Math 54 Section 4: Quiz 1

Problem 1 (Ch. 1.5, # 32) Could a set of 3 vectors in \mathbb{R}^4 span all of \mathbb{R}^4 ? Explain. What about n vectors in \mathbb{R}^m where n is less than m?

Problem 2 (Ch. 1.7 # 22) True or False. If False, give a counter-example.

- (a) If u and v are linearly independent and if w is in $\mathrm{Span}\{u,v\}$, then $\{u,v,w\}$ is linearly independent.
- (b) If 3 vectors in \mathbb{R}^3 lie in the same plane in \mathbb{R}^3 , then they are linearly independent.
- (c) If a set contains fewer vectors than there are entries in the vectors, then the set is linearly independent.
- (d) If a set in \mathbb{R}^n is linearly dependent, then the set contains more than n vectors.

Problem 3 Determine by inspection whether the following vectors are linearly independent.

1.
$$\begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
, $\begin{bmatrix} 1 \\ 5 \end{bmatrix}$, $\begin{bmatrix} 40 \\ -2 \end{bmatrix}$

$$2. \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 14 \end{bmatrix}$$

$$3. \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 4 \\ 5 \\ 4 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

Problem 4 Solve the equation Ax = 0 with

$$A = \begin{bmatrix} -2 & -2 & 4\\ 4 & 3 & -5\\ -2 & -3 & 7 \end{bmatrix}$$

(Hint: Try adding columns together instead of doing row reduction.)