Chapitre 2

Interférences lumineuses

Les conclusions et méthodes de ce chapitre s'appliquent à tout phénomène ondulatoire scalaire et linéaire.

A – Superposition de deux ondes cohérentes (p23)

Dans cette partie, on considère les deux ondes parfaitement **monochromatiques** 单色的,单频的

A.1 Eclairement résultant de deux ondes

Soient deux ondes $s_1(M, t)$ et $s_2(M, t)$.

Montrer que l'éclairement résultant s'écrit :

$$I = I_1 + I_2 + 4\langle s_1(M, t) \times s_2(M, t) \rangle$$

Ondes incohérentes 不相干的 si

$$\langle s_1(M,t) \times s_2(M,t) \rangle = 0 \quad \forall M$$

Exemple:

$$s_1(M,t) = a_1 \cos(\omega_1 t - \varphi_1(M))$$

$$s_2(M,t) = a_2 \cos(\omega_2 t - \varphi_2(M))$$

Rappel:
$$\cos a \times \cos b = \frac{1}{2}(\cos(a+b) + \cos(a-b))$$

Ondes **cohérentes** 相干性 si $\omega_1 = \omega_2$

Montrer que

$$\langle s_1(M,t) \times s_2(M,t) \rangle = \frac{\sqrt{I_1}\sqrt{I_2}}{2} \cos(\varphi_2(M) - \varphi_1(M))$$

En déduire la **formule de Fresnel**

$$I = I_1 + I_2 + 2\sqrt{I_1}\sqrt{I_2}\cos(\Delta\varphi_{2/1}(M))$$

avec
$$\Delta \varphi_{2/1}(M) = \varphi_2(M) - \varphi_1(M)$$

Question 2.1

Retrouver le résultat en utilisant les représentations complexes des deux signaux

$$\underline{s}_1(M,t) = a_1 e^{i(\omega t - \varphi_1)}$$

$$\underline{s}_2(M,t) = a_2 e^{i(\omega t - \varphi_2)}$$

Cas particulier où les 2 ondes ont même éclairement :

$$I_1 = I_2 = I_0$$

La **formule de Fresnel** simplifiée s'écrit :

$$I = 2I_0(1 + \cos(\Delta \varphi_{2/1}(M)))$$

Interférences constructives 相长干涉

L'éclairement est maximal

$$I_{max} = I_1 + I_2 + 2\sqrt{I_1}\sqrt{I_2} = (\sqrt{I_1} + \sqrt{I_2})^2$$

$$\cos\left(\Delta\varphi_{2/1}(M)\right) = +1$$
$$\Delta\varphi_{2/1}(M) = m \times 2\pi$$

Interférences destructives 相消干涉

L'éclairement est minimal

$$I_{min} = I_1 + I_2 - 2\sqrt{I_1}\sqrt{I_2} = \left(\sqrt{I_1} - \sqrt{I_2}\right)^2$$

$$\cos\left(\Delta\varphi_{2/1}(M)\right) = -1$$

$$\Delta\varphi_{2/1}(M) = \left(m + \frac{1}{2}\right) \times 2\pi$$

Remarque: $I_{min} = 0$ si $I_1 = I_2$ sinon $I_{min} \neq 0$

Ordre d'interférence 干涉级次

$$p_{2/1}(M) = \frac{\Delta \varphi_{2/1}(M)}{2\pi}$$

Interférences constructives $\Rightarrow p$ est un **entier** Interférences destructives $\Rightarrow p$ est un **demi-entier** (de la forme $m+\frac{1}{2}$)

Interprétation en terme d'amplitudes complexes

$$\underline{A}_{tot}(M) = \underline{A}_1(M) + \underline{A}_2(M)$$

A.3 Contraste du phénomène d'interférences

On définit le contraste 可见度 par

$$\gamma = \frac{I_{max} - I_{min}}{I_{max} + I_{min}}$$

Ondes incohérentes
$$\Rightarrow \gamma = 0$$

Ondes **cohérentes**
$$\Rightarrow \gamma = \frac{2\sqrt{I_1I_2}}{I_1+I_2}$$

On introduit le rapport $r = \frac{I_1}{I_2}$, il vient :

$$\gamma = \frac{2}{\sqrt{\frac{1}{r} + \sqrt{r}}}$$

Si $r \to 0$ ou si $r \to \infty$ alors $\gamma \to 0$

Si r=1 alors $\gamma=1$

Le phénomène d'interférences est observable si les deux signaux sont d'intensités comparables

Interférences de contrastes différents

Remarque : phénomène d'interférences visible à l'œil si $\gamma>0,1$

A.4 Interférences entre deux sources ponctuelles cohérentes dans un milieu uniforme

$$\varphi_1(M) = \varphi_1(S_1) + k_0(S_1M)$$

$$\varphi_2(M) = \varphi_2(S_2) + k_0(S_2M)$$

Pour des ondes synchrones, montrer que

$$\Delta \varphi_{2/1}(M) = k \times [S_2 M - S_1 M]$$

Le lieu des points pour lesquels $\Delta \varphi_{2/1}(M)$ est uniforme est appelé **franges d'interférences** 干涉条纹

Il s'agit de surfaces sur lesquelles on a :

$$S_2M - S_1M = \text{constante}$$

Franges brillantes 亮条纹 $\Rightarrow S_2M - S_1M = m\lambda$ Si m=0 on parle de frange d'ordre 0

Franges sombres 暗条纹
$$\Rightarrow$$
 $S_2M - S_1M = \left(m + \frac{1}{2}\right)\lambda$

Géométriquement, ces surfaces sont appelées **hyperboloïde** 双曲面 de révolution

Question 2.2

La distance $a = S_1S_2$ et la longueur d'onde dans le milieu λ étant donnée, déterminer le nombre total de franges brillantes que l'on peut obtenir.

Dans quel cas a-t-on une seule frange brillante?

A.5 Systèmes optiques stigmatiques et interférences

N'importe quel système stigmatique n'introduit aucune modification dans l'état d'interférences

Exemple: lentille convergente

Montrer que

$$\Delta \varphi_{2/1}(M') = \Delta \varphi_{2/1}(M)$$

Exemple: observation dans le plan focal image d'une lentille convergente

Montrer que

$$\delta = S_2 M_{\infty} - S_1 M_{\infty} = a \times \sin i$$

Question 2.3

Retrouver ce résultat par application directe du théorème de Malus (et de la loi du retour inverse)

B – Cohérence temporelle des sources réelles (p31)

Les atomes (ou molécules) émettent de la lumière par un processus de relaxation radiative

B.1 Modèle des trains d'onde 波列

Le signal émis par la source s'écrit :

$$s(S,t) = A\cos(\omega t - \varphi(S,t))$$

où $\varphi(S,t)$ est une phase aléatoire qui est différente pour chaque train d'onde émis

Rappel: cohérence 相干性

On note $\tau_{\mathcal{C}}$ la **durée de cohérence** moyenne de la source.

On appelle **longueur de cohérence** de la source la quantité

Il s'agit de la distance parcourue par l'onde durant une durée de cohérence

Par analyse de Fourier, on associe à un train d'onde de durée τ_c un **élargissement** 拓宽 **spectral** :

$$\Delta v \approx \frac{1}{\tau_C}$$

	laser HeNe		lampe spectrale		lampe à filament, soleil	
	monomode	multimode	basse pression	haute pression	filtre coloré	spectre visible
τ_c	1 μs	1 ns	0,1 ns	1 ps	0,1 ps	3 fs
L_c	300 m	30 cm	3 cm	0,3 mm	30 μm	1 μm
Δν	1 MHz	1 Ghz	10 GHz	1 THz	10 THz	300 THz
-						

B.2 Sources distinctes: trains d'onde décorrélés (aucun lien:没有链接)

$$I = I_1 + I_2 + 2\sqrt{I_1I_2} \left\langle \cos(\Delta \varphi_{2/1}(M, t)) \right\rangle$$

 $\Delta \varphi_{2/1}(M,t) = \varphi_2(M,t) - \varphi_1(M,t)$ est une fonction aléatoire du temps qui varie entre $+\pi$ et $-\pi$

$$\Rightarrow I = I_1 + I_2$$

Il ne peut pas exister d'interférences entre deux sources physiquement distinctes

B.3 Interférences entre ondes issues d'une source unique

Il existe 2 types de dispositifs interférentiels

- dispositifs à division du **front d'onde** 波阵面 (Ex : dispositif des trous 孔 d'Young)
- dispositifs à division d'amplitude

(Ex:Interféromètre 干涉仪 de Michelson)

Il existe 2 chemins possibles pour aller de S à M

On appelle différence de marche la quantité

$$\delta_{2/1} = (SM)_2 - (SM)_1$$

On rappelle que

$$\dot{\varphi}_{SM} = \frac{2\pi}{\lambda_0}(SM) + \varphi_{sup}$$

Montrer que

$$\Delta \varphi_{2/1}(M) = k_0 \, \delta_{2/1} + \Delta \varphi_{sup}$$

Cas où $\Delta \varphi_{sup} = 0$, on a :

Interférences constructives

$$\Delta \varphi_{2/1}(M) = m \times 2\pi$$

$$\delta_{2/1} = m \times \lambda_0$$

Interférences destructives

$$\Delta \varphi_{2/1}(M) = \left(m + \frac{1}{2}\right) \times 2\pi$$

$$\delta_{2/1} = \left(m + \frac{1}{2}\right) \times \lambda_0$$

On ne peut observer des interférences qu'entre deux ondes provenant d'un même train d'onde

$$\left|\tau_{SM,2} - \tau_{SM,1}\right| \le \tau_C$$

$$\left|\delta_{2/1}\right| < l_C$$

B.4 Conclusion

Pour observer le phénomène d'interférences, il faut :

- 1. des signaux issus d'une source unique
- 2. des signaux d'intensités comparables
- une différence de marche plus faible que la longueur de cohérence de la source

Fin du chapitre 2