Introduction to Audio Content Analysis

Module 3.4.1: Time-Frequency Representations — Fourier Transform

alexander lerch

introduction overview

corresponding textbook section

Section 3.4.1

Appendix C

■ lecture content

- FT of continuous signals
- FT properties
- FT of sampled signals
- Short Time FT (STFT)
- DFT

■ learning objectives

• name and explain definition and properties of the FT

introduction overview

corresponding textbook section

Section 3.4.1

Appendix C

■ lecture content

- FT of continuous signals
- FT properties
- FT of sampled signals
- Short Time FT (STFT)
- DFT

■ learning objectives

• name and explain definition and properties of the FT

introduction

fourier transform

Georgia Center for Music Tech Tech Technology

top bottom time domain signal real spectrum

magnitude spectrum in dB imaginary spectrum

fourier transform definition (continuous)

Georgia Center for Music Tech Technology

$$X(j\omega) = \mathfrak{F}[x(t)] = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$$

sidenote: Fourier series coefficients

$$a_k = rac{1}{T_0} \int\limits_{-T_0/2}^{T_0/2} x(t) e^{-\mathrm{j}\omega_0 kt} dt$$

 $T_0 \to \infty$ to allow the analysis of aperiodic functions

$$\Rightarrow k\omega_0 \rightarrow \omega$$

fourier transform definition (continuous)

Georgia Center for Music Tech Technology

$$X(j\omega) = \mathfrak{F}[x(t)] = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$$

sidenote: Fourier series coefficients

$$a_k = rac{1}{T_0} \int_{-T_0/2}^{T_0/2} x(t) e^{-j\omega_0 kt} dt$$

- $T_0 \to \infty$ to allow the analysis of aperiodic functions
- $\Rightarrow k\omega_0 \rightarrow \omega$

fourier transform representations

$$X(j\omega) = \Re[X(j\omega)] + \Im[X(j\omega)]$$

$$= \underbrace{|X(j\omega)|}_{\text{magnitude}} \cdot \underbrace{\Phi_{X}(\omega)}_{\text{phase}}$$

$$|X(j\omega)| = \sqrt{\Re[X(j\omega)]^2 + \Im[X(j\omega)]^2}$$

$$\Phi_X(\omega) = \operatorname{atan} 2\left(\frac{\Im[X(j\omega)]}{\Re[X(j\omega)]}\right)$$

complex spectrum either represented as magnitude & phase or as real & imaginarymagnitude spectrum has no negative values

fourier transform representations

$$\begin{array}{lcl} X(\mathrm{j}\omega) & = & \Re[X(\mathrm{j}\omega)] + \Im[X(\mathrm{j}\omega)] \\ & = & \underbrace{|X(\mathrm{j}\omega)|}_{\mathsf{magnitude}} \cdot \underbrace{\Phi_{\mathrm{X}}(\omega)}_{\mathsf{phase}} \end{array}$$

$$|X(j\omega)| = \sqrt{\Re[X(j\omega)]^2 + \Im[X(j\omega)]^2}$$

 $\Phi_X(\omega) = \operatorname{atan} 2\left(\frac{\Im[X(j\omega)]}{\Re[X(j\omega)]}\right)$

note:

- complex spectrum either represented as magnitude & phase or as real & imaginary
- magnitude spectrum has no negative values

fourier transform property 1: invertibility

$$x(t) = \mathfrak{F}^{-1}[X(j\omega)]$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$

- time domain signal can be perfectly reconstructed no information loss
- FT and IFT are very similar, largely equivalent

fourier transform property 1: invertibility

$$x(t) = \mathfrak{F}^{-1}[X(j\omega)]$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$

note:

- time domain signal can be **perfectly reconstructed** no information loss
- FT and IFT are very similar, largely equivalent

fourier transform property 2: superposition

$$egin{array}{lcl} y(t) &=& c_1 \cdot x_1(t) + c_2 \cdot x_2(t) \ &\mapsto \ &Y(\mathrm{j}\omega) &=& c_1 \cdot X_1(\mathrm{j}\omega) + c_2 \cdot X_2(\mathrm{j}\omega) \end{array}$$

■ FT is a *linear* transform

fourier transform property 2: superposition

$$egin{array}{lcl} y(t) &=& c_1 \cdot x_1(t) + c_2 \cdot x_2(t) \ &\mapsto \ &Y(\mathrm{j}\omega) &=& c_1 \cdot X_1(\mathrm{j}\omega) + c_2 \cdot X_2(\mathrm{j}\omega) \end{array}$$

note:

■ FT is a *linear* transform

fourier transform

property 3: convolution and multiplication

$$y(t) = \int_{-\infty}^{\infty} h(\tau) \cdot x(t-\tau) d\tau$$
 \mapsto
 $Y(j\omega) = H(j\omega) \cdot X(j\omega)$

- convolution in time domain means multiplication in frequency domain
- convolution in frequency domain means multiplication in time domain

fourier transform

property 3: convolution and multiplication

$$y(t) = \int_{-\infty}^{\infty} h(\tau) \cdot x(t-\tau) d\tau$$
 \mapsto
 $Y(j\omega) = H(j\omega) \cdot X(j\omega)$

note:

- convolution in time domain means multiplication in frequency domain
- convolution in frequency domain means multiplication in time domain

fourier transform property 4: Parseval's theorem

$$\int_{-\infty}^{\infty} x^2(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(j\omega)|^2 d\omega$$

energy of the signal is preserved when switching between time and frequency domains

fourier transform property 4: Parseval's theorem

$$\int\limits_{-\infty}^{\infty} x^2(t) dt = \frac{1}{2\pi} \int\limits_{-\infty}^{\infty} |X(\mathrm{j}\omega)|^2 d\omega$$

note:

energy of the signal is preserved when switching between time and frequency domains

fourier transform

property 5: time & frequency shift

Georgia Center for Music Tech Technology College of Design

■ time shift

$$x(t-t_0)\mapsto X(\mathrm{j}\omega)e^{-\mathrm{j}\omega t_0}$$

■ frequency shift

$$rac{1}{2\pi}\int\limits_{-\infty}^{\infty}X(\mathrm{j}\omega-\omega_0)e^{\mathrm{j}\omega t}\,d\omega=e^{\mathrm{j}\omega_0t}\cdot x(t)$$

- time shift results in phase shift
- frequency shift results in modulation of time signal

fourier transform property 5: time & frequency shift

■ time shift

$$x(t-t_0)\mapsto X(\mathrm{j}\omega)e^{-\mathrm{j}\omega t_0}$$

■ frequency shift

$$rac{1}{2\pi}\int\limits_{-\infty}^{\infty}X(\mathrm{j}\omega-\omega_0)e^{\mathrm{j}\omega t}\,d\omega=e^{\mathrm{j}\omega_0t}\cdot x(t)$$

note:

- time shift results in phase shift
- frequency shift results in modulation of time signal

fourier transform property 6: symmetry

$$|X(j\omega)| = |X(-j\omega)|$$

 $\Phi_X(\omega) = -\Phi_X(-\omega)$

- spectrum of (real) signal is conjugate complex
 - magnitude spectrum is symmetric to ordinate
 - phase spectrum is symmetric to origin
- even signals have no imaginary spectrum
- odd signals have no real spectrum

fourier transform property 6: symmetry

$$|X(j\omega)| = |X(-j\omega)|$$

 $\Phi_X(\omega) = -\Phi_X(-\omega)$

note:

- spectrum of (real) signal is conjugate complex
 - magnitude spectrum is symmetric to ordinate
 - phase spectrum is symmetric to origin
- even signals have no imaginary spectrum
- odd signals have no real spectrum

fourier transform property 7: time & frequency scaling

$$y(t) = x(c \cdot t)$$
 \mapsto
 $Y(j\omega) = \frac{1}{|c|}X(j\frac{\omega}{c})$

scaling of abscissa in one domain leads to inverse scaling in the other domain

fourier transform property 7: time & frequency scaling

$$y(t) = x(c \cdot t)$$
 \mapsto
 $Y(j\omega) = \frac{1}{|c|}X(j\frac{\omega}{c})$

note:

■ scaling of abscissa in one domain leads to inverse scaling in the other domain

- lacksquare sampled time signal can be modeled as multiplication of original signal with delta pulse $\delta_{
 m T}(t)$
- lacktriangle multiplication in time domain \mapsto convolution in frequency domain

$$\mathfrak{F}[x(i)] = \mathfrak{F}[x(t) \cdot \delta_{\mathrm{T}}(t)]$$

$$= \mathfrak{F}[x(t)] * \mathfrak{F}[\delta_{\mathrm{T}}(t)]$$

$$= X(\mathrm{j}\omega) * \Delta_{\mathrm{T}}(\mathrm{j}\omega)$$

note

- even if time domain signal is discrete, its Fourier transform is still continuous
- spectrum is *repeated periodically*

- lacksquare sampled time signal can be modeled as multiplication of original signal with delta pulse $\delta_{
 m T}(t)$
- lacktriangle multiplication in time domain \mapsto convolution in frequency domain

$$egin{array}{lll} \mathfrak{F}[x(i)] &=& \mathfrak{F}[x(t)\cdot\delta_{
m T}(t)] \ &=& \mathfrak{F}[x(t)]st \mathfrak{F}[\delta_{
m T}(t)] \ &=& X({
m j}\omega)st \Delta_{
m T}({
m j}\omega) \end{array}$$

note

- even if time domain signal is discrete, its Fourier transform is still continuous
- spectrum is repeated periodically

- lacksquare sampled time signal can be modeled as multiplication of original signal with delta pulse $\delta_{
 m T}(t)$
- lacktriangle multiplication in time domain \mapsto convolution in frequency domain

$$egin{array}{lll} \mathfrak{F}[x(i)] &=& \mathfrak{F}[x(t)\cdot\delta_{
m T}(t)] \ &=& \mathfrak{F}[x(t)]st \mathfrak{F}[\delta_{
m T}(t)] \ &=& X({
m j}\omega)st \Delta_{
m T}({
m j}\omega) \end{array}$$

note

- even if time domain signal is discrete, its Fourier transform is still continuous
- spectrum is *repeated periodically*

Georgia Center for Music Tech Technology

fourier transform STFT 1/2

short time Fourier transform (STFT): Fourier transform of a short time segment

- reasons
 - remember block based processing
 - segment can be seen as quasi-periodic or stationary
- **■** implementation:
 - pretend signal is 0 outside of the segment
 - ⇒ multiplication of signal and *window function*

fourier transform STFT 1/2

short time Fourier transform (STFT): Fourier transform of a short time segment

reasons:

- remember block based processing
- segment can be seen as quasi-periodic or stationary
- **■** implementation:
 - pretend signal is 0 outside of the segment
 - ⇒ multiplication of signal and *window function*

fourier transform STFT 1/2

short time Fourier transform (STFT): Fourier transform of a short time segment

reasons:

- remember block based processing
- segment can be seen as quasi-periodic or stationary

implementation:

- pretend signal is 0 outside of the segment
- \Rightarrow multiplication of signal and window function

STFT ○●○

fourier transform STFT: window functions

- time domain multiplication → frequency domain convolution
- time domain shape determines frequency domain shape of the window

- time domain multiplication → frequency domain convolution
- time domain shape determines frequency domain shape of the window

fourier transform STFT: window functions

- time domain multiplication → frequency domain convolution
- time domain shape determines frequency domain shape of the window

spectral leakage characterization

- main lobe width
- side lobe height
- side lobe attenuation

fourier transform DFT

digital domain: requires discrete frequency values:

⇒ discrete Fourier transform

$$X(k) = \sum_{i=0}^{\mathcal{K}-1} x(i) e^{-jki\frac{2\pi}{\mathcal{K}}}$$

with

$$\Delta\Omega = \frac{2\pi}{\mathcal{K}T_{\mathrm{S}}} = \frac{2\pi f_{\mathrm{S}}}{\mathcal{K}}$$

- 2 interpretations
 - sampled continuous Fourier transform
 - continuous Fourier transform of periodically extended time domain segment

fourier transform DFT

digital domain: requires discrete frequency values:

⇒ discrete Fourier transform

$$X(k) = \sum_{i=0}^{\mathcal{K}-1} x(i) e^{-jki\frac{2\pi}{\mathcal{K}}}$$

with

$$\Delta\Omega = \frac{2\pi}{\mathcal{K}T_{\mathrm{S}}} = \frac{2\pi f_{\mathrm{S}}}{\mathcal{K}}$$

- 2 interpretations:
 - sampled continuous Fourier transform
 - continuous Fourier transform of periodically extended time domain segment

fourier transform

Georgia Center for Music Tech Technology

- spectrogram allows to visualize temporal changes in the spectrum
- displays the *magnitude spectrum* only

summary lecture content

■ Fourier Transform (of a real signal)

- is conjugate complex
- often represented as magnitude + phase
- invertible
- linear
- convolution in time domain is multiplication in frequency domain
- energy preserving
- time shift result in phase shift, frequency shift results in amplitude modulation
- symmetric
- time scaling result in inverse frequency scaling

■ FT of sampled signals:

• is periodic with sample rate

STFT

• window results in spectral leakage (convolution in freq domain)

DFT

• discrete in both time and freq domain

