

PANIMALAR ENGINEERING COLLEGE

An Autonomous Institution

[JAISAKTHI EDUCATIONAL TRUST]

Approved by AICTE | Affiliated to Anna University | Recognized by UGC All Eligible UG Programs are Accredited by NBA

Bangalore Trunk Road, Varadharajapuram, Poonamallee, Chennai- 600 123

TECHDIVATHON

Empower, Innovate, Elevate: Code the Future Together

Domain: ROBOTICS

Problem Statements:

Sno	Title	Problem Statement	Description
1	Obstacle-Avoiding	Traditional robots struggle to	Uses ultrasonic sensors to detect
	Robot	navigate independently in	obstacles and navigate autonomously
		unknown environments.	without external intervention.
2	Line-Following	Automating repetitive tasks in	Tracks predefined paths for
	Robot for	industries and warehouses requires	performing basic automation tasks in
	Automation	simple yet efficient solutions.	industrial or educational setups.
3	Robotic Arm for	Sorting objects manually is time-	Equipped with sensors to sort objects
	Object Sorting	consuming and prone to errors.	by size or material, improving
			efficiency in manufacturing and
			logistics.
4	Smart Surveillance	Ensuring constant surveillance in	Patrols designated areas and streams
	Robot	large areas can be resource-	live video to a centralized dashboard
		intensive.	for monitoring.
5	Robotic Trash	Litter collection in public spaces	Identifies and collects trash using
	Collector	often requires significant manual	basic sensors, promoting cleaner
		effort.	environments.
6	Warehouse	Managing inventory movement in	Transports items autonomously
	Automation Robot	warehouses can be inefficient and	between shelves, streamlining
		labor-intensive.	warehouse operations.
7	Gesture-Controlled	Controlling robots via	Operates based on hand gestures,
	Robot	conventional methods can be	offering a user-friendly and innovative
	G 1 D 1	unintuitive for some users.	control method.
8	Solar-Powered	Agricultural machinery often	Assists in plowing and planting tasks
	Agricultural Robot	relies on non-renewable energy	using solar power, promoting
0	D1 Tim - Ol41-	Sources.	sustainable farming practices.
9	Real-Time Obstacle	Navigating and mapping obstacles	Creates real-time maps of obstacles to
	Mapping Drone	during flight is crucial for drone	enhance navigation and situational
10	Low-Cost Education	applications. Robotics education is often	awareness.
10			Provides an affordable platform for
	Robot for Beginners	inaccessible due to high costs.	teaching basic coding and robotics
11	Robot Control and	Monitoring robot porformance and	concepts to beginners.
11		Monitoring robot performance and	Tracks robot performance metrics and
	Monitoring Dashboard	controlling them remotely can be	provides a remote control interface for
	Dashooard	complex.	seamless operations.

12	AI-Based Path Planning for Robots	Navigating dynamic environments efficiently is a challenge for robots.	Utilizes artificial intelligence to find optimal paths, enabling robots to adapt to changing scenarios.
13	Gesture Recognition Software for Robots	Robots lack intuitive interaction mechanisms for human users.	Detects hand gestures to control robot functions, enhancing human-robot interaction.
14	Speech-Controlled Robot Interface	Robots need hands-free control methods for diverse applications.	Operates robots through voice commands, providing an accessible control interface.
15	AI-Driven Object Detection System for Robots	Identifying and interacting with objects is essential for robot functionality.	Enables robots to recognize and interact with objects accurately using AI-based detection.
16	Real-Time Obstacle Detection System	Robots require fast obstacle detection to prevent collisions.	Uses computer vision to identify and avoid obstacles in real time, ensuring smooth navigation.
17	Robot Fleet Management Software	Coordinating multiple robots in large operations is challenging.	Manages and controls a fleet of robots working collaboratively to optimize tasks.
18	Simulation Tool for Robotic Movements	Testing robotic behavior in real environments can be costly and time-consuming.	Simulates robot movements in virtual environments to evaluate performance and functionality.
19	Learning Algorithm for Robotic Tasks	Robots lack adaptability to changing user needs or task variations.	Enables robots to refine actions based on user feedback, improving task execution efficiency.
20	AI-Powered Vision for Robots	Robots need enhanced object recognition for advanced applications.	Enhances the ability to detect, recognize, and track objects using AI-powered vision systems.
21	AI-Powered Pick- and-Place Robot	Sorting and placing objects manually is inefficient and prone to errors.	Automates sorting and placement tasks using AI-driven precision and adaptability.
22	Self-Navigating Delivery Robot	Delivering goods autonomously requires precise navigation and obstacle avoidance.	Maps surroundings and autonomously delivers items, ideal for last-mile delivery applications.
23	Robotic Lawn Mower	Lawn mowing can be labor-intensive and time-consuming.	Cuts grass autonomously using sensors and app-based controls for efficient lawn care.
24	Robot-Assisted Classroom Teaching Aid	Teachers need interactive tools to engage students in learning.	Supports teaching through AI-driven interactive modules, enhancing classroom engagement.
25	Real-Time Farming Assistance Robot	Managing farming tasks manually limits productivity and precision.	Automates seeding and monitors crop health in real time, optimizing agricultural operations.

Reviewer's Digital Signature

Reviewer's	Name:
Position:	

Organization:
Date:

Digital Signature: