

MSP430F5438A, MSP430F5437A, MSP430F5436A, MSP430F5435A MSP430F5419A, MSP430F5418A

SLAS655F - JANUARY 2010 - REVISED SEPTEMBER 2018

MSP430F543xA, MSP430F541xA Mixed-Signal Microcontrollers

Device Overview

1.1 **Features**

- Low Supply Voltage Range: 3.6 V Down to 1.8 V
- Ultra-Low Power Consumption
 - Active Mode (AM): All System Clocks Active 230 µA/MHz at 8 MHz, 3.0 V, Flash Program **Execution (Typical)** 110 µA/MHz at 8 MHz, 3.0 V, RAM Program Execution (Typical)
 - Standby Mode (LPM3): Real-Time Clock (RTC) With Crystal, Watchdog, and Supply Supervisor Operational, Full RAM Retention, Fast Wakeup: 1.7 μA at 2.2 V, 2.1 μA at 3.0 V (Typical) Low-Power Oscillator (VLO), General-Purpose Counter, Watchdog, and Supply Supervisor Operational, Full RAM Retention, Fast Wakeup: 1.2 µA at 3.0 V (Typical)
 - Off Mode (LPM4): Full RAM Retention, Supply Supervisor Operational, Fast Wakeup: 1.2 µA at 3.0 V (Typical)
 - Shutdown Mode (LPM4.5): 0.1 µA at 3.0 V (Typical)
- Wake up From Standby Mode in 3.5 µs (Typical)
- 16-Bit RISC Architecture
 - Extended Memory
 - Up to 25-MHz System Clock
- Flexible Power-Management System
 - Fully Integrated LDO With Programmable Regulated Core Supply Voltage
 - Supply Voltage Supervision, Monitoring, and **Brownout**
- Unified Clock System
 - FLL Control Loop for Frequency Stabilization
 - Low-Power Low-Frequency Internal Clock Source (VLO)
- 1.2 Applications
- Analog and Digital Sensor Systems
- **Digital Motor Controls**
- Remote Controls

- Low-Frequency Trimmed Internal Reference Source (REFO)
- 32-kHz Crystals
- High-Frequency Crystals up to 32 MHz
- 16-Bit Timer TA0, Timer A With Five Capture/Compare Registers
- 16-Bit Timer TA1, Timer A With Three Capture/Compare Registers
- 16-Bit Timer TB0, Timer_B With Seven Capture/Compare Shadow Registers
- Up to Four Universal Serial Communication Interfaces (USCIs)
 - USCI_A0, USCI_A1, USCI_A2, and USCI_A3 Each Support:
 - Enhanced UART Supports Automatic Baud-Rate Detection
 - IrDA Encoder and Decoder
 - Synchronous SPI
 - USCI_B0, USCI_B1, USCI_B2, and USCI_B3 Each Support:
 - I^2C
 - Synchronous SPI
- 12-Bit Analog-to-Digital Converter (ADC)
 - Internal Reference
 - Sample-and-Hold
 - Autoscan Feature
 - 14 External Channels, 2 Internal Channels
- Hardware Multiplier Supports 32-Bit Operations
- Serial Onboard Programming, No External Programming Voltage Needed
- · 3-Channel Internal DMA
- Basic Timer With RTC Feature
- **Device Comparison Summarizes the Available** Family Members
- **Thermostats**
- **Digital Timers**
- Hand-Held Meters

1.3 Description

The TI MSP family of ultra-low-power microcontrollers consists of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with extensive low-power modes, is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows the device to wake up from low-power modes to active mode in 3.5 µs (typical).

The MSP430F543xA and MSP430F541xA series are microcontroller configurations with three 16-bit timers, a high-performance 12-bit ADC, up to four USCIs, a hardware multiplier, DMA, an RTC module with alarm capabilities, and up to 87 I/O pins.

For complete module descriptions, see the MSP430F5xx and MSP430F6xx Family User's Guide.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (2)
MSP430F5438AIZQW	MicroStar Junior™ BGA (113)	7 mm × 7 mm
MSP430F5438AIPZ	LQFP (100)	14 mm × 14 mm
MSP430F5437AIPN	LQFP (80)	12 mm × 12 mm

⁽¹⁾ For the most current part, package, and ordering information, see the *Package Option Addendum* in Section 8, or see the TI website at www.ti.com.

⁽²⁾ The sizes shown here are approximations. For the package dimensions with tolerances, see the Mechanical Data in Section 8.

1.4 Functional Block Diagrams

Figure 1-1 and Figure 1-2 show the functional block diagrams.

Copyright © 2016, Texas Instruments Incorporated

Figure 1-1. Functional Block Diagram – MSP430F5438AIPZ, MSP430F5436AIPZ, MSP430F5419AIPZ, MSP430F5438AIZQW, MSP430F5436AIZQW, MSP430F5419AIZQW

Copyright © 2016, Texas Instruments Incorporated

Figure 1-2. Functional Block Diagram – MSP430F5437AIPN, MSP430F5435AIPN, MSP430F5418AIPN

SLAS655F - JANUARY 2010-REVISED SEPTEMBER 2018

Table of Contents

1	Devi	ce Overview	1			Reset	29
	1.1	Features	. <u>1</u>		5.28	Timer_A	30
	1.2	Applications	. <u>1</u>		5.29	Timer_B	30
	1.3	Description	<u>2</u>		5.30	USCI (UART Mode) Clock Frequency	<u>30</u>
	1.4	Functional Block Diagrams	3		5.31	USCI (UART Mode)	30
2	Revis	sion History	5		5.32	USCI (SPI Master Mode) Clock Frequency	31
3	Devi	ce Comparison	6		5.33	USCI (SPI Master Mode)	31
	3.1	Related Products	6		5.34	USCI (SPI Slave Mode)	33
4	Term	ninal Configuration and Functions	7		5.35	USCI (I ² C Mode)	35
	4.1	Pin Diagrams	<u> 7</u>		5.36	12-Bit ADC, Power Supply and Input Range	
	4.2	Signal Descriptions	<u>10</u>			Conditions	
5	Spec	cifications	<u>15</u>		5.37	12-Bit ADC, Timing Parameters	_
	5.1	Absolute Maximum Ratings	15		5.38	12-Bit ADC, Linearity Parameters Using an Externa	
	5.2	ESD Ratings	15		5.39	Reference Voltage or AVCC as Reference Voltage 12-Bit ADC, Linearity Parameters Using the Interna	
	5.3	Recommended Operating Conditions	15		5.55	Reference Voltage	
	5.4	Active Mode Supply Current Into V _{CC} Excluding			5.40	12-Bit ADC, Temperature Sensor and Built-In V _{MID}	
		External Current	<u>16</u>		5.41	REF, External Reference	
	5.5	Low-Power Mode Supply Currents (Into V _{CC})	17		5.42	REF, Built-In Reference	
	. .	Excluding External Current			5.43	Flash Memory	_
	5.6	Thermal Resistance Characteristics	_		5.44	JTAG and Spy-Bi-Wire Interface	_
	5.7	Schmitt-Trigger Inputs – General-Purpose I/O		6		iled Description	_
	5.8	Inputs – Ports P1 and P2			6.1	CPU (Link to User's Guide)	
	5.9 5.10	Leakage Current – General-Purpose I/O Outputs – General-Purpose I/O (Full Drive	18		6.2	Operating Modes	
	5.10	Strength)	19		6.3	Interrupt Vector Addresses	
	5.11	Outputs – General-Purpose I/O (Reduced Drive	_		6.4	Memory Organization	
		Strength)	<u>19</u>		6.5	Bootloader (BSL)	
	5.12	Output Frequency – General-Purpose I/O	<u>19</u>		6.6	JTAG Operation	
	5.13	Typical Characteristics – Outputs, Reduced Drive			6.7	Flash Memory (Link to User's Guide)	
	- 44	Strength (PxDS.y = 0)	<u>20</u>		6.8	RAM (Link to User's Guide)	
	5.14	Typical Characteristics – Outputs, Full Drive Strength (PxDS.y = 1)	21		6.9	Peripherals	
	5.15	Crystal Oscillator, XT1, Low-Frequency Mode			6.10	Input/Output Diagrams	
	5.16	Crystal Oscillator, XT1, Edw-Frequency Mode			6.11	Device Descriptors	
	5.17	Crystal Oscillator, XT2		7		ce and Documentation Support	
	5.17	Internal Very-Low-Power Low-Frequency Oscillator	27		7.1	Getting Started	
	0.10	(VLO)	25		7.2	Device Nomenclature	
	5.19	Internal Reference, Low-Frequency Oscillator	_		7.3	Tools and Software	
		(REFO)	<u>25</u>		7.4		101
	5.20	DCO Frequency			7.5	.,	102
	5.21	PMM, Brownout Reset (BOR)	<u>27</u>		7.6		102
	5.22	PMM, Core Voltage	<u>27</u>		7.7	Trademarks	102
	5.23	PMM, SVS High Side	<u>28</u>		7.8	Electrostatic Discharge Caution	102
	5.24	PMM, SVM High Side			7.9	Export Control Notice	103
	5.25	PMM, SVS Low Side			7.10		103
	5.26	PMM, SVM Low Side	<u>29</u>	8		hanical, Packaging, and Orderable	
	5.27	Wake-up Times From Low-Power Modes and					<u>104</u>

MSP430F5418A

2 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from July 9, 2015 to September 25, 2018	Page
 Added Section 3.1, Related Products Added typical conditions statements at the beginning of Section 5, Specifications 	
 Changed the MIN value of the V_(DVCC_BOR_hys) parameter from 60 mV to 50 mV in Section 5.21, PMM, Brownout Reset (BOR) 	27
Updated notes (1) and (2) and added note (3) in Section 5.27, Wake-up Times From Low-Power Modes and Reset	29
 Removed ADC12DIV from the formula for the TYP value in the second row of the t_{CONVERT} parameter in Section 5.37, 12-Bit ADC, Timing Parameters, because ADC12CLK is after division 	36
 Throughout document, changed all instances of "bootstrap loader" to "bootloader" Replaced former section Development Tools Support with Section 7.3, Tools and Software 	46
Changed format and added content to Section 7.4, Documentation Support	101

3 Device Comparison

Table 3-1 summarizes the available family members.

Table 3-1. Device Characteristics (1)(2)

					US	CI			
DEVICE	FLASH (KB)	SRAM (KB)	Timer_A ⁽³⁾	Timer_B ⁽⁴⁾	CHANNEL A: UART, IrDA, SPI	CHANNEL B: SPI, I ² C	ADC12_A (Ch)	I/O	PACKAGE
MSP430F5438A	256	16	5, 3	7	4	4	14 ext, 2 int	87	100 PZ, 113 ZQW
MSP430F5437A	256	16	5, 3	7	2	2	14 ext, 2 int	67	80 PN
MSP430F5436A	192	16	5, 3	7	4	4	14 ext, 2 int	87	100 PZ, 113 ZQW
MSP430F5435A	192	16	5, 3	7	2	2	14 ext, 2 int	67	80 PN
MSP430F5419A	128	16	5, 3	7	4	4	14 ext, 2 int	87	100 PZ, 113 ZQW
MSP430F5418A	128	16	5, 3	7	2	2	14 ext, 2 int	67	80 PN

⁽¹⁾ For the most current part, package, and ordering information, see the *Package Option Addendum* in Section 8, or see the TI website at www.ti.com.

3.1 Related Products

For information about other devices in this family of products or related products, see the following links.

Products for TI Microcontrollers TI's low-power and high-performance MCUs, with wired and wireless connectivity options, are optimized for a broad range of applications.

Products for MSP430 Ultra-Low-Power Microcontrollers One platform. One ecosystem. Endless possibilities. Enabling the connected world with innovations in ultra-low-power microcontrollers with advanced peripherals for precise sensing and measurement.

Companion Products for MSP430F5438A Review products that are frequently purchased or used with this product.

Reference Designs for MSP430F5438A Find reference designs that leverage the best in TI technology to solve your system-level challenges.

⁽²⁾ Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

⁽³⁾ Each number in the sequence represents an instantiation of Timer_A with its associated number of capture compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively.

⁽⁴⁾ Each number in the sequence represents an instantiation of Timer_B with its associated number of capture compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_B, the first instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators.

4 Terminal Configuration and Functions

4.1 Pin Diagrams

Figure 4-1 shows the pinout of the 100-pin PZ package for the MSP430F5438A, MSP430F5436A, and MSP430F5419A devices.

Figure 4-1. 100-Pin PZ Package (Top View) – MSP430F5438AIPZ, MSP430F5436AIPZ, MSP430F5419AIPZ

MSP430F5418A

Figure 4-2 shows the pinout of the 80-pin PN package for the MSP430F5437A, MSP430F5435A, and MSP430F5418A devices.

Figure 4-2. 80-Pin PN Package (Top View) - MSP430F5437AIPN, MSP430F5435AIPN, MSP430F5418AIPN

www.ti.com

Figure 4-3 shows the pinout of the 113-pin ZQW package for the MSP430F5438A, MSP430F5436A, and MSP430F5419A devices.

P6.4	P6.2	RST	PJ.1	P5.3	P5.2	P11.2	P11.0	P10.6	P10.4	P10.1	P9.7
(A1)	(A2)	(A3)	(A4)	(A5)	(A6)	(A7)	(A8)	(A9)	(A10)	(A11)	(A12)
P6.6	P6.3	P6.1	PJ.3	PJ.0	_	DVCC4	P10.7	P10.5	P10.3	P9.6	P9.5
(B1)	(B2)	(B3)	(B4)	(B5)	(B6)	(B7)	(B8)	(B9)	(B10)	(B11)	(B12)
P7.5 (C1)	P6.7	(C3)								P9.4 (C11)	P9.2
\		(C3)								()	(C12)
P5.0 / D1\	P7.6 (D2)		P6.0	PJ.2 / _{D5} \	TEST	P11.1	P10.2	P10.0		P9.0 (D11)	P8.7 1012
\ \ \	\ /		こン	. DS	. 061	.07	.081	()			()
P5.1	AVCC		P6.5	/E51	(E6)	(E7)	(E8)	P9.3		P8.6 (E11)	DVCC2
\	\ \ \		\ \ \	(2)	(-0)	Cグ	(2)	\ \ \		()	\ \ \
P7.0 / F1\	AVSS		P7.4	/ _{F5})			/F8\	P9.1		P8.5 (F11)	DVSS2 (F12)
P7.1	DVSS1		P7.7	()			()	P8.3		P8.4	VCORE
(G1)	/G21		(G4)	(G5)			(G8)	(G9)		(G11)	(G12)
P1.0	DVCC1		P1.1					P8.0		P8.1	P8.2
(H1)	(H2)		(H4)	(H5)	(H6)	(H7)	(H8)	(H9)		(H11)	(H12)
P1.3	P1.4		P1.2	P2.7	P3.2	P3.5	P4.0	P5.5		P7.2	P7.3
(J1)	(J2)		(J4)	(J5)	(J6)	(J7)	(J8)	(J9)		(J11)	(J12)
P1.5	P1.6									P5.6	P5.7
(K1)	(K2)									(K11)	(K12)
P1.7	P2.1	P2.3	P2.5	P3.0	P3.3	P3.4	P3.7	P4.2	P4.3	P4.5	P <u>5</u> .4
(L1)	(L2)	(F3)	(L4)	(L5)	(L6)	(L7)	(F8)	(F8)	(L10)	(L11)	(L12)
P2.0	P2.2	P2.4	P2.6	P3.1		DVCC3	P3.6	P4.1	P4.4	P4.6	P4.7
(M1)	(M2)	(M3)	(M4)	(M5)	(M6)	(M7)	(M8)	(M9)	(M10)	(M1)	(M12)

Figure 4-3. 113-Pin ZQW Package (Top View) – MSP430F5438AIZQW, MSP430F5436AIZQW, MSP430F5419AIZQW

4.2 **Signal Descriptions**

Table 4-1 describes the signals for all device variants and package options.

Table 4-1. Signal Descriptions

TERIT					. Signal Descriptions			
TERMINAL	TERMINAL		I/O ⁽¹⁾	DECORPORA				
NAME	PZ	NO.	zqw	1/0(1)	DESCRIPTION			
P6.4/A4	1	1 1	A1	I/O	General-purpose digital I/O Analog input A4 for the ADC			
P6.5/A5	2	2	E4	I/O	General-purpose digital I/O Analog input A5 for the ADC			
P6.6/A6	3	3	B1	I/O	General-purpose digital I/O Analog input A6 for the ADC			
P6.7/A7	4	4	C2	I/O	General-purpose digital I/O Analog input A7 for the ADC			
P7.4/A12	5	5	F4	I/O	General-purpose digital I/O Analog input A12 for the ADC			
P7.5/A13	6	6	C1	I/O	General-purpose digital I/O Analog input A13 for the ADC			
P7.6/A14	7	7	D2	I/O	General-purpose digital I/O Analog input A14 for the ADC			
P7.7/A15	8	8	G4	I/O	General-purpose digital I/O Analog input A15 for the ADC			
P5.0/A8/VREF+/VeREF+	9	9	D1	I/O	General-purpose digital I/O Analog input A8 for the ADC Output of reference voltage to the ADC Input for an external reference voltage to the ADC			
P5.1/A9/VREF-/VeREF-	10	10	E1	I/O	General-purpose digital I/O Analog input A9 for the ADC Negative terminal for the ADC reference voltage for both sources, the internal reference voltage, or an external applied reference voltage			
AVCC	11	11	E2		Analog power supply			
AVSS	12	12	F2		Analog ground supply			
P7.0/XIN	13	13	F1	I/O	General-purpose digital I/O Input terminal for crystal oscillator XT1			
P7.1/XOUT	14	14	G1	I/O	General-purpose digital I/O Output terminal of crystal oscillator XT1			
DVSS1	15	15	G2		Digital ground supply			
DVCC1	16	16	H2		Digital power supply			
P1.0/TA0CLK/ACLK	17	17	H1	I/O	General-purpose digital I/O with port interrupt TA0 clock signal TACLK input ACLK output (divided by 1, 2, 4, 8, 16, or 32)			
P1.1/TA0.0	18	18	H4	I/O	General-purpose digital I/O with port interrupt TA0 CCR0 capture: CCl0A input, compare: Out0 output BSL transmit output			
P1.2/TA0.1	19	19	J4	I/O	General-purpose digital I/O with port interrupt TA0 CCR1 capture: CCl1A input, compare: Out1 output BSL receive input			
P1.3/TA0.2	20	20	J1	I/O	General-purpose digital I/O with port interrupt TA0 CCR2 capture: CCl2A input, compare: Out2 output			
P1.4/TA0.3	21	21	J2	I/O	General-purpose digital I/O with port interrupt TA0 CCR3 capture: CCl3A input compare: Out3 output			
P1.5/TA0.4	22	22	K1	I/O	General-purpose digital I/O with port interrupt TA0 CCR4 capture: CCI4A input, compare: Out4 output			
P1.6/SMCLK	23	23	K2	I/O	General-purpose digital I/O with port interrupt SMCLK output			
P1.7	24	24	L1	I/O	General-purpose digital I/O with port interrupt			

⁽¹⁾ I = input, O = output, N/A = not available on this package offering

TERMINAL					
NAME		NO.		I/O ⁽¹⁾	DESCRIPTION
<u>-</u>	PZ	PN	ZQW		
P2.0/TA1CLK/MCLK	25	25	M1	I/O	General-purpose digital I/O with port interrupt TA1 clock signal TA1CLK input MCLK output
P2.1/TA1.0	26	26	L2	I/O	General-purpose digital I/O with port interrupt TA1 CCR0 capture: CCI0A input, compare: Out0 output
P2.2/TA1.1	27	27	M2	I/O	General-purpose digital I/O with port interrupt TA1 CCR1 capture: CCI1A input, compare: Out1 output
P2.3/TA1.2	28	28	L3	I/O	General-purpose digital I/O with port interrupt TA1 CCR2 capture: CCI2A input, compare: Out2 output
P2.4/RTCCLK	29	29	М3	I/O	General-purpose digital I/O with port interrupt RTCCLK output
P2.5	30	32	L4	I/O	General-purpose digital I/O with port interrupt
P2.6/ACLK	31	33	M4	I/O	General-purpose digital I/O with port interrupt ACLK output (divided by 1, 2, 4, 8, 16, or 32)
P2.7/ADC12CLK/DMAE0	32	34	J5	I/O	General-purpose digital I/O with port interrupt Conversion clock output for the ADC DMA external trigger input
P3.0/UCB0STE/UCA0CLK	33	35	L5	I/O	General-purpose digital I/O Slave transmit enable – USCI_B0 SPI mode Clock signal input – USCI_A0 SPI slave mode Clock signal output – USCI_A0 SPI master mode
P3.1/UCB0SIMO/UCB0SDA	34	36	M5	I/O	General-purpose digital I/O Slave in, master out – USCI_B0 SPI mode I ² C data – USCI_B0 I ² C mode
P3.2/UCB0SOMI/UCB0SCL	35	37	J6	I/O	General-purpose digital I/O Slave out, master in – USCI_B0 SPI mode I ² C clock – USCI_B0 I ² C mode
P3.3/UCB0CLK/UCA0STE	36	38	L6	I/O	General-purpose digital I/O Clock signal input – USCI_B0 SPI slave mode Clock signal output – USCI_B0 SPI master mode Slave transmit enable – USCI_A0 SPI mode
DVSS3	37	30	M6		Digital ground supply
DVCC3	38	31	M7		Digital power supply
P3.4/UCA0TXD/UCA0SIMO	39	39	L7	I/O	General-purpose digital I/O Transmit data – USCI_A0 UART mode Slave in, master out – USCI_A0 SPI mode
P3.5/UCA0RXD/UCA0SOMI	40	40	J7	I/O	General-purpose digital I/O Receive data – USCI_A0 UART mode Slave out, master in – USCI_A0 SPI mode
P3.6/UCB1STE/UCA1CLK	41	41	M8	I/O	General-purpose digital I/O Slave transmit enable – USCI_B1 SPI mode Clock signal input – USCI_A1 SPI slave mode Clock signal output – USCI_A1 SPI master mode
P3.7/UCB1SIMO/UCB1SDA	42	42	L8	I/O	General-purpose digital I/O Slave in, master out – USCI_B1 SPI mode I ² C data – USCI_B1 I ² C mode
P4.0/TB0.0	43	43	J8	I/O	General-purpose digital I/O TB0 capture CCR0: CCI0A/CCI0B input, compare: Out0 output
P4.1/TB0.1	44	44	M9	I/O	General-purpose digital I/O TB0 capture CCR1: CCI1A/CCI1B input, compare: Out1 output
P4.2/TB0.2	45	45	L9	I/O	General-purpose digital I/O TB0 capture CCR2: CCI2A/CCI2B input, compare: Out2 output
P4.3/TB0.3	46	46	L10	I/O	General-purpose digital I/O TB0 capture CCR3: CCI3A/CCI3B input, compare: Out3 output
P4.4/TB0.4	47	47	M10	I/O	General-purpose digital I/O TB0 capture CCR4: CCI4A/CCI4B input, compare: Out4 output

				Oigin	Descriptions (continued)
TERMINAL		(1)			
NAME	NAME NO.		ZQW	I/O ⁽¹⁾	DESCRIPTION
P4.5/TB0.5	48	48	L11	I/O	General-purpose digital I/O TB0 capture CCR5: CCI5A/CCI5B input, compare: Out5 output
P4.6/TB0.6	49	52	M11	I/O	General-purpose digital I/O TB0 capture CCR6: CCI6A/CCI6B input, compare: Out6 output
P4.7/TB0CLK/SMCLK	50	53	M12	I/O	General-purpose digital I/O TB0 clock input SMCLK output
P5.4/UCB1SOMI/UCB1SCL	51	54	L12	I/O	General-purpose digital I/O Slave out, master in – USCI_B1 SPI mode I ² C clock – USCI_B1 I ² C mode
P5.5/UCB1CLK/UCA1STE	52	55	J9	I/O	General-purpose digital I/O Clock signal input – USCI_B1 SPI slave mode Clock signal output – USCI_B1 SPI master mode Slave transmit enable – USCI_A1 SPI mode
P5.6/UCA1TXD/UCA1SIMO	53	56	K11	I/O	General-purpose digital I/O Transmit data – USCI_A1 UART mode Slave in, master out – USCI_A1 SPI mode
P5.7/UCA1RXD/UCA1SOMI	54	57	K12	I/O	General-purpose digital I/O Receive data – USCI_A1 UART mode Slave out, master in – USCI_A1 SPI mode
P7.2/TB0OUTH/SVMOUT	55	58	J11	I/O	General-purpose digital I/O Switch all PWM outputs to high impedance – Timer TB0 SVM output
P7.3/TA1.2	56	59	J12	I/O	General-purpose digital I/O TA1 CCR2 capture: CCl2B input, compare: Out2 output
P8.0/TA0.0	57	60	H9	I/O	General-purpose digital I/O TA0 CCR0 capture: CCl0B input, compare: Out0 output
P8.1/TA0.1	58	61	H11	I/O	General-purpose digital I/O TA0 CCR1 capture: CCI1B input, compare: Out1 output
P8.2/TA0.2	59	62	H12	I/O	General-purpose digital I/O TA0 CCR2 capture: CCl2B input, compare: Out2 output
P8.3/TA0.3	60	63	G9	I/O	General-purpose digital I/O TA0 CCR3 capture: CCl3B input, compare: Out3 output
P8.4/TA0.4	61	64	G11	I/O	General-purpose digital I/O TA0 CCR4 capture: CCI4B input, compare: Out4 output
VCORE ⁽²⁾	62	49	G12		Regulated core power supply output (internal use only, no external current loading)
DVSS2	63	50	F12		Digital ground supply
DVCC2	64	51	E12		Digital power supply
P8.5/TA1.0	65	65	F11	I/O	General-purpose digital I/O TA1 CCR0 capture: CCl0B input, compare: Out0 output
P8.6/TA1.1	66	66	E11	I/O	General-purpose digital I/O TA1 CCR1 capture: CCl1B input, compare: Out1 output
P8.7	67	N/A	D12	I/O	General-purpose digital I/O
P9.0/UCB2STE/UCA2CLK	68	N/A	D11	I/O	General-purpose digital I/O Slave transmit enable – USCI_B2 SPI mode Clock signal input – USCI_A2 SPI slave mode Clock signal output – USCI_A2 SPI master mode
P9.1/UCB2SIMO/UCB2SDA	69	N/A	F9	I/O	General-purpose digital I/O Slave in, master out – USCI_B2 SPI mode I ² C data – USCI_B2 I ² C mode
P9.2/UCB2SOMI/UCB2SCL	70	N/A	C12	I/O	General-purpose digital I/O Slave out, master in – USCI_B2 SPI mode I ² C clock – USCI_B2 I ² C mode

⁽²⁾ VCORE is for internal use only. No external current loading is possible. VCORE should be connected to only the recommended capacitor value, C_{VCORE}.

TERMINAL						
NO.			I/O ⁽¹⁾	DESCRIPTION		
NAME	PZ	PN	ZQW			
P9.3/UCB2CLK/UCA2STE	71	N/A	E9	I/O	General-purpose digital I/O Clock signal input – USCI_B2 SPI slave mode Clock signal output – USCI_B2 SPI master mode Slave transmit enable – USCI_A2 SPI mode	
P9.4/UCA2TXD/UCA2SIMO	72	N/A	C11	I/O	General-purpose digital I/O Transmit data – USCI_A2 UART mode Slave in, master out – USCI_A2 SPI mode	
P9.5/UCA2RXD/UCA2SOMI	73	N/A	B12	I/O	General-purpose digital I/O Receive data – USCI_A2 UART mode Slave out, master in – USCI_A2 SPI mode	
P9.6	74	N/A	B11	I/O	General-purpose digital I/O	
P9.7	75	N/A	A12	I/O	General-purpose digital I/O	
P10.0/UCB3STE/UCA3CLK	76	N/A	D9	I/O	General-purpose digital I/O Slave transmit enable – USCI_B3 SPI mode Clock signal input – USCI_A3 SPI slave mode Clock signal output – USCI_A3 SPI master mode	
P10.1/UCB3SIMO/UCB3SDA	77	N/A	A11	I/O	General-purpose digital I/O Slave in, master out – USCI_B3 SPI mode I ² C data – USCI_B3 I ² C mode	
P10.2/UCB3SOMI/UCB3SCL	78	N/A	D8	I/O	General-purpose digital I/O Slave out, master in – USCI_B3 SPI mode I ² C clock – USCI_B3 I ² C mode	
P10.3/UCB3CLK/UCA3STE	79	N/A	B10	I/O	General-purpose digital I/O Clock signal input – USCI_B3 SPI slave mode Clock signal output – USCI_B3 SPI master mode Slave transmit enable – USCI_A3 SPI mode	
P10.4/UCA3TXD/UCA3SIMO	80	N/A	A10	I/O	General-purpose digital I/O Transmit data – USCI_A3 UART mode Slave in, master out – USCI_A3 SPI mode	
P10.5/UCA3RXD/UCA3SOMI	81	N/A	В9	I/O	General-purpose digital I/O Receive data – USCI_A3 UART mode Slave out, master in – USCI_A3 SPI mode	
P10.6	82	N/A	A9	I/O	General-purpose digital I/O	
P10.7	83	N/A	B8	I/O	General-purpose digital I/O	
P11.0/ACLK	84	N/A	A8	I/O	General-purpose digital I/O ACLK output (divided by 1, 2, 4, 8, 16, or 32)	
P11.1/MCLK	85	N/A	D7	I/O	General-purpose digital I/O MCLK output	
P11.2/SMCLK	86	N/A	A7	I/O	General-purpose digital I/O SMCLK output	
DVCC4	87	67	B7		Digital power supply	
DVSS4	88	68	В6		Digital ground supply	
P5.2/XT2IN	89	69	A6	I/O	General-purpose digital I/O Input terminal for crystal oscillator XT2	
P5.3/XT2OUT	90	70	A5	I/O	General-purpose digital I/O Output terminal of crystal oscillator XT2	
TEST/SBWTCK ⁽³⁾	91	71	D6	I	Test mode pin – Selects four wire JTAG operation. Spy-Bi-Wire input clock when Spy-Bi-Wire operation activated	
PJ.0/TDO ⁽⁴⁾	92	72	B5	I/O	General-purpose digital I/O JTAG test data output port	
PJ.1/TDI/TCLK ⁽⁴⁾	93	73	A4	I/O	General-purpose digital I/O JTAG test data input or test clock input	

⁽³⁾ See Section 6.5 and Section 6.6 for use with BSL and JTAG functions, respectively.

⁽⁴⁾ See Section 6.6 for use with JTAG function.

TERMINAL					
NAME		NO.		I/O ⁽¹⁾	DESCRIPTION
NAME	PZ	PN	ZQW		
PJ.2/TMS ⁽⁴⁾	94	74	D5	I/O	General-purpose digital I/O JTAG test mode select
PJ.3/TCK ⁽⁴⁾	95	75	B4	I/O	General-purpose digital I/O JTAG test clock
RST/NMI/SBWTDIO ⁽³⁾	96	76	A3	I/O	Reset input active low ⁽⁵⁾ Nonmaskable interrupt input Spy-Bi-Wire data input/output when Spy-Bi-Wire operation activated.
P6.0/A0	97	77	D4	I/O	General-purpose digital I/O Analog input A0 for the ADC
P6.1/A1	98	78	В3	I/O	General-purpose digital I/O Analog input A1 for the ADC
P6.2/A2	99	79	A2	I/O	General-purpose digital I/O Analog input A2 for the ADC
P6.3/A3	100	80	B2	I/O	General-purpose digital I/O Analog input A3 for the ADC
Reserved	N/A	N/A	(6)		

⁽⁵⁾ When this pin is configured as reset, the internal pullup resistor is enabled by default.
(6) C3, E5, E6, E7, E8, F5, F8, G5, G8, H5, H6, H7, H8 are reserved and should be connected to ground.

5 Specifications

All graphs in this section are for typical conditions, unless otherwise noted.

Typical (TYP) values are specified at $V_{CC} = 3.3 \text{ V}$ and $T_A = 25^{\circ}\text{C}$, unless otherwise noted.

5.1 Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

	MIN	MAX	UNIT
Voltage applied at V _{CC} to V _{SS}	-0.3	4.1	V
Voltage applied to any pin (excluding VCORE) ⁽²⁾	-0.3	V _{CC} + 0.3	V
Diode current at any device pin		±2	mA
Storage temperature, T _{stg} ⁽³⁾	-55	105	°C
Maximum junction temperature, T _J		95	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltages referenced to V_{SS}. VCORE is for internal device use only. No external DC loading or voltage should be applied.

5.2 ESD Ratings

			VALUE	UNIT
.,	Flootrootatio dipoharaa	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±1000	V
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±250	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±1000 V may actually have higher performance.

5.3 Recommended Operating Conditions

			MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage during program execution a $(AV_{CC} = DV_{CC1/2/3/4} = DV_{CC})^{(1)(2)}$	and flash programming	1.8		3.6	V
V_{SS}	Supply voltage (AV _{SS} = DV _{SS1/2/3/4} = DV _{SS}	6)		0		V
T _A	Operating free-air temperature		-40		85	°C
TJ	Operating junction temperature		-40		85	°C
C _{VCORE}	Recommended capacitor at VCORE (3)			470		nF
C _{DVCC} / C _{VCORE}	Capacitor ratio of DVCC to VCORE		10			
		PMMCOREVx = 0, 1.8 V ≤ V _{CC} ≤ 3.6 V	0		8	
_	Processor frequency (maximum MCLK	PMMCOREVx = 1, 2.0 V ≤ V _{CC} ≤ 3.6 V	0		12	N 41 1-
†SYSTEM	Processor frequency (maximum MCLK frequency) ⁽⁴⁾ (see Figure 5-1)	PMMCOREVx = 2, 2.2 V ≤ V _{CC} ≤ 3.6 V	0		20	MHz
		PMMCOREVx = 3, 2.4 V \leq V _{CC} \leq 3.6 V	0		25	

⁽¹⁾ TI recommends powering AV_{CC} and DV_{CC} from the same source. A maximum difference of 0.3 V between AV_{CC} and DV_{CC} can be tolerated during power up and operation.

⁽³⁾ Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±250 V may actually have higher performance.

⁽²⁾ The minimum supply voltage is defined by the supervisor SVS levels when it is enabled. See the Section 5.23 threshold parameters for the exact values and further details.

⁽³⁾ A capacitor tolerance of ±20% or better is required.

⁽⁴⁾ The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse duration of the specified maximum frequency.

⁽⁵⁾ Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.

NOTE: The numbers within the fields denote the supported PMMCOREVx settings.

Figure 5-1. Frequency vs Supply Voltage

5.4 Active Mode Supply Current Into V_{CC} Excluding External Current

over recommended operating free-air temperature (unless otherwise noted) (1)(2)(3)

						FR	EQUEN	ICY (f _{DCC}	= f _{MCLP}	= f _{SMCLI}	k)			
PARAMETER	EXECUTION MEMORY	V _{CC}	PMMCOREVx	1 M	Hz	8 M	Hz	12 N	lHz	20 N	1Hz	25 M	lHz	UNIT
				TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	
			0	0.29	0.33	1.84	2.08							
	Floor	201/	1	0.32		2.08		3.10						0
IAM, Flash	Flash	3.0 V	2	0.33		2.24		3.50		6.37				mA
			3	0.35		2.36		3.70		6.75		8.90	9.60	
			0	0.17	0.19	0.88	0.99							
	RAM	201/	1	0.18		1.00		1.47						A
I _{AM, RAM}	KAM	3.0 V	2	0.19		1.13		1.68		2.82				mA
			3	0.20		1.20		1.78		3.00		4.50	4.90	

All inputs are tied to 0 V or to V_{CC} . Outputs do not source or sink any current. The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load (2) capacitance are chosen to closely match the required 12.5 pF.

Characterized with program executing typical data processing. f_{ACLK} = 32768 Hz, f_{DCO} = f_{MCLK} = f_{SMCLK} at specified frequency. XTS = CPUOFF = SCG0 = SCG1 = OSCOFF= SMCLKOFF = 0.

Low-Power Mode Supply Currents (Into V_{cc}) Excluding External Current 5.5

	DADAMETED	.,	DMMCODEV.	-40°	C	25°	С	60°	С	85°0	С	LINUT
	PARAMETER	V _{cc}	PMMCOREVx	TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	UNIT
	Low power made O(3)(4)	2.2 V	0	69	93	69	93	69	93	69	93	
LPM0,1MHz	Low-power mode 0 ⁽³⁾⁽⁴⁾	3.0 V	3	73	100	73	100	73	100	73	100	μΑ
	Low-power mode 2 ⁽⁵⁾⁽⁴⁾	2.2 V	0	11	15.5	11	15.5	11	15.5	11	15.5	
I _{LPM2}	Low-power mode 2(9)(1)	3.0 V	3	11.7	17.5	11.7	17.5	11.7	17.5	11.7	17.5	μΑ
			0	1.4		1.7		2.6		6.6		
		2.2 V	1	1.5		1.8		2.9		9.9		
			2	1.5		2.0		3.3		10.1		
I _{LPM3,XT1LF}	Low-power mode 3, crystal mode ⁽⁶⁾⁽⁴⁾		0	1.8		2.1	2.4	2.8		7.1	13.6	μA
•		3.0 V	1	1.8		2.3		3.1		10.5		
			2	1.9		2.4		3.5		10.6		
			3	2.0		2.3	2.6	3.9		11.8	14.8	
			0	1.0		1.2	1.42	2.0		5.8	12.9	
	Low-power mode 3,	3.0 V	1	1.0		1.3		2.3		6.0		
I _{LPM3,VLO}	VLO mode ⁽⁷⁾⁽⁴⁾	3.0 V	2	1.1		1.4		2.8		6.2		μA
			3	1.2		1.4	1.62	3.0		6.2	13.9	
			0	1.1		1.2	1.35	1.9		5.7	12.9	
I _{LPM4} Low-power mode 4 ⁽⁸⁾⁽⁴⁾	Low power mode 4 (8)(4)	3.0 V	1	1.2		1.2		2.2		5.9		
	Low-power mode 4	3.0 V	2	1.3		1.3		2.6		6.1		μA
			3	1.3		1.3	1.52	2.9		6.2	13.9	
I _{LPM4.5}	Low-power mode 4.5 ⁽⁹⁾	3.0 V		0.10		0.10	0.13	0.20		0.50	1.14	μA

- All inputs are tied to 0 V or to V_{CC} . Outputs do not source or sink any current. (1)
- The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are chosen to closely match the required 12.5 pF.
- Current for watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), f_{ACLK} = 32768 Hz, f_{MCLK} = 0 MHz, f_{SMCLK} = f_{DCO} = 1 MHz
- Current for brownout, high side supervisor (SVS_H) normal mode included. Low-side supervisor (SVS_L) and low-side monitor (SVM_L) disabled. High-side monitor (SVM_H) disabled. RAM retention enabled.
- Current for watchdog timer and RTC clocked by ACLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). $\mathsf{CPUOFF} = 1, \, \mathsf{SCG0} = 0, \, \mathsf{SCG1} = 1, \, \mathsf{OSCOFF} = 0 \, \, (\mathsf{LPM2}), \, \mathsf{f}_{\mathsf{ACLK}} = 32768 \, \, \mathsf{Hz}, \, \mathsf{f}_{\mathsf{MCLK}} = 0 \, \, \mathsf{MHz}, \, \mathsf{f}_{\mathsf{SMCLK}} = \mathsf{f}_{\mathsf{DCO}} = 0 \, \, \mathsf{MHz}, \, \mathsf{f}_{\mathsf{MCLK}} = 0 \, \, \mathsf{MLZ}, \, \mathsf{f}_{\mathsf{MCLK}} = 0 \, \, \mathsf{MLZ}, \, \mathsf{f}_{\mathsf{MCLK}} = 0 \, \, \mathsf{MLZ}, \,$ DCO setting = 1 MHz operation, DCO bias generator enabled.
- Current for watchdog timer and RTC clocked by ACLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), f_{ACLK} = 32768 Hz, f_{MCLK} = f_{DCO} = 0 MHz
- Current for watchdog timer and RTC clocked by ACLK included. ACLK = VLO.
- CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), $f_{ACLK} = f_{VLO}$, $f_{MCLK} = f_{SMCLK} = f_{DCO} = 0$ MHz
- CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 (LPM4), $f_{DCO} = f_{ACLK} = f_{MCLK} = f_{SMCLK} = 0$ MHz Internal regulator disabled. No data retention.
- CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF = 1 (LPM4.5), f_{DCO} = f_{ACLK} = f_{MCLK} = f_{SMCLK} = 0 MHz

Thermal Resistance Characteristics 5.6

	THERMAL M	ETRIC		VALUE	UNIT
			LQFP (PZ)	50.1	
		Low-K board (JESD51-3)	LQFP (PN)	57.9	
DO.	$R\theta_{JA}$ Junction-to-ambient thermal resistance, still air		BGA (ZQW)	60	°C/W
ΚθJΑ	Junction-to-ambient thermal resistance, still all		LQFP (PZ)	40.8	C/VV
		High-K board (JESD51-7)	LQFP (PN)	37.9	
			BGA (ZQW)	42	
			LQFP (PZ)	8.9	
$R\theta_{JC}$	Junction-to-case thermal resistance		LQFP (PN)	10.3	°C/W
			BGA (ZQW)	8	

Schmitt-Trigger Inputs – General-Purpose I/O(1) 5.7

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
\/	Decitive gains input threshold valtage		1.8 V	0.80		1.40	V
V _{IT+}	Positive-going input threshold voltage		3 V	1.50		2.10	V
\/	Negative gains input threehold valtage		1.8 V	0.45		1.00	V
V _{IT}	Negative-going input threshold voltage		3 V	0.75		1.65	V
\/	Input voltage hysteresis (V _{IT+} – V _{IT})		1.8 V	0.3		0.85	V
V _{hys}	input voltage hysteresis (V _{IT+} – V _{IT-})		3 V	0.4		1.0	V
R _{Pull}	Pullup or pulldown resistor ⁽²⁾	For pullup: $V_{IN} = V_{SS}$ For pulldown: $V_{IN} = V_{CC}$		20	35	50	kΩ
CI	Input capacitance	$V_{IN} = V_{SS}$ or V_{CC}			5		pF

Same parametrics apply to clock input pin when crystal bypass mode is used on XT1 (XIN) or XT2 (XT2IN). Also applies to the RST pin when the pullup or pulldown resistor is enabled.

Inputs – Ports P1 and P2⁽¹⁾ 5.8

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	 V _{CC}	MIN	MAX	UNIT
t _(int) External interrupt timing ⁽²⁾	Port P1, P2: P1.x to P2.x, external trigger pulse duration to set interrupt flag	2.2 V, 3 V	20		ns

Some devices may contain additional ports with interrupts. See the block diagram (see Section 1.4) and signal descriptions (see (1)

5.9 Leakage Current – General-Purpose I/O

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN MAX	UNIT
I _{lkg(Px.y)}	High-impedance leakage current	See (1) (2)	1.8 V, 3 V	±50	nA

The leakage current is measured with VSS or VCC applied to the corresponding pins, unless otherwise noted.

An external signal sets the interrupt flag every time the minimum interrupt pulse duration $t_{(int)}$ is met. It may be set by trigger signals shorter than t(int).

The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is disabled.

5.10 Outputs – General-Purpose I/O (Full Drive Strength)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	MAX	UNIT
		$I_{(OHmax)} = -3 \text{ mA}^{(1)}$	1.8 V	V _{CC} - 0.25	V_{CC}	
V	V _{OH} High-level output voltage	$I_{(OHmax)} = -10 \text{ mA}^{(2)}$	1.0 V	V _{CC} - 0.60	V_{CC}	V
V _{OH} High-level output voltage	$I_{(OHmax)} = -5 \text{ mA}^{(1)}$	2.1/	V _{CC} - 0.25	V_{CC}	V	
		$I_{(OHmax)} = -15 \text{ mA}^{(2)}$	3 V	V _{CC} - 0.60	V^{CC}	
		$I_{(OLmax)} = 3 \text{ mA}^{(1)}$	1.8 V	V_{SS}	$V_{SS} + 0.25$	
V		$I_{(OLmax)} = 10 \text{ mA}^{(2)}$	1.6 V	V _{SS}	$V_{SS} + 0.60$	V
V _{OL}		$I_{(OLmax)} = 5 \text{ mA}^{(1)}$	3 V	V _{SS}	$V_{SS} + 0.25$	V
		I _(OLmax) = 15 mA ⁽²⁾	3 V	V _{SS}	V _{SS} + 0.60	

The maximum total current, I_(OHmax) and I_(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop specified.

5.11 Outputs – General-Purpose I/O (Reduced Drive Strength)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	MAX	UNIT
		$I_{(OHmax)} = -1 \text{ mA}^{(2)}$	1.8 V	V _{CC} - 0.25	V_{CC}	
\/	V _{OH} High-level output voltage	$I_{(OHmax)} = -3 \text{ mA}^{(3)}$	1.0 V	$V_{CC} - 0.60$	V_{CC}	V
VOH		$I_{(OHmax)} = -2 \text{ mA}^{(2)}$	3.0 V	V _{CC} - 0.25	V_{CC}	V
		$I_{\text{(OHmax)}} = -6 \text{ mA}^{(3)}$	3.0 V	V _{CC} - 0.60	V^{CC}	
		$I_{(Ol max)} = 1 mA^{(2)}$		V_{SS}	$V_{SS} + 0.25$	
\/		$I_{(OLmax)} = 3 \text{ mA}^{(3)}$	1.8 V	V _{SS}	$V_{SS} + 0.60$	V
V _{OL}		$I_{(OLmax)} = 2 \text{ mA}^{(2)}$	3.0 V	V_{SS}	$V_{SS} + 0.25$	V
		I _(OLmax) = 6 mA ⁽³⁾	3.0 V	V _{SS}	V _{SS} + 0.60	

Selecting reduced drive strength may reduce EMI.

5.12 Output Frequency – General-Purpose I/O

	PARAMETER	TEST CONDITIONS		MIN	MAX	UNIT
	Port output frequency	P1.6/SMCLK (1) (2)	V _{CC} = 1.8 V, PMMCOREVx = 0		16	MHz
t _{Px.y}	(with load)	F1.0/SWICER	V _{CC} = 3 V, PMMCOREVx = 3		25	IVII
	Clock output from one	P1.0/TA0CLK/ACLK P1.6/SMCLK	V _{CC} = 1.8 V, PMMCOREVx = 0		16	MUL
†Port_CLK	Clock output frequency	$\begin{array}{l} P2.0/TA1CLK/MCLK \\ C_L = 20 \text{ pF}^{(2)} \end{array}$	V _{CC} = 3 V, PMMCOREVx = 3		25	MHz

⁽¹⁾ A resistive divider with 2 x R1 between V_{CC} and V_{SS} is used as load. The output is connected to the center tap of the divider. For full drive strength, R1 = 550 Ω . For reduced drive strength, R1 = 1.6 k Ω . C_L = 20 pF is connected to the output to V_{SS} .

⁽²⁾ The maximum total current, I_(OHmax) and I_(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage drop specified.

⁽²⁾ The maximum total current, I_(OHmax) and I_(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop specified.

⁽³⁾ The maximum total current, I_(OHmax) and I_(OLmax), for all outputs combined, should not exceed ±100 mA to hold the maximum voltage drop specified.

⁽²⁾ The output voltage reaches at least 10% and 90% V_{CC} at the specified toggle frequency.

5.13 Typical Characteristics – Outputs, Reduced Drive Strength (PxDS.y = 0)

5.14 Typical Characteristics – Outputs, Full Drive Strength (PxDS.y = 1)

5.15 Crystal Oscillator, XT1, Low-Frequency Mode⁽¹⁾

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
		$\begin{split} f_{OSC} &= 32768 \text{ Hz, XTS} = 0,\\ \text{XT1BYPASS} &= 0, \text{XT1DRIVEx} = 1,\\ T_{A} &= 25^{\circ}\text{C} \end{split}$			0.075		
$\Delta I_{DVCC,LF}$	Differential XT1 oscillator crystal current consumption from lowest drive setting, LF mode	$\begin{aligned} &f_{OSC} = 32768 \text{ Hz, } XTS = 0, \\ &XT1BYPASS = 0, XT1DRIVEx = 2, \\ &T_A = 25^{\circ}C \end{aligned}$	3.0 V		0.170		μΑ
		$\begin{aligned} &f_{OSC} = 32768 \text{ Hz, } XTS = 0, \\ &XT1BYPASS = 0, XT1DRIVEx = 3, \\ &T_A = 25^{\circ}C \end{aligned}$			0.290		
f _{XT1,LF0}	XT1 oscillator crystal frequency, LF mode	XTS = 0, XT1BYPASS = 0			32768		Hz
f _{XT1,LF,SW}	XT1 oscillator logic-level square- wave input frequency, LF mode	XTS = 0, XT1BYPASS = 1 ⁽²⁾ (3)		10	32.768	50	kHz
0.0	Oscillation allowance for	$ \begin{aligned} &XTS = 0, \\ &XT1BYPASS = 0, XT1DRIVEx = 0, \\ &f_{XT1,LF} = 32768 \; Hz, \; C_{L,eff} = 6 \; pF \end{aligned} $			210		kΩ
OA _{LF}	LF crystals ⁽⁴⁾	$\begin{split} XTS &= 0, \\ XT1BYPASS &= 0, XT1DRIVEx = 1, \\ f_{XT1,LF} &= 32768 \text{ Hz}, C_{L,eff} = 12 \text{ pF} \end{split}$			300		K12
		$XTS = 0$, $XCAPx = 0^{(6)}$			1		
C	Integrated effective load	XTS = 0, $XCAPx = 1$			5.5		pF
$C_{L,eff}$	capacitance, LF mode ⁽⁵⁾	XTS = 0, $XCAPx = 2$			8.5		ρı
		XTS = 0, $XCAPx = 3$			12.0		
	Duty cycle, LF mode	XTS = 0, Measured at ACLK, $f_{XT1,LF}$ = 32768 Hz		30%		70%	
f _{Fault,LF}	Oscillator fault frequency, LF mode (7)	$XTS = 0^{(8)}$		10		10000	Hz
toruprus	Start-up time, LF mode	$\begin{split} f_{OSC} &= 32768 \text{ Hz, XTS} = 0, \\ \text{XT1BYPASS} &= 0, \text{XT1DRIVEx} = 0, \\ T_{A} &= 25^{\circ}\text{C, C}_{L,\text{eff}} = 6 \text{ pF} \end{split}$	3.0 V		1000		ms
t _{START,LF}	Start-up time, Er mode	$\begin{split} f_{OSC} &= 32768 \text{ Hz, } XTS = 0, \\ XT1BYPASS &= 0, XT1DRIVEx = 3, \\ T_A &= 25^{\circ}C, C_{L,eff} = 12 \text{ pF} \end{split}$	3.0 v		500		1115

- (1) To improve EMI on the XT1 oscillator, the following guidelines should be observed.
 - Keep the trace between the device and the crystal as short as possible.
 - Design a good ground plane around the oscillator pins.
 - Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
 - Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
 - Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins.
 - If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.
- (2) When XT1BYPASS is set, XT1 circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in the Schmitt-trigger Inputs section of this data sheet.
- (3) Maximum frequency of operation of the entire device cannot be exceeded.
- (4) Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the XT1DRIVEx settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following guidelines, but should be evaluated based on the actual crystal selected for the application:

 - For XT1DRIVEx = 0, $C_{L,eff} \le 6$ pF. For XT1DRIVEx = 1, 6 pF $\le C_{L,eff} \le 9$ pF.
 - For XT1DRIVEx = 2, 6 pF \leq C_{L,eff} \leq 10 pF. For XT1DRIVEx = 3, C_{L,eff} \geq 6 pF.
- (5) Includes parasitic bond and package capacitance (approximately 2 pF per pin). Because the PCB adds additional capacitance, verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal.
- Requires external capacitors at both terminals. Values are specified by crystal manufacturers.
- Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies between the MIN and MAX specifications might set the flag.
- Measured with logic-level input frequency but also applies to operation with crystals.

5.16 Crystal Oscillator, XT1, High-Frequency Mode⁽¹⁾

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
		$ \begin{aligned} &f_{OSC} = 4 \text{ MHz}, \\ &XTS = 1, XOSCOFF = 0, \\ &XT1BYPASS = 0, XT1DRIVEx = 0, \\ &T_A = 25^{\circ}C \end{aligned} $			200		
	XT1 oscillator crystal current,	$ \begin{aligned} &f_{OSC} = 12 \text{ MHz}, \\ &XTS = 1, XOSCOFF = 0, \\ &XT1BYPASS = 0, XT1DRIVEx = 1, \\ &T_A = 25^{\circ}C \end{aligned} $	- 3.0 V		260		^
I _{DVCC.HF}	HF mode	$ \begin{aligned} &f_{OSC} = 20 \text{ MHz}, \\ &\text{XTS} = 1, \text{XOSCOFF} = 0, \\ &\text{XT1BYPASS} = 0, \text{XT1DRIVEx} = 2, \\ &T_A = 25^{\circ}\text{C} \end{aligned} $	3.0 V		325		μА
		$ \begin{aligned} &f_{OSC} = 32 \text{ MHz}, \\ &XTS = 1, XOSCOFF = 0, \\ &XT1BYPASS = 0, XT1DRIVEx = 3, \\ &T_A = 25^{\circ}C \end{aligned} $			450		
f _{XT1,HF0}	XT1 oscillator crystal frequency, HF mode 0	XTS = 1, XT1BYPASS = 0, $XT1DRIVEx = 0$ ⁽²⁾		4		8	MHz
f _{XT1,HF1}	XT1 oscillator crystal frequency, HF mode 1	XTS = 1, XT1BYPASS = 0, XT1DRIVEx = 1 ⁽²⁾		8		16	MHz
f _{XT1,HF2}	XT1 oscillator crystal frequency, HF mode 2	XTS = 1, XT1BYPASS = 0, XT1DRIVEx = 2 ⁽²⁾		16		24	MHz
f _{XT1,HF3}	XT1 oscillator crystal frequency, HF mode 3	XTS = 1, XT1BYPASS = 0, XT1DRIVEx = 3 ⁽²⁾		24		32	MHz
f _{XT1,HF,SW}	XT1 oscillator logic-level square- wave input frequency, HF mode, bypass mode	XTS = 1, XT1BYPASS = 1 ⁽³⁾⁽²⁾		0.7		32	MHz
		$\begin{split} &XTS = 1,\\ &XT1BYPASS = 0, XT1DRIVEx = 0,\\ &f_{XT1,HF} = 6\;MHz, C_{L,eff} = 15\;pF \end{split}$			450		
OA _{HF}	Oscillation allowance for	$\begin{split} &XTS = 1,\\ &XT1BYPASS = 0, XT1DRIVEx = 1,\\ &f_{XT1,HF} = 12\;MHz, C_{L,eff} = 15\;pF \end{split}$			320		Ω
OAHF	HF crystals ⁽⁴⁾	$\begin{split} XTS &= 1, \\ XT1BYPASS &= 0, XT1DRIVEx = 2, \\ f_{XT1,HF} &= 20 \text{ MHz}, C_{L,eff} = 15 \text{ pF} \end{split}$			200		22
		$\begin{split} &\text{XTS} = 1, \\ &\text{XT1BYPASS} = 0, \text{XT1DRIVEx} = 3, \\ &f_{\text{XT1,HF}} = 32 \text{ MHz}, \text{ $C_{\text{L,eff}}$} = 15 \text{ pF} \end{split}$			200		
t	Start-up time. HE mode	$\begin{split} f_{OSC} &= 6 \text{ MHz, XTS} = 1, \\ \text{XT1BYPASS} &= 0, \text{XT1DRIVEx} = 0, \\ T_{A} &= 25^{\circ}\text{C, C}_{L,\text{eff}} = 15 \text{ pF} \end{split}$	3.0 V		0.5		me
t _{START,HF}	Start-up time, HF mode	$\begin{aligned} &f_{OSC}=20 \text{ MHz, XTS}=1,\\ &XT1BYPASS=0, XT1DRIVEx=2,\\ &T_{A}=25^{\circ}C, C_{L,eff}=15 \text{ pF} \end{aligned}$	3.0 V		0.3		ms

- (1) To improve EMI on the XT1 oscillator the following guidelines should be observed.
 - Keep the traces between the device and the crystal as short as possible.
 - Design a good ground plane around the oscillator pins.
 - Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
 - Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
 - Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins.
 - If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.
- (2) This represents the maximum frequency that can be input to the device externally. Maximum frequency achievable on the device operation is based on the frequencies present on ACLK, MCLK, and SMCLK cannot be exceed for a given range of operation.
- (3) When XT1BYPASS is set, XT1 circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in the Schmitt-trigger Inputs section of this data sheet.
- (4) Oscillation allowance is based on a safety factor of 5 for recommended crystals.

Crystal Oscillator, XT1, High-Frequency Mode⁽¹⁾ (continued)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
$C_{L,eff}$	Integrated effective load capacitance, HF mode (5)(6)	XTS = 1			1		pF
	Duty cycle, HF mode	XTS = 1, Measured at ACLK, $f_{XT1,HF2}$ = 20 MHz		40%	50%	60%	
f _{Fault,HF}	Oscillator fault frequency, HF mode ⁽⁷⁾	XTS = 1 ⁽⁸⁾		30		300	kHz

- (5) Includes parasitic bond and package capacitance (approximately 2 pF per pin). Because the PCB adds additional capacitance, verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal.
- (6) Requires external capacitors at both terminals. Values are specified by crystal manufacturers. In general, an effective load capacitance of up to 18 pF can be supported.
- (7) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies between the MIN and MAX specifications might set the flag.
- (8) Measured with logic-level input frequency but also applies to operation with crystals.

5.17 Crystal Oscillator, XT2

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT	
	XT2 oscillator crystal current consumption	$ \begin{aligned} &f_{OSC} = 4 \text{ MHz, XT2OFF} = 0, \\ &\text{XT2BYPASS} = 0, \text{XT2DRIVEx} = 0, \\ &T_A = 25^{\circ}\text{C} \end{aligned} $			200			
I _{DVCC.XT2}		$ \begin{aligned} &f_{OSC} = 12 \text{ MHz, XT2OFF} = 0, \\ &\text{XT2BYPASS} = 0, \text{XT2DRIVEx} = 1, \\ &T_A = 25^{\circ}\text{C} \end{aligned} $	- 3.0 V		260			
		$ \begin{aligned} &f_{OSC} = 20 \text{ MHz, } XT2OFF = 0, \\ &XT2BYPASS = 0, XT2DRIVEx = 2, \\ &T_A = 25^{\circ}C \end{aligned} $			325		μА	
		$ \begin{aligned} &f_{OSC} = 32 \text{ MHz, } \text{XT2OFF} = 0, \\ &\text{XT2BYPASS} = 0, \text{XT2DRIVEx} = 3, \\ &T_{A} = 25^{\circ}\text{C} \end{aligned} $			450			
f _{XT2,HF0}	XT2 oscillator crystal frequency, mode 0	XT2DRIVEx = 0, XT2BYPASS = 0 ⁽³⁾		4		8	MHz	
f _{XT2,HF1}	XT2 oscillator crystal frequency, mode 1	XT2DRIVEx = 1, XT2BYPASS = 0 ⁽³⁾		8		16	MHz	
f _{XT2,HF2}	XT2 oscillator crystal frequency, mode 2	XT2DRIVEx = 2, XT2BYPASS = 0 ⁽³⁾		16		24	MHz	
f _{XT2,HF3}	XT2 oscillator crystal frequency, mode 3	XT2DRIVEx = 3, XT2BYPASS = 0 ⁽³⁾		24		32	MHz	
f _{XT2,HF,SW}	XT2 oscillator logic-level square- wave input frequency, bypass mode	XT2BYPASS = 1 ⁽⁴⁾ (3)		0.7		32	MHz	

⁽¹⁾ Requires external capacitors at both terminals. Values are specified by crystal manufacturers. In general, an effective load capacitance of up to 18 pF can be supported.

⁽²⁾ To improve EMI on the XT2 oscillator the following guidelines should be observed.

Keep the traces between the device and the crystal as short as possible.

Design a good ground plane around the oscillator pins.

Prevent crosstalk from other clock or data lines into oscillator pins XT2IN and XT2OUT.

Avoid running PCB traces underneath or adjacent to the XT2IN and XT2OUT pins.

[•] Use assembly materials and processes that avoid any parasitic load on the oscillator XT2IN and XT2OUT pins.

[•] If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.

⁽³⁾ This represents the maximum frequency that can be input to the device externally. Maximum frequency achievable on the device operation is based on the frequencies present on ACLK, MCLK, and SMCLK cannot be exceed for a given range of operation.

⁽⁴⁾ When XT2BYPASS is set, the XT2 circuit is automatically powered down. Input signal is a digital square wave with parametrics defined in the Schmitt-trigger Inputs section of this data sheet.

Crystal Oscillator, XT2 (continued)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (2)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT	
		$XT2DRIVEx = 0$, $XT2BYPASS = 0$, $f_{XT2,HF0} = 6$ MHz, $C_{L,eff} = 15$ pF			450			
04	Oscillation allowance for	$XT2DRIVEx = 1$, $XT2BYPASS = 0$, $f_{XT2,HF1} = 12$ MHz, $C_{L,eff} = 15$ pF			320		Ω	
OA _{HF}	HF crystals ⁽⁵⁾	$XT2DRIVEx = 2$, $XT2BYPASS = 0$, $f_{XT2,HF2} = 20$ MHz, $C_{L,eff} = 15$ pF			200		12	
		$XT2DRIVEx = 3$, $XT2BYPASS = 0$, $f_{XT2,HF3} = 32$ MHz, $C_{L,eff} = 15$ pF			200			
	Start-up time	$f_{OSC} = 6$ MHz, XT2BYPASS = 0, XT2DRIVEx = 0, $T_A = 25^{\circ}$ C, $C_{L,eff} = 15$ pF	3.0 V		0.5		ms	
t _{START,HF}		f_{OSC} = 20 MHz, XT2BYPASS = 0, XT2DRIVEx = 2, T _A = 25°C, C _{L,eff} = 15 pF	3.0 V		0.3		1115	
$C_{L,eff}$	Integrated effective load capacitance, HF mode ⁽⁶⁾⁽¹⁾				1		pF	
	Duty cycle	Measured at ACLK, f _{XT2,HF2} = 20 MHz		40%	50%	60%		
f _{Fault,HF}	Oscillator fault frequency ⁽⁷⁾	XT2BYPASS = 1 (8)		30		300	kHz	

Oscillation allowance is based on a safety factor of 5 for recommended crystals.

5.18 Internal Very-Low-Power Low-Frequency Oscillator (VLO)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
f_{VLO}	VLO frequency	Measured at ACLK	1.8 V to 3.6 V	6	9.4	14	kHz
df _{VLO} /d _T	VLO frequency temperature drift	Measured at ACLK ⁽¹⁾	1.8 V to 3.6 V		0.5		%/°C
df _{VLO} /dV _{CC}	VLO frequency supply voltage drift	Measured at ACLK ⁽²⁾	1.8 V to 3.6 V		4		%/V
	Duty cycle	Measured at ACLK	1.8 V to 3.6 V	40%	50%	60%	

Calculated using the box method: (MAX(-40° C to 85° C) - MIN(-40° C to 85° C)) / MIN(-40° C to 85° C) / (85° C - (-40° C)) Calculated using the box method: (MAX(1.8 V to 3.6 V) - MIN(1.8 V to 3.6 V) / MIN(1.8 V to 3.6 V) / (3.6 V - 1.8 V)

5.19 Internal Reference, Low-Frequency Oscillator (REFO)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN TYP	MAX	UNIT
I _{REFO}	REFO oscillator current consumption	T _A = 25°C	1.8 V to 3.6 V	3		μΑ
	REFO frequency calibrated	Measured at ACLK	1.8 V to 3.6 V	32768		Hz
f _{REFO}	REFO absolute tolerance calibrated	Full temperature range	1.8 V to 3.6 V		±3.5%	
	REFO absolute tolerance calibrated	T _A = 25°C	3 V		±1.5%	
df_{REFO}/d_{T}	REFO frequency temperature drift	Measured at ACLK ⁽¹⁾	1.8 V to 3.6 V	0.01		%/°C
df _{REFO} /dV _{CC}	REFO frequency supply voltage drift	Measured at ACLK ⁽²⁾	1.8 V to 3.6 V	1.0		%/V
	Duty cycle	Measured at ACLK	1.8 V to 3.6 V	40% 50%	60%	
t _{START}	REFO start-up time	40%/60% duty cycle	1.8 V to 3.6 V	25		μs

Calculated using the box method: (MAX(-40° C to 85° C) - MIN(-40° C to 85° C)) / MIN(-40° C to 85° C) / (85° C - (-40° C)) Calculated using the box method: (MAX(1.8 V to 3.6 V) - MIN(1.8 V to 3.6 V) / MIN(1.8 V to 3.6 V) / (3.6 V - 1.8 V)

Includes parasitic bond and package capacitance (approximately 2 pF per pin). Because the PCB adds additional capacitance, verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal.

Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies between the MIN and MAX specifications might set the flag.

Measured with logic-level input frequency but also applies to operation with crystals.

5.20 DCO Frequency

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{DCO(0,0)}	DCO frequency (0, 0) ⁽¹⁾	DCORSELx = 0, $DCOx = 0$, $MODx = 0$	0.07		0.20	MHz
f _{DCO(0,31)}	DCO frequency (0, 31) ⁽¹⁾	DCORSELx = 0, $DCOx = 31$, $MODx = 0$	0.70		1.70	MHz
f _{DCO(1,0)}	DCO frequency (1, 0) ⁽¹⁾	DCORSELx = 1, $DCOx = 0$, $MODx = 0$	0.15		0.36	MHz
f _{DCO(1,31)}	DCO frequency (1, 31) ⁽¹⁾	DCORSELx = 1, $DCOx = 31$, $MODx = 0$	1.47		3.45	MHz
f _{DCO(2,0)}	DCO frequency (2, 0) ⁽¹⁾	DCORSELx = 2, $DCOx = 0$, $MODx = 0$	0.32		0.75	MHz
f _{DCO(2,31)}	DCO frequency (2, 31) ⁽¹⁾	DCORSELx = 2, $DCOx = 31$, $MODx = 0$	3.17		7.38	MHz
f _{DCO(3,0)}	DCO frequency (3, 0) ⁽¹⁾	DCORSELx = 3, $DCOx = 0$, $MODx = 0$	0.64		1.51	MHz
f _{DCO(3,31)}	DCO frequency (3, 31) ⁽¹⁾	DCORSELx = 3, $DCOx = 31$, $MODx = 0$	6.07		14.0	MHz
f _{DCO(4,0)}	DCO frequency (4, 0) ⁽¹⁾	DCORSELx = 4, DCOx = 0, MODx = 0	1.3		3.2	MHz
f _{DCO(4,31)}	DCO frequency (4, 31) ⁽¹⁾	DCORSELx = 4, DCOx = 31, MODx = 0	12.3		28.2	MHz
f _{DCO(5,0)}	DCO frequency (5, 0) ⁽¹⁾	DCORSELx = 5, $DCOx = 0$, $MODx = 0$	2.5		6.0	MHz
f _{DCO(5,31)}	DCO frequency (5, 31) ⁽¹⁾	DCORSELx = 5, DCOx = 31, MODx = 0	23.7		54.1	MHz
f _{DCO(6,0)}	DCO frequency (6, 0) ⁽¹⁾	DCORSELx = 6, DCOx = 0, MODx = 0	4.6		10.7	MHz
f _{DCO(6,31)}	DCO frequency (6, 31) ⁽¹⁾	DCORSELx = 6, DCOx = 31, MODx = 0	39.0		88.0	MHz
f _{DCO(7,0)}	DCO frequency (7, 0) ⁽¹⁾	DCORSELx = 7, DCOx = 0, MODx = 0	8.5		19.6	MHz
f _{DCO(7,31)}	DCO frequency (7, 31) ⁽¹⁾	DCORSELx = 7, DCOx = 31, MODx = 0	60		135	MHz
S _{DCORSEL}	Frequency step between range DCORSEL and DCORSEL + 1	$S_{RSEL} = f_{DCO(DCORSEL+1,DCO)}/f_{DCO(DCORSEL,DCO)}$	1.2		2.3	ratio
S _{DCO}	Frequency step between tap DCO and DCO + 1	$S_{DCO} = f_{DCO(DCORSEL,DCO+1)}/f_{DCO(DCORSEL,DCO)}$	1.02		1.12	ratio
	Duty cycle	Measured at SMCLK	40%	50%	60%	
df _{DCO} /dT	DCO frequency temperature drift ⁽²⁾	f _{DCO} = 1 MHz		0.1		%/°C
df _{DCO} /dV _{CC}	DCO frequency voltage drift ⁽³⁾	f _{DCO} = 1 MHz		1.9		%/V

- (1) When selecting the proper DCO frequency range (DCORSELx), the target DCO frequency, f_{DCO}, should be set to reside within the range of f_{DCO(n, 0),MAX} ≤ f_{DCO} ≤ f_{DCO(n, 31),MIN}, where f_{DCO(n, 0),MAX} represents the maximum frequency specified for the DCO frequency, range n, tap 0 (DCOx = 0) and f_{DCO(n,31),MIN} represents the minimum frequency specified for the DCO frequency, range n, tap 31 (DCOx = 31). This ensures that the target DCO frequency resides within the range selected. It should also be noted that if the actual f_{DCO} frequency for the selected range causes the FLL or the application to select tap 0 or 31, the DCO fault flag is set to report that the selected range is at its minimum or maximum tap setting.
- (2) Calculated using the box method: $(MAX(-40^{\circ}C \text{ to } 85^{\circ}C) MIN(-40^{\circ}C \text{ to } 85^{\circ}C)) / MIN(-40^{\circ}C \text{ to } 85^{\circ}C) / (85^{\circ}C (-40^{\circ}C))$
- (3) Calculated using the box method: (MAX(1.8 V to 3.6 V) MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V 1.8 V)

Figure 5-10. Typical DCO Frequency

5.21 PMM, Brownout Reset (BOR)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _(DVCC_BOR_IT-)	BOR_H on voltage, DV_CC falling level	$\mid dDV_{CC}/d_t \mid < 3 \text{ V/s}$			1.45	V
V _(DVCC_BOR_IT+)	BOR _H off voltage, DV _{CC} rising level	$\mid dDV_{CC}/d_t \mid < 3 \text{ V/s}$	0.80	1.30	1.50	V
V _(DVCC_BOR_hys)	BOR _H hysteresis		50		250	mV
t _{RESET}	Pulse duration required at RST/NMI pin to accept a reset		2			μs

5.22 PMM, Core Voltage

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{CORE3} (AM)	Core voltage, active mode, PMMCOREV = 3	2.4 V ≤ DV _{CC} ≤ 3.6 V		1.90		V
V _{CORE2} (AM)	Core voltage, active mode, PMMCOREV = 2	2.2 V ≤ DV _{CC} ≤ 3.6 V		1.80		٧
V _{CORE1} (AM)	Core voltage, active mode, PMMCOREV = 1	2.0 V ≤ DV _{CC} ≤ 3.6 V		1.60		٧
V _{CORE0} (AM)	Core voltage, active mode, PMMCOREV = 0	1.8 V ≤ DV _{CC} ≤ 3.6 V		1.40		٧
V _{CORE3} (LPM)	Core voltage, low-current mode, PMMCOREV = 3	2.4 V ≤ DV _{CC} ≤ 3.6 V		1.94		٧
V _{CORE2} (LPM)	Core voltage, low-current mode, PMMCOREV = 2	2.2 V ≤ DV _{CC} ≤ 3.6 V		1.84		٧
V _{CORE1} (LPM)	Core voltage, low-current mode, PMMCOREV = 1	2.0 V ≤ DV _{CC} ≤ 3.6 V		1.64		V
V _{CORE0} (LPM)	Core voltage, low-current mode, PMMCOREV = 0	1.8 V ≤ DV _{CC} ≤ 3.6 V		1.44		V

5.23 PMM, SVS High Side

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		SVSHE = 0, DV _{CC} = 3.6 V		0		nA
I _(SVSH)	SVS current consumption	SVSHE = 1, DV_{CC} = 3.6 V, SVSHFP = 0		200		
		SVSHE = 1, DV _{CC} = 3.6 V, SVSHFP = 1		1.5		μA
		SVSHE = 1, SVSHRVL = 0	1.57	1.68	1.78	
V	SVS _H on voltage level ⁽¹⁾	SVSHE = 1, SVSHRVL = 1	1.79	1.88	1.98	V
V _(SVSH_IT-)	SVSH on voltage level	SVSHE = 1, SVSHRVL = 2	1.98	2.08	2.21	V
		SVSHE = 1, SVSHRVL = 3	2.10	2.18	2.31	
	SVS _H off voltage level ⁽¹⁾	SVSHE = 1, SVSMHRRL = 0	1.62	1.74	1.85	
		SVSHE = 1, SVSMHRRL = 1	1.88	1.94	2.07	V
		SVSHE = 1, SVSMHRRL = 2	2.07	2.14	2.28	
V		SVSHE = 1, SVSMHRRL = 3	2.20	2.30	2.42	
V _(SVSH_IT+)		SVSHE = 1, SVSMHRRL = 4	2.32	2.40	2.55	
		SVSHE = 1, SVSMHRRL = 5	2.52	2.70	2.88	
		SVSHE = 1, SVSMHRRL = 6	2.90	3.10	3.23	
		SVSHE = 1, SVSMHRRL = 7	2.90	3.10	3.23	
4	CVC anaparation dalar.	SVSHE = 1, dV _{DVCC} /dt = 10 mV/µs, SVSHFP = 1		2.5		
t _{pd(SVSH)}	SVS _H propagation delay	SVSHE = 1, $dV_{DVCC}/dt = 1 \text{ mV/}\mu\text{s}$, SVSHFP = 0		20		μs
	CVC as a set dalay time	SVSHE = 0 → 1, SVSHFP = 1		12.5		
t(SVSH)	SVS _H on or off delay time	SVSHE = $0 \rightarrow 1$, SVSHFP = 0		100		μs
dV _{DVCC} /dt	DV _{CC} rise time		0		1000	V/s

⁽¹⁾ The SVS_H settings available depend on the VCORE (PMMCOREVx) setting. See the Power Management Module and Supply Voltage Supervisor chapter in the MSP430x5xx and MSP430x6xx Family User's Guide on recommended settings and use.

5.24 PMM, SVM High Side

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		SVMHE = 0, DV _{CC} = 3.6 V		0		π Λ
I _(SVMH)	SVM _H current consumption	SVMHE= 1, DV _{CC} = 3.6 V, SVMHFP = 0		200		nA
		SVMHE = 1, DV _{CC} = 3.6 V, SVMHFP = 1		1.5		μΑ
		SVMHE = 1, SVSMHRRL = 0	1.62	1.74	1.85	
		SVMHE = 1, SVSMHRRL = 1	1.88	1.94	2.07	
	SVM _H on or off voltage level ⁽¹⁾	SVMHE = 1, SVSMHRRL = 2	2.07	2.14	2.28	
		SVMHE = 1, SVSMHRRL = 3	2.20	2.30	2.42	
$V_{(SVMH)}$		SVMHE = 1, SVSMHRRL = 4	2.32	2.40	2.55	V
		SVMHE = 1, SVSMHRRL = 5	2.52	2.70	2.88	
		SVMHE = 1, SVSMHRRL = 6	2.90	3.10	3.23	
		SVMHE = 1, SVSMHRRL = 7	2.90	3.10	3.23	
		SVMHE = 1, SVMHOVPE = 1		3.75		
4	CVM propagation dolor	SVMHE = 1, dV _{DVCC} /dt = 10 mV/µs, SVMHFP = 1		2.5		
t _{pd(SVMH)}	SVM _H propagation delay	SVMHE = 1, dV _{DVCC} /dt = 1 mV/µs, SVMHFP = 0		20		μs
4	CVM on or off doloy time	SVMHE = 0 → 1, SVMHFP = 1		12.5		
t _(SVMH)	SVM _H on or off delay time	SVMHE = $0 \rightarrow 1$, SVMHFP = 0		100		μs

⁽¹⁾ The SVM_H settings available depend on the VCORE (PMMCOREVx) setting. See the *Power Management Module and Supply Voltage Supervisor* chapter in the *MSP430x5xx and MSP430x6xx Family User's Guide* on recommended settings and use.

5.25 PMM, SVS Low Side

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	SVS _L current consumption	SVSLE = 0, PMMCOREV = 2	0		A	
I _(SVSL)		SVSLE = 1, PMMCOREV = 2, SVSLFP = 0		200		nA
		SVSLE = 1, PMMCOREV = 2, SVSLFP = 1		1.5		μΑ
	SVS _L propagation delay	SVSLE = 1, dV _{CORE} /dt = 10 mV/µs, SVSLFP = 1		2.5		
t _{pd(SVSL)}		SVSLE = 1, $dV_{CORE}/dt = 1 \text{ mV/}\mu\text{s}$, SVSLFP = 0		20		μs
4	SVS _L on or off delay time	SVSLE = $0 \rightarrow 1$, $dV_{CORE}/dt = 10 \text{ mV/}\mu\text{s}$, SVSLFP = 1	12.5			
t _(SVSL)		SVSLE = $0 \rightarrow 1$, $dV_{CORE}/dt = 1 \text{ mV/}\mu\text{s}$, SVSLFP = 0		100		μs

5.26 PMM, SVM Low Side

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
	SVM _L current consumption	SVMLE = 0, PMMCOREV = 2	0		~ Λ		
I _(SVML)		SVMLE = 1, PMMCOREV = 2, SVMLFP = 0		200		nA	
		SVMLE = 1, PMMCOREV = 2, SVMLFP = 1		1.5		μΑ	
4	SVM _L propagation delay	SVMLE = 1, dV _{CORE} /dt = 10 mV/µs, SVMLFP = 1		2.5		110	
t _{pd(SVML)}		SVMLE = 1, $dV_{CORE}/dt = 1 \text{ mV/}\mu\text{s}$, SVMLFP = 0		20		μs	
	SVM _L on or off delay time	SVMLE = $0 \rightarrow 1$, $dV_{CORE}/dt = 10 \text{ mV/}\mu\text{s}$, SVMLFP = 1	12.5				
t _(SVML)		SVMLE = $0 \rightarrow 1$, $dV_{CORE}/dt = 1$ mV/ μ s, SVMLFP = 0		100		μs	

5.27 Wake-up Times From Low-Power Modes and Reset

	9 11 9	. •	`		,		
	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
	Wake-up time from LPM2,	PMMCOREV = SVSMLRRL = n	f _{MCLK} ≥ 4.0 MHz		3.5	7.5	
t _{WAKE-UP-FAST}	LPM3, or LPM4 to active mode ⁽¹⁾	(where n = 0, 1, 2, or 3), SVSLFP = 1	1.0 MHz < f _{MCLK} < 4.0 MHz		4.5	9	μs
twake-up-slow	Wake-up time from LPM2, LPM3 or LPM4 to active mode ⁽²⁾⁽³⁾	PMMCOREV = SVSMLRRL = n (where n = 0, 1, 2, or 3), SVSLFP = 0			150	165	μs
t _{WAKE-UP-LPM5}	Wake-up time from LPM4.5 to active mode (4)				2	3	ms
t _{WAKE-UP-RESET}	Wake-up time from RST or BOR event to active mode (4)				2	3	ms

⁽¹⁾ This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the performance mode of the low-side supervisor (SVS_L) and low-side monitor (SVM_L). t_{WAKE-UP-FAST} is possible with SVS_L and SVM_L in full performance mode or disabled. For specific register settings, see the *Low-Side SVS* and *SVM* Control and Performance Mode Selection section in the Power Management Module and Supply Voltage Supervisor chapter of the MSP430x5xx and MSP430x6xx Family User's Guide.

⁽²⁾ This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the performance mode of the low-side supervisor (SVS_L) and low-side monitor (SVM_L). t_{WAKE-UP-SLOW} is set with SVS_L and SVM_L in normal mode (low current mode). For specific register settings, see the *Low-Side SVS* and SVM Control and Performance Mode Selection section in the Power Management Module and Supply Voltage Supervisor chapter of the MSP430x5xx and MSP430x6xx Family User's Guide.

⁽³⁾ The wake-up times from LPM0 and LPM1 to AM are not specified. They are proportional to MCLK cycle time but are not affected by the performance mode settings as for LPM2, LPM3, and LPM4.

⁽⁴⁾ This value represents the time from the wake-up event to the reset vector execution.

5.28 Timer_A

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	MAX	UNIT
f _{TA}	Timer_A input clock frequency	Internal: SMCLK or ACLK, External: TACLK, Duty cycle = 50% ±10%	1.8 V, 3.0 V		25	MHz
t _{TA,cap}	Timer_A capture timing	All capture inputs, Minimum pulse duration required for capture	1.8 V, 3.0 V	20		ns

5.29 Timer_B

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN N	MAX	UNIT
f _{TB}	Timer_B input clock frequency	Internal: SMCLK or ACLK, External: TBCLK, Duty cycle = 50% ±10%	1.8 V, 3.0 V		25	MHz
t _{TB,cap}	Timer_B capture timing	All capture inputs, minimum pulse duration required for capture	1.8 V, 3.0 V	20		ns

5.30 USCI (UART Mode) Clock Frequency

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
f _{USCI}	USCI input clock frequency	Internal: SMCLK or ACLK, External: UCLK, Duty cycle = 50% ±10%		f _{SYSTEM}	MHz
f _{BITCLK}	BITCLK clock frequency (equals baud rate in MBaud)			1	MHz

5.31 USCI (UART Mode)

	PARAMETER	V _{cc}	MIN	MAX	UNIT
		2.2 V	50	600	
		3 V	50	600	ns

⁽¹⁾ Pulses on the UART receive input (UCxRX) that are shorter than the UART receive deglitch time are suppressed. To make sure that pulses are correctly recognized, their duration should exceed the maximum specification of the deglitch time.

5.32 USCI (SPI Master Mode) Clock Frequency

PARAMETER		TEST CONDITIONS	MIN	MAX	UNIT
f _{USCI}	USCI input clock frequency	Internal: SMCLK or ACLK, Duty cycle = 50% ±10%		f _{SYSTEM}	MHz

5.33 USCI (SPI Master Mode)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (see Figure 5-11 and Figure 5-12)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	MAX	UNIT
f _{USCI}	USCI input clock frequency	SMCLK or ACLK, Duty cycle = 50% ±10%			f _{SYSTEM}	MHz
		PMMCOREV = 0	1.8 V	55		
	SOMI input data setup time	PIMINICOREV = 0	3.0 V	38		20
t _{SU,MI}		PMMCOREV = 3	2.4 V	30		ns
		PIMINICOREV = 3	3.0 V	25		
	SOMI input data hold time	DMMCOREV 0	1.8 V	0		ns
		PMMCOREV = 0	3.0 V	0		
t _{HD,MI}		PMMCOREV = 3	2.4 V	0		
			3.0 V	0		
		UCLK edge to SIMO valid,	1.8 V		20	
	2014 C (2)	$C_L = 20 \text{ pF}, PMMCOREV = 0$	3.0 V		18	
t _{VALID,MO}	SIMO output data valid time ⁽²⁾	UCLK edge to SIMO valid,	2.4 V		16	
		$C_L = 20 \text{ pF}, PMMCOREV = 3$	3.0 V		15	
		O OO TE PIMACOPEY O	1.8 V	-10		ns
	(2)	$C_L = 20 \text{ pF}, PMMCOREV = 0$	3.0 V	-8		
t _{HD,MO}	SIMO output data hold time (3)	O OO TE PIMAOOPEY O	2.4 V	-10		
		$C_L = 20 \text{ pF}, PMMCOREV = 3$	3.0 V	-8		

 $f_{UCxCLK} = 1/2t_{LO/HI} \text{ with } t_{LO/HI} \geq \max(t_{VALID,MO(USCI)} + t_{SU,SI(Slave)}, t_{SU,MI(USCI)} + t_{VALID,SO(Slave)}) \\ \text{For the slave parameters } t_{SU,SI(Slave)} \text{ and } t_{VALID,SO(Slave)}, \text{ see the SPI parameters of the attached slave.} \\ \text{Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams}$ in Figure 5-11 and Figure 5-12.

⁽³⁾ Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure 5-11 and Figure 5-12.

Figure 5-11. SPI Master Mode, CKPH = 0

Figure 5-12. SPI Master Mode, CKPH = 1

MSP430F5418A

5.34 USCI (SPI Slave Mode)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾ (see Figure 5-13 and Figure 5-14)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	MAX	UNIT
		DIAMACOREV. O	1.8 V	11		
	0.751 1.00	PMMCOREV = 0	3.0 V	8		
t _{STE,LEAD}	STE lead time, STE low to clock	PLULOODEV O	2.4 V	7		ns
		PMMCOREV = 3	3.0 V	6		
		PMMOODEN 0	1.8 V	3		
	0.75	PMMCOREV = 0	3.0 V	3		
t _{STE,LAG}	STE lag time, Last clock to STE high	PMMOODEN 0	2.4 V	3		ns
		PMMCOREV = 3	3.0 V	3		
		DIMODDEV. C	1.8 V		66	
	OTE and the OTE books OOM date and	PMMCOREV = 0	3.0 V		50	
t _{STE,ACC}	STE access time, STE low to SOMI data out		2.4 V		36	ns
		PMMCOREV = 3	3.0 V		30	
	STE disable time, STE high to SOMI high	DMMOODEN/ 0	1.8 V		30	ns
		PMMCOREV = 0	3.0 V		23	
t _{STE,DIS}	impedance	DMMACODEV 2	2.4 V		16	
		PMMCOREV = 3	3.0 V		13	
		DMMCODEV 0	1.8 V	5		
	ONAO ingrata data a atau diana	PMMCOREV = 0 PMMCOREV = 3	3.0 V	5		
t _{SU,SI}	SIMO input data setup time		2.4 V	2		ns
			3.0 V	2		
			1.8 V	5		
	0040	PMMCOREV = 0	3.0 V	5		
t _{HD,SI}	SIMO input data hold time	PLULOODEV O	2.4 V	5		ns
		PMMCOREV = 3	3.0 V	5		
		UCLK edge to SOMI valid,	1.8 V		76	
	2014	C _L = 20 pF, PMMCOREV = 0	3.0 V		60	
t _{VALID,SO} SOMI output data valid time ⁽²⁾	SOMI output data valid time (2)	UCLK edge to SOMI valid,	2.4 V		44	ns
	$C_L = 20 \text{ pF}, PMMCOREV = 3$	3.0 V		40		
		0 00 = 5 014100051/ 0	1.8 V	18		
	20M (3)	$C_L = 20 \text{ pF}, \text{ PMMCOREV} = 0$	3.0 V	12		ns
t _{HD,SO}	SOMI output data hold time (3)	C _L = 20 pF, PMMCOREV = 3	2.4 V	10		
			3.0 V	8		

 ⁽¹⁾ f_{UCxCLK} = 1/2t_{LO/HI} with t_{LO/HI} ≥ max(t_{VALID,MO(Master)} + t_{SU,SI(USCI)}, t_{SU,MI(Master)} + t_{VALID,SO(USCI)})
 For the master parameters t_{SU,MI(Master)} and t_{VALID,MO(Master)}, see the SPI parameters of the attached master.
 (2) Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams in Figure 5-13 and Figure 5-14.

⁽³⁾ Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure 5-13 and Figure 5-14.

Figure 5-13. SPI Slave Mode, CKPH = 0

Figure 5-14. SPI Slave Mode, CKPH = 1

MSP430F5418A

5.35 USCI (I²C Mode)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	MAX	UNIT
f _{USCI}	USCI input clock frequency	Internal: SMCLK or ACLK, External: UCLK, Duty cycle = 50% ±10%			f _{SYSTEM}	MHz
f _{SCL}	SCL clock frequency		2.2 V, 3 V	0	400	kHz
	Held time (remented) CTART	f _{SCL} ≤ 100 kHz	221/21/	4.0		
t _{HD,STA}	Hold time (repeated) START	f _{SCL} > 100 kHz	2.2 V, 3 V	0.6		μs
	Octor for for a removated OTART	f _{SCL} ≤ 100 kHz	0.01/.01/	4.7		
t _{SU,STA}	Setup time for a repeated START	f _{SCL} > 100 kHz	2.2 V, 3 V	0.6	.6	μs
t _{HD,DAT}	Data hold time		2.2 V, 3 V	0		ns
t _{SU,DAT}	Data setup time		2.2 V, 3 V	250		ns
	Outure these for OTOD	f _{SCL} ≤ 100 kHz	0.01/.01/	4.0		
t _{SU,STO}	Setup time for STOP	f _{SCL} > 100 kHz	2.2 V, 3 V	0.6		μs
	Dulan direction of aniloso are annual business tilles		2.2 V	50	600	
t _{SP}	Pulse duration of spikes suppressed by input filter		3 V	50	600	ns

Figure 5-15. I²C Mode Timing

5.36 12-Bit ADC, Power Supply and Input Range Conditions

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
AV _{CC}	Analog supply voltage	AVCC and DVCC are connected together, AVSS and DVSS are connected together, $V_{(AVSS)} = V_{(DVSS)} = 0 V$		2.2		3.6	V
V _(Ax)	Analog input voltage range (2)	All ADC12 analog input pins Ax		0		AV_{CC}	V
	Operating supply current into	5 O MI I-(4)	2.2 V		125	155	
IADC12_A	Operating supply current into AVCC terminal (3)	$f_{ADC12CLK} = 5.0 \text{ MHz}^{(4)}$	3 V		150	220	μA
C _I	Input capacitance	Only one terminal Ax can be selected at one time	2.2 V		20	25	pF
R _I	Input MUX ON-resistance	0 V ≤ V _{Ax} ≤ AVCC		10	200	1900	Ω

⁽¹⁾ The leakage current is specified by the digital I/O input leakage.

5.37 12-Bit ADC, Timing Parameters

PAF	RAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
		For specified performance of ADC12 linearity parameters using an external reference voltage or AVCC as reference ⁽¹⁾		0.45	4.8	5.0	
f _{ADC12CLK} ADC conversion clock	For specified performance of ADC12 linearity parameters using the internal reference ⁽²⁾	2.2 V, 3 V	0.45	2.4	4.0	MHz	
		For specified performance of ADC12 linearity parameters using the internal reference (3)		0.45	2.4	2.7	
f _{ADC12OSC}	Internal ADC12 oscillator (4)	ADC12DIV = 0, f _{ADC12CLK} = f _{ADC12OSC}	2.2 V, 3 V	4.2	4.8	5.4	MHz
	Conversion time	REFON = 0, Internal oscillator, ADC12OSC used for ADC conversion clock	2.2 V, 3 V	2.4		3.1	
tCONVERT	Conversion time	External f _{ADC12CLK} from ACLK, MCLK, or SMCLK, ADC12SSEL ≠ 0			13 x 1 / f _{ADC12CLK}		μs
t _{Sample}	Sampling time	$R_S = 400 \Omega$, $R_I = 1000 \Omega$, $C_I = 20 pF$, $\tau = (R_S + R_I) \times C_I$ (5)	2.2 V, 3 V	1000			ns

⁽¹⁾ REFOUT = 0, external reference voltage: SREF2 = 0, SREF1 = 1, SREF0 = 0. AVCC as reference voltage: SREF2 = 0, SREF1 = 0, SREF0 = 0. The specified performance of the ADC12 linearity is ensured when using the ADC12OSC. For other clock sources, the specified performance of the ADC12 linearity is ensured with f_{ADC12CLK} maximum of 5.0 MHz.

⁽²⁾ The analog input voltage range must be within the selected reference voltage range V_{R+} to V_{R-} for valid conversion results. If the reference voltage is supplied by an external source or if the internal reference voltage is used and REFOUT = 1, then decoupling capacitors are required. See Section 5.41 and Section 5.42.

⁽³⁾ The internal reference supply current is not included in current consumption parameter IADC12 A-

⁽⁴⁾ ADC12ON = 1, REFON = 0, SHT0 = 0, SHT1 = 0, ADC12DIV = 0.

⁽²⁾ SREF2 = 0, SREF1 = 1, SREF0 = 0, ADC12SR = 0, REFOUT = 1

⁽³⁾ SREF2 = 0, SREF1 = 1, SREF0 = 0, ADC12SR = 0, REFOUT = 0. The specified performance of the ADC12 linearity is ensured when using the ADC12OSC divided by 2.

⁽⁴⁾ The ADC12OSC is sourced directly from MODOSC inside the UCS.

⁽⁵⁾ Approximately 10 Tau (τ) are needed to get an error of less than ±0.5 LSB:
t_{Sample} = In(2ⁿ⁺¹) × (R_S + R_I) × C_I + 800 ns, where n = ADC resolution = 12, R_S = external source resistance

5.38 12-Bit ADC, Linearity Parameters Using an External Reference Voltage or AVCC as Reference Voltage

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
_	Late and the enity area (1)	1.4 V \leq dVREF \leq 1.6 V ⁽²⁾	227 27			±2.0	1 CD
Eı	Integral linearity error ⁽¹⁾	1.6 V < dVREF ⁽²⁾	2.2 V, 3 V			±1.7	LSB
E _D	Differential linearity error ⁽¹⁾	(2)	2.2 V, 3 V			±1.0	LSB
_	Offset error ⁽³⁾	dVREF ≤ 2.2 V ⁽²⁾	2.2 V, 3 V		±1.0	±2.0	1.00
Eo	Offset error(3)	dVREF > 2.2 V ⁽²⁾	2.2 V, 3 V		±1.0	±2.0	LSB
E_G	Gain error ⁽³⁾	(2)	2.2 V, 3 V		±1.0	±2.0	LSB
_	Totaladiv.eta d. annan	dVREF ≤ 2.2 V ⁽²⁾	2.2 V, 3 V		±1.4	±3.5	1.00
E _T Total unad	Total unadjusted error	dVREF > 2.2 V ⁽²⁾	2.2 V, 3 V		±1.4	±3.5	LSB

⁽¹⁾ Parameters are derived using the histogram method.

5.39 12-Bit ADC, Linearity Parameters Using the Internal Reference Voltage

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS ⁽¹⁾		V _{CC}	MIN	TYP	MAX	UNIT
_	Integral linearity	ADC12SR = 0, REFOUT = 1	f _{ADC12CLK} ≤ 4.0 MHz	227 27			±1.7	LSB
Eı	error ⁽²⁾	ADC12SR = 0, REFOUT = 0	f _{ADC12CLK} ≤ 2.7 MHz	2.2 V, 3 V			±2.5	LSB
		ADC12SR = 0, REFOUT = 1	f _{ADC12CLK} ≤ 4.0 MHz		-1.0		+1.5	
E _D	Differential linearity error ⁽²⁾	ADC12SR = 0, REFOUT = 1	f _{ADC12CLK} ≤ 2.7 MHz	2.2 V, 3 V	-1.0		+1.0	LSB
	inicantly circi	ADC12SR = 0, REFOUT = 0	f _{ADC12CLK} ≤ 2.7 MHz		-1.0		+2.5	
_	Offset error ⁽³⁾	ADC12SR = 0, REFOUT = 1	f _{ADC12CLK} ≤ 4.0 MHz	2.2 V, 3 V		±2.0	±4.0	LSB
Eo	Offset effor	ADC12SR = 0, REFOUT = 0	f _{ADC12CLK} ≤ 2.7 MHz	2.2 V, 3 V		±2.0	±4.0	LOD
г	Gain error ⁽³⁾	ADC12SR = 0, REFOUT = 1	f _{ADC12CLK} ≤ 4.0 MHz	2.2 V, 3 V		±1.0	±2.5	LSB
E _G	Gain enors	ADC12SR = 0, REFOUT = 0	f _{ADC12CLK} ≤ 2.7 MHz	2.2 V, 3 V			±1.5% ⁽⁴⁾	VREF
_	Total unadjusted	ADC12SR = 0, REFOUT = 1	f _{ADC12CLK} ≤ 4.0 MHz	2.2 V, 3 V		±2	±5	LSB
E _T	error	ADC12SR = 0, REFOUT = 0	f _{ADC12CLK} ≤ 2.7 MHz	2.2 V, 3 V			±1.5% ⁽⁴⁾	VREF

⁽¹⁾ The internal reference voltage is selected by: SREF2 = 0 or 1, SREF1 = 1, SREF0 = 1. $dVREF = V_{R+} - V_{R-}$.

⁽²⁾ The external reference voltage is selected by: SREF2 = 0 or 1, SREF1 = 1, SREF0 = 0. dVREF = V_{R+} - V_{R+} V_{R+} < AVCC, V_{R-} > AVSS. Unless otherwise mentioned, dVREF > 1.5 V. Impedance of the external reference voltage R < 100 Ω, and two decoupling capacitors, 10 μF and 100 nF, should be connected to VREF to decouple the dynamic current. See also the MSP430x5xx and MSP430x6xx Family User's Guide.</p>

⁽³⁾ Parameters are derived using a best fit curve.

⁽²⁾ Parameters are derived using the histogram method.

⁽³⁾ Parameters are derived using a best fit curve.

⁽⁴⁾ The gain error and total unadjusted error are dominated by the accuracy of the integrated reference module absolute accuracy. In this mode the reference voltage used by the ADC12_A is not available on a pin.

5.40 12-Bit ADC, Temperature Sensor and Built-In V_{MID}⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
V	See (2)	ADC12ON = 1, INCH = 0Ah,	2.2 V		680		mV
V _{SENSOR}	See V	$T_A = 0$ °C	3 V		680		IIIV
TC		ADC12ON = 1, INCH = 0Ah	2.2 V		2.25		mV/°C
TC _{SENSOR}		ADC 120N = 1, INCH = 0AII	3 V		2.25		IIIV/ C
	Sample time required if	ADC12ON = 1, $INCH = 0Ah$,	2.2 V	100			
t _{SENSOR} (sample)	channel 10 is selected (3)	Error of conversion result ≤ 1 LSB	3 V	100			μs
	AV _{CC} divider at channel 11, V _{AVCC} factor	ADC12ON = 1, INCH = 0Bh		0.48	0.5	0.52	V _{AVCC}
V _{MID}	AV divider et channel 11	ADC12ON = 1, INCH = 0Bh	2.2 V	1.06	1.1	1.14	V
	AV _{CC} divider at channel 11	ADC12ON = 1, INCH = 0BIT	3 V	1.44	1.5	1.56	V
t _{VMID(sample)}	Sample time required if channel 11 is selected (4)	ADC12ON = 1, INCH = 0Bh, Error of conversion result ≤ 1 LSB	2.2 V, 3 V	1000			ns

- (1) The temperature sensor is provided by the REF module. See the REF module parametric I_{REF+} regarding the current consumption of the temperature sensor.
- (2) The temperature sensor offset can be significant. TI recommends a single-point calibration to minimize the offset error of the built-in temperature sensor. The TLV structure contains calibration values for 30°C ±3°C and 85°C ±3°C for each of the available reference voltage levels. The sensor voltage can be computed as V_{SENSOR} × (Temperature, °C) + V_{SENSOR}, where TC_{SENSOR} and V_{SENSOR} can be computed from the calibration values for higher accuracy. See also the MSP430x5xx and MSP430x6xx Family User's Guide.
- (3) The typical equivalent impedance of the sensor is 51 k Ω . The sample time required includes the sensor on time, $t_{SENSOR(on)}$.
- (4) The on time (t_{VMID(on)}) is included in the sampling time (t_{VMID(sample)}); no additional on time is needed.

Figure 5-16. Typical Temperature Sensor Voltage

5.41 REF, External Reference

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP MAX	UNIT
V _{eREF+}	Positive external reference voltage input	V _{eREF+} > V _{REF} _/V _{eREF} _ (2)		1.4	AV _{CC}	V
V _{REF} _/V _{eREF} _	Negative external reference voltage input	V _{eREF+} > V _{REF-} /V _{eREF-} ⁽³⁾		0	1.2	V
(V _{eREF+} – V _{REF-} /V _{eREF-})	Differential external reference voltage input	V _{eREF+} > V _{REF} _/V _{eREF} _ ⁽⁴⁾		1.4	AV _{CC}	٧
Iveref+,	Statio input ourrent	$ \begin{array}{l} 1.4~V \leq V_{eREF+} \leq V_{AVCC}, \\ V_{eREF-} = 0~V, f_{ADC12CLK} = 5~MHz, \\ ADC12SHTx = 1h, \\ Conversion~rate~200~ksps \end{array} $	2.2 V, 3 V	-26	26	
IVREF-/VeREF-	Static input current	$\begin{array}{l} 1.4~V \leq V_{eREF+} \leq V_{AVCC}, \\ V_{eREF-} = 0~V,~f_{ADC12CLK} = 5~MHz, \\ ADC12SHTx = 8h, \\ Conversion~rate~20~ksps \end{array}$	2.2 V, 3 V	-1	1	μА
C _{VREF+/-}	Capacitance at VREF+ or VREF-terminals	See ⁽⁵⁾		10		μF

⁽¹⁾ The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, C_i, is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy.

5.42 REF, Built-In Reference

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
		REFVSEL = {2} for 2.5 V, REFON = REFOUT = 1, I _{VREF+} = 0 A	3 V		2.50	±1.5%	
V _{REF+}	Positive built-in reference voltage output	REFVSEL = $\{1\}$ for 2.0 V, REFON = REFOUT = 1, I_{VREF+} = 0 A	3 V		1.98	±1.5%	V
		REFVSEL = $\{0\}$ for 1.5 V, REFON = REFOUT = 1, I_{VREF+} = 0 A	2.2 V, 3 V		1.49	±1.5%	
	AV _{CC} minimum voltage,	REFVSEL = {0} for 1.5 V		2.2			
AV _{CC(min)}	Positive built-in reference	REFVSEL = {1} for 2.0 V		2.3			V
	active	REFVSEL = {2} for 2.5 V		2.8			
		ADC12SR = 1, REFON = 1, REFOUT = 0, REFBURST = 0	3 V		70	100	μΑ
	Operating supply current into	ADC12SR = 1, REFON = 1, REFOUT = 1, REFBURST = 0	3 V		0.45	0.75	mA
I _{REF+}	AVCC terminal (2) (3)	ADC12SR = 0, REFON = 1, REFOUT = 0, REFBURST = 0	3 V		210	310	μΑ
		ADC12SR = 0, REFON = 1, REFOUT = 1, REFBURST = 0	3 V		0.95	1.7	mA

⁽¹⁾ The reference is supplied to the ADC by the REF module and is buffered locally inside the ADC. The ADC uses two internal buffers, one smaller and one larger for driving the VREF+ terminal. When REFOUT = 1, the reference is available at the VREF+ terminal and is used as the reference for the conversion and uses the larger buffer. When REFOUT = 0, the reference is only used as the reference for the conversion and uses the smaller buffer.

⁽²⁾ The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements.

⁽³⁾ The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements.

⁽⁴⁾ The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements.

⁽⁵⁾ Two decoupling capacitors, 10 μF and 100 nF, should be connected to VREF to decouple the dynamic current required for an external reference source if it is used for the ADC12_A. See also the MSP430x5xx and MSP430x6xx Family User's Guide.

⁽²⁾ The internal reference current is supplied from the AVCC terminal. Consumption is independent of the ADC12ON control bit, unless a conversion is active. REFOUT = 0 represents the current contribution of the smaller buffer. REFOUT = 1 represents the current contribution of the larger buffer without external load.

⁽³⁾ The temperature sensor is provided by the REF module. Its current is supplied from the AVCC terminal and is equivalent to I_{REF+} with REFON = 1 and REFOUT = 0.

REF, Built-In Reference (continued)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
I _{L(VREF+)}	Load-current regulation, VREF+ terminal ⁽⁴⁾	REFVSEL = $\{0, 1, 2\}$ $I_{VREF+} = +10 \mu A \text{ or } -1000 \mu A$ $AV_{CC} = AV_{CC \ (min)}$ for each reference level, REFVSEL = $\{0, 1, 2\}$, REFON = REFOUT = 1				2500	μV/mA
C _{VREF+}	Capacitance at VREF+ terminals	REFON = REFOUT = 1		20		100	pF
TC _{REF+}	Temperature coefficient of built-in reference ⁽⁵⁾	I _{VREF+} = 0 A, REFVSEL = {0, 1, 2}, REFON = 1, REFOUT = 0 or 1			30	50	ppm/ °C
PSRR_DC	Power supply rejection ratio (DC)	$\begin{array}{l} AV_{CC} = AV_{CC(min)} \text{ to } AV_{CC(max)}, \ T_A = 25^{\circ}C, \\ REFVSEL = \{0,\ 1,\ 2\}, \ REFON = 1, \\ REFOUT = 0 \text{ or } 1 \end{array}$			120	300	μV/V
PSRR_AC	Power supply rejection ratio (AC)	$\begin{array}{l} AV_{CC} = AV_{CC(min)} \text{ to } AV_{CC(max)}, \ T_A = 25^{\circ}C, \\ f = 1 \text{ kHz}, \ \Delta Vpp = 100 \text{ mV}, \\ REFVSEL = \{0,\ 1,\ 2\}, \ REFON = 1, \\ REFOUT = 0 \text{ or } 1 \end{array}$			6.4		mV/V
	Cattling time of reference	$AV_{CC} = AV_{CC(min)}$ to $AV_{CC(max)}$, REFVSEL = {0, 1, 2}, REFOUT = 0, REFON = 0 \rightarrow 1			75		
t _{SETTLE}	Settling time of reference voltage ⁽⁶⁾	$\begin{array}{l} AV_{CC} = AV_{CC(min)} \ to \ AV_{CC(max)}, \\ C_{VREF} = C_{VREF}(max), \\ REFVSEL = \{0, 1, 2\}, \ REFOUT = 1, \\ REFON = 0 \rightarrow 1 \end{array}$			75		μs

⁽⁴⁾ Contribution only due to the reference and buffer including package. This does not include resistance due to the PCB traces or other application factors.

5.43 Flash Memory

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	L	MIN	TYP	MAX	UNIT
DV _{CC(PGM/ERASE)}	Program and erase supply voltage		1.8		3.6	V
I _{PGM}	Average supply current from DVCC during program			3	5	mA
I _{ERASE}	Average supply current from DVCC during erase			6	11	mA
I _{MERASE} , I _{BANK}	Average supply current from DVCC during mass erase or bank erase			6	11	mA
t _{CPT}	Cumulative program time ⁽¹⁾				16	ms
	Program and erase endurance		10 ⁴	10 ⁵		cycles
t _{Retention}	Data retention duration	25°C	100			years
t _{Word}	Word or byte program time ⁽²⁾		64		85	μs
t _{Block, 0}	Block program time for first byte or word (2)		49		65	μs
t _{Block, 1-(N-1)}	Block program time for each additional byte or word, except for last byte or word (2)		37		49	μs
t _{Block, N}	Block program time for last byte or word (2)		55		73	μs
t _{Erase}	Erase time for segment, mass erase, and bank erase when available (2)		23		32	ms
f _{MCLK,MGR}	MCLK frequency in marginal read mode (FCTL4.MGR0 = 1 or FCTL4. MGR1 = 1)		0		1	MHz

⁽¹⁾ The cumulative program time must not be exceeded when writing to a 128-byte flash block. This parameter applies to all programming methods: individual word or byte write and block write modes.

⁽⁵⁾ Calculated using the box method: (MAX(-40°C to 85°C) - MIN(-40°C to 85°C)) / MIN(-40°C to 85°C)/(85°C - (-40°C)).

⁽⁶⁾ The condition is that the error in a conversion started after t_{REFON} is less than ±0.5 LSB. The settling time depends on the external capacitive load when REFOUT = 1.

⁽²⁾ These values are hardwired into the state machine of the flash controller.

5.44 JTAG and Spy-Bi-Wire Interface

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	V _{cc}	MIN	TYP	MAX	UNIT
f _{SBW}	Spy-Bi-Wire input frequency	2.2 V, 3 V	0		20	MHz
t _{SBW,Low}	Spy-Bi-Wire low clock pulse duration	2.2 V, 3 V	0.025		15	μs
t _{SBW, En}	Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge) (1)	2.2 V, 3 V			1	μs
t _{SBW,Rst}	Spy-Bi-Wire return to normal operation time		15		100	μs
	TOV : (A	2.2 V	0		5	MHz
f _{TCK}	TCK input frequency, 4-wire JTAG (2)	3 V	0		10	MHz
R _{internal}	Internal pulldown resistance on TEST	2.2 V, 3 V	45	60	80	kΩ

⁽¹⁾ Tools that access the Spy-Bi-Wire interface must wait for the t_{SBW,En} time after pulling the TEST/SBWTCK pin high before applying the first SBWTCK clock edge.

⁽²⁾ f_{TCK} may be restricted to meet the timing requirements of the module selected.

6 Detailed Description

6.1 CPU (Link to User's Guide)

The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand.

The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are general-purpose registers (see Figure 6-1).

Peripherals are connected to the CPU using data, address, and control buses. Peripherals can be managed with all instructions.

The instruction set consists of the original 51 instructions with three formats and seven address modes and additional instructions for the expanded address range. Each instruction can operate on word and byte data.

Figure 6-1. Integrated CPU Registers

6.2 Operating Modes

These microcontrollers have one active mode and six software-selectable low-power modes of operation. An interrupt event can wake up the device from any of the low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program.

Software can configure the following operating modes:

- Active mode (AM)
 - All clocks are active
- Low-power mode 0 (LPM0)
 - CPU is disabled
 - ACLK and SMCLK remain active
 - MCLK is disabled
 - FLL loop control remains active
- Low-power mode 1 (LPM1)
 - CPU is disabled
 - FLL loop control is disabled
 - ACLK and SMCLK remain active
 - MCLK is disabled
- Low-power mode 2 (LPM2)
 - CPU is disabled
 - MCLK, FLL loop control, and DCOCLK are disabled
 - DC generator of the DCO remains enabled
 - ACLK remains active
- Low-power mode 3 (LPM3)
 - CPU is disabled
 - MCLK, FLL loop control, and DCOCLK are disabled
 - DC generator of the DCO is disabled
 - ACLK remains active
- Low-power mode 4 (LPM4)
 - CPU is disabled
 - ACLK is disabled
 - MCLK, FLL loop control, and DCOCLK are disabled
 - DC generator of the DCO is disabled
 - Crystal oscillator is stopped
 - Complete data retention
- Low-power mode 4.5 (LPM4.5)
 - Internal regulator disabled
 - No data retention
 - Wake-up input from RST or digital I/O

6.3 **Interrupt Vector Addresses**

The interrupt vectors and the power-up start address are in the address range 0FFFFh to 0FF80h (see Table 6-1). The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.

Table 6-1. Interrupt Sources, Flags, and Vectors

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
System Reset Power up External reset Watchdog time-out, password violation Flash memory password violation PMM password violation	WDTIFG, KEYV (SYSRSTIV) ^{(1) (2)}	Reset	OFFFEh	63, highest
System NMI PMM Vacant memory access JTAG mailbox	SVMLIFG, SVMHIFG, DLYLIFG, DLYHIFG, VLRLIFG, VLRHIFG, VMAIFG, JMBNIFG, JMBOUTIFG (SYSSNIV) ⁽¹⁾	(Non)maskable	0FFFCh	62
User NMI NMI Oscillator fault Flash memory access violation	NMIIFG, OFIFG, ACCVIFG (SYSUNIV) ⁽¹⁾ (2)	(Non)maskable	0FFFAh	61
TB0	TBCCR0 CCIFG0 (3)	Maskable	0FFF8h	60
TB0	TBCCR1 CCIFG1 to TBCCR6 CCIFG6, TBIFG (TBIV) ^{(1) (3)}	Maskable	0FFF6h	59
Watchdog timer interval timer mode	WDTIFG	Maskable	0FFF4h	58
USCI_A0 receive and transmit	UCA0RXIFG, UCA0TXIFG (UCA0IV) (1) (3)	Maskable	0FFF2h	57
USCI_B0 receive and transmit	UCB0RXIFG, UCB0TXIFG (UCB0IV) (1) (3)	Maskable	0FFF0h	56
ADC12_A	ADC12IFG0 to ADC12IFG15 (ADC12IV) (1) (3)	Maskable	0FFEEh	55
TA0	TA0CCR0 CCIFG0 ⁽³⁾	Maskable	0FFECh	54
TA0	TA0CCR1 CCIFG1 to TA0CCR4 CCIFG4, TA0IFG (TA0IV) ^{(1) (3)}	Maskable	0FFEAh	53
USCI_A2 receive and transmit	UCA2RXIFG, UCA2TXIFG (UCA2IV) (1) (3)	Maskable	0FFE8h	52
USCI_B2 receive and transmit	UCB2RXIFG, UCB2TXIFG (UCB2IV) (1) (3)	Maskable	0FFE6h	51
DMA	DMA0IFG, DMA1IFG, DMA2IFG (DMAIV) (1) (3)	Maskable	0FFE4h	50
TA1	TA1CCR0 CCIFG0 ⁽³⁾	Maskable	0FFE2h	49
TA1	TA1CCR1 CCIFG1 to TA1CCR2 CCIFG2, TA1IFG (TA1IV) ^{(1) (3)}	Maskable	0FFE0h	48
I/O Port P1	P1IFG.0 to P1IFG.7 (P1IV) ⁽¹⁾ (3)	Maskable	0FFDEh	47
USCI_A1 receive and transmit	UCA1RXIFG, UCA1TXIFG (UCA1IV) (1) (3)	Maskable	0FFDCh	46
USCI_B1 receive and transmit	UCB1RXIFG, UCB1TXIFG (UCB1IV) (1) (3)	Maskable	0FFDAh	45
USCI_A3 receive and transmit	UCA3RXIFG, UCA3TXIFG (UCA3IV) (1) (3)	Maskable	0FFD8h	44
USCI_B3 receive and transmit	UCB3RXIFG, UCB3TXIFG (UCB3IV) (1) (3)	Maskable	0FFD6h	43
I/O Port P2	P2IFG.0 to P2IFG.7 (P2IV) ^{(1) (3)}	Maskable	0FFD4h	42
RTC_A	RTCRDYIFG, RTCTEVIFG, RTCAIFG, RT0PSIFG, RT1PSIFG (RTCIV) ⁽¹⁾ (3)	Maskable	0FFD2h	41
			0FFD0h	40
Reserved	Reserved ⁽⁴⁾		:	:
			0FF80h	0, lowest

Multiple source flags

A reset is generated if the CPU tries to fetch instructions from within peripheral space or vacant memory space. (Non)maskable: the individual interrupt enable bit can disable an interrupt event, but the general interrupt enable cannot disable it.

Interrupt flags are in the module.

Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To maintain compatibility with other devices, TI recommends reserving these locations.

6.4 Memory Organization

Table 6-2 summarizes the memory map for all devices.

Table 6-2. Memory Organization

		MSP430F5419A MSP430F5418A	MSP430F5436A MSP430F5435A	MSP430F5438A MSP430F5437A
Memory (flash) Main: interrupt vector Main: code memory	Total Size Flash Flash	128KB 00FFFFh-00FF80h 025BFFh-005C00h	192KB 00FFFFh-00FF80h 035BFFh-005C00h	256KB 00FFFFh-00FF80h 045BFFh-005C00h
	Bank D	N/A	23KB 035BFFh-030000h	64KB 03FFFFh–030000h
	Bank C	23KB 025BFFh–020000h	64KB 02FFFFh-020000h	64KB 02FFFFh–020000h
Main: code memory	Bank B	64KB 01FFFFh–010000h	64KB 01FFFFh-010000h	64KB 01FFFFh–010000h
	Bank A	41KB 00FFFFh-005C00h	41KB 00FFFFh-005C00h	64KB 045BFFh-040000h 00FFFFh-005C00h
	Size	16 KB	16KB	16KB
	Sector 3	4KB 005BFFh-004C00h	4KB 005BFFh–004C00h	4KB 005BFFh–004C00h
RAM	Sector 2	4KB 004BFFh-003C00h	4KB 004BFFh-003C00h	4KB 004BFFh–003C00h
	Sector 1	4KB 003BFFh-002C00h	4KB 003BFFh-002C00h	4KB 003BFFh-002C00h
	Sector 0	4KB 002BFFh-001C00h	4KB 002BFFh-001C00h	4KB 002BFFh-001C00h
	Info A	128 B 0019FFh-001980h	128 B 0019FFh–001980h	128 B 0019FFh–001980h
Information memory	Info B	128 B 00197Fh-001900h	128 B 00197Fh–001900h	128 B 00197Fh–001900h
(flash)	Info C	128 B 0018FFh–001880h	128 B 0018FFh-001880h	128 B 0018FFh–001880h
	Info D	128 B 00187Fh–001800h	128 B 00187Fh–001800h	128 B 00187Fh–001800h
	BSL 3	512 B 0017FFh–001600h	512 B 0017FFh–001600h	512 B 0017FFh–001600h
Bootloader (BSL)	BSL 2	512 B 0015FFh–001400h	512 B 0015FFh-001400h	512 B 0015FFh–001400h
memory (flash)	BSL 1	512 B 0013FFh–001200h	512 B 0013FFh-001200h	512 B 0013FFh–001200h
	BSL 0	512 B 0011FFh–001000h	512 B 0011FFh–001000h	512 B 0011FFh–001000h
Peripherals	Size	4KB 000FFFh-000000h	4KB 000FFFh-000000h	4KB 000FFFh-000000h

6.5 Bootloader (BSL)

The BSL enables users to program the flash memory or RAM using a UART serial interface. Access to the device memory through the BSL is protected by an user-defined password. Table 6-3 lists the BSL pin requirements. BSL entry requires a specific entry sequence on the RST/NMI/SBWTDIO and TEST/SBWTCK pins. For complete description of the features of the BSL and its implementation, see MSP430 Memory Programming With the Bootloader (BSL).

Table 6-3. BSL Pin Requirements and Functions

DEVICE SIGNAL	BSL FUNCTION
RST/NMI/SBWTDIO	Entry sequence signal
TEST/SBWTCK	Entry sequence signal
P1.1	Data transmit
P1.2	Data receive
VCC	Power supply
VSS	Ground supply

6.6 JTAG Operation

6.6.1 JTAG Standard Interface

The MSP430 family supports the standard JTAG interface which requires four signals for sending and receiving data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to enable the JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with MSP430 development tools and device programmers. Table 6-4 lists the JTAG pin requirements. For further details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide. For complete description of the features of the JTAG interface and its implementation, see MSP430 Memory Programming With the JTAG Interface.

Table 6-4. JTAG Pin Requirements and Functions

DEVICE SIGNAL	DIRECTION	FUNCTION
PJ.3/TCK	IN	JTAG clock input
PJ.2/TMS	IN	JTAG state control
PJ.1/TDI/TCLK	IN	JTAG data input, TCLK input
PJ.0/TDO	OUT	JTAG data output
TEST/SBWTCK	IN	Enable JTAG pins
RST/NMI/SBWTDIO	IN	External reset
VCC		Power supply
VSS		Ground supply

6.6.2 Spy-Bi-Wire Interface

In addition to the standard JTAG interface, the MSP430 microcontrollers support the 2-wire Spy-Bi-Wire interface. Spy-Bi-Wire can be used to interface with MSP430 development tools and device programmers. Table 6-5 lists the Spy-Bi-Wire interface pin requirements. For further details on interfacing to development tools and device programmers, see the *MSP430 Hardware Tools User's Guide*. For the description of the Spy-Bi-Wire interface and its implementation, see the *MSP430 Memory Programming With the JTAG Interface*.

Table 6-5. Spy-Bi-Wire Pin Requirements and Functions

DEVICE SIGNAL	DIRECTION	FUNCTION
TEST/SBWTCK	IN	Spy-Bi-Wire clock input
RST/NMI/SBWTDIO	IN, OUT	Spy-Bi-Wire data input and output
VCC		Power supply
VSS		Ground supply

6.7 Flash Memory (Link to User's Guide)

The flash memory can be programmed through the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system by the CPU. The CPU can perform single-byte, single-word, and long-word writes to the flash memory. Features of the flash memory include:

- Flash memory has n segments of main memory and four segments of information memory (A to D) of 128 bytes each. Each segment in main memory is 512 bytes in size.
- Segments 0 to n may be erased in one step, or each segment may be individually erased.
- Segments A to D can be erased individually. Segments A to D are also called information memory.
- · Segment A can be locked separately.

6.8 RAM (Link to User's Guide)

The RAM is made up of n sectors. Each sector can be completely powered down to save leakage; however, all data are lost. Features of the RAM include:

- RAM has n sectors. The size of a sector can be found in Memory Organization.
- Each sector 0 to n can be complete disabled; however, data retention is lost.
- Each sector 0 to n automatically enters low-power retention mode when possible.
- For devices that contain USB memory, the USB memory can be used as normal RAM if USB is not required.

6.9 Peripherals

Peripherals are connected to the CPU through data, address, and control buses. Peripherals can be handled using all instructions. For complete module descriptions, see the MSP430x5xx and MSP430x6xx Family User's Guide.

6.9.1 Digital I/O (Link to User's Guide)

Up to ten 8-bit I/O ports are implemented: For 100- and 113-pin options, P1 through P10 are complete, and P11 contains three individual I/O ports. For 80-pin options, P1 through P7 are complete, P8 contains seven individual I/O ports, and P9 through P11 do not exist. Port PJ contains four individual I/O ports, common to all devices.

- All individual I/O bits are independently programmable.
- Any combination of input, output, and interrupt conditions is possible.
- Pullup or pulldown on all ports is programmable.
- Drive strength on all ports is programmable.
- Edge-selectable interrupt and LPM4.5 wake-up input capability is available for all bits of ports P1 and P2.
- Read and write access to port-control registers is supported by all instructions.
- Ports can be accessed byte-wise (P1 through P11) or word-wise in pairs (PA through PF).

6.9.2 Oscillator and System Clock (Link to User's Guide)

The clock system is supported by the Unified Clock System (UCS) module that includes support for a 32-kHz watch crystal oscillator (XT1 LF mode), an internal very-low-power low-frequency oscillator (VLO), an internal trimmed low-frequency oscillator (REFO), an integrated internal digitally controlled oscillator (DCO), and a high-frequency crystal oscillator (XT1 HF mode or XT2). The UCS module is designed to meet the requirements of both low system cost and low power consumption. The UCS module features digital frequency locked loop (FLL) hardware that, in conjunction with a digital modulator, stabilizes the DCO frequency to a programmable multiple of the selected FLL reference frequency. The internal DCO provides a fast turnon clock source and stabilizes in less than 5 µs. The UCS module provides the following clock signals:

- Auxiliary clock (ACLK), sourced from a 32-kHz watch crystal, a high-frequency crystal, the internal low-frequency oscillator (VLO), the trimmed low-frequency oscillator (REFO), or the internal digitally controlled oscillator (DCO).
- Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by same sources made available to ACLK.
- Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be sourced by same sources made available to ACLK.
- ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, ACLK/8, ACLK/16, ACLK/32.

6.9.3 Power-Management Module (PMM) (Link to User's Guide)

The PMM includes an integrated voltage regulator that supplies the core voltage to the device and contains programmable output levels to provide for power optimization. The PMM also includes supply voltage supervisor (SVS) and supply voltage monitoring (SVM) circuitry, as well as brownout protection. The brownout circuit is implemented to provide the proper internal reset signal to the device during power on and power off. The SVS and SVM circuitry detects if the supply voltage drops below a user-selectable level and supports both supply voltage supervision (the device is automatically reset) and supply voltage monitoring (the device is not automatically reset). SVS and SVM circuitry is available on the primary supply and core supply.

6.9.4 Hardware Multiplier (MPY) (Link to User's Guide)

The multiplication operation is supported by a dedicated peripheral module. The module performs operations with 32-, 24-, 16-, and 8-bit operands. The module supports signed and unsigned multiplication as well as signed and unsigned multiply-and-accumulate operations.

6.9.5 Real-Time Clock (RTC_A) (Link to User's Guide)

The RTC_A module can be used as a general-purpose 32-bit counter (counter mode) or as an integrated real-time clock (calendar mode). In counter mode, the RTC_A also includes two independent 8-bit timers that can be cascaded to form a 16-bit timer/counter. Both timers can be read and written by software. Calendar mode integrates an internal calendar which compensates for months with less than 31 days and includes leap year correction. The RTC_A also supports flexible alarm functions and offset-calibration hardware.

6.9.6 Watchdog Timer (WDT A) (Link to User's Guide)

The primary function of the WDT_A module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals.

MSP430F5418A

6.9.7 System Module (SYS) (Link to User's Guide)

The SYS module handles many of the system functions within the device. These functions include power on reset and power up clear handling, NMI source selection and management, reset interrupt vector generators, bootloader entry mechanisms, and configuration management (device descriptors). SYS also includes a data exchange mechanism through JTAG called a JTAG mailbox that can be used in the application. Table 6-6 summarizes the SYS module interrupt vector registers.

Table 6-6. System Module Interrupt Vector Registers

INTERRUPT VECTOR REGISTER	ADDRESS	INTERRUPT EVENT	VALUE	PRIORITY
		No interrupt pending	00h	
		Brownout (BOR)	02h	Highest
		RST/NMI (POR)	04h	
		PMMSWBOR (BOR)	06h	
		Wake up from LPMx.5	08h	
		Security violation (BOR)	0Ah	
		SVSL (POR)	0Ch	
		SVSH (POR)	0Eh	
CVCDCTIV Cyctom Boost	019Eh	SVML_OVP (POR)	10h	
SYSRSTIV, System Reset	OTSEN	SVMH_OVP (POR)	12h	
		PMMSWPOR (POR)	14h	
		WDT time-out (PUC)	16h	
		WDT password violation (PUC)	18h	
		KEYV flash password violation (PUC)	1Ah	
		Reserved	1Ch	
		Peripheral area fetch (PUC)	1Eh	
		PMM password violation (PUC)	20h	
		Reserved	22h to 3Eh	Lowest
		No interrupt pending	00h	
		SVMLIFG	02h	Highest
		SVMHIFG	04h	
		SVSMLDLYIFG	06h	
		SVSMHDLYIFG	08h	
SYSSNIV, System NMI	019Ch	VMAIFG	0Ah	
		JMBINIFG	0Ch	
		JMBOUTIFG	0Eh	
		SVMLVLRIFG	10h	
		SVMHVLRIFG	12h	
		Reserved	14h to 1Eh	Lowest
		No interrupt pending	00h	
		NMIIFG	02h	Highest
SYSUNIV, User NMI	019Ah	OFIFG	04h	
STSUNIV, USEI NIVII	UISAII	ACCVIFG	06h	
		Reserved	08h	
		Reserved	0Ah to 1Eh	Lowest

6.9.8 DMA Controller (Link to User's Guide)

The DMA controller allows movement of data from one memory address to another without CPU intervention. For example, the DMA controller can be used to move data from the ADC12_A conversion memory to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system power consumption by allowing the CPU to remain in sleep mode, without having to awaken to move data to or from a peripheral. Table 6-7 lists the available DMA triggers.

Table 6-7. DMA Trigger Assignments⁽¹⁾

TDICOED		CHANNEL	
TRIGGER	0	1	2
0	DMAREQ	DMAREQ	DMAREQ
1	TA0CCR0 CCIFG	TA0CCR0 CCIFG	TA0CCR0 CCIFG
2	TA0CCR2 CCIFG	TA0CCR2 CCIFG	TA0CCR2 CCIFG
3	TA1CCR0 CCIFG	TA1CCR0 CCIFG	TA1CCR0 CCIFG
4	TA1CCR2 CCIFG	TA1CCR2 CCIFG	TA1CCR2 CCIFG
5	TB0CCR0 CCIFG	TB0CCR0 CCIFG	TB0CCR0 CCIFG
6	TB0CCR2 CCIFG	TB0CCR2 CCIFG	TB0CCR2 CCIFG
7	Reserved	Reserved	Reserved
8	Reserved	Reserved	Reserved
9	Reserved	Reserved	Reserved
10	Reserved	Reserved	Reserved
11	Reserved	Reserved	Reserved
12	Reserved	Reserved	Reserved
13	Reserved	Reserved	Reserved
14	Reserved	Reserved	Reserved
15	Reserved	Reserved	Reserved
16	UCA0RXIFG	UCA0RXIFG	UCA0RXIFG
17	UCA0TXIFG	UCA0TXIFG	UCA0TXIFG
18	UCB0RXIFG	UCB0RXIFG	UCB0RXIFG
19	UCB0TXIFG	UCB0TXIFG	UCB0TXIFG
20	UCA1RXIFG	UCA1RXIFG	UCA1RXIFG
21	UCA1TXIFG	UCA1TXIFG	UCA1TXIFG
22	UCB1RXIFG	UCB1RXIFG	UCB1RXIFG
23	UCB1TXIFG	UCB1TXIFG	UCB1TXIFG
24	ADC12IFGx	ADC12IFGx	ADC12IFGx
25	Reserved	Reserved	Reserved
26	Reserved	Reserved	Reserved
27	Reserved	Reserved	Reserved
28	Reserved	Reserved	Reserved
29	MPY ready	MPY ready	MPY ready
30	DMA2IFG	DMA0IFG	DMA1IFG
31	DMAE0	DMAE0	DMAE0

Reserved DMA triggers may be used by other devices in the family. Reserved DMA triggers do not cause any DMA trigger event when selected.

6.9.9 Universal Serial Communication Interface (USCI) (Links to User's Guide: UART Mode, SPI Mode, FC Mode)

The USCI modules are used for serial data communication. The USCI module supports synchronous communication protocols such as SPI (3-pin or 4-pin) and I²C, and asynchronous communication protocols such as UART, enhanced UART with automatic baud-rate detection, and IrDA. Each USCI module contains two portions, A and B.

The USCI_An module provides support for SPI (3-pin or 4-pin), UART, enhanced UART, or IrDA.

The USCI_Bn module provides support for SPI (3-pin or 4-pin) or I²C.

The MSP430F5438A, MSP430F5436A, and MSP430F5419A include four complete USCI modules (n = 0 to 3). The MSP430F5437A, MSP430F5435A, and MSP430F5418A include two complete USCI modules (n = 0 or 1).

6.9.10 TA0 (Link to User's Guide)

TA0 is a 16-bit timer/counter (Timer_A type) with five capture/compare registers. TA0 can support multiple capture/compares, PWM outputs, and interval timing (see Table 6-8). TA0 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Table 6-8 lists the available signal connections.

Table 6-8. TA0 Signal Connections

INPUT PIN	NUMBER	DEVICE	MODULE	MODULE	MODULE	DEVICE	OUTPUT PI	N NUMBER
PZ, ZQW	PN	INPUT SIGNAL	INPUT SIGNAL	BLOCK	OUTPUT SIGNAL	OUTPUT SIGNAL	PZ, ZQW	PN
17, H1-P1.0	17-P1.0	TA0CLK	TACLK					
		ACLK	ACLK	T:	N//0	N/A		
		SMCLK	SMCLK	Timer	N/A	IN/A		
17, H1-P1.0	17-P1.0	TA0CLK	TACLK					
18, H4-P1.1	18-P1.1	TA0.0	CCI0A				18, H4-P1.1	18-P1.1
57, H9-P8.0	60-P8.0	TA0.0	CCI0B		RO TAO TAO.O	57, H9-P8.0	60-P8.0	
		DV _{SS}	GND	CCR0		TA0.0	ADC12 (internal) ADC12SHSx = {1}	ADC12 (internal) ADC12SHSx = {1}
		DV _{CC}	V _{CC}					
19, J4-P1.2	19-P1.2	TA0.1	CCI1A	CCR1			19, J4-P1.2	19-P1.2
58, H11-P8.1	61-P8.1	TA0.1	CCI1B		TA1	TA0.1	58, H11-P8.1	61-P8.1
		DV _{SS}	GND	CCKT	IAI			
		DV _{CC}	V _{CC}					
20, J1-P1.3	20-P1.3	TA0.2	CCI2A				20, J1-P1.3	20-P1.3
59, H12-P8.2	62-P8.2	TA0.2	CCI2B	CCR2	TA2	TA0.2	59, H12-P8.2	62-P8.2
		DV _{SS}	GND		1 A2	1 AU.2		
		DV _{CC}	V _{CC}					
21, J2-P1.4	21-P1.4	TA0.3	CCI3A				21, J2-P1.4	21-P1.4
60, G9-P8.3	63-P8.3	TA0.3	CCI3B	CCR3	TA3	TA0.3	60, G9-P8.3	63-P8.3
		DV _{SS}	GND	CCR3	IAS	1A0.3		
		DV _{CC}	V _{CC}					
22, K1-P1.5	22-P1.5	TA0.4	CCI4A				22, K1-P1.5	22-P1.5
61, G11-P8.4	64-P8.4	TA0.4	CCI4B	CCR4	TA4	TA0.4	61, G11-P8.4	64-P8.4
		DV _{SS}	GND	CCK4	1 A4	1 AU.4		
		DV _{CC}	V _{CC}					

6.9.11 TA1 (Link to User's Guide)

TA1 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. TA1 can support multiple capture/compares, PWM outputs, and interval timing (see Table 6-9). TA1 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Table 6-9 lists the available signal connections.

Table 6-9. TA1 Signal Connections

INPUT PIN	NUMBER	DEVICE	MODULE	MODULE	MODULE	DEVICE	OUTPUT PIN	NUMBER
PZ, ZQW	PN	INPUT SIGNAL	SIGNAL BLOCK		OUTPUT SIGNAL	OUTPUT SIGNAL	PZ, ZQW	PN
25, M1-P2.0	25-P2.0	TA1CLK	TACLK					
		ACLK	ACLK	T:	N1/A	NI/A		
		SMCLK	SMCLK	Timer	N/A	N/A		
25, M1-P2.0	25-P2.0	TA1CLK	TACLK					
26, L2-P2.1	26-P2.1	TA1.0	CCI0A				26, L2-P2.1	26-P2.1
65, F11-P8.5	65-P8.5	TA1.0	CCI0B	0000	T40	TA1.0	65, F11-P8.5	65-P8.5
		DV _{SS}	GND	CCR0	TAU			
		DV _{CC}	V _{CC}					
27, M2-P2.2	27-P2.2	TA1.1	CCI1A	1			27, M2-P2.2	27-P2.2
66, E11-P8.6	66-P8.6	TA1.1	CCI1B	0004	T 4 4	T.4.4	66, E11-P8.6	66-P8.6
		DV _{SS}	GND	CCR1	TA1	TA1.1		
		DV _{CC}	V _{CC}					
28, L3-P2.3	28-P2.3	TA1.2	CCI2A				28, L3-P2.3	28-P2.3
56, J12-P7.3	59-P7.3	TA1.2	CCI2B	CCDO	TA0	TA2 TA1.2	56, J12-P7.3	59-P7.3
		DV _{SS}	GND	CCR2	1A2			
		DV _{CC}	V _{CC}					

6.9.12 TB0 (Link to User's Guide)

TB0 is a 16-bit timer/counter (Timer_B type) with seven capture/compare registers. TB0 can support multiple capture/compares, PWM outputs, and interval timing (see Table 6-10). TB0 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Table 6-10 lists the available signal connections.

Table 6-10. TB0 Signal Connections

INPUT PIN	NUMBER	DEVICE	MODULE	MODULE	MODULE	DEVICE	OUTPUT PI	N NUMBER
PZ, ZQW	PN	INPUT SIGNAL	INPUT SIGNAL	BLOCK	OUTPUT SIGNAL	OUTPUT SIGNAL	PZ, ZQW	PN
50, M12-P4.7	53-P4.7	TB0CLK	TBCLK					
		ACLK	ACLK	Timer	N/A	N/A		
		SMCLK	SMCLK	Tilliel	IN/A	IN/A		
50, M12-P4.7	53-P4.7	TB0CLK	TBCLK					
43, J8-P4.0	43-P4.0	TB0.0	CCI0A				43, J8-P4.0	43-P4.0
43, J8-P4.0	43-P4.0	TB0.0	CCI0B	CCR0	TB0	TB0.0	ADC12 (internal) ADC12SHSx = {2}	ADC12 (internal) ADC12SHSx = {2}
		DV _{SS}	GND					
		DV _{CC}	V _{CC}					
44, M9-P4.1	44-P4.1	TB0.1	CCI1A				44, M9-P4.1	44-P4.1
44, M9-P4.1	44-P4.1	TB0.1	CCI1B	CCR1	TB1	TB0.1	ADC12 (internal) ADC12SHSx = {3}	ADC12 (internal) ADC12SHSx = {3}
		DV _{SS}	GND					
		DV _{CC}	V _{CC}					
45, L9-P4.2	45-P4.2	TB0.2	CCI2A				45, L9-P4.2	45-P4.2
45, L9-P4.2	45-P4.2	TB0.2	CCI2B	CCR2	TB2	TB0.2		
		DV _{SS}	GND	CONZ	102			
		DV _{CC}	V _{CC}					
46, L10-P4.3	46-P4.3	TB0.3	CCI3A				46, L10-P4.3	46-P4.3
46, L10-P4.3	46-P4.3	TB0.3	CCI3B	CCR3	TB3	TB0.3		
		DV _{SS}	GND	CONS	100	100.3		
		DV _{CC}	V _{CC}					
47, M10-P4.4	47-P4.4	TB0.4	CCI4A				47, M10-P4.4	47-P4.4
47, M10-P4.4	47-P4.4	TB0.4	CCI4B	CCR4	TB4	TB0.4		
		DV _{SS}	GND	CCR4	104	100.4		
		DV _{CC}	V _{CC}					
48, L11-P4.5	48-P4.5	TB0.5	CCI5A				48, L11-P4.5	48-P4.5
48, L11-P4.5	48-P4.5	TB0.5	CCI5B	CCDE	TDE	TDO F		
		DV _{SS}	GND	CCR5	TB5	TB0.5		
		DV _{CC}	V _{CC}					
49, M11-P4.6	52-P4.6	TB0.6	CCI6A			TB0.6	49, M11-P4.6	52-P4.6
		ACLK (internal)	CCI6B	CCR6	TB6			
		DV _{SS}	GND					
		DV _{CC}	V _{CC}					

6.9.13 ADC12_A (Link to User's Guide)

The ADC12_A module supports fast 12-bit analog-to-digital conversions. The module implements a 12-bit SAR core, sample select control, reference generator, and a 16-word conversion-and-control buffer. The conversion-and-control buffer allows up to 16 independent ADC samples to be converted and stored without any CPU intervention.

6.9.14 CRC16 (Link to User's Guide)

The CRC16 module produces a signature based on a sequence of entered data values and can be used for data checking purposes. The CRC16 module signature is based on the CRC-CCITT standard.

6.9.15 Reference (REF) Module Voltage Reference (Link to User's Guide)

The REF is responsible for generation of all critical reference voltages that can be used by the various analog peripherals in the device.

6.9.16 Embedded Emulation Module (EEM) (L Version) (Link to User's Guide)

The EEM supports real-time in-system debugging. The L version of the EEM has the following features:

- Eight hardware triggers or breakpoints on memory access
- · Two hardware trigger or breakpoint on CPU register write access
- Up to 10 hardware triggers that can be combined to form complex triggers or breakpoints
- Two cycle counters
- Sequencer
- State storage
- Clock control on module level

MSP430F5418A

6.9.17 Peripheral File Map

Table 6-11 lists the base address of the registers for each peripheral.

Table 6-11. Peripherals

MODULE NAME	BASE ADDRESS	OFFSET ADDRESS RANGE
Special Functions (see Table 6-12)	0100h	000h-01Fh
PMM (see Table 6-13)	0120h	000h–010h
Flash Control (see Table 6-14)	0140h	000h-00Fh
CRC16 (see Table 6-15)	0150h	000h-007h
RAM Control (see Table 6-16)	0158h	000h-001h
Watchdog (see Table 6-17)	015Ch	000h-001h
UCS (see Table 6-18)	0160h	000h-01Fh
SYS (see Table 6-19)	0180h	000h-01Fh
Shared Reference (see Table 6-20)	01B0h	000h-001h
Port P1, P2 (see Table 6-21)	0200h	000h-01Fh
Port P3, P4 (see Table 6-22)	0220h	000h-00Bh
Port P5, P6 (see Table 6-23)	0240h	000h-00Bh
Port P7, P8 (see Table 6-24)	0260h	000h-00Bh
Port P9, P10 (see Table 6-25)	0280h	000h-00Bh
Port P11 (see Table 6-26)	02A0h	000h-00Ah
Port PJ (see Table 6-27)	0320h	000h-01Fh
TA0 (see Table 6-28)	0340h	000h-02Eh
TA1 (see Table 6-29)	0380h	000h-02Eh
TB0 (see Table 6-30)	03C0h	000h-02Eh
Real Timer Clock (RTC_A) (see Table 6-31)	04A0h	000h-01Bh
32-Bit Hardware Multiplier (see Table 6-32)	04C0h	000h-02Fh
DMA General Control (see Table 6-33)	0500h	000h-00Fh
DMA Channel 0 (see Table 6-33)	0510h	000h-00Ah
DMA Channel 1 (see Table 6-33)	0520h	000h-00Ah
DMA Channel 2 (see Table 6-33)	0530h	000h-00Ah
USCI_A0 (see Table 6-34)	05C0h	000h-01Fh
USCI_B0 (see Table 6-35)	05E0h	000h-01Fh
USCI_A1 (see Table 6-36)	0600h	000h-01Fh
USCI_B1 (see Table 6-37)	0620h	000h-01Fh
USCI_A2 (see Table 6-38)	0640h	000h-01Fh
USCI_B2 (see Table 6-39)	0660h	000h-01Fh
USCI_A3 (see Table 6-40)	0680h	000h-01Fh
USCI_B3 (see Table 6-41)	06A0h	000h-01Fh
ADC12_A (see Table 6-42)	0700h	000h-03Eh

Table 6-12. Special Function Registers (Base Address: 0100h)

REGISTER DESCRIPTION	REGISTER	OFFSET
SFR interrupt enable	SFRIE1	00h
SFR interrupt flag	SFRIFG1	02h
SFR reset pin control	SFRRPCR	04h

Table 6-13. PMM Registers (Base Address: 0120h)

REGISTER DESCRIPTION	REGISTER	OFFSET
PMM control 0	PMMCTL0	00h
PMM control 1	PMMCTL1	02h
SVS high-side control	SVSMHCTL	04h
SVS low-side control	SVSMLCTL	06h
PMM interrupt flags	PMMIFG	0Ch
PMM interrupt enable	PMMIE	0Eh
PMM power mode 5 control	PM5CTL0	10h

Table 6-14. Flash Control Registers (Base Address: 0140h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Flash control 1	FCTL1	00h
Flash control 3	FCTL3	04h
Flash control 4	FCTL4	06h

Table 6-15. CRC16 Registers (Base Address: 0150h)

REGISTER DESCRIPTION	REGISTER	OFFSET
CRC data input	CRC16DI	00h
CRC data input reverse byte	CRCDIRB	02h
CRC initialization and result	CRCINIRES	04h
CRC result reverse byte	CRCRESR	06h

Table 6-16. RAM Control Registers (Base Address: 0158h)

REGISTER DESCRIPTION	REGISTER	OFFSET
RAM control 0	RCCTL0	00h

Table 6-17. Watchdog Registers (Base Address: 015Ch)

REGISTER DESCRIPTION	REGISTER	OFFSET
Watchdog timer control	WDTCTL	00h

Table 6-18. UCS Registers (Base Address: 0160h)

REGISTER DESCRIPTION	REGISTER	OFFSET
UCS control 0	UCSCTL0	00h
UCS control 1	UCSCTL1	02h
UCS control 2	UCSCTL2	04h
UCS control 3	UCSCTL3	06h
UCS control 4	UCSCTL4	08h
UCS control 5	UCSCTL5	0Ah
UCS control 6	UCSCTL6	0Ch
UCS control 7	UCSCTL7	0Eh

Table 6-18. UCS Registers (Base Address: 0160h) (continued)

REGISTER DESCRIPTION	REGISTER	OFFSET
UCS control 8	UCSCTL8	10h

Table 6-19. SYS Registers (Base Address: 0180h)

REGISTER DESCRIPTION	REGISTER	OFFSET
System control	SYSCTL	00h
Bootloader configuration area	SYSBSLC	02h
JTAG mailbox control	SYSJMBC	06h
JTAG mailbox input 0	SYSJMBI0	08h
JTAG mailbox input 1	SYSJMBI1	0Ah
JTAG mailbox output 0	SYSJMBO0	0Ch
JTAG mailbox output 1	SYSJMBO1	0Eh
Bus Error vector generator	SYSBERRIV	18h
User NMI vector generator	SYSUNIV	1Ah
System NMI vector generator	SYSSNIV	1Ch
Reset vector generator	SYSRSTIV	1Eh

Table 6-20. Shared Reference Registers (Base Address: 01B0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Shared reference control	REFCTL	00h

Table 6-21. Port P1, P2 Registers (Base Address: 0200h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P1 input	P1IN	00h
Port P1 output	P1OUT	02h
Port P1 direction	P1DIR	04h
Port P1 resistor enable	P1REN	06h
Port P1 drive strength	P1DS	08h
Port P1 selection	P1SEL	0Ah
Port P1 interrupt vector word	P1IV	0Eh
Port P1 interrupt edge select	P1IES	18h
Port P1 interrupt enable	P1IE	1Ah
Port P1 interrupt flag	P1IFG	1Ch
Port P2 input	P2IN	01h
Port P2 output	P2OUT	03h
Port P2 direction	P2DIR	05h
Port P2 resistor enable	P2REN	07h
Port P2 drive strength	P2DS	09h
Port P2 selection	P2SEL	0Bh
Port P2 interrupt vector word	P2IV	1Eh
Port P2 interrupt edge select	P2IES	19h
Port P2 interrupt enable	P2IE	1Bh
Port P2 interrupt flag	P2IFG	1Dh

Table 6-22. Port P3, P4 Registers (Base Address: 0220h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P3 input	P3IN	00h
Port P3 output	P3OUT	02h
Port P3 direction	P3DIR	04h
Port P3 resistor enable	P3REN	06h
Port P3 drive strength	P3DS	08h
Port P3 selection	P3SEL	0Ah
Port P4 input	P4IN	01h
Port P4 output	P4OUT	03h
Port P4 direction	P4DIR	05h
Port P4 resistor enable	P4REN	07h
Port P4 drive strength	P4DS	09h
Port P4 selection	P4SEL	0Bh

Table 6-23. Port P5, P6 Registers (Base Address: 0240h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P5 input	P5IN	00h
Port P5 output	P5OUT	02h
Port P5 direction	P5DIR	04h
Port P5 resistor enable	P5REN	06h
Port P5 drive strength	P5DS	08h
Port P5 selection	P5SEL	0Ah
Port P6 input	P6IN	01h
Port P6 output	P6OUT	03h
Port P6 direction	P6DIR	05h
Port P6 resistor enable	P6REN	07h
Port P6 drive strength	P6DS	09h
Port P6 selection	P6SEL	0Bh

Table 6-24. Port P7, P8 Registers (Base Address: 0260h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P7 input	P7IN	00h
Port P7 output	P7OUT	02h
Port P7 direction	P7DIR	04h
Port P7 resistor enable	P7REN	06h
Port P7 drive strength	P7DS	08h
Port P7 selection	P7SEL	0Ah
Port P8 input	P8IN	01h
Port P8 output	P8OUT	03h
Port P8 direction	P8DIR	05h
Port P8 resistor enable	P8REN	07h
Port P8 drive strength	P8DS	09h
Port P8 selection	P8SEL	0Bh

Table 6-25. Port P9, P10 Registers (Base Address: 0280h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P9 input	P9IN	00h
Port P9 output	P9OUT	02h
Port P9 direction	P9DIR	04h
Port P9 resistor enable	P9REN	06h
Port P9 drive strength	P9DS	08h
Port P9 selection	P9SEL	0Ah
Port P10 input	P10IN	01h
Port P10 output	P10OUT	03h
Port P10 direction	P10DIR	05h
Port P10 resistor enable	P10REN	07h
Port P10 drive strength	P10DS	09h
Port P10 selection	P10SEL	0Bh

Table 6-26. Port P11 Registers (Base Address: 02A0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P11 input	P11IN	00h
Port P11 output	P11OUT	02h
Port P11 direction	P11DIR	04h
Port P11 resistor enable	P11REN	06h
Port P11 drive strength	P11DS	08h
Port P11 selection	P11SEL	0Ah

Table 6-27. Port J Registers (Base Address: 0320h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port PJ input	PJIN	00h
Port PJ output	PJOUT	02h
Port PJ direction	PJDIR	04h
Port PJ resistor enable	PJREN	06h
Port PJ drive strength	PJDS	08h

Table 6-28. TA0 Registers (Base Address: 0340h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TA0 control	TA0CTL	00h
Capture/compare control 0	TA0CCTL0	02h
Capture/compare control 1	TA0CCTL1	04h
Capture/compare control 2	TA0CCTL2	06h
Capture/compare control 3	TA0CCTL3	08h
Capture/compare control 4	TA0CCTL4	0Ah
TA0 counter	TA0R	10h
Capture/compare 0	TA0CCR0	12h
Capture/compare 1	TA0CCR1	14h
Capture/compare 2	TA0CCR2	16h
Capture/compare 3	TA0CCR3	18h
Capture/compare 4	TA0CCR4	1Ah
TA0 expansion 0	TA0EX0	20h
TA0 interrupt vector	TAOIV	2Eh

Table 6-29. TA1 Registers (Base Address: 0380h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TA1 control	TA1CTL	00h
Capture/compare control 0	TA1CCTL0	02h
Capture/compare control 1	TA1CCTL1	04h
Capture/compare control 2	TA1CCTL2	06h
TA1 counter	TA1R	10h
Capture/compare 0	TA1CCR0	12h
Capture/compare 1	TA1CCR1	14h
Capture/compare 2	TA1CCR2	16h
TA1 expansion 0	TA1EX0	20h
TA1 interrupt vector	TA1IV	2Eh

Table 6-30. TB0 Registers (Base Address: 03C0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TB0 control	TB0CTL	00h
Capture/compare control 0	TB0CCTL0	02h
Capture/compare control 1	TB0CCTL1	04h
Capture/compare control 2	TB0CCTL2	06h
Capture/compare control 3	TB0CCTL3	08h
Capture/compare control 4	TB0CCTL4	0Ah
Capture/compare control 5	TB0CCTL5	0Ch
Capture/compare control 6	TB0CCTL6	0Eh
TB0 counter	TB0R	10h
Capture/compare 0	TB0CCR0	12h
Capture/compare 1	TB0CCR1	14h
Capture/compare 2	TB0CCR2	16h
Capture/compare 3	TB0CCR3	18h
Capture/compare 4	TB0CCR4	1Ah
Capture/compare 5	TB0CCR5	1Ch
Capture/compare 6	TB0CCR6	1Eh
TB0 expansion 0	TB0EX0	20h
TB0 interrupt vector	TB0IV	2Eh

Table 6-31. Real Time Clock Registers (Base Address: 04A0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
RTC control 0	RTCCTL0	00h
RTC control 1	RTCCTL1	01h
RTC control 2	RTCCTL2	02h
RTC control 3	RTCCTL3	03h
RTC prescaler 0 control	RTCPS0CTL	08h
RTC prescaler 1 control	RTCPS1CTL	0Ah
RTC prescaler 0	RTCPS0	0Ch
RTC prescaler 1	RTCPS1	0Dh
RTC interrupt vector word	RTCIV	0Eh
RTC seconds/counter 1	RTCSEC/RTCNT1	10h
RTC minutes/counter 2	RTCMIN/RTCNT2	11h
RTC hours/counter 3	RTCHOUR/RTCNT3	12h
RTC day of week/counter 4	RTCDOW/RTCNT4	13h
RTC days	RTCDAY	14h
RTC month	RTCMON	15h
RTC year low	RTCYEARL	16h
RTC year high	RTCYEARH	17h
RTC alarm minutes	RTCAMIN	18h
RTC alarm hours	RTCAHOUR	19h
RTC alarm day of week	RTCADOW	1Ah
RTC alarm days	RTCADAY	1Bh

Table 6-32. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
16-bit operand 1 – multiply	MPY	00h
16-bit operand 1 – signed multiply	MPYS	02h
16-bit operand 1 – multiply accumulate	MAC	04h
16-bit operand 1 – signed multiply accumulate	MACS	06h
16-bit operand 2	OP2	08h
16 x 16 result low word	RESLO	0Ah
16 x 16 result high word	RESHI	0Ch
16 x 16 sum extension	SUMEXT	0Eh
32-bit operand 1 – multiply low word	MPY32L	10h
32-bit operand 1 – multiply high word	MPY32H	12h
32-bit operand 1 – signed multiply low word	MPYS32L	14h
32-bit operand 1 – signed multiply high word	MPYS32H	16h
32-bit operand 1 – multiply accumulate low word	MAC32L	18h
32-bit operand 1 – multiply accumulate high word	MAC32H	1Ah
32-bit operand 1 – signed multiply accumulate low word	MACS32L	1Ch
32-bit operand 1 – signed multiply accumulate high word	MACS32H	1Eh
32-bit operand 2 – low word	OP2L	20h
32-bit operand 2 – high word	OP2H	22h
32 × 32 result 0 – least significant word	RES0	24h
32 × 32 result 1	RES1	26h
32 x 32 result 2	RES2	28h
32 x 32 result 3 – most significant word	RES3	2Ah
MPY32 control 0	MPY32CTL0	2Ch

Table 6-33. DMA Registers (Base Address DMA General Control: 0500h, DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h)

REGISTER DESCRIPTION	REGISTER	OFFSET
DMA channel 0 control	DMA0CTL	00h
DMA channel 0 source address low	DMA0SAL	02h
DMA channel 0 source address high	DMA0SAH	04h
DMA channel 0 destination address low	DMA0DAL	06h
DMA channel 0 destination address high	DMA0DAH	08h
DMA channel 0 transfer size	DMA0SZ	0Ah
DMA channel 1 control	DMA1CTL	00h
DMA channel 1 source address low	DMA1SAL	02h
DMA channel 1 source address high	DMA1SAH	04h
DMA channel 1 destination address low	DMA1DAL	06h
DMA channel 1 destination address high	DMA1DAH	08h
DMA channel 1 transfer size	DMA1SZ	0Ah
DMA channel 2 control	DMA2CTL	00h
DMA channel 2 source address low	DMA2SAL	02h
DMA channel 2 source address high	DMA2SAH	04h
DMA channel 2 destination address low	DMA2DAL	06h
DMA channel 2 destination address high	DMA2DAH	08h
DMA channel 2 transfer size	DMA2SZ	0Ah
DMA module control 0	DMACTL0	00h
DMA module control 1	DMACTL1	02h
DMA module control 2	DMACTL2	04h
DMA module control 3	DMACTL3	06h
DMA module control 4	DMACTL4	08h
DMA interrupt vector	DMAIV	0Eh

Table 6-34. USCI_A0 Registers (Base Address: 05C0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
USCI control 1	UCA0CTL1	00h
USCI control 0	UCA0CTL0	01h
USCI baud rate 0	UCA0BR0	06h
USCI baud rate 1	UCA0BR1	07h
USCI modulation control	UCA0MCTL	08h
USCI status	UCA0STAT	0Ah
USCI receive buffer	UCA0RXBUF	0Ch
USCI transmit buffer	UCA0TXBUF	0Eh
USCI LIN control	UCA0ABCTL	10h
USCI IrDA transmit control	UCA0IRTCTL	12h
USCI IrDA receive control	UCA0IRRCTL	13h
USCI interrupt enable	UCA0IE	1Ch
USCI interrupt flags	UCA0IFG	1Dh
USCI interrupt vector word	UCA0IV	1Eh

Table 6-35. USCI_B0 Registers (Base Address: 05E0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
USCI synchronous control 1	UCB0CTL1	00h
USCI synchronous control 0	UCB0CTL0	01h
USCI synchronous bit rate 0	UCB0BR0	06h
USCI synchronous bit rate 1	UCB0BR1	07h
USCI synchronous status	UCB0STAT	0Ah
USCI synchronous receive buffer	UCB0RXBUF	0Ch
USCI synchronous transmit buffer	UCB0TXBUF	0Eh
USCI I2C own address	UCB0I2COA	10h
USCI I2C slave address	UCB0I2CSA	12h
USCI interrupt enable	UCB0IE	1Ch
USCI interrupt flags	UCB0IFG	1Dh
USCI interrupt vector word	UCB0IV	1Eh

Table 6-36. USCI_A1 Registers (Base Address: 0600h)

REGISTER DESCRIPTION	REGISTER	OFFSET
USCI control 1	UCA1CTL1	00h
USCI control 0	UCA1CTL0	01h
USCI baud rate 0	UCA1BR0	06h
USCI baud rate 1	UCA1BR1	07h
USCI modulation control	UCA1MCTL	08h
USCI status	UCA1STAT	0Ah
USCI receive buffer	UCA1RXBUF	0Ch
USCI transmit buffer	UCA1TXBUF	0Eh
USCI LIN control	UCA1ABCTL	10h
USCI IrDA transmit control	UCA1IRTCTL	12h
USCI IrDA receive control	UCA1IRRCTL	13h
USCI interrupt enable	UCA1IE	1Ch
USCI interrupt flags	UCA1IFG	1Dh
USCI interrupt vector word	UCA1IV	1Eh

Table 6-37. USCI_B1 Registers (Base Address: 0620h)

REGISTER DESCRIPTION	REGISTER	OFFSET
USCI synchronous control 1	UCB1CTL1	00h
USCI synchronous control 0	UCB1CTL0	01h
USCI synchronous bit rate 0	UCB1BR0	06h
USCI synchronous bit rate 1	UCB1BR1	07h
USCI synchronous status	UCB1STAT	0Ah
USCI synchronous receive buffer	UCB1RXBUF	0Ch
USCI synchronous transmit buffer	UCB1TXBUF	0Eh
USCI I2C own address	UCB1I2COA	10h
USCI I2C slave address	UCB1I2CSA	12h
USCI interrupt enable	UCB1IE	1Ch
USCI interrupt flags	UCB1IFG	1Dh
USCI interrupt vector word	UCB1IV	1Eh

Table 6-38. USCI_A2 Registers (Base Address: 0640h)

REGISTER DESCRIPTION	REGISTER	OFFSET
USCI control 1	UCA2CTL1	00h
USCI control 0	UCA2CTL0	01h
USCI baud rate 0	UCA2BR0	06h
USCI baud rate 1	UCA2BR1	07h
USCI modulation control	UCA2MCTL	08h
USCI status	UCA2STAT	0Ah
USCI receive buffer	UCA2RXBUF	0Ch
USCI transmit buffer	UCA2TXBUF	0Eh
USCI LIN control	UCA2ABCTL	10h
USCI IrDA transmit control	UCA2IRTCTL	12h
USCI IrDA receive control	UCA2IRRCTL	13h
USCI interrupt enable	UCA2IE	1Ch
USCI interrupt flags	UCA2IFG	1Dh
USCI interrupt vector word	UCA2IV	1Eh

Table 6-39. USCI_B2 Registers (Base Address: 0660h)

REGISTER DESCRIPTION	REGISTER	OFFSET
USCI synchronous control 1	UCB2CTL1	00h
USCI synchronous control 0	UCB2CTL0	01h
USCI synchronous bit rate 0	UCB2BR0	06h
USCI synchronous bit rate 1	UCB2BR1	07h
USCI synchronous status	UCB2STAT	0Ah
USCI synchronous receive buffer	UCB2RXBUF	0Ch
USCI synchronous transmit buffer	UCB2TXBUF	0Eh
USCI I2C own address	UCB2I2COA	10h
USCI I2C slave address	UCB2I2CSA	12h
USCI interrupt enable	UCB2IE	1Ch
USCI interrupt flags	UCB2IFG	1Dh
USCI interrupt vector word	UCB2IV	1Eh

Table 6-40. USCI_A3 Registers (Base Address: 0680h)

REGISTER DESCRIPTION	REGISTER	OFFSET
USCI control 1	UCA3CTL1	00h
USCI control 0	UCA3CTL0	01h
USCI baud rate 0	UCA3BR0	06h
USCI baud rate 1	UCA3BR1	07h
USCI modulation control	UCA3MCTL	08h
USCI status	UCA3STAT	0Ah
USCI receive buffer	UCA3RXBUF	0Ch
USCI transmit buffer	UCA3TXBUF	0Eh
USCI LIN control	UCA3ABCTL	10h
USCI IrDA transmit control	UCA3IRTCTL	12h
USCI IrDA receive control	UCA3IRRCTL	13h
USCI interrupt enable	UCA3IE	1Ch
USCI interrupt flags	UCA3IFG	1Dh
USCI interrupt vector word	UCA3IV	1Eh

Table 6-41. USCI_B3 Registers (Base Address: 06A0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
USCI synchronous control 1	UCB3CTL1	00h
USCI synchronous control 0	UCB3CTL0	01h
USCI synchronous bit rate 0	UCB3BR0	06h
USCI synchronous bit rate 1	UCB3BR1	07h
USCI synchronous status	UCB3STAT	0Ah
USCI synchronous receive buffer	UCB3RXBUF	0Ch
USCI synchronous transmit buffer	UCB3TXBUF	0Eh
USCI I2C own address	UCB3I2COA	10h
USCI I2C slave address	UCB3I2CSA	12h
USCI interrupt enable	UCB3IE	1Ch
USCI interrupt flags	UCB3IFG	1Dh
USCI interrupt vector word	UCB3IV	1Eh

MSP430F5418A

Table 6-42. ADC12_A Registers (Base Address: 0700h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Control 0	ADC12CTL0	00h
Control 1	ADC12CTL1	02h
Control 2	ADC12CTL2	04h
Interrupt flag	ADC12IFG	0Ah
Interrupt enable	ADC12IE	0Ch
Interrupt vector word	ADC12IV	0Eh
ADC memory control 0	ADC12MCTL0	10h
ADC memory control 1	ADC12MCTL1	11h
ADC memory control 2	ADC12MCTL2	12h
ADC memory control 3	ADC12MCTL3	13h
ADC memory control 4	ADC12MCTL4	14h
ADC memory control 5	ADC12MCTL5	15h
ADC memory control 6	ADC12MCTL6	16h
ADC memory control 7	ADC12MCTL7	17h
ADC memory control 8	ADC12MCTL8	18h
ADC memory control 9	ADC12MCTL9	19h
ADC memory control 10	ADC12MCTL10	1Ah
ADC memory control 11	ADC12MCTL11	1Bh
ADC memory control 12	ADC12MCTL12	1Ch
ADC memory control 13	ADC12MCTL13	1Dh
ADC memory control 14	ADC12MCTL14	1Eh
ADC memory control 15	ADC12MCTL15	1Fh
Conversion memory 0	ADC12MEM0	20h
Conversion memory 1	ADC12MEM1	22h
Conversion memory 2	ADC12MEM2	24h
Conversion memory 3	ADC12MEM3	26h
Conversion memory 4	ADC12MEM4	28h
Conversion memory 5	ADC12MEM5	2Ah
Conversion memory 6	ADC12MEM6	2Ch
Conversion memory 7	ADC12MEM7	2Eh
Conversion memory 8	ADC12MEM8	30h
Conversion memory 9	ADC12MEM9	32h
Conversion memory 10	ADC12MEM10	34h
Conversion memory 11	ADC12MEM11	36h
Conversion memory 12	ADC12MEM12	38h
Conversion memory 13	ADC12MEM13	3Ah
Conversion memory 14	ADC12MEM14	3Ch
Conversion memory 15	ADC12MEM15	3Eh

6.10 Input/Output Diagrams

6.10.1 Port P1 (P1.0 to P1.7) Input/Output With Schmitt Trigger

Figure 6-2 shows the port diagram. Table 6-43 summarizes the selection of the pin functions.

Figure 6-2. Port P1 (P1.0 to P1.7) Diagram

Table 6-43. Port P1 (P1.0 to P1.7) Pin Functions

DINI NAME (D4)		FUNCTION	CONTROL BITS OR SIGNALS	
PIN NAME (P1.x)	X	FUNCTION	P1DIR.x	P1SEL.x
P1.0/TA0CLK/ACLK	0	P1.0 (I/O)	I: 0; O: 1	0
		TA0.TA0CLK	0	1
		ACLK	1	1
		P1.1 (I/O)	I: 0; O: 1	0
P1.1/TA0.0	1	TA0.CCI0A	0	1
		TA0.0	1	1
		P1.2 (I/O)	I: 0; O: 1	0
P1.2/TA0.1	2	TA0.CCI1A	0	1
		TA0.1	1	1
	3	P1.3 (I/O)	I: 0; O: 1	0
P1.3/TA0.2		TA0.CCI2A	0	1
		TA0.2	1	1
		P1.4 (I/O)	I: 0; O: 1	0
P1.4/TA0.3	4	TA0.CCI3A	0	1
		TA0.3	1	1
	5	P1.5 (I/O)	I: 0; O: 1	0
P1.5/TA0.4		TA0.CCI4A	0	1
		TA0.4	1	1
P1.6/SMCLK	6	P1.6 (I/O)	I: 0; O: 1	0
		SMCLK	1	1
P1.7	7	P1.7 (I/O)	I: 0; O: 1	0

6.10.2 Port P2 (P2.0 to P2.7) Input/Output With Schmitt Trigger

Figure 6-3 shows the port diagram. Table 6-44 summarizes the selection of the pin functions.

Figure 6-3. Port P2 (P2.0 to P2.7) Diagram

Table 6-44. Port P2 (P2.0 to P2.7) Pin Functions

DIN NAME (DO)		FUNCTION	CONTROL BITS	CONTROL BITS OR SIGNALS	
PIN NAME (P2.x)	x FUNCTION	P2DIR.x	P2SEL.x		
P2.0/TA1CLK/MCLK		P2.0 (I/O)	I: 0; O: 1	0	
	0	TA1CLK	0	1	
		MCLK	1	1	
		P2.1 (I/O)	I: 0; O: 1	0	
P2.1/TA1.0	1	TA1.CCI0A	0	1	
		TA1.0	1	1	
		P2.2 (I/O)	I: 0; O: 1	0	
P2.2/TA1.1	2	TA1.CCI1A	0	1	
		TA1.1	1	1	
		P2.3 (I/O)	I: 0; O: 1	0	
P2.3/TA1.2	3	TA1.CCI2A	0	1	
		TA1.2	1	1	
P2.4/RTCCLK		P2.4 (I/O)	I: 0; O: 1	0	
	4	RTCCLK	1	1	
P2.5	5	P2.5 (I/O)	I: 0; O: 1	0	
		P2.6 (I/O)	I: 0; O: 1	0	
P2.6/ACLK	6	ACLK	1	1	
P2.7/ADC12CLK/DMAE0		P2.7 (I/O)	I: 0; O: 1	0	
	7	DMAE0	0	1	
		ADC12CLK	1	1	

6.10.3 Port P3 (P3.0 to P3.7) Input/Output With Schmitt Trigger

Figure 6-4 shows the port diagram. Table 6-45 summarizes the selection of the pin functions.

Figure 6-4. Port P3 (P3.0 to P3.7) Diagram

MSP430F5418A

Table 6-45. Port P3 (P3.0 to P3.7) Pin Functions

DIN NAME (D2 v)		FUNCTION	CONTROL BITS	CONTROL BITS OR SIGNALS ⁽¹⁾		
PIN NAME (P3.x)	X	FUNCTION	P3DIR.x	P3SEL.x		
D2 0/LICDOSTE/LICAOCLI/	_	P3.0 (I/O)	I: 0; O: 1	0		
P3.0/UCB0STE/UCA0CLK	0	UCB0STE/UCA0CLK ⁽²⁾ (3)	Х	1		
D2 4/LICROCIMO/LICROCDA	4	P3.1 (I/O)	I: 0; O: 1	0		
P3.1/UCB0SIMO/UCB0SDA	1	UCB0SIMO/UCB0SDA ⁽²⁾ (4)	Х	1		
DO O/LICROCOMI/LICROCCI	0	P3.2 (I/O)	I: 0; O: 1	0		
P3.2/UCB0SOMI/UCB0SCL	2	UCB0SOMI/UCB0SCL ⁽²⁾ (4)	X	1		
D0 0 // 10 D0 0 1 // 10 A 0 0 T F	3	P3.3 (I/O)	I: 0; O: 1	0		
P3.3/UCB0CLK/UCA0STE		UCB0CLK/UCA0STE (2) (5)	Х	1		
DO A/LICAOTYD/LICAOCIMO	4	P3.4 (I/O)	I: 0; O: 1	0		
P3.4/UCA0TXD/UCA0SIMO	4	UCA0TXD/UCA0SIMO ⁽²⁾	Х	1		
D0 5 // 10 A 0D VD // 10 A 00 O A 4	_	P3.5 (I/O)	I: 0; O: 1	0		
P3.5/UCA0RXD/UCA0SOMI	5	UCA0RXD/UCA0SOMI(2)	X	1		
D0 0/110D40TE/110A4011/	_	P3.6 (I/O)	I: 0; O: 1	0		
P3.6/UCB1STE/UCA1CLK	6	UCB1STE/UCA1CLK ⁽²⁾ (6)	X	1		
D0 7/LICD4CIMO/LICD4CD4	7	P3.7 (I/O)	I: 0; O: 1	0		
P3.7/UCB1SIMO/UCB1SDA	′	UCB1SIMO/UCB1SDA(2) (4)	X	1		

⁽¹⁾ X = Don't care

⁽²⁾ The pin direction is controlled by the USCI module.

⁽³⁾ UCAOCLK function takes precedence over UCBOSTE function. If the pin is required as UCAOCLK input or output, USCI_B0 is forced to 3-wire SPI mode if 4-wire SPI mode is selected.

⁽⁴⁾ If the I²C functionality is selected, the output drives only the logical 0 to V_{SS} level.

⁽⁵⁾ UCB0CLK function takes precedence over UCA0STE function. If the pin is required as UCB0CLK input or output, USCI_A0 is forced to 3-wire SPI mode if 4-wire SPI mode is selected.

⁽⁶⁾ UCA1CLK function takes precedence over UCB1STE function. If the pin is required as UCA1CLK input or output, USCI_B1 is forced to 3-wire SPI mode if 4-wire SPI mode is selected.

6.10.4 Port P4 (P4.0 to P4.7) Input/Output With Schmitt Trigger

Figure 6-5 shows the port diagram. Table 6-46 summarizes the selection of the pin functions.

Figure 6-5. Port P4 (P4.0 to P4.7) Diagram

Table 6-46. Port P4 (P4.0 to P4.7) Pin Functions

DIN MARE (D4)		FUNCTION	CONTROL BITS	CONTROL BITS OR SIGNALS		
PIN NAME (P4.x)	X		P4DIR.x	P4SEL.x		
		4.0 (I/O)	I: 0; O: 1	0		
P4.0/TB0.0	0	TB0.CCI0A and TB0.CCI0B	0	1		
		TB0.0 ⁽¹⁾	1	1		
		4.1 (I/O)	I: 0; O: 1	0		
P4.1/TB0.1	1	TB0.CCI1A and TB0.CCI1B	0	1		
		TB0.1 ⁽¹⁾	1	1		
		4.2 (I/O)	I: 0; O: 1	0		
P4.2/TB0.2	2	TB0.CCI2A and TB0.CCI2B	0	1		
		TB0.2 ⁽¹⁾	1	1		
		4.3 (I/O)	I: 0; O: 1	0		
P4.3/TB0.3	3	TB0.CCI3A and TB0.CCI3B	0	1		
		TB0.3 ⁽¹⁾	1	1		
		4.4 (I/O)	I: 0; O: 1	0		
P4.4/TB0.5	4	TB0.CCI4A and TB0.CCI4B	0	1		
		TB0.4 ⁽¹⁾	1	1		
		4.5 (I/O)	I: 0; O: 1	0		
P4.5/TB0.5	5	TB0.CCI5A and TB0.CCI5B	0	1		
		TB0.5 ⁽¹⁾	1	1		
		4.6 (I/O)	I: 0; O: 1	0		
P4.6/TB0.6	6	TB0.CCI6A and TB0.CCI6B	0	1		
		TB0.6 ⁽¹⁾	1	1		
		4.7 (I/O)	I: 0; O: 1	0		
P4.7/TB0CLK/SMCLK	7	TB0CLK	0	1		
		SMCLK	1	1		

⁽¹⁾ Setting TBOUTH causes all Timer_B configured outputs to be set to high impedance.

6.10.5 Port P5 (P5.0 and P5.1) Input/Output With Schmitt Trigger

Figure 6-6 shows the port diagram. Table 6-47 summarizes the selection of the pin functions.

Figure 6-6. Port P5 (P5.0 and P5.1) Diagram

Table 6-47. Port P5 (P5.0 and P5.1) Pin Functions

PIN NAME (P5.x)		FUNCTION	CONTROL BITS OR SIGNALS ⁽¹⁾			
	X		P5DIR.x	P5SEL.x	REFOUT	
P5.0/A8/VREF+/VeREF+		P5.0 (I/O) ⁽²⁾	I: 0; O: 1	0	X	
	0	A8/VeREF+ ⁽³⁾	Х	1	0	
		A8/VREF+ ⁽⁴⁾	Х	1	1	
P5.1/A9/VREF-/VeREF-		P5.1 (I/O) ⁽²⁾	I: 0; O: 1	0	Х	
	1	A9/VeREF-(5)	Х	1	0	
		A9/VREF-(6)	Х	1	1	

- (1) X = Don't care
- (2) Default condition
- (3) Setting the P5SEL.0 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. An external voltage can be applied to VeREF+ and used as the reference for the ADC12_A. Channel A8, when selected with the INCHx bits, is connected to the VREF+/VeREF+ pin.
- (4) Setting the P5SEL.0 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. The ADC12_A, VREF+ reference is available at the pin. Channel A8, when selected with the INCHx bits, is connected to the VREF+/VeREF+ pin.
- (5) Setting the P5SEL.1 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. An external voltage can be applied to VeREF- and used as the reference for the ADC12_A. Channel A9, when selected with the INCHx bits, is connected to the VREF-/VeREF- pin.
- (6) Setting the P5SEL.1 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. The ADC12_A, VREF- reference is available at the pin. Channel A9, when selected with the INCHx bits, is connected to the VREF-/VeREF- pin.

6.10.6 Port P5 (P5.2 and P5.3) Input/Output With Schmitt Trigger

Figure 6-7 and Figure 6-8 show the port diagrams. Table 6-48 summarizes the selection of the pin functions.

Figure 6-7. Port P5 (P5.2) Diagram

MSP430F5418A

Figure 6-8. Port P5 (P5.3) Diagram

Table 6-48. Port P5 (P5.2 and P5.3) Pin Functions

PIN NAME (P5.x)		FUNCTION	CONTROL BITS OR SIGNALS ⁽¹⁾				
	X	FUNCTION	P5DIR.x	P5SEL.2	P5SEL.3	XT2BYPASS	
		P5.2 (I/O)	I: 0; O: 1	0	X	X	
P5.2/XT2IN	2	XT2IN crystal mode (2)	Х	1	Х	0	
		XT2IN bypass mode (2)	Х	1	Х	1	
P5.3/XT2OUT		P5.3 (I/O)	I: 0; O: 1	0	0	Х	
	3	XT2OUT crystal mode (3)	Х	1	Х	0	
		P5.3 (I/O) ⁽³⁾	Х	1	0	1	

⁽¹⁾ X = Don't care

⁽²⁾ Setting P5SEL.2 causes the general-purpose I/O to be disabled. Pending the setting of XT2BYPASS, P5.2 is configured for crystal mode or bypass mode.

⁽³⁾ Setting PSSEL.2 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, P5.3 can be used as general-purpose I/O.

6.10.7 Port P5 (P5.4 to P5.7) Input/Output With Schmitt Trigger

Figure 6-9 shows the port diagram. Table 6-49 summarizes the selection of the pin functions.

Figure 6-9. Port P5 (P5.4 to P5.7) Diagram

Table 6-49. Port P5 (P5.4 to P5.7) Pin Functions

DIN NAME (DE v)		FUNCTION	CONTROL BITS OR SIGNALS ⁽¹⁾		
PIN NAME (P5.x)	Х	FUNCTION	P5DIR.x	P5SEL.x	
P5.4/UCB1SOMI/UCB1SCL	4	P5.4 (I/O)	I: 0; O: 1	0	
P5.4/UCB150IVII/UCB15CL	4	UCB1SOMI/UCB1SCL (2) (3)	X	1	
DE E/LICDACI K/LICAACTE	5	P5.5 (I/O)	I: 0; O: 1	0	
P5.5/UCB1CLK/UCA1STE		UCB1CLK/UCA1STE (2) (4)	Х	1	
DE C/LICAATYD/LICAACIMO	6	P5.6 (I/O)	I: 0; O: 1	0	
P5.6/UCA1TXD/UCA1SIMO	6	UCA1TXD/UCA1SIMO ⁽²⁾	X	1	
P5.7/UCA1RXD/UCA1SOMI	7	P5.7 (I/O)	I: 0; O: 1	0	
	/	UCA1RXD/UCA1SOMI ⁽²⁾	Х	1	

⁽¹⁾ X = Don't care

⁽²⁾ The pin direction is controlled by the USCI module.

⁽³⁾ If the I²C functionality is selected, the output drives only the logical 0 to V_{SS} level.

⁽⁴⁾ UCB1CLK function takes precedence over UCA1STE function. If the pin is required as UCB1CLK input or output, USCI_A1 is forced to 3-wire SPI mode if 4-wire SPI mode is selected.

6.10.8 Port P6 (P6.0 to P6.7) Input/Output With Schmitt Trigger

Figure 6-10 shows the port diagram. Table 6-50 summarizes the selection of the pin functions.

Figure 6-10. Port P6 (P6.0 to P6.7) Diagram

Table 6-50. Port P6 (P6.0 to P6.7) Pin Functions

DIN NAME (DG w)		FUNCTION	CONTR	CONTROL BITS OR SIGNALS ⁽¹⁾			
PIN NAME (P6.x)	X	FUNCTION	P6DIR.x	P6SEL.x	INCHx		
DC 0/A0	0	P6.0 (I/O)	I: 0; O: 1	0	Х		
P6.0/A0	U	A0 ⁽²⁾ (3)	X	Χ	0		
DC 4/A4	1	P6.1 (I/O)	I: 0; O: 1	0	X		
P6.1/A1	1	A1 (2) (3)	X	Х	1		
DC 0/A0	0	P6.2 (I/O)	I: 0; O: 1	0	Х		
P6.2/A2	2	A2 ⁽²⁾ (3)	X	Х	2		
P0.0/40		P6.3 (I/O)	I: 0; O: 1	0	Х		
P6.3/A3	3	A3 ⁽²⁾ (3)	X	Х	3		
DC 4/44		P6.4 (I/O)	I: 0; O: 1	0	Х		
P6.4/A4	4	A4 ⁽²⁾ (3)	X	Х	4		
DC F/AF	_	P6.5 (I/O)	I: 0; O: 1	0	Х		
P6.5/A5	5	A5 ⁽¹⁾ (2) (3)	X	Х	5		
DC C/AC		P6.6 (I/O)	I: 0; O: 1	0	Х		
P6.6/A6	6	A6 ^{(2) (3)}	X	Х	6		
DC 7/A7	7	P6.7 (I/O)	I: 0; O: 1	0	Х		
P6.7/A7		A7 ⁽²⁾ (3)	X	Х	7		

⁽¹⁾ X = Don't care

MSP430F5418A

⁽²⁾ Setting the P6SEL.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.

⁽³⁾ The ADC12_A channel Ax is connected internally to AV_{SS} if not selected by the respective INCHx bits.

6.10.9 Port P7 (P7.0 and P7.1) Input/Output With Schmitt Trigger

Figure 6-11 and Figure 6-12 show the port diagrams. Table 6-51 summarizes the selection of the pin functions.

Figure 6-11. Port P7 (P7.0) Diagram

Figure 6-12. Port P7 (P7.1) Diagram

Table 6-51. Port P7 (P7.0 and P7.1) Pin Functions

PIN NAME (P7.x)		FUNCTION		CONTROL BITS OR SIGNALS ⁽¹⁾				
	X		P7DIR.x	P7SEL.0	P7SEL.1	XT1BYPASS		
P7.0/XIN		P7.0 (I/O)	I: 0; O: 1	0	Х	Х		
	0	XIN crystal mode ⁽²⁾	X	1	Х	0		
		XIN bypass mode ⁽²⁾	Х	1	Х	1		
P7.1/XOUT		P7.1 (I/O)	I: 0; O: 1	0	0	Х		
	1	XOUT crystal mode ⁽³⁾	Х	1	Х	0		
		P7.1 (I/O) ⁽³⁾	Х	1	0	1		

⁽¹⁾ X = Don't care

⁽²⁾ Setting P7SEL.0 causes the general-purpose I/O to be disabled. Pending the setting of XT1BYPASS, P7.0 is configured for crystal mode or bypass mode.

⁽³⁾ Setting P7SEL.0 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, P7.1 can be used as general-purpose I/O.

6.10.10 Port P7 (P7.2 and P7.3) Input/Output With Schmitt Trigger

Figure 6-13 shows the port diagram. Table 6-52 summarizes the selection of the pin functions.

Figure 6-13. Port P7 (P7.2 and P7.3) Diagram

Table 6-52. Port P7 (P7.2 and P7.3) Pin Functions

PIN NAME (P7.x)		FUNCTION	CONTROL BITS OR SIGNALS		
	X		P7DIR.x	P7SEL.x	
P7.2/TB0OUTH/SVMOUT		P7.2 (I/O)	I: 0; O: 1	0	
	2	TB0OUTH	0	1	
		SVMOUT	1	1	
P7.3/TA1.2		P7.3 (I/O)	I: 0; O: 1	0	
	3	TA1.CCI2B	0	1	
		TA1.2	1	1	

6.10.11 Port P7 (P7.4 to P7.7) Input/Output With Schmitt Trigger

Figure 6-14 shows the port diagram. Table 6-53 summarizes the selection of the pin functions.

Figure 6-14. Port P7 (P7.4 to P7.7) Diagram

Table 6-53. Port P7 (P7.4 to P7.7) Pin Functions

DIN NAME (D7 v)		FUNCTION	CONTROL BITS OR SIGNALS ⁽¹⁾		
PIN NAME (P7.x)	X	FUNCTION	P7DIR.x	P7SEL.x	INCHx
D7 4/849	4	P7.4 (I/O)	I: 0; O: 1	0	Х
P7.4/A12	4	A12 ⁽²⁾ (3)	X	X	12
D7.5/440	5	P7.5 (I/O)	I: 0; O: 1	0	X
P7.5/A13	Э	A13 ^{(2) (3)}	Х	X	13
D7 6/044	6	P7.6 (I/O)	I: 0; O: 1	0	X
P7.6/A14	6	A14 ⁽²⁾ (3)	Х	Х	14
P7.7/A15	7	P7.7 (I/O)	I: 0; O: 1	0	Х
	/	A15 ^{(2) (3)}	Х	X	15

⁽¹⁾ X = Don't care

⁽²⁾ Setting the P7SEL.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.

⁽³⁾ The ADC12_A channel Ax is connected internally to AV_{SS} if not selected by the respective INCHx bits.

6.10.12 Port P8 (P8.0 to P8.7) Input/Output With Schmitt Trigger

Figure 6-15 shows the port diagram. Table 6-54 summarizes the selection of the pin functions.

Figure 6-15. Port P8 (P8.0 to P8.7) Diagram

Table 6-54. Port P8 (P8.0 to P8.7) Pin Functions

DINI NAME (DO)		FUNCTION	CONTROL BITS	CONTROL BITS OR SIGNALS		
PIN NAME (P8.x)	X		P8DIR.x	P8SEL.x		
		P8.0 (I/O)	l: 0; O: 1	0		
P8.0/TA0.0	0	TA0.CCI0B	0	1		
		TA0.0	1	1		
		P8.1 (I/O)	I: 0; O: 1	0		
P8.1/TA0.1	1	TA0.CCI1B	0	1		
		TA0.1	1	1		
		P8.2 (I/O)	I: 0; O: 1	0		
P8.2/TA0.2	2	TA0.CCI2B	0	1		
		TA0.2	1	1		
		P8.3 (I/O)	l: 0; O: 1	0		
P8.3/TA0.3	3	TA0.CCI3B	0	1		
		TA0.3	1	1		
		P8.4 (I/O)	I: 0; O: 1	0		
P8.4/TA0.4	4	TA0.CCI4B	0	1		
		TA0.4	1	1		
		P8.5 (I/O)	l: 0; O: 1	0		
P8.5/TA1.0	5	TA1.CCI0B	0	1		
		TA1.0	1	1		
		P8.6 (I/O)	l: 0; O: 1	0		
P8.6/TA1.1	6	TA1.CCI1B	0	1		
		TA1.1	1	1		
P8.7	7	P8.7 (I/O)	l: 0; O: 1	0		

MSP430F5418A

6.10.13 Port P9 (P9.0 to P9.7) Input/Output With Schmitt Trigger

Figure 6-16 shows the port diagram. Table 6-55 summarizes the selection of the pin functions.

Figure 6-16. Port P9 (P9.0 to P9.7) Diagram

Table 6-55. Port P9 (P9.0 to P9.7) Pin Functions

DIN NAME (DO v)		FUNCTION	CONTROL BITS	CONTROL BITS OR SIGNALS ⁽¹⁾		
PIN NAME (P9.x)	Х	FUNCTION	P9DIR.x	P9SEL.x		
P9.0/UCB2STE/UCA2CLK	0	P9.0 (I/O)	I: 0; O: 1	0		
F9.0/00B231E/00A20LK	U	UCB2STE/UCA2CLK ⁽²⁾ (3)	X	1		
DO 4/LICROCIMO/LICROCDA	1	P9.1 (I/O)	l: 0; O: 1	0		
P9.1/UCB2SIMO/UCB2SDA	'	UCB2SIMO/UCB2SDA(2) (4)	X	1		
Do 0// 10000001// 1000001	2	P9.2 (I/O)	l: 0; O: 1	0		
P9.2/UCB2SOMI/UCB2SCL		UCB2SOMI/UCB2SCL (2) (4)	X	1		
P9.3/UCB2CLK/UCA2STE	3	P9.3 (I/O)	I: 0; O: 1	0		
P9.3/UCB2CLK/UCA25TE		UCB2CLK/UCA2STE (2) (5)	X	1		
DO 4/LICASTVD/LICASCIMO	4	P9.4 (I/O)	I: 0; O: 1	0		
P9.4/UCA2TXD/UCA2SIMO	4	UCA2TXD/UCA2SIMO(2)	X	1		
DO E/LICAGRYD/LICAGROMI	5	P9.5 (I/O)	I: 0; O: 1	0		
P9.5/UCA2RXD/UCA2SOMI	5	UCA2RXD/UCA2SOMI ⁽²⁾	X	1		
P9.6	6	P9.6 (I/O)	I: 0; O: 1	0		
P9.7	7	P9.7 (I/O)	l: 0; O: 1	0		

⁽¹⁾ X = Don't care

⁽²⁾ The pin direction is controlled by the USCI module.

⁽³⁾ UCA2CLK function takes precedence over UCB2STE function. If the pin is required as UCA2CLK input or output, USCI_B2 is forced to 3-wire SPI mode if 4-wire SPI mode is selected.

⁽⁴⁾ If the I²C functionality is selected, the output drives only the logical 0 to V_{SS} level.

⁽⁵⁾ UCB2CLK function takes precedence over UCA2STE function. If the pin is required as UCB2CLK input or output, USCI_A2 is forced to 3-wire SPI mode if 4-wire SPI mode is selected.

6.10.14 Port P10 (P10.0 to P10.7) Input/Output With Schmitt Trigger

Figure 6-17 shows the port diagram. Table 6-56 summarizes the selection of the pin functions.

Figure 6-17. Port P10 (P10.0 to P10.7) Diagram

Table 6-56. Port P10 (P10.0 to P10.7) Pin Functions

DINI NAME (D40 s.)			CONTROL BITS	OR SIGNALS ⁽¹⁾
PIN NAME (P10.x)	X	FUNCTION	P10DIR.x	P10SEL.x
P10.0/UCB3STE/UCA3CLK	0	P10.0 (I/O)	I: 0; O: 1	0
F10.0/0CB3S1E/0CA3CER	U	UCB3STE/UCA3CLK ⁽²⁾ (3)	X	1
P10.1/UCB3SIMO/UCB3SDA	1	P10.1 (I/O)	I: 0; O: 1	0
PT0.1/0CB3SIMO/0CB3SDA	'	UCB3SIMO/UCB3SDA(2)(4)	X	1
P10.2/UCB3SOMI/UCB3SCL	2	P10.2 (I/O)	I: 0; O: 1	0
P10.2/0CB3SOMI/OCB3SCL	2	UCB3SOMI/UCB3SCL ⁽²⁾ (4)	Х	1
D40.0/I IOD001 I//I IO400TF	2	P10.3 (I/O)	I: 0; O: 1	0
P10.3/UCB3CLK/UCA3STE	3	UCB3CLK/UCA3STE (2) (5)	Х	1
D40 4/11CA2TVD/11CA2CINAC	4	P10.4 (I/O)	I: 0; O: 1	0
P10.4/UCA3TXD/UCA3SIMO	4	UCA3TXD/UCA3SIMO ⁽²⁾	Х	1
D40 F/LICAGRYD/LICAGROMI	_	P10.5 (I/O)	I: 0; O: 1	0
P10.5/UCA3RXD/UCA3SOMI	5	UCA3RXD/UCA3SOMI ⁽²⁾	Х	1
B40.0		P10.6 (I/O)	I: 0; O: 1	0
P10.6	6	Reserved ⁽⁶⁾	Х	1
D40.7	7	P10.7 (I/O)	I: 0; O: 1	0
P10.7	7	Reserved ⁽⁶⁾	Х	1

⁽¹⁾ X = Don't care

⁽²⁾ The pin direction is controlled by the USCI module.

⁽³⁾ UCA3CLK function takes precedence over UCB3STE function. If the pin is required as UCA3CLK input or output, USCI_B3 is forced to 3-wire SPI mode if 4-wire SPI mode is selected.

⁽⁴⁾ If the I^2C functionality is selected, the output drives only the logical 0 to V_{SS} level.

⁽⁵⁾ UCB3CLK function takes precedence over UCA3STE function. If the pin is required as UCB3CLK input or output, USCI_A3 is forced to 3-wire SPI mode if 4-wire SPI mode is selected.

⁽⁶⁾ The secondary function on these pins are reserved for factory test purposes. Application should keep the P10SEL.x of these ports cleared to prevent potential conflicts with the application.

6.10.15 Port P11 (P11.0 to P11.2) Input/Output With Schmitt Trigger

Figure 6-18 shows the port diagram. Table 6-57 summarizes the selection of the pin functions.

Figure 6-18. Port P11 (P11.0 to P11.2) Diagram

Table 6-57. Port P11 (P11.0 to P11.2) Pin Functions

DIN NAME (D44 v)		FUNCTION	CONTROL BITS OR SIGNALS			
PIN NAME (P11.x)	X	FUNCTION	P11DIR.x	P11SEL.x		
D44 0/ACLK	0	P11.0 (I/O)	I: 0; O: 1	0		
P11.0/ACLK		ACLK	1	1		
D44.4/MCLI/	4	P11.1 (I/O)	I: 0; O: 1	0		
P11.1/MCLK	'	MCLK	1	1		
D44 2/CMCLK	0	P11.2 (I/O)	I: 0; O: 1	0		
P11.2/SMCLK	2	SMCLK	1	1		

6.10.16 Port PJ (PJ.0) JTAG Pin TDO, Input/Output With Schmitt Trigger or Output

Figure 6-19 shows the port diagram. Table 6-58 summarizes the selection of the pin functions.

Figure 6-19. Port PJ (PJ.0) Diagram

6.10.17 Port PJ (PJ.1 to PJ.3) JTAG Pins TMS, TCK, TDI/TCLK, Input/Output With Schmitt Trigger or Output

Figure 6-20 shows the port diagram. Table 6-58 summarizes the selection of the pin functions.

Figure 6-20. Port PJ (PJ.1 to PJ.3) Diagram

Table 6-58. Port PJ (PJ.0 to PJ.3) Pin Functions

PIN NAME (PJ.x)	х	FUNCTION	CONTROL BITS OR SIGNALS ⁽¹⁾
` '			PJDIR.x
DIATEO		PJ.0 (I/O) ⁽²⁾	I: 0; O: 1
PJ.0/TDO	0	TDO ⁽³⁾	X
DIA/TDI/TOLK	_	PJ.1 (I/O) ⁽²⁾	I: 0; O: 1
PJ.1/TDI/TCLK	1	TDI/TCLK ⁽³⁾ (4)	X
D.L.O/TMO		PJ.2 (I/O) ⁽²⁾	I: 0; O: 1
PJ.2/TMS	2	TMS ⁽³⁾ (4)	X
DI 2/TOV	1	PJ.3 (I/O) ⁽²⁾	I: 0; O: 1
PJ.3/TCK	3	TCK ⁽³⁾ (4)	X

⁽¹⁾ X = Don't care

⁽²⁾ Default condition

⁽³⁾ The pin direction is controlled by the JTAG module.

⁽⁴⁾ In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are do not care.

6.11 Device Descriptors

Table 6-59 shows the contents of the device descriptor tag-length-value (TLV) structure for each device type.

Table 6-59. Device Descriptors⁽¹⁾

	DEGODIDATION	4000000	SIZE			VAI	LUE		
	DESCRIPTION	ADDRESS	(bytes)	F5438A	F5437A	F5436A	F5435A	F5419A	F5418A
	Info length	01A00h	1	06h	06h	06h	06h	06h	06h
	CRC length	01A01h	1	06h	06h	06h	06h	06h	06h
	CRC value	01A02h	2	Per unit					
Info Block	Device ID	01A04h	1	05h	04h	03h	02h	01h	00h
	Device ID	01A05h	1	80h	80h	80h	80h	80h	80h
	Hardware revision	01A06h	1	Per unit					
	Firmware revision	01A07h	1	Per unit					
	Die record tag	01A08h	1	08h	08h	08h	08h	08h	08h
	Die record length	01A09h	1	0Ah	0Ah	0Ah	0Ah	0Ah	0Ah
Die Record	Lot/wafer ID	01A0Ah	4	Per unit					
Die Record	Die X position	01A0Eh	2	Per unit					
	Die Y position	01A10h	2	Per unit					
	Test results	01A12h	2	Per unit					
	ADC12 calibration tag	01A14h	1	11h	11h	11h	11h	11h	11h
	ADC12 calibration length	01A15h	1	10h	10h	10h	10h	10h	10h
	ADC gain factor	01A16h	2	Per unit					
	ADC offset	01A18h	2	Per unit					
	ADC 1.5-V reference Temperature sensor 30°C	01A1Ah	2	Per unit					
ADC12 Calibration	ADC 1.5-V reference Temperature sensor 85°C	01A1Ch	2	Per unit					
Calibration	ADC 2.0-V reference Temperature sensor 30°C	01A1Eh	2	Per unit					
	ADC 2.0-V reference Temperature sensor 85°C	01A20h	2	Per unit					
	ADC 2.5-V reference Temperature sensor 30°C	01A22h	2	Per unit					
	ADC 2.5-V reference Temperature sensor 85°C	01A24h	2	Per unit					
	REF calibration tag	01A26h	1	12h	12h	12h	12h	12h	12h
	REF calibration length	01A27h	1	06h	06h	06h	06h	06h	06h
REF Calibration	REF 1.5-V reference	01A28h	2	Per unit					
	REF 2.0-V reference	01A2Ah	2	Per unit					
	REF 2.5-V reference	01A2Ch	2	Per unit					

Table 6-59. Device Descriptors⁽¹⁾ (continued)

	DESCRIPTION	ADDDESS	SIZE			VA	LUE		
	DESCRIPTION	ADDRESS	(bytes)	F5438A	F5437A	F5436A	F5435A	F5419A	F5418A
	Peripheral descriptor tag	01A2Eh	1	02h	02h	02h	02h	02h	02h
	Peripheral descriptor length	01A2Fh	1	61h	059h	62h	5Ah	61h	59h
	Memory 1		2	08h 8Ah	08h 8Ah	08h 8Ah	08h 8Ah	08h 8Ah	08h 8Ah
	Memory 2		2	0Ch 86h	0Ch 86h	0Ch 86h	0Ch 86h	0Ch 86h	0Ch 86h
	Memory 3		2	0Eh 30h	0Eh 30h	0Eh 30h	0Eh 30h	0Eh 30h	0Eh 30h
	Memory 4		2	2Eh 98h	2Eh 98h	2Eh 97h	2Eh 97h	2Eh 96h	2Eh 96h
	Memory 5		0/1	N/A	N/A	94h	94h	N/A	N/A
	Delimiter		1	00h	00h	00h	00h	00h	00h
	Peripheral count		1	21h	1Dh	21h	1Dh	21h	1Dh
	MSP430CPUXV2		2	00h 23h	00h 23h	00h 23h	00h 23h	00h 23h	00h 23h
	SBW		2	00h 0Fh	00h 0Fh	00h 0Fh	00h 0Fh	00h 0Fh	00h 0Fh
	EEM-8		2	00h 05h	00h 05h	00h 05h	00h 05h	00h 05h	00h 05h
	TI BSL		2	00h FCh	00h FCh	00h FCh	00h FCh	00h FCh	00h FCh
	Package		2	00h 1Fh	00h 1Fh	00h 1Fh	00h 1Fh	00h 1Fh	00h 1Fh
	SFR		2	10h 41h	10h 41h	10h 41h	10h 41h	10h 41h	10h 41h
Peripheral	PMM		2	02h 30h	02h 30h	02h 30h	02h 30h	02h 30h	02h 30h
Descriptor	FCTL		2	02h 38h	02h 38h	02h 38h	02h 38h	02h 38h	02h 38h
	CRC16 straight		2	01h 3Ch	01h 3Ch	01h 3Ch	01h 3Ch	01h 3Ch	01h 3Ch
	CRC16 bit reversed		2	00h 3Dh	00h 3Dh	00h 3Dh	00h 3Dh	00h 3Dh	00h 3Dh
	RAMCTL		2	00h 44h	00h 44h	00h 44h	00h 44h	00h 44h	00h 44h
	WDT_A		2	00h 40h	00h 40h	00h 40h	00h 40h	00h 40h	00h 40h
	UCS		2	01h 48h	01h 48h	01h 48h	01h 48h	01h 48h	01h 48h
	SYS		2	02h 42h	02h 42h	02h 42h	02h 42h	02h 42h	02h 42h
	REF		2	03h A0h	03h A0h	03h A0h	03h A0h	03h A0h	03h A0h
	Port 1 and 2		2	05h 51h	05h 51h	05h 51h	05h 51h	05h 51h	05h 51h
	Port 3 and 4		2	02h 52h	02h 52h	02h 52h	02h 52h	02h 52h	02h 52h
	Port 5 and 6		2	02h 53h	02h 53h	02h 53h	02h 53h	02h 53h	02h 53h
	Port 7 and 8		2	02h 54h	02h 54h	02h 54h	02h 54h	02h 54h	02h 54h
	Port 9 and 10		2	02h 55h	N/A	02h 55h	N/A	02h 55h	N/A
	Port 11 and 12		2	02h 56h	N/A	02h 56h	N/A	02h 56h	N/A

Table 6-59. Device Descriptors⁽¹⁾ (continued)

			SIZE			VA	LUE		
	DESCRIPTION	ADDRESS	(bytes)	F5438A	F5437A	F5436A	F5435A	F5419A	F5418A
	JTAG		2	08h 5Fh	0Ch 5Fh	08h 5Fh	0Ch 5Fh	08h 5Fh	0Ch 5Fh
	TA0		2	02h 62h	02h 62h	02h 62h	02h 62h	02h 62h	02h 62h
	TA1		2	04h 61h	04h 61h	04h 61h	04h 61h	04h 61h	04h 61h
	ТВО		2	04h 67h	04h 67h	04h 67h	04h 67h	04h 67h	04h 67h
	RTC		2	0Eh 68h	0Eh 68h	0Eh 68h	0Eh 68h	0Eh 68h	0Eh 68h
Peripheral	MPY32		2	02h 85h	02h 85h	02h 85h	02h 85h	02h 85h	02h 85h
Descriptor (continued)	DMA-3		2	04h 47h	04h 47h	04h 47h	04h 47h	04h 47h	04h 47h
	USCI_A and USCI_B		2	0Ch 90h	0Ch 90h	0Ch 90h	0Ch 90h	0Ch 90h	0Ch 90h
	USCI_A and USCI_B		2	04h 90h	04h 90h	04h 90h	04h 90h	04h 90h	04h 90h
	USCI_A and USCI_B		2	04h 90h	N/A	04h 90h	N/A	04h 90h	N/A
	USCI_A and USCI_B		2	04h 90h	N/A	04h 90h	N/A	04h 90h	N/A
	ADC12_A		2	08h D1h	10h D1h	08h D1h	10h D1h	08h D1h	10h D1h
	TB0.CCIFG0		1	64h	64h	64h	64h	64h	64h
	TB0.CCIFG16		1	65h	65h	65h	65h	65h	65h
	WDTIFG		1	40h	40h	40h	40h	40h	40h
	USCI_A0		1	90h	90h	90h	90h	90h	90h
	USCI_B0		1	91h	91h	91h	91h	91h	91h
	ADC12_A		1	D0h	D0h	D0h	D0h	D0h	D0h
	TA0.CCIFG0		1	60h	60h	60h	60h	60h	60h
	TA0.CCIFG14		1	61h	61h	61h	61h	61h	61h
	USCI_A2		1	94h	01h	94h	01h	94h	01h
	USCI_B2		1	95h	01h	95h	01h	95h	01h
Interrupts	DMA		1	46h	46h	46h	46h	46h	46h
	TA1.CCIFG0		1	62h	62h	62h	62h	62h	62h
	TA1.CCIFG12		1	63h	63h	63h	63h	63h	63h
	P1		1	50h	50h	50h	50h	50h	50h
	USCI_A1		1	92h	92h	92h	92h	92h	92h
	USCI_B1		1	93h	93h	93h	93h	93h	93h
	USCI_A3		1	96h	01h	96h	01h	96h	01h
	USCI_B3		1	97h	01h	97h	01h	97h	01h
	P2		1	51h	51h	51h	51h	51h	51h
	RTC_A		1	68h	68h	68h	68h	68h	68h
	Delimiter		1	00h	00h	00h	00h	00h	00h

7 Device and Documentation Support

7.1 Getting Started

For an introduction to the MSP430[™] family of devices and the tools and libraries that are available to help with your development, visit the MSP430 ultra-low-power sensing & measurement MCUs overview.

7.2 Device Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all MSP MCU devices. Each MSP MCU commercial family member has one of two prefixes: MSP or XMS. These prefixes represent evolutionary stages of product development from engineering prototypes (XMS) through fully qualified production devices (MSP).

XMS – Experimental device that is not necessarily representative of the final device's electrical specifications

MSP - Fully qualified production device

XMS devices are shipped against the following disclaimer:

"Developmental product is intended for internal evaluation purposes."

MSP devices have been characterized fully, and the quality and reliability of the device have been demonstrated fully. Tl's standard warranty applies.

Predictions show that prototype devices (XMS) have a greater failure rate than the standard production devices. TI recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used.

TI device nomenclature also includes a suffix with the device family name. This suffix indicates the temperature range, package type, and distribution format. Figure 7-1 provides a legend for reading the complete device name.

Figure 7-1. Device Nomenclature

-Q1 = Automotive Q100 Qualified

-EP = Enhanced Product (-40°C to 105°C)

-HT = Extreme Temperature Parts (-55°C to 150°C)

T = -40°C to 105°C

T = Small reel R = Large reel

http://www.ti.com/packaging

No markings = Tube or tray

Packaging

Optional: Tape and Reel

Optional: Additional Features

7.3 Tools and Software

All MSP microcontrollers are supported by a wide variety of software and hardware development tools. Tools are available from TI and various third parties. See them all at MSP430 Ultra-Low-Power MCUs – Tools & software.

Table 7-1 lists the debug features of the MSP430F543xA and MSP430F541xA MCUs. See the *Code Composer Studio IDE for MSP430 User's Guide* for details on the available features.

Table 7-1. Hardware Debug Features

MSP430 ARCHITECTURE	4-WIRE JTAG	2-WIRE JTAG	BREAK- POINTS (N)	RANGE BREAK- POINTS	CLOCK CONTROL	STATE SEQUENCER	TRACE BUFFER	LPMx.5 DEBUGGING SUPPORT
MSP430Xv2	Yes	Yes	8	Yes	Yes	Yes	Yes	No

Design Kits and Evaluation Modules

- MSP-TS430PZ5x100 100-pin Target Development Board for MSP430F5x MCUs

 The MSP-TS430PZ5X100 is a stand-alone ZIF socket target board used to program and debug the MSP430 MCU in-system through the JTAG interface or the Spy Bi-Wire (2-wire JTAG) protocol.
- 100-pin Target Development Board and MSP-FET Programmer Bundle for MSP430F5x MCUs MSP-FET430U5x100 is a powerful flash emulation tool (FET) that includes the hardware and software required to quickly begin application development on the MSP430 MCU. It includes a ZIF socket target board (MSP-TS430PZ5x100) and a USB debugging interface (MSP-FET) used to program and debug the MSP430 in-system through the JTAG interface or the Spy Bi-Wire (2-wire JTAG) protocol. The flash memory can be erased and programmed in seconds with only a few keystrokes, and since the MSP430 flash is ultra-low power, no external power supply is required.
- MSP430F5438 Experimenter Board The MSP430F5438 Experimenter Board (MSP-EXP430F5438) is a microcontroller development for highly integrated, high performance MSP430F5438 MCUs. It features a 100-pin socket which supports the MSP430F5438A and other devices with similar pinout. The socket allows for quick upgrades to newer devices or quick applications changes. It is compatible with many TI low-power RF wireless development kits such as the CC2520EMK. The Experimenter Board helps designers quickly learn and develop using the F5xx MCUs, which provide low power, more memory and leading integration for applications such as energy harvesting, wireless sensing and automatic metering infrastructure (AMI).

Software

- MSP430Ware MSP430Ware software is a collection of code examples, data sheets, and other design resources for all MSP430 devices delivered in a convenient package. In addition to providing a complete collection of existing MSP430 design resources, MSP430Ware software also includes a high-level API called MSP Driver Library. This library makes it easy to program MSP430 hardware. MSP430Ware software is available as a component of Code Composer Studio™ IDE or as a stand-alone package.
- MSP430F543xA, MSP430F541xA Code Examples C Code examples are available for every MSP device that configures each of the integrated peripherals for various application needs.
- MSP Driver Library Driver Library's abstracted API keeps you above the bits and bytes of the MSP430 hardware by providing easy-to-use function calls. Thorough documentation is delivered through a helpful API Guide, which includes details on each function call and the recognized parameters. Developers can use Driver Library functions to write complete projects with minimal overhead.
- MSP EnergyTrace™ Technology EnergyTrace technology for MSP430 microcontrollers is an energy-based code analysis tool that measures and displays the application's energy profile and helps to optimize it for ultra-low-power consumption.

MSP430F5418A

- ULP (Ultra-Low Power) Advisor ULP Advisor™ software is a tool for guiding developers to write more efficient code to fully utilize the unique ultra-low power features of MSP and MSP432 microcontrollers. Aimed at both experienced and new microcontroller developers, ULP Advisor checks your code against a thorough ULP checklist to squeeze every last nano amp out of your application. At build time, ULP Advisor will provide notifications and remarks to highlight areas of your code that can be further optimized for lower power.
- IEC60730 Software Package The IEC60730 MSP430 software package was developed to be useful in assisting customers in complying with IEC 60730-1:2010 (Automatic Electrical Controls for Household and Similar Use Part 1: General Requirements) for up to Class B products, which includes home appliances, arc detectors, power converters, power tools, e-bikes, and many others. The IEC60730 MSP430 software package can be embedded in customer applications running on MSP430s to help simplify the customer's certification efforts of functional safety-compliant consumer devices to IEC 60730-1:2010 Class B.
- Fixed Point Math Library for MSP The MSP IQmath and Qmath Libraries are a collection of highly optimized and high-precision mathematical functions for C programmers to seamlessly port a floating-point algorithm into fixed-point code on MSP430 and MSP432 devices. These routines are typically used in computationally intensive real-time applications where optimal execution speed, high accuracy, and ultra-low energy are critical. By using the IQmath and Qmath libraries, it is possible to achieve execution speeds considerably faster and energy consumption considerably lower than equivalent code written using floating-point math.
- Floating Point Math Library for MSP430 Continuing to innovate in the low power and low cost microcontroller space, TI brings you MSPMATHLIB. Leveraging the intelligent peripherals of our devices, this floating point math library of scalar functions brings you up to 26x better performance. Mathlib is easy to integrate into your designs. This library is free and is integrated in both Code Composer Studio and IAR IDEs. Read the user's guide for an in depth look at the math library and relevant benchmarks.

Development Tools

- Code Composer Studio™ Integrated Development Environment for MSP Microcontrollers

 Composer Studio is an integrated development environment (IDE) that supports all MSP microcontroller devices. Code Composer Studio comprises a suite of embedded software utilities used to develop and debug embedded applications. It includes an optimizing C/C++ compiler, source code editor, project build environment, debugger, profiler, and many other features. The intuitive IDE provides a single user interface taking you through each step of the application development flow. Familiar utilities and interfaces allow users to get started faster than ever before. Code Composer Studio combines the advantages of the Eclipse software framework with advanced embedded debug capabilities from TI resulting in a compelling feature-rich development environment for embedded developers. When using CCS with an MSP MCU, a unique and powerful set of plugins and embedded software utilities are made available to fully leverage the MSP microcontroller.
- Command-Line Programmer MSP Flasher is an open-source shell-based interface for programming MSP microcontrollers through a FET programmer or eZ430 using JTAG or Spy-Bi-Wire (SBW) communication. MSP Flasher can download binary files (.txt or .hex) files directly to the MSP microcontroller without an IDE.
- MSP MCU Programmer and Debugger The MSP-FET is a powerful emulation development tool often called a debug probe which allows users to quickly begin application development on MSP low-power microcontrollers (MCU). Creating MCU software usually requires downloading the resulting binary program to the MSP device for validation and debugging. The MSP-FET provides a debug communication pathway between a host computer and the target MSP. Furthermore, the MSP-FET also provides a Backchannel UART connection between the computer's USB interface and the MSP UART. This affords the MSP programmer a convenient method for communicating serially between the MSP and a terminal running on the computer. It also supports loading programs (often called firmware) to the MSP target using the BSL (bootloader) through the UART and I²C communication protocols.

MSP-GANG Production Programmer The MSP Gang Programmer is an MSP430 or MSP432 device programmer that can program up to eight identical MSP430 or MSP432 Flash or FRAM devices at the same time. The MSP Gang Programmer connects to a host PC using a standard RS-232 or USB connection and provides flexible programming options that allow the user to fully customize the process. The MSP Gang Programmer is provided with an expansion board, called the Gang Splitter, that implements the interconnections between the MSP Gang Programmer and multiple target devices. Eight cables are provided that connect the expansion board to eight target devices (through JTAG or Spy-Bi-Wire connectors). The programming can be done with a PC or as a stand-alone device. A PC-side graphical user interface is also available and is DLL-based.

7.4 Documentation Support

The following documents describe the MSP430F543xA and MSP430F541xA MCUs. Copies of these documents are available on the Internet at www.ti.com.

Receiving Notification of Document Updates

To receive notification of documentation updates—including silicon errata—go to the product folder for your device on ti.com (for links to the product folders, see Section 7.5). In the upper right corner, click the "Alert me" button. This registers you to receive a weekly digest of product information that has changed (if any). For change details, check the revision history of any revised document.

Errata

- MSP430F5438A Device Erratasheet Describes the known exceptions to the functional specifications for all silicon revisions of this device.
- MSP430F5437A Device Erratasheet Describes the known exceptions to the functional specifications for all silicon revisions of this device.
- MSP430F5436A Device Erratasheet Describes the known exceptions to the functional specifications for all silicon revisions of this device.
- MSP430F5435A Device Erratasheet Describes the known exceptions to the functional specifications for all silicon revisions of this device.
- MSP430F5419A Device Erratasheet Describes the known exceptions to the functional specifications for all silicon revisions of this device.
- MSP430F5418A Device Erratasheet Describes the known exceptions to the functional specifications for all silicon revisions of this device.

User's Guides

- MSP430F5xx and MSP430F6xx Family User's Guide Detailed information on the modules and peripherals available in this device family.
- MSP430 Flash Device Bootloader (BSL) User's Guide The MSP430 bootloader (BSL) lets users communicate with embedded memory in the MSP430 microcontroller during the prototyping phase, final production, and in service. Both the programmable memory (flash memory) and the data memory (RAM) can be modified as required. Do not confuse the bootloader with the bootstrap loader programs found in some digital signal processors (DSPs) that automatically load program code (and data) from external memory to the internal memory of the DSP.
- MSP430 Programming With the JTAG Interface This document describes the functions that are required to erase, program, and verify the memory module of the MSP430 flash-based and FRAM-based microcontroller families using the JTAG communication port. In addition, it describes how to program the JTAG access security fuse that is available on all MSP430 devices. This document describes device access using both the standard 4-wire JTAG interface and the 2-wire JTAG interface, which is also referred to as Spy-Bi-Wire (SBW).
- MSP430 Hardware Tools User's Guide This manual describes the hardware of the TI MSP-FET430 Flash Emulation Tool (FET). The FET is the program development tool for the MSP430 ultra-low-power microcontroller. Both available interface types, the parallel port interface and the USB interface, are described.

Application Reports

MSP430 32-kHz Crystal Oscillators Selection of the right crystal, correct load circuit, and proper board

MSP430F5418A

Click here

layout are important for a stable crystal oscillator. This application report summarizes crystal oscillator function and explains the parameters to select the correct crystal for MSP430 ultra-low-power operation. In addition, hints and examples for correct board layout are given. The document also contains detailed information on the possible oscillator tests to ensure stable oscillator operation in mass production.

MSP430 System-Level ESD Considerations System-Level ESD has become increasingly demanding with silicon technology scaling towards lower voltages and the need for designing cost-effective and ultra-low-power components. This application report addresses three different ESD topics to help board designers and OEMs understand and design robust system-level designs.

7.5 Related Links

Table 7-2 lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

TECHNICAL TOOLS & SUPPORT & PRODUCT FOLDER **PARTS ORDER NOW DOCUMENTS SOFTWARE** COMMUNITY MSP430F5438A Click here Click here Click here Click here Click here MSP430F5437A Click here Click here Click here Click here Click here MSP430F5436A Click here Click here Click here Click here Click here MSP430F5435A Click here Click here Click here Click here Click here MSP430F5419A Click here Click here Click here Click here Click here

Click here

Table 7-2. Related Links

7.6 Community Resources

Click here

MSP430F5418A

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

Click here

Click here

TI E2E™ Community

TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas, and help solve problems with fellow engineers.

TI Embedded Processors Wiki

Texas Instruments Embedded Processors Wiki. Established to help developers get started with embedded processors from Texas Instruments and to foster innovation and growth of general knowledge about the hardware and software surrounding these devices.

7.7 Trademarks

MicroStar Junior, MSP430, MSP430Ware, Code Composer Studio, EnergyTrace, ULP Advisor, E2E are trademarks of Texas Instruments.

All other trademarks are the property of their respective owners.

7.8 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

7.9 Export Control Notice

Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled product restricted by other applicable national regulations, received from disclosing party under nondisclosure obligations (if any), or any direct product of such technology, to any destination to which such export or re-export is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S. Department of Commerce and other competent Government authorities to the extent required by those laws.

7.10 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

8 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

5-Jun-2019

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
MSP430F5418AIPN	ACTIVE	LQFP	PN	80	119	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F5418A	Samples
MSP430F5418AIPNR	ACTIVE	LQFP	PN	80	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F5418A	Samples
MSP430F5419AIPZ	ACTIVE	LQFP	PZ	100	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F5419A	Samples
MSP430F5419AIPZR	ACTIVE	LQFP	PZ	100	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F5419A	Samples
MSP430F5419AIZQWR	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	M430F5419A	Samples
MSP430F5419AIZQWT	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	M430F5419A	Samples
MSP430F5435AIPN	ACTIVE	LQFP	PN	80	119	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F5435A	Samples
MSP430F5435AIPNR	ACTIVE	LQFP	PN	80	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F5435A	Samples
MSP430F5436AIPZ	ACTIVE	LQFP	PZ	100	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F5436A	Samples
MSP430F5436AIPZR	ACTIVE	LQFP	PZ	100	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F5436A	Samples
MSP430F5436AIZQWR	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	M430F5436A	Samples
MSP430F5436AIZQWT	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR		M430F5436A	Samples
MSP430F5437AIPN	ACTIVE	LQFP	PN	80	119	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F5437A	Samples
MSP430F5437AIPNR	ACTIVE	LQFP	PN	80	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F5437A	Samples
MSP430F5438AIPZ	ACTIVE	LQFP	PZ	100	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F5438A	Samples

PACKAGE OPTION ADDENDUM

5-Jun-2019

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
MSP430F5438AIPZR	ACTIVE	LQFP	PZ	100	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F5438A	Samples
MSP430F5438AIZQWR	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	M430F5438A	Samples
MSP430F5438AIZQWT	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	M430F5438A	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

5-Jun-2019

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF MSP430F5438A:

● Enhanced Product: MSP430F5438A-EP

NOTE: Qualified Version Definitions:

• Enhanced Product - Supports Defense, Aerospace and Medical Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 26-Feb-2019

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
MSP430F5418AIPNR	LQFP	PN	80	1000	330.0	24.4	15.0	15.0	2.1	20.0	24.0	Q2
MSP430F5419AIPZR	LQFP	PZ	100	1000	330.0	24.4	17.0	17.0	2.1	20.0	24.0	Q2
MSP430F5419AIZQWR	BGA MI CROSTA R JUNI OR	ZQW	113	2500	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1
MSP430F5419AIZQWT	BGA MI CROSTA R JUNI OR	ZQW	113	250	180.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1
MSP430F5435AIPNR	LQFP	PN	80	1000	330.0	24.4	15.0	15.0	2.1	20.0	24.0	Q2
MSP430F5436AIPZR	LQFP	PZ	100	1000	330.0	24.4	17.0	17.0	2.1	20.0	24.0	Q2
MSP430F5436AIZQWR	BGA MI CROSTA R JUNI OR	ZQW	113	2500	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1
MSP430F5436AIZQWT	BGA MI CROSTA R JUNI OR	ZQW	113	250	180.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1
MSP430F5437AIPNR	LQFP	PN	80	1000	330.0	24.4	15.0	15.0	2.1	20.0	24.0	Q2

PACKAGE MATERIALS INFORMATION

www.ti.com 26-Feb-2019

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
MSP430F5438AIPZR	LQFP	PZ	100	1000	330.0	24.4	17.0	17.0	2.1	20.0	24.0	Q2
MSP430F5438AIZQWR	BGA MI CROSTA R JUNI OR	ZQW	113	2500	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1
MSP430F5438AIZQWT	BGA MI CROSTA R JUNI OR	ZQW	113	250	180.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
MSP430F5418AIPNR	LQFP	PN	80	1000	350.0	350.0	43.0
MSP430F5419AIPZR	LQFP	PZ	100	1000	350.0	350.0	43.0
MSP430F5419AIZQWR	BGA MICROSTAR JUNIOR	ZQW	113	2500	350.0	350.0	43.0
MSP430F5419AIZQWT	BGA MICROSTAR JUNIOR	ZQW	113	250	213.0	191.0	55.0
MSP430F5435AIPNR	LQFP	PN	80	1000	350.0	350.0	43.0
MSP430F5436AIPZR	LQFP	PZ	100	1000	350.0	350.0	43.0
MSP430F5436AIZQWR	BGA MICROSTAR JUNIOR	ZQW	113	2500	350.0	350.0	43.0

PACKAGE MATERIALS INFORMATION

www.ti.com 26-Feb-2019

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
MSP430F5436AIZQWT	BGA MICROSTAR JUNIOR	ZQW	113	250	213.0	191.0	55.0
MSP430F5437AIPNR	LQFP	PN	80	1000	350.0	350.0	43.0
MSP430F5438AIPZR	LQFP	PZ	100	1000	350.0	350.0	43.0
MSP430F5438AIZQWR	BGA MICROSTAR JUNIOR	ZQW	113	2500	350.0	350.0	43.0
MSP430F5438AIZQWT	BGA MICROSTAR JUNIOR	ZQW	113	250	213.0	191.0	55.0

ZQW (S-PBGA-N113)

PLASTIC BALL GRID ARRAY

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-225
- D. This is a Pb-free solder ball design.

MicroStar Junior is a trademark of Texas Instruments.

PN (S-PQFP-G80)

PLASTIC QUAD FLATPACK

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Falls within JEDEC MS-026

PZ (S-PQFP-G100)

PLASTIC QUAD FLATPACK

1

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Falls within JEDEC MS-026

PZ (S-PQFP-G100)

PLASTIC QUAD FLAT PACK

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
- D. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2019, Texas Instruments Incorporated