DIGITAL CASHI: BITCOINS AND

ORNIEL SEGAL

ORNIEL SEGAL

CRYPTOCURREINCY

WHAT IS CRYPTOCURRENCY?

- A digital currency that derives its value and security from cryptographic principles
- Difficult to counterfeit & trace
- Utilize public and private keys for transfer

THE VALUE IN CRYPTOCURRENCY

- Not regulated by a central bank
- Market forces drive value

Chart from bitcoincharts.com

ATTEMPTED CRYPTOCURRENCIES

- Many cryptocurrencies have failed
 - Qubic
 - TimeKoin
 - BBQCoin
 - Coiledcoin
- Currencies fail when system is broken or not enough users participate
- Bitcoin (BTC) is only current successful cryptocurrency

THE BITCOIN. BASICS

SATOSHI NAKAMOTO

- Introduced bitcoins in a paper (2008)
- Nakamoto is a presumed pseudonym for a person or group of people
- Currently no confirmed identity
 - Posted to forums from a German IP address
 - Active times corresponded with somebody in EST
 - Uses British formatting, but American spelling
 - Has since stepped down from public eye
- Wrote and maintained bitcoin client, "mined" first bitcoins on January 3, 2009

GOALS OF BITCOIN

- Eliminate need for a central authority
- Enable easy transfer of bitcoins between individuals
- Create a secure & private economy

OBSTACLES TO BITCOIN

- Double Spending Problem
 - Digital "coins" (character strings) are easy to reproduce, how do you prevent somebody from spending those coins multiple times
- Sybil (51%) Attacks
 - Since no central authority, users need to agree on validity of transaction. If a malicious user controls 51% of the network (via processing power or number of identities), they can overrule honest users

THE BITCOIN: IMPLEMENTATION

SOLUTION: THE BLOCK CHAIN

- "Block chain" is bitcoin's answer to these problems
- Every user has record of every transaction and helps verify these transactions
- Longest chain is assumed to be correct

A BITCOIN TRANSACTION

Step 1) Alice decides to pay a sum of bitcoins to Bob

Step 2) Alice signs the transaction with her private key

Step 3) Alice's client notifies other clients of the transaction

A BITCOIN TRANSACTION

Step 4) Each node competes to solve a computationally hard problem (this problem will be described later)

Step 5) A node broadcasts that it has found a solution

A BITCOIN TRANSACTION

Step 6) Each node verifies the solver node's solution

Step 7) The transaction authorized and added the the block chain

THE BITCOIN: MATHEMATICS

THE HASHES

- Two different types of hashes used
 - SHA-256
 - 256 bit SHA-2 (Secure Hash Algorithm, Generation 2)
 - Designed by National Security Agency (NSA), published by National Institute of Standards and Technology in 2001
 - RIPEMD-160
 - 160 bit RIPEMD variant (RACE Integrity Primitives Evaluation Message Digest)
 - Designed academically, published in 1996
- Both currently believed to be secure

THE HASHES

- SHA-256 used for creating aforementioned difficult problem (stay patient, we will get to this soon)
 - Always used twice (hashed value is hashed again)
- RIPEMD-160 used for bitcoin address
 - Used after value has already been hashed by SHA
 - Useful for shorter digest size
 - Address is user's bitcoin "wallet
 - Alice transfers bitcoins to Bob by sending them to his address

THE SIGNATURE

- Alice uses the elliptic curve digital signature algorithm (ECDSA) to sign transactions
 - Uses secp256k1 curve given in Standards for Efficient Cryptography
 - 128 bits of security
 - Over a 256 bit field
 - Comparable in strength to 3072 bit RSA

THE TRANSACTION

- Signature releases bitcoins from previous transaction (i.e. whenever the bitcoins were transferred to Alice)
- Can only be authorized by current owner's private key
- Transaction contains amount and destination address

THE BLOCK CHAIN

- Proofs of work stored as Merkle (Hash) Tree
- Allows old leaves to be deleted
- Can verify transaction by attempting to insert into place in block chain

THE "HARD" PROBLEM (FINALLY)

- Find a value which, when double hashed by SHA-256, begins with n zeroes where n is set by the bitcoin network in proportion to amount of processing power available (more power = hard problems)
 - Keep incrementing a nonce (k in this example) stored in the transaction block until find an appropriate value
 - k = 1 SHA-256: 6b86b273ff34fce19d6b804eff5a3f5747ada4eaa22f1d49c01e52ddb7875b4b
 - k = 2 SHA-256: d4735e3a265e16eee03f59718b9b5d03019c07d8b6c51f90da3a666eec13ab35

THE "HARD" PROBLEM (FINALLY)

- Entire network can solve a problem every 10 minutes
 - 62.118 x 10¹² hashes per second
- Would take an individual several weeks months (currently)

BITCOINS: PRIVACY & SECURITY

HOW PRIVATE ARE BITCOIN TRANSACTIONS

HOW PRIVATE ARE BITCOINS

- Bitcoin network makes efforts to remove user identifiable information
- Never transmit to a person, just to a hashed address
- Security is contingent on address not being linked to person
 - As bitcoins grow in popularity, government agencies might start building databases

HOW SECURE ARE BITCOINS

Very

(until you add people into the mix)

HOW SECURE ARE BITCOINS

- All of bitcoins cryptographic functions are provided by established and vetted algorithms (SHA-256, ECDSA)
- Only one vulnerability identified so far:
 - Bug found in transaction log that did not properly verify transactions which overflowed transaction size
 - Two users generated 184 billion bitcoins in a day
 - Protocol was updated, transaction reversed

HOW SECURE ARE BITCOINS

- All malicious attacks on bitcoins have been focused on peripheral trading sites and wallets
- Users store their bitcoin wallet online to avoid loss, malicious users gain access
- Trading websites have been exploited (mass sell offs) to manipulate market value of bitcoins

PREVENTING 51% ATTACKS

- By design, bitcoin network is 1 vote per CPU instead of 1 vote per IP
- Malicious user would need to control 51% of processing power, and then could only double-spend own money, can't create money
- Since longest chain accepted as correct chain

p = probability honest node finds next block

q = probability attacker finds next block

 q_z = probability attacker can catch up from z blocks behind

$$q_z = \begin{cases} 1 & \text{if } p \leq q \\ (q/p)^z & \text{if } p > q \end{cases}$$

DIGITAL CASH, ANALOG MARKET

WHERE DO BITCOINS COME FROM?

- Mining
 - Every time a transaction is verified, node that verified it gets a predetermined number of bitcoins
 - Started at 50BTC
 - In March, dropped to 25BTC
 - BTC limited to 21 million, intended to last until 2140

MINING BITCOINS

- Difficult for individual user to mine bitcoins at this point
- People are building machines specifically to mine bitcoins
 - GPU heavy machines
 - Top commercial devices can try ~60 billion hashes per second
- Balance performance against energy costs (current estimates of \$150,000 in power used daily mining bitcoins)
- Many users join mining "pools", contribute computing power for portion of block payout

WHAT CAN YOU BUY WITH BITCOINS

- First purchase made with bitcoins was on May 21st 2010. A Florida programmer gave a man in England 10,000 BTC to order him a pizza from Papa Johns.
- Many niche companies are starting to accept bitcoins
 - Web services (VPN, web hosting)
 - Gambling
 - A dental practice in Seattle
 - Alpaca socks (0.2487 BTC)
- Most people are treating bitcoin as an investment

TRADING BITCOINS

- Several exchanges have been created
- Largest is Mt. Gox (<u>www.mtgox.com</u>)
 - Handles 70% of bitcoin trading
 - Over past year has handled \$550,704,696.11 of currency

joyoftech.com

OUESTIONS?