	DV = Isp go ln [1+ Mprop. Mpay + Mrocket]
	Me=Mprop + Mpay + Mrocket. Mf = Mpay + Mrocket.
	7.6 × 103 = - 400 × 9.8 × ln (Mp-Mp)
Mp=Mp>	ropellant Mo
	Mp = 0.856 V

01	Frank = - cdm
	-cdm - mg = mdv $dt dt.$
	-odm - mgdt = mdu
	$\frac{-c dm - gdt = dv}{m}$
И=	-chm (mf - gt = v(t) -vo.
	mo [vH) = vo - clu/41 - gt / K
	20=
	Now let burning full rate Ps. constant
	a = -dm
	Jadt Idm
1	$a = m_0 - m'$ t_b

	where to - ful burning time
	t m(t)
	Rat = - f alm m= final mars.
	o mo
	at = -m(t) + mo!
	$-m(t) = (m_0 - m') t - m_0$
	$m(t) = m_0 - (m_0 - m') t$
	m(t) - mo-(mo-m) th.
	displanment of rocket z(t)
	topec za
	$Z(t) = \int V dt$
	$= \int_{m_0}^{\infty} \left(-c \ln(m(t)) - gt\right) dt.$
	t.
	$\frac{1}{\pi} Z(t) = -C \left[\ln \left(\frac{m_0 - (m_0 - m')t}{t_0} \right) - g(t) \right]$
	mo)
	after solving this egu
	714) 01 10 1 1000) = 11 002 = 1
	2 Mp-m1
7	z(t) = - ctln(u) + ct - 9t2 + cmoto ln/4)
	$\frac{2}{m_0-m'}$
7	2(t) = - ct, ln/4/ X4 + ct - gt2 7**
	$\left(\frac{1-m!}{m_0}\right)$
1	

Dobb Prop
total time of flight of the sockets
let ve - orbital velocity of rocket
Ve = Vo - clu[u] - qt
t= No-ve-clusul) 100
Yo→ launced velocity
300 + (+) (1) - (+) (1) - (+) (1) - (+) (1) - (+) (1) - (+) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1

As we increase the value of Isp (Specific Impulse)
the slope of the curve decreases for same enitial
man.

