Bluetooth MAC Spoofing System

Anonymous CVPR submission

Paper ID ****

Abstract

1. Introduction

2. How to measure speed using two BMS

We know that speed is

$$speed = \frac{\text{distance covered}}{\text{time taken}} \tag{1}$$

From Figure [1] it can be seen that distance covered = distance between point A & point B whereas time taken = time taken to travel from point A to point B. By putting the values of **distance covered** and **time taken** from Figure[1] in equation[1] we get

$$speed = \frac{\hat{d} - R_2 + R_1}{(\hat{t}_2 - T_2) - (\hat{t}_1 - T_1)}$$
 (2)

whereas, \hat{d} is distance between two sites. $R_1 \& R_2$ is range of site 1 and site 2, respectively. $\hat{t_1} \& \hat{t_2}$ is Timestamp of detection of first packet at site 1 and site 2, respectively. $T_1 \& T_2$ is time till first detection after entering into the range of site 1 and site 2, respectively.

For a single pass of a vehicle from site 1 to site 2, \hat{d} , $\hat{t_1}$ and $\hat{t_2}$ are constants. Whereas, R_1 , R_2 , and T_1 , T_2 are random variables. Hence we need to compute the Expected value of speed.

$$E[speed] = E\left[\frac{\hat{d} - R_2 + R_1}{(\hat{t_2} - T_2) - (\hat{t_1} - T_1)}\right]$$
(3)

$$var[speed] = var \left[\frac{\hat{d} - R_2 + R_1}{(\hat{t_2} - T_2) - (\hat{t_1} - T_1)} \right]$$
 (4)

Equation [5] and [6] can be written as

$$E[Z] = E\left[\frac{X}{Y}\right]$$

and

$$var[Z] = var\left[\frac{X}{Y}\right]$$

whereas $X = \hat{d} - R_2 + R_1$, $Y = (\hat{t_2} - T_2) - (\hat{t_1} - T_1)$ and Z = speed.

2.1. Computing E[Z] and var[Z]

If random variable Y is an arbitrary non-linear function of two random variables X_1, X_2

$$Y = g(X_1, X_2) \tag{5}$$

then Taylor Series Expansion of Y around mean, μ_1, μ_2 will be [1]

$$Y = g(\mu_{1}, \mu_{2}) + (X_{1} - \mu_{1}) \frac{\mathrm{d}g}{\mathrm{d}X_{1}} \Big|_{\mu_{1}, \mu_{2}} + (X_{2} - \mu_{2}) \frac{\mathrm{d}g}{\mathrm{d}X_{2}} \Big|_{\mu_{1}, \mu_{2}} + \frac{(X_{1} - \mu_{1})^{2}}{2!} \frac{\mathrm{d}^{2}g}{\mathrm{d}X_{1}^{2}} \Big|_{\mu_{1}, \mu_{2}} + \frac{(X_{2} - \mu_{2})^{2}}{2!} \frac{\mathrm{d}^{2}g}{\mathrm{d}X_{2}^{2}} \Big|_{\mu_{1}, \mu_{2}} + (X_{1} - \mu_{1})(X_{2} - \mu_{2}) \frac{\partial^{2}g}{\partial X_{1}\partial X_{2}} \Big|_{\mu_{1}, \mu_{2}} + \dots$$
(6)

If,
$$g(X,Y) = \frac{X}{Y}$$
 then,

$$g(X,Y) = \frac{\mu_X}{\mu_Y} + \frac{1}{\mu_Y} (X - \mu_X) - \frac{\mu_X}{\mu_Y^2} (Y - \mu_Y)$$

$$+ \frac{\mu_X}{\mu_Y^3} (Y - \mu_Y)^2 - \frac{1}{\mu_Y^2} (X - \mu_X) (Y - \mu_Y) + \dots$$
(7)

Second order approximation of E[g(X,Y)] and first-order approximation of var[g(X,Y)] is [1],

$$E\left[\frac{X}{Y}\right] \approx \frac{\mu_X}{\mu_Y} + \frac{\mu_X}{\mu_Y^3} var[Y] - \frac{1}{\mu_Y^2} cov[X, Y] \qquad (8a)$$

$$var\left[\frac{X}{Y}\right] \approx \frac{var[X]}{\mu_Y^2} - \frac{2\mu_X}{\mu_Y^3} cov[X, Y] + \frac{\mu_X^2}{\mu_Y^4} var[Y] \qquad (8b)$$

$$E[X] = \hat{d} - E[R_2] + E[R_1]$$
 (9a)

$$E[Y] = (\hat{t_2} - \hat{t_1}) - (E[T_2] - E[T_1])$$
 (9b)

$$var[X] = var[R_1] + var[R_2]$$
(9c)

$$var[Y] = var[T_1] + var[T_2] \tag{9d}$$

$$cov[X, Y] = cov[R_1, T_1] + cov[R_2, T_2]$$
 (9e)

since \hat{d} , $\hat{t_1}$ and $\hat{t_2}$ are constants, var[X] = var[-X], R_1 & R_2 are independent, both sites are well seperated so T_1 & T_2 are independent, R_1 , T_2 and R_2 , T_1 are independent.

2.2. Computing COV[RANGE, TTDD]

Assumption: Range and Time Till Device Discovery are independent. Hence cov[range, ttdd] = 0.

2.3. Range

Range of a site is a function of antenna-type and enviornment of a particular site. More specifically [3],

$$\frac{P_r}{P_t} = \left(\frac{\lambda\sqrt[2]{G_l}}{4\pi d}\right)^{\gamma} \tag{10}$$

 γ is the enviornment factor (2 for Free-Space[3], 2.4 in our-testing-enviornment), λ is wavelength (0.125m for 2.4GHz), G_l depends on directionality of antenna (1 for Omni-directional antenna[3]), P_r is received power in watts (1 \times 10 $^{-12}$ for -80dBm), P_t is transmitted power in watts (3 \times 10 $^{-3}$ for 5dBm), d is distance between two antennas (corresponds to range for P_r = -90dBm).

For above mention values of variables, the range of antenna turn out to be $\sim 88m$.

2.4. Time Till Device Detection

TTDD of a site is a function of time taken by bluetooth protocol to detect a slave device in ideal communication environment and number of retires due to noise and packet loss.

$$T = number of tries$$

 $\times time till master and slave's frequencies match$
(11)

We are going to model packet loss with Geometric Distribution with infinite tries and parameter p, $E[number\ of\ tries] = \frac{1}{p}$ whereas p is the probability of an error-free packet transmission from source to destination. Whereas, time till master and slave's frequencies match is modeled by a variant of [2]. Note that packet loss and time till frequencies match are both independent variables. So their expected value is the product of their respective expected values.

2.5. Extending speed estimator to mth and nth detections

From Figure [2] it can be seen that previously build estimator of speed for first-to-first detection can be extended to m^{th} detection of site 1 and n^{th} detection of site 2. Putting values from Figure[2] in equation[1] we get

$$speed_{mn} = \frac{\hat{d} - R_2 + R_1}{(\hat{t}_{2n} - \hat{t}_{1m}) - (nT_2 - mT_1)}$$
 (12)

$$E[distance] = \hat{d} - E[R_2] + E[R_1]$$
 (13a)

$$E[time] = (\hat{t}_{2n} - \hat{t}_{1m}) - (nE[T_2] - mE[T_1])$$
(13b)

$$var[distance] = var[R_1] + var[R_2]$$
 (13c)

$$var[time] = m^2 \times var[T_1] + n^2 \times var[T_2]$$
(13d)

$$var[T] = var[p]var[TTFM]$$
 (13e)
$$+ var[p]E[TTFM]^2 + var[TTFM]E[p]^2$$
 (13f)

cov[distance, time] = 0, Assumption (13h)

3. Factors affecting speed estimation

3.1. Time till frequencies match

If time till master and slave's frequencies match is zero i.e. devices get detected as soon as they enter the antenna range of a device then E[TTFM] = var[TTFM] = var[T] = 0. From 13e, 13d and 8b, var[speed] decreases. Even if $E[TTFM] \neq 0$ and only var[TTFM] = 0 even then var[speed] decreases.

3.2. Packet Loss

If P(packet - loss) = fixed, there is no change in probability of packet loss, then var[T] decreases. From 13e, 13d and 8b, var[speed] decreases.

3.3. Range of site

If range of a site is fixed i.e. there is no change in range of antenna due to any external and internal factors, then E[Range] = constand and var[Range] = 0. From 13c and 8b, var[speed] decreases.

3.4. Choice of m & n for speed calculation

3.5. Distance between sites

References

[1] H. Benaroya and S. M. Han. *Probability Models in Engineering and Science*. CRC Press, Taylor and Francis Group, 2005.

CVPR 2016 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236 237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262 263
264
265
266

general function of N RVs. 1

[2] G. Chakraborty, K. Naik, D. Chakraborty, N. Shiratori, and D. Wei. Analysis of the bluetooth device discovery protocol. *Wireless Networks*, 16(2):421–436, 2010. 2

Refer to page 168 for derivation of mean and variance of a

[3] A. Goldsmith. *Wireless Communications*. Cambridge University Press, 2005. Refer to page 28 for Free-Space path losses.