Formulario di Probabilità e Statistica v13.0

Alessandro Finocchiaro August 19, 2025

Mappa Decisionale Definitiva			
Se il problema chiede di	Parole Chiave / Condizioni	Esempio Chiave (Testo-Tipo)	Vai a:
Contare i modi di formare un gruppo	"in quanti modi", "ordine non conta"	*"In quanti modi posso formare un comitato di 3 persone da 10?"*	Combinatorio
Calcolare $P(A)$ con "casi fav./poss."	"dadi", "monete", "urna" (semplice)	*"Qual è la probabilità che la somma di due dadi sia 7?"*	Prob. di Base
$ \begin{array}{cccc} {\rm Calcolare} & {\rm P(A)}, & {\rm dato} & {\rm un} \\ {\rm evento} & {\rm B} & & \\ \end{array} $	sapendo che, "dato che"	*"Estraggo una carta. Sapendo che è di cuori, qual è la prob. che sia un Re?"*	Prob. Condizionata
Risalire alla causa da un effetto	Ti danno $P(E C)$, ti chiedono $P(C E)$	*"Un test medico ha un'accuratezza X. Se sei positivo, qual è la prob. di essere malato?"*	Teorema di Bayes
contare successi in ${\bf n}$ prove fisse	Indipendenti (con reinserimento)	*"Lancio una moneta 10 volte. Qual è la prob. di ottenere 8 teste?"*	Binomiale
contare successi in n es- trazioni	Dipendenti (senza reinserimento)	*"Da un'urna con 6R e 4N, estraggo 5 palline. Qual è la prob. di averne 3R?"*	Ipergeometrica
contare prove fino al 1° successo	"il primo a", "finché non"	*"Qual è la prob. che il primo 6 esca al 4° lancio di un dado?"*	Geometrica
contare eventi in un inter- vallo	Media nota (λ) , "in un'ora"	*"Un call center riceve 5 chia- mate/ora. Qual è la prob. di riceverne 2?"*	Poisson
misurare una quantità equiprobabile	"scelto a caso in $[a, b]$ "	*"Un bus passa ogni 20 min. Qual è la prob. di aspettarlo meno di 5 min?"*	Uniforme
misurare il tempo di at- tesa	"durata di vita", "tempo tra eventi"	*"La durata di una lampadina è esponenziale. Qual è la prob. che duri ¿ 1000 ore?"*	Esponenziale
misurare una grandezza a campana	Vengono date Media e Dev. Standard	*"L'altezza degli studenti è Normale. Qual è la prob. che uno sia ¿ 180cm?"*	Normale
lavorare con la SOMMA/MEDIA	n>30,"somma di 100 variabili"	*"Qual è la prob. che il peso totale di 50 passeggeri superi 4000 kg?"*	TLC
lavorare con due v.a. insieme	Tabella a doppia entrata, $p(x,y)$	*"Data una tabella congiunta, le variabili X e Y sono indipendenti?"*	V.A. Congiunte
trovare la densità di $\mathbf{Y} = \mathbf{g}(\mathbf{X})$	"Sia $X \sim U(0,1)$ e $Y = X^2$. Trovare la densità di Y."	*"Sia X $U(0,1)$ e Y=X ² . Trovare la densità di Y."*	Trasformazioni

Flusso Diagnostico per Esercizi di Estrazione

Teoria: Usa questo schema per decidere l'approccio corretto ai problemi con le urne.

Q1: L'estrazione è con reinserimento?

Sì: Gli eventi sono **indipendenti**. Per calcolare la probabilità di una sequenza, moltiplica le probabilità di ogni singola estrazione (che rimangono costanti).

No: Gli eventi sono dipendenti. Passa alla prossima domanda.

Q2: L'**ordine di estrazione conta**?

Sì (Parole chiave: "in sequenza", "prima... e poi...", "(nera, bianca)"):

* Usa la **Probabilità Condizionata** (Regola del Prodotto). Vedi card *Estrazioni*.

No (Parole chiave: "in blocco", "un gruppo di", "2 nere e 1 bianca"):

* Usa le Combinazioni (Distribuzione Ipergeometrica). Vedi card Ipergeometrica.

Sezione 1: Fondamenti di Probabilità

Probabilità di Base

Teoria: Si usa per problemi semplici con un numero finito di esiti equiprobabili.

Passo della Ricetta	Esempio Svolto: P(almeno un 6 in 3 lanci)
1. (Pro Tip) Usa il Complementare: Se la domanda contiene "almeno uno", è più facile calcolare la probabilità del suo contrario, cioè "nessuno".	L'evento complementare è "non ottenere nessun 6 in 3 lanci".
2. Calcola la prob. del singolo evento (complementare):	La probabilità di NON fare 6 in un singolo lancio è $5/6$.
3. Calcola la prob. della sequenza: Poiché i lanci sono indipendenti, moltiplichiamo le probabilità per ogni prova.	$P(\text{nessun 6 in 3 lanci}) = (\frac{5}{6})^3 = \frac{125}{216}.$
4. Applica la formula del complementare: Usa la formula $P(A) = 1 - P(A^c)$.	$P(\text{almeno un } 6) = 1 - \frac{125}{216} = \frac{91}{216}.$

Probabilità Condizionata e Teorema di Bayes

Teoria: Permette di aggiornare la probabilità di una causa alla luce di un effetto osservato.

Passo della Ricetta	Esempio Svolto (Test Medico)
 Definisci Eventi e Dati: Traduci il testo in notazione formale, identificando Cause ed Effetto. Calcola Denominatore (Prob. Totale): Usa la Formula delle Probabilità Totali per trovare 	 Cause: Malato (M), Sano (S). Effetto: Positivo (T). P(M) = 0.01 ⇒ P(S) = 0.99. P(T M) = 0.95, P(T S) = 0.05. Obiettivo: P(M T). P(T) = P(T M)P(M)+P(T S)P(S) = (0.95)(0.01)+ (0.05)(0.99) = 0.059.
$P(\text{Effetto}).$ $P(E) = \sum P(E C_i)P(C_i)$	
3. Calcola Numeratore: Prendi i termini relativi solo alla causa che ti interessa: $P(E C_k)P(C_k)$.	P(T M)P(M) = (0.95)(0.01) = 0.0095.
4. Assembla la Formula di Bayes: Dividi il Numeratore per il Denominatore.	$P(M T) = \frac{P(T M)P(M)}{P(T)} = \frac{0.0095}{0.059} \approx 16.1\%$

Sezione 2: Variabili Aleatorie (V.A.)

V.A. Generiche: Media e Varianza

Teoria: Calcola gli indici di posizione (media) e dispersione (varianza) per una v.a. generica.

Passo della Ricetta	Esempio Svolto (X con $P(0) = 0.5, P(1) = 0.3, P(2) = 0.2$)
1. Elenca i valori e le probabilità: Prepara una lista dei valori k che la v.a. può assumere e delle loro probabilità $P(X=k)$.	Valori: $\{0, 1, 2\}$. Probabilità: $\{0.5, 0.3, 0.2\}$.
2. Calcola $E[X]$: Calcola la somma pesata:	$E[X] = (0 \cdot 0.5) + (1 \cdot 0.3) + (2 \cdot 0.2) = 0.7.$
$E[X] = \sum_{k} k \cdot P(X = k)$	
3. Calcola $E[X^2]$: Calcola la somma pesata dei quadrati:	$E[X^2] = (0^2 \cdot 0.5) + (1^2 \cdot 0.3) + (2^2 \cdot 0.2) = 1.1.$
$E[X^2] = \sum_{k} k^2 \cdot P(X = k)$	
4. Calcola la Varianza: Usa la formula:	$Var(X) = 1.1 - (0.7)^2 = 1.1 - 0.49 = 0.61.$
$Var(X) = E[X^2] - (E[X])^2$	

Probabilità di Eventi su V.A. (Casi Astratti)

Teoria: Calcolare la probabilità di un evento definito da una relazione tra v.a. (es. $P(X \ge Y)$).

Passo della Ricetta	Esempio Svolto (Calcolare $P(X_1 = X_2)$)
1. Identifica i Casi Favorevoli: Trova tutte le coppie/valori $(x, y,)$ che soddisfano la condizione data.	L'evento " $X_1 = X_2$ " è l'insieme di tutte le coppie (k,k) per $k=0,1,2,\ldots$
2. Recupera le Probabilità: Prendi i valori $p(x, y,)$ per ogni caso favorevole dalla funzione di densità/probabilità fornita.	Per ogni coppia (k,k) , la probabilità è data dalla formula $p(k,k)$.
3. Somma (o Integra): Per v.a. discrete, somma tutte le probabilità trovate. $P(\text{Evento}) = \sum_{\text{casi favorevoli}} p(x,y)$	La probabilità totale è la somma (in questo caso, una serie) di tutte le probabilità dei casi favorevoli: $P(X_1=X_2)=\sum_{k=0}^\infty p(k,k)$

Valore Atteso e Varianza della Somma

Teoria: Fornisce le proprietà di media e varianza di una somma di due variabili aleatorie.

Passo della Ricetta	Esempio Svolto (Somma dei punteggi di 2 dadi)
1. Calcola le Medie: Trova $E[X]$ e $E[Y]$ e sommali.	E[X] = E[Y] = 3.5. E[X + Y] = 3.5 + 3.5 = 7.
2. Calcola le Varianze: Trova $Var(X)$, $Var(Y)$.	Var(X) = Var(Y) = 35/12.
3. Valuta la Covarianza: Se le v.a. sono indipendenti, $Cov(X,Y)=0$.	I lanci dei dadi sono indipendenti, quindi $Cov(X, Y) = 0$.
4. Applica la Formula per la Varianza: $Var(X+Y) = Var(X) + Var(Y) + 2Cov(X,Y)$.	$Var(X+Y) = \frac{35}{12} + \frac{35}{12} + 0 = \frac{70}{12}.$

Variabili Indicatrici (I_A)

Teoria: Metodo potente per calcolare il valore atteso di una v.a. che conta dei successi.

Passo della Ricetta	Esempio Svolto (N. medio di Assi in 5 carte)
1. Definisci gli Indicatori: Scrivi X come somma di I_{A_i} , dove $I_{A_i}=1$ se l'i-esimo evento è un successo.	Sia $I_i=1$ se la i-esima carta è un Asso. La v.a. X che conta gli Assi è: $X=I_1+I_2+I_3+I_4+I_5$
2. Calcola $P(A_i)$: Trova la probabilità del singolo successo.	La probabilità che una specifica carta sia un Asso è $P(A_i)=4/52$.
3. Usa la Linearità: Il valore atteso della somma è la somma dei valori attesi: $E[X] = \sum E[I_{A_i}] = \sum P(A_i)$	$E[X] = \sum_{i=1}^{5} P(A_i) = 5 \times \frac{4}{52} = \frac{20}{52}$

Variabili Aleatorie Congiunte

Teoria: Descrivono il comportamento simultaneo di due v.a. discrete tramite una tabella.

Passo della Ricetta	Esempio Svolto (Data una tabella $p(x,y)$)
1. Calcolare le Marginali: Per trovare $P(X = x)$, somma lungo la riga. Per $P(Y = y)$, somma lungo la colonna.	Per trovare $p_X(0)$, sommo tutti i valori sulla riga $x = 0$.
2. Verificare l'Indipendenza: Trova una sola cella in cui $P(x,y) \neq P(x) \cdot P(y)$ per dimostrare la dipendenza.	Testo la cella $(0,0)$: calcolo $p_X(0) \cdot p_Y(0)$ e lo confronto con il valore $p(0,0)$ dato nella tabella. Se sono diversi \implies dipendenti.
3. Calcolare P(Evento): Somma le probabilità delle celle che soddisfano la condizione.	Per calcolare $P(X \ge Y)$, sommo le probabilità di tutte le celle (x,y) in cui il valore di x è maggiore o uguale a quello di y .

Trasformazioni di V.A. (Y = g(X))

Teoria: Serve a trovare la funzione di distribuzione di una funzione di una v.a.

Passo della Ricetta	Esempio Svolto $(Y = X^2 \text{ con } X \sim U(0, 2))$
1. Partire dalla CDF di Y: Scrivi la sua definizione e sostituisci Y con $g(X)$.	$F_Y(y) = P(X^2 \le y).$
$F_Y(y) = P(Y \le y)$	
2. Isolare X: Manipola la disequazione per ottenere $P(X \leq h(y))$. Questo è uguale a $F_X(h(y))$.	Poiché $X \geq 0$, la disequazione diventa $P(X \leq \sqrt{y})$. Quindi $F_Y(y) = F_X(\sqrt{y})$.
3. Usare la CDF di X: Trova la formula per la CDF della variabile di partenza, $F_X(x)$, e sostituisci.	Per una U(0,2), la CDF è $F_X(t)=t/2$. Sostituendo $t=\sqrt{y}$ otteniamo:
	$F_Y(y) = \frac{\sqrt{y}}{2}$
4. Derivare (per trovare la PDF): Calcola $f_Y(y) = F'_Y(y)$.	$f_Y(y) = \frac{d}{dy} \left(\frac{\sqrt{y}}{2}\right) = \frac{1}{4\sqrt{y}}$
5. Trovare il nuovo dominio: Applica la funzione $g(X)$ agli estremi del dominio di X.	Se $X \in [0,2]$, allora $Y = X^2$ appartiene a $[0^2,2^2] = [0,4]$.

Sezione 3: Modelli di Variabili Aleatorie

Distribuzione Binomiale $X \sim \text{Bin}(n, p)$

Teoria: Conta il numero di successi in n prove binarie indipendenti.

Passo della Ricetta	Esempio Svolto (Arciere)
1. Identifica i parametri: Trova n (numero prove), p (prob. successo) e k (successi richiesti).	Dati: $n=10$ tiri, $p=0.8$ di colpire, $k=7$ successi richiesti.
2. Applica la formula: $p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$	$P(X=7) = {10 \choose 7} (0.8)^7 (0.2)^3 \approx 0.2013$
3. Media e Varianza (se richieste): Usa le formule $E[X] = np$ e $Var(X) = np(1-p)$.	$E[X] = 10 \cdot 0.8 = 8.$ $Var(X) = 10 \cdot 0.8 \cdot 0.2 = 1.6.$

Distribuzione Ipergeometrica

Teoria: Si usa per estrazioni senza reinserimento da una popolazione divisa in gruppi.

Passo della Ricetta	Esempio Svolto (Urna con 4B e 3N)
1. Identifica i parametri: Trova N (totale), n (estratti), K_i (dimensione gruppi), k_i (estratti per gruppo).	Dati: $N=7,\ n=4$ estratti. Gruppi: $K_B=4,$ $K_N=3.$ Richiesta: $k_B=2,\ k_N=2.$
2. Assembla la frazione: La probabilità è data da Casi Favorevoli / Casi Possibili. $P(\text{evento}) = \frac{\binom{K_1}{k_1}\binom{K_2}{k_2}\cdots}{\binom{N}{n}}$	$P(2B, 2N) = \frac{\binom{4}{2}\binom{3}{2}}{\binom{7}{4}} = \frac{6 \cdot 3}{35} = \frac{18}{35}$

Estrazioni: Con Ordine vs Senza Ordine

Teoria: Distingue tra problemi in cui l'ordine di estrazione conta e quelli in cui non conta.

Modalità di Estrazione	Esempio Svolto (Urna: 4 Bianche, 3 Nere)
1. Senza Ordine ("in blocco"): Si usano le combinazioni (Ipergeometrica). La formula è Casi Favorevoli Casi Possibili.	Domanda: Estraggo 4 palline. $P(2B e 2N)$? Soluzione:
	$P = \frac{\binom{4}{2}\binom{3}{2}}{\binom{7}{4}} = \frac{6 \cdot 3}{35} = \frac{18}{35}$
2. Con Ordine ("una alla volta"): Si usa la probabilità condizionata. La formula è $P(A \text{ e poi } B) = P(A) \cdot P(B A)$.	Domanda: Estraggo 2 palline. $P(1^{\circ} \text{ N}, 2^{\circ} \text{ B})$? Soluzione: $P = P(1^{\circ} \text{N}) \cdot P(2^{\circ} \text{B} - 1^{\circ} \text{N}) = \frac{3}{7} \cdot \frac{4}{6} = \frac{2}{7}$

Distribuzione Geometrica $X \sim \mathrm{Geo}(p)$

Teoria: Conta il numero di prove necessarie per ottenere il **primo successo**.

Passo della Ricetta	Esempio Svolto (Lancio di un dado)
1. Identifica i parametri: Trova <i>p</i> (prob. successo) e <i>k</i> (il tentativo del primo successo).	Domanda: Prob. che il primo 6 esca al 4° lancio? Dati: $p=1/6, k=4.$
2. Applica la formula: $p_X(k) = (1-p)^{k-1} p$	$P(X = 4) = (1 - 1/6)^{4 - 1} \cdot (1/6) = (5/6)^{3} \cdot (1/6) \approx 0.096$
3. Media (se richiesta): Usa la formula $E[X] = 1/p$.	Il numero medio di lanci per ottenere un 6 è $E[X] = \frac{1}{1/6} = 6$.

Distribuzione di Poisson $X \sim Po(\lambda)$

Teoria: Conta il numero di eventi rari in un intervallo fissato di tempo o spazio.

Passo della Ricetta	Esempio Svolto (Call Center)
1. Identifica λ : Trova il tasso medio di eventi nell'intervallo di tempo/spazio dato.	Dati del problema: Un call center riceve in media 3 chiamate/ora ($\lambda=3$).
2. Adatta λ (se necessario): Se l'intervallo della domanda è diverso, riproporziona λ .	Domanda: Prob. di 0 chiamate in 20 minuti? 20 min = $1/3$ di ora. Il nuovo tasso è $\lambda' = 3 \cdot (1/3) = 1$.
3. Identifica k e applica la formula: Trova il numero di eventi richiesto e usa $P(X=k)=e^{-\lambda}\frac{\lambda^k}{k!}$.	La domanda chiede $k=0$ chiamate. $P(X=0)=e^{-1}\frac{1^0}{0!}=e^{-1}\approx 0.368$

Distribuzione Uniforme $X \sim U(a,b)$

Teoria: Modella una scelta casuale in un intervallo continuo [a,b].

Passo della Ricetta	Esempio Svolto ($X \sim U(4,10)$)
1. Identifica gli estremi: Trova a e b dell'intervallo.	Dati: $a = 4, b = 10.$
2. Calcola l'Altezza: L'altezza della densità (rettangolo) è $h=\frac{1}{b-a}$.	L'altezza della densità è $h = \frac{1}{10-4} = \frac{1}{6}$.
3. Calcola la Base: È la lunghezza dell'intervallo della domanda.	Domanda: $P(X > 8)$. L'intervallo di interesse è $[8, 10]$, quindi la Base è $10 - 8 = 2$.
4. Calcola l'Area: Probabilità = Base × Altezza.	$Area = 2 \times \frac{1}{6} = \frac{1}{3}.$

Distribuzione Esponenziale $X \sim Exp(\lambda)$

Teoria: Modella il tempo di attesa tra un evento e il successivo.

Passo della Ricetta	Esempio Svolto (Durata LED)
1. Trova λ : Se hai la densità, leggilo. Se hai la media $E[T]$, calcola $\lambda = 1/E[T]$.	Dati: Durata media di un LED è 1000 ore. Questo significa $E[T]=1000.$
	$\lambda = 1/1000$
2. Usa la formula di sopravvivenza: Per calcolare $P(T>t)$, usa la scorciatoia: $P(T>t)=e^{-\lambda t}$	Domanda: Prob. che duri più di 1200 ore $(t=1200)$? $P(T>1200)=e^{-(1/1000)\cdot 1200}=e^{-1.2}\approx 0.301$

Distribuzione Normale $X \sim N(\mu, \sigma^2)$

Teoria: Modella fenomeni naturali le cui variazioni sono dovute a molte piccole cause indipendenti.

Passo della Ricetta	Esempio Svolto ($P(X > 185)$ con $\mu = 175, \sigma = 7$)
1. Identifica i parametri: Trova la media μ e la deviazione standard σ (ricorda $\sigma = \sqrt{\sigma^2}$).	Dati del problema: $\mu = 175$, $\sigma = 7$.
2. Standardizza: Trasforma il valore x del problema in un valore z usando la formula: $Z = \frac{X - \mu}{\sigma}$	$Z = \frac{185 - 175}{7} \approx 1.43$
3. Riformula la probabilità e usa le tavole: Riscrivi la domanda in termini di Z e usa le regole di simmetria e la tavola $\Phi(z)$.	La domanda diventa $P(Z>1.43)$. Usando la regola della coda destra: $P(Z>1.43)=1-\Phi(1.43)=1-0.9236=0.0764$

Sezione 4: Teoremi e Approssimazioni

Teorema del Limite Centrale (TLC)

Teoria: La somma o media di un grande numero (n > 30) di v.a. i.i.d. si distribuisce come una Normale.

Passo della Ricetta	Esempio Svolto (Carico ascensore)
1. Analizza la singola v.a. X_i : Calcola la sua media μ e varianza σ^2 .	Dati per 1 persona: $\mu = 75$ kg, $\sigma^2 = 100$.
2. Calcola i parametri della Somma S_n : Usa $E[S_n] = n\mu$ e $Var(S_n) = n\sigma^2$.	Per $n = 50$ persone: $E[S_{50}] = 50 \cdot 75 = 3750$. $Var(S_{50}) = 50 \cdot 100 = 5000$.
3. Approssima e Standardizza: Tratta S_n come una $N(n\mu, n\sigma^2)$ e calcola lo Z-score per il valore richiesto.	Domanda: $P(S_{50} > 3850)$? $Z = \frac{3850 - 3750}{\sqrt{5000}} \approx 1.41$
4. Risolvi con le tavole: Calcola la probabilità finale.	$P(Z > 1.41) = 1 - \Phi(1.41) \approx 1 - 0.9207 = 0.0793.$

Legge dei Grandi Numeri (LGN)

Teoria: La media campionaria \bar{X}_n converge alla media vera μ per n che tende all'infinito.

Passo della Ricetta Concettuale	Esempio Svolto (Guadagno del Casinò)
1. Calcola la Media Vera (μ): Trova il valore atteso $E[X]$ della singola azione.	Il guadagno atteso per il casinò da una singola giocata alla roulette è $E[X] = +0.027$ €.
2. Applica il Principio: Concludi che per n molto grande, la media osservata \bar{X}_n sarà quasi certamente uguale alla media vera μ .	Per la LGN, dopo milioni di giocate (n grande), il guadagno medio $osservato$ dal casinò sarà ≈ 0.027 C per giocata, garantendo un profitto.

Approssimazione della Binomiale alla Normale

Teoria: Se n è grande, una Binomiale può essere approssimata da una Normale.

Passo della Ricetta	Esempio Svolto ($P(X > 210)$ in 400 lanci)
1. Verifica le condizioni: Controlla che $np > 5$ e $n(1-p) > 5$.	$n=400, p=0.5 \implies np=200 > 5$. Condizioni verificate.
2. Calcola i parametri della Normale: $\mu = np$ e $\sigma^2 = np(1-p)$.	$\mu=200,\sigma^2=100.$ La Binomiale è circa $N(200,100).$
3. Applica la correzione di continuità: Trasforma la domanda discreta in continua.	$P(X>210)$ diventa $P(X\geq 211)$. Applichiamo la correzione: $P(Y\geq 211-0.5)=P(Y\geq 210.5)$.
4. Standardizza e Risolvi: Procedi come un normale problema sulla Gaussiana.	$Z = \frac{210.5 - 200}{\sqrt{100}} = 1.05.$ $P(Z \ge 1.05) = 1 - \Phi(1.05)$

Sezione 5: Tavole Statistiche

Tavola della Normale Standardizzata $Z \sim N(0,1)$

Valori di $\Phi(z) = P(Z \leq z)$ per $z \leq 0$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641

Valori di $\Phi(z) = P(Z \leq z)$ per $z \geq 0$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

Quantili z_{α} tali che $P(Z>z_{\alpha})=\alpha$

	0.10						
z_{α}	1.2816	1.6449	1.9600	2.3263	2.5758	3.0902	3.2905

Appendice: Richiami Utili

Calcolo Combinatorio e Insiemi

Teoria: Formule per contare il numero di gruppi o sequenze di oggetti.

Concetto	Formula e Note
Permutazioni Semplici	Modi di ordinare n oggetti distinti.
	$P_n=n!$
Disposizioni Semplici	Modi di scegliere E ordinare k oggetti da un insieme di n . $D_{n,k} = \frac{n!}{(n-k)!}$
Combinazioni Semplici	Modi di scegliere k oggetti da n , senza contare l'ordine. $C_{n,k} = \binom{n}{k} = \frac{n!}{k!(n-k)!}$
Inclusione-Esclusione	Probabilità dell'unione di due eventi. $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Richiami di Analisi Matematica

 $\bf Teoria:$ Formule e proprietà utili per la manipolazione algebrica.

Concetto	Formula e Note
Serie Geometrica	Per $ q < 1$. Fondamentale per le v.a. discrete su domini infiniti.
	$\sum_{k=0}^{\infty} q^k = \frac{1}{1-q}$
Serie Esponenziale	Usata nella normalizzazione della Poisson.
	$\sum_{k=0}^{\infty} \frac{x^k}{k!} = e^x$
Integrazione per Parti	Utile per calcolare il valore atteso di v.a. continue.
	$\int_a^b fg'dx = [fg]_a^b - \int_a^b f'gdx$
Proprietà delle Potenze	Utile nelle sommatorie.
	$a^k \cdot b^k = (ab)^k$
Costante in Sommatoria	Permette di semplificare i calcoli.
	$\sum_k c \cdot f(k) = c \cdot \sum_k f(k)$
Inverso dell'Esponenziale	Per isolare una variabile all'esponente.
	$\ln(e^z)=z$