

多元函数的极值

定义 设 $f: R^n \supset D \to R$, 若 $\exists U(P_0) \subset D$, 使 $\forall P \in U(P_0)$, 有 $f(P) \le f(P_0) \quad (\vec{\boxtimes} f(P) \ge f(P_0)),$

则称 $f(P_0)$ 为的**极大值**(或**极小值**), P_0 称为**极大值点**(或**极小值点**).

极大值与极小值统称为**极值**,极大值点与极小值点统称为**极值点**.

• 对二元函数 z = f(x, y), 在 $P_0(x_0, y_0)$ 点:

 $f(x_0, y_0)$ 为极大值 $\Leftrightarrow \exists U(P_0), \forall \forall (x, y) \in U(P_0)$ 有 $f(x, y) \leq f(x_0, y_0)$.

 $f(x_0, y_0)$ 为极小值 $\Leftrightarrow \exists U(P_0), \forall \forall (x, y) \in U(P_0)$ 有 $f(x, y) \geq f(x_0, y_0)$.

• **例如:** 上半锥面 $z = \sqrt{x^2 + y^2}$ 在 (0,0) 处有极小值 0.

旋转抛物面 $z = 2 - (x^2 + y^2)$, 在 (0,0) 处有极大值 2.

多元函数的极值

定理 (**极值的必要条件**) 设 $f: R^n \supset D \to R$ 在 D 的内点 P_0 取到极值,

- 且 f 在 P_0 点的偏导数存在,则 $f_i'(P_0) = 0$ $(i = 1, 2, \dots, n)$.
- 所有 f 的偏导数都为零的点称为 f 的**驻点** .
- •极值点必在驻点或偏导数不存在的点取到.
- P_0 不是 f 的极值点 $\Leftrightarrow \forall U(P_0), \exists P' \in U(P_0), f(P') > f(P_0), \exists P'' \in U(P_0), f(P'') < f(P_0).$

定理(**极值的充分条件)**设函数 z = f(x, y) 在点 $P_0(x_0, y_0)$ 处有连续的二阶偏导数,且

$$f'_x(x_0, y_0) = f'_y(x_0, y_0) = 0.$$
 $i \exists A = f''_{xx}(x_0, y_0), B = f''_{xy}(x_0, y_0), C = f''_{yy}(x_0, y_0),$ \emptyset

(1) 当 $B^2 - AC < 0$ 时, $f(x_0, y_0)$ 为极值,且

当A>0 (C>0)时, $f(x_0,y_0)$ 为极小值;当A<0 (C>0)时, $f(x_0,y_0)$ 为极大值.

(2) 当 $B^2 - AC > 0$ 时, $f(x_0, y_0)$ 不是极值.

求多元函数极值的例题

例 1 求函数 $f(x, y) = x^4 + y^4 - x^2 - 2xy - y^2$ 的极值.

 \mathbb{R} : 显然函数 f(x,y) 没有偏导不存在的点,

令
$$\begin{cases} f'_x(x,y) = 4x^3 - 2x - 2y = 0 \\ f'_y(x,y) = 4y^3 - 2x - 2y = 0 \end{cases}$$
解得驻点为 $P_1(-1,-1), P_2(1,1), P_3(0,0).$

又有 $A = f_{xx}'' = 12x^2 - 2$, $B = f_{xy}'' = -2$, $C = f_{yy}'' = 12y^2 - 2$.

对 $P_1(-1,-1)$: $B^2 - AC = -96 < 0$, 且 A = 10 > 0, 因此 f(-1,-1) = -2 为极小值.

对 $P_2(1,1)$: $B^2 - AC = -96 < 0$, 且 A = 10 > 0, 因此 f(1,1) = -2 也为极小值.

对 $P_3(0,0)$: $B^2 - AC = 0$. 从下面可知 f(0,0) = 0 不是极值.

(1) \not E $\forall U(P_3)$, \not R $(x,x) \in U(P_3)$, $0 < |x| < \sqrt{2}$, \not R $f(x,x) = 2x^2(x^2-2) < 0 = f(0,0)$.

(2) 在 $\forall U(P_3)$, 取 $(x,-x) \in U(P_3)$, $x \neq 0$, 有 $f(x,-x) = 2x^4 > 0 = f(0,0)$.

求多元函数极值的例题

例 2 求点 P(1,-2,0) 到曲面 $4y = x^2 - z^2$ 最小距离.

设曲面 $4y = x^2 - z^2$ 上的一点为 P'(x, y, z), P 与 P' 的距离为 d, 则 $d^2 = (x-1)^2 + (y+2)^2 + z^2 = x^2 - 2x + y^2 + 4y + z^2 + 5$,将 $4y = x^2 - z^2$ 代入得 $d^2 = 2x^2 - 2x + y^2 + 5 \triangleq f(x, y).$

令
$$\begin{cases} f'_x(x,y) = 4x - 2 = 0 \\ f'_y(x,y) = 2y = 0 \end{cases}$$
 解得驻点为 $P_0\left(\frac{1}{2},0\right)$.

又 $A = f''_{xx}(x, y) = 4$, $B = f''_{xy}(x, y) = 0$, $C = f''_{yy}(x, y) = 2$, 所以 $B^2 - AC = -8 < 0$, A > 0,

因此 $f\left(\frac{1}{2},0\right) = \frac{9}{2}$ 为极小值,也是最小值,于是所求的距离最小值为 $\frac{3\sqrt{2}}{2}$.

•以上问题可归结为: 求满足条件 $4y = x^2 - z^2$ 函数 $f(x,y) = (x-1)^2 + (y+2)^2 + z^2$ 的最小值.

条件极值

问题 求满足条件 $g(x_1, x_2, \dots, x_n) = 0$ 下,求目标函数 $f(x_1, x_2, \dots, x_n)$ 的极值. 这种含约束条件的极值问题称为**条件极值**.

- 如果能从 $g(x_1, x_2, \dots, x_n) = 0$ 中解出一个变量,譬如 $x_n = h(x_1, x_2, \dots, x_{n-1})$ 代入 $f(x_1, x_2, \dots, x_n)$ 中即转化为求 $f[x_1, x_2, \dots, x_{n-1}, h(x_1, x_2, \dots, x_{n-1})]$ 的无条件极值.
- •但是,以上的"解出"往往非常困难。下面我们以二元函数为例来阐述如何求解条件极值: 求满足约束条件 g(x,y)=0 下目标函数 f(x,y) 的极值.

假设 g(x,y) 存在隐函数 y = y(x), 那么即为求 f[x,y(x)]的极值了. 由一元函数极值的必要条件,在极值点 (x,y) 有: $\left(f[x,y(x)]\right)_x' = 0$. 即 $f'_x + f'_y \cdot y'(x) = 0$, 再对 g(x,y) = 0 两边对 x 求导得 $y'(x) = -\frac{g'_x}{g'_y}$,

条件极值

代入得
$$f'_{x} - f'_{y} \cdot \frac{g'_{x}}{g'_{y}} = 0$$
. 记 $\lambda = -\frac{f'_{y}}{g'_{y}}$, 则有
$$\begin{cases} f'_{x} + \lambda g'_{x} = 0 \\ f'_{y} + \lambda g'_{y} = 0 \end{cases}$$
 ……(*).

若作函数 $F(x,y,\lambda) = f(x,y) + \lambda g(x,y)$, 那么(*)式即为 F 取极值的必要条件.

$$\exists P \quad \frac{\partial F}{\partial x} = 0, \quad \frac{\partial F}{\partial y} = 0, \quad \frac{\partial F}{\partial \lambda} = 0.$$

- $F(x, y, \lambda)$ 称为**拉格朗日函数**, λ 称为**拉格朗日乘数(乘子)**.
- •以上这种将条件极值转化为无条件极值的方法称为拉格朗日乘数法.

注

- (1)以上(*)式解出的"驻点"是否确为条件极值点,则需另行判断.
- (2)许多条件极值问题是一些具体实际问题,如果从问题本身易知解出的"驻点" 必为所求极值点,那么我们不再从理论上进行极值的判断.

条件极值例题

•对于其他多元函数的情形,以及有多个约束条件的情况可类似求解. 例如求在约束条件 $\varphi_1(x,y,z) = 0$, $\varphi_2(x,y,z) = 0$ 下求 f(x,y,z) 的极值:

作拉格朗日函数 $F(x, y, z, \lambda, \mu) = f(x, y, z) + \lambda \varphi_1(x, y, z) + \mu \varphi_2(x, y, z)$,

由
$$\frac{\partial F}{\partial x} = 0$$
, $\frac{\partial F}{\partial y} = 0$, $\frac{\partial F}{\partial z} = 0$, $\frac{\partial F}{\partial \lambda} = 0$, $\frac{\partial F}{\partial \mu} = 0$ 可解出驻点,然后判断是否是所求极值点.

例 (1)求原点到曲线 $\begin{cases} 2z = x^2 + y^2 \\ x + y + z = 1 \end{cases}$ 的最短和最长距离.

(2) 求椭球面
$$\frac{x^2}{6} + \frac{y^2}{3} + \frac{z^2}{2} = 1$$
 上在第一卦限内的一点 $P(x_0, y_0, z_0)$, 使过 P 点,

法向量为
$$\left(\frac{x_0}{6}, \frac{y_0}{3}, \frac{z_0}{2}\right)$$
的平面与三个坐标平面围成的四面体体积最小.

