GIẢI TÍCH I BAI2.

(§1.6 - §1.8)

§1.6. Giới hạn hàm số

• Đặt vấn đề

a)
$$\lim_{x\to 1} 2^x = ?$$

a)
$$\lim_{x \to 1} 2^x = ?$$
 b) $\lim_{x \to 0} \frac{1}{x} = ?$ c) $\lim_{x \to \infty} \frac{1}{x} = ?$

c)
$$\lim_{x\to\infty}\frac{1}{x}=?$$

I. Định nghĩa

- Θ N1. $x_0 \in \mathbb{R}$ là điểm tụ của $X \subset \mathbb{R} \iff (U_{\varepsilon}(x_0) \setminus \{x_0\}) \cap X \neq \emptyset, \ \forall \ \varepsilon > 0.$
- $\frac{1}{2}$ $\frac{1}{2}$

$$\lim_{x\to x_0} f(x) = a \Leftrightarrow \forall (x_n) \subset X, x_n \neq x_0, x_n \to x_0 \Rightarrow f(x_n) \to a.$$

- $\frac{1}{2}$ $\frac{1}{2}$

$$\lim_{x\to x_0} f(x) = a \Leftrightarrow \forall \ \varepsilon > 0 \text{ bé tuỳ \acute{y}}, \ \exists \ \delta(\varepsilon) > 0 \text{: } 0 < |x-x_0| < \delta(\varepsilon) \Rightarrow |f(x)-a| < \varepsilon.$$

Chú ý. ĐN2 ~ ĐN3.

Ví dụ 1.
$$\lim_{x\to 2} (3x+2)$$

Ví dụ 2. $\lim_{x\to 0} \cos \frac{1}{x}$

II. Tính chất và phép toán

1) Tính chất

a)
$$\lim_{x \to x_0} f(x) = a$$
, $\lim_{x \to x_0} f(x) = b \Rightarrow a = b$

b)
$$\lim_{x \to x_0} f(x) = a \Leftrightarrow \lim_{x \to x_0} (f(x) - a) = 0$$

c)
$$f(x) = c \implies \lim_{x \to x_0} f(x) = c$$

d)
$$f(x) \le h(x) \le g(x)$$
, $\forall x \in U_{\varepsilon_0}(x_0)$; $\lim_{x \to x_0} f(x) = a = \lim_{x \to x_0} g(x) \Rightarrow \lim_{x \to x_0} h(x) = a$

e)
$$\lim_{x \to x_0} f(x) = a$$
, $f(x) \le c$, $\forall x \in U_{\varepsilon_0}(x_0) \setminus \{x_0\} \Rightarrow a \le c$

f)
$$\lim_{x \to x_0} f(x) = a, a > p \Rightarrow f(x) > p, \forall x \in U_{\varepsilon_0}(x_0) \setminus \{x_0\}$$

2. Phép toán

a)
$$\lim_{x \to x_0} f(x) = a$$
, $\lim_{x \to x_0} g(x) = b \Rightarrow \lim_{x \to x_0} (f(x) \pm g(x)) = a \pm b$

b)
$$\lim_{x \to x_0} f(x) = a$$
, $\lim_{x \to x_0} g(x) = b \Rightarrow \lim_{x \to x_0} (f(x).g(x)) = a.b$ và $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{a}{b}$, $(b \ne 0)$

3. Khử dạng vô định

a) Các dạng vô định
$$\frac{0}{0}$$
; $\frac{\infty}{\infty}$; $0.\infty$; $\infty - \infty$; 1^{∞} ; 0^{0} ; ∞^{0}

b) Khử dạng vô định. Sử dụng các phép biến đổi đại số và các giới hạn đặc biệt

$$\lim_{x\to 0} \frac{\sin x}{x} = 1 \; ; \; \lim_{x\to \infty} \left(1 + \frac{1}{x}\right)^x = e$$

Ví dụ 1.
$$\lim_{x\to 0} \frac{\sqrt{x+4}-2}{x}$$

Ví dụ 2.
$$\lim_{x\to 2} (2-x) \tan \frac{\pi x}{4}$$

Ví dụ 3.
$$\lim_{x\to 1} \left(\frac{x+2}{x-1}\right)^{2x+1}$$

Ví dụ 4. a)(K53)
$$\lim_{x\to 0} (\cos x)^{\cot^2 x}$$
 $(e^{-\frac{1}{2}})$

b)(K59)
$$\lim_{x\to 0} \left(1-\cos\frac{x}{3}\right)^{\tan x}$$
 (1) c)(K59) $\lim_{x\to 0} \left(\frac{1+\sin x}{1-2\sin x}\right)^{\frac{1}{x}}$

c)(K59)
$$\lim_{x\to 0} \left(\frac{1+\sin x}{1-2\sin x}\right)^{\frac{1}{x}}$$
 (e³)

d)(K62) 1)
$$\lim_{x\to 0} \frac{\sqrt{1+4x}-1}{\ln(1+3x)} \cdot (\frac{2}{3})$$

$$2) \lim_{x \to 0} \left(\ln(e+2x) \right)^{\frac{1}{\sin x}}.$$
 (e^e)

III. Giới hạn hàm hợp, một phía, vô cực

- 1. Giới hạn hàm hợp. $\lim_{x\to x_0} u(x) = u_0$, $\lim_{u\to u_0} f(u) = a \Rightarrow \lim_{x\to x_0} f(u(x)) = a$
- Giới hạn một phía.

Định nghĩa 4.

$$\lim_{x \to x_0^+} f(x) = a \Leftrightarrow \forall \ \varepsilon > 0 \text{ bé tuỳ } \acute{y}, \ \exists \ \delta(\varepsilon) > 0: \ 0 < x - x_0 < \delta(\varepsilon) \Rightarrow |f(x) - a| < \varepsilon.$$

Định nghĩa 5.

$$\lim_{x \to x_0^-} f(x) = b \Leftrightarrow \forall \ \varepsilon > 0 \text{ bé tuỳ } \acute{y}, \ \exists \ \delta(\varepsilon) > 0: \ 0 < x_0 - x < \delta(\varepsilon) \Rightarrow |f(x) - b| < \varepsilon.$$

Mối liên hệ giữa giới hạn một phía và giới hạn

$$\lim_{x \to x_0} f(x) = a \Leftrightarrow \lim_{x \to x_0^+} f(x) = a = \lim_{x \to x_0^-} f(x)$$

3. Giới hạn ở vô cực và giới hạn vô cực

Định nghĩa 6.
$$\lim_{x\to\infty} f(x) = a \Leftrightarrow \forall (x_n) \to \infty \text{ có } \lim_{n\to\infty} f(x_n) = a$$

Dịnh nghĩa 7.
$$\lim_{x\to\infty} f(x) = a \Leftrightarrow \forall \ \varepsilon > 0 \text{ bé tuỳ ý}, \ \exists \ N(\varepsilon) > 0: |x| > N(\varepsilon) \Rightarrow |f(x) - a| < \varepsilon.$$

Chú ý. $DN6 \sim DN7$.

thao.nguyenxuan@hust.edu.vn

Ví dụ 1.
$$\lim_{x \to +\infty} \frac{\sqrt{x^2 + 4} + \sqrt{x}}{x + \sqrt[5]{x^4 + 2x}}$$
 Ví dụ 2. $\lim_{x \to +\infty} (\sqrt{x + 1} - \sqrt{x})$

Ví dụ 3.
$$\lim_{x \to 1} x^{\frac{1}{1-x}}$$

Ví dụ 4(K52) 1.
$$\lim_{x \to +\infty} (\sin x - \sin \sqrt{1 + x^2})$$
 (0)

2.
$$\lim_{x \to +\infty} \left(\cos \sqrt{x-1} - \cos \sqrt{x+1} \right) \qquad (0)$$

Ví dụ 5(K58) a)
$$\lim_{x \to +\infty} \left(\cos \frac{2}{x} \right)^{x^2} (e^{-2})$$
 b)(K60) $\lim_{x \to +\infty} [\sqrt[3]{x^3 + 3x^2} - \sqrt{x^2 - 2x}]$. (2)

Định nghĩa 8.
$$\lim_{x\to\infty} f(x) = \infty \Leftrightarrow \forall (x_n) \to \infty \text{ có } \lim_{n\to\infty} f(x_n) = \infty$$

Định nghĩa 9

$$\lim_{x\to x_0} f(x) = \infty \iff \forall N > 0 \text{ l\'on tu\`y \'y}, \ \exists \ \delta(N) > 0: |x-x_0| < \delta(N) \Rightarrow |f(x)| > N.$$

Khi đó ta bảo f(x) không có giới hạn khi $x \to x_0$.

§1.7. Vô cùng bé, vô cùng lớn

- Đặt vấn đề
- I. Vô cùng bé
- I. Định nghĩa. $\alpha(x)$ là vô cùng bé (VCB), $x \to x_0 \Leftrightarrow \lim_{x \to x_0} \alpha(x) = 0$.
- 2. Tính chất.
- a) $\alpha(x)$ là VCB, $x \to x_0$, $c = \text{const} \Rightarrow c\alpha(x)$ là VCB khi $x \to x_0$.

b)
$$\alpha_i(x)$$
, $i = \overline{1, n}$ là VCB khi $x \to x_0 \Rightarrow \sum_{i=1}^n \alpha_i(x)$ là VCB khi $x \to x_0$

- c) $\alpha(x)$ là VCB khi $x \to x_0$, f(x) bị chặn trong $U_{\varepsilon_0}(x_0) \Rightarrow \alpha(x) f(x)$ là VCB, $x \to x_0$
- 3. Liên hệ giữa VCB và giới hạn

Định lí.
$$\lim_{x \to x_0} f(x) = L \Leftrightarrow f(x) - L$$
 là VCB khi $x \to x_0$ (hay $f(x) = L + \alpha(x)$, $\alpha(x)$ là VCB)

4. So sánh VCB. Giả sử $\alpha(x)$, $\beta(x)$ là các VCB khi $x \to x_0$.

Định nghĩa.
$$\alpha(x) \sim \beta(x) \Leftrightarrow \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 1$$

Định nghĩa. $\alpha(x)$ là VCB cùng cấp với VCB $\beta(x)$ khi $x \to x_0 \Leftrightarrow \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = a \in \mathbb{R} \setminus \{0\}$

Định nghĩa. $\alpha(x)$ là VCB cấp cao hơn VCB $\beta(x)$ khi $x \to x_0 \Leftrightarrow \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 0$

Ví dụ 1. a) $\sin x \sim x$, $e^x - 1 \sim x$, $\ln(1 + x) \sim x$, $(1 + x)^{\alpha} - 1 \sim \alpha x$, $\arcsin x \sim x$, $\arctan x \sim x$ khi $x \to 0$

b)(K55) Cho
$$\alpha(x) = \frac{ex}{2}$$
, $\beta(x) = e - (1+x)\frac{1}{x}$.

Chứng minh rằng $\alpha(x) \sim \beta(x)$ khi $x \to 0$.

c)(K55) Cho
$$\alpha(x) = e - (1 + 2x)\frac{1}{2x}, \ \beta(x) = ex$$
.

Chứng minh rằng $\alpha(x) \sim \beta(x)$ khi $x \to 0$.

d)(K59) So sánh hai VCB sau trong quá trình $x \to 1$: $\alpha(x) = \tan(\pi x) + e^{(x-1)^2} - 1, \ \beta(x) = 1 + \cos x + \ln x \qquad (2 \text{ VCB cùng bậc})$

5. Ứng dụng tìm giới hạn

a)
$$\alpha(x) \sim \overline{\alpha}(x)$$
, $\beta(x) \sim \overline{\beta}(x)$, $x \to x_0 \Rightarrow \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = \lim_{x \to x_0} \frac{\overline{\alpha}(x)}{\overline{\beta}(x)}$

Ví dụ 2.
$$\lim_{x\to 0} \frac{(e^x - 1)\tan x}{\sin^2 x}$$
 Ví dụ 3(K53) $\lim_{x\to 0} \frac{\sqrt[3]{1 + 3x}\sqrt[4]{1 + 4x} - 1}{\sqrt{1 - x} - 1}$ (- 4)

b) $\beta(x)$ là VCB cấp cao hơn $\alpha(x)$ khi $x \to x_0 \Rightarrow \alpha(x) + \beta(x) \sim \alpha(x)$

Ví dụ 4.
$$\lim_{x\to 0} \frac{x - \sin x}{x^3}$$

c) Quy tắc ngắt bỏ VCB : $\alpha(x)$, $\beta(x)$ là các VCB khi $x \to x_0$;

$$\alpha(x) = \sum_{k=1}^{m} \alpha_k(x)$$
, $\alpha_1(x)$ là VCB có cấp thấp nhất;

$$\beta(x) = \sum_{k=1}^{n} \beta_k(x), \ \beta_1(x) \text{ là VCB có cấp thấp nhất} \qquad \Rightarrow \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = \lim_{x \to x_0} \frac{\alpha_1(x)}{\beta_1(x)}$$

Ví dụ 5. a)
$$\lim_{x\to 0} \frac{x + \sin^3 x + \tan^4 x}{4x + x^4 + 5x^8}$$

b)(K56) 1°)
$$\lim_{x\to 0} \frac{x^2 \ln(1+4x)}{2x^3 - 3\tan x^4}$$
 (2) 2°) $\lim_{x\to 0} \frac{x \ln(1-3x^2)}{x^3 + 2\sin^4 x}$ (-3)

3°)
$$\lim_{x\to 0} \frac{x^3(e^{2x}-1)}{x^4+2x^5}$$
 (2) 4°) $\lim_{x\to 0} \frac{x^3(e^{3x}-1)}{x^4-3x^5}$ (3)

c)(K61) 1°) Tìm
$$a, \alpha$$
 để $\lim_{x\to 0} \frac{\ln(\cos 3x)}{ax^{\alpha}} = 1$ ($a = -\frac{3}{2}, \alpha = -2$)

2°)
$$\lim_{x \to 5} (\frac{x}{5})^{\frac{1}{x-5}}$$
 $(e^{\frac{1}{5}})$

II. Vô cùng lớn

1. Định nghĩa. f(x) xác định $U_{\varepsilon_0}(x_0)$ (có thể trừ x_0), f(x) là vô cùng lớn (VCL) khi $x \to x_0 \Leftrightarrow \lim_{x \to x_0} f(x) = \infty$

Chú ý. Hàm là VCL $\underset{\Leftarrow}{\Rightarrow}$ không bị chặn

Ví dụ 6. $f(x) = x \sin x$ là không bị chặn nhưng không phải là VCL.

- 2. Liên hệ giữa VCB và VCL
- a) f(x) là VCB, $x \to x_0$ và $f(x) \neq 0 \Rightarrow \frac{1}{f(x)}$ là VCL khi $x \to x_0$.
- b) f(x) là VCL, $x \to x_0 \implies \frac{1}{f(x)}$ là VCB khi $x \to x_0$.
- 3. So sánh các VCL. Giả sử A(x), B(x) là các VCL khi $x \to x_0$,
- a) A(x) là VCL cấp cao hơn VCL B(x), $x \to x_0 \Leftrightarrow \lim_{x \to x_0} \frac{A(x)}{B(x)} = \infty$
- b) A(x), B(x) là các VCL cùng cấp, $x \to x_0 \Leftrightarrow \lim_{x \to x_0} \frac{A(x)}{B(x)} = a \neq 0$
- c) A(x), B(x) là các VCL tương đương, $x \to x_0 \Leftrightarrow \lim_{x \to x_0} \frac{A(x)}{B(x)} = 1$.

4. Ứng dụng tìm giới hạn

a) Cho các VCL tương đương $A(x) \sim \overline{A}(x)$, $B(x) \sim \overline{B}(x)$,

$$x \to x_0 \Rightarrow \lim_{x \to x_0} \frac{A(x)}{B(x)} = \lim_{x \to x_0} \frac{\overline{A}(x)}{\overline{B}(x)}$$

b) Quy tắc ngắt bỏ VCL : Cho A(x), B(x) là các VCL khi $x \to x_0$;

$$A(x) = \sum_{k=1}^{m} A_k(x)$$
, $A_1(x)$ là VCL có cấp cao nhất;

$$B(x) = \sum_{k=1}^{n} B_k(x)$$
, $B_1(x)$ là VCL có cấp cao nhất

$$\Rightarrow \lim_{x \to x_0} \frac{A(x)}{B(x)} = \lim_{x \to x_0} \frac{A_1(x)}{B_1(x)}$$

 $(e^{\overline{2}})$

Ví dụ 7.
$$\lim_{x\to\infty} \frac{9x^4 + x^3 + x + 2}{2009x^4 + 3x^2 + x + 1} = \frac{9}{2009}$$

Ví dụ 8. Tính giới hạn

a)(K54) 1.
$$\lim_{x\to 1} (2-x)^{\cot(x^2-1)}$$
 (e^{-\frac{1}{2}}) 2. $\lim_{x\to -1} (2+x)^{\cot(1-x^2)}$

3.
$$\lim_{x\to 0} \frac{(1-4^x)\ln(1+2x)}{x^2+2x^3}$$
 (-2ln4) 4. $\lim_{x\to 0} \frac{(1-9^x)\ln(1+3x)}{3x^2-4x^3}$ (-2ln3)

b)(K58) 1) Tìm a để các VCB sau tương đương khi $x \to \infty$:

$$\alpha(x) = \ln(1 + \frac{1}{x})\sin{\frac{1}{x}}$$
 và $\beta(x) = \frac{1}{ax^2}$, (a=1)

2) Tìm a để các VCB sau tương đương khi $x \rightarrow 0$:

$$\alpha(x) = \ln(1 - ax^2)$$
 và $\beta(x) = (\sqrt{1 + x^2} - 1)$, (a=-0,5)

3)
$$\lim_{x\to 0} = \frac{\sqrt{1+\tan x} - \sqrt{1+\sin x}}{\ln(1+x^3)}$$
, $(\frac{1}{4})$

c)(K60)
$$\lim_{x\to 0} (e^x + 3x)^{\frac{1}{\sin x}}$$
 (e⁴)

d)(K61) Tìm a, α để $f(x) = \ln(3x + 5x)$ và $g(x) = ax^{\alpha}$ là hai VCL tương đươpng khi $x \to +\infty$ ($a = \ln 5, \alpha = 1$)

§ 1.8. HÀM SỐ LIÊN TỤC

- Đặt vấn đề
- I. Hàm liên tục
- **1.** Định nghĩa. f(x) liên tục tại $x_0 \Leftrightarrow +) f(x)$ xác định trên $U_{\varepsilon_0}(x_0)$

+)
$$\lim_{x \to x_0} f(x) = f(x_0) \iff \lim_{\Delta x \to 0} \Delta f(x) = 0$$

$$f(x)$$
 liên tục trái tại $x_0 \Leftrightarrow +) f(x)$ xác định trên $U_{\varepsilon_0}(x_0) \cap \{x < x_0\}$

+)
$$\lim_{x \to x_0^-} f(x) = f(x_0)$$

Tương tự ta có ĐN liên tục phải.

Định nghĩa. f(x) liên tục trên $(a; b) \Leftrightarrow f(x)$ liên tục tại $\forall x \in (a; b)$

f(x) liên tục trên $[a;b] \Leftrightarrow f(x)$ liên tục trong (a;b), liên tục trái tại b và liên tục phải tại a.

Ví dụ 1. Tìm a để hàm số sau liên tục tại x = 0: $f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ a, & x = 0 \end{cases}$

Ví du 2.(K51)

a) Tìm
$$a$$
 để $y = \begin{cases} \frac{\sin \frac{1}{x-1}}{\frac{1}{2^{x-1}}+1}, & x \neq 1 \\ a, & x = 1 \end{cases}$ liên tục tại $x = 1$. ($\not\exists a$)
b) Tìm a để $y = \begin{cases} \frac{\sin \frac{1}{x+1}}{\frac{1}{2^{x+1}}+1}, & x \neq -1 \\ a, & x = -1 \end{cases}$ liên tục tại $x = -1$. ($\not\exists$

Ví du 3. a)(K55)

b) Tìm
$$a$$
 để $y = \begin{cases} \frac{\sin \frac{1}{x+1}}{\frac{1}{2^{x+1}}}, & x \neq -1 \\ \frac{1}{2^{x+1}} + 1 \\ a, & x = -1 \end{cases}$ liên tục tại $x = -1$. $(\not\exists a)$

Ví dụ 3. a)(K55)

1. Tìm
$$a$$
 để $y = \begin{cases} a\sin(\operatorname{arccot} x), & x \le 0 \\ \cos\ln x - \cos\ln(x + x^2), & x > 0 \end{cases}$ liên tục tại $x = 0$. $(a = 0)$

1. Tìm
$$a$$
 để $y = \begin{cases} a\sin(\operatorname{arccot} x), & x \le 0 \\ \cos\ln x - \cos\ln(x + x^2), & x > 0 \end{cases}$ liên tục tại $x = 0$. $(a = 0)$
2. Tìm a để $y = \begin{cases} a\cos(\operatorname{arctan} x), & x \le 0 \\ \sin\ln(x + x^2) - \sin\ln x, & x > 0 \end{cases}$ liên tục tại $x = 0$. $(a = 0)$.

b)(K59) 1. Tìm
$$a$$
 để $y = \begin{cases} \frac{\ln(1+x) - \sin x}{x \sin x} & x \neq 0 \\ a & x = 0 \end{cases}$ liên tục tại $x = 0$. $(-\frac{1}{2})$.

2. Xét tính liên tục
$$f(x) = \begin{cases} \frac{1-\cos 2x}{\ln(1+x^2)} & x \neq 0 \\ 0 & x = 0 \end{cases}$$
 (chỉ liên tục tại $x \neq 0$).

c)(K60) Xét tính liên tục
$$f(x) = \begin{cases} \cos \frac{\pi x}{2} & \text{nêu } |x| \le 1 \\ |x-1| & \text{nêu } |x| > 1 \end{cases}$$
 ($\mathbb{R} \setminus \{-1\}$).

$$(|x-1| \quad n \hat{\mathbf{e}} u \mid x| > 1)$$

$$\mathbf{d})(\mathsf{K62}) \text{ Tìm a dễ hàm số sau liên tục trên } \mathbb{R} : f(x) = \begin{cases} \cos \frac{\pi x}{2} & n \hat{\mathbf{e}} u \mid x | \leq 1 \\ |x-1| & n \hat{\mathbf{e}} u \mid x | > 1 \end{cases}$$
 (-1 và 4).

2. Tính liên tục của các hàm sơ cấp. Mọi hàm số sơ cấp liên tục trên các khoảng mà hàm số đó xác định.

3. Phép toán. Cho f(x), g(x) liên tục tại $x_0 \Rightarrow f(x) \pm g(x)$ liên tục tại x_0 , f(x)g(x) liên tục tại x_0 và $\frac{f(x)}{g(x)}$ liên tục tại x_0 nếu $g(x_0) \neq 0$

4. Ý nghĩa. f(x) liên tục trên $[a; b] \Rightarrow đồ$ thị là đường liền nét.

5. Tính chất

Định lí 1. (Weierstrass 1) f(x) liên tục trên $[a;b] \Rightarrow f(x)$ bị chặn trên [a;b]

Định lí 2. (Weierstrass 2) f(x) liên tục trên $[a;b] \Rightarrow f(x)$ đạt giá trị lớn nhất và bé nhất trên [a;b]

Định lí 3 (Bolzano-Cauchy). f(x) liên tục trên [a;b], $M = \max_{[a;b]} f$, $N = \min_{[a;b]} f$, $\mu \in [m;M] \Rightarrow \exists c \in [a;b]$: $f(c) = \mu$.

Hệ quả. f(x) liên tục trên [a; b], $f(a)f(b) < 0 \Rightarrow \exists c \in (a; b)$: f(c) = 0.

6. Điểm gián đoạn

Định nghĩa. f(x) xác định $U_{\varepsilon_0}(x_0)$, gián đoạn tại $x_0 \Leftrightarrow f(x)$ không liên tục tại x_0 .

f(x) xác định $U_{\varepsilon_0}(x_0)\setminus\{x_0\}$ thì ta bảo f(x) gián đoạn tại x_0

Định nghĩa. Điểm gián đoạn x_0 của hàm f(x) là điểm gián đoạn loại 1

$$\Leftrightarrow \exists \lim_{x \to x_0^+} f(x), \exists \lim_{x \to x_0^-} f(x).$$

Các điểm gián đoạn còn lại được gọi là điểm gián đoạn loại 2.

Ví dụ 4.
$$f(x) = \frac{\sin x}{x}$$

Ví dụ 5.
$$f(x) = e^{\frac{1}{x}}$$

Ví dụ 6(K54) Phân loại điểm gián đoạn của hàm số

a)
$$f(x) = \frac{1}{1-2^{\frac{x-1}{x}}} (x = 1, \text{ loại 2}; x = 0, \text{ loại 1})$$

b)
$$f(x) = \frac{1}{1-3^{\frac{x+1}{x}}}$$
 (x = -1, loại 2; x = 0, loại 1)

Ví dụ 7(K56) Các điểm sau là các điểm gián đoạn loại gì của hàm số

a)
$$x = 0$$
; $f(x) = \frac{1}{2 + 3^{\cot x}}$ (loại 1) b) $x = \frac{\pi}{2}$, $f(x) = \frac{1}{3 + 2^{\tan x}}$ (loại 1)

Ví dụ 8 a)(K60) Tìm và phân loại điểm gián đoạn của hàm số

1.
$$y = 2^{\frac{|x-2|}{x-2}} + \frac{\sin x}{x}$$
 (x = 2 là loại 2; x = 0 là loại 1)

2.
$$y = 2^{\frac{1}{1-x}} + e^{x+\frac{1}{x}}$$
 (x = 1; x = 0 là loại 2)

b)(K61) 1. Tìm và phân loại điểm gián đoạn của hàm số:

$$y = \begin{cases} \frac{1}{2 - \log_3 |x|} & x \neq 0, \pm 9 \\ 3 & x = 0, \pm 9 \end{cases}$$
 (x = 0 là gi đ bỏ được; x = 9 là gi đ loại 2)

2. Tìm điểm gián đoạn của hàm số :
$$f(x) = \lim_{n \to \infty} \frac{6}{2 + x^{2n}}, x \in \mathbb{R}$$
 $(x = \pm 1)$

Định nghĩa. f(x) liên tục từng khúc trên [a;b] khi [a;b] chia thành hữu hạn đoạn và hàm f(x) liên tục trên mỗi đoạn này.

II. Hàm số liên tục đều

Định nghĩa. f(x) liên tục đều trên $X \Leftrightarrow \forall \varepsilon > 0$ bé tuỳ ý. $\exists \delta(\varepsilon) > 0, \forall x_1, x_2 \in X, |x_1 - x_2| < \delta(\varepsilon) \Rightarrow |f(x_1) - f(x_2)| < \varepsilon.$

Ví dụ 8. a)
$$y = x + 2$$
.
b) $y = \begin{cases} \frac{1}{x}, & x \in (0;1] \\ 0, & x = 0 \end{cases}$

Định lí (Cantor). f(x) liên tục trong $[a;b] \Rightarrow f(x)$ liên tục đều trong [a;b]