Санкт-Петербургский национальный исследовательский институт

информационных технологий, механики и оптики

Факультет фотоники и оптоинформатики

ИТМО

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1

"Исследование основных параметров полупроводникового лазера"

Группа: V3203	К работе допущен:
Студент: Срывкин Н.А., Ганиева И.И.	Работа выполнена:
Преподаватель: Ворзобова Н.Д.	К отчёту допущен:
-	• •

1. Цель работы

• Изучение принципов работы полупроводникового лазера и измерение его основных параметров

2. Задачи

- Ознакомиться с принципом работы и конструкционными особенностями полупроводниковых лазеров
- Измерить зависимость интенсивности излучения полупроводникового лазерного модуля от величины тока, протекающего через p-n переход
- Исследовать степень поляризации излучения лазерного модуля в зависимости от тока, протекающего через p-n переход
- Проанализировать изменение параметров излучения при работе лазерного модуля в режиме светоизлучающего диода и режиме лазерной генерации

3. Объект исследования

• Лазерный модуль КLM-650 на основе полупроводникового инжекционного лазера

4. Метод исследования

• Анализ полученных экспериментально зависимостей интенсивности и степени поляризации лазерного излучения от величины тока, протекающего через p-n переход

5. Рабочие формулы и исходные данные

• $R_1 = 51 \text{ Om},$

$$I_{pn} = \frac{U_{\text{пл}}}{R_1},\tag{1}$$

$$I_{\text{\tiny \PiM}} = k I_{pn}, \tag{2}$$

$$P = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}}},\tag{3}$$

6. Экспериментальная установка:

Figure 1: Блок-схема экспериментальной установки. ПЛ – полупроводниковый лазер, ПС – поляризационный светофильтр, ПИ – приемник излучения, М1 и М2 – измерительные приборы (мультиметры)

7. Результаты измерений и их обработки (таблицы, примеры расчётов, графики):

• Таблица 1: Экспериментальные данные для построения зависимости интенсивности излучения лазера от тока, протекающего через p-n переход

$U_{ m пл}$, м $ m B$	I_{pn} , м ${ m A}$	$I_{\scriptscriptstyle \Pi extsf{ iny IM}}$, м A
688	12.74	4
696	12.89	4
724	13.41	5
769	14.24	5
782	14.48	6
842	15.59	7
896	16.59	8
940	17.41	9
968	17.93	10
979	18.13	11
1002	18.56	12
1010	18.71	13
1024	18.96	14
1035	19.17	16
1064	19.71	24

$U_{\scriptscriptstyle \Pi \Pi}$, м ${ m B}$	I_{pn} , м $\mathbf A$	$I_{\scriptscriptstyle \Pi extsf{ iny IM}}$, м A
1085	20.09	51
1107	20.52	114
1115	20.65	140
1143	21.17	228
1166	21.59	308
1180	21.85	350
1185	21.95	360
1199	22.21	399
1338	24.78	781
1482	27.44	998
1619	29.98	1053
1639	30.35	1054
1651	30.57	1054

• Проведем рассчёты для $U_{\rm nn}$ = 688 мВ из первой таблицы для поиска значений интенсивности излучения лазера I_{pn} в режиме светоизлучающего диода:

$$I_{pn} = \frac{688}{51} = 12.74 \text{ mA},$$
 (4)

• С помощью МНК был рассчитан коэффициент $K_{\rm cB} = 0.027.$

Figure 2: Аппроксимация точек в режиме диода с помощью МНК

• Проведем рассчёты для $U_{\scriptscriptstyle \Pi\Pi}$ = 1199 мВ из первой таблицы для поиска значений интенсивности излучения лазера I_{pn} в режиме лазерноизлучающей генерации:

$$I_{pn} = \frac{1199}{51} = 22.20 \text{ mA},$$
 (5)

- С помощью МНК был рассчитан коэффициент $K_{\mbox{\tiny na3}} = 0.027$

Figure 3: Аппроксимация точек в режиме лазера с помощью МНК

• Исходя из Рис. 4 можно сделать вывод, что величина порогового тока $I_{\mathrm{nop}} \approx 19\,$ мА.

Figure 4: Зависиомость интенсивности излучения лазера от тока, протекающего через рп переход.

• Таблица 2: Экспериментальные данные для получения зависимости степени линейной поляризации (Р) от тока через p-n переход:

$U_{ m пл}$, м ${ m B}$	I_{pn} , м ${ m A}$	$I_{ m max}$, мк A	$I_{ m min}$, мк A	P
612	11.33	2	1	0.500

$U_{ m пл}$, мВ	I_{pn} , м A	$I_{ m max}$, мк A	I_{\min} , мк A	P
760	14.07	3	1	0.667
820	15.19	4	1	0.750
907	16.79	5	1	0.800
1056	19.56	13	2	0.856
1090	20.18	35	1	0.971
1144	21.18	160	1	0.994
1197	22.17	284	2	0.993
1402	25.96	774	2	0.997
1506	27.89	885	2	0.998

• Проведем рассчёты для $U_{\rm nn}$ = 612 мВ из второй таблицы для поиска значений коэффициента Р и интенсивности излучения лазера I_{pn}

$$P = \frac{2-1}{1} = 0.5,\tag{6}$$

$$I_{pn} = \frac{612}{54} = 11.33 \text{ mA}. \tag{7}$$

Figure 5: Зависиомость Р от интенсивности излучения лазера.

8. Выводы и анализ результатов работы

В ходе лабораторной работы, с помощью экспериментального анализа были построены и изучены зависимости интенсивности и степени поляризации полупроводникового лазерного модуля от величины тока, протекающего через p-n переход. Обе зависимости хорошо совпадают с теоретическими, несмотря на постоянное в ходе эксперимента

значение I_{min} и довольно плавный рост тока I_{pn} в p-n переходе. Полученные несоответствия можно списать на погрешность мультиметра и малое количество измерений.