

3rd Simulation Project

Control Engineering

Enrique Aguayo Lara

Perla Vanessa Jaime Gaytán

ITE

A00344428

Instituto Tecnológico de Estudios Superiores de Monterrey Campus Guadalajara.

Zapopan, Jalisco, México.

May 12, 2020.

General Parameters.

Date of Birth: May 10, 1999.

```
1 %General
2 - a=10;
3 - b=5;
4 - c=17;
5 - ut=a/2;
6 - rt=a;
7 - k=b;
```

System 1.

$$G_1(s) = \frac{c}{as+b} =$$

$$K_{max} = \infty$$

1. Lead Compensator. Design a Lead compensator with e(t)=10%. Reference r(t)=a.

 $C(s) = \frac{k(s+a)}{s+b}$ Therefore G(s)C(s) is type 0 and unit step.

$$e_{ss} = 0.1 = \frac{1}{1 + k_p}$$

$$k_p = 9 = \lim_{\substack{s \to 0 \\ 17 * a}} C(s)G(s) = \frac{k(a)}{b} (\frac{17}{5})$$

$$k = \frac{9 * 5 * b}{17 * a} = \frac{45b}{17a}$$

$$k = \frac{9 * 5 * b}{17 * a} = \frac{45b}{17a}$$

From the diagram of root locus, I decided that a = -5 y b = -10, therefore:

$$k = \frac{45 * 10}{17 * 5} \approx 5.294$$

$$C_1(s) = \frac{5.294(s+5)}{s+10}$$

Simulink Diagram:

Simulink response:

Final Value = 9
$$e_{SS} = \frac{10-9}{10} = .1$$

2. Lead-Lag Compensator. Design a Lead Lag compensator with e(t)=5%.

Reference r(t)=b. Make assumptions about the maximum static gain on the Lead and improve it.

To obtain this compensator I am using $C_1(s)$, as the lead, and making $C_2(s)$ as the lag and both together make the Lead-Lag Compensator.

$$C(s) = C_1(s) C_2(s) \text{ Therefore G(s)C(s) is type 0 and unit step.}$$

$$C_2(s) = \frac{k_2(s+a_2)}{s+b_2}$$

$$e_{ss} = 0.05 = \frac{1}{1+k_p}$$

$$k_p = 19 = \lim_{s \to 0} C(s)G(s) = (\frac{5.294(5)}{10})(\frac{k_2(a_2)}{b_2})(\frac{17}{5})$$

$$k = \frac{19 * 10 * b_2}{17 * 5.294 * a_2} = \frac{19b}{9a}$$

$$|a| > |b|$$

From the diagram of root locus, I decided that a = -20 y b = -15, therefore:

$$k = \frac{19 * 15}{9 * 20} \approx 1.5833$$

$$C_2(s) = \frac{1.5833(s+15)}{s+2}$$

$$C(s) = C_1(s) C_2(s) = (\frac{3.971(s+5)}{s+10})(\frac{0.281(s+20)}{s+15})$$

Root Locus Diagram:

Simulink Diagram:

Simulink response:

Final Value theorical =
$$b * 0.95 = 5 * .95 = 4.75$$
 Actual Final Value = 4.75

System 2

As we can see, maximum gain is 45.474.

1. Lead Compensator. Design a Lead compensator with e(t)=10%. Reference r(t)=a.

$$C(s) = \frac{k(s+a)}{s+b} \text{ Therefore G(s)C(s) is type 0 and unit step.}$$

$$e_{ss} = 0.1 = \frac{1}{1+k_p}$$

$$k_p = 9 = \lim_{s \to 0} C(s)G(s) = \frac{k(a)}{b} (\frac{85}{289})$$

$$k = \frac{9*289*b}{85*a} = \frac{153b}{5a}$$

$$|a| < |b|$$

From the diagram of root locus, I decided that a = -15 y b = -20, therefore:

$$k = \frac{153 * 20}{5 * 15} \approx 40.8$$

$$C_1(s) = \frac{40.8(s+15)}{s+20}$$

Simulink Diagram:

Simulink response:

Final Value = 9
$$e_{ss} = \frac{10-9}{10} = .1$$

2. Lead-Lag Compensator. Design a Lead Lag compensator with e(t)=5%.

Reference r(t)=b. Make assumptions about the maximum static gain on the Lead and improve it.

To obtain this compensator I am using $C_1(s)$, as the lead, and making $C_2(s)$ as the lag and both together make the Lead-Lag Compensator.

$$C(s) = C_1(s) C_2(s) \text{ Therefore G(s)C(s) is type 0 and unit step.}$$

$$C_2(s) = \frac{k_2(s+a_2)}{s+b_2}$$

$$e_{ss} = 0.05 = \frac{1}{1+k_p}$$

$$k_p = 19 = \lim_{s \to 0} C(s)G(s) = (\frac{40.8(15)}{20})(\frac{k_2(a_2)}{b_2})(\frac{85}{289})$$

$$k = \frac{19b_2}{9*a_2}$$

$$|a| > |b|$$

From the diagram of root locus, I decided that a = -26 y b = -25, therefore:

$$k = \frac{19 * 25}{9 * 26} = \frac{475}{234}$$

$$C_2(s) = \frac{475/234(s+26)}{s+25}$$

$$C(s) = C_1(s) C_2(s) = (\frac{40.8(s+15)}{s+20})(\frac{2.029(s+26)}{s+25})$$

Root Locus Diagram:

Simulink Diagram:

Simulink response:

Yellow = transfer function. Orange = step function Blue= transfer function with controller.

Final Value theorical = b * 0.95 = 5 * .95 = 4.75 Actual Final Value = 4.75

System 3

Maximum Gain: 182.28

1. Lead Compensator. Design a Lead compensator with e(t)=10%. Reference r(t)=a.

$$C(s) = \frac{k(s+a)}{s+b}$$
 Therefore G(s)C(s) is type 0 and unit step.
 $e_{ss} = 0.1 = \frac{1}{1+k_p}$

$$e_{ss} = 0.1 = \frac{1}{1+k_n}$$

$$k_p = 9 = \lim_{s \to 0} C(s)G(s) = \frac{k(a)}{b} (\frac{40}{85})$$

$$k = \frac{9*85*b}{40*a} = \frac{153b}{8a}$$

From the diagram of root locus, I decided that a = -20 y b = -25, therefore:

$$k = \frac{153 * 25}{8 * 20} \approx 23.906$$

$$C_1(s) = \frac{23.906(s+20)}{s+25}$$

Simulink Diagram:

Simulink response:

Final Value = 9
$$e_{ss} = \frac{10-9}{10} = .1$$

2. Lead-Lag Compensator. Design a Lead Lag compensator with e(t)=5%.

Reference r(t)=b. Make assumptions about the maximum static gain on the Lead and improve it.

To obtain this compensator I am using $C_1(s)$, as the lead, and making $C_2(s)$ as the lag and both together make the Lead-Lag Compensator.

$$C(s) = C_1(s) C_2(s) \text{ Therefore G(s)C(s) is type 0 and unit step.}$$

$$C_2(s) = \frac{k_2(s+a_2)}{s+b_2}$$

$$e_{ss} = 0.05 = \frac{1}{1+k_p}$$

$$k_p = 19 = \lim_{s \to 0} C(s)G(s) = (\frac{23.906(20)}{25})(\frac{k_2(a_2)}{b_2})(\frac{40}{85})$$

$$k = \frac{19b_2}{9*a_2}$$

$$|a| > |b|$$

From the diagram of root locus, I decided that a = -30 y b = -35, therefore:

$$k = \frac{19 * 30}{9 * 35} = \frac{38}{21}$$

$$C_2(s) = \frac{38/21(s+30)}{s+35}$$

$$C(s) = C_1(s) C_2(s) = (\frac{23.906(s+20)}{s+25})(\frac{38/21(s+30)}{s+35})$$

Root Locus Diagram:

Simulink Diagram:

Simulink response:

Yellow = transfer function. Orange = step function Blue= transfer function with controller.

Final Value theorical = b * 0.95 = 5 * .95 = 4.75 Actual Final Value = 4.75

System 4

Since there are not branches crossing the imaginary axis, the maximum gain is infinity.

1. Lead Compensator. Design a Lead compensator with e(t)=10%. Reference r(t)=a.

$$C(s) = \frac{k(s+a)}{s+b}$$
 Therefore G(s)C(s) is type 0 and unit step.

$$e_{ss} = 0.1 = \frac{1}{1+k_p}$$

$$k_p = 9 = \lim_{s \to 0} C(s)G(s) = \frac{k(a)}{b} \left(\frac{6869}{490.6415}\right)$$

$$k = \frac{9*490.6415*b}{6869*a} = 0.6428 \frac{b}{a}$$

$$|a| < |b|$$

From the diagram of root locus, I decided that a = -10 y b = -5, therefore:

$$k = 0.6428 \frac{10}{5} \approx 1.2857$$

$$C_1(s) = \frac{1.2857(s+5)}{s+10}$$

Simulink Diagram:

Simulink response:

Final Value = 9
$$e_{SS} = \frac{10-9}{10} = .1$$

2. Lead-Lag Compensator. Design a Lead Lag compensator with e(t)=5%.

Reference r(t)=b. Make assumptions about the maximum static gain on the Lead and improve it.

To obtain this compensator I am using $C_1(s)$, as the lead, and making $C_2(s)$ as the lag and both together make the Lead-Lag Compensator.

$$C(s) = C_1(s) C_2(s) \text{ Therefore G(s)C(s) is type 0 and unit step.}$$

$$C_2(s) = \frac{k_2(s+a_2)}{s+b_2}$$

$$e_{ss} = 0.05 = \frac{1}{1+k_p}$$

$$k_p = 19 = \lim_{s \to 0} C(s)G(s) = (\frac{1.2857(5)}{10})(\frac{k_2(a_2)}{b_2})(\frac{6869}{490.6415})$$

$$k = \frac{19 * b_2}{9 * a_2}$$

$$|a| > |b|$$

From the diagram of root locus, I decided that a = -25 y b = -15, therefore:

$$k = \frac{19 * 15}{9 * 25} = \frac{19}{15}$$

$$C_2(s) = \frac{19/15(s+25)}{s+15}$$

$$C(s) = C_1(s) C_2(s) = (\frac{1.2857(s+5)}{s+10})(\frac{1.2667(s+25)}{s+15})$$

Root Locus Diagram:

Simulink Diagram:

Simulink response:

Yellow = transfer function. Orange = step function Blue= transfer function with controller.

Final Value theorical = b * 0.95 = 5 * .95 = 4.75 Actual Final Value = 4.75

Blue = step function Yellow = transfer function with controller

System 5

1. DONE

2. a. Continuous-time transfer function.

3. For H1(s)/Qin(s) = G1 Design a Lead Compensator. Target: 10% error

$$C(s) = \frac{k(s+a)}{s+b}$$
 Therefore G(s)C(s) is type 0 and unit step.

$$e_{ss} = 0.1 = \frac{1}{1+k_p}$$

$$k_p = 9 = \lim_{s \to 0} C(s)G_1(s) = \frac{k(a)}{b}(1.7)$$

$$k = \frac{9b}{1.7a} = 5.2941 \frac{b}{a}$$

$$|a| < |b|$$

From the diagram of root locus, I decided that a = -5 y b = -10, therefore:

$$k = 5.2941 \frac{10}{5} \approx 10.5882$$

$$C_1(s) = \frac{10.5882(s+5)}{s+10}$$

Simulink Diagram:

Simulink response:

Final Value = 9
$$e_{ss} = \frac{10-9}{10} = .1$$

4. For H2(s)/Qin(s) Design a Lead-Lag Compensator. Target: 3% error and a pre-defined maximum input (selected by you).

To obtain this compensator I am using $C_1(s)$, as the lead, and making $C_2(s)$ as the lag and both together make the Lead-Lag Compensator.

 $C(s) = C_1(s) C_2(s)$ Therefore G(s)C(s) is type 0 and unit step.

$$e_{ss} = 0.03 = \frac{1}{1 + k_p}$$

$$k_p = \frac{97}{3} = \lim_{s \to 0} C(s)G_2(s) = \left(\frac{k_1(a_1)}{b_1}\right) \left(\frac{k_2(a_2)}{b_2}\right) (4)$$

For the Lead Compensator, I decided that $a_1=-5$, $b_1=-10$ and $\ k_1=2.$

$$\frac{97}{3} = (\frac{2(5)}{10})(\frac{k_2(a_2)}{b_2})(4)$$

$$C_1(s) = \frac{2(s+5)}{s+10}$$

Then for the Lag Compensator:

$$k_2 = \frac{97 * 10 * b_2}{3 * 2 * 5 * 4 * a_2} = \frac{97b_2}{12a_2}$$

From the diagram of root locus, I decided that a=-20 y b=-15, therefore:

$$k = \frac{97 * 15}{12 * 20} = \frac{97}{16}$$

$$C_2(s) = \frac{97/16(s+20)}{s+15}$$

$$C(s) = C_1(s) C_2(s) = (\frac{2(s+5)}{s+10})(\frac{97/16(s+20)}{s+15})$$

Simulink Diagram:

Simulink response:

Final Value theorical =
$$a * 0.95 = 10 * .97 = 9.7$$
 Actual Final Value = 9.7

