Projekt 1. UTA

Oskar Kiliańczyk 151863 & Wojciech Kot 151876

1 Opis informacji preferencyjnej

Z racji, że obaj wylosowaliśmy informację preferencyjną nr. 4, to firma przede wszystkim skupia się na preferowanej lokacji, gdzie:

- Lokalizacja R2 jest preferowana nad R1 oraz R1 nad R3.
- Jako drugie, dodatkowe kryterium przyjęliśmy sposób finansowania, uznając metodę F1 (kWh-fee method) jako preferowaną ponad zarówno F2 (prorata method) oraz F3 (waste-fee method).

Pary referencyjne dobrane do naszego problemu to pary:

- przydzielone nam odgórnie:
 - -11 i 14, gdzie 14 jest preferowane ponad 11 (R2 > R1)
 - -2 i 25, gdzie 2 jest preferowane ponad 25 (R1 > R3)
- oraz wybrane przez nas:
 - 11 i 17, gdzie 11 jest preferowane nad 17 (R2 > R3)
- oraz dwie dla drugiego w ważności kryterium:
 - -4 i 5, gdzie 4 jest preferowane nad 5 (R2=R2, F1 > F2)
 - 4 i 6, gdzie 4 jest preferowane nad 6 (R2=R2, F1 > F3)

Na wartości wag dodaliśmy dodatkowe ograniczenia w postaci:

- wymuszenia monotoniczności (wszystkie kryteria są typu koszt).
- normalizacji wag (aby użyteczność idealnego wariantu wynosiła 1, a antyidealnego 0).
- dla każdego kryterium waga dla idealnego wariantu nie może być większa niż 0.5 (zapewniamy brak dominującego kryterium) ani mniejsza niż 0.1 (zapewniamy że każde kryterium jest w jakimś stopniu ważne)

2 Wynik uzyskany z solvera

Tabela 1 pokazuje uszeregowany ranking oraz wyniki wariantów dla poszczególnych kryteriów częściowych użyteczności. Ostatnia kolumna zawiera użyteczność całkowitą.

Alternatywa	C1	C2	С3	C4	Σ
4	0.22	0.00	0.50	0.10	0.82
10	0.22	0.00	0.50	0.10	0.82
7	0.22	0.00	0.50	0.00	0.72
13	0.22	0.00	0.50	0.00	0.72
16	0.22	0.00	0.50	0.00	0.72
19	0.22	0.00	0.50	0.00	0.72
22	0.22	0.00	0.50	0.00	0.72
5	0.00	0.18	0.36	0.10	0.64
8	0.00	0.18	0.36	0.10	0.64
14	0.00	0.18	0.36	0.10	0.64
1	0.00	0.00	0.50	0.10	0.60
2	0.00	0.00	0.36	0.10	0.46
11	0.00	0.00	0.36	0.10	0.46
3	0.00	0.18	0.00	0.10	0.28
6	0.00	0.18	0.00	0.10	0.28
9	0.00	0.18	0.00	0.10	0.28
12	0.00	0.18	0.00	0.10	0.28
15	0.00	0.18	0.00	0.10	0.28
17	0.00	0.18	0.00	0.10	0.28
18	0.00	0.18	0.00	0.10	0.28
20	0.00	0.18	0.00	0.10	0.28
21	0.00	0.18	0.00	0.10	0.28
23	0.00	0.18	0.00	0.10	0.28
24	0.00	0.18	0.00	0.10	0.28
26	0.00	0.18	0.00	0.10	0.28
27	0.00	0.18	0.00	0.10	0.28
25	0.22	0.00	0.00	0.00	0.22

Tabela 1: Użyteczności wszystkich wariantów oraz odpowiadające im częściowe użyteczności na podanych kryteriach

Celem optymalizacji była maksymalizacja najmniejszego dystansu między alternatywami silnie preferowanymi. Uzyskana wartość funkcji celu $\epsilon=0.18$.

3 Wyniki

Jeżeli chodzi o nasze pary referencyjne sytuacja wygląda następująco:

- Alternatywa 14 \geq Alternatywa 11: $0.64 \geq 0.46$
- Alternatywa $2 \ge$ Alternatyw $25: 0.46 \ge 0.22$
- Alternatywa $11 \ge$ Alternatyw $17: 0.46 \ge 0.28$
- Alternatywa 4 \geq Alternatyw 5: $0.82 \geq 0.64$
- Alternatywa $4 \ge$ Alternatyw 6: $0.82 \ge 0.28$

Otrzymany ranking został sprawdzony dla innych niereferencyjnych par, w celu otrzymania spójnej informacji preferencyjnej.

- Alternatywa $7 \ge$ Alternatywa $8: 0.72 \ge 0.64$ co potwierdza F1 > F2, przy równości R3.
- Alternatywa 13 \geq Alternatywa 25: $0.72 \geq 0.22$ co potwierdza R2 > R3, przy równości F1.

Były jednak także odstępstwa, przykładowo:

• Alternatywa 13 $\not\geq$ Alternatywa 10: 0.72 $\not\geq$ 0.82 — przy równości F1, obserwujemy R1>R2, co jest sprzeczne z informacją preferencyjną.

Najlepszą ocenę użyteczności globalnej uzyskały warianty alternatyw o numerach 4 (R2, F1) i 10 (R1, F1). Ze względu na ocenę na poszczególnych kryteriach dostały one najwyższą wartość dla kryteriów C1, C3 oraz C4.

Najgorszą ocenę użyteczności globalnej uzyskał wariant alternatywy o numerze 25 (R3, F1), uzyskując jedynie pozytywny wynik dla kryterium C1. Warto zauważyć, że drugi wynik od końca z oceną użyteczności na poziomie 0.28 klasyfikuje wiele alternatyw, które otrzymały odpowiednio wynik dla kryteriów C2 oraz C4.

Widać zależności:

- Ze względu na wagę kryterium C3, alternatywy najwyżej w klasyfikacji otrzymały na nim najwięcej oceny użyteczności cząstkowej.
- Kryterium C4 było mało znaczące i prawie każda alternatywa (z wyłączeniem 6 z nich) otrzymała maksymalną możliwą wartość na tym kryterium.
- Najwyżej wycenione alternatywy cechują się maksymalną użytecznością cząstkową na kryterium C1, C3 i C4.

Warto zauważyć, że otrzymanie najwyższej możliwej użyteczności częściowej dla kryterium C3 w wysokości 0.5 już dawał możliwość uzyskania 11 pozycji z 27 w klasyfikacji ogólnej. Pomimo, że użyteczność na tym kryterium spada jest możliwość uzyskania wysokich, w stosunku do całej użyteczności globalnej, wyników.

4 Link do repozytorium

Kod źródłowy w repozytorium GitHub dostępny pod linkiem: Repozytorium ISWD - projekt 1.

5 TODOS

To wszystko trzeba zrobić, to jest wariant na 3

- Wynik uzyskany z solvera: wartości użyteczności wszystkich wariantów zarówno referencyjnych jak i niereferencyjnych; ranking wszystkich wariantów; wartość funkcji celu; wykresy cząstkowych funkcji użyteczności.
- Krótkie podsumowanie wyników: sprawdzenie zgodności wyników z podaną informacją preferencyjną; sprawdzenie, czy otrzymany ranking jest spójny z informacją preferencyjną dla kilku wybranych wariantów niereferencyjnych. jaka strategia została oceniona jako najlepsza i najgorsza; jaki był wpływ kryteriów na ostateczny wynik.

W przypadku braku istnienia spójnego modelu dla zadanej informacji preferencyjnej należy taką informację zamieścić w raporcie i zmienić informację preferencyjną

Potencjalnie wyrzucić link do repo, bo chyba kod się wysyła osobno?