

HEXFET® Power MOSFET

V _{DS}	60	٧
V _{GS Max}	± 16	V
$R_{DS(on) max}$ (@V _{GS} = 10V)	480	$\mathbf{m}\Omega$
$R_{DS(on) max}$ (@V _{GS} = 4.5V)	640	$\mathbf{m}\Omega$

Application(s)

• Load/ System Switch

Features and Benefits

Features

Industry-standard pinout
Compatible with existing Surface Mount Techniques
RoHS compliant containing no lead, no bromide and no halogen
MSL1

Benefits

results in

Multi-vendor compatibility
Easier manufacturing
Environmentally friendly
Increased reliability

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units
V _{DS}	Drain-Source Voltage	60	V
$I_D @ T_A = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V	1.2	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	0.93	A
DM	Pulsed Drain Current	4.8	1
P _D @T _A = 25°C	Maximum Power Dissipation	1.25	l w
$P_D @ T_A = 70^{\circ}C$	Maximum Power Dissipation	0.80	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	Linear Derating Factor	0.01	W/°C
V_{GS}	Gate-to-Source Voltage	± 16	V
T _{J,} T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

Symbol	Symbol Parameter		Max.	Units
$R_{\theta JA}$	Junction-to-Ambient ③		100	°C/W
$R_{\theta JA}$	Junction-to-Ambient (t<10s)		99	C/VV

ORDERING INFORMATION:

See detailed ordering and shipping information on the last page of this data sheet.

Electric Characteristics @ $T_J = 25$ °C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Мах.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	60			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.06		V/°C	Reference to 25°C, $I_D = 5.0$ mA
B	Static Drain-to-Source On-Resistance		356	480	mΩ	$V_{GS} = 10V, I_D = 1.2A$ ②
$R_{DS(on)}$	Static Diam-to-Source On-Nesistance		475	640	11122	$V_{GS} = 4.5V, I_D = 0.96A$ ②
$V_{GS(th)}$	Gate Threshold Voltage	1.0	_	2.5	V	$V_{DS} = V_{GS}$, $I_D = 25\mu A$
I _{DSS}	Drain to Source Leakage Current		_	20		$V_{DS} = 60V$, $V_{GS} = 0V$
	Drain-to-Source Leakage Current		_	150	μA	$V_{DS} = 60V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 16V
	Gate-to-Source Reverse Leakage			-100	ΠA	V _{GS} = -16V
R_G	Internal Gate Resistance		7.5		Ω	
gfs	Forward Transconductance	1.6	_		S	$V_{DS} = 25V, I_{D} = 1.2A$
Q_g	Total Gate Charge		0.67	_		I _D = 1.2A
Q_{gs}	Gate-to-Source Charge		0.18		nC	$V_{DS} = 30V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		0.40			V _{GS} = 4.5V ②
t _{d(on)}	Turn-On Delay Time		4.9			V _{DD} = 30V②
t _r	Rise Time		3.8		ns	I _D = 1.2A
t _{d(off)}	Turn-Off Delay Time		3.7		115	$R_G = 6.8\Omega$
t _f	Fall Time		2.8			$V_{GS} = 4.5V$
C _{iss}	Input Capacitance		64			V _{GS} = 0V
C _{oss}	Output Capacitance		13	_	pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		6.6			f = 1.0MHz

Source - Drain Ratings and Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
ls	Continuous Source Current (Body Diode)			1.2		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			4.8		integral reverse p-n junction diode.
V_{SD}	Diode Forward Voltage			1.2	V	$T_J = 25^{\circ}C$, $I_S = 1.2A$, $V_{GS} = 0V$ ②
t _{rr}	Reverse Recovery Time		14	21	ns	$T_J = 25^{\circ}C, V_R = 30V, I_F=1.3A$
Q_{rr}	Reverse Recovery Charge		8.3	12	nC	di/dt = 100A/µs ②

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current vs. Ambient Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

5

Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient

Fig 12. Typical On-Resistance vs. Gate Voltage

Fig 13. Typical On-Resistance vs. Drain Current

Fig 14a. Basic Gate Charge Waveform

6

Fig 14b. Gate Charge Test Circuit

Fig 15. Typical Threshold Voltage vs. Junction Temperature

Fig 16. Typical Power vs. Time

Micro3 (SOT-23) Package Outline

Dimensions are shown in millimeters (inches)

DIMENSIONS					
SYMBOL	MILLIM	ETERS	INCHES		
STIVIBOL	MIN	MAX	MIN	MAX	
Α	0.89	1.12	0.035	0.044	
A1	0.01	0.10	0.0004	0.004	
A2	0.88	1.02	0.035	0.040	
b	0.30	0.50	0.012	0.020	
С	0.08	0.20	0.003	0.008	
D	2.80	3.04	0.110	0.120	
E	2.10	2.64	0.083	0.104	
E1	1.20	1.40	0.047	0.055	
е	0.95	BSC	0.037	BSC	
e1	1.90	BSC	0.075	BSC	
L	0.40	0.60	0.016	0.024	
L1	0.54	REF	0.021	REF	
L2	0.25	BSC	0.010	BSC	
0	0	8	0	8	

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1994 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- CONTROLLING DIMENSION: MILLIMETER. ADATUM PLANE H IS LOCATED AT THE MOLD PARTING LINE.
- ZADATUM AND B TO BE DETERMINED AT DATUM PLANE H.

 ADATUM AND B TO BE DETERMINED AT DATUM PLANE H.

 ADMENSIONS D AND E1 ARE MEASURED AT DATUM PLANE H. DIMENSIONS DOES

 NOT INCLUDE MOLD PROTRUSIONS OR INTERLEAD FLASH. MOLD PROTRUSIONS OR INTERLEAD FLASH SHALL NOT EXCEED 0.25 MM (0.010 INCH) PER SIDE. △DIMENSION L IS THE LEAD LENGTH FOR SOLDERING TO A SUBSTRATE.
- 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO 236 AB.

Micro3 (SOT-23/TO-236AB) Part Marking Information

- A = IRLML2402
- B = IRLML2803C = IRLML6302
- D = IRLML5103
- E = IRLML6402
- F = IRLML6401
- G = IRLML2502
- H = IRLML5203
- I = IRLML0030
- J = IRLML2030
- K = IRLML0100
- L = IRLML0060
- M = IRLML0040
- N = IRLML2060
- P = IBLML9301 R = IRLML9303
- Note: A line above the work week (as shown here) indicates Lead - Free.

W = (1-26) IF PRECEDED BY LAST DIGIT OF CALENDAR YEAR

YEAR	Υ	WORK WEEK	W
2001	1	01	Α
2002	2	02	В
2003	3	03	С
2004	4	04	D
2005	5		
2006	6		
2007	7		
2008	8	1	- 1
2009	9	7	7
2010	0	24	X
		25	Υ
		26	Z

W = (27-52) IF PRECEDED BY A LETTER

YEAR	Υ	WORK WEEK	W	
2001	Α	27	Α	
2002	В	28	В	
2003	С	29	С	
2004	D	30	D	
2005	Е			
2006	F			
2007	G			
2008	Н			
2009	J	1	1	
2010	K	50	Х	
		51	Y	
		50	7	

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Micro3™ Tape & Reel Information

Dimensions are shown in millimeters (inches)

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Orderable part number	Package Type	Standard Pack N		Note
		Form	Quantity	
IRLML2060TRPbF	Micro3	Tape and Reel	3000	

Qualification information[†]

Qualification level	Consumer ^{††} (per JEDEC JESD47F ^{†††} guidelines)		
Moisture Sensitivity Level	Micro3	MSL1 (per IPC/JEDEC J-STD-020D ^{†††})	
RoHS compliant	Yes		

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/product-info/reliability
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/
- ††† Applicable version of JEDEC standard at the time of product release.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.
- 3 Surface mounted on 1 in square Cu board.
- 4 Refer to application note #AN-994.

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information, 02/2010