Numerical Analysis Qualifying Exam Spring 1988

1. Let A be an $n \times n$ matrix, and let A° be the conjugate transpose of A, and $\rho(A)$ be the spectral radius of A. Recall that

$$\|A\|_n = \sup_{\|x\|_n = 1} \|Ax\|_n \text{ and } \|x\|_n = \left\{\sum_{i=1}^n |x_i|^n\right\}^{\frac{1}{n}}$$

Prove:

(a)

$$||A||_1 = \max_j \sum_{i=1}^n |a_{ij}|.$$

(b)

$$||A||_2^\circ = \sqrt{\rho(A^\circ A)}.$$

- **2.** Let A be a strictly diagonally dominant matrix. Prove the Jacobi iteration method converges for A independently of the choice of initial vector.
- **3.** Consider the application of the iteration

$$z_{k+1} = \frac{z_k^2 + 2}{3}$$

to the equation $x^2 - 3x + 2 = 0$.

- (a) Does the method converge? Why?
- (b) Show that $x_k \to 1$ as $k \to \infty$ if $-2 < z_0 < 2$. (First prove that z_{k+1} is between z_k and 1 when $k \ge 1$.)
- (c) Show that $z_{k+1}=2$ if $z_0=\pm 2,\,k=0,1,\ldots$, but that the convergence to the root $\alpha=2$ for any other value of z_0 is impossible.
- 4. (a) Define a Householder transformatin.
 - (b) Show that for any square matrix A, there is a unitary matrix U such that U^0AU is upper triangular. (U^0 is the conjugate transpose of U).
- **5.** Suppose $A = (A_{ij})$ is an $n \times n$ matrix and that

$$|a_{ij}| \ge C \sum_{j \ne i} |a_{ij}|$$

for i = 1, ..., n where C > 1. Let $K(A) = \rho(A)\rho(A^{-1})$ where $\rho(A)$ is the spectral radius of A. Find a bound for K(A) in terms of C and the a_{ij} 's.

- **6.** State the Weierstrase approximation theorem, define Bernstein polynomials, and explain how the latter are used in the proof of the former.
- 7. Assume

$$f(0) = 1, f(1) = 3, f(2), \text{ and } f(3) = 1.$$

- (a) Write a formula for the polynomial, P(x) of degree at most 3 that interpolates f at these points.
- (b) Derive an expression for the error f(x) P(x) at an arbitrary point x. Be sure to indicate the conditions assumed on f.
- 8. Prove: Of all nth degree monic polynomials $P_n(x)$, The Chebyshev polynomial

$$T_n(x) = \frac{1}{2^n} \cos(n \cos^{-1} x)$$

has the smallest maximum norm on the interval [-1,1], that is,

$$\max_{-1 \le x \le 1} |T_n(x)| \le \max_{-1 \le x \le 1} |P_n(x)|.$$

9. Assume that f(x) has a continuous fourth derivative on an open interval containing the interval [c-h,c+h]. Derive an expression for the error in approximating f''(c) by

$$\frac{f(c+h) + f(c-h) - 2f(c)}{h^2}.$$

10. Use undetermined coefficients to find coefficients H_1, H_2 , and H_3 so that the approximation

$$\int_{c}^{b} f(x)dx \approx H_{1}f\left(\frac{2a+b}{3}\right) + H_{2}f\left(\frac{a+b}{2}\right) + H_{3}f\left(\frac{a+3b}{4}\right)$$

is exact for polynomials of degree less than or equal to 2.

11. Show that the numberical integration method

$$y_{n+1} = y_{n-3} + \frac{4h}{3} \left(2y'_n - y'_{n-1} + 2y'_{n-2} \right)$$

to approximating the solution to the ordinary differential equation $y' = f(x, y), y_o = y(x_0)$ is exact for polynomials of degree 0 or 1. Is the method stable? Explain.