ARKIV

NASJONALT SEKRETARIAT FOR ELEVVURDERING

Studieretning for allmenne fag

Videregående kurs II

EKSAMEN HØSTEN 1992

Kode AF 3361 16. desember

KJEMI

Eksamenstid: 5 timer

Bokmålstekst

Hjelpemidler:

Lommeregner og "Tabeller i kjemi"

Oppgaven har 4 tekstsider.

ALLE SVAR SKAL GRUNNGIS. FORMLER OG REAKSJONSLIKNINGER SKAL TAS MED DER DET ER MULIG.

OPPGAVE 1

- a) Skriv navnet til
 - 1) Na₂ O
- 2) $NH_{\Delta}Cl$ 3)
- CH₃ OH 4) CH₃ NH₂
- b) Forklar hva som vil skje om vi løser forbindelsene i a) i hvert sitt begerglass med vann tilsatt indikatoren fenolrødt.
- c) Gi en kort forklaring til hvert av disse utsagnene:
 - 1) Det eksisterer to isomere former av 1,2-dikloreten, men bare en form av 1,2-dikloretan.
 - 2) Vi får løst mer bariumhydroksid i 1 dm³ løsning med pH = 9.0enn i 1 dm^3 løsning med pH = 10,0.
- d) For å bestemme innholdet av krystallvann i kobbersulfat, CuSO₄ · x H₂O, varmet vi opp 1,023 q av saltet til alt krystallvannet hadde fordampet. Etter oppvarmingen satt vi igjen med 0,654 g vannfritt kobbersulfat. Finn formelen for kobbersulfat med krystallvann.
- Hvor stor masse magnesiumklorid kan vi teoretisk få når 0,400 g e) magnesium reagerer med overskudd av saltsyre? Ved inndamping av reaksjonsblandingen og tørking ved 90 °C av det isolerte faste stoffet i en slik reaksjon fikk vi 1,86 g. Hvordan kan dette forklares? Foreslå et eksperiment som kan gi svar på om din forklaring er riktig.

OPPGAVE 2

- a) Skriv det systematiske navnet på:
 - 1) $CH_3 C CH_3$ 2) $CH_2 OH$ 0 CH₂ OH
 - 3) CH_2 4) O \parallel $CH_3 CH C CH_2 CH_3$ $CH_3 O C CH_2 CH_3$
- b) Hvilket produkt får vi om vi oksiderer forbindelse 2) i oppgave a?
- c) Fullfør reaksjonslikningene:
 - 1) $CH_3 CH = CH CH_3 + HC1 \longrightarrow$
 - 2) CH_3 -Cl + NaOH \longrightarrow
 - 3) $CH_3 OH + HCOOH \xrightarrow{H^+}$

Hvilke reaksjonstyper er dette eksempel på?

d) En elev gjorde forsøk på å analysere en organisk forbindelse A med molekylformelen $C_4H_6O_2$. Etter en basisk hydrolyse av A isolerte eleven to nye forbindelser B og C. C ble oksidert til en forbindelse D. Både B og D ga CO_2 når de ble tilsatt en mettet løsning av $NaHCO_3$. Til slutt ble D redusert til en forbindelse E som gav felling med 2,4-dinitrofenylhydrazin. Tegn en mulig strukturformel for forbindelsen A.

OPPGAVE 3

- a) Definer begrepet pH.
 Beregn pH i en 0,0010 M løsning av
 - 1) HNO_3 2) HNO_2
- b) Beregn pH i en blanding av 200 cm³ 0,020 M eddiksyre og 300 cm³ 0,10 M eddiksyre.
- c) Vi slipper en sinkbit ned i 500 cm³ 0,068 M eddiksyre. Hvor stor masse kan sinkbiten ha om den akkurat skal løse seg opp?
- d) Vi titrerer 25,0 cm³ eddiksyre med 0,100 M natriumhydroksid. Under titreringen måler vi pH. Resultatene er vist i tabell I.
 - Tegn titrerkurven. La 1 cm på førsteaksen tilsvare 2,5 cm³ tilsatt natriumhydroksid.
 - Les av pH ved ekvivalenspunktet.
 - Beregn konsentrasjonen av eddiksyreløsningen og syrekonstanten til eddiksyre.

Tabell I Resultat fra titreringen i d)

Volum tilsatt 0,100 M natrium- hydroksid/cm ³	Avlest pH
0	2,9
5,0	4,2
10,0	4,6
15,0	5,0
20,0	5,3
23,0	5,7
24,5	6,4
24,8	6,9
24,9	8,7
25,1	10,3
25,2	10,6
25,5	11,0
27,0	11,6
30,0	12,0
35,0	12,2

OPPGAVE 4

- a) Definer begrepene oksidasjon og oksidasjonsmiddel.
- b) Hva blir oksidert og hva er oksidasjonsmiddel i disse reaksjonene:
 - 1) $Cu(s) + 2AgNO_3(aq) \longrightarrow 2Ag(s) + Cu(NO_3)_2(aq)$
 - 2) $2MnO_4^-$ (aq) + $5H_2O_2$ (aq) + $6H_3O^+$ (aq) ---> $2Mn^2^+$ (aq) + $5O_2$ (g) + $14H_2O(1)$
 - 3) $Cr_2 O_3 + 3KNO_3 + 2Na_2 CO_3 \longrightarrow 2Na_2 CrO_4 + 3KNO_2 + 2CO_2$
- c) Forklar hva som skjer når klorgass blir boblet gjennom en løsning som inneholder fluoridioner og bromidioner.
- d) Gjør greie for endringen i oksidasjonstall i denne redoksreaksjonen:

$$MnO_4^- + Sn^2^+ + H_3O^+ \longrightarrow Mn^2^+ + Sn^4^+ + H_2O$$

Balanser likningen.

e) Vi vil bestemme innholdet av H_2O_2 i en løsning. Vi overførte $10,0~\rm cm^3$ av løsningen til en målekolbe på $500~\rm cm^3$ og fylte opp til merket med destillert vann. Fra målekolben pipetterte vi en prøve på $25,0~\rm cm^3~\rm som$ vi tilsatte $5~\rm cm^3~\rm 3~M$ svovelsyre før vi titrerte med $0,0202~\rm M$ kaliumpermanganat. Forbruket i to parallelle titreringer var $17,3~\rm cm^3~\rm og~17,0~\rm cm^3$.

Beregn konsentrasjonen av hydrogenperoksidløsningen. Vi regner med at tettheten til hydrogenperoksidløsningen var 1,05 g/cm 3 . Beregn innholdet av H_2 O_2 i masseprosent.