Part II: Graph signal processing

Ricaud, Benjamin, et al. "Fourier could be a data scientist: From graph Fourier transform to signal processing on graphs." Comptes Rendus. Physique 20.5 (2019): 474-488.

Tremblay, Nicolas, et al. "Design of graph filters and filterbanks." Cooperative and Graph Signal Processing. Academic Press, 2018. 299-324.

Ortega, Antonio, et al. "Graph signal processing: Overview, challenges, and applications." Proceedings of the IEEE 106.5 (2018): 808-828.

The Laplacian

• The Graph Laplacian (or combinatorial graph Laplacian) is:

$$L = D - W$$

One of the most important objects in spectral graph theory, graph signal processing and graph machine learning.

Proposition 1 (Properties of L) The matrix L satisfies the following properties:

1. For every vector $f \in \mathbb{R}^n$ we have

$$f'Lf = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_i - f_j)^2.$$

- 2. L is symmetric and positive semi-definite.
- 3. The smallest eigenvalue of L is 0, the corresponding eigenvector is the constant one vector $\mathbb{1}$.
- 4. L has n non-negative, real-valued eigenvalues $0 = \lambda_1 \le \lambda_2 \le \ldots \le \lambda_n$.

Proof.

Part (1): By the definition of d_i ,

$$f'Lf = f'Df - f'Wf = \sum_{i=1}^{n} d_i f_i^2 - \sum_{i,j=1}^{n} f_i f_j w_{ij}$$
$$= \frac{1}{2} \left(\sum_{i=1}^{n} d_i f_i^2 - 2 \sum_{i,j=1}^{n} f_i f_j w_{ij} + \sum_{i=1}^{n} d_j f_j^2 \right) = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_i - f_j)^2.$$

Part (2): The symmetry of L follows directly from the symmetry of W and D. The positive semi-definiteness is a direct consequence of Part (1), which shows that $f'Lf \geq 0$ for all $f \in \mathbb{R}^n$.

Part (3): Obvious.

Multiplicity of eigenvalue 0: number of disconnected parts in the graph

Proposition 2 (Number of connected components) Let G be an undirected graph with non-negative weights. Then the multiplicity k of the eigenvalue 0 of L equals the number of connected components A_1, \ldots, A_k in the graph. The eigenspace of eigenvalue 0 is spanned by the indicator vectors $\mathbb{1}_{A_1}, \ldots, \mathbb{1}_{A_k}$ of those components.

Each connected component is an independent subspace

The normalized Laplacian

• The Graph Laplacian (or combinatorial graph Laplacian) is:

$$L_N = I - D^{-\frac{1}{2}}WD^{-\frac{1}{2}}$$

Similar properties, but

- the largest eigenvalue is bounded by 2,
- the eigenvector associated to eigenvalue 0 is not constant.

$$f'L_N f = \frac{1}{2} \sum_{i,j=1}^n w_{ij} \left(\frac{f_i}{\sqrt{d_i}} - \frac{f_j}{\sqrt{d_j}} \right)^2$$

The normalized Laplacian

$$L_N = I - D^{-\frac{1}{2}}WD^{-\frac{1}{2}}$$

• Why is it the one used in Graph neural networks?

- The largest eigenvalue is bounded by 2,
- Reduce the influence of hubs (highly connected nodes)

$$f'L_N f = \frac{1}{2} \sum_{i,j=1}^n w_{ij} \left(\frac{f_i}{\sqrt{d_i}} - \frac{f_j}{\sqrt{d_j}} \right)^2$$

The Laplacian

At node i:

$$(Lf)_i = \sum_{j=1}^n w_{ij} (f_i - f_j)$$

The sum of differences around the node.

Why do we use this one in graph signal processing? \rightarrow we can more easily connect it to Physics and Fourier.

Graph signal processing

What are the basic tools for analysing functions or signals?

Variations, derivative, gradient:

$$\nabla f(i) = [f(i+1) - f(i)]/\delta$$

Becomes on the graph

$$\nabla f(i,j) = [f(j) - f(i)]w(i,j)$$

Values on the edges!

What are the basic tools for analysing functions or signals?

Variations, derivative, gradient:

$$abla f(i) = [f(i+1) - f(i)]/\delta$$

Becomes on the graph

$$\nabla f(i,j) = [f(j) - f(i)]w(i,j)$$

Values on the edges! What about the second derivative?...

Second derivative, the Laplacian

 $j \in \Omega_i$

Generalization of the Laplacian on a graph:
$$Lf(i) = \sum [f(j) - f(i)]w(i,j) \quad \blacktriangleleft$$

gradient $Lf(2) = (f_3 - f_2)w_{23} - (f_2 - f_1)w_{12}$ $=(f_3-f_2)w_{23}+(f_1-f_2)w_{12}$

Sum of variations

Neighbors of i

Node to node space \rightarrow square matrix!

We also have: $(\nabla f, \nabla f) = (f, Lf)$

This scalar product measure the variations of a function over the graph!

$$Lf(i) = \sum_{j \in \Omega_i} [f(j) - f(i)]w(i,j)$$

Signal processing

- Signal to analyze or denoise
- Filters to remove noise and keep the important information
- Linear filters
- Fourier Transform

We need a Fourier transform for graphs!

The Fourier Transformation: origin

Wikipedia

History: Joseph Fourier (1768-1830), French mathematician.

domain)

The heat diffusion model

u(x,0) = f(x) (initial temp. distribution) u(0,t) = 0 U(0,t) = 0

Heat equation:

$$\frac{\partial}{\partial t} f(x,t) = -\alpha \frac{\partial^2}{\partial x^2} f(x,t) = -\alpha \Delta f(x,t)$$
Laplacian!
(in continuous)

With initial conditions $f(x, t = 0) = f_0(x)$

Solution?

Fourier transform

$$F(k) = \int_{-\infty}^{\infty} f(x)e^{-i2\pi kx}dx$$

The Fourier transform turn the derivative into a multiplication

$$\frac{\partial}{\partial t}f(x,t) = -\alpha \frac{\partial^2}{\partial x^2}f(x,t) \qquad \frac{\partial}{\partial t}F(k,t) = -\alpha \lambda_k F(k,t)$$

 \rightarrow The Fourier transform diagonalize the Laplacian $\lambda_k = -4\pi^2 k^2$

Solution of the heat equation:

$$F(k,t) = e^{-\alpha \lambda_k t} F(k,0)$$

Note: different convention for the Laplacian $\,L=-\Delta\,$

$$\frac{\partial}{\partial t}f(x,t) = -\alpha \Delta f(x,t)$$

Solution of the heat equation:

$$F(k,t) = e^{-\alpha \lambda_k t} F(k,0)$$
 , $f(x,t) = e^{-\alpha t \Delta} f(x,0)$

Explicitly:
$$f(x,t) = \int e^{-\alpha t \lambda_k} \int f(y,0) e^{-i2\pi ky} dy \quad e^{i2\pi kx} dk$$
$$F(k,0)$$

Solving in the fourier domain is much easier

Fourier Transformation & Laplacian

$$F(k) = \int_{-\infty}^{\infty} f(x)e^{-i2\pi kx}dx$$

Fourier modes $\psi_k(x) = e^{-2i\pi kx}$

$$\Delta e^{-2i\pi kx} = -4\pi^2 k^2 e^{-2i\pi kx}$$

$$\lambda_k = -4\pi^2 k^2$$

Eigenvectors of the Laplacian!

Note: these are «generalized» eigenvectors

Discrete settings

Path graph

DCT II transform

$$\lambda_k = 2 - 2\cos\frac{\pi k}{N} = 4\sin^2\frac{\pi k}{2N}, k = 0, ..., N - 1$$

$$u_k[\ell] = \cos\left(\pi k(\ell + \frac{1}{2})/N\right), \ell = 0, ..., N - 1$$

Discrete Fourier transform

Ring graph
$$\begin{pmatrix} 2 & -1 & & -1 \\ -1 & 2 & -1 & & \\ & & \ddots & & \\ -1 & & & -1 & 2 \end{pmatrix}$$

Eigendecomposition:

$$\lambda_k=2-2\cosrac{\pi k}{N}=4\sin^2rac{\pi k}{2N},\,k=0,...,N-1$$
 $u_k^c[\ell]=\cosig(2\pi k\ell/Nig),\,\ell=0,...,N-1$

$$u_k^s[\ell] = \sin(2\pi k\ell/N), \ \ell = 0, ..., N-1$$

The Laplacian eigenvectors

- The Laplacian "measure" the smoothness $s = \frac{(f, Lf)}{\|f\|^2}$
- Courant–Fischer–Weyl min-max principle:

$$\lambda_k = \max_{V \subset \mathbb{R}^n, \dim V = n - k + 1} \min_{f \in V, ||f|| = 1} (f, Lf)$$

Laplacian eigenvectors:
as smooth as possible but orthogonal

Smoothest: constant $\rightarrow \lambda_1=0$

From Spielman, p.25:

We now prove the Spectral Theorem by generalizing this characterization to all of the eigenvalues of M. The idea is to always use Theorem 2.2.1 to show that a vector is an eigenvector. To do this, we must modify the matrix for each vector.

Theorem 2.2.2. Let M be an n-dimensional real symmetric matrix. There exist numbers μ_1, \ldots, μ_n and orthonormal vectors ψ_1, \ldots, ψ_n such that $M\psi_i = \mu_i \psi_i$. Moreover,

$$\boldsymbol{\psi}_1 \in \arg\max_{\|\boldsymbol{x}\|=1} \boldsymbol{x}^T \boldsymbol{M} \boldsymbol{x},$$

and for $2 \le i \le n$

$$\psi_i \in \arg \max_{\substack{\|\boldsymbol{x}\|=1\\ \boldsymbol{x}^T \psi_j = 0, for \ j < i}} \boldsymbol{x}^T \boldsymbol{M} \boldsymbol{x}.$$
 (2.2)

Similarly,

$$oldsymbol{\psi}_i \in rg \min_{\substack{\|oldsymbol{x}\|oldsymbol{x}\| = 0, for \ j > i}} oldsymbol{x}^T oldsymbol{M} oldsymbol{x}.$$

• On the sphere: Laplacian eigenvectors are spherical harmonics. They are oscillating

$$\Delta f = rac{1}{r^2}rac{\partial}{\partial r}\left(r^2rac{\partial f}{\partial r}
ight) + rac{1}{r^2\sin heta}rac{\partial}{\partial heta}\left(\sin hetarac{\partial f}{\partial heta}
ight) + rac{1}{r^2\sin^2 heta}rac{\partial^2 f}{\partial arphi^2},$$

Belkin, M., & Niyogi, P. (2006). Convergence of Laplacian eigenmaps. Neurips.

For a discretized manifold, the Graph Laplacian converge to the Laplacian on the continuous manifold

• On a graph: Laplacian eigenvectors are (more or less) oscillating

The Fiedler vector

The Fiedler vector is the first eigenvector of L with non-zero eigenvalue Interesting for cutting the graph in 2!

It changes sign at the bottleneck (less costly in term of variations)

Remark: Eigenvectors contain global information about the graph

Break

- Let us compute some Graph Fourier modes.
- Make a path graph of 5 nodes.
- Diagonalize the Laplacian
- Plot the eigenvalues and visualize the value of some of the eigenvectors on the graph.
- Modify the weight between node 0 and node 1, plot the eigenvalues and eigenvectors and compare the results.
- Do the same for the comet graph with A:

Fourier modes on a graph

Variable weight w.

Influence on the spectral properties?

w=0: 2 disconnected components

w=5: strong connection between node 0 and 1 Localized variation impacts all the spectrum

Break

- Let us compute some Graph Fourier modes.
- Do the same for the comet graph with A:

$$A = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

Fourier modes on a graph

Eigenvectors localized in the different structures

Spectral clustering

Clustering a graph using the Laplacian

• For 2 clusters: cluster with the sign of the Fiedler vector

• For more than 2 clusters: cluster using several Laplacian eigenvectors, not just one

- At each node, the values of k eigenvectors of L provides a feature vector of k values. It can be clustered using standard clustering methods (e.g. k-means).
- Laplacian eigenvectors have smooth variations over the graph: neighbors have similar values, useful for clustering!

Spectral clustering

See scikit-learn "spectral clustering":

https://scikit-learn.org/stable/modules/clustering.html#spectral-clustering

Or

U. von Luxburg, A Tutorial on Spectral Clustering

