Capítulo 3

Semana 3

Ejercicio 1. Sean $F \subset \mathbb{R}^n$ un subconjunto cerrado y $K \subset \mathbb{R}^n$ un subconjunto compacto.

- a) Demuestre que, si $F \subset K$, entonces F es compacto.
- b) Demuestre que $F \cap K$ es compacto.

Solución.

- a) Trabajaremos con la topología relativa de K. En particular, "cobertura abierta" significa "cobertura por abiertos de K". Esto es posible porque la compacidad es un concepto intrínseco: no depende del hecho de que K está incrustado en el espacio ambiente \mathbb{R}^n .
 - Dada una cobertura abierta \mathscr{U} de F, sea \mathscr{U}' la cobertura abierta de K obtenida agregrando el abierto relativo A = K F. Puesto que K es compacto, \mathscr{U}' tiene una subcobertura finita \mathscr{F} . Removiendo A de \mathscr{F} si fuese necesario, obtenemos un subconjunto finito de \mathscr{U} que cubre F = K A.
- b) La intersección $F \cap K$ es cerrada en K. Entonces el argumento del ítem anterior muestra que $F \cap K$ es compacta.

Ejercicio 2. Demuestre que la intersección arbitraria de subconjuntos compactos de \mathbb{R}^n es compacta.

Nota. Esta afirmación falla en el siguiente caso degenerado: si \mathscr{F} es la familia vacía de subconjuntos compactos de \mathbb{R}^n , entonces trivialmente todo $K \in \mathscr{F}$ es compacto, pero $\bigcap \mathscr{F} = \mathbb{R}^n$ no es compacto.

Solución. Sea \mathscr{F} una familia no vacía de subconjuntos compactos de \mathbb{R}^n . Puesto que \mathbb{R}^n es Hausdorff, cada miembro $K \in \mathscr{F}$ es un subconjunto cerrado de \mathbb{R}^n . Entonces la intersección

$$\bigcap \mathscr{F} = \{ p \in \mathbb{R}^n : p \in K \text{ para cada } K \in \mathscr{F} \}$$

también es un subconjunto cerrado de \mathbb{R}^n . Tomemos un miembro arbitrario $K \in \mathscr{F}$ y una cota superior en norma C > 0 para los puntos de K. Este mismo valor C también es una cota superior en norma para los puntos de $\bigcap \mathscr{F}$. Por ende, $\bigcap \mathscr{F}$ es un subconjunto cerrado y acotado de \mathbb{R}^n , i.e., es compacto.

Ejercicio 3. Sean $U \subset \mathbb{R}^n$ un subconjunto abierto y $K \subset U$ un subconjunto compacto. Demuestre que existe un subconjunto compacto $L \subset \mathbb{R}^n$ tal que $K \subset \operatorname{int}(L) \subset U$.

Solución. Cubramos K con bolas abiertas $B \subset U$ tales que $\overline{B} \subset U$. Puesto que K es compacto, un número finito de bolas B_1, \ldots, B_n es suficiente. Por el ejercicio 4 de la semana 2, podemos definir

$$L = \overline{B_1 \cup \dots \cup B_n} = \overline{B_1} \cup \dots \cup \overline{B_n}$$

Finalmente, por el ejercicio 4 de la semana 1, tenemos

$$K \subset \bigcup_{i} B_{i} = \bigcup_{i} \operatorname{int}(\overline{B_{i}}) \subset \operatorname{int}\left(\bigcup_{i} \overline{B_{i}}\right) = \operatorname{int}(L) \subset L \subset U$$

Ejercicio 4. Sea K un subconjunto compacto de \mathbb{R}^n y sea $f:K\to\mathbb{R}^n$ una función continua e inyectiva. Demuestre que f es un homeomorfismo entre K y su imagen.

Solución. Tomemos un subconjunto cerrado $F \subset K$. Puesto que K es compacto, F también es compacto. Por continuidad, f(F) también es compacto. Puesto que \mathbb{R}^n es Hausdorff, f(F) es cerrado. Así pues, f es una biyección continua y cerrada, i.e., un homeomorfismo, entre K y su imagen.

Ejercicio 5. Sea $x_n \to a$ una sucesión convergente en \mathbb{R}^n . Demuestre que $\{x_n\} \cup \{a\}$ es un subconjunto compacto de \mathbb{R}^n .

Solución. Sea $\mathscr U$ una cobertura abierta del conjunto dado. En particular, a tiene una vecindad $U_0 \in \mathscr U$. Por convergencia, U_0 atrapa la cola de la sucesión x_n , dejando sólo un número finito de términos x_{n_1}, \ldots, x_{n_k} fuera. Cada x_{n_i} tiene una vecindad $U_i \in \mathscr F$. Entonces $\{U_0, \ldots, U_k\}$ es una subcobertura finita de $\mathscr U$.