Дисциплина Основы машинного обучения и нейронные сети

Лекция 5 Функции потерь. Линейная классификация

Нейронная сеть и градиентный спуск

Модель: однослойная нейросеть (1/2)

Линейная модель:

$$a(\mathbf{x}_i, \mathbf{w}) = \sigma(\sum_{j=1}^d w_j f_j(\mathbf{x}_i))$$

Функционал качества:

$$Q(a, X^{l}) = \frac{1}{l} \sum_{i=1}^{l} \mathcal{L}(a, y_{i}) \longrightarrow \min_{\mathbf{w}}$$

$$x_i$$
 — объект, $i=1,...,l$ l — число объектов в выборке $f_j(\mathbf{x}_i)$ — признак j объекта $i,j=1,...d$ d - число признаков y_i — истинный ответ $X^l = \{(\mathbf{x}_i,y_i)\}_{i=1}^l$ — обучающая выборка w_j — веса признаков σ — функция активации $a(\mathbf{x}_i,\mathbf{w})$ — прогнозируемое значение $\mathcal{L}(a,y_i) = (a(\mathbf{x}_i,\mathbf{w})-y_i)^2$ — функция потерь

Модель: однослойная нейросеть (2/2)

Линейная модель:

$$a(\mathbf{x}_i, \mathbf{w}) = \sigma(\sum_{j=1}^d w_j f_j(\mathbf{x}_i))$$

Функционал качества:

$$Q(a, X^{l}) = \frac{1}{l} \sum_{i=1}^{l} (a(\mathbf{x}_{i}, \mathbf{w}) - y_{i})^{2} \longrightarrow \min_{\mathbf{w}}$$

Цель: подобрать w

Метод решения (метод подбора w) - градиентный спуск

Вход: выборка X^l , темп обучения h

Выход: вектор весов $\mathbf{w} = (w_1, w_2, ..., w_d)$

Шаг 1: Задать начальное приближение $\mathbf{w}^{(0)}$;

Шаг 2: Вычислить оценку функционала $Q(\mathbf{w}) = \sum_{i=1}^{l} \mathcal{L}(\mathbf{w});$

Шаг 3: Сделать градиентный шаг $\mathbf{w}^{(k+1)} \coloneqq \mathbf{w}^{(k)} - h \sum_{i=1}^{l} \nabla \mathcal{L}_i(\mathbf{w}^{(k)});$

Повторять шаги 2-3, пока значение Q и/или веса \mathbf{w} не сойдутся

Функции потерь

Функции потерь

Функция потерь (loss function) на объекте \mathbf{x} — это функция от двух аргументов, истинного значения y ответа для объекта \mathbf{x} и прогнозируемого значения $a(\mathbf{x})$, значение которой показывает, насколько прогнозируемое значение близко к истинному.

Чем меньше эта оценка, тем лучше, и наоборот — большие значения оценки указывают на то, что модель нуждается в доработке.

Функции потерь в задачах классификации

Частый выбор — бинарная функция потерь

$$L(y, a) = [a \neq y]$$

Функционал ошибки — доля ошибок (error rate)

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(\mathbf{x}_i) \neq y_i]$$

Нередко измеряют долю верных ответов (accuracy):

$$Q(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(\mathbf{x}_i) = y_i]$$

Функции потерь в задачах регрессии

Примеры:

- среднеквадратичная ошибка mean squared error, MSE
- корень из среднеквадратичной ошибки root mean squared error, RMSE
- средняя абсолютная ошибка mean absolute error, MAE
- средняя абсолютная ошибка в процентах mean absolute percentage error, MAPE
- средняя ошибка смещения mean bias error, MBE
- относительная абсолютная ошибка relative absolute error, RAE
- функция потерь Хьюбера (Huber loss)
- логарифм гиперболического косинуса ch x
- квантильная функция потерь

Среднеквадратичная ошибка

Частый выбор — квадратичная функция потерь

$$L(y, a) = (a - y)^2$$

 Функционал ошибки — среднеквадратичная ошибка (mean squared error, MSE)

$$Q(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} (a(\mathbf{x}_i) - y_i)^2$$

Выбросы для MSE (1/3)

Обучение на среднеквадратичной ошибке

Выбросы для MSE (2/3)

$a_1(\mathbf{x})$	у	$(a_1(\mathbf{x}) - y)^2$
2	1	1
1	2	1
2	3	1
5	4	1
6	5	1
7	100	8649
6	7	1

 $a_1(\mathbf{x}): MSE \approx 1236$

Выбросы для MSE (3/3)

$a_2(\mathbf{x})$	у	$(a_2(\mathbf{x}) - y)^2$
4	1	9
5	2	9
6	3	9
7	4	9
8	5	9
10	100	8100
10	7	9

 $a_2(\mathbf{x}): MSE \approx 1164$

Средняя абсолютная ошибка

$$L(y, a) = |a - y|$$

 Функционал ошибки — средняя абсолютная ошибка (mean absolute error, MAE)

$$Q(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} |a(\mathbf{x}_i) - y_i|$$

Выбросы для МАЕ (1/3)

Выбросы для МАЕ (2/3)

$a_1(\mathbf{x})$	у	$ a_1(\mathbf{x}) - y $
2	1	1
1	2	1
2	3	1
5	4	1
6	5	1
7	100	93
6	7	1

 $a_1(\mathbf{x}): MAE \approx 14.14$

Выбросы (3/3)

$a_2(\mathbf{x})$	у	$ a_2(\mathbf{x}) - y $
4	1	3
5	2	3
6	3	3
7	4	3
8	5	3
10	100	90
10	7	3

 $a_2(\mathbf{x})$: $MAE \approx 15.43$

Функция потерь Хубера (1/2)

$$L_H(y,a) = \begin{cases} \frac{1}{2}(y-a)^2, & |y-a| < \delta \\ \delta(|y-a| - \frac{1}{2}\delta), & |y-a| \ge \delta \end{cases}$$

• Функционал ошибки:

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} L_H(a(\mathbf{x}_i), y_i)$$

Функция потерь Хубера (2/2)

$$L_H(y,a) = \begin{cases} \frac{1}{2}(y-a)^2, & |y-a| < \delta \\ \delta(|y-a| - \frac{1}{2}\delta), & |y-a| \ge \delta \end{cases}$$

MAPE (1/3)

 Mean Absolute Percentage Error (средний модуль относительной ошибки)

$$L(y,a) = \left| \frac{y-a}{y} \right|$$

$$Q(a, X) = \frac{100\%}{\ell} \sum_{i=1}^{\ell} \left| \frac{a(\mathbf{x}_i) - y_i}{y_i} \right|$$

MAPE (2/3)

$$L(y,a) = \left| \frac{y-a}{y} \right|$$

- Особенность: при a=0 добавить в знаменатель небольшое слагаемое
- Недопрогноз штрафуется максимум на единицу
- Перепрогноз может быть оштрафован большим числом
- Несимметричная функция потерь (отдаёт предпочтение недопрогнозу)

MAPE (3/3)

$$L(y,a) = \left| \frac{y-a}{y} \right|$$

SMAPE (1/2)

 Symmetric Mean Absolute Percentage Error (симметричный средний модуль относительной ошибки)

$$L(y,a) = \frac{|y-a|}{(|y|+|a|)/2}$$

$$Q(a, X) = \frac{100\%}{\ell} \sum_{i=1}^{\ell} \frac{|y_i - a(\mathbf{x}_i)|}{(|y_i| + |a(\mathbf{x}_i)|)/2}$$

SMAPE (2/2)

$$L(y, a) = \frac{|y - a|}{(|y| + |a|)/2}$$

Модель линейной классификации

Классификация (бинарная)

•
$$Y = \{-1, +1\}$$

- -1 отрицательный класс
- +1 положительный класс
- $a(\mathbf{x})$ должен возвращать одно из двух чисел

Линейная регрессия

$$a(\mathbf{x}) = w_0 + \sum_{j=1}^d w_j x_j$$

Вещественное число!

Линейный классификатор (1/2)

$$a(\mathbf{x}) = sign\left(w_0 + \sum_{j=1}^d w_j x_j\right)$$

Линейный классификатор

Будем считать, что есть единичный признак, тогда

$$a(\mathbf{x}) = sign \sum_{j=1}^{a} w_j x_j = sign \langle \mathbf{w}, \mathbf{x} \rangle$$

Геометрия линейного классификатора (1/4)

Уравнение гиперплоскости: $\langle \mathbf{w}, \mathbf{x} \rangle = 0$

Геометрия линейного классификатора (2/4)

- Линейный классификатор соответствует гиперплоскости с вектором нормали w
- Величина (w, x)
 пропорциональна
 расстоянию от точки x до
 гиперплоскости
- (w, x) < 0 объект «слева» от гиперплоскости
- (w, x) > 0 объект
 «справа» от гиперплоскости

Геометрия линейного классификатора (3/4)

• Расстояние от точки до гиперплоскости $\langle \mathbf{w}, \mathbf{x} \rangle = 0$:

$$\frac{|\langle w, x \rangle|}{||w||}$$

Чем больше (w, x), тем дальше объект
 от разделяющей гиперплоскости, т.е.
 тем более «уверена» модель в своём ответе

Геометрия линейного классификатора (4/4)

Геометрия линейного классификатора (4/4)

Отступ

- $M_i = y_i \langle \mathbf{w}, \mathbf{x}_i \rangle$
- $M_i > 0$ классификатор дает верный ответ
- $M_i < 0$ классификатор ошибается
- Чем дальше значение отступа от нуля, тем больше уверенности в корректности ответа

Порог

$$a(\mathbf{x}) = sign(\langle \mathbf{w}, \mathbf{x} \rangle - t)$$

- t порог классификатора
- Можно подбирать для оптимизации функции потерь,
 отличной от использованной при обучении

Линейный классификатор

- Линейный классификатор разделяет два класса гиперплоскостью
- Чем больше отступ по модулю, тем дальше объект от гиперплоскости
- Знак отступа говорит о корректности предсказания

Обучение линейных классификаторов

Функция потерь в классификации

• Частый выбор — бинарная функция потерь

$$\mathcal{L}(a(\mathbf{x}_i), y_i) = [a(\mathbf{x}_i) \neq y_i]$$

Функционал ошибки — доля ошибок (error rate)

$$Q(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(\mathbf{x}_i) \neq y_i]$$

• Интуитивно понятная метрика - доля верных ответов (accuracy):

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(\mathbf{x}_i) = y_i]$$

Доля ошибок для линейного классификатора

• Функционал ошибки:

$$Q(\mathbf{w}, X^{\ell}) = \frac{1}{\ell} \sum_{i=1}^{\ell} [sign(\langle \mathbf{w}, \mathbf{x}_i \rangle) \neq y_i]$$

Задача: найти

$$\mathbf{w}^* = \arg\min_{\mathbf{w} \in \mathbb{R}^d} Q(a(\mathbf{w}, \mathbf{x}), X^{\ell})$$

Индикаторная функция — не гладкая функция

Гладкие и кусочно-гладкие функции

вспоминаем математический анализ

Гладкая (или непрерывно дифференцируемая) функция - это функция, имеющая непрерывную производную на всём множестве определения. Часто под гладкими функциями подразумевают функции, имеющие непрерывные производные всех порядков.

Кусочно-гладкая функция — функция, определённая на множестве вещественных чисел, дифференцируемая на каждом из интервалов, составляющих область определения.

Пусть заданы $x_1 < x_2 < \ldots < x_n$ — точки смены формул.

Как и все кусочно-заданные функции, кусочно-гладкую функцию можно записывать на каждом из интервалов $(-\infty; x_1), (x_1; x_2); \dots (x_n; +\infty)$ отдельной формулой:

$$f(x) = egin{cases} f_0(x), & x < x_1 \ f_1(x), & x_1 < x < x_2 \ \dots \ f_n(x), & x_n < x \end{cases}$$

Здесь $f_i(x)$ — гладкие функции.

Если к тому же выполнены условия согласования

$$f_{i-1}(x_i)=f_i(x_i)=f(x_i)$$
 при $i=1,2,\ldots,n$,

то кусочно-гладкая функция будет непрерывной. Непрерывная кусочно-гладкая функция может служить сплайном.

https://ru.wikipedia.org/wiki/%D0%9A%D1%83%D1%81%D0%BE%D1%87%D0%BD%D0%BE-%D0%B3%D0%BB%D0%B0%D0%B4%D0%BA%D0%B0%D1%8F %D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F

Виды критических точек

вспоминаем математический анализ

Критическая точка – точка возможного экстремума, производная в ней либо равна нулю $\nabla f(x_0) = 0$, либо не существует.

касательная параллельна оси абсцисс,

 $abla f(x_0) = 0, \ x_0$ - стационарная точка

касательная параллельна оси ординат, $\nabla f(x_0) = \infty$,

 x_0 - точка возврата

существуют не совпадающие левая и правая касательные,

$$abla f(x_0-0) \neq
abla f(x_0+0), \ x_0$$
 - угловая точка 41

Отступы для линейного классификатора (1/2)

• Функционал ошибки:

$$Q(\mathbf{w}, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [sign(\langle \mathbf{w}, \mathbf{x}_i \rangle) \neq y_i]$$

• Альтернативная запись

$$Q(\mathbf{w},X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [y_i \langle \mathbf{w}, \mathbf{x}_i \rangle < 0,$$

т.е. с помощью отступа:

$$Q(\mathbf{w}, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [M_i < 0] =: \mathcal{L}(M)$$

Отступы для линейного классификатора (2/2)

$$\mathcal{L}(M) = [M < 0]$$

Нельзя продифференцировать

Верхняя оценка (1/2)

$$\mathcal{L}(M) = [M < 0] \le \breve{\mathcal{L}}(M)$$

Оценим сверху дифференцируемой функцией

Верхняя оценка (2/2)

$$0 \le \frac{1}{\ell} \sum_{i=1}^{\ell} [y_i \langle \mathbf{w}, \mathbf{x}_i \rangle < 0] \le \frac{1}{\ell} \sum_{i=1}^{\ell} \breve{\mathcal{L}} \left(y_i \langle \mathbf{w}, \mathbf{x}_i \rangle \right) \to \min_{\mathbf{w}}$$

- Минимизируем верхнюю оценку
- Надеемся, что она «прижмёт» долю ошибок к нулю

Примеры верхних оценок

1.
$$\breve{\mathcal{L}}(M) = \log(1 + e^{-M}) -$$
 логистическая

$$2. \widecheck{\mathcal{L}}(M) = \max(0, 1-M) -$$
 кусочно-линейная

$$3. \overset{\smile}{\mathcal{L}}(M) = e^{-M} -$$
 экспоненциальная

$$4. \widecheck{\mathcal{L}}(M) = \frac{2}{1+e^M} -$$
 сигмоидная

Пример обучения (1/2)

• Напр., выбираем логистическую функцию потерь:

$$\check{Q}(\mathbf{w}, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} \log(1 + \exp(-y_i \langle \mathbf{w}, \mathbf{x}_i \rangle)) \to \min_{\mathbf{w}}$$

• Вычисляем градиент:

$$\nabla_{\mathbf{w}} \check{Q}(\mathbf{w}, X) = -\frac{1}{\ell} \sum_{i=1}^{\ell} \frac{y_i \mathbf{x}_i}{1 + \exp(y_i \langle \mathbf{w}, \mathbf{x}_i \rangle)}$$

Пример обучения (2/2)

• Делаем градиентный спуск:

$$\mathbf{w}^{(t)} = \mathbf{w}^{(t-1)} + \eta \frac{1}{\ell} \sum_{i=1}^{\ell} \frac{y_i \mathbf{x}_i}{1 + \exp(y_i \langle w, \mathbf{x}_i \rangle)}$$

Пример регуляризации

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log(1 + \exp(-y_i \langle \mathbf{w}, \mathbf{x}_i \rangle)) + \lambda ||\mathbf{w}||^2 \to \min_{\mathbf{w}}$$

- Полностью аналогично линейной регрессии
- Важно не накладывать регуляризацию на свободный коэффициент
- Можно использовать L_1 -регуляризацию

Качество классификации (1/2)

• Доля неправильных ответов

$$\frac{1}{\ell} \sum_{i=1}^{\ell} [a(\mathbf{x}_i) \neq y_i]$$

Качество классификации (2/2)

• Доля правильных ответов (accuracy):

$$\frac{1}{\ell} \sum_{i=1}^{\ell} [a(\mathbf{x}_i) = y_i]$$

Несбалансированные выборки (1/3)

Несбалансированная выборка — объектов одного класса существенного больше

Примеры:

- предсказание кликов по рекламе
- медицинская диагностика
- предсказание оттока клиентов
- специализированный поиск

Несбалансированные выборки (2/3)

- Пример:
 - Класс -1: 950 объектов
 - Класс +1: 50 объектов
- a(x) = -1
- Доля правильных ответов: 0.95
- Почему результат нас не устраивает?

Несбалансированные выборки (2/3)

- Пример:
 - Класс -1: 950 объектов
 - Класс +1: 50 объектов
- a(x) = -1
- Доля правильных ответов: 0.95
- Почему результат нас не устраивает?
- Модель не несёт экономической ценности
- Цены ошибок неравнозначны

Несбалансированные выборки (3/3)

- q_0 доля объектов самого крупного класса
- Для разумных алгоритмов:

$$accuracy \in (q_0, 1]$$

 Если получили большой ассигасу — посмотрите на баланс классов

Улучшение метрики (1/2)

- Два алгоритма
- Доли правильных ответов: r_1 и r_2
- Абсолютное улучшение: $r_2 r_1$
- Относительное улучшение: $\frac{r_2 r_1}{r_1}$

Улучшение метрики (2/2)

•
$$r_1 = 0.8$$

•
$$r_1 = 0.5$$

•
$$r_1 = 0.001$$

•
$$r_2 = 0.9$$

•
$$r_2 = 0.75$$

•
$$r_2 = 0.01$$

•
$$r_2 - r_1 = 10\%$$

•
$$r_2 - r_1 = 25\%$$

•
$$r_2 - r_1 = 9.9\%$$

•
$$\frac{r_2 - r_1}{r_1} = 12.5\%$$

•
$$\frac{r_2 - r_1}{r_1} = 50\%$$

•
$$\frac{r_2 - r_1}{r_1} = 900\%$$

Цены ошибок (1/2)

- Пример: кредитный скоринг
- Модель 1:
 - 80 кредитов вернули
 - 20 кредитов не вернули
- Модель 2:
 - 48 кредитов вернули
 - 2 кредита не вернули
- Какая лучше?

Цены ошибок (2/2)

- Что хуже?
 - Выдать кредит «плохому» клиенту
 - Не выдать кредит «хорошему» клиенту
- Лучше та модель, на которой мы больше заработаем
- Доля верных ответов не учитывает цены ошибок

Метрики качества классификации

Матрица несоответствий / ошибок (confusion matrix) для ℓ =10:

	y = 1	y = -1
$a(\mathbf{x}) = 1$	7	3
	True	False
	Positive	Positive
$a(\mathbf{x}) = -1$	2	8
	False	True
	Negative	Negative

Доля верных ответов:

$$accuracy(a,x) = \frac{TP + TN}{TP + FP + FN + TN} = 0.75$$

Точность:

$$precision = \frac{TP}{TP + FP} = 0.7$$
 (2.4)

Полнота:

$$recall = \frac{TP}{TP + FN} = 0, (7)$$
 (2.5)

True Positive (TP) – учил, сдал

False Negative (FN) – учил, не сдал (ошибка 2 рода)

True Negative (TN) – не учил, не сдал

False Positive (FP) – не учил, сдал (ошибка 1 рода)

Матрица ошибок (1/2)

	y = 1	y = -1
$a(\mathbf{x}) = 1$	True Positive (TP)	False Positive (FP), ложное срабатывание
$a(\mathbf{x}) = -1$	False Negative (FN), ложный пропуск	True Negative (TN)

Матрица ошибок (2/2)

Модель a₁(x):

	y = 1	y = -1
a(x) = 1	80	20
a(x) = -1	20	80

Модель a₂(x):

	y = 1	y = -1
a(x) = 1	48	2
a(x) = -1	52	98

Точность (precision) (1/2)

• Можно ли доверять классификатору при $a(\mathbf{x}) = 1$?

$$precision(a, X) = \frac{TP}{TP + FP}$$

Точность (precision) (2/2)

• Модель *a*₁(**x**):

	y = 1	y = -1
a(x) = 1	80	20
a(x) = -1	20	80

• $precision(a_1, X) = 0.8$

Модель a₂(x):

	y = 1	y = -1
a(x) = 1	48	2
a(x) = -1	52	98

• $precision(a_2, X) = 0.96$

Полнота (recall) (1/2)

• Как много положительных объектов находит классификатор?

$$recall(a, X) = \frac{TP}{TP + FN}$$

Полнота (recall) (2/2)

• Модель *a*₁(**x**):

	y = 1	y = -1
a(x) = 1	80	20
a(x) = -1	20	80

• $recall(a_1, X) = 0.8$

Модель a₂(x):

	y = 1	y = -1
a(x) = 1	48	2
a(x) = -1	52	98

• $recall(a_2, X) = 0.48$

Антифрод

Классификация транзакций на нормальные и мошеннические

- Высокая точность, низкая полнота:
 - редко блокируем нормальные транзакции
 - пропускаем много мошеннических
- Низкая точность, высокая полнота:
 - часто блокируем нормальные транзакции
 - редко пропускаем мошеннические

Кредитный скоринг

- Неудачных кредитов должно быть не больше 5%
- Ограничение: $precision(a, X) \ge 0.95$
- Максимизируем полноту

Медицинская диагностика

- Надо найти не менее 80% больных
- Ограничение: $recall(a, X) \ge 0.8$
- Максимизируем точность

Несбалансированные выборки

•
$$accuracy(a, X) = 0.99$$

- precision(a, X) = 0.33
- recall(a, X) = 0.1

	y = 1	y = -1
$a(\mathbf{x}) = 1$	10	20
$a(\mathbf{x}) = -1$	90	10000

Совмещение точности и полноты

Точность и полнота

- Точность можно ли доверять классификатору при $a(\mathbf{x}) = 1$?
- Полнота как много положительных объектов находит $a(\mathbf{x})$?
- Оптимизировать две метрики одновременно сложно
- Как объединить?

Арифметическое среднее

$$A = \frac{1}{2}(precision + recall)$$

Арифметическое среднее (1/2)

$$A = \frac{1}{2}(precision + recall)$$

- precision = 0.1
- recall = 1
- A = 0.55
- Плохой алгоритм

Арифметическое среднее (2/2)

$$A = \frac{1}{2}(precision + recall)$$

- precision = 0.55
- recall = 0.55
- A = 0.55
- Нормальный алгоритм
- Но качество такое же, как у плохого

Минимум

Минимум (1/3)

- precision = 0.05
- recall = 1
- M = 0.05

Минимум (2/3)

- precision = 0.55
- recall = 0.55
- M = 0.55

Минимум (3/3)

- precision = 0.4
- recall = 0.5
- M = 0.4
- precision = 0.4
- recall = 0.9
- M = 0.4
- Но второй лучше!

F-mepa (1/2)

$$F = \frac{2*precision*recall}{precision+recall}$$

F-mepa (1/2)

$$F = \frac{2*precision*recall}{precision+recall}$$

- precision = 0.4
- recall = 0.5
- M = 0.44
- precision = 0.4
- recall = 0.9
- M = 0.55

F-mepa (2/2)

$$F_{\beta} = (1 + \beta^2) \frac{precision * recall}{\beta^2 * precision + recall}$$

F-mepa (2/2)

$$F_{\beta} = (1 + \beta^2) \frac{precision * recall}{\beta^2 * precision + recall}$$

- $\beta = 0.5$
- Важнее точность

F-mepa (2/2)

$$F_{\beta} = (1 + \beta^2) \frac{precision * recall}{\beta^2 * precision + recall}$$

- $\beta = 2$
- Важнее полнота

Геометрическое среднее (1/2)

$$G = \sqrt{precision * recall}$$

$$F = \frac{2 * precision * recall}{precision + recall}$$

Геометрическое среднее (2/2)

$$G = \sqrt{precision * recall}$$

$$F = \frac{2 * precision * recall}{precision + recall}$$

- precision = 0.9
- recall = 0.1
- G = 0.3

•
$$precision = 0.9$$

•
$$recall = 0.1$$

•
$$F = 0.18$$

Метрики качества ранжирования

Классификатор

• Линейный классификатор:

$$a(\mathbf{x}) = sign(\langle \mathbf{w}, \mathbf{x} \rangle - t) = 2[\langle \mathbf{w}, \mathbf{x} \rangle > t] - 1$$

- $\langle \mathbf{w}, \mathbf{x} \rangle$ оценка принадлежности классу +1
- Нередко t=0

- Высокий порог:
 - Мало объектов относим к +1
 - Точность выше
 - Полнота ниже
- Низкий порог:
 - Много объектов относим к +1
 - Точность ниже
 - Полнота выше

_	1	-1	+1	-1	-1	-1	+1	+1	7	+1
0.	01	0.09	0.12	0.15	0.29	0.4	0.48	0.6	0.83	0.9

-1	-1	+1	-1	-1	-1	+1	+1	-1	+1
0.01	0.09	0.12	0.15	0.29	0.4	0.48	0.6	0.83	0.9

-1	-1	+1	-1	-1	-1	+1	+1	-1	+1
0.01	0.09	0.12	0.15	0.29	0.4	0.48	0.6	0.83	0.9

-1	+1	-1	+1	-1	+1	-1	+1	7	+1
0.01	0.09	0.12	0.15	0.29	0.4	0.48	0.6	0.83	0.9

- Как оценить качество $b(\mathbf{x})$?
- Порог выбирается позже
- Порог зависит от ограничений на точность или полноту

- Пример: кредитный скоринг
- $b(\mathbf{x})$ оценка вероятности возврата кредита
- $a(\mathbf{x}) = [b(\mathbf{x}) > 0.5]$
- precision = 0.1, recall = 0.7
- В чем дело в пороге или в алгоритме?

PR-кривая (1/5)

- Кривая точности-полноты
- Ось X полнота
- Ось *Y* точность
- Точки значения точности и полноты при последовательных порогах

PR-кривая (2/5)

$b(\mathbf{x})$	0.14	0.23	0.39	0.52	0.73	0.90
y	0	1	0	0	1	1

PR-кривая (в реальности) (3/5)

PR-кривая (4/5)

- Левая точка: (0, 1)
- Правая точка: (1, r),
 r доля положительных объектов
- Для идеального классификатора проходит через (1,1)
- AUC-PRC площадь под PR-кривой

PR-кривая (5/5)

ROC-кривая (1/5)

- Receiver Operating Characteristic
- Ось X False Positive Rate

$$FPR = \frac{FP}{FP + TN}$$

Ось Y — True Positive Rate

$$TPR = \frac{TP}{TP + FN}$$

ROC-кривая (1/5)

- Receiver Operating Characteristic
- Ось X False Positive Rate

$$FPR = rac{FP}{FP + TN}$$
 Число отрицательных объектов

Ось *Y* — True Positive Rate

$$TPR = rac{TP}{TP + FN}$$
 Число положительных объектов

ROC-кривая (2/5)

$b(\mathbf{x})$	0.14	0.23	0.39	0.52	0.73	0.90
y	0	1	0	0	1	1

ROC-кривая (в реальности) (3/5)

ROC-кривая (4/5)

- Левая точка: (0,0)
- Правая точка: (1, 1)
- Для идеального классификатора проходит через (0, 1)
- AUC-ROC площадь под ROC-кривой

ROC-кривая (5/5)

AUC-ROC

$$FPR = \frac{FP}{FP + TN};$$
 $TPR = \frac{TP}{TP + FN}$

- FPR и TPR нормируются на размеры классов
- AUC-ROC не поменяется при изменении баланса классов
- Идеальный алгоритм: AUC ROC = 1
- Худший алгоритм: $AUC ROC \approx 0.5$
- Интересные интерпретации: например, это примерно доля пар правильно упорядоченных объектов

Коэффициент Джини

$$Gini = 2 * (AUC - ROC - 0.5)$$

AUC-PRC

$$precision = \frac{TP}{TP + FP};$$
 $recall = \frac{TP}{TP + FN}$

- Точность поменяется при изменении баланса классов
- AUC-PRC идеального алгоритма зависит от баланса классов
- Проще интерпретировать, если выборка несбалансированная
- Лучше, если задачу надо решать в терминах точности и полноты

Пример

- AUC ROC = 0.95
- AUC PRC = 0.001

50000 объектов

y = -1

100 объектов y = +1

> 950000 объектов

> > y = -1

Пример

- Выберем конкретный классификатор
- $a(\mathbf{x}) = 1 50095$ объектов
- Из них FP = 50000, TP = 95
- TPR = 0.95, FPR = 0.05
- precision = 0.0019, recall = 0.95

50000 объектов

y = -1

100 объектов v – **⊥**1

> 950000 объектов

> > y = -1