Module 4.9: Derivative of the activation function

$$g(z) = \sigma(z)$$

$$= \frac{1}{1 + e^{-z}}$$

$$g(z) = \sigma(z)$$

$$= \frac{1}{1 + e^{-z}}$$

$$g'(z) = (-1)\frac{1}{(1 + e^{-z})^2} \frac{d}{dz} (1 + e^{-z})$$

$$g(z) = \sigma(z)$$

$$= \frac{1}{1 + e^{-z}}$$

$$g'(z) = (-1)\frac{1}{(1 + e^{-z})^2} \frac{d}{dz} (1 + e^{-z})$$

$$= (-1)\frac{1}{(1 + e^{-z})^2} (-e^{-z})$$

$$g(z) = \sigma(z)$$

$$= \frac{1}{1 + e^{-z}}$$

$$g'(z) = (-1)\frac{1}{(1 + e^{-z})^2} \frac{d}{dz} (1 + e^{-z})$$

$$= (-1)\frac{1}{(1 + e^{-z})^2} (-e^{-z})$$

$$= \frac{1}{1 + e^{-z}} \left(\frac{1 + e^{-z} - 1}{1 + e^{-z}}\right)$$

$$g(z) = \sigma(z)$$

$$= \frac{1}{1 + e^{-z}}$$

$$g'(z) = (-1)\frac{1}{(1 + e^{-z})^2} \frac{d}{dz} (1 + e^{-z})$$

$$= (-1)\frac{1}{(1 + e^{-z})^2} (-e^{-z})$$

$$= \frac{1}{1 + e^{-z}} \left(\frac{1 + e^{-z} - 1}{1 + e^{-z}}\right)$$

$$= g(z)(1 - g(z))$$

Logistic function

$$g(z) = \sigma(z)$$

$$= \frac{1}{1 + e^{-z}}$$

$$g'(z) = (-1)\frac{1}{(1 + e^{-z})^2} \frac{d}{dz} (1 + e^{-z})$$

$$= (-1)\frac{1}{(1 + e^{-z})^2} (-e^{-z})$$

$$= \frac{1}{1 + e^{-z}} \left(\frac{1 + e^{-z} - 1}{1 + e^{-z}}\right)$$

$$= g(z)(1 - g(z))$$

$$g(z) = \tanh(z)$$
$$= \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

Logistic function

$$g(z) = \sigma(z)$$

$$= \frac{1}{1 + e^{-z}}$$

$$g'(z) = (-1)\frac{1}{(1 + e^{-z})^2} \frac{d}{dz} (1 + e^{-z})$$

$$= (-1)\frac{1}{(1 + e^{-z})^2} (-e^{-z})$$

$$= \frac{1}{1 + e^{-z}} \left(\frac{1 + e^{-z} - 1}{1 + e^{-z}}\right)$$

$$= g(z)(1 - g(z))$$

$$g(z) = \tanh(z)$$

$$= \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

$$g'(z) = \frac{\left((e^z + e^{-z}) \frac{d}{dz} (e^z - e^{-z}) - (e^z - e^{-z}) \frac{d}{dz} (e^z + e^{-z}) \right)}{(e^z + e^{-z})^2}$$

Logistic function

$$g(z) = \sigma(z)$$

$$= \frac{1}{1 + e^{-z}}$$

$$g'(z) = (-1)\frac{1}{(1 + e^{-z})^2} \frac{d}{dz} (1 + e^{-z})$$

$$= (-1)\frac{1}{(1 + e^{-z})^2} (-e^{-z})$$

$$= \frac{1}{1 + e^{-z}} \left(\frac{1 + e^{-z} - 1}{1 + e^{-z}}\right)$$

$$= g(z)(1 - g(z))$$

$$g(z) = \tanh(z)$$

$$= \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

$$g'(z) = \frac{\left((e^z + e^{-z}) \frac{d}{dz} (e^z - e^{-z}) - (e^z - e^{-z}) \frac{d}{dz} (e^z + e^{-z}) \right)}{(e^z + e^{-z})^2}$$

$$= \frac{(e^z + e^{-z})^2 - (e^z - e^{-z})^2}{(e^z + e^{-z})^2}$$

Logistic function

$$g(z) = \sigma(z)$$

$$= \frac{1}{1 + e^{-z}}$$

$$g'(z) = (-1)\frac{1}{(1 + e^{-z})^2} \frac{d}{dz} (1 + e^{-z})$$

$$= (-1)\frac{1}{(1 + e^{-z})^2} (-e^{-z})$$

$$= \frac{1}{1 + e^{-z}} \left(\frac{1 + e^{-z} - 1}{1 + e^{-z}}\right)$$

$$= g(z)(1 - g(z))$$

$$g(z) = \tanh(z)$$

$$= \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

$$g'(z) = \frac{\left((e^z + e^{-z}) \frac{d}{dz} (e^z - e^{-z}) - (e^z - e^{-z}) \frac{d}{dz} (e^z + e^{-z}) \right)}{(e^z + e^{-z})^2}$$

$$= \frac{(e^z + e^{-z})^2 - (e^z - e^{-z})^2}{(e^z + e^{-z})^2}$$

$$= 1 - \frac{(e^z - e^{-z})^2}{(e^z + e^{-z})^2}$$

Logistic function

$$g(z) = \sigma(z)$$

$$= \frac{1}{1 + e^{-z}}$$

$$g'(z) = (-1)\frac{1}{(1 + e^{-z})^2} \frac{d}{dz} (1 + e^{-z})$$

$$= (-1)\frac{1}{(1 + e^{-z})^2} (-e^{-z})$$

$$= \frac{1}{1 + e^{-z}} \left(\frac{1 + e^{-z} - 1}{1 + e^{-z}}\right)$$

$$= g(z)(1 - g(z))$$

$$g(z) = \tanh(z)$$

$$= \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

$$g'(z) = \frac{\left((e^z + e^{-z}) \frac{d}{dz} (e^z - e^{-z}) - (e^z - e^{-z}) \frac{d}{dz} (e^z + e^{-z}) \right)}{(e^z + e^{-z})^2}$$

$$= \frac{(e^z + e^{-z})^2 - (e^z - e^{-z})^2}{(e^z + e^{-z})^2}$$

$$= 1 - \frac{(e^z - e^{-z})^2}{(e^z + e^{-z})^2}$$

$$= 1 - (g(z))^2$$