```
In [1]:
```

```
import pandas as pd
df = pd.read_csv('C:/Users/maheshmangaonkar/Desktop/Walmart.csv')
```

In [2]:

df

Out[2]:

	User_ID	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years	Marital_Status	Product_Category	Purchase
0	1000001	P00069042	F	0-17	10	Α	2	0	3	8370
1	1000001	P00248942	F	0-17	10	Α	2	0	1	15200
2	1000001	P00087842	F	0-17	10	Α	2	0	12	1422
3	1000001	P00085442	F	0-17	10	Α	2	0	12	1057
4	1000002	P00285442	M	55+	16	С	4+	0	8	7969
550063	1006033	P00372445	M	51-55	13	В	1	1	20	368
550064	1006035	P00375436	F	26-35	1	С	3	0	20	371
550065	1006036	P00375436	F	26-35	15	В	4+	1	20	137
550066	1006038	P00375436	F	55+	1	С	2	0	20	365
550067	1006039	P00371644	F	46-50	0	В	4+	1	20	490

550068 rows × 10 columns

In [3]:

```
df['User_ID'].unique
```

Out[3]:

```
<br/> <bound method Series.unique of 0
                                          1000001
          1000001
          1000001
2
3
          1000001
4
          1000002
          1006033
550063
550064
          1006035
550065
          1006036
550066
          1006038
550067
          1006039
Name: User_ID, Length: 550068, dtype: int64>
```

In [4]:

```
# Checking details
df.describe(include='all')
```

Out[4]:

	User_ID	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years	Marital_Status	Product_Category	Purc
count	5.500680e+05	550068	550068	550068	550068.000000	550068	550068	550068.000000	550068.000000	550068.00
unique	NaN	3631	2	7	NaN	3	5	NaN	NaN	
top	NaN	P00265242	М	26-35	NaN	В	1	NaN	NaN	
freq	NaN	1880	414259	219587	NaN	231173	193821	NaN	NaN	
mean	1.003029e+06	NaN	NaN	NaN	8.076707	NaN	NaN	0.409653	5.404270	9263.9€
std	1.727592e+03	NaN	NaN	NaN	6.522660	NaN	NaN	0.491770	3.936211	5023.0€
min	1.000001e+06	NaN	NaN	NaN	0.000000	NaN	NaN	0.000000	1.000000	12.00
25%	1.001516e+06	NaN	NaN	NaN	2.000000	NaN	NaN	0.000000	1.000000	5823.00
50%	1.003077e+06	NaN	NaN	NaN	7.000000	NaN	NaN	0.000000	5.000000	8047.00
75%	1.004478e+06	NaN	NaN	NaN	14.000000	NaN	NaN	1.000000	8.000000	12054.00
max	1.006040e+06	NaN	NaN	NaN	20.000000	NaN	NaN	1.000000	20.000000	23961.00
4										

```
In [5]:
```

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 550068 entries, 0 to 550067
Data columns (total 10 columns):
                                   Non-Null Count
    Column
                                                     Dtvpe
 0
     User_ID
                                   550068 non-null
                                                     int64
     Product_ID
                                   550068 non-null
                                                     object
 1
                                   550068 non-null
     Gender
                                                      object
 3
                                   550068 non-null
                                                      object
     Age
                                   550068 non-null
     Occupation
                                                      int64
     City_Category
                                   550068 non-null
                                                     object
     Stay_In_Current_City_Years
Marital_Status
                                   550068 non-null
                                                      object
                                   550068 non-null
                                                     int64
 8
     Product_Category
                                   550068 non-null
                                                      int64
                                   550068 non-null int64
    Purchase
dtypes: int64(5), object(5)
memory usage: 42.0+ MB
In [6]:
columns=['User_ID','Occupation', 'Marital_Status', 'Product_Category']
df[columns]=df[columns].astype('object')
```

In [7]:

df.describe()

Out[7]:

	Purchase
count	550068.000000
mean	9263.968713
std	5023.065394
min	12.000000
25%	5823.000000
50%	8047.000000
75%	12054.000000
max	23961.000000

In [8]:

df.describe(include='all')

Out[8]:

	User_ID	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years	Marital_Status	Product_Category	Purchase
count	550068.0	550068	550068	550068	550068.0	550068	550068	550068.0	550068.0	550068.000000
unique	5891.0	3631	2	7	21.0	3	5	2.0	20.0	NaN
top	1001680.0	P00265242	М	26-35	4.0	В	1	0.0	5.0	NaN
freq	1026.0	1880	414259	219587	72308.0	231173	193821	324731.0	150933.0	NaN
mean	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	9263.968713
std	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	5023.065394
min	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	12.000000
25%	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	5823.000000
50%	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	8047.000000
75%	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	12054.000000
max	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	23961.000000

In []:

Observations:

- 1. There are 5891 unique user_id in the data. The top user_id is 1001680.
- 2. 3631 unique products are there with P00265242 being the top product.
- 3. males are purchasing more than females.
- 4. 26-35 age groups people are more into purchasing of products.

In [9]:

df

Out[9]:

	User_ID	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years	Marital_Status	Product_Category	Purchase
0	1000001	P00069042	F	0-17	10	А	2	0	3	8370
1	1000001	P00248942	F	0-17	10	Α	2	0	1	15200
2	1000001	P00087842	F	0-17	10	Α	2	0	12	1422
3	1000001	P00085442	F	0-17	10	Α	2	0	12	1057
4	1000002	P00285442	М	55+	16	С	4+	0	8	7969
550063	1006033	P00372445	М	51-55	13	В	1	1	20	368
550064	1006035	P00375436	F	26-35	1	С	3	0	20	371
550065	1006036	P00375436	F	26-35	15	В	4+	1	20	137
550066	1006038	P00375436	F	55+	1	С	2	0	20	365
550067	1006039	P00371644	F	46-50	0	В	4+	1	20	490

550068 rows × 10 columns

In [10]:

```
# Univariate analysis
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize=(10, 6))
sns.histplot(data=df, x="Purchase", kde=True)
plt.show()
```


In [11]:

#From histplot we can say that the highest purchase is 10000.

plt.figure(figsize=(5, 4)) sns.boxplot(data=df, y='Purchase') plt.show()

In [12]:

There are outliers in purchase

In [13]:

```
fig, axs = plt.subplots(nrows=2, ncols=2, figsize=(15, 10))
sns.countplot(data=df, x='Gender', ax=axs[0,0])
sns.countplot(data=df, x='Occupation', ax=axs[0,1])
sns.countplot(data=df, x='City_Category', ax=axs[1,0])
sns.countplot(data=df, x='Marital_Status', ax=axs[1,1])
plt.show()
```


- 1. The count of males is more than females
- 2. Occupation category 4, 0, and 7 are with higher number of purchases and category 8 with the lowest number of purchases.
- 3. B city_category are highest.
- 4. Unmarried people are more than married.

Type *Markdown* and LaTeX: α^2

sns.countplot(data=df, x='Product_Category')

In [14]:

#Product_category no 5 is highest in number.

In [15]:

```
#Bivariate Analysis
sns.histplot(data=df, x="Purchase", hue = 'Gender')
```

Out[15]

<AxesSubplot:xlabel='Purchase', ylabel='Count'>

In [16]:

#Male purchases are higher than females

In [17]:

```
sns.histplot(data=df, x="Purchase", hue = 'Product_Category')
```

Out[17]:

<AxesSubplot:xlabel='Purchase', ylabel='Count'>

In [18]:

sns.boxplot(data=df, y="Purchase", x= 'Age')

Out[18]:

<AxesSubplot:xlabel='Age', ylabel='Purchase'>

In [19]:

For all age groups the count lies between 5000 to 10000 with some outliers

In [20]:

sns.boxplot(data=df, x="Age", y= 'Purchase')

Out[20]:

<AxesSubplot:xlabel='Age', ylabel='Purchase'>

In [21]:

#Most of purchases are between 5000 to 10000

In [22]:

sns.boxplot(data=df, x="Gender", y= 'Purchase')

Out[22]:

<AxesSubplot:xlabel='Gender', ylabel='Purchase'>

In [23]:

#Purchase for male are more than females

In [24]:

sns.boxplot(data=df, x="Occupation", y= 'Purchase')

Out[24]:

<AxesSubplot:xlabel='Occupation', ylabel='Purchase'>

In [25]:

#The purchase count is almost same for all occupation categories

In [26]

sns.boxplot(data=df, x="City_Category", y= 'Purchase')

Out[26]:

<AxesSubplot:xlabel='City_Category', ylabel='Purchase'>

In [27]:

C city category has highest count of purchases

```
In [28]:
```

```
sns.boxplot(data=df, x="Stay_In_Current_City_Years", y= 'Purchase')
```

Out[28]:

<AxesSubplot:xlabel='Stay_In_Current_City_Years', ylabel='Purchase'>

In [29]:

same for all the people

In [30]:

```
sns.boxplot(data=df, x="Marital_Status", y= 'Purchase')
```

Out[30]:

<AxesSubplot:xlabel='Marital_Status', ylabel='Purchase'>

In [31]:

#

In [32]:

```
sns.boxplot(data=df, x="Product_Category", y= 'Purchase')
```

Out[32]:

<AxesSubplot:xlabel='Product_Category', ylabel='Purchase'>

In [33]:

Product n0 10 is the costliest

In [34]:

```
df1 = pd.read_csv('C:/Users/maheshmangaonkar/Desktop/Walmart.csv')
```

```
In [35]:
```

```
# Corelation
sns.heatmap(df1.corr(), annot=True, cmap="Blues", linewidth=.5)
```

Out[35]:

<AxesSubplot:>

In [36]:

#There is no rative signifance between the values

In [37]:

```
#Average money spend
avgamt = df.groupby(['User_ID', 'Gender'])[['Purchase']].sum()
avgamt = avgamt.reset_index()
avgamt
```

Out[37]:

	User_ID	Gender	Purchase
0	1000001	F	334093
1	1000002	M	810472
2	1000003	M	341635
3	1000004	М	206468
4	1000005	М	821001
5886	1006036	F	4116058
5887	1006037	F	1119538
5888	1006038	F	90034
5889	1006039	F	590319
5890	1006040	M	1653299

5891 rows × 3 columns

In [38]:

```
avgamt['Gender'].value_counts()
```

Out[38]:

M 4225 F 1666

Name: Gender, dtype: int64

In [39]:

```
avgamt.groupby(['Gender'])['Purchase'].mean()
```

Out[39]:

Gender

F 712024.394958 M 925344.402367

Name: Purchase, dtype: float64

```
In [40]:
avgamt_male = avgamt[avgamt['Gender']=='M']
avgamt_female = avgamt[avgamt['Gender']=='F']
avgamt male
Out[40]:
      User_ID Gender Purchase
   1 1000002
                        810472
   2 1000003
                   М
                        341635
   3 1000004
                        206468
   4 1000005
                        821001
                   Μ
                        234668
   6 1000007
                   М
 5880 1006030
                        737361
                   Μ
 5882 1006032
                   М
                        517261
 5883 1006033
                   М
                        501843
 5884 1006034
                   М
                        197086
 5890 1006040
                   М
                       1653299
4225 rows × 3 columns
In [41]:
#Mean of males is higher than females. Average spend is more in males
In [42]:
# Population means for male and female
In [43]:
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.stats import norm
avgamt_male_mean = np.mean(avgamt_male['Purchase'])
avgamt_female_mean = np.mean(avgamt_female['Purchase'])
In [44]:
avgamt_male_mean
Out[44]:
925344.4023668639
In [45]:
{\tt avgamt\_female\_mean}
Out[45]:
712024.3949579832
In [46]:
#Population std deviation for male and female
In [47]:
avgamt_male_std = np.std(avgamt_male['Purchase'])
avgamt_female_std = np.std(avgamt_female['Purchase'])
In [48]:
avgamt_male_std
Out[48]:
985713.4276071227
In [49]:
avgamt_female_std
Out[49]:
807128.3816336752
```

In [50]:

```
#Finding samples with n= 1000
sample_male= avgamt_male.sample(1000)
sample_male
```

Out[50]:

	User_ID	Gender	Purchase
2319	1002388	М	231198
550	1000566	М	2114831
317	1000323	М	556238
2385	1002457	М	2480975
2064	1002124	М	3543720
2182	1002242	М	1668515
4264	1004377	М	1462363
1158	1001197	М	167477
2109	1002169	М	130747
3222	1003314	М	1981086

1000 rows × 3 columns

In [51]:

```
sample_female = avgamt_female.sample(1000)
sample_female
```

Out[51]:

	User_ID	Gender	Purchase
263	1000268	F	1248334
354	1000361	F	77684
2572	1002647	F	160686
2557	1002631	F	388449
3126	1003215	F	149101
1195	1001235	F	256097
2593	1002668	F	825610
1051	1001088	F	5628655
3666	1003766	F	429008
964	1000995	F	237680

1000 rows × 3 columns

In [52]:

```
#Sample mean
sample_male_mean = np.mean(sample_male)
sample_male_mean
```

C:\Users\maheshmangaonkar\anaconda3\lib\site-packages\numpy\core\fromnumeric.py:3438: FutureWarning: In a future version, D ataFrame.mean(axis=None) will return a scalar mean over the entire DataFrame. To retain the old behavior, use 'frame.mean(a xis=0)' or just 'frame.mean()'

return mean(axis=axis, dtype=dtype, out=out, **kwargs)

C:\Users\maheshmangaonkar\anaconda3\lib\site-packages\numpy\core\fromnumeric.py:3438: FutureWarning: Dropping of nuisance c olumns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Se lect only valid columns before calling the reduction.

return mean(axis=axis, dtype=dtype, out=out, **kwargs)

Out[52]:

User_ID 1002977.886 Purchase 896774.389 dtype: float64

In [53]:

```
sample_female_mean = np.mean(sample_female)
sample_female_mean
```

Out[53]:

User_ID 1003047.244 Purchase 715957.438 dtype: float64

```
4/4/23, 4:02 PM
                                                                                                                                                                            Walmart - Jupyter Notebook
     In [54]:
     #Sample std deviation
     In [55]:
     sample_male_std = np.std(sample_male)
     {\tt sample\_male\_std}
     {\tt C: \slash mangaon kar \an aconda 3 lib site-packages \numpy \core \from numeric.py: 3579: Future \warning: Dropping of nuisance continuous continuous
     olumns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Se
     lect only valid columns before calling the reduction.
          return std(axis=axis, dtype=dtype, out=out, ddof=ddof, **kwargs)
     Out[55]:
     User_ID
                                       1710.298685
                                  924593.977986
     Purchase
     dtype: float64
     In [56]:
     sample_female_std = np.std(sample_female)
     {\tt sample\_male\_std}
     Out[56]:
                                        1710.298685
     User ID
     Purchase
                                  924593.977986
     dtype: float64
     In [57]:
     #Standard error for sample
     In [58]:
     import math
     sample_male_error = sample_male_std/np.sqrt(1000)
     sample_male_error
     Out[58]:
     User_ID
                                          54.084393
                                  29238.228813
     Purchase
     dtype: float64
     In [59]:
     sample_female_error = sample_female_std/np.sqrt(1000)
     sample_female_error
     Out[59]:
                                          56.723394
     User ID
                               25642.468076
     Purchase
     dtype: float64
     In [60]:
     #CI for 90% CI
     In [61]:
     norm.ppf(0.05)
     Out[61]:
     -1.6448536269514729
     In [62]:
     z90 = norm.ppf(0.95)
     In [63]:
     Upper_Limit_male=z90*sample_male_error + sample_male_mean
     Lower_Limit_male=sample_male_mean - z90*sample_male_error
     In [64]:
     Upper_Limit_male
     Lower_Limit_male
```

dtype: float64

1.002889e+06

8.486818e+05

localhost:8888/notebooks/Walmart.ipynb

Out[64]: User_ID

Purchase

```
In [65]:
Upper_Limit_male
Out[65]:
User_ID
            1.003067e+06
            9.448670e+05
Purchase
dtype: float64
In [66]:
Male_CI = [Upper_Limit_male, Lower_Limit_male]
Male_CI
Out[66]:
[User_ID
             1.003067e+06
 Purchase
             9.448670e+05
 dtype: float64,
 User_ID
            1.002889e+06
 Purchase
             8.486818e+05
 dtype: float64]
In [67]:
\label{limit_female} Upper\_Limit\_female=z90*sample\_female\_error + sample\_female\_mean
Lower_Limit_female=sample_female_mean - z90*sample_female_error
In [68]:
FeMale_CI = [Upper_Limit_female, Lower_Limit_female]
FeMale_CI
Out[68]:
[User_ID
             1.003141e+06
            7.581355e+05
 Purchase
 dtype: float64,
 User ID
            1.002954e+06
 Purchase
            6.737793e+05
 dtype: float64]
In [ ]:
#Average amount spend by male customers lie in the range 9.448670e+05 - 8.486818e+05
#Average amount spend by female customers lie in range 7.581355e+05 - 6.737793e+05
In [ ]:
#Calculating 95% confidence interval for sample size 1000:
In [74]:
z95 = norm.ppf(0.975)
In [75]:
z95
Out[75]:
1.959963984540054
In [76]:
Upper_Limit_male=z95*sample_male_error + sample_male_mean
Lower_Limit_male=sample_male_mean - z95*sample_male_error
In [77]:
Upper_Limit_male
Out[77]:
User_ID
            1.003084e+06
Purchase
            9.540803e+05
dtype: float64
In [78]:
Lower_Limit_male
Out[78]:
User_ID
            1.002872e+06
         8.394685e+05
Purchase
dtype: float64
```

```
In [79]:
Upper_Limit_female=z95*sample_female_error + sample_female_mean
Lower_Limit_female=sample_female_mean - z95*sample_female_error
In [80]:
Upper_Limit_female
Out[80]:
User ID
            1.003158e+06
Purchase
           7.662158e+05
dtype: float64
In [81]:
Lower_Limit_female
Out[81]:
User_ID
            1.002936e+06
Purchase
            6.656991e+05
dtype: float64
In [82]:
Male_CI95 = [Upper_Limit_male, Lower_Limit_male]
Male_CI95
Out[82]:
[User_ID
             1.003084e+06
             9.540803e+05
Purchase
 dtype: float64,
User_ID
             1.002872e+06
             8.394685e+05
Purchase
dtype: float64]
In [83]:
FeMale_CI95 = [Upper_Limit_female, Lower_Limit_female]
FeMale CI95
Out[83]:
[User_ID
             1.003158e+06
             7.662158e+05
Purchase
 dtype: float64,
            1.002936e+06
User ID
Purchase
             6.656991e+05
dtype: float64]
In [ ]:
#Using 95% confidence
#Average amount spend by male customers lie in the range 9.540803e+05- 8.394685e+05
#Average amount spend by female customers lie in range 7.662158e+05 - 6.656991e+05
In [ ]:
#Calculating 99% confidence interval for sample size 1000:
In [94]:
z99 = norm.ppf(0.995)
In [95]:
z99
Out[95]:
2.5758293035489004
In [96]:
Upper_Limit_male=z99*sample_male_error + sample_male_mean
Lower_Limit_male=sample_male_mean - z99*sample_male_error
```

```
In [97]:
```

In [98]:

```
Upper_Limit_female=z99*sample_female_error + sample_female_mean
Lower_Limit_female=sample_female_mean - z99*sample_female_error
```

In [99]:

```
FeMale_CI99 = [Upper_Limit_male, Lower_Limit_male]
FeMale_CI99
```

Out[99]:

[User_ID 1.003117e+06 Purchase 9.720871e+05 dtype: float64, User_ID 1.002839e+06 Purchase 8.214617e+05 dtype: float64]

In []:

```
#Using 99% confidence
#Average amount spend by male customers lie in the range 9.720871e+05- 8.214617e+05

#Average amount spend by female customers lie in range 9.720871e+05- 8.214617e+05
```

In []:

lence level increases we get a closer insight of actual purchases in the CI. This will happen even if the number of samples are increased.