Recall

Reflexive spaces

Let X be a Banach space and $Q: X \to X^{**}$ be the canonical map (natural embedding), i.e.,

$$(Qx)(x^*) := x^*(x)$$
 or symmetrically, $\langle x^*, Qx \rangle := \langle x, x^* \rangle$.

If $QX = X^{**}$, then X is called *reflexive*.

Let M be a closed subspace of X.

- X reflexive $\iff X^*$ reflexive.
- X reflexive $\iff M \& X/M$ reflexive. The \iff direction is called Three space property and the proof relies on the isometric isomorphism $\tilde{r} \colon X^*/M^{\perp} \to M^*$ where \tilde{r} is the split of the restriction map $r \colon X^* \to M^*$ along the natural projection $\pi \colon X^* \to X^*/M^{\perp}$.

If X is a **separable** Banach space, then:

- (Helley's Thm) bounded sequence in X^* has w^* -convergent subsequence.
- (In X^* , a sequence is w^* -convergent \implies norm convergent.) \iff dim $X < \infty$.
- X is reflexive \implies bounded sequence in X has weakly convergent subsequence.

Let M be a nonzero proper closed subspace of a Banach space X. In the same notation of Lecture Notes, we may have the following diagram

where the blue arrows denote the isometries by [LN, Prop. 4.12, Prop. 5.1, & Lem. 5.8]. We denote the dashed lines to show the relationship between a Banach space and its dual. Note that $M^* = X^*/M^{\perp}$ by \widetilde{r} and $M^{\perp} = (X/M)^*$ by π^* .

C[0,1] is not reflexive

Example 1. C[0,1] is not reflexive.

In the following, we consider the spaces to be Banach spaces. We prove Example 1 by the necessary conditions or properties of reflexive spaces, i.e., by checking that C[0,1] does not have some property that belongs to a reflexive space. Note that C[0,1] is separable.

Proof by closed subspaces of a reflexive space are reflexive. It suffices to construct a embedding $T: c_0 \to C[0,1]$. For $n \in \mathbb{N}$, let $d_n = \frac{1}{n} - \frac{1}{n+1}$ and define a 'triangle' shaped function

$$f_n(t) = \begin{cases} \frac{4[t - (1/(n+1) + d_n/4)]}{d_n} &, t \in [(1/(n+1) + d_n/4), (1/(n+1) + d_n/2)) \\ -\frac{4[t - (1/(n+1) + d_n/2)]}{d_n} + 1 &, t \in [(1/(n+1) + d_n/2), (1/(n+1) + 3d_n/4)] \\ 0 & \text{otherwise.} \end{cases}$$

Then supp $(f_n) \subset (1/(n+1), 1/n)$ and $||f_n||_{\infty} = 1$. For $x = (x_n)_{n=1}^{\infty} \in c_0$, define Tx by

$$Tx(t) = \sum_{n=1}^{\infty} x_n f_n(t)$$
 for $t \in [0, 1]$.

Since the supports of $f_n(t)$ are disjoint, for every $t \in [0,1]$, $|Tx(t)| \leq ||x||_{\infty}$. Since for each x_n there exists t_n such that $Tx(t_n) = x_n$, we have $||x||_{\infty} = ||Tx||_{\infty}$. The injection and linearity is easily checked.

Hence T embeds c_0 into C[0,1]. Tc_0 is a closed subspace by the completeness of c_0 and not reflexive since c_0 is not reflexive, thus C[0,1] is not reflexive.

Proof by the dual of a reflexive separable space is separable. Recall from Tutorial 3 that $(C[0,1])^* = BV_0^+[0,1]$. We will show that $BV_0^+[0,1]$ is not separable. For any $x \in (0,1)$, define

$$f_x(t) = \begin{cases} 0 & , t \in [0, x) \\ 1 & , t \in [x, 1]. \end{cases}$$

Then $f_x \in BV_0^+[0,1]$ and for any $x \neq y$, $V(f_x - f_y) = 2$. However, the cardinarlity of $\{f_x \colon x \in (0,1)\} \subset BV_0^+[0,1]$ is uncountable. Hence $(C[0,1])^* = BV_0^+[0,1]$ is not separable.

Proof by the weakly sequentially compactness of closed unit ball in a reflexive separable space. Consider the sequence of functions $f_n(x) = x^n \in C[0,1]$. Then $||f_n||_{\infty} = 1$ and every subsequence of f_n will converge pointwisely to $f = \begin{cases} 1 & x = 1 \\ 0 & x \neq 1 \end{cases} \notin C[0,1]$.

For every $x \in [0, 1]$, it follows (from Homework 3) that the evaluation functional $\delta_x(f) = f(x)$ for $f \in C[0, 1]$ is bounded, thus $\delta_x \in (C[0, 1])^*$. Suppose otherwise that C[0, 1] is reflexive. Then by [LN, Coro. 6.12] there exists a subsequence (f_{n_k}) weakly convergent in C[0, 1], and hence pointwisely convergent in C[0, 1] by $\delta_x \in (C[0, 1])^*$, which is a contradiction.