ML Report

Veermata Jijabai Technological Institute(VJTI)

Subject: Autism Prediction Using Machine Learning

Date: 09/05/2025

Professor: Tabassum Kazi

Team Members:

- 1. Siddhi Parekh (221071047)
- 2. Druhi Phutane (221071052)
- 3. Richa Sawant (221071058)
- 4. Megha Wadher (221071077)

Table of Contents

- 1. Introduction
 - Objective
 - o Problem Statement

2. Dataset Overview

- o Data Source
- Feature Description
- Target Variable

3. Data Preprocessing

- Initial Inspection
- Data Cleaning
 - Handling Missing Values
 - Fixing Inconsistencies
- o Feature Selection & Dropping Irrelevant Columns
- Outlier Detection and Treatment
- Label Encoding

4. Exploratory Data Analysis (EDA)

- Univariate Analysis
 - Numerical Features (age, result)

- Categorical Features
- Bivariate Analysis
- Correlation Matrix
- Key Insights

5. Train-Test Split & Class Balancing

- Splitting the Data
- Handling Class Imbalance using SMOTE

6. Model Building

- Selected Algorithms
 - Decision Tree
 - Random Forest
 - XGBoost
- Cross-Validation

7. Hyperparameter Tuning

- Parameter Grids
- o RandomizedSearchCV for Model Optimization
- Best Model Selection

8. Model Evaluation

- Accuracy
- Confusion Matrix

Classification Report

9. Model Serialization

- Saving the Best Model
- Saving Encoders

10. Next Steps

- o Predictive System Development
- Performance Improvements
- o Potential Deployment (e.g., Web App)

11. Conclusion

- Summary of Findings
- Final Remarks

1. Introduction

Objective

The purpose of this project is to build a machine learning model that can predict the presence of Autism Spectrum Disorder (ASD) in individuals using screening results and demographic data.

Problem Statement

ASD is a developmental disorder that affects communication and behavior. Early identification is crucial. By leveraging machine learning on survey-based data, we aim to assist healthcare professionals in preliminary screening for autism.

2. Dataset Overview

Data Source

- The dataset was loaded from a CSV file named train.csv.
- It contains responses to a ten-question screening test and demographic information.

Feature Description

- Numerical: age, result
- **Categorical:** gender, ethnicity, country of residence, used_app_before, jaundice, austim, relation
- Screening Scores: A1_Score to A10_Score

Target Variable

• Class/ASD: Binary classification — 1 for ASD-positive, 0 for negative.

3. Data Preprocessing

Initial Inspection

- Dataset loaded into a Pandas DataFrame.
- Shape: (number of rows × columns)
- Displayed head/tail, data types, and column structure.

Data Cleaning

- Dropped columns:
 - o ID: Unique identifier, not predictive.
 - o age_desc: Contained only one unique value.
- Country name normalization: Corrected country names like "Viet Nam" to "Vietnam".
- Missing Values:
 - Replaced "?" and uncommon values in ethnicity and relation with "Others".

Outlier Detection & Treatment

- Outliers in age and result detected using the IQR method.
- Replaced outliers with median values to reduce model sensitivity.

Label Encoding

- Applied LabelEncoder to all categorical features.
- Saved encoders using pickle to ensure consistent transformation during inference.

4. Exploratory Data Analysis (EDA)

Univariate Analysis

Numerical Features:

Histograms and box plots showed:

- Age was normally distributed with minor outliers.
- o Result scores had a relatively uniform spread.

Categorical Features:

Count plots showed class imbalance in features like gender, ethnicity, and Class/ASD.

Bivariate Analysis

Correlation Matrix:

A heatmap showed weak to moderate correlations, indicating no multicollinearity.

Key Insights

- Dataset had imbalanced target distribution.
- Categorical classes also showed imbalance.
- No redundant highly correlated features.

5. Train-Test Split & Class Balancing

Train-Test Split

Used an 80/20 split for training and testing respectively.

SMOTE (Synthetic Minority Over-sampling Technique)

- Applied to training data to balance minority class.
- Resulted in equal class distribution, which helps improve model generalization.

6. Model Building

Selected Algorithms

Three tree-based classifiers were trained:

- Decision Tree
- Random Forest
- XGBoost

Cross-Validation

- Applied 5-fold cross-validation to assess performance consistency.
- Reported mean accuracy for each model.

7. Hyperparameter Tuning

Parameter Grids

- Defined hyperparameter grids for:
 - Decision Tree: max_depth, criterion, etc.
 - o Random Forest: n_estimators, max_depth, etc.

XGBoost: learning_rate, subsample, n_estimators, etc.

RandomizedSearchCV

- Used for efficient hyperparameter tuning with 5-fold CV.
- Selected the best estimator for each model.

Best Model Selection

- Compared best cross-validated scores.
- Choose the model with the highest score as the final classifier.

8. Model Evaluation

Test Set Evaluation

- Used the best model to predict on the test set.
- Metrics Reported:
 - Accuracy: Measured correctness.
 - o Confusion Matrix: Showed TP, TN, FP, FN.
 - Classification Report: Included precision, recall, and F1-score for each class.

9. Model Serialization

Saving the Model

• The best model was saved as best_model.pkl.

Saving the Encoders

 Label encoders used during preprocessing were saved as encoders.pkl for future predictions.

10. Next Steps

Predictive System Development

• Use the saved model and encoders to build a prediction pipeline (e.g., Flask or Streamlit app).

Performance Improvements

• Explore ensemble techniques, feature engineering, or additional datasets.

Deployment

• Web app to allow users to input screening responses and receive predictions.

11. Conclusion

- A robust model for autism prediction was developed using tree-based classifiers.
- SMOTE helped to balance the data and improve accuracy.
- The best-performing model was saved and is ready for deployment.
- With further improvements and real-world validation, this model can serve as a useful tool in early ASD screening.

12. Links

Dataset Link: https://www.kaggle.com/datasets/andrewmvd/autism-screening-on-adults

Github link: https://github.com/richa-sawant/ML_Project_AutismDetection

Research paper links: https://www.sciencedirect.com/science/article/pii/S101836472400380X

https://www.sciencedirect.com/science/article/pii/S2772442524000819