Answers to Odd-Numbered Homework Problems

Homework 1.1

9.
$$\alpha = 29^{\circ}$$

11.
$$\beta = 77^{\circ}$$

13.
$$\alpha = 12^{\circ}$$

15.
$$\theta = 65^{\circ}$$

17.
$$\theta = 22^{\circ}$$

23a. $\phi = 120^{\circ}$

19.
$$\psi = 73^{\circ}$$

b. $\phi = 160^{\circ}$

21.
$$\phi = 88^{\circ}$$

= 160° c.
$$\phi = \alpha + \beta$$
 d. agles." 25. $\theta = 72^{\circ}$, $\phi = 54^{\circ}$

27.
$$\theta = 100^{\circ}, \, \phi = 30^{\circ}$$

29a.
$$2\theta + 2\phi = 180^{\circ}$$

b.
$$\theta + \phi = 90^{\circ}$$

c.
$$\triangle ABC$$
 is a right triangle.

31a, b. They are base angles of an isosceles triangle.c. Let $\theta = \angle OAB = \angle ABO$ and $\phi = \angle OBC = \angle BCO$, then the triangles from #29 and #31 are the same. From #29, we know that $\triangle ABC$ is a right triangle.

33.
$$\alpha = 30^{\circ}, \beta = 60^{\circ}$$

35.
$$x = 47^{\circ}, y = 133^{\circ}$$

37.
$$x = 60^{\circ}, y = 15^{\circ}$$

39.
$$x = 25^{\circ}, y = 16^{\circ}$$

41.
$$x = 90^{\circ}, y = 55^{\circ}$$

43.
$$x = 50^{\circ}, y = 80^{\circ}$$

45a. ∠1 & ∠4, ∠3 & ∠5

c. In the equation
$$\angle 4 + \angle 2 + \angle 5 = 180^{\circ}$$
,

substitute $\angle 1$ for $\angle 4$, and substitute $\angle 3$ for $\angle 5$ to see that the sum of the angles is 180° . 47. $\angle 1 = 130^{\circ}$ because vertical angles are equal. $\angle 2 = 50^{\circ}$ because it makes a straight angle with a 130° angle. $\angle 3 = 65^{\circ}$ because it is a base angle of an isosceles triangle whose vertex angle is 50°. $\angle 4 = 65^{\circ}$ for the same reason. $\angle 5 = 25^{\circ}$ because it is complementary to $\angle 4$.

Homework 1.2

1.
$$\Delta PQT \cong \Delta SRT, x = 7, y = 3, \alpha = 18^{\circ}$$

3.
$$\Delta PRE \cong \Delta URN, z = 12,$$

c. $\triangle ABT \cong \triangle ABC$, so AT = AC.

7. Similar: Corresponding sides are proportional. 9. Similar: Corresponding angles are equal.

11.
$$A = 37^{\circ}, B = 37^{\circ}$$
 13. $h = 12$ 15. $p = 35$

13.
$$h = 12$$

15.
$$p = 35$$

17.
$$q = 84$$

19.
$$h = 30$$

27.
$$y = \frac{12}{17}x$$

29.
$$h = 7.5$$

$$31. c = 15$$

33.
$$s = 6$$

35.
$$y = \frac{3}{5}x$$

37.
$$y = 5 + \frac{3}{4}x$$

39a.
$$\angle B = 70^{\circ}, \angle CAD = 70^{\circ}, \angle DAB = 20^{\circ}$$

b. $\triangle DBA$ and $\triangle DAC$. \overline{BC} in $\triangle ABC$, \overline{BA} in $\triangle DBA$, and \overline{AC} in $\triangle DAC$. \overline{AB} in $\triangle ABC$, \overline{DB} in ΔDBA , and \overline{DA} in ΔDAC . \overline{AC} in ΔABC , \overline{DA} in ΔDBA , and \overline{DC} in ΔDAC .

Homework 1.3

1. 13 miles

3. 10 = 10.00

5. $4\sqrt{5} \approx 8.94$ 7. 5 9. $2\sqrt{5}$

11.5

13. 5 24.7

15a. $\sqrt{(x+3)^2 + (y-4)^2}$

 $\sqrt{(x+3)^2 + (y-4)^2} = 5$ 17. The distance between (x,y) and (4,-1) is 3 units.

 ± 5

 $\pm 2\sqrt{6}$

- 19a. $6\sqrt{2}$ cm
- b. 8.49 cm

-3

21a. 25π sq in

 $\pm 2\sqrt{6}$

b. 78.54 sq in

23a. approximation

25. a.

b. approximation

-2

c. approximation

2

 $\pm\sqrt{21}$

d. exact 4

> ± 3 0

-5

b.
$$x^2 + y^2 = 36$$

b.
$$x^2 + y^2 < 9$$

- No real value of y can satisfy $x^2 + y^2 = 16$ unless $-4 \le x \le 4$.
- b. The graph has no points where x > 4 and no points where x < -4.
- 33. $\sqrt{10}$

- b. 12π 37a.

b. 4π

39. $\left(-2\sqrt{5}, -4\right)$ and $\left(2\sqrt{5}, -4\right)$

- 41. $P(\frac{1}{2}, \frac{\sqrt{3}}{2}), \ Q(\frac{1}{2}, \frac{-\sqrt{3}}{2}), \ R(\frac{-3}{4}, \frac{\sqrt{7}}{4}), \ S(\frac{-3}{4}, \frac{-\sqrt{7}}{4})$ 43a. 45° b. 5π ft c. 50π sq ft 45a. $\frac{2}{5}$ 47a. $\frac{1}{10}$ b. $\frac{\pi}{10}$ sq km c. $\frac{\pi}{5}$ km 49a. $\frac{5}{6}$

- b. $40\pi \text{ sq ft}$ c. $8\pi \text{ ft}$

b. $\frac{15\pi}{2}$ sq m c. 5π m

- 51. 2070 miles
- 53a. 54,000 miles
- 70 miles 53a. 54,000 miles b. 2240 mg $(x-3)^2 + (y+2)^2 = 36$ b. $(x-h)^2 + (y-k)^2 = r^2$

Chapter 1 Review

- 1. 400
- 5. $\alpha = \beta = \gamma = 60^{\circ}$ 7. $\phi = \omega = 30^{\circ}$

- 9. $\theta = 65^{\circ}, \ \phi = 25^{\circ}$
- 11. $\delta = 30^{\circ}, \ \gamma = 60^{\circ}$ 13. $\sigma = 39^{\circ}, \ \omega = 79^{\circ}$
- 15. $\alpha = 51\frac{3}{7}^{\circ}$, $\beta = 64\frac{2}{7}^{\circ}$ 17. $\triangle ABC \cong \triangle EDC$, $\alpha = 40^{\circ}$, $\beta = 130^{\circ}$, x = 32
- 19. Yes, three pairs of equal angles 21. Yes, three pairs of equal angles 23. 13
- 25. 18
- 27. $y = \frac{5x}{2}$
- 29. $y = \frac{7x}{3}$ 31. $y = \frac{x}{3}$ 33. $x = \frac{25}{13}$, $y = \frac{60}{13}$ 39. $3\frac{3}{4}$ in

- 35. $\alpha = 70^{\circ}$
- 37. 14 ft
- 41. All sides have length $\sqrt{61}$, opposite sides have slopes $\frac{5}{6}$ and $\frac{-6}{5}$
- 43.AC = BC = 18 45a. $\sqrt{(x-2)^2 + (y-5)^2} = 3$ b. $(x-2)^2 + (y-5)^2 = 9$

Homework 2.1

- 1. The sum of the angles is not 180°. 3. The exterior angle is not equal to the sum of the opposite interior angles. 5. The sum of the acute angles is not 90°. 7. The largest side is not opposite the largest angle.9. The Pythagorean theorem is not satisfied.
- 11. $5^2 + 12^2 = 13^2$, but the angle opposite the side of length 13 is 85°. 13. 4 < x < 16
- 15. 0 < x < 16 17. 21 in 19. $6\sqrt{2}$ in 21. $w = 6\sqrt{10}$ in 23. 29 25. $\sqrt{3}$ 27. No
- 29. Yes 31. No 33. The distance from (0,0) to (3,3) is $3\sqrt{2}$, and the distance from
- (3,3) to (6,0) is also $3\sqrt{2}$, so the triangle is isosceles. The distance from (0,0) to (6,0) is 6, and $\left(3\sqrt{2}\right)^2 + \left(3\sqrt{2}\right)^2 = 6^2$, so the triangle is a right triangle. 35. 25 ft
- 37. $\alpha = 30^{\circ}$, $\beta = 60^{\circ}$, $h = \sqrt{3}$ 39. $8\sqrt{3}$ in 41a. No b. Yes
- 43a. (-1,0) and (1,0); 2 b. $\sqrt{(p+1)^2 + q^2}$ and $\sqrt{(p-1)^2 + q^2}$
- c. $\left(\sqrt{(p+1)^2+q^2}\right)^2 + \left(\sqrt{(p-1)^2+q^2}\right)^2 = p^2+2p+1+q^2+p^2-2p+1+q^2$ = $2p^2+2+2q^2=2+2(p^2+q^2)=2+2(1)=4$

Homework 2.2

- 1a., b. 0.91 c. 0.906307787 3a., b. 0.77 c. 0.7660444431
- 5a. $4\sqrt{13} \approx 14.42$ b. $\sin \theta = 0.5547, \cos \theta = 0.8321, \tan \theta = 0.6667$
- 7a. $4\sqrt{15} \approx 15.49$ b. $\sin \theta = 0.9682, \cos \theta = 0.2500, \tan \theta = 3.8730$
- 9a. $2\sqrt{67} \approx 16.37$ b. $\sin \theta = 0.2116, \cos \theta = 0.9774, \tan \theta = 0.2165$

(Answers vary.)

- 17. 14.41 19. 37.86 21. 86.08 23. 8 in 25. 56 ft 280 r
- 27a. b. $\tan 54.8^{\circ} = \frac{h}{120}$, 170.1 yd 29a. $\frac{d}{36.2^{\circ}}$ 260 ft
- b. $\tan 36.2^{\circ} = \frac{260}{d}$, 355.2 ft 31a. $\frac{1500 \text{ m}}{48^{\circ}}$ b. $\sin 48^{\circ} = \frac{a}{1500}$, 1114.7 m

b.
$$\cos 38^{\circ} = \frac{1800}{x}$$
, 2284.2 m 35. $x = \frac{82}{\tan \theta}$

$$35. x = \frac{82}{\tan \theta}$$

$$37. x = 11 \sin \theta$$

39.
$$x = \frac{9}{\cos}$$

41.
$$36 \sin 25^{\circ} \approx 15.21$$
 43. $46 \sin 20^{\circ} \approx 15.73$

43.
$$46 \sin 20^{\circ} \approx 15.73$$

45.
$$12 \sin 40^{\circ} \approx 7.71$$

CO	<u> </u>			_
47.		sin	cos	tan
	θ	3 5	$\frac{4}{5}$	$\frac{3}{4}$
	ϕ	$\frac{4}{5}$	$\frac{3}{5}$	$\frac{4}{3}$

	sin	cos	tan
θ	$\frac{1}{\sqrt{5}}$	$\frac{2}{\sqrt{5}}$	$\frac{1}{2}$
ϕ	$\frac{2}{\sqrt{5}}$	$\frac{1}{\sqrt{5}}$	2

- b. $\sin \theta = \cos \phi$ and $\sin \phi = \cos \theta$. The side opposite θ 51a. θ and ϕ are complements. is the side adjacent to ϕ , and vice versa.
- As θ increases, tan θ increases also. The side opposite θ increases in length while the side adjacent to θ remains fixed. b. As θ increases, $\cos \theta$ decreases. The side adjacent to θ remains fixed while the hypotenuse increases in length.
- 55. As θ decreases toward 0°, the side opposite θ approaches a length of 0, so $\sin \theta$ approaches 0. But as θ increases toward 90°, the length of the side opposite θ approaches the length of the
- hypotenuse, so $\sin \theta$ approaches 1. 57. The triangle is not a right triangle. 59. $\frac{21}{20}$ is the ratio of hypotenuse to the adjacent side, which is the reciprocal of $\cos \theta$. 61a. 0.2358 b. sine c. 48° d. 77° 63a. $\frac{5}{12}$ b. 3 c. $\frac{2}{3}$ d. $\frac{2}{\sqrt{7}}$

- 65. Although the triangles may differ in size, the ratio of the side adjacent to the angle to the hypotenuse of the triangle remains the same because the triangles would all be similar, and hence corresponding sides are proportional.

Homework 2.3

1. $A = 61^{\circ}, a = 25.26, c = 28.88$

- b. $B = 48^{\circ}, \ a = 17.4, \ b = 19.3$

b. $B = 78^{\circ}, b = 18.8, c = 19.2$

3. $A = 68^{\circ}, a = 0.93, b = 0.37$

b. $A = 57^{\circ}, b = 194.8, c = 357.7$

b. Solve $\sin 53.7^{\circ} = \frac{8.2}{c}$ for c. Solve

 $\tan 53.7^{\circ} = \frac{8.2}{a}$ for a. Subtract 53.7° from 90° to find A.

b. Solve $\cos 25^{\circ} = \frac{40}{c}$ for c.

Solve $\tan 25^\circ = \frac{a}{40}$ for a.

Subtract 25° from 90° for B.

15a.

b. Solve $\sin 64.5^{\circ} = \frac{a}{24}$ for a.

Solve $\cos 64.5^{\circ} = \frac{b}{24}$ for b.

Subtract 64.5° from 90° for B.

25. 56.3°

27. 73.5°

- 29. $\cos 15^{\circ} = 0.9659$, $\cos^{-1} 0.9659 = 15^{\circ}$ 31. $\tan^{-1} 2.1445 = 65^{\circ}$, $\tan 65^{\circ} = 2.1445$
- 33. $\sin^{-1}(0.6) \approx 36.87^{\circ}$ is the angle whose sine is 0.6. $(\sin 6^{\circ})^{-1} \approx 9.5668$ is the reciprocal of sin 6°.

 $\frac{1806}{3\cdot(2458)}$, 14.6° b. $\sin \theta =$

39a.

b.
$$c = 10\sqrt{10} \approx 31.6, A \approx 34.7^{\circ}, B \approx 55.3^{\circ}$$

41a.

b.
$$a = \sqrt{256.28} \approx 16.0, A \approx 56.5^{\circ}, B \approx 33.5^{\circ}$$

43.

$$an^{-1}ig(rac{26}{30}ig)pprox 40.9^{\circ}\ \ ext{b.}\ \ 91\sqrt{1576}pprox 3612.6\ ext{cm}$$

45.

- b. 6415 km

- 49. a and b
- 51. a. and d.
- 53. $\frac{\sqrt{3}}{2} \approx 0.8660$
- 55. $\frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3} \approx 0.5774$

462.9 ft

57. 1.0000

١.		0°	30°	45°	60°	90°
	sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
	cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
	tan	0	1	1	$\sqrt{3}$	undefined

Some students notice that the values of the sine ratio are respectively $\frac{\sqrt{0}}{2}$, $\frac{\sqrt{1}}{2}$, $\frac{\sqrt{2}}{2}$, and $\frac{\sqrt{4}}{2}$. Cosine has the same ratios in reverse order.

59

63.
$$a = 3\sqrt{3}, b = 3, B = 30^{\circ}$$

65.
$$a = b = 4\sqrt{2}, B = 45^{\circ}$$

67.
$$e = 4$$
, $f = 4\sqrt{3}$, $F = 120^{\circ}$

65.
$$a = b = 4\sqrt{2}$$
, $B = 45^{\circ}$ 67. $e = 4$, $f = 4\sqrt{3}$, $F = 120^{\circ}$ 69. $d = 2\sqrt{3}$, $e = 2\sqrt{2}$, $f = \sqrt{2} + \sqrt{6}$, $F = 75^{\circ}$ 71. $a = 20$, $b = 20$, $c = 20\sqrt{2}$

71.
$$a = 20, b = 20, c = 20\sqrt{2}$$

73a.
$$32\sqrt{3}$$
 cm b. $128\sqrt{3}$ sq cm 75a. 10 sq cm b. $10\sqrt{2}$ sq cm

b.
$$128\sqrt{3} \text{ sq cm}$$

b.
$$10\sqrt{2}$$
 sq cm

c.
$$10\sqrt{3}$$
 sq cm

77a. 64 sq in b.
$$4\sqrt{2}$$
 by $4\sqrt{2}$, area 32 sq in

Chapter 2 Review

1. If
$$C > 93^{\circ}$$
, then $A + B + C > 180^{\circ}$

3. If
$$A < B < 58^{\circ}$$
, then $A + B + C < 180^{\circ}$

5. If
$$C > 50^{\circ}$$
, then $A + B + C > 180^{\circ}$

7.
$$\frac{6.7}{500}$$
 $\frac{15}{200}$ $\frac{15}{18.4}$

9.
$$a = 97$$

11.
$$c = 52$$

15.
$$\theta = 35.26^{\circ}$$

17. No.
$$a = 6$$
, $c = 10$ or $a = 9$, $c = 15$ 19a. $w = 86.05$

19a.
$$w = 86.05$$

b.
$$\sin \theta = 0.7786$$
,

$$\cos \theta = 0.6275$$
, $\tan \theta = 1.2407$

21a.
$$y = 16.52$$

b.
$$\sin \theta = 0.6957$$
,

$$\cos \theta = 0.7184$$
, $\tan \theta = 0.9684$

23.
$$a = 7.89$$

25.
$$x = 3.57$$

27.
$$b = 156.95$$
 29. $A = 30^{\circ}, a = \frac{23\sqrt{3}}{3}, c = \frac{46\sqrt{3}}{3}$

$$3$$
, 3

31.
$$F = 105^{\circ}$$
,

$$d = 10\sqrt{2}, \ e = 20, \ f = 10 + 10\sqrt{3}$$
 33. 3 cm 35. 43.30 cm 37. 15.92 m 39. 114.02 ft, 37.87° 41a. 60.26° b. 60.26° c. $m = \frac{7}{4} = \tan \theta$

$$30 \text{ cm} = 7 = top 6$$

43a.
$$c^2$$
 b. $b-a$, $(b-a)^2$ c. $\frac{1}{2}ab$ d. $4(\frac{1}{2}ab)+(b-a)^2=2ab+b^2-2ab+a^2=a^2+b^2$

$$1_{ab}$$

c.
$$m = \frac{7}{4} = \tan \theta$$

Homework 3.1

b.
$$\sqrt{29}$$

$$\cos \theta = \frac{5}{\sqrt{29}}, \sin \theta = \frac{2}{\sqrt{29}}, \tan \theta = \frac{2}{5}$$

5a.
$$(-4,7)$$

b.
$$\sqrt{65}$$

1a. 150° b. 135° c. 60° d. 155° e. 15°
3a. (5,2) b.
$$\sqrt{29}$$
 c. $\cos \theta = \frac{5}{\sqrt{29}}, \sin \theta = \frac{2}{\sqrt{29}}, \tan \theta = \frac{2}{5}$
5a. (-4,7) b. $\sqrt{65}$ c. $\cos \theta = \frac{-4}{\sqrt{65}}, \sin \theta = \frac{7}{\sqrt{65}}, \tan \theta = \frac{-7}{4}$

7a.
$$\sin \theta = \frac{9}{\sqrt{97}}, \cos \theta = \frac{4}{\sqrt{97}}$$

c.
$$\sin(180^{\circ} - \theta) = \frac{8}{\sqrt{89}}$$
, $\cos(180^{\circ} - \theta) = \frac{5}{\sqrt{60}}$

d.
$$\theta = 66^{\circ}$$
, $180^{\circ} - \theta = 114^{\circ}$

d.
$$\theta = 122^{\circ}, 180^{\circ} - \theta = 58^{\circ}$$

- $\cos \theta = \frac{-5}{13}, \ \sin \theta = \frac{12}{13}, \ \tan \theta = \frac{-12}{5}$
- c.

- b. $\sin \theta = \frac{\sqrt{112}}{11}, \tan \theta = \frac{\sqrt{112}}{3}$
- c. 74.2°

17a.

- b. $\sin \theta = \frac{3}{5}$, $\tan \theta = \frac{-3}{4}$

- b. $\sin \theta = \frac{1}{\sqrt{37}}$, $\cos \theta = \frac{-6}{\sqrt{37}}$

15a.

- b. $\sin \theta = \frac{4}{\sqrt{17}}, \cos \theta = \frac{1}{\sqrt{17}}$ c. 76.0°

2	1	
	1	

θ	0°	30°	45°	60°	90°	120°	135°	150°	180°
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	$\frac{-1}{2}$	$\frac{-1}{\sqrt{2}}$	$\frac{-\sqrt{3}}{2}$	-1
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	undefined	$-\sqrt{3}$	-1	$\frac{-1}{\sqrt{3}}$	0

- $\sin \theta = \sin(180^{\circ} \theta)$ 23a.
- b. $\cos \theta = -\cos(180^{\circ} \theta)$ c. $\tan \theta = -\tan(180^{\circ} \theta)$

- 25a. $\theta \approx 41.4^{\circ}, \, \phi \approx 138.6^{\circ}$
- $\theta \approx 81.2^{\circ}, \phi \approx 98.8^{\circ}$ 27a.

c. $\sin(\theta) = \sin(\phi) = \frac{\sqrt{7}}{4}$

- b.
- c. $\sin(\theta) = \sin(\phi) = \frac{\sqrt{156279}}{400} \approx 0.9883$
- $31.57.1^{\circ}$ and 122.9° $33.41.8^{\circ}$ and 138.2° 29. 44.4° and 135.6° 35. $\sin 123^{\circ} = q$, $\cos 33^{\circ} = q$, $\cos 147^{\circ} = -q$
- 37. $\cos 106^{\circ} = -m$, $\sin 16^{\circ} = m$, $\sin 164^{\circ} = m$

- b. (4,3), (8,6)
- c. $\tan^{-1}\left(\frac{3}{4}\right) \approx 36.87^{\circ}$
- d. $(-4,3), (-8,6); 143.13^{\circ}$
- 41a. b=8 in, $h=3\sqrt{3}$ in b. $12\sqrt{3}$ sq in 43a. $b=6-\frac{3\sqrt{2}}{2}$ mi, $h=\frac{3\sqrt{2}}{2}$ mi b. $\frac{18\sqrt{2}-9}{4}$ sq mi

- 49. 20.71 m² 51. 55.51 cm^2
- 57. 13,851.3 ft²
- 59a. (-74.97, 59.00)
- 47.
- $\left(-\sqrt{5},\sqrt{5}\right)$
- 53. 6.36 in²
- 55. 38.04 sq. units
- b. BC = 141.97, PC = 59.00
- 61. $\frac{\sqrt{5}-1}{4}$ c. 153.74
- 63. Bob found an acute angle. The obtuse angle is the supplement of 17.46°, or 162.54°.

b. $\cos \theta = \frac{x}{3}, \sin \theta = \frac{\sqrt{9 - x^2}}{3}, \tan \theta = \frac{\sqrt{9 - x^2}}{x}$

- b. $\cos \theta = \frac{-\sqrt{4 y^2}}{2}, \sin \theta = \frac{y}{2}, \tan \theta = \frac{-y}{\sqrt{4 y^2}}$
- b. $\cos \theta = \frac{-1}{\sqrt{1 + m^2}}, \sin \theta = \frac{-m}{\sqrt{1 + m^2}}, \tan \theta = m$

Homework 3.2

- 1. x = 7.85
- 3. q = 33.81

- 5. d = 28.37 7. $\theta = 30.80^{\circ}$ 9. $\theta = 126.59^{\circ}$

- $a = 4.09, c = 9.48, C = 115^{\circ}$

- 17.
- $b = 2.98, A = 36.54^{\circ}, B = 99.46^{\circ}$
- $a = 43.55, b = 54.62, C = 99^{\circ}$

19a.

- b. 808.1 ft
- 21a.
- b. 68.2 km

25a.

b. 1.23 mi + 0.99 mi; 0.22 mi

322.6 m b.

- 27a. 1°
- b. 66°
- c. 2617.2 ft
- d. 1022.6 ft

- 29. 540,000 AU $\approx 8.1 \times 10^{13}$ km
- 31. 750,000 AU $\approx 1.1 \times 10^{14}$ km

- b. No; a is too short.
- c. 2
- d. 1

b. 0,

- a = 15d. 1,
- 37a. $C = 25.37^{\circ}, B = 114.63^{\circ}, b = 16.97 \text{ b. } C = 58.99^{\circ}, B = 81.01^{\circ}, b = 9.22;$ or $C = 121.01^{\circ}$, $B = 18.99^{\circ}$, b = 3.04
 - 5.14 c. no solution
- 39. $A = 40.44^{\circ}$, $B = 114.56^{\circ}$ or $A = 139.56^{\circ}$, $B = 15.44^{\circ}$
- 41. $C = 37.14^{\circ}, A = 93.86^{\circ}$
- 43. 1299 yd or 277.2 yd

- 45a. 11.79 47a. $\frac{1}{2}ab\sin C$
 - b. 24.16 c. 24.16 b. $\frac{1}{2}ac\sin B$
- c. $\frac{1}{2}bc\sin A$

b. $b = \frac{h}{\sin A}$ c. $h = a \sin B$

- d. $b = \frac{a \sin B}{\sin A}$
- e. ii

Homework 3.3

- 1a. $74 70 \cos \theta$
- b. 12.78
- c. 135.22
- 3a. $\frac{a^2 + c^2 b^2}{2bc}$ b. -0.4

- 5a. $b^2 (8\cos\alpha)b 65 = 0$
 - 9. 13.44
- b. 11.17, -5.8211. 5.12
 - 13. 133.43°
- 15. 40.64°

- 17. $A = 91.02^{\circ}, B = 37.49^{\circ}, C = 51.49^{\circ}$
- 19. $A = 34.34^{\circ}, B = 103.49^{\circ}, C = 42.17^{\circ}$

- 21. 6.30 or 2.70
- 23. 29.76 or 5.91
- 25. 16.00
- 27. Law of Cosines: $61^2 = 29^2 + 46^2 2 \cdot 29 \cdot 46 \cos \phi$ 29. Law of Sines: $\frac{a}{\sin 46^\circ}$
- 31. First the Law of Cosines: $x^2 = 47^2 + 29^2 2 \cdot 47 \cdot 29 \cos 81^\circ$, then second either the Law of Sines: $\frac{\sin \theta}{47} = \frac{\sin 81^{\circ}}{x}$ or the Law of Cosines: $47^2 = x^2 + 29^2 - 2 \cdot x \cdot 29 \cos \theta$
- 33. Law of Cosines: $9^2 = 4^2 + z^2 2 \cdot 4 \cdot z \cos 28^\circ$, or use the Law of Sines first to find the (acute) angle opposite the side of length 4, then find the angle opposite the side of length z by subtracting the sum of the known angles from 180°, then using the Law of Sines again.

- b. $b = 16.87, A = 85.53^{\circ}, C = 47.47^{\circ}$
- b. $A = 58.41^{\circ}, B = 48.19^{\circ}, C = 73.40^{\circ}$

b. $a = 116.52, A = 85.07^{\circ}, C = 56.93^{\circ} \text{ or } a = 37.93, A = 18.93^{\circ}, C = 123.07^{\circ}$

b. $a = 7.76, b = 8.97, C = 39^{\circ}$

3·320 mi 3°
45a. 1570 3·406 mi

b. 1383.3 m

b. 2123 mi, 168.43° east of north

- 49a. b. 92.99 ft
- b. 7.74° west of south, 917.9 mi
- 51. 147.73 cm²

- 53. 10.53
- 55. 4.08

57a. First figure: b-x is the base of the small right triangle. Second: -x is the horizontal distance between P and the y-axis, so b+(-x) or b-x is the base of the large right triangle. Third: x=0, and b is the base of a right triangle.

b. First: x and y are the legs of a right triangle, a is the hypotenuse. Second: -x and y are the legs of a right triangle with hypotenuse a. Third: x = 0 and y = a c. $x = a \cos C$

59. $b^2 + c^2 = (a^2 + c^2 - 2ac\cos B) + (a^2 + b^2 - 2ab\cos C)$

 $=2a^{2}+b^{2}+c^{2}-2a(c\cos B+b\cos C), \text{ so } 2a^{2}=2a(c\cos B+b\cos C),$

and dividing both sides by 2a yields $a = c \cos B + b \cos C$.

61. For the first equation, start with the Law of Cosines in the form $a^2 = b^2 + c^2 - 2bc \cos A$. Add $2ab + 2bc \cos A - a^2$ to both sides of the equation, factor the right side, then divide both sides by 2bc. For the second equation, start with the Law of Cosines in the form $b^2 + c^2 - 2bc \cos A = a^2$. Add $2bc - b^2 - c^2$ to both sides of the equation, factor the right side, then divide both sides by 2bc.

Chapter 3 Review

1.
$$\frac{1}{2}$$
, $\frac{\pm\sqrt{3}}{2}$

3a.

b. 49.33

b. $\cos \theta = \frac{-2}{\sqrt{13}}$, $\sin \theta = \frac{3}{\sqrt{13}}$, $\tan \theta = \frac{-3}{2}$

c.
$$\theta = 123.7^{\circ}$$

b. $\cos \theta = \frac{-\sqrt{11}}{6}$, $\sin \theta = \frac{5}{6}$, $\tan \theta = \frac{-5}{\sqrt{11}}$

c.
$$\theta = 123.6^{\circ}$$

13. 9.9°, 170.1°

15. 22.0°, 158.0°

23. a = 27.86

29.
$$s = 15.61$$
 or 57.45

16.29 16

В

520 m

b. $\cos \theta = \frac{-4}{5}$, $\sin \theta = \frac{3}{5}$, $\tan \theta = \frac{-3}{4}$

c.
$$\theta = 143.1^{\circ}$$

b. $\cos \theta = \frac{-7}{25}$, $\sin \theta = \frac{24}{25}$, $\tan \theta = \frac{-24}{7}$

c.
$$\theta = 106.3^{\circ}$$

17a. $7\sqrt{2}$ b. $28\sqrt{2}$ 19. 5127.39 sq ft 25. b=6.03 27. w=62.10

25.
$$b = 6.03$$

a. 353.32 m b. 217.52 m 47a. 79.64 m b. 35.2° c. 46.12 m

4.2

22.25 ft 55. 79, 332.6 AU

57a. OW bisects the central angle at O, and the inscribed angle θ is half the central angle at O.

b.
$$\sin \theta = \frac{s}{2r}$$

c.
$$r = \frac{s}{2\sin\theta}$$
 d. $d = \frac{s}{\sin\theta}$

d.
$$d = \frac{s}{\sin \theta}$$

Homework 4.1

1. a.
$$216^{\circ}$$

3. a. $\frac{1}{8}$

c.
$$480^{\circ}$$

c. $\frac{3}{2}$

b.
$$\frac{5}{2}$$

13.
$$400^{\circ}$$
 and -320° (Answers vary.) 15. 575° and -145° (Answers vary.)

17.
$$665^{\circ}$$
 and -55° (Answers vary.) 19. 295°

31. 165°, 195°, 345°

35. 112°, 248°, 292°

$$37. -0.9205$$

$$39. -0.7193$$

$$43. -0.7193$$

f. 240°

47a.

 $\sin 120^\circ = \frac{\sqrt{3}}{2}$, $\cos 120^\circ = \frac{-1}{2}$, $\tan 120^\circ = -\sqrt{3}$,

 $\sin 240^\circ = \frac{-\sqrt{3}}{2}, \cos 240^\circ = \frac{-1}{2}, \tan 240^\circ = \sqrt{3}, \sin 300^\circ = \frac{-\sqrt{3}}{2}, \cos 300^\circ = \frac{1}{2},$ $\tan 300^{\circ} = -\sqrt{3}$

49a.

 $\sin 135^\circ = \frac{1}{\sqrt{2}}, \cos 135^\circ = \frac{-1}{\sqrt{2}}, \tan 135^\circ = -1,$

 $\sin 225^{\circ} = \frac{-1}{\sqrt{2}}, \cos 225^{\circ} = \frac{-1}{\sqrt{2}}, \tan 225^{\circ} = 1, \sin 315^{\circ} = \frac{-1}{\sqrt{2}}, \cos 315^{\circ} = \frac{1}{\sqrt{2}}, \tan 315^{\circ} = -1$

51a. III and IV b. II and III

c. I and III

55. 105°

 0° and 180° 53a.

b. 90° and 270°

57. 264°

59. 313°

- 61. 83°, 263°
- 63. 23°, 337° 65. 265°, 275° 67. 156°, 204°

- 69. 246°, 294°
- 71. 149°, 329° 73. $(-2\sqrt{2}, 2\sqrt{2})$ 75. $(\frac{3}{2}, \frac{3\sqrt{3}}{2})$
- 77. $(\frac{-\sqrt{3}}{2}, \frac{-1}{2})$
- 79a. (-0.9, -0.3) b. (-0.940, -0.342) c. (-1.9, -0.7)

- 81a. (-0.9, 0.3)
- b. (-0.940, 0.342) c. (-1.9, 0.7)

- 83. Sides of similar triangles are proportional.

Homework 4.2

- 1. $\left(4\sqrt{2}, -4\sqrt{2}\right)$ 3. $\left(-10, -10\sqrt{3}\right)$ 5. $\left(\frac{-15\sqrt{3}}{2}, \frac{15}{2}\right)$ 7. (-1.25, -5.87) 9. (5.70, -11.68) 11. (9.46, -3.26)

- 13a.
-)2300 15a. 120 km

- b. 15.3 mi east, 21 mi north b. 91.9 km west, 77.1 km south b. 30.9 km west, 8.3 km north
- 19. Angle 0° 10° 20° 30° 40° 50° 60° 70°

x-coordinate	1	0.9	98 (0.94	0.8	87	0.77	0.	64	0.5	0.34	0.1	7	0		
Angle	100)°	110)°	120)°	130°		140°		150°	160	0	170)°	180°
x-coordinate	-0.	.17	-0	.34	-0	.5	-0.64	[-0.'	77	-0.87	-0.	94	-0	.98	-1
Angle	190)°	200)°	210)°	220°		230)°	240°	250	0	260)°	270°
x-coordinate	-0.	.98	-0	.94	-0	.87	-0.7	77	-0	.64	-0.5	-0.	34	-0	.17	0
Angle	280)°	290°	30	0°	310)° 32	0°	33	0°	340°	350°	3	60°		
r-coordinate	0.1	7	0.34	0.5	5	0.64	4 0 7	77	0.8	37	0.94	0.98	1			

- 27a. $(-225^{\circ}, \frac{1}{\sqrt{2}})$ b. $(-135^{\circ}, \frac{-1}{\sqrt{2}})$ c. $(-90^{\circ}, -1)$ d. $(45^{\circ}, \frac{1}{\sqrt{2}})$ e. $(180^{\circ}, 0)$

f. $(315^{\circ}, \frac{-1}{\sqrt{2}})$

33. $\frac{7}{2}$

- $29 \text{a. } (-240^\circ, \, \tfrac{-1}{2}) \quad \text{b. } (-210^\circ, \, \tfrac{-\sqrt{3}}{2}) \quad \text{c. } (-60^\circ, \, \tfrac{1}{2}) \quad \text{d. } (30^\circ, \, \tfrac{\sqrt{3}}{2}) \quad \text{e. } (120^\circ, \, \tfrac{-1}{2})$ f. $(270^{\circ}, 0)$
- 0° 90° 180° 270° 31a. 360° $\sin \theta$ 0

45a. 36.9°, 143.1°

47a. 72.5°, 287.5°

19.081

- 49. 36.9° 143.1°
- 51. 72.5°. 287.5°
- 53. 191.5°, 348.5°
- 55. 154.2°, 205.8°

57a.

, .	10.1	<i>J</i> 1. 1	 - , -	201.0
θ	81°	82°	83°	84°
$\tan \theta$	6.314	7.115	8.144	9.514

85° 86° 87°

14.301

88° 89° 28.636 57.29

b. $\tan \theta$ approaches ∞ .

c.	θ	99°	98°	97°	96°	95°	94°	93°	92°	91°
	$\tan \theta$	-6.314	-7.115	-8.144	-9.514	-11.43	-14.301	-19.081	-28.636	-57.29

11.43

d. $\tan \theta$ approaches $-\infty$. e. The calculator gives an error message because $\tan 90^{\circ}$ is undefined.

- 61. 51.34°
- 63. 159.44°
- 65. $y + 5 = (\tan 28^{\circ})(x 3)$ or y + 5 = 0.532(x 3)
- 67. $y 12 = (\tan 112^{\circ})(x+8)$ or y 12 = -2.475(x+8)

	-		`	, ,		, -			`	,				
69.	α	0°	15°	30°	45°	60°	75°	90°	105°	120°	135°	150°	165°	180°
	m	0	0.268	0.577	1	1.732	3.732	_	-3.732	-1.732	-1	-0.577	-0.268	0

- a. The slope increases toward ∞ .
- b. The slope decreases toward $-\infty$.

Homework 4.3

c.

b.	t	0	2	4	6	8	10	12	14	16	18	20	22	24
	θ	90°	60°	30°	0°	330°	300°	270°	240°	210°	180°	150°	120°	90°
	y = f(t)	6	$3\sqrt{3}$	3	0	-3	$-3\sqrt{3}$	-6	$-3\sqrt{3}$	-3	0	3	$3\sqrt{3}$	6

- d. The graph from t = 24 to t = 48 will be exactly the same shape as the graph from t = 0 to t = 24. f(t + 24) = f(t) says that the ant's y-coordinate 24 seconds after a time t is the same as its y-coordinate at time t.
- 3a. 2, 5, 5 b. 5

	-	-																
c.	d	0	2	5	8	10	12	15	18	20	22	25	28	30	32	35	38	40
	y	0	2	5	5	5	5	5	2	0	-2	-5	-5	-5	-5	-5	-2	0
	37.		-	-	-	-			-									

- 5. a. He will be back in the same position. b. f(d+40) = f(d)
- c. The graph for $0 \le d \le 40$ will be exactly the same shape as the graph for $40 \le d \le 80$.
- d. Every 40 unit wide piece of the graph will be identical to the previous 40 units.
- 7. $y = 6 \sin \theta$

d.

- 9. $y = \cos \theta 5$
- 11. $y = \sin(4\theta)$

- 15. 1 90 180 270 360 6
- 17.
- 19. amp = 4, period = 360° , midline: y = 3
- 21. amp = 5, period = 180° , midline: y = 0 23. amp = 3, period = 120° , midline: y = -4
- 25a. amp = 1, period = 90°, midline: y = 0 b. $y = \sin 4\theta$
- 27a. amp = 1, period = 360°, midline: y = 3 b. $y = 3 + \cos \theta$
- 29a. amp = 4, period = 360°, midline: y = -2 b. $y = -2 + 4 \sin \theta$
- 31a. amp = 2, period = 120° , midline: y = 2 b. $y = 2 + 2 \cos 3\theta$
- 33. $y = 2 + 5\cos\theta$ 35. $y = -4\sin\theta$
- 37. $y = -4 + 6\sin 3\theta$ (Answers vary)
- 39. $y = 3 + 2\cos\theta$ (Answers vary)
- 41. $y = 12\cos 2\theta$ (Answers vary)
- 43. $A(0^{\circ}, -3)$, $B(135^{\circ}, \frac{-3}{\sqrt{2}})$, $C(300^{\circ}, \frac{-3}{2})$
- 45. $P(112.5^{\circ}, 1), Q(180^{\circ}, 0), R(337.5^{\circ}, -1)$
- 47. $X(45^{\circ}, -3 + \frac{1}{\sqrt{2}})$, $Y(90^{\circ}, -3)$, $Z(360^{\circ}, -2)$ 49. not periodic 51. Periodic with period 4

b. 1 week

b. 10 minutes

- b. period 1 sec, midline y = 12, amp 10 in.
- b. period 1 year, midline y = 3500, amp 2500

b. period 1 year, midline y = 51, amp 21

- Emotional high: Oct 5 and Nov 3, low: Oct 19; Physical high: Sep 30 and Oct 23, low: Oct 12 and Nov 4; Intellectual high: Oct 10, low: Oct 26
- b. Emotional: 28 days, physical: 23 days, intellectual: 32 days c. 5152 days 69a. periodic, period 8 b. 4, midline: y = 3 c. k = 8d. a = 3, b = 771a. systolic 120 mm Hg, diastolic 80 mm Hg, pulse pressure 40 mm Hg b. $93\frac{1}{3}$
- 69 hours b. 2.2 to 3.5 c. 72 beats per minute 73a. c. The larger dip is when the brighter star is eclipsed, the smaller dip is when the dimmer star is eclipsed.

Chapter 4 Review

- 1. 12° 3a. $150^{\circ}, -210^{\circ}$
- b. 240°, -120°
- c. $160^{\circ}, -560^{\circ}$
- d. $20^{\circ}, -340^{\circ}$

- 5a. I, 60°; 120°, 240°, 300°
- b. IV, 25°; 155°, 205°, 335°
- c. II, 80°; 80°, 260°, 280°
- d. III, 70°; 70°, 110°, 290°

7a.												330	360
	$f(\theta)$	30	60	90	60	30	0	30	60	90	60	30	0
					~								

9. 210°, 330°

- 11. 120°, 240°
- 13. 45°, 225°
- 15. 23°, 337°
- 17. 72°, 252°

- 19. 163°, 277°
- 21. 221.81°, 318.19° 23. 123.69°, 303.69° 25. 128.68°, 231.32°
- 27. (-9.74, -2.25) 29. (-0.28, 8.00)
- 31. (2.84, 0.98) 33. south: 1.74 mi, west: 9.85 mi

35. $y = 4 + 7 \sin(180 \theta)$

37. $y = 17 + 7 \sin \theta$

39.
$$\frac{\sqrt{3}}{2}$$

41. 0 43.
$$y = 1.5 \cos\left(\frac{\theta}{3}\right), \ M\left(-90^{\circ}, \frac{3\sqrt{3}}{4}\right), \ N\left(180^{\circ}, \frac{3}{4}\right)$$

45.
$$y = 3 + 3 \sin 2\theta$$
, $A(45^{\circ}, 6)$, $B(120^{\circ}, 3 - \frac{3\sqrt{3}}{2})$

49a.

b. 24 hours

53a.

b. 20 sec

b. amp: 2, period: 360° , midline: y=4 b. amp: 3.5, period: 180° , midline: y=1.5

59.
$$y = x + 2$$

59.
$$y = x + 2$$
 61. $y = -\sqrt{3}x + 3\sqrt{3} - 4$

The θ -intercepts of $\cos \theta$ occur at the vertical asymptotes of $\tan \theta$.

Homework 5.1

- 1. -2
 - 3. $\frac{1}{\sqrt{2}}$

- 5. 6 7. $\frac{1}{2}$ 9. 4 11. 2 13. 1

- 21a.1

- 0.7660 b. 0.8164 c. 0.7660 19a. 0.6691
 - b. 1.8271 c. 0.6691

15.0

17a.

- c. 1 b. 1

- 23a. $-2x^2 x$ b. $-2\cos^2\theta \cos\theta$ 27. $5C^2S^3$ b. $5\cos^2\theta\sin^3\theta$

- 25a. 4SC
- 29. $-2\cos t + 2\cos t\sin t$; 0.6360 31. $\tan \theta \tan \phi$; -56.91
- 33. $2 \sin x \cos x 2 \sin(2x)$; 0
- 35. No 37. No 39. Yes

b. $4\sin\theta\cos\theta$

- 41. No 43. No

- 45a. $2x^2-x$ b. $2\sin^2 A \sin A$ 47a. $ab-3a^2$ b. $\tan A \tan B 3\tan^2 A$ 49a. $2C^2+C-1$ b. $2\cos^2 \phi + \cos \phi 1$ 51a. a^2-b^2 b. $\cos^2 \theta \cos^2 \phi$

- 53a. $1 2T + T^2$
- b. $1 2 \tan \theta + \tan^2 \theta$ 55a. $T^4 4$

- 57a. 3(3m + 5n)
- b. $3(3\cos\alpha + 5\cos\beta)$ 59a.
- b. $\tan^4\theta 4$ 5r(r-2q)

- b. $5\tan C(\tan C 2\tan B)$ 61a. (3C+1)(3C-1) b. $(3\cos \beta + 1)(3\cos \beta 1)$
- 63a. $2T^2(3T-4)$ b. $2\tan^2 A(3\tan A-4)$ 65a. (t-5)(t+4)

- b. $(\tan \theta 5)(\tan \theta + 4)$ 67a. (3c 1)(c + 1) b. $(3\cos \beta 1)(\cos \beta + 1)$ 69a. (6S + 1)(S 1) b. $(6\sin \alpha + 1)(\sin \alpha 1)$

Homework 5.2

- 1. 70°
- 3. 40° 5. I: 18°; II: 162°; III: 198°; IV: 342°

b. 45°

7. I: 52°; II: 128°; III: 232°; IV: 308°

9a.

- , ,		- ,				
x	-1	0	1	2	3	b. -1 or 2
$x^3 - 3x^2 + 4$	0	4	2	0	4	

11a.

$x^{2} - 3x^{2} + 4$	U	4 2	U	4
θ	0°	30°	45°	60°
$\sin \theta + \cos \theta$	1	$\frac{\sqrt{3}+1}{2}$	$\sqrt{2}$	$\frac{\sqrt{3}+1}{2}$

225° 240° 270° 13a. 210° $\frac{2-\sqrt{2}}{2} \mid \frac{1-\sqrt{3}}{2} \mid$ $\sin \beta + 2 \cos^2 \beta$ -1

b. 270°

15. x = 5, -3

17.
$$x = -3, 1, 2$$

19.
$$\theta = 30^{\circ} \text{ or } \theta = 210^{\circ}$$

21.
$$\theta = 60^{\circ} \text{ or } \theta = 300^{\circ}$$

23.
$$\theta = 210^{\circ} \text{ or } \theta = 330^{\circ}$$

25.
$$\theta = 225^{\circ} \text{ or } \theta = 315^{\circ}$$

27.
$$\theta = 0^{\circ} \text{ or } \theta = 180$$

21.
$$\theta = 60^{\circ}$$
 or $\theta = 300^{\circ}$ 23. $\theta = 210^{\circ}$ or $\theta = 330^{\circ}$ 25. $\theta = 225^{\circ}$ or $\theta = 315^{\circ}$ 27. $\theta = 0^{\circ}$ or $\theta = 180^{\circ}$ 29. $\theta = 60^{\circ}$, $\theta = 120^{\circ}$, $\theta = 240^{\circ}$, or $\theta = 300^{\circ}$

31.
$$\theta = 45^{\circ}, \theta = 135^{\circ}, \theta = 225^{\circ}, \text{ or } \theta = 315^{\circ}$$
 33. $\theta = 104.04^{\circ} \text{ or } \theta = 284.04^{\circ}$

31.
$$\theta = 45^{\circ}, \theta = 135^{\circ}, \theta = 225^{\circ}, \text{ or}$$

$$2.5.0 = 00, 0 = 120, 0 = 210, 010 = 0$$

35.
$$\theta = 53.13^{\circ}$$
 or $\theta = 306.87^{\circ}$ 37. $\theta = 188.21^{\circ}$ or $\theta = 351.79^{\circ}$ 39. $A = 135^{\circ}$ or $A = 315^{\circ}$

$$\theta$$
, or $\theta = 313$

$$47 + 9000 = 4 + 9300$$

43.
$$D = 90$$
 or $D = 270$

41.
$$\phi = 210^\circ$$
 or $\phi = 330^\circ$ 43. $B = 90^\circ$ or $B = 270^\circ$ 45. $\theta = 210^\circ$ or $\theta = 330^\circ$ 47. $t = 202^\circ$ or $t = 338^\circ$ 49. $B = 22^\circ$ or $B = 202^\circ$ 51. $\phi = 146^\circ$ or $\phi = 214^\circ$

47.
$$t = 202^{\circ} \text{ or } t = 338^{\circ}$$

49.
$$B = 22^{\circ}$$
 or $B = 202^{\circ}$

51.
$$\phi = 146^{\circ} \text{ or } \phi = 2$$

4/.
$$t = 202^{\circ}$$
 or $t = 338^{\circ}$

$$0.0 - 234.740 \text{ or } 0 = 301$$

53.
$$\theta = 54.74^{\circ}$$
, $\theta = 125.26^{\circ}$, $\theta = 234.74^{\circ}$ or $\theta = 305.26^{\circ}$

55.
$$\theta = 0^{\circ}, \ \theta = 180^{\circ}, \ \theta = 191.54^{\circ} \text{ or } \theta = 348.46^{\circ}$$
 57. $\theta = 60^{\circ}, \ \theta = 180^{\circ}, \ \theta = 300^{\circ}$

59.
$$\theta = 26.57^{\circ}, \ \theta = 161.57^{\circ}, \ \theta = 206.57^{\circ} \text{ or } \theta = 341.57^{\circ}$$

61.
$$\theta = 78.69^{\circ}, \ \theta = 108.43^{\circ}, \ \theta = 258.69^{\circ} \text{ or } \theta = 288.43^{\circ}$$

63.
$$\theta = 0$$

67. 35.66°

Homework 5.3

- 1. not an identity 3. not an identity 5. identity 7. not an identity
- 9. not an identity 11. not an identity 13. identity 15. identity
- 17. $(1 + \sin w)(1 \sin w) = 1 \sin^2 w = \cos^2 w$
- 19. $(\cos \theta \sin \theta)^2 = \cos^2 \theta 2\cos \theta \sin \theta + \sin^2 \theta = (\cos^2 \theta + \sin^2 \theta) 2\sin \theta \cos \theta = 1 2\sin \theta \cos \theta$
- 21. $\tan \theta \cos \theta = \frac{\sin \theta}{\cos \theta} \cdot \cos \theta = \sin \theta$
- $\cos^4 x \sin^4 x = (\cos^2 x \sin^2 x)(\cos^2 x + \sin^2 x) = (\cos^2 x \sin^2 x)(1) = \cos^2 x \sin^2 x$

25.
$$\frac{\sin u}{1 + \cos u} = \frac{\sin u}{1 + \cos u} \cdot \frac{1 - \cos u}{1 - \cos u} = \frac{\sin u(1 - \cos u)}{1 - \cos^2 u} = \frac{\sin u(1 - \cos u)}{\sin^2 u} = \frac{1 - \cos u}{\sin u}$$

- A 33. $\tan^2 z$ 35. 3 37. 1 3 45. $\sin 2t$ 47. $1 + 2\sin \theta + \sin^2 \theta$ 27. 1 29. 1 31. $\sin^2 A$
- 41. $\cos 2\theta$ 43. $\cos \theta$
- 49. $3\cos^2\phi 2$ 51. $\theta = 90^\circ$, $\theta = 180^\circ$, $\theta = 270^\circ$ 53. $\theta = 90^\circ$, $\theta = 210^\circ$, $\theta = 330^\circ$
- 55. $\theta = 210^{\circ}, \ \theta = 330^{\circ}$ 57. $\theta = 18.43^{\circ}, \ \theta = 198.43^{\circ}$ 59. $\sin A = \frac{-5}{13}$, $\tan A = \frac{-5}{12}$
- 61. $\cos \phi = \frac{-4\sqrt{3}}{7}$, $\tan \phi = \frac{-1}{4\sqrt{3}}$ 63. $\sin \theta = \frac{-1}{\sqrt{5}}$, $\cos \theta = \frac{2}{\sqrt{5}}$ 65. $\sin \theta = \frac{-3}{5}$, $\cos \theta = \frac{-4}{5}$ 67. $\sin \theta = \frac{\sqrt{3}}{2}$, $\cos \theta = \frac{-1}{2}$, $\tan \theta = -\sqrt{3}$ 69. $\sin \beta = \frac{2}{\sqrt{5}}$, $\cos \beta = \frac{-1}{\sqrt{5}}$, $\tan \beta = -2$
- 71. $\sin C = \frac{1}{\sqrt{5}}, \cos C = \frac{2}{\sqrt{5}}, \text{ and } \tan C = \frac{1}{2} \text{ or } \sin C = \frac{1}{\sqrt{5}}, \cos C = \frac{-2}{\sqrt{5}}, \text{ and } \tan C = \frac{-1}{2}$

73.
$$\frac{\tan \alpha}{1 + \tan \alpha} = \frac{\frac{\sin \alpha}{\cos \alpha}}{1 + \frac{\sin \alpha}{\cos \alpha}} = \frac{\frac{\sin \alpha}{\cos \alpha}}{1 + \frac{\sin \alpha}{\cos \alpha}} \cdot \frac{\cos \alpha}{\cos \alpha} = \frac{\sin \alpha}{\cos \alpha} \cdot \frac{\sin \alpha}{\cos \alpha}$$
75.
$$\frac{1 + \tan^2 \beta}{1 - \tan^2 \beta} = \frac{\frac{1}{\cos^2 \beta}}{1 - \frac{\sin^2 \beta}{\cos^2 \beta}} = \frac{\frac{1}{\cos^2 \beta}}{1 - \frac{\sin^2 \beta}{\cos^2 \beta}} \cdot \frac{\cos^2 \beta}{\cos^2 \beta} = \frac{1}{\cos^2 \beta - \sin^2 \beta}$$

75.
$$\frac{1+\tan^2\beta}{1-\tan^2\beta} = \frac{\frac{1}{\cos^2\beta}}{1-\frac{\sin^2\beta}{\cos^2\beta}} = \frac{\frac{1}{\cos^2\beta}}{1-\frac{\sin^2\beta}{\cos^2\beta}} \cdot \frac{\cos^2\beta}{\cos^2\beta} = \frac{1}{\cos^2\beta - \sin^2\beta}$$

a. By the distance formula, $\sqrt{x^2 + y^2} = r$, or, $x^2 + y^2 = r^2$

b.
$$\frac{x^2}{r^2} + \frac{y^2}{r^2} = 1$$

b. $\frac{x^2}{x^2} + \frac{y^2}{x^2} = 1$ c. $\left(\frac{x}{x}\right)^2 + \left(\frac{y}{x}\right)^2 = 1$ d. $(\cos\theta)^2 + (\sin\theta)^2 = 1$

Chapter 5 Review

- 1. $\frac{-3}{4\sqrt{2}}$ 3. $\frac{1}{\sqrt{6}}$

- 5a. 0.8660 b. 0.9848; No 7a. 1.4281 b. 1.4281; Yes

- 9. $5 \sin x 2 \sin x \cos y \cos y$ 11. $2 \tan \theta 10 \tan^2 \theta$ 13. Not equivalent
- 15. Equivalent 17. $2\cos^2\alpha + \cos\alpha 6$ 19. $\tan^2\phi 2\tan\phi\cos\phi + \cos^2\phi$ 21. $6(2\sin 3x \sin 2x)$ 23. $(1+3\tan\theta)(1-3\tan\theta)$ 25. $\cos\alpha + \sin\alpha$
- 29. $\frac{3 \tan C + 2}{1}$ $\frac{3 \tan C + 2}{\tan C - 2}$ 31. 51.32°, 308.68° 33. 90°, 270°, 120°, 240°
- 35. 90° , 210° , 330° 37. 30° , 150° , 210° , 330° 39. 0° , 120° , 240° 41. 57.99° , 237.99° 43. 90° , 270° 45. 33.17° 47. Identity
 49. Not an identity
 51. Not an identity
 53. Identity
- 55. $\frac{1 \cos^2 \alpha}{\tan \alpha} = \sin^2 \alpha \cdot \frac{\cos \alpha}{\sin \alpha} = \sin \alpha \cos \alpha$
- $57. \frac{\frac{\sin \alpha}{\sin \theta} \sin \theta \cos \theta}{\sin \theta \cdot \frac{\sin \theta}{\cos \theta}} = \frac{\sin \alpha}{\sin \theta \sin \theta \cos^2 \theta} = \frac{\sin \theta (1 \cos^2 \theta)}{\sin^2 \theta} = \frac{\sin \theta \sin^2 \theta}{\sin^2 \theta} = \sin \theta$ $59. \frac{1}{\sin \theta \cos \theta}$ 61. 1 63. 0 65. 1 $67. \frac{1}{\cos^2 \beta}$ $69. 2 + \cos t 2\cos^2 t$ $71. \sin \beta = \frac{-6}{\sqrt{85}}, \cos \beta = \frac{-7}{\sqrt{85}}, \tan \beta = \frac{6}{7}$
- 73. $\sin \alpha = \frac{\sqrt{21}}{5}$, $\cos \alpha = \frac{-2}{5}$, $\tan \alpha = \frac{-\sqrt{21}}{2}$ 75. 0°, 180°, 270° 77. 135°, 315° 79. 0°, 60°, 180°, 300° 81. 0°, 180°

Homework 6.1

												$\frac{3R}{4}$
1a.	Radians	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	2π	b.	π 0 or 2π
	Degrees	0°	45°	90°	135°	180°	225°	270°	315°	360°		\vee
												$\frac{5\pi}{4}$ $\frac{7\pi}{4}$
												<u> 310</u>

3a. $120^{\circ} = \frac{2\pi}{3}$ radians b. $240^{\circ} = \frac{4\pi}{3}$ radians c. $480^{\circ} = \frac{8\pi}{3}$ radians d. $600^{\circ} = \frac{10\pi}{3}$ radians 5a. $45^{\circ} = \frac{\pi}{4}$ radians b. $135^{\circ} = \frac{3\pi}{4}$ radians c. $225^{\circ} = \frac{5\pi}{4}$ radians d. $315^{\circ} = \frac{7\pi}{4}$ radians

- 15. 2.62 21a.II b. IV c. IV 13. 2.09 17. 0.52 19. 2.36
- d. IV 23a. III b. II
- 25. Radians 27. Radians Degrees | 210° | 225° | 240° 30° 60° 45° Degrees
- 29a. 1.31 31a. 45.8° b. 200.5° b. 4.12 c. 5.71 c. 292.2°
- 37. 160.42° 39a. $\frac{5\pi}{6}$ b. 32.72 ft 33. 5.86 in 35. 4.13 m 41. $\frac{8}{67}$ radians $\approx 6.84^{\circ}$ 43a. $33,000\pi \approx 103,672.6$ in
- b. $33,000\pi \approx 103,672.6$ in per min 45. $170\pi \approx 534.1$ m per min

$$(0.94, -0.35), (-0.94, -0.35)$$

$$(\frac{-\sqrt{3}}{2},\frac{1}{2}), (\frac{-\sqrt{3}}{2},\frac{-1}{2})$$

b.	θ	1	2	3	4	5	6
	s	4	8	12	16	20	24

- d. Arclength doubles; arclength triples.
- 59. 32.5 cm²
 - 57a. $\frac{\theta}{2\pi}$ $\frac{\pi}{10}$ radians per min b. $\frac{10\pi}{9}$ radians per sec

Homework 6.2

1.		а	b	С	d
	t	$\frac{\pi}{4}$	$\frac{3\pi}{4}$	$\frac{5\pi}{4}$	$\frac{7\pi}{4}$
	x	$\frac{1}{\sqrt{2}}$	$\frac{-1}{\sqrt{2}}$	$\frac{-1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$
	y	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	$\frac{-1}{\sqrt{2}}$	$\frac{-1}{\sqrt{2}}$

3.		а	b	С	d
	t	$\frac{\pi}{3}$	$\frac{2\pi}{3}$	$\frac{4\pi}{3}$	$\frac{5\pi}{3}$
	x	$\frac{1}{2}$	$\frac{-1}{2}$	$\frac{-1}{2}$	$\frac{1}{2}$
	y	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{-\sqrt{3}}{2}$	$\frac{-\sqrt{3}}{2}$

5a. $\sin 0.4 \approx 0.39$, $\cos 0.4 \approx 0.92$, $\tan 0.4 \approx 0.42$ b. $\sin 1.2 \approx 0.93$, $\cos 1.2 \approx 0.36$,

 $\tan 1.2 \approx 2.6$

- c. $\sin 2 \approx 0.91$, $\cos 2 \approx -0.42$, $\tan 2 \approx -2.2$
- 7a. $\sin 2.8 \approx 0.33$, $\cos 2.8 \approx -0.94$, $\tan 2.8 \approx -0.36$ b. $\sin 3.5 \approx -0.35$, $\cos 3.5 \approx -0.94$, $\tan 3.5 \approx 0.37$ c. $\sin 5 \approx -0.96$, $\cos 5 \approx 0.28$, $\tan 5 \approx -3.3$
- 9. $t \approx 1.27$ or $t \approx 5$
- 11. $t \approx 3.92$ or $t \approx 5.5$
- 13. $t \approx 2.72$ or $t \approx 5.87$

- 15. II
- 17. II
- 19. III
- 21. Negative
- 23. Positive
- 25. Positive

35. 0.84

33. 1.34

- $27. \sin 3.5, \sin 0.5, \sin 2.5, \sin 1.5$
- 29. $\cos 3$, $\cos 4$, $\cos 2$, $\cos 5$ 31. January 1: 4:24; April 1: 6:45; July 1: 8:02; October 1: 5:55
- 37. 0.02
- 39. $\frac{1}{12}\pi$
- 41. $\frac{1}{3}\pi$
- 43. $\frac{1}{4}\pi$

 $55.(\cos 2.5, \sin 2.5) \approx (-0.8, 0.6)$

- $\frac{3+\sqrt{3}}{3}$ 49. $\frac{1}{4}$
- 53. $\frac{3-6\sqrt{3}}{4}$

- 57. $(\cos 8.5, \sin 8.5) \approx (-0.6, 0.8)$
- 59. $\cos 5 \approx 0.28$ mi east, $\sin 5 \approx -0.96$ mi north, or about 0.96 mi south 61. 1.75

65.3.84

$$\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$$
 and $\left(\frac{-1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$

b. $(\cos \frac{\pi}{4}, \sin \frac{\pi}{4})$ and $(\cos \frac{5\pi}{4}, \sin \frac{5\pi}{4})$

69a.

b. $\tan^{-1}\left(\frac{3}{8}\right) \approx 0.3588$

71.
$$y-2=\sqrt{3}(x-4)$$

73.
$$y + 8 = (\tan 2.4)(x - 5)$$
 or $y + 8 = -0.916(x - 5)$

- 75. Any point (x, y) on the terminal side of θ satisfies $\cos \theta = \frac{x}{r}$, $\sin \theta = \frac{y}{r}$. For the point P where r = 1, $\cos \theta = x$, $\sin \theta = y$. The arc of length t is spanned by an angle θ in standard position. Because arclength is $r\theta$ and r = 1, $t = \theta$, so $x = \cos t$, $y = \sin t$.
- 77. The two right triangles shown are similar, so their sides are proportional. The hypotenuse of the large triangle is r times the hypotenuse of the small triangle, so the two legs of the large triangle must be r times the legs of the small triangle. Thus, because the coordinates of the vertex on the unit circle are $(\cos \theta, \sin \theta)$, the coordinates of P must be $(r\cos \theta, r\sin \theta)$.
- 79. 71 m west, 587 m north

Homework 6.3

1a.	θ	0	$\frac{\pi}{12}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{5\pi}{12}$	$\frac{\pi}{2}$	$\frac{7\pi}{12}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	$\frac{11\pi}{12}$	π
	$\cos \theta$	1	0.97	0.87	0.71	0.50	0.26	0	-0.26	-0.50	-0.71	-0.87	-0.97	-1

- b. Domain: $(-\infty, \infty)$, range: [-1, 1] b. Domain: $x \neq \frac{n\pi}{2}$, n odd integer; range: $(-\infty, \infty)$
- 9a. $x \approx 0.7$ or $x \approx 2.4$
- b. $x \approx 0.36$ or $x \approx 2.78$
- $x \approx 2 \text{ or } x \approx 4.3$ 11a.

- b. $x \approx 2.5$ or $x \approx 3.79$
- 13. $x \approx 1.3$ or $x \approx 4.5$
- 15. $x \approx 2.7$ or $x \approx 5.8$

- 17. $x \approx 1.4$ or $x \approx 4.5$
- 19. $x \approx 2.2$ or $x \approx 5.3$
- 21. I: 0.5, II: 2.7, III: 3.6, IV: 5.8
- 23. I: 0.6, II: 2.6, III: 3.7, IV: 5.7
- 25. I: 1.3, II: 1.8, III: 4.5, IV: 4.9
- 27. $t \approx 0.74$ or $t \approx 5.55$

- 27. $\iota \approx 1.01$ or $t \approx 4.15$ $31. x \approx 3.94$ or $x \approx 5.48$ $33. t = \frac{3\pi}{2}$

 35. $x = \frac{\pi}{4}$ or $x = \frac{5\pi}{4}$ $37. z = \frac{\pi}{3}$ or $z = \frac{5\pi}{3}$ $39. s = \frac{2\pi}{3}$ or $s = \frac{5\pi}{3}$

 41. $t = \frac{5\pi}{4}$ or $t = \frac{7\pi}{4}$ $43. x = \frac{5\pi}{6}$ or $x = \frac{7\pi}{6}$ 45a. 0.78
- b. 1.12

- 47a. 0.26

- b. 1.28 49a. -0.9 b. No solution 51a. $\frac{1}{\sqrt{2}}$
- b. 0.9

- 53. $-6\sqrt{2}$
- 55. $-4\sqrt{3}$
- 57. 6

61b-c. 90

- d. $t \approx 10$ and $t \approx 20$ e. $t \approx 7.5$ to $t \approx 22$ d. High: day 204, 105°; low: day 25, 66° e. $d \approx 128$ to $d \approx 281$ 63a. -0.8, 0.6, $\frac{-4}{3}$ b. 0.8, -0.6, $\frac{-4}{3}$ c. -0.8, -0.6, $\frac{4}{3}$ 65a. 0.92, -0.39, $\frac{-92}{39}$ b. -0.92, 0.39, $\frac{-92}{39}$ c. 0.92, 0.39, $\frac{92}{39}$

- b. Domain: $(-\infty, \infty)$, range: $(-\infty, 9]$
- b. Domain: $x \neq 0$, range: $(-\infty, 2)$

- b. Domain: $(6, \infty]$, range: $[0, \infty)$
- b. Domain: [-2, 2], range: [-2, 0]

b. Domain: $(-\infty, \infty)$, range: [-1, 1]

Chapter 6 Review

- c. $\frac{17\pi}{9}$
- 3a. 0.47
- b. 2.48
- c. 3.80

- 5a. 150°
- b. 54°
- c. 230°
- 7a. 114.59°
- b. 206.26°

- 9a. $\frac{4\pi}{3}$
- b. $\frac{7\pi}{6}$
- c. $\frac{9\pi}{4}$
- 11a. $\frac{1}{8}$
- c. 45.84°

- 13a. II

- b. $\frac{5}{16}$
- c. $\frac{7}{6}$

- b. I
- c. IV
- b. 0.0379

c. $(-r\cos\alpha, -r\sin\alpha)$

- 17a. 6885 mph
- 19a. 0
- 15a. 0.006, 2.17, 0.0379 c. $\frac{-1}{2}$

- 21a. (0.5, 0.8) b. (-0.4, 0.9)
- c. (-1.0, 0.1)

- 23a. $(r\cos\alpha, r\sin\alpha)$
- 25. 6π
- b. $(-r\cos\alpha, r\sin\alpha)$ 27. >

0 1.57 3.14 4.71 6.28

29. <

- d. $(r\cos\alpha, -r\sin\alpha)$ 31. 9.86 33. -1.33
 - 35a. $\frac{\pi}{6}$
- b. $\frac{\pi}{4}$

107

- c. $\frac{3\pi}{8}$
- d. $\frac{5\pi}{12}$

- 37a. 0.34
- b. 0.76
- c. 1.25
- d. 1.5
- 39. 158.2°

7.5 43a.

mid: y = 5, amp: 3, period: π

45a.

mid: y = 10, amp: 4.8, period: 2π

0.86, 2.28, 4.00, 5.42

1.93, 4.2 47. $\frac{5\pi}{12}$, $\frac{17\pi}{12}$ 49. $\frac{\pi}{3}$, $\frac{2\pi}{3}$

51. π

- 53. 1.37, 4.51
- 55. 6.02, 3.40
- 57. 0.32, 5.97
- 59a. 1.21, 5.07

- b. 0.9394
- 61a. 0.40, 2.74
- b. 0.3827

65.

Dom: all real numbers, Rge: $y \ge 4$ 67a. $x^2 + y^2 = 1$ b. $(\cos t, \sin t)$ c. $\cos^2 t + \sin^2 t = 1$

Dom: $-4 \le x \le 4$, Rge: $-4 \le y \le 0$

Answers to Odd-Numbered Homework Problems

Homework 7.1

- 1. amplitude 2, period 2π , midline y=-3 3. amplitude 1, period $\frac{\pi}{2}$, midline y=0
- 5. amplitude 5, period 6π , midline y=0 7. amplitude 1, period 2, midline y=1

- 17. $y = -2 \sin x$
- $19. y = -2\cos x$

4

1

1

- 21. $y = -0.75 \cos x$
- amplitude 2, period $\frac{2\pi}{3}$, midline y=023a.
- b. $y = -2 \sin 3x$
- 25a. amplitude 3, period 2π , midline y = 0
- $y = 0.5 \cos \frac{x}{2} + 3.5$
- amplitude 0.5, period 4π , midline y = 3.527a. 29a. amplitude 2, period 4, midline y = -1b.
- $y = -1 + 2\sin\frac{\pi x}{2}$

t	2t	$\cos 2t$	$-5\cos 2t$	$2-5\cos 2t$
0	0	1	-5	-3
$\frac{\pi}{4}$	$\frac{\pi}{2}$	0	0	2
$\frac{\pi}{2}$	π	-1	5	7
$\frac{3\pi}{4}$	$\frac{3\pi}{2}$	0	0	2
π	2π	1	-5	-3

33a. $3\cos\frac{t}{2}$ $1 + 3\cos\frac{t}{2}$ $\cos \frac{t}{2}$ 0 0 1 3 0 0 π -3 2π -2 π -1

0

 3π

 6π

b.								
	-4	-					÷	/
	- 2-		1				1	
			-/				1	
			π	1	-2π	/	3π	
	-2+		J_				I	

1 3 4 4π 2π 35a. t $\sin \frac{t}{3}$ 0 0 0 1 3π π 0

> -10

0

$2\sin\frac{t}{3}$	$-3 + 2 \sin \frac{t}{3}$	b.
0	-3	
2	-1	
0	-3	
-2	-5	
0	-3	

37.

 2π

b.
$$W(t) = 12 + 8\cos\left(\frac{\pi t}{6}\right)$$

49.
$$H = 12 - 2.4 \cos\left(\frac{\pi t}{6}\right)$$

49.	H=12	2 - 2.4	cos	$\left(\frac{\pi t}{6}\right)$) ``	,
53.	x	$\frac{-\pi}{4}$	$\frac{-\pi}{8}$	0	$\frac{\pi}{8}$	$\frac{\pi}{4}$
	$\tan 2x$	undef	-1	0	1	undef

period $\frac{\pi}{2}$, midline y = 0

period $\frac{\pi}{3}$, midline y=4

period 4π , midline y=3

- 67. 4.19

- 61. $\frac{7\pi}{12}$, $\frac{11\pi}{12}$, $\frac{19\pi}{12}$, $\frac{23\pi}{12}$
- 65. 1.83, 2.88, 4.97, 6.02
- 69. 0.28, 1.81, 2.37, 3.91, 4.47, 6.00

Homework 7.2

1a.	x	$-\pi$	$\frac{-5\pi}{6}$	$\frac{-2\pi}{3}$	$\frac{-\pi}{2}$	$\frac{-\pi}{3}$	$\frac{-\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{5\pi}{6}$	π
	f(x)	0	$\frac{-1}{2}$	$\frac{-\sqrt{3}}{2}$	-1	$\frac{-\sqrt{3}}{2}$	$\frac{-1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	0
	g(x)	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	0	$\frac{-1}{2}$	$\frac{-\sqrt{3}}{2}$	-1	$\frac{-\sqrt{3}}{2}$	$\frac{-1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$

- c. $\frac{\pi}{3}$ to the right d. $\frac{5\pi}{6}$

3a.	x	$-\pi$	$\frac{-3\pi}{4}$	$\frac{-\pi}{2}$	$\frac{-\pi}{4}$	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π
	f(x)	0	1	undef	-1	0	1	undef	-1	0
	g(x)	1	undef	-1	0	1	undef	-1	0	1

- c. $\frac{\pi}{4}$ to the left d. $-\pi$, 0, π e. $\frac{-\pi}{4}$, $\frac{3\pi}{4}$

b.

b.

b.

5a. amplitude 2, shift $\frac{\pi}{6}$ to left

7a.
$$f(x) = \sin(x + \frac{\pi}{4})$$

- 9a. $f(x) = \tan\left(x \frac{\pi}{3}\right)$
- b. $f(x) = \cos(x \frac{\pi}{4})$ b. $f(x) = \tan(x + \frac{2\pi}{3})$
- 11a. period π , shift $\frac{\pi}{6}$ right

	1		11.	4	_	 	1	
	1	1		1		-		1
· 7.		π/3	2π/	3 / π	4π	/3 5	π/3	2
-1	+	{	1		}	>	1	- 23

- $\frac{7\pi}{6}$ e. $\frac{5\pi}{12}$, $\frac{11\pi}{12}$, $\frac{13\pi}{6}$, $\frac{23\pi}{12}$ period 2, shift $\frac{1}{3}$ left
- 13a.

- midline y = 4, period 4π , horizontal shift $\frac{\pi}{3}$ to right, amplitude 3

- 17. $y = 2\sin(\frac{2\pi}{3}(x+4)) + 5$

 \boldsymbol{x} $x + \frac{\pi}{6}$ $\cos\left(x+\frac{\pi}{6}\right)$ $-2\cos\left(x+\frac{\pi}{6}\right)$ 2 -10 1 -20 $\frac{\pi}{3}$ 0 0 $\frac{5\pi}{6}$ 2 -1 π $\frac{4\pi}{3}$ 0 0 2π 1 -2

3/			
x	2x	$2x-\frac{\pi}{3}$	$\cos\left(2x - \frac{\pi}{3}\right)$
$\frac{\pi}{6}$	$\frac{\pi}{3}$	0	1
$\frac{5\pi}{12}$	$\frac{5\pi}{6}$	$\frac{\pi}{2}$	0
$\frac{2\pi}{3}$	$\frac{4\pi}{3}$	π	-1
$\frac{11\pi}{12}$	$\frac{11\pi}{6}$	$\frac{3\pi}{2}$	0
$\frac{7\pi}{6}$	$\frac{7\pi}{3}$	2π	1

b. $\sin(\pi x + \frac{\pi}{3})$ $\pi x + \frac{\pi}{3}$ πx 0 0 1 π -1 $\frac{5\pi}{3}$ 2π

\boldsymbol{x}	$\frac{x}{2}$	$\frac{x}{2} - \frac{\pi}{6}$	$\sin\left(\frac{x}{2} - \frac{\pi}{6}\right)$	$3\sin\left(\frac{x}{2}-\frac{\pi}{6}\right)+4$
$\frac{\pi}{3}$	$\frac{\pi}{6}$	0	0	4
$\frac{4\pi}{3}$	$\frac{2\pi}{3}$	$\frac{\pi}{2}$	1	7
$\frac{7\pi}{3}$	$\frac{7\pi}{6}$	π	0	3
$\frac{10\pi}{3}$	$\frac{5\pi}{3}$	$\frac{3\pi}{2}$	-1	1
$\frac{13\pi}{3}$	$\frac{13\pi}{6}$	2π	0	4

 $y = -5\cos\left(\frac{\pi x}{180}\right) + 12$ 19.

21a.
$$f(x) = 3\sin(x + \frac{2\pi}{3})$$

b.
$$f(x) = 3\cos(x + \frac{\pi}{6})$$

23a.
$$f(x) = 2\sin(2(x - \frac{\pi}{4}))$$

b.
$$f(x) = -2\cos(2x)$$

25a.
$$f(x) = 4 \sin(\frac{1}{4}(x - \frac{7\pi}{3}))$$

$$\begin{array}{lll} f(x) = 3 \sin \left(x + \frac{2\pi}{3} \right) & \text{b.} & f(x) = 3 \cos \left(x + \frac{\pi}{6} \right) \\ f(x) = 2 \sin \left(2(x - \frac{\pi}{4}) \right) & \text{b.} & f(x) = -2 \cos (2x) \\ f(x) = 4 \sin \left(\frac{1}{4} \left(x - \frac{7\pi}{3} \right) \right) & \text{b.} & f(x) = -4 \cos \left(\frac{1}{4} \left(x - \frac{\pi}{3} \right) \right) \end{array}$$

midline T = 35.35, period 12, amplitude 36.95 27a.

b.
$$T(m) = -36.95 \cos(\frac{\pi}{6}m) + 35.35$$

midline h=1.4, period $\frac{2\pi}{0.51}\approx 12.32$, amplitude 1.4 29a.

c. high 11:10 am, low 5:19 pm

31a. amplitude 3.2, period 2, midline
$$y=2$$
 b. $f(t)=2+3.2\cos(\pi t)$

b.
$$f(t) = 2 + 3.2\cos(\pi t)$$

33a. amplitude 5, period 1, midline
$$y = 0$$
 b. $H(x) = 5\sin(2\pi x) + 5$

b.
$$H(x) = 5\sin(2\pi x) + \frac{1}{2}$$

Homework 7.3

1b.
$$\frac{3\pi}{8}$$
, $\frac{7\pi}{8}$, $\frac{11\pi}{8}$, $\frac{15\pi}{8}$

3b. 0,
$$\frac{\pi}{2}$$
, π , $\frac{3\pi}{2}$, 2π

5b.
$$\frac{2\pi}{9}$$
, $\frac{4\pi}{9}$, $\frac{8\pi}{9}$, $\frac{10\pi}{9}$, $\frac{14\pi}{9}$. $\frac{16\pi}{9}$

7b.
$$\frac{\pi}{12}$$
, $\frac{5\pi}{12}$, $\frac{13\pi}{12}$, $\frac{17\pi}{12}$

3b.
$$0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi$$

9b. $\frac{\pi}{18}, \frac{7\pi}{18}, \frac{13\pi}{18}, \frac{19\pi}{18}, \frac{25\pi}{18}, \frac{31\pi}{18}$

5b.
$$\frac{2\pi}{9}$$
, $\frac{4\pi}{9}$, $\frac{8\pi}{9}$, $\frac{10\pi}{9}$, $\frac{14\pi}{9}$. $\frac{16\pi}{9}$ 11. 0.491, 2.651, 3.632, 5.792

1b. $\frac{3\pi}{8}$, $\frac{7\pi}{8}$, $\frac{11\pi}{8}$, $\frac{15\pi}{8}$ 3b. 0, $\frac{\pi}{2}$, π , $\frac{3\pi}{2}$, 2π 7b. $\frac{\pi}{12}$, $\frac{5\pi}{12}$, $\frac{13\pi}{12}$, $\frac{17\pi}{12}$ 9b. $\frac{\pi}{18}$, $\frac{7\pi}{18}$, $\frac{13\pi}{18}$, $\frac{19\pi}{18}$, $\frac{25\pi}{18}$, $\frac{31\pi}{18}$ 13. 0.540, 1.325, 2.110, 2.896, 3.681, 4.467, 5.252, 6.037

21.
$$\frac{\pi}{6}$$
, $\frac{2\pi}{3}$, $\frac{7\pi}{6}$, $\frac{5\pi}{3}$

21.
$$\frac{\pi}{6}$$
, $\frac{2\pi}{3}$, $\frac{7\pi}{6}$, $\frac{5\pi}{3}$ 23. $\frac{5\pi}{12}$, $\frac{7\pi}{12}$, $\frac{13\pi}{12}$, $\frac{5\pi}{4}$, $\frac{7\pi}{4}$, $\frac{23\pi}{12}$

25.
$$\frac{3\pi}{2}$$

27.
$$\frac{7}{6}$$
, $\frac{11}{6}$, $\frac{19}{6}$, $\frac{23}{6}$, $\frac{31}{6}$, $\frac{35}{6}$

31. 0.44, 1.44, 2.44, 3.44, 4.44, 5.44 33. 0.01, 3.39, 6.01

39. 1.165, 4.165 41. 2.251 43a.
$$P(t) = 4000 \cos(\frac{\pi}{6}t) + 46,000$$

b. $t = \frac{6}{\pi} \cos^{-1}(\frac{-1}{4})$; t = 3.48 months (Dec) or t = 8.52 months (June)

P(t) is less than 45,000 between A and B.

45a.

$$h(t) = 11 - 10\cos(\frac{\pi}{30}t)$$
 b. $t = \frac{30}{\pi}\cos^{-1}(\frac{-7}{10}); \ t = 22.40 \sec \text{ or } t = 37.60 \sec t$

40 50 60 10 20 30

Delbert is above 18 m between A and B.

Chapter 7 Review

1. amp: 2, period: $\frac{2\pi}{3}$, mid: y = 4 3. amp: 2.5, period: 2, mid: y = -2

9. $y = 3 + 2\sin x$ 11. $y = 4 - 3\sin \frac{x}{4}$

13a. period: 4π , shift: $\frac{\pi}{3}$ left

d. $\frac{2\pi}{3}$ d. $\frac{-\pi}{3}$

15a. mid: y = 20, period: 60, amp: 5

				30	Γ				
				25					
				70					
c.				15	Ĺ				
				10					
)					
	-60	45-	30-	15	0 1	5 3	0 4	5 6	50

d. 30 e. 15, 45

b.	x	$\frac{x}{2}$	$\frac{x}{2}$ -	$+\frac{\pi}{6}$	$\sin\left(\frac{x}{2}\right)$	$+\frac{\pi}{6}$
	$\frac{-2\pi}{3}$ $\frac{-\pi}{3}$	$ \begin{array}{c} \frac{x}{2} \\ -\pi \\ 3 \\ -\pi \\ 6 \end{array} $	-	$\frac{\pi}{6}$		1
	$\frac{-\pi}{3}$	$\frac{-\pi}{6}$	(0	()
	0	0		$\frac{\pi}{6}$	$\frac{1}{2}$	<u>.</u>
	$\frac{\pi}{6}$	$\frac{\pi}{12}$		$\frac{\pi}{4}$	$\frac{\frac{1}{2}}{}$	$\frac{1}{2}$
	$\frac{\pi}{3}$	$\frac{\pi}{6}$		$\frac{\pi}{3}$	$\frac{}{2}$	$\frac{\sqrt{3}}{2}$
	$\frac{\frac{\pi}{3}}{\frac{2\pi}{3}}$	$\frac{\frac{\pi}{6}}{\frac{\pi}{3}}$		$\frac{\pi}{3}$ $\frac{\pi}{2}$	1	
	π	$\frac{\pi}{2}$	2	$\frac{2\pi}{3}$	$\frac{}{2}$	$\frac{\sqrt{3}}{2}$
b.	x	$\frac{\pi}{20}$	x	cos	$(\frac{\pi}{30}x)$	20 -

	Z	3 2	1
\boldsymbol{x}	$\frac{\pi}{30}x$	$\cos\left(\frac{\pi}{30}x\right)$	$20-5\cos\left(\frac{\pi}{30}x\right)$
-5	$\frac{-\pi}{6}$	$\frac{\sqrt{3}}{2}$	$20 - \frac{5\sqrt{3}}{2}$
0	0	1	15
5	$\frac{\pi}{6}$	$\frac{\sqrt{3}}{2}$	$20 - \frac{5\sqrt{3}}{2}$
10	$\frac{\pi}{3}$	$\frac{1}{2}$	17.5
15	$\frac{\pi}{2}$	0	20
30	π	-1	25

	-	T		1.0	1			-	
7.				0.5		-	+-	\	
	1	-	-		-		+		
	+	-47	۲) _T	+	2=	1	+	 ⊢ 6π

19a.

b. 0.57, 3.07, 3.71

21. $y = 85.5 - 19.5 \cos \frac{\pi}{6}t$ 23a. amp: 3, period: 12, midline: y = 15b. $y = 15 - 3 \cos \frac{\pi}{6}t$

25. $\frac{7\pi}{12}$, $\frac{11\pi}{12}$, $\frac{19\pi}{12}$, $\frac{23\pi}{12}$ 27. $\frac{10}{12}$, $\frac{\pi}{4}$, $\frac{\pi}{2}$, $\frac{3\pi}{4}$, π , $\frac{5\pi}{4}$, $\frac{3\pi}{2}$, $\frac{7\pi}{4}$ 29. 0.066, 1.113, 2.160, 3.207, 4.255, 5.302 3 33. $\frac{\pi}{24}$, $\frac{5\pi}{24}$, $\frac{25\pi}{24}$, $\frac{29\pi}{24}$ 35. No solution

31. 1.150, 1.991, 4.292, 5.133

37. 0.375, 1.422, 2.470, 3.517, 4.564, 5.611

39. 2.120, 4.880

Homework 8.1

Thus, $\cos(-\alpha) = \frac{x_2}{r_2} = \frac{x_1}{r_1} = \cos \alpha$, $\sin(-\alpha) = \frac{y_2}{r_2} = \frac{-y_1}{r_1} = -\sin \alpha$, and $\tan(-\alpha) = \frac{y_2}{x_2} = \frac{r_2}{x_1} = -\tan\alpha$

3. $\frac{-(\sqrt{2}+\sqrt{6})}{4}$ 5. $\cos(0.3-2x) = 0.24$, $\sin(0.3-2x) = 0.97$ 7. $\cos(45^{\circ}+45^{\circ}) = \cos(90^{\circ}) = 0$, but $\cos 45^{\circ} + \cos 45^{\circ} = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \sqrt{2}$

9. $\tan(87^{\circ}-29^{\circ})\approx 1.600$, but $\tan 87^{\circ}-\tan 29^{\circ}\approx 18.527$

The curves are different. 13a. $\frac{63}{65}$ b. $\frac{-16}{65}$ c. $\frac{-16}{63}$

- 15a.
- b. $\frac{4}{3}$ 17a. $\frac{36}{85}$

- 19a.

21.
$$\cos 15^{\circ} = \frac{\sqrt{6} + \sqrt{2}}{4}$$
, $\tan 15^{\circ} = 2 - \sqrt{3}$ 23. $\frac{6\sqrt{2} + 1}{10}$

- 25. $\cos \theta$

21.
$$\cos 15^{\circ} = \frac{1}{4}$$
, $\tan 15^{\circ} = 2 - \sqrt{2}$
27. $\frac{\sqrt{3}}{2} \cos t - \frac{1}{2} \sin t$ 29. $\frac{\sqrt{3} \tan \beta - 1}{\sqrt{3 + \tan \beta}}$

29.
$$\frac{\sqrt{3}\tan\beta-1}{\sqrt{3}+\tan\beta}$$

35.
$$1 = 2\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}}\right)$$
 37. $\frac{1}{2} = \left(\frac{\sqrt{3}}{2}\right)^2 - \left(\frac{1}{2}\right)^2$ 39. False, but $\cos 2\alpha = 2(0.32)^2 - 1$ 41. False, but $2\theta = \sin^{-1}(h)$ 43. $\sin 68^\circ$ 45. $\cos \frac{\pi}{8}$ 47. $\cos 6\theta$ 49. $\sin 10t$

37.
$$\frac{1}{2} = \left(\frac{\sqrt{3}}{2}\right)^2 - \left(\frac{1}{2}\right)^2$$

39. False, but
$$\cos 2\alpha =$$

41. False, but
$$2\theta = \sin^{-1}$$

$$43. \sin 68^{\circ}$$

$$\cos\frac{\pi}{8}$$
 47. $\cos\theta$

$$\cos 6\theta$$
 49. $\sin 10t$

53.
$$\cos 4\beta$$

51.
$$\tan 128^{\circ}$$
 53. $\cos 4\beta$ 55a. $\frac{5}{6}$ b. $\frac{\sqrt{11}}{6}$ c. $\frac{5}{\sqrt{11}}$ d. $\frac{5\sqrt{11}}{18}$

e.
$$\frac{-7}{18}$$

f.
$$\frac{-5\sqrt{11}}{7}$$

e.
$$\frac{-7}{18}$$
 f. $\frac{-5\sqrt{11}}{7}$ 57a. $\frac{1}{\sqrt{w^2 + 1}}$ b. $\frac{w}{\sqrt{w^2 + 1}}$ d. $\frac{2w}{w^2 + 1}$ e. $\frac{w^2 - 1}{w^2 + 1}$ f. $\frac{2w}{w^2 - \frac{1}{y_4}}$

b.
$$\frac{w}{\sqrt{w^2+1}}$$

c.
$$\frac{1}{w}$$

$$d. \qquad \frac{2w}{w^2 + 1}$$

e.
$$\frac{w^2-1}{w^2+1}$$

f.
$$\frac{2w}{w^2 - 1}$$

59a.
$$\frac{-5}{13}$$
 b. $\frac{-120}{169}$ c. $\frac{119}{169}$ d. $\frac{-120}{119}$

b.
$$\frac{-120}{169}$$

c.
$$\frac{119}{169}$$

d.
$$\frac{-120}{119}$$

c.
$$\frac{-8}{17}$$

61a.
$$\frac{8}{15}$$
 b. $\frac{-15}{17}$ c. $\frac{-8}{17}$
63a. $2\sin\theta\cos\theta + \sqrt{2}\cos\theta = 0$ b. $\frac{\pi}{2}, \frac{5\pi}{4}, \frac{3\pi}{2}, \frac{7\pi}{4}$
65a. $2\cos^2 t - 5\cos t + 2 = 0$ b. $\frac{\pi}{3}, \frac{5\pi}{3}$

b.
$$\frac{\pi}{2}$$
, $\frac{5\pi}{4}$, $\frac{3\pi}{2}$, $\frac{7\pi}{4}$

$$65a. \ 2\cos^2 t - 5\cos t + 2 = 0$$

b.
$$\frac{\pi}{3}, \frac{5\pi}{3}$$

67a.
$$\frac{2 \tan \beta}{1 - \tan^2 \beta} + 2 \sin \beta = 0$$

69a. $3 \cos \phi - \cos \phi = \sqrt{3}$

b.
$$0, \frac{\pi}{3}, \pi, \frac{5\pi}{3}$$

71a.
$$\sin 3\phi = 1$$

b.
$$\frac{\pi}{6}, \frac{5\pi}{6}, \frac{3\pi}{2}$$

73a.
$$\cos(\theta + 90^\circ) = -\sin\theta$$

b.
$$\sin(\theta + 90^\circ) = \cos\theta$$

75a.
$$\cos\left(\frac{\pi}{2} - \theta\right) = \cos\frac{\pi}{2}\cos\theta + \sin\frac{\pi}{2}\sin\theta = \sin\theta$$

b.
$$\sin\left(\frac{\pi}{2} - \theta\right) = \sin\frac{\pi}{2}\cos\theta - \cos\frac{\pi}{2}\sin\theta = \cos\theta$$

77.
$$\sin 2\theta = \sin (\theta + \theta) = \sin \theta \cos \theta + \cos \theta \sin \theta = 2 \sin \theta \cos \theta$$

79a. Not an identity b.
$$\beta = \pi$$
 (many answers possible) 81. Identity

83a. Not an identity b.
$$\theta = 0$$
 (many answers possible) 85. Identity 87. Ident

89a.
$$l_1 = \sin \alpha, \ l_2 = \cos \alpha$$

b.
$$\theta_1$$
 and β are both complements of ϕ , θ_2 and $\alpha + \beta$ are

89a.
$$t_1 = \sin \alpha$$
, $t_2 = \cos \alpha$ alternate interior angles

c.
$$s_1 = \cos(\alpha + \beta)$$
, $s_2 = \sin(\alpha + \beta)$

d.
$$s_3 = \sin \alpha \sin \beta$$
, $s_4 = \sin \alpha \cos \beta$

d.
$$s_3 = \sin \alpha \sin \beta$$
, $s_4 = \sin \alpha \cos \beta$ e. $s_5 = \cos \alpha \cos \beta$, $s_6 = \cos \alpha \sin \beta$

f.
$$\sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$
, $\cos (\alpha + \beta) + \sin \alpha \sin \beta = \cos \alpha \cos \beta$

91a.
$$(AB)^2 = 2 - 2\cos(\alpha - \beta)$$

91a.
$$(AB)^2 = 2 - 2\cos(\alpha - \beta)$$
 b. $(AB)^2 = (\cos \alpha - \cos \beta)^2 + (\sin \alpha - \sin \beta)^2$

c.
$$2 - 2\cos(\alpha - \beta) = (\cos\alpha - \cos\beta)^2 + (\sin\alpha - \sin\beta)^2$$

$$2 - 2\cos(\alpha - \beta) = \cos^2\alpha - 2\cos\alpha\cos\beta + \cos^2\beta + \sin^2\alpha - 2\sin\alpha\sin\beta + \sin^2\beta$$

$$2 - 2\cos(\alpha - \beta) = \cos^2\alpha + \sin^2\alpha + \cos^2\beta + \sin^2\beta - 2\cos\alpha\cos\beta - 2\sin\alpha\sin\beta$$

$$2 - 2\cos(\alpha - \beta) = 1 + 1 - 2(\cos\alpha\cos\beta + \sin\alpha\sin\beta)$$

$$-2\cos(\alpha - \beta) = -2(\cos\alpha\cos\beta + \sin\alpha\sin\beta)$$

$$\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$$

Homework 8.2

- 1. No inverse: Some horizontal lines intersect the curve in more than one point.
- 3. Inverse exists: The function is 1-1.

No inverse

- $9.16.5^{\circ}$
- 11. 46.4°

- a. $h = 500 \tan \theta$ b. $\theta = \tan^{-1} \left(\frac{h}{500}\right)$
- c. $\theta = \tan^{-1}(2)$, so the angle of elevation is $\tan^{-1}2 \approx 63.4^{\circ}$ when the rocket is 1000 yd high.

- a. $d = \frac{50}{\tan \theta}$ b. $\theta = \tan^{-1}\left(\frac{50}{d}\right)$ c. $\theta = \tan^{-1}(0.25)$; the billboard

subtends an angle of $\tan^{-1}(0.25)\approx 14^{\circ}$ at a distance of 200 ft.

- c. $\beta = 45^{\circ} \tan^{-1}(\frac{1}{5})$, so the painting subtends an angle of $45^{\circ} \tan^{-1}(\frac{1}{5}) \approx 33.7^{\circ}$ when Martin is 5 meters from the wall.

27.
$$t = \frac{1}{2\pi\omega} \left(\sin^{-1} \frac{V}{V_0} - \phi \right)$$

$$27. \ t = \frac{1}{2\pi\omega} \left(\sin^{-1} \frac{V}{V_0} - \phi \right)$$

$$29. \ A = \sin^{-1} \left(\frac{a \sin B}{b} \right) 31. \ \theta = \pm \cos^{-1} \left(\frac{k}{PR^4} \right)$$

$$33. \ \frac{2}{\sqrt{5}}$$

$$35. \ \frac{1}{\sqrt{5}}$$

$$37. \ \frac{5}{7}$$

$$39. \ \frac{\sqrt{1-x^2}}{x}$$

$$41. \ \sqrt{1-h^2}$$

$$43. \ \frac{2t}{\sqrt{4t^2+1}}$$

x	-1	$\frac{-\sqrt{3}}{2}$	$\frac{-\sqrt{2}}{2}$	$\frac{-1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos^{-1}x$	π	$\frac{5\pi}{6}$	$\frac{3\pi}{4}$	$\frac{2\pi}{3}$	$\frac{\pi}{2}$	$\frac{\pi}{3}$	$\frac{\pi}{4}$	$\frac{\pi}{6}$	0

47.

x	$-\sqrt{3}$	-1	$\frac{-1}{\sqrt{3}}$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$
$\tan^{-1}x$	$\frac{-\pi}{3}$	$\frac{-\pi}{4}$	$\frac{-\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$

- c. No
- 51a.
- c. No

53.
$$\frac{8}{17}$$

55.
$$-3\sqrt{5}$$

57.
$$\frac{4\sqrt{2}}{7}$$

d.
$$\frac{56}{65}$$

63a.
$$\frac{2x}{x^2+1}$$

b.
$$1 - 2x^2$$

53.
$$\frac{8}{17}$$
 55. $-3\sqrt{7}$ 57. $\frac{4\sqrt{2}}{7}$ 69a. $\frac{-63}{65}$ 6. $\frac{16}{65}$ 6. $\frac{16}{65}$ 6. $1 - 2x^2$ 65. $\sin 2\theta = \frac{2x\sqrt{25 - x^2}}{25}$, $\cos 2\theta = \frac{25 - 2x^2}{25}$ 67. $\arctan \frac{x}{3} + \frac{3x}{2(x^2 + 9)}$

67.
$$\arctan \frac{x}{3} + \frac{3x}{2(x^2+9)}$$

69a.
$$-1 \le x \le 1$$
 b. Yes.

d.
$$x < \frac{1}{2}$$
 or $x > \frac{\pi}{2}$

71a. Domain:
$$-1 \le x \le 1$$
, range: $\{\frac{\pi}{2}\}$

b. The function is a constant because
$$\cos \theta = \sin(\frac{\pi}{2} - \theta)$$
.

73a.
$$\frac{\theta}{2}$$

b.
$$t = \sin \theta$$

b.
$$t = \sin \theta$$
 c. $\frac{1}{2} \arcsin t$

Homework 8.3

13.
$$\frac{-2\sqrt{3}}{3}$$

15.
$$\sqrt{2}$$

								3		
17.	θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
	$\sec \theta$	1	$\frac{2\sqrt{3}}{3}$	$\sqrt{2}$	2	undef.	-2	$-\sqrt{2}$	$\frac{-2\sqrt{3}}{3}$	-1
	$\csc \theta$	undef.	2	$\sqrt{2}$	$\frac{2\sqrt{3}}{3}$	1	$\frac{2\sqrt{3}}{3}$	$\sqrt{2}$	2	undef.
	$\cot \theta$	undef.	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	$\frac{-\sqrt{3}}{3}$	-1	$-\sqrt{3}$	undef.

21.
$$\sin \theta = \frac{4}{5}$$
, $\cos \theta = \frac{3}{5}$, $\tan \theta = \frac{4}{3}$, $\sec \theta = \frac{5}{3}$, $\csc \theta = \frac{5}{4}$, $\cot \theta = \frac{3}{4}$

23.
$$\sin \theta = \frac{4}{\sqrt{41}}, \cos \theta = \frac{5}{\sqrt{41}}, \tan \theta = \frac{4}{5}, \sec \theta = \frac{\sqrt{41}}{5}, \csc \theta = \frac{\sqrt{41}}{4}, \cot \theta = \frac{5}{4}$$

25.
$$\sin \theta = \frac{5}{\sqrt{74}}, \cos \theta = \frac{-7}{\sqrt{74}}, \tan \theta = \frac{-5}{7}, \sec \theta = \frac{-\sqrt{74}}{7}, \csc \theta = \frac{\sqrt{74}}{5}, \cot \theta = \frac{-7}{5}$$

27.
$$\sin \theta = \frac{-5}{8}$$
, $\cos \theta = \frac{\sqrt{39}}{8}$, $\tan \theta = \frac{5}{\sqrt{39}}$, $\sec \theta = \frac{-8}{\sqrt{39}}$, $\csc \theta = \frac{-8}{5}$, $\cot \theta = \frac{\sqrt{39}}{5}$

29a.
$$d = h \csc \theta$$

b.
$$l = 8t^2 \sin 2\theta$$

29a.
$$d = h \csc \theta$$
 b. 155.572 mi 31a. 0.78 sec b. $l = 8t^2 \sin 2\theta$
33. $\sin \theta = \frac{7}{\sqrt{x^2 + 49}}, \cos \theta = \frac{x}{\sqrt{x^2 + 49}}, \tan \theta = \frac{7}{x}, \sec \theta = \frac{\sqrt{x^2 + 49}}{x}, \csc \theta = \frac{\sqrt{x^2 + 49}}{7}, \cot \theta = \frac{x}{7}$

35.
$$\sin \theta = S, \cos \theta = \sqrt{1 - S^2}, \tan \theta = \frac{S}{\sqrt{1 - S^2}}, \sec \theta = \frac{1}{\sqrt{1 - S^2}}, \csc \theta = \frac{1}{S},$$

$$\cot \theta = \frac{\sqrt{1 - S^2}}{S}$$

$$\cot \theta = \frac{\sqrt{1 - S^2}}{S}$$

$$37. \sin \theta = \frac{-\sqrt{9 - a^2}}{3}, \cos \theta = \frac{a}{3}, \tan \theta = \frac{-\sqrt{9 - a^2}}{a}, \sec \theta = \frac{3}{a}, \csc \theta = \frac{-3}{\sqrt{9 - a^2}},$$

$$\cot \theta = \frac{-a}{\sqrt{9 - a^2}}$$

41.
$$\sin \theta = \frac{-\sqrt{3}}{2}, \cos \theta = \frac{1}{2}, \tan \theta = -\sqrt{3}, \sec \theta = 2, \csc \theta = \frac{-2\sqrt{3}}{3}, \cot \theta = \frac{-\sqrt{3}}{3}$$

43.
$$\frac{3}{2}$$
 $\sin \alpha = \frac{1}{3}$, $\cos \alpha = \frac{2\sqrt{2}}{3}$, $\tan \alpha = \frac{\sqrt{2}}{4}$, $\sec \alpha = \frac{3\sqrt{2}}{4}$, $\csc \alpha = 3$, $\cot \alpha = 2\sqrt{2}$

45.
$$\sin \gamma = \frac{-4}{\sqrt{17}}, \cos \gamma = \frac{-1}{\sqrt{17}}, \tan \gamma = 4, \sec \gamma = -\sqrt{17}, \csc \gamma = \frac{-\sqrt{17}}{4}, \cot \gamma = \frac{1}{4}$$

47.
$$\frac{4\sqrt{3}}{3} + 2\sqrt{2}$$
49. $\frac{\sqrt{3}}{3}$
51. $\frac{4\sqrt{6}}{3} + \frac{1}{3}$
53. x
0 $\frac{\pi}{4}$ $\frac{\pi}{2}$ $\frac{3\pi}{4}$ π $\frac{5\pi}{4}$ $\frac{3\pi}{2}$ $\frac{7\pi}{4}$ 2π

57.	x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	2π
	$\cot x$	undef.	1	0	-1	undef.	1	0	-1	undef.
,	25.77 IV W	601 11 2	4	73 Y	NEW YORK	V7 - V3				

59b.
$$\frac{\csc x}{\cot x} = \frac{\frac{1}{\sin x}}{\frac{\cos x}{\sin x}} = \frac{1}{\sin x} \div \frac{\cos x}{\sin x} = \frac{1}{\sin x} \cdot \frac{\sin x}{\cos x} = \frac{1}{\cos x} = \sec x$$

61b.
$$\frac{\sec x \cot x}{\csc x} = \frac{\frac{1}{\cos x} \cdot \frac{\cos x}{\sin x}}{\frac{1}{\sin x}} = \frac{\frac{1}{\sin x}}{\frac{1}{\sin x}} = 1$$
63b.
$$\tan x \csc x = \frac{\sin x}{\cos x} \cdot \frac{1}{\sin x} = \frac{1}{\cos x} = \sec x$$

63b.
$$\tan x \csc x = \frac{\sin x}{\cos x} \cdot \frac{1}{\sin x} = \frac{1}{\cos x} = \sec x$$

65.
$$\frac{\pi}{6}$$
, $\frac{5\pi}{6}$

67.
$$\frac{3\pi}{4}$$
, $\frac{3\pi}{4}$

69.
$$\frac{5\pi}{6}$$
, $\frac{11\pi}{6}$
75. $\frac{\sqrt{w^2 - 1}}{}$

77.
$$\sec s = \frac{-5}{4}$$
, $\csc s = \frac{5}{3}$, $\cot s = \frac{-4}{3}$

$$\cos x \quad \sin x \quad \cos x$$

$$65. \frac{\pi}{6}, \frac{5\pi}{6}$$

$$71. \frac{-\sqrt{5}}{5}$$

$$73. \frac{\sqrt{a^2 - 4}}{2}$$

$$75. \frac{\sqrt{w^2 - 1}}{-w}$$

$$79. \sec s = \frac{1}{\sqrt{1 - w^2}}, \csc s = \frac{1}{w}, \cot s = \frac{1}{w}$$

81.
$$\frac{\sin \theta}{\cos^2 \theta}$$

$$85.\frac{1-\sin\beta}{\cos\beta}$$

87.
$$-\cos x$$

89.
$$\cos^2\theta + \sin^2\theta = 1$$

81. $\frac{\sin \theta}{\cos^2 \theta}$ 83. $\sec t$ 85. $\frac{1-\sin \beta}{\cos \beta}$ 87. - 89. $\cos^2 \theta + \sin^2 \theta = 1$ We divide by $\cos^2 \theta$ on both sides of the equation.

$$\frac{\cos^2\theta}{\cos^2\theta} + \frac{\sin^2\theta}{\cos^2\theta} = \frac{1}{\cos^2\theta}$$
$$1 + \tan^2\theta = \sec^2\theta$$

Rewrite each fraction.

91a.
$$\csc \theta = -\sqrt{26}$$

91a.
$$\csc \theta = -\sqrt{26}$$
 b. $\sin \theta = \frac{-\sqrt{26}}{26}, \cos \theta = \frac{-5\sqrt{26}}{26}, \tan \theta = \frac{1}{5}, \sec \theta = \frac{-\sqrt{26}}{5}$

93.
$$\cos t = \pm \sqrt{1 - \sin^2 t}$$
, $\tan t = \frac{\pm \sin t}{\sqrt{1 - \sin^2 t}}$, $\sec t = \frac{\pm 1}{\sqrt{1 - \sin^2 t}}$, $\csc t = \frac{1}{\sin t}$, $\cot t = \frac{\pm \sqrt{1 - \sin^2 t}}{\sin t}$

95. $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

$$a \cdot \frac{1}{\sin A} = b \cdot \frac{1}{\sin B} = c \cdot \frac{1}{\sin C}$$

$$a \csc A = b \csc B = c \csc C$$

Chapter 8 Review

1. False 3. True 5. False 7. False 9.
$$\frac{2-\sqrt{21}}{5\sqrt{2}}$$
 11a. $\frac{5\sqrt{33}-3}{32}$

b.
$$\frac{5\sqrt{33}-3}{\sqrt{5}(3\sqrt{3}+\sqrt{11})}$$
13. 1 15.
$$\frac{\tan t + \sqrt{3}}{1-\sqrt{3}\tan t}$$
17a. $\frac{4}{5}$ b. $\frac{3}{5}$ c. $\frac{4}{3}$ d. $\frac{24}{25}$ e. $\frac{-7}{25}$ f. $\frac{-24}{7}$ 19. $\sin 9x$ 21. $\tan (2\phi - 2)$ 23. $\sin 8\theta$

25a.
$$1 - 2\sin^2\theta - \sin\theta = 1$$
 b. $0, \pi, \frac{7\pi}{6}, \frac{11\pi}{6}$ 27.

29a.
$$\frac{-\pi}{3}$$
 b. $\frac{2\pi}{3}$ 31a. $\tan^{-1}\left(\frac{52.8}{x}\right)$ b. 69.25° , 27.83° 33. $\theta = \sin^{-1}\left(\frac{v_y + gt}{v_0}\right)$

35. $\frac{2}{3}$ 37. $\sqrt{1-4t^2}$ 39. Because $|\sin\theta| \le 1$, $\sin^{-1}t$ is undefined for |t| > 1. If $x \ne 0$, then either |x| > 1 or $\left|\frac{1}{x}\right| > 1$. If x = 0, then $\frac{1}{x}$ is undefined.

43.
$$\sin \theta = \frac{13}{\sqrt{313}}$$
, $\cos \theta = \frac{12}{\sqrt{313}}$, $\tan \theta = \frac{13}{12}$, $\sec \theta = \frac{\sqrt{313}}{12}$, $\csc \theta = \frac{\sqrt{313}}{13}$, $\cot \theta = \frac{12}{13}$

45.
$$\sin \theta = \frac{1}{3}$$
, $\cos \theta = \frac{-2\sqrt{2}}{3}$, $\tan \theta = \frac{-1}{2\sqrt{2}}$, $\sec \theta = \frac{-3}{2\sqrt{2}}$, $\csc \theta = 3$, $\cot \theta = -2\sqrt{2}$

47.
$$\sin \theta = \frac{-9}{\sqrt{106}}$$
, $\cos \theta = \frac{-5}{\sqrt{106}}$, $\tan \theta = \frac{9}{5}$, $\sec \theta = \frac{-\sqrt{106}}{5}$, $\csc \theta = \frac{-\sqrt{106}}{9}$, $\cot \theta = \frac{5}{9}$

49.
$$\sin \alpha = \frac{-\sqrt{11}}{6}$$
, $\cos \alpha = \frac{-5}{6}$, $\tan \alpha = \frac{\sqrt{11}}{5}$, $\sec \alpha = \frac{-6}{5}$, $\csc \alpha = \frac{-6}{\sqrt{11}}$, $\cot \alpha = \frac{5}{\sqrt{11}}$

51.
$$\sin \theta = \frac{s}{4}$$
, $\cos \theta = \frac{\sqrt{16 - s^2}}{4}$, $\tan \theta = \frac{s}{\sqrt{16 - s^2}}$, $\sec \theta = \frac{4}{\sqrt{16 - s^2}}$, $\csc \theta = \frac{4}{s}$,

$$\cot \theta = \frac{\sqrt{16 - s^2}}{\frac{s}{\sqrt{w^2 + 144}}}, \cos \theta = \frac{\frac{1}{\sqrt{w^2 + 144}}}{\sqrt{w^2 + 144}}, \tan \theta = \frac{-w}{12},$$

$$\sec \theta = \frac{-\sqrt{w^2 + 144}}{12}, \csc \theta = \frac{\sqrt{w^2 + 144}}{w}, \cot \theta = \frac{-12}{w}$$
 55. $\sin \alpha = \frac{k}{2}$,

$$\cos \alpha = \frac{-\sqrt{4-k^2}}{2}, \tan \alpha = \frac{-k}{\sqrt{4-k^2}}, \sec \alpha = \frac{-2}{\sqrt{4-k^2}}, \csc \alpha = \frac{2}{k}, \cot \alpha = \frac{-\sqrt{4-k^2}}{k}$$

57.
$$\sin \theta = 0.3$$
, $\cos \theta = -0.4$, $\tan \theta = -0.75$, $\sec \theta = -2.5$, $\csc \theta = 3.33$, $\cot \theta = -1.33$

59.
$$-8$$
 61. $\sqrt{2}$ 63. $\theta \approx 2.8$, $\theta \approx 0.30$ 65. $y = \csc x$ or $y = \cot x$

67.
$$y = \sec x$$
 69. $y = \sec x$ 69. $y = \sec x$ 71. $f(x) = \sin x - 1$

73.
$$G(x) = \tan x - 1$$
 75. $\cos^2 x$ 77. $\cos^2 B$

79.
$$\cos \theta$$
 81. $\sqrt{3} \tan \theta \sin \theta$

83a.
$$AC = \tan \alpha$$
, $DC = \tan \beta$, $AD = \tan \alpha - \tan \beta$ b. They are right triangles that share $\angle B$.

- c. $\angle A = \angle F$, $\angle B$ is the complement of $\angle A$, and $\angle FDC$ is the complement of $\angle F$.
- d. $\frac{CF}{CD} = \tan \alpha$, so $CF = \tan \alpha \tan \beta$ e. They are right triangles with $\angle A = \angle F$.
- f. $\angle EBD = \alpha \beta$, so $\tan (\alpha \beta) = \frac{\text{opp}}{\text{adj}} = \frac{DE}{BE}$; $\frac{DE}{BE}$ and $\frac{AD}{BF}$ are ratios of corresponding sides of similar triangles; $AD = \tan \alpha - \tan \beta$ by part (a), $BF = BC + CF = 1 + \tan \alpha \tan \beta$ by part (d). 85. $d=25 \csc 112^{\circ},$ $\alpha=45^{\circ},$ $a\approx 19.07,$ $b\approx 10.54$

Homework 9.1

- 7. **A** and **E**
- 9. **H** and **K**

$$\|\mathbf{A}\| = \sqrt{13}, \, \theta = -33.7^{\circ}$$

27.
$$||\mathbf{v}|| = 13, \theta = -67.38^{\circ}$$

29.
$$||\mathbf{v}|| = \sqrt{85} \approx 9.22, \theta = 229.4^{\circ}$$

35. 3.6 4.47 mi, 23.4° east of north

- $||\mathbf{v} + \mathbf{w}|| = 11.4, \ \theta = 162.4^{\circ}$
- 37. 28 129.4 mph, 85.4° west of north
- 39a. $v_x = 10, v_y = 10\sqrt{3}, w_x = 5\sqrt{2}, w_y = -5\sqrt{2}$
 - b. 19.9 mph, 59° east of north
- 41a. $v_x \approx -1.23, v_y \approx 3.38, w_x \approx -0.32, w_y \approx -2.23$ b. 1.9 km, 54.5° west of north

51. $u_x = 2$, $u_y = 1$, $v_x = 1$, $v_y = -3$, $A_x = 1$, $A_y = 4$; $A_x = u_x - v_x$, $A_y = u_y - v_y$

Homework 9.2

- 1. $\mathbf{u} = 3\mathbf{i} + 2\mathbf{j}$ a. $\sqrt{13}$ b. $6\mathbf{i} + 4\mathbf{j}$ c. $2\sqrt{13}$ 3. $\mathbf{w} = 6\mathbf{i} 3\mathbf{j}$ a. $3\sqrt{5}$ b. $-6\mathbf{i} + 3\mathbf{j}$ c. $3\sqrt{5}$ 5a. $\mathbf{u} + \mathbf{v} = -2\mathbf{i} + 5\mathbf{j}$ and $\|\mathbf{u} + \mathbf{v}\| = \sqrt{29}$ b. $||\mathbf{u}|| + ||\mathbf{v}|| \ge ||\mathbf{u} + \mathbf{v}||$

b.
$$||\mathbf{v}|| = \sqrt{89}$$
, $\theta = 122^{\circ}$

11a.
$$18\mathbf{i} + 12\mathbf{j}$$

13.
$$\|\mathbf{v}\| = 6\sqrt{2}, \ \theta = 135^{\circ}$$

17.
$$\|\mathbf{q}\| = 4\sqrt{745}, \ \theta = 61.56^{\circ}$$

b.
$$||\mathbf{v}|| = \sqrt{5}, \theta = 206.6^{\circ}$$

b.
$$||\mathbf{v}|| = 6\sqrt{13}, \theta = 33.7^{\circ}$$

15.
$$\|\mathbf{w}\| = 14, \ \theta = -30^{\circ}$$

19.
$$\mathbf{v} = 3\sqrt{2}\mathbf{i} - 3\sqrt{2}\mathbf{j}$$

27.
$$12i + 3j$$

29.
$$2.8\mathbf{i} + 1.9\mathbf{j}$$

$$31. -3i + 7j$$

33.
$$-8\mathbf{i} - 20\mathbf{j}$$

39.
$$\frac{-12}{13}$$
i + $\frac{5}{13}$ **j**

41.
$$\frac{1}{\sqrt{2}}$$
i $-\frac{1}{\sqrt{2}}$ **j**

35.
$$14\mathbf{i} - 9\mathbf{j}$$

43.
$$24\mathbf{i} + 45\mathbf{j}$$

37.
$$-9\mathbf{i} + 23\mathbf{j}$$

45.
$$\frac{-12}{\sqrt{10}}$$
i + $\frac{4}{\sqrt{10}}$ **j**

b.
$$\mathbf{u} \approx 2.393\mathbf{i} + 1.016\mathbf{j},$$

 $\mathbf{v} \approx -4.242\mathbf{i} - 3.956\mathbf{j},$

c.
$$-1.849i - 2.940j$$

c.
$$45.98i + 17.36j$$

49a.

- north
- b. 1700 m, 28.1° east of south b. 21.98 km, 2.27° north of west b. 83 mi, 62° east of

57a.
$$-4i - 5j$$

b.
$$4i + 5j$$

$$\mathbf{i} - 3\mathbf{j}$$
 b. $-\mathbf{i} + 3\mathbf{j}$

61a.
$$\|\mathbf{v}\| = 10, 2\|\mathbf{v}\| = 20 = 2 \cdot 10$$

59a.
$$\mathbf{i} - 3\mathbf{j}$$
 b. $-\mathbf{i} + 3\mathbf{j}$
b. $||k\mathbf{v}|| = \sqrt{(ka)^2 + (kb)^2} = k\sqrt{a^2 + b^2}$

Homework 9.3

1.
$$\frac{33}{\sqrt{13}}$$
 3. $\frac{-1}{\sqrt{2}}$
7a. $\mathbf{w} = \left(\frac{56}{13}\mathbf{i} + \frac{84}{13}\mathbf{j}\right) + \left(\frac{48}{13}\mathbf{i} - \frac{32}{13}\mathbf{j}\right)$
b.

 $23.4.4^{\circ}$

$$17. -318.2$$
 $25. 97.1^{\circ}$

$$29. -10$$

37. 38.57 lbs

41a.
$$\frac{1}{\sqrt{2}}\mathbf{i} + \frac{1}{\sqrt{2}}\mathbf{j}$$
 and $\frac{-1}{\sqrt{2}}\mathbf{i} + \frac{1}{\sqrt{2}}\mathbf{j}$

b.
$$\mathbf{u} \cdot \mathbf{v} = 0$$

b.
$$\mathbf{u} \cdot \mathbf{v} = 0$$

c. $\frac{11}{\sqrt{2}}$ and $\frac{5}{\sqrt{2}}$

$$31. -21$$

d.

39. 1289 lb

43.
$$\mathbf{v} \cdot \mathbf{v} = c^2 + d^2$$
 45. $k\mathbf{u} \cdot \mathbf{v} = kac + kbd = k(ac + bd) = (akc + bkd)$

47.
$$(\mathbf{u} - \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v}) = (a - c)(a + c) + (b - d)(b + d) = (a^2 + b^2) - (c^2 + d^2)$$

49.
$$\frac{a \cdot 1 + b \cdot 0}{1} = a$$
 and $\frac{a \cdot 0 + b \cdot 1}{1} = b$

51a. Both
$$\mathbf{i} \cdot \mathbf{i} = 1$$
 and $\mathbf{j} \cdot \mathbf{j} = 1$ because $1 \cdot 1 \cos 0 = 1$; $\mathbf{i} \cdot \mathbf{j} = 1 \cdot 1 \cos 90^{\circ} = 0$

b.
$$(a\mathbf{i} + b\mathbf{j}) \cdot (c\mathbf{i} + d\mathbf{j}) = ac(1) + ad(0) + bc(0) + bd(1) = ac + bd$$

53a.
$$\|\mathbf{u} - \mathbf{v}\|^2 = (\mathbf{u} - \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v}) = \mathbf{u} \cdot \mathbf{u} - 2\mathbf{u} \cdot \mathbf{v} + \mathbf{v} \cdot \mathbf{v}$$

$$= \|\mathbf{u}\|^2 - 2\|\mathbf{u}\|\|\mathbf{v}\|\cos\theta + \|\mathbf{v}\|^2$$

b. Let
$$a = \|\mathbf{u}\|$$
, $b = \|\mathbf{v}\|$, $c = \|\mathbf{u} - \mathbf{v}\|$, and $C = \theta$

Chapter 9 Review

$$v_{\scriptscriptstyle \mathrm{N}}=8.45$$
 mph, $v_{\mathrm{E}}=-18.13$ mph

5.
$$||\mathbf{A}|| = 10.8, \ \theta = 236.3^{\circ}$$

7.64 km,
$$\theta = 30.31^{\circ}$$

$$v_{\scriptscriptstyle \rm N} = -1127.63$$
lbs, $v_{\rm E} = -410.42$ lbs

$$2\mathbf{i} - 6\mathbf{j}$$

33. $42\mathbf{i} - 28\mathbf{j}$

b.
$$||\mathbf{v}|| = 6.3 \text{ mi}, \ \theta = 288.4^{\circ}$$

$$8.46 \text{ mi}, \ \theta = 155.6^{\circ}$$

17a.
$$\mathbf{F_1} = -200\,\mathbf{i}$$
, $\mathbf{F_2} = -60\sqrt{2}\,\mathbf{i} - 60\sqrt{2}\,\mathbf{j}$, $\mathbf{F_3} = 50\sqrt{3}\,\mathbf{i} + 50\,\mathbf{j}$, $\mathbf{F_4} = 125\,\mathbf{i} + 125\sqrt{3}\,\mathbf{j}$
b. $-73.25\,\mathbf{i} + 181.65\,\mathbf{j}$ 19. $13\,\mathbf{i} + 5\,\mathbf{j}$ 21. $-7\,\mathbf{i} - 14\,\mathbf{j}$
23. $\frac{2}{\sqrt{13}}\,\mathbf{i} + \frac{3}{\sqrt{13}}\,\mathbf{j}$ 25. $\frac{-6}{\sqrt{29}}\,\mathbf{i} - \frac{15}{\sqrt{29}}\,\mathbf{j}$ 27. -3.45 29. -8.08 31. 106.5

23.
$$\frac{2}{\sqrt{13}}$$
 i + $\frac{3}{\sqrt{13}}$ j

25.
$$\frac{-6}{\sqrt{29}}$$
 i $-\frac{15}{\sqrt{29}}$ j

$$27. -3.45$$
 $29. -8.08$

$$\frac{3}{29}$$
. -8.08

Homework 10.1

3.

- 9. $(5, \frac{3\pi}{4})$ 11. $(1, \pi)$ 13. $(3, \frac{4\pi}{3})$ 15. $(2, \frac{\pi}{12})$
- 17. $(-3, 3\sqrt{3})$

- 19. $(\frac{3}{\sqrt{2}}, \frac{-3}{\sqrt{2}})$ 21. (-2.15, -1.06) 23. (-0.14, -1.99) 25. $(7\sqrt{2}, \frac{\pi}{4})$

- 27. $(2\sqrt{2}, \frac{11\pi}{6})$ 29. $(\sqrt{13}, \pi + \tan^{-1}\frac{2}{3})$ 31. $(2, \pi)$ 33a. $(-2, \frac{11\pi}{6})$ b. $(2, \frac{-7\pi}{6})$

- 35a. (-3, 0) b. $(3, -\pi)$ 37a. (-2.3, 2.06) b. (2.3, -1.08)

55. y = 1

41.

43.

49. $-1 \le r \le 1, \ \frac{3\pi}{4} \le \theta \le \pi$

- 45. $r \ge 0, \frac{\pi}{6} \le \theta \le \frac{\pi}{3}$
- 51. $x^2 + y^2 = 2$
- 57. y = 2x
- 63. 2x + y = 1
- 47. $r \ge 1, \frac{\pi}{2} \le \theta \le \pi$
- 53. $x^2 + y^2 = 4x$ 59. $x^2 + y^2 = 3x$
- 65. $r = 2 \sec \theta$
- 67. $2r^2 = \sec \theta \csc \theta$

61. $x^2 = 4 - 4y$

- 69. $r = 4 \cot \theta \csc \theta$
 - 71. r = 4

Homework 10.2

3a.

k is the radius.

- b. $x^2 + y^2 = 1$, $x^2 + y^2 = 4$, $x^2 + y^2 = 9$
- 5. θ

θ	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$
r = -2	-2	-2	-2	-2	-2	-2	-2	-2

 $\tan k$ is the slope.

The r=2 graph begins at the right-most point (and proceeds counter-clockwise); the r = -2 graph begins at the left-most point.

b. 2π $-2\sqrt{2} \mid 0$ $2\sqrt{2}$ 4

The graph is traced again.

- c. center: (2,0), radius: 2 d. $(x-2)^2 + y^2 = 4$

b. For a > 0, a is the radius of a circle centerd on the positive y-axis; for a < 0, |a| is the radius of a circle centerd on the negative y-axis.

θ	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
r	3	2	1	2	3
		-			

θ	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
r	3	1	-1	1	3

θ	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
r	-1	1	3	1	-1

There are n petals if n is odd, and 2n petals if n is even. b. $n=2:\frac{\pi}{4},\ \frac{3\pi}{4},\ \frac{5\pi}{4},\ \frac{7\pi}{4};\ n=3:\frac{\pi}{6},\ \frac{5\pi}{6},\ \frac{3\pi}{2};\ n=4:\frac{\pi}{8},\ \frac{3\pi}{8},\ \frac{5\pi}{8},\ \frac{7\pi}{8},\ \frac{9\pi}{8},\ \frac{11\pi}{8},\ \frac{13\pi}{8},\ \frac{15\pi}{8};$ $n=5:\frac{\pi}{10},\ \frac{\pi}{2},\ \frac{9\pi}{10},\ \frac{13\pi}{10},\ \frac{17\pi}{10}$

a is the length of the petal.

17a. $r = \pm 3\sqrt{\cos 2\theta}$

c. a is the length of the loop

45. arcs of circle

47. semicircle

51. cardioid

53. parabola

57. hyperbola

- 59. $r = 2 + 2 \cos \theta$
- 63. $r = 5 \sin \theta$
- 67. $(0,0), (\frac{1}{2}, \frac{\pi}{3}), (\frac{1}{2}, \frac{5\pi}{3})$
- 71. $(1, \frac{\pi}{2}), (1, \frac{3\pi}{2})$

- 61. $r = 3 \sin 5\theta$
- 65. $r = 1 + 2 \cos \theta$
- 69. (0,0), $(\frac{3}{\sqrt{2}},\frac{\pi}{4})$, $(\frac{-3}{\sqrt{2}},\frac{5\pi}{4})$
- 73. $(\frac{4+\sqrt{2}}{2}, \frac{3\pi}{4}), (\frac{4-\sqrt{2}}{2}, \frac{7\pi}{4})$

77.

79.

81.

83. The curve has n large loops and n small loops.

Homework 10.3

1a.
$$5i - 4$$

b.
$$-4 + i$$

c.
$$\frac{-5}{6} - \frac{\sqrt{2}}{6}i$$

$$3. -3 \pm 2i$$

5.
$$\frac{1}{6} \pm \frac{\sqrt{11}}{6}i$$

7.
$$13 + 4i$$

$$0. -0.8 + 3.8i$$

11.
$$20 - 10i$$

13.
$$-14 + 5$$

23.
$$\frac{35}{3} + \frac{20}{3}i$$

15.
$$46 + 14i\sqrt{3}$$

19.
$$-2-2$$

21.
$$-1 + 4i$$

23.
$$\frac{35}{3} + \frac{20}{3}i$$

25.
$$\frac{-25}{29} + \frac{10}{29}i$$

27.
$$\frac{3}{4} - \frac{\sqrt{3}}{4}i$$

29.
$$\frac{-2}{3} + \frac{\sqrt{5}}{3}i$$

33a.
$$-1$$

c.
$$-i$$
 d. -1

1a.
$$5i-4$$
 b. $-4+i$ c. $\frac{-5}{6}-\frac{\sqrt{2}}{6}i$ 3. $-3\pm 2i$ 5. $\frac{1}{6}\pm\frac{\sqrt{11}}{6}i$ 7. $13+4i$ 9. $-0.8+3.8i$ 11. $20-10i$ 13. $-14+34i$ 15. $46+14i\sqrt{3}$ 17. 52 19. $-2-2i$ 21. $-1+4i$ 23. $\frac{35}{3}+\frac{20}{3}i$ 25. $\frac{-25}{29}+\frac{10}{29}i$ 27. $\frac{3}{4}-\frac{\sqrt{3}}{4}i$ 29. $\frac{-2}{3}+\frac{\sqrt{5}}{3}i$ 31. i 33a. -1 b. 1 c. $-i$ d. -1 35a. 0 b. 0 37a. 0 b.0 39a. 0 b. 0

$$41.4z^2 + 49$$

43.
$$x^2 + 6x + 10$$

41.
$$4z^2 + 49$$
 43. $x^2 + 6x + 10$ 45. $v^2 - 8v + 17$ 47.

57.

59.
$$(a+bi)(c+di) = ac + adi + bci + bdi^2$$

= $(ac - bd) + (ad + bc)i$

$$\begin{aligned}
&= (ac - bd) + (ad + bc)t \\
61. &z_1 + z_2 = (a + bi) + (c + di) \\
&= (a + c) + (b + d)i = (c + a) + (d + b)i \\
&= (c + di) + (a + bi) = z_2 + z_1 \\
z_1 z_2 &= (a + bi)(c + di) = (ac - bd) + (ad + bc)i \\
&= (ca - db) + (da + cb)i = z_2 z_1
\end{aligned}$$

63a.
$$z + \overline{z} = (a + bi) + (a - bi) = 2a; \ z - \overline{z} = (a + bi) - (a - bi) = -2bi$$

b.
$$z\overline{z} = (a+bi)(a-bi) = a^2 + b^2 = |z|^2$$

65. No. Let
$$t = i$$
 and $z = -i$. Then $w = t + z = i - i = 0$, so $|w| = 0$, but $|t| + |z| = |i| + |-i| = 1 + 1 = 2$.

67a.
$$2 - \sqrt{5}$$
 b. $x^2 - 4x - 1 = 0$

67a.
$$2 - \sqrt{5}$$
 b. $x^2 - 4x - 1 = 0$ 69a. $4 + 3i$ b. $x^2 - 8x + 25 = 0$ 71. $x^4 - 6x^3 + 23x^2 - 50x + 50 = 0$ 73. $x^4 - 7x^3 + 20x^2 - 19x + 13 = 0$

71
$$x^4 - 6x^3 + 23x^2 - 50x + 50 = 0$$

73.
$$x^4 - 7x^3 + 20x^2 - 19x + 13 = 0$$

Homework 10.4

1. 1, i, -1, -i, 1:

3.
$$1+2i$$
, $-2+i$:

5.
$$-3 + 3i\sqrt{3}$$

7.
$$-1+i$$

9.
$$2.34 - 4.42i$$

11.
$$-5.07 + 10.88i$$

- 13. $3(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2}), \ 3(\cos \frac{3\pi}{2} + i \sin \frac{3\pi}{2})$
- 15. $2\sqrt{3}\left(\cos\frac{7\pi}{6} + i\sin\frac{7\pi}{6}\right), \ 2\sqrt{3}\left(\cos\frac{11\pi}{6} + i\sin\frac{11\pi}{6}\right)$
- 17. $4.47 (\cos 2.68 + i \sin 2.68), 4.47 (\cos 5.82 + i \sin 5.82)$
- 19. $8.60 (\cos 5.78 + i \sin 5.78), 8.60 (\cos 0.51 + i \sin 0.51)$
- 21. $5(\cos 0.93 + i \sin 0.93)$, $5(\cos 5.36 + i \sin 5.36)$, $5(\cos 2.21 + i \sin 2.21)$, $5(\cos 4.07 + i \sin 4.07)$
- 23. If $z = r(\cos \theta + i \sin \theta)$, then $\overline{z} = r(\cos (2\pi \theta) + i \sin (2\pi \theta))$
- 25. $z_1 z_2 = 2 \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6}\right) = \sqrt{3} + i; \ \frac{z_1}{z_2} = 8 \left(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2}\right) = 8i$
- 27. $z_1 z_2 = 6 \left(\cos \frac{9\pi}{10} + i \sin \frac{9\pi}{10}\right); \ \frac{z_1}{z_2} = \frac{3}{2} \left(\cos \frac{3\pi}{10} + i \sin \frac{3\pi}{10}\right)$ 29. $z_1 z_2 = 8; \ \frac{z_1}{z_2} = \frac{1}{2}$
- 31. $z_1 z_2 = 4\sqrt{2} \left(\cos \frac{7\pi}{12} + i \sin \frac{7\pi}{12}\right); \ \frac{z_1}{z_2} = 2\sqrt{2} \left(\cos \frac{13\pi}{12} + i \sin \frac{13\pi}{12}\right)$ 33. -128 128i
- 35. $-128 128\sqrt{3}i$ 37. $512 + 512\sqrt{3}i$
- 39. $\frac{1}{4} + \frac{1}{4}i$ 41. $\frac{-\sqrt{2}}{8} \frac{\sqrt{6}}{8}i$

43a. $3(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}), 3(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4})$ b. $\frac{3}{\sqrt{2}} + \frac{3}{\sqrt{2}}i, \frac{-3}{\sqrt{2}} - \frac{3}{\sqrt{2}}i$

 $2(\cos\frac{6\pi}{5} + i\sin\frac{6\pi}{5}), 2(\cos\frac{8\pi}{5} + i\sin\frac{8\pi}{5})$

45a. 2,
$$2(\cos\frac{2\pi}{5} + i\sin\frac{2\pi}{5})$$
, $2(\cos\frac{4\pi}{5} + i\sin\frac{4\pi}{5})$,

b. 2, 0.618 + 1.9i, -1.618 + 1.176i,-1.618 - 1.176i, 0.618 - 1.902i

47a.
$$4\left(\cos\frac{\pi}{18}+i\sin\frac{\pi}{18}\right)$$
, $4\left(\cos\frac{13\pi}{18}+i\sin\frac{13\pi}{18}\right)$, $4\left(\cos\frac{25\pi}{18}+i\sin\frac{25\pi}{18}\right)$

- b. 1.97 + 0.347i, -1.286 + 1.532i, -0.684 - 1.879i
- 49. $|z| = |\cos \theta + i \sin \theta| = \sqrt{\cos^2 \theta + \sin^2 \theta} = 1$
- 51a. 1, $(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3})$, $(\cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3})$
- b. 1, i, -1, -i
- c. 1, $(\cos\frac{2\pi}{5} + i\sin\frac{2\pi}{5})$, $(\cos\frac{4\pi}{5} + i\sin\frac{4\pi}{5})$, $(\cos\frac{6\pi}{5} + i\sin\frac{6\pi}{5})$, $(\cos\frac{8\pi}{5} + i\sin\frac{8\pi}{5})$

- d. 1, $(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3})$, $(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3})$, -1, $(\cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3})$, $(\cos \frac{5\pi}{3} + i \sin \frac{5\pi}{3})$ 53. $\omega_k^n = 1^n(\cos n \cdot \frac{2\pi k}{n} + i \sin n \cdot \frac{2\pi k}{n}) = 1(\cos 2\pi k + i \sin 2\pi k) = 1$ 55. $8^{1/4}(\cos \frac{3\pi}{8} + i \sin \frac{3\pi}{8})$, $8^{1/4}(\cos \frac{5\pi}{8} + i \sin \frac{5\pi}{8})$, $8^{1/4}(\cos \frac{11\pi}{8} + i \sin \frac{11\pi}{8})$, $8^{1/4}(\cos\frac{13\pi}{8} + i\sin\frac{13\pi}{8})$
- 57. $\sqrt{2}$, $\sqrt{2} \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3}\right)$, $\sqrt{2} \left(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}\right)$, $-\sqrt{2}$, $\sqrt{2} \left(\cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3}\right)$, $\sqrt{2} \left(\cos \frac{5\pi}{2} + i \sin \frac{5\pi}{2} \right)$
- 59. $\sqrt{2} \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3}\right), \sqrt{2} \left(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}\right), \sqrt{2} \left(\cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3}\right),$ $\sqrt{2} \left(\cos \frac{5\pi}{3} + i \sin \frac{5\pi}{3} \right)$
- 61a. $\cos^2\theta \sin^2\theta + (2\sin\theta\cos\theta)i$ b. $\cos 2\theta + i \sin 2\theta$ c. $\sin 2\theta = 2 \sin \theta \cos \theta$; $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$
- 63a. $\frac{b}{a}$ b. $\frac{-a}{b}$
- 65a. $z_1z_2 = (ac bd) + (ad + bc)i$ b. $a = r \cos \alpha, b = r \sin \alpha, c = R \cos \beta, d = R \sin \beta$
- c,d. $ac bd = rR \cos \alpha \cos \beta rR \sin \alpha \sin \beta = rR \cos (\alpha + \beta)$,
 - $ad + bc = rR\cos\alpha\sin\beta + rR\sin\alpha\cos\beta = rR\sin(\alpha + \beta)$

Chapter 10 Review

5.
$$\left(\frac{-\sqrt{2}}{2}, \frac{-\sqrt{2}}{2}\right)$$

7.
$$(0.241, -3.391)$$

9.
$$(3\sqrt{2}, \frac{3\pi}{4})$$

7.
$$(0.241, -3.391)$$
 9. $(3\sqrt{2}, \frac{3\pi}{4})$ 11. $(\sqrt{29}, \tan^{-1}(\frac{-2}{5}) + 2\pi)$

17.
$$x^2 + y^2 = 1$$

$$21. r\cos\theta + r\sin\theta = 2$$

25. Circle of radius 3 centered at the origin 27. Circle of radius 3 centered at (3,0)

29.
$$r = 4$$

33.
$$(4, \frac{\pi}{6}), (4, \frac{5\pi}{6})$$

$$37.4 - 3i$$

45.
$$(2 \pm i)^2 - 4(2 \pm i) + 5 = (4 \pm 4i - 1) - (8 \pm 4i) + 5 = 0$$

47. $z^2 + 4z + 5$
49. $s^2 - 10s + 41$

$$47. z^2 + 4z + 5$$

19.
$$x^2 + y^2 = (2x + 6)^2$$

23.
$$\tan \theta = r$$

31.
$$r = 4\cos\theta$$

35.
$$\left(2\sqrt{2}, \frac{3\pi}{4}\right)$$
 and the pole

$$39. -2 + 4i$$

$$-(8 \pm 4i) + 5 = 0$$

49.
$$s^2 - 10s + 41$$

53. a.
$$-1-7i$$

b.
$$x^2 + 2x + 50 = 0$$

55. a.
$$3 + \sqrt{2}i$$

b.
$$x^2 - 6x + 11 = 0$$

57.
$$5\sqrt{3}-5i$$

$$59.5 + 50$$

53. a.
$$-1-7i$$
 b. $x^2+2x+50=0$
55. a. $3+\sqrt{2}i$ b. $x^2-6x+11=0$
57. $5\sqrt{3}-5i$ 59. $5+5i$
61. $3\sqrt{2}\left(\cos\frac{7\pi}{4}+i\sin\frac{7\pi}{4}\right)$
63. $5(\cos\pi+i\sin\pi)$

63.
$$5(\cos \pi + i \sin \pi)$$

65.
$$2(\cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3})$$

67.
$$z_1 z_2 = 16(\cos \pi + i \sin \pi) = -16$$
, $\frac{z_1}{z_2} = 4(\cos \frac{-2\pi}{3} + i \sin \frac{-2\pi}{3}) = -2 - 2\sqrt{3}i$

69.
$$z_1 z_2 = \frac{5}{2} \left(\cos \frac{-\pi}{3} + i \sin \frac{-\pi}{3} \right) = \frac{5}{4} - \frac{5\sqrt{3}}{2}i, \frac{z_1}{z_2} = 10 \left(\cos \frac{-5\pi}{6} + i \sin \frac{-5\pi}{6} \right) = -5\sqrt{3} - 5i$$

73. $\frac{-1}{100}$

51.

b.
$$-2\sqrt{2} + 2\sqrt{2}i$$
, $2\sqrt{2} - 2\sqrt{2}i$

 $3\left(\cos\frac{\pi}{2}+i\sin\frac{\pi}{2}\right)$ 77a. $3\left(\cos\frac{7\pi}{6}+i\sin\frac{7\pi}{6}\right)$

b.
$$3i, \frac{-3\sqrt{3}}{2} - \frac{3}{2}i, \frac{3\sqrt{3}}{2} - \frac{3}{2}i$$

79.
$$3(\cos\theta + i\sin\theta)$$
, for $\theta = \frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{3\pi}{2}, \frac{11\pi}{6}$
81. $\sqrt{2}(\cos\theta + i\sin\theta)$, for $\theta = \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}$

81.
$$\sqrt{2}(\cos\theta + i\sin\theta)$$
, for $\theta = \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}$