

Universidade Federal do Rio de Janeiro (UFRJ) Departamento de Ciência da Computação (DCC)

Recuperação da Informação (MAB605)

Avaliação da Recuperação

Profa. Giseli Rabello Lopes

Roteiro

- Introdução
- Precisão e Revocação
- Sumários com um único valor
- nDCG
- Correlação de rankings
- Referências

Introdução [Baeza-Yates & Ribeiro Neto, 2013]

- Avaliação da recuperação é um componente crítico e integrante de qualquer sistema moderno de RI
 - Avaliar um sistema de RI é medir quão bem um sistema atende às necessidades de informação dos usuários
 - Sem uma avaliação adequada da recuperação, não se pode
 - Determinar o quão bem um sistema de RI está executando
 - Comparar a *qualidade* do sistema de RI com a de outros sistemas, objetivamente

Introdução [Baeza-Yates & Ribeiro Neto, 2013]

- A avaliação sistemática de um sistema de RI permite responder questões tais como:
 - Uma modificação da função de ranking é proposta, devemos ir adiante e implementá-la?
 - Uma nova função probabilística de ranqueamento foi projetada, ela é superior aos rankings do modelo vetorial e BM25?
 - Para quais tipos de consultas uma dada modificação no ranking funciona melhor?
- A falta de avaliação impede responder essas questões e impossibilita o ajuste da função de ranqueamento

Introdução [Baeza-Yates & Ribeiro Neto, 2013]

- Avaliação da recuperação consiste em associar uma métrica quantitativa aos resultados produzidos por um sistema de RI
- Avaliação da recuperação é avaliar a qualidade dos resultados, não o desempenho do sistema em termos do tempo de processamento das consultas

[Baeza-Yates & Ribeiro-Neto, 2013]

- Considere,
 - I: uma requisição de informação
 - R: o conjunto de documentos relevantes para I
 - A: o conjunto resposta para I, gerado por um sistema de RI
 - R ∩ A: a intersecção entre os conjuntos R e A

[Baeza-Yates & Ribeiro-Neto, 2013]

 Revocação é a fração de documentos relevantes (conjunto R) que foram recuperados

$$Recall = |R \cap A|/|R|$$

 Precisão é a fração de documentos recuperados (conjunto A) que são relevantes

$$Precision = |R \cap A|/|A|$$

[Baeza-Yates & Ribeiro-Neto, 2013]

- O usuário não é normalmente apresentado a todos os documentos no conjunto de resposta A de uma só vez
 - Usuário vê um conjunto de documentos ranqueados e examina-os a partir do topo
- Então, precisão e revocação variam conforme o usuário prossegue com sua análise do conjunto A
- O mais apropriado é, então, traçar uma curva de precisão versus revocação

- Considere uma coleção de referência e um conjunto de consultas de teste
- Sejam R_{q1} e R_{q2} os conjuntos de documentos relevantes para as consultas q_1 e q_2 , respectivamente:

$$-R_{q1} = \{d_3, d_5, d_9\} \text{ e } R_{q2} = \{d_1, d_2, d_6, d_9\}$$

• Considere os *rankings* gerados por um algoritmo de RI para as consultas q_1 e q_2 (documentos relevantes estão marcados com \mathbf{v}) a seguir

Ranking para q_1

#	A
1	d_1
2	$d_3 \mathbf{v}$
3	d_5 v
4	d_9 \mathbf{v}
5	d_2

$$R_{q1} = \{d_3, d_5, d_9\}$$

Ranking para q_2

#	A
1	d_9 v
2	d_3
3	d_4
4	d_1 v
5	$d_2 \mathbf{v}$

$$R_{q2} = \{d_1, d_2, d_6, d_9\}$$

Ranking para q_1

#	A
1	d_1
2	d_3 v
3	d_5 v
4	d_9 \mathbf{v}
5	d_2

$R_{q1} = \{d_3, d_5, d_9\}$	}
------------------------------	---

Recall	Precision
0,25	1,0
0,5	0,5
0,75	0,6

	Recall	Precision
}	0,33	0,5
	0,67	0,67
	1,0	0,75

Ranking para q_2

#	Α
1	d_9 \mathbf{v}
2	d_3
3	d_4
4	$d_1 \mathbf{v}$
5	$d_2 \mathbf{v}$

Curva de precisão interpolada para os 11 níveis padrão de revocação

- Seja $r_j, j \in \{0,1,2,...,10\}$, uma referência ao j-ésimo nível padrão de revocação
- Então, $P(r_j) = \max_{\forall r \mid rj \leq r} P(r)$

Precisão interpolada para um nível de revocação *j* será o valor máximo de precisão encontrado para qualquer nível de revocação maior ou igual *j*.

Ranking para q_1

#	A
1	d_1
2	d_3 v
3	d_5 v
4	d_9 \mathbf{v}
5	d_2

R_{q1}	=	$\{d_3,$	d_5 ,	d_9
7 -				

Recall	Precision
0,25	1,0
0,5	0,5
0,75	0,6

Reca	all	Precision
0,3	3	0,5
0,6	7	0,67
1,0)	0,75

Ranking para q_2

#	Α
1	d_9 \mathbf{v}
2	d_3
3	d_4
4	$d_1 \mathbf{v}$
5	d_2 v

Ranking para q_1

#	А
1	d_1
2	d_3 v
3	d_5 v
4	d_9 v
5	d_2

$R_{q1} = \{d_3, d_5, d_9\}$	R_{q1} =	$= \{d_3,$	d_5 ,	d_9
------------------------------	------------	------------	---------	-------

	Recall	Precision
}	0,33	0,5
	0,67	0,67
	1,0	0,75

Para q_1

Precision
0,75
0,75
0,75
0,75
0,75
0,75
0,75
0,75
0,75
0,75
0,75

Recall	Precision
0,33	0,5
0,67	0,67
1,0	0,75

Precisão interpolada para um nível de revocação *j* será o valor máximo de precisão encontrado para qualquer nível de revocação maior ou igual *j*.

Recall	Precision				
0,25	1,0	Ra	nking	para 🤄	<i>1</i> 2
0,5	0,5		#	Α	ı
0,75	0,6		1	d_9 v	
			2	d_3	
	7		3	d_4	
			4	d_1 v	
			5	d_2 v	

$$R_{q2} = \{d_1, d_2, d_6, d_9\}$$

Precisão interpolada para um nível de revocação *j* será o valor máximo de precisão encontrado para qualquer nível de revocação maior ou igual *j*.

[Baeza-Yates & Ribeiro-Neto, 2013]

- Geralmente, os algoritmos de recuperação são avaliados sobre diversas consultas de teste
- Para avaliar a *qualidade* de recuperação para N_q consultas, calculamos a média das precisões para cada nível de revocação, como segue:

$$\overline{P}(r_j) = \sum_{i=1}^{N_q} \frac{P_i(r_j)}{N_q}$$

- Onde:
 - $-P(r_j)$ é a média entre as precisões para o nível de revocação r_j
 - $-P_i(r_j)$ é a precisão no nível de revocação r_j para a i-ésima consulta

Para a média das consultas q_1 and q_2

Recall	Precision
0,0	0,88
0,1	0,88
0,2	0,88
0,3	0,68
0,4	0,68
0,5	0,68
0,6	0,68
0,7	0,68
0,8	0,38
0,9	0,38
1,0	0,38

[Baeza-Yates & Ribeiro-Neto, 2013]

 Curvas de precisão-revocação média são normalmente utilizadas para comparar a qualidade de algoritmos de RI distintos

Adequação de Precisão e Revocação

[Baeza-Yates & Ribeiro-Neto, 2013]

- Precisão e revocação têm sido amplamente utilizadas para avaliar a qualidade de algoritmos de RI
- Contudo, existem problemas com essas duas medidas, como:
 - A estimativa da revocação máxima para uma consulta requer um conhecimento detalhado de todos os documentos da coleção
 - Em muitas situações, o uso de uma só medida poderia ser mais apropriado

Sumários com um único valor: P@N, MAP, R, F [Baeza-Yates & Ribeiro-Neto, 2013]

- Curvas de precisão-revocação média constituem métricas de avaliação padrão para sistemas de RI
- Existem situações nas quais deseja-se avaliar a qualidade da recuperação para consultas individuais
 - 1. Calcular a média de várias consultas pode encobrir anomalias importantes nos algoritmos de RI estudados
 - Podemos estar interessados em investigar se um algoritmo é melhor do que outro em todas as consultas
- Nessas situações, um valor único de precisão (para cada consulta) pode ser usado

P@N [Baeza-Yates & Ribeiro-Neto, 2013]

- No caso de máquinas de busca para Web, a maioria das buscas não precisa de alta revocação
- Quanto maior o número de documentos relevantes no topo do ranking, mais positiva é a impressão dos usuários
- Precision at 5 (P@5) e at 10 (P@10) medem a precisão quando 5 ou 10 documentos forem vistos
- Essas métricas avaliam se os usuários estão recebendo documentos relevantes no topo ou não

P@5 e *P@10* – Exemplo

[Baeza-Yates & Ribeiro-Neto, 2013]

• Para exemplificar, considere o ranking para uma consulta q sendo:

01.
$$d_{123}$$
 v 06. d_{9} **v** 11. d_{38} 02. d_{84} 07. d_{511} 12. d_{48} 03. d_{56} **v** 08. d_{129} 13. d_{250} 04. d_{6} 09. d_{187} 14. d_{113} 05. d_{8} 10. d_{25} **v** 15. d_{3} **v**

- Para essa consulta, P@5 = 2/5 = 40% e P@10 = 4/10 = 40%
- Além disso, podemos computar a média de P@5 e P@10 para umas 100 consultas, por exemplo
- Essas métricas fornecem uma avaliação da impressão do usuário sobre os resultados (raramente acessam além 2ª página de resultados na Web)

MAP_i [Baeza-Yates & Ribeiro-Neto, 2013]

Precisão média para a consulta q_i

$$MAP_i = \frac{1}{|R_i|} \sum_{k=1}^{|R_i|} P(R_i[k])$$

- Onde:
 - $-\left|R_{i}\right|$ é o número de documentos relevantes para a consulta q_{i}
 - $-R_i[k]$ é uma referência ao k-ésimo documento em R_i
 - $-P(R_i[k])$ é a precisão quando o documento $R_i[k]$ é observado no ranking de q_i
 - Se aquele documento não for recuperado $P(R_i[k])$ assume o valor zero

MAP (Mean Average Precision)

[Baeza-Yates & Ribeiro-Neto, 2013]

 Média das precisões médias para um conjunto de consultas

$$MAP = \frac{1}{|N_q|} \sum_{i=1}^{|N_q|} MAP_i$$

- Onde:
 - $-\left|N_{q}\right|$ é o número total de consultas

Exemplo – MAP

$$MAP_i = \frac{1}{|R_i|} \sum_{k=1}^{|R_i|} P(R_i[k])$$

$$R_{q1} = \{d_3, d_5, d_9\} \text{ e } R_{q2} = \{d_1, d_2, d_6, d_9\}$$

Ranking para q_1

#	A
1	d_1
2	d_3 v
3	d_5 v
4	d_9 v
5	d_2

Recall	Precision
0,25	1,0
0,5	0,5
0,75	0,6

$$MAP_2=1/4*$$
 $(1/1+2/4+3/5+0)=$
0,525

Recall	Precision
0,33	0,5
0,67	0,67
1,0	0,75

$$MAP_1 = 1/3*(1/2+2/3+3/4)=0,6389$$

Ranking para q_2

#	А
1	d_9 v
2	d_3
3	d_4
4	d_1 v
5	d_2 v

$$MAP = \frac{1}{|N_q|} \sum_{i=1}^{|N_q|} MAP_i$$

$$MAP=1/2*(0,6389+0,525)$$

=**0,5819**

R-Precision

- Seja R o número total de documentos relevantes para uma dada consulta
- A ideia é computar a precisão na R-ésima posição do ranking
- A medida R-precision é útil para observar o comportamento de um algoritmo para consultas individuais
- Adicionalmente, pode-se computar uma média de Rprecision sobre um conjunto de consultas
 - Entretanto, usar um único valor para avaliar um algoritmo para várias consultas pode ser bastante impreciso

R-Precision – Exemplo

[Baeza-Yates & Ribeiro-Neto, 2013]

• Para exemplificar, considere o *ranking* para uma consulta q sendo $R_q = \{d_3, d_5, d_9, d_{25}, d_{39}, d_{44}, d_{56}, d_{71}, d_{89}, d_{123}\}$:

```
01. d_{123} v 06. d_{9} v 11. d_{38} 02. d_{84} 07. d_{511} 12. d_{48} 03. d_{56} v 08. d_{129} 13. d_{250} 04. d_{6} 09. d_{187} 14. d_{113} 05. d_{8} 10. d_{25} v 15. d_{3} v
```

- Para a consulta q, o valor de R é 10 e existem 4 relevantes dentre os top 10 documentos no ranking
- Então, o valor de *R-Precision* para essa consulta é 0.4

F-Measure (Medida F)

- Medida que combina revocação e precisão
- Ideia é permitir ao usuário especificar se ele está mais interessado em revocação ou precisão

$$F_{\beta}(j) = \frac{(1+\beta^2) \times P(j) \times r(j)}{(\beta^2 \times P(j)) + r(j)}$$

- Onde:
 - -r(j) é o *recall* na *j*-ésima posição do *ranking*
 - -P(j) é a precision na j-ésima posição do ranking
 - ß é um parâmetro especificado pelo usuário (ß≥0). Ex.:
 - ß = 1, mesma ênfase à recall e precision (F1-measure → média harmônica)
 - ß = 2, recall enfatizada 2 vezes em relação à precision
 - ß = 0.5, precision enfatizada 2 vezes em relação à recall

F₁-Measure

[Baeza-Yates & Ribeiro-Neto, 2013]

- A função F_1 assume valores no intervalo [0,1]
 - Sendo 0 quando nenhum documento tiver sido recuperado e 1 quando todos os documentos ranqueados são relevantes
- Além disso, a média harmônica ${\cal F}_1$ assume valores altos somente quando ambos revocação e precisão são altos
- Para maximizar F_1 é requerido encontrar o melhor compromisso possível entre revocação e precisão

nDCG (Normalized Discounted Cumulative Gain) [Baeza-Yates & Ribeiro-Neto, 2013]

- Precisão e revocação permitem apenas julgamentos de relevância binários
- Como resultado, não há distinção entre documentos "altamente" relevantes e documentos "moderadamente" relevantes
- Essas limitações podem ser superadas pela adoção de julgamentos de relevância graduais e métricas que os combinem

nDCG (Normalized Discounted Cumulative Gain) [Jannach et al., 2010]

- Discounted cumulative gain (DCG)
 - Fator de redução logarítmico

$$DCG_{pos} = rel_1 + \sum_{i=2}^{pos} \frac{rel_i}{log_2 i}$$

Onde:

- pos denota a posição até a qual é acumulada a relevância
- rel_i retorna a relevância do documento na posição i
- ullet R é o conjunto de documentos relevantes para uma consulta
- Idealized discounted cumulative gain (IDCG)
 - Ranking ideal: assume documentos ordenados em ordem decrescente de relevância

$$pos_r = |R|$$
, se $|R| < pos$; pos , caso contrário

$$IDCG_{pos} = rel_1 + \sum_{i=2}^{pos_r} \frac{rel_i}{log_2i}$$

- Normalized discounted cumulative gain (nDCG)
 - Normalizado no intervalo [0..1]

$$nDCG_{pos} = \frac{DCG_{pos}}{IDCG_{pos}}$$

Exemplo – nDCG

Escala de julgamento: 0–3 (0 documentos não relevantes, 3 para documentos altamente relevantes)

• Sendo |R|=3

$$R_{q1} = \{d_3 \text{ (rel=1)}, d_5 \text{ (rel=1)}, d_9 \text{ (rel=1)}\}$$

Ranking para q_1

$$nDCG_5 = \frac{DCG_5}{IDCG_5} \cong \frac{2,13}{2,63} \cong \mathbf{0,81}$$

A

1
$$d_1$$
2 $d_3 \mathbf{v}$
3 $d_5 \mathbf{v}$
4 $d_9 \mathbf{v}$
5 d_2

$$DCG_5 = rel_1 + \sum_{i=2}^{5} \frac{rel_i}{log_2 i}$$

$$= 0 + \frac{1}{log_2 2} + \frac{1}{log_2 3} + \frac{1}{log_2 4} + \frac{0}{log_2 5} \approx 2,13$$

$$IDCG_5 = rel_1 + \sum_{i=2}^{3} \frac{rel_i}{log_2 i}$$

= $1 + \frac{1}{log_2 2} + \frac{1}{log_2 3} \approx 2,63$

Exemplo – nDCG

Escala de julgamento: 0–3 (0 documentos não relevantes, 3 para documentos altamente relevantes)

• Sendo |R|=3

$$R_{q2} = \{d_4 \text{ (rel=1)}, d_6 \text{ (rel=2)}, d_8 \text{ (rel=3)}\}$$

Ranking para q_2

$nDCG_5 =$	$\frac{DCG_5}{2}$	3,/6	~	0,67
$n\nu c a_5 -$	$\overline{IDCG_5} =$	5,63	=	0,07

A

1
$$d_1$$
2 d_4
3 d_6
4 d_8
5 d_2

$$DCG_5 = rel_1 + \sum_{i=2}^{5} \frac{rel_i}{log_2 i}$$

$$= 0 + \frac{1}{log_2 2} + \frac{2}{log_2 3} + \frac{3}{log_2 4} + \frac{0}{log_2 5} \approx 3,76$$

$$IDCG_5 = rel_1 + \sum_{i=2}^{3} \frac{rel_i}{log_2 i}$$

= $3 + \frac{2}{log_2 2} + \frac{1}{log_2 3} \approx 5,63$

nDCG [Baeza-Yates & Ribeiro-Neto, 2013]

- Para computar o nDCG sobre um conjunto de consultas de teste, precisamos calcular a razão entre a média sobre todas as consultas de DCG e IDCG
- Dado um conjunto de N_q consultas, o nDCG é calculado da seguinte forma:

$$\overline{DCG}[i] = \sum_{j=1}^{N_q} \frac{DCG_j[i]}{N_q} \quad \overline{IDCG}[i] = \sum_{j=1}^{N_q} \frac{IDCG_j[i]}{N_q}$$

$$NDCG[i] = \frac{\overline{DCG}[i]}{\overline{IDCG}[i]}$$

— Onde: [i] é equivalente ao pos (posição no ranking) nas equações apresentadas anteriormente

Exemplo – nDCG

$$\overline{DCG}[i] = \sum_{j=1}^{N_q} \frac{DCG_j[i]}{N_q} \int_{\text{DCG}_2[5]=3,76}^{\text{DCG}_1[5]=2,13} \overline{\frac{DCG}[5]=(2,13+3,76)/2}_{=\mathbf{2},\mathbf{95}}$$

$$\overline{IDCG}[i] = \sum_{j=1}^{N_q} \frac{IDCG_j[i]}{N_q} \int_{\text{IDCG}_2[5]=5,63}^{\text{DCG}_1[5]=2,63} \overline{\frac{IDCG}[5]=(2,63+5,63)/2}_{=\mathbf{4},\mathbf{13}}$$

$$NDCG[i] = rac{\overline{DCG}[i]}{\overline{IDCG}[i]}$$
 NDCG[5]=2,95/4,13=**0,71**

Discussões sobre nDCG

- Objetiva levar em consideração múltiplos níveis de julgamentos de relevância
- Tem a vantagem de distinguir documentos "altamente" relevantes de outros "moderadamente" relevantes
- A desvantagem inerente são os múltiplos níveis de julgamento de relevância que são mais difíceis e mais demorados de serem obtidos

Medidas de correlação de ranking

- Há situações em que
 - Não queremos medir diretamente a relevância
 - Estamos mais interessados em determinar o quão diferentemente uma função de ranking varia de uma segunda que é bem conhecida
- Nesses casos, estamos interessados em comparar a ordem relativa produzida por dois rankings
- Isto pode ser alcançado através da utilização de funções estatísticas chamadas rank correlation metrics

Medidas de correlação de ranking

- Sejam os rankings \mathcal{R}_1 e \mathcal{R}_2
- Uma medida de correlação de *ranking* produz um coeficiente de correlação $C(\mathcal{R}_1, \mathcal{R}_2)$ com as seguintes propriedades:
 - $-1 \leq C(\mathcal{R}_1, \mathcal{R}_2) \leq 1$
 - se $C(\mathcal{R}_1, \mathcal{R}_2) = 1$, a concordância entre os dois *rankings* é perfeita, isto é, eles são o mesmo
 - se $C(\mathcal{R}_1, \mathcal{R}_2) = -1$, a discordância entre os dois *rankings* é perfeita, eles são o inverso um do outro
 - se $(\mathcal{R}_1, \mathcal{R}_2) = 0$, os dois *rankings* são completamente independentes
 - O aumento dos valores de $C(\mathcal{R}_1, \mathcal{R}_2)$ implica no aumento de concordância entre os dois *rankings*

- O coeficiente de Spearman é provavelmente a medida de correlação de ranking mais utilizada
- É baseado em diferenças entre as posições de um mesmo documento em dois rankings
- Seja
 - $-\operatorname{s}_{1,j}$ a posição do documento d_j no $\mathit{ranking}\ \mathcal{R}_1$
 - $-\,s_{2,j}$ a posição do documento d_j no $\mathit{ranking}\,\,\mathcal{R}_2$

Exemplo – Coeficiente de Spearman

[Baeza-Yates & Ribeiro-Neto, 2013]

• Considere 10 documentos recuperados por dois rankings distintos \mathcal{R}_1 e \mathcal{R}_2

documents	$s_{1,j}$	$s_{2,j}$	$s_{1,j}-s_{2,j}$	$(s_{1,j} - s_{2,j})^2$
d_{123}	1	2	-1	1
d_{84}	2	3	-1	1
d_{56}	3	1	+2	4
d_6	4	5	-1	1
d_8	5	4	+1	1
d_9	6	7	-1	1
d_{511}	7	8	-1	1
d_{129}	8	10	-2	4
d_{187}	9	6	+3	9
d_{25}	10	9	+1	1
Sum o	24			

[Baeza-Yates & Ribeiro-Neto, 2013]

• Plotando as posições nos rankings para \mathcal{R}_1 e \mathcal{R}_2 em um sistema de coordenadas bi-dimensional, podemos observar que existe uma forte correlação entre os dois *rankings*

- Para produzir uma avaliação quantitativa dessa correlação, somamos os quadrados das diferenças para cada par dos rankings
- Se existem K documentos ranqueados, o valor máximo para a soma dos quadrados das diferenças dos rankings é dado por

$$K \times (K^2 - 1) / 3$$

- Seja *K*=10
 - Se os dois *rankings* estão em perfeita discordância, então esse valor é $(10 \times (10^2 1))/3$, ou 330
 - Por outro lado, se existe uma concordância completa a soma é 0 (zero)

[Baeza-Yates & Ribeiro-Neto, 2013]

Consideramos a fração

$$\frac{\sum_{j=1}^{K} (s_{1,j} - s_{2,j})^2}{\frac{K \times (K^2 - 1)}{3}}$$

- Seu valor é
 - 0 quando os dois rankings estão em perfeita concordância
 - +1 quando eles estão em perfeita discordância
- Se multiplicarmos a fração por 2, seu valor é alterado para o intervalo [0, +2]
- A seguir, se subtrairmos o resultado de 1, o valor resultante é alterado para o intervalo [-1, +1]

- Esse raciocínio sugere a definição da correlação entre dois *rankings* como segue
- Seja $s_{1,j}$ e $\mathbf{s}_{2,j}$ as posições de um documento d_j em dois $rankings~\mathcal{R}_1$ e \mathcal{R}_2 , respectivamente
- Definimos

$$S(\mathcal{R}_1, \mathcal{R}_2) = 1 - \frac{6 \times \sum_{j=1}^{K} (s_{1,j} - s_{2,j})^2}{K \times (K^2 - 1)}$$

- Onde:
 - $-\mathcal{S}(\mathcal{R}_1, \mathcal{R}_2)$ é o Spearman rank correlation coefficient
 - -K indica o tamanho dos conjuntos ranqueados

Exemplo – Coeficiente de Spearman

[Baeza-Yates & Ribeiro-Neto, 2013]

Para os rankings do exemplo, temos

$$S(\mathcal{R}_1, \mathcal{R}_2) = 1 - \frac{6 \times 24}{10 \times (10^2 - 1)} = 1 - \frac{144}{990} = 0.854$$

documents	$s_{1,j}$	$s_{2,j}$	$s_{1,j} - s_{2,j}$	$(s_{1,j} - s_{2,j})^2$
d_{123}	1	2	-1	1
d_{84}	2	3	-1	1 1
d_{56}	3	1	+2	4
d_6	4	5	-1	1 1
d_8	5	4	+1	1
d_9	6	7	-1	1 1
d_{511}	7	8	-1	1 1
d_{129}	8	10	-2	4
d_{187}	9	6	+3	9
d_{25}	10	9	+1	1
Sum o	24			

Referências

 Baeza-Yates, R.; Ribeiro-Neto, B. Recuperação de Informação: Conceitos e Tecnologia das Máquinas de Busca. 2 ed. Bookman, 2013.

 Baeza-Yates, R.; Ribeiro-Neto, B. Modern Information Retrieval. Wokingham, UK: Addison-Wesley, 2 ed., 2011.

 Manning, C. D.; Raghavan, P.; Schütze, H. Introduction to Information Retrieval. Cambridge University Press, 2008.

Online edition 2009: http://nlp.stanford.edu/IR-book/

Referências

Jannach, D.; Zanker, M.; Felfernig, A.; Friedrich,
 G. Recommender Systems: An Introduction. 1 ed.
 Cambridge University Press, 2010.

Universidade Federal do Rio de Janeiro (UFRJ) Departamento de Ciência da Computação (DCC)

Recuperação da Informação (MAB605) Dúvidas?

Profa. Giseli Rabello Lopes giseli@dcc.ufrj.br CCMN - DCC - Sala E-2012

