10 Pins, Drive Modes

Types of Pins

Power Supply Pins

Power System

Specification

Table 1. Absolute Maximum Ratings^[1]

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID1	V _{DDD_ABS}	Digital supply relative to V _{SSD}	-0.5	1	6	V	Absolute max
SID2	V _{CCD_ABS}	Direct digital core voltage input relative to Vssd	-0.5	ı	1.95	٧	Absolute max

Table 2. DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID53	V_{DD}	Power Supply Input Voltage $(V_{DDA} = V_{DDD} = V_{DD})$	1.8	I	5.5	>	With regulator enabled
SID255	V_{DDD}	Power Supply Input Voltage unregulated	1.71	1.8	1.89	>	Internally unregulated supply
SID54	V_{CCD}	Output voltage (for core logic)	ı	1.8	1	V	

Bypass Capacitors

Power Supply	Bypass Capacitors
V _{DDD} -V _{SS}	0.1-μF ceramic at each pin (C2, C6) plus bulk capacitor 1 μF to 10 μF (C1). Total capacitance may be greater than 10 μF.
V _{DDA} -V _{SSA}	0.1-μF ceramic at pin (C4). Additional 1 μF to 10 μF (C3) bulk capacitor. Total capacitance may be greater than 10 μF.
V _{CCD} -V _{SS}	1-μF ceramic capacitor at the VCCD pin (C5)
V _{REF} -V _{SSA} (optional)	The internal bandgap may be bypassed with a 1-μF to 10-μF capacitor. Total capacitance may be greater than 10 μF.

GPIO Pins

Organized into GPIO Ports (e.g., P0, P1, P2, P3, P4)

Ref: AN86439 - PSoC® 4 - Using GPIO Pins

Output Driver

Ref: AN86439 - PSoC® 4 - Using GPIO Pins

Drive Modes

Ref: AN86439 - PSoC® 4 - Using GPIO Pins

1. High-Impedance Analog

2. High-Impedance Digital

3. Resistive Pull Up

sistive Pull Up 4. Resistive Pull Down

5. Open Drain Drives Low

Open Drain, Drives High

7. Strong Drive

8. Resistive Pull Up & Pull Down

Prof. Kurian Polachan, IIIT-Bangalore

Configuring GPIOs

GPIO Register Control

Instructions → Processor → GPIO Registers → GPIO

Ref: PSoC® 4: PSoC 4200 Family Datasheet

Analog or Digital Blocks (e.g., SPI, I2C, ADC, DAC ...)

Specifications

Table 1. Absolute Maximum Ratings^[1]

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID1	V _{DDD_ABS}	Digital supply relative to V _{SSD}	-0.5	_	6	V	Absolute max
SID2	V _{CCD_ABS}	Direct digital core voltage input relative to Vssd	-0.5	_	1.95	V	Absolute max
SID3	V _{GPIO_ABS}	GPIO voltage	-0.5	_	V _{DD} +0.5	V	Absolute max
SID4	I _{GPIO_ABS}	Maximum current per GPIO	-25	_	25	mA	Absolute max

Specifications (...)

Table 4. GPIO DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID57	V _{IH} ^[2]	Input voltage high threshold	0.7 × V _{DDD}	-	_	V	CMOS Input
SID58	V _{IL}	Input voltage low threshold	_	-	0.3 × V _{DDD}	V	CMOS Input
SID59	V _{OH}	Output voltage high level	V _{DDD} -0.6	1	ı	V	I _{OH} = 4 mA at 3-V V _{DDD}
SID60	V _{OH}	Output voltage high level	V _{DDD} -0.5	ı	1	>	I _{OH} = 1 mA at 1.8-V V _{DDD}
SID61	V _{OL}	Output voltage low level	1	ı	0.4	V	I _{OL} = 4 mA at 1.8-V V _{DDD}
SID62	V _{OL}	Output voltage low level	-	ı	0.6	V	I _{OL} =8 mA at 3-V V _{DDD}
SID62A	V _{OL}	Output voltage low level	-	ı	0.4	>	I _{OL} = 3 mA at 3-V V _{DDD}
SID63	R _{PULLUP}	Pull-up resistor	3.5	5.6	8.5	kΩ	
SID64	R _{PULLDOWN}	Pull-down resistor	3.5	5.6	8.5	kΩ	

Specifications (...)

Table 4. GPIO DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID69	I _{DIODE}	Current through protection diode to V _{DD} /Vss	-	-			Guaranteed by characterization
SID69A	I _{TOT_GPIO}	Maximum Total Source or Sink Chip Current	-	-	200	mA	Guaranteed by characterization

Table 5. GPIO AC Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID70	T _{RISEF}	Rise time in fast strong mode	2	ı	12	ns	3.3-V V _{DDD} , Cload = 25 pF
SID71	T _{FALLF}	Fall time in fast strong mode	2	-	12	ns	3.3-V V _{DDD} , Cload = 25 pF
SID72	T _{RISES}	Rise time in slow strong mode	10	-	60	ns	3.3-V V _{DDD} , Cload = 25 pF
SID73	T _{FALLS}	Fall time in slow strong mode	10	-	60	ns	3.3-V V _{DDD} , Cload = 25 pF

Specifications (...)

Table 5. GPIO AC Specifications

(Guaranteed by Characterization)

I	1	1	I	1	I	I	1
SID74	F _{GPIOUT1}	GPIO Fout;3.3 V \leq V _{DDD} \leq 5.5 V. Fast strong mode.	_	-	33	MHz	90/10%, 25-pF load, 60/40 duty cycle
SID75	F _{GPIOUT2}	GPIO Fout; 1.7 $V \le V_{DDD} \le 3.3 \text{ V. Fast}$ strong mode.	_	-	16.7	MHz	90/10%, 25-pF load, 60/40 duty cycle
SID76	F _{GPIOUT3}	GPIO Fout;3.3 V \leq V _{DDD} \leq 5.5 V. Slow strong mode.	_	-	7	MHz	90/10%, 25-pF load, 60/40 duty cycle
SID245	F _{GPIOUT4}	GPIO Fout; 1.7 V \leq V _{DDD} \leq 3.3 V. Slow strong mode.	-	-	3.5	MHz	90/10%, 25-pF load, 60/40 duty cycle
SID246	F _{GPIOIN}	GPIO input operating frequency; 1.71 V \leq V _{DDD} \leq 5.5 V	_	_	48	MHz	90/10% V _{IO}

Ref: PSoC® 4: PSoC 4200 Family Datasheet

Prof. Kurian Polachan, IIIT-Bangalore

e.g., Application LED Control

Pin_1 Drive Mode?

R_1 Range?

LED Drive Configs

Drive Mode? Resistor Range?

E.g., LED Ctrl

"Turn ON/OFF LED based on a Digital Signal"

LED Ctrl (...)

"Turn ON/OFF LED based on a Digital Signal"

Drive Mode of Pins?, Firmware Logic?

LED Ctrl (...)

"Turn ON/OFF LED based on a Digital Signal"


```
#include <project.h>
int main()
    CyGlobalIntEnable; /* Enable global interrupts */
    /* Place your initialization/startup code here (e.g. MyInst Start()) */
    /* Set Pin LED drive mode to open-drain drives low */
    Pin LED SetDriveMode (Pin LED DM OD DRIVE LOW);
    /* Set Pin Input drive mode to Hi-Z digital input */
    Pin Input SetDriveMode (Pin Input DM DIG HIZ);
    for(;;)
        /* Check the status of Pin Input */
        if(Pin Input Read() == 0u)
            /* If Pin Input is low, set Pin LED to high to turn ON LED*/
            Pin LED Write (1u);
        else
            Pin LED Write (Ou);
```

E.g., Switch ←→ LED

"Turn ON/OFF LED based on Switch Status"

Ref - creative commons -- https://robu.in/

Switch ←→ LED

"Turn ON/OFF LED based on Switch Status"

Drive Mode of Pins ?, Firmware Logic ?

Switch ←→ LED

"Turn ON/OFF LED based on Switch Status"


```
#include <project.h>
int main()
    CyGlobalIntEnable;
    Pin LED SetDriveMode (Pin LED DM OD DRIVE LOW);
    Pin Input SetDriveMode (Pin Input DM RES UP);
    Pin Input Write (Ou);
    for(;;)
        if(Pin Input Read() == 0u)
            Pin LED Write (1u);
        else
            Pin LED Write (Ou);
```

Switch ←→ LED

"Turn ON/OFF LED based on Switch Status"

Ref - creative commons

What if Resistive-Pull Up is not a Supported Drive Mode by the SoC?

Reading - How to Design Resistor "R"

Functions

- uint8 <u>Pin Read</u>(void)
 - Reads the associated physical port (pin status register) and masks the required bits according to the width and bit position of the component instance.
- void Pin Write(uint8 value)
 - Writes the value to the physical port (data output register), masking and shifting the bits appropriately.
- uint8 <u>Pin_ReadDataReg</u>(void)
 - Reads the associated physical port's data output register and masks the correct bits according to the width and bit position of the component instance.
- void <u>Pin SetDriveMode</u>(uint8 mode)
 - Sets the drive mode for each of the Pins component's pins.
- void <u>Pin_SetInterruptMode</u>(uint16 position, uint16 mode)
 Configures the interrupt mode for each of the Pins component's pins. Alternatively you may set the interrupt mode for all the pins specified in the Pins component.
- uint8 Pin ClearInterrupt(void)
 - Clears any active interrupts attached with the component and returns the value of the interrupt status register allowing determination of which pins generated an interrupt event.

Ref: PSoC® 4 GPIO Datasheet

Reading

PERFORM

AN86439

PSoC® 4 – Using GPIO Pins

10 GPIO Tips and Tricks

This section provides practical examples of how to use GPIO pins. All these examples are included in the PSoC Creator project provided with this application note.

Table 5. PSoC Creator Projects

#	Section	Project	PSoC 4000	PSoC 4100	PSoC 4200	PSoC 41xx-BL	PSoC 42xx-BL	PSoC 4100M	PSoC 4200M
1	Toggle an LED	Project1_ToggleLED	✓	✓	✓	✓	✓	✓	✓
2	Read an Input and	Project2_ReadingPin	✓	✓	✓	✓	✓	✓	✓

Ref: PSoC® 4 GPIO Datasheet

Special Function Pins

Programming Pins

Ref: AN86439 - PSoC® 4 - Using GPIO Pins

RESET Pin

Prof. Kurian Polachan, IIIT-Bangalore

Specification

Table 6. XRES DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID77	V _{IH}	Input voltage high threshold	0.7 × V _{DDD}	-	-	V	CMOS input
SID78	V _{IL}	Input voltage low threshold	-	ı	0.3 × V _{DDD}	V	CMOS input
SID79	R _{PULLUP}	Pull-up resistor	3.5	5.6	8.5	kΩ	
SID80	C _{IN}	Input capacitance	_	3	-	pF	

Table 7. XRES AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID83	T _{RESETWIDTH}	Reset pulse width	1	-	ı	μs	Guaranteed by characterization

SWD Prog. Pins

SWD Pins — Programming PSoC (write FLASH with instructions)

Ref: AN88619 - PSoC Hardware Design Considerations