HMM vs headache

April 30, 2022

Short description of the dataset and the problem

The dataset contains a binary sequence of size 296. Each element has value 1 if in that they I had some headache and 0 if I had not.

Autocorrelation

First

three lags are statistical significant, so it makes sense to model the data as a time series. We decide to use short memory HMM models.

General model stucture

 Z_t Markov process with memory parametrized by θ $X_t|Z_t=z_t\sim Ber(g(z_t))$ where $g:A\subseteq\mathbb{R}\to[0,1]$ eventually paramatrized by ϕ Z_t and g characterize the model

Model 1

Wiener Process

 Z_t is a Wiener process if:

- $Z_t \sim N(0, t)$
- $Cov(Z_t, Z_s) = min\{t, s\}$

Our first model consists of:

- Z_t Wiener process
- $g(z) = e^{-\phi z^2}$

We can prove that given $S = \{i | x_i = 1\}$

$$p(x) = \sqrt{\frac{1}{1+\phi\sum\limits_{i \in 1...N \setminus S} i}} - \sum\limits_{D \subset S} \sqrt{\frac{1}{1+\phi\sum\limits_{i \in 1...N \setminus D} i}}$$

However the cardinality of the power set is $2^{|S|}$ so it is computationally unfeasible even if we have an analytical form. For this reason it is better to use approximation methods like SVI.

Model 1

For SVI we chosen $q_{\theta}(x)$ as a $Beta(\alpha, \beta)$. The optimal ϕ is 2.69.