Discrete Mathematics HW9

20180617You Seung Woo

November 17, 2023

Problem 1

Solution.

Proof. By the definition of full m-ary tree, m should satisfy $m \mid (84-1) = m \mid 83$, because all nodes except the root node are grouped into chunks size of m. Since 83 is a prime, m=1 or 83. If m=1, then the height is 83. If m=83, then the height is 1. Both cases are not suitable.

(a) Proof. By the definition of full m-ary tree, m should satisfy $m \mid (81-1) = m \mid 80$.

$$m = 1, 2, 4, 5, 8, 10, 16, 20, 40, 80$$

Consider the number of possible chunks. Let r be the number of all chunks size of m. i.e. $r = \frac{N-1}{m}$, where N is the number of all nodes (N = 84 in this problem). For a given height $h_i \geq 1$, the chunks in that height range from 1 to m^{h_i-1} (remember the definition of full m-ary tree). So for the given maximum height h = 4 in this problem),

$$\sum_{k=1}^{h} 1 \le r \le \sum_{k=1}^{h} m^{k-1}$$

$$\Rightarrow h \le r = \frac{N-1}{m} \le \sum_{k=1}^{h} m^{k-1}$$

$$\Rightarrow mh \le N - 1 \le \sum_{k=1}^{h} m^{k}$$

By the above inequality, $m \neq 1, 2, 40, 80$. Therefore,

$$m=4,5,8,10,16,20$$

(b) Proof. By the definition of balanced full m-ary tree, all chuncks in height 1 to h-1 should be filled and the last height can have the chuncks from 1 to m^{h-1} . So the range is changed into

$$\sum_{k=1}^{h-1} m^{k-1} + 1 \le r \le \sum_{k=1}^{h-1} m^{k-1} + m^{h-1}$$

$$\Rightarrow \sum_{k=1}^{h-1} m^{k-1} + 1 \le r = \frac{N-1}{m} \le \sum_{k=1}^{h} m^{k-1}$$

$$\Rightarrow \sum_{k=1}^{h-1} m^k + m \le N - 1 \le \sum_{k=1}^{h} m^k$$

But all of m are impossible.

(a) Solution. Remove all leaf nodes until base-case. Then the remain is a center. Yellow tree has c, red tree has e as a center. But note that the number of center can be one or two.

(b) Proof. Proof by (strong) induction. Let T(k) be a tree with k nodes. Consider T(k=1) and T(k=2). Note that it has 2 base-case because of the problem statement. Both cases satisfy the statement clearly, they themselves are centers.

Suppose $k = 1, 2, \dots, N$ is true. Consider T(k = N + 1). Note that $T(k \ge 3)$ has at least one internal node. Remove all leaf nodes in T(N + 1). Then it is also a tree with $1 \le n \le N$ nodes. By induction, T(n) satisfies the statement. Add all leaf nodes to T(n) while preserving the location, then it is T(N + 1) and has the same center as T(n). Therefore, T(N + 1) also satisfies the statement.

Solution. Skipped. Try it case-by-case. You only find one possible solution if exists.

Proof. Let G = (V, E) be the graph. Let $T_1 = (V, E_1)$ and $T_2 = (V, E_2)$ be two MSTs of G. If we show $T_1 = T_2$, then the proof is done. Note that consider V and E as sets.

Proof by contradiction. Assume $T_1 \neq T_2$. This means $E_1 \neq E_2$. Since $|E_1| = |V| - 1 = |E_2|$ (by the definition of tree), $E_1 \neq E_2$ implies $E_1 - E_2 \neq \emptyset$ and $E_2 - E_1 \neq \emptyset$. WLOG, just consider the first-case: $E_1 - E_2 \neq \emptyset$. Let $e \in E_1 - E_2$. We can pick such edge e because of non-empty. Since $e \notin E_2$, the new subgraph $\Gamma_2 = (V, E_2 \cup \{e\})$ has a cycle C. Since all weights in G are distinct, there is a edge $e' \in C$ which has the largest weight. Claim that $e' \notin A$ any MST.

Proof of the claim. Proof by contradiction. If $e' \in T$ which is MST, then deleting e' will break T into two subtrees. Since e' is from the cycle C, we can pick another edge f which connects the two subetrees. By the definition of e', e' > f. This gives T is not MST because we can make a tree with smaller weight using f. Therefore, $e' \notin T$.

Note that the above claim is called *cycle property*. Since $e' \in C$ and $C \subseteq E_2 \cup \{e\}$, $e' \in E_2 \cup \{e\}$. Here, we have two cases:

• If e' = e, then since $e \in E_1 - E_2 \subset E_1$, $e' \in E_1$. But $T_1 = (V, E_1)$ is a MST, contradicts to the claim.

• If $e' \in E_2$, but then $T_2 = (V, E_2)$ is a MST, contradicts to the claim.

Therefore, our assumption $T_1 \neq T_2$ is false.

Proof. Let T be a tree. Pick any $v \in T$ and paint it with a color c_1 . Next, paint all the vertices adjecent to v with a color c_2 . Again, paint all the vertices adjecent to them using c_1 . Continue this until the end. This gives an optimal solution. Because, if not, then there is a connection between odd-step colorings(WOLG). Specifically, there are two cases.

- Connected between nodes in the same step. Let v_1 and v_2 are connected in the same step. Then there is a cycle $v_1 \cdots v \cdots v_2 v_1$, contradiction.
- Connected between nodes in different (odd) steps. Let v_1 and v_2 are connected. Then there is a cycle $v_1 \cdots v \cdots v_2 v_1$, contradiction.

APPENDIX: This problem shows [Trees are bipartite graphs].