SEMAINE DU 06/05 AU 10/05

1 Cours

Séries numériques

Généralités Définition, sommes partielles. Nature d'une série, somme. Si $\sum u_n$ converge, alors (u_n) converge vers 0. Divergence grossière. Nature et somme d'une série géométrique. Reste d'une série convergente. Opérations sur les séries.

Comparaison à une intégrale Encadrement de $\sum f(n)$ où f est monotone. Nature d'une série de Riemann.

Séries à termes positifs Une série à terme positif converge ou diverge vers $+\infty$. Si $0 \le u_n \le v_n$, lien entre la convergence ou la divergence des séries $\sum u_n$ et $\sum v_n$. Absolue convergence. La convergence absolue implique la convergence. Relations de comparaison : lien entre domination/négligeabilité/équivalence et convergence/divergence des séries.

2 Méthodes à maîtriser

- Établir la convergence d'une série et calculer sa somme par télescopage.
- Utiliser une décomposition en éléments simples pour déterminer par télescopage la somme d'une série $\sum F(n)$ où F est une fraction rationnelle.
- Utilisation de l'inégalité de Taylor-Lagrange pour prouver la convergence de séries.
- Comparer la somme partielle ou le reste d'une série à une intégrale (méthode des rectangles).
- Comparer à une série de Riemann ou une série géométrique pour déterminer la nature d'une série (inégalité, équivalent ou domination).
- Déterminer un équivalent de la somme partielle d'une série divergente ou du reste d'une série convergente par comparaison à une intégrale.

3 Questions de cours

Lemme de Riemann-Lebesgue

Soit f de classe C^1 sur [a, b] à valeurs dans \mathbb{C} . Montrer que $\lim_{n \to +\infty} \int_a^b f(t)e^{int} dt = 0$.

BCCP 07

- 1. Soient (u_n) et (v_n) deux suites de nombres réels positifs. On suppose que (u_n) et (v_n) sont non nulles à partir d'un certain rang. Montrer que si $u_n \underset{n \to +\infty}{\sim} v_n$, alors $\sum u_n$ et $\sum v_n$ sont de même nature.
- 2. Etudier la convergence de la série

$$\sum_{n \ge 2} \frac{((-1)^n + i) \ln(n) \sin(1/n)}{\sqrt{n+3} - 1}$$

Constante y d'Euler

- 1. Montrer que la série $\sum_{n\geq 2} \frac{1}{n} \ln(n) + \ln(n-1)$ converge.
- 2. En déduire qu'il existe $\gamma \in \mathbb{R}$ tel que

$$\sum_{k=1}^{n} \frac{1}{k} = \ln(n) + \gamma + o(1)$$

Série exponentielle

Soit $x \in \mathbb{R}$. Montrer que la série $\sum_{n \in \mathbb{N}} \frac{x^n}{n!}$ converge et que sa somme vaut e^x à l'aide de l'inégalité de Taylor-Lagrange.

Séries alternées

Soit (u_n) une suite décroissante de limite nulle. Montrer que la série $\sum_{n\in\mathbb{N}} (-1)^n u_n$ converge.