# Programmieren mit Python

Teil 1: Einleitung

Dr. Aaron Kunert

aar on. kun ert @salemkolleg. de

5. Oktober 2022

<del>-----</del>

Zu Beginn ...

#### Kurze Vorstellungsrunde

Schaffst Du es *in 60 Sekunden* folgende Fragen möglichst knackig und aussagekräftig zu beantworten?

- Wer bist Du?
- Windows, Mac oder Linux?
- Welche Vorkenntnisse hast Du beim Programmieren?
- Warum hast Du Dich zum Python-Kurs angemeldet?
- Wann wäre der Kurs für Dich perfekt gelaufen? (Best Case Szenario)
- Wann würdest Du den Kurs nicht weiter besuchen? (Worst Case Szenario)

#### Organisation des Kurses

- Es soll 2 Nachholtermine geben. Zeiten dafür suchen wir im November.
- Pausen: 30 Minuten für den Nachmittagssnack. Bei Bedarf mehr Pausen. Bitte danach pünktlich kommen!
- Skript und alle Unterlagen findet man über MS Teams.
- Gelegentlich gibt es ein Aufgabenblatt (Teams) → Ca. 10 Tage Bearbeitungszeit, Abgabe per Email oder durch Einladung zum Replit-Projekt → individuelles Kurzfeedback
- Lernleistung durch: Anwesenheit, Mitarbeit und Bearbeitung der Aufgabenblätter
- Wissenschaftliche Arbeit ist möglich
- Kommunikation per E-Mail
- Fragen sind immer und über alle Kanäle willkommen!

#### Didaktik des Kurses

- Mischung aus Vortrag, Präsenzübungen und Live-Coding
- Lösungen der Präsenzübungen gibt's im Handout in Teams
- Achtung: Präsenzübungen können erstmal frustrierend sein!
- Im Idealfall: Mehr Praxis statt Erklärungen

#### Ziele des Kurses

- Einblick in die "Denkweise" eines Computers
- Einige universelle Konzepte von Programmiersprachen kennenlernen
- Schulung des analytischen Denkens
- Verständnis von Python-Syntax
- Programmierung eines rudimentären Quizspiels

#### Wo findet man Hilfe/Infos?

- Google
- stackoverflow.com
- Youtube (z.B. Tutorials)
- docs.python.org/3
- Bücher (z.B. Python Crashkurs v. Eric Matthes)
- mailto: aaron.kunert@salemkolleg.de

Was ist Python?

#### Wie funktioniert überhaupt die Programmierung in Python?

- 1. Man schreibt eine Abfolge von Befehlen/Anweisungen in eine Text-Datei (nicht Word!)
- 2. Danach lässt man diese Datei vom Python-Interpreter ausführen.

#### Was wird benötigt?

#### Am Anfang

- Compiler/Interpreter
- Texteditor (z.B. Mac: Xcode, Windows: Edit)

#### Später

- Google
- Integrierte Entwicklungsumgebung (IDE)
- Versionskontrolle (VCS)
- Virtueller Maschinen
- Datenbanken
- Grafikbearbeitung

Editor und Compiler müssen nicht auf dem eigenem Computer installiert sein. Es gibt dafür auch cloudbasierte Lösungen.

#### Warum Python?

- Einfaches Setup
- Einstiegsfreundliche Syntax
- Python ist eine Hochsprache
- Python muss nicht kompiliert, sondern nur interpretiert werden
- Große Community → großes *Ecosystem*
- Python ist extrem vielseitig
- Python ist plattformunabhängig

## Typische Einsatzbereiche

- Automatisierung
- Webscraping
- Datenanalyse
- Webentwicklung

# Wie Programmierer denken

S .

Wie lernt man analytisches Denken?

Everyone in this country should learn to program a computer, because it teaches you to think.

(Steve Jobs)

### Phasen des Lernens einer Programmiersprache

- 1. Annäherung: Fokus auf dem Begreifen der Grundkonzepte
- 2. Syntax: Fokus auf der korrekten Anwendung der Syntax
- 3. Funktionalität: Fokus liegt darauf, Problemstellungen pragmatisch zu lösen
- 4. Design: Fokus auf les-und wartbaren Code
- 5. Architektur: Fokus auf Strategie, Projekte nachhaltig und erweiterbar umzusetzen

#### **Problem Solving**

Sobald man die Syntax korrekt verwenden kann, steht das Lösen von Problemen beim Programmieren im Fokus.

Dabei ist die Kunst nur wenige, klare begrenzte Bausteine (die Befehle der Sprache) kreativ so zusammenzusetzen, damit das gegebene Problem gelöst wird.

#### Problemlösungsstrategien

- Trial and Error
- Formuliere laut und möglichst präzise, was eigentlich die Problemstellung ist
- Zerlege das Problem in kleinere Probleme oder mach Dir Zwischenziele
- Gibt es schon eine ähnliches Problem, was Du gelöst hast und von wo aus Du starten kannst?
- Erkläre anderen das Problem und was Du schon bisher geschafft hast
- Ändere Dein Denken: Scheitern ist nicht das Ende des Weges, sondern der Anfang
- To be continued

# Die Konsole

Das Sprachrohr zum Computer

#### **Definition: Konsole**

Die Konsole ist ein simples Programm, das nur aus einem Eingabefeld besteht, und mit dem man mit einem anderen (in der Regel komplexeren Programm) mittels spezifischer Befehle kommunizieren kann.

#### Beispiele

- Windows-Eingabeaufforderung (Kommunikation mit Windows)
- Mac-Terminal (Kommunikation mit MacOs)
- Browser-Konsole (Kommunikation mit der Webseite mittels JavaScript)
- Die Python-Konsole

Für Programmierer\*innen ist die Konsole der wichtigste Kommunikationsweg zu ihrem Computerprogramm.

# Übung

#### Überprüfe, ob Python bei Dir installiert ist

- 1. Google wie man die Konsole bzw. das Terminal zum Betriebssystem öffnet
- 2. Öffne die Konsole
- 3. Prüfe, ob Python installiert ist, indem Du einen der folgenden Befehle ausprobierst
  - python --version
  - python3 --version
- 4. Interpretiere die Antwort

Programmieren in der Cloud

Schnell und unkompliziert einsteigen

#### Browserbasierte IDE verwenden

- 1. Gehe auf https://replit.com
- 2. Erstelle ein Konto (Sign up)
- 3. Klicke auf "Create repl"
- 4. Wähle als Template "Python" aus

# Erste Schritte im REPL

(Read-Evaluate-Print-Loop)

# Probier mal folgende Kommandos aus

- 3 + 4
- 2 7
- "Hello" + "World"

# Übung

### Was machen die folgenden Operatoren?

- +
- -
- \*
- /
- \*\*

#### Und diese?

- %
- //
- ==
- <=
- <

#### Lösungen

#### Operatoren I

Die Operatoren + und - sind klar. Die Operatoren \* und / bezeichnen Multiplikation und Division. Der Operator \*\* berechnet die Potenz (hochnehmen).

#### Operatoren II

Der Operator % ist der Modulo-Operator (vgl. Wikipedia). Der Operator // arbeitet analog zur Divison, rundet das Ergebnis jedoch auf die nächste ganze Zahl ab. Die Operatoren == (Gleichheit), <= (Kleinergleich), < (kleiner als) sind Vergleichsoperatoren und geben entweder True oder False zurück

# Übung

#### Wie rechnet Python?

- Wird Punkt-vor-Strich berücksichtigt?
- Kann man mit Klammern die Reihenfolge beeinflussen?
- Was ist der Unterschied zwischen 10/5 und 10//5?
- Was bedeutet das Kommando \_?
- Wie kann man Zwischenergebnisse in Variablen speichern?

#### Lösung

#### Rechenregeln

- Python rechnet Punkt-vor-Strich.
- Python berücksichtigt Klammern.
- Das Ergebnis von / ist stets eine Fließkommazahl, das Ergebnis von // ist stets eine ganze Zahl.
- Das Kommando \_, referenziert das vorherige Ergebnis.
- Zwischenergebnise lassen sich mittels des Zuweisungsoperators = in einer Variable speichern.

Variablen

Jeder Wert in Python kann in einer Variable gespeichert werden:

Die Zuweisung darf auch das Ergebnis einer Berechnung sein:

Die Zuweisung darf auch weitere Variablen enthalten:

Man darf auch Kettenzuweisungen machen:

$$a = b = c = 100$$

#### Gültige Variablennamen

- Erlaubt sind Buchstaben (nur ASCII), Ziffern und Unterstriche
- Der Name darf nicht mit einer Ziffer starten
- Beliebige Länge
- Wer's schon kennt als regulärer Ausdruck: [\_a-zA-Z] [\_0-9a-zA-Z]\*
- Schlüsselwörter sind nicht erlaubt

#### Liste der Schlüsselwörter

| False  | None   | True    | and      | as       |
|--------|--------|---------|----------|----------|
| await  | break  | class   | continue | def      |
| else   | except | finally | for      | from     |
| import | in     | is      | lambda   | nonlocal |
| pass   | raise  | return  | try      | while    |
| assert | global | with    | elif     | or       |
| del    | not    | async   | if       | yield    |

#### Style-Guide Variablennamen

- Englische Wörter
- Nur Kleinbuchstaben
- Möglichst aussdrucksstarke Namen verwenden
- Keine Angst vor langen Namen
- Namen, die aus mehreren Worten bestehen, mit Unterstrich trennen (snake-case)

z.B. students\_in\_this\_room, number\_of\_unpaid\_bills

# Übung

#### Probier's aus!

- Welchen Wert hat eine Variable, wenn man sie nicht vorher definiert hat?
- Was passiert, wenn man eine Variable definiert, die schonmal verwendet wurde?
- Wie kann man eine Variable mit Wert 3 um 1 vergrößern?

#### Lösung

- Verwendet man eine undefinierte Variable, wird ein Fehler geworfen
- Ja, man kann eine Variable einfach neu definieren
- Hat beispielsweise my\_variable den Wert 3, so lässt sich der Wert wie folgt vergrößern: my\_variable = my\_variable + 1

Datentypen

# Jeder Wert in Python hat einen *Datentyp*. Unter anderem gibt es folgende *primitive* Typen in Python.

- int Integer (ganze Zahlen)
- float Float (Dezimalzahlen)
- bool Boolean (Wahrheitswerte)
- str String (Zeichenketten)
- NoneType (Typ des leeren Werts None)

#### Integer

Ganze Zahlen wie z.B. 1, -1, 0. Nicht aber 2.0 oder 0.0.

#### **Float**

Fließkommazahlen, z.B. 3.1415925. Achtung: Bei Float-Berechnungen können schnell "Überraschungen" auftreten: Was ergibt z.B. 1.2 - 1.0?

#### **Boolean**

Booleans sind eine Sonderform von int und können nur die Werte True (entspricht 1) und False (entspricht 0) annehmen. Sie entstehen in der Regel, wenn man Fragen im Programm stellt (z.B. 3 < 4 oder 1 == 2).

#### String

Strings sind beliebige Zeichenketten und müssen in (ein-, zwei- oder dreifache) Anführungszeichen eingeschlossen werden. Die Ausdrücke 'hello', "Hello" und """Hello""" sind (fast) äquivalent.

#### Mehrzeilige Strings

Ein Stringliteral kann nur innerhalb einer Zeile definiert werden. Soll ein String mehrere Zeilen umfassen, müssen dreifache Anführungszeichen verwendet werden.

#### Steuerzeichen

Gewisse Kombinationen mit Backslash sind reservierte Steuerzeichen. So bezeichnet beispielsweise  $\n$  einen Zeilenumbruch und  $\t$  ein Tabulatorzeichen.

Beispiel: "This text\nfills two lines"

#### **Escaping**

Möchte man ein Steuerzeichen nicht ausführen, sondern buchstäblich nehmen. Muss man sie mit einem Backslash *escapen* bzw. maskieren.

Beispiel: "This text fits in\\n one line"

#### Raw-Strings

Möchte man alle Steuerzeichen eines Strings ignorieren, kann man ihn als *Raw-String* definieren.

Beispiel: r"This \n String \t has no control characters"

#### Typecasting (Umwandlung von Typen)

#### **Implizit**

Bei manchen Operationen nimmt Python automatisch eine Typumwandlung vor.

```
Beispiel: 1 + 2.0 ergibt 3.0
```

#### **Explizit**

Die Funktionen int(), float(), str() und bool() führen jeweils eine Typumwandlung durch (sofern möglich). Beispiele:

- int(2.0) ergibt 2
- float(2) ergibt 2.0
- int("3") ergibt 3

#### Typ einer Variablen ermitteln

Mit der Funktion type() lässt sich der Typ bestimmen, z.B. type(3.2).

# Übung

#### Versuche die Fragen erst ohne Python zu beantworten, überprüfe Deine Vermutung

- Welchen Datentyp hat das Ergebnis von 3 1.0 ?
- Was ist das Ergebnis von "2" + 1?
- Was ist das Ergebnis von "2" + "2"?
- Sind die beiden Werte 0 und "0" gleich?
- Sind die beiden Werte 2 und True gleich?
- Sind die beiden Werte bool(2) und True gleich?
- Sind die beiden Werte 1 und True gleich?

# Lösungen

#### **Typaufgaben**

- Der Datentyp des Ergebnisses ist float
- Fehlermeldung
- Das Ergebnis ist "22"
- Nein
- Nein
- Ja
- Ja

# Übung

#### Erkläre mit Deinen eigenen Worten

- Nach welcher Regel wandelt int() eine Fließkommazahl in eine ganze Zahl um?
- Nach welchen Regeln wandelt bool() Zahlen und Strings in einen Wahrheitswert um?