Part III – Model Theory (Ongoing course, rough)

Based on lectures by Dr. S. Barbina Notes taken by Bhavik Mehta

$Michaelmas\ 2018$

Contents

0	Introduction	2
1	Languages and structures	2
2	Review: Terms, formulae and their interpretations	3

0 Introduction

Model theory is a part of logic that began by looking at algebraic objects such as groups and combinatorial objects such like graphs, described in formal language. The basic question in model theory is: 'how powerful is our description of these objects to pin them down'? In Logic and Set Theory, the focus was on what was provable from a theory and language, but here we focus on whether or not a model exists.

1 Languages and structures

Definition 1.1 (Language). A language L consists of

- (i) a set \mathscr{F} of function symbols, and for each $f \in \mathscr{F}$ a positive integer m_f the **arity** of f.
- (ii) a set \mathcal{R} of relation symbols, and for each $R \in \mathcal{R}$, a positive integer m_R .
- (iii) a set \mathscr{C} of constant symbols.

Note: each of \mathscr{F}, \mathscr{R} and \mathscr{C} can be empty.

Example. Take $L = \{\{\cdot,^{-1}\}, \{1\}\}$, for \cdot a binary function and $^{-1}$ an unary function, 1 a constant. This is the language of groups, call it L_{gp} . Also, $L_{lo} = \{<\}$ a single binary relation, for linear orders.

Definition 1.2 (L-structure). Given a language L, say, an L-structure consists of

- (i) a set M, the **domain**
- (ii) for each $f \in \mathcal{F}$, a function $f^{\mathcal{M}}: M^{m_f} \to M$.
- (iii) for each $R \in \mathcal{R}$, a relation $R^{\mathcal{M}} \subseteq M^{m_R}$.
- (iv) for each $c \in \mathcal{C}$, an element $c^{\mathcal{M}} \in M$.

 f^M, R^M, c^M are the **interpretations** of f, R, c respectively.

Remark 1.3. We often fail to distinguish between the symbols in L and their interpretations in a structure, if the interpretations are clear from the context.

We may write $\mathcal{M} = \langle M, \mathcal{F}, \mathcal{R}, \mathcal{C} \rangle$.

Example 1.4.

- (a) $\mathcal{R} = \langle \mathbb{R}^+, \{\cdot, ^{-1}\}, 1 \rangle$ is an L_{gp} -structure.
- (b) $\mathcal{Z} = \langle \mathbb{Z}, \{+, -\}, 0 \rangle$ is an L_{gp} -structure.
- (c) $Q = \langle \mathbb{Q}, \langle \rangle$ is an L_{lo} -structure.

Definition 1.5 (Embedding). Let L be a language, let \mathcal{M}, \mathcal{N} be L-structures. An **embedding** of \mathcal{M} into \mathcal{N} is a one-to-one mapping $\alpha : M \to N$ such that

(i) for all $f \in \mathcal{F}$, and $a_1, \ldots, a_{m_f} \in M$,

$$\alpha(f^{\mathcal{M}}(a_1,\ldots,a_{n_f})) = f^{\mathcal{N}}(\alpha(a_1),\ldots,\alpha(a_{n_f}))$$

(ii) for all $R \in \mathcal{R}$, and $a_1, \ldots, a_{n_R} \in M$

$$(a_1, \dots, a_{n_R}) \in R^{\mathcal{M}} \iff (\alpha(a_1), \dots, \alpha(a_{n_R})) \in R^{\mathcal{N}}$$

(iii) for all $c \in \mathscr{C}$, $\alpha(c^{\mathcal{M}}) = c^{\mathcal{N}}$.

An **isomorphism** of \mathcal{M} into \mathcal{N} is a surjective embedding (onto).

Exercise 1.6. Let G_1, G_2 be groups, regarded as L_{gp} -structures. Check that $G_1 \simeq G_2$ in the usual algebra sense if and only if there is an isomorphism $\alpha: G_1 \to G_2$ in the sense of Definition 1.5

2 Review: Terms, formulae and their interpretations

In addition to the symbols of L, we also have

- (i) infinitely many variables $\{x_i\}_{i\in I}$
- (ii) logical connectives \land, \neg (also expresses \lor, \Rightarrow, \iff)
- (iii) quantifier \exists (also expresses \forall)
- (iv) (,)

Definition 2.1 (*L*-terms). *L*-terms are defined recursively as follows:

- any variable x_i is a term
- any constant symbol is a term
- for any $f \in \mathcal{F}$, $f(t_1, \ldots, t_{m_f})$ for any terms t_1, \ldots, t_{m_f} is a term
- nothing else is a term

Notation: we write $t(x_1, \ldots, x_m)$ to mean that the variables appearing in t are among x_1, \ldots, x_m .

Example. Take $\mathcal{R} = \langle \mathbb{R}^*, \{\cdot,^{-1}\}, 1 \rangle$. Then $\cdot (\cdot (x_1, x_2), x_3)$ is a term, usually written $(x_1 \cdot x_2) \cdot x_3$. Also, $(\cdot (1, x_1))^{-1}$ is a term, written $(1 \cdot x)^{-1}$

Definition 2.2. If \mathcal{M} is an L-structure, to each L-term $t(x_1, \ldots, x_k)$ we assign a function a function $t^{\mathcal{M}}: M^k \to M$ defined as follows:

(i) If
$$t = x_i, t^{\mathcal{M}}[a_1, \dots, a_k] = a_i$$

(ii) If
$$t = c$$
, $t^{\mathcal{M}}[a_1, \dots, a_k] = c^{\mathcal{M}}$.

(iii) If
$$t = f(t(x_1, ..., x_k), ..., t_{m_f}(x_1, ..., x_k)),$$

$$t^{\mathcal{M}}(a_1, \dots, a_k) = f^{\mathcal{M}}(t_1^{\mathcal{M}}(a_1, \dots, a_k), \dots, t_{m_f}^{\mathcal{M}}(a_1, \dots, a_k))$$