2. Topological Space and Continuous functions

We will introduce some basic topological space. e.g. Order topology, Product topology, Subspace topology, Metric topology, (Quotient topology)

§ 12 Topological Spaces.

Definition. Let X be a nonempty set $\mathcal{P}(X) = 2^X$ power set of X. We say that $\mathscr{T} \subseteq \mathscr{P}(X)$ is a topology on X if

- (1) $\emptyset, X \in \mathscr{T}$
- $\begin{array}{l} (2) \ U_{\alpha} \in \mathcal{T}, \ \alpha \in I \implies \bigcup_{\alpha \in I} U_{\alpha} \in \mathcal{T} \\ (3) \ U_{1}, \cdots, U_{n} \in \mathcal{T} \implies U_{1} \cap \cdots \cap U_{n} \in \mathcal{T} \end{array}$

If \mathscr{T} is a topology on X, then the pair (X,\mathscr{T}) or simply X is called a topological space and members in \mathcal{T} are called open sets in X

Example.

- (1) $X = \{a, b, c\}$
 - (a) The following are topological space on X, $\mathcal{T}_1 = \{\emptyset, X\}$, $\mathscr{T}_2 = \{\emptyset, \{a\}, \{a,b\}, X\}, \mathscr{T}_3 = \mathscr{P}(X)$
 - (b) The following are not topology on X $\mathscr{A} = \{\emptyset, \{a\}, \{b\}, X\} \ (\because \{a\} \cup \{b\} = \{a, b\} \notin \mathscr{A})$ $\mathscr{B} = \{\emptyset, \{a, b\}, \{b, c\}, X\} \ (\because \{a, b\} \cap \{b, c\} = \{b\} \notin \mathscr{B})$
- (2) Any set with more than 1 element has at least two topology $\{\emptyset, X\}$ (in discrete topology) and $\mathscr{P}(X)$ (discrete) and former is smallest one, another is the largest one.

<u>Definition.</u> $\mathscr{T}_{op} = \{ \mathscr{T} \mid \mathscr{T} \text{ is a topology on } X \} \mathscr{T}_1 \leq \mathscr{T}_2 \Leftrightarrow \mathscr{T}_1 \subseteq \mathscr{T}_2$ \overline{Claim} " \leq " is a partial ordering on \mathscr{T}_{op}

- * Reflexive: $\forall \mathcal{T} \in \mathcal{T}_{op}, \ \mathcal{T} \leq \mathcal{T}$ * Anti-symmetry: $\forall \mathcal{T}_1, \mathcal{T}_2 \in \mathcal{T}_{op}, \ \mathcal{T}_1 \leq \mathcal{T}_2 \ and \ \mathcal{T}_2 \leq \mathcal{T}_1 \implies$
- \star Transitive: $\forall \mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3 \in \mathcal{T}_{op}, \mathcal{T}_1 \leq \mathcal{T}_2 \text{ and } \mathcal{T}_2 \leq \mathcal{T}_3 \implies$

Example. Let X be a set, $\mathscr{T}_f = \{U \subseteq X, U = \emptyset \text{ or } X - U \text{ is finite } \}$ Then \mathcal{T}_f is a topology on X, called the "finite complement topology" on X

Proof.

- (1) $\emptyset, X \in \mathscr{T}_f (:: X X = \emptyset)$
- (2) $U_{\alpha} \in \mathscr{T}_f, \ \alpha \in I$ If $\bigcup_{\alpha \in I} U_{\alpha} = \emptyset$, then $\bigcup_{\alpha \in I} U_{\alpha} \in \mathscr{T}_f$. If $U_{\alpha \in I}U_{\alpha} \neq \emptyset$, then $\exists \alpha_0 \in I \ni U_{\alpha_0} \neq \emptyset$ and $X - U_{\alpha}$ is finite

$$X - \bigcup_{\alpha \in I} U_{\alpha} = \bigcap_{\alpha \in I} (X - U_{\alpha}) \subseteq X - U_{\alpha_0} \implies X - (\bigcup_{\alpha \in I} U_{\alpha})$$
 is finte $\Longrightarrow \bigcup_{\alpha \in I} U_{\alpha} \in \mathscr{T}_f$

(3) $U_1, \dots, U_n \in \mathscr{T}_f$ If $U_1 \cap \dots \cap U_n = \emptyset$, then $U_1 \cap \dots \cap U_n \in \mathscr{T}_f$ If $U_1 \cap \dots \cap U_n \neq \emptyset$, then $X - (U_1 \cap \dots \cap U_n) = (X - U_1) \cap \dots \cup (X - U_n)$ is finite since each $X - U_i$ is finite. Thus $U_1 \cap \dots \cap U_n \in \mathscr{T}_f$

From (1)(2)(3), \mathscr{T}_f is a topology on X.

Remark. If X is a finite set, then \mathscr{T}_f is the discrete topology on X

Example. Let X be a set and $\mathscr{T}_c = \{U \subseteq X \mid U = \emptyset \text{ or } X - U \text{ is countable } \}$. Then as in example above, \mathscr{T}_c is a topology on X, called the countable complement topology on X. Moreover, if X is countable, then \mathscr{T}_c is just a discrete topology on X

Definition. Let \mathscr{T} and \mathscr{T}' be two topologies on X. We say that \mathscr{T}' is (strictly) finer then \mathscr{T} or \mathscr{T} is (strictly) coaser that \mathscr{T}' if $\mathscr{T} \leq \mathscr{T}'(\mathscr{T} < \mathscr{T}')$, i.e. $\mathscr{T} \subseteq \mathscr{T}'(\mathscr{T} \subsetneq \mathscr{T}')$

Remark.

- (1) Two topologies on X need not be comparable
- (2) Other terminology, if $\mathcal{T}' \supset T$, \mathcal{T}' is larger(stronger) than \mathcal{T} and \mathcal{T} is smaller(weaker) than \mathcal{T}

§ 13 Bases for a topology.

<u>Definition.</u> Let X be a set. A base for a topology on X is a collection $\mathscr{B} \subseteq \mathscr{P}(X)$ satisfying

- (1) $U\mathscr{B} = X \left(\bigcup \mathscr{B} = \bigcup_{B \in \mathscr{B}} B \right)$
- (2) Given $B_1, B_2 \in \mathscr{B}$ and $x \in B_1 \cap B_2 \exists B_3 \in \mathscr{B} \ni x \in B_3 \subseteq B_1 \cap B_2$

Members in \mathscr{B} are called basic open sets in X

Given a base \mathcal{B} for a topology on X, we can define the smallest topology \mathcal{T} on X containing \mathcal{B} called the topology on X generated by \mathcal{B} .

Usually, there are two ways to describe it

- (I) $\mathscr{T} = \{U \subseteq X, \forall x \in U \exists B \in \mathscr{B} \ni x \in B \subseteq U\}$. Clearly, $\mathscr{B} \subseteq \mathscr{T}$
- (a) $\emptyset, X \in \mathscr{T}$ (by the definition of bases (1))
- (b) $U_{\alpha} \in \mathcal{F}, \ \alpha \in I \Longrightarrow \bigcup_{\alpha \in I} U_{\alpha} \in \mathcal{F}. \text{ Given } x \in \bigcup_{\alpha \in I} U_{\alpha}, x \in U_{\alpha_0}$ for some $\alpha_0 \in I$, $\exists B \in \mathcal{B} \ni x \in B \subseteq U_{\alpha_0} \subseteq \bigcup_{\alpha \in I} U_{\alpha}$
- (c) $U_1, \dots, U_n \in \mathscr{T} \implies U_1 \cap \dots \cap U_n \in \mathscr{T}$. By induction on n, we only prove n = 2. Given $x \in U_1 \cap U_2$, $x \in U_1$ and $x \in U_2$ $\implies \exists B_1, B_2 \in \mathscr{B} \ni x \in B_1 \subseteq U_1$ and X in $\mathscr{B}_2 \subseteq U_2 \implies$

 $x \in B_1 \cap B_2 \subseteq U_1 \cap U_2 \implies \exists B_3 \in \mathscr{B} \ni x \in B_3 \subseteq B_1 \cap B_2 \subseteq U_1 \cap U_2 \implies U_1 \cap U_2 \in \mathscr{T}$

(II) $\mathscr{T}' = \{ \bigcup \mathscr{A} \mid \mathscr{A} \subseteq \mathscr{B} \} = \{ \bigcup_{\alpha \in I} A_{\alpha} \mid A_{\alpha} \in \mathscr{B} \}$

Clearly, $\mathscr{B} \subseteq \mathscr{T}'$ (only choose one element in \mathscr{B})

- (a) $\emptyset, X \in \mathcal{T}'(\text{trivial})$
- (b) $U_{\alpha} \in \mathcal{T}', \ \alpha \in I \Longrightarrow \bigcup_{\alpha \in I} U_{\alpha} \in \mathcal{T}'$ $\forall \alpha \in I, U_{\alpha} = \bigcup_{\beta \in I_{\alpha}} A_{\beta}. \text{ Then } \bigcup_{\alpha \in I} U_{\alpha} = \bigcup_{\alpha \in I} \bigcup_{\beta \in I_{\alpha}} A_{\beta} \Longrightarrow \bigcup_{\alpha \in I} U_{\alpha} \in \mathcal{T}'$
- (c) $U_1, \dots, U_n \in \mathcal{T}' \implies U_1 \cap \dots \cap U_n \in \mathcal{T}'$. By induction on n, we only to prove that n = 2. For $i = 1, 2, \dots, U_i = \bigcup_{\alpha \in I_j} A_{\alpha}$. $U_1 \cap U_2 = \bigcup_{\alpha \in I_2} (A_{\beta}^1 \cap A_{\alpha}^2)$. $\forall x \in U_1 \cap U_2, \ x \in A_{\beta}' \cap A_{\alpha}^2 \implies U_1 \cap U_2 = \bigcup_{x \in U_1 \cap U_2} B_X \in \mathcal{T}'$
- (III) $\mathscr{T} = \mathscr{T}'$
- (\subseteq) Given $U \in \mathcal{T}$, $\forall x \in U$, $\exists B_x \in \mathcal{B} \ni x \in B_x \subseteq U \implies U = \bigcup_{x \in U} B_x \in \mathcal{T}'$
- (2) Given $U \in \mathcal{T}'$ $U = \bigcup_{\alpha \in I} A_{\alpha}, A_{\alpha} \in \mathcal{B}$ $\forall x \in U, x \in A_{\alpha} \text{ for some } \alpha \in I \text{ and } A_{\alpha} \in \mathcal{B}, \text{ i.e. } X \in A_{\alpha} \in U \text{ and } A_{\alpha} \in \mathcal{B} \implies U \in \mathcal{T}. \text{ Hence } \mathcal{T} = \mathcal{T}'$

Example.

- (1) Let \mathscr{B} be the collection of all open balls in \mathbb{R}^n . Then \mathscr{B} is a base for a topology on \mathbb{R}^n , namely, then Euclidean topology on \mathbb{R}^n
- (2) Let \mathscr{B}' be the collection of all n-dimentional open intervals in \mathbb{R} . Then \mathscr{B}' is a base for a topology on \mathbb{R}^n . In fact, β and β' generate the same topology on \mathbb{R}^n

Lemma. Let X be a set, let \mathscr{B} be a basis for a topology \mathscr{T} on X. \mathscr{T} equals the collection if all unions of elements of \mathscr{B} .

Lemma. Let X be a topological space and $\mathscr C$ be a collection of open sets of $X\ni \forall$ open set U in X and $\forall x\in U\ \exists C\in\mathscr C\ni x\in C\subseteq U$. Then $\mathscr C$ is a base for the topology of X.

- Proof. (1) $\bigcup \mathscr{C} = X$ Since X is open $\forall x \in X$, $\exists C_x \in \mathscr{C} \ni x \in C_x \subseteq X \implies x \in \bigcup \mathscr{C} \implies X = \bigcup \mathscr{C}$
 - (2) Given $C_1, C_2 \in \mathscr{C}$ and $x \in C_1 \cap C_2$. Since $C_1 \cap C_2$ is open, $\exists C \in \mathscr{C} \ni x \in C \subseteq C_1 \cap C_2, \ldots \mathscr{C}$ is a base for a topology of X

Remark. Let \mathscr{T} be the original topology on X and \mathscr{T}' be the topology generated by \mathscr{C} . Then $\mathscr{T} = \mathscr{T}'$

Proof. (\subseteq) Given $U \in \mathscr{T}$, $\forall x \in U \exists C \in \mathscr{C} \ni x \in C \subseteq U \implies U \in \mathscr{T}'$

(⊇) Given $v \in \mathcal{T}'$, by lemma, $V = \bigcup \mathscr{A}$ for some $A \subseteq \mathscr{C}$. Since $\mathscr{C} \subseteq \mathscr{T}$, $\mathscr{A} \subseteq \mathscr{T}$, $\therefore V = \bigcup \mathscr{A} \in \mathscr{T}$