Lemma 0.1

If $T = T^*$, then every eigenvalue of T is real.

Proof.

Suppose $T(x) = \lambda x$ and $x \neq 0$.

Since $T = T^*$, then T is normal, and hence $T^*(x) = \overline{\lambda}x = T(x) = \lambda x$. Since $x \neq 0$, then $\lambda = \overline{\lambda}$.

Lemma 0.2

For $\mathbb{F} = \mathbb{R}$, if $T = T^*$, then the characteristic polynomials of T splits.

Proof.

Let β be an orthonormal basis of V, let $A = [T]_{\beta}$. Then $A = A^* \in M_{n \times n}(\mathbb{R}) \subseteq M_{n \times n}(\mathbb{C})$. Define $T_A : \mathbb{C}^n \to \mathbb{C}^n$ such that $[T_A]_{\gamma} = A$, where γ is a standard basis.

Since γ is an orthonormal basis, we obtain that $T_A^* = T_A$.

By Lemma 0.1, every eigenvalue of T_A is real, so every root of the characteristic polynomial of T_A is real.

Since the field is complex, the characteristic polynomial of T_A splits, so it is $(-1)^n \prod_{i=1}^n (t - \lambda_i)$ and $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$.

But the characteristic polynomial of T_A is equal to the characteristic polynomial of A and the characteristic polynomial of T, so it splits over \mathbb{R} .

Theorem 0.3

Let $\mathbb{F} = \mathbb{R}$. T is self-adjoint if and only if V has an orthonormal basis of eigenvectors for T.

Proof.

Let β be an orthonormal basis of eigenvectors.

Then

$$[T]_{\beta} = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix},$$

where $\lambda_i \in \mathbb{R}$, so

$$[T^*]_{\beta} = [T]_{\beta}^* = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}^* = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} = [T]_{\beta},$$

and thus $T^* = T$.

Now we use induction on n.

If n = 1, then any unit vectors satisfies the claim.

If n > 1, assume the theorem holds for n - 1.

By Lemma 0.2, the characteristic polynomial of T splits, so T has an eigenvalue $\lambda \in \mathbb{R}$. Then $T(v) = \lambda v$ and $v \neq 0$. We may scale v so that ||v|| = 1.

Let $W = \operatorname{span}(v)$. It is T-invariant, and so W^{\perp} is T- and T^* -invariant.

Observe that dim $W^{\perp} = n - 1$, and $T_{W^{\perp}} : W^{\perp} \to W^{\perp}$.

Claim. $T_{W^{\perp}}$ is self-adjoint if and only if $\langle T_{W^{\perp}}x,y\rangle=\langle x,T_{W^{\perp}}y\rangle$ for all $x,y\in W^{\perp}$.

Proof.

Since $T = T^*$, the conclusion follows by the definition of T^* .

By induction, W^{\perp} has an orthonormal basis v_2, \ldots, v_n of eigenvectors for $T_{W^{\perp}}$.

Therefore, v, v_2, \ldots, v_n is an orthonormal basis of eigenvectors for T.

Corollary 0.4

Any real symmetric matrix in $M_{n\times n}(\mathbb{R})$ is diagonalisable.

Proof.

 $A = A^t = A^*$, and therefore $L_A^* = L_A : \mathbb{R}^n \to \mathbb{R}^n$, then \mathbb{R}^n has an orthonormal basis of eigenvectors. Thus, A is diagonalisable.

Theorem 0.5

T is self-adjoint if and only if T is normal and every eigenvalue is real.

Proof.

By Lemma 0.1, if T is self-adjoint, then T is normal and every eigenvalue is real.

By the Complex Spectral Theorem, pick an orthonormal basis β of eigenvectors such

that
$$[T]_{\beta} = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$$
 and λ_i are eigenvalues of T , and hence $\lambda_i \in \mathbb{R}$.

Thus,

$$[T^*]_{\beta} = [T]_{\beta}^* = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} = [T]_{\beta},$$

and thus $T = T^*$.

Definition 0.6. $A \in M_{n \times n}(\mathbb{F})$ is hermitian $(\mathbb{F} = \mathbb{C})$ / symmetric $(\mathbb{F} = \mathbb{R})$ if $A = A^*$ if $A = A^*$.

1 Unitary and Orthogonal Transformations

Let V be a finite-dimensional inner product space.

Definition 1.1. $T \in \text{Hom}(V, V)$ is said to be unitary $(\mathbb{F} = \mathbb{C}) / orthogonal(\mathbb{F} = \mathbb{R})$ if ||T(x)|| = ||x|| for all $x \in V$.

e.g. rotation and reflection in \mathbb{R}^2 , $(x, y, z) \mapsto (-x, -y, -z)$ in \mathbb{R}^3 .

Example 1.2

Let $V = H = C[0, 2\pi]$ and $\mathbb{F} = \mathbb{C}$.

Fix a continuous function $h \in H$ such that |h(x)| = 1 for all $x \in [0, 2\pi]$.

Let T(f) = hf. Then $T: H \to H$ is unitary.

Example 1.3

Let $V = M_{n \times n}(\mathbb{F})$, with $\langle A, B \rangle = \operatorname{tr} AB^*$.

Fix $Q \in V$ such that $QQ^* = I$. Then $T \in \text{Hom}(V, V)$ such that $A \mapsto AQ$ is unitary / orthogonal.

Reason: $||T(A)|| = \langle TA, TA \rangle = \langle AQ, AQ \rangle = \operatorname{tr} AQ(AQ)^* = ||A||^2$.

Theorem 1.4

Let $T \in \text{Hom}(V, V)$. The following are equivalent:

- a) T is unitary / orthogonal, i.e. ||T(x)|| = ||x||
- b) $TT^* = T^*T = I$, and hence T is normal
- c) $\langle Tx, Ty \rangle = \langle x, y \rangle$ for all x and y in V
- d) If β is any orthonormal basis of V, then $T(\beta)$ is an orthonormal basis
- e) There exists an orthonormal basis β such that $T(\beta)$ is an orthonormal basis

Proof.

We prove first that (a) implies (b). Note that $||Tx||^2 = ||x||^2$, and therefore $\langle Tx, Tx \rangle = \langle x, x \rangle$, which is equivalent to $\langle T^*Tx, x \rangle = \langle x, x \rangle$, and therefore $\langle (T^*T - I)x, x \rangle = 0$ for all $x \in V$.

Therefore, $S^* = (T^*T - I)^* = (T^*T)^* - I^* = T^*T^{**} - I = S$.

Claim. If $S = S^*$, and $\langle Sx, x \rangle = 0$, then S = 0.

Proof.

If x is an eigenvector of S, then $Sx = \lambda x$, and thus $0 = \langle Sx, x \rangle = \langle \lambda x, x \rangle = \lambda ||x||^2$. Thus, $\lambda = 0$.

We have proven that there exists an orthonormal basis of eigenvectors for S. Then S=0.

By Lemma , $T^*T=I$, and therefore T,T^* is invertible and $T^*=T^{-1}$. Therefore, $TT^*=I$.

We prove now that (b) implies (c). Note that $\langle Tx, Ty \rangle = \langle T^*Tx, y \rangle = \langle x, y \rangle = I$ by (b), and the conclusion follows.

Now, (c) implies (d). If $\beta = \{v_1, \dots, v_n\}$ is an orthonormal basis, then $\langle Tv_i, Tv_j \rangle = \delta_{i,j}$ by (c), and hence $T(\beta)$ is orthonormal.

- (d) trivially implies (e).
- (e) implies (a), because if $\beta = \{v_1, \dots, v_n\}$ is an orthonormal basis and $\{Tv_1, \dots, Tv_n\}$ is orthonormal, then for any $x = \sum_{i=1}^n c_i v_i$:

$$||Tx||^2 = \langle T(\sum_i c_i v_i), \sum_j c_j v_j \rangle \tag{1}$$

$$= \sum_{i} c_i \langle v_i, \sum_{j} c_j v_j \rangle \tag{2}$$

$$= \sum_{i} \sum_{j} c_{i} \overline{c_{j}} \langle Tv_{i}, Tv_{j} \rangle = \sum_{i} |c_{i}|^{2}$$
(3)

Corollary 1.5

If T is unitary or orthogonal, then T is normal and any eigenvalue λ of T has $|\lambda| = 1$.

Proof.

The fact that T is normal follows from 1.4(b).

If
$$Tv = \lambda v$$
, then $||Tv|| = ||v|| = ||\lambda v||$. Therefore, $|\lambda| = 1$.

Corollary 1.6

If $\mathbb{F} = \mathbb{C}$, T is unitary if and only if V has an orthonormal basis of eigenvectors with eigenvalues such that $|\lambda| = 1$

Proof.

The (\Rightarrow) direction follows from Corollary 1.5 (see Theorems 6.16 and 6.17 in Friedberg et al.

Let β be such an orthonormal basis. Then $[T]_{\beta} = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$, where $|\lambda_i| = 1$.

Then
$$[T^*]_{\beta} = [T]_{\beta}^* = \begin{pmatrix} \overline{\lambda_1} & & \\ & \ddots & \\ & & \overline{\lambda_n} \end{pmatrix}$$
,

and hence
$$[T^*T]_{\beta} = \begin{pmatrix} |\lambda_1|^2 & & \\ & \ddots & \\ & & |\lambda_n|^2 \end{pmatrix} = I.$$

Theerefore,
$$T^*T = I$$
.