INNER PRODUCT AND ITS APPLICATIONS IN DATA SCIENCE

Dinh Huu Nguyen, 04/05/2018

Abstract: an exposition on inner product, that helps to answer such questions as

• whether Mahalanobis distance satisfies triangle inequality

$$d_M(u, w) \le d_M(u, v) + d_M(v, w)$$

• how averaging may reduce overfitting

Contents

1.	Vector Spaces	
2.	Inner Product	6
3.	Norm	8
4.	Distance	10
5.	Correlation	13
6.	Angle	16

1. Vector Spaces

We begin with the real line without any structure

 $\mathbb{R} = \{ \text{all real numbers} \}$

Then we equip it with addition

 $(\mathbb{R},+)$

Then we equip it with multiplication by real numbers that is compatible with addition $(\mathbb{R},+,\cdot)$

Definition 1.1. A vector space is a set V together with a binary operation + and a scalar multiplication \cdot that satisfy the following axioms

- 1. (closure under addition) $u + v \in V$ for any $u, v \in V$.
- 2. (associativity of addition) (u+v)+w=u+(v+w) for all $u,v,w\in V$.
- 3. (commutativity of addition) u + v = v + u.
- 4. (identity element under addition) there exists an element $0 \in V$ such that 0 + v = v + 0 = v for all $v \in V$.
- 5. (inverse element under addition) there exists an element -v such that v + (-v) = -v + v = 0 for all $v \in V$.
- 6. (closure under scalar multiplication) $a \cdot v \in V$ for any $a \in \mathbb{R}$ and $v \in V$.
- 7. (distributivity of scalar multiplication with respect to vector addition) $a \cdot (u + v) = a \cdot u + a \cdot v$.
- 8. (distributivity of scalar multiplication with respect to field addition) $(a + b) \cdot v = a \cdot v + b \cdot v$.
- 9. (compatibility of scalar multiplication with field multiplication) $(ab) \cdot v = a \cdot (b \cdot v)$.
- 10. (identity element of scalar multiplication) $1 \cdot v = v$ for $1 \in \mathbb{R}$ and any $v \in V$.

Example 1.2. A single point $V = \{*\}$ together with binary operation

$$* + * = *$$

and scalar multiplication

$$a \cdot * = *$$

for any $a \in \mathbb{R}$ is a vector space. We often call it the 0 vector space and denote it as $V = \{0\}$.

Example 1.3. The Euclidean space \mathbb{R}^m together with binary operation

$$(u_1,\ldots,u_m)+(v_1,\ldots,v_m)=(u_1+v_1,\ldots,u_m+v_m)$$

and scalar multiplication

$$a \cdot (u_1, \dots, u_m) = (au_1, \dots, au_m)$$

for any $(u_1, \ldots, u_m), (v_1, \ldots, v_m) \in \mathbb{R}^m$ and $a \in \mathbb{R}$ is a vector space.

Example 1.4. The set $RV((\Omega, \mathcal{F}, P), (\mathbb{R}, \mathcal{B}(\mathbb{R})))$ of all random variables from (Ω, \mathcal{F}, P) to $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ form a vector space.

Example 1.5. The subset $RVZF((\Omega, \mathcal{F}, P), (\mathbb{R}, \mathcal{B}(\mathbb{R})))$ of all random variables with zero mean and finite variance form a subspace of $RV((\Omega, \mathcal{F}, P), (\mathbb{R}, \mathcal{B}(\mathbb{R})))$.

2. Inner Product

Definition 2.1. An inner product on a vector space V is any map

$$V \times V \xrightarrow{\langle -, - \rangle} \mathbb{R}$$
$$(u, v) \mapsto \langle u, v \rangle$$

that satisfies the following axioms

- 1. (symmetry) $\langle u, v \rangle = \langle v, u \rangle$.
- 2. (linearity) $\langle a \cdot u + b \cdot v, w \rangle = a \langle u, w \rangle + b \langle v, w \rangle$. 3. (positive definiteness) $\langle v, v \rangle \geq 0$ for all $v \in V$, with equality iff v = 0.

A vector space V equipped with an inner product is called an inner product space.

Example 2.2. The usual inner product on \mathbb{R}^m is

$$\mathbb{R}^m \times \mathbb{R}^m \xrightarrow{\langle -, - \rangle_I} \mathbb{R}$$
$$((u_1, \dots, u_m), (v_1, \dots, v_m)) \mapsto u_1 v_1 + \dots + u_m v_m$$

This inner product can also be written as

$$\langle (u_1,\ldots,u_m),(v_1,\ldots,v_m)\rangle_I = \begin{pmatrix} u_1 & \cdots & u_m \end{pmatrix} \begin{pmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{pmatrix} \begin{pmatrix} v_1 \\ \vdots \\ v_m \end{pmatrix}$$

Example 2.3. In fact each inner product is defined by a positive definite matrix A and vice versa.

$$\langle u, v \rangle_A = u^t A v$$

Example 2.4. If we use
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}$$
 then

$$\langle (u_1, u_2), (v_1, v_2) \rangle_A = \begin{pmatrix} u_1 & u_2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$
$$= u_1 v_1 + 4u_2 v_2$$

3. Norm

We can define different norms to measure how large a vector $v \in V$ is, and they all must meet three criteria.

Definition 3.1. A norm on a vector space V is a map

$$V \xrightarrow{||-||} \mathbb{R}$$
$$v \mapsto ||v||$$

that satisfies

- 1. (positive definiteness) $||v|| \ge 0$, with equality iff v = 0.
- 2. (homogeneity) $||a \cdot v|| = |a| ||v||$.
- 3. (triangle inequality) $||v + w|| \le ||v|| + ||w||$.

A vector space V equipped with a norm is called a normed space.

Example 3.2. The 1-norm on \mathbb{R}^m is

$$\mathbb{R}^m \xrightarrow{||-||_1} \mathbb{R}$$
$$(v_1, \dots, v_m) \mapsto |v_1| + \dots + |v_m|$$

Example 3.3. The 2-norm on \mathbb{R}^m is

$$\mathbb{R}^m \xrightarrow{||-||_2} \mathbb{R}$$
$$(v_1, \dots, v_m) \mapsto \sqrt{v_1^2 + \dots + v_m^2}$$

Example 3.4. The usual inner product in example 2.2 induces the 2-norm

$$||v||_2 = \sqrt{\langle v, v \rangle_I}$$

Example 3.5. The inner product in example 2.3 induces the norm

$$||v||_A = \sqrt{\langle v, v \rangle_A}$$

Example 3.6. In fact every inner product induces a norm

$$||v|| = \sqrt{\langle v, v \rangle}$$

4. Distance

A norm induces distance.

Definition 4.1. We define the distance between two vectors u,v in a normed space (V,||-||) as

$$d(u,v) = ||u - v||$$

Example 4.2. If we use the usual inner product $\langle -, - \rangle_I$ and its induced 2-norm $|| - ||_2$ in example 3.4 on \mathbb{R}^2 then

$$d_2((0,0),(0,1)) = ||(0,0) - (0,1)||_2$$
$$= ||(0,1)||_2$$
$$= 1$$

Example 4.3. If we use the inner product $\langle -, - \rangle_A$ and its induced norm $|| - ||_A$ in example ?? on \mathbb{R}^2 then

$$d_A((0,0),(0,1)) = ||(0,0) - (0,1)||_A$$

$$= ||(0,1)||_A$$

$$= \sqrt{\langle (0,1), (0,1) \rangle_A}$$

$$= \sqrt{\begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}}$$

$$= 2$$

Example 4.4. (Mahalanobis distance) Suppose your dataset $X_{n \times m}$ of n samples and m features has covariance matrix M^{-1} with inverse M

Then we can use it to define Mahalanobis inner product

$$\mathbb{R}^m \times \mathbb{R}^m \xrightarrow{\langle -, - \rangle_M} \mathbb{R}^m$$
$$(u, v) \mapsto u^t M v$$

This Mahalanobis inner product induces the Mahalanobis norm $||-||_M$ and the Mahalanobis distance d_M .

Example 4.5. (Mahalanobis distance satisfies triangle inequality) We compare $d_M(u, w)$ and $d_M(u, v) + d_M(v, w)$

$$d_M(u, w) = ||u - w||_M$$

$$= ||u - v + v - w||_M$$

$$\leq ||u - v||_M + ||v - w||_M \text{ (triangle inequality)}$$

$$= d_M(u, v) + d_M(v, w)$$

5. Correlation

An inner product and its induced norm induce correlation coefficient.

Definition 5.1. We define the correlation coefficient between two nonzero vectors u, v in a inner product space $(V, \langle -, - \rangle, || - ||)$ as

$$\rho(u,v) = \frac{\langle u,v \rangle}{||u||||v||}$$

Example 5.2. If we use covariance to define an inner product for $RV((\Omega, \mathcal{F}, P), (\mathbb{R}, \mathcal{B}(\mathbb{R})))$ as

$$\langle X, Y \rangle = \text{cov}(X, Y)$$

then

- 1. (symmetry) $\langle X, Y \rangle = \langle Y, X \rangle$.
- 2. (linearity) $\langle aX + bY, Z \rangle = a \langle X, Z \rangle + b \langle Y, Z \rangle$.
- 3. (positive semidefiniteness) $\langle X, X \rangle \geq 0$ with equality iff X is constant.

Therefore, covariance is not quite an inner product for $RV((\Omega, \mathcal{F}, P), (\mathbb{R}, \mathcal{B}(\mathbb{R})))$.

Example 5.3. It is an inner product for $RVZF((\Omega, \mathcal{F}, P), (\mathbb{R}, \mathcal{B}(\mathbb{R})))$. This inner product induces the norm

$$||X|| = \sqrt{\langle X, X \rangle}$$

$$= \sqrt{\operatorname{cov}(X, X)}$$

$$= \sqrt{\operatorname{var}(X)}$$

$$= \sigma_X$$

and the correlation coefficient

$$\rho(X,Y) = \operatorname{corr}(X,Y)$$

in probability theory.

Example 5.4. (averaging may reduce overfitting) Suppose we want to approximate a function

$$X \stackrel{f}{\longrightarrow} Y$$

with a hypothesis. Suppose all have zero mean and finite variance.

 \bullet if we use one hypothesis h then we have

• if we use an average of hypotheses $\frac{h_1+\cdots+h_n}{n}$ then we have

$$\operatorname{var}\left(\frac{h_1 + \dots + h_n}{n}\right) = \operatorname{cov}\left(\frac{h_1 + \dots + h_n}{n}, \frac{h_1 + \dots + h_n}{n}\right)$$

$$= \left\langle \frac{h_1 + \dots + h_n}{n}, \frac{h_1 + \dots + h_n}{n} \right\rangle$$

$$= \frac{1}{n^2} \sum_{i,j=1}^n \langle h_i, h_j \rangle$$

$$= \frac{1}{n^2} \sum_{i,j=1}^n \operatorname{cov}(h_i, h_j)$$

• if h_i, h_j are uncorrelated or independent then we have

$$\operatorname{var}\left(\frac{h_1 + \dots + h_n}{n}\right) = \frac{1}{n^2} \sum_{i=1}^n \operatorname{cov}(h_i, h_i)$$
$$= \frac{1}{n^2} \sum_{i=1}^n \operatorname{var}(h_i)$$

• if h and h_1, \ldots, h_n have similar variances then we have

$$\operatorname{var}\left(\frac{h_1 + \dots + h_n}{n}\right) \approx \frac{1}{n^2} \sum_{i=1}^n \operatorname{var}(h)$$
$$= \frac{n \operatorname{var}(h)}{n^2}$$
$$= \frac{\operatorname{var}(h)}{n}$$

6. Angle

A correlation coefficient induces angle.

Definition 6.1. We define the angle between two nonzero vectors u, v in an inner product space $(V, \langle -, - \rangle, ||-||, \rho(-, -))$ as

$$\angle(u,v) = \arccos(\rho(u,v))$$

Example 6.2. Via inner product and its induced norm and correlation coefficient, we get to define angle between vectors in \mathbb{R}^m or random variables in $RVZF((\Omega, \mathcal{F}, P), (\mathbb{R}, \mathcal{B}(\mathbb{R})))$.