1 nalen

בחלק מהסעיפים בשאלה זו קל לטעות. אם טעיתם נסו להבין את הסיבה.

אם משניהם ג. אף אחד משניהם $x \in y$. א

 $x \subseteq y$.1 $x \in y$.7 $x \subseteq y$.7

 $x \subseteq y$.ח משניהם .ז

2 nolen

א. לא נכון. דוגמא נגדית: $A=B=\{1\}$. הַשלימו בעצמכם את בדיקת הדוגמא.

. הַשלימו. $A=\varnothing$, $B=\{1\}$ הַשלימו. ב. לא נכון. דוגמא נגדית

ג. **לא נכון.** ראו החוברת "אוסף תרגילים פתורים", קבוצה 1 שאלה 2.

3 nalen

א. נפתח את אגף ימין לפי ההדרכה:

$$(X \cap Y) - (X \cap Z) = (X \cap Y) \cap (X \cap Z)'$$

בעזרת כלל דה-מורגן נקבל:

$$= (X \cap Y) \cap (X' \cup Z')$$

בעזרת פילוג האיחוד יחסית לחיתוך (סעיף 1.3.4):

$$=(X \cap Y \cap X') \cup (X \cap Y \cap Z')$$

בעזרת תכונות החילוף והקיבוץ של החיתוך (עמי 15):

$$= ((X \cap X') \cap Y) \cup (X \cap Y \cap Z')$$

, $X \cap X' = \emptyset$ בספר, 22 בספר, מנוסחה שבתחתית עמוד

 \varnothing (עמי 10), נקבל: אין (עמי 15) ו- A=A (עמי 10), נקבל:

$$= X \cap Y \cap Z'$$

לפי קיבוץ החיתוך, ושוב לפי הזהות שבהדרכה,

$$= X \cap (Y - Z)$$

ב. מהגדרת הפרש סימטרי,

$$A' \oplus B' = (A' - B') \cup (B' - A')$$

בעזרת ההדרכה ואחרי כן בעזרת יימשלים של משליםיי:

$$= (A' \cap B'') \cup (B' \cap A'') = (A' \cap B) \cup (B' \cap A)$$

בעזרת חילופיות החיתוך וחילופיות האיחוד, ואז שוב מההדרכה, נקבל:

$$= (A \cap B') \cup (B \cap A') = (A - B) \cup (B - A) = A \oplus B$$

4 22167

$$A_1=\left\{x\in\mathbf{R}\mid 4\leq x\leq 4\right\}=\left\{4\right\} \qquad \text{,} \quad A_0=\left\{x\in\mathbf{R}\mid 4\leq x\leq 2\right\}=\varnothing \qquad . \aleph$$

$$A_3 = \{x \in \mathbf{R} \mid 4 \le x \le 8\}$$
, $A_2 = \{x \in \mathbf{R} \mid 4 \le x \le 6\}$

$$B_0 = A_1 - A_0 = \{4\} - \emptyset = \{4\}$$

$$B_1 = A_2 - A_1 = \{x \in \mathbf{R} \mid 4 < x \le 6\}$$

$$B_2 = A_3 - A_2 = \{x \in \mathbf{R} \mid 6 < x \le 8\}$$

ב. עבור 0 < n כלשהו

$$B_n = A_{n+1} - A_n = \{ x \in \mathbf{R} \mid 4 \le x \le 2n + 4 \} - \{ x \in \mathbf{R} \mid 4 \le x \le 2n + 2 \}$$
$$= \{ x \in \mathbf{R} \mid 2n + 2 < x \le 2n + 4 \}$$

. n=0 אינו נכון כאשר השניה (ולכן גם הביטוי המתקבל) אינו נכון כאשר נשים לב הביטוי האמור, יחד עם התוצאה $B_0=\{4\}$, הוא התיאור הנדרש

.
$$\bigcup_{2 \le n \in \mathbb{N}} B_n = \{x \in \mathbb{R} \mid 6 < x\} : Corn$$
 גוכיח:

 A_n משמע A_n שייך לפחות לאחת הקבוצות . A_n משמע A_n יהי יהי יהי הכלה בכיוון אחד: יהי הכלה בכיוון אחד

 $2 \le n$ ומההנחה בפרט בפרט בפרט בפרט מהנוסחה שרשמנו עבור B_n

. $\frac{x-2}{2}$ -הכלה בכיוון שני: יהי 6 < x יהי . 6 < x יהי הכלה בכיוון שני: יהי

. $2 \le k$ וכן , $2k + 2 < x \le 2k + 4$ מתקיים

 $x \in B_k$ נובע , B_n מהנוסחה שרשמנו עבור

. $x \in \bigcup_{2 \le n \in \mathbb{N}} B_n$, כך של קבוצות. $x \in B_k$ לכן, מהגדרת איחוד כללי של קבוצות $x \in B_k$ כך ש

משתי ההכלות יחד מתקבל השוויון המבוקש.

$$\bigcap_{i \in I} (A_i') = (\bigcup_{i \in I} A_i)' \quad , \quad \bigcup_{i \in I} (A_i') = (\bigcap_{i \in I} A_i)' \quad .$$

נמקו בעזרת כללי דה מורגן לכמתים ולא אחרת (הוכחה בלעדיהם תהיה בהכרח שגויה).

: מכאן ומהסעיפים הקודמים . $D_n=B_n$ ' אז אוניברסלית. אוניברסלית. אז כקבוצה אוניברסלית.

$$\bigcap_{2 \le n \in \mathbb{N}} D_n = \bigcap_{2 \le n \in \mathbb{N}} (B_n)' = (\bigcup_{2 \le n \in \mathbb{N}} B_n)' = \mathbb{R} - \{x \in \mathbb{R} \mid 6 < x\} = \{x \in \mathbb{R} \mid x \le 6\}$$

איתי הראבן