- DENK. VE DENK. THRIMLIANIN (BZBAB -

Dogrusal Olman danklanlerin Gaelinis-

forksiyonin kesim nochesini bulmdatir.

1. Basit iterasyon yorkeni f(a) fonksisanny kokkin bulmak inn f(x)=0 danligi X=g(x) dummona sokular y=x dograsu (le y=g(x)

$$X_1 = g(x_0)$$

 $X_2 = g(x_1)$

xn = g(xn) elde edilir. Harbir islamin sonundi Yanı bir Xı yaklasımı elde adılır. Eğer sekildeki gibi 1 Xn+1 - Xn 1 fadi killylillyosa abelin yahnsak oler identer & verten postif say drak Heere I Xn+1-Xn15E dana keder deven eder. Fork buyubusu naksulur abalmur ama youtem firkli.

Dower P(x) = 4.e-0.5x x dentleminin tokend xo =3 baslangia deger i un 0.05 mutuk hata ile bulunuz.

x=96) selline sokulur.

$$X = 4.e^{-0.5x} = 9(x)$$

XíHI	= g(xn)=4	e-0,5x1	n=91,2,3 dia
X	/ (x) e= 1+nX	h = lxn+1	-xn1 < Em=0.05
3 -	70.89	2.4	
0.89	2.56	1.67	25 Hereyonden Soner
2.56-	1.1	1.45	E=0.05 hataile
÷	•	·	kdk = 1.7 bulunur.
1.7	1.7	I	

Jane f(x) = 4. enx-x dentioning kollege xo=3 bostogia degeri icio 0,05 methole hata ilebulunuz g(r) = Lilax olur

xn+1=g(xn) h= xn+1-xn 4.39 1.83 4.39 5.92 5,92 7.11

X=3 ciromoddi kode yaklurmu yenine iraksama Ortaya Ulkar iterasyonun Yohinsak olması ikin iterayon Yupilan bölgede 1960/171 Olmalidr.

Algoritmes,:

$$E_{m}=0.05;$$
 $x_{i}=4.e_{i}p(-0.6x_{i})$:
 $x_{0}=3;$ $h=abs(x_{i}-x_{i});$ $x_{0}=x_{i}$ $y_{0}=x_{0}$

XK= Xi;

2. Araligi ikiye bolme yontomi

BL ydntem her zumm Ychinsali bir udzum Vermektedir. iki baslangu naktası seailir. Bunlu fonksiyonun 21t iscreti degerlerini almalidir. Fonksiyonun tonumli Odugu xa ve x1 araligada, xa ve x6 gibi iki baslangu degeri iyin fixal ile fixs) zie isareli olmalı. Böyle br xa ve xb baslengu noltan du bulunmussa kollan xa ile xs crasnda diagsi aultin f(xa) f(xo) < 0 ive kern kilk var amageri belli degil

Yani isacetleri Zro dorate deraltasidizor h = | Xa-XbI TEM

Jane 10 = y = x 4 9 x3 - 2x2 + 120x - 130

X=[1,2] araliginals kolkul var midu? Varsa bu kolkul, En=0.06 mutak hatayla bulunoz.

 $X_1 = 1$ in $Y_1 = -20$ $X_2 = 2$ in $Y_2 = +46$ $X_3 = 1$ in $f(x_0) = f(1) = -20$, $X_3 = 2$ in $f(x_0) = +46$ KdL vc $f(1) \cdot f(2) < 0$ iscretter falls

 $x_3 = \frac{x_1 + x_2}{2} = \frac{1+2}{2} = 1.5$ iuin $y_3 = +20,2$ dir

· Bu deger y, ile zit isaretli olduğudu Jada Xbile aynı isaret Oduğudun danım edilir

$$\chi_{4} = \frac{\chi_{1} + \chi_{3}}{2} = \frac{1+1.5}{2} = 1.25$$

Buna karsılık YL=+1.8 olun YLILE YI ZIL İsralli Olduğundan

$$X_S = \frac{X_1 + X_4}{2} = \frac{1 + 1,25}{2} = 1,125$$
 ium 0.002

YE = -8.7 dir. O halde, ye ye 16 21+ isordi olduşun dan yeni kök

$$\chi_{6}^{2} = \frac{\chi_{4} + \chi_{5}}{2} = \frac{1,25 + 1,125}{2} = 1,187$$

istentere 19(xn) 15006 otener hadar deum Odilir.

· Hexanin

 $X_{c} = \frac{1+2}{2} = 1.5 = 0$ f(x) = f(1.5) = +20.2 X_{b} his isotetyle cyni Olduğundu yeni X_{b} değari X_{c} Okrala belirlerin $X_{b} = x_{c}$ $h_{r} = |1-1.5| = 0.5$

 $\chi_{c} = \frac{1+1.5}{2} = 1.25$ f (1.25)=+1.8

hz=11-1.251=025

 $V_c = \frac{1+1.25}{2} = 1125$ $f(x_c) = f(1.125) = -8.7$

Xohin isretije ayni olduşunda Xa = xe dur hal 1.125 - 1.251 = 0.125

 $x_c = \frac{x_{c1} + y_b}{2} = \frac{1.125 + 1.25}{2} = 1.187 \quad f(x_c) = f(1.187)$

h=1xa-xb1 < Em=0.06 oluncaya kadır devin eder. $x_{a=1}$; $x_{b=2}$: $x_{b=2}$: $x_{b=1}$: $x_{b=2}$: $x_{b=1}$:

h= abs (xa-x6); }

3 Newton - Raphson Volteni

 $(x_0 + y_0) = (x_0 + h) = 0$ olmulidir $(x_0 + y_0) = (x_0 + h) = 0$ olmulidir $(x_0 + h) = 0$ olm

$$f(x_0+h) = f(x_0) + \frac{h}{21} f'(x_0) + \frac{h^2}{2!} f''(x_0) + \frac{h^2}{3!} f'''(x_0) + \dots$$
| hmal

 $f(x_i) \stackrel{\sim}{=} f(x_0) + h.f'(x_0)$ terimin about hata yapmış Sayılagırız x, f(x)'in kökü olduğundan

$$h = x_1 - x_0 \approx -\frac{f(x_0)}{f'(x_0)}$$
 Olur. Duradan Yeni kall
 $x_1 = x_0 + h = x_0 - \frac{f(x_0)}{f'(x_0)}$

Her adında hesadanan hara verile E künlik deşirle Xı deşeri Yaklasık kölk kabıl edilip X2 hesaplanı

Genel Hade :

$$X_{n+1} = x_n - \frac{f'(x_n)}{f'(x_n)}$$

$$h = |x_{n+1} - x_n|$$

minimum yapılmak ilin yeni noktalar.

Specific $x^4 - 3x^3 + 6x^2 - 16$ no $x_0 = 4$ Character kökünü 0.05 mutlik hak ile bulunuz

f'(x) = 4	x3-9x2+12x	
Orlinen '	Hesuphan = $X_{n+1} = X_{n+1} = X_{n+1}$ $X_{n+1} = X_n - \frac{P(X)}{A}$	2 Em=0.05 1 Em=0.05 1 Em=0.05 1 Em=0.05 1 Em=0.05 1 Em=0.05
4	3.10	0,9
3,1	-2,46	0.64
2,46	2,1	0.36
2,10	2,005	0.095
2,005	1,999	0.006 50 051
X, = 2.		

Notisinou 4-5 admid alkar Forbi uson verse by John usgun degil. N-R we Basit iterasyon uson alak

NOT. Basit Heroson yours (tireu) yok, N-R hill

47 Kins Yantemi

Koke Jukbam him bullibus Turevile Ligrannie.
Fonksten (a,b) sürekli olmoli fla)*flb) <0 dmalein

Objece Xovexi gibr boşlengiy noktosyla gercek kök X g ye daha yokin bir kökü türevez bulabiliriz.

$$X_{3} = X_{0} - \frac{(x_{2} - x_{0})}{(y_{2} - y_{0})}$$

$$Genel$$

$$X_{n+1} = X_{0} - \frac{(x_{0} - x_{0})}{(y_{0} - y_{0})}$$

$$X_{n+1} = X_{0} - \frac{(x_{n+1} - x_{0})}{(y_{n+1} - x_{0})}$$

$$X_{n+1} = X_{0} - \frac{(x_{n+1} - x_{0})}{(y_{n+1} - y_{0})}$$

$$X_{n+1} = X_{0} - \frac{(x_{n+1} - x_{0})}{(y_{n+1} - y_{0})}$$

	*	
	$\frac{(x_{0}-x_{0})}{(y_{0}-y_{0})} = \frac{(x_{0}-x_{0})}{(y_{0}-x_{0}+1)} = \frac{x_{0}}{(y_{0}-x_{0}+1)} = \frac{x_{0}}{(y_{0$	2)
käkinu, kiri hata ile bi Xo=5	$X_1 = 3$ always	nutlate.
f(3, 586) = 1 Xn	3) =-17 (92) + ve - alk -9.60 $\frac{2}{2} + ve - alk$	okni x, al. mzsz. Lóli = 1 xn+1-xol sen,
6. 5 x,=3 x23.586 x33.854 43.900	3.586 -17-41 3.864 3.900	
3,967 \$3,990 2,997	3.990 3.997	
- DOGRU 1-) Teis Math	aden $ X_7 - X_6 = 0,007$ c SAL CEBAIK DENKLEN THE $x_1, x_2, \dots, x_n = b_1$	

 $a_{mi}x_1 + \cdots + a_{mn}x_n = b_n$

$$A^{-1} = \frac{ad = A}{De+A}$$

$$X = A^{-1}.B$$

2-Cotamer Kurali

$$X_{1} = \begin{vmatrix} b_{1} & q_{12} & q_{13} \\ b_{2} & q_{22} & q_{23} \\ b_{3} & G & G_{22} \end{vmatrix}$$

$$V_{2} = \begin{vmatrix} a_{11} & b_{1} & q_{13} \\ q_{21} & b_{2} & q_{23} \\ Q_{2} & b_{2} & q_{23} \\ Q_{3} & b_{3} & q_{33} \end{vmatrix}$$

$$UE7H$$

$$DE7A$$

. X : For

- · Alt vera det Augen matris Japane Gozelibine
- · Bu youten ivin det + 0 dinalist
- « Köseyonlerdelulerin hersi to drahdın

1 colon: anto vassyum ile katsony matainin ille som an

$$\begin{bmatrix} 1 & a_{12} & a_{13} & b_{1} \\ a_{21} & a_{22} & a_{23} & b_{2} \\ a_{31} & a_{13} & a_{22} & b_{3} \end{bmatrix} \quad \begin{array}{l} a_{12} = \frac{a_{12}}{a_{11}} \\ a_{13} = \frac{a_{13}}{a_{11}} \\ \end{array} \quad \begin{array}{l} b_{1}' = \frac{b_{1}}{a_{11}} \\ \end{array}$$

2 adm: ilk sour oz. ile acrap ikny sourdo ve aynı sekilde ilk satori azı ile curpip Duna satordan Gikersak.

$$\begin{bmatrix}
1 & a_{12} & a_{13} & b_{1} \\
0 & a_{22} & a_{23} & b_{2} \\
0 & a_{32} & a_{33} & b_{3}
\end{bmatrix}$$

$$\begin{bmatrix}
a_{22} = a_{22} - a_{12} \cdot a_{21} \\
a_{21} = a_{22} - a_{12} \cdot a_{21}
\end{bmatrix}$$

3. adm: Llames adm obrate son metrite thing sortin 3. adm: an ile bölünerek,

$$Q_{23}^{11} = \frac{Q_{23}^{12}}{Q_{22}^{12}}$$
 we $Q_{22}^{11} = \frac{Q_{22}^{12}}{Q_{22}^{12}}$ doubtilities

$$\begin{bmatrix}
1 & Q_{12} & Q_{13} & | & b_1 \\
O & 1 & Q_{23} & | & b_2 \\
O & Q_{31} & Q_{33} & | & b_3
\end{bmatrix}$$

Godm: Kinci scatt Ozi ile Garpilia Llubico scattada Likerilina

$$\begin{bmatrix}
1 & Q_{12} & Q_{13} & b_{1} \\
0 & 1 & Q_{23} & b_{2} \\
0 & 0 & Q_{33} & b_{3}
\end{bmatrix}$$

$$\begin{bmatrix}
Q_{33} - Q_{32} - Q_{22} & Q_{32} \\
0 & Q_{33} & Q_{33}
\end{bmatrix}$$

$$\begin{bmatrix}
Q_{11} & Q_{12} & Q_{12} & Q_{12} \\
Q_{12} & Q_{13} & Q_{12}
\end{bmatrix}$$

Sadm: 033 +0 vorsadn son satri 030 bolinir

$$\begin{bmatrix}
1 & G_{12} & O_{13} & | & b_1 \\
0 & 1 & G_{23} & | & b_2 \\
0 & 0 & 1 & | & b_{32} \\
\end{bmatrix} & elde edit$$

$$\begin{bmatrix}
0 & 0 & 1 & | & b_{32} \\
0 & 0 & 1 & | & b_{32} \\
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 1 & | & b_{32} \\
0 & 0 & 1 & | & b_{32} \\
\end{bmatrix}$$

$$\begin{bmatrix} Q_{12} & Q_{13} \\ Q_{13} &$$

$$x_3 = b_3$$

$$X_1 = b_1' - G_{12} \times 2 - G_{13} \times 3$$
 Olur

$$\frac{600}{2} \times 1 - 342 + 343 = -31$$

$$3x_1 - 2x_2 - x_3 = -1$$

$$\begin{bmatrix}
1 & -2.5 & 1 \\
0 & 1 & -1.2 \\
0 & 2.5 & -4
\end{bmatrix}
\begin{bmatrix}
-5.5 \\
5.4 \\
15.5
\end{bmatrix}$$

$$\begin{bmatrix} 1 & -1.5 & 1 \\ 0 & 1 & -1.2 \\ 0 & 0 & -3 \end{bmatrix} \begin{bmatrix} -5.5 \\ -5.4 \\ 2 \end{bmatrix}$$

47 Gauss-Jordon

Eliminasyondali Llyan mortisi brim mortis yapmaladi

$$\begin{bmatrix} 1 & G_{12} & G_{13} \\ O & 1 & G_{23} \\ O & O & 1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

· Odm: 2-Sector and the Geralia Iscarden cikentr

$$\begin{bmatrix} 1 & 0 & Q_{13} \\ 0 & 1 & G_{23} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \begin{bmatrix} b_1 = b_1 - Q_{12}, b_2 \\ Q_{13} = Q_{13} - \dots \end{bmatrix}$$

Zicolmi 3 sotin ais ile corplat I satado Gikerilia

$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0.53 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix} \qquad p_1 = p_1 - q_{13} p_3$$

3.5cdm: 3.5cder G22 He acrollocal 2-scatteden cultariles, $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} b_1^{1} \\ b_2^{1} \end{bmatrix} = b_2 - a_{23} \cdot b_3$

$$\begin{bmatrix}
1 & -1.5 & 1 \\
0 & 1 & 1.2 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} = \begin{bmatrix}
-5.5 \\
5.4 \\
-2
\end{bmatrix}$$

$$b = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 5.4 \\ 0 & 0 & 1 & -2 \end{bmatrix} \qquad c = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -2 \end{bmatrix}$$

X=1 X=3 x3-2

Gauss Jordanile Ters Matrim Etle edilmesi

A=AI Bu curpina GJ uzgulanisa Sonuciu A. madui I modrivine I madrivine A-1 madrisine dibrisin Vani B uprine Brim madris kayulkadak 5) Chokeli Yanni

A: Not say metroi L= Alt dugen natrois (3)

1): Kasagen elemente bir den 116+ 1149en matri -Lue Dinin Chalpman A olduğun versayorzak

A.x=B => L.U.x=B olur.
U.x=y dersek d.y=B olde odilir.
O halde A=L.U olacak sekilde L ve U
bulunchiline sırasıyla,

1- L.y=B den y motros

2- Lix=y den de x matris bulunur.

$$= \begin{bmatrix} l_{1} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix} \begin{bmatrix} 1 & L_{12} & U_{13} \\ 0 & 1 & L_{23} \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} cl_{11} & cl_{12} & cl_{13} \\ cl_{21} & cl_{22} & cl_{23} \\ cl_{31} & cl_{32} & cl_{33} \end{bmatrix}$$

2 adm: L'nin 1 sortion 15 ile carporale an , anz , and establishe colon Buradan an , Unz , Unz bulunum

2-adm. Lain 2-sation, Lile comparate

Cla. 1922, 923 estille olun

Lai, laz, 1923 bullurur.

3.odim: 3.satir, Uile Capparselle

Ly=B'den y, Lix=y'den X adzallar.

Dikkat ediline Ihin ilk sütunu Ann ilk sütununca

eqittir. izlem Yapmadan alinabilt.

5 17-41

$$\begin{bmatrix}
 1 & 2 & 3 \\
 2 & 5 & 2 \\
 3 & 1 & 5
 \end{bmatrix}
 \begin{bmatrix}
 x_1 \\
 x_2
 \end{bmatrix}
 =
 \begin{bmatrix}
 14 \\
 18 \\
 20
 \end{bmatrix}$$

LeD's bolding.

$$\begin{aligned} & l_{11} = a_{11} = 1 & l_{11} L_{12} = a_{12} = 2 \\ & l_{21} = a_{21} = 2 & l_{21} \cdot L_{12} + l_{72} = 5 \rightarrow l_{22} = 1 \\ & l_{31} = a_{31} = 3 & l_{31} L_{12} + l_{32} = a_{32} = 1 \rightarrow l_{72} \\ & L_{12} = 2, & l_{11} L_{13} = a_{13} = 3 & L_{13} = 3 \end{aligned}$$

l2, U13 + l22 U23 = a23=2 - U23 = -4 l3, U13 + l3, U23 + l33 = 033 = 5 -> l33 = -24

$$J = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & -4 \end{bmatrix} \qquad \Pi = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & -4 \\ 0 & 0 & 1 \end{bmatrix}$$

$$7.\lambda = 0 \Rightarrow \begin{bmatrix} 3 - 2 & -51 \\ 5 & 1 & 0 \\ 5 & 1 & 0 \end{bmatrix} \begin{bmatrix} \lambda^{2} \\ \lambda^{2} \\ \lambda^{3} \end{bmatrix} = \begin{bmatrix} \lambda^{2} \\ \lambda^{3} \\ \lambda^{4} \end{bmatrix} = \begin{bmatrix} \lambda^{2} \\ \lambda^{2} \\ \lambda^{4} \end{bmatrix} = \begin{bmatrix} \lambda^{2} \\ \lambda^{4} \\ \lambda^{4} \end{bmatrix} = \begin{bmatrix} \lambda^{2$$

elde edilir.

$$\begin{bmatrix} 4 & 2 & -1 & 0 \\ 1 & -2 & 3 & 1 \\ 2 & -3 & 5 & 1 \\ -1 & 2 & -1 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ -5 \\ 3 \end{bmatrix}$$
 Choleting the support

- 4 = 1 22 = 2 1 43 = 10 , y = -2 X1=-2, ×3=6 ×2=9 x1-3 Gikar. Kosulo saglandığı talediğib verilen Jaklusik Zakler Heratif islandi disadilir. Plutin devan extra

1. Verien denklem takımından i denklem olarak XI nin katsayısı en bliyik da denklen secilir.

2-Böyler disentennis i. denklende x; nin korsayus, | a11 | > = | a15 | n. dentlem says, J+1

ve denklem takımı ileisinde en oz bir denklem

| aii | > I lais | Kosuknu sijumus sederli

Am gerekli degil Olmsada Gözelebilir.

- Bosi+ iterosyan yöntemi kullanlar

$$Q_{11}X_{1} + Q_{12}X_{2} + Q_{13}X_{3} = b_{1}$$

$$Q_{21}X_{1} + Q_{22}X_{2} + Q_{23}X_{3} = b_{2}$$

$$Q_{31}X_{1} + Q_{32}X_{2} + Q_{33}X_{3} = b_{2}$$

$$Z_{1}X_{1} + Q_{23}X_{2} + Q_{33$$

$$\frac{\chi_{2}}{Q_{22}} = \frac{b_{2} - Q_{21}\chi_{1} - Q_{23}\chi_{3}}{Q_{22}}$$

$$\frac{\chi_{2}}{Q_{22}} = \frac{b_{2} - Q_{21}\chi_{1} - Q_{23}\chi_{3}}{Q_{22}}$$

$$\frac{\chi_{2}}{Q_{22}} = \frac{b_{2} - Q_{21}\chi_{1} - Q_{23}\chi_{3}}{Q_{22}}$$

$$x_3' = b_3 - a_{31}x_1^{(0)} - a_{22}x_3^{(0)}$$
 $b_3 = |x_3' - x_3'|$

Eger how kebul ediletir Ubzimbe John bulunar denelar.

Yani
$$h_1^n = |x_1^{n+1} - x_n| < \mathcal{E}$$
 $h_2^n = |x_2^{n+1} - x_n| < \mathcal{E}$

Bu strin agai

and safamalidir

 $h_3^n = |x_3^{n+1} - x_n| < \mathcal{E}$

Budl submy dur.

Budl was biddhe bable

ienellestrilse

$$X_{1}^{(h)} = b_{1} - a_{12} \cdot X_{2}^{(h)} - a_{13} \cdot X_{3}^{(h)}$$

$$X_{2}^{(h)} = b_{2} - a_{21} \cdot X_{1}^{(h)} - a_{123} \cdot X_{3}^{(h)}$$

$$a_{22}$$

$$X_{3}^{(h)} = b_{3} - a_{31} \cdot X_{1}^{(h)} - a_{72} \cdot X_{3}^{(h)}$$

$$a_{33}$$

GRNEK :

3
$$x_1 + 2x_3 + x_4 = 4$$

Prvotlema yaphren;

Kutsayılır bilinmerere söre en bibilik oladı. Pilvide denklem sırolan değiştirilse;

$$3x_{1}+2x_{2}+x_{3}=6$$

$$x_{1}+6x_{2}+3x_{4}=8$$

$$x_{1}+2x_{3}+x_{4}=4$$

$$x_{1}+x_{2}+x_{3}+5x_{4}=8$$

$$X_1 = \frac{6 - 2x_1 - x_3}{3}$$
 $X_2 = \frac{8 - x_1 - 3x_4}{4}$

7-1 Jacobs Yorkeni

Gouss-Sheld in julectifinic hall

Gene again denklom a mattist $x_1, y_2, x_3 = \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ $x_1^0 = x_2^0 = x_3^0$ ilk sublosik käller in

$$X_1^1 = b_1 - a_{12}X_2^0 - a_{13} - x_3^0$$

$$X_2' = b_2 - a_{21} X_1^0 - a_{23} X_3^0$$

$$X_3 = b_3 - Q_{31} \cdot X_1^{\circ} - Q_{32} X_1^{\circ}$$

Clide edilir Mutlak hada Kontrolo Yapılır. Sopra deven Cdilir Xnı

hite, hate ue hat 3 olmalider

Gallestirise.

En=0.05

$$X_i^{nrl} = b_i - a_{12} \times x_1^{\gamma} - a_{13} \cdot x_3^{\gamma}$$

$$x_2^{n+1} = b_2 - a_{21} - x_1^n - a_{23} \cdot x_3^n$$

$$h_{1}^{N} = |x^{n+1} - x_{1}| < \varepsilon$$
 $\frac{2}{3}$
 $\frac{2}{3}$
 $\frac{2}{3}$
 $\frac{2}{3}$
 $\frac{2}{3}$
 $\frac{2}{3}$
 $\frac{2}{3}$
 $\frac{2}{3}$

-Doğusal Olaxun Derklem Tehnelerin Cotenas

· En eakin cátilin Newton-Taphison Yöntemidir.

$$f(x_0, y_0) + \Delta x \frac{\partial f(x_0, y_0)}{\partial x} + \Delta y \frac{\partial f(x_0, y_0)}{\partial y} = 0$$

g(xiy)=0 iki dogrusul dragon denklern kalleri xo yo

$$\left[\begin{array}{ccc}
\frac{\partial f(x_0, y_0)}{\partial x} & \frac{\partial f(x_0, y_0)}{\partial y} \\
\frac{\partial g(x_0, y_0)}{\partial x} & \frac{\partial g(x_0, y_0)}{\partial y}
\end{array}\right]
\left[\begin{array}{ccc}
\Delta x
\right] = \left[\begin{array}{ccc}
f(x_0, y_0)
\end{array}\right]$$

$$\Delta x + 3\Delta y = 2.16$$

Dx . Ay herses belli olduğunda bulunur bunkr hutadan külülle islam dirdulur ve düzellilmi kok down

$$X_1 = X_0 + \Delta x$$

 $Y_1 = Y_0 + \Delta y$

Eger hatadan bythese Xijyi yakkalı kölk olanlı alinir islem telerarbin.

S(xy) =
$$x^2 + y - 3 = 0$$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5 = 0$

S(xy) = $y^2 + x - 5$

$$\frac{\partial f(x_{19}) = 2x}{\partial x}, \quad \frac{\partial f(x_{19})}{\partial y} = 1$$

$$\frac{\partial g(x_{19})}{\partial x} = 1, \quad \frac{\partial g(x_{19})}{\partial y} = 2y$$

$$f(x_{19}) = -1.14, \quad \frac{\partial f(x_{19})}{\partial x} = 1.2$$

$$g(x_{19}) = -2.15, \quad \frac{\partial g(x_{19})}{\partial y} = 3$$

$$\begin{bmatrix} 1.2 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 0x \\ 4y \end{bmatrix} = -\begin{bmatrix} -1.16 \\ -2.6 \end{bmatrix} \Rightarrow \underbrace{0.4 \times 0.533}$$

$$0x > E \quad 0y > E \text{ obtained}$$

$$x_1 = x_0 + 0x = 0.6 + 0.488 = 1.088$$

$$y_1 = y_0 + 0y = 1.5 + 0.533 = 2.05$$

$$f(x_1, y_1) = 0.223$$

$$\frac{\partial f(x_1, y_1)}{\partial x} = 2.176 \quad g(x_1, y_1) = 0.29 \quad \frac{\partial (x_1, y_1)}{\partial y} = 4.1$$

$$\begin{bmatrix} 2.176 & 1 \\ 1 & 4.1 \end{bmatrix} \begin{bmatrix} 0x \\ 0y \end{bmatrix} = -\begin{bmatrix} -0.723 \\ -0.29 \end{bmatrix} \underbrace{0.4 \times 0.00}$$

DENK. VE DENKEM TAKIMLARININ COLDENKS.

It Dogram Climogram denklembern Cubzulmuli

1. Book iteration

f(x)=4.e-0,5* denhemm käkihi xo=3 baslangii degeri itin 0.05 muttak hatu ile bulunuz.

)iger drughte: fal= L. lnx -x

		x= 4.e ^{-c}	$\frac{\partial}{\partial x} = g(x)$
	$X \setminus$	XNH =9(x)	h=1xn+1-xn1 & Em=0.05
	3-	≥ 0.83	3-0.80=211
	() Sa	256	LA Track to the order of contracting the second contraction of
eres s	256	المالية	1.45 25 Heroson sonra &=a & hata
	1.0		10 kok=17 hillor

2. Araligi ikiye bölme

flatin kokler zit sener dinalidir fla) flabko kesinua Yarı belli değil.

X= [1,2] Oralignali kallo varmodir? varsa \$=0.06 muttak hata ile bulunus.

$$\dot{X}_3 = \frac{\dot{X}_{cd} + \dot{X}_5}{2} = \frac{1+2}{2} = 1.5$$
 ivin $\dot{y}_3 = +20.2$ din $h = 1 + 1.5 = 0.5$ $\dot{y}_4 = 1.5 = 1.25$ $\dot{y}_4 = 1.8$

Xaile 2+ Oldeand $X_S = \frac{1,25+1}{2} + \frac{h=11-1,251=025}{1,125}$ Xhile 2+ oldeand $X_L = \frac{1,25+1}{2} + \frac{1}{1,125} + \frac{1}{1,125} + \frac{1}{1,125}$ Vbile 24 oldigran 16= 2+1,125 =1,187

islambri Emsolo6 olara koder gider

3. Newton Raphson Vontemi

Plxn1-x4-3x3+6x2-16 nm x0=4 crucindali Kolum 0.05 muttak hata ite bulunuz.

f (xn)=4x3-9x2+12x

Xn	Xn+1 = Xn - f(xn)	h= xn+1-xn 18m=005
4	3.40	0.4
0.1	7.16	0.64
2,40	214	1030
2.10	2005	0.035
2.005	1.959	10.006005

NOT: enfecto Bodin yeip Bosine it give ditalice fabrit Shicosunbol olduğu gönemlerile kullanılmazı

4-) Kiris Yörlemi

XOH = XO- (XO-XA) - YOU / 12

8,003<Em

Say f(x)=x3-20x+16 nn 3-5 crosnolds by kakunu Kiriy yöntemini Lygukyarak 0.008 hata ilebum.

X1=3	1 -012 - 12 - 00	Pozitifolan xo al Mount n xi ai
χυ ,	Xn+1 = X0 - (xn-x0) 40 (Un-y0)	h=1xn+-x01x&m=0.008
5.3	3.586	0, 586
3,586	3.824	0,268
3,854	3,900	0,064
3,990	3,967	0,067

#Dograsal doublem taknology adzismy

- 1-) Tersmothis A-1 X=A-1n
- 2) Cramer

Xx=4

3-) Gaus Eliminayon Yohtemi

Altueyy Ust Wyen muthin yaparak udellebilin

au	012	auter tha	ro.
Q2,	0,22	$ \begin{array}{c} \alpha_{13} \\ \alpha_{23} \\ \alpha_{33} \end{array} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = $	an an an
931	932	923 1/2 = 2 = 2	1921 azz azz bz
,	- ري	133][[] [[]	91 932 033 ba

1 admille sor and boll

2 adm: ilksotri Ozille Gorap kinci Soutinden yize ilksottin 931 ile campio d'ulra satirdo action

0 arz arz | bi | odu simdi azzy Lyapcaz

3 codm: 2 sour azz ye boll [0 1 az azz bz] 6 du

Ladm: 2 son aszileacip Warasdon arkor.

5 cdm. Son sextic 033 le bollowin [1000]

4-) Gauss Jordon Vontemi

TI DITTI DITTI NOTO NOISE

Jadim 2 soits dizile adjoils Isodradan Ciber

2-adm: 3-satir and ile compile 1-saturday vilkarilick.

Bording Sector Ozz de Galpho 2-sottobra Gladies

5-1 Cholesta Vanteni

6-) Gauss-Shield Siedel

$$x_1 + 4x_2 + 3x_4 = 8$$

 $3x_1 + 2x_2 + x_3 = 6$
 $x_1 + x_2 + x_3 + 5x_4 = 8$
 $x_1 + 2x_3 + x_4 = 4$

$$3x_{1}+2x_{2}+x_{3}=6$$

$$X_{1}=\frac{6-2x_{2}-x_{3}}{3}$$

$$X_{1}+4x_{2}+3x_{4}=8$$

$$X_{2}=\frac{8-x_{1}-3x_{4}}{4}$$

$$X_{1}+2x_{3}+x_{4}=4$$

$$X_{1}+x_{2}+x_{3}+5x_{4}=8$$

$$x_{3}=\frac{4-x_{1}-x_{4}}{2}$$

						X_{t} :	- 2:	- <u>×</u> 1	<u>- ×2 -×3</u>
11	XI	X2 12	X3 m	1 1/4	hn	hí	1 / /3	Lhi	5 - < Em=0.05
0	2	2	2	8/5	2	2	2	8/5	
1	0	3110	1/5	215	2	13/10	9/5	6/5	
73		2	2	i	ige e t ∵ik	2	e,		
	- C			. 1	,	'. E.			Λ

& Hatalan buldugan degerb briðnækinin ferkidir.

7-) Jocobi Könteni

Gass-Siede hin juitestriilmis halidir Denklem aynı Scolere Gowsida I'in her yeni deferi hemon kullanla

 $4x_1+x_2+x_3=1 \implies x_1=\frac{1-x_2-x_3}{2}$ $x_1 + 4x_2 + x_4 = 2 = 3 \quad x_2 = 2 - x_1 - x_4$ $X_1 + L_1X_2 + X_4 = 2 - X_1 + L_1X_3 + X_4 = 0 = 0$ $X_2 + X_3 + L_1X_4 = 1 = 0$ $X_{1} + L_{1}X_{2} + X_{3} + L_{1}X_{4} = 1$ $X_{2} + X_{3} + L_{1}X_{4} = 1$

Litercoyon:

$$x_1 = \frac{1-0-0}{4} = 0.25$$
 $x_2 = \frac{0.25}{4} = 0.25$ $x_4 = \frac{1}{4} = 0.25$

#Her Herasyon da hesaplanan Wm x degerlering bir sonrabi Iterasyonda kullar.

2. Herosuon:

$$X_{1} = 1 - 0.5 - 0 = 0.125$$

$$X_{2} = -0.25 - 0.25 = 0.125$$

$$X_{3} = -0.25 - 0.25 = 0.125$$

$$X_{4} = 1 - 0.5 - 0 = 0.125$$

$$X_{4} = 1 - 0.5 - 0 = 0.125$$

$$X_{1} = \frac{1 - 0.3750 + 0.125}{4} = 0.1875 \quad \text{dise girls}$$

Ayni onek Gouss-siedel ilun X = 1-0-0 = 0.25 1ter-son Henen killarbad X degeter odr. $x_2 = \frac{2-0,25-0}{1} = 0,4375$ $x_3 = -0.25 - 0 = -0.0625$ $x_{L} = 1 - 0_{1} + 0_{1} =$

2 Herasyon.

hi = | xint-xn | < E Heps: win dunaa dudupular.

Dogrusci Olmown Penklem terkimlenny Wording en ethnicideum nourton -rurson

$$f(x_{1y}) = x^2 + y - 3 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_{1y}) = y^2 + x - 5 = 0$$

$$f(x_$$

$$\frac{2f(x_0)}{2x} = 2x \qquad \frac{2f(x_0)}{2y} = 2 \qquad x_0 = 0.6$$

$$\frac{2g(x_0)}{2x} = 1 \qquad \frac{2g(x_0)}{2y} = 2y \qquad \frac{f(x_0)_0 = -1.14}{g(x_0)_0 = -2.15}$$

$$\begin{bmatrix} 12 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} -1.14 \\ -2.15 \end{bmatrix} \Rightarrow \Delta x = 0.633 \quad \text{for olmodisg}$$

X = X0+ Dx = 0.6 +0.488 = 1.088 U1 = yo+ D= 1.5 + 0.553 = 2.06

Geno con iderhoupile 0x-0,07 bulnur. < Em blowsond,

100

X2= X1+Dx = 1081 92-91+03-2,005 dur.

VIZE JON -

JONLU FARRLAR

1-) illeri yön sonlu farklar

190= y-50 = f (x0+h)-f(x0) 1 = 42-41 = f(x0+2h)-f(x0+h) Ayz= 45-4=f(x0+3h)-f(x0+2h) Ayn=yn-y= f(x0+(n+1)h)-f(x+1)h)

Whom knowed lendende baheedilebilion

$$\Delta^2 y_0 = \Delta(\Delta^2 y_0) = \Delta(y_1 - y_0) = \Delta y_1 - \Delta y_0$$

 $\Delta^3 y_0 = \Delta(\Delta^2 y_0) = \Delta(\Delta y_0) = \Delta y_0 = \Delta y_0$

dullen asagibali-degerler july lerr you Sonly further tellboung hesephayinz

E1-cercip

> Not: 4 desiders it in ler alinin

7					-	fer	k
_ X	9	Δy	ا و20	1 139	1 144	1 18.	
0	-7.	1.4-1	~5 ~	B-	-3	7 4 9	
1	-3-	9 -	10	8	4	. 5	
2	6-	ا (ا	18	12			٠.
3	25	37	30			\	
4	62	67					
5	129-		1.	\		1	
			1	1	1	1	

2-) Geri yan sonlu farklar

Bir dheeki tabloyu gexi yon sonlu file olustranz Genell yapan binom avillin yazılırga:

X	્ય	V9	√2 ₁₃ {	ان3ن		
0	~7			73	¥ 3	43
		1.5		l de la company		
	6	9	_ 2			- death le
<u>3</u>	5.2	19	10	5		
	42	37	18	8	3	
	129	67	30	12 /	4	<u>.</u>
,				. !		

3-) Merken Jon Sonly farhlar

Yz

y,

8414 1/2 - 31+13-31 Kruvella ise. 12 mx1/2 = (() 1/m x/12)

Daha Greek, verlen bludmer in merken sonly ferter Lablownu hazirkyiniz

	•				
x \ y \ -7	85m	12	J 3112	ا ڏل	S 31,12
1 -3	4,,,,	5			
2 6	## .9 /=/	10	\$	٩	
3 25	19 -	18	8	4	$\frac{1}{\sqrt{1}}$
4 62		30	12		
5 129	, 67				
			17	ł	1.

Enterpolasyonlar

1. Gregory - Newton Enterpolaryonlary a-) ileri Ydn Johlu Furklar Enterpolosyonu

120 = A-20 Δ240 = Δ41-Δ40 & Bucadon Sunter $\nabla_3 A^o = \nabla_5 A^1 - \nabla_5 A^o$

Y=30+ Ayo= (1+0) yo yz=y,+0y,=(1+1)y,=(1+0)2y0 J3= J2 + Dy2 = (1+1) y2= (1+1) 3 y0 Geneallystimize = Yp = (1+ D)Pyo

DOUGH AGENT DUOW ORIGING GOSTUTSON		
$y_p = y_0 + \frac{p}{1!} \Delta y_0 + \frac{p(p-1)}{2!} \Delta^2 y_0 + \frac{p(p-1)(p-2)}{3!} \Delta^3 y_0 + \frac{p(p-1)(p-2)}{3!} $	4.	<u>A</u> \
ου - Α το ρου - Α το χου ρια ,		**************************************
$\lambda = \lambda^0 + b + 3 b = \frac{\lambda^{1-\lambda^0}}{\lambda^{0-2}}$		
in Jee (Photen)	r	

SPUEL (SUNFU)

Azağıdak verilen değelen kullmarık x=11'deki ya deşerlerini bulunuz

$$P = \frac{(x_0 + x_0)}{h}$$

$$V = \frac{(x_0 + x_0)}{h}$$

$$V = \frac{(x_0 + x_0)}{h}$$

tebleda x degrerinde xp=1.1 entan needin 1'din. tuni onun bulundigu satur kulkınlazık.

$$x_0 = 1 \Rightarrow p = \frac{1.1 - 1}{1} = 0.1$$

$$50 = -3$$
 $50 = -3$
 $50 = -3$
 $50 = -10$
 $50 = -3$
 $50 = -3$
 $50 = -3$
 $50 = -3$
 $50 = -3$
 $50 = -3$
 $50 = -3$
 $50 = -3$

$$\mathcal{G}_{p} = -3 + 0.19 + 0.1(0.1-1) + 0.1(0.1-1)(0.1-2) + 0.1.(0.1-1)(0.1-2)(0.1-3) + 0.1.(0.1-1)(0.1-3) + 0.1.(0.1-3) + 0.1.(0.1-3)(0.1-3) + 0.1.(0.1-3)(0.1-3) + 0.1.(0.1-3)(0.1-3) + 0.1.(0.1-3)(0.1-3) + 0.1.(0.1-3)(0.1-3)(0.1-3) + 0.1.(0.1-3)(0.1-3)(0.1-3)(0.1-3) + 0.1.(0.1-3)(0.1-3)(0.1-3)(0.1-3)(0.1-3) + 0.1.(0.1-3)(0$$

NOT. Xp=1.1 1-2 acusinda oldusi ruin Ypide -3 ile 6 aresinda olmalidir. Winkli xp ile avin areliktu

Noti Amacimiz Dy'leri ciosulmille ager 1.5 eilseile Il'almale datha cruatasti (untel A'si fezly eger 4.2 sibi bir desar olsa geri John alinz.

Ger you sould fathler its enterpolation.

$$E = 1 + \Delta = \frac{1}{1 - \nabla} = (1 - \nabla)^{-1}$$
 begintened fordunities;

Enterpolision basinishdansduk olur

$$y_{p} = y_{0} + \frac{e}{1!} \nabla y_{0} + \frac{P(P+1)}{2!} \nabla \overline{y}_{0} + \frac{P.(P+1)(P+1)}{3!} \nabla \overline{y}_{0} + \dots$$
Vine burada, $P = \frac{x_{p} - x_{0}}{h} dx$

Of Asagra verilin degerler kullanten xp=78'deli Yp degrin: bulunuz.

(mu)	(0)	79	√ 3.	√3; \	74
0	10001				:
2	916	-84			
4	836	-80	4.	-	
6	740	-96	-16	-20	
78 8	624	-116	1-2	-4	116

$$P = \frac{x_{P-x_0}}{h} = \frac{7.8 - 8}{2} = 0.1$$

Typ=6363 dt/deur

Merkez: You obab Farklir ile Enterpolayon Citalinin bagintisi

$$y_{p} = y_{0} + \frac{p}{2} (\beta_{112} + \beta_{2-1/2}) + \frac{p^{2}}{2!} \int_{y_{0}}^{z} + \frac{p(p^{2}-1)}{2.(3!)}$$

$$\frac{y_{p} = \frac{y_{0} + y_{1}}{2} + (p - \frac{1}{2}) \int y_{1/2} + \frac{p(p-1)}{2!} \cdot \frac{(\int^{2} y_{0} + \int^{2} y_{1})}{2} + \frac{p(p-1)(p-2)}{2!} \cdot \frac{(\int^{2} y_{0} + \int^{2} y_{1})}{2} + \frac{p(p-1)(p-2)(p-2)}{2!} \cdot \frac{(\int^{2} y_{0} + \int^{2} y_{1})}{2} + \frac{p(p-1)(p-2)(p-2)}{2!} \cdot \frac{(\int^{2} y_{0} + \int^{2} y_{1})}{2} + \frac{p(p-1)(p-2)(p-2)(p-2)}{2!} \cdot \frac{(\int^{2} y_{0} + \int^{2} y_{1})}{2!} \cdot \frac{(\int^{2} y_{0} + \int^{2} y_{0} + \int^{2} y_{0}}{2!} \cdot \frac{(\int^{2} y_{0} + \int^{2} y_{0} + \int^{2} y_{0}}{2!} \cdot \frac{(\int^{2} y_{0} + \int^{2} y_{0}}{2!} \cdot \frac{(\int^{2} y_$$

Lagrange Enterpolosyonu#

Dograpol durumdo

C1.X0+60-40

C1. X1 + 6 = 51

Karesel durumdy

C2 x2 + C1x0 + C0 = 40 CZ x,2 + C1x, + C0 = 4,

Burada a ve co bulunabila Cz. X22+C1X2+C0=42

ve bulunduktan sonra yerine

Bulinup g (x) de yerine yazarde (co, a, czb)

$$g(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} + \frac{(x - x_0)(y - x_1)}{(x_1 - x_0)(x_0 - x_2)} + \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}$$

$$\frac{d_1(x)}{d_2(x)} = \frac{(x - x_1)(x - x_2)}{(x_1 - x_0)(x_0 - x_2)} + \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}$$

Lilalibre dayinge bassoiki denir. 9(x)=20(4)0+11(4)+12(x)92

1, ler sole yandolir,

$$d_{1}(x) = \frac{(x - x_{0})(x - x_{1})(x - x_{2}) \dots (x - x_{n})}{(x_{1} - x_{0})(x_{1} - x_{1}) - \dots (x_{n} - x_{n})}$$

il	0	1	2	3
X	10	36) y(Ūζ.
9	-7	.5	8	14

aralkler exit-desil bushrden newton (gregory) Ohnos. lagrenge olmusi gerekr.

$$J_{1}(x) = \frac{(x-x_{0})(x-x_{2})(x-y_{0})}{(x-x_{1})(x-y_{0})(x-x_{2})(x-y_{0})} = \frac{(x-1)(x-y_{0})(x-y_{0})}{(x-1)(x-y_{0})(x-y_{0})}$$

delive dala lade bulmon

961 = 2011 yo + d/x) y, + d261 y2 + 23/19 y3 -2(x 125 / 2 (3)

Tower do(2), do(2), do 2), do(2) ler behaviour par demosone 2 (=) + 215 - 1 + 35 (14) Demode I columne.

JAYISAL TUREN # 1. Janu forkloda daysal tulrer

D'AN Egimi = AY

f'(v) = y'= \\ \frac{\nabla_{30}}{\nabla_{50}}

f1(x0)=y1= 89

Enterpolasyon Bogintilanyla dayssal tures

I. ilen You sonly Fachlar ivin i

$$f(xp) = yp = y_0 + \frac{p}{1!} \Delta y_0 + \frac{p \cdot p(-1)}{2!} \Delta^2 y_0 + \cdots, p = \frac{x_{p-1}}{h}$$

$$f''(xp) = \frac{dy}{dx} = \frac{dy}{dx} \cdot \frac{dp}{dx}$$

$$\frac{d^{3}}{d\rho} = \Delta 904 \frac{2P-1}{2!} \Delta^{2}_{30} + \frac{3P^{2}-6P-2}{2!} \Delta^{3}_{90} + \frac{3P^{2}-6P-2}$$

$$y' = \frac{dz_0}{dx^2} - \frac{d}{dx} \left\{ \frac{ds}{dx} \right\}$$

J" = dp = d { dy }

$$y'' = \frac{1}{L_2} \cdot \frac{1}{L_2} \left(\frac{dy}{dz} \right) = y' - \frac{1}{L_2} \left(\frac{\Delta^2}{3} + (P-1) 0^3 y + (P^2 + 2) \right)$$

Should Flore I verse, or formous sup amus Ly thesing yap don even close

... 5-215-122phj

Merkezi yen donk fether kullumlisa.

MOI Unavda Mdeltellerin) hepsini kullinima 5-6 Verince 3 tene yap yeter

Hanek
Asagida verilesi kullangad X=12, X=22 ve x=6.2 deki türevler.
buban2

X=1	1.2	Livin	<u>) </u>				hirdenklam zwa 3 dereeden
>	1	ধ	еΔ	Q2 ³ /	اً وٰکھ ا	Δ٤	birdentlem 3 threviver 4.40 k
C)	2	ヲ	49	36	0	2° 3 46°
	1	9	51	8/0	36_	0	9p=== 5 Nn + 2p-1 n3
2	2	60	10.1	116	36		1 2 0 904
	3	ાણ	247				3 p2-6p+2 0340}
Ĺ	, 1	433	399		1		$p = \frac{x_{p-x_0}}{1.2-1} = \frac{1.2-1}{1.2-1} = 0.3$
ţ	ŝ	برع	1				h == = 0.2

Dyo=Si, DZo=80, DZvo=36

$$J_{p}' = \frac{1}{1} \int 51 + \frac{2.(0.2) - 1}{2} \cdot 80 + \frac{3.(0.2)^{2} - 6.(0.2)}{6} \cdot 36$$

yp'=32.52

y=4..2 1410

77	73	1 7 4	1-41	
7				
21	uy	İ		
13.1	80	36		
247	116	36	0	
395	125	36	0	ر
	131	131 80	7 51 ky 131 80 36 24 116 36	131 80 36 247 116 36 0

$$P = \frac{4.2 - 4}{\cancel{3}} = 0.2 \quad \forall y_0 = 24.7 \quad \forall 250 - 116 \quad \forall 250 = 26$$

× 0 1 2 3 4	y 2 9 60 191 433	51 131 247	55 Ly (80) 152	36	J 43	
_	433 837	399	Isz			

 $y_{1}^{2} = \frac{1}{h} \left(y_{12} + \frac{2p-1}{2} \left(\frac{g^{2}y_{0} + g^{2}y_{1}}{2} \right) + \frac{3p^{2} - 3p + 1/2}{6} \cdot g^{2}y_{1/2} \right)$

P= 2.2.2 =0.2, 841/2=131, 830=80, 830=80
83,=116, 8341/2=36
Azh

 $y=6x^3+4x^2-3x+2$ $y'=18x^2+8x-3$ Polinom by bizing yaprigm 2
Polinom yaksa

test edebiling.

xe 1.2 korduğunundu sonun 3252 GIKIRLI Okt doğru

PAYISAL INTEGRAL#

· Lagrage (Novem - Cole)

1. Mal Dilin dranden integral

$$g(y) = \frac{(x-x_0)}{(x_0-x_1)} y_0 + \frac{(x-x_0)}{(x_1-x_0)} y_1$$

Fig gui fonlisignunun olde edilir ve integral culnici;

2. m=2 Ollim Userindon integral

正=2[いはは]

Eger g(x) orde editir ve integral ohnisa:

OMPONICAL JUNIOTAL OCURS OF ZOURS GIRE GOL Ama jukerdali Andrie yamul kurdini kullnaccija Iryl in dell intercapa.

$$I_{1} = \frac{h}{3} \left[y_{0} + (y_{1} + y_{2}) \right]$$

$$I_{2} = \frac{h}{3} \left[y_{2} + (y_{3} + y_{4}) \right]$$

$$I = I_{1}^{+} I_{2} = \frac{h}{3} \left[y_{0} + (y_{1} + 2y_{2} + (y_{3} + y_{4})) \right]$$

ARNEK. Asasiduli degoren kulturak X=[0,5] and grade integrally heserow

$$X \mid O \mid 2 \quad 3 \quad 4 \quad 5$$
 $Y \mid 2 \quad 9 \quad 60 \quad 19 \mid 633 \quad 837$

$$I_{7} = \frac{1}{2} \left[2+81 \right] \qquad I_{7} = \frac{1}{2} \left[60+(91) \right] \qquad \text{Scale of the production}$$

$$I_{2} = \frac{1}{2} \left[9+60 \right] \qquad I_{4} = \frac{1}{2} \left[191+1632 \right] \qquad I_{5} = \frac{1}{2} \left[193+p37 \right]$$

Bge-simpson desse socuda.

$$I_{1} = \frac{1}{3} [2 + 4.9+60]$$

$$I_{2} = \frac{1}{3} [60 + 4.19 + 433]$$

$$I_{3} = \frac{1}{2} [4.37 + 837]$$

$$I_{3} = \frac{1}{2} [4.37 + 837]$$

Figri Lyduma (Yare Fonksiyon Bulara)

1 lagrange Enterpolacyonu 2. En käust Kareler Yomeni

$$E = \sum_{i=0}^{N} (y_i - g(x_i))^2$$

NOT: Brinin toren 12 odn Kuni böblelille minimum degen bulung.

$$\frac{\partial E}{\partial a_{i}} = 0 \rightarrow \frac{\partial}{\partial a_{i}} \left(\sum (y - 96))^{2} = 0 \right)$$

$$- \frac{\partial}{\partial a_{i}} \left(\sum (y - 96))^{2} = 0 \right)$$

$$- \frac{\partial}{\partial a_{i}} \left(\sum (y - 96))^{2} = 0 \right)$$

$$- \frac{\partial}{\partial a_{i}} \left(\sum (y - 96))^{2} = 0 \right)$$

$$- \frac{\partial}{\partial a_{i}} \left(\sum (y - 96))^{2} = 0 \right)$$

$$- \frac{\partial}{\partial a_{i}} \left(\sum (y - 96))^{2} = 0 \right)$$

$$- \frac{\partial}{\partial a_{i}} \left(\sum (y - 96))^{2} = 0 \right)$$

$$- \frac{\partial}{\partial a_{i}} \left(\sum (y - 96))^{2} = 0 \right)$$

$$- \frac{\partial}{\partial a_{i}} \left(\sum (y - 96))^{2} = 0 \right)$$

$$- \frac{\partial}{\partial a_{i}} \left(\sum (y - 96))^{2} = 0 \right)$$

$$- \frac{\partial}{\partial a_{i}} \left(\sum (y - 96))^{2} = 0 \right)$$

$$- \frac{\partial}{\partial a_{i}} \left(\sum (y - 96))^{2} = 0 \right)$$

$$-\frac{\partial g(\alpha)}{\partial \alpha_i} \left(\sum (y - g(\alpha)) = 0 \right)$$

$$\sum \frac{\partial \dot{g}(x_i)}{\partial a_i} g(x_i) = \frac{\partial g(x_i)}{\partial a_i} \cdot \sum y_i$$

12) Degrusul daşılımlı, Verileri eğri Lydurma

i'=0 iuin ao'la gobe toher alinica:

$$\sum \frac{3a_0}{3(a_0+a_1x)} \cdot (a_0+a_1x) = \frac{3(a_0+a_1x)}{3(a_0+a_1x)} \sum y$$

$$\sum (a_0 + a_i \times i) - \sum y i$$

q(x)= 90+01x

$$\boxed{q_0 n + q_1 \sum x_1 = \sum y_1} (1)$$

1=1 juin at le gibre torrer almisa,

$$\sum x_{i} (o_{0} + a_{1}x_{i}) = \sum x_{i} y_{i}$$

$$| a_{0} \sum x_{i} + a_{i} \sum x_{i}^{2} = \sum x_{i}y_{i} | (2)$$

North Park James

$$\begin{bmatrix} 0 & \sum x_1 & 0 \\ \sum x_1 & \sum x_2 & 0 \end{bmatrix} = \begin{bmatrix} 0 & \sum y_1 & 1 \\ \sum x_1 & \sum x_2 & 0 \end{bmatrix}$$

Buraca 30 ve ai bulunus gra dine edila.

ÖRNER

Asagidali verlure g(x) = antaix gibr bir for ksiguenci Lydunnuz

$$X_{1}^{2} = 0$$
 | 9 25 100

$$\begin{bmatrix} 5 & 19 \\ 19 & 135 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} 110 \\ 732 \end{bmatrix}$$

Bradan ao=3, a1=5 olaak

[961=3+Bx] Wardh bulunur

2.1 Karesel veriler egri uyduma

Ight= ao faix +azx2 lise ao, ai vea

Sayle bulunun

I numara byothisk

$$\begin{bmatrix}
\Omega & \sum x_1 & \sum x_1^2 \\
\sum x_1 & \sum x_2^2 & \sum x_1^3 \\
\sum x_1^2 & \sum x_1^3 & \sum x_1^4
\end{bmatrix}
\begin{bmatrix}
\alpha_0 \\
\alpha_1 \\
\alpha_2
\end{bmatrix} = \begin{bmatrix}
\sum y_1 \\
\sum y_1 x_1 \\
\sum y_1 x_1^2
\end{bmatrix}$$

YANEK

Asoglah venlac glul=00+0,x+02x2 glb.

Burgan 90=5, 0==2 0==3

House Asag idely verilare $g(x,y) = a_0 + a_1 + a_2 y$ sekhaddi

fonksijan bulauz Asonusiam D						
(Xi)	01234	10				
91	357911	35				
21	34 55 76 97 118	380				
X;2	0149 16	30				
y:2	9 25 49 81 121	285				
ie:x	05 14 27 44	90				
21 X1	0 55 152 291 472	970				
1612	102 278 532 873 129	3080				

$$\begin{bmatrix} 5 & 10 & 35 \\ 10 & 30 & 90 \\ 35 & 90 & 285 \\ \end{bmatrix} \begin{bmatrix} 0_0 \\ 0_1 \\ 0_2 \\ \end{bmatrix} = \begin{bmatrix} 380 \\ 970 \\ 3080 \end{bmatrix}$$

ao=64, a1=32 , a2=-16

=> g(x)=64 + 32x-164

Bu Osanodin sonra ci ve cz saule bulinium.

$$\begin{bmatrix} \Lambda & \sum x_1 \\ \sum x_1 & \sum x_2 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} \sum 2_1 \\ \sum 2_1 \\ \sum 2_1 \\ X_1 \end{bmatrix}$$

day	Z
x: 1 2 3 4 5 6 7 8 8 19	55
y: O.K. O.K O.17 O.18 O.18 6.0% OK O	X
X	O.O.
2:3/	2967
Xis	382
2 XI	2042.3
$\begin{bmatrix} 0 & 55 \\ 55 & 385 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 296.87 \\ 20633 \end{bmatrix} \begin{bmatrix} c_{1-2077} \\ c_{2-496} \end{bmatrix}$	
$g(x) = \frac{x}{2.397 + 4.565 x}$	
6. Expansive Veriler Egit Lydving	
**	
21= lnyi	
3	
$g(x) = A e^{Dx}$	
$lnlo(x) = lnlA.e^{Bx}$	
1/W LA + Bx	1 15-
$\frac{1}{2} = C_1 + C_2 \times \left \frac{1}{2} \times \frac{1}{2} \left \frac{C_2}{C_2} \right \right $	7 22x
$\frac{1}{2} = C_1 + C_2 \times \left[\begin{array}{c} n & \sum_{x} \left[C_1 \\ \sum_{x} & \sum_{x} c^2 \right] \right] C_2$] - Z = x
$\frac{1}{2} = C_1 + C_2 \times \left[\sum_{x} \sum_{x} x^2 \right] \left[C_2 \right]$	Z2x;
$\frac{1}{2} = C_1 + C_2 \times \left[\sum_{x} \sum_{x} i^x \right] \left[C_2 \right]$	
$\frac{1}{2} = C_1 + C_2 \times \left[\sum_{i=1}^{n} \sum_{j=1}^{n} \left[C_j \right] \right]$	Z2x)
$\frac{1}{2} = C_1 + C_2 \times \left[\sum_{i=1}^{n} \sum_{j=1}^{n} \left[C_2 \right]^{n} \right]$	
$\frac{1}{2} = C_1 + C_2 \times \left[\sum_{i=1}^{n} \sum_{j=1}^{n} \left[C_2 \right]^{n} \right]$	
Hanker Ascagadadi ventor g(x)=A, eBx sellode bir Gon	
Hanker Ascepted ventor g(x)=A. eBx sellade bir Con.	
Hanker Ascardadi venter g(x) = A. eBx sellade bir Con.	
Hanker Ascardadi ventor g(x)=A, e ^{Bx} sellada bir Gan. $\frac{X_1 + 2}{Y_1 + 0.90} = \frac{3}{0.91} = \frac{5}{0.71} = \frac{15}{0.90} = \frac{15}$	
$ \frac{1}{2} = C_1 + C_2 \times \left[\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \right] C_2 $ $ \frac{1}{2} = C_1 + C_2 \times \left[\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \right] C_2 $ $ \frac{1}{2} = C_1 + C_2 \times \left[\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \right] C_2 $ $ \frac{1}{2} = C_1 + C_2 \times \left[\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \right] C_2 $ $ \frac{1}{2} = C_1 + C_2 \times \left[\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \right] C_2 $ $ \frac{1}{2} = C_1 + C_2 \times \left[\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \right] C_2 $ $ \frac{1}{2} = C_1 + C_2 \times \left[\frac{1}{2} \times \frac{1}$	
$ \frac{2}{2} = C_1 + C_2 \times \left[\frac{2}{2} \times \frac{2}{2} x_1^2 \right] C_2 $ $ \frac{2}{2} = C_1 + C_2 \times \left[\frac{2}{2} \times \frac{2}{2} x_1^2 \right] C_2 $ $ \frac{2}{2} = C_1 + C_2 \times \left[\frac{2}{2} \times \frac{2}{2} x_1^2 \right] C_2 $ $ \frac{2}{2} = C_1 + C_2 \times \left[\frac{2}{2} \times \frac{2}{2} x_1^2 \right] C_2 $ $ \frac{2}{2} = C_1 + C_2 \times \left[\frac{2}{2} \times \frac{2}{2} x_1^2 \right] C_2 $ $ \frac{2}{2} = C_1 + C_2 \times \left[\frac{2}{2} \times \frac{2}{2} x_1^2 \right] C_2 $ $ \frac{2}{2} = C_1 + C_2 \times \left[\frac{2}{2} \times \frac{2}{2} x_1^2 \right] C_2 $ $ \frac{2}{2} = C_1 + C_2 \times \left[\frac{2}{2} \times \frac{2}{2} x_1^2 \right] C_2 $ $ \frac{2}{2} = C_1 + C_2 \times \left[\frac{2}{2} \times \frac{2}{2} x_1^2 \right] C_2 $ $ \frac{2}{2} = C_1 + C_2 \times \left[\frac{2}{2} \times \frac{2}{2} x_1^2 \right] C_2 $ $ \frac{2}{2} = C_1 + C_2 \times \left[\frac{2}{2} \times \frac{2}{2} x_1^2 \right] C_2 $ $ \frac{2}{2} = C_1 + C_2 \times \left[\frac{2}{2} \times \frac{2}{2} x_1^2 \right] C_2 $ $ \frac{2}{2} = C_1 + C_2 \times \left[\frac{2}{2} \times \frac{2}{2} x_1^2 \right] C_2 $ $ \frac{2}{2} = C_1 + C_2 \times \left[\frac{2}{2} \times \frac{2}{2} x_1^2 \right] C_2 $ $ \frac{2}{2} = C_1 + C_2 \times \left[\frac{2}{2} \times \frac{2}{2} x_1^2 \right] C_2 $ $ \frac{2}{2} = C_1 + C_2 \times \left[\frac{2}{2} \times \frac{2}{2} x_1^2 \right] C_2 $ $ \frac{2}{2} = C_1 + C_2 \times \left[\frac{2}{2} \times \frac{2}{2} x_1^2 \right] C_2 $ $ \frac{2}{2} = C_1 + C_2 \times \left[\frac{2}{2} \times \frac{2}{2} x_1^2 \right] C_2 $ $ \frac{2}{2} = C_1 + C_2 \times \left[\frac{2}{2} \times \frac{2}{2} x_1^2 \right] C_2 $ $ \frac{2}{2} = C_1 + C_2 \times \left[\frac{2}{2} \times \frac{2}{2} x_1^2 \right] C_2 $ $ \frac{2}{2} = C_1 + C_2 \times \left[\frac{2}{2} \times \frac{2}{2} x_1^2 \right] C_2 $ $ \frac{2}{2} = C_1 + C_2 \times \left[\frac{2}{2} \times \frac{2}{2} x_1^2 \right] C_2 $ $ \frac{2}{2} = C_1 + C_2 \times \left[\frac{2}{2} \times \frac{2}{2} x_1^2 \right] C_2 $ $ \frac{2}{2} = C_1 + C_2 \times \left[\frac{2}{2} \times \frac{2}{2} x_1^2 \right] C_2 $ $ \frac{2}{2} = C_1 + C_2 \times \left[\frac{2}{2} \times \frac{2}{2} x_1^2 \right] C_2 $ $ \frac{2}{2} = C_1 + C_2 \times \left[\frac{2}{2} \times \frac{2}{2} x_1^2 \right] C_2 $ $ \frac{2}{2} = C_1 + C_2 \times \left[\frac{2}{2} \times \frac{2}{2} x_1^2 \right] C_2 $ $ \frac{2}{2} = C_1 + C_2 \times \left[\frac{2}{2} \times \frac{2}{2} x_1^2 \right] C_2 $ $ \frac{2}{2} = C_1 + C_2 \times \left[\frac{2}{2} \times \frac{2}{2} x_1^2 \right] C_2 $ $ \frac{2}{2} = C_1 + C_2 \times \left[\frac{2}{2} \times \frac{2}{2} x_1^2 \right] C_2 $ $ \frac{2}{2} = C_1 + C_2 \times \left[\frac{2}{2} \times \frac{2}{2} x_1^2 \right] C_2 $ $ \frac{2}{2} = C_1 + C_2 \times \left[\frac{2}{2} \times \frac{2}{2} x_1^2 \right] C_2 $ $ \frac{2}{2} = C_1 + C_2 \times \left[\frac{2}{2} \times \frac{2}{2} x_1^2 \right] C_2 $ $ \frac{2}{2} = C_1 + C_2 \times \left[\frac{2}{2} \times \frac{2}{2} x_1^2 \right] C_2 $ $ 2$	
Hanker Asceptable ventor $g(x) = A \cdot e^{Bx}$ soluble by G_{11} . $X_{1} = C_{1} + C_{2} \times 2$ $X_{2} = C_{1} + C_{2} \times 2$ $X_{3} = C_{1} + C_{2} \times 2$ $X_{4} = C_{1} + C_{2} \times 2$ $X_{5}	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Hanker Asceptibility verify $g(x) = A \cdot e^{Bx}$ solvinde by form $\frac{x_1}{2} = C_1 + C_2 \times \frac{x_1}{2} = C_2 $	أ مالع ا
Hanker Asceptable ventor $g(x) = A \cdot e^{Bx}$ soluble by G_{11} . $X_{1} = C_{1} + C_{2} \times 2$ $X_{2} = C_{1} + C_{2} \times 2$ $X_{3} = C_{1} + C_{2} \times 2$ $X_{4} = C_{1} + C_{2} \times 2$ $X_{5}	أ مالع ا

$$\begin{bmatrix} \bigcap \sum x_i \\ \sum x_i^2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_i \end{bmatrix} = \begin{bmatrix} \sum y_i \\ \sum y_i x_i \end{bmatrix}$$

2) KARESELE EGRI LYDLIAMA

9(x)=00+91x+02x2

BANDREYSEL EGRE

2=9(x1y)= a0+a1x+a24

$$\begin{bmatrix}
\Omega & \sum x_i' & \sum y_i' \\
\sum x_i' & \sum x_i'^2 & \sum x_i'y_i' \\
\sum y_i' & \sum x_i'y_i' & \sum y_i'^2
\end{bmatrix} \begin{bmatrix}
\Omega_0 \\
\Omega_1 \\
\Omega_2
\end{bmatrix} = \begin{bmatrix}
\sum z_i' \\
\sum z_i'y_i' \\
\sum z_i'y_i
\end{bmatrix}$$

(5=):EXPONANSIYEL

21= Onyi

$$\begin{bmatrix} 0 & \mathbb{Z}_X \\ \mathbb{Z}_X & \mathbb{Z}_X \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} \mathbb{Z}_2 \\ \mathbb{Z}_{ZXY} \end{bmatrix}$$

JAYISAL INTEGRAL (LAGRAGE Wewton-Core)

1. m=1 dilm cherinde interral

2-m=2 dilim Uzerrde integral -13/164

Yadahepsi yamulu B-rae hosap hopsiy is zering

LAGRANGE ENTERPOCE

$$\frac{\int (x) = \lambda_{0}(x)}{\int (x)} = \frac{\int (x - x_{0})(x - x_{1})(x - x_{2})}{\int (x_{0} - x_{1})(x - x_{2})} = \frac{\int (x - x_{0})(x - x_{1})(x - x_{2})}{\int (x_{0} - x_{1})(x - x_{2})} = \frac{\int (x - x_{0})(x - x_{1})(x - x_{2})}{\int (x_{0} - x_{1})(x - x_{2})} = \frac{\int (x - x_{0})(x - x_{1})(x - x_{2})}{\int (x_{0} - x_{1})(x - x_{2})} = \frac{\int (x - x_{0})(x - x_{1})(x - x_{2})}{\int (x_{0} - x_{1})(x - x_{2})} = \frac{\int (x - x_{0})(x - x_{1})(x - x_{2})}{\int (x_{0} - x_{1})(x - x_{2})} = \frac{\int (x - x_{0})(x - x_{1})(x - x_{2})}{\int (x_{0} - x_{1})(x - x_{2})} = \frac{\int (x - x_{0})(x - x_{1})(x - x_{2})}{\int (x_{0} - x_{1})(x - x_{2})} = \frac{\int (x - x_{0})(x - x_{1})(x - x_{2})}{\int (x - x_{1})(x - x_{2})} = \frac{\int (x - x_{0})(x - x_{1})(x - x_{2})}{\int (x - x_{1})(x - x_{2})} = \frac{\int (x - x_{0})(x - x_{1})(x - x_{2})}{\int (x - x_{1})(x - x_{2})} = \frac{\int (x - x_{0})(x - x_{1})(x - x_{2})}{\int (x - x_{1})(x - x_{2})} = \frac{\int (x - x_{1})(x - x_{2})}{\int (x - x_{1})(x - x_{2})} = \frac{\int (x - x_{1})(x - x_{2})}{\int (x - x_{1})(x - x_{2})} = \frac{\int (x - x_{1})(x - x_{2})}{\int (x - x_{1})(x - x_{2})} = \frac{\int (x - x_{1})(x - x_{2})}{\int (x - x_{1})(x - x_{2})} = \frac{\int (x - x_{1})(x - x_{2})}{\int (x - x_{1})(x - x_{2})} = \frac{\int (x - x_{1})(x - x_{2})}{\int (x - x_{1})(x - x_{2})} = \frac{\int (x - x_{1})(x - x_{2})}{\int (x - x_{1})(x - x_{2})} = \frac{\int (x - x_{1})(x - x_{2})}{\int (x - x_{1})(x - x_{2})} = \frac{\int (x - x_{1})(x - x_{2})}{\int (x - x_{1})(x - x_{2})} = \frac{\int (x - x_{1})(x - x_{2})}{\int (x - x_{1})(x - x_{2})} = \frac{\int (x - x_{1})(x - x_{2})}{\int (x - x_{1})(x - x_{2})} = \frac{\int (x - x_{1})(x - x_{2})}{\int (x - x_{1})(x - x_{2})} = \frac{\int (x - x_{1})(x - x_{2})}{\int (x - x_{1})(x - x_{2})} = \frac{\int (x - x_{1})(x - x_{2})}{\int (x - x_{1})(x - x_{2})} = \frac{\int (x - x_{1})(x - x_{2})}{\int (x - x_{1})(x - x_{2})} = \frac{\int (x - x_{1})(x - x_{2})}{\int (x - x_{1})(x - x_{2})} = \frac{\int (x - x_{1})(x - x_{1})}{\int (x - x_{1})(x - x_{2})} = \frac{\int (x - x_{1})(x - x_{1})}{\int (x - x_{1})(x - x_{2})} = \frac{\int (x - x_{1})(x - x_{1})}{\int (x - x_{1})(x - x_{2})} = \frac{\int (x - x_{1})(x - x_{1})}{\int (x - x_{1})(x - x_{2})} = \frac{\int (x - x_{1})(x - x_{1})}{\int (x - x_{1})(x - x_{2})} = \frac{$$

(Enterpolarin busine faculari)

ILERI YUN JON F.

$$y' = \frac{1}{h} \left\{ \Delta y_0 + \frac{2p-1}{2!} \Delta y_0 + \frac{3p^2 - 6p-2}{3!} \Delta^3 y_0 +$$

GERIYON

$$y' = \frac{1}{h} \left\{ \nabla y \hat{o} + \frac{2P+1}{2!} \nabla^2 y \hat{o} + \frac{1}{2!} \nabla^2$$

MEDILEZIGIO

$$\frac{J\rho' = \frac{1}{h} \left\{ \int_{1/2}^{1/2} + \frac{2\rho - 1}{2} \left(\frac{\int_{1/2}^{2} + \frac{1}{2} \int_{1/2}^{2}

SOMETANUAN (6 BOY NOVE)

ILERI YOU

$$\frac{1}{y_0 = y_0 + \frac{p}{11}} \underbrace{\frac{p}{1}}_{1} \underbrace{\frac{p}{1}}_{21} \underbrace{\frac{p}{1}}_{21} \underbrace{\frac{p}{1}}_{31} \underbrace{$$

GERT YOU

$$y_{0} = y_{0} + \frac{0}{11}$$
 $y_{0} + \frac{\rho(\rho+1)}{21} + y_{0} + \frac{\rho(\rho+1)}{32} + y_{3}$
 $y_{0} = y_{0} + \frac{\rho(\rho+1)}{11} + \frac{\rho(\rho+1)}{32} + y_{3}$

机的打铁机铁

-) ileri yan Jonlu farklar

GRIEV		-					
	X	0	1	2	3	4	5
1	ع	-7	-3	6	25	62	129

X	4	Dα	Ŋβ	Δ^{3}	D'y	\\\\^\5\\9	y degerbri ium
0ーム ダイド	73625	4997 67	50 180	N 800	014	1	feikkralinin
. <u></u>	1,5	1					

2-) Geri yon sonlu fallar

×	y I	₩	₩ 3	₩ }	₩	₩.
Ó	-7		8 4 - Dig			
2	1-3	4	_			
3	25	19	10	B	en siss	
4	62	37	18	8	3	4
- 5	1129	67	ا عن	1 15	۱ ہے ا	↓ *

3) Merkezi yon Sono fokkr

×	3	dy112	13	03 2115	34	1891/2
0-12 81418	7 6 25 62 129	4 9 19 37 67	20 81	2 8 5	3	1

#Enterpological ilerigin sont filter enterpological

$$P = \frac{x_{P} - x_{O}}{h}$$

$$y_{P} = y_{O} + \frac{p}{1!} \frac{p_{(P-1)}}{2!} p_{y_{O}} + \frac{p_{(P-1)}}{2!} p_{y_{O}} + \frac{p_{(P-1)}}{3!} p_{y$$

Gerryon sodu filler onten

$$\frac{\dot{p} = \frac{\chi_{p-x_{0}}}{h} \frac{1}{y_{0} - \frac{y_{0} + \frac{p}{1!}}{y_{0} + \frac{p(p+1)}{2!}} \frac{y_{0}^{2} + \frac{p(p+1)}{2!}}{y_{0} + \frac{p(p+1)}{3!}} \frac{y_{0}^{2} + \frac{p(p+1)}{2!}}{y_{0} + \frac{p(p+1)}{3!}}$$

Mehozi yon sodu filk ente:

Dessel Basintui

Larroge entrodown:

$$g(x) = \frac{(x - x_0)(x - x_1)}{(x_0 - x_1)(x_0 - x_2)} \cdot y_0 + \frac{(x - x_0)(x - x_1)}{(x_1 - x_0)(x_0 - x_2)} \cdot y_1 + \dots$$

$$g(x) = L_0(x) y_0 + L_1(x) y_1 + L_2(x) y_2$$

$$L_1(x) = \frac{(x-x_0)(x-x_1)(x-x_2)...(x-x_n)}{(x_1-x_0)(x_1-x_1)....(x_1-x_n)}$$

I'm ardikki osit degilse lagrange.