MAT4500 - Mandatory assignment Andreas Thune 01.10.2015

Exercise 1

a) Let $D^n, S^n, S^n_U, S^n_L, f_L : D^n \to S^n_L$ and $f_U : D^n \to S^n_U$ be as defined in exercise. Want to prove that f_L and f_U are homomorphisms. D^n is a closed and bounded subset of a metric space and is therefore compact. By the same argument we see that S^n_U and S^n_L are Hausdorff spaces. Theorem 26.6 tells us that f_L and f_U are homomorphisms if they are bijective and continuous.

(1) f_L and f_U injective: Let $x, y \in D^n$ with $x \neq y \Rightarrow \exists i \in \{1, ..., n\}$ such that $x_i \neq y_i$. This means that:

$$f_L(x)_i = x_i \neq y_i = f_L(y)_i \Rightarrow f_L(x) \neq f_L(y)$$

and

$$f_U(x)_i = x_i \neq y_i = f_U(y)_i \Rightarrow f_U(x) \neq f_U(y)$$

(2) f_L and f_U surjective:

Let $x \in S_U^n$ and $y \in S_L$ with $x = (x_1, ..., x_{n+1})$ and $y = (y_1, ..., y_{n+1})$. Set $\bar{x} = (x_1, ..., x_n)$ and $\bar{y} = (y_1, ..., y_n)$. We clearly see that $\bar{x}, \bar{y} \in \mathbb{R}^n$, but need to show that $||\bar{x}||, ||\bar{y}|| \leq 1$. However this is obvious, since $||\bar{x}|| \leq ||x|| = 1$ and $||\bar{y}|| \leq ||y|| = 1$.

Now we need to show that $f_U(\bar{x}) = x$ and $f_L(\bar{y}) = y$. It suf-

fices to prove $x_{n+1} = \sqrt{1 - ||\bar{x}||^2}$ and $y_{n+1} = -\sqrt{1 - ||\bar{y}||^2}$:

$$||x|| = 1 \Rightarrow \sum_{i=1}^{n+1} x_i^2 = 1 \Rightarrow x_{n+1}^2 = 1 - \sum_{i=1}^n x_i^2 \Rightarrow |x_{n+1}| = \sqrt{1 - ||\bar{x}||^2}$$

and

$$||y|| = 1 \Rightarrow \sum_{i=1}^{n+1} y_i^2 = 1 \Rightarrow y_{n+1}^2 = 1 - \sum_{i=1}^n y_i^2 \Rightarrow |y_{n+1}| = \sqrt{1 - ||\bar{y}||^2}$$

Since $x \in S_U^n$ we know that $x_{n+1} \ge 0$, $x_{n+1} = \sqrt{1 - ||\bar{x}||^2}$, and since $y \in S_L^n$ $y_{n+1} \le 0$, $y_{n+1} = -\sqrt{1 - ||\bar{y}||^2}$.

We then know that $\forall x \in S_U^n \exists \bar{x} \in D^n \ s.t. \ f_U(\bar{x}) = x$, and that $\forall y \in S_L^n \exists \bar{y} \in D^n \ s.t. \ f_L(\bar{y}) = y$. This means that f_L and f_U surjective.

(3) f_L and f_U continuous:

Both f_L and f_U are vector functions, i.e. they are on the form $[F_1(x), ..., F_{n+1}(x)]$. We know from calculus, that these types of functions are continuous if each component is continuous. We also know that $x \mapsto x_i$ and $x \mapsto \sqrt{1 - ||x||^2}$ are continuous. This means that f_L and f_U are continuous.

- $(1) \wedge (2) \wedge (3) \Rightarrow f_L \text{ and } f_U \text{ are homomorphisms.}$
- **b)** Define $X = D^n \sqcup D^n = (D^n \times \{1\}) \cup (D^n \times \{2\})$, and the function $f: X \to S^n$ by:

$$f((x,i)) = \begin{cases} f_U(x) & i = 1\\ f_L(x) & i = 2 \end{cases}$$

Where f_U and f_L is as in a). Note that when you take the Cartesian product between a set A and a singleton set $\{a\}$, $A \times \{a\}$ is homomorphic to A. This means that $D^n \times \{1\}$

and $D^n \times \{2\}$ are homomorphic to D^n . This again means that f_U and f_L are continuous functions when restricted to the two new sets. This again means that f restricted to $D^n \times \{1\}$ and $D^n \times \{2\}$ is continuous. Since these two sets obviously are closed in X, and have empty intersection, the pasting lemma 18.3 implies that f is continuous on the union of $D^n \times \{1\}$ and $D^n \times \{2\}$. But this is X.

Lets prove that f is surjective. Given $y \in S^n$, with $y_{n+1} \leq 0$, surjectivety of f_L implies that $\exists x \in D^n$ such that

$$f_L(x) = y \implies f((x,2)) = y$$

Repeat argument for lower part:

$$y_{n+1} > 0 \implies \exists x \in D^n \text{ s.t } f_U(x) = y \implies f((x,1)) = y$$

Now assume $x \in D^n$ with ||x|| = 1.

$$f((x,1)) = f_U(x) = (x_1, ..., x_n, \sqrt{1 - ||x||^2}) = (x_1, ..., x_n, 0)$$

We also have:

$$f((x,2)) = f_L(x) = (x_1, ..., x_n, -\sqrt{1 - ||x||^2}) = (x_1, ..., x_n, 0)$$

This means that $x^{(1)} \sim x^{(2)}$ in the meaning defined in the exercise.

c) Since $x^{(1)} \sim x^{(2)}$, it is obvious that $D^n \sqcup D^n / \sim$ is equal to $X^* = \{f^{-1}(\{y\}) : y \in S^n\}$ equipped with the quotient topology. Then by Corollary 22.3 in the book, \exists an induced homomorphism $\bar{f}: X^* \to S^n$ if and only if f is quotient map. We already know that f is continuous and surjective, therefore we only need to prove that $f^{-1}(U)$ open in $X \iff U$ open in S^n .

Instead of proving the openness statement I look at the

equivalent statement with U being closed. Assume U closed in S^n . f continuous implies that $f^{-1}(U)$ is closed.

Conversely assume $f^{-1}(U)$ closed in $X = D^n \sqcup D^n$. I now claim without proof that X is compact. This means that $f^{-1}(U)$ is compact. Since f is continuous $f(f^{-1}(U))$ is compact in S^n , and since S^n is Hausdorff $f(f^{-1}(U))$ is closed. Want to show that $f(f^{-1}(U)) = U$.

$$y \in U \implies \exists x \in X : f(x) = y \implies y = f(x) \in f(f^{-1}(U))$$

This means that $U \subset f(f^{-1}(U))$. Conversely:

$$y \in f(f^{-1}(U)) \Rightarrow \exists x \in f^{-1}(U) : y = f(x) \Rightarrow y \in U$$

This means $f(f^{-1}(U)) \subset U \Rightarrow f(f^{-1}(U)) = U$. Since $f(f^{-1}(U))$ is closed so is U.

I have now proved that f is quotient map, and as I explained above the statement in the exercise follows from this.

Exercise 2

a) Let (X, d) be a metric space, and let $K \subset X$ be compact. Since all metric spaces are Hausdorff spaces, and all compact subsets of Hausdorff spaces are closed, K is closed.

Now let $x \in K$, and let $\{B(x,n)\}_{n \in \mathbb{N}}$ be family of open balls centred in x, with radius $n \in \mathbb{N}$. It is obvious that $X = \bigcup_{n=1}^{\infty} B(x,n)$, and that $\bigcup_{n=1}^{\infty} B(x,n)$ is an open cover of K. Since K is compact we know that $\exists \{n_1,...,n_r\} \subset \mathbb{N}$ such that $\bigcup_{i=1}^{r} B(x,n_i)$ covers K. Let $N = \max\{n_1,...,n_r\}$. Then we know that $K \subset B(x,N)$. This means that K is

bounded.

b) Let $X = \mathbb{N}$, and define metric

$$d(x,y) = \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}$$

The requirements:

(i)
$$\forall x, y \in X \ d(x, y) \ge 0 \land d(x, y) = 0 \iff x = y$$

(ii)
$$\forall x, y \in X \ d(x, y) = d(y, x)$$

for (X, d) to be a metric space, are trivially satisfied. The last requirement:

(iii)
$$\forall x, y, z \in X \ d(x, y) \le d(x, z) + d(z, y)$$

we can also show holds, if we separate the cases x = y and $x \neq y$: First assume x = y:

$$d(x,y) = 0 \le d(x,z) + d(z,y) = \begin{cases} 0 & z = x, y \\ 2 & z \ne x, y \end{cases}$$

And for $x \neq y$:

$$d(x,y) = 1 \le d(x,z) + d(z,y) = \begin{cases} 1 & z = x \lor z = y \\ 2 & z \ne x, y \end{cases}$$

(i),(ii) and (iii) \Rightarrow (X,d) is a metric space. Now notice that $X = \mathbb{N}$ is closed by definition, and that X is bounded since $\forall x \in X \ X \subset B(x,2)$, where B(x,2) is the open ball centred in x with radius 2.

Now I want to find an open cover of X that does not contain a finite subcover. I claim that all points $x \in X$ are open in X. We see this by noticing that the open ball $B(x, \frac{1}{2})$ only contain x itself. Finally we conclude that $A = \bigcup_{n=1}^{\infty} \{n\}$ is a disjoint open cover of X, and that there therefore exists no finite subcover of A that covers X. This means that X is not compact.

Exercise 3

- a) Let $f: \mathbb{R}^n \to \mathbb{R}$ be a real polynomial. This means that f is continuous. Since \mathbb{R} is a Hausdorff space, the singleton set $\{0\}$ is closed in \mathbb{R} . This means that $A = f^{-1}(\{0\}) \subset \mathbb{R}^n$ the set in \mathbb{R}^n of solutions to f = 0 is closed, since closedness is preserved through the inverse image of continuous functions.
- **b)** We have the set $SL(2,\mathbb{R}) \subset \mathbb{R}^4$ defined as follows:

$$SL(2,\mathbb{R}) = \{A = \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix} | det(A) = x_1x_4 - x_2x_3 = 1 \}$$

We see that all $A \in SL(2, \mathbb{R})$ can be represented by a vector in \mathbb{R}^4 :

$$A = \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix} = (x_1, x_2, x_3, x_4)^T \in \mathbb{R}^4$$

Now define a polynomial $f: \mathbb{R}^4 \to \mathbb{R}$ by

$$f(x_1, x_2, x_3, x_4) = x_1 x_4 - x_2 x_3 - 1$$

See that $SL(2,\mathbb{R}) = f^{-1}(\{0\})$. The previous exercise then tells us that $SL(2,\mathbb{R})$ is closed.

c) Want to show that $SL(2,\mathbb{R})$ is not compact. Since \mathbb{R}^4 is a metric space, it suffices to show that $SL(2,\mathbb{R})$ is not bounded.

To see that $SL(2,\mathbb{R})$ is not bounded, notice that $\forall x \in \mathbb{R}$ the matrix

$$A_x = \begin{bmatrix} 1 & 0 \\ x & 1 \end{bmatrix} \in SL(2, \mathbb{R})$$

since det(A) = 1. We can then say that the sequence $\{A_n\}_{n=1}^{\infty}$ is contained in $SL(2,\mathbb{R})$. If we take the euclidean vector norm of A_n we get $||A_n|| = \sqrt{2 + n^2}$, which means that $\{||A_n||\}_{n=1}^{\infty}$ is an unbounded sequence in \mathbb{R} . This means that there does not exists a number $M \in \mathbb{R}$ that bound the norms of elements in $SL(2,\mathbb{R})$, and $SL(2,\mathbb{R})$ can therefore not be bounded.

Exercise 4

a) Want to show that the relation \sim defined by :

 $x, y \in X \ x \sim y \iff \exists \ \alpha : [0, 1] \to X, \alpha \ continuous \land \alpha(0) = x \land \alpha(1) = y$ Is an equivalence relation on X.

- (1): $x \sim x$ since the constant function $\alpha : [0, 1] \to X$ given by $\alpha(r) = x$ is continuous, and obviously $\alpha(0) = \alpha(1) = x$
- (2): Assume $x \sim y$. $\Rightarrow \exists \alpha : [0,1] \rightarrow X$ such that $\alpha(0) = x$ and $\alpha(1) = y$. Now define the function $f : [0,1] \rightarrow [0,1]$ by f(t) = 1 t. f is a polynomial, and is therefore continuous.

Now let $\beta:[0,1]\to X$ be the composition $\beta=\alpha\circ f$. Since β is a composition of continuous functions, β is continuous. Observe that $\beta(0)=\alpha(f(0))=\alpha(1)=y$ and that $\beta(1)=\alpha(f(1))=\alpha(0)=x$. This means that $y\sim x$.

(3): Assume $x \sim y$ and $y \sim z$. Then $\exists \alpha, \beta : [0,1] \to X$ such that α, β continuous, $\alpha(0) = x$, $\alpha(1) = \beta(0) = y$ and

$$\beta(1) = z$$
.

Now define $f: [0, \frac{1}{2}] \to [0, 1]$ and $g: [\frac{1}{2}, 1] \to [0, 1]$ by f(t) = 2t and g(t) = 2t - 1. Both g and f are continuous. Next let us define $\omega: [0, 1] \to X$ by:

$$\omega(t) = \begin{cases} \alpha(f(t)) & t \in [0, \frac{1}{2}) \\ \beta(g(t)) & t \in [\frac{1}{2}, 1] \end{cases}$$

Notice that $\omega(0) = \alpha(0) = x$ and that $\omega(1) = \beta(1) = z$. We also see that $\forall t \neq \frac{1}{2} \omega$ is continuous, by the same argument as in (2). Since [0,1] a metric space, showing continuity at $t = \frac{1}{2}$ is the same as showing:

$$\{t_n\}_{n=1}^{\infty} \to \frac{1}{2} \Rightarrow \{\omega(t_n)\}_{n=1}^{\infty} \to y$$

I claim without proof that it is enough to show:

$$\lim_{t \to \frac{1}{2}^-} \omega(t) = \lim_{t \to \frac{1}{2}^+} \omega(t)$$

$$\begin{split} &\lim_{t\to\frac{1}{2}^-}\omega(t)=\lim_{t\to\frac{1}{2}^-}\alpha(f(t))=\alpha(1)=y \text{ and} \\ &\lim_{t\to\frac{1}{2}^+}\omega(t)=\lim_{t\to\frac{1}{2}^+}\beta(g(t))=\beta(0)=y, \text{ by continuity} \\ &\text{of } \alpha,\beta,f,g. \text{ Finally we can conclude that } \omega \text{ is continuous,} \\ &\text{which means that } x\sim z. \end{split}$$

- $(1) \land (2) \land (3) \Rightarrow \sim \text{ is an equivalence relation on } X.$
- **b)** Assume $x, y \in \mathbb{R}^n$, $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_n)$. Then define $\alpha : [0, 1] \to \mathbb{R}^n$ by

$$\alpha(t) = x + (y - x)t = (x_1 + (y_1 - x_1)t, x_2 + (y_2 - x_2)t, ..., x_n + (y_n - x_n)t)$$

Since α is a linear polynomial in all components, it is continuous in all components and therefore continuous. We also see that $\alpha(0) = x$ and $\alpha(1) = y$. this means that

 $x \sim y$. We showed this for general x, y, which means that $\forall x, y \in \mathbb{R}^n x \sim y$. This implies that the equivalence class [x] is equal to $\mathbb{R}^n \ \forall x \in \mathbb{R}^n$.

We have now shown that $(\pi_0(\mathbb{R}^n) = {\mathbb{R}^n}) \Rightarrow |\pi_0(\mathbb{R}^n)| = 1$.

c) Let $x, y \in \mathbb{R} \setminus \{0\}$, and assume x, y < 0. Then $\alpha(t) = x + (y - x)t$ satisfies the conditions for $x \sim y$. The same argument work for x, y > 0. This means that $\forall x, y \in (-\infty, 0) \ x \sim y$ and $\forall x, y \in (0, \infty) \ x \sim y$.

Want to show that for x < 0 and y > 0 x and y are not equivalent in our relation \sim . Assume for contradiction that $x \sim y \Rightarrow \exists \alpha : [0,1] \to \mathbb{R} \setminus \{0\}$ such that α continuous, $\alpha(0) = x$ and $\alpha(1) = y$. However, since α is continuous, [0,1] is connected and $\mathbb{R} \setminus \{0\}$ is unconnected, the image $\alpha([0,1])$ is either entirely contained in $(-\infty,0)$ or in $(0,\infty)$. This is a contradiction because $\alpha(0) \in (-\infty,0)$ and $\alpha(1) \in (0,\infty)$. This means $x \sim y$ is not true. This means that $\pi_0(\mathbb{R} \setminus \{0\}) = \{(-\infty,0),(0,\infty)\} \Rightarrow |\pi_0(\mathbb{R} \setminus \{0\})| = 2$.

d) Let $z \in \mathbb{R}^n$ and $x, y \in \mathbb{R}^n \setminus \{z\}$. Define $\alpha : [0, 1] \to \mathbb{R}^n$ as in b. There are now two cases:

(I):
$$z \notin \alpha([0,1]) \Rightarrow x \sim y$$

(II): $z \in \alpha([0,1])$

Lets look at case (II). Define

$$L = \{x_0 \in \mathbb{R}^n \mid \exists t \in \mathbb{R} \text{ s.t. } x_0 = x + t(y - x)\}$$

as the line in \mathbb{R}^n that contains $\alpha([0,1])$. This means that z also is contained in L. Now choose any point $a \in \mathbb{R}^n \setminus L$. It is clear that the line segments between x and a and be-

tween a and y does not contain z. We can then construct continuous functions as we did in b, such that $x \sim a$ and $a \sim y$. Transitivity property of \sim then gives us $x \sim y$.

This shows that
$$\forall x, y \in \mathbb{R}^n \setminus \{z\}$$
 we have $x \sim y$
 $\Rightarrow \pi_0(\mathbb{R}^n \setminus \{z\}) = \{\mathbb{R}^n \setminus \{z\}\} \Rightarrow |\pi_0(\mathbb{R}^n \setminus \{z\})| = 1$

e) Exercise 4b) and 4d) show that the sets $\{\mathbb{R}^n\}_{n=1}^{\infty}$ and $\{\mathbb{R}^n \setminus \{z\}\}_{n=2}^{\infty}$ are path connected. A result from the book tells us that path connectedness implies connectedness. This means that $\{\mathbb{R}^n\}_{n=1}^{\infty}$ and $\{\mathbb{R}^n \setminus \{z\}\}_{n=2}^{\infty}$ are connected. It is also trivial to show that $\mathbb{R} \setminus \{0\}$ is not connected. Lets use this to show \mathbb{R}^n and \mathbb{R} are non-homomorphic.

Assume for contradiction that \mathbb{R}^n and \mathbb{R} are homomorphic. Then $\exists f : \mathbb{R}^n \to \mathbb{R}$ where f is a homomorphism. Now remove $\{0\}$ from \mathbb{R} and $z = f^{-1}(\{0\})$ from \mathbb{R}^n . If we restrict f to $\mathbb{R}^n \setminus \{z\}$, f should now be a homomorphism between $\mathbb{R}^n \setminus \{z\}$ and $\mathbb{R} \setminus \{0\}$. However, $\mathbb{R}^n \setminus \{z\}$ is connected while $\mathbb{R} \setminus \{0\}$ is not. This is a contradiction since $\mathbb{R} \setminus \{0\}$ is the image of $\mathbb{R}^n \setminus \{z\}$ under f, and connectedness is preserved through the image of a continuous function. Therefore \mathbb{R}^n and \mathbb{R} are non-homomorphic.