# On the Equivalence of Projections in Relative $\alpha$ -Entropy and Rényi Divergence

P. N. Karthik Department of Electrical Communication Engineering Indian Institute of Science

Email: pnkarthik1992 @ gmail.com

December 15, 2017

#### Contents at a Glance



### **Notations**

- $(\mathbb{X},\mathcal{X})$  is an abstract measurable space, and  $\mu$  is an arbitrary  $\sigma$ -finite measure on  $(\mathbb{X},\mathcal{X})$
- ▶ Consider  $\alpha > 0, \alpha \neq 1$
- ▶ We work with the space of all probability measures on  $(\mathbb{X}, \mathcal{X})$  absolutely continuous with respect to  $\mu$ ; the corresponding Radon-Nikodym derivatives (or  $\mu$ -densities) are assumed to belong to  $L^{\alpha}(\mu)$
- ▶ For a subset E of probability measures, we use  $\mathcal E$  to denote the corresponding set of  $\mu$ -densities, i.e.,

$$\mathcal{E} := \left\{ p = \frac{dP}{d\mu} : P \in E \right\}$$

### ▶ Definition ( $\alpha$ -scaled measure)

Given a probability measure  $P \ll \mu$  with  $\mu$ -density p, its  $\alpha$ -scaled measure  $P^{(\alpha)}$  is the probability measure whose  $\mu$ -density  $p^{(\alpha)}$  is <sup>1</sup>

$$p^{(\alpha)} := \frac{p^{\alpha}}{\int p^{\alpha} d\mu} = \left(\frac{p}{||p||}\right)^{\alpha} \tag{1}$$

## ▶ Definition ( $p \longleftrightarrow p^{(\alpha)}$ correspondence)

Given a probability measure  $P \ll \mu$  with  $\mu$ -density p, a function  $p^{(\alpha)}$  is said to be in correspondence with p, denoted as  $p \longleftrightarrow p^{(\alpha)}$ , if (1) holds

<sup>&</sup>lt;sup>1</sup>We shall use the notation  $||h|| = (\int h^{\alpha} d\mu)^{1/\alpha}$ , even though  $||\cdot||$ , as defined, is not a norm when  $\alpha < 1$ . The dependence of  $||\cdot||$  on  $\alpha$  is suppressed for convenience.

▶ Definition (Relative  $\alpha$ -entropy)

The relative  $\alpha$ -entropy of P with respect to Q is defined as

$$\mathcal{I}_{lpha}(\mathit{P},\mathit{Q}) := rac{lpha}{1-lpha} \log \left( \int rac{\mathit{p}}{||\mathit{p}||} \left( rac{\mathit{q}}{||\mathit{q}||} 
ight)^{lpha-1} \mathit{d}\mu 
ight)$$

▶ Definition (Rényi divergence)

The Rényi divergence of order  $\alpha$  between P and Q is defined as

$$D_{lpha}(P||Q) := rac{1}{lpha - 1} \log \left( \int p^{lpha} q^{1 - lpha} d\mu 
ight)$$

▶ The key relation between the above quantities is

$$\mathcal{I}_{\alpha}(P,Q) = D_{1/\alpha}(P^{(\alpha)}||Q^{(\alpha)})$$

▶ Definition (( $\alpha$ ,  $\lambda$ )-mixture)

Given two probability measures  $P_0, P_1 \ll \mu$  and  $\lambda \in [0,1]$ , the  $(\alpha, \lambda)$ -mixture of  $P_0$  and  $P_1$  is the probability measure  $P_{\alpha,\lambda}$  whose  $\mu$ -density  $p_{\alpha,\lambda}$  is

$$\rho_{\alpha,\lambda} := \frac{\left(\lambda(\rho_1)^\alpha + (1-\lambda)(\rho_0)^\alpha\right)^{1/\alpha}}{\int \left(\lambda(\rho_1)^\alpha + (1-\lambda)(\rho_0)^\alpha\right)^{1/\alpha} d\mu}$$

▶ Definition ( $\alpha$ -convex set)

A set E of probability measures is said to be  $\alpha$ -convex if for any  $P_0, P_1 \in E$  and  $\lambda \in [0,1]$ , the  $(\alpha,\lambda)$ -mixture of  $P_0$  and  $P_1$  belongs to E

Let Q be a probability measure. Given  $k \in \{1, 2, ...\}$ ,  $\Theta = \{\theta = (\theta_1, ..., \theta_k) : \theta_i \in \mathbb{R}\} \subset \mathbb{R}^k$ , and functions  $f_i : \mathbb{X} \to \mathbb{R}$ ,  $1 \le i \le k$ ,

## ▶ Definition ( $\alpha$ -power-law family)

The  $\alpha$ -power-law family generated by Q and  $f_1, \ldots, f_k$  is defined as the set of probability measures  $\{P_{\theta} : \theta \in \Theta\}$ , where

$$P_{\theta}(x)^{-1} = M(\theta) \left( (Q(x))^{\alpha - 1} + (1 - \alpha) \sum_{i=1}^{k} \theta_i f_i(x) \right)^{\frac{1}{1 - \alpha}}$$

## ▶ Definition ( $\alpha$ -exponential family)

The  $\alpha$ -exponential family generated by Q and  $f_1, \ldots, f_k$  is defined as the set of probability measures  $\{P_{\theta} : \theta \in \Theta\}$ , where

$$P_{\theta}(x) = (N(\theta))^{-1} \left( (Q(x))^{1-\alpha} + (1-\alpha) \sum_{i=1}^{k} \theta_{i} f_{i}(x) \right)^{\frac{1}{1-\alpha}}$$

for all  $x \in \mathbb{X}$ 

## Projection Theorems

▶ Consider a space  $\mathbb H$  with a notion of a divergence  $\mathcal I(P,Q)$  between any two points  $P,Q\in\mathbb H$  that satisfies

$$\mathcal{I}(P,Q) \geq 0$$
, with equality if and only if  $P = Q$ 

▶ The (forward) projection of a point Q onto a set  $E \subset \mathbb{H}$  is a member  $P_* \in \mathbb{H}$  that satisfies

$$\mathcal{I}(P_*,Q)=\inf_{P\in E}\mathcal{I}(P,Q),$$

and may be viewed as the best approximant of Q from the set E

 Projection theorems provide sufficient conditions on E for the existence and uniqueness of projections

## Examples Where Existence or Uniqueness is Not Guaranteed



Convex but not closed

Closed but not convex

### What's Known

- ▶ If  $\mathbb H$  is a Hilbert space,  $\mathcal I$  is the usual notion of distance  $\langle P-Q,P-Q\rangle^{\frac{1}{2}}$  where  $\langle\cdot,\cdot\rangle$  denotes the inner product, and if E is closed and convex, then it is known that a projection exists and is unique
- ▶ If  $\mathbb H$  is the space of probability measures on an abstract measurable space,  $\mathcal I$  is the relative entropy, and E is convex and closed with respect to the total variation metric, then a projection exists and is unique (result due to Csiszár [1])
- There are extensions in the latter context

## Two Projection Problems

## Problem considered in Kumar and Sundaresan [2]

Fix  $\alpha > 0$ ,  $\alpha \neq 1$ . Let Q be any probability measure,  $Q \ll \mu$ , and E be a set of probability measures whose set of  $\mu$ -densities is  $\mathcal{E}$ . Solve

$$\inf_{P\in E} \mathcal{I}_{\alpha}(P,Q) \tag{2}$$

 A sufficient condition proposed for the existence and uniqueness of solution is that E is convex and ε is closed in L<sup>α</sup>(μ)

## Problem considered in Kumar and Sason [3]

Fix  $\alpha > 0$ ,  $\alpha \neq 1$ . Let Q be any probability measure,  $Q \ll \mu$ , and  $E_1$  be a set of probability measures whose set of  $\mu$ -densities is  $\mathcal{E}_1$ . Solve

$$\inf_{P \in E_1} D_{\alpha}(P||Q) \tag{3}$$

A sufficient condition proposed for the existence and uniqueness of solution is that  $E_1$  is  $\alpha$ -convex and  $\mathcal{E}_1$  is closed in  $L^1(\mu)$ 

## Equivalence of the Projection Problems



The world of relative  $\alpha$ -entropy

The world of Rényi divergence

## Equivalence of the Pythagorean Theorems

Kumar and Sundaresan establish that if E is convex, then the projection P\* of Q onto E, if it exists, satisfies

$$\mathcal{I}_{\alpha}(P,Q) \geq \mathcal{I}_{\alpha}(P,P_*) + \mathcal{I}_{\alpha}(P_*,Q)$$
 for all  $P \in E$ 

- $\triangleright$   $E^{(\alpha)}$  is  $(1/\alpha)$ -convex
- ▶ Thus,  $P_*^{(\alpha)}$  is the  $D_{1/\alpha}$ -projection of  $Q^{(\alpha)}$  onto  $E^{(\alpha)}$  and this projection satisfies

$$D_{1/\alpha}(P^{(\alpha)},Q^{(\alpha)}) \geq D_{1/\alpha}(P^{(\alpha)},P_*^{(\alpha)}) + D_{1/\alpha}(P_*^{(\alpha)},Q^{(\alpha)})$$

for all  $P^{(\alpha)} \in E^{(\alpha)}$ 

▶ This recovers the Pythagorean property for Rényi divergence, with  $1/\alpha$  replacing  $\alpha$ .

## Equivalence of $\alpha$ -Power-Law and $\alpha$ -Exponential Families

- ▶ Suppose that  $P_{\theta}$ .  $\theta \in \Theta$ , is a member of the  $\alpha$ -power-law family generated by Q
- ► Then,

$$\begin{split} P_{\theta}^{(\alpha)}(x) &\propto (P_{\theta}(x))^{\alpha} \\ &\propto \left( (Q(x))^{\alpha-1} + (1-\alpha) \sum_{i=1}^{k} \theta_{i} f_{i}(x) \right)^{-\frac{\alpha}{1-\alpha}} \\ &\propto \left( \left( \frac{Q(x)}{||Q||} \right)^{\alpha-1} + (1-\alpha) \sum_{i=1}^{k} \frac{\theta_{i}}{||Q||^{\alpha-1}} f_{i}(x) \right)^{-\frac{\alpha}{1-\alpha}} \\ &\propto \left( (Q^{(\alpha)}(x))^{1-\frac{1}{\alpha}} + \left( 1 - \frac{1}{\alpha} \right) \sum_{i=1}^{k} \theta'_{i} f_{i}(x) \right)^{\frac{1}{1-\frac{1}{\alpha}}}, \end{split}$$

where  $\theta_i' := \frac{(-\alpha)\theta_i}{||Q||^{\alpha-1}}$ ,  $1 \le i \le k$ 

### Statistical Manifolds and Riemannian Metrics

▶ A (Riemannian) metric at a point  $p \in S$  is an inner product defined between any two tangent vectors in  $T_p(S)$ 

▶ A metric is completely characterized by a matrix whose entries are the inner products between the basis tangent vectors, i.e., it is characterized by the matrix

$$G(\phi) = [g_{i,j}(\phi)]_{i,j=1,\ldots,n},$$

where  $g_{i,j} = \langle \partial_i, \partial_j \rangle$ 

## Eguchi's Method of Characterizing Metrics From Divergences

▶ Let S be a manifold with a coordinate system  $\phi = (\phi_1, \dots, \phi_n)$ , and let  $\mathcal{I}^2$  be a divergence function on  $S \times S$ 

▶ Eguchi [4] showed that there is a metric

$$G^{(\mathcal{I})}(\phi) = [g_{i,j}^{(\mathcal{I})}(\phi)]_{i,j=1,\ldots,n}$$

with

$$\left. oldsymbol{g}_{i,j}^{(\mathcal{I})}(\phi) = -rac{\partial}{\partial \phi_i} rac{\partial}{\partial \phi_i'} \mathcal{I}(oldsymbol{p}_\phi,oldsymbol{p}_{\phi'}) 
ight|_{\phi'=\phi},$$

where  $\phi = (\phi_1, \dots, \phi_n)$  and  $\phi' = (\phi'_1, \dots, \phi'_n)$ 

<sup>&</sup>lt;sup>2</sup>When  $p = \frac{dP}{d\mu}$  and  $q = \frac{dQ}{d\mu}$ , we write  $\mathcal{I}(P, Q) = \mathcal{I}(p, q)$ 

## Riemannian Metrics for Relative Entropy and Rényi Divergence

It is well known that when  $\mathcal{I}(p,q) = I(p||q)$ , the relative entropy between p and q, (16) can be written as

$$g_{i,j}^{(l)}(\phi) = E_{p_{\phi}}[\partial_i \log p_{\phi} \cdot \partial_j \log p_{\phi}], \tag{4}$$

where  $E_{p_{\phi}}$  denotes the expectation with respect to  $p_{\phi}$ 

- ▶ The quantity in (4) is the (i,j) entry of the Fisher information matrix
- ▶ On similar lines, when  $\mathcal{I}(p,q) = D_{\alpha}(p||q)$ , the Rényi divergence of order  $\alpha$  between p and q, where  $\alpha > 0$ ,  $\alpha \neq 1$ , it can be shown that

$$g_{i,j}^{(D_{\alpha})}(\phi) = \alpha \cdot E_{\rho_{\phi}}[\partial_{i} \log \rho_{\phi} \cdot \partial_{j} \log \rho_{\phi}]$$
$$= \alpha \cdot g_{i,j}^{(I)}(\phi)$$
$$= g_{i,j}^{(\alpha I)}(\phi)$$

### Main Results

### Theorem (1)

The minimization problem (2) for a given  $\alpha>0$ ,  $\alpha\neq 1$ , is equivalent to (3) with  $\alpha$  replaced by  $1/\alpha$  and  $E_1$  replaced by  $E^{(\alpha)}$ , the set of  $\alpha$ -scaled measures corresponding to E, and Q replaced by  $Q^{(\alpha)}$ . Moreover, the hypotheses are identical under the  $p\longleftrightarrow p^{(\alpha)}$  correspondence.

### Theorem (2)

Let  $\mathbb X$  be a finite alphabet. Fix  $\alpha>0$ ,  $\alpha\neq 1$ ,  $k\in\{1,2,\ldots\}$ , and  $\Theta=\{\theta=(\theta_1,\ldots,\theta_k):\theta_i\in\mathbb R\}\subset\mathbb R^k$ . Let  $f_i:\mathbb X\to\mathbb R$ ,  $1\leq i\leq k$ , be specified. Given a probability measure Q, for every member of the  $\alpha$ -power-law family generated by Q,  $f_1,\ldots,f_k$  and  $\Theta$ , its  $\alpha$ -scaled measure is a member of the  $(1/\alpha)$ -exponential family generated by  $Q^{(\alpha)}$ ,  $f_1,\ldots,f_k$  and  $\Theta'$ , where  $\Theta'$  is a scalar modification of  $\Theta$  that depends on  $\alpha$  and Q.

### Theorem (3)

Consider a finite alphabet  $\mathbb X$  and fix  $\alpha>0$ ,  $\alpha\neq 1$ . Let S be a statistical manifold equipped with a coordinate system  $\phi=(\phi_1,\ldots,\phi_n)$ , and let  $S^{(\alpha)}$  denote the statistical manifold of the corresponding  $\alpha$ -scaled measures. Then, for every  $p\in S$ , the Riemannian metric specified by relative  $\alpha$ -entropy on  $T_p(S)$  is equivalent to that specified by Rényi divergence of order  $1/\alpha$  on  $T_{p^{(\alpha)}}(S^{(\alpha)})$ .

### References



I. Csiszár, "I-divergence geometry of probability distributions and minimization problems," *Annals of Probability*, vol. 3, pp. 146–158, 1975.



M. A. Kumar and R. Sundaresan, "Minimization problems based on relative  $\alpha$ -entropy I: Forward projection," *IEEE Transactions on Information Theory*, vol. 61, no. 9, pp. 5063–5080, September 2015.



M. A. Kumar and I. Sason, "Projection theorems for the Rényi divergence on  $\alpha$ -convex sets," *IEEE Transactions on Information Theory*, vol. 62, no. 9, pp. 4924–4935, September 2016.



S. Eguchi, "Geometry of minimum contrast," *Hiroshima Math. J*, vol. 22, no. 3, pp. 631–647, 1992.