AYUPOV Sh. A., IBRAGIMOV M.M., KUDAYBERGENOV K.K.

FUNKSIONAL ANALIZDAN MISOL VA MASALALAR

Ayupov Sh.A., Ibragimov M.M., Kudaybergenov K.K. Funksional analizdan misol va masalalar. Toshkent, 2009. Oliy ta'lim muassasalarining bakalavrlari uchun oʻquv qoʻllanma.

Ushbu o'quv qo'llanma oliy ta'lim muassasalarida tahsil olayot-gan bakalavriat talabalarini funksional analizning asosiy tushunchalari (to'plamlar nazariyasi, o'lchovlar va Lebeg integrali, metrik fazo, chiziqli, normallangan, Hilbert fazolari, ularda aniqlangan operator va funksionallarning xossalari) va ularning integral tenglamalarga tatbiqlari bilan tanishtirishga mo'ljallangan.

Taqrizchilar: V.I. Chilin, M. Ulug'bek nomidagi O'zMU professori, fizika-matematika fanlari doktori

R.M. Turgunboev, Nizomiy nomidagi TDPU dotsenti, fizikamatematika fanlari nomzodi

MUNDARIJA

Kirish	$\dots 5$
I. To'plamlar nazariyasi elementlari	
§ 1.1. To'plam tushunchasi. To'plamlar ustida amallar	7
§ 1.2. Akslantirishlar. O'zaro bir qiymatli mosliklar	16
§ 1.3. Ekvivalent va sanoqli toʻplamlar	22
II. O'lchovlar nazariyasi elementlari	
$\S~2.1.$ O'lchov tushinchasi	32
$\S~2.2.$ O'lchovli funksiyalar	43
$\S~2.3.$ Lebeg integrali	58
III. Metrik fazolar	
§ 3.1. Metrik fazolar	73
§ 3.2. Metrik fazolarda kompakt to'plamlar	88
$\S3.3.$ Qisqartirib akslantirish prinsipi va unning tadbiqlari	95
IV. Normalangan fazolar	
$\S4.1.$ Chiziqli fazolar va chiziqli funksionallar	
§ 4.2. Normalangan fazolar	
§ 4.3. Evklid va Hilbert fazolari	. 143
V. Topologik fazolar	
$\S 5.1.$ Topologik fazolar	
§ 5.2. Topologik fazolarda kompaktlik	
§ 5.3. Chiziqli topologik fazolar	. 183
VI. Chiziqli operatorlar	
§ 6.1. Chiziqli operatorlar	
§ 6.2. Uzliksiz chiziqli funksionallar	
§ 6.3. Qo'shma fazolar	
§ 6.4. Kuchsiz topologiya va kuchsiz yaqinlashish	. 236
VII. Chiziqli operatorlar fazosi	
§ 7.1. Chiziqli operatorlar fazosi	
§ 7.2. Chiziqli operatorlar spektri	
§ 7.3. Kompakt operatorlar	
§ 7.4. Integral operatorlar va tenglamalar	
Adabiyotlar	292

KIRISH

Funksional analiz fani XX asrning boshlarida matematik analiz, algebra, geometriya fanlaridagi tushuncha va metodlarni umumlashtirish natijasiada paydo bo'lib, hozirgi zamon matematikasining eng ahamiyatli bo'limlarining biri bo'lib hisoblanadi. Bu fanning paydo bo'lish va rivoshlanishi dunyoga belgili olimlar bo'lgan D. Hilbert, F. Riss, S. Banax, M. Freshe, A.N. Kolmogorov, S.L. Sobolev, A.N. Tixonov, S.M. Nikolskiy kabilarning nomlari bilan bog'liq.

Funksional analiz nazariyasi metodlaridan matematikaning xoxlagan yonalishini oʻrganishda foydalanish mumkin. Shu sababli, taklif etilayotgan oʻquv qoʻllanmaning zamonaviy matematikani chuqur oʻrganmoqchi boʻlgan universitetlar, pedagogika institutlari talabalariga hamda matematika faniga qiziquvchi boshqada oʻquvchilarga foydasi katta deb oʻylaymiz.

Funksional analizda abstrakt funksional fazolarni metrika, norma, skalyar ko'paytma tushunchalari yordamiada oddiyroq, yaxshi o'rganilgan fazolarga akslantirib o'rganishdan iborat.

Funksional analiz fani boyicha rus, ingliz va boshqa tillarda juda yaxshi yozilgan adabiyotlar ko'p. O'quvchilarga o'zbek tilida taqdim etilayotgan bu o'quv qo'llanma oily o'uv yurtlari "Matematika" va "Amaliy matematika va informatika" ta'lim yonalishlari uchun funksional analiz fani boyicha o'quv dasturiga mos yozildi.

Qo'llanma 7 bobdan iborat bol'ib, funksional analiz fani bo'yicha misol va masalalar berilgan. Birinchi bob to'plamlar nazariyasi elementlariga bag'ishlangan bo'lib, to'plam tushunchasi, to'plamlar ustida amallar, akslantirishlar, o'zaro bir qiymatli mosliklar, ekvivalent va sanoqli to'plamlarga misollar berilgan.

Ikkinchi bob o'lchovlar nazariyasi elementlariga bag'ishlangan bo'lib, o'lchov tushinchasi, o'lchovli funksiyalar va Lebeg integrallariga misollar berilgan.

Uchinchi bob metrik fazolarga bag'ishlangan bo'lib, metrik fazolar, metrik fazolarda kompakt to'plamlar va qisqartirib akslantirish prinsipi va unning tadbiqlariga misollar berilgan.

To'rtinchi bobda normalangan fazolar, chiziqli fazolar va chiziqli funksionallar, normalangan fazolar va evklid va Hilbert fazolariga misollar berilgan.

Beshinchi bobda topologik fazolar, topologik fazolar, topologik fazolarda kompaktlik va chiziqli topologik fazolarga misollar berilgan.

Oltinchi bobda chiziqli operatorlar, uzluksiz chiziqli funksionallar, qo'shma fazolar, kuchsiz topologiya va kuchsiz yaqinlashishlarga misollar berilgan.

Yettinchi bobda chiziqli operatorlar fazosi, chiziqli operatorlar spektri, kompakt operatorlar va integral operatorlar va tenglamalarga misollar berilgan.

O'quv qollanmani tayorlashda katta hissa qo'shgan Qoraqalpoq davlat universiteti funksional analiz kafedrasi o'qituvchilari f.-m.f.n. S.J. Tleumuratov, A.J. Arziev, J. Seypullaev va T.S. Kalandarovlarga mualliflar o'zlarining chuqur minnatdorchiligini bildiradi.

O'quv qollanmaning taqrizchlari prof. V.I. Chilinga, dotsent R. Turgunboevlarga juda baholi maslahatlari uchun mualliflar o'zlarining chuqur minnatdorchiligini bildiradi.

IBOB

To'plamlar nazariyasi elementlari

1.1. To'plam tushunchasi. To'plamlar ustida amallar

Matematikada har xil to'plamlar uchraydi. Masalan tekislikdagi barcha nuqtalar to'plami, barcha ratsional sonlar to'plami, barcha juft sonlar to'plami va hakazo. To'plam tushunchasi juda keng ma'nodagi tushuncha bo'lgani uchun uning ta'rifini berish juda qiyin. Shuning uchun bu tushuncha odatda ta'rifsiz qabul qilinadi.

To'plamlar lotin alifbosining bosh A, B, C, \ldots harflari bilan, to'plamning elementlari esa kichik a, b, c, \ldots harflari bilan belgilanadi. Biror a buyumning A to'plamining elementi ekanligi $a \in A$ ko'rinishda, a buyumning A to'plamiga tegishli emasligini $a \notin A$ kabi yoziladi. Masalan, A to'plam sifatida barcha natural sonlar to'plamini olsak, u holda $2 \in A$ va $-2 \notin A$. Birorta ham elementi bo'lmagan to'plam bo'sh to'plam deyiladi va u \emptyset ko'rinishida belgilanadi. Bo'sh to'plamga $x^2 + 1 = 0$ tenglamaning haqiqiy yechimlari to'plami misol bo'ladi.

Agar A to'plamning har bir elementi B to'plamning ham elementi bo'lsa, u holda A to'plami B to'plamning $qism\ to'plami$ deyiladi va $A \subset B$ ko'rinishida belgilanadi. A va \emptyset to'plamlar A to'plamining xosmas $qism\ to'plamlari$ deyilib, A to'plamining boshqa qism to'plamlari uning $xos\ qism\ to'plamlari$ deb ataladi.

- 1. $A = \{2, 3, 4, 5\}$ va $B = \{-1, 0, 2, 3, 4, 5, 6, 7\}$ bo'lsa, u holda A to'plami B to'plamining xos qism to'plami bo'ladi.
- **2.** $A = \{1, 3, 6, 9\}$ va $B = \{3, 4, 5, 6, 7, 8, 9, 10\}$ to'plamlarning hech biri ikkinchisining qism to'plami emas.
- 3. Barcha butun sonlar to'plami barcha ratsional sonlar to'plamining xos qism to'plami bo'ladi.

Agar $A \subset B$ va $B \subset A$ bo'lsa, u holda A va B to'plamlari o'zaro teng deyiladi va A = B ko'rinishda belgilanadi. A va B to'plamlarining o'zaro teng emasligini $A \neq B$ ko'rinishda belgilaymiz.

A va B to'plamlarning kamida bittasiga tegishli bo'lgan barcha elementlardan iborat to'plam A va B to'plamlarining birlashmasi deb ataladi va $A \cup B$ ko'rinishida belgilanadi.

1-rasm

- **4.** $A = \{2, 4, 6, 8, 10, 12, 14\}$ va $B = \{10, 11, 12, 13, 14, 15, 16\}$ bo'lsin. U holda $A \cup B = \{2, 4, 6, 8, 10, 11, 12, 13, 14, 15, 16\}$ bo'ladi.
- **5.** Agar A barcha juft sonlar to'plami, B barcha toq sonlar to'plami bo'lsa, u holda $A \cup B$ barcha butun sonlar to'plamidan iborat bo'ladi.

Biror X to'plami berilgan bo'lib, uning har bir x elementiga ba'zi A_x to'plami mos qo'yilgan bo'lsin. Elementlari A_x to'plamlardan iborat \mathcal{N} to'plamni to'plamlar sistemasi deb ataymiz va uni $\mathcal{N} = \{A_x : x \in X\}$ ko'rinishida belgilaymiz.

 \mathcal{N} to'plamlar sistemasining birlashmasi deb A_x to'plamlarning kamida bittasiga tegishli bo'lgan barcha elementlardan iborat to'plamga aytiladi va bu to'plam $\bigcup A_x$ ko'rinishida belgilanadi.

A va Bto'plamlarning ikkalasiga ham tegishli barcha elementlardan iborat to'plamga bu to'plamlarning kesishmasi deyiladi va bu to'plam $A\cap B$ ko'rinishda belgilanadi.

2-rasm

6. $A = \{6, 8, 10, 12, 14\}$ va $B = \{11, 12, 13, 14, 15, 16, 17\}$ bo'lsa, u holda $A \cap B = \{12, 14\}$.

7. A to'plami 3 ga karrali sonlardan, B to'plami esa 4 ga karrali sonlardan iborat bo'lsa, u holda $A \cap B$ to'plami 3 va 4 sonlariga umumiy karrali sonlardan iborat bo'ladi.

 $\mathscr{H} = \{A_x\}, \ x \in X$ to'plamlar sistemasining kesishmasi deb har bir A_x to'plamga tegishli bo'lgan barcha elementlardan iborat to'plamga aytiladi va bu to'plam $\bigcap A_x$ ko'rinishida belgilanadi.

Agar $A \cap B = \emptyset$ boʻlsa, u holda A va B toʻplamlari oʻzaro kesishmaydigan toʻplamlar deb ataladi. Misol uchun, barcha ratsional sonlar toʻplami bilan barcha irratsional sonlar toʻplami oʻzaro kesishmaydigan toʻplamlar boʻladi.

Ato'plamning Bto'plam
ga tegishli bo'lmagan barcha elementlaridan iborat to'plam
 Ava Bto'plamlarning ayirmasideb ataladi v
a $A\backslash B$ ko'rinishda belgilanadi.

- **8.** $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ va $B = \{2, 4, 6, 8, 10, 12, 14\}$ bo'lsa, u holda $A \setminus B = \{1, 3, 5, 7, 9\}$.
- 9. Barcha haqiqiy sonlar va barcha ratsional sonlar to'plamlarining ayirmasi barcha irratsional sonlar to'plamidan iborat bo'ladi.

 $A \setminus B$ va $B \setminus A$ to'plamlarning birlashmasiga A va B to'plamlarning simmetrik ayirmasi deyiladi va bu ayirma $A \Delta B$ ko'rinishida belgilanadi:

$$A\Delta B = (A \setminus B) \cup (B \setminus A).$$

$$A\Delta B = \{1, 2, 3, 4, 10, 11, 12\}.$$

11. Barcha haqiqiy sonlar to'plami bilan barcha ratsional sonlar to'plamining simmetrik ayirmasi barcha irratsional sonlar to'plamidan iborat bo'ladi.

Birinchi elementi A to'plamga, ikkinchi elementi esa B to'plamga tegishli bo'lgan barcha (a,b) juftliklar to'plami A va B to'plamlarning dekart (to'g'ri) ko'paytmasi deb ataladi va bu ko'paytma $A \times B$ ko'rinishida belgilanadi.

- 12. $\mathbb R$ barcha haqiqiy sonlar to'plami bo'lsa, u holda $\mathbb R \times \mathbb R$ tekislikdagi barcha nuqtalardan iborat bo'ladi.
- 13. \mathbb{Q} orqali to'g'ri chiziqdagi barcha ratsional sonlar to'plamini belgilaylik. U holda $\mathbb{Q} \times \mathbb{Q}$ tekislikdagi koordinatalari ratsional sonlardan iborat barcha nuqtalar to'plamidan iborat bo'ladi.

Ba'zida qaralayotgan barcha to'plamlar biror X to'plamning qism to'plamlari bo'lsa, u holda X fazo deb ataladi.

 $X \setminus E$ ayirma (bu erda $E \subset X$) E to'plamning X to'plamiga nisbatan to'ldiruvchisi deb ataladi va $\mathbb{C}E$ ko'rinishda belgilanadi.

- **14.** X = [-1, 2] va E = (0, 1) bo'lsa, u holda $\mathbf{C}E = [-1, 0] \cup [1, 2]$.
- 15. \mathbb{R} barcha haqiqiy sonlar to'plami, \mathbb{Q} barcha ratsional sonlar to'plami bo'lsa, u holda $\mathbb{C}\mathbb{Q}$ barcha irratsional sonlar to'plami bo'ladi.

Masalalar

1.1.1. Isbotlang:

- *a)* $(A \cap C) \cup (B \cap D) \subset (A \cup B) \cap (C \cup D);$
- **b)** $(B \setminus C) \setminus (B \setminus A) \subset A \setminus C$;
- c) $A \setminus C \subset (A \setminus B) \cup (B \setminus C)$.

 $\begin{array}{lll} \textit{Yechimi.} & \text{a)} \ \forall x \in (A \cap C) \cup (B \cap D) \Rightarrow x \in A \cap C \ \text{yoki} \ x \in \\ B \cap D \Rightarrow (x \in A \ \text{va} \ x \in C) \ \text{yoki} \ (x \in B \ \text{va} \ x \in D) \Rightarrow (x \in A \ \text{yoki} \\ x \in B) \ \text{va} \ (x \in C \ \text{yoki} \ x \in D) \Rightarrow x \in A \cup B \ \text{va} \ x \in C \cup D \Rightarrow x \in \\ (A \cup B) \cap (C \cup D) \Rightarrow (A \cap C) \cup (B \cap D) \subset (A \cup B) \cap (C \cup D). \end{array}$

- b) $\forall x \in (B \setminus C) \setminus (B \setminus A) \Rightarrow x \in B \setminus C \text{ va } x \notin B \setminus A \Rightarrow (x \in B \text{ hamda } x \notin C) \text{ va } (x \in B \text{ hamda } x \in A) \Rightarrow x \in A \setminus C \Rightarrow (B \setminus C) \setminus (B \setminus A) \subset A \setminus C.$
- c) $\forall x \in A \setminus C \Rightarrow x \in A \text{ va } x \notin C \Rightarrow x \in A \setminus B \text{ yoki } x \in B \setminus C \Rightarrow x \in (A \setminus B) \cup (B \setminus C) \Rightarrow A \setminus C \subset (A \setminus B) \cup (B \setminus C).$
- 1.1.2. $A \setminus B = C$ tengligidan $A = B \cup C$ tengligi kelib chiqadimi?

Yechimi. Kelib chiqmaydi. Misol uchun $A=[0;2],\ B=[1;4]$ bo'lganda $A\setminus B=[0;1)$ bo'lib, $B\cup C=[0;4]$ bo'ladi.

1.1.3. $A = B \cup C$ tengligining o'rinli bo'lishidan, $A \setminus B = C$ tengligi kelib chiqadimi?

Yechimi. Umuman aytganda kelib chiqmaydi. Misol uchun $B=C\neq\emptyset$ bo'lganda $(B\cup C)\setminus B=\emptyset\neq C.$

1.1.4. $A \setminus (B \cup C) = (A \setminus B) \setminus C$ tengligini isbotlang.

 $\begin{array}{l} \textit{Yechimi.} \ \forall x \in A \backslash (B \cup C) \Rightarrow x \in A \ \text{va} \ x \notin B \cup C. \ \text{Natijada} \ x \in A \backslash B \\ \text{va} \ x \notin C \ \text{bo'lganlikdan} \ x \in (A \backslash B) \backslash C, \ \text{ya'ni} \ A \backslash (B \cup C) \subset (A \backslash B) \backslash C \\ \text{munosabati o'rinli.} \ \text{Aksincha} \ \forall x \in (A \backslash B) \backslash C \ \text{bo'lsin.} \ \text{U holda} \ x \in A \backslash B \\ \text{va} \ x \notin C. \ \text{Natijada} \ x \in A, \ x \notin B \cup C \ \text{bo'lgani uchun} \ x \in A \backslash (B \cup C), \\ \text{ya'ni} \ A \backslash (B \cup C) \supset (A \backslash B) \backslash C. \ \text{Natijada berilgan tenglikning o'rinli} \\ \text{ekanligi kelib chiqadi.} \end{array}$

1.1.5. $A \cup (B \setminus C) = (A \cup B) \setminus C$ tengligi o'rinlimi?

Yechimi. Umumiy holda bu tenglikning o'rinli emas ekanligini quyidagi rasmlarda ko'rishga bo'ladi.

3-rasm

4-rasm

1.1.6. Tenglikni isbotlang

$$A\Delta\,B=(A\cup B)\setminus(A\cap B).$$

Yechimi. $\forall x \in A \Delta B \Rightarrow x \in A \setminus B \text{ yoki } x \in B \setminus A \Rightarrow (x \in A \text{ va} x \notin B) \text{ yoki } (x \in B \text{ va } x \notin A) \Rightarrow (x \in A \text{ yoki } x \in B) \text{ va } (x \notin A \text{ va} x \notin B) \Rightarrow x \in A \cup B \text{ va } x \notin A \cap B \Rightarrow x \in (A \cup B) \setminus (A \cap B) \Rightarrow$

$$A\Delta B\subset (A\cup B)\setminus (A\cap B).$$

 $\forall x \in (A \cup B) \setminus (A \cap B) \Rightarrow x \in A \cup B \text{ va } x \notin A \cap B \Rightarrow (x \in A \text{ yoki } x \in B) \text{ va } (x \notin A \text{ yoki } x \notin B) \Rightarrow (x \in A \text{ va } x \notin B) \text{ yoki } (x \in B \text{ va } x \notin A) \Rightarrow x \in A \Delta B \Rightarrow$

$$(A \cup B) \setminus (A \cap B) \subset A\Delta B$$
.

Demak, $A\Delta B = (A \cup B) \setminus (A \cap B)$ tengligi o'rinli.

1.1.7. C to'plami bo'sh bo'lishi uchun ixtiyoriy A to'plami berilganda $A\Delta C = A$ tengligining o'rinli bo'lishi zarur va etarli ekanligini isbotlang.

Yechimi. Etarliligi. $A\Delta C=A$ tengligi o'rinli bo'lsin. U holda $(A\setminus C)\cup (C\setminus A)=A$. Bundan $C\setminus A$ to'plamning bo'sh ekanligi kelib chiqadi. Shu bilan birga $A\setminus C=A$ bo'lgani uchun $A\cap C=\emptyset$ tengligi o'rinli. Demak, $C=\emptyset$.

Zarurligi. $C = \emptyset$ bo'lsa, u holda

$$A\Delta C = (A \setminus C) \cup (C \setminus A) = (A \setminus \emptyset) \cup (\emptyset \setminus A) = A \cup \emptyset = A.$$

- 1.1.8. To'plamlar nazariyasidagi eng bir ahamiyatli tushunchalardan biri bo'lgan ikkilanganlik prinsipi quyidagi ikki tenglikka asoslangan. Shu tengliklarni isbotlang:
 - a) $\mathbf{C}(\bigcup_{\alpha} A_{\alpha}) = \bigcap_{\alpha} \mathbf{C} A_{\alpha};$
 - b) $\mathbf{C}(\bigcap_{\alpha} A_{\alpha}) = \bigcup_{\alpha} \mathbf{C} A_{\alpha}$.

Yechimi. a) Dastlab $\mathbf{C}(\bigcup_{\alpha} A_{\alpha}) \subset \bigcap_{x} \mathbf{C} A_{\alpha}$ munosabatini isbotlaymiz

$$\forall x \in \mathbf{C}(\bigcup_{\alpha} A_{\alpha}) \Rightarrow x \notin \bigcup_{\alpha} A_{\alpha} \Rightarrow \forall \alpha, \ x \notin A_{\alpha} \Rightarrow x \in \mathbf{C}A_{\alpha} \Rightarrow x \in \mathbf{C}A_{\alpha} \Rightarrow x \in \mathbf{C}A_{\alpha} \Rightarrow \mathbf{C}(\bigcup_{\alpha} A_{\alpha}) \subset \bigcap_{\alpha} \mathbf{C}A_{\alpha}.$$

Endi $\bigcap_{\alpha} \mathbf{C} A_{\alpha} \subset \mathbf{C}(\bigcup_{\alpha} A_{\alpha})$ munosabatining o'rinli ekanligini ko'rsatamiz:

$$\forall x \in \bigcap_{\alpha} \mathbf{C} A_{\alpha} \Rightarrow x \in \mathbf{C} A_{\alpha} \Rightarrow x \notin A_{\alpha} \Rightarrow x \notin \bigcup_{\alpha} A_{\alpha} \Rightarrow x \in \mathbf{C}(\bigcup_{\alpha} A_{\alpha}) \Rightarrow \bigcap_{\alpha} \mathbf{C} A_{\alpha} \subset \mathbf{C}(\bigcup_{\alpha} A_{\alpha}).$$

Natijada berilgan tenglikning o'rinli ekanligi kelib chiqadi.

b) Dastlab $\mathbf{C}(\bigcap_{\alpha}A_{\alpha})\subset\bigcup_{\alpha}\mathbf{C}A_{\alpha}$ munosabatini ko'r
satamiz:

$$\forall x \in \mathbf{C}(\bigcap_{\alpha} A_{\alpha}) \Rightarrow x \notin \bigcap_{\alpha} A_{\alpha} \Rightarrow$$

$$\Rightarrow \exists \alpha', \ x \notin A_{\alpha'} \Rightarrow x \in \mathbf{C}A_{\alpha'} \Rightarrow x \in \bigcup_{\alpha} \mathbf{C}A_{\alpha} \Rightarrow$$

$$\Rightarrow \mathbf{C}(\bigcap_{\alpha} A_{\alpha}) \subset \bigcup_{\alpha} \mathbf{C}A_{\alpha}.$$

Endi $\mathbf{C}(\bigcap_{\alpha}A_{\alpha})\supset\bigcup_{\alpha}\mathbf{C}A_{\alpha}$ munosabatning o'rinli ekanligini qaraylik:

$$\forall x \in \bigcup_{\alpha} \mathbf{C} A_{\alpha} \Rightarrow \exists \alpha', \ x \in \mathbf{C} A_{\alpha'} \Rightarrow$$
$$\Rightarrow x \notin A_{\alpha'} \Rightarrow x \bigcap_{\alpha} A_{\alpha} \Rightarrow$$
$$\Rightarrow x \in \mathbf{C}(\bigcap_{\alpha} A_{\alpha}) \Rightarrow \bigcup_{\alpha} \mathbf{C} A_{\alpha} \subset \mathbf{C}(\bigcap_{\alpha} A_{\alpha}).$$

Natijada berilgan tenglikning o'rinli ekanligi kelib chiqadi.

1.1.9. Ikkilanganlik printsipidan foydalanib

$$\mathbf{C}(\mathbf{C}(X \cup Y) \cap (\mathbf{C}X \cup \mathbf{C}Y))$$

$ifodani\ soddal a shtiring.$

Yechimi.

$$\mathbf{C}(\mathbf{C}(X \cup Y) \cap (\mathbf{C}X \cup \mathbf{C}Y)) =$$

$$= \mathbf{C}(\mathbf{C}(X \cup Y)) \cup \mathbf{C}(\mathbf{C}X \cup \mathbf{C}Y) =$$

$$= (X \cup Y) \cup (\mathbf{C}\mathbf{C}X \cap \mathbf{C}\mathbf{C}Y) =$$

$$= (X \cup Y) \cup (X \cap Y) = X \cup Y.$$

1.1.10. Quyidagi tengliklarni isbotlang:

- a) $\mathbf{C}(\mathbf{C}A \setminus B) = \mathbf{C}(\mathbf{C}B \setminus A);$
- b) $\mathbf{C}A\Delta\mathbf{C}B = A\Delta B$;
- c) $\mathbf{C}(\mathbf{C}A\Delta\mathbf{C}B) = \mathbf{C}A\Delta B;$
- d) $\mathbf{C}(\mathbf{C}A\Delta B) = (B \setminus A) \cup (\mathbf{C}B \setminus \mathbf{C}A).$

Yechimi.a) Dastlab $\mathbf{C}(\mathbf{C}A\backslash B)\subset\mathbf{C}(\mathbf{C}B\backslash A)$ munosabatni ko'rsatamiz.

 $\forall x \in \mathbf{C}(\mathbf{C}A \setminus B) \Rightarrow x \notin \mathbf{C}A \setminus B \Rightarrow x \in \mathbf{C}A, x \in B \text{ yoki } x \notin \mathbf{C}A \Rightarrow x \notin A, x \notin \mathbf{C}B \text{ yoki } x \in A \Rightarrow x \notin \mathbf{C}B \setminus A \Rightarrow x \in \mathbf{C}(\mathbf{C}B \setminus A);$

Endi esa $\mathbf{C}(\mathbf{C}B \setminus A) \subset \mathbf{C}(\mathbf{C}A \setminus B)$ munosabatni ko'rsatamiz.

 $\forall x \in \mathbf{C}(\mathbf{C}B \setminus A) \Rightarrow x \notin \mathbf{C}B \setminus A \Rightarrow x \in A, x \in \mathbf{C}B$ yoki $x \notin \mathbf{C}B \Rightarrow x \notin \mathbf{C}A, x \notin B$ yoki $x \in B \Rightarrow x \in \mathbf{C}(\mathbf{C}A \setminus B)$. Natijada berilgan tenglik kelib chiqadi.

- b) $\forall x \in \mathbf{C}A\Delta\mathbf{C}B \iff x \in \mathbf{C}A, x \notin \mathbf{C}B \text{ yoki } x \notin \mathbf{C}A, x \in \mathbf{C}B \iff x \notin A, x \in B \text{ yoki } x \in A, x \notin B \iff x \in A\Delta B.$
- c) $\forall x \in \mathbf{C}(\mathbf{C}A\Delta\mathbf{C}B) \Leftrightarrow x \notin \mathbf{C}A\Delta\mathbf{C}B \Leftrightarrow x \in \mathbf{C}A, x \in \mathbf{C}B$ yoki $x \notin \mathbf{C}A, x \notin \mathbf{C}B \Leftrightarrow x \in \mathbf{C}A, x \notin \mathbf{B}$ yoki $x \notin \mathbf{C}A, x \in \mathbf{B} \Leftrightarrow x \in \mathbf{C}A\Delta B$.
- d) $\forall x \in \mathbf{C}(\mathbf{C}A\Delta B) \Leftrightarrow x \notin \mathbf{C}A\Delta B \Leftrightarrow x \in \mathbf{C}A, x \in B \text{ yoki } x \notin \mathbf{C}A, x \in B \text{ yoki } x \notin \mathbf{C}A, x \in CB \Leftrightarrow x \in B \setminus A \text{ yoki } x \in \mathbf{C}B \setminus \mathbf{C}A \Leftrightarrow x \in (B \setminus A) \cup (\mathbf{C}B \setminus \mathbf{C}A).$

 $1.1.11. \ Har \ bir \ n \in \mathbb{N} \ soni \ uchun \ A_n \ orqali \ rac{1}{n} \ sonidan \ katta bo'lmagan barcha musbat ratsional sonlar to'plamini belgilaymiz. U holda igcap_{k=1}^{\infty} A_k \ kesishmaning bo'sh to'plam ekanligini ko'rsating.$

Yechimi. Ixtiyoriy a musbat sonini olamiz. U holda shunday $m \in \mathbb{N}$ natural soni topiladiki $\frac{1}{m} < a$ tengsizligi oʻrinli boʻladi, ya'ni $a \notin \left(0; \frac{1}{m}\right)$. Bundan $a \notin \bigcap_{k=1}^{\infty} \left(0; \frac{1}{k}\right)$ ekanligi kelib chiqadi. Demak $\bigcap_{k=1}^{\infty} A_k$ toʻplam boʻsh toʻplam boʻladi.

1.1.12. Absolyut qiymati $\frac{n+1}{n}, n \in \mathbb{N}$ sonidan katta bo'lmagan barcha haqiqiy sonlar to'plamini A_n orqali belgilaymiz. $\bigcap\limits_{k=1}^{\infty}A_k$ kesishmasining $[-1;\ 1]$ segmentiga teng ekanligini ko'rsating.

Yechimi. $\forall a \in [-1; 1]$ sonini olamiz, u holda

$$-\frac{n+1}{n} < -1 \le a \le 1 < \frac{n+1}{n}$$

tengsizliklaridan $a \in A_n = \left[-\frac{n+1}{n}; \frac{n+1}{n} \right]$ ekanligi ko'rinadi.

Endi |a| > 1 tengsizligini qanoatlantiruvchi ixtiyoriy a sonini olamiz. U holda shunday m soni topiladiki $\frac{m+1}{m} = 1 + \frac{1}{m} < |a|$ tengsizligi o'rinli bo'ladi, ya'ni $a \notin A_m$. Demak $a \notin \bigcap_{k=1}^{\infty} A_k$. Natijada $\bigcap_{k=1}^{\infty} A_k = [-1, 1]$ tengligiga ega bo'lamiz.

1.1.13. A, B, C va D uchun

$$(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$$

tengligi o'rinli bo'lishini ko'rsating.

 $Yechimi. \ \forall z = (x,y) \in (A \times B) \cap (C \times D)$ element olamiz. U holda $z \in A \times B$ va $z \in C \times D$ bo'ladi. Bundan $x \in A, \ x \in C$ hamda $y \in B, \ y \in D$. Demak $x \in A \cap C, \ y \in B \cap D$. Bu munosabatlardan

$$z = (x, y) \in (A \cap C) \times (B \cap D)$$

ekanligi ko'rinadi. Demak

$$(A \times B) \cap (C \times D) \subset (A \cap C) \times (B \cap D).$$

Endi $(A \cap C) \times (B \cap D)$ to'plamdan ixtiyoriy z = (x, y) element olamiz. U holda $x \in A \cap C$, $y \in B \cap D$. Bundan $x \in A$, $x \in C$, $y \in B$, $y \in D$ munosabatlari kelib chiqadi. Bu munosabatlardan esa $z \in B$

 $A\times B$ va $z\in C\times D$ ekanligi kelib chiqadi. U holda $z\in (A\times B)\cap (C\times D).$ Demak

$$(A \cap C) \times (B \cap D) \subset (A \times B) \cap (C \times D)$$
.

1.1.14. A, B va C to'plamlari uchun

$$(A \setminus B) \times C = (A \times C) \setminus (B \times C)$$

tengligini isbotlang.

Yechimi. $(A \setminus B) \times C$ to'plamdan ixtiyoriy z = (x, y) element olamiz. U holda $x \in A \setminus B$, $y \in C$. Bundan $x \in A$, $x \notin B$, $y \in C$. Bu esa $z \in A \times C$, $z \notin (B \times C)$ ekanligini ko'rsatadi, ya'ni $z \in (A \times C) \setminus (B \times C)$. Endi $z = (x, y) \in (A \times C) \setminus (B \times C)$ bo'lsin. U holda $z \in (A \times C) \setminus (A \times C)$

 $(A \times C)$, $z \notin B \times C$. Bundan esa, $x \in A$, $x \notin B$, $y \in C$. Demak $x \in A \setminus B$, $y \in C$, ya'ni $z \in (A \setminus B) \times C$.

Natijada $(A \setminus B) \times C \subset (A \times C) \setminus (B \times C)$ va $(A \setminus B) \times C \supset (A \times C) \setminus (B \times C)$ munosabatlaridan berilgan tenglik kelib chiqadi.

Mustaqil ish uchun masalalar

- 1. Isbotlang:
- a) $(X \setminus C) \setminus (X \setminus A) \subset A \setminus C;$;
- b) $A \triangle (A \triangle B) = B$.
- 2. Tengliklarni isbotlang:
- $a)(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C);$
- b) $(A \cap B) \setminus C = (A \setminus C) \cap (B \setminus C)$.
- 3. $A \setminus B \subset C$ va $A \subset B \cup C$ munosabatlarining teng kuchli ekanligi isbotlang.
- 4. $A\supset C$ bo'lganda $A\setminus (B\setminus C)=(A\setminus B)\cup C$ tengligining o'rinli bo'lishini ko'rsating.
 - 5. Quyidagi munosabatlarning teng kuchli ekanligini isbotlang:
 - a) $A \subset B$;
 - b) $\mathbf{C}B \subset \mathbf{C}A$;
 - c) $A \cup B = B$.
 - **6.** Tengliklarni isbotlang:
 - a) $\mathbf{C}(A \setminus B) = \mathbf{C}A \cup B;$
 - b) $\mathbf{C}(\mathbf{C}(\mathbf{C}A \cup B) \cup (A \cup \mathbf{C}B)) = B \setminus A;$
 - c) $(A \cap B) \cup (A \cap \mathbf{C}B) \cup (\mathbf{C}A \cap B) = A \cup B;$
 - d) $\mathbf{C}A \cup \mathbf{C}B = \mathbf{C}(A \cap B)$;
 - e) $\mathbf{C}A \cap \mathbf{C}B = \mathbf{C}(A \cup B)$.
- 7. Ixtiyoriy E, F, G to'plamlar uchun quyidagi tengliklarning o'rinli ekanligini isbotlang:

- a) $E \times (F \cup G) = (E \times F) \cup (E \times G);$
- b) $(F \cup G) \times E = (F \times E) \cup (G \times E)$;
- c) $E \times (F \cap G) = (E \times F) \cap (E \times G);$
- d) $(F \cap G) \times E = (F \times E) \cap (G \times E)$.

2.1. Akslantirishlar. O'zaro bir qiymatli moslik

X va Y ixtiyoriy to'plamlar bo'lsin. Agar ma'lum bir qoida bo'yicha X to'plamning har bir elementiga Y to'plamning faqat bir elementi mos qo'yilgan bo'lsa, u holda bu moslikka X to'plamda aniqlanib, qiymatlari Y to'plamiga tegishli bo'lgan akslantirish deyiladi va u $f: X \to Y$ ko'rinishda yoziladi.

Misollar. 1. Har bir haqiqiy songa oʻzining kvadratini mos qoʻysak, bu moslik akslantirish boʻladi. Sababi, ixtiyoriy haqiqiy sonning kvadrati faqat bitta boʻladi.

- 2. $(0, +\infty)$ to'plamga tegishli har bir haqiqiy songa uining logarifmini mos qo'ysak, bu moslik akslantirish bo'ladi.
- ${\bf 3.}~~C[a,b]$ orqali[a,b]segmentdagi barcha uzluksiz funksiyalar to'plamini belgilasak, u holda

$$f(x) \to \int_{a}^{b} f(x)dx$$

moslik C[a,b] ni \mathbb{R} ga o'tkazuvchi akslantirish bo'ladi.

 $f:X\to Y$ akslantirishda x element
ga mos keluvchi y elementi f(x) ko'rinishida belgilanadi va y element
i x elementning obrazi deb ataladi. Obrazi y bo'ladiga
n x to'plamning barcha elementlari to'plamiga y elementning
proobrazi deyiladi va u $f^{-1}(y)$ ko'rinishida belgilanadi, ya'ni

$$f^{-1}(y) = \{x \in X : f(x) = y\}.$$

 $A \subset X$ to'plamning biror qism to'plami bo'lsin. f(a) ko'rinishidagi (bu erda $a \in A$) barcha elementlardan iborat $\{f(a): a \in A\}$ to'plami A to'plamning obrazi deb ataladi va f(A) ko'rinishida belgilanadi:

$$f(A) = \{ f(a) : a \in A \}.$$

 $B\subset Y$ to'plamning ba'zi qism to'plami bo'lsin. X to'plamning obrazi B to'plamga tegishli bo'lgan barcha elementlari $\{a\in X:\ f(a)\in B\}$ to'plamiga B to'plamning proobrazi deyiladi va $f^{-1}(B)$ ko'rinishida belgilanadi.

Agar $f: X \to Y$ akslantirishda f(X) = Y bo'lsa, u holda X to'plami Y to'plamning ustiga akslanadi deyiladi. Shu bilan birga bu akslantirishni syureksiya deb ham ataymiz. Umumiy holda, ya'ni $f(X) \subset Y$ bo'lganda, f funksiyasi X ni Y ning ichiqa akslantiradi deyiladi.

Misollar. 4. $y = x^2$ funksiyasi \mathbb{R} ni \mathbb{R}_+ to'plamning ustiga akslantiradi.

- **5.** y = 2x funksiya [0, 1] segmentni [0, 2] segmentning ustiga akslantiradi.
- **6.** Tekislikdagi barcha vektorlar to'plamini G bilan belgilab, har bir vektorga o'zining modulini mos qo'yaylik. Bu moslik G to'plamni \mathbb{R} to'plamning ichiga akslantiradi.
- $f: X \to Y$ akslantirishda o'zaro teng bo'lmagan ixtiyoriy $x_1, x_2 \in X$ elementlar uchun $f(x_1) \neq f(x_2)$ bo'lsa, u holda f ineksiya deb ataladi.

Misollar. 7. $y = x^3$ funksiya \mathbb{R} ni \mathbb{R} ga o'tkazuvchi ineksiya bo'ladi.

8. $y = x^2$ funksiyasi ineksiya bo'la olmaydi. Sababi $-2 \neq 2$, lekin ularning obrazlari teng, ya'ni f(-2) = f(2) tengligi o'rinli bo'ladi.

Bir vaqtning o'zida syureksiya va ineksiya bo'lgan $f: X \to Y$ akslantirish bieksiya, yoki X va Y to'plamlar orasida o'zaro bir qiymatli moslik deb ataladi.

- **Misollar. 9.** Har bir natural n soniga 2n-1 sonini mos qo'ysak, u holda u barcha natural sonlar va barcha toq natural sonlar to'plamlari orasidagi o'zaro bir qiymatli moslik bo'ladi.
- 10. $y = \text{ctg}\pi x$ funksiya (0,1) interval va \mathbb{R} orasida o'zaro bir qiymatli moslik o'rnatadi.

Masalalar

1.2.1. Ikki to'plam birlashmasining proobrazi shu to'plamlar proobrazlarining birlashmasiga teng ekanligini isbotlang:

$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B).$$

Yechimi. Aytaylik x element $f^{-1}(A \cup B)$ to'plamiga tegishli bo'lsin. U holda $f(x) \in A \cup B$. Bundan $f(x) \in A$ yoki $f(x) \in B$ munosabatlarning kamida bittasi o'rinlidir, ya'ni $x \in f^{-1}(A)$ yoki $x \in f^{-1}(B)$. U holda $x \in f^{-1}(A) \cup f^{-1}(B)$. Natijada, $f^{-1}(A \cup B) \subset f^{-1}(A) \cup f^{-1}(B)$ munosabatning o'rinli bo'lishi ko'rinadi.

Aksincha, $x \in f^{-1}(A) \cup f^{-1}(B)$ ixtiyoriy element bo'lsin. U holda $x \in f^{-1}(A)$ yoki $x \in f^{-1}(B)$ munosabatlarning kamida bittasi o'rinlidir, ya'ni $f(x) \in A$ yoki $f(x) \in B$. Natijada $f(x) \in A \cup B$. U holda $x \in f^{-1}(A \cup B)$. Shuning uchun $f^{-1}(A \cup B) \supset f^{-1}(A) \cup f^{-1}(B)$. Natijada berilgan tenglikning o'rinli ekanligi kelib chiqadi.

1.2.2. Ikki to'plam kesishmasining proobrazi shu to'plamlar proobrazlarining kesishmasiga teng ekanligini isbotlang.

$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B).$$

Yechimi. x element $f^{-1}(A \cap B)$ to'plamning ixtiyoriy elementi bo'lsin. U holda $f(x) \in A \cap B$. Bundan $f(x) \in A$ va $f(x) \in B$ munosabatlarning o'rinli ekanligi kelib chiqadi. Bu munosabatlardan esa $x \in f^{-1}(A)$ va $x \in f^{-1}(B)$ munosabatlarning o'rinli bo'lishi ko'rinadi. Natijada $x \in f^{-1}(A) \cap f^{-1}(B)$. U holda

$$f^{-1}(A \cap B) \subset f^{-1}(A) \cap f^{-1}(B).$$

Aksincha, $x \in f^{-1}(A) \cap f^{-1}(B)$ ixtiyoriy element bo'lsin. U holda $f(x) \in A$ va $f(x) \in B$. Bundan $f(x) \in A \cap B$ ekanligi ko'rinadi. Natijada $x \in f^{-1}(A \cap B)$. Demak

$$f^{-1}(A \cap B) \supset f^{-1}(A) \cap f^{-1}(B).$$

1.2.3. Ikki to'plam birlashmasining obrazi shu to'plamlar obrazlarining birlashmasiga tengligini isbotlang:

$$f(A \cup B) = f(A) \cup (B).$$

Yechimi. $y \in f(A \cup B)$ ixtiyoriy element bo'lsin. U holda $A \cup B$ to'plamda y = f(x) tenglikni qanoatlantiruvchi x element mavjud. Bu x element A yoki B to'plamning birortasiga tegishli bo'lgani uchun $y \in f(A) \cup f(B)$. Shuning uchun

$$f(A \cup B) \subset f(A) \cup f(B)$$
.

Aksincha, $f(A) \cup f(B)$ to'plamga tegishli ixtiyoriy y element olaylik. U holda $A \cup B$ to'plamda y = f(x) tenglikni qanoatlantiradigan x element mavjud bo'ladi. Budan $y \in A \cup B$ ekanligi kelib chiqadi. Shuning uchun

$$f(A \cup B) \supset f(A) \cup f(B)$$
.

1.2.4. Agar $f: \mathbb{R} \to \mathbb{R}$ funksiya

$$f(x) = 3\sin x + 4\cos x$$

formula bilan aniqlansa, u holda $f([0, 2\pi])$ ni toping.

Yechimi. Bu funksiyaning $[0,2\pi]$ dagi eng kichik va eng katta qiymatlari:

$$\min_{0 \le x \le \pi} f(x) = -5, \ \max_{0 \le x \le \pi} f(x) = 5.$$

f uzluksiz bo'lganlikdan, oqaliq qiymat haqidagi Bolsano – Veyershtrass teoremasidan, bu funksiya [-5; 5] oraliqdagi barcha qiymatlarni qabul etadi. Demak, $f([0, 2\pi]) = [-5; 5]$.

1.2.5. Agar $f: \mathbb{R} \to \mathbb{R}$ funksiya

$$f(x) = x^3 + 3x$$

formula bilan aniqlansa, u holda $f^{-1}([0,4])$ ni toping.

Yechimi. Funksiyaning hosilasi $f'(x) = 3x^2 + 3 > 0$ bo'lganlikdan, bu funksiya monoton o'suvchidir. Demak,

$$f(0) = 0, \ f(1) = 4$$

tengliklardan, f uzluksizligi va oraliq qiymat haqidagi Bolsano – Veyershtrass teoremasidan, bu funksiya [0;1] oraliqni [0,4] oraliqqa o'zaro bir qiymatli akslantiradi. Bundan, f funksiya [0,4] dagi barcha qiymatlarni qabul etadi. Demak, $f^{-1}([0,4]) = [0;1]$.

1.2.6. Natural sonlar va barcha musbat juft sonlar to'plamlari orasida o'zaro bir qiymatli moslik o'rnating.

Yechimi. Har bir n natural songa 2n juft sonini mos qo'yamiz. Bu moslik berilgan to'plamlar orasida o'zaro bir qiymatli bo'ladi.

1.2.7. Natural sonlar va barcha nomanfiy ratsional sonlar to'plamlari orasida o'zaro bir qiymatli moslik o'rnating.

Yechimi. Nomanfiy ratsional sonlar to'plamini \mathbb{Q}^+ orqali belgilab, har bir $r \in \mathbb{Q}^+$ sonni qisqarmas kasr ko'rinishida yozib olamiz va bu kasrning surati bilan maxrajining yig'indisini r ning balandligi deb ataymiz. Balandligi berilgan songa teng bo'lgan nomanfiy ratsional sonlar cheklidir. Endi barcha nomanfiy ratsional sonlarni balandliklarining o'sish tartibi bilan yozamiz:

$$0, 1, \frac{1}{2}, 2, \frac{1}{3}, 3, \frac{1}{4}, \frac{2}{3}, \frac{3}{2}, 4, \frac{1}{5}, 5, \frac{1}{6}, \frac{2}{5}, \frac{3}{4}, \dots$$
 (1.1)

Har bir $r \in \mathbb{Q}^+$ ratsional songa (1.1) ketma-ketlikda turgan nomerini mos qo'yamiz. Bu moslik \mathbb{Q}^+ va barcha natural sonlar to'plamlari orasida o'zaro bir qiymatli bo'ladi.

1.2.8. [0,1] segmentni [a,b] segmentiga akslantiruvchi o'zaro bir qiymatli moslikni toping.

 $Yechimi.\ y=(b-a)t+a$ funksiya [0,1]segmentni [a,b]segmentga o'zaro bir qiymatli akslantiradi. \blacksquare

1.2.9. Berilgan to'plamlar orasida o'zaro bir qiymatli f moslikni toping:

a)
$$f:(0;1) \to \mathbb{R};$$

- **b)** $f:[0;1] \to (0;1);$
- *c*) $f:[0;1] \to \mathbb{R}$.

Yechimi. a) $y=\mathrm{ctg}\pi x$ funksiya (0,1) intervalni $\mathbb R$ ga o'zaro bir qiymatli akslantiradi;

- b) Barcha hadlari (0,1) intervalda joylashgan $\{x_n : x_n = \frac{1}{n+1}\}$ ketma-ketlikni olib, segmentning 0 nuqtasiga intervalning x_1 nuqtasini; $1 \in [0,1]$ nuqtaga $x_2 \in (0,1)$ nuqtani; $x_1 \in [0,1]$ nuqtaga $x_3 \in (0,1)$ nuqtani; $x_2 \in [0,1]$ nuqtaga $x_4 \in (0,1)$ nuqtani; umuman $x_n \in [0,1]$ nuqtaga $x_{n+2} \in (0,1)$ nuqtani mos qo'yib, boshqa $x \in [0,1]$ nuqtalarga shu nuqtaning o'zini mos qo'yamiz. Bu moslik bieksiya bo'ladi.
- c) Biz yuqorida o'zaro bir qiymatli $f:[0;1] \to (0;1)$ va $g:(0;1) \to \mathbb{R}$ mosliklarning mavjudligini ko'rsatdik. U holda $g \circ f:[0,1] \to \mathbb{R}$ o'zaro bir qiymatli moslik bo'ladi.
- 1.2.10. Tekislikda $x^2+(y-1)^2 \leq 1$ hamda y < 1 tengsizliklarni qanoatlantiruvchi barcha nuqtalar to'plamini A orqali belgilaymiz. Barcha haqiqiy sonlar to'plami $\mathbb R$ hamda A orasida o'zaro bir qiymatli moslik o'rnating.

Yechimi. Bu ikki toʻplam orasida oʻzaro bir qiymatli moslikni geometrik yoʻl bilan oʻrnatamiz. Ravshanki A toʻplami markazi (0; 1) nuqtada radiusu r=1 boʻlgan aylananing y=1 chiziqdan pastda joylashgan qismi. $\mathbb R$ toʻplami sifatida absitsa oʻqini olamiz. Aylana markazidan absitsa oqidagi b nuqtaga kesma oʻtkazsak yarim aylanani biror c nuqtada kesib oʻtadi. Bu c nuqtanib nuqtaga mos qoʻyamiz. Aylana markazini absitsa oqining har bir nuqtasi bilab tutashtirib, kesmaning absitsadagi uchiga aylananing kesma kesib oʻtgan nuqtasini mos qoʻyamiz. Natijada bu moslik oʻzaro bir qiymatli moslik boʻladi.

1.2.11. [0;3] va $[0;1) \cup [2;3]$ to'plamlari orasida o'zaro bir qiymatli moslik o'rnating.

Yechimi. [0; 3] to'plamning [0; 1) qism to'plamining h'ar bir elementini o'ziga mos qo'yamiz. [1; 3] to'plamdan olingan har bir x elementini $\frac{x}{2} + 1$, 5 elementga mos qo'yamiz. Natijada

$$y(x) = \begin{cases} x, & \text{agar } x \in [0; 1), \\ \frac{x}{2} + 1, 5, & \text{agar } x \in [1; 3] \end{cases}$$

ko'rinishidagi funksiya orqali [0;3] va $[0;1) \cup [2;3]$ to'plamlar orasida o'zaro bir qiymatli moslikka ega bo'lamiz.

1.2.12 [0;5] va $[0;1) \cup [2;3] \cup (4;5]$ to 'plamlari orasida o'zaro bir qiymatli moslik o'rnating.

Yechimi. Quyidagi funksiyani qaraylik:

$$y(x) = \begin{cases} 2x, & \text{agar } x \in [0, 1), \\ x, & \text{agar } x \in [2, 3], \\ 2x - 5, & \text{agar } x \in [4, 5]. \end{cases}$$

Bu funksiya orqali [0;1) ni [0;2) ga, [2;3] ni o'ziga, (4;5] ni esa (3;5] ga o'zaro bir qiymatli akslantiradi. Demak, [0;5] va $[0;1) \cup [2;3] \cup (4;5]$ to'plamlar orasida o'zaro bir qiymatli moslikka ega bo'lamiz.

$1.2.13. \ Tekislikda$

$$A = \{(x, y) : 0 < x^2 + y^2 < 1\}$$

va

$$B = \{(x, y) : x^2 + y^2 > 1\}$$

to'plamlari orasida o'zaro bir qiymatli moslik o'rnating.

Yechimi. Quyidagi akslantirishni qaraylik:

$$(x,y) \in A \mapsto \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}\right) \in B.$$

Bu akslantirish A va B to'plamlar orasida o'zaro bir qiymatli moslik o'rnatadi. Bu akslantirish inversiya deb ataladi.

$1.2.14. \; Tekislikda$

$$\Pi = \{(x, y) : 0 < x < 1, 0 < y < 1\}$$

 $ochiq\ to$ 'r $tburchak\ va\ \mathbb{R}^2\ tekislik\ orasida\ o$ 'zaro $bir\ qiymatli$ $akslantirish\ o$ 'rnating.

Yechimi. 1.2.9 b) - misolga ko'ra $y=\operatorname{ctg} x$ funksiya (0,1) va $\mathbb R$ orasida o'zaro bir qiymatli akslantirishdir. Bundan

$$(x,y) \in \Pi \mapsto (\operatorname{ctg} x, \operatorname{ctg} y) \in \mathbb{R}^2$$

akslantirish Π ochiq to'rtburchak va \mathbb{R}^2 tekislik orasida o'zaro bir qiymatli akslantirishdir.

Mustaqil ish uchun masalalar

1. Tengliklarni isbotlang:

a)
$$f^{-1}(\bigcup A_{\alpha}) = \bigcup f^{-1}(A_{\alpha}).$$

b)
$$f^{-1}(\bigcap_{\alpha} A_{\alpha}) = \bigcap_{\alpha} f^{-1}(A_{\alpha}).$$

c)
$$f\left(\bigcup_{\alpha}^{\alpha} A_{\alpha}\right) = \bigcup_{\alpha}^{\alpha} f\left(A_{\alpha}\right).$$

- 2. Ikki to'plam kesishmasining obrazi shu to'plamlar obrazlarining kesishmasiga hamma vaqt teng bo'ladimi?
 - 3. $f(\mathbf{C}A) = \mathbf{C}f(A)$ tengligi hamma vaqt o'rinli bo'ladimi?
- 4. Guruhdagi studentlar to'plamini A bilan, ular ta'lim olayotgan auditoriyadagi stullar to'plamini B bilan belgilaylik. Har studentga o'zining o'tirgan stulini mos qo'yayliq. Bu moslik qanday hollarda
 - a) akslantirish; b) syureksiya; c) ineksiya; d) bieksiya bo'ladi?
- **5.** Chekli A va B to'plamlar orasida qanday hollarda o'zaro bir qiymatli moslik o'rnatish mumkin?
- **6.** Barcha natural sonlar to'plami \mathbb{N} va barcha toq sonlar to'plami \mathbb{T} orasida o'zaro bir qiymatli moslik o'rnating.
- 7. Barcha natural sonlar to'plami \mathbb{N} va barcha ratsional sonlar to'plami \mathbb{Q} orasida o'zaro bir qiymatli moslik o'rnating.
- **8.** Aylana va to'g'ri chiziq orasida o'zaro bir qiymatli moslik o'rnating.
- $\mathbf{9.}$ \mathbb{R}^3 fazosidagi bir nuqtasi olib tashlangan sfera bilan tekislik orasida o'zaro bir qiymatli moslik o'rnating.
- 10. Tekislikdagi ikki koordinatasi ham ratsional sonlar bo'lgan barcha nuqtalar to'plami bilan $\mathbb Q$ orasidagi bieksiyani toping.
- **11.** [a, b] segmentni \mathbb{R} ga o'zaro bir qiymatli akslantiruvchi funksiya mavjudmi?
- 12. $(-\infty, 0] \cup [1, +\infty)$ va (0, 1) to'plamlar orasida o'zaro bir qiymatli moslik o'rnating.
 - 13. Tekislikda

$$\left\{ (x,y) : -\frac{\pi}{2} < x < \frac{\pi}{2}, -\frac{\pi}{2} < y < \frac{\pi}{2} \right\}$$

ochiq to'r
tburchak va \mathbb{R}^2 tekislik orasida o'zaro bir qiymatli akslantirish o'r
nating.

1.3. Ekvivalent va sanoqli to'plamlar. To'plamning quvvati tushunchasi

Ta'rif. Agar ikki to'plam orasida o'zaro bir qiymatli moslik o'rnatish mumkin bo'lsa, u holda bu to'plamlar ekvivalent deb ataladi. A va B to'plamlarining ekvivalentligi $A \sim B$ kabi belgilanadi.

Agar ikkita chekli to'plam ekvivalent bo'lsa, u holda ularning elementlari soni teng bo'ladi. Cheksiz to'plamlar haqida bunday deb ayta olmaymiz. Sababi cheksiz to'plamning elementlari soni haqida tushuncha berish mumkin emas. Ixtiyoriy tabiatli ikki to'plam ekvivalent bo'lsa, u holda bu to'plamlarning quvvati teng deyiladi. Shunday

qilib, quvvat – chekli to'plamlarning elementlari soni tushunchasining cheksiz to'plamlar uchun umumlashtirilishi ekan.

A to'plamning quvvatini m(A) ko'rinishida belgilaymiz. Demak A va B to'plamlar ekvivalent bo'lsa, u holda m(A) = m(B) bo'ladi. Agar bu to'plamlar ekvivalent bo'lmasa, u holda $m(A) \neq m(B)$.

Agar B to'plami A to'plamining biror qism to'plamiga ekvivalent bo'lsa, u holda B to'plamining quvvati A to'plamining quvvatidan katta emas deyiladi va bu $m(B) \leq m(A)$ yoki $m(A) \geq m(B)$ ko'rinishlarda belgilanadi.

Agar A va B to'plamlari ekvivalent bo'lmasdan, A to'plam B to'plamning qandaydir bir qism to'plamiga ekvivalent bo'lsa, u holda B to'plam A to'plamga nisbatan quvvatliroq deyiladi va u m(B) > m(A) yoki m(A) < m(B) ko'rinishlarda belgilanadi.

Misollar. 1. $\mathbb{N} \sim \mathbb{Q}$ bo'lgani uchun $m(\mathbb{N}) = m(\mathbb{Q})$. $m(\mathbb{N})$ odatta \aleph_0 ko'rinishda belgilanadi.

2. $\mathbb{Q} \subset \mathbb{R}$. Shuning uchun $m(\mathbb{Q}) \leq m(\mathbb{R})$.

Ta'rif. Barcha natural sonlar to'plamiga ekvivalent bo'lgan to'plam sanoqli to'plam deb ataladi.

Misol uchun barcha butun sonlar to'plami, barcha toq sonlar to'plami sanoqli bo'ladi.

Sanoqli bo'lmagan cheksiz to'plam sanoqsiz to'plam deyiladi.

[0,1] segmentiga ekvivalent bo'lgan to'plam kontinuum quvvatga ega deyiladi. Kontinuum quvvatni c ko'rinishida belgilaymiz. Quvvati kontinuum quvvatdan ham katta to'plamning mavjudligini quyidagi teorema yordamida ko'rsatish mumkin.

Teorema. Biror M to'plamning barcha qism to'plamlari sistemasini 2^M ko'rinishda belgilasak, u holda $m(2^M) > m(M)$ munosabati o'rinli bo'ladi.

Agar M to'plam chekli bo'lib, uning quvvati n ga teng bo'lsa, u holda 2^M ning quvvati 2^n ga teng bo'lishini ko'rish qiyin emas. Shuni hisobga olib m quvvatli ixtiyoriy M to'plam uchun 2^M ning quvvatini 2^m ko'rinishda belgilaymiz.

Quvvati 2^c bo'lgan to'plam *giperkontinuum* quvvatga ega to'plam deb ataladi. Misol uchun [0,1] segmentning barcha qism to'plamlari to'plami giperkontinuum quvvatga ega.

Masalalar

1.3.1. (0,1) intervali bilan \mathbb{R} to 'plami ekvivalent ekanligini ko 'rsating.

Yechimi. Bu to'plamlar orasida o'zaro bir qiymatli moslikni $y = \frac{1}{\pi} arctgx + \frac{1}{2}$ funksiyasi yordamida o'rnatish mumkin.

1.3.2. Sanoqli to'plamlarning sanoqli sondagi birlashmasi sanoqli to'plam bo'lishini isbotlang.

Yechimi. $A_1,\ A_2,\ \ldots,A_n,\ldots$ sanoqli to'plamlar berilgan bo'lsin. $A=\bigcup_{k=1}^\infty A_k$ to'plamning sanoqli ekanligini ko'rsatishimiz kerak. Soddalik uchun $A_i\cap A_j=\emptyset,\ i\neq j$ deb olaylik. Sababi, bu shart o'rinlanmagan holda $A_1,\ A_2,\ldots,A_n,\ldots$ to'plamlar o'rniga

$$B_1 = A_1, \ B_2 = A_2 \setminus A_1, \ \dots, \ B_n = A_n \setminus (\bigcup_{k=1}^{n-1} A_k), \dots$$

to'plamlarni qaraymiz. $B_i \cap B_j = \emptyset$, $i \neq j$ va $\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} B_n$ ekanligi ko'rinadi.

 A_k to'plamlar sanoqli bo'lgani uchun ularning elementlarini nomerlab chiqamiz:

$$A_1: a_{11}, a_{12}, \dots, a_{1n}, \dots$$

 $A_2: a_{21}, a_{21}, \dots, a_{2n}, \dots$
 $A_k: a_{k1}, a_{k1}, \dots, a_{kn}, \dots$

 a_{kn} elementlari bilan tekislikning koordinatalari (k,n) bo'lgan nuqtalari orasidagi o'zaro bir qiymatli moslik o'rnatamiz: $a_{kn} \leftrightarrow (k,n)$. a_{kn} elementlarni tekislikda sxematik ravishda chizmadagiday qilib ko'rsatish mumkin (5-rasm). A_k ning elementlariga I-chorakning absitsasi k (k = 1, 2, ...) ga, ordinatalari 1, 2, ... bo'lgan nuqtalar mos keladi.

Jadvaldagi elementlarni: a_{11} ni 1-element, a_{12} ni 2-element, a_{21} ni 3-element va h.k. chizmada ko'rsatilganday qilib nomerlab chiqish mumkin. Shunday qilib, A ning har bir elementi malum bir nomerga ega bo'ladi.

1.3.3. Butun sonlar to'plami \mathbb{Z} , ratsional sonlar to'plami \mathbb{Q} sanoqli to'plamlar ekanligini ko'sating.

Yechimi. $\mathbb{Z} = \mathbb{Z}_+ \cup \mathbb{Z}_-$ deylik, bunda $\mathbb{Z}_+ = \{m : m \in \mathbb{Z}, m \geq 0\}$ va $\mathbb{Z}_- = \{m : m \in \mathbb{Z}, m \leq 0\}$. \mathbb{Z}_+ va \mathbb{Z}_- to'plamlar har biri natural sonlar to'plamiga ekvivalentligidan, ular sanoqli bo'ladi. 1.3.2 - misoldan ikkita sanoqli to'plamlar birlashmasi bo'lgan \mathbb{Z} to'plami ham sanoqlidir.

Har bir $n \in \mathbb{N}$ uchun

$$\mathbb{Q}_n = \left\{ \frac{m}{n} : m \in \mathbb{Z} \right\}$$

bo'lsin. Har bir \mathbb{Q}_n to'plam sanoqli bo'lgan \mathbb{Z} to'plamiga ekvivalent. 1.3.2 - misoldan sanoqli to'plamlar birlashmasi bo'lgan \mathbb{Q} to'plami ham sanoqlidir.

1.3.4. Barcha irratsional sonlar to'plami \mathbb{I} bilan barcha haqiqiy sonlar to'plami \mathbb{R} ekvivalent ekanligini ko'rsating.

Yechimi. Bu to'plamlar orasida o'zaro bir qiymatli moslikni quyidagicha o'rnatishga bo'ladi. $n\sqrt{2}, n \in \mathbb{N}$ ko'rinishidagi sonlar to'plamini L orqali, \mathbb{I} ning $n\sqrt{2}$ ko'rinishida ifodalash mumkin bo'lmagan barcha elementlari to'plamini C orqali belgilaylik. U holda

$$\mathbb{I} = C \cup L, \ \mathbb{R} = C \cup (L \cup \mathbb{Q}).$$

- 1.3.3 misolga asosan, \mathbb{Q} sanoqli to'plam. L sanoqli ekanligidan, 1.3.2 misoldan $L \cup \mathbb{Q}$ ham sanoqlidir. Demak, L va $L \cup \mathbb{Q}$ to'plamlar orasida o'zaro bir qiymatli akslantirish mavjud. C to'plamning har bir elementiga esa shu elementning o'zini mos qo'yamiz. Natijada \mathbb{I} va \mathbb{R} orasida o'zaro bir qiymatli moslik o'rnatiladi.
- 1.3.5. Chekli sondagi sanoqli to'plamlarning Dekart ko'paytmasi sanoqlidir.

Yechimi. Ko'paytuvchilar soni ikkita bo'lgan holni qarash etarlidir.

$$A = \{a_1, ..., a_n, ...\}$$

va

$$B = \{b_1, ..., b_n, ...\}$$

sanoqli to'plamar bo'lsin.

$$A \times B = \{(a_i, b_j) : a_i \in A, b_j \in B\}$$

ning sanoqli ekanini ko'satamiz. Har bir $n \in \mathbb{N}$ uchun

$$D_n = \{ \{ (a_n, b_j) : b_j \in B \}$$

to'plamlarni qaraylik. $D_n \sim B$ bo'lganlikdan, har bir D_n sanoqli to'plam. $A \times B = \bigcup_{n=1}^{\infty} D_n$ ekanligi va 1.3.2 - misoldan $A \times B$ to'plam ham sanoqli bo'ladi.

1.3.6. Koeffitsientlari ratsional sonlar bo'lgan barcha ko'phadlar to'plami P[X] ning sanoqli ekanligini ko'rsating.

Yechimi. Koeffitsientlari ratsional sonlar bo'lib, darajasi n ga teng barcha ko'phadlar to'plamini $P_n[X]$ orqali belgilaylik, bunda $n \in \mathbb{N} \cup \{0\}$. $P[X] = \bigcup_{n\geq 0} P_n[X]$ bo'lganlikdan har bir $P_n[X]$ to'plamning sanoqli ekanini ko'rsatish etarli. Buning uchun $P_n[X] \sim \mathbb{Q}^{n+1}$ ni asoslash etarlidir. Bu esa

$$p(t) = a_0 + a_1 t + a_2 t^2 + \dots + a_n t^n \rightarrow (a_0, a_1, a_2, \dots, a_n) \in \mathbb{Q}^{n+1}$$

moslikdan kelib chiqadi.

1.3.7. Ixtiyoriy cheksiz A to'plamning sanoqli to'plamga ekvivalent bo'lgan qism to'plami mavjudligini isbotlang.

Yechimi. A dan olingan biror bir nuqtani a_1 deb belgilaylik. A cheksiz to'plam bo'lganligi uchun $A \setminus \{a_1\}$ bo'sh emas. $A \setminus \{a_1\}$ dan biror element olib, uni a_2 orqali belgilaymiz. $(A \setminus \{a_1\}) \setminus \{a_2\}$ to'plam bo'sh emas, undan olingan elementni a_3 orqali belgilaymiz va h.k. A cheksiz to'plam bo'lgani uchun bu jarayonni cheksiz marta davom ettirish mumkin. Natijada, turli elementlardan iborat sanoqli $\{a_1, a_2, ..., a_n, ...\}$ to'plam hosil bo'ladi.

1.3.8. [0,1] kesmaning sanoqsiz ekanligini ko'rsating.

Yechimi. Faraz qilaylik [0,1] kesma sanoqli bo'lsin. U holda bu to'plam elementlarini nomerlab chiqish mumkin:

$$x_1, x_2, \ldots, x_n, \ldots$$

Bu sonlar 0 bilan 1 orasida joylashgani uchun ularni quyidagicha yozish mumkin:

$$x_1 = 0, a_{11}a_{12}a_{13} \dots a_{1n} \dots$$

 $x_2 = 0, a_{21}a_{22}a_{23} \dots a_{2n} \dots$
 $x_3 = 0, a_{31}a_{32}a_{33} \dots a_{3n} \dots$
 $\dots \dots \dots \dots \dots$
 $x_n = 0, a_{n1}a_{n2}a_{n3} \dots a_{nn} \dots$

bu erda $a_{ik} - x_i$ sonining k-o'nlik raqami. Endi

$$b=0,b_1b_2b_3\ldots b_n\ldots$$

sonini quyidagicha tuzaylik:

$$b_n = \begin{cases} 2, & \text{agar } a_{nn} = 1; \\ 1, & \text{agar } a_{nn} \neq 1. \end{cases} (n = 1, 2, 3, \ldots)$$

Natijada $b_n \neq a_{nn} \ (n=1,2,\ldots)$. U holda $b \in [0,\,1]$ soni

$$x_1, x_2, \ldots, x_n, \ldots$$

sonlarning birortasiga teng emas. Bu esa

$$[0,1] = \{x_1, x_2, \dots, x_n, \dots\}$$

ga ziddir. Hosil bo'lgan ziddiyatdan [0,1] kesmaning sanoqsiz ekanligi kelib chiqadi.

1.3.9. [a, b] segmentda aniqlangan monoton funksiyaning uzulish nuqtalari to'plami chekli yoki sanoqli bo'lishini isbotlang.

Yechimi. [a, b] segmentda monoton o'suvchi f(x) funksiya berilgan bo'lib, x_0 uning berilgan segmentga tegishli ixtiyoriy uzulish nuqtasi bo'lsin. f(x) funksiya $[a, x_0)$ va $(x_0, b]$ yarim intervallarda monoton va chegaralangan bo'lgani uchun

$$f(x-0) = \lim_{x \to x_0-0} f(x)$$
 va $f(x+0) = \lim_{x \to x_0+0} f(x)$

limitlar mavjud. Shuning uchun uzulish nuqtasi f(x) funksiyaning 1-tur uzulish nuqtasi bo'ladi. $f(x_0+0)-f(x_0-0)$ ayirmaga f(x) funksiyaning x_0 nuqtadagi sakrashi deyiladi. Berilgan funksiya monoton o'sivchi bo'lgani uchun har bir uzulish nuqtadagi sakrashi musbat sondan iborat. Berilgan funksiyaning sakrashi biror α sonidan katta bo'lgan uzulish nuqtalari soni chekli $\frac{f(b)-f(a)}{\alpha}$ sonidan katta emas. Haqiqatan, agar berilgan funksiya $\frac{f(b)-f(a)}{\alpha}$ sonidan katta n sondagi uzulish nuqtalarda α dan katta sakrashlarga ega bo'lsa, u holda bu sakrashlarning barchasining yig'indisi f(b)-f(a) ayirmadan katta bo'lardi. Bunday bo'lishi mumkin emas. Funksiyaning sakrashi $\frac{1}{k}$ sonidan katta bo'lgan uzulish nuqtalari to'plamini E_k orqali belgilaylik. Barcha uzulish nuqtalari to'plami E quyidagidan iborat bo'ladi:

$$E = E_1 \cup E_2 \cup \ldots \cup E_k \cup \ldots$$

 E_k to'plamlarning har biri chekli bo'lganlikdan, E to'plami ko'pi bilan sanoqli bo'ladi.

1.3.10. Agar ixtiyoriy $A \subset X$ sanoqli to'plami uchun $|X \setminus A| = |X|$ munosabati o'rinli bo'lsa, u holda X sanoqsiz to'plam ekanligini isbotlang.

Yechimi. Aksinchasini faraz qilaylik; aytaylik Xsanoqli toʻplam boʻlsin, ya'ni

$$X = \{x_1, x_2, ..., x_n,\}.$$

Uning $A = \{x_5, x_6, ..., x_n, ...\}$ sanoqli qismto'plami bo'lsa, u holda $X \setminus A = \{x_1, x_1, x_3, x_4\}$ va $|X \setminus A| = 4$. Natijada $|X \setminus A| \neq |X|$ kelib chiqadi.

1.3.11. Uchlarining koordinatalari ratsional bo'lgan tegislikdagi barcha uchburchaklar to'plamining qu'vvati nimaga teng?

Yechimi. Tegislikdagi har bir uchburchak uchlarining koordinatalari orqali bir qiymatli aniqlanadi. U holda berilgan to'plamning har bir uchburchakiga $M = \mathbb{Q}^2 \times \mathbb{Q}^2 \times \mathbb{Q}^2$ to'plamning elementlari mos keladi va aksincha. Sanoqli to'plamlarning chekli sondagi Dekart ko'paytmasida sanoqli to'plam bo'lganligidan, M sanoqli to'plam bo'ladi. Demak, bunday uchburchaklar to'plami sanoqli bo'ladi.

1.3.12. Agar
$$|A \setminus B| = |B \setminus A|$$
 bo'lsa, u holda $|A| = |B|$.

Yechimi. Teng quvvatli to'plamlar ekvivalent to'plamlar bo'lganligi uchun, agar $A \backslash B \sim B \backslash A$ bo'lsa, u holda $A \sim B$ munosabatini o'rinligini isbotlash etarli. $A = (A \backslash B) \cup (A \cap B)$ va $B = (B \backslash A) \cup (A \cap B)$ tengliklarini qaraylik. Bundan $A \backslash B$, $A \cap B$ va $B \backslash A$, $A \cap B$ to'plamlari umumiy nuqtalarga ega emas. Shart bo'yicha $A \backslash B \sim B \backslash A$ va $A \cap B \sim A \cap B$ bo'lsa, u holda $A \sim B$.

1.3.13. Agar $A \subset B$ va $|A| = |A \cup C|$ bo'lsa, u holda $|B| = |B \cup C|$.

Yechimi. 1.3.12 - misolga o'xshash, agar $A\subset B$ va $A\sim A\cup C$ bo'lsa, u holda $B\sim B\cup C$ munovabatini isbotlaymiz.

Quyidagi munosabatlar o'rinli:

$$B = A \cup (B \setminus A) \tag{1.2}$$

$$B \cup C = (A \cup (C \setminus B)) \cup (B \setminus A) \tag{1.3}$$

(1.2) va (1.3) tengliklarning o'ng tomanlaridagi birlashmadagi to'plamlar umumiy nuqtalarga ega emas. Bundan A va $A \cup (C \setminus B)$ to'plamlari ekvivalent, chunki $A \subset A \cup (C \setminus B) \subset A \cup C$ shart bo'yicha $A \sim A \cup C$. Demak, $A \sim A \cup (C \setminus B)$ va (1.2), (1.3) tengliklarini hisobga olsak, $B \sim B \cup C$ kelib chiqadi.

1.3.14. Chekli sondagi barcha haqiqiy sonlar ketmaketliklari to'plamining quvvati nimaga teng?

Yechimi. Chekli sondagi barcha haqiqiy sonlar ketma-ketliklari to'plami $\bigcup_{n=1}^{\infty} A_n$ bo'lib, bu erda A_n uzunligi n-ga teng bo'lgan ketma-ketliklar to'plami, ya'ni $A_n = \underbrace{\mathbb{R} \times \times \mathbb{R}}_{n}$, bunda \mathbb{R} haqiqiy sonlar to'plami. $\mathbb{R} \sim (0,1]$ dan $A_n \sim (0,1] \times ... \times (0,1]$. Oxirgi to'plam (0,1] ga ekvivalent. Natijada $A_n \sim (n-1,n]$. U holda $\bigcup_{n=1}^{\infty} A_n$ to'plami $(0,1]\cup(1,2]\cup...=(0,+\infty)$ ga ekvivalent. Demak, kontinuum quvvatiga ega ekan.

1.3.15. To'g'ri chiziqda o'zaro kesishmaydigan barcha intervallar to'plamining quvvati nima teng.

Yechimi. To'g'ri chiziqda $\mathscr{F} = \{U_{\alpha} : U_{\alpha} \cap U_{\beta} = \emptyset, \quad \alpha \neq \beta\}$ o'zaro kesishmaydigan intervallar to'plamini qaraymiz. Har bir U_{α} intervalga tegishli x_{α} ratsional sonini bu intervalga mos qo'yamiz. $U_{\alpha} \cap U_{\beta} = \emptyset$ bo'lganlikdan, $\alpha \neq \beta$ da $x_{\alpha} \neq x_{\beta}$ o'rinlidir. Ratsional sonlar to'plami sanoqliligidan, \mathscr{F} ham sanoqli to'plam.

1.3.16. Ixtiyoriy cheksiz A to'plami bilan chekli yoki sanoqli B to'plamining birlashmasi A to'plamiga ekvivalent bo'lishini isbotlang.

Yechimi. Agar A sanoqli bo'lsa, u holda $A \cup B$ to'plam sanoqli bo'lib, A to'plamiga ekvivalent ekanligi kelib chiqadi.

Agar A sanoqsiz bo'lsa, u holda $A \cup B$ to'plami ham sanoqsiz bo'ladi. Sanoqsiz toplam undan chekli yoki sanoqli to'plamni olib tashlashdan paydo bo'lgan qism to'plamiga ekvivalent bo'lishidan $A \cup B$ to'plami $A = (A \cup B) \setminus (B \setminus A)$ to'plamiga ekvivalent ekanligi kelib chiqadi.

1.3.17. Natural sonlarning barcha juftliklari to'plami P sanoqli bo'lishini isbotlang.

Yechimi. (p,q) natural sonlar juftligining balandligi deb p+q sonini aytamiz. Ravshanki balandligi n ga teng bo'lgan natural sonlar juftliklari n-1 ta bo'ladi. P_n orqali balandligi n ga teng juftliklar to'plamini belgilaymiz. $P_n = \{(1, n-1), (2, n-2), ..., (n-1, 1)\}$, hamda $P = \bigcup_{n=2}^{\infty} P_n$ bolishidan P to'plamning sanoqli ekanligi kelib chiqadi.

1.3.18. Agar D sanoqli to'plam bo'lsa, u holda uning elementlaridan tuzilgan barcha chekli ketma-ketliklar to'plami S sanoqli to'plam bo'lishini isbotlang.

Yechimi. n ta natural sondan iborat bo'lgan barcha to'plamlar birlasmasini P_n orqali belgilaymiz. Chekli to'plamlarning sanoqli bir-

lasmasi sanoqli to'plam bo'lishidan P_n to'plamining sanoqli ekanligi ravshan. Bundan esa $S = \bigcup_{n=1}^{\infty} P_n$ to'plamining ham sanoqli ekanligi kelib chiqadi.

1.3.19. \mathbb{R}^n fazoning ratsional kordinatali barcha nuqtalari to'plami \mathbb{Q}^n sanoqli bo'lishini ko'rsating.

Yechimi. \mathbb{Q} sanoqli to'plam bo'lganligidan \mathbb{Q}^n to'plam har bir koordinatasi bo'yicha sanoqli bo'ladi. m-chi koordinatasini a_{mi} ko'rinishda belgilaymiz. U holda

$$\mathbb{Q}^n = \bigcup_{1=1}^{\infty} \bigcup_{2i=1}^{\infty} \bigcup_{3i=1}^{\infty} ... \bigcup_{ni=1}^{\infty} \{(a_{1i}, a_{2i}, ...a_{ni})\}$$

tengligidan \mathbb{Q}^n to'plamining sanoqli ekanligi kelib chiqdi.

1.3.20. Agar M sanoqsiz to'plam va A uning chekli yoki sanoqli qism to'plami bo'lsa, u holda M va $M \setminus A$ to'plamlar o'zaro ekvivalent ekanligini ko'rsating.

Yechimi. $M \setminus A$ to'plam sanoqsiz bo'ladi, aks holda $M = A \cup (M \setminus A)$ tengligidan M to'plami chekli yoki sanoqli bo'lib qoladi. $M \setminus A$ to'plamidan sanoqli A_1 to'plamini olib, qolgan qismini N orqali belgilaymiz. U holda

$$M \setminus A = A_1 \cup N, \quad M = (A \cup A_1) \cup N$$

munosabatlariga egamiz.

Sanoqli A_1 va $A \cup A_1$ to'plamlari orasida bir qiymatli moslik o'rnatamiz, N to'plamining har bir elementini o'ziga mos qo'yamiz. Natijada $M \setminus A$ va M to'plamlari orasida bir qiymatli moslik o'rnatamiz.

Mustaqil ish uchun masalalar

- 1. Isbotlang:
- a) agar $A \subset B$ va $A \sim A \cup C$ bo'lsa, u holda $B \sim B \cup C$;
- b) agar $A\supset C, B\supset D$ va $C\cup B\sim C$ bo'lsa, u holda $A\cup D\sim A.$
- **2.** Chekli A va B to'plamlarning elementlari sonini mos ravishda n(A) va n(B) ko'rinishlarda belgilaylik. Quyidagi tenglikni isbotlang:

$$n(A \cup B) = n(A) + n(B) - n(A \cap B).$$

- 3. Tekislikda uchlarining koordinatalari ratsional sonlardan iborat bo'lgan barcha uchburchaklar to'plamining quvvatini toping.
- 4. Sanoqli to'plamning ixtiyoriy qism to'plami chekli yoki sanoqli bo'lishini ko'rsating.

- 5. Tekislikdagi ratsional koordinatali barcha nuqtalar to'plamining sanoqli ekanligini isbotlang.
- **6.** Tekislikda markazining koordinatalari ratsional sonlar bo'lib, radiusi ham ratsional son bo'lgan barcha aylanalar to'plamining sanoqli ekanligini isbotlang.
 - 7. Ixtiyoriy cheksiz to'plamning sanoqli qism to'plami mavjudmi?
- 8. Musbat sonlarning to'plaminig ba'zi sanoqsiz to'plamini E bilan belgilaylik. $E \cap (\xi, +\infty)$ to'plami sanoqsiz bo'ladigan $\xi > 0$ sonining mavjudligini isbotlang.
- ${f 9.}$ Sonlar o'qida berilgan E to'plamning ixtiyoriy ikki elementi orasidagi oraliq birdan katta bo'lsa, u holda bu to'plamning chekli yoki sanoqli bo'lishini ko'rsating.
- 10. Sanoqli to'plamning barcha chekli qism to'plamlarining to'plami sanoqli ekanligini isbotlang.
- 11. Natural sonlarning qa'tiy o'suvchi barcha ketma-ketliklari to'plamining quvvatini toping.
- 12. Natural sonlarning 10 sonini o'z ichiga olmaydigan barcha ketma-ketliklari to'plamining quvvatini toping.
- 13. Ratsional sonlarning mumkin bo'lgan barcha ketma ketliklari to'plamining quvvatini toping.
- 14. Tekislikda o'zaro kesishmaygan doiralar to'plami berilgan. Shu to'plam sanoqsiz bo'lishi mumkinmi?
- 15. [a, b] segmentda aniqlangan barcha sonli funksiyalar to'plami giperkontinuum quvvatga ega ekanligini isbotlang.
- 16. [a, b] segmentda uzluksiz bo'lgan barcha funksiyalar to'plami kontinuum quvvatli ekanligini isbotlang.
- 17. [a, b] segmentda monoton bo'lgan barcha funksiyalar to'plamining quvvati qanday?

II BOB

O'lchovlar nazariyasi elementlari

2.1. O'lchov tushunchasi

Bo'sh bo'lmagan X to'plam uchun P(X) orqali X to'plamning barcha qism to'plamlari sistemasini belgilaymiz.

Bo'sh bo'lmagan $\mathscr{R} \subset P(X)$ sistema birlashma va ayirma amallariga nisbatan yopiq bo'lsa, yani $A, B \in \mathscr{R}$ ekanligidan $A \cup B \in \mathscr{R}, A \setminus B \in \mathscr{R}$ kelib chiqsa, u holda \mathscr{R} halqa deyiladi.

Agar \mathscr{R} halqa bo'lsa, u holda $A \cap B = A \setminus (A \setminus B)$ tengligidan $A \cap B \in \mathscr{R}$ kelib chiqadi. Bundan tashqari $A \triangle B = (A \cup B) \setminus (A \cap B)$ tengligidan $A \triangle B \in \mathscr{R}$ kelib chiqadi. Demak, \mathscr{R} kesishma va simmetrik ayirma amallariga nisbatan yopiqdir.

Bo'sh bo'lmagan $\mathscr{S} \subset P(X)$ sistemaning har bir $A, B \in \mathscr{S}$ elementlari uchun shunday o'zaro kesishmaydigan $C_1, ..., C_n \in \mathscr{S}$ mavjud bo'lib, $A \setminus B = \bigcup_{i=1}^n C_i$ tengligi bajarilsa u holda \mathscr{S} yarim halqa deyiladi.

Misollar. 1. X ixtiyoriy bo'sh bo'lmagan to'plam bo'lsa, u holda S = P(X) yarim halqa bo'ladi.

- **2.** $S = \{\emptyset, \{a\}, \{b, c\} \{a, b, c\}\}\$ yarim halqa bo'ladi.
- **3.** $S = \{[a,b) : a,b \in \mathbb{R}\}$ yarimintervallar sistemasi yarim halqa bo'ladi.
- 4. $S = \{[a,b) \times [c,d) : a,b,c,d \in \mathbb{R} \}$ to'rtburchaklar sistemasi yarim halqa bo'ladi.

Agar $\mathscr{R} \subset P(X)$ halqa uchun $X \in \mathscr{R}$ bo'lsa, u holda \mathscr{R} algebra deyiladi.

Agar ixtiyoriy $A_1,A_2,...,A_n,... \in \mathscr{R}$ uchun $\bigcup_{n=1}^\infty A_n \in \mathscr{R}$ bo'lsa, u holda $\mathscr{R}-\sigma$ -halqa deyiladi.

Agar ${\mathscr R}$ bir vaqtda algebra va σ -halqa bo'lsa, u holda ${\mathscr R}-\sigma$ -algebra deyiladi.

Yuqoridagi misollardan, 1, 2 misollardagi yarim halqalar σ -algebra bo'lib, 3, 4 misollardagi yarim halqalar σ -algebra bo'lmaydi.

 $\mathscr{S}\subset P(X)$ biror yarim halqa bo'lsin. $\mu:\mathscr{S}\to\mathbb{R}$ nomanfiy funksiyasi ixtiyoriy o'zaro kesishmaydigan $A_1,A_2,...,A_n,...\in\mathscr{S}$, bunda

 $\bigcup_{i=1}^{n} A_i \in \mathcal{S}$, to'plamlar uchun

$$\mu\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} \mu\left(A_i\right)$$

tengligini qanoatlantirsa u holda μ o'lchov deyiladi.

Agar ixtiyoriy o'zaro kesishmaydigan $A_1, A_2, ..., A_n, ... \in \mathcal{S}$, bunda $\bigcup_{i=1}^n A_i \in \mathcal{S}$, to'plamlar uchun

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu\left(A_n\right)$$

tengligi bajarilsa, u holda μ sanoqli-additiv (yoki σ -additiv) deyiladi.

Misollar. 1. $S = \{[a,b): a,b \in \mathbb{R}\}$ yarim intervallar yarim halqasida

$$\mu([a,b)) = b - a$$

sanoqli-additiv o'lchov bo'ladi.

2. $S = \{[a, b) \times [c, d) : a, b, c, d \in \mathbb{R}\}$ yarim halqada

$$\mu([a,b) \times [c,d)) = (b-a)(d-c)$$

sanoqli-additiv o'lchov bo'ladi.

3. X ixtiyoriy bo'sh bo'lmagan to'plam, $x \in X$ va S = P(X) da

$$\mu(A) = \begin{cases} 1, & \text{agar } x \in A; \\ 0, & \text{agar } x \notin A \end{cases}$$

sanoqli-additiv o'lchov bo'ladi.

4. Agar $\mu_1,...,\mu_n$ o'lchovlar, $t_1,...,t_n$ musbat sonlar bo'lsa, u holda $\mu = \sum_{i=1}^n t_i \mu_i \text{ ham o'lchov bo'ladi. Hususan, } x_1,...,x_n \in X \text{ uchun}$

$$\mu(A) = \sum_{x_i \in A} 1$$

o'lchov bo'ladi.

Aytaylik X biror to'plam, $\mathscr{S} \subset P(X)$ yarim halqa, μ esa o'lchov bo'lsin. Har bir $A \in \mathscr{S}$ to'plam uchun $\mu^*(A)$ tashqi o'lchovni

$$\mu^*(A) = \inf\{\sum_k \mu(A_k) : A \subset \bigcup_k A_k, \ A_k \in \mathscr{S}\}$$

kabi aniqlaymiz. Agar $A \in P(X)$ to'plami va $\forall \varepsilon > 0$ uchun shunday $B \in \mathscr{S}$ to'plami topilib, $\mu^*(A \triangle B) < \varepsilon$ bajarilsa, u holda A to'plami Lebeg ma'nosida o'lchovli deyiladi.

Masalalar

2.1.1. X to'plamning ixtiyoriy bo'sh bo'lmagan S qism to'plamlari oilasi uchun, S ni o'z ichiga oluvchi shunday yagona R(S) halqa mavjudki, u S ni o'z ichiga oluvchi ixtiyoriy halqada yotadi.

Yechimi. $R_0 = \bigcap_{\alpha} R_{\alpha}$ kesishmani qaraymiz, bunda $R_{\alpha} - S$ ni o'z ichiga oluvchi X ning qism to'plamlaridan iborat halqa. S ni o'z ichiga oluvchi P(X) halqa bo'ladi, shu sababdan $R_0 \neq \emptyset$.

Endi $A, B \in R_0$ bo'lganligidan $\forall \alpha$ uchun $A, B \in R_\alpha$. Ta'rifga ko'ra $A \cup B \in R_\alpha$ va $A \setminus B \in R_\alpha$ munosabati o'rinli. α ixtiyoriy ekanligidan $A \cup B \in R_0$ va $A \setminus B \in R_0$. Demak, R_0 -halqa bo'ladi.

Har bir α uchun $S \subset R_{\alpha}$ bo'ganligidan, $S \subset R_0$ kelib chiqadi. S ni o'ziga oluvchi X to'plamning qism to'plamlarining ixtiyoriy halqasi biror R_{α} ga tengdir, bundan u R_0 halqani o'z ichiga oladi.

2.1.2. Agar $S \subset P(X)$ yarim halqa bo'lsa, u holda R(S) minimal halqa shunday A to'plamlardan iborat bo'ladiki, bunda

$$A = \bigcup_{i=1}^{n} A_i, \quad A_i \in S, \quad A_i \cap A_j = \emptyset,$$

 $i \neq j, i, j = 1, 2, ..., n, n \in \mathbb{N}.$

 $Yechimi.\ L$ orqali X ning shunday qism to'plamlarini belgilaymizki, bu qism to'plamlar S ga tegishli to'plamlarning chekli yoyilmasiga ega bo'lsin. L ni o'z ichiga oluvchi har bir halqa chekli birlashmalarga nisbatan yopiqdir. Tasdiqni isbotlash uchun L halqa ekanligini ko'rsatish etarlidir.

 $A, B \in L$ lar uchun $A \cup B \in L$ va $A \setminus B \in L$ munosabatini ko'rsatish kerak.

Aytaylik

$$A = \bigcup_{i=1}^{n} A_i, \quad B = \bigcup_{i=1}^{m} B_i,$$

bunda $A_i \cap A_j = \emptyset$ va $B_i \cap B_j = \emptyset$, $i \neq j$. Dastlab $A \cup B_1 \in L$ ni isbotlaymiz.

Quyidagi tenglik o'rinlidir:

$$A \cup B_1 = (A \setminus B_1) \cup B_1 = \left(\left(\bigcup_{i=1}^n A_i \right) \setminus B_1 \right) \cup B_1 = \left(\bigcup_{i=1}^n \left(A_i \setminus B_1 \right) \right) \cup B_1.$$

Endi S yarimxalqa bo'lganlikdan, har bir $A_i \setminus B_1$ to'plam S ga tegishli to'plamlarning chekli yoyilmasi egaligidan barcha $A \cup B_1$ yig'indilar

shunday yoyilmaga ega bo'ladi. $A \cup B_1$ ga ketma-ket $B_2, B_3, ..., B_n$ to'plamlarni birlashtirsak, biz har bir qadamda L ning to'plamiga ega bo'lamiz, bundan $A \cup B \in L$ o'rinli. Quyidagini yozamiz:

$$A \setminus B_1 = \left(\bigcup_{i=1}^n A_i\right) \setminus B_1 = \left(\bigcup_{i=1}^n \left(A_i \setminus B_1\right)\right)$$

Bundan $A \setminus B_1 \in L$. Endi

$$A \setminus (B_1 \cup B_2 \cup ... \cup B_n) = (((A \setminus B_1) \setminus B_2) \setminus ... \setminus B_n)$$

dan $A \setminus B \in L$, yani $A \setminus B \in L$.

2.1.3. Agar $B \subset A$ o'lchovli to'plamlar bo'lsa, u holda

$$\mu(A \setminus B) = \mu(A) - \mu(B)$$

$tengligini\ is botlang.$

 $Yechimi.\ B\subset A$ bo'lganligidan, $A=(A\setminus B)\cup B$ bo'lib, $A\setminus B$ va Bto'plamlar o'z-aro kesishmaydi. U holda

$$\mu(A) = \mu((A \setminus B) \cup B) = \mu(A \setminus B) + \mu(B).$$

Bundan

$$\mu(A \setminus B) = \mu(A) - \mu(B)$$

tenglikka ega bo'lamiz.

 $\textbf{2.1.4.} \quad A, B \quad \textbf{o'lchovli} \quad \textbf{to'plamlar.} \quad \textbf{Agar} \quad E, F \quad \textbf{o'lchovli} \\ \textbf{to'plamlar uchun}$

$$A \triangle E = B \triangle F$$
, $\mu(E) = \mu(F) = 0$

bo'lsa, u holda $\mu(A) = \mu(B)$ ekanligini ko'rsating.

Yechimi. $A \triangle E = (A \setminus E) \cup (E \setminus A \text{ va } B \setminus F = (B \setminus F) \cup (F \setminus B)$ ekanligidan,

$$(A \setminus E) \cup (E \setminus A) = (B \setminus F) \cup (F \setminus B)$$

yani

$$\mu\left((A\setminus E)\cup(E\setminus A)\right)=\mu\left((B\setminus F)\cup(F\setminus B)\right)$$

Bundan,

$$\mu(A \setminus E) + \mu(E \setminus A) = \mu(B \setminus F) + \mu(F \setminus B).$$

U holda, $\mu(E) = \mu(F) = 0$ ekanligidan, $\mu(E \setminus A) = \mu(F \setminus B) = 0$. Demak, $\mu(A \setminus E) = \mu(B \setminus F)$.

Endi

$$\mu(A) = \mu((A \setminus E) \cup E) = \mu(A \setminus E) + \mu(E) = \mu(A \setminus E) =$$

$$= \mu(B \setminus F) = \mu(B \setminus F) + \mu(F) = \mu((B \setminus F) \cup F) = \mu(B),$$

yani $\mu(A) = \mu(B)$.

2.1.5. Tenglikni isbotlang:

$$\mu(A) + \mu(B) = \mu(A \cup B) + \mu(A \cap B).$$

Yechimi. A, B to'plamlar o'lchovli bo'lsa $A \cup B, A \cap B, A \setminus (A \cap B), B \setminus (A \cap B)$ to'plamlari ham o'lchovli ekanligi ma'lum va $A \cap B, A \setminus (A \cap B), B \setminus (A \cap B)$ to'plamlar o'zaro kesishmaydi. U holda

$$\mu(A \cup B) = \mu((A \setminus (A \cap B)) \cup (B \setminus (A \cap B)) \cup (A \cap B)) =$$

$$= \mu(A \setminus (A \cap B)) + \mu(B \setminus (A \cap B)) + \mu(A \cap B) =$$

$$= \mu(A) - \mu(A \cap B) + \mu(B) - \mu(A \cap B) + \mu(A \cap B) =$$

$$= \mu(A) + \mu(B) - \mu(A \cap B).$$

Bundan $\mu(A) + \mu(B) = \mu(A \cup B) + \mu(A \cap B)$.

2.1.6. Tenglikni isbotlang:

$$\mu(A \cup B \cup C) = \mu(A) + \mu(B) + \mu(C) -$$
$$-\mu(A \cap B) - \mu(B \cap C) - \mu(C \cap A) + \mu(A \cap B \cap C).$$

Yechimi. 2.1.5-misoldan foydalansak,

$$\mu(A \cup B \cup C) = \mu((A \cup B) \cup C) =$$

$$= \mu(A \cup B) + \mu(C) - \mu((A \cup B) \cap C) =$$

$$= \mu(A) + \mu(B) - \mu(A \cap B) + \mu(C) - \mu((A \cap C) \cup (B \cap C)) =$$

$$= \mu(A) + \mu(B) + \mu(C) - \mu(A \cap B) - \mu((A \cap C) \cup (B \cap C)) =$$

$$= \mu(A) + \mu(B) + \mu(C) - \mu(A \cap B) -$$

$$-[\mu((A \cap C) + \mu(B \cap C) - \mu((A \cap C) \cap (B \cap C)))] =$$

$$= \mu(A) + \mu(B) + \mu(C) -$$

$$-\mu(A \cap B) - \mu(B \cap C) - \mu(C \cap A) + \mu(A \cap B \cap C).$$

2.1.7. Agar

$$A_1 \subseteq A_2 \subseteq \cdots A_n \subseteq \cdots$$

o'chovli to'plamlar va $A=\bigcup\limits_{n=1}^{\infty}A_n$ bo'lsa, u holda $\mu(A)=\lim\limits_{n\to\infty}\mu(A_n)$ ekanligini ko'rsating.

 $\mu(A) = \mu\left(\bigcup_{n=1}^{\infty} A_n\right) =$ $= \mu\left(A_1 \cup (A_2 \setminus A_1) \cup \dots \cup (A_n \setminus A_{n-1}) \cup \dots\right) =$ $= [\mu - \text{sanoqli-additiv}] =$ $= \mu(A_1) + \mu(\cup(A_2 \setminus A_1) + \dots + \mu(A_n \setminus A_{n-1}) + \dots =$ $= \mu(A_1) + \sum_{k=2}^{\infty} (\mu(A_k) - \mu(A_{k-1})) = \lim_{n \to \infty} \mu(A_n).$

2.1.8. Agar

$$A_1 \supseteq A_2 \supseteq \cdots A_n \supseteq \cdots$$

o'chovli to'plamlar va $A=\bigcap\limits_{n=1}^{\infty}A_n$ bo'lsa, u holda $\mu(A)=\lim\limits_{n\to\infty}\mu(A_n)$ ekanligini ko'rsating.

Yechimi. 2.1.7 - misoldan

$$\mu(A_1 \setminus \bigcap_{n=1}^{\infty} A_n) = \mu(\bigcup_{n=1}^{\infty} (A_1 \setminus A_n)) = \lim_{n \to \infty} (\mu(A_1) - \mu(A_n)).$$

Bundan

$$\mu(A_1) - \mu(\bigcap_{n=1}^{\infty} A_n) = \lim_{n \to \infty} (\mu(A_1) - \mu(A_n)),$$

yani $\mu(A) = \lim_{n \to \infty} \mu(A_n)$.

2.1.9. O'nli kasr yozuvida 7 raqami qatnashmagan [0; 1] kesmadagi barcha sonlar to'plamining Lebeg o'lchovini toping.

Yechimi. E o'nli kasr yozuvida 7 raqami qatnashmagan [0; 1] kesmadagi barcha sonlar to'plami bo'lsin.

Bu to'plamni quyidagicha qurish mumkin. Birinchi qadamda [0;1] kesma teng 10 kesmaga bo'linadi va [0,7;0,8) yarimintervali chiqarib tashlanadi, chunki bu oraliqqa tegishli sonlarning o'nli kasr yozuvida verguldan keyingi birinchi raqami 7 ga tengdir.

Ikkinchi qadamda qolgan

$$[0; 0, 1], [0, 1; 0, 2], [0, 2; 0, 3], [0, 3; 0, 4], [0, 4; 0, 5], [0, 5; 0, 6], [0, 6; 0, 7), [0, 8; 0, 9], [0, 9, 1]$$

kesmalar ham teng 10 kesmaga bo'linib, har bir 7-chi kesma chiqarib tashlanadi, yani [0; 0, 1] dan [0, 07; 0, 08], [0, 1; 0, 2] dan [0, 17; 0, 28] va hakozo.

Keyin qolgan barcha kesmalar ham shu tarzda bo'linib, har bir 7-chi kesma chiqarib tashlanadi. Bu jarayon cheksiz davom ettirilsa, qolgan nuqtalar to'plamiE to'plamini beradi.

Endi $[0; 1] \setminus E$ ning o'lchovini hisoblaymiz. Bu to'plam uzunligi $\frac{1}{10}$ bo'lgan bitta [0, 7; 0, 8] kesma, uzunligi $\frac{1}{10^2}$ bo'lgan 9-ta kesma, umuman uzunligi $\frac{1}{10^{k+1}}$ bo'lgan 9^k -ta kesma va hakozo kesmalardan iborat. Bundan

$$\mu\left([0;1] \setminus E\right) = \frac{1}{10} + \frac{9}{10^2} + \frac{9^2}{10^3} + \dots + \frac{9^k}{10^{k+1}} + \dots + = 1$$

Demak, $\mu(E) = 0$.

2.1.10. O'nli kasr yozuvida 1 va 2 raqamlari qatnashmagan [0,1] kesmadagi barcha sonlar to'plamining Lebeg o'lchovini toping.

Yechimi. Bu to'plamni E orqali belgilaymiz hamda quyidagicha quramiz.

Birinchi qadamda [0;1] kesmadan [0,1;0,3) yarim intervalni chiqarib tashlab, qolgan [0,3;1] kesmani qoldiramiz. Chunki [0,1;0,3) oraliqdagi ixtiyoriy sonning o'nli kasr yozuvi 0,1... yoki 0,2... ko'rinishida bo'ladi:

Ikkinchi qadamda har bir [0, 3, 0, 4], [0, 4, 0, 5], ..., [0, 9, 1] kesmalar uchun ham dastlabki $\frac{2}{5}$ qismidan iborat yarim intervallarni olib tashlaymiz.

Shu jarayonni cheksiz davom ettirsak o'lchovlari

$$\frac{2}{5}$$
; $\frac{2 \cdot 3}{25}$; $\frac{2 \cdot 9}{125}$, ..., $\frac{2 \cdot 3^k}{5 \cdot 5^k}$, ...

sonlar ketma-ketligiga mos oraliqlar olib tashlanadi. Bu oraliqlar $[0;1]\setminus E$ dan iborat bo'ladi. U holda

$$\mu([0;1] \setminus E) = \frac{2}{5} + \frac{2}{5} \cdot \frac{3}{5} + \frac{2}{5} \cdot \left(\frac{3}{5}\right)^2 + \dots = 1$$

Demak $\mu(E) = 0$.

2.1.11. \mathbb{R} da ixtiyoriy musbat o'lchovga ega to'plam kontinuum quvvatga egaligini isbotlang.

Yechimi. $A \subset \mathbb{R}$ to'plami uchun $\mu(A) = \varepsilon > 0$ bo'lsin. \mathbb{R} da Lebeg o'lchovi xossasidan shunday $G \subset A$ oshiq to'plam mavjud bo'lib, $\mu(A \setminus G) < \frac{\varepsilon}{2}$.

Bundan

$$\mu(G) = \mu(A) - \mu(A \setminus G) > \varepsilon - \frac{\varepsilon}{2} = \varepsilon,$$

yani G musbat o'lchovga ega. Demak, G bo'sh bo'lmagan ochiq toplam. U holda, shunday $a \neq b$ sonlari topilib, $(a,b) \subset G$, yani $(a,b) \subset A$. Endi (a,b) to'plam kontinuum quvvatga ega ekanligidan, A ham kontinuum quvvatga egaligi kelib chiqadi.

2.1.12. Agar [0; 4] kesmada A va B to 'plamlar uchun $\mu(A) + (B) > 4$ bo 'lsa $\mu(A \cap B) > 0$ ekanligini ko 'rsating.

Yechimi.
$$4 < \mu(A) + (B) = \mu(A \cup B) + \mu(A \cap B)$$
, u holda

$$\mu(A \cap B) > 4 - \mu(A \cup B) \ge 4 - 4 = 0,$$

bundan esa $\mu(A \cap B) > 0$.

2.1.13. Haqiqiy sonlar to'plamidagi A o'lchovli to'plam yordamida aniqlangan

$$f(t) = \mu([a;t] \cap A), \quad t \in [a;b]$$

funksiyasining uzluksiz ekanligini ko'rsating.

Yechimi. Ixtiyoriy $t_0 \in [a;b]$ soni berilgan bo'lsin. Dastlab [a,b] kesmadan ixtiyoriy $t_n \downarrow t_0$ bo'lgan ketma-ketlik olamiz. U holda $A_n = [a;t_n] \cap A$ ichma-ich joylashgan kamayuvchi to'plamlar ketma-ketligini tuzadi, hamda 2.1.8-misoldan foydalansak

$$\lim_{n \to \infty} f(t_n) = \lim_{n \to \infty} \mu([a; t_n] \cap A) =$$

$$= \mu(\bigcap_n ([a; t_n] \cap A)) = \mu([a; t_0] \cap A) = f(t_0)$$

munosabatiga ega bo'lamiz.

Endi [a,b] kesmadan ixtiyoriy $t_n \uparrow t_0$ bo'lgan ketma-ketlik olamiz. U holda

$$A_n = [a; t_n] \cap A$$

ichma-ich joylashgan o'suvchi to'plamlar ketma-ketligi bo'lib o'lchovning uzluksizligidan

$$\lim_{n \to \infty} f(t_n) = \lim_{n \to \infty} \mu([a; t_n] \cap A) =$$

$$= \mu(\bigcap_n ([a; t_n] \cap A)) = \mu([a; t_0] \cap A) = f(t_0)$$

munosabatga ega bo'lamiz. Demak f(t) funksiya uzluksiz.

2.1.14. Haqiqiy sonlar to'plamida chegaralangan o'lchovi 4 ga teng A to'plamining o'lchovi 2 ga teng B qism to'plami mavjud ekanligini ko'rsating.

Yechimi. Aytaylik $A \subset \mathbb{R}$, $\mu(A) = 4$ to'plami berilgan bo'lsin. A to'plami chegaralangan bo'lganligidan shunday [a;b] oraliq mavjud bo'lib, $\mu([a;b] \cap A) = 4$ tengligi o'rinli bo'ladi. Ushbu

$$f(t) = \mu([a; t] \cap A), \quad t \in [a; b]$$

funksiyasini qaraymiz. Bu funksiya uchun

$$f(a) = 0; \ f(b) = 4$$

ekanligi ravshan. Yuqoridagi misolda esa bu funksiyaning uzluksizligi ko'rsatilgan edi. Bulardan oraliq qiymat haqidagi Boltsano-Koshi teoremasiga ko'ra shunday $t_0 \in [a;b]$ topilib

$$f\left(t_0\right) = 2$$

tengligi o'rinli bo'ladi. U holda $B = [a; t_0] \cap A$ deb belgilasak, $B \subset A$ va $\mu(B) = 2$ munosabatlarini qanoatlantiruvchi to'plamga ega bo'lamiz.

2.1.15. \mathbb{R} da Lebeg o'lchovi orqali aniqlangan

$$f(t) = \mu([0, t] \cap A), \ 0 \le t \le 4$$

funksiyani aniqlang va uning grafigini chizing, bu erda $A = [1, 2] \cup [3, 4]$.

Yechimi. Agar $t \in [0, 1)$ bo'lsa, u holda $[0, t] \cap A = \emptyset$. Bundan

$$f(t) = \mu([0, t] \cap A) = \mu(\emptyset) = 0.$$

Agar $t \in [1, 2)$ bo'lsa, u holda $[0, t] \cap A = [1, t]$. Bundan

$$f(t) = \mu([0, t] \cap A) = \mu([1, t]) = t - 1.$$

Agar $t \in [2, 3)$ bo'lsa, u holda $[0, t] \cap A = [1, 2]$. Bundan

$$f(t) = \mu([0, t] \cap A) = \mu([1, 2]) = 1.$$

Agar $t \in [3, 4]$ bo'lsa, u holda $[0, t] \cap A = [1, 2] \cup [3, t]$. Bundan

$$f(t) = \mu([0, t] \cap A) = \mu([1, 2] \cup [3, t]) = t - 2.$$

Demak,

$$f(t) = \begin{cases} 0, & \text{agar } t \in [0, 1); \\ t - 1, & \text{agar } t \in [1, 2); \\ 1, & \text{agar } t \in [2, 3); \\ t - 2, & \text{agar } t \in [3, 4]. \end{cases}$$

6-rasm

2.1.16. \mathbb{R} da kontinuum quvvatga ega va o'lchovi nol bo'lgan to'plamga misol keltiring.

Yechimi. $F_0 = [0,1]$ bo'lsin. Bu to'plamdan $(\frac{1}{3},\frac{2}{3})$ oraliqni chiqarib tashlaymiz va qolgan to'plamni F_1 bilan belgilaymiz. Endi F_1 to'plamdan $(\frac{1}{9},\frac{2}{9})$ va $(\frac{7}{9},\frac{8}{9})$ oraliqlarni chiqarib tashlaymiz va qolgan to'plamni F_2 bilan belgilaymiz. F_2 to'plami 4 ta kesmadan iborat bo'lib, keyingi qadamda har bir kesmadan uzunligi $(\frac{1}{3})^3$ ga teng o'rta oraliqni chiqarib tashlaymiz va qolgan to'plamni F_3 bilan belgilaymiz va h.k.. Bu jarayonni davom ettirib ichma-ich joylashgan F_n yopiq to'plamlar ketma-ketligiga ega bo'lamiz. $D = \bigcap_{n=1}^{\infty} F_n$ deb belgilaymiz.

D to'plamning tuzilishini qaraylik. Bu to'plamga

$$0, 1, \frac{1}{3}, \frac{2}{3}, \frac{1}{9}, \frac{2}{9}, \frac{7}{9}, \frac{8}{9}, \dots$$

nuqtalari tegishlidir. Lekin D to'plamda bu nuqtalardan boshqa nuqtalar ham mavjud. [0,1] kesmadagi sonlarni uchlik sanoq sistemasida yozamiz:

$$x = \frac{a_1}{3} + \frac{a_2}{3^2} + \frac{a_3}{3} + \dots + \frac{a_n}{3^3} \dots, \tag{2.1}$$

bunda $a_n = 0, 1, 2$. O'nli kasrdagidek, bunda ham ba'zi sonlar (2.1) shaklda ikkita usulda yozish mumkin. Masalan,

$$\frac{1}{3} = \frac{1}{3} + \frac{0}{3^2} + \dots + \frac{0}{3^n} \dots = \frac{0}{3} + \frac{2}{3^2} + \frac{2}{3^3} + \dots + \frac{2}{3^n} \dots$$

 $x \in [0,1]$ soni D to'plamga tegishli bo'lishi uchun uning (2.1) ko'rinishdagi biror yozuvida 1 raqami qatnashmasligi zarur va etarlidir.

Demak, har bir $x \in D$ soniga

$$a_1, a_2, ..., a_n, ...,$$
 (2.2)

bunda $a_n = 0, 2$, ketmaketligi mos keladi. Bunday ketma-ketliklar to'plami quvvati kontinuumdir. Buning uchun, (2.2) ko'rinishdagi har bir ketma-ketlikka

$$b_1, b_2, ..., b_n, ...,$$
 (2.3)

ni mos qo'yamiz, bunda $b_n=0$ agar $a_n=0$ da, $b_n=1$ agar $a_n=2$.

Endi (2.3) korinishdagi ketma-ketlikni [0,1] kesmadagi sonning ikkilik yozuvi deb qarasak, u holda (2.3) ko'rinishdagi sonlar to'liq [0,1] ni beradi. Bundan D kontinuum quvvatli to'plam.

D to'plam o'l
chovini topaylik. D to'plam to'ldiruvchisining o'lchovi

$$\frac{1}{3} + \frac{2}{9} + \frac{4}{27} + \dots + \frac{2^{n-1}}{3^n} + \dots = 1.$$

Bundan $\mu(D) = 0$. D to'plami $Kantor\ to'plami\ deyiladi$.

Mustaqil ish uchun masalalar

- 1. O'nli kasr yozuvida kamida bitta 3 raqami qatnashgan [0; 1] kesmadagi barcha sonlar to'plamining Lebeg o'lchovini toping.
- ${f 2.}$ Biror to'g'ri chiziqda yotuvchi tekislikdagi ixtiyoriy yassi A to'plamning yassi o'lchovi nol ekanligini ko'rsating.
- **3.** Haqiqiy sonlar to'plamida chegaralangan o'lchovi 5 ga teng A to'plamining o'lchovi 3 ga teng B qism to'plami mavjud ekanligini ko'rsating.
- 4. Kamida bitta ichki nuqtasi bo'lgan to'plamning o'lchovi nol bo'lishi mumkinmi?
- 5. O'nli kasr yozuvida birorta ham 1 raqami qatnashmagan [0; 1] kesmadagi barcha sonlar to'plamining Lebeg o'lchovini toping.
- **6.** O'nli kasr yozuvida kamida bitta 1 raqami qatnashgan [0; 1] kesmadagi barcha sonlar to'plamining Lebeg o'lchovini toping.
- 7. $E \subset [0,1]$ o'lchovsiz to'plam va A shunday to'plamki, $\mu([0,1] \setminus E) = 0$. $E \cap A$ to'plami ham o'lchovsiz ekanligini ko'rsating.
- 8. O'suvchi chekli o'lchovli A_n to'plamlarning birlashmasining o'lchovi har doim chekli bo'ladimi?
- 9. Haqiqiy sonlar to'plamida chegaralangan o'lchovi 3 ga teng A to'plamining o'lchovi 1 ga teng B qism to'plami mavjud ekanligini ko'rsating.
- 10. Ixtiyoriy bo'sh bo'lmagan ochiq A to'plami uchun $\mu(A) > 0$ ekanligini ko'rsating.

11. Agar $A \subset [a, b]$ musbat o'lchovli to'plam bo'lsa, u holda bu to'plamda shunday x va y nuqtalar mavjud bo'lib, ular orasidagi masofa ratsional son bo'lishini ko'rsating.

2.2. O'lchovli funksiyalar

 Ω ixtiyoriy bo'sh bo'lmagan to'plam, Σ bu to'plamning qism to'plamlaridan tuzilgan biror σ -algebra, μ esa Σ da aniqlangan chekli sanoqli additiv o'lchov bo'lsin. (Ω, Σ, μ) uchligiga o'lchovli fazo deyiladi.

Biror $f:\Omega\to\mathbb{R}$ funksiya berilgan bo'lsin. Agar $\forall\,c\in\mathbb{R}$ uchun

$$f^{-1}((-\infty, c)) = \{x \in \Omega : f(x) < c\}$$

to'plami o'lchovli bo'lsa, u holda f funksiya o'lchovli funksiya deyiladi. Ω o'lchovli to'plamda f va g o'lchovli funksiyalar uchun

$$\{x \in \Omega : f(x) \neq g(x)\}$$

to'plami o'lchovi nolga teng bo'lsa, u holda f va g funksiyalar ekvivalent deyiladi va $f \sim g$ kabi belgilanadi.

Agar Ω to'plamda aniqlangan $\{f_n(x)\}$ funksiyalar ketma-ketligi uchun $\lim_{n\to\infty} f_n(x) = f(x)$ tengligi bajarilmaydigan nuqtalar to'plami o'lchovi nolga teng bo'lsa, $\{f_n(x)\}$ funksional ketma-ketlik f(x) funksiyaga deyarli yaqinlashadi deyiladi.

Agar ixtiyoriy $\varepsilon > 0$ soni uchun

$$\lim_{n \to \infty} \mu(\{x \in \Omega : |f_n(x) - f(x)| \ge \varepsilon\}) = 0$$

bo'lsa, u holda $\{f_n(x)\}$ funksional ketma-ketlik f(x) funksiyaga o'lchov bo'yicha yaqinlashuvchi deyiladi.

Deyarli yaqinlashish $f_n \stackrel{d}{\to} f$ kabi, o'lchov bo'yicha yaqinlashish esa $f_n \stackrel{\mu}{\to} f$ kabi belgilanadi.

Masalalar

- 2.2.1. (Ω, Σ, μ) o'lchovli fazo va $f: \Omega \to \mathbb{R}$ funksiya berilgan bo'lsin. U holda quyidagilar o'zaro teng kuchli:
 - a) $f: \Omega \to \mathbb{R}$ o'lchovli funksiya;
 - b) $\forall c \in \mathbb{R} \ uchun \ \{x \in \Omega : f(x) \geq c\} \ o'lchovli \ to'plam;$
 - c) $\forall c \in \mathbb{R} \ uchun \ \{x \in \Omega : f(x) > c\} \ o'lchovli \ to'plam;$
 - d) $\forall c \in \mathbb{R} \ uchun \ \{x \in \Omega : f(x) \leq c\} \ o'lchovli \ to'plam;$

Yechimi.a) \Rightarrow b). Aytaylik $f:\Omega\to\mathbb{R}$ o'l
chovli funksiya bo'lsin. U holda har bir $c\in\mathbb{R}$ uchun

$$\{x \in \Omega : f(x) < c\}$$

to'plami o'lchovli bo'ladi.

$$\{x \in \Omega : f(x) \ge c\} = \Omega \setminus \{x \in \Omega : f(x) < c\}$$

tengligidan $\{x \in \Omega : f(x) \geq c\}$ to'plamining o'lchovli ekanligi kelib chiqadi.

b) \Rightarrow c). Aytaylik har bir $c \in \mathbb{R}$ uchun

$$\{x \in \Omega : f(x) \ge c\}$$

to'plami o'lchovli bo'lsin. U holda

$$\left\{x \in \Omega : f(x) > c\right\} = \bigcup_{n=1}^{\infty} \left\{x \in \Omega : f(x) \ge c + \frac{1}{n}\right\}$$

tengligidan va o'lchovli to'plamlarning sanoqli birlashmasi yana o'lchovli bo'lishidan $\{x \in \Omega: f(x) > c\}$ to'plamning o'lchovli ekanligiga ega bo'lamiz.

c) \Rightarrow d). Aytaylik har bir $c \in \mathbb{R}$ uchun

$$\{x \in \Omega : f(x) > c\}$$

to'plami o'lchovli bo'lsin.

$$\{x \in \Omega : f(x) < c\} = \Omega \setminus \{x \in \Omega : f(x) > c\}$$

tengligidan $\{x \in \Omega: f(x) \leq c\}$ to'plamining o'lchovli ekanligi kelib chiqadi.

d) \Rightarrow a). Aytaylik har bir $c \in \mathbb{R}$ uchun

$$\{x \in \Omega : f(x) \le c\}$$

to'plami o'lchovli bo'lsin. U holda

$$\left\{x \in \Omega : f(x) < c\right\} = \bigcap_{n=1}^{\infty} \left\{x \in \Omega : f(x) \le c + \frac{1}{n}\right\}$$

tengligidan va o'lchovli to'plamlarning sanoqli kesishmasi yana o'lchovli bo'lishidan $\{x \in \Omega: f(x) < c\}$ to'plamning o'lchovli ekanligiga ega bo'lamiz. Demak f o'lchovli funksiya bo'ladi.

2.2.2. f(x) va g(x) o'lchovli funksiyalar bo'lsa, u holda

- **a)** $f(x) \pm g(x)$;
- **b)** f(x)g(x);
- c) $\frac{f(x)}{g(x)}$, $(g(x) \neq 0, x \in \Omega)$ funksiyalari ham o'lchovli bo'lishini isbotlang.

Yechimi. f(x) va g(x) o'lchovli funksiyalar va $k, a \in \mathbb{R}$ bo'lsin.

$${x \in \Omega : (f+a)(x) < c} = {x \in \Omega : f(x) < c - a}$$

tengligidan f + a funksiyaning o'lchovli ekanligi,

$$\{x \in \Omega : (kf)(x) < c\} = \begin{cases} \{x \in \Omega : f(x) < k^{-1}c\}, \text{ agar } k > 0 \\ \{x \in \Omega : f(x) > k^{-1}c\}, \text{ agar } k < 0 \end{cases}$$

fengligidan esa kf funksiyasining o'lchovli ekanligi kelib chiqadi.

a) Avvalo

$$\{x \in \Omega : f(x) > g(x)\}\$$

to'plamning o'lchovli ekanligini ko'rsatamiz. Haqiqatan,

$$\{x \in \Omega : f(x) > g(x)\} = \bigcup_{r \in \mathbb{Q}} (\{x \in \Omega : f(x) > r\} \cap \{x \in \Omega : g(x) < r\})$$

tengligidan $\{x \in \Omega : f(x) > g(x)\}$ to'plamning o'lchovli ekanligi kelib chiqadi.

Bundan

$$\{x \in \Omega : f(x) \pm g(x) > c\} = \{x \in \Omega : f(x) > \mp g(x) + c\}$$

to'plami o'lchovli ekanligiga ega bo'lamiz. Demak o'lchovli funksiyalarning yig'indisi va ayirmasi o'lchovli bo'ladi.

b) Oldin f^2 funksiyaning o'lchovli ekanligini ko'rsatamiz. Bu

$$\{x \in \Omega : f^2(x) < c\} = \begin{cases} \{x \in \Omega : -\sqrt{c} < f(x) < \sqrt{c}\}, & \text{agar } c > 0 \\ \emptyset, & \text{agar } c \le 0 \end{cases}$$

tengligidan kelib chiqadi.

O'lchovli funksiyalarning ko'paytmasi o'lchovli bo'lishini ko'rsatish uchun quyidagi ayniyatdan foydalanamiz:

$$fg = \frac{1}{4}[(f+g)^2 - (f-g)^2].$$

Tenglikning o'ng tomoni o'lchovli funksiya bo'ladi, chunki ikki o'lchovli funksiyaning yig'indisi, ayirmasi va kvadrati ham o'lchovli funksiya. Demak fg funksiyasi ham o'lchovli.

c) Agar f(x) funksiyasi o'lchovli va $f(x) \neq 0$, $x \in \Omega$ bo'lsa, u holda $\frac{1}{f(x)}$ ham o'lchovli bo'lishini ko'rsataylik.

Agar c > 0 bo'lsa, u holda

$$\{x \in \Omega : 1/f(x) < c\} = \{x \in \Omega : f(x) > 1/c\} \cup \{x \in \Omega : f(x) < 0\},$$
 agar $c < 0$,

$$\{x \in \Omega : 1/f(x) < c\} = \{x \in \Omega : 0 > f(x) > 1/c\},\$$

agar c = 0,

$${x \in \Omega : 1/f(x) < c} = {x \in \Omega : f(x) < c}.$$

Yuqoridagi tengliklarning o'ng tomoni har doim o'lchovli to'plam bo'ladi. Demak, $\frac{1}{f(x)}$ ham o'lchovli bo'ladi. Endi

$$\frac{f(x)}{g(x)} = f(x)\frac{1}{g(x)}$$

tengligi hamda f(x) va $\frac{1}{g(x)}$ o'lchovliligidan $\frac{f(x)}{g(x)}$ funksiyasining o'lchovli ekanligi kelib chiqadi.

- 2.2.3. Agar f funksiya A to'plamda o'lchovli bo'lsa, u holda quyidagi funksiyalarning o'lchovli ekanligini ko'rsating:
 - **a)** |f(x)|;
 - **b)** $f_+ = \max\{f(x), 0\};$
 - c) $f_{-} = -\min\{f(x), 0\}.$

Yechimi. a) |f(x)| funksiyasi o'lchovli ekanligini ko'rsatamiz. Uning uchun

$$\{x \in A, A \in \Sigma : |f(x)| < c\}$$

to'plami o'lshovli ekanligini ko'rsatish zarur.

$$\{x \in A : |f(x)| < c\} = \{x \in A, : f(x) < c\} \cap \{x \in A : f_2(x) > -c\}$$

tengligini ko'rib o'taylik. f(x) funksiyasi o'lchovli ekanligidan $\{x \in A, : f(x) < c\}$ va $\{x \in A : f(x) > -c\}$ to'plamlari o'lchovli ekanligi kelib chiqadi. U holda berilgan to'plam ham o'lchovli. Tenglikning o'ng tomonidagi to'plamlarning kesishmasi o'lchovliligidan $\{x \in A : |f(x)| < c\}$ to'plamning o'lchovliligiga ega bo'lamiz. Demak, |f(x)| funksiyasi o'lchovli.

b, c) f_+ , f_- funksialarning o'lchovli ekanligi a) banddan va quyidagi tengliklardan kelib chiqadi:

$$f_{+} = \max\{f(x), 0\} = \frac{|f(x)| + f(x)}{2},$$

$$f_{-} = -\min\{f(x), 0\} = \frac{|f(x)| - f(x)}{2}.$$

2.2.4. $f: \mathbb{R} \to \mathbb{R}$ uzluksiz funksiyasi berilgan bo'lsin. Ixtiyoriy haqiqiy c soni uchun $f^{-1}((-\infty;c))$ to'plami ochiq bo'lishini isbotlang.

Yechimi. Ixtiyoriy haqiqiy c sonini olaylik. $x_0 \in f^{-1}((-\infty; c))$ bo'lsin, ya'ni $f(x_0) < c$. f funksiyasi x_0 nuqtada uzliksizligidan musbat $\varepsilon < c - f(x_0)$ soni uchun shinday $\delta > 0$ soni topilib, $|x - x_0| < \delta$ bo'lganida $|f(x) - f(x_0)| < \varepsilon$ tengsizligi bajariladi. Demak x_0 nuqtaning δ -atrofidagi har bir x uchun

$$f(x) < f(x_0) + \varepsilon < f(x_0) + c - f(x_0) = c.$$

Shuning uchun x_0 nuqtaning δ -atrofidagi barcha x nuqtalar $f^{-1}((-\infty;c))$ to'plamiga tegishli bo'ladi. Demak $f^{-1}((-\infty;c))$ ochiq to'plam bo'ladi.

2.2.5. Agar $f: \mathbb{R} \to \mathbb{R}$ funksiya uzluksiz bo'lsa, u holda f o'lchovli ekanligini ko'rsating.

Yechimi. Har bir $c \in \mathbb{R}$ uchun

$$\{x \in A : f(x) < c\}$$

to'plami o'lchovli ekanligini ko'rsatamiz. 2.2.4 - misoldan bu to'plamning ochiq ekanligi kelib chiqadi. Bundan bu to'plam o'lchovli va f funksiyasi o'lchovli bo'ladi.

2.2.6. $f: \Omega \to \mathbb{R}$ o'lchovli funksiya va $z = \varphi(y)$ funksiya \mathbb{R} da uzluksiz bo'lsa, u holda $z = \varphi(f(x))$ funksiya Ω da o'lchovli ekanligini isbotlang.

Yechimi. 2.2.4 - misolga binoan $z=\varphi(y)$ uzluksizligidan, ixtiyoriy haqiqiy c soni uchun $\varphi^{-1}((-\infty;c))$ to'plami $\mathbb R$ da ochiq to'plam bo'ladi. $\mathbb R$ da ochiq to'plam esa sanoqlicha intervallarning birlashmasi ko'riishida bo'ladi, yani

$$\varphi^{-1}((-\infty;c)) = \bigcup_{k} (\alpha_k; \beta_k).$$

U holda $\varphi(f)$ murakkab funksiyasi uchun

$$\{x \in \Omega : \varphi(f(x)) < c\} = \bigcup_{k} f^{-1}((\alpha_k; \beta_k)) = \bigcup_{k} \{x \in \Omega : \alpha_k < f(x) < \beta_k\} = 0$$

$$\bigcup_{k} \{x \in \Omega : f(x) < \beta_k\} \setminus \bigcup_{k} \{x \in \Omega : f(x) \ge \alpha_k\}$$

o'rinli. Bundan

$$\{x \in \Omega : f(x) < \beta_k\}, \{x \in \Omega : f(x) \ge \alpha_k\}$$

to'plamlarining o'lchovliligini va Ω to'plamida f(x) funksiyasining o'lchovliligini hisobga olsak, har bir $c \in \mathbb{R}$ uchun $\{x \in \Omega : \varphi(f(x)) < c\}$ to'plamining o'lchovli ekanligiga ega bo'lamiz. Demak $z = \varphi(f(x))$ funksiyasi Ω da o'lchovli.

2.2.7. (Ω, Σ, μ) o'lchovli fazo va $f, g: \Omega \to \mathbb{R}$ funksiyalari o'lchovli bo'sin. U holda

$$\frac{f(x)}{\ln(1+|g(x)|)}$$

funksiyasining o'lchovli ekanligini isbotlang.

Yechimi. 2.2.3-misoldan 1+|g(x)| o'lchovli funksiya, u holda 2.2.6-misoldan $\ln(1+|g(x)|)$ o'lchovli bo'ladi. $\frac{f(x)}{\ln(1+|g(x)|)}$ funksiyasi esa 2.2.2-misolga binoan o'lchovli.

2.2.8. Quyidagicha aniqlangan Dirihle funktsiyasining o'lchovli ekanligini ko'rsating.

$$f(x) = \begin{cases} 1, & \text{agar } x \in \mathbb{Q} \\ 0, & \text{agar } x \in \mathbb{I}. \end{cases}$$

Yechimi. Ixtiyoriy $c \in \mathbb{R}$ uchun

$$f^{-1}((-\infty, c)) = \begin{cases} \emptyset, & \text{agar } c \le 0\\ \mathbb{I}, & \text{agar } 0 < c \le 1\\ \mathbb{R}, & \text{agar } c > 1 \end{cases}$$

munosabatdan f funksiyasining o'chovli ekanligiga ega bo'lamiz.

2.2.9. Agar $\{f_n(x)\}$ o'lchovli funksiyalar ketma-ketligi Ω o'lchovli to'plamda f(x) funksiyasiga deyarli yaqinlasha, u holda f(x) funksiyasi ham o'lchovli ekanligini isbotlang.

Yechimi. $f_n(x) \to f(x)$ ni qanoatlantirmaydigan nuqtalar o'lchovi nol ekanligidan, bu to'plamni bo'sh deb qarashimiz mumkin. Dastlab

$$\{x : f(x) < c\} = \bigcup_{k} \bigcup_{n} \bigcup_{m > n} \{x : f_m(x) < c - \frac{1}{k}\}.$$
 (2.4)

tengligi o'rinli ekanligini ko'rsatamiz.

Aytaylik x nuqtasi (2.4) tenglikning chap tomoniga tegishli bo'lsin, ya'ni f(x) < c. U holda shunday $k \in \mathbb{N}$ mavjud bo'lib, f(x) < c - 2/k.

Endi $f_n(x) \to f(x)$ dan shunday $n \in \mathbb{N}$ mavjud bo'lib, barcha $m \geq n$ uchun

$$f_m(x) < c - \frac{1}{k}.$$

Bu esa x ning (2.4) tenglikning o'ng tomoniga tegishli ekanligini anlatadi.

Aksincha, x nuqta (2.4) tenglikning o'ng tomoniga tegishli bo'lsin. U holda shunday $k \in \mathbb{N}$ mavjud bo'lib, etarlicha katta m larda

$$f_m(x) < c - \frac{1}{k}$$

bajariladi. Bundan f(x) < c, ya'ni x nuqtasi (2.4) ning chap tomoniga tegishli.

Endi (2.4) ning chap tomonidagi to'plamning o'lchovli ekanligidan, f funksiyaning o'lchovli ekanligi kelib chiqadi.

- 2.2.10. (Egorov teoremasi). E chekli o'lchovli to'plam, $\{f_n(x)\}$ ketma-ketlik E da f(x) funksiyaga deyarli yaqinlashadi. U holda ixtiyoriy $\delta > 0$ soni uchun $E_{\delta} \subset E$ o'lchovli to'plam mavjud bo'lib,
 - 1) $\mu(E \setminus E_{\delta}) < \delta$;
- 2) E_{δ} to'plamda $\{f_n(x)\}$ ketma-ketlik f(x) funksiyaga tekis yaqinlashadi.

Yechimi. 2.2.9 - misolga ko'ra f(x)o'lchovli funksiyadir. Har bir $n,m\in\mathbb{N}$ uchun

$$E_n^m = \bigcap_{i > n} \{x : |f_i(x) - f(x)| < \frac{1}{m} \}$$

va

$$E^m = \bigcup_{n \ge 1} E_n^m$$

bo'lsin. Ravshanki,

$$E_1^m \subseteq E_2^m \subseteq \cdots \subseteq E_n^m \subseteq \cdots$$
.

2.1.7-misolga asosan, har bir m va har bir $\delta > 0$ uchun $n_0(m)$ nomeri topilib,

$$\mu(E^m \setminus E^m_{n_0(m)}) < \frac{\delta}{2^m}.$$

Endi

$$E_{\delta} = \bigcap_{m=1}^{\infty} E_{n_0(m)}^m$$

to'plami uchun 1, 2 shartlar bajarilishini ko'rsatamiz.

Avval $\mu(E \setminus E^m) = 0$ ekanligini tekshiraylik. $x_0 \in E \setminus E^m$ bo'lsin. U holda etarlicha katta i lar uchun

$$|f_i(x_0) - f(x_0)| \ge \frac{1}{m},$$

ya'ni bu nuqtada $f_n(x)$ ketma-ketlik f(x) yaqinlashmaydi. $\{f_n(x)\}$ ketma-ketlik E da f(x) funksiyaga deyarli yaqinlashganlikdan, $\mu(E \setminus E^m) = 0$. Bundan

$$\mu(E \setminus E_{n_0(m)}^m) = \mu(E^m \setminus E_{n_0(m)}^m) < \frac{\delta}{2^m}.$$

Demak,

$$\mu(E \setminus E_{\delta}) = \mu\left(E \setminus \bigcap_{m=1}^{\infty} E_{n_0(m)}^m\right) = \mu\left(\bigcup_{m=1}^{\infty} E \setminus E_{n_0(m)}^m\right) \le$$

$$\le \sum_{m=1}^{\infty} \mu(E \setminus E_{n_0(m)}^m) < \sum_{m=1}^{\infty} \frac{\delta}{2^m} = \delta,$$

ya'ni $\mu(E \setminus E_{\delta}) < \delta$.

Endi E_{δ} to'plamda $\{f_n(x)\}$ ketma-ketlik f(x) funksiyaga tekis yaqinlashishini ko'rsatamiz. $x \in E_{\delta}$ bo'lsin. U holda har bir m uchun $i > n_0(m)$ bo'lganda,

$$|f_i(x) - f(x)| < \frac{1}{m},$$

bu tekis yaqinlashishni anlatadi.

2.2.11. (Lebeg teoremasi). E chekli o'lchovli to'plam. Agar $\{f_n(x)\}\$ ketma-ketlik E da f(x) funksiyaga deyarli yaqinlashsa, u holda bu ketma-ketlik f(x) ga o'lchov bo'yicha ham yaqinlashadi.

Yechimi. Aytaylik

$$A = \{x \in E : f_n(x) \to f(x)\}\$$

va $E=A\setminus B$ bo'lsin. U holda, $\{f_n(x)\}$ ketma-ketlik E da f(x) funksiyaga deyarli yaqinlashgani uchun $\mu(B)=0$. Har bir $\varepsilon>0$ soni uchun

$$R_n(\varepsilon) = \bigcup_{k=n}^{\infty} E(|f_k - f| \ge \varepsilon), \ M = \bigcap_{n=1}^{\infty} R_n(\varepsilon)$$

deylik.

 $M \subseteq B$ ekanligini ko'rastamiz. $x \notin B$ bo'lsin. U holda $x \in A$, ya'ni $f_n(x) \to f(x)$. Bundan etarlicha katta k lar uchun $|f_k(x) - f(x)| < \varepsilon$, ya'ni $x \notin R_n(\varepsilon)$, va bundan $x \notin M$.

Demak,

$$M = \bigcap_{n=1}^{\infty} R_n(\varepsilon) \subset B.$$

Bundan $\mu(M) = 0$. Endi

$$R_1(\varepsilon) \supset R_2(\varepsilon) \supset \cdots$$

dan

$$\lim_{n \to \infty} \mu(R_n(\varepsilon)) = \mu(M) = 0.$$

Demak,

$$\lim_{n\to\infty}\mu(E(|f_n-f|\geq\varepsilon))=0,$$

ya'ni $f_n(x)$ ketma-ketlik f(x) ga o'lchov bo'yicha yaqinlashadi.

2.2.12. Har bir $n \in \mathbb{N}$ uchun

$$f_n(x) = e^{-|x-n|}, x \in \mathbb{R}$$

bo'lsin. $\{f_n(x)\}$ funksional ketma-ketligi nol funksiyasiga deyarli yaqinlashuvchi bo'lib, o'lchov bo'yicha yaqinlashuvchi emasligini ko'rsating.

Yechimi. Har bir $x \in \mathbb{R}$ uchun

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} e^{-|x-n|} = 0$$

bo'lganlikdan, $f_n \stackrel{d}{\to} 0$.

Endi $0<\varepsilon<1$ bo'lsin. U holda

$$\{x \in \mathbb{R} : |f_n(x) - 0| \ge \varepsilon\} = \{x \in \mathbb{R} : |e^{-|x-n|}| \ge \varepsilon\} =$$

$$= \{x \in \mathbb{R} : e^{|x-n|} \le \varepsilon^{-1}\} = \{x \in \mathbb{R} : |x-n| \le \ln \varepsilon^{-1}\} =$$

$$= \{x \in \mathbb{R} : n + \ln \varepsilon \le x \le n - \ln \varepsilon\} = (n + \ln \varepsilon; n - \ln \varepsilon),$$

yani

$$\{x \in \mathbb{R} : |f_n(x) - 0| \ge \varepsilon\} = (n + \ln \varepsilon; n - \ln \varepsilon).$$

Bundan

$$\mu\{x \in \mathbb{R} : |f_n(x)| \ge \varepsilon\} = [n - \ln \varepsilon] - [n + \ln \varepsilon] = -2 \ln \varepsilon.$$

Demak,

$$\lim_{n \to \infty} \mu\{x \in \mathbb{R} : |f_n(t)| \ge \varepsilon\} = -2\ln \varepsilon \ne 0.$$

Bundan $f_n \stackrel{\mu}{\to} 0$ o'rinli emas.

2.2.13. $f_n: \mathbb{R} \to \mathbb{R}$ funksiya

$$f_n(x) = \cos^n \pi x, x \in \mathbb{R}$$

kabi aniqlangan bo'lsa, u holda $\{f_n(x)\}$ funksional ketma-ketlikning nol funksiyasiga deyarli yaqinlashishini ko'rsating.

Yechimi. Haqiqiy $a \in \mathbb{R}$ soni uchun

$$\lim_{n\to\infty}a^n=\left\{\begin{array}{ll} 1, & \text{agar } a=1,\\ 0, & \text{agar } |a|<1,\\ \text{mavjud emas,} & \text{agar } a=-1 \end{array}\right.$$

ekanligidan,

$$\lim_{n\to\infty}\cos^n\pi x=\left\{\begin{array}{ll} 1, & \text{agar } x=2k,\,k\in\mathbb{Z},\\ 0, & \text{agar } x\in\mathbb{R}\setminus\{k:k\in\mathbb{Z}\},\\ \text{mavjud emas,} & \text{agar } x=2k+1,\,k\in\mathbb{Z}\end{array}\right.$$

kelib chiqadi. Demak,

$$\{x \in \mathbb{R} : \lim_{n \to \infty} \cos^n \pi x \neq 0\} = \mathbb{Z}.$$

 \mathbb{Z} sanoqli to'plam ekanligidan uning Lebeg o'lchovi nolga teng. Bundan $\{f_n(x)\}$ funksional ketma-ketlikning nol funktsiyasiga deyarli yaqinlashishadi.

2.2.14. $f_n: \mathbb{R} \to \mathbb{R}, n \in \mathbb{N}$ funktsiyasi

$$f_n(x) = \chi_{(\sqrt{n},\sqrt{n+1})}(x)$$

formula bilan aniqlangan bo'lsa, $\{f_n\}$ ketma-ketligi nol funktsiyaga o'lchov bo'yicha yaqinlashishini ko'rsating.

Yechimi. Ta'rif bo'yicha $\forall \varepsilon > 0$ uchun

$$\lim_{n \to \infty} \mu(\{x \in \mathbb{R} : |f_n(x)| \ge \varepsilon\}) = 0 \tag{2.5}$$

ekanligini ko'rsatish etarli.

 $0 < \varepsilon < 1$ bo'lsin.

$$A_n(\varepsilon) = \{x \in \mathbb{R} : |\chi_{(\sqrt{n},\sqrt{n+1})}(x)| \ge \varepsilon\}$$

to'plamni aniqlaymiz. Bu to'plam $A_n(\varepsilon)=(\sqrt{n},\sqrt{n+1})$ ga teng. Bundan

$$\mu(A_n(\varepsilon)) = \mu((\sqrt{n}, \sqrt{n+1})) = \sqrt{n+1} - \sqrt{n}.$$

Endi $n \to \infty$ da

$$\sqrt{n+1} - \sqrt{n} = \frac{1}{\sqrt{n+1} + \sqrt{n}} \to 0$$

ekanligidan $\mu(A_n(\varepsilon)) \to 0$.

2.2.15. Quyidagi $f: \mathbb{R} \to \mathbb{R}$ funksiyasining o'lchovli ekanligini ko'rsating.

$$f(x) = \sum_{n=1}^{\infty} \frac{\cos nx}{\sqrt[3]{n^4 + [x]^4}}, \ x \in \mathbb{R}$$

Yechimi. Dastlab $\cos nx$ va $\sqrt[3]{n^4 + [x]^4}$ funktsiyalari $\mathbb R$ da uzluksiz ekanligini aytib o'taylik. Bu funksiyalarning uzluksizligidan 2.2.6 – misolga ko'ra ularning o'lchovli ekanligi kelib chiqadi. 2.2.2 – misoldan o'lchovli funksiyalarning nisbati o'lchovli ekanligidan,

$$\frac{\cos nx}{\sqrt[3]{n^4 + [x]^4}}$$

funksional ketma -ketlikning har bir hadi o'lchovli. Quyidagi baholashlarni ko'rib o'taylik:

$$|\cos nx| \le 1,$$
 $\sqrt[3]{n^4 + [x]^4} \le \sqrt[3]{n^4} = n^{4/3}.$

Endi

$$\sum_{n=1}^{\infty} n^{4/3}$$

sonli qatori yaqinlashuvshu ekanligidan,

$$\sum_{n=1}^{\infty} \frac{\cos nx}{\sqrt[3]{n^4 + [x]^4}}$$

qatorining tekis yaqinlashuvchi ekanligi kelib chuqadi. 2.2.5 – misoldan o'lchovli funksiyalar ketma -ketligining limit funksiyasi ham o'lchovli bo'lishidan f(x) funksiyasi o'lchovli bo'ladi.

2.2.16.

$$f(x,y) = sign \cos \pi (x^2 + y^2), \quad (x,y) \in \mathbb{R}^2$$

 $funksiyasi \ \mathbb{R}^2 \ da \ o$ 'lchovli ekanlini isbotlang.

Yechimi. signx funksiyasi ta'rifiga koʻra

$$signx = \begin{cases} 1, & \text{agar } x > 0 \\ 0, & \text{agar } x = 0 \\ -1, & \text{agar } x = 0 \end{cases}$$

Demak, $sign \cos \pi(x^2+y^2)$ oddiy funksiya bo'lib, u 1, 0, -1 qiymatlarni mos ravishda quyidagi to'plamlarda qabul qiladi:

$$\cos \pi(x^2 + y^2) > 0$$
, $\cos \pi(x^2 + y^2) = 0$, $\cos \pi(x^2 + y^2) < 0$.

Demak funksiya 1 qiymatni

$$A_1 = \bigcup_{k=0}^{\infty} \left\{ (x, y) \in \mathbb{R}^2 : 2k - \frac{1}{2} < x^2 + y^2 < 2k + \frac{1}{2} \right\},$$

0 qiymatni

$$A_0 = \bigcup_{k=0}^{\infty} \left\{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 = k + \frac{1}{2} \right\},$$

-1 qiymatni esa

$$A_{-1} = \bigcup_{k=0}^{\infty} \left\{ (x, y) \in \mathbb{R}^2 : 2k + \frac{1}{2} < x^2 + y^2 < 2k + \frac{3}{2} \right\}$$

to'plamlarida qabul qilar ekan.

 A_1 , A_{-1} to'plamlari sanoqli sondagi ochiq xalqalarning birlashmasi ko'rinishidagi ochiq to'plam bo'lganligidan o'lchovli bo'ladi. Har bir $k=0,1,\ldots$ uchun

$$\bigcup_{k=0}^{\infty} \left\{ (x,y) \in \mathbb{R}^2 : x^2 + y^2 = k + \frac{1}{2} \right\}$$

yopiq va u sanoqli sondagi o'lchovli to'plamlarning birlashmasi sifatida o'lchovli bo'ladi. Uzluksiz funksiyaning ta'rifidan qiymatlarini o'lchovli A_1, A_0 va A_{-1} to'plamlarida qabul qiluvchi f(x, y) o'lchovli bo'ladi.

2.2.17. $\{f_n(x)\}\$ va $\{g_n(x)\}\$ ketma-ketliklari Ω to'plamda o'lchov bo'yicha f(x) va g(x) funksiyalariga yaqinlashsin. U holda $\lim_{n\to\infty} (f_n(x)+g_n(x)) \stackrel{\mu}{=} f(x)+g(x)$ bo'lishini isbotlang.

Yechimi. O'lchovli funksiyalarning o'lchov bo'yicha yaqinlashishining ta'rifiga muvoffiq ixtiyoriy $\varepsilon > 0$ uchun

$$\lim_{n \to \infty} \mu\{x \in \Omega : |f_n(x) + g_n(x) - f(x) - g(x)| \ge \varepsilon\} = 0$$

ekanligini ko'rsatish zarur.

Quyidagi belgilashlarni kiritaylik:

$$A_n(f,\varepsilon) = \{x \in \Omega : |f_n(x) - f(x)| \ge \varepsilon\},\$$

$$A_n(g,\varepsilon) = \{x \in \Omega : |g_n(x) - g(x)| \ge \varepsilon\},\$$

$$A_n(f+g,\varepsilon) = \{x \in \Omega : |f_n(x) + g_n(x) - f(x) - g(x)| \ge \varepsilon\}.$$
$$A_n(f+g,\varepsilon) \subseteq A_n\left(f_n, \frac{\varepsilon}{2}\right) \cup A_n\left(g_n, \frac{\varepsilon}{2}\right)$$

ekanligini ko'rsatamiz. $x \in A_n(f+g,\varepsilon)$ bo'lsin. U holda

$$|f_n(x) + g_n(x) - f(x) - g(x)| \ge \varepsilon.$$

Endi

$$|f_n(x) + g_n(x) - f(x) - g(x)| \le |f_n(x) - f(x)| + |g_n(x) - g(x)|$$

tengsizligidan

$$|f_n(x) - f(x)| + |g_n(x) - g(x)| \ge \varepsilon.$$

Bundan

$$|f_n - f| \ge \frac{\varepsilon}{2}, \quad |g_n - g| \ge \frac{\varepsilon}{2}$$

kamida bittasi o'rinlidir, ya'ni

$$x \in A_n\left(f_n, \frac{\varepsilon}{2}\right) \cup A_n\left(g_n, \frac{\varepsilon}{2}\right).$$

Endi $f_n(x) \xrightarrow{\mu} f(x)$ va $g_n(x) \xrightarrow{\mu} g(x)$ bo'lgani uchun $\mu\left(A_n\left(f_n, \frac{\varepsilon}{2}\right)\right) \to 0$ va $\mu\left(A_n\left(g_n, \frac{\varepsilon}{2}\right)\right) \to 0$. Bundan $\mu(A_n(f+g, \varepsilon)) \to 0$ ya'ni

$$f_n(x) + g_n(x) \xrightarrow{\mu} f(x) + g(x).$$

$2.2.18.\ Egorov\ teoremasini$

$$f_n(x) = x^n, \ x \in [0, 1]$$

funksional ketma-ketligiga qo'llang. $\{f_n(x)\}$ ketma-ketligi $f(x) \equiv 0$ funksiyasiga tekis yaqinlashadigan [0,1] segmentning to'ldiruvchisi nol o'lchovli to'plami mavjud emasligini isbotlang.

Yechimi. Ixtiyoriy $0 < \delta < 1$ soni uchun $A_{\delta} = \left[0; 1 - \frac{\delta}{2}\right]$ ni olamiz. U holda

$$\mu(A_{\delta}) = 1 - \frac{\delta}{2} > \mu(A) - \delta = 1 - \delta$$

va

$$\lim_{n \to \infty} \sup_{x \in \left[0; 1 - \frac{\delta}{2}\right]} |x^n| = \lim_{n \to \infty} \left(1 - \frac{\delta}{2}\right)^n = 0.$$

Endi $\{f_n(x)\}$ ketma-ketligi $\mathbb{C}A$ da $f(x) \equiv 0$ funksiyaga tekis yaqin-lashadigan $A \subset [0; 1]$ nol o'lchovli to'plamning mavjud emasligini isbot-laymiz.

Teskarisini faraz qilaylik, ya'ni shunday A to'plami mavjud bo'lsin. U holda etarlicha kichik $\delta > 0$ uchun $\mathbf{C}A \cap [1-\delta;1]$ kesishmasi bo'sh emas, aks holda $\mu(\mathbf{C}A) \neq 1$. Shuning uchun $\mathbf{C}A$ to'plamining no'qtalaridan tuzilgan va $\lim_{k\to\infty} x_k = 1$ bo'ladigan $\{x_k\}$ ketma -ketligi mavjud. $\{x_k\}$ ketma -ketligi $\mathbf{C}A$ to'plamda f(x) = 0 ga tekis yaqinlashishidan har bir $\varepsilon > 0$ uchun shunday n_0 topiladiki, barcha $n \geq n_0$ va $x \in \mathbf{C}A$ uchun x^n, ε . Bundan $\{x_k\}$ ketma -ketligi uchun $\varepsilon > 1$ deb olsak

$$x_k^n < \varepsilon \ (\forall k \in \mathbb{N}, \forall n \ge n_0)$$

bo'ladi. Ohirgi tengsizlikda $k \to \infty$ deb olsak, u holda $1 \le \varepsilon$ bo'ladi. Bu esa $\varepsilon < 1$ ga zid. Hosil bo'lgan ziddiyatdan $\{f_n(x)\}$ ketma -ketligi $\mathbf{C}A$ da f(x) = 0 funksiyaga tekis yaqinlashadigan $A \subset [0; 1]$ nol o'lchovli to'plam mavjud emas.

 $egin{aligned} 2.2.19. & Agar \ f \ funksiya \ [a,\ b] \ oraliqda \ uzluksiz \ bo'lsa, \ u \ holda \end{aligned}$

$$A = \{x \in [a, b] : f(x) = 0\}$$

to'planning yopiq ekanligini ko'rsating.

Yechimi. $[a, b] \setminus A$ to'plamning ochiq ekanligini ko'rsatamiz. $x_0 \notin A$ bo'lsin. $\varepsilon = \frac{1}{2}f(x_0) > 0$ deylik. f ning uzluksizligidan shunday $\delta > 0$ topilib, $x \in (x_0 - \delta, x_0 + \delta) \cap [a, b]$ da $|f(x) - f(x_0)| < \varepsilon$ o'rinlidir. Bundan $f(x) > f(x_0) - \varepsilon = 2\varepsilon - \varepsilon > 0$. Demak $(x_0 - \delta, x_0 + \delta) \cap [a, b] \subset [a, b] \setminus A$. Bundan $[a, b] \setminus A$ to'plam ochiq ekanligini ko'rinadi.

2.2.20. Agar f va g uzluksiz funksiyalar [a, b] oraliqda ekvivalent bo'lsa, u holda bu oraliqda $f \equiv g$ ni isbotlang.

 $Yechimi.\ f$ va guzluksiz funksiyalar bo'lganlikdan, 2.2.17 - misolga ko'ra

$$B = \{x \in [a, b] : (f - g)(x) \neq 0\}$$

to'plami ochiq bo'ladi. $f \sim g$ ekanligidan B to'plam o'lchovi nolga tengdir. Demak, B o'lchovi nolga teng bo'lgan ochiq to'plam. Bundan $B=\emptyset$, ya'ni $f\equiv g$.

Mustaqil ish uchun masalalar

1. Quyidagi $f:\mathbb{R}\to\mathbb{R}$ funktsiyalari \mathbb{R} da o'lchovli bo'lishini ko'rsating.

a)
$$f(x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{|x| + n}, \ x \in \mathbb{R}$$

b)
$$f(x) = \sum_{n=1}^{\infty} \frac{\sin(n[x]^4)}{n\sqrt{n}}, x \in \mathbb{R}$$

2 – 8 misollarda $f_n:\mathbb{R}\to\mathbb{R}$ funktsional ketma-ketlikni deyarli yaqinlashishga tekshiring.

2.
$$f_n(x) = \sin^n \pi x$$
.

3.
$$f_n(x) = \frac{n^2 |\sin \pi x|}{1 + n^2 |\sin \pi x|}$$
.
4. $f_n(x) = \frac{x^n}{1 + x^n} \chi_{(0,1]}(x)$.

4.
$$f_n(x) = \frac{x^n}{1+x^n} \chi_{(0,1]}(x)$$
.

5.
$$f_n(x) = (x^n - x^{2n})\chi_{[0,1]}(x)$$
.

5.
$$f_n(x) = (x^n - x^{2n})\chi_{[0,1]}(x)$$
.
6. $f_n(x) = \frac{2nx}{1 + n^2x^2}\chi_{[0,1]}(x)$.

7.
$$f_n(x) = e^{n(x-2)} \chi_{[0,2]}(x)$$
.

8.
$$f_n(x) = (x^n - x^{n^2}) \chi_{[0,1]}(x)$$
.

9 – 13 misollarda $f_n: \mathbb{R} \to \mathbb{R}$ funktsional ketma-ketlikni o'lchov bo'yicha yaqinlashishga tekshiring.

9.
$$f_n(x) = \chi_{(\sqrt[3]{n}, \sqrt[3]{n+1})}(x)$$
.

10.
$$f_n(x) = 2 - \chi_{[\ln n, \ln(n+1)]}(x)$$
.

11.
$$f_n(x) = \sin^n x \chi_{[2\pi n, 2\pi(n+1)]}(x)$$
.

12.
$$f_n(x) = \cos x + |x| \chi_{[\sqrt[3]{n}, \sqrt[3]{n+5}]}(x)$$
.

13.
$$f_n(x) = \sum_{k=n}^{\infty} \chi_{[k,k+\frac{1}{k^2}]}(x)$$
.

- 14. Har bir $y = f(x), x \in \mathbb{R}$ monoton funktsiya o'lchovli bolishini isbotlang.
- **15.** (Ω, Σ, μ) o'lchovli fazo bo'lib, $\{f_n(x)\}$ ketma-ketligi A to'plamda o'lcham bo'yicha o'lchovli f(x) funksiyasiga yaqinlashsin. $\lim_{n\to\infty} f_n^2(x) \stackrel{\mu}{=} 0 \text{ ekanligini isbotlang.}$
 - **16.** Agar f, g funksiyalar [a, b] oraliqda uzluksiz bo'lsa, u holda

$${x \in [a, b] : f(x) = g(x)}$$

to'plamning yopiq ekanligini ko'rsating.

17. Agar f funksiya |a, b| oraliqda uzluksiz bo'lsa, u holda ixtiyoriy c soni uchun

$${x \in [a, b] : f(x) = c}$$

to'plamning yopiq ekanligini ko'rsating.

18. Agar f funksiya [a, b] oraliqda uzluksiz bo'lsa, u holda ixtiyoriy c soni uchun

$$\{x \in [a, b] : f(x) \ge c\}$$

to'plamning yopiq ekanligini ko'rsating.

2.3. Lebeg integrali

 (Ω, Σ, μ) o'lchovli fazo bo'lsin. $E \subset \Omega$ chekli o'lchovli to'plam, bu to'plamda aniqlangan f(x) o'lchovli funksiya uchun

bo'lsin. [A, B] oraliqni $A = y_0 < y_1 < y_2 < ... < y_n = B$ bilan bo'lamiz va har bir yarim segmentga

$$E_k = \{x \in E : y_k \le f(x) < y_{k+1}\}, \ k = \overline{0, n-1}$$

to'plamlarni mos qo'yamiz.

Lebegning quyi va yuqori yig'indilari deb ataluvchi

$$s = \sum_{k=0}^{n-1} y_k \mu(E_k)$$

$$S = \sum_{k=0}^{n-1} y_{k+1} \mu(E_k)$$

yig'indilarni qaraymiz. Agar $\lambda = \max(y_{k+1} - y_k)$ deb olsak,u holda

$$0 \le S - s \le \lambda \mu(E). \tag{2.6}$$

(2.6) tengsizlikda $\lambda \to 0$ bo'lganda $\{S\}$ va $\{s\}$ yig'indilar biror songa intiladi va bu son f(x) funksiyaning E to'plam bo'yicha Lebeg integrali deyiladi. Lebeg integrali $(L) \int_{\mathbb{R}} f(x) \, d\mu(x)$ kabi belgilanadi.

Chekli o'lchovli E to'plamida chegaralanmagan f(x) o'lchovli funksiya uchun Lebeg integrali quyidagicha kiritiladi. Dastlab f(x) funksiya E to'plamida nomanfiy bo'lsin. Har bir $n \in \mathbb{N}$ uchun $f_n(x)$ funksiyani quyidagicha aniqlaylik:

$$f_n(x) = \begin{cases} f(x), & \text{agar } f(x) \le n, \\ n, & \text{agar } f(x) > n. \end{cases}$$

U holda har bir $f_n(x)$ funksiya E da chegaralangan bo'ladi. Demak har bir f(x) funksiya E to'plamida integrallanuvchi. Bu ketma - ketlik kamayuvchi emas, yani

$$f_n(x) \le f_{n+1}(x), \ \forall x \in A, \ \forall n \in \mathbb{N}.$$

Bu $\{f_n(x)\}\$ ketma - ketlik uchun

$$\lim_{n \to \infty} \int_{E} f_n(x) d\mu(x)$$

limit chekli bo'lsa u holda nomanfiy f(x) funksiya integrallanuvchi deyiladi.

Endi chekli o'lchovli E to'plamda ixtiyoriy chegaralanmagan o'lchovli f(x) funksiyani olaylik. Bu funksiyani misbat va manfiy $f = f_+ + f_-$ qismlarga ajratamiz. f(x) funksiyaning Lebeg integralini quyidagicha aniqlaymiz:

$$\int_{E} f(x)d\mu(x) = \int_{E} f_{+}(x)d\mu(x) + \int_{E} f_{-}(x)d\mu(x).$$

f funksiyaning (a;b) oraliqdagi tebranishi deb

$$\omega(a;b) = \sup_{a < x < b} f(x) - \inf_{a < x < b} f(x)$$

soniga aytiladi. f funksiyaning x nuqtadagi tebranishi deb

$$\omega(x) = \sup \{ \omega(a; b) : a < x < b \}$$

soniga aytiladi. Ta'rifdan bevosita ko'rinadiki, f funksiyaning x nuqfada uzluksizligi $\omega(x) = 0$ ga teng kuchlidir.

Masalalar.

2.3.1. f(x) chegaralangan o'lchovli funksiya E o'lchovli to'plamda $a \le f(x) \le b$ tengsizlikni qanoatlantirsa, u holda

$$a\mu(E) \le \int_{E} f(x) dx \le b\mu(E)$$

o'rinlidir.

Yechimi. Ixtiyoriy $\varepsilon > 0$ sonini olib $A = a - \varepsilon$, $B = b - \varepsilon$ deylik. U holda A < f(x) < B. Bundan Lebeg yig'inlarini [A, B] oraliqni bo'laklab yozishimiz mumkin:

$$A\sum_{k=0}^{n-1}\mu(E_k) \le \sum_{k=0}^{n-1}y_k\mu(E_k) \le B\sum_{k=0}^{n-1}\mu(E_k).$$

Bunda $\mu(E) = \sum_{k=0}^{n-1} \mu(E_k)$ ni hisobga olsak, u holda

$$A\mu(E) \le \sum_{k=0}^{n-1} y_k \mu(E_k) \le B\mu(E).$$

Bu tengsizlik ixtiyoriy bo'laklashda o'rinli ekanligidan

$$(a-\varepsilon)\mu(E) \le \int_E f(x) dx \le (b+\varepsilon)\mu(E).$$

 ε soni ixtiyoriyligidan

$$a\mu(E) \le \int_E f(x) dx \le b\mu(E).$$

2.3.2. E o'lchovli to'plamda $f(x) \equiv c$ bo'lsa, u holda $\int_E f(x) dx = c\mu(E)$ o'rinlidir.

 $Yechimi.\ E$ to'plamda $c \leq f(x) \leq c$ bo'lganlikdan, 2.3.1 - misolga ko'ra

$$c\mu(E) \le \int_E f(x) dx \le c\mu(E),$$

ya'ni $\int_E f(x) dx = c\mu(E)$.

2.3.3. f(x) o'lchovli funksiya E o'lchovli to'plamda $f(x) \ge 0$ tengsizlikni qanoatlantirsa, u holda $\int_{\mathbb{T}} f(x) dx \ge 0$ o'rinlidir.

Yechimi.~Eto'plamda $f(x) \geq 0$ bo'lganlikdan, 2.3.1 - misolga ko'ra

$$\int_{E} f(x) \, dx \ge 0\mu(E),$$

ya'ni $\int_{\Gamma} f(x) dx \ge 0$.

2.3.4. Agar $E_i \in \Sigma$, $E_i \cap E_j \neq \varnothing$, $i \neq j$, $E = \bigcup_i E_i$ bo'lsa, u holda

$$\int_{E} f(x) dx = \sum_{k} \int_{E_{k}} f(x) dx. \tag{2.7}$$

Yechimi. Avvalo ikkita qo'shiluvchi bo'lgan holni qaraylik, ya'ni $E=E'\cup E''$. $y_0,y_1,...,y_n$ bo'laklash nuqtalari bo'lsin. Har bir $k=\overline{0,n-1}$ uchun

$$E_k = \{x \in E : y_k \le f(x) < y_{k+1}\},\$$

$$E'_k = \{x \in E' : y_k \le f(x) < y_{k+1}\},\$$

$$E''_k = \{x \in E'' : y_k \le f(x) < y_{k+1}\}\$$

deylik. Ravshanki, $E_k = E_k' \cup E_k'', E_k' \cap E_k'' = \emptyset$. Bundan

$$\sum_{k=0}^{n-1} y_k \mu(E_k) = \sum_{k=0}^{n-1} y_k \mu(E'_k) + \sum_{k=0}^{n-1} y_k \mu(E''_k).$$

Bunda $\lambda \to 0$ desak, u holda

$$\int_{E} f(x) dx = \int_{E'} f(x) dx + \int_{E''} f(x) dx.$$

Induksiya bo'yicha (2.7) tenglik chekli qo'shuluvchi uchun ham o'rinli ekanligi kelib chiqadi.

Endi $E = \bigcup_{k=1}^{\infty} E_k$ holni qaraylik. Har bir $n \in \mathbb{N}$ uchun $R_n = \bigcup_{k=n+1}^{\infty} E_k$

deylik. $\mu(E) = \sum_{k=1}^{\infty} \mu(E_k) \, \mathrm{dan}$

$$\mu(R_n) = \sum_{k=n+1}^{\infty} \mu(E_k) \to 0$$
 (2.8)

ga ega bo'lamiz. (2.8) tenglik chekli qo'shuluvchi uchun ham o'rinli ekanligidan,

$$\int_{E} f(x) \, dx = \sum_{k=1}^{n} \int_{E_{k}} f(x) \, dx + \int_{R_{n}} f(x) \, dx.$$

2.3.1-misoldan

$$A\mu(R_n) \le \int_{R_n} f(x) dx \le B\mu(R_n).$$

(2.8) ni hisobga olsak, u holda $n \to \infty$ da

$$\int_{R_n} f(x) \, dx \to 0.$$

Bundan (2.7) tenglik kelib chiqadi.

2.3.5. Agar $\mu(E)=0$ bo'lsa, u holda $\int_E f(x) d\mu(x)=0$ ekanligini ko'rsating.

Yechimi. Har bir bo'laklash to'plami $E_k=\{x\in E:y_k\leq f(x)< y_{k+1}\}$ uchun $E_k\subset E$ bo'lganlikdan, $\mu(E_k)=0$ bo'ladi. Bundan

$$\int_{E} f(x) d\mu(x) = \lim_{\lambda \to 0} \sum_{k=0}^{n-1} \mu(E_k) = 0.$$

2.3.6. Agar $f \sim g$ bo'lsa, u holda $\int_E f(x) d\mu(x) = \int_E g(x) d\mu(x)$ ekanligini ko'rsating.

Yechimi. $E_1 = \{x \in E : f(x) \neq g(x)\}$ bo'lsin. U holda $f \sim g$ bo'lganlikdan,

$$\mu(E_1) = 0$$

va

$$f(x) = g(x), x \in E \setminus E_1$$

o'rinlidir. 2.3.5-misoldan $\int_{E_1} f(x) d\mu(x) = \int_{E_1} g(x) d\mu(x) = 0$. Bundan

$$\int_{E} f(x) \, d\mu(x) = \int_{E \setminus E_{1}} f(x) \, d\mu(x) + \int_{E_{1}} f(x) \, d\mu(x) =$$

$$= \int_{E \setminus E_1} g(x) \, d\mu(x) + \int_{E_1} g(x) \, d\mu(x) = \int_E g(x) \, d\mu(x).$$

2.3.7. Agar f funksiya [a; b] oraliqda Riman ma'nosida integrallanuvchi bo'lsa, u holda uning uzilish nuqtalari to'plami D nol o'lchoviga ega.

Yechimi. f funksiya [a;b] oraliqda Riman ma'nosida integrallanuvchi bo'lganlikdan, u chegaralangandir. Har bir $k \in \mathbb{N}$ uchun

$$D_k = \{x \in [a; b] : \omega(x) \ge \frac{1}{k}\}$$

deylik. U holda

$$D_1 \subset D_2 \subset \cdots \subset D_k \cdots \subset .$$

 $D=\bigcup_{k\geq 1}D_k$ bu fning uzilish nuqtalari to'plamidir. Ixtiyoriy $\varepsilon>0$ soni olamiz. Quyidagi shartlarni qanoatlantiruvchi

$$a = x_0 < x_1 < \dots < x_n = b$$

nuqtalarni olaylik:

$$m_i = \inf_{x_{i-1} < x < x_i} f(x), \ M_i = \sup_{x_{i-1} < x < x_i} f(x),$$

Darbu yid'indilari

$$s = \sum_{i=0}^{n-1} m_i(x_{i+1} - x_i), \ S = \sum_{i=0}^{n-1} M_i(x_{i+1} - x_i),$$

va

$$S-s<\varepsilon$$
.

 $F = \{i \in \overline{0, n-1} : M_i - m_i \ge 1/k\}$ bo'lsin. U holda

$$D_k \subset \bigcup_{j \in F} [x_{j-1}, x_j],$$

bundan

$$\mu(D_k) \le \sum_{j \in F} (x_j - x_{j-1}).$$

Endi

$$S - s = \sum_{i=0}^{n-1} (M_i - m_i)(x_{i+1} - x_i) \ge$$

$$- m_i)(x_{i+1} - x_i) \ge \sum_{i=0}^{n-1} (x_{i+1} - x_i) \ge \frac{1}{2} \mu(D_k)$$

$$\geq \sum_{j \in F} (M_i - m_i)(x_{i+1} - x_i) \geq \sum_{j \in F} \frac{1}{k} (x_{i+1} - x_i) \geq \frac{1}{k} \mu(D_k).$$

 $S - s < \varepsilon \operatorname{dan} \mu(D_k) \le \varepsilon k$. $\varepsilon \operatorname{ning} \operatorname{ixtiyoriyligidan}, \mu(D_k) = 0$ kelib chiqadi. U holda $\mu(D) \le \sum_{k \ge 1} \mu(D_k) = 0$, ya'ni $\mu(D) = 0$.

2.3.8. Agar f funksiya [a; b] oraliqda Riman ma'nosida integrallanuvchi bo'lsa, u holda f funksiya [a; b] oraliqda Lebeg ma'nosida ham integrallanuvchi bo'ladi va

$$(L) \int_{a}^{b} f(x) \, d\mu(x) = (R) \int_{a}^{b} f(x) \, dx.$$

Yechimi. f funksiya [a;b] oraliqda Riman ma'nosida integrallanuvchi boʻlganlikdan, u chegaralangandir va uzilish nuqtalari toʻplami D uchun, 2.3.7-misolga koʻra $\mu(D)=0$. Nol oʻlchovli toʻplamda ixtiyoriy funksiya oʻlchovli ekanligidan, f ning $E=[a,b]\setminus D$ toʻplamda oʻlchovli ekanligini koʻrsatamiz.

 $c \in \mathbb{R}$ sonini olamiz. $x \in E(f > c)$, ya'ni f(x) > c bo'lsin. $\varepsilon_x = c - f(x)$ deylik. E to'plamda f uzluksizligidan shunday $\delta_x > 0$ topilib, $x' \in E$, $|x - x'| < \delta_x$ uchun $|f(x) - f(x')| < \varepsilon_x$ o'rinlidir. Bundan $f(x') < f(x) + \varepsilon_x = c$, ya'ni f(x') < c.

$$G = \bigcup \{(x - \delta_x; x + \delta_x) : x \in E(f > c)\}$$

ochiq to'plamdir, demak o'lchovli va bundan $E \cap G$ o'lchovlidir.

 $E(f>c)=E\cap G$ ekanligini ko'rsatamiz. Haqiqatan, $x\in E(f>c)$ bo'lsa, u holda $x\in E$ va f(x)>c. Bundan $x\in (x-\delta_x;x+\delta_x)\subset G$, ya'ni $x\in E\cap G$. Aksincha, $x\in E\cap G$ bo'lsin. U holda $x\in E$ va biror $x_0\in E(f>c)$ uchun $x\in (x_0-\delta_x;x_0+\delta_x)$. Bundan f(x)>c, ya'ni

 $x \in E(f > c)$. Demak, E(f > c) o'lchovli to'plam. f chegaralangan va o'lchovli ekanligidan, u Lebag ma'nosida integrallanuvchidir.

Endi integrallarning tengligini ko'rsatamiz. [a, b] oraliqni $[x_{i-1}, x_i]$ oraliqlarga bo'lamiz va har bir oraliqda 2.3.1 - misolga asosan, Lebeg integralini baholaymiz:

$$m_i \Delta_i \le (L) \int_{x_{i-1}}^{x_i} f(x) d\mu(x) \le M_i \Delta_i.$$

Barcha i lar bo'yicha yig'indi olsak, u holda

$$s \le (L) \int_a^b f(x) \, d\mu(x) \le S.$$

 $\lambda = \max \Delta_i \to 0$ da s va S Darbu yig'indilari Riman integraliga intiladi. Demak,

$$(L) \int_{a}^{b} f(x) \, d\mu(x) = (R) \int_{a}^{b} f(x) \, dx.$$

 $2.3.9.~Mayli~\mu-\mathbb{R}~dagi~Lebeg~o'lchovi~bo'lsin.~\mathbb{Q}~ratsional~sonlar~to'plami~bo'lsa,~u~holda$

$$\int\limits_{\mathbb{R}} \chi_{\mathbb{Q}}(x) \, d\mu(x)$$

integralni hisoblang.

Yechimi. Lebeg integrali additivligidan

$$\begin{split} &\int\limits_{\mathbb{R}} \chi_{\mathbb{Q}}(x) d\mu(x) = \int\limits_{\mathbb{Q}} \chi_{\mathbb{Q}}(x) d\mu(x) + \int\limits_{\mathbb{R} \backslash \mathbb{Q}} \chi_{\mathbb{Q}}(x) d\mu(x) = \\ &= \int\limits_{\mathbb{Q}} 1 \cdot d\mu(x) + \int\limits_{\mathbb{R} \backslash \mathbb{Q}} 0 \cdot d\mu(x) = 1 \cdot \mu(\mathbb{Q}) = 1 \cdot 0 = 0, \end{split}$$

yani $\int_{\mathbb{D}} \chi_{\mathbb{Q}}(x) d\mu(x) = 0.$

2.3.10. Agar $f(x) = (-1)^{[t]}$ va A = [-3; 2) bo'lsa, u holda

$$\int_{A} f(x) \, d\mu(x), \quad \int_{A} |f(x)| \, d\mu(x), \quad \int_{A} f_{+}(x) \, d\mu(x), \quad \int_{A} f_{-}(x) \, d\mu(x)$$

 $integral larni\ his oblang.$

Yechimi. [-3; 2) oraliqni

$$[-3;2) = [-3;-2) \cup [-2;-1) \cup [-1;0) \cup [0;1) \cup [1;2) = \bigcup_{k=-3}^{1} [k;k+1)$$

ko'rinishda yozsak, u holda har bir $x \in [k; k+1), k \in \overline{-3, 1}$ uchun

$$f(x) = (-1)^k,$$

ya'ni

$$f(x) = \sum_{k=-3}^{1} (-1)^k \chi_{[k;k+1)}$$

ko'rinishdagi oddiy funksiya ekanligi ko'rinadi. Lebeg integrali ta'rifidan,

$$\int_{A} f(x) d\mu(x) = \sum_{k=-3}^{1} (-1)^{k} \mu([k; k+1)) = \sum_{k=-3}^{1} (-1)^{k} [(k+1) - k] =$$

$$= \sum_{k=-3}^{1} (-1)^{k} = -1 + 1 - 1 + 1 - 1 = -1,$$

ya'ni $\int_A f(x) d\mu(x) = -1$.

$$\int_{A} |f(x)| d\mu(x) = \sum_{k=-3}^{1} |(-1)^{k}| \mu([k; k+1)) = \sum_{k=-3}^{1} 1 = 5,$$

yani $\int_A |f(x)| d\mu(x) = 5$. Endi

$$f_{+}(x) = \frac{|f(x)| + f(x)}{2}$$
 va $f_{-}(x) = \frac{|f(x)| - f(x)}{2}$

tengliklaridan

$$\int_{A} f_{+}(x) d\mu(x) = \frac{1}{2} \left(\int_{A} |f(x)| d\mu(t) + \int_{A} f(t) d\mu(x) \right) = \frac{1}{2} (5 - 1) = 2$$

va

$$\int_{A} f_{-}(x) \, d\mu(x) = \frac{1}{2} \left(\int_{A} |f(x)| \, d\mu(x) - \int_{A} f(x) \, d\mu(x) \right) = \frac{1}{2} (5+1) = 3.$$

2.3.11. f(x) funksiya

$$f(x) = \begin{cases} 2^x, & x \in \mathbb{R} \setminus \mathbb{Q}, \\ \sin x, & x \in \mathbb{Q}. \end{cases}$$

kabi aniqlangan. Bu funksiya [0,1] segmentida Riman ma'nosida integrallanuvchimi? Lebeg ma'nosidachi? Agar integrallanuvchi bo'lsa uning integralini hisoblang.

Yechimi. Bu funksiya Riman ma'nosida integrallanuvchi emas. Aytaylik $\{\Delta x_k, k = \overline{1, n}\}$ – [0, 1] segmentning biror bo'linmasi bo'lsin.

Agar $\xi_k \in \triangle x_k$ sonlar rasional bo'lsa, u holda Darbu yig'indisi

$$\sum_{k=1}^{n} f(\xi_k) \triangle x_k = \sum_{k=1}^{n} \sin(\xi_k) \triangle x_k.$$

Bu holda, Darbu yig'indilari $\int_{0}^{1} \sin(x) dx = -\cos 1 - 1$ soniga yaqinlashadi.

Endi $\xi_k \in \triangle x_k$ sonlar irrasional bo'lsa, u holda Darbu yig'indisi

$$\sum_{k=1}^{n} f(\xi_k) \triangle x_k = \sum_{k=1}^{n} 2^{\xi_k} \triangle x_k.$$

Bu holda, Darbu yig'indilari $\int_{0}^{1} 2^{x} dx = \frac{1}{\ln 2}$ soniga yaqinlashadi.

 $-\cos 1 - 1 \neq \frac{1}{\ln 2}$ bo'lganlikdan, f(x)funksiya Riman ma'nosida integrallanuvchi emas.

Endi A_1 orqali [0,1] toiplamida joylashgan barcha irratsional sonlar to'plamini, A_2 orqali esa shu segmentdagi barcha ratsional sonlar to'plamini belgilaymiz, ya'ni A = [0,1] va $A = A_1 \cup A_2$. Ratsional sonlar to'plami sanoqli bo'lganligidan uning o'lchovi 0 ga teng, ya'ni $\mu(A_2) = 0$. U holda funktsiyaning Lebeg integrali

$$\int_{A} f(x)d\mu = \int_{A_1} 2^x d\mu + \int_{A_2} \sin x d\mu = \int_{0}^{1} 2^x dx = 1 \setminus \ln 2.$$

Demak funktsiya Lebeg ma'nosida integrallanuvchi.

2.3.12. Agar f(x) funksiya

$$f(x) = \begin{cases} \frac{1}{\sqrt{x}}, & x \in \mathbb{R} \setminus \mathbb{Q}, \\ \frac{1}{x-1}, & x \in \mathbb{Q}. \end{cases}$$

ko'rinishida berilgan bo'lsa, $\int_{[0,1]} f(x)d\mu$ ni hisoblang, bu erda μ haqiqiy sonlar to'plamidagi Lebeg o'lchovi.

Yechimi. f(x) funksiyasi \mathbb{R} da deyarli barcha joyda $g(x) = \frac{1}{\sqrt{x}}$ funksiyasiga ekvivalent. U holda Lebeg integralining hossasiga ko'ra

$$\int_{[0,1]} f(x)d\mu = \int_{[0,1]} g(x)d\mu = \int_{0}^{1} \frac{1}{\sqrt{x}}dx = 2.$$

2.3.13. Tengsizlikni isbotlang.

$$\frac{2}{\sqrt[4]{e}} \le \int_{[-1,1]} e^{x^2 + x} \chi_{\mathbb{R} \setminus \mathbb{Q}}(x) \, d\mu \le 2e^2,$$

 $bu\ erda\ \mu\ haqiqiy\ sonlar\ to'plamidagi\ Lebeg\ o'lchovi.$

Yechimi. Dastlab $\mathbb R$ ning deyarli hamma joyida $\chi_{\mathbb R\backslash\mathbb Q}(x)=1$ ekanligini aytib o'taylik. Shuning uchun

$$\frac{2}{\sqrt[4]{e}} \le \int_{[-1,1]} e^{x^2 + x} \, d\mu \le 2e^2$$

tengsizligini isbotlash kifoya.

[-1;1]oralig'ida $e^{-1/4} \le e^{x^2+x} \le e^2$ ekanligi ravshan. A=[-1;1]to'plamining o'lchovi $\mu(A)=1-(-1)=2$ ekanligidan va 2.3.1-misoldan

$$\frac{2}{\sqrt[4]{e}} \le \int_{[-1,1]} e^{x^2 + x} d\mu \le 2e^2$$

munosobatiga ega bo'lamiz.

2.3.14. A=(0;1] toplamida f funksiya berilgan bo'lib, u $A_k=\left(\frac{1}{k+1};\frac{1}{k}\right]$ yarum intervalida $\frac{(-1)^k}{k^{\alpha}},\ k\in\mathbb{N}$ qiymatini qabul qilsin. α ning qanday qiymatlarida bu funksiya (0;1] kesmada Lebeg ma'nosida integrallanivchi bo'ladi?

Yechimi. f funksiya oddiy funksiya bo'lib, u sanoqli $\frac{(-1)^k}{k^{\alpha}}$, $k \in \mathbb{N}$ qiymatlarini qabul qiladi. A_k to'plamlari o'lchovli bo'lgani uchun f(x) funksiyasi ham o'lchovli bo'ladi. Demak,

$$\sum_{k=1}^{\infty} \frac{(-1)^k}{k^{\alpha}} \mu(A_k)$$

qatori yaqinlashuvchi bo'lsa, f(x) funksiyasi A da integrallanuvchi bo'ladi. Endi

$$\sum_{k=1}^{\infty} \frac{(-1)^k}{k^{\alpha}} \mu(A_k) = \sum_{k=1}^{\infty} \frac{(-1)^k}{k^{\alpha}} \left(\frac{1}{k} - \frac{1}{k+1}\right) = \sum_{k=1}^{\infty} \frac{(-1)^k}{k^{\alpha}} \frac{1}{k(k+1)} = \sum_{k=1}^{\infty} \frac{(-1)^k}{k^{\alpha+1}(k+1)}$$

ekanligidan, qator $\alpha > -1$ bolgandagina yaqinlashishini ko'rsa bo'ladi.

2.3.15. Hisoblang:

$$\lim_{n \to \infty} \int_{\mathbb{R}} n \sin \frac{|x|}{n} (1 + x^4)^{-1} d\mu_1.$$

Yechimi. Har bir $n \in \mathbb{N}$ uchun $f_n(x) = n \sin \frac{|x|}{n} (1 + x^4)^{-1}$ funksiyani qaraylik. Ixtiyoriy $x \in \mathbb{R}$ uchun

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{n \sin \frac{|x|}{n}}{1 + x^4} = \frac{|x|}{1 + x^4} = f(x).$$

Bundan tashqari ixtiyoriy $x \in \mathbb{R}$ uchun

$$|f_n(x)| \le \frac{|x|}{1+x^4} = g(x).$$

Nomanfiy g(x) funksiya $\mathbb R$ da integrallanuvchi. Bundan f ham $\mathbb R$ da Lebeg ma'nosida integrallanuvchi va

$$\lim_{n \to \infty} \int_{\mathbb{R}} n \sin \frac{|x|}{n} (1 + x^4)^{-1} d\mu_1 = \int_{\mathbb{R}} \frac{|x|}{1 + x^4} = \arctan x^2 \Big|_0^{+\infty} = \frac{\pi}{2}.$$

2.3.16. Aytaylik $\{f_n(x)\}$ — A = [0;1] da o'lchovli, nomanfiy, chegaralangan funksiyalar ketma-ketligi uchun $\lim_{n\to\infty} \int_A f_n(x) d\mu \to 0$ bo'lsin. U holda A to'plamida $\lim_{n\to\infty} f_n(x) \to 0$ ekanligi kelib chiqadimi?

Yechimi. Umuman aytganda, kelib chiqmaydi. Buni quyidagi misoldan ko'rsa bo'ladi.

Ixtiyoriy natural n soni yagona ravishda

$$n = 2^k + i, \ k = 0, 1, 2, \dots, 0 < i < 2^{k-1}$$

ko'rinishiga ega ekanligini eslatib o'taylik. Endi shunday $\{f_n(x)\}$ ketma - ketligini olaylik, ixtiyoriy $n=2^k+i$ uchun

$$f_n(x) = \begin{cases} 1, & \text{agar } \frac{1}{2^k} \le x \le \frac{1}{2^{k+1}}, \\ 0, & [0,1] \text{ segmenting boshqa nuqtalarida.} \end{cases}$$

U holda $\int_{0}^{1} f_n(x) dx = \frac{1}{2^k}$. $n \to \infty$ da k ham cheksizlikka intilganidan

$$\lim_{k \to \infty} \int_{0}^{1} f_n(x) dx = 0.$$

Lekin $\{f_n(x)\}$ ketma-ketligi A = [0,1] toplamining hech bir nuqtasida nolga intilmaydi.

2.3.17. $\int_{E} f(x)d\mu$ Lebeg integralini hisoblang, bunda

$$f(x) = \begin{cases} \frac{1}{x^2}, & \text{agar} \quad x \in (0,1) \setminus Q \\ 6x + 7, & \text{agar} \quad x \in (0,1) \cap Q, \end{cases} \qquad E = (0,1)$$

Yechimi. $g(x)=\frac{1}{x^2}$ funksiyasini qaraymiz. Funksiya aniqlanishiga ko'ra $f(x)\sim g(x).$ U holda

$$\int_{(0,1)} f(x) \, d\mu = \int_{(0,1)} g(x) \, d\mu$$

bo'ladi. Endi g(x) funksiyasining integralini hisoblaymiz. g(x) funksiya (0,1) da musbat va chegaralanmagan. g(x) funksiyasi orqali quyidagi funksiyalarni tuzamiz:

$$[g(x)]_n = \begin{cases} n, & \frac{1}{x^2} > n \\ \frac{1}{x^2}, & \frac{1}{x^2} \le n \end{cases}$$

ya'ni

$$[g(x)]_n = \begin{cases} n, & 0 < x < \frac{1}{\sqrt{n}} \\ \frac{1}{x^2}, & \frac{1}{\sqrt{n}} \le x < 1 \end{cases}$$

 $[g\left(x\right)]_n$ funksiyaning integralini h'isoblaymiz. $[g\left(x\right)]_n$ funksiyasi (0,1) da uzluksiz, u holda Riman ma'nosida integrallanuvchi:

$$(L) \int_{(0,1)} [g(x)]_n d\mu = (R) \int_0^{\frac{1}{\sqrt{n}}} n dx + (R) \int_{\frac{1}{\sqrt{n}}}^1 \frac{1}{x^2} dx = 2\sqrt{n} - 1$$

Tarif bo'yicha

$$\int_{(0,1)} g(x) \, d\mu(x) = \lim_{n \to \infty} (2\sqrt{n} - 1) = \infty$$

Demak g(x) funksiya Lebeg ma'noda integrallanuvchi emas, bundan esa unga ekvivalent funksiya f(x) ham Lebeg ma'noda integrallanuvchi emasligi kelib chiqadi.

2.3.18. $(0, \infty)$ oraliqda $f(t) = e^{-[t]}$ funksiyaning Lebeg integralini hisoblang.

 $Yechimi. \ n \leq t < n+1$ da [t] = nbo'lganlikdan, bu oraliqda $f(t) = e^{-n}.$ Bundan

$$\int_{(0,\infty)} f(t) dt = \sum_{n=0}^{\infty} \int_{n}^{n+1} f(t) dt = \sum_{n=0}^{\infty} \int_{n}^{n+1} e^{-n} dt =$$

$$= \sum_{n=0}^{\infty} e^{-n} = \frac{e}{e-1}.$$

2.3.19. $(0, \infty)$ oraliqua

$$f(t) = \frac{1}{[t+1][t+2]}$$

funksiyaning Lebeg integralini hisoblang.

 $Yechimi. \ n \le t < n+1 \ da$

$$f(t) = \frac{1}{(n+1)(n+2)}.$$

Bundan

$$\int_{(0,\infty)} f(t) dt = \sum_{n=0}^{\infty} \int_{n}^{n+1} f(t) dt = \sum_{n=0}^{\infty} \int_{n}^{n+1} \frac{1}{(n+1)(n+2)} dt =$$

$$= \sum_{n=0}^{\infty} \frac{1}{(n+1)(n+2)} = 1.$$

2.3.20. $(0, \infty)$ oraliqua

$$f(t) = \frac{1}{[t]!}$$

funksiyaning Lebeg integralini hisoblang.

 $Yechimi. \ n \leq t < n+1$ da

$$f(t) = \frac{1}{n!}.$$

Bundan

$$\int_{(0,\infty)} f(t) dt = \sum_{n=0}^{\infty} \int_{n}^{n+1} f(t) dt = \sum_{n=0}^{\infty} \int_{n}^{n+1} \frac{1}{n!} dt =$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} = e.$$

Mustaqil ish uchun masalalar

1 – 5 misollarda $\int_{E} f(x) dx$ Lebeg integralini hisoblang.

1.

$$f(x) = \begin{cases} \frac{1}{\sqrt{x} + \sqrt[4]{x}}, & \text{agar } x \in \mathbb{I} \cap \left[\frac{1}{16}, 1\right] \\ \frac{4}{x}, & \text{agar } x \in \mathbb{I} \cap \left[1, \frac{5}{4}\right] \\ \sin^2(x), & \text{agar } x \in \mathbb{Q} \end{cases}$$

$$E = \left[\frac{1}{16}, \frac{5}{4}\right].$$

2.

$$f(x) = \begin{cases} \frac{1}{(x+1)^3}, & \text{agar } x \in \mathbb{I} \cap [0,1] \\ 7x, & \text{agar } x \in \mathbb{Q} \end{cases}$$
 $E = [0,1].$

3.

$$f(x) = \begin{cases} \frac{1}{1 + \sqrt{x}}, & \text{agar } x \in \mathbb{I} \cap [0, 4] \\ \frac{2x - 3}{x^2 - 3x + 8}, & \text{agar } x \in \mathbb{I} \cap [4, 5] \\ \sin(3 + x^2), & \text{agar } x \in \mathbb{Q} \end{cases}$$
 $E = [0, 5].$

4.

$$f(x) = \begin{cases} x \cos^2 x, & \text{agar } x \in \mathbb{I} \cap [0, \pi] \\ x \sin^2 x, & \text{agar } x \in \mathbb{Q} \end{cases} E = [0, \pi].$$

5.

$$f(x) = \begin{cases} \frac{1}{\sqrt{x}}, & \text{agar } x \in \mathbb{I} \cap [0, 1] \\ \sin x, & \text{agar } x \in \mathbb{Q} \end{cases}$$
 $E = [0, 1].$

6.

$$f(x) = \begin{cases} \frac{x^2 - 1}{x^2 + 1}, & \operatorname{agar} \ x \in \mathbb{I} \cap [0, \frac{1}{\sqrt{3}}] \\ \frac{x^4}{x^2 + 1}, & \operatorname{agar} \ x \in \mathbb{I} \cap [\frac{1}{\sqrt{3}}, \sqrt{3}] \\ 7, & \operatorname{agar} \ x \in \mathbb{Q} \end{cases}$$
 $E = [0, \sqrt{3}].$

7.

$$f(x) = \begin{cases} \frac{\arctan x}{1+x^2}, & \operatorname{agar} \ x \in \mathbb{I} \cap [0, \sqrt{3}] \\ -\frac{1}{x+2}, & \operatorname{agar} \ x \in \mathbb{I} \cap [\sqrt{3}, 2] \\ \cos^2 x, & \operatorname{agar} \ x \in \mathbb{Q} \end{cases}$$
 $E = [0, 2].$

8.

$$f(x) = \begin{cases} \frac{1}{\cos^2 x \sqrt{1 + \lg x}}, & \text{agar } x \in \mathbb{I} \cap [0, \frac{\pi}{4}] \\ 8x^2 + 4, & \text{agar } x \in \mathbb{Q} \end{cases}$$
$$E = [0, \frac{\pi}{4}].$$

9.

$$f(x) = \begin{cases} x \sin^2 x, & \text{agar } x \in \mathbb{I} \cap [0, \pi] \\ x \cos^2 x, & \text{agar } x \in \mathbb{Q} \end{cases}$$
 $E = [0, \pi].$

10-13 misollarda Lebeg integrallarining mavjudligini koʻrsating.

10.
$$\int_{1}^{\infty} \sum_{k=n}^{\infty} \frac{(-1)^k}{k} \chi_{[k,k+1)}(x) dx.$$

11.
$$\int_{1}^{\infty} \sum_{k=n}^{\infty} \frac{\sin k}{k} \chi_{(k,k+1)}(x) dx.$$

12.
$$\int_{1}^{\infty} \sum_{k=n}^{\infty} \frac{(-1)^k}{k^2} \chi_{[k^2,(k+1)^2)}(x) dx.$$

13.
$$\int_{1}^{\infty} \sum_{k=n}^{\infty} \cos k \chi_{[\sqrt{k},\sqrt{k+1})}(x) dx.$$

III BOB

Metrik fazolar

3.1. Metrik fazolar

Haqiqiy sonlar orasidagi masofa tushunchasini umumlashtirilish natijasida, zamonaviy matematikaning eng muhim tushunchalaridan biri bo'lgan metrik fazo tushunchasi fransuz matematigi M.Freshe tomonidan 1906 yilda kiritilgan. Quyida biz metrik fazolardagi asosiy tushunchalar bilan tanishamiz.

Ta'rif. X to'plamning har bir x va y elementlari juftligiga nomanfiy $\rho(x,y)$ haqiqiy soni mos qo'yilgan bo'lib, quyidagi shartlarni qanoatlantirsa, u holda ρ funksiyaga metrika deyiladi:

- 1. $\rho(x,y) = 0 \Leftrightarrow x = y$ (ayniylik aksiomasi);
- 2. $\rho(x,y) = \rho(y,x)$ (simmetriklik aksiomasi);
- 3. $\rho(x,y) \le \rho(x,z) + \rho(z,y)$ (uchburchak aksiomasi).

 (X, ρ) juftligiga metrik fazo deyiladi.

- 1. Haqiqiy sonlar o'qida x va y sonlar orasidagi masofani $\rho(x,y) = |x-y|$ ko'rinishda aniqlasak, u holda ρ metrika bo'ladi.
- 2. n sondagi haqiqiy sonlarning $x=(x_1,x_2,\ldots,x_n)$ tartiblangan guruhlari to'plamida metrikani $\rho(x,y)=\sqrt{\sum\limits_{k=1}^n(x_k-y_k)^2}$ kabi kiritish mumkin. Bu to'plam n-o'lchovli arifmetik Evklid fazosi deyiladi va \mathbb{R}^n orqali belgilanadi.
- 3. ℓ_2 fazosi. Elementlari haqiqiy sonlarning $x=\{x_n\}$ ketma-ketliklaridan iborat bo'lib, bu ketma-ketliklarning hadlari $\sum_{n=1}^{\infty} x_n^2 < \infty$ shartini qanoatlantiruvchi to'plamda metrikani $\rho(x,y) = \sqrt{\sum_{n=1}^{\infty} (x_n y_n)^2}$ ko'rinishda kiritish mumkin. Bu metrik fazo ℓ_2 orqali belgilanadi.
- $\mathbf{4}$. [a,b] segmentda aniqlangan barcha haqiqiy uzluksiz funksiyalar to'plamida metrikani

$$\rho(f,g) = \max_{a \le t \le b} |g(t) - f(t)|$$

ko'rinishda kiritish mumkin. Bu metrik fazo C[a, b] orqali belgilanadi.

5. m fazosi. Hadlari chegaralangan haqiqiy sonlarning cheksiz $x = \{x_n\}$ ketma-ketliklari to'plamida masofani

$$\rho(x,y) = \sup_{n} |x_n - y_n|$$

ko'rinishda kiritsak, u holda bu to'plam metrik fazo bo'ladi. Bu metrik fazo m orqali belgilanadi.

 (X, ρ) metrik fazoda biror $\{x_n\}$ ketma-ketlik berilgan bo'lsin. Agar ixtiyoriy $\varepsilon > 0$ soni uchun shunday $n(\varepsilon)$ nomer topilib, $n > n(\varepsilon)$ tengsizligini qanoatlantiruvchi barcha n lar uchun $\rho(x_n, x) < \varepsilon$ tengsizligi o'rinli bo'lsa, u holda $\{x_n\}$ ketma-ketligi $x \in X$ elementiga yaqinlashuvchi deyiladi va $\lim_{n\to\infty} x_n = x$ yoki $x_n \to x$ kabi belgilanadi. x nuqta $\{x_n\}$ ketma-ketligining limiti deb ataladi.

Agar $\{x_n\}$ ketma-ketlik limit nuqtaga ega bo'lsa, u holda u yagona bo'ladi. Haqiqatan, agar $\lim_{n\to\infty} x_n = x$ va $\lim_{n\to\infty} x_n = x'$ bo'lsa, u holda

$$\rho(x, x') \le \rho(x, x_n) + \rho(x_n, x').$$

Bu tengsizlikning o'ng tomoni $n \to \infty$ da nolga intiladi. Bundan $\rho(x,x')=0$, yani x=x'.

Ta'rif. X metrik fazoda $\{x_n\}$ ketma-ketligi berilgan bo'lsin. Agar $\forall \varepsilon > 0$ son uchun $n(\varepsilon)$ nomer topilib $n, m > n(\varepsilon)$ tengsizliklarini qanoatlantiruvchi barcha n, m natural sonlari uchun $\rho(x_n, x_m) < \varepsilon$ tengsizligi o'rinli bo'lsa, u holda $\{x_n\}$ ketma-ketlik fundamental deb ataladi.

Ta'rif. Agar metrik fazoning ixtiyoriy fundamental ketma-ketligi shu fazoga tegishli limitga ega bo'lsa, u holda u to'liq metrik fazo deb ataladi.

Yuqorida keltirilgan haqiqiy sonlar to'plami, Evklid fazosi to'liq metrik fazoga misol bo'ladi. Ratsional sonlar to'plami esa, to'liq emas metrik fazoga misol bo'ladi. Haqiqatan, $x_n = (1 + \frac{1}{n})^n$ bo'lganda, $\{x_n\}$ ketma-ketlik fundamental, ammo uning limiti irratsional e soniga teng.

 (X, ρ_1) va (Y, ρ_2) metrik fazolar bo'lsin. X va Y fazolar orasida o'zaro bir qiymatli $f: X \to Y$ moslik o'rnatilgan bo'lib, ixtiyoriy $x_1, x_2 \in X$ elementlari uchun $\rho_1(x_1, x_2) = \rho_2(f(x_1), f(x_2))$ tengligi o'rinli bo'lsa, u holda bu metrik fazolar o'zaro *izometrik* deb ataladi.

 (X, ρ_1) va (Y, ρ_2) metrik fazolar berilganda, X va Y fazolar orasida yaqinlashuvchilikni saqlaydigan oʻzaro bir qiymatli $f: X \to Y$ moslik oʻrnatilgan boʻlsa (ya'ni $\rho_1(x_n, a) \to 0$ dan $\rho_2(f(x_n), f(a)) \to 0$ kelib chiqsa va aksincha), u holda bu metrik fazolar oʻzaro gomeomorf deyiladi.

X fazoda ρ_1 va ρ_2 metrikalar berilgan bo'lsin. Agar X fazoda ketmaketlikning ρ_1 metrika bo'yicha yaqinlashishidan ρ_2 metrika bo'yicha yaqinlashishi va aksincha ρ_2 metrika bo'yicha yaqinlashishidan ρ_1 metrika bo'yicha yaqinlashishi kelib chiqsa, u holda bu metrikalar o'zaro ekvivalent deb ataladi.

X metrik fazoda markazi a nuqtada, radiusi r>0 bo'lgan B(a,r) ochiq shar deb, $\rho(a,x)< r$ shartni qanoatlantiruvchi barcha $x\in X$ elementlar to'plamiga aytiladi. B[a,r] yopiq shar $\rho(a,x)\leq r$ tengsizligi yordamida aniqlanadi. a nuqtaning ε -atrofi deb $B(a,\varepsilon)$ ochiq sharga aytamiz.

X metrik fazoning biror E qism to'plami berilgan bo'lsin. Agar $x_0 \in X$ nuqtaning ixtiyoriy atrofida E to'plamning kamida bir elementi mavjud bo'lsa, u holda x_0 nuqta E to'plamning urinish nuqtasi deb ataladi. E to'plamning barcha urinish nuqtalari to'plami E ning yopilmasi deb ataladi va [E] ko'rinishida belgilanadi.

- **6.** Sonlar o'qida (a, b) intervalning yopilmasi [a, b] segmentdan iborat.
 - 7. Ratsional sonlar to'plami \mathbb{Q} uchun $[\mathbb{Q}] = \mathbb{R}$ bo'ladi.

Agar $x_0 \in X$ nuqta o'zining biror atrofi bilan butunlay E to'plamga tegishli bo'lsa, u holda bu nuqta E ning ichki nuqtasi deb ataladi. E to'plamning barcha ichki nuqtalari to'plamning ichi deb ataladi va int(E) ko'rinishda belgilanadi.Quyidagi munosabat o'rinlidir: $int(E) \subset E \subset [E]$.

Agar $x_0 \in X$ nuqtaning ixtiyoriy atrofida o'zidan boshqa E to'plamning kamida bitta elementi mavjud bo'lsa, u holda bu nuqta E ning limit nuqtasi deb ataladi. E to'plamning barcha limit nuqtalari uning hosila to'plami deyiladi va E' orqali belgilanadi. E' ning hosila to'plamini E'' orqali belgilaymiz. Shunday qilib, E to'plamning yuqori tartibli hosila to'plamlari aniqlanadi. (n -tartibli hosilali to'plami $E^{(n)}$ ko'rinishda belgilanadi).

 $x_0 \in E$ nuqtaning o'zidan tashqari E to'plamning birorta ham elementi bo'lmagan atrofi mavjud bo'lsa, u holda bu nuqta E ning yakkalangan nuqtasi deb ataladi.

Agar $x_0 \in X$ nuqtaning ixtiyoriy atrofida E to'plamga tegishli bo'lgan ham, tegishli bo'lmagan ham nuqtalar mavjud bo'lsa, u holda bu nuqta E to'plamning chegaraviy nuqtasi deb ataladi. E to'plamning barcha chegaraviy nuqtalari to'plami uning chegarasi deb ataladi va ∂E ko'rinishda belgilanadi.

Ta'rif. Agar E = [E] tengligi o'rinli bo'lsa, u holda E yopiq to'plam deyiladi.

Agar to'plam yopiq bo'lsa va yakkalangan nuqtaga ega bo'lmasa, u holda u *mukammal* deb ataladi.

Ta'rif. Agar E = int(E) bo'lsa, u holda E ochiq to'plam deyiladi.

Ochiq to'plamlarning quyidagi ayrim asosiy xossalarini keltiramiz:

- 1) chekli sondagi ochiq to'plamlarning kesishmasi ochiq to'plam bo'ladi;
- 2) ixtiyoriy sondagi ochiq to'plamlarning birlashmasi ochiq to'plam bo'ladi.

Yopiq va ochiq to'plamlar orasida quyidagi bog'lanishlar mavjud:

- 1) ixtiyoriy ochiq to'plamning to'liqtiruvchisi yopiq to'plam bo'ladi;
- 2) ixtiyoriy yopiq to'plamning to'liqtiruvchisi ochiq to'plam bo'ladi.

Agar $E \subset X$ to'plamning har qanday nuqtasining ixtiyoriy atrofida A to'plamga tegishli nuqta topilsa, u holda E to'plami A to'plamda zich deb ataladi, ya'ni E to'plam A to'plamda zich bo'lishi uchun $A \subset [E]$ bo'lishi kerak. Agar [E] = X bo'lsa, u holda E hamma erda zich deyiladi. Agar fazoning hamma erda zich sanoqli qism to'plami mavjud bo'lsa, u holda bu fazo separabel deb ataladi.

Agar X fazodagi ixtiyoriy ochiq shar $E \subset X$ to'plamga tegishli birorta ham elementi bo'lmagan boshqa bir ochiq sharni o'z ichiga oladigan bo'lsa, u holda E to'plam hech bir erda zich emas deb ataladi. E to'plamning hech bir erda zich emasligi $int[E] = \emptyset$ tengligini anglatadi. Agar E to'plami sanoqlicha hech bir erda zich emas to'plamlarning birlashasida yotsa, u holda bu to'plam birinchi kategoriyali to'plam deyiladi, ya'ni $E \subset \bigcup_n E_n$, $int[E_n] = \emptyset$. Birinchi kategoriyali bo'lmagan to'plamga ikkinci kategoriyali to'plam deyiladi. Ixtiyoriy bo'sh bo'lmagan ochiq to'plamostisi ikkinchi kategoriyali to'plam bo'lgan metrik fazoga Ber fazosi deyiladi.

Masalalar

3.1.1. Elementlari $\sum\limits_{n=1}^{\infty}|x_n|<\infty$ shartni qanoatlantiruvchi haqiqiy sonlarning $x=\{x_n\}$ ketma-ketliklaridan iborat to'plamda masofani

$$\rho(x,y) = \sum_{n=1}^{\infty} |x_n - y_n|$$

ko'rinishda kiritsak, metrika aksiomalarining o'rinli bo'lishini tekshiring.

Yechimi. 1)
$$\rho(x,y) = \sum_{n=1}^{\infty} |x_n - y_n| = 0 \Leftrightarrow x_n - y_n = 0 \ (n = 1, 2, ...) \Leftrightarrow x = y;$$

2)
$$\rho(x,y) = \sum_{n=1}^{\infty} |x_n - y_n| = \sum_{n=1}^{\infty} |y_n - x_n| = \rho(y,x);$$

3) $\rho(x,y) = \sum_{n=1}^{\infty} |x_n - y_n| = \sum_{n=1}^{\infty} |x_n - z_n| + z_n - y_n| \le \sum_{n=1}^{\infty} |x_n - z_n| + \sum_{n=1}^{\infty} |z_n - y_n| = \rho(x,z) + \rho(z,y)$

Demak metrikaning uch aksiomasi ham o'rinli. Bu metrik fazo ℓ_1 orqali belgilanadi.

3.1.2. Elementlari $x = \{x_n\}$ ixtiyoriy cheksiz ketma-ketliklardan iborat bo'lgan to'plamda metrikani

$$\rho(x,y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{|x_n - y_n|}{1 + |x_n - y_n|}$$

ko'rinishda kiritish mumkinligini isbotlang.

Yechimi. $\sum_{n=1}^{\infty} \frac{1}{2^n} \frac{|x_n - y_n|}{1 + |x_n - y_n|}$ qator yaqinlashuvchi, chunki n ning ixtiyoriy qiymatida

$$\frac{1}{2^n} \frac{|x_n - y_n|}{1 + |x_n - y_n|} < \frac{1}{2^n}$$

tengsizligi o'rinli.

Uchburchak aksiomasini tekshirishdan avval, bir yordamchi tengsizlikni isbotlaymiz. Nomanfiy sonlar to'plamida aniqlangan

$$f(t) = \frac{t}{1+t}$$
, $(f'(t) = \frac{1}{(1+t)^2} > 0, \forall t > 0)$

funksiya monoton o'suvchi funksiya bo'lgani uchun, $a \leq b$ bo'lganda

$$\frac{a}{1+a} \le \frac{b}{1+b}$$

tengsizligi o'rinli bo'ladi. Bundan, ixtiyoriy $x=\{x_n\},\ y=\{y_n\}$ va $z=\{z_n\}$ elementlari uchun $|x_n-y_n|\leq |x_n-z_n|+|z_n-y_n|,\ (n=1,2,\ldots)$ bo'lganidan

$$\frac{|x_n - y_n|}{1 + |x_n - y_n|} \le \frac{|x_n - z_n| + |z_n - y_n|}{1 + |x_n - z_n| + |z_n - y_n|} =$$

$$= \frac{|x_n - z_n|}{1 + |x_n - z_n| + |z_n - y_nt|} + \frac{|z_n - y_n|}{1 + |x_n - z_n| + |z_n - y_n|} \le$$

$$\le \frac{|x_n - z_n|}{1 + |x_n - z_n|} + \frac{|z_n - y_n|}{1 + |z_n - y_n|}$$

tengsizligiga ega bo'lamiz. Bu tengsizliklarni $\frac{1}{2^n}$ ga ko'paytirib, barcha n lar bo'yicha qo'shib chiqsaq, uchburchak tengsizligiga ega bo'lamiz:

$$\rho(x,y) \le \rho(x,z) + \rho(z,y).$$

Bu metrik fazo s orqali belgilanadi.

3.1.3. Agar x va y haqiqiy sonlar orasida masofani $\rho(x,y) =$ $\sin^2(x-y)$ ko'rinishda aniqlasak, u holda barcha haqiqiy sonlar to'plami metrik fazo bo'ladami?

Yechimi. Aniqlangan masofa metrikaning birinchi shartini qanoat-Haqiqatan, $x \neq y$ bo'lganda $\sin^2(x - y) = 0$ bo'lishi lantirmaydi. mumkin.

3.1.4. Agar haqiqiy sonlar orasida masofani $\rho(x,y) = |x-y|$ ko'rinishda aniqlasak, u holda bu oraliq metrika bo'ladimi?

Yechimi. Metrika bo'ladi. Haqiqatan,

- 1) $\rho(x,y) = |x-y| \ge 0$; $\rho(x,y) = |x-y| = 0 \Leftrightarrow x-y = 0 \Leftrightarrow x = y$;
- 2) $\rho(x,y) = |x-y| = |-(y-x)| = |-1||y-x| = |y-x| = \rho(y,x);$
- 3) $\rho(x,y) = |x-y| = |x-z+z-y| < |x-z|+|z-y| = \rho(x,z)+\rho(z,y)$.
- Agar haqiqiy sonlar orasidagi masofani $\rho(x,y) =$ $\sqrt{|x-y|}$ ko'rinishda aniqlasak, u holda bu masofa metrika bo'ladimi?

Yechimi. Metrika bo'ladi.

- $\begin{array}{l} 1) \ \rho(x,y) = \sqrt{|x-y|} \geq 0 \\ \rho(x,y) = \sqrt{|x-y|} = 0 \Leftrightarrow |x-y| = 0 \Leftrightarrow x-y = 0 \Leftrightarrow x=y; \\ 2) \ \rho(x,y) = \sqrt{|x-y|} = \sqrt{|y-x|} = \rho(y,x); \end{array}$
- 3) Ixtiyoriy musbata vabhaqiqiy sonlar uchun $\sqrt{a+b} \leq \sqrt{a} + \sqrt{b}$ tengsizligi o'rinli bo'lgani uchun

$$\rho(x,y) = \sqrt{|x-y|} = \sqrt{|x-z+z-y|} \le \sqrt{|x-z| + |z-y|} \le \sqrt{|x-z|} + \sqrt{|z-y|} = \rho(x,z) + \rho(z,y).$$

3.1.6. [a,b] segmentda uzliksiz bo'lgan barcha funksiyalar $to'plamida\ masofani$

$$\rho(\varphi, \psi) = \sqrt{\int_{a}^{b} (\varphi(t) - \psi(t))^{2} dt}$$

ko'rinishida aniqlasak, u holda bu masofa metrika bo'ladimi?

Yechimi. Metrikaning 1) va 2) aksiomalari o'rinli. 3) aksiomaning o'rinli ekanligini ko'rsatishda Koshi — Bunyakovskiy tengsizligining integral shakli deb ataluvchi

$$\int_{a}^{b} \varphi(t)\psi(t) dt \le \sqrt{\int_{a}^{b} (\varphi(t))^{2} dt \int_{a}^{b} (\psi(t))^{2} dt}$$

tengsizlikdan foydalanamiz. Berilgan to'plamda ixtiyoriy φ, ψ funksiyalar uchun

$$\rho^{2}(\varphi,\psi) = \int_{a}^{b} (\varphi(t) - \psi(t))^{2} dt = \int_{a}^{b} (\varphi(t) - f(t) + f(t) - \varphi(t))^{2} dt =$$

$$= \int_{a}^{b} (\varphi(t) - f(t))^{2} dt + 2 \int_{a}^{b} (\varphi(t) - f(t)(f(t) - \psi(t)) dt + \int_{a}^{b} (f(t) - \psi(t))^{2} dt \le$$

$$\leq \int_{a}^{b} (\varphi(t) - f(t))^{2} dt + 2 \sqrt{\int_{a}^{b} (\varphi(t) - f(t))^{2} dt \int_{a}^{b} (f(t) - \psi(t))^{2} dt +$$

$$+ \int_{a}^{b} (f(t) - \psi(t))^{2} dt = \left(\sqrt{\int_{a}^{b} (\varphi(t) - f(t))^{2} dt + \sqrt{\int_{a}^{b} (f(t) - \psi(t))^{2} dt}}\right)^{2} =$$

$$= (\rho(\varphi, f) + \rho(f, \psi))^{2}.$$

Demak

$$\rho(\varphi, \psi) \le \rho(\varphi, f) + \rho(f, \psi).$$

3.1.7. [a,b] segmentda uzliksiz bo'lgan funksiyalarning barcha juftliklaridan iborat F[a,b] to'plamida (f_1,g_1) va (f_2,g_2) juftliklari orasida masofani

$$\rho((f_1, g_1)(f_2, g_2)) = \sup_{t \in [a, b]} (|f_1(t) - f_2(t)| + |g_1(t) - g_2(t)|)$$

ko'rinishda aniqlasak, u holda F[a,b] metrik fazo bo'ladimi? Yechimi. Metrikaning birinchi va ikkinchi aksiomalari o'rinli. Uchinchi aksiomaning o'rinli ekanligini ko'rsatamiz:

$$\rho((f_1, g_1), (f_2, g_2)) = \sup_{t \in [a, b]} (|f_1(t) - f_2(t)| + |g_1(t) - g_2(t)|) \le$$

$$\le \sup_{t \in [a, b]} (|f_1(t) - f_3(t)| + |f_3(t) - f_2(t)| + |g_1(t) - g_3(t)| + |g_3(t) - g_2(t)|) \le$$

$$\leq \sup_{t \in [a,b]} (|f_1(t) - f_3(t)| + |g_1(t) - g_3(t)|) + \sup_{t \in [a,b]} (|f_3(t) - f_2(t)| + |g_3(t) - g_2(t)|) =$$

$$= \rho((f_1, g_1), (f_3, g_3)) + \rho((f_3, g_3), (f_2, g_2)).$$

3.1.8. X metrik fazo to'liq bo'lishi uchun, bu fazoda ixtiyoriy ichma-ich joylashgan va radiuslari nolga intiluvchi yopiq sharlar ketma-ketligi bo'sh bo'lmagan kesishmaga ega bo'lishi zarur va etarli ekanligini isbotlang.

Yechimi. Zarurligi. X to'liq metrik fazo va

$$B_1 \supset \ldots \supset B_n \supset \ldots$$

ichma-ich joylashgan sharlar ketma-ketligi bo'lsin. B_n sharning radiusi va markazi mos ravishda r_n va a_n bo'lsin. $n \to \infty$ da $r_n \to 0$ bo'lib, m > n bo'lganda $\rho(a_n, a_m) < r_n$ bo'lgani uchun $\{a_n\}$ ketma-ketlik fundamental, u holda X ning to'liqligidan, uning yaqinlashuvchi ekanligi kelib chiqadi. $\lim_{n\to\infty} a_n = a$ bo'lsin, u holda $a \in [B_n]$. Shunday qilib, a har bir B_n sharning urinish nuqtasi bo'ladi. Bundan B_n yopiq shar bo'lganligi uchun $a \in B_n$ $(n = 1, 2, \ldots)$.

 $Etarliligi. \ X \ da \ ixtiyoriy \ \{x_n\} \ fundamental \ ketma-ketlik \ berilgan bo'lsin. U holda, shunday <math>n_1$ nomer topilib, $n \geq n_1$ tengsizligini qanoatlantiruvchi barcha n lar uchun $\rho(x_n, x_{n_1}) < \frac{1}{2}$ tengsizligi o'rinli bo'ladi. Markazi x_{n_1} nuqtada bo'lib, radiusi 1 ga teng yopiq sharni olib, bu sharni B_1 orqali belgilaylik. Endi shunday n_2 nomerni $n \geq n_2$ tengsizlikni qanoatlantiruvchi barcha n lar uchun $\rho(x_n, x_{n_2}) < \frac{1}{2^2}$ tengsizlik o'rinlanadigan qilib tanlab olamiz. x_{n_2} nuqtani radiusi 1/2 ga teng sharning markazi qilib olamiz va bu sharni B_2 orqali belgilaymiz. Shu jarayonni davom ettirsak ichma-ich joylashgan B_k yopiq sharlar ketma-ketligiga ega bo'lamiz. Bunda B_k sharning radiusi $1/2^{k-1}$ ga teng bo'ladi. Bu sharlar ketma-ketligi shartga muvofiq umumiy nuqtaga ega. Uni x orqali belgilaylik. Ushbu x nuqta $\{x_{n_k}\}$ ketma-ketlikning limit nuqtasi bo'ladi. Agar fundamental ketma-ketlik x nuqtaga yaqinlashuvchi qismiy ketma-ketlikka ega bo'lsa, u holda uning o'zi ham x ga yaqinlashadi.

3.1.9. X to'plamda metrikani

$$\rho(x,y) = \begin{cases} 1, & \mathbf{agar} \ x \neq y; \\ 0, & \mathbf{agar} \ x = y \end{cases}$$

Yechimi. X fazoda ixtiyoriy $\{x_n\}$ fundamental ketma-ketlik berilgan bo'lsin. U holda ixtiyoriy $0 < \varepsilon < 1$ soni uchun, shunday n_{ε}

natural soni topilib, $n, m \geq n_{\varepsilon}$ tengsizligini qanoatlantiruvchi barcha natural sonlar uchun $\rho(x_n, x_m) < \varepsilon$ tengsizligi o'rinli. Bundan berilgan ketma-ketlikning n_{ε} hadidan keyingi barcha hadlari o'zaro teng bo'ladi. Shuning uchun $\{x_n\}$ yaqinlashuvchi. Demak (X, ρ) to'liq metrik fazo.

3.1.10. ℓ_1 metrik fazoning to'liq ekanligini isbotlang.

 $Yechimi.\ \ell_1$ fazoda $\{x_n\}$ fundamental ketma-ketlik berilgan bo'lsin, bunda $x_n=(x_1^{(n)},\,x_2^{(n)},\ldots,x_k^{(n)},\ldots)$. Fundamental ketma-ketlikning ta'rifidan, $\forall\,\varepsilon>0$ uchun n_ε natural soni topilib, $n,m\geq n_\varepsilon$ tengsizliklarni qanoatlantiruvchi n,m natural sonlari

$$\sum_{i=1}^{\infty} |x_i^{(n)} - x_i^{(m)}| < \varepsilon \tag{3.1}$$

tengsizlikni qanoatlantiradi. Ixtiyoriy j uchun

$$|x_j^{(n)} - x_j^{(m)}| \le \sum_{i=1}^{\infty} |x_i^{(n)} - x_i^{(m)}| < \varepsilon$$

bo'lgani uchun, har bir j da $\{x_j^{(n)}\}_{n=1}^{\infty}$ sonli ketma-ketlik fundamental, ya'ni yaqinlashuvchi. $\lim_{n\to\infty}x_j^{(n)}=a_j$ bo'lsin. $a=(a_1,a_2,\ldots,a_n,\ldots)\in$ ℓ_1 va $\lim_{n\to\infty}x_n=a$ ekanligini ko'rsatamiz.

(3.1) tengsizlikdan ixtiyoriyksoni va $n,m\geq n_{\varepsilon}$ natural sonlari uchun

$$\sum_{i=1}^{k} |x_i^{(n)} - x_i^{(m)}| < \varepsilon$$

tengsizligining o'rinli ekanligi kelib chiqadi. Bu tengsizlikda dastlab $m\to\infty$ da, keyin $k\to\infty$ da limitga o'tib $n\ge n_\varepsilon$ bo'lganda

$$\sum_{i=1}^{\infty} |x_i^{(n)} - a_i| \le \varepsilon \tag{3.2}$$

tengsizligiga ega bo'lamiz. $|a_i| \leq |x_i^{(n)} - a_i| + |x_i^{(n)}|$ bo'lgani uchun (3.2) tengsizlikdan va $\sum_{i=1}^{\infty} |x_i^{(n)}|$ qatorning yaqinlashuvchiligidan $\sum_{i=1}^{\infty} |a_i|$ qatorning yaqinlashuvchiligi kelib chiqadi, yani $a \in \ell_1$. (3.2) tengsizlikdan $\lim_{n \to \infty} x_n = a$ ekanligi kelib chiqadi.

3.1.11. (Ber teoremasi). X to'liq metrik fazoni hech qaerda zich bolmagan to'plamlarning sanoqli sondagi birlashmasi ko'rinishida ifodalash mumkin emas. Isbotlang.

Yechimi. Teskarisini faraz qilaylik, yani $X = \bigcup_{n=1}^{\infty} M_n$ bo'lsin, bunda har bir M_n hech qaerda zich emas.

 S_0 orqali radiusi 1 ga teng biror yopiq sharni belgilaylik. M_1 to'plami hech qaerda zich bolmaganlikdan, u S_0 to'plamidada zich emas. Shuning uchun radiusi $\frac{1}{2}$ dan kichik S_1 yopiq shar topilib, $S_1 \subset S_0$ va $S_1 \cap M_1 = \emptyset$ munosabatlar orinli boladi. M_2 to'plami S_1 to'plamida zich bolmaganlikdan S_1 to'plamning ichida yotuvchi radiusi $\frac{1}{3}$ dan kichik S_2 to'plami topilib, $S_2 \cap M_2 = \emptyset$ tengligi o'rinli boladi va hakazo. Ushbu jarayonni davom ettirsak ichma-ich joylashgan va radiuslari $n \to \infty$ bolganda nolga intiluvchi $\{S_n\}$ yopiq sharlar ketma-ketligiga ega bo'lamiz. Bunda $S_n \cap M_n = \emptyset$ munosabati o'rinlidir. 3.1.8 - misolda ko'rganimizdek $\bigcap_{n=1}^{\infty} S_n$ kesishmaga qandaydir x nuqta tegishli bo'ladi. Bu nuqta M_n to'plaamlarning birortasiga tegishli emas, demak, $x \notin \bigcup M_n$. Yani $X \neq \bigcup M_n$ ko'rinishdagi ziddiyatga kelamiz.

 $3.\overset{"}{1}.12.$ Metrik fazoda ixtiyoriy sondagi yopiq to'plamlarning kesishmasi yopiq to'plam bo'lishini isbotlang.

Yechimi. F_{α} , $\alpha \in I(I \text{ indekslar to'plami})$ yopiq to'plam bo'lsin.

$$F = \bigcap_{\alpha} F_{\alpha}$$

to'plamning yopiq ekanligini ko'rsatamiz.

Aytaylik x nuqta F to'plamning limit nuqtasi bo'lsin. U holda bu nuqtaning ixtiyoriy $B(x,\varepsilon)$ atrofida F to'plamning cheksiz ko'p elementlari mavjuddir. $F = \bigcap_{\alpha} F_{\alpha}$ bo'lganlikdan, $B(x,\varepsilon)$ sharda har bir F_{α} to'plamning ham cheksiz ko'p elementlari mavjuddir. Bundan, x har bir F_{α} to'plamning limit nuqtasi bo'ladi va F_{α} lar yopiq bo'lgani uchun $x \in F_{\alpha}$. Demak, $x \in F$, ya'ni F yopiq to'plam.

3.1.13. Metrik fazoda

$$\mathbf{C}(int(E)) = [\mathbf{C}E]$$

tengligi o'rinli ekanligini isbotlang.

Yechimi. Har bir $x \in \mathbf{C}(\mathrm{int}(E))$ nuqta uchun $x \notin \mathrm{int}(E)$ o'rinlidir. Bundan x elementning ixtiyoriy atrofi E to'plamida to'liq yotmasligi kelib chiqadi. U holda bu atroflarning har birida $\mathbf{C}(E)$ to'plamning kamida bitta elementi mavjud. Shuning uchun $x \in [\mathbf{C}(E)]$, yani $\mathbf{C}(\mathrm{int}(E)) \subset [\mathbf{C}E]$. $\mathrm{int}(E) \subseteq E$ bo'lganlikdan, $[\mathbf{C}E] \subseteq \mathbf{C}(\mathrm{int}(E))$ munosabatning o'rinli ekanligi kelib chiqadi. Demak $\mathbf{C}(\mathrm{int}(E)) = [\mathbf{C}E]$.

3.1.14. ℓ_2 metrik fazoning to'laligini isbotlang.

Yechimi. ℓ_2 fazodan olingan $\{x_n\}$ fundamental ketma-ketlik berilgan bo'lsin, bunda bunda $x_n = (x_1^{(n)}, x_2^{(n)}, \dots x_k^{(n)}, \dots)$.

Fundamental ketma-ketlikning ta'rifidan, ixtiyoriy $\varepsilon>0$ uchun shunday n_ε natural soni topilib, $n,m\geq n_\varepsilon$ tengsizliklarni qanoatlantiruvchi n,m natural sonlari uchun

$$\rho^{2}(x_{n}, x_{m}) = \sum_{k=1}^{\infty} |x_{k}^{(n)} - x_{k}^{(m)}|^{2} < \varepsilon$$
(3.3)

tengsizlik o'rinli. Bundan, har bir i soni uchun

$$|x_i^{(n)} - x_i^{(m)}|^2 \le \sum_{k=1}^{\infty} |x_k^{(n)} - x_k^{(m)}|^2 < \varepsilon,$$

bo'lganllikdan, har bir i uchun $\{x_i^{(n)}\}_{n=1}^{\infty}$ sonli ketma-ketlik fundamental. Bundan u yaqinlashuvchi bo'ladi. Bu ketma-ketlikning limitini a_i bilan belgilab, $a=(a_1,a_2,\ldots,a_i,\ldots)$ elementni hosil qilamiz. Agar $\sum_{i=1}^{\infty}|a_i|^2<\infty \text{ va }\lim_{n\to\infty}\rho(x_n,a)=0 \text{ munosabatlarning o'rinligi ko'rsatilsa,}$ ℓ_2 fazoning to'laligi isbot etilgan bo'ladi.

(3.3) tengsizlikni quyidagi ko'rinishda yozamiz:

$$\sum_{k=1}^{\infty} |x_k^{(n)} - x_k^{(m)}|^2 = \sum_{k=1}^{p} |x_k^{(n)} - x_k^{(m)}|^2 + \sum_{k=p+1}^{\infty} |x_k^{(n)} - x_k^{(m)}|^2 < \varepsilon,$$

bu erda p ixtiyoriy natural son. Bundan ixtiyoriy p uchun

$$\sum_{k=1}^{p} |x_k^{(n)} - x_k^{(m)}|^2 < \varepsilon,$$

yoki p bilan m ni tayinlab, n bo'yicha limitga o'tilsa, ushbu

$$\sum_{k=1}^{p} |a_k - x_k^{(m)}|^2 < \varepsilon$$

tengsizlik kelib chiqadi. Bu tengsizlik ixtiyoriy p uchun o'rinli; shuning uchun bunda p bo'yicha limitga o'tish mumkin, u holda

$$\sum_{k=1}^{\infty} |a_k - x_k^{(m)}|^2 < \varepsilon. \tag{3.4}$$

Bundan va $\sum\limits_{k=1}^{\infty}|x_k^{(n)}|^2<\infty$ munosabatdan quyidagi tengsizlik kelib chiqadi:

$$\sum_{k=1}^{\infty} |a_k|^2 < \infty.$$

Demak, $a=(a_1,\,a_2,\ldots,a_n,\ldots)\in\ell_2$. So'ngra $\varepsilon>0$ ixtiyoriy bo'lganligi uchun (3.4) dan $\lim_{n\to\infty}\rho(x_n,a)=0$.

3.1.15. m metrik fazoning to'laligini isbotlang.

 $Yechimi.\ m$ fazodan olingan $\{x_n\}$ ketma - ketlik fundamental bo'lsin, bunda $x_n=(x_1^{(n)},\,x_2^{(n)},\ldots x_k^{(n)},\ldots).\ x_n\in m$ bo'lganligi tufayli shunday c_n ketma-ketligi mavjudki, uning uchun $|x_k^{(n)}|\leq c_n\ (k=1,2,3,\ldots)$ o'rinli. Fundamental ketma - ketlikning ta'rifidan, ixtiyoriy $\varepsilon>0$ uchun n_ε natural soni topilib, $n,m\geq n_\varepsilon$ tengsizliklarni qanoatlantiruvchi n,m natural sonlari uchun

$$\rho(x_n, x_p) = \sup_{k} |x_k^{(n)} - x_k^{(p)}| < \varepsilon$$

tengsizlik o'rinli. Bundan

$$|x_k^{(n)} - x_k^{(p)}| < \varepsilon \tag{3.5}$$

munosabatning k ga nisbatan tekis bajarilishi kelib chiqadi. Demak, ixtiyoriy k uchun $\{x_k^{(n)}\}$ sonli ketma-ketlik fundamental va yaqinlashuvchi. Bu ketma-ketlikning limitini a_k bilan belgilab, $a=(a_1,\,a_2,\ldots,a_k,\ldots)$ elementni hosil qilamiz. Endi ushbu $a\in m$ va $\lim_{n\to\infty}\rho(x_n,a)=0$ munosabatlarni isbotlaymiz.

(3.5)da pga nisbatan limitga o'tilsa, barcha klar uchun $n>n_{\varepsilon}$ bo'lganda o'rinli bo'lgan

$$|x_k^{(n)} - a_k| \le \varepsilon \tag{3.6}$$

tengsizlik kelib chiqadi. Bundan

$$|a_k| \le |x_k^{(n_\varepsilon + 1)} - a_k| + |x_k^{(n_\varepsilon + 1)}| < \varepsilon + c_{n_\varepsilon + 1}$$

tengsizlikni barcha k lar uchun hosil qilish mumkin, ya'ni $a=(a_1,\,a_2,\ldots,a_k,\ldots)\in m$ munosabat kelib chiqadi. (3.5) dan $n\geq n_\varepsilon$ uchun

$$\rho(x_n, x) = \sup_{k} |x_{n_k} - x_k| < \varepsilon.$$

 ε ixtiyoriy bo'lgani uchun, (3.6) dan $\lim_{n\to\infty} \rho(x_n,a) = 0$ munosabat kelib chiqadi.

3.1.16. Metrik fazoda ixtiyoriy yaqinlashuvchi ketma-ketlik fundamentalligini isbotlang.

Yechimi. Aytaylik, $\{x_n\}$ ketma-ketlik x nuqtaga yaqinlashsin. U holda, ixtiyoriy $\varepsilon > 0$ son uchun shunday n_{ε} natural soni topilib, barcha

 $n \geq n_{\varepsilon}$ uchun $\rho(x_n, x) < \varepsilon/2$ tengsizlik o'rinli bo'ladi. Demak, $n, m \geq 1$ n_{ε} tengsizliklarni qanoatlantiruvchi n, m natural sonlari uchun

$$\rho(x_n, x_m) \le \rho(x_n, x) + \rho(x, x_m) < \varepsilon/2 + \varepsilon/2 = \varepsilon$$

munosabat o'rinli. Bu esa $\{x_n\}$ ketma-ketlikning fundamentalligini isbotlaydi.

3.1.17. X metrik fazoda ixtiyoriy M va N to'plamlar uchun

$$int(M \cap N) = int(M) \cap int(N)$$

munosabatning o'rinli ekanligini isbotlang.

Yechimi. Ixtiyoriy $x \in \text{int}(M \cap N)$ nuqtani olaylik. U holda x nuqtaning $M \cap N$ to'plamda butunlay joylashgan $B(x, \varepsilon)$ atrofi mavjud, ya'ni $B(x,\varepsilon)\subset M\cap N$. Ravshanki $B(x,\varepsilon)$ atrof M va N to'plamlarning har birida butunlay joylashgan. Bundan $x \in \text{int}(M)$ va $x \in \text{int}(N)$ ya'ni $x \in \operatorname{int}(M) \cap \operatorname{int}(N)$. Demak, $\operatorname{int}(M \cap N) \subset \operatorname{int}(M) \cap \operatorname{int}(N)$.

Agar $x \in \text{int}(M) \cap \text{int}(N)$ bo'lsa, u holda $x \in \text{int}(M)$ va $x \in \text{int}(N)$, ya'ni x nuqtaning M to'plamda butunlay joylashgan $B(x, \varepsilon_1)$ va N to'plamda butunlay joylashgan $B(x, \varepsilon_2)$ atroflari mavjud. Endi ε sonini $\varepsilon = \min(\varepsilon_1, \varepsilon_2)$ kabi olsak, u holda x nuqtaning $B(x, \varepsilon)$ atrofi $M \cap N$ to'plamda butunlay joylashgan bo'ladi, ya'ni $x \in \text{int}(M \cap N)$. Demak, $\operatorname{int}(M) \cap \operatorname{int}(N) \subset \operatorname{int}(M \cap N).$

3.1.18. ℓ_1 metrik fazodan olingan $x_n = (x_1^{(n)}, x_2^{(n)}, \dots x_k^{(n)}, \dots)$ $ketma-ketlik va a = (a_1, a_2, \ldots, a_k, \ldots)$ $element uchun a_k =$ $\lim_{n\to\infty} x_k^{(n)} \ \textbf{bo'lsa, har doin} \ \lim_{n\to\infty} \rho(x_n,x) = 0 \ \textbf{munosabat o'rinlimi?}$ Yechimi. Har doim o'rinli emas. Misol uchun,

$$a = (0, 0, 0, \dots)$$

va

$$x_n = (\underbrace{0, 0, ..., 0}_{n}, \frac{1}{2}, \frac{1}{2^2}, ..., \frac{1}{2^k}, ...)$$

bo'lsa, u holda n > k soni uchun $|x_k^{(n)} - a_k| = 0$. Bundan ixtiyoriy kuchun $a_k = \lim_{n \to \infty} x_k^{(n)}$ munosabat kelib chiqadi. Ammo ixtiyoriy n uchun

$$\rho(x_n, a) = \sum_{k=1}^{\infty} |x_k^{(n)} - 0| = \sum_{k=1}^{\infty} \frac{1}{2^k} = 1,$$

yani $\lim_{n \to \infty} \rho(x_n, a) = 0$ munosabat o'rinli emas.

3.1.19. Quyidagi tasdiqlar teng kuchlidir:

- (1) X Ber fazosi;
- (2) X ning sanoqli birinchi kategoriyali to'plamlari birlashmasi ichki nuqtaga ega emas;
 - (3) X ning sanoqli ochiq zich to'plamlari kesishmasi zich;
- $(4)\ X$ da birinchi kategoriyali to'plamning to'ldiruvchisi zichdir.

Yechimi. (1) \Rightarrow (2) Aytaylik $E = \bigcup_n E_n$, bunda $E_n = [E_n]$, $int E_n = \emptyset$ bo'lsin. U holda E birinchi kategoriyali to'plamdir. Bundan $int E \subset E$, int E ochiq va birinchi kategoriyali to'plamdir. X Ber fazosi bo'lganlikdan, int E bo'sh to'plamdir.

(2) \Rightarrow (3) Aytaylik $E = \bigcap_n G_n$, bunda G_n ochiq to'plam va $[G_n] = X$ bo'lsin. U holda

$$X \setminus E = X \setminus \bigcap_n G_n = \bigcup_n (X \setminus G_n).$$

Shu bilan birga, $X \setminus G_n$ yopiq to'plam va $int(X \setminus G_n) = \emptyset$, chunki $[G_n] = X$. Bundan $int(X \setminus E) = \emptyset$. Oxirgi tenglik E to'plam to'ldiruvchisi ichi bo'sh to'plam, ya'ni E zich to'plam ekanligini ko'rsatadi.

 $(3)\Rightarrow (4)$ Aytaylik E birinchi kategoriyali to'plam bo'lsin, ya'ni $E=\bigcup_n E_n$, bunda $int[E_n]=\emptyset$. $E_n=[E_n]$ deb hisoblashimiz mumkin. U holda $G_n=X\setminus E_n$ ochiq va zich to'plamdir. Shartga ko'ra

$$\bigcap_{n} G_n = \bigcup_{n} (X \setminus E_n)$$

zich to'plamdir. Endi

$$X \setminus E = X \setminus \bigcup_{n} E_{n} = \bigcap_{n} X \setminus E_{n} = \bigcap_{n} G_{n}$$

ekanligidan, $X \setminus E$ ham zich to'plamdir.

 $(4)\Rightarrow (1)$ Agar E to'plami ochiq va X da zich bo'lsa, u holda $X\setminus E$ zich to'plam emas. Bundan, shartga ko'ra E ikkinchi kategoriyali to'plam bo'la olmaydi, demak, E birinchi kategoriyali to'plam.

Mustaqil ish uchun masalalar

- 1. Haqiqiy sonlar to'plamida metrikani $\rho(x,y) = \arctan|x-y|$ ko'rinishda aniqlash mumkinligini ko'rsating.
 - 2. Ixtiyoriy to'plamda metrikani

$$\rho(x,y) = \begin{cases} 0, & \text{agar } x = y; \\ 1, & \text{agar } x \neq y \end{cases}$$

ko'rinishda aniqlash mumkin ekanligini isbotlang.

3. Faraz qilaylik (X, ρ) metrik fazo bo'lsin. Agar $\forall x, y \in X$ uchun

$$\rho_1(x,y) = \rho(x,y)/[1 + \rho(x,y)],$$

$$\rho_2(x,y) = \ln[1 + \rho(x,y)]$$

bo'lsa, u holda (X, ρ_1) va (X, ρ_2) metrik fazolar ekanligini ko'rsating.

4. n sondagi haqiqiy sonlarning $x = (x_1, x_2, \dots, x_n)$ tartiblangan gruppalari to'plamida metrikani

a)
$$\rho(x,y) = \sum_{k=1}^{n} |x_k - y_k|;$$

b) $\rho(x,y) = \max_{1 \le k \le n} |y_k - x_k|$

b)
$$\rho(x,y) = \max_{1 \le k \le n} |y_k - x_k|$$

ko'rinishlarda kiritishga bo'lishini ko'rsating.

- **5.** Haqiqiy sonlarning $x = (x_1, x_2, \ldots, x_n \ldots)$ chegaralangan ketmaketliklari to'plamida masofani $\rho(x,y) = \sup |y_k - x_k|$ ko'rinishda kiritsak, bu to'plamning metrik fazo bo'lishini ko'rsating.
- **6.** Agar $x_n \to x$, $y_n \to y$ bo'lsa, $\rho(x_n, y_n) \to \rho(x, y)$ ekanligini isbotlang.
 - 7. Natural sonlar to'plamida metrikani quyidagicha aniqlaylik

$$\rho(m,n) = \frac{|m-n|}{mn}, \ m,n \in \mathbb{N}.$$

 (\mathbb{N}, ρ) to'liq bo'lmagan metrik fazo ekanligini isbotlang.

- 8. Agar haqiqiy sonlar to'plami \mathbb{R} da x, y sonlari orasidagi masofani $\rho(x,y) = |x^3 - y^3|$ formulasi orqali kiritsak, u holda u to'liq metrik fazo tashkil qilishini isbotlang.
- 9. X to'plamda o'zaro ekvivalent bo'lgan ρ_1 va ρ_2 metrikalar berilgan. (X, ρ_1) fazoning to'liq bo'lishidan (X, ρ_2) fazoning to'liq bo'lishi kelib chiqadimi?
- 10. [a,b] segmentda uzliksiz hosilaga ega bo'lgan barcha funksiyalar to'plamida metrikani

$$\rho(f,g) = \sup_{t \in [a,b]} |f'(t) - g'(t)|$$

ko'rinishda kiritish mumkinmi?

- 11. Tengliklarni isbotlang:
- a) $\partial E = [E] \setminus \operatorname{int}(E)$;
- b) [[E]] = [E];
- c) $[E_1 \cup E_2] = [E_1] \cup [E_2]$.
- 12. Tekislikda chegaraviy nuqtalarga ega bo'lmagan to'plamga misol keltiring.

- 13. Ixtiyoriy to'plamning hosila to'plami yopiq to'plam bo'lishini isbotlang.
- 14. Ixtiyoriy to'plamning chegarasi yopiq to'plam bo'lishini ko'rsating.
 - 15. Ixtiyoriy to'plamning ichi ochiq to'plam bo'lishini ko'rsating.
- 16. Barcha nuqtalari yakkalangan sanoqsiz to'plamga misol keltiring.
 - 17. \mathbb{R} , \mathbb{R}^n , C[a,b], ℓ_2 fazolarning separabel fazo bo'lishini ko'rsating.
 - 18. m fazosining separabel fazo emasligini isbotlang.
 - 19. \mathbb{R} , \mathbb{R}^n , C[a, b] fazolarning to'liqligini isbotlang.
- **20.** To'liq X fazoda zich bo'lgan ochiq to'plamlarning sanoqli sondagi kesishmasi X to'plamda zich to'plam bo'lishini isbotlang.
- 21. Hech qaerda zich emas to'plamning yopilmasi ham hech qaerda zich emas to'plam bo'lishini isbotlang.
- **22.** Barcha ko'phadlar to'plamining C[0,1] da zich ekanligini ko'rsating.

3.2. Metrik fazolarda kompakt to'plamlar

X metrik fazodagi K to'plamning elementlaridan tuzilgan ixtiyoriy ketma-ketlikdan biror $x \in X$ elementga yaqinlashuvchi qism ketma-ketlik ajratib olish mumkin bo'lsa, K to'plam X da nisbiy kompakt deyiladi.

X metrik fazodagi yopiq nisbiy kompakt bo'lgan K to'plam kompakt deyiladi. X metrik fazodagi K to'plamning diametri

$$diam K = \sup_{x,y \in K} \rho(x,y)$$

chekli son bo'lsa,
u holda K chegaralangan deb ataladi.

K va M to'plamlar (X, ρ) metrik fazodan olingan va $\varepsilon > 0$ biror son bo'lsin. Agar K to'plamdan olingan ixtiyoriy x element uchun M to'plamda $\rho(x,y) < \varepsilon$ tengsizligini qanoatlantiruvchi y elementi mavjud bo'lsa, u holda M to'plam K to'plamiga nisbatan ε -to'r deb ataladi. Agar ixtiyoriy $\varepsilon > 0$ uchun K to'plam chekli ε -to'rga ega bo'lsa, u holda K to'liq chegaralangan deyiladi.

Masalalar

3.2.1. Har bir K kompakt metrik fazo to'liq chegaralangan bo'lishini isbotlang.

Yechimi. Faraz qilaylik K to'liq chegaralangan bo'lmasin. Bundan K da biror $\varepsilon>0$ uchun chekli ε -to'r topilmasligi kelib chiqadi. K dan ixtiyoriy a_1 nuqta olamiz. U holda shunday $a_2\in K$ nuqta topiladiki $\rho(a_1,\,a_2)>\varepsilon$ bo'ladi, aks holda $\{a_1\}$ to'plam ε -to'r bo'lardi. K da shunday a_3 nuqta topiladiki

$$\rho(a_1, a_3) > \varepsilon, \quad \rho(a_2, a_3) > \varepsilon$$

bo'ladi, aks holda $\{a_1, a_2\}$ to'plam ε -to'r bo'lardi.

Shunga o'xshash $a_1, a_2, ..., a_k$ nuqtalar uchun $a_{k+1} \in K$ topilib $\rho(a_i, a_{k+1}) > \varepsilon$, $\overline{i = 1, k}$ bo'ladi.

Bu tanlab olingan nuqtalar limit nuqtaga ega bo'lmagan $\{a_n\}$ cheksiz ketma-ketlikni beradi, chunki $\rho(a_i, a_j) > \varepsilon, i \neq j$. Bu esa K ning kompakt ekanligiga zid.

3.2.2. Ixtiyoriy kompakt to'plamning to'liq fazo bo'lishini isbotlang.

Yechimi. Bizga E kompakt to'plamda $\{x_n\}$ fundamental ketmaketlik berilgan bo'lsin. E kompakt bo'lgani uchun $\{x_n\}$ ketma-ketlik E da yaqinlashuvchi $\{x_{n_k}\}$ qismiy ketma-ketlikka ega. $\{x_{n_k}\}$ ketma-ketlikning limitini a bilan belgilaylik. $\{x_n\}$ fundamental va $\{x_{n_k}\}$ yaqinlashuvchi bo'lgani uchun ixtiyoriy $\varepsilon > 0$ soni uchun $\exists n_\varepsilon$ soni topilib, $n, k > n_\varepsilon$ (demak $n_k > n_\varepsilon$) bo'lganda $\rho(x_n, x_{n_k}) < \frac{\varepsilon}{2}$ va $\rho(x_{n_k}, a) < \frac{\varepsilon}{2}$ tengsizliklari bajariladi. Natijada

$$\rho(x_n, a) \le \rho(x_n, x_{n_k}) + \rho(x_{n_k}, a) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Bundan $\{x_n\}$ ketma-ketlikning yaqinlashuvchi ekanligi kelib chiqib, E to'plamning to'liq ekanligini ko'rsatadi.

3.2.3. (Hausdorf teoremasi). R metrik fazo kompakt bo'lishi uchun uning to'liq va to'liq chegaralangan bo'lishi zarur va etarli ekanligini isbotlang.

Yechimi. Aytaylik R kompakt bo'lsin. U holda to'liq chegaralanganlikning zaruriyligi 3.2.1-misoldan kelib chiqadi. To'liq bo'lishi esa 3.2.2-misoldan ko'rinadi.

Endi R to'liq va to'liq chegaralangan bo'lsin. Kompaktligini ko'rsatish uchun har bir $\{x_n\} \subset R$ ketma-ketlik hech bo'lmaganda bitta limit nuqtaga ega bo'lishini ko'rsatish etarli.

R da 1-to'r hosil etuvchi nuqtalarning har biri atrofida radiusi 1 bo'lgan yopiq shar quramiz. Bu sharlar R ni to'liq qoplaydi hamda ularning soni chekli boladi, u holda ularning hech bo'lmaganda bittasi $\{x_n\}$ ning biror $x_1^{(1)}, ..., x_n^{(1)}, ...$ qismiy ketma-ketligini o'z ichiga oladi. Bu sharni B_1 orqali belgilaymiz.

 B_1 sharda ham $\frac{1}{2}$ -to'r hosil etuvchi nuqtalar atrofida radiusi $\frac{1}{2}$ bo'lgan yopiq sharlarni qursak, ularning hech bo'lmaganda bittasi $\{x_n^{(1)}\}$ ketmaketlikning $\{x_n^{(2)}\}$ qismiy ketma-ketligini o'z ichiga oladi. Bu sharni B_2 orqali belgilaymiz. Shu kabi markazi B_2 da radiusi $\frac{1}{4}$ bo'lib, $\{x_n^{(3)}\} \subset \{x_n^{(2)}\}$ ketma-ketlikni o'z ichiga oluvchi B_3 sharini olamiz va hakazo.

Endi markazi B_n sharning markazida, radiusi esa ikki marta katta bo'lgan A_n yopiq sharlarni qaraymiz. Ravshanki A_n sharlar ichmaich joylashgan. R ning to'liqligidan $\bigcap_{n=1}^{\infty} A_n$ kesishma bo'sh emas va u yagona x_0 nuqtadan iborat. Bu nuqta $\{x_n\}$ ketma-ketlik uchun limit nuqta bo'ladi, hamda uning atrofi biror B_k sharni o'z ichiga oladi, yani $\{x_n\}$ ketma-ketlikning cheksiz $\{x_n^{(k)}\}$ qismiy ketma-ketligini o'z ichiga oladi. Bundan R kompaktdir.

3.2.4. Ixtiyoriy nisbiy kompakt to'plam chegaralangan bo'l-ishini isbotlang.

Yechimi. Agar diam $K=+\infty$ bo'lsa, u holda $\forall x_0 \in K$ nuqta uchun

$$\sup_{x \in K} (x_0, x) = +\infty$$

bo'ladi. Haqiqatan, agar $\forall x \in K$ uchun $\rho(x_0, x) \leq M$ bo'lsa, u holda $\forall x, y \in K$ nuqtalari uchun

$$\rho(x,y) \le \rho(x,x_0) + \rho(x_0,y) \le 2M$$

tengsizlik o'rinli bo'lardi. Bundan $\lim_{n\to\infty} \rho(x_0,x_n) = +\infty$ bo'ladigan $\{x_n\}$ ketma - ketligini topish mumkin. Natijada $\{x_n\}$ ketma-ketlikning ixtiyoriy $\{x_{n_k}\}$ qismiy ketma-ketligi uchun ham $\lim_{n\to\infty} \rho(x_0,x_{n_k}) = +\infty$ bo'ladi. U holda $\{x_{n_k}\}$ fundamental bo'lmaydi, demak yaqinlashuvchi emas. Bundan K ning nisbiy kompakt emas ekanligi kelib chiqadi. Hosil bo'lgan ziddiyatdan K ning chegaralangan ekanligi kelib chiqadi.

3.2.5. To'planning chegaralanganligidan, uning nisbiy kompakt bo'lishi kelib chiqadimi?

Yechimi. Umuman aytganda kelib chiqmaydi. Masalan ℓ_2 fazoda quyidagi

$$e_1 = (1, 0, 0, \ldots), e_2 = (0, 1, 0, \ldots) e_3 = (0, 0, 1, \ldots), \ldots$$

elementlardan iborat chegaralangan to'plamni olaylik. Bu to'plamning ixtiyoriy e_n va e_m elementlari orasidagi masofa $\rho(e_m, e_n) = \sqrt{2} \ (m \neq n)$. Demak, bu ketma-ketlikning ixtiyoriy qismiy ketma-ketligi yaqinlashuvchi emas. Shuning uchun qaralayotgan to'plam nisbiy kompakt emas.

 $3.2.6~X~metrik~fazoda~bo'sh~emas~A_1\supset A_2\supset\ldots\supset A_n\supset\ldots kompakt~to'plamlari~berilgan~bo'lsin.~U~holda~\bigcap_{n\geq 1}A_n~kesishmasi~bo'sh~emasligini,~shu~bilan~birga~agar~\lim_{n\to\infty}diamA_n=0~bo'lsa,~u~holda~\bigcap_{n\geq 1}A_n~kesishmaning~yagona~nuqtadan~iborat~bo'lishini~isbotlang.$

Yechimi. Har bir A_n to'plamdan a_n nuqtasini olaylik. Bu nuqtalarning barchasi A_1 ga tegishli bo'ladi. A_1 kompakt to'plam bo'lgani uchun $\{a_n\}$ ketma-ketlikdan biror $a \in A_1$ nuqtaga yaqinlashuvchi $\{a_{n_k}\}$ qismiy ketma-ketligini ajratib olish mumkin. $\{a_{n_k}\}$ ketma-ketlikning dastlabki k-1 ta hadini olib tashlasak, $a_{n_k}, a_{n_{k+1}}, a_{n_{k+2}}, \ldots$ ketma-ketligiga ega bo'lamiz. Bu ketma-ketlikning har bir hadi A_{n_k} to'plamga tegishli. Shu bilan birga bu ketma-ketlik ham a nuqtaga yaqinlashuvchi bo'ladi. A_{n_k} yopiq bo'lgani uchun ixtiyoriy k uchun $a \in A_{n_k}$, demak $a \in \bigcap_{k \ge 1} A_{n_k} = \bigcap_{n \ge 1} A_n$. Natijada $\bigcap_{n \ge 1} A_n \ne 0$.

Agar diam $A_n \to 0$ bo'lsa, u holda har qanday boshqa $b \in \bigcap_{n \geq 1} A_n$ nuqtani olsak $\rho(a,b) \leq \text{diam} A_n$ tengsizligi barcha n lar uchun o'rinli. Shuning uchun ham $\rho(a,b) = 0$, yani a = b.

3.2.7. C[0,1] fazoga tegishli, $|f(x)| \leq A$ (bu erda A tayinlangan musbat son) tengsizlikni qanoatlantiruvchi barcha funksiyalar to'plamini E bilan belgilaylik. C[0,1] fazoda chegaralangan va yopiq bo'lgan E to'plami kompakt emasligini isbotlang.

Yechimi. C[0,1] to'plamga tegishli

$$f_n(x) = A \sin 2^n \pi x \ (n = 1, 2, 3, ...)$$

funksiyalar ketma-ketligini olaylik. Bu ketma-ketlikning har bir hadi E to'plamga tegishli. Haqiqatan,

$$|f_n(x)| = |A\sin 2^n \pi x| = A|\sin 2^n \pi x| \le A.$$

Bu ketma-ketlikning ixtiyoriy f_n va f_m (bu erda n < m) hadlari orasidagi oraliqni baholaymiz:

$$\rho(f_n, f_m) = \max_{x \in [0,1]} |f_n(x) - f_m(x)| \ge |f_n(\frac{1}{2^{n+1}}) - f_m(\frac{1}{2^{n+1}})| =$$
$$= |A \sin \frac{\pi}{2} - A \sin 2^{m-n-1}\pi| = A,$$

ya'ni $\rho(f_n, f_m) \geq A$. Bu tengsizlikdan ko'rinadiki, qaralayotgan ketmaketlikning ixtiyoriy qismiy ketma-ketligi yaqinlashuvchi bo'la olmaydi. Shuning uchun E to'plam C[0, 1] fazoda kompakt emas.

$3.2.8. \ \ell_2 \ fazosida \ yopiq \ va \ chegaralangan, \ ammo \ kompakt \ bo'lmagan \ to'plamga \ misol \ keltiring.$

Yechimi. ℓ_2 fazosiga tegishli

$$e_1 = (1, 0, 0, 0, \dots, 0, \dots)$$

 $e_2 = (0, 1, 0, 0, \dots, 0, \dots)$
 $e_3 = (0, 0, 1, 0, \dots, 0, \dots)$

nuqtalardan iborat sanoqli E to'plamni olaylik. Bu to'plam chegaralangan va yopiq. Shu bilan birga bu to'plamning ixtiyoriy har xil nuqtalari orasidagi masofa $\sqrt{2}$ ga teng. Shuning uchun $\{e_n\}$ ketma-ketlikning birorta ham qismiy ketma-ketligi fundamental bo'la olmaydi. Fundamental bo'lmagan ketma-ketlik yaqinlashuvchi bo'lmaydi. Shuning uchun E to'plam kompakt emas.

3.2.9. Kompakt to'plamlarning chekli sondagi birlashmasi kompakt to'plam bo'lishini isbotlang.

Yechimi. Bizga $A_1, A_2 \ldots, A_k$ kompakt to'plamlar berilgan bo'lsin. Hadlari $A = \bigcup_{i=1}^k A_i$ to'plamidan olingan ixtiyoriy $\{x_n\}$ ketma-ketligini qaraymiz. Bu ketma-ketlik hadlari soni cheksiz bo'lgani uchun $A_1, A_2 \ldots, A_k$ to'plamlarning kamida bittasi uning cheksiz sondagi hadlaridan iborat $\{x_{n_p}\}$ qismiy ketma-ketligini o'z ichiga oladi. U holda $\{x_{n_p}\}$ ketma-ketlik A to'plamda yaqinlashuvchi qismiy ketma-ketlikka ega. Bu qism ketma-ketlik $\{x_n\}$ ketma-ketligi uchun ham qismiy bo'ladi. Bundan $\bigcup_{i=1}^k A_i$ to'plamning kompaktligi kelib chiqadi.

3.2.10. (Boltsano — Veyershtrass teoremasi). \mathbb{R}^n evklid fazosida ixtiyoriy chegaralangan to'plam nisbiy kompakt bo'lishini isbotlang.

Yechimi. E chegaralangan to'plam bo'lsa, u holda bu to'plam biror

$$[a_1,b_1]\times[a_2,b_2]\times\ldots\times[a_n,b_n]$$

parallelepipedning ichida yotadi. Ixtiyoriy $\varepsilon > 0$ sonini olib har bir $[a_i,b_i]$ segmentni $a_i = x_i^{(1)} < x_i^{(2)} < \ldots < x_i^{(p_i-1)} < x_i^{(p_i)} = b_i$ nuqtalar yordamida shunday bo'laklarga bo'laylikki, natijada ikki qo'shni nuqtalar orasidagi masofa $\frac{\varepsilon}{\sqrt{n}}$ sonidan kichik bo'lsin. \mathbb{R}^n fazoda quyidagi to'plamni olamiz:

$$M = \{x = (x_1^{(s_1)}, x_2^{(s_2)}, \dots, x_n^{(s_n)}) : s_1 = 1, 2, \dots, p_1; \dots, s_n = 1, 2, \dots, p_n\}$$

bu erda s_k $(k=1,2,\ldots,n)$ lar bir-biriga bog'liq emas. Shu to'plamning E to'plam uchun chekli ε -to'r bo'lishini ko'rsatamiz. E to'plamdan ixtiyoriy $x'=(x_1,x_2,\ldots,x_n)$ nuqta olaylik. E to'plam

$$[a_1, b_1] \times [a_2, b_2] \times \ldots \times [a_n, b_n]$$

parallelepipedda joylashganligi uchun x' nuqta

$$[x_1^{(k_1)}, x_1^{(k_1+1)}] \times [x_2^{(k_2)}, x_2^{(k_2+1)}] \times \ldots \times [x_n^{(k_n)}, x_n^{(k_n+1)}]$$

parallelepipedlarning biriga tegishli bo'ladi, bu erda $k_j \in \{1, 2, \dots, p_j - 1\}$, $j = \overline{1, n}$. Bu parallelepipedlarning uchlari M to'plamning elementlaridan iborat bo'ladi. Shuning uchun s_k $(k = \overline{1, n})$ nomerlar ichidan s_k^0 $(k = \overline{1, n})$ nomerlar topilib

$$\rho(x,x') = \sqrt{\sum_{k=1}^{n} (x_k^{s_k^0} - x_k)^2} < \sqrt{\underbrace{\frac{\varepsilon^2}{n} + \frac{\varepsilon^2}{n} + \dots + \frac{\varepsilon^2}{n}}_{n}} = \varepsilon$$

tengsizligi o'rinli bo'ladi. Demak, M to'plam E uchun ε -to'r bo'ladi. U holda E to'liq chegaralangan. Natijada \mathbb{R}^n fazoning to'liqligi va Xausdorf teoremasi bo'yicha E to'plam nisbiy kompakt bo'ladi.

3.2.11. \mathbb{R}^n evklid fazosida ixtiyoriy yopiq chegaralangan to'plam kompakt bo'lishini isbotlang.

Yechimi. Yuqorida isbotlangan Boltsano — Veyershtrass teoremasi bo'yicha \mathbb{R}^n evklid fazosida chegaralangan to'plam nisbiy kompak bo'ladi. Nisbiy kompakt va yopiq bo'lgan to'plam ta'rif bo'yicha kompakt bo'ladi.

3.2.12. K kompakt to'plamni o'ziga o'tkazuvchi $f: K \to K$ akslantirish ixtiyoriy o'zaro teng bo'lmagan $x,y \in K$ elementlar uchun $\rho(f(x),f(y))<\rho(x,y)$ tengsizlikni qanoatlantirsin. U holda f(x)=x tenglikni qanoatlantiruvchi $x\in K$ elementning mavjudligini isbotlang.

Yechimi. $F(x) = \rho(x, f(x))$ ko'rinishda aniqlanuvchi $F: K \to \mathbb{R}$ funktsiyani olaylik. $x \in K$ element f(x) = x tengligini qanotlantirishi uchun F(x) = 0 tengligining bajarilishi zarur va etarli. Aksincha faraz qilaylik, yani F(x) > 0 bo'lsin. K to'plam kompakt bo'lgani uchun F(x) funksiyaning aniq quyi chegarasi musbat son bo'lib, unga biror $x_0 \in K$ nuqtada erishadi. Masalaning sharti bo'yicha quyidagi munosabat o'rinli $F(f(x_0)) = \rho(f(x_0), f(f(x_0))) < \rho(x_0, f(x_0)) = F(x_0)$. Bu ziddiyat bizning farazimizning noto'g'ri ekanligini anglatadi. U holda f(x) = x tenglikni qanoatlantiruvchi $x \in K$ nuqta mavjud.

3.2.13. Kompakt metrik fazoni metrik fazoga uzluksiz akslantirish tekis uzluksiz bo'lishini isbotlang.

Yechimi. K metrik kompakt, M metrik fazo bo'lib, $F: K \to M$ akslantirishi uzluksiz, lekin tekis uzluksiz emas deb earaz qilaylik. U holda biror $\varepsilon > 0$ soni va har bir $n \in \mathbb{N}$ soni uchun K da x_n va x'_n nuqtalari topilib $\rho_1(x_n, x'_n) < \frac{1}{n}$ va $\rho_2(F(x_n), F(x'_n)) \geq \varepsilon$ tengsizligi o'rinlidir, bunda $\rho_1 - K$ da oraliq, $\rho_2 - M$ da oraliq. K ning kompaktligidan $\{x_n\}$ ketma- ketligidan biror $x \in K$ nuqtaga yaqinlashuvchi $\{x_{n_k}\}$ qismiy ketma-ketligini olamiz. U holda $\{x'_{n_k}\}$ ketma-ketligi ham x ga yaqinlashadi, lekin har bir k uchun quyidagi tengsizliklarning biri bajariladi

$$\rho_2(F(x), F(x_{n_k})) \ge \varepsilon, \quad \rho_2(F(x), F(x'_{n_k})) \ge \varepsilon,$$

bu esa F akslantirishning x nuqtada uzluksizligiga ziddir.

Mustaqil ish uchun masalalar

- 1. Agar E to'plam to'liq chegaralangan bo'lsa, u holda [E] to'plami ham to'liq chegaralangan bo'lishini isbotlang.
- 2. Tekislikda koordinatalari butun sonlardan iborat nuqtalar to'plami qanday to'r hosil qiladi.
- **3.** \mathbb{R}^n fazoda har qanday chegaralangan to'plam to'liq chegaralangan bo'lishini isbotlang.
- 4. ℓ_2 fazosidan olingan, quyida keltirilgan to'plamning to'liq chegaralanganligini isbotlang.

$$A = \{x = (a_1, a_2, \ldots) : |a_1| \le 1, |a_2| \le \frac{1}{2}, \ldots |a_n| \le \frac{1}{2^n}, \ldots \}.$$

- **5.** Agar X metrik fazo sanoqli-kompakt bo'lsa,u holda u to'liq chegaralangan bo'lishini isbotlang.
- **6.** [0, 1] segmentda joylashgan barcha ratsional sonlar to'plami to'liq chegaralangan bo'lib, kompakt emasligini isbotlang.
- 7. Kompakt to'plamning ixtiyoriy yopiq qism to'plami kompakt ekanligini isbotlang.
- **8.** X metrik fazoda nisbiy kompakt A va B to'plamlar berilgan bo'lsin. $\rho(x,y)$ sonlar (bunda $x\in A,\ y\in B$) chegaralangan sonli to'plam bo'lishini isbotlang.
 - 9. Sanoqli sondagi kompaktlarning birlashmasi kompakt bo'ladimi?
- 10. Chekli sondagi nisbiy kompaktlarning birlashmasi nisbiy kompakt bo'lishini isbotlang.

- 11. Ixtiyoriy sondagi kompaktlarning kesiishmasi kompakt bo'lishini isbotlang.
- 12. Ixtiyoriy sondagi nisbiy kompaktlarning kesishmasi nisbiy kompakt bo'lishini isbotlang.
 - 13. Ixtiyoriy kompakt to'liq fazo bo'lishini isbotlang.
- 14. \mathbb{R}^n evklid fazosida ixtiyoriy yopiq chegaralangan to'plam kompakt bo'lishini isbotlang.
- 16. ℓ_2 fazodagi ixtiyoriy nisbiy kompakt to'plam shu fazoning hech qaerida zich emasligini isbotlang.
 - 17. Sanoqli kompakt

$$E = \{0, 1, \frac{1}{2}, \frac{1}{4}, \dots\}$$

to'plami berilgan. Bu to'plamni

$$(1-\varepsilon, 1+\varepsilon), \left(\frac{1-\varepsilon}{2}, \frac{1+\varepsilon}{2}\right), \left(\frac{1-\varepsilon}{4}, \frac{1+\varepsilon}{4}\right), \dots, \left(\frac{1-\varepsilon}{2^n}, \frac{1+\varepsilon}{2^n}\right), \dots$$

va $(-\varepsilon, \varepsilon)$ intervallar sistemasi qoplaydi (bu erda $0 < \varepsilon < 1$). Bu sistemadan E ni qoplaydigan chekli sistema ajrating.

3.3. Qisqartirib akslantirish prinsipi va uning tatbiqlari

A akslantirish X metrik fazoni o'ziga o'tkazsin: $A:X\to X$. Agar $Ax_0=x_0$ tengligi o'rinli bo'lsa, u holda x_0 nuqta A akslantirishning qo'zg'almas nuqtasi deb ataladi.

Ta'rif. (X, ρ) metrik fazo va $A: X \to X$ biror akslantirish bo'lsin. Agar shunday α , $0 < \alpha < 1$ soni mavjud bo'lib, ixtiyoriy $x, y \in X$ nuqtalar uchun

$$\rho(Ax, Ay) \le \alpha \rho(x, y) \tag{3.7}$$

tengsizligini bajarilsa, u holda A akslantirishni qisqartirib akslantirish deyiladi.

Masalalar

3.3.1. (Qisqartirib akslantirish prinsipi). X to'la metrik fazoning har bir A qisqartirib akslantirishi yagona qo'zg'almas nuqtaga ega.

Yechimi. X metrik fazodan ixtiyoriy u_0 nuqtani olib, quyidagi

$$u_1 = Au_0,$$

 $u_2 = Au_1 = A^2u_0,$
 $u_3 = Au_2 = A^3u_0,$
 \dots
 $u_k = Au_{k-1} = A^ku_0,$

ketma-ketlikni tuzamiz. U holda

$$\rho(u_k, u_{k+1}) = \rho(A^k u_0, A^{k+1} u_0) \le \alpha \rho(A^{k-1} u_0, A^k u_0) \le \dots \le \alpha^k \rho(u_0, u_1)$$

bo'lgani uchun

$$\rho(u_n, u_{n+p}) \le \rho(u_n, u_{n+1}) + \rho(u_{n+1}, u_{n+2}) + \dots + \rho(u_{n+p-1}, u_{n+p}) \le$$

$$\le \alpha^n \rho(u_0, u_1) + \alpha^{n+1} \rho(u_0, u_1) + \dots + \alpha^{n+p-1} \rho(u_0, u_1) \le \frac{\alpha^n}{1 - \alpha} \rho(u_0, u_1).$$

Endi $\lim_{n\to\infty} \alpha^n = 0$ ekanligidan, ixtiyoriy $\varepsilon > 0$ soni uchun n_0 natural son topilib, $n > n_0$ tengsizligini qanoatlantiradigan barcha n lar uchun

$$\frac{\alpha^n}{1-\alpha}\rho(u_0,u_1)<\varepsilon$$

tengsizligi o'rinli bo'ladi. Demak, $\{u_n\}$ fundamental ketma-ketlik. X to'la bo'lgani uchun shunday $u \in X$ nuqta mavjud bo'lib $n \to \infty$ da $u_n \to u$, ya'ni $\rho(u_n, u) \to 0$ bo'ladi. Bu u nuqta akslantirishning qo'zg'almas nuqtasi ekanligini ko'rsatamiz. Haqiqatan, $n \to \infty$ bo'lganda

$$\rho(Au, u_n) = \rho(Au, Au_{n-1}) \le \alpha \rho(u, u_{n-1}) \to 0,$$

ya'ni Au element $\{x_n\}$ ketma-ketlikning limiti. Ketma-ketlikning limiti yagona bo'lgani uchun u = Au.

Endi u qo'zg'almas nuqtaning yagonaligini isbotlaymiz. Haqiqatan, u va v lar qo'zg'almas nuqtalar bo'lsa, u holda

$$\rho(u, v) = \rho(Au, Av) \le \alpha \rho(u, v)$$

ya'ni

$$\rho(u,v)(1-\alpha) \le 0.$$

Bu tengsizlikdan $\rho(u, v) = 0$ ekanligi kelib chiqadi, ya'ni u = v.

3.3.2. f(x) sonlar o'qida aniqlangan funksiya bo'lib, har bir $x \in \mathbb{R}$ nuqtada hosilaga ega va $|f'(x)| \leq k$ tengsizligi o'rinli bo'lsin (bunda k birdan kichik tayinlangan son). U holda x = f(x) tenglama yagona echimga ega ekanligini ko'rsating.

Yechimi. Matematik analiz kursidagi Lagranj teoremasiga asosan har bir $x_1, x_2 \in \mathbb{R}$ nuqtalar uchun

$$f(x_1) - f(x_2) = f'(c)(x_1 - x_2)$$

tenglikni qanoatlantirivchi $c \in (x_1, x_2)$ soni mavjud bo'ladi. U holda $|f(x_1) - f(x_2)| \le k|x_1 - x_2|$ tengsizligi o'rinli, 0 < k < 1 bo'lgani uchun f qisqartirib akslantirish bo'ladi. U holda qisqartirib akslantirish prinsipiga asosan x = f(x) tenglama yagona echimga ega.

3.3.3.

$$y(x_0) = y_0 \tag{3.8}$$

boshlang'ich shart bilan

$$\frac{dy}{dx} = f(x, y) \tag{3.9}$$

differensial tenglama berilgan. Tenglamaning o'ng tomonidagi f(x,y) funksiya tekislikdagi (x_0,y_0) nuqtani o'z ichiga olgan ba'zi G sohada aniqlangan, uzluksiz va

$$|f(x, y_1) - f(x, y_2)| \le k|y_1 - y_2|$$

Lipshits shartini qanoatlantirsin, (k = const). (3.9) tenglama ba'zi $[x_0-c, x_0+c]$ segmentda (3.8) boshlang'ich shartni qanoatlantiruvchi yagona $y = \psi(x)$ echimga ega ekanligini isbotlang.

Yechimi. (3.9) tenglamani (3.8) sharti bajarilganda quyidagi integral tenglama ko'rinishida yozish mumkin :

$$\psi(x) = y_0 + \int_{x_0}^{x} f(t, \psi(t)) dt.$$
 (3.10)

f(x,y) funksiya G da uzluksiz bo'lgani uchun (x_0,y_0) nuqtani o'z ichiga olgan biror $G' \subset G$ sohada chegaralangan bo'ladi, ya'ni $|f(x,y)| \leq d$.

Endi c sonini quyidagi shartlarni qanoatlantiradigan etib saylab olamiz:

- a) agar $|x_0 x| \le c$, $|y y_0| \le c \cdot d$ bo'lsa, u holda $(x, y) \in G'$.
- b) kc < 1.

 $[x_0-c,x_0+c]$ segmentda aniqlangan va $|\psi(x)-y_0|\leq cd$ tengsizligini qanoatlantiruvchi $\{\psi\}$ uzliksiz funksiyalar sistemasini F bilan belgilaymiz va bu sistemada metrikani

$$\rho(\psi_1, \psi_2) = \max_{x_0 - c \le x \le x_0 + c} |\psi_1(x) - \psi_2(x)|$$

ko'rinishda kiritamiz. F metrik fazo $C[x_0 - c, x_0 + c]$ to'la fazoning yopiq qism fazosi bo'lgani uchun u ham to'liq bo'ladi.

$$\psi(x) = y_0 + \int_{x_0}^{x} f(t, \varphi(t))dt$$
(3.11)

tengligi bilan aniqlangan $\varphi \to \psi$ akslantirishida $x \in [x_0 - c, x_0 + c]$ bo'lsin. U holda bu akslantirish F ni o'ziga qisqartirib akslantiradi. Haqiqatan, $\varphi \in F$ va $x \in [x_0 - c, x_0 + c]$ bo'lsin. U holda

$$|\psi(x) - y_0| = |\int_{x_0}^x f(t, \varphi(t))dt| \le cd$$

munosabati o'rinli bo'ladi. Demak (3.3.5) akslantirish F fazoni o'ziga akslantiradi. Shu bilan birga

$$|\psi_1(x) - \psi_2(x)| \le \int_{x_0}^x |f(t, \varphi_1(t)) - f(t, \varphi_2(t))| dt \ge$$

$$\ge kc \max_{x_0 - c \le t \le x_0 + c} |\varphi_1(t) - \varphi_2(t)| = kc\rho(\varphi_1, \varphi_2)$$

Bu erda 0 < kc < 1 bo'lgani uchun (3.10) akslantirishning qisqartirib akslantirish ekanligi kelib chiqadi. Demak qisqartirib akslantirish prinsipiga asosan (3.9) tenglama F fazoda (3.8) boshlang'ich shartini qanoatlantiruvchi yagona echimga ega.

3.3.4 $f(x) = 4x - 4x^2$ funksiya [0; 1] kesmani o'ziga akslantirishini tekshiring. Bu akslantirish qisqartiruvchi boladimi?

Yechimi. f(x) = 4x(1-x) bolganlikdan x element [0; 1] segmentga tegishli bo'lganda $f(x) \geq 0$ tengsizligi, $f(x) - 1 = -(2x - 1)^2 \leq 0$ bo'lganlikdan esa $f(x) \leq 1$ tengsizligi o'rinli bo'ladi. Demak, f funksiyasi [0; 1] segmentni o'ziga akslantiradi.

 $x_1=0$ va $x_2=\frac{1}{2}$ nuqtalarda $f(x_1)=0,\ f(x_2)=1$ tenliklari o'rinlidir. Bundan

$$\rho(f(x_1), f(x_2)) = 1 \ge \frac{1}{2} = \rho(x_1, x_2).$$

Bu esa f akslantirish qisqartiruvchi emasligini bildiradi.

3.3.5 $f(x) = x + \frac{1}{x}$ akslantirish [1; ∞ [nurda qisqartiruvchi boladimi?

Yechimi.

$$\rho(f(x_1), f(x_2)) = |f(x_1) - f(x_2)| = (x_1 - x_2) + (\frac{1}{x_1} - \frac{1}{x_2}) = |x_1 - x_2| \cdot (1 - \frac{1}{x_1 x_2}).$$

tengligi va $x_1x_2 \ge 1$ tengsizligidan

$$\rho(f(x_1), f(x_2)) \le \rho(x_1, x_2)$$

tengsizligiga ega bo'lamiz. Bu tengsizlik berilgan akslantirish qisqartiruvchi ekanligini anglatmaydi. Qisqartiruvchi akslantirish bo'lishi uchun $\rho(f(x_1), f(x_2)) \leq \alpha \rho(x_1, x_2)$ tengsizligi o'rinli bolishi kerak, bunda $0 < \alpha < 1$. Bizning holda α sonini saylab olish mumkin emas, chunki $1 - \frac{1}{x_1 x_2}$ ifodasi $x_1 x_2$ ko'paytmaning eterlicha katta qiymatlarida birga xoxlagancha yaqin bo'ladi.

 $3.3.6\ X$ to'la metrik fazosida A va B qisqartiruvchi akslantirishlar berilgan bo'lsin:

$$\rho(Ax, Ay) \le \alpha_A \rho(x, y), \quad \rho(Bx, By) \le \alpha_B \rho(x, y).$$

Agar barcha $x \in X$ elementlar uchun $\rho(Ax, Bx) < \varepsilon$ (bunday A va B akslantirishlar ε -yaqin deyiladi) tengsizligi oʻrinli boʻlsa, u holda bu akslantirishlar qoʻzgʻalmas nuqtalari orasidagi masofa $\frac{\varepsilon}{1-\alpha}$ sonidan katta emasligini isbotlang, bunda $\alpha = \max(\alpha_A, \alpha_B) < 1$.

Yechimi. x' nuqta A ning qo'zg'almas nuqtasi bo'lsin. B qisqartiruvchi akslantirishning y' qo'zg'almas nuqtasini $y_k = B^k x'$, (k = 0, 1, ...) ketma-ketlikning limiti sifatida deylik. U holda

$$\rho(x', y_k) \le \rho(x', y_1) + \rho(y_1, y_2) + \dots + \rho(y_{k-1}, y_k) \le \rho(x', Bx')(1 + \alpha_B + \dots + \alpha_B^{k-1}) \le \frac{\rho(x', Bx')}{1 - \alpha_B},$$

bundan $k \to \infty$ bo'lganda

$$\rho(x', y') \le \frac{\rho(x', Bx')}{1 - \alpha_B} = \frac{\rho(Ax', Bx')}{1 - \alpha_B} < \frac{\varepsilon}{1 - \alpha}.$$

3.2.7. 2, $2 + \frac{1}{2}$, $2 + \frac{1}{2 + \frac{1}{2}}$, ... **kabi aniqlangan** $\{x_n\}$ **ketma-**

ketligining yaqinlashuvchi ekanlagini isbotlang va uning limitini toping.

Yechimi. $\{x_n\}$ ketma-ketlikni $x_1 = 2$, $x_n = 2 + \frac{1}{x_{n-1}}$ $(n \ge 2)$ ko'rinishda rekurent aniqlash mumkin bo'lganlikdan,

$$x_n = 2 + \frac{1}{2 + \frac{1}{x_{n-2}}} \quad (n \ge 3)$$

tengligi va $x_1 \leq \frac{5}{2}$, $x_2 \leq \frac{5}{2}$ tengsizliklaridan $x_n \leq \frac{5}{2}$ ($\forall n \geq 1$) munosabatining o'rinli ekanligi kelib chiqadi. Shu bilan birga $x_n \geq 2$ ($n \geq 1$)

1). [2; $\frac{5}{2}$] segmentni o'ziga o'tkazadigan $f(t) = 2 + \frac{1}{t}$ akslantirishini qaraymiz.

$$\rho(f(x), f(y)) = f(y) - f(x)| = \left| \frac{1}{x} - \frac{1}{y} \right| \le \frac{1}{4}|x - y| = \frac{1}{4}\rho(x, y)$$

ifodadan f akslantirish qisqartiruvchi ekanligi ko'rinadi. U holda uning yagona x' qo'zg'almas niqtasi mavjud bolib, $x' = \lim_{n \to \infty} x_n$ bo'ladi, bunda $x_n = f(x_{n-1}) = 2 + \frac{1}{x_{n-1}} \ (n \ge 2), \ x_1 = 2$. $x' = 2 + \frac{1}{x'}$ tenglamani yechib, $x' = 1 + \sqrt{2}$ sonini topamiz. Bu berilgan ketma-ketlikning limiti bo'ladi.

- 3.2.8. $x_i = \sum_{m=1}^{\infty} a_{im}x_m + a_i \ (i = 1, 2, ...)$ cheksiz chiziqli algebraik tenglamalar sistemasini qaraylik. Quyidalarni tekshiring:
- a) $\alpha = \sup_{i} \sum_{m=1}^{\infty} |a_{im}| < 1$ va $\sum_{i=1}^{\infty} |a_{i}| < +\infty$ shartlari o'rinlanganda, u yagona $x' = (x'_{1}, x'_{2}, ...)$ yechimga ega bo'ladi, bunda $\sum_{i=1}^{\infty} |x'_{i}| < +\infty$;
- b) $agar \ \beta = \sup_{i} \sum_{m=1}^{\infty} |a_{im}| < 1 \ va \ \sup_{i} |a_{i}| < +\infty \ bo'lsa, \ u \ holda$ berilgan sistemaning $x' = (x'_{1}, x'_{2}, \ldots)$ yagona yechimi bo'lib, $\sup_{i} |x'_{i}| < +\infty$ bajariladi.

Yechimi. a) $\rho(x,y) = \sum_{i=1}^{\infty} |x_i - y_i|$, bunda $x = (x_i)$, $y = (y_i)$ metrika bilan berilgan ℓ_1 fazosida $Ax = y = (y_i)$ operatorini qaraymiz, bunda $y_i = \sum_{i=1}^{\infty} a_{im}x_m + a_i \quad (i = 1, 2, ...)$.

U holda har bir $z = (z_i) \in \ell_1$ uchun

$$\rho(Ax, Az) = \sum_{i=1}^{\infty} \left| \sum_{m=1}^{\infty} a_{im} x_m + a_i - \sum_{m=1}^{\infty} a_{im} z_m - a_i \right| =$$

$$= \sum_{i=1}^{\infty} \left| \sum_{m=1}^{\infty} a_{im} (x_m - z_m) \right| \le \sum_{m=1}^{\infty} \sum_{i=1}^{\infty} |a_{im}| |x_m - z_m| \le \alpha \rho(x, z),$$

ya'ni A operatori ℓ_1 fazosini o'ziga qisqartirib akslantiradi. Endi qisqartirib akslantirish prinsipini qollansak, qo'yilgan savolga javob bo'ladi.

b) $\rho(x,y) = \sup_{i} |x_i - y_i|$ metrika bilan berilgan barcha chegaralangan ketma-ketliklarning m fazosida $Ax = y = (y_i)$ operatorini qaraymiz,

bunda
$$y_i = \sum_{m=1}^{\infty} a_{im} x_m + a_i$$
 ($i = 1, 2, ...$). U holda

$$\rho(Ax, Az) = \sup_{i} |\sum_{m=1}^{\infty} a_{im} x_m - \sum_{m=1}^{\infty} a_{im} z_m| \le \beta \rho(x, y),$$

ya'ni A operatori m fazosini o'ziga qisqartirib akslantiradi. Endi qisqartirib akslantirish prinsipini qollansak, qo'yilgan savolga javob bo'ladi.

3.2.9. $A: f(x) \rightarrow \frac{1}{2} \int_{0}^{1} xt f(t) dt + \frac{5}{6}x$ akslantirishning C[0,1] fazosida qisqartiruvchi ekanligini ko'rsating va uning qo'zg'almas f^* nuqtasini toping.

Yechimi. Berilgan akslantirish qisqartiruvchi ekanligi quyidagi baholashdan kelib chiqadi:

$$|Af_1 - Af_2| = \frac{1}{2} \left| \int_0^1 xt[f_1(t) - f_2(t)]dt \right| \le \frac{1}{2} \max_{t \in [0,1]} |f_1(t) - f_2(t)| = \frac{1}{2} \rho(f_1, f_2).$$

 $f_0(x) = 0$ deb olamiz. U holda

Shuning uchun $f^*(x) = \lim_{n \to \infty} f_n(x) = x$, ya'ni bu funksiya C[0,1] fazosida $f(x) = \frac{1}{2} \int_0^1 x t f(t) dt + \frac{5}{6} x$ integral tenglamaning yagona yechimi bo'ladi.

 $3.3.10. \ \ \textit{Agar} \ f(x) \ \textit{funksiya haqiqiy sonlar o'qida uzluksiz} \\ \textit{differehsiallanuvchi bo'lib, ushbu}$

$$0 < c \le f'(x) \le d < \infty$$

sharti o'rinli bo'lsa, u holda f(x) = 0 tenglama yagona yechimga egaligini isbotlang.

Yechimi. $Ax = x - \frac{1}{d}f(x)$ akslantirishning sonlar o'qini o'ziga qisqartirib o'tkazishini ko'rsataylik: $\forall x, y \in \mathbb{R}, x < y$ uchun

$$|Ax - Ay| = \left| x - y - \frac{1}{d} (f(x) - f(y)) \right| =$$

$$= \left| 1 - \frac{1}{d} \frac{f(x) - f(y)}{x - y} \right| |x - y| = \left| 1 - \frac{f'(\xi)}{d} \right| |x - y| \le$$

$$\le \left| 1 - \frac{c}{d} \right| |x - y|,$$

bu erda $\xi \in (x, y)$. Demak,

$$|Ax - Ay| \le \left|1 - \frac{c}{d}\right| |x - y|.$$

 $0 \leq \left|1 - \frac{c}{d}\right| < 1$ bo'lganlikdan, y = Axqisqartirib akslantirish bo'ladi. U holda

$$x_0 - \frac{1}{d}f(x_0) = x_0$$

tenglikni, ya'ni $f(x_0) = 0$ tenglikni qanoatlantiruvchi yagona x_0 mavjuddir.

3.3.11. Aytaylik f(x,y) funksiya $G = \{(x,y) : a \le x \le b, -\infty < y < +\infty\}$ sohada x bo'yicha uzluksiz va y bo'yicha musbat, chegaralangan hosilaga ega bo'lsin: $0 < m \le f'_y \le M$. U holda f(x,y) = 0 tenglama [a,b] kesmada yagona uzluksiz yechimga ega.

Yechimi. C[a,b] fazoni o'z-o'ziga aks ettiruvchi $Ay = y - \frac{1}{M}f(x,y)$ akslantirishni qaraymiz. Bu akslantirishning qisqartirib akslantirish ekanligini ko'rsatamiz. Agar y_1 va y_2 funksiyalar C[a,b] fazoning elementlari bo'lsa, u holda

$$|Ay_1 - Ay_2| = \left| (y_1 - \frac{1}{M} f(x, y_1)) - (y_2 - \frac{1}{M} f(x, y_2)) \right| =$$

$$= \left| (y_2 - y_1) - \frac{1}{M} f'_y(x, y_1 + \theta(y_1 - y_2))(y_1 - y_2) \right| \le$$

$$\le \left| 1 - \frac{1}{M} \right| |y_1 - y_2| = \alpha |y_1 - y_2|,$$

ya'ni

$$\rho(Ay_1, Ay_2) \le \alpha \rho(y_1, y_2),$$

bunda $0 < \alpha < 1$.

Demak, qisqartirib akslantirish prinsipidan, ixyiyoriy $y_0 \in C[a,b]$ uchun

$$y_1 = Ay_0, y_2 = Ay_1, \dots$$

ketma-ketlik yaqinlashuvchi bo'ladi va $\lim_{n\to\infty}y_n=y$ funksiya f(x,y)=0 tenglamaning yagona uzluksiz yechimi bo'ladi.

3.3.12. \mathbb{R} da

$$f(x) = \frac{\pi}{2} + x - arctgx$$

qisqartirib akslantirish bo'ladimi?

Yechimi. Faraz qilaylik, $x, y \in \mathbb{R}$ uchun

$$|f(x) - f(y)| \le \alpha |x - y|$$

bo'lsin. U holda

$$|f(x) - f(y)| = |(x - y) - (arctgx - arctgy)| \le \alpha |x - y|.$$

Bu tengsizlikda y = x + 1 deb olsak, u holda

$$|1 + arctg(x+1) - arctgx| \le \alpha.$$

Endi $x \to +\infty$ da $arctg(x+1) \to \frac{\pi}{2}$, $arctgx \to \frac{\pi}{2}$ ekanligidan, $1 \le \alpha$. Demak, bu akslantirish qisqartirib akslantirish emas.

Mustaqil ish uchun masalalar

1. X to'la metrik fazo bo'lib, $T: X \to X$ uzluksiz akslantirishning biror T^m darajasi qisqartirib akslantirish bo'lsin, ya'ni:

$$\rho(T^m x, T^m y) < \alpha \rho(x, y), \quad 0 < \alpha < 1.$$

 ${\bf U}$ holda Tyagona qo'zg'almas nuqtaga ega bo'lishini ko'rsating.

- **2.** f = [0, 1] segmentni [0, 1] segmentiga o'zaro bir qiymatli uzluksiz akslantirish bo'lsin. U holda f ning kamida bitta qo'zg'almas nuqtasi mavjudligini isbotlang.
 - 3. Cheksiz tenglamalar sistemasi berilgan bo'lsin:

$$y_i = \sum_{k=1}^{\infty} c_{ik} x_k + b_i \quad (i = 1, 2, ...),$$

bu erda $\sum_{i,k} c_{ik}^2 < 1$, $\sum_i b_i^2 < +\infty$. Bu sistemaning ℓ_2 fazosida yagona yechimga ega ekanligini isbotlang.

4. $[1, \infty)$ yarim intervalda $f(x) = \frac{1}{2} \ln x$ funksiyani qaraylik. Ixtiyoriy $x_1 \in [1; +\infty), \ x_2 \in [1; +\infty)$ nuqtalari uchun

$$|f(x_2) - f(x_1)| = |f'(c)(x_2 - x_1)| \le \frac{1}{2}|x_2 - x_1|$$

tengsizligi o'rinlidir (bu erda $c \in (x_1, x_2)$). Ammo bu funksiya qo'zg'almas nuqtaga ega emas. Bundan qisqartirib akslantirish prinsipiga ziddiyat kelib chiqmaydimi?

5. Aytaylik $f(x) \in C[a,b]$ bo'lsin. U holda

$$y + \frac{1}{2}\sin x + f(x) = 0$$

tenglama yagona $y=y(x)\in C[a,b]$ yechimga egaligini isbotlang.

6. Aytaylik $f(x) \in C[a, b]$ bo'lsin. U holda

$$y + \frac{1}{2}\cos x + f(x) = 0$$

tenglama yagona $y = y(x) \in C[a, b]$ yechimga egaligini isbotlang.

IV BOB

Normalangan fazolar

4.1. Chiziqli fazolar va chiziqli funksionallar

Biror M to'plami berilgan bo'lsin. Agar $M \times M$ to'plamining ixtiyoriy R_{φ} qism to'plamini olsak, u holda M to'plamida φ binar munosabat berilgan deb ataladi. Boshqacha aytganda, agar (a,b) juftlik R_{φ} to'plamiga tegishli bo'lsa, u holda a element b elementga binar munosabatda deb ataladi va $a\varphi b$ ko'rinishda belgilanadi.

1. Ayniylik munosabati ε binar munosabatga misol bo'ladi. Haqiqatan, agar $a\varepsilon b \Leftrightarrow a=b$ deb olsak, u holda

$$R_{\varepsilon} = \{(a, a) : a \in M\} \subset M \times M.$$

 R_{ε} to'plamini odatda $M\times M$ to'plamining diagonali deyiladi hamda Δ ko'rinishda belgilanadi.

2. M to'plamida berilgan har bir φ ekvivalentlik munosabati binar munosabat bo'ladi. Boshqacha aytganda, ekvivalentlik munosabati refleksivlik, simmetriya va tranzitivlik shartlarini qanoatlantiruvchi binar munosabat.

Biror E to'plamida $E \times E$ to'plamning har bir (x,y) elementiga E to'plamda x va y elementlarning yig'indisi deb ataluvchi va x+y ko'rinishida belgilanuvchi E to'plamning elementini mos qo'yuvchi binar munosabat berilgan bo'lib, bu munosabat quyidagi shartlarni qanoatlantirsin:

 $\forall x, y, z \in E$ uchun

- 1. x + y = y + x (yig'indining kommutativligi);
- 2. (x + y) + z = x + (y + z) (yig'indining assotsiativligi);
- 3. E to'plamida shunday θ element mavjud bo'lib, $\forall x \in E$ uchun $x + \theta = x$ tengligi o'rinli (θ nol deb ataladi);
- 4. ixtiyoriy $x \in E$ uchun shunday $-x \in E$ element mavjud bo'lib $x + (-x) = \theta$ tengligi o'rinli (-x element x ga qarama-qarshi element deb ataladi).

Shu bilan birga \mathbb{K} maydondan olingan ixtiyoriy α son va ixtiyoriy $x \in E$ element uchun $\alpha x \in E$ (x elementning α songa ko'paytmasi) element aniqlangan bo'lib, quyidagi shartlar bajarilsin:

 $\forall \alpha, \beta \in K \text{ va } \forall x, y \in E \text{ uchun:}$

- 5. $\alpha(\beta x) = (\alpha \beta x)$;
- 6. $\alpha(x+y) = \alpha x + \alpha y$;
- 7. $(\alpha + \beta)x = \alpha x + \beta x$;
- 8. $1 \cdot x = x$.

Ushbu shartlarning barchasini qanoatlantruvchi E to'plami \mathbb{K} maydon ustida *chiziqli* yoki *vektor fazo* deb ataladi. Chiziqli fazo elementlarini vektorlar yoki nuqtalar deb ataymiz. Agar $\mathbb{K} = \mathbb{R}$ (\mathbb{R} barcha haqiqiy sonlar maydoni) yoki $\mathbb{K} = \mathbb{C}$ (\mathbb{C} barcha kompleks sonlar maydoni) bo'lsa, u holda E, mos ravishda, *haqiqiy* yoki *kompleks* chiziqli fazo deb ataladi.

- $3. \mathbb{R}$ to'plami sonlarni qo'shish va ko'paytirish amallariga nisbatan chiziqli fazo bo'ladi.
- 4. n sondagi haqiqiy sonlarning barcha $x=(x_1,x_2,\ldots,x_n)$ majmuilari to'plamida qo'shish va songa ko'paytirish amallarini

$$(x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$

 $\alpha(x_1, x_2, \dots, x_n) = (\alpha x_1, \alpha x_2, \dots, \alpha x_n)$

ko'rinshida aniqlasak, bu to'plam chiziqli fazo bo'ladi. Bu fazo n-o'lchamli arifmetik fazo deyiladi va \mathbb{R}^n ko'rinishida belgilanadi.

Ta'rif. X va Y lar \mathbb{K} ustida chiziqli fazolar bo'lsin. O'zaro bir qiymatli $\Phi: X \to Y$ akslantirish

$$\Phi(x+y) = \Phi(x) + \Phi(y), \ x, y \in X;$$

$$\Phi(\alpha x) = \alpha \Phi(x), \ x, y \in X, \ \alpha \in \mathbb{K}$$

shartlarni qanoatlantirsa, u holda X va Y fazolar o'zaro izomorf fazolar deyiladi.

Misol uchun, n o'l
chamli \mathbb{R}^n haqiqiy arifmetik fazosi bilan darajalari
 n-1 dan katta bo'lmagan barcha haqiqiy koeffitsentli ko'phadlar fazosi
 izomorf fazolar bo'ladi, bunda izomorfizm

$$(a_1, a_2, \dots, a_n) \mapsto a_1 + a_2 t + \dots + a_n t^{n-1}$$

qoida orqali o'rnatilishi mumkin.

L chiziqli fazoning x_1, x_2, \ldots, x_n elementlari berilganda, kamida bittasi noldan farqli bo'lgan $\alpha_1, \alpha_2, \ldots, \alpha_n$ sonlari mavjud bo'lib,

$$\alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_n x_n = 0$$

tengligi o'rinli bo'lsa, u holda x_1, x_2, \ldots, x_n lar chiziqli bog'liq elementlar deyiladi. Agar $\alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_n x_n = 0$ tengligidan $\alpha_1 = \alpha_2 = \ldots =$

 $\alpha_n = 0$ tengligi kelib chiqsa, u holda x_1, x_2, \dots, x_n elementlar chiziqli erkli elementlar deb ataladi.

L chiziqli fazo elementlarining x, y, \ldots cheksiz sistemasining ixtiyoriy qism sistemasi chiziqli erkli bo'lsa, u holda berilgan sistema *chiziqli* erkli deb ataladi.

Agar L fazosida n sondagi chiziqli erkli elementlar topilib, ixtiyoriy n+1 sondagi elementlari chiziqli bogʻliq boʻlsa, u holda L fazosi n-oʻlchamli deyiladi. Agar L da ixtiyoriy sondagi chiziqli erkli elementlarni topish mumkin boʻlsa, u holda L cheksiz oʻlchamli fazo deb ataladi. n-oʻlchamli L fazoning n sondagi ixtiyoriy chiziqli erkli elementlarining sistemasini, bu fazoning bazisi deb ataladi.

L' to'plam L chiziqli fazoning qism to'plami bo'lsin. Agar ixtiyoriy $x,y\in L'$ va ixtiyoriy $\alpha,\beta\in\mathbb{K}$ sonlar uchun $\alpha x+\beta y\in L'$ bo'lsa, u holda L' to'plam L ning $qism\ fazosi$ deb ataladi.

L chiziqli fazo bo'lib, θ uning nol elementi bo'lsin. Faqat nol element
dan iborat $\{\theta\}$ to'plam L ning eng kichik qism fazosi bo'ladi. Bu
 fazoni nol qism fazo deb ataymiz. Shu bilan birga L ni ham o'zining
 qism fazosi sifatida qarash mumkin. Bu ikki qism fazolar L ning xosmas
 qism fazolari deyiladi, boshqa qism fazolar xos deb ataladi.

Qism fazolarning xoxlagan sistemasining kesishmasi qism fazo bo'ladi. Haqiqatan, $\{A_{\gamma}: \gamma \in I\}$ (I ixtiyoriy to'plam) sistema L chiziqli fazosining qism fazolari sistemasi bo'lsin. Ixtyoriy $x,y \in \bigcap_{\gamma} A_{\gamma}$ elementlar va ixtiyoriy α , β sonlar uchun $\alpha x + \beta y \in A_{\gamma}$, $\forall \gamma \in I$ munosabati o'rinli. U holda $\alpha x + \beta y \in \bigcap_{\gamma} A_{\gamma}$ munosabati ham o'rinli, ya'ni $\bigcap_{\gamma} A_{\gamma}$ to'plam qism fazo bo'ladi.

L chiziqli fazoda biror bo'sh bo'lmagan S to'plam berilgan bo'lsin. S to'plamni o'z ichiga olgan eng kichik qism fazo, S to'plamning chiziqli qobig'i deyiladi va u odatda $\mathscr{L}(S)$ ko'rinishida belgilanadi. $\mathscr{L}(S)$ fazosi S ni o'z ichiga oluvchi barcha qism fazolarning kesishmasidan iborat bo'ladi. Boshqacha aytganda, $\mathscr{L}(S)$ fazosi quyidagi ko'rinishdagi elementlardan iborat :

$$x = \sum_{i=1}^{n} \alpha_i a_i,$$

bunda $\alpha_i \in \mathbb{K}, \ a_i \in S, \ 1 \le i \le n, \ n \in \mathbb{N}.$

- 5. L chiziqli fazo bo'lib, x uning noldan farqli elementi bo'lsin. $\{\lambda x: \lambda \in \mathbb{K}\}$ elementlar to'plami bir o'lchamli qism fazo bo'ladi. Agar L ning o'lchami birdan katta bo'lsa, u holda $\{\lambda x: \lambda \in \mathbb{K}\} \neq L$.
 - **6.** [a,b] segmentda aniqlangan barcha ko'phadlar to'plamini P[a,b]

ko'rinishida belgilasak, u holda bu to'plam C[a,b] ning qism fazosi bo'ladi.

7. ℓ_2 , c_0 , c, m, \mathbb{R}^{∞} to'plamlarning barchasi chiziqli fazo bo'lib, har biri o'zidan keyingisining qism fazosi bo'ladi.

L chiziqli fazo bo'lib, L' uning biror qism fazosi bo'lsin. Agar $x,y\in L$ elmentlarning ayirmasi L' fazosiga tegishli bo'lsa, u holda bu elementlarni ekvivalent deb ataymiz. Ekvivalentlik munosabat refleksiv, simmetrik va tranzitiv bo'lgani uchun, u L ni o'z - aro kesishmaydigan sinflarga ajratadi. Bunday sinflar to'plami L ning L' bo'yicha faktor fazosi deb ataladi va L/L' ko'rinishida belgilanadi. ξ va η sinflar L/L' faktor fazoning elementlari, hamda $x\in \xi$ va $y\in \eta$ bo'lsin. ξ va η sinflarning yig'indisi deb, x+y elementini o'z ichiga oluvchi ν sinfga aytiladi; ξ sinf va α son ko'paytmasi deb, α x elementini o'z ichiga oluvchi sinfga aytamiz. Bu amallar natijasi x va y lar o'rniga xoxlagan boshqa $x'\in \xi$ va $y'\in \eta$ elementlarni olganda ham o'zgarmaydi. Shunday qilib, L/L' faktor fazosida qo'shish va skalyar songa ko'paytirish amallari aniqlanadi. Bu amallar chiziqli fazo tarifidagi barcha shartlarni qanoatlantiradi. Shu sababli, har bir L/L' faktor fazo chiziqli fazo bo'ladi.

Agar L chiziqli fazo n-o'lchamli bo'lib, uning L' qism fazosi k-o'lchamli bo'lsa, u holda L/L' faktor fazosining o'lchamli n-k ga teng.

L chiziqli fazo bo'lib, L' uning biror qism fazosi bo'lsin. L/L' faktor fazoning o'lchami L' fazoning L fazodagi koo'lchami deb ataladi.

Agar $L' \subset L$ fazo chekli koo'lchamga ega bo'lsa, u holda L da shunday x_1, x_2, \ldots, x_n elementlarni saylab olish mumkin bo'lib, ixtiyoriy $x \in L$ elementni yagona usulda

$$x = \alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_n x_n + y$$

ko'rinishda yozish mumkin, bunda $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{K}, y \in L'$. Haqiqatan, aytaylik L/L' faktor fazoning o'lchami n ga teng bo'lsin. Bu faktor fazodan $\xi_1, \xi_2, \ldots, \xi_n$ bazis olib, har bir ξ_k sinfdan x_k element olamiz. x nuqta L ning ixtiyoriy elementi bo'lib, bu elementni o'z ichiga oluvchi sinfni ξ orqali belgilaylik. U holda

$$\xi = \alpha_1 \xi_1 + \alpha_2 \xi_2 + \ldots + \alpha_n \xi_n.$$

 $x \in \xi$ bo'lganligi sababli $x - (\alpha_1, x_1 + \alpha_2 x_2 + \ldots + \alpha_n x_n) \in L'$. U holda L' ning shunday y elementi mavjud bo'lib,

$$x - (\alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_n x_n) = y$$

tengligi o'rinli bo'ladi. Natijada

$$x = \alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_n x_n + y$$

tengligi kelib chiqadi. Bu yozuvning yagonaligi L' qism fazoning L/L' faktor fazosi uchun nol element bo'lishidan kelib chiqadi.

L chiziqli fazoda aniqlangan g sonli funksiya funksional deb ataladi. Agar barcha $x, y \in L$ elementlar uchun g(x+y) = g(x) + g(y) tengligi o'rinli bo'lsa, u holda g additiv deyiladi. Xoxlagan α son va barcha $x \in L$ uchun $g(\alpha x) = \alpha g(x)$ tengligi o'rinli bo'lsa, u holda g ni bir jinsli deb ataymiz.

Kompleks chiziqli fazoda aniqlangan g funksonal xoxlagan α son uchun $g(\alpha x) = \overline{\alpha}g(x)$ tenglikni qanoatlantirsa, u holda qo'shma bir jinsli deb ataladi.

Additiv va bir jinsli funksionalni *chiziqli* deb ataladi. Boshqacha aytganda, L chiziqli fazoda aniqlangan g(x) funksional xoxagan $x, y \in L$ elementlar va α , β sonlar uchun $g(\alpha x + \beta y) = \alpha g(x) + \beta g(y)$ tengligini qanoatlantirsa, u holda chiziqli deb ataladi.

8. $a=(a_1,\,a_2,\ldots,a_n)\in\mathbb{R}^n$ tayinlangan vektor bo'lsa, u holda

$$f(x) = \sum_{i=1}^{n} a_i x_i$$

ko'rinishida aniqlangan akslantirish \mathbb{R}^n da chiziqli funksional bo'ladi. Haqiqatan, xoxlagan

$$x = (x_1, x_2, \dots, x_n)$$
 $y = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$

elementlar va xoxlagan α , β sonlar uchun

$$f(\alpha x + \beta y) = \sum_{i=1}^{n} a_i (\alpha x_i + \beta y_i) = \alpha \sum_{i=1}^{n} a_i, x_i + \beta \sum_{i=1}^{n} a_i, y_i = \alpha f(x) + \beta f(y).$$

9. C[a, b] fazosida chiziqli funksional sifatida

$$f(x) = \int_{a}^{b} x(t) dt$$

integralini qarash mumkin. Bu funksionalning chiziqli ekanligi integralning xossalaridan kelib chiqadi.

10. k tayinlangan natural son bo'lsin. ℓ_2 har bir $x = (x_1, x_2, \ldots, x_n, \ldots)$ elementi uchun $f_k(x) = x_k$ deb olsak, bu funksional chiziqli bo'ladi. Haqiqatan, xoxlagan

$$x = (x_1, x_2, \dots, x_n, \dots), y = (y_1, y_2, \dots, y_n, \dots) \in \ell_2$$

elementlar va xoxlagan α , β sonlar uchun

$$f_k(\alpha x + \beta y) = \alpha x_k + \beta y_k = \alpha f(x) + \beta f(y)$$

tengligi o'rinli.

L chiziqli fazoning xos H qism fazosi uchun shunday $x_0 \in L$ element topilib, $L = \mathcal{L}(H, x_0)$ tengligi oʻrinli boʻlsa, bunda $\mathcal{L}(H, x_0) - H$ toʻplam va x_0 elementning chiziqli qobigʻi, u holda H giperqism fazo deb ataladi. L chiziqli fazodagi

$$x + H$$
 $(x \in L, H - qism fazo)$

ko'rinishdagi to'plamga *gipertekislik* deb ataymiz.

 $H = g^{-1}(0)$ giperqism fazo g funksionalning yadrosi deb ataladi va ker g ko'rinishda belgilanadi.

L haqiqiy chiziqli fazoning biror L_0 qism fazosida f_0 chiziqli funksionali berilgan bo'lsin. Agar L fazosida aniqlangan f funksionali uchun $x \in L_0$ bo'lganda $f(x) = f_0(x)$ tengligi o'rinli bo'lsa, u holda f funksionali f_0 funksionalning davomi deb ataladi.

L chiziqli fazosida aniqlangan p funksional berilgan bo'lib, barcha $x,y\in L$ elementlar va barcha $\alpha\in[0,1]$ sonlari uchun

$$p(\alpha x + (1 - \alpha)y) \le \alpha p(x) + (1 - \alpha)p(y)$$

tengsizligi o'rinli bo'lsa p funksionali qavariq deb ataladi. Agar xoxlagan $x \in L$ elementlar va barcha $\alpha > 0$ sonlari uchun $p(\alpha x) = \alpha p(x)$ tengligi o'rinli bo'lsa, p funksional $musbat\ bir\ jinsli\ deyiladi$. Musbat bir jinsli qavariq funksionalni $bir\ jinsli\ qavariq\ deb\ ataymiz$.

L chiziqli fazo, $A \subset E$ qavariq to'plam va $x \in A$ bo'lsin. Agar $x = \frac{1}{2}(y+z), y, z \in A$ tengligidan, x = y = z kelib chiqsa, u holda x nuqta A to'plamning ekstremal nuqtasi deyiladi. A to'plamning barcha ekstremal nuqtalari to'plami extA kabi belgilanadi va u to'plamning ekstremal chegarasi deyiladi. Masalan, [0,1] kesma uchun ext $[0,1] = \{0,1\}$.

Masalalar

4.1.1. Ixtiyoriy L chiziqli fazo nol elementi yagona ekanligini isbotlang.

Yechimi. L chiziqli fazoning ikkita θ_1 va θ_2 nol elementlari mavjud bo'lsin. U holda, nol element ta'rifi va qo'shish amalining kommutativligidan

$$\theta_1 = \theta_1 + \theta_2 = \theta_2 + \theta_1 = \theta_2.$$

Demak, $\theta_1 = \theta_2$, ya'ni nol elementi yagona bo'ladi.

4.1.2. Ixtiyoriy L chiziqli fazoda har bir elementga qarama-qarshi element yagona ekanligini isbotlang.

Yechimi. Aytaylik, x^\prime va $x^{\prime\prime}$ elementlar xelementga qarama-qarshi elementlar bo'lsin. U holda

$$x' = x' + 0 = x' + (x + x'') = (x' + x) + x'' = 0 + x'' = x'',$$

ya'ni x' = x''.

4.1.3. Agar L chiziqli fazoning noldan farqli x elementi uchun $\lambda x = \mu x$ tengligi o'rinli bo'lsa, u holda λ va μ sonlarining o'zaro teng ekanligini isbotlang.

 $\Box \lambda x = \mu x$ tengligining ikki tomoniga $-\mu x$ elementini qo'shsak $(\lambda - \mu)x = 0$ tengligi kelib chiqadi. Agar $\lambda \neq \mu$ bo'lsa, u holda chiziqli fazo ta'rifida 5 - aksiomadan $x = (\lambda - \mu)^{-1}[(\lambda - \mu)x] = 0$ tengligiga ega bo'lamiz. Bu ziddiyatdan $\lambda = \mu$ tengligi kelib chiqadi.

4.1.4. Agar L chiziqli fazoning x, y elementlari va noldan farqli λ soni uchun $\lambda x = \lambda y$ tengligi o'rili bo'lsa, u holda x va y elementlarning o'zaro teng bo'lishini isbotlang.

Yechimi. $\lambda x=\lambda y$ tengligining ikki tomoniga $-\lambda y$ elementini qoʻshsak $\lambda(x-y)=0$ tengligiga ega boʻlamiz. $\lambda\neq 0$ boʻlgani uchun $x-y=\lambda^{-1}[\lambda(x-y)]=0$, ya'ni x=y.

4.1.5. Barcha haqiqiy koeffisientli ko'phadlar fazosi P[X] da

$$1, t, t^2, ..., t^n,$$

sistema chiziqli erkli ekanligini ko'rsating.

Yechimi. Aytaylik $a_0, a_1, ..., a_n \in \mathbb{R}$ sonlari uchun har bir $t \in \mathbb{R}$ da

$$a_0t + a_1t + \dots + a_nt^n = 0$$

bo'lsin. Oxirgi tenglikdan nmarta hosila olsak, u holda $n!a_n=0,$ ya'ni $a_n=0$ kelib chiqadi. Bundan

$$a_0t + a_1t + \dots + a_{n-1}t^{n-1} = 0.$$

Xuddi shunday bu tenglikdan n-1 marta hosila olsak, u holda $(n-1)!a_{n-1}=0$, ya'ni $a_{n-1}=0$ kelib chiqadi. Bu jarayonni davom ettirsak, $a_n=a_{n-1}=\ldots=a_1=a_0=0$ ga ega bo'lamiz. Bundan

$$1, t, t^2, ..., t^n,$$

sistema chiziqli erkli ekanligini ko'rsatildi.

4.1.6. Agar E = C[0, 1] va $F = \{f \in C[0, 1] : f(0) = 0\}$ bo'lsa, u holda E/F faktor fazoni toping.

Yechimi. $\mathbf{1}(t)=1,\,t\in[0,\,1]$ birlik funksiyani olaylik. U holda $f\in C[0,\,1]$ uchun $g=f-c\mathbf{1}\in F$ bo'ladi, bunda c=f(0). Bundan har bir $f\in C[0,\,1]$ yagona ravishda

$$f = g + c\mathbf{1}, g \in F, c \in \mathbb{R}$$

ko'rinishda yoziladi. Bundan E/F faktor fazo $\{c\mathbf{1}:c\in\mathbb{R}\}\cong\mathbb{R}$ fazoga izomorfdir.

4.1.7. Haqiqiy sonlar maydonida aniqlangan va t o'zgaruvchiga bog'liq barcha ko'phadlar chiziqli fazosida $t^2 + 1$, $t^2 + t$, 1 vektorlar sistemasining chiziqli qobig'i qanday bo'ladi?

Yechimi. Xoxlagan α, β, γ haqiqiy sonlari uchun

$$\alpha(t^2+1) + \beta(t^2+t) + \gamma = (\alpha+\beta)t^2 + \beta t + \alpha + \gamma$$

tenligi o'rinli bo'lgani uchun berilgan sistemaning chiziqli qobig'i haqiqiy koffitsientli barcha kvadrat uchhadlarning chiziqli fazosidan iborat bo'ladi.

4.1.8. H to'plam \mathbb{K} maydon ustidagi L chiziqli fazoning giperqism fazosi bo'lib, $x_1 \in L/H$ bo'lsin. U holda, L ning xoxlagan x elementi

$$x = \lambda x_1 + h, \quad (\lambda \in \mathbb{K}, \ h \in H)$$

ko'rinishda yagona usulda yozilishini isbotlang.

Yechimi. H giperqism fazo bo'lgani uchun $\mathcal{L}(H, x_0) = L$ tenglikni qanoatlantiruvchi $x_0 \in L$ elementi mavjud. Shu sababli $x_1 \in L/H$ elementni

$$x_1 = \lambda_0 x_0 + \lambda_1 h_1 + \lambda_2 h_2 + \ldots + \lambda_n h_n, \quad (h_1, h_2, \ldots, h_n \in H)$$

ko'rinishda yozish mumkin. $\lambda_1 h_1 + \lambda_2 h_2 + \ldots + \lambda_n h_n = h_0$ belgilashni kiritamiz. U holda $x_1 = \lambda_0 x_0 + h_0$. Bu tenglikdan x_0 ni topamiz:

$$x_0 = \frac{x_1 - h_0}{\lambda_0}.$$

 $x_1 \notin H$ bo'lgani uchun $x_0 \neq 0$.

Xoxlagan $x \in L$ element uchun shunday $\alpha \in \mathbb{K}$ soni va $h_1 \in H$ elementi topilib, $x = \alpha x_0 + h_1$ tengligi o'rinli bo'ladi. Bu tenglikni almashtiramiz:

$$x = \alpha x_0 + h = \alpha \frac{x_1 - h_0}{\lambda_0} + h = \frac{\alpha}{\lambda_0} x_1 + (h_1 - \frac{\alpha}{\lambda_0} h_0).$$

 $\frac{\alpha}{\lambda_0}=\lambda$ va $h_1=\frac{\alpha}{\lambda_0}h_0=h$ belgilashlarini kiritamiz. U holda

$$x = \lambda x_1 + h \tag{4.1}$$

Endi x elementni (4.1) ko'rinishda yagona ravishda yozish mumkin ekanligini ko'rsatamiz. Aytaylik $x = \alpha x_1 + h = \beta x_1 + g$ $(h, g \in H)$ bo'lsin. U holda $(\alpha - \beta)x_1 = g - h$. $g - h \in H$ bo'lgani uchun $(\alpha - \beta)x_1 \in H$. Bu munosabat faqat $\alpha = \beta$ bo'lgandagina o'rinli (sababi $x_1 \notin H$). Natijada g = h tengligiga ham ega bo'lamiz.

- 4.1.9. L chiziqli fazoda g chiziqli funksional berilgan bo'lib, $g \neq 0$ bo'lsin. U holda quyidagilarni isbotlang:
 - 1) $H = f^{-1}(0)$ to 'plami giper qism fazo bo'ladi;
- 2) $xoxlagan \ \lambda \in \mathbb{K} \ soni \ uchun \ f^{-1}(\lambda) = x_{\lambda} + H \ tengligi \ o'rinli, bunda \ f(x_{\lambda}) = \lambda.$

Yechimi. 1) $f \neq 0$ bo'lgani uchun $f(x_0) \neq 0$ bo'ladigan $x_0 \in L$ elementi mavjud. $f(x_0) = \lambda_0$ bo'lsin. L dan xoxlagan x element olib, uni ushbu

$$x = \frac{f(x)}{\lambda_0} x_0 + \left(x - \frac{f(x)}{\lambda_0} x_0\right)$$

ko'rinishda yozib olaylik.

$$f\left(x - \frac{f(x)}{\lambda_0 x_0}\right) = f(x) - f(x)\frac{f(x_0)}{\lambda_0} = 0$$

tengligi o'rinli bo'lgani uchun $x - \frac{f(x)}{\lambda_0} x_0 \in H$ bo'ladi. Bu elementni h orqali belgilaymiz:

$$h = x - \frac{f(x)}{\lambda_0} x_0.$$

U holda

$$x = \frac{f(x)}{\lambda_0} + h.$$

Bu tenglikdan H ning giper qism fazo ekanligi kelib chiqadi.

2) Agar $x_{\lambda} = \frac{\lambda}{\lambda_0} x_0$ bo'lsa, u holda

$$f(x_{\lambda}) = f\left(\frac{\lambda}{\lambda_0}x_0\right) = \lambda \frac{f(x_0)}{\lambda_0} = \lambda,$$

ya'ni $f(x_{\lambda}) = \lambda$ tengligini qanoatlantiruvchi x_{λ} elementlari mavjud ekan. Aytaylik x_{λ} element $f(x_{\lambda}) = \lambda$ tengligini qanoatlantiruvchi ixtiyoriy element bo'lsin. Agar $y \in f^{-1}(\lambda)$ bo'lsa, u holda $f(y) = \lambda$ bo'ladi. y elementni $y = x_{\lambda} + (y - x_{\lambda})$ ko'rinishida yozib olsak, $f(y - x_{\lambda}) = 0$ bo'lishidan, $y - x_{\lambda} \in H$ ekanligi kelib chiqadi. Shu sababli $y \in x_{\lambda} + H$.

Aksincha, agar $z \in x_{\lambda} + H$ bo'lsa, u holda $z = x_{\lambda} + h$ $(h \in H)$. Bundan $f(z) = \lambda$ va $z \in f^{-1}(y)$ ekanligi kelib chiqadi. Demak $f^{-1}(\lambda) = x_{\lambda} + H$.

4.1.10. (Xan — Banax teoremasi). L chiziqli fazosida aniqlangan bir jinsli qavariq p funksionali va L ning L_0 qism fazosi berilgan bo'lsin. Agar L_0 fazosida aniqlangan f_0 funksionali uchun

$$f_0(x) \le p(x) \quad (\forall x \in L_0) \tag{4.2}$$

tengsizligi o'rinli bo'lsa, u holda f_0 funksionalni barcha L da $f(x) \leq p(x)$ tengsizligini qanoatlantiruvchi f funksionaligacha davom ettirish mumkinligini isbotlang.

Yechimi. $L_0 \neq L$ bo'lsin. $L \setminus L_0$ to'plamidan biror z nuqtasini olib,

$$L' = \{tz + x : t \in \mathbb{R}, x \in L_0\}$$

qismfazosini qaraylik. L ning bu chiziqli qismfazosi L_0 fazosining elementar kengaymasi deb ataladi. f_0 funksionalni (4.2) shartni buzmagan holda L_0 fazosidan L' fazosiga davom ettirish mumkinligini ko'rsatamiz.

Agar izlanayotgan f_0 funksionalning L' dagi davomi f' bo'lsa, u holda

$$f'(tz+x) = tf'(z) + f_0(x)$$

tengligi o'rinli bo'ladi. f'(z) = c belgilashni kiritamiz. U holda

$$f'(tz+x) = tc + f_0(x).$$

Endi c sonini (4.2) shart o'rinli bo'ladigan qilib saylab olamiz, ya'ni $x \in L_0$ elementi va barcha t haqiqiy sonlar uchun $f_0(x) + tc \le p(x + tz)$ tengsizligi o'rinli. Bu tengsizlik t > 0 bo'lganda

$$f_0\left(\frac{x}{t}\right) + c \le p\left(\frac{x}{t} + z\right)$$

yoki

$$c \le p\left(\frac{x}{t} + z\right) - f_0\left(\frac{x}{t}\right)$$

tengsizligiga, t < 0 bo'lganda esa

$$f_0\left(\frac{x}{t}\right) + c \ge -p\left(-\frac{x}{t} - z\right),$$

yoki

$$c \ge -p\left(-\frac{x}{t} - z\right) - f_0\left(\frac{x}{t}\right)$$

tengsizligiga teng kuchli. Bu tengsizliklarni qanoatlantiradigan c soni mavjud ekanligini ko'rsatamiz. L_0 fazosidan ixtiyoriy y', y'' elementlar olamiz. $y'' - y' \in L_0$ bo'lgani uchun

$$f_0(y'' - y') = f_0(y'') - f_0(y') \le p(y'' - y') =$$

$$= p((y'' + z) - (y' + z)) \le p(y'' + z) + p(-y' - z),$$

ya'ni

$$p(y'' + z) - f_0(y'') \ge -p(-y' - z) - f_0(y')$$

tengsizligiga ega bo'lamiz. y', y'' nuqtalar L_0 fazosidan olingan ixtiyoriy elementlar bo'lganligidan

$$c'' = \inf_{y''} \left(f_0(y'') + p(y'' + z) \right) \ge \sup_{y'} \left(f_0(y') - p(-y' - z) \right) = c'.$$

 $c'' \geq c \geq c'$ qo'sh tengsizlikni qanoatlantiradigan c sonini tanlab, L' fazosida $f'(tz+x)=tc+f_0(x)$ ko'rinishida f' funksionalni aniqlaymiz. Bu funksional chiziqli va f_0 ning L' dagi davomi. Endi L' da (4.2) munosabatining o'rinli ekanligini ko'rsatamiz. t>0 bo'lganda

$$f'(tz + x) = tc + f_0(x) \le tc'' + f_0(x) \le$$

$$\le t \left(-f_0\left(\frac{x}{t}\right) + p\left(z + \frac{x}{t}\right) \right) + f_0(x) =$$

$$= -f_0(x) + p(tz + x) + f_0(x) = p(tz + x).$$

t < 0 bo'lganda

$$f'(tz + x) = tc + f_0(x) \le tc' + f_0(x) \le$$

$$\le t \left(-f_0\left(\frac{x}{t}\right) - p\left(-z - \frac{x}{t}\right) \right) + f_0(x) =$$

$$= -f_0(x) + p(tz + x) + f_0(x) = p(tz + x).$$

Demak, agar f_0 funksional biror $L_0 \subset L$ qism fazoda aniqlangan va (4.2) shartni qanoatlantirsa, u holda shu shartni qanoatlantirgan holda L_0 fazoning L' elementar kengaymasiga davom ettirish mumkin ekanligini ko'rsatdik.

Agar L fazosida chiziqli qobig'i shu fazoning o'ziga teng sanoqli $\{x_1, x_2, \ldots, x_n, \ldots\}$ to'plamini tanlab olish mumkin bo'lsa, u holda yuqoridagi usul bilan f_0 funksionalni (4.2) shartni saqlagan holda quyidagi fazolarga ketma-ket davom ettiramiz:

$$L^{(1)} = \{L_0, x_1\}, L^{(2)} = \{L^{(1)}, x_2\}, \dots,$$

bu erda $L^{(k+1)}$ to'plami L ning $L^{(k)}$ fazo va x_{k+1} elementni o'z ichiga oluvchi eng kichik qism fazosidan iborat. Natijada, L ning har bir elementi biror $L^{(k)}$ fazosiga tegili bo'lishidan, berilgan f_0 funksional L_0 dan L ga (4.2) shartni buzmagan holda davom ettiriladi.

Endi yuqorida aytilgan sanoqli to'plamni tanlab olish mumkin bo'lmagan, ya'ni umumiy holda qaraymiz. Berilgan f_0 funksionalning (4.2) shartni qanoatlantiruvchi barcha davomlari to'plamini \mathscr{F} orqali belgilaylik.

Agar f_1 va f_2 funksionallar \mathscr{F} to'plamiga tegishli bo'lib, f_1 aniqlangan qism fazo f_2 aniqlangan qism fazoda yotsa va f_2 funksional f_1 funksionalning (4.2) shartni qanoatlantiruvchi davomi bo'lsa, u holda $f_1 \leq f_2$ munosabatini yozamiz. Bu munosabat \mathscr{F} to'plamida qisman tartibni aniqlaydi. \mathscr{F}_0 orqali \mathscr{F} to'plamining ixtiyoriy chiziqli tartiblangan qism fazosini belgilaymiz. \mathscr{F}_0 to'plamiga tegishli barcha funksionallar aniqlanish sohalarining birlashasida aniqlangan va bu funksionallarning har biri bilan shu funksionallarning aniqlanish sohasida ustmaust tushadigan funksional \mathscr{F}_0 to'plamining yuqori chegarasi bo'ladi. Demak \mathscr{F} to'plamining ixtiyoriy chiziqli tartiblangan qism to'plami yuqori chegaraga ega. U holda Sorn lemmasi bo'yicha \mathscr{F} to'plamida maksimal f element mavjud bo'ladi. Shu f funksional biz izlayotgan funksional bo'ladi. Haqiqatan, bu funksional f_0 funksionalning (4.2) shartni qanoatlantiradign davomi va uning aniqlanish sohasi L fazosidan iborat. Sababi, agar f funksionalning aniqlanish sohasi L fazosining biror L_1 xos qism fazosidan iborat bo'lsa, u holda uni yuqorida aytilgan usul bilan $L_2 \subset L$ fazosiga davom ettirish mumkin bo'ladi. Bu ffunksionalning maksimal ekanligiga ziddir.

4.1.11. α ning qanday qiymatida x = (1, 2, 3), y = (1, 1, 0) va $z = (\alpha, 1, 1)$ vektorlar chiziqli bog'liq bo'ladi?

 $Yechimi. \ a, b, c$ sonlari uchun ax + by + cz = 0 bo'lsin. U holda

$$\begin{cases} a+b+c\alpha=0\\ 2a+b+c=0\\ 3a+c=0 \end{cases} \Rightarrow \begin{cases} a+c(1-\alpha)=0\\ 3a+c=0 \end{cases} \Rightarrow$$

$$\Rightarrow \begin{cases} c = -3a \\ a - 3a(1 - \alpha) = 0 \end{cases} \Rightarrow a(3\alpha - 2) = 0.$$

Chiziqli bog'liq bo'lganligi uchun $a \neq 0$ deylik. U holda

$$3\alpha - 2 = 0 \Rightarrow \alpha = \frac{2}{3}.$$

4.1.12. $C[0, \pi]$ fazoda $1, \cos t, \cos^2 t$ funksiyalar chiziqli

erkli, $1, \cos 2t, \cos^2 t$ funksiyalari esa chiziqli bog'liq ekanligini ko'rsating.

Yechimi. 1) 1, $\cos t,~\cos^2 t~$ funksiyalar chiziqli erkli bo'ladi. Haqiqatan,

$$\alpha + \beta \cos t + \gamma \cos^2 t = 0$$

bo'lsin. Agar $t=\frac{\pi}{2}$ bo'lsa, u holda $\alpha=0$ kelib chiqadi, va $\beta\cos t+\gamma\cos^2 t=0$ bo'lib, $\beta+\gamma\cos t=0$ ega bo'lamiz. Yana $t=\frac{\pi}{2}$ qiymatida $\beta=0$ kelib chiqib, $\gamma\cos t=0$, bundan $\gamma=0$ kelib shiqadi. Natijada

$$\alpha + \beta \cos t + \gamma \cos^2 t = 0 \implies \alpha = \beta = \gamma = 0.$$

2) 1, $\cos 2t$, $\cos^2 t$ funksiyalari chiziqli bog'liq, chunki bu

$$\cos^2 t = \frac{1}{2} \left(1 + \cos 2t \right)$$

munosabatidan kelib chiqadi.

4.1.13. E chiziqli fazo va $f:E\to\mathbb{R}$ chizqli funksional bo'lsin. U holda, bu funksionalning yadrosi

$$\ker f = \{ x \in E : f(x) = 0 \}$$

to'plami E ning qism fazosi ekenligini ko'rsating.

Yechimi. Aytaylik, $x, y \in \ker f$ bo'lsin. U holda,

$$f(x+y) = f(x) + f(y) = 0 + 0 = 0,$$

ya'ni kerfqo'shish amaliga nisbatan yopiq.

Endi $x \in \ker f$, $\lambda \in \mathbb{K}$ bo'lsin. U holda,

$$f(\lambda x) = \lambda f(x) = \lambda 0 = 0,$$

ya'ni ker f songa ko'paytirish amaliga nisbatan ham yopiq. Demak, ker qism fazo ekan.

4.1.13. c_0 fazoning birlik sharining ekstremal nuqtalari mavjud emasligini koʻrsating.

Yechimi. Aytaylik, $A = \{x = (x_n) \in c_0 : ||x|| \le 1\}$ bu fazoning birlik shari va $x \in A$ bo'lsin. U holda, $\lim_{n \to \infty} x_n = 0$, bundan shunday m soni topilib, $|x_m| < 1/3$.

$$y_n = \begin{cases} x_n, & \text{agar } n \neq m, \\ x_n - \frac{1}{3}, & \text{agar } n = m \end{cases}$$

va

$$z_n = \begin{cases} x_n, & \text{agar } n \neq m, \\ x_n + \frac{1}{3}, & \text{agar } n = m \end{cases}$$

nuqtalar uchun

$$x = \frac{1}{2}(y+z), y \neq z$$

bo'lganlikdan, x ekstremal nuqta emas.

4.1.14. c fazoning birlik sharining ekstremal nuqtalarini toping.

Yechimi. Aytaylik, $A = \{x = (x_n) \in c : ||x|| \le 1\}$ bu fazoning birlik shari va $x \in A$ bo'lsin. Faraz qilaylik, shunday m soni topilib, $|x_m| < 1$ bo'lsin. U holda shunday $\varepsilon > 0$ soni mavjudki, $-1 + \varepsilon < x_m < 1 - \varepsilon$.

$$y_n = \begin{cases} x_n, & \text{agar } n \neq m, \\ x_n - \varepsilon, & \text{agar } n = m \end{cases}$$

va

$$z_n = \begin{cases} x_n, & \text{agar } n \neq m, \\ x_n + \varepsilon, & \text{agar } n = m \end{cases}$$

nuqtalar uchun

$$x = \frac{1}{2}(y+z), y \neq z$$

bo'lganlikdan, x ekstremal nuqta emas. Demak, agar $x \in A$ ekstremal nuqta bo'lsa, u holda barcha n sonlari uchun $|x_n| = 1$, ya'ni $x_n = \pm 1$. $\lim_{n \to \infty} x_n$ mavjud bo'lganlikdan, biror k nomerdan boshlab,

$$x_n = 1 \quad \text{yoki} \quad x_n = -1. \tag{5.3}$$

Endi bu shartni qanoatlantiruvchi har bir nuqta ekstremal nuqta ekanligini ko'rsatamiz.

Aytaylik, $x \in A$ nuqtasi (5.3) shartni qanoatlanti
ardi va biror $y,z \in A$ uchun

$$x = \frac{1}{2}(y+z).$$

U holda, so'ngi tenglikdan $y_n + z_n = \pm 2$ kelib chiqadi. Endi $|y_n|, |z_n| \le 1$ ekanligini e'tiborga olsak, u holda $y_n = z_n = \pm 1$. Bundan x = y = z.

Demak c fazoning birlik sharining ekstremal nuqtalari quyidagi ko'rinishdagi nuqtalardir: $x = (x_n) \in A$,

$$x_n = \begin{cases} \pm 1, & \text{agar } n < k, \\ 1, & \text{agar } n \ge k \end{cases}$$

va

$$x_n = \begin{cases} \pm 1, & \text{agar } n < k, \\ -1, & \text{agar } n \ge k, \end{cases}$$

bunda $k \in \mathbb{N}$.

Mustaqil ish uchun masalalar

- 1. L chiziqli fazoning biror x va y elementlaridan iborat qism to'plamning chiziqli qobig'i qanday bo'ladi?
- 2. Qanday chiziqli fazoda har qanday chiziqli qobiq fazoning o'zi bilan ustma-ust tushadi?
- **3.** Agar chiziqli fazoning biror elementini shu fazoning e_1, e_2, \ldots, e_n elementlarining chiziqli kombinatsiyasi orqali yagona usulda ifodalash mumkin bo'lsa, u holda e_1, e_2, \ldots, e_n vektorlar chiziqli erkli bo'lishini isbotlang.
- **4.** Agar e_1, e_2, \ldots, e_n vektorlar chiziqli erkli bo'lsa, u holda bu sistemaning chiziqli qobig'iga tegishli ixtiyoriy elementni e_1, e_2, \ldots, e_n vektorlarning chiziqli kombinatsiyasi orqali yagona usulda yozish mumkin ekanligini isbotlang.
- 5. Har qanday chekli o'lchamli chiziqli fazo o'zining chekli sondagi vektorlarining chiziqli qobig'idan iborat ekanligini isbotlang.
- **6.** Agar e_1, e_2, \ldots, e_n vektorlar sistemasi \mathbb{K} maydon ustidagi L chiziqli fazoning bazisi bo'lsa, u holda L ning xoxlagan x elementini

$$x = \sum_{k=1}^{n} \alpha_k e_k, \ \alpha_k \in \mathbb{K}, \ k = 1, \dots n$$

ko'rinishida yozish yagona bo'lishini isbotlang.

- 7. Haqiqiy sonlar maydoni ustidagi haqiqiy koeffitsientli barcha ko'phadlar fazosi cheksiz o'lchamli chiziqli fazo ekanligini isbotlang.
- **8.** Ratsional sonlar maydoni ustida ratsional sonlar chiziqli fazosining o'lchami qanday?
- 9. Ratsional sonlar maydoni ustida kompleks sonlar chiziqli fazosida chiziqli erkli vektorlar sistemasini tuzing.
- 10. n-o'lchamli kompleks chiziqli fazoni haqiqiy chiziqli fazo sifatida qarasak, uning o'lchami qanday bo'ladi?
 - 11. \mathbb{R}^n chiziqli fazoda ushbu

$$S = \{(a_1, a_2, \dots, a_n) : a_1 = a_2\}$$

to'plamning qism fazo ekanligini isbotlang. Bu fazoning o'lchamini toping.

- 12. \mathbb{R}^n fazoda birinchi koordinatasi nolga teng bo'lgan nuqtalardan iborat qism fazoni S_0 orqali belgilasak, \mathbb{R}^n/S_0 faktor fazosini toping.
- 13. C[-1,1] fazoda berilgan quyidagi funksionallarning chiziqli ekanligini sbotlang. Bu funksionallarning yadrosi haqida qanday fikrdasiz?

a)
$$f(x) = \frac{1}{3}(x(-1) + x(1));$$

b)
$$f(x) = 2(x(1) - x(0));$$

c)
$$f(x) = \sum_{k=1}^{n} \alpha_k x(t_k)$$
, bunda $\alpha_k \in \mathbb{R}$, $k = \overline{1, n}$ va $t_1, t_2, \dots, t_n \in [-1, 1]$.;

d)
$$f_{\varepsilon}(x) = \frac{1}{2\varepsilon} [x(\varepsilon) + x(-\varepsilon) - 2x(0)], \quad \varepsilon \in [-1, 1];$$

e)
$$f(x) = \int_{-1}^{1} x(t) dt$$
;

f)
$$f(x) = \int_{-1}^{1} x(t) dt - x(0);$$

g)
$$f(x) = \int_{-1}^{0} x(t) dt - \int_{0}^{1} x(t) dt$$

h)
$$f(x) = \int_{-1}^{1} x(t) dt - \frac{1}{2n+1} \sum_{k=-n}^{n} x(\frac{k}{n}).$$

14. Quyidagi funksionallarning chiziqli ekanligini isbotlang:

a)
$$f(x) = \int_{-1}^{1} tx(x) dt$$
, $x \in C[-1, 1]$;

b)
$$f(x) = \int_{1}^{1} tx(t) dt$$
, $x \in C_{2}[-1, 1]$;

c)
$$f(x) = \int_{0}^{1} t^{-\frac{1}{3}} x(t) dt$$
, $x \in C_2[0, 1]$;

d)
$$f(x) = x_1 + x_2$$
 $x = (x_1, x_2, ...) \in \ell_2$;

e)
$$f(x) = \sum_{k=1}^{n} \frac{x_k}{k}, \quad x = (x_1, x_2, \ldots) \in \ell_2;$$

f)
$$f(x) = \sum_{k=1}^{\infty} (1 - \frac{1}{k})x_k$$
, $x = (x_1, x_2, ...) \in \ell_1$;

g)
$$f(x) = \sum_{k=1}^{\infty} 2^{-k+1} x_k$$
, $x = (x_1, x_2, ...) \in c_0$;

h)
$$f(x) = \lim_{n \to \infty} x_n$$
 $x = (x_1, x_2, ...) \in c$.

- 15. L chiziqli fazoning H giperqism fazosi berilgan bo'lsin. $x_0 \notin H$ element va $\lambda \neq 0$ son uchun quyidagi ikki shartni qanoatlantiruvchi yagona g funksionali mavjud ekanligini ko'rsating:
 - 1) $\ker g = H$;
 - $2) \quad g(x_0) = \lambda.$
- 16. L chiziqli fazoda h va g chiziqli funksionallar berilgan bo'lib, ker $h = \ker g$ bo'lsa, u holda $g = \alpha h$ tenglikni qanoatlantiruvchi $\alpha \in \mathbb{K}$ soni mavjud ekanligini ko'rsating.
- 17. L chiziqli fazoda aniqlangan g chiziqli funksional berilgan bo'lsin. $L/\ker g$ faktor fazoning o'lchamini toping.

18. L chiziqli fazoda $f, f_1, f_2 ..., f_n$ chiziqli funksionallar berilgan bo'lsin. Agar $f_1(x) = f_2(x) = ... = f_n(x) = 0$ bo'lishidan f(x) = 0 ekanligi kelib chiqsa, u holda $a_1, a_2, ..., a_n$ sonlari topilib, barcha $x \in L$ uchun $f(x) = \sum_{k=1}^{n} a_k f_k(x)$ tengligi o'rinli bo'lishini isbotlang.

4.2. Normalangan fazolar

 \mathbb{K} maydon ustidagi X chiziqli fazoning har bir x elementiga nomanfiy ||x|| haqiqiy soni mos qo'yilgan bo'lib, bu moslik quyidagi shartlarni qanoatlantirsin:

- 1. $||x|| = 0 \Leftrightarrow x = 0;$
- 2. $\|\lambda x\| = |\lambda| \|x\|, \ \forall \lambda \in \mathbb{K}, x \in X;$
- $3.\|x+y\| \le \|x\| + \|y\|, \ x, y \in X.$

U holda X fazoni normalangan fazo deb ataymiz. <math>||x|| soni esa x elementning normasi deb ataladi.

Agar $\rho(x,y)$ bilan ||x-y|| sonini belgilasak, u holda $\rho(x,y)$ metrika boladi. Haqiqatan,

- 1) $\rho(x,y) = ||x y|| = 0 \Leftrightarrow x = y;$
- 2) $\rho(x,y) = ||x-y|| = ||(-1)(y-x)|| = |-1||y-x|| = ||y-x|| = ||y$
- 3) $\rho(x,y) = ||x-y|| = ||x-z+z-y|| \le ||x-z|| + ||z-y|| = \rho(x,z) + \rho(z,y).$

Demak, ixtiyoriy normalangan fazo metrik fazo bo'ladi. Shuning uchun metrik fazolarda kiritilgan tushunchalarga normalangan fazolarda ham ta'rif berishga bo'ladi.

Aytaylik, X normalangan fazo va $x_0 \in X$ bo'lsin. Metrik fazolardagi kabi markazi x_0 nuqtada va radiusi r>0 ga teng ochiq (yopiq) shar deb

$$B(x_0, r) = \{x \in X : ||x - x_0|| < r\} \quad (B[x_0, r] = \{x \in X : ||x - x_0|| \le r\})$$

to'plamga, markazi x_0 nuqtada va radiusi r>0 ga teng sfera deb $S(x_0,r)=\{x\in X: \|x-x_0\|=r\}$ to'plamga aytiladi.

 x_0 nuqtaning $\varepsilon > 0$ atrofi deb $B(x_0, \varepsilon)$ ochiq sharga aytamiz va uni $O_{\varepsilon}(x_0)$ kabi belgilaymiz. Atrof tushunchasi kiritilgandan keyin urinish, limit, yakkalangan nuqtalar; ketma-ketlikning yaqinlashuvchiligi, fundamental ketma-ketlik, to'plamning yopilmasi, to'plamning ichi, ochiq to'plam, yopiq to'plam tushunchalariga metrik fazolardagi kabi ta'rif beriladi.

To'la normalangan fazo Banax fazosi deb ataladi.

Ta'rif. X Banax fazosi va $Y \subset X$ bo'lsin. Agar [Y] = X bo'lsa, u holda X fazo Y fazoning to'ldiruvchisi deb ataladi.

L normalangan fazoning L_0 chiziqli qism fazosi yopiq bo'lsa, u holda L_0 to'plamni L fazoning $qism\ fazosi\$ deb ataymiz.

 $\{x_{\alpha}\}$ sistemani o'z ichiga oluvchi eng kichik yopiq qism fazo, shu sistemaning *chiziqli qobig'i* deb ataladi va $\mathcal{L}(\{x_{\alpha}\})$ ko'rinishda belgilanadi. Agar $\mathcal{L}(\{x_{\alpha}\}) = L$ bo'lsa, u holda $\{x_{\alpha}\}$ sistema *to'liq* deyiladi.

Masalalar

4.2.1. \mathbb{R} haqiqiy sonlar fazosida normani ||x|| = |x| ko'rinishda kiritish mumkinligini ko'rsating.

Yechimi. Norma aksiomalarini tekshiramiz.

- 1) $||x|| = |x| = 0 \Leftrightarrow x = 0;$
- 2) $\|\lambda x\| = |\lambda x| = |\lambda| \|x\| = |\lambda| \|x\|$;
- 3) $||x + y|| = |x + y| \le |x| + |y| = ||x|| + ||y||$.
- 4.2.2. \mathbb{R}^n fazoda normani

$$||x|| = \sqrt{\sum_{k=1}^{n} x_k^2}, \quad x = (x_1 \ x_2, \dots x_n)$$

ko'rinishda kiritish mumkinligini isbotlang.

Yechimi.

1)
$$||x|| = \sqrt{\sum_{k=1}^{n} x_k^2} = 0 \Leftrightarrow x_1 = x_2 = \dots = x_n = 0 \Leftrightarrow x = 0;$$

2)
$$\|\lambda x\| = \sqrt{\sum_{k=1}^{n} (\lambda x_k)^2} = \sqrt{\sum_{k=1}^{n} \lambda^2 x_k^2} = \sqrt{\lambda^2 \sum_{k=1}^{n} x_k^2} = |\lambda| \|x\|;$$

3 Ixtiyoriy $x = (x_1, x_2 \dots x_n), y = (y_1, y_2 \dots y_n)$ elementlar uchun

$$\left(\sum_{k=1}^{n} x_k y_k\right)^2 = \sum_{k=1}^{n} x_k^2 \cdot \sum_{k=1}^{n} y_k^2 - \frac{1}{2} \sum_{k=1}^{n} \sum_{i=1}^{n} (x_k y_i - y_k x_i)^2$$

tengligi o'rinli. Bu tenglikdan Koshi — Bunyakovskiy tengsizligi kelib chiqadi:

$$\left(\sum_{k=1}^{n} x_k y_k\right)^2 \le \sum_{k=1}^{n} x_k^2 \sum_{k=1}^{n} y_k^2.$$

Bu tengsizlikdan foydalansak

$$||x+y||^2 = \sum_{k=1}^n (x_k + y_k)^2 = \sum_{k=1}^n x_k^2 + 2\sum_{k=1}^n x_k y_k + \sum_{k=1}^n y_k^2 \le$$

$$\leq \sum_{k=1}^{n} x_k^2 + 2\sqrt{\sum_{k=1}^{n} x_k^2} \cdot \sqrt{\sum_{k=1}^{n} y_k^2} + \sum_{k=1}^{n} y_k^2 = \left(\sqrt{\sum_{k=1}^{n} x_k^2} + \sqrt{\sum_{k=1}^{n} y_k^2}\right)^2 = (\|x\| + \|y\|)^2$$

munosabatiga ega bo'lamiz. Natijada,

$$||x + y|| \le ||x|| + ||y||.$$

4.2.3. C[a,b] fazosida normani

$$||f|| = \max_{a \le t \le b} |f(t)|$$

ko'rinishda kiritib norma aksiomalarining bajarilshini tekshiring.

Yechimi.

- $\begin{aligned} 1) \ \|f\| &= \max_{a \leq t \leq b} |f(t)| = 0 \Leftrightarrow f \equiv 0; \\ 2) \ \|\lambda f\| &= \max_{a < t \leq b} |\lambda f)(t)| = \max_{a \leq t \leq b} \{|\lambda| \cdot |f(t)|\} = |\lambda| \|f\|; \end{aligned}$
- 3) Ixtiyoriy $f, g \in C[a, b]$ funksiyalar uchun

$$|(f+g)(t)| = |f(t) + g(t)| \le |f(t)| + |g(t)| \le \max_{a \le t \le b} |f(t)| + \max_{a \le t \le b} |g(t)| = ||f|| + ||g||$$

Natijada, $||f + g|| \le ||f|| + ||g||$ tengsizlikka ega bo'lamiz.

X normalangan fazo bo'lib, M uning bo'sh bo'lmagan qism fazosi bo'lsin. P = X/M faktor fazoda normani

$$\|\xi\| = \inf_{x \in \xi} \|x\|$$

ko'rinishda kiritish mumkinligini isbotlang.

Yechimi. 1) Agar $\xi_0 = M$ (ya'ni $\xi_0 - P$ ning nol elementi) bo'lsa, u holda $0 \in \xi_0$ (bu erda 0 - X ning nol elementi). Shuning uchun $\|\xi_0\|=0$. Aksincha, agar $\|\xi\|=\inf_{\xi\in I}\|x\|=0$ bo'lsa, u holda ξ sinfda $0 \in \mathbb{R}$ elementga yaqinlashuvchi ketma-ketlik mavjud bo'ladi. M yopiq bo'lgani uchun ξ sinf yopiq. Shuning uchun $0 \in \xi$, ya'ni $\xi = M$.

2) Ixtiyoriy $\alpha \in \mathbb{K}, x \in \mathbb{R}$ uchun

$$\|\alpha x\| = |\alpha| \cdot \|x\|$$

tengligi o'rinli. Bu tenglikning ikki tomonidan ham $x \in \xi$ bo'yicha quyi chegara olib, quyidagi tenglikka ega bo'lamiz:

$$\|\alpha\xi\| = |\alpha| \cdot \|\xi\|$$

3) $\xi, \eta \in P$ bo'lib, $x \in \xi$ va $y \in \eta$ bo'lsin. U holda

$$\|\xi + \eta\| \le \|x + y\| \le \|x\| + \|y\|$$

tengsizligi bajariladi. Bu tengsizlikning o'ng tomonidan $x \in \xi$, $y \in \eta$ bo'yicha quyi chegara olib,

$$\|\xi + \eta\| \le \|\xi\| + \|\eta\|$$

munosabatiga ega bo'lamiz.

4.2.5. $B(x_0,r)$ ochiq sharning ochiq to'plam ekanligini isbotlang.

Yechimi. $B(x_0,r)$ ochiq shardan ixtiyoriy x' nuqta olib, $B(x',\varepsilon) \subset B(x_0,r)$ munosabatni qanoatlantiruvchi $\varepsilon > 0$ sonning mavjudligini ko'rsatamiz. $\varepsilon = r - \|x' - x_0\|$ bo'lsin. $x' \in B(x_0,r)$ bo'lgani uchun $\|x' - x_0\| < r$. Shuning uchun $\varepsilon = r - \|x' - x_0\| > 0$. $B(x',\varepsilon)$ atrofdan ixtiyoriy x'' nuqta olaylik. U holda

$$||x'' - x'|| < \varepsilon \Rightarrow ||x'' - x'|| < r - ||x' - x_0|| \Rightarrow ||x' - x_0|| + ||x'' - x'|| < r.$$

Bundan

$$||x'' - x_0|| = ||x'' - x' + x' - x_0|| < ||x'' - x'|| + ||x' - x_0|| < r$$

ya'ni

$$x'' \in B(x_0, r) \Rightarrow B(x', \varepsilon) \subset B(x_0, r).$$

4.2.6. $B[x_0, r]$ yopiq sharning yopiq to'plam ekanligini isbotlang.

Yechimi. Teskarisidan faraz qilaylik, yani $B[x_0,r]$ yopiq shar yopiq toʻplam boʻlmasin. U holda

$$[B[x_0, r]] \neq B[x_0, r] \Rightarrow [B[x_0, r]] \setminus B[x_0, r] \neq \emptyset.$$

 $B[x_0, r] \setminus B[x_0, r]$ to'plamning ixtiyoriy x' nuqtasini olamiz. $x' \notin B[x_0, r]$ bo'lgani uchun $||x' - x_0|| > r$ tengsizligi o'rinli. $\varepsilon = ||x' - x_0|| - r$ bo'lgan x' nuqtaning $B(x', \varepsilon)$ atrofidan ixtiyoriy x'' nuqta olamiz. U holda

$$||x'' - x'|| < \varepsilon \Rightarrow ||x'' - x'|| < ||x' - x_0|| - r \Rightarrow ||x' - x_0|| - ||x'' - x'|| > r \Rightarrow$$

$$\Rightarrow r < ||x'-x_0|| - ||x''-x'|| \le ||x''-x_0|| \Rightarrow x'' \notin B[x_0, r] \Rightarrow x' \notin [B[x_0, r]].$$

Bu ziddiyat farazimizning noto'g'riligini anglatadi. Demak, $B[x_0, r]$ yoiq shar yopiq to'plam bo'ladi.

4.2.7. Agar $B[a,r] \subset B[b,R] \subset X, X \neq \{0\}, bo'lsa, u holda$ $||a-b|| \leq R-r$ tengsizligining o'rinli bo'lishini isbotlang.

Yechimi. 1- hol. a=b bo'lsin. $X \neq \{0\}$ ekanligidan, shunday $x_0 \in X$ mavjudki, $||x_0 - a|| = r$ bo'ladi. U holda, $B[a,r] \subset B[a,R]$ bo'lgani uchun $||x_0 - a|| \leq R$ tengsizligi o'rinli. Bundan

$$r = ||x_0 - a|| = ||x_0 - a|| \le R,$$

ya'ni $R - r \ge 0 = ||a - b||$.

2 - hol. $a \neq b$ bo'lsin. X fazoda

$$x = \frac{\|a - b\| + r}{\|a - b\|} a - \frac{r}{\|a - b\|} b$$

ko'rinishdagi elementini olsak $\|x-a\|=r$ tengligi o'rinli bo'ladi. Haqiqatan,

$$||x-a|| = \left\| \frac{||a-b|| + r}{||a-b||} a - \frac{r}{||a-b||} b - a \right\| = \frac{r}{||a-b||} ||a-b|| = r.$$

Bundan $x \in B[b, R]$. Demak, $||x - b|| \le R$, ya'ni

$$R \ge ||x - b|| = \left\| \frac{||a - b|| + r}{||a - b||} a - \frac{r}{||a - b||} b - b \right\| =$$
$$= \frac{||a - b|| + r}{||a - b||} ||a - b|| = ||a - b|| + r.$$

Demak $R - r \ge ||a - b||$.

4.2.8. X normalangan fazoning ixtiyoriy x va y elementlari uchun $||x|| \leq \max\{||x+y||, ||x-y||\}$ tengsizlikning o'rinli ekanligini isbotlang.

Yechimi.

$$||x|| \le ||x|| + \frac{|||x - y|| - ||x + y|||}{2} =$$

$$= \frac{||2x|| + |||x - y|| - ||x + y|||}{2} =$$

$$= \frac{||x + y + x - y|| + |||x - y|| - ||x + y|||}{2} \le$$

$$\le \frac{||x + y|| + ||x - y|| + |||x - y|| - ||x + y|||}{2} =$$

$$= \max\{||x + y||, ||x - y||\}.$$

4.2.9. X normalangan fazo bo'lib, x_n , x, y_n , $y \in X$, $n \in \mathbb{N}$, bo'lsa, quyidagilarni isbotlang:

- a) agar $x_n \to x$, $\lambda_n \to \lambda$ $(\lambda_n, \lambda \in \mathbb{C})$ bo'lsa, u holda $\lambda_n x_n \to \lambda x$;
- b) agar $x_n \to x$ bo'lsa, u holda $||x_n|| \to ||x||$;
- c) agar $x_n \to x$ va $||x_n y_n|| \to 0$ bo'lsa, u holda $y_n \to x$;
- d) agar $x_n \to x$ bo'lsa, u holda $||x_n y|| \to ||x y||$;
- e) agar $x_n \to x$, $y_n \to y$ bo'lsa, u holda $||x_n y_n|| \to ||x y||$. Yechimi. a)

$$\|\lambda_n x_n - \lambda x\| = \|\lambda_n x_n - \lambda x_n + \lambda x_n - \lambda x\| \le$$

$$\le \|\lambda_n x_n - \lambda x_n\| + \|\lambda x_n - \lambda x\| =$$

$$= |\lambda_n - \lambda| \|x_n\| + |\lambda| \|x_n - x\| \to 0.$$

Demak, $\|\lambda_n x_n - \lambda x\| \to 0$, shuning uchun $\lambda_n x_n \to \lambda x$.

b) Normaning xossalaridan foydalanib quyidagi tengsizliklarni yoza olamiz:

$$||x_n|| - ||x|| \le ||x_n - x||$$

va

$$||x|| - ||x_n|| \le ||x - x_n|| = ||x_n - x||.$$

Bu tengsizliklardan esa

$$-\|x_n - x\| \le \|x_n\| - \|x\| \le \|x_n - x\|$$

qo'sh tengsizliklariga ega bo'lamiz. Natijada

$$|||x_n|| - ||x||| \le ||x_n - x||.$$

 $||x_n - x|| \to 0$ bo'lgani uchun $|||x_n|| - ||x||| \to 0$, ya'ni $||x_n|| \to ||x||$.

$$||y_n - x|| = ||y_n - x_n + x_n - x|| \le$$

 $\le ||y_n - x_n|| + ||x_n - x|| \to 0.$

Shuning uchun $||y_n - x|| \to 0$, ya'ni $y_n \to x$.

d) Normaning xossalaridan quyidagi tengsizliklar kelib chiqadi:

$$||x_n - y|| - ||x - y|| \le ||x_n - y - x + y|| = ||x_n - x||$$

va

$$||x - y|| - ||x_n - y|| \le ||x - y - x_n + y|| = ||x - x_n|| = ||x_n - x||.$$

Natijada

$$-||x_n - x|| \le ||x_n - y|| - ||x - y|| \le ||x_n - x||$$

qo'sh tengsizlikka ega bo'lamiz, ya'ni

$$|||x_n - y|| - ||x - y||| \le ||x_n - x||.$$

 $||x_n - x|| \to 0$ bo'lgani uchun $|||x_n - y|| - ||x - y||| \to 0$. Bundan esa $||x_n - y|| \to ||x - y||$ ekanligi kelib chiqadi.

e) Normaning xossalaridan quyidagilarga ega bo'lamiz:

$$||x_n - y_n|| - ||x - y|| \le ||x_n - y_n - x + y|| \le ||x_n - x|| + ||y_n - y||$$

va

$$||x - y|| - ||x_n - y_n|| \le ||x - y - x_n + y_n|| \le ||x_n - x|| ||y_n - y||.$$

Natijada

$$-(\|x_n - x\| + \|y_n - y\|) \le \|x_n - y_n\| - \|x - y\| \le \|x_n - x\| + \|y_n - y\|$$
 qo'sh tengsizligiga ega bo'lamiz, ya'ni

$$|||x_n - y_n|| - ||x - y||| \le ||x_n - x|| + ||y_n - y||.$$

 $||x_n - x|| \to 0$ va $||y_n - y|| \to 0$ bo'lgani uchun, $||x_n - y_n|| \to ||x - y||$.

4.2.10. X normalangan fazoning A qism to'plami chegaralangan bo'lishi uchun diam $A < \infty$ bo'lishi zarur va etarliligini isbotlang.

Yechimi. Zarurligi. A to'plam chegaralangan bo'lsa, $A \subset B(a,r)$ munosabati o'rinli bo'ladigan B(a,r) shar mavjud bo'ladi. U holda

$$diam A = \sup_{x,y \in A} ||x - y|| \le \sup_{x,y \in B(a,r)} ||x - y|| = 2r,$$

ya'ni diam $A < \infty$.

Etarliligi. diam $A = R < \infty$ bo'lsin. U holda ixtiyoriy $x \in A$ va tayinlangan $a \in A$ elementlari uchun $||x - a|| \leq R$. Shuning uchun $A \subset B[a, R]$ munosabati o'rinli bo'ladi.

4.2.11. $A \subset X$ to'planning barcha limit nuqtalari to'planini A' orqali belgilaymiz. A' to'planning yopiq ekanligini isbotlang.

Yechimi. $A'\subset [A']$ ekanligi limit nuqta ta'rifidan bevosita kelib chiqadi. $[A']\subset A'$ ekanligini koʻrsatamiz. $x\in [A']$ b oʻlsin. U holda, x nuqtaning ixtiyoriy $B(x,\varepsilon)$ atrofida A' toʻplamning kamida bitta y nuqtasi mavjud boʻladi. Endi $\varepsilon_1=\varepsilon-\|x'-x_0\|$ boʻlsin. y nuqtaning $B(y,\varepsilon_1)$ atrofi $B(x,\varepsilon)$ atrofning ichida yotadi. Haqiqatan, $z\in B(y,\varepsilon_1)$ boʻlsin. U holda $\|z-y\|<\varepsilon-\|y-x\|$ tengsizligi oʻrinli boʻladi. Natijada

$$||z - x|| = ||z - y + y - x|| \le ||z - y|| + ||y - x|| < \varepsilon,$$

ya'ni $z \in B(x, \varepsilon)$.

$$B(y, \varepsilon_1) \subset B(x, r), \ y \in A'$$

bo'lgani uchun, bu nuqtaning $B(y, \varepsilon_1)$ atrofida A to'plamning cheksiz ko'p elementlari topiladi. U holda $B(x, \varepsilon)$ atrofida A to'plamning cheksiz ko'p elementlari mavjud, ya'ni $x \in A'$. Shuning uchun $[A'] \subset A'$. Natijada A' = [A'] tengligi o'rili.

4.2.12. Quyidagi hollarda norma aksiomalari bajarilishini tekshiring:

a)
$$x = (x_k)_{k=1}^m \ (x_k \in \mathbb{R})$$
 qatorlar fazosi \mathbb{R}^m da

$$||x|| = \max_{1 \le k \le m} |x_k|.$$

 $Bu \; fazo \; \mathbb{R}^m_{\infty} \; ko$ 'rinishda belgilanadi.

b) $x = (x_k)_{k=1}^m$ qatorlar fazosida

$$||x|| = \sum_{k=1}^{m} |x_k|.$$

 $egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$

c) $x = (x_k)_{k=1}^m \ (x_k \in \mathbb{R})$ ustunlar fazosida

$$||x|| = \left[\sum_{k=1}^{m} |x_k|^p\right]^{\frac{1}{p}}, (p > 1).$$

 $\pmb{Bu\ fazo}\ \mathbb{R}^m_p$ ko'rinishda belgilanadi.

d) $\sum\limits_{k=1}^{\infty}|x_k|<\infty$ shartni qanoatlantiruvchi $x=(x_1,x_2,\ldots)$ ketma-ketliklar fazosida

$$||x|| = \sum_{k=1}^{\infty} |x_k|.$$

 ${\it Bu\ fazo}\ \ell_1\ {\it ko\ 'rinishda\ belgilanadi;}$

e) $\sum_{k=1}^{\infty} |x_k|^2 < \infty$ shartni qanoatlantiruvchi $x = (x_1, x_2, ...,)$ $(x_k \in \mathbb{R})$ ketma-ketliklar fazosida

$$||x|| = \left[\sum_{k=1}^{\infty} x_k^2\right]^{\frac{1}{2}}.$$

 ${\it Bu\ fazo}\ \ell_2\ {\it ko'rinishda\ belgilanadi;}$

f) $\sum_{k=1}^{\infty} |x_k|^p < \infty$, (p > 1) shartni qanoatlantiruvchi $x = (x_1, x_2, \ldots)$, $(x_k \in \mathbb{R})$ ketma-ketliklar fazosida

$$||x|| = \left[\sum_{k=1}^{\infty} |x_k|^p\right]^{\frac{1}{p}}.$$

Bu fazo ℓ_p ko'rinishda belgilanadi;

g) $x = (x_1, x_2, ...), (x_k \in \mathbb{R})$ chegaralangan ketma-ketliklar fazosida

$$||x|| = \sup_{k} |x_k|.$$

Bu fazo m ko'rinishda belgilanadi;

Yechimi.

a) 1)
$$||x|| = \max_{1 \le k \le m} |x_k| \ge 0$$
,
 $||x|| = \max_{1 \le k \le m} |x_k| = 0 \Leftrightarrow |x_1| = |x_2| = \dots = |x_m| = 0 \Leftrightarrow x_1 = x_2 = \dots = x_m = 0 \Leftrightarrow x = 0$.

2)

$$\|\lambda x\| = \max_{1 \le k \le m} |\lambda x_k| = \max_{1 \le k \le m} \{|\lambda||x_k|\} = |\lambda| \max_{1 \le k \le m} |x_k| = |\lambda| \|x\|.$$

3) Ixtiyoriy $k \in \{1, 2, \dots m\}$ uchun $|x_k + y_k| \le |x_k| + |y_k|$ tengsizligi o'rinli bo'lganligidan, quyidagiga ega bo'lamiz:

$$||x + y|| = \max_{1 \le k \le m} |x_k + y_k| \le \max_{1 \le k \le m} (|x_k| + |y_k|) \le$$
$$\le \max_{1 \le k \le m} |x_k| + \max_{1 \le k \le m} |y_k| = ||x|| + ||y||$$

b) 1)
$$||x|| = \sum_{k=1}^{m} |x_k| \ge 0;$$

$$||x|| = \sum_{k=1}^{m} |x_k| = 0 \Leftrightarrow |x_1| = |x_2| = \dots = |x_m| = 0 \Leftrightarrow$$

$$\Leftrightarrow x_1 = x_2 = \ldots = x_m = 0 \Leftrightarrow x = 0.$$

2)
$$\|\lambda x\| = \sum_{k=1}^{m} |\lambda x_k| = |\lambda| \sum_{k=1}^{m} |x_k| = |\lambda| \|x\|.$$

3)
$$||x+y|| = \sum_{k=1}^{m} |x_k + y_k| \le \sum_{k=1}^{m} (|x_k| + |y_k|) =$$

$$= \sum_{k=1}^{m} |x_k| + \sum_{k=1}^{m} |y_k| = ||x|| + ||y||.$$
c) 1) $||x|| = \left[\sum_{k=1}^{m} |x_k|^p\right]^{\frac{1}{p}} \ge 0;$

$$||x|| = \left[\sum_{k=1}^{m} |x_k|^p\right]^{\frac{1}{p}} = 0 \Leftrightarrow$$

$$\Leftrightarrow \sum_{k=1}^{m} |x_k|^p = 0 \Leftrightarrow |x_1|^p = |x_2|^p = \dots = |x_m|^p = 0 \Leftrightarrow$$

$$\Leftrightarrow |x_1| = |x_2| = \dots = |x_m| = 0 \Leftrightarrow x_1 = x_2 = \dots = x_m = 0 \Leftrightarrow x = 0;$$
2)
$$||\lambda x|| = \left[\sum_{k=1}^{m} |\lambda x_k|^p\right]^{\frac{1}{p}} = \sum_{k=1}^{m} (|\lambda|^p |x_k|^p)^{\frac{1}{p}} =$$

$$= (|\lambda|^p \sum_{k=1}^{m} |x_k|^p)^{\frac{1}{p}} = |\lambda| (\sum_{k=1}^{m} |x_k|^p)^{\frac{1}{p}} = |\lambda| ||x||.$$

3) Uchinchi shartni tekshirishda Helder tengsizligidan foydalamiz:

$$\sum_{k=1}^{m} |a_k b_k| \le \left(\sum_{k=1}^{m} |a_k|^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^{m} |b_k|^q\right)^{\frac{1}{q}},\tag{4.3}$$

bu erda p>1 va q>1 sonlari quyidagi shartni qanoatlantiradi:

$$\frac{1}{p} + \frac{1}{q} = 1. ag{4.4}$$

Endi ushbu tengsizlikning isbotini keltiramiz.

Agar (4.3) tengsizligi $a = (a_1, a_2, \ldots, a_m)$ va $b = (b_1, b_2, \ldots, b_m)$ elementlari uchun bajarilsa, u holda u αa va βb elementlari uchun ham o'rinli bo'ladi (bu erda α va β lar ixtiyoriy sonlar), ya'ni bu tengsizlik bir jinsli. Shuning uchun ham uni

$$\sum_{k=1}^{m} |a_k|^p = \sum_{k=1}^{m} |b_k|^q = 1 \tag{4.5}$$

bo'lgan holda isbotlash etarli. Natijada

$$\sum_{k=1}^{m} |a_k b_k| \le 1 \tag{4.6}$$

tengsizlikni isbotlash lozim bo'ladi.

 (ξ,η) tekisligida $\eta=\xi^{p-1}$ $(\xi>0)$, yoki bu tenglamaning o'zgacha shakli bo'lgan $\xi=\eta^{q-1}$ tenglama bilan berilgan egri chiziqni olamiz: (7-rasm).

7-rasm

Rasmdan ko'rinib turganidek a va b larning ixtiyoriy musbat qiymatlarida $S_1 + S_2 \ge ab$ tengsizligi o'rinli bo'ladi. Aniq integraldan foydalanib S_1 va S_2 yuzalarni hisoblaylik:

$$S_1 = \int\limits_0^a \xi^{p-1} d\xi = \frac{a^p}{p}$$

$$S_2 = \int\limits_0^b \eta^{q-1} d\eta = \frac{b^q}{q}.$$

Natijada $ab \leq \frac{a^p}{p} + \frac{b^q}{q}$ tengsizligiga ega bo'lamiz. Bu tengsizlikdagi a ning o'rniga $|a_k|$ ni, b ning o'rniga $|b_k|$ ni qo'yamiz.

$$|a_k b_k| \le \frac{|a_k|^p}{p} + \frac{|b_k|^q}{q} \quad (k = \overline{1, m}).$$

So'nggi tengsizliklarni hadma-had qo'shib, yani k bo'yicha yig'sak quyidagiga ega bo'lamiz:

$$\sum_{k=1}^{m} |a_k b_k| \le \sum_{k=1}^{m} \frac{|a_k|^p}{p} + \sum_{k=1}^{m} \frac{|b_k|^q}{q}.$$

Natijada, (4.4) va (4.5) munosabatlardan

$$\sum_{k=1}^{m} |a_k b_k| \le 1$$

tengsizlikning o'rinli ekanligi kelib chiqadi. Shu bilan (4.3) tengsizligi isbotlandi.

Endi normaning uchinchi shartini tekshiramiz. Buning uchun quyidagi tenglikni qaraymiz:

$$(|a| + |b|)^p = (|a| + |b|)^{p-1}|a| + (|a| + |b|)^{p-1}|b|$$

Bu tenglikda a ni a_k bilan, b ni b_k bilan almashtirib, k soni 1 dan m gacha o'zgarganda hadma-had qo'shib

$$\sum_{k=1}^{m} (|a_k| + |b_k|)^p = \sum_{k=1}^{m} ((|a_k| + |b_k|)^{p-1} (|a_k| + |b_k|)) =$$

$$= \sum_{k=1}^{m} (|a_k| + |b_k|)^{p-1} |a_k| + \sum_{k=1}^{m} (|a_k| + |b_kt|)^{p-1} |b_k|$$
(4.7)

tengligiga ega bo'lamiz. Helder tengsizligidan foydalanib

$$\sum_{k=1}^{m} (|a_k| + |b_k|)^{p-1} |a_k| \le \left(\sum_{k=1}^{m} (|a_k| + |b_k|)^{(p-1)q} \right)^{\frac{1}{q}} \left(\sum_{k=1}^{m} |a_k|^p \right)^{\frac{1}{p}}$$

va

$$\sum_{k=1}^{m} (|a_k| + |b_k|)^{p-1} |b_k| \le \left(\sum_{k=1}^{m} (|a_k| + |b_k|)^{(p-1)q} \right)^{\frac{1}{q}} \left(\sum_{k=1}^{m} |b_k|^p \right)^{\frac{1}{p}}$$

tengsizliklarni yozamiz. Natijada, (p-1)q=p tengligi va (4.7) dan

$$\sum_{k=1}^{m} (|a_k| + |b_k|)^p \le \left(\sum_{k=1}^{m} (|a_k| + |b_k|)^p\right)^{\frac{1}{q}} \left(\left(\sum_{k=1}^{m} |a_k|^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{m} |b_k|^p\right)^{\frac{1}{p}}\right)^{\frac{1}{q}}$$

tengsizlik kelib chiqadi. Bu tengsizlikning ikki tomnini ham

$$\left(\sum_{k=1}^{m}(|a_k|+|b_k|)^p\right)^{\frac{1}{q}}$$

ifodaga bo'lsak:

$$\left(\sum_{k=1}^{m}(|a_k|+|b_k|)^p\right)^{\frac{1}{p}} \leq \left(\sum_{k=1}^{m}|a_k|^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{m}|b_k|^p\right)^{\frac{1}{p}}$$

tengsizligiga ega bo'lamiz, ya'ni

$$||a+b|| \le ||a|| + ||b||.$$

d) 1)
$$||x|| = \sum_{k=1}^{\infty} |x_k| \ge 0$$
,
 $||x|| = \sum_{k=1}^{\infty} |x_k| = 0 \Leftrightarrow |x_1| = |x_2| = \dots = |x_n| = \dots = 0$
 $\Leftrightarrow x_1 = x_2 = \dots x_n = 0 \dots = 0 \Leftrightarrow x = 0$;
2)

3) $|x_k + y_k| \leq |x_k| + |y_k|$ tengsizligi, $\sum_{k=1}^{\infty} |x_k|$ va $\sum_{k=1}^{\infty} |y_k|$ qatorlarning yaqinlashishiidan $\sum_{k=1}^{\infty} |x_k + y_k|$ qatorning yaqinlashuvchiligi kelib chiqadi. Natijada,

 $\|\lambda x\| = \sum_{k} |\lambda x_k| = |\lambda| \sum_{k} |x_k| = |\lambda| \|x\|;$

$$||x+y|| = \sum_{n=1}^{\infty} |x_k + y_k| \le \sum_{n=1}^{\infty} (|x_k| + |y_k|) =$$

$$= \sum_{n=1}^{\infty} |x_k| + \sum_{n=1}^{\infty} |y_k| = ||x|| + ||y||.$$
e) 1) $||x|| = \left[\sum_{k=1}^{\infty} x_k^2\right]^{\frac{1}{2}} \ge 0,$

$$||x|| = \left[\sum_{k=1}^{\infty} x_k^2\right]^{\frac{1}{2}} = 0 \Leftrightarrow \sum_{k=1}^{\infty} x_k^2 = 0 \Leftrightarrow$$

$$\Leftrightarrow x_1 = x_2 = \dots = x_n = \dots = 0 \Leftrightarrow x = 0;$$
2) $||\lambda x|| = \left[\sum_{k=1}^{\infty} (\lambda x_k)^2\right]^{\frac{1}{2}} = |\lambda| \left[\sum_{k=1}^{\infty} x_k^2\right]^2 = |\lambda| ||x||;$

3)
$$(x_k + y_k)^2 \le 2(x_k^2 + y_k^2)$$
 tengsizligi hamda $\sum_{k=1}^{\infty} x^2$ va $\sum_{k=1}^{\infty} y_k^2$ qator-

larning yaqinlashishidan $\sum_{k=1}^{\infty} (x_k + y_k)^2$ qatorning ham yaqinlashuvchi ekanligi kelib chiqadi. Shu bilan birga, ixtiyoriy n uchun

$$\sqrt{\sum_{k=1}^{n} (x_k + y_k)^2} \le \sqrt{\sum_{k=1}^{n} x_k^2} + \sqrt{\sum_{k=1}^{n} y_k^2}$$

tengsizligi o'rinli. Bu tengsizlikning ikki tomonidan ham $n\to\infty$ da limitga o'tib quyidagilarga ega bo'lamiz:

$$||x+y|| = \sqrt{\sum_{k=1}^{\infty} (x_k + y_k)^2} \le \sqrt{\sum_{k=1}^{\infty} x_k^2} + \sqrt{\sum_{k=1}^{\infty} y_k^2} = ||x|| + ||y||.$$

$$\mathbf{f)} \ 1) \ \|x\| = \left[\sum_{k=1}^{\infty} |x_k|^p\right]^{\frac{1}{p}} \ge 0,$$

$$\|x\| = \left[\sum_{k=1}^{\infty} |x_k|^p\right]^{\frac{1}{p}} = 0 \Leftrightarrow \sum_{k=1}^{\infty} |x_k|^p = 0 \Leftrightarrow$$

$$\Leftrightarrow x_1 = x_2 = \dots = x_n = \dots = 0 \Leftrightarrow x = 0;$$

2)
$$\|\lambda x\| = \left[\sum_{k=1}^{\infty} |\lambda x_k|^p\right]^{\frac{1}{p}} = |\lambda| \left[\sum_{k=1}^{\infty} |x_k|^p\right]^{\frac{1}{p}} = |\lambda| \|x\|.$$

3) Ixtiyoriy n uchun

$$\left(\sum_{k=1}^{n} |x_k + y_k|^p\right)^{\frac{1}{p}} \le \left(\sum_{k=1}^{n} |x_k|^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{n} |y_k|^p\right)^{\frac{1}{p}}.$$

Minkovskiy tengsizligi o'rinli. $\sum_{k=1}^{n} |x_k|^p$ va $\sum_{k=1}^{n} |y_k|^p$ qatorlarning yaqinlashuvchiligidan hamda yuqoridagi Minkovskiy tengsizligining ikki tomonidan $n \to \infty$ da limit olib topamiz:

$$||x+y|| = \left[\sum_{k=1}^{\infty} |x_k + y_k|^p\right]^{\frac{1}{p}} \le \left(\sum_{k=1}^{\infty} |x_k|^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{\infty} |y_k|^p\right)^{\frac{1}{p}} = ||x|| + ||y||.$$

$$\mathbf{g)} \ 1) \ ||x|| = \sup_{k} |x_k| \ge 0,$$

$$||x|| = 0 \Leftrightarrow |x_1| = |x_2| = \dots |x_n| = \dots = 0 \Leftrightarrow$$

$$\Leftrightarrow x_1 = x_2 = \ldots = x_n = \ldots = 0 \Leftrightarrow x = 0.$$

2)
$$\|\lambda x\| = \sup_{k} \|\lambda x_{k}\| = |\lambda| \sup_{k} |x_{k}| = |\lambda| \|x\|;$$

3)
$$||x + y|| = \sup_{k} |x_k + y_k| \le \sup_{k} (|x_k| + |y_k|) \le$$

$$\le \sup_{k} |x_k| + \sup_{k} |y_k| = ||x|| + ||y||.$$

4.2.13. C[0,1] fazosida $x_n(t) = \frac{t^{n+1}}{n+1} - \frac{t^{n+2}}{n+2}$ ketma-ketligining yaqinlashuvchi ekanligini isbotlang.

Yechimi. $x_n(t)$ funksiya [0,1] segmentda eng katta qiymatiga t=1 da erishadi:

$$\max_{a \le t \le b} x_n(t) = \frac{1}{(n+1)(n+2)},$$

ya'ni

$$||x_n(t)|| = \max_{a \le t \le b} |x_n(t)| = \frac{1}{(n+1)(n+2)}.$$

Natijada,

$$\lim_{n \to \infty} ||x_n(t)|| = \lim_{n \to \infty} \frac{1}{(n+1)(n+2)} = 0.$$

Demak, berilgan ketma-ketlik yaqinlashuvchi.

 $egin{aligned} 4.2.14. & m \ \emph{va} \ \ell_1 \ \emph{fazolarga tegishli bo'lib}, \ m \ \emph{da yaqinlashu-vchi va} \ \ell_1 \ \emph{da uzoqlashuvchi bo'lgan} \end{aligned}$

$$x^{(n)} = (x_1^{(n)}, x_2^{(n)}, \ldots)$$

ketma-ketlikka misol keltiring.

Yechimi.

$$x^{(n)} = \left(\underbrace{0, 0, \dots, 0}_{2^n}, \frac{1}{2^n + 1}, \frac{1}{2^n + 2}, \dots, \frac{1}{2^n + 2^n}, 0, 0, \dots\right)$$

ketma-ketlikni qaraylik. $\sup_m |x_m^{(n)}| = \frac{1}{2^n+1} < 1 < \infty.$ Demak $x^{(n)} \in m.$ Shuningdek

$$\sum_{m=1}^{\infty} |x_m^{(n)}| = \frac{1}{2^n + 1} + \frac{1}{2^n + 2} + \dots + \frac{1}{2^n + 2^n} < \frac{1}{2^n} + \frac{1}{2^n} + \dots + \frac{1}{2^n} = \frac{2^n}{2^n} = 1,$$

demak $x^{(n)} \in \ell_1$.

$$\lim_{n \to \infty} \|x^{(n)}\| = \lim_{n \to \infty} \sup_{m} |x_m^{(n)}| = \lim_{n \to \infty} \frac{1}{2^n + 1} = 0,$$

ya'ni, qaralayotgan ketma-ketlik m da 0 ga yaqinlashuvchi. Lekin bu ketma-ketlikning ℓ_1 da yaqinlashuvchi emas, chunki

$$\sum_{m=1}^{\infty} |x_m^{(n)}| \ge \frac{1}{2^n} + \frac{1}{2^n} + \ldots + \frac{1}{2^n} = \frac{2^n}{2^n} = 1.$$

$oldsymbol{4.2.15.}$ A va B A < B tengsizligini qanoatlantiruvchi sonlar bo'lsin. U holda

$$E = \{ f(x) : f(x) \in C[0,1], A < f(x) < B \}$$

to 'planning C[0,1] fazosida ochiq ekanligini isbotlang.

Yechimi. E to'plamdan ixtiyoriy φ element olaylik. Segmentda uzluksiz funksiyaning xossasi bo'yicha φ funksiya [0,1] segmentda o'zining eng katta va eng kichik qiymatlariga erishadi:

$$\sup_{x \in [0,1]} \varphi(x) = \beta = \varphi(x'), \quad \inf_{x \in [0,1]} \varphi(x) = \alpha = \varphi(x''),$$

bunda $x', x'' \in [0, 1]$.

Shartga ko'ra ixtiyoriy $x \in [0,1]$ uchun $A < \varphi(x) < B$ bo'ladi va $\alpha > A$ va $\beta < B$ tengsizliklari o'rinli. $\alpha - A$ va $\beta - B$ sonlarning kichigini ε orqali belgilaymiz. U holda barcha $x \in [0,1]$ sonlar uchun $|\varphi(x) - (x)| < \varepsilon$ tengsizlikni qanoatlantiruvchi $\psi(x)$ funksiyalar E to'plamga tegishli bo'ladi. Shuningdek $\varphi(x) - \psi(x)$ funksiyalarning uzluksizligidan $\|\varphi(x) - \psi(x)\| < \varepsilon$ tengsizligiga ega bo'lamiz. Bu esa $\psi(x)$ funksiyalar $\varphi(x)$ funksiyaning ε atrofini tashkil etishini ko'rsatadi. Natijada, φ funksiya E dan olingan ixtiyoriy element bo'lgani uchun, E ning ochiq to'plam ekanligi kelib chiqadi.

4.2.16. Normalangan fazoda qavariq to'plamning yopilmasi ham qavariq bo'lishini isbotlang.

Yechimi.~X normalangan fazoda qavariq M to'plam berilsin. [M] to'plamidan ixtiyoriy x,y nuqtalarni olganda, barcha $\alpha \in [0,1]$ sonlar uchun $\alpha x + (1-\alpha)y \in [M]$ ekanligini ko'rsatishimiz kerak. $x,y \in M$ bo'lganidan ixtiyoriy $\varepsilon > 0$ son uchun $\|x-u\| < \varepsilon$ va $\|y-v\| < \varepsilon$ tengsizliklarni qanoatlantiruvchi $u,v \in M$ elementlar mavjud bo'ladi. M qavariq to'plam bo'lganlikdan har bir $\alpha \in [0,1]$ uchun $\alpha u + (1-\alpha)v \in M$. Natijada,

$$\|\alpha x + (1 - \alpha)y - (\alpha u + (1 - \alpha)v)\| \le$$

$$\le \alpha \|x - u\| + (1 - \alpha)\|y - v\| < \alpha \varepsilon + (1 - \alpha t)\varepsilon = \varepsilon.$$

Demak $\alpha x + (1 - \alpha)y$ nuqtaning ixtiyoriy ε atrofida M to'plamning kamida bir elementi mavjud ekan. Shuning uchun $\alpha x + (1 - \alpha)y \in [M]$, ya'ni [M] qavariq to'plam.

4.2.17. Normalangan fazoda $B(x_0, r)$ sharning qavariq ekanligini isbotlang.

Yechimi. $B(x_0, r)$ shardan ixtiyoriy x, y elementlarni olaylik. U holda $||x-x_0|| < r$ va $||y-x_0|| < r$ tengsizliklari o'rinli bo'ladi. Natijada har bir $\alpha \in [0, 1]$ uchun

$$\|\alpha x + (1 - y)y - x_0\| = \|\alpha x + (1 - \alpha)y - \alpha x_0 - (1 - \alpha)x_0\| \le \alpha \|x - x_0\| + (1 - \alpha)\|y - x_0\| < \alpha r + (1 - \alpha)r = r.$$

Demak, $\alpha x + (1 - \alpha)y \in B(x_0, r)$, ya'ni $B(x_0, r)$ qavariq to'plam.

4.2.18. Normalangan fazoda $B[x_0, r]$ sharning qavariq ekanligini isbotlang.

Yechimi. $B[x_0, r]$ shardan ixtiyoriy x, y elementlarni olaylik. U holda, $||x - x_0|| \le r$ va $||y - x_0|| \le r$ tengsizliklari o'rinli. Natijada har bir $\alpha \in [0, 1]$ uchun

$$\|\alpha x + (1 - \alpha)y - x_0\| = \|\alpha x + (1 - \alpha) - \alpha x_0 - (1 - \alpha)x_0\| \le \alpha \|x - x_0\| + (1 - \alpha)\|y - y_0\| \le \alpha r + (1 - \alpha)r = r.$$

Demak, $\alpha x + (1 - \alpha)y \in B[x_0, r]$, ya'ni $B[x_0, r]$ qavariq to'plam.

4.2.19. Normalangan fazoda $S(x_0, r)$ sfera qavariq to'plam bo'ladimi?

Yechimi. $S(x_0,r)$ sferadan ixtiyoriy x element olamiz. U holda, $y=2x_0-x$ nuqta ham shu sferaga tegishli bo'ladi. Haqiqatan,

$$||x_0 - (2x_0 - x)|| = ||x_0 - x|| = r.$$

Endixva yelementlarni tutashtiruvchi segmentdan $\frac{1}{2}(x+y)$ nuqtani olamiz. Natijada

$$\frac{1}{2}x + \frac{1}{2}y = \frac{1}{2}x + \frac{1}{2}(2x_0 - x) = x_0$$

va

$$||x_0 - x_0|| = 0 < r$$

bo'lgani uchun quyidagiga ega bo'lamiz:

$$\frac{1}{2}x + \frac{1}{2}y \notin S(x_0, r).$$

Demak, $S(x_0, r)$ sfera qavariq to'plam emas.

4.2.20. C[0,1] fazoda darajasi k ga teng barcha ko'phadlarning $P_k[0,1]$ to'plami qavariq bo'ladimi?

Yechimi.

$$P_k(x) = a_k x^k + a_{k-1} x^{k-1} + \ldots + a_0$$

va

$$Q_k(x) = -a_k x^k + b_{k-1} x^{k-1} + \dots + b_0$$

ko'phadlarni olaylik.

$$\frac{1}{2}P_k(x) + \frac{1}{2}Q_k(x) =
= \frac{1}{2}(a_{k-1} + b_{k-1})x^{k-1} + \frac{1}{2}(a_{k-2} + b_{k-2})x^{k-2} + \dots + \frac{1}{2}(a_0 + b_0)$$

ko'phadning darajasi k-1 ga teng, ya'ni P[0,1] qavariq to'plam emas.

4.2.21. C[0,1] fazosida $\int_{0}^{1} |x(t)| dt \leq 1$ tengsizlikni qanoatlantiruvchi C uzluksiz funksiyalar to'plami qavariq boladimi? Vechimi C to'plamdan ixtiyoriy x(t) va y(t) funktsiyalarni olaylik

Yechimi. C to'plamdan ixtiyoriy x(t) va y(t) funktsiyalarni olaylik. U holda barcha $\alpha \in [0, 1]$ sonlari uchun quyidagi munosabat o'rinli:

$$\int_{0}^{1} |\alpha x(t) + (1 - \alpha)y(t)|dt \le \int_{0}^{1} (|x(t)| + (1 - \alpha)|y(t)|)dt =$$

$$= \alpha \int_{0}^{1} |x(t)|dt + (1 - \alpha) \int_{0}^{1} |y(t)|dt \le \alpha + 1 - \alpha = 1.$$

Demak, C qavariq to'plam.

4.2.22. ℓ_2 fazosida

$$A = \{x \in \ell_2 : x = (x_1, x_2, \ldots), |x_n| < 2^{-n+1}, n \in \mathbb{N}\}$$

$parallelepipedning\ qavariq\ to'plam\ ekanligini\ is botlang.$

Yechimi. Ato'plamdan ixtiyoriyx,~yelementlar olaylik. U holda, har bir $\alpha \in [0,1]$ uchun

$$|\alpha x_n + (1 - \alpha)y_n| \le \alpha |x_n| + (1 - \alpha)|y_n| < \alpha 2^{-n+1} + (1 - \alpha)2^{-n+1} = 2^{-n+1}$$

bo'ladi va shuning uchun $\alpha x + (1 - \alpha)y \in A$. Demak, A qavariq to'plam.

4.2.23. C[a,b] fazosining separabel fazo ekanligini isbotlang.

Yechimi. C[a,b]fazosida zich bo'lgan sanoqli qism to'plam mavjudligini ko'rsatamiz.

Har bir n natural soni uchun [a, b] kesmani

$$x_0^{(n)} = a, \ x_1^{(n)} = a + \frac{b-a}{n}, \ x_2^{(n)} = a + 2\frac{b-a}{n}, \dots, x_n^{(n)} = b$$

nuqtalar yordamida n bo'laklarga bo'lamiz. Ixtiyoriy

$$a_0^{(n)}, a_1^{(n)}, \ldots, a_n^{(n)}$$

ratsional sonlar uchun

$$\varphi(x) = a_{i-1}^{(n)} + \frac{x - x_{i-1}^{(n)}}{x_i^{(n)} - x_{i-1}^{(n)}} (a_i^{(n)} - a_{i-1}^{(n)}), \ x \in [x_{i-1}^n, x_i^n], \ i = \overline{1, n}$$
 (4.8)

bo'lakli-chiziqli funksiyani quramiz. Har bir n uchun (4.8) ko'rinishdagi barcha funksiyalar to'plamini A_n orqali belgilaymiz. Har bir A_n sanoqli ekanligidan, $A = \bigcup_{n=1}^{\infty} A_n$ birlashmasi ham sanoqlidir.

Bu A to'plamining C[a,b] da zich ekanligini ko'rsatamiz. C[a,b] ga tegishli har bir f funksiya [a,b] da tekis uzluksiz bo'lganligi uchun $\forall \, \varepsilon > 0$ uchun $\exists \, \delta > 0$ soni topilib, $|x'-x''| < \delta$ tengsizligini qanoatlantiruvchi barcha $x', x'' \in [a,b]$ nuqtalarda

$$|f(x'-f(x'')|<\frac{\varepsilon}{5}$$

tengsizligi o'rinli bo'ladi. Har bir $i \in \{0, 1, ... n\}$ uchun

$$|f(x_i^{(n)}) - a_i^{(n)}| < \frac{\varepsilon}{5}$$

tengsizligini qanoatlantiruvchi

$$a_0^{(n)}, a_1^{(n)}, \ldots, a_n^{(n)}$$

ratsional sonlar olib, (4.8) ko'rinishdagi φ funksiyasini qaraylik. Ixtiyoriy $x \in [a, b]$ uchun shunday $i \in \{0, 1, ..., n\}$ topilib $x \in [x_{i-1}^{(n)}, x_i^{(n)}]$ bo'ladi. U holda quyidagilar o'rinli:

$$\begin{aligned} |\varphi(x) - \varphi(x_{i-1}^{(n)})| &\leq |\varphi(x_i^{(n)}) - \varphi(x_{i-1}^{(n)})| \leq \\ &\leq |\varphi(x_i^{(n)}) - f(x_i^{(n)}) + f(x_i^{(n)}) - f(x_{i-1}^{(n)}) + f(x_{i-1}^{(n)}) - \varphi(x_{i-1}^{(n)})| \leq \\ &\leq |\varphi(x_i^{(n)}) - f(x_i^{(n)})| + |f(x_i^{(n)}) - f(x_{i-1}^{(n)})| + |f(x_{i-1}^{(n)}) - \varphi(x_{i-1}^{(n)})| = \\ &= |a_i^{(n)} - f(x_i^{(n)})| + |f(x_i^{(n)}) - f(x_{i-1}^{(n)})| + |f(x_{i-1}^{(n)}) - a_{i-1}^{(n)}| < \\ &\leq \frac{\varepsilon}{5} + \frac{\varepsilon}{5} + \frac{\varepsilon}{5} = \frac{3\varepsilon}{5}. \end{aligned}$$

Natijada,

$$|\varphi(x) - f(x)| \le |\varphi(x) - \varphi(x_{i-1}^{(n)})| +$$

$$+|\varphi(x_{i-1}^{(n)}) - f(x_{i-1}^{(n)})| + |f(x_{i-1}^{(n)}) - f(x)| < \frac{3\varepsilon}{5} + \frac{\varepsilon}{5} + \frac{\varepsilon}{5} = \varepsilon.$$

Shunday qilib, $\|\varphi - f\| < \varepsilon$, ya'ni f funksiyaning ixtiyoriy $\varepsilon > 0$ atrofida A to'plamning kamida bitta φ elementi mavjud. f funksiya C[a,b] ga tegishli bo'lgan ixtiyoriy element bo'lgani uchun [A] = C[a,b] bo'ladi. Yuqorida aytganimizdek A sanoqli to'plam. Shuning uchun C[a,b] fazosi separabel bo'ladi.

4.2.24. X normalangan fazoda $\{x_n\}$ fundamental ketma-ketligining biror $\{x_{n_k}\}$ qismiy ketma-ketligi yaqinlashuvchi bo'lsa, u holda $\{x_n\}$ ketma-ketligining yaqinlashuvchi bo'lishini isbotlang.

Yechimi. $\{x_n\}$ fundamental ketma-ketlik bo'lgani sababli, ixtiyoriy $\varepsilon > 0$ soni uchun shunday n'_{ε} soni topilib $n, n_k \geq n'_{\varepsilon}$ tengsizligini qanoatlantiruvchi natural sonlari uchun $\|x_n - x_{n_k}\| < \frac{\varepsilon}{2}$ tengsizligi o'rinli bo'ladi. Shartga muvofiq $\{x_{n_k}\}$ qismiy ketma-ketlik yaqinlashuvchi va $\lim_{n\to\infty} x_{n_k} = a$ bo'lsin. U holda, $\varepsilon > 0$ soni uchun shunday n''_{ε} natural soni mavjud bo'lib, $n_k \geq n''_{\varepsilon}$ tengsizlikni qanoatlantiruvchi barcha natural sonlar uchun $\|x_{n_k} - a\| < \varepsilon/2$ tengsizligi o'rinli bo'ladi. $\max(n'_{\varepsilon}, n''_{\varepsilon}) = n_{\varepsilon}$ bo'lsin. U holda, $n, n_k \geq n_{\varepsilon}$ tengsizlikni qanoatlantiruvchi natural sonlar uchun quyidagi munosabat o'rinli

$$||x_n - a|| = ||x_n - x_{n_k} + x_{n_k} - a|| \le$$

 $\le ||x_n - x_{n_k}|| + ||x_{n_k} - a|| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$

Demak, $\{x_n\}$ ketma-ketlik yaqinlashuvchi va $\lim_{n\to\infty} x_n = a$.

4.2.25. X normalangan fazoda $\{x_n\}$ ketma-ketligi uchun $\sum\limits_{n=1}^{\infty}\|x_{n+1}-x_n\|$ qatori yaqinlashuvchi bo'lsa, u holda $\{x_n\}$ ketma-ketlikning fundamental ketma-ketlik ekanligini isbotlang.

Yechimi. $\sum_{n=1}^{\infty}\|x_{n+1}-x_n\|$ qator yaqinlashuvchi bo'lganligi sababli ixtiyoriy $\varepsilon>0$ soni uchun shunday n_{ε} natural soni mavjud bo'lib, $n>n_{\varepsilon}$ tengsizlikni qanoatlantiruvchi barcha natural sonlari va ixtiyoriy $p\in\mathbb{N}$ soni uchun quyidagi tengsizlik o'rinli

$$||x_{n+2} - x_{n+1}|| + ||x_{n+3} - x_{n+2}|| + \ldots + ||x_{n+p} - x_{n+p-1}|| < \varepsilon$$

Bundan esa,

$$||x_{n+p} - x_n|| =$$

$$= ||x_{n+p} - x_{n+p-1} + x_{n+p-1} - x_{n+p-2} + x_{n+p-2} - \dots - x_n|| \le$$

$$\le ||x_{n+2} - x_{n+1}|| + ||x_{n+3} - x_{n+2}|| + \dots + ||x_{n+p} - x_{n+p-1}|| < \varepsilon$$

ekanligi kelib chiqadi. Demak, berilgan ketma-ketlik fundamental.

4.2.26. $\{x_n\}$ va $\{y_n\}$ X normalangan fazoda fundamental ketma-ketliklar bo'lsin. U holda $\lambda_n = \|x_n - y_n\|, n = 1, 2, ...$ ketma-ketlikning yaqinlashuvchi ekanligini isbotlang.

Yechimi. $\{x_n\}$ va $\{y_n\}$ fundamental ketma-ketliklar bo'lganligi sababli, ixtiyoriy $\varepsilon > 0$ soni uchun shunday n_{ε} soni mavjud bo'lib $n \geq n_{\varepsilon}$ tengsizlikni qanoatlantiruvchi barcha n natural sonlar va ixtiyoriy $p \in \mathbb{N}$ soni uchun $||x_{n+p} - x_n|| < \frac{\varepsilon}{2}$ va $||y_{n+p} - y_n|| < \frac{\varepsilon}{2}$ tengsizliklari o'rinli. Natijada quyidagi tengsizlikka ega bo'lamiz:

$$|\lambda_{n+p} - \lambda_n| = |||x_{n+p} - y_{n+p}|| - ||x_n - y_n||| \le$$

$$\le ||x_{n+p} - y_{n+p} - x_n + y_n|| \le ||x_{n+p} - x_n|| + ||y_{n+p} - y_n|| <$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Demak, $\{\lambda_n\}$ fundamental ketma-ketlik. \mathbb{R} haqiqiy sonlar to'plami to'laligidan $\{\lambda_n\}$ ketma-ketlikning yaqinlashuvchi ekanligi kelib chiqadi.

4.2.27. \mathbb{R} da norma aksiomalarini tekshiring ||x|| = |arctgx|.

Yechimi. Normaning ikkinchi aksiomasi o'rinli emas. Haqiqatan, agar $x=\sqrt{3},~\lambda=\frac{1}{3}$ bo'lsa, u holda

$$\|\lambda x\| = \operatorname{arctg} \frac{\sqrt{3}}{3} = \frac{\pi}{6},$$

lekin

$$|\lambda|||x|| = \frac{1}{3} \operatorname{arctg} \sqrt{3} = \frac{1}{3} \cdot \frac{\pi}{3} = \frac{\pi}{9},$$

ya'ni $\|\lambda x\| \neq |\lambda| \|x\|$.

4.2.28. \mathbb{R}^n , $n \geq 2$, $fazosida ||x||_p = \left(\sum_{k=1}^n |\xi|^p\right)^{1/p}$, 0 normaning shartini bajarilmasligini ko'rsating.

Yechimi. Normaning uchinchi sharti o'rinli emas. Haqiqatan, $x = \left(\frac{1}{2}, 0, \dots, 0\right) \in \mathbb{R}^n$ va $y = \left(0, \frac{1}{2}, 0, \dots, 0\right) \in \mathbb{R}^n$ vektorlarni olaylik. $x \neq y$ bo'lgani bilan, lekin ixtiyoriy $0 va <math>||x||_p + ||y||_p = 1$ uchun $||x||_p = ||y||_p = \frac{1}{2}$. Lekin

$$||x+y||_p = \left\| \left(\frac{1}{2}, \frac{1}{2}, 0, \dots, 0 \right) \right\|_p = \left(\frac{1}{2^p} + \frac{1}{2^p} \right)^{\frac{1}{p}} = 2^{\frac{1}{p}-1}.$$

Natijada $||x + y||_p > ||x||_p + ||y||_p$.

4.2.29. C[a,b] fazoda norma aksiomalarini tekshiring

$$||x|| = \max_{a \le t \le \frac{a+b}{2}} |x(t)|.$$

Yechimi. Normaning birinchi sharti bajarilmaydi. Haqiqatan,

$$x(t) = \begin{cases} 0, & \text{agar } t \in [a, \frac{a+b}{2}]; \\ t - \frac{a+b}{2}, & \text{agar } t \in [\frac{a+b}{2}, b] \end{cases}$$

elementi uchun ||x|| = 0, lekin $x \neq 0$.

4.2.30. Normalangan $L_1[0,1]$ fazoda

$$x_n(t) = \begin{cases} e^{-\frac{t}{n}}, & \mathbf{agar} \ t \in \mathbb{I} \cap [0, 1], \\ 0, & \mathbf{agar} \ t \in \mathbb{Q} \cap [0, 1] \end{cases}$$

ketma-ketligining yaqinlashuvchi ekanligini ko'rsating.

Yechimi.

$$||x_n - 1|| = \int_0^1 |x_n(t) - 1| dt = \int_0^1 (1 - e^{-\frac{t}{n}}) dt =$$

$$= 1 - \int_0^1 e^{-\frac{t}{n}} dt = 1 - \frac{e^{-\frac{t}{n}} - 1}{-\frac{1}{n}} \to 0.$$

Mustaqil ish uchun masalalar

- 1. X normalangan fazoda $\{x_n\}$ ketma-ketlik berilgan bo'lsin. Agar shunday c soni mavjud bo'lib, barcha $n \in \mathbb{N}$ uchun $||x_n|| \leq c$ tengsizligi bajarilsa, u holda $||x_n||$ ketma-ketlik chegaralangan deb ataladi. X fazoda ixtiyoriy yaqinlashuvchi ketma-ketlikning chegaralanganligini isbotlang.
 - **2.** $\forall x, y \in X$ elementleri uchun quyidagilarni isbotlang:
 - a) $||x + y|| \ge ||x|| ||y||$;
 - b) $||x|| \le \max\{||x+y||, ||x-y||\}.$
- **3.** Norma aksiomalarini tekshiring: [a,b] segmentda barcha chegaralangan funksiyalar fazosi M|a,b| da

$$||x|| = \sup_{t \in [a,b]} |x(t)|.$$

- 4. C[0, 1] fazosida quyidagi ketma-ketliklerni yaqinlashuvchilikka tekshiring:
 - a) $x_n(t) = t^n t^{n+1}$; b) $y_n(t) = t^n t^{in}$;
- 5. M biror L normalangan fazoning qism fazosi bo'lsin. Agar Lto'liq bo'lsa, P = L/M faktor fazoning ham to'liq bo'lishini isbotlang.
- **6.** X chiziqli fazosida $\|\cdot\|_1$ va $\|\cdot\|_2$ normalar berilgan bo'lsin. Agar shunday a, b > 0 sonlar mavjud bo'lib, ixtiyoriy $x \in X$ uchun

$$a||x||_1 \le ||x||_2 \le b||x||_1$$

tengsizligi o'rinli bo'lsa, u holda $\|\cdot\|_1$ va $\|\cdot\|_2$ normalar ekvivalent deb ataladi. Chekli o'lchamli X fazodagi ixtiyoriy ikki norma ekvivalent bo'lishini isbotlang.

- 7. X normalangan fazoda $x \neq 0$, $y \neq 0$ elementlar uchun ||x+y|| = ||x|| + ||y|| tenglik faqatgina $y = \lambda x$ ($\lambda > 0$) bo'lgan holda o'rinli bo'lsa, u holda X qa'tiy normalangan fazo deb ataladi. ℓ_1 , ℓ_2 , m, C[0,1] fazolarning qaysi biri qa'tiy normalangan fazo bo'ladi.
- 8. Agar A va B to'plamlar
iXfazosining qavariq qism to'plamlari bo'ls
a $A\cap B$ va

$$A + B = \{x : x = y + z, y \in A, z \in B\}$$

to'plamlari ham qavariq to'plam bo'lishini isbotlang.

- 9. Normalagan fazoda ixtiyoriy fundamental ketma-ketlikning chegaralanganligini isbotlang.
- **10.** \mathbb{R}^m , \mathbb{R}^m_{∞} , \mathbb{R}^m_1 , \mathbb{R}^m_p , ℓ_1 , ℓ_2 , ℓ_p , m, c_0 , c fazolarning orasida banax fazosi bormi?
- 12. Ixtiyoriy chekli o'lchamli normalangan fazoning banax fazosi bo'lishini isbotlang.
 - 13. Banax fazosining qism fazosi banax fazosi bo'lishini isbotlang.
- 14. Ixtiyoriy normalangan fazo yagona to'ldiruvchiga ega ekanligini isbotlang.

4.3. Evklid va Hilbert fazolari

Haqiqiy L chiziqli fazosining $\{x,y\}$ juft elementlarida aniqlangan, $\langle x,y\rangle$ ko'rinishida belgilanuvchi va quyidagi to'rt shartlarni (aksiomalarni) qanoatlantiruvchi funksiya skalyar ko'paytma deb ataladi:

- 1) $\langle x, y \rangle = \langle y, x \rangle;$
- 2) $\langle x_1 + x_2, y \rangle = \langle x_1, y \rangle + \langle x_2, y \rangle;$
- 3) $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle, \ \lambda \in \mathbb{R};$
- 4) $\langle x, x \rangle \ge 0$; $\langle x, x \rangle = 0 \Leftrightarrow x = 0$.

Skalyar ko'paytma kiritilgan chiziqli fazoda normani

$$||x|| = \sqrt{\langle x, x \rangle}$$

ko'rinishida kiritish mumkin. Bu normalangan fazo *Evklid fazosi* deyiladi. Norma aksiomalarini tekshiramiz:

1)
$$||x|| = \sqrt{\langle x, x \rangle} = 0 \Leftrightarrow \langle x, x \rangle = 0 \Leftrightarrow x = 0;$$

2) $\|\lambda x\| = \sqrt{\langle \lambda x, \lambda x \rangle} = \sqrt{\lambda \langle x, \lambda x \rangle} = \sqrt{\lambda \langle \lambda x, x \rangle} =$

$$= \sqrt{\lambda^2 \langle x, x \rangle} = |\lambda| \sqrt{\langle x, x \rangle} = |\lambda| ||x||;$$

3) Xoxlagan λ son uchun

$$\langle \lambda x + y, \lambda x + y \rangle \ge 0.$$

Bundan

$$\lambda^2 \langle x, x \rangle + 2\lambda \langle x, y \rangle + \langle y, y \rangle \ge 0.$$

Demak kvadrat uchhadning determinanti manfiydir:

$$D = \langle x, y \rangle^2 - \langle x, x \rangle y, y \rangle \le 0,$$

ya'ni $\langle x, y \rangle^2 \le \langle x, x \rangle \langle y, y \rangle$, yoki

$$|\langle x, y \rangle| \le ||x|| ||y||.$$

Oxirgi tengsizlik Koshi — Bunyakovskiy tengsizligi deb ataladi. Bu tengsizlikdan foydalanib, ushbu

$$||x + y||^2 = \langle x + y, x + y \rangle = \langle x, x \rangle + 2\langle x, y \rangle + \langle y, y \rangle \le$$
$$\le ||x||^2 + 2||x|| ||y|| + ||y||^2 = (||x|| + ||y||)^2$$

tengsizligiga ega bo'lamiz. Natijada

$$||x + y|| \le ||x|| + ||y||.$$

Evklid fazosida skalyar ko'paytma yordamida x va y vektorlar orasida burchak tushunchasi quyidagicha aniqlanadi:

$$\cos \varphi = \frac{\langle x, y \rangle}{\|x\| \|y\|}.$$
 (4.9)

 $\langle x,y\rangle \leq \|x\|\|y\|$ bo'lgani uchun, $\frac{\langle x,y\rangle}{\|x\|\|y\|} \leq 1$. Demak, (4.9) formula nolga teng bo'lmagan x va y vektorlar orasidagi φ ($0 \leq \varphi \leq \pi$) burchakni aniqlaydi.

Agar $\langle x, y \rangle = 0$ bo'lsa, u holda x va y vektorlar ortogonal deb ataladi va $x \perp y$ ko'rinishida yoziladi. Bu holda (4.9) dan $\varphi = \frac{\pi}{2}$ ekanligi kelib chiqadi.

L evklid fazosida noldan farqli vektorlarning $\{x_{\alpha}\}$ sistemasi berilgan bo'lib, $\alpha \neq \beta$ bo'lganda $\langle x_{\alpha}, x_{\beta} \rangle = 0$ bo'lsa, u holda $\{x_{\alpha}\}$ ortogonal sistema deb ataladi.

Agar $\{x_{\alpha}\}$ ortogonal sistema to'liq bo'lsa, u holda u *ortogonal bazis* deyiladi.

Agar $\{x_{\alpha}\}$ sistema uchun

$$\langle x_{\alpha}, x_{\beta} \rangle = \begin{cases} 0, & \text{agar } \alpha \neq \beta; \\ 1, & \text{agar } \alpha = \beta \end{cases}$$

sharti o'rinli bo'lsa, u holda u ortonormal sistema deb ataladi.

Ta'rif. To'liq evklid fazosi Hilbert fazosi deb ataladi va u odatda H bilan belgilanadi.

H Hilbert fazosida $\{x_\alpha\}$ ortonormal sistema berilgan bo'lsin. $x\in H$ elementi uchun

$$c_{\alpha} = \langle x, x_{\alpha} \rangle$$

sonlar, berilgan ortonormal sistema bo'yicha Fure koeffitsientlari deb ataladi. Ushbu $\sum_{\alpha} c_{\alpha} x_{\alpha}$ qator bo'lsa, x elementning Fure qatori deyiladi.

Masalalar

4.3.1. ℓ_2 fazosida skalyar ko'paytmani

$$\langle x, y \rangle = \sum_{k=1}^{\infty} x_k y_k$$

ko'rinishida kiritish mumkin ekanligini ko'rsating.

Yechimi. $\sum_{k=1}^{\infty} x_k y_k$ qatorning yaqinlashuvchiligi

$$2x_k y_k \le x_k^2 + y_k^2$$

tengsizligidan kelib chiqadi.

Skalyar ko'paytma aksiomalarini tekshiramiz.

1)
$$\langle x, y \rangle = \sum_{k=1}^{\infty} x_k y_k = \sum_{k=1}^{\infty} y_k x_k = \langle y, x \rangle;$$

2)
$$\langle x' + x'', y \rangle = \sum_{k=1}^{\infty} (x'_k + x''_k) y_k = \sum_{k=1}^{\infty} x'_k y_k + x''_k y_k =$$

$$= \sum_{k=1}^{\infty} x'_k y_k + \sum_{k=1}^{\infty} x''_k y_k = \langle x', y \rangle + \langle x'', y \rangle.$$

3)
$$\langle \lambda x, y \rangle = \sum_{k=1}^{\infty} \lambda x_k y_k = \lambda \sum_{k=1}^{\infty} x_k y_k = \lambda \langle x, y \rangle;$$

4)
$$\langle x, x \rangle = \sum_{k=1}^{\infty} x_k^2 \ge 0$$
,

$$\langle x, x \rangle = \sum_{k=1}^{\infty} x_k^2 = 0 \Leftrightarrow x_1 = x_2 = \dots = x_n \dots = 0 \Leftrightarrow x = 0.$$

4.3.2. ℓ_2 Evklid fazosida

ortonormal bazisning to'liq ekanligini ko'rsating.

Yechimi. $x = (x_1, x_2, \dots x_n, \dots) \in \ell_2$ xoxlagan element va

$$x^{(n)} = (x_1, x_2, \dots x_n, 0, 0 \dots)$$

bo'lsin. U holda, $x^{(n)}$ element $e_1, e_2, \dots e_n$ vektorlarning chiziqli qobig'iga tegishli va $n \to \infty$ da $||x - x_n|| \to 0$, ya'ni $x \in [\mathcal{L}(\{e_n\})]$. Demak, $[\mathcal{L}(\{e_n\})] = \ell_2$.

$m{4.3.3.}\ [a,b]\ segment da\ barcha\ uzluksiz\ funksiyalar\ fazosida\ skalyar\ ko'paytmani$

$$\langle f, g \rangle = \int_{a}^{b} f(t)g(t) dt$$
 (4.10)

ko'rinishida kiritish mumkin ekanligini ko'rsating.

Yechimi. Skalyar ko'paytma aksiomalarini tekshiramiz.

1)
$$\langle f, g \rangle = \int_{a}^{b} f(t)g(t) dt = \int_{a}^{b} g(t)f(t) dt = \langle g, f \rangle;$$

2)
$$\langle f_1 + f_2, g \rangle = \int_{a}^{b} (f_1(t) + f_2(t))g(t) dt =$$

$$= \int_{a}^{b} f_1(t), g(t) dt + \int_{a}^{b} f_2(t)g(t) dt = \langle f_1, g \rangle + \langle f_2, g \rangle;$$

3)
$$\langle \lambda f, g \rangle = \int_{a}^{b} \lambda f(t)g(t) dt = \lambda \int_{a}^{b} f(t)g(t) dt = \lambda \langle f, g \rangle;$$

4)
$$\langle f, f \rangle = \int_{a}^{b} f^{2}(t) dt \ge 0$$
, $\langle f, f \rangle = \int_{a}^{b} f^{2}(t) dt = 0 \Leftrightarrow f \equiv 0$.

Bu fazo $C_2[a, b]$ ko'rinishida belgilanadi.

4.3.4. $C_2[a,b]$ Evklid fazosida

$$\frac{1}{2}$$
, $\cos \frac{2\pi nt}{b-a}$, $\sin \frac{2\pi nt}{b-a}$, $n = 1, 2, \dots$

funktsiyalardan iborat sistema ortogonal sistema ekanligini tekshiring.

Yechimi. Mumkin bo'lgan barcha hollarni tekshirib ko'ramiz:

1)

$$\left\langle \frac{1}{2}, \cos \frac{2\pi nt}{b-a} \right\rangle = \int_{a}^{b} \frac{1}{2} \cos \frac{2\pi nt}{b-a} dt = \frac{1}{4} \frac{b-a}{\pi n} \sin \frac{2\pi nt}{b-a} \Big|_{a}^{b} =$$
$$= \frac{1}{2} \frac{b-a}{\pi n} \cos \frac{2\pi n(a+b)}{b-a} \sin \pi n = 0;$$

2)

$$\left\langle \frac{1}{2}, \sin \frac{2\pi nt}{b-a} \right\rangle = \int_{a}^{b} \frac{1}{2} \sin \frac{2\pi nt}{b-a} dt = -\frac{1}{4} \frac{b-a}{\pi n} \cos \frac{2\pi nt}{b-a} \Big|_{a}^{b} =$$

$$= \frac{1}{4} \frac{b-a}{\pi n} \sin \frac{\pi n(a+b)}{b-a} \sin \pi n = 0;$$

3)

$$\left\langle \cos\frac{2\pi nt}{b-a}, \sin\frac{2\pi nt}{b-a} \right\rangle = \int_{a}^{b} \cos\frac{2\pi nt}{b-a} \sin\frac{2\pi nt}{b-a} dt = \frac{1}{2} \int_{a}^{b} \sin\frac{4\pi nt}{b-a} dt =$$

$$= -\frac{1}{8} \frac{b-a}{\pi n} \cos\frac{4\pi nt}{b-a} \Big|_{a}^{b} = \frac{1}{4} \frac{b-a}{\pi n} \sin\frac{2\pi n(a+b)}{b-a} \sin 2\pi n = 0;$$

$$\left\langle \cos \frac{2\pi nt}{b-a}, \cos \frac{2\pi t(n+k)}{b-a} \right\rangle = \int_{a}^{b} \cos \frac{2\pi nt}{b-a} \cos \frac{2\pi t(n+k)}{b-a} dt =$$

$$= \frac{1}{2} \int_{a}^{b} \cos \frac{2\pi t(n+k)}{b-a} dt + \frac{1}{2} \int_{a}^{b} \cos \frac{2\pi nt}{b-a} dt = 0$$

$$\left\langle \cos\frac{2\pi nt}{b-a}, \sin\frac{2\pi t(n+k)}{b-a} \right\rangle = \int_{a}^{b} \cos\frac{2\pi nt}{b-a} \sin\frac{2\pi t(n+k)}{b-a} dt =$$

$$= \frac{1}{2} \int_{a}^{b} \sin\frac{2\pi t(n+k)}{b-a} dt + \frac{1}{2} \int_{a}^{b} \sin\frac{2\pi kt}{b-a} dt = 0;$$

$$\left\langle \sin\frac{2\pi nt}{b-a}, \sin\frac{2\pi (n+k)t}{b-a} \right\rangle = \int_{a}^{b} \sin\frac{2\pi nt}{b-a} \sin\frac{2\pi (n+k)t}{b-a} dt =$$

$$= \frac{1}{4} \frac{b-a}{\pi} \left(\frac{1}{k} \sin\frac{2\pi kt}{b-a} - \frac{1}{2n+k} \sin\frac{2\pi t(2n+k)}{b-a} \right) \Big|_{a}^{b} = 0;$$

$$\left\langle \sin\frac{2\pi nt}{b-a}, \cos\frac{2\pi (n+k)}{b-a} \right\rangle = 0.$$

Demak, qaralayotgan sistema ortogonal bo'lar ekan.

4.3.5. L evklid fazosida

$$f_1, f_2, \dots, f_n, \dots \tag{4.11}$$

 $chiziqli\ erkli\ sistema\ berilgan\ bo'lsin.\ U\ holda\ quyidagi\ shartlarni\ qanoatlantiruvchi$

$$\varphi_1, \varphi_2, \dots, \varphi_n \dots \tag{4.12}$$

 $sistema\ mav jud ligini\ is bot lang:$

- 1) (4.12) sistema ortonormal;
- 2) har bir φ_n element $f_1, f_2, \dots, f_n, \dots$ elementlarning chiziqli kombinatsiyasidan iborat, ya'ni

$$\varphi_n = a_{n1}f_1 + a_{n2}f_2 + \ldots + a_{nn}f_n;$$

3) har bir f_n element $\varphi_1, \varphi_2, \ldots, \varphi_n, \ldots$ elementlarning chiziqli kombinatsiyasidan iborat, ya'ni

$$f_n = b_{n1}\varphi_1 + b_{n2}\varphi_2 + \ldots + b_{nn}\varphi_n$$

va $b_{nn} \neq 0$. (4.12) sistemaning har bir elementi 1) - 3) shartlar bilan bir qiymatli aniqliqlanadi (± 1 koeffitsientlarini hisobga olmaganda).

Yechimi. φ_1 elementni $\varphi_1 = a_{11}f_1$ ko'rinishida izlaymiz. Bunda a_{11} quyidagi shart bilan aniqlanadi:

$$\langle \varphi_1, \varphi_1 \rangle = \|\varphi_1\|^2 = a_{11}^2(f_1, f_1) = 1.$$

Bundan

$$a_{11} = \frac{1}{b_{11}} = \frac{\pm 1}{\sqrt{\langle f_1, f_1 \rangle}}, \quad \varphi_1 = \frac{\pm f_1}{\sqrt{\langle f_1, f_1 \rangle}}.$$

Shunday qilib, φ_1 elementning ishorasi hisobga olinmasa, u bir qiymatli aniqlanadi. Endi 1) – 3) shartlarni qanoatlantiruvchi $\varphi_1, \varphi_2, \dots, \varphi_{n-1}$ elementlar topiladi deb faraz qilamiz. U holda f_n elementni ushbu

$$f_n = b_{n1}\varphi_1 + b_{n2}\varphi_2 + \ldots + b_{nn-1}\varphi_{n-1} + h_n$$

ko'rinishida yozish mumkin. Bu erda k < n bo'lganda

$$\langle h_n, \varphi_k \rangle = 0.$$

Haqiqatan, b_{nk} koeffitsientlar, demak, h_n element ham quyidagi shartlar bilan bir qiymatli aniqlanadi:

$$\langle h_n, \varphi_k \rangle = \langle f_n - b_{n1}\varphi_1 - \dots - b_{nn-1}\varphi_{n-1}, \varphi_k \rangle =$$

= $\langle f_n, \varphi_k \rangle - b_{nk} \langle \varphi_k, \varphi_k \rangle = 0.$

 $\langle h_n, h_n \rangle > 0$ ekanligi ravshan, $(\langle h_n, h_n \rangle = 0$ tengligi (4.1) sistemaning chiziqli erkliligiga zid bo'lar edi). Endi φ_n elementni quyidagicha olamiz:

$$\varphi_n = \frac{h_n}{\sqrt{\langle h_n, h_n \rangle}}.$$

Natijada h_n va φ_n elementlar induksiya yordamida f_1, f_2, \ldots, f_n elementlar orqali ifodalanadi:

$$\varphi_n = a_{n1}f_1 + a_{n2}f_2 + \ldots + a_{nn}f_n;$$

bu erda $a_{nn} = \frac{1}{\sqrt{\langle h_n, h_n \rangle}}$. Shu bilan birga

$$\langle \varphi_n, \varphi_n \rangle = 1, \ \langle \varphi_n, \varphi_k \rangle = 0,$$

$$f_n = b_{n1}\varphi_1 + b_{n2}\varphi_2 + \ldots + b_{nn}\varphi_n, \quad b_{nn} = \sqrt{\langle h_n, h_n \rangle} \neq 0.$$

(4.11) sistemadan (4.12) sistemaga o'tish ortogonallashtirish jarayoni deb ataladi.

4.3.6. L evklid fazosida $\{x_n\}$ va $\{y_n\}$ ketma-ketliklari berilgan bo'lib, $x_n \to x$ va $y_n \to y$ bo'lsa, u holda $\langle x_n, y_n \rangle \to \langle x, y \rangle$ ekanligini isbotlang.

Yechimi. Koshi — Bunyakovskiy tengsizligiga ko'ra

$$|\langle x, y \rangle - \langle x_n, y_n \rangle| = |\langle x, y \rangle - \langle x, y_n \rangle + \langle x, y_n \rangle - \langle x_n, y_n \rangle| \le$$

$$\le |\langle x, y \rangle - \langle x, y_n \rangle| + |\langle x, y_n \rangle - \langle x_n, y_n \rangle| =$$

$$= |\langle x, y - y_n \rangle| + |\langle x - x_n, y_n \rangle| \le$$

$$\le ||x|| ||y - y_n|| + ||x - x_n|| ||y_n||.$$

Yaqinlashuvchi $\{y_n\}$ ketma-ketlik chegaralangan bo'lgani uchun, tengsizlikning o'ng tamoni $n \to \infty$ da nolga intiladi. Shu sababli, $\langle x_n, y_n \rangle \to \langle x, y \rangle$. Bundan skalyar ko'paytmaning uzliksizligi kelib chiqadi.

4.3.7. L evklid fazosining xoxlagan x va y elementlari uchun parallelogramm tengligi deb ataluvchi

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$

tengligining o'rinli ekanligini isbotlang.

Yechimi. Norma tarifiga ko'ra

$$||x+y||^2 + ||x-y||^2 = \langle x+y, x+y \rangle + \langle x-y, x-y \rangle =$$

$$= \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle + \langle x, x \rangle - \langle x, y \rangle - \langle y, x \rangle + (y, y) =$$

$$= 2\langle x, x \rangle + 2\langle y, y \rangle = 2(||x||^2 + ||y||^2).$$

4.3.8. Skalyar ko'paytmaning to'rtinchi aksiomasini quyidagi aksioma bilan almashtirish mumkin ekanligini isbotlang:

$$\langle x, x \rangle \ge 0, \ \langle x, x \rangle = 0 \Rightarrow x = 0.$$

Yechimi. x = 0 bo'lsin. U holda xoxlagan λ soni uchun

$$\langle 0, 0 \rangle = \langle \lambda 0, 0 \rangle = \lambda \langle 0, 0 \rangle$$

tengligini yoza olamiz. Natijada $\langle 0,0\rangle=0$ ekanligi kelib chiqadi. \blacksquare

4.3.9. Skalyar ko'paytma kiritilgan fazoning xoxlagan x, y, z elementlari uchun Apolloniy ayniyati deb ataluvchi

$$||z - x||^2 + ||z - y||^2 = \frac{1}{2}||x - y||^2 + 2\left||z - \frac{x + y}{2}\right||^2$$

tengligini isbotlang.

Yechimi. Berilgan tenglikning ikki tomonini ham almashtiramiz:

$$||z - x||^2 + ||z - y||^2 = \langle z - x, z - x \rangle + \langle z - y, z - y \rangle =$$
$$= \langle z, z \rangle - \langle x, z \rangle - \langle z, x \rangle + \langle x, x \rangle +$$

$$+\langle z,z\rangle - \langle y,z\rangle - \langle z,y\rangle + \langle y,y\rangle =$$

$$= 2(\langle z,z\rangle - \langle x,z\rangle - \langle z,y\rangle) + \langle x,x\rangle + \langle y,y\rangle.$$

$$\frac{1}{2}||x-y||^2 + 2||z - \frac{x+y}{2}||^2 = \frac{1}{2}\langle x-y,x-y\rangle +$$

$$+2\left\langle z - \frac{x+y}{2},z - \frac{x+y}{2}\right\rangle =$$

$$= \frac{1}{2}\left(\langle x,x\rangle - \langle y,x\rangle - \langle x,y\rangle + \langle y,y\rangle\right) +$$

$$+2\langle z,z\rangle - \langle x+y,z\rangle - \langle z,x+y\rangle + \frac{1}{2}\langle x+y,x+y\rangle =$$

$$= 2(\langle z,z\langle -\langle x,z-\langle z,y\rangle + \langle x,x\rangle + \langle y,y\rangle).$$

Demak berilgan tenglik o'rinli.

4.3.10. Evklid fazosida x va y elementlarning ortogonal bolishi uchun

$$||x||^2 + ||y||^2 = ||x + y||^2$$

tengligining zarur va etarli ekanligini isbotlang.

Yechimi.. Zarurligi. $x \perp y$ bo'lsin. U holda

$$||x+y||^2 = \langle x+y, x+y \rangle =$$
$$= \langle x, x \rangle + 2\langle x, y \rangle + \langle y, y \rangle = ||x||^2 + ||y||^2.$$

Etarliligi. $||x||^2 + ||y||^2 = ||x+y||^2$ tenligi o'rinli bo'lsa, $\langle x,y \rangle = 0$ tengligi kelib chiqadi, ya'ni $x \perp y$.

4.3.11. ℓ_2 fazoda $x = (x_1, x_2, ...)$ va $y = (y_1, y_2, ...)$ element-larning skalyar ko'paytmasi

$$\langle x, y \rangle = \sum_{n=1}^{\infty} x_n y_n$$

ko'rinishda, norma $||x|| = \sqrt{\langle x, x \rangle}$ ko'rinishida kiritiladi. ℓ_2 ning to'liq ekanligini isbotlang.

Yechimi. ℓ_2 fazoda metrika

$$\rho(x,y) = ||x - y|| = \sqrt{\sum_{n=1}^{\infty} (x_n - y_n)^2}$$

formula bilan aniqlanadi. Demak, 3.1.14-misolga ko'ra ℓ_2 ning to'la ekanligi kelib chiqadi.

4.3.12. K to'plam H ning qism fazosi bo'lsa, u holda xoxlagan $f \in H$ elementni

$$f = g + h \quad g \in K, \ h \in K^{\perp}, \tag{4.13}$$

 ${\it ko'rinishda\ yagona\ usulda\ yozish\ mumkin\ ekanligini\ va\ g\ elementning}$

$$||f - g|| = \rho(f, K) \tag{4.14}$$

tenglikni qanoatlantirishini isbotlang. Bunda $\rho(f, K)$ miqdor f nuqtadan K fazogacha masofa:

$$\rho(f,K) = \inf_{x \in K} ||f - x||.$$

Yechimi. $\rho(f, K) = d$ belgilashini kiritib, K dan

$$||f - f_n||^2 < d^2 + \frac{1}{n^2} \quad (n = 1, 2, ...)$$
 (4.15)

tengsizlikni qanoatlantiruvchi $\{f_n\}$ ketma-ketligini olamiz. Parallelogramm tengligiga ko'ra

$$||f_n - f_m||^2 + ||(f - f_n) + (f - f_m)||^2 = 2[||f - f_n||^2 + ||f - f_m||^2]$$
 (4.16)

tengligiga ega bo'lamiz. Shu bilan birga, $\frac{f_m + f_n}{2} \in K$ bolganligidan, ushbu

$$\|(f - f_n) + (f - f_m)\|^2 = 4 \left\| f - \frac{f_n - f_m}{2} \right\|^2 \ge 4d^2$$
 (4.17)

tengsizligi o'rinli. Natijada (4.15), (4.16) va (4.17) lardan

$$||f_n - f_m||^2 \le 2\left[d^2 + \frac{1}{n^2} + d^2 + \frac{1}{m^2}\right] - 4d^2 = \frac{2}{n^2} + \frac{2}{m^2}.$$

Bu tengsizlikdan $\{f_n\}$ ketma-ketlikning fundamental ekanligi ko'rinadi. Shu sababli, H to'liq bo'lgani uchun, u yaqinlashuvchi. $\lim_{n\to\infty} f_n = g$ bo'lsin. K yopiq bo'lgani uchun $g \in K$.

Endi (4.15) da $n \to \infty$ da limitga o'tsak $||f-g|| \le d$ tengsizligiga ega bo'lamiz. d ning tarifidan $||f-g|| \ge d$ tengsizligi ham o'rinli. Natijada, ||f-g|| = d tengligi kelib chiqadi.

Endif-g=helementning H^\perp fazosiga tegishli ekanligini isbotlaymiz.

Kto'plamda noldan farqli xoxlagan φ element olaylik. Har bir λ son uchun $g+\lambda\varphi\in K,$ u holda

$$||h - \lambda \varphi||^2 = ||f - (g + \lambda \varphi)||^2 \ge d^2.$$

Bu tengsizlikni skalyar ko'paytmaning xossasidan va ||f - g|| = d tengligidan foydalanib

$$-\lambda \langle h, \varphi \rangle - \lambda \langle \varphi, h \rangle + |\lambda|^2 \langle \varphi, \varphi \rangle \ge 0$$

ko'rinishida yozish mumkin. Natijada $\lambda=\frac{\langle h,\varphi\rangle}{\langle\varphi,\varphi\rangle}$ bo'lgan xususiy holda

$$-\frac{|\langle h, \varphi \rangle|^2}{\langle \varphi, \varphi \rangle} - \frac{|\langle h, \varphi \rangle|^2}{\langle \varphi, \varphi \rangle} + \frac{|\langle h, \varphi \rangle|^2}{\langle \varphi, \varphi \rangle} \ge 0$$

tengsizligi, ya'ni $|\langle h, \varphi \rangle|^2 \leq 0$ tengsizligi kelib chiqadi. Bu tengsizlik faqat $h \perp \varphi$ bo'lgan holda o'rinli. Demak, φ element K ning xoxlagan elementi bo'lganligidan, $h \perp K$, ya'ni $h \in K^{\perp}$.

Shunday qilib f ning (4.13) ko'rinishida ifodalanishi va uning (4.14) tenglikni qanoatlantirilishi isbotlandi.

Endi f ni (4.13) ko'rinishida ifodalash yagonaligini ko'rsatamiz. Agar

$$f = f - g = g' + h', \ g, g' \in K, h, h' \in K^{\perp}$$

bo'lsa, u holda g-g'=h'-h tengligiga ega bo'lamiz. Bu tenglikning chap tomonidagi element K ga, o'ng tomonidagi element K^{\perp} fazosiga tegishli. Shu sababli $g-g'\perp h'-h$. Bundan g-g'=h'-h=0 munosabatiga ega bo'lamiz.

4.3.13. x element Fure qatorining $s_n = \sum_{k=1}^n a_k x_k$ qismi, x elementning $H_n = \mathcal{L}(\{x_1, x_2, \dots, x_n\})$ qism fazodagi proektsiyasidan iborat ekanligini isbotlang.

 $Yechimi.\ x=s_n+(x-s_n)$ bo'lib, $s_n\in H_n$ bo'lganligi uchun $x-s_n\perp H_n$ ekanligini ko'rsatish etarli.

$$\langle x - s_n, x_k \rangle = \langle x, x_k \rangle - \langle s_n, x_k \rangle = a_k - a_k = 0,$$

ya'ni

$$x - s_n \perp x_k, \ (k = 1, 2, \dots, n)$$

bo'lgani uchun $x-s_n\perp H_n$ ekanligi skalyar ko'paytmaning xossalaridan kelib chiqadi.

4.3.14. Hilbert fazosida Bessel tengsizligi deb ataluvchi

$$\sum_{k=1}^{\infty} |a_k|^2 \le ||x||^2$$

 $teng siz ligini\ is bot lang.$

Yechimi.

$$||s_{n}||^{2} + ||x - s_{n}||^{2} = \langle s_{n}, s_{n} \rangle + \langle x - s_{n}, x - s_{n} \rangle =$$

$$= \langle s_{n}, s_{n} \rangle + \langle x, x \rangle - \langle x, s_{n} \rangle =$$

$$= \left\langle \sum_{k=1}^{n} a_{k} x_{k}, \sum_{k=1}^{n} a_{k} x_{k} \right\rangle + \langle x, x \rangle - \left\langle x, \sum_{k=1}^{n} a_{k} x_{k} \right\rangle =$$

$$= \sum_{k=1}^{n} a_{k}^{2} + \langle x, x \rangle - \sum_{k=1}^{n} a_{k}^{2} = \langle x, x \rangle = ||x||^{2}$$

tengligidan $||x||^2 \ge ||s_n||^2$ tengsizligi, ya'ni $\sum_{k=1}^n a_k^2 \le ||x||^2$ tengsizligi kelib chiqadi. Bu tengsizligida $n \to \infty$ da limitga o'tsak

$$\sum_{k=1}^{\infty} a_k^2 \le ||x||^2$$

tengsizligiga ega bo'lamiz.

 $egin{aligned} 4.3.15. & (Riss-Fisher\ teoremasi) \ H\ Hilbert\ fazosida \ xoxlagan\ \{arphi_n\} \ ortonormal\ sistema\ va\ \sum\limits_{k=1}^{\infty}c_k^2<\infty\ shartni \ qanoatlantiruvchi\ \{c_n\}\ sonlar\ ketma-ketligi\ berilgan\ bo'lsin. \ U\ holda\ ushbu \end{aligned}$

$$c_k = \langle f, \varphi_k \rangle;$$
$$\sum_{k=1}^{\infty} c_k^2 = \langle f, f \rangle = ||f||^2$$

 $tengliklarni\ qanoatlantiruvchi\ f\in H\ element\ mavjudligini\ is-botlang.$

Yechimi.
$$f_n = \sum_{k=1}^{n} c_k \varphi_k$$
 deb olaylik, u holda
 $||f_{n+p} - f_n||^2 = ||c_{n+1}\varphi_{n+1} + \dots + c_{n+p}\varphi_{n+p}||^2 =$
 $= \langle c_{n+1}\varphi_{n+1} + \dots + c_{n+p}\varphi_{n+p}, c_{n+1}\varphi_{n+1} + \dots + c_{n+p}\varphi_{n+p} \rangle = \sum_{k=1}^{n+p} c_k^2.$

Natijada $\sum_{k=1}^{\infty} c_k^2 < \infty$ bo'lgani uchun $\{f_n\}$ ketma-ketlik fundamental, demak yaqinlashuvchi ekanligi kelib chiqadi. $\lim_{n\to\infty} f_n = f$ bo'lsin. Endi $\langle f, \varphi_i \rangle$ ni quyidagicha almashtiramiz:

$$\langle f, \varphi_i \rangle = \langle f_n, \varphi_i \rangle + \langle f - f_n, \varphi_i \rangle = \left\langle \sum_{k=1}^n c_k \varphi_k, \varphi_i \right\rangle + \langle f - f_n, \varphi_i \rangle.$$

$$n \ge i$$
 bo'lganda, $\left\langle \sum_{k=1}^{n} c_k \varphi_k, \varphi_i \right\rangle = c_i$ bo'lgani uchun,
$$\left\langle f, \varphi_i \right\rangle = c_i + \left\langle f - f_n, \varphi_i \right\rangle. \tag{4.18}$$

Endi

$$\langle f - f_n, \varphi_i \rangle \le ||f - f_n|| \cdot ||\varphi_i||$$

tengsizligi o'rinli bo'lganligi uchun $n \to \infty$ da $\langle f - f_n, \varphi_i \rangle \to 0$. (4.18) ning chap tomoni n ga bog'liq emas. Shu sababli, bu tenglikda $n \to \infty$ da limitga o'tsak $\langle f, \varphi_i \rangle = c_i$ tengligiga ega bo'lamiz.

$$\left\langle f - \sum_{k=1}^{n} c_k \varphi_k, f - \sum_{k=1}^{n} c_k \varphi_k \right\rangle = \left\langle f, f \right\rangle - \sum_{k=1}^{n} c_k^2$$

tengligini tekshirish qiyin emas. $n \to \infty$ da $||f - f_n|| \to 0$ bo'lganligidan, bu tenglikdan

$$\sum_{k=1}^{\infty} c_k^2 = \langle f, f \rangle$$

tengligi kelib chiqadi.

4.3.16. H separabel Hilbert fazosida har qanday ortonor-mal sistema ko'pi bilan sanoqli bo'lishini isbotlang.

Yechimi. H separabel Hilbert fazosida $\{\varphi_{\alpha}\}$ ortonormal sistema berilgan bo'lsin. U holda ixtiyoriy φ_{α} va φ_{β} har xil elementleri uchun $\|\varphi_{\alpha}-\varphi_{\beta}\|=\sqrt{2}$ tengligi o'rinli bo'ladi. Shuning uchun $B(\varphi_{\alpha},\frac{1}{2})$ sharlari o'zaro kesishmaydi. Agar sanoqli $\{\psi_{n}\}$ to'plami H da zich bo'lsa, u holda $B(\varphi_{\alpha},\frac{1}{2})$ sharning har birida bu to'plamning kamida bir elementi mavjud bo'ladi. Shu sababli $B(\varphi_{\alpha},\frac{1}{2})$ sharlar sistemasi ko'pi bilan sanoqli. Natijada $\{\varphi_{\alpha}\}$ ortonormal sistemaning sanoqli ekanligi kelib chiqadi.

4.3.17. H Hilbert fazosida $x_1, x_2, ..., x_n$ ortogonal sistema berilgan bo'lsin. Agar $x = \sum_{k=1}^{n} x_k$ bo'lsa, u holda $||x||^2 = \sum_{k=1}^{n} ||x_k||^2$ tengligining o'rinli ekanligini isbotlang.

Yechimi.

$$||x||^2 = \langle x, x \rangle = \left\langle \sum_{k=1}^n x_k, \sum_{k=1}^n x_k \right\rangle =$$

$$= \langle x_1, x_1 \rangle + \langle x_2, x_2 \rangle + \ldots + \langle x_n, x_n \rangle = \sum_{k=1}^n ||x_k||^2.$$

4.3.18. H Hilbert fazosining x elementi $L \subset H$ qism fazoga ortogonal bo'lishi uchun xoxlagan $y \in L$ uchun $||x|| \leq ||x - y||$ tengsizlikning o'rinli bo'lishi zarur va etarli ekanligini isbotlang.

Yechimi. Zarurligi. $x\perp L$ bo'lsin. U holda xoxlagan $y\in L$ uchun $\langle x,\,y\rangle=0$ tengligi o'rinli. Shuning uchun

$$||x - y||^2 = \langle x - y, x - y \rangle =$$

$$= \langle x, x \rangle - 2\langle x, y \rangle + \langle y, y \rangle = ||x||^2 + ||y||^2 \ge ||x||^2.$$

Etarliligi. $||x|| \leq ||x-y||$ tengsizligidan $2\langle x,y\rangle \leq \langle y,y\rangle$ tengsizligi kelib chiqadi. x elementni x=h+h' ko'rinishida yozib olamiz, bunda $h\in L,\ h'\in L^\perp$. Natijada

$$\langle x, y \rangle = \langle h + h', y \rangle = \langle h, y \rangle + \langle h', y \rangle = \langle h, y \rangle.$$

Shu sababli $2\langle h, y \rangle \leq \langle y, y \rangle$ tengsizligini yoza olamiz. Bu tengsizlik barcha $y \in L$ uchun o'rinli bo'lganligi uchun y = h bo'lganda ham o'rinli bo'ladi. Shunday qilib $2\langle h, h \rangle \leq \langle h, h \rangle$ tengsizligiga ega bo'lamiz. Bu tengsizlik $\langle h, h \rangle = 0$ bo'lgandagina o'rinli. U holda x = h', ya'ni $x \in L^{\perp}$. Demak $x \perp L$.

4.3.19. H Hilbert fazosida xoxlagan M qism to'plami uchun $M \subset (M^{\perp})^{\perp}$ munosabatining o'rinli ekanligini isbotlang.

Yechimi. M to'plamidan ixtiyoriy x nuqtani olamiz. U holda $x\perp M^\perp$, ya'ni $x\in (M^\perp)^\perp$. Demak $M\subset (M^\perp)^\perp$.

4.3.20. H Hilbert fazosida M, N to'plamlari uchun $M \subset N$ bo'lsa, $M^{\perp} \supset N^{\perp}$ munosabatining o'rinli ekanligini isbotlang.

 $Yechimi.\ N^{\perp}$ to'plamidan ixtiyoriy x nuqtani olamiz. U holda $x\perp N.\ M\subset N$ bo'lganligidan $x\perp M,$ ya'ni $x\in M^{\perp}.$ Demak $N^{\perp}\subset M^{\perp}.$

4.3.21. Hilbert fazoda polyarizatsiya tengligining o'rinli ekanligi isbotlang:

$$\langle x,y\rangle = \frac{\|x+y\|^2 - \|x-y\|^2}{4} + i\frac{\|x+iy\|^2 - \|x-iy\|^2}{4}.$$

Yechimi. 1)

$$||x+y||^2 = \langle x+y, x+y \rangle =$$

$$= \langle x, x+y \rangle + \langle y, x+y \rangle = \langle \overline{x+y}, \overline{x} \rangle + \langle \overline{x+y}, \overline{y} \rangle$$

$$= \langle x, x \rangle + \overline{\langle y, x \rangle} + \overline{\langle x, y \rangle} + \langle y, y \rangle =$$

$$= \langle x, x \rangle + \langle x, y \rangle + \overline{\langle x, y \rangle} + \langle y, y \rangle$$

2)
$$||x - y||^2 = \langle x - y, x - y \rangle =$$

$$= \langle x, x - y \rangle - \langle y, x - y \rangle = \overline{\langle x - y, x \rangle} - \overline{\langle x - y, y \rangle} =$$

$$= \langle x, x \rangle - \overline{\langle y, x \rangle} - \overline{\langle x, y \rangle} + \langle y, y \rangle =$$

$$= \langle x, x \rangle - \langle x, y \rangle - \overline{\langle x, y \rangle} + \langle y, y \rangle$$

1) va 2) tengliklardan quyidagiga ega bo'lamiz:

$$\frac{\|x+y\|^2 - \|x-y\|^2}{4} = \frac{2\langle x,y\rangle + 2\overline{\langle x,y\rangle}}{4} =$$

$$= \frac{2[\langle x,y\rangle + \overline{\langle x,y\rangle}]}{4} = Re(x,y)$$
3)
$$\|x+iy\|^2 = \langle x+iy,x+iy\rangle =$$

$$= \langle x,x+iy\rangle + i\langle y,x+iy\rangle =$$

$$= \overline{\langle x+iy,x\rangle} + i\overline{\langle x+iy,y\rangle} =$$

$$= \langle x,x\rangle - i\overline{\langle y,x\rangle} + i\overline{\langle x,y\rangle} + \langle y,y\rangle =$$

$$= \langle x,x\rangle - i\langle x,y\rangle + i\overline{\langle x,y\rangle} + \langle y,y\rangle =$$

$$= \langle x,x\rangle - i\langle x,y\rangle + i\overline{\langle x,y\rangle} + \langle y,y\rangle =$$
4)

$$||x - iy||^2 = \langle x - iy, x - iy \rangle =$$

$$= \langle x, x - iy \rangle - i \langle y, x - iy \rangle \overline{\langle x - iy, x \rangle} - i \overline{\langle x - iy, y \rangle} =$$

$$= \langle x, x \rangle + i \overline{\langle y, x \rangle} - i \overline{\langle x, y \rangle} + \langle y, y \rangle =$$

$$= \langle x, x \rangle + i \langle x, y \rangle - i \overline{\langle x, y \rangle} + \langle y, y \rangle$$

3) va 4) tengliklardan quyidagiga ega bo'lamiz:

$$i\frac{\|x+iy\|^2 - \|x-iy\|^2}{4} = \frac{i[-2i\langle x,y\rangle + 2i\overline{\langle x,y\rangle}]}{4} = \frac{2[\langle x,y\rangle - \overline{\langle x,y\rangle}]}{4} = iIm(x,y)$$

Natigada

$$Re(x, y) + iIm(x, y) = (x, y)$$

munasobati o'rinli.

- 4.3.22. Quyidagi normalangan fazolarning Evklid fazosi bo'lmasligini isbotlang:
 - **a)** ℓ_p , $(p \ge 1, p \ne 2)$ **fazosi;**
 - b) C[0,1] fazosi.

Yechimi.a) $l_p~(p\geq 1,\,p\neq 2)$ fazosida $x=(1,1,0,\ldots),\,y=(1,-1,0,\ldots)$ vektorlarni qaraymiz. U holda

$$x + y = (2, 0, \ldots), \quad x - y = (0, 2, 0, \ldots)$$

va

$$||x|| = ||y|| = 2^{\frac{1}{p}}, \ ||x - y|| = ||x + y|| = 2$$

bo'lganligi sababli

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$

parallelogramm tengligi o'rinli bo'lmaydi.

b) C[0,1] fazosida $x(t)=\frac{1}{2}, \quad y(t)=\frac{1}{2}t$ elementlarni qaraymiz. Ushbu

$$||x|| = ||y|| = \frac{1}{2}, \ ||x - y|| = \frac{1}{2}, \ ||x + y|| = 1$$

munasobatlardan parallelogramm tengligi o'rinli bo'lmaydi.

4.3.23. Hilbert fazosida ||x|| = ||y|| bo'lsa, u holda $x - y \perp x + y$ (romb dioganallar perpendikulyar) bo'lishini ko'rsating. Yechimi.

$$\langle x + y, x - y \rangle = \langle x, x \rangle + \langle y, x \rangle - \langle x, y \rangle - \langle y, y \rangle =$$

= $||x||^2 - ||y||^2 = ||x||^2 - ||x||^2 = 0.$

Mustaqil ish uchun masalalar

1. $C_2[a,b]$ fazosida

$$\frac{1}{2}$$
, $\cos \frac{2\pi nt}{b-a}$, $\sin \frac{2\pi nt}{b-a}$, $n = 1, 2, \dots$

ortogonal sistemaning to'liq ekanligini isbotlang.

- 2. Separabel bo'lmagan Evklid fazosiga misol keltiring.
- 3. Har qanday cheksiz o'lchamli separabel evklid fazosida sanoqli ortonormal bazisning mavjud ekanligini isbotlang.
- 4. Birorta ham ortogonal bazisga ega emas separabel bo'lmagan evklid fazosiga misol keltiring.
- 5. To'liq evklid fazosida ortonormal bazisning mavjud ekanligini isbotlang.
 - **6.** Evklid fazosida xoxlagan x, y, z, t elementlar uchun ushbu

$$||x - z|| \cdot ||y - t|| \le ||x - y|| \cdot ||z - t|| + ||y - z|| \cdot ||x - t||$$

tengsizligining o'rinli ekanligini isbotlang.

7. Haqiqiy L normalangan fazosining xoxlagan x,y elementlari uchun ushbu

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$

parallelogramm tengligi o'rinli bo'lsin. Unda

$$\langle x, y \rangle = \frac{1}{2} (\|x + y\|^2 - \|x - y\|^2)$$

formula $\langle x, x \rangle = ||x||^2$ tenglikni qanoatlantiruvchi skalyar ko'paytmani aniqlashini isbotlang.

- 8. C[0,1] da $\langle x,x\rangle=\|x\|^2$ tenglikni qanoatlantiradigan skalyar ko'paytma aniqlash mumkin emas ekanligini isbotlang.
- **9.** L evklid fazosi bo'lib $x, y_1, y_2 \in L$ elementlar uchun $x \perp y_1$ va $x \perp y_2$ munosabatlar o'rinli bo'lsa, u holda xoxlagan α va β sonlar uchun $x \perp (\alpha y_1 + \beta y_2)$ munosabatning o'rinli ekanligini isbotlang.
- 10. L evklid fazoning x elementi $A \subset L$ to'plamning har bir elementiga ortogonal bo'lsa, u holda x element A to'plamiga ortogonal deyiladi va $x \perp A$ ko'rinishida belgilanadi. Agar $x \perp A$ bo'lsa, u holda $x \perp [\mathcal{L}(A)]$ ekanligini isbotlang.
- 11. L evklid fazosidagi A qism to'plamining har bir elemetiga ortogonal bo'lgan barcha elementlar to'plamini A ning ortogonal to'ldiruvchisi dep ataymiz va A^{\perp} orqali belgilaymiz. A^{\perp} to'plam L ning qism fazosi bo'lishini isbotlang.
- 12. Evklid fazosining to'ldiruvchisi ham evklid fazosi bo'lishini isbotlang.
 - 13. Hilbert fazosining qa'tiy normalangan fazo ekanligini isbotlang.
- 14. M va N lar H Hilbert fazosining qism fazolari bo'lib, $M \perp N$ bo'lsa, u holda M + N to'plamining ham qism fazo bo'lishini isbotlang.
- 15. ℓ_2 fazoda shunday M to'plamiga misol keltiringki, $M+M^{\perp}$ to'plami ℓ_2 bilan teng bo'lmasin.
 - 16. ℓ_2 da berilgan ushbu

$$x_k = \left(1, \frac{1}{2^k}, \frac{1}{2^{2k}}, \frac{1}{2^{3k}}, \dots\right), \quad k \in \mathbb{N}$$

ketma-ketlikning chiziqli qobig'i l_2 ning h'amma erida zich ekanligini isbotlang.

- 17. H Hilbert fazosida yopiq qavariq M to'plami berilgan bo'lsin. M to'plamda eng kichik normag'a ega elementning bor ekanligini isbotlang.
- 18. ℓ_2 fazoda normasi eng kichik normaga teng elementi bo'lmagan yopiq to'plam tuzing.

19. [a,b] segmentda barcha uzluksiz differentsiallanuvchi funksiyalar $\overline{H}_1[a,b]$ fazosida skalyar ko'paytmani

$$\langle x, y \rangle = \int_{a}^{b} \left[x(t)y(t) + x'(t)y'(t) \right] dt$$

ko'rinishida aniqlaymiz. $\overline{H}_1[a,b]$ Hilbert fazosi bo'ladimi?

VBOB

Topologik fazolar

5.1. Topologik fazolar

Metrik fazolarda metrika yordamida ochiq shar, atrof tushunchalariga ta'riflar berilib, ular yordamida ochiq toʻplam aniqlanadi. Boshqa fundamental tushunchalar asosida ochiq toʻplam tushunchasi yotadi. Ochiq toʻplamni metrika yordamida emas, aksiomalar orqali aniqlash gʻoyasi natijasida topologik fazolar nazariyasi paydo boʻlgan.

- **Ta'rif.** Aytaylik X to'plamning qism to'plamlaridan iborat τ sistema quyidagi shartlarni qanoatlantirsin:
 - 1) $\emptyset \in \tau$, $X \in \tau$;
- 2) τ sistemasiga tegishli G_{α} , $\alpha \in I$ (I indekslar to'plami) to'plamlarning birlashmasi $\bigcup_{\alpha} G_{\alpha}$ va chekli sondagi $\bigcap_{k=1}^{n} G_{k}$ kesishmasi yana τ sistemasiga tegishli.

U holda τ sistemasi X to'plamda berilgan topologiya deyiladi.

- (X, τ) juftlikga topologik fazo deyiladi.
- au sistemaning elementlarini ochiq to'plamlar deb, ochiq to'plamlarning to'ldiruvchilarini yopiq to'plamlar deb ataymiz. Topologik fazoning elementlari uning nuqtalari deb ham ataladi.

Topologik fazolardagi boshlang'ich fundamental tushunchalar ro'yxatini keltiramiz:

- $-x \in X$ nuqtaning atrofi shu nuqtani o'z ichiga oluvchi ixtiyoriy ochiq to'plam;
- $-X\supset M$ to'plamning urinish nuqtasi ixtiyoriy atrofida Mto'plamning kamida bitta elementi mavjud bo'lgan nuqta;
- $-X\supset M$ to'plamning yopilmasi [M] M ning barcha urinish nuqtalari to'plami;
- $-X\supset M$ to'plamning limit nuqtasi ixtiyoriy atrofida o'zidan boshqa M to'plamning kamida bitta nuqtasi mavjud bo'lgan nuqta;
- $-X\supset M$ to'plamning hosila to'plamiM'-Mning barcha limit nuqtalari to'plami;
- -M to'plamning ichi int(M) M to'plamdagi barcha ochiq qism to'plamlar birlashmasi;

- -X fazoning $hamma\ erida\ zich$ to'plam yopilmasi X fazoga teng bo'lgan to'plam;
- Separabel fazo hamma erida zich sanoqli qism to'plamga ega fazo.

Berilgan X to'plamning qism to'plamlaridan iborat turli sistemalar topologiya shartlarini qanoatlantirishi, ya'ni X to'plamda turli topologiyalar kiritilishi mumkin. Bunda turli topologik fazolar hosil bo'ladi.

X to'plamda τ_1, τ_2 topologiyalar berilgan bo'lib, $\tau_1 \subset \tau_2$ munosabat o'rinli bo'lsa, u holda τ_2 topologiya τ_1 topologiyaga nisbatan kuch-liroq topologiya deyiladi va $\tau_1 \leq \tau_2$ ko'rinishda yoziladi. Bu holda τ_1 topologiyani τ_2 topologiyaga nisbatan kuchsizroq (sustroq) ham deyiladi.

X topologik fazoda ochiq to'plamlardan iborat $\mathscr B$ sistema berilgan bo'lsin. Agar X fazodagi har bir ochiq to'plamni $\mathscr B$ sistemaga tegishli to'plamlarning birlashmasi ko'rinishida ifodalash mumkin bo'lsa, u holda $\mathscr B$ sistemani X fazodagi topologiyaning bazasi deb ataladi. Sanoqli bazaga ega bo'lgan topologik fazoga sanoqli bazaga ega fazo yoki sanoqlilikning ikkinchi aksiomasini qanoatlantiruvchi fazo deyiladi.

 $x \in X$ nuqtaning biror atroflaridan iborat sistemasini \mathscr{B}_x orqali belgilaylik. Agar x nuqtani o'z ichiga oluvchi ixtiyoriy U ochiq to'plam uchun, shunday $V \in \mathscr{B}$ to'plam topilib, $V \subset U$ bo'lsa, u holda \mathscr{B}_x sistema x nuqta atroflarining aniqlovchi sistemasi deb ataladi. Agar sanoqli \mathscr{B}_x sistema mavjud bo'lsa, u holda x nuqtada sanoqlilikning birinchi aksiomasi bajarilgan deyiladi. Agar X fazoning har bir nuqtasida sanoqlilikning birinchi aksiomasi bajarilsa, u holda X ni sanoqlilikning birinchi aksiomasiga ega fazo deb ataymiz.

 $\{M_{\alpha}\}$ to'plamlar sistemasi va A to'plam uchun $A \subset \bigcup_{\alpha} M_{\alpha}$ bo'lsa, u holda $\{M_{\alpha}\}$ sistema A to'plamning qoplamasi deb ataladi. Agar $\{M_{\alpha}\}$ qoplamaning biror $\{M_{\alpha_i}\}$ qismi ham A uchun qoplama bo'lsa, u holda $\{M_{\alpha_i}\}$ sistema $\{M_{\alpha}\}$ qoplamaning qism qoplamasi deyiladi. Agar $\{M_{\alpha}\}$ qoplamaga tegishli har bir to'plam ochiq (yopiq) bo'lsa, u holda $\{M_{\alpha}\}$ sistemani ochiq (yopiq) qoplama deb ataymiz.

X topologik fazoda $\{x_n\}$ ketma-ketlik berilgan bo'lsin. Agar x nuqtaning ixtiyoriy U atrofi uchun, shunday n_0 soni topilib, $n \geq n_0$ tengsizlikni qanoatlantiruvchi barcha n natural sonlar uchun $x_n \in U$ munosabat o'rinli bo'lsa, u holda x nuqta $\{x_n\}$ ketma-ketlikning limiti deyiladi.

X va Y topologik fazolar, $f: X \to Y$ akslantirish bo'lib, $x_0 \in X$

nuqta berilgan akslantirishning aniqlanish sohasiga tegishli bo'lsin. Agar $y_0 = f(x_0)$ nuqtaning ixtiyoriy U_{y_0} atrofi uchun, x_0 nuqtaning shunday V_{x_0} atrofi mavjud bo'lib, $f(V_{x_0}) \subset U_{y_0}$ bo'lsa, u holda f akslantirish x_0 nuqtada uzluksiz deb ataladi. X fazoning barcha nuqtasida uzluksiz bo'lgan akslantirishga X fazoda uzluksiz akslantirish deyiladi.

Quyida ajratish aksiomalari deb ataluvchi shartlarni keltiramiz.

- T_1 aksiomasi (ajratishning birinchi aksiomasi): X topologik fazoning ixtiyoriy ikkita har xil x va y nuqtalari uchun, x ning y nuqtani oʻz ichiga olmaydigan O_x atrofi, y ning x nuqtani oʻz ichiga olmaydigan O_y atrofi mavjud.
- T_2 aksiomasi (ajratishning ikkinchi yoki xausdorf aksiomasi): X topologik fazoning ixtiyoriy ikkita har xil x va y nuqtalari o'zaro kesishmaydigan O_x va O_y atroflarga ega.

Topologik fazoda berilgan to'plamning atrofi deb, shu to'plamni o'z ichiga oluvchi ixtiyoriy ochiq to'plamga aytiladi.

- T_3 aksiomasi (ajratishning uchinchi aksiomasi): X topologik fazoda ixtiyoriy nuqta va bu nuqta tegishli bo'lmagan ixtiyoriy yopiq to'plam o'zaro kesishmaydiqan atroflarqa eqa.
- T_i $(i \in \{1,2,3\})$ aksiomasini qanoatlantiruvchi topologik fazoni T_i fazo deb ataymiz.

 T_1 va T_3 aksiomalarni qanoatlantiruvchi topologik fazo $\mathit{regulyar}$ deyiladi.

 T_4 aksiomasi (normallik aksiomasi). T_1 — fazoda ixtiyoriy ikkita o'zaro kesishmaydigan yopiq to'plamlar o'zaro kesishmaydigan atroflarqa eqa.

 T_4 aksiomasini qanoatlantiruvchi fazo normal deb ataladi.

Misollar

- 5.1.1. Ikki elementdan iborat $X = \{a, b\}$ to'plamda $\tau = \{\emptyset, \{b\}, X\}$ sistemaning topologiya bo'lishini ko'rsating.
 - □ Topologiya aksiomalarinig bajarilishin tekshiramiz:
 - 1) τ sistemaning berilishiga ko'ra $\emptyset, X \in \tau$;

2)

$$\emptyset \cup \{b\} = \{b\} \in \tau,$$

$$\emptyset \cup X = \{b\} \cup X = X \in \tau,$$

$$\emptyset \cap \{b\} = \emptyset \cap X = \emptyset \in \tau,$$

$$\{b\} \cap X = \{b\} \in \tau.$$

5.1.2. X metrik fazoda barcha ochiq to'plamlardan iborat τ sistemaning topologiya bo'lishini ko'rsating.

Yechimi. τ sistemaga tegishli to'plamlarning ixtiyoriy birlashmasi $G = \bigcup_{\alpha \in I} G_{\alpha}$ va chekli sondagi $S = \bigcap_{k=1}^n G_k$ kesishmasining ochiq to'plam bo'lishini ko'rsatamiz.

G to'plamga tegishli ixtiyoriy x nuqta olaylik. U holda bu nuqta $\bigcup_{\alpha \in I} G_{\alpha}$ birlashmadagi to'plamlarning kamida bittasiga, aytaylik G_{α_0} to'plamga tegishli bo'ladi. G_{α_0} to'plam ochiq bo'lganligidan, x nuqtaning bu to'plamda to'liq yotadigan V_x atrofi mavjud. Natijada $V_x \subset G_{\alpha_0} \subset G$ munosabatni yoza olamiz. Bu munosabatdan G to'plamning ochiq ekanligi kelib chiqadi.

Endi $S = \bigcap_{k=1}^n G_k$ to'plamdan ixtiyoriy x nuqta olaylik. Bu nuqta G_k , $k = \overline{1,n}$ to'plamlarning har biriga tegishli bo'ladi. x nuqtaning G_k to'plamda to'liq yotadigan $V_{\varepsilon_k} = B(x, \varepsilon_k)$ atrofini olamiz. Bundan x nuqtaning $\varepsilon = \min\{\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n\}$ atrofi uchun $V_{\varepsilon} \subset V_{\varepsilon_k}, k = 1, \ldots, n$ munosabatni yoza olamiz. U holda $V_{\varepsilon} \subset S$, ya'ni S ochiq to'plam.

5.1.3. X to'plamda berilgan topologiyalarning ixtiyoriy sondagi kesishmasi shu to'plamda topologiya bo'lishini isbotlang.

Yechimi. X to'plamda berilgan har bir τ_{α} , $\alpha \in I$ topologiya uchun $X, \emptyset \in \tau_{\alpha}$ bo'lganlikdan $X, \emptyset \in \bigcap \tau_{\alpha}$.

 $\bigcap_{\alpha} \tau_{\alpha} \text{ kesishmadan olingan ixtiyoriy } G_{\gamma} \text{ to'plam har bir } \tau_{\alpha} \text{ sistemaga}$ tegishli bo'ladi. Bundan τ_{α} sistema topologiya bo'lganligi sababli $\bigcup_{\gamma} G_{\gamma} \in \tau_{\alpha} \text{ va } \bigcap_{k=1}^{n} G_{k} \in \tau_{\alpha} \text{ munosabatlar o'rinli. U holda}$

$$\bigcup_{\gamma} G_{\gamma} \in \bigcap_{\alpha} \tau_{\alpha}$$

va

$$\bigcap_{k=1}^{n} G_k \in \bigcap_{\alpha} \tau_{\alpha},$$

ya'ni $\bigcap \tau_{\alpha}$ kesishma topologiya bo'ladi.

5.1.4. X to'plamning biror qism to'plamlaridan iborat \mathscr{B} sistemani o'z ichiga oluvchi minimal topologiya mavjud bo'ladi (uni \mathscr{B} sistema paydo etgan topologiya deb ataymiz va $\tau(\mathscr{B})$ ko'rinishida belgilaymiz). Isbotlang.

Yechimi. ${\mathscr B}$ sistemani o'z ichiga oluvchi topologiyalar mavjud (misol uchun ${\mathscr B}$ sistemaXning barcha qism to'plamlaridan iborat

topologiyaning ichida yotadi). Bu topologiyalarning kesishmasi (5.1.3-misolga qarang) \mathcal{B} sistemani o'z ichiga oluvchi minimal topologiya bo'ladi.

- 5.1.5. (X, τ) topologik fazoning ixtiyoriy $\mathscr B$ bazasi quyidagi shartlarni qanoatlantirishini isbotlang:
- 1) Ixtiyoriy $x \in X$ nuqta kamida bitta $G \in \mathcal{B}$ to'plamga tegishli bo'ladi;
- 2) Agar $x \in X$ nuqta \mathscr{B} bazaga tegishli G_1 va G_2 to'plamlarning kesishmasiga tegishli bo'lsa, u holda shunday $G_3 \in \mathscr{B}$ to'plam mavjud bo'lib, $x \in G_3 \subset G_1 \cap G_2$ munosabati o'rinli bo'ladi.

Yechimi. 1) X ochiq to'plam bo'lganligidan, uni $\mathcal B$ bazaga tegishli to'plamlarning birlashmasi ko'rinishida ifodalash mumkin. Shuning uchun X ning har bir nuqtasi $\mathcal B$ bazaga tegishli to'plamlarning biriga tegishli bo'ladi.

2) $G_1 \cap G_2$ kesishma ochiq to'plam bo'lganligidan uni \mathscr{B} bazaga tegishli to'plamlarning birlashmasi ko'rinishida ifodalash mumkin. Birlashmadagi to'plamlarning kamida bittasiga x nuqta tegishli bo'ladi. Ushbu to'plamni G_3 orqali belgilasak,

$$x \in G_3 \subset G_1 \bigcap G_2$$

munosabat o'rinli bo'ladi.

- $5.1.6.\ X\ to$ 'plamning qism to'plamlaridan iborat $\mathscr B$ sistema quyidagi shartlarni qanoatlantirsin:
- 1) Ixtiyoriy $x \in X$ element kamida bitta $G \in \mathcal{B}$ to'plamga tegishli;
- 2) Agar $x \in X$ nuqta \mathscr{B} sistemaga tegishli G_1 va G_2 to 'plamlarning kesishmasiga tegishli bo'lsa, u holda shunday $G_3 \in \mathfrak{F}$ to 'plam mavjud bo'lib, $x \in G_3 \subset G_1 \cap G_2$ munosabati o'rinli bo'ladi.

U holda $\mathscr B$ sistemaga tegishli to'plamlarning birlashmasi ko'rinishida ifodalanadigan barcha to'plamlardan iborat $\tau(\mathscr B)$ sistema X to'plamda topologiya hosil etishini isbotlang.

Yechimi. 1) shart bo'yicha ixtiyoriy $x \in X$ element \mathscr{B} sistemaning kamida bitta to'plamiga tegishli. Bu to'plamlarning birlashmasi X to'plamni beradi, ya'ni $X \in \tau(\mathscr{B})$.

 \mathscr{B} sistemaga tegishli har bir to'plamga bo'sh to'plam qism to'plam bo'ladi. Bu bo'sh to'plam $\tau(\mathscr{B})$ sistemaga ham tegishli bo'ladi.

 $\tau(\mathcal{B})$ sistemaga tegishli to'plamlarning ixtiyoriy sondagi $\bigcup_{\alpha} G_{\alpha}$ birlashmasini qaraylik. Bu birlashmadagi har bir to'plam o'rniga, uning

 \mathscr{B} sistema to'plamlarining birlashmasi ko'rinishidagi ifodasini qo'ysak, natijada \mathscr{B} sistemaga tegishli to'plamlarning birlashmasi hosil bo'ladi. Bundan $\bigcup_{\alpha} G_{\alpha}$ birlashmaning $\tau(\mathscr{B})$ sistemaga tegishli ekanligi kelib chiqadi.

Endi $\tau(\mathcal{B})$ sistemaga tegishli to'plamlarning chekli sondagi kesishmasi ham shu sistemaga tegishli bo'lishini ko'rsatamiz. $A, B \in \tau(\mathcal{B})$ bo'lib, $A = \bigcup_{\alpha} G_{\alpha}$ va $B = \bigcup_{\beta} G_{\beta}$ bo'lsin, bunda $G_{\alpha}, G_{\beta} \in \mathcal{B}$. U holda

$$A \bigcap B = \bigcup_{\alpha,\beta} (G_{\alpha} \bigcap G_{\beta})$$

tengligini yoza olamiz. 2) shart bo'yicha $G_{\alpha} \cap G_{\beta}$ kesishmaga tegishli har bir x nuqta uchun $x \in G' \subset G_{\alpha} \cap G_{\beta}$ munosabatni qanoatlantiradigan $G' \in \mathcal{B}$ to'plam topiladi. Ularning barchasining birlashmasi $G_{\alpha} \cap G_{\beta}$ to'plamni beradi, yani $G_{\alpha} \cap G_{\beta}$ kesishma $\tau(\mathcal{B})$ sistemaga tegishli. Ularning \mathcal{B} sistemaga tegishli to'plamlarning birlashmasi ko'rinishidagi ifodalarini $\bigcup_{\alpha,\beta} (G_{\alpha} \cap G_{\beta})$ ifodaga qo'ysak \mathcal{B} sistemaga te-

gishli to'plamlarning birlashmasi hosil bo'ladi. Bundan $A \cap B$ kesishmaning $\tau(\mathcal{B})$ sistemaga tegishli ekanligi kelib chiqadi.

Demak, $\tau(\mathcal{B})$ sistema topologiyaning barcha shartlarini qanoatlantirar ekan.

- 5.1.7. (X, τ) topologik fazoda $\mathscr{B} \subset \tau$ sistemasi τ topologiyaning bazasi bo'lishi uchun quyidagi shartlarning bajarilishi zarur va etarli ekanligini isbotlang:
- 1) Ixtiyoriy $x \in X$ element kamida bitta $G \in \mathcal{B}$ to'plamga tegishli;
- 2) Agar $x \in X$ nuqta \mathscr{B} sistemaga tegishli G_1 va G_2 to 'plamlarning kesishmasiga tegrishli bo'lsa, u holda shunday $G_3 \in \mathscr{B}$ to 'plam mavjud bo'lib, $x \in G_3 \subset G_1 \cap G_2$ munosabati o'rinli bo'ladi;
- 3) Ixtiyoriy $G \in \tau$ to'plam va har bir $x \in G$ nuqta uchun $x \in G_x \subset G$ munosabatni qanoatlantiruvchi $G_x \in \mathscr{B}$ to'plam mavjud.

Yechimi. 1) va 2) shartlar bajarilganda \mathcal{B} sistema X topologik fazoning bazasi bo'lishi 5.1.6-misolda ko'rsatilgan.

3) shartning bajarilishidan ixtiyoriy $G \in \tau$ to'plamni $G = \bigcup_x G_x$ ko'rinishda ifodalash mumkin ekanligi kelib chiqadi. Demak $\mathscr B$ sistema τ topologiyaning bazasi bo'ladi.

Aksincha, \mathcal{B} sistema τ topologiyaning bazasi bo'lsa 1) va 2) shartlarning bajarilishi 5.1.5-misolda ko'rsatilgan.

- 3) shartning bajarilishini isbotlaymiz. Ixtiyoriy $G \in \tau$ to'plamni \mathcal{B} sistemaga tegishli to'plamlarning birlashmasi ko'rinishida yozish mumkin. Har bir $x \in G$ element birlashmadagi to'plamlarning kamida bittasiga tegishli bo'ladi. Shu to'plamni G_x ko'rinishda belgilaymiz. $x \in G_x \subset G$ munosabat o'rinli bo'lganligidan 3) shartning bajarilishi kelib chiqadi.
- 5.1.8. X topologik fazoda yopiq to'planning to'ldiruvchisi ochiq bo'lishini ko'rsating.

Yechimi. X fazoda berilgan ixtiyoriy F yopiq to'plam biror $G \in X$ ochiq to'plamning to'ldiruvchisi bo'ladi, ya'ni $F = X \setminus G$. Bundan $X \setminus F = X \setminus (X \setminus G) = G$, ya'ni $X \setminus F$ ochiq to'plam.

5.1.9. X topologik fazoda A ochiq, B yopiq to'plamlar bo'lsa, u holda $A \setminus B$ ayirmaning ochiq to'plam bo'lishini ko'rsatiniq.

Yechimi. 5.1.8-misolga ko'ra $X \setminus B$ ochiq to'plam. Bundan

$$A \setminus B = A \cap (X \setminus B)$$

tengligi va topologiyaning 2-chi aksiomasiga ko'ra $A \setminus B$ to'plam ochiq bo'ladi.

5.1.10. X topologik fazoda yopiq to'plamlarning chekli sondagi birlashmasi yopiq to'plam bo'lishini isbotlang.

Yechimi. X fazoda yopiq F_1, F_2, \ldots, F_n to'plamlar berilgan bo'lib, $F_i = X \setminus G_i \ (i = 1, 2, \ldots, n)$ bo'lsin, bunda G_i ochiq to'plam. U holda,

$$\bigcup_{i=1}^{n} F_i = \bigcup_{i=1}^{n} (X \setminus G_i) = X \setminus \bigcap_{i=1}^{n} G_i$$

tengligi va $\bigcap_{i=1}^n G_i$ kesishmaning ochiq ekanligidan $\bigcup_{i=1}^n F_i$ to'plamnmng yopiq ekanligi kelib chiqadi.

5.1.11. X topologik fazoning ixtiyoriy M qism to'plami uchun

$$X \setminus [M] = int(X \setminus M)$$

 $tenglikning\ o$ 'rinli ekanligini isbotlang.

 $Yechimi.\ X\setminus [M]$ to'plamdan ixtiyoriy x element olaylik. $x\notin [M]$ bo'lganligidan, uning M to'plam bilan kesishmaydigan, ya'ni $X\setminus M$ to'plamda to'liq yotadigan V_x atrofi mavjud. Bundan $x\in \operatorname{int}(X\setminus M)$, ya'ni $X\setminus [M]\subset \operatorname{int}(X\setminus M)$ munosabatning o'rinli ekanligi kelib chiqadi.

Endi $x \in \operatorname{int}(X \setminus M)$ bo'lsin. $\operatorname{int}(X \setminus M)$ ochiq bo'lganligidan uni x nuqtaning atrofi sifatida olish mumkin. $\operatorname{int}(X \setminus M) \subset X \setminus M$ munosabat o'rinli bo'lganligidan $\operatorname{int}(X \setminus M) \cap M = \emptyset$. Bundan $x \notin [M]$ ekanligi kelib chiqadi, ya'ni $x \in X \setminus [M]$. Demak $X \setminus [M] \supset \operatorname{int}(X \setminus M)$. Shunday qilib berilgan tenglikning to'g'ri ekanligi isbotlandi.

5.1.12. X topologik fazoda M to'plamning yopiq bo'lishi uchun [M] = M tengligining bajarilishi zarur va etarli ekanligini isbotlang.

Yechimi. Zarurligi. M yopiq toʻplam boʻlsin. Teskarisini faraz qilaylik, yani $[M] \neq M$. U holda $[M] \setminus M$ ayirma boʻsh emas. Bu ayirmadan biror x nuqtani olaylik. $x \notin M$ boʻlganligidan $x \in X \setminus M$. M yopiq boʻlganligidan $X \setminus M$ toʻplam ochiq boʻladi. U holda $X \setminus M$ toʻplam x nuqtaning atrofi boʻlib, bu atrof M toʻplam bilan kesishmaydi. U holda $x \notin [M]$. Bunday boʻlishi mumkin emas. Demak farazimiz notoʻgʻri, ya'ni [M] = M.

Etarligi. 5.1.11 misolda isbotlangan $X \setminus [M] = \operatorname{int}(X \setminus M)$ tengligidan [M] to'plamning yopiq ekanligi ko'rinadi. [M] = M tengligidan esa M ning yopiq ekanligi kelib chiqadi.

5.1.13. Ixtiyoriy xos qism to'plami yopiq bo'lmagan topologik fazoga misol keltiring.

Yechimi. Elementlari soni bittadan ko'p ixtiyoriy X to'plamda trivial $\tau = \{\emptyset, X\}$ topologiyani aniqlasak, paydo bo'lgan topologik fazoning ixtiyoriy bo'sh bo'lmagan qism to'plami yopilmasi X to'plamdan iborat bo'ladi. Demak, bu fazoda faqat bo'sh to'plam va X to'plami yopiq bo'lib, boshqa qism to'plamlar yopiq bo'lmaydi.

5.1.14. Ixtiyoriy bir nuqtali qism to'plami yopiq bo'lmagan T_0 -fazoga misol keltiring.

Yechimi. $X=\mathbb{Z}$ barcha butun sonlar to'plamini olaylik. Har bir $k\in\mathbb{Z}$ uchun

$$N_k = \{ m \in \mathbb{Z} : m \ge k \}$$

to'plamni olamiz.

$$\tau = \{\emptyset, \mathbb{Z}, N_k, k \in \mathbb{Z}\}\$$

to'plamlar sistemasi topologiya hosil qiladi.

Har bir $m, n \in \mathbb{Z}$, m < n uchun, $U \in \tau$ to'plami m nuqtaning atrofii bo'lishidan $n \in N_m \subset U$ munosabatlar o'rinli ekanligi kelib chiqadi. Demak, m nuqtaning xoxlagan atrofiga n nuqtasi tegishli, ya'ni $m \in [n]$. Bundan $\{n\}$ to'plamning, demak, bir nuqtali xoxlagan qism to'plamning yopiq emasligi kelib chiqadi. Shu bilan birga, $m \notin N_n$ bo'lganligidan qaralayotgan topologik fazosi T_0 -fazo bo'ladi.

5.1.15. X topoligik fazoda to'plam yopilmasi quyidagi xossalarga ega ekanligini isbotlang:

- $a) M \subset [M];$
- b) agar $M_1 \subset M_2$ bo'lsa, u holda $[M_1] \subset [M_2]$;
- c) $[M_1 \cup M_2] = [M_1] \cup [M_2];$
- **d)** [[M]] = [M].

Yechimi. a) M to'plamning xoxlagan nuqtasi shu to'plamning o'ziga urinish nuqta bo'lganligidan $M \subset [M]$;

- b) $[M_1]$ to'plamga tegishli xoxlagan x nuqtaning har bir atrofida M_1 to'plamning, demak, M_2 to'plamning kamida bir elementi mavjud bo'lgani uchun $x \in [M_2]$, ya'ni $[M_1] \subset [M_2]$;
- c) $M_1 \subset M_1 \cup M_2$, $M_2 \subset M_1 \cup M_2$ munosabatlar va b) xossadan $[M_1 \cup M_2] \supset [M_1] \cup [M_2]$ munosabat kelib chiqadi.

Endi $[M_1 \cup M_2]$ to'plamdan xoxlagan x nuqta olib $x \notin [M_1] \cup [M_2]$ deb faraz qilamiz. U holda x nuqtaning M_1 va M_2 to'plamlar bilan kesishmaydigan U_x atrofi mavjud bo'ladi. Bundan

$$U_x \cap (M_1 \cup M_2) = \emptyset,$$

ya'ni $x \notin [M_1 \cup M_2]$. Bu ziddiyatdan $[M_1 \cup M_2] \subset [M_1] \cup [M_2]$ munosabatining o'rinli ekanligi kelib chiqadi.

- d) a) xossadan $[M] \subset [[M]]$ munosabati o'rinli.
- [[M]] to'plamdan olingan ixtiyoriy x nuqtaning har bir U_x atrofiga [M] to'plamning kamida bitta x' nuqtasi yotadi. U_x to'plam x' nuqta uchun ham atrof bo'ladi, demak, bu atrofda M to'plamning kamida bir nuqtasi bor, yani $x \in [M]$. Demak $[M] \supset [[M]]$.

$5.1.16.\ Sanoqli\ bazaga\ ega\ X\ topologik\ fazoning\ separabelligini\ is botlang.$

Yechimi. $\{G_n\}$ sistema X fazoning biror sanoqli bazasi bo'lsin. Bu bazaning har bir G_n elementidan ixtiyoriy x_n nuqta olaylik. $T = \{x_n\}$ sanoqli to'plam X fazoning hamma erida zich ekanligini ko'rsatamiz. Teskarisini faraz qilaylik, ya'ni $X \neq [T]$ bo'lsin. U holda $G = X \setminus [T]$ bo'sh bo'lmagan ochiq to'plam bo'lganligidan, uni $\{G_n\}$ bazaga tegishli biror G_k to'plamlarning birlashmasi ko'rinishida ifodalash mumkin. $x_k \in G_k$ bo'lganligidan $x_k \in G$ munosabat o'rinli bo'lishi kerak. Bunday bo'lishi mumkin emas, chunki $G \cap T = \emptyset$. Demak X = [T].

5.1.17. Agar X sanoqli bazaga ega topologik fazo bo'lsa, u holda uning ixtiyoriy ochiq qoplamasidan sanoqlicha qism qoplama ajratib olish mumkin ekanligini isbotlang.

Yechimi. $\{O_{\alpha}\}$ sistema X topologik fazoning ixtiyoriy ochiq qoplamasi bo'lsin. U holda X fazoning har bir x nuqtasi kamida bitta O_{α}

to'plamga tegishli bo'ladi. Agar $\{G_n\}$ sistema X tapologik fazoning sanoqli bazasi bo'lsa, bu sistemadan $x \in G_n(x) \subset O_\alpha$ munosabatni qanoatlantiradigan $G_n(x)$ to'plam topiladi. Shunday usul bilan tanlangan $G_n(x)$ to'plamlar sistemasi sanoqlicha bo'lib, X fazoning qoplamasi bo'ladi. Har bir $G_n(x)$ to'plam uchun, uni o'z ichiga oluvchi O_α to'plamlarning bittasini tanlaymiz. Bunday usul bilan tanlangan to'plamlar sistemasi ham sanoqlicha bo'lib, $\{O_\alpha\}$ qoplamaning qism qoplamasi bo'ladi.

5.1.18. (X,τ) topologik fazoda $M \subset X$ to'plam berilgan bo'lsin. x nuqtaning M to'plamga urinish nuqta bo'lishidan, M to'plamda x ga yaqinlashuvchi ketma-ketlikning mavjud bo'lishi kelib chiqadimi?

Yechimi. Umuman olganda, kelib chiqmasligi quyidagi misoldan koʻrinadi. X=[0,1] boʻlib, τ topologiya X va boʻsh toʻplam bilan birga [0,1] segmentdan chekli yoki sanoqli sondagi nuqtalarni olib tashlashdan hosil boʻlgan toʻplamlardan iborat boʻlsin.

Bu fazoda faqat statsionar ketma-ketliklar, ya'ni biror hadidan boshlab barcha hadlari o'zaro teng bo'lgan ketma-ketliklar yaqinlashuvchi bo'ladi.

Haqiqatan, $\{x_n\}$ statsionar ketma-ketlik bo'lib, biror n natural son uchun $x_n = x_{n+1} = x_{n+2} = \dots$ bo'lganda $x = x_n$ nuqta $\{x_n\}$ ketma-ketlikning limiti bo'ladi. Sababi uning ixtiyoriy atrofida berilgan ketma-ketlikning n hadidan boshlab barcha hadi joylashgan.

Endi $\{x_n\}$ ketma-ketlik statsionar bo'lmagan holni ko'ramiz. Teskarisini faraz qilaylik, ya'ni berilgan ketma-ketlik yaqinlashuvchi bo'lib, x nuqta uning limiti bo'lsin. [0,1] segmentdan $\{x_n\}$ ketma-ketlikning barcha hadlarini (agar x berilgan ketma-ketlikning biror hadiga teng bo'lgan holda, bu hadidan boshqa barcha hadlarini) olib tashlashdan hosil bo'lgan to'plam ochiq bo'lib, x ning atrofi bo'ladi. Ravshanki, x nuqtaning bu atrofida $\{x_n\}$ ketma-ketlikning ko'pi bilan chekli hadlari joylashgan bo'ladi. Demak x nuqta berilgan ketma-ketlikning limit nuqtasi bo'lolmaydi.

Shuning uchun, agar M sifatida (0,1] yarim intervalni olsak, u holda M to'plamda $0 \in X$ nuqtaga yaqinlashuvchi ketma-ketlik mavjud emas. Shu bilan birga, τ topologiyaning bo'sh to'plamdan boshqa barcha elementlari cheksiz to'plamlardan iborat bo'lganligidan, 0 nuqtaning ixtiyoriy atrofida M ning kamida bitta elementi mavjud bo'ladi, ya'ni $0 \in [M]$.

5.1.19. X sano'qlilikning birinchi aksiomasini qanoatlantiruvchi topologik fazo bo'lib, $M \subset X$ bo'lsin. Agar $x \in [M]$

bo'lsa, u holda M to'plamda x nuqtaga yaqinlashuvchi ketmaketlikning mavjud bo'lishini isbotlang.

Yechimi. Sanoqli $\{O_n\}$ sistema $x \in [M]$ nuqta atroflarining aniqlovchi sistemasi bo'lsin. $O_{n+1} \subset O_n$ munosabat o'rinli deb olish mumkin (aks holda O_n o'rniga $\bigcap_{k=1}^{n} O_k$ kesishmani olar edik). $x \in [M]$ bo'lganligidan, O_k ga tegishli $x_k \in M$ nuqta mavjud bo'ladi. Natijada, x nuqtaning ixtiyoriy atrofining ichida yotadigan $\{O_n\}$ sistema elementi mavjud bo'lganligidan x nuqta $\{x_n\}$ ketma-ketlikning limiti bo'ladi.

5.1.20. X va Y topologik fazolar bo'lsin. $f: X \to Y$ akslantirish uzluksiz bo'lishi uchun Y fazodagi har bir A ochiq to'plamning X fazodagi $f^{-1}(A)$ asli ochiq bo'lishi zarur va etarli ekanliqini isbotlang.

Yechimi. Zarurligi. $f: X \to Y$ uzluksiz akslantirish va $A \subset Y$ biror ochiq toʻplam boʻlsin. $B = f^{-1}(A)$ toʻplamning X da ochiq ekanligini koʻrsatamiz. B toʻplamga tegishli ixtiyoriy x nuqtani olaylik. U holda, A toʻplam f(x) = y nuqtaga atrof boʻladi. Bundan f akslantirish uzluksiz boʻlganligidan, x nuqtaning biror V_x atrofi $f(V_x) \subset A$ munosabatni qanoatlantiradi. Demak, $V_x \subset B$ munosabat oʻrinli ekanligi kelib chiqadi, ya'ni B ochiq boʻladi.

Zarurligi. Y fazoning har bir A ochiq to'plamining $f^{-1}(A)$ asli ochiq to'plam bo'lsin. X fazoning ixtiyoriy x nuqtasini va y = f(x) nuqtaning ixtiyoriy U_y atrofini qaraylik. U_y ochiq to'plam bo'lgani uchun $f^{-1}(U_y)$ ochiq bo'lib, bu to'plam x nuqtaning atrofi bo'ladi. $f(f^{-1}(U_y)) \subset U_y$ munosabatdan f akslantirishnig x nuqtada uzluksiz ekanligi kelib chiqadi. x nuqta X fazodan ixtiyoriy tanlab olinganligi uchun f akslantirish X fazoda uzluksiz bo'ladi.

5.1.21. (X, τ_1) va (Y, τ_2) topologik fazolar bo'lib, $f: X \to Y$ akslantirish X ni Y ning ichiga o'tkazsin.

$$f^{-1}(\tau_2) = \left\{ f^{-1}(G) : G \in \tau_2 \right\}$$

$sistemaning \ X \ to$ 'plamda $topologiya \ bo$ 'lishini isbotlang.

Yechimi. $f^{-1}(\tau_2)$ sistemaning topologiya aksiomalarini qanoatlantirishini tekshiramiz:

- 1) $f(X) \subset Y$ munosabat o'rinli bo'lib, $Y \in \tau_2$ bo'lganligidan $X = f^{-1}(Y) \in f^{-1}(\tau_2)$. Shu bilan birga $\emptyset = f^{-1}(\emptyset) \in f^{-1}(\tau_2)$.
- 2) $f^{-1}(\tau_2)$ sistemaga tegishli ixtiyoriy O_α to'plamlarni olaylik. U holda

$$O_{\alpha} = f^{-1}(G_{\alpha}), \ G_{\alpha} \in \tau_2.$$

Bundan

$$\bigcup_{\alpha} O_{\alpha} = \bigcup_{\alpha} f^{-1}(G_{\alpha}) = f^{-1}\left(\bigcup_{\alpha} G_{\alpha}\right).$$

Endi $\bigcup_{\alpha} G_{\alpha}$) $\in \tau_2$ bo'lganligidan

$$\bigcup_{\alpha} O_{\alpha}) \in f^{-1}(\tau_2).$$

Shu bilan birga,

$$\bigcap_{k=1}^{n} O_k = \bigcap_{k=1}^{n} f^{-1}(G_k) = f^{-1}(\bigcap_{k=1}^{n} G_k) \in f^{-1}(\tau_2).$$

Demak $f^{-1}(\tau_2)$ sistema topologiyaning barcha aksiomalarini qanoatlantirar ekan.

5.1.22. T_1 -fazo bo'lmaydigan topologik fazoga misol keltiring.

Yechimi. 5.1.1-misolda qaralgan $X = \{a, b\}$ topologik fazoda a nuqtaning b nuqtani o'z ichiga olmaydigan atrofi yo'q. Shuning uchun bu fazo T_1 -fazo bo'lmaydi.

5.1.23. T_1 -fazoda bitta nuqtali to'plam yopiq bo'lishini ko'rsating.

Yechimi. T_1 -fazodan ixtiyoriy x nuqta olaylik. Agar $x \neq y$ bo'lsa, u holda y nuqtaning x nuqtani o'z ichiga olmaydigan O_y atrofi mavjud, ya'ni $y \notin [x]$. Demak, x = [x].

5.1.24. T_1 -fazoda chekli to'plamning yopiq bo'lishini ko'rsating.

Yechimi. T_1 -fazoda chekli $A = \{a_1, a_2, \dots, a_n\}$ to'plam berilgan bo'lsin. U holda,

$$A = \bigcup_{k=1}^{n} \{a_k\}$$

tengligini yoza olamiz. 5.1.23-misolda T_1 -fazoda bitta nuqtadan iborat to'plamning yopiq to'plam bo'lishi, 5.1.10-misolda esa topologik fazoda yopiq to'plamlarining chekli sondagi birlashmasi yopiq to'plam bo'lishi ko'rsatilgan. Demak, A yopiq to'plam.

5.1.25. T_1 -aksiomasini qanoatlantirmaydigan topologik fazoda chekli to'plam ham limit nuqtaga ega bo'lishi mumkin ekanligini ko'rsating.

Yechimi. $X = \{a, b\}$ to'plamda $\tau = \{\emptyset, \{b\}, \{a, b\}\}$ topologiyani qarasak, a nuqta $\{b\}$ to'plam uchun limit nuqta bo'ladi.

5.1.26. x nuqtaning T_1 -fazodagi M to'plamga limit nuqta bo'lishi uchun, bu nuqtaning ixtiyoriy U atrofiga M to'plamning cheksiz ko'p elementi tegishli bo'lishi zarur va etarli ekanligini isbotlang.

Yechimi. Zarurligi. x nuqta M to'plamning limit nuqtasi bo'lsin. Teskarisidan faraz qilaylik, ya'ni x nuqtaning shunday U atrofi mavjud bo'lib, bu atrofda M to'plamning (agar $x \in M$ bo'lsa, u holda x dan boshqa) faqat chekli x_1, x_2, \ldots, x_n nuqtalarigina joylashgan bo'lsin. 5.1.24-misoldan $\{x_1, x_2, \ldots, x_n\}$ to'plamning yopiq ekanligi, 5.1.9-misoldan esa $V = U \setminus \{x_1, x_2, \ldots, x_n\}$ to'plamning ochiq ekanligi kelib chiqadi. $x \in V$ bo'lganligidan V to'plam x nuqtaning atrofi bo'lib, $V \cap M \setminus \{x\} = \emptyset$ tenglik o'rinli. Bu ziddiyatdan bizning farazimizning noto'g'ri ekanligi kelib chiqadi.

Etarliligi. To'plamning limit nuqtasi tarifidan bevosita kelib chiqadi.

5.1.27. T_1 -fazo bo'lib, T_2 -fazo bo'lmagan topologik fazoga misol keltiring.

Yechimi. X=[0,1] bo'lib, τ topologiya bo'sh to'plam bilan birga [0,1] segmentdan chekli yoki sanoqli sondagi nuqtalarni olib tashlashdan hosil bo'lgan to'plamlardan iborat bo'lsin. Bu topologik fazo T_1 -fazo bo'ladi. Haqiqatan, o'zaro teng bo'lmagan ixtiyoriy $x,y\in X$ nuqtalar uchun atroflarni, mos ravishda, $O_x=X\setminus\{y\}$ va $O_y=X\setminus\{x\}$ ko'rinishlarda aniqlasak, u holda $x\notin O_y$ va $y\notin O_x$.

Endi $x,y \in X$ nuqtalarning o'zaro kesishmaydigan atroflari yo'q ekanligini ko'rsatamiz. G_x va G_y to'plamlar, mos ravishda, x va y nuqtalarning ixtiyoriy atroflari bo'lsin. U holda, $G_x = X \setminus A$ va $G_y = X \setminus B$, bunda A va B lar [0,1] segmentning ko'pi bilan sanoqli qism to'plamlaridir. Natijada

$$G_x \cap G_y = (X \setminus A) \cap (X \setminus B) = X \setminus (A \cup B).$$

 $A \cup B$ to'plam ko'pi bilan sanoqli bo'lganligidan $X \setminus (A \cup B) \neq \emptyset$.

5.1.28. (X, τ) Hausdorf topologik fazoning xoxlagan (M, τ_M) qism fazosi Hausdorf fazo bo'lishini isbotlang.

Yechimi. X Hausdorf fazo bo'lganligidan, M to'plamga tegishli xoxlagan x, y nuqtalarning o'zaro kesishmaydigan O_x, O_y atroflari mavjud bo'ladi. $O_x \cap M$ va $O_y \cap M$ to'plamlar x va y nuqtalarning M fazodagi o'zaro kesishmaydigan atroflari bo'ladi, ya'ni (M, τ_M) Hausdorf fazosi bo'ladi.

5.1.29. Quyidagi tasdiqlarning o'zaro ekvivalent ekanligini isbotlang:

1) T_3 -aksiomasi;

2) X topologik fazodagi har bir x nuqtaning ixtiyoriy atrofi uchun, shu atrofda yopilmasi bilan birga to'liq yotadigan x nuqtaning boshqa atrofi mavjud.

Yechimi. X topologik fazoda T_3 -aksiomasi o'rinli bo'lsin. $x \in X$ nuqtaning ixtiyoriy O_x atrofini olaylik. T_3 -aksiomasiga ko'ra $X \setminus O_x$ yopiq to'planing va x nuqtaning o'zaro kesishmaydigan, mos ravishda, U va G_x atroflari mavjud. Natijada

$$G_x \subset X \setminus U \subset X \setminus (X \setminus O_x) = O_x$$
.

Shu bilan birga $X \setminus U$ to'plam yopiq bo'lganligidan $[G_x] \subset X \setminus U$, ya'ni $[G_x] \subset O_x$.

Endi 2) tasdiq o'rinli bo'lsin. X fazodan ixtiyoriy x nuqta va bu nuqta tegishli bo'lmagan ixtiyoriy M yopiq to'plamni qaraylik. (2) tasdiqqa ko'ra $X \setminus M$ to'plamda yopilmasi bilan birga to'liq yotadigan x nuqtaning G atrofi mavjud. $X \setminus [G]$ to'plam M to'plamning atrofi bo'lib,

$$G\cap (X\setminus [G])\subset G\cap (X\setminus G)=\emptyset,$$

ya'ni T_3 aksiomasi bajariladi.

5.1.30. Ixtiyoriy regulyar X topologik fazoning T_2 -fazo bo'lishini ko'rsating.

Yechimi. $x,y \in X$ bo'lib, $x \neq y$ bo'lsin. T_1 -aksiomasiga ko'ra x nuqtaning y nuqtani o'z ichiga olmaydigan O_x atrofi mavjud. T_3 -aksiomasiga ko'ra x nuqta va $X \setminus O_x$ yopiq to'plamning o'zaro kesishmaydigan atroflari mavjud. $X \setminus O_x$ to'plamning atrofi y nuqta uchun ham atrof bo'ladi. Demak, T_2 aksioma bajariladi.

5.1.31. Ixtiyoriy X metrik fazoning normal topologik fazo bo'lishini isbotlang.

Yechimi. X metrik fazoda oʻzaro kesishmaydigan yopiq A va B toʻplamlar berilgan boʻlsin. $X\setminus B$ ochiq toʻplam boʻlib, $A\subset X\setminus B$ boʻlganligidan, A toʻplamga tegishli ixtiyoriy x nuqtaning B toʻplam bilan kesishmaydigan O_x atrofi mavjud. Natijada, x nuqta B toʻplamdan musbat ρ_x masofada joylashgan boʻladi. Xuddi shunday, B toʻplamning ixtiyoriy y nuqtasi A toʻplamdan musbat ρ_y masofada joylashadi. A va B toʻplamlarning, mos ravishda, $U=\bigcup\limits_{x\in A}S\left(x,\frac{\rho_x}{2}\right)$ va $V=\bigcup\limits_{y\in B}S\left(y,\frac{\rho_y}{2}\right)$ atroflarini aniqlab, ularning oʻzaro kesishmasligini koʻrsatamiz. Teskarisidan faraz qilamiz, ya'ni shunday z element mavjud boʻlib, $z\in U\cap V$ boʻlsin. U holda, A va B toʻplamlardan, mos ravishda, shunday x_0 va y_0 nuqtalar topilib, $\rho\left(x_0,z\right)<\frac{\rho_{x_0}}{2}$ va $\rho\left(y_0,z\right)<\frac{\rho_{y_0}}{2}$ tengsizliklari oʻrinli boʻladi. Aniqlik uchun $\rho_x\leq\rho_y$

bo'lsin. U holda,

$$\rho(x_0, y_0) \le \rho(x_0, z) + \rho(z, y_0) < \frac{\rho_{x_0}}{2} + \frac{\rho_{y_0}}{2} \le \frac{\rho_{y_0}}{2} + \frac{\rho_{y_0}}{2} = \rho_{y_0},$$

ya'ni $x_0 \in S(y_0, \rho_{y_0})$. Bu esa ρ_{y_0} ning aniqlanishiga zid. Demak $U \cap V = \emptyset$, ya'ni X fazo normaldir.

Mustaqil ish uchun masalalar

 ${f 1.}$ X topologik fazoning M qism to'plami uchun quyidagi tenglikni isbotlang:

$$[M] = \bigcap \{P : M \subset P = [P] \subset X\}.$$

- **2.** X topologik fazosida o'zaro kesishmaydigan ochiq A va B to'plamlar uchun $[A] \cap B = \emptyset$, $\operatorname{int}[A] \cap \operatorname{int}[B] = \emptyset$ tengliklari o'rinli ekanligini isbotlang.
- **3.** X topologik fazosida τ_1 va τ_2 topologiyalar aniqlangan bo'lib, $\tau_1 \leq \tau_2$ munosabati o'rinli bo'lsa, u holda har bir $A \subset X$ to'plam uchun $[A]_{\tau_2} \subset [A]_{\tau_1}$ munosabatining o'rinli bo'lishini isbotlang.
 - 4. X fazosida ochiq P to'plam va xoxlagan Q qism to'plami uchun

$$\operatorname{int}([P\cap Q])=\operatorname{int}[P]\cap\operatorname{int}[Q]$$

tengligi o'rinli ekanligini isbotlang.

- **5.** X fazosidagi xoxlagan ochiq G to'plam uchun $F = [G] \setminus G$ to'plam X fazosining hech qaerida zich emasligini isbotlang.
- **6.** X fazosining hech qaerida zich bo'lmagan $A \subset X$ to'plamning yopilmasi ham X ning hech qaerida zich bo'lmasligini isbotlang.
- 7. X fazoning hech qaerida zich bo'lmagan ochiq to'plam bo'sh bo'lishini isbotlang.
- **8.** X fazoning hamma erida zich A qism to'plam va X da ochiq xoxlagan U to'plam uchun $[U] = [A \cap U]$ tengligining o'rinli bo'lishini isbotlang.
 - 9. Normal fazoning yopiq qism to'plami normal bo'lishini isbotlang.
- 10. Yakkalangan nuqtalarga ega bo'lmagan T_1 fazoning hamma erida zich bo'lgan qism fazosi ham yakkalangan nuqtalarga ega bo'lmasligini isbotlang.
 - 11. Regulyar bo'lmagan sanoqli xausdorf fazoga misol keltiring.

5.2. Topologik fazolarda kompaktlik

X topologik fazo bo'lib, Y uning biror qism fazosi bo'lsin. Ochiq to'plamlarning $\{G_{\alpha}: \alpha \in A\}$ sistemasi uchun $Y \subset \bigcup_{\alpha \in A} G_{\alpha}$ bo'lsa, u holda bu sistema Y to'plamning ochiq qoplamasi deb ataladi.

Agar ochiq qoplama chekli elementlardan iborat bo'lsa, u holda u chekli ochiq qoplama deyiladi.

Agar topologik fazoning ixtiyoriy ochiq qoplamasidan chekli qism qoplama ajratib olish mumkin bo'lsa, u holda bu topologik fazo *kompaktli* deyiladi.

 T_2 aksiomasini qanoatlantiruvchi kompaktli topologik fazoni kompakt deb ataymiz.

M to'plamning qism to'plamlaridan iborat $\{A\}$ sistemadan xoxlagancha olingan chekli sondagi to'plamlarning kesishmasi bo'sh bo'lmasa, u holda $\{A\}$ sistema markazlashgan deb ataladi.

Agar X topologik fazoning har bir cheksiz qism to'plami kamida bir limit nuqtaga ega bo'lsa, u holda bu fazo sanoqli-kompaktli deviladi.

Masalalar

5.2.1. Ixtiyoriy [a, b] kesma kompakt to'plamdir.

Yechimi. [a, b] kesmaning intervallar bilan qoplamasidan chekli qoplama ajratib olish mumkinligini ko'rsatish etarlidir.

Aytaylik $\mathscr{F} = \{I_{\alpha}\}$ intervallar sistemasi uchun $[a, b] \subset \bigcup_{\alpha} I_{\alpha}$ bo'lsin. C orqali [a, b] kesmaning shunday x nuqtalarini belgilaymizki, bunda [a, x] kesma \mathscr{F} sistemaning chekli intervallari bilan qoplangan bo'lsin. C bo'sh bo'lmagan to'plamdir. Haqiqatan, a soni biror I_{α} intervalga tegishliligidan, $[a, a] \subset I_{\alpha}$, ya'ni $a \in C$.

 $x_0 = \sup C$ bo'lsin. Shunday $I_\alpha = (x', x'') \in \mathscr{F}$ mavjudki, $x' < x_0 < x''$. Aniq quyi chegara ta'rifidan shunday $x \in C$ mavjudki $x' < x < x_0$. [a, x] kesma \mathscr{F} sistemaning chekli intervallari bilan qoplangani uchun $[a, x_0]$ ham bu sistemaning chekli intervallari bilan qoplanadi. Bundan $x_0 \in C$.

Agar $x_0 < b$ desak, u holda (x_0, x'') oraliqda C to'plamning nuqtasi topiladi, bu esa x_0 ning aniq quyi chegara ekenligiga ziddir. Hosil bo'lgan ziddiyatdan $x_0 = b$ kelib chiqadi, ya'ni [a, x] kesmani \mathscr{F} sistemaning chekli intervallari bilan qoplash mumkin.

5.2.2. X topologik fazo kompaktli bo'lishi uchun uning yopiq to'plamlardan iborat har bir markazlashgan sistemasining kesishmasi bo'sh bo'lmasligi zarur va etarli ekanligini isbotlang.

Yechimi. Zaruligi. X kompakt topologik fazoning biror yopiq to'plamlaridan iborat markazlashgan $\{F_{\alpha}\}$ sistemasi berilgan bo'lsin. $G_{\alpha} = X \setminus F_{\alpha}$ to'plamlardan iborat $\{G_{\alpha}\}$ sistemaga tegishli chekli

sondagi G_1, G_2, \dots, G_n to'plamlar uchun

$$\bigcup_{i=1}^{n} G_i = \bigcup_{i=1}^{n} (X \setminus G_i) = X \setminus \bigcap_{i=1}^{n} F_i$$

tengligidan va $\{F_{\alpha}\}$ sistemaning markazlashgan ekanligidan $\bigcup_{i=1}^{n} G_{i} \neq X$ ekanligi kelib chiqadi, ya'ni $\{G_{\alpha}\}$ sistemaning hech bir chekli qismi X fazo uchun qoplama bo'la olmaydi. U holda, X kompaktli bo'lgani uchun, $\{G_{\alpha}\}$ sistemaning o'zi ham X fazoning qoplamasi emas, ya'ni $\bigcup G_{\alpha} \neq X$. Bundan

$$\bigcup_{\alpha} (X \setminus F_{\alpha}) = X \setminus \bigcap_{\alpha} F_{\alpha} \neq X.$$

Bemak, $\bigcap F_{\alpha} \neq \emptyset$ ekanligi kelib chiqadi.

Etarliligi. X topologik fazoning biror $\{G_{\alpha}\}$ ochiq qoplamasi berilgan bo'lsin. $F_{\alpha} = X \setminus G_{\alpha}$ yopiq to'plamlarning $\{F_{\alpha}\}$ sistemasi uchun

$$\bigcap_{\alpha} F_{\alpha} = \bigcap_{\alpha} (X \setminus G_{\alpha}) = X \setminus \bigcup_{\alpha} G_{\alpha} = \emptyset.$$

Masala sharti bo'yicha, X fazodagi yopiq to'plamlarning xoxlagan markazlashgan sistemasi bo'sh bo'lmagan kesishmaga ega. Shu sababli $\{F_{\alpha}\}$ sistema markazlashgan bo'la olmaydi. U holda, bu sistemada kesishmasi bo'sh bo'lgan chekli sondagi F_1, F_2, \ldots, F_m to'plamlar mavjud. Bundan

$$X = X \setminus \left(\bigcap_{k=1}^{m} F_k\right) = \bigcup_{k=1}^{m} (X \setminus F_k) = \bigcup_{k=1}^{m} G_k.$$

Demak, xoxlagan $\{G_{\alpha}\}$ ochiq qoplamadan chekli qoplama ajratib olish mumkin ekan, ya'ni X kompaktli.

5.2.3. Kompaktli X topologik fazoning xoxlagan cheksiz qism to'plami kamida bir limit nuqtaga ega bo'lishini isbotlang.

Yechimi. Aksinchasini faraz qilamiz, ya'ni bironta ham limit nuqtaga ega bo'lmagan cheksiz $M \subset X$ to'plam mavjud bo'lsin. U holda, M to'plamidan bitta ham limit nuqtaga ega bo'lmagan sanoqli $M_1 = \{x_1, x_2, ...\}$ to'plam ajratib olish mumkin. Natijada yopiq $M_n = \{x_n, x_{n+1}, ...\}$ to'plamlar kesishmasi bo'sh bo'lgan markazlashgan sistema hosil etadi. Bu X fazoning kompaktli bo'lishiga zid, ya'ni farazimiz noto'g'ri.

5.2.4. Kompaktli X toplogik fazoning xoxlagan yopiq F qism to'plami kompaktli bo'lishini isbotlang.

Yechimi. F qism fazoning yopiq qism to'plamlaridan iborat xoxlagan $\{F_{\alpha}\}$ markazlashgan sistemani olamiz. Bu sistemaga tegishli har bir F_{α} to'plam X fazosida yopiq bo'ladi. X kompaktli bo'lganligidan $\bigcap_{\alpha} F_{\alpha} \neq \emptyset$. Demak, 5.2.2-misol bo'yicha, F kompaktli bo'ladi.

5.2.5. Kompaktning yopiq qism to'plami kompakt bo'lishini isbotlang.

Yechimi. 5.1.28-misolda Hausdorf fazoning xoxlagan qism fazozi Hausdorf bo'lishi, 5.2.4-misolda esa, kompaktli topologik fazoning yopiq qism to'plamining kompaktli bo'lishi ko'rsatilgan. Natijada kompaktning yopiq qism to'plami kompakt bo'lishi kelib chiqadi.

5.2.6. X Hausdorf fazoning xoxlagan kompakt K qism to'plami yopiq bo'lishini isbotlang.

Yechimi. X Hausdorf fazo bo'lgani uchun, xoxlagan $x \in K$ va xoxlagan $y \notin K$ nuqtalarning o'zaro kesishmaydigan U_x va V_y^x atroflari topiladi. $\{U_x: x \in K\}$ sistema K uchun ochiq qoplama bo'ladi. K kompakt bo'lgani uchun $\{U_x: x \in K\}$ qoplamaning chekli $U_{x_1}, U_{x_2}, \ldots, U_{x_n}$ qism qoplamasi mavjud. Bu qism qoplamadagi hech bir to'plam bilan y nuqtaning

$$V_y = V_y^{x_1} \cap V_y^{x_2} \cap \ldots \cap V_y^{x_n}$$

atrofi kesishmaydi, ya'ni

$$V_y \cap (U_{x_1} \cup U_{x_2} \cup \ldots \cup U_{x_n}) = \emptyset.$$

 $K \subset U_{x_1} \cup U_{x_2} \cup \ldots \cup U_{x_n}$ munosabati o'rinli bo'lgani uchun $y \notin [K]$. Bundan K to'plamning yopiq ekanligi kelib chiqadi.

5.2.7. Har bir kompakt normal fazo bo'lishini isbotlang.

Yechimi. A va B to'plamlar K kompaktning o'zaro kesishmaydigan yopiq qism to'plamlari bo'lsin. 5.2.5-misoldan A va B to'plamlar kompakt ekanligi kelib chiqadi. 5.2.6-misoldan A to'plam va har bir $y \in B$ nuqtaning o'zaro kesishmaydigan U_y va V_y atroflarining mavjud ekanligi kelib chiqadi. Demak, K kompakt regulyar fazo bo'lar ekan. B to'plamning $\{V_y:y\in B\}$ ochiq qoplamasidan chekli $V_{y_1},V_{y_2},\ldots,V_{y_n}$ qism qoplama ajratib olamiz. U holda

$$A \subset U_A = U_{y_1} \cap U_{y_2} \cap \ldots \cap U_{y_n},$$

$$B \subset V_B = V_{y_1} \cup V_{y_2} \cup \ldots \cup V_{y_n}$$

munosabatlar o'rinli. Demak, K kompakt normal fazo bo'ladi.

5.2.8. Kompaktli fazoning uzluksiz akslantirishdagi obrazi kompaktli fazo bo'lishini isbotlang.

Yechimi. X kompaktli topologik fazo, f esa X ni biror Y topologik fazoga uzluksiz akslantirish bo'lsin. f(X) fazoning xoxlagan $\{V_{\alpha}\}$ ochiq qoplamasini qaraymiz. f akslantirish uzluksiz bo'lganligi sababli $f^{-1}(V_{\alpha})$ to'plamlar ochiq bo'lib, $\{f^{-1}(V_{\alpha})\}$ sistema X fazoning ochiq qoplamasi bo'ladi. X fazo kompaktli bo'lgani uchun chekli

$$\{f^{-1}(V_1), f^{-1}(V_2), \dots, f^{-1}(V_n)\}\$$

qism qoplama mavjud bo'ladi, ya'ni $X \subset \bigcup_{k=1}^{n} f^{-1}(V_k)$. Bundan

$$f(X) \subset f\left(\bigcup_{k=1}^{n} f^{-1}(V_k)\right) = \bigcup_{k=1}^{n} f(f^{-1}(V_k)) = \bigcup_{k=1}^{n} V_k.$$

Demak f(X) fazo kompaktli.

5.2.9. X kompaktni Y Hausdorf fazosiga o'zaro bir qiymatli uzluksiz φ akslantirish gomeomorfizm bo'lishini isbotlang.

Yechimi. X fazosidan xoxlagan yopiq F to'plamini olamiz. F kompakt (5.2.5-misolga qarang) bo'lgani uchun, $G = \varphi(F)$ to'plam (5.2.8-misolga qarang) kompakt bo'ladi. Natijada 5.2.6-misol bo'yicha G to'plam yopiq. Demak, φ^{-1} akslantirishda xoxlagan yopiq $F \subset X$ to'plamning proobrazi yopiq. Bundan φ^{-1} akslantirishning uzluksiz ekanligi, demak, φ ning gomeomorfizm ekanligi kelib chiqadi.

- 5.2.10. Quyidagishartlarning o'zaro ekvivalent ekanligini isbotlang:
- i) X fazosining har bir sanoqli ochiq qoplamasi chekli qism qoplamaga ega;
- $ii)\ X\ fazosining\ yopiq\ qism\ to'plamlaridan\ iborat\ har\ bir\ sanoqli\ markazlashgan\ sistemasi\ bo'sh\ bo'lmagan\ kesishmaga\ ega.$

Yechimi. i) shart o'rinli bo'lib, yopiq to'plamlarning sanoqli $\{F_n\}$ markazlashgan sistemasi berilgan bo'lsin. Agar $\bigcap_{n=1}^{\infty} F_n = \emptyset$ deb faraz qilsak, u holda

$$\{G_n: G_n = X \setminus F_n\}$$

ochiq to'plamlar sistemasi X fazosi uchun ochiq qoplama bo'ladi.

Haqiqatan,

$$\bigcup_{n=1}^{\infty} G_n = \bigcup_{n=1}^{\infty} (X \setminus F_n) = X \setminus \bigcap_{n=1}^{\infty} F_n = X.$$

i) shart bo'yicha $\{G_n\}$ qoplamaning chekli $G_{n_1}, G_{n_2}, \ldots, G_{n_k}$ qism qoplamasi mavjud. U holda,

$$\bigcap_{i=1}^k F_{n_i} = \bigcap_{i=1}^k (X \setminus G_{n_i}) = X \setminus \bigcup_{i=1}^k G_{n_i} = \emptyset.$$

Bu $\{F_n\}$ sistemaning markazlashgan ekanligiga zid.

Endi ii) shart o'rinli bo'lib, X topologik fazoning sanoqli $\{G_n\}$ ochiq qoplamasi berilgan bo'lsin. $F_n = X \setminus G_n$ yopiq to'plamlarning $\{F_n\}$ sistemasi uchun

$$\bigcap_{n=1}^{\infty} F_n = \bigcap_{n=1}^{\infty} (X \setminus G_n) = X \setminus \bigcup_{n=1}^{\infty} G_n = \emptyset.$$

Masala sharti bo'yicha, X fazosidagi yopiq to'plamlarning xoxlagan sanoqli markazlashgan sistemasi bo'sh bo'lmagan kesishmaga ega. Shu sababli $\{F_n\}$ sistema markazlashgan bo'la olmaydi. U holda, bu sistemada kesishmasi bo'sh bo'lgan chekli sondagi F_1, F_2, \ldots, F_m to'plamlar mavjud. Bundan

$$X = X \setminus \left(\bigcap_{k=1}^{m} F_k\right) = \bigcup_{k=1}^{m} (X \setminus F_k) = \bigcup_{k=1}^{m} G_k.$$

Demak, $\{G_n\}$ ochiq qoplamadan chekli qoplama ajratib olish mumkin ekan, ya'ni i) shart o'rinli.

5.2.11. X topologik fazo sanoqli-kompakt bo'lishi uchun yopiq qism to'plamlardan iborat har bir sanoqli markazlashgan sistemasi bo'sh emas kesishmaga ega bo'lishi zarur va etarli ekanligini isbotlang.

Yechimi. Zarurligi. Sanoqli-kompakt X fazoning yopiq to'plamlaridan iborat sanoqli $\{F_n\}$ markazlashgan sistema berilgan bo'lsin. $\Phi_n = \bigcap_{k=1}^n F_k$ bo'lsin. $\{F_n\}$ markazlashgan sistema bo'ganligidan va yopiq to'plamlarning kesishmasi yopiq bo'lganlikdan har bir to'plam Φ_n bo'sh bo'lmagan yopiq to'plam bo'ladi. Shu bilan birga,

$$\Phi_1 \supset \Phi_2 \supset \ldots \supset \Phi_n \supset \ldots$$

munosabat, demak, $\bigcap_n \Phi_n = \bigcap_n F_n$ tengligi o'rinli. Natijada, quyidagi ikki hol bo'lishi mumkin:

1 – hol. Biror n_0 natural sonidan boshlab

$$\Phi_{n_0} = \Phi_{n_0+1} = \dots$$

tengliklari o'rinli. U holda,

$$\bigcap_{n\geq 1} \Phi_n = \Phi_{n_0} \neq \emptyset.$$

2 – hol. Φ_n to'plamlar orasida cheksiz sondagi o'zaro har xil to'plamlar mavjud. Bu holda barcha Φ_n lar o'zaro har xil bo'lgan holni qarash etarli. $x_n \in \Phi_n \setminus \Phi_{n+1}$ nuqtalardan iborat $\{x_n\}$ ketmaketlik X fazoning cheksiz qism to'plami bo'ladi. X sanoqli-kompakt bo'lganligidan $\{x_n\}$ ketma-ketlik kamida bitta x_0 limit nuqtaga ega. x_n, x_{n+1}, \ldots nuqtalar Φ_n to'plamiga tegishli bo'lganlikdan x_0 nuqta Φ_n uchun ham limit nuqta bo'ladi, Φ_n to'plamning yopiqligidan $x_0 \in \Phi_n$. Bundan $x_0 \in \bigcap \Phi_n$, ya'ni $\bigcap \Phi_n \neq \emptyset$.

5.2.12. Metrik fazodan olingan E to'planning bikompakt bo'lishi uchun uning kompakt bo'lishi zarur va etarli.

Yechimi. Zarurligi. E to'plam bikompakt bo'lsin. E dan olingan ixtiyoriy $\{x_n\}$ ketma-ketligini olamiz. Bu ketma-ketlikning hech bir qismiy ketma-ketligi E da yaqinlashuvchi emas deb faraz qilaylik. U holda E to'plamning har bir z elementi berilgan ketma-ketlikning chekli hadlarini o'z ichiga oluvchi yoki hech bir hadini o'z ichiga olmaydigan V(z) atrofga ega bo'ladi. Bu atroflar E uchun ochiq qoplama hosil qiladi. E bikompakt bo'lgani uchun chekli sondagi $z_1, z_2, \ldots, z_k \in E$ elementlar mavjud bo'lib,

$$E \subset V(z_1) \cup V(z_2) \cup \ldots \cup V(z_k)$$

munosabat o'rinli bo'ladi. Ammo bu munosabatning o'rinli bo'lishi mumkin emas, sababi $V(z_1) \cup V(z_2) \cup \ldots \cup V(z_k)$ to'plamlarga $\{x_n\}$ ketma-ketligining chekli sondagi hadlari tegishli, E to'plamga esa barcha hadlari tegishli. Bu ziddiyatdan farazimizning noto'g'ri ekanligi kelib chiqadi. U holda E dan olingan ixtiyoriy ketma-ketlik E da yaqinlashuvchi qismiy ketma-ketlikka ega ekan. Bundan esa E to'plamning kompakt ekanligi kelib chiqadi.

Etarliligi. E kompakt to'plam bo'lsin. Faraz qilaylik E bikompakt bo'lmasin. U holda E to'plamdan chekli qism qoplama ajratib olish mumkin bo'lmagan $\{G_{\alpha}\}$ ochiq qoplamasi mavjud bo'ladi. Nolga intiluvchi kamayuvchi $\{\varepsilon_n\}$ sonli ketma-ketlik olamiz. E uchun chekli

 ε -to'r tuzib (Hausdorf teoremasi bo'yicha chekli ε -to'r tuzish mumkin), bu to'rning har bir elementi atrofida radiusi ε_1 bo'lgan shar hosil qilamiz. Kompakt to'plamning yopiq qism to'plami kompakt bo'lgani uchun hosil qilingan har bir shar yopilmasining E to'plam bilan kesishmasi kompakt bo'ladi. Bu kesishmalardan hosil bo'lgan to'plamlarning diametrlari $2\varepsilon_1$ sonidan katta emas. Natijada E to'plam diametrlari $2\varepsilon_1$ sonidan katta bo'lmagan chekli sondagi kompakt to'plamlarning birlashmasi ko'rinishida ifodalanadi. Farazimiz bo'yicha $\{G_\alpha\}$ sistemaning chekli qism qoplamasi yo'q. U holda birlashmadagi kompaktlarning hech biri ham chekli ochiq qoplamaga ega emas. Shu kompaktni E_1 orqali belgilaymiz.

Endi E_1 to'plam uchun chekli ε -to'r tuzamiz va bu to'rning har bir elementi atrofida radiusi ε_2 ga teng shar hosil qilib, E_1 to'plamni, yuqoridagiday qilib, diametlari $2\varepsilon_2$ sonidan katta bo'lmagan chekli sondagi kompaktlarning birlashmasi ko'rinishida ifodalaymiz. Bu birlashmadagi $\{G_\alpha\}$ sistemaning chekli sondagi to'plamlari bilan qoplanmaydigan kompakt to'plamni E_2 orqali belgilaymiz.

Bu jarayonni cheksiz davom ettirsak kompaktlarning kamayuvchi

$$E\supset E_1\supset E_2\supset\ldots$$

ketma-ketligiga ega bo'lamiz. Bu ketma-ketlikdagi hech bir kompakt $\{G_{\alpha}\}$ sistemaning chekli sondagi to'plamlari bilan qoplanmaydi va diam $E_n \to 0$. ξ element bu kompaktlarga tegishli umumiy nuqta bo'lsin (5.2.10-misolga qarang). $\xi \in E$ bo'lgani uchun $\{G_{\alpha}\}$ sistemaga tegishli G_{α_0} to'plam topilib, $\xi \in G_{\alpha_0}$ bo'ladi va $2\varepsilon_{n_0} < \delta$ bo'lsin. U holda $E_{n_0} \subset G_{\alpha_0}$. Bu farazimizga zid. Demak E to'plam bikompakt.

Mustaqil ish uchun masalalar

- 1. Sanoqli bazaga ega topologik fazoning xoxlagan ochiq qoplamasi sanoqli qism qoplamaga ega ekanligini isbotlang .
- 2. Kompaktli topologik fazoda aniqlangan ixtiyoriy uzluksiz sonli funksiya shu fazoda chegaralangan bo'lib, o'zining aniq quyi va aniq yuqori chegarasiga ega bo'lishini isbotlang.
- $3. T_1$ -fazo sanoqli kompakt bo'lishi uchun uning nuqtalaridan iborat xoxlagan ketma-ketlik kamida bir limit nuqtaga ega bo'lishi zarur va etarli ekanligini isbotlang.
- 4. Sanoqli bazaga ega topologik fazoda kompakt va sanoqli kompakt tushinchalari o'zaro teng kuchli ekanligini isbotlang.
- 5. Sanoqli-kompaktli topologik fazoning xoxlagan yopiq qism to'plami sanoqli-kompaktli fazo bo'lishini isbotlang.

- **6.** [0, 1) yarimintervalning kompakt emasligini ko'rsating.
- 7. s barcha haqiyiy ketma-ketliklar fazosida

$${x = (x_n) : |x_n| \le 1}$$

to'plamning kompaktligini ko'rsating.

- 8. Agar topologik fazoda aniqlangan har bir uzluksiz funksiya chegaralangan bo'lsa, u holda bu topologik fazo kompakt bo'ladimi?
 - 9. Kantor to'plaminig kompakt ekanligini ko'rsating.

5.3. Chiziqli topologik fazolar

E to'plam quyidagi shartlarni qanoatlantirsa, u holda E chiziqli topologik fazo deyiladi:

- a) E chiziqli fazo;
- b) E topologik fazo;
- c) E da qo'shish va songa ko'paytirish amallari uzluksiz.

Qo'shish va songa ko'paytirish amallarinig uzluksizligi quyidagini anglatadi:

- 1) agar $z_0 = x_0 + y_0$ bo'lsa, u holda z_0 nuqtaning ixtiyoriy U atrofi uchun x_0 va y_0 nuqtalarning mos ravishda V va W atroflari topilib, ixtiyoriy $x \in V, y \in W$ nuqtalar uchun $x + y \in U$ sharti bajariladi;
- 2) agar $y_0 = \lambda_0 x_0$ bo'lsa, u holda y_0 nuqtaning ixtiyoriy U atrofi uchun x_0 nuqtaning V atrofi va $\varepsilon > 0$ soni topilib, ixtiyoriy $x \in V$ va $|\lambda \lambda_0| < \varepsilon$ lar uchun $\lambda x \in U$ sharti bajariladi.

Echiziqli topologik fazo va $A\subset E$ bo'lsin .

Agar $\forall x \in A, \forall \alpha, |\alpha| \leq 1$ uchun $\alpha x \in A$ bo'lsa, u holda A muvozanatlashgan to'plam deyiladi.

Agar $\forall\,x\in E$ uchun shunday $\alpha>0$ topilib, $\alpha^{-1}x\in A$ bo'lsa, u holda $A\ yutuvchi$ to'plam deyiladi.

Agar $\forall x, y \in A, \forall \alpha, \beta, |\alpha| + |\beta| \le 1$ uchun $\alpha x + \beta y \in A$ bo'lsa, u holda A absolyut qavariq to'plam deyiladi.

Agar nolning har bir U atrofi uchun shunday $\lambda_0 > 0$ soni topilib, barcha $\lambda > \lambda_0$ uchun $A \subseteq \lambda U$ munosabati bajarilsa, u holda A chegaralangan to'plam deyiladi.

Chiziqli topologik fazoning ixtiyoriy bo'sh bo'lmagan ochiq to'plami bo'sh bo'lmagan qavariq ochiq qismto'plamga ega bo'sa, u holda bu fazo *lokal qavariq* deyiladi.

Chiziqli fazolarda topologiya kiritishning asosiy usullaridan biri bu yarim normalar sistemasi orqali aniqlangan topologiyadir.

E chiziqli fazo va $\mathscr{P} = \{p_{\alpha} \mid p_{\alpha} : E \to \mathbb{R}, \alpha \in A\}$ yarim normalar sistemasi bo'lsin.

Ushbu

$$U(p_1, p_2, \cdots, p_n, \varepsilon) = \{x \in E : p_i(x) < \varepsilon, i = \overline{1, n}\},$$

bunda $p_1, p_2, \dots, p_n \in \mathcal{P}, \varepsilon > 0$, to'plamlar sistemasi E fazo nolining atroflarini tashkil etadi.

Agar har bir $x \in E$, $x \neq 0$, uchun shunday $p_{\alpha} \in A$ topilib, $p_{\alpha}(x) \neq 0$ bo'lsa, u holda \mathscr{P} yarim normalar sistemasi *ajratuvchi* deyiladi.

E chiziqli fazo, \mathscr{P} yarim normalar sistemasi va $M \subset E$ bo'lsin. Agar $p \in \mathscr{P}$ uchun shunday c_p soni topilib, barcha $x \in M$ uchun $p(x) \leq c_p$ tengsizligi bajarilsa, M to'plam p yarim norma bo'yicha chegaralangan deyiladi.

Masalalar

5.3.1. Chiziqli topologik fazoning U ochiq to'plami qavariq bo'lishi uchun U + U = 2U tengligi bajarilishi zarur va etarlidir.

Yechimi. U ochiq qavariq to'plam bo'lsin. U+U=2U ekanligini ko'rsatamiz.

 $z\in U+U$ bo'lsa, u holda $x,y\in U$ nuqtalar topilib, z=x+ytenligi o'rinli. Uqavariq bo'lganlikdan, $\frac{1}{2}(x+y)\in U$. Bundan

$$z = 2\left(\frac{1}{2}x + \frac{1}{2}y\right) \in 2U,$$

ya'ni $U + U \subseteq 2U$.

Endi $z\in 2U$ bo'lsa, u holda $z=2x, x\in U$. Bundan, $z=x+x\in U+U,$ ya'ni $2U\subseteq U+U.$ Demak, U+U=2U.

Endi U+U=2U bo'lsin. $x,y\in U$ nuqtalarni olamiz. U holda, $x+y\in U+U$. U+U=2U ekanligidan, $x+y\in 2U$. Bundan, $\frac{1}{2}(x+y)\in U$. Bundan

$$\frac{m}{2^n}x + \left(1 - \frac{m}{2^n}y\right) \in U,$$

bu erda $0 < \frac{m}{2^n} < 1$. Endi U ochiq to'plam ekanligidan, ixtiyoriy 0 < t < 1 uchun $tx + (1-t)y \in U$, ya'ni U qavariq to'plam.

5.3.2. A absolyut qavariq to'plam bo'lishi uchun uning muvozanatlashgan va qavariqligi zarur va etarlidir.

Yechimi. Absolyut qavariq to'plamning muvozanatlashgan va qavariqligi bevosita ta'rifdan kelib chiqadi.

Aksincha A muvozanatlashgan va qavariq, $x, y \in A$ va $|\alpha| + |\beta| \le 1$ bo'lsin. Agar $\alpha = 0$ yoki $\beta = 0$ bo'lsa, u holda $\alpha x + \beta y \in A$ ekanligi ravshan.

 $\alpha \neq 0, \beta \neq 0$ deylik. U holda A muvozanatlashgan ekanligidan

$$\frac{\alpha}{|\alpha|}x \in A, \frac{\beta}{|\beta|} \in A.$$

Endi A ning qavariqligi va

$$\frac{|\alpha|}{|\alpha| + |\beta|} + \frac{|\beta|}{|\alpha| + |\beta|} = 1$$

tengligidan

$$\alpha x + \beta y = (|\alpha| + |\beta|) \left(\frac{|\alpha|}{|\alpha| + |\beta|} \frac{\alpha}{|\alpha|} x + \frac{|\beta|}{|\alpha| + |\beta|} \frac{\beta}{|\beta|} y \right) \in A.$$

5.3.3. Chiziqli topologik fazoda T_3 -aksioma bajarilishini ko'rsating.

Yechimi. Aniqlik uchun x=0 nuqtani va bu nuqtani o'z ichiga olmagan F yopiq to'plamning o'zaro kesishmaydigan atroflari mavjudligini ko'rsatamiz.

 $U=E\setminus F$ bo'lsin. Ayirish amalinig uzluksizligidan nolning W atrofi to'pilib, $W-W\in U$ munosabati bajariladi.

 $[W] \subseteq U$ ekanligini ko'rsatamiz. $y \in [W]$ bo'lsin. U holda, y nuqtaning ixtiyoriy atrofi, jumladan y+W atrofi W to'plam bilan keshishadi, ya'ni $z \in (y+W) \cap W$ nuqta mavjud. U holda $z-y \in W$. Bundan,

$$y = z - (z - y) \in W - W \subseteq U$$

ya'ni $[W] \subseteq U$.

EndiW va $E\setminus [W]$ ochiq toʻplamlar 0 nuqta va F toʻplamlarning oʻzaro keshishmaydigan atroflari boʻladi.

5.3.4. s barcha haqiqiy sonlar ketma-ketligi fazosida

$$p_n((x_k)) = |x_n|, (x_k) \in s,$$
 (5.1)

 $n \in \mathbb{N}$, yarim normalar sistemsi ajratuvchi ekanligini ko'rsating.

Yechimi. Aytaylik $x = (x_k) \in s$, $x \neq 0$ bo'lsin. U holda sunday $n \in \mathbb{N}$ topilib, $x_n \neq 0$. Demak $p_n(x) = |x_n| \neq 0$, ya'ni, $\{p_n\}$ yarim normalar sistemsi ajratuvchi bo'ladi.

5.3.5. s fazoda (5.1) formula orqali aniqlangan topologiya

$$\rho((x_n), (y_n)) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{|x_n - y_n|}{1 + |x_n - y_n|}, (x_n), (y_n) \in s$$
 (5.2)

metrika orqali aniqlangan topologiya bilan ustma-ust tushishini ko'rsating.

Yechimi. Ayatylik,

$$U(p_1, p_2, \cdots, p_n, \varepsilon) = \{x \in s : p_i(x) < \varepsilon, i = \overline{1, n}\}$$

yarimnormalar orqali hosil etgan nolning atrofi bo'lsin. U holda, har bir $1 \le i \le n$ uchun $|x_i| < \varepsilon$. Bundan (5.2) ga asosan, $\rho(0, x) < \varepsilon$, ya'ni x nuqta ρ metrika bo'yicha nolning ε -atrofiga tegishlidir.

Aytaylik, x nuqta ρ metrika bo'yicha nolning ε -atrofiga tegishli, ya'ni $\rho(0,x)<\varepsilon$ bo'lsin. $\varepsilon>\frac{1}{2^n}$ bo'lgan n sonini olamiz. U holda,

$$x \in U(p_1, p_2, \cdots, p_n, \varepsilon).$$

Demak bu topologiyalar ustma-ust tushadi.

5.3.6. E chiziqli fazo va $\mathscr P$ yarim normalar sistemasi bo'lsin. $M \subset E$ to'plam chegaralangan bo'lishi uchun bu to'plam har bir $p \in \mathscr P$ yarim norma bo'yicha chegaralangan bo'lishi zarur va etarli.

Yechimi. Zarurligi. $M\subset E$ to'plam chegaralangan bo'lsin. Har bir $p\in \mathscr{P}$ uchun

$$U(p, 1) = \{x \in E : p(x) < 1\}$$

ochiq to'plamni qaraylik.

M to'plami chegaralangan ekanligidan, shunday $\lambda_0 > 0$ soni topilib, barcha $\lambda > \lambda_0$ uchun $M \subseteq \lambda U(p, 1)$ munosabati bajariladi. Demak, barcha $x \in M$ uchun $p(x) \leq \lambda_0$ tengsizligi bajariladi.

Etarliligi. Endi M to'plam har bir $p \in \mathscr{P}$ yarim norma bo'yicha chegaralangan bo'lsin, ya'ni har bir $p \in \mathscr{P}$ uchun shunday c_p soni topilib, barcha $x \in M$ uchun $p(x) \leq c_p$ tengsizligi bajariladi.

U nolning biror atrofi bo'lsin. U holda, sunday $p_1, p_2, \dots, p_n \in \mathscr{P}$, $\varepsilon > 0$, topilib,

$$U(p_1, p_2, \cdots, p_n, \varepsilon) \subset U$$

bajariladi. $\lambda_0 = \varepsilon^{-1} \max\{c_{p_1}, \dots, c_{p_n}\}$ bo'lsin. U holda har bir $x \in M$ uchun $p_i(x) \leq c_{p_i}$ ekanligidan, $p_i(x) \leq \lambda_0 \varepsilon$ kelib chiqadi. Demak, $x \in \lambda_0 U(p_1, p_2, \dots, p_n, \varepsilon)$, ya'ni $M \subset \lambda_0 U$.

5.3.7. C(0,1)-(0,1) intervalda aniqlangan barcha haqiqiy uzluksiz funksiyalar fazosi bo'lsin. C(0,1) fazoda f funksiya atroflari sistemasi

$$V(f,\varepsilon) = \{g \in C(0,1): |f(t)-g(t)| < \varepsilon, \ \forall \, t \in (0,1)\}$$

ko'rinishdagi to'plamlardan iborat bo'lsin. Bu topologiyada qo'shish amali uzluksiz bo'lib, songa ko'paytirish amali uzluksiz emasligini ko'rsating.

Yechimi. Aytaylik $g, h \in C(0,1), f = g + h$ bo'lsin.

$$V(g,\varepsilon) + V(h,\varepsilon) \subset V(f,2\varepsilon)$$

ekanligini ko'rsatamiz.

 $g_1 \in V(g,\varepsilon), \ h_1 \in V(h,\varepsilon), \ f_1 = g_1 + h_1$ bo'lsin. U holda $\forall t \in (0,1)$ uchun $|g(t) - g_1(t)| < \varepsilon$ va $|h(t) - h_1(t)| < \varepsilon$ tensizliklar o'rinli. Bundan

$$|f(t) - f_1(t)| = |g(t) - g_1(t) + h(t) - h_1(t)| \le$$

$$\le |g(t) - g_1(t)| + |h(t) - h_1(t)| < 2\varepsilon,$$

ya'ni $f_1 \in V(f, 2\varepsilon)$. Demak C(0,1) fazoda qo'shish amali uzluksiz bo'ladi.

Faraz qilaylik songa ko'paytirish amali ham uzluksiz bo'lsin. $f(t)=\frac{1}{t}$ funksiyasini olaylik. U holda shunday $\delta>0$ soni topilib, $|\lambda|<\delta$ tensizligini qanoatlantiruvchi barcha $\lambda\in\mathbb{R}$ sonlari uchun

$$\lambda V(f,\delta) \subset V(0,1)$$

munosabati bajariladi. Bundan $\lambda = \frac{\delta}{2}$ uchun

$$\frac{\delta}{2}|f| < 1,$$

ya'ni $\forall t \in (0,1)$ uchun

$$\frac{\delta}{2} < t$$

tensizligi bajariladi. Bundan $\delta \leq 0$. Bu esa $\delta > 0$ ekanligiga zid. Hosil bo'lgan ziddiyatdan C(0,1) fazoda songa ko'paytirish amali uzluksiz emasligini kelib chiqadi.

5.3.8. $L^0(\Omega, \Sigma, \mu) - (\Omega, \Sigma, \mu)$ o'lchovli fazoda aniqlangan barcha haqiqiy o'lcovli funksiyalar fazosida

$$U(\varepsilon,\delta) = \{ f \in L^0(\Omega,\Sigma,\mu) : \exists A \in \Sigma, \, \mu(\Omega \setminus A) < \delta, \, |f\chi_A| < \varepsilon \},$$

bunda $\varepsilon > 0, \, \delta > 0, \,$ to'plamlarni qaraylik. Quyidagilarni isbotlang:

- 1) $\lambda U(\varepsilon, \delta) = U(|\lambda|\varepsilon, \delta), \ \boldsymbol{bunda} \ \lambda \neq 0;$
- 2) $U(\varepsilon, \delta) + U(\varepsilon, \delta) \subset U(2\varepsilon, 2\delta);$
- 3) $\bigcap \{U(\varepsilon, \delta) : \varepsilon > 0, \ \delta > 0\} = \{0\}.$

Yechimi. 1) Faraz qilaylik $f \in \lambda U(\varepsilon, \delta)$, $\lambda \neq 0$. U holda shunday $g \in U(\varepsilon, \delta)$ topilib, $f = \lambda g$. Endi $g \in U(\varepsilon, \delta)$ bo'lganlikdan,

$$\exists A \in \Sigma, \Rightarrow \mu(\Omega \setminus A) < \delta, |g\chi_A| < \varepsilon.$$

Bundan

$$|f\chi_A| = |\lambda g\chi_A| < |\lambda|\varepsilon.$$

Demak, $f \in U(|\lambda|\varepsilon, \delta)$.

Endi $f \in U(|\lambda|\varepsilon,\delta)$ bo'lsin. U holda

$$\exists A \in \Sigma, \, \mu(\Omega \setminus A) < \delta, \, |f\chi_A| < |\lambda|\varepsilon.$$

Bundan, $\left|\frac{f}{\lambda}\chi_A\right| < \varepsilon$. Demak, $\frac{f}{\lambda}\chi_A \in U(\varepsilon, \delta)$, ya'ni $f \in \lambda U(\varepsilon, \delta)$. 2) $f, g \in U(\varepsilon, \delta)$ bo'lsin. U holda shunday $A, B \in \Sigma$ mavjud bo'lib,

$$\mu(\Omega \setminus A) < \delta, |f\chi_A| < \varepsilon$$

va

$$\mu(\Omega \setminus B) < \delta, |g\chi_B| < \varepsilon.$$

 $C = A \cap B$ bo'lsin. U holda

$$\mu(\Omega \setminus C) = \mu(\Omega \setminus (A \cap B)) = \mu((\Omega \setminus A) \cup (\Omega \setminus B)) \le$$

$$\le \mu(\Omega \setminus A) + \mu(\Omega \setminus B) < \delta + \delta = 2\delta,$$

ya'ni

$$\mu(\Omega \setminus C) < 2\delta.$$

$$|f + g|\chi_C \le |f\chi_C| + |g\chi_C| \le |f\chi_A| + |g\chi_B| < \varepsilon + \varepsilon = 2\varepsilon,$$

ya'ni

$$|f+g|\chi_C < 2\varepsilon$$
.

Demak, $f + g \in U(2\varepsilon, 2\delta)$, ya'ni $U(\varepsilon, \delta) + U(\varepsilon, \delta) \subset U(2\varepsilon, 2\delta)$.

3) Aytaylik, barcha $\varepsilon > 0$, $\delta > 0$ uchun $f \in U(\varepsilon, \delta)$ bo'lsin. Faraz qilaylik, $f \neq 0$. U holda shunday $\lambda > 0$ soni topilib,

$$E = \{t \in \Omega : |f(t)| \ge \lambda\}$$

to'plami musbat o'lchovga ega bo'ladi. Ya'na $\chi_E|f| \geq \lambda \chi_E$.

Endi $\delta < \mu(E)$ shartni qanoatlantiruvchi $\delta > 0$ sonini olaylik. Faraz qilaylik, $f \in U\left(\frac{\lambda}{2}, \delta\right)$. U holda

$$\exists A \in \Sigma, \Rightarrow \mu(\Omega \setminus A) < \delta, |f\chi_A| < \frac{\lambda}{2}.$$

Quyidagi

$$\chi_E|f| \ge \lambda \chi_E,$$

$$|f\chi_A| < \frac{\lambda}{2}$$

tengsizliklardan $E \cap A = \emptyset$ kelib chiqadi. Demak $E \subset \Omega \setminus A$ va $\mu(E) \leq \mu(\Omega \setminus A) < \delta$, ya'ni $\mu(E) < \delta$. Bu esa $\delta < \mu(E)$ tensizligiga zid. Hosil bo'lgan ziddiyatdan f = 0 ekanligi kelib chiqadi. Demak $\bigcap \{U(\varepsilon, \delta) : \varepsilon > 0, \delta > 0\} = \{0\}$.

5.3.9. Agar $A_n \in \Sigma$ va $\chi_{A_n} \stackrel{\mu}{\longrightarrow} 0$ bo'lsa, u holda $\mu(\chi_{A_n}) \to 0$ ekanligini ko'rsating.

Yechimi. Aytaylik $A_n \in \Sigma$ va $\chi_{A_n} \xrightarrow{\mu} 0$ bo'lsin. Ixtiyoriy $\delta > 0$, $0 < \varepsilon < 1$ sonlarini olaylik. $\chi_{A_n} \xrightarrow{\mu} 0$ bo'lganlikdan, shunday n_0 nomeri topilib, barcha $n \geq n_0$ nomerlari uchun $\chi_{A_n} \in U(\varepsilon, \delta)$ bajariladi. Bundan $\forall n \geq n_0$ uchun $\exists B_n \in \Sigma$ topilib,

$$\mu(\Omega \setminus B_n) < \delta, |\chi_{A_n} \chi_{B_n}| < \varepsilon < 1.$$

Bundan, $\chi_{A_n}\chi_{B_n}=0$, ya'ni $A_n\cap B_n=\emptyset$. Demak, $A_n\subset\Omega\setminus B_n$ va

$$\mu(A_n) \le \mu(\Omega \setminus B_n) < \delta,$$

ya'ni $\mu(A_n) \to 0$.

5.3.10. Agar $\mu(\Omega)<+\infty$ bo'lsa, $L^0(\Omega,\Sigma,\mu)$ fazoda o'lchov bo'yicha yaqinlashish topologiyasi

$$\rho(f,g) = \int_{\Omega} \frac{|f(t) - g(t)|}{1 + |f(t) - g(t)|} d\mu(t)$$

metrika hosil etgan topologiya bilan ustma-ust tushishini ko'rsating.

Yechimi. Aytaylik $\varepsilon > 0$ va $f \in U(\varepsilon, \varepsilon)$ bo'lsin. U holda shunday $A \in \Sigma$ to'plam topilib,

$$\mu(\Omega \setminus A) < \varepsilon, |f\chi_A| < \varepsilon.$$

Bundan

$$\rho(f,0) = \int_{\Omega} \frac{|f(t)|}{1 + |f(t)|} d\mu(t) =$$

$$= \int_{\Omega \setminus A} \frac{|f(t)|}{1 + |f(t)|} d\mu(t) + \int_{A} \frac{|f(t)|}{1 + |f(t)|} d\mu(t) \le$$

$$\leq \int\limits_{\Omega \backslash A} 1 d\mu(t) + \int\limits_A \varepsilon d\mu(t) = \mu(\Omega \backslash A) + \varepsilon \mu(A) < \varepsilon + \varepsilon \mu(A),$$

ya'ni

$$\rho(f,0) < \varepsilon(1 + \mu(\Omega)).$$

Demak, $U(\varepsilon, \varepsilon) \subset B(0, r)$, bu erda $r = \varepsilon(1 + \mu(\Omega))$.

Endi ixtiyoriy ε , $\delta > 0$ sonlar uchun shunday r > 0 topilib,

$$B(0,r) \subset U(\varepsilon,\delta)$$

ekanligini ko'rsatamiz.

$$r = \frac{\delta \varepsilon}{1 + \varepsilon}$$
 bo'lsin.

$$A = \{ t \in \Omega : |f(t)| < \varepsilon \}$$

to'plamni olamiz. U holda $f \in B(0,r)$ uchun

$$r > \rho(f,0) = \int_{\Omega} \frac{|f(t)|}{1 + |f(t)|} d\mu(t) \ge \int_{\Omega \setminus A} \frac{|f(t)|}{1 + |f(t)|} d\mu(t) \ge$$

$$\ge \int_{\Omega \setminus I} \frac{\varepsilon}{1 + \varepsilon} d\mu(t) = \mu(\Omega \setminus A) \frac{\varepsilon}{1 + \varepsilon}.$$

Bundan

$$\mu(\Omega \setminus A) < r \frac{1+\varepsilon}{\varepsilon} = \frac{\delta \varepsilon}{1+\varepsilon} \cdot \frac{1+\varepsilon}{\varepsilon} = \delta,$$

ya'ni $\mu(\Omega \setminus A) < \delta$. Hamda $|f\chi_A| < \varepsilon$. Demak, $f \in U(\varepsilon, \delta)$. Bundan $B(0, r) \subset U(\varepsilon, \delta)$ munosabatga ega bo'lamiz.

5.3.11. E chiziqli topologik fazo. $A \subset E$ chegaralangan bo'lishi uchun ixtiyoriy $\{x_n\} \subset A$ va $\lambda_n \to 0$, $\{\lambda_n\} \subset \mathbb{R}$ uchun $\lambda_n x_n \to 0$ bajarilishi zarur va etarli.

Yechimi. Zarurligi. $\{x_n\} \subset A$, $\{\lambda_n\} \subseteq \mathbb{R}$, $\lambda_n \to 0$ bo'lsin. V nolning muvozonatlashtirilgan atrofi bo'lsa, u holda shunday $\lambda > 0$ topilib, $A \subset \lambda V$. Jumladan, $x_n \in \lambda V$, $n \in \mathbb{N}$. Endi $|\lambda_n| \leq \frac{1}{\lambda}$ bo'lgan n lar uchun $\lambda_n x_n \in \lambda_n \lambda V \subset V$, ya'ni $\lambda_n x_n \to 0$.

Etarligi. Faraz qilaylik, A chegaralangan to'plam. U holda, shunday nolning V atrofi topilib, barcha λ uchun $A\setminus \lambda V\neq \emptyset.$ $\lambda=1,2,...$ qiymatlarida

$$x_n \in A \setminus nV, n = 1, 2, \dots$$

nuqtalarini olamiz. $\{x_n\} \subset A$, $\frac{1}{n} \to 0$ dan $\frac{1}{n}x_n \to 0$. Lekin bu barcha n lar uchun $\frac{1}{n}x_n \notin V$ ekanligi ziddir.

5.3.12. Agar A va B to'plamlar chegaralangan bo'lsa, u holda

$$A + B = \{x : x = y + z, y \in A, z \in B\}$$

to'plam ham chegaralanganligini ko'rsating.

Yechimi. $\{x_n\} \subset A+B$, $\{\lambda_n\} \subset \mathbb{R}$, $\lambda_n \to 0$ bo'lsin. U holda, har bir $n \in \mathbb{N}$ uchun $y_n \in A$, $z_n \in B$ topilib, $x_n = y_n + z_n$. A va B chegaralanganligidan, 5.3.11 - misolga ko'ra $\lambda_n y_n \to 0$ va $\lambda_n z_n \to 0$. Bundan $\lambda_n x_n = \lambda_n y_n + \lambda_n z_n \to 0$. Yana 5.3.11 - misoldaman A + B chegaralangandir.

5.3.13. E chiziqli topologik fazo, $A \subset E$ qavariq, muvozanatlashgan, yutuvchi toʻplam boʻlsin. E fazoda

$$p_A(x) = \inf\{t > 0 : t^{-1}x \in A\}$$

funksionalni qaraylik. Bu funksional Minkovskiy funksionali deyiladi va u quyidagi xossalarga ega:

- **a)** $p_A(\alpha x) = |\alpha| p_A(x);$
- **b)** $p_A(x+y) \le p_A(x) + p_A(y)$.

Yechimi. a) Avval $\alpha \geq 0$ holni qaraymiz.

$$p_A(\alpha x) = \inf\{t > 0 : t^{-1}\alpha x \in A\} = \inf\{\alpha t > 0 : t^{-1}x \in A\} =$$
$$= \alpha \inf\{t > 0 : t^{-1}x \in A\} = |\alpha|p_A(x).$$

Endi $p_A(-x) = p_A(x)$ tengligini ko'rsatamiz. A muvozanatlashgan to'plam ekanligidan A = -A. Bundan

$$p_A(-x) = \inf\{t > 0 : t^{-1}(-x) \in A\} = \inf\{t > 0 : t^{-1}x \in -A\} =$$
$$= \inf\{t > 0 : t^{-1}x \in A\} = p_A(x).$$

Endi $\alpha < 0$ holni qaraymiz.

$$p_A(\alpha x) = p_A((-\alpha)(-x)) = -\alpha p_A(-x) = -\alpha p_A(x) = |\alpha| p_A(x).$$

b) Aytaylik $p_A(x) < s$, $p_A(y) < t$ va u = s + t bo'lsin. U holda $s^{-1}x \in A$, $t^{-1}x \in A$ va A ning qavariqligidan,

$$u^{-1}(x+y) = \frac{s}{u}(s^{-1}x+) + \frac{t}{u}(t^{-1}y) \in A.$$

Bundan $p_A(x+y) \le u$, ya'ni $p_A(x+y) \le p_A(x) + p_A(y)$.

5.3.14. \mathbb{R}^n fazoda

$$V = \{ x \in \mathbb{R} : |x_i| \le a_i, i = \overline{1, n} \},\$$

bunda $a_i > 0$, $i = \overline{1, n}$, to planning Minkovskiy funksionalini toping.

Yechimi. $x = (x_i) \in \mathbb{R}^n$ bo'lsin. U holda

$$t^{-1}x \in V \Leftrightarrow |t^{-1}x_i| \le a_i, \ 1 \le i \le n, \Leftrightarrow$$
$$\Leftrightarrow t \ge \frac{|x_i|}{a_i}, \ 1 \le i \le n, \Leftrightarrow t \ge \max\left\{\frac{|x_i|}{a_i} : \ 1 \le i \le n\right\}.$$

Demak,

$$t^{-1}x \in V \iff t \ge \max\left\{\frac{|x_i|}{a_i} : 1 \le i \le n\right\}.$$

Bundan,

$$p_V(x) = \sup\{t > 0 : t^{-1}x \in V\} = \max_{1 \le i \le n} \frac{|x_i|}{a_i}.$$

Demak,

$$p_V(x) = \max_{1 \le i \le n} \frac{|x_i|}{a_i}.$$

5.3.15. X Hausdorf chiziqli topologik fazosi bo'lsin. X normalangan bo'lishi uchun bu fazoda nolning chegaralangan qavariq V atrofining mavjudligi zarur va etarlidir.

Yechimi. Zarurligi. X normalangan fazo bo'lsa, u holda uning birlik shari $V=\{x\in X:||x||\leq 1\}$ nolning chegaralangan qavariq atrofi bo'ladi.

Etarliligi. Aytaylik V nolning chegaralangan qavariq atrofi bo'lsin. V ning o'rniga $[V] \cap (-[V])$ ni olib, biz V ning absolyut qavariq deb olishimiz mumkin. Har bir $x \in X$ uchun

$$||x|| = p_V(x)$$

deylik, bunda $p_V - V$ ning Minkovskiy funksionali.

 $x\in X$ uchun ||x||=0 ekanligidan x=0 kelib chiqishini ko'rsatamiz. X Hausdorf fazosi ekanligidan nolning shunday U atrofi topilib, $x\not\in U$ o'rinli bo'ladi. V chegaralangan ekanligidan, shunday $\lambda>0$ soni mavjudki, $V\subset \lambda U$. U holda $\lambda\notin V$. Bundan

$$||x|| = p_V(x) = \frac{1}{\lambda} p_V(\lambda x) > \frac{1}{\lambda},$$

ya'ni $||x|| \neq 0$. Demak, $||\cdot||$ funksiya X fazoda norma bo'ladi.

Endi bu norma hosil etgan topologiya X ning asl topologiya bilan ustma-ust tushushini ko'rsatamiz. Aytaylik, U nolning biror atrofi bo'lsin. V ning chegaralanganligidan, $\lambda > 0$ topilib $\lambda V \subset U$. Bundan

$$\{\lambda V: \lambda>0\}$$

sistema nolning atroflari sistemasi ekanligini ko'rsatadi. Bu esa ikkala topologiya'ning ayniyligini anglatadi.

Mustaqil ish uchun masalalar

- 1. Agar A va B qavariq to'plamlar bo'lsa, u holda ixtiyoriy α , β sonlari uchun $\alpha A + \beta B$ qavariq to'plam ekanligini ko'rsating.
 - **2.** $\lambda A + \mu A = (\lambda + \mu)A$ tengligi har doim o'rinlimi?
- **3.** Agar λ , $\mu \geq 0$ va A qavariq to'plam bo'lsa, u holda $\lambda A + \mu A = (\lambda + \mu)A$ tengligi ekanligini isbotlang.
- 4. Agar A va B muvozanatlashgan to'plamlar bo'lsa, u holda A+B muvozanatlashgan to'plam ekanligini ko'rsating.
- **5.** Agar A va B yopiq to'plamlar bo'lsa, u holda A + B ham yopiq to'plam bo'ladimi?
- **6.** Agar A yopiq to'plam va B kompakt to'plam bo'lsa, u holda A + B ham yopiq to'plam ekenligini isbotlang.
- 7. \mathbb{R}^2 da markazi koordinatalar boshida bo'lgan doira uchun Minkovskiy funksionalini toping.
- $8.~\mathbb{R}^2$ da markazi koordinatalar boshida va tomonlari koordinatalar o'qlariga parallel bo'lgan kvadrat uchun Minkovskiy funksionalini toping.
- $\mathbf{9.} \ \mathbb{R}^2$ da markazi koordinatalar boshida va diagonallari koordinatalar o'qlarida yotgan kvadrat uchun Minkovskiy funksionalini toping.
- 10. Chiziqli topologik fazoda chekli sondagi chegaralangan to'plamlarning birlashamsi ham chegaralangan ekanligini ko'rsating.
- 11. Chiziqli topologik fazoda qavariq to'plamning ichi ham qavariq ekanligini ko'rsating.
- 12. Diskret topologiyali chiziqli fazo chiziqli topologik fazo tashkil etmasligini ko'rsating.
- 13. Agar A va B kompakt to'plamlar bo'lsa, u holda A+B kompakt to'plam ekanligini ko'rsating.
- 14. Chiziqli topologik fazoda quyidagi to'plamlarning chegaralangan ekanligini ko'rsating:
 - a) bir nuqtali to'plam;
 - b) chekli to'plam;
 - c) yaqinlashuvchi ketma-ketlik;
 - d) kompakt to'plam.

VI BOB

Chiziqli operatorlar

6.1. Chiziqli operatorlar

Agar X va Y chiziqli fazolar bo'lsa, u holda $A:X\to Y$ akslantirishga operator deyiladi. Agar bu operatorning aniqlanish sohasiga tegishli ixtiyoriy x,y elementlar va ixtiyoriy α,β sonlari uchun

$$A(\alpha x + \beta y) = \alpha A(x) + \beta A(y)$$

tengligi o'rinli bo'lsa, u holda A chiziqli operator deb ataladi. A operatorning aniqlanish va qiymatlar sohalarini mos ravishda D(A) va R(A) ko'rinishlarda belgilaymiz.

X va Y normalangan fazolar, $A: X \to Y$ chiziqli operator bo'lsin. Agar ixtiyoriy $\varepsilon > 0$ soni uchun shunday $\delta > 0$ soni topilib, $\|x_1 - x_2\| < \delta$ tengsizligini qanoatlantiruvchi barcha $x_1, x_2 \in D(A)$ elementlar uchun $\|Ax_1 - Ax_2\| < \varepsilon$ tengsizligi o'rinli bo'lsa, u holda A operatori uzluksiz deyiladi.

Agar $A:X\to Y$ chiziqli operatori X fazosining har bir chegaralangan to'plamini Y fazosining chegaralangan to'plamiga akslantirsa, u holda A chegaralangan operator deb ataladi.

X va Y normalangan fazolar va $A: X \to Y$ chiziqli operator bo'lsin. Agar shunday C>0 soni topilib, barcha $x\in D(A)$ elementlar uchun $\|Ax\|\leq C\|x\|$ tengsizligi bajarilsa, u holda A operatori chegaralangan bo'ladi. Bu tengsizlikni qanoatlantiruvchi sonlar to'plamining quyi chegarasi A operatorning normasi deb ataladi, ya'ni

$$||A|| = \inf\{C > 0 : \forall x \in D(A), ||Ax|| \le C||x||\}.$$

Masalalar

6.1.1. X va Y chiziqli fazolar bo'lib, $A: X \to Y$ chiziqli operator bo'lsin. Agar A operatorning aniqlanish sohasiga tegishli x_1, x_2, \ldots, x_n elementlar chiziqli bog'liq bo'lsa, u holda Ax_1, Ax_2, \ldots, Ax_n elementlar ham chiziqli bog'liq ekanligini isbotlang.

Yechimi. $x_1, x_2, \dots x_n$ elementlar chiziqli bog'liq bo'lganligidan kamida bittasi noldan farqli $\alpha_1, \alpha_2, \dots, \alpha_n$ sonlari topilib,

$$\alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_n x_n = 0$$

tengligi o'rinli bo'ladi. Chiziqli operatorning noldagi qiymati nol bo'lganligidan, $A(\alpha_1x_1 + \ldots + \alpha_nx_n) = 0$ tengligini yoza olamiz. Demak $\alpha_1Ax_1 + \ldots + \alpha_2Ax_2 = 0$ tengligi, $\alpha_1, \ldots, \alpha_n$ sonlarning hech bo'lmaganda bittasi noldan farqli bo'lganda o'rinli. Bundan Ax_1, Ax_2, \ldots, Ax_n elementlarning chiziqli bog'liq ekanligi kelib chiqadi.

6.1.2. X va Y chiziqli fazolar bo'lib, $A: X \to Y$ chiziqli operatorning aniqlanish sohasiga tegishli x_1, x_2, \ldots, x_n elementlar chiziqli erkli bo'lsa, u holda Ax_1, Ax_2, \ldots, Ax_n elementlar ham chiziqli erkli bo'ladimi?

Yechimi. Umuman aytganda, x_1, x_2, \ldots, x_n elementlar chiziqli erkli bo'lsada, Ax_1, Ax_2, \ldots, Ax_n elementlar chiziqli bog'liq bo'lishi mumkin. Masalan, A operatorning yadrosi ker A noldan farqli bo'lib, uning noldan farqli x elementi uchun $x = \alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_n x_n$ tengligi o'rinli bo'lsin. $x \neq 0$ bo'lganligidan $\alpha_1, \ldots, \alpha_n$ sonlarning kamida bittasi noldan farqli. Shu bilan birga

$$\alpha_1 A x_1 + \alpha_2 A x_2 + \ldots + \alpha_n A x_n = A(\alpha_1 x_1 + \alpha_2 x_2 + \alpha_n x_n) = A x = 0.$$

Bundan Ax_1, Ax_2, \ldots, Ax_n elementlarning chiziqli bog'liq ekanligi kelib chiqadi.

6.1.3. X va Y chiziqli fazolar va $A: X \to Y$ chiziqli operatorining aniqlanish sohasi D(A) bo'lsin. Har bir $G \subset D(A)$ qavariq to'plam uchun A(G) to'plam qavariq bo'lishini isbotlang.

Yechimi. A(G) to'plamiga tegishli xoxlagan y_1 va y_2 nuqtalarini olamiz. U holda G to'plamida shunday x_1 va x_2 nuqtalari mavjud bo'lib, $y_1 = Ax_1$ va $y_2 = Ax_2$ tengliklari o'rinli bo'ladi. Bundan [0,1] segmentiga tegishli xoxlagan α soni uchun

$$\alpha y_1 + (1 - \alpha)y_2 = \alpha Ax_1 + (1 - \alpha)Ax_2 = A(\alpha x_1 + (1 - \alpha)x_2).$$

G to'plami qavariq bo'lganligidan $\alpha x_1 + (1-\alpha)x_2 \in G$. Shu sababli

$$\alpha y_1 + (1 - \alpha)y_2 \in A(G)$$
,

ya'ni A(G) to'plami qavariq.

6.1.4. X va Y chiziqli fazolar bo'lib, $A: X \rightarrow Y$ chiziqli operator bo'lsin. A operatorning qiymatlari to'plamini R(A)

ko'rinishida belgilaymiz. Agar $B \subset R(A)$ to'plami qavariq bo'lsa, $G = \{x \in D(A) : Ax \in B\}$ to'plami qavariq bo'ladimi?

Yechimi. G to'plamidan xoxlagan x_1 va x_2 nuqtalrini olamiz. B to'plami qavariq bo'lganligidan barcha $\alpha \in [0,1]$ sonlari uchun

$$A(\alpha x_1 + (1 - \alpha)x_2) = \alpha Ax_1 + (1 - \alpha)Ax_2 \in B,$$

ya'ni $\alpha x_1 + (1 - \alpha)x_2 \in G$. Bundan G to'plamining qavariq ekanligi kelib chiqadi.

6.1.5. X chiziqli fazosida ikki $\|\cdot\|_1$ va $\|\cdot\|_2$ ekvivalent normalar berilgan bo'lib, $A:X\to X$ chiziqli operator bo'lsin. Agar A operator berilgan normalarning biri bo'yicha chegaralangan bo'lsa, u holda u ikkinchi norma bo'yicha ham chegaralangan ekanligini isbotlang.

Yechimi. Berilgan operator $\|\cdot\|_1$ norma bo'yicha chegaralangan bo'lsin. $\|\cdot\|_1$ va $\|\cdot\|_2$ normalar ekvivalent bo'lganligi sababli shunday $\alpha > 0, \beta > 0$ sonlar topilib, xoxlagan $x \in X$ uchun

$$\alpha ||x||_1 \le ||x||_2 \le \beta ||x||_1$$

munosabati o'rinli. Shu bilan birga, A operator $\|\cdot\|_1$ norma bo'yicha chegaralangan bo'lgani uchun shunday o'zgarmas c soni topilib

$$||Ax||_1 \le c||x||_1$$

tengsizligi o'rinli bo'ladi. Natijada,

$$||Ax||_2 \le \beta ||Ax||_1 \le \beta c ||x||_1 \le \frac{\beta \cdot c}{\alpha} ||x||_2.$$

Demak, A operator chegaralangan.

6.1.6. X va Y normalangan fazolar, $A: X \rightarrow Y$ chegaralangan chiziqli operator bo'lib, D(A) = X bo'lsin. U holda

$$||A|| = \sup_{x \in X, \ x \neq 0} \frac{||Ax||}{||x||}$$

 $tengligini\ is botlang.$

Yechimi. $\alpha=\sup_{\|x\|\leq 1}\|Ax\|$ ko'rinishida belgilash kiritamiz. Aoperator chiziqli bo'lganlikdan

$$\alpha = \sup_{\|x\| \le 1} \|Ax\| = \sup_{x \ne 0} \frac{\|Ax\|}{\|x\|}$$

tengligi o'rinli bo'ladi. Shu sababli xoxlagan x uchun

$$\frac{\|Ax\|}{\|x\|} \le \alpha,$$

ya'ni

$$||Ax|| \le ||\alpha|| ||x||.$$

A operatorning normasi $||Ax|| \le c||x||$ tengsizligini qanoatlantiruvchi c sonlarning eng kichigi bo'lishidan $||A|| \le \alpha$ tengsizligini yoza olamiz.

Shu bilan birga aniq yuqori chegara tarifi bo'yicha xoxlagan $\varepsilon>0$ soni uchun shunday $x_{\varepsilon}\neq 0$ elementi topilib

$$\alpha - \varepsilon \le \frac{\|Ax_{\varepsilon}\|}{\|x_{\varepsilon}\|}$$

yoki

$$(\alpha - \varepsilon) \|x_{\varepsilon}\| \le \|Ax_{\varepsilon}\| \le c \|x_{\varepsilon}\|$$

munosabatlari o'rinli. Oxirgi qo'sh tengsizlikdan $\alpha - \varepsilon \leq c$ tengsizligini yoza olamiz va $\varepsilon > 0$ xoxlagancha olingan son bo'lganligidan, $\alpha \leq \|A\|$ tengsizligiga ega bo'lamiz. Natijada, $\|A\| = \alpha$ tengligining o'rinli ekanligi kelib chiqadi.

6.1.7. Quyida berilgan operatorlarning chiziqli, chegaralangan ekanligini ko'rsating va normalarini toping:

a)
$$A: C[0,1] \to C[0,1], \ \boldsymbol{bunda} \ Ax(t) = \int_{0}^{t} x(s) \, ds;$$

- **b)** $A: C[-1,1] \to C[0,1], \ \textbf{bunda} \ Ax(t) = x(t);$
- c) $A: C[0,1] \to C[0,1], \ bunda \ Ax(t) = t^2 x(0);$
- **d)** $A: C[0,1] \to C[0,1], \ bunda \ Ax(t) = x(t^2);$
- **e)** $A: C^{1}[a,b] \to C[a,b], \ bunda \ Ax(t) = x(t);$
- f) $A: C^1[a,b] \to C[a,b]$, bunda $Ax(t) = \frac{dx}{dt}$. Yechimi. a)

$$A(\alpha x + \beta y) = \int_{0}^{t} (\alpha x(s) + \beta y(s)) ds =$$

$$= \alpha \int_{0}^{t} x(s)ds + \beta \int_{0}^{t} y(s)ds = \alpha Ax + \beta Ay.$$

Demak A operator chiziqli. Endi bu operatorning chegaralangan ekanligini ko'rsatamiz.

$$||Ax|| = \left\| \int_{0}^{t} x(s) \, ds \right\| = \max_{t \in [0,1]} \left| \int_{0}^{t} x(s) \, ds \right| \le \max_{t \in [0,1]} \int_{0}^{t} |x(s)| \, ds \le t$$

$$\leq \max_{t \in [0,1]} \int_{0}^{t} \max_{s \in [0,1]} |x(s)| \, ds = \max_{t \in [0,1]} \int_{0}^{t} ||x|| \, ds = ||x|| \max_{t \in [0,1]} \int_{0}^{t} \, ds = ||x||.$$

Demak $||Ax|| \leq ||x||$. Bu tengsizlikdan A operatorning chegaralangan ekanligi ko'rinadi.

Shu bilan birga $\|A\| = \sup_{t \in [0,1]} \|Ax(t)\| \leq 1$ va x(s) = 1 uchun Ax(1) =

1 bo'lganligidan ||A|| = 1 tengligining o'rinli ekanligi kelib chiqadi. b)

$$A(\alpha x + \beta y) = \alpha x(t) + \beta y(t) = \alpha Ax + \beta Ay.$$

Bundan A operatorning chiziqli ekanligi kelib chiqadi.

Chegaralangan ekanligini quyidagicha ko'rsatamiz:

$$||Ax||_{C[0,1]} = ||x(t)||_{C[0,1]} = \max_{t \in [0,1]} |x(t)| \le \max_{t \in [-1,1]} |x(t)| = ||x(t)||_{C[-1,1]}.$$

Shu bilan birga [0,1]segmentda x(t)=1funksiya uchun $\|Ax(t)\|=1$ bo'lganligidan

$$||A|| = \sup_{||x||=1} ||Ax(t)|| = 1$$

tengligiga ega bo'lamiz.

c) Berilgan operatorning chiziqli ekanligini ko'rsatamiz:

$$A(\alpha x(t) + \beta y(t)) = t^2(\alpha x(0) + \beta y(0)) =$$
$$= \alpha t^2 x(0) + \beta t^2 y(0) = \alpha A x(t) + \beta A y(t).$$

Endi chegaralangan ekanligini ko'rsatamiz:

$$||Ax(t)|| = ||t^2x(0)|| = |x(0)|||t^2|| =$$

$$= |x(0)| \max_{t \in [0,1]} t^2 = |x(0)| \le \max_{t \in [0,1]} |x(t)| = ||x(t)||.$$

x(0) = 1 bo'lgan funksiya uchun ||Ax(0)|| = 1 bo'lganligidan ||A|| = 1 tengligiga ega bo'lamiz.

d) $A(\alpha x(t)+\beta y(t))=\alpha x(t^2)+\beta y(t^2)=\alpha Ax(t)+\beta Ay(t)$. Demak A operator chiziqli. [0,1] segmentda

$$\max |x(t)| = \max |x(t^2)|$$

tengligi o'rinli bo'lganligidan

$$||Ax(t)|| = ||x(t^2)|| = \max_{t \in [0,1]} |x(t^2)| = \max_{t \in [0,1]} |x(t)| = ||x(t)||.$$

Demak, ||Ax(t)|| = ||x(t)||. Bu tenglikdan A operatorning chegaralangan va normasining birga teng ekanligi kelib chiqadi.

e) Berilgan operatorning chiziqli ekanligini ko'rsatamiz:

$$A(\alpha x(t) + \beta y(t)) = \alpha x(t) + \beta y(t) = \alpha Ax(t) + \beta Ay(t) .$$

Endi chegaralangan ekanligini ko'rsatamiz:

$$||Ax(t)||_{C[a,b]} = ||x(t)||_{C[a,b]} = \max_{t \in [a,b]} |x(t)| \le$$

$$\leq \max_{t \in [a,b]} \{ |x^{(k)}(t)| : k = 0, 1 \} = ||x(t)||_{C^1[a,b]}.$$

Demak, berilgan operator chegaralangan, shu bilan birga, [a,b] segmentda x(t)=1 funksiya uchun $\|Ax(t)\|=1$ bo'lganligidan $\|A\|=1$ tengligiga ega bo'lamiz.

f)

$$A(\alpha x(t) + \beta y(t)) = \frac{d}{dt}(\alpha x(t) + \beta y(t)) =$$

$$= \alpha \frac{dx}{dt} + \beta \frac{dy}{dt} = \alpha Ax(t) + \beta Ay(t).$$

$$\|Ax(t)\|_{C[a,b]} = \|x'(t)\|_{C[a,b]} = \max_{t \in [a,b]} |x'(t)| \le \max_{t \in [a,b], 0 \le k \le 1} \|x(t)\|_{C^1[a,b]}.$$

Demak berilgan operator chiziqli va chegaralangan. Shu bilan birga, $x(t) = \frac{1}{e^b}e^t$ funksiya uchun $||Ax(t)||_{C[a,b]} = ||x'(t)||_{C[a,b]} = 1$ bo'lganligidan ||A|| = 1 tengligiga ega bo'lamiz.

6.1.8. Shunday X normalangan fazoga va shunday A, B chegaralangan chiziqli operatorlarg'a misol keltiringki

$$AB \neq BA$$

munosabat o'rinli bo'lsin.

Yechimi. $X = \mathbb{R}^2$ bo'lib,

$$A = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$$

bo'lsa, $AB = \begin{pmatrix} 2 & 3 \\ 2 & 1 \end{pmatrix}$ va $BA = \begin{pmatrix} 3 & 4 \\ 1 & 0 \end{pmatrix}$ bo'ladi, ya'ni $AB \neq 0$

 $BA.\ X$ chekli o'l
chamli bo'lganligidan A va B operatorlar uzluksiz, shu sababli chegara
langan.

6.1.9. Noldan farqli A, B chegaralangan chiziqli operatorlari uchun $R(A) \cap R(B) = 0$ munosabati o'rinli bo'lsa, A va B operatorlarining chiziqli erkli ekanligini isbotlang.

Yechimi. Aksincha faraz qilamiz, ya'ni A va B operatorlar chiziqli bog'liq bo'lsin. U holda shunday $\alpha \neq 0$ soni mavjud bo'lib, $A = \alpha B$ tengligi o'rinli bo'ladi. $B \neq 0$ bo'lganligidan $Bx \neq 0$ bo'ladigan $x \in X$ nuqta topiladi. Bx = y bo'lsin. U holda

$$A(\alpha^{-1}x) = \alpha^{-1}Ax = \alpha^{-1}\alpha Bx = y.$$

Natijada, $y \in R(A) \cap R(B)$. Bu masala shartiga zid. Demak, A va B operatorlar chiziqli erkli.

6.1.10. X normalangan fazoni Y normalangan fazoga akslantiruvchi A chiziqli operatorning uzluksiz bo'lishi uchun, uning chegaralanganligi zarur va etarli ekanligini isbotlang.

Yechimi. Zarurligi. A uzluksiz chiziqli operator bo'lsin.

$$C_0 = \sup_{\|x\| \le 1} ||A(x)|| < \infty$$

ekanligini ko'rsatishimiz kerak. Agar $C_0 = \infty$ bo'lsa, u holda shunday $\{x_n\} \subset X$, $||x_n|| = 1$ ketma-ketligi topilib,

$$\lambda_n = ||A(x_n)|| \to \infty$$

bo'ladi. $y_n = \lambda_n^{-1} x_n$ ketma-ketligini qaraylik. $y_n \to 0$ ekanligi ravshan. U holda, A uzluksiz bo'lganligidan, $A(y_n) \to 0$ kelib chiqadi. Biroq

$$||A(y_n)|| = ||A(\lambda_n^{-1}x_n)|| = \frac{||A(x_n)||}{||A(x_n)||} = 1.$$

Bu ziddiyatdan A operatorning chegaralangan ekanligi kelib chiqadi.

Etarliligi. Aoperator chegaralangan bo'lsin. U holda xoxlagan $x \in X$ uchun

$$||A(x)|| \le C||x||$$

tengsizlikni qanoatlantiruvchi chekli C soni mavjuddir. Bundan xoxlagan $\varepsilon > 0$ soni uchun $\delta = \frac{\varepsilon}{C}$ deb olsak, u holda $||x|| < \delta$ bo'lganda $||A(x)|| < \varepsilon$ tengsizligi o'rinli bo'ladi. Bundan A operatorning 0 nuqtada, demak X da uzluksiz ekanligi kelib chiqadi.

6.1.11. X normalangan fazo, A chegaralangan chiziqli operator va $N_k = \ker A^k$, k = 0, 1, ..., bo'lsa, u holda

$$N_0 \subset N \subset \dots N_k \subset \dots$$

 $munos a batini\ is botlang.$

Yechimi. Agar $x_1 \in \ker A$ bo'lsa, u holda $Ax_1 = 0$. Shu sababli

$$A^2x_1 = AAx_1 = A0 = 0,$$

ya'ni $x_1 \in N_2$. Agar $x_2 \in N_2$ bo'lsa, u holda $A^2x_2 = 0$. Shu sababli

$$A^3 x_2 = AA^2 x_2 = 0.$$

Shunday davom ettirsak

$$N_0 \subset N_1 \subset \ldots \subset N_n \subset \ldots$$

munosabatga ega bo'lamiz.

6.1.12. C[a,b] fazosida

$$f(x) = \int_{a}^{b} \varphi(t)x(t)dt$$

$$||f|| = \int_{a}^{b} |\varphi(t)| dt$$

soniga tengligini ko'rsating.

Yechimi. $x \in C[a, b]$ uchun

$$|f(x)| = \left| \int_{a}^{b} \varphi(t)x(t)dt \right| \le \int_{a}^{b} |\varphi(t)||x(t)|dt \le$$
$$\le \int_{a}^{b} |\varphi(t)| \max_{a \le t \le b} |x(t)|dt = ||x|| \int_{a}^{b} |\varphi(t)|dt$$

ya'ni,

$$||f||| \le \int_{a}^{b} |\varphi(t)| \, dt.$$

Ixtiyoriy $\varepsilon > 0$ sonini olib, [a,b] segmentni $a = t_0 < t_1 < \ldots < t_n = b$ nuqtalar orqali shunday n bo'laklarga bo'lamizki, natijada har bir $[t_k, t_{k+1}]$ segmentda φ funksiyaning tebranishi $\varepsilon > 0$ sonidan kichik bo'lsin. Barcha bo'laklarni ikki guruhga ajratamiz. Birinchi guruhga φ funksiyaning qiymatlari ishoralari har bir bo'lakda o'zgarmaydigan barcha $\sigma'_1, \sigma'_2, \ldots \sigma'_r$ segmentlarni (φ) funksiya qiymatlari ishorasi bu segmentlarning biridan ikkinchisiga o'tganda o'zgarishi

mumkin), ikkinchi guruhga qolgan barcha σ_1'' , σ_2'' , .. σ_p'' segmentlarni kiritamiz. Natijada, φ uzluksiz va uning qiymatlari σ_k'' ($k = \overline{1,p}$) segmentda har xil ishorali bo'lganligidan σ_k'' segmentda φ funksiyaning qiymati nolga teng bo'ladigan nuqta topiladi.

Shunga ko'ra

$$|\varphi(t)| < \varepsilon \quad (t \in \sigma_k'', \ k = \overline{1, p})$$

tengsizligiga ega bo'lamiz.

Endi C[a, b] fazosidan $\tilde{x}(t)$ funksiyani quyidagicha aniqlaymiz.

$$\tilde{x}\left(t\right)=sign\,\varphi\left(t\right)\quad\left(t\in\sigma_{j}^{\prime},j=\overline{1,r}\right).$$

[a,b] segmentning boshqa nuqtalarida $\tilde{x}(t)$ funksiyani chiziqli deb olamiz. Bunda, agar a (yoki b) ikkinchi guruhga tegishli segmentning uchi bo'lsa, u holda $\tilde{x}(a)=0$ (mos ravishda $\tilde{x}(b)=0$) tengligi o'rinli deb hisoblaymiz. $f(\tilde{x})$ miqdorni quyidagicha yozamiz.

$$f(\tilde{x}) = \int_{a}^{b} \varphi(t)\tilde{x}(t)dt = \sum_{j=1}^{r} \int_{\sigma'_{j}} \varphi(t)\tilde{x}(t)dt + \sum_{k=1}^{p} \int_{\sigma''_{k}} \varphi(t)\tilde{x}(t)dt.$$

Natijada σ'_j , $i=\overline{1,r}$ segmentlarda $\varphi(t)\tilde{x}(t)=|\varphi(t)|$ bo'lganligidan va

$$\left| \sum_{j=1}^{p} \int_{\sigma_{j}''} \varphi(t) \tilde{x}(t) dt \le \left| \sum_{k=1}^{p} \int_{\sigma_{k}''} \varphi(t) \tilde{x}(t) dt \right| \le \sum_{k=1}^{p} \int_{\sigma_{k}''} |\varphi(t)| dt$$

tengsizligidan (bunda [a,b] segmentda $|\tilde{x}(t)| \leq 1$ ekanligidan foydalandik)

$$f(\tilde{x}) \ge \sum_{j=1}^{r} \int_{\sigma'_{j}} |\varphi(t)| dt - \sum_{k=1}^{p} \int_{\sigma''_{k}} |\varphi(t)| dt = \int_{a}^{b} |\varphi(t)| dt - 2 \sum_{k=1}^{p} \int_{\sigma''_{k}} |\varphi(t)| dt >$$

$$> \int_{a}^{b} |\varphi(t)| dt - 2\varepsilon(b-a).$$

 $\|\tilde{x}\| \le 1$ bo'lganligidan

$$||f|| \ge f(\tilde{x}) > \int_{a}^{b} |\varphi(t)| dt - 2\varepsilon(b-a).$$

 $\varepsilon \to 0$ bo'lganda $\|f\| \geq \int\limits_a^b |\varphi(t)| dt$ tengsizligiga ega bo'lamiz. Natijada

$$||f|| = \int_{a}^{b} |\varphi(t)| dt$$

tengligining o'rinli ekanligi kelib chiqadi.

6.1.13. C[a, b] **fazosida**

$$Ax(s) = \int_{a}^{b} k(s, t)x(t)dt$$

operatori berilgan, bunda k(s,t) uzluksiz funksiya. Bu operatorning uzluksiz chiziqli ekanligini ko'rsating va normasini toping.

Yechimi. Dastlab chiziqli ekanligini ko'rsatamiz.

$$A(\alpha x(s) + \beta y(s)) = \int_{a}^{b} k(s,t)(\alpha x(t) + \beta y(t))dt =$$

$$= \alpha \int_{a}^{b} k(s,t)x(t)dt + \beta \int_{a}^{b} k(s,t)y(t)dt = \alpha Ax(s) + \beta Ay(s).$$

Endi uzluksizligini ko'rsatamiz:

$$||Ax|| = \max_{a \le s \le b} |\int_{a}^{b} k(s,t)x(t)dt| \le \max_{a \le s \le b} \int_{a}^{b} |k(s,t)||x(t)|dt \le ||Ax||$$

$$\leq \max_{a \leq s \leq b} \int_{a}^{b} |k(s,t)| \max_{a \leq s \leq b} |x(t)| dt \leq ||x|| \max_{a \leq s \leq b} \int_{a}^{b} |k(s,t)| dt = M||x||,$$

bunda $M = \max_{a \le s \le b} \int_a^b |k(s,t)| dt$. Demak, berilgan operator chegaralangan, demak uzluksiz. Shu bilan birga $||A|| \le M$ tengsizligiga ega bo'lamiz.

 $\int_a^b |k(s,t)| dt \text{ integral } [a,b] \text{ segmentda } s \text{ argument bo'yicha uzluksiz}$ funksiya bo'lganligidan, shunday $s_0 \in [a,b]$ nuqta mavjud bo'lib

$$M = \int_{a}^{b} |k(s_0, t)| dt$$

tengligi o'rinli bo'ladi. C[a, b] fazosida aniqlangan

$$f(x) = \int_{a}^{b} k(s_0, t) \ x(t)dt$$

funksionalni qaraylik. 6.1.12 - misoldan

$$||f|| = \int_{a}^{b} |k(s_0, t)| dt$$

tengligi o'rinlidir.

Uzluksiz chiziqli funksional normasining tarifi bo'yicha

$$||f|| = \sup_{\|x\| \le 1} |f(x)|$$

bo'lganligidan, xoxlagan $\varepsilon > 0$ soni uchun, shunday $x_{\varepsilon} \in C[a,b], ||x_{\varepsilon}|| \leq 1$ funksiya topilib

$$f(x_{\varepsilon}) \ge ||f|| - \varepsilon = \int_{a}^{b} |k(s_0, t)| dt - \varepsilon = M - \varepsilon.$$

Natijada,

$$||A|| \ge ||Ax_{\varepsilon}|| \ge \int_{a}^{b} k(s_{0}, t)x_{\varepsilon}(t)dt = f(x_{\varepsilon}) \ge M - \varepsilon.$$

 $\varepsilon > 0$ ixtiyoriy son bo'lganligidan $||A|| \ge M$ tengsizligiga ega bo'lamiz. Yuqorida $||A|| \le M$ tengsizligining o'rinli ekanligini ko'rgan edik.

Demak
$$||A|| = M$$
, ya'ni $||A|| = \max_{a \le s \le b} \int_a^b |k(s,t)| dt$.

6.1.14. X va Y normalangan fazolar bolib, $A: X \to Y$ va $B: X \to Y$ operatorlari chegaralangan bo'lsa, u holda A+B operatori ham chegaralangan ekanligini va $||A+B|| \le ||A|| + ||B||$ tengsizligi o'rinli ekanligini ko'rsating.

Yechimi. Xoxlagan x element uchun

$$||(A+B)x|| = ||Ax + Bx|| \le ||Ax|| + ||Bx|| \le$$

$$\le ||A|| \, ||x|| + ||B|| \, ||x|| = (||A|| + ||B||) \, ||x||.$$

Bu tengsizliklardan A+B operatorning chegaralangan ekanligi va $\|A+B\| \leq \|A\| + \|B\|$ tengsizligi kelib chiqadi.

6.1.15. $X, Y \ va \ Z \ normalangan \ fazolar \ bo'lib, \ A: X \rightarrow Y \ va \ B: Y \rightarrow Z \ operatorlari \ chegaralangan \ bo'lsa, \ u \ holda \ AB \ operatori \ ham \ chegaralangan \ ekanligini \ va \ ||AB|| \le ||B|| ||A|| \ tengsizligi \ o'rinli \ ekanligini \ ko'rsating.$

Yechimi. Xoxlagan $x \in X$ elementi uchun

$$||(AB)(x)|| = ||B(Ax)|| \le ||B|| ||Ax|| \le ||B|| ||A|| ||x||.$$

Bu tengsizlikdan AB operatorning chegaralangan ekanligi va $||AB|| \le ||A|| ||B||$ tengsizligi kelib chiqadi.

6.1.16. A chiziqli operatoriga teskari A^{-1} operatori chiziqli bo'ladi.

Yechimi. Birinchi navbatda A operator obrazi R(A) to'plamining, ya'ni $D(A^{-1})$ to'plamining chiziqli fazo ekanini ko'rsatamiz.

 $y_1, y_2 \in R(A)$ bo'lsin. $A^{-1}(\alpha_1 y_1 + \alpha_2 y_2) = \alpha_1 A^{-1} y_1 + \alpha_2 A^{-1} y_2$ tengligining o'rinli ekanligini ko'rsatishimiz kerak. Aytaylik $Ax_1 = y_1$ va $Ax_2 = y_2$ bo'lsin. A operatorining chiziqli ekanligidan

$$A(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 y_1 + \alpha_2 y_2 \tag{6.1}$$

tengligini yoza olamiz. Teskari operator ta'rifidan: $A^{-1}y_1=x_1,\ A^{-1}y_2=x_2$. Bu tengliklarning ikki tomonini mos ravishda α_1 va α_2 sonlariga koʻpaytirib oʻzaro qoʻshsak

$$\alpha_1 A^{-1} y_1 + \alpha_2 A^{-1} y_2 = \alpha_1 x_1 + \alpha_2 x_2$$

tengligiga ega bo'lamiz.

Ikkinchi tomondan, (6.1) ifoda va teskari operator tarifidan

$$\alpha_1 x_1 + \alpha_2 x_2 = A^{-1} (\alpha_1 y_1 + \alpha_2 y_2)$$

tengligini yoza olamiz, demak,

$$A^{-1}(\alpha_1 y_1 + \alpha_2 y_2) = \alpha_1 A^{-1} y_1 + \alpha_2 A^{-1} y_2.$$

6.1.17. E Banax fazosida zich bo'lgan M to'plami berilgan bo'lsin. U holda noldan farqli ixtiyoriy $y \in E$ elementni

$$y = y_1 + y_2 + \dots + y_n + \dots,$$

bunda $y_k \in M$, $||y_k|| \leq 3||y||/2^k$, ko'rinishida qatorga yoyish mumkin ekanligini isbotlang.

Yechimi. y_k elementlarni ketma-ket tuzamiz: y_1 ni

$$||y - y_1|| \le ||y||/2 \tag{6.2}$$

tengsizlikni qanoatlandiradigan etib saylab olish mumkin, chunki M to'plami E to'plamida zich bo'lganlikdan (6.2) tengsizlik bilan aniqlangan radiusi ||y||/2 va markazi y nuqtada bo'lgan sharning ichida M to'plamning elementi topiladi. $y_2 \in M$ elementni

$$||y - y_1 - y_2|| \le ||y||/4$$

tengsizlik o'rinli bo'ladigan, y_3 elementni

$$||y - y_1 - y_2 - y_3|| \le ||y||/8$$

tengsizligi o'rinli boladigan, umuman y_n elementni

$$||y - y_1 - y_2 - \dots - y_n|| \le ||y||/2^n$$

tengsizlikni qanoatlantiradan etib saylab olamiz. Natijada $n \to \infty$ da

$$||y - \sum_{k=1}^{n} y_k|| \to 0,$$

ya'ni $\sum_{k=1}^{n} y_k$ qator y elementga yaqinlashuvchidir. y_k elementlarining normalarini baholaymiz:

$$||y_1|| = ||y_1 - y + y|| \le ||y_1 - y|| + ||y|| \le 3 ||y|| /2,$$

$$||y_2|| = ||y_2 + y_1 - y + y - y_1|| \le ||y - y_1 - y_2|| + ||y - y_1|| \le 3 ||y|| /4.$$

Ushbu jaroyonni davom ettirsak

$$||y_n|| = ||y_n + y_{n-1} + \dots + y_1 - y + y - y_1 - \dots - y_{n-1}|| \le$$

$$\le ||y - y_1 - \dots + y_n|| + ||y - y_1 - \dots - y_{n-1}|| \le 3||y||/2^n.$$

6.1.18. (Teskari operator haqida Banax teoremasi) . X va Y Banax fazolari bo'lib, $A: X \to Y$ chegaralangan chiziqli operatori berilgan fazolarni o'zaro bir qiymatli akslantirsa, u holda teskari A^{-1} operatori chegaralangan ekanligini isbotlang.

Yechimi. Y fazosida $||A^{-1}y|| \le k||y||$ tengsizligini qanoatlantiruvchi barcha y elementlardan iborat M_k to'plamni qaraylik. Y fazosining har bir elementi biror M_k to'plamiga tegishli bo'ladi, ya'ni

$$Y = \bigcup_{k=1}^{\infty} M_k.$$

4.11 - misolda ko'rilgan Ber teoremasi bo'yicha M_k to'plamlarning kamida bittasi, aytaylik M_n to'plami biror B sharda zich bo'ladi. B sharidan markazi M_n to'plamida bo'lgan P shar qatlamini olamiz: P qatlam $\beta < ||z-y_0|| < \alpha$ tengsizlikni qanoatlantiruvchi z elementladan iborat, bunda $0 < \beta < \alpha$, $y_0 \in M_n$.

 ${\cal P}$ qatlamni markazi koordinatalar boshida boladigan etib ko'chirsak

$$P_0 = \{z : 0 < \beta < ||z|| < \alpha\}$$

shar qatlamiga ega bo'lamiz.

Biror M_N to'plamining P_0 da zich ekanligini ko'rsatamiz. $z \in P \cap M_n$ bo'lsin, u holda $z-y_0 \in P_0$ va

$$||A^{-1}(z - y_0)|| \le ||A^{-1}z|| + ||A^{-1}y_0|| \le$$

$$\le n(||z|| + ||y_0||) \le n(||z - y_0|| + 2||y_0||) =$$

$$= n ||z - y_0|| \left(1 + \frac{2||y_0||}{||z - y_0||}\right) \le n ||z - y_0|| (1 + 2||y_0||/\beta).$$

$$||A^{-1}(z - y_0)|| \le n ||z - y_0|| (1 + 2||y_0||/\beta).$$

$$(6.3)$$

 $n(1+2\|y_0\|/\beta)$ soni z ga bog'liq emas. $N=1+n[1+2\|y_0\|/\beta]$ bo'lsin, u holda (6.3) dan $z-y_0\in M_N$ bo'ladi, M_n to'plamining P da zich ekaninligidan esa M_N to'plamining P_0 da zich ekanligi kelib chiqadi.

Y to'plamidan noldan farqli biror y elementini olaylik. $\beta < \|\lambda y\| < \alpha$ tengsizlik o'rinli bo'ladigan λ sonni saylab olishimiz mumkin, ya'ni $\lambda y \in P_0$. M_N to'plami P_0 shar qatlamda zich bo'lganlikdan λy elementga yaqinlashuvchi $y_k \in M_N$ ketma-ketlikni tuza olamiz. U holda $\{\lambda^{-1}y_k\}$ ketma-ketligi y elmentga yaqinlashadi. Agar $y_k \in M_N$ o'rinli bo'lsa, u holda har bir $\lambda \neq 0$ uchun $\lambda^{-1}y_k \in M_N$ munosabati o'rinli; natijada, M_N to'plami $Y \setminus \{0\}$ to'plamda zich, demak, Y da zich bo'ladi.

Noldan farqli $y \in Y$ elementni qaraylik; 12.18 - misolda uni M_N to'plamining elementlaridan iborat qatorga yoyish mumkin ekanligi ko'rsatilgan:

$$y = y_1 + y_2 + \ldots + y_k + \ldots$$

bunda $||y_k|| < ||y||/2^k$.

X da y_k elementlarining proobrazlaridan tuzilgan qatorni qaraylik, ya'ni $x_k = A^{-1}y_k$.

$$||x_k|| = ||A^{-1}y_k|| \le N ||y_k|| < 3N ||y|| / 2^k$$

tengsizligidan $\{x_k\}$ qatorning biror x elementga yaqinlashuvchi ekanligi kelib chiqadi. Shu bilan birga

$$||x|| \le \sum_{k=1}^{\infty} ||x_k|| \le 3N ||y|| \sum_{k=1}^{\infty} \frac{1}{2^k} = 3N ||y||.$$

 $\sum_{n=1}^{\infty} x_n$ qatorning yaqinlashuvchi va Aoperatorining uzluksizligidan

$$Ax = Ax_1 + Ax_2 + \dots = y_1 + y_2 + \dots = y_1$$

tengligiga ega bo'lamiz, bundan $x_k = A^{-1}y$. Shu bilan birga

$$||A^{-1}y|| = ||x|| \le 3N||y||$$

tengsizligi va ifodaninh
g har bir $y \neq 0$ uchun o'rinli ekanligini hisobga olsak, u hold
a A^{-1} operatori chegaralangan bo'ladi.

 $6.1.19.~X~Banach~fazosini~Y~normalangan~fazoga~akslantiruvchi~uzluksiz~chiziqli~operatorlarning~\{A_n\}~ketma-ketligi~ushbu$

$$\sup_{n} ||A_n(x)|| < +\infty \ (x \in X) \tag{6.4}$$

tengsizlikni qanoatlantirsa (ya'ni har bir $x \in X$ nuqtada chegaralangan bo'lsa), u holda $\forall n$ uchun

$$||A_n|| \leq M$$

 $tengsizligi\ o$ 'rinli bo'ladigan chekli M soni mavjud bo'lishini isbotlang.

Yechimi. A chiziqli operatorning $B[x_0, \delta]$ shardagi qiymatlarining chegarasi ma'lum boʻlsin:

$$||A(x)|| \le B \ (x \in B[x_0, \delta]).$$

U holda

$$||A|| \le \frac{2B}{\delta}.$$

Haqiqatan, normasi birdan kichik ixtiyoriy x' nuqta olsak, quyidagiga ega bo'lamiz:

$$x = x_0 + \delta x' \in B[x_0, \delta].$$

Natijada,

$$||A(x)|| = ||A(x_0) + \delta A(x')|| \le B.$$

U holda

$$||A(x')|| = \frac{1}{\delta}||A(\delta x')|| = \frac{1}{\delta}(||A(x_0) + A(\delta x') - A(x_0)|| \le \frac{1}{\delta}(||A(x_0) + \delta A(x')|| + ||A(x_0)|| \le \frac{1}{\delta}(B + B) = \frac{2B}{\delta},$$

bundan esa $||A|| \leq \frac{2B}{\delta}$ tengsizligi kelib chiqadi.

Endi $||A_n|| \leq M \ (\forall n \in \mathbb{N})$ tengsizligini isbotlash uchun teskarisini faraz qilaylik, ya'ni $\{||A_n||\}$ ketma-ketlik chegaralanmagan boʻlsin. Ushbu

$$p(x) = \sup_{n} ||A_n(x)||$$

funksionalni qaraylik. Bu funksional har bir $B[x_0, \delta]$ sharda chegaralanmagan, chunki $p(x) \leq B$ bo'lganda, ixtiyoriy $n \in \mathbb{N}$ uchun $||A_n|| \leq \frac{2B}{\delta}$ tengsizligi o'rinli bo'lar edi.

Natilada, har bir $B[x_0, \delta]$ sharda ixtiyoriy $k \in \mathbb{N}$ uchun p(x) > k tengsizligi o'rinli bo'ladigan $x \in X$ nuqta topiladi. U holda

$$E_k = \{ x \in X : p(x) > k \}$$

to'plami X fazoda zich bo'ladi. Shu bilan birga bu to'plam ochiqdir. Haqiqatan, E_k to'plamdan ixtiyoriy x_0 nuqta olsak, ya'ni $p(x_0) > k$ bo'lsa, u holda biror $n_0 \in \mathbb{N}$ uchun $||A_{n_0}|| > k$ tengsizligi o'rinli bo'ladi. $||A_{n_0}(x_0)||$ akslantirishning uzluksizligidan esa x_0 nuqtaga etarlicha yaqin x nuqtalar uchun $||A_{n_0}(x)|| > k$ tengsizligining bajariladi. Natijada E_k to'plamning ochiq ekanligi kelib chiqadi.

3.1.19 - misolda ko'rganimizdek, X fazoda ochiq va zich E_k to'plamlarning $\bigcap_{k=1}^{\infty} E_k$ kesishmasi zich bo'ladi. Demak, $\bigcap_{k=1}^{\infty} E_k \neq \emptyset$.

$$x_0 \in \bigcap_{k=1}^{\infty} E_k$$
 bo'lsin, u holda

$$\sup_{n} ||A_n(x_0)|| = \infty.$$

Bu farazimizga ziddir.

6.2.20. X Banax fazosida berilgan uzluksiz chiziqli operatorlarning $\{A_n\}$ ketma-ketligi X fazoning har bir nuqtasida A operatoriga yaqinlashuvchi bo'lsa, u holda A operator ham uzluksiz bo'lib, ushbu

$$||A|| \le \underline{\lim}_{n \to \infty} ||A_n|| \tag{6.5}$$

 $teng sizligi\ bajarilishini\ is botlang.$

 $Yechimi. \ A$ operatorining chiziqli ekanligi quyidagicha yaqqol koʻrinadi:

$$A(\alpha x + \beta y) = \lim_{n \to \infty} A(\alpha x + \beta y) =$$

$$\alpha \lim_{n \to \infty} A_n(x) + \beta \lim_{n \to \infty} A_n(y) = \alpha A(x) + \beta A(y).$$

Endi uzluksiz ekanligini ko'rsatamiz.

$$\lim_{n \to \infty} ||A_n(x)|| = ||A(x)|| < \infty$$

bo'lganlikdan,

$$\sup_{n} ||A_n(x)|| < \infty$$

tengsizligi, natijada, 6.1.19 - misoldan, $\{||A_n||\}$ ketma-ketlikning chegaralangan ekanligi kelib chiqadi. U holda

$$||A(x)|| = \lim_{n \to \infty} ||A_n(x)|| \le \underline{\lim}_{n \to \infty} ||A_n|| ||x||.$$

Natijada, A operatorning uzluksiz va (6.5) tengsizlikning o'rinli ekanligi kelib chiqadi.

Mustaqil ish uchun masalalar

1. H Hilbert fazosi va $A: H \to H$ chegaralangan chiziqli operator uchun D(A) = H bo'lsa, u holda

$$||A|| = \sup_{x \neq 0, y \neq 0} \frac{|\langle Ax, y \rangle|}{||x|| ||y||}$$

tengligini isbotlang.

2. Quyidagi operatorlarning chegaralangan chiziqli ekanligini ko'rsating va normasini toping.

a)
$$A: L_2[0,1] \to L_2[0,1],$$
 $Ax(t) = t \int_0^1 x(s) \, ds;$
b) $A: L_2[0,1] \to L_2[0,1],$ $Ax(t) = \int_0^t x(s) \, ds;$

b)
$$A: L_2[0,1] \to L_2[0,1], \qquad Ax(t) = \int_0^t x(s) \, ds;$$

c)
$$A: H^1[0,1] \to L_2[0,1], \qquad Ax(t) = \overset{0}{x}(t);$$

d) $A: H^1[0,1] \to H^1[0,1], \qquad Ax(t) = tx(t).$

d)
$$A: H^1[0,1] \to H^1[0,1], \quad Ax(t) = tx(t)$$

- $\mathbf{3.}\ X$ va Y normalangan fazolar bo'lib, X chekli o'lchamli bo'lsin. Aniqlanish sohasi X fazosidan iborat bo'lgan har bir $A: X \to Y$ chiziqli operatorning chegaralangan ekanligini va ||Ax|| = ||A||||x|| tenglikni qanoatlantiruvchi $x \in X$, $x \neq 0$ nuqtaning mavjud ekanligini isbotlang.
- **4.** $A: X \to Y$ chegaralangan chiziqli operatorning yadrosi X fazoning qismfazosi bo'lishini isbotlang.
- **5.** X va Y normalangan fazolar bo'lib, $A:X\to Y$ yadrosi X fazoning yopiq qismfazosi bo'lgan chiziqli operator bo'lsin. Bundan A operatorning chegaralangan ekanligi kelib chiqadimi?
- $\{e_n, n \in \mathbb{N}\}$ sistema H Hilbert fazosining ortonorma bazisi bo'lib, $\lambda_n \in \mathbb{R}$ $(n \in \mathbb{N})$ bo'lsin. Agar $\{\lambda_n\}$ ketmae-ketligi chegaralangan bo'lsa, u holda

$$Ae_n = \lambda_n e_n \quad (n \in \mathbb{N})$$

tengligi chegaralangan chiziqli $A:H\rightarrow H$ operatorini aniqlab, $D\left(A\right) =$ H va $||A|| = \sup |\lambda_n|$ tengliklarining o'rinli bo'lishini isbotlang.

7. Qanday $\varphi(t)$ funksiyalar uchun

$$Ax(t) = \varphi(t)x(t)$$

operatori C[0,1] fazoda chegaralnagan bo'ladi?

8. Qanday $\varphi(t)$ funksiyalar uchun

$$Ax(t) = \varphi(t)x(t)$$

operatori $L_2[0,1]$ fazoda chegaralnagan bo'ladi?

9. Qanday α sonlari uchun

$$Ax(t) = x(t^{\alpha})$$

operatori C[0,1] fazoda chegaralnagan bo'ladi?

10. C[0,1] fazoda

$$Ax(t) = t^2x(t)$$

operatorining normasini toping.

11. $L_2[0,1]$ fazoda

$$Ax(t) = t^3 x(t)$$

operatorining normasini toping.

12. C[0,1] fazoda

$$Ax(t) = x(\sqrt{t})$$

operatorining normasisi toping.

6.2. Uzluksiz chiziqli funksionallar

Bizga E chiziqli topologik fazosi berilgan bo'lsin. Agar har bir $x \in E$ elementga biror f(x) (haqiqiy yoki kompleks) son mos qo'yilgan bo'lsa, u holda E fazosida funksional aniqlangan deyiladi. Bu funksional uchun

$$f(x+y) = f(x) + f(y), \ x, y \in E, \ (additivlik)$$

va

$$f(\alpha x) = \alpha f(x), \quad (x \in E; \ \alpha \in \mathbb{R} \ yoki \ \alpha \in \mathbb{C}) \ (birjinslilik)$$

tengliklari o'rinli bo'lsa, u holda u chiziqli funksional deb ataladi.

Efazosiga tegishli x_0 nuqta olinganda, xoxlagan $\varepsilon>0$ soni uchun x_0 nuqtaning shunday U atrofi bor bo'lib, bu atrofdan olingan barcha x nuqtalar uchun

$$|f(x) - f(x_0)| < \varepsilon, \tag{6.5}$$

tengsizligi o'rinli bo'lsa, u holda f funksional x_0 nuqtada uzluksiz deyiladi .

Agar f funksional E fazosining har bir nuqtasida uzluksiz bo'lsa, u holda uE fazosida uzluksiz deyiladi.

Agar shunday o'zgarmas soni bor bo'lib, barcha $x \in E$ elementlar uchun

$$|f(x)| \le C||x||,\tag{6.6}$$

tengsizligi o'rinli bo'lsa, u holda f funksional E fazosida chegaralangan deyiladi .

Normalangan fazoda funksionalning *normasi* uchun quyidagi tengliklar o'rinli:

$$||f|| = \sup_{x \neq 0} \frac{|f(x)|}{||x||} = \sup_{||x|| \le 1} |f(x)| = \sup_{||x|| = 1} |f(x)|.$$

Masalalar

6.2.1. Agar f funksional E chiziqli topologik fazoning biror x nuqtasida uzluksiz bo'lsa, u holda u E fazosida uzluksiz bo'lishini isbotlang.

Yechimi. E fazosidan xoxlagan y element va xoxlagan $\varepsilon > 0$ sonini olib, x nuqtaning (6.5) shartni qanoatlantiruvchi U atrofini olaylik. U-x to'plami y nuqtaning atrofi bo'lganligidan y atrofi bo'lganligidan y nuqtaning atrofi bo'ladi. Bu atrofdan xoxlagan y nuqta olamiz. U holda

$$|f(z) - f(y)| = |f(z - y + x - x)| = |f(z - y + x) - f(x)|$$

tengligidan vaz-y+xelementning Uto'plamiga tegishli ekanligidan

$$|f(z) - f(y)| < \varepsilon$$

tengsizligining o'rinli ekanligi kelib chiqadi. Demak, V to'plami y uchun (6.5) shartni qanoatlantiradi.

6.2.2. f funksionalning E fazosida uzluksiz bo'lishi uchun nol nuqtaning f funksional chegaralangan bo'lgan atrofining mavjudligi zarur va etarli ekanligini isbotlang.

Yechimi. Zarurligi. f funksional 0 nuqtada uzluksiz bo'lsa, u holda xoxlagan $\varepsilon > 0$ son uchun 0 nuqtaning $|f(x)| < \varepsilon$ tengsizlik o'rinli bo'ladigan atrofi topiladi.

Etarliligi. 0 nuqtaning U atrofida f funksional chegaralangan bo'lsin. U holda shunday C soni mavjud bo'lib, U atrofidan olingan xoxlagan x element uchun |f(x)| < C tengsizligi o'rinli bo'ladi. Natijada xoxlagan

 $\varepsilon>0$ soni uchun, 0 nuqtaning $\frac{\varepsilon}{C}U$ atrofida $|f(x)|<\varepsilon$ tengsizligi o'rinli bo'ladi.

6.2.3. \mathbb{R}^2 fazosida aniqlangan z = ax + by funksionali \mathbb{R} maydonida chiziqli bo'ladimi?

Yechimi. z=f(t) bo'lsin, bunda t=(x,y). Xoxlagan $t_1=(x_1,y_1)$ va $t_2=(x_2,y_2)$ nuqtalar uchun

$$f(\alpha t_1 + \beta t_2) = a(\alpha x_1 + \beta x_2) + b(\alpha y_1 + \beta y_2) =$$

= $\alpha (ax_1 + by_1) + \beta (ax_2 + by_2) = \alpha f(t_1) + \beta f(t_2).$

Demak, berilgan funksional haqiqiy sonlar maydonida chiziqli bo'lar ekan.

- 6.2.4. C[0,1] fazosida berilgan quyidagi funksionallarni additivlikka tekshiring:
 - **a)** $F(f) = |f(\frac{1}{2})|;$
 - **b)** $F(f) = \max_{0 \le t \le 1} f(t);$
 - c) $F(f) = f(\frac{1}{2}) + f(\frac{1}{3}) + f(\frac{1}{4}).$

Yechimi.a) $C[0,\,1]$ fazodan $f(\frac{1}{2})=1$ va $g(\frac{1}{2})=-1$ bo'lgan funksiayalarni olamiz. U holda

$$F(f+g) = |(f+g)(\frac{1}{2})| = |f(\frac{1}{2}) + g(\frac{1}{2})| = |1-1| = 0,$$

$$F(f) + F(g) = |f(\frac{1}{2}) + |g(\frac{1}{2})| = 1 + 1 = 2.$$

Bundan,

$$F(f) + F(g) \neq F(f+g).$$

Demak, bu funksional additiv emas.

b) C[0, 1] fazodan $f(t) = t^2$ va $g(t) = 1 - t^2$ funksiayalarni olamiz. U holda

$$F(f+g) = \max_{0 \le t \le 1} (f(t) + g(t)) = \max_{0 \le t \le 1} (t^2 + 1 - t^2) = 1,$$

$$F(f) + F(g) = \max_{0 \le t \le 1} f(t) + \max_{0 \le t \le 1} g(t) =$$

$$= \max_{0 < t < 1} t^2 + \max_{0 < t < 1} (1 - t^2) = 1 + 1 = 2.$$

Bundan,

$$F(f) + F(g) \neq F(f+g).$$

Demak, bu funksional additiv emas.

c)

$$F(f+g) = (f+g)\left(\frac{1}{2}\right) + (f+g)\left(\frac{1}{3}\right) + (f+g)\left(\frac{1}{4}\right) =$$

$$= f\left(\frac{1}{2}\right) + f\left(\frac{1}{3}\right) + f\left(\frac{1}{4}\right) + g\left(\frac{1}{2}\right) + g\left(\frac{1}{3}\right) + g\left(\frac{1}{4}\right) = F(f) + F(g).$$

Demak, bu funksional additiv.

6.2.5. Xoxlagan additiv funksional uchun

$$F(\theta) = 0, \quad F(-x) = -F(x)$$

tengliklarining o'rinli ekanligini ko'rsating.

Yechimi.
$$F(\theta) = F(\theta + \theta) = F(\theta) + F(\theta) = 2F(\theta)$$
, ya'ni $F(\theta) = 0$. $0 = F(\theta) = F(x - x) = F(x) + F(-x)$. Natijada, $F(-x) = -F(x)$.

6.2.6. Xoxlagan additiv funksional uchun $f(\lambda x) = \lambda f(x)$ tengligining o'rinli ekanligini ko'rsating, bunda λ ratsional son.

Yechimi. n natural soni uchun

$$f(nx) = f(\underbrace{x + x + \dots + x}_{n}) = \underbrace{f(x) + f(x) + \dots + f(x)}_{n} = nf(x).$$

Natijada, $\lambda = \frac{m}{n} \quad (m, n \in \mathbb{N})$ bo'lganda

$$f(\lambda x) = f\left(\frac{m}{n}x\right) = f\left(\underbrace{\frac{1}{n}x + \frac{1}{n}x + \dots + \frac{1}{n}x}_{m}\right) = mf\left(\frac{1}{n}x\right) =$$

$$= \frac{m}{n}nf\left(\frac{1}{n}x\right) = \frac{m}{n}f\left(n\frac{1}{n}x\right) = \frac{m}{n}f\left(x\right) = \lambda f(x).$$

 $\lambda < 0$ bo'lganda 6.2.5 misolda qaralgan f(-x) = -f(x) tengligidan foydalanamiz, ya'ni $f(\lambda x) = f(-(-\lambda x)) = -f(-\lambda x) = -(-\lambda)f(x) = \lambda f(x)$.

6.2.7. f funksional X normalangan fazoda uzluksiz bo'lsa, u holda har bir $x \in X$ element uchun $|f(x)| \leq ||f|| \cdot ||x||$ tengsizligining o'rinli bo'lishini isbotlang.

 $Yechimi.\ x\neq 0$ bo'lganda $\frac{x}{\|x\|}$ element birlik sharga tegishli bo'ladi. Shu sababli

$$\frac{|f(x)|}{\|x\|} = \left| f\left(\frac{x}{\|x\|}\right) \right| \le \sup_{\|x\| \le 1} |f(x)| = \|f\|,$$

ya'ni

$$|f(x)| \le ||f|| ||x||.$$

x=0bo'lganda $|f(x)| \leq \|f\| \|x\|$ tengsizlikning ikki tamoni ham nol bo'ladi.

6.2.8. X normalangan fazoda berilgan f funksionalning uzluksiz bo'lishi uchun, uning chegaralangan bo'lishi zarur va etarli ekanligini isbotlang.

Yechimi. Zarurligi. f funksional uzluksiz bo'lsin. $C_0 = \sup_{\|x\|=1} |f(x)|$ miqdorning chekli ekanligini ko'rsatamiz. Aksincha faraz qilamiz, ya'ni $C_0 = \infty$ bo'lsin. U holda shunday $\{x_n\} \subset X$, $\|x_n\| = 1$ ketma-ketligi topilib, $\lambda_n = |f(x_n)| \to \infty$ bo'ladi. $\{x_n'\}$ $(x_n' = \lambda_n^{-1}x_n)$ ketma-ketligini qaraymiz. $\|x_n\| = 1$ bo'lganligidan $\{x_n'\}$ ketma-ketligi nolga yaqinlashuvchi bo'ladi. f funksional uzluksiz bo'lganligidan, $f(x_n') \to 0$ bo'lishi kerak. Biroq

$$|f(x_n')| = \left| f\left(\frac{x_n}{\lambda_n}\right) \right| = \frac{1}{\lambda_n} |f(x_n)| = \frac{1}{\lambda_n} \lambda_n = 1.$$

Bu ziddiyatdan farazimiz noto'g'ri ekanligi ko'rinadi. Demak, $C_0 = \sup_{\|x\|=1} |f(x)| < \infty$.

X fazosidan noldan farqli xoxlagan x element olamiz. $x' = \frac{x}{\|x\|}$ elementining normasi birga teng bo'lganligidan $|f(x')| \leq C_0$ tengsizligi o'rinli, shu sababli

$$\frac{1}{\|x\|}|f(x)| = \left|f(\frac{x}{\|x\|})\right| = |f(x')| \le C_0.$$

Natijada $|f(x)| \leq C_0 ||x||$. Demak, f funksional chegaralangan.

Etarliligi. f chegaralangan funksional o'rinli bo'lsin. Xoxlagan $\varepsilon > 0$ soni uchun $\delta = \frac{\varepsilon}{C}$ sonini olsak, $\|x\| < \delta$ bo'lganda $|f(x)| \leq C\|x\| < C\delta = C\frac{\varepsilon}{C} = \varepsilon$. Natijada, f funksional nol nuqtada, demak, X fazosida uzluksiz bo'ladi.

6.2.9. X normalangan fazosida uzluksiz chiziqli f funksionali berilgan bo'lsin. $C_0 = ||f||$ soni $|f(x)| \leq C||x||$ tengsizlikni qanoatlantiradigan sonlarning eng kichigi ekanligini isbotlang.

Yechimi. ||x||=1 bo'lganda $|f(x)|\leq C$ tengsizligi o'rinli. $C_0=\sup_{\|x\|=1}|f(x)|$ bo'lganligidan $C_0\leq C$.

Ikkinchi tomondan C_0 soni $|f(x)| \leq C_0 ||x||$ tengsizlikni qanoatlantiradi.

6.2.10. C[a, b] fazosida aniqlangan

$$f(x) = \sum_{k=1}^{n} c_k x(t_k)$$

funksionalning chiziqli, uzluksiz ekanligini isbotlang va normasini toping, bunda $t_1, t_2, \ldots, t_n \in [a, b]; c_k \in \mathbb{R} \ (k = \overline{1, n}).$

Yechimi. Dastlab chiziqli ekanligini ko'rsatamiz:

$$f(\alpha x_1 + \beta x_2) = \sum_{k=1}^{n} c_k [\alpha x_1(t_k) + \beta x_2(t_k)] =$$

$$= \alpha \sum_{k=1}^{n} c_k x_1(t_k) + \beta \sum_{k=1}^{n} c_k x_2(t_k) = \alpha f(x_1) + \beta f(x_2)$$

Uzluksiz ekanligini ko'rsatish uchun uning chegaralangan ekanligini ko'rsatamiz:

$$|f(x)| = \left| \sum_{k=1}^{n} c_k x(t_k) \right| \le \sum_{k=1}^{n} |c_k| |x(t_k)| \le$$

$$\leq \max_{t \in [a,b]} |x(t)| \sum_{k=1}^{n} |c_k| = \sum_{k=1}^{n} |c_k| ||x||,$$

ya'ni $||f|| \le \sum_{k=1}^{n} |c_k|$.

Endi [a,b] segmentida quyidagicha $\tilde{x}(t)$ bo'lakli-chiziqli funksiyani aniqlaymiz: $\tilde{x}(t)$ funksiya t_1,t_2,\ldots,t_n nuqtalarda $\tilde{x}(t_k)=sign\ c_k$ qiymatlarni qabul qiladi, $[t_k,t_{k+1}]$ segmentlarda chiziqli, $[a,t_1]$ va $[t_n,b]$ segmentlarda o'zgarmas. Bu funksiyaning qiymatlari to'plami [-1,1] kesmasida joylashgan. Shu sababli

$$\|\tilde{x}\| = \max_{t \in [a,b]} |\tilde{x}(t)| \le 1.$$

Natijada

$$||f|| = \sup_{\|x\| \le 1} |f(x)| \ge |f(\tilde{x})| =$$

$$= |\sum_{k=1}^{n} c_k \tilde{x}(t_k)| = \sum_{k=1}^{n} |c_k \operatorname{sign} c_k| = \sum_{k=1}^{n} |c_k|.$$

Demak,
$$||f|| = \sum_{k=1}^{n} |c_k|$$
.

6.2.11. ℓ_2 fazosida aniqlangan

$$f(x) = \sum_{k=1}^{\infty} \frac{\xi_k + \xi_{k+1}}{2^k} \quad (x = (\xi_1, \xi_2, \ldots))$$

funksionalning chiziqli, uzluksiz ekanligini isbotlang va normasini toping.

Yechimi. Xoxlagan $x=(\xi_1,\xi_2,\ldots),\ y=(\omega_1,\omega_2,\ldots)$ elementlari va $\alpha,\beta\in\mathbb{R}$ sonlari uchun

$$f(\alpha x + \beta y) = \sum_{k=1}^{\infty} \frac{(\alpha \xi_k + \beta \omega_k) + (\alpha \xi_{k+1} + \beta \omega_{k+1})}{2^k} =$$

$$= \alpha \sum_{k=1}^{\infty} \frac{\xi_k + \xi_{k+1}}{2^k} + \beta \sum_{k=1}^{\infty} \frac{\omega_k + \omega_{k+1}}{2^k} = \alpha f(x) + \beta f(y).$$

Demak, f chiziqli.

Endi birlik sharda chegaralangan ekanligini ko'rsatamiz.

$$||x|| = \sqrt{\sum_{k=1}^{\infty} \xi_k^2} = 1$$

bo'lganda $\sum_{k=2}^{\infty} \xi_k^2 = 1 - \xi_1^2$ tengligini yoza olamiz. $|\xi_1| \leq 1$ bo'lganligidan $|\xi_1| = \sin \omega_0$ belgilashini kirita olamiz. Natijada

$$|f(x)| = \left| \sum_{k=1}^{\infty} \frac{\xi_k + \xi_{k+1}}{2^k} \right| = \left| \frac{\xi_1}{2} + \sum_{k=1}^{\infty} \frac{3}{2^{k+1}} \xi_{k+1} \right| \le$$

$$\le \frac{|\xi_1|}{2} + 3\sqrt{\sum_{k=1}^{\infty} \left(\frac{1}{2^{k+1}}\right)^2} \sqrt{\sum_{k=1}^{\infty} \xi_{k+1}^2} =$$

$$= \frac{|\xi_1|}{2} + 3 \cdot \frac{1}{2\sqrt{3}} \sqrt{\sum_{k=2}^{\infty} \xi_k^2} = \frac{|\xi_1|}{2} + \frac{\sqrt{3}}{2} \sqrt{1 - \xi_1^2} =$$

$$= \frac{1}{2} \sin \omega_0 + \frac{\sqrt{3}}{2} \cos \omega_0 = \sin \left(\omega_0 + \frac{\pi}{3}\right) \le 1.$$

$$(1 \ 3 \ 3 \)$$

Endi

$$x_0 = \left(\frac{1}{2}, \frac{3}{2^2}, \frac{3}{2^3}, \dots\right)$$

nuqtasini qaraylik. Bu nuqta ℓ_2 fazoga tegishli. Haqiqatan,

$$\sqrt{\left(\frac{1}{2}\right)^2 + \sum_{k=2}^{\infty} \left(\frac{3}{2^k}\right)^2} = 1.$$

Shu bilan birga

$$f(x_0) = \frac{1}{4} + \sum_{k=1}^{\infty} \left(\frac{3}{2^{k+1}}\right)^2 = 1.$$

Demak, $||f|| = \sup_{\|x\|=1} |f(x)| = 1$.

6.2.12

$$F(y) = \int_{0}^{\frac{1}{2}} y(x) dx - \int_{\frac{1}{2}}^{1} y(x) dx$$

funksionalning C[0,1] fazosida chiziqli ekanligini ko'rsating va uning normasin toping.

Yechimi. Funksionalning chiziqli ekanligini ko'rsatamiz:

$$F(\alpha y + \beta z) = \int_{0}^{\frac{1}{2}} (\alpha y + \beta z)(x) dx - \int_{\frac{1}{2}}^{1} (\alpha y + \beta z)(x) dx =$$

$$\alpha(\int_{0}^{\frac{1}{2}}y(x)\,dx - \int_{\frac{1}{2}}^{1}y(x)\,dx) + \beta(\int_{0}^{\frac{1}{2}}z(x)\,dx - \int_{\frac{1}{2}}^{1}z(x)\,dx) = \alpha F(y) + \beta F(z).$$

Endi uzluksiz ekanligini aniqlaylik. Ixtiyoriy $y(x) \in C[0,1]$ uchun:

$$|F(y)| = |\int_{0}^{\frac{1}{2}} y(x) \, dx - \int_{\frac{1}{2}}^{1} y(x) \, dx| \le |\int_{0}^{\frac{1}{2}} y(x) \, dx| + \int_{\frac{1}{2}}^{1} y(x) \, dx| \le \int_{0}^{\frac{1}{2}} |y(x)| \, dx + \int_{\frac{1}{2}}^{1} |y(x)| \, dx \le \int_{0}^{\frac{1}{2}} \max_{0 \le x \le \frac{1}{2}} |y(x)| \, dx + \int_{\frac{1}{2}}^{1} \max_{\frac{1}{2} \le x \le 1} |y(x)| \, dx = \int_{0}^{\frac{1}{2}} \max_{0 \le x \le \frac{1}{2}} |y(x)| \, dx + \int_{\frac{1}{2}}^{1} \max_{\frac{1}{2} \le x \le 1} |y(x)| \, dx = \int_{0}^{\frac{1}{2}} \max_{0 \le x \le \frac{1}{2}} |y(x)| \, dx + \int_{\frac{1}{2}}^{1} \max_{\frac{1}{2} \le x \le 1} |y(x)| \, dx = \int_{0}^{\frac{1}{2}} \max_{0 \le x \le \frac{1}{2}} |y(x)| \, dx + \int_{\frac{1}{2}}^{1} \max_{0 \le x \le 1} |y(x)| \, dx = \int_{0}^{\frac{1}{2}} \max_{0 \le x \le \frac{1}{2}} |y(x)| \, dx + \int_{\frac{1}{2}}^{1} \max_{0 \le x \le 1} |y(x)| \, dx = \int_{0}^{\frac{1}{2}} \max_{0 \le x \le \frac{1}{2}} |y(x)| \, dx + \int_{\frac{1}{2}}^{1} \max_{0 \le x \le 1} |y(x)| \, dx = \int_{0}^{\frac{1}{2}} \max_{0 \le x \le \frac{1}{2}} |y(x)| \, dx + \int_{\frac{1}{2}}^{1} \max_{0 \le x \le 1} |y(x)| \, dx = \int_{0}^{\frac{1}{2}} \max_{0 \le x \le \frac{1}{2}} |y(x)| \, dx + \int_{0}^{1} \max_{0 \le x \le 1} |y(x)| \, dx = \int_{0}^{\frac{1}{2}} \max_{0 \le x \le \frac{1}{2}} |y(x)| \, dx + \int_{0}^{1} \max_{0 \le x \le 1} |y(x)| \, dx = \int_{0}^{\frac{1}{2}} \max_{0 \le x \le 1} |y(x)| \, dx + \int_{0}^{1} \max_{0 \le x \le 1} |y(x)| \, dx + \int_{0}^{1} \max_{0 \le x \le 1} |y(x)| \, dx = \int_{0}^{1} \max_{0 \le x \le 1} |y(x)| \, dx + \int_{0}^{1} \max_{0 \le x \le 1} |y(x)| \, dx + \int_{0}^{1} \max_{0 \le x \le 1} |y(x)| \, dx = \int_{0}^{1} \max_{0 \le x \le 1} |y(x)| \, dx + \int_{0}^{1} \max_{0 \le x \le 1} |y(x)| \, dx + \int_{0}^{1} \max_{0 \le x \le 1} |y(x)| \, dx + \int_{0}^{1} \max_{0 \le x \le 1} |y(x)| \, dx + \int_{0}^{1} \max_{0 \le x \le 1} |y(x)| \, dx + \int_{0}^{1} \max_{0 \le x \le 1} |y(x)| \, dx + \int_{0}^{1} \max_{0 \le x \le 1} |y(x)| \, dx + \int_{0}^{1} \max_{0 \le x \le 1} |y(x)| \, dx + \int_{0}^{1} \max_{0 \le x \le 1} |y(x)| \, dx + \int_{0}^{1} \max_{0 \le x \le 1} |y(x)| \, dx + \int_{0}^{1} \max_{0 \le x \le 1} |y(x)| \, dx + \int_{0}^{1} \max_{0 \le x \le 1} |y(x)| \, dx + \int_{0}^{1} \max_{0 \le x \le 1} |y(x)| \, dx + \int_{0}^{1} \max_{0 \le x \le 1} |y(x)| \, dx + \int_{0}^{1} \max_{0 \le x \le 1} |y(x)| \, dx + \int_{0}^{1} \max_{0 \le x \le 1} |y(x)| \, dx + \int_{0}^{1} \max_{0 \le x \le 1} |y(x)| \, dx + \int_{0}^{1} \max_{0 \le x \le 1} |y(x)| \, dx + \int_{0}^{1} \max_{0 \le x \le 1} |y(x)| \, dx + \int_{0}^{1} \sup_{0 \le x \le 1} |y(x)| \, dx + \int_{0}^{1} \sup_$$

$$\begin{split} &= \max_{0 \leq x \leq \frac{1}{2}} |y(x)| \int\limits_0^{\frac{1}{2}} dx + \max_{\frac{1}{2} \leq x \leq 1} |y(x)| \int\limits_{\frac{1}{2}}^1 dx = \\ &= \frac{1}{2} \max_{0 \leq x \leq \frac{1}{2}} |y(x)| + \frac{1}{2} \max_{\frac{1}{2} \leq x \leq 1} |y(x)| \leq \\ &\leq \frac{1}{2} \max_{0 \leq x \leq 1} |y(x)| + \frac{1}{2} \max_{0 \leq x \leq 1} |y(x)| = \max_{0 \leq x \leq 1} |y(x)| = ||y|| \,. \end{split}$$

Bu munosabat funksionalning chegaralangan, demak, uzluksiz ekanligini ko'rsatadi.

Biz $||F|| \leq 1$ ekanligini aniqladik. Endi ||F|| = 1 tenglikni isbotlaymiz. Buning uchun $\{y_n\}$ funksiyalar ketma-ketligini $||y_n|| = 1$ va $\lim_{n \to \infty} F(y_n) = 1$ tengliklarni qanoatlantiradigan etib tuzaylik. $y_n(x)$ sifatida grafigi 8-rasmda ko'rsatilgan funksiyani olamiz.

8-rasm

Bu rasmdan ko'rinib turganidek $F(y_n) = 1 - \frac{1}{n}$ (shtrixlangan figuraning yuzasi), shu bilan birga $||y_n|| = 1$. $\lim_{n \to \infty} F(y_n) = 1$ bo'lganlikdan ||F|| = 1 tengligi kelib chiqadi.

${f 6.2.13}$ $C\left[a,b ight]$ ${f fazosida}$ ${f har}$ ${f bir}$ ${f funksionalni}$

$$F(y) = \int_{a}^{b} p(x)y(x)dx \tag{6.7}$$

ko'rinishinda ifodalash mumkin emas ekanligini ko'rsating, bunda p(x) - [a, b] segmentda uzluksiz funksiya.

Yechimi. Oddiylak uchun $a=-1,\ b=1$ bo'lsin. C[-1;1] fazosida $\delta(y)=y(0)$ funksionalni qaraylik. Uni (6.7) ko'rinishda yozish mumkin deb olaylik, ya'ni [-1;1] da uzluksiz f funksiyani topish mumkin bo'lib, har bir $y(x) \in C[-1;1]$ uchun δ funksionalning qiymati

$$\delta(y) = \int_{-1}^{1} f(x)y(x)dx$$
 (6.8)

formula bilan hisoblash mumkin bo'lsin.

Grafigi 9-rasmda ko'rsatilgan $y_n(x)$ funksiyani qaraymiz.

9-rasm

$$\left| \int_{-1}^{1} y_n(x) f(x) \, dx \right| = \left| \int_{-\frac{1}{n}}^{\frac{1}{n}} y_n(x) f(x) \, dx \right| \le \int_{-\frac{1}{n}}^{\frac{1}{n}} |y_n(x)| |f(x)| \, dx \le \int_{-\frac{1}{n}}^{\frac{1}{n}} |f(x)| \, dx \le \frac{2||f||}{n}$$

munosabatidan va $n \to \infty$ da $\frac{2||f||}{n} \to 0$ ekanligidan biror n = N uchun $\frac{2||f||}{n} < \frac{1}{2}$ tengsizliginu yoza olamiz. Natijada $\left|\int_{-1}^{1} y_N(x)f(x)dx\right| \le \frac{1}{2}$.

Shu bilan birga $\delta(y_N) = y_N(0) = 1$, bundan $y = y_N$ bo'lganda (6.8) formuladan $\left| \int_{-1}^{1} y_N(x) f(x) dx \right| = 1$ tengligiga kelamiz. Bu ziddiyat farazimiz no'tog'ri ekanligini ko'rsatadi.

6.2.14. Absolyut yaqinlashuvchi $\sum\limits_{k=1}^{\infty}\lambda_k$ qator va [a,b] segmentidan olingan xoxlagan $\{x_k\}$ ketma-ketligi berilgan bo'lsa, C[a,b] fazosida

$$F(y) = \sum_{k=1}^{\infty} \lambda_k y(x_k)$$

funksionalining chiziqli, uzluksiz ekanligini isbotlang va normasini toping.

Yechimi. Dastlab chiziqli ekanligini ko'rsatamiz:

$$F(\alpha y_1 + \beta y_2) = \sum_{k=1}^{\infty} \lambda_k [\alpha y_1(x_k) + \beta y_2(x_k)] =$$

$$= \alpha \sum_{k=1}^{\infty} \lambda_k y_1(x_k) + \beta \sum_{k=1}^{\infty} \lambda_k y_2(x_k) = \alpha F(y_1) + \beta F(y_2).$$

Uzluksiz ekanligini ko'rsatish uchun uning chegaralangan ekanligini ko'rsatamiz:

$$|F(y)| = \left|\sum_{k=1}^{\infty} \lambda_k y(x_k)\right| \le \sum_{k=1}^{\infty} |\lambda| |y(x_k)| \le$$

$$\leq \max_{a \leq x \leq b} |y(x)| \sum_{k=1}^{\infty} \lambda_k = ||y|| \sum_{k=1}^{\infty} |\lambda_k|.$$

 $\sum_{k=1}^{\infty} \lambda_k \text{ qator absolyut yaqinlashuvchi bo'lganligidan } F(y) \text{ funksional chegaralangan. Shu bilan birga } ||F|| \leq \sum_{k=1}^{\infty} |\lambda_k|.$

Endi $||F|| = \sum_{k=1}^{\infty} |\lambda_k|$ tengligining o'rinli ekanligini ko'rsatamiz.

Xoxlagan $\varepsilon > 0$ uchun shunday m soni topilib, $\sum_{k=m+1}^{\infty} |\lambda_k| < \varepsilon$ tengsizligi o'rinli bo'ladi. C[a,b] fazosida $|y(x)| \leq 1$ tengsizlikni va $1 \leq k \leq m$

bo'lganda $y(x_k) = sign \lambda_k$ tengliklarni qanoatlantiruvchi funksiyani $y_m(x)$ orqali belgilaymiz. Natijada,

$$F(y_m) = \sum_{k=1}^{\infty} \lambda_k y_m(x_k) =$$

$$=\sum_{k=1}^{m}\lambda_k y(x_k)+\sum_{k=m+1}^{\infty}\lambda_k y(x_k)=\sum_{k=1}^{m}|\lambda_k|+\sum_{k=m+1}^{\infty}\lambda_k y(x_k).$$

 $|y(x)| \le 1$ bo'lganligidan

$$\left| \sum_{k=m+1}^{\infty} \lambda_k y(x_k) \right| \le \sum_{k=m+1}^{\infty} |\lambda_k| < \varepsilon.$$

U holda

$$F(y_m) \ge \sum_{k=1}^m |\lambda_k| - \varepsilon \ge \sum_{k=1}^\infty |\lambda_k| - 2\varepsilon.$$

Demak, $\sum_{k=1}^{\infty} |\lambda_k| - 2\varepsilon \le F(y_m) \le \sum_{k=1}^{\infty} |\lambda_k|$. $\varepsilon > 0$ soni ixtiyoriyligidan $||F|| = \sum_{k=1}^{\infty} |\lambda_k|$ tengligini yoza olamiz.

6.2.15. Hilbert fazosida uzluksiz chiziqli funktsonalning umumiy ko'rinishini toping.

Yechimi. Hilbert fazosidan xoxlagan bir x_0 nuqtasini tayinlab

$$f(x) = \langle x, x_0 \rangle \tag{6.9}$$

funksionalini qaraymiz. Ixtiyoriy α, β sonlari va x, y elementlar uchun

$$f(\alpha x + \beta y) = \langle \alpha x + \beta y, x_0 \rangle =$$

$$= \alpha \langle x, x_0 \rangle + \beta \langle y, x_0 \rangle = \alpha f(x) + \beta f(y),$$

ya'ni f funksional chiziqli. Koshi-Bunyakovskiy tengsizligi bo'yicha:

$$|f(x)| = |\langle x, x_0 \rangle| \le ||x|| ||x_0||. \tag{6.10}$$

Demak, f uzluksiz.

Endi Hilbert fazosida aniqlangan har bir uzluksiz chiziqli funksional (6.9) ko'rinishga ega bo'lishini ko'rsatamiz. Boshqacha aytqanda, Hilbert fazosida aniqlangan xoxlagan uzluksiz chiziqli f funksionali uchun (6.10) tenglikni qanoatlantiruvchi yagona x_0 nuqtasining mavjud ekanligini isbotlaymiz.

 H_0 orqali $\{x \in H : f(x) = 0\}$ to'plamini belgilaymiz. f chiziqli va uzluksiz bo'lganligidan, bu to'plam yopiq qism fazo bo'ladi. Haqiqatan, $x = \lim_{n \to \infty} x_n, \ x_n \in H_0, \ n = 1, 2, \dots$ bo'lganda

$$f(x) = f(\lim_{n \to \infty} x_n) = \lim_{n \to \infty} f(x_n) = 0,$$

ya'ni $x \in H_0$.

Agar $H_0 = H$ bo'lsa, x_0 sifatida nol elementini olish mumkin. $H_0 \neq H$ bo'lgan holni qaraylik. $H \setminus H_0$ to'plamidan biror y_0 element olib, uni

$$y_0 = y' + y'' \quad (y' \in H_0, y'' \bot H_0)$$

ko'rinishida yozamiz (4.3.12 - misolga qarang). $y'' \neq 0$ va $f(y'') \neq 0$ bo'lganligidan f(y'') = 1 tengligi o'rinli deb olish mumkin. Xoxlagan $x \in H$ element olib $f(x) = \alpha$ belgilash kiritamiz. $x' = x - \alpha y''$ elementi uchun

$$f(x') = f(x) - \alpha f(y'') = \alpha - \alpha = 0$$

bo'lganligidan $x' \in H_0$ munosabatga ega bo'lamiz. U holda

$$\langle x, y'' \rangle = \langle x' + \alpha y'', y'' \rangle = \langle x', y'' \rangle + \alpha \langle y'', y'' \rangle = \alpha \langle y'', y'' \rangle.$$

Natijada

$$f(x) = \alpha = \left\langle x, \frac{y''}{\langle y'', y'' \rangle} \right\rangle.$$

Demak, x_0 sifatida $\frac{y''}{\langle y', y'' \rangle}$ elementini olish mumkin.

Endi yagona ekanligini ko'rsatamiz. Agar barcha $x \in H$ elementlar uchun $\langle x, x_0 \rangle = \langle x, x_0' \rangle$ tengligi o'rinli bo'lsa, u holda $\langle x, x_0 - x_0' \rangle = 0$ bo'ladi, Natijada, $x_0 - x_0' \perp H$. Bu faqat $x_0 = x_0'$ bo'lganda o'rinli.

6.2.16. E normalangan fazoda noldan farqli uzluksiz chiziqli f funksionali va $M = \{x \in E : f(x) = 1\}$ to'plami berilgan bo'lsin. U holda,

$$\frac{1}{\|f\|} = \inf_{x \in M} \|x\|$$

 $tengligini\ is botlang.$

Yechimi. Xoxlagan $x \in E$ element uchun $|f(x)| \leq ||f|| \, ||x||$ tengsizligi o'rinli bo'lganligidan $x \in M$ elementi uchun $1 \leq ||f|| \, ||x||$, ya'ni $\frac{1}{||f||} \leq ||x||$ tengsizligini yoza olamiz. Shu sababli $\frac{1}{||f||} \leq \inf_{x \in M} ||x||$.

 $\|f\|=\sup_{\|x\|\leq 1}|f(x)|$ bo'lganligidan xoxlagan $\varepsilon>0$ soni uchun shunday y_ε elementi topilib

$$|f(y_{\varepsilon})| > (||f|| - \varepsilon) ||y_{\varepsilon}|| \qquad (||f|| > \varepsilon)$$

tengsizligi o'rinli bo'ladi. $\frac{y_{\varepsilon}}{f(y_{\varepsilon})}$ nuqtani x_{ε} orqali belgilaymiz. U holda, $x_{\varepsilon} \in M \text{ va } ||x_{\varepsilon}|| < \frac{1}{\|f\| - \varepsilon} \text{ Demak, } \inf_{x \in M} ||x|| < \frac{1}{\|f\| - \varepsilon} \text{ tengsizligi ham}$ o'rinli. Bu tengsizlikda ε ixtiyoriy bo'lganligidan $\inf_{x\in M}\|x\|\leq \frac{1}{\|f\|}$ tengsizligini yoza olamiz. Yuqorida $\frac{1}{\|f\|} \leq \inf_{x \in M} \|x\|$ tengsizligining o'rinli ekanligi ko'rsatilgan edi. Natijada $\frac{1}{\|f\|} = \inf_{x \in M} \|x\|$. 6.2.17. \mathbb{F}^n , $n \in \mathbb{N}$ fazoda har bir chiziqli funksional f uchun

shunday $a = (a_i) \in \mathbb{F}^n$ topilib,

$$f(x) = \sum_{i=1}^{n} x_i a_i, \ x = (x_i) \in \mathbb{F}^n$$

bo 'lishini ko 'rsating, $bunda \mathbb{F} = \mathbb{R} \ yoki \mathbb{C}$.

Yechimi. Aytaylik $\{e_1,...,e_n\}$ – \mathbb{F}^n fazoning bazisi va $f:\mathbb{F}^n\to\mathbb{F}$ chiziqli funksional bo'lsin. Agar $x=(x_i)\in\mathbb{R}^n$ bo'lsa, u holda

$$x = \sum_{i=1}^{n} x_i e_i,$$

va f ning chiziqli ekanligidan

$$f(x) = \sum_{i=1}^{n} x_i f(e_i).$$

Demak, f funksional $\{e_1, ..., e_n\}$ bazisdagi qiymatlari orqali to'liq aniqlanadi. $f(e_i) = a_i$ deb belgilaylik. U holda

$$f(x) = \sum_{i=1}^{n} x_i a_i.$$

6.2.18. $L_2[0, \pi]$ **fazoda**

$$f(x) = \int_{0}^{\pi} x(t) \sin t \, dt, \ x \in L_{2}[0, \, \pi]$$

funsionalning normasini toping.

Yechimi. $x \in L_2[0, \pi]$ uchun

$$|f(x)|^2 = \left(\int_0^{\pi} x(t)\sin t \, dt\right)^2 \le \int_0^{\pi} |x(t)|^2 \, dt \int_0^{\pi} \sin^2 t \, dt =$$

$$= ||x||^2 \int_{0}^{\pi} \sin^2 t \, dt = ||x||^2 \frac{\pi}{2},$$

ya'ni $||f|| \le \sqrt{\frac{\pi}{2}}$.

$$x(t) = \sqrt{\frac{2}{\pi}} \sin t \, \operatorname{da} f(x) = \sqrt{\frac{\pi}{2}} \, \operatorname{bo'lganlikdan}, ||f|| = \sqrt{\frac{\pi}{2}}.$$

6.2.19. $C[0, \pi]$ **fazoda**

$$f(x) = \int_{0}^{\pi} x(t) \cos t \, dt, \ x \in L_2[0, \pi]$$

funsionalning normasini toping.

Yechimi. $x \in C[0, \pi]$ uchun

$$|f(x)| = |\int_{0}^{\pi} x(t)\sin t \, dt| \le ||x|| \int_{0}^{\pi} \sin t \, dt = 2||x||,$$

ya'ni $||f|| \le 2$.

$$x(t) = 1 \operatorname{da} f(x) = 2 \operatorname{bo'lganlikdan}, ||f|| = 2.$$

Mustaqil ish uchun masalalar

1 - 10 - misollarda C[0,1] fazodagi funksionallarni chiziqli, uzluksizlikka tekshiring va normasini toping:

1.
$$f(x) = \int_{0}^{1} x(t) \sin t \, dt;$$

2.
$$f(x) = x(\frac{1}{2});$$

3.
$$f(x) = \int_{0}^{1} x(t) \operatorname{sign}(t - \frac{1}{2}) dt;$$

4.
$$f(x) = \int_{0}^{1} \sqrt{t}x(t^2) dt;$$

5.
$$f(x) = \int_{0}^{1} \sqrt[3]{t}x(t) dt;$$

6.
$$f(x) = \int_{0}^{1} x(t^2) dt;$$

7. $f(x) = x'(t_0);$

7.
$$f(x) = x'(t_0)$$
:

8.
$$f(x) = \int_{0}^{1} |x(t)| dt$$
;
9. $f(x) = \max_{0 \le t \le 1} x(t)$;

9.
$$f(x) = \max_{0 \le t \le 1} x(t)$$

4.
$$f(x) = \int_{0}^{1} x^{2}(t) dt$$
.

11. c_0 fazoda quyidagi funksionallarning normasini toping, $x = (x_1, \ldots, x_n, \ldots) \in c_0$:

a)
$$f(x) = x_1;$$

b)
$$f(x) = \sum_{k=1}^{n} x_k;$$

c)
$$f(x) = \sum_{k=1}^{\infty} \frac{1}{2^k} x_k;$$

d)
$$f(x) = \sum_{k=1}^{\infty} \frac{1}{k^2} x_k$$
.

6.3. Qo'shma fazolar

E fazosida aniqlangan f_1 va f_2 chiziqli funksionallarning yig'indisi deb

$$f(x) = f_1(x) + f_2(x), x \in E$$

ko'rinishida aniqlangan f funksionalga aytiladi va $f_1 + f_2$ ko'rinishida belgilanadi.

f chiziqli funksionalning α songa ko'paytmasi deb

$$g(x) = \alpha f(x), \quad x \in E$$

ko'rinishida aniqlangan f funksionalga aytamiz va αf ko'rinishida belgilaymiz.

Chiziqli funksionallarning yig'indisi va songa ko'paytmasi chiziqli funksional bo'lishi ravshan. Shu bilan birga E chiziqli topologik fazosida aniqlangan barcha chiziqli uzluksiz funksionallar to'plami qo'shish va songa ko'paytirish amallari nisbatan chiziqli fazo bo'lishini tekshirish qiyin emas. Bu chiziqli fazo E ga qo'shma fazo deyiladi va E^* ko'rinishida belgilanadi.

Masalalar

6.3.1. E normalangan fazoning $(E^*, \|\cdot\|)$ qo'shma fazosi to'liq ekanligini isbotlang.

Yechimi. E^* fazosida $\{f_n\}$ fundamental ketma-ketligi berilgan bo'lsin. U holda har bir $\varepsilon > 0$ soni uchun shunday n_{ε} soni topilib $n, m \geq n_{\varepsilon}$ bo'lganda $||f_n - f_m|| < \varepsilon$ tengsizligi o'rinli. Demak, ixtiyoriy $x \in E$ uchun

$$|f_n(x) - f_m(x)| = |(f_n - f_m)(x)| \le ||f_n - f_m|| \cdot ||x|| < \varepsilon ||x||,$$

yani $\{f_n(x)\}\$ ketma-ketligi yaqinlashuvchi. Bu ketma-ketlikning limitini f(x) orgali belgilaymiz. f(x) funksional chiziqlidir:

$$f(\alpha x + \beta y) = \lim_{n \to \infty} f_n(\alpha x + \beta y) =$$
$$= \lim_{n \to \infty} (\alpha f_n(x) + \beta f_n(y)) = \alpha f(x) + \beta f(y).$$

Endi f(x) funksionalning uzluksiz ekanligini ko'rsatamiz.

$$|f_n(x) - f_m(x)| < \varepsilon ||x||$$

tengsizligida $m \to \infty$ bo'lganda limitga o'tamiz:

$$|f(x) - f_n(x)| = \lim_{m \to \infty} |f_n(x) - f_m(x)| \le \varepsilon ||x||.$$

Bundan $f - f_n$ funksionalning chegaralangan ekanligi kelib chiqadi. U holda $f = f_n + (f - f_n)$ funksional ham chegaralangan, demak, uzluksiz. Shu bilan birga barcha $n \geq n_{\varepsilon}$ sonlari uchun $||f - f_n|| < \varepsilon$ tengsizligi o'rinli, ya'ni $\lim_{n\to\infty} f_n = f$. 6.3.2. $Agar \mathbb{R}^n$ fazosida norma

$$||x|| = \max_{1 \le k \le n} |x_k|$$

formula bilan aniqlansa, u holda uning qo'shma fazosida norma

$$||f|| = \sum_{i=1}^{n} |f_i| \tag{6.11}$$

kabi aniqlanishini ko'rsating.

Yechimi. $x = (x_1, \dots, x_n) \in \mathbb{R}^n, f = (f_1, \dots, f_n) \in \mathbb{R}^n \cong (\mathbb{R}^n)^*$ bo'lsin. U holda,

$$|f(x)| = |\sum_{i=1}^{n} x_i f_i| \le \sum_{i=1}^{n} |f_i||x_i| \le$$

$$\leq \sum_{i=1}^{n} |f_i| \max_{1 \leq k \leq n} |x_k| = ||x|| \sum_{i=1}^{n} |f_i|,$$

ya'ni

$$|f(x)| \le ||x|| \sum_{i=1}^{n} |f_i|.$$
 (6.12)

Koordinatalari $x_i = \text{sign}(f_i)$ bo'lgan x nuqtani olaylik. U holda,

$$\sum_{i=1}^{n} |f_i| = \sum_{i=1}^{n} f_i \operatorname{sign}(f_i) = \sum_{i=1}^{n} f_i x_i = |f(x)|,$$

ya'ni

$$\sum_{i=1}^{n} |f_i| \ge ||f||. \tag{6.13}$$

Endi (6.12) va (6.13) tengsizliklardan, (6.11) tenglik kelib chiqadi.

6.3.3. Agar \mathbb{R}^n fazosida norma

$$||x|| = \sum_{i=1}^{n} |x_i|$$

formula bilan aniqlansa, u holda uning qo'shma fazosida norma

$$||f|| = \max_{1 \le k \le n} |f_k| \tag{6.14}$$

kabi aniqlanishini ko'rsating.

Yechimi. $x=(x_1,\cdots,x_n)\in\mathbb{R}^n, f=(f_1,\cdots,f_n)\in\mathbb{R}^n\cong(\mathbb{R}^n)^*$ bo'lsin. U holda,

$$|f(x)| = |\sum_{i=1}^{n} x_i f_i| \le \sum_{i=1}^{n} |f_i||x_i| \le$$

$$\leq \sum_{i=1}^{n} |x_i| \max_{1 \leq k \leq n} |f_k| = ||x|| \max_{1 \leq k \leq n} |f_k|,$$

ya'ni

$$|f(x)| \le ||x|| \max_{1 \le k \le n} |f_k|.$$
 (6.15)

Aytaylik $\max_{1 \le k \le n} |f_k| = |f_j|$ bo'lsin. Koordinatalari $x_i = \operatorname{sign} f_i \delta_{ij}$ bo'lgan x nuqtani olaylik. U holda,

$$\max_{1 \le k \le n} |f_k| = f_j = \sum_{i=1}^n f_i \operatorname{sign} f_i \, \delta_{ij} = \sum_{i=1}^n f_i x_i = |f(x)|,$$

ya'ni

$$\max_{1 \le k \le n} |f_k| \ge ||f||. \tag{6.16}$$

Endi (6.15) va (6.16) tengsizliklardan, (6.14) tenglik kelib chiqadi.

6.3.4. Agar \mathbb{R}^3 fazosida norma

$$||x|| = |x_1| + \sqrt{x_2^2 + x_3^2}$$

 $formula\ bilan\ aniqlansa,\ u\ holda\ uning\ qo'shma\ fazosida\ norma$

$$||f|| = \max\{|f_1|, \sqrt{f_1^2 + f_3^2}\}$$
 (6.17)

kabi aniqlanishini ko'rsating.

Yechimi. $x = (x_1, x_2, x_3) \in \mathbb{R}^3$, $f = (f_1, f_2, f_3) \in \mathbb{R}^3 \cong (\mathbb{R}^3)^*$ bo'lsin. U holda,

$$|f(x)| = |\sum_{i=1}^{3} x_i f_i| \le |f_1||x_1| + |f_2 x_2 + f_3 x_3| \le$$

 $\leq |f_1||x_1| + \sqrt{f_2^2 + f_3^2} \sqrt{x_2^2 + x_3^2} \leq \max\{|f_1|, \sqrt{f_1^2 + f_3^2}\}(|x_1| + \sqrt{x_2^2 + x_3^2}),$ ya'ni

 $|f(x)| \le ||x|| \max\{|f_1|, \sqrt{f_1^2 + f_3^2}\}.$ (6.18)

Agar f=0 bo'lsa, u holda (6.17) tenglik ravshan. Aks holda qyuidagi hollarni qaraymiz.

a) $\sqrt{f_1^2 + f_3^2} > |f_1|$. Koordinatalari

$$x_1 = 0, x_2 = \frac{f_2}{\sqrt{f_1^2 + f_3^2}}, x_3 = \frac{f_3}{\sqrt{f_1^2 + f_3^2}}$$

bo'lgan x nuqta olaylik.

U holda,

$$|f(x)| = f_2 \frac{f_2}{\sqrt{f_1^2 + f_3^2}} + f_3 \frac{f_3}{\sqrt{f_1^2 + f_3^2}} = \sqrt{f_1^2 + f_3^2},$$

ya'ni

$$||f|| \ge \max\{|f_1|, \sqrt{f_1^2 + f_3^2}\}.$$
 (6.19)

b)
$$\sqrt{f_1^2 + f_3^2} \le |f_1|$$
. Koordinatalari

$$x_1 = 1, x_2 = 0, x_3 = 0$$

bo'lgan x nuqta olaylik.

U holda,

$$|f(x)| = |f_1|$$

ya'ni

$$||f|| \ge \max\{|f_1|, \sqrt{f_1^2 + f_3^2}\}.$$
 (6.20)

Endi (6.18) (6.19) va (6.20) tengsizliklardan, (6.17) tenglik kelib chiqadi.

6.3.5. Barcha yaqinlashuvchi $\xi = (\xi_n)$ ketma-ketliklar fazosida normani $\|\xi\| = \sup |\xi_n|$ koʻrinishda aniqlab, bu normalangan fazoni c orqali belgilaymiz. $c^* = \ell_1$ tengligini isbotlang.

Yechimi. c fazosida quyidagi vektorlarni aniqlaymiz:

$$e_0 = (1, 1, \dots, 1, \dots),$$

 $e_k = (\underbrace{0, 0, \dots, 0}_{k-1}, 1, 0, \dots), \quad k \in \mathbb{N}.$

Natijada har bir $x = (\xi_n) \in c$ elementni

$$x = \xi_0 e_0 + \lim_{k \to \infty} \sum_{n=1}^{k} (\xi_n - \xi_0) e_n$$

ko'rinishda yozish mumkin, bunda $\xi_0 = \lim_{n \to \infty} \xi_n$.

Aytaylik $f \in c^*$ bo'lsin. U holda

$$f(x) = \xi_0 f(e_0) + \lim_{k \to \infty} \sum_{n=1}^k (\xi_n - \xi_0) f(e_n) =$$
$$= \xi_0 \eta_0' + \lim_{k \to \infty} \sum_{n=1}^k (\xi_n - \xi_0) \eta_n,$$

bunda $\eta_0 = f(e_0)$ va $\eta_n = f(e_n), n \in \mathbb{N}$.

Endi f(x) sonini boshqa ko'rinishda ham yozish mumkin ekanligini ko'rsatamiz. Buning uchun ε_n sonlarni $\varepsilon_n = \operatorname{sign} \eta_n$ ko'rinishinda aniqlaymiz. Har bir $m \in \mathbb{N}$ sonini tayinlab $x^{(m)} = (\tilde{\xi}_n) \in c$ nuqtani quyidagicha saylab olamiz: $n \leq m$ bo'lganda $\tilde{\xi}_n = \varepsilon_n$, n > m bo'lganda $\tilde{\xi}_n = 0$. U holda $||x^{(m)}|| \leq 1$, $\tilde{\xi}_n = 0$, natijada

$$|f(x^{(m)})| = |\sum_{n=1}^{m} \alpha \tilde{\xi}_n \eta_n| = \sum_{n=1}^{m} |\eta_n| \le ||f||.$$

 $m \in \mathbb{N}$ ning ixtiyoriyligidan $\sum_{n=1}^{\infty} |\eta_n| < +\infty$ kelib chiqadi, ya'ni $(\eta_n) \in \ell_1$.

Demak, har bir $x=(\xi_n)\in c$ elemenni uchun $\sum_{n=1}^\infty \xi_n\eta_n$ qator absolyut yaqinlashuvchi va

$$f(x) = \xi_0(\eta_0 - \sum_{n=1}^{\infty} \eta_n) + \sum_{n=1}^{\infty} \xi_n \eta_n = \xi_0 \eta_0 + \sum_{n=1}^{\infty} \xi_0 \eta_0.$$
 (6.21)

Demak, agar $f \in c^*$ bo'lsa, u holda ixtiyoriy $x = (\xi_n) \in c$ uchun (6.21) o'rinli, bunda $\xi_0 = \lim_{n \to \infty} \xi_n$, $\eta_0 = \text{const va } (\eta_n) \in \ell_1$. Yuqoridadek $m \in \mathbb{N}$ sonini tayinlab $x_m = (\xi_n) \in c$ nuqtani saylab olamiz:

 $n \leq m$ bo'lganda $\xi_n = \varepsilon_n$, n > m bo'ganda $\xi_n = \varepsilon_0 = \operatorname{sign} \eta_0$ (ε_n sonlari yuqorida aniqlandi). U holda $||x_m|| \leq 1$, $\xi_0 = \lim_{n \to \infty} \xi_n = \varepsilon_0$ va

$$f(x_m) = |\eta_0| + \sum_{n=1}^m |\eta_n| + \varepsilon_0 \sum_{n=m+1}^\infty \eta_n.$$

Bundan

$$||f|| = \sup_{\|x\| \le 1} |f(x)| \ge |f(x_m)|$$

va $m \to \infty$ da

$$|\eta_0| + \sum_{n=1}^{\infty} |\eta_n| \le ||f||.$$

Har bir $y = (\eta_n) \in \ell_1$ element (6.21) formula yordamida c fazosida biror uzluksiz chiziqli f funksionalni aniqlaydi, shu bilan birga

$$||f|| = |\eta_0| + \sum_{n=1}^{\infty} |\eta_n|.$$

Demak, $c^* = \ell_1$.

 $6.3.6.\ \ell_1\ fazoning\ qo$ 'shma fazosim fazosiga izomorf ekanligini ko'rsating.

Yechimi. $\xi = (\xi_1, \xi_2, \cdots, \xi_n, \cdots) \in m$ bo'lsa, u holda

$$f(x) = \sum_{i=1}^{\infty} x_i \xi_i, \ x = (x_i) \in \ell_1$$
 (6.22)

formula ℓ_1 fazoda chiziqli funksionalni aniqlaydi.

f ning uzluksizligi

$$|f(x)| \le \sup_{k} |\xi_k| \sum_{i=1}^{\infty} |x_i| = ||\xi||_m ||x||_{\ell_1},$$

ya'ni

$$||f|| \le ||\xi||_m \tag{6.23}$$

tensizligidan kelib chiqadi.

Endi ℓ_1 fazoda har bir uzluksiz chiziqli funksional (6.22) ko'inishda ekanligini isbotlaymiz.

 ℓ_1 fazosida quyidagi vektorlarni qaraylik:

$$e_n = (\underbrace{0, 0, \dots, 0}_{n-1}, 1, 0, \dots), \quad n \in \mathbb{N}.$$

U holda $x = (x_n) \in \ell_1$ elementni

$$x = \sum_{i=1}^{\infty} x_i e_i$$

ko'rinishda yozish mumkin va $x^{(n)} = \sum_{i=1}^{n} x_i e_i$ uchun

$$||x^{(n)} - x|| = \sum_{i=n+1}^{\infty} |x_i| \to 0.$$

 $f \in \ell_1^*$ bo'lsin. U holda

$$f(x) = f\left(\sum_{i=1}^{\infty} x_i e_i\right) = f\left(\lim_{n \to \infty} \sum_{i=1}^{n} x_i e_i\right) =$$
$$= \lim_{n \to \infty} f\left(\sum_{i=1}^{n} x_i e_i\right) = \sum_{i=1}^{\infty} x_i f(e_i) = \sum_{i=1}^{n} x_i \xi_i,$$

bunda

$$\xi_i = f(e_i), i \in \mathbb{N}.$$
$$|\xi_i| = |f(e_i)| \le ||f||$$

dan $(\xi_i) \in m$. Demak,

$$||\xi||_m = \sup_k |\xi_k| \le ||f||.$$
 (6.24)

(6.23) va (6.24) dan $||f|| = ||\xi||$ kelib chiqadi, yani $\ell_1^* \cong m$.

6.3.7. m^* fazoning ℓ_1 fazoga izomorf emasligini koʻrsating.

Yechimi.Ravshankicyaqinlashuvchi ketma-ketliklar fazosi mning qismfazosidir. cqismfazoda

$$f(x) = \lim_{n \to \infty} x_n, \ x = (x_n) \in c \tag{6.25}$$

ifoda chegaralangan chiziqli funksionalni aniqlaydi.

 $x_0 = (1, 1, ..., 1, ...) \in c$ nuqtada $f(x_0) = 1$ dan ||f|| = 1 kelib chiqadi. Xan-Banax teoremasidan bu funksionalni normasini saqlagan holda m fazosiga davom ettirish mumkin.

Faraz qilaylik, bu funksional ℓ_1 fazo elementi orqali aniqlansin, ya'ni shunday $\xi = (\xi_n) \in \ell_1$ topilib,

$$f(x) = \sum_{n=1}^{\infty} x_n \xi_n, (x_n) \in m.$$
 (6.25)

 $e_n=(0,...,0,1,0,...), n\in\mathbb{N}$ elementlarni qaraylik. (6.25) dan $f(e_n)=0, n\in\mathbb{N}$ kelib chiqadi.

Ikkinchi tomondan, (6.26) ga ko'ra

$$f(e_n) = \xi_n, n \in \mathbb{N}.$$

Bundan, $\xi_n = 0, n \in \mathbb{N}$. (6.26) dan esa

$$f(x) = 0, \forall x \in m.$$

Demak, $f \equiv 0$. Bu esa ||f|| = 1 ekanligiga zid. Hosil bo'lgan ziddiyatdan, m^* fazoning ℓ_1 fazoga izomorf emasligini kelib chiqadi.

6.3.8. C[a, b] fazoning refleksiv emasligini isbotlang.

Yechimi. Teskarisini faraz qilaylik. U holda chekli variatsiyali funksiyalar fazosi V da aniqlangan har bir uzluksiz chiziqli F(f) funksional C[a, b] fazosidagi biror x(t) funksiya orqali aniqlanishi kerak, ya'ni

$$F(f) = F_x(f) = f(x).$$

Demak,

$$F_x(f) = \int_a^b x(t) \, df(t),$$

bunda $f(t) - C[a; b]^*$ da f(x) funksionalga mos keluvch chekli variatsiyali funksiya.

Quyidagi funksionalni qaraylik:

$$F_0(f) = f(t_0 + 0) - f(t_0 - 0) \quad (t_0 \in [a, b]).$$

Bu funksionalning chiziqli ekanligi ravshan, uzluksizligi quyidagi baholashdan kelib chiqadi

$$|F_0(f)| \le |f(t_0+0) - f(t_0-0)| \le V_a^b(f) = ||f||.$$

Bundan tashqari $F_0(f) \neq 0$, shuning uchun [a, b] da uzluksiz $x_0t) \neq 0$ funksiya mavjud bo'lib, $F_0(f) = \int_a^b x_0(t) df(t)$ tenglik o'rinli bo'ladi.

Endi $f(t) = \int_a^t x_0(s) ds$ funksiyani qaraylik. Bu funksiya [a, b] da uzluksiz bo'lganlikdan $F_0(f_0) = 0$. Biroq ikkinchi tomondan

$$F_0(f) = \int_a^b x_0(t) df(t) = \int_a^b x_0^2(t) dt > 0.$$

Bu ziddiyatdan C[a, b] fazoning refleksiv emasligi ko'rinadi.

6.3.9. $L^0(0, 1)^* = \{0\}$ ekanligini ko'rsating.

Yechimi. Faraz qilaylik $f \in L^0(0, 1)^*$, $f \neq 0$ mavjud bo'lsin. Yarim intervallarning xarakteristik funksiyalari chiziqli kombinasiyalari $L^0(0, 1)$ fazoda zich bo'lganlikdan, shunday $\Delta_1 \subseteq [0, 1]$ yarim interval topilib, $f(\chi_{\Delta_1}) = \delta_1 \neq 0$ o'rinlidir. Δ_1 ni teng ikkita dizyunkt Δ'_1 , Δ''_1 yarim intervallarga ajrataylik. $\chi_{\Delta_1} = \chi_{\Delta'_1} + \chi_{\Delta''_1}$ bo'lganlikdan

$$f(\chi_{\Delta_1'}) + f(\chi_{\Delta_1''}) = f(\chi_{\Delta_1}) \neq 0$$

kelib chiqadi. Bundan $f(\chi_{\Delta'_1}) \neq 0$ yoki $f(\chi_{\Delta''_1}) \neq 0$. Bu sonlarning noldan farqlisiga mos keluvchi yarim intervalni Δ_2 deb belgilaylik, ya'ni $f(\chi_{\Delta_2}) = \delta_2 \neq 0$, bunda $\mu(\Delta_2) \leq 1/2$.

Bu jarayonni davom ettirib,

- a) $\mu(\Delta_n) \le 1/2^n$;
- b) $f(\chi_{\Delta_n}) = \delta_n \neq 0$

shartlarni qanoatlantiruvchi $\{\Delta_n\}$ yarim intervallarga ega bo'lamiz.

Endi $x_n = \delta_n^{-1} \chi_{\Delta_n}$ deylik. U holda $\mu(\Delta_n) \leq 1/2^n$ dan $\{x_n\}$ ketmaketlik o'chov bo'yicha nolga intiladi, ya'ni $x_n \stackrel{\mu}{\to} 0$. f ning uzluksizligidan, $f(x_n) \to 0$.

Lekin

$$f(x_n) = f(\delta_n^{-1} \chi_{\Delta_n}) = \delta_n^{-1} \delta_n = 1.$$

Hosil bo'lgan ziddiyatdan $f \equiv 0$, ya'ni $L^0(0, 1)^* = \{0\}$ ekanligini kelib chiqadi.

6.3.10. E normalangan fazo va $x_0 \in E$ bo'lsin. U holda shunday $f \in E^*$ mavjudki,

$$||f|| = 1$$

va

$$f(x_0) = ||x_0||$$

 $tengliklari\ o$ 'rinlidir.

Yechimi. x_0 elementning chiziqli qobig'i $\mathcal{L}(x_0)$ da

$$f(\alpha x_0) = \alpha ||x_0||$$

formula bilan aniqlangan funksionalni qaraylik.

$$|f(\alpha x_0)| = |\alpha||x_0|| = ||\alpha x_0||$$

dan va normaning bir-jinsli qavariq funksionalligidan, Xan — Banach teoremasiga asosan bu funksionalni E fazosigacha davom ettiramiz. U holda

$$||f|| = 1$$

va

$$f(x_0) = ||x_0||$$

tengliklari o'rinlidir.

6.3.11. E normalangan fazo va $x_0 \in E$ bo'lsin. U holda

$$\psi_{x_0}(f) = f(x_0), f \in E^*$$

 $orqali\ aniqlangan\ funksional\ E^*\ da\ chegaralangan\ ekanligini\ ko'rsating.$

Yechimi. $f_1, f_2 \in E^*, \alpha_1, \alpha_2 \in \mathbb{R}$ uchun

$$\psi_{x_0}(\alpha_1 f_1 + \alpha_2 f_2) = (\alpha_1 f_1 + \alpha_2 f_2)(x_0) =$$

$$= \alpha_1 f_1(x_0) + \alpha_2 f_2(x_0) = \alpha_1 \psi_{x_0}(f_1) + \alpha_2 \psi_{x_0}(f_2).$$

Bundan ψ_{x_0} chiziqli funksional. Endi

$$|\psi_{x_0}(f)| = |f(x_0)| \le ||f|| ||x_0||$$

ekanligidan ψ_{x_0} chegaralangan funksional va $||\psi_{x_0}|| \leq ||x_0||$.

6.3.12. E normalangan fazo bo'lsin. U holda

$$x \in E : \mapsto \psi_x \in E^{**}$$

 $orqali \ aniqlangan \ akslantirish \ izometriya \ ekanligini \ ko'rsating.$

Yechimi. 6.3.10 - misoldan har bir $x \in E$ uchun $||\psi_{x_0}|| \leq ||x_0||$ tengsizligi o'rinli.

6.3.10 - misolga asosan, har bir $x \in E$ uchun shunday $f \in E^*$ topiladiki, |f(x)| = ||f||||x||. Bundan

$$||\psi_x|| = \sup_{f \in E^*} \frac{|f(x)|}{||f||} \ge ||x||,$$

ya'ni $||\psi_x|| \ge ||x||$. Demak,

$$||\psi_x|| = ||x||.$$

6.3.13. X Banach fazosi, $f_n \in X^*$, $n \in \mathbb{N}$ va ixtiyoriy $x \in X$ uchun

$$\lim_{n \to \infty} \langle x, f_n \rangle = \langle x, f \rangle$$

 $tengligi\ o$ 'rinli bo'lsin. U holda $f\in X^*$ bo'lishini isbotlang.

Yechimi. 6.2.20 - misolda A_n operatorini f_n funksional bilan almashtirsak misolning yechimi kelib chiqasi.

Mustaqil ish uchun masalalar

- 1. c_0 fazoning refleksif emasligini ko'rsating.
- 2. ℓ_1 fazoning refleksif emasligini ko'rsating.
- 3. ℓ_p^* fazoning ℓ_q fazoga izomorf ekanligini ko'rsating, bunda 1
- 4. Agar f chiziqli funksional $c_0 \subset m$ fazoda chegaralangan bo'lsa, u holda bu funksionalni normasini saqlab m fazosiga yagona usulda davom ettirish mumkinligini isborlang.
- **5.** Agar X cheksiz o'lchamli normalangan fazo bo'lsa, u holda X^* fazo ham cheksiz o'lchovli ekanligini isbotlang.
 - **6.** X Banax fazosi bo'lsin. Har bir $M \subset X$ to'plam uchun

$$M^* = \{ f \in X^* : |f(x)| \le 1, \forall x \in M \}$$

to'plamning yopiq va qavariq ekanligini ko'rsating.

7. X va Y normalangan fazolar, $Z=X\oplus Y$ ularning to'g'ri yig'indisi bo'lsin. U holda Z fazodagi har bir uzluksiz chiziqli funksional f yagona usulda

$$f((x,y)) = h(x) + g(y)$$

ko'rinishda tasvirlanishini isbotlang, bunda $h \in X^*$, $g \in Y^*$.

- 8. X Banax fazosi bo'lsin. Agar X^* separabel bo'lsa, u holda X ham separabel ekanligini ko'rsating.
- **9.** X separabel bo'lib, X^* separabel bo'lmagan X Banax fazosiga misol keltiring.
- ${f 10.}$ Qo'shma fazosi c fazosiga izomorf bo'lgan Banax fazosi mavjud emasligini ko'rsating.
- 11. X Banax fazosi bo'lsin. Ixtiyoriy chiziqli erkli $\{x_n\} \subset X$ ketmaketligi uchun shunday $\{f_n\} \subset X^*$ ketma-ketligi mavjud bo'lib,

$$||f_n|| = 1$$
 va $f_i(x_j) = \delta_{ij}$

o'rinlidir.

6.4. Kuchsiz topologiya va kuchsiz yaqinlashish

E chiziqli topologik fazosida aniqlangan barcha uzluksiz funksionallar to'plamidan chekli sondagi f_1, f_2, \ldots, f_n funksionallar olamiz. Agar ε musbat son bo'lsa, u holda

$$\{x: |f_i(x)| < \varepsilon, i = 1, 2, \dots, n\}$$
 (6.27)

to'plami E fazosida ochiq bo'ladi. Shu bilan birga, bunday to'plamlar nol nuqtasini o'z ichiga oladi. Shuning uchun u nol nuqtaning biror atrofi. Bunday atroflar sistemasi nol nuqta atroflarining aniqlovchi sistemasi bo'ladi. E fazoda (6.27) ko'rinishdagi to'plamlar sistaemasi hosil etgan topologiya $kuchsiz\ topologiya\ deyiladi$.

Kuchsiz topologiya bo'yicha yaqinlashishga kuzsiz yaqinlashish deyiladi. (6.27) ko'rinishdagi to'plamlar aniqlanishidan, $\{x_n\} \subset E$ ketmaketligi $x \in E$ elementiga yaqinlashishi quyidagiga teng kuchlidir:

$$f(x_n) \to f(x), f \in E^*.$$

Kuchsiz yaqinlashish $x_n \xrightarrow{w} x$ kabi belgilanadi.

 E^{\ast} fazodagi normaga mos keluvchi topologiyaga shu fazodagi kuchli topologiya deyiladi .

Echiziqli topologik fazosida x_1, x_2, \ldots, x_n nuqtalarni olamiz. $\varepsilon > 0$ bo'lsin.

$$\{f \in E^* : |f(x_i)| < \varepsilon, \ i = 1, 2, \dots, n\}$$
 (6.28)

to'plami E^* fazosida ochiq bo'ladi. Bu atroflar sistemasi nol nuqta atroflarining aniqlovchi sistemasi bo'ladi. E^* fazoda (6.28) ko'rinishdagi to'plamlar sistaemasi hosil etgan topologiya *-kuchsiz topologiya deyiladi.

*-Kuchsiz topologiya bo'yicha yaqinlashishga *-kuzsiz yaqinlashish deyiladi. (6.28) ko'rinishdagi to'plamlar aniqlanishidan, $\{f_n\} \subset E^*$ ketma-ketligi $f \in E^*$ funksionaliga yaqinlashishi quyidagiga teng kuchlidir:

$$f_n(x) \to f(x), \ x \in E.$$

*-Kuchsiz yaqinlashish $f_n \stackrel{^*w}{\to} f$ kabi belgilanadi.

Masalalar

6.4.1. E Banach fazosida $\{x_n\}$ ketma-ketlik kuchli yaqin-lashuvchi bo'lsa, u holda bu ketma-ketlikning kuchsiz yaqin-lashuvchi ekanligini ko'rsating.

Yechimi. Aytaylik, $\{x_n\}$ ketma-ketlik x elementga kuchli yaqinlashsin, ya'ni $||x_n - x|| \to 0$. Ixtiyoriy $f \in E^*$ uchun

$$|f(x_n) - f(x)| = |f(x_n - x)| \le ||f|| ||x_n - x|| \to 0$$

ekanligidan, $f(x_n) \to f(x)$. Bundan $x_n \stackrel{w}{\to} x$.

6.4.2. E^* fazosida $\{f_n\}$ ketma-ketlik kuchli yaqinlashuvchi bo'lsa, u holda bu ketma-ketlikning *-kuchsiz yaqinlashuvchi ekanligini ko'rsating.

Yechimi. Aytaylik, $\{f_n\}$ ket
ma-ketlik ffunksionalga kuchli yaqinlashsin, ya'n
i $||f_n-f||\to 0.$ Ixtiyoriy $x\in E$ uchun

$$|f_n(x) - f(x)| = |(f_n - f)(x)| \le ||x|| ||f_n - f|| \to 0$$

ekanligidan, $f_n(x) \to f(x)$. Bundan $f_n \stackrel{*_w}{\to} f$.

6.4.3. E chiziqli topologik fazoda kuchsiz yaqinlashisgga quyidagicha ta'rif berish mumkin ekanligini isbotlang: x_0 nuqtasi va $\{x_n\}$ ketma-ketligi berilganda har bir $\varphi \in E^*$ funksional uchun $\{\varphi(x_n)\}$ ketma-ketligi $\varphi(x_0)$ soniga yaqinlashuvchi boʻlsa, u holda $\{x_n\}$ ketma-ketligi x_0 nuqtaga kuchsiz yaqinlashuvchi deyiladi.

Yechimi. Oddiylak uchun $x_0 = 0$ va har bir $\varphi \in E^*$ uchun $\varphi(x_n) \to 0$ bo'lsin. Nol nuqtaning ixtiyoriy

$$U = \{x : |\varphi_i(x)| < \varepsilon, i = 1, ..., k\}$$

kushsiz atrofini olaylik. U holda har bir $\varepsilon > 0$ soni uchun shunday n_i (i = 1, 2, ..., k) soni topilib, $n \geq n_i$ bo'lganda $|\varphi_i(x)| < \varepsilon$ o'rinli bo'ladi. $n_{\varepsilon} = \max n_i$ deb olsak $n \geq n_{\varepsilon}$ bo'lganda $x_n \in U$ ni yoza olamiz.

Teskarisi, agar nol nuqtaning har bir kuchsiz U atrofi uchun shunday n_0 soni topilib $n \ge n_0$ bo'lganda $x_n \in U$ o'rinli bo'lsa, u holda $n \to \infty$ da har bir $\varphi \in E^*$ uchun $\varphi(x_n) \to 0$ ekanligi ko'rinadi.

6.4.4. Normalangan fazoda berilgan har bir $\{x_n\}$ kushsiz yaqinlashuvchi ketma-ketlikning chegaralangan ekanligini isbotlang.

 $Yechimi. E^*$ fazosida

$$A_{kn} = \{ f : |f(x_n)| \le k \}, \ k, n = 1, 2, \dots$$
 (6.29)

to'plamlarini qaraylik.

Tayinlangan x_n da f o'zgaruvchidan olingan $\langle f, x_n \rangle$ funksiya uzluksiz bo'lganlikdan (6.29) to'plamlari yopiq bo'ladi. Yopiq to'plamlarning kesishmasi yopiq bo'lganlikdan $A_k = \bigcap_{n=1}^{\infty} A_{kn}$ to'plami ham yopiq bo'ladi. $\{x_n\}$ ketma-ketligi kushsiz yaqinlashuvchi bo'lganlikdan har bir $f \in E^*$ uchun $f(x_n)$ sonli ketma-ketligi yaqinlashuvchi, demak, chegaralangan. Boshqacha aytganda, E^* fazosidan olingan ixtiyoriy f element A_k to'plamlarining bittasiga tegishli bo'ladi. Shuning uchun

$$E^* = \bigcup_{k=1}^{\infty} A_k$$

tengligini yoza olamiz. E^* fazosi to'liq bo'lganlikdan Ber teoremasi (4.11 - misolga qarang) boyicha A_k to'plamlarning bittasi, aytaylik A_m to'plami biror $B[f_0, \varepsilon]$ sharda zich bo'ladi. A_m yopiq bo'lganliktdan $B[f_0, \varepsilon] \subset A_m$ o'rinli. Natijada, $\{x_n\}$ ketma-ketlik $B[f_0, \varepsilon]$ sharida, demak, E^* fazosida har bir sharda chegaralangan bo'ladi. Jumladan, birlik sharda ham chegaralangan. Boshqacha aytganda, $\{x_n\}$ ketma-ketlik hadlari E^{**} fazo elementlari sifatida chegaralangan. $E \subset E^{**}$ munosabatidan $\{x_n\}$ ketma-ketlikning E fazosida ham chegaralangan ekanligi kelib chiqadi.

- 6.4.5. E normalangan fazoda $\{x_n\}$ ketma-ketligi va $x \in E$ element berilgan bo'lib quyidagi ikki shart o'rinli bo'lsin:
 - 1) $\{||x_n||\}$ ketma-ketligi biror M soni bilan chegaralangan;
- 2) E^* fazosida zich bo'lgan biror Δ to'plamdan olingan har bir f uchun $f(x_n) \to f(x)$.

U holda $\{x_n\}$ ketma-ketligining x nuqtaga yaqinlashuvchi ekanini isbotlang.

Yechimi. $\varphi = \alpha_1 f_1 + \alpha_2 f_2 + ... + \alpha_k f_k, f_1, f_2, ..., f_k \in \Delta$ bo'lsa, u holda ikkinchi shartdan:

$$\varphi(x_n) = (\alpha_1 f_1 + \alpha_2 f_2 + \dots + \alpha_k f_k)(x_n) =$$

$$= \alpha_1 f_1(x_n) + \alpha_2 f_2(x_n) + \dots + \alpha_k f_k(x_n) \rightarrow$$

$$\rightarrow \alpha_1 f_1(x) + \alpha_2 f_2(x) + \dots + \alpha_k f_k(x) = \varphi(x).$$

Endi E^* fazodan ixtiyoriy φ element olaylik. $\{\varphi_n\}$ orqali elementlari Δ to'plam elementlarining chiziqli kombinasiyalaridan iborat va φ elementga yaqinlashuvchi ketma-ketlikni belgilaymiz. $\varphi(x_n) \to \varphi(x)$ o'rinli ekanligini ko'rsatishimiz kerak. M sonini $||x_n|| \leq M$, $n = 1, 2, ..., ||x|| \leq M$ o'rinli bo'ladigan etib saylab olaylik.

 $\varphi_k \to \varphi$ bo'lganlikdan, har bir $\varepsilon > 0$ soni uchun shunday k_{ε} soni topilib, $k \geq k_{\varepsilon}$ bo'lganda $\|\varphi - \varphi_k\| < \varepsilon$ tengsizligi o'rinli boladi. Bundan

$$|\varphi(x_n) - \varphi(x)| = |\varphi(x_n) - \varphi_k(x_n) + \varphi_k(x_n) - \varphi_k(x) + \varphi_k(x) - \varphi(x)| \le$$

$$\le |\varphi(x_n) - \varphi_k(x_n)| + |\varphi_k(x_n) - \varphi_k(x)| + |\varphi_k(x) - \varphi(x)| \le$$

$$\le \varepsilon M + \varepsilon M + |\varphi_k(x_n) - \varphi_k(x)|$$

Shart boyicha $\varphi_k(x_n) \to \varphi_k(x)$ bo'lganlikdan, har bir $\varphi \in E^*$ uchun $\varphi(x_n) - \varphi(x) \to 0$ ekenligi kelib chiaadi.

6.4.6. Chekli o'lchamli \mathbb{R}^n evklid fazosida har bir kuchsiz yaqinlashuvchi ketma-ketlikning kushli yaqinlashuvchi ekanini isbotlang.

Yechimi. Aytaylik $\{e_1, e_2, ..., e_n\}$ sistema \mathbb{R}^n daga biror ortonormal bazis bo'lib, $\{x_k\}$ ketma-ketlik \mathbb{R}^n da x elementga kushsiz yaqinlashuvchi bo'lsin.

$$x_k = x_k^{(1)} e_1 + \dots + x_k^{(n)} e_n,$$

 $x = x^{(1)} e_1 + \dots + x^{(n)} e_n$

bo'lsin. U holda

ya'ni $\{x_k\}$ ketma-ketlik xelementga koordinata boyicha yaqinlashuvchi. Natijada

$$||x - x_k|| = \left(\sum_{i=1}^n (x_k^{(i)} - x^{(i)})^2\right)^{1/2} \to 0,$$

ya'ni $\{x_k\}$ ketma-ketlik x ga kushli yaqinlashuvchi bo'ladi.

6.4.7. $C[0, 2\pi]$ fazosida kuchli va kuchsiz yaqinlashishlar o'zaro teng kuchlimi?

Yechimi. $C[0, 2\pi]$ fazosida

$$a_n(x) = \frac{1}{\pi} \int_0^{2\pi} x(t) \cos nt \, dt, \quad n \in \mathbb{N}$$

formula orqali aniqlangan uzluksiz chiziqli funksionallar ketma-ketligini qaraylik.

Matematik analiz kursidan ma'lumki, $[0; 2\pi]$ kesmada uzluksiz bo'lgan har bir x(t) funksiya uchun uning Fure qatoriga yoyilmasi koeffitsientlaridan tuzilgan $\{a_n(x)\}$ ketma-ketlik nolga yaqinlashuvchi bo'ladi $(\lim_{n\to\infty} a_n(x) = 0)$, ya'ni $\{a_n(x)\}$ funksionallar ketma-ketligi nol funksionalga kuchsiz yaqinlashuvchi bo'ladi.

Shu bilan birga $a_n(x)$ funksionallarni

$$a_n(x) = \frac{1}{\pi} \int_0^{2\pi} x(t) d\left(\int_0^t \cos nu \, du \right)$$

ko'rinishda yozish mumkin, bundan tashqari

$$\underset{t \in [0; 2\pi]}{Var} \left(\int\limits_0^t \cos \, nu \, du \right) = \int\limits_0^{2\pi} |\cos \, nu \, | \, du \, ,$$

ya'ni

$$||a_n|| = \frac{1}{\pi} \int_0^{2\pi} |\cos nt| \, dt = \frac{1}{\pi} \sum_{k=0}^{n-1} \int_{\frac{2k\pi}{n}}^{\frac{k+1}{n}2\pi} |\cos nt| \, dt =$$

$$= \frac{1}{n\pi} \sum_{k=0}^{n-1} \int_0^{2\pi} |\cos z| \, dz = \frac{4}{\pi}, \quad (n \in \mathbb{N}).$$

Demak, $C[0, 2\pi]$ fazosida qaralayotgan uzluksiz chiziqli funksionallarning $\{a_n(x)\}$ ketma-ketligi kuchsiz yaqinlashuvchi bo'lib, kushli yaqinlashuvchi emas.

6.4.8. C[a,b] fazoda $\sin(nt)$ ketma-ketligi kuchsiz yaqin-lashuvchi bo'ladimi?

 $Yechimi. \ x_n(t) = \sin nt \ \text{ketma-ketlik hadlarida}$

$$f(x_n) = x_n(\frac{\pi}{2}) = \sin\frac{n\pi}{2}$$

ko'rinishida aniqlangan f funksionalni qaraylik.

$${f(x_n)} = {1, 0, -1, 0, 1, ...}$$

bo'lganlikdan, bu ketma-ketlik yaqinlashuvchi emas. Demak, $\{x_n\}$ ketma-ketlili kuchsiz yaqinlashuvchi emas.

6.4.9. (Shur teoremasi) ℓ_1 fazoda berilgan ketma-ketlikning kuchsiz yaqinlashuvchiligidan, uning norma bo'yicha yaqinlashuvchi bo'lishi kelib chiqishini isbotlang.

Yechimi. ℓ_1 fazosida $\{y_n\}$ ketma-ketligi y_0 nuqtaga kuchsiz yaqinlashuvchi boʻlsin. U hʻolda $\{x_n: x_n=y_n-y_0\}$ ketma-ketligi 0 nuqtaga kuchsiz yaqinlashuvchi boʻladi. Biz $\|x_n\| \to 0$ boʻlishini koʻrsatishimiz kerak. Teskarisini faraz qilaylik. Ushbu

$$\lim ||x_{n_m}|| = l > 0$$

munosobatni qanoatlantiruvchi $||x_{n_m}||$ qism ketma-ketligi (I) mavjud bo'lsin (qism ketma-ketlikga o'tilganda kuchsiz yaqinlashuvchanlik bo'g'ilmaydi). Zarur bo'lsa x_{n_m} elementlarni $\frac{x_{n_m}}{||x_{n_m}||}$ ko'rinishdagi elementlar bilan almashtirib, nulga kuchsiz yaqinlashuvchi va h'ar bir azosi normasi 1 ga teng ketma-ketlikga ega bo'lamiz.

Demak, berilgan $\{x_n\}$ ketma-ketlik kuymdagi shartlarni qanoatlantiradi deyishimiz mumkin:

$$x_n \to 0 \tag{6.30}$$

va

$$||x_n|| = 1$$
 $(n = 1, 2, ...)$ (6.31)

bo'lsin. f_k funksionalni quyidagicha aniqlaymiz:

$$f_k(x) = \xi_k \qquad (k = 1, 2, ...)$$

(6.30) munosobatidan $\{f_k(x_n): n=1,2,...\}$ ketma-ketlikning nulga yaqinlashuvchi ekanligi, yani

$$\xi_k^{(n)} \xrightarrow[n \to \infty]{} 0 \qquad (k = 1, 2, \dots) \tag{6.32}$$

bo'lishi kelib chiqadi. $n_1 = 1$ bo'lsin. U holda

$$\sum_{k=1}^{\infty} \left| \xi_k^{(n_1)} \right| = ||x_{n_1}|| = 1$$

Natijada

$$\sum_{k=1}^{P_1} \left| \xi_k^{(n_1)} \right| > \frac{3}{4}$$

Tengsizlikni qanoatlantiruvchi $p_1 > 0$ soni mavjud bo'ladi.

Aytaylik, quyidagi shartlarni qanoatlantiruvchi $1=n_1 < n_2 < \ldots < n_j$ va $0=p_0 < p_1 < \ldots < p_j$ butun sonlari tanlangan bo'lsin:

$$\sum_{k=1}^{P_{s-1}} \left| \xi_k^{(n_s)} \right| < \frac{1}{4} \qquad (s = 1, 2, ..., j)$$
 (6.33)

va

$$\sum_{k=P-1+1}^{P_s} \left| \xi_k^{(n_s)} \right| > \frac{1}{4} \qquad (s = 1, 2, ..., j)$$
 (6.34)

U holda (6.32) munosobatga ko'ra shunday $n_{j+1} > n_j$ soni topiladiki, natijada Ushbu

$$\sum_{k=1}^{P_j} \left| \xi_k^{(n_{j+1})} \right| < \frac{1}{4}$$

tengsizligi o'rinli bo'ladi. Bu tengsizlik va (6.32) munosobatdan:

$$\sum_{k=P_{i}+1}^{\infty} \left| \xi_k^{(n_{j+1})} \right| = \sum_{k=1}^{\infty} \left| \xi_k^{(n_{j+1})} \right| - \sum_{k=1}^{p_j} \left| \xi_k^{(n_{j+1})} \right| > \frac{3}{4}$$

U holda, quyidagi tengsizlikni qanoatlantiruvchi $P_{j+1} > P_j$ nomerini tanlash mumkin:

$$\sum_{k=P+1}^{P_{j+1}} \left| \xi_k^{(n_{j+1})} \right| > \frac{3}{4}$$

Shu taxlitda fikrlashni davom ettirsak (6.33) va (6.34) tengsizliklar h'ar bir s = 1, 2, ... uchun o'rinli bo'ladigan ikkita $1 < n_1 < n_2 < ...$ va butun sonlar ketma-ketliklarning mavjud ekanligini ko'rsatadi. Ushbu

$$\eta_k = \operatorname{sign} \xi_k^{(n_s)} (P_{s-1} < k \le P_s; k, s = 1, 2, ...)$$

ko'rinishda belgilash kiritamiz. $\{\eta_k\} \in l^{\infty}$ bo'lganlikdan ℓ_1 fazosida qo'yidagicha f_0 funksionalni qaraymiz:

$$f_0(x) = \sum_{k=1}^{\infty} \eta_k \xi_k$$
 $(x = \{\xi_k\})$

 $f_{0}\left(x_{n_{s}}\right)$ kattalikni qo'yidan bah'olaymiz. $\left|\eta_{1}\right|\leq1$ ekanligini etiborga olsak

$$|f_0(x_{n_s})| = |\sum_{k=1}^{\infty} \eta_k \xi_k^{(n_s)}| \ge$$

$$\ge |\sum_{k=P_{s-1}+1}^{P_s} \eta_k \xi_k^{(n_s)}| - \sum_{k=1}^{P_{s-1}} |\eta_k \xi_k^{(n_s)}| - \sum_{k=P_{s-1}}^{\infty} |\eta_k \xi_k^{(n_s)}| \ge$$

$$\ge \sum_{k=P_{s-1}+1}^{P_s} |\eta_k \xi_k^{(n_s)}| - \sum_{k=1}^{P_{s-1}} |\xi_k^{(n_s)}| - \sum_{k=P_s+1}^{\infty} |\xi_k^{(n_s)}| =$$

$$= 2 \sum_{k=P_{s-1}+1}^{P_s} |\xi_k^{(n_s)}| - ||x_{n_s}||$$

Demak, (6.31) va (6.34) bo'yicha

$$f_0(x_{n_s}) > \frac{1}{2}$$

tengsizligini yoza olamiz. Bu esa (6.28) shartiga zid. Demak $||x_n|| \to 0$.

6.4.10. H Hilbert fazosi, $\{x_n\} \subset H$. Agar $\{x_n\}$ ketma-ketlik $x_0 \in H$ nuqtaga kuchsiz yaqinlashib, $||x_n|| \to ||x_0||$ bo'lsa, u holda $\{x_n\}$ ketma-ketlik x_0 ga kuchli yaqinlashishini ko'sating.

Yechimi. $\{x_n\}$ ketma-ketlik $x_0 \in H$ nuqtaga kuchsiz yaqinlashishidan, har bir $y \in H$ uchun

$$\langle x_n, y \rangle \to \langle x_0, y \rangle$$

o'rinlidir. $||x_n|| \to ||x_0||$ bo'lganlikdan,

$$\langle x_n, x_n \rangle \to \langle x_0, x_0 \rangle.$$

Bundan

$$||x_n - x_0||^2 = \langle x_n - x_0, x_n - x_0 \rangle =$$

$$= \langle x_n, x_n \rangle + \langle x_0, x_0 \rangle - \langle x_n, x_0 \rangle - \overline{\langle x_n, x_0 \rangle} =$$

$$= [\langle x_n, x_n \rangle - \langle x_0, x_0 \rangle] - [\overline{\langle x_n, x_0 \rangle} - \overline{\langle x_0, x_0 \rangle}] \to 0,$$

yani $||x_n - x_0|| \to 0$.

6.4.11. ℓ_2 fazo birlik sferasining kuchsiz yaqinlashish ma'nosida yopigʻini toping.

Yechimi. ℓ_2 fazo birlik sharidan ixtiyoriy $x_0 = (\alpha_1, \alpha_2, ..., \alpha_n, ...)$ nuqta olib, ushbu

$$x_{1} = (\alpha_{1}, \sqrt{1 - \alpha_{1}^{2}}, 0, 0, ...),$$

$$x_{2} = (\alpha_{1}, \alpha_{2}, \sqrt{1 - \sum_{i=1}^{2} \alpha_{i}^{2}}, 0, 0, ...),$$

$$.....$$

$$x_{n} = (\alpha_{1}, ..., \alpha_{n}, \sqrt{1 - \sum_{i=1}^{n} \alpha_{i}^{2}}, 0, 0, ...)$$

ketma-ketlikni
 qaraymiz. Bu ketma-ketlikning barcha hadlari birlik sferaga tegishli va
 x_0 nuqtaga kuchsiz yaqinlashadi. Demak,
 ℓ_2 fazo birlik sferasining kuchsiz yaqinlashish ma'nosida yopigʻi birlik shardan iborat.

6.4.12. H Hilbert fazosi, $x_n, x, y_n, y \in H$ bo'lsin. Agar $x_n \xrightarrow{w} x$ va $y_n \xrightarrow{||\cdot||} y$ bo'lsa, u holda

$$\langle x_n, y_n \rangle \to \langle x, y \rangle$$

$ekan ligini\ ko'r sating.$

Yechimi. Quyidagini yozaylik:

$$\langle x_n, y_n \rangle = \langle x_n - x, y_n - y \rangle + \langle x_n - x, y \rangle + \langle x, y_n - y \rangle.$$

 $x_n \xrightarrow{w} x$ ekanligidan, $||x_n|| \leq M, ||x|| \leq M$, bunda M > 0. Bundan

$$|\langle x_n - x, y_n - y \rangle| \le ||x_n - x|| ||y_n - y|| \le 2M ||y_n - y|| \to 0,$$
$$|\langle x, y_n - y \rangle| \le M ||y_n - y|| \to 0,$$

va

$$|\langle x_n - x, y \rangle| \to 0.$$

Demak,

$$\langle x_n, y_n \rangle \to \langle x, y \rangle.$$

6.4.13. ℓ_2 da chegaralangan ketma-ketlik koordinatalar bo'yicha yaqinlashuvchi bo'lsa, u holda bu ketma-ketlik sust yaqinlashuvchi bo'ladi.

Yechimi. ℓ_2 fazoda chegaralangan $\{x_k\}$ ketma-ketlik x elementiga sust yaqinlashuvchi boʻlishi uchun

$$\langle x_k, e_i \rangle = x_k^{(i)} \to x^{(i)} = \langle x, e_i \rangle, \ i = 1, 2, ...$$

bu erda $e_1=(1,\,0,\ldots),\ e_2=(0,\,1,\,0,\ldots),\ldots$ bajarilishi etarlidir.

Haqiqatan, e_i elementlarning chiziqli kombinatsiyasi ℓ_2 fazoda zich.

Demak, ℓ_2 da $\{x_k\}$ chegaralangan ketma-ketlik sust yaqinlashuvshiligi, ushbu vektorning $x_k^{(i)}$ koordinatalar bo'yicha sonli ketma-ketliklarning har bir $i=1,2,\ldots$ uchun yaqinlashuvchi.

 $6.4.14. \ \ell_2 \ fazoda \ sust \ yaqinlashuvchi \ kuchli \ yaqinlashuvchi \ bilan \ ustma-ust \ tushadimi?$

 $Yechimi.\ \ell_2$ fazoda $e_1,\ e_2,...,\ e_n,...$ ketma-ketliklar nolga sust yaqinlashuvchi bo'lishini ko'rsatamiz.

 ℓ_2 da ixtiyoriy chiziqli f funksionalni skalyar ko'paytma ko'rinishida yozamiz $f(x) = \langle x, a \rangle$, $x \in \ell_2$ tayinlangan vektor. Bundan $f(e_n) = a_n$ va $a_n \to 0$, $n \to \infty$, u holda

$$\lim_{n \to \infty} f(e_n) = 0.$$

 $\{e_n\}$ ketma-ketligi kuchli manoda hech bir limitga yaqinlashuvchi emas.

Mustaqil ish uchun masalalar

- ${\bf 1.}~~C[0,1]$ fazosida kuchsiz yaqinlashuvchi bo'lib, norma bo'yicha uzoqlashuvchi kemma-ketlikka misol keltiring.
 - 2. Ixtiyoriy Hilbert fazosi kuchsiz topologiyada to'liq bo'ladimi?
- **3.** $f_n(t) = \sin t$, $t \in [-\pi, \pi]$ funksional ketma-ketlik $L_2[-\pi, \pi]$ kuch-siz yaqinlashuvchi bo'lib, norma bo'yicha uzoqlashuvchi ekanligini is-botlang.
- **4.** X banach fazosi, $\{x_n\} \subset X$, $||x_n|| \leq 1$. Agar $x_n \stackrel{w}{\to} x$ bo'lsa, u holda $||x|| \leq 1$ ekanligini ko'rsating.
- **5.** H Hilbert fazosi, $x_n, x, y_n, y \in H$ bo'lsin. Agar $x_n \xrightarrow{w} x$ va $y_n \xrightarrow{w} y$ bo'lsa, u holda

$$\langle x_n, y_n \rangle \to \langle x, y \rangle$$

o'rinlimi?

- **6.** $\{x_n\} \subset C[0,1]$ ketma-ketligi [0,1] ning har bir nuqtasida yaqinlashuvchi bo'lsa, u holda bu ketma-ketlik kuchsiz yaqinlashuvchi bo'ladimi?
- 7. C[a,b] fazoda $\cos(nt)$ ketma-ketligi kuchsiz yaqinlashuvchi bo'ladimi?
 - **8.** C[0,1] fazosi kuchsiz to'liq bo'ladimi?
- 9. Aytaylik $\{x_n\}$ H Hilbert fazosida ortogonal sistema bo'lsin. Quyidagi tasdiqlarning o'zaro teng kuchli ekanligini ko'rsating:
 - a) $\sum_{n=1}^{\infty} x_n$ qator yaqinlashuvchi;
 - b) $\sum_{n=1}^{\infty} x_n$ qator kuchsiz yaqinlashuvchi;
 - c) $\sum_{n=1}^{\infty} ||x_n||^2$ qator yaqinlashuvchi.
- ${f 10.}^{n-1}$ Banax fazosidagi kuchsiz yaqinlashuvchi ketma-ketlik kuchsiz fundamentalligini ko'rsating.
- 11. ℓ_2 fazoning birlik shari kuchsiz topologiyada kompakt ekanligini iusbotlang.

VII BOB

Chiziqli operatorlar fazosi

7.1. Chiziqli operatorlar fazosi

X normalangan fazoni Y normalangan fazoga akslantiruvchi barcha chegaralangan chiziqli operatorlar to'plamini B(X,Y) kabi belgilaymiz. Agar X=Y bo'lsa, u holda B(X) kabi belgilanadi.

 $T, S \in B(X, Y)$ operatorlar uchun ularning yig'indisi T + S deb

$$(T+S)(x) = T(x) + S(x), x \in X$$

formula orqali aniqlangan operatorga aytiladi.

 $T \in B(X,Y)$ operatori va $\lambda \in \mathbb{C}$ soni ko'paytmasi λT deb

$$(\lambda T)(x) = \lambda T(x), x \in X$$

formula orqali aniqlangan operatorga aytiladi. Ravshanki, $T+S, \lambda T$ operatorlar ham chiziqli operatorlar bo'ladi.

Uzluksiz chiziqli operatorlarning yig'indisi va uzluksiz chiziqli operatorning songa ko'paytmasi, uzluksiz operator bo'lishi normalangan fazolarda amallarning uzluksizligidan kelib chiqadi. Demak, B(X,Y) chiziqli fazo bo'ladi.

Eslatib o'tamiz, $T \in B(X, Y)$ operator normasi

$$||T|| = \sup\{||T(x)|| : x \in X, ||x|| \le 1\}$$

formula orqali aniqlanadi.

Qo'shish, songa ko'paytirish va normaga nisbatan B(X,Y) normalangan fazo bo'ladi.

H Hilbert fazosi bo'lsin. B(H) fazoda har bir $x, y \in X$ uchun

$$A \in B(H) \to |\langle A(x), y \rangle|$$
 (7.1)

formula yarim norma aniqlaydi. (7.1) korinishdagi yarim normalar B(H) fazoda hosil etgan lokal qavariq topologiyaga kuchsiz topologiya (w-topologiya) deyiladi. Bu topologiyada yaqinlashishga kuchsiz yaqinlashish deyiladi va u $A_n \stackrel{w}{\longrightarrow} A$ kabi belgilanadi. Kuchsiz toplogiya ta'rifidan

$$A_n \xrightarrow{w} A \Leftrightarrow \lim_{n \to \infty} \langle A_n(x), y \rangle = \langle A(x), y \rangle, \ \forall x, y \in H$$

ekanligi bevosita ko'rinadi.

B(H) fazoda har bir $x \in X$ uchun

$$A \in B(H) \to ||A(x)|| \tag{7.2}$$

formula yarim norma aniqlaydi. (7.2) korinishdagi yarim normalar B(H) fazoda hosil etgan lokal qavariq topologiyaga kuchli topologiya (s-topologiya) deyiladi.

Bu topologiyada yaqinlashishga kuchli yaqinlashish deyiladi va u $A_n \stackrel{s}{\longrightarrow} A$ kabi belgilanadi. Kuchli toplogiya ta'rifidan

$$A_n \xrightarrow{s} A \Leftrightarrow \lim_{n \to \infty} A_n(x) = A(x), \ \forall x, \in H$$

ekanligi bevosita ko'rinadi.

B(H) fazoda

$$A \in B(H) \to ||A|| \tag{7.3}$$

formula normani aniqlaydi. (7.3) korinishdagi norma B(H) fazoda hosil etgan lokal qavariq topologiyaga tekis topologiya (r-topologiya) deyiladi.

Bu topologiyada yaqinlashish
ga tekis yaqinlashish deyiladi va u $A_n \Rightarrow A$ kabi belgilan
adi. Tekis toplogiya tarifidan

$$A_n \Rightarrow A \Leftrightarrow \lim_{n \to \infty} ||A_n - A|| \to 0$$

ekanligi bevosita ko'rinadi.

Aytaylik L biror H Hilbert fazosinig qism fazosi bo'lsin. $H = L \oplus L^{\perp}$ tengligidan har bir $x \in H$ vektori yagona ravishda x = y + z korinishda yoziladi, bunda $y \in L$, $z \in L^{\perp}$. $P : H \to H$ operatori har bir $x \in H$ vektoriga uning L qism fazosiga proeksiyasi bo'lgan y vektorini mos qo'ysin. Bu chiziqli operator L qism fazoga proektor deyiladi.

 P_1, P_2 proektorlar uchun $P_1P_2 = 0$ bo'lsa, P_1 va P_2 proektorlar ortogonal deyiladi va $P_1 \perp P_2$ kabi yoziladi.

Misollar

7.1.1. Agar X normalangan fazo, Y esa Banax fazosi bo'lsa, u holda B(X,Y) Banax fazosi ekanligini ko'rsating.

Yechimi. Aytaylik, $\{T_n\}_{n\in\mathbb{N}} - B(X,Y)$ fazosining xoxlagan fundamental ketma-ketligi bo'lsin. U holda ixtiyoriy $\varepsilon > 0$ soni uchun shunday n_{ε} soni topilib, barcha $n, m \geq n_{\varepsilon}$ sonlar uchun

$$||T_m - T_n|| < \varepsilon$$

tengsizligi o'rinli bo'ladi. Natijada X fazosining xoxlagan x nuqtasi uchun

$$||T_m(x) - T_n(x)|| \le ||T_m - T_n|| ||x|| < \varepsilon ||x||,$$

ya'ni

$$||T_m(x) - T_n(x)|| \le \varepsilon ||x||, \tag{7.4}$$

tengsizligiga ega bo'lamiz. Bundan $\{T_n(x)\}$ ketma - ketlikning Y fazoda fundamental ekanligi kelib chiqadi. Y to'liq bo'lganligidan $\{T_n(x)\}$ bu fazoda yaqinlashuvchi bo'ladi. Aytaylik

$$\lim_{n \to \infty} T_n(x) = T(x)$$

bo'lsin. Har bir $x_1, x_2 \in X$, $\lambda_1, \lambda_2 \in \mathbb{C}$ uchun

$$T(\lambda_1 x_1 + \lambda_2 x_2) = \lim_{n \to \infty} T_n(\lambda_1 x_1 + \lambda_2 x_2) =$$

$$= \lim_{n \to \infty} (\lambda_1 T_n(x_1) + \lambda_2 T(x_2)) = \lambda_1 T(x_1) + \lambda_2 T(x_2).$$

Demak, T chiziqli operator bo'ladi.

Endi (7.4) tengsizligida $m \to \infty$ bo'yicha limitga o'tsak

$$||T(x) - T_n(x)|| \le \varepsilon ||x||$$

tengsizligiga ega bo'lamiz. Natijada $T - T_n$ operatorning B(X, Y) fazosiga tegishli ekanligi kelib chiqadi. U holda $T = (T - T_n) + T_n$ operatori ham B(X, Y) fazosiga tegishli. Shu bilan birga

$$||T(x) - T_n(x)|| \le \varepsilon ||x||$$

tengsizligidan $||T - T_n|| \le \varepsilon$ tengsizligiga ega bo'lamiz. Shu sababli $T_n \to T$. Demak, B(X,Y) Banax fazosi bo'ladi.

 $7.1.2. \,\,\, \mathbb{F}^n \,\, fazoni \,\, \mathbb{F}^m \,\, fazoga \,\, akslantiruvchi \,\, chiziqli \,\, operatorlarning \,\, umumiy \,\, ko \,\, rinishi \,\, toping, \,\, bunda \,\, \mathbb{F} = \mathbb{R} \,\,\, yoki \,\, \mathbb{C}.$

Yechimi. Aytaylik $\{e_1,...,e_n\}$ – \mathbb{F}^n fazoning bazisi, $\{f_1,...,f_m\}$ esa \mathbb{F}^m fazoning bazisi va $A:\mathbb{F}^n\to\mathbb{F}^m$ chiziqli operator bo'lsin. Agar $x=(x_j)\in\mathbb{R}^n$ bo'lsa, u holda

$$x = \sum_{j=1}^{n} x_j e_j,$$

va A ning chiziqli ekanligidan

$$A(x) = \sum_{j=1}^{n} x_j A(e_j).$$

Demak, A operatori $\{e_1, ..., e_n\}$ bazisdagi qiymatlari orqali to'liq aniqlanadi. Har bir $A(e_j)$ vektorning $\{f_1, ..., f_m\}$ bazisi bo'yicha

$$A(e_j) = \sum_{i=1}^{m} a_{ij} f_i$$

yoyilmasini olamiz. Bundan

$$A(x) = \sum_{j=1}^{n} x_j \sum_{i=1}^{m} a_{ij} f_i,$$

ya'ni

$$A(x) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} x_j f_i.$$

Demak, A operatori (a_{ji}) matrisa orqali to'liq aniqlanadi.

Bunda $x = (x_1, ..., x_n)$ vektor qiymati quyidagicha topiladi:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \circ \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^n a_{1i} x_i \\ \sum_{i=1}^n a_{2i} x_i \\ \vdots \\ \sum_{i=1}^n a_{mi} x_i \end{pmatrix}.$$

7.1.3. \mathbb{R}^n fazosida $||x|| = \max_{1 \leq k \leq n} |x_k|$ normasi qaralib, $A : \mathbb{R}^n \to \mathbb{R}^n$ operatori $\{a_{ij}\}_{1 \leq i,j \leq n}$ matrisa bilan aniqlansa, u holda

$$||A|| = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$$
 (7.5)

 $ekan ligini\ ko'r sating.$

Yechimi. $x=(x_1,\cdots,x_n)\in\mathbb{R}^n,\,y=A(x),\,y=(y_1,\cdots,y_n)$ bo'lsin. U holda, har bir $i\in\overline{1,n}$ uchun

$$y_i = \sum_{j=1}^n a_{ij} x_j.$$

Demak,

$$|y_i| = |\sum_{j=1}^n a_{ij} x_j| \le \sum_{j=1}^n |a_{ij}| |x_j| \le$$

$$\leq \sum_{j=1}^{n} |a_{ij}| \max_{1 \leq k \leq n} |x_k| = ||x|| \sum_{j=1}^{n} |a_{ij}|,$$

ya'ni

$$||y|| \le ||x|| \sum_{j=1}^{n} |a_{ij}|.$$
 (7.6)

Faraz qilaylik, $\max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$ ifoda maksimumga $i = i_0$ da erishsin. Koordinatalari $x_j = \text{sign}(a_{i_0,j})$ bo'lgan x nuqtani olaylik. U holda, y = A(x) uchun

$$\max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}| = \sum_{j=1}^{n} |a_{i_0j}| = \sum_{j=1}^{n} a_{i_0j} x_j = y_{i_0} = |y_{i_0}| \le ||y||,$$

yani

$$\max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}| \le ||y||. \tag{7.7}$$

Endi (7.6) va (7.7) tengsizliklardan, (7.5) tenglik kelib chiqadi.

7.1.4. E Banax fazosi va $T \in B(E)$ bo'lsin. Agar ||T|| < 1 bo'lsa, u holda $(I - T)^{-1} \in B(E)$ va

$$(I-T)^{-1} = \sum_{n=0}^{\infty} T^n$$

ekanligini ko'rsating.

 $Yechimi.\ x\in E$ bo'lsin. ||T|| < 1 bo'lganlikdan,
 $S_n=\sum\limits_{k=0}^n T^k$ uchun m>nda

$$||S_m(x) - S_n(x)|| = ||\sum_{k=0}^n T^m(x) - \sum_{k=0}^n T^k(x)|| =$$

$$= ||\sum_{k=n+1}^m T^k(x)|| \le \sum_{k=n+1}^m ||T^k(x)|| \le \left(\sum_{k=n+1}^m ||T||^k\right) ||x|| \le$$

$$\le \left(\sum_{k=n+1}^\infty ||T||^k\right) ||x|| = \frac{||T||^{n+1}}{1 - ||T||} ||x|| \to 0.$$

Demak, $\{S_n(x)\}$ ketma-ketligi E fazoda fundamental, $y = A(x) = \lim_{n\to\infty} S_n(x)$ deylik. U holda,

$$||A(x) - S_n(x)|| \le \frac{||T||^{n+1}}{1 - ||T||} ||x||$$

ekanligidan, $A - S_n \in B(E)$. Endi $||A - S_n|| \leq \frac{||T||^{n+1}}{1 - ||T||}$ ekanligidan, $n \to \infty$ bo"lganda, $\sum_{k=0}^{n} T^k \Rightarrow A$ kelib chiqadi.

Endi $A = (I - T)^{-1}$ ekanligini ko'rsatamiz. Har bir $x \in E$ uchun

$$((I - T)A)(x) = (I - T) \lim_{n \to \infty} S_n(x) =$$

$$\lim_{n \to \infty} ((I - T)(I + T + T^2 + ...T^n))(x) =$$

$$= \lim_{n \to \infty} (I - T^{n+1})(x) = \lim_{n \to \infty} (x - T^{n+1}(x)).$$

Endi $||T^{n+1}(x)|| \leq ||T||^{n+1}||x|| \to 0$ ekanligidan, $\lim_{n\to\infty} T^{n+1}(x) \to 0$, bundan, ((I-T)A)(x) = x. Xuddi shunday (A(I-T)(x) = x. Demak, $A = (I-T)^{-1}$.

7.1.5. E Banax fazosida aniqlangan A,B chegaralangan chiziqli operatorlar uchun

$$(A+B)^* = A^* + B^*$$

tenglik o'rinli ekanligini ko'rsating.

Yechimi. $x \in E, g \in E^*$ bo'lsin. U holda

$$\langle (A+B)^*(g), x \rangle = \langle g, A(x) + B(x) \rangle = \langle g, A(x) \rangle + \langle g, B(x) \rangle =$$
$$= \langle A^*(g), x \rangle + \langle B^*(g), x \rangle = \langle A^*(g) + B^*(g), x \rangle,$$

ya'ni

$$\langle (A+B)^*(g), x \rangle = \langle A^*(g) + B^*(g), x \rangle.$$

Bu tenglik barcha $x \in E$ uchun o'rinli ekanligidan,

$$(A+B)^*(g) = A^*(g) + B^*(g),$$

ya'ni

$$(A+B)^* = A^* + B^*.$$

7.1.6. E banach fazosida aniqlangan A chegaralangan chiziqli operator va $\lambda \in \mathbb{C}$ soni uchun

$$(\lambda A)^* = \overline{\lambda} A^*$$

tenglik o'rinli ekanligini ko'sating.

Yechimi. $x \in E, g \in E^*$ bo'lsin. U holda

$$\langle (\lambda A)^*(g), x \rangle = \langle g, \lambda A(x) \rangle = \overline{\lambda} \langle g, A(x) \rangle =$$
$$= \overline{\lambda} \langle A^*(g), x \rangle = \langle \overline{\lambda} A^*(g), x \rangle,$$

ya'ni

$$\langle (\lambda A)^*(g), x \rangle = \langle \overline{\lambda} A^*(g), x \rangle.$$

Bu tenglik barcha $x \in E$ uchun o'rinli ekanligidan,

$$(\lambda A)^*(g) = \overline{\lambda} A^*(g),$$

ya'ni

$$(\lambda A)^* = \overline{\lambda} A^*.$$

7.1.7. E, F Banax fazolari va $A : E \rightarrow F$ chegaralangan chiziqli operator bo'lsa, u holda $||A^*|| = ||A||$ tenglik o'rinli ekanligini ko'sating.

Yechimi. $x \in E, g \in F^*$ bo'lsin. U holda

$$|\langle A^*(g), x \rangle| = |\langle g, A(x) \rangle| \le ||g|| ||A(x)|| \le ||g|| ||A|| ||x||,$$

ya'ni

$$|\langle A^*(g), x \rangle| \le ||g|| ||A|| ||x||.$$

Demak, $||A^*(g)|| \le ||g|| ||A||$, ya'ni $||A^*|| \le ||A||$.

Endi $x\in E$ va $A(x)\neq 0$ bo'lsin. $y_0=\frac{A(x)}{||A(x)||}$ deylik. U holda $||y_0||=1.$ 6.3.10 - misoldan shunday $g\in F^*$ mavjud bo'lib, ||g||=1 va $g(y_0)=1$, ya'ni $\langle g,A(x)\rangle=||A(x)\rangle||$. Bundan,

$$||A(x)|| = \langle g, A(x) \rangle = \langle A^*(g), x \rangle \le$$

$$\leq ||A^*(g)|| ||x|| \leq ||A^*|| ||g|| ||x|| = ||A^*|| ||x||,$$

ya'ni $||A(x)|| \le ||A^*|| ||x||$. Demak, $||A|| \le ||A^*||$ va $||A|| = ||A^*||$.

7.1.8. Har bir $n \in \mathbb{N}$ uchun $A_n : \ell_2 \to \ell_2$ operatori

$$A_n(x) = \left(\frac{\xi_1}{n}, \frac{\xi_2}{n}, ..., \frac{\xi_n}{n}, 0, 0, ...\right), x = (\xi_k) \in \ell_2$$

formula bilan aniqlansa, u holda $\{A_n\}$ ketma-ketlikning nol operatoriga tekis yaqinlashishini ko'rsating.

Yechimi. $x \in \ell_2$ uchun

$$||A_n(x)||^2 = \frac{1}{n^2} \sum_{k=1}^n |\xi_k|^2 \le \frac{1}{n^2} \sum_{k=1}^\infty |\xi_k|^2 = \frac{1}{n^2} ||x||^2$$

ekanligidan,

$$||A_n|| \le \frac{1}{n} \to 0.$$

Bundan $\{A_n\}$ ketma-ketlik nol operatoriga tekis yaqinlashadi.

7.1.9. Har bir $n \in \mathbb{N}$ uchun $A_n : C[0,1] \to C[0,1]$ operatori

$$(A_n(x))(t) = t^n(1-t)x(t), t \in [0,1]$$

formula bilan aniqlansa, u holda $\{A_n\}$ ketma-ketlikning nol operatoriga tekis yaqinlashishini ko'rsating.

Yechimi. $x \in C[0, 1]$ uchun

$$||A_n(x)|| = \max_{t \in [0,1]} |t^n(1-t)x(t)| \le \max_{t \in [0,1]} |t^n(1-t)|||x|| = \frac{n^n}{(n+1)^{n+1}} ||x||.$$

Bundan

$$||A_n|| \le \frac{n^n}{(n+1)^{n+1}} = \left(\frac{n}{n+1}\right)^n \frac{1}{n+1} \to 0.$$

Bundan $\{A_n\}$ ketma-ketlik nol operatoriga tekis yaqinlashadi.

7.1.10. Har bir $n \in \mathbb{N}$ uchun $A_n : \ell_2 \to \ell_2$ operatori

$$A_n(x) = (\xi_1, \xi_2, ..., \xi_n, 0, 0, ...), x = (\xi_k) \in \ell_2$$

formula bilan aniqlansa, u holda $\{A_n\}$ ketma-ketlikning birlik operatoriga kuchli yaqinlashib, tekis yaqinlashuvchi emasligini ko'rsating.

Yechimi. $x = (\xi_k) \in \ell_2$ uchun

$$||A_n(x) - x||^2 = \sum_{k=n+1}^{\infty} |\xi_k|^2 \to 0$$

ekanligidan,

$$A_n \stackrel{s}{\to} I$$
.

Endi har bir $n \in \mathbb{N}$ uchun $e_{n+1} = (\underbrace{0,...0}_n, 1, 0...) \in \ell_2$ vektorini olsak

 $||e_{n+1}|| = 1$. U holda

$$||A_n(e_{n+1}) - e_{n+1}|| = ||0 - e_{n+1}|| = 1.$$

Demak,

$$||A_n - I|| = \sup_{\|x\| \le 1} ||A_n(x) - x|| \ge ||A_n(e_{n+1}) - e_{n+1}|| = 1$$

bo'lganlikdan, $\{A_n\}$ ketma-ketligi birlik operatoriga tekis yaqinlashuvchi emas.

7.1.11. Har bir $n \in \mathbb{N}$ uchun $A_n : \ell_2 \to \ell_2$ operatori

$$A_n(x) = (0, 0, ..., \xi_{n+1}, \xi_{n+2}, ...), x = (\xi_k) \in \ell_2$$

formula bilan aniqlansa, u holda $A_n \stackrel{s}{\rightarrow} 0$ ekanligini ko'rsating.

Yechimi. $x = (\xi_k) \in \ell_2$ uchun

$$||A_n(x)||^2 = ||(0, 0, ..., \xi_{n+1}, \xi_{n+2}, ...)|| = \sum_{k=n+1}^{\infty} |\xi_k|^2.$$

 $x=(\xi_k)\in \ell_2$ ekanligidan, $\sum\limits_{k=1}^\infty |\xi_k|^2<\infty$, bundan $\sum\limits_{k=n+1}^\infty |\xi_k|^2\to 0$. Demak,

$$||A_n(x)||^2 = \sum_{k=n+1}^{\infty} |\xi_k|^2 \to 0,$$

ya'ni $A_n \stackrel{s}{\to} 0$.

7.1.12. Har bir $n \in \mathbb{N}$ uchun $A_n : \ell_2 \to \ell_2$ operatori

$$A_n(x) = (0, 0, ..., \xi_1, \xi_2, ...), x = (\xi_k) \in \ell_2$$

formula bilan aniqlansa, u holda $A_n \stackrel{w}{\rightarrow} 0$ ekanligini ko'rsating.

Yechimi. $x = (\xi_k), y = (t_k) \in \ell_2$ uchun

$$\langle A_n(x), y \rangle = \sum_{k=1}^{\infty} \xi_{k+n} t_k \le \sum_{k=1}^{\infty} \xi_{k+n}^2 \sum_{k=1}^{\infty} t_k^2.$$

 $x = (\xi_k) \in \ell_2$ ekanligidan, $\sum_{k=1}^{\infty} |\xi_k|^2 < \infty$, bundan $\lim_{n \to \infty} \sum_{k=1}^{\infty} |\xi_{k+n}|^2 \to 0$. Demak,

$$\langle A_n(x), y \rangle \to 0,$$

ya'ni $A_n \stackrel{w}{\to} 0$.

7.1.13. Har bir $n \in \mathbb{N}$ uchun $A_n : C[0,1] \to C[0,1]$ operatori

$$(A_n(x))(t) = n \int_{t}^{t+\frac{1}{n}} x(s) \, ds, \, t \in [0,1]$$

formula bilan aniqlansa, u holda $\{A_n\}$ ketma-ketlikning birlik operatoriga kuchli yaqinlashib, tekis yaqinlashuvchi emasligini ko'rsating.

 $Yechimi.\ x\in C[0,1]$ uchun Φ boshlang'ich funksiya bo'lsa, u holda

$$n \int_{t}^{t+\frac{1}{n}} x(s) = \Phi(s)|_{t}^{t+\frac{1}{n}} = \frac{\Phi(t+\frac{1}{n}) - \Phi(t)}{\frac{1}{n}} \to \Phi'(t) = x(t),$$

ya'ni

$$A_n(x) \to x$$
.

Bundan $\{A_n\}$ ketma-ketlikning birlik operatoriga kuchli yaqinlashadi. Endi $x_n(t) = t^{n-1}$, $n \ge 2$ bo'lsin. U holda

$$||x_n|| = \max_{0 \le t \le 1} |t^{n-1}| = \max_{0 \le t \le 1} t^{n-1} = 1,$$

ya'ni $||x_n|| = 1$.

Endi

$$||A_n(x_n) - x_n|| = \max_{0 \le t \le 1} |n \int_t^{t + \frac{1}{n}} s^{n-1} ds - s^{n-1}| = \max_{0 \le t \le 1} |s^n|_t^{t + \frac{1}{n}} - s^{n-1}| =$$

$$= \max_{0 \le t \le 1} \left| \left(t + \frac{1}{n} \right)^n - t^n - t^{n-1} \right| =$$

$$= \max_{0 \le t \le 1} \left| t^n + t^{n-1} + \frac{n(n-1)}{2n^2} t^{n-2} + \dots + \frac{1}{n^2} - t^n - t^{n-1} \right| \ge$$

$$\ge \frac{n(n-1)}{2n^2} \max_{0 \le t \le 1} |t^{n-2} - \frac{n(n-1)}{2n^2} \ge \frac{1}{4}.$$

Demak

$$||A_n - I|| = \sup_{\|x\| \le 1} ||A_n(x) - x|| \ge ||A_n(x_n) - x_n|| \ge \frac{1}{4}.$$

Bundan $\{A_n\}$ ketma-ketligi birlik operatoriga tekis yaqinlashuvchi emas.

7.1.14.
$$\varphi \in C[0,1]$$
 bo'lsin. $T_{\varphi}: L^2[0,1] \to L^2[0,1]$ operatori
$$T_{\varphi}(f)(t) = \varphi(t)f(t), \ \ f \in L^2[0,1]$$

formula bilan aniqlanadi. $T_{\varphi}^* = T_{\overline{\varphi}}$ tengligini isbotlang. Yechimi. Har bir $f, g \in L^2[0, 1]$ uchun

$$\langle f, T_{\varphi}^*(g) \rangle = \langle T_{\varphi}(f), g \rangle = \int_{0}^{1} \varphi(t) f(t) \overline{g(t)} dt =$$

$$= \int_{0}^{1} f(t) \overline{\overline{\varphi(t)}} g(t) dt = \langle f, \overline{\varphi} g \rangle = \langle f, T_{\overline{\varphi}}(g) \rangle,$$

ya'ni

$$\langle f, T_{\varphi}^*(g) \rangle = \langle f, T_{\overline{\varphi}}(g) \rangle.$$

Bundan $T_{\varphi}^*(g) = T_{\overline{\varphi}}(g)$, ya'ni $T_{\varphi}^* = T_{\overline{\varphi}}$.

7.1.15. H Hilbert fazosi va $T \in B(H)$ bo'lsin. U holda

$$\ker T^* = R(T)^{\perp}$$

tengligini isbotlang.

Yechimi. Aytaylik $x\in\ker T^*$ bo'lsin, ya'ni $T^*(x)=0.$ Ixtiyoriy $z\in R(T)^\perp$ nuqtani olaylik. U holda shunday $y\in H$ topiladiki T(y)=z. Bundan

$$\langle z, x \rangle = \langle T(y), x \rangle = \langle y, T^*(x) \rangle = \langle y, 0 \rangle = 0,$$

ya'ni ixtiyoriy $z \in R(T)$ uchun $\langle z, x \rangle = 0$. Demak, $x \in R(T)^{\perp}$, ya'ni ker $T^* \subset R(T)^*$.

Endi $z \in R(T)^{\perp}$ bo'lsin, ya'ni ixtiyoriy $y \in H$ uchun $\langle z, T(y) \rangle = 0$. Bundan

$$\langle T^*(z), y \rangle = \langle z, T(y) \rangle = 0,$$

ya'ni $T^*(z) \perp y$. Bundan $T^*(z) = 0$, ya'ni $z \in \ker T^*$. Demak, $\ker T^* = R(T)^{\perp}$.

7.1.16. $P: H \rightarrow H$ proektor chegaralangan operator bo'lib, $P \neq 0$ bo'lganda ||P|| = 1 ekanligini isbotlang.

Yechimi. $P:H\to H-L$ qism fazoga proektor va $x\in H$ bo'lsin. U holda, x=y+z, bunda $y\in L,$ $z\in L^\perp.$ Pifagor teoremasidan, $||x||^2=||y||^2+||z||^2,$ ya'ni $||y||\leq ||x||.$ Bundan $||P(x)||=||y||\leq ||x||,$ ya'ni $||P||\leq 1.$

Agar $P \neq 0$ bo'lsa, u holda $0 \neq x \in L$ uchun ||P(x)|| = ||x||. Bundan ||P|| = 1.

7.1.17. $P \in B(H)$ proektor bo'lishi uchun $P^2 = P^* = P$ bajarilishi zarur va etarli.

 $Yechimi.\ P: H \to H-L$ qism fazoga proektor va $x \in H$ bo'lsin. U holda, x=y+z,bunda $y \in L,\, z \in L^\perp.$

$$P^{2}(x) = P(P(x)) = P(y) = y = P(x),$$

ya'ni $P^2 = P$. Bundan $||P(x)|| = ||y|| \le ||x||$, ya'ni $||P|| \le 1$. Endi $x_1 = y_1 + z_1$, $y_1 \in L$, $z_1 \in L^{\perp}$ bo'lsin. U holda

$$\langle x, P^*(x_1) \rangle = \langle P(x), x_1 \rangle = \langle y, y_1 + z_1 \rangle = \langle y, y_1 \rangle + \langle y, z_1 \rangle =$$
$$= \langle y, y_1 \rangle = \langle y, y_1 \rangle + \langle z, x_1 \rangle = \langle y + z, x_1 \rangle = \langle x, P(x_1) \rangle,$$

ya'ni $\langle x, P^*(x_1) \rangle = \langle x, P(x_1) \rangle$. Bundan $P^* = P$.

Aksincha $P^2=P^*=P$ bo'lsin. $L=\{P(x):x\in H\}$ yopiq qism fazodir. Haqiqatan, $x_n\in L,\,x_n\to x$ bo'lsa, u holda

$$x = \lim_{n \to \infty} x_n = \lim_{n \to \infty} P(x_n) = P(x),$$

ya'ni $x \in L$. P operatorinig L qism fazoga proektor ekanligin ko'rsatamiz. $x = P(x) + (I - P)(x), P(x) \in L$ bo'lganlikdan, $(I - P)(x) \in L^{\perp}$ ekanligini ko'rsatish etarli. $y \in L$ vektori uchun

$$\langle (I-P)(x),y\rangle=\langle (I-P)(x),P(y)\rangle=$$

$$=\langle P^*((I-P)(x)),y\rangle=\langle P((I-P)(x)),y\rangle=\langle 0,y\rangle=0,$$
 ya'ni
$$(I-P)(x)\in L^\perp.$$

7.1.18. $\Phi: B(X,Y) \to \mathbb{R}, \ \Phi(A) = ||A||$ akslantirishning uzliksiz ekanligini isbotlang.

Yechimi. Xoxlagan $\varepsilon>0$ son olaylik. Agar B(X,Y) fazosiga tegishli A',A'' operatorlar uchun $\|A'-A''\|<\varepsilon$ bo'lsa, u holda

$$|\Phi(A') - \Phi(A'')| = ||||A'|| - ||A''|||| \le ||A' - A''|| < \varepsilon.$$

Bundan berilgan akslantirishning B(X,Y) da uzliksiz ekanligi kelib chiqadi.

Mustaqil ish uchun masalalar

1. Har bir $x = (x_1, x_2, ..., x_n, ...) \in \ell_2$ uchun

$$T(x) = (0, 2x_1, x_2, 2x_3, x_4, ...)$$

deylik. U holda,

- a) har bir $x \in \ell_2$ uchun $T(x) \in \ell_2$ ekanligini ko'rsating;
- b) $T: \ell_2 \to \ell_2$ chegaralangan operator ekanligini ko'rsating;
- c) ||T|| normasini toping;
- d) har bir $x \in \ell_2$ uchun $T(x)^2$ ni toping;
- e) $||T^2||$ ni $||T||^2$ bilan taqqoslang.
- **2.** X chiziqli fazo va $A: X \to X$ chiziqli operator uchun shunday $\lambda_1, \lambda_2, \cdots, \lambda_n \in \mathbb{C}$ sonlari topilib, $I + \lambda_1 A + \lambda_2 A + \cdots + \lambda_n A^n = 0$ bo'lsa, u holda A^{-1} mavjud ekanligini ko'rsating.
- **3.** P va Q proektorlar bo'lsin. P-Q proektor bo'lishi uchun PQ=QP=Q tengligi bajarilishi zarur va etarliligini isbotlang.
- 4. P va Q proektorlar bo'lsin. P+Q proektor bo'lishi uchun PQ=QP=0 tengligi bajarilishi zarur va etarliligini isbotlang.
- 5. P va Q proektorlar bo'lsin. Agar PQ = QP bo'lsa, u holda P + Q PQ proektor ekanligini isbotlang.
- **6.** X Banax fazosi bo'lsin. TS-ST=I tengligini qanoatlantiruvchi $T,S\in B(X)$ mavjud emasligini ko'rsating.
- 7. X Banax fazosi bo'lsin. Agar $T \in B(X)$ izometriya bo'lsa, u holda T^* izometriya ekanligini korsating.

- 8. X Banax fazosi bo'lsin. ||AB|| < ||A||||B|| tengsizlikni qanoatlantiruvchi $A, B \in B(X)$ operatorlarga misol keltiring.
- **9.** Agar P va Q Hilbert fazosidagi proektorlar bo'lsa, $||P-Q|| \leq 1$ ekanligini isbotlang.
- 10. X Banax fazosi, A, B esa Y banach fazosi qism fazolari bo'lib, $Y = A \oplus B$. U holda $B(X, Y) = B(X, A) \oplus B(X, B)$ ekanligini isbotlang.

7.2. Chiziqli operatorlar spektri

E Banach fazosi, $T \in B(E)$ va $\lambda \in \mathbb{C}$ bo'lsin. U holda $\lambda I - T$ operatorning yadrosi haqida quyidagi hollar o'rinli:

a) agar $\lambda I - T$ operatorning yadrosi noldan farqli bo'lsa, ya'ni $T(x) = \lambda x$ tenglama noldan farqli x_0 echimga ega bo'lsa, u holda λ soni T operatorining $xos\ soni,\ x_0$ vektori esa $xos\ vektori$ deyiladi.

 $\lambda I-T$ operatorning yadrosi nol bo'lsa, u holda $(\lambda I-T)^{-1}$ mavjud va bu hol ikkitaga ajraladi:

- b) $(\lambda I T)^{-1}$ operatori aniqlangan, lekin chegaralanmagan;
- c) $(\lambda I T)^{-1}$ operatorining aniqlanish sohasi butun E fazosiga teng. Bu holda teskari operator haqida Banach teoremasidan, $(\lambda I T)^{-1}$ operatori chegaralangandir.

Agar $\lambda \in \mathbb{C}$ uchun a) yoki b) shartlar bajarilsa, ya'ni $\lambda I - T$ teskari chegaralangan operator mavjud bo'lmasa, u holda $\lambda \in \mathbb{C}$ soni T operatorining spektriga tegishli deyiladi. Spektr sp(T) kabi belgilanadi.

Agar $\lambda \in \mathbb{C}$ uchun c) shatri bajarilsa, ya'ni $\lambda I - T$ teskari chegaralangan operator mavjud bo'lsa, u holda $\lambda \in \mathbb{C}$ soni T operatorining resolventasiqa tegishli deyiladi. Resolventa res(T) kabi belgilanadi.

Misollar

7.2.1. E Banax fazosi va $T: E \rightarrow E$ chegaralangan chiziqli operator boi'lsa, u holda

$$sp(T)\subset \{\lambda\in\mathbb{C}: |\lambda|\leq ||T||\}$$

 $ekan ligini\ ko'r sating.$

Yechimi. Aytaylik $|\lambda| > ||T||$ bo'lsin.

$$\lambda I - T = \lambda \left(I - \frac{T}{\lambda} \right),$$

$$\left| \left| \frac{T}{\lambda} \right| \right| < 1$$

tensizliklardan va 7.1.4 masaladan $(\lambda I - T)^{-1} \in B(E)$ ekanligi kelib chidadi. Bundan $\lambda \in res(T)$. Demak

$$sp(T) \subset \{\lambda \in \mathbb{C} : |\lambda| \le ||T||\}.$$

7.2.2. E Banax fazosi va $T: E \rightarrow E$ chegaralangan chiziqli operator bo'lsa, u holda sp(T) yopiq to'plam ekanligini isbotlang.

Yechimi. $res(T) = \mathbb{C} \setminus sp(T)$ to'plamning ochiq to'plam ekanligini isbotlash etarli. Aytaylik $\lambda \in res(T)$ va $|\xi - \lambda| < ||(\lambda I - T)^{-1}||$ bo'lsin.

$$||(\xi - \lambda)(\lambda I - T)^{-1}|| = |\xi - \lambda|||(\lambda I - T)^{-1}|| < 1$$

tensizlikdan va

$$\xi I - T = (\lambda I - T)[I + (\xi - \lambda)(\lambda I - T)^{-1}]$$

munosabatdan $\xi \in res(T)$ kelib chiqadi. Demak, res(T) to'plamning har bir λ nuqtasi o'zining $||(\lambda I - T)^{-1}||$ atrofi bilan birga res(T) to'plamga tegishli bo'ladi. Bundan res(T) ochiq to'plamdir.

7.2.3. E Banax fazosi va $T: E \to E$ chegaralangan chiziqli operator bo'lsa, u holda sp(T) bo'sh bo'lmagan kompakt to'plam ekanligini ko'rsating.

Yechimi. 7.2.1 - misoldan sp(T) chegaralangan to'plam, 7.2.2 - misolga ko'ra \mathbb{C} da yopiq to'plam. Demak, sp(T) kompakt to'plam bo'ladi.

Endi sp(T) to'plamning bo'sh emasligini ko'rsatamiz.

Faraz qilaylik $sp(T)=\emptyset,$ yani $res(T)=\mathbb{C}$ bo'lsin. U holda $|\lambda|>||T||$ uchun

$$\left|\left|(\lambda I - T)^{-1}\right|\right| = \left|\left|\frac{1}{\lambda}(I - \frac{T}{\lambda})^{-1}\right|\right| = \left|\left|\frac{1}{\lambda}\sum_{k=0}^{\infty}\frac{T^k}{\lambda^k}\right|\right| = \frac{1}{|\lambda|}\left(I - \frac{||T||}{|\lambda|}\right)^{-1}$$

bo'lganlikdan,

$$\lim_{\lambda \to \infty} ||(\lambda I - T)^{-1}|| = 0$$

kelib chiqadi. U holda har bir $f \in E^*$ uchun $f((\lambda I - T)^{-1}) = 0$ o'rinli. Xan – Banax teoremasidan $(\lambda I - T)^{-1} = 0$. Hosil bo'lgan ziddiyatdan $sp(T) \neq \emptyset$ ekanligi kelib chiqadi.

 $oxed{7.2.4.} egin{array}{ll} oldsymbol{Agar}\ A:\mathbb{C}^2 o\mathbb{C}^2 \ oxed{operatori} \end{array}$

$$A(x,y) = (x+2y, 2x - y)$$

formula orqali aniqlansa, u holda bu operaatorning xos sonlarini toping. Yechimi.~Aoperatori 2-o'lchovli fazoda aniqlangan va uning matritsasi $\begin{pmatrix}1&2\\2&-1\end{pmatrix}$. Operator xos sonlar unga mos matritsa xos sonlariga teng bo'lib, u

$$\det\left(\begin{array}{cc} 1-\lambda & 2\\ 2 & -1-\lambda \end{array}\right) = 0$$

tenglama ildizlaridan iborat. Bundan $\lambda^2 - 5 = 0$, ya'ni $\lambda = \pm \sqrt{5}$.

7.2.5. $T: \ell_2 \rightarrow \ell_2$ chegaralangan chiziqli operatori

$$T(x) = (0, x_1, x_2, x_3, ...), \quad x = (x_1, x_2, x_3, ...) \in \ell_2$$

formula bilan aniqlanadi.

- a) T operator normasini toping;
- b) T operatorining xos soni mavjud emasligini isbotlang.

Yechimi. a) Har bir $x=(x_1,x_2,x_3,...)\in \ell_2$ uchun $T(x)=(0,x_1,x_2,x_3,...)$ ekanligidan

$$||T(x)|| = \sqrt{0^2 + |x_1|^2 + |x_2|^2 + |x_3|^2 + \dots} = ||x||,$$

ya'ni ||T(x)|| = ||x||. Bundan, ||T|| = 1.

b) Faraz qilaylik $\lambda \in \mathbb{C}$ soni T operatorning xos soni bo'lsin. U holda, noldan farqli $x=(x_1,x_2,x_3,...)\in \ell_2$ vektori topilib, $T(x)=\lambda x$ tengligi, ya'ni

$$(0, x_1, x_2, x_3, ...) = (\lambda x_1, \lambda x_2, \lambda x_3, \lambda x_4, ...)$$

tengligi bajariladi. Bundan, $\lambda x_1 = 0$ va i > 1 bo'lganda $\lambda x_i = x_{i-1}$. Agar $\lambda = 0$ bo'lsa, $\lambda x_i = x_{i-1}$ tengligidan $x_1 = x_2 = x_3 = \dots = 0$ kelib chiqadi. Agar $\lambda \neq 0$ bo'lsa, $\lambda x_1 = 0$ va $\lambda x_i = x_{i-1}$ tengliklardan $x_1 = x_2 = x_3 = \dots = 0$ kelib chiqadi, ya'ni x = 0. Bu esa $x \neq 0$ ekanligiga zid. Demak, farazimiz noto'g'ri va T operatorining xos soni mavjud emas.

7.2.6. $A: C[0,1] \rightarrow C[0,1]$ chiziqli operatori

$$(Ax)(t) = \int_{0}^{t} x(s) ds, \ x \in C[0, 1]$$

formula bilan aniqlanadi. Uning spektrini toping.

Yechimi. A^n operator darajasini bo'laklab integrallash orqali topamiz:

$$(A^n x)(t) = \frac{1}{(n-1)!} \int_0^t (t-s)^{n-1} x(s) \, ds.$$

Bundan, $||A^n|| \le \frac{1}{(n-1)!}$. Demak,

$$\lim_{n \to \infty} \left(\frac{1}{(n-1)!} \right)^{\frac{1}{n}} = 0$$

bo'lganlikdan, A operatori spektral radiusi

$$r(A) = \lim_{n \to \infty} ||A^n||^{\frac{1}{n}} = 0.$$

Demak, $sp(A) = \{0\}.$

7.2.7. Agar $A, B \in B(E)$ bo'lsa,

$$sp(AB) \cup \{0\} = sp(BA) \cup \{0\}$$

tengligini isbotlang.

Yechimi. Aytaylik $\lambda \notin sp(AB) \cup \{0\}$ bo'lsin. U holda shunday $C \in B(E)$ mavjud bo'lib,

$$C(\lambda I - AB) = (\lambda I - BA)C = I.$$

Bundan,

$$(I + BCA)(\lambda I - BA) = (\lambda I - BA)(I + BCA) = \lambda I.$$

Demak,

$$\frac{1}{\lambda}(I + CBA)^{-1} = \lambda I - BA.$$

Bundan $\lambda \notin sp(BA) \cup \{0\}.$

7.2.8. C[0, 1] fazoda erkli o'zgaruvchiga ko'paytirish operatori berilgan: $Ax(t) = tx(t), x \in C[0, 1]$. A ning spektrini toping. Yechimi.

$$(\lambda I - A)x(t) = (\lambda - t)x(t)$$

bo'lganlikdan, $|\lambda| > 1$ uchun

$$(\lambda I - A)^{-1}x(t) = \frac{1}{\lambda - t}x(t),$$

ya'ni $(\lambda I-A)^{-1}$ chegaralangan operator bo'ladi.

 $|\lambda| \leq 1$ da $(\lambda I - A)^{-1}$ chegaralan
magan operator. Bundan, $sp(A) = [0,\,1].$ \blacksquare

7.2.9. A chegaralangan chiziqli operator. $\alpha, \beta \in res(A)$ uchun

$$R_{\alpha} - R_{\beta} = (\alpha - \beta)R_{\alpha}R_{\beta}$$

 $tengligini\ is botlang.$

Yechimi.

$$A - \alpha I = A - \beta I + (\beta - \alpha)I$$

tengligidan

$$R_{\alpha}^{-1} = R_{\beta}^{-1} + (\beta - \alpha)I.$$

Bu tenglikni o'ngdan R_{β} ga ko'paytirsak, u holda

$$R_{\beta}R_{\alpha}^{-1} = I + (\beta - \alpha)R_{\beta}.$$

Oxirga tenglikni chapdan R_{α} ga ko'paytirsak, u holda

$$R_{\beta} = R_{\alpha} + (\beta - \alpha)R_{\beta}R_{\alpha}.$$

7.2.10. Agar $A: C[0,1] \to C[0,1]$ operatori

$$Ax(t) = \int_{0}^{1} s^{2}tx(t) dt$$

kabi aniqlansa, uning noldan farqli xos sonlarini toping.

Yechimi. $\lambda \neq 0$ operatorning xos soni bo'lsin. U holda biror $x \neq 0$ uchun $Ax(t) = \lambda x(t)$. Bundan

$$\int_{0}^{1} s^{2}tx(s) ds = \lambda x(t).$$

Agar $c = \int_{0}^{1} s^{2}x(s) ds$ deb belgilasak, u holda

$$x(t) = \frac{c}{\lambda}t.$$

Bundan

$$c = \int_{0}^{1} s^{2} \frac{c}{\lambda} s \, ds = \frac{c}{\lambda} \int_{0}^{1} s^{3} \, ds = \frac{c}{4\lambda}.$$

Bundan, $\lambda = \frac{1}{4}$ kelib chiqadi.

7.2.11. $A : C[0,1] \to C[0,1]$ operatori

$$Ax(t) = x(0) + tx(1)$$

formula bilan aniqlansa, u holda uning spektrini toping.

Yechimi. Avval operatorning xos sonlarini topamiz:

$$x(0) + tx(1) = \lambda x(t).$$
 (7.8)

Bundan

$$x(t) = \alpha + \beta t$$

ko'rinishga ega. Bu ifodani (7.8) ga qo'ysak, u holda

$$\alpha + (\alpha + \beta) = \lambda \alpha + \lambda \beta t, t \in [0, 1].$$

Endi 1 va t funksiyalarning chiziqli erkli ekanligidan,

$$\begin{cases} (1 - \lambda)\alpha = 0, \\ \alpha + (1 - \lambda)\beta = 0. \end{cases}$$

x(t) noldan farqli xos vektor, demak, α va β lar bir vaqtda nol bo'la olmaydi. Bundan $\lambda=1$ xos son ekanligi kelib chiqadi.

 $\lambda=0$ ham xos son ekanini ko'rsatamiz. Bu esa noldan farqli x(0)=x(1)=0bo'lgan har bir funksiya

$$Ax(t) = 0$$

tenglamani qanoatlantiradi, ya'ni $\lambda = 0$ soni xos sondir.

Endi har bir $\lambda \neq 0,1$ soni A operatorning resolventasiga tegishli ekanligini ko'rsatamiz.

$$y(t) \in C[0,1]$$
 uchun

$$(Ax)(t) - \lambda x(t) = y(t) \tag{7.9}$$

tenglamani qaraymiz. t=0 va t=1 qiymatlarda

$$x(0) = \frac{y(0)}{1-\lambda}, \ x(1) = \frac{y(1)}{1-\lambda} - \frac{y(0)}{(1-\lambda)^2}.$$

Bu qiymatlarni (7.9) ga qo'ysak,

$$x(t) = -\frac{y(t)}{\lambda} + \frac{y(0)}{\lambda(1-\lambda)} + \frac{ty(1)}{\lambda(1-\lambda)} - \frac{ty(0)}{(1-\lambda)^2}.$$

Bundan $\lambda \neq 0, 1$ sonlari $A - \lambda I$ operatoriga teskari operator

$$((A - \lambda I)^{-1}y)(t) = -\frac{y(t)}{\lambda} + \frac{y(0)}{\lambda(1-\lambda)} + \frac{ty(1)}{\lambda(1-\lambda)} - \frac{ty(0)}{(1-\lambda)^2}$$

kabi aniqlanadi va chegaralangandir.

Demak, A operator spektri $\lambda = 0, 1$ sonalrdan iborat.

7.2.12. $A: C[0,1] \to C[0,1]$ operatori

$$Ax(t) = x(-t)$$

formula bilan aniqlansa, u holda uning xos sonlarini toping.

Yechimi. A operatorining xos sonlari

$$Ax = \lambda x, \ x(-t) = \lambda x(t) \tag{7.10}$$

tenglama noldan farqli x(t) yechimga ega barcha λ lardan iboratdir.

Ravshanki, $\lambda=1$ bo'lsa, u holda har bir juft funksiya, $\lambda=-1$ bo'lsa, u holda har bir toq funksiya (7.10) tenglama yechimi bo'ladi, ya'ni $\lambda=\pm 1$ opertatorning xos sonlaridir.

Aoperatorining ± 1 dan boshqa xos sonlari mavjud emasligini koʻrsatamiz.

Faraz qilaylik, $\lambda_0 \neq \pm 1$ uchun $x_0(t)$ funksiya (7.10) ning yechimi bo'lsin, ya'ni

$$x_0(-t) = \lambda_0 x_0(t), \ t \in [0, 1]. \tag{7.11}$$

Bu tenglikda t ni -t ga almashtirsak, u holda

$$x_0(t) = \lambda_0 x_0(-t), \ t \in [0, 1]. \tag{7.12}$$

Endi (7.11) va (7.12) tengliklardan,

$$x_0(t) = \lambda_0^2 x_0(t), t \in [0, 1].$$

 $\lambda_0^2 \neq 1$ bo'lganlikdan, $x_0 \equiv 0$, ya'ni $\lambda \neq \pm 1$ bo'lgan sonlar operatorning xos sonlari bo'la olmaydi. Demak, xos sonlar $\lambda = \pm 1$ dan iborat.

7.2.13.
$$A: C[-\pi, \pi] \rightarrow C[-\pi, \pi]$$
 operatori

$$(Ax)(t) = \int_{-\pi}^{\pi} \sin(t+s)x(s) ds$$

formula bilan aniqlansa, u holda uning noldan farqli xos sonlarini toping.

Yechimi. $\lambda \neq 0$ soni operatorning xos soni bo'lishi uchun

$$\int_{-\pi}^{\pi} \sin(t+s)x(s) \, ds = \lambda x(t)$$

tenglama noldan farqli x(t) yechimga ega bo'lishi kerak. Bundan

$$\sin t \int_{-\pi}^{\pi} \cos s \, x(s) \, ds - \cos t \int_{-\pi}^{\pi} \sin s \, x(s) \, ds = \lambda x(t), \tag{7.13}$$

ya'ni

$$x(t) = \alpha \sin t + \beta \cos t.$$

Bu tenglikni (7.13) ga qo'ysak, u holda

$$\lambda \alpha \sin t + \lambda \beta \cos t = \pi \alpha \sin t + \pi \beta \cos t.$$

 $\sin t$ va $\cos t$ funksiyalarning chiziqli erkli ekanligidan,

$$\begin{cases} \alpha \lambda - \beta \pi = 0, \\ \alpha \pi - \beta \lambda = 0. \end{cases}$$

 $x(t) \neq 0$ dan $\alpha \neq 0$ yoki $\beta \neq 0$. Bundan

$$\lambda_1 = \pi, \ \lambda_2 = -\pi$$

operatorning noldan farqli xos sonlaridir.

Mustaqil ish uchun masalalar

1. $\{c_n\}_{n\in\mathbb{N}}$ kompleks sonlar ketma-ketligi bo'lsin. Agar $T:\ell_2\to\ell_2$ – operator

$$T(x) = (c_1x_1, c_2x_2, c_3x_3, ...), \quad x = (x_1, x_2, x_3, ...) \in \ell_2$$

formula bilan aniqlansa, U holda,

- a) T chegaralangan chiziqli operator ekanligini ko'rsating va uning normasini toping;
 - b) operator spektri $sp(T) = \overline{\{c_n : n \in \mathbb{N}\}}$ ga tengligini isbotlang.
 - **2.** E Banax fazosi va $T \in B(E)$ bo'lsin.

$$(\lambda I - T)(\lambda I + T) = \lambda^2 I - T^2$$

ayniyat yordamida $sp(T^2) = \{\lambda^2 : \lambda \in sp(T)\}$ ekanligini isbotlang.

3. $T: \ell_2 \to \ell_2$ chegaralangan operator

$$T(x) = (0, x_1, 0, x_3, 0, ...), \quad x = (x_1, x_2, x_3, ...) \in \ell_2$$

formula bilan aniqlanadi.

- a) 0 soni T operatorning xos soni ekanligini ko'rsating;
- b) T^2 ni toping va bu orqali $sp(T) = \{0\}$ ekanligini ko'rsating.
- 4. $T: \ell_2 \to \ell_2$ chegaralangan chiziqli operatori

$$T(x) = (0, 0, x_2, x_3, ...), \quad x = (x_1, x_2, x_3, ...) \in \ell_2$$

formula bilan aniqlanadi.

- a) T operator normasini toping;
- b) T operatorining xos soni mavjud emasligini isbotlang.
- 5. $T \in B(X)$ operatori uchun $T^2 = 0$ bo'lsa, bu operatorning noldan farqli xos sonlari mavjudmi?

6. $A: C[-\pi, \pi] \to C[-\pi, \pi]$ operatori

$$(Ax)(t) = \int_{-\pi}^{\pi} \cos(t+s)x(s) ds$$

formula bilan aniqlansa, u holda uning noldan farqli xos sonlarini toping.

7. $A: C[0,\pi] \to C[0,\pi]$ operatori

$$(Ax)(t) = \int_{0}^{\pi} \cos(t - s)x(s) ds$$

formula bilan aniqlansa, u holda uning noldan farqli xos sonlarini toping.

8. Agar $A:C[0,1]\to C[0,1]$ operatori

$$Ax(t) = \int_{0}^{1} s^2 t^2 x(t) dt$$

kabi aniqlansa, uning noldan farqli xos sonlarini toping.

- 9. $T \in B(X)$ bo'lsin. Agar $\lambda \in sp(T)$ bo'lsa, u holda $\lambda^n \in sp(T^n)$ ekanligini ko'rsating.
- 10. $T \in B(X)$ bo'lsin. Agar $T^{-1} \in B(X)$ va $\lambda \in sp(T)$ bo'lsa, u holda $\lambda^{-1} \in sp(T^{-1})$ ekanligini ko'rsating.

7.3. Kompakt operatorlar

Oldingi bo'limlarda ko'rganimizdek, chekli o'lchamli fazolarda chiziqli operatorlar matritsalar orqali to'liq aniqlanadi. Lekin cheksiz o'lchamli fazolarda chegaralangan chiziqli operatorlarni har doim ham bunday tafsiflash mumkin emas. Chekli o'lchamli fazolardagi operatorlar sinfiga yaqin bo'lgan operatorlar bu kompakt operatorlardir. Kompakt operatorlar funksional analizning juda ko'p tadbiqlarida qo'llaniladi, asosiy navbatda, integral tenglamalar nazariyasida keng qo'llaniladi.

Ta'rif. Agar X Banax fazosidagi chiziqli operator har bir chegaralangan to'lamni nisbiy kompakt to'plamga akslantirsa, u holda A kompakt operator deyiladi.

Chekli o'lchamli fazolarda har bir chiziqli operator kompakt operatordir. Chunki bu fazolarda chiziqli operator chegaralangan to'plamni

chegaralangan to'plamga akslantiradi va har bir chegaralangan to'plam nisbiy kompaktdir.

Agar X Banax fazosidagi A chiziqli operatorning qiymatlari to'plami R(A) chekli o'lchamli bo'lsa, u holda A chekli o'lchamli operator deyiladi.

Misollar

7.3.1. Agar A kompakt operator, B chegaralangan operator bo'lsa, u holda AB va BA ham kompakt operator bo'ladi.

Yechimi. Aytaylik $S \subset X$ chegaralangan to'plam bo'lsin. A kompakt ekanligidan, A(S) nisbiy kompakt to'plamdir. Nisbiy kompakt to'plamning uzluksiz akslantirishdagi obrazi nisbiy kompaktligi va B operatorining uzluksizligidan, (AB)(S) = B(A(S)) to'plam ham nisbiy kompaktdir. Demak, AB kompakt operator bo'ladi. Xuddi shunday BA kompakt ekanligi kelib chiqadi.

7.3.2. Agar $\{A_n\}$ Banax fazosidagi kompakt operatorlar ketma-ketligi A operatoriga norma bo'yicha yaqinlashsa, u holda A kompakt operator bo'ladi.

Yechimi. A operatorining kompaktligini isbotlash uchun, X fazosidagi ixtiyoriy $\{x_n\}$ chegaralangan ketma-ketlik olinganda, $\{Ax_n\}$ ning yaqinlashuvchi qismiy ketma-ketligi mavjudligini ko'rsatamiz.

 A_1 kompakt operator bo'lganlikdan, $\{A_1x_n\}$ ning yaqinlashuvchi qismiy ketma-ketligi mavjud. Aytaylik

$$x_1^{(1)}, x_2^{(1)}, \dots, x_n^{(1)}, \dots$$

shunday qismiy ketma-ketlikki, $\{A_1x_n^{(1)}\}$ yaqinlashuvchi. Endi $\{A_2x_n^{(1)}\}$ ketma-ketlikni qaraylik. Bu ketma-ketlikdan ham yaqinlashuvchi qaimiy ketma-ketlik ajratish mumkin. Aytaylik

$$x_1^{(2)}, x_2^{(2)}, \dots, x_n^{(2)}, \dots$$

shunday qismiy ketma-ketlikki, $\{A_2x_n^{(2)}\}$ yaqinlashuvchi. Shu tarzda mulohaza yuritib,

 $x_1^{(3)}, x_2^{(3)}, \dots, x_n^{(3)}, \dots$

qismiy ketma-ketlikka ega bo'lamizki, $\{A_3x_n^{(3)}\}$ yaqinlashuvchi. Bu jarayonni davom ettiramiz va diagonal ketma-ketlik

$$x_1^{(1)}, x_2^{(2)}, \dots, x_n^{(n)}, \dots$$

ni qaraymiz. Har bir A_1, \ldots, A_n, \ldots operatorlar bu ketma-ketlikni yaqinlashuvchi ketma-ketliklarga o'tkazadi.

Endi $\{Ax_n^{(n)}\}$ ham yaqinlashuvchi ekanligini ko'rsatamiz. X to'la bo'lganlikdan, bu ketma-ketlikning fundamentalligini ko'rsatish etarli. Quyidagi o'rinli:

$$||Ax_n^{(n)} - Ax_m^{(m)}|| \le ||Ax_n^{(n)} - A_kx_n^{(n)}||$$

$$\le ||A_kx_n^{(n)} - A_kx_m^{(m)}|| + ||A_kx_m^{(m)} - Ax_m^{(m)}||.$$

Aytaylik $||x_n|| \le C$ bo'lsin. Oldin shunday k sonini olamizki,

$$||A - A_k|| < \frac{\varepsilon}{3C}$$

bo'lsin. Endi shunday n_0 sonini olamizki, $n, m > n_0$ larda

$$||A_k x_n^{(n)} - A_k x_m^{(m)}|| < \frac{\varepsilon}{3}$$

bo'lsin $(\{A_k x_n^{(n)}\}\)$ yaqinlashuvchi ekanligidan bunday son mavjud). Bu hollarda

$$||Ax_n^{(n)} - Ax_m^{(m)}|| < C\frac{\varepsilon}{3C} + \frac{\varepsilon}{3} + C\frac{\varepsilon}{3C} = \varepsilon.$$

Demak, $\{Ax_n^{(n)}\}$ fundamental, bundan esa A kompakt operator bo'ladi.

7.3.3. Cheksiz o'lchovli X Banax fazosida birlik operator kompakt operator emasligini ko'rsating.

Yechimi. Faraz qilaylik, cheksiz o'lchovli X Banax fazosida birlik operator kompakt operator bo'lsin. U holda X fazoning birlik shari kompakt to'plam bo'ladi. Lekin cheksiz o'lchovli fazoda uning birlik shari kompakt to'plam emas. Demak, cheksiz o'lchovli Banax fazosida birlik operator kompakt operator emas ekan.

7.3.4. Cheksiz o'lchovli X Banax fazosida kompakt operatorning chegaralangan teskari operatori mavjud emas.

Yechimi. Faraz qilaylik, cheksiz o'lchovli X Banax fazosida T kompakt operatorning chegaralangan teskari operatori T^{-1} mavjud bo'lsin. U holda, 7.3.1 - misoldan $I = TT^{-1}$ kompakt operator bo'ladi. Lekin 7.3.3 - misolga ko'ra I kompakt operator emas. Hosil bo'lgan ziddiyatdan, cheksiz o'lchovli Banax fazosida kompakt operatorning chegaralangan teskari operatori mavjud emas kelib chiqadi.

7.3.5. X Banax fazosida chegaralangan chekli o'lchamli operatorning kompakt operator bo'lishini ko'rsating.

Yechimi. Aytaylik $A:X\to X$ chegaralangan chekli o'l
chamli operator bo'lsin. U holda

$${A(x): ||x|| \le 1}$$

chekli o'lchamli R(A) fazoda chegaralangan to'plam. 3.2.10 - misoldagi Boltsano – Veyershtrass teoremasidan, bu to'plam nisbiy kompaktdir. Demak, A kompakt operator.

7.3.6. H Hilbert fazosi va $A: H \to H$ kompakt operator bo'lsa, u holda T = I - A operatori qiymatlari sohasi R(T) yopiq ekanligini ko'rsating.

Yechimi. Aytaylik $y_n \in R(T)$ va $y_n \to y \in H$ bo'lsin. U holda shunday $x_n \in H$ vektori topilib,

$$y_n = T(x_n) = x_n - T(x_n)$$
 (7.14)

tengligi bajariladi. Har bir x_n vektoridan uning ker T qism fazoga proesiyasini ayirib, x_n vektorini ker T ga ortogonal etib olish mumkin. Endi $\{x_n\}$ ketma-ketlikning chegaralangan ekanligini ko'rsatamiz. Faraz qilaylik $\{x_n\}$ ketma-ketlik chegaralanmagan bo'lsin. U holda qismiy ketma-ketlikka o'tib, $||x_n|| \to \infty$ deb olish mumkin. Endi (7.14) tenglikdan

$$\frac{x_n}{||x_n||} - A\left(\frac{x_n}{||x_n||}\right) \to 0. \tag{7.15}$$

A operatori kompakt ekanligidan, yana qismiy ketma-ketlikka o'tib, $\left\{A\left(\frac{x_n}{||x_n||}\right)\right\}$ yaqinlashuvchi deb olishimiz mumkin. U holda $\left\{\frac{x_n}{||x_n||}\right\}$ ketma-ketlik ham birlik normali biror $z \in H$ vektoriga yaqinlashadi. (7.15) formuladan, T(z) = 0, ya'ni $z \in \ker T$. Endi $x_n \perp \ker T$ ekanligidan, $z \perp \ker T$. Demak, $z \in \ker T^{\perp}$ va $z \in \ker T$. Bundan z = 0. Bu esa ||z|| = 1 tengligiga zid. Hosil bo'lgan ziddiyatdan, $\{x_n\}$ ketma-ketlikning chegaralangan ekanligini kelib chiqadi.

Yana qismiy ketma-ketlikka o'tib, $\{A(x_n)\}$ yaqinlashuvchi deb olishimiz mumkin. U holda, (7.14) dan $\{x_n\}$ yaqinlashuvchi bo'ladi. Aytaylik $x = \lim_{n \to \infty} x_n$ bo'lsin. Yana (7.14) tenlikdan y = T(x) kelib chiqadi. Bundan $y \in R(T)$, ya,ni R(T) yopiq qism fazo.

7.3.7. Hilbert fazosidagi o'z-o'ziga qo'shma operatorning barcha xos qiymatlari haqiqiydir.

Yechimi. $A = A^*$ va $A(x) = \lambda x, x \neq 0$ bo'lsin. U holda

$$\lambda \langle x, x \rangle = \langle \lambda x, x \rangle = \langle A(x), x \rangle =$$
$$= \langle x, A^*(x) \rangle = \langle x, A(x) \rangle = \langle x, \lambda x \rangle = \overline{\lambda} \langle x, x \rangle,$$

ya'ni $\lambda \langle x, x \rangle = \overline{\lambda} \langle x, x \rangle$, yoki $\lambda ||x||^2 = \overline{\lambda} ||x||^2$. Endi $||x|| \neq 0$ ekanligidan $\lambda = \overline{\lambda}$, ya'ni λ haqiqiy son.

7.3.8. O'z-o'ziga qo'shma operatorning har xil xos qiymatlariga mos xos vektorlari ortogonaldir.

Yechimi. A o'z-o'ziga qo'shma operator, $\lambda \neq \mu$ bu operatorning xos qiymatlari bo'lsin. x, y mos ravishda λ, μ sonlarga mos xos vektorlar, ya'ni $A(x) = \lambda x, A(y) = \mu y$ bo'lsin. U holda,

$$\lambda \langle x, y \rangle = \langle \lambda x, y \rangle = \langle A(x), y \rangle = \langle x, A^*(y) \rangle =$$

$$=\langle x,A(y)\rangle=\langle x,\mu y\rangle=\overline{\mu}\langle x,y\rangle=\mu\langle x,y\rangle,$$

ya'ni $(\lambda - \mu)\langle x, y \rangle = 0$. Bundan, $\langle x, y \rangle = 0$, ya'ni $x \perp y$.

7.3.9. ℓ_2 fazosida T operatori quyidagi

$$T((x_n)_{n=1}^{\infty}) = \left(0, x_1, \frac{x_2}{2}, \cdots, \frac{x_{n-1}}{n-1}, \cdots\right)$$

formula orqali aniqlanadi. U holda

- a) T operatorning kompakt ekanligini ko'rsating;
- b) T operatorinig birorta xos soni yoqligini ko'rsating.

Yechimi. a) $x \in \ell_2$ va $y = T(x), y = (y_1, y_2, y_3, ...)$ bo'lsin. Har bir $x = (x_1, x_2, x_3, ...) \in \ell_2$, uchun $T(x) = \left(0, x_1, \frac{x_2}{2}, \cdots, \frac{x_{n-1}}{n-1}, \cdots\right)$ ekanligidan $y_n = \frac{x_{n-1}}{n-1}, n > 1$. Agar $||x|| \le 1$ bo'lsa, u holda $|x_n| \le 1, n \in \mathbb{N}$. Bundan, $|y_n| = |\frac{x_{n-1}}{n-1}| \le \frac{1}{n-1}, n > 1$. Demak, y nuqta asosiy parallelepipedda joylashgan va asosiy parallelepipedning kompaktligidan birlik shar obrazi nisbiy kompakt bo'ladi. Bundan, T kompakt operator.

b) Faraz qilaylik $\lambda \in \mathbb{C}$ soni T operatorning xos soni bo'lsin. U holda, noldan farqli $x=(x_1,x_2,x_3,...)\in \ell_2$ vektori topilib, $T(x)=\lambda x$ tengligi, ya'ni

$$\left(0, x_1, \frac{x_2}{2}, \cdots, \frac{x_{n-1}}{n-1}, \cdots\right) = (\lambda x_1, \lambda x_2, \lambda x_3, \lambda x_4, \ldots)$$

tengligi bajariladi. Bundan, $\lambda x_1 = 0$ va i > 1 bo'lganda $\lambda x_i = \frac{1}{i-1}x_{i-1}$. Agar $\lambda = 0$ bo'lsa, $\lambda x_i = \frac{1}{i-1}x_{i-1}$ tengligidan $x_1 = x_2 = x_3 = \dots = 0$ kelib chiqadi. Agar $\lambda \neq 0$ bo'lsa, $\lambda x_1 = 0$ va $\lambda x_i = \frac{1}{i-1}x_{i-1}$ tengliklardan $x_1 = x_2 = x_3 = \dots = 0$ kelib chiqadi, ya'ni x = 0. Bu esa $x \neq 0$ ekanligiga zid. Demak, farazimiz noto'g'ri va T operatorining xos soni mavjud emas.

7.3.10. $A: L_2[0,1] \to L_2[0,1]$ operatori

$$(Ax)(t) = \int_{0}^{1} st(1-st)x(s) ds$$

 $formula\ orqali\ aniqlansa,\ u\ holda\ A\ kompakt\ operatori\ ekanligini\ isbotlang.$

Yechimi. A operatorini quyidagi shaklda ifodalaymiz:

$$(Ax)(t) = t \int_{0}^{1} sx(s) ds - t^{2} \int_{0}^{1} s^{2}x(s) ds = tc_{1} - t^{2}c_{2},$$

bunda $c_1 = \int_0^1 sx(s) ds$, $c_2 = \int_0^1 s^2x(s) ds$. Bundan, A chekli o'lchamli operator va demak, kompakt operator bo'ladi.

7.3.11. Hilbert fazosidagi har bir kompakt operator chekli o'lchamli operatorlar ketma-ketligining tekis limiti ekanligini isbotlang.

Yechimi. Faraz qilaylik, $\{\lambda_n\}$ ketma-ketlik A kompakt operatorining modullari bo'yicha kamayish tartibida yozilgan xos sonlari, $\{e_n\}$ xos vektorlardan iborat ortonormal bazis bo'lsin. U holda Hilbert – Shmidt teoremasidan har bir $x \in H$ uchun

$$A(x) = \sum_{n=1}^{\infty} \lambda_n \langle x, e_n \rangle e_n$$

tengligi o'rinlidir. Har bir $m \in \mathbb{N}$ uchun

$$A_m(x) = \sum_{n=1}^m \lambda_n \langle x, e_n \rangle e_n$$

operatorini aniqlaymiz. Bunda A_m chekli o'lchamli operatorlardir. Endi $x \in H$ uchun

$$||A(x) - A_m(x)||^2 = \langle A(x) - A_m(x), A(x) - A_m(x) \rangle =$$

$$= \left\langle \sum_{n=m+1}^{\infty} \lambda_n \langle x, e_n \rangle e_n, \sum_{n=m+1}^{\infty} \lambda_n \langle x, e_n \rangle e_n \rangle \right\rangle =$$

$$= \sum_{n=m+1}^{\infty} \sum_{k=m+1}^{\infty} \langle \lambda_n \langle x, e_n \rangle e_n, \lambda_k \langle x, e_k \rangle e_k \rangle =$$

$$= \sum_{n=m+1}^{\infty} \langle \lambda_n \langle x, e_n \rangle e_n, \lambda_n \langle x, e_n \rangle e_n \rangle = \sum_{n=m+1}^{\infty} |\lambda_n|^2 |\langle x, e_n \rangle|^2 \le |\lambda_m|^2 ||x||^2.$$

Bundan

$$||A - A_m|| \le |\lambda_m| \to 0.$$

7.3.12. H Hilbert fazosi, $\{e_n\}$ bu fazoda ortonormal bazis, $\{\lambda_n\}$ nolga monoton kamayuvchi sonlar ketma-ketligi bo'lsin.

Har bir $x \in H$ uchun

$$A(x) = \sum_{n=1}^{\infty} \lambda_n \langle x, e_n \rangle e_n.$$

A chegaralangan operator va har bir λ_n uning xos sonlari ekanligini ko'rsating.

Yechimi. $x \in H$ uchun

$$||A(x)||^2 = \langle A(x), A(x) \rangle = \left\langle \sum_{n=1}^{\infty} \lambda_n \langle x, e_n \rangle e_n, \sum_{n=1}^{\infty} \lambda_n \langle x, e_n \rangle e_n \right\rangle =$$

$$= \sum_{n=1}^{\infty} \lambda_n^2 |\langle x, e_n \rangle|^2 \le \lambda_1^2 \sum_{n=1}^{\infty} |\langle x, e_n \rangle|^2 = \lambda_1^2 ||x||^2,$$

ya'ni

$$||A(x)|| \le \lambda_1 ||x||.$$

Endi $x = e_1$ vektori uchun

$$||A(e_1)||^2 = \langle A(e_1), A(e_1) \rangle =$$

$$= \left\langle \sum_{n=1}^{\infty} \lambda_n \langle e_1, e_n \rangle e_n, \sum_{n=1}^{\infty} \lambda_n \langle e_1, e_n \rangle e_n \right\rangle = \left\langle \lambda_1 e_1, \lambda_1 e_1 \right\rangle = \lambda_1^2 ||e_1||^2,$$

ya'ni

$$||A(e_1)|| = \lambda_1 ||e_1||.$$

Bundan

$$||A|| = \lambda_1.$$

Endi

$$A(e_n) = \sum_{i=1}^{\infty} \lambda_i \langle e_m, e_i \rangle e_i = \lambda_n e_n,$$

ekanligidan, har bir λ_n operatorning xos sonidir.

7.3.13. $A: C[0,1] \to C[0,1]$ operatori

$$(Ax)(t) = \int_{0}^{1} K(s,t)x(t) dt$$

formula orqali aniqlansa, u holda A kompakt operatori ekanligini isbotlang. 1} to'plamning kompaktligidan, K(s,t) funksiya bu kvadratda tekis uzluksiz bo'ladi, ya'ni $\forall \varepsilon > 0$ uchun $\exists \delta > 0$ topilib,

$$|s_1 - s_2| + |t_1 - t_2| < \delta$$

bo'lganda

$$|K(s_1,t_1)-K(s_2,t_2)|<\varepsilon$$

tengsizligi bajariladi. Bundan

$$|y(s_1) - y(s_2)| = \left| \int_0^1 (K(s_1, t) - K(s_2, t)) x(t) dt \right| \le$$

$$\leq \int_{0}^{1} |K(s_{1},t) - K(s_{2},t)| |x(t)| dt \leq \int_{0}^{1} \varepsilon ||x|| dt = \varepsilon ||x||,$$

ya'ni

$$|y(s_1) - y(s_2)| \le \varepsilon ||x||.$$
 (7.16)

(7.16) tensizlikdan y(s) funksiyaning uzluksizligi kelib chiqadi, ya'ni $y \in C[0,1]$.

Endi $F = \{x : x \in C[0,1]\}$ chegaralangan to'plam bo'lsa, u holda (7.16) tengsizlikdan $\{A(x) : x \in F\}$ to'plamning tekis darajali uzluksizligi kelib chiqadi.

Agar $||x|| \le c$ bo'lsa, u holda

$$||y|| = \sup_{0 \le s \le 1} |y(s)| \le \int_{0}^{1} |K(s,t)||x(t)| dt \le M||x||,$$

ya'ni

$$||y|| \leq Mc$$
.

Demak, A operatori har bir chegaralangan to'plamini tekis chegaralangan va tekis darajali uzluksiz to'plamga, ya'ni nisbiy kompakt to'plamga o'tkazadi. Bundan A operatori kompakt bo'ladi.

7.3.14. $A: L_2[0,\pi] \to C[0,\pi]$ operatori

$$(Ax)(t) = \int_{0}^{\pi} \sin(t+s)x(s) ds$$

 $formula\ orqali\ aniqlansa,\ u\ holda\ A\ kompakt\ operatori\ ekanligini\ isbotlang.$

Yechimi. $x \in L_2[0, \pi]$ va $||x|| \le 1$ bo'lsin. U holda a)

$$|A(x)(t)| = \left| \int_0^\pi \sin(t+s)x(s) \, ds \right| \le \sqrt{\int_0^\pi \sin^2(t+s) \, ds} \sqrt{\int_0^\pi |x(s)|^2 \, ds} =$$

$$\le \left(\sqrt{\int_0^\pi 1 \, ds} \right) ||x|| \le \sqrt{\pi},$$

yani $|A(x)(t)| \le \sqrt{\pi}$. b)

$$|A(x)(t_1) - A(x)(t_2)| = \left| \int_0^{\pi} [\sin(t_1 + s) - \sin(t_2 + s)] x(s) \, ds \right| =$$

$$= 2 \left| \int_0^{\pi} \sin \frac{t_1 - t_2}{2} \cos(s + \frac{t_1 + t_2}{2}) x(s) \, ds \right| =$$

$$\leq \sqrt{\int_0^{\pi} [\sin \frac{t_1 - t_2}{2} \cos(s + \frac{t_1 + t_2}{2})]^2 \, ds} \sqrt{\int_0^{\pi} |x(s)|^2 \, ds} \leq$$

$$< |t_1 - t_2| \sqrt{\pi},$$

ya'ni $|A(x)(t_1) - A(x)(t_2)| \le |t_1 - t_2|\sqrt{\pi}$.

Bundan A operatori $L_2[0,\pi]$ fazo birlik sharini tekis chegaralangan va tekis darajali uzluksiz to'plamga o'tkazadi. Artsela teoremasidan A kompakt operator bo'ladi.

7.3.15. Agar $T: H \to H$ ermit kompakt operatori bo'lsa, u holda $\pm ||T||$ sonlardan kamida bittasi T operatorining xos sonlari ekanligini ko'rsating.

Yechimi. T=0 operatori uchun ravshan bo'lganlikdan, $T\neq 0$ holni qaraymiz. T ermit operatori bo'lganlikdan,

$$||T|| = \sup_{||x||=1} |\langle T(x), x \rangle|$$

tenligi o'rinli. Bundan H fazoda shunday $\{x_n\}$ ketma-ketlik mavjud bo'lib, $||x_n|| = 1$ va $n \to \infty$ da $\langle T(x_n), x_n \rangle| \to ||T||$. Yana T ermit operatori bo'lganlikdan,

$$\langle T(x_n), x_n \rangle = \langle x_n, T^*x_n \rangle = \langle x_n, T(x_n) \rangle = \overline{\langle T(x_n), x_n \rangle},$$

ya'ni $\langle T(x_n), x_n \rangle$ haqiqiy son. Qismiy ketma-ketlikka almashtirib,

$$\langle T(x_n), x_n \rangle \to \lambda,$$

bunda $\lambda = ||T||$ yoki $\lambda = -||T||$ deb olamiz. U holda

$$||T(x_n) - \lambda x_n||^2 = \langle T(x_n) - \lambda x_n, T(x_n) - \lambda x_n \rangle =$$

$$= ||T(x_n)||^2 - 2\lambda \langle T(x_n), x_n \rangle + \lambda^2 ||x_n||^2 \le$$

$$\le ||T||^2 ||x_n||^2 - 2\lambda \langle T(x_n), x_n \rangle + \lambda^2 ||x_n||^2 =$$

$$= 2\lambda^2 - 2\lambda \langle T(x_n), x_n \rangle,$$

ya'ni

$$0 \le ||T(x_n) - \lambda x_n||^2| \le 2\lambda^2 - 2\lambda \langle T(x_n), x_n \rangle \to 0.$$

Bundan

$$T(x_n) - \lambda x_n \to 0.$$

Endi T operatorining kompaktligidan, $\{x_n\}$ ketma-ketlikning shunday $\{x_{n_p}\}$ qismiy ketma-ketmaligi mavud bo'lib, $\{T(x_{n_p})\}$ ketma-ketlik yaqinlashuvchi bo'ladi. $T(x_{n_p}) \to y$ bo'lsin. U holda $\lambda x_{n_p} \to y$ va $\lambda T(x_{n_p}) \to T(y)$. Bundan $T(y) = \lambda y$. Nihoyat

$$||y|| = \lim_{n \to \infty} ||\lambda x_{n_p}|| = |\lambda| = ||T|| \neq 0$$

ekanligidan λ soni T operatorining xos soni bo'ladi.

7.3.16. Agar $A: C[0,1] \to C[0,1]$ operatori

$$Ax(t) = tx(t)$$

kabi aniqlansa, u holda A kompakt operator bo'ladimi?

Yechimi. C[0,1] fazoda quyidagi funksiyalarni qaraylik:

$$x_n(t) = \begin{cases} 0, & \text{agar } t \in [0, \frac{1}{2} + \frac{1}{2^{n+1}}); \\ 2^{n+1}t - 2^n - 1, & \text{agar } t \in [\frac{1}{2} + \frac{1}{2^{n+1}}, \frac{1}{2} + \frac{1}{2^n}); \\ 1, & \text{agar } t \in [\frac{1}{2} + \frac{1}{2^n}, 1]. \end{cases}$$

U holda $||x_n|| = 1$ va $t_n = \frac{1}{2} + \frac{1}{2^n}$ uchun $x_n(t_n) = 1$, $x_m(t_n) = 0$, n > m. Bundan

$$||Ax_n - Ax_m|| \ge |t_n x_n(t_n) - t_n x_m(t_n)| \ge \frac{1}{2},$$

ya'ni

$$||Ax_n - Ax_m|| \ge \frac{1}{2}.$$

Bundan $\{Ax_n\}$ ketma-ketlikning birorta ham qismiy ketma-ketligi yaqinlashuvchi emas. Demak, A kompakt operator emas.

7.3.17. Agar $A: C[0,1] \to C[0,1]$ operatori

$$Ax(t) = x(t^2)$$

kabi aniqlansa, u holda A kompakt operator bo'ladimi?

 $Yechimi.~x_n$ va t_n lar oldingi masaladagi funksiya va nuqtalar bo'lsin. Har bir nuchun $y_n=x_n(\sqrt{t})$ deylik. U holda

$$||Ay_n - Ay_m|| \ge |x_n(t_n) - x_m(t_n)| \ge 1,$$

ya'ni

$$||Ax_n - Ax_m|| \ge 1.$$

Demak, A kompakt operator emas.

7.3.18. Agar $A: C[0,1] \rightarrow C[0,1]$ operatori

$$Ax(t) = \int_{0}^{1} e^{ts} x(s) \, ds$$

kabi aniqlansa, u holda A kompakt operator bo'ladimi?

Yechimi. $x_n \in C[0,1], ||x_n|| = 1$ bo'lsin. U holda

$$Ax_n(t) = \int_0^1 e^{ts} x_n(s) ds = e^t \int_0^1 e^s x_n(s) ds.$$

Agar

$$a_n = \int\limits_0^1 e^s x_n(s) \, ds$$

deb belgilasak, u holda

$$|a_n| = |\int_0^1 e^s x_n(s) \, ds| \le e,$$

ya'ni $\{a_n\}$ chegaralngan sonli ketma-ketlik. Demak, uning yaqinlashuvchi qismiy ketma-ketligi mavjud. U holda

$$Ax_n(t) = a_n e^t$$

ham yaqinlashuvchi qismiy ketma-ketligi ega. Demak, A kompakt operator ekan.

7.3.19. Agar $A: C[0,1] \to C[0,1]$ operatori

$$Ax(t) = x(0) + tx(1)$$

kabi aniqlansa, u holda A kompakt operator bo'ladimi?

Yechimi. $x_n \in C[0,1], ||x_n|| = 1$ bo'lsin. Agar

$$a_n = x_n(0), b_n = x_n(1)$$

deb belgilasak, u holda

$$|a_n| \le 1, |b_n| \le 1.$$

ya'ni $\{a_n\}$, $\{b_n\}$ chegaral
ngan sonli ketma-ketliklar. Demak, $\{a_{n_k}\}$, $\{b_{n_k}\}$ yaqinlashuvchi qismiy ketma-ketlik
alr mavjud. U holda

$$Ax_n(t) = a_{n_k} + tb_{n_k}$$

ham C[0,1] da norma bo'yicha yaqinlashuvchi bo'ladi. Bundan A kompakt operator ekan.

Mustaqil ish uchun masalalar

1. $A: C[0,1] \to C[0,1]$ operatori

$$(Af)(t) = \int_{0}^{1} K(t,s)f(s) \, ds + \sum_{k=1}^{n} \varphi_{k}(t)f(t_{k})$$

formula orqali aniqlansa, bunda $K(t,s) - 0 \le t, s \le 1$ krvadratda uzliksiz, $\varphi_k(t) \in C[0,1], t_k \in [0,1], k = \overline{1,n}$. A kompakt operatori ekanligini isbotlang.

- 2. Hilbert fazosidagi har bir chegaralangan chiziqli operator kompakt operatorlar ketma-ketligining kuchli limiti ekanligini isbotlang.
- **3.** H Hilbert fazosi, $\{e_n\}_{n\in\mathbb{N}}$ ortonormal bazisi va $A: H \to H$ chegaralangan operator. Agar $\sum_{k=1}^{\infty} ||A(e_n)||^2$ qator yaqinlashuvchi bo'lsa, u holda A kompakt operator ekanligini isbotlang.
 - 4. Kompakt operator qiymatlar sohasi separabelligini isbotlang.
- **5.** H Hilbert fazosi, $\{e_n\}_{n\in\mathbb{N}}$ ortonormal bazisi va $A:H\to H$ kompakt operatori bo'lsa, u holda $||A(e_n)||\to 0$ ekanligini isbotlang.
- **6.** Har bir $A: \ell_2 \to \ell_1$ chegaralangan chiziqli operatori kompakt ekanligini isbotlang.
 - **7.** $A: C[0,1] \to C[0,1]$ operatori

$$(Af)(t) = \int_{0}^{1} K(t,s)f(s) ds$$

formula orqali aniqlansa, bunda $K(t,s) - 0 \le t, s \le 1$ krvadratda uzliksiz, u holda A chegaralangan teskari operatorga ega bo'lisihi mumkinmi?

8 - 12 misollarda $A: C[0,1] \to C[0,1]$ kompakt operator bo'ladimi?

8.
$$Ax(t) = \int_{0}^{t} x(s) ds;$$

9.
$$Ax(t) = \int_{0}^{1} x(s)|t-s|^{-1} ds;$$

10.
$$Ax(t) = \int_{0}^{1} x(s)(t-s)^{-1} ds;$$

11.
$$Ax(t) = \int_{0}^{1} x(s)(t-s)^{-\alpha} ds;$$

12.
$$Ax(t) = \int_{0}^{1} x(s) \tan(|t-s|^{-1/2}) ds.$$

- **13.** H Hilbert fazosi va $A: H \to H$ kompakt operator bo'lsin. Agar $x_n \xrightarrow{w} x$ bo'lsa, u holda $||Ax_n Ax|| \to 0$ ekanligini isbotlang.
- **14.** H Hilbert fazosi va $A: H \to H$ kompakt operator bo'lsin. Agar $\{e_n\} \subset H$ ortonormal sistema bo'lsa, u holda $Ae_n \to 0$ ekanligini isbotlang.

7.4. Integral operatorlar va tenglamalar

Agar funksional tenglamada noma'lum funksiya integral ishorasi ostida qatnashsa, u holda bu tenglama integral tenglama deb ataladi. Integral tenglamadagi ifoda noma'lum funksiyaga nisbatan chiziqli bo'lsa, u holda tenglama chiziqli integral tenglama deb ataladi. Endi chiziqli integral tenglamalarning ahamiyatli sinflaridan birini qaraymiz:

$$\varphi(t) = \lambda \int_{a}^{b} K(t, s) f(s) ds + f(t)$$
 (7.17)

ko'rinishidagi tenglama II-tur Fredholm integral tenglamasi deyiladi. Bunda $\varphi(t)$ noma'lum funksiya, f(t) va K(t,s) berilgan funksiyalar, λ sonli parametr. K(t,s) funksiyasi $0 \le t,s \le 1$ kvadratda aniqlangan va u integral tenglamaning yadrosi deb ataladi. Agar K(t,s) funksiyasi

$$\int_{a}^{b} \int_{a}^{b} K(t,s) \, ds dt < \infty$$

shartini qanoatlantirsa, u *Hilbert - Shmidt yadrosi* deb ataladi.

$$\int_{a}^{b} K(t,s)f(s) ds = f(t)$$

$$(7.18)$$

tenglamasi *I-tur Fredholm tenglamasi* deyiladi. Agar K(t,s) funksiyasi s > t qiymatlarda K(t,s) = 0 tengligini qanoatlantirsa, u holda (7.17) va (7.18) tenglamalar mos

$$\varphi(t) = \lambda \int_{a}^{t} K(t, s) f(s) ds + f(t)$$
 (7.19)

$$\int_{a}^{t} K(t,s)f(s) ds = f(t)$$
(7.20)

ko'rinishlarga keladi. Bunday tenglamalar *I va II Volterra tenglamalari* deb ataladi.

Agar yuqoridagi tenglamalarda K(t,s) = K(s,t) bo'lsa, u holda ular simmetrik integral tenglamalar deyiladi.

Integral tenglama yadrosi

$$K(t,s) = \sum_{i=1}^{n} a_i(t)b_i(s)$$

ko'rinishda bo'lsa, u holda u *aynigan yadro* deyiladi. Faraz qilaylik (7.17) tenglama aynigan yadroga ega bo'lsin. U holda

$$\varphi(t) = \lambda \sum_{i=1}^{n} a_i(t) \int_a^b b_i(s) f(s) ds + f(t)$$
 (7.21)

tenglamasiga ega bo'lamiz. Bu tenglama echimi $\varphi=\varphi(t)$ funksiyasi bo'lsin. Agar

$$c_i = \int_a^b \varphi(s)b_i(s) ds, \ i = \overline{1, n}$$

deb belgilasak, u holda (7.21) tenglamanging echimi quyidagi ko'rinishga keladi:

$$\varphi(t) = f(t) + \lambda \sum_{i=1}^{n} c_i a_i(t)$$
(7.22)

Bu tenglikni $b_i(t)$, $i = \overline{1, n}$ funksiyasiga ko'paytirib, [a, b] segmentda t o'zgaruvchisi bo'yicha integrallaymiz:

$$\int_{a}^{b} \varphi(t)b_{i}(t) = \int_{a}^{b} f(t)b_{i}(t) + \lambda \sum_{i=1}^{n} c_{j} \int_{a}^{b} a_{j}(t)b_{i}(t) dt, \ i = \overline{1, n}$$
 (7.23)

Tenglikning o'ng tomonidagi integrallar o'zgarmas sonlar bo'lib, ularni quyidagicha belgilaymiz:

$$\int_{a}^{b} a_j(t)b_i(t) dt = k_{ij}, \ i, j = \overline{1, n}$$

$$\int_{a}^{b} f(t)b_{i}(t) = f_{i}, \ i = \overline{1, n}.$$

U holda, (7.23) tenglama

$$c_i - \lambda \sum_{j=1}^{n} k_{ij} c_j = f_i, \ i = \overline{1, n}$$
 (7.24)

ko'rinishga keladi. Bu tenglamalar sistemasining c_1, c_2, \dots, c_n echimlarini (7.22) ga qoyib, (7.21) integral tenglama echimiga ega bo'lamiz. Agar (7.24) tenglamalar sistemasi echimga ega bo'lmasa, u holda (7.21) integral tenglama ham echimga ega bo'lmaydi.

Integral tenglamalarni echimini ketma-ket yaqinlashtirish usulii bilan topish mumkin. Faraz qilaylik $M=\max_{a\leq t,s\leq b}|K(t,s)|$ bo'lsin. Agar $|\lambda|<$

 $\frac{1}{M(b-a)}$ bo'lsa, u holda (7.21) tenglama echimi uchun

$$\varphi(t) = \lim_{n \to \infty} \varphi_n(t)$$

tengligi bajariladi, bunda

$$\varphi_{n+1}(t) = \lambda \int_{a}^{b} K(t,s)\varphi_n(s) ds + f(t), n = 0, 1, 2, \cdots$$
 (7.25)

 $\varphi_0(t)$ funksiyasi sifatida [a,b] segmentda uzluksiz itiyoriy funksiyani olish mumkin.

Agar (7.17), (7.18), (7.19) va (7.20) tenglamalarda f(t)=0 bo'lsa, u holda bir jinsli integral tenglama, aksincha, $f(t)\neq 0$ bo'lsa, bir jinsli

bo'lmagan integral tenglamalar deyiladi. ususiy holda,

$$f(t) = \int_{0}^{t} \frac{\varphi(s)}{(t-s)^{\alpha}} ds, \quad (0 < \alpha < 1, f(0) = 0)$$

tenglama Abel tenglamasi deyiladi.

Misollar

7.4.1. Agar A Hilbert – Shmidt operatorining yadrosi K(s,t) bo'lsa, u holda A^* qo'shma operatori $\overline{K(t,s)}$ yadroli Hilbert – Shmidt operatori ekanligini ko'rsating.

Yechimi. $f, g \in L_2[a, b]$ bo'lsin. U holda

$$\langle f,A^*g\rangle = \langle Af,g\rangle = \int_a^b \left\{ \int_a^b K(s,t)f(t)\,dt \right\} \overline{g(s)}\,ds =$$

$$= \int_a^b \int_a^b K(s,t)f(t)\overline{g(s)}\,dtds = \int_a^b \left\{ \int_a^b K(s,t)\overline{g(s)}\,ds \right\} f(t)\,dt =$$

$$= \int_a^b f(t) \left\{ \int_a^b \overline{K(s,t)}g(s)\,ds \right\} dt = \int_a^b f(s) \left\{ \int_a^b \overline{K(t,s)}g(t)\,dt \right\} ds,$$
mi

yani

$$\langle f, A^*g \rangle = \int_a^b f(s) \overline{\left\{ \int_a^b \overline{K(t,s)}g(t) dt \right\}} ds.$$

Bundan

$$A^*g(s) = \int_a^b \overline{K(t,s)}g(t) dt.$$

Demak, A^* qo'shma operatori $\overline{K(t,s)}$ yadroli Hilbert – Shmidt operatori bo'ladi.

7.4.2. C[a,b] fazosida

$$Af(t) = \lambda \int_{a}^{t} K(t, s) f(s) ds + \varphi(t)$$

 $operatorning\ biror\ darajasi\ qisqartirib\ akslantirish\ ekanligini\ ko'rsating.$

Yechimi. $f, g \in C[a, b]$ bo'lsin. U holda

$$|Af(t) - Ag(t)| = |\lambda| \left| \int_{a}^{t} K(t,s)[f(s) - g(s)] ds \right| \le$$

$$\le |\lambda| M(t-a) \max_{a \le s \le b} |f(s) - g(s)|,$$

bunda $M = \max_{a \le t, s \le b} |K(t, s)|$. Bundan

$$|A^2 f(t) - A^2 g(t)| \le |\lambda|^2 M^2 \frac{(t-a)^2}{2} m,$$

bunda $m = \max_{a \le s \le b} |f(s) - g(s)|$. Umuman

$$|A^n f(t) - A^n g(t)| \le |\lambda|^n M^n \frac{(t-a)^n}{n!} m.$$

Demak

$$\lambda|^n M^n \frac{(t-a)^n}{n!} < 1$$

tengsizlikni qanoatlantiradigan n soni uchun A^n qisqartirib akslantirish bo'ladi.

7.4.3.

$$\varphi(t) = 2\int_{0}^{1} (1+ts)\varphi(s) ds + t^{2}$$

aynigan yadroli tenglamani eching.

Yechimi. Berilgan tenglamani

$$\varphi(t) = 2\int_{0}^{1} \varphi(s) ds + 2t \int_{0}^{1} s\varphi(s) ds + t^{2}$$

ko'rinishda yozib,

$$c_1 = \int\limits_0^1 \varphi(s) \, ds$$

va

$$c_2 = \int\limits_0^1 s\varphi(s)\,ds$$

deb belgilasak, u holda $\varphi(t) = 2c_1 + 2c_2t + t^2$.

Endi c_1 va c_2 noma'lumlarni topamiz.

$$c_1 = \int_0^1 \varphi(t) dt = \int_0^1 (2c_1 + 2c_2t + t^2) dt = 2c_1 + c_2 + \frac{1}{3},$$

ya'ni $c_1 + c_2 = -\frac{1}{3}$. Xuddi shunday

$$c_2 = \int_0^1 t\varphi(t) dt = \int_0^1 (2c_1t + 2c_2t^2 + t^3) dt = c_1 + \frac{2}{3}c_2 + \frac{1}{4},$$

ya'ni $c_1 - \frac{1}{3}c_2 = -\frac{1}{4}$. Demak, biz quyidagi chiziqli tenglamalar sistemasiga ega bo'ldik:

$$\begin{cases} c_1 + c_2 = -\frac{1}{3}, \\ c_1 - \frac{1}{3}c_2 = -\frac{1}{4}. \end{cases}$$

Bu tenglama echimlari: $c_1 = -\frac{13}{48}$, $c_2 = -\frac{1}{16}$. U holda integral tenglama echimi

$$\varphi(t) = t^2 - \frac{1}{8}t - \frac{13}{24}$$

funksiyasi bo'ladi.

7.4.4.

$$\varphi(t) = \int_{0}^{\frac{\pi}{2}} \sin t \cos s \varphi(s) \, ds + \sin t$$

aynigan yadroli tenglamani eching.

Yechimi. Berilgan tenglamani

$$\varphi(t) = \sin t \int_{0}^{\frac{\pi}{2}} \cos s \varphi(s) \, ds + \sin t$$

ko'rinishda yozib,

$$c = \int_{0}^{\frac{\pi}{2}} \cos s\varphi(s) \, ds$$

deb belgilasak, u holda $\varphi(t) = (1+c)\sin t$.

Endi c noma'lumni topamiz.

$$c = \int_{0}^{\frac{\pi}{2}} \varphi(t) dt = \int_{0}^{\frac{\pi}{2}} (1+c) \cos t \sin t \varphi(t) dt = \frac{1+c}{2},$$

ya'ni $c = \frac{1+c}{2}$. Bundan, c = 1. U holda integral tenglama echimi

$$\varphi(t) = 2\sin t$$
.

funksiyasi bo'ladi.

7.4.5.

$$\varphi(t) = \int_{0}^{\pi} \sin t \cos s \varphi(s) \, ds + \sin t$$

aynigan yadroli tenglamani eching.

Yechimi. Berilgan tenglamani

$$\varphi(t) = \sin t \int_{0}^{\pi} \cos s \varphi(s) \, ds + \sin t$$

ko'rinishda yozib,

$$c = \int_{0}^{\pi} \cos s\varphi(s) \, ds$$

deb belgilasak, u holda $\varphi(t) = (1+c)\sin t$.

Endi c noma'lumni topamiz.

$$c = \int_{0}^{\pi} \varphi(t) dt = \int_{0}^{\pi} (1+c)\cos t \sin t \varphi(t) dt = 0,$$

ya'ni c=0. U holda integral tenglama echimi

$$\varphi(t) = \sin t$$
.

funksiyasi bo'ladi.

7.4.6.

$$\varphi(t) = \frac{1}{2} \int_{0}^{1} ts \varphi(s) \, ds + \frac{3t}{4}$$

tenglamani ketma-ket yaqinlashtirish usulii yordamida eching.

 $\mathit{Yechimi.}\ \varphi_0(t)=0$ deb olib, (7.25) formula bo'yicha quyidagilarga ega bo'lamiz:

$$\varphi_1(t) = \frac{t}{2} \int_0^1 s \varphi_0(s) \, ds + \frac{3t}{4} = \frac{3t}{4},$$

$$\varphi_2(t) = \frac{t}{2} \int_0^1 s \frac{3s}{4} ds + \frac{3t}{4} = \frac{3t}{4} (1 + \frac{1}{6}),$$

$$\varphi_3(t) = \frac{t}{2} \int_0^1 s \frac{3s}{4} (1 + \frac{1}{6}) ds + \frac{3t}{4} = \frac{3t}{4} (1 + \frac{1}{6} + \frac{1}{6^2}),$$

$$\varphi_n(t) = \frac{3t}{4}(1 + 16 + \frac{1}{6^2} + \dots + \frac{1}{6^{n-1}}) = \frac{9}{10}t(1 - \frac{1}{6^n}).$$

U holda,

$$\varphi(t) = \lim_{n \to \infty} \varphi_n(t) = \lim_{n \to \infty} \frac{9t}{10} (1 - \frac{1}{6^n}),$$

ya'ni $\varphi(t) = \frac{9t}{10}$.

$$\varphi(t) = \int_{0}^{t} (s-t)\varphi(s) \, ds + t$$

II-tur Volterra tenglamasini eching.

Yechimi. Berilgan tenglama echimini quyidagi

$$\varphi(t) = \varphi_0(t) + \varphi_1(t) + \dots + \varphi_n(t) + \dots$$

funksional qator ko'rinishida izlaymiz. No'malum $\varphi_0(t), \varphi_1(t), \cdots, \varphi_n(t), \cdots$ funksiyalarni aniqlaylik:

$$\varphi(t) = \varphi_0(t) + \varphi_1(t) + \dots + \varphi_n(t) + \dots = \tag{7.26}$$

$$= t + \int_0^t (s-t)\varphi_0(s) ds + \int_0^t (s-t)\varphi_1(s) ds + \dots + \int_0^t (s-t)\varphi_n(s) ds + \dots .$$

Bundan,

$$\varphi_0(t) = t,$$

$$\varphi_1(t) = \int_0^t (s - t)s \, ds = -\frac{t^3}{3!},$$

$$\varphi_2(t) = \int_0^t (s - t)(-\frac{s^3}{3!}) \, ds = \frac{t^5}{5!},$$

$$\varphi_3(t) = \int_0^t (s-t) \frac{s^5}{5!} \, ds = -\frac{t^7}{7!},$$

Bu tengliklarni (7.26) qatorga qoyib berilgan integral tenglamaning echimiga ega bo'lamiz

$$\varphi(t) = t - \frac{t^3}{3!} + \frac{t^5}{5!} - \frac{t^7}{7!} + \cdots$$

Bundan, $\varphi(t) = \sin t$.

7.4.8. C[0, 1] fazoda

$$f(s) = \lambda \int_{0}^{\frac{\pi}{2}} \cos(s - t) f(t) dt$$

 $integral\ tenglama\ \lambda\ parametrning\ qanday\ qiymatlarida\ noldan\ farqli\ yechimga\ ega\ bo'ladi?$

Yechimi. $\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \, dan$

$$f(s) = \lambda \cos s \int_{0}^{\frac{\pi}{2}} \cos t f(t) dt + \lambda \sin s \int_{0}^{\frac{\pi}{2}} \sin t f(t) dt.$$
 (7.27)

Demak bu tenglama yechimlari

$$f(t) = \lambda(a\cos t + b\sin t)$$

shaklga ega. Bu ifodani (7.27) ga qo'ysak,

$$a = \lambda \int_{0}^{\frac{\pi}{2}} \cos t (a \cos t + b \sin t) dt,$$

$$b = \lambda \int_{0}^{\frac{\pi}{2}} \sin t (a\cos t + b\sin t) dt$$

tengliklarga ega bo'lamiz. Bundan

$$a = \lambda \left(\frac{a\pi}{4} + \frac{b}{2} \right),\,$$

$$b = \lambda \left(\frac{a}{2} + \frac{b\pi}{4} \right)$$

sistemaga ega bo'lamiz. Bu sistema va bundan integral tenglama ham,

$$\lambda = \frac{4}{\pi \pm 2}$$

qiymatda noldan farqli yechimga ega bo'ladi.

7.4.9. $C[0,\pi]$ fazosidagi

$$Ax(t) = \int_{0}^{\pi} \cos(t+s)x(s) ds$$

operatorining xos sonlarini toping.

Yechimi. λ operatorning xos soni bo'lsin. U holda

$$\int_{0}^{\pi} \cos(t+s)x(s) \, ds = \lambda x(t),$$

bunda x(t) funksiyasi λ ga mos xos vektor. Bundan

$$\cos t \int_{0}^{\pi} \cos s \, x(s) \, ds - \sin t \int_{0}^{\pi} \sin s \, x(s) \, ds = \lambda x(t), \tag{7.28}$$

ya'ni

$$x(t) = c_1 \cos t + c_2 \sin t, \tag{7.29}$$

bunda

$$c_1 = \int_{0}^{\pi} \cos sx(s) \, ds, \ c_2 = \int_{0}^{\pi} \sin sx(s) \, ds.$$

(7.29) formuladagi x(t) ni (7.28) ga qo'ysak, u holda

$$\lambda(c_1\cos t + c_2\sin t) = \int_0^\pi [\cos t\cos s - \sin t\sin s](c_1\cos t + c_2\sin t) ds.$$

Endi

$$\int_{0}^{\pi} \cos^{2} s \, ds = \frac{\pi}{2}, \int_{0}^{\pi} \cos s \sin s \, ds = 0, \int_{0}^{\pi} \sin^{2} s \, ds = \frac{\pi}{2}$$

tengliklaridan,

$$\lambda(c_1 \cos t + c_2 \sin t) = c_1 \frac{\pi}{2} \cos t - c_2 \frac{\pi}{2} \sin t.$$

 $\cos t$ va $\sin t$ funksiyalarning chiziqli erkli ekanligidan,

$$\lambda c_1 = \frac{\pi}{2}c_1, \ \lambda c_2 = -\frac{\pi}{2}c_2.$$

(7.28) dagi x(t) xos vektor bo'lsa, u holda u noldan farqli, ya'ni $c_1 \neq 0$ yoki $c_2 \neq 0$. Bundan

 $\lambda_1 = \frac{\pi}{2}, \ \lambda_2 = -\frac{\pi}{2}$

operatorning xos sonlaridir.

7.4.10. $C[0, \frac{\pi}{2}]$ fazosidagi

$$Ax(t) = \int_{0}^{\frac{\pi}{2}} \cos(t+s)x(s) ds$$

operatorining xos sonlarini toping.

Yechimi. λ operatorning xos soni bo'lsin. 7.4.9 - misoldagidek, x(t) xos vektor uchun

$$x(t) = c_1 \cos t + c_2 \sin t,$$

bunda

$$c_1 = \int_{0}^{\frac{\pi}{2}} \cos sx(s) \, ds, \ c_2 = \int_{0}^{\frac{\pi}{2}} \sin sx(s) \, ds.$$

va

$$\lambda(c_1 \cos t + c_2 \sin t) = \int_0^{\frac{\pi}{2}} [\cos t \cos s - \sin t \sin s](c_1 \cos t + c_2 \sin t) ds.$$

Endi

$$\int_{0}^{\frac{\pi}{2}} \cos^{2} s \, ds = \int_{0}^{\frac{\pi}{2}} \sin^{2} s \, ds = \frac{\pi}{4}, \int_{0}^{\frac{\pi}{2}} \cos s \sin s \, ds = \frac{1}{2}.$$

tengliklaridan,

$$\lambda(c_1 \cos t + c_2 \sin t) = c_1 \frac{\pi}{4} \cos t - \frac{c_1}{2} \sin t + \frac{c_2}{2} \cos t - c_2 \frac{\pi}{4} \sin t.$$

 $\cos t$ va $\sin t$ funksiyalarning chiziqli erkli ekanligidan, Demak,

$$\begin{cases} \frac{\pi}{4}c_1 + \frac{1}{2}c_2 = \lambda c_1, \\ -\frac{1}{2}c_1 - \frac{\pi}{4}c_2 = \lambda c_2. \end{cases}$$

Bu sistemadan,

$$\lambda_1 = \sqrt{\frac{\pi^2}{16} - \frac{1}{4}}, \ \lambda_2 = -\sqrt{\frac{\pi^2}{16} - \frac{1}{4}}.$$

operatorning xos sonlaridir.

7.4.11. Integral tenglamani yeching:

$$x(t) - \int_{0}^{1} (st - s^{2}t^{2})x(s) ds = t^{2}.$$

Yechimi. Bu tenglama yechimini

$$x(t) = c_0 + c_1 t + c_2 t^2$$

ko'rinishda izlaymiz. Bu ifodani tenglamaga qo'ysak, u holda

$$c_0 + c_1 t + c_2 t^2 = t \int_0^1 s(c_0 + c_1 s + c_2 s^2) ds - \int_0^1 s^2 (c_0 + c_1 s + c_2 s^2) ds + t^2.$$

Bundan

$$c_0 + c_1 t + c_2 t^2 = t \left(\frac{c_0}{2} + \frac{c_1}{3} + \frac{c_2}{4} \right) + t^2 \left(1 + \frac{c_0}{3} + \frac{c_1}{4} + \frac{c_2}{5} \right).$$

Demak,

$$c_0 = 0,$$

$$c_1 = \frac{c_1}{3} + \frac{c_2}{4},$$

$$c_2 = 1 + \frac{c_1}{4} + \frac{c_2}{5}.$$

Bundan,

$$c_0 = 0, c_1 = \frac{60}{113}, c_2 = \frac{160}{113},$$

ya'ni, tenglama yechimi:

$$x(t) = \frac{60}{113}t + \frac{160}{113}t^2.$$

Mustaqil ish uchun masalalar

 ${f 1}-{f 4}$ misollarda II-tur Fredholm aynigan yadroli integral tenglamalarni eching:

1.
$$\varphi(t) = 2 \int_{0}^{1} (1+3ts)\varphi(s) ds + t^{2}$$
.

2.
$$\varphi(t) = 2 \int_{0}^{\pi} \cos s \cos t \varphi(s) ds + 1.$$

3.
$$\varphi(t) = 3 \int_{0}^{\pi} (1 + \sin t \sin s) \varphi(s) \, ds + t.$$

4.
$$\varphi(t) = \lambda \int_{0}^{1} (1 + t + s) \varphi(s) \, ds + t.$$

 $\mathbf{5}-\mathbf{8}$ masalalarda tenglamalarni ketma-ket yaqinlashish usuli bilan eching:

5.
$$\varphi(t) = \frac{1}{2} \int_{0}^{1} \varphi(s) \, ds + e^t - \frac{1-e}{2}.$$

6.
$$\varphi(t) = \frac{1}{3} \int_{0}^{1} ts \varphi(s) \, ds + \frac{1-e}{2}.$$

7.
$$\varphi(t) = \frac{1}{2} \int_{0}^{1} s\varphi(s)ds + \frac{3}{2}e^{t} - \frac{1}{2}te^{t} - \frac{1}{2}$$
.

8.
$$\varphi(t) = \frac{1}{4} \int_{0}^{1} ts \varphi(s) ds + \sin t - \frac{t}{4}.$$

9 – 12 masalalarda Volterra tenglamalarini eching:

9.
$$\varphi(t) = \int_0^t \varphi(s) \, ds + 1.$$

10.
$$\varphi(t) = \int_{0}^{t} (s-t)\varphi(s) \, ds + 1.$$

11.
$$\varphi(t) = 4 \int_{0}^{t} (s-t)\varphi(s) \, ds + t.$$

12.
$$\varphi(t) = \int_{0}^{t} (6t - 6s + 5)\varphi(s) ds + 6t + 29.$$

ADABIYOTLAR

- 1. Alimov A.A., Berdiqulov M.A., Reshenie zadach po funksional'nomu analizu. Toshkent, Universitet, 2005.
- 2. Antonevich A. B., Knyazev P. N., Radyno Ya. B., Zadachi i uprajneniya po funksional'nomu analizu. Minsk: Vysheyshaya shkola, 1978.
- 3. Ayupov Sh.A., Berdikulov M.A., Turgunbayev R.M. Funksional analiz. Toshkent, TDPU, 2007.
- 4. Ayupov Sh.A., Berdikulov M.A., Turgunbaev R. M., Funksiyalar nazariyasi. Toshkent, 2004 y.
- 5. Berezanckii Yu.M., Us G.F., Sheftel' Z. G., Funksional'niy analiz. Kiev: Vysha shkola, 1990.
- 6. Edvards R. Funksional'niy analiz. M.: Mir, 1969.
- 7. Gaymnazarov G., Gaymnazarov O. G., Funksional analiz kursidan masalalar, Toshkent, Fan va texnologiya, 2006.
- 8. Metody resheniya zadach po funksional'nomu analizu. M.: Vysshaya shokla, 1990.
- 9. Ibragimov M.M. Funksional analizden misallar. Nukus, Bilim, 2007.
- 10. Iosida K. Funksionalniy analiz. M.: Mir, 1967.
- 11. Kantorovich L.V., Akilov G.P. Funksionalniy analiz. M.: Nauka, 1977.
- 12. Kirillov A.A., Gvishiani A.D. Teoremi zadachi funksionalnogo analiza. M.: Nauka, 1979.
- 13. Kolmogorov A.N., Fomin S.V. Elementi teorii funksiy i funksional'nogo analiza. M: Nauka, 1977.
- 14. Kutateladze S. S., Osnovy funksional'nogo analiza. Novosibirsk, 2001.

- 15. Lyusternik L. A., Sobolev V. I., Elementy funksional'nogo analiza. M.: Nauka, 1965.
- 16. Ochan Yu.S. Sbornik zadach po matematicheskomu analizu. M.: Prosveshenie, 1981.
- 17. Riss F., Sekefal'vi-Nad'. Leksii po funksional'nomu analizu. M.: Mir, 1979.
- 18. Rudin U. Funksional'niy analiz. M.: Mir, 1975.
- 19. Sadovnichiy V. A., Teoriya operatorov. M.: Vysshaya shokla, 1999.
- 20. Sarimsakov T.A. Funksional analiz kursi. Toshkent, O'qituvchi, 1980.
- 21. Sherstenev A.N., Lugovaya G.D. Funksional'niy analiz. Kazan, 2008.
- 22. Trenogin V.A., Pisarevskiy B.M., Soboleva T.S. Zadachi i uprajneniya po funksionalnomu analizu. M.: Nauka, 1984.
- 23. Trenogin V.A., Funksional'niy analiz. M.: Nauka, 1980.
- 24. Vulix B. Z., Vvedenie v funksional'niy analiz. M.: Nauka, 1967.

Index

Aksioma	– chegaralangan ketma-ketliklar fazosi, 129
– ajratish, 163	– chiziqli topologik, 183
$-T_1$, 163	– fazo to'ldiruvchisi, 122
$-T_2$, 163	– ketma-ketliklar fazosi, 128
$-T_3$, 163	– kompakt, 176
$-T_4$, 163	– lokal qavariq, 183
– sanoqlilikning birinchi aksiomasi, 162	– metrik, 73
– sanoqlilikning ikkinchi aksiomasi, 162	– normalangan, 121
Akslantirish	— qism fazosi, 122
– akslantirish, 16	oʻlchovli, 43
– biektsiya, 17	– qatorlar fazosi, 128
- ichiga akslantirish, 17	- qo'shma, 226
- ineksiya, 17	– sanoqli-kompakt, 176
o'zaro bir qiymatli moslik, 17	- separabel, 76, 162
- obrazi, 16	- to'liq metrik, 74
proobraz, 16	- topologik, 161
- syurektsiya, 17	- ustunlar fazosi, 128
- ustiga akslantirish, 17	- Ber, 76
– qisqartirib akslantirish, 95	- chiziqli operatorlar, 247
qısqartırı aksiantırısı, 99	Funksional, 211
Chiziqli qobiq, 122	– Minkovskiy, 191
Children desid, 1-1	- chegaralangan, 212
Fazo	- chiziqli, 109, 211
-C[a,b], 73	- chiziqii, 109, 211 - qo'shma bir jinsli, 109
$-T_1, T_2, T_3, T_4, 163$	
$-1, -2, -3, -4, -33$ $-\ell_2, 73$	- songa ko'paytmasi, 226
-m, 74	- uzluksiz, 212
- n-o'lchovli arifmetik fazosi, 73	- yigʻindisi, 226
- Banax, 121	– bir jinsli, 211
- Chiziqli fazo, 106	- additiv, 211
— <i>n</i> -o'lchamli, 107	– normasi, 212
— bazisi, 107	Funksiya
— cheksiz o'lchamli, 107	- ekvivalentligi, 43
— chiziqli bogʻliq elementlar, 106	- o'lchovli, 43
— chiziqli erkli elementlar, 107	Fure koeffitsientlari, 145
— chiziqli erkli sistema, 107	II-1
— haqiqiy, 106	Halqa
— haqiqiy, 100 — kompleks, 106	$-\sigma$ -algebra, 32
— koʻlcham, 108	$-\sigma$ -halqa, 32
— nol qism fazo, 107	- algebra, 32
- · · · · · · · · · · · · · · · · · · ·	- halqa, 32
— o'zaro izomorf, 106	– yarim halqa, 32
— qism fazo, 107	Intomal
— xos qism fazo, 107	Integral
- Evklid, 143	- Lebeg, 58
– Gilbert, 145	Integral operator

- aynigan yadro, 280
- Hilbert Shmidt yadrosi, 279
- I va II Volterra tenglamalari, 280
- I-tur Fredholm tenglamasi, 280
- II-tur Fredgolm, 279
- simmetrik, 280
- yadrosi, 279

Ketma-ketlik

- fundamental, 74
- limiti, 74

Kompakt

- kompakt to'plam, 88
- nisbiy kompakt to'plam, 88

Metrika

- ekvivalent metrikalar, 75
- metrika, 73

Munosobat

- binar, 105

Norma

- norma, 121

Nuqta

- chegaraviy nuqta, 75
- ichki nuqta, 75
- limit nuqta, 75
- qo'zg'almas, 95
- urinish nuqta, 75
- yakkalangan nuqta, 75
- ekstremal, 110

O'lchov

- o'lchov, 33
- sanoqli-additiv, 33

Operator, 194

- chegaralangan, 194
- chiziqli, 194
- normasi, 194
- uzluksiz, 194
- kompakt, 267
- ortogonal proektorlar, 248
- proektor, 248
- resolventasi, 259
- spektri, 259
- xos soni, 259
- xos vektori, 259
- chekli o'lchamli operator, 268

Ortogonal bazis , 144 Ortogonal sistema , 144 Ortonormal sistema , 145

Qator

- Fure qatori, 145

Sistema

- ajratuvchi, 184
- markazlashgan, 176

Skalyar ko'paytma, 143

Tengsizlik

- Bessel, 153
- Koshi Bunyakovskiy, 144

Teorema

- Boltsano Veyershtrass, 92
- Riss Fisher, 154
- Xan Banach, 114
- Xausdorf, 89
- qisqartirib akslantirish prinsipi, 95
- Banax (teskari operator haqida), 206
- Egorov, 49
- Lebeg, 50

To'liq sistema, 122

To'plam

- absolyut qavariq, 183
- ayirmasi, 9
- birlashmasi, 7
- bo'sh, 7
- chegarasi, 75
- chekli ochiq qoplamasi, 176
- dekart, to'g'ri kopaytma, 9
- diagonali, 105
- ekvivalent to'plamlar, 22
- giperkontinuum quvvati, 23
- hamma erda zich, 76
- hech bir erda zich emas, 76
- hosila to'plam, 75
- kesihsmasi, 8
- kontinuum quvvati, 23
- mukammal, 76
- muvozanatlashgan, 183
- o'zaro kesishmaydigan, 9
- ochiq qoplamasi, 175
- qism, 7
- quvvati, 22
- sanogli, 23
- sanogsiz, 23
- simmetrik ayirma, 9
- sistemasi, 8
- to'liq chrgaralangan, 88
- to'plamga nisbatan to'ldiruvchi, 10
- xos qism to'plamlari, 7
- xosmas qism to'plamlari, 7
- yopiq, 75
- yutuvchi, 183
- zich, 76
- birinchi kategoriyali, 76
- ekstremal chegarasi, 110

- -ikkinchi kategoriyali, 76
- Kantor to'plami, 42
- ochiq, 76

${\rm To'r}$

- $-\varepsilon$ -to'r, 88
- $-\ to'r,\ 88$

Topologiya, 161

- *-kuchsiz, 237
- bazasi, 162
- kuchli, 162, 237
- kuchsiz, 237
- sust, 162
- -kuchli topologiya, 248
- kuchsiz topologiya, 247
- tekis topologiya, 248

Yaqinlashish

- deyarli, 43
- o'lchov bo'yicha, 43