БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ

Кафедра вычислительной математики

ИССЛЕДОВАНИЕ РАБОТЫ МЕТОДА ОТРАЖЕНИЙ РЕШЕНИЯ СЛАУ НА СПЕЦИАЛЬНЫХ ЗАДАЧАХ

Курсовая работа

Горбунова Надира Эльшановича студента 3 курса, специальность «прикладная математика»

Научный руководитель: ассистент кафедры вычислительной математики А.В. Воробьёв

Оглавление

введение	3
Глава 1 ТЕОРЕТИЧЕСКАЯ ЧАСТЬ	4
1.1 Системы линейных алгебраических уравнений	4
1.2 Метод Гаусса (с выбором главного элемента по столбцу)	4
1.3 Метод отражений (Хаусхолдера)	6
Глава 2 СРАВНЕНИЕ РАБОТЫ МЕТОДОВ НА СЛУЧАЙНЫХ 3	АДАЧАХ
	11
2.1 Генерация случайных тестов	11
2.2 Сравнение времени работы методов	11
2.3 Сравнение точности методов	12
Глава 3 СРАВНЕНИЕ РАБОТЫ МЕТОДОВ НА СПЕЦИАЛЬНЫ	X
ЗАДАЧАХ	
3.1 Сравнение времени работы на специальных задачах	13
3.2 Сравнение точности методов на специальной задаче	14
3.3 Сравнение влияния величины константы специальных матриц на	а точность
метода Гаусса	15
ЗАКЛЮЧЕНИЕ	17
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ	18

ВВЕДЕНИЕ

Линейная алгебра, численные методы — раздел вычислительной математики, посвященный математическому описанию и исследованию процессов численного решения задач линейной алгебры.

Одной из важнейших задач линейной алгебры является решение системы линейных алгебраических уравнений.

На практике в большинстве случаев найти точное решение возникшей математической задачи не удается. Это происходит потому, что искомое решение обычно не выражается в привычных для нас элементарных или других известных функциях. Поэтому важное значение приобрели численные методы, особенно в связи с возрастанием роли математических методов в различных областях науки и техники и с появлением высокопроизводительных ЭВМ.

В ходе работы были реализованы метод Гаусса (с выбором главного элемента по столбцу) и метод отражений. Произведено сравнение работы этих методов решения СЛАУ. Сравнения производились на случайно сгенерированных матрицах, а также на специальных задачах.

Глава 1 ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

1.1 Системы линейных алгебраических уравнений

Пусть задана система линейных алгебраических уравнений

$$Ax = b$$

где $A - n \times n$ – матрица коэффициентов системы,

 $x = (x_1, x_2, ..., x_n)^T$ – вектор-столбец неизвестных,

 $b = (b_1, b_2, \dots, b_n)^T$ — заданный вектор-столбец правых частей (свободных членов).

Если к матрице А приписать справа столбец свободных членов, то получившаяся матрица называется расширенной.

Общий вид СЛАУ:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

т- количество уравнений, п - количество переменных.

Решение СЛАУ — совокупность n чисел c_1, c_2, \dots, c_n , таких что их соответствующая постановка вместо x_1, x_2, \dots, x_n в систему обращает все ее уравнения в тождества.

1.2 Метод Гаусса (с выбором главного элемента по столбцу)

Метод Гаусса заключается в последовательном исключении переменных из уравнений системы и приведении исходную матрицу к легко разрешимой системе с верхней треугольной матрице.

На первом шаге выбирается уравнение и некоторое неизвестное в этом уравнении, считая, что коэффициент при выбранном неизвестном отличен от нуля. Предположим, что выбрано первое уравнение и первое неизвестное (x_1) . Разделив на a_{11} уравнение, преобразуем его к виду:

$$x_1 + c_{12}x_2 + \dots + c_{1n}x_n = g_1, (1.1)$$

 $c_{1j} = \frac{a_{1j}}{a_{11}}, j = 2, 3, \dots, n ; g_1 = \frac{b_1}{a_{11}}.$

где

После этого исключим неизвестное x_1 из всех остальных уравнений системы. Для этого умножим уравнение (1.1) на величину a_{i1} и вычтем из i-го уравнения системы. В итоге получим систему

$$\begin{cases} x_1 + c_{12}x_2 + \dots + c_{1n}x_n = g_1 \\ a_{22,1}x_2 + \dots + a_{2n,1}x_n = b_{2,1} \\ a_{32,1}x_2 + \dots + a_{3n,1}x_n = b_{3,1} \\ \dots \\ a_{n2,1}x_2 + \dots + a_{nn,1}x_n = b_{n,1} \end{cases}$$

$$a_{ij,1} = a_{ij} - a_{i1}c_{1j},$$

 $i, j = \overline{2, n},$
 $b_{i,1} = b_i - a_{i1}g_1,$

В последних n-1 уравнениях полученной системы не содержится неизвестное x_1 .

Этот процесс можно повторять до тех пор, пока не будут исчерпаны все уравнения системы. Тогда после окончания описанного процесса исходная матрица будет преобразована к виду

$$\begin{cases} x_1 + c_{12}x_2 + c_{13}x_3 + \dots + c_{1n-1}x_{n-1} + c_{1n}x_n = g_1 \\ x_2 + c_{23}x_3 + \dots + c_{2n-1}x_{n-1} + c_{2n}x_n = g_2 \\ \dots \\ x_{n-1} + c_{n-1n}x_n = g_{n-1} \\ x_n = g_n \end{cases}$$

Матрица данной системы имеет треугольный вид и, следовательно, решение системы легко может быть найдено. Для этого из последнего уравнения получаем значение x_n , подставляя его в предыдущее уравнение, находим x_{n-1} и т.д.

$$\begin{cases} x_n = g_n \\ x_k = g_k - c_{kk+1}x_{k+1} - \dots - c_{kn}x_n, \qquad k = n-1, \dots, 1 \end{cases}$$

Преобразование изначальной системы к треугольному виду называют **прямым ходом** метода Гаусса, а нахождение неизвестных – **обратным ходом**.

Выбор главного элемента по столбцу подразумевает, что в качестве главного на k-ом шаге метода Гаусса выбирается максимальный по модулю элемент k-го столбца. Таким образом метод Гаусса с выбором главного элемента по столбцу эквивалентен применению обычного метода Гаусса к системе, в которой на каждом шаге проводится соответствующая перенумерация уравнений.

1.3 Метод отражений (Хаусхолдера)

Определим матрицу отражения (матрицу Хаусхолдера) следующим образом:

$$V = E - 2\omega\omega^T$$

Где ω – вектор-столбец единичной длины в сферической норме (т.е. (ω , ω) = $\omega^T \omega = 1$).

Матрица отражений обладает следующими свойствами:

1) Матрица V – симметричная.

$$V_{ij} = \delta_{ij} - 2\omega_i \omega_j = V_{ji} \quad (1.3.1)$$

- 2) Матрица V ортогональная. $VV^T = (E 2\omega\omega^T) \cdot (E 2\omega\omega^T) = E 2E\omega\omega^T 2\omega\omega^T E + 4\omega(\omega^T\omega)\omega^T = E 4\omega\omega^T + 4\omega\omega^T = E$
- 3) Матрица V оставляет без изменения любой вектор, ортогональный вектору ω , т.е. если $(x, \omega) = \omega^T x = 0$, то Vx = x.
- 4) Матрица V переводит в противоположный любой вектор, коллинеарный вектору ω , т.е. если $x=\lambda\omega$, , $\lambda\in R$ то Vx=-x.

Действительно,

$$Vx = x - 2\omega\omega^T x = \lambda\omega - 2\omega\omega^T \lambda\omega = \lambda\omega - 2\lambda\omega(\omega\omega^T) = -\lambda\omega = -x$$

Решим теперь задачу о том, как с помощью матрицы отражения вида (1.3.1) перевести произвольный ненулевой вектор s в заданный вектор е единичной длины, т.е. как определить матрицу V и число α , чтобы имело место равенство

$$Vs = \alpha e$$
.

Используя (1.3.1), получаем:

$$(E - 2\omega\omega^T)s = \alpha e$$

Отсюда очевидным образом следует равенство

$$s - \alpha e = 2\omega \omega^T s = 2\omega(\omega^T s) = 2(\omega, s)\omega \tag{1.3.2}$$

т.е.

$$\omega = k(s - \alpha e)$$
, где $k = \frac{1}{2(s,\omega)}$, (1.3.3)

Таким образом, искомый вектор ω коллинеарен вектору $s-\alpha e$. Подставляя (1.3.2) в (1.3.3), будем иметь:

$$s - \alpha e = 2(s, k(s - \alpha e))k(s - \alpha e)$$

или

$$s - \alpha e = 2k^{2}(s, s - \alpha e)(s - \alpha e).$$

Последнее равенство равносильно равенству

$$[2k^2(s, s - \alpha e) - 1](s - \alpha e) = 0$$

и, следовательно,

$$2k^2(s, s - \alpha e) - 1 = 0$$

Отсюда

$$k = \frac{1}{\sqrt{2(s, s - \alpha e)}}.$$

Поскольку векторы s и e заданы, то осталось задать числовой параметр α . Сделаем это таким образом, чтобы выполнялось неравенство

$$(s, s - \alpha e) > 0$$

Очевидно, условию удовлетворяет

$$\alpha = \sqrt{(s,s)}$$
.

Действительно, тогда

$$(s, s - \alpha e) = (s, s) - \sqrt{(s, s)})(s, e) \ge$$

 \geq [неравенство Коши — Буняковского: $(s,e) \leq (s,s)(e,e)$] \geq

$$\geq (s,s) - \sqrt{(s,s)}\sqrt{(s,s)}\sqrt{(e,e)} = 0$$

При этом знак равенства имеет место лишь в случае, когда $s = \lambda e$.

Таким образом, чтобы матрица отражения V, задаваемая формулой (1.3.1), удовлетворяла условию $Vs = \alpha e$, в котором s и e – заданные векторы, необходимо положить

$$\omega = k(s - \alpha e),$$

$$\alpha = \sqrt{(s, s)}$$

$$k = \frac{1}{\sqrt{2(s, s - \alpha e)}}$$
(1.3.4)

Теперь задача разложения произвольной невырожденной матрицы A в произведение ортогональной и верхней треугольной может быть решена следующим образом (схема метода отражений):

1-ый этап:

Используя формулы (1.3.4), образуем матрицу отражений V_1 по векторам $s_1=(a_{11},a_{21},\ldots,a_{n1})^T$ и $e_1=(1,0,\ldots,0)^T$. Умножив исходную систему слева на матрицу V_1 , получим систему

$$A^{(1)}x = b^{(1)}, (1.3.5)$$

где в матрице $A^{(1)} = V_1 A$ все подиагональные элементы первого столбца равны нулю, а формулы для вычисления всех остальных ее элементов $a_{ij,1}$, а также элементов вектора $b^{(1)} = V_1 b \ (b_{i,1})$ имеют вид

$$a_{11,1}=\alpha_1;$$

$$a_{ij,1} = a_{ij} - 2(c_i, \omega_1)\omega_{i,1}, i = 1, ..., n; j = 2, ..., n;$$

$$b_{i,1} = b_i - 2(b, \omega_1)\omega_{i,1}, i = 1, \dots, n$$

(здесь $\mathbf{c}_j=(a_{1j},\dots,a_{nj})^T$ и $\left(c_j,\omega_1\right)=\sum_{p=1}^n c_{pj}\omega_{p,1}$) и непосредственно следуют из (1.3.1).

На втором этапе аналогично образуем матрицу V_2 по векторам

 $s_2 = (0, a_{22,1}, \dots, a_{n2,1})^T$ и $e_2 = (0,1,0,\dots,0)^T$. Умножив (1.3.5) слева на матрицу V_2 , перейдем к системе

$$A^{(2)}x = b^{(2)}$$

в матрице $A^{(2)}$ первая строка которой совпадает с первой строкой матрицы $A^{(1)}$ (поскольку матрица V_2 - блочно-диагональная и первый блок размера 1×1 – единичная матрица) и все под диагональные элементы второго столбца равны нулю. Полные формулы пересчета будут иметь вид

$$a_{1j,2} = a_{1j,1}, j = 1, ..., n;$$

$$a_{22.2} = \alpha_2;$$

$$a_{ij,2} = a_{ij,1} - 2(c_j^{(1)}, \omega_2)\omega_{i,2}, i = 2, ..., n; j = 3, ..., n;$$

$$b_{i,2} = b_{i,1} - 2(b^{(1)}, \omega_2)\omega_{i,2}, i = 2, ..., n.$$

(аналогично здесь $c_j^{(1)}=(a_{1j,1},\dots,a_{nj,1})^T$ и $\left(c_j^{(1)},\omega_2\right)=\sum_{p=2}^n c_{pj}^{(1)}\omega_{p,2}$. Обратим внимание: суммирование здесь проводится в пределах от 2 до n , а не от единицы, как на первом этапе. Это происходит потому, что у вектора ω_2 первая компонента равна нулю. Поэтому иногда и у вектора $c_j^{(1)}$ первую компоненту также полагают равной нулю).

По аналогии с описанным выше преобразование k-го этапа осуществляется с помощью матрицы отражение V_k , образованной по векторам

 $s_k = (0, ..., 0, a_{kk,k-1}, ..., a_{nk,k-1})^T$ и $e_k = (0, ..., 0, 1, 0, ..., 0)^T$ (у последнего единственная отличная от нуля компонента стоит на k-м месте) и приводят при любом $1 \le k \le n-1$ к системе

$$A^{(k)}x = b^{(k)}.$$

где

$$a_{ij,k} = a_{ij,k-1}, i = 1, ..., k; j = 1, ..., n;$$

$$a_{kk|k} = \alpha_k$$
;

$$a_{ik|k} = 0, i = k + 1, ..., n;$$

$$a_{ij,k} = a_{ij,k-1} - 2\left(c_j^{(k+1)}, \omega_k\right)\omega_{i,k}, i = k, ..., n; j = k+1, ..., n;$$

$$b_{i,k} = b_{i,k-1} - 2(b^{(k-1)}, \omega_k)\omega_{i,k}, i = k+1, \dots n.$$

Как и выше, здесь
$$\mathbf{c}_{i}^{(k-1)} = (a_{1k,k-1}, ..., a_{nk,k-1})^T$$
 и

$$\left(c_{i}^{(k-1)}, \omega_{k}\right) = \sum_{p=k}^{n} c_{pi}^{(k-1)} \omega_{p,k}$$

После выполнения n-1 этапов будем иметь систему

$$A^{(n-1)}x = b^{(n-1)},$$

матрица которой — верхняя треугольная. Далее остается для нахождения неизвестных выполнить обратный ход, аналогичный обратному ходу метода Γ аусса.

Глава 2 СРАВНЕНИЕ РАБОТЫ МЕТОДОВ НА СЛУЧАЙНЫХ ЗАДАЧАХ

2.1 Генерация случайных тестов

Функция генерации случайных тестов создает матрицу А заданной размерности, заполненную случайными значениями. После этого генерируется вектор-столбец x_0 , так же со случайными значениями.

Умножив матрицу A на вектор x_0 получаем вектор-столбец свободных членов b.

В последствии мы будет передавать методам матрицу A и вектор-столбец b, тем самым будет найден вектор-столбец решений метода x_1 .

2.2 Сравнение времени работы методов

Построим график зависимости времени работы методов от размерности матрицы А. Размерность возьмем от 100 до 1000 с шагом 50.

Рисунок 2.2.1 – зависимость времени работы метода от размерности матрицы A

Исходя из графика видим, что метод Гаусса работает быстрее, чем метод отражений. Так получается, потому что метод Гаусса имеет $\frac{n^3}{3}$ операций, а метод отражений $\frac{4n^3}{3}$. По этой причине метод Хаусхолдера уступает методу Гаусса в скорости работы.

2.3 Сравнение точности методов

Построим график зависимости нормы вектора невязки метода от размерности матрицы А. Промежуток размерности возьмем от 100 до 1000 с шагом 50.

Рисунок 2.3.1 – график зависимости нормы вектора невязки метода от размерности матрицы А.

Видим, что невязка метода Гаусса меньше погрешности метода отражений. Так же заметим, что погрешность обоих методов не превышает 10^{-8} .

Глава 3 СРАВНЕНИЕ РАБОТЫ МЕТОДОВ НА СПЕЦИАЛЬНЫХ ЗАДАЧАХ

Специальной задачей мы называем задачу Вилкинсона, в которой матрица А имеет вид:

$$Ax = b$$
, где

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 \\ -c & 1 & 0 & \vdots & \vdots & \vdots \\ \vdots & -c & 1 & 0 & \vdots & \vdots \\ \vdots & \vdots & -c & 1 & 0 & \vdots \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ -c & -c & -c & -c & -c & 1 \end{pmatrix}, 0 \le c \le 1$$

3.1 Сравнение времени работы на специальных задачах

Теперь посмотрим на время работы методов на специальных задачах. Строим график. Константу возьмем c=0.99. Размерность специальной матрицы от 100 до 1000 с шагом 50.

Рисунок 3.1.1 – график зависимости времени работы методов от размерности матрицы A на специальных задачах

Можем видеть, что специальная задача никак не повлияла на время работы методов. Метод Гаусса все так же справляется быстрее метода отражений.

3.2 Сравнение точности методов на специальной задаче

Проведем сравнение точности методов на специальных задачах при c=0.99 на разных размерностях специальной матрицы. Размерность рассмотрим от 100 до 500 с шагом 20.

Рисунок 3.2.1 – график зависимости нормы вектора невязок от размерности специальной матрицы

Наблюдаем, что метод отражений имеет нормальную точность, норма невязки не превышает 10^{-8} . Однако метод Гаусса работает совершенно некорректно, нормы векторов невязок огромные, то есть найденное решение не являются правильными.

Такая точность метода Гаусса связана с тем, что в процессе работы метод Гаусса меняет исходную матрицу, что приводит к повышению числа обусловленности матриц и на выходе мы получаем неверный ответ.

Ортогональные методы отрабатывают правильно на специальных задачах, за счет того, что число обусловленности матриц не меняется.

3.3 Сравнение влияния величины константы специальных матриц на точность метода Гаусса

Построим график зависимости величины константы $0 \le c \le 1$ специальных матриц на норму вектора невязки метода Гаусса. Возьмем величину константы от 0 до 1 с шагом 0.05. Размерность матриц возьмем равным 200.

Рисунок 3.3.1 – график зависимости нормы вектора невязок от величины константы специальных матриц

С ростом величины константы наблюдается падение точности метода Гаусса.

Исходя из теории максимальный фактор роста погрешности достигается при c=1, однако в ходе работы над проектом было обнаружено, что при этом значении точность резко повышается.

Посмотрим на число обусловленности матрицы полученной после работы метода Гаусса и нормы невязок:

c value	cond after Gauss	residual norm Gauss
0	11987.5	0
0.05	2.67853e+07	1.31379e-09
0.1	1.54321e+11	8.60731e-06
0.15	2.30919e+14	0.0140674
0.2	1.41138e+21	171.132
0.25	9.24307e+26	533889
0.3	2.11049e+32	3.59897e+08
0.35	1.39221e+38	4.45616e+11
0.4	3.87165e+44	9.68474e+14
0.45	3.52021e+50	2.00252e+17
0.5	4.4169e+58	3.04881e+20
0.55	4.68054e+62	4.66657e+23
0.6	1.15515e+66	6.26406e+25
0.65	3.43034e+74	2.00614e+29
0.7	1.54508e+76	2.85773e+30
0.75	2.08478e+87	6.0307e+33
0.8	1.7998e+92	4.07478e+36
0.85	7.6502e+80	1.56013e+39
0.9	1.48375e+96	5.67462e+39
0.95	8.47316e+100	3.2173e+42
0.99	2.71802e+106	1.7673e+45
1	2.21121e+103	1304.6

Рисунок 3.3.2 – таблица зависимости числа обусловленности матрицы и невязки работы метода Гаусса

Видим, что резкого падения числа обусловленности при c=1 не наблюдается, однако норма вектора невязок очень мала по сравнению с предыдущими значениями, что связано с маленьким накоплением погрешности при вычислениях, так как происходит много обнулений значений матрицы.

ЗАКЛЮЧЕНИЕ

В процессе работы были реализованы метод Гаусса и метод отражений решения систем линейных алгебраических уравнений. Было проведено сравнения этих методов на случайно сгенерированных задачах, а также на специальных задачах Вилкинсона. Сравнения проводились по времени работы методов, точности. Проведен анализ зависимости константы специальных матриц на точность методов. Сравнение сопровождалось графиками и таблицами.

На случайных задачах метод Гаусса оказался лучше, как во времени работы, так и в точности. Однако на специальных задачах метод Гаусса выдает некорректные решения, исходя из этого на задачах Вилкинсона он не применим.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Репников В.И прямые методы решения систем линейных алгебраических уравнений / В.И Репников // вычислительные методы алгебры. Минск, 2012. Р. 5- С. 9-48
- 2. N.J. Higham and D.J. Higham, Large growth factors in Gaussian elimination with pivoting, SIAM J. Matrix Analysis and Appl., 10 (1989), pp. 155-164.
- 3. Вычислительные методы алгебры и оценивания : учебное пособие / И. В. Семушин. Ульяновск : УлГТУ, 2011. 366 с.