

Recursive Computation of the Fibonacci Sequence

Memoization

Idea: Remember the results that have been computed before

(Demo)

Memoized Tree Recursion

1

Exponentiation

Goal: one more multiplication lets us double the problem size

```
def exp(b, n):
                                                                                   b^n = \begin{cases} 1 & \text{if } n = 0\\ b \cdot b^{n-1} & \text{otherwise} \end{cases}
       if n == 0:
              return 1
       else:
              return b * exp(b, n-1)
def exp_fast(b, n):
       if n == 0:
              return 1
       elif n % 2 == 0:
                                                                                   b^{n} = \begin{cases} 1 & \text{if } n = 0\\ (b^{\frac{1}{2}n})^{2} & \text{if } n \text{ is even}\\ b \cdot b^{n-1} & \text{if } n \text{ is odd} \end{cases}
              return square(exp_fast(b, n//2))
       else:
              return b * exp_fast(b, n-1)
def square(x):
       return x * x
```

(Demo)

Exponentiation

Goal: one more multiplication lets us double the problem size

```
def exp(b, n):
    if n == 0:
        return 1
    else:
        return b * exp(b, n-1)

def exp_fast(b, n):
    if n == 0:
        return 1
    elif n % 2 == 0:
        return square(exp_fast(b, n//2))
    else:
        return b * exp_fast(b, n-1)

def square(x):
    return x * x
```

Linear time:

- Doubling the input doubles the time
- 1024x the input takes 1024x as much time

Logarithmic time:

- Doubling the input increases the time by a constant C
- 1024x the input increases the time by only 10 times C

Quadratic Time

Functions that process all pairs of values in a sequence of length n take quadratic time

```
3
                                                                    7
                                                                          6
def overlap(a, b):
    count = 0
                                                         0
                                                               0
                                                   4
    for item in a:
        for other in b:
                                                   5
            if item == other:
                 count += 1
    return count
                                                               0
                                                         0
                                                   6
overlap([3, 5, 7, 6], [4, 5, 6, 5])
                                                         0
                                                               1
                                                                    0
                                                                          0
                                                   5
```

(Demo)

Exponential Time

Tree-recursive functions can take exponential time

def fib(n):

if n == **0**:

Time for n+n

Time for input n+1

Time for input n

Common Orders of Growth

Exponential growth. E.g., recursive fib Incrementing *n* multiplies *time* by a constant

$$a \cdot b^{n+1} = (a \cdot b^n) \cdot b$$

Quadratic growth. E.g., overlap

Incrementing n increases time by n times a constant

$$a \cdot (n+1)^2 = (a \cdot n^2) + a \cdot (2n+1)$$

Linear growth. E.g., slow exp

Incrementing n increases time by a constant

$$a \cdot (n+1) = (a \cdot n) + a$$

Logarithmic growth. E.g., exp_fast

Doubling n only increments time by a constant

$$a \cdot \ln(2 \cdot n) = (a \cdot \ln n) + a \cdot \ln 2$$

Constant growth. Increasing n doesn't affect time

Big Theta and Big O Notation for Orders of Growth

Exponential growth. E.g., recursive fib Incrementing n multiplies $time$ by a constant	$\Theta(b^n)$	$O(b^n)$
Quadratic growth. E.g., overlap Incrementing n increases $time$ by n times a constant	$\Theta(n^2)$	$O(n^2)$
Linear growth. E.g., slow exp Incrementing n increases $time$ by a constant	$\Theta(n)$	O(n)
Logarithmic growth. E.g., exp_fast Doubling n only increments $time$ by a constant	$\Theta(\log n)$	$O(\log n)$
Constant growth. Increasing n doesn't affect time	$\Theta(1)$	O(1)

Space and Environments

Which environment frames do we need to keep during evaluation?

At any moment there is a set of active environments

Values and frames in active environments consume memory

Memory that is used for other values and frames can be recycled

Active environments:

- Environments for any function calls currently being evaluated
- Parent environments of functions named in active environments

(Demo)

Fibonacci Space Consumption

Fibonacci Space Consumption

20

December 9, 2021

[]: |%%time

```
exp(2, 400)
    CPU times: user 273 µs, sys: 44 µs, total: 317 µs
    Wall time: 322 \mu s
[]: 25822498780869085896559191720030118743297057928292235128306593565406476220168411
     94629645353280137831435903171972747493376
[]: %matplotlib inline
     import matplotlib.pyplot as plt
     plt.style.use('ggplot')
     plt.rc('font', size=16)
     from timeit import repeat
     from numpy import median, percentile
     def plot_times(name, xs, n=15):
         f = lambda x: name + '(' + str(x) + ')'
         g = globals()
         samples = []
         for _ in range(n):
             times = lambda x: repeat(f(x), globals=g, number=1, repeat=n)
             samples.append([median(times(x)) for x in xs])
         ys = [10e3 * median(sample) for sample in zip(*samples)]
         plt.figure(figsize=(8, 8))
         plt.plot(xs, ys)
         plt.xlabel('n')
         plt.ylabel('milliseconds')
[]: def exp(b, n):
         if n == 0:
             return 1
         else:
             return b * exp(b, n-1)
```

```
[]: exp_2 = lambda n: exp(2, n)
plot_times('exp_2', range(20, 1600, 10))
```



```
[]: def exp_fast(b, n):
    if n == 0:
        return 1
    elif n % 2 == 0:
        return square(exp_fast(b, n//2))
    else:
        return b * exp_fast(b, n-1)

def square(x):
    return x*x
```

```
[]: exp_2_fast = lambda n: exp_fast(2.0, n)
plot_times('exp_2_fast', range(20, 1600, 10))
```



```
[]: def overlap(a, b):
    count = 0
    for item in a:
        for other in b:
            if item == other:
                 count += 1
    return count

overlap_ranges = lambda n: overlap(list(range(n)), list(range(n)))

plot_times('overlap_ranges', range(20, 200, 10))
```

