ECE 302: Probabilistic Methods in Electrical and Computer Engineering

Fall 2020

Instructor: Prof. Stanley H. Chan

Homework 2

 $\begin{array}{c} {\rm Fall} \ 2020 \\ {\rm (Due: \ September \ 18, \ 2020 \ Friday)} \end{array}$

Nam	e: Email:
	nework is due at 11:59pm (midnight) Eastern Time. Please print this homework, write your solution, scan the solution. Submit your homework through Gradescope. No late homework will be accepted.
Cons	rcise 1. sider an experiment consisting of rolling a die twice. The outcome of this experiment is an ordered pair se first element is the first value rolled and whose second element is the second value rolled.
(a)	Find the sample space.
(b)	Find the set A representing the event that the value on the first roll is greater than or equal to the value on the second roll.
(c)	Find the set B corresponding to the event that the first roll is a six.
(d)	Let C correspond to the event that the first valued rolled and the second value rolled differ by two. Find $A \cap C$.
Note	e that $A, B,$ and C should be subsets of the sample space specified in Part (a).

5], (c) F[C], (d) F[A O	$B], (e) \mathbb{P}[A \cup C], (f) \mathbb{P}[(A \setminus C) \cup B].$	
	have $\mathbb{P}[A]=x,\mathbb{P}[B]=xy$ and $\mathbb{P}[A\cup B]=x^2z.$ Find the following probability	pabilities.
	have $\mathbb{P}[A]=x,\mathbb{P}[B]=xy$ and $\mathbb{P}[A\cup B]=x^2z.$ Find the following probability	pabilities.
t the events A and B has $P[A \cap B]$	have $\mathbb{P}[A]=x,\mathbb{P}[B]=xy$ and $\mathbb{P}[A\cup B]=x^2z.$ Find the following probability	pabilities.
t the events A and B has $P[A \cap B]$ b) $P[A^c \cap B^c]$	have $\mathbb{P}[A]=x,\mathbb{P}[B]=xy$ and $\mathbb{P}[A\cup B]=x^2z.$ Find the following probability	abilities.
t the events A and B has $\mathbb{P}[A \cap B]$ b) $\mathbb{P}[A^c \cap B^c]$ c) $\mathbb{P}[A^c \cup B^c]$	have $\mathbb{P}[A]=x,\mathbb{P}[B]=xy$ and $\mathbb{P}[A\cup B]=x^2z.$ Find the following probability	oabilities.
t the events A and B has a $\mathbb{P}[A \cap B]$ b) $\mathbb{P}[A^c \cap B^c]$ c) $\mathbb{P}[A^c \cup B^c]$ d) $\mathbb{P}[A \cap B^c]$	have $\mathbb{P}[A]=x,\mathbb{P}[B]=xy$ and $\mathbb{P}[A\cup B]=x^2z.$ Find the following probability	abilities.
t the events A and B has a $\mathbb{P}[A \cap B]$ b) $\mathbb{P}[A^c \cap B^c]$ c) $\mathbb{P}[A^c \cup B^c]$ d) $\mathbb{P}[A \cap B^c]$	have $\mathbb{P}[A]=x,\mathbb{P}[B]=xy$ and $\mathbb{P}[A\cup B]=x^2z.$ Find the following probability	pabilities.
to the events A and B is a) $\mathbb{P}[A \cap B]$ b) $\mathbb{P}[A^c \cap B^c]$ c) $\mathbb{P}[A^c \cup B^c]$ d) $\mathbb{P}[A \cap B^c]$	have $\mathbb{P}[A]=x,\mathbb{P}[B]=xy$ and $\mathbb{P}[A\cup B]=x^2z.$ Find the following probability	pabilities
t the events A and B has a $\mathbb{P}[A \cap B]$ by $\mathbb{P}[A^c \cap B^c]$ c) $\mathbb{P}[A^c \cup B^c]$ d) $\mathbb{P}[A \cap B^c]$	have $\mathbb{P}[A]=x,\mathbb{P}[B]=xy$ and $\mathbb{P}[A\cup B]=x^2z.$ Find the following probability	pabilities
t the events A and B has a $\mathbb{P}[A \cap B]$ b) $\mathbb{P}[A^c \cap B^c]$ c) $\mathbb{P}[A^c \cup B^c]$ d) $\mathbb{P}[A \cap B^c]$	have $\mathbb{P}[A]=x,\mathbb{P}[B]=xy$ and $\mathbb{P}[A\cup B]=x^2z.$ Find the following probability	pabilities
t the events A and B has a $\mathbb{P}[A \cap B]$ b) $\mathbb{P}[A^c \cap B^c]$ c) $\mathbb{P}[A^c \cup B^c]$ d) $\mathbb{P}[A \cap B^c]$	have $\mathbb{P}[A]=x,\mathbb{P}[B]=xy$ and $\mathbb{P}[A\cup B]=x^2z.$ Find the following probability	pabilities
t the events A and B has a $\mathbb{P}[A \cap B]$ b) $\mathbb{P}[A^c \cap B^c]$ c) $\mathbb{P}[A^c \cup B^c]$ d) $\mathbb{P}[A \cap B^c]$	have $\mathbb{P}[A]=x,\mathbb{P}[B]=xy$ and $\mathbb{P}[A\cup B]=x^2z.$ Find the following probability	pabilities
t the events A and B has a $\mathbb{P}[A \cap B]$ b) $\mathbb{P}[A^c \cap B^c]$ c) $\mathbb{P}[A^c \cup B^c]$ d) $\mathbb{P}[A \cap B^c]$	have $\mathbb{P}[A]=x,\mathbb{P}[B]=xy$ and $\mathbb{P}[A\cup B]=x^2z.$ Find the following probability	pabilities

$C = \{x \mid x > 1\}$	eted at random in the interval $[-1,3]$. Find (a) $\mathbb{P}[A \mid B]$, (b) $\mathbb{P}[B \mid C]$, (c) \mathbb{P}	$[A \mid C^c], \text{ (d) } \mathbb{P}[B \mid C^c].$	
et A, B, C be ev	ents with probabilities $\mathbb{P}[A] = 0.3$, $\mathbb{P}[B]$ and B are independent	$] = 0.2, \mathbb{P}[C] = 0.5. \text{ Find}$	
(a) $\mathbb{P}[A \cup B]$ if A (b) $\mathbb{P}[A \cup B]$ if A	and B are independent and B are disjoint] = 0.2, $\mathbb{P}[C] = 0.5$. Find	
et A, B, C be ex (a) $\mathbb{P}[A \cup B]$ if A (b) $\mathbb{P}[A \cup B]$ if A (c) $\mathbb{P}[A \cup B \cup C]$	and B are independent		
et A, B, C be extracted as $\mathbb{P}[A \cup B]$ if A (b) $\mathbb{P}[A \cup B]$ if A (c) $\mathbb{P}[A \cup B \cup C]$	and B are independent and B are disjoint if A , B and C are independent		
t A, B, C be evaluable $\mathbb{P}[A \cup B]$ if A b) $\mathbb{P}[A \cup B]$ if A c) $\mathbb{P}[A \cup B \cup C]$	and B are independent and B are disjoint if A , B and C are independent		
t A, B, C be evaluable $\mathbb{P}[A \cup B]$ if A b) $\mathbb{P}[A \cup B]$ if A c) $\mathbb{P}[A \cup B \cup C]$	and B are independent and B are disjoint if A , B and C are independent		
t A, B, C be evaluable $\mathbb{P}[A \cup B]$ if A b) $\mathbb{P}[A \cup B]$ if A c) $\mathbb{P}[A \cup B \cup C]$	and B are independent and B are disjoint if A , B and C are independent		
t A, B, C be evaluable $\mathbb{P}[A \cup B]$ if A b) $\mathbb{P}[A \cup B]$ if A c) $\mathbb{P}[A \cup B \cup C]$	and B are independent and B are disjoint if A , B and C are independent		
t A, B, C be evaluable $\mathbb{P}[A \cup B]$ if A b) $\mathbb{P}[A \cup B]$ if A c) $\mathbb{P}[A \cup B \cup C]$	and B are independent and B are disjoint if A , B and C are independent		
t A, B, C be evaluable $\mathbb{P}[A \cup B]$ if A b) $\mathbb{P}[A \cup B]$ if A c) $\mathbb{P}[A \cup B \cup C]$	and B are independent and B are disjoint if A , B and C are independent		
t A, B, C be evaluable $\mathbb{P}[A \cup B]$ if A b) $\mathbb{P}[A \cup B]$ if A c) $\mathbb{P}[A \cup B \cup C]$	and B are independent and B are disjoint if A , B and C are independent		
t A, B, C be extra $\mathbb{P}[A \cup B]$ if A b) $\mathbb{P}[A \cup B]$ if A c) $\mathbb{P}[A \cup B \cup C]$	and B are independent and B are disjoint if A , B and C are independent		
et A, B, C be extracted as $\mathbb{P}[A \cup B]$ if A (b) $\mathbb{P}[A \cup B]$ if A (c) $\mathbb{P}[A \cup B \cup C]$	and B are independent and B are disjoint if A , B and C are independent		
et A, B, C be extracted as $\mathbb{P}[A \cup B]$ if A (b) $\mathbb{P}[A \cup B]$ if A (c) $\mathbb{P}[A \cup B \cup C]$	and B are independent and B are disjoint if A , B and C are independent		

${\bf Exercise}$	6

(a) By using the fact that $\mathbb{P}[A \cup B] \leq \mathbb{P}[A] + \mathbb{P}[B]$, show that $\mathbb{P}[A \cup B \cup C] \leq \mathbb{P}[A] + \mathbb{P}[B] + \mathbb{P}[C]$. (b) By using the fact that $\mathbb{P}[\bigcup_{k=1}^{n} A_k] \leq \sum_{k=1}^{n} \mathbb{P}[A_k]$, show that $\mathbb{P}[\bigcap_{k=1}^{n} A_k] \geq 1 - \sum_{k=1}^{n} \mathbb{P}[A_k^c]$.		

Exercise 7.

The following result is known as the Bonferroni's Inequality.

(a) Prove that for any two events A and B, we have

$$\mathbb{P}(A \cap B) \ge \mathbb{P}(A) + \mathbb{P}(B) - 1.$$

(b) Generalize the above to the case of n events A_1, A_2, \ldots, A_n , by showing that

$$\mathbb{P}(A_1 \cap A_2 \cap \ldots \cap A_n) \ge \mathbb{P}(A_1) + \mathbb{P}(A_2) + \ldots + \mathbb{P}(A_n) - (n-1).$$

Hint: You may use the generalized Union Bound $\mathbb{P}(\bigcup_{i=1}^n A_i) \leq \sum_{i=1}^n \mathbb{P}(A_i)$.

(c)	2020	Stanley	Chan.	All	Rights	Reserved	l.

Exercise 8.

A block of information is transmitted repeated over a noisy channel until an error-free block is received. Let $M \ge 1$ be the number of blocks required for a transmission. Define the following sets

- (i) $A = \{M \text{ is even}\}$
- (ii) $B = \{M \text{ is a multiple of 5}\}\$
- (iii) $C = \{M \text{ is less than or equal to } 7\}$

Assume that the probability of requiring one additional block is half of the probability without the additional block. That is:

$$\mathbb{P}[M = k] = \left(\frac{1}{2}\right)^k, \qquad k = 1, 2, \dots$$

Determine the following probabilities

- (a) $\mathbb{P}[A]$, $\mathbb{P}[B]$, $\mathbb{P}[C]$, $\mathbb{P}[C^c]$
- (b) $\mathbb{P}[A \cap B]$, $\mathbb{P}[A \setminus B]$, $\mathbb{P}[A \cap B \cap C]$
- (c) $\mathbb{P}[A \mid B], \mathbb{P}[B \mid A]$
- (d) $\mathbb{P}[A \mid B \cap C], \mathbb{P}[A \cap B \mid C]$

Hint: $\mathbb{P}[A] \neq \frac{1}{2}$. $\mathbb{P}[A] = \sum_{k=\text{even}} \mathbb{P}[M=k]$.

Exercise 9. (PROGRAMMING)

Write a MATLAB / Python program to simulate the following experiments.

- (a) Draw a dice 100 times. That is, generate a sequence of 100 random numbers from the set $\{1, \ldots, 6\}$. Call this sequence X_1, \ldots, X_{100} . Plot the histogram of X_1, \ldots, X_{100} , with bin centers $\{1, \ldots, 6\}$. Do not use a for-loop in your code. Submit your plot.
- (b) Repeat (a) by drawing the dice 10000 times.
- (c) Draw another dice 100 times. Call this sequence Y_1, \ldots, Y_{100} . Let $Z_i = X_i + Y_i$ for $i = 1, \ldots, 100$. Plot the histogram of Z_1, \ldots, Z_{100} . Submit your plot.
- (d) Repeat (c) by drawing the dices 10000 times.
- (e) Using the histogram found in (d), find the probability that $4 < Z_i \le 7$.
- (f) In (c)-(d), Z_i is a sum of two random variables X_i and Y_i . What if we sum more random variables? That is, $Z_i = X_i^{(1)} + X_i^{(2)} + \ldots + X_i^{(K)}$. Let K = 10. Plot the histogram of $\{Z_1, \ldots, Z_{10000}\}$. Submit your histogram. Pay attention to the bin centers.
- (g) Repeat (f) by setting K = 100. Plot the histogram of $\{Z_1, \ldots, Z_{10000}\}$. Submit your histogram. Pay attention to the bin centers.

Please put your plots after this page.