5

15

20

25

30

module is provided which couples the pumping radiation into the waveguide; the beam control device is a non-doped waveguide, possibly with antireflection-coated end faces, so that the pumping radiation is supplied to the applicator; the applicator is a laser slit lamp with zoom system which comprises a microchip laser for converting the pumping radiation into radiation in the green spectral range; the applicator has a device for monitoring power and a device for illuminating and observing the operating field; the pump module has a target beam device whose radiation is coupled into the beam path for the pumping radiation collinearly by a suitable beamsplitter; the applicator is a laser slit lamp with zoom system which comprises a microchip laser for converting the pumping radiation into radiation in the green spectral range.

In this connection, the applicator is advantageously a head ophthalmoscope which comprises a microchip laser for converting the pumping radiation into radiation in the green spectral range.

The applicator can also be a laser link with zoom system which comprises a microchip laser for converting the pumping radiation into radiation in the green spectral range.

For purposes of a versatile, all-purpose application of the laser therapy device, it is particularly advantageous when the applicator is constructed as a handpiece for endoscopic or CPC applications to which is connected a beam control device in the form of a waveguide.

Generally, it is advantageous in all applications when the pump module optionally comprises a measuring device for calibrating internal output regulation.

The invention will be explained more fully in the following with reference to embodiment examples.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, Figs. 1 to [9] 8 show schematic block diagrams of

different embodiment examples of a medical therapy device in modular construction

MARKED-UP/BOLDED PAGE 8 OF SPECIFICATION