Présentation du projet

Le fauteuil roulant motorisé

PESENTI Alexis SADION Arnaud ROBLET Nicolas

<u>Sommaire</u>

Introduction	_ 3
Problématique	_ 4
Besoin	5-9
Bête à corne	5
Diagramme pieuvre	6
Cahier des charges	7-8
Diagramme Fast	9
Chaîne d'énergie	
Solution commune	11
Partie personnelle	12-30

Introduction

I/Contexte et définition du projet

COMPARAISON

II/Objectif

III/ Périmètre

<u>Problématique:</u> Rendre discount un fauteuil roulant

MBEN Fauteuil Roulant ... 1 577,85 €

Fauteuil roulant de confort ... 949,00 €

FAUTEUIL ROULANT ...

Fauteuil roulant électrique ... 3 090,00 €

Fauteuil Roulant ... 8.033.84 €

Fauteuil Roulant ... 2 700,00 €

Recherche de l'idée

Recherche d'une idée générale

-Inégalité d'accès au matériel médical

Recherche de caractère innovant

-Recyclage

-Utilisation des sections professionnelles du LPO du lycée du Dauphiné

<u>Bête à corne</u>

Diagramme pieuvre

Le budget doit être le plus Masse du passager ainsi que la masse du faible possible pour être le fauteuil.Le fauteuil à une masse de 15kg environ plus attractif sur le marché nous estimerons la masse du passager à 80kg Roue motrice ayant un systeme Masse de direction afin de contrôler la Budget trajectoire lu fauteuil Trajectoire Moteur Une vitesse moyenne de 6km/h avec pour vitesse Vitesse Besoin maximum de 10km/h Choix d'un moteur électrique pour l'environnement ainsi que la facilité de rechargement Moteur étant capable Puissance depropulser l'ensemble à Ergonomie une vitesse satisfaisante Placement du moteur sous le fauteuil afin de garder une largeur minime dans le Resistance Autonomie cas de passage dans une rue étroite par exemple Création de boîtier afin Installation de batterie et de système d'abriter le moteur pour de rechargement afin d'avoir la qu'il puisse résister dans l capacité de tenir une journée cas d'une pluie ou de passage du fauteuil sur un terrain poussiéreux

Cahier des charges (1/2)

Besoin à satisfaire et contraintes à respecter (fonction)	Critères d'appréciation	Niveau d'appréciation	<u>Flexibilité</u>
Transporter une personne	Vitesse	<10km/h	Maximum
	Poids de la personne	100 Kg	Maximum
Etre autonome en énergie	Temps de charge	5h	Maximum
	Energie de charge	36V/8AH	Maximum
Résister à la pluie et à la poussière	Norme d'étanchéité CEI 60529	IP 55	Aucune
Être compétitif	Matériaux utilisés	Acier	Aucune
	Taille	Limitée	Aucune
	Choix d'assemblage et de fabrication	Machine du lycée	Aucune
	Prix	Minimum possible	Maximum

Cahie charg		2

	Besoin à satisfaire et contraintes à respecter (fonction)	Critères d'appréciation	Niveau d'appréciation	<u>Flexibilité</u>
	Propulser une personne	Puissance	455 W	Maximum
	Être Ergonomique Placement stratégique			Maximum
/2)	Doit être esthétique	Couleurs	Libre	Aucune
		Nombres de couleurs	4	Maximum
		Forme / design	Discrétion des formes	Aucune
Être peu encombrant		Être peu encombrant Peut se loger dans un coffre de voiture		Moyenne
		Masse	20 kg	élevé

Diagramme Fast

Chaîne d'énergie

Solution trouvée

Choix des roues

Choix numéro.	Roue.	Moteur.	Prix. (en€)	Puissance total du système. (w)	Points négatifs.	Points positifs.
1	1 roue arrière centrée avec train épicycloïdal.	Moteur externe à la roue.	200	500	 difficulté pour installation de la roue. mise en place du système de direction compliqué. prix élevé. 	- stabilité. -répartition équitable de la vitesse sur roues menées.
2	2 roues motorisées de vélo.	Moteurs internes à la roue.	500	500	-système très couteux. -roues motrice fragile.	-système directionnel maniable et facile à piloté. -facilité d'installation.
3	2 moteurs 1 sur chaque roue.	Moteurs externes à la roue.	300	500	- système encombrant. -système lourd. -kit non réalisable.	- facilité de direction -facile à piloter.
4	2 Roues arrière a côté des cale-pieds.	Moteurs internes à la roue.	50	700	-kit non réalisable. -précision d'installation et conception de pièce d'attache.	-peu couteux. / -pliable compactemanœuvrablebonne appuie sur le sol système de direction facilité à mettre en place.
5	2 Roues avec barre allongée cale-pieds.	Moteurs internes à la roue	60	700	-hyperstatique (risque patinage)direction peu efficacesystème encombrant.	-peu couteuxtransmission facileinstallation peut difficile.
6	Contact ponctuel avec 2 roues (sans toucher le sol).	Moteurs internes à la roue.	50	700	- risque de patinage du système de transmission. -précision d'installation.	- peu couteux. -système compacte rétractable. -facilité pour la direction.
7	Kit déclipsable avec roues sur la pièce détachable.	Moteurs internes à la roue.	60	700	-peu manœuvrable. - le kit ne peut être installé par un handicapé.	-kit démontable rétractable. -pas de patinage des roues motrices. -prix convenable
8	Contact ponctuel 2 roues arrière.	Moteurs internes à la roue.	50	700	-facilité manœuvre, braquage, direction. -précision d'installation.	-patinage du système. -précision d'installation.
9	Mettre une courroie sur les 2 roues.	Moteurs internes à la roue.	80	700	-précision d'installation. -trouver les courroies correspondantes. -prix un peu élevé.	bonne transmission après installation. facilité de direction.

Solution 1

Solution 2

Solution3

Solution4

Solution5

Solution6

Cahier des charges support Batterie/Variat eur

Besoin à satisfaire et contraintes à respecter	Critères d'appréciation	Niveau d'appréciation	<u>Flexibilité</u>
Résister à la pluie et à la poussière	Norme d'étanchéité CEI 60529	IP 55	Aucune
Doit être esthétique	Forme / Design	Fin <80mm	Aucune
Doit être capable de	Dimension	300x450x70mm	Maximum
transporter des batteries et variateurs	Masse des batteries	325g x 2	Moyenne
battorios et variatoars	Masse des variateurs	360g x 2	Moyenne
Être compétitif	Matériaux utilisés	Cuir	Aucune
	Choix d'assemblage et de la fabrication	Machine du Lycée	Aucune
	Prix	Coût des matériaux	Moyenne
Doit être peu encombrant et pratique	Peut se mettre à l'arrière d'un fauteuil roulant	Les anses du sac doivent être assez grande afin de reposer sur les poignées (≈520 mm d'envergure)	Maximum
	Masse	<1Kg	Aucune
	Fermable	Système de loquet	Aucune

Réponse de la section maroquinerie

$\equiv 1$

- Sommaire:

- Dimensionnement du moteur
- Choix de l'actionneur et des composants
- Simulation de la cinématique et dynamique du fauteuil
- Test réel de l'actionneur
- Câblage de la commande moteur
- Comparaison réel-simulé

Modèle SolidWorks:

Mise en plan fixation

Pièces fixation

Roues

<u> Modèle MatLab :</u>

Courbes Matlab

Remerciement:

Nous tenons à grandement remercier : -Nos professeurs de SI, M. Veyrier et M. Gil

- -La section Technicien d'Usinage dirigée par M.Dez ainsi que M.Marty
- -La section maroquinerie dirigée par Mme.Sophie
- -La déchèterie de Romans
- -Le lycée du dauphiné

Sans lesquels notre projet aurait pu aboutir.

Calculs mécaniques

- Deux phases d'accélérations

- Force motrice

- Couple moteur

- Puissance du moteur

Comparaison réel-simulé

Vitesse théorique : 10 km/h

Ecart = 100 x (Valeur théorique - Valeur expérimental) ÷ Valeur théorique

Vitesse mesurée :

Accélération théorique :

Écart = 100 x (Valeur théorique - Valeur expérimental) ÷ Valeur théorique

Accélération mesurée :

Elève 2

par calculs

démarrage*40;

.P(moy) = 36.25W.

vitesse constante;

.P(con) = 222W.

on utilise les valeurs obtenues pour définir le nombre de " AH" que la batterie devra avoir;

I(batterie)=(222+36.25)/36=7.2 AH.

.Il nous faut au minimum 7.2 AH pour la batterie délivrant 36 V.

.Nous utiliserons alors les batteries récupérées qui une fois cumulé délivre 8.8 AH et 36V qui répond parfaitement au besoin.

modèle Matlab

courbe Matlab

positionnement batteries et recharge.

photos batteries

Recharge batterie.

comparer les differentes méthodes

calcules: Matlab:

panneau solaire non installer mais fais gagner,,,

Élève 3

Tableau des solutions de direction

<u>Systèmes</u>	Efficacité /5	<u>Prix</u> /5	Facilité de réalisation /5	TOTAUX
Servomoteurs font tourner des bielles entraînant la rotation des roues	5	3	1	9
Freiner les roues principales latérales avec système frottement	3	3	3	9
Freiner les roues principales latérales à la main	2	5	5	12
Freiner les roues secondaires latérales avec système frottement	2	3	3	8

13

<u>Systèmes</u>	Efficacité /5	<u>Prix</u> /5	Facilité de réalisation /5	TOTAUX
Ralentir ou arrêter la rotation une roue entraînant la rotation	4	5	4	13
Diriger les roues secondaires avant avec servomoteur	4	3	2	9
Couronnes sur les roues latérales principales	4	1	2	7

Algorigramme:

Conjecture de la rotation du fauteuil

Mouvement de rotation vers la gauche sans déplacement du point de gravité

Mouvement de rotation vers la droite sans déplacement du point de gravité

Hypothèses : -Les mouvements rectilignes uniformes développées par les roues motorisées sont égaux -Aucun problème d'hyperstatique

Simulation de rotation du fauteuil

Schéma montage électronique (1/2)

Schéma montage électronique (2/2)

Cahier des charges du programme arduino

Besoin à satisfaire et contraintes à respecter	<u>Critères</u> <u>d'appréciation</u>	Support de réalisation	<u>Flexibilité</u>
Confort de l'utilisateur	Rampe d'accélération	CDC Fauteuil	Aucune
	Rampe de décélération	CDC Fauteuil	Aucune
Sécurité du fauteuil	Système antivol	Module RFID	Aucune
Sécurité de l'usager	Arrêt rapide tout en garantissant la sécurité	Bouton poussoir	Aucune
Facilité d'utilisation	Actionneur de direction simple d'utilisation	1 Joystick simple	Aucune
	Direction simple à commander	Programme	Aucune
	Signal Lumineux	Diode électroluminescente	Aucune

Conclusion

<u>Vidéo</u>

