

MATHEMATICS OF COMPUTATION

AMERICAN MATHEMATICAL SOCIETY

EDITED BY

James H. Bramble Susanne C. Brenner Howard Elman Walter Gautschi, Managing Editor Eugene Isaacson James N. Lyness Harald Niederreiter Syvert P. Nørsett Andrew M. Odlyzko Frank W. J. Olver John E. Osborn Stanley Osher Carl Pomerance René Schoof L. Ridgway Scott **Daniel Shanks** Chi-Wang Shu Frank Stenger Hans J. Stetter G. W. Stewart Nico M. Temme Vidar Thomée Lars B. Wahlbin Joseph D. Ward Hugh C. Williams John W. Wrench, Jr. Stephen J. Wright

PROVIDENCE, RHODE ISLAND USA

ISSN 0025-5718

Mathematics of Computation

This journal publishes research articles in computational mathematics. Areas covered include numerical analysis, the application of computational methods, algorithms for advanced computer architectures, computational number theory and algebra, and related fields. Table errata and reviews of books in areas related to computational mathematics are also included.

Subscription information. Mathematics of Computation is published quarterly. Subscription prices for Volume 64 (1995) are \$274 list; \$219 institutional member; \$178 member of CBMS organizations; \$164 individual AMS member. A late charge of 10% of the subscription price will be imposed upon orders received from nonmember institutions and organizations after January 1 of the subscription year. Subscribers outside the United States and India must pay a postage surcharge of \$9; subscribers in India must pay a postage surcharge of \$18. Expedited delivery to destinations in North America \$13; elsewhere \$40.

Back number information. For back issues see the AMS Catalog of Publications.

Subscriptions and orders should be addressed to the American Mathematical Society, P. O. Box 5904, Boston, MA 02206-5904. *All orders must be accompanied by payment*. Other correspondence should be addressed to P. O. Box 6248, Providence, RI 02940-6248.

Unpublished Mathematical Tables. The editorial office of the journal maintains a repository of Unpublished Mathematical Tables (UMT). When a table is deposited in the UMT repository a brief summary of its contents is published in the section *Reviews and Descriptions of Tables and Books*. Upon request, the chairman of the editorial committee will supply copies of any table for a nominal cost per page. All tables and correspondence concerning the UMT should be sent to Walter Gautschi, Chairman, Editorial Committee, Mathematics of Computation, Department of Computer Sciences, Purdue University, West Lafayette, IN 47907.

Copying and reprinting. Material in this journal may be reproduced by any means for educational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given. This consent does not extend to other kinds of copying for general distribution, for advertising or promotional purposes, or for resale. Requests for permission for commercial use of material should be addressed to the Assistant Director of Production, American Mathematical Society, P.O. Box 6248, Providence, Rhode Island 02940-6248. Requests can also be made by e-mail to reprint-permission@math.ams.org.

Excluded from these provisions is material in articles for which the author holds copyright. In such cases, requests for permission to use or reprint should be addressed directly to the author(s). (Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of each article.)

Mathematics of Computation is published quarterly by the American Mathematical Society at 201 Charles Street, Providence, RI 02904-2213. Second-class postage is paid at Providence, Rhode Island. Postmaster: Send address changes to Mathematics of Computation, American Mathematical Society, P.O. Box 6248, Providence, RI 02940-6248.

- © Copyright 1995 by the American Mathematical Society. All rights reserved. This journal is indexed in Science Citation Index®, SciSearch®, Research Alert®, CompuMath Citation Index®, Current Contents®/Physical, Chemical & Earth Sciences. Printed in the United States of America.
 - ⊗ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.

This publication was typeset using AMS-TeX, the American Mathematical Society's TeX macro system.

10 9 8 7 6 5 4 3 2 1 00 99 98 97 96 95

MATHEMATICS OF COMPUTATION CONTENTS

Ricardo H. Nochetto, Pointwise a posteriori error estimates for elliptic
problems on highly graded meshes
finite element equations III: On degenerate meshes
H_0^1 -projections onto subspaces of piecewise, high-order polynomials Lixin Wu , The semigroup stability of the difference approximations for
initial-boundary value problems
element approximations to the wave equation with nonhomogeneous
L ₂ Dirichlet boundary data
solutions to degenerate variational problems
factorizations using block-size reduction
convex distance function
sectors
trigonometric series
Frank Stenger, Collocating convolutions
over $(0, \infty)$ for functions with weak singularities at the origin 23' Arno Kuijlaars, Chebyshev-type quadrature and partial sums of the expo-
nential series
Abraham Ziv, Converting approximate error bounds into exact ones 26: Harald Niederreiter, Pseudorandom vector generation by the multiple-
recursive matrix method
polynomials having all zeros in a sector
with small discriminants
number fields of 2-power degrees with ideal class groups of exponents
Irving Kaplansky, The first nontrivial genus of positive definite ternary
forms
for polynomials over finite fields
F. Arnault, Rabin-Miller primality test: Composite numbers which pass it 35: Karl Dilcher and Ladislav Skula, A new criterion for the first case of
Fermat's last theorem

Harvey Dubner and Wilfrid Keller, Factors of generalized Fermat numbers 3 Jon Grantham, The largest prime dividing the maximal order of an element of S_n 4 David Applegate and Jeffrey C. Lagarias, Density bounds for the $3x + 1$ problem. I. Tree-search method 4 David Applegate and Jeffrey C. Lagarias, Density bounds for the $3x + 1$ problem. II. Krasikov inequalities 4					
				Reviews and Descriptions of Tables and Books Gradshteyn and Ryzhik 1, Egorov, Sobolevsky, and Yanovich 2, Petryshyn 3, Beale, Cottet, and Huberson, Editors 4, Arbel 5, Moré and Wright 6, Kronsjö and Shumsheruddin, Editors 7	439
				Table Errata	449
				Gradshteyn and Ryzhik 617	
Supplement to "The Faber polynomials for annular sectors" by John P. Coleman and Nick J. Myers	S1				
Microfiche Supplement F. Diaz y Diaz and M. Olivier, Imprimitive ninth-degree number fields with small discriminants					
Vol. 64, No. 210 April 1	1005				
Vol. 04, No. 210	1773				
Manil Suri, Ivo Babuška, and Christoph Schwab, Locking effects in the					
finite element approximation of plate models	461				
Carsten Carstensen and Ernst P. Stephan, A posteriori error estimates for	402				
boundary element methods	483				
Thanh Tran, The K-operator and the Galerkin method for strongly elliptic equations on smooth curves: Local estimates	501				
Zhixin Shi and Brian Hassard, Precise solution of Laplace's equation					
	515				
Qianshun Chang, Boling Guo, and Hong Jiang, Finite difference method	515				
Qianshun Chang, Boling Guo, and Hong Jiang, Finite difference method for generalized Zakharov equations					
Qianshun Chang, Boling Guo, and Hong Jiang, Finite difference method for generalized Zakharov equations	515537				
Qianshun Chang, Boling Guo, and Hong Jiang, Finite difference method for generalized Zakharov equations L. Corrias, M. Falcone, and R. Natalini, Numerical schemes for conservation laws via Hamilton-Jacobi equations	515				
Qianshun Chang, Boling Guo, and Hong Jiang, Finite difference method for generalized Zakharov equations	515537555				
Qianshun Chang, Boling Guo, and Hong Jiang, Finite difference method for generalized Zakharov equations	515537555				
 Qianshun Chang, Boling Guo, and Hong Jiang, Finite difference method for generalized Zakharov equations L. Corrias, M. Falcone, and R. Natalini, Numerical schemes for conservation laws via Hamilton-Jacobi equations Tao Tang and Zhen-Huan Teng, The sharpness of Kuznetsov's O(√Δx) L¹-error estimate for monotone difference schemes C. Palencia, Stability of rational multistep approximations of holomorphic 	515537555581				
 Qianshun Chang, Boling Guo, and Hong Jiang, Finite difference method for generalized Zakharov equations L. Corrias, M. Falcone, and R. Natalini, Numerical schemes for conservation laws via Hamilton-Jacobi equations Tao Tang and Zhen-Huan Teng, The sharpness of Kuznetsov's O(√Δx) L¹-error estimate for monotone difference schemes C. Palencia, Stability of rational multistep approximations of holomorphic semigroups 	515537555				
 Qianshun Chang, Boling Guo, and Hong Jiang, Finite difference method for generalized Zakharov equations L. Corrias, M. Falcone, and R. Natalini, Numerical schemes for conservation laws via Hamilton-Jacobi equations Tao Tang and Zhen-Huan Teng, The sharpness of Kuznetsov's O(√Δx) L¹-error estimate for monotone difference schemes C. Palencia, Stability of rational multistep approximations of holomorphic semigroups Christian Lubich and Alexander Ostermann, Runge-Kutta approximation 	515537555581591				
 Qianshun Chang, Boling Guo, and Hong Jiang, Finite difference method for generalized Zakharov equations L. Corrias, M. Falcone, and R. Natalini, Numerical schemes for conservation laws via Hamilton-Jacobi equations Tao Tang and Zhen-Huan Teng, The sharpness of Kuznetsov's O(√Δx) L¹-error estimate for monotone difference schemes C. Palencia, Stability of rational multistep approximations of holomorphic semigroups Christian Lubich and Alexander Ostermann, Runge-Kutta approximation of quasi-linear parabolic equations 	515537555581				
 Qianshun Chang, Boling Guo, and Hong Jiang, Finite difference method for generalized Zakharov equations L. Corrias, M. Falcone, and R. Natalini, Numerical schemes for conservation laws via Hamilton-Jacobi equations Tao Tang and Zhen-Huan Teng, The sharpness of Kuznetsov's O(√∆x) L¹-error estimate for monotone difference schemes C. Palencia, Stability of rational multistep approximations of holomorphic semigroups Christian Lubich and Alexander Ostermann, Runge-Kutta approximation of quasi-linear parabolic equations J. C. Butcher, J. R. Cash, G. Moore, and R. D. Russell, Defect correction 	515537555581591601				
 Qianshun Chang, Boling Guo, and Hong Jiang, Finite difference method for generalized Zakharov equations L. Corrias, M. Falcone, and R. Natalini, Numerical schemes for conservation laws via Hamilton-Jacobi equations Tao Tang and Zhen-Huan Teng, The sharpness of Kuznetsov's O(√Δx) L¹-error estimate for monotone difference schemes C. Palencia, Stability of rational multistep approximations of holomorphic semigroups Christian Lubich and Alexander Ostermann, Runge-Kutta approximation of quasi-linear parabolic equations J. C. Butcher, J. R. Cash, G. Moore, and R. D. Russell, Defect correction for two-point boundary value problems on nonequidistant meshes 	515537555581591				
 Qianshun Chang, Boling Guo, and Hong Jiang, Finite difference method for generalized Zakharov equations L. Corrias, M. Falcone, and R. Natalini, Numerical schemes for conservation laws via Hamilton-Jacobi equations Tao Tang and Zhen-Huan Teng, The sharpness of Kuznetsov's O(√Δx) L¹-error estimate for monotone difference schemes C. Palencia, Stability of rational multistep approximations of holomorphic semigroups Christian Lubich and Alexander Ostermann, Runge-Kutta approximation of quasi-linear parabolic equations J. C. Butcher, J. R. Cash, G. Moore, and R. D. Russell, Defect correction for two-point boundary value problems on nonequidistant meshes Peter Ashwin, Klaus Böhmer, and Mei Zhen, A numerical Liapunov- 	515537555581591601				
 Qianshun Chang, Boling Guo, and Hong Jiang, Finite difference method for generalized Zakharov equations L. Corrias, M. Falcone, and R. Natalini, Numerical schemes for conservation laws via Hamilton-Jacobi equations Tao Tang and Zhen-Huan Teng, The sharpness of Kuznetsov's O(√Δx) L¹-error estimate for monotone difference schemes C. Palencia, Stability of rational multistep approximations of holomorphic semigroups Christian Lubich and Alexander Ostermann, Runge-Kutta approximation of quasi-linear parabolic equations J. C. Butcher, J. R. Cash, G. Moore, and R. D. Russell, Defect correction for two-point boundary value problems on nonequidistant meshes Peter Ashwin, Klaus Böhmer, and Mei Zhen, A numerical Liapunov-Schmidt method with applications to Hopf bifurcation on a square 	515537555581591601629				
 Qianshun Chang, Boling Guo, and Hong Jiang, Finite difference method for generalized Zakharov equations L. Corrias, M. Falcone, and R. Natalini, Numerical schemes for conservation laws via Hamilton-Jacobi equations Tao Tang and Zhen-Huan Teng, The sharpness of Kuznetsov's O(√Δx) L¹-error estimate for monotone difference schemes C. Palencia, Stability of rational multistep approximations of holomorphic semigroups Christian Lubich and Alexander Ostermann, Runge-Kutta approximation of quasi-linear parabolic equations J. C. Butcher, J. R. Cash, G. Moore, and R. D. Russell, Defect correction for two-point boundary value problems on nonequidistant meshes Peter Ashwin, Klaus Böhmer, and Mei Zhen, A numerical Liapunov- 	515537555581591601629				
 Qianshun Chang, Boling Guo, and Hong Jiang, Finite difference method for generalized Zakharov equations L. Corrias, M. Falcone, and R. Natalini, Numerical schemes for conservation laws via Hamilton-Jacobi equations Tao Tang and Zhen-Huan Teng, The sharpness of Kuznetsov's O(√Δx) L¹-error estimate for monotone difference schemes C. Palencia, Stability of rational multistep approximations of holomorphic semigroups Christian Lubich and Alexander Ostermann, Runge-Kutta approximation of quasi-linear parabolic equations J. C. Butcher, J. R. Cash, G. Moore, and R. D. Russell, Defect correction for two-point boundary value problems on nonequidistant meshes Peter Ashwin, Klaus Böhmer, and Mei Zhen, A numerical Liapunov-Schmidt method with applications to Hopf bifurcation on a square Knut S. Eckhoff, Accurate reconstructions of functions of finite regularity 	515 537 555 581 591 601 629 649				

Georgi R. Grozev and Qazi I. Rahman, A quadrature formula with zeros	
of Bessel functions as nodes	715
David Chien, Numerical evaluation of surface integrals in three dimen-	
sions	727
J.A.C. Weideman, Computing the Hilbert transform on the real line	745
Alan Edelman and H. Murakami, Polynomial roots from companion ma-	
trix eigenvalues	763
Erich Kaltofen, Analysis of Coppersmith's block Wiedemann algorithm for	
the parallel solution of sparse linear systems	777
Christian Biester, Peter J. Grabner, Gerhard Larcher, and Robert F. Tichy,	
Adaptive search in quasi-Monte-Carlo optimization	807
N. P. Smart, The solution of triangularly connected decomposable form	
equations	819
Tsuneo Ishikawa, On the number of zeros of diagonal forms	841
B. M. M. de Weger, A Thue equation with quadratic integers as variables	855
	033
R. Crandall, J. Doenias, C. Norrie, and J. Young, The twenty-second	063
Fermat number is composite	863
Paul M. Voutier, Primitive divisors of Lucas and Lehmer sequences	869
Chris K. Caldwell, On the primality of $n! \pm 1$ and $2 \cdot 3 \cdot 5 \cdots p \pm 1 \cdots$	889
Reviews and Descriptions of Tables and Books	891
Marchuk, Editor 8, Sommeijer 9, Pryce 10, Hoschek and Lasser 11,	
O'Rourke 12, Schumaker and Webb, Editors 13, Zwillinger 14, Smith	
15, Brass and Hämmerlin, Editors 16, Bouleau and Lépingle 17, Gray	
18, Eisenbud and Robbiano, Editors 19	
Supplement to "Finite difference method for generalized Zakharov equa-	
tions" by Qianshun Chang, Boling Guo, and Hong Jiang	S7
Supplement to "Numerical schemes for conservation laws via Hamilton-	
Jacobi equations" by L. Corrias, M. Falcone, and R. Natalini	S13
Supplement to "A numerical Liapunov-Schmidt method with applications	
to Hopf bifurcation on a square" by Peter Ashwin, Klaus Böhmer,	
and Mei Zhen	S19
and Marian	017
Vol. 64, No. 211 July 1	995
A. H. Schatz and L. B. Wahlbin, Interior maximum-norm estimates for	
finite element methods, Part II	907
Alexander Ženíšek, Maximum-angle condition and triangular finite ele-	
ments of Hermite type	929
Todd Arbogast and Zhangxin Chen, On the implementation of mixed meth-	
ods as nonconforming methods for second-order elliptic problems	943
F. A. Milner and EJ. Park, A mixed finite element method for a strongly	
nonlinear second-order elliptic problem	973
Lawrence C. Cowsar, Jan Mandel, and Mary F. Wheeler, Balancing domain	,,,
decomposition for mixed finite elements	989

Enzo Dari, Ricardo Durán, and Claudio Padra, Error estimators for non-
conforming finite element approximations of the Stokes problem . 1017
Pelle Olsson, Summation by parts, projections, and stability. I 1035
Guo Ben-Yu, A spectral method for the vorticity equation on the surface 1067
David Gottlieb and Chi-Wang Shu, On the Gibbs phenomenon IV: recover-
ing exponential accuracy in a subinterval from a Gegenbauer partial
sum of a piecewise analytic function
Adrian T. Hill and Endre Süli, Upper semicontinuity of attractors for linear
multistep methods approximating sectorial evolution equations 1097
J. H. Verner and M. Zennaro, Continuous explicit Runge-Kutta methods
of order 5
Thomas Sauer and Yuan Xu, On multivariate Lagrange interpolation 1147
J. I. Maeztu and E. Sainz de la Maza, Consistent structures of invariant
quadrature rules for the <i>n</i> -simplex
Cristina Cunha and Fermin Viloche, An iterative method for the numerical
inversion of Laplace transforms
Takemitsu Hasegawa and Tatsuo Torii, An algorithm for nondominant so-
lutions of linear second-order inhomogeneous difference equations 1199
Nico van den Hijligenberg, Youri Kotchetkov, and Gerhard Post, Deforma-
tions of vector fields and Hamiltonian vector fields on the plane 1215
Shuhong Gao and Scott A. Vanstone, On orders of optimal normal basis
generators
J. E. Cremona, Computing the degree of the modular parametrization of
a modular elliptic curve
H. E. Rose, On a class of elliptic curves with rank at most two 1251
Harvey Cohn, Half-step modular equations
Ralph Phillips , Conjugacy classes of $\Gamma(2)$ and spectral rigidity 1287
P. Shiu, Computation of continued fractions without input values 1307
Kenichi Iyanaga, A recursive method to calculate the number of solutions
of quadratic equations over finite fields
Zachary Franco and Carl Pomerance, On a conjecture of Crandall concern-
ing the $qx + 1$ problem
Paul A. Pritchard, Andrew Moran, and Anthony Thyssen, Twenty-two
primes in arithmetic progression
Reviews and Descriptions of Tables and Books
Rombaldi 20, Prathap 21, Bank 22, Hemker and Wesseling, Editors
23, Shampine 24, Sanz-Serna and Calvo 25, Barrett, Berry, Chan,
Demmel, Donato, Dongarra, Eijkhout, Pozo, Romine, and van der
Vorst 26, Cooper and Thron, Editors 27, Zippel 28
Addendum
Addendum
Supplement to "Summation by parts, projections, and stability. I" by Pelle
Olsson S23
Supplement to "On a class of elliptic curves with rank at most 2" by H. E.
Rose
Supplement to "Conjugacy classes of $\Gamma(2)$ and spectral rigidity" by Ralph
Phillips

.

James H. Bramble, Interpolation between Sobolev spaces in Lipschitz do-
mains with an application to multigrid theory
Patrick Le Tallec and Taoufik Sassi, Domain decomposition with non-
matching grids: Augmented Lagrangian approach
Maria Cayco, Leslie Foster, and Howard Swann, On the convergence rate
of the cell discretization algorithm for solving elliptic problems 1397
V. Girault, A local projection operator for quadrilateral finite elements . 1421
Charles M. Elliott and Stig Larsson, A finite element model for the time-
dependent Joule heating problem
P. Neittaanmäki, V. Rivkind, and G. Seregin, A dual finite element ap-
proach for stresses of elasto-perfectly plastic bodies 1455
Zhi-zhong Sun, A second-order accurate linearized difference scheme for
the two-dimensional Cahn-Hilliard equation 1463
Pelle Olsson, Summation by parts, projections, and stability. II 1473
Daoqi Yang, Grid modification for second-order hyperbolic problems 1495
Serge Abrate, On a method for obtaining approximate solutions to Sturm-
Liouville problems
Erich Novak, Klaus Ritter, and Henryk Woźniakowski, Average-case opti-
mality of a hybrid secant-bisection method
Birkett Huber and Bernd Sturmfels, A polyhedral method for solving sparse
polynomial systems
I. Gohberg, T. Kailath, and V. Olshevsky, Fast Gaussian elimination with
partial pivoting for matrices with displacement structure 1557
Thomas Huckle, Low-rank modification of the unsymmetric Lanczos algo-
rithm
R. T. Farouki and C. A. Neff, Hermite interpolation by Pythagorean hodo-
graph quintics
M. D. Buhmann, Multiquadric prewavelets on nonequally spaced knots in
one dimension
Avram Sidi, Convergence analysis for a generalized Richardson extrapola-
tion process with an application to the $d^{(1)}$ -transformation on con-
vergent and divergent logarithmic sequences
Eduardo Friedman and Jonathan W. Sands (with an appendix by Law-
rence C. Washington), On the <i>l</i> -adic Iwasawa λ -invariant in a p -
extension
Ming-yao Zhang, On Yokoi's conjecture
Brigitte Adam, Voronoï-algorithm expansion of two families with period
length going to infinity
Vijay Jha, Faster computation of the first factor of the class number of
$\mathbb{Q}(\zeta_p)$
Stanislav Jakubec, František Marko, and Kazimierz Szymiczek, Parity of
class numbers and Witt equivalence of quartic fields 1711
Daniel Shanks and Samuel S. Wagstaff, Jr., 48 more solutions of Martin
Davis's quaternary quartic equation
Wilfrid Keller, New Cullen primes
Graeme L. Cohen, Stephen F. Gretton, and Peter Hagis, Jr., Multiamicable
numbers
Stan Wagon, Quintuples with square triplets

Reviews and Descriptions of Tables and Books	1757
Euvrard 29, Bulirsch and Kraft, Editors 30, Hackbusch	ch 31, Sobo-
lev 32, Pohst 33	01-41-11090
Supplement to "New Cullen primes" by Wilfrid Keller and W	olfgang Nie-
buhr	S39
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
the large to	
To an in	

