Les 5. Analyse van 2 variabelen Onderzoekstechnieken

Jens Buysse Wim De Bruyn Bert Van Vreckem AJ 2018-2019

What's on the menu today?

Bivariate Analyse Bivariate Analyse: grafisch

Kruistabellen en Cramér's V

Grafieken voor kruistabellen

Lineaire Regressie

Correlatiecoëfficiënt en determinatiecoëffciënt

Bivariate Analyse

Bivariate Analyse

OZT: Analyse 2 variabelen └─Bivariate Analyse

└─Bivariate Analyse

Deze slide wordt gebruikt om een voorbeeld te geven van een minder triviaal verband tussen variabelen: Ant Colony optimization. Verbanden tussen variabelen zouden dus kunnen zijn:

- · Aantal obstakels tussen nest en voedeselbron
- · Algoritme gebruikt om feromonen weg te nemen / te plaatsen
- Vorm van de obstakels tussen nest en voedselbron
- ...

Voorbeeld

Tevredenheidsonderzoek campusrestaurant

- Hoe vaakt bezoekt men het restaurant?
- Is er een verschil in uitgaven tussen student en medewerker?
- Is er een verband tussen het aantal dagen dat men bezoekt en bedrag dat men wekelijks besteedt?

R Code: zie cursus/data/catering_hogeschool.R

Hoe vaakt bezoekt men het restaurant?

Statistiek	Waarde
Mean	2.96
Median	3
Mode	2
Stdev	1.484
Variantie	2.202
Range	4
Q_1	2
Q_2	3
Q_3	5

Hoe vaakt bezoekt men het restaurant?

Student vs werknemer

- Enkelvoudig staafdiagram (van gemiddelde per categorie)
- Boxplot

Let op! Onvoldoende om significant verschil aan te tonen!

Student vs werknemer

- Enkelvoudig staafdiagram (van gemiddelde per categorie)
- Boxplot

Afhankelijke en onafhankelijke variabele

Onderzoeken die hier gevoerd zijn:

- Invloed van alcoholinname op leervermogen van vleermuizen (Drinking and Flying: Does Alcohol Consumption Affect the Flight and Echolocation Performance of Phyllostomid Bats?)
- Arnd Leike of the Ludwig Maximilians University receives one of the Ig Nobel awards - which are given for research that cannot or should not be repeated - for demonstrating that beer froth obeys the mathematical law of exponential decay.

Onderzoek academiejaar 2013-2014

Onderzoek academiejaar 2013-2014

Studenten moesten onderzoeken of er een verband was tussen vallen van boterham op boterzijde en hoogte e.a., of verband was tussen het aantal onpare sokken en andere fenomenen zoals je eigen was doen, veel sporten al dan niet ...

Kruistabellen en Cramér's V

Kruistabellen

Is er een verschil in waardering in het assortiment tussen mannen en vrouwen?

	Vrouw	Man	Totaal
Goed	9	8	17
Voldoende	8	10	18
Onvoldoende	5	5	10
Slecht	0	4	4
Totaal	22	27	49

Kruistabellen: percenteren

Is er een verschil in waardering in het assortiment tussen mannen en vrouwen?

	Vrouw	Man	Totaal	Vrouw %	Man%	Totaal
Goed	9	8	17	41%	30%	35%
Voldoende	8	10	18	36%	37%	37%
Onvoldoende	5	5	10	23%	18%	20%
Slecht	0	4	4	0%	15%	8%
Totaal	22	27	49	100%	100%	100%

Kruistabellen: verschil bepalen

Is er een verschil in waardering in het assortiment tussen mannen en vrouwen?

	Vrouw	Man	Totaal	Vrouw %	Man%	Totaal
Goed	9 - 7.63	8 - 9.36	17	41%	30%	35%
Voldoende	8 - 8.08	10 - 9.91	18	36%	37%	37%
Onvoldoende	5 - 4.48	5 - 5.51	10	23%	18%	20%
Slecht	0 - 1.79	4 - 2.20	4	0%	15%	8%
Totaal	22	27	49	100%	100%	100%

Kruistabellen: kwadrateren en normeren

normeren waardering in het assortiment tussen mannen en vrouwen?

	Vrouw	Man	Totaal	Vrouw %	Man%	Totaal
Goed	0.2	0.2	17	41%	30%	35%
Voldoende	0	0	18	36%	37%	37%
Onvoldoende	0.1	0	10	23%	18%	20%
Slecht	1.8	1.5	4	0%	15%	8%
Totaal	22	27	49	100%	100%	100%

$$\chi^2 = 3.811, V = 0.279$$

Cramér's V

Cramér's V is een maat die aanduidt hoe sterk de samenhang is tussen twee kwalitatieve variabelen. Dit getal ligt altijd tussen 0 en 1

Waarde	Interpretatie
0	geen samenhang
0.1	zwakke samenhang
0.25	redelijk sterke samenhang
0.5	sterke samenhang
0.75	zeer sterke samenhang
1	volledige samenhang

Voorbeeld 2: voorkeur automerk en geslacht

	Mercedes	BMW	Porsche	Alfa Romeo	Totaal
Mannen	10	10	20	20	60
Vrouwen	20	5	15	0	40
Totaal	30	15	35	20	100

Het lijkt alsof de automerken niet gelijkelijk gewaardeerd worden door mannen en vrouwen.

$$\chi^2 = 22.619$$

$$V = \sqrt{\frac{22.169}{100.(2-1)}} = 0.476$$

Voorbeeld2: voorkeur automerk en geslacht

geslacht * automerk Crosstabulation							
				autoņ	nerk		
			Mercedes	BMW	Porshe	Alfa Romeo	Total
geslacht	man	Count	10	10	20	20	ϵ
		Expected Count	18.0	9.0	21.0	12.0	60
		% within geslacht	16.7%	16.7%	33.3%	33.3%	100.0
		% within automerk	33.3%	66.7%	57.1%	100.0%	60.0
		Std. Residual	-1.9	.3	2	2.3	
	vrouw	Count	20	5	15	0	
		Expected Count	12.0	6.0	14.0	8.0	40
		% within geslacht	50.0%	12.5%	37.5%	0.0%	HÖ ^{0.0}
		% within automerk	66.7%	33.3%	42.9%	0.0%	GEN
		Std. Residual	2.3	4	.3	-2.8	

Grafieken voor kruistabellen

Visuele voorstelling van kruistabelen

Visuele voorstelling van kruistabelen

Geclusterde staafgrafiek

Visuele voorstelling van kruistabelen

Rependiagram

Bij regressie gaan we proberen een consistente en systematische koppeling tussen de variabelen te vinden.

- 1. **Monotoon:** algemene richting van de samenhang tussen de twee variabelen kan aangeduid worden (stijgend/dalend).
- 2. **Niet-monotoon:** aanwezigheid (of afwezigheid) van de ene variabele systematisch gerelateerd aan de aanwezigheid (of afwezigheid) van een andere variabele.

Lineair verband: een rechtlijnige samenhang tussen een onafhankelijke en afhankelijke variabele, waarbij kennis van de onafhankelijke variabele kennis over de afhankelijke variabele geeft.

- Aanwezigheid
- Richting: dalend of stijgend?
- Sterke van het verband: sterk, gematigd, niet bestaand ...

Kleinste kwadratenmethode:

voorbeeld

HO SENT

Kleinste kwadratenmethode: voorbeeld

Eiwitgehalte%	Gewichtstoename (gram)
0	177
10	231
20	249
30	348
40	361
50	384
60	404

Kleinste kwadratenmethode:

Kleinste kwadratenmethode: voorbeeld

X	У	$X - \overline{X}$	$y - \overline{y}$	$(\boldsymbol{x}-\overline{\boldsymbol{x}})(\boldsymbol{y}-\overline{\boldsymbol{y}})$	$(\mathbf{x} - \overline{\mathbf{x}})^2$
О	177	-30	-130,71	3921,3	900
10	231	-20	-76,71	1534,2	400
20	249	-10	-58,71	587,1	100
30	348	0	40,29	0	0
40	361	10	53,29	532,9	100
50	384	20	76,29	1525,8	400
60	404	30	96,29	2888,7	900
				10990	2800

Tabel: Berekeningen die nodig zijn voor het toepassen van de kleinste kwadratenmethode.

$$\beta_1 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x - \overline{x})^2} = \frac{10990}{2800} = 3.925$$

Kleinste kwadratenmethode:

Correlatiecoëfficiënt en determinatiecoëffciënt

Pearson correlatiecoëfficiënt en determinatiecoëfficiënt

De Pearson correlatiecoëfficiënt is een maat voor de sterkte van de lineaire samenhang tussen x en y

De determinatiecoëfficiënt verklaart het percentage van de variantie van de waargenomen waarden t.o.v. de regressierechte.

Covariantie

We plotten de gezinsgrootte van 15 families tot de gezinsgrootte van de moeder toen ze klein was.

We **Ho**en

Covariantie bij lineair verband

Covariantie bij willekeurigheid

vinden $\overline{\mathbf{x}} = 1942.625$ en $\overline{\mathbf{y}} = 3.4375$.

Determinatiecoëfficiënt

Figuur: Deviaties tot de regressierechte: aanname x geeft extra informatie or het voorspellen van y.

Figuur: Deviaties tot de gemiddelde van y: aanname x geeft geen informatie voor het voorspellen van y ($\bar{y}=307.71$).

Correlatiecoëfficiënt en determinatiecoëffciënt

R	R^2	Verklaarde variantie	Interpretatie
< 0, 3	< 0, 1	< 10%	zeer zwak
0, 3-0, 5	0, 1 - 0, 25 r	10 - 25%	zwak
0, 5-0, 7	0,25-0,5	25 - 50%	matig
0, 7-0, 85	0, 5-0, 75	50 - 75%	sterk
0,85-0,95	0,75-0,9	75 - 90%	zeer sterk
> 0,95	> 0,9	> 90%	uitzonderlijk(!)

Sterkte verband rendieren

$(x-\overline{x})$	$(y - \overline{y})$	$(x-\overline{x})(y-\overline{y})$
-30	-130.714	3921.429
-20	-76.7143	1534.286
-10	-58.7143	587.1429
0	40.28571	0
10	53.28571	532.8571
20	76.28571	1525.714
30	96.28571	2888.571

$$\sum_{i}^{n} (x - \overline{x})(y - \overline{y}) = 10990$$

$$Cov = \frac{10990}{7} = 1570$$

$$\sigma_{x} = 20$$

$$\sigma_{y} = 81.03$$

$$R = \frac{1570}{20 \times 81.03} = 0.96$$

$$R^{2} = 0.93$$

Overwegingen

- Bij de correlatiecoëfficiënt wordt er alleen naar het verband tussen twee variabelen gekeken. Er wordt niet gekeken naar interacties met andere variabelen.
- Er wordt bij de correlatiecoëfficiënt expliciet niet uitgegaan van een oorzaak-en gevolg verband
- De product-momentcorrelatiecoëfficiënt van Pearson drukt slechts lineaire verbanden uit

Verband regressierechte en correlatecoëfficiënt

