MA615-Map assignment

Group2 10/27/2020

1.Reading data

First, we need to import the data form data 'hurr_tracks' and 'rain'

```
#read the data from package `hurricaneexposuredata`
data("hurr_tracks")
data("rain")

#filter the 'Floyd-1999' and 'Allison-2001' from 'hurr_tracks' dataset
#we will use this rounte in mapping
Floyd_route <- filter(hurr_tracks, storm_id=="Floyd-1999")
Allison_route <- filter(hurr_tracks, storm_id=="Allison-2001")

#filter the 'Floyd-1999' and 'Allison-2001' from 'rain' dataset
original_Floyd_rain <- filter(rain, storm_id=="Floyd-1999")
original_Allison_rain <- filter(rain, storm_id=="Allison-2001")</pre>
```

2.Data preparing

Now, we need prepare two data fram for mapping.

```
#pick the 'fips' and sum of precip in both hurricanes.
original_Floyd_rain <- original_Floyd_rain %>%
   group_by(fips,storm_id) %>%
   summarise(precip_sum = sum(precip), .groups = "drop")

original_Allison_rain <- original_Allison_rain %>%
   group_by(fips,storm_id) %>%
   summarise(precip_sum = sum(precip),.groups = "drop")
```

'county.fips' is a database matching FIPS codes to maps package county and state names. And we will use it to merge the map we want.

```
#some fips in 'county.fips' only have 4 numbers
#And we need change it to 5 number, such as '1025' to '01025'
county_fips <- county.fips
county_fips$fips <- str_pad(county_fips$fips,5,side = "left",pad = "0")</pre>
```

First, we need create a new data frame which contains divided region information.

```
Floyd_rain_region <- merge(original_Floyd_rain,county_fips, by="fips") %>%
  separate(polyname, sep = ",", into = c("region","subregion"))

Allison_rain_region <- merge(original_Allison_rain,county_fips, by="fips") %>%
  separate(polyname, sep = ",", into = c("region","subregion"))
```

Then, we list the states required and turn it suitable for mapping.

```
states <- c("texas","oklahoma","kansas","louisiana","arkansas","missouri","iowa",
    "wisconsin","michigan","illinois","indiana","ohio","kentucky","tennessee",
    "alabama","mississippi","florida","georgia","south carolina","north carolina",
    "virginia","west virginia","maryland","delaware","pennsylvania","new jersey",
    "new york","connecticut","rhode island","massachusetts","vermont",
    "new hampshire","maine")

#turn data from the maps package in to a data frame suitable for plotting with ggplot2
map_states <- map_data("county", states)</pre>
```

Next, we merge two data frames prepared which both contain region information. And now, we get the data which contains important information for mapping such as longitude and latitude.

```
#use 'merge' to combine two data frames.
Floyd_rain <- merge(Floyd_rain_region,map_states, by=c("region","subregion"))
Allison_rain <- merge(Allison_rain_region, map_states,by=c("region","subregion"))</pre>
```

At last, break the sum of precip into different range, and we get the data frame for mapping.

3.mapping with package 'ggplot'

Now, we can make maps now, use package 'ggplot' first.

3.1 'Floyd-1999'

```
Floyd rain plot <- ggplot()+
  geom_polygon(Floyd_rain, mapping=aes(x=long, y=lat, group=group, fill=cut))+
  #connects the observations in the order in which they appear in the 'map_states'
  geom_path(map_states, mapping=aes(x=long, y=lat, group=group),color="black")+
  #draw the route
  geom path(Floyd route, mapping = aes(x=longitude, y=latitude),color="red")+
  #display discrete values on a map
  scale_fill_brewer(palette="Blues")+
  \#change the range of x and y
  xlim(min(map_states$long),max(map_states$long))+
  ylim(min(map_states$lat), max(map_states$lat))+
  \#change the name of x, y, and title
  xlab("Longtitude")+ylab("Latitude")+ggtitle("Floyd-1999")+
  #add marks
  labs(fill="Rainfall (mm)")+
  theme(plot.title = element_text(hjust = 0.5, size = 18))
Floyd_rain_plot
```


3.2 'Allison-2001'

```
Allison_rain_plot <- ggplot()+
geom_polygon(Allison_rain, mapping=aes(x=long, y=lat, group=group, fill=cut))+
#connects the observations in the order in which they appear in the 'map_states'
geom_path(map_states, mapping=aes(x=long, y=lat, group=group),color="sky blue")+
#draw the route
geom_path(Allison_route, mapping = aes(x=longitude, y=latitude),color="red")+
#change the range of x and y
xlim(min(map_states$long),max(map_states$long))+
ylim(min(map_states$lat),max(map_states$lat))+
#change the name of x, y, and title
xlab("Longtitude")+ylab("Latitude")+ggtitle("Allison-2001")+
#add marks
labs(fill="Rain >175 mm")+
theme(plot.title = element_text(hjust = 0.5, size = 18))
Allison_rain_plot
```


4.mapping with package 'tmap'

Next, we try use package 'tmap' for mapping.

4.1 Data preparing

First, we need to transform the data 'map_states' into spatial version.

```
tmap_states <- st_as_sf(map("county", states,plot = FALSE, fill = TRUE))</pre>
```

Then, we creat a new data frame which is in spatial format from 'Floyd_rain' and 'Allison_rain'

```
#for Flovd-1999
t Floyd rain <- Floyd rain %>%
  select(region, subregion, cut) %>%
  mutate(ID=str c(region, subregion, sep = ",")) %>%
  select(ID,cut) %>%
  rename(`Rainfall(mm)`=cut)
#combine the data
t Floyd rain <- left join(t Floyd rain, tmap states, by="ID")
#change the class again, from data.frame to sf
t_Floyd_rain <- st_as_sf(t_Floyd_rain)</pre>
#for Allison-2001
t Allison rain <- Allison rain %>%
  select(region, subregion, cut) %>%
  mutate(ID=str c(region, subregion, sep = ",")) %>%
  select(ID,cut) %>%
  rename(`Rainfall > 175mm`=cut)
#combine the data
t_Allison_rain <- left_join(t_Allison_rain, tmap_states, by="ID")</pre>
#change the class again, from data.frame to sf
t_Allison_rain <- st_as_sf(t_Allison_rain)</pre>
```

Lastly, we still need to transform data 'Floyd' and 'Allison' into spatial ones.

```
#for Floyd-1999
t_Floyd_route <- cbind(Floyd_route$longitude,Floyd_route$latitude)$>$
  Line() $>$ Lines(ID='Floyd-1999') $>$
  list() $>$ SpatialLines()

#for Allison_2001
t_Allison_route <- cbind(Allison_route$longitude,Allison_route$latitude)$>$
  Line() $>$ Lines(ID='Allison-2001') $>$
  list() $>$ SpatialLines()
```

4.2 'Floyd-1999'

Now, we get the spatial form of data we want, and we try to draw.

Floyd-1999

4.3 Allison-2001

Allison-2001

