## NYU FRE 7773 - Week 5

Machine Learning in Financial Engineering Ethan Rosenthal Jacopo Tagliabue & Friends!

#### Today's Agenda

- Team and project reviews
  - Reminder: by Oct 14, you should come up with practical project ideas and list them in the google spreadsheet.
- Tree and ensemble methods (slides + code)
- Intro to MLOps with <u>Chip</u>!
- TA homework / methodology review
- Intro to metrics

## Trees and Ensemble Models

Machine Learning in Financial Engineering
Ethan Rosenthal

#### Limits of Linear Classification



#### Limits of Linear Classification

Linear models make linear decision boundaries



#### Limits of Linear Classification

Linear models make linear decision boundaries

But what if we combined lots of them together?



Start with a very simple "rule":

If X2 <= 363.337,

then Class 1, else Class 0













#### Decision Trees - How do they Grow?

At each node, goal is to find the feature and threshold that maximally splits the classes.





Proportion of samples in the positive class after the node

#### Decision Trees - How do they Grow?

The Gini Impurity is one measure of how well split the classes are.







#### Decision Trees - How do they Grow?

Various other "impurity" measures



**FIGURE 9.3.** Node impurity measures for two-class classification, as a function of the proportion p in class 2. Cross-entropy has been scaled to pass through (0.5, 0.5).

#### Decision Trees - How do they Grow?

Keep growing the tree until some cutoff criteria:

- Max depth
- Min samples in leaf nodes reached
- Min impurity decrease



#### Limits of Decision Trees



# Random Forests

Instead of a single decision tree, create many trees (a forest!).

But, induce randomness.

#### For each tree:

- Generate a bootstrap sample of the dataset (i.e. sample with replacement).
- For each node, only consider a subset of the features when deciding what feature to split on.
- The prediction score for each class is the fraction of trees that classify the sample into that class.

- Each tree is not as good at predicting as a single decision tree due induced randomness.
- But, the forest helps prevent overfitting.
- This overfitting prevention is often more powerful than the weakness of each tree, leading to a better overall model.
- (Out of scope, but this is a manifestation of the bias-variance tradeoff).

- (Out of scope, but this is a manifestation of the bias-variance tradeoff).
- Each prediction error is a result of:
  - Bias Error: due to our assumptions about the target function.
  - Variance Error: due to the specifics of the dataset.
  - o Irreducible Error: nothing we can do here!
- Examples:
  - Regression has low/high bias but a low/high variance.
  - Decision trees have low/high bias but a low/high variance.
  - Random forests have low/high bias but a low/high variance.



The <u>typical bias/variance</u> image in all blog posts on the web!

- (Out of scope, but this is a manifestation of the bias-variance tradeoff).
- Each prediction error is a result of:
  - Bias Error: due to our assumptions about the target function.
  - Variance Error: due to the specifics of the dataset.
  - Irreducible Error: nothing we can do here!
- Examples:
  - Regression has low/high bias but a low/high variance.
  - Decision trees have low/high bias but a low/high variance (overfitting).
  - Random forests have low/high bias but a low/high variance (less than single trees).



The <u>typical bias/variance</u> image in all blog posts on the web!

#### Random Forests - Why use them?

- Naturally handle nonlinear relationships in the data.
- Quick to fit.
- Robust (but not immune) to overfitting.
- You don't have to scale your data.
- They can be (kind of) interpretable.
  - See <u>feature\_importances\_</u> which measures the total Gini reduction brought by each feature.
- They just work really well!

# Guest Speaker: Chip Huyen

#### MLOps with Chip

- In the introductory lecture, we discussed the importance of going from "your laptop" to "the world": if you ML model stays on your laptop, it cannot have much impact!
- The second part of the course will focus on "ML Operations" (MLOps):
  - o today we have one of the world leading figure on the topic providing a first look at MLOps.
- Chip Huyen is a co-founder of Claypot AI, a platform for real-time machine learning. Previously, she was with Snorkel AI and NVIDIA. She teaches *Machine Learning* Systems Design at Stanford, and she likes to hang out with both your professors, even if she is much cooler than us!



Chip (some years ago)

