor_2_name	actor_3_name	genres	plot_keywords
Capitalism: A Love Story	2009	English	USA	Michael Moore	Ronald Reagan	Michael Moore	Bernie Sanders	Crime Documentary News	capitalism critique of capitalism investment b
movie_title	title_year	movie_id							
Breaking Upwards	2009	1247644							
I Want Your Money	2010	1560957							
Impact Point	2008	1086841							
The Final Destination	2009	1144884							
Frat Party	2009	1414361							

[⇒] Nécessité de standardiser, ou séparer matrice binaire/numérique

Importance du choix de la métrique:

Comparaison de 3 films:

	Godfather	Mongol King	Scarface
actor_name_Al Pacino	1	0	1
actor_name_F. Murray Abraham	0	0	1
director_name_Francis Ford Coppola	1	0	0
genre_Crime	1	1	1
genre_Drama	1	1	1
color_Color	1	1	1
content_rating_PG-13	0	1	0
content_rating_R	1	0	1
country_USA	1	1	1
language_English	1		1
plot_keywords_1950s	1	0	0
plot keywords cocaine	0	0	1

Distance Euclidienne: $\sqrt{\sum (A_{x_i} - B_{x_i})^2}$

Distance Euclidienne [Godfather Mongol King] : 2.83 Distance Euclidienne [Godfather Scarface] : 3.0

Similarité Cosinus: $\frac{|A \cap B|}{||A||.||B||}$

Similarité Cosinus [Godfather Mongol King] : 0.59 Similarité Cosinus [Godfather Scarface] : 0.61

Similarité Jaccard: $\frac{|A \cap B|}{|A \cup B|}$

Similarité Jaccard [Godfather Mongol King] : 0.38 Similarité Jaccard [Godfather Scarface] : 0.44

- Les films ayant des champs vides vides sont avantagés
- La similarité Jaccard amoindri ce problème

Modèles initiaux testés:

Matrice standardisée : knn avec distance euclidienne
 Matrice standardisée et réduite: knn avec distance euclidienne
 Séparation matrice binaire/numérique: knn avec similarité cosinus

• Séparation matrice binaire/numérique: knn avec similarité jaccard

Choix: knn avec similarité jaccard - à améliorer. pour trouver les films similaires

Puis utilisation du imdb_score: pour choisir les films populaires

Évaluation des performances

Exemple de recommandations: Amélie Poulain

	knn1	knn2	knn3	knn4	knn5	knn6	knn7	knn8	knn9
0	The Wash	A Very Long Engagement	When the Cat's Away	When the Cat's Away	When the Cat's Away	A Very Long Engagement	A Very Long Engagement	When the Cat's Away	The Artist
1	L'auberge espagnole	Barbecue	The Names of Love	The Names of Love	The Names of Love	Frances Ha	Paris, je ťaime	The Names of Love	A Very Long Engagement
2	Down and Out with the Dolls	Asterix at the Olympic Games	Micmacs	Micmacs	Micmacs	Paris, je ťaime	The Widow of Saint-Pierre	Micmacs	Molière
3	The Widow of Saint-Pierre	The Case of the Grinning Cat	Welcome to the Sticks	Welcome to the Sticks	Welcome to the Sticks	L'auberge espagnole	L'auberge espagnole	Welcome to the Sticks	Paris, je ťaime
4	Say It Isn't So	Molière	Barbecue	A Very Long Engagement	A Very Long Engagement	The Widow of Saint-Pierre	The Names of Love	A Very Long Engagement	L'auberge espagnole

Échantillon de 10 films: sélection variée

- Crime|Drama classic
- Sci-fy blockbuster
- Documentary
- French Comedy & Romance
- Mandarin & Adventure & History
- Japanese & Anime
- Italy, Western, 1966
- Movie with saga recommendation
- Quentin Tarantino, Bruce Willis
- Wes Anderson movie

	kNN1	kNN2	kNN3	kNN4	kNN5	kNN6	kNN7	kNN8	kNN9
Godfather	3.0	1.5	2.5	3.5	3.5	3.5	3.5	4.5	4.5
Star Wars: Episode I - The Phantom Menace	2.0	2.0	2.0	2.0	2.0	2.5	2.5	3.0	4.0
Capitalism: A Love Story	1.0	4.0	3.0	2.0	4.0	4.0	4.0	3.0	4.0
Amelie	1.0	2.5	3.5	4.5	4.5	4.0	4.0	4.5	5.0
Dragon Blade	1.0	4.0	5.0	5.0	5.0	4.0	4.0	5.0	5.0
Spirited Away	2.5	3.5	3.5	4.0	4.0	4.0	4.0	4.0	4.5
The Good, the Bad and the Ugly	2.0	2.5	3.0	3.0	4.5	5.0	4.5	4.5	4.5
Return to Oz	0.5	1.0	3.5	3.5	3.0	3.5	4.5	3.5	3.5
Pulp Fiction	1.0	1.0	1.5	2.5	3.0	4.0	4.0	4.0	5.0
The Grand Budapest Hotel	0.0	3.0	2.0	2.0	4.0	4.0	5.0	5.0	5.0

Evaluati

		kNN1	kNN2	kNN3	kNN4	kNN5	kNN6	kNN7	kNN8	kNN9
tion personnelle, limitée, donc subjective: il faudrait	Moyenne	1.4	2.5	2.95	3.2	3.75	3.85	4.0	4.1	4.5

- un panel de notes d'utilisateurs
- comparer les résultats à d'autres moteurs de recommandation

Améliorations

1. Filtre sur les vecteurs quasi-vides: moins de 6 features renseignées dans la matrice binaire (149 films)

movie_title	title_year	content_rating	country	genres	plot_keywords	director_name	actor_1_name	actor_2_name	actor_3_name
The Case of the Grinning Cat	2004	_	France	Documentary		Chris Marker	Marina Vlady	Bertrand Cantat	Léon Schwartzenberg
The Little Ponderosa Zoo	2016		USA	Family		Luke Dye	Mike Stanley	Jeff Delaney	Jamison Stalsworth
Mi America	2015	R	USA	Crime Drama		Robert Fontaine	Michael Derek	Arturo Castro	Brad Lee Wind

- 2. Filtrer les sagas/trilogies: via FuzzyWuzzy: ne garder que 2 recommandations
 - o Testé: avec le nom du film sélectionné ⇒ Problème: 'Return to Oz'
 - o Amélioré: boucler sur la sélection, avec chaque voisin en entrée

Améliorations

- 3. Amélioration du kNN:
 - o Testé: **priorisation** de features lors du kNN:
 - kNN sur 'genres' puis kNN sur toutes features des 15 films sélectionnés
 - kNN sur 'genres' +'plot_keywords' puis kNN sur toutes features des 15 films sélectionnés
 - Suppression des features: 'content_rating' : à utiliser en filtre utilisateur, pas en similarité.

Final: avec unique kNN sur [genres, plot_keyword, country, language, director_name, actor_names, color] Et sélection des 25 films les + proches

4. Pondération: entre similarité jaccard (matrice binaire) et distance euclidienne (matrice numérique: title_year)

Distance finale pondérée = $\alpha * Numerical distance + (1 - \alpha) * Categorical distance$

Sélection des 15 films les + proches

movie_title	Final_dist	Categorical distance	Numerical distance
The Godfather: Part II	0.431714	0.428571	2.0
Apocalypse Now	0.575375	0.562500	7.0
The Godfather: Part III	0.597375	0.562500	18.0
L.I.E.	0.602364	0.545455	29.0
The Mongol King	0.610364	0.545455	33.0
Scarface	0.620800	0.600000	11.0
The French Connection	0.625750	0.625000	1.0
Hoffa	0.638800	0.600000	20.0
Brooklyn Rules	0.640286	0.571429	35.0
The Outsiders	0.645750	0.625000	11.0
Donnie Brasco	0.659889	0.611111	25.0
Glengarry Glen Ross	0.663750	0.625000	20.0
Goodfellas	0.666316	0.631579	18.0
We Own the Night	0 668800	0 600000	35 0

Améliorations

5. Sélectionner les films à succès:

• Testé: Filtre les films avec imdb_score< 6

Problème: parfois pas assez de recommandations

• Amélioration: Tri décroissant du imdb_score puis sélection

Sélection finale: les 5 meilleurs imdb_score

Final_dist	
0.431714	
0.575375	
0.597375	
0.602364	
0.610364	

weighted_rating	movie_title
9.0	The Godfather: Part II
8.7	Goodfellas
8.5	Apocalypse Now
8.3	Scarface
7.8	The French Connection

6. Affinage / calibration: .

- o Modifier la sélection de features du kNN (ex: supprimer content_rating)
- o Modifier les seuils lors de l'encodage
- o Modifier la quantité de films sélectionné à chaque étape de filtre: 25 puis 15 puis 5
- o Modifier α dans 'distance finale pondérée

Autres améliorations - non réalisées

- Faire des filtres sur genres opposés:
 - Ex le film sélectionné est une 'Comedy', ou 'Family', on peut filtrer 'Horror' Pour éviter valeurs erronées
- Travailler sur les **mot-clefs**:
 - o Homogénéiser les 189 groupes de mots (sur 785 mot-clefs retenus)
 - o Chercher des groupes principaux de mot-clefs (via fuzzywuzzy levenshtein similarity)

movie_title	plot_keywords	imdb_score
Catwoman	based on cult comic book bechdel test passed c	3.3
movie_title	plot_keywords	imdb_score
The Dark Knight	based on comic book dc comics psychopath star	9.0
The Wolverine	healing power marvel comics mecha regeneration	6.7
Batman Returns	box office hit dc comics gotham mayor penguin	7.0
Constantine	based on comic based on comic book dc arrowver	7.5
Spawn	based on comic based on comic book dark hero i	5.2
Batman	city dc comics gotham pantyhose police	7.6

o Problème: ⇒ travail manuel

Row	Column	Similarité
new york city	new york	100
Anna de la comi	manhattan new york city	100
high school	high school student	100
Strategy for a single state of his state	high school senior	100
based on novel	based on young adult novel	100
african american	african american protagonist	100
martial arts	mixed martial arts	100
world war two	world war one	85
stand up comedian	stand up comedy	88
hit in the crotch	kicked in the crotch	87
female nudity	male nudity	92
	female frontal nudity	100
	female rear nudity	100
	topless female nudity	100

Row	Column	Similarité
19th century	18th century	92
-	17th century	92
	16th century	92
box office flop	box office hit	83
one word title	three word title	83
	two word title	86
	four word title	83
	six word title	83
urban setting	rural setting	85
claim in title	animal in title	83

Modèle final

Pré traitement:

- 1. Nettoyage base de donnée et sélection de features
- 2. **Encodage** binaire des features string + filtre **seuils** minimums
- 3. Split: matrice binaire / numérique
- 4. Filtre vecteurs quasi-vide matrice binaire

Modèle final:

- 1. kNN sur matrice binaire (metric=Jaccard) + sélection des 25 films les + proches.
- 2. Filtre des sagas/trilogies.
- 3. Distance finale pondérée (via title_year) et sélection des 15 films les + proches
- 4. Tri via le imdb_score et sélection des 5 'meilleurs' films à succès

Limites du modèle

- Valeurs erronées:
 - o Genres:

■ 'Destiny', 'Battlefield Earth' : jeux videos

■ 'Kevin Hart': in documentary

■ 'Aliens' not: in horror

- Mot-clefs:
 - Nécessite conventions de nommage (ex: 'Catwoman' not linked to other comics)
 - Star Wars I: mot-clefs pas assez générique:
 - |martial arts|
 - |murdered before giving protagonist information|
 - |part computer animation|
 - |prequel|
 - |prequel to cult film|
- Filtre sur les sagas basé sur 'movie_title': ne fonctionne pas toujours.

Ex: les James Bond

- La base de donnée est limitée à 5000 films:
 - o 'Modern Times' il manque les autres films de Chaplin
 - o 'Seven Samurai' il manque les autres films de Kurosawa
- Erreurs acceptables:
 - o certains films sont uniques et indescriptibles:
 - 'The Fountain'
 - 'Human Traffic'
 - o Les acteurs et directeurs tournant des films hétéroclites pourraient fausser la recommandation
 - Jean-Jacques Annaud ('L'ours', 'Coup de tête', 'Le nom de la rose', etc.)
 - Darren Aronofsky

http://qcrochard.pythonanywhere.com/recommend URL:

Query:

id

Exemple: The Godfather

http://qcrochard.pythonanywhere.com/recommend?id=68646

```
"movie id": 71562.0,
"movie title": "The Godfather: Part II "
"movie_id": 99685.0,
"movie title": "Goodfellas "
"movie_id": 78788.0,
"movie title": "Apocalypse Now "
"movie id": 86250.0,
"movie_title": "Scarface "
"movie_id": 67116.0,
"movie_title": "The French Connection "
```