Chapter 13

13.1 — 13.4
$$K_o = (1 - \sin \phi')(OCR)^{\sin \phi'}$$

Problem	$\phi'(\deg)$	K_o	$P_o = \frac{1}{2} K_o \gamma H^2$	$\bar{z} = H/3$
13.1	35	0.634	143.44 kN/m	1.67 m
13.2	33	0.627	8,607.1 lb/ft	5.67 ft
13.3	29	0.515	176.13 kN/m	2 m
13.4	40	0.463	8,625.7 lb/ft	6 ft

13.5 — 13.8
$$K_a = \tan^2(45 - \phi'/2)$$

Problem	$\phi'(\deg)$	K_a	$\sigma'_{a(z=H)} = K_a \gamma H$	$P_a = \frac{1}{2} K_a \gamma H^2$	$\bar{z} = H/3$
13.5	32	0.307	$\begin{array}{c} (0.307)(110)(14) \\ = 472.7 \text{ lb/ft}^2 \end{array}$	$(\frac{1}{2})(0.307)(110)(14)^2$ = 3309.4 lb/ft	4.66 ft
13.6	28	0.361	(0.361)(99)(22) = 786.2 lb/ft ²	$(\frac{1}{2})(0.361)(99)(22)^2$ = 8648.8 lb/ft	7.33 ft
13.7	37	0.248	(0.248)(17.6)(5) = 21.8 kN/m ²	$(\frac{1}{2})(0.248)(17.6)(5)^2$ = 54.56 kN/m	1.67 m
13.8	41	0.207	(0.207)(19.5)(9) = 36.32 kN/m ²	$(\frac{1}{2})(0.207)(19.5)(9)^2$ = 163.47 kN/m	3 m

Note: 1. Pressure distribution is similar to that shown in Figure 13.11a., i.e., $\sigma'_a = 0$ at z = 0 and $\sigma'_a = K_a \gamma H$ at z = H

2. \bar{z} = distance measured from the bottom of the wall

13.9 — 13.12
$$K_p = \tan^2(45 + \phi'/2)$$

Problem	$\phi'(\deg)$	K_p	$\sigma'_{p(z=H)} = K_p \gamma H$	$P_p = \frac{1}{2} K_p \gamma H^2$	$\bar{z} = H/3$
13.9	32	3.254	(3.254)(117)(11) = 4187.9 lb/ft ²	$(\frac{1}{2})(3.254)(117)(11)^2$ = 23,033 lb/ft	3.67 ft
13.10	38	4.203	(4.203)(101)(16) = 6792 lb/ft ²	$(\frac{1}{2})(4.203)(101)(16)^2$ = 54,336 lb/ft	5.33 ft
13.11	30	3.0	$(3)(16.6)(7) = 348.6 \text{ kN/m}^2$	$(\frac{1}{2})(3)(16.6)(7)^2$ = 1220.1 kN/m	2.33 m
13.12	27	2.662	(2.662)(20.5)(12) = 654.8 kN/m ²	$(\frac{1}{2})(2.662)(20.5)(12)^2$ = 3929.1 kN/m	4 m

Note: 1. $\sigma'_{p(z=0)} = 0$; triangular pressure distribution

2. \bar{z} = distance measured from the bottom of the wall

13.13
$$K_a = \tan^2\left(45 - \frac{\phi'}{2}\right) = \tan^2\left(45 - \frac{28}{2}\right) = 0.361$$
. Refer to the figure.

$$z = 0$$
 ft: $\sigma'_a = \sigma'_a K_a = 0$; $u = 0$
 $z = 7$ ft: $\sigma'_a = (103)(7)(0.361) = 260.28 \text{ lb/ft}^2$; $u = 0$
 $z = 14$ ft: $\sigma'_a = [(103)(7) + (127 - 62.4)(7)](0.361) = 423.5 \text{ lb/ft}^2$
 $u = (62.4)(7) = 436.8 \text{ lb/ft}^2$

Area No.	Area	
1	$(\frac{1}{2})(7)(260.28) = 910.98 =$	910.98
2	(260.28)(7) =	1,821.96
3	$(\frac{1}{2})(7)(423.5 - 260.28) =$	571.27
4	$(\frac{1}{2})(7)(436.8) =$	1,528.8

Σ4,833 lb/ft

Resultant: Taking the moment about the bottom of the wall,

$$\overline{z} = \frac{\left[(910.98) \left(7 + \frac{7}{3} \right) + (1821.96) \left(\frac{7}{2} \right) + (571.27) \left(\frac{7}{3} \right) + (1528.8) \left(\frac{7}{3} \right) \right]}{4833}$$

= 4.09 ft

13.14 $K_a = \tan^2\left(45 - \frac{32}{2}\right) = 0.307$. Refer to the figure.

$$z = 0$$
 ft: $\sigma'_a = q K_a = (250)(0.307) = 76.75 \text{ lb/ft}^2$; $u = 0$
 $z = 10$ ft: $\sigma'_a = [250 + (10)(115)](0.307) = 429.8 \text{ lb/ft}^2$; $u = 0$
 $z = 24$ ft: $\sigma'_a = [250 + (10)(115) + (122 - 62.4)(14)](0.307) = 685.96 \text{ lb/ft}^2$
 $u = (62.4)(14) = 873.6 \text{ lb/ft}^2$

Area No.	Area
1	(76.75)(24) = 1,842
2	$(\frac{1}{2})(10)(429.8 - 76.75) = 1,765.25$
3	(14)(429.8 - 76.75) = 4,942.7
4	$(\frac{1}{2})(14)(685.96 - 429.8) = 1,793.12$
5	$(\frac{1}{2})(14)(873.6) = 6,115.20$

 $P_a = \Sigma 16,458 \text{ lb/ft}$

Location of resultant: Taking the moment about the bottom of the wall,

$$\bar{z} = \frac{\left[(1842) \left(\frac{24}{2} \right) + (1765.25) \left(14 + \frac{10}{3} \right) + (4942.7) \left(\frac{14}{2} \right) \right]}{+ (1,793.12) \left(\frac{14}{3} \right) + (6,115.2) \left(\frac{14}{3} \right)} = 7.55 \, \mathbf{f}$$

13.15
$$K_{a(1)} = \tan^2\left(45 - \frac{30}{2}\right) = 0.333; K_{a(2)} = \tan^2\left(45 - \frac{34}{2}\right) = 0.282.$$

Refer to the figure.

$$z = 0 \text{ m}$$
: $\sigma'_a = q K_{a(1)} = (21)(0.333) = 6.99 \text{ kN/m}^2$; $u = 0$
 $z = 4 \text{ m}$: $\sigma'_a = [(16.5)(4) + 21](0.333) = 28.99 \text{ kN/m}^2$
 $\sigma'_a = [(16.5)(4) + 21](0.282) = 24.53 \text{ kN/m}^2$
 $u = 0$
 $z = 9 \text{ m}$: $\sigma'_a = [(16.5)(4) + (20.2 - 9.81)(5)](0.282) = 33.26 \text{ kN/m}^2$
 $u = (9.81)(5) = 49.05 \text{ kN/m}^2$

Area No.	Area
1	(6.99)(9) = 62.91
2	$(\frac{1}{2})(4)(28.99 - 6.99) = 44$
3	(5)(24.53 - 6.99) = 87.7
4	$(\frac{1}{2})(5)(33.26 - 24.53) = 21.82$
5	$(\frac{1}{2})(5)(49.05) = 122.62$

 $P_a = \Sigma 339.05 \text{ kN/m}$

Location of resultant: Taking the moment about the bottom of the wall,

$$\overline{z} = \frac{\left[(62.91) \left(\frac{9}{2} \right) + (44) \left(5 + \frac{4}{3} \right) + (87.7) \left(\frac{5}{2} \right) + (21.82) \left(\frac{5}{3} \right) + (122.62) \left(\frac{5}{3} \right) \right]}{339.05}$$

 $= 3.01 \, \mathrm{m}$

13.16
$$K_p = \tan^2\left(45 + \frac{28}{2}\right) = 2.77$$
. Refer to the figure.

$$z = 0 \text{ ft:}$$
 $\sigma'_p = 0 \text{ ; } u = 0$
 $z = 7 \text{ ft:}$ $\sigma'_p = \gamma_1 z K_p = (103)(7)(2.77) = 1997.17 \text{ lb/ft}^2 \text{ ; } u = 0$
 $z = 14 \text{ ft:}$ $\sigma'_p = [(103)(7) + (127 - 62.4)(7)](2.77) = 3249.7 \text{ lb/ft}^2$
 $u = (62.4)(7) = 436.8 \text{ lb/ft}^2$

Area No.	Area
1	$(\frac{1}{2})(7)(1997.17) = 6,990.09$
2	(7)(1997.17) = 13,980.19
3	$(\frac{1}{2})(7)(3249.7 - 1997.17) = 4,383.8$
4	$(\frac{1}{2})(7)(436.8) = 1,528.8$

 $P_a = \Sigma 26,883 \text{ lb/ft}$

Location of the resultant: Taking the moment about the bottom of the wall,

$$\overline{z} = \frac{\left[(6990.09) \left(7 + \frac{7}{3} \right) + (13980.19) \left(\frac{7}{2} \right) + (4383.8) \left(\frac{7}{3} \right) + (1528.8) \left(\frac{7}{3} \right) \right]}{26883} = 4.76 \text{ ft}$$

13.17 a. Use Table 13.2: For
$$\alpha = 10^{\circ}$$
 and $\phi' = 36^{\circ}$, $K_a = 0.270$

$$\sigma'_a = \gamma z K_a = (19)(4)(0.270) = 20.52 \text{ kN/m}^2$$

b. Equation (13.24):

$$P_a = \frac{1}{2} K_a \gamma H^2 = \frac{1}{2} (0.27)(19)(4)^2 = 41.04 \text{ kN/m}$$

Location and Direction of Resultant: At a distance of H/3 = 4/3 = 1.33 m above the bottom of the wall inclined at an angle $\alpha = 10^{\circ}$ to the horizontal.

13.18 a. Use Table 13.3: For
$$\alpha = 10^{\circ}$$
 and $\phi' = 36^{\circ}$, $K_p = 3.598$

$$\sigma'_a = \gamma z K_p = (19)(4)(3.598) = 273.44 \text{ kN/m}^2$$

b. Equation (13.25):

$$P_p = \frac{1}{2} \gamma H^2 K_p = \frac{1}{2} (19)(4)^2 (3.598) =$$
546.89 kN/m

Location and Direction of Resultant: At a distance of H/3 = 4/3 = 1.33 m above the bottom of the wall inclined at an angle $\alpha = 10^{\circ}$ to the horizontal.

13.19 a.
$$H = 5 \text{ m}$$
; $c_u = 17 \text{ kN/m}^2$; $\gamma = 21 \text{ kN/m}^2$; $\phi = 0$

$$K_a = \tan^2\left(45 - \frac{\phi}{2}\right) = 1; \sigma'_a = \gamma z - 2c_u$$

At the top (z = 0 m):

$$\sigma'_a = -2c_u = (-2)(17)$$

$$=-34 \text{ kN/m}^2$$

At the bottom (z = 5 m):

$$\sigma'_a = (21)(5) - (2)(17)$$

$$= 71 \,\mathrm{kN/m^2}$$

The pressure diagram is shown.

b. Eq. (13.41):
$$z_o = \frac{2c_u}{\gamma} = \frac{(2)(17)}{21} = 1.62 \text{ m}$$

c. Eq. (13.43):
$$P_a = \frac{1}{2}\gamma H^2 - 2c_u H = \frac{1}{2}(21)(5)^2 - (2)(17)(5) = 92.5 \text{ kN/m}$$

d. Eq. (13.45):

$$P_a = \frac{1}{2}\gamma H^2 - 2c_u H + \frac{2c_u^2}{\gamma}$$
$$= \frac{1}{2}(21)(5)^2 - (2)(17)(5) + \frac{(2)(17)^2}{21} = 120 \text{ kN/m}$$

Resultant measured from the bottom:

$$\bar{z} = \frac{H - z_o}{3} = \frac{5 - 1.62}{3} = 1.126 \text{ m} \approx 1.13 \text{ m}$$

13.20 a.
$$\sigma_a = \sigma_o K_a - 2c\sqrt{K_a}$$

$$\sigma_o = \gamma z + q; K_a = 1.$$

At
$$z = 0$$
 ft:

$$\sigma_0 = 11 \text{ kN/m}^2$$

$$\sigma_a = 11 - (2)(17) = -23 \text{ kN/m}^2$$

At
$$z = 5$$
 m:

$$\sigma_o = (21)(5) + 11 = 116 \text{ kN/m}^2$$

$$\sigma_a = 116 - (2)(17) = 82 \text{ kN/m}^2$$

The pressure diagram is shown.

b.
$$\sigma_a = 0$$
; $(\gamma z_o + q) - 2c = 0$

$$z_o = \frac{2c_u - q}{\gamma} = \frac{34 - 11}{21} = 1.09 \text{ m}$$

c. Referring to the diagram in Part a,

$$P_a = \frac{1}{2}(3.91)(82) - \frac{1}{2}(23)(1.09) =$$
147.8 kN/m

d.
$$P_a = \frac{1}{2}(3.91)(82) = 160.3 \text{ kN/m}$$

Location of the resultant from the bottom of the wall: $\frac{3.91}{3} = 1.3 \text{ m}$

13.21
$$K_a = \tan^2\left(45 - \frac{\phi'}{2}\right) = \tan^2\left(45 - \frac{28}{2}\right) = 0.361; \ \sqrt{K_a} = 0.6.$$
 Eq. (13.44):
$$P_a = \frac{1}{2}K_a\gamma H^2 - 2\sqrt{K_a}c'H + \frac{2c'^2}{\gamma}$$
$$= \frac{1}{2}(0.361)(122)(33)^2 - (2)(0.6)(750)(33) + \frac{(2)(750)^2}{122} = 3502.18 \text{ lb/ft}$$

13.22 Use Eqs. (13.53) and (13.54). $\alpha = 0$; $\theta = 12^{\circ}$; $\phi' = 34^{\circ}$; $\gamma = 119 \text{ lb/ft}^3$; H = 32 ft

Part	δ'	K_a	$P_a = \frac{1}{2} K_a \gamma H^2$
	(deg)	[Eq. (13.54)]	[Eq. (13.53)]
1	14	0.3511	21,392 lb/ft
2	21	0.3509	21,381 lb/ft

 P_a is located at a vertical distance of 32/3 = 10.67 ft above the bottom of the wall and is inclined at an angle δ' to the normal drawn to the back face of the wall.

13.23 a.
$$\phi' = 38^\circ$$
; $\psi = 90 - \theta - \delta' = 90 - 5 - 20 = 65^\circ$
Weight of wedge $ABC = \frac{1}{2}(11.6)(7.1)\underbrace{(128)}_{\gamma} = 5271 \text{ lb/ft} = 5.271 \text{ kip/ft}$

The weight of each of the wedges

$$CBE, EBF, FBG, GBH = \frac{1}{2}(20)(4)(128) = 5120 \text{ lb/ft} = 5.12 \text{ kip/ft}$$

Wedge	Weight (kip/ft)
ABC	5.271
ABE	5.271 + 5.12 = 10.391
ABF	10.391 + 5.12 = 15.511
ABG	15.511 + 5.12 = 20.631
ABH	20.631 + 5.12 = 25.751

The graphical construction is shown. $P_a = 5.2 \text{ kip/ft}$

b.
$$\gamma = \frac{(1680)(9.81)}{1000} = 16.48 \text{ kN/m}^3; \phi' = 30^\circ; \ \psi = 90 - 10 - 30 = 50^\circ$$

Weight of wedge
$$ABC = \frac{1}{2}(5.25)(2.5)(16.48) = 108.15 \text{ kN/m}$$

The weight of each of the wedges

CBE, EBF, FBG, GBH =
$$\frac{1}{2}$$
(1)(6.5)(16.48) = 53.56 kN/m

Wedge	Weight (kip/ft)
ABC	108.15
ABE	108.15 + 53.56 = 161.71
ABF	161.71 + 53.56 = 215.27
ABG	215.27 + 53.56 = 268.83
ABH	268.83 + 53.56 = 322.39

The graphical construction is shown. $P_a = 125 \text{ kN/m}$

13.24 From Eqs. (13.66) and (13.67), $\theta^* = \theta + \overline{\beta}$ and $\alpha^* = \alpha + \overline{\beta}$.

$$\overline{\beta} = \tan^{-1} \left(\frac{k_h}{1 - k_v} \right) = \tan^{-1} \left(\frac{0.1}{1 - 0} \right) = 5.71^{\circ}$$

$$\theta^* = 9^{\circ} + 5.71^{\circ} = 14.71^{\circ}$$

$$\alpha^* = 12^{\circ} + 5.71^{\circ} = 17.71^{\circ}$$

$$P_a(\theta^*, \alpha^*) = \frac{1}{2} \gamma H^2 K_a$$

$$\frac{\delta'}{\phi'} = \frac{2}{3}$$

From Table 13.5, for $\theta^* = 14.71^{\circ}$ and $\alpha^* = 17.71^{\circ}$, the value of $K_a \approx 0.582$.

From Eq. (13.70):

$$P_{ae} = P_a(\theta^*, \alpha^*)(1 - k_v) \left[\frac{\cos^2(\theta + \overline{\beta})}{\cos\theta \cos^2 \overline{\beta}} \right]$$

$$= \left[\left(\frac{1}{2} \right) (0.582)(19)(6)^2 \right] (1-0) \left[\frac{\cos^2(9+5.71)}{\cos(9)\cos^2(5.71)} \right] = \mathbf{190.41 \, kN/m}$$

CRITICAL THINKING PROBLEM

13.C.1 Refer to Table A.1 to prepare the following table:

<i>θ</i> = 10°	$\gamma (kN/m^3)$	ϕ'	$K_{a(R)}$	$K_{a(R)}\gamma$
	16.5	28°	0.402	6.633
$\alpha = 0^{\circ}$	17.7	32°	0.354	6.265
	19.5	36°	0.314	6.123
	16.5	28°	0.471	7.771
$\alpha = 10^{\circ}$	17.7	32°	0.414	7.327
	19.5	36°	0.365	7.117
	16.5	28°	0.612	10.09
$\alpha = 20^{\circ}$	17.7	32°	0.518	9.168
	19.5	36°	0.447	8.716

The graph of $\frac{P_a}{0.5H^2}$ versus backfill inclination angle, α , is shown on the next page.

The above chart shows that for any backfill inclination α and any wall height H, the active force P_a per unit length of the wall decreases as the soil friction angle (or the compacted unit weight) increases. For a desired level of P_a (at a given α), a compaction unit weight could be estimated from the chart for field specification.