Convolution Neural Networks Week 3

COMP6252 (Deep Learning Technologies)

ECS, University of Southampton

28 April 2022

Introduction

- A convolution network usually has at least one convolution layer
- A convolution operation (slightly different from the usual definitio) is done by multiplying weights element-wise with a portion of the input
- The same operation with the same weights is repeated over all the input
- The set of weights are usually referred to as the **kernel**
- The result of the convolution is referred to as the feature map or activation map

Convolution operation on an input image with 3 channels (RGB)

Input

1	2	4	3
5	6	8	7
9	10	12	11
13	14	16	2

1	-2
-3	4

Input

1	2	4	3
5	6	8	7
9	10	12	11
13	14	16	2

1	-2
-3	4

Input

1	2	4	3
5	6	8	7
9	10	12	11
13	14	16	2

1	-2
-3	4

$$= \begin{bmatrix} 6 & 8 & 2 \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & & \\ & & \\ & \\ & & \\ &$$

Input

1	2	4	3
5	6	8	7
9	10	12	11
13	14	16	2

1	-2
-3	4

Input

1	2	4	3
5	6	8	7
9	10	12	11
13	14	16	2

1	-2
-3	4

$$= \begin{bmatrix} 6 & 8 & 2 \\ 6 & 8 \end{bmatrix}$$

Input

1	2	4	3
5	6	8	7
9	10	12	11
13	14	16	2

Input

1	2	4	3
5	6	8	7
9	10	12	11
13	14	16	2

$$= \begin{array}{|c|c|c|c|c|} \hline 6 & 8 & 2 \\ \hline 6 & 8 & 2 \\ \hline 6 & & & \\ \hline \end{array}$$

Input

1	2	4	3
5	6	8	7
9	10	12	11
13	14	16	2

1	-2
-3	4

$$= \begin{bmatrix} 6 & 8 & 2 \\ 6 & 8 & 2 \\ 6 & 8 & \end{bmatrix}$$

Input

1	2	4	3
5	6	8	7
9	10	12	11
13	14	16	2

Kernel

$$= \begin{bmatrix} 6 & 8 & 2 \\ 6 & 8 & 2 \\ 6 & 8 & -50 \end{bmatrix}$$

Add stride 2 example here

Stride and receptive field

- In the previous example we used a **stride** equal to 1
- The kernel **receptive field** was equal to 2x2
- The size of the output (activation map) was 3x3
- Are those numbers the same in all applications? No

Stride and receptive field

- In general one can use a stride of any size S. Stride of size 1 is the most common.
- Let $F \times F$ be the kernel **receptive field**
- Let $H_i \times W_i \times C_i$ be the size of the input
- The size of the resulting activation map is $H_o imes W_o$ where

$$H_o = \left\lfloor \frac{H_i - F}{S} \right\rfloor + 1$$

$$W_o = \left\lfloor \frac{W_i - F}{S} \right\rfloor + 1$$

Example

- Consider an input image of size (3,28,28)
- We are using the PyTorch convention with the channel dimension first.
- What would be the size of the activation map if a kernel of size 3x3 and stride 2 were used?
- lacksquare Height and width are the same and equal to $\left\lfloor \frac{28-3}{2} \right\rfloor + 1 = 13$
- So the activation map has size 13×13
- Note that the output of one kernel is a 2-d object: the activation map.
- The number of output channels is determined by the number of kernels

Parameters

- Consider an image of size (3,28,28) used as input to 32 filters of size 3x3
- Since the input has 3 channels each filter has 3x3x3+1(bias)=28 Parameters
- With a stride of 1 the output has size (32,26,26), i.e., the layer has 32×26×26=21632 nodes
- Total number of parameters=32×28=896
- Contrast the above with a feedforward with the first layer having 32x26x26=21632 nodes
- It would have (3x28x28)*21632=50878464 parameters !(without bias)

Padding

- We saw previously that convolution reduces the size of the input
- When multiple layers are used the size is reduced at each layer
- Sometimes we don't want the size to change
- more importantly the "edges" of the input do not contribute as much as the "middle"
- One solution is to pad the input with zeros.

Zero padding

Input

1	2	1
4	2	3
2	1	1

0 padded				
0	0	0	0	0
0	1	2	1	0
0	4	2	3	0
0	2	1	1	0
\cap	Λ	Λ	Λ	Λ

■ The output size in the presence of padding

$$H_o = \left\lfloor \frac{H_i + 2P - F}{S} \right\rfloor + 1$$

$$W_o = \left\lfloor \frac{W_i + 2P - F}{S} \right\rfloor + 1$$

Same formula as before if we consider the effective height $=H_i+2P$ and width $=W_i+2P$

12/1

Convolution operation mathematically

- Let f, i, j be the filter index,output height index, and output width respectively
- lacksquare For a stride of 1 (most common), and bias per filter b_f
- The convolution operation is defined as

$$O_{f,i,j} = b_f + \sum_{c} \sum_{m,n} X_{c,i+m,j+n} * K_{f,c,m,n}$$

If one includes the sample index s, needed in the case of batches

$$O_{s,f,i,j} = b_f + \sum_{c} \sum_{m,n} X_{s,c,i+m,j+n} * K_{f,c,m,n}$$

Pooling

- Typically, convolutional networks performs three steps
 - Convolution operation
 - 2 followed by a Non-linear activation such as ReLU
 - 3 followed by **pooling**
- Pooling computes a summary statistics for a small area of the result
- Taking the max value is the most common pooling operation.

Input

1	2	4	3
5	6	8	7
9	10	12	11
13	14	16	2

Result

Max Pool=

Input

1	2	4	3
5	6	8	7
9	10	12	11
13	14	16	2

Result

6	8

Max Pool=

Input

1	2	4	3
5	6	8	7
9	10	12	11
13	14	16	2

Max Pool=

Result

6	8
14	

Input

1	2	4	3
5	6	8	7
9	10	12	11
13	14	16	2

Max Pool=

Result

6	8
14	16