

Dr. rer. nat. Johannes Riesterer

Indikatorfunktion

Für eine Teilmenge $A\subset \mathbb{R}^n$ heißt

$$1_{\mathcal{A}}(x) := egin{cases} 1 & \mathsf{falls} \ x \in \mathcal{A} \\ 0 & \mathsf{sonst} \end{cases}$$

Indikatorfunktion.

Sinnvoller Integralbegriff

Definiere Integral über Funktionen so, dass $\int 1_A d\mu = \mu(A)$

Indikatorfunktion

Eine Funktion

$$\varphi(x) := \sum_{k=1}^{m} c_k 1_{I_k}$$

mit $c_k \in \mathbb{R}$ und $I_k \in \mathbb{I}(n)$ mit $I_l \cap I_h = \emptyset$ für $i \neq j$ heißt Treppenfunktion.

Figure: Quelle: Wikipedia:

Vektorraum der Indikatorfunktionen

Seien $\varphi(x) = \sum_{k=1}^m c_k 1_{I_k}$ und $\psi(x) = \sum_{j=1}^l u_j 1_{I_j}$. Dann definiert $(\varphi + \psi)(x) := \sum_{k=1}^m \sum_{j=1}^l (c_k + u_j) 1_{I_{k,j}}$ mit $I_{k,j} := I_k \cap I_j$ eine Treppenfunktion (nach entsprechender Umnummerierung zu einem einzigen Summenzeichen).

Integral von Treppenfunktionen

Für eine Treppenfunktion $\varphi(x) := \sum_{k=1}^m c_k 1_{I_k}$ definieren wir das Integral durch

$$\int_{\mathbb{R}^n} \varphi d\mu := \sum_{k=1}^m c_k \mu(I_k) .$$

Eigenschaften des Integrals von Treppenfunktionen

Seien $\varphi(x) = \sum_{k=1}^{m} c_k 1_{I_k}$ und $\psi(x) = \sum_{j=1}^{l} u_j 1_{I_j}$ zwei Treppenfunktionen. Für das Integral von Treppenfunktion gilt:

- Ist $\varphi(x) = \psi(x)$ für alle x, dann ist $\int_{\mathbb{R}^n} \varphi d\mu = \int_{\mathbb{R}^n} \psi d\mu$ (Das integral hängt nicht von der Zerlegung der Treppenfunktion ab und ist wohldefiniert)
- $\bullet \ \int_{\mathbb{R}^n} \alpha \varphi + \beta \psi \mathrm{d} \mu = \alpha \int_{\mathbb{R}^n} \varphi \mathrm{d} \mu + \beta \int_{\mathbb{R}^n} \psi \mathrm{d} \mu$
- $\bullet \left| \int_{\mathbb{R}^n} \varphi d\mu \right| \leq \int_{\mathbb{R}^n} |\varphi| d\mu$
- Ist $\varphi(x) \leq \psi(x)$ für alle x, so ist $\int_{\mathbb{R}^n} \varphi d\mu \leq \int_{\mathbb{R}^n} \psi d\mu$

Der Beweis wird über eine vollständige Induktion geführt. Der Induktionsanfang ist einfach zu zeigen. Wir nehmen an, die Aussage gilt für alle Dimensionen k < n. Zerlege $\mathbb{R}^n = \mathbb{R}^p \times \mathbb{R}^{n-p}$. Jeder Quader $I \in \mathbb{I}(n)$ zerlegt sich damit ebenfalls in ein Produkt $I = I' \times I''$ mit $I' \in \mathbb{I}(p)$ und $I'' \in \mathbb{I}(n-p)$ und für $z=(x,y)\in\mathbb{R}^p\times\mathbb{R}^{n-p}$ gilt $1_I(z)=1_{I'}(x)\cdot 1_{I''}(y)$. Es sei nun $\varphi(z) := \sum_{k=1}^m c_k 1_{I_k}(z)$ eine Treppenfunktion auf $\mathbb{R}^p \times \mathbb{R}^{n-p}$. Für jedes $y \in \mathbb{R}^{n-p}$ definiert $\varphi_{v}(x) = \sum_{k=1}^{m} c_{k} 1_{l''}(y) \cdot 1_{l'}(x)$ eine Treppenfunktion auf \mathbb{R}^{n-p} . Nach Induktionsvoraussetzung hängt das Integral

$$\int_{\mathbb{R}^p} \varphi_y(x) d\mu' = \sum_{k=1}^m c_k \mu'(I_k') \cdot 1_{I_k''}(y) =: \phi(y)$$

nicht von der Zerlegung der Treppenfunktion ab.

Angewandte Mathematik

 $\phi(y)$ ist wiederum eine Treppenfunktion auf \mathbb{R}^{n-p} und Nach Induktionsvoraussetzung hängt das Integral

$$\int_{\mathbb{R}^{n-\rho}} \phi(y) d\mu'' = \sum_{k=1}^m c_k \mu'(I_k') \cdot \mu''(I_k'')(y)$$

nicht von der Zerlegung der Treppenfunktion ab. Somit gilt

$$\begin{split} \int_{\mathbb{R}^{n-p}} \int_{\mathbb{R}^p} \varphi_y(x) d\mu' d\mu'' &= \sum_{k=1}^m c_k \mu'(I_k') \cdot \mu''(I_k'')(y) \\ &= \sum_{k=1}^m c_k \mu(I_k) = \int_{\mathbb{R}^n} \varphi(z) d\mu \; . \end{split}$$

Die linke Seite hängt damit nicht von der Zerlegung der Treppenfunktion ab und alle Behauptungen können so auf den Fall n=1 zurückgeführt werden.

Satz von Fubini für Treppenfunktionen

Es gilt

$$\int_{\mathbb{R}^n} \varphi(x,y) d\mu = \int_{\mathbb{R}^{n-p}} \left(\int_{\mathbb{R}^p} \varphi(x,y) d\mu' \right) d\mu''$$

Beweis

Folgt direkt aus Beweis des letzten Satzes.

Hüllreihe

Eine Hüllreihe zu einer Funktion $f: \mathbb{R}^n \to \mathbb{R}$ ist eine Reihe $\phi(x) := \sum_{k=1}^{\infty} c_k 1_{I_k}(x)$ mit den folgenden Eigenschaften:

- $c_k \in \mathbb{R}$ sind positive reelle Zahlen $c_k > 0$.
- $I_k \subset \mathbb{R}^n$ sind offene Quader.
- Für alle $x \in \mathbb{R}^n$ gilt $|f(x)| \le \phi(x)$.

Inhalt einer Hüllreihe

Der Innhalt einer Hüllreihe $\phi(x) := \sum_{k=1}^{\infty} c_k 1_{I_k}(x)$ ist definiert durch

$$I(\phi) := \sum_{k=1}^{\infty} c_k \ \mu(I_k) \ .$$

L^1 -Halbnorm

Die L^1 -Halbnorm einer Funktion $f:\mathbb{R}^n \to \mathbb{R}$ is definiert durch das Infimum der Inhalte der Hüllreihen zu f

$$||f||_1 := \inf igg\{ I(\phi) \mid \phi ext{ ist H\"ullreihe zu } f igg\} \ .$$

Rechenregeln für Treppenfunktionen

Für $f, g : \mathbb{R}^n \to \mathbb{R}$ und $c \in \mathbb{R}$ gilt:

- $||cf||_1 \leq |c|||f||_1$.
- $||f+g||_1 \le ||f||_1 + ||g||_1$
- Aus $||f(x)||_1 \le g(x)$ für alle x folgt $||f||_1 \le ||g||_1$.

Angewandte Mathematik Beweis

- Für eine Hüllreihe φ von f ist $|c| \cdot \varphi$ eine Hüllreihe von $c \cdot f$.
- Da $|f + g| \le |f| + |g|$ folgt Behauptung aus (iii) und der verallgemeinerten Dreiecksungleichung.
- Hullreihen sind immer größer-gleich der Funktion und damit haben größere Funktionen größere Hüllreihen.

Verallgemeinerte Dreiecksungleichung

Für nicht negative Funktionen $f_k: \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ gilt

$$\left|\left|\sum_{k=1}^{\infty} f_k\right|\right|_1 \leq \sum_{k=1}^{\infty} ||f_k||_1.$$

 $1\cdot 1_I$ ist eine Hüllfunktion von 1_i und damit gilt $||1_I|| \leq \mu(I)$. Sei $\phi(x) = \sum_k c_k 1_{I_k}$ eine Hüllreihe von 1_i und $\epsilon > 0$. Da $\phi(x) \geq 1$ gibt es für jedes x einen Index N(x) mit $\sum_{k=1}^{N(x)} c_k 1_{I_k} \geq 1 - \epsilon$. Da die I_k offen sind, gibt es für jedes x eine Umgebung U(x), so dass letztere Gleichung gilt. Da \overline{I} kompakt ist (beschränkt und abgeschlossen), überdecken endlich viele $U(x_1), \cdots, U(x_n)$ den Quader I. Mit $N := \max\{N(x_1), \cdots, N(x_n) \text{ folgt } \sum_{k=1}^{N} c_k 1_{I_k} \geq (1-\epsilon)1_I$. Aus den Rechenregeln für Treppenfunktionen (iii) folgt

$$I(\phi) = \sum_k c_k \mu(I_k) \geq \sum_{k=1}^N c_k \mu(I_k) \geq (1-\epsilon)\mu(I)$$
.

Mit $\epsilon \to 0$ folgt $I(\phi) \ge \mu(i)$ und damit insgesamt die Behauptung.

Norm und Integral

Für jede Treppenfunktion φ auf \mathbb{R}^n gilt

$$||\varphi||_1 = \int |\varphi| d\mu$$
 .

Integrierbare Funktionen

Eine Funktion $f: \mathbb{R}^n \to \mathbb{R}$ heißt integrierbar, falls eine Folge von Treppenfunktionen φ_k existiert mit

$$||f-\varphi_k||_1 \to 0$$
 für $k \to \infty$.

Integrierbare Funktionen

- Die reelle Zahlenfolge $\int \varphi_k d\mu$ ist eine Cauchyfolge und damit konvergent.
- Der Grenzwert ist unabhängig von der Folge φ_k .

Angewandte Mathematik

Vektorraum der Indikatorfunktionen

Angewandte Mathematik Beweis