

Dr. Ole Peter Smith

Instituto de Matemática e Estatística Universidade Federal de Goiás ole@ufg.br - https://olepeter.mat.ufg.br

Curso: Engenharia de Elementos

Prova: I

1. Os coeficientes binomiais são dados por, p = 0, ..., n:

$$C_{n,p} = \binom{n}{p} = \frac{n!}{p!(n-p)!}$$

Considere a função (def) Python:

- (a) lpt. Estabelece uma função (def) Python, Binomial (n,p), calculando o valor da coeficiente binomial, $C_{n,p}$.
- (b) 1pt. O Triângulo de Pascal lista os coeficientes binomais, linha número n contendo os coeficientes $B_{n,0},...,B_{n,n}$.

Desenvolve um trecho de código, gerando o triângulo de Pascal, incluindo até linha n = 10.

(c) 1pt. Escreve uma função Python, def fn(x,n), retornando a soma:

$$f_n(x) = \sum_{n=0}^n \frac{x^n}{n!}$$

Para n 'suficientemente grande', $f_n(x)$ aproxima-se a função exponencial, e^x . Escreve um código gerando uma tabela da seguinte forma:

n	$f_n(x)$	$ e^x - f_n(x) $	$ (e^x - f_n(x))/e^x $
1		•••	
10			

Gera a tabela para x=1,...,5. Para cada destes valores de x, quantos termos é preciso incluir, para o erro relativo ser menor do que $\varepsilon=1.0E-4$?

2. Estamos procurendo um polinômio interpolador:

$$P(x) = p_4 x^4 + p_3 x^3 + p_2 x^2 + p_1 x + p_0,$$

contendo os pontos:

i	0	1	2	3	4
$\overline{x_i}$	-2	-1	0	1	2
y_i	1	-3	2	-1	4

Ou seja:

$$y_i = P(x_i), i = 0, ..., 4$$

- (a) 2pts. Encontre uma matriz, $\underline{\underline{\mathbf{A}}}$, tal que: $\underline{\underline{\mathbf{A}}} = \underline{\mathbf{y}} = \underline{\mathbf{y}}$ e resolve o sistema linear do item anterior, usando o método de Gauss com pivotação parcial.
- (b) 2pts. Encontre os polinômios de Lagrange, $H_0(x),...,H_4(x)$, associado aos valores $x_0,...,x_4$ e calcule o polinômio interpolador, $P(x)=\sum_{k=0}^4 y_k H_k(x)$, verificando que coincide com o polinômio obtido no item (a). Verifique também, que: $y_i=P(x_i),\ i=0,...,4$.
- (c) *1pt*. Encontre a matrix inversa, $\underline{\underline{\mathbf{A}}}^{-1}$, e o resíduo:

$$r = \frac{||\underline{\underline{\mathbf{A}}}^{-1}\underline{\underline{\mathbf{A}}} - \underline{\underline{\mathbf{I}}}||}{||\underline{\mathbf{A}}||}$$

Hint! Em Python, pode-se representar um polinômio de grau n:

$$P(x) = p_n x^n + p_2 x^2 + p_1 x + p_0,$$

com uma lista (list): $[p_0,p_1,...,p_n,]$. Por exemplo: P(x)=3 é representado por [3], $P(x)=x^2+2x+3$ é representado por [3,2,1].

Dr. Ole Peter Smith

Instituto de Matemática e Estatística Universidade Federal de Goiás ole@ufg.br - https://olepeter.mat.ufg.br

3. Considere a função e seu primitivo:

$$f(x) = x^{3/2}, \qquad F(x) = \int_0^x f(t) dt$$

- (a) 1pt. Escreve funções (def) Python, retornando o valor de f(x), respectivamente F(x).
- (b) 2pts. Para x=3, estime F(x) usando o Método de Trapézios e de 1/3 de Simpson, calculando os erros absolutos e relativos com n=10,20,...,100 intervalos.

Instruções:

- Salve suas respostas numa pasta nova, em arquivos respostas: 01.py, 02.py e 03.py.
- Responstas literais, deviam ser incluídas no código como comentários (#) ou print's.
- Pode-se utilizar os códigos disponibilizado no site abaixo, salvos como arquivos auxiliares (incluídos via import's) ou, alternativamente, copiando os códigos relevantes para os arquivos respostas.
- Entregar um arquivo ZIP de todo os arquivos deste pasta por email: ole@ufg.br.
- Incluir como assunto do email: CN, P1: seu nome completo.

http://www.olesmith.com.br/SmtC?ModuleName=Texts&Action=Root&Text=356

Destacamos também o link:

http://www.olesmith.com.br/SmtC?ModuleName=Texts&Action=Codes&Text=356