

最小生成树: Prim算法

《数据结构》

最小生成树: Prim算法

教学目标和要求

- 1.能够运用 Prim算法思想图解MST的过程
- 2.能够编程实现Prim算法
- 3.理解Prim算法与Kruskal算法的区别

Prim算法的基本思想

采用子树延伸法,每次选择最小边的顶点及边加入

将顶点分成两类:

生长点——已经在生成树上的顶点非生长点——未长到生成树上的顶点

使用待选边表 每个非生长点在待选边表中有一条待选边,一端连 看非生长点,另一端连看生长点

Prim算法实现步骤

步骤1)构造初始待选边表。

任选一个顶点V作为初始生长点,对其余每个非生长点W(共N-1个),将边(V,W)加进待选边表;如果边(V,W)不存在,则认为边(V,W)的长度是 ∞

Prim算法实现步骤

步骤1)构造初始待选边表。

任选一个顶点V作为初始生长点,对其余每个非生长点W(共N-1个),将边(W, V)加进待选边表;如果边(W, V)不存在,则认为边(W, V)的长度是 ∞

Prim算法描述

Prim算法实现步骤 步骤2)循环n-2遍,使非生长点个数k从n-1变到1。 (1) 选择树边

> 从待选边表中选出一条最短的待选边(v, u) (这里u是非生长点, v是生长点),将(v, u)从待 选边表移入生成树的边集,并且将u作为新选出的生长点 (2)修改待选边

对剩下的每个非生长点W,比较待选边(W, X)与边(W, U)的长度(这里X是原有的生长点,U是新选出的生长点);如果(W, U)短于边(W, X),则用(W, U)代替(W, X),作为W的待选边;否则,什么也不做

◆ 第4章 图结构
◆ 解放军理工大学

Prim算法示例 (1)

初始待选边表(以B为初始生长点)

В	В	В	В	В
A	С	D	Е	F
4	14	8	20	5
0	1	2	3	4

以A为生长点替换待选边

В	A	A	В	A
A	C	D	Е	F
4	8	45	20	3
0	1	2	3	4

Prim算法示例 (2)

初始待选边表(以B为初始生长点)

В	A	A	В	A
A	C	D	Е	F
4	8	45	20	3
0	1	2	3	4

以F为生长点替换待选边

В	A	A	В	A
A	F	D	Е	C
4	3	45	20	8
0	1	2	3	4

Prim算法示例 (2)

初始待选边表(以B为初始生长点)

В	A	A	В	A
A	C	D	Е	F
4	8	45	20	3
0	1	2	3	4

以F为生长点替换待选边

В	A	A	F	A
A	F	D	Е	C
4	3	45	13	8
0	1	2.	3	4

Prim算法示例 (3)

初始待选边表(以B为初始生长点)

В	A	A	F	A
A	F	D	Е	C
4	3	45	13	8
0	1	2	3	4

以C为生长点替换待选边

В	A	A	F	A
A	F	C	Е	D
4	3	8	13	45
0	1	2	3	4

Prim算法示例 (3)

初始待选边表(以B为初始生长点)

В	A	A	F	A
A	F	D	Е	C
4	3	45	13	8
0	1	2	3	4

以C为生长点替换待选边

В	A	A	С	С
A	F	C	Е	D
4	3	8	9	28
0	1	2	3	4

◆ 第4章 图结构

Prim算法示例 (4)

初始待选边表(以B为初始生长点)

В	A	A	С	С
A	F	С	Е	D
4	3	8	9	28
0	1	2	3	4

以E为生长点替换待选边

В	A	A	С	E
A	F	С	Е	D
4	3	8	9	10
0	1	2	3	1

❖ 第4章 图结构 💮 💠 解放军理工大学

Prim算法示例 (4)

初始待选边表(以B为初始生长点)

В	A	A	С	Е
A	F	C	Е	D
4	3	8	9	10
0	1	2	3	4

最后的顶点D作为生长点,边作为树边

В	A	A	С	Е
A	F	C	Е	D
4	3	8	9	10
0	1	2.	3	4

◆ 第4章 图结构

◆ 解放军理工大学

如何编程实现?

- ❖ 如何表示树边和待选边?
- 树边与待选边本质上时一样的,因此,定义边结点结构edge,包括生长点、非生长点和边长度三个域。
- ❖ 如何存储树边和待选边? 可以定义长度为**n-1**的表结构,二者共享表空间。
- ❖ 如何存储图?
 为便于快速获取边长,图的存储结构为邻接数组。
 回答了这些问题,就可以写出具体的代码了。

Prim算法的实现

Prim算法实现方法

```
typedef struct edge node
 { int incr_vert ,vertex; //生长点, 非生长点域
  int cost: //边长度域
 }edge; //待选边类型名 (三元组)
void Prim2(int c[M][M],int n) //假定顶点0作为初始生长点
{ int v, i, j, k; edge t, wait[M-1]; //存储待选边表的数组
 for (v=0; v<n-1; v++) //以顶点0作为初始生长点建立初始待选边表
 { wait[v].incr_vert=0; //生长点
   wait[v].vertex=v+1; //非生长点
   wait[v].cost=c[0][v+1];
  //接下页
```


Prim算法实现方法

```
//接上页
for(i=0;i<n-2;i++) {
  k=i; //找最短的待选边(简单选择)
  for(j=i+1;j<n-1;j++) if(wait[j].cost<wait[k].cost)k=j;
  t=wait[k]; wait[k]=wait[i]; wait[i]=t; //得到一条树边,换到数组前部
  v=wait[i].vertex;
                                            //V作为新的生长点
  for(j=i+1;j<n-1;j++)
                                            //修改待选边表
   if(wait[j].cost>c[v][wai[j].vertex]) { wait[j].cost=c[v][wait[j].vertex];
                                      wait[j].incr vert=v; }
 }
printf(" 最小生成树的边集为: \n ");
for(i=0;i<n-1;i++)
  printf("(%d, %d, %d) ",wait[i].incr_vert,wait[i].vertex,wait[i].cost);
printf("\n");
```


Prim算法和Kruskal算法的比较

设计思想-贪心法

都是选短边,但选法不同 Kruskal算法从全图中选短边,Prim算法从待选边 表中选短边

直观性

Kruskal采用子树合并法 Prim算采用子树延伸法

实现难易程度

Kruskal算法需要判断回路(实现困难些) Prim算法不需要判断回路

Prim算法和Kruskal算法的比较

时间复杂性

Kruskal算法执行时间主要花费在判断回路,所需时间不超过O(mlogm), m是边数

Prim算法执行时间主要花费在n-2次修改待选边表, 其时间耗费用量是O(n²)阶的, n是顶点数

Kruskal算法适用于顶点数较多,而边数较少的情况

Prim算法适用于顶点数较少,而边数较多的情况

💠 第4章 图结构 🧼 解放军理工大学

为什么Prim和Kruskal算法能取到MST?

MST的性质

设G=(V,E)是无向连通加权图。U是V的非空子集,(u, v)的权最小, $u \in U$, $v \in V$ -U,则必存在一棵包含(u, v)的MST

反证!

The End, Thank You!