

Julien Simon

AI/ML Evangelist, EMEA

@julsimon

Agenda

- Artificial Intelligence At Amazon
- Text-to-speech: Amazon Polly

E Java

Object and face detection: Amazon Rekognition

Machine Learning as a service: Amazon Machine Learning

* Spark MLlib on Amazon EMR

Apache MXNet: Deep Learning

Resources

- Artificial Intelligence: design software applications which exhibit human-like behavior, e.g. speech, natural language processing, reasoning or intuition
- Machine Learning: teach machines to learn without being explicitly programmed
- Deep Learning: using neural networks, teach machines to learn from complex data where features cannot be explicitly expressed

Artificial Intelligence At Amazon

Thousands Of Employees Across The Company Focused on Al

Discovery & Search

Fulfilment & Logistics

Enhance Existing Products

Define New Categories
Of
Products

Bring
Machine
Learning To
All

Selected customers running Al on AWS

Amazon Al for every developer

Services	Chat Amazon Lex		Speech Amazon Polly		Vision Amazon Rekognition	
Platforms	Amazon ML	Spark & EMR	Kir	nesis	Batch	ECS
Engines	MXNet 7	ΓensorFlow	Caffe	Theano	Pytorch	CNTK
Infrastructure	GPU	CP	U	IoT		Mobile

Polly: Life-like Speech Service

to life-like speech

Polly: plain text & SSML text

```
AmazonPolly pollyClient = AmazonPollyClientBuilder.standard().withRegion(Regions.EU_WEST_1)
        .withCredentials(new AWSStaticCredentialsProvider(credentials)).build();
SynthesizeSpeechRequest req = new SynthesizeSpeechRequest().withVoiceId("Brian")
        .withText("Hello, My name is Brian. I'm in the kitchen.").withOutputFormat("mp3");
SynthesizeSpeechResult result = pollyClient.synthesizeSpeech(req);
play(result.getAudioStream());
String ssmlMessage = "<speak>Your reservation for <say-as interpret-as=\"cardinal\"> 2 </say-as> rooms on the "
        + "<say-as interpret-as=\"ordinal\">4th</say-as> floor of the hotel on"
        + "<say-as interpret-as=\"date\" format=\"mdy\">3/21/2012</say-as>, with early"
        + "arrival at <say-as interpret-as=\"time\" format=\"hms12\">12:35pm</say-as> has been confirmed. "
        + "Please call <say-as interpret-as=\"telephone\" format=\"1\">(888) 555-1212</say-as> with any questions.</speak>";
req = new SynthesizeSpeechRequest().withVoiceId("Amy").withTextType("ssml").withText(ssmlMessage)
        .withOutputFormat("mp3");
result = pollyClient.synthesizeSpeech(req);
play(result.getAudioStream());
```

Rekognition: Search & Understand Visual Content

Real-time & batch image analysis

Object & Scene Detection

Facial Detection

Facial Analysis

Face Search

Celebrity
Detectio

Sports, music, movies, etc.

Content
Moderatio

n
Explicit, suggestive, etc.

Text In Image

Visual Similarity Search

Find similar faces

https://aws.amazon.com/solutions/case-studies/cspan/

Rekognition: object detection

Rekognition: face detection

```
DetectFacesRequest request = new DetectFacesRequest()
    .withImage(new Image()
    .withS30bject(new S30bject()
        .withName(photo)
        .withBucket(bucket)))
    .withAttributes(Attribute.ALL);

try {
    DetectFacesResult result = rekognitionClient.detectFaces(request);
    List < FaceDetail > faceDetails = result.getFaceDetails();
```

Rekognition: face comparison

Amazon Al for every developer

Services	Chat Amazon Lex		Speech Amazon Polly		Vision Amazon Rekognition	
Platforms	Amazon ML	Spark & EMR	& Kir	nesis	Batch	ECS
Engines	MXNet 7	TensorFlow	Caffe	Theano	Pytorch	CNTK
Infrastructure	GPU	CF	DU	IoT		Mobile

Amazon Machine Learning

Easy-to-use, managed machine learning service built for developers

Robust, powerful technology based on Amazon's internal systems

Create regression and classification models using your data already stored in the AWS Cloud

Deploy models to production in seconds

Fraud.net Uses AWS to Quickly, Easily Detect Online Fraud

Amazon Machine Learning
helps us reduce complexity and
make sense of emerging fraud
patterns.

Oliver Clark CTO, Fraud.net

Fraud.net is the world's leading crowdsourced fraud prevention platform.

- Needed to build and train a larger number of more targeted machine-learning models
- Uses Amazon Machine Learning to provide more than 20 models
- Easily builds and trains models to effectively detect online payment fraud
 - Reduces complexity and makes sense of emerging fraud patterns
- Saves clients \$1 million weekly by helping them detect and prevent fraud

Amazon Machine Learning: real-time prediction

```
// Build a prediction request
PredictRequest request = new PredictRequest();
// Select prediction model
request.setMLModelId(model.getMLModelId());
// Select realtime endpoint
request.setPredictEndpoint(model.getEndpointInfo().getEndpointUrl());
// Build data to be predicted
request.addRecordEntry("age", "32").addRecordEntry("job", "services").addRecordEntry("marital", "divorced")
.addRecordEntry("education","basic.9y").addRecordEntry("default", "no").addRecordEntry("housing", "unknown")
.addRecordEntry("loan", "yes").addRecordEntry("contact", "cellular").addRecordEntry("month", "dec")
.addRecordEntry("day_of_week", "mon").addRecordEntry("duration", "110").addRecordEntry("campaign","1")
 .addRecordEntry("pdays", "11").addRecordEntry("previous", "0").addRecordEntry("poutcome", "nonexistent")
.addRecordEntry("emp_var_rate", "-1.8").addRecordEntry("cons_price_idx", "94.465").addRecordEntry("cons_conf_idx", "-36.1")
 .addRecordEntry("euribor3m", "0.883").addRecordEntry("nr_employed", "5228.1");
// Send prediction request
PredictResult result;
try {
    long start = System.currentTimeMillis();
    result = client.predict(request);
    long end = System.currentTimeMillis();
    System.out.println("Request time: " + (end - start) + " ms");
} catch (Exception e) {
    throw new AmazonClientException("Prediction failed", e);
// Display predicted value
System.out.println("Prediction: " + result.getPrediction());
```

Amazon Al for every developer

Amazon Elastic Map Reduce (EMR)

- Map Reduce, Apache Spark, Presto, etc.
- Launch a cluster in minutes
- Open source distribution or MapR distribution
- Elasticity of the cloud
- Built in security features
- Pay by the hour and save with Spot instances
- Flexibility to customize

Integration with AWS backends

Amazon DynamoDB

EMR-DynamoDB connector

JDBC Data Source w/ Spark SQL

ElasticSearc h connector Spark-Redshift connector Amazon Redshift

Amazon EMR Streaming data connectors

Amazon

Kinesis

EMR File System (EMRFS)

Running Spark jobs on EMR

Submit a Spark application

Use AWS Lambda to submit applications to EMR Step API or directly to Spark on your cluster

Create a pipeline to schedule job submission or create complex workflows

Airflow, Luigi or other

schedulers on EC2

Spark ML on Amazon EMR: spam detector

Adapted from https://github.com/databricks/learning-spark/blob/master/src/main/scala/com/oreilly/learningsparkexamples/scala/MLlib.scala

```
// Load 2 types of emails from text files: spam and ham (non-spam).
// Each line has text from one email.
val spam = sc.textFile("s3://jsimon-public/spam")
val ham = sc.textFile("s3://jsimon-public/ham")
// Create a HashingTF instance to map email text to vectors of 1000 features.
val tf = new HashingTF(numFeatures = 1000)
// Each email is split into words, and each word is mapped to one feature.
val spamFeatures = spam.map(email => tf.transform(email.split(" ")))
val hamFeatures = ham.map(email => tf.transform(email.split(" ")))
// Create LabeledPoint datasets for positive (spam) and negative (ham) examples.
val positiveExamples = spamFeatures.map(features => LabeledPoint(1, features))
val negativeExamples = hamFeatures.map(features => LabeledPoint(0, features))
val data = positiveExamples.union(negativeExamples)
data.cache()
val Array(trainingData, testData) = data.randomSplit(Array(0.8, 0.2))
trainingData.cache()
// Create a Naive Bayes trainer
val model = NaiveBayes.train(trainingData, 1.0)
val predictionLabel = testData.map(x=> (model.predict(x.features),x.label))
val accuracy = 1.0 * predictionLabel.filter(x => x._1 == x._2).count() / testData.count()
```


Amazon Al for every developer

Services	Chat Amazon Lex		Speech Amazon Polly		Vision Amazon Rekognition	
Platforms	Amazon ML	Spark & EMR	Kin	esis	Batch	ECS
Engines	MXNet Te	nsorFlow	Caffe	Theano	Pytorch	CNTK
Infrastructure	GPU	CP	U	IoT		Mobile

Apache MXNet: Open Source library for Deep Learning

Programmable

Simple syntax, multiple languages

Most Open

Accepted into the Apache Incubator

Portable

Highly efficient models for mobile and IoT

High Performance

Near linear scaling across hundreds of GPUs

Best On AWS

Optimized for

Deep Learning on AWS

Apache MXNet demo: learning MNIST


```
val model = new FeedForward(ctx = devs,
                            symbol = network,
                            numEpoch = numEpochs,
                            optimizer = optimizer,
                            initializer = new Xavier(factorType = "in", magnitude = 2.34f),
                            argParams = argParams,
                            auxParams = auxParams,
                            beginEpoch = beginEpoch,
                            epochSize = epochSize)
if (monitorSize > 0) {
 model.setMonitor(new Monitor(monitorSize))
model.fit(trainData = train,
          evalData = validation,
          evalMetric = new Accuracy(),
          kvStore = kv,
          batchEndCallback = new Speedometer(batchSize, 50),
          epochEndCallback = checkpoint)
```

Running MXNet in Spark

- Amazon EMR supports GPU instances (g2, p2, p3) and MXNet
- Run Data Processing and Deep Learning on the same cluster
- MXNet also has experimental support for Spark https://github.com/apache/incubator-mxnet/tree/master/scala-package/ spark

Amazon Al for every developer

Services	Chat Amazon Lex		Speech Amazon Polly		Vision Amazon Rekognition	
Platforms	Amazon ML	Spark 8 EMR	Kir	nesis	Batch	ECS
Engines	MXNet T	ensorFlow	Caffe	Theano	Pytorch	CNTK
Infrastructure	GPU	CF	PU	IoT		Mobile

Resources

https://aws.amazon.com/ai

https://aws.amazon.com/machine-learning

https://aws.amazon.com/emr

https://aws.amazon.com/blogs/big-data/

https://aws.amazon.com/blogs/ai/

https://github.com/aws/{aws-sdk-java, aws-scala-sdk}

Code samples: https://github.com/juliensimon/aws/tree/master/ML

Semaine IA sur AWS Du 11 au 15 novembre

https://aws.amazon.com/fr/events/

AWS re: INVENT 2017

NOV. 27 - DEC. 1 | LAS VEGAS, NV

https://live.awsevents.com

Julien Simon

AI/ML Evangelist, EMEA

@julsimon

https://aws.amazon.com/evangelists/julien-simon/

