Obliczenia Naukowe

Laboratorium 1

Bartosz Grelewski

October 23, 2022

1 Zadanie 1

1.1 Podpunkt 1

1.1.1 Opis Problemu

W tym zadaniu naszym celem było wyznaczenie iteracyjnie przy użyciu języka Julia epsilonu maszynowego dla niektórych wartości naszej arytmetyki. Epsilon jest odległością od 1 do najmniejszej liczby większej od 1 możliwej do zapisania w danej arytmetyce. Liczba 1 ma w zapisie dwójkowym mantysę wypełnioną zerami. Czyli najmniejsza liczba spełniająca fl(1.0 + macheps) > 1.0. Dla typów zmiennoprzecinkowych float16, float32 i float64.

1.1.2 Rozwiązanie

Aby wygenerować dane służące później do porównania z gotowymi funkcjami eps(float16) itd. należy zastosować algorytm generujący nam owe wartości iteracyjnie.

```
# liczenie macheps
function Macheps_Algorithm(type)
    epsilon = type(1.0)
    while type(1.0 + 0.5*epsilon) > type(1.0)
        epsilon = type(0.5 * epsilon)
    end
    return epsilon
end
```

Algorytm działa w taki sposób, że sprawdzanie machepsów zaczynamy od najmłodszego wyniku 1, zaś kolejne liczby będziemy generować poprzez iloraz 2, co w zapisie binarnym odpowiada przesuwaniu jedynej jedynki w mantysie coraz bardziej w prawo. W algorytmie **type** oznacza arytmetykę.

1.1.3 Interpretacja wyniku

Typ danych	Algorytm	funkcja eps	float.h
Float16	0.000977	0.000977	nie ma
Float32	1.1920929e-7	1.1920929e-7	1.19209e-07
Float64	2.220446049250313e-	2.220446049250313e-	2.22045e-16
	16	16	

1.2 Podpunkt 2

1.2.1 Opis problemu

Kolejny podpunkt to program w języku Julia wyznaczający iteracyjnie liczbę maszynową eta taką, że eta > 0.0 dla wszystkich typów zmiennopozycyjnych Float16, Float32, Float64, zgodnych ze standardem IEEE 754 (half, single, double), i porównać z wartościami zwracanymi przez funkcje: nextfloat(Float16(0.0)), nextfloat(Float32(0.0)), nextfloat(Float64(0.0)). Szukamy możliwie najbliższej liczby większej od 0 w zapisie binarnym.

1.2.2 Rozwiązanie

Stosujemy przerobiony algorytm z punktu powyżej. Jedyna różnica to brak dodawania 0.5 i zaczynamy od wartości 1.0 z iloczynem eta w całości większe od 0 w pętli while.

```
function eta(type)
    eta = type(1.0)
    while type(0.5*eta) > 0
        eta = type(0.5 * eta)
    end
    return eta
end
```

1.2.3 Interpretacja wyniku

Typ danych	Algorytm	eta
Float16	0.6.0e-8	0.6.0e-8
Float32	1.0e-45	1.0e-45
Float64	5.0e-324	5.0e-324

1.3 Podpunkt 3

1.3.1 Opis problemu

Napisać program w języku Julia wyznaczający iteracyjnie liczbę (MAX) dla wszyst- kich typów zmiennopozycyjnych Float16, Float32, Float64, zgodnych ze standardem IEEE 754 (half, single, double), i porównać z wartościami zwracanymi przez funkcje: floatmax(Float16), floatmax(Float32), floatmax(Float64) oraz z danymi zawartymi w pliku nagłówkowym float.h dowolnej instalacji języka C.

1.3.2 Rozwiązanie

Piszemy algorytm generujący nam iteracyjnie liczbę MAX dla wszystki typów zmiennopozycyjnych. Posługujemy się funkcjami takimi jak !isinf() czy już wcześniej napisaną eps.

```
function find_max(type)
   max = type(1.0)

while !isinf(max * T(2.0))
   max *= type(2.0)
   end
   max *= (type(2.0) - eps(type))
   return max
end
```

Na początku ustawiamy nasze MAX jako arytmetykę pod zmienną **type**. Za pomocą funkcji **isinf** sprawdzamy, czy kolejna inkrementacja nie spowoduje utworzenia liczby spoza dostępnego zakresu. Jest to warunek końcowy pętli, więc później przemnażamy przez (*type*(2.0) - *eps*(*type*)).

1.3.3 Interpretacja wyniku

Typ danych	Algorytm	funkcja floatmax	float.h
Float16	6.55e4	6.55e4	6.55e4
Float32	3.4028235e38	3.4028235e38	3.4028235e38
Float64	1.7976931348623157e308	1.7976931348623157e308	1.7976931348623157e308

1.4 Wnioski

W podpunkcie 1 metoda iteracyjna epsilonu jest jes poprawna ze względu na wyniki skonfrontowane z prawidłowymi wartościami. Im większa precyzja arytmetyki tym mniejszy jest epsilon maszynowy. W podpunkcie 2 liczba eta jest najmniejszą możliwą do zapisania liczbą dodatnią. Algorytm iteracyjny jest poprawny, ponieważ wyniki pokrywają się z wartościami wbudowanych metod. W podpunkcie 3 wzrost wartości MAX wraz ze wziększeniem się precyzji arytmetyki wynika z faktu, że im większa jest precyzja tym więcej liczb możemy zapisać.

1.4.1 Odpowiedzi na pytania

Jaki związek ma liczba macheps z precyzją arytmetyki?

Wraz ze wzrostem precyzji arytmetyki maleje wartość macheps.

Jaki związek ma liczba eta z liczbą MIN_{sub}?

Wraz ze wzrostem prezycji arytmetyki maleje wartość *eta*. Liczba *eta* ma związek z liczbą MIN_{sub}. Jak porównamy sobie np. arytmetykę float32 z float64 to zauważymy, że jest to liczba zdenormalizowana.

Co zwracają funkcje floatmin(Float
32) i floatmin(Float
64) i jaki jest związek zwraca- nych wartości z liczbą
 MIN_{nor}

2 Zadanie 2

2.1 Opis Problemu

Kahan stwierdził, że epsilon maszynowy (macheps) można otrzymać obliczając wyrażenie

$$3 \cdot (\frac{4}{3} - 1) - 1$$

w arytmetyce zmiennopozycyjnej. Sprawdzić eksperymentalnie w języku Julia słuszność tego stwierdzenia dla wszystkich typów zmiennopozycyjnych Float16, Float32, Float64.

2.2 Rozwiązanie

Program polega na użyciu funkcji one do otrzymania 1 w danej arytmetyce, a następnie podstawienia do wzoru przy uwzględnienia faktu korzystania z liczb opartych na tej funkcji.

2.3 Interpretacja wyniku

Typ danych	kahan	eps
Float16	-0.000977	0.000977
Float32	1.1920929e-7	1.1920929e-7
Float64	-2.220446049250313e-16	2.220446049250313e-16

2.4 Wnioski

Wartość bezwzględna wyników zgadza się z epsilonem zwracanym przez funkcję języka. Zmiana znaku spowodowana jest możliwą ilością bitów np. dla Float32 ostatnią cyfrą mantysy będzie -1, a Float16 0. Czyli dla wszystkich typów będzie działać jeśli nałożymy na całe równanie wartość bezwzględną.

3 Zadanie 3

3.1 Opis problemu

Sprawdzenie czy w przedziałach liczbowych liczby zmiennopozycyjne są rozmieszczone równomiernie.

3.2 Rozwiązanie

Aby sprawdzić czy liczby są rozmieszczone równomiernie sprawdzam wykładnik, a odległości między liczbami odejmując a od prevfloat(a) gdzie a jest dowolną liczbą zmiennopozycyjną z danego przedziału.

3.3 Wyniki

Liczby w przedziale [1, 2] są rozmieszczone w odstępach 2^{-52} , w przedziale $\left[\frac{1}{2}, 1\right] 2^{-53}$, a w przedziale [2, 4] 2^{-51} .

3.4 Wnioski

Im blizej 0 tym gęściej są rozstawione liczby zmiennopozycyjne.

4 Zadanie 4

4.1 Opis problemu

Znajdź eksperymentalnie w arytmetyce Float64 zgodnej ze standardem IEEE 754 (double) liczbę zmiennopozycyjną x w przedziale 1 < x < 2, taką, że

$$x \cdot \frac{1}{x} \neq 1$$

tj. f(xf(1/x)) = 1 (napisz program w języku Julia znajdujący tę liczbę). Znajdź najmniejszą taką liczbę.

4.2 Rozwiązanie

```
#Finding the smallest number
function lower(y)
    while Float64(y*(Float64(1.0)/y)) == Float64(1.0) && y < Float64(2.0)
        y = nextfloat(y)
    end
    println("The smallest x which fulfill the equation is: $(y)")
end

function main()
    y = nextfloat(Float64(1.0))
    lower(y)
end
main()</pre>
```

Tak jak w treści polecenia, wyznaczyłem eksperymentalnie za pomocą arytmetyki Float64 liczbę, która spełnia założenia zadania. Od razu wyznaczyłem najmniejszą wartość.

4.3 Interpretacja wyniku

Wynosi ona 1.000000057228997.

4.4 Wnioski

Nasz wynik nie wyszedł równo 1. Spowodowane jest to błędem zaokrągleń, które powstały na skutek operacji obliczeniowych. Arytmetyka ma skończoną dokładność dlatego też nie zawsze zwraca dobre wyniki.

5 Zadanie 5

5.1 Opis problemu

Napisz program w języku Julia realizujący następujący eksperyment obliczania iloczynu skalarnego **dwóch wektorów**:

- x = [2.718281828, -3.141592654, 1.414213562, 0.5772156649, 0.3010299957]
- y = [1486.2497, 878366.9879, -22.37492, 4773714.647, 0.000185049].

Należało zaimplementować 4 podane algorytmy:

- 1. "W przód."
- 2. "W tył."
- 3. "Od największego do najmniejszego."
- 4. "Od najmniejszego do największego."

5.2 Rozwiązanie

Algorytm pierwszy obejmuje policzenie sigmy od 1 do n z iloczynu. **Type** - typ Float32 albo Float64. Pętla wykonuje się od 1 do długości pierwszego wektora (x). W pętli natomiast następuje suma iloczynu dwóch elementów wektorów w pozycji zależnej od iteratora (i).

```
function forward(x, y, type)
    sum = type(0.0)
    for i in 1:length(x)
        sum += x[i] * y[i]
    end
    return sum
end
```

Alogrytm drugi oblicza iloczyn skalarny dwóch wektorów x i y, względem poprzedniego algorytmu zmienia się tylko sigma, która jest teraz od n do 1.

```
function backward(x, y, type)
    sum = type(0.0)
    #tzn. ze odejmujemy 1 co iteracje wiec iterujemy
    #do 1 ale odejmujac 1 od dlugosci x
    for i in length(x):-1:1
        sum += x[i] * y[i]
    end
    return sum
end
```

Algorytm trzeci mnoży wartości o odpowiadających indeksach. Następnie tworzy *partial sum* wyników dodatnich dodawanych w kolejności rosnącej. Zwraca sumę sum.

```
function partial_desc(x, y)
    #mnozenie tablic
    p = x .* y

sumOfPositiveNumbers = sum(sort(filter(a -> a>0, p), rev=true))
    sumOfNegativeNumbers = sum(sort(filter(a -> a<0, p)))
    return sumOfPositiveNumbers+sumOfNegativeNumbers
end</pre>
```

Ostatni algorytm analogiczny do trzeciego, ale sumy częściowe tworzone są w odwrotnym porządku.

```
function partial_asc(x, y)
    p = x .* y
    sumOfPositiveNumbers = sum(sort(filter(a -> a>0, p)))
    sumOfNegativeNumbers = sum(sort(filter(a -> a<0, p), rev=true))
    return sumOfPositiveNumbers+sumOfNegativeNumbers
end</pre>
```

5.3 Interpretacja wyniku

Wyniki dla Float32

Algorytm	Wynik
1	-0.4999443
2	-0.4543457
3	-0.5
4	-0.5

Wyniki dla Float64

Algorytm	Wynik
1	1.0251881368296672e-10
2	-1.5643308870494366e-10
3	0.0
4	0.0

5.4 Wnioski

Konfrontując uzyskane wyniki z faktycznym prawidłowym wynikiem:

$$-1.00657107000000 \cdot 10^{-11}$$

nie uzyskaliśmy żadnego poprawnego wyniku. Na błędy obliczeniowe ma wpływ nie tylko arytmetyka. Również kolejność wykonywania działań.

6 Zadanie 6

6.1 Opis problemu

Funkcje równe sobie daja inne wyniki.

6.2 Rozwiazanie

Implementacja funkcji f i g podanych w treści zadania.

6.3 Wyniki

```
8^{-1}: g(x) = 0.0077822185373187065, f(x) = 0.0077822185373186414
8^{-2}: g(x) = 0.00012206286282875901, f(x) = 0.00012206286282867573
8^{-3}: g(x) = 1.907346813826566e - 6, f(x) = 1.9073468138230965e - 6
8^{-4}: g(x) = 2.9802321943606116e - 8, f(x) = 2.9802321943606103e - 8
8^{-5}: g(x) = 4.6566128719931904e - 10, f(x) = 4.656612873077393e - 10
8^{-6}: g(x) = 7.275957614156956e - 12, f(x) = 7.275957614183426e - 12
8^{-7}: g(x) = 1.1368683772160957e - 13, f(x) = 1.1368683772161603e - 13
8^{-8}: g(x) = 1.7763568394002489e - 15, f(x) = 1.7763568394002505e - 15
8^{-9}: g(x) = 2.7755575615628914e - 17, f(x) = 0.0
8^{-10}: g(x) = 4.336808689942018e - 19, f(x) = 0.0
```

6.4 Wnioski

Bardziej wiarygodna jest funkcja g, poniewaz liczby im są dalsze od 0 tym tracą mniej znaczących bitów.

7 Zadanie 7

7.1 Opis problemu

Obliczanie pochodnej i przyblizonej pochodnej oraz róznicy miedzy nimi.

7.2 Rozwiazanie

Obliczenie pochodnej z definicji - przyblizona, oraz obliczenie funkcji pochodnej.

7.3 Wyniki

```
n = 0 approximate derivative = 2.0179892252685967 derivative = 0.11694228168853815 difference = -1.9010469435800585
```

n=1 approximate derivative = 1.8704413979316472 derivative = 0.11694228168853815 difference = -1.753499116243109

n=2 approximate derivative = 1.1077870952342974 derivative = 0.11694228168853815 difference = -0.9908448135457593

n = 3 approximate derivative = 0.6232412792975817 derivative = 0.11694228168853815 difference = -0.5062989976090435

```
n = 45 approximate derivative = 0.11328125 derivative = 0.11694228168853815 difference = 0.003661031688538152
```

n = 46 approximate derivative = 0.109375 derivative = 0.11694228168853815 difference = 0.007567281688538152

n=47 approximate derivative = 0.109375 derivative = 0.11694228168853815 difference = 0.007567281688538152

n = 48 approximate derivative = 0.09375 derivative = 0.11694228168853815 difference = 0.023192281688538152

n = 49 approximate derivative = 0.125 derivative = 0.11694228168853815 difference = -0.008057718311461848

n = 50 approximate derivative = 0.0 derivative = 0.11694228168853815 difference = 0.11694228168853815

n = 51 approximate derivative = 0.0 derivative = 0.11694228168853815 difference = 0.11694228168853815

n = 52 approximate derivative = -0.5 derivative = 0.11694228168853815 difference = 0.6169422816885382

n = 53 approximate derivative = 0.0 derivative = 0.11694228168853815 difference = 0.11694228168853815

n = 54 approximate derivative = 0.0 derivative = 0.11694228168853815 difference = 0.11694228168853815

7.4 Wnioski

Podobnie jak w poprzednim zadaniu - im blizej zera tym są większe błędy.