Aufgabe 3: Beweisen Sie folgende Aussagen mit Hilfe der Master-Methode:

1. Sei
$$T(1) = 1, T(n) = T(n/2) + 1$$
 für alle $n > 1$, dann: $T(n) = \Theta(\log n)$ (Binäre Suche)

2. Sei
$$T(1) = 1$$
, $T(n) = 3T(n/4) + n \log n$ für alle $n > 1$, dann: $T(n) = \Theta(n \log n)$

3. Sei
$$T(1) = 1, T(n) = 7T(n/2) + n^2$$
 für alle $n > 1$, dann: $T(n) = \Theta(n^{2,81})$

1)
$$T(n) = T(\frac{n}{2}) + 1$$

Ly $a = 1$
 $b = 2$ esgill $(\sigma_{5}, \alpha = l\sigma_{5}, 2) = 0$

2. Fall $f(n) = \Theta(nl\sigma_{5}, \alpha) = \Theta(n)$

Ly $T(n) = \Theta(nl\sigma_{5}, \alpha) = \Theta(nl\sigma_{5}, \alpha) = \Theta(l\sigma_{5}, \alpha)$

2) $T(n) = 3T(\frac{n}{4}) + nl\sigma_{5}$
 $a = 3$
 $b = 4$
 $b = 4$
 $b = 2$
 $b = 4$
 $b = 6$
 $b = 6$

Volere Shanke mil <1

Unlere Shanke 121 of (5) = cfins

Tien, = @(nlogn) 3f(5) = nlogn fins

Aufgabe 3: Beweisen Sie folgende Aussagen mit Hilfe der Master-Methode:

beweisen die loigende Aussagen mit fille der Master-Methode:

- 1. Sei T(1) = 1, T(n) = T(n/2) + 1 für alle n > 1, dann: $T(n) = \Theta(\log n)$ (Binäre Suche)
- 2. Sei $T(1) = 1, T(n) = 3T(n/4) + n \log n$ für alle n > 1, dann: $T(n) = \Theta(n \log n)$
- 3. Sei $T(1) = 1, T(n) = 7T(n/2) + n^2$ für alle n > 1, dann: $T(n) = \Theta(n^{2,81})$

3/
$$\sqrt{(n)} = 7 + \sqrt{(n)} + n^2$$
 $a = 7 + 6 = 2 + \sqrt{(n)} = n^2$
 $\sqrt{(n)} = \sqrt{(n)} = \sqrt$