Voting Mechanism and Consensus Involving

Shirui Zhou, Sharon Chuang, etc

PPOL564: Final Class Status Update. 11.30.2022

Outline

- ▶ Motivation
- ► Research Questions
- ▶ Data
- ► Methods
- ► Results thus far
- ► Limitations/Next Steps

Motivation

▶ Problems

- ► 1. 'Horse race' problem and misinterpretation in polls and probabilistic modeling
- ▶ 2. Echo chamber and polarization
- ▶ 2. No alternative voice in some authoritarian countries

Solution

- Voting mechanism served as decentralized opinion aggregation platform
- ► Vote on the "comments" by participants
- ▶ Review and understand the most trivial concern of the other side

Research Questions

- ▶ Observation
 - Static: Opinion landscape of the participants and representativeness of comments
 - Dynamic: Is a consensus forming in the voting?
- Activism
 - ► Would prioritizing the comments from the opposite 'echo chamber' make a difference?

Data Sources

- ► Polis open source data
 - ► Experimentation of voting mechanism (45s test)
 - ▶ Uber Issue: Should Uber be regulated in Taiwan
 - ► Main data set: participants vote csv, comment csv

Experimentation

Method: Data Acquisition

- participants-votes.csv
 - meta-data: participant, group-id, n-comments, n-notes, n-disagree, n-agree
 - ▶ sparse matrix: participants (x-axis) vote on each comments (y-axis)
- comments.csv
 - variables: comment-id, author-id, moderated, comment-body, timestamp

Method: Data Cleaning

```
1 def count_finite(row):
     finite = np.isfinite(row[val_fields])
return sum(finite) # count number of True values in
    finite `
5 def select_rows(df, threshold):
number_of_votes = df.apply(count_finite, axis=1)
valid = number_of_votes >= threshold
8 return df[valid]
g df_votes = select_rows(df, 7)
_{11} \#\# remove statements (columns) which were moderated out
statements_all_in = sorted(list(df_comments.loc[
    df_comments["moderated"] > 0].index.array), key = int
```

Methods: Algorithms

- process flow
- ► Dimensionality reduction
 - ► PCA
 - ► UMAP
- ► Clustering
 - ► Kmeans

Methods: Dimensionality reduction

► PCA

- enables us to visualize participants in relation to each other within the opinion landscape
- ► Participants are closer together in this landscape if they tend to agree. And further apart if they tend to disagree.

► UMAP

► Participants are closer together in this landscape if they tend to agree. And further apart if they tend to disagree.

Describing the analytic sample

Name	Estimand	
Dimensions of pre-	(1921, 203)	
processed matrix		
Dimensions of post-	(1269, 198)	
processed matrix		
Total number of possi-	251262	
ble votes		
Total number of agrees	30237	
Total number of disa-	11661	
grees		
Total without vote	208097	
Percent sparse	0.8282072100039003	

Full participants * comments matrix

Method: in words

- ► Umap and K-means
 - detect two communities
- construct two opinion groups
 - ▶ the divisiveness, consensus comments and dispute comments

Results: Divisiveness of Comments

▶ statement on the left vote on the same

Results: Consensus Comments

Abbildung 1: the comment from

Results: Dispute Comments

Next step

- ▶ Dynamic analysis
 - time-series hypothesis testing
 - ▶ 4 sub-graphs, calculate the social distance of opinion group A and B
- ▶ Limitation
 - ► clustering method produce different result
 - ► testing leiden-graph method

Here are some slides that have examples of different syntax you may find helpful (not required to do things like a tikz diagram)

Example of loading a figure you've uploaded (can be pdf or png)

Example of a table

Name	Estimand	Estimator	Why?
Divergence between sample and population	$(\bar{X} - E[\hat{\bar{X}} \mid T = 1]) - (\bar{X} - E[\hat{\bar{X}} \mid T = 0])$	Regress distance between population mean (\bar{X}) and sample mean (\hat{X}) on treatment indicator	Measures whether treat- ment produces sample quantities closer to po- pulation mean
Response rate	$\frac{1}{n}\sum_{\{i:S_i=1\}}Y_i(T = 1) - Y_i(T = 0)$	Regress response on treatment	In combination with bias measure helps us understand whether we increase both response rate and decrease nonresponse bias, or only increase response rate with no reductions in bias

Example of inserting code snippet using fragile environment and listings

```
1 def clean_yelp_json(one_biz):
     ## restrict to str cols
     d_str = {key:value for key, value in one_biz.items()
     if type(value) = str}
     df_str = pd.DataFrame(d_str, index = [d_str['id']])
6
     return (df_str)
yelp_stronly = [clean_yelp_json(one_b)
         for one_b in yelp_genjson['businesses']]
yelp_stronly_df = pd.concat(yelp_stronly)
```

Example of splitting slide using minipage and tikz diagram

Random targeting:

Potential Randomly sample Provide additional incentives

Risk-based targeting

Potential respondents

1. Define estimand

to predict (e.g., nonresponse risk; case importance)

2. Predict that label

3. Rank by ŷ

4. Provide

additional incentives

based on risk/importance

Another example tikz diagram

Use 80% sample (N = 67, 136) to train model with 162 features to predict 2019 nonresponse; Select model that optimizes recall (GBM)

Estimation data containing all sampled units' 2015 and 2017 features (aggregated so one prediction per unit)

Validate on 20% held out set (N = 16, 783)

Fit top model to data containing training units' 2015, 2017, and 2019 features (aggregated so one prediction per unit)

Use that model to predict 2021 nonresponse