Proposer un modèle de connaissance et de comportement

1	Proposer un modèle de connaissance et de comportement 2
1.1	Proposer un modèle cinématique à partir d'un système réel ou d'une maquette numérique
2	Proposer un modèle de connaissance et de compor-
	tement – Corrigés 6
2.1	Proposer un modèle cinématique à partir d'un système réel ou d'une maquette numérique 6
3	Mettre en œuvre une démarche de résolution analy- tique 8
3.1	Déterminer les relations entre les grandeurs géométriques ou cinématiques
4	Mettre en œuvre une démarche de résolution analy- tique
4.1	Déterminer les relations entre les grandeurs géométriques

1 Proposer un modèle de connaissance et de comportement

1.1 Proposer un modèle cinématique à partir d'un système réel ou d'une maquette numérique

Exercice 1 - Mouvement T - *

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\lambda = 10 \, \text{mm}$.

Question 3 Retracer le schéma cinématique pour $\lambda = -20 \, \text{mm}$.

Corrigé voir 2.1.

Exercice 2 - Mouvement R *

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \, \mathrm{mm}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad.

Question 3 Retracer le schéma cinématique pour $\theta = \pi$ rad.

Corrigé voir 2.1.

Exercice 3 - Mouvement TT - *

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = \mu(t)\overrightarrow{j_0}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\lambda = 10 \, \text{mm}$ et $\mu = 10 \, \text{mm}$.

Question 3 *Retracer le schéma cinématique pour* $\lambda = 0 \, \text{mm}$ *et* $\mu = 20 \, \text{mm}$.

Corrigé voir 2.1.

Exercice 4 - Mouvement RR *

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \, \text{mm}$ et $\overrightarrow{BC} = L \overrightarrow{i_1}$ avec $L = 15 \, \text{mm}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta = \frac{1}{2}$ rad et $\varphi = \pi$ rad.

Question 3 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad et $\varphi = -\frac{\pi}{4}$ rad.

Question 4 Retracer le schéma cinématique pour $\theta = \frac{3\pi}{4}$ rad et $\varphi = 0$ rad.

Corrigé voir 2.1.

Exercice 5 - Mouvement RT *

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_1}$.

Question 1 *Tracer le graphe des liaisons.*

Question 2 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad et $\lambda(t) = 20$ mm.

Question 3 Retracer le schéma cinématique pour $\theta = \frac{-\pi}{4}$ rad et $\lambda(t) = -20$ mm.

Corrigé voir 2.1.

Exercice 6 - Mouvement RT *

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_0}$ et $\overrightarrow{BC} = R \overrightarrow{i_2}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad et $\lambda(t) = 20$ mm.

Question 3 Retracer le schéma cinématique pour $\theta = \frac{-\pi}{4}$ rad et $\lambda(t) = -20$ mm.

Corrigé voir 2.1.

Exercice 7 - Mouvement RR 3D **

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{BC} = \ell \overrightarrow{i_2} + r \overrightarrow{j_2}$. On note $R + \ell = L = 20 \, \text{mm}$ et $r = 10 \, \text{mm}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique en 3D pour $\theta(t) = \frac{\pi}{2}$ rad et $\varphi(t) = \frac{\pi}{2}$ rad.

Corrigé voir 2.1.

Exercice 8 - Mouvement RR 3D **

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = H \overrightarrow{j_1} + R \overrightarrow{i_1}$ et $\overrightarrow{BC} = L \overrightarrow{i_2}$. On a H = 20 mm, r = 5 mm, L = 10 mm.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique en 3D pour $\theta(t) = \pi$ rad et $\varphi(t) = -\frac{\pi}{4}$ rad.

Corrigé voir 2.1.

Exercice 9 - Mouvement RT - RSG **

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{IA} = R \overrightarrow{j_0}$ et $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_1}$. De plus R = 15 mm.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = 0$ rad et $\lambda(t) = 20$ mm. On notera I_1 le point de contact entre $\mathbf{0}$ et $\mathbf{1}$.

Question 3 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad et $\lambda(t) = 30$ mm. On notera I_2 le point de contact entre $\mathbf{0}$ et $\mathbf{1}$. On précisera la position des points $I_{0,0}$ et $I_{0,1}$, points résultants de la rupture de contact lors du passage de $\theta(t)$ de 0 à $\frac{\pi}{2}$.

Corrigé voir 2.1.

Exe<u>rcice 10</u> – Pompe à palettes **

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AO} = e \ \overrightarrow{i_0}$ et $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_1}$. De plus $e = 10 \, \text{mm}$ et $R = 20 \, \text{mm}$. Le contact entre $\mathbf{0}$ et $\mathbf{2}$ en B est maintenu en permanence (notamment par effet centrifuge lors de la rotation de la pompe).

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = 0$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = \pi$ rad.

Question 4 En déduire la course de la pièce 2.

Corrigé voir 2.1.

Exercice 11 - Pompe à pistons radiaux ** B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = e \ \overrightarrow{i_1}$ et $\overrightarrow{BI} = R \ \overrightarrow{j_0}$. De plus, $e = 10 \, \text{mm}$ et $R = 20 \, \text{mm}$. Le contact entre 1 et 2 en B est maintenu en permanence par un ressort suffisamment raide (non représenté) positionné entre 0 et 2.

Question 2 Retracer le schéma cinématique pour $\theta(t) = 0$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 4 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2}$ rad.

Question 5 En déduire la course de la pièce 2.

Corrigé voir 2.1.

Exercice 12 – Système bielle manivelle ** B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{CB} = L \overrightarrow{i_2}$. De plus, $R = 10 \, \text{mm}$ et $L = 20 \, \text{mm}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2} rad$.

Question 4 En déduire la course de la pièce 3.

Corrigé voir 2.1.

Exercice 13 – Système de transformation de mouvement $\star\star$

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{CA} = H \overrightarrow{j_0}$. De plus, $R = 30 \, \text{mm}$ et $H = 40 \, \text{mm}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2} rad$.

Question 3 Retracer le schéma cinématique pour $\theta(t) = 0$ rad.

Question 4 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2} rad$.

Question 5 En déduire la course de la pièce 3.

Corrigé voir 2.1.

Exe<u>rcice 14</u> - Barrière Sympact **

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AC} = H \overrightarrow{j_0}$ et $\overrightarrow{CB} = R \overrightarrow{i_1}$. De plus, $H = 120 \, \text{mm}$ et $R = 40 \, \text{mm}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2}$ rad.

Corrigé voir 2.1.

Exercice 15 - Barrière Sympact **

B2-12 Pas de corrigé pour cet exercice. Soit le mécanisme suivant. On a $\overrightarrow{AC} = H \overrightarrow{j_0}$ et $\overrightarrow{CB} = R \overrightarrow{i_1}$. De plus, $H = 120 \, \text{mm}$, $R = 40 \, \text{mm}$ $BI = 10 \, \text{mm}$.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2}$ rad.

Corrigé voir 2.1.

Exercice 16 - Poussoir **

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AC} = L \overrightarrow{i_0} + H \overrightarrow{j_0}$. De plus, $H = 120 \, \text{mm}$, $L = 40 \, \text{mm}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{4}$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{4} rad$.

Corrigé voir 2.1.

Exercice 17 – Système 4 barres ***

B2-12 Pas de corrigé pour cet exercice.

On a :

- $\overrightarrow{OA} = a\overrightarrow{x_1} f\overrightarrow{y_1}$ avec $a = 355 \,\mathrm{mm}$ et $f = 13 \,\mathrm{mm}$;
- $\overrightarrow{AB} = b \overrightarrow{x_2}$ avec $b = 280 \,\mathrm{mm}$;
- $\overrightarrow{BC} = -c \overrightarrow{x_3}$ avec $c = 280 \,\mathrm{mm}$;
- $\overrightarrow{OC} = -d\overrightarrow{x_0} e\overrightarrow{y_0}$ avec $d = 89.5 \,\mathrm{mm}$ et $e = 160 \,\mathrm{mm}$;

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta_1(t) = 0$ rad.

Question 3 Retracer le schéma cinématique pour $\theta_1(t) = -\frac{\pi}{2}$ rad.

Question 4 En déduire la course angulaire (θ_4) de la pièce **3**.

Corrigé voir 2.1.

Exercice 18 - Maxpid ***

B2-12 Pas de corrigé pour cet exercice.

Soit le schéma suivant.

Par ailleurs $a=107.1 \,\mathrm{mm},\ b=80 \,\mathrm{mm},\ c=70 \,\mathrm{mm},$ $d=80 \,\mathrm{mm}.$ Le pas de la vis est de 4 mm.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = 0$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 4 En déduire la course de λ .

Corrigé voir 2.1.

Proposer un modèle de connaissance et de comportement – Corrigés

2.1 Proposer un modèle cinématique à partir d'un système réel ou d'une maquette numérique

Exercice 19 - Mouvement T - *

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 *Retracer le schéma cinématique pour* $\lambda = 10$ mm.

Question 3 *Retracer le schéma cinématique pour* $\lambda = -20 \, \text{mm}$.

Exercice 20 - Mouvement R *

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad.

Question 3 Retracer le schéma cinématique pour $\theta = \pi \operatorname{rad}$.

Exercice 21 - Mouvement TT - *

B2-12 Pas de corrigé pour cet exercice.

Question 1 *Tracer le graphe des liaisons.*

Question 2 *Retracer le schéma cinématique pour* $\lambda = 10 \,\mathrm{mm}$ *et* $\mu = 10 \,\mathrm{mm}$.

Question 3 *Retracer le schéma cinématique pour* $\lambda = 0$ mm *et* $\mu = 20$ mm.

Exercice 22 - Mouvement RR *

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad et $\varphi = \pi$ rad. **Question 3** Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad et $\varphi = -\frac{\pi}{4}$ rad. **Question 4** Retracer le schéma cinématique pour $\theta = \frac{3\pi}{4}$ rad et $\varphi = 0$ rad.

Exercice 23 - Mouvement RT *

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad et $\lambda(t) = 20$ mm.

Question 3 Retracer le schéma cinématique pour $\theta = \frac{1}{4}\pi$ rad et $\lambda(t) = -20$ mm.

Exercice 24 - Mouvement RT *

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad et $\lambda(t) = 20$ mm. **Question 3** Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad et $\lambda(t) = -20$ mm.

Exercice 25 - Mouvement RR 3D **

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique en 3D pour $\theta(t) = \frac{\pi}{2}$ rad et $\varphi(t) = \frac{\pi}{2}$ rad.

Exercice 26 - Mouvement RR 3D **

B2-12 Pas de corrigé pour cet exercice.

Question 1 *Tracer le graphe des liaisons.*

Question 2 Retracer le schéma cinématique en 3D pour $\theta(t) = \pi$ rad et $\varphi(t) = -\frac{\pi}{4}$ rad.

Exercice 27 - Mouvement RT - RSG **

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = 0$ rad et $\lambda(t) = 20$ mm. On notera I_1 le point de contact

Question 3 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad et $\lambda(t) = 30$ mm. On notera I_2 le point de contact entre $\bf 0$ et $\bf 1$. On précisera la position des points $I_{0,0}$ et $I_{0,1}$, points résultants de la rupture de contact lors du passage de $\theta(t) de 0 \dot{a} \frac{\pi}{2}$.

Exercice 28 - Pompe à palettes **

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = 0$ rad.

Question 3 *Retracer le schéma cinématique pour* $\theta(t) = \pi$ *rad.*

Question 4 En déduire la course de la pièce 2.

Exercice 29 - Pompe à pistons radiaux **

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = 0$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 4 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2}$ rad.

Question 5 En déduire la course de la pièce 2.

Exercice 30 - Système bielle manivelle **

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2}$ rad.

Question 4 En déduire la course de la pièce 3.

Exercice 31 - Système de transformation de mouvement **

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = 0$ rad.

Question 4 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2}$ rad.

Question 5 En déduire la course de la pièce 3.

Exercice 32 - Barrière Sympact **

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2}$ rad.

Exercice 33 - Barrière Sympact **

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2}$ rad.

Exercice 34 - Poussoir **

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{4}$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{4}$ rad.

Exercice 35 - Système 4 barres ***

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta_1(t) = 0$ rad.

Question 3 Retracer le schéma cinématique pour $\theta_1(t) = -\frac{\pi}{2}$ rad.

Question 4 En déduire la course angulaire (θ_4) de la pièce $\tilde{\bf 3}$.

Exercice 36 - Maxpid ***

B2-12 Pas de corrigé pour cet exercice.

Par ailleurs $a = 107.1 \,\mathrm{mm}$, $b = 80 \,\mathrm{mm}$, $c = 70 \,\mathrm{mm}$, $d = 80 \,\mathrm{mm}$. Le pas de la vis est de 4 mm.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = 0$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 4 *En déduire la course de* λ .

3 Mettre en œuvre une démarche de résolution analytique

3.1 Déterminer les relations entre les grandeurs géométriques ou cinématiques

Exercice 37 - Pompe à palettes *

C2-06 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AO} = e \overrightarrow{i_0}$ et $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus e = 10 mm et R = 20 mm. Le contact entre $\mathbf{0}$ et $\mathbf{2}$ en B est maintenu en permanence (notamment par effet centrifuge lors de la rotation de la pompe).

Question 1 Tracer le graphe des liaisons.

Question 2 *Exprimer* $\lambda(t)$ *en fonction de* $\theta(t)$.

Question 3 Exprimer $\dot{\lambda}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 Exprimer le débit instantané de la pompe.

Question 5 En utilisant Python, donner le débit instantané de la pompe pour un tour de pompe pour $e = 10 \, \text{mm}$ et $e = 15 \, \text{mm}$.

Question 6 En utilisant Python, tracer le débit instantané de la pompe pour un tour de pompe pour $e = 10 \, \mathrm{mm}$ pour une pompe à 5 pistons (5 branches 1+2). On prendra une section de piston $e = 10 \, \mathrm{mm}$ de $e = 10 \, \mathrm{mm}$ et une fréquence de rotation de $e = 100 \, \mathrm{rad} \, \mathrm{s}^{-1}$.

Corrigé voir 4.1.

Exercice 38 - Pompe à pistons radiaux * C2-06 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = e \overrightarrow{i_1}$ et $\overrightarrow{BI} = R \overrightarrow{j_0}$ et $\overrightarrow{AC} = \lambda(t) \overrightarrow{j_0}$. De plus, e = 10 mm et R = 20 mm. Le contact entre $\mathbf{1}$ et $\mathbf{2}$ en B est maintenu en permanence par un ressort suffisamment raide (non représenté) positionné entre $\mathbf{0}$ et $\mathbf{2}$.

Question 1 *Tracer le graphe des liaisons.* **Question 2** *Exprimer* $\lambda(t)$ *en fonction de* $\theta(t)$.

Question 3 Exprimer $\dot{\lambda}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 On note S la section du piston **2**. Exprimer le débit instantané de la pompe.

Question 5 En utilisant Python, tracer le débit instantané de la pompe pour un tour de pompe pour $e=10\,\mathrm{mm}$ et $R=10\,\mathrm{mm}$ ainsi que pour $e=20\,\mathrm{mm}$ et $R=5\,\mathrm{mm}$. La fréquence de rotation est $\dot{\theta}(t)=100\,\mathrm{rad}\,\mathrm{s}^{-1}$, la section du piston est $=S=1\,\mathrm{cm}^2$.

Corrigé voir 4.1.

Exercice 39 - Système bielle manivelle ** C2-06 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$, $\overrightarrow{CB} = L \overrightarrow{i_2}$ et $\overrightarrow{AC} = \lambda(t) \overrightarrow{j_0}$.

Question 1 *Tracer le graphe des liaisons.*

Question 2 *Exprimer* $\lambda(t)$ *en fonction de* $\theta(t)$.

Question 3 Exprimer $\dot{\lambda}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 En utilisant Python, tracer la vitesse du piston en fonction du temps. La fréquence de rotation est $\dot{\theta}(t) = 100 \, \mathrm{rad} \, \mathrm{s}^{-1}$, on prendra $R = 10 \, \mathrm{mm}$ et $L = 10 \, \mathrm{mm}$, puis $L = 20 \, \mathrm{mm}$ et $L = 30 \, \mathrm{mm}$.

Question 5 En utilisant Python, tracer l'accélération du piston en fonction du temps en utilisant les mêmes valeurs que dans la question précédente. On utilisera une dérivation numérique.

Corrigé voir 4.1.

Exercice 40 - Pompe oscillante *

C2-06

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{CA} = H \overrightarrow{j_0}$. De plus, R = 10 mm et H = 60 mm. Par ailleurs, on note $\overrightarrow{CB} = \lambda(t) \overrightarrow{i_2}$

Question 2 *Exprimer* $\lambda(t)$ *en fonction de* $\theta(t)$.

Question 3 Exprimer $\dot{\lambda}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 Exprimer le débit instantané de la pompe.

Question 5 En utilisant Python, donner le débit instantané de la pompe pour un tour de pompe pour un piston de diamètre D = 10 mm.

Corrigé voir 4.1.

Exercice 41 - Barrière Sympact *

C2-06 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AC} = H \overrightarrow{j_0}$ et $\overrightarrow{CB} = R \overrightarrow{i_1}$. De plus, $H = 120 \, \text{mm}$ et $R = 40 \, \text{mm}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Exprimer $\varphi(t)$ en fonction de $\theta(t)$.

Question 3 Exprimer $\dot{\varphi}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 En utilisant Python, tracer $\dot{\varphi}(t)$ en fonction de $\dot{\theta}(t)$. On considérera que la fréquence de rotation de la pièce **1** est de 10 tours par minute.

Corrigé voir 4.1.

Exercice 42 - Barrière Sympact avec galet **

B2-13

C2-05

C2-06 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AC} = H \overrightarrow{j_0}$ et $\overrightarrow{CB} = R \overrightarrow{i_1}$. De plus, $H = 120 \, \text{mm}$ et $R = 40 \, \text{mm}$.

Question 1 Tracer le graphe des liaisons.

Question 2 *Exprimer* $\varphi(t)$ *en fonction de* $\theta(t)$.

Question 3 Exprimer $\dot{\varphi}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 En utilisant la condition de roulement sans glissement au point I, déterminer $\gamma(t)$ et $\dot{\gamma}(t)$.

Question 5 En utilisant Python, tracer $\dot{\varphi}(t)$ en fonction de $\dot{\theta}(t)$. On considérera que la fréquence de rotation de la pièce **1** est de 10 tours par minute.

Corrigé voir 4.1.

Exercice 43 - Poussoir *

C2-06 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AC} = L \overrightarrow{i_0} + H \overrightarrow{j_0}$, $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_1}$ et $\overrightarrow{BC} = \mu(t) \overrightarrow{j_0}$. De plus, $H = 120 \, \text{mm}$, $L = 40 \, \text{mm}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Exprimer $\mu(t)$ en fonction de $\theta(t)$.

Question 3 Exprimer $\dot{\mu}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 En utilisant Python, tracer $\dot{\mu}(t)$ en fonction de $\dot{\theta}(t)$. On considérera que la fréquence de rotation de la pièce **1** est de 10 tours par minute.

Corrigé voir 4.1.

Exercice 44 - Système 4 barres **

C2-06 Pas de corrigé pour cet exercice.

On a:

- $\overrightarrow{OA} = a\overrightarrow{x_1} f\overrightarrow{y_1}$ avec $a = 355 \,\mathrm{mm}$ et $f = 13 \,\mathrm{mm}$;
- $\overrightarrow{AB} = b \overrightarrow{x_2}$ avec $b = 280 \,\mathrm{mm}$;
- $\overrightarrow{BC} = -c \overrightarrow{x_3}$ avec $c = 280 \,\mathrm{mm}$;
- $\overrightarrow{OC} = -d\overrightarrow{x_0} e\overrightarrow{y_0}$ avec $d = 89.5 \,\mathrm{mm}$ et $e = 160 \,\mathrm{mm}$;

Question 2 Exprimer $\theta_1(t)$ en fonction de $\theta_4(t)$.

Question 3 Exprimer $\dot{\theta}_1(t)$ en fonction de $\dot{\theta}_4(t)$.

Question 4 En utilisant Python, tracer $\dot{\theta}_1(t)$ en fonction de $\dot{\theta}_4(t)$. On considérera que la fréquence de rotation de la pièce **1** est de 10 tours par minute.

Corrigé voir 4.1.

Exercice 45 - Maxpid ***

C2-06 Pas de corrigé pour cet exercice.

Soit le schéma suivant.

Par ailleurs $a=107.1\,\mathrm{mm},\ b=80\,\mathrm{mm},\ c=70\,\mathrm{mm},\ d=80\,\mathrm{mm}$. Le pas de la vis est de 4 mm.

Question 1 Tracer le graphe des liaisons.

Question 2 *Exprimer* $\theta(t)$ *en fonction de* $\lambda(t)$.

Question 3 *Exprimer* $\dot{\theta}(t)$ *en fonction de* $\dot{\lambda}(t)$.

Question 4 Exprimer $\dot{\theta}(t)$ en fonction de $\omega(t)$, vitesse de rotation du rotor moteur **2** par rapport au stator **1**.

Question 5 En utilisant Python, tracer $\dot{\theta}(t)$ en fonction de $\omega(t)$. On considérera que la fréquence de rotation de la pièce **2** par rapport à **1** est de 500 tours par minute.

Corrigé voir 4.1.

Exercice 46 - Variateur de Graham 1 * * *

D'après ressources de Michel Huguet.

B2-13 C2-05

C2-06 Pas de corrigé pour cet exercice.

Soit le schéma suivant.

1. Les éventuelles erreur de texte font partie intégrante de la difficulté :).

On note
$$\overrightarrow{AJ} = -L \overrightarrow{i_0} + \frac{d_3}{2} \overrightarrow{j_2}$$
 et $\overrightarrow{KJ} = -\ell \overrightarrow{i_2} + \frac{d_2}{2} \overrightarrow{j_2}$.

Soit $\mathcal{R} = (A; \overrightarrow{i_0}, \overrightarrow{j_0}, \overrightarrow{k_0})$ un repère lié au bâti **0** du variateur. L'arbre moteur **1** et l'arbre récepteur **3** ont une liaison pivot d'axe $(A, \overrightarrow{i_0})$ avec le bâti **0**. On pose $\overline{\Omega(1/0)} = \omega_1 \overrightarrow{i_0}$ et $\overline{\Omega(3/0)} = \omega_3 \overrightarrow{i_0}$.

Soit $\mathcal{R}_1 = \left(A; \overrightarrow{i_0}, \overrightarrow{j_1}, \overrightarrow{k_1}\right)$ et $\mathcal{R}_2 = \left(B; \overrightarrow{i_2}, \overrightarrow{j_2}, \overrightarrow{k_1}\right)$ deux repères liés respectivement à $\mathbf{1}$ et $\mathbf{2}$ tels que \overrightarrow{AB} ait même direction que $\overrightarrow{j_1}$. On pose $\alpha = \left(\overrightarrow{i_1}, \overrightarrow{i_2}\right)$ constant.

Le satellite **2** a une liaison pivot d'axe $(\overrightarrow{B}, \overrightarrow{i_2})$ avec **1**. **2** est un tronc de cône de révolution d'axe $(\overrightarrow{B}, \overrightarrow{i_2})$ de demi angle au sommet α . On pose $\Omega(S_2/S_1) = \omega \overrightarrow{i_2}$.

La génératrice de **2** du plan $(O, \overrightarrow{i_0}, \overrightarrow{j_1})$ la plus éloignée de l'axe $(O, \overrightarrow{i_0})$ est parallèle à $\overrightarrow{i_0}$. Notons d sa distance à l'axe $(O, \overrightarrow{i_0})$

2 roule sans glisser au point I, sur une couronne **4**, immobile par rapport à **0** pendant le fonctionnement. Le réglage du rapport de variation s'obtient en déplaçant **4** suivant l'axe $(O, \overrightarrow{i_0})$.

Soit K le centre de la section droite du tronc de cône passant par I. On pose $\overrightarrow{BI} = \lambda j_2$. À l'extrémité de $\mathbf{2}$ est fixée une roue dentée de n dents, d'axe $\left(B, \overrightarrow{i_2}\right)$, qui engrène avec une couronne dentée intérieure d'axe $\left(A, \overrightarrow{i_0}\right)$, de n_2 dents, liée à $\mathbf{3}$.

Question 1 *Tracer le graphe des liaisons.*

Question 2 En exprimant que **2** roule sans glisser sur **4** au point I, déterminer ω en fonction de ω_1 , d et λ .

Question 3 Quelle relation obtient-on entre ω_1 , ω_3 et ω en exprimant l'engrènement des deux roues dentées? (c'est à dire que **2** et **3** roulent sans glisser l'un sur l'autre en I).

Question 4 En déduire le rapport de variation $\frac{\omega_3}{\omega_1}$ du mécanisme en fonction de λ , d_2 , d_3 et d.

Question 5 Tracer la courbe représentative du rapport de variation $\frac{\omega_3}{\omega_1}$ du mécanisme en fonction de λ , sachant que $\frac{n}{n_3} = \frac{d_1}{d_3}$, $d = 55\,\mathrm{mm}$ et que λ varie entre $\lambda_{mini} = 12\,\mathrm{mm}$ et la valeur $\lambda_{maxi} = 23\,\mathrm{mm}$.

Exercice 47 - Variateur à billes *****

Corrigé voir 4.1.

C2-05

C2-06 Pas de corrigé pour cet exercice.

Soit le schéma suivant.

Question 1 Tracer le graphe des liaisons.Question 2 Déterminer la loi entrée – sortie.

Corrigé voir 4.1.

4 Mettre en œuvre une démarche de résolution analytique

4.1 Déterminer les relations entre les grandeurs géométriques ou cinématiques

Exercice 48 - Pompe à palettes *

C2-06 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 *Exprimer* $\lambda(t)$ *en fonction de* $\theta(t)$.

Question 3 Exprimer $\dot{\lambda}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 Exprimer le débit instantané de la pompe.

Question 5 En utilisant Python, donner le débit instantané de la pompe pour un tour de pompe pour $e=10\,\mathrm{mm}$ et $e=15\,\mathrm{mm}$.

Question 6 En utilisant Python, tracer le débit instantané de la pompe pour un tour de pompe pour $e = 10 \,\mathrm{mm}$ pour une pompe à 5 pistons (5 branches **1+2**). On prendra une section de piston **2** de 1 cm² et une fréquence de rotation $de \dot{\theta}(t) = 100 \,\mathrm{rad} \,\mathrm{s}^{-1}$.

Exercice 49 - Pompe à pistons radiaux *

C2-06 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 *Exprimer* $\lambda(t)$ *en fonction de* $\theta(t)$.

Question 3 Exprimer $\dot{\lambda}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 On note S la section du piston **2**. Exprimer le débit instantané de la pompe.

Question 5 En utilisant Python, tracer le débit instantané de la pompe pour un tour de pompe pour $e = 10 \,\mathrm{mm}$ et $R = 10 \,\mathrm{mm}$ ainsi que pour $e = 20 \,\mathrm{mm}$ et $R = 5 \,\mathrm{mm}$. La fréquence de rotation est $\dot{\theta}(t) = 100 \,\mathrm{rad} \,\mathrm{s}^{-1}$, la section du piston est $e = 1 \,\mathrm{cm}^{2}$.

Exercice 50 - Système bielle manivelle **

C2-06 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 *Exprimer* $\lambda(t)$ *en fonction de* $\theta(t)$.

Question 3 Exprimer $\dot{\lambda}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 En utilisant Python, tracer la vitesse du piston en fonction du temps. La fréquence de rotation est $\dot{\theta}(t) = 100 \, \mathrm{rad} \, \mathrm{s}^{-1}$, on prendra $R = 10 \, \mathrm{mm}$ et $L = 10 \, \mathrm{mm}$, puis $L = 20 \, \mathrm{mm}$ et $L = 30 \, \mathrm{mm}$.

Question 5 En utilisant Python, tracer l'accélération du piston en fonction du temps en utilisant les mêmes valeurs que dans la question précédente. On utilisera une dérivation numérique.

Exercice 51 - Pompe oscillante *

C2-06

Pas de corrigé pour cet exercice.

Question 1 *Tracer le graphe des liaisons.*

Question 2 *Exprimer* $\lambda(t)$ *en fonction de* $\theta(t)$.

Question 3 Exprimer $\dot{\lambda}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 Exprimer le débit instantané de la pompe.

Question 5 En utilisant Python, donner le débit instantané de la pompe pour un tour de pompe pour un piston de diamètre $D = 10 \,\mathrm{mm}$.

Exercice 52 - Barrière Sympact *

C2-06 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 *Exprimer* $\varphi(t)$ *en fonction de* $\theta(t)$.

Question 3 Exprimer $\dot{\varphi}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 En utilisant Python, tracer $\dot{\varphi}(t)$ en fonction de $\dot{\theta}(t)$. On considérera que la fréquence de rotation de la pièce **1** est de 10 tours par minute.

Exercice 53 - Barrière Sympact avec galet **

B2-13

C2-05

C2-06 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 *Exprimer* $\varphi(t)$ *en fonction de* $\theta(t)$.

Question 3 Exprimer $\dot{\varphi}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 En utilisant la condition de roulement sans glissement au point I, déterminer $\gamma(t)$ et $\dot{\gamma}(t)$.

Question 5 En utilisant Python, tracer $\dot{\varphi}(t)$ en fonction de $\dot{\theta}(t)$. On considérera que la fréquence de rotation de la pièce **1** est de 10 tours par minute.

Exercice 54 - Poussoir *

C2-06 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 *Exprimer* $\mu(t)$ *en fonction de* $\theta(t)$.

Question 3 Exprimer $\dot{\mu}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 En utilisant Python, tracer $\dot{\mu}(t)$ en fonction de $\dot{\theta}(t)$. On considérera que la fréquence de rotation de la pièce **1** est de 10 tours par minute.

Exercice 55 - Système 4 barres **

C2-06 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 *Exprimer* $\theta_1(t)$ *en fonction de* $\theta_4(t)$.

Question 3 Exprimer $\dot{\theta}_1(t)$ en fonction de $\dot{\theta}_4(t)$.

Question 4 En utilisant Python, tracer $\dot{\theta}_1(t)$ en fonction de $\dot{\theta}_4(t)$. On considérera que la fréquence de rotation de la pièce **1** est de 10 tours par minute.

Exercice 56 - Maxpid ***

C2-06 Pas de corrigé pour cet exercice.

Par ailleurs $a = 107.1 \,\mathrm{mm}$, $b = 80 \,\mathrm{mm}$, $c = 70 \,\mathrm{mm}$, $d = 80 \,\mathrm{mm}$. Le pas de la vis est de 4 mm.

Question 1 *Tracer le graphe des liaisons.* **Question 2** *Exprimer* $\theta(t)$ *en fonction de* $\lambda(t)$.

Question 3 Exprimer $\dot{\theta}(t)$ en fonction de $\dot{\lambda}(t)$.

Question 4 Exprimer $\dot{\theta}(t)$ en fonction de $\omega(t)$, vitesse de rotation du rotor moteur **2** par rapport au stator **1**.

Question 5 En utilisant Python, tracer $\dot{\theta}(t)$ en fonction de $\omega(t)$. On considérera que la fréquence de rotation de la pièce **2** par rapport à **1** est de 500 tours par minute.

Exercice 57 - Variateur de Graham***

D'après ressources de Michel Huguet.

B2-13

C2-05

C2-06 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 En exprimant que **2** roule sans glisser sur **4** au point I, déterminer ω en fonction de ω_1 , d et λ .

Question 3 Quelle relation obtient-on entre ω_1 , ω_3 et ω en exprimant l'engrènement des deux roues dentées? (c'est à dire que **2** et **3** roulent sans glisser l'un sur l'autre en J).

Question 4 En déduire le rapport de variation $\frac{\omega_3}{\omega_1}$ du mécanisme en fonction de λ , d_2 , d_3 et d.

Question 5 Tracer la courbe représentative du rapport de variation $\frac{\omega_3}{\omega_1}$ du mécanisme en fonction de λ , sachant

que $\frac{n}{n_3} = \frac{d_1}{d_3}$, d = 55 mm et que λ varie entre $\lambda_{mini} = 12$ mm et la valeur $\lambda_{maxi} = 23$ mm.

Exercice 58 - Variateur à billes ****

B2-13

C2-05

C2-06 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Déterminer la loi entrée – sortie.

13

Index

Arbre à cames, 3, 7, 8, 12

Barrière Sympact, 4, 7, 9, 12 Bielle Manivelle, 4, 7, 8, 12

Compétence B2-12, 2–7 Compétence B2-13, 9–13 Compétence C2-05, 9–13 Compétence C2-06, 8–13 Croix de Malte, 9, 12

Maxpid, 5, 7, 10, 13
Moteur, 4, 7, 8, 12
Mécanisme à 1 rotation, 2, 6
Mécanisme à 1 rotation et 1 translation, 2, 6
Mécanisme à 1 rotations, 1 translation et RSG, 3, 6
Mécanisme à 1 translation, 2, 6
Mécanisme à 1 translation et 1 rotation, 3, 6
Mécanisme à 2 rotations, 2, 6
Mécanisme à 2 rotations 3D, 3, 6
Mécanisme à 2 translations, 2, 6

Pompe à palettes, 3, 6, 8, 12 Pompe à pistons radiaux, 3, 7, 8, 12

Système 4 barres, 5, 7, 9, 13

Variateur de Graham, 10, 11, 13