Average precision与PR曲线线下面积

2019年1月20日 17:09

在使用sklearn做简单的多标签分类问题时,注意到sklearn.metrics中有计算average precision (AP) 的方法,而没有计算area under precision-recall curve (AUPRC) 的方法。 计算AP的方法是sklearn.metrics.average precision score,官方文档中有这样的说明:

AP summarizes a precision-recall curve as the weighted mean of precisions achieved at each threshold, with the increase in recall from the previous threshold used as the weight:

$$AP = \sum_{n} (R_n - R_{n-1}) P_n$$

where P_n and R_n are the precision and recall at the nth threshold [1]. This implementation is not interpolated and is different from computing the area under the precision-recall curve with the trapezoidal rule, which uses linear interpolation and can be too optimistic.

可见AP相当于PR曲线的线下面积,只是区别于插值的方法。上面也提到插值的方式计算出的 AUPRC too optimistic,因为常用的插值策略,在特定的recall值点r,选择>r的最大precision 作为r点的precision值。下文将首先介绍sklearn中AP的算法,再介绍常用的11点插值AUPRC。

-, AP

average_precision_score接收的两个重要的参数是y_true和y_score, y_true是测试集的真实 labels, y_score是分类器预测出的概率值, 有些分类器通过调用 "decision_function" 返回 y score. 我在使用这个AP函数时, 有两个疑问:

- (1) **y_score用来做什么**?在计算AP时,我们已知它相当于PR曲线的线下面积,那么计算时需要一些(precision, recall)点,这个函数如何根据y_true和y_score计算(precision, recall)呢?
- (2) AP名字为average precision,名字中没有出现recall,也就是说计算结果相当于跟recall没关系,但它有时PR曲线的线下面积,**为什么此时AP=AUPRC**呢? 下面以具体的例子来说。

假设测试集中有20个样本,第二列是输入的y_score,第三列为ground truth label,即y_true. 首先将数据根据y_score降序排列,如下图所示。

id	score	gt_label	
1	0.23	0	
2	0.76	1	
3	0.01	0	
4	0.91	1	
5	0.13	0	
6	0.45	0	
7	0.12	1	
8	0.03	0	
9	0.38	1	
10	0.11	0	
11	0.03	0	
12	0.09	0	
13	0.65	0	
14	0.07	0	
15	0.12	0	
16	0.24	1	
17	0.1	0	
18	0.23	0	
19	0.46	0	
20	0.08	1	

id	score	gt_label
4	0.91	1
2	0.76	1
13	0.65	0
19	0.46	0
6	0.45	0
9	0.38	1
16	0.24	1
1	0.23	0
18	0.23	0
5	0.13	0
7	0.12	1
15	0.12	0
10	0.11	0
17	0.1	0
12	0.09	0
20	0.08	1
14	0.07	0
8	0.03	0
11	0.03	0
3	0.01	0

首先,将score最高的作为正样本,预测其label=1,其他label=0,这样我们得到第一个(precision, recall)点,按照本例计算这个点为(precision=1, recall=1/6)。然后将score排序第一和第二高的作为正样本,预测它们的label=1,其余label=0,这样又得到第二个(precision, recall)点。以此类推,直到计算出20个点对,根据这20个点画出PR曲线如下:

再来回顾AP的计算公式: $AP = \sum_n (R_n - R_{n-1}) P_n$, 当recall值不变化时,对AP的计算没有贡献,上图中有贡献的点是recall发生变化的点,进一步观察可以发现,这些点分别为recall=1/6, 2/6, 3/6, 4/6, 5/6, 6/6. 计算AP时加了五部分的矩形面积来近似线下面

积,五个 $(R_n - R_{n-1})$ 的值都是1/6,6是测试数据中ground truth为正例的个数。 所以实际上AP的计算公式AP = $\frac{1}{M}\sum_n P_n$,M为测试集中label=1的样本个数。因此,AP命名为average precision。

二、11点插值AUPRC

理解了AP之后,我们就能很容易理解插值AUPRC。11点插值选取recall=[0, 0.1, 0.2, ..., 1]这11个点,如何选取11点对应的precision值呢?以r=0.1为例,它对应的p值,是r>0.1时最大的precision值。因为对于每个点都选用了之后最大的p值,所有说这种方式是optimistic的。

三、另一种方法

还有一种计算AP的方法,结合了不插值和选最大的策略。仍以前面的数据为例,计算AP时recall还是原来的那几个点,不过选择precision时,是选之后最大的precision。如下图所示:

top-N	Precision	Recall(r)	Max Precision for Any Recall r' >= r	Average Precision		
1	1/1	1/6	1			
2	2/2					
3	2/3	2/6	1			
4	2/4					
5	2/5					
6	3/6	3/6	4/7			
7	4/7					
8	4/8	4/6	4/7			
9	4/9		-, ,			
10	4/10			0,6621		
11	5/11	5/6		, , , ,		
12	5/12		5/11			
13	5/13					
14	5/14					
15	5/15					
16	6/16	6/6	6/16			
17	6/17					
18	6/18					
19	6/19					
20	6/20					

四、PR曲线含义

上面提到的三种方法,计算出的结果都可以称为AUPRC。PR曲线能够直观的展示模型的效果,而AUPRC通过计算PR曲线的线下面积值,量化模型的效果。这个值介于0-1之间,越大越好。一个模型较差时,当recall不断增大,它会牺牲precision,因为它增大recall的方式是将较多0预测为1;反之,模型较好时,recall增大的同时,precision也会相对稳定,因此线下面积会较大。

附注:

本文图片摘自博客https://www.jianshu.com/p/63fc7870d0cb,这篇博客也对AP有比较好的讲解,推荐阅读。