Recap – Thursday Oct 18

1

Early detect disease/cancer

Predict disease/cancer growth

Reconstruction and Image quality

Purpose: Detecting Disease/Cancer at an early stage

A deep neural network was trained to detect disease/cancer by analysing images

Purpose: Detecting Disease/Cancer at an early stage

Inquire from different equipment **Deep Network Learning** Screening Mammography

Xray – CT scan

What can we do?

Segmentation of gliomas in pre-operative MRI scans

Prediction of patient overall survival (OS) from pre-operative scans

Automatically measure the fetal head circumference given a 2D ultrasound image.

Automatic IVD Localization and Segmentation from 3D Multi-modality MR (M3) Images

Diagnoses skin cancer

What can we do?

What can we do?

Alzheimer forecasting

Purpose

- Assist doctor
- Don't think replace

Challenging

(different from natural images and face images)

Acquiring, annotating and distributing medical image data sets are costly

Requires high levels of expertise from clinicians with limited time

Capturing high-resolution data in multiple dimensions Data dimensionality: 2D – 5D

Stored in different formats than in many computer vision tasks, e.g DICOM, NIfTI, Analyze

Due to privacy concerns, sharing data sets between institutions, let alone internationally, is logistically and legally challenging

Typical data sets remain small

What need to consider when design a network

Review

· MLP Review CNN/M-CNN CNN/M-CNN 3D-CNN 3D -CNN CNN+RNN LSTM FCN + CNN FCN · Fetal - US . Lung - CT GAN · Neck_Head - CT · Brain - MRI · Hand - Xray . Eye- RGB · Heart - MRI · Knee - Xray · Eye - RGB . Lung - CT Other: Annotation, Regression, Registration, etc CNN/M-CNN Unet 2.5D/3D CNN • FCN . Liver - CT · GAN CNN/3D-CNN · Brain - MRI GAN Neck_Head-MRI 日中

Deep learning libraries and platforms

Flatform.	Language	Pros/Cons	Speed	Ву
Tensorflow	low Python, C • Good amount of documentation • Has the ability to do partial subgraph computation • Theano frameworks, Keras, supports TensorFlow		Slower than Theano and Torch	Google
Caffe	С	 Benefits from having a large repository of pre-trained neural network models 	Slower than Theano & torch	BVLC
Torch	Lua	 easy to set up large amount of sample code and tutorials can import trained NN models from Caffe's Model Zoo difficult to set up in CentOS 	Competitive with Theano	NYU
Theano	Python	Large amount of sample code and tutorials	competitive with Torch	MILA
Spark SystemML	Java, Python	 It is a whole platform – from OS to programming frameworks (not single) Made open source through <u>Apache Incubator</u> 	No examined	IBM
Neon	Python	has a syntax similar to Theano's high-level frameworks (Keras)	fastest	Intel

Where to find databases and toolkits

Grand Challenges in Biomedical Image Analysis

Liver Tumor Segmentation Challenge

Tissue Microarray Analysis in Thyroid Cancer Diagnosis

Skin Lesion Analysis Towards Melanoma Detection

CAMELYON17

3-D Validation of Tractography with Experimental MRI (3D VoTEM)

Diabetic Retinopathy – Segmentation and Grading Challenge

Lung Nodule Malignancy Prediction, Based on Sequential CT Scans

powered by Sage Bionetworks

https://data.cdc.gov/browse

https://stanfordmlgroup.github.io/competitions/mura/

Toolkits

https://github.com/NifTK

https://github.com/MITK/MITK

https://github.com/DLTK/DLTK

NiftyNet https://github.com/NifTK/NiftyNet

https://github.com/InsightSoftwareConsortium/ITI

What are common networks in computer vision and in medical imaging?

computer vision

Lenet, 1990

Alexnet,

ILSVRC 12: 15.3% top 5 error

ZFNet

ILSVRC 13: 11.2% top 5 error

GoogLenet ILSVRC 14: 6.7% top 5 error

Vnet, 2016

Medical imaging

Attention U-net, 2017

Attention gate

Attention Gated Network, 2017

Attention unit