

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE ESCUELA DE INGENIERÍA DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN

Diseño y Análisis de Algoritmos - IIC2283 Profesor: Diego Arroyuelo (diego.arroyuelo@uc.cl) Guía de Ejercicios 1: Ecuaciones de Recurrencia 2025-2

1. Dada la siguiente ecuación de recurrencia:

$$T(n) = \begin{cases} 0, & n = 0\\ 2T(\lfloor n/2 \rfloor) + kn, & n > 0, \end{cases}$$

use inducción para demostrar que $T(n) \in O(n \log_2 n)$.

Solución: La definición de T(n) no lo indica, pero asumimos que k > 0. Por la definición de $O(n \log_2 n)$, debemos demostrar que $\exists c \in \mathbb{R}^+, \exists n_0 \in \mathbb{N}$, tal que $T(n) \leq c \cdot n \log_2 n, \forall n \geq n_0$. Lo hacemos por inducción:

Caso base) Determinamos primero el/los caso/s base/s:

- Probamos inicialmente para n=0, por lo que debemos mostrar que $T(0)=0 \le c \cdot 0 \log_2 0$. Sin embargo, $\log_2 0$ no está definido, por lo que n=0 no puede ser usado como caso base.
- Veamos ahora n=1, por lo que debemos mostrar que $T(1)=2T(0)+k=k \le c \cdot 1\log_2 1=0$. En resumen, la propiedad se cumpliría si $k \le 0$, lo cual no es cierto porque hemos asumido k>0. Eso significa que n=1 tampoco puede usarse como caso base.
- Veamos n=2, por lo que debemos mostrar que $T(2)=2T(1)+2k=4k \le c \cdot 2\log_2 2=2c$. Entonces, la propiedad se cumple para n=2 para todo $c \ge 2k$.
- Notar que para n=3 tenemos la definición $T(3)=2T(\lfloor 3/2\rfloor)+3k=2T(1)+3k$. Sin embargo, ya vimos que la propiedad no se cumple para T(1), por lo que la propiedad no podría demostrarse por inducción para n=3. Eso significa que debemos agregar n=3 como caso base. Debemos mostrar que $T(3)=2T(1)+3k=5k \le c \cdot 3\log_2 3$, lo cual se cumple para $c \ge 5k/3\log_3 3$.
- Note que para n = 4, 5, 6, y 7, T(n) está definido por un $T(\lfloor n/2 \rfloor)$ que es caso base para el cual ya se cumple la propiedad.

Hipótesis Inductiva) Asumimos que $T(n') \le c \cdot n' \log_2 n', \forall n' \in \{2, 3, \dots, n-1\}.$

Paso Inductivo) Demostraremos que se cumple la propiedad para $n \geq 4$. Notar que:

$$\begin{split} T(n) &= 2T(\lfloor n/2 \rfloor) + kn \\ &\leq 2\left(\left\lfloor \frac{n}{2} \right\rfloor \log\left(\left\lfloor \frac{n}{2} \right\rfloor \right) \right) + kn \quad \text{(por H.I.)} \\ &\leq 2\left(\frac{n}{2}\log\left(\frac{n}{2} \right) \right) + kn \quad \text{(por H.I.)} \\ &= c \cdot n(\log_2\left(n \right) - 1) + kn \\ &= c \cdot n\log_2n + kn - cn \end{split}$$

Para que esto último sea $\leq c \cdot n \log_2 n$ se debe cumplir $kn-cn \leq 0$, lo que es equivalente a $k-c \leq 0$, lo que significa $k \leq c$. Sin embargo, recuerde que en los casos base llegamos a que c > k, por lo que concluimos la demostración.

2. Use inducción para acotar asintóticamente la siguiente ecuación de recurrencia:

$$T(n) = \begin{cases} 0, & n = 0\\ 4T\left(\left|\frac{n}{2}\right|\right) + n, & n > 0. \end{cases}$$

Hint: Puede usar el Teorema Maestro para "adivinar" la cota, y luego demostrarla por inducción.

Solución: Si usamos el Teorema Maestro, tenemos que $T(n) \in \Theta(n^2)$. Demostraremos entonces que $T(n) \in O(n^2)$, lo que significa que debemos demostrar que $\exists c \in \mathbb{R}^+, \exists n_0 \in \mathbb{N}$, tal que $T(n) \leq c \cdot n^2$, $\forall n \geq n_0$. Lo hacemos por inducción:

Caso Base) • Probamos para n=0, por lo que debemos mostrar que $T(0)=0 \le c \cdot 0^2=0$, lo que se cumple para $c\ge 0$.

■ Note que para n = 1, n = 2 y n = 3, T(n) está definida a partir de un caso base para el que se cumple la propiedad, por lo que no hace falta agregarlos como caso base (y se demostrarán inductivamente).

Hipótesis Inductiva) Asumimos que $T(n') \le c \cdot n'^2$, $\forall n' \in \{0, 1, ..., n-1\}$.

Paso Inductivo) Demostraremos que se cumple la propiedad para $n \geq 1$. Notar que:

$$T(n) = 4T(\lfloor n/2 \rfloor) + n$$

$$\leq 4c \cdot \left(\left\lfloor \frac{n}{2} \right\rfloor \right)^2 + n$$

$$\leq 4c \cdot \left(\frac{n}{2} \right)^2 + n$$

$$= c \cdot n^2 + n.$$

Dado que n no es una constante, por lo que no es posible de esta forma demostrar que $T(n) \leq c \cdot n^2$. En su lugar, vamos a demostrar lo siguiente, lo cual es equivalente: $\exists c \in \mathbb{R}^+, \exists d \in \mathbb{R}^+, \exists n_0 \in \mathbb{N}$, tal que $T(n) \leq c \cdot n^2 - d \cdot n$, $\forall n \geq n_0$. Ese $-d \cdot n$ es agregado porque en la anterior demostración quedaba un +n que interfería. Asumiendo que se cumple para los casos base (se deja como ejercicio), planteamos la Hipótesis inductiva: $T(n) \leq c \cdot n^2 - d \cdot n, \forall n' \in \{0, 1, \dots, n-1\}$. Ahora demostramos:

$$T(n) = 4T(\lfloor n/2 \rfloor) + n$$

$$\leq 4\left(c \cdot \left(\lfloor \frac{n}{2} \rfloor\right)^2 - d \cdot \frac{n}{2}\right) + n$$

$$\leq 4\left(c \cdot \left(\frac{n}{2}\right)^2 - d \cdot \frac{n}{2}\right) + n$$

$$= c \cdot n^2 - 2d \cdot n + n$$

$$= c \cdot n^2 - d \cdot n + n(1 - d).$$

Para concluir la demostración, basta probar que $n(1-d) \le 0$, lo cual es cierto para $d \ge 1$. Hemos demostrado que $T(n) \le c \cdot n^2 - d \cdot n$, lo cual significa que $T(n) \in O(n^2)$.

3. Use el Teorema Maestro (en caso de ser posible) para acotar asintóticamente las siguientes ecuaciones de recurrencia (por simplicidad, sólo se muestra la parte recurrente de cada ecuación).

a)
$$T(n) = 8T(\lfloor n/3 \rfloor) + n^2$$
, $n > 0$.

- b) T(n) = T(|8n/11|) + n, n > 0.
- c) $T(n) = 2T(\lfloor n/2 \rfloor) + n \log_2 n, \quad n > 0.$
- d) T(n) = 16T(|n/4|) + n!, n > 0.
- e) $T(n) = 3T(\lfloor n/3 \rfloor) + \sqrt{n}, \quad n > 0.$

Solución: Se deja como ejercicio.

4. Acote asintóticamente la siguiente función:

$$T(n) = \begin{cases} 1, & n = 1\\ 2T(\lfloor \sqrt{n} \rfloor) + 1, & n > 1. \end{cases}$$

 Hint : considere un cambio de variable $m = \log_2 n$ para poder usar el Teorema Maestro.

Solución: Sea $m = \log_2 n$, por lo tanto $n = 2^m$, por lo que $\sqrt{n} = 2^{m/2}$. Por lo tanto, la ecuación de recurrencia original es equivalente a:

$$T(2^m) = \begin{cases} 1, & m = 0 \ [2^m = 1] \\ 2T\left(\lfloor 2^{m/2} \rfloor\right) + 1, & m > 0 \ [2^m > 1] \end{cases}$$

Estamos casi en condiciones de usar el Teorema Maestro. Sólo haremos el cambio de variable $S(m) = T(2^m)$, para que sea más evidente, por lo que la ecuación de recurrencia anterior es equivalente a:

$$S(m) = \begin{cases} 1, & m = 0\\ 2S\left(\left\lfloor \frac{m}{2} \right\rfloor\right) + 1, & m > 0, \end{cases}$$

la cual tiene la forma requerida por el Teorema Maestro, el cual indica que $S(m) \in \Theta(m)$ (se deja como ejercicio verificar esto). Dado que $m = \log_2 n$, y deshaciendo los cambios de variable, tenemos que $T(n) \in \Theta(\lg_2 n)$.

- 5. Muestre que no es posible usar el Teorema Maestro para acotar las siguientes ecuaciones de recurrencia:
 - a) $T(n) = 2T(|n/2|) + n/\log_2 n$, n > 1.
 - b) $T(n) = 64T(|n/8|) n^2 \log_2 n, \quad n > 0.$
 - c) $T(n) = T(|n/2|) + n(2 \cos n), \quad n > 0.$

Solución: Se deja como ejercicio.

6. Dada la ecuación de recurrencia:

$$T(n) = \begin{cases} 0, & n = 0; \\ T(n-1) + 2 \cdot n - 1, & n > 0, \end{cases}$$

encuentre una función f(n) tal que $T(n) \in O(f(n))$, y demuéstrelo usando inducción. La cota debería ser lo más ajustada posible.

Solución: Notar que T(0) = 0, T(1) = 1, T(2) = 4, T(3) = 9, T(4) = 16, por lo que la hipótesis es que $T(n) = n^2$. Para probar que $T(n) = O(n^2)$, se debe probar que $\exists c \in \mathbb{R}^+, \exists n_0 \in \mathbb{N}$, tal que $T(n) \leq c \cdot n^2, \forall n \geq n_0$. Lo hacemos por inducción.

Caso base:

■ Notar que para n=0, tenemos $T(0)=0 \le c \cdot 0^2$, lo cual se cumple para cualquier c>0.

Hipótesis inductiva: Se asume que $T(n') \le c \cdot (n')^2$, $\forall n' \in \{1, 2, \dots, n\}$.

Paso inductivo: Debemos demostrar que el hecho de que la hipótesis inductiva se cumpla implica que $T(n+1) \le c \cdot (n+1)^2$. Notar que:

$$T(n+1) = T(n) + 2 \cdot (n+1) - 1$$

= $T(n) + 2n + 1$
 $\leq c \cdot n^2 + 2n + 1$ [por H.I.]
 $\leq c \cdot (n^2 + 2n + 1)$ [esto se cumple si $c \geq 1$]
= $c \cdot (n+1)^2$,

lo cual concluye la demostración. Así, para todo $c \ge 1$ y $n \ge 0$, se cumple $T(n) \le c \cdot n^2$.

7. Acote asintóticamente la siguiente ecuación de recurrencia, usando la herramienta (vista en clases) que considere conveniente:

$$T(n) = \begin{cases} 1, & n = 1\\ 2T(\lfloor \sqrt{n} \rfloor) + \log_2(n), & n > 1. \end{cases}$$

Solución: La idea es usar el Teorema Maestro, aunque no parezca en un principio. Sea $n=2^m$, por lo tanto $m=\log_2 n$. Eso significa que $\sqrt{n}=2^{m/2}$. Por lo tanto, la ecuación de recurrencia original es equivalente a:

$$T(2^m) = \begin{cases} 1, & m = 0 \ [2^m = 1] \\ 2T(\lfloor 2^{m/2} \rfloor) + m, & m > 0 \ [2^m > 1] \end{cases}$$

Estamos casi en condiciones de usar el Teorema Maestro. Sólo haremos el cambio de variable $S(m) = T(2^m)$, para que sea más evidente, por lo que la ecuación de recurrencia anterior es equivalente a:

$$S(m) = \begin{cases} 1, & m = 0\\ 2S\left(\left\lfloor \frac{m}{2} \right\rfloor\right) + m, & m > 0, \end{cases}$$

la cual tiene la forma requerida por el Teorema Maestro. El caso que se cumple es $m \in \Theta(m)$, por lo que $S(m) \in \Theta(m \cdot \log_2 m)$. Eso es equivalente a $T(2^m) \in \Theta(m \cdot \log_2 m)$. Dado que $m = \log_2 n$ y $n = 2^m$, tenemos $T(n) \in \Theta(\log_2(n) \cdot \log_2 \log_2(n))$.