第 34 届全国信息学奥林匹克竞赛

CCF-NOI-2017

模拟训练

时间: 2017年6月7日08:00~13:00

题目名称	最近点对	木棍切割	子序列	
题目类型	传统型	传统型	传统型	
目录	nearest	stick	subseq	
可执行文件名	nearest	stick	subseq	
输入文件名	nearest.in	stick.in	subseq.in	
输出文件名	nearest.out	stick.out	subseq.out	
每个测试点时限	5 秒	5 秒	2 秒	
内存限制	512 MB	512 MB	512 MB	
测试点数目	10	10	25	
每个测试点分值	10	10	4	

提交源程序文件名

对于 C++ 语言	nearest.cpp	stick.cpp	subseq.cpp
对于 C 语言	nearest.c	stick.c	subseq.c
对于 Pascal 语言	nearest.pas	stick.pas	subseq.pas

编译选项

对于 C++ 语言	-02 -lm	-02 -lm	-02 -lm
对于 C 语言	-02 -lm	-02 -lm	-02 -lm
对于 Pascal 语言	-02	-02	-02

最近点对 (nearest)

【题目描述】

设 G = (V, E) 为 n 阶带权无向连通图, $V = \{1, 2, \dots, n\}$,边 $e \in E$ 的权值记为 w(e),其中 $w(e) \in \mathbb{N}$ 。

一条路径的**长度**定义为路径上所有边 e 的权值 w(e) 之和。两点 $u,v \in V$ 之间的**距** 离 dist(u,v) 定义为所有从 u 到 v 的路径中,长度的最小值。

设 $k \in \mathbb{N}^*$ 且 $2 \le k \le n$,记 $S = \{1, 2, \dots, k\}$,显然 $S \subseteq V$ 。请求出 S 中距离最近的两点之间的距离,即

 $\min\{\mathrm{dist}(u,v)|u,v\in S,u\neq v\}$

【输入格式】

从文件 nearest.in 中读入数据。

每个输入文件包含多组数据。输入文件的第一行只有一个整数 T,表示数据的组数。接下来共有 T 组数据。对于每组数据,第一行包含三个正整数 n,m,k,分别表示 |V|,|E|,|S|。

接下来 m 行,每行三个整数 u,v,w,描述 G 中的边 $(u,v) \in E$,权值为 w。保证 $1 \le u,v \in n$ 。

【输出格式】

输出到文件 nearest.out 中。

输出 T 行,每行包含一个整数,表示 S 中距离最近的两点之间的距离。

【样例1输入】

- 2.
- 6 7 3
- 1 2 5
- 1 4 3
- 2 5 1
- 3 4 4
- 4 5 0
- 4 6 5
- 5 6 2
- 5 4 4
- 5 1 12

- 5 2 7
- 5 3 8
- 5 4 3

【样例1输出】

4

10

【样例1解释】

第一组数据中:

顶点 1 和 2 之间的最短路径为 $1 \rightarrow 4 \rightarrow 5 \rightarrow 2$,dist(1,2) = 4。

顶点 1 和 3 之间的最短路径为 $1 \to 4 \to 3$,dist(1,3) = 7。

顶点 2 和 3 之间的最短路径为 $2 \to 5 \to 4 \to 3$, dist(2,3) = 5.

因此 S 中最近点对的距离为 4。

第二组数据中,最近的点对为顶点 2 和 4,距离为 dist(2,4) = 10。

【样例 2~3】

见选手目录下的 nearest/nearest2~3.in 与 nearest/nearest2~3.ans。

【子任务】

对于全部的测试点,保证 $1 \le T \le 10$, $2 \le k \le n$, 图 G 为连通图, $w \le 10^4$ 。以下对数据的限制均是对于单组输入数据而言的,也就是说同一个测试点下的 T 组数据均满足限制条件。

每个测试点的详细数据范围见下表:

测试点编号	n	m	k
1	≤ 10	≤ 10 ≤ 50	
2	≤ 300		
3	15103	$\leq 10^4$	≤ 100
4	$\leq 5 \times 10^3$		
5	$\leq 5 \times 10^4$	= n - 1	$\leq 10^3$
6			
7			
8		$\leq 10^{5}$	
9			
10			

木棍切割(stick)

【题目描述】

有一根长度为n的木棍(n为正整数)。你需要将该木棍切成若干段(段数可以是1),要求:

- 每一段长度必须为正整数;
- 每一段长度不能超过 k;
- 在此基础上,要求切成的段数最少。

请你求出最少需要把木棍切成几段,以及切成这么多段的方案有多少种。两种方案不同,当且仅当存在一个切割点的位置不同。

【输入格式】

从文件 stick.in 中读入数据。

输入的第一行包含一个整数 T, 代表测试数据的组数。

接下来 T 行,每行一组数据,包含三个正整数 n,k,m,其中 n 代表木棍的长度,k 表示每一段的长度限制,m 为模数,其意义将在【输出格式】中提到。

【输出格式】

输出到文件 stick.out 中。

对于每组数据输出一行,包含两个空格分隔的整数,分别代表最少的切分段数,以 及切分的方案数。由于切分的方案数可能很大,你只需输出方案数对 m 取模的结果。

【样例1输入】

2

7 3 500

10 2 1000

【样例1输出】

3 6

5 1

【样例1解释】

对于第一组数据中,最少需要切成3段,共有以下6种方案:

1、切割位置: 1、4

- 2、切割位置: 3、4
- 3、切割位置: 3、6
- 4、切割位置: 2、4
- 5、切割位置: 2、5
- 6、切割位置: 3、5

对于第二组数据,最少需要切成5段,唯一的方案是把每段都切成长度为2。

【样例 2~3】

见选手目录下的 *stick/stick2~3.in* 与 *stick/stick2~3.ans*。

【子任务】

对于全部的测试点,保证 $1 \le T \le 5$ 。

每个测试点的详细数据范围见下表。表中的 n,k,m 均是对于单个输入数据(而非测试点)而言的,也就是说同一个测试点下的 T 组数据均满足限制条件。

测试点编号	n k		m	
1	$1 \le n \le 50$	$1 \le k \le 50$		
2	$1 \le n \le 10^6$	$1 \le k \le 10^6$	$2 \le m \le 10^6$	
3	$1 \le n \le 10^\circ$			
4		$1 \le k \le 10^{18}$	2 ≤ m ≤ 10 ⁶ 且 m 为质数	
5				
6	$1 \le n \le 10^{18}$			
7			$2 \le m \le 10^6$	
8				
9			$2 \leq m \leq 10^{\circ}$	
10				

子序列(subseq)

【题目描述】

给定两个长度均为 n 的正整数数列 a_1, a_2, \dots, a_n 和 b_1, b_2, \dots, b_n 以及正整数 $k \leq n$,你需要从这两个数列中各取一个长度为 k 的子序列 $a_{i_1}, a_{i_2}, \dots, a_{i_k}$ 和 $b_{j_1}, b_{j_2}, \dots, b_{j_k}$,满足

$$1 \le i_1 < i_2 < \dots < i_k \le n$$

$$1 \le j_1 < j_2 < \dots < j_k \le n$$

$$i_1 \le j_1, i_2 \le j_2, \dots, i_k \le j_k$$

在此基础上,最小化子序列和

$$a_{i_1} + a_{i_2} + \cdots + a_{i_k} + b_{j_1} + b_{j_2} + \cdots + b_{j_k}$$

的值。你只需要输出这个最小值即可。

【输入格式】

从文件 subseq.in 中读入数据。

输入的第一行包含两个由空格分隔的整数 n,k。

第二行包含 n 个由空格分隔的整数 a_1, a_2, \cdots, a_n 。

第三行包含 n 个由空格分隔的整数 b_1, b_2, \cdots, b_n 。

【输出格式】

输出到文件 subseq.out 中。

输出一个整数,表示子序列和的最小值。

【样例1输入】

8 4

3 8 7 9 9 4 6 8

2 5 9 4 3 8 9 1

【样例1输出】

32

【样例1解释】

样例中,最优的子序列为

$$i_1 = 1, i_2 = 2, i_3 = 3, i_4 = 6$$

$$j_1 = 1, j_2 = 4, j_3 = 5, j_4 = 8$$

子序列和为

$$a_1 + a_2 + a_3 + a_6 + b_1 + b_4 + b_5 + b_8 = 32$$

【样例 2 输入】

10 6

60 8 63 72 1 100 23 59 71 59

81 27 66 53 46 64 86 27 41 82

【样例 2 输出】

472

【样例 3】

见选手目录下的 subseq/subseq3.in 与 subseq/subseq3.ans。

【子任务】

对于所有的测试点,保证 $1 \le k \le n \le 10^5$, $1 \le a_i \le 10^9$, $1 \le b_i \le 10^9$ 。

测试点编号	n	k	a_i, b_i	特殊性质	
1	≤ 5		z 100		
2	≤ 10	≤ 5	≤ 100		
3	≤ 20	1.20	- 109		
4	≤ 50	≤ 20	$\leq 10^9$		
5	≤ 100		≤ 100		
6	≤ 300	≤ 100	≤ 100		
7	$\leq 10^3$		$\leq 10^9$	无	
8	≤ 10°		≤ 10°		
9	$\leq 2 \times 10^3$				
10	$\leq 3 \times 10^3$			≤ 100	
11	$\leq 5 \times 10^3$	$\leq 10^{3}$			
12	≥ 3 × 10°				
13	$\leq 10^4$		$\leq 10^9$		
14					
15			≤ 100	$b_1 \le b_2 \le \dots \le b_n$	
16			$\leq 10^9$	$U_1 \leq U_2 \leq \cdots \leq U_n$	
17			≤ 100	存在最优解,使得区间	
18			<u> </u>	$[i_1,j_1],[i_2,j_2],\cdots,[i_k,j_k]$	
19	Z 105		$\leq 10^9$	两两不相交	
20	$\leq 10^5$ $\leq 10^5$	$\leq 10^5$			
21			≤ 100		
22				工	
23			≤ 10 ⁹	无	
24					
25					