

@ GROUND FLOOR

@ 2ND & 3RD FLOOR

@ 4TH FLOOR

@ 4th Floor

STEPS

1. The program will check the availability of the manufactured bar lengths.

Example: The available manufactured bar lengths are 6, 7.5, 10.5, and 12 meters.

2. The program then will check the "connection below" in order to determine total height of the column

Example: @ C – 1

Ground Floor; Connected to F - 2

Second Floor & Third Floor; Connected to C - 1 (they are typical)

Fourth Floor; Connected to C – 1

3. The program will determine the largest depth of the suspended beam and roof beam that is connected to the column in its respected floor

Note:

- It is only applied on 2nd floor and above.
- The indicator that the particular beam is connected to the column is if the column is selected as a support on the beam. As shown in this picture.

Example:

@ 2nd & 3rd Floor; B-1 (D=700), B-2 (D=700), and B-3 (D=700).

@ 4th Floor; B-1 (D=700), B-2 (D=700), B-3 (D=700), RB-1(D=300), RB-2 (D=350), and RB-3 (D=300)

Thus,

@2nd & 3rd Floor; $D_{B2} = D_{B3} = 700 \ mm$

@ 4th Floor; $D_{B4} = 700 \ mm$ and $D_{RB4} = 350 \ mm$

4. The program then will compute the clear height of the column in its respected floor

$$H_{C1} = H_n + D_F - \left(D_{B(2)} \text{ or } D_{RB1}\right)$$
 for ground floor $H_{Cn} = H_n - \left(D_{B(n+1)} \text{ or } D_{RB(n)}\right)$ for upper floors

Note: the largest between $D_{B(n+1)}$ and D_{RB} will be chosen

LEGEND:

Example:

• For Ground Floor

$$H_{C1} = H_1 + D_F - D_{B2} = 3350 + 1500 - 700 = 4150 \, mm$$

• For 2nd

$$H_{C2} = H_2 - D_{B3} = 3150 - 700 = 2450 \, mm$$

For3rd Floor

$$H_{C3} = H_3 - D_{R4} = 3150 - 700 = 2450 \, mm$$

• For 4th Floor

Since the there is no suspended beam of the upper floor connected thus,

$$D_{B(n+1)} = 0$$

$$H_{C4} = Hn - D_{RB} = 4500 - 350 = 3900 \, mm$$

5. The program will compute the required quantity of @rest lateral ties, lateral ties below NGL (if there is), and joint ties for each column.

LEGEND

- For Ground Floor
 - a) If there are lateral ties (Below NGL)

$$Qty_{TE(1)} = \frac{D_{F} - \left(\sum_{2}^{3} Qty_{TE(x)} S_{E(x)}\right) - CC_{F} - d_{bLF} - d_{bTF} - d_{bMR}}{S_{E(1)}}$$

Then,

$$Qty_{T(@rest)} = \frac{H_{C1} - \left(\sum_{1}^{3} Qty_{TE(x)} S_{E(x)}\right) - \left(\sum_{1}^{x} Qty_{T(x)} S_{(x)}\right) - CC_{F} - d_{bLF} - d_{bTF} - d_{bMR}}{S_{(@rest)}} + 1$$

And,

$$Qty_{TQ} = \frac{{}^{D_{B(n+1)}or \, D_{RB}}}{S_{TI}} - 1$$

b) If there are NO lateral ties (Below NGL)

$$Qty_{T(@rest)} = \frac{{}^{H_{c1}-2\left(\sum\limits_{1}^{x}Qty_{T(x)}S_{(x)}\right) - CC_{F} - d_{bTF} - d_{bTF} - d_{bMR}}}{S_{(@rest)}} + 1$$

And,

$$Qty_{TQ} = \frac{D_{B(n+1)} \operatorname{or} D_{RB}}{S_{TJ}} - 1$$

• For the upper floors

$$Qty_{T(@rest)} = \frac{H_{Cn} - 2\left(\sum_{1}^{x} Qty_{T(x)} S_{(x)}\right)}{S_{(@rest)}} + 1$$

And

$$Qty_{TQ} = \frac{D_{B(n+1)}or D_{RB}}{S_{TI}} - 1$$

Note:

If the *Answer*≥0, then Round Up to whole number

If the Answer < 0, then Round Down to whole number

Example:

@ Ground Floor

Since there are Lateral Ties (Below NGL)

$$Qty_{TE(1)} = \frac{D_F - \left(\sum_{2}^{3} Qty_{TE(x)} S_{E(x)}\right) - CC_F - d_{bLF} - d_{bTF} - d_{bMR}}{S_{E(1)}}$$

$$Qty_{TE(1)} = \frac{1500 - [1(50) + 0(0)] - 75 - 25 - 25 - 32}{100} = 12.93 \rightarrow 13$$

Then,

$$Qty_{T(@rest)} = \frac{H_{C1} - \left(\sum_{1}^{3} Qty_{TE(x)} S_{E(x)}\right) - \left(\sum_{1}^{2} Qty_{T(x)} S_{(x)}\right) - CC_{F} - d_{bLF} - d_{bTF} - d_{bMR}}{S_{(@rest)}} + 1$$

$$Qty_{T(@rest)} = \frac{4150 - [13(100) + 1(50) + 0(0)] - [1(50) + 14(100)] - 75 - 25 - 25 - 32}{150} + 1$$

$$Qty_{T(@rest)} = 8.95 \rightarrow 9$$

And

$$Qty_{TQ} = \frac{D_{B(1+1)} \text{ or } D_{RB}}{S_{TI}} = \frac{D_{B(3)}}{S_{TI}} = \frac{700}{100} - 1 = 6$$

@ 2nd Floor

$$\begin{split} Qty_{T(@rest)} &= \frac{H_{c2} - 2 \binom{2}{\sum_{1}^{2} Qty_{T(x)} S_{(x)}}}{S_{(@rest)}} \\ Qty_{T(@rest)} &= \frac{2450 - 2[1(50) + 14(100)]}{150} + 1 = -2 \end{split}$$

And,

$$Qty_{TQ} = \frac{D_{B(2+1)} \text{ or } D_{RB}}{S_{TJ}} - 1 = \frac{700}{100} - 1 = 6$$

@ 3rd Floor

$$Qty_{T(@rest)} = \frac{H_{c3} - 2\left(\sum_{1}^{2} Qty_{T(x)} S_{(x)}\right)}{S_{(@rest)}} - 1$$

$$Qty_{T(@rest)} = \frac{2450 - 2[1(50) + 14(100)]}{150} + 1 = -2$$

And,

$$Qty_{TQ} = \frac{D_{B(3+1)} \text{ or } D_{RB}}{S_{TI}} - 1 = \frac{700}{100} - 1 = 6$$

$$Qty_{T(@rest)} = \frac{H_{C4} - 2\left(\sum\limits_{1}^{2} Qty_{T(x)}S_{(x)}\right)}{S_{(@rest)}}$$

$$Qty_{T(@rest)} = \frac{_{3900-2[1(50)+14(100)]}}{_{150}} + 1 = 7.667 \rightarrow 8$$

And,

$$Qty_{TQ} = \frac{D_{B(2+1)} or D_{RB}}{S_{TI}} - 1 = \frac{350}{100} - 1 = 2.5 \rightarrow 3$$

6. The program will compute the length of the lateral ties. Depending on what Lateral Ties configuration.

LEGEND:			

Note: (For R_{I}

Case 1: $d_{Mb} = 10 \text{ } mm \rightarrow 16 \text{ } mm$

$$R_L = 2d_T$$

Case 2: $d_{Mb} = 20 \text{ } mm \rightarrow 25 \text{ } mm$

$$R_L = 2.5d_T$$

• For Lateral Ties Configuration 1

$$L_{_{B}}=\,2(B\,+\,D)-\,8\Big(CC_{_{C}}\Big)+\,2H_{_{L(d)}}-\,3R_{_{L}}$$

• For Lateral Ties Configuration 2

$$L_{B(a)} = 2(B + D) - 8(CC_C + d_T) + 2H_{L(135)} - 3R_L$$

$$L_{B(b)} = 4\sqrt{\left(\frac{B}{2} - CC_{c}\right)^{2} + \left(\frac{D}{2} - CC_{c}\right)^{2}} + 2H_{L(135)} - 3R_{L}$$

• For Lateral Ties Configuration 3

$$S_{B} = \frac{B-2(CC_{C}+d_{T})-d_{M}(Qty_{BLUE}+2Qty_{ORANGE})}{Qty_{BLUE}+2Qty_{ORANGE}-1}$$

$$S_{D} = \frac{D-2(CC_{C}+d_{T})-d_{M}(Qty_{RED}+2Qty_{GREEN})}{Qty_{RED}+2Qty_{GREEN}-1}$$

$$L_{B(Q)} = 2(B+D)-8(CC_{C})+2H_{L(135)}-3R_{L}$$

$$\begin{split} L_{B(a)} &= 2(B+D) - 8(CC_C) + 2H_{L(135)} - 3R_L \\ L_{B(b)} &= 2D + 2\Big[d_M Qty_{BLUE} + S_B \Big(Qty_{BLUE} - 1\Big) + 2d_T\Big] - 4\Big(CC_C\Big) + 2H_{L(135)} - 3R_L \\ L_{D(c)} &= 2B + 2\Big[d_M Qty_{RED} + S_D \Big(Qty_{RED} - 1\Big) + 2d_T\Big] - 4\Big(CC_C\Big) + 2H_{L(135)} - 3R_L \end{split}$$

• For Lateral Ties Configuration 4

$$\begin{split} \boldsymbol{S}_{B} &= \frac{\boldsymbol{B} - 2 \left(\boldsymbol{C}\boldsymbol{C}_{\boldsymbol{C}} + \boldsymbol{d}_{\boldsymbol{T}}\right) - \boldsymbol{d}_{\boldsymbol{M}} (\boldsymbol{Q}t\boldsymbol{y}_{\boldsymbol{BLUE}} + 2\boldsymbol{Q}t\boldsymbol{y}_{\boldsymbol{ORANGE}})}{\boldsymbol{Q}t\boldsymbol{y}_{\boldsymbol{BLUE}} + 2\boldsymbol{Q}t\boldsymbol{y}_{\boldsymbol{ORANGE}} - 1} \\ \boldsymbol{S}_{D} &= \frac{\boldsymbol{D} - 2 \left(\boldsymbol{C}\boldsymbol{C}_{\boldsymbol{C}} + \boldsymbol{d}_{\boldsymbol{T}}\right) - \boldsymbol{d}_{\boldsymbol{M}} (\boldsymbol{Q}t\boldsymbol{y}_{\boldsymbol{RED}} + 2\boldsymbol{Q}t\boldsymbol{y}_{\boldsymbol{GREEN}})}{\boldsymbol{Q}t\boldsymbol{y}_{\boldsymbol{RED}} + 2\boldsymbol{Q}t\boldsymbol{y}_{\boldsymbol{GREEN}} - 1} \end{split}$$

$$L_{B(a)} = 2(W + L) - 8(CC_C) + 2H_{L(135)} - 3R_L$$

$$\begin{split} L_{B(b)} &= 4\sqrt{\left(\frac{W}{2} - CC_{c}\right)^{2} + \left(\frac{L}{2} - CC_{c}\right)^{2}} + 2H_{L(135)} - 3R_{L} \\ L_{B(c)} &= 2D + 2\left[d_{M}Qty_{BLUE} + S_{B}\left(Qty_{BLUE} - 1\right) + 2d_{T}\right] - 4\left(CC_{c}\right) + 2H_{L(135)} - 3R_{L} \\ L_{B(d)} &= 2B + 2\left[(d_{M}Qty_{RED} + S_{D}\left(Qty_{RED} - 1\right) + 2d_{T}\right] - 4\left(CC_{c}\right) + 2H_{L(135)} - 3R_{L} \end{split}$$

For Lateral Ties Configuration 5

$$\begin{split} L_{B(a)} &= 2(B+D) - 8 \Big(\mathcal{CC}_{\mathcal{C}} \Big) + 2 H_{L(135)} - 3 R_{L} \\ L_{B(b)} &= B - 2 \Big(\mathcal{CC}_{\mathcal{C}} \Big) + H_{L(135)} + H_{L(90)} \\ L_{B(c)} &= D - 2 \Big(\mathcal{CC}_{\mathcal{C}} \Big) + H_{L(135)} + H_{L(90)} \end{split}$$

For Lateral Ties Configuration 6

$$\begin{split} L_{B(a)} &= 2(B + D) - 8\Big(CC_C\Big) + 2H_{L(135)} - 3R_L \\ L_{B(b)} &= B - 2\Big(CC_C\Big) + 2H_{L(180)} \\ L_{B(c)} &= D - 2\Big(CC_C\Big) + 2H_{L(180)} \end{split}$$

Example:

CONCRETE COVER	
FOOTINGS	75
SUSPENDED SLAB	20
SLAB ON GRADE	40
BEAMS EXPOSED ON EARTH	40
BEAMS EXPOSED ON WEATHER	40
COLUMNS EXPOSED ON EARTH	75
COLUMNS EXPOSED ON WEATHER	40

MAIN BARS	STIRE	RUPS &	TIES	I
BAR SIZE		L		
(DEFORMED)	90°	135°	180°	
10	100	115	105	
12	115	125	165	
16	150	160	160	
20	300	235	235	
32	405	345	345	
	•			

@ Ground Floor

Since the Lateral Tie Configuration 3 is chosen. Thus,

$$S_D = \frac{{}^{B-2\left(CC_C+d_T\right)-d_M(Qty_{BLUE}+2Qty_{ORANGE})}}{Qty_{BLUE}+2Qty_{ORANGE}-1} = \frac{600-2(40+12)-32[3+2(2)]}{3+2(2)-1}$$

$$S_{\rm p} = 45.33333$$

$$\boldsymbol{S}_{D} = \frac{D - 2\left(CC_{C} + d_{T}\right) - d_{M}\left(Qty_{RED} + 2Qty_{GREEN}\right)}{Qty_{RED} + 2Qty_{GREEN} - 1} = \frac{600 - 2(40 + 12) - 32[3 + 2(2)]}{3 + 2(2) - 1}$$

$$S_D = 45.33333$$

Since
$$d_T = 12 \ mm$$
 thus, $H_{L(135)} = 125 \ mm$ & $R_L = 2d_T = 2(12) = 24$

$$L_{B(a)} = 2(B + D) - 8(CC_C) + 2H_{L(135)} - 3R_L$$

$$L_{B(a)} = 2(600 + 600) - 8(40) + 2(125) - 3(24)$$

$$L_{B(a)} = 2258 \, mm$$

$$L_{B(b)} = 2D + 2\left[d_{M}Qty_{BLUE} + S_{B}(Qty_{BLUE} - 1) + 2d_{T}\right] - 4(CC_{C}) + 2H_{L(135)} - 3R_{L}$$

$$L_{B(b)} = 2(600) + 2[32(3) + 45.3333(3 - 1) + 2(12)] - 4(40) + 2(125) - 3(24)$$

 $L_{R(h)} = 1639.333 \rightarrow round\ up\ to\ whole\ number \rightarrow 1640\ mm$

$$L_{B(c)} = 2B + 2\left[d_{M}Qty_{RED} + S_{D}(Qty_{RED} - 1) + 2d_{T}\right] - 4(CC_{C}) + 2H_{L(135)} - 3R_{L}$$

$$L_{B(c)} = 2(600) + 2[32(3) + 45.3333(3 - 1) + 2(12)] - 4(40) + 2(125) - 3(24)$$

$$L_{B(c)} = 1639.333 \rightarrow round~up~to~whole~number \rightarrow 1640~mm$$

Since the Lateral Tie Configuration 3 is chosen. Thus,

$$S_{B} = \frac{W - 2(CC_{c} + d_{T}) - d_{M}(Qty_{BLUE} + 2Qty_{ORANGE})}{Qty_{BLUE} + 2Qty_{ORANGE} - 1} = \frac{600 - 2(40 + 12) - 32[3 + 2(1)]}{3 + 2(1) - 1}$$

$$S_{B} = 84$$

$$S_D = \frac{D - 2 \left(CC_C + d_T\right) - d_M (Qty_{RED} + 2Qty_{GREEN})}{Qty_{RED} + 2Qty_{GREEN} - 1} = \frac{600 - 2(40 + 12) - 32[3 + 2(1)]}{3 + 2(1) - 1}$$

$$S_{D} = 84$$

Since
$$db_T = 12 \ mm$$
 thus, $H_{L(135)} = 125 \ mm$, $R_L = 2d_T = 2(12) = 24$

$$L_{B(a)} = 2(B + D) - 8(CC_C) + 2H_{L(135)} - 3R_L$$

$$L_{B(a)} = 2(600 + 600) - 8(40) + 2(125) - 3(24)$$

$$L_{B(a)} = 2258 \, mm$$

$$L_{B(b)} = 2D + 2\left[d_{M}Qty_{BLUE} + S_{B}(Qty_{BLUE} - 1) + 2d_{T}\right] - 4(CC_{C}) + 2H_{L(135)} - 3R_{L}$$

$$L_{B(b)} = 2(600) + 2[32(3) + 84(3 - 1) + 2(12)] - 4(40) + 2(125) - 3(24)$$

$$L_{B(b)} = 1794 \, mm$$

$$L_{B(c)} = 2B + 2\left[d_{M}Qty_{RED} + S_{D}(Qty_{RED} - 1) + 2d_{T}\right] - 4(CC_{C}) + 2H_{L(135)} - 3R_{L}$$

$$L_{B(c)} = 2(600) + 2[32(3) + 84(3 - 1) + 2(12)] - 4(40) + 2(125) - 3(24)$$

$$L_{B(c)} = 1794 \, mm$$

@ 3rd Floor

Since the Lateral Tie Configuration 3 is chosen. Thus,

$$S_{B} = \frac{{}^{B-2\left(CC_{C}+d_{T}\right)-d_{M}\left(Qty_{BLUE}+2Qty_{ORANGE}\right)}}{Qty_{BLUE}+2Qty_{ORANGE}-1} = \frac{{}^{600-2\left(40+12\right)-32\left[3+2\left(1\right)\right]}}{3+2\left(1\right)-1}$$

$$S_{R} = 84$$

$$S_D = \frac{D - 2\left(CC_C + d_T\right) - d_M(Qty_{RED} + 2Qty_{GREEN})}{Qty_{RED} + 2Qty_{GREEN} - 1} = \frac{600 - 2(40 + 12) - 32[3 + 2(1)]}{3 + 2(1) - 1}$$

$$S_{D} = 84$$

Since
$$db_T = 12 \ mm$$
 thus, $H_{L(135)} = 125 \ mm$, $R_L = 2d_T = 2(12) = 24$

$$L_{B(a)} = 2(B + D) - 8(CC_C) + 2H_{L(135)} - 3R_L$$

$$L_{B(a)} = 2(600 + 600) - 8(40) + 2(125) - 3(24)$$

$$L_{B(a)} = 2258 mm$$

$$L = 2D + 2 \int d Otv$$

$$L_{B(b)} = 2D + 2 \left[d_{M}Qty_{BLUE} + S_{B} \left(Qty_{BLUE} - 1 \right) + 2d_{T} \right] - 4 \left(CC_{C} \right) + 2H_{L(135)} - 3R_{L(135)} + 2H_{L(135)} - 3R_{L(135)} + 2H_{L(135)} - 3R_{L(135)} + 2H_{L(135)} + 2$$

$$L_{B(b)} = 2(600) + 2[32(3) + 84(3 - 1) + 2(12)] - 4(40) + 2(125) - 3(24)$$

 $L_{R(h)} = 1794 \, mm$

$$L_{B(c)} = 2B + 2\left[d_{M}Qty_{RED} + S_{D}(Qty_{RED} - 1) + 2d_{T}\right] - 4(CC_{C}) + 2H_{L(135)} - 3R_{L(135)} + 2d_{T}$$

$$L_{B(c)} = 2(600) + 2[32(3) + 84(3 - 1) + 2(12)] - 4(40) + 2(125) - 3(24)$$

 $L_{B(c)} = 1794 \, mm$

@ 4th Floor

Since the Lateral Tie Configuration 3 is chosen. Thus,

$$S_W = \frac{{}^{B-2\left(CC_C+d_T\right)-d_M\left(Qty_{BLUE}+2Qty_{ORANGE}\right)}}{Qty_{BLUE}+2Qty_{ORANGE}-1} = \frac{{}^{600-2(40+12)-32[2+2(1)]}}{2+2(1)-1}$$

 $S_{W} = 122.6667$

$$S_L = \frac{D - 2 \left(CC_C + d_T\right) - d_M (Qty_{RED} + 2Qty_{GREEN})}{Qty_{RED} + 2Qty_{GREEN} - 1} = \frac{600 - 2(40 + 12) - 32[2 + 2(1)]}{2 + 2(1) - 1}$$

$$S_{i} = 122.6667$$

Since $db_T = 12 \ mm$ thus, $H_{L(135)} = 125 \ mm$, $R_L = 2d_T = 2(12) = 24$

$$L_{B(a)} = 2(B + D) - 8(CC_C) + 2H_{L(135)} - 3R_L$$

$$L_{B(a)} = 2(600 + 600) - 8(40) + 2(125) - 3(24)$$

 $L_{B(a)} = 2258 \, mm$

$$L_{B(b)} = 2D + 2\left[d_{M}Qty_{BLUE} + S_{B}(Qty_{BLUE} - 1) + 2d_{T}\right] - 4(CC_{C}) + 2H_{L(135)} - 3R_{L}$$

$$L_{B(b)} = 2(600) + 2[32(2) + 122.6667(2 - 1) + 2(12)] - 4(40) + 2(125) - 3(24)$$

 $L_{R(h)} = 1639333 \rightarrow round up to whole number \rightarrow 1640 mm$

$$L_{B(c)} = 2W + 2\left[d_{M}Qty_{RED} + S_{D}(Qty_{RED} - 1) + 2d_{T}\right] - 4(CC_{C}) + 2H_{L(135)} - 3R_{L}$$

$$L_{B(c)} = 2(600) + 2[32(2) + 122.6667(2 - 1) + 2(12)] - 4(40) + 2(125)$$

 $L_{R(c)} = 1639.333 \rightarrow round\ up\ to\ whole\ number \rightarrow 1640\ mm$

- 7. The program will compute the length of the joint ties. Depending on what Lateral Ties configuration.
 - For Lateral Tie Configurations 1 4

$$L_{B(x)}$$
 of $Qty_{TO} = L_{B(x)}$ of $Qty_{T} - 2(H_{L(135)})$ of $Qty_{T} - H_{L(135)}$ of $Qty_{TO} - 3R_{V} + 3R_{L(135)}$

• For Lateral Tie Configuration 5

$$L_{B(a)} of Qty_{TQ} = L_{B(a)} of Qty_{T} - 2(H_{L(135)} of Qty_{T} - H_{L(135)} of Qty_{TQ}) - 3R_{V} + 3R_{L(135)} of Qty_{TQ} + 3R_{V} + 3R_{U} +$$

$$L_{B(b)} \ of \ Qty_{TQ} = L_{B(b)} \ of \ Qty_{T} - \left(H_{L(135)} \ of \ Qty_{T} - H_{L(135)} \ of \ Qty_{TQ}\right) - \left(H_{L(90)} \ of \ Qty_{T} - H_{L(90)} \ of \ Qty_{TQ}\right)$$

$$L_{B(c)} \ of \ Qty_{TO} = L_{B(c)} \ of \ Qty_{T} - \left(H_{L(135)} \ of \ Qty_{T} - H_{L(135)} \ of \ Qty_{TO}\right) - \left(H_{L(90)} \ of \ Qty_{T} - H_{L(90)} \ of \ Qty_{TO}\right)$$

• For Lateral Tie Configuration 6

$$\begin{split} L_{B(a)} & \text{ of } Qty_{TQ} = L_{B(a)} \text{ of } Qty_{T} - 2\Big(H_{L(135)} \text{ of } Qty_{T} - H_{L(135)} \text{ of } Qty_{TQ}\Big) - 3R_{V} + 3R_{L} \\ L_{B(b)} & \text{ of } Qty_{TQ} = L_{B(b)} \text{ of } Qty_{T} - 2\Big(H_{L(180)} \text{ of } Qty_{T} - H_{L(180)} \text{ of } Qty_{TQ}\Big) \\ L_{B(c)} & \text{ of } Qty_{TQ} = L_{B(c)} \text{ of } Qty_{T} - 2\Big(H_{L(180)} \text{ of } Qty_{T} - H_{L(180)} \text{ of } Qty_{TQ}\Big) \end{split}$$

Where: For R_{V}

Case 1: $d_{TO} = 10 \text{ } mm \rightarrow 16 \text{ } mm$

$$R_V = 2d_{TO}$$

Case 2: $d_{TQ} = 20 \text{ } mm \rightarrow 25 \text{ } mm$

$$R_{V} = 2.5d_{TO}$$

Example:

@ Ground Floor

Since the Lateral Tie Configuration 3 is chosen. Thus,

Since
$$d_{TQ}=10~mm$$
 thus, $H_{L(135)}$ of $Qty_{TQ}=115~mm$, $R_{V}=2d_{TQ}=2(10)=20$

$$\begin{split} L_{B(a)} & \text{ of } Qty_{TQ} = L_{B(a)} \text{ of } Qty_{T} - 2\Big(H_{L(135)} \text{ of } Qty_{T} - H_{L(135)} \text{ of } Qty_{TQ}\Big) - 3R_{V} + 3R_{L} \\ L_{B(a)} & \text{ of } Qty_{TQ} = 2258 - 2(125 - 115) - 3(20) + 3(24) \end{split}$$

$$L_{B(a)} of Qty_{TQ} = 2250 mm$$

$$L_{B(b)} \ of \ Qty_{TQ} = L_{B(b)} \ of \ Qty_{T} - \ 2 \Big(H_{L(135)} \ of \ Qty_{T} - \ H_{L(135)} \ of \ Qty_{TQ} \Big) - \ 3R_{V} + \ 3R_{L} + \ 3R_{L} + \ R_{L(135)} +$$

$$L_{B(a)}$$
 of $Qty_{TQ} = 1640 - 2(125 - 115) - 3(20) + 3(24)$

$$L_{B(b)}$$
 of $Qty_{TQ} = 1632 mm$

$$L_{B(c)} of \ Qty_{TQ} = L_{B(b)} of \ Qty_{T} - 2(H_{L(135)} of \ Qty_{T} - H_{L(135)} of \ Qty_{TQ}) - 3R_{V} + 3R_{L} + 3R_{$$

$$L_{B(c)}$$
 of $Qty_{TQ} = 1640 - 2(125 - 115) - 3(20) + 3(24)$

$$L_{B(c)}$$
 of $Qty_{TQ} = 1632 mm$

@ 2nd Floor

Since the Lateral Tie Configuration 3 is chosen. Thus,

Since
$$db_{TQ} = 10 \ mm$$
 thus, $H_{L(135)} \ of \ Qty_{TQ} = 115 \ mm, R_V = 2d_{TQ} = 2(10) = 20$

$$L_{B(a)} \ of \ Qty_{TQ} = L_{B(a)} \ of \ Qty_{T} - \ 2 \Big(H_{L(135)} \ of \ Qty_{T} - \ H_{L(135)} \ of \ Qty_{TQ} \Big) - \ 3R_{V} + \ 3R_{L} \ A_{L(135)} \ of \ Qty_{TQ} + \ A_{L(135)$$

$$L_{B(a)} \text{ of } Qty_{TQ} = 2258 - 2(125 - 115) - 3(20) + 3(24)$$

$$L_{B(a)} of Qty_{TO} = 2250 mm$$

$$L_{B(b)} \ of \ Qty_{TQ} = L_{B(b)} \ of \ Qty_{T} - \ 2 \Big(H_{L(135)} \ of \ Qty_{T} - \ H_{L(135)} \ of \ Qty_{TQ} \Big) - \ 3R_{V} + \ 3R_{L(135)} + \ 3R_{U} + \ 3$$

$$L_{B(b)}$$
 of $Qty_{TQ} = 1794 - 2(125 - 115) - 3(20) + 3(24)$

$$L_{B(b)}$$
 of $Qty_{TO} = 1786 \ mm$

$$L_{B(c)} of \ Qty_{TQ} = L_{B(c)} of \ Qty_{T} - 2 \Big(H_{L(135)} of \ Qty_{T} - H_{L(135)} of \ Qty_{TQ} \Big) - \ 3R_{V} + \ 3R_{L} + \ 3R_{L}$$

$$L_{B(c)}$$
 of $Qty_{TQ} = 1794 - 2(125 - 115) - 3(20) + 3(24)$

$$L_{B(c)} of Qty_{TO} = 1786 mm$$

@ 3rd Floor

Since the Lateral Tie Configuration 3 is chosen. Thus,

Since
$$db_{TQ} = 10 \ mm$$
 thus, $H_{L(135)} \ of \ Qty_{TQ} = 115 \ mm, R_V = 2d_{TQ} = 2(10) = 20$

$$L_{B(a)} \text{ of } Qty_{TQ} = L_{B(a)} \text{ of } Qty_{T} - 2(H_{L(135)} \text{ of } Qty_{T} - H_{L(135)} \text{ of } Qty_{TQ}) - 3R_{V} + 3R_{L}$$

$$L_{B(a)} \text{ of } Qty_{TQ} = 2258 - 2(125 - 115) - 3(20) + 3(24)$$

$$L_{B(a)} of Qty_{TQ} = 2250 mm$$

$$L_{B(b)} of \ Qty_{TQ} = L_{B(b)} of \ Qty_{T} - 2 \Big(H_{L(135)} of \ Qty_{T} - H_{L(135)} of \ Qty_{TQ} \Big) - \ 3R_{V} + \ 3R_{L(135)} of \ Qty_{TQ} + \ 3R_{U(135)} of \ Qty_{TQ} + \ Qty_{TQ} + \ Qty_{TQ} + \ Qty_{$$

$$L_{B(b)}$$
 of $Qty_{TQ} = 1794 - 2(125 - 115) - 3(20) + 3(24)$

$$L_{B(b)} of Qty_{TQ} = 1786 mm$$

$$L_{B(c)} of \ Qty_{TQ} = L_{B(c)} of \ Qty_{T} - 2(H_{L(135)} of \ Qty_{T} - H_{L(135)} of \ Qty_{TQ}) - 3R_{V} + 3R_{L}$$

$$L_{B(c)}$$
 of $Qty_{TQ} = 1794 - 2(125 - 115) - 3(20) + 3(24)$

$$L_{B(c)} of Qty_{TO} = 1786 mm$$

@ 4th Floor

Since the Lateral Tie Configuration 3 is chosen. Thus,

Since
$$db_{TQ}=10~mm$$
 thus, $H_{L(135)}$ of $Qty_{TQ}=115~mm$, $R_{V}=2d_{TQ}=2(10)=20$

$$L_{B(a)}$$
 of $Qty_{TQ} = L_{B(a)}$ of $Qty_{T} - 2(H_{L(135)})$ of $Qty_{T} - H_{L(135)}$ of $Qty_{TQ} - 3R_{V} + 3R_{L}$

$$L_{B(a)}$$
 of $Qty_{TQ} = 2258 - 2(125 - 115) - 3(20) + 3(24)$

$$L_{B(a)} of Qty_{TO} = 2250 mm$$

$$L_{B(b)} of \ Qty_{TQ} = L_{B(a)} of \ Qty_{T} - 2(H_{L(135)} of \ Qty_{T} - H_{L(135)} of \ Qty_{TQ}) - 3R_{V} + 3R_{L}$$

$$L_{B(b)}$$
 of $Qty_{TQ} = 1640 - 2(125 - 115) - 3(20) + 3(24)$

$$L_{B(b)}$$
 of $Qty_{TQ} = 1632 mm$

$$L_{B(c)} \ of \ Qty_{TQ} = L_{B(a)} \ of \ Qty_{T} - \ 2 \Big(H_{L(135)} \ of \ Qty_{T} - \ H_{L(135)} \ of \ Qty_{TQ} \Big) - \ 3R_{V} + \ 3R_{L} + \ 3R_{L}$$

$$L_{B(c)}$$
 of $Qty_{TQ} = 1640 - 2(125 - 115) - 3(20) + 3(24)$

$$L_{B(c)} of Qty_{TO} = 1632 mm$$

8. The program will determine the respective manufactured bars and no. of manufactured pcs.

LEGEND:

$$Qty_{pn} = \frac{L_{_{M}}}{\left(L_{_{B}} of \ Qty_{_{T}}\right) or\left(L_{_{B}} of \ Qty_{_{TQ}}\right)}$$

• For Ground Floor

Note: If $\sum Qty_{TE(x)} = 0$ thus, $\sum Qty_{Tx}$ will replace $\sum Qty_{TE(x)}$.

If the Lateral Ties Configuration 1-4

$$Qty_{Mn} = \frac{\left(\sum Qty_{_{TE(x)}} + \sum Qty_{_{Tx}} + Qty_{_{T(@rest)}} \right) or \ Qty_{_{TQ}}}{Qty_{_{p_n}}} \bullet \ Qty_{_{Column}}$$

If the Lateral Ties Configuration 5 & 6

$$Qty_{Mn} = \frac{\left(\sum Qty_{TE(x)} + \sum Qty_{Tx} + Qty_{T(@rest)}\right) or \ Qty_{TQ}}{Qty_{Pn}} \bullet Qty_{Column} \ \ :for \ L_{B(a)}$$

$$Qty_{Mn} = \frac{\left[\left(\sum Qty_{_{TE(x)}} + \sum Qty_{_{Tx}} + Qty_{_{T(@rest)}}\right) or \ Qty_{_{TQ}}\right] Qty_{_{GREEN}}}{Qty_{_{Pn}}} \bullet \ Qty_{_{Column}} \ \ :for \ L_{B(b)}$$

$$Qty_{Mn} = \frac{\left[\left(\sum Qty_{_{TE(x)}} + \sum Qty_{_{Tx}} + Qty_{_{T(@rest)}}\right) or \ Qty_{_{TQ}}\right] Qty_{_{RED}}}{Qty_{_{Pn}}} \bullet \ Qty_{_{Column}} \quad :for \ L_{_{B(c)}}$$

For Upper Floors

If the Lateral Ties Configuration 1-4

$$Qty_{_{Mn}} = \frac{ \left(2 \Sigma Qty_{_{Tx}} + Qty_{_{T(@rest)}} \right) or \ Qty_{_{TQ}}}{Qty_{_{p_n}}} \bullet \ Qty_{_{Column}}$$

If the Lateral Ties Configuration 5-6

$$Qty_{Mn} = \frac{\left(2\sum Qty_{Tx} + Qty_{T(@rest)}\right) or \ Qty_{TQ}}{Qty_{p_n}} \bullet \ Qty_{Column} \quad \text{:for } L_{B(a)}$$

$$Qty_{Mn} = \frac{\left[\left(2\sum Qty_{Tx} + Qty_{T(@rest)}\right) or \ Qty_{TQ}\right] Qty_{GREEN}}{Qty_{p_n}} \bullet \ Qty_{Column} \quad \text{:for } L_{B(b)}$$

$$Qty_{Mn} = \frac{\left[\left(2\sum Qty_{Tx} + Qty_{T(@rest)}\right) or \ Qty_{TQ}\right] Qty_{RED}}{Qty_{p_n}} \bullet \ Qty_{Column} \quad \text{:for } L_{B(c)}$$

Then,

$$\begin{split} L_{W}^{} &= \left[\textit{Qty}_{\textit{Pn}}^{} - \textit{Qty}_{\textit{Pn}}^{} \left(\textit{round down into whole number} \right) \right] \times L_{\textit{B}}^{} \\ L_{E}^{} \left(m \right) &= \left[\textit{Qty}_{\textit{Mn}}^{} (\textit{round up}) - \textit{Qty}_{\textit{Mn}}^{} \right] \times L_{\textit{M}}^{} \end{split}$$

And

 $Total\ Wasage\ = L_{_E} + L_{_W} \Big[Qty_{_{Mn}} \ (round\ down\ into\ whole\ number) \Big]$

Example:

@ Ground Floor

For Lateral Ties

$$\sum_{1}^{3} Qty_{TE(x)} = (13 + 1 + 0) = 14 \& \sum_{1}^{2} Qty_{T(x)} + Qty_{T(@rest)} = (1 + 14) + 9 = 24$$
 a) $L_{B(a)}$

L [M]	Qty [T]	Qty [TE]	Total	L [B(a)]	Qty (Column)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Wastage
6						2.66	2	240. 5	241	1.484	3.00	359.160
7.5	24	14	38	2.258	13	3.32	3	160. 3	161	0.726	5.00	121.160
10.5] -			2.200		4.65	4	120. 3	121	1.468	7.88	184.035
12]					5.31	5	96.2	97	0.710	9.60	77.760

Thus
$$L_{CM(1a)} = 12$$
 and $Qty_{M(1a)} = 97$

b)
$$L_{B(b)}$$

L [M]	Qty [T]	Qty [TE]	Total	L [B(b)]	Qty (Column)	Qty	[P]	Qty [M]	L [W]	L [E]	Total Wastage
6						3.66	3	164.67	165	1.080	2.00	179.12
7.5]	4.4		4.04	40	4.57	4	123.50	124	0.940	3.75	119.37
10.5	24	14	38	1.64	13	6.40	6	82.33	83	0.660	7.00	61.12
12						7.32	7	70.57	71	0.520	5.14	41.54

Thus
$$L_{CM(1b)} = 12$$
 and $Qty_{M(1b)} = 71$

c) $L_{B(c)}$

L [M]	Qty [T]	Qty [TE]	Total	L [B(a)]	Qty (Column)	Qty	Qty [P]		Л]	L [W]	L [E]	Total Wastage
6						3.66	3	164.67	16 5	1.080	2.00	179.12
7.5	24	14	38	1.64	13	4.57	4	123.50	12 4	0.940	3.75	119.37
10.5						6.40	6	82.33	83	0.660	7.00	61.12
12						7.32	7	70.57	71	0.520	5.14	41.54

Thus
$$L_{\mathit{CM}(1c)} = 12$$
 and $\mathit{Qty}_{\mathit{M}(1c)} = 71$

• For Joint Ties

$$Qty_{TQ} = 6$$

a)
$$L_{B(a)}$$
 of Qty_{TQ}

L [M]	Qty [TQ]	L [B]	Qty (Column)	Qty	Qty [P]		[M]	L [W]	L [E]	Total Wastage
6				2.67	2	39	39	1.50 0	0	58.500
7.5		0.05	40	3.33	3	26	26	0.75 0	0	19.500
10.5	6	2.25	13	4.67	4	19.5	20	1.50 0	5.25	33.750
12				5.33	5	15.6	16	0.75 0	4.8	16.050

Thus
$$L_{CM(1a)} = 12$$
 and $Qty_{M(1a)} = 16$

b)
$$L_{B(b)}$$
 of Qty_{TQ}

L [M]	Qty [TQ]	L [B]	Qty (Column)	Qty	Qty [P]		[M]	L [W]	L [E]	Total Wastage
6				3.68	3	26	26	1.10 4	0	28.704
7.5		4 000	40	4.60	4	19.5	20	0.97 2	3.75	22.218
10.5	6	1.632	13	6.43	6	13	13	0.70 8	0	9.204
12				7.35	7	11.14	12	0.57 6	10.285 7	16.622

Thus
$$L_{\mathit{CM}(1b)} = 10.5$$
 and $\mathit{Qty}_{\mathit{M}(1b)} = 13$

c)
$$L_{B(c)}$$
 of Qty_{TQ}

L [M]	Qty [TQ]	L [B]	Qty (Column)	Qty	Qty [P]		[M]	L [W]	L [E]	Total Wastage
6				3.68	3	26	26	1.10 4	0	28.704
7.5		4 000	40	4.60	4	19.5	20	0.97 2	3.75	22.218
10.5	6	1.632	13	6.43	6	13	13	0.70 8	0	9.204
12				7.35	7	11.14	12	0.57 6	10.285 7	16.622

Thus
$$L_{\mathit{CM}(1c)} = 10.5$$
 and $\mathit{Qty}_{\mathit{M}(1c)} = 13$

For Lateral Ties

Since there is no $Qty_{TE(x)}$ thus, $\sum Qty_{T(x)}$ will be multiply in 2

$$2\sum Qty_{T(x)} + Qty_{T(@rest)} = 2(1 + 14) + (-2) = 28$$

a) $L_{B(a)}$

L [M]	Qty [T]	L [B]	Qty (Column)	Qty	Qty [P]		[M]	L [W]	L [E]	Total Wastage
6				2.66	2	182	182	1.48 4	0	270.09
7.5	00	0.050	40	3.32	3	121. 3	122	0.72 6	5	92.85
10.5	28	2.258	13	4.65	4	91	91	1.46 8	0	133.59
12				5.31	5	72.8	73	0.71 0	2.4	53.52

Thus
$$L_{CM(2a)} = 12$$
 and $Qty_{M(2c)} = 73$

b)
$$L_{B(b)}$$

L [M]	Qty [TQ]	L [B]	Qty (Column)	Qty	Qty [P]		[M]	L [W]	L [E]	Total Wastage
6				3.34	3	121. 3	122	0.61 8	4	78.78
7.5	28	1.794	13	4.18	4	91	91	0.32 4	0	29.48
10.5	20	1.794	13 .	5.85	5	72.8	73	1.53 0	2.1	112.26
12				6.69	6	60.6 7	61	1.23 6	4	78.16

Thus
$$L_{CM(2b)} = 7.5$$
 and $Qty_{M(2b)} = 91$

c)
$$L_{B(c)}$$

L [M]	Qty [TQ]	L [B]	Qty (Column)	Qty	Qty [P]		[M]	L [W]	L [E]	Total Wastage
6				3.34	3	112.7	113	0.61 8	2	71.216
7.5	28	1.794	13	4.18	4	84.5	85	0.32 4	3.75	30.966
10.5	20	1.794	13	5.85	5	67.6	68	1.53 0	4.2	106.710
12				6.69	6	56.3 3	57	1.23 6	8	77.216

Thus
$$L_{\mathit{CM}(2c)} = 7.5$$
 and $\mathit{Qty}_{\mathit{M}(2c)} = 91$

• For Joint Ties

$$Qty_{TQ} = 6$$

a)
$$L_{B(a)}$$
 of Qty_{TQ}

L [M]	Qty [TQ]	L [B]	Qty (Column)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Wastage
6				2.67	2	39	39	1.50 0	0	58.500
7.5		0.05	40	3.33	3	26	26	0.75 0	0	19.500
10.5	6	2.25	13	4.67	4	19.5	20	1.50 0	5.25	33.750
12				5.33	5	15.6	16	0.75 0	4.8	16.050

Thus
$$L_{CM(2a)} = 12$$
 and $Qty_{M(2a)} = 16$

b)
$$L_{B(b)}$$
 of Qty_{TQ}

L [M]	Qty [TQ]	L [B]	Qty (Column)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Wastage
6				3.36	3	26	26	0.64 2	0	16.692
7.5	6	1.786	13	4.20	4	19.5	20	0.35 6	3.75	10.514
10.5	0	1.760	13	5.88	5	15.6	16	1.57 0	4.2	27.750
12				6.72	6	13	13	1.28 4	0	16.692

Thus
$$L_{\mathit{CM}(2b)} = 7.5$$
 and $\mathit{Qty}_{\mathit{M}(2b)} = 20$

c)
$$L_{B(c)}$$
 of Qty_{TQ}

L [M]	Qty [TQ]	L [B]	Qty (Column)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Wastage
6				3.36	3	26	26	0.64 2	0	16.692
7.5	6	1.786	13	4.20	4	19.5	20	0.35 6	3.75	10.514
10.5	0	1.700	13	5.88	5	15.6	16	1.57 0	4.2	27.750
12				6.72	6	13	13	1.28 4	0	16.692

Thus
$$L_{\mathit{CM}(2c)} = 7.5$$
 and $\mathit{Qty}_{\mathit{M}(2c)} = 20$

@ 3rd Floor

For Lateral Ties

Since there is no $Qty_{TE(x)}$ thus, $\sum Qty_{T(x)}$ will be multiply in 2

$$2\sum Qty_{T(x)} + Qty_{T(@rest)} = 2(1 + 14) - 2 = 28$$

a)
$$L_{B(a)}$$

Ī	L [M]	Qty [T]	L [B]	Qty (Column)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Wastage
	6	28	2.258	13	2.66	2	182	182	1.48 4	0	270.09

7.5		3.32	3	121. 3	122	0.72 6	5	92.85
10.5		4.65	4	91	91	1.46 8	0	133.59
12		5.31	5	72.8	73	0.71 0	2.4	53.52

Thus
$$L_{\mathit{CM}(2a)} = 12$$
 and $\mathit{Qty}_{\mathit{M}(2c)} = 73$

b) $L_{B(b)}$

L [M]	Qty [TQ]	L [B]	Qty (Column)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Wastage
6				3.34	3	121. 3	122	0.61 8	4	78.78
7.5	28	1.794	13	4.18	4	91	91	0.32 4	0	29.48
10.5	20	1.794	13	5.85	5	72.8	73	1.53 0	2.1	112.26
12				6.69	6	60.6 7	61	1.23 6	4	78.16

Thus
$$L_{\mathit{CM}(2b)} = 7.5$$
 and $\mathit{Qty}_{\mathit{M}(2b)} = 91$

c) $L_{B(c)}$

L [M]	Qty [TQ]	L [B]	Qty (Column)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Wastage
6				3.34	3	121. 3	122	0.61 8	4	78.78
7.5	28	1.794	13	4.18	4	91	91	0.32 4	0	29.48
10.5		1.794	13	5.85	5	72.8	73	1.53 0	2.1	112.26
12				6.69	6	60.6 7	61	1.23 6	4	78.16

Thus
$$L_{\mathit{CM}(2c)} = 7.5$$
 and $\mathit{Qty}_{\mathit{M}(2c)} = 91$

• For Joint Ties

$$Qty_{TQ} = 6$$

a)
$$L_{B(a)}$$
 of Qty_{TQ}

L [M]	Qty [TQ]	L [B]	Qty (Column)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Wastage
6				2.67	2	39	39	1.50 0	0	58.500
7.5			40	3.33	3	26	26	0.75 0	0	19.500
10.5	6	2.25	13	4.67	4	19.5	20	1.50 0	5.25	33.750
12				5.33	5	15.6	16	0.75 0	4.8	16.050

Thus
$$L_{CM(2a)} = 12$$
 and $Qty_{M(2a)} = 16$

b)
$$L_{B(b)}$$
 of Qty_{TQ}

L [M]	Qty [TQ]	L [B]	Qty (Column)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Wastage
6				3.36	3	26	26	0.64 2	0	16.692
7.5	6	1.786	13	4.20	4	19.5	20	0.35 6	3.75	10.514
10.5	0	1.700	13	5.88	5	15.6	16	1.57 0	4.2	27.750
12				6.72	6	13	13	1.28 4	0	16.692

Thus
$$L_{\mathit{CM}(2b)} = 7.5$$
 and $\mathit{Qty}_{\mathit{M}(2b)} = 20$

c)
$$L_{B(c)}$$
 of Qty_{TQ}

L [M]	Qty [TQ]	L [B]	Qty (Column)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Wastage
6				3.36	3	26	26	0.64 2	0	16.692
7.5	6	1.786	13	4.20	4	19.5	20	0.35 6	3.75	10.514
10.5	0	1.760	13	5.88	5	15.6	16	1.57 0	4.2	27.750
12				6.72	6	13	13	1.28 4	0	16.692

Thus
$$L_{\mathit{CM}(2c)} = 7.5$$
 and $\mathit{Qty}_{\mathit{M}(2c)} = 20$

@ 4th Floor

• For Lateral Ties

Since there is no $Qty_{TE(x)}$ thus, $\sum Qty_{T(x)}$ will be multiply in 2

$$2\sum Qty_{T(x)} + Qty_{T(@rest)} = 2(1 + 14) + 8 = 38$$

a)
$$L_{B(a)}$$

L [M]	Qty [TQ]	L [B]	Qty (Column)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Wastage
6				2.66	2	247	247	1.48 4	0	366.55
7.5	00	0.050	40	3.32	3	164. 7	165	0.72 6	2.5	121.56
10.5	38	2.258	13	4.65	4	123. 5	124	1.46 8	5.25	185.81
12				5.31	5	98.8	99	0.71 0	2.40	71.98

Thus
$$L_{\mathit{CM}(4a)} = 12$$
 and $\mathit{Qty}_{\mathit{M}(4a)} = 99$

b)
$$L_{B(b)}$$

L [M]	Qty [TQ]	L [B]	Qty (Column)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Wastage
6	38	1.64	13	3.66	3	164. 7	165	1.08 0	2	179.12

7.5			4.57	4	123. 5	124	0.94 0	3.75	119.37
10.5			6.40	6	82.3 3	83	0.66 0	7	61.12
12		•	7.32	7	70.5 7	71	0.52 0	5.14	41.54

Thus $L_{\mathit{CM}(4b)} = 12$ and $\mathit{Qty}_{\mathit{M}(4b)} = 71$

c) $L_{B(c)}$

L [M]	Qty [TQ]	L [B]	Qty (Column)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Wastage
6				3.66	3	164. 7	165	1.08 0	2	179.12
7.5	20	4.04	40	4.57	4	123. 5	124	0.94 0	3.75	119.37
10.5	38	1.64	13	6.40	6	82.3 3	83	0.66 0	7	61.12
12				7.32	7	70.5 7	71	0.52 0	5.14	41.54

Thus $L_{\mathit{CM}(4c)} = 12$ and $\mathit{Qty}_{\mathit{M}(4c)} = 71$

For Joint Ties

$$Qty_{TQ} = 3$$

a) $L_{B(a)}$

L [M]	Qty [TQ]	L [B]	Qty (Column)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Wastage
6				2.66	2	19.5	20	1.48 4	3	31.500
7.5		0.05	40	3.32	3	13	13	0.72 6	0	9.750
10.5	3	2.25	13	4.65	4	9.75	10	1.46 8	2.625	16.125
12				5.31	5	7.8	8	0.71 0	2.4	7.650

Thus $L_{\mathit{CM}(4a)} = 12$ and $\mathit{Qty}_{\mathit{M}(4a)} = 8$

b) $L_{B(a)}$

L [M]	Qty [TQ]	L [B]	Qty (Column)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Wastage
6				3.68	3	13	13	1.10 4	0	14.352
7.5		4 000	40	4.60	4	9.75	10	0.97 2	1.875	10.623
10.5	3	1.632	13	6.43	6	6.5	7	0.70 8	5.25	9.498
12				7.35	7	5.57 1	6	0.57 6	5.1428 6	8.023

Thus $L_{CM(4b)} = 12$ and $Qty_{M(4b)} = 6$

c) $L_{B(a)}$

L [M]	Qty [TQ]	L [B]	Qty (Column)	Qty [P]	Qty [M]	L [W]	L [E]	Total Wastage
-------	-------------	-------	---------------------	---------	---------	-------	-------	------------------

6				3.68	3	13	13	1.10 4	0	14.352
7.5		4 000	40	4.60	4	9.75	10	0.97 2	1.875	10.623
10.5	3	1.632	13	6.43	6	6.5	7	0.70 8	5.25	9.498
12				7.35	7	5.57 1	6	0.57 6	5.1428 6	8.023

Thus
$$L_{CM(4c)} = 12$$
 and $Qty_{M(4c)} = 6$

9. The program will then compute the weight of the reinforcement.

$$W = \omega \left[\sum_{CM} L_{CM} Q t y_{M} \right] W_{D}$$

Where:

 $\omega = 1.0$ (for the mean time)

Example:

BAR SIZE (Diameter)	kg/m
6 mm	0.222
8 mm	0.395
10 mm	0.616
12 mm	0.888
16 mm	1.597
20 mm	2.466
25 mm	3.854
28 mm	4.833
32 mm	6.313
36 mm	7.991
40 mm	9.864
44 mm	11.926
50 mm	15.413
56 mm	19.318

@Ground Floor

• Lateral Ties Since the diameter for lateral ties is 12 mm. Thus, the $W_{\rm D}=0.888\,kg/m$

$$W_{1(LT)} = \omega \left[\sum_{CM} L_{CM} Q t y_{M} \right] W_{D} = \omega \left[\sum_{a}^{c} L_{CM} Q t y_{M} \right] W_{D}$$

$$W_{1(LT)} = 1.0 \cdot [12(97) + 12(71) + 12(71)] \cdot 0.888 = 2546.78 \, kg$$

• Joint Ties Since the diameter for lateral ties is **10 mm**. Thus, the $W_{_D}=0.616\,kg/m$

$$\begin{split} W_{1(JT)} &= \omega \left[\sum_{CM} L_{CM} Q t y_{M} \right] W_{D} = \omega \left[\sum_{a}^{c} L_{CM} Q t y_{M} \right] W_{D} \\ W_{1(JT)} &= 1.0 \cdot [12(16) + 10.5(13) + 10.5(13)] \cdot 0.616 = 286.44 \ kg \end{split}$$

@ 2nd Floor

Lateral Ties

Since the diameter for lateral ties is **12 mm**. Thus, the $W_{D}=0.888\,kg/m$

$$W_{2(LT)} = \omega \left[\sum_{CM} L_{CM} Q t y_{M} \right] W_{D} = \omega \left[\sum_{a}^{c} L_{CM} Q t y_{M} \right] W_{D}$$

$$W_{2(LT)} = 1.0 \cdot [12(73) + 7.5(91) + 7.5(91)] \cdot 0.888 = 1990.008 \, kg$$

Joint Ties

Since the diameter for lateral ties is **10 mm**. Thus, the $W_D = 0.616 \, kg/m$

$$W_{2(JT)} = \omega \left[\sum_{CM} L_{CM} Q t y_{M} \right] W_{D} = \omega \left[\sum_{a}^{c} L_{CM} Q t y_{M} \right] W_{D}$$

$$W_{2(JT)} = 1.0 \cdot [12(16) + 7.5(20) + 7.5(20)] \cdot 0.616 = 303.072 \, kg$$

@ 3rd Floor

Lateral Ties

Since the diameter for lateral ties is **12 mm**. Thus, the $W_D = 0.888 \ kg/m$

$$W_{3(LT)} = \omega \left[\sum_{CM} L_{CM} Q t y_{M} \right] W_{D} = \omega \left[\sum_{a}^{c} L_{CM} Q t y_{M} \right] W_{D}$$

$$W_{3(LT)} = 1.0 \cdot [12(73) + 7.5(91) + 7.5(91)] \cdot 0.888 = 1990.008 \, kg$$

Joint Ties

Since the diameter for lateral ties is **10 mm**. Thus, the $W_D = 0.616 \, kg/m$

$$W_{3(JT)} = \omega \left[\sum_{CM} L_{CM} Q t y_{M} \right] W_{D} = \omega \left[\sum_{a}^{c} L_{CM} Q t y_{M} \right] W_{D}$$

$$W_{3(IT)} = 1.0 \cdot [12(16) + 7.5(20) + 7.5(20)] \cdot 0.616 = 303.072 \, kg$$

@ 4th Floor

Lateral Ties

Since the diameter for lateral ties is **12 mm**. Thus, the $W_D = 0.888 \, kg/m$

$$W_{4(LT)} = \omega \left[\sum_{CM} L_{CM} Q t y_{M} \right] W_{D} = \omega \left[\sum_{a}^{c} L_{CM} Q t y_{M} \right] W_{D}$$

$$W_{4(LT)} = 1.0 \cdot [12(99) + 12(71) + 12(71)] \cdot 0.888 = 2568.096 kg$$

Joint Ties

Since the diameter for lateral ties is **10 mm**. Thus, the $W_D = 0.616 \ kg/m$

$$W_{4(JT)} = \omega \left[\sum_{CM} L_{CM} Q t y_{M} \right] W_{D} = \omega \left[\sum_{a}^{c} L_{CM} Q t y_{M} \right] W_{D}$$

$$W_{4(JT)} = 1.0 \cdot [12(8) + 12(6) + 12(6)] \cdot 0.616 = 147.84 \, kg$$

10. The program will compute the total weight of the ties in the column.

$$W_{_T} = \sum W$$

Example:

$$\begin{split} W_T &= \sum W = W_{1(LT)} + W_{1(JT)} + W_{2(LT)} + W_{2(JT)} + W_{3(LT)} + W_{3(JT)} + W_{4(LT)} + W_{4(JT)} \\ W_T &= 2546.78 + 286.44 + 1990.008 + 303.072 + 1990.008 + 303.072 + 2568.096 + 147.84 \\ W_T &= 10438.388 \, kg \end{split}$$