Histogram Processing

- The histogram of a digital image with intensity levels in the range [0,L-1] is a discrete function $h(r_k) = n_k$, where r_k is the kth intensity value and n_k is the no. of pixels in the image with intensity r_k .
- A normalized histogram is given by $p(r_k) = n_k/MN$, for k = 0, 1, 2, ... L 1
- $p(r_k)$ is an estimate of the probability of occurrence of intensity level r_k in an image.
- Sum of all components of a normalized histogram is equal to 1.

Histograms: Examples

Histogram Equalization

•
$$s = T(r)$$
 $0 \le r \le L - 1$

- Assumption about T(r)
 - T(r) is monotonically increasing function in the interval $0 \le r \le L-1$
 - $0 \le T(r) \le L 1$ for $0 \le r \le L 1$
- The intensity levels in an image may be viewed as random variables in the interval [0, L-1].
- R.V. can be described by its PDF.
- A fundamental result from basic probability theory is that if $p_R(r)$ and T(r) are known, and T(r) is continuous and differentiable over the range of values of interest $p_S(s) = p_R(r) \left| \frac{dr}{ds} \right|$

Histogram Equalization (contd.)

- A transformation function of particular importance in image processing has the form $s = T(r) = (L-1) \int_0^r p_R(w) dw$
 - PDFs are always positive
 - Integral of a function is the area under the function (satisfying first condition)
 - Upper limit r=(L-1), the integral evaluates to 1 (the area under a PDF curve always is 1)
 - Maximum value of s is (L-1) (satisfying second condition)
- Find $p_S(s)$. (Tips: Use Leibniz's rule)

a b

FIGURE 3.18 (a) An arbitrary PDF. (b) Result of applying the transformation in Eq. (3.3-4) to all intensity levels, r. The resulting intensities, s, have a uniform PDF, independently of the form of the PDF of the r's.

Discrete Case: Example

r_k	n_k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_5 = 5$	245	0.06
$r_6 = 6$	122	0.03
$r_7 = 7$	81	0.02

TABLE 3.1 Intensity distribution and histogram values for a 3-bit, 64×64 digital image.

a b c

FIGURE 3.19 Illustration of histogram equalization of a 3-bit (8 intensity levels) image. (a) Original histogram. (b) Transformation function. (c) Equalized histogram.

$$36 = (L^{-1}) 0.19 = 7 \times 0.19 = 1.33 \rightarrow 1$$

$$31 = 7 \times (0.19 + 0.25) = 3.08 \rightarrow 3$$

$$P_s(8_1) = \frac{1023}{4091} = 0.24$$

$$P_{S}(33) = \frac{656 + 329}{4096} = 0.24$$

$$P_{S}(35) = \frac{245 + 122 + 8}{4096}$$

Example

FIGURE 3.20 Left column: images from Fig. 3.16. Center column: corresponding histogram-equalized images. Right column: histograms of the images in the center column.

Histogram Matching (Specification)

- Sometimes it is useful to specify the shape of the histogram that we wish the processed image to have.

 8 = $\tau(x)$ = (x-x)
- \rightarrow Obtain $p_R(r)$ from the input image, and compute the values of s.

 Use the specified PDF to obtain the transformation function $G(z) = (L^{-1}) \int_{-\infty}^{\infty} P_2(s) ds$
- \longrightarrow Obtain the inverse transformation $z = G^{-1}(s)$
- Obtain the output image by first equalizing the input image. For each pixel with value s in the equalized image, perform the inverse mapping $z = G^{-1}(s)$ to obtain the corresponding pixel in the output image. When all the pixels have been processed, the PDF of the output image will be equal to the specified PDF.

$$P_{R}(\pi) = \frac{297}{(L-1)^{2}}$$
 [0, L-1]; $P_{Z}(z) = \frac{32^{2}}{(L-1)^{3}}$

(i)
$$S = T(91) = (L-1) \int_{0}^{91} P_{R}(H) dH = \frac{91^{2}}{L-1}$$

(i)
$$G(2) = (L-1)\int_{0}^{2} P_{2}(v) dv = \frac{z^{3}}{(L-1)^{2}}$$

(iv)
$$G(2) = 8 \Rightarrow 2 = G'(8)$$

 $\frac{2^3}{(L-1)^2} = 8 \Rightarrow 2 = [(L-1)^2 8]^{1/3} = [(L-1)^2 8]^{1/3}$

Disvole Cose: -

(i)
$$G(2a) = (1-i) \frac{a}{2} P_2(2i)$$

$$G(20) = Sk$$

Discrete Case

- Compute the histogram $p_R(r)$ of the given image.
- Compute s_k by histogram equalization and round the resulting values to the integer range [0, L-1].
- Compute all values of the transformation function G for $q=0,1,2,\ldots,L-1$, where $p_Z(z_i)$ are the values of the specified histogram. Round the values of G to the integers in the range [0,L-1]. Store the values of G in a table.
- For every value of s_k , k=0,1,2,...,L-1, use the stored values of G to find the corresponding value of z_q such that $G(z_q)$ is closest to s_k and store these mappings from s to z.
- When more than one value of z_q satisfies the given s_k , choose the smallest value.
- Form the histogram-specified image by first histogram-equalizing the input image and then mapping every equalized pixel value s_k , of this image to the corresponding value z_q in the histogram specified image.

Histogram Matching (contd.)

$$S_0 = 1$$
 $S_5 = 7$
 $S_1 = 3$ $S_6 = 7$
 $S_2 = 5$ $S_7 = 7$
 $S_3 = 6$
 $S_4 = 6$

r_k	n_k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_5 = 5$	245	0.06
$r_6 = 6$	122	0.03
$r_7 = 7$	81	0.02

SK = (L-1) 2 p (s, j)
G(204)=	(L-1) Z P2(2,1)

z_q	Specified $p_z(z_q)$	Actual $p_z(z_k)$
$z_0 = 0$	0.00	0.00
$z_1 = 1$	0.00	0.00
$z_2 = 2$	0.00	0.00
$z_3 = 3$	0.15	0.19
$z_4 = 4$	0.20	0.25
$z_5 = 5$	0.30	0.21
$z_6 = 6$	0.20	0.24
$z_7 = 7$	0.15	0.11

TABLE 3.2 Specified and actual histograms (the values in the third column are from the computations performed in the body of Example 3.8).

	<u></u>
z_q	$G(z_q)$
$z_0 = 0$	0
$z_1 = 1$	0
$z_2 = 2$	0
$z_3 = 3 \leftarrow$	一页
$z_4 = 4$	2
$z_5 = 5$	5
$z_6 = 6$	6
$z_7 = 7$	7
$z_7 = 7$	7

All possible values of the transformation function *G* scaled, rounded, and ordered with respect to *z*.

s_k	\rightarrow	z_q
1	\rightarrow	3
3	\rightarrow	4
5	\rightarrow	5
6	\rightarrow	6
7	\rightarrow	7

TABLE 3.4 Mappings of all the values of s_k into corresponding values of z_q .

$$G_1(2q_2) = S_K$$

$$2q_2 = 3$$

Histogram Matching (contd.)

Local Histogram Processing

a b c

FIGURE 3.26 (a) Original image. (b) Result of global histogram equalization. (c) Result of local histogram equalization applied to (a), using a neighborhood of size 3×3 .