

Írta:

ÉSIK ZOLTÁN GOMBÁS ÉVA IVÁN SZABOLCS

AUTOMATÁK ÉS FORMÁLIS NYELVEK PÉLDATÁR

Egyetemi tananyag

2011

COPYRIGHT: © 2011–2016, Dr. Ésik Zoltán, Dr. Gombás Éva és Dr. Iván Szabolcs, Szegedi Tudományegyetem Természettudományi és Informatikai Kar Számítástudomány Alapjai Tanszék

LEKTORÁLTA: Dr. Gazdag Zsolt, Eötvös Loránd Tudományegyetem Informatikai Kar Algoritmusok és Alkalmazásaik Tanszék

Creative Commons NonCommercial-NoDerivs 3.0 (CC BY-NC-ND 3.0) A szerző nevének feltüntetése mellett nem kereskedelmi céllal szabadon másolható, terjeszthető, megjelentethető és előadható, de nem módosítható.

TÁMOGATÁS:

Készült a TÁMOP-4.1.2-08/1/A-2009-0008 számú, "Tananyagfejlesztés mérnök informatikus, programtervező informatikus és gazdaságinformatikus képzésekhez" című projekt keretében.

ISBN 978-963-279-495-2

KÉSZÜLT: a Typotex Kiadó gondozásában

FELELÁS VEZETÁ: Votisky Zsuzsa

AZ ELEKTRONIKUS KIADÁST ELÁKÉSZÍTETTE: Juhász Lehel

KULCSSZAVAK:

Szavak, nyelvek, véges automaták, reguláris kifejezések és nyelvek, környezetfüggetlen nyelvtanok és nyelvek, eldönthetetlen problémák.

ÖSSZEFOGLALÁS:

Jelen példatár a programtervező informatikus, mérnök informatikus és gazdaságinformatikus képzési tantervekben szereplő Számítástudomány alapjai és Formális nyelvek kurzusok gyakorlatán előforduló feladattípusokhoz gyűjt össze feladatokat. A példatár arányaiban tükrözi, hogy az érintett területek általában milyen részletességgel kerülnek elő ezen kurzusokon, így legnagyobbrészt a reguláris nyelvekkel (véges automaták, variánsaik és rajtuk végzett műveletek, reguláris kifejezések, szintaktikus félcsoportok, monadikus másodrendű logikai formulák) és a környezetfüggetlen nyelvekkel (környezetfüggetlen nyelvtanok, veremautomaták) kapcsolatos feladatok kaptak benne helyet.

Tartalomjegyzék

1.	Álta	lános jelölések	5	
	1.1.	Elméleti összefoglaló	5	
2.	Nyelvek és nyelvtanok			
	2.1.	Elméleti összefoglaló	6	
	2.2.	Feladatok	8	
	Meg	oldások	12	
3.	Regi	ıláris nyelvek	17	
	_	Elméleti összefoglaló	17	
	3.2.	Véges automaták	28	
	3.3.	Műveletek automatákon	30	
	3.4.	Automaták minimalizálása	31	
	3.5.		33	
	3.6.	Ekvivalens átalakítások automaták, reguláris nyelvtanok és reguláris kifeje-		
		zések között	34	
	3.7.	Pumpáló lemma reguláris nyelvekre	35	
	3.8.		35	
	3.9.	Szintaktikus félcsoport, átmenetmonoid, reguláris nyelvek felismerése mono-		
		idokkal	38	
	3.10.	Reguláris nyelvek megadása logikai formulákkal	39	
		Automaták végtelen szavakon	39	
		Mealy és Moore gépek	40	
	Meg	oldások	40	
4.	Körı	nyezetfüggetlen nyelvek	60	
		Elméleti összefoglaló	60	
		Környezetfüggetlen nyelvtanok	67	
	4.3.	Környezetfüggetlen nyelvtanok ekvivalens átalakításai, normálformák	72	
	4.4.	Veremautomaták	78	
	4.5.	Ekvivalens átalakítások veremautomaták és környezetfüggetlen nyelvtanok	, 0	
		között	81	
	4.6	Pumpáló lemma környezetfüggetlen nyelvekre	84	
	4.7.	Környezetfüggetlen nyelvek zártsági tulajdonságai	85	

	Megoldások	88				
5.	Szintaktikus elemzési módszerek					
	5.1. Elméleti összefoglaló	130				
	5.2. Általános elemzés, backtrack és táblázatos módszerek					
	Megoldások					
6.	Környezetfüggő nyelvek és általános nyelvek	136				
	6.1. Elméleti összefoglaló	136				
	6.2. Környezetfüggő és általános nyelvtanok					
	Megoldások					
7.	Eldönthetetlen problémák	140				
	7.1. Elméleti összefoglaló	140				
	7.2. Feladatok					
	Megoldások					

1. fejezet

Általános jelölések

1.1. Elméleti összefoglaló

Amennyiben A egy halmaz és $\varrho \subseteq A \times A$ egy reláció A-ból A-ba, úgy definiáljuk tetszőleges $n \ge 0$ egész számra ϱ hatványait induktív módon a következőképp: $\varrho^0 = \Delta_A$ és tetszőleges n > 0-ra legyen $\varrho^n = \varrho^{n-1} \circ \varrho$. Továbbá ekkor ϱ^* jelöli a $\bigcup_{n \ge 0} \varrho^n$ relációt. A $\varrho \subseteq A \times B$ reláció

inverze a $\varrho^{-1} = \{(b, a) : a\varrho b\} \subseteq B \times A$ reláció.

A $\varrho \subseteq A^2$ reláció reflexív, ha $\Delta_A \subseteq \varrho$; irreflexív, ha $\Delta_A \cap \varrho = \emptyset$; szimmetrikus, ha $\varrho = \varrho^{-1}$; antiszimmetrikus, ha $\varrho \cap \varrho^{-1} \subseteq \Delta_A$; tranzitív, ha $\varrho^2 \subseteq \varrho$; ekvivalenciareláció, ha reflexív, szimmetrikus és tranzitív. Amennyiben $\varrho \subseteq A^2$ ekvivalenciareláció és $a \in A$, úgy a/ϱ jelöli az a elem ϱ szerinti osztályát, vagyis a $\{b \in A : a\varrho b\}$ halmazt. Továbbá ha $B \subseteq A$, akkor $B/\varrho = \{a/\varrho : a \in B\}$.

Könnyű látni, hogy ϱ^* a legszűkebb olyan reflexív és tranzitív reláció, mely tartalmazza ϱ -t, ezért nevezzük ϱ^* -ot a ϱ reflexív-tranzitív lezártjának.

2. fejezet

Nyelvek és nyelvtanok

2.1. Elméleti összefoglaló

 $\acute{A}b\acute{e}c\acute{e}n$ egy tetszőleges Σ véges, nemüres halmazt értünk, elemeit betűknek is nevezzük. Egy Σ $\acute{a}b\acute{e}c\acute{e}$ feletti $sz\acute{o}$ Σ betűinek egy tetszőleges véges (esetleg üres) $w=a_1a_2\ldots a_n$ sorozata. Ennek a szónak a hossza |w|=n, a szót alkotó betűk száma. Speciálisan ha n=0, a szó az $\ddot{u}res$ $sz\acute{o}$, melynek jele ε . Ha $u=a_1a_2\ldots a_n$ a Σ ábécé feletti szó és $a\in\Sigma$ egy betű, akkor $|u|_a$ jelenti az u-ban előforduló a betűk számát, vagyis az $\{i\in\{1,\ldots,n\}:a_i=a\}$ halmaz méretét. A Σ feletti összes szó halmazát Σ^* jelöli. Világos, hogy Σ^* egy (megszámlálhatóan) végtelen halmaz. Amennyiben $u=a_1a_2\ldots a_n$ és $v=b_1b_2\ldots b_k$ azonos Σ ábécé fölötti szavak, úgy konkatenációjuk vagy szorzatuk az konkatenációjuk

A Σ ábécé fölötti nyelven Σ fölötti szavak tetszőleges (véges, végtelen, esetleg üres) halmazát értjük, vagyis nyelv egy $L\subseteq \Sigma^*$ halmaz. Azonos Σ ábécé fölötti L_1, L_2 nyelvek esetén értelmezzük a szokásos halmazelméleti műveleteket: a két nyelv metszetét: $L_1\cap L_2=\{u\in\Sigma^*: u\in L_1 \land u\in L_2\}$, egyesítését: $L_1\cup L_2=\{u\in\Sigma^*: u\in L_1 \lor u\in L_2\}$ és az L_1 komplementerét: $\overline{L_1}=\{u\in\Sigma^*: u\notin L_1\}$. Ezen felül ha $L_1, L_2\subseteq\Sigma^*$, akkor konkatenáltjuk az $L_1\cdot L_2=\{uv: u\in L_1, v\in L_2\}$ nyelv. Nyelvek konkatenálásának segítségével definiáljuk egy L nyelv n. hatványát is tetszőleges $n\geq 0$ egészre: legyen $L^0=\{\varepsilon\}$ és tetszőleges n>0-ra $L^n=L^{n-1}\cdot L$. Az L nyelv (Kleene-)iteráltja az $L^*=\bigcup_{n\geq 0}L^n$ nyelv. Világos, hogy $(P(\Sigma^*),\cdot)$ szintén monoidot

alkot, melynek egységeleme az üres szót tartalmazó egyelemű $\{\varepsilon\}$ nyelv. Az \emptyset üres nyelv a monoid zéruseleme. Az is igaz továbbá, hogy a Kleene-iterált egy *lezárási operátor*, vagyis tetszőleges $L \subseteq \Sigma^*$ esetén $L \subseteq L^*$, $(L^*)^* = L^*$ és ha $L_1 \subseteq L_2$, akkor $L_1^* \subseteq L_2^*$ is teljesül.

Ha Σ és Δ ábécék, $f: \Sigma \to P(\Delta^*)$ pedig egy olyan leképezés, mely minden $a \in \Sigma$ betűhöz egy L_a nyelvet feleltet meg, akkor f kiterjesztése szavakra: $f(\varepsilon) = \{\varepsilon\}$; f(xa) = f(x)f(a), ahol $a \in \Sigma$, $x \in \Sigma^*$. Az f művelet kiterjesztése nyelvekre: $f(L) = \bigcup_{x \in L} f(x)$, ezt behelyettesítésnek nevezzük. Az $f: \Sigma \to \Delta^*$ behelyettesítéseket homomorfizmusnak nevezzük, vagyis minden $a \in \Sigma$ -hoz Δ^* valamely szavát rendeli. Az L nyelv (f szerinti) inverz homomorf képe: $f^{-1}(L) = \{x \in \Sigma^* \mid f(x) \in L\}$.)

Ha Σ egy ábécé és $\Theta \subseteq \Sigma^* \times \Sigma^*$ egy ekvivalenciareláció szavak közt, akkor Θ *jobbkongruencia*, ha tetszőleges $u\Theta v$ szavakra és w szóra $uw\Theta vw$. Θ *balkongruencia*, ha tetszőleges $u\Theta v$ szavakra és w szóra $wu\Theta wv$. Θ *kongruencia*, ha jobb- és balkongruencia egyben, vagy ezzel ekvivalensen, ha tetszőleges $u_1\Theta u_2$, $v_1\Theta v_2$ szavakra $u_1v_1\Theta u_2v_2$.

Az $L \subseteq \Sigma^*$ nyelv meghatároz egy ν_L jobbkongruenciát és egy μ_L kongruenciát Σ^* -on a következőképpen: tetszőleges $u, v \in \Sigma^*$ szavakra

- 1. uv_Lv pontosan akkor, ha tetszőleges $w \in \Sigma^*$ szóra $uw \in L \Leftrightarrow vw \in L$;
- 2. $u\mu_L v$ pontosan akkor, ha tetszőleges $w_1, w_2 \in \Sigma^*$ szóra $w_1 u w_2 \in L \Leftrightarrow w_1 v w_2 \in L$.

A v_L relációt L szintaktikus jobbkongruenciájának, μ_L -t pedig az L szintaktikus kongruenciájának nevezzük.

Általában, ha $\mathcal{M}=(M,\cdot,1)$ egy monoid az 1 egységelemmel és Θ az \mathcal{M} egy kongruenciája (vagyis olyan ekvivalenciareláció M-en, melyre $a_1\Theta a_2$, $b_1\Theta b_2$ teljesülése maga után vonja $a_1b_1\Theta a_2b_2$ teljesülését), akkor az \mathcal{M} Θ szerinti *faktormonoidja* az $\mathcal{M}/\Theta=(M/\Theta,\cdot,1/\Theta)$ monoid, melyre $a/\Theta\cdot b/\Theta=(ab)/\Theta$. Speciálisan tehát mivel $(\Sigma^*,\cdot,\varepsilon)$ monoid és tetszőleges $L\subseteq \Sigma^*$ nyelvre ν_L egy kongruencia Σ^* -on, így Σ^*/ν_L is egy monoid, melyet L szintaktikus monoidjának nevezünk.

A generatív nyelvtanokat négy osztályba soroljuk attól függően, milyen átírási szabályokat engedünk meg bennük: a $G = (V, \Sigma, R, S)$ nyelvtan

- 0. típusú (vagy általános) mindenképpen, erre a típusra nem teszünk megszorítást.
- 1. típusú (vagy környezetfüggő), ha benne minden szabály $\alpha A\beta \to \alpha \gamma \beta$ alakú, ahol $\alpha, \beta \in (V \cup \Sigma)^*$ tetszőleges jelsorozatok, $A \in V$ egy nemterminális és $\gamma \in (V \cup \Sigma)^+$ nemüres jelsorozat. Ezen felül megengedett az $S \to \varepsilon$ szabály (melyben tehát $\alpha = \beta = \gamma = \varepsilon$ és A = S, a kezdőszimbólum), de csak abban az esetben, ha S nem fordul elő egyetlen szabály jobb oldalán sem.
- 2. típusú (vagy környezetfüggetlen), ha benne minden szabály $A \to \gamma$ alakú, ahol $A \in V$ nemterminális és $\gamma \in (V \cup \Sigma)^*$ tetszőleges jelsorozat.

3. típusú (vagy jobblineáris), ha benne minden szabály $A \to uB$, vagy $A \to u$ alakú, ahol $A, B \in V$ nemterminálisok, $u \in \Sigma^*$ pedig terminális szó.

Egy L nyelvet i típusúnak mondunk (i = 0,1,2,3), ha generálható i típusú nyelvtannal. Az i típusú nyelvek osztályát i = 0,1,2,3 esetén \mathcal{L}_i jelöli. Ismert, hogy bár nem minden környezetfüggetlen nyelvtan környezetfüggő, mégis minden környezetfüggetlen nyelv környezetfüggő is. A *Chomsky-hierarchiát* ez a négy nyelvosztály alkotja, a tartalmazkodási reláció szerint rendezve: $\mathcal{L}_3 \subseteq \mathcal{L}_2 \subseteq \mathcal{L}_1 \subseteq \mathcal{L}_0$. Ismert, hogy mindhárom tartalmazkodás valódi.

Feladatainkban bizonyos speciális nyelvosztályok tulajdonságait is vizsgáljuk, ezeket a tulajdonságokat az alábbiakban foglaljuk össze:

Egy $L \subseteq \Sigma^*$ nyelv k-definit a $k \ge 0$ egész számra, ha tetszőleges $u, v \in \Sigma^*$, |v| = k szavak esetén $uv \in L \Leftrightarrow v \in L$. Az L nyelv definit, ha k-definit valamilyen k-ra.

Az $L \subseteq \Sigma^*$ nyelv *prefixmentes*, ha tetszőleges $u, v \in \Sigma^*$ szavakra, melyekre $u, uv \in L$, igaz, hogy $v = \varepsilon$.

Az $L \subseteq \Sigma^*$ nyelv *aperiodikus*, ha van olyan $n \ge 0$ egész, melyre tetszőleges $x \in \Sigma^*$ szó esetén $x^n \mu_L x^{n+1}$.

A Σ ábécé feletti *csillagmentes* nyelvek a legszűkebb olyan nyelvosztályt alkotják, melyre igazak a következők:

- 1. minden véges nyelv csillagmentes;
- 2. ha L_1 és L_2 csillagmentesek, akkor $L_1 \cup L_2$, L_1L_2 és $\overline{L_1}$ is csillagmentes.

2.2. Feladatok

- **2.2.1. Feladat.** Legyen $\Sigma = \{a, b\}, L_1 = \{a, b\}, L_2 = \{aa, b\}$. Határozza meg az $L_1 \cup L_2, L_1 \cap L_2, L_1 L_2, L_2 L_1, L_1 L_2, L_1^*, L_1^*, L_2^*, (L_1 \cup L_2)^*, \overline{L_1}$ és L_1^R nyelveket !!
- **2.2.2. Feladat.** Legyen $\Sigma = \{a, b\}, L_1 = \{aba, b\}, L_2 = \{aab, ab, b\}$. Határozza meg az $L_1 \cup L_2$, $L_1 \cap L_2, L_1 L_2, L_2 L_1, L_1 L_2, L_1^*$ és L_1^R nyelveket!
- **2.2.3. Feladat.** Legyen $\Sigma = \{a, b\}, L_1 = \{a^n b^m : n, m \ge 0\}, L_2 = \{a^n b^n : n \ge 0\}$. Határozza meg az $L_1 \cup L_2, L_1 \cap L_2, L_1 L_2, L_2 L_1, L_1 L_2, L_1^*, L_1^* L_2^*, (L_1 \cup L_2)^*, \overline{L_1}$ és L_1^R nyelveket!
- **2.2.4. Feladat.** Legyen $\Sigma = \{a, b\}, L_1 = \{w \in \Sigma^* : |w|_a = |w|_b\}, L_2 = \{a^n b^m : n, m \ge 0\}$. Határozza meg az $L_1 \cup L_2, L_1 \cap L_2, L_1 L_2, L_2 L_1, L_1 L_2, L_1^*, L_1^* L_2^*, (L_1 \cup L_2)^*, \overline{L_1} \text{ és } L_1^R \text{ nyelveket!}$

¹Jelölés: ha $w = a_1 a_2 \dots a_n$, $a_i \in \Sigma$, $i = 1, \dots, n$, akkor $w^R = a_n \dots a_2 a_1$ (tehát w^R a w szó "visszafelé olvasva" és $L^R = \{w^R : w \in L\}$.

9

2.2.5. Feladat. Legyen $\Sigma = \{a, b\}$. Milyen $x(y) \in \Sigma^*$ esetében állnak fenn az alábbi egyenlőségek?

1. ax = xa;

4. xabb = abbx;

- 2. ax = xb;
- 3. axb = abx;

5. xy = yx.

2.2.6. Feladat. Legyenek $x, y, u, v \in \Sigma^*$ szavak, melyekre xy = uv és $|x| \le |u|$. Mutassa meg, hogy valamilyen $z \in \Sigma^*$ szóra u = xz és y = zv!

2.2.7. Feladat. Legyenek $x, y, z \in \Sigma^*$ szavak, melyekre xy = yz. Mutassa meg, hogy valamely $u, v \in \Sigma^*$ -ra és $n \ge 0$ -ra $x = uv, y = (uv)^n u$ és z = vu!

2.2.8. Feladat. Legyenek $x, y \in \Sigma^*$ szavak és m, n > 0 úgy, hogy $x^m = y^n$. Mutassa meg, hogy akkor $x = z^k$ és $y = z^\ell$ valamilyen $z \in \Sigma^*$ -ra és $k, \ell \ge 0$ -ra!

2.2.9. Feladat. Egy $x \in \Sigma^+$ szó *primitív*, ha $x = y^n$ -ből következik, hogy y = x és n = 1. Mutassa meg, hogy minden $x \in \Sigma^+$ szóra létezik *pontosan egy* primitív y szó és egy k > 0 szám, amire $x = y^k$!

2.2.10. Feladat. Igazolja, hogy (Σ^*, \cdot) mint grupoid...

1. ... asszociatív!

- 3. ... kancellatív!
- 2. ... rendelkezik egységelemmel!
- 4. ... nem rendelkezik zéruselemmel!

2.2.11. Feladat. Igazolja, hogy a nyelvek közti konkatenáció monoton, vagyis ha $K_1 \subseteq K_2$ és $L_1 \subseteq L_2$, akkor $K_1L_1 \subseteq K_2L_2$!

2.2.12. Feladat. Igazolja, hogy a Kleene-iteráció monoton, vagyis ha $K \subseteq L$, akkor $K^* \subseteq L^*$!

2.2.13. Feladat. Igazolja, hogy tetszőleges L nyelvre $L^*L^* = L^*$!

2.2.14. Feladat. Mikor üres...

1. ... L^* ?

- 2. ... $L_1 \cup L_2$?
- 3. ... $L_1 \cdot L_2$?

2.2.15. Feladat. Mikor véges...

1. ... L^* ?

- 2. ... $L_1 \cup L_2$?
- 3. ... $L_1 \cdot L_2$?

2.2.16. Feladat. Legyenek L_1 , L_2 és L_3 azonos Σ ábécé feletti nyelvek. Igazak-e az alábbi egyenlőségek? Ha igen, igazolja, ha nem, adjon ellenpéldát!

1. $(L_1L_2)L_3 = L_1(L_2L_3)$;

9. $(\overline{L_1})^* = \overline{L_1^*}$:

2. $(L_1 \cup L_2)L_3 = L_1L_3 \cup L_2L_3$; 10. $(L_1 \cup L_2)^* = (L_1^*L_2^*)^*$;

3. $L_1(L_2 \cup L_3) = L_1L_2 \cup L_1L_3$;

11. $(L_1 \cup L_2)^* = (L_1^*L_2)^*L_1^*$;

4. $(L_1 \cap L_2)L_3 = L_1L_3 \cap L_2L_3$;

12. $(L_1^*L_2)^*L_1^* = (L_1^*L_2^*)^*$;

5. $L_1(L_2 \cap L_3) = L_1L_2 \cap L_1L_3$;

13. $(L \cup \{\varepsilon\})^* = (L - \{\varepsilon\})^*$;

6. $(L^*)^* = L^*$:

14. $(L \cup \Sigma)^* = \Sigma^*$, ha $L \subset \Sigma^*$;

7. $(L_1 \cup L_2)^* = L_1^* \cup L_2^*$;

15. $(L_1 \cup L_2)^* = L_2^*$, ha $L_1 \subseteq L_2^*$;

8. $(L_1 \cap L_2)^* = L_1^* \cap L_2^*$;

16. $(L_1L_2)^* = L_1^*L_2^*$.

- **2.2.17. Feladat.** Igazolja, hogy $(P(\Sigma^*), \cup, \cdot)$ idempotens félgyűrű²!
- **2.2.18. Feladat.** Igazolja, hogy $(\Sigma^*, \cdot, \varepsilon)$ a Σ által szabadon generált szabad monoid!
- **2.2.19. Feladat.** Legyen $\Sigma = \{a, b\}$. Fejezze ki $\{ab\}^*$ -ot a véges nyelvekből a metszet, unió, konkatenáció és komplementálás műveletekkel (vagyis: iteráció nélkül)!
- **2.2.20.** Feladat. Mutassa meg, hogy minden L nyelvre $L^* = L^+ \cup \{\varepsilon\}$! Mikor igaz, hogy $L^+ = L^+ \cup \{\varepsilon\}$! Mikor igaz, hogy $L^+ = L^+ \cup \{\varepsilon\}$! $=L^*-\{\varepsilon\}$?
- 2.2.21. Feladat. Mutassa meg, hogy a Kleene-iteráció lezárási operátor (vagyis: tetszőleges L nyelvre $L \subseteq L^*$, $(L^*)^* \subseteq L^*$ és ha $L_1 \subseteq L_2$, akkor $L_1^* \subseteq L_2^*$)!
- 2.2.22. Feladat. Mutassa meg, hogy a pozitív Kleene-iteráció lezárási operátor (vagyis: tetszőleges L nyelvre $L \subseteq L^+$, $(L^+)^+ \subseteq L^+$ és ha $L_1 \subseteq L_2$, akkor $L_1^+ \subseteq L_2^+$)!
- **2.2.23. Feladat.** Igazolja a következőket:

1.
$$\emptyset$$
* = { ε };

5. $(L^*)^+ = L^*$;

2. $\{\varepsilon\}^* = \{\varepsilon\}$;

6. $(L^+)^* = L^*$;

3. $\emptyset^+ = \emptyset$:

7. $(L^R)^* = (L^*)^R$;

4. $\{\varepsilon\}^+ = \{\varepsilon\}$;

 $8 (L^R)^+ = (L^+)^R$

²Vagyis: $(P(\Sigma^*), \cup)$ kommutatív és idempotens monoid (tehát egységelemes félháló), $(P(\Sigma^*), \cdot)$ monoid, amiben $(P(\Sigma^*), \cup)$ egységeleme zéruselem, továbbá · disztributív \cup fölött.

2.2. FELADATOK 11

- **2.2.24.** Feladat. Igazolja, hogy a Σ ábécé fölötti 0-definit nyelvek Σ^* és \emptyset !
- **2.2.25.** Feladat. Igazolja, hogy ha egy nyelv k-definit valamilyen k-ra, akkor k'-definit minden k' > k-ra.
- 2.2.26. Feladat. Igazolja, hogy minden véges nyelv definit!
- **2.2.27. Feladat.** Igazolja, hogy egy $L \subseteq \Sigma^*$ nyelv pontosan akkor definit, ha $L = L_1 \cup \Sigma^* \cdot L_2$ valamely L_1, L_2 véges nyelvekre!
- **2.2.28. Feladat.** Legyen Σ egy ábécé. Definiáljuk a nyelvek közötti Θ relációt a következő-képpen: $L_1 \Theta L_2$ pontosan akkor, ha szimmetrikus differenciájuk, $L_1 \Delta L_2 = (L_1 L_2) \cup (L_2 L_1)$ véges. Mutassa meg, hogy Θ ekvivalenciareláció! Kongruencia-e Θ ?
- **2.2.29.** Feladat. Igazolja, hogy ha L_1 és L_2 aperiodikus nyelvek, akkor $L_1 \cup L_2$, L_1L_2 és $\overline{L_1}$ is aperiodikusak!
- **2.2.30. Feladat.** Mutassa meg, hogy a következő nyelvek csillagmentesek:

1.
$$\Sigma^*$$
; 2. $\{ab\}^*$.

- **2.2.31. Feladat.** Mutassa meg, hogy minden csillagmentes nyelv aperiodikus!
- **2.2.32.** Feladat. Adjunk példát olyan K és L véges nyelvekre, melyekre $|KL| < |K| \cdot |L|!$
- **2.2.33. Feladat.** Mikor igaz egy $L \subseteq \Sigma^*$ nyelvre, hogy $L^+ = L^*$?
- 2.2.34. Feladat. (Arden lemmája.)

Mutassuk meg, hogy ha $K, L, X \subseteq \Sigma^*$ nyelvek, $\varepsilon \notin K$ és $X = KX \cup L$, akkor $X = K^*L!$

- **2.2.35. Feladat.** Legyen $L \subseteq \Sigma^*$ tetszőleges nyelv. Igazolja, hogy L^* a legszűkebb olyan $X \subseteq \Sigma^*$ nyelv, melyre $LX \cup \{\varepsilon\} \subseteq X$, vagy amelyre $LX \cup \{\varepsilon\} = X$!
- **2.2.36. Feladat.** Legyenek $L, L' \subseteq \Sigma^*$ tetszőleges nyelvek. Igazolja, hogy L^*L' a legszűkebb olyan $X \subseteq \Sigma^*$ nyelv, melyre $LX \cup L' \subseteq X$ (ill. $LX \cup L' = X$)!
- **2.2.37. Feladat.** Legyenek $L, L' \subseteq \Sigma^*$ tetszőleges nyelvek. Igazolja, hogy ha $\varepsilon \notin L$, akkor az $X = LX \cup L'$ egyenlet egyetlen megoldása L^*L' !
- 2.2.38. Feladat. Igazolja, hogy az

$$X = aX \cup bY \cup \{\varepsilon\}$$
$$Y = bX \cup aY$$

egyenletrendszernek pontosan egy megoldasa van az $\{a, b\}$ feletti nyelvek közt! Adja meg a megoldást.

2.2.39. Feladat. Igazolja, hogy az

$$X = aX \cup aY \cup \{\varepsilon\}$$
$$Y = bX \cup bY$$

egyenletrendszernek pontosan egy megoldása van! Adja meg a megoldást.

2.2.40. Feladat. Igazolja, hogy az

$$X = XX \cup aXb \cup bXa \cup \{\varepsilon\}$$

egyenlet legszűkebb megoldása az $\{a, b\}$ abc felett az $L = \{w : |w|_a = |w|_b\}$ nyelv!

2.2.41. Feladat. Igazolja, hogy az

$$X = aXbX \cup bXaX \cup \{\varepsilon\}$$

egyenlet legszűkebb megoldása az $\{a,b\}$ abc felett az $L=\{w:|w|_a=|w|_b\}$ nyelv! Van-e más megoldás?

2.2.42. Feladat. Legyen $L, L' \subseteq \Sigma^*$, $\varepsilon \in L$. Adja meg az $X = LX \cup L'$ egyenlet összes megoldását a Σ felett!

Megoldások

2.2.1. Feladat. Ha $\Sigma = \{a, b\}, L_1 = \{a, b\}, L_2 = \{aa, b\},$ akkor

$$L_{1} \cup L_{2} = \{a, aa, b\}$$

$$L_{1} \cap L_{2} = \{b\}$$

$$L_{1} - L_{2} = \{a\}$$

$$L_{2} - L_{1} = \{aa\}$$

$$L_{1}L_{2} = \{aaa, ab, baa, bb\}$$

$$L_{1}^{*} = \Sigma^{*} \text{ (minden } \{a, b\} \text{ f\"ol\"otti sz\'o})$$

$$L_{1}^{*}L_{2}^{*} = \Sigma^{*}$$

$$(L_{1} \cup L_{2})^{*} = \Sigma^{*}$$

$$\overline{L_{1}} = \{u \in \Sigma^{*} : |u| \ge 2 \text{ vagy } u = \varepsilon\}$$

$$L_{1}^{R} = \{a, b\} \ (= L_{1}).$$

2.2. MEGOLDÁSOK 13

2.2.2. Feladat. Ha $\Sigma = \{a, b\}, L_1 = \{aba, b\}, L_2 = \{aab, ab, b\},$ akkor

```
L_1 \cup L_2 = \{aab, ab, aba, b\}
L_1 \cap L_2 = \{b\}
L_1 - L_2 = \{aba\}
L_2 - L_1 = \{aab, ab\}
L_1L_2 = \{abaaab, abaab, abab, baab, bab, bb\}
L_1^* = \{\varepsilon, aba, b, abaaba, abab, baba, bb, \dots\}
(azok a szavak, melyekben a páratlanadik a-k után b jön, majd a)
L_1^R = \{aba, b\} \ (= L_1).
```

2.2.5. Feladat.

- 1. $ax = xa \Leftrightarrow x = a^n$ valamilyen $n \ge 0$ -ra $(x \in \{a\}^*)$;
- 2. ax = xb sosem teljesül (a bal oldalon az a-k száma mindenképp eggyel több);
- 3. $axb = abx \Leftrightarrow x = b^n$ valamilyen $n \ge 0$ -ra;
- 4. $xabb = abbx \Leftrightarrow x = (abb)^n$ valamilyen $n \ge 0$ -ra;
- 5. $xy = yx \Leftrightarrow \text{ha valamilyen } z \in \Sigma^*\text{-ra \'es } n, k \ge 0 \text{ eg\'eszre } x = z^n \text{\'es } y = z^k.$
- **2.2.14. Feladat.** $L^* \ni \varepsilon$, tehát sosem üres. $L_1 \cup L_2$ pontosan akkor üres, ha $L_1 = L_2 = \emptyset$. Végül, $L_1 \cdot L_2$ pontosan akkor üres, ha $L_1 = \emptyset$ vagy $L_2 = \emptyset$.
- **2.2.15.** Feladat. L^* pontosan akkor véges, ha $L = \emptyset$ vagy $L = \{\varepsilon\}$. $L_1 \cup L_2$ pontosan akkor véges, ha L_1 és L_2 is véges. Végül, $L_1 \cdot L_2$ pontosan akkor véges, ha L_1 és L_2 is véges, vagy ha $L_1 = \emptyset$, vagy ha $L_2 = \emptyset$.

2.2.16. Feladat.

- 1. Igaz. Tegyük fel, hogy $u \in (L_1L_2)L_3$. Ekkor u felírható $u = u'u_3$ alakban úgy, hogy $u' \in L_1L_2$ és $u_3 \in L_3$. Emiatt u' felírható $u' = u_1u_2$ alakban úgy, hogy $u_1 \in L_1$ és $u_2 \in L_2$. Ekkor $u = u_1u_2u_3$, így választva az $u'' = u_2u_3$ szót, $u'' \in L_2L_3$ és $u = u_1u''$, $u_1 \in L_1$, $u'' \in L_2L_3$ miatt kapjuk, hogy $u \in L_1(L_2L_3)$. A másik irány hasonló.
- 2. Igaz. Egyrészt $L_1, L_2 \subseteq L_1 \cup L_2$ és a konkatenáció monotonitását alkalmazva kapjuk, hogy $L_1L_3, L_2L_3 \subseteq (L_1 \cup L_2)L_3$, emiatt $L_1L_3 \cup L_2L_3 \subseteq (L_1 \cup L_2)L_3$. A másik irányú tartalmazkodáshoz legyen $u \in (L_1 \cup L_2)L_3$. Ekkor $u = u_1u_3$ úgy, hogy $u_1 \in L_1 \cup L_2$ és $u_3 \in L_3$. Mivel $u_1 \in L_1 \cup L_2$, ezért vagy $u_1 \in L_1$ (ekkor $u \in L_1L_3$), vagy $u_1 \in L_2$ (ekkor $u \in L_2L_3$). Tehát mindkét esetben $u \in L_1L_3 \cup L_2L_3$.
- 3. Igaz, az előzővel analóg módon bizonyítható.
- © Ésik Zoltán, Gombás Éva, Iván Szabolcs, SzTE

- 4. Nem igaz. Ellenpélda: $L_1 = \{a\}$, $L_2 = \{aa\}$, $L_3 = \{a, aa\}$. Ekkor $(L_1 \cap L_2)L_3 = \emptyset$, míg $L_1L_3 \cap L_2L_3 = \{aa, aaa\} \cap \{aaa, aaaa\} = \{aaa\}$.
- 5. Nem igaz. Ellenpélda: $L_1 = \{a, aa\}, L_2 = \{aa\}, L_3 = \{a\}$. Ekkor $L_1(L_2 \cap L_3) = \emptyset$, míg $L_1L_2 \cap L_1L_3 = \{aaa\}$.
- 6. Igaz. $L \subseteq L^*$ miatt a monotonitást alkalmazva $L^* \subseteq L^{**}$, a másik irányú tartalmazkodáshoz elég belátni, hogy tetszőleges n-re $(L^*)^n \subseteq L^*$. Ez n = 0-ra világos, $\{\varepsilon\} \subseteq L^*$; tegyük fel, hogy igaz n-re és belátjuk n+1-re: $(L^*)^{n+1} = (L^*)^n L^* \subseteq L^* L^* \subseteq L^*$.
- 7. Nem igaz. Ellenpélda: $L_1 = \{a\}, L_2 = \{b\}$. Ekkor $(L_1 \cup L_2)^* = \{a, b\}^* \ni ab \notin \{a\}^* \cup \{b\}^* = L_1^* \cup L_2^*$.
- 8. Nem igaz. Ellenpélda: $L_1 = \{a\}$, $L_2 = \{aa\}$. Ekkor $(L_1 \cap L_2)^* = (\{a\} \cap \{aa\})^* = \emptyset^* = \{\varepsilon\}$ $\{aa\}^* = \{a\}^* \cap \{aa\}^* = L_1^* \cap L_2^*$.
- 9. Nem igaz. Ellenpélda: $L_1 = \emptyset$ a $\Sigma = \{a\}$ ábécé fölött. Ekkor $(\overline{L_1})^* = (a^*)^* = a^*$, miközben $\overline{L_1^*} = \overline{\{\epsilon\}} = a^+$.
- 10. Igaz. Egyrészt $L_1 \subseteq L_1^* \subseteq L_1^*L_2^*$ (mert $\varepsilon \in L_2^*$), hasonlóképpen $L_2 \subseteq L_1^*L_2^*$, így $L_1 \cup U_2 \subseteq L_1^*L_2^*$, ezért $(L_1 \cup L_2)^* \subseteq (L_1^*L_2^*)^*$. A másik irányú tartalmazkodáshoz: mivel $L_1, L_2 \subseteq L_1 \cup L_2$, így $L_1^*, L_2^* \subseteq (L_1 \cup L_2)^*$, ezért $L_1^*L_2^* \subseteq ((L_1 \cup L_2)^*)^2 \subseteq (L_1 \cup L_2)^*$, végül $(L_1^*L_2^*)^* \subseteq (L_1 \cup L_2)^* = (L_1 \cup L_2)^*$.
- 11. Igaz. Egyrészt mivel $L_1, L_2 \subseteq L_1 \cup L_2$, így $L_1^* \subseteq (L_1 \cup L_2)^*$, ezért $L_1^*L_2 \subseteq (L_a mikre1 \cup L_2)^*L_2 \subseteq (L_1 \cup L_2)^*(L_1 \cup L_2) \subseteq (L_1 \cup L_2)^*$, emiatt $(L_1^*L_2)^* \subseteq (L_1 \cup L_2)^{**} = (L_1 \cup L_2)^*$, végül pedig $(L_1^*L_2)^*L_1^* \subseteq (L_1 \cup L_2)^*L_1^* \subseteq (L_1 \cup L_2)^*(L_1 \cup L_2)^* \subseteq (L_1 \cup L_2)^*$.
 - A másik irányú tartalmazkodáshoz: megmutatjuk, hogy tetszőleges $n \ge 0$ -ra $(L_1 \cup L_2)^n \subseteq (L_1^*L_2)^*L_1^*$. Ez n = 0 esetén világos, $\{\varepsilon\} \subseteq (L_1^*L_2)^*L_1^*$, hiszen $\varepsilon \in (L_1^*L_2)^*$ és $\varepsilon \in L_1^*$.
 - Tegyük fel, hogy az állítás igaz n-re és tekintsük n+1-et: mivel $(L_1 \cup L_2)^{n+1} = (L_1 \cup L_2)^n L_1 \cup (L_1 \cup L_2)^n L_2$, elég megmutatnunk, hogy mindkét nyelv részhalmaza a jobb oldalnak. Ez pedig teljesül, hiszen $(L_1 \cup L_2)^n L_1 \subseteq (L_1^* L_2)^* L_1^* L_1$ (indukciós feltevés és monotonitás szerint), ami pedig része $(L_1^* L_2)^* L_1^*$ -nak, továbbá $(L_1 \cup L_2)^n L_2 \subseteq (L_1^* L_2)^* L_1^* L_2 \subseteq (L_1^* L_2)^*$, ezzel az állítást beláttuk.
- 12. Igaz, mindkettőről láttuk már, hogy $(L_1 \cup L_2)^*$ -gal esik egybe.
- 13. Igaz. Ehhez elég látnunk, hogy $L^* = (L \cup \{\varepsilon\})^*$ tetszőleges L nyelvre. Ez pedig fennáll, hiszen $(L \cup \{\varepsilon\})^* = (L^*\{\varepsilon\})^*L^* = L^*L^* = L^*L^* = L^*$.
- 14. Igaz: $(\Sigma \cup L)^* = (\Sigma^* L)^* \Sigma^* = \Sigma^*$, mert $\varepsilon \in (\Sigma^* L)^*$.
- 15. Igaz. Ha $L_1 \subseteq L_2^*$, akkor $L_1 \cup L_2 \subseteq L_2^*$ és így $(L_1 \cup L_2)^* \subseteq L_2^{**} = L_2^*$, a másik irányú tartalmazkodás pedig $L_2 \subseteq L_1 \cup L_2$ -ból * monotonitását alkalmazva következik.
- 16. Nem igaz. Ellenpélda: $L_1 = \{a\}, L_2 = \emptyset$ esetén $(L_1L_2)^* = (\{a\}\emptyset)^* = \emptyset^* = \{\varepsilon\}, \text{ míg } L_1^*L_2^* = \{a\}^*\emptyset^* = \{a\}^*\{\varepsilon\} = \{a\}^*.$

2.2.17. Feladat. $(P(\Sigma^*), \cup)$ kommutatív idempotens monoid, hiszen tetszőleges K, L, M nyelvekre $K \cup L = L \cup K, K \cup K = K, K \cup (L \cup M) = (K \cup L) \cup M$ és Ø egységelem.

Továbbá, $(P(\Sigma^*), \cdot)$ monoid, mert (KL)M = K(LM) tetszőleges K, L, M nyelvekre, ebben a monoidban \emptyset zéruselem és $\{\varepsilon\}$ egységelem.

Továbbá az is igaz, hogy $K(L \cup M) = KL \cup KM$ és $(K \cup L)M = KM \cup LM$, ezzel a teljes állítást beláttuk.

2.2.18. Feladat. Legyen $\mathcal{M} = (M, \circ, 1)$ tetszőleges monoid és $h : \Sigma \to M$ leképezés. Azt kell csak belátnunk, hogy h azon h^{\sharp} (egyértelmű) kiterjesztése Σ^* -ra, melyre $h^{\sharp}(a_1a_2...a_n) = h(a_1) \circ h(a_2) \circ ... \circ h(a_n)$, egy monoidhomomorfizmus.

Valóban, hiszen tetszőleges $u = a_1 \dots a_n$, $v = b_1 \dots b_m$ szavakra $h^{\sharp}(uv) = h(a_1) \circ \dots \circ h(a_n) \circ \circ h(b_1) \circ \dots \circ h(b_m) = h^{\sharp}(u) \circ h^{\sharp}(v)$ és $h^{\sharp}(\varepsilon) = 1$.

- **2.2.19. Feladat.** $\{ab\}^* = \overline{\emptyset}(\{aa,bb\})\overline{\emptyset} \cap \overline{\{b\}}\overline{\emptyset} \cap \overline{\emptyset}\{a\}$, hiszen ebben a nyelvben pontosan azok a szavak vannak benne, amikben nem fordul elő részszóként sem aa, sem bb (emiatt a után b, b után a jön bennük), nem kezdődnek b-vel és nem végződnek a-val.
- **2.2.24.** Feladat. Az világos, hogy \emptyset és Σ^* mindketten 0-definit nyelvek. Tegyük fel, hogy $L \subseteq \Sigma^*$ nemüres 0-definit nyelv és legyen $u \in L$. Akkor $u = u \cdot \varepsilon$, $|\varepsilon| = 0$ miatt $\varepsilon \in L$, és így tetszőleges $w \in \Sigma^*$ -ra mivel $w = w \cdot \varepsilon$, $|\varepsilon| = 0$ és $\varepsilon \in L$, kapjuk, hogy $w \in L$, ekkor tehát $L = \Sigma^*$.
- **2.2.25. Feladat.** Legyen k < k' és $L \subseteq \Sigma^*$ k-definit nyelv. Belátjuk, hogy L egyben k'-definit is. Ehhez legyen $u, v \in \Sigma^*$, |v| = k'. Meg kell mutassuk, hogy $uv \in L \Leftrightarrow v \in L$. Mivel k' > k, v felírható $v = v_1v_2$, $|v_2| = k$ alakban. Mivel L k-definit, kapjuk, hogy

$$uv \in L \Leftrightarrow uv_1v_2 \in L$$

 $\Leftrightarrow v_2 \in L$
 $\Leftrightarrow v_1v_2 \in L$
 $\Leftrightarrow v \in L$,

tehát L valóban k'-definit is egyben.

- **2.2.26. Feladat.** Legyen $L \subseteq \Sigma^*$ véges nyelv és $k = 1 + \max\{|w| : w \in L\}$. Akkor L k-definit, hiszen tetszőleges $u, v \in \Sigma^*$, |v| = k szavak esetén $uv \notin L$ és $v \notin L$ is fennáll.
- **2.2.27. Feladat.** Legyen $L \subseteq \Sigma^*$ k-definit a $k \ge 0$ számra. Akkor $L = L_1 \cup \Sigma^* L_2$, ahol $L_1 = \{w \in L : |w| < k\}$ és $L_2 = \{w \in L : |w| = k\}$. Nyilván mind L_1 , mind L_2 végesek, hiszen k felső korlát a bennük levő szavak hosszára.

A másik irány igazolásához legyen $L=L_1\cup\Sigma^*\cdot L_2$ az L_1,L_2 véges, Σ fölötti nyelvekre. Legyen $k=1+\max\{|w|:w\in L_1\cup L_2\}$. Ekkor L k-definit, hiszen tetszőleges $u,v\in\Sigma^*,|v|=k$ szó esetén

$$uv \in L \Leftrightarrow uv \in \Sigma^* \cdot L_2 \text{ (mert } |uv| \ge k \text{ miatt } uv \notin L_1)$$

 $\Leftrightarrow \exists v_1, v_2 : v = v_1v_2, v_2 \in L_2$
 $\Leftrightarrow v \in L,$

tehát L valóban k-definit.

2.2.35. Feladat. Tudjuk, hogy $L^* = LL^* \cup \{\varepsilon\}$. Most tegyük fel, hogy $LX \cup \{\varepsilon\} \subseteq X$. Belátjuk, hogy $L^n \subseteq X$ minden n-re.

Ha n = 0, akkor $L^n = \{\varepsilon\} \subseteq X$. Tegyük fel, hogy az állítás igaz n-re. Ekkor $L^{n+1} = LL^n \subseteq LX \subseteq X$.

2.2.37. Feladat. Azt már tudjuk, hogy L^*L' megoldás. Tegyük fel, hogy az $X \subseteq \Sigma^*$ nyelvre $LX \cup L' = X$. Ekkor minden n > 0-ra

$$L^{n+1}X \cup L^nL' \cup \ldots \cup L' = X.$$

Az $L^{n+1}X$ nyelv minden szava legalább n+1 hosszú. Tehát tetszőleges n-re X legfeljebb n hosszú szavainak halmaza megegyezik L^*L' legfeljebb n hosszú szavainak halmazával. Ezért $X = L^*L'$.

2.2.38. Feladat. Tegyük fel, hogy X, Y megoldást alkotnak. Ekkor a második egyenletből $Y = a^*bX$. Ezt az első egyenletbe helyettesítve kapjuk, hogy

$$X = aX \cup ba^*bX \cup \{\varepsilon\} = (a \cup ba^*b)X \cup \{\varepsilon\},\$$

ahonnan

$$X = (a \cup ba^*b)^*, \quad Y = a^*b(a \cup ba^*b)^*.$$

Tehát *X* a páros sok *b*-t, *Y* pedig a páratlan sok *b*-t tartalmazó nyelv. Könnyen látható, hogy ezek a nyelvek megoldást adnak.

2.2.40. Feladat. Azt is belátjuk, hogy L a legszűkebb olyan X nyelv, amelyre $XX \cup aXb \cup bXa \cup \{\varepsilon\} \subset X$.

Ha $u, v \in L$, akkor uv, aub, $bua \in L$. Mivel $\varepsilon \in L$, így azt kapjuk, hogy $LL \cup aLb \cup bLa \cup \{\varepsilon\} \subseteq L$. Most tegyük fel, hogy az $X \subseteq \{a, b\}^*$ nyelvre $XX \cup aXb \cup bXa \cup \{\varepsilon\} \subseteq X$. Belátjuk, hogy $L \subseteq X$. Legyen $u \in L$. Ha $u = \varepsilon$, akkor világos, hogy $u \in X$. Teljes indukciót alkalmazva tegyük most fel, hogy |u| > 0, és az állítást igazoltuk az L |u|-nál rövidebb szavaira. Ha u az a betűvel kezdődik, akkor felírható axby alakban úgy, hogy $x, y \in L$. Az indukciós feltevés szerint $x, y \in X$, és így axb, $axby \in X$. Tehát $u \in X$.

Végül legyen $L' = LL \cup aLb \cup bLa \cup \{\varepsilon\}$. Belátjuk, hogy $L \subseteq L'$. Ehhez vegyük észre, hogy $L' \subseteq L$ miatt $L'L' \cup aL'b \cup bL'a \cup \{\varepsilon\} \subseteq LL \cup aLb \cup bLa \cup \{\varepsilon\} \subseteq L$, és így a fentiek szerint $L \subseteq L'$.

2.2.42. Feladat. A megoldások az $L^*(L' \cup L'')$ alakú nyelvek, ahol $L'' \subseteq \Sigma^*$ tetszőleges nyelv.

3. fejezet

Reguláris nyelvek

3.1. Elméleti összefoglaló

Az $M = (Q, \Sigma, \delta, q_0, F)$ ötös egy $(\Sigma \text{ ábécé feletti})$ (véges) automata, ahol

- 1. Q az állapotok véges, nemüres halmaza;
- 2. Σ az input ábécé;
- 3. $\delta: Q \times \Sigma \to Q$ az átmenetfüggvény;
- 4. $q_0 \in Q$ a kezdőállapot;
- 5. $F \subseteq Q$ a végállapotok halmaza.

Az M automata δ függvénye kiterjeszthető egy $\delta^*: Q \times \Sigma^* \to Q$ függvénnyé a következő módon: tetszőleges $q \in Q$ -ra $\delta^*(q, \varepsilon) = q$ és tetszőleges $u = av, a \in \Sigma, v \in \Sigma^*$ szóra $\delta^*(q, av) = \delta^*(\delta(q, a), v)$. Ha δ a szövegkörnyezetből egyértelmű, $\delta^*(q, u)$ helyett $\delta(q, u)$ -t, $q \cdot u$ -t vagy egyszerűen qu-t írunk. A fenti M automata egy konfigurációja egy $(q, u) \in Q \times \Sigma^*$ pár. A konfigurációk közti $\vdash_M k$ özvetlen rákövetkezési relációt a következőképp definiáljuk: legyen $(p, u) \vdash_M (q, v)$ akkor és csak akkor, ha valamely $a \in \Sigma$ betűre $\delta(p, a) = q$ és u = av. Amennyiben M egyértelmű a szövegkörnyezetből, az M indexet elhagyjuk.

A fenti M automata elfogadja az u szót, ha $q_0u \in F$, különben elveti azt. (Ezzel ekvivalensen, ha $(q_0, u) \vdash *(q_f, \varepsilon)$ valamely $q_f \in F$ állapotra.)

Az M által felismert nyelv $L(M) = \{u \in \Sigma^* : q_0 u \in F\}.$

Az L nyelv (automatával) felismerhető, ha L = L(M) valamely M véges automatára.

3.1.1. Állítás. Ha $M = (Q, \Sigma, \delta, q_0, F)$ az $L \subseteq \Sigma^*$ nyelvet felismerő automata, akkor $M = (Q, \Sigma, \delta, q_0, Q \setminus F)$ az L komplementerét felismerő automata.

Egy $M=(Q, \Sigma, \delta, q_0, F)$ automata k-definit a $k \ge 0$ egész számra, ha tetszőleges $u \in \Sigma^*$, $|u| \ge k$ szóra és $p, q \in Q$ állapotokra $p \cdot u = q \cdot u$. Az M automata definit, ha k-definit valamely k-ra. Az M automata degyvégű, ha pontosan egy végállapota van.

Ha $M_1=(Q_1,\,\Sigma,\,\delta_1,\,q_0^1,\,F_1)$ és $M_2=(Q_2,\,\Sigma,\,\delta_2,\,q_0^2,\,F_2)$ véges automaták ugyanazon Σ ábécé felett, akkor *direkt szorzatuk* bármely olyan $M=(Q,\,\Sigma,\,\delta,\,q_0,\,F)$ automata, melyre

- 1. $Q = Q_1 \times Q_2$;
- 2. $\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))$ tetszőleges $q_1 \in Q_1, q_2 \in Q_2$ és $a \in \Sigma$ esetén;
- 3. $q_0 = (q_0^1, q_0^2)$.

Vagyis M_1 és M_2 egy direkt szorzatának megadásához elegendő annak $F \subseteq Q_1 \times Q_2$ végállapothalmazát megadni.

- **3.1.2.** Állítás. Ha $M_1 = (Q_1, \Sigma, \delta_1, q_0^1, F_1)$ és $M_2 = (Q_2, \Sigma, \delta_2, q_0^2, F_2)$ véges automaták, akkor
 - 1. az $L(M_1) \cap L(M_2)$ nyelvet felismeri M_1 és M_2 azon direkt szorzata, melynek végállapothalmaza $\{(q_1, q_2) : q_1 \in F_1 \text{ és } q_2 \in F_2\}$;
 - 2. az $L(M_1) \cup L(M_2)$ nyelvet felismeri M_1 és M_2 azon direkt szorzata, melynek végállapothalmaza $\{(q_1, q_2) : q_1 \in F_1 \text{ vagy } q_2 \in F_2\}$.

Az $N = (Q, \Sigma, \Delta, q_0, F)$ ötös egy (Σ ábécé feletti) nemdeterminisztikus véges automata, ahol Q, Σ, q_0, F ugyanazok, mint véges automata esetében, $\Delta: Q \times \Sigma_\varepsilon \to P(Q)$ pedig a $(Q \times \Sigma_\varepsilon)$ halmazt állapotok halmazába képző függvény, ahol $\Sigma_\varepsilon = \Sigma \cup \{\varepsilon\}$.

A fenti N nemdeterminisztikus automata egy konfigurációja szintén egy $(p,u) \in Q \times \Sigma^*$ -beli pár, a rákövetkezési relációt pedig a következőképp definiáljuk: legyen $(p,u) \vdash_N (q,v)$ pontosan akkor, ha valamely $a \in \Sigma_\varepsilon$ esetén $q \in \Delta(p,a)$ és u=av. Nemdeterminisztikus automata esetén is használni fogjuk a $p \cdot u$ ill. pu jelöléseket, ahol $p \in Q$, $u \in \Sigma^*$, melyet a következőképp definiálunk: $pu = \{q \in Q : (p,u) \vdash^* (q,\varepsilon)\}$.

A fenti N automata elfogadja az u szót, ha $(q_0, u) \vdash^* (q_f, \varepsilon)$ valamely $q_f \in F$ állapotra, különben elveti azt.

Az N által felismert nyelv $L(N) = \{u \in \Sigma^* : N \text{ elfogadja } u\text{-t}\}.$

Az L nyelv nemdeterminisztikus automatával felismerhető, ha L = L(N) valamely N nemdeterminisztikus automatára.

Az M_1 és M_2 (determinisztikus vagy nemdeterminisztikus) automaták *ekvivalensek*, jelben $M_1 \equiv M_2$, ha $L(M_1) = L(M_2)$.

3.1.3. Állítás. Minden nemdeterminisztikus automatához létezik ekvivalens determinisztikus automata.

Az állítás bizonyítása konstruktív:

3.1.4. Algoritmus. $N = (Q, \Sigma, \Delta, q_0, F)$ nemdeterminisztikus automatához ekvivalens $M = (Q', \Sigma, \delta, q'_0, F')$ determinisztikus automata megadására.

Jelölje tetszőleges $Q'\subseteq Q$ állapothalmazhoz \widehat{Q}' az állapotok $\{q\cdot \varepsilon: q\in Q'\}$ halmazát. A \widehat{Q}' halmaz meghatározható a következő iterációval:

$$H_0 = Q',$$

 $H_{i+1} = H_i \cup \bigcup_{p \in H_i} \delta(p, \varepsilon).$

Az iteráció befejeződik, amikor $H_{i+1} = H_i$ és ekkor $\widehat{Q}' = H_i$.

Ezek után az $M = (Q', \Sigma, \delta', q'_0, F')$ determinisztikus automatát a következőképp definiáljuk:

- 1. Q' = P(Q);
- 2. $q'_0 = \{\widehat{q_0}\};$
- 3. $F' = \{Q' \subseteq Q : Q' \cap F \emptyset\};$
- 4. tetszőleges $Q'\subseteq Q$ és $a\in \Sigma$ esetén $\delta'(Q',a)=\bigcup_{q\in Q'}\widehat{\delta(q,a)}.$

Ekkor L(M) = L(N).

Az $M = (Q, \Sigma, \delta, q_0, F)$ automata egy *részautomatája* az $M' = (Q', \Sigma, \delta', q_0, F')$ automata, ha $Q' \subseteq Q$, tetszőleges $a \in \Sigma$ és $q \in Q'$ esetén $\delta(q, a) \in Q'$, δ' a δ megszorítása a $Q' \times \Sigma$ halmazra és $F' = F \cap Q'$.

3.1.5. Állítás. Tetszőleges automata ekvivalens bármely részautomatájával.

Az $M=(Q, \Sigma, \delta, q_0, F)$ automata *összefüggő része* az az $M'=(Q', \Sigma, \delta', q_0, F')$ részautomatája, melyre $Q'=\{q_0u:u\in\Sigma^*\}$. Világos, hogy M összefüggő része a legkisebb részautomatája, mely M minden M' részautomatájának részautomatája. Továbbá Q' meghatározható a következő algoritmussal:

3.1.6. Algoritmus. Az $M = (Q, \Sigma, \delta, q_0, F)$ automata összefüggő részének meghatározására. Q' meghatározható a következő iterációval:

$$H_0 = \{q_0\};$$

 $H_{i+1} = H_i \cup \{\delta(q, a) : q \in H_i, a \in \Sigma\}.$

Az iteráció befejeződik, mikor $H_i = H_{i+1}$, és ekkor $Q' = H_i$.

Ezután az M összefüggő része a $(Q', \Sigma, \delta', q_0, F')$ automata, ahol δ' a δ megszorítása $Q' \times \Sigma$ -ra, F' pedig $F \cap Q'$.

3.1.7. Következmény. Tetszőleges *M* automata ekvivalens összefüggő részével.

A $h: Q \to Q'$ leképezés az $M = (Q, \Sigma, \delta, q_0, F)$ automatából az $M' = (Q', \Sigma, \delta', q'_0, F')$ automatába menő *homomorfizmus*, ha $h(q_0) = q'_0$ és kompatibilis δ -val (vagyis tetszőleges $q \in Q$, $a \in \Sigma$ esetén $h(\delta(q, a)) = \delta'(h(q), a)$) és melyre $h^{-1}(F') = F$. Ha h szürjektív, akkor M' az M-nek *homomorf képe*; ha pedig bijektív, akkor M és M' *izomorfak*.

3.1.8. Állítás. Ha van *M*-ből *M'*-be menő homomorfizmus, akkor *M* és *M'* ekvivalensek.

Automaták homomorf képének ekvivalens definícióját megkaphatjuk kongruenciák értelmezésével automatákon, ami a következő:

Legyen $M=(Q, \Sigma, \delta, q_0, F)$ egy automata és $\Theta \subseteq Q \times Q$ egy reláció. Θ az M egy kongruenciája, ha ekvivalenciareláció és valahányszor $p\Theta q$ a pp, q állapotokra, $p \in F \Leftrightarrow q \in F$, továbbá tetszőleges $a \in \Sigma$ -ra $\delta(p, a)\Theta\delta(q, a)$.

Amennyiben Θ az $M = (Q, \Sigma, \delta, q_0, F)$ automata egy kongruenciája, úgy az M-nek a Θ által meghatározott *faktorautomatája* az

$$M/\Theta = (Q/\Theta, \Sigma, \delta/\Theta, q_0/\Theta, F/\Theta)$$

automata, ahol tetszőleges $p \in Q$ -ra p/Θ jelöli p osztályát, vagyis a $\{q \in Q : p\Theta q\}$ halmazt, továbbá

- 1. $Q/\Theta = \{p/\Theta : p \in Q\};$
- 2. $(\delta/\Theta)(p/\Theta, a) = (\delta(p, a))/\Theta$;
- 3. $F/\Theta = \{p/\Theta : p \in F\}$.

Ha Θ kongruenciareláció, akkor a fenti M/Θ jóldefiniált.

3.1.9. Állítás. Tetszőleges M automata bármely homomorf képe izomorf M egy faktorautomatájával.

Tetszőleges $M = (Q, \Sigma, \delta, q_0, F)$ automatához definiáljuk a $\varrho_M \subseteq Q \times Q$ relációt a következőképpen: legyen $p\varrho_M q$ pontosan akkor, ha tetszőleges $u \in \Sigma^*$ szóra $pu \in F \Leftrightarrow qu \in F$.

3.1.10. Állítás. Tetszőleges M automata esetén ϱ_M az M egy kongruenciája.

Továbbá, ϱ_M az M legdurvább kongruenciája, vagyis M tetszőleges Θ kongruenciájára $\Theta \subseteq \varrho_M$.

A ϱ_M reláció algoritmikusan kiszámítható:

3.1.11. Algoritmus. Tetszőleges $M = (Q, \Sigma, \delta, q_0, F)$ automata ϱ_M kongruenciájának kiszámítására.

 Q_M meghatározható a következő iterációval:

$$p\varrho_0 q \Leftrightarrow (p \in F \Leftrightarrow q \in F);$$

 $p\varrho_{i+1} q \Leftrightarrow (pa)\varrho_i(qa)$ tetszőleges $a \in \Sigma_{\varepsilon}$ esetén.

Az iteráció befejeződik, ha $\varrho_i = \varrho_{i+1}$, és ekkor $\varrho_M = \varrho_i$.

Egy M automata osztja az M' automatát, ha M az M' egy részautomatájának homomorf képe.

3.1.12. Állítás. Tetszőleges L automatával felismerhető nyelvhez izomorfizmus erejéig egyértelműen létezik az L-et felismerő M_L minimális automata, mely minden, L-et felismerő véges automatát oszt (ebből következően az L-et felismerő automaták közül minimális állapotszámú is). Létezik olyan algoritmus, mely tetszőleges M automatához megkonstruálja az $M_{L(M)}$ automatát.

Az állítás második részében szereplő algoritmus a következő:

- **3.1.13.** Algoritmus. $M = (Q, \Sigma, \delta, q_0, F)$ automatát minimalizáló algoritmus.
 - I. Meghatározzuk M összefüggő részét, legyen ez $M' = (Q', \Sigma, \delta', q_0, F')$.
 - II. Meghatározzuk a $\varrho_{M'}$ kongruenciát.

Az L(M)-et felismerő minimális automata a $M'/\varrho_{M'}$ automata.

Az M_L automata és L szintaktikus jobbkongruenciája közt szoros összefüggés áll fenn:

- **3.1.14.** Állítás. Tetszőleges $L \subseteq \Sigma^*$ automatával felismerhető nyelvre M_L izomorf az $M = (\Sigma^*/\nu_L, \Sigma, \delta, \varepsilon/\nu_L, L/\nu_L)$ automatával, ahol $\delta(u/\nu_L, a) = (ua)/\nu_L$.
- **3.1.15.** Állítás. Tetszőleges $L \subseteq \Sigma^*$ -ra a következők ekvivalensek:
 - 1. L automatával felismerhető nyelv;
 - 2. ν_L véges indexű;

3. μ_L véges indexű.

Nemcsak nyelvekhez, de automatákhoz is rendelhetünk monoidokat a következőképpen. Ha Q egy halmaz, akkor a Q fölötti $f: Q \to Q$ függvények egy Q^Q -val jelölt monoidot alkotnak a kompozícióra mint műveletre nézve: vagyis ha $f,g:Q\to Q$, akkor $f\cdot g$ az a $Q\to Q$ függvény, melyre $(f\cdot g)(q)=g(f(q))$ tetszőleges $q\in Q$ esetén. Ennek a monoidnak az identikus $q\mapsto q$ függvény az egységeleme.

Egy $M = (Q, \Sigma, \delta, q_0, F)$ véges automatához rendelhetjük a következő $T(M) \subseteq Q^Q$ monoidot, melyet M átmenetmonoidjának nevezünk: $f \colon Q \to Q \in T(M)$ pontosan akkor, ha van olyan $u_f \in \Sigma^*$, melyre $f(q) = qu_f$ tetszőleges $q \in Q$ -ra. Könnyen látható, hogy T(M) valóban monoid, Q^Q -nak egy részmonoidja. Az L nyelv szintaktikus kongruenciájával a következő szoros kapcsolatban áll:

3.1.16. Állítás. Tetszőleges L automatával felismerhető nyelvre Σ^*/μ_L izomorf $T(M_L)$ -lel, az L-et felismerő minimális automata átmenetmonoidjával.

Nyelveket felismerthetünk monoidokkal is a következőképpen: az $L \subseteq \Sigma^*$ nyelv felismerhető az $\mathcal{M} = (M, \circ, 1)$ monoidban, ha van olyan $h: \Sigma^* \to \mathcal{M}$ monoidhomomorfizmus (vagyis olyan $h: \Sigma^* \to M$ leképezés, melyre $h(uv) = h(u) \circ h(v)$ és melyre $h(\varepsilon) = 1$) és $F \subseteq M$ halmaz, melyre $h^{-1}(F) = L$. A definícióból következően tetszőleges L nyelv felismerhető a Σ^*/μ_L faktormonoidban. Ennél több is igaz:

- **3.1.17.** Állítás. Tetszőleges $L \subseteq \Sigma^*$ nyelvre az alábbiak ekvivalensek:
 - 1. L automatával felismerhető;
 - 2. L felismerhető egy véges monoidban;
 - 3. Σ^*/μ_L véges.

Nyelvek megadására az előző fejezetben szereplő nyelvtanokon és az ebben a fejezetben megismert automatákon ill. monoidokon felül egyéb módszerek is léteznek, nyelvet például megadhatunk *reguláris kifejezéssel* is. A Σ *ábécé fölötti reguláris kifejezések* halmaza az a legszűkebb halmaz, melyre:

- 1. Ø reguláris kifejezés¹;
- 2. tetszőleges $a \in \Sigma$ esetén a reguláris kifejezés;
- 3. ha R_1 és R_2 reguláris kifejezések, akkor $(R_1 + R_2)$ és $(R_1 \cdot R_2)$ is reguláris kifejezés;
- 4. ha R reguláris kifejezés, akkor (R^*) is reguláris kifejezés.

Az R reguláris kifejezés által jelölt |R| nyelvet a következőképp definiáljuk:

- 1. $|\emptyset| = \emptyset$;
- 2. ha $a \in \Sigma$, akkor $|a| = \{a\}$;
- 3. ha $R = (R_1 + R_2)$, akkor $|R| = |R_1| \cup |R_2|$;

¹Implicit módon feltesszük, hogy $\emptyset \notin \Sigma$.

[©] Ésik Zoltán, Gombás Éva, Iván Szabolcs, SzTE

- 4. ha $R = (R_1 \cdot R_2)$, akkor $|R| = |R_1| \cdot |R_2|$;
- 5. ha $R = (R_1^*)$, akkor $|R| = |R_1|^*$.

Az $L \subseteq \Sigma^*$ nyelv *reguláris*, ha létezik L-et jelölő Σ fölötti reguláris kifejezés. Ha az R_1 és R_2 reguláris kifejezésekre $|R_1| = |R_2|$, akkor azt mondjuk, hogy a két kifejezés *ekvivalens*, jelben $R_1 \equiv R_2$.

A következő állítás a fenti definícióból közvetlenül adódik:

3.1.18. Állítás. A reguláris nyelvek osztálya a legszűkebb olyan nyelvosztály, mely tartalmazza a véges nyelveket és zárt a reguláris műveletekre (vagyis az unióra, konkatenációra és Kleene-iterációra).

A könnyebb olvashatóság érdekében felállítjuk a műveleti jelek közt a következő precedenciát: a * operátor köt a legerősebben, melyet a szorzás, majd végül az összeadás követ. Az így és az összeadás, szorzás asszociativitása miatt feleslegessé váló zárójeleket és a szorzás jelét elhagyhatjuk. Továbbá bevezetjük a $\varepsilon = \emptyset^*$ rövidítést, melyre $|\varepsilon| = \{\varepsilon\}$.

3.1.19. Állítás. Minden felismerhető nyelv reguláris. Továbbá, tetszőleges N nemdeterminisztikus automatához effektíven megadható egy L(N)-et jelölő reguláris kifejezés.

Az állításban szereplő algoritmus a következő:

3.1.20. Algoritmus. Kleene algoritmusa az $N=(Q, \Sigma, \Delta, q_0, F)$ automata által felismert nyelvet jelölő reguláris kifejezés előállítására.

Feltehetjük, hogy $Q=\{1,\ldots,n\}$, ahol n=|Q|. Definiáljuk tetszőleges $1 \le i, j \le n$ -re és $0 \le k \le n$ -re az $R_{i,j}^k$ reguláris kifejezést a következőképpen:

$$R_{i,j}^k = \begin{cases} \sum_{a \in \Sigma_\varepsilon, j \in \Delta(i,a)} a, & \text{ha } k = 0; \\ R_{i,j}^{k-1} + (R_{i,k}^{k-1} (R_{k,k}^{k-1})^* R_{k,j}^{k-1}), & \text{egy\'ebk\'ent.} \end{cases}$$

Ekkor az L(N)-et jelölő reguláris kifejezés $\sum_{q \in F} R_{q_0,q}^n$.

Az állítás a másik irányban is igaz:

3.1.21. Állítás. Minden reguláris nyelv felismerhető. Továbbá, tetszőleges R reguláris kifejezéshez effektíven megadható egy |R|-et felismerő automata.

Egy algoritmus a következő:

3.1.22. Algoritmus. R reguláris kifejezéshez olyan N_R nemdeterminisztikus automata konstruálása, melyre $L(N_R) = |R|$.

Az automatát R felépítése szerinti indukcióval konstruáljuk meg.

- 1. Ha $R = \emptyset$, akkor $N_R = (\{q\}, \Sigma, \Delta, q, \emptyset)$, ahol $\Delta(q, a) = \emptyset$ minden $a \in \Sigma_{\varepsilon}$ esetén.
- 2. Ha R = a az $a \in \Sigma$ jelre, akkor $N_R = (\{q, q_f\}, \Sigma, \Delta, q, \{q_f\})$, ahol $\Delta(q, a) = \{q_f\}$ és minden egyéb (p, b) párra $\Delta(p, b) = \emptyset$.
- 3. Ha $R=(R_1+R_2)$, akkor legyen $N_{R_1}=(Q_1,\Sigma,\Delta_1,q_1,F_1)$ és $N_{R_2}=(Q_2,\Sigma,\Delta_2,q_2,F_2)$. Feltehetjük, hogy Q_1 és Q_2 diszjunkt. Ekkor legyen $N_R=(Q_1\cup Q_2\cup \{q_0\},\Sigma,\Delta,q_0,F_1\cup q_1\})$

 $\cup F_2$), ahol q_0 új állapot, az átmenetreláció pedig a következő: tetszőleges $q \in Q_1 \cup Q_2 \cup \{q_0\}$ és $a \in \Sigma_\varepsilon$ esetén

$$\Delta(q, a) = \begin{cases} \{q_1, q_2\}, & \text{ha } q = q_0, a = \varepsilon; \\ \Delta_1(q_1, a), & \text{ha } q_1 \in Q_1; \\ \Delta_2(q_2, a), & \text{ha } q_2 \in Q_2; \\ \emptyset, & \text{egy\'ebk\'ent.} \end{cases}$$

4. Ha $R=(R_1\cdot R_2)$, akkor legyen $N_{R_1}=(Q_1,\,\Sigma,\,\Delta_1,\,q_1,\,F_1)$ és $N_{R_2}=(Q_2,\,\Sigma,\,\Delta_2,\,q_2,\,F_2)$. Feltehetjük, hogy Q_1 és Q_2 diszjunkt. Ekkor legyen $N_R=(Q_1\cup Q_2,\,\Sigma,\,\Delta,\,q_1,\,F_2)$, az átmenetreláció pedig a következő: tetszőleges $q\in Q_1\cup Q_2$ és $a\in\Sigma_\varepsilon$ esetén

$$\Delta(q, a) = \begin{cases} \Delta_1(q, a) \cup \{q_1\}, & \text{ha } q \in F_1 \text{ \'es } a = \varepsilon; \\ \Delta_2(q, a), & \text{ha } q \in Q_2; \\ \Delta_1(q, a), & \text{egy\'ebk\'ent.} \end{cases}$$

5. Ha $R=(R_1^*)$, akkor legyen $N_{R_1}=(Q_1,\Sigma,\Delta_1,q_1,F_1)$. Ekkor $N_R=(Q_1\cup\{q_0\},\Sigma,\Delta,q_0,\{q_0\})$, ahol q_0 új állapot, az átmenetreláció pedig a következő: tetszőleges $q\in Q_1\cup\{q_0\}$ és $a\in\Sigma_\varepsilon$ esetén

$$\Delta(q, a) = \begin{cases} \{q_1\}, & \text{ha } q = q_0, a = \varepsilon; \\ \Delta_1(q, a) \cup \{q_0\}, & \text{ha } q \in F, a = \varepsilon; \\ \Delta_1(q, a), & \text{egy\'ebk\'ent.} \end{cases}$$

Emlékezzünk vissza, egy $G = (V, \Sigma, R, S)$ nyelvtant 3. típusúnak, jobblineárisnak vagy regulárisnak neveztünk, ha benne minden szabály $A \to uB$ vagy $A \to u$ alakú, ahol $A, B \in V$ nemterminálisok, $u \in \Sigma^*$ pedig terminális szó. Egy nyelvet pedig 3. típusúnak, ha van őt generáló 3. típusú nyelvtan.

3.1.23. Állítás. Tetszőleges 3. típusú nyelv felismerhető automatával. Továbbá, bármely $G = (V, \Sigma, R, S)$ jobblineáris nyelvtanhoz effektíven megadható egy olyan (nemdeterminisztikus) automata, mely L(G)-t ismeri fel.

Az állításban szereplő algoritmus a következő:

3.1.24. Algoritmus. $G=(V,\Sigma,R,S)$ jobblineáris nyelvtanhoz ekvivalens automata megadására. Az általánosság megszorítása nélkül feltehetjük, hogy minden R-beli szabály $A\to aB$ vagy $A\to \varepsilon$ alakú, ahol $A,B\in V$ nemterminálisok, $a\in \Sigma$ pedig egy terminális betű. Az $N=(V\cup\{q_f\},\Sigma,\Delta,S,F)$ nemdeterminisztikus automata, ahol q_f új szimbólum és tetszőleges $A\in V\cup\{q_f\}$ és $a\in \Sigma_\varepsilon$ esetén

$$\Delta(A, a) = \begin{cases} \{q_f\}, & \text{ha } a = \varepsilon \text{ \'es } A \to \varepsilon \in R; \\ \emptyset, & \text{ha } q = q_f; \\ \{B \in V : A \to aB \in R\}, & \text{egy\'ebk\'ent}, \end{cases}$$

továbbá $F = \{q_f\}$, felismeri L(G)-t.

Az állítás visszafele is igaz:

3.1.25. Állítás. Tetszőleges automatával felismerhető nyelv generálható 3. típusú nyelvtannal. Továbbá, bármely $N = (Q, \Sigma, \Delta, q_0, F)$ nemdeterminisztikus automatához megadható vele ekvivalens 3. típusú nyelvtan, mely L(N)-et generálja.

Az állításban szereplő algoritmus a következő:

3.1.26. Algoritmus. $N = (Q, \Sigma, \Delta, q_0, F)$ nemdeterminisztikus automatához ekvivalens 3. típusú nyelvtan megadására.

A $G = (Q, \Sigma, R, q_0)$ 3. típusú nyelvtan, ahol

$$R = \{p \to aq : p, q \in Q, a \in \Sigma_{\varepsilon}, q \in \Delta(p, a)\} \cup \{p \to \varepsilon : p \in F\},$$

az L(N)-t generáló jobblineáris nyelvtan.

Nyelvek megadásának egy újabb módja a nyelvbe tartozó szavakat karakterizáló tulajdonság leírása valamely logikai nyelven. Egy ilyen logika a *monadikus másodrendű* (MSO) logika, melynek szintaxisát és szemantikáját az alábbiakban definiáljuk.

Legyen $\mathcal{X}_1 = \{x_1, x_2, \dots\}$ elsőrendű és $\mathcal{X}_2 = \{X_1, X_2, \dots\}$ másodrendű változók megszámlálhatóan végtelen halmaza és Σ egy ábécé, ahol Σ , \mathcal{X}_1 és \mathcal{X}_2 páronként diszjunktak. Ekkor a Σ *feletti MSO formulák* halmazát és az F formulában szabadon előforduló változók Free₁(F) \subseteq \mathcal{X}_1 és Free₂(F) \subseteq \mathcal{X}_2 halmazát a következőképpen definiáljuk:

- 1. Ha $a \in \Sigma$ és $x \in \mathcal{X}_1$, akkor $p_a(x)$ egy (atomi) MSO formula, $\text{Free}_1(p_a(x)) = \{x\}$ és $\text{Free}_2(p_a(x)) = \emptyset$.
- 2. Ha $x, y \in \mathcal{X}_1$, akkor x < y és x+1=y is (atomi) MSO formulák, Free₁(x+1=y)=Free₁ $(x < y) = \{x, y\}$ és Free₂(x+1=y) = Free₂ $(x < y) = \emptyset$.
- 3. Ha $x \in \mathcal{X}_1$ és $X \in \mathcal{X}_2$, akkor $x \in X$ egy (atomi) MSO formula, Free₁($x \in X$) = {x} és Free₂($x \in X$) = {X}.
- 4. Ha *F* MSO formula, akkor $(\neg F)$ is MSO formula, $Free_1(\neg F) = Free_1(F)$, $Free_2(\neg F) = Free_2(F)$.
- 5. Ha F és G MSO formulák, akkor $(F \vee G)$ is MSO formula, $Free_1(F \vee G) = Free_1(F) \cup Free_1(G)$ és $Free_2(F \vee G) = Free_2(F) \cup Free_2(G)$.
- 6. Ha *F* MSO formula és $x \in \mathcal{X}_1$ elsőrendű változó, akkor $(\exists x F)$ MSO formula, Free₁ $(\exists x F)$ = Free₂(F) $\{x\}$, Free₂ $(\exists x F)$ = Free₂(F).
- 7. Ha F MSO formula és $X \in \mathcal{X}_2$ másodrendű változó, akkor ($\exists XF$) MSO formula, Free₁($\exists XF$) = Free₁(F), Free₂($\exists XF$) = Free₂(F) {X}.
- 8. Ezek és csak ezek az MSO formulák.

A szemantika definíciójához először bevezetjük a *struktúra* fogalmát: ha Σ egy ábécé és $V_1 \subseteq \mathcal{X}_1$, $V_2 \subseteq \mathcal{X}_2$ változók véges halmazai, akkor egy Σ fölötti (V_1, V_2) -*struktúra* egy olyan

$$u = (a_1, V_1^1, V_2^1)(a_2, V_1^2, V_2^2) \dots (a_n, V_1^n, V_2^n) \in (\Sigma \times P(V_1) \times P(V_2))^*$$

szó, melyben tetszőleges $x \in V_1$ esetén létezik pontosan egy olyan $1 \le \text{pos}_u(x) \le n$ pozíció, melyre $x \in V_1^{\text{pos}_u(x)}$.

Legyen F egy Σ fölötti MSO formula, Free $_1(F) = V_1$, Free $_2(F) = V_2$. Az $u = (a_1, V_1^1, V_2^1)(a_2, V_1^2, V_2^2) \dots (a_n, V_1^n, V_2^n)$ (V_1, V_2) -struktúra *kielégíti* F-et, jelben $u \models F$, ha az alábbi esetek valamelyike fennáll:

- 1. $F = p_a(x)$ és $a_{pos_u(x)} = a$;
- 2. $F = x < y \text{ és pos}_{u}(x) < pos_{u}(y)$;
- 3. F = x + 1 = y és $pos_u(x) + 1 = pos_u(y)$;
- 4. $F = x \in X \text{ \'es } X \in V_2^{pos_u(x)}$;
- 5. $F = (\neg G)$ és $u \not\models G$;
- 6. $F = (G \vee H)$ és $u \models G$ vagy $u \models H$;
- 7. $F = \exists xG, x \in \mathcal{X}_1$ és van olyan $1 \le i \le n$ index, melyre az az $u' = (a_1, V_1^{1'}, V_2^1)(a_2, V_1^{2'}, V_2^2) \dots (a_n, V_1^{n'}, V_2^n)$ $(V_1 \cup \{x\}, V_2)$ -struktúra, melyben $V_1^{i'} = V_1^i \cup \{x\}$ és minden j i esetén $V_1^{j'} = V_1^j \{x\}$, kielégíti G-t;
- 8. $F = \exists XG, \ X \in \mathcal{X}_2$ és van olyan $I \subseteq \{1, \dots, n\}$ indexhalmaz, melyre az az $u' = (a_1, \ V_1^1, \ V_2^{1'})(a_2, \ V_1^2, \ V_2^{2'})\dots(a_n, \ V_1^n, \ V_2^{n'}) \ (V_1, \ V_2 \cup \{X\})$ -struktúra, melyben

$$V_2^{i'} = \begin{cases} V_2^i \cup \{X\}, \text{ ha } i \in I; \\ V_2^i - \{X\}, \text{ különben,} \end{cases}$$

kielégíti G-t.

Az F formulát kielégítő struktúrák nyelvét L_F jelöli, vagyis

$$L_F = \{ u \in (\Sigma \times P(\text{Free}_1(F)) \times P(\text{Free}_2(F)))^* : u \models F \}.$$

Ha F olyan formula, melyre $\text{Free}_1(F) = \text{Free}_2(F) = \emptyset$ (vagyis F mondat), akkor L_F -et azonosíthatjuk egy Σ fölötti nyelvvel, vagyis ekkor $L_F = \{a_1 \dots a_n \in \Sigma^* : (a_1, \emptyset, \emptyset) \dots (a_n, \emptyset, \emptyset) \models F\}$. Ha szintaktikus megszorításokat teszünk, az MSO alábbi töredékeit kapjuk:

- 1. az F formula MSO[+1]-formula, ha nincs benne x < y alakú részformula;
- 2. az F formula MSO[<]-formula, ha nincs benne x+1=y alakú részformula;
- 3. az F formula $\exists MSO[+1]$ -formula, ha $\exists X_1 \exists X_2 \dots \exists X_n G$ alakú MSO[+1]-formula, ahol G-ben nincs $\exists XH, X \in \mathcal{X}_2$ alakú részformula;
- 4. az F formula FO[+1]-formula, ha nincs benne x < y, $x \in X$, sem $\exists XG$ alakú formula, ahol $X \in \mathcal{X}_2$;
- 5. az F formula FO[<]-formula, ha nincs benne $x+1=y, x \in X$, sem $\exists XG$ alakú formula, ahol $X \in \mathcal{X}_2$.

Ha \mathcal{C} a fenti logikák valamelyike, azt mondjuk, hogy az $L\subseteq \Sigma^*$ definiálható \mathcal{C} -ben, ha van olyan F \mathcal{C} -formula, melyre $L_F=L$.

- **3.1.27. Tétel.** Az alábbiak ekvivalensek tetszőleges $L \subseteq \Sigma^*$ nyelvre:
 - 1. L reguláris;
 - 2. L definiálható $\exists MSO[+1]$ -ben;
 - 3. *L* definiálható MSO[+1]-ben;
 - 4. *L* definiálható MSO[<]-ben;
 - 5. L definiálható MSO-ban.
- **3.1.28.** Állítás. Van olyan reguláris nyelv, mely nem definiálható FO[<]-ben. Továbbá, van olyan nyelv, mely definiálható FO[<]-ben, de FO[+1]-ben nem.

Az eddigiek szerint tehát az alábbiak ekvivalensek tetszőleges $L \subseteq \Sigma^*$ nyelvre:

- 1. L felismerhető véges automatával;
- 2. L felismerhető nemdeterminisztikus véges automatával;
- 3. L reguláris;
- 4. L generálható jobblineáris nyelvtannal;
- 5. v_L véges indexű;
- 6. μ_L véges indexű;
- 7. *L* felismerhető véges monoidban;
- 8. L definiálható $\exists MSO[+1]$ -ben;
- 9. *L* definiálható MSO[+1]-ben;
- 10. *L* definiálható MSO[<]-ben;
- 11. L definiálható MSO-ban.

Az számossági okokból is világos, hogy vannak nem reguláris nyelvek (pl. adott Σ ábécé fölött csak megszámlálhatóan sok reguláris kifejezés, viszont kontinuum sok nyelv van). A pumpáló lemma egy szükséges feltételt fogalmaz meg egy nyelv regularitásához:

- **3.1.29.** Lemma. Tetszőleges $L \subseteq \Sigma^*$ reguláris nyelvhez létezik olyan N > 0 egész, melyre bármely $w \in L$, $|w| \ge N$ szó felbontható $w = w_1 w_2 w_3$ alakban úgy, hogy a következők teljesülnek :
 - 1. $|w_1w_2| \leq N$;
 - 2. $w_2 \varepsilon$;

3. tetszőleges $i \ge 0$ -ra $w_1 w_2^i w_3 \in L$.

A lemmának egy erősebb változata a következő:

- **3.1.30. Lemma.** Tetszőleges $L \subseteq \Sigma^*$ reguláris nyelvhez létezik olyan N > 0 egész, melyre bármely $w \in \Sigma^*$, $|w| \ge N$ szó felbontható $w = w_1 w_2 w_3$ alakba úgy, hogy a következők teljesülnek :
 - 1. $|w_1w_2| \leq N$;
 - 2. $w_2 \varepsilon$;
 - 3. tetszőleges $u, v \in \Sigma^*$ szavakra és $i \ge 0$ számra $uw_1w_2^iw_3v \in L \iff uwv \in L$.

Automatákat (avagy szekvenciális gépeket) nem csak nyelvek felismerésére, de szófüggvények kiszámítására is használhatunk, amennyiben kimenettel is ellátjuk azokat. Attól függően, hogy egy-egy output jel kiírását átmenethez vagy állapothoz kötjük, kapjuk a *Mealy* ill. *Moore* gép definícióját, melyeket formálisan a következőképp vezethetünk be: *Mealy gép* egy $M=Q, \Sigma, \Delta, \delta, \lambda$) rendszer, ahol Q a (nemüres, megszámlálható) állapothalmaz, Σ és Δ az input ill. output ábécék, $\delta:Q\times\Sigma\to Q$ az átmenetfüggvény és $\lambda:Q\times\Sigma\to\Delta$ a kimenetfüggvény. Ha Q véges, a Mealy gépet is végesnek nevezzük. Ha M a fenti Mealy gép és $q\in Q$ egy állapota, akkor M q-ban indukál egy $\lambda_q:\Sigma^*\to\Delta^*$ leképezést, melyet induktív módon a következőképp definiálunk: $\lambda_q(\varepsilon)=\varepsilon$ és tetszőleges $a\in\Sigma$, $u\in\Sigma^*$ esetén $\lambda_q(ua)=\lambda_q(u)\lambda(qu,a)$. Az $M=(Q,\Sigma,\Delta,\delta,\mu)$ rendszert pedig Moore gépnek nevezzük, ahol Q,Σ,Δ és δ ugyanaz, mint a Mealy gépek esetében, $\mu:Q\to\Delta$ pedig a kimenetfüggvény. Ha $q\in Q$ a fenti gépben, akkor az M által q-ban indukált $\mu_q:\Sigma^*\to\Delta^*$ leképezést a következőképp definiáljuk induktív módon: $\mu_q(\varepsilon)=\varepsilon$ és tetszőleges $a\in\Sigma,u\in\Sigma^*$ esetén $\mu_q(ua)=\mu_q(u)\mu(q(ua))$.

Egy M (Mealy vagy Moore) gép q állapota ekvivalens egy M' (Mealy vagy Moore) gép q' állapotával, ha az M által q-ban indukált leképezés megegyezik az M' által q'-ben indukált leképezéssel. Az M és M' gépek ekvivalensek, ha M tetszőleges p állapotához van M'-nek ekvivalens p' állapota és viszont.

- **3.1.31.** Állítás. Tetszőleges Mealy géphez van vele ekvivalens Moore gép.
- **3.1.32. Algoritmus.** Az $M = (Q, \Sigma, \Delta, \delta, \lambda)$ Mealy géphez ekvivalens Moore gép megadására. Definiáljuk az $M' = (Q \cup Q \times \Sigma, \Delta, \delta', \mu)$ Moore gépet a következőképp:
 - 1. tetszőleges $q \in Q$ és $a \in \Sigma$ esetén legyen $\delta'(q, a) = (q, a)$ és $\mu'(q) = b$ tetszőleges Δ -beli betű;
 - 2. tetszőleges $q \in Q$, $a_1 \in \Sigma$ és $a_2 \in \Sigma$ esetén legyen $\delta'((q, a_1), a_2) = (\delta(q, a_1), a_2)$ és $\mu((q, a_1)) = \lambda(q, a_1)$.

Ekkor M' ekvivalens M-mel.

- **3.1.33.** Állítás. Tetszőleges Moore géphez van vele ekvivalens Mealy gép.
- **3.1.34.** Algoritmus. Az $M = (Q, \Sigma, \Delta, \delta, \mu)$ Moore géphez ekvivalens Mealy gép megadására.

Definiáljuk az $M' = (Q, \Sigma, \Delta, \delta, \lambda)$ Mealy gépet a következőképp: tetszőleges $q \in Q$ és $a \in \Sigma$ esetén legyen $\lambda(q, a) = \mu(\delta(q, a))$.

Ekkor M' ekvivalens M-mel.

Egy $\alpha: \Sigma^* \to \Delta^*$ leképezést *automata leképezésnek* nevezünk, ha hossztartó és prefixtartó, vagyis ha tetszőleges $x \in \Sigma^*$ -ra $|x| = |\alpha(x)|$ és tetszőleges x, x' szavakra ha x az x' prefixe, akkor $\alpha(x)$ az $\alpha(x')$ prefixe. (Ez utóbbival ekvivalens az a feltétel, hogy tetszőleges $x, y \in \Sigma^*$ szavakra $\alpha(xy) = \alpha(x)\alpha_x(y)$ valamely α_x , csak α -tól és x-től függő leképezésre.)

- **3.1.35.** Állítás. Tetszőleges $\alpha: \Sigma^* \to \Delta^*$ leképezésre a következő három állítás ekvivalens:
 - 1. α indukálható valamely Mealy gép egy állapotában;
 - 2. α indukálható valamely Moore gép egy állapotában;
 - 3. α automata leképezés.

Egy leképezés *véges automata leképezés*, ha indukálható véges Mealy (vagy Moore) géppel. Nyilvánvalóan minden véges automata leképezés egyben automata leképezés is.

- **3.1.36.** Állítás. Tetszőleges $\alpha: \Sigma^* \to \Delta^*$ leképezésre a következők ekvivalensek:
 - 1. α véges automata leképezés;
 - 2. α automata leképezés és az $\{\alpha_x : x \in \Sigma^*\}$ halmaz véges.

Végezetül, automatákat végtelen szavakból álló nyelvek felismerésére is alkalmazhatunk a következőképpen. Ha Σ ábécé, jelölje Σ^ω az $a_1a_2\ldots$ végtelen sorozatok halmazát, ahol $a_i \in \Sigma$ minden $i \in \{1,2,\ldots\}$ esetén. Σ^ω tetszőleges részhalmazát (Σ *fölötti*) ω -nyelvnek nevezzük. Ha $L \subseteq \Sigma^*$, akkor L^ω jelöli az $u_1u_2\cdots:u_i \in L$ alakú ω -szavak által alkotott nyelvet. Továbbá, ha $K \subseteq \Sigma^*$ és $L \subseteq \Sigma^\omega$, akkor definiálhatjuk a $KL = \{uv: u \in K, v \in L\} \subseteq \Sigma^\omega$ nyelvet. Az $N=(Q,\Sigma,\Delta,q_0,F)$ (nemdeterminisztikus) véges automata egy *futása* az $a_1a_2\ldots\in\Sigma^\omega$ ω -szón egy olyan végtelen $q_0,b_1,q_1,b_2,q_2,\ldots$ sorozat, ahol $q_i\in Q,b_i\in\Sigma_\varepsilon,b_1b_2\cdots=a_1a_2\ldots$ (tehát a b_i -k sorozatában véges hosszú összefüggő ε -szekvenciák előfordulhatnak) és $q_{i+1}\in$ ω ω -szonzatában véges hosszú összefüggő ω -szekvenciák előfordulhatnak) és ω -nyelvet reguláris ω -nyelvnek nevezünk, ha van őt felismerő nemdeterminisztikus véges automata.

Végtelen szavak esetében már nem igaz a determinizáló tétel:

3.1.37. Állítás. A $\Sigma = \{a, b\}$ feletti azon ω -szavakból álló nyelv, melyek csak véges sok b-t tartalmaznak, reguláris ω -nyelv, mely azonban nem ismerhető fel determinisztikus automatával.

3.2. Véges automaták

- **3.2.1. Feladat.** Nevezzünk egy automatát *nem újrainduló* automatának, ha kezdőállapotába nem vezet átmenet. Mutassa meg, hogy minden automatához effektíven megadható egy vele ekvivalens, nem újrainduló automata!
- **3.2.2. Feladat.** Adjon meg az alábbi nyelveket felismerő véges automatákat!
 - 1. Ø;

2. $\{a, b\}^*$; 3. $\{a^n b^m : n, m \ge 0\}$; 4. $\{w \in \{a, b\}^* : |w|_a \text{ páratlan}\};$ 5. $\{w \in \{a, b\}^* : |w|_a \equiv 1 \pmod{3}\};$ 6. $\{a^{5n+3}: n \ge 0\}$; 7. $\{w \in \{a, b\}^* : w \text{ a-val kezdődik vagy } b\text{-re végződik}\};$ 8. $\{a\}^* \cup \{b\}^*$; 9. $\{w \in \{a, b, c\}^* : |w|_b + |w|_c \text{ páratlan}\};$ 10. $\{w \in \{a, b, c\}^* : |w|_b + |w|_c \equiv 2 \pmod{3}\};$ 11. $\{w \in \{a, b, c\}^* : 2 \cdot |w|_a + |w|_b \equiv 3 \pmod{5} \text{ vagy } 2 \cdot |w|_a + |w|_b \equiv 4 \pmod{5} \}$; 12. $\{w \in \{a, b\}^* : |w|_b \equiv 0 \pmod{3} \text{ és } |w|_b \text{ páros}\};$ 13. $\{w \in \{a, b\}^* : |w|_a \equiv 0 \pmod{3} \text{ és } |w|_b \text{ páros}\};$ 14. $\{w \in \{a, b, c\}^* : 3 \cdot |w|_b + 2 \cdot |w|_c \equiv 2 \pmod{5}\};$ 15. $\{w \in \{a, b\}^* : |w|_a - |w|_b \text{ osztható 3-mal}\};$ 16. $\{w \in \{a, b\}^* : |w|_a < 3\};$ 17. $\{w \in \{a, b, c\}^* : |w|_a + 2 \cdot |w|_b \ge 7\}$; 18. $\{a^n b^m : n \not\equiv m \pmod{2}\};$ 19. $\{a^n b^m : n \not\equiv m \pmod{4}\};$ 20. $\{w \in \{a, b\}^* : |w|_a \equiv |w|_b \pmod{2}\};$ 21. $\{w \in \{a, b, c\}^* : |w|_a \equiv |w|_b \pmod{3}\};$ 22. $\{uabv : u, v \in \{a, b\}^*\};$ 23. $\{uab : u \in \{a, b\}^*\};$

25. $\{a^n b^{n \mod 3} : n \ge 0\}$, ahol $n \mod k$ az n szám k-val vett osztási maradéka;

© Ésik Zoltán, Gombás Éva, Iván Szabolcs, SzTE

26. $\{w \in \{a, b\}^* : |w|_a > |w|_b \mod 2\}$.

24. $\{abu : u \in \{a, b\}^*\}$;

- **3.2.3. Feladat.** Mutassa meg, hogy "végtelen állapotú automatával" bármilyen nyelv felismerhető!
- **3.2.4. Feladat.** Tudja, hogy az $f: \mathbb{N} \to \mathbb{N}$ függvény olyan, hogy az $\{a^n b^{f(n)} : n \ge 0\}$ nyelv reguláris. Mit tud mondani f-ről?
- **3.2.5. Feladat.** Igazolja, hogy minden definit nyelv reguláris!
- **3.2.6. Feladat.** Adjon meg olyan reguláris nyelvet, mely *nem* definit!
- **3.2.7. Feladat.** Igazolja, hogy minden definit automatával felismerhető nyelv definit!
- **3.2.8. Feladat.** Igazolja, hogy minden definit nyelv felismerhető definit automatával!
- **3.2.9. Feladat.** Igazolja, hogy tetszőleges $M = (Q, \Sigma, \delta, q_0, F)$ automatára $|Q| > \min\{|u| : u \in L(M)\}$ és $|Q| > \min\{|u| : u \in L(M)\}$ (itt legyen $\min \emptyset = 0$)!
- **3.2.10. Feladat.** Tegyük fel, hogy az $L \subseteq \Sigma^*$ reguláris nyelvhez léteznek úgy $x_1, \ldots, x_n, y_1, \ldots, y_n \in \Sigma^*$ szavak valamilyen n-re, hogy $x_i y_j \in L$ pontosan akkor teljesül az $1 \le i, j \le n$ számok esetén, ha i = j. Mutassa meg, hogy ekkor bármilyen L-et elfogadó N nemdeterminisztikus automatának legalább n állapota van.
- **3.2.11. Feladat.** Igazolja, hogy ha M egyvégű automata, akkor tetszőleges u, v, w szavakra ha u, uv, $w \in L$, akkor $wv \in L$!
- **3.2.12. Feladat.** Tegyük fel, hogy L olyan reguláris nyelv, hogy tetszőleges u, v, w szavakra, amelyekre $u, uv, w \in L$, igaz, hogy $uv \in L$. Igazolja, hogy $uv \in L$ felismerhető egyvégű automatával!
- **3.2.13. Feladat.** Igazolja, hogy tetszőleges *L* reguláris nyelv előáll véges sok olyan nyelv uniójaként, melyek felismerhetők egyvégű automatával!
- **3.2.14. Feladat.** Igazolja, hogy minden prefixmentes reguláris nyelv felismerhető egyvégű automatával!
- **3.2.15. Feladat.** Igazolja, hogy egy $L \subseteq \Sigma^*$ nyelv pontosan akkor reguláris, ha megadható egy olyan *véges K* nyelv, hogy tetszőleges $x \in \Sigma^*$ szóhoz létezik olyan $y \in K$, amire xv_Ly !

3.3. Műveletek automatákon

- 3.3.1. Feladat. Mutassa meg, hogy minden véges nyelv felismerhető!
- **3.3.2. Feladat.** Adjon meg az alábbi nyelveket felismerő véges automatákat!
 - 1. $\{w \in \{a, b\}^* : |w|_a \text{ páros és } |w|_b \text{ páratlan}\};$

- 2. $\{w \in \{a, b, c\}^* : |w|_a \text{ páros és } |w|_c \ge 3\};$
- 3. $\{w \in \{a, b, c\}^* : |w|_a \equiv 1 \pmod{3} \text{ vagy } |w|_b + 2 \cdot |w|_c \ge 6\};$
- 4. $\{w \in \{a, b, c\}^* : |w|_a + |w|_b \equiv 1 \pmod{3} \text{ és } |w|_c \equiv 0 \pmod{3} \};$
- 5. $\{w \in \{a, b, c\}^* : (|w|_a \text{ páros vagy } |w|_b \text{ páratlan}) \text{ és } |w|_c \equiv 0 \text{ (mod 3)}\};$
- 6. $\{w \in \{a, b, c\}^* : (|w|_a \text{ páros vagy } |w|_c \not\equiv 0 \text{ (mod 3)) és } |w|_b \text{ páratlan} \}$;
- 7. $\{w \in \{a, b, c\}^* : (|w|_a > (|w|_b \mod 3)) \text{ vagy } |w|_b |w|_c \equiv 0 \text{ (mod 3)} \}$.
- **3.3.3. Feladat.** Adjon meg az alábbi nyelveket felismerő véges nemdeterminisztikus automatákat, majd hajtsa végre rajtuk a determinizáló algoritmust!
 - 1. $\{w \in \{a, b, c\}^* : w \text{ 3 darab } a \text{ betűre végződik}\};$
 - 2. $\{w \in \{a, b, c\}^* : w$ -ben előfordul az abc részszó $\}$;
 - 3. $\{w \in \{a, b, c\}^* : w$ -ben előfordul a *baba* részszó $\}$;
 - 4. $\{w \in \{a, b, c\}^* : w$ -ben nem fordul elő az aba részszó $\}$;
 - 5. $\{w \in \{a, b, c\}^* : w \text{ minden 4 hosszú részszavában van legalább egy } b\}$;
 - 6. $\{w \in \{a, b, c\}^* : w \text{ minden 4 hosszú részszavában pontosan egy } b \text{ van}\};$
 - 7. $\{w \in \{a, b, c\}^* : w$ -ben jobbról a negyedik betű $b\}$;
 - 8. $\{w \in \{a, b, c\}^* : w$ -ben jobbról a harmadik betű a vagy $c\}$.
- **3.3.4. Feladat.** Adjon meg olyan n-állapotú nemdeterminisztikus automatát (minden n-re), amelyekre végrehajtva a determinizáló algoritmust sokkal nagyobb (vagyis $\Theta(2^n)$ állapottal rendelkező) automatát kap!
- **3.3.5. Feladat.** Bizonyítsa be, hogy ha a nemdeterminisztikus automatában megengedünk több kezdőállapotot is (amelyek közül az automata az első lépésben választ egyet), akkor ez az új automatacsalád is pontosan a reguláris nyelveket ismeri fel!

3.4. Automaták minimalizálása

- **3.4.1. Feladat.** Adjon minden $n \ge 1$ számhoz olyan összefüggő automatát, amelyre a minimalizáló algoritmusbeli iteráció pontosan n lépésben ér véget!
- **3.4.2. Feladat.** Minimalizálja az alábbi, diagrammal megadott véges automatát!
- © Ésik Zoltán, Gombás Éva, Iván Szabolcs, SzTE

3.4.3. Feladat. Minimalizálja az alábbi, diagrammal megadott véges automatát!

- **3.4.4. Feladat.** Igazolja, hogy az alábbi három állítás ekvivalens egy $L \subseteq \Sigma^*$ nyelvre!
 - 1. L kommutatív, azaz L = Com(L).
 - 2. L minimális automatája kommutatív, azaz a minimális automata bármely q állapotára és bármely $a,b\in \Sigma$ -ra qab=qba.
 - 3. *L* szintaktikus monoidja kommutatív.

3.5. Reguláris kifejezések

3.5.1. Feladat. Adjon meg olyan algoritmust, amely a bemenetként kapott Σ feletti R reguláris kifejezésről eldönti, hogy |R|...

1. ... üres-e;

4. ... egyelemű-e;

2. ... az $\{\varepsilon\}$ nyelv-e;

5. ... részhalmaza-e Σ-nak;

3. ... véges-e;

6. ... Σ^* -e.

3.5.2. Feladat. Határozza meg, hogy a következő reguláris kifejezések közül melyek ekvivalensek!

- 1. $(a^*ba^*)^*$
- 6. $a(b^*a)^*$
- 11. $a^*b^*a^*$

- 2. $b(a+b)(ab)^*$
- 7. $a^*(ba^*)^*$
- 12. $a(a+b)^*$

3. $(a+b)^*$

- 8. $(a^*b^*)^*$
- 13. $b(ab)^*$

- 4. $(ab)^*$
- 9. $a(b^*(a+\varepsilon))^*$
- 14. $(a+ab+b)^*$
- 5. $\emptyset^* + a(ba)^*b$ 10. $(a^*b)^*a^*$
- 15. $(a+ab)^*$

3.5.3. Feladat. Adjon meg egy-egy, a 3.2.2 és 3.3.2 feladatban szereplő nyelveket jelölő reguláris kifejezést!

3.5.4. Feladat. Bizonyítsa be, hogy nincs olyan *R* reguláris kifejezés, amely nem tartalmazza a * operátort és mely ekvivalens (ab)*-gal!

3.5.5. Feladat. Mutassa meg, hogy minden véges nyelv reguláris!

3.5.6. Feladat. Adjon meg egy-egy, {0,1} fölötti nyelvet jelölő reguláris kifejezést!

- 1. {x : x-ben előfordul 001 részszóként};
- 2. {x : x-ben nem fordul elő 001 részszóként}.

3.5.7. Feladat. Mutassa meg, hogy minden reguláris nyelv jelölhető olyan reguláris kifejezéssel, mely $R = R_1 + R_2 + \cdots + R_n$ alakú valamely $n \ge 1$ -re úgy, hogy az R_i kifejezések nem tartalmazzák a + operátort!

3.6. Ekvivalens átalakítások automaták, reguláris nyelvtanok és reguláris kifejezések között

3.6.1. Feladat. Adjon meg a következő reguláris kifejezések által jelölt nyelvet a) felismerő nemdeterminisztikus véges automatát, b) azt generáló jobblineáris nyelvtant!

1. $(a(a+ba)^*)^*$;

3. $(ab)^* + (ba)^*$;

2. $(a+(b+ab)^*)^*$;

4. $a^* + (ab)^*$.

3.6.2. Feladat. Adjon meg az L=|R|, ahol $R=a^*ba^*ba^*b(a+b)^*$, nyelvhez olyan G jobblineáris nyelvtant, amelyre L(G)=L!

3.6.3. Feladat. Kleene algoritmusával adjon meg egy-egy reguláris kifejezést, mely az alábbi automaták által felismert nyelvet jelöli!

1.

δ	а	b
q_0	q_1	q_2
q_1	q_2	q_1
q_2	q_2	q_1

2.

δ	а	b
q_0	q_1	q_2
q_1	q_2	q_1
q_2	q_2	q_1

3.

δ	а	b
q_0	q_0	q_1
q_1	q_1	q_0

Egy "nemdeterminisztikus automatával ekvivalens jobblineáris nyelvtant ill. determinisztikus automatát készítő" típusú feladatokat megoldással generáló program letölthető a http://www.inf.u-szeged.hu/szabivan/download/nfa.jar címről.

3.7. Pumpáló lemma reguláris nyelvekre

3.7.1. Feladat. Igazolja vagy cáfolja, hogy az alábbi nyelvek regulárisak!

1. $\{a^n b^n : n \ge 0\}$;

- 7. $\{w \in \{a, b\}^* : |w|_a |w|_b\};$
- 2. $\{a^nb^n: 0 \le n \le 59876\}$;
- 8. $\{a^n b^m : m \le n \le 2m\}$;

3. $\{a^nba^n : n \ge 0\}$;

9. $\{w \in \{a, b\}^* : |w|_b \le |w|_a \le 2|w|_b\}$;

- 4. $\{a^n b^m a^n : n, m \ge 0\}$;
- 10. $\{a^{n^2}: n > 0\}$:

5. $\{a^n b^m : n \le m\}$;

- 11. $\{a^{2^n}: n \geq 0\}$;
- 6. $\{w \in \{a, b\}^* : |w|_a = |w|_b\};$
- 12. $\{a^p : p \text{ prím}\}.$

3.7.2. Feladat. Tegyük fel, hogy $f: \mathbb{N} \to \mathbb{N}$ olyan monoton növő függvény, hogy minden k > 0-ra létezik olyan n > 0, amelyre f(n) < k és $f(n+1) \ge 2k$. Igazolja, hogy ekkor $\{a^{f(n)} : n \ge 0\}$ nem reguláris!

3.8. Reguláris nyelvek zártsági tulajdonságai

- 3.8.1. Feladat. Igaz-e, hogy...
 - 1. ... minden nyelvet tartalmaz egy reguláris nyelv?
 - 2. ... minden nyelv reguláris?
 - 3. ... minden nyelvnek van egy olyan részhalamza, mely reguláris nyelv?
 - 4. ... minden nemüres nyelvnek van egy olyan részhalmaza, mely reguláris?
 - 5. ... minden nemüres nyelvnek van egy olyan részhalmaza, mely nem reguláris?
 - 6. ... ha $L_1 \subseteq L_2 \subseteq L_3$ és L_1, L_3 reguláris nyelvek, akkor L_2 is az?
- **3.8.2. Feladat.** Igazolja vagy cáfolja a következőket!
 - 1. Ha $L_1 \cup L_2$ reguláris és L_1 véges, akkor L_2 reguláris.
 - 2. Ha $L_1 \cup L_2$ reguláris és L_1 reguláris, akkor L_2 reguláris.
 - 3. Ha L_1L_2 reguláris és L_1 véges, akkor L_2 reguláris.
 - 4. Ha L_1L_2 reguláris és L_1 Ø véges, akkor L_2 reguláris.
- © Ésik Zoltán, Gombás Éva, Iván Szabolcs, SzTE

- 5. Ha L_1L_2 reguláris és $L_1 \emptyset$ reguláris, akkor L_2 reguláris.
- 6. Ha L^* reguláris, akkor L is reguláris.
- **3.8.3. Feladat.** Bizonyítsa be, hogy a reguláris nyelvek osztálya zárt...
 - 1. ... a metszetre;
 - 2. ... az unióra;
 - 3. ... a komplementálásra;
 - 4. ... a konkatenációra;
 - 5. ... a Kleene-iterációra;
 - 6. ... a megfordításra²;
 - 7. ... homomorfizmusra: ha $h: \Sigma \to \Delta^*$ egy függvény és L egy Σ fölötti reguláris nyelv, akkor $h(L) = \{h(a_1)h(a_2) \dots h(a_n) : a_1 \dots a_n \in L\}$ is reguláris;
 - 8. ... inverz homomorfizmusra: ha $h: \Sigma \to \Delta^*$ egy függvény és L egy Δ fölötti reguláris nyelv, akkor $h^{-1}(L) = \{a_1 \dots a_n : h(a_1) \dots h(a_n) \in L\}$ is reguláris.
- **3.8.4. Feladat.** Bizonyítsa be, hogy a reguláris nyelvek osztálya *nem* zárt a...
 - 1. ... végtelen unióra³;
 - 2. ... végtelen metszetre.
- **3.8.5. Feladat.** Rögzítsünk egy Σ ábécét. Jelölje $u \sim v$ azt, hogy minden $a \in \Sigma$ -ra $|u|_a = |v|_a$ (vagyis, $u \sim v$ pontosan akkor, ha minden betűből ugyanannyi van bennük). Ha $L \subseteq \Sigma^*$, akkor jelölje Com(L) az L kommutatív lezártját, vagyis a $\{u \in \Sigma^* : \exists v \in L \ u \sim v\}$ nyelvet. Így pl. Com(a^*b^*) = $\{a,b\}^*$.

Mutasson olyan L nyelvet, amelyre...

- 1. ... L és Com(L) is reguláris;
- 2. ... sem L, sem Com(L) nem reguláris;
- 3. ... L reguláris, Com(L) nem az;
- 4. ... L nem reguláris, Com(L) viszont az!

²Vagyis: ha L reguláris, akkor L^R is az

³ vagyis: adjon meg olyan L_1, L_2, \dots reguláris nyelveket, hogy $\bigcup_{i=1}^{\infty} L_i$ nem reguláris.

- **3.8.6. Feladat.** Egy nyelv *ko-véges*, ha komplementere véges. Mutassa meg, hogy minden ko-véges nyelv reguláris!
- **3.8.7. Feladat.** Legyen $L \subseteq \{a\}^*$ tetszőleges nyelv. Bizonyítsa be, hogy L^* reguláris!
- **3.8.8. Feladat.** Legyen L egy tetszőleges Σ ábécé feletti reguláris nyelv. Igazolja, hogy ekkor az alábbi nyelvek is regulárisak!
 - 1. $L_{\text{Prefix}} = \{u \in \Sigma^* : \exists v \ uv \in L\};$
 - 2. $L_{\text{Suffix}} = \{v \in \Sigma^* : \exists u \ uv \in L\};$
 - 3. $L_{\text{Infix}} = \{u \in \Sigma^* : \exists v_1, v_2 \ (v_1 u v_2 \in L)\};$
 - 4. $L_{\text{Half}} = \{u \in \Sigma^* : \exists v, |u| = |v|, uv \in L\};$
 - 5. $L' = \{u \in \Sigma^* : \exists v \in \Sigma^* \ uv \in L \land |v| = 2^{|u|} \};$
 - 6. $L' = \{ u \in \Sigma^* : \exists v \in \Sigma^* \ uv \in L \land |v| = |u|^2 \};$
 - 7. $L' = \{u \in \Sigma^* : \exists v \in \Sigma^* \ uv \in L \land |v| = 2|u|\};$
 - 8. $L' = \{u \in \Sigma^* : \exists v \in \Sigma^* \ uv \in L \land 2|v| = |u|\};$
 - 9. $L' = \{u \in \Sigma^* : \exists v \in \Sigma^* \ uv \in L \land |v| = |u|^3\}$;
 - 10. $L' = \{u \in \Sigma^* : \exists v \in \Sigma^* \ uv \in L \land |u| \le |v| \le |u|^2\}.$

Ha $u, v \in \Sigma^*$ szavak, jelölje $u \sqcup \sqcup v$ az u és v shuffle-szorzatát, azaz az $\{a_1b_1a_2b_2 \ldots a_nb_n : a_1, \ldots, a_n, b_1, \ldots, b_n \in \Sigma \cup \{\varepsilon\}, a_1 \ldots a_n = u, b_1 \ldots b_n = v\}$ nyelvet és legyen tetszőleges $L_1, L_2 \subseteq \Sigma^*$ nyelvekre $L_1 \sqcup \sqcup L_2 = \bigcup_{u \in L_1, v \in L_2} u \sqcup \sqcup v$. Tetszőleges $L \subseteq \Sigma^*$ nyelvre és $n \geq 0$ egészre

legyen $L^0 \stackrel{\sqcup \sqcup}{=} \{ \varepsilon \}$ és ha n > 0, $L^n \stackrel{\sqcup \sqcup}{=} L \stackrel{\sqcup}{\sqcup} L^{n-1} \stackrel{\sqcup \sqcup}{\sqcup}$. Továbbá, legyen az L nyelv *shuffle-iteráltja*, $L^* \stackrel{\sqcup \sqcup}{\sqcup} \operatorname{az} \bigcup_{n \geq 0} L^n \stackrel{\sqcup \sqcup}{\sqcup} \operatorname{nyelv}$.

- **3.8.9. Feladat.** Igazolja, hogy ha L_1 és L_2 regulárisak, akkor $L_1 \sqcup L_2$ is az!
- **3.8.10. Feladat.** Adjon példát olyan véges L nyelvre, amelyre $L^* \coprod$ nem reguláris!
- **3.8.11. Feladat.** Igazolja, hogy ha $L \subseteq \{a\}^*$ véges nyelv, akkor $L^* \sqcup$ reguláris!
- **3.8.12. Feladat.** Igazolja, hogy ha $L \subseteq \{a\}^*$ reguláris nyelv, akkor $L^* \stackrel{\sqcup}{}$ is reguláris!
- **3.8.13. Feladat.** Egy $G = (V, \Sigma, R, S)$ nyelvtan *ballineáris*, ha benne minden szabály $A \to Ba$ vagy $A \to \varepsilon$ alakú. Bizonyítsa be, hogy egy nyelv pontosan akkor generálható ballineáris nyelvtannal, ha generálható jobblineárissal is!
- © Ésik Zoltán, Gombás Éva, Iván Szabolcs, SzTE

3.8.14. Feladat. Egy $G = (V, \Sigma, R, S)$ környezetfüggetlen nyelvtan *lineáris*, ha benne minden szabály jobboldalán legfeljebb egy nemterminális szerepel. Mutasson olyan lineáris nyelvtant, amely nem ekvivalens egyetlen jobblineáris nyelvtannal sem!

3.9. Szintaktikus félcsoport, átmenetmonoid, reguláris nyelvek felismerése monoidokkal

- **3.9.1. Feladat.** Adjon meg egy olyan véges monoidot, mely *nem* izomorf egy nyelv szintaktikus monoidjával sem!
- **3.9.2. Feladat.** Adjon meg két monoidot, $\mathcal{M} = (M, +, 0)$ és $\mathcal{N} = (N, \circ, 1)$, valamint egy h leképezést úgy, hogy tetszőleges $x, y \in M$ esetén $h(x + y) = h(x) \circ h(y)$, de h nem monoid homomorfizmus \mathcal{M} -ből \mathcal{N} -be!
- **3.9.3. Feladat.** Jobbkongruenciák, illetve kongruenciák-e az alábbi relációk Σ^* -on, ahol $\Sigma = \{a, b\}$?
 - 1. $\{(x, y) : |x| |y| \text{ páratlan}\};$
 - 2. $\{(x, y) : |x| |y| \text{ páros}\};$
 - 3. $\{(x, y) : |x| = |y|\};$
 - 4. $\{(x, y) : |x| = |y| \text{ vagy } |x|, |y| \ge 2\}$;
 - 5. $\{(x, y) : x \text{ \'es } y \text{ ugyanarra a bet\'ure v\'egz\'odik}\};$
 - 6. az az ekvivalenciareláció, melynek osztályai: $\{\varepsilon\}$, $\{a\}$, $\{xaa: x \in \Sigma^*\}$, $\{xab: x \in \Sigma^*\}$, $\{xba: x \in \Sigma^*\}$ és $\{xbb: x \in \Sigma^*\}$;
 - 7. az az ekvivalenciareláció, melynek osztályai: $\{\varepsilon\}$, $\{a\}$, $\{aax: x \in \Sigma^*\}$, $\{abx: x \in \Sigma^*\}$, $\{bax: x \in \Sigma^*\}$ és $\{bbx: x \in \Sigma^*\}$.
- **3.9.4. Feladat.** Mutassa meg, hogy tetszőleges L nyelv esetén $v_L = v_{\overline{L}}!$
- **3.9.5. Feladat.** Mutassa meg, hogy tetszőleges L nyelv esetén $\mu_L = \mu_{\overline{L}}!$
- **3.9.6. Feladat.** Adjon meg egy olyan $L \subseteq \Sigma^*$ nyelvet a $\Sigma = \{a, b\}$ ábécé fölött, melyre ν_L osztályai $\{\varepsilon\}$, $\{ax : x \in \Sigma^*\}$ és $\{bx : x \in \Sigma^*\}$!
- **3.9.7. Feladat.** Határozza meg az alábbi átmenettáblázattal megadott automata átmenetmonoidját!

δ	a	b
q_0	q_2	q_1
q_1	q_3	q_0
q_2	q_0	q_3
q_3	q_1	q_2

3.10. Reguláris nyelvek megadása logikai formulákkal

3.10.1. Feladat. Adjon meg egy olyan First(x) FO[+1]-formulát, melynek x szabad változója és melyet egy u struktúra pontosan akkor elégít ki, ha pos $_u(x) = 1$!

3.10.2. Feladat. Adjon meg egy olyan Last(x) FO[+1]-formulát, melynek x szabad változója és melyet egy u struktúra pontosan akkor elégít ki, ha pos $_u(x) = |u|!$

3.10.3. Feladat. Adjon meg egy-egy, az alábbi reguláris kifejezésekkel jelölt, az $\{a, b\}$ ábécé feletti nyelveket definiáló MSO formulát! Ahol tud, FO[<] vagy FO[+1]-formulát is adjon.

1. $(a+b)^*$;

5. a^*b^* :

 $2. \varepsilon$;

6. $(aa)^*$;

3. a+b;

7. $(ab)^*$;

4. a^+b^+ ;

8. $((a+b)a)^*$.

3.10.4. Feladat. Mutassa meg, hogy tetszőleges $V_1 \subseteq \mathcal{X}_1$, $V_2 \subseteq \mathcal{X}_2$ véges halmazokra és Σ ábécére a Σ fölötti (V_1, V_2) -struktúrák által alkotott nyelv reguláris!

3.10.5. Feladat. Mutassa meg, hogy minden, automatával felismerhető nyelv definiálható ∃MSO[+1]-ben!

3.10.6. Feladat. Mutassa meg, hogy minden csillagmentes nyelv definiálható FO[<]-ben!

3.11. Automaták végtelen szavakon

3.11.1. Feladat. Adjon meg az alábbi ω -nyelveket felismerő véges automatákat az $\{a,b\}$ ábécé fölött!

- 1. a^{ω} :
- 2. $(ab)^{\omega}$;
- 3. $(a^*b)^*a^\omega$ (vagyis a véges sok b-t tartalmazó szavak nyelve);
- 4. $(a^*b)^{\omega}$ (vagyis a végtelen sok b-t tartalmazó szavak nyelve);
- 5. $b^*(a^+b^+)^\omega$ (vagyis azon szavak nyelve, melyek végtelen sok *a*-t és végtelen sok *b*-t is tartalmaznak).

- **3.11.2. Feladat.** Mutassa meg, hogy az $(a^*b)^*a^\omega$ nyelv nem ismerhető fel *determinisztikus* automatával!
- **3.11.3. Feladat.** Mutassa meg, hogy ha $L \subseteq \Sigma^{\omega}$ reguláris ω -nyelv, akkor $L = \bigcup_{i=1}^{n} K_i M_i^{\omega}$ valamely $i \ge 0$ egészre és K_i , $M_i \subseteq \Sigma^*$ reguláris nyelvekre!
- **3.11.4. Feladat.** Mutassa meg, hogy ha $K \subseteq \Sigma^*$ reguláris és $L \subseteq \Sigma^\omega$ ω -reguláris nyelvek, akkor KL is ω -reguláris!
- **3.11.5. Feladat.** Mutassa meg, hogy ha $K \subseteq \Sigma^*$, akkor K^{ω} reguláris ω -nyelv!
- **3.11.6. Feladat.** Mutassa meg, hogy a reguláris ω -nyelvek osztálya zárt a véges unióra!
- **3.11.7. Feladat.** Mutassa meg, hogy a reguláris ω -nyelvek osztálya zárt a komplementerképzésre!

3.12. Mealy és Moore gépek

- **3.12.1. Feladat.** Mutassa meg, hogy tetszőleges $M = (Q, \Sigma, \Delta, \delta, \lambda)$ Mealy gépre, ha $q \in Q$ és $x, y \in \Sigma^*$, akkor $\lambda_q(xy) = \lambda_q(x)\lambda_{qx}(y)$!
- **3.12.2. Feladat.** Mutassa meg, hogy ha $M=(Q, \Sigma, \Delta, \delta, \mu)$ egy Moore gép, $q \in Q$ és $x, y \in \Sigma^*$, akkor $\mu_q(xy) = \mu_q(x)\mu_{qx}(y)$!
- **3.12.3. Feladat.** Mutassa meg, hogy ha $M = (Q, \Sigma, \Delta, \delta, \lambda)$ egy Mealy gép és $q \in Q$, akkor λ_q automata leképezés!
- **3.12.4. Feladat.** Mutassa meg, hogy ha $M = (Q, \Sigma, \Delta, \delta, \lambda)$ egy Moore gép és $q \in Q$, akkor λ_q automata leképezés!
- **3.12.5. Feladat.** Mutassa meg, hogy tetszőleges automata leképezés indukálható valamely Mealy gép egy állapotában!
- **3.12.6. Feladat.** Mutassa meg, hogy ha α egy automata leképezés és az $\{\alpha_x : x \in \Sigma^*\}$ halmaz véges, akkor α indukálható valamely véges Mealy gép egy állapotában!
- **3.12.7. Feladat.** Mutassa meg, hogy ha α egy véges Mealy gép egy állapotában indukált leképezés, akkor az $\{\alpha_x : x \in \Sigma^*\}$ függvényhalmaz véges!

Megoldások

3.2.2. Feladat. Itt és a továbbiakban véges automatákat irányított, élcímkézett gráffal is megadhatunk, melyben a szögpontok az állapotok, a kezdőállapotot egy nyíllal jelöljük, az élcímkék határozzák meg az átmeneteket, a végállapotokat pedig kettős karikázással különböztetjük meg.

Ezen felül véges automatát átmenettáblázatával is megadhatunk a következőképp: Q elemeit a sorok fejlécei adják; Σ elemeit az oszlopok fejlécei; a kezdőállapot mindig az első sorban lesz; a végállapotokat pedig **félkövér** betűtípussal szedjük.

1. $M = (\{q_0\}, \Sigma, \delta, q_0, \emptyset)$, ahol $\delta(q_0, a) = \delta(q_0, b) = q_0$.

2. $M = (\{q_0\}, \{a, b\}, \delta, q_0, \{q_0\}), \text{ ahol } \delta(q_0, a) = \delta(q_0, b) = q_0.$

3. $M = (\{q_0, q_1, q_2\}, \{a, b\}, \delta, q_0, \{q_0, q_1\}),$ ahol δ a következő táblázattal adott:

4. $M = (\{q_0, q_1\}, \{a, b\}, \delta, q_0, \{q_1\}), \text{ ahol } \delta(q_0, a) = q_1, \delta(q_1, a) = q_0 \text{ \'es } \delta(q_i, b) = q_i, i = 0, 1.$

5. $M = (\{q_0, q_1, q_2\}, \{a, b\}, \delta, q_0, \{q_1\}), \text{ ahol } \delta(q_i, a) = q_{(i+1) \text{mod}3} \text{ \'es } \delta(q_i, b) = q_i, i = 0, 1, 2.$

6.

b

 q_1

a

 q_1

 q_2 q_0

 q_0

 \boldsymbol{q}_1

δ	a
q_0	q_1
q_1	q_2
q_2	q_3
q_3	q_4
q_4	q_0

7.

δ	а	b
q_0	q_a	q_b
$q_{\rm a}$	q_a	q_a
$q_{\rm b}$	q	q_b
\overline{q}	\overline{q}	q_b

8.

δ	а	b
q_0	q_a	q_b
$q_{\rm a}$	q_a	q_t
$q_{\rm b}$	q_t	q_b
q_t	q_t	q_t

- 9. Ötlet: számolja modulo 2 a *b*-ket és *c*-ket, *a*-k olvasása hagyja helyben az állapotokat.
- 10. Ötlet: számolja modulo 3 a *b*-ket és *c*-ket, *a*-k olvasása hagyja helyben az állapotokat.
- **3.2.3. Feladat.** Az $L\subseteq \Sigma^*$ nyelv felismerhető az $M_L=(\Sigma^*,\Sigma,\cdot,\varepsilon,L)$ "végtelen állapotú automatával".
- **3.2.5. Feladat.** Legyen $L \subseteq \Sigma^*$ egy k-definit nyelv a $k \ge 0$ számra. Akkor $L = L_0 \cup L_1$, ahol $L_0 = \{w \in L : |w| < k\}$ és $L_1 = \Sigma^* \{w \in L : |w| = k\}$. Mivel L_0 és $\{w \in L : |w| = k\}$ véges, tehát

reguláris nyelvek, Σ^* is reguláris és a reguláris nyelvek osztálya zárt a konkatenációra és a (véges) unióra, kapjuk, hogy L is reguláris.

- **3.2.6. Feladat.** Pl. a $\Sigma = \{a, b\}$ fölötti $L = \{\varepsilon\} \cup \{a\} \Sigma^*$ nyelv nem definit: tegyük fel, hogy L k-definit. Akkor $a^k \in L$, de $ba^k \notin L$, ami ellentmondás.
- **3.2.7. Feladat.** Megmutatjuk, hogy az $M = (Q, \Sigma, \delta, q_0, F)$ k-definit automatával felismert L(M) nyelv k-definit. Ehhez legyen $u, v \in \Sigma^*$, |v| = k. Mivel |v| = k, $q_0 \cdot v = (q_0 u) \cdot v$. Emiatt $uv \in L(M) \Leftrightarrow q_0 uv \in F \Leftrightarrow q_0 v \in F \Leftrightarrow v \in L(M)$, az állítást igazoltuk.
- **3.2.8. Feladat.** Legyen $L \subseteq \Sigma^*$ egy k-definit nyelv. Definiáljuk az $M_L = (Q, \Sigma, \delta, q_0, F)$ automatát a következőképpen:
 - 1. $Q = \Sigma^{\leq k}$, a legfeljebb k hosszú szavak halmaza;
 - 2. $q_0 = \varepsilon$;
 - 3. $q \in F \Leftrightarrow q \in L$;

4.
$$\delta(u, a) = \begin{cases} ua, & \text{ha } |u| < k; \\ v, & \text{ha } |u| = k \text{ és } ua = bv', |v'| = k. \end{cases}$$

Egyrészt meg kell mutassuk, hogy $L(M_L) = L$, másrészt, hogy M_L egy k-definit automata. Ehhez a következő állítást használjuk: tetszőleges $u \in \Sigma^*$ esetén

$$q_0 \cdot u = \begin{cases} u, & \text{ha } |u| < k; \\ v, & \text{ha } u = v'v \text{ a } v', v \in \Sigma^*, |v| = k \text{ szavakra}, \end{cases}$$

amit pl. |u| szerinti indukcióval mutathatunk meg.

Ekkor egyrészt tetszőleges $u \in \Sigma^*$, |u| = k szóra és $p \in Q$ állapotra pu = u, tehát M_L valóban k-definit. Továbbá, tetszőleges $u \in \Sigma^*$ szóra $u \in L \Leftrightarrow q_0u \in F$, hiszen

- 1. ha |u| < k, akkor $q_0 u = u$ és definíció szerint $u \in F \Leftrightarrow u \in L$;
- 2. ha $|u| \ge k$, vagyis $u = u_1 u_2$ valamely $u_1, u_2 \in \Sigma^*$, $|u_2| = k$ szavakra, akkor $q_0 u = q_0 u_1 u_2 = u_2$, és mivel L k-definit, $u \in L \Leftrightarrow u_2 \in L \Leftrightarrow u_2 \in F$.

Ezzel igazoltuk, hogy M_L épp az L nyelvet felismerő k-definit automata.

- **3.2.11. Feladat.** Tegyük fel, hogy $M = (Q, \Sigma, \delta, q_0, F)$ egyvégű és $u, uv, w \in L$. Mivel M egyvégű, $F = \{q_f\}$ a $q_f \in Q$ állapotra, ezért $u, uv, w \in L$ szerint $q_0u = q_0uv = q_0w = q_f$. Ebből azt kapjuk, hogy $q_0(wv) = (q_0w)v = q_fv = (q_0u)v = q_0(uv) = q_f \in F$, vagyis $wv \in L$ valóban fennáll.
- **3.4.2. Feladat.** Az automata összefüggő részének állapotai: {A, B, C, D, E}.

$$\varrho_0 = \{ \{A, B, C\}, \{D, E\} \},\$$

hiszen A, B, D nem végállapotok, D, E pedig igen;

$$\varrho_1 = \{ \{A\}, \{B, C\}, \{D, E\} \},\$$

hiszen pl. $Ab = B \in \{A, B, C\}$, de $Bb = D \notin \{A, B, C\}$, így $A\varrho_1B$ nem áll fenn;

$$Q_2 = \{ \{A\}, \{B, C\}, \{D, E\} \},\$$

tehát a minimális automata a ϱ_2 szerinti faktorautomata:

3.4.3. Feladat. Az automata összefüggő részének állapotai: {A, B, C, D, E}.

$$\varrho_0 = \{ \{D, E\}, \{A, B, C\} \},\$$

mivel pedig $Ba = A \in \{A, B, C\}$ és $Aa = D \in \{D, E\}$ különböznek, így $\{A, B, C\}$ tovább bomlik a következő iterációban:

$$\varrho_1 = \{ \{D, E\}, \{A, C\}, \{B\} \},$$

ami már a végeredmény, hisz $Da = E \in \{D, E\}$, $Ea = D \in \{D, E\}$, $Db = Eb = B \in \{B\}$, így $\{D, E\}$ nem bomlik fel a következő iterációban, továbbá $Aa = D \in \{D, E\}$, $Ca = E \in \{D, E\}$, $Ab = Cb = C \in \{A, C\}$, így $\{A, C\}$ sem bomlik fel a következő iterációban, tehát a minimális automata a következő faktorautomataként áll elő:

3.5.1. Feladat. Néhány algoritmus, a többi hasonlóan megkonstruálható:

```
bool ures(R){
  if (R == 0) return true;
  if (R == a) return false;
  if (R == R1+R2) return ures(R1) and ures(R2);
  if (R == R1R2) return ures(R1) or ures(R2);
  return false;
}
bool vanNemuresSzo( R ){
  if (R == 0) return false;
  if (R == a) return true;
  if (R == R1+R2) return vanNemuresSzo(R1) or vanNemuresSzo(R2);
  if (R == R1R2) return (vanNemuresSzo(R1) or vanNemuresSzo(R2))
                               and not (ures(R1) or ures(R2));
  if (R == R1*) return vanNemuresSzo(R1);
}
bool isEpsilon(R){
  return not (ures(R) or vanNemuresSzo(R));
bool isFinite(R){
  if(R == 0) return true;
  if(R == a) return true;
  if(R == R1+R2) return isFinite(R1) and isFinite(R2);
  if(R == R1R2) return (isFinite(R1) and isFinite(R2))
                               or ures(R1) or ures(R2);
  if(R == R1*) return not vanNemuresSzo(R1);
}
3.5.2. Feladat. (a^*ba^*)^* az \{u \in \{a, b\}^* : u = \varepsilon \text{ vagy } |u|_b > 0\} nyelvet jelöli;
b(a+b)(ab)^* a {ba, bb, baab, bbab, baabab, bbabab, ...} nyelvet;
(a+b)^*, a^*(ba^*)^*, (a^*b^*)^*, (a^*b)^*a^* és (a+ab+b)^* az \{a,b\}^* nyelvet;
(ab)^* és \emptyset^* + a(ba)^*b az \{\varepsilon, ab, abab, ababab, ...\} nyelvet;
a(b^*a)^* az \{u: u \in \Sigma^*, u \text{ a-val kezdődik és végződik}\} nyelvet;
a(b^*(a+\varepsilon))^* és a(a+b)^* az \{au : u \in \{a, b\}^*\} nyelvet;
a^*b^*a^* az \{uvw : u, w \in \{a\}^*, v \in \{b\}^*\} nyelvet;
b(ab)^* a \{b, bab, babab, \dots\} nyelvet;
(a+ab)^* pedig az \{\varepsilon, a, ab, aa, aab, aba, aba, aaa, aaab, aaba, abaa, ...\} nyelvet.
```

- **3.5.4.** Feladat. Ötlet: igazolja a kifejezés felépítése szerinti indukcióval, hogy ilyen kifejezéssel csak véges nyelv jelölhető.
- **3.5.5. Feladat.** Az $L = \{u_1, \dots, u_n\}$ nyelvet a $\sum_{i=1}^n u_i$ reguláris kifejezés jelöli.

3.5.7. Feladat. Legyen R az L reguláris nyelvet jelölő reguláris kifejezés. Megadunk egy R', fenti formájú kifejezést, mely szintén L-et jelöli, ehhez indukciót alkalmazunk R felépítése szerint.

- 1. Ha $R = \emptyset$ vagy R = a valamely $a \in \Sigma$ esetén, R' = R megfelelő alakú.
- 2. Ha $R = (R_1 + R_2)$, akkor $R' = (R'_1 + R'_2)$ megfelelő alakú.
- 3. Ha $R = (R_1 R_2)$, akkor legyen $R_1' = R_1^1 + R_1^2 + \dots + R_1^m$ és $R_2' = R_2^1 + R_2^2 + \dots + R_2^k$. Ekkor $R' = \sum_{1 \le i \le m, 1 \le j \le k} R_1^i R_2^j$ megfelelő kifejezés.
- 4. Ha $R = (R_1^*)$, akkor legyen $R_1' = R_1^1 + R_1^2 + \cdots + R_1^m$. Ekkor az $R' = (R_1^{1*}R_1^{2*} \dots R_1^{m*})^*$ kifejezés megfelelő alakú ekvivalens kifejezés.
- **3.6.1. Feladat.** a) A reguláris kifejezésből nemdeterminisztikus véges automatát konstruáló algoritmus végrehajtásaképp előálló automaták rendre:
 - 1. $(a(a+ba)^*)^*$ -ból:

Egy ekvivalens, kisebb méretű automata:

2. $(a+(b+ab)^*)^*$ -ból:

Észrevehetjük, hogy ez az automata $minden \{a, b\}$ fölötti szót elfogad, így persze az alábbi automata is megfelelő:

3. $(ab)^* + (ba)^* - ból$:

Egy ekvivalens, kisebb méretű automata:

4. $a^* + (ab)^* - b\acute{o}l$:

Egy ekvivalens, kisebb méretű automata:

49

b) A fenti "kisebb" automatákból konstruált jobblineáris nyelvtanok szabályai pedig:

1.

$$S \to aA \mid \varepsilon$$
$$A \to aA \mid bB$$
$$B \to aA$$

2.

$$S \rightarrow aS \mid bS \mid \varepsilon$$

3.

$$S \to A \mid B$$

$$A \to aC \mid \varepsilon$$

$$C \to bA$$

$$B \to bD \mid \varepsilon$$

$$D \to aB$$

4.

$$S \to A \mid B$$

$$A \to aA \mid \varepsilon$$

$$B \to aC \mid \varepsilon$$

$$C \to bB$$

3.6.2. Feladat. Megadunk egy M automatát, amelyre L(M) = L. Az $a(a+b)^* + b(a+b)^*a$ nyelvet az alábbi M automata felismeri:

$$M: \longrightarrow 0 \xrightarrow{b} 1 \xrightarrow{b} 2 \xrightarrow{b} 3 \xrightarrow{} a, b$$

 $G = (\{0,1,2,3\}, \{a,b\}, R,0), \text{ ahol}$

$$R = \{0 \rightarrow a0 \mid b1$$

$$1 \rightarrow a1 \mid b2$$

$$2 \rightarrow a2 \mid b3$$

$$3 \rightarrow a3 \mid b3 \mid \epsilon\}$$

3.6.3. Feladat.

1. A $q_0 \mapsto 1$, $q_1 \mapsto 2$, $q_2 \mapsto 3$ állapot-átnevezések után mivel $F = \{3\}$, a megoldás az $R_{1,3}^3$ reguláris kifejezés lesz. Elvégezve a rekurzív átírásokat,

$$\begin{split} R_{1,3}^3 &= R_{1,3}^2 + R_{1,3}^2 (R_{3,3}^2)^* R_{3,3}^2; \\ R_{1,3}^2 &= R_{1,3}^1 + R_{1,2}^1 (R_{2,2}^1)^* R_{2,3}^1; \\ R_{3,3}^2 &= R_{3,3}^1 + R_{3,2}^1 (R_{2,2}^1)^* R_{2,3}^1; \\ R_{3,2}^2 &= R_{3,2}^1 + R_{3,2}^1 (R_{2,2}^1)^* R_{2,2}^1; \\ R_{1,3}^1 &= R_{1,3}^0 + R_{1,1}^0 (R_{1,1}^0)^* R_{1,3}^0; \\ R_{1,2}^1 &= R_{1,2}^0 + R_{1,1}^0 (R_{1,1}^0)^* R_{1,2}^0; \\ R_{2,2}^1 &= R_{2,2}^0 + R_{2,1}^0 (R_{1,1}^0)^* R_{1,2}^0; \\ R_{2,3}^1 &= R_{2,3}^0 + R_{2,1}^0 (R_{1,1}^0)^* R_{1,3}^0; \\ R_{3,3}^1 &= R_{3,3}^0 + R_{3,1}^0 (R_{1,1}^0)^* R_{1,3}^0; \\ R_{3,2}^1 &= R_{3,2}^0 + R_{3,1}^0 (R_{1,1}^0)^* R_{1,2}^0; \\ \end{split}$$

ebbe visszahelyettesítve az

$$\begin{array}{lll} R_{1,1}^0 = \varepsilon, & R_{1,2}^0 = a, & R_{1,3}^0 = b, \\ R_{2,1}^0 = \emptyset, & R_{2,2}^0 = b + \varepsilon, & R_{2,3}^0 = a, \\ R_{3,1}^0 = \emptyset, & R_{3,2}^0 = b, & R_{3,3}^0 = a + \varepsilon \end{array}$$

kifejezéseket (alulról fölfelé), kapjuk, hogy

$$R_{3,2}^{1} = b + \emptyset \varepsilon^{*} a \equiv b;$$

$$R_{3,3}^{1} = a + \varepsilon + \emptyset \varepsilon^{*} b \equiv a + \varepsilon;$$

$$R_{2,3}^{1} = a + \emptyset \varepsilon^{*} b \equiv a;$$

$$R_{2,2}^{1} = b + \varepsilon + \emptyset \varepsilon^{*} a \equiv b + \varepsilon;$$

$$R_{1,2}^{1} = a + \varepsilon \varepsilon^{*} a \equiv a;$$

$$R_{1,3}^{1} = b + \varepsilon \varepsilon^{*} b \equiv b;$$

$$R_{3,3}^{2} = a + \varepsilon + b(b + \varepsilon)^{*} a \equiv \varepsilon + b^{*} a$$

$$R_{1,3}^{2} = b + a(b + \varepsilon)^{*} a \equiv b + ab^{*} a;$$

$$R_{1,3}^{3} = b + ab^{*} a + (b + ab^{*} a)(\varepsilon + b^{*} a)^{*} (\varepsilon + b^{*} a) \equiv (b + ab^{*} a)(b^{*} a)^{*},$$

így a válasz $(b+ab^*a)(b^*a)^*$.

Megjegyzés: az algoritmus közben éltünk a $\emptyset R \equiv R\emptyset \equiv \emptyset$, $(\varepsilon + R)^* \equiv (\varepsilon + R)^* (\varepsilon + R) \equiv R^*$, $R^*R \equiv R^+$, $R_1 + R_2^+R_1 \equiv R_2^*R_1$, $\varepsilon R \equiv R\varepsilon \equiv R$, $R + R \equiv R$ ekvivalenciákkal, hogy a kifejezések hossza ne nőjön túl nagy mértékben.

Megjegyzés: szintén ekvivalens reguláris kifejezés $b+(a+b)^*a$ is.

2. A $q_0 \mapsto 1$, $q_1 \mapsto 2$, $q_2 \mapsto 3$ állapot-átnevezések után mivel $F = \{2\}$, a megoldás az $R_{1,2}^3$ reguláris kifejezés lesz. Elvégezve a rekurzív átírásokat,

$$\begin{split} R_{1,2}^3 &= R_{1,2}^2 + R_{1,3}^2 (R_{3,3}^2)^* R_{3,2}^2; \\ R_{1,2}^2 &= R_{1,2}^1 + R_{1,2}^1 (R_{2,2}^1)^* R_{2,2}^1; \\ R_{1,3}^2 &= R_{1,3}^1 + R_{1,2}^1 (R_{2,2}^1)^* R_{2,3}^1; \\ R_{3,3}^2 &= R_{3,3}^1 + R_{3,2}^1 (R_{2,2}^1)^* R_{2,3}^1; \\ R_{1,3}^1 &= R_{1,3}^0 + R_{1,1}^0 (R_{1,1}^0)^* R_{1,3}^0; \\ R_{1,2}^1 &= R_{1,2}^0 + R_{1,1}^0 (R_{1,1}^0)^* R_{1,2}^0; \\ R_{2,2}^1 &= R_{2,2}^0 + R_{2,1}^0 (R_{1,1}^0)^* R_{1,2}^0; \\ R_{2,3}^1 &= R_{2,3}^0 + R_{2,1}^0 (R_{1,1}^0)^* R_{1,3}^0; \\ R_{3,3}^1 &= R_{3,3}^0 + R_{3,1}^0 (R_{1,1}^0)^* R_{1,3}^0; \\ R_{3,2}^1 &= R_{3,2}^0 + R_{3,1}^0 (R_{1,1}^0)^* R_{1,2}^0; \end{split}$$

ebbe visszahelyettesítve az

$$\begin{array}{ll} R_{1,1}^0 = \varepsilon, & R_{1,2}^0 = a, & R_{1,3}^0 = b, \\ R_{2,1}^0 = \emptyset, & R_{2,2}^0 = b + \varepsilon, & R_{2,3}^0 = a, \\ R_{3,1}^0 = \emptyset, & R_{3,2}^0 = b, & R_{3,3}^0 = a + \varepsilon \end{array}$$

kifejezéseket (alulról fölfelé), kapjuk, hogy

$$\begin{split} R_{3,2}^1 &= b + \emptyset \varepsilon^* a \equiv b; \\ R_{3,3}^1 &= a + \varepsilon + \emptyset \varepsilon^* b \equiv a + \varepsilon; \\ R_{2,3}^1 &= a + \emptyset \varepsilon^* b \equiv a; \\ R_{2,2}^1 &= b + \varepsilon + \emptyset \varepsilon^* a \equiv b + \varepsilon; \\ R_{1,2}^1 &= a + \varepsilon \varepsilon^* a \equiv a; \\ R_{1,3}^1 &= b + \varepsilon \varepsilon^* b \equiv b; \\ R_{3,3}^2 &= a + \varepsilon + b(b + \varepsilon)^* a \equiv \varepsilon + b^* a \\ R_{1,3}^2 &= b + a(b + \varepsilon)^* a \equiv b + ab^* a; \\ R_{1,2}^2 &= a + a(b + \varepsilon)^* (b + \varepsilon) \equiv ab^*; \\ R_{1,2}^3 &= ab^* + (b + ab^* a)(\varepsilon + b^* a)^* b \equiv ab^* + (b + ab^* a)(b^* a)^* b, \end{split}$$

tehát a válasz $ab^* + (b+ab^*a)(b^*a)^*b$.

Megjegyzés: szintén ekvivalens reguláris kifejezés $a+(a+b)^*b$ is.

3. A $q_0 \mapsto 1$, $q_1 \mapsto 2$ állapot-átnevezések után mivel $F = \{1\}$, a megoldás az $R_{1,1}^2$ reguláris kifejezés lesz. Elvégezve a rekurzív átírásokat,

$$\begin{split} R_{1,1}^2 &= R_{1,1}^1 + R_{1,2}^1 (R_{2,2}^1)^* R_{2,1}^1; \\ R_{1,2}^1 &= R_{1,2}^0 + R_{1,1}^0 (R_{1,1}^0)^* R_{1,2}^0; \\ R_{2,2}^1 &= R_{2,2}^0 + R_{2,1}^0 (R_{1,1}^0)^* R_{1,2}^0; \\ R_{2,1}^1 &= R_{2,1}^0 + R_{2,1}^0 (R_{1,1}^0)^* R_{1,1}^0; \\ R_{1,1}^1 &= R_{1,1}^0 + R_{1,1}^0 (R_{1,1}^0)^* R_{1,1}^0; \end{split}$$

ebbe visszahelyettesítve az

$$\begin{split} R_{1,1}^0 &= a + \varepsilon, & R_{1,2}^0 &= b, \\ R_{2,1}^0 &= b, & R_{2,2}^0 &= a + \varepsilon \end{split}$$

kifejezéseket (alulról fölfelé), kapjuk, hogy

$$\begin{split} R_{1,1}^1 &= (a+\varepsilon) + (a+\varepsilon)(a+\varepsilon)^*(a+\varepsilon) \equiv a^*; \\ R_{2,1}^1 &= b + b(a+\varepsilon)^*(a+\varepsilon) \equiv ba^*; \\ R_{2,2}^1 &= (a+\varepsilon) + b(a+\varepsilon)^*b \equiv a+\varepsilon + ba^*b; \\ R_{1,2}^1 &= b + (a+\varepsilon)(a+\varepsilon)^*b \equiv a^*b; \\ R_{1,1}^2 &= a^* + a^*b(a+\varepsilon + ba^*b)^*ba^* \equiv a^* + a^*b(a+ba^*b)^*ba^*; \end{split}$$

tehát a válasz $a^* + a^*b(a+ba^*b)^*ba^*$.

Megjegyzés: szintén ekvivalens reguláris kifejezés $a^*(ba^*ba^*)^*a^*$ is.

3.7.1. Feladat.

- 1. $L = \{a^nb^n : n \ge 0\}$ nem reguláris. Tegyük fel, hogy az, és legyen N a pumpáló lemma szerinti konstans. Vegyük a $w = a^Nb^N \in L$ szót, ekkor $|w| \ge N$. Tetszőleges olyan $w = w_1w_2w_3$ felbontásra, amelyre $|w_1w_2| \le N$ és $w_2 \varepsilon$, $w_2 = a^i$ valamilyen $1 \le i \le N$ -re. Ekkor pedig $w_1w_2^2w_3 = a^{N+i}b^N \notin L$, ami ellentmondás, így L nem reguláris.
- 2. $\{a^nb^n: 0 \le n \le 59876\}$ reguláris, hiszen véges nyelv.
- 3. $\{a^nba^n: n \ge 0\}$ nem reguláris. Tegyük fel, hogy az, és legyen N a pumpáló lemma szerinti konstans. Vegyük a $w = a^Nba^N \in L$ szót, ekkor $|w| \ge N$. Tetszőleges olyan $w = w_1w_2w_3$ felbontásra, amelyre $|w_1w_2| \le N$ és $w_2 \in w_2 = a^i$ valamilyen $1 \le i \le N$ -re. Ekkor pedig $w_1w_2^2w_3 = a^{N+i}ba^N \notin L$, ami ellentmondás, így L nem reguláris.

Egy másik megoldás: ha $\{a^nba^n:n\geq 0\}$ reguláris nyelv, akkor a reguláris nyelvek inverz homomorfizmusra és metszetre való zártságát felhasználva kapjuk, hogy $\{a^nbc^n:n\geq 0\}$ is reguláris, erre alkalmazva a homomorfizmusra való zártságot kapjuk, hogy $\{a^nb^n:n\geq 0\}$ is reguláris, ami ellentmondás.

- 4. $\{a^nb^ma^n: n, m \ge 0\}$ nem reguláris. Tegyük fel, hogy az, és legyen N a pumpáló lemma szerinti konstans. Vegyük a $w = a^Nba^N \in L$ szót, ekkor $|w| \ge N$. Tetszőleges olyan $w = w_1w_2w_3$ felbontásra, amelyre $|w_1w_2| \le N$ és $w_2 \in w_2 = a^i$ valamilyen $1 \le i \le N$ -re. Ekkor pedig $w_1w_2^2w_3 = a^{N+i}ba^N \notin L$, ami ellentmondás, így L nem reguláris.
- 5. $\{a^nb^m:n\leq m\}$ nem reguláris. Tegyük fel, hogy az, és legyen N a pumpáló lemma szerinti konstans. Vegyük a $w=a^Nb^N\in L$ szót, ekkor $|w|\geq N$. Tetszőleges olyan $w=w_1w_2w_3$ felbontásra, amelyre $|w_1w_2|\leq N$ és w_2 ε , $w_2=a^i$ valamilyen $1\leq i\leq N$ -re. Ekkor pedig $w_1w_2^2w_3=a^{N+i}b^N\notin L$, ami ellentmondás, így L nem reguláris.
- 6. $\{w \in \{a,b\}^* : |w|_a = |w|_b\}$ nem reguláris. Tegyük fel, hogy az, és legyen N a pumpáló lemma szerinti konstans. Vegyük a $w = a^N b^N \in L$ szót, ekkor $|w| \ge N$. Tetszőleges olyan $w = w_1 w_2 w_3$ felbontásra, amelyre $|w_1 w_2| \le N$ és $w_2 \in w_3$ valamilyen $1 \le i \le N$ -re. Ekkor pedig $w_1 w_2^2 w_3 = a^{N+i} b^N \notin L$, ami ellentmondás, így L nem reguláris.
 - Egy másik megoldás: mivel a reguláris nyelvek zártak a metszetre és $\{a\}^*\{b\}^*$ reguláris nyelv, ha $\{w \in \{a,b\}^*: |w|_a = |w|_b\}$ reguláris, akkor $\{w \in \{a,b\}^*: |w|_a = |w|_b\} \cap \{a\}^*\{b\}^* = \{a^nb^n: n \ge 0\}$ is az, ami ellentmondás.
- 7. {w ∈ {a, b}* : |w|_a |w|_b} nem reguláris, hiszen komplementere sem az.
 Ha a pumpáló lemmával közvetlenül próbáljuk meg igazolni, akkor tegyük fel, hogy az és legyen N a pumpáló lemma szerinti konstans. Vegyük a w = a^Nb^{N+N!} ∈ L szót, ekkor |w| ≥ N. Tetszőleges olyan w=w₁w₂w₃ felbontásra, amelyre |w₁w₂| ≤ N és w₂ ε, w₂ = aⁱ valamilyen 1 ≤ i ≤ N-re. Ekkor pedig w₁w₂^{N!/i} w₃ = a^{N+N!}b^{N+N!} ∉ L, ami ellentmondás, így L nem reguláris.
- 8. $\{a^nb^m: m \le n \le 2m\}$ nem reguláris. Tegyük fel, hogy az, és legyen N a pumpáló lemma szerinti konstans. Vegyük a $w = a^Nb^N \in L$ szót, ekkor $|w| \ge N$. Tetszőleges olyan $w = w_1w_2w_3$ felbontásra, amelyre $|w_1w_2| \le N$ és $w_2 \varepsilon$, $w_2 = a^i$ valamilyen $1 \le i \le N$ -re. Ekkor pedig $w_1w_2^{N+1}w_3 = a^{N(i+1)+i}b^N \notin L$, ami ellentmondás, így L nem reguláris.
- 9. $\{w \in \{a,b\}^* : |w|_b \le |w|_a \le 2|w|_b\}$ nem reguláris. Tegyük fel, hogy az, és legyen N a pumpáló lemma szerinti konstans. Vegyük a $w=a^Nb^N \in L$ szót, ekkor $|w| \ge N$. Tetszőleges olyan $w=w_1w_2w_3$ felbontásra, amelyre $|w_1w_2| \le N$ és $w_2 \in E$, $w_2=a^i$ valamilyen $1 \le i \le N$ -re. Ekkor pedig $w_1w_2^{N+2}w_3=a^{N(i+1)+i}b^N \notin L$, ami ellentmondás, így L nem reguláris.
- 10. $\{a^{n^2}:n\geq 0\}$ nem reguláris. Tegyük fel, hogy az, és legyen N a pumpáló lemma szerinti konstans. Vegyük a $w=a^{N^2}\in L$ szót, ekkor $|w|\geq N$. Tetszőleges olyan $w=w_1w_2w_3$ felbontásra, amelyre $|w_1w_2|\leq N$ és w_2 ε , $w_2=a^i$ valamilyen $1\leq i\leq N$ -re. Ekkor pedig $w_1w_2^2w_3=a^{N^2+i}\notin L$, hiszen $N^2< N^2+i\leq N^2+N<(N+1)^2$ és két szomszédos négyzetszám közé nem eshet négyzetszám. Ez ellentmondás, így L nem reguláris.
- 11. $\{a^{2^n}: n \ge 0\}$ nem reguláris. Tegyük fel, hogy az, és legyen N a pumpáló lemma szerinti konstans. Vegyük a $w = a^{2^N} \in L$ szót, ekkor $|w| \ge N$. Tetszőleges olyan $w = w_1 w_2 w_3$ felbontásra, amelyre $|w_1 w_2| \le N$ és $w_2 \in w_2 = a^i$ valamilyen $1 \le i \le N$ -re. Ekkor pedig

- $w_1w_2^2w_3 = a^{2^N+i} \notin L$, hiszen $2^N < 2^N+i \le 2^N+N < 2^{N+1}$ a 2 két szomszédos hatványa közé nem eshet egyetlen hatványa sem. Ez ellentmondás, így L nem reguláris.
- 12. $\{a^p: p \text{ prím}\}$ nem reguláris. Tegyük fel, hogy az, és legyen N a pumpáló lemma szerinti konstans. Legyen M egy N-nél nagyobb prímszám (ilyen van, mert végtelen sok prímszám van). Vegyük a $w=a^M\in L$ szót, ekkor $|w|\geq N$. Tetszőleges olyan $w=w_1w_2w_3$ felbontásra, amelyre $|w_1w_2|\leq N$ és w_2 ε , $w_2=a^i$ valamilyen $1\leq i\leq N$ -re. Ekkor pedig $w_1w_2^{M+1}w_3=a^{M+M\cdot i}=a^{M(i+1)}\notin L$, ami ellentmondás, így L nem reguláris.

3.8.5. Feladat.

- 1. $L = \Sigma^*$, ekkor Com $(L) = \Sigma^*$ is reguláris.
- 2. $L = \{u \in \{a, b\}^* : |u|_a = |u|_b\}$, ekkor Com(L) = L nem reguláris.
- 3. $L = \{ab\}^* \subseteq \{a, b\}^*$. Ekkor Com $(L) = \{u \in \{a, b\}^* : |u|_a = |u|_b\}$ ismerten nem reguláris nyelv.
- 4. $L = \{a^n b^n : n > 0\} \cup \{a\}^* \cup \{b\} \{a, b\}^* \subseteq \{a, b\}^*$ nem reguláris nyelv (hiszen $L \cap \{a\}^+ \{b\}^+ = \{a^n b^n : n > 0\}$, ami ismerten nem reguláris, viszont Com $(L) = \{a, b\}^*$ reguláris.
- **3.8.6. Feladat.** Az állítás következik abból, hogy minden véges nyelv reguláris és hogy a reguláris nyelvek zártak a komplementerképzésre.
- **3.8.7. Feladat.** Ez nyilvánvaló, ha L véges. Tegyük tehát fel, hogy L végtelen. Legyen a^{i_1}, a^{i_2}, \ldots az L nemüres szavainak egy felsorolása, és képezzük az m_1, m_2, \ldots számokat úgy, hogy m_j az i_1, \ldots, i_j legnagyobb közös osztója teszőleges $j \geq 1$ esetén. Ekkor $m_1 \geq m_2 \geq \ldots$, így van olyan k, hogy $m_k = m_{k+1} = \ldots$ Legyen $m = m_k$. Ekkor $L^* = (a^m)^* L_0$ egy véges L_0 nyelvre. Mivel $(a^m)^*$ reguláris, és mivel a reguláris nyelvek tartalmazzák a véges nyelveket és zártak a halmazelméleti műveletekre, ebből azt kapjuk, L^* is reguláris.

3.8.8. Feladat.

- 1. Ötlet: ha $M=(Q, \Sigma, \delta, q_0, F)$ felismeri L-t, akkor $M=(Q, \Sigma, \delta, q_0, F')$, ahol F' a Q azon részhalmaza, melyben pontosan azok az állapotok vannak, melyekből elérhető egy F-beli állapot, felismeri L_{Prefix} -et.
- 2. $L_{\text{Suffix}} = (L_{\text{Prefix}}^R)^R$, a reguláris nyelvek pedig zártak a prefixképzésre (ld. előző pontbéli feladat) és a megfordításra.
- 3. $L_{Infix} = L_{Prefix Suffix}$.
- 4. Legyen $M = (Q, \Sigma, \delta, q_0, F)$ olyan véges determinisztikus automata, mely felismeri az L nyelvet. Minden $q \in Q$ állapotra tekintsük azt a véges nemdeterminisztikus $M_q' = (Q \times Q, \Sigma, \delta_q', (q_0, q), \{q\} \times F)$ automatát, amelyre

$$\delta_q'((q_1,q_2),a) = \{(\delta(q_1,a),\delta(q_2,b)) : b \in \Sigma\}$$

tetszőleges $q_1,q_2\in Q$ és $a\in \Sigma$ esetén. Könnyen igazolható (teljes indukcóval), hogy ekkor tetszőleges $u\in \Sigma^*$ szóra és q_1,q_2,q_1',q_2' állapotokra akkor és csak akkor van u hatására átmenet a (q_1,q_2) állapotból a (q_1',q_2') állapotba, ha $\delta(q_1,u)=q_1'$ és létezik olyan $v\in \Sigma^*$ szó, amelyre |u|=|v| és $\delta(q_2,v)=q_2'$. Ezt felhasználva adódik, hogy az M_a' által felismert nyelv:

$$L(M_q') = \{u \in \Sigma^* : \delta(q_0,u) = q, \ \exists v \, (|v| = |u| \wedge \delta(q,v) \in F)\}.$$

Így

$$L_{\text{Half}} = \bigcup_{q \in Q} L(M'_q)$$

reguláris nyelv.

5. **Megoldás** Legyen $M = (Q, \Sigma, \delta, q_0, F)$ olyan véges determinisztikus automata, mely felismeri az L nyelvet. Jelölje S az M transzformációs monoidját. Képezzük az

$$M' = (Q \times P(S), \Sigma, \delta, (q_0, S_0), F')$$

véges determinisztikus automatát, ahol P(S) az S hatványhalmaza és tetszőleges $X \subseteq S$ és $a \in \Sigma$ esetén

$$\delta'(q, X) = (\delta(q, a), X^2).$$

Itt $X^2 = \{fg : f, g \in X\}$ az X-beli függvényekből képezhető $Q \to Q$ összetett függvények halmaza. Továbbá S_0 a betűk által indukált transzformációk halmaza, tehát egy $f: Q \to Q$ függvény akkor és csak akkor van S_0 -ban, ha létezik olyan $a \in \Sigma$, hogy $f(q) = \delta(q, a)$ minden $q \in Q$ állapotra. Végül F az összes olyan $(q, X) \in Q \times P(S)$ rendezett párból áll, hogy létezik olyan $f \in X$, amelyre $f(q) \in F$.

Legyen tetszőleges $n \ge 1$ esetén S_n az összes olyan $f: Q \to Q$ leképezés halmaza, amelyhez létezik M-ben f-et indukáló 2^n hosszú szó. (Ez összhangban van a fent bevezetett S_0 jelöléssel.) Könnyű belátni teljes indukcióval, hogy tetszőleges $u \in \Sigma^*$ szóra $\delta'((q_0, S_0), u) = (\delta(q_0, u), S_{|u|})$. Ez azon múlik, hogy $S_{|ua|} = S_{|u|}^2$ minden $u \in \Sigma^*$ és $a \in \Sigma$ esetén. Ezt felhasználva: $u \in L(M')$ akkor és csak akkor, ha létezik olyan $f \in S_{|u|}$ amelyre $f(\delta(q_0, u)) \in F$, azaz ha $u \in L'$.

6. Legyen $M = (Q, \Sigma, \delta, q_0, F)$ olyan véges determinisztikus automata, mely felismeri az L nyelvet. Jelölje S az M transzformációs monoidját, és tetszőleges $u \in \Sigma^*$ -ra jelölje δ_u az u által indukált leképezést. Képezzük az

$$M' = (Q \times P(S) \times P(S), \Sigma, \delta, (q_0, X_0, Y_0), F')$$

véges determinisztikus automatát, ahol

$$\delta'((q, X, Y), a) = \delta((q, a), X', Y')$$

$$X' = \{f\delta_b : b \in \Sigma\}$$

$$Y' = \{fgh\delta_b : f \in X, g, h \in Y, b \in \Sigma\},$$

 $X_0 = Y_0 = \{\delta_\epsilon\}$ és F' az összes olyan (q, X, Y) rendezett hármasból áll, amelyre létezik olyan $f \in Y$, hogy $f(q) \in F$.

Legyen minden $n \ge 1$ -re (az n = 0 esetén bevezetett jelölés kiterjesztéseként)

$$X_n = \{\delta_u : u \in \Sigma^*, |u| = n\}$$

 $Y_n = \{\delta_u : u \in \Sigma^*, |u| = n^2\}.$

Ekkor tetszőleges $u \in \Sigma^*$ esetén

$$\delta'((q_0, X_0, Y_0), u) = (\delta(q_0, u), X_{|u|}, Y_{|u|}).$$

Ennek felhasználásával könnnyen adódik, hogy L(M') = L'.

- **3.8.13. Feladat.** Ötlet: ha egy bal- vagy jobblineáris nyelvtanban minden jobboldalt megfordítunk, akkor az eredeti nyelv megfordítottját generáljuk. A reguláris nyelvek osztálya pedig zárt a megfordításra.
- **3.8.14. Feladat.** A $G = (\{S\}, \{a, b\}, \{S \rightarrow aSb, S \rightarrow \varepsilon\}, S)$ lineáris nyelvtan által generált $\{a^nb^n : n \ge 0\}$ nyelv a pumpáló lemma szerint nem reguláris, így nem is generálható jobblineáris nyelvtannal.
- **3.9.6. Feladat.** Olyan $L \subseteq \{a, b\}^*$ nyelvet keresünk, melyre v_L az adott v reláció. A szintaktikus jobbkongruencia definíciója szerint uv_Lv pontosan akkor áll fenn, ha $ux \in L \Leftrightarrow vx \in L$ tetszőleges $x \in \{a, b\}^*$ szavakra, speciálisan $x = \varepsilon$ -ra is. Tehát csak olyan L nyelv jöhet szóba, melyet a fenti v felbont (vagyis mely előáll v osztályainak egyesítéseképpen), ez, ha v indexe k, összesen 2^k darab szóbajövő nyelvet ad. Mivel tetszőleges L nyelv esetén $v_L = v_{\overline{L}}$, elegendő 2^{k-1} nyelvet megvizsgálni. Egy-egy nyelv vizsgálatakor pl. eljárhatunk úgy, hogy felírjuk minimális automatáját; ha annak állapotszáma megegyezik v indexével, akkor a nyelv szintaktikus jobbkongruenciája épp v, ha pedig nem (ekkor kisebb lesz), akkor v_L bővebb, mint v. Jelen esetben k = 3, a lehetséges $2^2 = 4$ szóbajövő nyelvet egyenként megvizsgáljuk:
 - 1. $L=\emptyset$ esetén L minimális automatájának nem három, hanem egyetlen állapota van. (Ezzel $L=\{a,b\}^*$ -ot is kizártuk.)
 - 2. $L = \{\varepsilon\}$ esetén L minimális automatája kétállapotú lesz, ez sem jó. (Ezzel $L = \{a, b\}^+$ -t is kizártuk.)
 - 3. $L = \{ax : x \in \Sigma^*\}$ minimális automatája három állapotú, így erre a nyelvre $\nu_L = \nu$. (Ezzel $L = \{\varepsilon\} \cup \{bx : x \in \Sigma^*\}$ -ra is beláttuk ezt.)
 - 4. Végül, $L = \{bx : x \in \Sigma^*\}$ minimális automatája szintén három állapotú, erre (és komplementerére) is igaz, hogy $\nu_L = \nu$.

Összesen tehát négy nyelv van, melyek szintaktikus jobbkongruenciája a megadott v.

3.10.1. Feladat. First(x) = $\forall y (\neg (y+1=x))$.

3.10.2. Feladat. Last(x) = $\forall y (\neg (x+1=y))$.

3.10.3. Feladat.

- 1. $\forall x (p_a(x) \lor p_b(x))$
- 2. $\forall x (x < x)$
- 3. $\forall x \Big(\big(p_a(x) \lor p_b(x) \big) \land \forall y \big(\neg (x < y) \big) \Big) \land \exists x \big(p_a(x) \lor p_b(x) \big);$
- $4. \ \exists x \Big(\forall y \big(y < x \to p_a(y) \big) \ \land \ \forall y \big(x < y \to p_b(y) \big) \Big) \land \exists x p_a(x) \land \exists x p_b(x)$
- 5. $(\forall x(x < x)) \lor \exists x (\forall y(y < x \to p_a(y)) \land \forall y(x < y \to p_b(y)))$
- 6. $\forall x p_a(x) \land \exists X \Big(\forall x \forall y \big(x + 1 = y \rightarrow (x \in X \leftrightarrow \neg y \in X) \big) \land \Big(\forall x (\text{First}(x) \rightarrow x \in X) \land \forall x \big(\text{Last}(x) \rightarrow \neg x \in X \big) \Big)$
- 7. $\forall x (p_a(x) \lor p_b(x)) \land \forall x \forall y (x+1=y) \rightarrow (p_a(x) \leftrightarrow p_b(y))$ $\land \forall x (\text{First}(x) \rightarrow p_a(x) \land \forall x \text{Last}(x) \rightarrow p_b(x)$
- 8. $\forall x (p_a(x) \lor p_b(x)) \land \exists X (\forall x \forall y (x+1=y) \rightarrow (x \in X \leftrightarrow \neg y \in X)) \land \forall x (\text{First}(x) \rightarrow \neg x \in X) \land \forall x (\text{Last}(x) \rightarrow x \in X) \land \forall x (x \in X \rightarrow p_a(x))$
- **3.10.4. Feladat.** Tekintük a következő $M = (Q, \Sigma \times P(V_1) \times P(V_2), \delta, q_0, F)$ automatát:
 - 1. $Q = P(V_1) \cup \{q_t\}$, ahol q_t új állapot;
 - 2. $q_0 = \emptyset$;
 - 3. $F = \{V_1\}$;
 - $4. \ \delta(H, (a, V_1', V_2')) = \begin{cases} H \cup V_1', & \text{ha } H \in P(V_1) \text{ \'es } H \cap V_1' = \emptyset; \\ q_t, & \text{egy\'ebk\'ent.} \end{cases}$

Ez az (egyvégű) automata pontosan a Σ fölötti (V_1 , V_2)-struktúrák által alkotott nyelvet ismeri fel.

3.10.5. Feladat. Legyen $N = (Q, \Sigma, \Delta, q_0, F)$ az L nyelvet felismerő nemdeterminisztikus automata, az általánosság megszorítása nélkül feltehetük, hogy $Q = \{1, \ldots, n\}$ és hogy N-ben nincs ε -átmenet. Tekintsük a következő F_N formulát:

$$F_{N} = \exists X_{1} \exists X_{2} \dots \exists X_{n} \Big(\forall x (x \in X_{1} \lor x \in X_{2} \lor \dots \lor x \in X_{n}) \land$$

$$\forall x \bigwedge_{1 \leq i < j \leq n} \neg (x \in X_{i} \land x \in X_{j}) \land$$

$$\forall x \forall y \Big((x+1=y) \to \bigvee_{p \in q_{a}} \Big(x \in X_{q} \land y \in X_{p} \land p_{a}(y) \Big) \Big) \land$$

$$\forall x \Big(\text{First}(x) \to \bigvee_{p \in q_{0}a} \Big(x \in X_{p} \land p_{a}(x) \Big) \Big)$$

$$\forall x \Big(\text{Last}(x) \to \bigvee_{p \in F} x \in X_{p} \Big).$$

Ekkor $u \models F_N$ pontosan akkor teljesül, ha u minden egyes p pozíciójához M pontosan egy állapotát hozzá tudjuk rendelni (a formula első két sora szerint az X_i halmazok partíciót alkotnak u pozícióin) úgy, hogy két szomszédos pozícióhoz rendelt állapot lokálisan konzisztens az átmenetrelációval, az első pozícióhoz rendelt állapot olyan, ahova az első betű olvasása után q_0 -ból eljuthat a gép és az utolsó betűhöz rendelt állapot egy végállapot. Ez pontosan akkor teljesül az u nemüres szóra, ha $u \in L(N)$.

Az F_N formulát mindenképp kielégíti az üres szó. Így ha $\varepsilon \in L(N)$, akkor $L(F_N) = L(N)$; ha pedig $\varepsilon \notin L(N)$, akkor $L(F_N \land \exists x \neg (x = x + 1)) = L(N)$.

- **3.11.2. Feladat.** Tegyük fel, hogy az $M = (Q, \Sigma, \delta, q_0, F)$ determinisztikus automata felismeri az $L = (a^*b)^*a^\omega$ nyelvet. Ekkor definiáljuk az n_i egészeket induktív módon a következőképpen: legyen $n_0 = 0$ és minden i > 0 esetén tekintsük az $u = a^{n_0}ba^{n_1}b \dots a^{n_{i-1}}b$ szót. Mivel $ua^\omega \in L$, kell legyen olyan n, melyre $q_0ua^n \in F$; legyen n_i a legkisebb ilyen n. Ekkor M elfogadja az $a^{n_0}ba^{n_1}ba^{n_2}\dots \notin L$ ω -szót, ami ellentmondás.
- **3.11.4. Feladat.** Ötlet: a korábbi konstrukció nemdeterminisztikus automaták által felismert nyelvek konkatenáltjának felismerésére itt is alkalmazható.
- **3.11.5. Feladat.** Ötlet: a korábbi konstrukció nemdeterminisztikus automaták által felismert nyelv Kleene-iteráltjának felismerésére itt is alkalmazható.
- **3.11.6. Feladat.** Ötlet: a korábbi konstrukció nemdeterminisztikus automaták által felismert nyelvek uniójára itt is alkalmazható.
- **3.11.7. Feladat.** Figyelem: itt nem alkalmazható a korábbi konstrukció, mert ahhoz determinisztikussá kellett tegyük az automatát, amit ω -nyelvek esetén nem tehetünk meg.
- **3.12.1. Feladat.** Alkalmazzon indukciót |y| szerint.
- **3.12.2. Feladat.** Alkalmazzon indukciót |*y*| szerint.

3.12.3. Feladat. Először is λ_q hossztartó, hiszen tetszőleges $p \in Q$ -ra $\lambda_p(\varepsilon) = \varepsilon$, innen a szó hossza szerinti indukciót alkalmazhatunk annak megmutatására, hogy λ_p hossztartó leképezés minden $p \in Q$ állapotra.

Másodszor, tetszőleges x, y szavakra $\lambda_q(xy) = \lambda_q(x)\lambda_{qx}(y)$, ahol λ_{qx} csak q-tól és x-től függ.

- 3.12.4. Feladat. Hasonlóan az előzőhöz.
- **3.12.5. Feladat.** Legyen $\alpha: \Sigma^* \to \Delta^*$ automata leképezés, $M = (\{\alpha_x : x \in \Sigma^*\}, \Sigma, \Delta, \delta, \lambda)$, ahol $\delta(\alpha_x, a) = \alpha_{xa}$ és $\lambda(\alpha_x, a) = \alpha_x(a)$.

Azt állítjuk, hogy ekkor tetszőleges x-re M α_x -ben (mint állapotban) α_x -et (mint leképezést) indukálja. Ehhez elég megmutassuk, hogy $\lambda_{\alpha_x}(y) = \alpha_x(y)$ minden $y \in \Sigma^*$ -ra, amihez |y| szerinti indukciót alkalmazunk. Valóban, $y = \varepsilon$ esetén $\lambda_{\alpha_x}(\varepsilon) = \varepsilon = \alpha_x(y)$ és ha y = y'a, ahol $a \in \Sigma$, akkor $\lambda_{\alpha_x}(y'a) = \lambda_{\alpha_x}(y')\lambda_{\alpha_{xy'}}(a) = \alpha_x(y')\alpha_{xy'}(a) = \alpha_x(y'a)$. Tehát α -t M az α_ε állapotban indukálja.

- **3.12.6.** Feladat. Az előző feladat konstrukciója egy véges Mealy gépet ad ebben az esetben.
- **3.12.7. Feladat.** Legyen q a megadott Mealy gép azon állapota, melyre $\lambda_q = \alpha$. Tudjuk, hogy α_x a qx állapotban indukált leképezés tetszőleges $x \in \Sigma^*$ esetén, így ha véges sok állapot van, azok természetesen csak véges sokféle leképezést indukálhatnak, így $\{\alpha_x : x \in \Sigma^*\}$ is véges lesz.

4. fejezet

Környezetfüggetlen nyelvek

4.1. Elméleti összefoglaló

- **4.1.1. Definíció.** Környezetfüggetlennek nevezünk egy $G = (V, \Sigma, R, S)$ generatív nyelvtant, ha R minden szabálya $A \to w$ alakú, ahol $A \in V$, $w \in (V \cup \Sigma)^*$.
- **4.1.2. Definíció.** Környezetfüggetlen nyelvnek nevezünk egy $L \subseteq \Sigma^*$ nyelvet, ha van olyan $G = (V, \Sigma, R, S)$ környezetfüggetlen nyelvtan, amely generálja az L-t, vagyis L = L(G).
- **4.1.3. Definíció.** Legyen $G = (V, \Sigma, R, S)$ egy környezetfüggetlen nyelvtan. Baloldali (jobboldali) levezetésnek, vagy derivációnak nevezünk egy $u_0 \Rightarrow u_1 \Rightarrow \cdots \Rightarrow u_n$ levezetést G szerint, ha minden i < n esetén u_{i+1} úgy áll elő, hogy u_i -ben balról (jobbról) az első nemterminálist helyettesítjük egy rá vonatkozó szabály jobb oldalával.

Baloldali levezetés jelölése:

```
u_0 \Rightarrow_l u_1 \Rightarrow_l \cdots \Rightarrow_l u_n, vagy u_0 \Rightarrow_l^* u_n.
Jobboldali levezetés jelölése:
u_0 \Rightarrow_r u_1 \Rightarrow_r \cdots \Rightarrow_r u_n, vagy u_0 \Rightarrow_r^* u_n.
```

G feletti derivációs fának nevezzük az olyan véges, irányított, rendezett fát, melynek csúcsai a $V \cup \Sigma \cup \{\varepsilon\}$ halmaz elemivel címkézettek úgy, hogy valahányszor egy csúcs és leszármazottjainak címkéi rendre X, X_1, \ldots, X_n ($n \ge 1$), mindannyiszor $X \to X_1 \ldots X_n \in R$. Továbbá minden levél csúcs címkéje a $\Sigma \cup \{\varepsilon\}$ halmazban van és ha egy csúcs valamely leszármazottja ε -nal van címkézve, akkor a csúcsnak egyetlen leszármazottja van. Ha a gyökércsúcs címkéje X, akkor azt mondjuk a derivációs fa X-ből indul. A derivációs fa levelei címkéinek sorozata a derivációs fa X-ből indul. A derivációs fa frontjának jelölése X

- **4.1.4.** Állítás. Legyen $G = (V, \Sigma, R, S)$ környezetfüggetlen nyelvtan, $X \in V \cup \Sigma$, $u \in \Sigma^*$. $X \Rightarrow_G^* u$ akkor és csak akkor teljesül, ha létezik X-ből induló derivációs fa, melynek frontja u.
- **4.1.5. Következmény.** Legyen $G = (V, \Sigma, R, S)$ egy környezetfüggetlen nyelvtan. Ekkor tetszőleges $u \in \Sigma^*$ szó esetén az alábbi állítások ekvivalensek:
 - $u \in L(G)$
 - $S \Rightarrow^* u$

- $S \Rightarrow_{I}^{*} u$
- létezik olyan S-ből induló derivációs fa G felett, melynek frontja az u szó.
- **4.1.6. Definíció.** Egy $G = (V, \Sigma, R, S)$ környezetfüggetlen nyelvtant *egyértelmű*nek nevezünk, ha minden $u \in L(G)$ szóhoz pontosan egy baloldali levezetés létezik az S-ből.
- **4.1.7. Definíció.** Egy $G = (V, \Sigma, R, S)$ környezetfüggetlen nyelvtant ε -mentesnek nevezünk, ha R nem tartalmaz $A \to \varepsilon$ alakú szabályokat, ahol $A \in V$, kivéve esetleg az $S \to \varepsilon$ szabályt. Ha $S \to \varepsilon \in R$, akkor S nem fordul elő semelyik R-beli szabály jobb oldalán.
- **4.1.8.** Állítás. Tetszőleges G környezetfüggetlen nyelvtanhoz megadható olyan ε -mentes G_1 környezetfüggetlen nyelvtan, amelyre $L(G_1) = L(G)$.
- **4.1.9.** Algoritmus. $G = (V, \Sigma, R, S)$ környezetfüggetlen nyelvtanhoz az ekvivalens $G_1 = (V_1, \Sigma, R_1, S_1)$ ε -mentes nyelvtan meghatározására.
- **1. lépés:** $H = \{A \in V \mid A \Rightarrow^* \varepsilon\}$ meghatározása a következő iterációval:

$$H_1 = \{ A \in V \mid A \to \varepsilon \in R \}$$

$$H_{i+1} = H_i \cup \{ A \in V \mid \exists A \to \alpha \in R, \text{ hogy } \alpha \in H_i^* \}.$$

Az iteráció befejeződik, ha $H_{i+1} = H_i$ és ekkor $H = H_i$.

2. lépés: A $G_1 = (V_1, \Sigma, R_1, S_1)$ definiálása a H ismeretében:

$$R' = \{A \to \alpha \mid \alpha \in \text{\'es } \exists A \to \alpha' \in R, \text{hogy } \alpha \text{ előáll az } \alpha' \text{-ből \'ugy, hogy töröljük belőle a H-beli nemterminálisok 0 vagy több előfordulását}.$$

Ha $S \notin H$, akkor $S_1 = S$, $V_1 = V$ és $R_1 = R'$, ha $S \in H$, akkor S_1 egy új nemterminális, $V_1 = V \cup \{S_1\}$ és $R_1 = R' \cup \{S_1 \rightarrow S \mid \epsilon\}$.

- **4.1.10. Definíció.** Tetszőleges $G = (V, \Sigma, R, S)$ nyelvtant *láncszabálymentes*nek nevezünk, ha R-ben nem fordul elő $A \to B$ alakú szabály, ahol $A, B \in V$. Az $A \to B$ alakú szabályokat *láncszabály*oknak nevezzük.
- **4.1.11.** Állítás. Tetszőleges G környezetfüggetlen nyelvtanhoz megadható olyan G_1 láncszabálymentes környezetfüggetlen nyelvtan, melyre $L(G_1) = L(G)$.
- **4.1.12. Algoritmus.** $G = (V, \Sigma, R, S)$ környezetfüggetlen nyelvtannal ekvivalens $G_1 = (V, \Sigma, R_1, S)$ láncszabálymentes környezetfüggetlen nyelvtan meghatározására.
- **1. lépés:** Minden $A \in V$ -re meghatározzuk a $V_A = \{B \in V \mid A \Rightarrow^* B \text{ úgy, hogy csak láncszabályokat alkalmazunk a levezetésben} halmazt.$
- **2. lépés:** Az R₁ halmaz megkonstruálása:

$$R_1 = \{A \to \alpha \mid A \in V, \exists B \to \alpha \in R, \text{hogy } B \in V_A \text{ \'es } \alpha \notin V\}.$$

- **4.1.13.** Állítás. A láncszabálymentesítő algoritmus megőrzi a nyelvtan jobblineáris és ε -mentes tulajdonságát.
- © Ésik Zoltán, Gombás Éva, Iván Szabolcs, SzTE

4.1.14. Definíció. Legyen $G = (V, \Sigma, R, S)$ egy környezetfüggetlen nyelvtan.

Az $A \in V$ nemterminálist terminálónak nevezzük, ha van olyan $w \in \Sigma^*$, melyre $A \Rightarrow^* w$.

Az $X \in (V \cup \Sigma)$ szimbólumot *elérhető* nek nevezzük, ha vannak olyan $\alpha, \beta \in (V \cup \Sigma)^*$ szavak, melyekre $S \Rightarrow^* \alpha X \beta$.

Az $X \in (V \cup \Sigma)$ szimbólumot *használható*nak nevezzük, ha vannak olyan $x, y, z \in \Sigma^*$ szavak, melyekre $S \Rightarrow^* xXz \Rightarrow^* xyz$.

A $G_1 = (V_1, \Sigma, R_1, S_1)$ és a $G_2 = (V_2, \Sigma, R_2, S_2)$ nyelvtanok *ekvivalensek*, jelben $G_1 \equiv G_2$, ha $L(G_1) = L(G_2)$.

- **4.1.15.** Állítás. Legyen G egy olyan környezetfüggetlen nyelvtan, melyre L(G) \emptyset . Ekkor megadható olyan G', G-vel ekvivalens környezetfüggetlen nyelvtan, melynek minden szimbóluma használható és L(G') = L(G).
- **4.1.16. Algoritmus.** A **4.1.15**. állításban megadott tulajdonságú $G = (V, \Sigma, R, S)$ nyelvtannal ekvivalens $G' = (V', \Sigma', R', S)$ nyelvtan meghatározása:
- **1. lépés:** $G_1 = (V_1, \Sigma, R_1, S)$ környezetfüggetlen nyelvtan meghatározása, melyre teljesül, hogy $L(G_1) = L(G)$ és minden nemterminálisa termináló. V_1 meghatározása az alábbi iterációval:

$$H_1 = \{ A \in V \mid \exists A \to w \in R, \text{ ahol } w \in \Sigma^* \}$$

$$H_{i+1} = H_i \cup \{ A \in V \mid \exists A \to \alpha \in R, \text{ ahol } \alpha \in (H_i \cup \Sigma)^* \}.$$

Az iteráció befejeződik, ha $H_{i+1} = H_i$ és ekkor $V_1 = H_i$. R_1 az összes olyan R-beli szabályt tartalmazza, melyben csak $(V_1 \cup \Sigma)$ -beli jelek szerepelnek.

2. lépés: $G_2 = (V_2, \Sigma_2, R_2, S)$ környezetfüggetlen nyelvtan meghatározása, melyre teljesül, hogy $L(G_2) = L(G_1)$ és G_2 -ben minden $X \in (V_2 \cup \Sigma_2)$ szimbólum elérhető. V_2 és Σ_2 meghatározása az alábbi iterációval:

$$K_1 = \{S\}$$

$$K_{i+1} = K_i \cup \{X \in (V_1 \cup \Sigma) \mid \exists A \to \alpha X \beta \in R_1, \text{ ahol } A \in K_i, \alpha, \beta \in (V_1 \cup \Sigma)^*\}.$$

Az iteráció befejeződik, ha $K_{i+1} = K_i$ és ekkor $V_2 = V_1 \cap K_i$, $\Sigma_2 = \Sigma \cap K_i$. R_2 az összes olyan R_1 -beli szabályt tartalmazza, melyben csak ($V_2 \cup \Sigma_2$)-beli jelek szerepelnek.

- **4.1.17. Definíció.** Legyen $G = (V, \Sigma, R, S)$ egy környezetfüggetlen nyelvtan és legyen $A \in V$. G-ben az A nemterminálist közvetlenül balrekurzívnak nevezzük, ha $A \to A\alpha \in R$ valamely $\alpha \in (V \cup \Sigma)^*$ esetén. G-ben az A nemterminálist balrekurzívnak nevezzük, ha $A \Rightarrow^+ A\alpha$ valamely $\alpha \in (V \cup \Sigma^*)$ esetén. A G nyelvtant balrekurzívnak nevezzük, ha legalább egy nemterminálisa balrekurzív.
- **4.1.18.** Állítás. Legyen $G = (V, \Sigma, R, S)$ egy környezetfüggetlen nyelvtan, $\alpha, \beta \in (V \cup \Sigma)^*$, $B \in V$ és $A \to \alpha B\beta \in R$. Legyenek az R-beli B baloldalú szabályok $B \to \gamma_1 \mid \ldots \mid \gamma_n, n \geq 1$. Legyen $R' = (R \{A \to \alpha B\beta\}) \cup \{A \to \alpha \gamma_1 \beta \mid \ldots \mid \alpha \gamma_n \beta\}$ és $G' = (V, \Sigma, R', S)$. Ekkor L(G') = L(G). (1. típusú transzformáció)

4.1.19. Állítás. Legyen $G = (V, \Sigma, R, S)$ egy környezetfüggetlen nyelvtan, legyen $A \in V$ közvetlenül balrekurzív és az A baloldalú szabályok legyenek $A \to A\alpha_1 \mid \ldots \mid A\alpha_n \mid \beta_1 \mid \ldots \mid \beta_m$, ahol β_1, \ldots, β_m egyike sem kezdődik A-val. Legyen ekkor a $G_1 = (V_1, \Sigma, R_1, S)$ az a környezetfüggetlen nyelvtan, melyre

 $V_1 = V \cup \{A'\}$, ahol $A' \notin (V \cup \Sigma)$ egy új nemterminális,

$$P_1 = (P - \{A \to A\alpha_1 \mid \dots \mid A\alpha_n\}) \cup \{A \to \beta_1 A' \mid \dots \mid \beta_m A'\} \cup \{A' \to \alpha_1 A' \mid \dots \mid \alpha_n A'\} \cup \{A' \to \alpha_1 \mid \dots \mid \alpha_n\}.$$

Ekkor teljesül, hogy $L(G_1)=L(G)$ és G_1 -ben A nem közvetlenül balrekurzív. (2. típusú transzformáció)

- **4.1.20.** Állítás. Tetszőleges G környezetfüggetlen nyelvtanhoz megadható olyan G' nem balrekurzív környezetfüggetlen nyelvtan, amelyre L(G') = L(G).
- **4.1.21. Algoritmus.** Az állításban leírt tulajdonságú G' nyelvtan megkonstruálása G ismeretében.
- **1. lépés:** A 2. típusú transzformációk alkalmazásával megkapható olyan nyelvtan, melyben már nincsenek közvetlenül balrekurzív nemterminálisok.
- **2. lépés :** Ha az 1. lépés után a kapott nyelvtan balrekurzív, akkor van olyan A nemterminális, hogy az A baloldalú szabályok $A \rightarrow \gamma_1 \mid \ldots \mid \gamma_n$, ahol $\gamma_1, \ldots, \gamma_n$ egyike sem kezdődik A-val, és mivel $A \Rightarrow^+ A\alpha$, ezért $\exists B \rightarrow A\beta$ szabály, ahol B A. Ekkor alkalmazzuk az 1. típusú transzformációt minden $B \rightarrow A\beta$ alakú szabály törlésére, mellyel elérhető, hogy A-ban már nem lesz közvetlenül balrekurzív a nyelvtan. Amennyiben a 2. lépés után a nyelvtanban közvetlenül balrekurzív nemterminálisok jelennének meg, akkor az algoritmust az 1. lépéssel folytatjuk.
- **4.1.22. Definíció.** Egy $G = (V, \Sigma, R, S)$ környezetfüggetlen nyelvtant *Chomsky normálformá*júnak nevezzük, ha R minden szabálya $A \to BC$ vagy $A \to a$ alakú, ahol $A, B, C \in V, a \in \Sigma$, kivéve esetleg az $S \to \varepsilon$ szabályt, de ekkor az S nem szerepelhet semelyik R-beli szabály jobb oldalán.
- **4.1.23.** Állítás. Minden $L \subseteq \Sigma^*$ környezetfüggetlen nyelvtan generálható Chomsky normálformájú nyelvtannal.
- **4.1.24. Algoritmus.** $G = (V, \Sigma, R, S)$ környezetfüggetlen nyelvtannal ekvivalens $G' = (V', \Sigma, R', S')$ Chomsky normálformájú nyelvtan megadása.
- **1. lépés:** A G nyelvtannal ekvivalens G_1 ε -mentes környezetfüggetlen nyelvtan megadása.
- **2. lépés:** A G_1 ε -mentes nyelvtannal ekvivalens G_2 láncszabálymentes környezetfüggetlen nyelvtan megadása.
- 3. lépés: A G_2 nyelvtannal olyan ekvivalens G_3 ε -mentes, láncszabálymentes környezetfüggetlen nyelvtan megadása, melynél a szabályok $A \to a$, $S_2 \to \varepsilon$ vagy $A \to \alpha$ alakúak, ahol $\alpha \in V^*$ és $|\alpha| \ge 2$. Legyen $G_2 = (V_2, \Sigma, R_2, S_2)$, ekkor $G_3 = (V_3, \Sigma, R_3, S_2)$, ahol
- © Ésik Zoltán, Gombás Éva, Iván Szabolcs, SzTE

- $V_3 = V_2 \cup \{X_a \mid a \in \Sigma\}$ és
- $R_3 = \{A \to \alpha \mid A \to \alpha \in R_2 \text{ és } \alpha \text{ } BC \text{ vagy } a, \text{ ahol } B, C \in V, \ a \in \Sigma \text{ vagy } A = S_2, \ \alpha = \varepsilon\} \cup \{X_a \to a \mid a \in \Sigma\} \cup \{A \to \beta' \mid \exists A \to \beta \in R_2, \text{ ahol } \beta \notin \Sigma \cup \{\varepsilon\} \text{ és } \beta' \text{ előáll a } \beta\text{-ból úgy, hogy minden benne előforduló } a \text{ terminálist helyettesítjük az } X_a \text{ nemterminálissal}\}.$
- **4. lépés:** A G_3 nyelvtannal ekvivalens G' Chomsky normálformájú nyelvtan megadása. R' megkonstruálása:
 - minden R_3 -beli $A \rightarrow \alpha$, $|\alpha| \le 2$ alakú szabály R'-nek eleme;
 - minden egyes $A \to A_1 \dots A_n \in R_3$, n > 2 szabály esetén új B_1, \dots, B_{n-2} nemterminálisokat veszünk fel és R'-be bevesszük az $A \to A_1B_1, B_1 \to A_2B_2, \dots, B_{n-2} \to A_{n-1}A_n$ szabályokat.
 - $V' = V_3 \cup \{az \ R' \text{ megkonstruálása során bevezetett új nemterminálisok}\}, S' = S_2.$
- **4.1.25. Definíció.** Egy $G=(V, \Sigma, R, S)$ környezetfüggetlen nyelvtan *Greibach normálformájú*, ha R-ben minden szabály $S \to \varepsilon$ vagy $A \to a\alpha$ alakú, ahol $a \in \Sigma$ és $\alpha \in V^*$.
- **4.1.26.** Állítás. Minden G környezetfüggetlen nyelvtanhoz megadható olyan G' Greibach normálformájú környezetfüggetlen nyelvtan, amelyre teljesül, hogy L(G') = L(G).
- **4.1.27. Algoritmus.** A $G = (V, \Sigma, R, S)$ környezetfüggetlen nyelvtan ismeretében a G-vel ekvivalens $G' = (V', \Sigma, R', S')$ Greibach normálformájú környezetfüggetlen nyelvtan megadása:
- **1. lépés:** A G nyelvtannal ekvivalens $G_1 = (V_1, \Sigma, R_1, S_1) \varepsilon$ -mentes, láncszabálymentes, nem balrekurzív környezetfüggetlen nyelvtan megadása.

2. lépés:

- Legyen < ⊆ $V \times V$ egy olyan parciális rendezés a V elemei között, melyre teljesül, hogy $\forall A, B \in V$ -re $A < B \Leftrightarrow \exists \alpha \in V^*$, hogy $A \Rightarrow^+ B\alpha$.
- Megadunk V elemei között egy olyan A_1, A_2, \ldots, A_n lineáris rendezést, amibe a < parciális rendezés beágyazható.
- A G_1 nyelvtan átalakítása az alábbiak szerint egy G_2 nyelvtanná: minden i-re, ahol i értéke változik n-től 1-ig minden j-re, ahol j értéke változik i+1-től n-ig minden $A_i \rightarrow A_j \alpha$ szabályra végrehajtjuk az 1. típusú transzformációt az $A_j \rightarrow \gamma_1 \mid \ldots \mid \gamma_m$ szabályokkal, ahol $\gamma_1, \ldots, \gamma_m$ az A_j -re addig kialakult összes alternatíva.
- A 2. lépés eredményeként előálló $G_2 = (V_1, \Sigma, R_2, S_1)$ nyelvtanra teljesül, hogy $L(G_2) = L(G_1)$ és R_2 -ben a szabályok $S_1 \to \varepsilon$ vagy $A \to a\alpha$ alakúak, ahol $a \in \Sigma$ és $\alpha \in (V \cup \Sigma)^*$.
- **3. lépés:** A G_2 nyelvtan ismeretében a $G' = (V', \Sigma, R', S_1)$ nyelvtan megadása:
 - $V' = V_1 \cup \{X_a \mid a \in \Sigma\}$, ahol X_a -k új nemterminálisok,

R' szabályai:

Ha
$$S_1 \to \varepsilon \in R_2$$
, akkor $S_1 \to \varepsilon \in R'$,
ha $A \to aX_1 \dots X_m \in R_2$, akkor $A \to aX_1' \dots X_m' \in R'$, ahol
$$X_i' = \begin{cases} X_i & \text{ha } X_i \in V_2 \\ X_a & \text{ha } X_i = a \in \Sigma, \end{cases}$$

minden $a \in \Sigma$ -ra $X_a \to a \in R'$.

4.1.28. Definíció. *Veremautomatának* nevezünk egy $M=(Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ rendszert, ahol Q egy véges, nemüres halmaz, az *állapotok halmaza*;

 Σ egy véges, nemüres halmaz, az *input ábécé*;

Γ egy véges, nemüres halmaz, a *verem ábécé*;

 $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to \mathcal{P}(Q \times \Gamma^*)$ az átmenetfüggvény, ahol $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}, \Gamma_{\varepsilon} = \Gamma \cup \{\varepsilon\}, \delta(q, a, Z)$ véges minden $q \in Q, a \in \Sigma_{\varepsilon}, Z \in \Gamma_{\varepsilon}$ esetén;

 $q_0 \in Q$ a kezdőállapot;

 $Z_0 \in \Gamma$ a verem kezdőszimbólum;

 $F \subseteq Q$ a végállapotok halmaza.

Verematutomata reprezentálható címkézett, irányított gráffal az alábbiak szerint: a gráf csúcspontjai Q elemei, a kezdőállapot a csúcsba mutató nyíl, a végállapotokat körvonal jelöli, egy q csúcsból q' csúcsba akkor és csak akkor vezet $a, Z \to \alpha$ címkéjű él, ha $(q', \alpha) \in \delta(q, a, Z)$, ahol $a \in \Sigma_{\varepsilon}, Z \in \Gamma_{\varepsilon}, \alpha \in \Gamma^{*}$.

4.1.29. Definíció. Legyen $M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ egy veremautomata. Ekkor a $C = Q \times \Sigma^* \times \Gamma^*$ halmaz az M konfigurációinak halmaza.

 $A \vdash_M \subseteq C \times C$ konfigurációs átmeneti relációt a következőképpen definiáljuk: tetszőleges $p, q \in Q, a \in \Sigma_{\varepsilon}, w \in \Sigma^*, Z \in \Gamma_{\varepsilon}, \alpha, \gamma \in \Gamma^*$ -ra: $(q, aw, Z\gamma) \vdash_M (p, w, \alpha\gamma)$ akkor és csak akkor, ha $(p, \alpha) \in \delta(q, a, Z)$. (Ha egyértelmű, hogy melyik veremautomata konfigurációs átmenetéről beszélünk, akkor \vdash_M helyett a \vdash jelölést alkalmazzuk.) $A \vdash$ reláció reflexív, tranzitív lezártját \vdash * jelöli.

4.1.30. Definíció. Legyen $M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ egy veremautomata. Az M veremautomata által *végállapotokkal felismert nyelv*en az

$$L_f(M) = \{ w \in \Sigma^* \mid (q_0, w, Z_0) \vdash {}^*(q, \varepsilon, \gamma) \text{ valamely } q \in F\text{-re \'es } \gamma \in \Gamma^*\text{-ra} \}$$

nyelvet értjük.

4.1.31. Definíció. Legyen $M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ egy veremautomata. Az M veremautomata által *üres veremmel felismert nyelv*en az

$$L_{\emptyset}(M) = \{ w \in \Sigma^* \mid (q_0, w, Z_0) \vdash {}^*(q, \varepsilon, \varepsilon) \text{ valamely } q \in Q\text{-ra} \}$$

nyelvet értjük. (Ilyenkor *F*-nek nincs szerepe.)

© Ésik Zoltán, Gombás Éva, Iván Szabolcs, SzTE

- **4.1.32.** Állítás. A veremautomatákkal végállapotokkal felismerhető nyelvek osztálya megegyezik a veremautomatákkal üres veremmel felismerhető nyelvek osztályával.
- **4.1.33. Megjegyzés.** Az eddigi veremautomata definíció módosítható a kifejező erejének megőrzése mellett úgy, hogy
 - minden átmenetnél a verem tetején levő szimbólom kiolvasásra kerül;
 - az átmeneteknél a verembe pontosan egy szimbólum beírása történik;
 - végállapotokkal felismerő veremautomata kezdeti verem tartalma üres;
 - egyetlen elemű a végállapotok halmaza.
- **4.1.34.** Állítás. Minden környezetfüggetlen nyelv felismerhető veremautomatával.
- **4.1.35. Módszer.** A $G = (V, \Sigma, R, S)$ környezetfüggetlen nyelvtan ismeretében az $M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ veremautomata megadása, melyre $L_f(M) = L(G)$. Legyen $Q = \{q_0, q, q_f\}, F = \{q_f\}, \Gamma = V \cup \Sigma \cup \{Z_0\}$

$$\delta(p, a, Z) = \begin{cases} (q, SZ_0) & \text{ha } p = q_0, a = \varepsilon, Z = Z_0 \\ (q, \alpha) & \text{ha } p = q, a = \varepsilon, Z \in V \text{ \'es } Z \rightarrow \alpha \in R \\ (q, \varepsilon) & \text{ha } p = q, \ a, Z \in \Sigma \text{ \'es } a = Z \\ (q_f, \varepsilon) & \text{ha } p = q, \ a = \varepsilon \text{ \'es } Z = Z_0. \end{cases}$$

- **4.1.36.** Állítás. Minden veremautomatával felismert nyelv környezetfüggetlen.
- **4.1.37. Módszer.** Az $M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ veremautomata ismeretében egy $G = (V, \Sigma, R, S)$ környezetfüggetlen nyelvtan megadása, melyre $L(G) = L_{\emptyset}(M)$. Az M-ről feltesszük, hogy minden átmenetnél a verem tetejét kiolvassa. Legyen S egy új szimbólum, vagyis $S \notin (V \cup \Sigma \cup \Gamma)$, $V = \{S\} \cup \{[qZr] \mid q, r \in Q, Z \in \Gamma\}$, R legyen a legszűkebb olyan halmaz, melyre az alábbiak teljesülnek:
 - minden $q \in Q$ -ra legyen $S \rightarrow [q_0 Z_0 q] \in R$;
 - minden $q \in Q$, $a \in \Sigma_{\varepsilon}$, $Z \in \Gamma$ -ra ha $(s_0, Z_1 \dots Z_k) \in \delta(q, a, Z)$ (ahol $s_0 \in Q$, $k \ge 1$, $Z_1 \dots, Z_k \in \Gamma$), akkor minden $s_1, \dots, s_k \in Q$ sorozatra legyen $[qZs_k] \rightarrow a[s_0Z_1s_1] \dots [s_{k-1}Z_ks_k] \in R$;
 - minden q ∈ Q, $a ∈ Σ_ε$, Z ∈ Γ-ra, ha $(s_0, ε) ∈ δ(q, a, Z)$, akkor legyen $[qZs_0] → a ∈ R$.
- **4.1.38. Következmény.** A környezetfüggetlen nyelvek osztálya megegyezik a veremautomatákkal felismerhető nyelvek osztályával.

- **4.1.39. Definíció.** Az $M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ veremautomata determinisztikus, ha
 - 1. $|\delta(q, a, Z)| \le 1$ minden $q \in Q$, $a \in \Sigma_{\varepsilon}$, $Z \in \Gamma_{\varepsilon}$ esetén,
 - 2. ha $\delta(q, \varepsilon, Z)$ \emptyset , akkor $\delta(q, a, Z) = \emptyset$ minden $q \in Q$, $a \in \Sigma$, $Z \in \Gamma_{\varepsilon}$ esetén,
 - 3. ha $\delta(q, a, \varepsilon)$ \emptyset , akkor $\delta(q, a, Z) = \emptyset$ minden $q \in Q$, $a \in \Sigma_{\varepsilon}$, $Z \in \Gamma$ esetén.
- **4.1.40.** Lemma. (*Pumpáló lemma környezetfüggetlen nyelvekre*.) Legyen $L \subseteq \Sigma^*$ tetszőleges környezetfüggetlen nyelv. Ekkor van olyan (*L*-től függő) $p \ge 1$ egész szám, hogy minden $w \in L$ esetén, ha $|w| \ge p$, akkor vannak olyan $u, v, x, y, z \in \Sigma^*$ szavak, melyekre az alábbiak teljesülnek:
 - 1. w = uvxyz
 - $2. |vxy| \leq p$
 - 3. |vv| > 0
 - 4. $\forall i \geq 0$ -ra $uv^i x y^i z \in L$.
- **4.1.41.** Állítás. A környezetfüggetlen nyelvek osztálya zárt a reguláris műveletekre, vagyis ha $L_1, L_2 \subseteq \Sigma^*$ környezetfüggetlen nyelvek, akkor $L_1 \cup L_2, L_1L_2, (L_1)^*$ környezetfüggetlen nyelvek.
- **4.1.42.** Állítás. A környezetfüggetlen nyelvek osztálya nem zárt a metszetre, a komplementer képzésre.
- **4.1.43.** Állítás. A környezetfüggetlen nyelvek osztálya zárt a reguláris nyelvekkel való metszetre, vagyis ha L környezetfüggetlen nyelv és R reguláris nyelv, akkor $L \cap R$ környezetfüggetlen.
- **4.1.44.** Állítás. A környezetfüggetlen nyelvek osztálya zárt a behelyettesítésre.
- **4.1.45.** Állítás. A környezetfüggetlen nyelvek osztálya zárt a homomorfizmusra és az inverz homomorfizmusra.

4.2. Környezetfüggetlen nyelvtanok

4.2.1. Feladat. Legyen $G = (V, \Sigma, R, S)$, ahol $V = \{S, T, X\}, \Sigma = \{a, b\}$,

$$R = \{S \to aTb \mid bTa$$

$$T \to XTX \mid X \mid \varepsilon$$

$$X \to a \mid b\}.$$

- 1. Igaz vagy hamis: $T \Rightarrow T$;
- 2. Igaz vagy hamis: $T \Rightarrow^* T$;
- 3. Igaz vagy hamis: $S \Rightarrow^* \varepsilon$;
- © Ésik Zoltán, Gombás Éva, Iván Szabolcs, SzTE

- 4. Igaz vagy hamis: L(G) elemei az egy hosszúságú szavak;
- 5. Igaz vagy hamis: T-ből levezethető szavak halmazát az $(a+b)^*$ reguláris kifejezés definiálja;
- 6. Igaz vagy hamis: L(G)-t az $a(a+b)^*b+b(a+b)^*a$ reguláris kifejezés definiálja.
- 7. Adjon meg olyan G' jobb-lineáris nyelvtant, melyre L(G') = L(G)!
- **4.2.2. Feladat.** Legyen $G = (V, \Sigma, R, S)$, ahol $V = \{S, A\}, \Sigma = \{a, b, c\}$,

$$R = \{S \to abSba \mid A \\ A \to cAc \mid cc\}.$$

- 1. Bizonyítsa be, hogy a $w = (ab)^2 c^2 (ba)^2 \in L(G)$!
- 2. Adja meg L(G)-t!
- **4.2.3. Feladat.** Legyen $G = (V, \Sigma, R, K)$, ahol $V = \{K, T, F\}$, $\Sigma = \{a, b, *, +, (,)\}$,

$$R = \{K \to K + T \mid T$$

$$T \to T * F \mid F$$

$$F \to (K) \mid a \mid b\}.$$

Bizonyítsa be, hogy $w = (a*a+b+a)*b*(a+b) \in L(G)$!

4.2.4. Feladat. Legyen $G = (V, \Sigma, R, S)$, ahol $V = \{S, A, B, C\}$, $\Sigma = \{a, b, c\}$,

$$R = \{S \rightarrow a \mid AB$$

$$A \rightarrow b \mid aC$$

$$B \rightarrow C \mid \varepsilon$$

$$C \rightarrow cC \mid AB\}$$

és legyen $w=acb^2$. Adjon meg a w szóhoz két különböző S gyökerű derivációs fát és baloldali levezetéseket az S-ből kiindulva!

4.2.5. Feladat. Legyen $G = (V, \Sigma, R, S)$, ahol $V = \{S, A, B\}, \Sigma = \{a, b\}$,

$$R = \{S \to aB \mid bA$$

$$A \to a \mid aS \mid bAA$$

$$B \to b \mid bS \mid aBB\}.$$

Legyen $w_1 = aabb$, $w_2 = babbaa$, $w_3 = aaabbabbba$. Adjon meg a fenti szavakhoz S-ből induló

- 1. baloldali levezetést,
- 2. jobboldali levezetést,
- 3. derivációs fát!
- **4.2.6. Feladat.** Legyen $G = (V, \Sigma, R, S)$, ahol $V = \{S, A, B\}, \Sigma = \{a\}$,

$$R = \{S \rightarrow ABS \mid AB$$

$$A \rightarrow aA \mid a$$

$$B \rightarrow bA\}.$$

Az alábbi szavak közül melyek vannak L(G)-ben? Állítását indokolja!

- 1. aabaab,
- 2. aaaaba,
- 3. aabbaa,
- 4. abaaba.

4.2.7. Feladat.

- 1. Adja meg a 4.2.6. Feladatban szereplő *G* nyelvtan által generált nyelvet!
- 2. Adjon meg G-vel ekvivalens G' jobb-lineáris nyelvtant!
- **4.2.8. Feladat.** Legyen $G = (\{S\}, \{a\}, \{S \to SS \mid a\}, S)$.
 - 1. Igazolja, hogy G nem egyértelmű!
 - 2. Határozza meg L(G)-t!
- **4.2.9. Feladat.** Határozza meg az alábbi nyelvtanok által generált nyelveket!

1.
$$G_1 = (\{S\}, \{a, b\}, \{S \to aSa \mid bSb \mid \epsilon\}, S)$$

2.
$$G_2 = (\{S\}, \{a, b\}, \{S \rightarrow aSa \mid bSb \mid a \mid b\}, S)$$

3.
$$G_3 = (\{S\}, \{a, b\}, \{S \rightarrow aS \mid Sb \mid a\}, S)$$

4.
$$G_4 = (\{S\}, \{a, b\}, \{S \rightarrow aSa \mid bb \mid \epsilon\}, S)$$

5.
$$G_5 = (\{S\}, \{a, b\}, \{S \rightarrow aS \mid Sb \mid a \mid SS\}, S)$$

4.2.10. Feladat. Legyen $G = (\{S, A, B\}, \{a, b\}, R, S)$, ahol

$$R = \{S \to ABA$$

$$A \to a \mid bb$$

$$B \to bS \mid \varepsilon\}.$$

Adja meg L(G)-t!

4.2.11. Feladat. Legyen $G = (\{S, A, B\}, \{a, b\}, R, S)$, ahol

$$R = \{S \rightarrow aSa \mid bSb \mid A$$

$$A \rightarrow aBb \mid bBa$$

$$B \rightarrow aB \mid bB \mid \epsilon\}.$$

Adja meg L(G)-t!

4.2.12. Feladat. Adjon meg olyan környezetfüggetlen nyelvtanokat, melyek az alábbi nyelveket generálják!

- 1. $\{a^n b^n \mid n \ge 0\}$;
- 2. $\{a^nb^n \mid n > 0\}$;
- 3. $\{a^nb^{2n} \mid n \ge 0\}$;
- 4. $\{a^n b^m \mid n \le m\}$;
- 5. $\{a^n b^m \mid n \le 2m\}$;
- 6. $\{a^n b^m \mid 2n > m\}$;
- 7. $\{a^n b^m \mid m \le n \le 2m\}$;
- 8. $\{a^n b^m \mid n \ m\}$;
- 9. $\{a^{2n}b^{3n} \mid n \ge 0\}$;
- 10. $\{a^{2n+1}b^{3n+2} \mid n > 0\}$;
- 11. $\{a^m by \mid y \in (a^+ b)^m, m \ge 1\};$
- 12. $\{a^n b^k c^n \mid n, k \ge 0\};$
- 13. $\{a^n b^m c^k \mid n \mid k, m > 0\}$;
- 14. $\{a^n b^m c^k \mid n, m, k \ge 0 \text{ és } n = k \text{ vagy } m = k\};$
- 15. $\{a^n b^m c^k \mid n, m, k \ge 0 \text{ és } n \text{ } m \text{ vagy } m \text{ } k\};$
- 16. $\{a^n b^m c^{n+m} \mid n, m \ge 0\}$;
- 17. $\{a^n b^{n+m} c^m \mid n, m \ge 0\}$;
- 18. $\{a^n b^m c^k \mid k > n + m, n, m \ge 0\}$;

```
19. \{a^n b^m c^k \mid k < n+m, \ n, m \ge 0\};
```

20.
$$\{a^n b^m c^k \mid k \ n+m\}$$
;

21.
$$\{a^m b^n c^p \mid m+2n=p\}$$
;

22.
$$\{a^m b^n c^p \mid m+2n > p\}$$
;

23.
$$\{a^n b^n a^m b^m \mid n, m \ge 0\}$$
;

24.
$$\{a^n b^m a^m b^n \mid n, m \ge 0\}$$
;

25.
$$\{a^n b^k a^m b^n \mid k \ m, n \ge 0\};$$

26.
$$\{a^m b^{m+n} a^n \mid m, n \ge 0\} \cup \{a^n b^n \mid n \ge 2\};$$

27.
$$\{ww^R \mid w \in \{a, b\}^*\}$$
;

28.
$$\{w \in \{a, b\}^* \mid w = w^R\}$$
;

29.
$$\{w \in \{a, b\}^* \mid w \text{ bármely prefixében legalább annyi } a \text{ betű van, mint } b\}$$
;

30.
$$\{w \in \{a, b\}^* \mid |w|_a = |w|_b\};$$

31.
$$\{w \in \{a, b\}^* \mid |w|_a < |w|_b\};$$

32.
$$\{w \in \{a, b\}^* \mid |w|_a \mid w|_b\}$$
;

33.
$$\{uw \in \{a, b\}^* \mid u \ w\};$$

34.
$$\{w \in \{a, b\}^* \mid 2|w|_a = |w|_b\}$$
;

35.
$$\{w \in \{a, b\}^* \mid |w|_b = 2|w|_a + 3\}$$
;

36.
$$\{a^m b^n c^p d^q \mid m+n=p+q\}$$
;

37.
$$\{w \# x \mid w, x \in \{a, b\}^*, w^R \text{ az } x\text{-nek prefixe}\};$$

38.
$$\{x \# y \mid x, y \in \{a, b\}^* \text{ \'es } x y\}$$
;

39.
$$\{uacvb \mid u, v \in \{a, b\}^* \text{ és } |u| = |v|\};$$

40.
$$\{w \# w^R \mid w \in \{a, b\}^+\}^*$$
;

41.
$$\{u^R \# v \mid u, v \in \{a, b\}^*, u \text{ a } v\text{-ben részszó}\};$$

42.
$$\{u^R \# v \mid u, v \in \{a, b\}^*, u \text{ a } v\text{-nek részsorozata}\}^{1}$$
.

Az $u = u_1 \dots u_k$ részsorozata vagy szétszórt részszava a $v = v_1 \dots v_n$ -nek, ha $\exists \ 1 \le j_1 < \dots < j_k \le n$, hogy $v_{j_1} = u_l$ minden $1 \le l \le k$ esetén.

4.3. Környezetfüggetlen nyelvtanok ekvivalens átalakításai, normálformák

4.3.1. Feladat. Legyen $G = (V, \Sigma, R, S)$, ahol $V = \{S, A, B, C, D\}$, $\Sigma = \{a, b\}$,

$$R = \{S \rightarrow C \mid D$$

$$B \rightarrow CS \mid b$$

$$C \rightarrow aD \mid bS \mid b$$

$$D \rightarrow CD \mid Da\}.$$

Adjon meg olyan G' nyelvtant, melynek minden szimbóluma használható!

4.3.2. Feladat. Legyen $G = (V, \Sigma, R, S)$, ahol $V = \{S, A, B, C\}$, $\Sigma = \{a, b\}$,

$$R = \{S \rightarrow bCB \mid bBB \mid abD$$

$$A \rightarrow ADb \mid bD$$

$$C \rightarrow bBc \mid aCB$$

$$D \rightarrow DD \mid Cb \mid \epsilon\}.$$

- 1. Adjon meg olyan *G*-vel ekvivalens *G'* nyelvtant, melynek minden szimbóluma használható!
- 2. Adja meg L(G)-t!
- **4.3.3. Feladat.** Legyen $G = (V, \Sigma, R, S)$, ahol $V = \{S, A, B, C\}$, $\Sigma = \{a, b\}$,

$$R = \{S \to AB \mid CA$$

$$A \to a$$

$$B \to BC \mid AB$$

$$C \to aB \mid b\}.$$

- 1. Adjon meg olyan G-vel ekvivalens G' nyelvtant, melynek minden szimbóluma használható!
- 2. Adja meg L(G)-t!

4.3.4. Feladat. $G = (V, \Sigma, R, S)$, ahol $V = \{S, A, B, C, D, E, F\}$, $\Sigma = \{a, b, c\}$,

$$R = \{S \rightarrow AC \mid BS \mid B$$

$$A \rightarrow aA \mid aF$$

$$B \rightarrow CF \mid b$$

$$C \rightarrow cC \mid D$$

$$D \rightarrow aD \mid BD \mid C$$

$$E \rightarrow aA \mid BSA$$

$$F \rightarrow bB \mid b\}.$$

Adjon meg olyan G-vel ekvivalens $G' = (V', \{a, b, c\}, R', S)$ nyelvtant, melynek minden szimbóluma használható!

4.3.5. Feladat. Legyen $G = (V, \Sigma, R, S)$, ahol $V = \{S, A, B, C\}$, $\Sigma = \{a, b, c\}$,

$$R = \{S \to ACA$$

$$A \to aAa \mid B \mid C$$

$$B \to bB \mid b$$

$$C \to cC \mid \varepsilon\}.$$

Adjon meg G-vel ekvivalens ε -mentes $G' = (V', \{a, b, c\}, R', S)$ nyelvtant!

4.3.6. Feladat. Legyen $G = (V, \Sigma, R, S)$, and $V = \{S, A, B, C\}$, $\Sigma = \{b\}$,

$$R = \{S \rightarrow ABC \\ A \rightarrow BB \mid \varepsilon \\ B \rightarrow CC \mid A \\ C \rightarrow AA \mid b\}.$$

Adjon meg G-vel ekvivalens, ε -mentes G_1 nyelvtant!

4.3.7. Feladat. Legyen $G = (V, \Sigma, R, E)$, ahol $V = \{E, T, T', F, F'\}$, $\Sigma = \{+, *, (,), a\}$,

$$R = \{E \rightarrow TT' \\ T' \rightarrow +TT' \mid \varepsilon \\ T \rightarrow FF' \\ F' \rightarrow *FF' \mid \varepsilon \\ F \rightarrow (E) \mid a\}.$$

Adjon meg G-vel ekvivalens, ε -mentes G_1 nyelvtant!

4.3.8. Feladat. Legyen $G = (V, \Sigma, R, S)$, ahol $V = \{S, A, B, C, D\}$, $\Sigma = \{a, b\}$,

$$R = \{S \to B$$

$$A \to AbB \mid BA \mid b$$

$$B \to aAB \mid \varepsilon$$

$$C \to DC \mid \varepsilon$$

$$D \to CD \mid \varepsilon\}.$$

Adjon meg olyan G-vel ekvivalens, ε -mentes G_1 nyelvtant, melynek minden szimbóluma használható!

4.3.9. Feladat. Adjon meg az alábbi nyelvtanokkal ekvivalens környezetfüggő nyelvtanokat!

1.
$$G_1 = (\{S, A, B, C, D\}, \{a, b\}, R_1, S)$$
, ahol

$$R_{1} = \{S \rightarrow bB \mid aC$$

$$A \rightarrow aA \mid SB$$

$$B \rightarrow C \mid aA$$

$$C \rightarrow \varepsilon \mid SBD$$

$$D \rightarrow CB \mid SD\}.$$

2. $G_2 = (\{A, B, C, D\}, \{a, b\}, R_2, S)$, ahol

$$R_{2} = \{S \rightarrow bB \mid aCD$$

$$A \rightarrow \varepsilon \mid aD$$

$$B \rightarrow BA \mid SD$$

$$C \rightarrow DA \mid Da$$

$$D \rightarrow AA \mid BB\}.$$

4.3.10. Feladat. Legyen $G = (V, \Sigma, R, S)$, ahol $V = \{S, A, B, C\}$, $\Sigma = \{a, b\}$,

$$R = \{S \to ASB \mid B$$

$$A \to Aa \mid B$$

$$B \to b \mid C$$

$$C \to a\}.$$

Adjon meg G-vel ekvivalens láncszabálymentes $G' = (V, \Sigma, R', S)$ nyelvtant!

4.3.11. Feladat. Adjon meg ekvivalens ε -mentes és láncszabálymentes nyelvtanokat a **4.3.6**, **4.3.7**, **4.3.8** feladatokban szereplő nyelvtanokhoz!

4.3.12. Feladat. Adjon meg a **4.2.12**. feladatban szereplő nyelvek mindegyikéhez csak használható szimbólumokat tartalmazó, ε -mentes és láncszabálymentes nyelvtanokat!

4.3.13. Feladat. Legyen
$$G = (V, \Sigma, R, S)$$
, ahol $V = \{S, X, Y\}$, $\Sigma = \{a, b\}$ és $R = \{S \rightarrow S + S \mid S * S \mid a \mid (S)\}$.

Adjon meg G-vel ekvivalens és nem balrekurzív $G' = (V', \Sigma, R', S)$ nyelvtant!

4.3.14. Feladat. Legyen $G = (V, \Sigma, R, S)$, ahol $V = \{S, A, B\}, \Sigma = \{a, b\}$,

$$R = \{S \to BB$$

$$A \to Ab \mid a$$

$$B \to Aa \mid BA \mid b\}.$$

Adjon meg G-vel ekvivalens $G' = (V', \Sigma, R', S)$ nem balrekurzív nyelvtant!

4.3.15. Feladat. Legyen $G = (V, \Sigma, R, S)$, ahol $V = \{S, A, B\}, \Sigma = \{a, b\}$,

$$R = \{S \to A \mid a$$

$$A \to Ba \mid aB$$

$$B \to Sb \mid ba\}.$$

Adjon meg G-vel ekvivalens $G' = (V', \Sigma, R', S)$ nem balrekurzív nyelvtant!

4.3.16. Feladat. Legyen $G = (V, \Sigma, R, S)$, ahol $V = \{S, X, Y\}$, $\Sigma = \{a, b\}$,

$$R = \{S \to XYX \mid ab \\ X \to SYS \mid ba \\ Y \to XSX \mid b\}.$$

Adjon meg G-vel ekvivalens $G' = (V', \Sigma, R', S)$ nem balrekurzív környezetfüggetlen nyelvtant!

4.3.17. Feladat. Legyen $G = (V, \Sigma, R, S)$, ahol $V = \{S, M, N\}$, $\Sigma = \{a, b, c\}$,

$$R = \{S \rightarrow McN \mid cN \mid Mc \mid c$$

$$M \rightarrow aM \mid a$$

$$N \rightarrow bN \mid b\}.$$

Adjon meg G-vel ekvivalens Chomsky-normálformájú $G' = (V', \Sigma, R', S')$ nyelvtant!

4.3.18. Feladat. Legyen $G = (V, \Sigma, R, S)$, ahol $V = \{S, A, B, C\}$, $\Sigma = \{a, b, c\}$,

$$R = \{S \rightarrow aABC \mid a$$

$$A \rightarrow aA \mid a$$

$$B \rightarrow bcB \mid bc$$

$$C \rightarrow cC \mid c\}.$$

Adjon meg G-vel ekvivalens $G' = (V', \Sigma, R', S')$ Chomsky-normálformájú nyelvtant!

4.3.19. Feladat. $G = (V, \Sigma, R, A)$, ahol $V = \{A, B\}, \Sigma = \{0\}$,

$$R = \{A \to BAB \mid B \mid \varepsilon \\ B \to 00 \mid \varepsilon\}.$$

Adjon meg G-vel ekvivalens $G' = (V', \Sigma, R', S')$ Chomsky-normálformájú nyelvtant!

4.3.20. Feladat. Legyen $G = (V, \Sigma, R, S)$, ahol $V = \{S, A, T\}, \Sigma = \{+, (,), b\}$,

$$R' = \{S \to \varepsilon \mid A$$

$$A \to T \mid A + T$$

$$T \to b \mid (A)\}.$$

Adjon meg G-vel ekvivalens $G' = (V', \Sigma, R', S')$ Chomsky-normálformájú nyelvtant!

4.3.21. Feladat. Legyen $G = (V, \Sigma, R, S)$, ahol $V = \{S, X, Y\}$, $\Sigma = \{a, b\}$,

$$R = \{S \to \varepsilon \mid aXY$$

$$X \to aX \mid Y$$

$$Y \to bY \mid \varepsilon\}.$$

Adjon meg G-vel ekvivalens $G' = (V', \Sigma, R', S')$ Chomsky-normálformájú nyelvtant!

4.3.22. Feladat. Legyen $G = (V, \Sigma, R, S)$, ahol $V = \{S, A, B\}, \Sigma = \{a, b\}$,

$$R = \{S \to \varepsilon \mid ASB$$
$$A \to a$$
$$B \to b\}.$$

Adjon meg G-vel ekvivalens $G' = (V', \Sigma, R', S')$ Chomsky-normálformájú nyelvtant!

4.3.23. Feladat. Legyen $G = (\{S\}, \Sigma, R, S)$, ahol $\Sigma = \{\sim, \supset, [,], p, q\}$,

$$R = \{S \rightarrow \sim S \mid [S \supset S] \mid p \mid q\}.$$

Adjon meg G-vel ekvivalens Chomsky-normálformájú $G' = (V', \Sigma, R', S')$ nyelvtant!

4.3.24. Feladat. Legyen $G = (V, \Sigma, R, S)$, ahol $V = \{S, A, B\}, \Sigma = \{a, b\}$,

$$R = \{S \rightarrow bA \mid aB$$

$$A \rightarrow bAA \mid aS \mid a$$

$$B \rightarrow aBB \mid bS \mid b\}.$$

Adjon meg G-vel ekvivalens $G' = (V', \Sigma, R', S')$ Chomsky-normálformájú nyelvtant!

© Ésik Zoltán, Gombás Éva, Iván Szabolcs, SzTE

4.3.25. Feladat. Legyen $G = (V, \Sigma, R, S)$, ahol $V = \{S, A, B, C\}$, $\Sigma = \{a, b\}$,

$$R = \{S \rightarrow BA \mid AbS \mid CC$$

$$A \rightarrow BB \mid bA$$

$$B \rightarrow \varepsilon \mid ab$$

$$C \rightarrow aB\}.$$

Adjon meg G-vel ekvivalens $G' = (V', \Sigma, R', S')$ Chomsky-normálformájú nyelvtant!

4.3.26. Feladat. Legyen $G = (V, \Sigma, R, S)$, ahol $V = \{S, A, B\}, \Sigma = \{a, b\}$,

$$R = \{S \to AB$$

$$A \to Ba \mid a$$

$$B \to Ab \mid b\}$$

Adjon meg G-vel ekvivalens $G' = (V', \Sigma, R', S)$ Greibach-normálformájú nyelvtant!

4.3.27. Feladat. Legyen $G = (\{S\}, \{a, b\}, R, S)$, ahol $R = \{S \rightarrow a \mid aS \mid aSbS\}$. Adjon meg G-vel ekvivalens $G' = (V', \Sigma, R', S')$ Greibach-normálformájú nyelvtant!

4.3.28. Feladat. Legyen $G = (V, \Sigma, R, S)$, ahol $V = \{S\}$, $\Sigma = \{a, b\}$, $R = \{S \rightarrow aSa \mid bSb \mid aa \mid bb\}$. Adjon meg G-vel ekvivalens $G' = (V', \Sigma, R', S')$ Greibachnormálformájú nyelvtant!

4.3.29. Feladat. Legyen $G = (V, \Sigma, R, S)$, ahol $V = \{S\}, \Sigma = \{+, *, (,), a\}$,

$$R = \{S \to S + S \mid S * S \mid a \mid (S)\}.$$

Adjon meg G-vel ekvivalens $G' = (V', \Sigma, R', S')$ Greibach-normálformájú nyelvtant!

4.3.30. Feladat. Legyen $G = (V, \Sigma, R, S)$, ahol $V = \{S, A, B\}, \Sigma = \{a, b\}$,

$$R = \{S \to A \mid a$$

$$A \to Ba \mid aB$$

$$B \to S \mid ba\}.$$

Adjon meg G-vel ekvivalens $G' = (V', \Sigma, R', S')$ Greibach-normálformájú nyelvtant!

4.3.31. Feladat. Legyen $G = (V, \Sigma, R, S)$, ahol $V = \{S, X, Y\}, \Sigma = \{a, b\}$,

$$R = \{S \to XYX \mid ab \\ X \to SYS \mid ba \\ Y \to XSX \mid b\}.$$

Adjon meg G-vel ekvivalens $G' = (V', \Sigma, R', S')$ Greibach-normálformájú nyelvtant!

4.3.32. Feladat. Legyen $G = (V, \Sigma, R, S)$, ahol $V = \{S, A, B\}, \Sigma = \{a, b\}$,

$$R = \{S \rightarrow BB$$

$$A \rightarrow Ab \mid a$$

$$B \rightarrow Aa \mid BA \mid b\}.$$

Adjon meg G-vel ekvivalens $G' = (V', \Sigma, R', S')$ Greibach-normálformájú nyelvtant!

4.3.33. Feladat. Legyen $G = (V, \Sigma, R, S)$, ahol $V = \{S, A, B\}, \Sigma = \{a, b\}$,

$$R = \{S \to ASB \mid A \mid B \\ A \to aA \mid a \\ B \to bB \mid b\}.$$

- 1. Adjon meg G-vel ekvivalens $G_1 = (V_1, \Sigma, R_1, S_1)$ Chomsky-normálformájú nyelvtant!
- 2. Adjon meg G-vel ekvivalens $G_2 = (V_2, \Sigma, R_2, S_2)$ Greibach-normálformájú nyelvtant!

4.3.34. Feladat. Legyen $G = (V, \Sigma, R, S)$, ahol $V = \{S, A\}, \Sigma = \{a, b\}$,

$$R = \{S \to aSA \mid \varepsilon \\ A \to Ab \mid ab\}.$$

- 1. Adjon meg G-vel ekvivalens $G_1 = (V_1, \Sigma, R_1, S_1)$ Chomsky-normálformájú nyelvtant!
- 2. Adjon meg G-vel ekvivalens $G_2 = (V_2, \Sigma, R_2, S_2)$ Greibach-normálformájú nyelvtant!

Egy Chomsky-normálformára hozó feladatokat megoldással együtt generáló program letölthető a http://www.inf.u-szeged.hu/ szabivan/download/cfg.jar címről.

4.3.35. Feladat. Legyen $G = (V, \Sigma, R, S)$ Chomsky-normálformájú nyelvtan. Mutassa meg, hogy ha $S \stackrel{m}{\Rightarrow} w$, akkor $m \le 2|w| - 1$.

4.3.36. Feladat. Mutassa meg, hogy minden $L \varepsilon$ -mentes környezetfüggetlen nyelv generálható olyan $G = (V, \Sigma, R, S)$ környezetfüggetlen nyelvtannal, melynek szabályai $A \to a, A \to aB$ vagy $A \to aBC$ alakúak, ahol $A, B, C \in V, a \in \Sigma$.

4.4. Veremautomaták

- **4.4.1. Feladat.** Legyen $L = \{w \in \{a, b\}^* \mid |w|_a = |w|_b\}.$
 - 1. Adjon meg *L*-et végállapotokkal felismerő veremautomatát!

*7*9

- 2. Adjon meg *L*-et üres veremmel felismerő veremautomatát!
- 3. Szemléltesse gráffal az 1. és 2. részben megadott veremautomatát!

4.4.2. Feladat. Legyen $M = (\{q_0, q_1, q_2\}, \{a, b\}, \{A\}, \delta, q_0, A, \{q_2\}),$ ahol

- 1. Vizsgálja meg, az alábbi szavak közül melyeket fogadja el végállapotokkal az M!
 - 1. abbb
- 2. *aab*
- 3. a^2b^4
- 4. a^4b^2
- 2. Adja meg az M által végállapotokkal felismert $L_f(M)$ nyelvet!

4.4.3. Feladat. Legyen $M = (\{0,1,2\}, \{a,b\}, \{Z_0,a\}, \delta,0,Z_0, \{1,2\}), \text{ ahol}$

	Q	$\boldsymbol{\Sigma}_{\varepsilon}$	$\Gamma_{arepsilon}$	Q	Γ^*
	0	а	ε	0	а
	0	ε	arepsilon	1	ε
δ :	0	b	a	2	ε
	1	ε	a	1	ε
	2	b	a	2 2	ε
	2	arepsilon	a	2	arepsilon

- 1. Vizsgálja meg, az alábbi szavak közül melyeket ismeri fel végállapotokkal az M!
 - 1. b^2

2. a^2b^2

- 3. a^3b
- 2. Adja meg az M által végállapotokkal felismert $L_f(M)$ nyelvet!
- **4.4.4. Feladat.** Adjon meg az alábbi nyelveket felismerő veremautomatákat!
 - 1. $L_1 = \{a^n b^m \mid n < m\};$
 - 2. $L_2 = \{a^n b^m \mid n \ge m\};$
 - 3. $L_3 = \{c^i a^j c^k b^l c^m \mid i, j, k, l, m \ge 1 \text{ és } j \ge l\};$
 - 4. $L_4 = \{a^i b^j c^k \mid j \ k \text{ \'es } i, j, k \ge 0\};$
 - 5. $L_5 = \{a^i b^j c^{j+1} \mid i, j \ge 0\};$
- © Ésik Zoltán, Gombás Éva, Iván Szabolcs, SzTE

- 6. $L_6 = \{a^n b^m \mid 0 \le n \le 2m\}$;
- 7. $L_7 = \{a^n b^m \mid 0 \le n \le m \le 2n\};$
- 8. $L_8 = \{a^n b^m \mid 0 \le m \le n \le 2m\};$
- 9. $L_9 = \{a^i b^j c^k \mid i, j, k > 0 \text{ és } i = j + k\};$
- 10. $L_{10} = \{w \in \{a, b\}^* \mid |w|_b \le |w|_a\};$
- 11. $L_{11} = \{w \in \{a, b, c\}^* \mid 0 < |w|_a < |w|_b\};$
- 12. $L_{12} = \{w \in \{a, b\}^* \mid 0 \le |w|_b \le |w|_a \le 2|w|_b\};$
- 13. $L_{13} = \{a^i b^j \mid 2i \ 3j\};$
- 14. $L_{14} = \{w \in \{a, b\}^* \mid 2|w|_a \ 3|w|_b\};$
- 15. $L_{15} = \{a^i b^j c^k \mid i, j, k \ge 0 \text{ és } i = j \text{ vagy } i = k\};$
- 16. $L_{16} = \{ww^R \mid w \in \{a, b\}^*\};$
- 17. $L_{17} = \{w \in \{a, b, c\}^* \mid |w|_a = |w|_b \text{ vagy } |w|_a = |w|_c\};$
- 18. $L_{18} = \{w_1 \# w_2 \mid w_1, w_2 \in \{a, b\}^*, w_1 \mid w_2\};$
- 19. $L_{19} = \{w \in \{a, b, c\}^* \mid w \text{ bármely } x \text{ prefixében } |x|_a \ge |x|_b \text{ és } |w|_c \text{ páros}\}.$
- **4.4.5. Feladat.** Legyen $L = \{a^n b^n \mid n > 0\}.$
 - 1. Adjon meg *L*-et végállapotokkal felismerő determinisztikus veremautomatát!
 - 2. Adjon meg előző részben definiált veremautomata szerinti konfigurációsorozatot, mely bizonyítja, hogy a veremautomata elfogadja az a^2b^2 szót!
- **4.4.6. Feladat.** Mutassa meg, hogy az alábbi nyelvek determinisztikus veremautomatákkal felismerhetők!
 - 1. $L_1 = \{c^k a^n c^l b^n c^m \mid k, l, m, n \ge 0\};$
 - 2. $L_2 = \{a^n b^{2n} \mid n \ge 0\};$
 - 3. $L_3 = \{a^{2n}b^n \mid n \ge 0\};$
 - 4. $L_4 = \{u \in \{a, b\}^* \mid |u|_a = 2|u|_b\}$;
 - 5. $L_5 = \{u \in \{a, b, c\}^* \mid |u|_a = 2|u|_b\};$
 - 6. $L_6 = \{ucu^R \mid u \in \{a, b\}^*\};$

- 7. $L_7 = \{wucu^R \in \{a, b, c\}^* \mid w, u \in \{a, b\}^*\};$
- 8. $L_8 = \{a^i b^j c^k \mid i, j, k \ge 0 \text{ és } i+k=j\};$
- 9. $L_9 = \{a^i b^j \mid i, j \ge 0 \text{ és } 2i = 3j\};$
- 10. $L_{10} = \{a^i b^j c^k \mid i, j, k \ge 1 \text{ és } i = j\};$
- 11. $L_{11} = \{a^i b^j c^k \mid i, j, k \ge 1 \text{ és } i \text{ } j\}.$

4.5. Ekvivalens átalakítások veremautomaták és környezetfüggetlen nyelvtanok között

- **4.5.1. Feladat.** Legyen $G = (\{S, A\}, \{a, b\}, R, S)$, ahol $R = \{S \rightarrow aAA, A \rightarrow aS \mid bS \mid a\}$.
 - 1. Adjon meg olyan M veremautomatát, amelyre $L_f(M) = L(G)$!
 - 2. Bizonyítsa be, hogy $a^3ba^4ba^3 \in L(G)$!
 - 3. Adjon meg az 1. részben definiált M veremautomata szerint az $a^3ba^4ba^3$ szóhoz olyan konfigurációs sorozatot, amely bizonyítja, hogy $a^3ba^4ba^3 \in L_f(M)$.
- **4.5.2. Feladat.** Adjon meg veremautomatákat a **4.2.12**. feladatban szereplő nyelvekhez, ismerve a generáló környezetfüggetlen nyelvtanokat!
- **4.5.3. Feladat.** Legyen $L = a^*b^*c^* \{a^nb^nc^n \mid n \ge 0\}, \ \Sigma = \{a, b, c\}.$
 - 1. Adjon meg *L*-et generáló környezetfüggetlen nyelvtant!
 - 2. Adjon meg *L*-et felismerő veremautomatát!
- **4.5.4. Feladat.** Legyen $L = \{a^n b^{2n} \mid n \ge 0\} \cup \{a^n b^n \mid n \ge 0\}$. Adjon meg
 - 1. L-et generáló környezetfüggetlen $G = (V, \{a, b\}, R, S)$ nyelvtant!
 - 2. L-et felismerő veremautomatát!
- © Ésik Zoltán, Gombás Éva, Iván Szabolcs, SzTE

4.5.5. Feladat. Adjon meg olyan $G = (V, \Sigma, R, S)$ környezetfüggetlen nyelvtant, mely az $M = (Q, \Sigma, \Gamma, \delta, q, Z_0, \emptyset)$ veremautomata által üres veremmel felismert nyelvet generálja, ahol $Q = \{p, q\}, \Sigma = \{a, b\}, \Gamma = \{Z_0, a\},$

$$\delta: \begin{array}{c|cccccc} Q & \Sigma_{\varepsilon} & \Gamma_{\varepsilon} & Q & \Gamma^* \\ \hline q & a & Z_0 & q & aZ_0 \\ \delta: & q & a & a & q & aaa \\ q & b & a & p & \varepsilon \\ p & b & a & p & \varepsilon \\ p & \varepsilon & Z_0 & p & \varepsilon \end{array}$$

4.5.6. Feladat.

1. Adjon meg olyan $G = (V, \Sigma, R, S)$ környezetfüggetlen nyelvtant, mely az $M = (Q, \Sigma, \Gamma, \delta, q, Z_0, \emptyset)$ veremautomata által üres veremmel felismert nyelvet generálja, ahol $Q = \{p, q\}, \Sigma = \{a, b\}, \Gamma = \{Z_0, a\},$

$$egin{array}{c|ccccc} Q & \Sigma_{arepsilon} & \Gamma_{arepsilon} & Q & \Gamma^* \ \hline q & arepsilon & Z_0 & q & arepsilon \ d & a & Z_0 & p & aZ_0 \ q & b & a & q & arepsilon \ p & a & a & q & aaa \ \end{array}$$

2. Adja meg az 1. részben definiált *M* veremautomata által üres veremmel felismert nyelvet!

4.5.7. Feladat. Adjon meg olyan $G = (V, \Sigma, R, S)$ környezetfüggetlen nyelvtant, mely az $M = (Q, \Sigma, \Gamma, \delta, 0, Z_0, \emptyset)$ veremautomata által üres veremmel felismert nyelvet generálja, ahol $Q = \{0,1\}, \Sigma = \{a,b\}, \Gamma = \{Z_0,a,b\},$

	Q	$\Sigma_{arepsilon}$	$\Gamma_{arepsilon}$	Q	Γ^*
	0	ε	Z_0	0	ε
	0	a	Z_0	0	aZ_0
	0	b	Z_0	0	bZ_0
	0	a	b	0	ab
	0	a	a	0	aa
δ :	0	a	a	1	ε
	0	b	a	0	ba
	0	b	b	0	bb
	0	b	b	1	ε
	1	a	a	1	ε
	1	b	b	1	arepsilon
	1	arepsilon	Z_0	1	${\cal E}$

4.5.8. Feladat. Legyen $M = (\{0,1\}, \{a,b\}, \{Z_0,X\}, \delta,0, Z_0,\emptyset)$ veremautomata, ahol

- 1. Adjon meg olyan $G=(V, \Sigma, R, S)$ környezetfüggetlen nyelvtant, amelyre $L(G)=L_{\emptyset}(M)$!
- 2. Adja meg az $L_{\emptyset}(M)$ nyelvet!

4.5.9. Feladat. Az alábbi környezetfüggetlen nyelvtanok ismeretében adjon meg olyan veremautomatákat, melyek felismerik a nyelvtanok által generált nyelveket!

1.
$$G_1 = (V_1, \Sigma_1, R_1, S)$$
, ahol $V_1 = \{S, A, B, C\}$, $\Sigma_1 = \{a, b, c\}$,

$$R_{1} = \{S \rightarrow a \mid AB$$

$$A \rightarrow b \mid aC$$

$$B \rightarrow C \mid \varepsilon$$

$$C \rightarrow cS \mid AB\}.$$

2.
$$G_2 = (V_2, \Sigma_2, R_2, S)$$
, ahol $V_2 = \{S, A, B, C\}$, $\Sigma_2 = \{a, b, c\}$,

$$R_{2} = \{S \to ABC$$

$$A \to b \mid AA$$

$$B \to c \mid BB$$

$$C \to a \mid CC\}.$$

3.
$$G_3 = (V_3, \Sigma_3, R_3, S)$$
, ahol $V_3 = \{S, A\}$, $\Sigma_3 = \{a, b\}$,

$$R_3 = \{S \to \varepsilon \mid aSa \mid bA$$
$$A \to \varepsilon \mid bA\}.$$

4.
$$G_4 = (V_4, \Sigma_4, R_4, S)$$
, ahol $V_4 = \{S, A, B\}$, $\Sigma_4 = \{a, b\}$,

$$R_4 = \{S \to \varepsilon \mid aaS \mid bA$$
$$A \to bbA \mid B \mid \varepsilon$$
$$B \to \varepsilon \mid bB \mid aS\}.$$

4.6. Pumpáló lemma környezetfüggetlen nyelvekre

4.6.1. Feladat. Bizonyítsa be, hogy ha $L \subseteq \Sigma^*$ olyan környezetfüggetlen nyelv, melynek minden részhalmaza is környezetfüggetlen, akkor L véges!

4.6.2. Feladat. Bizonyítsa be, hogy az alábbi nyelvek nem környezetfüggetlenek!

- 1. $L_1 = \{a^n b^n c^n \mid n \ge 0\}$
- 2. $L_2 = \{a^n b^m a^n \mid n \ge m\}$
- 3. $L_3 = \{a^i b^i c^j \mid j \ge i\}$
- 4. $L_4 = \{a^i b^j c^k \mid i \le j \le k\}$
- 5. $L_5 = \{a^i b^i c^j \mid i \le j \le 2i\}$
- 6. $L_6 = \{a^n b^m c^n d^m \mid n, m \ge 0\}$
- 7. $L_7 = \{a^{i^2} \mid i > 1\}$
- 8. $L_8 = \{a^p \mid p \text{ prim}\}$
- 9. $L_9 = \{a^{2^i} \mid i \ge 0\}$
- 10. $L_{10} = \{a^i b^{i^2} \mid i \ge 0\}$
- 11. $L_{11} = \{a^i b^j c^k \mid k = \max\{i, j\}\}\$
- 12. $L_{12} = \{ww \mid w \in \{a, b\}^*\}$
- 13. $L_{13} = \{ww^R \mid w \in \{a, b\}^* \text{ és } |w|_a = |w|_b\}$
- 14. $L_{14} = \{ w^k \mid w \in \{a, b\}^*, k > 1 \}$
- 15. $L_{15} = \{wcw^R cw \mid w \in \{a, b\}^*\}$
- 16. $L_{16} = \{scr \mid s, r \in \{a, b\}^*, |s|_a = |r|_a \text{ és } |s|_b = |r|_b\}$
- 17. $L_{17} = \{scr \mid s, r \in \{a, b\}^*, |s|_a = |r|_b \text{ és } |s|_b = |r|_a\}$
- 18. $L_{18} = \{ w \in \{a, b, c\}^* \mid |w|_a = |w|_b > |w|_c \}$
- 19. $L_{19} = \{a^i b^{2i} c^{3i} \mid i > 0\}$
- 4.6.3. Feladat. Bizonyítsa be, hogy az
 - 1. $L_1 = \{a^i b^{2i} c^j \mid i, j \ge 0\}$ nyelv környezetfüggetlen!

- 2. $L_2 = \{a^i b^j c^{2j} \mid i, j \ge 0\}$ nyelv környezetfüggetlen!
- 3. $L = L_1 \cap L_2$ nyelv nem környezetfüggetlen!
- 4.6.4. Feladat. Bizonyítsa be, hogy az
 - 1. $L_1 = \{a^i b^i c^j d^j \mid i, j \ge 0\}$ nyelv környezetfüggetlen!
 - 2. $L_2 = \{a^i b^j c^j d^k \mid i, j, k \ge 0\}$ nyelv környezetfüggetlen!
 - 3. $L = L_1 \cap L_2$ nyelv nem környezetfüggetlen!
- **4.6.5. Feladat.** Az alábbi nyelvek közül melyek környezetfüggetlenek? Állítását igazolja!

1.
$$L_1 = \{a^i b^j c^k \mid i, j, k \ge 1 \text{ és } (2i = 3k \text{ vagy } 7j = 5k)\}$$

2.
$$L_2 = \{a^i b^j c^k \mid i, j, k \ge 1 \text{ és } (2i = 3k \text{ és } 7j = 5k)\}$$

3.
$$L_3 = \{(a^i b)^i \mid i \ge 1\}$$

4.
$$L_4 = \{a^i b^j c^k d^l \mid i, j, k, l \ge 1 \text{ és } (i = j \text{ és } k = l)\}$$

5.
$$L_5 = \{a^i b^j c^k d^l \mid i, j, k, l \ge 1 \text{ és } (i = k \text{ és } j = l)\}$$

6.
$$L_6 = \{a^i b^j c^k d^l \mid i, j, k, l \ge 1 \text{ és } (i = l \text{ és } j = k)\}$$

7.
$$L_7 = \{a^i b^j \mid i \ j \ \text{\'es} \ i \ 2j\}$$

8.
$$L_8 = \{ww^R w \mid w \in \{a, b\}^*\}$$

9.
$$L_9 = \{a, b, c\}^* - \{a^i b^i c^i \mid i \ge 1\}$$

10.
$$L_{10} = \{a^i b^j b^i a^j \mid i, j \ge 0\}$$

11.
$$L_{11} = \{a^i b^j c^k d^l \mid i, j, k, l \ge 0 \text{ és } (i < l \text{ és } j \text{ } k)\}$$

4.7. Környezetfüggetlen nyelvek zártsági tulajdonságai

4.7.1. Feladat. Bizonyítsa be a környezetfüggetlen nyelvek zártsági tulajdonságai alapján, hogy az alábbi nyelvek környezetfüggetlenek!

1.
$$L_1 = \{w_1 \# w_2 \mid w_1, w_2 \in \{a, b\}^* \text{ \'es } w_1 \ w_2 \text{ vagy } |w_1| < |w_2|\}$$

2.
$$L_2 = \{a^i b^j \mid i \ j\}$$

© Ésik Zoltán, Gombás Éva, Iván Szabolcs, SzTE

- 3. $L_3 = a^*b^*c^* \{a^ib^ic^i \mid i \ge 0\}$
- 4. $L_4 = \{a^i b^j c^k \mid i = j \text{ vagy } j = k\}$
- 5. $L_5 = \{ucvcwct \in \{a, b, c\}^* \mid u, v, w, t \in \{a, b\}^*, u = t^R, v = w^R\}$
- 6. $L_6 = \{a^i b^j c^k \mid i, j, k \ge 0 \text{ és } j \ge i + k\}$
- 7. $L_7 = \{a, b, c\}^* \{a^n b^n c^n \mid n \ge 1\}$
- 8. $L_8 = \{a, b\}^* \{ww \mid w \in \{a, b\}^*\}$
- 9. $L_9 = \{ucvcwct \in \{a, b, c\}^* \mid u, v, w, t \in \{a, b\}^*, u t^R\}$
- 10. $L_{10} = \{a, b\}^* \{(a^m b^m)^n \mid n, m \ge 1\}$
- **4.7.2. Feladat.** Adjon meg környezetfüggetlen nyelvet, melynek van nem környezetfüggetlen részhalmaza!
- **4.7.3. Feladat.** Adjon meg egy olyan $L \subseteq \{a, b\}^*$ környezetfüggetlen nyelvet, hogy L^* nem reguláris!
- **4.7.4. Feladat.** Igaz-e, hogy reguláris nyelv kommutatív lezártja mindig környezetfüggetlen?
- **4.7.5. Feladat.** Bizonyítsa be a környezetfüggetlen nyelvek zártsági tulajdonságai alapján és felhasználva, hogy az $L_1 = \{a^i b^j a^i b^j \mid i, j \ge 1\}$ nyelv nem környezetfüggetlen, hogy az $L = \{ww \mid w \in \{a, b\}^*\}$ nyelv nem környezetfüggetlen!

4.7.6. Feladat.

1. Bizonyítsa be, hogy az alábbi nyelvek környezetfüggetlenek!

$$L_{1} = \{a^{i}b^{j}c^{k} \mid i, j, k \ge 0 \text{ és } i \le k\},\$$

$$L_{2} = \{a^{i}b^{j}c^{k} \mid i, j, k \ge 0 \text{ és } j \le k\},\$$

$$L_{3} = \{a^{i}b^{j}c^{k} \mid i, j, k \ge 0 \text{ és } i \ge k\},\$$

$$L_{4} = \{a^{i}b^{j}c^{k} \mid i, j, k \ge 0 \text{ és } j \ge k\}.$$

2. Bizonyítsa be, hogy az alábbi nyelvek környezetfüggetlenek, felhasználva a környezetfüggetlen nyelvek zártsági tulajdonságait!

$$L = \{a^i b^j c^k \mid i, j, k \ge 0 \text{ és } k \ge \min\{i, j\}\},\$$

$$L' = \{a^i b^j c^k \mid i, j, k \ge 0 \text{ és } k \le \max\{i, j\}\}.$$

- **4.7.7. Feladat.** Bizonyítsa be, hogy a környezetfüggetlen nyelvek osztálya *nem zárt* a
 - 1. $L \mapsto max(L) = \{x \in L \mid \text{bármely } xy \in L \text{ esetén } y = \varepsilon\}$ műveletre;
 - 2. $L \mapsto min(L) = \{x \in L \mid x \text{ bármely } y \text{ prefixére, melyre } x \ y, y \notin L\}$ műveletre;
 - 3. $L \mapsto L^* \coprod$ műveletre!

4.7.8. Feladat. Bizonyítsa be a környezetfüggetlen nyelvek zártsági tulajdonságait felhasználva, hogy az

$$L = \{w \in \{a, b, c\}^* \mid |w|_a = |w|_b = |w|_c\}$$

nyelv nem környezetfüggetlen!

4.7.9. Feladat. Bizonyítsa be, hogy ha $L_1, L_2 \subseteq \Sigma^*, L_1$ környezetfüggetlen nyelv, L_2 pedig reguláris nyelv, akkor L_1/L_2 nyelv környezetfüggetlen, ahol

$$L_1/L_2 = \{x \in \Sigma^* \mid \exists y \in L_2 : xy \in L_1\}$$

4.7.10. Feladat. Legyen $L \subseteq \Sigma^*$ környezetfüggetlen nyelv. Bizonyítsa be, hogy

$$\operatorname{prefix}(L) = \{ x \in \Sigma^* \mid \exists y \in \Sigma^* : xy \in L \}$$

környezetfüggetlen nyelv!

4.7.11. Feladat. Legyen $L \subseteq \Sigma^*$ környezetfüggetlen nyelv. Bizonyítsa be, hogy

$$suffix(L) = \{ y \in \Sigma^* \mid \exists x \in \Sigma^* : xy \in L \}$$

nyelv környezetfüggetlen!

- **4.7.12. Feladat.** Legyen $L \subseteq \Sigma^*$ környezetfüggetlen és $R \subseteq \Sigma^*$ reguláris nyelv.
 - 1. Környezetfüggetlen nyelv-e az L-R nyelv?
 - 2. Mi állítható az R-L nyelvről?
- **4.7.13. Feladat.** Legyen $L \subseteq \Sigma^*$ környezetfüggetlen nyelv. Bizonyítsa be, hogy

$$sub(L) = \{ v \in \Sigma^* \mid \exists x, z \in \Sigma^* : xvz \in L \}$$

környezetfüggetlen nyelv!

- **4.7.14. Feladat.** Legyen $L\subseteq \Sigma^*$ környezetfüggetlen nyelv. Bizonyítsa be, hogy L^R is környezetfüggetlen!
- **4.7.15. Feladat.** Legyen $L \subseteq \Sigma^*$ környezetfüggetlen nyelv. Bizonyítsa be, hogy

$$cycle(L) = \{x_1x_2 \mid x_1, x_2 \in \Sigma^* \text{ és } x_2x_1 \in L\}$$

környezetfüggetlen nyelv!

Megoldások

4.2.1. Feladat.

1. hamis

4. hamis

2. igaz

5. igaz

3. hamis

6. igaz

7. Az a(a+b)*+b(a+b)*a nyelvet az alábbi M automata felismeri:

M ismeretében az L(M)-et generáló jobb-lineáris nyelvtan:

$$G' = (V', \Sigma, R', S')$$
, ahol $V' = \{0, 1, 2, 3\}, S' = 0$,

$$R' = \{0 \rightarrow a1 \mid b2$$

$$1 \rightarrow a1 \mid b1 \mid b3$$

$$2 \rightarrow a2 \mid b2 \mid a3$$

$$3 \rightarrow \varepsilon\}.$$

4.2.2. Feladat.

- 1. $w \in L(G)$, mivel
 - S-ből az alábbi levezetés adható meg w-hez:

$$S \Rightarrow abSba \Rightarrow (ab)^2 S(ba)^2 \Rightarrow (ab)^2 A(ba)^2 \Rightarrow (ab)^2 c^2 (ba)^2$$

– másik megoldás: $w \in L(G)$, mivel az alábbi t G szerinti S gyökerű derivációs fára teljesül, hogy fr(t) = w.

2.
$$L(G) = \{(ab)^n (cc)^m (ba)^n \mid n \ge 0, m \ge 1\}$$

- **4.2.3. Feladat.** Ötlet: adjon meg K-ből kiinduló levezetést a w szóhoz G szerint, vagy adjon meg K gyökerű derivációs fát, melyre fr(t) = w.
- **4.2.4. Feladat.** Az alábbi t_1 és t_2 defivációs fákra teljesül, hogy $fr(t_1) = fr(t_2) = w$:

A baloldali levezetések a t_1 és t_2 ismeretében könnyen megadhatók : $S \Rightarrow_{\ell} AB \Rightarrow_{\ell} aCB \Rightarrow_{\ell} acCB \Rightarrow_{\ell} acABB \Rightarrow_{\ell} acbBB \Rightarrow_{\ell} acbB \Rightarrow_{\ell} acbC \Rightarrow_{\ell} acbABB \Rightarrow_{\ell} acbBB \Rightarrow_{\ell} acbbBB \Rightarrow_{\ell} acbbBB \Rightarrow_{\ell} acbbBB \Rightarrow_{\ell} acbbBB \Rightarrow_{\ell} acbbB \Rightarrow_{\ell} acbbBB \Rightarrow_{\ell}$

4.2.5. Feladat.

- 1. $S \Rightarrow_{\ell} aB \Rightarrow_{\ell} aaBB \Rightarrow_{\ell} aabB \Rightarrow_{\ell} aabb$
 - $S \Rightarrow_{\ell} bA \Rightarrow_{\ell} baS \Rightarrow_{\ell} babA \Rightarrow_{\ell} babbAA \Rightarrow_{\ell} babbaA \Rightarrow_{\ell} babbaa$
 - $S \Rightarrow_{\ell} aB \Rightarrow_{\ell} a^2B^2 \Rightarrow_{\ell} a^3B^3 \Rightarrow_{\ell} a^3bB^2 \Rightarrow_{\ell} a^3b^2SB \Rightarrow_{\ell} a^3b^2aB^2 \Rightarrow_{\ell} a^3b^2abB \Rightarrow_{\ell} a^3b^2ab^2S \Rightarrow_{\ell} a^3b^2b^3A \Rightarrow_{\ell} a^3b^2ab^3A \Rightarrow_{\ell} a^3b^2ab^3a$
- 2. $S \Rightarrow_r aB \Rightarrow_r aaBB \Rightarrow_r aaBb \Rightarrow_r aabb$
 - $S \Rightarrow_r bA \Rightarrow_r baS \Rightarrow_r babA \Rightarrow_r bab^2AA \Rightarrow_r bab^2Aa \Rightarrow_r bab^2a^2$
 - $S \Rightarrow_r aB \Rightarrow_r a^2B^2 \Rightarrow_r a^2BbS \Rightarrow_r a^2Bb^2A \Rightarrow_r a^2Bb^2a \Rightarrow_r a^3B^2b^2a \Rightarrow_r a^3BbSb^2a \Rightarrow_r a^3BbaBb^2a \Rightarrow_r a^3Bbab^3a \Rightarrow_r a^3b^2ab^3a$
- 3. w₁-hez tartozó derivációs fa a t₁, a w₂-höz tartozó derivációs fa a t₂, a w₃-hoz tartozó derivációs fa a t₃:

*Figure 4.1. t*₁

*Figure 4.2. t*₂

*Figure 4.3. t*₃

4.2.6. Feladat.

- 1. Nincs L(G)-ben, mert G nem generál b-vel befejeződő szót.
- 2. Létezik S gyökerű derivációs fa a szóhoz, így L(G)-ben van.
- 3. Nincs L(G)-ben, mert G nem generál olyan szót, melyben valamely előfordulását b-nek ne az a követné.
- 4. L(G)-ben van.

4.2.7. Feladat.

- 1. $L(G) = (a^+ba^+)^+$.
- 2. $G' = (V', \Sigma, R', 0)$, ahol $V' = \{0, 1, 2, 3\}$,

$$R' = \{0 \rightarrow a1$$

$$1 \rightarrow a1 \mid b2$$

$$2 \rightarrow a1 \mid a3$$

$$3 \rightarrow a3 \mid \epsilon\}.$$

4.2.8. Feladat.

1. Az alábbi t_1 és t_2 derivációs fákra teljesül, hogy t_1 t_2 és $fr(t_1) = fr(t_2) = aaa$:

2. $L(G) = a^+$.

4.2.9. Feladat.

- 1. $L(G_1) = \{w \in \{a, b\}^* \mid w = w^R \text{ és } |w| \text{ páros}\}$
- 2. $L(G_2) = \{w \in \{a, b\}^* \mid w = w^R \text{ és } |w| \text{ páratlan}\}$
- 3. $L(G_3) = \{a^n b^m \mid n \ge 1, m \ge 0\}$
- 4. $L(G_4) = \{a^n bba^n \mid n \ge 0\} \cup \{a^{2n} \mid n \ge 0\}$
- 5. $L(G_5) = \{aw \mid w \in \{a, b\}^*\}$
- © Ésik Zoltán, Gombás Éva, Iván Szabolcs, SzTE

4.2.10. Feladat. $S \Rightarrow ABA \Rightarrow AbSA \Rightarrow AbABAA \Rightarrow^* (Ab)^n A^{n+1} \Rightarrow^* (ab+bbb)^n (a+bb)^{n+1}$ $L(G) = \bigcup_{n>0} (ab+bbb)^n (a+bb)^{n+1}$.

4.2.11. Feladat. $S \Rightarrow^* wAw^R \Rightarrow waBbw^R \Rightarrow^* wa\{a, b\}^nbw^R$, ahol $w \in \Sigma^*$, $n \ge 0$ $L(G) = \{waubw^R : u, w \in \{a, b\}^*\}.$

4.2.12. Feladat.

- 1. $G = (\{S\}, \{a, b\}, R, S), \text{ ahol } R = \{S \to aSb \mid \epsilon\}$
- 2. $G = (\{S\}, \{a, b\}, R, S), \text{ ahol } R = \{S \rightarrow aSb \mid ab\}$
- 3. $G = (\{S\}, \{a, b\}, R, S), \text{ ahol } R = \{S \to aSbb \mid \epsilon\}$
- 4. $G = (\{S\}, \{a, b\}, R, S), \text{ ahol } R = \{S \to aSb \mid Sb \mid \epsilon\}$
- 5. $G = (\{S\}, \{a, b\}, R, S), \text{ ahol } R = \{S \rightarrow aSb \mid aaSb \mid Sb \mid \epsilon\}$
- 6. $G = (\{S\}, \{a, b\}, R, S), \text{ ahol } R = \{S \rightarrow aSb \mid aSbb \mid aS \mid a \mid ab\}$
- 7. $G = (\{S\}, \{a, b\}, R, S), \text{ ahol } R = \{S \rightarrow aSb \mid aaSb \mid \epsilon\}$
- 8. $G = (\{S, S_1, S_2\}, \{a, b\}, R, S)$, ahol

$$R = \{S \rightarrow S_1 \mid S_2$$

$$S_1 \rightarrow aS_1b \mid S_1b \mid b$$

$$S_2 \rightarrow aS_2b \mid aS_2 \mid a\}$$

$$L(G) = \{a^n b^m \mid n < m\} \cup \{a^n b^m \mid m < n\}$$

- 9. $G = (\{S\}, \{a, b\}, R, S), \text{ ahol } R = \{S \rightarrow aaSbbb \mid \epsilon\}$
- 10. $G = (\{S\}, \{a, b\}, R, S), \text{ ahol } R = \{S \rightarrow aaSbbb \mid abb\}$
- 11. $G = (\{S, Y\}, \{a, b\}, R, S)$, ahol

$$R = \{S \to aSY \mid abY \\ Y \to aY \mid ab\}$$

12. $G = (\{S, B\}, \{a, b, c\}, R, S), \text{ ahol}$

$$R = \{S \to aSc \mid B \\ B \to bB \mid \varepsilon\}$$

13. $G = (\{S, S_1, S_2, B\}, \{a, b, c\}, R, S)$, ahol

$$R = \{S \rightarrow S_1 \mid S_2$$

$$S_1 \rightarrow aS_1c \mid S_1c \mid Bc$$

$$S_2 \rightarrow aS_2c \mid aS_2 \mid aB$$

$$B \rightarrow bB \mid b\}$$

$$L(G) = \{a^n b^m c^k \mid n < k, m > 0\} \cup \{a^n b^m c^k \mid n > k, m > 0\}$$

14. $G = (\{S, S_1, S_2, A, B\}, \{a, b, c\}, R, S)$, ahol

$$R = \{S \rightarrow S_1 \mid AS_2 \\ S_1 \rightarrow aS_1c \mid B \\ S_2 \rightarrow bS_2c \mid \varepsilon \\ A \rightarrow aA \mid \varepsilon \\ B \rightarrow bB \mid \varepsilon\}$$

$$L(G) = \{a^n b^m c^n \mid n, m \ge 0\} \cup \{a^n b^m c^m \mid n, m \ge 0\}$$

- 15. Legyen $L(G_1) = \{a^n b^m c^k \mid k, m, n \ge 0 \text{ és } n \text{ } m\},$ $L(G_2) = \{a^n b^m c^k \mid k, m, n \ge 0 \text{ és } m \text{ } k\}, \text{ akkor } G_1 = (V_1, \{a, b, c\}, R_1, S_1) \text{ és } G_2 = (V_2, \{a, b, c\}, R_2, S_2) \text{ a } 13. \text{ pontbeli feladathoz hasonlóan megadható úgy, hogy } V_1 \cap V_2 = \emptyset. \text{ Mivel } L(G_1) \cup L(G_2) = \{a^n b^m c^k \mid n, m, k \ge 0 \text{ és } n \text{ } m \text{ vagy } m \text{ } k\}, \text{ fgy } G = (V_1 \cup V_2 \cup \{S\}, \{a, b, c\}, R, S), \text{ ahol } R = R_1 \cup R_2 \cup \{S \to S_1 \mid S_2\}.$
- 16. $G = (\{S, X\}, \{a, b, c\}, R, S), \text{ ahol}$

$$R = \{S \to aSc \mid X \\ X \to bXc \mid \varepsilon\}$$

17. $G = (\{S, X, Y\}, \{a, b, c\}, R, S), \text{ ahol}$

$$R = \{S \to XY$$

$$X \to aXb \mid \varepsilon$$

$$Y \to bYc \mid \varepsilon\}$$

18. $G = (\{S, X\}, \{a, b, c\}, R, S), \text{ ahol}$

$$R = \{S \to aSc \mid X \\ X \to bXc \mid Xc \mid c\}$$

19. $G = (\{S, S_1, S_2, X, Y\}, \{a, b, c\}, R, S)$, ahol

$$R = \{S \rightarrow aS_1 \mid S_2$$

$$S_1 \rightarrow aS_1c \mid aS_1 \mid X$$

$$X \rightarrow bXc \mid bX \mid \varepsilon$$

$$S_2 \rightarrow aS_2c \mid aS_2 \mid Y$$

$$Y \rightarrow bYc \mid bY \mid b\}$$

- 20. Legyen $L_1 = \{a^n b^m c^k \mid k < n+m\}$, $L_2 = \{a^n b^m c^k \mid k > n+m\}$, mely nyelvekhez a generáló $G_1 = (V_1, \Sigma, R_1, S_1)$, $G_2 = (V_2, \Sigma, R_2, S_2)$ nyelvtanokat, melyekre $V_1 \cap V_2 = \emptyset$, az előző két feladat megoldása alapján megadhatjuk. Mivel $L_1 \cup L_2 = \{a^n b^m c^k : k \ n+m\}$, ezért $G = (V_1 \cup V_2 \cup \{S\}, \Sigma, R, S)$, ahol $R = R_1 \cup R_2 \cup \{S \rightarrow S_1 \mid S_2\}$.
- 21. $G = (\{S, A\}, \{a, b, c\}, R, S), \text{ ahol } R = \{S \rightarrow aSc \mid A, A \rightarrow bAcc \mid \epsilon\}.$
- 22. $G = (\{S, A\}, \{a, b, c\}, R, S)$, ahol

$$R = \{S \to aSc \mid aS \mid A$$
$$A \to bAcc \mid bAc \mid bA \mid \epsilon\}$$

Ötlet: a 19. pontbeli példához megadott nyelvtan szabályait módosítjuk úgy, hogy $S \Rightarrow^* a^m A c^{p_1}$, ahol $m \ge p_1$ és $A \Rightarrow^* b^n c^{p_2}$, ahol $2n \ge p_2$.

23. $G = (\{S, X\}, \{a, b\}, R, S)$, ahol

$$R = \{S \to XX \\ X \to aXb \mid \varepsilon\}$$

24. $G = (\{S, X\}, \{a, b\}, R, S)$, ahol

$$R = \{S \to aSb \mid X \\ X \to bXa \mid \varepsilon\}$$

- 25. A 8. pontban szereplő feladathoz hasonlóan megadható olyan $G_1 = (V_1, \{a, b\}, R_1, S_1)$ nyelvtan, melyre $L(G_1) = \{b^k a^m \mid k m\}$ és legyen $S \notin V_1$. $G = (V_1 \cup \{S\}, \{a, b\}, R, S)$, ahol $R = \{S \rightarrow aSb \mid S_1\} \cup R_1$.
- 26. Legyen $G_1 = (V_1, \{a, b\}, R_1, S_1)$ az a nyelvtan, melyre $S, S_2 \notin V_1$ és $L(G_1) = \{a^n b^{n+m} a^m \mid n, m \ge 0\}$ (lsd. a 17. pont példáját). $G = (V_1 \cup \{S, S_2\}, \{a, b\}, R, S)$, ahol $R = R_1 \cup \{S \to S_1 \mid S_2, S_2 \to aS_2b \mid aabb\}$.
- 27. $G = (\{S\}, \{a, b\}, R, S), \text{ ahol } R = \{S \rightarrow aSa \mid bSb \mid \epsilon\}$

28.
$$G = (\{S\}, \{a, b\}, R, S), \text{ ahol } R = \{S \rightarrow aSa \mid bSb \mid a \mid b \mid \epsilon\}$$

29.
$$G = (\{S\}, \{a, b\}, R, S)$$
, ahol $R = \{S \rightarrow aS \mid aSbS \mid \epsilon\}$
Ötlet: $S \rightarrow \epsilon \in R$ mivel $\epsilon \in L$;
 $S \rightarrow aS \in R$ mivel, ha $y \in L$, akkor $ay \in L$;
 $S \rightarrow aSbS \in R$ mivel, ha $y \notin L$, de $ay \in L$, akkor $y = v_1bv_2$, ahol $v_1, v_2 \in L$.

30. 1. megoldás: $G = (\{S\}, \{a, b\}, R, S)$, ahol $R = \{S \rightarrow aSbS \mid bSaS \mid \epsilon\}$; 2. megoldás: $G = (\{S, A, B\}, \{a, b\}, R, S)$, ahol

$$R = \{S \to aB \mid bA \mid \varepsilon$$

$$A \to aS \mid bAA \mid a$$

$$B \to bS \mid aBB \mid b\};$$

- 31. $G = (\{S, S_1\}, \{a, b\}, R, S)$, ahol $R = \{S \rightarrow S_1bS_1, S_1 \rightarrow S_1S_1|aS_1b|bS_1a|bS_1|S_1b|\epsilon\}$. Ötlet: az S_1 -ből levezethető szavak a $\{w \in \{a, b\}^* : |w|_a \le |w|_b\}$ nyelvbe tartoznak
- 32. Ötlet: $L = L_1 \cup L_2$, ahol $L_1 = \{w \in \{a, b\}^* \mid |w|_a < |w|_b\}$ és $L_2 = \{w \in \{a, b\}^* \mid |w|_a > |w|_b\}$. A 31. pontbeli példához hasonlóan L_1 -hez és L_2 -höz megadható G_1 illetve G_2 generáló környezetfüggetlen nyelvtan, melyek ismeretében L-hez a G megadható.
- 33. $G = (\{S\}, \{a, b\}, R, S), \text{ ahol } R = \{S \rightarrow aS \mid bS \mid a \mid b\}.$
- 34. $G = (\{S, A, B, C\}, \{a, b\}, R, S)$, ahol

$$R = \{S \rightarrow \varepsilon \mid aBB \mid bA$$

$$A \rightarrow aB \mid bC$$

$$B \rightarrow bS \mid aBBB$$

$$C \rightarrow aS \mid bAC \mid bCA\}.$$

Ötlet: legyen $d(w) = 2|w|_a - |w|_b$, a nyelvtan nemterminálisaiból a következő nyelvek legyenek generálhatóak: $S = \{w \in \{a, b\}^* \mid d(w) = 0\}$, $A = \{w \in \{a, b\}^* \mid d(w) = 1\}$, $B = \{w \in \{a, b\}^* \mid d(w) = -1\}$, $C = \{w \in \{a, b\}^* \mid d(w) = 2\}$, továbbá használjuk a következő jelölést: $a = \{a\}$ és $b = \{b\}$

Ekkor $S = \{\varepsilon\} \cup aBB \cup bA$, $A = bC \cup aB$, $B = bS \cup aBBB$, $C = aS \cup bAC \cup bCA$.

- 35. A 34. pont példájához megadott G nyelvtan R szabályhalmazát használjuk fel a konstruálandó $G_1 = (V_1, \{a, b\}, R_1, S_1)$ nyelvtanhoz az alábbiak szerint: $V_1 = V \cup \{S_1\}, R_1 = \{S_1 \rightarrow AC \mid CA\} \cup R$.
- 36. $G = (\{S, A, B, C\}, \{a, b, c, d\}, R, S)$, ahol

$$R = \{S \rightarrow aSd \mid A \mid B$$

$$A \rightarrow aAc \mid C$$

$$B \rightarrow bBd \mid C$$

$$C \rightarrow bCc \mid \varepsilon\}$$

Ötlet: Ha lehet a-t illeszteni d-vel ($S \to aSd$), ha d elfogy ($S \to A$) folytatja az illesztést c-vel, ha az a és d közül először az a fogy el ($S \to B$). Az a és c illesztésénél csak az lehet, hogy vagy a fogy el vagy egyszerre fogynak el ($A \to C$), a b és d illesztésénél csak az lehet, hogy vagy d fogy el vagy egyszerre fogynak el ($B \to C$). A C-ből kiindulva már csak a még eddig nem illesztett b-ket és c-ket illeszti.

37. $G = (\{S, A, B\}, \{a, b\}, R, S), \text{ ahol}$

$$R = \{S \to AB$$

$$A \to aAa \mid bAb \mid \#$$

$$B \to aB \mid bB \mid \varepsilon\}$$

38. $G = (\{S, A, B, C, D, X, Y\}, \{a, b\}, R, S)$, ahol

$$R = \{S \rightarrow BaX \mid AbX \mid CD \mid DC$$

$$X \rightarrow aX \mid bX \mid \varepsilon$$

$$A \rightarrow YAY \mid aX\#$$

$$B \rightarrow YBY \mid bX\#$$

$$Y \rightarrow a \mid b$$

$$C \rightarrow YCY \mid \#$$

$$D \rightarrow aD \mid bD \mid a \mid b\}$$

Ötlet: Az *L*-be tartozó x#y alakú szavak vagy olyanok, hogy |x| |y|, ezek a *CD*-ből vagy *DC*-ből generálhatóak; vagy olyanok, hogy $x_i y_i$ valamely *i*-re (ahol $x = x_1 ... x_n$, $y = y_1 ... y_m$, $x_i, y_i \in \{a, b\}$). Ez utóbbiak a *BaX*-ből vagy *AbX*-ből generálhatóak.

39. $G = (\{S, X, Y\}, \{a, b, c\}, R, S), \text{ ahol}$

$$R = \{S \to Xb \\ X \to YXY \mid ac \\ Y \to a \mid b\}$$

40. $G = (\{S, X\}, \{a, b\}, R, S)$, ahol

$$R = \{S \to SS \mid X \mid \varepsilon \\ X \to aXa \mid bXb \mid a\#a \mid b\#b\}$$

41. $G = (\{S, X, Y\}, \{a, b\}, R, S), \text{ ahol}$

$$R = \{S \to XY$$

$$X \to aXa \mid bXb \mid \#Y$$

$$Y \to aY \mid bY \mid \varepsilon\}$$

42. $G = (\{S, X\}, \{a, b\}, R, S)$, ahol

$$R = \{S \to XY$$

$$X \to aXaY \mid bXbY \mid \#Y$$

$$Y \to aY \mid bY \mid \varepsilon\}$$

4.3.1. Feladat. $H = \{A \in V \mid \exists w \in \Sigma^* : A \Rightarrow^* w\}$ meghatározása: $H_1 = \{B, C\}, H_2 = H_1 \cup \{S\}, H_3 = H_2 = \{S, B, C\}$ és $H = H_3$. Ekkor a G megszorítása $H_3 \cup \Sigma$ -ra a $G_1 = (V_1, \Sigma, R_1, S)$, ahol

$$R_1 = \{S \to C$$

$$B \to CS \mid b$$

$$C \to bS \mid b\}.$$

 G_1 -ben a $K = \{X \in (V \cup \Sigma) \mid \exists \alpha, \beta \in (V_1 \cup \Sigma)^* : S \Rightarrow^* \alpha X \beta\}$ halmaz meghatározására: $K_1 = \{S\}, K_2 = K_1 \cup \{C\}, K_3 = K_2 \cup \{b\}, K_4 = K_3 = \{S, C, b\}$ és $K = K_4$. $G' = (V', \Sigma', R', S)$ lesz a G_1 -nek a K szerinti megszorítása, vagyis $V' = \{S, C\}, \Sigma' = \{b\}, R' = \{S \rightarrow C, C \rightarrow bS \mid b\}$.

4.3.2. Feladat.

- 1. $G' = (\{S, D\}, \Sigma, \{S \rightarrow abD, D \rightarrow DD \mid \varepsilon\}).$
- 2. $L(G) = \{ab\}.$

4.3.3. Feladat.

- 1. $G' = (\{S, A, C\}, \{a, b\}, \{S \to CA, A \to a, C \to b\}).$
- 2. $L(G) = \{ab\}.$
- **4.3.4. Feladat.** $V' = \{S, B\}, R' = \{S \to BS \mid B, B \to b\}$
- **4.3.5. Feladat.** $H = \{C, A, S\}$. S nem fordul elő egyetlen szabály jobb oldalán sem, ezért nem kell új kezdőszimbólum, vagyis S' = S és V' = V.

$$R' = \{S \to ACA \mid AC \mid CA \mid AA \mid A \mid C \mid \varepsilon$$

$$A \to aAa \mid B \mid C \mid aa$$

$$B \to bB \mid b$$

$$C \to cC \mid c\}.$$

4.3.6. Feladat. $H = \{A \in V \mid A \Rightarrow^* \epsilon\}$ meghatározása: $H_1 = \{A\}, H_2 = H_1 \cup \{B, C\}, H_3 = H_2 \cup \{S\}, H_4 = H_3 = H = \{S, A, B, C\}.$

 $G_1 = (V_1, \Sigma, R_1, S_1)$ megkonstruálása: mivel $S \in H$, ezért $V_1 = V \cup \{S_1\}$ és S_1 a G_1 kezdőszimbóluma lesz;

$$R_{1} = \{S_{1} \rightarrow S \mid \varepsilon$$

$$S \rightarrow ABC \mid AB \mid AC \mid BC \mid A \mid B \mid C$$

$$A \rightarrow BB \mid B$$

$$B \rightarrow CC \mid A \mid C$$

$$C \rightarrow AA \mid b \mid A\}.$$

4.3.7. Feladat. $G_1 = (V, \Sigma, R_1, E)$, ahol

$$R_{1} = \{E \rightarrow TT' \mid T$$

$$T' \rightarrow +TT' \mid +T$$

$$T \rightarrow FF' \mid F$$

$$F' \rightarrow *FF' \mid *F$$

$$F \rightarrow (E) \mid a\}$$

4.3.8. Feladat. G-vel ekvivalens és csak hasznos szimbólumokat tartalmazó $G' = (V', \Sigma, R, S)$ nyelvtan, ahol $V' = \{S, A, B\}$,

$$R' = \{S \to B \\ A \to AbB \mid BA \mid b \\ B \to aAB \mid \epsilon\}$$

G'-vel ekvivalens ε -mentes $G_1 = (V_1, \Sigma, R_1, S_1)$, ahol $V_1 = V' \cup \{S_1\}$,

$$R_{1} = \{S_{1} \rightarrow \varepsilon \mid S$$

$$S \rightarrow B$$

$$A \rightarrow AbB \mid Ab \mid BA \mid b$$

$$B \rightarrow aAB \mid aA\}$$

4.3.9. Feladat. Ötlet: adjon meg a G_1 , illetve G_2 -vel ekvivalens ε -mentes nyelvtant.

4.3.10. Feladat.

$$R' = \{S \to ASB \mid b \mid a$$

$$A \to Aa \mid b \mid a$$

$$B \to b \mid a$$

$$C \to a\}.$$

99

4.3.11. Feladat. 4.3.6 feladat megoldásában szereplő G_1 ε -mentes nyelvtanhoz vele ekvivalens $G_2 = (V, \Sigma, R_2, S_1)$ láncszabálymentes nyelvtan megadása:

az algoritmus szerinti V_X halmazok, $X \in V'$ -re:

$$V_{S_1} = \{S_1, S, A, B, C\}, V_S = \{S, A, B, C\}, V_A = \{A, B, C\}, V_B = \{A, B, C\}, V_C = \{A, B, C\};$$

$$R_{2} = \{S_{1} \rightarrow \varepsilon \mid ABC \mid AB \mid AC \mid BC \mid BB \mid CC \mid AA \mid b$$

$$S \rightarrow ABC \mid AB \mid AC \mid BC \mid BB \mid CC \mid AA \mid b$$

$$A \rightarrow BB \mid CC \mid AA \mid b$$

$$B \rightarrow CC \mid BB \mid AA \mid b$$

$$C \rightarrow AA \mid BB \mid CC \mid b\}.$$

 G_2 nyelvtan ε -mentes, láncszabálymentes és $L(G_2) = L(G)$

4.3.7 feladat megoldásában szereplő G_1 nyelvtannal ekvivalens ε -mentes és láncszabálymentes nyelvtan $G_2 = (V_1, \Sigma, R_2, E)$, ahol

$$R_{2} = \{E \rightarrow TT' \mid FF' \mid (E) \mid a$$

$$T' \rightarrow +TT' \mid +T$$

$$T \rightarrow FF' \mid (E) \mid a$$

$$F' \rightarrow *FF' \mid *F$$

$$F \rightarrow (E) \mid a\}.$$

4.3.8 feladat megoldásában szereplő G_1 nyelvtannal ekvivalens ε -mentes és láncszabálymentes nyelvtan $G_2 = (V_1, \Sigma, R_2, S_1)$, ahol

$$R_{2} = \{S_{1} \rightarrow \varepsilon \mid aAB \mid aA$$

$$S \rightarrow aAB \mid aA$$

$$A \rightarrow AbB \mid Ab \mid BA$$

$$B \rightarrow aAB \mid aA\}.$$

- **4.3.12. Feladat.** Ötlet: a nyelveket generáló környezetfüggetlen nyelvtanokkal ekvivalens, a feladatban megadott tulajdonságokkal bíró nyelvtanok megkonsturálása.
- **4.3.13. Feladat.** Közvetlen balrekurzivitás megszüntetése *S*-re vonatkozóan:

$$R' = \{S \rightarrow a \mid (S) \mid aX \mid (S)X$$
$$X \rightarrow +SX \mid *SX \mid +S \mid *S\},$$

 $V' = V \cup \{X\}.$

4.3.14. Feladat. Közvetlen balrekurzivitás megszüntetése *A* és *B* nemterminálisokra vonatkozóan.

$$R' = \{S \rightarrow BB$$

$$A \rightarrow aA' \mid a$$

$$A' \rightarrow bA' \mid b$$

$$B \rightarrow Aa \mid b \mid AaB' \mid bB'$$

$$B' \rightarrow AB' \mid A\},$$

$$V' = V \cup \{A', B'\}.$$

4.3.15. Feladat. S-ben balrekurzivitás megszüntetése a $B \rightarrow Sb$ szabályra alkalmazva 1. típusú transzformációt:

$$R_{1} = \{S \to A \mid a$$

$$A \to Ba \mid aB$$

$$B \to Ab \mid ab \mid ba\}$$

 R_1 balrekurzív A-ban, ami megszüntethető a $B \rightarrow Ab$ szabályra alkalmazva az 1. típusú transzformációt:

$$R_{2} = \{S \rightarrow A \mid a$$

$$A \rightarrow Ba \mid aB$$

$$B \rightarrow Bab \mid aBb \mid ab \mid ba\}$$

R₂ közvetlenül balrekurzív B-ben, ami 2. típusú transzformációval megszüntethető:

$$R' = \{S \rightarrow A \mid a$$

$$A \rightarrow Ba \mid aB$$

$$B \rightarrow aBb \mid ab \mid ba \mid aBbB' \mid abB' \mid baB'$$

$$B' \rightarrow abB' \mid ab\}$$

4.3.16. Feladat. *S*-re vonatkozóan a balrekurzivitás megszüntetésére alkalmazzuk az 1. típusú transzformációt az $X \rightarrow SYS$ törlésére.

Így kapjuk az $R_1 = (R - \{X \rightarrow SYS\}) \cup \{X \rightarrow XYXYS \mid abYS\}$ szabályhalmazt.

Az $X \rightarrow XYXYS$ szabály miatt X-ben közvetlen a balrekurzivitás, ami a 2. típusú transzformációval megszüntethető:

$$R_2 = (R_1 - \{X \rightarrow XYXYS\}) \cup \{X \rightarrow baA \mid abYSA, A \rightarrow YXYSA \mid YXYS\}.$$

Mivel R_2 nem tartalmaz balrekurzív nemterminálisokat, így $R' = R_2$ és $V' = V \cup \{A\}$.

101

4.3.17. Feladat. A G nyelvtan ε -mentes és láncszabálymentes.

$$R_{1} = \{S \rightarrow MX_{c}N \mid X_{c}N \mid MX_{c} \mid c$$

$$M \rightarrow X_{a}M \mid a$$

$$N \rightarrow X_{b}N \mid b$$

$$X_{a} \rightarrow a$$

$$X_{b} \rightarrow b$$

$$X_{c} \rightarrow c\},$$

$$R' = (R_1 - \{S \to MX_cN\}) \cup \{S \to MZ, Z \to X_cN\},\$$

 $V' = V \cup \{X_a, X_b, X_c, Z\}, S' = S.$

4.3.18. Feladat. A G nyelvtan ε -mentes és láncszabálymentes.

$$R' = \{S \rightarrow X_a T_1 \mid a$$

$$T_1 \rightarrow A T_2$$

$$T_2 \rightarrow B C$$

$$A \rightarrow X_a A \mid a$$

$$B \rightarrow X_b T_3 \mid X_b X_c$$

$$T_3 \rightarrow X_c B$$

$$C \rightarrow X_c C \mid c$$

$$X_a \rightarrow a$$

$$X_b \rightarrow b$$

$$X_c \rightarrow c\},$$

$$S' = S$$
, $V' = V \cup \{X_a, X_b, X_c, T_1, T_2, T_3\}$.

4.3.19. Feladat.

$$R' = \{S \rightarrow \varepsilon \mid BT \mid BA \mid AB \mid BB \mid X_0 X_0$$

$$A \rightarrow BT \mid BA \mid AB \mid BB \mid X_0 X_0$$

$$B \rightarrow X_0 X_0$$

$$X_0 \rightarrow 0$$

$$T \rightarrow AB\},$$

$$S' = S, V' = \{A, B, S, X_0, T\}.$$

4.3.20. Feladat.

$$R' = \{S \rightarrow \varepsilon \mid b \mid AX \mid KY \\ A \rightarrow b \mid AX \mid KY \\ T \rightarrow b \mid KY \\ X \rightarrow PT \\ Y \rightarrow AZ \\ P \rightarrow + \\ K \rightarrow (\\ Z \rightarrow)\}$$

 $V' = V \cup \{X, Y, P, K, Z\}, S' = S.$

4.3.21. Feladat.

$$R' = \{S \rightarrow \varepsilon \mid a \mid AZ \mid AY \mid AX$$

$$X \rightarrow AX \mid a \mid BY \mid b$$

$$Y \rightarrow BY \mid b$$

$$Z \rightarrow XY$$

$$A \rightarrow a$$

$$B \rightarrow b\},$$

 $V' = V \cup \{A, B, Z\}, S' = S.$

4.3.22. Feladat.

$$R' = \{S' \to AT \mid AB \mid \varepsilon$$

$$S \to AT \mid AB$$

$$T \to SB$$

$$A \to a$$

$$B \to b\},$$

 $V' = V \cup \{S', T\}.$

4.3.23. Feladat.

$$R' = \{S \rightarrow TS \mid KE \mid p \mid q$$

$$E \rightarrow SM$$

$$M \rightarrow UH$$

$$H \rightarrow SZ$$

$$T \rightarrow \sim$$

$$U \rightarrow \supset$$

$$K \rightarrow [$$

$$Z \rightarrow]\},$$

 $V' = \{S, T, U, K, Z, E, M, H\}, S' = S.$

4.3.24. Feladat.

$$R' = \{S \to X_b A \mid X_a B \\ A \to X_b T \mid X_a S \mid a \\ B \to X_a U \mid X_b S \mid b \\ T \to AA \\ U \to BB \\ X_a \to a \\ X_b \to b\}$$

 $V' = V \cup \{T, U, X_a, X_b\}, S' = S.$

4.3.25. Feladat. *G*-vel ekvivalens ε -mentes $G_1 = (V_1, \Sigma, R_1, S')$ nyelvtan:

$$R_{1} = \{S' \rightarrow S \mid \varepsilon$$

$$S \rightarrow BA \mid B \mid A \mid AbS \mid Ab \mid bS \mid b \mid CC$$

$$A \rightarrow BB \mid B \mid bA \mid A$$

$$B \rightarrow ab$$

$$C \rightarrow aB \mid a\},$$

 $V_1 = V \cup \{S'\}.$

 G_2 ε -mentes és láncszabálymentes, G_1 -el ekvivalens nyelvtan:

$$R_{2} = \{S' \rightarrow \varepsilon \mid BA \mid AbS \mid Ab \mid bS \mid b \mid CC \mid BB \mid bA \mid ab$$

$$S \rightarrow BA \mid AbS \mid Ab \mid bS \mid b \mid CC \mid BB \mid bA \mid ab$$

$$A \rightarrow BB \mid bA \mid b \mid ab$$

$$B \rightarrow ab$$

$$C \rightarrow aB \mid a\},$$

 $V_2 = V_1$. X_a , X_b új nemterminálisok bevezetése azon a, illetve b terminális előfordulások helyén, ahol az a, illetve a b szimbólum a szabály jobb oldalán nem egyedül van:

$$R_{3} = \{S' \rightarrow \varepsilon \mid BA \mid AX_{b}S \mid AX_{b} \mid X_{b}S \mid b \mid CC \mid BB \mid X_{b}A \mid X_{a}X_{b} \\ S \rightarrow BA \mid AX_{b}S \mid AX_{b} \mid X_{b}S \mid b \mid CC \mid BB \mid X_{b}A \mid X_{a}X_{b} \\ A \rightarrow BB \mid X_{b}A \mid b \mid X_{a}X_{b} \\ B \rightarrow X_{a}X_{b} \\ C \rightarrow X_{a}B \mid a \\ X_{a} \rightarrow a \\ X_{b} \rightarrow b\},$$

 $V_3 = V_2 \cup \{X_a, X_b\}.$

$$R' = \{S' \rightarrow \varepsilon \mid BA \mid AT \mid AX_b \mid X_bS \mid b \mid CC \mid BB \mid X_bA \mid X_aX_b$$

$$S \rightarrow BA \mid AT \mid AX_b \mid X_bS \mid b \mid CC \mid BB \mid X_bA \mid X_aX_b$$

$$A \rightarrow BB \mid X_bA \mid b \mid X_aX_b$$

$$B \rightarrow X_aX_b$$

$$C \rightarrow X_aB \mid a$$

$$T \rightarrow X_bS$$

$$X_a \rightarrow a$$

$$X_b \rightarrow b\},$$

 $V' = V_3 \cup \{T\}.$

4.3.26. Feladat. G-vel ekvivalens balrekurziót nem tartalmazó $G_1 = (V_1, \Sigma, R_1, S)$ nyelvtan:

$$R_{1} = \{S \to AB$$

$$A \to Ba \mid a$$

$$B \to ab \mid b \mid abB' \mid bB'$$

$$B' \to abB' \mid ab\},$$

 $V_1 = V \cup \{B'\}.$

 V_1 elemeinek a < reláció szerinti rendezése lehet: S < A < B < B'.

 G_1 -el ekvivalens $G_2 = (V_1, \Sigma, R_2, S)$ nyelvtan, amelyben a szabályok $S \to \varepsilon$ vagy $A \to a\alpha$ alakúak, ahol $a \in \Sigma$, $\alpha \in (V_1 \cup \Sigma)^*$:

$$R_{2} = \{S \rightarrow abaB \mid baB \mid abB'aB \mid bB'aB \mid aB$$

$$A \rightarrow aba \mid ba \mid abB'a \mid bB'a \mid a$$

$$B \rightarrow ab \mid b \mid abB' \mid bB'$$

$$B' \rightarrow abB' \mid ab\}$$

Végül új nemterminálisok bevezetése olyan terminálisokhoz, melyek valamely szabály jobb oldalán nem az első helyen állnak:

$$R' = \{S \rightarrow aX_bX_aB \mid bX_aB \mid aX_bB'X_aB \mid bB'X_aB \mid aB$$

$$A \rightarrow aX_bX_a \mid bX_a \mid aX_bB'X_a \mid bB'X_a \mid a$$

$$B \rightarrow aX_b \mid b \mid aX_bB' \mid bB'$$

$$B' \rightarrow aX_bB' \mid aX_b$$

$$X_a \rightarrow a$$

$$X_b \rightarrow b\}.$$

 $V' = V_1 \cup \{X_a, X_b\}, S' = S.$

$$R' = \{S \to a \mid aS \mid aSX_bS \}$$
$$X_b \to b\}$$

$$V' = V \cup \{X_h\}, S' = S.$$

105

$$R' = \{S \to aSX_a \mid bSX_b \mid aX_a \mid bX_b$$

$$X_a \to a$$

$$X_b \to b\}$$

$$V' = V \cup \{X_a, X_b\}, S' = S.$$

4.3.29. Feladat. A **4.3.13**. példa megoldása a G-vel ekvivalens balrekurziót nem tartalmazó nyelvtan. Jelöljük most ennek a nyelvtannak a szabályhalmazát R_1 -gyel, vagyis

$$R_1 = \{S \rightarrow a \mid (S) \mid aX \mid (S)X$$
$$X \rightarrow +SX \mid *SX \mid +S \mid *S\}.$$

 $\operatorname{Az} X_{)}$ új nemterminálist bevezetjük a szabályok jobboldalán nem az első helyen levő) szimbólum helyettesítésére.

$$R' = \{S \to a \mid (SX_1) \mid aX \mid (SX_2X)$$

$$X \to +SX \mid *SX \mid +S \mid *S$$

$$X_1 \to \},$$

$$V' = V \cup \{X_1\}, S' = S.$$

4.3.30. Feladat. *G*-vel ekvivalens balrekurziót nem tartalmazó $G_1 = (V_1, \Sigma, R_1, S)$ nyelvtan:

$$R_{1} = \{S \rightarrow A \mid a$$

$$A \rightarrow Ba \mid aB$$

$$B \rightarrow ba \mid a \mid aB \mid baB' \mid aB' \mid aBB'$$

$$B' \rightarrow aB' \mid a\},$$

 $V_1 = V \cup \{B'\}.$

< reláció legyen: S < A < B < B'.

$$R_{2} = \{S \rightarrow baa \mid aa \mid aBa \mid baB'a \mid aB'a \mid aBB'a \mid a$$

$$A \rightarrow baa \mid aa \mid aBa \mid baB'a \mid aB'a \mid aBB'a \mid aB$$

$$B \rightarrow ba \mid a \mid aB \mid baB' \mid aB' \mid aBB'$$

$$B' \rightarrow aB' \mid a\}.$$

 X_a új nemterminális bevezetése az a terminálishoz, mivel van olyan szabály, melynek jobb oldalán nem az első helyen áll az a.

$$R' = \{S \rightarrow bX_aX_a \mid aX_a \mid aBX_a \mid bX_aB'X_a \mid aB'X_a \mid aBB'X_a \mid a$$

$$A \rightarrow bX_aX_a \mid aX_a \mid aBX_a \mid bX_aB'X_a \mid aB'X_a \mid aBB'X_a \mid aB$$

$$B \rightarrow bX_a \mid a \mid aB \mid bX_aB' \mid aB' \mid aBB'$$

$$B' \rightarrow aB' \mid a$$

$$X_a \rightarrow a\},$$

$$V' = V_1 \cup \{X_a\}, S' = S.$$

4.3.31. Feladat. A **4.3.16**. példa megoldása a G-vel ekvivalens balrekurziót nem tartalmazó nyelvtan. Jelöljük most ennek a nyelvtannak a szabályhalmazát R_1 -gyel, vagyis

$$R_{1} = \{S \rightarrow XYX \mid ab$$

$$X \rightarrow ba \mid abYS \mid baA \mid abYSA$$

$$A \rightarrow YXYSA \mid YXYS$$

$$Y \rightarrow XSX \mid b\}.$$

< relációként választható: S < A < Y < X, mely szerint átalakítva R_1 -et kapjuk R_2 -t:

$$R_{2} = \{S \rightarrow ab \mid baYX \mid abYSYX \mid baAYX \mid abYSAYX \\ X \rightarrow ba \mid abYS \mid baA \mid abYSA \\ A \rightarrow baSXXYSA \mid abYSSXXYSA \mid baASXXYSA \mid abYSASXXYSA \\ A \rightarrow baSXXYS \mid abYSSXXYS \mid baASXXYS \mid abYSASXXYS \\ Y \rightarrow baSX \mid abYSSX \mid baASX \mid abYSASX \mid b\}$$

 X_a , X_b új nemterminálisok alkalmazása, ahol a szabály jobb oldalán nem az első helyen szerepel a illetve b.

$$R' = \{S \rightarrow aX_b \mid bX_aYX \mid aX_bYSYX \mid bX_aAYX \mid aX_bYSAYX \\ X \rightarrow bX_a \mid aX_bYS \mid bX_aA \mid aX_bYSA \\ A \rightarrow bX_aSXXYSA \mid aX_bYSSXXYSA \mid bX_aASXXYSA \mid aX_bYSASXXYSA \\ A \rightarrow bX_aSXXYS \mid aX_bYSSXXYS \mid bX_aASXXYS \mid aX_bYSASXXYS \\ Y \rightarrow bX_aSX \mid aX_bYSSX \mid bX_aASX \mid aX_bYSASX \mid b \\ X_a \rightarrow a \\ X_b \rightarrow b\}$$

$$V' = V \cup \{A, X_a, X_b\}, S' = S.$$

4.3.32. Feladat. A **4.3.14**. példa megoldása a G-vel ekvivalens balrekurziót nem tartalma-zó nyelvtan. Jelöljük ennek a nyelvtannak a szabályhalmazát R_1 -gyel és nemterminálisainak halmazát V_1 -gyel, vagyis

$$R_{1} = \{S \rightarrow BB$$

$$A \rightarrow aA' \mid a$$

$$A' \rightarrow bA' \mid b$$

$$B \rightarrow Aa \mid AaB' \mid bB' \mid b$$

$$B' \rightarrow AB' \mid A\},$$

 $V_1 = V \cup \{A', B'\}$. < relációként választható: S < B < B' < A < A'.

$$\begin{split} R' &= \{S \rightarrow \ bB \mid bB'B \mid aX_aB \mid aA'X_aB \mid aX_aB'B \mid aA'X_aB'B \\ A \rightarrow \ a \mid aA' \\ A' \rightarrow \ bA' \mid b \\ B \rightarrow \ b \mid bB' \mid aX_a \mid aA'X_a \mid aX_aB' \mid aA'X_aB' \\ B' \rightarrow \ aB' \mid aA'B' \mid a \mid aA' \\ X_a \rightarrow \ a\}, \end{split}$$

 $V' = V_1 \cup \{X_a\}, S' = S.$

4.3.33. Feladat.

1.

$$R_{1} = \{S \rightarrow AT \mid X_{a}A \mid a \mid X_{b}B \mid b$$

$$A \rightarrow X_{a}A \mid a$$

$$B \rightarrow X_{b}B \mid b$$

$$T \rightarrow SB$$

$$X_{a} \rightarrow a$$

$$X_{b} \rightarrow b\},$$

$$V_1 = V \cup \{T, X_a, X_b\}, S_1 = S.$$

2.

$$R_2 = \{S \rightarrow aASB \mid aSB \mid aA \mid a \mid bB \mid b$$

$$A \rightarrow aA \mid a$$

$$B \rightarrow bB \mid b\},$$

$$V_2 = V$$
, $S_2 = S$.

4.3.34. Feladat.

1.

$$R_{1} = \{S' \rightarrow X_{a}T \mid X_{a}A \mid \varepsilon$$

$$S \rightarrow X_{a}T \mid X_{a}A$$

$$A \rightarrow AX_{b} \mid X_{a}X_{b}$$

$$T \rightarrow SA$$

$$X_{a} \rightarrow a$$

$$X_{b} \rightarrow b\},$$

$$V_1 = V \cup \{S', T, X_a, X_b\}, S_1 = S'.$$

2.

$$R_{2} = \{S \rightarrow aSA \mid \varepsilon$$

$$A \rightarrow aX_{b}A' \mid aX_{b}$$

$$A' \rightarrow bA' \mid b$$

$$X_{b} \rightarrow b\},$$

$$V_2 = V \cup \{A', X_b, S_2\}, S_2 = S.$$

4.3.35. Feladat. Ötlet: w hossza szerinti indukció alkalmazása.

4.3.36. Feladat. Ötlet: Legyen G Greibach-normálformájú nyelvtan, melyre L(G) = L. Jelölje k az R-beli szabályok jobb oldalai hosszának maximumát. Legyen $V' = \{ [\alpha] \mid \alpha \in V^+ \text{ és } \alpha < k \}$. Minden $A \to a\alpha \in R$ és $[A\beta] \in V'$ -re $[A\beta] \to a[\alpha][\beta]$ kerüljön be R'-be. Amennyiben $\alpha = \varepsilon$ vagy $\beta = \varepsilon$, úgy $[\varepsilon]$ nem jelenik meg a szabály jobb oldalán.

4.4.1. Feladat.

1.
$$M_1 = (Q_1, \Sigma, \Gamma_1, \delta_1, q_1, Z_1, F)$$
, ahol $Q_1 = \{q_1, q\}, \Sigma = \{a, b\}, \Gamma_1 = \{Z_1, a, b\}, F = \{q_1\}.$

	Q_1	$\boldsymbol{\Sigma}_{\varepsilon}$	Γ_1	Q_1	Γ_1^*	_
	q_1	а	Z_1	q	aZ_1	_
	q_1	b	Z_1	q	bZ_1	
δ :	q	a	a	q	aa	
	q	b	b	q	bb	Ekkor $I_{\bullet}(M_{\bullet}) - I_{\bullet}$
ο.	q	a	b	q	${\cal E}$	Ekkor $L_f(M_1) = L$.
	q	b	a	q	ε	
	q	a	Z_1	q	aZ_1	
	q	b	Z_1	q	bZ_1	
	q	ε	Z_1	q_1	Z_1	

2.
$$M_2 = (Q_2, \Sigma, \Gamma_2, \delta_2, q_2, Z_2, \emptyset)$$
, ahol $Q_2 = \{q_2\}, \Sigma = \{a, b\}, \Gamma_2 = \{Z_2, a, b\}$.

3. Az M_1 veremautomata szemléltetése gráffal:

109

Az M_2 veremautomata szemléltetése gráffal:

4.4.2. Feladat.

- 1. *M* determinisztikus veremautomata, így a szavakhoz tartozó kezdőkonfigurációból kiindulva egyértelműen megadhatók a szavak feldolgozását leíró *M* szerinti konfiguráció sorozatok.
 - 1. $(q_0, ab^3, A) \vdash (q_0, b^3, AA) \vdash (q_1, b^2, A) \vdash (q_2, b, A) \vdash (q_1, \varepsilon, \varepsilon)$ $ab^3 \not\in L_f(M)$
 - 2. $(q_0, a^2b, A) \vdash *(q_0, b, A^3) \vdash (q_1, \varepsilon, A^2)$ $a^2b \notin L_f(M)$
 - 3. $(q_0, a^2b^4, A) \vdash *(q_0, b^4, A^3) \vdash (q_1, b^3, A^2) \vdash (q_2, b^2, A^2) \vdash (q_1, b, A) \vdash (q_2, \varepsilon, A)$ $a^2b^4 \in L_f(M)$
 - 4. $(q_0, a^4b^2, A) \vdash *(q_0, b^2, A^5) \vdash (q_1, b, A^4) \vdash (q_2, \varepsilon, A^4)$ $a^4b^2 \in L_f(M)$
- 2. $L_f(M) = \{a^n b^m \mid m \le 2(n+1) \text{ és } m \text{ páros} \}$

4.4.3. Feladat.

- 1. $(0, b^2, Z_0) \vdash (1, b^2, Z_0)$ és más konfiguráció nem érhető el a $(0, b^2, Z_0)$ -ból, így a $b^2 \not\in L_f(M)$
 - 2. $(0, a^2b^2, Z_0) \vdash (0, ab^2, aZ_0) \vdash (0, b^2, a^2Z_0) \vdash (2, b, aZ_0)$ így az $a^2b^2 \in L_f(M)$
 - 3. $(0, a^3b, Z_0) \vdash *(0, b, a^3Z_0) \vdash (2, \varepsilon, a^2Z_0)$ így az $a^3b \in L_f(M)$
- 2. $L_f(M) = \{a^n b^m \mid n \ge m\}$
- © Ésik Zoltán, Gombás Éva, Iván Szabolcs, SzTE

4.4.4. Feladat.

1. $M = (\{0,1,2\}, \{a,b\}, \{Z_0,a\}, \delta,0, Z_0, \{2\}), \text{ ahol}$

- 2. Az L₂ nyelvet felismeri a 4.4.3. feladat M veremautomatája.
- 3. $M = (\{0,1,2,3,4,5\}, \{a,b,c\}, \{Z_0,a\}, \delta,0,Z_0, \{5\}), \text{ ahol}$

4. $M = (\{0,1,2,3\}, \{a,b,c\}, \{Z_0,b\}, \delta,0, Z_0, \{3\}), \text{ ahol}$

5. $M = (\{0,1,2,3\}, \{a,b,c\}, \{Z_0,b\}, \delta,0, Z_0, \{3\}), \text{ ahol}$

6.
$$M = (\{0,1,2,3\}, \{a,b\}, \{Z_0,a\}, \delta,0, Z_0, \{3\}), \text{ ahol}$$

7.
$$M = (\{0,1,2,3\}, \{a,b\}, \{Z_0,a\}, \delta,0, Z_0, \{3\}), \text{ ahol}$$

8.
$$M = (\{0,1,2,3\}, \{a,b\}, \{Z_0,a\}, \delta,0, Z_0, \{3\}), \text{ ahol}$$

9.
$$M = (\{0,1,2,3,4\}, \{a,b\}, \{Z_0,a\}, \delta,0, Z_0, \{4\}), \text{ ahol}$$

10.
$$M = (\{0,1\}, \{a,b\}, \{Z_0, a, b\}, \delta, 0, Z_0, \{1\}), \text{ ahol}$$

11. $M = (\{0,1,2\}, \{a,b,c\}, \{Z_0,a,b\}, \delta,0, Z_0, \{2\}), \text{ ahol}$

12. $M = (\{0,1,2\}, \{a,b\}, \{Z_0,a\}, \delta,0, Z_0, \{2\}), \text{ ahol}$

13. $M = (\{0,1,2,3,4,5,6\}, \{a,b\}, \{Z_0,a\}, \delta,0, Z_0, \{5,6\}), \text{ ahol}$

14.
$$M = (\{0,1,2,3,4\}, \{a,b\}, \{Z_0,a,b\}, \delta,0, Z_0, \{4\}), \text{ ahol}$$

15.
$$M = (\{0,1,2,3,4.5\}, \{a,b,c\}, \{Z_0,a\}, \delta,0, Z_0, \{4,5\}), \text{ ahol}$$

16.
$$M = (\{0,1,2\}, \{a,b\}, \{Z_0, a, b\}, \delta, 0, Z_0, \{2\}), \text{ ahol}$$

17. Ötlet:

$$\begin{split} L_1 &= \{ w \in \{ a, b, c \}^* \mid |w|_a = |w|_b \}, \\ L_2 &= \{ w \in \{ a, b, c \}^* \mid |w|_a = |w|_c \}, \text{ ekkor } L_{17} = L_1 \cup L_2. \end{split}$$

Legyen $M_1 = (Q_1, \{a, b, c\}, \Gamma_1, \delta_1, q_1, Z_0, F_1)$, amelyre $L(M_1) = L_1$ és $M_2 = (Q_2, \{a, b, c\}, \Gamma_2, \delta_2, q_2, Z_0, F_2)$, amelyre $L(M_2) = L_2$ és $Q_1 \cap Q_2 = \emptyset$. Legyen $M = (Q_1 \cup Q_2 \cup \{q_0\}, \{a, b, c\}, \Gamma_1 \cup \Gamma_2, \delta, q_0, Z_0, F_1 \cup F_2)$, ahol $\delta(q_0, \varepsilon, \varepsilon) = \{(q_1, \varepsilon), (q_2, \varepsilon)\}$, Q_1 -beli állapotokban δ megegyezik δ_1 -el, Q_2 -beli állapotokban δ megegyezik δ_2 -vel.

- 18. Ha w_1 w_2 , akkor vagy
 - $\exists i : [w_1]_i \ [w_2]_i$, ahol $[w]_i$ a w szó i. betűjét jelöli
 - $|w_1| |w_2|$

Az L_{18} -at felismerő veremautomata:

19. $M = (\{0,1\}, \{a,b,c\}, \{Z_0,a\}, \delta,0, Z_0, \{0\}), \text{ ahol}$

	Q	Σ_{ε}	$\Gamma_{arepsilon}$	Q	Γ^*	
	0	а	ε	0	а	_
	0		a	0	ε	
δ :	0	С	ε	1	ε	$L_f(M) = L_{19}.$
	1	a	arepsilon	1	a	
	1	b	a	1	ε	
	1	С	ε	0	ε	

115

4.4.5. Feladat.

1.
$$M = (\{0,1,2\}, \{a,b\}, \{Z_0,a\}, \delta,0, Z_0, \{2\}), \text{ ahol}$$

2.
$$(0, a^2b^2, Z_0) \vdash (0, ab^2, aZ_0) \vdash (0, b^2, a^2Z_0) \vdash (1, b, aZ_0) \vdash (1, \varepsilon, Z_0) \vdash (2, \varepsilon, Z_0)$$
.

4.4.6. Feladat.

1. $M = (\{0,1,2,3,4\}, \{a,b,c\}, \{Z_0,a\}, \delta,0, Z_0, \{0,1\}), \text{ ahol}$

	Q	Σ_{ε}	$\Gamma_{arepsilon}$	Q	Γ^*	
	0	С	ε	0	ε	-
	0	a	ε	2	a	
	2	a	ε	2	a	
	2	С	ε	3	ε	
δ :	2	b	a	4	ε	$L_f(M) = L_1$ és M determinisztikus.
	3	С	ε	3	ε	
	3	b	а	4	ε	
	4	b	а	4	ε	
	4	ε	Z_0	1	Z_0	
	1	С	Z_0	1	Z_0	

2. $M = (\{0,1,2,3,4\}, \{a,b\}, \{Z_0,a\}, \delta,0, Z_0, \{0,4\}),$ ahol δ -t az alábbi gráf szemlélteti:

$$L_f(M) = L_2$$
.

3. $M = (\{0,1,2,3,4\}, \{a,b\}, \{Z_0,a\}, \delta,0, Z_0, \{0,4\}),$ ahol δ -t az alábbi gráf szemlélteti:

$$L_f(M) = L_3$$
.

4. $M_4 = (\{0,1,2,3,4\}, \{a,b\}, \{Z_0,a,b\}, \delta_1,0,Z_0, \{0\}),$ ahol δ -t az alábbi gráf szemlélteti:

- 5. M_5 az M_4 -hez hasonlóan működhet azzal a kiegészítéssel, hogy bármely állapotban és tetszőleges veremtartalom esetén a c betű hatására nem változik sem az állapot, sem a verem tartalma, vagyis $\delta(q, c, \varepsilon) = (q, \varepsilon)$.
- 6. $M = (\{0,1,2\}, \{a,b,c\}, \{Z_0,a,b\}, \delta,0, Z_0, \{2\}), \text{ ahol}$

7. $M = (\{0,1\}, \{a,b,c\}, \{Z_0,a,b\}, \delta,0,Z_0,\{1\}), \text{ ahol}$

	Q	$\Sigma_{arepsilon}$	$\Gamma_{arepsilon}$	Q	Γ^*	
	0	а	ε	0	а	
. 2	0	b	ε	0	b	$L_f(M) = L_7$ és M determinisztikus.
0:	0	c	arepsilon	1	ε	$L_f(M) = L_7 \text{ es } M \text{ determinisztikus.}$
	1	a b	a	1	ε	
	1	b	b	1	ε	

8. $M = (\{0,1,2,3,4\}, \{a,b,c\}, \{Z_0,a,b\}, \delta,0, Z_0, \{0,4\}), \text{ ahol}$

9. $M = (\{0,1,2,3,4,5\}, \{a,b,c\}, \{Z_0,a\}, \delta,0, Z_0, \{0,5\}), \text{ ahol}$

10. $M = (\{0,1,2,3\}, \{a,b,c\}, \{Z_0,a\}, \delta,0, Z_0, \{3\}), \text{ ahol}$

11. $M = (\{0,1,2,3\}, \{a,b,c\}, \{Z_0,a,b\}, \delta,0, Z_0, \{3\}), \text{ ahol}$

4.5.1. Feladat.

1. $M = (\{0,1,2\}, \{a,b\}, \{Z_0, S, A, a, b\}, \delta, 0, Z_0, \{2\}), \text{ ahol}$

	Q	Σ_{ε}	$\Gamma_{arepsilon}$	Q	Γ^*
	0	ε	Z_0	1	SZ_0
	1	ε	S	1	aAA
	1	arepsilon	A	1	aS
δ :	1	ε	A	1	bS
	1	ε	A	1	a
	1	a	a	1	ε
	1	b	b	1	ε
	1	ε	Z_0	2	Z_0

- 2. $S \Rightarrow_l aAA \Rightarrow_l aaSA \Rightarrow_l a^3AAA \Rightarrow_l a^3bSAA \Rightarrow_l a^3baAAAA \Rightarrow_l \Rightarrow_l a^3ba^2AAA \Rightarrow_l a^3ba^3AA \Rightarrow_l a^3ba^4A \Rightarrow_l a^3ba^4bS \Rightarrow_l \Rightarrow_l a^3ba^4baAA \Rightarrow_l a^3ba^4ba^3$
- 3. Ismerve a szót generáló *G* szerinti baloldali levezetést, vegyük ezt a levezetést szimuláló *M* szerinti konfigurációs átmeneteket:

$$\begin{array}{l} (0,a^3ba^4ba^3,Z_0) \vdash (1,a^3ba^4ba^3,SZ_0) \vdash (1,a^3ba^4ba^3,aAAZ_0) \vdash \\ \vdash (1,a^2ba^4ba^3,AAZ_0) \vdash (1,a^2ba^4ba^3,aSAZ_0) \vdash (1,aba^4ba^3,SAZ_0) \vdash \\ \vdash (1,aba^4ba^3,aAAAZ_0) \vdash (1,ba^4ba^3,AAAZ_0) \vdash (1,ba^4ba^3,bSAAZ_0) \vdash \\ \vdash (1,a^4ba^3,SAAZ_0) \vdash (1,a^4ba^3,aAAAAZ_0) \vdash (1,a^3ba^3,AAAAZ_0) \vdash \\ \vdash (1,a^3ba^3,aAAAZ_0) \vdash (1,a^2ba^3,AAAZ_0) \vdash (1,a^2ba^3,aAAZ_0) \vdash \\ \vdash (1,aba^3,AAZ_0) \vdash (1,aba^3,aAZ_0) \vdash (1,ba^3,AZ_0) \vdash (1,ba^3,bSZ_0) \vdash (1,a^3,SZ_0) \vdash \\ \vdash (1,a^3,aAAZ_0) \vdash (1,a^2,AAZ_0) \vdash (1,a^2,aAZ_0) \vdash (1,a,AZ_0) \vdash (1,a,aZ_0) \vdash \\ \vdash (1,\varepsilon,Z_0) \vdash (2,\varepsilon,Z_0). \end{array}$$

4.5.2. Feladat. 4.2.12/14. sorszámú feladat megoldása: $L = \{a^n b^m c^k \mid n, m, k \ge 0 \text{ és } n = k \text{ vagy } m = k\}, G = (\{S, S_1, S_2, A, B\}, \{a, b, c\}, R, S), \text{ ahol}$

$$R = \{S \rightarrow S_1 \mid AS_2 \\ S_1 \rightarrow aS_1c \mid B \\ S_2 \rightarrow bS_2c \mid \varepsilon \\ A \rightarrow aA \mid \varepsilon \\ B \rightarrow bB \mid \varepsilon\}$$

és L(G) = L. A 4.1.35. módszer szerint az L nyelvet felismerő veremautomata: $M = \{(q_0, q_1, q_f\}, \{a, b, c\}, \{Z_0, a, b, c, q_0, q_1, q_f\}, \delta, q_0, Z_0, \{q_f\})$, ahol

A többi nyelvhez is a generáló nyelvtan ismeretében hasonló módszerrel megadható a nyelvet felismerő veremautomata.

4.5.3. Feladat.

1. Ötlet: Jelölje L_1, L_2, L_3 , illetve G_1, G_2, G_3 az alábbi nyelveket illetve nyelvtanokat:

$$L_1 = \{a^i b^j c^k \mid i, j, k \ge 0 \text{ és } i j\} \text{ és } L(G_1) = L_1, \text{ ahol } G_1 = (V_1, \Sigma, R_1, S_1)$$

 $L_2 = \{a^i b^j c^k \mid i, j, k \ge 0 \text{ és } i k\} \text{ és } L(G_2) = L_2, \text{ ahol } G_2 = (V_2, \Sigma, R_2, S_2)$
 $L_3 = \{a^i b^j c^k \mid i, j, k \ge 0 \text{ és } k j\} \text{ és } L(G_3) = L_3, \text{ ahol } G_3 = (V_3, \Sigma, R_3, S_3)$

A G_1 , G_2 , G_3 nyelvtanok a 4.2.12 feladatban szereplőekhez hasonlóan megadhatók. Mivel $L=L_1\cup L_2\cup L_3$, így az L-et generáló $G=(V,\Sigma,R,S)$ környezetfüggetlen nyelvtan megkonstruálható a G_1 , G_2 , G_3 környezetfüggetlen nyelvtanok ismeretében. $V=V_1\cup V_2\cup V_3\cup \{S\}$, $R=R_1\cup R_2\cup R_3\cup \{S\to S_1\mid S_2\mid S_3\}$.

2. Ötlet: az 1. részben meghatározott G környezetfüggetlen nyelvtan ismeretében az L-et felismerő veremautomata a 4.1.35 módszer alapján megadható, vagy az L_1 , L_2 , L_3 nyelveket felismerő M_1 , M_2 , M_3 veremautomaták megkonstruálása, majd ezek ismeretében az M veremautomata már könnyen megadható.

4.5.4. Feladat.

1. $G_1 = (V_1, \{a, b\}, R_1, S_1)$, ahol $V_1 = \{S_1\}$, $R_1 = \{S_1 \to aS_1bb \mid \varepsilon\}$, melyre $L(G_1) = \{a^nb^{2n} \mid n \ge 0\}$. $S_2 = (V_2, \{a, b\}, R_2, S_2)$, ahol $S_2 = \{S_2\}$, $S_2 = \{S_2 \to aS_2b \mid \varepsilon\}$, melyre $S_3 = \{S_2 \to aS_2b \mid \varepsilon\}$, melyr 2. 1. az 1. részben megadott *G* nyelvtan ismeretében a *G*-szerinti baloldali levezetéseket szimuláló *M* veremautomata:

2. $L_f(M_1) = \{a^n b^{2n} \mid n \ge 0\}$

$$L_f(M_2) = \{a^n b^n \mid n \ge 0\}$$

$$L_f(M) = L_f(M_1) \cup L_f(M_2) = L$$

4.5.5. Feladat. $V = \{S, [qZ_0p], [qap], [pap], [pZ_0p]\},$

$$R = \{S \to [qZ_0p] \\ [qZ_0p] \to a[qap][pZ_0p] \\ [qap] \to a[qap][pap][pap] \mid b \\ [pap] \to b \\ [pZ_0p] \to \varepsilon\}$$

121

4.5.6. Feladat.

1. $V = \{S, [qZ_0q], [paq], [qaq]\},\$

$$R = \{S \to [qZ_0q]$$

$$[qZ_0q] \to a[paq][qZ_0q] \mid \varepsilon$$

$$[paq] \to a[qaq][qaq][qaq]$$

$$[qaq] \to b\}$$

- 2. $L_{\emptyset}(M) = (a^2b^3)^*$.
- **4.5.7. Feladat.** $V = \{S, [0Z_00], [0Z_01], [1Z_01], [0a1], [1a1], [0b1], [1b1]\},$

$$R = \{S \to [0Z_00] \mid [0Z_01] \\ [0Z_00] \to \varepsilon \\ [0Z_01] \to a[0a1][1Z_01] \mid b[0b1][1Z_01] \\ [0b1] \to a[0a1][1b1] \mid b[0b1][1b1] \mid b \\ [0a1] \to b[0b1][1a1] \mid a[0a1][1a1] \mid a \\ [1Z_01] \to \varepsilon \\ [1a1] \to a \\ [1b1] \to b\}$$

R-rel ekvivalens R' szabályhalmaz, amelyben a $[0Z_00]$, $[1Z_01]$, [1a1] és [1b1]-re vonatkozó szabályok már nincsenek és bevezetve az alábbi jelöléseket: $X = [0Z_01]$, Y = [0a1], U = [0b1]. Legyen $V' = \{S, X, Y, U\}$ és

$$R' = \{S \to \varepsilon \mid X$$

$$X \to aY \mid bU$$

$$Y \to bUa \mid aYa \mid a$$

$$U \to aYb \mid bUb \mid b\}$$

Ekkor $G' = (V', \{a, b\}, R', S)$ környezetfüggetlen nyelvtan, amelyre $L(G') = L_{\emptyset}(M)$.

4.5.8. Feladat.

1. $V = \{S, [0Z_00], [1Z_00], [0X1], [1X1]\},\$

$$R = \{S \to [0Z_00] \\ [0Z_00] \to \varepsilon \mid b[0X1][1Z_00] \\ [1Z_00] \to a[0Z_00] \\ [0X1] \to b[0X1][1X1] \mid a[1X1] \\ [1X1] \to b\}$$

- 2. $L_{\emptyset} = \{ (b^n a b^n a)^m \mid m \ge 0, \ n > 0 \}$
- © Ésik Zoltán, Gombás Éva, Iván Szabolcs, SzTE

4.5.9. Feladat.

1. $M_1 = (\{0,1,2\}, \Sigma_1, V_1 \cup \Sigma_1 \cup \{Z_0\}, \delta_1, 0, Z_0, \{2\}), \text{ ahol}$

	Q	Σ_{ε}	$\Gamma_{arepsilon}$	Q	Γ^*	
-	0	ε	Z_0	1	SZ_0	-
	1	ε	S	1	a	
	1	arepsilon	S	1	AB	
	1	ε	A	1	aC	
	1	ε	A	1	b	
δ:	1	ε	B	1	C	
0.	1	ε	B	1	ε	$\operatorname{\acute{e}s} L_f(M_1) = L(G_1).$
	1	ε	C	1	cS	
	1	ε	C	1	AB	
	1	a	a	1	ε	
	1	b	b	1	ε	
	1	c	С	1	ε	
	1	${\cal E}$	Z_0	2	Z_0	

- 2. M_2 megkonstruálható a 4.1.35 módszer alapján.
- 3. M₃ megkonstruálható a 4.1.35 módszer alapján.
- 4. M₄ megkonstruálható a 4.1.35 módszer alapján.

4.6.1. Feladat. Tegyük fel, hogy az állítás nem teljesül, vagyis L végtelen. Akkor megadható olyan $X \subseteq L$, melyre teljesül, hogy $\forall w \in X$ esetén X-ben nincs olyan u szó, melyre $|w| + 1 \le |u| \le 2|w|$.

A feltétel szerint X környezetfüggetlen, ezért van olyan $p \ge 1$ egész szám, mely szerint X-re teljesül a pumpáló lemma. Legyen $w \in X$, |w| > p, akkor $\exists u, v, x, y, z \in \Sigma^*$, melyre w = uvxyz, $|vxy| \le p$, |vy| > 0 és $\forall i \ge 0$ esetén $uv^ixy^iz \in X$. X tulajdonsága miatt azonban $|w| < |uv^2xy^2z| \le |w| + p < 2|w|$, vagyis $uv^2xy^2z \notin X$.

Mivel az L végtelenségére vontakozó feltevés ellentmondásra vezetett, így L-nek végesnek kell lennie.

4.6.2. Feladat.

- 1. Legyen $p \ge 1$ tetszőleges egész szám, $w = a^p b^p c^p \in L_1$, melyre $|w| \ge p$. Ekkor $\forall u, v, x, y, z \in \{a, b, c\}^*$ esetén, melyre w = uvxyz, $|vxy| \le p$, |vy| > 0 pl. $uxz \not\in L_1$, mivel vy az $\{a, b, c\}$ -ből legalább egy betűt nem tartalmaz. Így a nyelv nem teljesíti a környezetfüggetlen nyelvek pumpáló lemmáját, vagyis a nyelv nem környezetfüggetlen.
- 2. Legyen $p \ge 1$ tetszőleges egész szám, $w = a^p b^p c^p \in L_2$, melyre $|w| \ge p$. Ekkor $\forall u, v, x, y, z \in \{a, b, c\}^*$ esetén, melyre w = uvxyz, $|vxy| \le p$, |vy| > 0, ha $|vy|_b = 0$, akkor $uv^2xy^2 \notin L_2$, ha $|vy|_b = 0$, akkor $uxz \notin L_2$.

- 123
- 3. A nyelvre nem teljesül a pumpáló lemma. Az előző feladat megoldásához hasonlóan bizonyítható.
- 4. A nyelvre nem teljesül a pumpáló lemma. Legyen $p \ge 1$ tetszőleges egész szám, $w = a^p b^p c^p \in L_4$, melyre $|w| \ge p$.

Ekkor $\forall u, v, x, y, z \in \{a, b, c\}^*$ esetén, melyre w = uvxyz, $|vxy| \le p$, |vy| > 0, $vy \in \{a, b\}^* \cup \{b, c\}^*$.

Ha $|vy|_c = 0$, akkor $uv^2xy^2z \notin L_4$,

ha $|vy|_a = 0$, akkor $uxz \notin L_4$.

5. A nyelvre nem teljesül a pumpáló lemma. Legyen $p \ge 1$ tetszőleges egész szám, $w = a^p b^p c^{2p} \in L_5$, melyre $|w| \ge p$.

Ekkor $\forall u, v, x, y, z \in \{a, b, c\}^*$ esetén, melyre w = uvxyz, $|vxy| \le p$, |vy| > 0, $|vy|_a = 0$ vagy $|vy|_c = 0$.

Ha $|vy|_a = 0$, akkor $uv^2xy^2z \notin L_5$,

ha $|vy|_c = 0$, akkor $uxz \notin L_5$.

6. A nyelvre nem teljesül a pumpáló lemma. Legyen $p \ge 1$ tetszőleges egész szám, $w = a^p b^p c^p d^p \in L_6$, melyre $|w| \ge p$.

Ekkor $\forall u, v, x, y, z \in \{a, b, c, d\}^*$ esetén, melyre $w = uvxyz, |vxy| \le p, |vy| > 0, |vxy| \in \{a, b\}^* \cup \{b, c\}^* \cup \{c, d\}^*.$

Ha $|vy|_c = |vy|_d = 0$, akkor $uxz \notin L_6$,

ha $|vy|_a = |vy|_d = 0$, akkor $uxz \notin L_6$,

ha $|vy|_a = |vy|_b = 0$, akkor $uxz \notin L_6$.

Tehát minden $p \ge 1$ esetén megadtunk olyan $w \in L$, $|w| \ge p$ szót, melynek egyetlen 5 részre való particionálása sem rendelkezik a pumpáló lemmában szereplő összes feltétellel.

7. A nyelvre nem teljesül a pumpáló lemma. Legyen $p \ge 1$ tetszőleges egész szám, $w = a^{p^2} \in L_7$, melyre $|w| \ge p$.

Ekkor $\forall u, v, x, y, z \in \{a\}^*$ esetén, melyre w = uvxyz, $|vxy| \le p$, |vy| > 0, $uv^2xy^2z \notin L_7$, mivel $|w| = p^2 < |uv^2xy^2z| \le p^2 + p < (p+1)^2 = p^2 + 2p + 1$.

- 8. A nyelvre nem teljesül a pumpáló lemma. Legyen $p \ge 1$ tetszőleges egész szám és $k \ge p$ prímszám, $w = a^k \in L_8$, melyre $|w| \ge p$.
 - Ekkor $\forall u, v, x, y, z \in \{a\}^*$ esetén, melyre w = uvxyz, $|vxy| \le p$, |vy| > 0, $uv^{k+1}xy^{k+1}z \notin L_8$, mivel, ha m = |u| + |x| + |z|, akkor $|uv^{k+1}xy^{k+1}z| = k \cdot (k-m+1)$, ami nem prímszám, vagyis $uv^{k+1}xy^{k+1}z \notin L_8$.
- 9. A nyelvre nem teljesül a pumpáló lemma. Legyen $p \ge 1$ tetszőleges egész szám, $w = a^{2^p} \in L_9$, melyre $|w| \ge p$.

Ekkor $\forall u, v, x, y, z \in \{a\}^*$ esetén, melyre w = uvxyz, $|vxy| \le p$, |vy| > 0, $uv^2xy^2z \notin L_9$, mivel, $|w| = 2^p < 2^p + 2^p - |uxz| < 2^{p+1}$.

10. A nyelvre nem teljesül a pumpáló lemma. Legyen $p \ge 1$ tetszőleges egész szám, $k = \max\{p,2\}, w = a^k b^{k^2} \in L_{10}$, melyre $|w| \ge p$.

Ekkor $\forall u, v, x, y, z \in \{a, b\}^*$ esetén, melyre w = uvxyz, $|vxy| \le p$, |vy| > 0, az alábbi esetek fordulhatnak elő:

- $|vy|_a = 0$ vagy $|vy|_b = 0$, akkor $uxz \notin L_{10}$,
- $|vy|_a$ 0 vagy $|vy|_b$ 0, akkor $uv^2xy^2z \notin L_{10}$ (a 7. pontban szereplő példához hasonló okok miatt).
- 11. A nyelvre nem teljesül a pumpáló lemma. Legyen $p \ge 1$ tetszőleges egész szám, $w = a^p b^p c^p \in L_{11}$, melyre $|w| \ge p$.

Ekkor $\forall u, v, x, y, z \in \{a, b, c\}^*$ esetén, melyre w = uvxyz, $|vxy| \le p$, |vy| > 0, $|vy| \in \{a, b\}^* \cup \{b, c\}^*$.

Ha $|vy|_c = 0$, akkor $uv^2xy^2z \notin L_{11}$, ha $|vy|_c = 0$, akkor $uxz \notin L_{11}$.

12. A nyelvre nem teljesül a pumpáló lemma. Legyen $p \ge 1$ tetszőleges egész szám, $w = a^p b^p a^p b^p \in L_{12}$, melyre $|w| \ge p$. Ekkor $\forall u, v, x, y, z \in \{a, b\}^*$ esetén, melyre w = uvxyz, $|vxy| \le p$, |vy| > 0, $uxz \notin L_{12}$.

13. A nyelvre nem teljesül a pumpáló lemma. Legyen $p \ge 1$ tetszőleges egész szám, $w = a^p b^p b^p a^p \in L_{13}$, melyre |w| > p.

Ekkor $\forall u, v, x, y, z \in \{a, b\}^*$ esetén, melyre w = uvxyz, $|vxy| \le p$, |vy| > 0, $uxz \notin L_{13}$, mivel ha vxy a w első felében vagy a második felében van, akkor a v és y törlése miatt a ww^R szerkezet nem teljesülne, ha $vxy \in \{b\}^*$, akkor a v és y törlése miatt a $|w|_a = |w|_b$ feltétel nem teljesülne.

- 14. A nyelvre nem teljesül a pumpáló lemma. Legyen $p \ge 1$ tetszőleges egész szám, $w = (a^p b^p)^2 \in L_{14}$, melyre $|w| \ge p$. Ekkor $\forall u, v, x, y, z \in \{a, b\}^*$ esetén, melyre w = uvxyz, $|vxy| \le p$, |vy| > 0, $uxz \notin L_{14}$.
- 15. A nyelvre nem teljesül a pumpáló lemma. Legyen $p \ge 1$ tetszőleges egész szám, $w = a^p b^p c b^p a^p c a^p b^p \in L_{15}$, melyre $|w| \ge p$.

Ekkor $\forall u, v, x, y, z \in \{a, b\}^*$ esetén, melyre w = uvxyz, $|vxy| \le p$, |vy| > 0, $uxz \notin L_{15}$.

16. A nyelvre nem teljesül a pumpáló lemma. Legyen $p \ge 1$ tetszőleges egész szám, $w = a^p b^p c a^p b^p \in L_{16}$, melyre $|w| \ge p$.

Ekkor $\forall u, v, x, y, z \in \{a, b\}^*$ esetén, melyre w = uvxyz, $|vxy| \le p$, |vy| > 0, $uxz \notin L_{16}$.

- 17. A nyelvre nem teljesül a pumpáló lemma. Az előző feladathoz hasonlóan tetszőleges $p \ge 1$ esetén a $w = a^p b^p c b^p a^p$ szót választva.
- 18. A nyelvre nem teljesül a pumpáló lemma. Legyen $p \ge 1$ tetszőleges egész szám, $w = a^{p+1}b^{p+1}c^p \in L_{18}$, melyre $|w| \ge p$.

Ekkor $\forall u, v, x, y, z \in \{a, b, c\}^*$ esetén, melyre w = uvxyz, $|vxy| \le p$, |vy| > 0, ha $|vxy|_c = 0$, akkor $uv^2xy^2z \notin L_{18}$, ha $|vxy|_c = 0$, akkor $uxz \notin L_{18}$.

19. A nyelvre nem teljesül a pumpáló lemma. Legyen $p \ge 1$ tetszőleges egész szám, $w = a^p b^{2p} c^{3p} \in L_{19}$, melyre $|w| \ge p$.

Ekkor $\forall u, v, x, y, z \in \{a, b, c\}^*$ esetén, melyre $w = uvxyz, |vxy| \le p, |vy| > 0, uxz \notin L_{19}$.

125

4.6.3. Feladat.

1. $G_1 = (\{S, X, C\}, \{a, b, c\}, R_1, S), \text{ ahol}$

$$R_{1} = \{S \to XC$$

$$X \to aXbb \mid \varepsilon$$

$$C \to cC \mid \varepsilon\},$$

$$L(G_1) = L_1$$
.

2. $G_2 = (\{S, A, X\}, \{a, b, c\}, R_2, S), \text{ ahol}$

$$R_2 = \{S \to AX \\ X \to bXcc \mid \varepsilon \\ A \to aA \mid \varepsilon \},$$

$$L(G_2) = L_2$$
.

3. Az $L = L_1 \cap L_2 = \{a^i b^{2i} c^{4i} \mid i \ge 0\}$ nyelvre nem teljesül a környezetfüggetlen nyelvek pumpáló lemmája. Legyen $p \ge 1$ tetszőleges egész szám, $w = a^p b^{2p} c^{4p}$. Ekkor $|w| \ge p$ és $w \in L$.

Tekintsünk tetszőleges $u, v, x, y, z \in \{a, b, c\}^*$ szavakat, melyekre w = uvxyz, $|vxy| \le p$, |vy| > 0. Minden ilyen partícionálásnál pl. i = 0 esetén az $uxz \notin L$, mivel a vy szóban legfeljebb kétféle betű szerepelhet $\{a, b, c\}$ -ból.

4.6.4. Feladat.

1. $G_1 = (\{S, X, Y\}, \{a, b, c, d\}, R_1, S)$, ahol

$$R_{1} = \{S \to XY$$

$$X \to aXb \mid \varepsilon$$

$$Y \to cYd \mid \varepsilon\},$$

$$L(G_1) = L_1$$
.

2. $G_2 = (\{S, A, D, X\}, \{a, b, c, d\}, R_2, S)$, ahol

$$R_{2} = \{S \rightarrow AXD$$

$$X \rightarrow bXc \mid \varepsilon$$

$$A \rightarrow aA \mid \varepsilon$$

$$D \rightarrow dD \mid \varepsilon\},$$

$$L(G_2) = L_2$$
.

3. Az $L = \{a^i b^i c^i d^j \mid i, j \ge 0\}$ nyelvre nem teljesül a környezetfüggetlen nyelvek pumpáló lemmája. Ez megmutatható a 4.6.2 feladat 1. pontjában szereplőhöz hasonló módszerrel.

4.6.5. Feladat.

- 1. L_1 környezetfüggetlen, ami igazolható L_1 -et generáló környezetfüggetlen nyelvtan megadásával.
- 2. L_2 nem környezetfüggetlen, mivel nem teljesül rá a pumpáló lemma.
- 3. L_3 nem környezetfüggetlen, mivel nem teljesül rá a pumpáló lemma.
- 4. L_4 környezetfüggetlen, ami igazolható L_4 -et generáló környezetfüggetlen nyelvtan megadásával.
- 5. L₅ nem környezetfüggetlen, mivel nem teljesül rá a pumpáló lemma.
- 6. L_6 környezetfüggetlen, ami igazolható L_6 -ot generáló környezetfüggetlen nyelvtan megadásával.
- 7. L_7 környezetfüggetlen, ami igazolható L_7 -et generáló környezetfüggetlen nyelvtan megadásával.

$$L_7 = \{a^i b^j \mid i < j\} \cup \{a^i b^j \mid j < i < 2j\} \cup \{a^i b^j \mid i > 2j\}.$$

- 8. L₈ nem környezetfüggetlen, mivel nem teljesül rá a pumpáló lemma.
- 9. L_9 környezetfüggetlen, ami igazolható L_9 -et generáló környezetfüggetlen nyelvtan megadásával. A nyelvtan megadásához használja fel a nyelv alábbi felbontását: $L_9 = (\{a, b, c\}^* \{a\}^* \{b\}^* \{c\}^*) \cup \{a^i b^j c^k \mid i, j, k \ge 0 \text{ és } i \text{ } j\} \cup \{a^i b^j c^k \mid i, j, k \ge 0 \text{ és } j \text{ } k\}.$
- 10. L_{10} környezetfüggetlen, ami igazolható L_{10} -et generáló környezetfüggetlen nyelvtan megadásával.

$$L_{10} = \{a^i b^k a^j \mid i, j, k \ge 0 \text{ és } k = i + j\}.$$

11. L_{11} környezetfüggetlen, ami igazolható L_{11} -et generáló környezetfüggetlen nyelvtan megadásával.

Az $L' = \{a^i x d^l \mid i, l \ge 0 \text{ és } i < l\} \subseteq \{a, x, d\}^*, L'' = \{b^j c^k \mid j, k \ge 0 \text{ és } j \text{ } k\}$ nyelvek környezetfüggetlenek. L előállítható L'-ből egy h környezetfüggetlen behelyettesítéssel, ahol h(a) = a, h(d) = d, h(x) = L''.

4.7.1. Feladat.

1. $L' = \{w_1 \# w_2 \mid w_1, w_2 \in \{a, b\}^* \text{ és } w_1 \mid w_2\} \text{ környezetfüggetlen nyelv (lásd pl. 4.2.12/38. példa).}$

 $L'' = \{w_1 \# w_2 \mid w_1, w_2 \in \{a, b\}^* \text{ \'es } |w_1| < |w_2|\} \text{ k\"ornyezetf\"uggetlen nyelv, mivel pl. a}$ $G'' = (\{S, X, Y\}, \{a, b, \#\}, R'', S), \text{ ahol}$

$$R'' = \{S \to XY$$

$$X \to aXa \mid aXb \mid bXa \mid bXb \mid \#$$

$$Y \to aY \mid bY \mid a \mid b\}$$

nyelvtanra L(G'') = L''.

A környezetfüggetlen nyelvek \cup -ra való zártsága miatt $L_1 = L' \cup L''$ környezetfüggetlen nyelv.

- 2. $L' = \{a^i b^j \mid i < j\}, L'' = \{a^i b^j \mid i > j\}$ nyelvekről könnyen belátható, hogy környezetfüggetlenek (lsd. pl. a 4.2.12/4. pontot). $L_2 = L' \cup L''$, így L_2 környezetfüggetlen.
- 3. $L' = \{a^i b^j c^k \mid i j\}, L'' = \{a^i b^j c^k \mid i k\}, L''' = \{a^i b^j c^k \mid j k\}$ nyelvekről könnyen belátható, hogy környezetfüggetlenek (lsd. pl. a 4.2.12/13. pontot). $L_3 = L' \cup L'' \cup L'''$, így L_3 környezetfüggetlen.
- 4. $L' = \{a^i b^j c^k \mid i = j\}, L'' = \{a^i b^j c^k \mid j = k\}$ nyelvekről könnyen belátható, hogy környezetfüggetlenek (lsd. pl. a 4.2.12/12. pontot). $L_4 = L' \cup L''$, így L_4 környezetfüggetlen.
- 5. $L' = \{ucxct \mid u, t \in \{a, b\}^* \text{ és } u = t^R\}, L'' = \{vcw \mid v, w \in \{a, b\}^* \text{ és } v = w^R\}$ nyelvekről könnyen belátható, hogy környezetfüggetlenek (lsd. pl. a 4.2.12/40. pontot). Legyen f az alábbi behelyettesítés: $f(a) = \{a\}, f(b) = \{b\}, f(c) = \{c\}, f(x) = L''$. $L_5 = f(L')$ így L_5 környezetfüggetlen.
- 6. $L' = \{a^n b^n \mid n \ge 0\}, L'' = \{b\}^*, L''' = \{b^m c^m \mid m \ge 0\}$ nyelvekről könnyen belátható, hogy környezetfüggetlenek, így $L_6 = L' \cdot L'' \cdot L'''$ környezetfüggetlen.
- 7. $L' = \{a, b, c\}^* \{a\}^+ \{b\}^+ \{c\}^+$, $L'' = \{a^i b^j c^k \mid i, j, k \ge 0 \text{ és } j \text{ } i\}^*$, $L''' = \{a^i b^j c^k \mid i, j, k \ge 0 \text{ és } j \text{ } k\}$ nyelvekről könnyen belátható, hogy környezetfüggetlenek, így $L_7 = L' \cup L'' \cup L'''$ környezetfüggetlen.
- 8. $L' = (\{a, b\}\{a, b\})^*\{a, b\}, L'' = \{ucvu'c'v' \mid u, v, u', v' \in \{a, b\}^*, c, c' \in \{a, b\}, c c', |u| = |u'|, |v| = |v'|\}$ nyelvek környezetfüggetlenek, így $L_8 = L' \cup L''$ környezetfüggetlen.
- 9. $L' = \{uxt \mid u, t \in \{a, b\}^* \text{ és } u = t^R\}, L'' = \{cvcwc \mid v, w \in \{a, b\}^*\}$ nyelvek környezetfüggetlenek. L'' alkalmas behelyettesítésével L'-be az L_6 előállítható.
- 10. Ötlet: az L_{10} nyelv előállítása olyan nyelvek uniójaként, melyekről könnyen belátható, hogy környezetfüggetlenek. Legyen $L' = \{a^m b^m \mid m \ge 1\}^+, L'' = \{a\}^+ \{b^m a^m \mid m \ge 1\}^* \{b\}^+$. L' és L'' környezetfüggetlenek és $\overline{L_{10}} = L' \cap L''$. Mivel belátható, hogy $\overline{L'}$ és $\overline{L''}$ környezetfüggetlenek és $L_{10} = \overline{L'} \cup \overline{L''}$, így L_{10} környezetfüggetlen nyelv.
- **4.7.2.** Feladat. Legyen $\Sigma = \{a, b, c\}$ és $L = \Sigma^*$. Az $\{a^n b^n c^n : n \ge 0\} \subseteq L$ és nem környezetfüggetlen nyelv.
- **4.7.3. Feladat.** Legyen $L = \{a^nb^n : n \ge 0\}$. Ekkor $L = L^* \cap a^*b^*$. Így ha feltesszük, hogy L^* reguláris, akkor mivel a^*b^* reguláris és a reguláris nyelvek zártak a metszetképzésre, azt kapjuk, hogy L is reguláris. De L ismerten nem reguláris. Tehát L^* sem reguláris. Általában, ha $L \subseteq \Sigma^*$ nemreguláris környezetfüggetlen nyelv és b egy új betű, akkor $(Lb)^* \subseteq (\Sigma \cup \{b\})^*$ nem reguláris, hiszen ellenkező esetben $L = ((Lb)^* \cap \Sigma^*b)/b$ is az lenne.

4.7.4. Feladat. Nem. Az $(abc)^* \subseteq \{a, b, c\}^*$ nyelv kommutatív lezártja nem környezetfüggetlen, mert

$$Com(abc)^* \cap a^*b^*c^* = \{a^nb^nc^n : n \ge 0\}$$

nem környezetfüggetlen nyelv. Itt felhasználtuk, hogy egy környezetfüggetlen nyelvnek egy reguláris nyelvvel való metszete környezetfüggetlen.

4.7.5. Feladat. $L_1 = L \cap \{a\}^+\{b\}^+\{a\}^+\{b\}^+$, ahol $\{a\}^+\{b\}^+\{a\}^+\{b\}^+$ reguláris nyelv. Mivel a környezetfüggetlen nyelvek zártak a reguláris nyelvel való metszetre, így L nem lehet környezetfüggetlen nyelv.

4.7.6. Feladat.

- 1. $G_1 = (\{S, B\}, \{a, b, c\}, R_1, S)$, ahol $R_1 = \{S \rightarrow aSc \mid Sc \mid B, B \rightarrow bB \mid \varepsilon\}$. $L(G_1) = L_1$. Hasonlóan megadhatók L_2, L_3, L_4 nyelveket generáló környezetfüggetlenek nyelvtanok.
- 2. $L = L_1 \cup L_2$ $L' = L_3 \cup L_4$

4.7.7. Feladat.

- 1. Tekintsük a 4.7.6./2. részben szereplő $L' = \{a^i b^j c^k \mid i, j, k \ge 0 \text{ és } k \le \max\{i, j\}\}$ környezetfüggetlen nyelvet. Ekkor $\max(L') = \{a^i b^j c^k \mid i, j, k \ge 0 \text{ és } k = \max\{i, j\}\}$, mely nem környezetfüggetlen nyelv.
- 2. Tekintsük a 4.7.6./2. részben szereplő $L = \{a^i b^j c^k \mid i, j, k \ge 0 \text{ és } k \ge min\{i, j\}\}$ környezetfüggetlen nyelvet. Ekkor $min(L) = \{a^i b^j c^k \mid i, j, k \ge 0 \text{ és } k = min\{i, j\}\}$, mely nem környezetfüggetlen nyelv.
- 3. Legyen $L = \{abc\}$, ekkor $L^* \sqcup \cap \{a\}^* \{b\}^* \{c\}^* = \{a^n b^n c^n\}$, mely ismerten nem környezetfüggetlen nyelv, így $L^* \sqcup \cup$ sem az.
- **4.7.8. Feladat.** Az $L_1 = \{a^n b^n c^n \mid n \ge 0\}$ nem környezetfüggetlen nyelv. $L \cap \{a\}^* \{b\}^* \{c\}^* = L_1$ és $\{a\}^* \{b\}^* \{c\}^*$ reguláris nyelv, így L nem lehet környezetfüggetlen.
- **4.7.9.** Feladat. Legyen $M_1 = (Q_1, \Sigma, \Gamma, \delta_1, s_1, F_1)$, melyre $L(M_1) = L_1$ és $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$, melyre $L(M_2) = L_2$. M_1 és M_2 ismeretében megkonstruálható az (L_1/L_2) {\$} nyelvet felismerő $M = (Q_1 \cup (Q_1 \times Q_2), \Sigma \cup \{\$\}, \Gamma, \delta, s_1, F_1 \times F_2)$ veremautomata, ahol

$$\delta(q, a, \beta) = \begin{cases} \delta_1(q, a, \beta), & \text{ha } q \in Q_1, a \in \Sigma \\ \left([q, s_2], \varepsilon\right), & \text{ha } q \in Q_1, a = \$, \beta = \varepsilon \end{cases}$$

$$\left\{ \left([p_1, p_2], \gamma\right) \mid \exists b \in \Sigma_{\varepsilon} : \\ \left[(p_1, \gamma) \in \delta_1(q_1, b, \beta), p_2 = \delta_2(q_2, b)\right] \right\}, & \text{ha } q = [q_1, q_2] \in Q_1 \times Q_2, a = \varepsilon \end{cases}$$

$$\text{és } \beta \in \Gamma_{\varepsilon}$$

129

Belátható, hogy (L_1/L_2) {\$} = L(M). M ismeretében megadható az (L_1/L_2) {\$} nyelvet generáló G környezetfüggetlen nyelvtan. Módosítsuk a G nyelvtant úgy, hogy a \$ jelet tekintsük nemterminálisnak és vegyük be a szabályok közé a \$ $\rightarrow \varepsilon$ szabályt.

Az így előálló nyelvtan környezetfüggetlen és az L_1/L_2 nyelvet generálja.

4.7.10. Feladat. Mivel Σ^* reguláris nyelv, ezért ez a feladat a 4.7.9. példa speciális esete.

4.7.11. Feladat. Az L nyelvet felismerő M veremautomata alapján megkonstruálható olyan M' veremautomata, amely felismeri a suffix(L) nyelvet.

Ötlet: M állapothalmazát bővítsük minden q-ra \hat{q} -al. Legyen δ' a következőképpen definiálva:

$$\delta'(\hat{q},\varepsilon,\alpha) = \{(\hat{p},\beta),(p,\beta) \mid \exists a \in \Sigma \ (p,\beta) \in \delta(q,a,\alpha)\}, \alpha \in \Gamma_{\varepsilon}$$

$$\delta'(q, a, \alpha) = \delta(q, a, \alpha), a \in \Sigma, \alpha \in \Gamma_{\varepsilon}.$$

M' kezdőállapota legyen q'_0 , amelyre $\delta'(q'_0, \varepsilon, \varepsilon) = \{(\hat{q}_0, \varepsilon), (q_0, \varepsilon)\}$. M' végállapotai megegyeznek M végállapotaival.

4.7.12. Feladat.

- 1. $L-R=L\cap \bar{R}$. \bar{R} reguláris és a környezetfüggetlen nyelvek zártak a reguláris nyelvekkel való metszetre, így L-R környezetfüggetlen.
- 2. Σ^* reguláris nyelv. Legyen $L = \{w_1 w_2 \mid w_1, w_2 \in \Sigma^* \text{ és } w_1 \ w_2\}$ környezetfüggetlen nyelv. $\Sigma^* L = \bar{L} = \{ww \mid w \in \Sigma^*\}$ nyelv nem környezetfüggetlen.

4.7.13. Feladat. $sub(L) = \{suffix(prefix(L))\}$

4.7.14. Feladat. Ötlet: L-hez megadható $G = (V, \Sigma, P, S)$ Chomsky-normálformában lévő L-et generáló környezetfüggetlen nyelvtan.

Legyen
$$G^R = (V^R, \Sigma, P^R, S^R)$$
, ahol $V^R = \{A^R \mid A \in V\}$, $P^R = \{A^R \rightarrow B^R C^R \mid A \rightarrow CB \in P\} \cup \{A^R \rightarrow a \mid A \rightarrow a \in P\}$.

4.7.15. Feladat. Ötlet: Vegyünk egy L-et generáló, Chomsky-normálformában lévő $G = (V, \Sigma, R, S)$ környezetfüggetlen nyelvtant.

Legyen
$$\hat{G} = (V \cup \{\hat{A} \mid A \in V\} \cup \{S_0\}, \Sigma, \hat{R}, S_0)$$
, ahol $\hat{R} = R \cup \{\hat{C} \rightarrow \hat{A}B, \hat{B} \rightarrow C\hat{A} \mid A \rightarrow BC \in R\} \cup \{\hat{S} \rightarrow \varepsilon\} \cup \{S_0 \rightarrow a\hat{A} \mid A \rightarrow a \in R\} \cup \{S_0 \rightarrow S\}.$

5. fejezet

Szintaktikus elemzési módszerek

5.1. Elméleti összefoglaló

A szintaktikai elemzés alapfeladata a következő: olyan algoritmust kell megadjunk, mely egy $G = (V, \Sigma, R, S)$ környezetfüggetlen nyelvtan és egy $w \in \Sigma^*$ input szó esetén eldönti, hogy $w \in L(G)$ teljesül-e. A továbbiakban feltesszük, hogy G minden szimbóluma termináló és elérhető (mivel lineáris időben konstruálhatunk tetszőleges G nyelvtanhoz, amire L(G) \emptyset , vele ekvivalens G' nyelvtant, melynek minden szimbóluma ilyen, ezt feltehetjük).

Amennyiben $G = (V, \Sigma, R, S)$ Chomsky-normálformában adott, és $w \in \Sigma^*$, akkor egy $\mathcal{O}(|w|^3|R|)$ időigényű elemzési algoritmus a Viterbi-algoritmus, melyet ismertetünk:

- **5.1.1. Algoritmus.** Viterbi-algoritmus, input $G = (V, \Sigma, R, S)$ Chomsky-normálformájú nyelvtan és $w \in \Sigma^*$ szó. Output: $w \in L(G)$ teljesül-e.
 - 1. Ha $w = \varepsilon$, akkor $w \in L(G)$ pontosan akkor teljesül, ha $S \to \varepsilon \in R$.
 - 2. Ellenkező esetben legyen n = |w|, $w = a_1 a_2 \dots a_n$. Minden $1 \le i \le j \le n = |w|$ indexpár esetén meghatározzuk a következő $T_{i,j} \subseteq V$ halmazt:
 - 1. $T_{i,i} = \{A \in V : A \to a_i \in R\}$;
 - 2. i < j esetén $T_{i,j} = \{A \in V : \exists i \le k < j, B \in T_{i,k}, C \in T_{k+1,j} : A \to BC \in R\}$.
 - 3. $w \in L(G)$ pontosan akkor teljesül, ha $S \in T_{1,n}$.

A fenti algoritmus dinamikus programozás alkalmazásával valóban implementálható $\mathcal{O}(|w|^3|R|)$ időigényűre. Működésének alapelve, hogy az input w szó egyre hosszabb összefüggő részeire illeszt derivációs fákat; az ilyen megközelítéssel dolgozó elemzési módszereket bottom-up elemzési módszereknek nevezzük. Egy másik megközelítési módszer az, mikor a nyelvtan kezdőszimbólumából indulva a szó egyre hosszabb prefixeire illő derivációs fát próbálunk előállítani, amiket pedig top-down elemzési módszernek nevezünk.

Amennyiben a nyelvtan nem Chomsky-normálformájú, viszont ε -mentes és *ciklusmentes*¹ (vagyis nincs olyan $A \in V$, amire $A \Rightarrow^+ A$ teljesülne), akkor az *általános bottom-up elemzési algoritmust* alkalmazhatjuk, mely a következő:

¹Megjegyezzük, hogy tetszőleges környezetfüggetlen nyelvtan lineáris időben ilyen alakra hozható.

5.1.2. Algoritmus. Általános bottom-up elemzési algoritmus.

Input: egy $G = (V, \Sigma, R, S)$ ε -mentes és ciklusmentes környezetfüggetlen nyelvtan, valamint egy w szó.

Output: w egy jobboldali levezetése, ha $w \in L(G)$, különben nem.

- Lerögzítjük R szabályainak egy $r_1, \ldots, r_{|R|}$ sorrendjét. Jelölje n a $w = a_1 a_2 \ldots a_n$ szó hosszát.
- Az algoritmusban a következő lokális változókat deklaráljuk:
 - (a) $i \in \{1, \ldots, n+1\}$, egy pointer;
 - (b) $\alpha \in (N \cup \Sigma)^*$ egy mondatforma;
 - (c) $\beta \in \{1, ..., |R|, s\}^*$ szabályok sorszámainak és egy speciális s ("shift") jeleknek egy sorozata.

Invariáns tulajdonságunk a következő lesz: $a_1 \dots a_{i-1}$ levezethető α -ból, egy jobboldali levezetésben β szabályait (az *s*-ek törlése után) a megadott sorrendben alkalmazva.

A módszer egy klasszikus backtrack vonalait követi:

- 0. Inicializálás: i := 1, $\alpha := \beta := \varepsilon$.
- 1. Amíg van olyan $A \to \gamma$ alakú szabály, amire $\alpha == \alpha' \gamma$, legyen r az *első* ilyen szabály sorszáma, $\alpha := \alpha' A$ és $\beta := r\beta$.

Ha már nincs ilyen szabály, menjünk a 2. pontra.

- 2. Ha i < n+1, akkor legyen $\alpha := \alpha a_i$, $\beta := s\beta$, i := i+1 és menjünk vissza az 1. pontra.
- 3. Ha i == n+1 és $\alpha == S$, akkor leállunk, $w \in L(G)$, a w szó egy jobboldali levezetésében sorrendben alkalmazható szabályok sorszámait megkapjuk β -ból az s shift jelek kitörlésével.
- 4. Ha i == n+1 és α S, akkor backtracket hajtunk végre az alábbiak szerint:
 - 4.1. Ha $\alpha == \alpha' A$, $\beta == r\beta'$, az r. szabály $A \to \gamma$ és van olyan $A' \to \gamma'$ szabály is, melyre $\alpha' \gamma == \alpha'' \gamma'$ valamilyen α'' -re, és melynek sorszáma r' > r, az ilyenek közül r' a lehető legkisebb, akkor legyen $\alpha := \alpha'' A'$, $\beta = r' \beta'$ és menjünk az 1. pontra. Ellenkező esetben a 4.2. ponttal folytatjuk.
 - 4.2. Ha α = α'A, β = rβ', az r. szabály A → γ és i n+1, akkor legyen α := α' γ a_i, β := sβ', i := i+1 és menjünk az 1. pontra.
 Ellenkező esetben a 4.3. ponttal folytatjuk.
 - 4.3. Ha $\alpha = \alpha' A$, $\beta = r\beta'$, az r. szabály $A \to \gamma$ és i == n+1, akkor $\alpha := \alpha' \gamma$, $\beta := \beta'$ és menjünk vissza a 4.1. pontra. Ellenkező esetben a 4.4. ponttal folytatjuk.
 - 4.4. Ha $\alpha = \alpha' a$, $\beta = s\beta'$ és i > 1, akkor legyen $\alpha := \alpha'$, $\beta := \beta'$, i := i 1 és menjünk vissza a 4.1. pontra. Ellenkező esetben leállunk, $w \notin L(G)$.

Az általános top-down elemzési algoritmus, mely *S*-ből kiindulva egy baloldali levezetését próbálja meg előállítani, szintén klasszikus backtrack vonalvezetéssel rendelkezik és mint ilyen, csak balrekurzió-mentes nyelvtanra alkalmazható.

5.1.3. Algoritmus. Általános top-down elemzési algoritmus.

Input: egy $G = (V, \Sigma, R, S)$ balrekurzió-mentes nyelvtan és egy $w \in \Sigma^*$ szó.

Output: w egy baloldali levezetése, ha $w \in L(G)$, különben "nem".

– Rögzítsük le minden A nemterminálisra alternatíváinak sorrendjét $A \to \gamma_1 \mid \ldots \mid \gamma_k$ formában, az $A \to \gamma_i$ szabályra A_i -ként fogunk hivatkozni és jelölje R az összes A_i alakú jel halmazát.

Jelölje *n* a $w = a_1 a_2 \dots a_n$ szó hosszát.

- Az algoritmusban a következő lokális változókat deklaráljuk:
 - (a) $i \in \{1, \ldots, n+1\}$, egy pointer;
 - (b) $\alpha \in (R \cup \Sigma)^*$, az illesztés eddigi sikeres része;
 - (c) $\beta \in (V \cup \Sigma)^*$ egy mondatforma, melyet a szó még hátralevő részére illesztenünk kell
- 0. Inicializálás: i := 1, $\alpha := \varepsilon$, $\beta := S$.
- 1. Amíg $\beta == A\beta'$ egy $A \in V$ nemterminálisra, addig legyen $\alpha := \alpha A_1$ és $\beta := \gamma_1 \beta'$, ahol $A \to \gamma_1$ az A első alternatívája.
- 2. Ha $i \le n$ és $\beta = a_i \beta'$, akkor legyen $\alpha := \alpha a_i$, $\beta := \beta'$, i := i+1 és menjünk vissza az 1. pontra.

Ellenkező esetben a 3. ponton folytatjuk.

3. Ha i==n és $\beta=\varepsilon$, akkor leállunk, $w \in L(G)$, egy baloldali levezetésben az alternatívákat megkapjuk sorrendben úgy, hogy a terminális jeleket töröljük α -ból.

Ellenkező esetben a 4. ponton backtrackkel folytatjuk.

- 4. (Backtracking.)
 - 4.1. Amíg $\alpha = \alpha' a$ alakú, $a \in \Sigma$, legyen $\alpha := \alpha'$, $\beta := a\beta$, i := i-1 és menjünk vissza a 4.1. pontra.
 - 4.2. Ha $\alpha = \alpha' A_i$ alakú, ekkor $\beta = \gamma_i \beta'$ valamely β' -re. Ekkor
 - 4.2.1. Ha *A*-nak több, mint *j* alternatívája van, akkor legyen $\alpha := \alpha' A_{j+1}$, $\beta := \gamma_{j+1} \beta'$ és menjünk vissza az 1. pontra. Ellenkező esetben a 4.2.2. ponton folytatjuk.
 - 4.2.2. Ha A-nak pontosan j alternatívája van, i = 1 és A = S, akkor leállunk, $w \notin L(G)$. Ellenkező esetben a 4.2.3. ponton folytatjuk.
 - 4.2.3. Legyen $\alpha := \alpha'$, $\beta := A\beta'$ és menjünk vissza a 4.1. pontra.

Az általános top-down és bottom-up módszerekben a backtracking bizonyos esetekben kiküszöbölhető és ezzel hatékonyabb algoritmusokat kapunk, ehhez azonban az input nyelvtannak egy-egy speciális tulajdonságot teljesítenie kell. Ezen tulajdonságot definiáljuk a következőkben, a top-down esetre.

Rögzítsünk egy $G=(V,\Sigma,R,S)$ környezetfüggetlen nyelvtant. Tetszőleges $\alpha \in (V \cup \Sigma)^*$ mondatforma és $k \geq 0$ egész esetén legyen

$$First_k(\alpha) = \{u \in \Sigma^* : \exists w \ \alpha \Rightarrow^* uw, \text{ és } |u| = k \text{ vagy } (|u| < k \text{ és } v = \varepsilon)\},$$

vagyis az α -ból levezethető szavak k hosszú prefixeinek halmaza, és legyen tetszőleges $L \subseteq (V \cup \Sigma)^*$ halmazra és $k \ge 0$ egészre

$$\operatorname{First}_k(L) = \bigcup_{\alpha \in L} \operatorname{First}_k(\alpha).$$

Az elemzés során szükségünk lesz tetszőleges $\alpha \in (V \cup \Sigma)^*$ szó esetén a First $_k(\alpha)$ halmaz gyors meghatározására, ezt elősegítendő definiáljuk a következő \odot_k műveletet nyelvek közt: legyen $L_1 \odot_k L_2 = \operatorname{First}_k(L_1 L_2)$. Nyilvánvaló, hogy $\operatorname{First}_k(a) = \{a\}$ tetszőleges $a \in \Sigma$ esetén, ha $k \ge 1$ és $\{\varepsilon\}$, ha k = 0.

5.1.4. Algoritmus. A $G = (V, \Sigma, R, S)$ nyelvtan minden $A \in V$ nemterminálisához a First $_k(A)$ halmaz kiszámítására.

- 1. Minden $A \in V$ -re kiszámítjuk nyelvek egy $H_0(A)$, $H_1(A)$, ... sorozatát a következő iterációval:
- 2. Tetszőleges $a \in \Sigma$ -ra és $i \ge 0$ -ra legyen $H_i(a) = \operatorname{First}_k(\{a\})$.
- 3. Legyen minden $A \in V$ -re $H_0(A) = \{ w \in \Sigma^* : \exists \alpha \ A \to w\alpha \in R \text{ és } |w| = k \text{ vagy } (|w| < k, \alpha = \varepsilon) \}.$
- 4. Minden $A \in V$ -re legyen $H_{i+1}(A) = H_i(A) \cup \bigcup_{A \to X_1 \dots X_n \in R} H_i(X_1) \oplus_k H_i(X_2) \oplus_k \dots \oplus_k H_i(X_n)$.
- 5. Az iteráció véget ér, ha minden $A \in V$ -re $H_{i+1}(A) = H_i(A)$, ekkor $First_k(A) = H_i(A)$ minden $A \in V$ -re.

A First_k halmazokon felül a Follow_k(A) halmazokat is definiáljuk a következőképp, tetszőleges $A \in V$ -re a következőképp:

$$Follow_k(A) = \bigcup_{S \Rightarrow *\alpha A\beta} First_k(\beta),$$

vagyis Follow $_k(A)$ -ban azon terminális szavak k hosszú prefixeit tartalmazza, amik valamely $\alpha A\beta$ mondatformának az A utáni részéből levezethetőek.

Ezek a halmazok is algoritmikusan kiszámíthatóak egy iterációval:

- **5.1.5.** Algoritmus. A $G = (V, \Sigma, R, S)$ nyelvtan minden $A \in V$ nemterminálisához a Follow $_k(A)$ halmaz kiszámítására.
 - 1. Minden $A \in V$ -re kiszámítjuk nyelvek egy $H_0(A)$, $H_1(A)$, ... sorozatát a következő iterációval:

- 2. $H_0(S) = \{\varepsilon\}$, és ha A S, akkor $H_0(A) = \emptyset$.
- 3. $H_{i+1}(A) = H_i(A) \cup \bigcup_{B \to \alpha A \beta \in R} \operatorname{First}_k(\beta H_i(B))$.
- 4. Az iteráció véget ér, ha minden $A \in V$ -re $H_{i+1}(A) = H_i(A)$, ekkor Follow $_k(A) = H_i(A)$ minden $A \in V$ -re.

Ezen halmazok definíciójával és kiszámíthatóságával készen állunk az erősen LL(k) nyelvtanok definiálására, e tulajdonság eldöntésére és ezen nyelvtanokra a hatékony top-down elemzési algoritmusra:

5.1.6. Definíció. A $G = (V, \Sigma, R, S)$ nyelvtan *erősen* LL(k) a $k \ge 0$ egészre, ha tetszőleges $A \in V, A \to \alpha \in R, A \to \beta \in R, \alpha$ β esetén

$$\operatorname{First}_k(\alpha\operatorname{Follow}_k(A)) \cap \operatorname{First}_k(\beta\operatorname{Follow}_k(A)) = \emptyset.$$

A tulajdonság a fentiek szerint eldönthető, hiszen mind a $First_k$ és $Follow_k$ halmazokat ki tudjuk számítani.

Az erősen LL(k) elemzés algoritmusát jelen feladatgyűjteményünk nem tartalmazza, keretein egy erősen LL(k) elemzési algoritmus futtatása túlmutat.

5.2. Általános elemzés, backtrack és táblázatos módszerek

5.2.1. Feladat. Állapítsa meg a CYK algoritmus alkalmazásával, hogy $cabab \in L(G)$ fennálle, ahol $G = (\{S, A, B, C\}, \{a, b, c\}, R, S), R$ szabályai pedig

$$S \rightarrow AB \mid b$$

$$A \rightarrow CB \mid AA \mid a$$

$$B \rightarrow AS \mid b$$

$$C \rightarrow BS \mid c$$

5.2.2. Feladat. Állapítsa meg az általános bottom-up elemzési algoritmus alkalmazásával, hogy $cabab \in L(G)$ fennáll-e, ahol $G = (\{S, A, B, C\}, \{a, b, c\}, R, S), R$ szabályai pedig

$$S \rightarrow AB \mid b$$

$$A \rightarrow CB \mid AA \mid a$$

$$B \rightarrow AS \mid b$$

$$C \rightarrow BS \mid c$$

5.2. MEGOLDÁSOK 135

5.2.3. Feladat. Állapítsa meg az általános top-down elemzési algoritmus alkalmazásával, hogy $cabab \in L(G)$ fennáll-e, ahol $G = (\{S, A, B, C\}, \{a, b, c\}, R, S), R$ szabályai pedig

$$S \rightarrow AB \mid b$$

$$A \rightarrow CB \mid AA \mid a$$

$$B \rightarrow AS \mid b$$

$$C \rightarrow BS \mid c$$

Megjegyzés: ehhez először balrekurzió-mentesítenie kell a nyelvtant.

5.2.4. Feladat. Állapítsa meg, hogy erősen LL(2)-e a $G = (\{S, A, B, C\}, \{a, b, c\}, R, S)$ nyelvtan, ahol R szabályai:

$$S \rightarrow AB \mid b$$

$$A \rightarrow CB \mid AA \mid a$$

$$B \rightarrow AS \mid b$$

$$C \rightarrow BS \mid c$$

Megoldások

5.2.1. Feladat. Az algoritmus során kitöltött táblázat:

	1	2	3	4	5
1	C	_	A	A	S, B
2		A	S, B	_	C
3			S, B	_	C
4				A	S, B
5					S, B

Mivel $S \in T_{1,5}$, ezért $cabab \in L(G)$.

6. fejezet

Környezetfüggő nyelvek és általános nyelvek

6.1. Elméleti összefoglaló

A $G=(V,\Sigma,R,S)$ nyelvtan $k\"{o}rnyezetf\"{u}gg\~{o}$, ha szabályai $\alpha A\beta \to \alpha\gamma\beta$ alakúak, ahol $\gamma \ \varepsilon$, kivéve esetleg az $S\to \varepsilon$ szabályt, ami ha R-ben van, akkor S nem fordulhat elő jobb oldalon. Az L nyelv környezetf $\ddot{u}gg\~{o}$, ha van őt generáló környezetf $\ddot{u}gg\~{o}$ nyelvtan. Továbbá, az L nyelv 0. típusú vagy $rekurzívan felsorolhat\'{o}$, ha van őt generáló általános nyelvtan.

6.2. Környezetfüggő és általános nyelvtanok

6.2.1. Feladat. Mutassa meg, hogy minden környezetfüggetlen nyelv környezetfüggő is.

6.2.2. Feladat. Mutassa meg, hogy egy nyelv pontosan akkor környezetfüggő, ha generálható olyan nyelvtannal, melynek minden szabálya $\alpha \to \beta$ alakú, ahol $|\alpha| \le |\beta|$ (kivéve az esetleges $S \to \varepsilon$ szabályt, mely ha szerepel, akkor S nem állhat jobb oldalon).

6.2.3. Feladat. Adjon algoritmust, mely eldönti a következő problémát: adott egy $G = (V, \Sigma, R, S)$ környezetfüggő nyelvtan és egy $w \in \Sigma^*$ szó, igaz-e, hogy $w \in L(G)$? Elemezze algoritmusa idő- és tárigényét.

6.2.4. Feladat. Adjon egy-egy, az alábbi nyelveket generáló általános nyelvtant:

- 1. $\{a^n b^n c^n : n \ge 0\}$
- 2. $\{a^{n^2}: n > 0\}$
- 3. $\{a^{2^n}: n > 0\}$
- 4. $\{a^n : n \text{ összetett szám}\}$

6.2. MEGOLDÁSOK 137

Megoldások

6.2.1. Feladat. Egy környezetfüggetlen nyelvtan pontosan akkor környezetfüggő, ha ε -mentes. Mivel tetszőleges környezetfüggetlen nyelvtanhoz (effektíven) létezik ekvivalens ε -mentes nyelvtan, így az állítás igazolva.

Másképp: tetszőleges *L* környezetfüggetlen nyelvet tudunk generálni Chomsky-normálformájú nyelvtannal, mely környezetfüggő.

6.2.3. Feladat. Vegyük észre, hogy ha $G = (V, \Sigma, R, S)$ egy környezetfüggő nyelvtan és $p \Rightarrow q$ a $p, q \in (V \cup \Sigma)^+$ nemüres mondatformákra, akkor $|p| \leq |q|$. Ebből következően $w \in L(G)$ pontosan akkor teljesül a $w \in s$ szóra, ha vannak olyan $S = p_0, p_1, p_2, \ldots, p_n = w$ mondatformák, melyekre $p_i \Rightarrow p_{i+1}$ tetszőleges $0 \leq i < n$ esetén, továbbá $|p_i| \leq |w|$. Ezért egy algoritmus lehet a következő:

- 1. Ha $w = \varepsilon$, akkor $w \in L(G)$ pontosan akkor teljesül, ha $S \to \varepsilon \in R$.
- 2. Ellenkező esetben konstruáljuk meg azt a Γ_G gráfot, melynek csúcsai a $p \in (V \cup \Sigma)^+$, $|p| \leq |w|$ mondatformák és $p \to q$ pontosan akkor él Γ_G -ben, ha $p \Rightarrow q$.

Ezután $w \in L(G)$ pontosan akkor teljesül, ha w elérhető Γ_G -ben S-ből.

Az algoritmus jelen formájában exponenciális idő- és tárigényű (elkészít egy $|V \cup \Sigma|^n$ -csúcsú gráfot, majd ezen megoldja az elérhetőségi problémát).

A tár újrahasznosításával egy polinom tárkorlátos algoritmust kaphatunk a következőképpen:

```
bool elerheto( p, q, t ){
   if( p == q ) return true;
   if( p => q ) return true;
   if( t == 0 ) return false;
   for( r: |r| <= |w| ){
      if( elerheto( p, r, t - 1 ) and elerheto( r, q, t - 1 ) ){
      return true;
      }
   }
   return false;
}

bool eleme( w ){
   return elerheto( S, w, log2(c^|w|) );
}</pre>
```

ahol $c = |\Sigma| + |V| + 1$. Világos, hogy a fenti algoritmus polinom tárkorlátos: az elerheto függvény három, egyenként legfeljebb |w| hoszú mondatformát és egy t (binárisan reprezentált) lépésszámot, mely legfeljebb $\log(c^{|w|}) = |w| \log c$ értékű, tárol (amihez $\log(|w| \log c)$ bit elég), így a függvény egy példánya O(|w|) tárterületet használ. A hívási lánc hossza pedig (mivel a t paraméter mindig csökken és kezdetben $|w| \log(c)$) szintén O(|w|)-vel korlátozott, így a teljes memóriaigény $O(|w|^2)$.

Az algoritmus helyessége azon múlik, hogy mivel a Γ_G gráf (legfeljebb) $c^{|w|}$ csúcsú, így S-ből w pontosan akkor érhető el, ha elérhető legfeljebb $c^{|w|} = 2^{\log(c^{|w|})}$ lépésben. Ezért elegendő belátnunk, hogy elerhető (p,q,t) pontosan akkor tér vissza true értékkel, ha p-ből Γ_G -ben q elérhető legfeljebb 2^t lépésben.

Ez a t = 0 esetben világos, az első két sorban ennek megtörténik az ellenőrzése.

Tetszőleges t > 0 esetben pedig azt használhatjuk fel, hogy p-ből q pontosan akkor elérhető legfeljebb 2^t lépésen belül, ha van olyan r csúcs (a "felezőpont" egy ilyen úton), amire p-ből r is és r-ből q is elérhető legfeljebb 2^{t-1} lépésben. Egy ilyen csúcs keresése zajlik a ciklusban.

Megjegyzés: az algoritmus és elemzése lényegében a Savitch-tétel bizonyítása, miszerint n csúcsú irányított gráfban az ELÉRHETÁSÉG probléma $O(\log^2 n)$ tár felhasználásával megoldható.

6.2.4. Feladat.

1. Tekintsük a következő 0. típusú nyelvtant: $G = (\{S, B\}, \{a, b, c\}, R, S)$, ahol R szabályai:

$$S \to aSBc \mid \varepsilon$$

$$cB \to Bc$$

$$aB \to ab$$

$$bB \to bb$$

Ekkor $L(G) = \{a^n b^n c^n : n \ge 0\}$. A nyelvtanban a $cB \to Bc$ szabály nem környezetfüggő, de tudjuk, hogy mivel $|cB| \le |Bc|$, így azzá tehető. Egy környezetfüggő nyelvtan szabályai, mely szintén az $\{a^n b^n c^n : n \ge 0\}$ nyelvet generálja:

$$S_0 \rightarrow S \mid \varepsilon$$

 $S \rightarrow aSBC \mid aBC$
 $CB \rightarrow CX$
 $CX \rightarrow YX$
 $YX \rightarrow BX$
 $BX \rightarrow BC$
 $aB \rightarrow ab$
 $bB \rightarrow bb$
 $bC \rightarrow bc$
 $cC \rightarrow cc$.

6.2. MEGOLDÁSOK 139

2. Ehhez a nyelvhez szintén egy 0. típusú nyelvtant adunk meg:

$$S \to XS_0Y$$

$$S_0 \to AS_0B \mid \varepsilon$$

$$AB \to BaA$$

$$Aa \to aA$$

$$aB \to Ba$$

$$XB \to X$$

$$X \to \varepsilon$$

$$AY \to Y$$

$$Y \to \varepsilon$$

(A nyelvtan környezetfüggővé tehető.)

3. Ehhez a nyelvhez szintén egy 0. típusú nyelvtant adunk meg:

$$S \to XSY \mid a$$

$$Xa \to aaX$$

$$XY \to \varepsilon$$

(A nyelvtan környezetfüggővé tehető.)

4. Ehhez a nyelvhez szintén egy általános nyelvtant adunk meg:

$$S \rightarrow XMNY$$

$$M \rightarrow AM \mid AA$$

$$N \rightarrow BN \mid BB$$

$$AB \rightarrow BaA$$

$$Aa \rightarrow aA$$

$$aB \rightarrow Ba$$

$$XB \rightarrow X$$

$$X \rightarrow \varepsilon$$

$$AY \rightarrow Y$$

$$Y \rightarrow \varepsilon$$

(A nyelvtan környezetfüggővé tehető.)

7. fejezet

Eldönthetetlen problémák

7.1. Elméleti összefoglaló

Turing-gép egy $M=(Q, \Sigma, \delta, q_0, q_f, q_r)$ hatos, ahol Q a véges állapothalmaz, Σ az input ábécé úgy, hogy $Q \cap \Sigma = \emptyset$, $|\Sigma| > 1$ és $\sqcup \in \Sigma$ a speciális \sqcup "blank" vagy "space" jel, $q_0 \in Q$ a kezdőállapot, $q_f \in Q$ az elfogadó állapot, $q_r \in Q$ az elutasító állapot, q_f q_r és $\delta: (Q - \{q_f, q_r\}) \times \times \Sigma \to Q \times \Sigma \times D$ leképezés, ahol $D = \{\leftarrow, \to\}$. A fenti gép egy konfigurációja egy $u \in \Sigma^*Q\Sigma^+$ beli szó. A konfigurációk közti átmenetet a következőképp definiáljuk : $upav \vdash_M u'qv'$ pontosan akkor, ha $p \notin \{q_f, q_r\}$, $\delta(p, a) = (q, b, d)$, továbbá az alábbi esetek valamelyike fennáll :

```
1. d = \rightarrow, u' = ub és v' = v \varepsilon;
```

2.
$$d = \rightarrow$$
, $u' = ub$, $v = \varepsilon$ és $v' = \Box$;

3. $d = \leftarrow$, u = u'c valamely $c \in \Sigma$ -ra és v' = cbv;

4.
$$d = \leftarrow$$
. $u = \varepsilon$. $u' = \varepsilon$ és $v' = bv$.

Az M Turing-gép elfogadja a $w \in (\Sigma - \{\sqcup\})^*$ -beli szót, ha $q_0w \sqcup \vdash_M^* uq_fv$ valamely $u, v \in \Sigma^*$ szavakra, elveti a szót, ha $q_0w \sqcup \vdash_M^* uq_fv$ valamely $u \in \Sigma^*$, $v \in \Sigma^+$ szavakra, ellenkező esetben M nem áll meg w-n (avagy "végtelen ciklusba esik" w-n), ezen eseteket rendre M(w) =,,igen", M(w) =,,nem", M(w) = \nearrow jelöli.

Az M Turing-gép az $L(M) = \{w \in (\Sigma - \{\sqcup\})^* : M \text{ elfogadja } w\text{-t}\}$ nyelvet $ismeri \ fel$; ha az is igaz, hogy M minden szón megáll (vagyis minden szót vagy elvet, vagy elfogad), akkor M eldönti L(M)-et. Az L nyelv Turing-felismerhető vagy $rekurzivan \ felsorolható$, ha van L-t felismerő Turing-gép, és eldönthető vagy rekurziv, ha van L-t eldöntő Turing-gép. A Turing-felismerhető nyelvek osztályát \mathbf{RE} , az eldönthetőkét \mathbf{R} jelöli.

Az általános nyelvtanok és a Turing-gépek kapcsolatát a következő tétel fejti ki:

7.1.1. Tétel. Egy nyelv pontosan akkor Turing-felismerhető, ha 0. típusú (vagyis rekurzívan felsorolható).

Rögzíthetjük Turing-gépek és input szavaik egy kódolását (mondjuk) a $\Sigma = \{0,1\}$ ábécé felett, így egy M Turing-gép és egy w input szó által alkotott (M,w) párt is reprezentálhatunk egy $\{0,1\}^*$ -beli szóval. Az egyértelműség kedvéért az O matematikai objektum (Turing-gép, gépszó pár,...) véges bináris kódját $\langle O \rangle$ jelöli a továbbiakban.

7.2. FELADATOK 141

A Turing-gép már elég erős számítási modell ahhoz, hogy szimuláljon Turing-gépeket, ezt mondja ki az alábbi tétel:

7.1.2. Tétel. Létezik olyan U univerzális Turing-gép a $\Sigma = \{0, 1, \bot\}$ ábécé fölött, melyre tetszőleges M Turing-gép és annak w input szava esetén $U(\langle M, w \rangle) = M(w)$.

Ennek az univerzalitásnak azonban megvan az ára is:

7.1.3. Tétel. Legyen MEGÁLLÁS a következő nyelv:

 $\{\langle M, w \rangle : \text{az } M \text{ Turing-gép megáll a } w \text{ input szón} \}.$

A MEGÁLLÁS nyelv Turing-felismerhető, ám nem dönthető el.

Eldöntési problémákat felfoghatunk nyelvekként is: az A eldöntési problémához rendelt L_A (mondjuk) $\{0,1\}^*$ feletti nyelvnek pontosan azok a szavak az elemei, melyek olyan objektumok kódjai, amikre az A probléma szerinti válasz igen. A Turing-gépek korlátai a kiszámíthatóságelmélet szempontjából azért lényegesek, mert a Turing-gép az "algoritmus" szónak szinonimájaként is kezelhetjük a Church-Turing tézis szerint, mely azt mondja, hogy egy eldöntési probléma pontosan akkor "kiszámítható algoritmikusan", ha ez a hozzá rendelt nyelv rekurzív.

A co**RE** nyelvosztályba az **RE**-beli nyelvek *komplementerei* tartoznak. Ismert, hogy $\mathbf{R} = \mathbf{RE} \cap \mathbf{coRE}$ (és ezért MEGÁLLÁS $\notin \mathbf{coRE}$).

A Rice-tétel azt mondja ki, hogy Turing-gépek által felismert nyelvek nemtriviális tulajdonságait algoritmikusan nem lehet eldönteni:

7.1.4. Tétel. Legyen $\emptyset \subsetneq \mathcal{C} \subsetneq \mathbf{RE}$ tetszőleges (nemtriviális) nyelvosztály. Ekkor a következő kérdés eldönthetetlen: adott egy M Turing-gép, igaz-e, hogy $L(M) \in \mathcal{C}$?

Egy $L \subseteq \Sigma^*$ nyelv eldönthetetlenségének bizonyítására gyakran alkalmazott módszer az úgynevezett rekurzív visszavezetés módszere, mikor is egy ismerten eldönthetetlen $L_0 \subseteq \Delta^*$ nyelvet vezetünk vissza az L nyelvre, vagyis adunk egy olyan $f \colon \Delta^* \to \Sigma^*$ kiszámítható szófüggvényt, melyre $x \in L_0 \Leftrightarrow f(x) \in L$. Amennyiben ilyen szófüggvény létezik, következik, hogy L is eldönthetetlen. Példáinkban leggyakrabban a megállási problémát vezetjük vissza a kérdéses nyelvre, vagyis egy olyan f függvényt adunk, melynek bemenete egy M gép és egy w input szava, kimenete pedig az épp aktuális A probléma egy f(M, w) bemenete oly módon, hogy M pontosan akkor áll meg w-n, ha $f(M, w) \in A$.

7.2. Feladatok

- **7.2.1. Feladat.** Mutasson egy olyan nyelvet, amely *nem ismerhető fel* Turing-géppel!
- **7.2.2. Feladat.** Indokolja meg! Van-e olyan nyelv, ami nincs benne...

- ...R-ben?
 ...coR-ben?
 ...RE∪R-ben?
 ...RE∪coRE-ben?
- 4. ...co**RE**-ben? 7. ...**RE**∩co**RE**-ben?

Ahol tud, hozzon példát is.

7.2.3. Feladat. Igazolja a Rice-tételt.

7.2.4. Feladat. Igazolja a MEGÁLLÁS probléma eldönthetetlenségét felhasználva, hogy az alábbi problémák mindegyike eldönthetetlen!

- 1. Adott egy M Turing-gép. Megáll-e minden szón?
- 2. Adott egy *M* Turing-gép. Van-e olyan szó, amin megáll?
- 3. Adott egy *M* Turing-gép. Megáll-e az üres szón?
- 4. Adott egy M Turing-gép és két szó, x_1 és x_2 . Megáll-e M valamelyik szón a kettő közül?
- 5. Adott egy M Turing-gép és két szó, x_1 és x_2 . Megáll-e M mindkét szón?
- 6. Adott egy M Turing-gép. Igaz-e, hogy M eldönti az $\{a^n b^n : n \ge 0\}$ nyelvet?
- 7. Adott egy M Turing-gép. Igaz-e, hogy M felismeri az $\{a^nb^n : n \ge 0\}$ nyelvet?
- 8. Adott egy M_1 és egy M_2 Turing-gép. Igaz-e, hogy pontosan ugyanazokon a szavakon állnak meg?
- 9. Adott egy M_1 , egy M_2 és egy M_3 Turing-gép. Van-e köztük kettő, amik ugyanazokon a szavakon állnak meg?
- 10. Adott egy *M* Turing-gép. Reguláris nyelv-e azoknak a szavaknak a halmaza, amiken *M* megáll?
- 11. Adott egy *M* Turing-gép. Igaz-e, hogy *M* polinom időkorlátos?
- 12. Adott egy *M* Turing-gép. Igaz-e, hogy *M* konstans időkorlátos?
- 13. Adott egy M Turing-gép. Igaz-e, hogy M tárkorlátos¹?
- 14. Adott egy *M* Turing-gép és egy *R* véges automata. Igaz-e, hogy *M* pontosan azokon a szavakon áll meg, mint amiket *R* elfogad?

¹Vigyázzunk: attól, hogy *M* nem áll meg *x*-en, még lehet tárkorlátos. Alakítsuk át *M*-et úgy, hogy ha nem áll meg, akkor nemkorlátos legyen a tárigénye – mondjuk egy számláló szalag hozzáadásával.

7.2. MEGOLDÁSOK 143

15. Adott egy *M* Turing-gép és egy *q* állapota. Van-e olyan bemenő szó, aminek feldolgozása alatt *M* bekerül *q*-ba?

- 16. Adott egy *M* Turing-gép és egy *q* állapota. Igaz-e, hogy *M* minden bemenő szó feldolgozásakor előbb-utóbb bekerül *q*-ba?
- 17. Adott egy M Turing-gép, amiről tudjuk, hogy véges sok szón áll meg. Igaz-e, hogy M páros sok szón áll meg²?
- 18. Adott egy *M* Turing-gép. Igaz-e, hogy *M* véges sok szón áll meg?
- 19. Adott egy M Turing-gép és egy $a \in \Sigma$ betű. Van-e olyan bemenet, aminek hatására M kiírja az a jelet?

Megoldások

- **7.2.1. Feladat.** A MEGÁLLÁS probléma komplementere ilyen: ha felismerhető lenne, akkor **R** = **RE** ∩ co**RE** miatt a MEGÁLLÁS eldönthetető lenne, pedig nem az.
- **7.2.2. Feladat.** Elöljáróban: minden felsorolt osztályra van ilyen nyelv. Ennek az az egyszerű oka, hogy míg nyelvből kontinuum sok van rögzített Σ ábécé fölött, a fenti osztályok mindegyike csak megszámlálható sok nyelvet tartalmaz. Egy-egy nyelvet meg is adunk, ami nincs benne ezekben az osztályokban:
 - 1. A MEGÁLLÁS közismerten nincs **R**-ben.
 - 2. Mivel **R** = co**R**, és MEGÁLLÁS nincs co**R**-ben sem.
 - 3. A MEGÁLLÁS **RE****R**-ben van és $\mathbf{R} = \mathbf{RE} \cap \mathbf{coRE}$, így a MEGÁLLÁS komplementere, $\{(M, x) : M \text{ gép NEM áll meg } x\text{-en}\}$ nem lehet \mathbf{RE} -ben.
 - 4. A MEGÁLLÁS **RE**\co**RE**-beli.
 - 5. $\mathbf{RE} \cup \mathbf{R} = \mathbf{RE}$, tehát a MEGÁLLÁS komplementere jó lesz.
 - 6. RE∪coRE-ben nincs benne a következő nyelv: L = {(M₁, M₂, x) : M₁ megáll x-en és M₂ nem áll meg x-en}. Mivel visszavezethető erre a problémára az RE-teljes megállási probléma és annak a coRE-teljes komplementere, így ez a nyelv RE-nehéz és coRE-nehéz is; mivel RE coRE, L nem lehet benne egyik osztályban sem.
 - 7. $\mathbf{RE} \cap \mathbf{coRE} = \mathbf{R}$, tehát a MEGÁLLÁS probléma jó lesz.

 $^{^2}$ Figyelem: itt a bemenet nem egyszerűen egy M gép, hanem egy M gép, ami véges sok szón áll meg. Tehát ilyet kell készítenie az algoritmusnak.

7.2.3. Feladat. Legyen $C \subseteq RE$ egy nemtriviális nyelvosztály, vagyis \emptyset C RE.

Először tegyük fel, hogy $\emptyset \notin \mathcal{C}$.

Legyen $L \in \mathcal{C}$ egy tetszőleges nyelv és M_L egy, az L nyelvet felismerő Turing-gép (mivel $\mathcal{C} \subseteq \mathbf{RE}$, ilyen gép van).

Visszavezetjük a megállási problémát az $\{\langle M \rangle : \text{az } M \text{ által felismert nyelv } \mathcal{C}\text{-be esik} \}$ nyelvre. Tetszőleges (M, x) párhoz (effektíven) konstruáljuk meg a következő M' gépet: M' tetszőleges y bemenő szón futtassa M-et x-en, majd ha M megállna x-en, indítsa el M_L -t y-on. Röviden:

$$M'(y) = \begin{cases} M_L(y), & \text{ha } M \text{ megáll } x\text{-en}; \\ \nearrow & \text{egyébként} \end{cases}$$

Látható, hogy ez valóban visszavezeti a megállási problémát a \mathcal{C} -be tartozás kérdésére, hiszen az M' által felismert nyelv L (vagyis \mathcal{C} -beli), ha M megáll x-en és \emptyset (vagyis nem \mathcal{C} -beli), ha M nem áll meg x-en. Tehát M megáll x-en \Leftrightarrow az elkészített M' által felismert nyelv \mathcal{C} -be tartozik, ezért ez a kérdés is eldönthetetlen.

Ha $\emptyset \in \mathcal{C}$, akkor a fentiek szerint a felismert nyelv $\mathbf{RE} \setminus \mathcal{C}$ -be tartozása eldönthető lenne, akkor (mivel az M' által felismert nyelv mindenképp \mathbf{RE} -be tartozik) a kimenet negálásával $\mathbf{RE} \setminus \mathcal{C}$ -be tartozása is eldönthető lenne, ami a fenti miatt nem lehet.

Ezzel igazoltuk, hogy a rekurzívan felsorolható nyelvek egyetlen nemtriviális tulajdonsága sem dönthető el algoritmikusan.

7.2.4. Feladat.

1. Adott M_0 géphez és x bemenő szóhoz konstruáljuk meg a következő M Turing-gépet: M tetszőleges y bemenő szón törölje a szalagot, írja a helyére x-et, majd menjen át M kezdőállapotába. Vegyük észre, hogy ezt az átalakítást M_0 átmenettáblázatának és x-nek a függvényében effektíven végre tudjuk hajtani.

Ekkor ha M_0 megáll x-en, akkor M tetszőleges y-on megáll, ha pedig M_0 nem áll meg x-en, akkor M nem áll meg egy szón sem. Így M_0 pontosan akkor áll meg x-en, ha M megáll minden szón.

Ha tehát a kérdéses probléma eldönthető lenne, akkor a megállási probléma is, ami ismerten nem az, így ez a probléma sem eldönthető.

Megjegyzés: a fenti konstrukciót a továbbiakban úgy mondjuk, hogy "elindítjuk M_0 -t x-en".

- 2. Ehhez a feladathoz is jó visszavezetést ad, ha a konstruált M gép mindenképp elindítja M_0 -t x-en.
- 3. Ehhez a feladathoz is jó visszavezetést ad, ha a konstruált M gép mindenképp elindítja M_0 -t x-en.
- 4. Adott M_0 -hoz és x-hez legyen $M = M_0$, $x_1 = x_2 = x$. Világos, hogy ha M_0 megáll x-en, akkor M is megáll legalább az egyik szón (mindkettőn meg fog), ha pedig M_0 nem áll meg x-en, akkor M sem áll meg sem x_1 -en, sem x_2 -n.

7.2. MEGOLDÁSOK 145

Ha tehát a kérdéses probléma eldönthető lenne, akkor a megállási probléma is, ami ismerten nem az, így ez a probléma sem eldönthető.

- 5. Ehhez a feladathoz is jó visszavezetés az $M = M_0$, $x_1 = x_2 = x$ átalakítás.
- 6. Adott M_0 -hoz és x-hez készítsük el a következő M gépet : M működése az y bemenő szón legyen a következő : ha $y \in \{a^nb^n : n \ge 0\}$, akkor indítsa el M_0 -t x-en, ha ez megállna, fogadja el y-t. Ha pedig $y \notin \{a^nb^n : n \ge 0\}$, akkor vesse el a bemenetet.

Ekkor ha M_0 megáll x-en, M pontosan az $\{a^nb^n: n \geq 0\}$ nyelvet dönti el, ha pedig nem, akkor az ilyen alakú szavakon végtelen ciklusba esik, vagyis nem dönt el nyelvet. (Többek közt az $\{a^nb^n: n \geq 0\}$ nyelvet sem.)

- 7. Az előző visszavezetés itt is megfelelő lesz.
- 8. Adott M_0 géphez és x szóhoz konstruáljuk meg a következő M_1 és M_2 gépeket: M_1 álljon meg minden szón egyetlen lépés után, M_2 pedig tetszőleges y bemenetre indítsa el M_0 -t x-en.

Ekkor ha M_0 megáll x-en, akkor M_1 is és M_2 is minden szón megáll, vagyis ekkor ugyanazokon a szavakon állnak meg. Ellenkező esetben M_1 megáll minden szón, míg M_2 nem áll meg semmit, vagyis nem ugyazon a nyelven állnak meg.

Ha tehát a kérdéses probléma eldönthető lenne, akkor a megállási probléma is, ami ismerten nem az, így ez a probléma sem eldönthető.

9. Adott M_0 géphez és x szóhoz konstruáljuk meg a következő gépeket: M_1 álljon meg minden szón egy lépésben, M_2 ismerje fel az $\{a^nb^n\}$ nyelvet (vagyis csak ezeken a szavakon álljon meg, a többin essen végtelen ciklusba), M_3 pedig tetszőleges y bemenet hatására indítsa el M_0 -t x-en.

Ekkor ha M_0 megáll x-en, akkor M_1 és M_3 is megáll minden szón, így ekkor van két olyan gép a három közt, amik ugyanazokon a szavakon állnak meg. Ellenkező esetben M_1 , M_2 és M_3 rendre a Σ^* , $\{a^nb^n: n \ge 0\}$, Ø nyelveken állnak meg, vagyis nincs köztük kettő, amik ugyanazokon a szavakon állnának meg.

Ha tehát a kérdéses probléma eldönthető lenne, akkor a megállási probléma is, ami ismerten nem az, így ez a probléma sem eldönthető.

10. Adott M_0 géphez és x szóhoz konstruáljuk meg a következő M gépet: M az y bemenő szón, ha $y = a^n b^n$ alakú, akkor álljon meg, különben indítsa el M_0 -t x-en.

Ekkor ha M_0 megáll x-en, akkor M megáll minden szón, vagyis (Σ^* reguláris nyelv) ekkor reguláris nyelven áll meg. Ellenkező esetben M az { $a^nb^n: n \ge 0$ } nyelven áll meg, ami pedig nem reguláris.

Ha tehát a kérdéses probléma eldönthető lenne, akkor a megállási probléma is, ami ismerten nem az, így ez a probléma sem eldönthető.

11. Adott M_0 géphez és x szóhoz konstruáljuk meg a következő M gépet: M tetszőleges y bemeneten futtassa M_0 -t x-en.

Ekkor ha M_0 megáll x-en, akkor valamilyen konstans k számú lépésben áll meg, ekkor M időkorlátja egy n hosszú y bemeneten 2n+k, vagyis lineáris, ami polinom. Ellenkező esetben M nem áll meg, így nem időkorlátos.

Ha tehát a kérdéses probléma eldönthető lenne, akkor a megállási probléma is, ami ismerten nem az, így ez a probléma sem eldönthető.

- 12. Vegyük az előző feladat megoldásának azt a módosítását, mikor M bemeneti szalagját nem használja, egy plusz szalaggal váltjuk fel az eredeti bemeneti szalag szerepét, amin elindítjuk M_0 -t x-en. Ekkor a törlés-visszatekerés 2n-es időkorlátját felváltja egy O(|x|), konstans hosszú inicializálási szakasz, ezzel a gép konstans időkorlátos lesz, ha M_0 megáll x-en és nem lesz időkorlátos, ha M_0 nem áll meg x-en.
- 13. Ötlet: szimuláljuk *M*-et *x*-en, egy számláló szalagon minden lépésben jobbra léptetve a mutatót, ezzel elérve, hogy a gép ne legyen tárkorlátos, ha *M* nem áll meg *x*-en.
- 14. Ötlet: R fogadjon el minden szót.
- 15. Ötlet: legyen q az elfogadó állapot.
- 16. Ötlet: legyen q az elfogadó állapot.
- 17. Ötlet: *M* álljon meg az *a* szón mindenképp, a *b* szón futtassa *M*-et *x*-en, más szón meg ne álljon meg.
- 18. Ötlet: használjuk fel, hogy a nyelv komplementere nem eldönthető.
- 19. Ötlet: legyen a új jel és csak akkor írjuk ki, mikor M megállna.