Time-Varying Predictors in Models of Within-Person Fluctuation

- Today's Class:
 - Effects of Time-Varying Predictors
 - Person-Mean-Centering (PMC)
 - Grand-Mean-Centering (GMC)
 - Model Extensions under PMC vs. GMC

The Joy of Time-Varying Predictors

TV predictors predict leftover WP (residual) variation:

If model for time works, then residuals should look like this ->

- Modeling time-varying predictors is complicated because they represent an aggregated effect:
 - \succ Effect of the *between-person* variation in the predictor x_{ti} on Y
 - \triangleright Effect of the within-person variation in the predictor x_{ti} on Y
 - \rightarrow Here we are assuming the predictor x_{ti} only **fluctuates** over time...
 - We will need a different model if x_{ti} changes systematically over time...

The JOY of Time-Varying Predictors

- Time-varying (TV) predictors usually carry 2 kinds of effects because they are really 2 predictor variables, not 1
- Example: Stress measured daily
 - > Some days are worse than others:
 - WP variation in stress (represented as deviation from own mean)
 - > Some people just have more stress than others all the time:
 - BP variation in stress (represented as person mean predictor over time)
- Can quantify each source of variation with an ICC
 - > ICC = (BP variance) / (BP variance + WP variance)
 - > ICC > 0? TV predictor has BP variation (so it *could* have a BP effect)
 - > ICC < 1? TV predictor has WP variation (so it *could* have a WP effect)

Between-Person vs. Within-Person Effects

- Between-person and within-person effects in <u>SAME</u> direction
 - > Stress → Health?
 - BP: People with more chronic stress than other people may have worse general health than people with less chronic stress
 - WP: People may feel worse than usual when they are currently under more stress than usual (regardless of what "usual" is)
- Between-person and within-person effects in <u>OPPOSITE</u> directions
 - ➤ Exercise → Blood pressure?
 - BP: People who exercise more often generally have <u>lower</u> blood pressure than people who are more sedentary
 - WP: During exercise, blood pressure is <u>higher</u> than during rest
- Variables have different meanings at different levels!
- Variables have different scales at different levels

3 Kinds of Effects for TV Predictors

Is the Between-Person (BP) effect significant?

Are people with higher predictor values than other people (on average over time) also higher on Y than other people (on average over time), such that the person mean of the TV predictor accounts for level-2 random intercept variance ($\tau_{U_0}^2$)?

Is the Within-Person (WP) effect significant?

If you have higher predictor values than usual (at this occasion), do you also have higher outcomes values than usual (at this occasion), such that the within-person deviation of the TV predictor accounts for level-1 residual variance (σ_e^2)?

Are the BP and WP effects different sizes: Is there a contextual effect?

- After controlling for the absolute value of TV predictor value at each occasion, is there still an incremental contribution from having a higher person mean of the TV predictor (i.e., does one's general tendency predict $\tau_{U_0}^2$ above and beyond)?
- > If there is no contextual effect, then the BP and WP effects of the TV predictor show *convergence*, such that their effects are of equivalent magnitude

Modeling TV Predictors (labeled as x_{ti})

• Level-2 effect of x_{ti} :

- > The level-2 effect of x_{ti} is usually represented by the person's mean of time-varying x_{ti} across time (labeled as PMx_i or \overline{X}_i)
- > PMx_i should be centered at a <u>CONSTANT</u> (grand mean or other) so that 0 is meaningful, just like any other time-invariant predictor

• Level-1 effect of x_{ti} can be included two different ways:

- → "Group-mean-centering" → "person-mean-centering" in longitudinal, in which level-1 predictors are centered using a level-2 VARIABLE
- ➤ "Grand-mean-centering" → level-1 predictors are centered using a CONSTANT (not necessarily the grand mean; it's just called that)
- \triangleright Note that these 2 choices do NOT apply to the level-2 effect of $x_{ti}!$
 - But the interpretation of the level-2 effect of x_{ti} WILL DIFFER based on which centering method you choose for the level-1 effect of x_{ti} !

Person-Mean-Centering (P-MC)

- In P-MC, we decompose the TV predictor x_{ti} into 2 variables that directly represent its BP (level-2) and WP (level-1) sources of variation, and include those variables as the predictors instead:
- Level-2, PM predictor = person mean of x_{ti}
 - $> PMx_i = \overline{X}_i C$
 - \rightarrow PMx_i is centered at a constant C, chosen so 0 is meaningful
 - \rightarrow PMx_i is positive? Above sample mean \rightarrow "more than other people"
 - \rightarrow PMx_i is negative? Below sample mean \rightarrow "less than other people"
- Level-1, WP predictor = deviation from person mean of \mathbf{x}_{ti}
 - $ightharpoonup \mathbf{WPx_{ti}} = \mathbf{x_{ti}} \overline{\mathbf{X}_i}$ (note: uncentered person mean \overline{X}_i is used to center x_{ti})
 - > WPx_{ti} is NOT centered at a constant; is centered at a VARIABLE
 - \rightarrow WPx_{ti} is positive? Above your own mean \rightarrow "more than usual"
 - \rightarrow WPx_{ti} is negative? Below your own mean \rightarrow "less than usual"

Within-Person Fluctuation Model with Person-Mean-Centered Level-1 x_{ti}

→ WP and BP Effects directly through <u>separate</u> parameters

 x_{ti} is person-mean-centered into WPx_{ti}, with PMx_i at L2:

Level 1:
$$y_{ti} = \beta_{0i} + \beta_{1i}(WPx_{ti}) + e_{ti}$$

Level 2:
$$\beta_{0i} = \gamma_{00} + \gamma_{01}(PMx_i) + U_{0i}$$

$$\beta_{1i} = \gamma_{10}$$

 $PMx_i = \overline{X}_i - C \Rightarrow$ it has only Level-2 BP variation

 γ_{10} = WP main effect of having more x_{ti} than usual

 γ_{01} = BP main effect of having more \overline{X}_i than other people

Because WPx_{ti} and PMx_i are uncorrelated, each gets the <u>total</u> effect for its level (WP=L1, BP=L2)

ALL Between-Person Effect, NO Within-Person Effect

NO Between-Person Effect, ALL Within-Person Effect

Between-Person Effect > Within-Person Effect

Within-Person Fluctuation Model with Person-Mean-Centered Level-1 x_{ti}

→ WP and BP Effects directly through <u>separate</u> parameters

 x_{ti} is person-mean-centered into WPx_{ti}, with PMx_i at L2:

Level 1:
$$y_{ti} = \beta_{0i} + \beta_{1i}(\mathbf{WPx_{ti}}) + \mathbf{e_{ti}}$$

 $WPx_{ti} = x_{ti} - \overline{X}_i \rightarrow it has$ only Level-1 WP variation

Level 2:
$$\beta_{0i} = \gamma_{00} + \gamma_{01}(PMx_i) + U_{0i}$$

 $\beta_{1i} = \gamma_{10} + \gamma_{11}(PMx_i) + U_{1i}$

 $PMx_i = \overline{X}_i - C \Rightarrow$ it has only Level-2 BP variation

 U_{1i} is a random slope for the WP effect of x_{ti}

 γ_{10} = WP simple main effect of having more x_{ti} than usual for $PMx_i = 0$ γ_{01} = BP simple main effect of having more \overline{X}_i than other people for people at their own mean ($\overline{WPx}_{ti} = x_{ti} - \overline{X}_i \rightarrow 0$) γ_{11} = BP*WP interaction: how the effect of having more x_{ti} than usual differs by how much \overline{X}_i you have

Note: this model should also test γ_{02} for $PMx_i * PMx_i$ (stay tuned)

Between-Person x Within-Person Interaction

3 Kinds of Effects for TV Predictors

What Person-Mean-Centering tells us <u>directly</u>:

• Is the Between-Person (BP) effect significant?

- Are people with higher predictor values <u>than other people</u> (on average over time) also higher on Y <u>than other people</u> (on average over time), such that the person mean of the TV predictor accounts for level-2 random intercept variance $(\tau_{U_0}^2)$?
- > This would be indicated by a significant fixed effect of PMx_i
- \triangleright Note: this is NOT controlling for the absolute value of x_{ti} at each occasion

Is the Within-Person (WP) effect significant?

- If you have higher predictor values <u>than usual</u> (at this occasion), do you also have higher outcomes values <u>than usual</u> (at this occasion), such that the within-person deviation of the TV predictor accounts for level-1 residual variance (σ_e^2)?
- > This would be indicated by a significant fixed effect of WPx_{ti}
- \rightarrow Note: this is represented by the <u>relative</u> value of x_{ti} , NOT the <u>absolute</u> value of x_{ti}

3 Kinds of Effects for TV Predictors

- What Person-Mean-Centering DOES NOT tell us <u>directly</u>:
- Are the BP and WP effects different sizes: Is there a contextual effect?
 - After controlling for the absolute value of the TV predictor value at each occasion, is there still an incremental contribution from having a higher person mean of the TV predictor (i.e., does one's general tendency predict $\tau_{U_0}^2$ above and beyond just the time-specific value of the predictor)?
 - > If there is no contextual effect, then the BP and WP effects of the TV predictor show *convergence*, such that their effects are of equivalent magnitude
- To answer this question about the contextual effect for the incremental contribution of the person mean, we have two options:
 - Ask for the contextual effect via an ESTIMATE statement in SAS
 (or TEST in SPSS, or NEW in Mplus, or LINCOM in STATA): WPx_{ti} −1 PMx_i 1
 - > Use "grand-mean-centering" for time-varying x_{ti} instead: $TVx_{ti} = x_{ti} C$ \rightarrow centered at a CONSTANT, NOT A LEVEL-2 VARIABLE
 - Which constant only matters for what the reference point is; it could be the grand mean or other

Remember Regular Old Regression?

- In this model: $Y_i = \beta_0 + \beta_1(X_{1i}) + \beta_2(X_{2i}) + e_i$
 - If X_{1i} and X_{2i} **ARE NOT** correlated:
 - β_1 is **ALL the relationship** between X_{1i} and Y_i
 - β_2 is **ALL the relationship** between X_{2i} and Y_i
 - If X_{1i} and X_{2i} **ARE** correlated:
 - β_1 is **different than** the full relationship between X_{1i} and Y_i
 - "Unique" effect of X_{1i} controlling for X_{2i} or holding X_{2i} constant
 - β_2 is **different than** the full relationship between X_{2i} and Y_i
 - "Unique" effect of X_{2i} controlling for X_{1i} or holding X_{1i} constant
 - Hang onto that idea...

Person-MC vs. Grand-MC for Time-Varying Predictors

Level 2		Original	Person-MC Level 1	Grand-MC Level 1
$\overline{\mathbf{X}}_{\mathbf{i}}$	$\mathbf{PMx_i} = \overline{\mathbf{X}_i} - 5$	X _{ti}	$\mathbf{WPx_{ti}} = \mathbf{x_{ti}} - \ \overline{\mathbf{X}}_{\mathbf{i}}$	$TVx_{ti} = x_{ti} - 5$
3	-2	2	-1	-3
3	-2	4	1	-1
7	2	6	-1	1
7	2	8	1	3

Same PMx_i goes into the model using either way of centering the level-1 variable x_{ti} Using **Person-MC**, **WPx**_{ti} has NO level-2 BP variation, so it is not correlated with **PMx**_i Using **Grand-MC**, **TVx**_{ti} STILL has level-2 BP variation, so it is STILL CORRELATED with **PMx**_i

So the effects of PMx_i and TVx_{ti} when included together under Grand-MC will be different than their effects would be if they were by themselves...

Within-Person Fluctuation Model with x_{ti} represented at Level 1 Only:

→ WP and BP Effects are **Smushed Together**

x_{ti} is grand-mean-centered into TVx_{ti}, <u>WITHOUT</u> PMx_i at L2:

Level 1:
$$y_{ti} = \beta_{0i} + \beta_{1i}(TVx_{ti}) + e_{ti}$$

 $TVx_{ti} = x_{ti} - C \rightarrow it still$ has both Level-2 BP and Level-1 WP variation

Level 2:
$$\beta_{0i} = \gamma_{00} + U_{0i}$$

$$\beta_{1i} = \gamma_{10}$$

$$\gamma_{10} = \text{*smushed*}$$
WP and BP effects

Because TVx_{ti} still contains its original 2 different kinds of variation (BP and WP), its 1 fixed effect has to do the work of 2 predictors!

A *smushed* effect is also referred to as the convergence, conflated, or composite effect

Convergence (Smushed) Effect of a Time-Varying Predictor

Convergence Effect:
$$\gamma_{conv} \approx \frac{\frac{\gamma_{BP}}{SE_{BP}^2} + \frac{\gamma_{WP}}{SE_{WP}^2}}{\frac{1}{SE_{BP}^2} + \frac{1}{SE_{WP}^2}}$$

Adapted from Raudenbush & Bryk (2002, p. 138)

- The convergence effect will often be closer to the within-person effect (due to larger level-1 sample size and thus smaller SE)
- It is the rule, not the exception, that between and within effects differ (Snijders & Bosker, 1999, p. 52-56, and personal experience!)
- However—when grand-mean-centering a time-varying predictor,
 convergence is testable by including a contextual effect (carried by the person mean) for how the BP effect differs from the WP effect...

Within-Person Fluctuation Model with Grand-Mean-Centered Level-1 x_{ti}

→ Model tests difference of WP vs. BP effects (It's been fixed!)

x_{ti} is grand-mean-centered into TVx_{ti}, WITH PMx_i at L2:

Level 1:
$$y_{ti} = \beta_{0i} + \beta_{1i}(TVx_{ti}) + e_{ti}$$

 $TVx_{ti} = x_{ti} - C \Rightarrow it still$ has both Level-2 BP and Level-1 WP variation

Level 2:
$$\beta_{0i} = \gamma_{00} + \gamma_{01}(PMx_i) + U_{0i}$$

 $\beta_{1i} = \gamma_{10}$

 $PMx_i = \overline{X}_i - C \Rightarrow$ it has only Level-2 BP variation

 γ_{10} becomes the WP effect \rightarrow unique level-1 effect after controlling for PM x_i

γ₀₁ becomes the contextual effect that indicates how the BP effect differs from the WP effect
 → unique level-2 effect after controlling for TVx_{ti}
 → does usual level matter beyond current level?

Person-MC and Grand-MC Models are Equivalent Given a Fixed Level-I Main Effect Only

Person-MC: WPx_{ti} =
$$x_{ti}$$
 - PMx_i
Level-1: $y_{ti} = \beta_{0i} + \beta_{1i}(x_{ti} - PMx_i) + e_{ti}$
Level-2: $\beta_{0i} = \gamma_{00} + \gamma_{01}(PMx_i) + U_{0i}$
 $\beta_{1i} = \gamma_{10}$

Composite Model:

- ← In terms of P-MC
- ← In terms of G-MC

Grand-MC: $TVx_{ti} = x_{ti}$					
Level-1:	$y_{ti} = \beta_{0i} + \beta_{1i}(x_{ti}) + e_{ti}$				
Level-2:	$\beta_{0i} = \gamma_{00} + \gamma_{01}(PMx_i) + U_{0i}$				
	$\beta_{1i} = \gamma_{10}$				

 $\rightarrow y_{ti} = \gamma_{00} + \gamma_{01}(PMx_i) + \gamma_{10}(x_{ti}) + U_{0i} + e_{ti}$

Effect	P-MC	G-MC
Intercept	γ ₀₀	Υ00
WP Effect	γ ₁₀	γ ₁₀
Contextual	γ ₀₁ - γ ₁₀	γ ₀₁
BP Effect	γ ₀₁	γ ₀₁ + γ ₁₀

PMC vs. GMC: Interpretation Example

Summary: 3 Effects for TV Predictors

Is the Between-Person (BP) effect significant?

- Are people with higher predictor values than other people (on average over time) also higher on Y than other people (on average over time), such that the person mean of the TV predictor accounts for level-2 random intercept variance ($\tau_{U_0}^2$)?
- \triangleright Given directly by level-2 effect of PMx_i if using Person-MC for the level-1 predictor (or can be requested via ESTIMATE if using Grand-MC for the level-1 predictor)

Is the Within-Person (WP) effect significant?

- If you have higher predictor values than usual (at this occasion), do you also have higher outcomes values than usual (at this occasion), such that the within-person deviation of the TV predictor accounts for level-1 residual variance (σ_e^2)?
- Given directly by the level-1 effect of WPx_{ti} if using Person-MC OR given directly by the level-1 effect of TVx_{ti} if using Grand-MC and including PMx_i at level 2 (without PMx_i , the level-1 effect of TVx_{ti} if using Grand-MC is the smushed effect)

Are the BP and WP Effects different sizes: Is there a contextual effect?

- After controlling for the absolute value of TV predictor value at each occasion, is there still an incremental contribution from having a higher person mean of the TV predictor (i.e., does one's general tendency predict $\tau_{U_0}^2$ above and beyond)?
- Given directly by level-2 effect of PMx_i if using Grand-MC for the level-1 predictor (or can be requested via ESTIMATE if using Person-MC for the level-1 predictor)

The Joy of Interactions Involving Time-Varying Predictors

- Must consider interactions with both its BP and WP parts:
- Example: Does time-varying stress (x_{ti}) interact with sex (Sex_i) ?
- Person-Mean-Centering:
 - \rightarrow WPx_{ti} * Sex_i \rightarrow Does the WP stress effect differ between men and women?
 - \rightarrow PMx_i * Sex_i \rightarrow Does the BP stress effect differ between men and women?
 - Not controlling for current levels of stress
 - If forgotten, then Sex_i moderates the stress effect only at level 1 (WP, not BP)
- Grand-Mean-Centering:
 - > $TVx_{ti} * Sex_{i} \rightarrow$ Does the WP stress effect differ between men and women?
 - \rightarrow PMx_i * Sex_i \rightarrow Does the *contextual* stress effect differ b/t men and women?
 - Incremental BP stress effect after controlling for current levels of stress
 - If forgotten, then although the level-1 main effect of stress has been un-smushed via the main effect of PMx_i , the interaction of $TVx_{ti} * Sex_i$ would still be smushed

Interactions with Time-Varying Predictors: Example: TV Stress (x_{ti}) by Gender (Sex_i)

```
\begin{array}{ll} \underline{Person\text{-}MC:} & WPx_{ti} = x_{ti} - PMx_{i} \\ \\ Level\text{-}1: & y_{ti} = \beta_{0i} + \beta_{1i}(x_{ti} - PMx_{i}) + e_{ti} \\ \\ Level\text{-}2: & \beta_{0i} = \gamma_{00} + \gamma_{01}(PMx_{i}) + \gamma_{02}(Sex_{i}) + \gamma_{03}(Sex_{i})(PMx_{i}) + U_{0i} \\ \\ \beta_{1i} = \gamma_{10} + \gamma_{11}(Sex_{i}) \\ \\ \\ Composite: & y_{ti} = \gamma_{00} + \gamma_{01}(PMx_{i}) + \gamma_{10}(x_{ti} - PMx_{i}) + U_{0i} + e_{ti} \\ \\ & + \gamma_{02}(Sex_{i}) + \gamma_{03}(Sex_{i})(PMx_{i}) + \gamma_{11}(Sex_{i})(x_{ti} - PMx_{i}) \end{array}
```

```
\begin{array}{ll} \hline \textbf{Grand-MC:} & \textbf{TVx}_{ti} = \textbf{x}_{ti} \\ \\ \textbf{Level-1:} & \textbf{y}_{ti} = \beta_{0i} + \beta_{1i}(\textbf{x}_{ti}) + \textbf{e}_{ti} \\ \\ \textbf{Level-2:} & \beta_{0i} = \gamma_{00} + \gamma_{01}(\textbf{PMx}_i) + \gamma_{02}(\textbf{Sex}_i) + \gamma_{03}(\textbf{Sex}_i)(\textbf{PMx}_i) + \textbf{U}_{0i} \\ \\ & \beta_{1i} = \gamma_{10} + \gamma_{11}(\textbf{Sex}_i) \\ \hline \\ \textbf{Composite:} & \textbf{y}_{ti} = \gamma_{00} + \gamma_{01}(\textbf{PMx}_i) + \gamma_{10}(\textbf{x}_{ti}) + \textbf{U}_{0i} + \textbf{e}_{ti} \\ \\ & + \gamma_{02}(\textbf{Sex}_i) + \gamma_{03}(\textbf{Sex}_i)(\textbf{PMx}_i) + \gamma_{11}(\textbf{Sex}_i)(\textbf{x}_{ti}) \\ \hline \end{array}
```

Interactions Involving Time-Varying Predictors Belong at Both Levels of the Model

On the left below \rightarrow Person-MC: WP $x_{ti} = x_{ti} - PMx_{i}$

$$\begin{aligned} y_{ti} &= \gamma_{00} + \gamma_{01}(PMx_i) + \gamma_{10}(x_{ti} - PMx_i) + U_{0i} + e_{ti} \\ &+ \gamma_{02}(Sex_i) + \gamma_{03}(Sex_i)(PMx_i) + \gamma_{11}(Sex_i)(x_{ti} - PMx_i) \end{aligned}$$

$$y_{ti} &= \gamma_{00} + (\gamma_{01} - \gamma_{10})(PMx_i) + \gamma_{10}(x_{ti}) + U_{0i} + e_{ti} \\ &+ \gamma_{02}(Sex_i) + (\gamma_{03} - \gamma_{11})(Sex_i)(PMx_i) + \gamma_{11}(Sex_i)(x_{ti}) \end{aligned}$$

← Composite model written as Person-MC

← Composite model written as Grand-MC

On the right below \rightarrow Grand-MC: $TVx_{ti} = x_{ti}$

$$y_{ti} = \gamma_{00} + \gamma_{01}(PMx_i) + \gamma_{10}(x_{ti}) + U_{0i} + e_{ti} + \gamma_{02}(Sex_i) + \gamma_{03}(Sex_i)(PMx_i) + \gamma_{11}(Sex_i)(x_{ti})$$

After adding an interaction for Sex_i with stress at both levels, then the Person-MC and Grand-MC models are equivalent

Intercept: $\gamma_{00} = \gamma_{00}$ BP Effect: $\gamma_{01} = \gamma_{01} + \gamma_{10}$ Contextual: $\gamma_{01} = \gamma_{01} - \gamma_{10}$

WP Effect: $\gamma_{10} = \gamma_{10}$ BP*Sex Effect: $\gamma_{03} = \gamma_{03} + \gamma_{11}$ Contextual*Sex: $\gamma_{03} = \gamma_{03} - \gamma_{11}$

Sex Effect: $\gamma_{20} = \gamma_{20}$ BP*WP or Contextual*WP is the same: $\gamma_{11} = \gamma_{11}$

Intra-variable Interactions

- Still must consider interactions with both its BP and WP parts!
- Example: Interaction of TV stress (x_{ti}) with person mean stress (PMx_i)
- Person-Mean-Centering:
 - \rightarrow WPx_{ti} * PMx_i \rightarrow Does the WP stress effect differ by overall stress level?
 - \rightarrow PMx_i * PMx_i \rightarrow Does the BP stress effect differ by overall stress level?
 - Not controlling for current levels of stress
 - If forgotten, then PMx_i moderates the stress effect only at level 1 (WP, not BP)
- Grand-Mean-Centering:
 - > $TVx_{ti} * PMx_{i} \rightarrow$ Does the WP stress effect differ by overall stress level?
 - \rightarrow PMx_i * PMx_i \rightarrow Does the *contextual* stress effect differ by overall stress?
 - Incremental BP stress effect after controlling for current levels of stress
 - If forgotten, then although the level-1 main effect of stress has been un-smushed via the main effect of PMx_i , the interaction of $TVx_{ti} * PMx_i$ would still be smushed

Intra-variable Interactions:

Example: TV Stress (x_{ti}) by Person Mean Stress (PMx_i)

```
\begin{split} & \underline{Person\text{-}MC:} \  \  \, WPx_{ti} = x_{ti} - PMx_{i} \\ & \text{Level-1:} \  \  \, y_{ti} = \beta_{0i} + \beta_{1i}(x_{ti} - PMx_{i}) + e_{ti} \\ & \text{Level-2:} \  \, \beta_{0i} = \gamma_{00} + \gamma_{01}(PMx_{i}) + \gamma_{02}(PMx_{i})(PMx_{i}) + U_{0i} \\ & \beta_{1i} = \gamma_{10} + \gamma_{11}(PMx_{i}) \end{split} & \text{Composite:} \  \, y_{ti} = \gamma_{00} + \gamma_{01}(PMx_{i}) + \gamma_{10}(x_{ti} - PMx_{i}) + U_{0i} + e_{ti} \\ & + \gamma_{02}(PMx_{i})(PMx_{i}) + \gamma_{11}(PMx_{i})(x_{ti} - PMx_{i}) \end{split}
```

```
\begin{aligned} & \textbf{Grand-MC:} \quad \textbf{TV} x_{ti} = x_{ti} \\ & \textbf{Level-1:} \quad y_{ti} = \beta_{0i} + \beta_{1i}(x_{ti}) + \textbf{e}_{ti} \\ & \textbf{Level-2:} \quad \beta_{0i} = \gamma_{00} + \gamma_{01}(PMx_i) + \gamma_{02}(PMx_i)(PMx_i) + \textbf{U}_{0i} \\ & \beta_{1i} = \gamma_{10} + \gamma_{11}(PMx_i) \end{aligned} \textbf{Composite:} \quad y_{ti} = \gamma_{00} + \gamma_{01}(PMx_i) + \gamma_{10}(x_{ti}) + \textbf{U}_{0i} + \textbf{e}_{ti} \\ & + \gamma_{02}(PMx_i)(PMx_i) + \gamma_{11}(PMx_i)(x_{ti}) \end{aligned}
```

Intra-variable Interactions:

Example: TV Stress (x_{ti}) by Person Mean Stress (PMx_i)

On the left below \rightarrow Person-MC: WP $x_{ti} = x_{ti} - PMx_{i}$

$$y_{ti} = \gamma_{00} + \gamma_{01}(PMx_i) + \gamma_{10}(x_{ti} - PMx_i) + U_{0i} + e_{ti}$$

$$+ \gamma_{02}(PMx_i)(PMx_i) + \gamma_{11}(PMx_i)(x_{ti} - PMx_i)$$

$$y_{ti} = \gamma_{00} + (\gamma_{01} - \gamma_{10})(PMx_i) + \gamma_{10}(x_{ti}) + U_{0i} + e_{ti}$$

$$+ (\gamma_{02} - \gamma_{11})(PMx_i)(PMx_i) + \gamma_{11}(PMx_i)(x_{ti})$$

← Written as Person-MC

← Written as Grand-MC

On the right below \rightarrow Grand-MC: $TVx_{ti} = x_{ti}$

$$y_{ti} = \gamma_{00} + \gamma_{01}(PMx_i) + \gamma_{10}(x_{ti}) + U_{0i} + e_{ti} + \gamma_{02}(PMx_i)(PMx_i) + \gamma_{11}(PMx_i)(x_{ti})$$

After adding an interaction for PMx_i with stress at both levels, then the Person-MC and Grand-MC models are equivalent

Intercept: $\gamma_{00} = \gamma_{00}$ BP Effect: $\gamma_{01} = \gamma_{01} + \gamma_{10}$

Contextual: $\gamma_{01} = \gamma_{01} - \gamma_{10}$

WP Effect: $\gamma_{10} = \gamma_{10}$ BP² Effect: $\gamma_{02} = \gamma_{02} + \gamma_{11}$

Contextual²: $\gamma_{02} = \gamma_{02} - \gamma_{11}$

BP*WP or Contextual*WP is the same: $\gamma_{11} = \gamma_{11}$

When Person-MC \neq Grand-MC: Random Effects of TV Predictors

Person-MC: WPx_{ti} = x_{ti} - PMx_i

Level-1:
$$y_{ti} = \beta_{0i} + \beta_{1i}(x_{ti} - PMx_i) + e_{ti}$$

Level-2: $\beta_{0i} = \gamma_{00} + \gamma_{01}(PMx_i) + U_{0i}$

$$\beta_{1i} = \gamma_{10} + U_{1i}$$

$$y_{ti} = \gamma_{00} + \gamma_{01}(PMx_i) + \gamma_{10}(x_{ti} - PMx_i) + U_{0i} + U_{1i}(x_{ti} - PMx_i) + e_{ti}$$

Variance due to PMx_i is removed from the random slope in Person-MC.

Grand-MC:
$$TVx_{ti} = x_{ti}$$

Level-1: $y_{ti} = \beta_{0i} + \beta_{1i}(x_{ti}) + e_{ti}$

Level-2: $\beta_{0i} = \gamma_{00} + \gamma_{01}(PMx_i) + U_{0i}$

$$\beta_{1i} = \gamma_{10} + U_{1i}$$

$$\Rightarrow y_{ti} = \gamma_{00} + \gamma_{01}(PMx_i) + \gamma_{10}(x_{ti}) + U_{0i} + U_{1i}(x_{ti}) + e_{ti}$$

Variance due to PMx_i is still part of the random slope in Grand-MC. So these models cannot be made equivalent.

Random Effects of TV Predictors

- Random intercepts mean different things under each model:
 - \rightarrow Person-MC \rightarrow Individual differences at WP x_{ti} =0 (that everyone has)
 - \rightarrow Grand-MC \rightarrow Individual differences at TV x_{ti} =0 (that not everyone has)
- **Differential shrinkage of the random intercepts** results from differential reliability of the intercept data across models:
 - ▶ Person-MC → Won't affect shrinkage of slopes unless highly correlated
 - ➤ Grand-MC → Will affect shrinkage of slopes due to forced extrapolation
- As a result, the random slope variance may be too small when using Grand-MC rather than Person-MC
 - Problem worsens with greater ICC of TV Predictor (more extrapolation)
 - Anecdotal example using clustered data was presented in Raudenbush & Bryk (2002; chapter 6)

Bias in Random Slope Variance

OLS Per-Group Estimates

<u>Top right</u>: Intercepts and slopes are homogenized in Grand-MC because of intercept extrapolation

<u>Bottom</u>: Downwardly-biased random slope variance in Grand-MC relative to Person-MC

EB Shrunken Estimates

Unconditional Results

Conditional Results

Person-MC

$$\hat{\mathbf{T}} = \begin{bmatrix} 8.68 & 0.05 \\ 0.05 & 0.68 \end{bmatrix}$$

 $\hat{\sigma}^2 = 36.70$

$$\hat{\mathbf{T}} = \begin{bmatrix} 2.38 & 0.19 \\ 0.19 & 0.15 \end{bmatrix}$$

Grand-MC

$$\widehat{\mathbf{T}} = \begin{bmatrix} 4.83 & -0.15 \\ -0.15 & 0.42 \end{bmatrix}$$

$$\widehat{\boldsymbol{x}}^2 = 36.83$$

$$\widehat{\mathbf{T}} = \begin{bmatrix} 2.41 & 0.19 \\ 0.19 & 0.06 \end{bmatrix}$$

$$\widehat{\sigma}^2 = 36.74$$

Modeling Time-Varying Categorical Predictors

- Person-MC and Grand-MC really only apply to continuous TV predictors, but the need to consider BP and WP effects applies to categorical TV predictors too
- Binary level-1 predictors do not lend themselves to Person-MC
 - \rightarrow e.g., x_{ti} = 0 or 1 per occasion, person mean = .50 across occasions \rightarrow impossible values
 - \rightarrow If $x_{ti} = 0$, then WP $x_{ti} = 0 .50 = -0.50$; If $x_{ti} = 1$, then WP $x_{ti} = 1 .50 = 0.50$
 - \rightarrow Better: Leave x_{ti} uncentered and include person mean as level-2 predictor (results ~ Grand-MC)
- For >2 categories, person means of multiple dummy codes starts to break down, but we can think about types of people, and code BP effects accordingly
- Example: Dementia present/not at each time point?
 - ▶ BP effects → Ever diagnosed with dementia (no, yes)?
 - People who will eventually be diagnosed may differ prior to diagnosis (a BP effect)
 - ➤ TV effect → Diagnosed with dementia at each time point (no, yes)?
 - Acute differences of before/after diagnosis logically can only exist in the "ever" people
- Other examples: Mentor status, father absence, type of shift work (AM/PM)

Wrapping Up: Person-MC vs. Grand-MC

- Time-varying predictors carry at least two potential effects:
 - \rightarrow Some people are higher/lower than other people \rightarrow BP, level-2 effect
 - \rightarrow Some occasions are higher/lower than usual \rightarrow WP, level-1 effect
- BP and WP effects almost always need to be represented by two or more model parameters, using either:
 - > Person-mean-centering (WPx_{ti} and PMx_i): WP \neq 0?, BP \neq 0?
 - *Grand-mean-centering* (TV x_{ti} and PM x_i): WP ≠ 0?, BP ≠ WP?
 - Both yield equivalent models if the level-1 WP effect is fixed, but not if the level-1 WP effect is random
 - Grand MC \rightarrow absolute effect of x_{ti} varies randomly over people
 - Person MC \rightarrow relative effect of x_{ti} varies randomly over people
 - Use prior theory and empirical data (ML AIC, BIC) to decide