1 Úkol

- 1. Pro tři vodorovné trubice s různými poloměry kruhového průřezu, které jsou opatřeny manometry, naměrte závislost objemového průtoku Q_V na úbytku statického tlaku Δp na vyšetřované délce trubice l ve směru proudění.
- 2. Sestrojte grafy závislosti $Q_V = Q_V(p)$. Do grafu zakreslete teoretický průběh této závislosti plynoucí z Poiseuillovy rovnice.
- 3. Ze směrnice závislosti $Q_V = Q_V(p)$ v oblasti laminárního proudění urete poloměr trubice.
- 4. Upravený poloměr dosaďte do vztahu pro výpočet Re a k.
- 5. Sestrojte graf závislosti k = k(Re), kde k je součinitel odporu trubice a Re je Reynoldsovo číslo.

2 Teorie

Při proudění kapaliny trubicí rozlišujeme tři základní typy. Laminární, turbulentní a smíšené vzniklé střídáním předešlých dvou. K lepšímu určení toho, o který typ se zrova jedná se zavádí Reynoldosovo číslo definováno vztahem

$$Re = \frac{r\rho v_s}{\eta},\tag{1}$$

kde r je poloměr trubice, ρ hustota kapaliny, v_s střední hodnota rychlosti proudění a η dynamická viskozita kapaliny. Při hodnotě tohoto čísla nižší než 2000 se přibližně jedná o laminární proudění. Od hodnoty 1000 se začínají objevovat trubulence. Proto na intervalu od 1000 do 2000 vzniká proudění smíšené.

Pro laminární proudění platí Poissellova rovnice pro velikost průtoku trubicí

$$Q_V = \frac{\pi r^4}{8nl} \Delta p,\tag{2}$$

kde r je poloměr trubice, η dynamická viskozita a Δp pokles tlaku v trubici na úseku délky l. V [1] naleznete odvození vztahů potřebných pro úlohu. Nám postačí

$$Q_V = V/t \tag{3}$$

$$\Delta p = h\rho q \tag{4}$$

$$Re = \frac{Q_V}{\pi r \eta} \rho \tag{5}$$

$$k = \frac{2\pi\Delta pr^5}{l\rho Q_V^2} \tag{6}$$

n	r/mm	r'/mm	l/cm
1	1.8 ± 0.1	1.65 ± 0.04	20.1 ± 0.1
2	1.6 ± 0.1	1.47 ± 0.03	25.1 ± 0.1
3	1.1 ± 0.1	0.96 ± 0.01	25.0 ± 0.1

Tabulka 1: Parametry trubic

3 Výsledky měření

3.1 Podmínky

Teplota vody tekoucí trubicemi byla 22.5 °C.

3.2 Výpočty

Veškeré naměřené hodnoty byly statisticky vyhodnoceny dle [3]. Tento zroj jsem také použil při stanovení chyb vypočítaných veličin. U odměrných válců jsem bral jako chybu měřidla polovinu nejmenšího dílku, chybu měření času jsem odhadl na 0.3 s a při stanovení výšky vodního sloupce v nanometru sjem počítal, až na vyjimky popsané níže s 1 mm.

Za hodnotu hustoty vody a dynamické viskozity jsem dosadil hodnoty z [4]

$$\rho = 0.980 \text{kg} \cdot \text{m}^{-3},\tag{7}$$

$$\eta = 1.002 \cdot 10^{-3} \text{Pa} \cdot \text{s}.$$
 (8)

3.3 Parametry trubicí

Poloměry trubic jsem měřil plastovým posuvným měřidlem, jejich délku metrem. Naměřené hodnoty naleznete v tabulce 1.

3.4 Průtok trubicemi

Pro každou trubici jsem změřil objem V, který protekl trubicí za čas t za výšky h vodního sloupce v nanometru. Tyto hodnoty jsou v tabulkách 2, 3 a 4.

Z naměřených hodnot jsem vypočítal dle 3 a 4 Q_V a Δp a zanesl je do grafu. Jeho hodnoty jsem v laminární časti za pomoci programu Gnuplot proložil přímkou a z její směrnice jsem stanovil skutečný poloměr trubic. Tyto hodnoty jsou pro možnost porovnání opět v tabulce 1 označeny čárkou. Do grafu jsem ještě zanesl teoretické hodnoty Q_V dle 2. Výsledný graf naleznete pod obrázkem 1.

3.5 Závislot odporu trubice na Reynoldově čísle

Dle vztahů 5, 6, dopočtených poloměrů a naměřených hodnot sestrojil graf závislost k na Re. Jedná se o obrázek 2. Dále jsem zanesl teoretickou závislost pro laminární a turbuletní

h/cm	V/ml	t/s
1.5	9.3 ± 0.1	17.0 ± 0.3
2.0	24.0 ± 0.3	12.0 ± 0.3
2.5	46.0 ± 0.3	16.8 ± 0.3
3.0	94.0 ± 1.0	27.4 ± 0.3
3.5	88.0 ± 1.0	21.4 ± 0.3
4.0	88.0 ± 1.0	18.6 ± 0.3
4.5	80.0 ± 1.0	15.0 ± 0.3
5.0	90.0 ± 1.0	15.4 ± 0.3
5.5	88.0 ± 1.0	14.4 ± 0.3
6.0	88.0 ± 1.0	13.0 ± 0.3
8.0 ± 0.5	82.0 ± 1.0	10.8 ± 0.3
12.0 ± 0.5	90.0 ± 1.0	11.2 ± 0.3
16.0	92.0 ± 1.0	9.8 ± 0.3
20.0	88.0 ± 1.0	8.2 ± 0.3

Tabulka 2: Výsledky měření pro trubici 1.

h/cm	V/ml	t/s
1.0	8.9 ± 0.1	19.0 ± 0.3
2.0	21.0 ± 0.3	16.4 ± 0.3
3.0	24.0 ± 0.3	10.6 ± 0.3
4.0	45.0 ± 0.5	14.6 ± 0.3
5.0	49.0 ± 0.5	13.0 ± 0.3
6.0	86.0 ± 1.0	18.4 ± 0.3
7.0	88.0 ± 1.0	18.2 ± 0.3
8.0	86.0 ± 1.0	16.0 ± 0.3
9.0	88.0 ± 1.0	15.0 ± 0.3
10.5 ± 0.5	84.0 ± 1.0	13.8 ± 0.3
14.0 ± 1.0	90.0 ± 1.0	13.0 ± 0.3
20.0 ± 1.0	88.0 ± 1.0	11.8 ± 0.3
26.5	90.0 ± 1.0	10.6 ± 0.3
28.0	94.0 ± 1.0	11.0 ± 0.3

Tabulka 3: Výsledky měření pro trubici 2.

h/cm	V/ml	t/s
2	9.4 ± 0.1	35.0 ± 0.3
4	22.0 ± 0.3	39.6 ± 0.3
6	21.5 ± 0.3	23.0 ± 0.3
8	46.0 ± 0.5	32.4 ± 0.3
10	47.0 ± 0.5	28.0 ± 0.3
12	68.0 ± 1.0	34.0 ± 0.3
14	72.0 ± 1.0	30.6 ± 0.3
16	86.0 ± 1.0	32.4 ± 0.3
18	88.0 ± 1.0	29.4 ± 0.3
20	86.0 ± 1.0	26.2 ± 0.3
22	86.0 ± 1.0	23.8 ± 0.3
24	90.0 ± 1.0	23.0 ± 0.3

Tabulka 4: Výsledky měření pro trubici 3.

Obrázek 1: Graf závislosti Q_V na Δp

Obrázek 2: Graf závislosti k na Re

proudění zmíněnou v [1].

4 Diskuze

Mnou naměřené hodnoty v oblasti laminárního proudění dobře odpovídají teoretickým hodnotám daným Poissellovou rovnicí. Závíslost k na Re v oblasti proudění není, obzvláště u trubice 2, tak přesná. V oblasti smíšeného proudění jsou hodnoty pouze orientační, protože vlivem častého střídání typu porudění nebylo možné přesně stanmovit Δp .

Menší nesnáze jsou měl s kouhoutkem korigujícím průtok hadicemi. Místy bylo nastavení přesného tlaku vcelku nesnadné a záleželo na tom, zda se zrovna člověk kohoutku dotýkal či nikoliv. Dále by nebylo šatné trochu zvýšit stojan s trubicemi, protože větší odměrné válce se při měření museli držet šikmo.

Díky velkému času a relativně velkému objemu vody při měření byla výsledná chyba malá, a proto nebylo třeba měření opakovat.

5 Závěr

Změřil jsem závislot objemového průtoku na úbytku tlaku ve třech trubicích. Tuto závislost jsem zanesl do grafu, který je označen jako obrázek 1.

Ze směrnice grafu $Q_V = Q_V(\Delta p)$ v oblasti laminárního proudění jsem stanovil skutečné poloměry trubic

$$r_1' = (1.65 \pm 0.04) \text{mm}$$
 (9)

$$r_2' = (1.47 \pm 0.03) \text{mm}$$
 (10)

$$r_2' = (0.96 \pm 0.01) \text{mm}$$
 (11)

Dosazením skutečných poloměrů do rovnic 1 a 6 jsem dopočetlRe a k a jejich závislost zanesl do grafu označeným obrázek 2.

Reference

- [1] Studijní text na praktikum I http://physics.mff.cuni.cz/vyuka/zfp/txt_103.pdf (26. 4. 2011)
- [2] Prof. RNDr. Jozef Kvasnica, DrSc. a kolektiv: Mechanika Academia, Praha 1988
- [3] J. Englich: **Zpracování výsldků fyzikálních měření** LS 1999/2000
- [4] Jiří Mikulčák a kolektiv: Matematické, fyzikální a chemické tabulky Prometheus, Praha 1988