WEBER Tom, MICHEL Merlin

WATTWISE

Energy Forecasting App

https://streamlit-app-231204006378.europe-west1.run.app

May 12, 2025, University of Liège

PROJECT OVERVIEW

Design an automated, cloud-native system that retrieves meteorological and energy data, trains a forecasting model, stores predictions in a scalable database, and presents results in a userfriendly web interface.

End-to-end pipeline 01 using GCP (Google Cloud Platform)

Scheduled data 02 retrieval and model retraining

Scalable data 03 storage with Bigtable

04

Real-time web interface using Streamlit and Cloud Run

EDA

. . . .

DATA RETRIEVAL

Data Sources

- External API for weather and energy usage
- Structured as daily time series by country

Components

- data_ingestion: Downloads data and stores raw datasets in Cloud Storage
- data_preprocessing: Cleans, normalizes, and splits features & targets
- Data is split into:
- Energy features and target (Electricity Demand)
- Meteo features and targets (e.g. Wind Speed, Air Temperature)

Storage

- Preprocessed datasets stored in Google Cloud Storage
- Final predictions and features stored in Bigtable (keyed by COUNTRY#YYYY-MM-DD)

MLPIPELINE

Data Ingestion & Preprocessing

Load raw data from external APIs

Training

Train two separate models:

- One for energy prediction
- One for weather features

Prediction

Use models to generate forecasts

Storage

Save predictions to Bigtable

SCALABLE BIGTABLE SCHEMA

Why?

- **Scalable** for multiple countries and time ranges
- **Optimized** for time-series storage and fast reads
- Easy integration with ML pipeline and web frontend

Design

- Two tables:
 - o input_data
 - predictions
- One row per country per day : {country_code}#{date} e.g. ES#2025-04-01, FR#2025-05-01
- cf1 column family

Access

- Vertex AI ML pipeline (for writing input/output)
- Streamlit frontend (for reading data by country & date)

WEBAPPLICATION

O1 Flask vs streamlit? O3 Features

02 Data retrieval

DEPLOYMENT ON CLOUD RUN

Cloud Run

- Fully managed, serverless platform
- Scales automatically with demand
- No server provisionning or maintenance
- Pay-per-use billing model

Secure Integration

- Uses a dedicated service account with Bigtable read access
- No credentials stored inside the container
- Access managed via GCP IAM roles

Web App Access

- Cloud Run assigns a public HTTPS URL
- App listens on port 8080, required by Cloud Run
- Streamlit UI is accessible from any device

Fast Iteration Workflow

- 1. Modify code
- 2. Run gcloud builds submit
- 3. Re-deploy with gcloud run deploy
- 4. New version is instantly live

CI/CD

- pre-commit-hooks to check quality of code using Ruff
- Test some functionality of code using Pytest
- Issue running Google cloud command using python

DEMO

https://streamlit-app-231204006378.europe-west1.run.app

