Esercizio no.1 Soluzione a pag.5

Nel circuito di figura, l'interruttore T_1 viene chiuso all'istante t=0; dopo un tempo t_0 =4,8 μ s, T_1 viene riaperto e contemporaneamente viene chiuso T_2 . Trovare l'andamento della tensione v_c ai capi del condensatore.

Trovare il valore della tensione ai capi di C dopo un tempo t=8,8µs dall'istante iniziale t₀.

Esercizio no.2 Soluzione a pag.5

Nel circuito riportato il tasto viene aperto all'istante t=0, quando la corrente ha già raggiunto il suo valore di regime. Calcola i valori di v_0 per t_1 =3 μ s.

Esercizio no.3

Soluzione a pag.6

Nel circuito di figura, determinare l'andamento della tensione ai capi della coppia dei condensatori, sapendo che all'istante t=0 in cui viene chiuso T, i condensatori sono carichi alla tensione V_0 = -10V. Calcolare in quanto tempo la tensione v_c si porta a 0V.

Esercizio no.4 Soluzione a pag. 7

Nel circuito di figura, inizialmente i tasti T_1 e T_2 sono aperti e il condensatore C è scarico. All'istante t=0, viene chiuso il tasto T_1 , dopo un tempo t=42ms si chiude pure T_2 . Si trovi il valore di v_c dopo un tempo t=82ms dalla chiusura del primo deviatore

Esercizio no.5 Soluzione a pag.07

Il condensatore C è carico alla tensione V_{C0} =50V con la polarità indicata mentre gli interruttori sono aperti. All'istante t=0 viene chiuso T_1 , quindi dopo 20ms viene chiuso T_2 . Calcola il valore della tensione V_{AB} dopo 30 ms dal tempo t=0.

Esercizio no.6 Soluzione a pag.9

Nel circuito illustrato, i deviatori sono inizialmente aperti ed il condensatore è scarico. I deviatori vengono chiusi nel seguente ordine: T_1 per t_1 =0, T_2 per t_2 =280 μ s e T_3 per t_3 =520 μ s. Descrivere l'andamento della V_{AB} nel tempo e calcolare il valore della V_{AB} dopo un tempo t_x =550 μ s.

$$E=80 \text{ V} \\ R_1=100 \text{ k}\Omega \\ R_2=400 \text{ k}\Omega \\ R_3=10 \text{ k}\Omega \\ C=1000 \text{ pF}$$

$$R.\left[v_{AB}(t_x) = -9V\right]$$

Esercizio no.7

Soluzione a pag.10

Nel circuito illustrato, disegnare l'andamento della tensione di uscita V_{AB} a partire dall'istante t=0 di chiusura del tasto T. Calcola, inoltre il valore della corrente circolante dopo un tempo t_x =0,5 μ s dalla chiusura del tasto.

$$E=100 \text{ V}$$

$$R_1=2 \text{ k}\Omega$$

$$R_2=3 \text{ k}\Omega$$

$$L=1 \text{ mH}$$

$$R. [i_L(t_x) = 18,35 V]$$

Esercizio no.8 Soluzione a pag.11

Nel circuito, il tasto T viene chiuso quando la corrente è già a regime, trovare l'andamento della tensione ai capi dell'induttanza e il valore della corrente dopo 0,5ms dalla chiusura del tasto.

E=42 V

$$R_1$$
=1 kΩ
 R_2 =0,4 kΩ
L=0,28 H

$$R. [i_L(0.5ms) = 40 \ mA]$$

Esercizio no.9 Soluzione a pag.12

Il circuito riportato è a regime, quando viene chiuso il tasto T_1 ; dopo un tempo t_0 =5 μ s viene chiuso il tasto T_2 . Descrivi l'andamento della tensione V_{AB} .

E=100 V

$$R_1$$
=20 kΩ
 R_2 =8 kΩ
 R =12 kΩ
 L =10 mH

Esercizio no.10 Soluzione a pag.13

Il circuito è sottoposto in ingresso ad un treno di onde rettangolari con ampiezza E=24V, T_L =20 μ s T_H =10 μ s (T= T_L + T_H =30 μ s). Trovare l'andamento del segnale di uscita sapendo che C=125pF ed R=16k Ω .

Esercizio no.11 Soluzione a pag.14

Il segnale di ingresso della rete illustrata è una forma d'onda rettangolare simmetrica di ampiezza E_i =10V con periodo T=2 T_L =2 T_H =16 μ s. La tensione ai capi dell'induttanza deve avere a regime come valori estremi dell'esponenziale decrescente positivo V_1 =6V e V_2 =3V. Calcolare i valori R_1 ed L nel caso la resistenza di carico sia R_L =80 $k\Omega$.

$$R. \left[R_1 = 53, \overline{3} \, k\Omega \quad L = 0.184 \, mH \right]$$

Esercizio no.1:soluzione

$$v_c(t) = E \cdot \left(1 - e^{-t/RC}\right)$$

$$v_c(t) = 40 \cdot \left[1 - exp \left(-\frac{t}{2 \cdot 10^{-6}} \right) \right]$$
 il valore raggiunto dopo 4,8µs è:

$$v_{c1} = 40 \cdot \left[1 - exp \left(-\frac{4.8 \cdot 10^{-6}}{2 \cdot 10^{-6}} \right) \right] = 36.4 \text{ V}$$

dall'istante t₀=4,8µs in poi, il condensatore si scarica attraverso la resistenza partendo dal valore raggiunto v_{cl} =36,4V secondo la legge:

$$v_c(t) = V_{C0}e^{-(t-t_0)/RC} = 36.4 \cdot exp\left(-\frac{t-t_0}{RC}\right) = 36.4 \cdot exp\left[-\frac{(8.8-4.8) \cdot 10^{-6}}{2 \cdot 10^{-6}}\right] = 4.92 V$$

Esercizio no.2:soluzione

A regime, prima della apertura di T l'induttanza L si comporta come un corto circuito percorsa dalla corrente $i = E/R_1 = 30/3 = 10 \text{ mA}$ con $v_0=0$. All'apertura di T il transitorio sull'induttore è regolato dalla:

$$i_L(t) = i_f - (i_f - i_i) \cdot e^{-tR/L}$$

con $i_f = 0$ e ovviamente $i_i = \frac{E}{R_1}$ la costante di tempo $\tau = \frac{L}{R_2} = \frac{6 \cdot 10^{-3}}{2 \cdot 10^3} = 3 \,\mu\text{s}$

$$i_L(t) = 0 - \left(0 - \frac{E}{R_I}\right) \cdot e^{-t/\tau} = \frac{E}{R_I} \cdot e^{-t/\tau} \quad \Rightarrow \quad v_0(t) = -R_2 \cdot i_L(t) = -\frac{ER_2}{R_I} \cdot e^{-t/\tau}$$

Esercizio no.3:soluzione

I due condensatori in parallelo equivalgono all'unico condensatore:

$$C = C_1 + C_2 = 160 \ nF$$

A monte del deviatore T il circuito può essere semplificato col teorema di Thevenin.

Il generatore equivalente vale:
$$E_q = \frac{ER_2}{R_1 + R_2} = \frac{20 \cdot 3}{4} = 15 \text{ V}$$

La resistenza equivalente vale $R_q = R_1 // R_2 = \frac{3}{4} = 0.75 \text{ k}\Omega$

Dobbiamo pensare che a regime il condensatore

Quindi
$$v_f$$
= E mentre v_i = V_0

$$v_c(t) = v_f - (v_f - v_i) \cdot e^{-t/RC} = E - (E - V_0) \cdot e^{-t/RC}$$

è possibile individuare l'istante t_z di attraversamento dell'asse a 0 V tramite l'equazione:

$$0 = E - (E - V_0) \cdot e^{-t/RC}$$
 che diventa:

$$(E-V_0)\cdot e^{-t/RC} = E \rightarrow e^{-t/RC} = \frac{E}{(E-V_0)}$$

$$\text{per cui: } -\frac{t_z}{R_qC} = ln \left[\frac{E}{\left(E-V_0\right)} \right] \quad \rightarrow \quad \ t_z = -R_qC \ln \left[\frac{E}{\left(E-V_0\right)} \right]$$

$$t_z = -0.75 \cdot 10^3 \cdot 160 \cdot 10^{-9} \ln \left[\frac{15}{(15+10)} \right] = -120 \cdot 10^{-6} \ln \left(\frac{15}{25} \right) = 61.3 \text{ µs}$$

Esercizio no.4:soluzione

Nel primo intervallo di tempo, da 0 a 42ms il circuito ha la configurazione riportata. Poniamo:

$$R = R_1 + R_2 = 22k\Omega$$

C inizia a caricarsi con andamento esponenziale crescente, all'istante t_0 =42ms si ha:

$$v_c(t_0) = V_0 = E \cdot \left(1 - e^{-t_0/RC}\right) = 4 \cdot \left[1 - exp\left(-\frac{42 \cdot 10^{-3}}{22 \cdot 10^3 \cdot 10^{-5}}\right)\right] = 4 \cdot \left[1 - exp\left(-\frac{42}{220}\right)\right] = 0,695 V$$

Dopo la chiusura del secondo deviatore il circuito diventa come illustrato in figura; applichiamo la:

$$v_c(t) = v_f - (v_f - v_i) \cdot e^{-t/RC}$$

sostituendo i valori:

$$v_c(t_1) = E - (E - V_0) \cdot e^{-t/R_2C} = 4 - (4 - 0.695) \exp\left[-\frac{82 \cdot 10^{-3}}{2 \cdot 10^3 \cdot 10^{-5}} \right] =$$

$$= 4 - 3.3 \exp\left(-\frac{82}{20} \right) = 3.94 V$$

Esercizio no.5:soluzione

Dall'istante t=0 all'istante t_0 =20ms C si scarica attraverso la serie delle due resistenze R_2 ed R_3 .

La corrente circolante ha espressione:

$$i = \frac{V_{CO}}{R_2 + R_3} e^{-t/(R_2 + R_3)C} = \frac{50}{50 \cdot 10^3} e^{-t/0.05} \quad mA$$

per cui $V_{AB} = i \cdot R_3 = 30 \cdot e^{-t/0.05}$ dopo un tempo t_0 =20ms=0,02s

$$V_{AB}(t_0) = i \cdot R_3 = 30 \cdot e^{-0.02/0.05} = 20 V$$

da notare come al tempo t=0 sia: $V_{AB}(0) = i \cdot R_3 = 30 \cdot e^{-0.005} = 30 V$

per la tensione sul condensatore si ha:

$$V_{AB} = V_{CO} \cdot e^{-t/(R_2 + R_3)C} = 50 \cdot e^{-t/0.05}$$
 al tempo t_0 =20ms

$$V_c = 50 \cdot 0.67 = 33.5 V$$

Dall'istante t_0 =20ms in poi il condensatore riprende a caricarsi con costante di tempo:

$$T = \left(R_2 + \frac{R_1 R_3}{R_1 + R_3}\right) C = 27.5 \text{ ms}$$

Infatti applicando il teorema di Thevenin fra i morsetti AB

$$E_q = \frac{ER_3}{R_1 + R_3} = \frac{80 \cdot 30}{10 + 30} = 60 \text{ V}$$

$$R_q = \frac{R_1 R_3}{R_1 + R_3} = 7.5 \text{ k}\Omega$$

La corrente di carica del condensatore ha quindi l'espressione:

$$i = \frac{E_q - V_c}{R_q + R_2} e^{-(t - t_0)/T} = \frac{60 - 33.5}{(20 + 7.5) \cdot 10^3} exp\left(-\frac{t - 0.02}{0.0275}\right) = \frac{26.5}{27.5 \cdot 10^3} exp\left(-\frac{t - 0.02}{0.0275}\right)$$

$$V_{AB} = E_q - R_q i = 60 - 7,22 \ exp\left(-\frac{t - 0,02}{0,0275}\right) \ \text{dopo } 30 \ \text{ms dal tempo } t = 0.$$

$$V_{AB} = E_q - R_q i = 60 - 7,22 \exp\left(-\frac{0,03 - 0,02}{0,0275}\right) = 54,98 V$$

da notare come subito dopo l'istante t_0 =20ms la V_{AB} riprenda dal valore:

$$V_{AB} = 60 - 7,22 e^{-0.0275} = 60 - 7,22 = 52,78 V$$

Esercizio no.6:soluzione

Alla chiusura del deviatore T_1 la tensione v_{AB} comincia a crescere esponenzialmente (è negativa, data la disposizione della batteria)

$$v_{AB} = -E \cdot (1 - e^{-t/R_1C})$$
 con $R_1C=100 \,\mu s$

per t_2 =280µs la V_{AB} assume il valore:

$$v_{AB}(t_2) = -E \cdot \left(1 - e^{-t_2/R_1C}\right) = -80 \cdot \left[1 - exp\left(-\frac{280 \cdot 10^{-6}}{100 \cdot 10^{-6}}\right)\right] = -80 \cdot 0.039 = -75V = V_{AB}$$

all'istante t_2 =280 µs si chiude il deviatore T_2 e ovviamente, riduciamo il circuito col teorema di Thevenin.

Il condensatore si scarica parzialmente, tendendo a raggiungere il valore di E_q secondo la regola:

$$v_{c}(t) = v_{f} - (v_{f} - v_{i}) \cdot e^{-t/RC} \rightarrow v_{AB} = E_{q} - (E_{q} - V_{AB}) \cdot e^{-t/R_{q}C}$$

$$v_{AB} = -64 - [-64 - (-75)] \exp\left[-\frac{(t - t_{2})}{R_{q}C}\right] = -64 - 11 \exp\left[-\frac{240}{80}\right] = v_{AB} = -64 - 11 \cdot 0.05 = -64.5 \ V = V_{AB2}$$

All'istante t_3 =520 µs si chiude T_3 e l'intero circuito si semplifica col teorema di Thevenin, ottenendo:

Il condensatore si scarica ulteriormente secondo la regola:

$$v_{c}(t) = v_{f} - (v_{f} - v_{i}) \cdot e^{-t/RC} \rightarrow v_{AB} = E_{x} - (E_{x} - V_{AB2}) \cdot e^{-t/R_{x}C}$$

$$v_{AB} = -7.1 - \left[-7.1 - (-64.5)\right] exp \left[-\frac{(t - t_{3})}{R_{x}C}\right] = -7.1 - 57.4 exp \left[-\frac{(t - t_{3})}{R_{x}C}\right]$$

al tempo t_x =550µs avremo:

$$v_c(t) = v_f - (v_f - v_i) \cdot e^{-t/RC} \rightarrow v_{AB} = E_x - (E_x - V_{AB2}) \cdot e^{-t/R_x C}$$

$$v_{AB} = -7.1 - 57.4 \exp\left[-\frac{(550 - 520)}{8.9}\right] = -9 V$$

Esercizio no.7:soluzione

Alla chiusura del deviatore T la costante di tempo che governa il circuito è:

$$\tau = \frac{L}{R_1 + R_2} = 0.2 \ \mu s$$

A regime l'induttanza si comporta come un corto circuito mentre alla chiusura del tasto come un circuito aperto, per cui nella:

$$i_L(t) = i_f - (i_f - i_i) \cdot e^{-tR/L}$$
 avremo $i_f = \frac{E}{R_I + R_2} = 20 \text{ mA} \text{ e} \quad i_i = 0$
 $i_L(t_x) = 20 - (20 - 0) \cdot e^{-t/\tau} = 20 \cdot (1 - e^{-t/\tau}) = 20 \cdot \left[1 - \exp\left(-\frac{0.5}{0.2}\right)\right] = 18.35 \text{ V}$

L'espressione della V_{AB} è ricavabile dalla legge di Kirchoff:

 $v_{AB}=E-R_1i_L$ se per t=0 il circuito è aperto si ha V_{AB} =E mentre $i_L(t\to\infty)=20~mA$ quindi $v_{AB}(t\to\infty)=E-R_1i_L=100-2\cdot 20=60~V$

tutte le variazioni hanno un andamento esponenziale

Esercizio no.8:soluzione

Prima della chiusura del tasto: $i_i = \frac{E}{R_1 + R_2} = \frac{42}{1.4} = 30 \text{ mA}$

Alla chiusura di T la nuova corrente a regime sarà $i_f = \frac{E}{R_I} = 42 \text{ mA}$ quindi la

$$i_L(t) = i_f - (i_f - i_i) \cdot e^{-tR/L}$$
 \rightarrow $i_L(t) = 42 - (42 - 30) \cdot e^{-t/\tau}$

co
$$\tau = \frac{L}{R_I} = \frac{0.28}{1000} = 280 \,\mu\text{s}$$
 $i_L(0.5ms) = 42 - (42 - 30) \cdot \exp\left(-\frac{500}{280}\right) = 40 \,\text{mA}$

La i_L ha, dunque un andamento esponenzialmente crescente fra 30 e 42 mA a cui tende asintoticamente.

$$v_L = E - R_I i = 12e^{-t/\tau} = \begin{cases} v_L(0) = 12 \ V \\ v_L(t \to \infty) = 0 \ V \end{cases}$$

Esercizio no.9:soluzione

Prima della chiusura del deviatore T_1 la corrente i vale: $i = I_0 = \frac{E}{R + R_2} = \frac{100}{20} = 5 \text{ mA}$

La tensione V_{AB} , sempre prima della chiusura del tasto T_1 : $v_{AB} = V_{AB0} = RI_0 = 60 \text{ V}$

Alla chiusura del tasto I_I , la corrente nell'induttanza L resta inizialmente al valore I_0 , mentre nella resistenza R_I circolerà una corrente I, per cui in tale istante la corrente erogata dal generatore: $i(0) = I + I_0$ e quindi si avrà:

$$E = R_1 I + R_2 (I + I_0)$$
 \rightarrow $I = \frac{E - R_2 I_0}{R_1 + R_2} = \frac{100 - 8 \cdot 10^3 \cdot 5 \cdot 10^{-3}}{28 \cdot 10^3} = 2,14 \text{ mA}$

Quindi la corrente erogata dal generatore E sarà:

$$i = I + I_0 = 5 + 2,14 = 7,17 \text{ mA}$$

e tenderà al nuovo valore di regime:

$$I_1 = \frac{E}{R_2 + (R /\!/ R_1)} = \frac{100}{8 + 7.5} = 6.45 \text{ mA}$$

(l'induttanza L si comporta a regime come un corto circuito). Durante il transitorio la *i* erogata dal generatore varierà con legge:

$$i = i_f - (i_f - i_i) \cdot e^{-tR/L}$$
 \rightarrow $i = I_I - [I_I - (I + I_0)] e^{-t/\tau}$

con
$$\tau = \frac{L}{R_x}$$
 dove $R_x = R + \frac{R_1 R_2}{R_1 + R_2} = 12 + \frac{8 \cdot 20}{28} = 17,72 \text{ k}\Omega$ per cui

$$\tau = \frac{10 \cdot 10^{-3}}{17.72 \cdot 10^{3}} = 0.565 \ \mu s$$
 la legge di variazione della *i*:

$$i = 6,45 + 0,69 \exp\left(-\frac{t}{0,565 \cdot 10^{-6}}\right) mA$$
 di conseguenza:

$$v_{AB} = E - R_2 i = 100 - 51.6 - 5.52 \exp\left(-\frac{t}{0.565 \cdot 10^{-6}}\right) = 48.4 - 5.52 \exp\left(-\frac{t}{0.565 \cdot 10^{-6}}\right)$$

tende al valore $v_{AB} = 48.4 V$

all'istante t_0 =5 µs in cui viene chiuso il tasto T_2 , il transitorio precedente è praticamente terminato e la corrente i si porta istantaneamente al valore

$$i = \frac{E}{R_2} = \frac{100}{8} = 12.5 \text{ mA}$$
 mentre la v_{AB} si porta istantaneamente a 0 V.

Esercizio no.10:soluzione

La forma d'onda di uscita sarà una successione di esponenziali crescenti e decrescenti regolati dalle equazioni di carica e scarica del condensatore.

per la carica

$$v_c(t) = v_f - (v_f - v_i) \cdot e^{-t/RC}$$

per la scarica $v_c(t) = v_i \cdot e^{-t/RC}$

più precisamente avremo, durante la carica:

 $v_c(t) = E - (E - V_B) \cdot e^{-t/RC}$ osservando il primo gradino di tensione:

$$V_A = E - (E - V_R) \cdot e^{-T_H / \tau}$$
 con $\tau = RC = 125 \cdot 10^{-12} \cdot 16 \cdot 10^3 = 2 \mu s$

durante la scarica:

$$v_c(t) = V_A \cdot e^{-t/\tau} \rightarrow V_B = V_A \cdot e^{-T_L/\tau}$$

sostituendo la seconda equazione nella prima...

$$V_A = E - \left(E - V_A \cdot e^{-T_L/\tau}\right) \cdot e^{-T_H/\tau} \quad \rightarrow \quad V_A = E \cdot \left(I - e^{-T_H/\tau}\right) + V_A \cdot e^{-T_L/\tau} \cdot e^{-T_H/\tau}$$

$$\text{ma } e^{-T_L/\tau} \cdot e^{-T_H/\tau} = e^{-(T_H + T_L)/\tau} = e^{-T/\tau} \qquad \text{per cui:}$$

$$V_A \cdot \left(I - e^{-T/\tau}\right) = E \cdot \left(I - e^{-T_H/\tau}\right) \rightarrow V_A = E \cdot \frac{I - e^{-T_H/\tau}}{I - e^{-T/\tau}}$$

$$V_A = 24 \cdot \frac{1 - e^{-10/2}}{1 - e^{-30/2}} = 24 \cdot \frac{1 - e^{-5}}{1 - e^{-15}} = 23,83 V \cong 24 V$$

$$V_B = V_A \cdot e^{-T_L/\tau} = 23.83 \cdot e^{-20/2} = 23.83 \cdot e^{-10} \cong 0 V$$

Esercizio no.11:soluzione

E' chiaro che il circuito deve preventivamente essere semplificato col teorema di Thevenin:

Così semplificato il circuito è riconducibile ad una cella R-L con la corrente che percorre l'induttanza regolata dalla:

$$i_L(t) = i_f - (i_f - i_i) \cdot e^{-tR/L}$$
 e con $v_0 = E - Ri$

applicando la precedente al primo gradino di tensione:

$$i_L(t) = \frac{E}{R} - \left(\frac{E}{R} - 0\right) \cdot e^{-tR/L} = \frac{E}{R} \cdot \left(1 - e^{-t/\tau}\right)$$
 quindi avremo:

$$v_0(t) = E - R \cdot \frac{E}{R} \cdot \left(1 - e^{-t/\tau}\right) = E - E \cdot \left(1 - e^{-t/\tau}\right) = E \cdot e^{-t/\tau}$$

con riferimento alla figura riportata sopra, avremo $V_I = v_0 (t = 0) = E = 6 V$ quindi

$$E = \frac{E_i R_L}{R_I + R_L} \rightarrow 6 = \frac{10 \cdot 80}{R_I + 80} \rightarrow R_I + 80 = \frac{800}{6} \rightarrow R_I = \frac{800}{6} - 80 = 53, \overline{3} \, k\Omega$$

essendo
$$R = R_I // R_L = \frac{53.3 \cdot 80}{80 + 53.3} = 32 \text{ k}\Omega$$

$$V_2 = v_0(t=8) = E \cdot e^{-T/2\tau} = 3 V$$
 \rightarrow $-\frac{T}{2\tau} = ln\left(\frac{V_2}{E}\right)$ da cui

$$\tau = -\frac{T}{2 \ln (V_2 / E)} = -\frac{16 \cdot 10^{-6}}{2 \ln (1 / 2)} = 11,54 \cdot 10^{-6} \text{ s}$$
 essendo $\tau = \frac{L}{R}$

$$L = \tau \cdot R = 11,54 \cdot 10^{-6} \cdot 32 \cdot 10^{3} = 184,64 \cdot 10^{-3} H = 0,184 \text{ mH}$$