Introduction to machine translation

	Find correct statements below.	1 / 1 point
	Neural Machine Translation is able to produce translations for language pairs that have never been observed in train.	
	✓ Correct	
	Recent machine translation systems provide equally good quality for all language pairs.	
	☐ "Interlingual" level of transfer provides the best accuracy in statistical machine translation systems.	
	Evaluation in Machine Translation is hard, mostly because of many variations in translations.	
	✓ Correct	
	Machine Translation area was developing with gradual advances each year.	
3.	Let us say we are building a translation system from Greek (g) to Bulgarian (b). Which of the following statements are correct?	1 / 1 point
	Language model here is complicated because different word alignments are possible.	
	$oxed{igsquare}$ We will need to build a translation model $p(b g).$	
	lacksquare We will need to build language model $p(b)$.	
	✓ Correct	
	lacksquare The noisy channel concept here corresponds to conditional distribution $p(g b)$.	
	✓ Correct	
.	Which parametrization for word alignment model would you use, if you know that the source and the target languages are extremely different and have quite irregular word order?	1 / 1 point
	Notation: (e, f) - sentence pair, (I, J) - their lengths respectively, a - alignment.	
	Option 1: $p(f,a e) = p(J e)\prod_{j=1}^J p(a_j)p(f_j a_j,e)$	
	Option 2: $p(f,a e) = p(J e) \prod_{j=1}^J p(a_j j,I,J) p(f_j a_j,e)$	
	Option 3: $p(f,a e)=p(J e)\prod_{j=1}^{J}p(a_j a_{j-1},I,J)p(f_j a_j,e)$	
	✓ Correct	