qLearn: Quantum Communications

Michael Silver - UTQC

Classical Communications

Review: Entanglement

Limitation: No-Cloning Theorem

There is no unitary transform that allows us to copy a qubit

For arbitrary states

$$|\psi
angle = inom{a}{b}, |\phi
angle = inom{c}{d}$$

There is no unitary transform. U such that for all ψ

$$U(|\psi\rangle|\phi\rangle) = |\psi\rangle|\psi\rangle$$

**Note: for unobserved states only

TLDR: We cannot copy qubits

We mitigate this by interchanging states

Quantum Teleportation

Transferring one qubit state to another qubit

The Quantum Network

Quantum Device

Quantum Device/QPU generates quantum information to transmit

Communication Lines

Qubits are transported through photonic transportation lines, as of right now we can use standard telecom optic fibers

Signal Control

To maintain and control transmitted signals, we use a variety of devices; Optical switches are devices that control optical signals to deliver qubits to the intended device; Quantum repeaters maintain and transport qubits over long distances

End-User Device

The qubit signals then arrive at the end device, which are then decoded/measured to view information

Emergent Technology: Quantum Repeaters

