1. PRODUIT D'UN VECTEUR PAR UN NOMBRE (RÉEL)

Définition. – Soient \overrightarrow{u} un vecteur et k un nombre (réel).

- Si $\overrightarrow{u} = \overrightarrow{0}$ ou k = 0, alors le vecteur $k\overrightarrow{u}$ est le vecteur nul.
- Sinon, le vecteur $k \overrightarrow{u}$ est le vecteur ayant :
 - la même direction que \overrightarrow{u} ;
 - le même sens que \overrightarrow{u} si k > 0 (le sens contraire si k < 0);
 - une longueur égale à |k| fois la longueur de \overrightarrow{u} .

Exemple. – Sur la figure ci-contre, deux vecteurs \overrightarrow{u} et \overrightarrow{V} sont représentés. Représenter les vecteurs $2\overrightarrow{u}$ et $-3\overrightarrow{V}$.

Définition. – On dit que deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont colinéaires

lorsqu'on peut écrire l'un des deux comme produit de l'autre par un nombre réel.

Remarques. -

- 1. Quel que soit le vecteur \overrightarrow{u} , $o \times \overrightarrow{u} = \overrightarrow{o}$. Le vecteur nul est donc colinéaire à tout vecteur \overrightarrow{u} .
- 2. Deux vecteurs non nuls colinéaires ont la même direction.

Exemples. – Dans l'exemple précédent, les vecteurs \overrightarrow{u} et sont colinéaires, ainsi que les vecteurs \overrightarrow{v} et

2

2. DÉTERMINANT DE DEUX VECTEURS

Définition. – Dans une base, on considère les vecteurs $\overrightarrow{u}(x;y)$ et $\overrightarrow{v}(x';y')$. Le déterminant de \overrightarrow{u} et \overrightarrow{v} est le noté $det(\overrightarrow{u};\overrightarrow{v})$ qu'on calcule à l'aide de la formule ci-dessous :

.....

Exemple. – On considère les vecteurs $\overrightarrow{u}(3;4)$ et $\overrightarrow{v}(-1;2)$ représentés sur la figure suivante. Représenter le vecteur $\overrightarrow{w}(2;-4)$ puis calculer $\det(\overrightarrow{u};\overrightarrow{v})$ et $\det(\overrightarrow{v};\overrightarrow{w})$.

Exemples. – Utiliser l'équivalence entre l'assertion 1. $(\overrightarrow{u} \text{ et } \overrightarrow{u} \text{ sont colinéaires})$ et l'assertion 2. $(\det(\overrightarrow{u}; \overrightarrow{v}) = 0)$ pour répondre aux questions suivantes :

1. Dans une base, les vecteurs $\overrightarrow{u}(3;-1)$ et $\overrightarrow{V}(-2;5)$ sont-ils colinéaires?

Le plan est muni d'un repère orthonormé. On considère les points A(1; 2), B(3; 4), C(−3; 4) et D(−2; 5). Les vecteurs AB et CD sont-ils colinéaires?

3. VECTEURS COLINÉAIRES

Proposition. – Soient \overrightarrow{u} et \overrightarrow{V} deux vecteurs non nuls. Les assertions suivantes sont équivalentes :

- 1. \overrightarrow{u} et \overrightarrow{v} sont colinéaires
- 2. \overrightarrow{u} et \overrightarrow{v} ont la même direction
- 3. on peut écrire l'un des vecteurs comme produit de l'autre par un nombre (réel)
- 4. $det(\overrightarrow{u}; \overrightarrow{v}) = 0$

6

11

4. VECTEURS COLINÉAIRES ET DROITES PARALLÈLES

Proposition. – Si les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires, alors les droites (AB) et (CD) sont parallèles.

Exemple. – Dans un repère, on considère les points A(1; 3), B(5; 4), $C(-9; 5)$, $D(-1; 7)$ et $E(-12; 4)$.
1. Montrer que les droites (AB) et (CD) sont parallèles.
•••••
•••••
<u></u>
 Étudier la position relative des droites (AB) et (ED), c'est-à-dire répondre à la question « les droites (AB) et (CD) sont-elles parallèles? ».
•••••
••••••
•••••

Exemple. – Dans un repère, on considère les points A(1;4), B(11;6), C(-4;3) et D(5;5).

11 / 11

5. VECTEURS COLINÉAIRES ET POINTS ALIGNÉS

Proposition. – Si les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires, alors les points A, B et C sont alignés.

10

11