

Game Theory

Luis Chávez

Introducción

Teoría básica

Representación

Equilibrio de Na

A -- It -- -- t -- -- --

· ipiicaciones

Productos homogeneos

Estrategias

Randomización

Anexos

References

Teoría de los Juegos y Estrategia

Tópico 1: Juegos Estáticos con Información Completa

Luis Chávez

C

Departamento Académico de Economía UNALM

Lima, 2025

Game Theory

Luis Chávez

Introducció

Teoría básic

E I N

Aplicaciones

Apricaciones

Productos heterogéne

Estrategia: mixtas

Randomizació Gráficas

Anexo

Reference

Contenido

- Introducción
- Zeoría básica Representación Dominancia Equilibrio de Nash
- 3 Aplicaciones Productos homogéneos Productos heterogéneos
- 4 Estrategias mixtas Randomización Gráficas
- 6 Anexos

Bienvenida

Game Theory

Luis Chávez

Introducció

Teoría básic

Leoria basic

Dominancia

Equilibrio de Nas

Aplicaciones

Aplicaciones

Productos homogén

Estrategia

mixtas

Randomizaci

Anexo

References

¿Los laboratorios farmacéuticos coluden? ¿Cómo compiten las aerolíneas? ¿Qué son los incentivos? ¿Qué puja elegir en las subastas de SUNAT? ¿Cuál es el rol de las señales?

¡Bienvenidos al mundo de las estrategias!

Conceptos básicos

Game Theory

Luis Chávez

Introducció

Teoría básic Representación

Dominancia Equilibrio de Na:

Anlicaciones

Aplicaciones

Productos homogéneos Productos heterogéneo

Estrategia

Randomizacio Gráficas

Anexo

References

Definición 1 (Estrategias)

Conjunto de **decisiones** (planes de acción) que toma una persona (jugador), según sus preferencias, para enfrentar una determinada situación.

¿Y el comportamiento estratégico?¿Es inherente al ser humano?

Supuesto 1 (Racionalidad)

Los agentes toman decisiones racionales.

Conceptos básicos

Game Theory

Luis Chávez

meroduceioi

Teoría básic

Dominancia

Equilibrio de Na

Aplicaciones
Productos homogéne

Estrategias

Randomizacio

Anexos

Reference

Ejemplo 1

¿Qué situación es más complicada?

- Cortar un árbol.
- Matar una serpiente.

Definición 2 (juegos)

Es la interacción estratégica entre jugadores, donde cada uno toma decisiones racionales basadas en reglas preestablecidas, con el objetivo de maximizar una recompensa.

Conceptos básicos

Game Theory

Luis Chávez

meroducción

Teoría básica

Dominancia

Equilibrio de Na

Aplicaciones

Productos homogeneo

Estrategia: mixtas

Randomizació

Anexo

Reference

Definición 3 (teoría de juegos)

Área de la matemática aplicada que estudia situaciones donde los agentes toman decisiones estratégicas interdependientes.

Estrategias:

- Puras.
- Mixtas.

Historial

Game Theory

Luis Chávez

Introducción

Teoría básica

Representación

Equilibrio de Nas

Aplicaciones

Estratogias

mixtas

Randomizació Gráficas

Anexo

Reference

- 1 Nace con la aparición de las probabilidades y las apuestas.
- 2 Antoine Gombaud (1654) uno de los pioneros en hablar de loterías.
- 3 Emil Borel estableció algunos intentos para jugar mejor.
 - 4 Jon von Newmann (1928) se le acreditó como el fundador de la teoría de juegos moderna.
- 5 Nash (1949) estableció el primer equilibrio en los juegos.
- 6 Nash (1994) ganó el premio Nobel junto a Reinhard Selten y John Harsanyi.

Clasificación

Game Theory

Luis Chávez

Introducción

Teoría básic

Dominancia

Equilibrio do M

Aplicaciones

Productos homogéneos

Estrategia mixtas

Randomizació Gráficas

Anexos

References

Figure: Taxonomía de teoría de juegos (Ahmad et al., 2023)

Aplicaciones

Game Theory

Luis Chávez

Introducción

Teoría básic

Dominancia

Equilibrio de Na

Aplicaciones

Productos heterogéne

Estrategia mixtas

Randomizació Gráficas

Anexos

References

- Deep Learning.
- 2 Subastas.
- 3 Estrategias empresariales.
- 4 Relaciones internacionales.
- **5** Problemas de principal-agente.
- 6 Bargaining.
- 7 Elecciones.

Elementos

Game Theory

Luis Chávez

meroduccion

Teoría básic

Representación

Dominancia

Equilibrio de Nasl

Aplicaciones

Productos homogéneos Productos heterogéneos

Estrategia mixtas

Randomizacio

Anexos

Reference

- **1** Conjunto finito N de jugadores: $\forall i = 1, ..., n, i \in N$.
- 2 Conjunto finito de m estrategias puras $\forall i \in N$: $S_i = \{s_j\}_{j=1}^m$.
- 3 Conjunto de perfiles de estrategias puras:

$$S=\prod_{i=1}^n S_i$$

- 4 Función de utilidad o de payoffs: ui.
- **5** Conjunto finito \mathcal{O} de *outcomes*: $\mathcal{O} = \{o_1, o_2, ...\}$.
- 6 Reglas.

Contenido

Game Theory

Luis Chávez

Introducció

Representación

Dominancia

Equilibrio de Na:

Aplicaciones

Productos homogéneos Productos heterogéneos

Estrategia mixtas

Randomizació Gráficas

Anexos

Reference

- Introducción
- Zeoría básica Representación

Dominancia Equilibrio de Nash

- 3 Aplicaciones
 Productos homogéneos
 Productos heterogéneos
- 4 Estrategias mixtas Randomización Gráficas
- 5 Anexos

Formas

Game Theory

Luis Chávez

Introducció

Teoría básic

Representación

Dominancia

Equilibrio de Nas

Productos homogéne

Productos heterogéneo

Estrategia mixtas

Randomizaci Gráficas

Anexo

Referenc

Definición 4 (Forma normal)

Un juego G se **representa en forma normal** (estratégica) si la cantidad de jugadores, sus respectivas estrategias y los pagos/outcomes están claramente definidos en una matriz de pagos.

Definición 5 (Forma extensiva)

Un juego se **representa en forma extensiva** cuando las jugadas se describen mediante un árbol de decisión, donde los nodos indican los turnos de decisión de los jugadores y las ramas esquematizan sus posibles estrategias.

Formas

Game Theory

Luis Chávez

Introducció

Teoría básic

Representación

Dominancia

Equilibrio de N

Anlicaciones

Productos homogénec

Productos heterogéneo

Estrategia: mixtas

Randomizacio

Anexo

References

Actividad 1. Plantear la matriz de pagos para 3 jugadores. Use 4, 3 y 2 estrategias para los jugadores $N = \{1, 2, 3\}$, respectivamente.

Game Theory

Luis Chávez

Introducción

Teoría básic

Representación

Dominancia

Equilibrio de Na

Aplicaciones

Productos homogéne

Estrategias

mixtas

Gráficas

Anexo

Reference

Supuesto 2 (simultaneidad)

Los jugadores eligen sus estrategias de forma simultánea (no implica "al mismo tiempo").

Supuesto 3 (información imperfecta)

Los jugadores no tienen información de las estrategias elegidas por sus oponentes.

Game Theory

Luis Chávez

Introducció

Teoría bás

Representación

Equilibrio de Nas

Aplicaciones

Productos homogéneo

Productos heterogéneos

Estrategias mixtas

Randomizaci Gráficas

Anexo

Reference

Dado $N = \{1, 2\}$, se define 2 conjuntos de estrategias $S_1 = \{a, b\}$ y $S_2 = \{p, q, r\}$. En \mathbb{R}^2 , el **producto cartesiano** se escribe:

$$S_1 \times S_2 = \{(a, p), (a, q), (a, r), (b, p), (b, q), (b, r)\}$$
 (1)

Entonces,

Definición 6 (Perfil de estrategias)

Dado *n* conjuntos, un perfil de estrategias del producto cartesiano $\prod_{i=1}^{n} S_i$ es la n-tupla $s = (s_1, s_2, ..., s_n), s \in S$.

Game Theory

Luis Chávez

Introducción

Teoría básic

Representación

Equilibrio de Na

Aplicaciones

Aplicaciones

Productos homogéneos Productos heterogéneo

Estrategia mixtas

Randomizacio Gráficas

Anexos

Reference

Definición 7 (Relación de preferencia)

El conjunto S define una relación binaria \succeq , denominada **relación de preferencia**, que verifica los axiomas de preferencia.

Definición 8 (Función de utilidad)

Si $f: S \to \mathcal{O}$ asocia un outcome $f(s) \in \mathcal{O}$ con cada perfil s, entonces, la función $u: \mathcal{O} \to \mathbb{R}$ es una relación de preferencia \succeq si:

$$\forall o, o' \in \mathcal{O}, o \succeq o' \iff u(o) \geq u(o')$$
 (2)

Game Theory

Luis Chávez

Introducción

Teoría básic

Representación

Equilibrio do M

Anlicaciones

Aplicaciones

Productos homogéneo

Productos heterogéne

mixtas

Randomizaci Gráficas

Anexos

References

Ejemplo 2

Dado el ranking de preferencias de 2 jugadores, se tiene:

0	01	02	03	04
u_1	13	12	24	12
<i>u</i> ₂	3	4	2	2

Matriz de pagos:

1 2	Α	В
a	(13, 3)	(12, 4)
b	(24, 2)	(12, 2)

Contenido

Game Theory

Luis Chávez

Introducció

Teoría básic

Representación

Dominancia

Equilibrio de Nash

Aplicaciones

Productos homogéneos Productos heterogéneos

Estrategia: mixtas

Randomizació Gráficas

Anexos

References

- Introducción
- 2 Teoría básica

Representación

Dominancia

Equilibrio de Nash

- 3 Aplicaciones
 Productos homogéneos
 Productos heterogéneos
- 4 Estrategias mixtas Randomización Gráficas
- 5 Anexos

Game Theory

Luis Chávez

Introducció

Teoría básic

Representación

Dominancia

Equilibrio de Na

Anlicaciones

Aplicaciones

Productos homogéneo Productos heterogéneo

Estrategias

Randomizació

Anexo

Reference

Corolario (supuesto 1):

En un juego en forma normal, $G(N, S_i, \mathcal{O}, u_i)$, los jugadores no pueden elegir estrategias dominadas.

Game Theory

Luis Chávez

Introducció

Teoría básic

Dominancia

Equilibrio de Na

Aplicaciones

Productos homogén

Productos heterogéne

mixtas mixtas

Randomizació Gráficas

Anexo

Reference

Definición 9 (i-dominancia)

Sea $G(N, S_i, \mathcal{O}, u_i)$ y las estrategias $s_1, s_2 \in S_i$, para el jugador i:

1 s_1 domina estrictamente a s_2 si s_1 otorga un mayor pago que s_2 :

$$\forall s_{-i} \in S_{-i}, \ \pi_i(s_1, s_{-i}) > \pi_i(s_2, s_{-i})$$
(3)

2 s_1 domina débilmente a s_2 si s_1 otorga un mayor o igual pago que s_2 :

$$\forall s_{-i} \in S_{-i}, \ \pi_i(s_1, s_{-i}) \ge \pi_i(s_2, s_{-i}) \tag{4}$$

3 s_1 es equivalente a s_2 si s_1 otorga igual pago que s_2 :

$$\forall s_{-i} \in S_{-i}, \ \pi_i(s_1, s_{-i}) \equiv \pi_i(s_2, s_{-i})$$
 (5)

Game Theory

Luis Chávez

Introducción

Teoría básic

Dominancia

Equilibrio do Nac

Aplicaciones

Apricaciones

Productos heterogéne

Estrategia mixtas

Gráficas

Anexos

Reference

Ejemplo 3

Establecer la i-dominancia para J1 en:

1 2	m	р	q
a	(3, 1)	(1, 4)	(1, 1)
b	(2, 2)	(3, 1)	(1, 0)
С	(3, 2)	(3, 3)	(0, 3)
d	(1, 2)	(2,3)	(1,0)
е	(4, 2)	(2, 1)	(3,0)

¿Y J2?

Game Theory

Luis Chávez

Introducció

Teoría básica Representación

Dominancia Equilibrio de Na:

Aplicaciones

Productos homogéneo
Productos heterogéneo

Estrategias mixtas

Randomizació Gráficas

Anexo

Referenc

Definición 10 (estrategia estrictamente dominante)

Sea $G(N, S_i, \mathcal{O}, u_i)$ y la estrategia s_1 del jugador i ($s_1 \in S_i$). Luego, $\forall i, s_1$ es una **estrategia estrictamente dominante** si s_1 domina estrictamente al resto de estrategias de i.

Definición 11 (estrategia débilmente dominante)

Sea $G(N, S_i, \mathcal{O}, u_i)$ y la estrategia s_1 del jugador i ($s_1 \in S_i$). Luego, $\forall i, s_1$ es una **estrategia débilmente dominante** si s_1 domina débilmente al resto de estrategias de i.

Game Theory

Luis Chávez

Introducció

Teoría básic

Representacion

Dominancia

Aplicaciones

Productos homogáni

Productos heterogéne

Estrategia

Randomizacio

Anexos

References

Características de EED:

- 1 No verifica el teorema de existencia.
- Verifique unicidad.
- 3 Es robusto a perturbaciones pequeñas.
- 4 No siempre el resultado, si existe, es óptimo-paretiano.

Game Theory

Luis Chávez

Introducción

Teoría básic

Representació

Dominancia

Equilibrio do

Anlicaciones

/ tpiledelones

Productos homogéne

Estrategia

MIXTAS Randomizació

Gráficas

Anexos

References

Actividad 2. Demostrar matemáticamente la unicidad en EED.

Game Theory

Luis Chávez

Introducción

Teoría básica

Representación

Dominancia

Equilibrio de Na

Aplicaciones

Apricaciones

Productos heterogénes

Estrategia mixtas

Randomizació Gráficas

Anexos

References

Ejemplo 4

Establecer la EED para J1 y J2, si existe:

1 2	m_1	m ₂	m ₃
a	(0, 4)	(3, 2)	(0, 2)
b	(2, 2)	(1, 1)	(1, 1)
C	(4, 4)	(4, 2)	(2, 3)
d	(1, 2)	(3, 1)	(1, 0)

Game Theory

Luis Chávez

Introducció

Teoría básica Representación

Dominancia Equilibrio de Na

Equilibrio de Nas

Productos homogéneo Productos heterogéne

Estrategia mixtas

Randomizaci Gráficas

Anexo

Referenc

Definición 12 (s-dominancia)

Dado $G(N, S_i, \mathcal{O}, u_i)$, sea el perfil de estrategias $s = (s_1, ..., s_n)$, luego:

- 1 s es un **perfil de estrategia dominante estricto** o solución de dominancia estricta si, $\forall i$, s_i es una estrategia estrictamente dominante.
- 2 s es un **perfil de estrategia dominante débil** o solución de dominancia estricta si, $\forall i$, s_i es una estrategia débilmente dominante y, además, $\exists j$ tal que s_i no es estrictamente dominante.

Más en Gibbons (1992).

Game Theory

Luis Chávez

Introducció

Teoría básic

-

Dominancia

Equilibrio de Na

Aplicaciones

Aplicaciones

Productos homogeneo

Estrategia

Randomizacio Gráficas

Anexos

Reference

Ejemplo 5

Dado $G(2, S_i, \mathcal{O}, u_i)$ entre Antony (A) y Bertha (B). Hallar el perfil dominante.

A B	b_1	b_2
a_1	(6,6)	(4, 8)
a_2	(8, 2)	(4, 4)

Como $a_2 \succeq a_1$ y $b_2 \succ b_1$,

$$s = \{s_1, s_2\} = (a_2, b_2)$$

es el perfil débilmente dominante.

Game Theory

Luis Chávez

Introducción

Teoría básica

reoria basic

Dominancia

Equilibrio de Na

Aplicaciones

Apricaciones

Productos homogéneo
Productos heterogéne

Estrategia mixtas

Randomizacio Gráficas

Anexos

Reference

Ejemplo 6

Dado $G(2, S_i, \mathcal{O}, u_i)$ entre Andy (a) y Bondy (b). Hallar el perfil dominante.

a b	b ₁	b ₂
a_1	(3, 4)	(4, 2)
a_2	(4, 6)	(6, 4)

Como $a_2 \succ a_1 \ y \ b_1 \succ b_2$,

$$s = \{s_1, s_2\} = (a_2, b_1)$$

es el perfil estrictamente dominante.

Dilema del prisionero

Game Theory

Luis Chávez

Introducció

Teoría básica

Dominancia

Equilibrio de N

Aplicaciones
Productos homogénes

Productos homogéneos Productos heterogéneo

Estrategias mixtas

Randomizació Gráficas

Anexos

References

Ejemplo 7

Dos acusados de un delito fueron encerrados en celdas separadas, pero uno puede salir si confiesa:

- 1 Si ninguno confiesa, ambos son sentenciados a 2 años de cárcel.
- 2 Si ambos confiesan, son sentenciados a 6 años de cárcel.
- 3 Si sólo uno confiesa, éste es liberado pero el otro es sentenciado a 9 años.
- <u>4</u> ¿?

1 2	confiesa	silencia
confiesa	(-6, -6)	(0, -9)
silencia	(-9, 0)	(-2, -2)

Game Theory

Luis Chávez

Introducció

Teoría básica Representación

Dominancia Equilibrio de Nas

Aplicaciones
Productos homogéneo

Productos heterogéne

Randomizació

Anexos

Reference

Por los axiomas de preferencias, la **eliminación iterativa de estrategias estrictamente dominadas** (IESDS) es el mecanismo natural para hallar el resultado (solución) de un juego.

Definición 13 (IESDS)

Las estrategias dominadas en sentido estricto se eliminan como sigue. Dado un juego en forma normal G, G^1 es el juego obtenido al eliminar en G aquella estrategia del jugador i que es estrictamente dominada por alguna otra estrategia; luego, G^2 es el juego resultante del mismo procedimiento a G^1 ; y así continúa hasta la etapa del juego G^h , $h < \infty$.

Game Theory

Luis Chávez

Introducción

Teoría básic

Dominancia

Equilibrio de Na

Anlicaciones

Aplicaciones

Productos homogéneos

Estrategias mixtas

Randomizació

Anexo

Reference

Características de IESDS:

- 1 Verifica el teorema de existencia: $\exists \hat{s}$.
- 2 No cumple unicidad¹: $\forall G, \nexists \hat{s}$.
- 3 Es robusto a perturbaciones pequeñas.
- 4 No siempre el resultado, si existe, es óptimo-paretiano.

Véase más en Tadelis (2013).

¹No siempre se cumple *dominance solvable*.

Game Theory

Luis Chávez

Introducción

Teoría básic

Representació

Dominancia

manager as

Aplicaciones

Aplicaciones

Productos heterogéne

Estrategia mixtas

Randomizació

Anexo

Poforonce

Actividad 3. Demostrar matemáticamente la robustez de IESDS.

Game Theory

Luis Chávez

Introducció

Teoría básic

Dominancia

Equilibrio de Na

Aplicaciones

Productos homogéne

Productos heterogén

Estrategias mixtas

Randomizaci Gráficas

Anexo

Reference

Teorema 1 (cuasi-unicidad)

Sea un juego G en forma normal que verifica dominance solvable. El resultado final de aplicar IESDS en G siempre es único, independientemente del orden de eliminación.

Game Theory

Luis Chávez

Introducció

Teoría básic

Dominancia

Equilibrio do No

Aplicaciones

Aplicaciones

Productos homogeneo

Estrategia:

Randomizaci

Anexo

References

Definición 14 (IEWDS)

Las estrategias dominadas en sentido débil se eliminan en el sentido débil de la definición 10.

¿Más problemas que IESDS?

Game Theory

Luis Chávez

Introducció

Teoría básic

Dominancia

Equilibrio de Na

Aplicaciones

Aplicaciones

Productos homogéneo

Estrategia

Randomizaci

Anexo

Reference

Ejemplo 8

Reducir la matriz por IESDS e IEWDS.

1 2	m	р	q	r
a	(5, 3)	(4, 5)	(4, 3)	(3,0)
b	(4, 4)	(6, 3)	(0, 2)	(5, 1)
С	(3,0)	(3, 2)	(5, 1)	(4, 0)
d	(1,0)	(2,3)	(4, 4)	(6, 1)

¿Qué pasaría si
$$\{(a, m), (b, p), (c, q)\} = \{(1, 3), (6, 0), (4, 0)\}$$
?

Game Theory

Luis Chávez

Introducción

Teoría básic

Dominancia

Equilibrio de N

Aplicaciones

Aplicaciones

Productos heterogéne

Estrategias mixtas

Randomizaci

Anexo

References

Actividad 4. A partir del ejemplo 8, si (b, q) = (5, 1), hallar el resultado del juego por IEWDS usando todas las posibilidades. Modifique un perfil de estrategias de forma que no se garantice unicidad :).

Contenido

Game Theory

Luis Chávez

Introducció

Teoría básic

Dominancia

Equilibrio de Nash

Aplicaciones

Productos homogéneos

Estrategia:

Randomizació Gráficas

Anexos

References

- Introducción
- 2 Teoría básica

Representación

Equilibrio de Nash

- 3 Aplicaciones Productos homogéneos Productos heterogéneos
- 4 Estrategias mixtas Randomización Gráficas
- 5 Anexos

Conceptualización

Game Theory

Luis Chávez

Introducció

Representacio

Equilibrio de Nash

Equilibrio de Nas

Aplicaciones

Productos homogéneos

Estrategias

Randomizació

Anexo

References

Definición 15 (equilibrio de Nash)

Dado un juego en forma normal de dos jugadores, el perfil de estrategias puras $s^* = (s_1^*, s_2^*) \in S_1 \times S_2$ es un equilibrio de Nash² si:

$$\forall s_1 \in S_1, \pi_1(s_1^*, s_2^*) \ge \pi_1(s_1, s_2^*) \tag{6}$$

$$\forall s_2 \in S_2, \, \pi_2(s_1^*, s_2^*) \ge \pi_2(s_1^*, s_2) \tag{7}$$

²Véase Bonnano (2024).

Conceptualización

Game Theory

Luis Chávez

Introducció

Teoría bás

Dominancia

Equilibrio de Nash

Aplicaciones

Productos homogéneos

Estrategia: mixtas

Randomizacio

Anexo

Reference

Definición 16 (n-equilibrio de Nash)

Dado un juego en forma normal de n jugadores, el perfil de estrategias puras $s^* = (s_1^*, ..., s_n^*) \in S$ es un equilibrio de Nash si:

$$\pi_i(s^*) \ge \pi_i(s_1^*, ..., s_{i-1}^*, s_i, s_{i+1}^*, ..., s_n^*); \quad \forall i, \forall s_i \in S_i$$
 (8)

Nota: si s^* es análogo al resultado de eliminación iterativa estricta (débil), se trata de un EN estricto (débil).

Conceptualización

Game Theory

Luis Chávez

Introducció

Teoría bá

Representació

Equilibrio de Nash

Aplicaciones

Productos homogéneo

Estrategias

Randomizac

Anexo

Reference

Definición 17 (Mejor respuesta)

Dado $G(N, S_i, \mathcal{O}, u_i)$, un jugador i y el perfil de estrategia $\bar{s}_{-i} \in S_{-i}$ de los jugadores distintos de i. Una estrategia $s_i \in S_i$ del jugador i es mejor respuesta a \bar{s}_{-i} si $\pi_i(s_i, \bar{s}_{-i}) \geq \pi_i(s_i', \bar{s}_{-i})$, $\forall s_i' \in S_i$.

Implicancia:

• Se dice que $\bar{s} \in S$ es un equilibrio de Nash, sí y solo sí, $\forall i, \ \bar{s}_i \in S_i$ es una mejor respuesta a $\bar{s}_{-i} \in S_{-i}$.

Game Theory

Luis Chávez

Introducció

Teoría básica

Representación

Equilibrio de Nash

Equilibrio de Na

Aplicaciones

Productos homogás

Productos homogeneo

Estrategia mixtas

Randomizacio

Anexos

Reference

Características del EN:

- 1 Verifica el teorema de existencia.
- 2 No verifica unicidad.
- 3 Robusto a pequeñas perturbaciones.
- 4 No es pareto-eficiente.

Véase más en Espinola and Muñoz (2023).

Game Theory

Luis Chávez

Introducció

Teoría básic

Representación

Equilibrio de Nash

Anlicaciones

Productos homogéne

Productos heterogéneo

Estrategias mixtas

Randomizacio

Anexo

Reference

Teorema 2 (Existencia de Nash)

Dado $G(N, S_i, \mathcal{O}, u_i)$, tal que $\forall i \in N$, S_i es un conjunto finito. Luego, el EN es un conjunto no vacío.

Game Theory

Luis Chávez

Introducción

Teoría básica

Equilibrio de Nash

Anlicaciones

Aplicaciones

Productos homogéneo

Estrategia

Randomizaci

Anexos

References

Ejemplo 7 (continuación)

En el dilema de los prisioneros, hallar los EN.

1 2	confiesa	silencia
confiesa	(-6, -6)	(0, -9)
silencia	(-9,0)	(-2, -2)

Game Theory

Luis Chávez

Introducció

Teoría básic Representación

Equilibrio de Nash

Aplicaciones

Productos homogéneos Productos heterogéneos

Estrategia mixtas

Randomizacio Gráficas

Anexo

Reference

Definición 18 (juego simétrico)

Un juego de dos jugadores es simétrico si los conjuntos de estrategias de ambos coinciden, $S_1 = S_2$, y los pagos no se ven afectados por la identidad del jugador que elige cada estrategia, es decir:

$$u_1(s_1, s_2) = u_2(s_1, s_2)$$
 (9)

para cada perfil (s_1, s_2) .

¿Propiedad del anonimato?

Game Theory

Luis Chávez

Introducció

Teoría bá

Representació

Equilibrio de Nash

Aplicaciones

Productos homogéne

Productos homogeneos

Estrategia:

Randomizacio Gráficas

Anexo

Reference

Definición 19 (nunca una mejor respuesta)

Dado $G(N, S_i, \mathcal{O}, u_i)$, una estrategia s_i es **nunca una mejor respuesta** (NMR) si

$$u_i(s_i, s_{-i}) > u_i(s'_i, s_{-i}), \ \forall s'_i \neq s_i$$
 (10)

no es válido para ningún perfil de estrategia de sus rivales.

Obs.:

 s_i es estrictamente dominado $\Rightarrow s_i$ es NMR

Game Theory

Luis Chávez

Introducción

Teoría básic Representación

Equilibrio de Nash

Aplicaciones

Productos homogéne

Productos heterogéne

Estrategias mixtas

Randomizació Gráficas

Anexo

References

¿De qué trata?

- Un símil de IESDS...
- Se puede realizar eliminación iterativa para identificar estrategias que sean NMR para cada jugador, en lugar de estrategias que estén estrictamente dominadas. La secuencia es trivial.

Corolario.

s es racionalizable \Rightarrow s sobrevive a IESDS

Game Theory

Luis Chávez

Introducció

Teoría básic

Dominancia

Equilibrio de Nash

Aplicaciones

Productos homogéne

Productos heteroge

mixtas mixtas

Randomizacio Gráficas

Anexo

Reference

Ejemplo 9

Identificar las estrategias NMR y hallar el resultado del juego usando racionalizabilidad.

$$\begin{array}{c|cccc} f_1|f_2 & h_0 & h_1 \\ H & (6,8) & (0,4) \\ M & (2,8) & (4,1) \\ L & (0,4) & (0,0) \end{array}$$

Para f_1 , cuando f_2 elige h_0 , f_1 elige H; cuando f_2 elige h_1 , f_1 elige M. Luego, L es $NMR(f_1)$ y se elimina. Continua...

Game Theory

Luis Chávez

Introducció

Teoria básica

Representación

Equilibrio de Nash

Anlicaciones

Dood on book of

Productos homogéneo Productos heterogéneo

Estrategia mixtas

Randomizació

Anexos

References

Características:

- 1 Verifica el teorema de existencia.
- 2 No verifica unicidad.
- 3 Robusto a pequeñas perturbaciones.
- 4 No es pareto-eficiente.

Contenido

Game Theory

Luis Chávez

Productos homogéneos

- Equilibrio de Nash
- **Aplicaciones** Productos homogéneos

Game Theory

Luis Chávez

Introducció

Teoría básic

reoria basic

.....

Aplicacione

Productos homogéneos

Productos heterogéne

Estrategias mixtas

Randomizació Gráficas

Anexo

References

- Sea q_i , $\forall i = 1, 2$, las cantidades producidas por dos empresas.
- La demanda inversa del mercado es p(Q) = a bQ.
- Los costes totales son $C_i(q_i) = cq_i$, a > c (CMg constante).
- Ambas firmas eligen cantidades producidas en forma simultánea e independiente.
- El mercado se limpia siempre.

Game Theory

Luis Chávez

Introducció

Teoría básic

Dominancia

Equilibrio de

Aplicacione

Productos homogéneos

Productos heterogéne

Estrategia: mixtas

Randomizacio Gráficas

Anexo

Reference

EN de Cournot:

Dado el conjunto $S_i = [0, \infty)$ para cada firma i, sus profits serán:

$$\pi_i = p(Q).q_i - cq_i \tag{11}$$

Cada firma i elige su nivel de producción q_i tomando el nivel de producción de su rival q_i como dado. Así, la firma i resuelve:

$$\max_{q_i} \ \pi_i(q_i, q_j) = (a - bq_i - bq_j)q_i - cq_i$$
 (12)

FOC:

$$a - 2bq_i - bq_j - c = 0$$

Game Theory

Luis Chávez

Introducción

Teoría básic

Dominancia

Equilibrio de N

Aplicaciones

Productos homogéneos

Estrategias

mixtas Randomización

Gráficas

Anexo

References

La función de mejor respuesta de la empresa *i* será:

$$q_i(q_j) = \frac{a - c}{2b} - \frac{1}{2}q_j \tag{13}$$

Por simetría, la función de mejor respuesta de la empresa *j* será:

$$q_j(q_i) = \frac{a - c}{2b} - \frac{1}{2}q_i \tag{14}$$

De (11) y (12), se tiene el EN en estrategias puras:

$$\{q_i^*, q_j^*\} = \left\{\frac{a-c}{3}, \frac{a-c}{3}\right\}$$
 (15)

Game Theory

Luis Chávez

Introducción

Teoría básic

Representación

Equilibrio do N

Aplicacion

Productos homogéneos

Productos heterogéneo

Estrategia:

Randomizació

Anexos

References

Game Theory

Luis Chávez

Introducció

Teoría básic

Equilibrio de Na

Productos homogéneos

r roductos nomogenes

Productos heterogéni

Estrategia mixtas

Randomizaci Gráficas

Anexo

References

Ejemplo 10

La industria de prensa escrita en el Perú está compuesta por dos grupos empresariales, cuyas estructuras de costes son $C_{gc}(q_{gc})=30q_{gc}$ y $C_{gr}(_{gr})=0.5q_{gr}^2$. Si la demanda de la industria es p=160-Q, hallar las funciones MR y el EN.

Game Theory

Luis Chávez

Introducción

Teoría básica

Dominancia

Equilibrio de i

Aplicacione

Productos homogéneos

Estrategias

mixtas

Gráficas

Anexo

Reference

Sean las firmas 1 y 2, quienes eligen (deciden) los precios p_1 y p_2 en forma simultánea. La demanda de la empresa i es:

$$q_{i}(p_{i}, p_{j}) = \begin{cases} a - p_{i}, & p_{i} < p_{j} \\ \frac{a - p_{i}}{2}, & p_{i} = p_{j} \\ 0, & p_{i} > p_{j} \end{cases}$$
(16)

Se sabe que $CMg_i = c$ (con c < a) y las estrategias s_i son ahora en precios $p_i > 0$, por lo que el conjunto de estrategias de cada una será $S_i = [0, \infty)$.

Game Theory

Luis Chávez

Introducció

Teoría básica Representación Dominancia

Productos homogéneos

Productos heterogéne

Estrategias mixtas

Randomizació Gráficas

Anexos

Referenc

Se tiene posibilidades:

- Si se elige un precio de monopolio $p^m = c$, las firmas compartirán el mercado, pero $\pi_i = \pi_i = 0$.
- Si i elige $p_i > c$, la firma j absolverá todo el mercado, por lo que $\pi_i = 0$.
- Si i elige $p_i < c$, la firma i absolverá todo el mercado, por lo pero $\pi_i < 0$.

Entonces, $p_i = p_j = c$ será el único punto donde ninguna firma querrá desviar. Luego, el EN en estrategias puras será:

$$\{p_i^*, p_j^*\} = \{c, c\} \tag{17}$$

Game Theory

Luis Chávez

Introducción

Teoría básic

Representación

Aplicacione

Productos homogéneos

Productos heterogénes

Estrategia mixtas

Randomizació

Anevos

References

Contenido

Game Theory

Luis Chávez

Introducció

Teoría básic

Dominancia

Equilibrio de Na

Aplicaciones

Productos homogéneo

Productos heterogéneos

mixtas

Gráficas

Anexos

Reference

- Introducción
- 2 Teoría básica Representación Dominancia Equilibrio de Nash
- 3 Aplicaciones
 Productos homogéneos
 - Productos heterogéneos
 - 4 Estrategias mixtas Randomización Gráficas
- 6 Anexos

Game Theory

Luis Chávez

Introducció

Teoría básic

Dominancia

Equilibrio de Na

Aplicaciones

Productos homogéneos

Productos heterogéneos

Estrategias

Randomizació

Anexo

References

Sean las firmas 1 y 2, quienes eligen (deciden) los precios p_1 y p_2 en forma simultánea. La demanda de la empresa i es:

$$q_i(p_i, p_j) = a - p_i + bp_j, \quad b > 0$$
 (18)

Si $CMg_i = c$ y las estrategias s_i son ahora en precios $p_i > 0$, el conjunto de estrategias de cada una será $S_i = [0, \infty)$. Luego,

$$\max_{p_i} \pi_i(p_i, p_j) = (a - p_i + bp_j)(p_i - c)$$
 (19)

Game Theory

Luis Chávez

Introducció

Teoría bási

Representación

Equilibrio de Nas

Aplicacione

Productos homogéne

Productos heterogéneos

Estrategias mixtas

Randomizació Gráficas

Anexo

References

FOC:

$$a-2p_i+bp_j+c=0$$

La función de mejor respuesta de la empresa i será:

$$p_i(p_j) = \frac{a + bp_j + c}{2}$$

Por simetría,

$$p_j(p_i) = \frac{a + bp_i + c}{2}$$

Luego, el EN en estrategias puras será:

$$\{p_i^*,p_j^*\}=\left\{rac{a+c}{2-b},rac{a+c}{2-b}
ight\}$$

(20)

(21)

(22)

Contenido

Game Theory

Luis Chávez

Introducció

Teoría básic

Dominancia

Equilibrio de Nas

Aplicaciones

Productos homogéneos Productos heterogéneos

Estrategia mixtas

Randomización

Anexos

Reference

- Introducción
- 2 Teoría básica Representación Dominancia Equilibrio de Nash
- 3 Aplicaciones
 Productos homogéneos
 Productos heterogéneos
- 4 Estrategias mixtas Randomización
- 6 Anexos

Notación

Game Theory

Luis Chávez

Introducció

Teoría básic

Dominancia

Equilibrio de Nas

Aplicaciones

Productos homogéneo Productos heterogéneo

Estrategia:

Randomización

Anevos

Reference

- **1** Conjunto finito N de jugadores: $\forall i = 1, ..., n, i \in N$.
- **2** Conjunto finito de estrategias mixtas³ $\forall i \in N$: $\Sigma_i = {\sigma_j}_{j=1}^{<\infty}$.
- 3 Perfil de estrategias mixtas: σ .
- 4 Conjunto de perfiles de estrategias mixtas:

$$\Sigma = \prod_{i=1}^n \Sigma_i$$

6 Función de utilidad esperada: u_i^e , $\forall i$.

³Simplex.

Probabilidades

Game Theory

Luis Chávez

Introducció

Teoría básic

Dominancia

Equilibrio de Na

Aplicaciones

Productos homogeneos

Estrategia: mixtas

Randomización

Anexo

Reference

Definición 20 (estrategia mixta)

Sean m>2 estrategias puras en el conjunto de estrategias S_i del jugador i, la estrategia mixta

$$\sigma_i = \{\sigma_i(s_1), \sigma_i(s_2), ..., \sigma_i(s_m)\}, \ \forall \sigma_i \in \Sigma_i$$
 (23)

es una distribución de probabilidad sobre las estrategias puras de S_i , donde:

1
$$\sigma_i(s_k) \geq 0, \ \forall k = 1, ..., m$$

$$\sum_{k} \sigma_i(s_k) = 1$$

Game Theory

Luis Chávez

Introducció

Teoría básic

reoria basic

Dominancia

Equilibrio de Nas

Aplicaciones

Aplicaciones

Productos heterogéne

Estrategia mixtas

Randomización

Anexo

References

Definición 21 (mejor respuesta con estrategias mixtas)

Para el jugador i, la estrategia mixta σ_i es mejor respuesta a la estrategia mixta de sus oponentes σ_{-i} si y sólo si

$$u_i^e(\sigma_i, \sigma_{-i}) \ge u_i^e(\sigma_i', \sigma_{-i}), \ \forall \sigma_i' \ne \sigma_i$$
 (24)

Game Theory

Luis Chávez

Introducció

Teoría básic

Representación

Dominancia

Equilibrio de Na

Aplicaciones

/ tpiledelones

Productos heterogéne

Estrategias mixtas

Randomización

.

Poforonce

Definición 22 (EN en estrategias mixtas)

El perfil de estrategias $(\sigma_i^*,\sigma_{-i}^*)$, es un EN en estrategias mixtas si y sólo si σ_i^* es mejor respuesta para cada i.

Game Theory

Luis Chávez

Introducción

Teoría básic

Representación

Equilibrio de N

Aplicaciones

Aplicaciones

Productos homogéneo

Estrategia mixtas

Randomización

Gráficas

Anexos

Reference

Ejemplo 11

Hallar el EN en estrategias puras y mixtas.

1 2	а	b	
v	(5, 5)	(4, 2)	р
w	(2, 4)	(-1, -1)	1-p
	q	1-q	1

$$J1: u_1^e(v, \sigma_2) = 5q + 4(1-q)$$
 $u_1^e(w, \sigma_2) = 2q - 1(1-q)$

$$J2: u_2^e(a, \sigma_1) = 5p + 4(1-p)$$
 $u_2^e(b, \sigma_1) = 2p - 1(1-p)$

Contenido

Game Theory

Luis Chávez

Introducció

Teoría básic

Dominancia

Equilibrio de Na

Aplicaciones

Productos homogéneos Productos heterogéneos

Estrategia mixtas

Randomizació Gráficas

Anexos

Reference

Introducción

2 Teoría básica Representación Dominancia Equilibrio de Nash

3 Aplicaciones
Productos homogéneos
Productos heterogéneos

4 Estrategias mixtas Randomización Gráficas

6 Anexos

Game Theory

Luis Chávez

Introducción

Teoria bási

Representacio

Equilibrio de

Aplicaciones

Productos homogéneo

Estrategia:

MIXTAS Pandaminasi4

Gráficas

Anexo

References

Las estrategias identificadas por mejor respuesta (puras y mixtas) se pueden representar vía gráficas dimensionales.

Game Theory

Luis Chávez

Introducción

Teoría básic

reoria basic

Dominancia

Equilibrio de Na

Aplicaciones

Apricaciones

Productos nomogeneo

Estrategias

mixtas

Randomizac Gráficas

Anexo

References

Ejemplo 12

Hallar las funciones de MR de ambos jugadores y graficar.

1 2	a	b	
v	(0, 0)	(-5, 8)	p
w	(-5, 8)	(0,0)	1-p
	q	1-q	1

Game Theory

Luis Chávez

Introducció

Teoría básic

Representación

Anliencianos

Productos homogéneo

Estrategia

Randomizació Gráficas

Anavoc

References

Especificación

Game Theory

Luis Chávez

Introducción

Teoría básic

Representación

Dominancia

Anlicaciones

Productos homogéneos

Estrategias

mixtas Randomización

Gráficas

Poforoncos

Referencias

Game Theory

Luis Chávez

Introducció

Teoría básic

Dominancia Equilibrio de Nas

Equilibrio de Nasl

Productos homogéi

Estrategias

Randomización

Anexo

Reference

Ahmad, F., Almarri, O., Shah, Z., and Al-Fagih, L. (2023). Game theory applications in traffic management: A review of authority-based travel modelling. *Travel behaviour and society*, 32:100–585.

Bonnano, G. (2024). Game Theory. Addison-Wesley Professional, 3 edition.

Espinola, A. and Muñoz, F. (2023). *Game Theory: An Introduction with Step-by-Step Examples*. Springer Nature.

Gibbons, R. (1992). Game theory for applied economists. Princeton University Press.

Tadelis, S. (2013). Game theory: an introduction. Princeton university press.

Recursos

Game Theory

Luis Chávez

Introducció

Teoría básic

-

Dominancia

Equilibrio de Nas

Aplicaciones

Productos homogéneo

Estrategias

Randomizació

Anexos

References

- Ben Pollak.
- Game Theory. International Journal of Game Theory.
- Erich Prisner.
- Bernhard von Stengel.
- Game Theory Explorer.
- Roger Myerson.