Problem G. Matrices and Determinants

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 256 mebibytes

Given an $n \times n$ integer matrix A, you should find two $n \times n$ integer matrices B and C such that $B \cdot C = A$ and $\det(B) = \det(C) \neq 0$. There may exist multiple solutions or no solution.

Note: det(M) denotes the determinant of matrix M.

Input

The first line contains one integer T ($1 \le T \le 10\,000$) denoting the number of test cases. For each test case:

The first line contains one integer n $(1 \le n \le 4)$ denoting the size of the given matrix.

In the following n lines, the i-th line contains n integers $A_{i,j}$ ($|A_{i,j}| \leq 10$ for $1 \leq j \leq n$) denoting the given matrix.

Output

For each test case:

The first line must contain one string "Yes" (without quotes) if a solution exists, or "No" (without quotes) if there is no solution. If a solution exists:

Each of the following n lines contains n integers $B_{i,j}$ ($|B_{i,j}| \leq 10^{18}$) denoting the matrix B.

Each of the following n lines contains n integers $C_{i,j}$ ($|C_{i,j}| \leq 10^{18}$) denoting the matrix C.

If multiple solutions exist, print any one of them.

Example

$standard\ input$	$standard\ output$
3	Yes
2	2 0
2 0	0 1
0 2	1 0
2	0 2
2 1	No
1 2	Yes
1	-1
1	-1

Problem G Page 12 of 20