センサ工学演習問題 2 レポート

相田舟星 学籍番号: 21C1002

November 6, 2024

1. 次の表に示すデータがある。最小2乗法によって当てはまる直線の方程式を求め、結果を図で示せよ。

$$X = \{-3, -1, 1, 3\}$$
 , $Y = \{0, 1, 2, 4\}$

X	-3	-1	1	3
Y	0	1	2	4

回答

最小二乗法により、直線の方程式 y=ax+b を求めます。まず、平均 \bar{X} と \bar{Y} を計算します。

$$\bar{X} = \frac{-3 + (-1) + 1 + 3}{4} = 0, \quad \bar{Y} = \frac{0 + 1 + 2 + 4}{4} = 1.75$$

次に、傾きaと切片bを求めます。傾きaは次の式で与えられます。

$$a = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (X_i - \bar{X})^2}$$

具体的に計算すると、

$$a = \frac{(-3-0)(0-1.75) + (-1-0)(1-1.75) + (1-0)(2-1.75) + (3-0)(4-1.75)}{(-3-0)^2 + (-1-0)^2 + (1-0)^2 + (3-0)^2}$$

$$= \frac{(-3)(-1.75) + (-1)(-0.75) + (1)(0.25) + (3)(2.25)}{9+1+1+9}$$

$$= \frac{5.25 + 0.75 + 0.25 + 6.75}{20}$$

$$= \frac{13}{20}$$

$$= 0.65$$

切片 b は次の式で求められます。

$$b = \bar{Y} - a \cdot \bar{X} = 1.75 - 0.65 \times 0 = 1.75$$

したがって、最小二乗法によって求めた直線の方程式は

$$y = 0.65x + 1.75$$

となります。

データ点と最小二乗法で得られた直線をグラフに示します。

Figure 1: データ点と最小二乗法による直線フィット

2. 右の回路について電圧 U_1, U_2, U_3 と抵抗値 R_1, R_2, R_3 が既知の場合、A 点の電圧値を導出せよ。

Figure 2: 抵抗と電圧源の接続回路

回答

キルヒホッフの電流法則(KCL)を A 点に適用します。 A 点に流れ込む電流の合計はゼロになります。 各抵抗を流れる電流を考えると、

$$I_{1} = \frac{U_{1} - V_{A}}{R_{1}}$$

$$I_{2} = \frac{U_{2} - V_{A}}{R_{2}}$$

$$I_{3} = \frac{U_{3} - V_{A}}{R_{3}}$$

これらの電流の合計はゼロなので、

$$I_1 + I_2 + I_3 = 0$$

これを展開すると、

$$\frac{U_1 - V_A}{R_1} + \frac{U_2 - V_A}{R_2} + \frac{U_3 - V_A}{R_3} = 0$$

両辺を整理すると、

$$\left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}\right)V_A = \frac{U_1}{R_1} + \frac{U_2}{R_2} + \frac{U_3}{R_3}$$

したがって、A点の電位 V_A は次の式で与えられます。

$$V_A = \frac{\frac{U_1}{R_1} + \frac{U_2}{R_2} + \frac{U_3}{R_3}}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}}$$

または、コンダクタンス $G_i = \frac{1}{R_i}$ を用いて、

$$V_A = \frac{G_1 U_1 + G_2 U_2 + G_3 U_3}{G_1 + G_2 + G_3}$$

この式により、既知の電圧と抵抗値から A 点の電圧を計算することができます。

3. 下記オペアンプ回路について電圧 $U_{\rm IN}$ と抵抗値 R_1,R_2,R_3 が既知の場合、抵抗 R_3 に流れている電流 I_3 を導出せよ。 $R_1=10{\rm k}\Omega,R_2=50{\rm k}\Omega$ の際、回路の増幅率を計算せよ。

Figure 3: 反転增幅回路

回答

まず、反転増幅回路の増幅率(電圧利得)を求めます。

增幅率 =
$$A_v = -\frac{R_2}{R_1}$$

抵抗値が $R_1 = 10 \text{ k}\Omega$, $R_2 = 50 \text{ k}\Omega$ の場合、

$$A_v = -\frac{50 \text{ k}\Omega}{10 \text{ k}\Omega} = -5$$

したがって、出力電圧 V_{out} は入力電圧 U_{IN} を用いて、

$$V_{\rm out} = A_v \times U_{\rm IN} = -5 \times U_{\rm IN}$$

次に、抵抗 R_3 に流れる電流 I_3 を求めます。オペアンプの出力電圧は $V_{\rm out}$ であり、抵抗 R_3 のもう一方の端は接地されています。

したがって、 I_3 は

$$I_3 = \frac{V_{\rm out} - 0}{R_3} = \frac{-5U_{\rm IN}}{R_3}$$

つまり、

$$I_3 = -\frac{5U_{\rm IN}}{R_3}$$

となります。負の符号は、電流の向きが出力端子から抵抗 R_3 を通って接地へ流れることを示しています。

Ex.1 データ $(x_i, y_i), i = 1, 2, ..., n$ を最小2乗法によって下記式に当てはまる場合の係数 (a, b, c) を導出せよ。

$$y = ax^2 + bx + c$$

Figure 4: データ点のプロット

回答

データに対して 2 次関数 $y = ax^2 + bx + c$ を最小二乗法でフィッティングします。 まず、正規方程式を立てます。

$$\begin{cases} \sum y_i = a \sum x_i^2 + b \sum x_i + cn \\ \sum x_i y_i = a \sum x_i^3 + b \sum x_i^2 + c \sum x_i \\ \sum x_i^2 y_i = a \sum x_i^4 + b \sum x_i^3 + c \sum x_i^2 \end{cases}$$

データから各和を計算します。 データ:

i	$ x_i $	y_i	x_i^2	x_i^3	x_i^4	$x_i y_i$	$x_i^2 y_i$
1	x_1	y_1	x_1^2	x_1^3	x_1^4	x_1y_1	$x_1^2y_1$
:	:	:	:	:	:	$\begin{vmatrix} \vdots \\ x_n y_n \end{vmatrix}$:
n	x_n	y_n	x_n^2	x_n^3	x_n^4	$x_n y_n$	$x_n^2 y_n$

これらの値を具体的に計算し、正規方程式を解くことで係数 a, b, c を求めます。計算の結果、係数は次のようになります。

$$a = 0.06, \quad b = 0.65, \quad c = 1.44$$

したがって、最小二乗法による2次関数は

$$y = 0.06x^2 + 0.65x + 1.44$$

となります。

フィッティング結果をデータ点とともにプロットします。

Figure 5: データ点と最小二乗法による 2 次関数フィット

 $\mathbf{Ex.2}$ 右の回路について電圧 U_A,U_B,U_C と抵抗値 R_1,R_2,R_3,R_4,R_5 が既知の場合、 \mathbf{AB} 点間の電圧値 E を導出せよ。

Figure 6: 複合回路

回答

回路内の電流と電圧の関係を用いて、AB間の電圧 E を求めます。

まず、抵抗 R_1 , R_2 , R_3 を介して点 A と B に接続された電圧源 U_A , U_B , U_C があるとします。 キルヒホッフの電流法則より、点 AB における電流の合計はゼロです。

$$\frac{U_A - E}{R_1} + \frac{U_B - E}{R_2} + \frac{U_C - E}{R_3} = 0$$

これを整理すると、

$$\left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}\right)E = \frac{U_A}{R_1} + \frac{U_B}{R_2} + \frac{U_C}{R_3}$$

したがって、

$$E = \frac{\frac{U_A}{R_1} + \frac{U_B}{R_2} + \frac{U_C}{R_3}}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}}$$

コンダクタンス $G_i = \frac{1}{R_i}$ を用いると、

$$E = \frac{G_1 U_A + G_2 U_B + G_3 U_C}{G_1 + G_2 + G_3}$$

これにより、AB間の電圧 E を求めることができます。

 $\mathbf{Ex.3}$ 下記オペアンプ回路について電圧 $U_{\mathbf{IN}}$ と抵抗値 R_1, R_2, R_3 が既知の場合、オペアンプの出力端子に流れ込む電流 I_o を導出せよ。

Figure 7: オペアンプ回路

回答

オペアンプの理想動作を仮定すると、入力端子間の電位差はゼロ(仮想短絡)であり、入力端子に流れ込む電流もゼロ(無限大入力インピーダンス)となります。

まず、ノード電圧法を用いて出力電圧 V_{out} を求めます。

反転入力端子の電位を V_- とすると、 $V_-=V_+$ ですが、非反転入力端子は接地されているため、 $V_+=0$ です。したがって、 $V_-=0$ となります。

入力側の電流:

$$I_1 = \frac{U_{\rm IN} - V_-}{R_1} = \frac{U_{\rm IN} - 0}{R_1} = \frac{U_{\rm IN}}{R_1}$$

フィードバック側の電流:

$$I_2 = \frac{V_{\rm out} - V_-}{R_2} = \frac{V_{\rm out} - 0}{R_2} = \frac{V_{\rm out}}{R_2}$$

オペアンプの入力端子に流れ込む電流はゼロなので、 $I_1 + I_2 = 0$ となります。

$$\frac{U_{\rm IN}}{R_1} + \frac{V_{\rm out}}{R_2} = 0$$

これを V_{out} について解くと、

$$V_{\rm out} = -\frac{R_2}{R_1} U_{\rm IN}$$

出力電流 I_o は、出力電圧 V_{out} から抵抗 R_3 を通して流れます。

$$I_o = \frac{V_{\rm out} - 0}{R_3} = \frac{-\frac{R_2}{R_1}U_{\rm IN}}{R_3} = -\frac{R_2U_{\rm IN}}{R_1R_3}$$

したがって、オペアンプの出力端子に流れ込む電流 *I*_o は

$$I_o = -\frac{R_2 U_{\rm IN}}{R_1 R_3}$$

となります。負の符号は、電流の向きがオペアンプの出力端子から抵抗 R_3 を通って接地へ流れることを示しています。