Producto y Cociente en Coordenadas Polares

Objetivo:

Recordar Producto, Cociente y Potencias de Números Complejos

Conocimientos Previos:

Coordenadas Polares Fórmula de Euler

REVISIÓN DEL CONCEPTO de Producto, Cociente y Potencias en N de Números Complejos

Recordemos la fórmula de Euler $e^{i\emptyset}$ = $\cos\emptyset + i \ sen\emptyset$ = $\cos\emptyset$

Dados:
$$Z_1 = r_1 cis \emptyset_1 = r_1 e^{i \emptyset_1}$$
 $Z_2 = r_2 cis \emptyset_2 = r_2 e^{i \emptyset_2}$

$$Z_1.Z_2 = r_1e^{i\phi_1} r_2e^{i\phi_2} = r_1r_2 e^{i(\phi_1+\phi_2)} = r_1r_2 cis(\phi_1+\phi_2)$$

$$Z_1 / Z_2 = r_1 e^{i\phi_1} / r_2 e^{i\phi_2} = r_1 / r_2 e^{i(\phi_1 - \phi_2)} = r_1 r_2 cis(\phi_1 - \phi_2)$$

$$(Z)^n = (rcis\emptyset)^n = (re^{i\emptyset})^n = r^n e^{in\emptyset} = r^n cis n\emptyset$$

Ejemplo: Dados
$$Z_1 = 1 + i$$
 $Z_2 = \sqrt{3} - i$

Halle:
$$Z_1 . Z_2$$
 $Z_2 : Z_1$ Z_1^5 utilice la fórmula de Euler

Primer Paso: Convierta a forma polar halle su módulo y su argumento de
$$oldsymbol{Z_1}$$
 y $oldsymbol{Z_2}$

$$r_1 = \sqrt{1^2 + 1^2} = \sqrt{2}$$
 $\emptyset_1 = arc \ tg \ \frac{1}{1} = 45^\circ$

$$r_2 = \sqrt{\sqrt{3^2 + (-1)^2}} = \sqrt{4} = 2$$
 $\emptyset_2 = arc \ tg \ \frac{-1}{\sqrt{3}} = 330^\circ$

$$Z_1 = \sqrt{2} e^{i45^{\circ}}$$
 $Z_2 = 2 e^{i330^{\circ}}$

$$Z_1.Z_2 = 2\sqrt{2} e^{i(45^\circ + 330^\circ)} = 2\sqrt{2} e^{i(375^\circ)} = 2\sqrt{2} cis 375^\circ$$

$$\frac{Z_2}{Z_1} = 2/\sqrt{2} e^{i(330^\circ - 45^\circ)} = \sqrt{2} e^{i(285)} = \sqrt{2} cis(285^\circ)$$

$$\mathbf{Z_1}^5 = (\sqrt{2} e^{i45^\circ})^5 = \sqrt{2}^5 e^{i45^\circ.5} = 4\sqrt{2} e^{225^\circ i} = 4\sqrt{2} cis(225^\circ)$$

Hoja de Trabajo para consolidar conocimientos

Dados $Z_1 = -\sqrt{3} - i$	$m{Z}_2 = m{1} + m{i}$ Hallar:	$Z_3=1-\sqrt{3}$	$Z_4 = \sqrt{2} - \sqrt{2} i$
$\boldsymbol{Z_1}$. $\boldsymbol{Z_2}$			
Z_1 / Z_2			
${Z_3}^2 =$			
$\frac{\boldsymbol{Z_{4.}}\;\boldsymbol{Z_{3}}}{\boldsymbol{Z_{2}}}=$			