Lógica Computacional Tarea Semanal 7

Rubí Rojas Tania Michelle Universidad Nacional Autónoma de México taniarubi@ciencias.unam.mx # cuenta: 315121719

16 de mayo de 2019

Encuentra un programa t que tenga el tipo indicado:

a)
$$\vdash t: (A \to B \to C) \to (A \to B) \to (A \to C)$$

Solución:

1.
$$f: A \to B \to C, x: A \to B, y: A \vdash f: A \to B \to C$$
 (Hip)

$$2. \ \ f:A\rightarrow B\rightarrow C, x:A\rightarrow B, y:A\vdash x:A\rightarrow B \eqno(Hip)$$

3.
$$f: A \rightarrow B \rightarrow C, x: A \rightarrow B, y: A \vdash y: A$$
 (Hip)

4.
$$f: A \to B \to C, x: A \to B, y: A \vdash fx: C$$
 $(\to E)$ 1, 2

5.
$$f: A \to B \to C, x: A \to B \vdash fun(y: A.fx): A \to C \quad (\to I)$$
 4

6.
$$f:A \to B \to C \vdash fun(x:A \to B.fun(y:A.fx)):(A \to B) \to (A \to C) \quad (\to I)$$
 5

9.
$$\vdash fun(f: A \to B \to C.fun(x: A \to B.fun(y: A.fx)): (A \to B \to C) \to (A \to B) \to (A \to C)$$
 $(\to I)$ 6

b)
$$x: (A \to C) \land (B \to C) \vdash t: A \lor B \to C$$

Solución:

1.
$$x: (A \to C) \land (B \to C), y: A \lor B \vdash x: (A \to C) \land (B \to C)$$
 (Hip)

2.
$$x: (A \to C) \land (B \to C), y: A \lor B \vdash y: A \lor B$$
 (Hip)

3.
$$x: (A \to C) \land (B \to C), y: A \lor B \vdash snd \ x: B \to C$$
 (\$\lambde{E}\$) 1

5.
$$x: (A \to C) \land (B \to C), y: A \lor B, r: A \vdash r: A$$
 (Hip)

6.
$$x:(A \to C) \land (B \to C), y:A \lor B, r:A \vdash fstxr:C$$
 $(\to E)$ 4,5

7.
$$x: (A \to C) \land (B \to C), y: A \lor B, s: B \vdash s: B$$
 (Hip)

8.
$$x: (A \to C) \land (B \to C), y: A \lor B, s: B \vdash sndxs: C \qquad (\to E) 3,7$$

9.
$$x: (A \to C) \land (B \to C), y: A \lor B \vdash$$

 $case \ y \ of \ inlr \Rightarrow fstxr \mid inrs \Rightarrow sndxs: C$ $(\lor E) \ 2, 6, 8$

10.
$$x: (A \to C) \land (B \to C) \vdash fun(y: A \lor B.(case \ y \ of \ inlr \Rightarrow fstxr \ | \ inrs \Rightarrow sndxs)): A \lor B \to C \quad (\to I) \ 9$$

- c) $x: P \to Q \land R \vdash t: (P \to Q) \land (P \to R)$ Solución: Sabemos que $\Gamma \vdash A \land B \Leftrightarrow \Gamma \vdash A$ y $\Gamma \vdash B$. Así, basta probar cada uno de los lados de la conjunción por separado. Entonces
 - a) PD. $x: P \to Q \land R \vdash P \to Q$

1.
$$x: P \to Q \land R, y: P \vdash x: P \to Q \land R$$
 (Hip)

2.
$$x: P \to Q \land R, y: P \vdash y: P$$
 (Hip)

3.
$$x: P \to Q \land R, y: P \vdash xy: Q \land R$$
 $(\to E) 1, 2$

4.
$$x: P \to Q \land R, y: P \vdash fstxy: Q$$
 $(\land E)$ 3

5.
$$x: P \to Q \land R \vdash fun(y: P.fstxy): P \to Q \quad (\to I)$$
 4

b) PD. $x: P \to Q \land R \vdash P \to R$

6.
$$x: P \to Q \land R, y: P \vdash x: P \to Q \land R$$
 (Hip)

7.
$$x: P \to Q \land R, y: P \vdash y: P$$
 (Hip)

8.
$$x: P \to Q \land R, y: P \vdash xy: Q \land R$$
 $(\to E) 1, 2$

9.
$$x: P \to Q \land R, y: P \vdash sndxy: R$$
 $(\land E)$ 3

10.
$$x: P \to Q \land R \vdash fun(y: P.sndxy): P \to R \quad (\to I)$$
 4

Por lo tanto, $x: P \to Q \land R \vdash \langle fun(y: P.fstxy): P \to Q, \ fun(y: P.sndxy): P \to R \rangle: (P \to Q) \land (P \to R) \text{ por } (\land I) 5, 10$