Statistical Computing Final Project

Sammarieo Brown

2023-05-05

Contents

1	Dat	e Pre-processing & Preparation	3
	1.1	Data Wrangling	į
2	Den	mographic Analysis	5
	2.1		
3	Key	Variable Analysis	8
4	Infe	erential Analysis	13
	4.1	Goal 1: To determine if there is a difference in per capita water consumption based on location (area)	13
	4.2	Check for Normality	13
	4.3	Normality by Groups	13
	4.4	multiple comparisons test	16
	4.5	Comparison Plot	16
	4.6	Goal 2: To determine if there is a difference in per capita water consumption based on whether toilet facilities are shared or not	17
	4.7	Test: Independent Sample t-test	17
	4.8	Independent Sample t-test	18
	4.9	Goal 3:To determine if there is a relationship between per capita water consumption and household size (add control – area, toilet, kitchen)	18
	4.10	multiple linear regression model	19
	4.11	Diagnostic Plots	20
5	Adv	vanced Data Analysis	21
	5.1	Filter the dataset to only include Location and Per Capita water Consumption	21
	5.2	Create the dissimilarity matrix using Gower's distance	22
	5.3	Perform hierarchical clustering	22
	5.4	Determine the optimal number of clusters	22

	5.5	Visualize the dendrogram	23
	5.6	Visualize the clusters in a 2D plot	24
	5.7	Create a cluster summary	24
	5.8	Visualize the cluster summary	25
6	Con	nposite Index	27
	6.1	Recode the variables	27
	6.2	Calculate the sum of the recoded variables	28
	6.3	Cronbach Alpha analysis	28
7	Infe	erential Analysis of Composite Index	31
	7.1	$ \label{thm:constraints} Goal \ 5 \ Is \ there \ a \ relationship \ between \ shared \ facilities \ index \ and \ per \ capita \ water \ consumption? $	31
	7.2	Diagnostic Plots	32
0.0		Package Management -> Importing the necessary packages that will be used in the project	his
	libra	ssPackageStartupMessages({ ary(corrplot) ary(cluster) ary(dendextend) ary(dplyr) ary(factoextra) ary(ggplot2) ary(ggpubr) ary(ggrepel) ary(ggrepel) ary(gtsummary) ary(haven) ary(kableExtra) ary(knitr) ary(performance) ary(presch) ary(resatrix) ary(rempsyc) ary(rempsyc) ary(splot) ary(tidyr) ary(tidyr) ary(tidyr) ary(tidyrese) ary(tinytex) ary(gridExtra) ary(flextable)	

})

1 Date Pre-processing & Preparation

- 1. Import dataset (SLC_2007.sav)
- 2. Rename column headers to be more descriptive.
- 3. convert the .sav file to a .csv file

```
dataframe <- read_sav("F:/DataSpell/Statistical Computing Project/dataset/SLC_2007.sav")
# rename column names to a more descriptive column name

colnames(dataframe)[1:45] <- c("HH_Num", "Final_Weight", "Water_Bill", "HH_Size_All", "HH_Size_Mem", "P

# convert all the column names to lower case
colnames(dataframe) <- tolower(colnames(dataframe))

# coverting the SLC_2007.sav to csv

converted_df <- write.table(x=dataframe,file="F:/DataSpell/Statistical Computing Project/dataset/SLC_20</pre>
```

1.1 Data Wrangling

This process of the Data Science lifecycle involves cleaning, transforming and restructuring the raw data to make it suitable for analysis.

water_meter

)

```
# rename all the elements of the rows in our subset to labels.
SLC_2007.Subset <- SLC_2007.Subset %>%
  rename(
    area_code = area_code,
   type_dwelling = type_dwelling,
   type_toilet = type_toilet,
   toilet_shared = toilet_shared,
   kitchen_shared = kitchen_shared,
   own_dwelling = own_dwelling,
   water_source = water_source,
   water_source_shared = water_source_shared,
   water_meter = water_meter,
  ) %>%
  mutate(
    area_code = case_when(
     area_code == 1 ~ "KMA",
     area_code == 2 ~ "Other Town",
     area_code == 3 ~ "Rural",
     TRUE ~ as.character(area_code) # keep original value if not matched
   ),
    type_dwelling = case_when(
      type_dwelling == 1 ~ "SEPARATE HOUSE DETACHED",
      type_dwelling == 2 ~ "SEMI-DETACHED HOUSE",
      type_dwelling == 3 ~ "PARTS OF A HOUSE",
     type_dwelling == 4 ~ "APARTMENT BUILDING".
      type_dwelling == 5 ~ "TOWNHOUSE",
     type_dwelling == 6 ~ "IMPROVISED HOUSING UNIT",
     type_dwelling == 7 ~ "PARTS OF COMMERCIAL BUILDING",
      type_dwelling == 8 ~ "OTHER (SPECIFY)",
      TRUE ~ as.character(type dwelling) # keep original value if not matched
   ),
   type_toilet = case_when(
     type_toilet == 1 ~ "W.C. LINKED TO SEWER",
      type_toilet == 2 ~ "W.C. NOT LINKED",
      type_toilet == 3 ~ "PIT",
      type_toilet == 4 ~ "OTHER",
      type_toilet == 5 ~ "NONE",
     TRUE ~ as.character(type_toilet) # keep original value if not matched
    toilet_shared = case_when(
     toilet_shared == 1 ~ "EXCLUSIVE USE",
     toilet shared == 2 ~ "SHARED",
     TRUE ~ as.character(toilet_shared) # keep original value if not matched
   kitchen_shared = case_when(
     kitchen_shared == 1 ~ "EXCLUSIVE USE",
     kitchen shared == 2 ~ "SHARED",
     kitchen_shared == 3 ~ "NONE",
```

```
TRUE ~ as.character(kitchen_shared) # keep original value if not matched
),
own_dwelling = case_when(
  own_dwelling == 1 ~ "YES",
  own_dwelling == 2 ~ "NO",
  TRUE ~ as.character(own_dwelling) # keep original value if not matched
),
water source = case when(
 water_source == 1 ~ "Indoor tap/pipe",
  water_source == 2 ~ "Outside private",
  water_source == 3 ~ "Public standpipe",
  water source == 4 ~ "Well",
  water_source == 5 ~ "River, Lake, Spring, Pond",
  water_source == 6 ~ "Rainwater (Tank)",
  water_source == 7 ~ "Trucked water (NWC)",
  water_source == 8 ~ "Bottled Water",
  water_source == 9 ~ "Other (Specify)",
 TRUE ~ as.character(water_source) # keep original value if not matched
),
water_source_shared = case_when(
 water_source_shared == 1 ~ "YES",
  water source shared == 2 ~ "NO",
  TRUE ~ as.character(water_source_shared) # keep original value if not matched
),
water_meter = case_when(
 water meter == 1 ~ "Group",
 water_meter == 2 ~ "Individual",
 water_meter == 3 ~ "No Meter",
 TRUE ~ as.character(water_meter) # keep original value if not matched
),
```

2 Demographic Analysis

2.1

```
as_kable_extra() %>% # Convert to kableExtra table
kable_styling(latex_options = "hold_position", position = "center") # Center the table in the P.
```

table1

table2

Characteristic	N	N = 5,863
Area Code	5,863	
KMA		919 (16%)
Other Town		1,208 (21%)
Rural		3,736 (64%)

¹ n (%)

Characteristic	N	N = 6,278
Type of Toilet	6,255	
NONE		110 (1.8%)
OTHER		7 (0.1%)
PIT		2,931 (47%)
W.C. LINKED TO SEWER		957 (15%)
W.C. NOT LINKED		2,250 (36%)

¹ n (%)

```
water_source_shared,
                                kitchen_shared, toilet_shared, area_code)
# Filter out area codes 4 and 5
SLC_2007.Demographics_filtered <- SLC_2007.Demographics %>%
 filter(area_code != 4 & area_code != 5)
# Create summary statistics table
summary_table <- SLC_2007.Demographics_filtered %>%
  tbl_summary(
   by = area_code,
   type = list(
     water_source_shared = "categorical",
     kitchen_shared = "categorical",
     toilet_shared = "categorical"
   ),
   statistic = list(
     water_source_shared ~ "{n} ({p}%)",
     kitchen_shared \sim "{n} ({p}%)",
     toilet_shared ~ "{n} ({p}%)"
   ),
   missing = "no",
   label = list(
     area_code ~ "Area Code",
     water_source_shared ~ "Water Source Shared",
     kitchen_shared ~ "Kitchen Shared",
     toilet_shared ~ "Toilet Shared"
   )
  )%>%
  add_n() %>% # add column with total number of non-missing observations
  modify_header(label = "**Characteristic**") %>% # update the column header
  bold_labels()%>%
  as_kable_extra() %>% # Convert to kableExtra table
  kable_styling(latex_options = "hold_position", position = "center") # Center the table in the PDF out
summary_table
```

Characteristic	N	KMA, N = 919	Other Town, $N = 1,208$	Rural, $N = 3,736$
Water Source Shared	1,431			
NO		45 (73%)	160 (86%)	1,076 (91%)
YES		17 (27%)	27 (14%)	106 (9.0%)
Kitchen Shared	5,839			
EXCLUSIVE USE		641 (70%)	980 (81%)	3,141 (84%)
NONE		88 (9.6%)	113 (9.4%)	367 (9.9%)
SHARED		187 (20%)	110 (9.1%)	212 (5.7%)
Toilet Shared	5,709			
EXCLUSIVE USE		586 (64%)	912 (77%)	3,017 (83%)
SHARED		324 (36%)	266 (23%)	604 (17%)

¹ n (%)

Characteristic	N	KMA, N = 919	Other Town, $N = 1,208$	Rural, $N = 3,736$
per_cap_con_all	5,863			
Mean		131,854.05	105,834.19	76,277.71
SD		137,062.67	110,473.95	91,693.03

```
SLC_2007.Subset2 <- SLC_2007.Subset %>%
  rename("Area Code" = area_code)
table3 <- SLC_2007.Subset2 %>%
  select("Area Code", per_cap_con_all) %>%
  filter(!(`Area Code` %in% c(4, 5))) %>% # exclude Area Codes 4 and 5
  group_by(`Area Code`) %>%
  tbl_summary(
    by = `Area Code`,
    type = all_continuous() ~ "continuous2",
    statistic = list(all_continuous() ~ c("{mean}", "{sd}")),
    digits = all_continuous() ~ c(2, 2),
    missing = "no"
  ) %>%
  add_n() %>%
  modify_header(label = "**Characteristic**") %>%
  bold_labels()%>%
  as_kable_extra() %>% # Convert to kableExtra table
  kable_styling( position = "center") # Center the table in the PDF output
table3
```

3 Key Variable Analysis

```
SLC_2007.Subset2 <- SLC_2007.Subset %>%
  rename("Type of Toilet" = type_toilet)
# Calculate median per capita water consumption for each Type of Toilet
medians <- SLC 2007.Subset2 %>%
  group_by(`Type of Toilet`) %>%
  summarise(Median = median(per_cap_con_all, na.rm = TRUE))
# Merge calculated medians back into the main data frame
SLC 2007.Subset2 <- SLC 2007.Subset2 %>%
  left_join(medians, by = "Type of Toilet")
# Create a boxplot with reordered Type of Toilet on the x-axis
boxplot_colored_labeled_sorted <- ggplot(SLC_2007.Subset2, aes(x = reorder(`Type of Toilet`, -Median),
  geom_boxplot(outlier.shape = NA, coef = 1.5) + # Remove outliers by setting outlier.shape to NA and c
  coord_cartesian(ylim = c(0, 5e+05)) + # Set y-axis limits to 0 and 5e+05
  scale_fill_brewer(palette = "Set2") + # Apply a color theme from the ColorBrewer palette
  theme_bw() + # Use a black and white theme for the plot
  labs(
```



```
# Create a boxplot of toilet_shared and per_cap_con_all
boxplot_colored <- ggplot(SLC_2007.Subset, aes(x = toilet_shared, y = per_cap_con_all, fill = toilet_sh
    geom_boxplot(outlier.shape = NA, coef = 1.5) + # Remove outliers by setting outlier.shape to NA and c
    coord_cartesian(ylim = c(0, 3e+05)) + # Set y-axis limits to 0 and 5e+05
    scale_fill_brewer(palette = "Set2") + # Apply a color theme from the ColorBrewer palette
    theme_bw() + # Use a black and white theme for the plot
    labs(
        x = "Toilet Shared",
        y = "Per Capita Water Consumption") +
    theme(axis.text = element_text(size = 14), # Increase the font size of the axis text to 14
        axis.title = element_text(size = 16)) # Increase the font size of the axis titles to 16
# Print the boxplot
boxplot_colored</pre>
```



```
# Calculate the percentages for each kitchen_shared category, removing NA values
SLC_2007.Subset4 <- SLC_2007.Subset %>%
  filter(!is.na(kitchen_shared)) %>%
  select(kitchen_shared, per_cap_con_all) %>% # Include 'per_cap_con_all' in the dataframe
  count(kitchen_shared, per_cap_con_all) %>% # Add 'per_cap_con_all' in the count function
  mutate(percentage = n / sum(n) * 100) %>%
  arrange(desc(percentage))
# Create a bar chart of kitchen_shared and per_cap_con_all, with percentage labels
bar_chart_colored <- ggplot(SLC_2007.Subset4, aes(x = reorder(kitchen_shared, -per_cap_con_all), y = pe
  geom_bar(stat = "identity", position = position_dodge(width = 0.9)) + # Use the identity statistic to
  scale_fill_brewer(palette = "Set2") + # Apply a color theme from the ColorBrewer palette
 theme_bw() + # Use a black and white theme for the plot
 labs(
   x = "Kitchen Shared",
   y = "Per Capita Water Consumption") +
 theme(axis.text = element_text(size = 14), # Increase the font size of the axis text to 14
        axis.title = element_text(size = 16)) # Increase the font size of the axis titles to 16
# Print the bar chart
bar_chart_colored
```



```
# Calculate the total per capita water consumption for each kitchen_shared category, removing NA values
SLC_2007.Subset4 <- SLC_2007.Subset %>%
  filter(!is.na(kitchen_shared)) %>%
  select(kitchen_shared, per_cap_con_all) %>%
  group_by(kitchen_shared) %>%
  summarise(total_per_cap_con_all = sum(per_cap_con_all, na.rm = TRUE))
# Calculate the percentage of per capita water consumption for each kitchen_shared category
SLC_2007.Subset4 <- SLC_2007.Subset4 %>%
  mutate(percentage = total_per_cap_con_all / sum(total_per_cap_con_all))
# Create a bar chart of kitchen_shared and per_cap_con_all, with percentage labels
bar_chart_colored <- ggplot(SLC_2007.Subset4, aes(x = reorder(kitchen_shared, -total_per_cap_con_all),
  geom_bar(stat = "identity", position = position_dodge(width = 0.9)) +
  geom_text(aes(label = paste0(round(percentage * 100, 1), "%")), position = position_dodge(width = 0.9
  scale_fill_brewer(palette = "Set2") +
 theme_bw() +
  labs(
   x = "Kitchen Shared",
   y = "Per Capita Water Consumption") +
  theme(axis.text = element_text(size = 14),
        axis.title = element_text(size = 16))
# Print the bar chart
bar_chart_colored
```



```
SLC_2007.Subset4 <- select(SLC_2007.Subset, area_code,kitchen_shared, per_cap_con_all,hh_size_all,)
SLC_2007.Subset4 <- SLC_2007.Subset4 %>%
mutate(
    hh_size_all = case_when(
        hh_size_all == 1 ~ "1 person",
        hh_size_all == 2 ~ "2 person",
        hh_size_all == 3 ~ "3 person",
        hh_size_all >= 4 ~ "4 or more"
    )
)
SLC_2007.Subset4 <- SLC_2007.Subset4 %>%
filter(area_code != "Unknown")
```

```
Q1 = quantile(per_cap_con_all, 0.25, na.rm = TRUE),
    Median = median(per_cap_con_all, na.rm = TRUE),
    Mean = mean(per_cap_con_all, na.rm = TRUE),
    Q3 = quantile(per_cap_con_all, 0.75, na.rm = TRUE),
    Max = max(per_cap_con_all, na.rm = TRUE),
    SD = sd(per_cap_con_all, na.rm = TRUE)
) %>%
as.data.frame()
```

4 Inferential Analysis

4.1 Goal 1: To determine if there is a difference in per capita water consumption based on location (area).

•

4.1.1 Test: One-way ANOVA

4.2 Check for Normality

Run the Linear Model

```
aov.model.test <- lm(per_cap_con_all ~ area_code, data = SLC_2007.Goal_1)
```

4.3 Normality by Groups

```
# Check normality by groups, ignoring NA values
ggqqplot(na.omit(SLC_2007.Goal_1), "per_cap_con_all", facet.by = "area_code")
```


Check for equal variance

plot(aov.model.test,1)

One-Way ANOVA Test

```
# One-Way ANOVA Test
# aov.test <- aov(per_cap_con_all ~ area_code, data = SLC_2007.Goal_1)
# summary(aov.test)
#
# # Calculate r^2
# RSq <- var(predict(aov.test)) / var(SLC_2007.Goal_1$per_cap_con_all, na.rm = TRUE)
# round(RSq, 4)
# One-Way ANOVA Test
aov.test <- aov(per_cap_con_all ~ area_code, data = SLC_2007.Goal_1)</pre>
aov.summary <- summary(aov.test)</pre>
# Calculate r^2
RSq <- var(predict(aov.test)) / var(SLC_2007.Goal_1$per_cap_con_all, na.rm = TRUE)
RSq <- round(RSq, 4)
# Extract data for the table
anova_table <- data.frame(</pre>
  Df = aov.summary[[1]][, "Df"],
  SumSq = aov.summary[[1]][, "Sum Sq"],
 MeanSq = aov.summary[[1]][, "Mean Sq"],
  FValue = aov.summary[[1]][, "F value"],
  Pr = aov.summary[[1]][, "Pr(>F)"]
)
```

4.4 multiple comparisons test

4.5 Comparison Plot

```
# Create the plot using ggbetweenstats()
anova_plot <- ggbetweenstats(</pre>
 data = SLC_2007.Goal_1,
 x = area_code,
 y = per_cap_con_all,
 type = "parametric",
 var.equal = TRUE,
 plot.type = "box",
 pairwise.comparisons = TRUE,
 p.adjust.method = "bonferroni",
  pairwise.display = "significant",
 centrality.plotting = FALSE,
  bf.message = FALSE
)
# Modify y-axis title
anova_plot <- anova_plot +</pre>
```

```
ylab("Per Capita Water Consumption") +
xlab("Area")

# Customize the theme to enlarge elements
anova_plot <- anova_plot +
theme(
    text = element_text(size = 16), # Increase base text size
    axis.title = element_text(size = 18), # Increase axis title size
    axis.text = element_text(size = 14), # Increase axis text size
    plot.title = element_text(size = 20, face = "bold"), # Increase plot title size
    strip.text = element_text(size = 16), # Increase facet label text size
    legend.text = element_text(size = 14), # Increase legend text size
    legend.title = element_text(size = 16), # Increase legend title size
    panel.spacing = unit(1, "lines") # Increase space between facets
)

# Display the plot
# anova_plot</pre>
```

- 4.6 Goal 2: To determine if there is a difference in per capita water consumption based on whether toilet facilities are shared or not.
 - •
- 4.7 Test: Independent Sample t-test

```
# Prepare the dataset
SLC_2007.Goal_2 <- select(SLC_2007.Subset, toilet_shared, per_cap_con_all)</pre>
SLC 2007.Goal 2 <- SLC 2007.Goal 2 %>%
        mutate(toilet_shared = recode(toilet_shared,
                                       `1` = "EXCLUSIVE USE",
                                       2 = "SHARED",
        )
        ) %>%
  filter(toilet_shared != "NA")
# Run the independent sample t-test
t_test_result <- SLC_2007.Goal_2 %>%
        filter(toilet_shared != "Unknown") %>% # Remove rows with "Unknown" values
        tbl_summary(
                by = toilet shared,
                type = c(per_cap_con_all = "continuous"),
                statistic = list(per_cap_con_all ~ "{mean} ({sd})"),
                missing = "no",
                label = list(
                        per_cap_con_all ~ "Per Capita Water Consumption"
        ) %>%
        add_difference()
```

```
# Display the result
# t_test_result
```

4.8 Independent Sample t-test

4.9 Goal 3:To determine if there is a relationship between per capita water consumption and household size (add control – area, toilet, kitchen)

•

```
SLC_2007.Goal_3 <- select(SLC_2007.Subset, per_cap_con_all,hh_size_all,area_code,toilet_shared,kitchen_
# recode variables.
SLC_2007.Goal_3 <- SLC_2007.Goal_3 %>%
        mutate(
                toilet_shared = recode(toilet_shared,
                                        `1` = "EXCLUSIVE USE",
                                        `2` = "SHARED"
                ),
                kitchen_shared = recode(kitchen_shared,
                                        `1` = "EXCLUSIVE USE",
                                        ^2 = "SHARED",
                                         `3` = "NONE"
                ),
                area_code = recode(area_code,
                              `1` = "KMA",
                              2^ = "Other Town",
                              `3` = "Rural",
                ),
                hh_size_all = case_when(
                        hh_size_all == 1 ~ "1 person",
                        hh_size_all == 2 ~ "2 person",
                        hh_size_all == 3 ~ "3 person",
                        hh_size_all >= 4 ~ "4 or more"
                )
       )%>%
        filter(area_code != "4", area_code != "5",
```

```
kitchen_shared != "NA",
toilet_shared != "NA",
```

4.10 multiple linear regression model

-63484.62

< 0.001

-71991.16 - -54978.08

hh size all [4 or more]

```
# Convert nominal variables to factors
SLC_2007.Goal_3_recoded <- SLC_2007.Goal_3 %>%
        mutate(
                 toilet_shared = as.factor(toilet_shared),
                kitchen_shared = as.factor(kitchen_shared),
                 area = as.factor(area_code),
                 hh_size_all = as.factor(hh_size_all)
        )
# Run the multiple linear regression model
model <- lm(per_cap_con_all ~ hh_size_all + area_code + toilet_shared + kitchen_shared, data = SLC_2007
tab_model(model)
per_cap_con_all
Predictors
Estimates
CI
(Intercept)
197755.96
189129.45 - 206382.47
< 0.001
hh size all [2 person]
-35544.51
-43693.29 - -27395.73
< 0.001
hh size all [3 person]
```

```
-89313.20
```

-96073.49 - -82552.90

< 0.001

area code [Other Town]

-26864.13

-35436.19 - -18292.07

< 0.001

area code [Rural]

-58285.36

-65595.41 - -50975.30

< 0.001

toilet shared [SHARED]

-20724.74

 $\hbox{-}28938.66-\hbox{-}12510.82$

< 0.001

kitchen shared [NONE]

-25857.20

 $\hbox{-}35979.09-\hbox{-}15735.31$

< 0.001

kitchen shared [SHARED]

-11615.35

-22932.87 - -297.84

0.044

Observations

5699

R2 / R2 adjusted

0.155 / 0.153

4.11 Diagnostic Plots

```
# Diagnostic Plots
```

check_model(model)

5 Advanced Data Analysis

```
SLC_2007.Subset200 <- sample_n(SLC_2007.Subset, 200)
SLC_2007.Subset200 <- SLC_2007.Subset200 %>%
filter(area_code != 4 & area_code != 5)
```

5.1 Filter the dataset to only include Location and Per Capita water Consumption

```
SLC_2007.Subset200_filtered <- SLC_2007.Subset200 %>%
  select(area_code, per_cap_con_all,hh_size_all)

SLC_2007.Subset200_filtered <- SLC_2007.Subset200_filtered %>%
  mutate(
    hh_size_all = case_when(
```

5.2 Create the dissimilarity matrix using Gower's distance

```
DistanceMatrix <- daisy(SLC_2007.Subset200_filtered, metric = "gower")
```

5.3 Perform hierarchical clustering

```
hc <- hclust(DistanceMatrix, method = "complete")</pre>
```

5.4 Determine the optimal number of clusters

```
plot3 <- fviz_gap_stat(gap_stat)
grid.arrange(plot1, plot2, plot3, ncol = 3)</pre>
```



```
# 3 plots side by side
#ggarrange
```

5.5 Visualize the dendrogram

```
dendrogram <- as.dendrogram(hc)
ColourDendrogram <- color_branches(dendrogram, h = 3)
plot(ColourDendrogram)</pre>
```


Assign cluster labels to the observations

```
clusterLabs <- cutree(hc, k = 2) # Replace with the optimal number of clusters found
SLC_2007.Subset200_clusters <- cbind(SLC_2007.Subset200_filtered, cluster = as.factor(clusterLabs))</pre>
```

5.6 Visualize the clusters in a 2D plot

```
fviz_cluster(list(data = SLC_2007.Subset200_filtered, cluster = clusterLabs))
```

5.7 Create a cluster summary

```
cluster_summary <- SLC_2007.Subset200_clusters %>%
  group_by(cluster) %>%
  summarise(across(everything(), mean, na.rm = TRUE))
```

5.8 Visualize the cluster summary

```
ggplot(SLC_2007.Subset200_clusters, aes(x = as.factor(cluster), y = per_cap_con_all, fill = as.factor(c
geom_boxplot() +
coord_cartesian(ylim = c(0, 4e+05)) +
labs(x = "Cluster", y = "Per Capita Water Consumption")
```


Table printed with 'knitr::kable()', not {gt}. Learn why at

```
## https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
## To suppress this message, include 'message = FALSE' in code chunk header.
Characteristic
```

```
1, N = 119  
2, N = 66  
per_cap_con_all  
62,731 (50,524); Median: 48,680; IQR: 33,562-73,519  
129,553 (139,887); Median: 90,008; IQR: 53,234-140,047
```

```
# Create a summary table
summary_table <- SLC_2007.Subset200_clusters %>%
  mutate(cluster = as.factor(cluster),
         area_code = recode(area_code,
                            "1" = "Rural",
                            "2" = "KMA",
                            "3" = "Other Town"),
         hh_size_all = recode(hh_size_all,
                              "1" = "1 person",
                              "2" = "2 person",
                              "3" = "3 person",
                              "4" = "4 or more")) %>%
  group_by(cluster) %>%
  select(cluster, area_code, hh_size_all, per_cap_con_all) %>%
  gtsummary::tbl_summary(by = cluster,
                         missing = "no",
                         type = list(area_code = "categorical",
                                     hh_size_all = "categorical",
                                     per_cap_con_all = "continuous"),
                         statistic = list(area_code = "{n} ({p}%)",
                                          hh_size_all = "{n} ({p})",
                                          per_cap_con_all = "{mean} ({sd})"))
# Display the summary table
summary_table
```

```
## Table printed with 'knitr::kable()', not {gt}. Learn why at
## https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
## To suppress this message, include 'message = FALSE' in code chunk header.
```

Characteristic

```
1, N = 119
```

2, N = 66

area code

KMA

```
17 (14%)
8 (12%)
Other Town
22 (18%)
9 (14%)
Rural
80 (67%)
49 (74%)
hh\_size\_all
1 person
0 (0%)
38 (58%)
2 person
0 (0\%)
28 (42%)
3 person
29 (24%)
0 (0\%)
4 or more
90 (76%)
0 (0%)
per\_cap\_con\_all
62,731 (50,524)
129,553 (139,887)
```

6 Composite Index

6.1 Recode the variables

```
SLC_2007.Subset_Index <- SLC_2007.Subset %>%
    select(kitchen_shared,toilet_shared,water_source_shared,water_meter,per_cap_con_all,hh_size_all,water)
# remove NAs
SLC_2007.Subset_Index <- na.omit(SLC_2007.Subset_Index)</pre>
```

```
SLC_2007.Subset_Index <- SLC_2007.Subset_Index %>%
mutate(
   kitchen_shared_recode = ifelse(kitchen_shared == "SHARED", 1, 0),
   toilet_shared_recode = ifelse(toilet_shared == "SHARED", 1, 0),
   water_source_shared_recode = ifelse(water_source_shared == "YES", 1, 0),
   water_meter_recode = ifelse(water_meter == "Group", 1, 0)
)
```

6.2 Calculate the sum of the recoded variables

```
SLC_2007.Subset_Index <- SLC_2007.Subset_Index %>%
  mutate(shared_facilities_sum = kitchen_shared_recode +
    toilet_shared_recode +
    water_meter_recode
    # water_source_shared_recode
)

# Calculate the highest possible score
highest_possible_score <- 3

# Normalize the sum to create the index
SLC_2007.Subset_Index <- SLC_2007.Subset_Index %>%
    mutate(shared_facilities_index = shared_facilities_sum / highest_possible_score)
```

6.3 Cronbach Alpha analysis

```
alpha_table <- data.frame(
  raw_alpha = Cron.Alpha[["total"]][["raw_alpha"]],
  std_alpha = Cron.Alpha[["total"]][["std.alpha"]],
  G6_smc = Cron.Alpha[["total"]][["G6(smc)"]],</pre>
```

```
average_r = Cron.Alpha[["total"]][["average_r"]],
  S_N = Cron.Alpha[["total"]][["S/N"]],
  ase = Cron.Alpha[["total"]][["ase"]],
  mean = Cron.Alpha[["total"]][["mean"]],
  sd = Cron.Alpha[["total"]][["sd"]],
  median_r = Cron.Alpha[["total"]][["median_r"]]
kable(alpha_table, digits = 2, caption = "Cronbach Alpha Table") %>%
  kable_styling(position = "center")
Cronbach Alpha Table
raw_alpha
std\_alpha
G6 \text{ smc}
average_r
S N
ase
mean
\operatorname{sd}
median r
0.65
0.66
0.61
0.39
1.95
0.05
0.21
0.31
0.33
# Extract relevant information from the Cron. Alpha object
alpha_stats <- data.frame(</pre>
        items = rownames(Cron.Alpha$alpha.drop),
        raw_alpha = Cron.Alpha$alpha.drop[, "raw_alpha"],
        std_alpha = Cron.Alpha$alpha.drop[, "std.alpha"],
        G6_smc = Cron.Alpha$alpha.drop[, "G6(smc)"],
        mean = Cron.Alpha$item.stats[, "mean"],
        sd = Cron.Alpha$item.stats[, "sd"]
)
# Print overall alpha values
cat("Overall alpha values:\n")
```

```
## Overall alpha values:
cat("Raw alpha:", Cron.Alpha$total$raw_alpha, "\n")
## Raw alpha: 0.6485423
cat("Standardized alpha:", Cron.Alpha$total$std.alpha, "\n")
## Standardized alpha: 0.661318
cat("\n")
# Formatting and printing the alpha_stats table
formatted\_alpha\_stats <- alpha\_stats \%>\%
        kable(col.names = c("Items", "Raw Alpha", "Standardized Alpha", "G6 (smc)", "Mean", "SD"),
              caption = "Cronbach's Alpha Analysis", align = 'c', digits = 2) %>%
        kable_styling(latex_options = "hold_position", position = "center") # Center the table in the P.
# formatted_alpha_stats
# Check for missing values and handle them
correlation_data <- SLC_2007.Subset_Index %>%
  select(shared_facilities_index, per_cap_con_all, hh_size_all,water_bill) %>%
 na.omit()
# Ensure data types are numeric
correlation_data$hh_size_all <- as.numeric(correlation_data$hh_size_all)</pre>
correlation_data$per_cap_con_all <- as.numeric(correlation_data$per_cap_con_all)</pre>
correlation_data$water_bill <- as.numeric(correlation_data$water_bill)</pre>
# Calculate the correlation matrix
correlation_matrix <- cor(correlation_data)</pre>
# Create the correlation plot
corrplot(correlation_matrix, method = "color")
```



```
# Convert the correlation matrix to a table
correlation_table <- kable(correlation_matrix, digits = 3, caption = "Correlation Matrix") %>%
  kable_styling(position = "center")

# Print the correlation table
# correlation_table
```

7 Inferential Analysis of Composite Index

7.1 Goal 5 Is there a relationship between shared facilities index and per capita water consumption?

• Test: Simple Linear Regression

```
indexModel <- lm(per_cap_con_all ~ shared_facilities_index, data = SLC_2007.Subset_Index)
tab_model(indexModel)</pre>
```

```
per\_cap\_con\_all
Predictors
Estimates
CI
p
(Intercept)
122261.32
99008.29 - 145514.34
< 0.001
shared facilities index
31123.76
-30711.05 - 92958.58
0.322
Observations
154
R2 / R2 adjusted
0.006 / -0.000
```

7.2 Diagnostic Plots

```
# Diagnostic Plots
check_model(model)
```

