screw gauge. (i) Explain one measuring technique he should use.								
 (a) The student measured the diameter d_X of wire X several times using a micrometer screw gauge. (i) Explain one measuring technique he should use. (2) (ii) The student recorded the following measurements. (iii) The student recorded the following measurements. (iv) Determine the mean value of d_X and its uncertainty in mm. 	A student had two	o pieces of co	onstantan	wire, X aı	nd Y.			
(i) Explain one measuring technique he should use. (2) (ii) The student recorded the following measurements. $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Wires X and Y ha	nd different d	liameters.					
(ii) The student recorded the following measurements.		neasured the	diameter	$d_{\rm X}$ of wire	X several	times usi	ng a microme	eter
(ii) The student recorded the following measurements.	(i) Explain o	ne measuring	g techniqu	ie he shou	ld use.			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$., 1		, ,					(2)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
Determine the mean value of d_X and its uncertainty in mm.	(ii) The stude	nt recorded t	he follow	ing measu	rements.			
Determine the mean value of d_X and its uncertainty in mm.				T				
		$d_{\rm X}/{ m mm}$	0.31	0.32	0.31	0.33	0.30	
•								
	Determine	e the mean va	alue of d_{X}	and its ur	ncertainty	in mm.		
								(3)

Mean value of $d_X = mm \pm mm$

(b) The student measured the diameter d_Y of wire Y as $0.22 \,\mathrm{mm} \pm 0.01 \,\mathrm{mm}$.

He connected part of wire Y in a circuit as shown.

The student measured the potential difference V across the wire in the circuit and the current I in the wire.

He recorded the following values

$$V = 4.990 \text{ V} \pm 0.005 \text{ V}$$

 $I = 0.4570 \text{ A} \pm 0.0005 \text{ A}$

The length of wire Y in the circuit was $89.4\,\text{cm} \pm 0.1\,\text{cm}$.

(i) Show that the resistivity ρ of the metal is about $5 \times 10^{-7} \Omega$ m.

(ii) Show that the percentage uncertainty in ρ is about 9%.

(3)

(3)

(c) The student measured the resistances R_1 and R_2 of different lengths of wire Y using an ohmmeter. Each resistance was measured once.

The student's values are given in the table.

	Length /cm	Resistance / Ω
R_1	40.0	4.5
R_2	90.0	10.2

He calculated the resistance R_L for one metre of wire using the formula

$$R_L = 2 \times (R_2 - R_1)$$

Show that the percentage uncertainty in R_L is about 2%.

$$R_L = 11.4 \,\Omega$$

(3)

9			
<u>ă</u>			

(d) The student wanted to confirm that the metal of the wire is constantan.

The student compared his calculated values of ρ and R_L to published values for constantan.

The values are shown in the table below.

	$ ho$ / $10^{-7}\Omega$ m	R_L / Ω
Calculated	$4.6 \pm 9\%$	11.4 ± 2%
Published	4.9	11.2

Comment on how well the student's calculated values confirm that the metal of the wire is constant.

You must include calculations in your answer.

(3)