Step-1

If P is the projection matrix onto a k-dimensional subspace S of the whole space \mathbb{R}^n , then we have to find the column space of P and its rank.

If
$$\bar{x} \in R^n$$
, then $P\bar{x} \in S$, since P projects \bar{x} to S .

Therefore column space P contained S, that is, $\operatorname{col}(P) \subset S$ $\hat{a} \in \hat{a} \in A$

Step-2

On the other hand, if $\bar{b} \in \mathbf{S}$, then $P\bar{b} = \bar{b}$

So
$$S \subset \operatorname{col}(P)$$
 $\hat{a} \in \hat{a} \in \hat{a} \in (2)$

From (1) and (2),
$$\operatorname{col}(P) = \mathbf{S}$$

Therefore the rank of P is equal to the dimension of col (P)

That is, since **S** is k-dimensional the rank of P is k