

Submodular Maximization Under the Intersection of Matroid and Knapsack Constraints

Yu-Ran Gu, Chao Bian, Chao Qian Email: guyr@lamda.nju.edu.cn

LAMDA Group, Nanjing University, China

Submodular maximization problem (SMP)

The problem: given a finite set \mathcal{N} and a **submodular** objective function $f: 2^{\mathcal{N}} \to \mathbb{R}^+$, to find $arg \max_{S \subseteq \mathcal{N}} f(S)$

Many applications:

$$\forall X \subseteq Y, v \notin Y: f(X \cup \{v\}) - f(X)$$

$$\geq f(Y \cup \{v\}) - f(Y)$$

- Movie Recommendation [Mirzasoleiman et al., ICML'16] [Badanidiyuru et al., NeurIPS'20]
- Data summarization [Lin et al., ACL'11] [Sipos et al., CIKM'12] [Dasgupta et al., ACL'13]
- Influence maximization [Kempe et al., KDD'03]

Influence maximization

NP-hard in general!

Common constraints in SMP

Independent system: given a set system $(\mathcal{N}, \mathcal{I})$ where $\mathcal{I} \subseteq 2^{\mathcal{N}}$, $(\mathcal{N}, \mathcal{I})$ is called an independence system if (1) $\emptyset \in \mathcal{I}$; (2) $\forall A \subseteq B \subseteq \mathcal{N}$, if $B \in \mathcal{I}$ then $A \in \mathcal{I}$.

Matroid Constraint: an **independence system** is called a matroid $\mathcal{M}(\mathcal{N}, \mathcal{I})$ if $\forall A, B \in \mathcal{I}$ and |A| < |B|, there is $e \in B \setminus A$ such that $A \cup e \in \mathcal{I}$. A set $S \subseteq \mathcal{N}$ satisfies the matroid constraint if and only if $S \in \mathcal{I}$.

Knapsack Constraint: given a modular cost function c, a set $S \subseteq \mathcal{N}$ satisfies the knapsack constraint if and only if $c(S) \leq 1$.

SMP under matroid and knapsack constraints

The problem studied: given a finite set \mathcal{N} and a submodular objective function $f: 2^{\mathcal{N}} \to \mathbb{R}^+$, a m-knapsack constraint with cost functions c_1, \dots, c_m , and a k-matroid $\mathcal{M}(\mathcal{N}, \cap_{i=1}^k \mathcal{I}_i)$, to find $arg \max_{S \subseteq \mathcal{N}} f(S)$ such that $S \in \cap_{i=1}^k \mathcal{I}_i$ and $\forall i \in [m], c_i(S) \leq 1$.

Comparison of the state-of-the-art algorithms:

Algorithm	Approximation	Running Time
FANTOM [Mirzasoleiman et al., ICML'16]	$(1 + \epsilon)(2k + (2 + 2/k)m + O(1)$	$\tilde{O}(n^2/\epsilon)$
DENSITYSEARCHSGS [Feldman et al., arXiv'20]	$(1+\epsilon)(k+2m)+O(\sqrt{m})$	$ ilde{O}(n/\epsilon)$
SPROUT(This Paper)	$(1+\epsilon)(k+m)+O(\sqrt{m})$	$\tilde{O}(n^2/\epsilon)$

Our algorithm: SPROUT

```
Input: Objective function f: 2^{\mathcal{N}} \to \mathbb{R}_+, k matroids
       \mathcal{M}_i(\mathcal{N}, \mathcal{I}_i) and m cost functions c_i : \mathcal{N} \to \mathbb{R}_+
Parameter: Error params \delta, \epsilon, correction params \beta, \gamma, enu-
       meration param C and number \ell of solutions
Output: A set S s.t. S \in \bigcap_{i=1}^k \mathcal{I}_i and \forall i \in [m], c_i(S) \leq 1
1: for each feasible \mathcal{A} \subseteq \mathcal{N} with C elements do
         z_{\mathcal{A}}(S) \triangleq f(S|\mathcal{A}).
         \mathcal{N}' \triangleq \{ e \in \mathcal{N} | e \notin \mathcal{A} \land C \cdot z_{\mathcal{A}}(e) \leq f(\mathcal{A}) \}.
          \mathcal{M}'_i(\mathcal{N}',\mathcal{I}'_i) \triangleq \text{contraction of } \mathcal{M}_i(\mathcal{N},\mathcal{I}_i) \text{ by } \mathcal{A}.
          \mathcal{I}' \triangleq \bigcap_{i=1}^k \mathcal{I}'_i.
           Decrease knapsack budgets by c_i(A) and normalize
           each of them to 1.
         Let S_0 = \emptyset, and \mathcal{V} be the maximum z_{\mathcal{A}} value of
           a single feasible element in \mathcal{N}'.
           Let b_1 = 1 and b_0 = \lceil \log |\mathcal{N}'|/\delta \rceil.
           while |b_1 - b_0| > 1 do
               \rho = \beta \mathcal{V}(1+\delta)^{\lfloor (b_1+b_0+1)/2 \rfloor} + \gamma f(\mathcal{A})/C.
10:
                S_K = \text{KNAPSACKSGS}(z_A, \mathcal{N}', \mathcal{I}', \{c_i\}_{i=1}^m, \ell, \rho, \epsilon).
               Add S_K to S_0.
                b_{E} = \lfloor (b_1 + b_0 + 1)/2 \rfloor.
           end while
14:
           S_{\mathcal{A}} = \arg\max_{S \in S_0} f(S).
16: end for
17: \mathcal{A}^* = \arg \max_{A} f(\mathcal{A} \cup S_{\mathcal{A}}) over all feasible \mathcal{A} \subseteq \mathcal{N}.
```

18: return $\mathcal{A}^* \cup S_{\mathcal{A}^*}$

Partial Enumeration By Reducing Problem Instance: To be more robust in practice and achieve better guarantee

Incorporating a **partial enumeration technique** [Badanidiyuru et al., NeurIPS'20] into the **simultaneous greedy framework** [Feldman et al., arXiv'20]

Subroutine from [Feldman et al., arXiv'20]

Indicator-based Binary Search:
To find solution with
approximately best guarantee

Indicates whether the knapsack constraints are violated in line 6 of KNAPSACKSGS during the execution

Theoretical analysis

Theorem 1. SPROUT achieves an approximation ratio of **roughly**

$$\left(\frac{1-\epsilon}{k+m+3+2\sqrt{m+1}} + \frac{(1-\epsilon)C}{r}\right)^{-1}$$
 using $\widetilde{O}(\frac{Pn^{C+1}}{\epsilon})$ oracle calls and $\widetilde{O}(\frac{Pmn^{C+1}}{\epsilon})$ arithmetic operations, where $P = \{ \sqrt{1+m} , k \}$ and r is the size of S_{OPT} .

Time complexity: Composed by arithmetic operations and oracle calls

Computational cost of arithmetic operations is much less than that of oracle calls!

Lemma 1. In SPROUT,
$$f(\mathcal{A} \cup S_K) \ge \min\{\rho + \left(1 - \frac{1}{c}\right)f(\mathcal{A}), \frac{(1-\epsilon)}{p+1}\left(\left(1 - \frac{1}{\ell} - \epsilon\right)\mathcal{Z}_{\mathcal{A}}(S'_{OPT}) - \rho m\right) + f(\mathcal{A})\}$$
 for each generated ρ in line 10 and corresponding S_K , where S'_{OPT} refers to an optimal solution for the reduced instance, and $p = \max\{\ell - 1, k\}$.

Proof

The basic idea of Theorem 1:

Using Lemma 1 ➤ Proved based on the value of *E*

$$f(\mathcal{S}) \ge \min\{\rho + \left(1 - \frac{1}{C}\right)f(\mathcal{A}), \frac{(1 - \epsilon)}{p + 1}\left(\left(1 - \frac{1}{\ell} - \epsilon\right)\mathcal{Z}_{\mathcal{A}}(S'_{OPT}) - \rho m\right) + f(\mathcal{A})\}$$

Best density ratio ρ^* \bigcirc

$$\rho^* = \frac{(1-\epsilon)\left(1-\frac{1}{\ell}-\epsilon\right)\mathcal{Z}_{\mathcal{A}}(S'_{OPT}) + \frac{(p+1)f(\mathcal{A})}{C}}{p+1+m(1-\epsilon)}$$

To find
$$\rho'$$
 s. t. $(1 - \delta)\rho^* \le \rho' \le \rho^*$

Consider all three cases for ρ and E in search

- 1) In one iteration of search, $\rho \leq \rho^*$ and E = 0.(red)
- 2) In one iteration of search, $\rho \ge \rho^*$ and E = 1.(yellow)
- 3) $\rho \le \rho^*$ implies E = 1, then increase b_1 to $\lfloor \frac{b_1 + b_0 + 1}{2} \rfloor$; $\rho \ge \rho^*$ implies E = 0, then decrease b_0 to $\lfloor \frac{b_1 + b_0 + 1}{2} \rfloor$. (green)

Our algorithm: SPROUT++

```
Input: Objective function f: 2^{\mathcal{N}} \to \mathbb{R}_+, k matroids
     \mathcal{M}_i(\mathcal{N}, \mathcal{I}_i) and m cost functions c_i : \mathcal{N} \to \mathbb{R}_+
Parameter: Error params \delta, \epsilon, correction params \beta, \gamma, ac-
                                                                                                            Random Sampling and
     celeration param \alpha, smooth param \mu, counter t_c and
                                                                                                               Threshold Filtering:
     number \ell of solutions
Output: A set S s.t. S \in \bigcap_{i=1}^k \mathcal{I}_i and \forall i \in [m], c_i(S) \leq 1
                                                                                                    To get more valuable elements
 1: Let e^* be the feasible element e \in \mathcal{N} maximizing f(e).
 2: while t_c > 0 do
                                                                                                                   more efficiently
 3: Randomly select a feasible single-element set A \subseteq N
        never being chosen before.
 4: if f(A) \ge (1 - \alpha)f(e^*) then
        z_{\mathcal{A}}(S) \triangleq f(S|\mathcal{A}).
                                                                                                         Delete No Extra Elements:
         \mathcal{N}' \triangleq \{e \in \mathcal{N} | e \notin \mathcal{A}\}
 6:
                                                                                                To maintain high-quality elements
         \mathcal{M}'_i(\mathcal{N}', \mathcal{I}'_i) \triangleq \text{contraction of } \mathcal{M}_i(\mathcal{N}, \mathcal{I}_i) \text{ by } \mathcal{A}.
 7:
          \mathcal{I}' \triangleq \bigcap_{i=1}^k \mathcal{I}'_i.
 8:
          Decrease knapsack budgets by c_i(A) and
                                                                            Aim to BE MORE EFFICIENT!!!
          normalize each of them to 1.
          Let S_0 = \emptyset, and \mathcal{V} be the maximum z_{\mathcal{A}} value of
10:
          a single feasible element in \mathcal{N}'.
          Let b_1 = 1 and b_0 = \lceil \log |\mathcal{N}'|/\delta \rceil.
11:
          while |b_1 - b_0| > 1 do
12:
             b = |(b_1 + b_0 + 1)/2|.
13:
14:
             \rho = \beta \mathcal{V}(1+\delta)^b + \gamma f(\mathcal{A}).
             S_K = \text{KNAPSACKSGS}(z_{\mathcal{A}}, \mathcal{N}', \mathcal{I}', \{c_i\}_{i=1}^m, \ell, \rho, \epsilon).
                                                                                                              Smooth Technique:
15:
            Add S_K to S_0
16:
                                                                                      To avoid search range shrinking so fast
            b_E = b + (1 - 2E)(1 - 1\mu)b_E - b.
17:
          end while
18:
                                                                                      that many good solutions may be missed
          S_{\mathcal{A}} = \arg \max_{S \in S_0} f(S).
19:
          t_c = t_c - 1.
20:
       end if
21:
22: end while
23: \mathcal{A}^* = \arg \max_{\mathcal{A}} f(\mathcal{A} \cup S_{\mathcal{A}}) over all feasible \mathcal{A} \subseteq \mathcal{N}.
                                                                                                     Smooth parameter
24: return \mathcal{A}^* \cup S_{\mathcal{A}^*}
```

Theoretical analysis

Theorem 2. Suppose that $\forall a \in S_{OPT}$, $(1+\alpha)f(a) \geq f(e^*)$, where e^* is a feasible max-value element in \mathcal{N} and $\alpha \leq \frac{(1-\epsilon)(p+1-(1-\epsilon)^2)}{\epsilon(p+1)+m(1-\epsilon)}$. SPROUT++ offers an approximation ratio of $(1+\epsilon)(k+m+3+2\sqrt{m+1})$ with probability at least $1-e^{\frac{-rt_c}{n}}$ using $\widetilde{O}(\frac{\log^{-1}\{\frac{2\mu}{2\mu-1}\}t_cPn}{\epsilon})$ oracle calls and $\widetilde{O}(\frac{\log^{-1}\{\frac{2\mu}{2\mu-1}\}t_cPmn}{\epsilon})$ arithmetic operations.

Proof can be easy!

Just consider the event that any element in S_{OPT} is sampled by SPROUT++!

SPROUT++ can achieve a similar guarantee to SPROUT with a high probability using much less time (depending on tc) under an assumption!

The objective value of each element in S_{OPT} is relatively large, which can hold if the marginal gain of adding each element e to $S_{OPT} \setminus e$ is large enough by the submodularity, e.g., selecting small subsets from a relatively large set.

Experiment – movie recommendation

Movie recommendation [Mirzasoleiman et al., ICML'16]: select a subset of representative movies from MovieLens Dataset.

Formally stated: given a set \mathcal{N} with n movies and a non-monotone submodular objective function $f(S) = \frac{\sum_{i \in \mathcal{N}} \sum_{j \in S} s_{i,j} - \sum_{i \in S} \sum_{j \in S} s_{i,j}}{n}$ [Lin et al., ACL'11], where $s_{i,j} = \exp(-\lambda \cdot dist(v_i, v_j))$ is the similarity between movies i and j[Badanidiyuru et al., NeurIPS'20]

Euclidean distance
$$max_{S \subseteq \mathcal{N}} f(S)$$

- 1. Knapsack constraints(cost functions):
 - 1. c1 = 10-rating (Budget = 20)
 - 2. c2 = |1995 year| (Budget = 30)
 - 3. c3 = |1997 year| (Budget = 30)
- 2. Matroid constraints:
 - 1. a uniform matroid for each genre: limiting the number of movies in this genre to 2
 - a uniform matroid limits the total number of chosen movies to 10

Constraints

Experiment – movie recommendation

(a) Two knapsacks

(c) Two knapsacks

(b) Three knapsacks

(d) Three knapsacks

Subfigures (a) and (b): obj. value vs. knapsack budget

Subfigures (c) and (d): obj. value vs. maximum number of allowed movies

SPROUT++ is always the best!

Experiment – weighted max-cut

- Weighted max-cut [haba et al., ICML'20]: select a subset of nodes from graph to maximize the max-cut between chosen/unchosen nodes.
- **Formally stated:** given a node set V and a non-monotone submodular objective function $f(S) = \sum_{u \in S} \sum_{v \in V \setminus S} w_{u,v}$ [haba et al., ICML'11], where V is the set of vertices and $w_{u,v}$ is the weight of edge (u,v), $max_{S \subseteq V} f(S)$

1. Knapsack constraints(cost functions):

Constraints

- 1. sum of degree of nodes (Budget = 100)
- 2. index the nodes and limit the sum of the last digit of nodes (Budget = 40)
- 2. Matroid constraints:
 - 1. a uniform matroid to limit the chosen set size to 10

Experiment – weighted max-cut

Subfigure (a): obj. value vs. knapsack budget

Subfigure (b): obj. value vs. maximum number of allowed nodes

SPROUT++ is always the best!

Experiment – parametric sensitivity analysis

Compared with sub-optimal FANTOM

Subfigure (a): obj. value vs. t_c/n on weighted max-cut

Subfigure (b): obj. value vs. μ on movie recommendation

In SPROUT++, t_c and μ are useful for efficiency!

Experiment – comparison of SPROUTs

Compare our propose algorithms

Subfigure (a): obj. value vs. knapsack budget

Subfigure (b): oracle calls vs. knapsack budget

SPROUT++ can

ls compete with

SPROUT while being much faster!

Conclusion

 Submodular maximization under knapsack and matroid constraints

$$\max_{S \subseteq \mathcal{N}} f(S)$$
 s.t. $c_i(S) \leq 1 \ \forall i \in [m] \ and \ S \in \bigcap_{j=1}^k \mathcal{I}_i$
Non-monotone Knapsacks Matroids

- Propose SPROUT algorithm with the SOTA approximation ratio
- Propose SPROUT++ algorithm to improve the efficiency of SPROUT
- Demonstrate the superior performance of SPROUT
 & SPROUT++ in practice by extensive experiments

Thanks