Homomorphic Secret-Sharing with Certified Deletion

Nikhil Pappu[†]

[†]Portland State University nikpappu@pdx.edu

October 1, 2024

Abstract

Contents

1	Preliminaries	3
2	HSS with Certified Deletion	3
3	HSS-CD from VBB Obfuscation	3

1 Preliminaries

[GVW12]

2 HSS with Certified Deletion

3 HSS-CD from VBB Obfuscation

We construct a (1,2)-HSS-CD scheme HSS-CD = HSS-CD. (Share, Eval, Del, Vrfy) using the following building blocks:

- PRF Family $\{F_k\}_k$.
- SKE-CD scheme SKE-CD = SKE-CD.(KG, $\mathcal{E}nc$, $\mathcal{D}ec$, $\mathcal{D}ec$, $\mathcal{D}ec$, $\mathcal{V}rfy$) with classical decryption property and algorithm CDec.
- VBB Obfuscation for the following programs:

```
\begin{aligned} \mathsf{P}_1(C,u) & \{ \mathsf{Hard\text{-}coded \ values: \ k,sk} \} : \\ & - \mathsf{Compute} \ v = \mathsf{CDec}(\mathsf{sk},u). \\ & - \mathsf{Output} \ F_\mathsf{k}(C,v). \\ \mathsf{P}_2(C,u) \colon & \{ \mathsf{Hard\text{-}coded \ values: \ k,sk} \} : \\ & - \mathsf{Compute} \ v = \mathsf{CDec}(\mathsf{sk},u). \\ & - \mathsf{Output} \ F_\mathsf{k}(C,v) \oplus C(v). \end{aligned}
```

The construction is as follows:

HSS-CD. *Share* $(1^{\lambda}, i, b)$:

- 1. Generate $k \leftarrow \{0,1\}^{\lambda}$.
- 2. Generate $\mathsf{sk} \leftarrow \mathsf{KG}(1^{\lambda})$.
- 3. Compute $ct \leftarrow \mathcal{E}nc(\mathsf{sk}, b)$.
- 4. Compute $OP_i = VBB.Obf(P_i)$ using the values k, sk.
- 5. Output $sh_i = (ct, OP_i)$.

HSS-CD.Eval $(1^{\lambda}, C, sh_i)$:

References

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption with bounded collusions via multi-party computation. In Reihaneh Safavi-Naini and Ran Canetti, editors, *CRYPTO 2012*, volume 7417 of *LNCS*, pages 162–179. Springer, Heidelberg, August 2012. (Cited on page 3.)