Bric-à-brac II

Olivier Sellès, transcrit par Denis Merigoux

Table des matières

1	Rela	ations d'ordre	3
	1.1	Relation d'ordre	3
		1.1.1 Définition	3
		1.1.2 Exemples	3
		1.1.3 Vocabulaire	3
	1.2	Majorant, minorant, maximum, minimum	4
		1.2.1 Définitions	4
		1.2.2 Maximum et minimum	4
	1.3	Borne supérieure, borne inférieure	4
		1.3.1 Définitions	4
		1.3.2 Théorème fondamental de \mathbb{R} (admis)	5
	1.4	Description des sous-groupes de $(\mathbb{R},+)$	5
		1.4.1 Définitions	5
		1.4.2 Propriété particulière	5
		1.4.3 Corollaires	6
2	\mathbf{est}	génératricealence	7
	2.1	Généralités	7
		2.1.1 Définition	7
		2.1.2 Exemple principal	7
	2.2	Propriétés des relations d'équivalence	8
		2.2.1 Propriétés générales	8
		2.2.2 Retour à l'exemple	8
		Lois sur $\mathbb{Z}/n\mathbb{Z}$	9
		2.3.1 Opérations dans $\mathbb{Z}/n\mathbb{Z}$	9
		2.3.2 Lois de compositions internes de $\mathbb{Z}/n\mathbb{Z}$	9
3	Ent	ciers naturels	L1
	3.1	Construction de N grâce aux axiomes de PÉANO	11
		3.1.1 Axiomes de Péano	11
		3.1.2 Successeur, prédécesseur	11
		3.1.3 Principe de récurrence	12
		3.1.4 Opérations	12
		3.1.5 Reformulation du principe de récurrence	12
	3.2	Division euclidienne	13
		3.2.1 Généralités	13
		3.2.2 Applications	14
	3.3	Plus Grand Commun Diviseur et éléments d'arithmétique	17
		3.3.1 PGCD	17
		3.3.2 Éléments d'arithmétique	18

4	Ens	embles	s finis	20
	4.1	Définit	tions, faits de base	20
		4.1.1	Définitions	20
		4.1.2	Théorème et définition	21
		4.1.3	Principe des tiroirs	22
	4.2	Cardin	naux classiques	23
		4.2.1	Réunion	23
		4.2.2	Produit cartésien	24
		4.2.3	Ensemble de parties d'un ensemble fini	25
		4.2.4	Petite histoire sur la définition ensembliste des coefficients du binôme	25
		4.2.5	Ensemble des applications entre deux ensembles finis	27
		4.2.6	Injections entre deux ensembles finis	28
	4.3	Applie	eations et ensembles finis	29
		4.3.1	Petite histoire	29
		4.3.2	Théorème	30
		4.3.3	Permutations d'un ensemble fini	30
		4.3.4	Cycles	32

1 Relations d'ordre

1.1 Relation d'ordre

1.1.1 Définition

Soit E un ensemble et \mathcal{R} une relation binaire sur E^a . Pour $x, y \in E$, on note $x\mathcal{R}y$ (lire : « x est en relation avec y ») au lieu de $(x, y) \in \mathcal{R}$. On dit que \mathcal{R} est une relation d'ordre si :

- (1) \mathcal{R} est réflexive : $\forall x \in E, x\mathcal{R}x$
- (2) \mathcal{R} est antisymétrique : $\forall x, y \in E, (x\mathcal{R}y) \land (y\mathcal{R}x) \Rightarrow x = y$
- (3) \mathcal{R} est transitive: $\forall x, y, z \in E, (x\mathcal{R}y) \land (y\mathcal{R}z) \Rightarrow x\mathcal{R}z$
- a. \mathcal{R} est donc une partie de $E \times E$

Très souvent, si \mathcal{R} est une relation d'ordre sur E, on notera $x \leq y$ au lieu de $x\mathcal{R}y$.

1.1.2 Exemples

- $\leq \operatorname{sur} \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ est l'ordre naturel.
- Sur $E = \mathbb{N}^*$, on définit \mathcal{R} par $\forall m \in \mathbb{N}^*$, $m\mathcal{R}n \Leftrightarrow m \mid n$. \mathcal{R} est une relation d'ordre car :
 - $\circ m \mid m$;
 - $\circ (m \mid n) \land (n \mid m) \Rightarrow m = n;$
 - $\circ (m \mid n) \wedge (n \mid p) \Rightarrow m \mid p.$
- Soit X un ensemble non vide et $E \in \mathcal{P}(X)$. Alors \mathcal{R} défini par $A\mathcal{R}B \Leftrightarrow A \subset B$ sur E est une relation d'ordre sur E.
- Soit X un ensemble non vide et $E = \mathcal{F}(X,\mathbb{R})^a$. Pour $f,g \in E$ on pose $f \leq g \Leftrightarrow \forall x \in X, f(x) \leq g(x)$. Alors \leq est une relation d'ordre dans $\mathcal{F}(X,\mathbb{R})$.

1.1.3 Vocabulaire

Un ensemble ordonné ou ordre est un couple (E, \leq) avec E un ensemble et \leq une relation d'ordre . L'ordre (E, \leq) est dit total (on dit aussi que \leq est une relation d'ordre totale) si :

$$\forall x, y \in E, (x \leq y) \lor (y \leq x)$$

On dit que x et y sont toujours comparables.

Soit (E, \leq) un ordre. Pour $x, y \in E$, on note :

- $-x < y \text{ pour } x \leq y \text{ et } x \neq y;$
- $-x \geqslant y \text{ pour } y \leqslant x;$
- -x > y pour y < x.

Piège! Il y a des ordres qui ne sont pas totaux :

- $-(\mathbb{N}^*,|)$ car 2 et 3 ne sont pas comparables.
- Si X est non vide, $(\mathcal{P}(X), \subset)$ n'est pas total dès que X possède au moins deux éléments distincts a et b^b .
- Soit X un ensemble non vide. Alors $(\mathcal{F}(X,\mathbb{R}), \leq)$ n'est pas total dès que X possède deux éléments distincts a et b. En effet,

a. E est l'ensemble des fonctions de X dans \mathbb{R} .

b. En effet, $\{a\}$ et $\{b\}$ ne sont pas comparables par l'inclusion.

1.2 Majorant, minorant, maximum, minimum

1.2.1 Définitions

Soit (E, \leq) un ordre, $A \subset E$ tel que $A \neq \emptyset$ et $x \in E$.

- (1) On dit que:
 - -x majore A si $\forall a \in A, x \geqslant a : x$ est un majorant de A.
 - -x minore A si $\forall a \in A, x \leq a : x$ est un minorant de A.
- (2) On note les propriétés suivantes :
 - A est majorée si elle admet au moins un majorant.
 - A est minorée si elle admet au moins un minorant.
- (3) Soit $a \in A$. On dira que:
 - -a est un plus grand élément de A si $\forall a' \in A, a' \leq a$.
 - -a est un plus petit élément de A si $\forall a' \in A, a' \geqslant a$.

Remarque Il ne peut exister qu'un seul plus grand élément d'un ensemble qui en admet. En effet, si a_2 et a_1 sont deux plus grands éléments, alors $a_1 \le a_2$ et $a_1 \ge a_2$ donc $a_1 = a_2$.

1.2.2 Maximum et minimum

On appelle a le maximum de A si a est le plus grand élément de A. On note alors $a = \max A$. De même, un éventuel plus petit élément de A est unique et est le minimum de A. On le note min A.

Remarques

- Si A possède un maximum, elle est majorée. La réciproque est cependant fausse : si $E = \mathbb{R}$ et A = [0,1[est majorée mais ne possède pas de maximum.
- Si (E, \leq) est total, toute partie finie non vide de E possède un maximum et un minimum.

1.3 Borne supérieure, borne inférieure

1.3.1 Définitions

- Soit (E, \leq) un ordre et $A \subset E$ majorée. L'ensemble B des majorants de A est non vide. Si B a un minimum, alors celui-ci s'appelle la borne supérieure de A et se note sup A.
- Soit (E, \leq) un ordre et $A \subset E$ minorée. L'ensemble B car si orants de A est non vide. Si B a un maximum, alors celui-ci s'appelle la borne inférieure de A et se note inf A.
- Soit $x \in E$ et $A \in \mathcal{P}(E)$. A est majorée et admet une borne supérieure si et seulement si :
 - $\circ \ \forall a \in A, \ a \leq x \ (x \text{ majore } A)$
 - $\circ \ \forall y \in E, y \text{ majore } A \Rightarrow x \leq y.$

Piège! Il peut exister des parties non vides, majorées mais sans borne supérieure. Prenons un exemple : soit $E = \mathbb{Q}$ muni de l'ordre naturel $\leq .SA = \{r \in \mathbb{Q}_+ | r^2 \leq 2\}$, A est une partie non vide de \mathbb{Q} . On a $1 \in A$ et A est majorée par 2 : si $x \in Q$ avec x > 2, $x^2 > 4$ donc $x \notin A$.

Supposons que A admet une borne supérieure dans \mathbb{Q} , et soit $x = \sup A$. Prouvons que $x^2 = 2$.

- Si $x^2 < 2$, soit $\varepsilon \in \mathbb{Q}_+^*$ et $d = 2 - x^2 > 0$. Alors,

$$2 - (x + \varepsilon)^2 = 2 - x^2 - 2\varepsilon x - \varepsilon^2$$
$$= d - 2\varepsilon x - \varepsilon^2$$
$$= d - \varepsilon (2x + \varepsilon)$$

Prenons $\varepsilon \leq 1$. Alors $2x + \varepsilon \leq 2x + 1$ donc

$$2 - (x + \varepsilon)^2 \ge d - \varepsilon (2x + 1)$$

On choisit de plus $\varepsilon \in \left]0, \frac{d}{2x+1}\right[$, par exemple $\varepsilon = \min\left(1, \frac{d}{2\left(2x+1\right)}\right)$. A ce moment là, on note que

$$2 - (x + \varepsilon)^2 > 0 \implies x + \varepsilon \in A$$
$$\implies x + \varepsilon \leqslant \sup A$$
$$\implies \varepsilon \leqslant 0$$

Ce qui est impossible a.

- Si $x^2 > 2$. Soit $\varepsilon \in \mathbb{Q}_+^*$ tel que $\varepsilon < x$ et $d = x^2 - 2 > 0$. Alors

$$(x - \varepsilon)^2 = x^2 - 2x\varepsilon + \varepsilon^2 > d - 2\varepsilon x$$

Prenons de plus $\varepsilon \in \left]0, \frac{d}{2x}\right[$, par exemple $\varepsilon = \min\left(\frac{x}{2}, \frac{d}{4x}\right)$. Alors $(x - \varepsilon)^2 > 2$ donc $y \in A \Rightarrow y < x - \varepsilon$ donc $x - \varepsilon$ majore A. Ainsi,

$$\sup A \leqslant x - \varepsilon \quad \Rightarrow \quad x \leqslant x - \varepsilon$$
$$\Leftrightarrow \quad \varepsilon \leqslant 0$$

Ce qui est impossible b .

- On déduit des deux cas précédents que $x^2 = 2$, ce qui est impossible vu que $x \in \mathbb{Q}$. A n'admet donc pas de borne supérieure.

1.3.2 Théorème fondamental de \mathbb{R} (admis)

Toute partie non vide majorée de \mathbb{R} admet une borne supérieure.

Corollaire Toute partie non vide minorée de \mathbb{R} admet une borne inférieure.

Démonstration Soit A une partie non vide minorée de \mathbb{R} et B l'ensemble des minorants de A. Alors $B \neq \emptyset$ et $\forall (a,b) \in A \times B$, $b \leqslant a$ donc B est non vide et majorée. Soit $\beta = \sup B$. Montrons que β minore A. Soit $a \in A$, alors a majore B. β est le plus petit majorant de B donc $\beta \leqslant a$ donc β est un minorant de A. Si x est un minorant de A, $x \in B$ donc $x \leqslant \sup B$ donc $x \leqslant$

1.4 Description des sous-groupes de $(\mathbb{R}, +)$

1.4.1 Définitions

- Soit $H \in \mathcal{P}(\mathbb{R})$. Alors H est un sous-groupe de $(\mathbb{R}, +)$ si :
 - $\circ \ 0 \in H$
 - $\circ \ \forall (x,y) \in H, \ -x \in H \ \text{et} \ y + x \in H$
- Soit $A \subset \mathbb{R}$, on dit que A est dense dans \mathbb{R} si $\forall x \in \mathbb{R}, \forall \varepsilon > 0, \exists a \in A/|a-x| < \varepsilon \Leftrightarrow a \in [x-\varepsilon, x+\varepsilon]$. On peut approcher x à ε près par un élément de A.

1.4.2 Propriété particulière

H est un sous-groupe de $\mathbb R$ si l'une ou l'autre des conditions suivantes est vérifiée :

- $-\exists a \in \mathbb{R}/H = a\mathbb{Z};$
- -H est dense dans \mathbb{R} .

Les deux conditions s'excluant mutuellement.

- a. Aaaaaaargh!
- b. Aaaaaaargh!

Démonstration Soit H un sous-groupe de $(\mathbb{R}, +)$.

- Si $H = \{0\}$, alors $H = 0\mathbb{Z}$.
- Supposons que $H \neq \{0\}$. Il existe donc $h \in H/h \neq 0$ donc $-h \in H$. On a donc $H_+^* = H \cap \mathbb{R}_+^* \neq \emptyset$, qui est minoré (par 0 par exemple). Soit maintenant $a = \inf H_+^*$, donc $a \geq 0^a$.

 1^{er} cas : a > 0

o Montrons que $a \in H$. Supposons pour cela que $a \notin H$. 2a > a donc 2a ne peut pas minorer H_+^* . Toujours car a est le plus grand minorant de H_+^* on sait que $\exists y \in H_+^*/y < 2a$ et $a \leq y$, et même a < y car on suppose que $a \notin H$. a < y donc y ne minore pas non plus H_+^* donc $\exists x \in H_+^*/x < y$. On a donc

Ainsi, $y - x \in]0, a[$. Or $y - x \in H$ car H est un sous-groupe donc $y - x \in H_+^*$ et $y - x < a = \inf H_+^*$, ce qui est impossible b .

o Ainsi, $a \in H$ et H est un sous-groupe de \mathbb{R} donc $a\mathbb{Z} \subset H$. Démontrons l'inclusion inverse. Soit $h \in H$, $n = \mathbf{E}\left(\frac{h}{a}\right)$ donc

$$na \leqslant h < (n+1)a$$

donc $h - na \in [0, a[$. Or $h - na \in H:$

- \rightarrow Si $h na \neq 0$ alors $h na \in H_+^*$ et $h na < a = \inf H_+^*$, ce qui est impossible c.
- \rightarrow Ainsi h na = 0 donc $h = na \in a\mathbb{Z}$.

 $2^{\text{ème}}$ cas : a = 0 Montrons que H est dense dans \mathbb{R} .

Soit $x \in \mathbb{R}$ et $\varepsilon > 0$. $\varepsilon > \inf H_+^*$ donc ε n'est pas un minorant de H_+^* , donc $\exists h \in H_+^*/h < \varepsilon$. Soit maintenant $n = \mathrm{E}\left(\frac{x}{h}\right)$, donc

$$nh \leqslant x < (n+1) h \Leftrightarrow 0 \leqslant x - nh < h$$

donc $|x - nh| < h < \varepsilon$ et $nh \in \mathbb{Z}h \subset H$ puisque $h \in H$. Ainsi, H est dense dans \mathbb{R} .

1.4.3 Corollaires

Corollaire $n^{o}1$ Montrons que \mathbb{Q} est dense dans \mathbb{R} .

 \mathbb{Q} est un sous-groupe de $(\mathbb{R}, +)$ donc soit il est de la forme $a\mathbb{Z}$ avec $a \in \mathbb{R}_+^*$, soit il est dense dans \mathbb{R} .

Supposons qu'il existe $a > 0/\mathbb{Q} = a\mathbb{Z}$. Alors $1 \in \mathbb{Q} = a\mathbb{Z}$ donc $\exists m \in \mathbb{N}$ tels que $1 = ma \Leftrightarrow a = \frac{1}{m}$. Or $\frac{1}{2m} \in \mathbb{Q}$ mais $\frac{1}{2m} \notin \frac{1}{m}\mathbb{Z}$ car $\frac{1}{2} \notin \mathbb{Z}$ donc \mathbb{Q} n'est pas de la forme $a\mathbb{Z}$ donc \mathbb{Q} est dense dans \mathbb{R} .

Corollaire $n^{o}2$ $\mathbb{R}\backslash\mathbb{Q}$ est aussi dense dans \mathbb{R} .

Soient $a, b \in \mathbb{R}$ avec a < b. Montrons que $]a, b[\cap (\mathbb{R} \setminus \mathbb{Q}) \neq \emptyset$. Or \mathbb{Q} est dense dans \mathbb{R} donc $]\frac{a}{\sqrt{2}}, \frac{b}{\sqrt{2}} [\cap \mathbb{Q} \neq \emptyset$. Montrons que cet ensemble est infini.

Pour cela supposons que $\left]\frac{a}{\sqrt{2}}, \frac{b}{\sqrt{2}}\right[\cap \mathbb{Q} \text{ est fini donc on peut le noter } \{r_1, r_2, \dots, r_n\} \text{ avec} \right]$

$$\frac{a}{\sqrt{2}} < r_1 < \dots < r_n < \frac{b}{\sqrt{2}}$$

Or on sait que $\left[\frac{a}{\sqrt{2}}, r_1\right] \cap \mathbb{Q} \neq \emptyset$ car \mathbb{Q} est dense dans \mathbb{R} donc on peut trouver $r_0 \in \left[\frac{a}{\sqrt{2}}, r_1\right] \cap \mathbb{Q} \subset \left[\frac{a}{\sqrt{2}}, \frac{b}{\sqrt{2}}\right] \cap \mathbb{Q}$, ce qui est impossible d. Ainsi, on peut trouver un $r \in \mathbb{Q}^*$ tel que

$$\frac{a}{\sqrt{2}} < r < \frac{b}{\sqrt{2}} \Leftrightarrow a < \sqrt{2}r < b$$

Si A est non vide et minorée, on a pas forcément inf $A \in A$. Par exemple A = [0, 1], inf $A = 0 \notin A$.

- b. Aaaaaaargh!
- c. Aaaaaaargh!
- d. Aaaaaaargh!

a. Piège!

De plus, $r\sqrt{2} \in \mathbb{R}\backslash\mathbb{Q}^a$ donc $\mathbb{R}\backslash\mathbb{Q}$ est dense dans \mathbb{R} .

Corollaire n°3 On admet que $\pi \notin \mathbb{Q}$. Alors $\mathbb{Z} + 2\pi \mathbb{Z} = \{p + 2\pi q | p, q \in \mathbb{Z}\}$ est dense dans \mathbb{R} .

Montrons que $\mathbb{Z} + 2\pi\mathbb{Z}$ est un sous-groupe de $(\mathbb{R}, +)$. En effet :

- $-0 = 0 + 2\pi 0 \in \mathbb{Z} + 2\pi \mathbb{Z}$
- $-\forall m, n \in \mathbb{Z}, -m-2\pi n = (-m) + 2\pi (-n) \in \mathbb{Z} + 2\pi \mathbb{Z}$
- $-\forall m, n, p, q \in \mathbb{Z}, m + 2\pi n + p + 2\pi q = (m+n) + 2\pi (p+q) \in \mathbb{Z} + 2\pi \mathbb{Z}$

Ainsi, $\mathbb{Z} + 2\pi\mathbb{Z}$ est un sous-groupe de $(\mathbb{R}, +)$. Montrons qu'il n'est pas de la forme $a\mathbb{Z}, a \in \mathbb{R}$.

Supposons qu'il existe $a > 0/\mathbb{Z} + 2\pi\mathbb{Z} = a\mathbb{Z}$. On a $1 = 1 + 2\pi 0 \in \mathbb{Z} + 2\pi\mathbb{Z} = a\mathbb{Z}$ donc $\exists m \in \mathbb{Z}/1 = ma \Leftrightarrow a = \frac{1}{m}$.

Or $2\pi = 0 + 2\pi 1 \in \mathbb{Z} + 2\pi \mathbb{Z} = a\mathbb{Z}$ donc $\exists n \in \mathbb{Z}/2\pi = na \Leftrightarrow 2\pi = \frac{n}{m} \Leftrightarrow \pi = \frac{n}{2m} \in \mathbb{Q}$, ce qui est impossible b. Donc $\mathbb{Z} + 2\pi \mathbb{Z}$ est dense dans \mathbb{R} .

Corollaire n°4 cos \mathbb{N} est dense dans [-1,1], c'est-à-dire $\forall x \in [-1,1]$, $\forall \varepsilon > 0, \exists n \in \mathbb{N}/x - \cos n < \varepsilon$. Soit $x \in [-1,1]$ et $\varepsilon > 0$, on pose $\theta = \arccos x \in [0,\pi]$. $\mathbb{Z} + 2\pi\mathbb{Z}$ est dense dans \mathbb{R} donc

$$\exists p, q \in \mathbb{Z}/|\theta - (p + 2\pi q)| < \varepsilon$$

On note que $\cos |p| = \cos p = \cos (p + 2\pi q)$. De plus ^c pour $u, v \in \mathbb{R}$,

$$|\cos u - \cos v| \le |u - v|$$
 et $|\sin u - \sin v| \le |u - v|$

Ainsi,

$$\begin{aligned} |\cos \theta - \cos |p|| &= |\cos \theta - \cos (p + 2\pi q)| \\ &\leq |\theta - p - 2\pi q| \\ &< \varepsilon \end{aligned}$$

Donc $\cos \mathbb{N}$ est dense dans [-1, 1].

2 est génératricealence

2.1 Généralités

2.1.1 Définition

Soit E un ensemble, R une relation binaire sur E. On dit que R est une relation d'équivalence si :

- (1) \mathcal{R} est réflexive : $\forall x \in E, xRx$
- (2) \mathcal{R} est symétrique : $\forall x, y \in E, xRy \Rightarrow y\mathcal{R}x$
- (3) R est transitive: $\forall x, y, z \in E, ((x\mathcal{R}y) \land (yRz)) \Rightarrow x\mathcal{R}z$

2.1.2 Exemple principal

 $E = \mathbb{Z}$, soit $n \in \mathbb{N}^*$. On note \mathcal{R}_n la relation binaire définie sur \mathbb{Z} par $\forall a, b \in \mathbb{Z}$,

$$a\mathcal{R}_n b \Leftrightarrow n \mid b - a$$

- a. En effet, si $r\sqrt{2} \in \mathbb{Q}$, alors $\sqrt{2} = \frac{r\sqrt{2}}{r} \in \mathbb{Q}$: Aaaaaaargh!
- b. Aaaaaaargh!
- c. En effet, soient $u, v \in \mathbb{R}$ avec $u \leq v$ par exemple. Alors

$$\begin{vmatrix} e^{iv} - e^{iu} \end{vmatrix} = \begin{vmatrix} \int_{u}^{v} ie^{it} dt \end{vmatrix}$$

$$< \int_{u}^{v} |ie^{it}| dt$$

$$< |v - u|$$

En prenant les parties réelles et imaginaires on obtient le résultat escompté.

Remarques $\forall x, y, a, b \in \mathbb{Z}$:

- -1 | x, x | 0 et x | x.
- $-x \mid y \text{ (dans } \mathbb{Z}) \text{ revient à dire } |x| \mid |y| \text{ (dans } \mathbb{N}).$
- Si $(x, y) \neq (0, 0), x \mid y \Rightarrow |x| < |y|.$
- Si $x \mid y$ et $y \mid z$ alors $x \mid z$
- Si $x \mid a$ et $x \mid b$ alors $x \mid au + bv$

Montrons que \mathcal{R}_n est une relation d'équivalence sur \mathbb{Z} :

- (1) Si $a \in \mathbb{Z}$, $n \mid 0 = a a$ donc $a\mathcal{R}_n a$
- (2) Soient $a, b \in \mathbb{Z}$ tels que $a\mathcal{R}_n b$. Alors $n \mid b a$ donc $\exists m \in \mathbb{Z}$ tel que b a = mn donc a b = -mn donc $n \mid a b$, d'où le résultat.
- (3) Soient $a, b, c \in \mathbb{Z}$ tels que $a\mathcal{R}_n b$ et $b\mathcal{R}_n c$. Alors

$$n \mid b-a$$
 et $n \mid c-b \Rightarrow n \mid b-a+c-b=c-a$

donc $a\mathcal{R}_n c$.

2.2 Propriétés des relations d'équivalence

2.2.1 Propriétés générales

Soit \mathcal{R} une relation d'équivalence sur E (non-vide).

- Pour $x \in E$, on note $\operatorname{cl}_{\mathcal{R}}(x)$ l'ensemble des éléments y en relation avec x, c'est-à-dire $\operatorname{cl}_{\mathcal{R}}(x) = \{y \in E | x\mathcal{R}y\}$.
- Soit $C \in \mathcal{P}(E)$, C est une classe d'équivalence s'il existe $x \in E$ tel que $C = \operatorname{cl}_{\mathcal{R}}(x)$.
- Si $x \in E$, $\operatorname{cl}_{\mathcal{R}}(x) \neq \emptyset$ car $x \in \operatorname{cl}_{\mathcal{R}}(x)$. Aucune classe d'équivalence n'est vide.
- Soient C, D deux classes d'équivalence et supposons que $C \cap D \neq \emptyset$. Soient $x, y \in E$ tels que $C = \operatorname{cl}_{\mathcal{R}}(x)$ et $D = \operatorname{cl}_{\mathcal{R}}(y)$ et $a \in C \cap D$. On a $x\mathcal{R}a$ et $y\mathcal{R}a$ donc $a\mathcal{R}y$ donc $x\mathcal{R}y$ donc $y \in \operatorname{cl}_{\mathcal{R}}(x)$. Si $z \in D$, $y\mathcal{R}z$ et on sait que $x\mathcal{R}y$ donc $x\mathcal{R}z$ donc $z \in C$. Ainsi $D \subset C$ et par symétrie $C \subset D$ donc D = C.

On déduit de la remarque précédente que

$$C \cap D \neq 0 \Rightarrow C = D$$

Par contraposée,

$$C \neq D \Rightarrow C \cap D = \emptyset$$

 $-x \in \operatorname{cl}_{\mathcal{R}}(x)$ si $x \in E$ donc x appartient toujours à une classe d'équivalence. On note E/\mathcal{R} l'ensemble des classes d'équivalence. Alors E/\mathcal{R} est une partie de $\mathcal{P}(E)$.

Soit Ω une partie de $\mathcal{P}(E)$. Ω est une partition de E si :

- (1) $\forall A \in \Omega, A \neq \emptyset$
- (2) $\forall A, B \in \Omega, A \neq B \Rightarrow A \cap B = \emptyset$
- (3) $\bigcup_{A \in \Omega} A = E$

2.2.2 Retour à l'exemple

 $E = \mathbb{Z}, n \in \mathbb{N}^*$. L'ensemble E/\mathcal{R}_n des classes d'équivalences pour \mathcal{R}_n se note $\mathbb{Z}/n\mathbb{Z}$. Pour $x \in \mathbb{Z}$, on note $\overline{x} = \operatorname{cl}_{\mathcal{R}_n}(x)$.

Pour $y \in \mathbb{Z}$,

$$y \in \overline{x} \iff y \equiv x \ [n]$$

$$\Leftrightarrow n \mid y - x$$

$$\Leftrightarrow \exists k \in \mathbb{Z}/y = x + nk$$

$$\Leftrightarrow y \in x + n\mathbb{Z}$$

Ainsi, $\overline{x} = x + n\mathbb{Z} = \{x + kn | k \in \mathbb{Z}\}.$

Montrons que $\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}$

- \Rightarrow Il est clair que $\{\overline{0},\overline{1},\ldots,\overline{n-1}\}\subset \mathbb{Z}/n\mathbb{Z}$.
- $\iff \text{Soit } C \in \mathbb{Z}/n\mathbb{Z}, \text{ alors } \exists x \in \mathbb{Z}/C = \overline{x}. \text{ On \'ecrit ensuite }^a \ x = nq + r \text{ avec } q \in \mathbb{Z} \text{ et } r \in [[0, n-1]]. \text{ Ainsi } x r = nq \text{ donc } n \mid x r \text{ donc } r \in \overline{x}. \text{ Or } r \in \overline{r} \text{ donc } r \in \overline{x} \cap \overline{r} \neq \emptyset \text{ donc } \overline{x} = \overline{r} \text{ donc } \overline{x} \in \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}.$

De plus, les classes $\overline{0}$, $\overline{1}$, ..., $\overline{n-1}$ sont deux à deux distinctes. En effet, soit $0 \le k < l \le n-1$ avec $\overline{k} = \overline{l}$. Alors $l \in \overline{l} = \overline{k}$ donc $k \equiv l$ [n] et $n \mid l-k$, ce qui est impossible b car $1 \le l-k \le n-1$.

 $\mathbb{Z}/n\mathbb{Z}$ est donc un ensemble fini et de cardinal n. Pour n=2, les classes $\overline{0}$ et $\overline{1}$ désignent les nombres pairs et impairs et forment bien une partition de \mathbb{Z} .

2.3 Lois sur $\mathbb{Z}/n\mathbb{Z}$

2.3.1 Opérations dans $\mathbb{Z}/n\mathbb{Z}$

La congruence modulo n est compatible avec les opérations sur $\mathbb Z$:

$$a \equiv a' \ [n]$$
 et $b \equiv b' \ [n] \Rightarrow a + b \equiv a' + b' \ [n]$ et $ab \equiv a'b' \ [n]$

Démonstration

- Montrons que $n \mid (a'+b')-(a+b)$. On sait que $n \mid a'-a$ et $n \mid b'-b$ donc $n \mid a'+b'-a-b$.
- Montrons que $n \mid a'b' ab$. On a :

$$a'b' - ab = a'b' + a'b - a'b - ab$$

= $(a' - a)b + a'(b' - b)$

Or $n \mid a' - a$ et $n \mid b' - b$ d'où le résultat.

Remarque $a \equiv a' [n] \Rightarrow \forall k \in \mathbb{N}, a^k \equiv a'^k [n]$

2.3.2 Lois de compositions internes de $\mathbb{Z}/n\mathbb{Z}$

Définitions longu $A, B \in \mathbb{Z}/n\mathbb{Z}$. Si $a, a' \in A$ et $b, b' \in B$, alors $a \equiv a'$ [n] et $b \equiv b'$ [n]. Donc $a + b \equiv a' + b'$ [n] et $ab \equiv a'b'$ [n].

Ainsi, $\overline{a+b} = \overline{a'+b'}$ et $\overline{ab} = \overline{a'b'}$. Il est donc cohérent de poser $\forall a \in A$ et $\forall b \in B$:

- $-A \dotplus B = \overline{a+b}$
- $-A\dot{\times}B = \overline{ab}$

On définit ainsi deux lois de composition interne sur $\mathbb{Z}/n\mathbb{Z}$. Ainsi, par définition, $\forall x, y \in \mathbb{Z}$:

$$-\overline{x} + \overline{y} = \overline{x+y}$$

$$-\overline{x} \times \overline{y} = \overline{xy}$$

Propriétés Prenons un exemple pour n = 4, alors $\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$. On a donc

_+	. ()	1	$\overline{2}$	3
0	()	1	$\overline{2}$	3
1		1	$\overline{2}$	3	0
2		2	3	0	1
3	•	3	0	1	$\overline{2}$

×	$\overline{0}$	1	$\overline{2}$	$\overline{3}$
0	0	0	0	0
1	0	1	2	3
2	0	2	0	$\overline{2}$
3	0	3	$\overline{2}$	1

On voit que:

a. En effectuant la division euclidienne de x par n dans $\mathbb{Z}.$

b. Aaaaaaargh!

- \dotplus est commutative, associative, admet un neutre $(\overline{0})$.
- $-\dot{x}$ est commutative, associative, admet un neutre ($\overline{1}$) et est distributive par rapport à $\dot{+}$.

Ainsi, $(\mathbb{Z}/n\mathbb{Z}, \dot{+}, \dot{\times})$ est un anneau commutatif ^a.

Quels sont les éléments inversibles par $\dot{\times}$? Soit $k \in [0, n-1]$. Alors :

$$k \text{ est inversible par } \dot{\times} \iff \exists C \in \mathbb{Z}/n\mathbb{Z}/\overline{k} \dot{\times} C = \overline{1}$$

$$\Leftrightarrow \exists l \in \mathbb{Z}/\overline{k} \dot{\times} \overline{l} = \overline{1}$$

$$\Leftrightarrow \exists l \in \mathbb{Z}/\overline{kl-1} = \overline{0}$$

$$\Leftrightarrow \exists l \in \mathbb{Z}/n \mid kl-1$$

$$\Leftrightarrow \exists l, m \in \mathbb{Z}/kl-1 = mn$$

$$\Leftrightarrow \exists l, m \in \mathbb{Z}/kl - mn = 1$$

$$\Leftrightarrow k \wedge n = 1$$

La dernière équivalence est obtenue grâce à la relation de Bézout ^b. Notons \mathcal{U} l'ensemble des inversibles de $\mathbb{Z}/n\mathbb{Z}$ par $\dot{\times}$. Alors $\mathcal{U} = \{\overline{k} | k \in [0, n-1], k \wedge n = 1\}$.

On remarque que $\overline{1} \in \mathcal{U}$. Si $a, b \in \mathcal{U}$, alors $a^{-1} \in \mathcal{U}$ (car a est bien inversible) et $a \times b \in \mathcal{U}$ (pour la même raison appliquée à $a \times b$).

Démonstration du théorème de Fermat On remarque que si $x, y \in \mathbb{Z}$, alors $x \equiv y$ $[n] \Leftrightarrow y \in \overline{x} \Leftrightarrow \overline{y} = \overline{x}$. Soit $n \in \mathbb{N}^*, a \in \mathbb{Z}$ tel que $a \wedge n = 1$ et $g = \overline{a} \in G = \mathcal{U}(\mathbb{Z}/n\mathbb{Z})^c$. Soit

$$\sigma: G \longrightarrow G$$

$$z \longmapsto q \times z$$

Alors σ est bien définie car G est stable par $\dot{\times}$. Notons g^{-1} l'inverse de g par $\dot{\times}$ et soit

$$\tau: \ G \longrightarrow G$$
$$z \longmapsto q^{-1} \dot{\times} z$$

Pour $z \in G$,

$$\sigma \circ \tau = g \dot{\times} (g^{-1} \dot{\times} z)
= \overline{1} \dot{\times} z
= z$$

De plus,

$$\tau \circ \sigma = g^{-1} \dot{\times} (g \dot{\times} z)$$
$$= z$$

Donc σ et τ sont deux bijections réciproques l'une de l'autre. Notons $G = \{z_1, z_2, \dots, z_N\}$ et $N = \varphi(n)$. On a aussi puisque σ est bijective, $G = \{g \dot{\times} z_1, g \dot{\times} z_2, \dots, g \dot{\times} z_N\}$.

a. Il est clair que pour $x \in [0, n-1]$, $\overline{n-x}$ est l'opposé de \overline{x} par rapport à \dotplus .

b. Définissons la fonction indicatrice d'Euler.

Pour $n \in \mathbb{N}^*$, $\varphi(n) = \operatorname{Card} \{k \in [0, n-1] \mid k \wedge n = 1\}$. On a alors $\varphi(1) = 1$, $\varphi(2) = 1$, $\varphi(3) = 2$,...

Si p est un nombre premier alors $\varphi(p) = p - 1$.

c. Ensemble des éléments de $\mathbb{Z}/n\mathbb{Z}$ inversibles par \times .

Soit $P = \prod_{k=1}^{N} z_k \in G$. \times est commutative donc

$$P = \prod_{k=1}^{N} g \dot{\times} z$$

$$= \prod_{k=1}^{N} g \dot{\times} \prod_{k=1}^{N} z_{k}$$

$$= \prod_{k=1}^{N} g \dot{\times} P$$

$$= g^{N} \dot{\times} P$$

D'où:

$$\overline{1} = P^{-1} \dot{\times} P
= g^{N} \dot{\times} P \dot{\times} P^{-1}
= g^{N}
= \overline{a}^{N}
= \overline{a}^{N}$$

Donc $a^N \equiv 1$ [n]. Si $a \wedge n = 1$, alors $a^{\varphi(n)} \equiv 1$ [n]. En particulier, si p est un nombre premier alors, pour tout $a \in \mathbb{Z}$ tel que p ne divise pas a^a , $a^{p-1} \equiv 1$ [p]. D'où $a^p \equiv 0$ [p], relation valable même si $p \mid a$.

3 Entiers naturels

3.1 Construction de N grâce aux axiomes de Péano

3.1.1 Axiomes de Péano

Il existe un ensemble non vide noté \mathbb{N} , muni d'une relation d'ordre totale \leq vérifiant :

- (1) Toute partie non vide de N admet un plus petit élément (ou minimum).
- (2) Toute partie non vide majorée de N admet un maximum.
- (3) N n'est pas majoré.

On notera 0 le plus petit élément de \mathbb{N} et $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$. \mathbb{N}^* n'est pas vide car sinon \mathbb{N} serait majorée par 0.

3.1.2 Successeur, prédécesseur

- Soit $m \in \mathbb{N}$. N n'étant pas majorée, alors $A = \{x \in \mathbb{N} | x > m\} \neq \emptyset$. On note $s = \min A$ le successeur de m. On a donc m < s(m) et $\forall n \in \mathbb{N}, n > m \Rightarrow n \geqslant s(m)$.
- Soit $m \in \mathbb{N}^*$. Alors $B = \{x \in \mathbb{N} | x < m\} \neq \emptyset$ et admet un maximum. On note $p = \max A$ le prédécesseur de m. On a donc m > p(m) et $\forall n \in \mathbb{N}, n < m \Rightarrow n \leqslant p(m)$.

On note 1 = s(0), 2 = s(1), ..., 9 = s(8).

Remarque

- Pour $m \in \mathbb{N}$, $s(m) \in \mathbb{N}^*$ et p(s(m)) = m. En effet, m < s(m) donc $m \le p(s(m))$. Si m < p(s(m)), alors $p(s(m)) \ge s(m)$, ce qui n'est pas possible b.
- a. C'est à dire $a \not\equiv 0$ [p]
- b. Aaaaaaargh!

– De même, pour $n \in \mathbb{N}^*$, $p(m) \in \mathbb{N}$ et s(p(m)) = m.

Ainsi $s: \mathbb{N} \longrightarrow \mathbb{N}^*$ et $p: \mathbb{N}^* \longrightarrow \mathbb{N}$ donc $p \circ s = \mathrm{Id}_{\mathbb{N}}$ et $s \circ p = \mathrm{Id}_{\mathbb{N}^*}$. p et s sont des bijections réciproques l'une de l'autre.

3.1.3 Principe de récurrence

Soit P un prédicat sur \mathbb{N} . On suppose que : -P(0) est vrai.

 $-\forall n \in \mathbb{N}, P(n) \text{ vrai} \Rightarrow P(s(n)) \text{ vrai.}$

Alors, $\forall n \in \mathbb{N}, P(n)$ est vraie.

Démonstration Supposons que $A = \{n \in \mathbb{N} | P(n) \text{ est faux}\} \neq \emptyset$. Alors on peut considérer $a = \min A$. Or $0 \notin A$ donc 0 < a et p(a) < a donc $p(a) \notin A$ donc P(p(a)) est vrai donc P(s(p(a))) = P(a) est vrai, ce qui est impossible a.

3.1.4 Opérations

Addition

On définit une addition + par récurrence en posant :

- (1) $\forall n \in \mathbb{N}, n+0=n$
- $(2) \ \forall n, m \in \mathbb{N}, \ n + s(m) = s(m+n)$

Ainsi,

$$2+1 = 2+s(0)$$

= $s(0+2)$
= $s(2)$
= 3

On vérifie que + est :

- commutative, associative, admet 0 comme neutre.
- $-\forall n \in \mathbb{N}, s(n) = n + 1.$
- -+ est compatible avec l'ordre : $\forall a, b \in \mathbb{N}, a \leq b \Rightarrow a+c \leq b+c$.

Pour tous entiers naturels a et b, si $a \le b$ alors il existe un unique entier naturel c tel que a + c = b. c se note b - a. On vérifie alors que $\forall n \in \mathbb{N}, p(n) = n - 1$.

Multiplication

On définit une multiplication \times par récurrence en posant :

- (1) $\forall n \in \mathbb{N}, n \times 0 = 0.$
- (2) $\forall n, m \in \mathbb{N}, n \times s(m) = n \times m + n.$

On a $\forall \in \mathbb{N}$, $n \times 1 = n \times s(0) = n \times 0 + n = n$. On vérifie que :

- × est commutative, associative, admet 1 comme neutre.
- × est compatible avec l'ordre : $\forall a, b, c \in \mathbb{N}, a \leq b \Rightarrow a \times c \leq b \times c$.

3.1.5 Reformulation du principe de récurrence

Récurrence simple Soit P un prédicat sur \mathbb{N} . On suppose que :

- (1) P(0) est vrai.
- (2) $\forall n \in \mathbb{N}, (P(n) \Rightarrow P(n+1)).$

Alors, $\forall n \in \mathbb{N}, P(n)$ est vrai.

a. Aaaaaaargh!

Récurrence simple à partir de l'entier n_0 Soit ^a P un prédicat sur \mathbb{N} , $n_0 \in \mathbb{N}$. On suppose que :

- (1) $P(n_0)$ est vrai.
- (2) $\forall n \in \mathbb{N}, (P(n) \Rightarrow P(n+1)).$

Alors, $\forall n \geq n_0, P(n)$ est vrai.

La démonstration se fait en appliquant une récurrence simple à $Q(n) = P(n + n_0)$.

Récurrence double Soit P un prédicat sur \mathbb{N} . On suppose que :

- (1) P(0) et P(1) est vrai.
- (2) $\forall n \in \mathbb{N}, (P(n) \text{ et } P(n+1) \Rightarrow P(n+2)).$

Alors, $\forall n \in \mathbb{N}, P(n)$ est vrai.

La démonstration se fait en appliquant une récurrence simple à Q(n) = P(n) et P(n+1).

Récurrence forte Soit P un prédicat sur \mathbb{N} . On suppose que :

- (1) P(0) est vrai.
- (2) $\forall n \in \mathbb{N}, (\forall k \in [0, n], P(k) \Rightarrow P(n+1)).$

Alors, $\forall n \in \mathbb{N}, P(n)$ est vrai.

La démonstration se fait en appliquant une récurrence simple à $Q(n) = \forall k \in [0, n], P(k)$.

Exemple Tout entier relatif $n \ge 2$ s'écrit comme un produit de nombres premiers ^b.

Soit H_n : « n est le produit de nombres premiers ».

- $-H_2$ est vrai car 2 est premier.
- Soit $n \in \mathbb{N}$, $n \ge 2$. Supposons que $\forall k \in [2, n]$, H_k est vrai et prouvons que H_{n+1} est vrai.
 - o Si n+1 est premier, alors H_{n+1} est vrai.
 - o Si n+1 n'est pas premier, n+1 possède un diviseur non-trivial $u \in [2, n]$ donc n+1 = uv avec $v \in [2, n]$. Or H_u et H_v sont vrais donc u et v s'écrivent comme un produit de nombres premiers donc n+1 aussi donc H_{n+1} est vrai.

3.2 Division euclidienne

3.2.1 Généralités

Soit $a \in \mathbb{N}$, $b \in \mathbb{N}^*$. Alors il existe un unique couple $(q, r) \in \mathbb{N}^2$ appelé division euclidienne de a par b tel que :

- $(1) \ a = bq + r$
- (2) r < b

Démonstration Soit $A = \{k \in \mathbb{N} | kb \leq a\}$.

- Supposons que (q,r) existe et vérifie 1. et 2. Alors $a=bq+r\geqslant bq$ donc $q\in A$. Si l>q, alors $bl\geqslant b(q+1)=bq+b\geqslant bq+r=a$ donc $l\notin A$. Ainsi, pour $l\in \mathbb{N},\ l\in A\Rightarrow l< q$ donc nécessairement $q=\max A$ donc r=a-bq.
- -A est non vide car $0 \in A$. A est majorée par a^c donc on peut considérer $q = \max A$ donc $bq \leq a$. Soit r = a bq donc a = bq + r et $r < b^d$.
- a. Résultat aussi appelée théorème de NIGEL, ou théorème d'AMÉNOFIS.
- b. On rappelle que :
- $-p \in \mathbb{N}$ est premier si $p \ge 2$ et si les deux seuls diviseurs de p dans \mathbb{N} sont 1 et p.
- $-b \mid a$ dans \mathbb{N} signifie qu'il existe un entier naturel c tel que a = bc.
- $\forall a \in \mathbb{N}, \ a \mid a, 1 \mid a \text{ et } a \mid 0.$
- $\ \forall a, b \in \mathbb{N}, \ b \mid a \Rightarrow b \in [1, a]$
- c. En effet si $k \ge a+1$ alors $kb \ge ab+b \ge a$ or $b \ge 1$ donc $k \notin A$ donc $k \in A \Rightarrow k < a+1$ donc a majore A.
- d. En effet si $r \ge b$, r = b + l avec $l \in \mathbb{N}$ d'où a = b(q + 1) + l donc $b(q + 1) \le a$ donc $q + 1 \in A$, ce qui n'est pas possible car q est le maximum de A. Aaaaaargh!

Vocabulaire

- Si (q,r) est la division euclidienne de a par b dans \mathbb{N} :
 - \circ q est le quotient de la division euclidienne de a par b.
 - \circ r est le reste de la division euclidienne de a par b.
- $-b \mid a \Leftrightarrow r = 0$. En effet :
 - \Leftarrow Évident ^a!
 - \Rightarrow Si $b \mid a, a = bc = bc + 0$ et 0 < b donc (c, 0) est la division euclidienne de a par b et r = 0.

3.2.2 Applications

Division euclidienne dans \mathbb{Z}

Soient $a \in \mathbb{Z}$ et $b \in \mathbb{Z}^*$. Alors il existe un unique couple d'entiers naturels (q, r) tel que :

- $(1) \ a = bq + r$
- (2) $0 \le r < |b|$

Démonstration

Unicité Soient (q_1, r_1) et (q_2, r_2) dans \mathbb{Z}^2 deux couples vérifiant les deux conditions énoncées ci-dessus. Alors,

$$bq_1 + r_1 = bq_2 + r_2 \Leftrightarrow r_1 - r_2 = b(q_2 - q_1)$$

 $\Leftrightarrow |r_1 - r_2| = |b||q_2 - q_1|$

Donc $|r_2 - r_1| \in [0, |b| - 1]$. Si $q_1 \neq q_2$, alors $|b| |q_1 - q_2| > |b|$, ce qui est impossible b. Donc $q_1 = q_2$ puis $r_1 = r_2$.

Existence Soit (q', r') la division euclidienne de |a| par |b| dans \mathbb{N} . Alors |a| = q' |b| + r' avec $r' \in [0, |b| - 1]$. On écrit $|a| = \alpha a$ où $\alpha \in \{\pm 1\}$ et $|b| = \beta b$ où $\beta \in \{\pm 1\}$, donc

$$\alpha a = a'\beta b + r' \Leftrightarrow a = \alpha\beta ba' + \alpha r' \quad \text{car } \alpha^2 = 1$$

- Si $\alpha = 1$, $q = \beta q'$ et r = r'.
- Si $\alpha = -1$, $a = -\beta q'b r'$:
 - \circ Si r'=0, on prend $q=-\beta q'$ et r=0.
 - Si $r' \in [1, |b| 1]$, $a = (-\beta'q 1)b + b r'$ car $b r \in [0, |b| 1]$ donc on prend $q = -\beta q' 1$ et r = b r'.

Petite histoire : écriture en base b Pour la suite, $b \in \mathbb{N}$ et $b \ge 2$, on appellera b la base d'écriture. Soit $a \in \mathbb{N}$. On définit deux suites d'entiers (q_k) et (r_k) avec $k \ge 0$ par récurrence en posant :

- (1) (q_0, r_0) est la division euclidienne de a par b.
- (2) Pour $k \in \mathbb{N}$, (q_{k+1}, r_{k+1}) est la division euclidienne de q_k par b.

On a:

$$a = bq_0 + r_0$$

$$= b^2q_1 + br_1 + r_0$$

$$= b^3q_2 + b^2r_2 + br_1 + r_0$$

$$= b^4q_3 + b^3r^3 + b^2r_2 + br_1 + r_0$$

On pose P_n : « $a = b^{n+1}q_n + \sum_{l=0}^n r_l b^l$ » -P est vrai pour $n = \{0, 1, 2\}$.

a. Obvious!

b. Aaaaaaargh!

- Supposons que P_n est vrai pour $k \in \mathbb{N}$. On a alors :

$$a = b^{n+1}q_n + \sum_{l=0}^{n} r_l b^l$$

$$= b^{n+1} (bq_{n+1} + r_{n+1}) + \sum_{l=0}^{n} r_l b^l$$

$$= b^{n+2}q_{n+1} + \sum_{l=0}^{n+1} r_l b^l$$

Lemme Il n'existe pas de suite d'entiers naturels strictement décroissante.

En effet, si $(p_n)_{n\in\mathbb{N}}$ est une telle suite, $A=\{p_n|n\in\mathbb{N}\}$ est une partie non vide de \mathbb{N} qui n'admet pas de minimum, ce qui est impossible a.

Revenons au problème principal et supposons que $\forall n \in \mathbb{N}, q_n \neq 0$. Alors pour $n \in \mathbb{N}, q_n = bq_{n+1} + r_{n+1}$ avec $0 \leq r_{n+1} < b$ donc

$$q_n \geqslant bq_{n+1} \geqslant 2q_{n+1} > q_{n+1} \quad \text{car } q_{n+1} \neq 0$$

Donc (q_n) est une suite d'entiers naturels strictement décroissante, ce qui est impossible b.

Ainsi, $\exists l \in \mathbb{N}$ tel que $q_j = 0$. Soit alors $m = \min\{j \in \mathbb{N} | q_j = 0\}$ donc $q_m = 0$. La division euclidienne de 0 par b est (0,0) donc $q_{m+1} = 0 = r_{m+1}$ puis, par récurrence, $\forall l > m, q_l = r_l = 0$.

Remarque Si $a \neq 0, r_m \neq 0$.

En effet:

- Si m = 0, $q_0 = 0$ et $r_0 = a \neq 0$.
- Si $m \ge 1$, $q_{m-1} = bq_m + r_m = r_m$ et $q_{m-1} \ne 0$ par hypothèse.

On a donc :

$$a = \underbrace{b^{m+1}q_m}_{0} + \sum_{l=0}^{m} b^l r_l = \sum_{l=0}^{m} b^l r_l$$

Bilan (provisoire) Si $a \in \mathbb{N}^*$, $\exists m \in \mathbb{N}$ et une liste (r_0, \dots, r_m) d'entiers compris entre 0 et b-1 alors :

- $(1) r_m \geqslant 1$
- $(2) \ a = \sum_{l=0}^{m} r_l b^l$

Supposons qu'il existe $n \in \mathbb{N}$ et (s_0, \dots, s_n) une liste d'entiers naturels appartenant à [0, b-1] tels que $s_n \ge 1$ et $a = \sum_{k=0}^{n} s_k b^k$.

- Supposons que n > m. Alors

$$a = \sum_{l=0}^{n} s_l b^l = \sum_{l=0}^{n} r'_l b^l \text{ avec } \begin{cases} r'_l = r_l & \text{si } l \leq m \\ r'_l = 0 & \text{si } l > m \end{cases} = \sum_{l=0}^{m} r_l b^l$$

Ainsi,

$$s_n b^n = \sum_{l=0}^{n-1} (r'_l - s_l) b^l$$

a. En effet, $\forall n \in \mathbb{N}, p_{n+1} < p_n$ or toute partie non vide de \mathbb{N} admet un plus petit élément donc aaaaaaargh!

b. Aaaaaaargh!

On a $s_n b^n \ge b^n$ et

$$\left| \sum_{l=0}^{n-1} \left(r'_l - s_l \right) b^l \right| \leq \sum_{l=0}^{n-1} \underbrace{\left| r'_l - s_l \right|}_{\leq b-1} b^l$$

$$\leq (b-1) \sum_{l=0}^{n-1} b^l$$

$$\leq (b-1) \frac{b^n - 1}{b-1} \quad \text{car } b \neq 1$$

$$\leq b^n$$

Ce qui est impossible a car ceci reviendrait à dire que $s_n b^n \leq b^n$.

– De même, on ne peut pas avoir m < n donc m = n.

Montrons maintenant que $\forall k \in [0, n], r_k = s_k$.

Supposons qu'il existe au moins un $k \in [0, n]$ tel que $r_k \neq s_k$, alors on peut considérer

$$j = \min \{ p \in [0, n] | r_p \neq s_p \}$$

Alors

$$\sum_{l=0}^{m} (r_l - s_l) b^l = 0$$

$$= (r_j - s_j) b^j + \sum_{l=0}^{j-1} (r_l - s_l) b^l$$

D'où:

$$\underbrace{\left|r_{j}-s_{j}\right|b^{j}}_{\geqslant b^{j}} = \underbrace{\left|\sum_{l=0}^{j-1}\left(r_{l}-s_{l}\right)b^{l}\right|}_{\leqslant b^{j}}$$

Ce qui est impossible b .

Conclusion Si $a \in \mathbb{N}^*$ et $b \in \mathbb{N}$, $n \ge 2$, alors il existe un unique entier naturel n et une unique liste (r_0, \ldots, r_n) d'entiers compris entre 0 et b-1 tels que $r_n \ge 1$ et

$$a = \sum_{k=0}^{n} r_k b^k$$

On note alors $a = \overline{r_m \cdots r_0}^b$, et (r_0, \dots, r_n) est la liste de chiffres de a en base b.

Pour écrire a sans ambiguïté il faut disposer d'un symbole par chiffre disponible, soit b symboles. Si $b \le 10$ on prendra les symboles usuels (0, 1, etc). Si b > 10 il faut ajouter d'autres symboles pour représenter les autres entiers de [[10, b-1]].

En base hexadécimale, A = 10, B = 11, C = 12, ..., F = 14.

Je note ici un programme Maple qui donne l'écriture en base b d'un nombre a:

```
base := proc (a::posint, b::posint)
local q, r, i, q0, k, S;
if 1 < b then
   q := iquo(a, b);
   array(0 .. 1000, []);</pre>
```

a. Aaaaaaargh!

b. Aaaaaaargh!

```
r[0] := irem(a, b);
  i := 1;
  while q <> 0 do
     q0 := q;
      q := iquo(q, b);
      r[i] := irem(q0, b);
      i := i+1;
      end do;
  if b \le 10 then
     S := sum(10^k*r[k], k = 0 .. i-1);
      print(S[b]);
  else for k from 0 to i-1 do
     print(r[k]);
      end do;
     print ("Le chiffre du bas du résultat correspond au chiffre le plus à gauche dans
      une écriture plus conventionnelle, les chiffres supérieurs ou égaux à 10 sont
      remplacés par des symboles ordinairement : pour une base hexadécimale,
      A=10,etc");
  end if;
  else
      print("La base doit être supérieure ou égale à 2!");
end if;
end proc;
```

3.3 Plus Grand Commun Diviseur et éléments d'arithmétique

3.3.1 PGCD

Définitions

```
| – Pour n \in \mathbb{N}, on note \mathcal{D}(n) l'ensemble des diviseurs de n dans \mathbb{N}. Si n \neq 0, alors \mathcal{D}(n) \subset [1, n].
```

- Soient $a, b \in \mathbb{N}$ tels que $(a, b) \neq (0, 0)$. Alors l'ensemble $\mathcal{D}(a) \cap \mathcal{D}(b)$ est une partie de \mathbb{N} non vide $(1 \mid a \text{ et } 1 \mid b)$ et majorée (par $\max(a, b)$). On appelle PGCD (a, b) ou $a \wedge b$ l'entier $\max(\mathcal{D}(a) \cap \mathcal{D}(b))$.
- On dit que a et b sont premiers entre eux si $a \land b = 1$. Ceci signifie que $\mathcal{D}(a) \cap \mathcal{D}(b) = \{1\}$, c'est-à-dire que 1 est le seul diviseur commun à a et à b.

Propriétés

```
- Soit a, b \in \mathbb{N}^*. Alors a \mid b \Leftrightarrow \operatorname{PGCD}(a, b) = a. En effet :

⇒ On a \mathcal{D}(a) \subset \mathcal{D}(b) donc \mathcal{D}(a) \cap \mathcal{D}(b) = \mathcal{D}(a) et \max(\mathcal{D}(a)) = a.

⇐ On sait que a \land b \in \mathcal{D}(b) donc a \land b \mid b.

- Soit p un nombre premier et a \in \mathbb{N}^*. Alors

p \mid a \quad \text{ou} \quad p \land a = 1
```

Ces deux possibilités s'excluent mutuellement.

- On p et q sont deux nombres premiers distincts, alors $p \wedge q = 1$.

Algorithme d'Euclide

```
Soit b \in \mathbb{N}^* et q, r \in \mathbb{N} tels que a = bq + r. Alors a \wedge b = b \wedge r.
```

```
En effet, \mathcal{D}(a) \cap \mathcal{D}(b) = \mathcal{D}(b) \cap \mathcal{D}(r):

- Si k \mid a et k \mid b, alors k \mid b et k \mid a - bq = r.

- Si k \mid b et k \mid r, alors k \mid b et k \mid bq + r = a.
```

Application On dispose de l'algorithme d'EUCLIDE pour déterminer le PGCD de deux entiers non nuls. Soient $a, b \in \mathbb{N}^*$. On considère le processus suivant :

$$\begin{array}{cccc} a = bq_0 + r_0 & 0 < r_0 < b \\ b = q_1r_0 + r_1 & 0 < r_1 < r_0 \\ r_0 = q_2r_1 + r_2 & 0 < r_2 < r_1 \\ & \vdots \\ r_{k-1} = q_{k+1}r_k + r_{k+1} & 0 < r_{k+1} < r_k \\ & \vdots \\ r_{N-1} = q_{N+1}r_N + 0 & 0 < r_N < r_{N-1} \end{array}$$

On finit par parvenir à 0. Sinon la suite d'entiers des restes $(r_k)_{k\in\mathbb{N}}$ serait strictement décroissante et infinie, ce qui est impossible ^a. Le processus se termine donc nécessairement.

On a alors:

$$a \wedge b = b \wedge r_0 = r_0 \wedge r_1 = \dots = r_{N-1} \wedge r_N = r_N \wedge 0 = r_N$$

 $a \wedge b$ est ainsi le dernier reste non nul dans la suite des opérations de l'algorithme d'Euclide.

3.3.2 Éléments d'arithmétique

Théorème de Bézout Considérons la suite des opérations de l'algorithme d'Euclide appliquée à a et à b:

$$\begin{array}{cccc} a = bq_0 + r_0 & 0 < r_0 < b \\ b = q_1r_0 + r_1 & 0 < r_1 < r_0 \\ r_0 = q_2r_1 + r_2 & 0 < r_2 < r_1 \\ & \vdots \\ r_{k-1} = q_{k+1}r_k + r_{k+1} & 0 < r_{k+1} < r_k \\ & \vdots \\ r_{N-1} = q_{N+1}r_N + 0 & 0 < r_N < r_{N-1} \end{array}$$

Démontrons par récurrence que $\forall k \in [-1, N-1]$,

$$r_k = au_k + bv_k$$

- Notons $r_{-1} = b$, $u_{-1} = 0$ et $v_{-1} = 1$. Ainsi

$$r_{-1} = u_{-1}a + v_{-1}b$$

De même, posons $u_0 = 1$ et $v_0 = -q_0$ alors

$$r_0 = u_0 a + v_0 b$$

- Soit $k \in [0, N-1]$. Supposons avoir trouvé les relatifs u_{k-1} , v_{k-1} , u_k et v_k tels que que $r_{k-1} = au_{k-1} + bv_{k-1}$ et $r_k = u_k a + v_k b$. On a d'après l'algorithme d'EUCLIDE :

$$r_{k-1} = q_{k+1}r_k + r_{k+1} \iff u_{k-1}a + v_{k-1}b = q_{k+1}(u_ka + v_kb) + r_{k+0}$$
$$\Leftrightarrow r_{k+1} = a\underbrace{(u_{k-1} - q_{k+1}u_k)}_{\in \mathbb{Z}} + b\underbrace{(v_{k-1} - q_{k+1}v_k)}_{\in \mathbb{Z}}$$

- Ainsi, $\forall k \in [-1, N]$, $\exists u_k, v_k \in \mathbb{Z}$ tels que

$$r_k = au_k + bv_k$$

En particulier pour k = N, $r_N = a \wedge b$.

On en déduit un énoncé du théorème de BÉZOUT : soient $a, b \in \mathbb{N}^*$, alors il existe un couple de relatifs (u, v) tel que

$$a \wedge b = au + bv$$

a. Aaaaaaargh!

Corollaire L'ensd un diviseur commun à a et à b. Alors $d \leq a \wedge b$ et même $d \mid a \wedge b$.

En effet, soient $u, v \in \mathbb{Z}$ tels que $a \wedge b = au + bv$. $d \mid b$ et $d \mid a$ dans \mathbb{N} donc dans \mathbb{Z} donc $d \mid au + bv = a \wedge b$ dans \mathbb{Z} . Or $d, a \wedge b \in \mathbb{N}^*$ donc $d \mid a \wedge b$ dans \mathbb{N} .

Théorème de Bézout : le retour

Soient $a, b \in \mathbb{N}$ tels que $(a, b) \neq (0, 0)$. Alors

$$a \wedge b = 1 \Leftrightarrow \exists u, v \in \mathbb{Z}/au + bv = 1$$

Démonstration

- ⇒ Déjà fait ^a (application directe du précédent énoncé de ce même théorème).
- \Leftarrow Soit d est un diviseur de a et b dans N. Alors $d \mid au + bv \text{ donc } d \in \{\pm 1\}$ or $d \in \mathbb{N}$ donc d = 1 donc

$$\max \left(\mathcal{D}\left(a\right) \cap \mathcal{D}\left(b\right) \right) =1$$

Théorème de CARL FRIEDRICH GAUSS

Soient $a, b \in \mathbb{N}$. On suppose $a \wedge b = 1$ et $a \mid bc$. Alors $a \mid c$.

Démonstration $a \wedge b = 1$ donc $\exists u, v \in \mathbb{Z}/au + bv = 1$. Donc c = acu + bcv or $a \mid acu$ et $a \mid bc$ donc $a \mid bcv$ donc $a \mid c$.

Application Soit p un nombre premier, $a, b \in \mathbb{N}^*$. Alors

$$p \mid ab \Leftrightarrow p \mid a \quad \text{ou} \quad p \mid b$$

En effet:

- \Rightarrow Évident ^b!
- \Leftarrow Si $p \nmid a$, alors $p \land a = 1$ car p est premier d'où $p \mid b$ d'après le théorème de c Gauss.

Plus globalement, si $p \mid a_1 a_2 \cdots a_n$, alors p divise au moins l'un des a_i .

Variante du théorème de Gauss Soient $a, b \in \mathbb{N}^*$. Alors

$$(a \land b = 1 \quad \text{et} \quad a \land c = 1) \Leftrightarrow a \land (bc) = 1$$

Démonstration

- \Leftarrow Évident d! Si $d \mid a$ et $d \mid b$ alors $d \mid a$ et $d \mid bc$ donc $d \mid a \land (bc) = 1$ donc $a \land b = 1$. De même, $a \land c = 1$.
- \Rightarrow Il existe $u, v, s, t \in \mathbb{Z}$ tels que au + bv = 1 et as + ct = 1. Or :

$$1 = 1 \cdot 1$$

$$= (au + bv) (as + ct)$$

$$= a(\underbrace{uas + utc + bvs}) + b \underbrace{ctv}_{\in \mathbb{Z}}$$

Donc $a \wedge (bc) = 1$.

- a. Ou, pour rester fidèle à ce cher M. Sellès, « djafé! »
- $b. \,\, \ll \,Obvious\,!\,\, \rangle$
- c. Carl Friedrich!
- d. « Obvious! »

Généralisation Si $a \wedge b_1 = a \wedge b_2 = \cdots = a \wedge b_n$, alors $a \wedge \left(\prod_{k=1}^n b_k\right) = 1$.

Corollaire Supposons que $a \wedge b = 1$. Alors $\forall \beta \in \mathbb{N}, \ a \wedge b^{\beta} = 1$. De plus, $\forall \beta, \alpha \in \mathbb{N}, \ a^{\alpha} \wedge b^{\beta} = 1$.

Petite histoire sur l'unicité de l'écriture en produit de facteurs premiers d'un entier naturel Soient $r, s \in \mathbb{N}^*$ Form p_1, p_2, \dots, p_r et q_1, q_2, \dots, q_s des nombres premiers. Supposons que :

$$\prod_{k=1}^{r} p_k = \prod_{i=1}^{s} q_i$$

Alors $p_1 \mid \prod_{i=1}^s q_i$ donc p_1 divise au moins l'un des q_i .

Supposons, (quitte à renuméroter les q_i) que $p_1 \mid q_1$. Or q_1 est premier donc $p_1 \in \{1, q_1\}$ or p_1 est premier donc $p_1 = q_1$. Il reste alors

$$\prod_{k=2}^{r} p_k = \prod_{i=2}^{s} q_i$$

En réitérant ceci (récurrence), on prouve que r = s et, aux permutations près, $q_i = p_i$, c'est-à-dire qu'il existe une application $\sigma : [1, r] \longrightarrow [1, s]$ bijective telle que $\forall 1 \leq i \leq r, p_i = q_{\sigma(i)}$.

Théorème Tout entier naturel $n \ge 2$ s'écrit

$$n = \prod_{k=1}^{r} p_k$$

avec $r \in \mathbb{N}^*$ et p_1, p_2, \dots, p_r des nombres premiers.

Cette écriture est unique à l'ordre près des termes du produit.

4 Ensembles finis

4.1 Définitions, faits de base

4.1.1 Définitions

Soit E un ensemble. E est fini s'il existe un $n \in \mathbb{N}$ et une bijection de E dans $[1, n] = \{k \in \mathbb{N} | 1 \le k \le n\}$. Avec cette définition, si $E = \emptyset$, E est en bijection avec lui même : $\emptyset = [1, 0]$.

Si $n \in \mathbb{N}^*$, \emptyset n'est pas en bijection avec $[1, n] \neq \emptyset^a$ donc n = 0 est l'unique entier naturel tel que \emptyset est en bijection avec [1, n].

a. C'est à dire qu'il n'existe aucune application bijective de [[1, n]] dans \varnothing .

Lemme Soit $n, p \in \mathbb{N}^*$. Alors :

- (1) Il existe une injection de [1, n] dans [1, p] si et seulement si $n \leq p$.
- (2) Il existe une surjection de [1, n] dans [1, p] si et seulement si $n \ge p$.
- (3) Il existe une bijection de [1, n] dans [1, p] si et seulement si n = p.

Démonstration

- (1) \Leftarrow Évident ^a! $\llbracket 1, n \rrbracket \longrightarrow \llbracket 1, p \rrbracket$ fait l'affaire ^bSo $x \longmapsto x$
 - \Rightarrow Soit H_n : « Pour $p \in \mathbb{N}^*$, s'il existe une injection de [1, n] dans [1, p], alors $n \leq p$ ».
 - $-H_1$ est trivial.
 - Soit $n \in \mathbb{N}^*$. Supposons, que H_n , st vrai et prouvons H_{n+1} . Soit $p \in \mathbb{N}^*$, supposons qu'il existe f: [1, n+1] → [1, p] injective et montrons que $n+1 \leq p$.
 - Supposons que f(n+1) = p. On a $\forall k \in [1, n]$, $f(k) \neq f(n+1) = p$ donc $f(k) \in [1, p-1]$, ce qui implique que $p-1 \geq 1$. Posons $g: [1, n] \longrightarrow [1, p-1]$. g est injective car f est injective $k \longmapsto f(k)$

donc $n \leq p - 1 \Leftrightarrow n + 1 \leq p$.

o Supposons que $l = f(n+1) \neq p$. Soit

$$\begin{split} \tau: & \hspace{0.1in} \llbracket 1,p \rrbracket \longrightarrow \llbracket 1,p \rrbracket \\ & \hspace{0.1in} l \longmapsto p \\ & \hspace{0.1in} p \longmapsto l \\ & \hspace{0.1in} x \notin \{l,p\} \longmapsto x \end{split}$$

Alors τ est bijective donc $\tau \circ \tau = \operatorname{Id}_{[[1,p]]}{}^c$. Alors $\tilde{f} = \tau \circ f$ est injective de [1,n] dans [1,p] par composition d'applications injectives et $\tilde{f}(n+1) = \tau(l) = p$. On est là ramené au premier cas.

4.1.2 Théorème et définition

Soit E un ensemble fini. Alors il existe $n \in \mathbb{N}$ tel que E est en bijection avec [1, n]. n s'appelle le cardinal de E et se note $\operatorname{Card} E$ ou |E| ou #E.

Démonstration Si $E = \emptyset$, on a vu que 0 est l'unique $n \in \mathbb{N}$ tel que E est en bijection avec [1, n] donc $\operatorname{Card}\emptyset = 0^d$.

Supposons que $E \neq \emptyset$, alors E n'est pas en bijection avec $\emptyset = [1,0]$. Soit $n,p \in \mathbb{N}^*$ tels que E est en bijection avec [1,n] et [1,p] et soit $f:[1,n] \longrightarrow E$ bijective et $g:[1,p] \longrightarrow E$ bijective. Alors $g^{-1} \circ f$ est bijective et va bien de [1,n] dans [1,p] donc n=p.

Application Soient $p, q \in \mathbb{N}$ tels que $p \leq q$. Alors $[1, q - p + 1] \longrightarrow [p, q]$ est une bijection donc [p, q] est $x \longmapsto p - x + 1$ fini $p \in \mathbb{N}$ donc Card [p, q] = q - p + 1.

Proposition

Soit E un ensemble fini et X un ensemble. Si X est en bijection avec E, alors X est fini et CardX = CardE.

Démonstration Soit $f: E \longrightarrow X$ bijective et $\varphi: [\![1,n]\!] \longrightarrow E$ une bijection avec $n = \operatorname{Card} E$. Alors $f \circ \varphi$ est une bijection de $[\![1,n]\!]$ dans X.

Exemple Soit $n \in \mathbb{N}^*$. $[0, n-1] \longrightarrow \mathbb{Z}/n\mathbb{Z}$ est bijective donc $\mathbb{Z}/n\mathbb{Z}$ est fini et $\operatorname{Card}\mathbb{Z}/n\mathbb{Z} = \operatorname{Card}[0, n-1] = n$.

- $a. \ll Obvious! \gg$
- b. « $does\ the\ job!$ »
- c. « Une petite dédicace à nos amis les canadiens... Évidemment si on sait pas que Toronto c'est au Canada... »
- $d. \ll Ouf! *$
- e. Je n'oserai pas reporter ici le jeu de mot douteux de M. Sellès portant sur ces derniers mots.

Propriétés Soient E, F deux ensembles finis non vides :

- (1) S'il existe une injection de E dans F, alors $CardE \leq CardF$.
- (2) S'il existe une surjection de E dans F, alors $CardE \ge CardF$.

Démonstration

(1) Soit $n = \operatorname{Card} E$, $p = \operatorname{Card} F$, $\varphi : [1, n] \longrightarrow E$ bijective et $\psi : [1, p]$ bijective. Si $f : E \longrightarrow F$ est injective, alors $\psi^{-1} \circ f \circ \varphi$ est injective dans [1, n] donc $n \leq p$.

4.1.3 Principe des tiroirs

Si $\operatorname{Card} E \geqslant \operatorname{Card} F$, il n'existe pas d'applications injective de E dans F. Ainsi si $f: E \longrightarrow F$, f ne peut être injective donc $\exists a \neq b/f(a) = f(b)$.

Ceci est connu sous le nom de principe des tiroirs ^a.

Applications

- Soit $N \in \mathbb{N}^*$. Montrons qu'il existe un multiple de N dont l'écriture décimale ne comporte que des 0 et des 1. Considérons les entiers $0, 1, 11, 111, \dots, \underbrace{111 \cdots 111}_{}$ distincts. L'application

$$\{0,1,11,111,\ldots,111\cdots 111\} \longrightarrow \mathbb{Z}/N\mathbb{Z}$$

$$x \longmapsto \overline{x}$$

ne peut pas être injective car Card $\{0,1,11,111,\ldots,111\cdots 111\}=N+1>N=\mathrm{Card}\mathbb{Z}/NZ$ donc

$$\exists 0 \leqslant k < l \leqslant N/\overline{x_k} = \overline{x_l} \quad \Leftrightarrow \quad N \mid x_k - x_l$$

$$\Leftrightarrow \quad N \mid \underbrace{1 \cdots 1}_{l} - \underbrace{1 \cdots 1}_{k}$$

$$\Leftrightarrow \quad N \mid \underbrace{1 \cdots 1}_{l} \underbrace{0 \cdots 0}_{k}$$

- Soit $n \in \mathbb{N}^*$ et $1 \le a_1 < a_2 < \dots < a_n \le 2n$ avec $a_i \in \mathbb{N}$. Alors $\exists i < j$ tel que $a_i \mid a_j$. En effet, pour $1 \le k \le n+1$, $a_k = 2^{\alpha_k} m_k$ avec m_k impair et $m_k \in [1, 2n]$. Or

$$(2\mathbb{N}+1) \cap [1,2n] = \{1,3,5,\ldots,2n-1\}$$

donc Card $(2\mathbb{N}+1) \cap [1,2n] = n$. D'après le principe des tiroirs, $\exists k < l/m_k = m_l = m$ donc $a_k = 2^{\alpha_k} m$ et $a_l = 2^{\alpha_l} m$ or $\alpha_k < \alpha_l$ car $a_k < a_l$ donc $a_k \mid a_l$.

Théorème

Soit E un ensemble fini non vide et $F \subset E$. Alors F est fini et $\operatorname{Card} F \leqslant \operatorname{Card} E$. De plus, $F = E \Leftrightarrow \operatorname{Card} F = \operatorname{Card} E^a$.

a. Ce théorème évite de montrer une inclusion inverse, par exemple.

Démonstration Soit H_n : « Si E est fini et de cardinal n et si $F \subset E$, alors F est fini et $CardF \leq CardE$. De plus, $CardF = CardE \Leftrightarrow E = F$ ».

- $-H_0$ est trivial : \varnothing est l'unique ensemble fini de cardinal 0.
- Soit $n \in \mathbb{N}$, E un ensemble fini de cardinal n+1 et $F \subset E$.
 - o Si F = E, alors F est bien de cardinal n + 1.
 - o Si $F \neq E$, alors $\exists a \in E/a \notin F$ donc $F \subset E \setminus \{a\}$. Si l'on admet que $E \setminus \{a\}$ est fini et de cardinal n, d'après l'hypothèse de récurrence, F est fini et de cardinal $\operatorname{Card} F \leqslant n < \operatorname{Card} E$.

a. « Si on range n paires de chaussettes dans p tiroirs avec n > p, deux paires vont se retrouver dans le même tiroir. Quand même j'ai réussi à caser le mot chaussette dans mon cours.... »

Lemme Soit E un ensemble fini non vide et $a \in E$. Alors $E \setminus \{a\}$ est fini et $CardE \setminus \{a\} = CardE - 1$.

Démonstration Soit n = CardE et $\varphi : [1, n] \longrightarrow E$ bijective.

 $-\operatorname{Si} \varphi(n) = a , \forall k \in [1, n-1], \varphi(k) \in E \setminus \{a\}. \text{ Alors } \tilde{\varphi} : [1, n-1] \longrightarrow E \text{ est bijective donc } E \setminus \{a\} \text{ est } k \longmapsto \varphi(k)$

fini et de cardinal n-1.

- Si $\varphi(n) \neq a$, soit $k = \varphi^{-1}(a) \in [1, n-1]$ et

$$\tau: \begin{tabular}{l} $[1,n] \to [1,n]$ \\ $k \mapsto n$ \\ $n \mapsto k$ \\ $l \notin \{k,n\} \mapsto l$ \\ \end{tabular}$$

est bijective car $\tau \circ \tau = \mathrm{Id}_{\llbracket 1,n \rrbracket}$. Alors $\varphi \circ \tau : \llbracket 1,n \rrbracket \longrightarrow E$ est bijective et $\varphi \circ \tau (n) = \varphi (k) = a$. On est donc ramené au cas précédent.

Propositions Soit E un ensemble fini et X un ensemble.

- (1) S'il existe une injection de X dans E, X est fini de cardinal plus petit que CardE.
- (2) S'il existe une surjection de E dans X, X est fini de cardinal plus petit que CardE.

Démonstration

(1) Soit $f: X \longrightarrow E$ injective et F = f(X). Alors $\tilde{f}: X \longrightarrow f(X)$ est bijective. Or F est fini donc X est $t \longmapsto f(t)$ fini et $\operatorname{Card} X = \operatorname{Card} f(X) \leqslant \operatorname{Card} E$.

4.2 Cardinaux classiques

4.2.1 Réunion

Soit E et F deux ensembles finis tels que $E \cap F = \emptyset$. Alors

$$\operatorname{Card}(E \cup F) = \operatorname{Card}E + \operatorname{Card}F$$

Démonstration Si $E=\varnothing$ ou $F=\varnothing$, c'est trivial. Supposons que $(E,F)\neq(\varnothing,\varnothing)$, soit $n=\mathrm{Card}E$, $p=\mathrm{Card}F$, $\varphi: \llbracket 1,n \rrbracket \longrightarrow E$ bijective et $\psi: \llbracket 1,p \rrbracket \longrightarrow F$ bijective. Alors :

$$f: [1, n+p] \longrightarrow E \cup F$$

$$k \longmapsto \begin{cases} \varphi(k) & \text{si } 1 \leq k \leq n \\ \psi(k-n) & \text{si } n+1 \leq k \leq n+p \end{cases}$$

- -f est bien définie.
- -f est surjective : soit $x \in E \cup F$.
 - Si $x \in E$, $\exists k \in [1, n]/x = \varphi(k) = f(k)$.
 - Si $x \in F$, $\exists l \in [1, p]/x = \psi(l) = f(n+l)$.
- -f est injective : soient $k, l \in [1, n+p]$ avec k < l. Montrons que $f(k) \neq f(l)$.
 - Si $1 \le k < l \le n$, on a $f(k) = \varphi(k) \ne \varphi(l) = f(l)$ car φ est injective.
 - \circ Si $n+1 \le k < l \le n$, $f(k) = \psi(k-n) \ne \psi(l+n) = f(l)$ car ψ est injective.
 - $\circ \text{ Si } k < n < l, \text{ on ne peut pas avoir } \varphi\left(k\right) = \psi\left(l\right) \text{ car } \varphi\left(k\right) \in E \text{ et } \psi\left(l\right) \in F \text{ et } E \cap F = \varnothing.$

Corollaires

(1) Soit $n \in \mathbb{N}^*$ et E_1, E_2, \dots, E_n des ensembles finis tels que $E_i \cap E_j = \emptyset$ pour $i \neq j$. Alors $\bigcup_{i=1}^n E_i$ est fini et

$$\operatorname{Card} \bigcup_{i=1}^{n} E_i = \sum_{i=1}^{n} \operatorname{Card} E_i$$

(2) Soit E un ensemble fini et $A \subset E$. Alors on a

$$Card(E \setminus A) = CardE - CardA$$

En effet, A et $E \setminus A$ sont des parties de E donc sont finies et on a $E = E \cup (E \setminus A)$ et $A \cap (E \setminus A) = \emptyset$ d'où $CardE = CardA + CardE \setminus A$.

(3) Soit E un ensemble fini. Si Ω est une partition de E, alors

$$\operatorname{Card} E = \sum_{A \in \Omega} \operatorname{Card} A$$

En effet, A et $E \setminus A$ sont des parties de E donc on Plus généralement, si A_1, A_2, \ldots, A_n sont des parties de E telles que $A_i \cap A_j = \emptyset$ pour $i \neq j$ et $E = \bigcup_{i=1}^n A_i$, alors

$$\operatorname{Card} E = \sum_{k=1}^{n} \operatorname{Card} A_k$$

Généralisation

Soient E et F deux ensembles finis. Alors $E \cup F$ est fini et

$$\operatorname{Card} E \cup F = \operatorname{Card} E + \operatorname{Card} F - \operatorname{Card} E \cap F$$

Démonstration $E \cap F$ est nécessairement fini : c'est une partie de l'ensemble fini E. Soit $G = E \setminus (E \cup F)$, on a $F \cap G = \emptyset$ a et $E \cup F = G \cup F$.

- Il est clair que $(G \cup F) \subset (E \cup F)$ puisque $G \subset E$.
- Si $x \in E \cup F$, si $x \in F$, alors $x \in G \cup F$ sinon on a nécessairement $x \in E$ et $x \notin F$ donc $x \in G$. G est fini (c'est aussi une partie de E), F et G sont finis disjoints donc $F \cup G$ est fini et

$$\operatorname{Card} F \cup G = \operatorname{Card} F + \operatorname{Card} G$$

= $\operatorname{Card} F + \operatorname{Card} E - \operatorname{Card} (E \cap F)$

Corollaire Si $n \in \mathbb{N}^*$, E_1, E_2, \dots, E_n sont des ensembles finis, alors $\bigcup_{i=1}^n E_i$ est fini et

$$\operatorname{Card} \bigcup_{i=1}^{n} E_{i} \leqslant \sum_{i=1}^{n} E_{i}$$

4.2.2 Produit cartésien

Soient E et F des ensembles finis, alors $E \times F$ est fini et $\operatorname{Card} E \times F = \operatorname{Card} E \cdot \operatorname{Card} F$.

a. Si jamais $x \in F \cup G$, $x \in F$ et $x \in G \subset E$ donc $x \in E$ donc $x \in (E \cup F)$, ce qui n'est pas possible : Aaaaaaargh!

Démonstration

- Si E ou F est vide, la preuve est triviale.
- Supposons E et F non vides. Pour $x \in E$, $A_x = \{(x,y) | y \in F\}$. A_x est non vide et $A_x \subset (E \times F)$. $\Omega = \{A_x | x \in E\}$ forme une partition de $E \times F$. Si $x \in E$ est fixé donc A_x est en bijection avec F via $y \in F \longrightarrow (x,y) \in A_x$. Donc A_x est fini et $\operatorname{Card} A_x = \operatorname{Card} F$ donc $E \times F$ est une réunion finie d'ensembles deux à deux disjoints donc $E \times F$ est fini et

$$\operatorname{Card} E \times F = \operatorname{Card} \bigcup_{x \in E} A_x$$

$$= \sum_{x \in E} \operatorname{Card} A_x$$

$$= \sum_{x \in E} \operatorname{Card} F$$

$$= \operatorname{Card} F \cdot \sum_{x \in E} 1$$

$$= \operatorname{Card} E \cdot \operatorname{Card} F$$

Corollaire Soient E_1, E_2, \dots, E_n des ensembles finis, alors $E_1 \times E_2 \times \dots \times E_n$ et

$$\operatorname{Card} E_1 \times E_2 \times \cdots \times E_n = \prod_{i=1}^n \operatorname{Card} E_i$$

4.2.3 Ensemble de parties d'un ensemble fini

Soit E un ensemble fini. Alors $\mathcal{P}(E)$ est fini et

$$\operatorname{Card}\mathcal{P}\left(E\right) = 2^{\operatorname{Card}E}$$

Démonstration H_n : « Si E est un ensemble fini de cardinal n, alors $\mathcal{P}(E)$ est fini de cardinal 2^n ».

- $-H_0$ est vrai : \varnothing est le seul ensemble de cardinal 0 et on a $\mathcal{P}(\varnothing) = \{\varnothing\}$. Donc $\mathcal{P}(\varnothing)$ est fini de cardinal $1 = 2^0$.
- Soit $n \in \mathbb{N}$, supposons que H_n est vrai et soit E un ensemble fini de cardinal n+1. Soit $a \in E$, $\Lambda = \{A \in \mathcal{P}(E) | a \notin A\}$ et $\Gamma = \{A \in \mathcal{P}(E) | a \in A\}$. Il est clair que $\Lambda \cap \Gamma = \emptyset$, on a $\Lambda = \mathcal{P}(E \setminus \{a\})$ or $E \setminus \{a\}$ est fini de cardinal n donc, d'après H_n , Λ est fini de cardinal 2^n .

De plus, Λ et Γ sont en bijection : $X \in \Lambda \longrightarrow X \cup \{a\} \in \Gamma$ est bijective de réciproque $Y \in \Gamma \longrightarrow Y \setminus \{a\} \in \Lambda$. Donc Γ est aussi fini de cardinal 2^n . Or $\mathcal{P}(E) = \Lambda \cup \Gamma$ et $\Lambda \cap \Gamma = \emptyset$ donc $\mathcal{P}(E)$ est fini et

$$\operatorname{Card} \mathcal{P}(E) = \operatorname{Card} \Lambda + \operatorname{Card} \Gamma$$

= $2^{n} + 2^{n}$
= 2^{n+1}

4.2.4 Petite histoire sur la définition ensembliste des coefficients du binôme

Soit $n \in \mathbb{N}^*$ et E un ensemble fini de cardinal n: on a vu que si $A \subset E$, alors A est fini et $\operatorname{Card} A \in [[0, n]]$ donc pour $p \in [0, n]$, on note $\mathcal{P}_p(E)$ l'ensemble des parties de E à p éléments. $\mathcal{P}_p(E) \subset \mathcal{P}(E)$ donc $\mathcal{P}_p(E)$ est un ensemble fini. Notons γ_n^p le cardinal de $\mathcal{P}_p(E)^a$. Il est clair que les ensembles $\mathcal{P}_p(E)$ tels que $0 \le p \le n$ sont

a. Il est clair que si F est fini et de cardinal n, $\mathcal{P}_{p}\left(F\right)$ est en bijection avec $\mathcal{P}_{p}\left(E\right)$

deux à deux disjoints ^a et $\bigcup_{p=0}^{n} \mathcal{P}_{p}(E) = \mathcal{P}(E)$ donc :

$$2^{n} = \operatorname{Card} \mathcal{P}(E)$$
$$= \sum_{p=0}^{n} \gamma_{n}^{p}$$

- $\mathcal{P}_0(E) = \{\emptyset\}$ donc $\gamma_n^0 = 1$. De même, $\mathcal{P}_n(E) = \{E\}$ donc $\gamma_n^n = 1$. Soit $p \in [0, n] \setminus \{0, n\}$. Si $A \in \mathcal{P}_p(E)$, alors $E \setminus A \in \mathcal{P}_{n-p}(E)$ donc

$$\varphi: \mathcal{P}_{p}(E) \longrightarrow \mathcal{P}_{n-p}(E) \quad \text{et} \quad \psi: \mathcal{P}_{n-p}(E) \longrightarrow \mathcal{P}_{p}(E)$$

$$A \longmapsto E \backslash A \qquad A \longmapsto E \backslash A$$

sont deux bijections réciproques l'une de l'autre car $\psi \circ \varphi = \operatorname{Id}_{\mathcal{P}_{n-p}(E)}$ et $\varphi \circ \psi = \operatorname{Id}_{\mathcal{P}_{p}(E)}$. Ainsi $\mathcal{P}_{n-p}(E)$ et $\mathcal{P}_{p}\left(E\right)$ sont en bijection donc ils ont le même cardinal donc

$$\gamma_n^p = \gamma_n^{n-p}$$

Proposition Pour $n, p \in \mathbb{N}$ tel que $0 \le p \le n$,

$$\gamma_{n+1}^{p+1} = \gamma_n^p + \gamma_n^{p+1}$$

Pour p > n, $\mathcal{P}_p(E) = \emptyset$ donc $\gamma_n^p = 0$.

Prouvons cette assertion. Soit $n \in \mathbb{N}$ et $p \in \mathbb{N}$ tel que $0 \le p \le n$. Soit E un ensemble fini de cardinal n+1 et $a \in E$. Posons $\Gamma = \{A \in \mathcal{P}_{p+1}(E) | a \in A\}$ et $\Lambda = \{A \in \mathcal{P}_{p+1}(E) | a \notin A\}$. Il est clair que $\mathcal{P}_{p+1}(E) = \Gamma \cup \Lambda$ et que $\Gamma \cap \Lambda = \emptyset$. Or $\Lambda = \mathcal{P}_{p+1}(E \setminus \{a\})$ donc $\operatorname{Card}\Lambda = \gamma_n^{p+1}$ et Γ est en bijection avec $\mathcal{P}_p(E \setminus \{a\})$ donc $\operatorname{Card}\Gamma = \gamma_n^p$. Par conséquent,

$$\operatorname{Card}\mathcal{P}_{p+1}(E) = \operatorname{Card}\Gamma + \operatorname{Card}\Lambda$$

 $= \gamma_n^{p+1} + \gamma_n^p$
 $= \gamma_{n+1}^{p+1}$

Théorème

Pour $n \in \mathbb{N}$ et $0 \leq p \leq n$,

$$\gamma_n^p = \frac{n!}{p! (n-p)!}$$

Démonstration Soit $H_n: \langle \forall p \in [0, n], \gamma_n^p = \binom{n}{p} \rangle$.

- $-H_0$ est vrai car $\gamma_0^0 = 1 = {0 \choose 0}$
- Soit $n \in \mathbb{N}$. Supposons que H_n est vrai. Soit $p \in [0, n+1]$.

 ∘ Si p = 0, $\gamma_0^{n+1} = 1 = \binom{n+1}{0}$.

 - Si p = n + 1, $\gamma_{n+1}^{n+1} = 1 = \binom{n+1}{n+1}$. Si $p \in [0, n+1] \setminus \{0, n+1\}$, alors

$$\begin{array}{rcl} \gamma_{n+1}^p & = & \gamma_{n+1}^{(p-1)+1} \\ & = & \gamma_{n+1}^{p-1} + \gamma_n^p \\ & = & \binom{n}{p-1} + \binom{n}{p} \\ & = & \binom{n+1}{p} \end{array}$$

a. Une partie ne peut être de cardinal p et q avec $p \neq q$.

b. Via l'application $X \in \mathcal{P}_p\left(E \setminus \{a\}\right) \longrightarrow X \cup \{a\} \in \Gamma$ de réciproque $Y \in \Gamma \longrightarrow Y \setminus \{a\} \in \mathcal{P}_p\left(E \setminus \{a\}\right)$.

Exercice Calculer

$$S = \sum_{A \in P} \sum_{k \in A} k$$

avec $P = \mathcal{P}([1, n])$.

1ère méthode Pour $A \in \mathcal{P}([\![1,n]\!])$, on note $\overline{A} = \mathcal{P}([\![1,n]\!]) \setminus A$. L'application $A \xrightarrow{\psi} \overline{A}$ est une bijection de $\mathcal{P}([\![1,n]\!])$ car $\psi \circ \psi = \mathrm{Id}_{\mathcal{P}([\![1,n]\!])}$. Ainsi,

$$S = \sum_{A \in P} \left(\sum_{k \in \overline{A}} k \right)$$

$$2S = \sum_{A \in P} \sum_{k \in \overline{A}} k + \sum_{A \in P} \sum_{k \in A} k$$

$$= \sum_{A \in P} \left(\sum_{k \in \overline{A}} k + \sum_{k \in A} k \right)$$

$$= \sum_{A \in P} \sum_{A \cup \overline{A}} k \quad \text{car } A \cap \overline{A} = \emptyset$$

$$= \sum_{A \in P} \sum_{k \in [[1, n]]} k$$

$$= \sum_{A \in P} \sum_{k \in [[1, n]]} k$$

$$= \sum_{A \in P} \frac{n(n+1)}{2}$$

$$= \frac{n(n+1)}{2} \sum_{A \in P} 1$$

$$= 2^n \frac{n(n+1)}{2}$$

Ainsi, $S = 2^{n-2}n(n+1)$.

2ème **méthode** Soit $k \in [[1, n]]$. k apparaît dans S autant de fois qu'il existe de parties A de [[1, n]] qui contient k. Donc k apparaît dans S 2^{n-1} fois car $\{A \in P | k \in A\}$ est en bijection avec $\mathcal{P}([[1, n]]) \setminus \{k\}$ donc

$$S = \sum_{k=1}^{n} 2^{n-1}k$$
$$= 2^{n-1} \frac{n(n+1)}{2}$$

4.2.5 Ensemble des applications entre deux ensembles finis

Soient E et F deux ensembles finis. Alors $\mathcal{F}(E,F)$ est fini et $\operatorname{Card}\mathcal{F}(E,F)=(\operatorname{Card}F)^{\operatorname{Card}E}$. Ainsi on note $\mathcal{F}(E,F)=F^E$.

Démonstration Soit H_n : « Si E est fini de cardinal n, et si F est fini, alors $\mathcal{F}(E,F)$ est fini et $\operatorname{Card}\mathcal{F}(E,F) = (\operatorname{Card}F)^n$ ».

 $-H_0$ est vrai : si $E=\emptyset$, il y a une seule application de E dans F qui est $(\emptyset, F, \emptyset)$ donc $\mathcal{F}(\emptyset, F)$ est fini et

$$\operatorname{Card}\mathcal{F}(\varnothing, F) = 1 = (\operatorname{Card}F)^0$$

- Soit $n \in \mathbb{N}$, supposons que H_n est vrai et montrons H_{n+1} . Soit E un ensemble de cardinal n+1, donc $E \neq \emptyset$ et soit F est ensemble fini.

- o Si $F = \emptyset$, il n'y a pas d'applications de E dans \emptyset donc $\mathcal{F}(E,\emptyset) = \emptyset$ est fini et de cardinal $0 = 0^{n+1}$.
- o Si $F \neq \emptyset$, soit $a \in E$. Pour $b \in F$, $\Omega = \{f \in \mathcal{F}(E,F) | f(a) = b\}$. Il est clair que $\mathcal{F}(E,F)$ est réunion de divers Ω_b lorsque b décrit F et que ces ensembles sont deux à deux disjoints :

$$b \neq c \Leftrightarrow \Omega_b \neq \Omega_c$$

Pour $b \in F$, Ω_b est en bijection avec $\mathcal{F}(E \setminus \{a\}, F)^a$ donc $E \setminus \{a\}$ est fini de cardinal n donc, d'après l'hypothèse de récurrence, $\mathcal{F}(E \setminus \{a\}, F)$ est fini et $\operatorname{Card}\mathcal{F}(E \setminus \{a\}, F) = (\operatorname{Card}F)^n$ donc

$$\operatorname{Card}\Omega_b = \operatorname{Card}\mathcal{F}(E \setminus \{a\}, F) = (\operatorname{Card}F)^n$$

Par conséquent et par réunion d'ensembles finis, $\mathcal{F}\left(E,F\right)$ est fini et

$$\operatorname{Card}\mathcal{F}(E, F) = \sum_{b \in F} \operatorname{Card}\Omega_{b}$$

$$= \sum_{b \in F} (\operatorname{Card}F)^{n}$$

$$= (\operatorname{Card}F)^{n} \sum_{b \in F} 1$$

$$= (\operatorname{Card}F)^{n} \cdot \operatorname{Card}F$$

$$= (\operatorname{Card}F)^{n+1}$$

Autre méthode Prenons $E = [\![1,n]\!]$ et $F = [\![1,p]\!]$ avec $n,p \in \mathbb{N}^*$. Se donner une application f de $[\![1,n]\!]$ dans $[\![1,p]\!]$ revient à se donner le n-uple b $(f(1),f(2),\ldots,f(n))$ qui est élément de $[\![1,p]\!]^n$. $\mathcal{F}([\![1,n]\!],[\![1,p]\!])$ est en bijection avec $[\![1,p]\!]^n$ donc $\mathcal{F}([\![1,n]\!],[\![1,p]\!])$ est fini et de cardinal $(\operatorname{Card}[\![1,p]\!])^n = p^n$.

4.2.6 Injections entre deux ensembles finis

Définition ensembliste des arrangements probabilistes Si E et F sont deux ensembles finis, notons $\mathcal{I}(E,F)$ l'ensemble des application injectives de E dans F. $\mathcal{I}(E,F) \subset \mathcal{F}(E,F)$ donc $\mathcal{I}(E,F)$ est fini et de cardinal plus petit que p^n (où $p = \operatorname{Card} F$ et $n = \operatorname{Card} E$). Ainsi on notera $A_p^n = \operatorname{Card} \mathcal{I}(E,F)$. Ce cardinal ne dépend que de n et de p, et non de la nature des éléments de E ou de F.

- Si n > p, il n'y a pas d'injections de E dans F donc $A_p^n = 0$.
- Supposons que E et F sont deux ensembles non vides, c'est-à-dire que $n \ge 1$ et $p \ge 1$ et $n \le p$. Soit $a \in E$, alors $\forall b \in F$, on appelle $\Omega_b = \{f \in \mathcal{I}(E,F) \mid f(a) = b\}$. $\mathcal{I}(E,F)$ est réunion disjointe des divers Ω_b lorsque b décrit F. De plus à b fixé, Ω_b est en bijection avec l'ensemble des applications de $E \setminus \{a\}$ dans $F \setminus \{b\}$. Ainsi, $\operatorname{Card}\Omega_b = A_{n-1}^{p-1}$. Or

$$A_p^n = \sum_{b \in F} \operatorname{Card}\Omega_b$$

$$= \sum_{b \in F} A_{p-1}^{n-1}$$

$$= A_{p-1}^{n-1} \sum_{b \in F} 1$$

$$= pA_{p-1}^{n-1}$$

Or pour $p \in \mathbb{N}^*$, $A_p^1 = p$ donc

$$A_p^n = pA_{p-1}^{n-1} = p(p-1)A_{p-2}^{n-2} = \dots = p(p-1)(p-2)\cdots(p-(n-2))A_{p-(n-1)}^{n-(n-1)} = \frac{p!}{(p-n)!}$$

$$a. \text{ Via } g \in F \longrightarrow \left(\begin{array}{c} E \longrightarrow F \\ a \longmapsto b \\ x \neq a \longmapsto g(x) \end{array} \right) \in \Omega_b.$$

b. Pour comprendre ce terme barbare, souvenons nous qu'on 2-uple est un couple et qu'un 3-uple est un triplet, par exemple.

c. Via $f \in \mathcal{F}\left(\left[\left[1,n\right]\right],\left[\left[1,p\right]\right]\right) \longrightarrow \left(f\left(1\right),f\left(2\right),\ldots,f\left(n\right)\right) \in \left[\left[1,p\right]\right]^{n}$.

Montrons ce résultat de manière rigoureuse. Soit H_p : « $\forall n \in [0, p]$, $A_p^n = \frac{p!}{(n-p)!}$ ».

 $-H_0$ est vrai : il y a une seule application de \varnothing dans \varnothing , injective de surcroît. Ainsi

$$A_0^0 = 1 = \frac{0!}{(0-0)!}$$

- Soit $p \in \mathbb{N}$. Supposons que H_p est vrai et montrons H_{p+1} . Soit $n \in [0, p+1]$.
 - o Si n = 0, $A_{p+1}^0 = 1$ et $\frac{(p+1)!}{(p+1-0)!} = 1$.
 - \circ Si $n \ge 1$,

$$A_{p+1}^{n} = (p+1) A_{p}^{n-1}$$

$$= (p+1) \frac{p!}{(p-(n-1))!}$$

$$= \frac{(p+1)!}{(p+1-n)!}$$

Autre démonstration (à ressortir en colle) Soit $1 \le n \le p$. Pour fabriquer une injection de [1, n] dans [1, p], il y a :

- -p façons de choisir f(1);
- -p-1 façons de choisir f(2);
- ...:
- -p-n+1 façons de choisir f(n).

Soit au total $p(p-1)(p-2)\cdots(p-n+1)$ façons de définir f.

On a donc:

$$A_p^n = \frac{p!}{(p-n)!}$$

Cas particulier Si E est fini de cardinal n, il y a $A_n^n = n!$ injections de E dans E.

Remarque La lettre A vient du mot arrangement : si X est un ensemble fini de cardinal p et si $n \in [1, p]$, on appelle n-arrangement d'éléments de X toute liste (x_1, x_2, \ldots, x_n) d'éléments de X tous distincts. Se donner une telle liste, c'est se donner une injection de [1, n] dans X, il y a donc A_p^n tels arrangements.

4.3 Applications et ensembles finis

4.3.1 Petite histoire

Soit E un ensemble fini non vide.

Soit F un ensemble quelconque et soit $f: E \longrightarrow F$ et $\tilde{f}: E \longrightarrow f(E)$. Cette dernière application est $x \longrightarrow f(x)$

surjective donc f(E) est fini et $\operatorname{Card} f(E) \leq \operatorname{Card} E$.

- Si f est injective, \tilde{f} est bijective donc Card f(E) = CardE.
- Si f n'est pas injective, $\exists a, b \in E$ tels que f(a) = f(b) et $a \neq b$. Soit $g: E \setminus \{a\} \longrightarrow f(E)$, g reste $x \longmapsto f(x)$

surjective donc $\operatorname{Card} f(E) \leq \operatorname{Card} (E \setminus \{a\}) < \operatorname{Card} E$.

Ainsi, on a les résultats suivants :

- -f(E) est fini et $\operatorname{Card} f(E) \leq \operatorname{Card} E$.
- $-\operatorname{Card} f(E) = \operatorname{Card} E$ si et seulement si f est injective.

Supposons que F est fini et soit $f: E \longrightarrow F$, $f(E) \subset F$ donc $\operatorname{Card} f(E) \leqslant \operatorname{Card} F$ donc $\operatorname{Card} f(E) \leqslant \min(\operatorname{Card} E, \operatorname{Card} F)$ en toute généralité.

De plus,

$$f$$
 est surjective \Leftrightarrow $f(E) = F$
 \Leftrightarrow $\operatorname{Card} f(E) = \operatorname{Card} F$

Si $\operatorname{Card} E < \operatorname{Card} F$, f ne peut pas être injective car $\operatorname{Card} f(E) \leq \operatorname{Card} E < \operatorname{Card} F$. De même, si $\operatorname{Card} F < \operatorname{Card} E$, f ne peut pas être injective car $\operatorname{Card} f(E) \leq \operatorname{Card} F < \operatorname{Card} E$.

Supposons de plus que CardE = CardF ce qui est vrai en particulier lorsque E = F.

- Soit $f: E \longrightarrow F$ injective. Alors f est bijective car $\operatorname{Card} f(E) = \operatorname{Card} E = \operatorname{Card} F$ donc f est surjective.
- Soit $f: E \longrightarrow F$ surjective. Alors $\operatorname{Card} f(E) = \operatorname{Card} F = \operatorname{Card} E$ donc f est injective donc bijective.

4.3.2 Théorème

Soient E, F deux ensembles finis de même cardinal et $f: E \longrightarrow E$. Les assertions suivantes sont équivalentes ^a

- (1) f est injective.
- (2) f est surjective.
- (3) f est bijective.
- a. Ou LASSE pour les intimes.

En particulier d, si E est un ensemble fini et $f: E \longrightarrow E$, alors

f est injective $\Leftrightarrow f$ est surjective $\Leftrightarrow f$ est bijective

4.3.3 Permutations d'un ensemble fini

Vocabulaire

- Une bijection de E dans E s'appelle une permutation. On note $\mathfrak{S}(E)$ ou S(E) l'ensemble des permutation de E.
- Si E est un ensemble fini de cardinal $n \in \mathbb{N}^*$. On a $\mathfrak{S}(E) = \mathcal{I}(E, E)$ donc Card $\mathfrak{S}(E) = n!$. Il y a n! permutation si E est fini de cardinal n.
- Pour $n \in \mathbb{N}^*$, on note $S_n = \mathfrak{S}([1, n])$.

Exemples

emples
$$-S_2 = \left\{ \operatorname{Id}_{\llbracket 1,2 \rrbracket}, \tau_{12} \right\} \text{ où } \tau_{12} : 1 \longmapsto 2 .$$

$$2 \longmapsto 1$$

 $- S_3 = \{ \mathrm{Id}_{[1,3]}, \tau_{12}, \tau_{13}, \tau_{23}, \gamma, \sigma \} \text{ avec} :$

Propriétés de la composition \circ est une loi de composition interne dans S_n , associative, admettant un neutre $\mathrm{Id}_{\llbracket 1,n\rrbracket}$ et tout élément de S_n admet un inverse (application réciproque). Ainsi, (S_n,\circ) est un groupe.

Voici la table de composition pour n=3:

 $d. \ \ {\it Ce th\'eor\`eme est aussi appel\'e } \textit{ ``entre principe de fain\'eantise. Bah oui si vous d\'emontrez l'une vous les avez tous !\ "}$

0	Id	$ au_{12}$	$ au_{13}$	$ au_{23}$	γ	σ
Id	Id	$ au_{12}$	$ au_{13}$	$ au_{23}$	γ	σ
$ au_{12}$	$ au_{12}$	Id	σ	γ	$ au_{23}$	$ au_{13}$
$ au_{13}$	$ au_{13}$	γ	Id	σ	$ au_{12}$	$ au_{23}$
$ au_{23}$	$ au_{23}$	σ	γ	Id	$ au_{13}$	$ au_{12}$
γ	γ	$ au_{13}$	$ au_{23}$	$ au_{13}$	σ	Id
σ	σ	$ au_{23}$	$ au_{12}$	$ au_{13}$	Id	γ

Transpositions Soit E un ensemble et $a, b \in E$, $a \neq b$. On note τ_{ab} la transposition qui échange a en b et laisse les autres points invariants.

$$\tau_{ab}: E \longrightarrow E$$

$$a \longmapsto b$$

$$b \longmapsto a$$

$$x \notin \{a, b\} \longmapsto x$$

On remarque que $\tau_{ab} \in \mathfrak{S}(E)$ car $\tau_{ab} \circ \tau_{ab} = \mathrm{Id}_E$.

Soit $f: E \longrightarrow E$. Un point fixe de f est par définition un $x \in E$ tel que f(x) = x.

Théorème : écriture en composition

Soit E un ensemble fini de cardinal supérieur ou égal à 2 et $f \in \mathfrak{S}(E)$. Alors f peut s'écrire comme une composée de transpositions.

Démonstration Soit X l'ensemble des points fixes de f.

- Si X = E, $f = \text{Id}_E$. On note que X est stable par $f : x \in X \longrightarrow f(x) \in X$. En effet, si $x \in X$, $f(x) = x \in X$. $E \setminus X$ est aussi stable par $f : f(E \setminus X) \subset E \setminus X$. Soit $x \in E \setminus X$, si $f(x) \in X$, alors f(f(x)) = f(x). Or f est injective donc f(x) = x donc $x \in X$, ce qui est impossible.
- Supposons que $X \neq E$. Soit $x \in E \setminus X$, $x \neq f(x)$ et $g = \tau_{xf(x)} \circ f$. g(x) = x et g est bijective par composition. Si y est un point fixe de f, alors $y \neq x$ et $y \neq f(x)$ puisque x et f(x) appartiennent à $E \setminus X$. Ainsi, $g(y) = \tau_{xf(x)} \circ f(y) = y$ donc les points fixes de f sont inclus dans les points fixes de g donc g a au moins un point fixe de plus que f.

En réitérant ce procédé, on parvient à obtenir un ensemble de points fixes égal à E: on fabrique l'identité en composant f avec des transpositions. On peut donc écrire f sous la forme :

$$\tau_1 \circ \tau_2 \circ \cdots \circ \tau_R \circ f = \mathrm{Id}_E \Leftrightarrow f = \tau_R \circ \tau_{R-1} \circ \cdots \circ \tau_1$$

où $\tau_1, \tau_2, \dots, \tau_R$ sont des transpositions. En effet $\tau_1^{-1} = \tau_1, \, \tau_2^{-1} = \tau_2, \dots$ du fait de la nature des transpositions.

Exemple Soit $f \in S_7$ définie par

$$f = \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 3 & 7 & 1 & 2 & 6 & 4 \end{array}\right)$$

Alors:

$$\tau_{15} \circ f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 3 & 7 & 5 & 2 & 6 & 4 \end{pmatrix} \implies \tau_{23} \circ \tau_{15} \circ f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 2 & 7 & 5 & 3 & 6 & 4 \end{pmatrix} \\
\implies \tau_{37} \circ \tau_{23} \circ \tau_{15} \circ f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 2 & 3 & 5 & 7 & 6 & 4 \end{pmatrix} \\
\implies \tau_{45} \circ \tau_{37} \circ \tau_{23} \circ \tau_{15} \circ f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 2 & 3 & 4 & 7 & 6 & 5 \end{pmatrix} \\
\implies \tau_{57} \circ \tau_{45} \circ \tau_{37} \circ \tau_{23} \circ \tau_{15} \circ f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{pmatrix} = \operatorname{Id}_{S7}$$

Donc $f = \tau_{15} \circ \tau_{23} \circ \tau_{37} \circ \tau_{45} \circ \tau_{57}$.

4.3.4 Cycles

Soit E un ensemble fini et $f \in \mathfrak{S}(E)$, $X = \{x \in E | x = f(x)\}$ et $A = E \setminus X$. f est une permutation circulaire si $A \neq \emptyset$ et si les seules parties de A stables par f sont \emptyset et A.

Exemples de cycles

- Toute transposition est un cycle. Soient $a \neq b$, $a, b \in E$ et $f = \tau_{ab}$. Alors $X = E \setminus \{a, b\}$ et $A = \{a, b\}$. Alors $f(\{a\}) = \{b\} \neq \{a\}$ et $f(\{b\}) = \{a\} \neq \{b\}$.
- Plus généralement, soit $p \ge 2$ et a_1, a_2, \ldots, a_n des éléments distincts de E. On définit f par :

$$a_1 \longmapsto a_2$$

$$a_2 \longmapsto a_3$$

$$\vdots$$

$$a_{p-1} \longmapsto a_p$$

$$a_p \longmapsto a_1$$

et pour $x \notin \{a_1, a_2, \dots, a_n\}$, f(x) = x. Ici $X = E \setminus \{a_1, a_2, \dots, a_n\}$ et $A = \{a_1, a_2, \dots, a_n\}$. Alors f est un cycle de support $\{a_1, a_2, \dots, a_n\}$.

Propriétés

- Si B est une partie non vide de A stable par f, alors A = B.
- Pour $k \in \mathbb{N}^*$, $f^k = \underbrace{f \circ f \circ \cdots \circ f}_{k \text{ fois}}$, $f^0 = \operatorname{Id}_E \text{ et } f^{-k} = (f^{-1})^k$.

Une meilleure expression de la partie A d'un cycle On a supposé que $A \neq \emptyset$, alors $\operatorname{Card} A \geqslant 2$. Si $a \in A, f(a) \in A$ et $a \neq f(a)$.

Soit $a \in A$ et soit $B = \{ f^k(a) | k \in \mathbb{N}^* \}$. Alors $B \subset A$:

- $\operatorname{Si} f^{0}(a) = a , a \in A.$
- Supposons que $f^k(a) \in A$ pour un k. Alors $f(k+1) = f \circ f^k(a) \in A$ par A est stable par f.

Ainsi $B \neq \emptyset$ car $a \in B$ et B est stable par f car $\forall k \in \mathbb{N}$, $f(f^k(a)) = f^{k+1}(a) \in B$. Ainsi, A = B d'après la propriété énoncée un peu plus haut.

L'application $k \in \mathbb{N} \longrightarrow f^k(a) \in A$ ne peut pas être injective car \mathbb{N} est infini et A est fini. Ainsi, il existe $k, l \in \mathbb{N}$ tels que k < l et

$$f^{k}(a) = f^{l}(a) \Leftrightarrow f^{-k}(f^{k}(a)) = f^{-k}(f^{l}(a))$$

 $\Leftrightarrow f^{k-l}(a) = a$

On peut donc poser $d(a) = \min \{ m \in \mathbb{N}^* | f^m(a) = a \}.$

- Il est clair que $\{a, f(a), \dots, f^{d(a)}(a)\} \subset B$.
- Réciproquement, si $k \in \mathbb{N}$, k = qd(a) + r avec $q \in \mathbb{N}$ et $0 \le r \le d(a)$. Alors

$$f^{k}(a) = f^{qd(a)+r}(a)$$

$$= f^{r} \circ f^{qd(a)}(a)$$

$$= f^{r}(a)$$

En effet, on montre par récurrence que $\forall l \in \mathbb{N}, f^{ld(a)}(a) = a$. On en déduit que

$$f^{k}(a) = f^{r}(a) \in \left\{a, f(a), \dots, f^{d(a)-1}(a)\right\}$$

Finalement, $A = B = \{a, f(a), \dots, f^{d(a)-1}(a)\}$. Enfin, si pour $0 \le l \le k \le d(a) - 1$:

$$f^{l}\left(a\right) = f^{k}\left(a\right) \Leftrightarrow f^{l-k}\left(a\right) = a$$

Mais $1 \le l - k \le d(a)$, ce qui est absurde au regard de la définition de d(a). Les éléments de $\{a, f(a), \dots, f^{d(a)-1}\}$ (a sont donc tous distincts et

$$\operatorname{Card}\left\{a, f\left(a\right), \dots, f^{d\left(a\right)-1}\left(a\right)\right\} = d\left(a\right) = \operatorname{Card}A$$

Finalement, d(a) = CardA ne dépend pas de l'élément a choisi.

Expression de f sous la forme d'une permutation circulaire Soit p = CardA. Alors $\forall a \in A$, $f^p(a) = a$ et $A = \{a, f(a), \dots, f^{d(a)-1}(a)\}$. Fixons alors $a \in A$ et notons $x_k = f^{k-1}(a)$ avec $1 \le k \le p$. Soit le cycle :

$$\gamma: x_k \longmapsto x_{k+1} \quad (1 \leqslant k \leqslant p-1)$$

$$x_p \longmapsto x_1$$

$$y \notin A \longmapsto y$$

Vérifions que $f = \gamma$. Soit $y \in E$:

- Si $y \notin A$, alors y est point fixe de f donc $f(y) = y = \gamma(y)$.
- Si $y \in A$, il existe $k \in \mathbb{N}$ tel que $1 \leq k \leq p$ et $y = x_k$. $f(x_p) = x_1 = \gamma(x_p)$ et pour tout k < p, $f(x_k) = x_{k+1} = \gamma(x_k)$.

Vocabulaire

Soit f un cycle, $A = E \setminus X$ où X est l'ensemble des points fixes par f. Alors :

- A est le support du cycle.
- CardA est la longueur du cycle.

Dénombrement

(1) Combien y a-t-il de cycles de support $A \subset E$? Notons $A = \{a, x_1, x_2, \dots, x_R\}$, $R \in \mathbb{N}^*$. Un cycle de support A s'écrit toujours $\gamma = \begin{pmatrix} a & y_1 & \dots & y_R \end{pmatrix}$ où $\{y_{1,y_2}, \dots y_R\} = \{x_1, x_2, \dots, x_R\}$. On peut aussi écrire $\gamma = \{a, x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(R)}\}$ où σ est une permutation de [1, R]. L'ensemble des cycles de support A est en bijection avec S_R : il y en a donc

$$n! = (\operatorname{Card} A - 1)!$$

(2) Combien y a-t-il de cycles de longueur p, avec $p \in [2, \operatorname{Card} E]$? Il y a $\binom{\operatorname{Card} E}{p}$ façons de choisir le support du cycle, autant qu'il existe de parties de E à p éléments. Le support A du cycle étant choisi, il y a (p-1)! cycles de support A donc il y a au total

$$(p-1)! \binom{\operatorname{Card} E}{p}$$

cycles de longueur p. En particulier, il y a (n-1)! cycles de longueur n (ou n-cycles).

Expression d'une permutation comme une composition de cycles

Petite histoire Soient α , β deux cycles de supports A et B avec $A \cap B = \emptyset$. Alors

$$\alpha \circ \beta = \beta \circ \alpha$$

En effet, soit $x \in E$:

- Si $x \notin A \cup B$, alors $\alpha(x) = x$ et $\beta(x) = x$ donc $\alpha \circ \beta(x) = x$ et $\beta \circ \alpha(x) = x$.
- Si $x \in A$, alors $x \notin B$ donc $\beta(x) = x$ donc $\alpha \circ \beta(x) = \alpha(x)$. De plus A est stable par α donc $\alpha(x) \in A$ donc $\alpha(x) \notin B$ donc $\beta \circ \alpha(x) = \alpha(x)$.
- Même argument pour $x \in B$.

Et on termine en beauté!

Montrons que $\forall f \in \mathfrak{S}(E)$, f s'écrit comme un produit (au sens de la composition) de cycles dont les supports sont 2 à 2 disjoints. Un tel produit est commutatif donc unique à l'ordre des termes près.

Démonstration Soit $f \in \mathfrak{S}(E)$. Si $f = \mathrm{Id}_E$, on convient que f est un produit vide de cycles. Supposons que $f \neq \mathrm{Id}_E$. On définit la relation \mathcal{R}_f sur E en posant $\forall x, y \in E$,

$$xR_{f}y \Leftrightarrow \exists k \in \mathbb{Z}/y = f^{k}(x)$$

 \mathcal{R}_f est une relation d'équivalence sur E:

- (1) Soit $x \in E$. $x = f^0(x)$.
- (2) Soient $x, y \in E$ tels que $x\mathcal{R}_f y$. Alors $\exists k \in \mathbb{Z}$ tel que

$$y = f^{k}(x) \Leftrightarrow x = f^{-k}(y)$$

 $\Leftrightarrow y\mathcal{R}_{f}x$

(3) Soient $x, y, z \in E$ tels que $x\mathcal{R}_f y$ et $y\mathcal{R}_f z$. Alors $\exists k, l \in \mathbb{Z}$ tels que

$$y = f^{k}(x)$$
 et $y = f^{l}(z) \Rightarrow z = f^{k+l}(x)$

Donc $x\mathcal{R}_f z$.

Pour $x \in E$, on note $O_f(x)$ la classe d'équivalence de x pour \mathcal{R}_f . Alors $O_f(x) = \{y \in E | \exists k \in \mathbb{Z}, y = f^k(x)\}$.

- Si x est un point fixe par f, alors f(x) = x donc $\forall n \in \mathbb{N}$, $f^n(x) = x$. De plus $f^{-1}(x) = x$ donc $\forall k \in \mathbb{N}$, $f^{-k}(x) = x$ donc $O_f(x) = \{x\}$.
- Réciproquement, si pour $x \in E$, $O_f(x) = x$, alors $f(x) \in O_f(x) = \{x\}$ donc f(x) = x donc x est un point fixe par f.

Soit $\Omega = E/\mathcal{R}_f$ l'ensemble des classes d'équivalences de \mathcal{R}_f . Soit s Ω est fini car $\operatorname{Card}\Omega \leq \operatorname{Card}E$ (une classe d'équivalence correspond toujours à un élément). Comme $f \neq \operatorname{Id}_E$, au moins un point de E n'est pas fixe par f, donc au moins l'une des classes d'équivalence n'est pas réduite à un singleton.

Notons C_1, C_2, \ldots, C_R avec $R \in \mathbb{N}^*$ les diverse classes d'équivalence non réduits à un singleton. Ainsi $C_i = O_f(x_i)$ où $x_i \in E$ et $f(x_i) \neq x_i$. Soit $a \in E$ tel que $f(a) \neq a$. $O_f(a) \subset E$ donc $O_f(a)$ est fini et $\operatorname{Card} O_f(a) \leqslant \operatorname{Card} E$ donc

$$k \in [1, n+1] \longrightarrow f^k(a) \in O_f(a)$$

n'est pas injective, d'après le principe des tiroirs a. Ainsi, il existe $k, l \in \mathbb{N}$ tels que $1 \le k \le l \le n+1$ et

$$f^{k}(a) = f^{l}(a) \Leftrightarrow f^{l-k}(a) = a$$

donc $\exists m \in \llbracket 1, n \rrbracket$ tel que $f^m(a) = a$, et en notant $d = \min\{m \in \mathbb{N}^* | f^m(a) = a\}$, on a que l'ensemble $\left\{a, f(a), \ldots, f^{d-1}(a)\right\}$ est constitué d'éléments tous distincts et $O_f(a) = \left\{a, f(a), \ldots, f^{d-1}(a)\right\}$.

Ici, pour $1 \leq i \leq R$, il existe $d_i \in \mathbb{N}^*$ tel que

$$C_{i} = \left\{x_{i}, f\left(x_{i}\right), \dots, f^{d_{i}-1}\left(x_{i}\right)\right\}$$

et les éléments de C_i sont tous distincts. Posons le cycle $\gamma_i = (x_i \ f(x_i) \ \cdots \ f^{d_i-1}(x_i))$, montrons que $f = \gamma_1 \circ \gamma_2 \circ \cdots \circ \gamma_R$.

Le support de γ_i est C_i pour $1 \le i \le R$ et $C_i \cap C_j = \emptyset$ pour $i \ne j$ donc les γ_i commutent entre eux deux à deux. Soit $x \in E$.

- Si $x \notin C_1 \cup C_2 \cup \cdots \cup C_R$, alors $O_f(x)$ est un singleton donc x est point fixe de f donc f(x) = x et $\gamma_i(x) = x$ car $x \notin C_i$ pour tout $1 \le i \le R$. Alors

$$\gamma_1 \circ \gamma_2 \circ \cdots \circ \gamma_R (x) = x$$

a. En effet $n+1 \ge \operatorname{Card} E = n$.

- Si $x \in C_1 \cup C_2 \cup \cdots \cup C_R$, soit $i \in [1, R]$ tel que $x \in C_i$. Pour $i \neq j$, $x \notin C_j$ donc

$$\gamma_1 \circ \gamma_2 \circ \cdots \circ \gamma_{i-1} \circ \gamma_{i+1} \circ \cdots \circ \gamma_R (x) = x$$

Donc

$$\gamma_1 \circ \gamma_2 \circ \cdots \circ \gamma_{i-1} \circ \gamma_i \circ \gamma_{i+1} \circ \cdots \circ \gamma_R (x) = \gamma_i (x)$$

Soit $k \in [0, d_i - 1]$ tel que $x = f^k(x_i)$. Alors

$$\gamma_i(x) = \begin{cases} f^{k+1}(x_i) & \text{si } k < d_i - 1 \\ f(x_i) & \text{si } k = d_i \end{cases}$$

et $f(x) = f^{k+1}(x_i)$ donc on a bien, pour $k = d_i - 1$, $f^{d_i}(x_i) = x_i$ donc

$$\gamma_i(x) = f(x)$$

Exemples

- Prenons E = [[1,9]] et $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 9 & 7 & 5 & 2 & 6 & 1 & 4 & 8 \end{pmatrix}$. Alors $O_f(1) = \{1,3,7\}$ donc et $O_f(2) = \{2,9,8,4,5\}$ donc

$$f = \begin{pmatrix} 1 & 3 & 7 \end{pmatrix} \circ \begin{pmatrix} 2 & 9 & 8 & 4 & 5 \end{pmatrix}$$

$$g = \left(\begin{array}{ccc} 1 & 8 & 9 \end{array}\right) \circ \left(\begin{array}{ccc} 2 & 5 \end{array}\right) \circ \left(\begin{array}{ccc} 3 & 6 & 4 & 7 \end{array}\right)$$