

Management großer Softwareprojekte

Prof. Dr. Holger Schlingloff

Humboldt-Universität zu Berlin, Institut für Informatik

Fraunhofer Institut für Rechnerarchitektur und Softwaretechnik FIRST

6. Risikomanagement

Risiko = Möglichkeit, dass eine Aktivität negative Auswirkungen hat

Klassifikation nach Auswirkungen und Ursachen

H. Schlingloff, Management großer Softwareprojekte

6. Risikomanagement

14.1.2003

Bestandteile des Risikomanagements

- a) Risikoerkennung
- b) Risikoanalyse

Bewertung

- c) Planung der Risikobehandlung
- d) Risikoverminderung

Kontrolle

"Defense Acquisition Deskbook" (US DoD)

http://deskbook.dau.mil Planning **Training Center** Assessment Handling Community Monitoring Connection Documentation

b) Risikoanalyse

- Ziel: Bewertung und Priorisierung der Risiken
 - Qualitative Risikoabschätzung (meistens)
 - Quantitative Risikoabschätzung (schwierig)

Bedrohung ist Produkt aus

- Wahrscheinlichkeit des Eintretens und
- Auswirkungen bzw. Schaden

Kenngrößen (USAF Handbook)

Wahrscheinlichkeit des Eintretens

- sehr gering (<10%)
- niedrig (10-25%)
- mittel (25-50%)
- hoch (50-75%)
- sehr hoch (>75%)
- Auswirkungen
 - unbedeutend (negligible)
 - tolerierbar (marginal)
 - ernst (critical)
 - katastrophal (catastrophic)

	nbefriedigendes gebnis	Wahrscheinlichkeit für unbef. Ergebnis	Schäden verursacht durch unbefr. Ergebnis	
A	Ein Software-Fehler tötet das Experiment	3-5	10	30-50
В	Ein Software-Fehler verursacht den Verlust von Schlüsseldaten	3-5	8	24-40
С	Fehlertolerante Ei- genschaften führen zu einer nicht annehm- baren Leistung	4-8	7	28-56
D	Überwachung der Software ergibt, daß unsichere Bedingungen als sicher gemeldet werden	5	9	45
E	Überwachung der Software ergibt, daß sichere Bedingungen als unsicher gemeldet werden	5	3	15
F	Verzögerungen bei der Hardwarelieferung ver- ursachen Zeitüber- schreitungen	6	4	24
G	Software–Fehler bei der Datenreduktion ver- ursachen zusätzl. Arbeit	8	1	8
Н	Schlechte Benut- zungsoberfläche führt zu ineffizienter Bedienung	6	5	30
ı	Prozessorspeicher nicht ausreichend	1	7	7
J	Datenbankmanage- ment-Software verliert hergeleitete Daten	2	2	4

H. Schlingloff, N Legende: 0 = nicht vorhanden, 10 = hoch, Risikofaktor = Spalte 2 * Spalte 3

Drei Ansätze für die Beurteilung

- Kritischer Prozess
 - Vergleich der kritischen Prozesse in der Organisation mit dem Stand der Technik
- Aufwandsstruktur (Work Breakdown Structure)
 - spezifische Risiken für jede Komponente gemäß der Systemdekomposition und Aufwandsschätzung
- Integrierter Prozess/Produkt-Ansatz

	Risk	Risk Scores (0=Low, 5=Medium, 10=High)				
	Categories	0	1-2	3-5	6-8	9-10
1	Technology Approach	Proven Conventional Analytic Approach; Standard Methods	Undemonstrated Conventional Approach, Standard Methods	Emerging Approaches, New Applications	Unconventional Approach, Concept Under Development	Unconventiona Approach, Unproven
2	Design Engineering	Design Completed & Validated	Specifications Defined & Validated	Specifications Defined	Requirements Defined	Requirements Partially Define
3	Coding	Fully Integrated Code Available & Validated	Fully Integrated Code Available	Modules Integrated	Modules Exist but are Not Integrated	Wholly New Design; No Modules Exis
4	Integrated Software	Thousands of Instructions	Tens of Thousands of Instructions	Hundreds of Thousands of Instructions	Millions of Instructions	Tens of Million of Instruction
5	Testing	Tested with System	Tested by Simulation	Structured Walk- Throughs Conducted	Modules Tested (Not as a System)	Untested Modu
6	Alternatives	Alternatives Exist; Alternative Design is Not Important	Dogram 10	Potential Alternatives are Under Development	Potential Alternatives are Under Consideration	Alternative Do Not Exist but i Required
7	Schedule & Management	Relaxed Schedule, Serial Activities, High Review Cycle Frequence; Early First Review	Few Concurrent Activities; Reasonable	Modest Schedule, Many Concurrent Activities; Occasional Reviews Scheduled Late First Review	Fast Track but on Schedule; Numerous Concurrent Activities	Fast Track wit Missed Milestones; Review Only a Demonstration No Periodic Reviews

Toolunterstützung

verschiedene Tools verfügbar:

Palisade @Risk, Crystal Ball, PertMaster, OpenPlan Pro, Predict!Risk, Monte Carlo, ...

Zuordnung von Risiken zu Arbeitspaketen

(Dauer, Kosten)

 Monte-Carlo-Simulation, Visualisierung

c) Planung der Risikobehandlung —

Ziel: Vorbereitende Massnahmen erarbeiten und umsetzen, um den erkannten Risiken wirkungsvoll begegnen zu können

Methode: Top-Ten-Liste

"proaktives Risikomanagement"

Top-Ten-Liste

- Rang, Nummer/Name, Beschreibung
- Warum ist das Risiko wichtig?
- Welche Information wird für die Verfolgung gebraucht?
- Wer wäre verantwortlich für die Behandlung?
- Welche Ressourcen würden dafür gebraucht?
- Welche Aktionen sollten durchgeführt werden?

Home | Risk List | Plot List

Select Analysis to view the Risk Analysis Worksheet.

Risk ID: ACO.1 prev | next

Risk Mitigation Worksheet				
Project Name: Program Control Office	Probable Impact Date: 11/30/2000	Last Updated: 11/30/2000		
Risk Name: Personnel	Risk Priority: High/0.836	Mitigation Status: Green		

Risk Warning Flags: inability to staff tasks

Correlation with Other Projects: Project One,
Visualization Tool, Project Three, Project Five, Project
Six, Database Development, Project Eight

Risk and Impact Description: This risk could significantly hinder the program, the schedule is extremely tight, loss of staff or inability to staff to 100 percent vill affect the schedule.

Mitigation Strategy: Designate key personnel on all critical tasks to ensure long term availability and/or quick turn around for replacement personnel.

Action ID	Description	s	tatus	Owner	Scheduled Start Date	Scheduled Completion Date	Actual Start Date	Actual Completion Date
PCO.1.1	Each project determine oritical tasks	Green	on-going	LaLa, Meredith	10/30/2000	10/1/2004	10/30/2000	
PCO.1.2	Each project designate key personnel for critical tasks	Green	delay due to critical tasks evaluation, but on track	MeMe, Charlene	10/30/2000	10/30/2004	11/10/2000	

Points of Contact						
	Name	Phone	Secure Phone			
Risk Identified By	Douglas Fir	555-555-5511	555-222-5522			
Risk Managed By	Douglas Fir	555-555-5511	555-222-5522			

Tool: Mitre Risk Management Worksheet

Fragen zum Risikobehandlungsplan

- Welche der alternativen Möglichkeiten sind am ehesten umsetzbar? "If you fail to plan, then you plan on failing"
 - technisch
 - zeit- und budgetmäßig
 - operational und organisatorisch
- Wie ist die Effektivität der vorgeschlagenen Maßnahmen? Wie verringert sich das Risiko?
- Was kostet die Implementierung der Alternative? Sind genügend Ressourcen dafür vorhanden? Wer ist verantwortlich?
- In welcher Weise beeinflusst die Alternative die Benutzeranforderungen?

Wie ändert sich die Leistung des Produktes?

Risikobehandlung

Risikokontrolle

- Mehrfachentwicklung und Alternativdesign
- Prototypentwicklung, Modellierung, Simulation
- Inkrementelles und evolutionäres Design, Wiederverwendung
- Technologie-Fortentwicklung, Qualitätsreifegrad
- Reviews, Walk-Throughs und Inspektionen

Risikovermeidung

- Änderung der Anforderungen, Spezifikationen
- Änderung der Prozesse

Risikoannahme

Rücklagenbildung

Risikoübertragung

- Auftraggeber
- Unterauftragnehmer

Aufgabe

- Nennen Sie für jede der "Top Ten" ein konkretes Beispiel und überlegen Sie, wie Sie darauf reagieren würden!
- Personalprobleme mangelnde Qualifikation – Fortbildung; Neueinstellung; Umschichtung
- Unrealistische Pläne und Budgets
 Unter-Preis-Angebot Förderung durch öff. Hand; Nachverhandlungen;
 Abstriche
- 3. Entwickeln der falschen Funktionen und Eigenschaften Online-Shop-Beispiel andere Kunden suchen; Überzeugung des Kunden; Reviews mit Kundenbeteiligung; Neuentwicklung;
- 4. Entwickeln der falschen Benutzungsschnittstelle grafische Oberfäche statt Kommandozeilen Benutzungsschnittstelle vom Rest abtrennen;

Aufgabe

- Goldverzierungen
 verschiedene User-Interfaces Veto
- 6. Ständiger Wechsel der Anforderungen Datenbankbeispiel Pflichtenheft gegenzeichnen
- 7. Versagen externer Komponenten Windows workaround und patches
- 8. Versagen externer Aufträge Interface-Designer gibt auf Konventionalstrafen
- 9. zu geringe Leistung pro Zeit Server geht in die Knie – einen zweiten dazunehmen
- 10.Fehleinschätzung des Standes der Technik Computerspiel, Multimedia warten, workaround

Risikobehandlungs-Strategien

- Personalprobleme
 - Einsatz von Top-Talenten
 - profilgerechte Aufgabenverteilung; Schulung
 - Gruppenbildung; Motivation
 - Bildung in verschiedenen Kompetenzbereichen
 - Planung der Schlüsselpersonen
 - Subcontracting
- Unrealistische Pläne und Budgets
 - umfassende Kosten- und Terminschätzung
 - "Design to Cost"; 80:20-Regel
 - Software-Wiederverwendung
 - inkrementelle Entwicklung
 - Verminderung der Anforderungen

Risikobehandlungs-Strategien (2)

- Entwicklung der falschen Funktionalität
 - Pflichten- und Lastenheftprüfung
 - Prototypentwicklung
 - frühzeitige Qualitätssicherung
- Entwicklung einer falschen Benutzerschnittstelle
 - Aufgabenanalyse
 - Prototyping; Szenarien
- Goldverzierungen
 - Verminderung der Anforderungen; Prototyping
 - Kosten-Nutzen-Analysen; 80:20-Regel
- Ständige Erweiterung der Anforderungen
 - Hohe Schwelle; Information Hiding
 - Inkrementelle Entwicklung (auf spätere Inkremente verschieben)

Risikobehandlungs-Strategien (3)

- Probleme externer Komponenten
 - Benchmarking; Inspektionen
 - Schnittstellenprüfung
 - Kompatibilitätsanalyse
- Probleme mit externen Auftragnehmern
 - Schnittstellenprüfung; vorgängige Audits
 - Konventionalstrafe / Erfolgsbeteiligung
 - Evaluation mehrerer Offerten
- Performanceprobleme
 - Simulation; Benchmarking; Prototyping
 - mehr Hardwareleistung; Tuning
- Überforderung des Standes der Technik
 - Modellbildung; Kosten-Nutzen-Analyse
 - Prototyping; Schnittstellenanalyse
 - Planung der Schlüsselpersonen
 - Externe Projektkontrolle gegen Betriebsblindheit