Workshop: **Measures of Polarization**

Aug 16, 2022
Lorentz Workshop Othering and Polarisation
Leiden

Jan Lorenz

Polarization: Several conceptions

- (Group) Polarization is the degree of extremeness of a group (social psychology)
 Polarization is not the opposite of consensus?
- 2. Polarization is strong correlation of attitudes on various topics
 There cannot be polarization on one topic?
- 3. Polarization is large **difference** in me(di)an **opinions of two groups** What if groups are not clearly given exogenously?
- 4. Polarization on one topic is large antagonisms (opinion difference) between individuals
 But how to measure this exactly?

Isn't polarization a **process** instead of a **state**?

Practically, it doesn't matter much. To measure change we need to measure state.

Polarization: Definition

In Physics/Chemistry (among others)

A process that brings about electric or magnetic poles.

Polarization in social sciences

- A process of accentuation of differences
- 2. A state of accentuated differences

Let us look at potential data sets of individuals

E.g., liberal-conservative

E.g., liberal-conservative

ID	Issue1	Issue2	Issue	Group1	Group2	Group	AffectA	AffectB	Affect
1	10	0		Α	С		5	- 5	
2	6	8		В	b		1	4	
3	9	2		В	а		- 1	3	
i	:	:	:	:	:	:	:	:	:

Basic assumption:

We are interest in **polarization in this society** of this individuals as an **aggregate macroscopic property**.

→ How accentuated are differences?

Concept 1: Issue polarization

ID	Issue1	Issue2	Issue	Group1	Group2	Group	AffectA	AffectB	Affect
1	10	0		Α	С		5	- 5	
2	6	8		В	b		1	4	
3	9	2		В	а		- 1	3	
i	I	:	:	:	:	:	ŧ	:	÷

How accentuated are the differences among individuals with respect to **one issue**?

Concept 2: Issue alignment

ID	Issue1	Issue2	Issue	Group1	Group2	Group	AffectA	AffectB	Affect
1	10	0		Α	С		5	- 5	
2	6	8		В	b		1	4	
3	9	2		В	а		- 1	3	
i	ŀ	:	:	:	:	:	ŧ	:	÷

How aligned are several issues?

How much do they boil down to **one dimension**?

Concept 3: Issue partisanship

ID	Issue1	Issue2	Issue	Group1	Group2	Group	AffectA	AffectB	Affect
1	10	0		Α	С		5	- 5	
2	6	8		В	b		1	4	
3	9	2		В	а		- 1	3	
i	i	:	:	:	:	:	:	:	:

How accentuated are differences on an issue (Issue1) between existing groups (in Group1 labels)?

Democrats and Republicans More Ideologically Divided than in the Past

Distribution of Democrats and Republicans on a 10-item scale of political values

Source: 2014 Political Polarization in the American Public

Notes: Ideological consistency based on a scale of 10 political values questions (see Appendix A). The blue area in this chart represents the ideological distribution of Democrats; the red area of Republicans. The overlap of these two distributions is shaded purple. Republicans include Republican-leaning independents; Democrats include Democratic-leaning independents (see Appendix B).

PEW RESEARCH CENTER

Mix of issue alignment and issue partisanship

Concept 4: Affective polarization

ID	Issue1	Issue2	Issue	Group1	Group2	Group	AffectA	AffectB	Affect
1	10	0		Α	С		5	- 5	
2	6	8		В	b		1	4	
3	9	2		В	а		- 1	3	
i	:	:	:	:	:	:	:	:	÷

How negative are the **feelings of individuals about groups** (in Group1 labels)?

Issue polarization in the European Social Survey?

Lorenz, J., Neumann, M., & Schröder, T. (2021). Individual attitude change and societal dynamics: Computational experiments with psychological theories. Psychological Review, 128(4), 623.

https://doi.org/10.1007/s 43545-022-00342-7

Polarization: Many aspects even in 1-d distribution

Bramson, A., Grim, P., Singer, D. J., Fisher, S., Berger, W., Sack, G., & Flocken, C. (2016). Disambiguation of social polarization concepts and measures. The Journal of Mathematical Sociology, 40(2), 80-111.

→ List 9 different polarization aspects:

Spread Distinctness

Dispersion Group divergence

Coverage Group consensus

Regionalization Size parity

Fragmentation

Polarization as antagonisms between individuals

The conceptual measurement problem:

Polarization

Minimum (pol = 0)

- All have the same opinion

Maximum (pol = 1)

- One half maximally positive
- Other half maximally negative

$$M = c \frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} d(x_i, x_j)$$

For c=1: Mean absolute difference

https://en.wikipedia.org/wiki/Mean absolute difference

Probabilistic:

Expected value of the distance between a random pair.

The unified view: Average distance between pairs

When the characteristics (Ethnicity, Attitude, Wealth) are from a discrete set of n labels or numbers we can also compute

$$M = c \sum_{i=1}^{n} \sum_{j=1}^{n} p_i p_j d(x_i, x_j)$$

where p_i is the fraction of the population with characteristic x_i .

For Polarization:

$$M = c \sum_{i=1}^{n} \sum_{j=1}^{n} p_i p_j d(x_i, x_j)$$

 x_i are discrete number, e.g., from a $x_1 = 0$ to $x_{11} = 10$

$$d(x_{i},x_{i}) = |x_{i} - x_{i}|$$

We set $c = 2/|x_{11} - x_{1}|$.

Assume the maximal case:

$$M = 2/|10-0|*(0.5*0.5|10-0| + 0.5*0.5|0-10|) = 0.2*(2.5+2.5) = 1$$

For Polarization: Extension of Estaban and Rey

$$Pol_{\alpha} = \frac{2^{1+\alpha}}{x_n - x_1} \sum_{i=1}^{n} \sum_{j=1}^{n} p_i^{1+\alpha} p_j |x_i - x_j|$$

 α = 0 delivers our old measure

 α > 0 weights antagonism more when the first selected person is from a larger group with the same attitude

This can be called "identificiation-weighted".

For $\alpha \gtrsim 1.6$ the measure "degenerates" (can deliver values larger than one).

Polarization measures

- Polarization $\operatorname{Pol}_0(p) = \frac{2}{n} \sum_{i,j=0}^n p_i p_j |i-j|$ (Esteban & Ray, 1994) $\operatorname{Pol}_\alpha(p) = \frac{4}{n} \sum_{i,j=0}^n p_i^2 p_j |i-j|$ Pol $_\alpha(p) = \frac{2^{1+\alpha}}{i-j} \sum_{i,j=0}^n p_i^{1+\alpha} p_j |i-j|$
- Standard Deviation
- **Disagreement** (Van der Eijk, 2001)

 $MAD(p) = \frac{2}{n} \sum_{i=0}^{n} p_i |i - \bar{x}|$

$$SD(p) = \frac{2}{n} \sqrt{\sum_{i=0}^{n} p_i (i - \bar{x})^2}$$

These measure two aspects

		Pearson Corre	lation
Pol_0	MAD		0.99
Pol_0	SD	Empirically	0.99
Pol_0	Dis	the same	0.96
MAD	SD		0.98
MAD	Dis		0.93
SD	Dis		0.93
Pol_0	$Pol_{0.4}$		0.97
Pol_0	Pol_1		0.39
Pol_0	$Pol_{1.6}$		-0.23

Based on 4,004 attitude landscapes from ESS

Esteban, J. M., & Ray, D. (1994). On the measurement of polarization. Econometrica: Journal of the Econometric Society, 819-851.

Van der Eijk, C. (2001). Measuring agreement in ordered rating scales. Quality and Quantity, 35(3), 325-341.

Gestefeld, M., Lorenz, J., Henschel, N.T. et al. Decomposing attitude distributions to characterize attitude polarization in Europe. SN Soc Sci 2, 110

Pol_o vs. Pol₁ and stylized facts

Stylized Facts

Landscapes tend to have

- Discrete peaks
 - Central
 - Left extremists
 - Right extremists
- Smooth peaks
 - Moderate left
 - b. Moderate right

Pentamodal model of opinion landscapes

$$\pi = w_{\rm ExL} \pi^{\rm ExL} + w_{\rm ExR} \pi^{\rm ExR} + w_{\rm C} \pi^{\rm C} + w_{\rm ModL} \pi^{\rm ModL} + w_{\rm ModR} \pi^{\rm ModR}$$

$$\pi^{\text{ExL}} = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]$$

$$\pi^{\text{ExR}} = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]$$

$$\pi^{\text{C}} = [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]$$

$$\pi^{\text{ModL}} = [\pi_0^{\text{ModL}}, \pi_1^{\text{ModL}}, \dots, \pi_9^{\text{ModL}}, \pi_{10}^{\text{ModL}}]$$

$$\pi^{\text{ModR}} = [\pi_0^{\text{ModR}}, \pi_1^{\text{ModR}}, \dots, \pi_9^{\text{ModR}}, \pi_{10}^{\text{ModR}}]$$

of polarization

Partial polarization measure for subpopulation q<p with respect to the total population

$$\mathrm{Pol}_lpha(q,p) = rac{2^{1+lpha}}{n} \sum_{i,j=0}^n q_i^{1+lpha} p_j |i-j|.$$

 Pol_0 is always larger than Pol_1

$$\operatorname{Pol}_0(q,p) \geq \operatorname{Pol}_1(q,p)$$

(Warning: I am not sure if this is general for $\alpha_2 > \alpha_1$. Unfortunately, I forgot...)

Conclusion on Decomposition of Polarization

- The decomposition by groups and by measures are interesting to explore, they can tell what drives polarization differences
- It does not help so clear with the conceptual problem
- Is there a decomposition
 Fitting more directly to this?

Backup

Segregation, Polarization, and Inequality

From the BIGSSS Summer School in Computational Social Science on Social Cohesion Jul 2022:

→ Average antagonism between individuals in a society

Some differences

On differences in **categorical scales** (Ethnicity, Social Class, Gender, ...)

Segregation Polarization Inequality

On differences in **bounded order/metric scales**(Attitude surveys,

Likert scales)

On differences on a **continuous scale** (Resources quantified in monetary value)