Algèbre linéaire

Table des matières

I	Systèmes d'équations linéaires	2
1	Résolution 1.1 Équivalence de systèmes	2 2
	1.2 Méthode du pivot de Gauss	2
II	Chapitre 2: Espaces vectoriels	3
2	Notion d'espace vectoriel	3
	2.1 Définitions	3
	2.2 Sous-espace vectorel	4

Première partie

Systèmes d'équations linéaires

Soit K, un corps.

Définition 1. *Un système d'équtions linéaires à n inconnues et p équations est un système d'équations de la forme :*

(S)
$$\begin{cases} a_{1,1}x_1 + \dots + a_{1,n}x_n = b_1 \\ \dots \\ a_{n,1}x_{n,1} + \dots + a_{n,n}x_{n,n} = b_n \end{cases}$$

avec avec $a_{i,j}$ et b_i des éléments de \mathbb{K} et x_i sont les inconnues.

Définition 2. Une solution est le n-uplet $(x_1, ..., x_n)$ tel que x... sont solutions de toutes les équations.

Définition 3. Les $b_1,...,b_p$ sont appelés seconds membres.

Remarque 1. à priori, $n \neq p$

1 Résolution

1.1 Équivalence de systèmes

Pour résoudre, on se ramène à un système équivalent plus simple :

$$(S) \Leftrightarrow (S')$$

 $(S)\Leftrightarrow (S')$ signifie que les deux systèmes ont les mêmes solutions.

1.2 Méthode du pivot de Gauss

On ne change pas les solutions en faisant une des trois opérations suivantes :

- changer l'ordre des équations
- multiplier une équation par un élément $\lambda \in \mathbb{K} \setminus \{0\}$
- Ajouter à une équation un multiple d'une autre

ou toute opération qui peut se décomposer en une série de telles opérations Méthode du pivot de Gauss :

— Si
$$a_{1,1} \neq 0$$

Notation. $a_{1,1}$ est alors appelé le pivot pour tout i strictement supérieur à 1, on remplace la ligne L_i par $L_i - \frac{a_{i,1}}{a_{1,1}}$ À la fin, on obtient un système dit échelonné, c'est-à-dire de la forme :

$$\left\{ a'_{1,j_1}x_{j_1}+...+a'_{1,n}x_n=b'1\right.$$

Deuxième partie

Chapitre 2: Espaces vectoriels

Soit \mathbb{K} , un corps (\mathbb{R} , \mathbb{C} , ou autre)

2 Notion d'espace vectoriel

2.1 Définitions

Définition 4. vague $Un \mathbb{K}$ -espace vectoriel est un ensemble d'éléments appelés vecteurs tels qu'on puisse les additionner entre eux et les multiplier par des scalaires, c'est-à-dire des éléments de \mathbb{K} avec des relations naturelles de compatibilité

Définition 5. $Un \mathbb{K}$ -espace vectoriel est un ensemble E muni de deux lois :

— une loi de composition interne :

$$+: E \times E \rightarrow E$$

 $(u, v) \mapsto u + v$

— une loi de composition externe :

$$: \mathbb{K} \times E \to E$$
$$(\lambda, u) \mapsto \lambda \cdot v$$

Ces lois vérifient:

- $\forall u, v, w \in E$, (u + v) + w = u + (v + w)la loi + est donc associative
- $\forall u, v \in E, u + v = v + u$ la loi + est donc commutative
- $\exists 0_E \in E$, $\forall u \in E$, $u + 0_E = 0_E + u = u$ la loi + admet un élément neutre
- $\forall u \in E, \exists v \in E, u + v = v + u = 0_E$ chaque élément de E admet, par +, un inverse ou opposé
- $\forall \lambda, \mu \in \mathbb{K}, \ \forall u \in E, \ \lambda \cdot (\mu \cdot u) = (\lambda \cdot \mu) \cdot u$
- la loi · est distributive à gauche
- $\forall \lambda \in \mathbb{K}$, $\forall u, v \in E$, $(u + v) \cdot \lambda = \lambda \cdot u + \lambda \cdot v$ la loi \cdot est distributive à droite
- $\forall u \in E, 1 \cdot u = u$ la loi · admet un élément neutre

Remarque 2. Dans le troisième axiome, l'élément neutre est unique. Dans le quatrième axiome, le vecteur v est en fait unique, on le note -u.

Proposition 1. On a également, $\forall u \in E, \forall \lambda \in \mathbb{K}$:

1.
$$\lambda \cdot 0_E = 0_E$$

$$2. \ 0_{\mathbb{K}} \cdot u = 0_E$$

3.
$$\lambda \cdot u = 0_E \Rightarrow \lambda = 0_{\mathbb{K}} \text{ ou } u = 0_E$$

4.
$$(-\lambda) \cdot u = \lambda \cdot (-u) = -(\lambda \cdot u)$$

Démonstration. 1.

$$\lambda \cdot 0_E = \lambda \cdot (0_E + 0_E)$$
$$= \lambda \cdot 0_E + \lambda \cdot 0_E$$

Notation. *On note souvent :*

$$-0_E = 0 \ et \ 0_{\mathbb{K}} = 0$$

$$- u - v = u + (-v)$$

Lemme 1. $\forall u, v, w \in E, u + w = v + w \Rightarrow u = v$

Démonstration.

$$v = (u + w) - w$$
$$= u + (w - w)$$
$$= u + 0_E$$
$$= u$$

donc v = u

Remarque 3. — Pour $\lambda \in \mathbb{K}$ et $u \in E$ $u \cdot \lambda$ ne veut rien dire.

— Pour $u, v \in E$ $u \cdot v$ ne veut rien dire

Exemple. 1/Pour les lois de compositions internes et externes usuelles,

- K est un K-espace vectoriel
- \mathbb{K}^n est un \mathbb{K} -espace vectoriel
- plus généralement, si E_1 et E_2 sont des $E_1 \times E_2$ est un \mathbb{K} -espace vectoriel

2/ Soit E, $un \mathbb{K}$ -espace vectoriel et A, un ensemble qualconque,

— $\mathscr{F}(A,E)$, l'ensemble des applications de A dans E, est un \mathbb{K} -espace vectoriel —

2.2 Sous-espace vectorel

Définition 6. *Soit E, un* \mathbb{K} *-espace vectoriel, et F* \subset *E.*

F est un sous espace vectoriel de E s'il s'agit d'un \mathbb{K} -espace vectoriel pour les lois + et \cdot de E.

- $\forall u, v \in F, u + v \in F$
- $\forall \lambda \in \mathbb{K}$, $\forall u \in F$, $\lambda \cdot u \in F$
- + et \cdot vérifient les propriétés des lois de composition interne et externe des espaces vectoriels