2020-04-07 Graphs / Dijkstra's Algorithm

Tuesday, April 7, 2020 7:29 AM

Student Questions

- Some students read out of the wrong OpenDSA book. My fault!
 - https://opendsa-server.cs.vt.edu/ODSA/Books/CS3/html/ is the one with graph information
- When would you choose an adjacency matrix over an adjacency list?

Adjacency Matrix

2D vector

	Α	В	С	D	E
Α	0	2	-1	3	-1
В	2	0	2	3	4
С	-1	2	0	-1	-1
D	3	3	-1	0	-1
E	-1	4	-1	-1	0

- Advantage:
 - Visual nature of matrix might make it easier to conceptualize the layout of the graph
 - Adjacency matrices tend to be application agnostic (a 2D array is a 2D array)
 - You'll see a lot of graph algorithms use adjacency matrix representations
- Disadvantages
 - Tends to take up more memory when the graph is sparsely populated (not a lot of edges in graph)

Adjacency List / Edge List

- Advantage:
 - Not a lot of wasted space on sparse graphs -- memory is O(E)
- Disadvantages
 - Tend to be application specific

GraphNode	Vertices unordered_map <key, graphnode="" pair<int,=""></key,>		
А	"A": {0, A} "B": {2, B} "C": {3, C}		
В	"A": {2, A} "B": {0, B} "C": {2, C} "D": {3, D} "E": {4, E}		

- How do you build an adjacency list in code?
 - o See code
- How do you add nodes to a graph?
 - See code
- Why doesn't Dijkstra's algorithm work with negative integers?
 - Answered in video

- → JEE LUUE
- Why doesn't Dijkstra's algorithm work with negative integers?
 - o Answered in video
- DFS vs BFS search?

