PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-069590

(43)Date of publication of application: 08.03.2002

(51)Int.CI.

C22C 38/00 C22C 38/58

(21)Application number: 2000-265046

5040

(71)Applicant: NKK CORP

(22)Date of filing:

01.09.2000

(72)Inventor: KIMURA HIDETO

EBARA RYUICHIRO SATO MASAHIRO

(54) HIGH CORROSION RESISTANT CLAD STEEL

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a material having excellent corrosion resistance, mechanical properties and economical efficiency to e.g. an oxidative decomposition treatment plant using high-temperature high-pressure fluids.

SOLUTION: In the high corrosion resistant clad steel, carbon steel is used as a base material and stainless steel which has a composition consisting of $\leq 0.02\%$ C, $\leq 1.0\%$ Si, $\leq 2.0\%$ Mn, 20-27% Cr, 17-45% of (Ni+Co), 2-5% of (Mo+1/2W), 0.01-0.3% N, 0.1-3% Cu and the balance essentially iron and satisfying relation Cr+Ni+Co+2Cu+4.1(Mo+1/2W) +24N \geq 62 is used as a cladding material. Further, either or both of $\leq 0.01\%$ B and $\leq 0.5\%$ Zr, one or more kinds among $\leq 0.02\%$ Cr, $\leq 0.1\%$ Al, $\leq 0.04\%$ La, $\leq 0.04\%$ Ce and $\leq 0.1\%$ Y, or one or more kinds among $\leq 0.5\%$ Ti, $\leq 0.8\%$ Nb, $\leq 1.6\%$ Ta and $\leq 1\%$ V can be added to the cladding material.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

BEST AVAILABLE COPY

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-69590 (P2002-69590A)

(43)公開日 平成14年3月8日(2002.3.8)

(51) Int.Cl.⁷

識別記号

FΙ

テーマコート*(参考)

C 2 2 C 38/00 38/58 302

C 2 2 C 38/00 38/58 302Z

審査請求 未請求 請求項の数4 OL (全 9 頁)

(21)出願番号

特顧2000-265046(P2000-265046)

(71)出願人 000004123

日本钢管株式会社

(22)出願日 平成12年9月1日(2000.9.1)

東京都千代田区丸の内一丁目1番2号

(72)発明者 木村 秀途

東京都千代田区丸の内一丁目1番2号 日

本鋼管株式会社内

(72)発明者 江原 隆一郎

高松市幸町1番1号

(72)発明者 佐藤 正大

高松市林町2217番43号

(74)代理人 100097272

弁理士 高野 茂

(54) 【発明の名称】 高耐食クラッド鋼

(57)【要約】

【課題】 高温高圧流体を利用した酸化分解処理プラント等に、耐食性と機械的性質、経済性に優れた材料を提供する。

【解決手段】 炭素鋼を母材とし、C:0.02%以下、Si:1.0%以下、Mn:2.0%以下、Cr:20~27%、Ni+Co:17~45%、MO+1/2W:2~5%、N:0.01~0.3%、Cu:0.1~3%を含み、残部が実質的に鉄であり、次の式を満たすステンレス鋼を合せ材とする高耐食クラッド鋼。

 $Cr+Ni+Co+2Cu+4.1(Mo+1/2W)+24N \ge 62$

合せ材には、B:0.01%以下、Zr:0.5%以下のうち1種以上、Ca:0.02%以下、Al:0.1%以下、La:0.04%以下、Ce:0.04%以下、Y:0.1%以下のうち1種以上、又はTi:0.5%以下、Nb:0.8%以下、Ta:1.6%以下、V:1%以下のうち1種以上を添加できる。

【特許請求の範囲】

【請求項1】 炭素鋼を母材とし、化学成分がmass% で、C:0.02%以下、Si:1.0 %以下、Mn:2.0%以下、Cr:20 ~27% Ni+Co:17~45% Mo+1/2W:2~5% N:0.01~0.3 % Cu:0.1~3%を含み、残部が実質的に鉄であり、各元 素のmass%をそれぞれの元素記号で表すとき次の式を満 たすステンレス鋼を合せ材とする高耐食クラッド鋼。 $Cr+Ni+Co+2Cu+4.1(Mo+1/2W)+24N \ge 62$

【請求項2】 合せ材の化学成分が、請求項1記載の化 学成分に加えてさらに、mass%で、B:0.01%以下、Zr:0.5 10 %以下のうち1種以上を含むことを特徴とする高耐食ク ラッド鋼。

【請求項3】 合せ材の化学成分が、請求項1または請。 求項2記載の化学成分に加えてさらに、mass%で、Ca:0. 02%以下、A1:0.1%以下、La:0.04%以下、Ce:0.04%以下、 Y:0.1%以下のうち1種以上を含むことを特徴とする高耐 食クラッド鋼。

【請求項4】 合せ材の化学成分が、請求項1ないしは 請求項3記載の化学成分に加えてさらに、Ti:0.5%以 下、Nb:0.8%以下、Ta:1.6%以下、V:1%以下のうち1種以 20 上を含むことを特徴とする高耐食クラッド鋼。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】との発明は、有毒廃棄物の処 理も可能な超臨界水・亜臨界水酸化プラント等における 高温高圧流体利用技術関連の装置材料に関する。

[0002]

【従来の技術】全社会的に環境保全への関心が高まる 中、含塩素系有機化合物に代表される難分解性の有毒物 ている。これらの分解処理の決め手となる技術として昨 今注目されているのが、高温高圧流体を利用した酸化処 理技術である。

【0003】物質が所定の温度・圧力条件を超えると、 液体と気体が渾然一体となった超臨界流体状態となり、 その手前の亜臨界流体状態も含めて、物質の化学反応に 極めて活性な反応場を提供する。とのような状態におい て、水は非常に安定かつ安全な物質として、超臨界およ び亜臨界の状態での廃棄物処理への応用が種々試みられ 最も広く用いられているものの一つである。

【0004】超臨界水による酸化分解法は、基本的技術 自体はほぼ確立された状況にあるが、実用的には材料の 耐食性に課題を残している。即ち、極めて高い反応性を 有する化学反応場に接する装置材料そのものが、現状で は腐食損傷を激しく受けている。

【0005】そこで、高耐食性のNi基合金が主に使用さ れている。また、チタン酸化物および炭・窒化物、ジル コニウムおよびアルミニウム酸化物等のセラミクス材料 ている。

【0006】その他、一般にクリープ強度、耐水蒸気酸 化特性、及び耐高温腐食性が必要とされるボイラ等に は、オーステナイト系耐熱鋼が使用されてきている。特 にボイラは、使用環境が苛酷化しつつあり、十分な耐食 性と優れた高温強度を目的として、オーステナイト系耐 熱合金が開発されている。

【0007】例えば、特開平6-322488号公報には、質量% で、C:0.02%未満、Si:1.5%以下(実施例では0.47~0.50 %)、Mn:0.3~1.5% P:0.02%以下、S:0.005%以下、Cr:18~2 6% Ni:20~40% W:0.5~10.0% Nb:0.05~0.4% (実施例で は0.18~0.23%)、Ti:0.01~0.2% B:0.003~0.008% N:0. 05~0.3% (実施例では0.008~0.147%) を含有し、さらに 必要に応じて、Mo:0.5~2.0%および/またはMg:0.001~0. 05% Ca:0.001~0.05% 希土類元素:0.001~0.15%のうち1 種または2種以上を含有するオーステナイト系耐熱合金 が提案されている。

【0008】特開2000-129403号公報には、C:0.01~0.2 0%(好ましくは0.035~0.15%), Si:3.0%以下(好まし ⟨は0.5~2.0%⟩,Mn:0.01~3.0%,Ni:15.0~40.0%, Cr: 15.0~30.0%,Mo:0.01~1.0%,W:2.0~8.0%,Nb:0.05~0.8 %,Ti:0.2%以下,B:0.006%以下,N:0.05~0.25% (好まし くは0.07~0.02%)を含有し、W/Moが2以上及びFe20~55% を有すること、更にTa0.01~0.5%, Zr0.001~0.2%, Hf0.0 01~0.2%の1種以上を含有するオーステナイト系耐熱合 金とそれを用いたボイラ用過熱管が提案されている。 [0009]

【発明が解決しようとする課題】しかし、これらの材料 には次のような問題点がある。まず、Ni基合金について 質の処理が今後の大きな問題としてクローズアップされ 30 は、髙価であり大規模な実用プラントを想定した場合、 材料コストは膨大なものとなり、廃棄物処理との費用対 効果等のバランスに大きな課題を抱えている。セラミク ス材料は、一般に熱衝撃による破損が起こりやすく、実 用上の信頼性に欠けるのが現状である。

【0010】熱衝撃等に対する信頼性の観点からは、前 述のボイラ用のオーステナイト系耐熱鋼を用いることも 考えられる。しかし、これらの材料は、主として高温腐 食環境への耐久性を狙った成分設計がなされていること から、超臨界水および亜臨界水が遷移する酸化・腐食環 ており、有害有機化合物の酸化分解の媒体として、現在 40 境においては、主として湿食が腐食を支配する条件での 耐食性に問題を有する。即ち、特開平6-322488号公報記 載の技術、特開2000-129403号公報記載の技術ともに、 湿食に対する耐食性を向上できるCu、Mo等の元素添加の 最適化への考慮は十分なされていないか、全く添加され ない。即ち、湿食域での全面腐食の観点から問題であ

【0011】本発明は、上記の課題を解決し、高温高圧 流体を利用した有毒廃棄物の酸化分解処理プラント等に おける装置材料、優れた耐食性と機械的性質への高い信 も、一般に耐食性が良好であることから、一部検討され 50 頼性を有し、なおかつ経済性にも優れた髙耐食クラッド

鋼を提供することを目的とする。

[0012]

【課題を解決するための手段】上記の課題は、次の発明 により解決される。その発明は、炭素鋼を母材とし、化 学成分がmass%で、C:0.02%以下、Si:1.0 %以下、Mn:2.0 %以下、Cr:20~27% Ni+Co:17~45% Mo+1/2W:2~5% N:0.01~0.3%、Cu:0.1~3%を含み、残部が実質的に鉄で あり、次の式を満たすステンレス鋼を合せ材とする高耐 食クラッド鋼である。

 $\{0\ 0\ 1\ 3\ \}\ Cr+Ni+Co+2Cu+4.1(Mo+1/2W)+24N\geq 62$ 式中の元素記号は各元素のmass%を示す。

【0014】ととでさらに、合せ材にはmass%で、下記 ①~③のいずれかを添加してもよい。

- ① B:0.01%以下、Zr:0.5%以下のうち1種以上
- ② Ca:0.02%以下、A1:0.1%以下、La:0.04%以下、Ce:0. 04%以下、Y:0.1%以下のうち1種以上
- ③ Ti:0.5%以下、Nb:0.8%以下、Ta:1.6%以下、V:1%以 下のうち1種以上

また、上記①、②、③を適宜組合せて添加することもで きる。

【0015】との発明は、超臨界水による酸化分解法に 用いる材料として、高価なNi基合金の代わりに、鉄基の ステンレス鋼を合せ材とするクラッド鋼を適用すること を検討する中でなされた。種々の添加元素の組合せにつ いて鋭意検討を行った結果、Niの添加量を大幅に増加す るととなく、酸化分解処理における耐食性を確保すると とに成功した。

【0016】本発明のクラッド鋼の母材は、普通鋼、高 張力鋼等の、機械的性質、経済性に優れた炭素鋼を選択 して使用することができる。

【0017】本発明の合せ材における化学成分の限定理 由について以下に述べる。

【0018】C: 0.02%以下

CはCrと結合して炭化物を形成し、Crによる鋼の耐高温 腐食性向上効果を減少させるため、その含有量は少ない ことが望ましい。C量が0.02%以下であれば、耐食性の劣 化は僅かであるため、添加量を0.02%以下とする。

【0019】Si: 1.0%以下

Siは脱酸剤として有効であるが、1.0 %を超えると金属 間化合物の析出を著しく加速し、熱間加工性を低下させ 40 る。従って、Siの添加量を1.0%以下とする。

【0020】Mn: 2.0%以下

Mnは脱酸剤であり、熱間加工性を向上させるため2.0% 以下を含んでもよい。2.0%を超えると耐食性を低下さ せる。従って、Mnの添加量を2.0%以下とする。

[0021] Cr: 20~27%

Crは鋼の耐高温腐食性を向上させる重要な働きを持つ。 高温高圧酸化プロセス環境においては、20%未満の添加 ではその効果は十分ではない。一方、Crを27%を超えて

における機械的性質や加工性が劣化する。従って、Crの 添加量を20~27%の範囲内とする。

[0022] Ni+Co: 17~45%

Miは高温において生じる鋼表面の保護皮膜中に入り、保 護皮膜の密着性を改善することを通じて、高温高圧酸化 プロセス環境での耐食性を向上させる。この効果に関し て、CoはNiと等価であるため、合計してNi+Coの添加量 として扱う。Ni+Coの添加量が17%未満では、耐食性の向 上効果は顕著ではない。一方、Ni+Co を45%を超えて添 10 加してもその効果は飽和するばかりか、経済性を損なう ようになる。従って、Ni+Coの添加量を17~45%の範囲内 とする。

[0023] Mo+1/2W: 2~5%

Moは孔食型の腐食に対して鋼材の耐食性を向上させる顕 著な効果を有する。その効果は、2%未満のMoの添加では 顕著ではなく、一方、5%を超えて添加すると、耐高温酸 化性が劣化する。また、Witmass%ではその1/2の量、即ち 1/2WでMoと等価であるため、合計してMo+1/2Wの添加量 として扱う。従って、Mo+1/2Wの添加量を2~5%の範囲内 20 とする。

[0024] N:0.01~0.3%

Nは孔食型の腐食に対する鋼材の耐食性を向上させる効 果を持つと同時に、鋼のオーステナイト組織を安定化さ せ、脆い金属間化合物が析出するのを抑止する効果を有 する。これらの効果を得るには、0.01%以上の添加が必 要であるが、0.3%を超える添加では製鋼コストが上昇し 経済性が損なわれる。従って、Nの添加量を0.01~0.3% の範囲内とする。

[0025] Cu: 0.1~3%

30 Cuは鋼の耐酸性を向上させるが、0.1%未満の添加ではそ の効果は十分ではなく、3%を超えて添加すると熱間加工 性を劣化させる。従って、Cuの添加量を0.1~3%の範囲 内とする。本発明における合せ材としては、以上の化学 成分を基本成分とし、さらに各種特性を向上させるた め、下記元素の添加が可能である。

【0026】B,Zr: B≦0.01%,Zr≦0.5%のうち1種以上 Bは、少量の添加により粒界強度の向上に効果がある が、0.01%を超えて添加すると溶接高温割れの傾向を著 しくする。従って、Bを添加する場合は0.01%以下とす る。Zrも、同様に粒界強度の向上に効果があるが、0.5% を超えて添加すると溶接高温割れの傾向を著しくする。 従って、Zrを添加する場合は0.5%以下とする。

[0 0 2 7] Ca,A1,La,Ce,Y: Ca \leq 0.02%,A1 \leq 0.1%,La \leq 0.04%,Ce≦0.04%,Y≦0.1%のうち1種以上

Ca,A1,La,Ce,Yは、1種以上を少量添加することによ り、表面に緻密な酸化膜を形成し、あるいはCr酸化物中 に取り込まれて、耐高温酸化性を向上させる。しかし、 Cartio.02% Alrido.1% Larido.04% Certio.04 % Yでは0.1%を超えて添加すると、鋼の熱間加工性を劣 添加すると、脆い金属間化合物が析出し易くなり、高温 50 化させ表面疵も発生しやすくなる。従って、Ca,A1,La,C

(3)

e,Yを添加する場合は、Ca:0.02%以下、A1:0.1%以下、L a:0.04%以下、Ce:0.04%以下、Y:0.1%以下のうち1種以 上を選択して添加する。

{ 0 0 2 8 } Ti,Nb,Ta,V: $Ti \le 0.5\%$,Nb $\le 0.8\%$,Ta ≤ 1.6 %,V≦1%のうち 1 種以上

Ti,Nb,Ta,V は、鋼中の炭素と結合して炭化物を形成 し、Cr炭化物の生成を抑制することにより、耐食性劣化 を減じることができる。しかし、Tiでは0.5%、Nbでは0. 8%、Taでは1.6%、Vでは1%を超えて添加すると、脆い金 添加する場合は、Ti:0.5%以下、Nb:0.8%以下、Ta:1.6% 以下、V:1%以下のうち1種以上を選択して添加する。

【0029】化学成分の限定式: Cr+Ni+Co+2Cu+4.1(Mo+ 1/2W)+24N≥62

高温高圧水酸化環境における腐食速度に及ぼす化学成分 の影響については、次の式(1)の耐食性指数Rにより評価 することができる。

[0030]

R = Cr + Ni + Co + 2Cu + 4.1(Mo + 1/2W) + 24N(1)ととで、元素記号は各元素のmass%を示す。

【0031】式(1)の値により、塩素イオンを含む高温 高圧水酸化環境での装置材料の腐食速度は、図1に示す ように良好に整理される。この図より、式(1)の値が62 以上においては、腐食速度は0.5g/m²h以下となり、上記 装置材料として許容される耐食性レベルを確保できる。 それとともに、腐食速度の変動も急速に収束し、安定し た耐食性能を示すようになる。以上から、式(1)の値が6 2以上となるように化学成分を規定する。 これは、不等 式で表すと、

Cr+Ni+Co+2Cu+4.1(Mo+1/2W)+24N≥62 (2) となる。

【0032】なお、これらの手段において「残部が実質 的に鉄である」とは、本発明の作用・効果を無くさない 限り、不可避的不純物をはじめ、他の微量元素を含有す るものが本発明の範囲に含まれることを意味する。 [0033]

【発明の実施の形態】本発明の実施に当たっては、上記 の合せ材の化学成分に基づき、通常のステンレス鋼と同 様の方法で製造したステンレス鋼を合せ材とし、炭素鋼 を母材としてクラッド鋼を製造できる。すなわち、これ 40 ら両者を組合せて、所謂サンドイッチ型あるしはオープ ン型等、自由な形状のスラブとして溶接組立し、界面を 真空脱気・封止した後、加熱圧延して鋼板として製造す

【0034】本発明の合せ材に用いるステンレス鋼の化 学成分は、超臨界水・亜臨界水環境での装置材料の腐食 と実用性に関する検討に基づくものである。検討を通 じ、高温高圧水環境での媒体の酸化性はもとより、分解 処理過程で発生する塩酸による局所的な腐食が、材料損 傷を加速している可能性が大きいことが明らかとなっ

た。

【0035】そもそも、本発明の対象とする含塩素系で 酸化力も大きい環境では、高温腐食と湿食、特に局部腐 食に近い腐食機構が、重複して材料損傷を速めていると 考えられる。しかし、耐高温度食性の向上と、局部腐食 環境での耐食性向上は、合金設計の観点からは多くの点 で相容れないものであり、両立させることが難しい。

【0036】そこで、新たな視点からの耐食性向上技術 について鋭意検討を行い、その過程で、高温で生じた酸 属間化合物が析出しやすくなる。従って、Ti,Nb,Ta,Vを 10 化皮膜の安定性が、従来言われているCr含有量のみなら ず、Niの含有量に基づき影響されることを見出した。検 討の結果、酸化皮膜がCr酸化物主体でしかもNiが含まれ ると、皮膜の合せ材母相への密着性と保護性が向上する 傾向があることを突き止めた。

> 【0037】この傾向について考察すると、密着性向上 には、酸化皮膜自体の延性の僅かな増加、酸化物と母相 (ステンレス鋼) の線膨張率差の縮小が関連している。 また、保護性の向上には、Fe-Cr系酸化物と比較した場 合の、Ni--Cr系酸化物中での酸素等の拡散速度の減少等 20 が関連していると考察される。従来、髙価にして敬遠さ れながらも、Ni基合金を髙温高圧水プラントの用途に適 用せざるを得なかった背景がここにある。

> 【0038】そとで、酸化皮膜へのNiの固溶が高温腐食 と湿食の重畳した環境への耐性に有効である以上、皮膜 の特性を改善するに十分なNi量があればよいことにな る。とのようなNi添加量の最小量さえ確保すれば、鉄基 のステンレス鋼であっても、十分優れた耐食性が発揮で きる筈であり、これを合せ材としてクラッド鋼とすれば 経済性は飛躍的に向上するとの考え方に基づき実験を継 30 続した。

【0039】実験では、Cr,Ni,Fe他の元素の添加量を変 化させて組合わせた組成の合金を準備した。検討を通 じ、ある量以上にNiを添加しても、酸化皮膜の組成は飽 和し、密着性は飽和するという知見が得られた。添加量 としては、Crを20%以上とする必要があること、これと ほぼ同量のNiの添加が、皮膜特性の飛躍的な向上をもた らすこと等を明らかにした。さらに、酸化皮膜の安定性 の向上に役立つ元素として、N,Mo,Cu等もあることが明 らかとなった。

【0040】しかし、MoおよびWの添加については、耐 局部腐食性の向上は期待できるものの、クラッド鋼の製 造時の熱履歴により耐食性が劣化する傾向があった。と れは、特に900~1100℃の最終圧下後の冷却過程におい て、結晶粒界にCr,Ni等との金属間化合物を析出しやす くし、耐食性に有効な化学成分を減少させるためであ る。このように、MoむよびWの添加量には制限があると とが明らかとなった。

【0041】実際の装置材料として役立つためには、材 料の加工性、延性、溶接性等が優れていることは極めて 50 重要である。その観点からは、合せ材の金属組織がオー

ステナイト組織となることを想定して添加元素を設定す れば、クラッド鋼の曲げ加工性や耐剥離性は良好である ほか、溶接性も良好である。

【0042】本発明は、以上の考え方に基づき、高温高 圧水環境での耐食性に優れたクラッド鋼を提供する。化 学成分については、好ましくは次のようにするとよい。 [0043] P: 0.002~0.02%

Pは不純物であり、低いほどよく、含有量が0.02%を超え ると溶接性を劣化させる。しかし、0.002%未満まで低下 2~0.02%の範囲とすることが好ましい。

【0044】S: 0.01%以下

Sは不純物であり、低いほどよく、含有量が0.01%を超え ると熱間加工性を劣化させる。従って、Sを0.01%以下と することが好ましい。

[0045] N: $0.15\sim0.3%$

Nは好ましくは、0.15%以上添加することにより、鋼のオ ーステナイト組織をより安定化させ、脆い金属間化合物 の析出抑止効果が確実に得られる。

【0046】本発明の髙耐食クラッド鋼の適用形態とし 20 ては、プラント設備の反応容器用の構造体ないし流通管 として用いることが、最も適している。さらに、反応容

器の内部構造や制御装置のケーシング等として用いて も、好適な耐食性と機械的性質を発揮しうる。 [0047]

【実施例】合せ材として、表1に示す化学成分を有する ステンレス鋼を真空誘導溶解にて溶製し、鋳造後1200℃ に均熱し、熱間圧延を施して30mm厚の鋼板を製造した。 熱間圧延後の鋼板については、耳割れ状況及び表面疵の 発生状況をまず評価した。

【0048】引き続き表面欠陥等の研削除去および接合 させると脱P処理のコストが増加する。従って、Pを0.00 10 予定面の研磨調整を実施した後、同様に接合予定面を研 磨調整した90mm厚の炭素鋼スラブと組合せて、90mm+30m m+30mm+90mm計240mm厚さに重ね合せた。これら2組のク ラッドの界面を真空脱気して四周を溶接封止して、サン ドイッチ型クラッドスラブとなした。

> 【0049】 このクラッドスラブを1150°Cに均熱し、圧 下比10で熱間圧延を施し、全体を24mm厚の板となした。 後、母材厚9mm、合せ材厚3mmのクラッド鋼2組に切断分 離して製品とした。クラッド鋼の合せ材表層より、135m m'×5mm'×1mm'の試験片を圧延方向に切り出し、表面研 磨仕上げで腐食試験に供した。

[0050]

【表1】

(0)	

7万/ 合せ材	65.68 0.482 O	0.374	0.288 O	0.471	0.463	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0: 原本
Q	\downarrow	L	0.288	0.471	53	_	1					!					ļ	1		lo
_	65.66	8.28	$\overline{}$		ŏ	0.503	0.598	0.450	0.469	0.537	0.517	0.443	0.525	0.534	0.535	0.591	0.532	0.464	0.488	
その独		_	93.74	72.43	73.15	69.58	63.43	75.46	76.04	68.48	68.64	74.03	68.04	70.30	67.05	65.93	68.34	73.83	72.59	M) + 24N
	3	Al: 0.1	Ti: 0.33	Zr. 0.11								B: 0.004	Ca: 0.003	Ce: 0.03	Ti: 0.36	Ta: 1.2	Ti:0.25,Nb:0.44	B:0.003,Ti:0.33	B:0.004, Ca:0.003 La:0.03	R = Cr + (Ni + Co + 2Cu) + 4.1(Mo + 1/2 W) + 24N
z	0.23	0.22	0.22	0.21	0.22	0.26	0.21	0.19	0.23	0.20	0.21	0.22	0.20	0.22	0.21	0.18	0.21	0.19	0.20	20 + 50
3	0.0	0.1	0.0	1.2	0.0	0.0	1.2	0.0	0.0	0.6	0.0	0.0	0.0	00	00	0.0	0.0	0.0	0.0) + <u>(N</u>) +
Wo	4.9	4.4	4.7	4.0	4.4	4.7	3.0	4.6	4.2	2.1	4.5	4.6	4.3	4	4.3	4.4	4.5	5.0	4.4	7 = Cr
mass %	20.3	22.1	23.2	24.0	25.0	24.4	21.3	20.3	24.9	26.6	22.5	24.6	24.4	25.1	24.5	21.0	21.9	23.1	25.2	
化学成分(mass %)	0.01	0.03	0.03	0.01	0.0	0.0	0.01	0.02	0.02	0.05	0.01	0.0	10.0	90	800	0.0	10.0	0.0	0.01	
تغ	18.2	31.2	40.5	21.5	21.8	17.6	22.1	26.1	25.5	24.3	21.0	22.3	19.2	20.2	18.4	19.9	20.3	22.8	22.6	
ઢ	7.70	0.71	2.73	1.51	1.51	1.03	0.1	2.81	4.	1.46	0.82	1.49	8.	1.45	0.74	33	1.32	43	0.97	
တ	0.001	0.000	0.000	0.001	0.001	0.000	0.001	0.00	0.00	800	0.00	800	000	000		89	0.00	0.00	0.000	
۵	0.008	0.007	0.00	0.00	0.00	0.005	0.007	0.004	0.006	0.008	0.005	0.00	0.005	0.00	000	0.00	0.00	0.00	0.008	
Ā	0.13	0.14	0.1	1.47	99.	-05	0.17	0.79	0.31	0.18	0.15	1.52	1.05	0.12	0.18	0.24	0.22	0.23	1.03	
ιō	0.12	0.13	0.15	0.18	0.28	0.24	0.1	0.20	0.22	0.14	0.18	0.18	0.24	0.27	0.25	0.19	0.22	0.25	0.14	
O	0.004	0.00	900	9000	0.005	9100	0.007	0.005								0.014	0.013	0.015	0.007	
₹		2	က	4		9	~	∞		<u> </u>	= [2	13	4 ;	<u> </u>	2		2	19	
	本 発 明 額																			

【0051】腐食試験は、トリクロロエチレン分解処理 プラントの反応容器環境を模擬し、2%トリクロロエチレ ン、等モルの水酸化ナトリウム、及び等モルの過酸化水 素を加えた純水中に浸積して行った。測定は、温度550 ℃、圧力35MPaで1時間保持して腐食量を測定し、減肉速 度に換算して評価した。以上の評価結果についても、表 1にまとめて示す。

【0052】本発明鋼合せ材の熱間加工性は、割れや疵 の発生がなく (表では〇印) 良好に圧延できた。また、 トリクロロエチレン分解処理プラントの反応容器模擬環 境の腐食速度(表では腐食速度*の欄)は、目標とする 0.6g/m² h(=0.66mm/year)未満の腐食速度が達成できてい

50 【0053】この腐食速度の目標値(=0.66mm/year)が維

12

持できれば、装置寿命を5年と想定した場合の減肉相当厚さは3.3mmであって、適用可能なクラッド鋼の板厚としては、例えば、6mm+3.3mm~11mm+3.3mmが考えられ、実用プラント向けに好適である。これは、1 ton/dayの工業的処理プラントで想定されている肉厚10~15mmのソリッド反応容器と同等の耐食性と機械的性質を備え、素材コストはソリッド使用の場合に比較して30~40%と推定される。

【0054】合せ材の化学成分が本発明の範囲に入らな

い比較鋼についても、同様に合せ材の真空溶解・鋳造・ 熱間圧延の工程を経て、耳割れ・表面疵の評価を行っ た。その後、表面機械加工および接合予定面の調整・母 材炭素鋼とのスラブと組立・界面脱気・クラッド圧延と いう工程を経て、合せ材表層の耐食性の評価を実施し た。比較鋼の合せ材の化学成分及び評価結果を、表2に まとめて示す。

[0055]

【表2】

. 11

											(8)									特開	1200
		13							_												_14	
	# 	c	C	×	,		c	×	c	c			<	ı	<	1 <			0	△	0: 良好	れ/耳割れ △: 接面艇
クラル・合せ材 節令事業。	7 (2 (2) (2) (3) (4) (4) (4) (4) (4) (4)	0.661	0.648	0.070	0.687	0.007	0.890	0447	1 184	0.754	0.502	0.466	0.469	0.475	0.559	0.511	0.623	0.601	0.701	0.445		×:低延性割れ/耳割れ △: 表面疵
	A	68 20	63.74	73.50	66.00	71.59	68.75	76.47	62.15	85.03	71.80	73.50	76.34	72.43	66.35	71.44	62.65	64.34	59.20	74.45	M) + 24N	
	十の名										B: 0.015	20.0.55	Ca: 0.03	A/ 0.4	Y. 0.12	77: 0.54	1.12	<i>Ta. 1.7</i>		B:0.004, Ca:0.003	= Cr + (Ni + Co + 2Cu) + 4.1(Mo + 1/2 W) + 24N	
	Z	0.22	0.23	0.24	0.22	0.23	0.21	0.20	0.23	0.23	0.21	0.22	0.22	0.22	0.24	0.19	0.20	0.18	0.20	0.21	Co + 20	
	3	8	00	8	8	17	8	00	9.0	00	0.8	Ξ	00	00	0.0	0.0	0.0	0.0	0.0	0.0	+ (N) +	
⊋	Š	4.5	4.3	1.4	4.6	4.5	4.7	4.4	1.4	177	3.9	3.2	4.6	4.8	4.2	4.5	3.7	3.5	3.3	4.6	R=Cr	
(mass	ဝံ	21.3	20.7	26.1	25.1	24.7	18.9	27.8	21.5	22.4	23.0	24.6	24.4	22.5	20.1	24.5	21.0	21.9	20.1	25.2		
化学成分(mass %)	ဒီ	0.0	0.0	0.01	0.02	0.01	0.02	0.01	0.02	0.02	0.01	0.02	0.02	0.0	0.0	0.0	0.00	0.01	0.01	0.01		
五	Ż	20.2	19.8	18.7	15.2	17.9	24.0	23.5	25.1	25.0	23.1	25.3	24.9	22.1	21.7	20.4	18.8	20.9	17.9	22.4		
	υΩ	1,48	500	3.06	71.0	0.76	0.76	1.16	1.52	1.49	1.51	1.46	1.44	1.43	0.78	1.76	1.44	1.43	1.43	1.47		
	S	0.000	0000	0.000	0.001	0.001	0.000	0.001	0.000	0.001	0.000	0.00	0.000	0.001	0.000	0.000	0.000	0.00	0.000	0.000	g.	
	۵	0.007	900'0	0.008	0.005	0.006	0.007	0.006	0.008	0.004	900.0	0.007	0.007	0.004	0.008	0.005	0.004	0.008	0.007	0.005	(値を示	
	Mn	0.81	0.87	0.13	0.11	0.14	0.16	0.33	0.25	0.31	1.07	1.35	0.14	1.54	0.89	0.87	0.22	0.18	0.25	0.22	形の数	
		0.24	0.22	0.23	0.20	0.21	0.19	0.17	0.19	0.25	0.18	0.22	0.20	0.27	0.21	0.33	0.29	0.28	0.22	0.15	下機は本発明範囲外の数値を示す。	
	ပ	0.026	0.004	900'0	0.004	0.005	0.004	0.005	0.005	900.0			9000	0.00	0.008				0.014	9000	8/は本夕	•
₹		-	2	3	4	5	9	~	8	6	의	=	12	5	7	15	9	듸	∞	6	ř.	

【0056】比較鋼の合せ材の熱間加工性については、 割れ、表面疵が発生したものがあり、表に×印、△印で 示す。割れが発生したもの (×印) は、金属間化合物の 析出に関連すると思われる髙温での低延性割れ、もしく は粒界強度の不足に起因すると思われる耳割れが発生し 50 【0057】このように、表1に示す発明鋼では、添加

たものである。表面疵が発生したもの(△印)も、同様 の原因によるものと思われる。比較鋼の耐食性について は、腐食速度の上記目標値0.6g/m²hを超えるものもあ

- -

元素の適切な組合せにより、全ての例について熱間加工性、耐食性の双方とも良好である。一方、表2に示す比較銀では、合せ材の熱間加工性もしくは耐食性のいずれかに難があり、双方を両立させることができない。以上より、本発明の用途に対して本発明の規定が有効であることがわかる。

15

[0058]

【発明の効果】本発明の高耐食クラッド鋼は、合せ材の 化学成分を適切に調製することにより、超臨界水・亜臨 界水酸化プラントに適用することが可能である。その結※10

*果、反応容器用構造体、流通管、反応容器の内部構造等 に好適な耐食性と機械的性質を発揮でき、しかも経済性 の障害を克服しうる。すなわち、工業的な有害廃棄物の SCWO(超臨界水酸化)処理プラントの装置製造に見通し が得られ、産業上極めて有益な効果が得られると同時 に、環境関連産業の創成に貢献できる。

【図面の簡単な説明】

【図1】合せ材の耐食性指数Rと高温高圧水酸化環境での腐食速度の関係を示す図。

[図]]

