对于方阵 A. 如果 ν 是其一个特征向量, λ 是其对应的特征值, 那么

 $Av = \lambda v$

对于 n 个线性不想关的 特征向量 { $\mathbf{v}^{\{1\}}$, $\mathbf{v}^{\{2\}}$, ..., $\mathbf{v}^{\{n\}}$ } 和 对应的特征值 { λ_1 , λ_2 ,... λ_n ,}, 我们很容易得到下面的等式

 $AV = V\lambda$

其中 $V \in \mathbb{R}$ n 个特征向量组成的矩阵, $\lambda \in \mathbb{R}$ n 个特征值组成的列向量。以上等式又可以写成

 $AV = V\lambda = V \operatorname{diag}(\lambda),$ $AVV^{-1} = V \operatorname{diag}(\lambda) V^{-1},$

所以就得到了

 $A = V \operatorname{diag}(\lambda) V^{-1}$

如果 V 是 正交矩阵的话,我们用 Q 代替 字母 V, Λ 代替 diag(λ)。上式又可以写成

 $A = Q \wedge Q^{T}$

因为对于正交矩阵, $\mathbf{Q}^{\mathsf{T}} = \mathbf{Q}^{\mathsf{-1}}$ 。

所有的实数对称矩阵 A 都可以分解成 $Q \wedge Q^T$ 。