29 Квадратичные иррациональности. Множество $\mathbb{Z}[\sqrt{m}]$: сопряжение, замкнутость сложения, умножения. Согласованность сопряжения и умножения. Норма и её свойства.

Опр Иррациональное число α называется $\kappa \epsilon a d p a m u u + o u u u u u u v u v e сли <math>\alpha$ - корень квадратного уравнения с целыми коэффициентами.

Опр Пусть $\alpha=a+b\sqrt{m}$ — квадратичная иррациональность. Назовем число $\alpha=a-b\sqrt{m}$ сопряженным к α числом

Утверждение

Множество $Z[\sqrt{m}] = \{a + b\sqrt{m} | a, b \in Z \} \subset R$ замкнуто относительно операций:

- 1 Сопряжения
- 2 Сложения
- 3 Умножения

1 a -
$$b\sqrt{m} = a + (-b)\sqrt{m}$$
; a, $-b \in Z \Longrightarrow a - b\sqrt{m} \in \mathbb{Z}[\sqrt{m}]$

2
$$a_1 + b_1\sqrt{m} + a_2 + b_2\sqrt{m} = (a_1 + a_2) + (b_1 + b_2)\sqrt{m}$$
; $(a_1 + a_2)$, $(b_1 + b_2) \in Z \Longrightarrow a_1 + b_1\sqrt{m} + a_2 + b_2\sqrt{m} \in \mathbb{Z}[\sqrt{m}]$

$$3 \ (a_1+b_1\sqrt{m})*(a_2+b_2\sqrt{m}) = (a_1a_2+b_1b_2m) + (a_1b_2+a_2b_1)\sqrt{m}; (a_1a_2+b_1b_2m), (a_1b_2+a_2b_1) \in Z \Longrightarrow (a_1+b_1\sqrt{m})*(a_2+b_2\sqrt{m}) \in Z[\sqrt{m}] \ \blacksquare$$

Сопряжённость для квадратичной иррациональности согласована с общим определением. В алгебре сопряженными к элементу α над полем F называются корни неприводимого многочлена $f(x) \in F[x]$, для которого $f(\alpha) = 0$. Это согласовано с определением комплексного сопряжения. А именно, для комплексного числа $z \in C$ R его сопряжённое — это второй корень квадратного многочлена, у которого первый корень — это z.

Опр

Для α Z[\sqrt{m}] определим норму $N(\alpha) = \alpha \overline{\alpha}$.

Свойства

$$1\ N(\alpha) \in R \blacktriangle N(\alpha) = \alpha \overline{\alpha} = (a + b\sqrt{m}) * (a - b\sqrt{m}) = a^2 - b^2 m \in R \blacksquare$$

$$2 \ N(\alpha\beta) = N(\alpha) * N(\beta)$$

$$\Delta \alpha = a_1 + b_1\sqrt{m}, \ \beta = a_2 + b_1\sqrt{m}.$$

$$\alpha\beta = (a_1a_2 + b_1b_2m) + (a_1b_2 + a_2b_1)\sqrt{m}$$

$$\alpha\beta = (a_1a_2 + b_1b_2m) - (a_1b_2 + a_2b_1)\sqrt{m}$$

$$N(\alpha\beta) = ((a_1a_2 + b_1b_2m) + (a_1b_2 + a_2b_1)\sqrt{m})((a_1a_2 + b_1b_2m) - (a_1b_2 + a_2b_1)\sqrt{m}) =$$

$$= (a_1 + b_1\sqrt{m})(a_2 + b_2\sqrt{m}) * (a_1 - b_1\sqrt{m})(a_2 - b_2\sqrt{m}) = (a_1 + b_1\sqrt{m})(a_1 - b_1\sqrt{m}) * (a_2 + b_2\sqrt{m})(a_2 - b_2\sqrt{m}) = N(\alpha)N(\beta)$$

30 Пара (a, b), где $a + b\sqrt{2} = (1 + \sqrt{2})^n$ является решением уравнения Пелля $a^2 - 2b^2 = \pm 1$.

Опр Уравнение вида $x^2 - my^2 = 1$, где m — натуральное число, не являющееся точным квадратом, называется уравнением Пелля. Решение (1, 0) называется тривиальным. Решение (x, y) называется положительным, если x > 0 и y > 0.

Определим a_n и b_n при помощи равенства $(1+\sqrt{2})^n=a_n+b_n\sqrt{2}$

1.
$$(1+\sqrt{2})^n=\sum_{k=0}^n C_n^k(\sqrt{2})^k$$
 $(1-\sqrt{2})^n=\sum_{k=0}^n C_n^k(-\sqrt{2})^k$. При четных $\mathbf{k}\ (-\sqrt{2})^k=(\sqrt{2})^k\in N\Longrightarrow (-\sqrt{2})^k\in a_n$. При нечетных $\mathbf{k}\ (-\sqrt{2})^k=-(\sqrt{2})^k\not\in Z\Longrightarrow (-\sqrt{2})^k\in -b_n$ Таким образом, $(1-\sqrt{2})^n=a_n-b_n\sqrt{2}$

2.
$$a_n^2 - 2b_n^2 = (a_n - b_n\sqrt{2})(a_n + b_n\sqrt{2}) = (1 + \sqrt{2})^n(1 - \sqrt{2})^n = (-1)^n$$

Отсюда заключаем, что такие a_n и b_n : $(1+\sqrt{2})^n=a_n+b_n\sqrt{2}$ являются решениями уравнения Пелля $a^2-2b^2=\pm 1$.

31 Связь между решениями уравнения Пелля $a^2-2b^2=\pm 1$ и элементами $\mathbf{Z}[\sqrt{2}]$ нормой 1.

Утверждение

Любой элемент $\mathbf{Z}[\sqrt{2}]$ нормы 1 является решением уравнения $a^2-2b^2=1$, любое решение уравнения $a^2-2b^2=1$ - элемент $\mathbf{Z}[\sqrt{2}]$ нормы 1

- -> Пусть (a,b) решение уравнения Пелля $a^2-2b^2=1$, тогда $(a+b\sqrt{2})(a-b\sqrt{2})=1\Longrightarrow N(a+b\sqrt{2})=1; a,b\in Z[\sqrt{2}]$
- <- Пусть a, b $\in Z[\sqrt{2}], \ N(a+b\sqrt{2})=1\Longrightarrow (a+b\sqrt{2})(a-\sqrt{2})=1=a^2-2b^2\Longrightarrow (a,b)$ решение уравнения Пелля \blacksquare

Аналогичное утверждение можно сформулировать для $a^2 - 2b^2 = -1$

32 Алгебраические и трансцендентные числа. Существование трансцендентных чисел (из соображения мощности). Степень алгебраического числа. Теорема Лиувилля (б/д).

Опр Число α - алгебраическое, если существует многочлен с целыми коэффициентами, конем которого является α

Обозначим множество алгебраических чисел A. Это множество счетно (достаточно занумеровать все многочлены)

Опр $R \setminus A$ ($C \setminus A$) имеет мощность континуум, все числа из этого множества - mpancuendenmhue числа

Опр *Степень алгебраического числа* - это минимальная степень уравнения, корнем которого является это число

Теорема Лиувилля

Пусть α - алгебраическое число степени d, тогда $\exists c=c(\alpha)$: неравенство $|\alpha-\frac{p}{q}|\leq \frac{c}{q^d}$ не имеет решени в $\frac{p}{q}$

33 Определение решётки (эквивалентность двух определений) и дискретного подмножества. Определитель решётки. Независимость значения определителя от выбора базиса.

Опр Пусть $(e_1, ..., e_k)$ — набор линейно независимых векторов в R^n . Тогда дискретная абелева группа в R^n , порождённая $\{e_i\}$, называется решёткой, а набор $(e_1, ..., e_k)$ называется базисом

решётки. Иными словами, решётка есть множество $\Lambda = \{a_1e_1 + ... + a_ke_k\}, a_i \in Z$

Опр Подмножество X пространства R^n называется дискретным, если для любой точки $x \in X$ существует окрестность этой точки, не содержащая других точек множества X.

Эквивалентность

- <- Пусть Λ -линейная оболочка ЛНЗ векторов, тогда очевидно, она является дискретной абелевой группой (Ассоциативность, существование нейтрального и обратного по сложению, коммутатичность выполняются)
- -> Пусть дан набор ЛНЗ векторов, которые образуют дискретную абелеву группу по сложению. Тогда, очевидно, любой элемент х этой группы выражается как $a_1e_1 + ... + a_ke_k$, $a_i \in Z \Longrightarrow x \in \Lambda$

Опр Определителем $det\Lambda$ решётки Λ называется определитель матрицы, составленной из координат её базисных векторов. (Он равен объёму фундаментального параллелепипеда, то есть параллелепипеда, составленного из базисных векторов.)

Утверждение

Определитель решетки не зависит от выбора базиса

lacktriangle Пусть A, B - матрицы в разных безисах, S - матрица перехода от A к B. Тогда B=A*S. В силу того, что векторы нового безиса - это ЛК векторов старого базиса с какими-то целочисленными коэффициентами, матрица S целочисленная. По этим же соображениям, S^{-1} - целочисленная матрица. Тогда