

Differenzbasierte Repräsentation räumlicher Relationen zur probabilistischen Szenenerkennung mittels hierarchischen Constellation Models

Bachelorarbeit von

Joshua Enrico Link

An der Fakultät für Informatik Institut für Anthropomatik und Robotik Lehrstuhl Prof. Dr.-Ing. R. Dillmann

Erstgutachter: Prof. Dr.-Ing. R. Dillmann

Zweitgutachter: ???

Betreuender Mitarbeiter: Dipl.-Inform. Pascal Meißner

Bearbeitungszeit: 11. Juni 2017 – 10. September 2017

Hiermit erkläre ich an Eides statt, dass ich die von mir vorgelegte Arbeit selbstständig verfasst habe, dass ich die verwendeten Quellen, Internet-Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen – die anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.	
Karlsruhe, den (Datum)	ToDo
Joshua Enrico Link	

Inhaltsverzeichnis

Abbildungsverzeichnis

1. Einführung

In der Robotik ist die Servicerobotik wohl der Forschungsbereich, welcher den größten Alltagsbezug für den Menschen hat, da er sich mit der Entwicklung und Weiterentwicklung von autonomen Robotern beschäftigt, welche dem Menschen im Alltag assistieren. Man findet mittlerweile Roboter im Privaten, die das Putzen, Staubsaugen oder Rasenmähen übernehmen, in der Industrie, bei Montage und Fertigung, sowie auch in der Medizin, als Pflegehilfe, Botengänger oder Assistent.

Allerdings müssen die Roboter ihre Umwelt für komplexere Aufgaben so präzise wie möglich wahrnehmen und verstehen. Sie könne Aufgaben übernehmen bei denen sie gezielt Objekte umfahren, suchen und auch aufnehmen und benutzen. Dieser Funktionsumfang kann mit dem Prizip Programmieren durch Vormachen (PdV) ermöglicht werden, bei dem die Roboter Objekte und Tätigkeiten ihrer Umgebung kennen lernen, wieder erkennen und nachahmen können. So lässt sich die hohe Komplexität umgehen, die die manuelle Programmierung vieler Aufgaben mit sich bringen würde.

Um tatsächlich selbstständige Serviceroboter zu schaffen muss man aber noch zu einer Objekterkennung ein Kontextverständnis hinzufügen. Die Roboter müssen erkannte Objekte in einen Zusammenhang bringen, um die dadurch resultierenden Aufgaben zu verstehen. Zum Beispiel hat ein Teelöffel, welcher neben einer Tasse Tee liegt eine andere Aufgabe zu verrichten, als wenn er neben einem Becher Joghurt platziert ist. Nur am Kontext lässt sich dort entscheiden warum im einen Fall umgerührt und im anderen gelöffelt wird. Ebenso wäre ein Stück Butter verschieden zu verwenden, wenn es auf einem Frühstückstisch steht als wenn es mit anderen Zutaten neben einer Rührschüssel vorkommt.

Somit braucht man eine Szenenerkennung, welche zuverlässig die Objekte erkennen und ihren jeweiligen Kontext verstehen und einschätzen kann. Diese Erkennung ist nicht immer eindeutig, da der eben genannte Löffel ebenso zwischen einem Becher Joghurt und einer Tasse Tee liegen könnte, deshalb bietet es sich an mit Wahrscheinlichkeitsabschätzungen des vorliegenden Kontexts zu arbeiten.

2. Motivation und Problemstellung

2.1 Motivation

2.2 Fokus der Arbeit

2.3 Brainstorming

Problem formulieren Anschaulisch Motivation Einschränkungen / Annahmen konkret: parametisches Modell ist ungenau - deshalb dichter an Daten datengetriebene Entwicklung

3. Grundlagen

3.1 PSM

3.2 Datengetriebene Programmierung

Länge max. halb so lang wie Konzept + Implementierung

simpel beschreiben

konkret:

bestehendes System : PSM

Relevanz erklären?

Datengetriebene Entwicklung erklären

Viele Bilder benutzen, auch aus Joachims Arbeit

Auch aus Joachims Arbeit

4. Konzept

4.1 Ansatz

${\bf 4.2~Erkennung salgorithmus}$

komplexer mathematischer formulieren Vergleichsbasierte Erkennung erklären Stochastische Richtigkeit beweisen

5. Implementierung

Im Kapitel Implementierung wird alles beschrieben und erklärt, was am bestehenden PSM-Projekt verändert und hinzugefügt wurde. Außerdem werden ausgewählte hinzugefügte und veränderte Klassen sowie launch-Dateien dokumentiert, sodass das Kapitel das Verständnis und die Nutzung der Neuheiten im System vereinfacht. Nachdem der Umbauprozess beschrieben wird, bei dem eine Klasse komplett aus dem PSM-Projekt ausgetauscht wurde, widmet sich das Kapiter der Umsetzung des Algorithmuskonzepts und der Einbettung in das vorhandene System.

5.1 Umbau PSM-Systems

Da das Paket "pbd_msgs" nicht mehr(?) konstenlos zur Verfügung gestellt wurde, mussten alle Vorkommen der Klassen aus diesem Paket zu alternativen Ersatzklassen geändert werden. Teilweise konnte man dies durch simple Ersetzung erreichen, allerdings gab es nicht für jede Klasse eine Ersatzklasse mit dem selben Funktionsumfang. In den Fällen, in denen Funktionen fehlten oder geringfügig anders funktionierten, konnte man den Umbau durch kleine Anpassungen erreichen oder musste eigene Funktionen schreiben, welche die nötigen Operationen verichten konnten. Alle auf diese Weise programmierten Funktionen wurden hinreichend auf Gleichheit mit ihren Ursprungsfunktionen in ihrer Funktionsweise getestet, indem die Ergebnisse bei gleichen Eingangsparametern abgeglichen wurden.

5.2 Differenzbasierter Erkennungsalgorithmus

alle Klassen die umgebaut wurden neuer differencebased modus

6. Evaluation

6.1 Experiment 1: Frühstück

6.2 Experiment 2: Office

Viele Bilder, beschreiben Daten Text interpretiert Fazit am Ende

7. Zusammenfassung und Ausblick

Zwei Sätze zu jedem größeren Kapitel

Literaturverzeichnis

[DSS93] Randall Davis, Howard Shrobe und Peter Szolovits: What is a Knowledge Representation? AI Magazine, 14(1):17-33, 1993. http://www.aaai.org/ojs/index.php/aimagazine/article/view/1029.