Student

rollNum	name	gender	marks
1	Naman	M	62
2	Aliya	F	70
3	Aliya	F	80
4	James	M	82
5	Swati	F	65

The SQL query below is executed on this database.

SELECT *	FROM	Student	WHERE	gender	= 'F'	AND	marks	> 65;	The	number	of	rows
returned by	y the qu	uery is		_•								

(2)

2. Emp (Empcode, Name, Gender, Salary, Deptt)

SELECT Deptt FROM Emp
WHERE Gender = 'M'
GROUP by Dept
Having avg (Salary) > {select avg (Salary) from Emp}

- 1. The average salary of male employees is the average salary of the organization.
- 2. The average salary of male employees is less than the average salary of the organization.
- 3. The average salary of male employees is equal to the average salary of the organization.
- 4. The average salary of male employees is more than the average salary of the organization.

(4)

4. Consider the relational database with the following four schemas and their respective instances.

Student(sNo, sName, dNo) Dept(dNo, dName)

Course(cNo, cName, dNo) Register(sNo, cNo)

	Student		
sΝο	sName di		
S01	James	D01	
S02	Rocky	D01	
S03	Jackson	D02	
S04	Jane	D01	
S05	Milli	D02	

Dept		
dNo	dName	
D01	CSE	
D02	EEE	

	Course	
cNo	cName	dNo
C11	DS	D01
C12	OS	D01
C21	DE	D02
C22	PT	D02
C23	CV	D03

Register		
<u>sNo</u>	<u>cNo</u>	
SO1	C11	
S01	C12	
S02	C11	
S03	C21	
S03	C22	
S03	C 23	
504	C11	
504	C12	
505	C11	
505	C21	

SQL Query:

SELECT * FROM Student AS S WHERE NOT EXIST

(SELECT cNo FROM Course WHERE dNo = "D01"

EXCEPT

SELECT cNo FROM Register WHERE sNo = S.sNo)

The number of rows returned by the above SQL query is_____

(2)

5. An 8-way set associative cache of size 64 KB (1 KB = 1024 bytes) is used in a system with a 32-bit address. The address is sub-divided into TAG, INDEX, and BLOCK OFFSET. The number of bits in the TAG is ______.

System is 32-bit address.

Cache Size : 64 KB = 2^6* 2^10=2^16

. **So**, cache bits = **16**.

So Tag Bits = 32 - 16 = 16 bit.

As, Cache is an 8-way set associative. So, we have to transfer 3 bits to tag side.

So, final Tag bits = 16 + 3 = 19.

Number of bits in Tag Field = 19.

6. 11. Consider a direct mapped cache of size 32 KB with block size 32 bytes. The CPU generates 32 bit addresses. The number of bits needed for cache indexing and the number of tag bits are respectively.

Solution

The correct option is A 10,17

Size of cache = 32 KB

$$= 32 \times 2^{10}$$
 byte $= 2^5 \times 2^{10}$ byte

= 2¹⁵ byte = 15 bits

Size of tag = 32 - 15 = 17 bits

Cache index = LO - WO = 15 - 5 = 10 bits

- 7. Which one of the following facilitates transfer of bulk data from hard disk to main memory with the highest throughput?
 - 1. DMA based I/O transfer
 - 2. Interrupt driven I/O transfer
 - 3. Polling based I/O transfer
 - 4. Programmed I/O transfer

(1)

8. Let R1 and R2 be two 4-bit registers that store numbers in 2's complement form. For the operation R1+R2, which one of the following values of R1 and R2 gives an arithmetic overflow?

3.
$$R1 = 0011$$
 and $R2 = 0100$

9. R=(A,B,C,D,E,F) FDs (C-> F,E-> A,EC->D,A->B) what are the candidate keys of this relation?

ANS> EC

- 10. Find the decimal equivalent for (110110.101)2
- 11. Find Decimal (123)₁₀ to BCD code.
- 12. Draw a NAND logic diagram that implements the complement of the following function F(A,B,C,D)=(2,4,5,7,9,12,14)