MA2047 Algebra och diskret matematik

Något om funktioner och relationer

Mikael Hindgren

30 september 2024

Exempel 1

$$f(x) = x^2 + 1$$
, $g(x) = \sqrt{x - 3}$ och $y = \sin x$ är funktioner.

Exempel 2

Kan följande samband representeras av en funktion?

- För varje fingeravtryck finns exakt en människa.
- För varje människa med fingrar finns (minst) ett fingeravtryck.

$$\begin{array}{c|cccc}
 & x & y \\
\hline
 & 1 & 2 \\
 & 2 & 3 \\
 & 3 & 5 \\
 & 4 & 4 \\
\end{array}$$

b)
$$\begin{array}{c|cccc} x & y \\ \hline 1 & \pm 1 \\ 6 & \pm 9 \\ 8 & +7 \end{array}$$

Billackeringsfirma: Bilar i andra färger lackeras vita

Vad är en funktion?

Definition 1

En regel som för varje element x i en mängd A ordnar exakt ett element y i en mängd B kallas en funktion från A till B:

$$f: A \rightarrow B$$

- $A = \text{funktionens } \frac{\text{definitionsmängd}}{\text{definitionsmängd}} (D_f)$
- B = funktionens målmängd
- V_f = funktionens värdemängd = { $y \in B$; y = f(x), $x \in A$ }

Anm: B är mängden av de värden som man har bestämt är tillåtna och $V_f \subseteq B$ är mängden är de värden som faktiskt antas.

Exempel 2 (forts)

- Funktion:
 - $A = D_f = \{Alla fingeravtryck\}$
 - $B = \{Alla människor\}$
 - $V_f = \{ Alla människor med fingrar \}$
- ② Ej funktion.
- a) Funktion:

$$D_f = \{1, 2, 3, 4, \}, B = \mathbb{Z}$$

 $V_f = \{2, 3, 5, 4\}$

- b) Ej funktion.
- c) Funktion:

$$\begin{aligned} &D_f = \{\pm 1, \pm 9, \pm 6, \pm 8\} \\ &B = \mathbb{Z}, \ V_f = \{1, 5, 9, 7\} \end{aligned}$$

Funktion:

$$D_f = \{Alla bilar\}$$

$$B = \{Alla bilar\}$$

 $V_f = \{ Alla \text{ svarta och vita bilar} \}$

Definition 1

En regel som för varje element x i en mängd A ordnar exakt ett element y i en mängd B kallas en funktion från A till B:

$$f:A\to B$$

 $A = \text{funktionens definitionsmängd } (D_f)$

B = funktionens målmängd

 V_f = funktionens värdemängd = { $y \in B$; $y = f(x), x \in A$ }

- För varje fingeravtryck finns exakt en människa.
- För varje människa med fingrar finns (minst) ett fingeravtryck.

	X	у		X	y		X	y
_	1	2		1	±1		±1	1
(3) a)	2	3	b)	9	±5	c)	± 9	5
3 a)	3	5		6	±9		± 6	9
	4	4		8	±7		±8	7

Billackeringsfirma: Bilar i andra färger lackeras vita

Exempel 3

$$f(x) = \sqrt{x-3}, \quad D_f = [3,\infty), \quad B = \mathbb{R}, \quad V_f = [0,\infty)$$

Olika beteckningar för samma funktion:

•
$$f: x \to \sqrt{x-3}, x \ge 3$$

$$y = \sqrt{x-3}, x \ge 3$$

•
$$f(\phi) = \sqrt{\phi - 3}, \ \phi \ge 3$$

•
$$f() = \sqrt{()-3}, D_f = [3, \infty)$$

Anm:

- Ofta anges inte definitionsmängden och då är D_f den största mängd för vilket funktionsuttrycket har mening.
 - Skriver vi $f(x) = \frac{1}{x}$ innebär det att $V_f = \{x \in \mathbb{R} : x \neq 0\}$.
- Två funktioner $f: A \to B$ och $g: C \to D$ är lika omm A = C, B = D och f(x) = g(x) för alla $x \in A$.

Injektiva, surjektiva och bijektiva funktioner

Definition 2

En funktion $f: A \rightarrow B$ kallas

• Injektiv om det för varje $y \in B$ finns högst ett $x \in A$.

• Surjektiv om det för varje $y \in B$ finns minst ett $x \in A$.

• Bijektiv om det för varje $y \in B$ finns exakt ett $x \in A$.

Anm: f bijektiv $\Leftrightarrow f$ injektiv och surjektiv.

Injektiva, surjektiva och bijektiva funktioner

Exempel 4

 $f(x) = x^2$. Är f injektiv, surjektiv eller bijektiv om

- \bigcirc $A = \mathbb{R}, B = \mathbb{R}$?
- ② $A = \mathbb{R}, B = \{y \in \mathbb{R} : y \ge 0\}$?
- **③** $A = \{x \in \mathbb{R} : x \geq 0\}, B = \mathbb{R}$?

Lösning:

- Inget av dem.
- 2 Surjektiv ($B = V_f$).
- **③** Injektiv (V_f ⊂ B).
- **○** Injektiv och surjektiv \Rightarrow bijektiv ($B = V_t$).

En funktion $f: A \rightarrow B$ kallas

- Injektiv om det för varje $y \in B$ finns högst ett $x \in A$.
- Surjektiv om det för varje $y \in B$ finns minst ett $x \in A$.
- Bijektiv om det för varje $y \in B$ finns exakt ett $x \in A$.

Invers funktion

Definition 3

En bijektiv funktion $f: A \rightarrow B$ kallas inverterbar. Den funktion som till varje $y \in B$ ordnar ett $x \in A$ sådant att f(x) = y kallas för inversen till f och betecknas f^{-1} :

$$y = f(x) \Leftrightarrow x = f^{-1}(y)$$

Av definitionen följer att om *f* är inverterbar så gäller följande:

- $D_{t-1} = V_t = B \text{ och } V_{t-1} = D_t = A$
- $f^{-1}(f(x)) = x$ för alla $x \in D_f$
- $f(f^{-1}(y)) = y$ för alla $y \in V_f$
- \bullet $X_1 \neq X_2 \Rightarrow f(X_1) \neq f(X_2)$

(a) f inverterbar

(b) f ei inverterbar

Anm: Om funktionen är injektiv men inte surjektiv (dvs inte bijektiv) så existerar en invers men den är bara definierad på V_t .

Invers funktion

Exempel 5

Är funktionen $f(x) = x^2$ inverterbar?

Lösning:

$$x_1 = 1$$
, $x_2 = -1 \Rightarrow f(x_1) = 1^2 = 1$, $f(x_2) = (-1)^2 = 1$
 $\therefore x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$ dvs f är inte inverterbar.

Invers funktion

Exempel 6

Undersök om $f(x) = x^2 - 2x - 3$, $x \ge 1$, är inverterbar och bestäm i så fall inversen $f^{-1}(x)$.

Lösning:

Sätt y = f(x) och lös ut x:

$$y = x^2 - 2x - 3 \Leftrightarrow x^2 - 2x - (3 + y) = 0$$

$$\Leftrightarrow x = 1 \pm \sqrt{4+y}$$

$$x \geq 1 \Rightarrow x = 1 + \sqrt{4 + y}$$

$$\therefore x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$$

$$f^{-1}(x) = 1 + \sqrt{4 + x}, x \ge -4$$

Anm: Kurvan $y = f^{-1}(x)$ är spegelbilden av y = f(x) i linjen y = x

Exempel 7

Kan $y \ge x$, $A = B = \mathbb{R}$, representeras av en funktion $f : A \to B$?

Nej, för varje $x \in A$ finns oändligt många $y \in B$ som uppfyller $y \ge x$.

Relationer mellan tal, t ex $y \ge x$, kan inte beskrivas inom ramen för funktionsbegreppet.

I matematiken är en relation något som gäller (eller inte gäller) mellan två eller flera objekt:

- Sara är mamma till Kalle
- Kalle är släkt med Sara
- Sara och Kalle bor i samma land
- o a är större än eller lika med b
- a ligger mellan b och c
- b är delbart med a

Definition 4

Om A och B är mängder så är den Cartesiska produkten

$$A \times B = \{(a, b); a \in A, b \in B\}$$

Exempel 8

$$A = \{i, j, k\}, B = \{m, n\} \Rightarrow A \times B = \{(i, m), (i, n), (j, m), (j, n), (k, m), (k, n)\}$$

Definition 5

En (binär) relation \mathcal{R} från A till B är en delmängd av $A \times B$.

Beteckning: $(x, y) \in \mathcal{R} \Leftrightarrow x \mathcal{R} y$

Exempel 9

- $A = \{a, c, k, l\}$
- B = A
- $x \mathcal{R} y \Leftrightarrow x$ kommer före y i alfabetet

$$\Rightarrow \mathcal{R} = \{(a, c), (a, k), (a, l), (c, k), (c, l), (k, l)\}$$

Exempel 10

- \bullet $A = \{2, 3, 4, 5, 6, 7\}$
- \bullet B = A
- $x \mathcal{R} y \Leftrightarrow x \mid y$

$$\Rightarrow \mathcal{R} = \{(2,2), (2,4), (2,6), (3,3), (3,6), (4,4), (5,5), (6,6), (7,7)\}$$

Om A = B är \mathcal{R} homogen och man säger att \mathcal{R} är en relation på A.

Definition 6

En relation \mathcal{R} på A kallas

- Reflexiv om $x \mathcal{R} x \quad \forall x \in A$
- Symmetrisk om $x \mathcal{R} y \Rightarrow y \mathcal{R} x$
- Antisymmetrisk om $x \mathcal{R} y \wedge y \mathcal{R} x \Rightarrow x = y$
- Transitiv om $x \mathcal{R} y \wedge y \mathcal{R} z \Rightarrow x \mathcal{R} z$
- Total om $x \mathcal{R} y \lor y \mathcal{R} x \quad \forall x, y \in A$

Exempel 11

Är någon av relationerna nedan symmetrisk, antisymmetrisk eller transitiv?

- $x \mathcal{R} y \Leftrightarrow x \text{ är släkt* med } y$: Symmetrisk, transitiv
- $x \mathcal{R} y \Leftrightarrow x$ är mamma till y: Inget av dem
- $x \mathcal{R} y \Leftrightarrow x \leq y$: Antisymmetrisk, transitiv
- $x \mathcal{R} y \Leftrightarrow x \neq y$: Symmetrisk
- $x \mathcal{R} y \Leftrightarrow x \subseteq y$: Antisymmetrisk, transitiv

*En släkt avser här en eller flera familjer med gemensam förfader eller -moder och släktskap mellan två personer innebär att de tillhör samma släkt.

Ekvivalensrelationer

Definition 7

En ekvivalensrelation på A är reflexiv, symmetrisk och transitiv

Exempel 12

- A = Sveriges befolkning
- B = A
- $x \mathcal{R} y \Leftrightarrow x \text{ känner } y$

 $\ddot{A}r \mathcal{R}$ en ekvivalensrelation?

En relation \mathcal{R} på A kallas

- Reflexiv om $x \mathcal{R} x \quad \forall x \in A$
- Symmetrisk om $x \mathcal{R} y \Rightarrow y \mathcal{R} x$
- Transitiv om $x \mathcal{R} y \wedge y \mathcal{R} z \Rightarrow x \mathcal{R} z$
- x känner x för alla x i $A \Rightarrow \mathcal{R}$ är reflexiv
- x känner $y \Rightarrow y$ känner $x \Rightarrow \mathcal{R}$ är symmetrisk
- x känner $y \wedge y$ känner $z \not\Rightarrow x$ känner $z \Rightarrow \mathcal{R}$ är inte transitiv
- \mathcal{L} är inte en ekvivalensrelation.

Ekvivalensrelationer

Exempel 13

- A = Sveriges befolkning
- B = A
- $x \mathcal{R} y \Leftrightarrow x \text{ är släkt med } y$

 $\ddot{A}r \mathcal{R}$ en ekvivalensrelation?

En relation \mathcal{R} på A kallas

- Reflexiv om $x \mathcal{R} x \quad \forall x \in A$
- Symmetrisk om $x \mathcal{R} y \Rightarrow y \mathcal{R} x$
- Transitiv om $x \mathcal{R} y \wedge y \mathcal{R} z \Rightarrow x \mathcal{R} z$
- x är släkt med x för alla x i $A \Rightarrow \mathcal{R}$ är reflexiv
- x är släkt med $y \Rightarrow y$ är släkt med $x \Rightarrow \mathcal{R}$ är symmetrisk
- x är släkt med $y \wedge y$ är släkt med $z \Rightarrow x$ är släkt med $z \Rightarrow \mathcal{R}$ är transitiv

 \therefore \mathcal{R} är en ekvivalensrelation.

Anm: Att vara släkt med = being related

Ekvivalensrelationer

Exempel 14

 $\operatorname{\mathsf{\ddot{A}r}} x \, \mathcal{R} \, y \Leftrightarrow n \mid x - y, A = \mathbb{Z}, \, \text{en ekvivalens relation?}$

En relation \mathcal{R} på A kallas

- Reflexiv om $x \mathcal{R} x \quad \forall x \in A$
- Symmetrisk om $x \mathcal{R} y \Rightarrow y \mathcal{R} x$
- Transitiv om $x \mathcal{R} y \wedge y \mathcal{R} z \Rightarrow x \mathcal{R} z$
- $n \mid x y \Rightarrow n \mid y x \Rightarrow \mathcal{R}$ är symmetrisk
- $n \mid x y \land n \mid y z \Rightarrow n \mid x y + y z \Rightarrow n \mid x z \Rightarrow \mathcal{R}$ är transitiv \mathcal{R} är en ekvivalensrelation.

Relationen \mathcal{R} ovan är kongruens modulo n:

• $n \mid x - x \quad \forall x \in \mathbb{Z} \Rightarrow \mathcal{R}$ är reflexiv

$$x \equiv y \pmod{n} \Leftrightarrow n \mid x - y$$

Anm: Ekvivalensrelationer kan jämföras med likhetstecken.

Definition 8

En partiell ordningsrelation på A är reflexiv, antisymmerisk och transitiv.

Exempel 15

 $\mathsf{Är}\ x\ \mathcal{R}\ y \Leftrightarrow x \leq y, A = \mathbb{R}$, en partiell ordningsrelation?

En relation \mathcal{R} på A kallas

- Reflexiv om $x \mathcal{R} x \quad \forall x \in A$
- Antisymmetrisk om $x \mathcal{R} y \wedge y \mathcal{R} x \Rightarrow x = y$
- Transitiv om $x \mathcal{R} y \wedge y \mathcal{R} z \Rightarrow x \mathcal{R} z$
- $x \le y \land y \le x \Rightarrow x = y \Rightarrow \mathcal{R}$ är antisymmetrisk
- $x \le y \land y \le z \Rightarrow x \le z \Rightarrow \mathcal{R}$ är transitiv
- \mathcal{R} är en partiell ordningsrelation.

• $x \le x \quad \forall x \in \mathbb{R} \Rightarrow \mathcal{R}$ är reflexiv

Hassediagram

Exempel 16

Partiell ordningsrelation:

$$x \mathcal{R} y \Leftrightarrow x \mid y, \quad A = \{1, 2, 3, 4\}$$

- $\mathcal{R} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$
- \mathcal{R} reflexiv: $x \mid x$ för alla $x \in A$
- \mathcal{R} antisymmetrisk: $x \mid y \land y \mid x \Rightarrow x = y$
- \mathcal{R} transitiv: $x \mid y \land y \mid z \Rightarrow x \mid z$

Relationsgraf

Hassediagram: Redundant information borttagen

Maximala element och största element

Definition 9

Ett element $a \in A$ kallas

- Maximalt om $x \neq a \Rightarrow a \mathcal{R} x$
- Minimalt om $x \neq a \Rightarrow a \mathcal{R} x$
- Ett största element i A om $x \mathcal{R}$ $a \forall x \in A$
- Ett minsta element i A om $x \mathcal{R} a \quad \forall x \in A$

Anm: Ett största/minsta element är alltid maximalt/minimalt.

Maximala element och största element

Exempel 17

 \mathcal{R} binär relation på $A = \{2, 4, 6, 10, 12, 20, 30\}$. $x \mathcal{R} y \Leftrightarrow x \mid y$

- Rita Hassediagram.
- 2 Bestäm alla maximala och minimala element.
- Bestäm största och minsta element.

Ett element $a \in A$ kallas

- Maximalt om $x \neq a \Rightarrow a \mathcal{R}x$
- Minimalt om $x \neq a \Rightarrow a\mathcal{R}x$
- Ett största element i A om $x \mathcal{R} a \quad \forall x \in A$
- Ett minsta element i A om $x \mathcal{R}a \quad \forall x \in A$
- 12, 20 och 30 delar inte något av de övriga ⇒ De är maximala element.
 2 är det enda tal som delar alla andra ⇒ 2 är minimalt element.
- Oet finns inget tal som alla delar ⇒ Största element saknas. Inget av de övriga talen delar 2 ⇒ 2 är minsta element.