Introdução à Complexidade Computacional - Parte 2

Algoritmos e Programação 2 Prof. Dr. Anderson Bessa da Costa Universidade Federal de Mato Grosso do Sul

Relembrando ...

- Ordem de crescimento provê caracterização eficiência do algoritmo
 - Permite comparar o desempenho relativo de algoritmos
- Merge sort no pior caso $\Theta(n \lg n)$
- Insertion sort no pior caso $\Theta(n^2)$
 - Merge sort é melhor que insertion sort (entrada n grande)
- Podemos determinar o tempo exato de execução do algoritmo
 - Não vale a pena
 - Para entradas grandes o suficiente, as constantes multiplicativas e termos de baixa ordem serão dominados

Introdução

- Entradas grandes o suficiente
- Apenas ordem de crescimento é relevante
- Nós estamos estudando a eficiência assintótica dos algoritmos
 - Estamos interessados em como o tempo de execução de um algoritmo aumenta com o tamanho da entrada no limite
 - Entrada cresce sem limite
- Geralmente, um algoritmo que é assintóticamente mais eficiente será a melhor escolha, exceto para pequenas entradas

Complexidade de Algoritmos

- É possível determinar tempo de execução por métodos empíricos
 - Obter o tempo de execução através da execução propriamente dita
- Em contrapartida, é possível obter uma ordem de grandeza do tempo de execução através de **métodos analíticos**
 - Objetivo é determinar expressão matemática que traduza o comportamento de tempo de um algoritmo
 - Visa aferir o tempo de execução de forma independente do computador utilizando, linguagem e dos compiladores empregados

Expressão Matemática

As seguintes simplificações serão introduzidas:

- Suponha quantidade de dados a serem manipulados seja suficientemente grande. Somente o comportamento assintótico será avaliado, ou seja, a expressão matemática fornecerá valores de tempo que são válidos quando a quantidade de dados correspondente crescer o suficiente
- Não serão consideradas constantes aditivas ou multiplicativas na expressão matemática obtida

Noção de Complexidade

- As definições de complexidade implicam o atendimento das duas simplificações
- Por exemplo, valor de número de passos igual a 3n será aproximado para n
- Além disso, como o interesse é restrito a valores assintóticos, termos de menor grau também podem ser desprezados. Assim, um valor de números de passos igual a n^2+n será aproximado para n^2
- O valor $6n^3 + 4n 9$ será transformado em n^3

Noção de Complexidade (cont.)

- O que nos interessa de fato é a taxa de crescimento, ou ordem de crescimento, do tempo de execução
- Então, nós consideramos apenas o termo principal da fórmula (e.g., an^2), uma vez que os termos de menor ordem são relativamente insignificantes para n grande
- Da mesma forma é por isso que eliminamos as constante multiplicando o termo principal

Complexidade Assintótica

- Torna-se útil, portanto, descrever operadores matemáticos que sejam capazes de representar situações como essa
- As notações O, Ω e Θ serão utilizadas com essa finalidade

Notação O

• Sejam f,g funções reais positivas de variável inteira n. Diz-se que f(n) é O(g(n)), escrevendo-se f(n) = O(g(n)), quando existir uma constante c > 0 e um valor inteiro n_0 , tal que

$$n \ge n_0 \Rightarrow 0 \le f(n) \le c \cdot g(n)$$

 Ou seja, a função g(n) atua como um limite superior assintótico

Notação O (cont.)

- Escrevemos f(n) = O(g(n)) para indicar que a função f(n) é um membro do conjunto O(g(n))
- Quando a > 0, qualquer função linear an + b é $O(n^2)$
 - c = a + |b|
 - $n_0 = max(1, -b/a)$
- Na literatura, a notação O é muitas vezes utilizada informalmente para descrever limites assintóticos "justos"
 - Pode parecer estranho escrever $n = O(n^2)$

Notação O: Exemplos

- $f(n) = n^2 1 \Rightarrow f(n) = O(n^2)$.
- $f(n) = n^2 1 \Rightarrow f(n) = O(n^3)$.
- $f(n) = 403 \Rightarrow f(n) = O(1)$.
- $f(n) = 5 + 2 \log n + 3 \log^2 n \Rightarrow f(n) = O(\log^2 n)$.
- $f(n) = 5 + 2 \log n + 3 \log^2 n \Rightarrow f(n) = O(n)$.
- $f(n) = 3n + 5 \log n + 2 \Rightarrow f(n) = O(n)$.
- $f(n) = 5 \cdot 2^n + 5n^{10} \Rightarrow f(n) = O(2^n)$.

Notação O: Ordenação por Inserção

- ullet A notação O será utilizado para exprimir complexidades
- Por exemplo, no **melhor caso** do algoritmo **ordenação por inserção** efetua $(c_1 + c_2 + c_3 + c_4 + c_7) \times n (c_2 + c_3 + c_4 + c_7)$ passos. Logo, a sua complexidade é O(n)
- No pior caso:

$$(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2})n^2 + (c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8)n - (c_2 + c_4 + c_5 + c_8)$$
 passos. Logo, a sua complexidade é $O(n^2)$

Notação O: Mostre que

- Mostre que $3n^3 = O(n^4)$
- Resposta: Segue que $O(g(n)) = \{f(n) : \text{ existem constantes positiva } c \in n_0$, tal que $0 \le f(n) \le cg(n)$ para todo $n \ge n_0\}$. Seja $g(n) = n^4 e f(n) = 3n^3$, para $c = 4 e n_0 = 1$, temos que $0 \le 3n^3 \le 4n^4$ é verdade para todo $n \ge n_0$.

Corrida 1

Corrida 2

Corrida 3

Notação Ω

• Sejam f,g funções reais positivas de variável inteira n. Diz-se que f(n) é $\Omega(g)$, escrevendo-se $f(n) = \Omega(g(n))$, quando existir uma constante c > 0 e um valor inteiro n_0 , tal que

$$n \ge n_0 \Rightarrow 0 \le cg(n) \le f(n)$$
.

 Ou seja, a função g(n) atua como um limite inferior assintótico

Notação Ω (cont.)

- Por exemplo, $\operatorname{se} f(n) = n^2 1$, então
 - são válidas as igualdades $f = \Omega(n^2), f = \Omega(n)$ e $f = \Omega(1)$
 - mas não $f(n) = \Omega(n^3)$

Notação O x Ω

Notação Ω : Mostre que

- Mostre que $n^2 1 = \Omega(n^2)$
- Resposta: Segue que $\Omega(g(n))=\{f(n): \text{ existem constantes positiva } c \in n_0, \text{ tal que } 0 \leq cg(n) \leq f(n) \text{ para todo } n \geq n_0\}.$ Seja $g(n)=n^2 \in f(n)=n^2-1, \text{ para } c=1/2 \in n_0=2,$ temos que $\frac{1}{2}n^2 \leq n^2-1$ é verdade para todo $n \geq n_0$.

Notação Θ

• Dado uma função g(n), nós denotamos por $\Theta(g(n))$ o conjunto de funções

 $\Theta(g(n)) = \{f(n) : \text{existem} \\ \text{constantes positivas } c_1, c_2 \in n_0 \text{ tal} \\ \text{que } 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \\ \text{para todo } n \geq n_0 \}$

Notação 🛛 (cont.)

- Sejam f,g funções reais positivas da variável inteira n. Diz-se que f(n) é $\Theta(g(n))$, escrevendo-se $f(n) = \Theta(g(n))$, quando ambas as condições f(n) = O(g(n)) e g(n) = O(f(n)) forem verificadas
- Θ exprime o fato de que as duas funções possuem a mesma ordem de grandeza assintótica
- Útil para exprimir limites superiores justos

Notação **O** (cont.)

- Por exemplo, se $f=n^2-1$, $g=n^2$ e $h=n^3$, então f é O(g), f é O(h), g é O(f), mas h não é O(f)
- Consequentemente, $f = \Theta(g)$, mas f não é $\Theta(h)$

Notação O x Ω x Θ

Notação Θ : Mostre que

- Mostre que $\frac{1}{2}n^2 3n = \Theta(n^2)$.
- Resposta: $c_1 n^2 \leq \frac{1}{2} n^2 3n \leq c_2 n^2$ para todo $n \geq n_0$. Dividindo por n^2 temos
- $c_1 \le \frac{1}{2} \frac{3}{n} \le c_2$
- A desigualdade do lado direito se mantém para qualquer valor $n \geq 1$ escolhendo $c_2 \geq 1/2$
- De maneira similar, a desigualdade do lado esquerdo se mantém para qualquer valor de $n \geq 7$ escolhendo $c_1 \leq 1/14$
- Certamente, outras escolhas de constantes existem, mas é importante é que ALGUMA escolha exista

Notação Θ : Mostre que (cont.)

- Mostre que $\frac{1}{2}n^2 3n = \Theta(n^2)$.
- Resposta: Segue que $\Theta(g(n)) = \{f(n) : \text{ existem constantes positiva } c_1, c_2 \in n_0, \text{ tal que } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ para todo } n \ge n_0 \}.$ Seja $g(n) = n^2 \in f(n) = 1/2n^2 3n$, para $c_1 = 1/14, c_2 = 1/2 \in n_0 = 7$, temos que $1/14n^2 \le 1/2n^2 3n \le 1/2n^2$ é verdade $\forall n \ge n_0$.

Notação Θ : Intuitivamente

- Intuitivamente, termos de baixa ordem de uma função assintótica positiva podem ser ignorados
- Uma pequena fração de um termo de alta ordem é suficiente para os termos de baixa ordem
- Assim, ajustar c_1 para um valor um pouco menor que o coeficiente do termo de mais alta ordem
- E ajustar o valor de c_2 para um valor um pouco maior permite que a desigualdade da definição da notação Θ seja satisfeita

Problemas Intratáveis

- Suponha que uma máquina moderna pode realizar cerca de $10^{10}\,\mathrm{opera}$ ções por segundo
- Suponha uma entrada n=100 para um algoritmo de complexidade 2^n
 - São aproximadamente 10^{30} operações
- Leva-se 10^{20} segundos
- $\bullet \ \ \text{Um dia tem } 10^5 \ \text{segundos}$
 - Isso significa $10^{15}\,\mathrm{dias}$. Ou aproximadamente $10^{13}\,\mathrm{anos}$
- A idade do universo foi calculada em cerca de 10^{10} anos ...

Complexidade Algoritmos de Ordenação

Name \$	Best +	Average \$	Worst \$	Memory \$	Stable \$	Method \$	Other notes \$
Quicksort	$n\log n$ variation is n	$n \log n$	n^2	$\log n$ on average, worst case is n ; Sedgewick variation is $\log n$ worst case	typical in-place sort is not stable; stable versions exist	Partitioning	Quicksort is usually done in place with O(log <i>n</i>) stack space. [2][3]
Merge sort	$n \log n$	$n \log n$	$n \log n$	n	Yes	Merging	Highly parallelizable (up to O(log <i>n</i>) using the Three Hungarians' Algorithm ^[4] or, more practically, Cole's parallel merge sort) for processing large amounts of data.
In-place merge sort	_	_	$n\log^2 n$	1	Yes	Merging	Can be implemented as a stable sort based on stable in-place merging. ^[5]
Heapsort	$n\log n$	$n \log n$	$n \log n$	1	No	Selection	
Insertion sort	n	n^2	n^2	1	Yes	Insertion	O(n + d), in the worst case over sequences that have d inversions.
Introsort	$n \log n$	$n \log n$	$n \log n$	$\log n$	No	Partitioning & Selection	Used in several STL implementations.
Selection sort	n^2	n^2	n^2	1	No	Selection	Stable with O(n) extra space, for example using lists. ^[6]
Timsort	n	$n \log n$	$n \log n$	n	Yes	Insertion & Merging	Makes <i>n</i> comparisons when the data is already sorted or reverse sorted.
Cubesort	n	$n \log n$	$n \log n$	n	Yes	Insertion	Makes <i>n</i> comparisons when the data is already sorted or reverse sorted.
Shell sort	n	$n\log^2 n$ or $n^{3/2}$	Depends on gap sequence; best known is $n\log^2 n$	1	No	Insertion	Small code size, no use of call stack, reasonably fast, useful where memory is at a premium such as embedded and older mainframe applications.

Referências

- CORMEN, T. H.[et al]. Algoritmos: teoria e prática. 3ª ed. Rio de Janeiro: Elsevier, 2012.
- SZWARCFITER, Jayme Luiz; MARKENZON, Lilian. Estruturas de dados e seus algoritmos. 3. ed. Rio de Janeiro, RJ: LTC, 2010. 302p.