Introduction to Regression

Agenda

- Introduction
- Cost Functions & Gradient Descent
 - Minimization
 - Implementation
- Hands-on Example
- Evaluating Regression Models
- Regularization

Agenda

- Introduction
- Cost Functions & Gradient Descent
 - Minimization
 - Implementation
- Hands-on Example
- Evaluating Regression Models
- Regularization

Notation

- x^i The feature vector for the *i*th data object
 - $x^i = [x_1^i, x_2^i, ..., x_m^i]$
- X The set of all x^i
- y^i The true target value for the *i*th data object
- Y The set of all y^i
- n Number of rows in the dataset
- m Number of columns in the dataset

Example: Ozone Levels

- Daily measurements of weather data
- Predict ozone level for public awareness

```
ozone <- read.table('Datasets/Ozone/ozone.data')</pre>
                  head(ozone)
                                          x^1 = [190, 67, 7.4]
ozone radiation temperature wind
               190
                                    8.0 -x^2 = [118, 72, 8.0]
               118
               149
                               74 12.6
   18
               313
                                         ^{1}x^{3} = [149, 74, 12.6]
   23
               299
                                             datasciencedoio
```

unleash the data scientist in you

Example: Ozone Levels

ozone <- read.table('Datasets/Ozone/ozone.data')

head(ozone)

	y	χ	1	x_2	x_3	
	ozone	radiat	ion	temperature	wind	
Y	41		190	67	7.4	
	36	;	118	72	8.0	
	12	;	149	74	12.6	X
	18		313	62	11.5	
	23		299	65	8.6	
	19		99	59	13.8	

Regression vs Classification

- Classification
 - Target is discrete with finite value set
 - Ex: survived/dead, face/non-face, fraud/non-fraud, product categories, ranking
- Regression
 - Target is continuous or ordinal
 - Ex: price, weight, height, temperature, ranking

Non-Parametric Algorithms

- Cannot be represented as a single closed form function
- Many different assumptions about underlying structure of data
- Ex: Decision Trees, Neural Nets

Parametric Algorithms

- Assumption: Relationship between features and target can be represented as a closed form function
- This function "maps" X → Y
- Used in traditional scientific modeling
- Ex: y = 1 + 2x
 - Parameters: [1, 2]

Parametric Notation

- h − A specific functional form (line, exponential, Poisson distribution, logit, etc.)
- θ A vector of function parameters which define a specific hypothesis
- h_{θ} A specific hypothesis (estimate) for the mapping X \rightarrow Y

How do we define a line?

•
$$y = mx + b$$

- What is...
 - θ ?
 - h_{θ} ?

How do we define a line?

•
$$y = mx + b$$

- What is...
 - θ ?
 - h_{θ} ?

- What about with three features?
- What is...
 - θ ?
 - h_{θ} ?

y	x_1	x_2	x_3
ozone	radiation	temperature	wind
41	190	67	7.4
36	118	72	8.0
12	149	74	12.6
18	313	62	11.5
23	299	65	8.6
19	99	59	13.8

 $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3$

- What about with more features?
- What is...
 - θ ?

$$\theta = [\theta_0, \theta_1, \theta_2, \dots, \theta_m]$$

• h_{θ} ?

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_m x_m$$

Regression Algorithms

- $ullet \theta = [\theta_0, \theta_1, \theta_2, ..., \theta_m], x = [x_1, x_2, ..., x_m]$
- Linear Regression
 - h a line function
 - $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_m x_m = \theta^T x$
- Logistic Regression
 - h a logit function
 - $h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$

Regression Errors

- How do we assess the error of a model?
- "Residual" difference between predicted and actual target value

•
$$res = (h_{\theta}(x^i) - y^i)$$

Agenda

- Introduction
- Cost Functions & Gradient Descent
 - Minimization
 - Implementation
- Hands-on Example
- Evaluating Regression Models
- Regularization

Regression Training

- Wind Speed=15 mph
- Ozone = ?
- Use the line that is somewhere in the middle
- How do we define "middle"?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Cost Function

- Want: a "cost" or "loss" function $-J(\theta)$
 - Smaller for lower error
 - Larger for higher error
- Residuals a measure of error
 - Simple sum doesn't work why?
- Solution: Square them!
 - "Mean Square Error"

$$J(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\theta}(x^i) - y^i \right)^2$$

Mean Square Error – 1D

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\theta}(x^{i}) - y^{i})^{2}$$

Mean Square Error – 2D

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\theta}(x^{i}) - y^{i})^{2}$$

Agenda

- Introduction
- Cost Functions & Gradient Descent
 - Minimization
 - Implementation
- Hands-on Example
- Evaluating Regression Models
- Regularization

Maximum/Minimum Problem

Find two nonnegative numbers whose sum is 9 and so that the product of one number and the square of the other number is a maximum.

Solution

Sum of number is 9

$$9 = x + y$$

Product of two numbers is

$$P = x y^2$$
$$= x (9-x)^2$$

Solution

```
P' = x (2) (9-x)(-1) + (1) (9-x)^{2}
= (9-x) [-2x + (9-x)]
= (9-x) [9-3x]
= (9-x) (3)[3-x]
= 0
```

$$x = 9 \text{ or } x = 3$$

Gradients

- Derivatives: slope in one direction
- What about more features?
- Gradient: a multi-dimensional derivative

•
$$\nabla J(\theta) = \left[\frac{\partial J}{\partial \theta_0}, \frac{\partial J}{\partial \theta_1}, \dots, \frac{\partial J}{\partial \theta_m}\right]$$

• Treat each dimension independently

Intuition

$$\theta_j^{k+1} \coloneqq \theta_j^k - \alpha \frac{\partial}{\partial \theta_i} J(\theta^k)$$

Gradient Descent

- Goal : minimize $J(\theta)$
- Start with some initial θ and then perform an update on each θ_i in turn:

$$\theta_j^{k+1} \coloneqq \theta_j^k - \alpha \frac{\partial}{\partial \theta_i} J(\theta^k)$$

• Repeat until θ converges

Gradient Descent

$$\theta_j^{k+1} \coloneqq \theta_j^k - \alpha \frac{\partial}{\partial \theta_i} J(\theta^k)$$

- α is known as the learning rate; set by user
- Each time the algorithm takes a step in the direction of the steepest descent and $J(\theta)$ decreases.
- ullet α determines how quickly or slowly the algorithm will converge to a solution

Learning Rate Effects

$$\theta_j^{k+1} \coloneqq \theta_j^k - \alpha \frac{\partial}{\partial \theta_i} J(\theta^k)$$

Gradient Descent Animations

Agenda

- Introduction
- Cost Functions & Gradient Descent
 - Minimization
 - Implementation
- Hands-on Example
- Evaluating Regression Models
- Regularization

Gradient Descent Implementation

• Ordinary least squares, linear regression $\theta_i^{k+1} \coloneqq \theta_i^k - \alpha (y - h_\theta(x)) x_j$

- When θ stops changing
 - i.e. θ^{k+1} very close to θ^k
- When error stops dropping
 - i.e. $J(\theta^{k+1})$ very close to $J(\theta^k)$
- "close" can be absolute or relative

Batch Gradient Descent

- How do we incorporate all our data?
- Loop!

For j from 0 to m:

$$\theta_j^{k+1} \coloneqq \theta_j^k + \alpha \sum_{i=1}^n \left(y^i - h_\theta(x^i) \right) x_j^i$$

- h_{θ} is updated only once the loop has completed
- Weaknesses?

Stochastic Gradient Descent

Consider an alternative approach:

```
for i from 1 to n:

for j from 0 to m:

\theta_j^{k+1} := \theta_j^k + \alpha \left( y^i - h_\theta(x^i) \right) x_j^i
```

- h_{θ} is updated when inner loop is complete
- If the training set is big, converges quicker than batch
- May oscillate around a minimum of $J(\theta)$ and never converge

Batch vs. Stochastic

Batch Gradient Descent

- To update each parameter value, scan through the whole training data
- Converges to the minimum value slowly
- Preferred for small datasets

Stochastic Gradient Descent

```
Repeat until convergence {
	for i from 1 to n:
		for j from 0 to m:
		\theta_j^{k+1} \coloneqq \theta_j^k + \alpha \left( y^i - h_{\theta}(x^i) \right) x_j^i
}
```

- Update the parameter values with one training example at a time
- Converges to the 'proximity' of minimum value fast but may keep oscillating near the minimum
- Preferred for large datasets

Agenda

- Introduction
- Cost Functions & Gradient Descent
 - Minimization
 - Implementation
- Hands-on Example
- Evaluating Regression Models
- Regularization

Agenda

- Introduction
- Cost Functions & Gradient Descent
 - Minimization
 - Implementation
- Hands-on Example
- Evaluating Regression Models
- Regularization

Regression Example

- From earlier:
 - $h_{\theta}(x) = 94 5.6 * x$
 - How do we evaluate?
 - Train/Test Split
- What metrics to use?
 - $J(\theta)$?

Graphical Evaluation Methods

Ideal: Straight line with slope 1 Ideal: Randomly distributed about 0

Common Metrics

Mean Absolute Error (MAE)

- Root-Mean-Square Error (RMSE)
 - Root-Mean-Square Deviation

Coefficient of Determination (R²)

Mean Absolute Error

$$MAE(\theta) = \frac{\sum_{i=1}^{n} |h_{\theta}(x^{i}) - y^{i}|}{n}$$

- Mean of residual values
- "Pure" measure of error

Mean Absolute Error - Example

$$y = \{36, 19, 34, 6, 1, 45 \dots\}$$

$$h_{\theta}(x) = \{27, -2.6, 13, -7.3, -2.6, 48 \dots\}$$

$$|h_{\theta}(x) - y| = \{9, 21.6, 21, 13.3, 3.6, 3 \dots\}$$

$$MAE(\theta) = \frac{71.5}{6} = 11.9$$

Root-Mean-Square Error

$$RMSE(\theta) = \sqrt{\frac{\sum_{i=1}^{n} (h_{\theta}(x^{i}) - y^{i})^{2}}{n}}$$

- Square root of mean of squared residuals
- Penalizes large errors more than small
- Good when large errors particularly bad

RMSE - Example

$$y = \{36, 19, 34, 6, 1, 45, \dots\}$$

$$h_{\theta}(x) = \{27, -2.6, 13, -7.3, -2.6, 48, \dots\}$$

$$(h_{\theta}(x) - y)^2 = \{81, 467, 441, 177, 13, 9, \dots\}$$

$$MAE(\theta) = \sqrt{\frac{1218}{6}} = 14.2$$

MAE vs RMSE

Signal1 and signal2

MAE vs RMSE

Histograms of signal1 and signal2's residuals

MAE vs RMSE

■ MAE: **41.926** < 43.199

■ RMSE: 64.458 > **54.516**

Large deviation is penalized more by RMSE

Coefficient of Determination (R²)

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

where

$$SS_{res} = \sum_{i=1}^{n} (h_{\theta}(x^{i}) - y^{i})^{2}$$
 $SS_{tot} = \sum_{i=1}^{n} (y^{i} - \bar{y})^{2}$

- SS_{res} Sum of squared residuals (i.e. total squared error)
- SS_{tot} Sum of squared differences from mean (i.e. total variation in dataset)
- Result: Measure of how well the model explains the data
 - "Fraction of variation in data explained by model"

R² Example

- $R^2 = 0.277$
- Want a much better model for real application
- $R^2 = 0.6$ can be a good model

Agenda

- Introduction
- Cost Functions & Gradient Descent
 - Minimization
 - Implementation
- Hands-on Example
- Evaluating Regression Models
- Regularization

Overfitting

- Want to extract general trends
- Danger: "memorizing" the training set
- A model is overfit when model performance on test set is much worse than on training set.

Overfitting

$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

Complexity

- What makes a good model overfit?
 - Nature of training data
 - Complexity of model
- How do we handle these?
 - Cross validation
 - Manual model constraint
 - Regularization

Intuition

$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

- Want to discourage complex models automatically How?
- Adjust the cost function!
 - Penalize models with large high-order θ terms

$$J'(\theta) = J(\theta) + Penalty$$

Definitions

- Two most common
 - L1 regularization
 - lasso regression

- L2 regularization
 - ridge regression
 - weight decay

$$J_{L1}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\theta}(x^{i}) - y^{i})^{2} + \lambda \sum_{j=1}^{m} |\theta_{j}|$$

$$J_{L2}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\theta}(x^{i}) - y^{i})^{2} + \lambda \sum_{j=1}^{m} \theta_{j}^{2}$$

Regularized Regression

$$J_{L1}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\theta}(x^{i}) - y^{i})^{2} + \lambda \sum_{i=1}^{m} |\theta_{i}| \qquad J_{L2}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\theta}(x^{i}) - y^{i})^{2} + \lambda \sum_{i=1}^{m} \theta_{i}^{2}$$

- Find the best fit
- Keep the θ_i terms as small as possible.
- λ is a user-set parameter which controls the trade off

Regularized Regression

$$J_{L1}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\theta}(x^{i}) - y^{i})^{2} + \lambda \sum_{j=1}^{m} |\theta_{j}| \qquad J_{L2}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\theta}(x^{i}) - y^{i})^{2} + \lambda \sum_{j=1}^{m} \theta_{j}^{2}$$

- Size of λ important
 - λ too high => no fitting
 - λ too low => no regularization

QUESTIONS

