Regression Inference and Forecasting COR1-GB.1305 – Statistics and Data Analysis

Inference

1. Here are the least squares estimates from the fitting the model

Price =
$$\beta_0 + \beta_1 \text{Size} + \varepsilon_1$$

for n = 18 apartments in Greenwich Village. Price is measured in units of \$1000 and size is measured in units of 100 ft².

Model Summary

Coefficients

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	182.3	62.4	2.92	0.010	
Size(100sqft)	44.95	4.37	10.29	0.000	1.00

Regression Equation

$$Price(\$1000) = 182.3 + 44.95 Size(100sqft)$$

- (a) Construct a 95% confidence interval for β_1 .
- (b) What is the meaning of the confidence interval for β_1 ?
- (c) What is the meaning of a 95% confidence interval for β_0 ? In the context of the housing data, is this useful?
- (d) Perform a hypothesis test at level 5% of whether or not the is a linear relationship between Size and mean Price.

2. 51 students reported their commute times (in minutes) and the number of times they go out to dinner in a typical month. We will use this data to examine the relationship between these two variables. We fit the model

Dinners =
$$\beta_0 + \beta_1$$
Commute + ε

using least-squares. The scatterplot at Minitab regression output follow.

Model Summary

Coefficients

Regression Equation

dinners = 7.72 - 0.0152 commute

- (a) Quantify the relationship between dinners and commute time using a 95% confidence interval. (You will need the value $t_{.025,49} \approx 2.021$.)
- (b) Perform a hypothesis test to determine if there is a significant linear relationship between dinners and commute time.

Forecasting

3. We used the regression model fit to the housing data to predict price at size 200	3.	We used the	regression	model fit to	the housing	data to	predict	price at	size 200	$0 ext{ ft}^2$
--	----	-------------	------------	--------------	-------------	---------	---------	----------	----------	-----------------

Regression Equation

```
Price(\$1000) = 182.3 + 44.95 \, Size(100sqft)
```

Variable Setting Size(100sqft) 20

```
Fit SE Fit 95% CI 95% PI
1081.27 38.1287 (1000.44, 1162.10) (851.667, 1310.88)
```

(a) Find a 95% confidence interval for the mean price of all apartments with size 2000 ft².

(b) Find a 95% prediction interval for the price of a particular apartments with size 2000 ft².

(c) Make a statement about the prices of 95% of all apartments with size 2000 $\rm ft^2$.

(d) What is the difference between the confidence interval and the prediction interval?

4. We fit a regression model to the 294 restaurants from the 2003 Zagat data. Our predictor variable is food quality (1–30), and our response variable is price (\$). Here is the result of using the fitted model to predict the price when the food quality is 25.

Model Summary

```
S R-sq R-sq(adj) R-sq(pred)
12.5559 27.93% 27.68% 26.86%
```

Coefficients

```
Term Coef SE Coef T-Value P-Value VIF Constant -4.74 3.95 -1.20 0.232 Food 2.129 0.200 10.64 0.000 1.00
```

Regression Equation

```
Price = -4.74 + 2.129 Food
```

Variable Setting Food 25

```
Fit SE Fit 95% CI 95% PI
48.4832 1.33906 (45.8478, 51.1187) (23.6315, 73.3349)
```

- (a) What is the interpretation of the 95% confidence interval?
- (b) What is the interpretation of the 95% prediction interval?
- (c) Explain how the confidence interval is related to Fit, SE Fit, and S.
- (d) Explain how the prediction interval is related to Fit, SE Fit, and S.