# International Rectifier

#### **Ignition IGBT**

## IRGS14C40L IRGSL14C40L IRGB14C40L

IGBT with on-chip Gate-Emitter and Gate-Collector clamps

#### **Features**

- •Most Rugged in Industry
- •Logic-Level Gate Drive
- •> 6KV ESD Gate Protection
- •Low Saturation Voltage
- •High Self-clamped Inductive Switching Energy

#### **Description**

The advanced IGBT process family includes a MOS gated, N-channel logic level device which is intended for coil-on-plug automotive ignition applications and small-engine ignition circuits. Unique features include on-chip active voltage clamps between the Gate-Emitter and Gate-Collector which provide over voltage protection capability in ignition circuits.











NOTE: IRGS14C40L is available in tape and reel. Add a suffix of TRR or TRL to the part number to determine the orientation of the device in the pocket, i.e, IRGS14C40LTRR or IRGS14C40LTRL.

**Absolute Maximum Ratings** 

|                                         | Parameter                                | Max         | Unit | Condition                        |
|-----------------------------------------|------------------------------------------|-------------|------|----------------------------------|
| V <sub>CES</sub>                        | Collector-to-Emitter Voltage             | Clamped     | ٧    | R <sub>G</sub> = 1K ohm          |
| I <sub>C</sub> @ T <sub>C</sub> = 25°C  | Continuous Collector Current             | 20          | Α    | $V_{GE} = 5V$                    |
| I <sub>C</sub> @ T <sub>C</sub> = 110°C | Continuous Collector Current             | 14          | Α    | $V_{GE} = 5V$                    |
| I <sub>G</sub>                          | Continuous Gate Current                  | 1           | mA   |                                  |
| $I_{Gp}$                                | Peak Gate Current                        | 10          | mA   | t <sub>PK</sub> = 1ms, f = 100Hz |
| $V_{GE}$                                | Gate-to-Emitter Voltage                  | Clamped     | ٧    |                                  |
| P <sub>D</sub> @ T <sub>C</sub> = 25°C  | Maximum Power Dissipation                | 125         | W    |                                  |
| P <sub>D</sub> @ T = 110°C              | Maximum Power Dissipation                | 54          | W    |                                  |
| $T_{J}$                                 | Operating Junction and                   | - 40 to 175 | °C   |                                  |
| T <sub>STG</sub>                        | Storage Temperature Range                | - 40 to 175 | °C   |                                  |
| $V_{ESD}$                               | Electrostatic Voltage                    | 6           | K۷   | C = 100pF, R = 1.5K ohm          |
| IL                                      | Self-clamped Inductive Switching Current | 11.5        | Α    | L = 4.7mH, T = 25°C              |

#### Thermal Resistance

|                 | Parameter                                   | Min                                                   | Тур | Max | Unit |  |  |
|-----------------|---------------------------------------------|-------------------------------------------------------|-----|-----|------|--|--|
| $R_{\theta JC}$ | Thermal Resistance, Junction-to-Case        |                                                       |     | 1.2 |      |  |  |
| $R_{\theta JA}$ | Thermal Resistance, Junction-to-Ambient     |                                                       |     | 40  | °C/W |  |  |
|                 | (PCB Mounted, Steady State)                 |                                                       |     |     |      |  |  |
| $Z_{\theta JC}$ | Transient Thermal Impedance, Juction-to-Cas | Transient Thermal Impedance, Juction-to-Case (Fig.11) |     |     |      |  |  |



## IRGS14C40L IRGSL14C40L IRGB14C40L

Off-State Electrical Charasteristics @ T<sub>J</sub> = 25°C (unless otherwise specified)

|                   | Parameter                              | Min | Тур | Max | Unit  | Conditions                                                  | Fig |
|-------------------|----------------------------------------|-----|-----|-----|-------|-------------------------------------------------------------|-----|
| BV <sub>CES</sub> | Collector-to-Emitter Breakdown Voltage | 370 | 400 | 430 | V     | $R_G = 1K \text{ ohm}, I_C = 7A, V_{GE} = 0V$               |     |
| $BV_GES$          | Gate-to-Emitter Breakdown Voltage      | 10  | 12  |     | >     | I <sub>G</sub> =2m A                                        |     |
| I <sub>CES</sub>  | Collector-to-Emitter Leakage Current   |     |     | 15  | μA    | R $_{G}$ =1K ohm, $V_{CE}$ = 250V                           |     |
|                   |                                        |     |     | 100 | μA    | $R_{G}=1K \text{ ohm}, V_{CE} = 250V, T_{J} = 150^{\circ}C$ |     |
| $BV_{CER}$        | Emitter-to-Collector Breakdown Voltage | 24  | 28  |     | V     | I <sub>C</sub> = -10m A                                     |     |
| R <sub>1</sub>    | Gate Series Resistance                 |     | 75  |     | ohm   |                                                             |     |
| R <sub>2</sub>    | Gate-to-Emitter Resistance             | 10  | 20  | 30  | K ohm |                                                             |     |

On-State Electrical Charasteristics @ T<sub>J</sub> = 25°C (unless otherwise specified)

|                 |                                 |      |      | (diffeee eti et wiee epeemea) |      |                                                                             |      |  |
|-----------------|---------------------------------|------|------|-------------------------------|------|-----------------------------------------------------------------------------|------|--|
|                 | Parameter                       | Min  | Тур  | Max                           | Unit | Conditions                                                                  | Fig  |  |
|                 |                                 |      | 1.2  | 1.40                          |      | $I_{C} = 7A, V_{GE} = 4.5V$                                                 |      |  |
| $V_{CE(on)}$    | Collector-to-Emitter Saturation |      | 1.35 | 1.55                          | V    | $I_{C} = 10A, V_{GE} = 4.5V$                                                | 1    |  |
|                 | Voltage                         |      | 1.35 | 1.55                          |      | $I_C = 10A$ , $V_{GE} = 4.5V$ , $T_{C} = -40^{\circ}C$                      | 2    |  |
|                 |                                 |      | 1.5  | 1.7                           |      | $I_C = 14A, V_{GE} = 5.0V, T_C = -40^{\circ}C$                              | 4    |  |
|                 |                                 |      | 1.55 | 1.75                          |      | $I_{C} = 14A, V_{GE} = 5.0V$                                                |      |  |
|                 |                                 |      | 1.6  | 1.8                           |      | $I_C = 14A, V_{GE} = 5.0V, T_C = 150^{\circ}C$                              |      |  |
| $V_{GE(th)}$    | Gate Threshold Voltage          | 1.3  | 1.8  | 2.2                           | V    | $V_{CE} = V_{GE}, I_{C} = 1 \text{ m A}, T_{C} = 25^{\circ}\text{C}$        | 3, 5 |  |
|                 |                                 | 0.75 |      | 1.8                           |      | $V_{CE} = V_{GE}$ , $I_{C} = 1 \text{ m A}$ , $T_{C} = 150^{\circ}\text{C}$ | 8    |  |
| g <sub>fs</sub> | Transconductance                | 10   | 15   | 19                            | S    | $V_{CE} = 25V, I_{C} = 10A, T_{C} = 25^{\circ}C$                            |      |  |
| I <sub>C</sub>  | Collector Current               | 20   |      |                               | Α    | $V_{CE} = 10V, V_{GE} = 4.5V$                                               |      |  |

Switching Characteristics @ T<sub>J</sub> = 25°C (unless otherwise specified)

|                     | Parameter                    | Min  | Тур | Max  | Unit | Conditions                                           | Fig |
|---------------------|------------------------------|------|-----|------|------|------------------------------------------------------|-----|
| Q a                 | Total Gate charge            |      | 27  |      |      | $I_{C} = 10A, V_{CE} = 12V, V_{GE} = 5V$             | 7   |
| Q <sub>qe</sub>     | Gate - Emitter Charge        |      | 2.5 |      | nC   | $I_{C} = 10A, V_{CE} = 12V, V_{GE} = 5V$             | 15  |
| Q <sub>gc</sub>     | Gate - Collector Charge      |      | 10  |      |      | $I_{C} = 10A, V_{CE} = 12V, V_{GE} = 5V$             |     |
| t <sub>d</sub> (on) | Turn - on delay time         | 0.6  | 0.9 | 1.35 |      | $V_{GE}$ =5V, $R_{G}$ =1K ohm, L=1mH, $V_{CE}$ =14V  | 12  |
| t r                 | Rise time                    | 1.6  | 2.8 | 4    | μs   | $V_{GE}$ =5V, $R_{G}$ =1K ohm, L=1mH, $V_{CE}$ =14V  | 14  |
| t d(off)            | Turn - off delay time        | 3.7  | 6   | 8.3  |      | $V_{GE}$ =5V, $R_{G}$ =1K ohm, L=1mH, $V_{CE}$ =300V |     |
| C ies               | Input Capacitance            |      | 550 | 825  |      | V <sub>GE</sub> =0V, V <sub>CE</sub> =25V, f=1M H z  |     |
| C oes               | Output Capacitance           |      | 100 | 150  | pF   | V <sub>GE</sub> =0V, V <sub>CE</sub> =25V, f=1M H z  | 6   |
| C res               | Reverse Transfer Capacitance |      | 12  | 18   |      | $V_{GE}$ =0V, $V_{CE}$ =25V, f=1M H z                |     |
|                     |                              | 25   |     |      |      | L=0.7m H, T <sub>C</sub> =25°C                       |     |
| I L                 | Self-Clamped                 | 15.5 |     |      | Α    | L=2.2m H, T <sub>C</sub> =25°C                       | 9   |
|                     | Inductive Switching Current  | 11.5 |     |      |      | L=4.7m H, T <sub>C</sub> =25°C                       | 10  |
|                     |                              | 16.5 |     |      |      | L=1.5m H, T <sub>C</sub> =150°C                      | 13  |
|                     |                              | 7.5  |     |      |      | L=4.7m H, T <sub>C</sub> =150°C                      | 14  |
|                     |                              | 6    |     |      |      | L=8.7m H, T <sub>C</sub> =150°C                      |     |
|                     |                              |      |     |      |      | $T_{J} = 150^{\circ}C,$                              |     |
| t <sub>SC</sub>     | Short Circuit Withstand Time | 120  |     |      | μs   | V <sub>CC</sub> = 16V, L = 10μH                      | 14  |
|                     |                              |      |     |      |      | $R_G = 1K \text{ ohm}, V_{GE} = 5V$                  |     |

# International Rectifier

### **Ignition IGBT**

Fig.1 - Typ. Output Characteristics T<sub>J</sub>=25°C



Fig.2 - Typ. Output Characteristics  $T_J=125$ °C



Fig.3 - Transfer Characteristics  $V_{CE}=20V$ ; tp=20 $\mu$ s



Fig.4 - Typical V<sub>CE</sub> vs T<sub>J</sub> V<sub>GE</sub>=4.5V



# International Rectifier

### **Ignition IGBT**

Fig.5 - Typical  $V_{GE(th)}$  vs  $T_J$ I<sub>C</sub>=1mA 2.2 2.0 1.8 ( ) ( (th) ( ) (9.6 (th) ( ) (1.6 (th) ( ) ( 1.4 1.2 1.0 -50 0 50 100 200 150  $T_J$  (°C)

Fig.6 - Typ. Capacitance vs V<sub>CE</sub>

V<sub>GE</sub>=0V; V<sub>CE</sub>=25V; f=1MHz

C ies

C ies

C res

1 1 1 10 100

V<sub>CE</sub> (V)

Fig.7 - Typ. Gate Charge vs  $V_{GE}$  $I_{C}=10A$ ;  $V_{CE}=12V$ ;  $V_{GE}=5V$ 



Fig.8 - Typical  $V_{\text{CE}}$  vs  $V_{\text{GE}}$ 



Fig.9 - Self-clamp Avalance Current vs Inductance @ 25°C



Fig.10 - Self-clamp Avalance Current vs Inductance @ 150°C



Fig.11 - Transient Thermal Impedance, Junction-to-Case





Fig.12 - Switching Waveform for Time Measurement  $V_{GE}$ = 5V;  $R_{G}$ = 1K $\Omega$ ; L= 1mH;  $V_{CE}$ = 14V; used circuit in Fig.14



Fig.13 - Self-clamped Inductive Switching Waveform L=4.7mH;  $T_c$ =25°C; used circuit in Fig.14



# International IR Rectifier

## **Ignition IGBT**

Fig.14 - Test Circuit



Fig.15 - Gate Charge Circuit





## IRGS14C40L IRGSL14C40L IRGB14C40L

#### TO-263AB Package Outline

Dimensions are shown in millimeters (inches)





#### MINIMUM RECOMMENDED FOOTPRINT

#### NOTES:

- 1 DIMENSIONS AFTER SOLDER DIP.
- 2 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
- 3 CONTROLLING DIMENSION: INCH.
- 4 HEATSINK & LEAD DIMENSIONS DO NOT INCLUDE BURRS.

#### LEAD ASSIGNMENTS

- 1 GATE 2 - DRAIN
- 3 SOURCE



IRGS14C40L IRGSL14C40L IRGB14C40L

#### TO-263AB Package Outline in Tape and Reel

Dimensions are shown in millimeters (inches)





#### NOTES:

- 1. COMFORMS TO EIA-418.
- 2. CONTROLLING DIMENSION: MILLIMETER.
- 3 DIMENSION MEASURED @ HUB.
- 4 INCLUDES FLANGE DISTORTION @ OUTER EDGE.





## IRGS14C40L IRGSL14C40L IRGB14C40L

#### TO-262AA Package Outline

Dimensions are shown in millimeters (inches)



#### LEAD ASSIGNMENTS

1 = GATE 3 = SOURCE 2 = DRAIN 4 = DRAIN



#### NOTES:

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1982
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. HEATSINK & LEAD DIMENSIONS DO NOT INCLUDE BURRS.



## IRGS14C40L IRGSL14C40L IRGB14C40L

#### TO-220AB Package Outline

Dimensions are shown in millimeters (inches)



#### NOTES:

- 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
- 2 CONTROLLING DIMENSION: INCH

- 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
- 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.

Note: For the most current drawings please refer to the IR website at: <a href="http://www.irf.com/package/">http://www.irf.com/package/</a>