SEQUENCE LISTING

```
<110>
        KIM, Young Tae
        LEE, Jae Hyung
       Gene involved in the biosynthesis of carotenoid and marine
<120>
       microorganism, paracoccus haeundaesis, producing the
        carotenoid
<130>
        428.1056
        PCT/KR2004/000752
<150>
<151>
        2003-03-31
<150>
        KR2003-20222
        2003-03-31
<151>
<150>
        KR2003-20023
<151>
        2003-03-31
<160>
        18
<170>
       KopatentIn 1.71
<210>
        1
<211>
        21
<212>
        DNA
<213>
        Artificial Sequence
<220>
<223>
      forward primer for Paracoccus haeundaesis 16S rDNA
<400>
cataagtaat tatggttttg t
21
<210>
        2
<211> 18
      DNA
<212>
<213> Artificial Sequence
<220>
<223> reverse primer for Paracoccus haeundaesis 16S rDNA
<400>
        2
cgcttcctta gaaaggag
18
<210>
<211>
        1454
<212>
        DNA
```

1

<213> Paracoccus haeundaesis

<400> 3

caacttgaga gtttgateet ggeteagaac gaacgetgge ggeaggetta acacatgeaa 60

gtcgagcgag accttcgggt ctagcggcgg acgggtgagt aacgcgtggg aacgtgccct 120

tototacgga atagccccgg gaaactggga gtaataccgt atacgccctt tgggggaaag 180

atttatcgga gaaggatcgg cccgcgttgg attaggtagt tggtggggta atggcccacc 240

aagccgacga tccatagctg gtttgagagg atgatcagcc acactgggac tgagacacgg 300

cccagactcc tacgggaggc agcagtgggg aatcttagac aatgggggca accctgatct 360

agccatgccg cgtgagtgat gaaggcctta gggttgtaaa gctctttcag ctgggaagat 420

aatgacggta ccagcagaag aagccccggc taactccgtg ccagcagccg cggtaatacg 480

gagggggcta gcgttgttcg gaattactgg gcgtaaagcg cacgtgggcg gactggaaag 540

tcagaggtga aatcccaggg ctcaaccttg gaactgcctt tgaaactatc agtctggagt 600

tcgagagagg tgagtggaat tccgagtgta gaggtgaaat tcgtagatat tcggaggaac 660

accagtggcg aaggcggctc actggctcga tactgacgct gaggtgcgaa agcgtgggga 720

gcaaacagga ttagataccc tggtagtcca cgccgtaaac gatgaatgcc agacgtcggc 780

aagcatgett gteggtgtea cacetaaegg attaagcatt eegeetgggg agtaeggteg 840

caagattaaa actcaaagga attgacgggg gcccgcacaa gcggtggagc atgtggttta 900

attcgaagca acgcgcagaa ccttaccaac ccttgacatg gcaggaccgc tggagagatt 960

cagetttete gtaagagace tgeacacagg tgetgeatgg etgtegteag etegtgtegt 1020

gagatgttcg gttaagtccg gcaacgagcg caacccacgt ccctagttgc cagcattcag 1080

ttgggcactc tatggaaact gccgatgata agtcggagga aggtgtggat gacgtcaagt

1140

tctcatggcc cttacgggtt gggctacaca cgtgctacaa tggtggtgac agtgggttaa 1200

tccccaaaag ccatctcagt tcggattgtc ctctgcaact cgagggcatg aagttggaat 1260

cgctagtaat cgcggaacag catgccgcgg tgaatacgtt cccgggcctt gtacacaccg 1320

cccgtcacac catgggagtt ggttctaccc gacgacgctg cgctaacctt cggggggcag 1380

gcggccacgg taggatcagc gactggggtg aagtcgtaac aaggtagccg taggggaacc 1440

tgcggctgga tcac 1454

<210> 4

<211> 6223

<212> DNA

<213> crt gene

<400> 4

gttccacgae tggggcatee ccacgaeege gtcgetgege gecategege egatgatggg 60

gccggaccgg gttctggtcg ggtcggcgg ggtgcgtcac gggctggacg ccgcggggc 120

catecgeete ggegeggaee tegtggggea ggeggeeege gegetgeeeg eegegegeea 180

cagegeegag geeetgteeg ateacetgte egaegtegtg acceagetge geategegat 240

gccgggtggc caatggtcgc aagcaacggg gatggaaacc ggcgatgcgg gactgtagtc 360

tgcgcggatc gccggtccgg gggacaagat gagcgcacat gccctgccca aggcagatct $420\,$

gaccgccacc agcctgatcg tctcgggcgg catcatcgcc gcgtggctgg ccctgcatgt 480

gcatgcgctg tggtttctgg acgcggcggc gcatcccatc ctggcgatcg cgaatttcct 540

ggggctgacc tggctgtcgg tcggtctgtt cttcatcgcg catgacgcga tgcacgggtc 600

ggtcgtgccg gggcgtccgc gcggcaatgc ggcgatgggc cagctggtcc tgtggctgta

tgccggattt tcgtggcgca agatgatcgt caagcacatg gcccatcacc gccataccgg 720

aaccgacgac gaccccgatt tcgaccatgg cggcccggtc cgctggtacg cgcgcttcat 780

cggcacctat ttcggctggc gcgaggggct gctgctgccc gtcatcgtga cggtctatgc 840

getgateetg ggggateget ggatgtaegt ggtettetgg eegetgeegt egateetgge 900

gtcgatccag ctgttcgtgt tcggcacctg gctgccgcac cgccccggcc acgacgcgtt 960

cccggaccgc cataatgcgc ggtcgtcgcg gatcagcgac cccgtgtcgc tgctgacctg 1020

ctttcacttt ggtggttatc atcacgaaca ccacctgcac ccgacggtgc cttggtggcg 1080

cctgcccage accegcacea agggggacac cgcatgacea atttcctgat cgtcgtcgcc 1140

acceptgetgg tgatggagtt gacggcctat tccgtccacc gttggatcat gcacggcccc 1200

ctgggctggg gctggcacaa gtcccaccac gaggaacacg accacgcgct ggaaaagaac

gacctgtacg gcctggtctt tgcggtgatc gccacggtgc tgttcacggt gggctggatc 1320

tgggcgccgg tcctgtggtg gatcgctttg ggcatgaccg tctatgggct gatctatttc 1380

gteetgeatg acgggetggt teatcagege tggeegttee getatateee gegeaaggge 1440

tatgcccgcc gcctgtatca ggcccaccgc ctgcaccacg cggtcgaggg acgcgaccat 1500

tgcgtcagct tcggcttcat ctatgcgccg ccggtcgaca agctgaagca ggacctgaag 1560

acgtcgggcg tgctgcgggc cgaggcgcag gagcgcacgt gacccatgac gtgctgctgg 1620

caggggcggg cettgcgaac gggctgatcg ceetggcget gegeggggg eggeeegaee 1680

tgcgggtgct gctgctggat catgcggcgg gaccgtcaga cggccatacc tggtcctgcc 1740

acgaccecga tetgtegeeg caetggetgg egeggetgaa geceetgege egegeeaact 1800

ggcccgacca ggaggtgcgc tttccccgcc atgcccggcg gctggccacc ggttacgggt 1860 cgctggacgg ggcggcgctg gcggatgcgg tggcccggtc gggcgccgag atccgctgga 1920 acagcgacat cgccctgctg gatgaacagg gggcgacgct gtcctgcggc acccggatcg 1980 aggegggege ggteetggae gggeggggg egeageegte geggeatetg acegtgggtt 2040 tccaqaaatt cqtqqqcqtc qagatcqaga ccgactqccc ccacgqcgtg ccccqcccga 2100 tgatcatgga cgcgaccgtc acccagcagg acgggtaccg attcatctat ctgctgccct 2160 teteteegae gegeateetg ategaggaea etegetatte egatggegge aatetggaeg 2220 acqacgcgct ggcggcggcg tcccacgact atgcccgcca gcagggctgg accggggccg 2280 aggteeggeg egaaegegge ateetgeeea ttgegetgge ceatgaegeg gegggettet 2340 gggccgatca cgcggagggg cctgttcccg tgggactgcg cgcggggttc tttcacccgg 2400 tcaccqqcta ttcqctqccc tatqcqqcqc aqqtqqcqqa cqtqqtqqcg ggcctqtccq 2460 ggccgcccgg caccgacgcg ctgcgcggcg ccatccgcga ttacgcgatc gaccgggcac 2520 geogtgaceg etttetgege etgetgaace ggatgetgtt eegeggetge gegeeegace 2580 ggcgctatac cctgctgcag cggttctacc gcatgccgca tggactgatc gaacggttct 2640 atgccggccg gctgagcgtg gcggatcagc tgcgcatcgt gaccggcaag cctcccattc cccttggcac ggccatccgc tgcctgcccg aacgtcccct gctgaaggaa aacgcatgaa 2760 cgcccattcg cccgcggcca agaccgccat cgtgatcggc gcaggctttg gcgggctggc cctggccatc cgcctgcagt ccgcgggcat cgccaccacc ctggtcgagg cccgggacaa 2880 gcccggcggg cgcgcctatg tctggcacga tcagggccat gtcttcgacg cgggcccgac 2940

cgtcatcacc gaccccgatg cgctcaagga gctgtgggcg ctgaccgggc aggacatggc

3000

gegegaegtg aegetgatge eggtgtegee ettetatega etgatgtgge egggegggaa 3060

ggtcttcgat tacgtgaacg aggccgatca gctggagcgc cagatcgccc agttcaaccc 3120

ggacgacctg gaaggatacc gccgcttccg tgattacgcg gaggaggtgt atcaggaggg 3180

ctacgtcaag ctgggcaccg tgcccttcct caagctgggc cagatgctca aggccgcgcc 3240

cgcgctgatg aagctggagg cctataagtc cgtccatgcc aaggtcgcga ccttcatcaa 3300 $\,\cdot\,$

ggacccctat ctgcggcagg cgttttcgta tcacacgctg ctggtgggcg ggaatccctt 3360

ctcgaccage tegatetatg egetgateca egegetggag eggegeggeg gggtetggtt 3420

cgccaagggc ggcaccaacc agctggtcgc gggcatggtc gcgctgttcg aacggcttgg 3480

cggccagatg atgctgaacg ccaaggtcgc ccggatcgag accgagggcg cgcggaccac 3540

gggcgtcacc ctggcggacg ggcggtcttt aagggccgac atggtcgcca gcaacggcga 3600

cgtcatgcac aactatcgcg acctgctggg ccacacggcc cgcgggcaga gccgcgcgaa 3660

atcgctggac cgcaagcgct ggtccatgtc gttgttcgtg ctgcatttcg gtctgcgcga 3720

ggcgcccaag gacatcgcgc atcacaccat cctgttcggc ccccgctaca gggagctggt 3780

caacgagatc ttcaagggcc cgaagctggc cgaggatttc tcgctgtacc tgcattcgcc 3840

ctgcacgacc gatecggaca tggcgcctcc gggcatgtcc acgcattacg tgctggcccc 3900

cgtgccgcat ctgggccgcg ccgagatcga ttgggcggtc gaggggccgc gctatgccga 3960

ccgcatcctg gcgtccctgg aggagcggct gatcccgaac ctgcgcgcca acctgaccac

gacgcgcatc ttcacgcccg ccgatttcgc cagcgaactg aacgcccatc acggcagcgc 4080

cttctcggtc gagccgatcc tgacgcaatc cgcgtggttc cggccgcaca accgcgacaa 4140

gacgateege aacttetate tggteggege gggcaeccat eegggegegg geatteeggg 4200 cgtcgtgggc tcggccaagg ccacggccca ggtgatgctg tccgacctgg cgggcgcatg 4260 agggatctgg tcctgacctc gaccgaggcg atcacccaag ggtcgcaaag ctttgccacg 4320 gcggccaagc tgatgccgcc gggcatccgc gacgacacgg tgatgctcta tgcctggtgc 4380 cgccacgcgg atgacgtgat cgacggtcag gccctgggca gccgcccga ggcggtgaac 4440 gaccegcagg egeggetgga eggeetgege gtegacaege tggeggeeet geagggegae 4500 qqtccqqtqa ccccqccctt tqccqcqctq cqcqqqtqq cqcqqcqa tqatttcccq caggectgge ccatggacet gategaagge ttegegatgg atgtegagge gegegaetat 4620 cqcacqctqq atqacqtqct qgaatattcc tatcacqtcq caggcatcqt cggcgtgatq 4680 atggcccgcg tgatgggcgt gcgcgacgat cctgtcctgg accgcgcctg cgacctgggg 4740 ctggcgttcc agctgaccaa catcgcgcgc gacgtgatcg acgatgcgcg catcgggcgg 4800 tqctatctqc cqqqqqactq gctqqaccaq gcgggcgcgc ggatcgacgg gccggtgccg 4860 tcgccggagc tgtacacagt gatcctccgg ctgttggatg aggcggaacc ctattacgcg 4920 teggegegg tgggtetgge ggatetgeea eegegetgeg eetggteeat egeegeegeg 4980 ctacggatct atcgcgccat cgggctgcgc atccgcaaga gcgggccgca ggcctatcgc 5040 cagcggatca gcacgtccaa ggctgccaag atcggcctgc tgggcgtcgg gggctgggat gtcgcgcgat cacgcctgcc gggggcgggc gtgtcgcggc agggcctctg gacccggccg 5160 catcacgtct aggcgcgcgc ggcgtagggc agaacccgtt ccagcagggc cgcgatttcc ggagcctgaa ggcgcttgct gcgcagcatc gcgtccagtt gggcgcggct ggcctcgtaa

5280

tgacgggaca cgttctgcag gtctgacacg gccagaaggc cgcgccgcgg gccgggggcc 5340 geggeatege gaceggtate ettgecaage geegeetggt egeeeaegae gtecageagg 5400 tegteatagg actggaacae geggeecage tgaeggeeaa agtegateat etgggtetge 5460 tecteggegt egaacteett gateaeggee ageateteea geeeggegat gaacageaeg ccggtcttca ggtcctgttc ctgttcgacc cccgcgccgt tcttggccgc gtgcaggtcc 5580 aggtcctggc cggcgcacag gccctgcggc cccagggacc gcgacaggat ccgcaccagc tgcgcccgca ccgtgcccga cgcgccgcgc gcaccggcca gcagggccat tgcctcggtg 5700 atcagggcga tgccgcccag cacggcacgg ctttcgccat gcgccacatg ggtcgcgggc cggccgcggc gcagcccggc atcgtccatg cagggcaggt cgtcgaagat cagcgatgcg 5820 gcatgcacca tctcgaccgc gcaggcggcg tcgacgatcg tgtcgcagac cccgcccgag 5880 qcctctgccg caagcagcat cagcatgccg cggaaccgcc tgcccgacga cagcgcgcca 5940 tggctcatgg ccgcgccgag cggctgcgac acggcaccga atccctgggc gatctcctca 6000 agtctggtct gcagaagggt ggcgtggatc gggttgacgt ctcgtctcat cagtgccttc 6060 gcgcttgggt tctgacctgg cgggaaggtc aggccggggc ggcaccccgt gacccgtcat 6120 ccaccgtcaa cagtccccat gttggaacgg ttcacgcccg attgcgagcc ttttcgacgg cgacgcgggg tcgcgcggca atttgtccaa caaggtcagt gga 6223 <210> 5 <211> 729 <212> DNA <213> crtW gene

<400> 5
atgagegeae atgeeetgee caaggeagat etgaeegeea ceageetgat egteteggge
60

120 gcgcatccca tcctggcgat cgcgaatttc ctggggctga cctggctgtc ggtcggtctg 180 ttcttcatcg cgcatgacgc gatgcacggg tcggtcgtgc cggggcgtcc gcgcggcaat 240 qcqqcqatqq qccaqctqqt cctqtqqctq tatqccqqat tttcqtqqcg caagatgatc 300 qtcaaqcaca tqqcccatca ccqccatacc qqaaccqacq acqaccccqa tttcqaccat 360 ggcggcccgg tccgctggta cgcgcgcttc atcggcacct atttcggctg gcgcgagggg ctgctgctgc ccgtcatcgt gacggtctat gcgctgatcc tggggggatcg ctggatgtac 480 gtggtcttct ggccgctgcc gtcgatcctg gcgtcgatcc agctgttcgt gttcggcacc tggctgccgc accgcccgg ccacgacgcg ttcccggacc gccataatgc gcggtcgtcg 600 cggatcagcg accccgtgtc gctgctgacc tgctttcact ttggtggtta tcatcacgaa caccacctgc acccgacggt gccttggtgg cgcctgccca gcacccgcac caagggggac accgcatga 729 <210> 6 <211> 242 <212> PRT crtW amino acid <213> <400> Met Ser Ala His Ala Leu Pro Lys Ala Asp Leu Thr Ala Thr Ser Leu 15 5 1 Ile Val Ser Gly Gly Ile Ile Ala Ala Trp Leu Ala Leu His Val His 25 Ala Leu Trp Phe Leu Asp Ala Ala Ala His Pro Ile Leu Ala Ile Ala Asn Phe Leu Gly Leu Thr Trp Leu Ser Val Gly Leu Phe Phe Ile Ala

ggcatcatcg ccgcgtggct ggccctgcat gtgcatgcgc tgtggtttct ggacgcggcg

His Asp Ala Met His Gly Ser Val Val Pro Gly Arg Pro Arg Gly Asn

70

65

80

Ala	Ala	Met	Gly	Gln	Leu 85	Val	Leu	Trp	Leu		Ala 90	Gly	Phe	Ser	Trp	95
Arg	Lys	Met		Val 00	Lys	His	Met	Ala		His 05	Arg	His	Thr	Gly	Thr 110	
Asp	Asp	Asp	_	Asp	Phe	Asp	His	Gly 120		Pro	Val	Arg	Trp	Tyr 125	Ala	
Arg	Phe 130		Gly	Thr	Tyr	Phe	Gly 135	Trp	Arg	Glu	Gly	Leu :	Leu L40	Leu	Pro	
Val 145 160	Ile	Val	Thr	Val	_	Ala 150	Leu	Ile	Leu	Gly		Arg 55	Trp	Met	Tyr	
Val	Val	Phe	Trp		Leu 165	Pro	Ser	Ile	Leu		Ser 70	Ile	Gln	Leu	Phe	175
Val	Phe	Gly		Trp 80	Leu	Pro	His	Arg		Gly 85	His	Asp	Ala	Phe	Pro 190	
Asp	Arg	His 195		Ala	Arg	Ser	Ser	Arg 200	Ile	Ser	Asp	Pro	Val	Ser 205	Leu	
Leu	Thr 210	-	Phe	His	Phe	Gly	Gly 215	Tyr	His	His	Glu	His 2	His 220	Leu	His	
Pro 225 240	Thr	Val	Pro	Trp		Arg 230	Leu	Pro	Ser	Thr		Thr 35	Lys	Gly	Asp	
Thr	Ala															
<210> 7 <211> 489 <212> DNA <213> crtZ gene																
<400 atga 60		7 att 1	tcct	gatc	gt c	gtcg	ccaco	c gt	gctg	gtga	tgga	agtto	gac (ggcci	tattcc	
gtco 120	cacc	gtt (ggato	catgo	ca c	ggcc	ccct	g gg	ctgg	ggct	ggca	acaa	gtc	ccac	cacgag	
gaa0 180	cacga	acc a	acgc	gctg	ga aa	aagaa	acgad	ct	gtac	ggcc	tggi	tctt1	tgc (ggtga	atcgcc	
acg(gtgci	igt 1	tcac	ggtg	gg c	tggai	tctg	g gc	gccg	gtcc	tgt	ggtg	gat (cgct	ttgggc	
atga 300	accgt	ct a	atgg	gctga	at c	tatt	tcgto	c ct	gcate	gacg	ggc	tggt1	tca 1	tcago	cgctgg	

360 caccacgcgg tcgagggacg cgaccattgc gtcagcttcg gcttcatcta tgcgccgccg qtcqacaaqc tqaagcagga cctgaagacg tcgggcgtgc tgcggggccga ggcgcaggag 480 cgcacgtga 489 <210> 8 <211> ' 162 <212> PRT crtZ amino acid <213> <400> Met Thr Asn Phe Leu Ile Val Val Ala Thr Val Leu Val Met Glu Leu 15 Thr Ala Tyr Ser Val His Arg Trp Ile Met His Gly Pro Leu Gly Trp 25 Gly Trp His Lys Ser His His Glu Glu His Asp His Ala Leu Glu Lys Asn Asp Leu Tyr Gly Leu Val Phe Ala Val Ile Ala Thr Val Leu Phe Thr Val Gly Trp Ile Trp Ala Pro Val Leu Trp Trp Ile Ala Leu Gly 65 70 80 Met Thr Val Tyr Gly Leu Ile Tyr Phe Val Leu His Asp Gly Leu Val 95 85 His Gln Arg Trp Pro Phe Arg Tyr Ile Pro Arg Lys Gly Tyr Ala Arg 105 Arg Leu Tyr Gln Ala His Arg Leu His His Ala Val Glu Gly Arg Asp 115 120 His Cys Val Ser Phe Gly Phe Ile Tyr Ala Pro Pro Val Asp Lys Leu 135 Lys Gln Asp Leu Lys Thr Ser Gly Val Leu Arg Ala Glu Ala Gln Glu 145 160 Arg Thr <210> 9

ccgttccgct atatcccgcg caagggctat gcccgccgcc tgtatcaggc ccaccgcctg

<211>

<212>

1161

DNA

<213> crtY gene

<400> 9

gtgacccatg acgtgctgct ggcaggggcg ggccttgcga acgggctgat cgccctggcg 60

ctgcgcgcgg cgcggcccga cctgcgggtg ctgctgctgg atcatgcggc gggaccgtca 120

gacggccata cetggtcetg ccacgacece gatetgtege egeactgget ggcgcggctg

aagcccctgc gccgcgccaa ctggcccgac caggaggtgc gctttccccg ccatgcccgg 240

cggctggcca ccggttacgg gtcgctggac ggggcggcgc tggcggatgc ggtggcccgg 300

tegggegeeg agateegetg gaacagegae ategeeetge tggatgaaca gggggegaeg 360

ctgtcctgcg gcacccggat cgaggcgggc gcggtcctgg acgggcgcgg cgcgcagccg 420

tegeggeate tgacegtggg tttccagaaa ttegtgggeg tegagatega gacegaetge 480

cccacggcg tgccccgccc gatgatcatg gacgcgaccg tcacccagca ggacgggtac 540

cgattcatct atctgctgcc cttctctccg acgcgcatcc tgatcgagga cactcgctat 600

tccgatggcg gcaatctgga cgacgacgcg ctggcggcgg cgtcccacga ctatgcccgc 660

cagcagggct ggaccggggc cgaggtccgg cgcgaacgcg gcatcctgcc cattgcgctg 720

gcccatgacg cggcgggctt ctgggccgat cacgcggagg ggcctgttcc cgtgggactg 780

cgcgcggggt tctttcaccc ggtcaccggc tattcgctgc cctatgcggc gcaggtggcg 840

gacgtggtgg cgggcctgtc cgggccgccc ggcaccgacg cgctgcgcgg cgccatccgc 900

gattacgcga tcgaccgggc acgccgtgac cgctttctgc gcctgctgaa ccggatgctg

ttccgcggct gcgcgcccga ccggcgctat accetgctgc agcggttcta ccgcatgccg 1020

catggactga togaacggtt ctatgccggc cggctgagcg tggcggatca gctgcgcatc 1080

gtgaccggca agecteccat teceettgge acggecatee getgeetgee egaacgteee

1	1	1	r

ctgctgaagg aaaacgcatg a 1161

- <210> 10 <211> 386
- <212> PRT

<213> crtY amino acid

<400> 10

Val Thr His Asp Val Leu Leu Ala Gly Ala Gly Leu Ala Asn Gly Leu
1 5 10 15

Ile Ala Leu Arg Ala Ala Arg Pro Asp Leu Arg Val Leu Leu 20 25 30

Leu Asp His Ala Ala Gly Pro Ser Asp Gly His Thr Trp Ser Cys His 35 40 45

Asp Pro Asp Leu Ser Pro His Trp Leu Ala Arg Leu Lys Pro Leu Arg 50 55 60

Arg Ala Asn Trp Pro Asp Gln Glu Val Arg Phe Pro Arg His Ala Arg 65 70 75

Arg Leu Ala Thr Gly Tyr Gly Ser Leu Asp Gly Ala Ala Leu Ala Asp 85 90

95

Ala Val Ala Arg Ser Gly Ala Glu Ile Arg Trp Asn Ser Asp Ile Ala
100 105 110

Leu Leu Asp Glu Gln Gly Ala Thr Leu Ser Cys Gly Thr Arg Ile Glu 115 120 125

Ala Gly Ala Val Leu Asp Gly Arg Gly Ala Gln Pro Ser Arg His Leu 130 135 140

Thr Val Gly Phe Gln Lys Phe Val Gly Val Glu Ile Glu Thr Asp Cys 145 150 155

Pro His Gly Val Pro Arg Pro Met Ile Met Asp Ala Thr Val Thr Gln \$165\$ \$170\$ 175

Gln Asp Gly Tyr Arg Phe Ile Tyr Leu Leu Pro Phe Ser Pro Thr Arg 180 185 190

Ile Leu Ile Glu Asp Thr Arg Tyr Ser Asp Gly Gly Asn Leu Asp Asp 195 200 205

Asp Ala Leu Ala Ala Ala Ser His Asp Tyr Ala Arg Gln Gln Gly Trp 210 215 220

Thr Gly Ala Glu Val Arg Arg Glu Arg Gly Ile Leu Pro Ile Ala Leu 225 230 235

Ala	His	Asp	Ala		Gly 245	Phe	Trp	Ala	Asp		Ala 50	Glu	Gly	Pro	Val	255
Pro	Val	Gly		Arg 60	Ala	Gly	Phe	Phe	His 265		Val	Thr	Gly	Tyr	Ser 270	
Leu	Pro	-	Ala 75	Ala	Gln	Val	Ala	Asp 28		Val	Ala	Gly	Leu	Ser 285	Gly	
Pro	Pro 290	_	Thr	Asp	Ala	Leu	Arg 295	Gly	Ala	Ile	Arg		Tyr 300	Ala	Ile	
Asp 305 320	Arg	Ala	Arg	Arg	_	Arg 310	Phe	Leu	Arg	Leu		Asn 315	Arg	Met	Leu	
Phe	Arg	Gly	Cys		Pro 325	Asp	Arg	Arg	Tyr		Leu 330	Leu	Gln	Arg	Phe	335
Tyr	Arg	Met		His 40	Gly	Leu	Ile	Glu	Arg 345		Tyr	Ala	Gly	Arg	Leu 350	
Ser	Val	Ala 35	_	Gln	Leu	Arg	Ile	Val 36		Gly	Lys	Pro	Pro	Ile 365	Pro	
Leu	Gly 370		Ala	Ile	Arg	Cys	Leu 375	Pro	Glu	Arg	Pro		Leu 380	Lys	Glu	
Asn 385	Ala															
<211 <212	<210> 11 <211> 1506 <212> DNA <213> crtI gene															
<400 atga 60		11 ccc a	atto	gece	gc g	gccaa	agaco	c gc	catc	gtga	tcg	gegea	agg (cttt	ggcggg	
ctg9	gccct	agg (ccat	ccgc	ct go	cagto	ccgc	g gg	catc	gcca	ccad	ccct	ggt	cgag	gcccgg	
gaca 180	aagco	ccg (gegg	gege	gc ct	tatgi	ctg	g ca	cgato	cagg	gcca	atgto	ctt (cgac	geggge	
ccga 240	accgt	ca 1	tcac	cgac	cc c	gatgo	cgcto	c aa	ggago	ctgt	ggg	cgct	gac (cggg	caggac	
atgo 300	gege	gcg a	acgt	gacgo	ct ga	atgc	cggt	g tc	gccct	ttct	atc	gacto	gat (gtgg	ccgggc	
ggga	aaggt	ct 1	tcga	ttac	gt ga	aacga	aggco	c ga	tcago	ctgg	agc	gcca	gat	cgcc	cagttc	

aacceggacg acctggaagg atacegeege tteegtgatt acgeggagga ggtgtateag 420

gagggctacg tcaagctggg caccgtgccc ttcctcaagc tgggccagat gctcaaggcc 480

gcgcccgcgc tgatgaagct ggaggcctat aagtccgtcc atgccaaggt cgcgaccttc 540

atcaaggace cetatetgeg geaggegttt tegtateaea egetgetggt gggegggaat 600

cccttctcga ccagctcgat ctatgcgctg atccacgcgc tggagcggcg cggcggggtc 660

tggttcgcca agggcggcac caaccagctg gtcgcgggca tggtcgcgct gttcgaacgg

cttggcggc agatgatgct gaacgccaag gtcgcccgga tcgagaccga gggcgcgcgg 780

accacgggcg tcaccctggc ggacgggcgg tctttaaggg ccgacatggt cgccagcaac 840

ggcgacgtca tgcacaacta tcgcgacctg ctgggccaca cggcccgcgg gcagagccgc 900

gcgaaatcgc tggaccgcaa gcgctggtcc atgtcgttgt tcgtgctgca tttcggtctg 960

cgcgaggcgc ccaaggacat cgcgcatcac accatcctgt tcggcccccg ctacagggag 1020

ctggtcaacg agatettcaa gggcccgaag ctggccgagg atttctcgct gtacctgcat

tegecetgea egacegatee ggacatggeg eeteegggea tgteeaegea ttaegtgetg 1140

geoccegige egeatetggg eegegeegag ategattggg eggtegaggg geogegetat 1200

gccgaccgca teetggcgte cetggaggag eggetgatee egaacetgeg egecaacetg 1260

accacgacgc gcatcttcac gcccgccgat ttcgccagcg aactgaacgc ccatcacggc 1320

agegecitet eggtegagee gateetgaeg caateegegt ggtteeggee geacaacege 1380

gacaagacga teegeaactt etatetggte ggegegggea eeeateeggg egegggeatt 1440

ccgggcgtcg tgggctcggc caaggccacg gcccaggtga tgctgtccga cctggcgggc 1500

gcatga

<211 <212	<210> 12 <211> 501 <212> PRT <213> crtI amino		acio	d												
<400 Met 1		12 Ala	His	Ser	Pro 5	Ala	Ala	Lys	Thr		Ile 10	Val	Ile	Gly	Ala	15
Gly	Phe ·	Gly		Leu 20	Ala	Leu	Ala	Ile	Arg 25		Gln	Ser	Ala	Gly	Ile 30	
Ala	Thr	Thr		Val	Glu	Ala	Arg	Asp 40	-	Pro	Gly	Gly	Arg	Ala 45	Tyr	
Val	Trp 50	His	Asp	Gln	Gly	His	Val 55	Phe	Asp	Ala	Gly	Pro	Thr 60	Val	Ile	
Thr 65 80	Asp	Pro	Asp	Ala	Leu	Lys 70	Glu	Leu	Trp	Ala	Leu	Thr 75	Gly	Gln	Asp	
Met	Ala	Arg	Asp	Val	Thr 85	Leu	Met	Pro	Val		Pro 90	Phe	Tyr	Arg	Leu	95
Met	Trp	Pro	-	Gly OO	Lys	Val	Phe	Asp	Tyr 10		Asn	Glu	Ala	Asp	Gln 110	
Leu	Glu	Arg 115		Ile	Ala	Gln	Phe	Asn 120	_	Asp	Asp	Leu	Glu	Gly 125	Tyr	
Arg	Arg 130	Phe	Arg	Asp	Tyr	Ala	Glu 135	Glu	Val	Tyr	Gln		Gly 140	Tyr	Val	
Lys 145 160	Leu	Gly	Thr	Val		Phe 150	Leu	Lys	Leu	Gly	Gln	Met 155	Leu	Lys	Ala	
Ala	Pro	Ala	Leu		Lys 165	Leu	Glu	Ala	Tyr		Ser 70	Val	His	Ala	Lys	175
Val	Ala	Thr		Ile 30	Lys	Asp	Pro	Tyr	Leu 18		Gln	Ala	Phe	Ser	Tyr 190	
His	Thr	Leu 195		Val	Gly	Gly	Asn	Pro 200		Ser	Thr	Ser	Ser	Ile 205	Tyr	
Ala	Leu 210	Ile	His	Ala	Leu	Glu	Arg 215	Arg	Gly	Gly	Val		Phe 220	Ala	Lys	
Gly 225 240	Gly	Thr	Asn	Gln		Val 230	Ala	Gly	Met	Val	Ala	Leu 235	Phe	Glu	Arg	
Leu	Gly	Gly	Gln	Met	Met	Leu	Asn	Ala	Lys	Val	Ala	Arg	Ile	Glu	Thr	

245	250	255

Glu	Gly	Ala	Arg 20		Thr	Gly	Val	Thr		Ala 65	Asp	Gly	Arg	Ser	Leu 270	
Arg	Ala	Asp 27		Val	Ala	Ser	Asn	Gly 280		Val	Met	His	Asn	Tyr 285	Arg	
Asp	Leu 290		Gly	His	Thr	Ala	Arg 295	Gly	Gln	Ser	Arg		Lys 300	Ser	Leu	
Asp 305 320	Arg	Lys	Arg	Trp		Met 310	Ser	Leu	Phe	Val		His 315	Phe	Gly	Leu	
Arg	Glu	Ala	Pro		Asp 325	Ile	Ala	His	His		Ile 30	Leu	Phe	Gly	Pro	335
Arg	Tyr	Arg		Leu 10	Val	Asn	Glu	Ile		Lys 45	Gly	Pro	Lys	Leu	Ala 350	
Glu	Asp	Phe 355		Leu	Tyr	Leu	His	Ser 360		Cys	Thr	Thr	Asp	Pro 365	Asp	
Met	Ala 370	Pro	Pro	Gly	Met	Ser	Thr 375	His	Tyr	Val	Leu		Pro 380	Val	Pro	
His 385 400	Leu ·	Gly	Arg	Ala	Glu	Ile 390	Asp	Trp	Ala	Val		Gly 395	Pro	Arg	Tyr	
Ala	Asp	Arg	Ile		Ala 105	Ser	Leu	Glu	Glu		Leu 110	Ile	Pro	Asn	Leu	415
Arg	Ala	Asn		Thr 20	Thr	Thr	Arg	Ile		Thr 25	Pro	Ala	Asp	Phe	Ala 430	
Ser	Glu		Asn 35	Ala	His	His	Gly	Ser 440		Phe	Ser	Val	Glu	Pro 445	Ile	
Leu	Thr 450		Ser	Ala	Trp	Phe	Arg 455	Pro	His	Asn	Arg		Lys 160	Thr	Ile	
Arg 465 480	Asn	Phe	Tyr	Leu		Gly 170	Ala	Gly	Thr	His		Gly 475	Ala	Gly	Ile	
Pro	Gly	Val	Val		Ser 185	Ala	Lys	Ala	Thr		Gln 90	Val	Met	Leu	Ser	495
Asp	Leu	Ala	-	Ala)0												
<210 <211 <212 <213	L> 2>	13 915 DN/ crt		ene												

<400> 13 atgagogato tggtootgao otogaoogag gogatoacco aagggtogoa aagotttgoo 60 acggcggcca agctgatgcc gccgggcatc cgcgacgaca cggtgatgct ctatgcctgg tgccgccacg cggatgacgt gatcgacggt caggccctgg gcagccgccc cgaggcggtg 180 aacgacccgc aggcgcggct ggacggcctg cgcgtcgaca cgctggcggc cctgcagggc gacggtccgg tgaccccgcc ctttgccgcg ctgcgcgcgg tggcgcggcg gcatgatttc 300 ccgcaggcct ggcccatgga cctgatcgaa ggcttcgcga tggatgtcga ggcgcgcgac tatcgcacgc tggatgacgt gctggaatat tcctatcacg tcgcaggcat cgtcggcgtg 420 atgatggccc gcgtgatggg cgtgcgcgac gatcctgtcc tggaccgcgc ctgcgacctg gggctggcgt tccagctgac caacatcgcg cgcgacgtga tcgacgatgc gcgcatcggg 540 cggtgctatc tgccggggga ctggctggac caggcgggcg cgcggatcga cgggccggtg ccgtcgccgg agctgtacac agtgatcctc cggctgttgg atgaggcgga accctattac 660 gcgtcggcgc gggtgggtct ggcggatctg ccaccgcgct gcgcctggtc catcgccgcc 720 gcgctacgga tctatcgcgc catcgggctg cgcatccgca agagcgggcc gcaggcctat 780 cgccagcgga tcagcacgtc caaggctgcc aagatcggcc tgctggggcgt cgggggctgg 840 gatgtcgcgc gatcacgcct gccgggggcg ggcgtgtcgc ggcagggcct ctggacccgg ccgcatcacg tctag 915

<210> 14 <211> 304 <212> PRT <213> crtB amino acid

 $<\!400\!>$ $\,$ 14 Met Ser Asp Leu Val Leu Thr Ser Thr Glu Ala Ile Thr Gln Gly Ser

1					5						10					15
Gln	Ser	Phe		Thr 20	Ala	Ala	Lys	Leu		Pro 25	Pro	Gly	Ile	Arg	Asp 30	
Asp	Thr	Val 35		Leu	Tyr	Ala	Trp	Cys 40	_	His	Ala	Asp	Asp	Val 45	Ile	
Asp	Gly 50	Gln	Ala	Leu	Gly	Ser	Arg 55	Pro	Glu	Ala	Val	Asn	Asp 60	Pro	Gln	
Ala 65 80	Arg	Leu	Asp	Gly	Leu	Arg 70	Val	Asp	Thr	Leu		Ala 75	Leu	Gln	Gly	
Asp	Gly	Pro	Val	Thr	Pro 85	Pro	Phe	Ala	Ala		Arg 90	Ala	Val	Ala	Arg	95
Arg	His	Asp		Pro 00	Gln	Ala	Trp	Pro	Met 105		Leu	Ile	Glu	Gly	Phe 110	
Ala	Met	Asp 115		Glu	Ala	Arg	Asp	Tyr 120		Thr	Leu	Asp	Asp	Val 125	Leu	
Glu	Tyr 130	Ser	Tyr	His	Val	Ala	Gly 135	Ile	Val	Gly	Val		Met 140	Ala	Arg	
Val 145 160	Met	Gly	Val	Arg		Asp 150	Pro	Val	Leu	Asp		Ala 155	Cys	Asp	Leu	
Gly	Leu	Ala	Phe	Gln	Leu 165	Thr	Asn	Ile	Ala		Asp 170	Val	Ile	Asp	Asp	175
Ala	Arg	Ile	_	Arg 30	Cys	Tyr	Leu	Pro	Gly 185		Trp	Leu	Asp	Gln	Ala 190	
Gly	Ala	Arg 195		Asp	Gly	Pro	Val	Pro 200		Pro	Glu	Leu	Tyr	Thr 205	Val	
Ile		Arg)		Leu	_		015				Tyr		Ser 220	Ala	Arg	
Val 225 240	Gly	Leu	Ala	Asp		Pro 230	Pro	Arg	Cys	Ala		Ser 235	Ile	Ala	Ala	
Ala	Leu	Arg	Ile	Tyr	Arg 245	Ala	Ile	Gly	Leu		Ile 250	Arg	Lys	Ser	Gly	255
Pro	Gln	Ala	_	Arg 60	Gln	Arg	Ile	Ser		Ser 65	Lys	Ala	Ala	Lys	Ile 270	
Gly	Leu		Gly 75	Val	Gly	Gly	Trp	Asp 280		Ala	Arg	Ser	Arg	Leu 285	Pro	
Gly	Ala 290	_	Val	Ser	Arg	Gln	Gly 295	Leu	Trp	Thr	Arg		His 300	His	Val	

<210> 15 <211> 882

<212> DNA

<213> crtE gene

<400> 15

atgagacgag acgtcaaccc gatccacgcc accettetge agaccagact tgaggagate 60

gcccagggat teggtgeegt gtegeageeg eteggegegg ccatgageea tggegegetg 120

tegtegggea ggeggtteeg eggeatgetg atgetgettg eggeagagge etegggeggg 180

gtctgcgaca cgatcgtcga cgccgcctgc gcggtcgaga tggtgcatgc cgcatcgctg 240

atottogacg acctgocotg catggacgat googggotgo googggoog goocgogaco 300

catgtggcgc atggcgaaag ccgtgccgtg ctgggcggca tcgccctgat caccgaggca

atggccctgc tggccggtgc gcgcggcgcg tcgggcacgg tgcgggcgca gctggtgcgg 420

atcctgtcgc ggtccctggg gccgcagggc ctgtgcgccg gccaggacct ggacctgcac

gcggccaaga acggcgcggg ggtcgaacag gaacaggacc tgaagaccgg cgtgctgttc 540

ategeeggge tggagatget ggeegtgate aaggagtteg aegeegagga geagaeeeag 600

atgategaet ttggeegtea getgggeege gtgtteeagt eetatgaega eetgetggae 660

gtcgtgggcg accaggcggc gcttggcaag gataccggtc gcgatgccgc ggccccggc 720

ccgcggcgcg gccttctggc cgtgtcagac ctgcagaacg tgtcccgtca ttacgaggcc 780

agecgegee aactggaege gatgetgege ageaagegee tteaggetee ggaaategeg 840

gccctgctgg aacgggttct gccctacgcc gcgcgcgcct ag

<210> 16 <211> 293

<213	3>	crt	E ar	nino	acio	Ĺ										
<400		16	7 en	Val	Aen	Pro	Tle	Hic	Δla	Thr	T.A.I	Lau	Gln	Thγ	Δra	
1	ALG	AIG	лэр	vai	5	FIO	116	1113	AIG		10	Бец	GIII	1111	711.9	15
Leu	Glu	Glu		Ala 20	Gln	Gly	Phe	Gly		Val 25	Ser	Gln	Pro	Leu	Gly 30	
Ala	Ala	Met 35		His	Gly	Ala	Leu	Ser 40		Gly	Arg	Arg	Phe	Arg 45	Gly	
Met	Leu 50	Met	Leu	Leu	Ala	Ala	Glu 55	Ala	Ser	Gly	Gly	Val	Cys 60	Asp	Thr	
Ile 65 80	Val	Asp	Ala	Ala	Cys	Ala 70	Val	Glu	Met	Val	His	Ala 75	Ala	Ser	Leu	
Ile	Phe	Asp	Asp		Pro 35	Cys	Met	Asp	Asp		Gly 90	Leu	Arg	Arg	Gly	95
Arg	Pro	Ala		His 00	Val	Ala	His	Gly		Ser)5	Arg	Ala	Val	Leu	Gly 110	
Gly	Ile	Ala 115		Ile	Thr	Glu	Ala	Met 120		Leu	Leu	Ala	Gly	Ala 125	Arg	
Gly	Ala 130		Gly	Thr	Val	Arg	Ala 135	Gln	Leu	Val	Arg		Leu 140	Ser	Arg	
Ser 145 160	Leu	Gly	Pro	Gln	_	Leu 150	Cys	Ala	Gly	Gln		Leu 155	Asp	Leu	His	
Ala	Ala	Lys	Asn		Ala 165	Gly	Val	Glu	Gln		Gln 170	Asp	Leu	Lys	Thr	175
Gly	Val	Leu		Ile 30	Ala	Gly	Leu	Glu		Leu 35	Ala	Val	Ile	Lys	Glu 190	
Phe	Asp	Ala 199		Glu	Gln	Thr	Gln	Met 200		Asp	Phe	Gly	Arg	Gln 205	Leu	
Gly	Arg 210	Val	Phe	Gln	Ser	Tyr	Asp 215	Asp	Leu	Leu	Asp		Val 220	Gly	Asp	
Gln 225 240	Ala	Ala	Leu	Gly	-	Asp 230	Thr	Gly	Arg	Asp		Ala 35	Ala	Pro	Gly	
Pro	Arg	Arg	Gly		Leu 245	Ala	Val	Ser	Asp		Gln 250	Asn	Val	Ser	Arg	255
His	Tyr	Glu		Ser	Arg	Ala	Gln	Leu		Ala	Met	Leu	Arg	Ser	Lys 270	

<212>

PRT

```
Arg Leu Gln Ala Pro Glu Ile Ala Ala Leu Leu Glu Arg Val Leu Pro
                                 280
         275
Tyr Ala Ala Arg Ala
    290
<210>
        17
        19
<211>
<212>
        DNA
<213>
        Artificial Sequence
<220>
<223>
        forward primer for crt gene
<400>
        17
gttccacgac tggggcatc
19
<210>
        18
<211>
        28
<212>
        DNA
<213>
        Artificial Sequence
<220>
<223> reverse primer for crt gene
```

<400>

18

tccactgacc ttgttggaca aattgccg