Apuntes de clase

José Antonio de la Rosa Cubero

Otros ejemplos de acción:

- 6. Acción por traslación: X = G y tomamos ${}^{g}h := gh$. $\ker(f) = \{1\}$, luego es fiel. Si G es finito y el orden de G es n, entonces $S(G) \cong S_n$. Como ϕ es un monomorfismo, tenemos que aplicando el primer teorema de isomorfía, deducimos que $G \cong \operatorname{Im}(\phi)$.
- 7. Sea G un grupo y $H \leq G$ y consideramos $G \times G/H \longrightarrow G/H$ una acción definida por ${}^gh := gxH$ es una acción. Del mismo modo ${}^gh = Hxg^{-1}$ también es una acción.
- 8. Sea X = G y consideramos la acción por conjugación de G sobre sí mismo: ${}^gh := ghg^{-1}$. La representación asociada cumple que $\phi(g) = \varphi_g$, el automorfismo interno definido por el elemento g. Tenemos que $\text{Im}(\phi) = \text{Int}(G) \leq \text{Aut}(G)$. El núcleo es el centro del grupo, es decir, se cumple que $\text{ker}(\phi) = Z(G)$.
- 9. Sea G un grupo y consideramos el conjunto $X = \operatorname{Sub}(G)$. Entonces la aplicación ${}^gh := qHq^{-1}$.

Teorema 1 (Teorema de Cayley). Todo grupo finito es isomorfo a un subgrupo de S_n , donde $n \leq |G|$.

Definición 1. Sea G un grupo y X un G-conjunto. Sea $G \times X \longrightarrow X$ una acción. Definimos la siguiente relación de equivalencia denotada por \sim :

$$x \sim y \iff \exists q \in G \text{ tal que } {}^g x = y$$

Definición 2 (Órbitas). Para cada $x \in X$, definimos la órbita de x, que denotaremos por O(x), como la clase de equivalencia de x por la relación de equivalencia anterior.

$$O(x) := \{y \in X : x \sim y\} = \{y \in X : {}^gx = y\} = \{{}^gx : g \in G\}$$

Observación 1. Dos órbitas coinciden cuando sus representantes están relacionados.

Observación 2. El conjunto de órbitas es una partición de X: las órbitas son disjuntas y su unión forman todo el espacio.

Definición 3 (Acción transitiva). Cuando tiene una única órbita. En otros términos, si para todo $x, y \in G$ existe $g \in G$ tal que

$$gx = y$$

Definición 4 (Estabilizador). Sea G un grupo y X un G-conjunto. Para cada $x \in X$ definimos el estabilizador de dicho elemento en G como

$$\operatorname{Stab}_G(x) = \{ g \in G : {}^g x = x \}$$

Proposición 1. El estabilizador es un subgrupo de G, llamado el grupo de isotopía de x en G.

Observación 3. Dados $H, K \in \operatorname{Sub}(G)$ se dicen que son conjugados si existe algún $g \in G$ tal que $H = gKg^{-1}$.

Proposición 2. Sea G un grupo y X un G-conjunto. Sean $x, y \in X$, entonces si sus órbitas coinciden, entonces sus respectivos estabilizadores son subgrupos conjugados de G.

Demostración. Suponemos que O(x) = O(y), entonces existe un $g \in G$ tal que $y = {}^g x$. Veamos que se cumple la tesis.

Supongamos $h \in \operatorname{Stab}_G(x)$, tenemos que h = x. Consideramos $ghg^{-1}y = gh = y$, es decir, $ghg^{-1} \in \operatorname{Stab}_G(y)$.

Por el mismo razonamiento anterior usando que $x = g^{-1}y$, vemos la otra inclusión.

Teorema 2. Sea G un grupo finito y X un G-conjunto. Entonces para cada $x \in X$ la órbita de x es un conjunto finito, teniéndose que el cardinal de la órbita es $|O(x)| = [G : \operatorname{Stab}_G(x)]$. En particular, el cardinal de la órbita es un divisor del orden de G.

Demostración. $G/\operatorname{Stab}_G(x) = \{g\operatorname{Stab}_G(x) : g \in G\}$ definimos una aplicación a la óbita y veamos que es biyectiva:

$$\lambda(g\operatorname{Stab}_G(x)) := {}^g x$$

Tomemos $g, h \in G$ tales que $g \operatorname{Stab}_G(x) = h \operatorname{Stab}_G(x)$ podemos deducir que g = h x, con lo que está bien definida y es inyectiva.

Por definición es sobreyectiva, y por tanto como hay una biyección entre O(x) y $G/\operatorname{Stab}_G(x)$ se tiene lo que se quería demostrar.

Otro ejemplo: $X=\{1,2,3,4\}$ consideramos la acción $G=A_4$ tal que $\sigma i=\sigma(i)$.

$$O(2) = {\sigma(2) : \sigma \in A_4} = {1, 2, 3, 4} = X$$

Sabemos que $[A_4: \operatorname{Stab}_{A_4}(2)] = |O(2)| = 4$, con lo que $|\operatorname{Stab}_{A_4}(2)| = 3$. Tenemos que

$$\operatorname{Stab}_{A_4}(2) = \langle (1 \ 3 \ 4) \rangle$$

Definición 5 (Elementos fijos). Sea G un grupo y X un G-conjunto. Un elemento $x \in X$ diremos que es un elemento fijo por la acción si ${}^g x = x$ para toda $g \in G$. El conjunto de los elementos fijo lo denotaremos por Fix(X).

Equivalentemente:

$$x \in \text{Fix}(X) \iff O(x) = \{x\} \iff \text{Stab}_G(x) = G$$

Definición 6. Sea G un grupo finito y X un G-conjunto finito. El conjunto X/\sim también es finito. Supongamos que $X/\sim=\{O(x_i):1\leq i\leq n\}$. Sabemos que

$$X = \bigcup_{i=1}^{n} O(x_i)$$

unión disjunta.

Sabemos entonces que

$$|X| = \sum_{i=1}^{r} |O(x_i)| = |\operatorname{Fix}(X)| + \sum_{x \notin \operatorname{Fix}(x)} |O(x)|$$
$$= |\operatorname{Fix}(X)| + \sum_{x \notin \operatorname{Fix}(x)} [G : \operatorname{Stab}_G(x)]$$

Ejemplo: Consideramos G un grupo no trivial y consideramos la acción de G sobre sí mismo por traslación. Sea $h \in G$, tenemos que

$$O(h) = \{gh : g \in G\} = \{gh : g \in G\} = G$$

Por tanto solo hay una órbita y tenemos que la acción traslación es transitiva.

$$Stab_G(h) = \{g \in G : gh = h\} = \{1\}$$

y por último

$$\mathrm{Fix}(G) = \{h \in G : gh = h\} = \emptyset$$

Otro ejemplo: Consideramos la acción sobre sí mismo por conjugación. Sea $h \in G$.

$$O(h) = \{{}^gh: g \in G\} = \{ghg^{-1}: g \in G\} = \mathrm{cl}(h)$$

que se llama la clase de conjugación del elemento h.

Tenemos que

$$\operatorname{Stab}_{G}(h) = \{g \in G : ghg^{-1} = h\} = \{g \in G : gh = hg\} = c_{G}(h) \le G$$

que es el subgrupo centralizador de h en G.

Fix(G) = Z(G), es por tanto también un subgrupo.

Si G es finito, tenemos que:

$$G/\sim=\{\operatorname{cl}(h_1),\ldots,\operatorname{cl}(h_n)\}$$

Entonces:

$$|G| = |Z(G)| + \sum_{h \notin Z(G)} |\operatorname{cl}(h)| = |Z(G)| + \sum_{h \notin Z(G)} [G : c_G(h)]$$

que se conoce como la fórmula de las clases.

Proposición 3. Para todo G se tiene que $\operatorname{cl}(1) = \{1\}$. Además, por ser una clase de equivalencia, $g \in \operatorname{cl}(g)$ para todo $g \in G$.

Proposición 4. Las clases de conjugación del grupo D_4 son:

$$cl(1) = \{1\}
cl(r) = \{r, r^3\}
cl(r^2) = \{r^2\}
cl(s) = \{s, r^2s\}
cl(rs) = \{rs, r^3s\}$$