中级应用统计学

判别分析

张晨峰

华东理工大学商学院

2016年11月22日

5 判别分析

主要内容

- 简介
- 总体的分离和分类
- 费希尔判别

5.1 简介

判别分析

判别分析是在类(组)别先验已知的情况下的应用。判别分析的目的在于把一个或几个观测值分配到这些已知的类(组)别中。

判别与分类

判别分析本质上是一种探索性的分割方法,分类方法导出一些明确定义的法则,可用于分配新的对象。

判别与回归

当被解释变量是非度量变量时,一般的多元回归不适合解决此类问题,而判别 分析适用于此类情景。

两个总体的分类

全部可能的样本结果的集合被分成 R_1 和 R_2 两个区域,要是某个新观测值落入 R_1 ,就将它分配到总体 π_1 ,若落入 R_2 ,就将它分配到总体 π_2 。

Table I I.I							
π_1 : Riding-m	ower owners	π ₂ : Nonowners					
x ₁ (Income in \$1000s)	x_2 (Lot size in 1000 ft ²)	x ₁ (Income in \$1000s)	x_2 (Lot size in 1000 ft ²)				
90.0	18.4	105.0	19.6				
115.5	16.8	82.8	20.8				
94.8	21.6	94.8	17.2				
91.5	20.8	73.2	20.4				
117.0	23.6	114.0	17.6				
140.1	19.2	79.2	17.6				
138.0	17.6	89.4	16.0				
112.8	22.4	96.0	18.4				
99.0	20.0	77.4	16.4				
123.0	20.8	63.0	18.8				
81.0	22.0	81.0	14.0				
111.0	20.0	93.0	14.8				

Figure 11.1 Income and lot size for riding-mower owners and nonowners.

两个总体的期望(平均)错分代价

假设两个总体 π_1 和 π_2 , p_1 和 p_2 分别为 π_1 和 π_2 的先验概率,将 π_1 中的对象错分到 π_2 的条件概率为P(2|1),即

$$P(2|1) = P(X \in R_2|\pi_1) = \int_{R_2 = \Omega - R_2} f_1(x) dx$$

类似地,将 π_2 中的对象错分到 π_1 的条件概率为P(1|2),即,

$$P(1|2) = P(X \in R_1|\pi_2) = \int_{R_1} f_2(x) dx$$

则 $P_{11} = P(1|1)p_1$, $P_{12} = P(1|2)p_2$, $P_{21} = P(2|1)p_1$, $P_{22} = P(2|2)p_2$ 。

4□ > 4団 > 4 量 > 4 量 > ■ のQで

张晨峰 (华东理工大学商学院)

两个总体的期望(平均)错分代价

$$ECM = c(2|1)P(2|1)p_1 + c(1|2)P(1|2)p_2$$

最小ECM法则

使ECM达到最小的区域 R_1 和₂由满足以下不等式的x值所定义:

$$R_1: \frac{f_1(x)}{f_2(x)} \ge (\frac{c(1|2)}{c(2|1)})(\frac{p_2}{p_1})$$

$$R_2: \frac{f_1(x)}{f_2(x)} < (\frac{c(1|2)}{c(2|1)})(\frac{p_2}{p_1})$$

Example 11.2 (Classifying a new observation into one of the two populations) A researcher has enough data available to estimate the density functions $f_1(\mathbf{x})$ and $f_2(\mathbf{x})$ associated with populations π_1 and π_2 , respectively. Suppose c(2|1) = 5 units and c(1|2) = 10 units. In addition, it is known that about 20% of all objects (for which the measurements \mathbf{x} can be recorded) belong to π_2 . Thus, the prior probabilities are $p_1 = .8$ and $p_2 = .2$.

Suppose the density functions evaluated at a new observation \mathbf{x}_0 give $f_1(\mathbf{x}_0) = .3$ and $f_2(\mathbf{x}_0) = .4$. Do we classify the new observation as π_1 or π_2 ? To answer the

两个多元正态总体的分离

假设协方差矩阵相等的情况,则X对总体 π_1 和 π_2 的联合密度为

$$f_i(x) = \frac{1}{(2\pi)^{\frac{\rho}{2}}|\Sigma|^{\frac{1}{2}}} exp[-\frac{1}{2}(x-\mu_i)'\Sigma^{-1}(x-\mu_i)]$$

最小ECM区域变成

$$R_1: exp[-\frac{1}{2}(x-\mu_1)'\Sigma^{-1}(x-\mu_1)+\frac{1}{2}(x-\mu_2)'\Sigma^{-1}(x-\mu_2)] \geq (\frac{c(1|2)}{c(2|1)})(\frac{p_2}{p_1})$$

$$R_2: \exp[-\frac{1}{2}(x-\mu_1)'\Sigma^{-1}(x-\mu_1)+\frac{1}{2}(x-\mu_2)'\Sigma^{-1}(x-\mu_2)]<(\frac{c(1|2)}{c(2|1)})(\frac{p_2}{p_1})$$

4□ > 4□ > 4 = > 4 = > = 90

张晨峰 (华东理工大学商学院)

两个正态总体的估计的最小ECM法则

若

$$(\bar{x}_1 - \bar{x}_2)' S_\rho^{-1} x_0 - \frac{1}{2} (\bar{x}_1 - \bar{x}_2)' S_\rho^{-1} (\bar{x}_1 + \bar{x}_2) \ge ln[(\frac{c(1|2)}{c(2|1)})(\frac{\rho_2}{\rho_1})]$$

则将 x_0 分配给 π_1 ,否则将 x_0 分配给 π_2 。

The investigators (see [4]) provide the information

$$\bar{\mathbf{x}}_1 = \begin{bmatrix} -.0065 \\ -.0390 \end{bmatrix}, \quad \bar{\mathbf{x}}_2 = \begin{bmatrix} -.2483 \\ .0262 \end{bmatrix}$$

and

$$\mathbf{S}_{\text{pooled}}^{-1} = \begin{bmatrix} 131.158 & -90.423 \\ -90.423 & 108.147 \end{bmatrix}$$

Therefore, the equal costs and equal priors discriminant function

Measurements of AHF activity and AHF-like antigen on a woman who may be a hemophilia A carrier give $x_1 = -.210$ and $x_2 = -.044$. Should this woman be classified as π_1 (normal) or π_2 (obligatory carrier)?

4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 9 ○

多个总体的期望(平均)错分代价

$$ECM = \sum_{i=1}^{g} p_i \sum_{k=1, k \neq i}^{g} P(k|i)c(k|i)$$

多个总体的最小ECM法则

使ECM达到极小的分类域,可通过将x分配给使

$$\sum_{i=1,i\neq k}^g p_i f_i(x) c(k|i)$$

最小的总体 $\pi_k(k=1,...,g)$ 来定义。当最小的总体不止一个时,则将x指派给其 中的任一总体即可。

最小ECM法则的三要素

- 先验概率
- 错分代价
- 密度函数

多个总体错分代价相同时的最小ECM法则

若

$$p_k f_k(x) > p_i f_i(x), i \neq k$$

则将x分配到 π_k ,或等价的,若

$$Inp_k f_k(x) > Inp_i f_i(x), i \neq k$$

则将x分配到 π_k 。

True population

		nuo population		
_		π_1	π_2	π_3
	π_1	$c(1 \mid 1) = 0$	c(1 2) = 500	$c(1 \mid 3) = 100$
Classify as:	π_2	c(2 1)=10	c(2 2)=0	c(2 3) = 50
	π_3	$c(3 \mid 1) = 50$	$c(3 2) \approx 200$	c(3 3)=0
Prior probabilities:		$p_1 = .05$	$p_2 = .60$	$p_3 = .35$
Densities at x_0 :		$f_1(\mathbf{x}_0) = .01$	$f_2(\mathbf{x}_0) = .85$	$f_3(\mathbf{x}_0)=2$

多个正态总体情况下的一般判别分类

若

$$\mathit{Inp}_k f_k(x) = \mathit{Inp}_k - (\frac{p}{2}) \mathit{In}(2\pi) - \frac{1}{2} \mathit{In}|\Sigma_k| - \frac{1}{2} (x - \mu_k)' \Sigma_k^{-1}(x - \mu_k) = \mathit{max}_i \mathit{Inp}_i f_i(x)$$

则将x分到 $\pi \iota$

二次判别得分

$$d_i^Q(x) = \frac{1}{2} ln |\Sigma_i| - \frac{1}{2} (x - \mu_i)' \Sigma_i^{-1} (x - \mu_i) + lnp_i$$

张晨峰 (华东理工大学商学院)

多个正态总体情况下的一般判别分类

若二次判别得分

$$d_k^Q(x) = max\{d_1^Q(x), d_2^Q(x), ..., d_g^Q(x)\}$$

则将x分到 π_k 。

协方差阵相同时的线性判别得分

$$d_i(x) = \mu_i' \Sigma^{-1} x - \frac{1}{2} \mu_i' \Sigma^{-1} \mu_i + Inp_i$$

样本线性判别得分

$$d_i(x) = \bar{x}_i' S_p^{-1} x - \frac{1}{2} \bar{x}_i' S_p^{-1} \bar{x}_i + Inp_i$$

协方差相同时等价的判别函数

定义x到样本均值向量xi的平方距离

$$D_i^2(x) = (x - \bar{x}_i)' S_p^{-1}(x - \bar{x}_i)$$

于是判别法则为, 若

$$-\frac{1}{2}D_i^2(x) + Inp_i$$

最大,则将x分到总体 π_i

费希尔的思想

费希尔的想法是将多元观测值x变换成一元观测值y,使得由总体 π_1 和 π_2 导出 的v尽可能地分离。

投影

假设g个类(组),每类(组) π_i 有 N_i 个p维的样本点,令 α 为 R^p 中的任一向量, 则 $y = \alpha' x$ 为x向以 α 为法线方向的投影。

组内平方和

组内平方和为 $\alpha'W\alpha$,其中

$$W = \sum_{i=1}^{g} (N_i - 1)S_i = \sum_{i=1}^{g} \sum_{j=1}^{N_i} (x_{i,j} - \bar{x}_i)(x_{i,j} - \bar{x}_i)'$$

组间平方和

组内平方和为 $\alpha'B\alpha$,其中

$$B = \sum_{i=1}^{g} (\bar{x}_i - \bar{x})(\bar{x}_i - \bar{x})'$$

求解

最大化下式

$$\frac{\alpha' B \alpha}{\alpha' W \alpha}$$

即得到 α 的解

定理

若A和B都是对称阵且B > 0,则有

$$\max \quad \frac{x'Ax}{x'Bx} = \lambda_1 \geq \lambda_2 \geq ... \geq \lambda_p = \min \quad \frac{x'Ax}{x'Bx}$$

其中 $\lambda_1,...,\lambda_p$ 为 $B^{-1}A$ 的特征值,使 $\frac{x'Ax}{x'Bx}$ 最大(最小)的向量 $B^{-1}A$ 是对应最大(最小)特征值的特征向量。

费希尔线性判别函数的解

费希尔准则下的线性判别函数 $y = \alpha' x$ 的解 α 是矩阵 $W^{-1}B$ 的最大特征根所对应的特征向量。

用费希尔判别量将对象进行分类

若

$$\sum_{j=1}^{r} (\hat{y}_i - \bar{y}_{ki})^2 = \sum_{j=1}^{r} [\hat{\alpha}'_j(x - \bar{x}_k)]^2 \le \sum_{j=1}^{r} [\hat{\alpha}'_j(x - \bar{x}_i)]^2$$

则将x分入 π_k 。

