Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Московский государственный технический университет имени Н.Э. Баумана

### Лабораторная работа №1 «Исследование экстремальных задач» по курсу «Методы оптимизации»

Студент группы ИУ9-82

Иванов Г.М

Преподаватель Каганов Ю.Т.

# Contents

| 1        | Цел | работы            | 3 |  |  |
|----------|-----|-------------------|---|--|--|
| <b>2</b> | Пос | Постановка задачи |   |  |  |
|          | 2.1 | Задание 1         | 4 |  |  |
|          | 2.2 | Задание 2         | 4 |  |  |
|          | 2.3 | Задание 3         | 4 |  |  |
| 3        | Исс | едование          | 5 |  |  |
|          | 3.1 | Задание 1         | 5 |  |  |
|          | 3.2 | Задание 2         | 6 |  |  |
|          | 3.3 | Задание 3         | 7 |  |  |

# 1 Цель работы

- 1. Знакомство с основными понятиями экстремальных задач.
- 2. Исследование типов экстремумов для задач без ограничений.
- 3. Исследование типов экстремумов для задач с ограничениями.

## 2 Постановка задачи

#### 2.1 Задание 1

Построить график поверхности

$$f(x_1, x_2) = (x_1 - 1)^2 + 2x_2^2$$

и исследовать линии уровня для функций:

$$f(x_1, x_2) = (x_1 - 1)^2 + 2x_2^2 = r^2, \quad r = 1, 2, 3, 4.$$

#### 2.2 Задание 2

- 1. Исследовать типы экстремумов для многоэкстремальных задач.
- 2. Выявить экстремумы типа минимума и максимума.
- 3. Определить локальные и глобальные экстремумы.

Рассмотреть функцию Стенгера:

$$f(x_1, x_2) = (x_1^2 - 4x_2)^2 + (x_2^2 - 2x_1 + 4x_2)^2$$

в области поиска  $x_i \in [-1, 4]$  при a = -4, b = -2, c = 4.

### 2.3 Задание 3

Исследовать экстремальные задачи с заданными ограничениями. Найти точки условного экстремума для целевой функции:

$$f(x_1, x_2) = x_1^2 + x_2^2 - \frac{1}{2}x_1x_2, \quad X = \{x | x_1 + x_2 \le 1, x_1 \ge 0, x_2 \ge 0\}$$

# 3 Исследование

## 3.1 Задание 1

Построить поверхность:

$$f(x_1, x_2) = (x_1 - 1)^2 + 2x_2^2$$



Figure 1: Вид сверху



Figure 2: Вид сбоку

Построить линии уровня:

$$f(x_1, x_2) = (x_1 - 1)^2 + 2x_2^2 = r^2$$



Figure 3: r = 1

Figure 4: r = 2



Figure 5: r = 3

Figure 6: r = 4

#### 3.2 Задание 2

Исследовать функицию

$$f(x_1, x_2) = (x_1^2 - 4x_2)^2 + (x_2^2 - 2x_1 + 4x_2)^2 =$$

$$= x_1^4 - 8x_1^2x_2 + 4x_1^2 - 4x_1x_2^2 - 16x_1x_2 + x_2^4 + 8x_2^3 + 32x_2^2$$

на глобальные и локальные экстремумы в области  $x_i \in [-1, 4]$ .

Для нахождения этих точек был использован сервис WolframAlpha.com.

- 1. Глобальные экстремумы:
  - $max(f(x_1, x_2)) = 1381$  в точке (-1, 4)
  - $min(f(x_1, x_2)) = 0$  в точке (0, 0)
  - $min(f(x_1, x_2)) = 0$  в точке (1.695, 0.719)
- 2. Локальные экстремумы:
  - $max(f(x_1, x_2)) = 26$  в точке (-1, -1)
  - $min(f(x_1, x_2)) = 0$  в точке (0, 0)
  - $min(f(x_1, x_2)) = 0$  в точке (1.695, 0.719)



Figure 7: График функции  $f(x_1, x_2)$ 

### 3.3 Задание 3

Исследовать экстремальные задачи с заданными ограничениями. Найти точки условного экстремума для целевой функции:

$$f(x_1, x_2) = x_1^2 + x_2^2 - \frac{1}{2}x_1x_2, \quad X = \{x | x_1 + x_2 \le 1, x_1 \ge 0, x_2 \ge 0\}$$

- 1. Экстремумы при ограничениях:
  - $min(f(x_1, x_2)) = 0$  в точке (0, 0)
  - $max(f(x_1, x_2)) = 1$  в точке (0, 1)
  - $max(f(x_1, x_2)) = 1$  в точке (1, 0)



Figure 8: График функции  $f(x_1, x_2)$