Alright — let's continue the full PRD for your disease-tracking, smart-watch-enabled, real-time doctor alert & delivery system.

We already covered 1. Introduction, 2. Objectives, 3. Features, 4. Risks, and 5. Risk Mitigation earlier.

Now we'll move forward with 6–12 to complete the PRD.

6. System Architecture

6.1 Components

1. Wearable Device (Smartwatch)

- Sensors: heart rate, SpO₂, temperature, movement, ECG (optional)
- Bluetooth/Wi-Fi/LTE connectivity to send data to mobile app

2. Mobile App

- · Receives data from smartwatch
- Performs initial anomaly detection using ML model
- Pushes alert to cloud server if risk detected

3. Cloud Backend

- Stores historical health data securely
- Runs AI/ML/DL models for deep anomaly detection & trend analysis
- Interfaces with doctor network & delivery system

4. Doctor Dashboard

- Web/mobile portal for doctors to verify alerts
- Displays patient's recent & historical data
- Allows communication with patient & dispatch of medicine

5. Medicine Delivery Module

- Integration with delivery partners (like Ola, Rapido, Dunzo API)
- Tracks delivery in real-time

6. Emergency Services

Integration with ambulance providers if critical condition detected

7. Workflow

- 1. **User wears smartwatch** → health parameters continuously monitored
- 2. **Data sent to mobile app** \rightarrow real-time preprocessing & anomaly detection

- 3. **If anomaly detected** → alert sent to cloud backend
- 4. **Cloud backend AI analysis** → confirms risk & severity
- 5. **Nearby doctor alerted** → receives real-time patient health snapshot
- 6. Doctor verifies
 - If **minor condition** → prescribes medicine → medicine delivered via delivery partner
 - If **critical** → doctor sends emergency alert → ambulance dispatched
- 7. **Follow-up tracking** → patient's recovery monitored through wearable data

8. Data Privacy & Security

- Encryption
 - · AES-256 for data at rest
 - TLS 1.3 for data in transit
- Anonymization
 - · Patient PII stored separately from health metrics
 - · Use patient IDs instead of names in analytics
- Access Control
 - Role-based access for doctors, admins, delivery agents
- Consent Management
 - Patients explicitly agree to share health data with selected doctors
- Compliance
 - HIPAA (if US market), GDPR (EU), and Indian DPDP Act

9. Technology Stack

- **Frontend**: React Native (mobile), React.js (doctor dashboard)
- Backend: Python (FastAPI/Django)
- **Database**: PostgreSQL + TimescaleDB for time-series health data
- AI/ML/DL Models: TensorFlow/PyTorch (for anomaly detection & predictive alerts)
- Cloud: AWS/GCP/Azure
- Wearable SDKs: Fitbit API, Apple HealthKit, Wear OS APIs

10. Cost Estimation for Demo

Item Estimated Cost

Smartwatch (with sensors) ₹3,000 – ₹8,000 each

Mobile App Dev (MVP) ₹1.5–2.5 lakh Backend & AI Model ₹1–1.5 lakh

Cloud Hosting (3 months) ₹15,000 – ₹25,000

Delivery API Integration ₹20,000 – ₹40,000

Doctor Dashboard ₹50,000 – ₹1 lakh **Total Demo Cost** ₹3.5 – ₹6 lakh

11. Success Metrics

• **Detection Accuracy**: >90% for anomalies

• **Average Doctor Response Time**: <5 minutes

• Medicine Delivery Time: <30 minutes

• **User Retention Rate**: >75% after 3 months

• Data Privacy Incidents: 0

12. Future Scope

- Add AI-based diagnosis recommendations
- Support multiple wearable devices
- Enable insurance claims automation
- Add video consultation
- Integrate **predictive analytics** for early disease prevention