VRML 1

Martin Klíma

Charakteristika VR systémů

- 3D prostor modelovaný v paměti počítače
- Interakce a navigace v reálném čase
 - vyžaduje množství ústupků kvůli urychlení
- Multimediální obsah
 - audio, video, obrázky, text
 - odkazy
- Interakce modelu s uživatelem
- Animace

Co to je VRML?

- Virtual Reality Modeling Language
 - jazyk pro modelování virtuálních světů
 - speciálně určen pro použití na webu
 - textově založený
 - soubory s příponou .wrl
 - prohlížeče jako rozšíření běžných prohlížečů
 - Cortona
 - ve virtuálním 3D světě je 3D model a interakce objektů

Ukázky

Prohlížeče a podpora

- Většina 3D modelovacích nástrojů umožňuje export do VRML
- Volně dostupné (zdarma) prohlížeče
- Vazba na WWW
- Plug-in do IE, FF,...
 - Cortona, Blacksun, Cosmoplayer,
 - Podpora v Javě: XJ3D, loader

Chození aplikuje se gravitace

Létání

Prohlížení modelu ze všech stran

Vhodné pro chodicí řežim

Posun avatara

Otáčení avatara

Přepínání kamer

Znovunastavení pohledu kamery

Pohled na celý model

Historie

- VRML 1.0, formát odvozen od Open Inventor formátu vyvinutého firmou Silicon Graphics Inc. (SGI)
- VRML 2.0 (podzim 1996) mnoho vylepšení a rozšíření
 - animace, interakce, zvuky, mlha, pozadí, jazyková rozšíření
- VRML 97 lelmi malá modifikace VRML 2.0 pro potřebu standardizace ISO

Základní pojmy

- Avatar
 - virtuální postava reprezentující uživatele ve virtuálním
 3D světě
 - má definované rozměry
 - 3D svět vidíme očima svého avatara
- Scene graph
 - datová struktura reprezentující 3D svět
 - hierarchická struktura
 - obsahuje uzly různých typů

Scene graph

Scene graph


```
#VRML V2.0 utf8

Group { children [
Shape { geometry Sphere { } }
DEF TS TouchSensor { }
]
}
DEF PL PointLight { location 2 4 4
on FALSE }
ROUTE TS.isActive TO PL.on
```


Obecná struktura wrl souboru

#VRML V2.0 utf8
Viewpoint { ...
}
Transform { ...
}
ROUTE ... TO ...

Hlavička

Globální vlastnosti scény

VRML strom

Ošetření událostí

Základní stavební kameny – uzly (Nodes)

- VRML definuje sadu základních uzlů
 - koule, kužel, kvádr, mlha, ...
- Každý uzel má
 - typ
 - 0 až N parametrů
 - může mít jméno

Scene graph


```
#VRML V2.0 utf8
Group {
   children [
        DEF kuzel1 Shape {
             geometry Cone { bottomRadius 2 height 4 bottom FALSE }
             appearance Appearance {
                  material Material { diffuseColor 1 1 1 }
        Transform { scale .5 .5 .5
                 translation 3 0 0
                                                    Group
                 children USE kuzel1 }
```


Vlastnosti světa a avatara

- Uzel WorldInfo
 - title
 - info []
- NavigationInfo
 - avatarSize [0.25, 1.8, 0.75]
 - headlight TRUE
 - speed 1.0
 - type ["WALK", "EXAMINE", "FLY", "ANY", "NONE"]
 - visibilityLimit 0.0


```
#VRML V2.0 utf8
WorldInfo {
 title "Dve barevne koule"
 info [ "pro potreby vyuky",
     "zdroj: http://www.cs.vu.nl/~eliens/documents/vrml/reference",
     "uzivejte s opatrne :-)"
                                                                           Group
NavigationInfo {
                                                               Shape
                                                                           Transform
    avatarSize [0.25, 1.8, 0.9]
                                                                           USE kuzel1
     headlight TRUE
    speed 1.0
                                                                   Appearance
    type ["WALK"]
                                                           name=kuzel1
    visibilityLimit 10.0
                                                                   Material
Group {
     children [
            DEF kuzel1 Shape {
                  geometry Cone { bottomRadius 2 height 4 bottom FALSE }
```


Transform {

material Material { emissiveColor 1 0 0 }

appearance Appearance {

scale .5 .5 .5

Viewpoint

- Uzel definující pozici kamery
- Může jich být více
 - fieldOfView 0.785398 # $(0,\pi)$
 - position 0 0 10
 - orientation0 0 1 0
 - jump TRUE
 - description "muj první viewpoint"

Pohledy

```
#VRML V2.0 utf8
DEF V1 Viewpoint {
 fieldOfView 0.76
 position 0 0 -12
 orientation 0 1 0 3 1416
 description "Pohled 1"
DEF V2 Viewpoint {
 position -10.4 1.8 6
 orientation 0 1 0 -1.047
 description "Pohled 2"
Group {
    children [
            DEF kuzel1 Shape {
                 geometry Cone { bottomRadius 2 height 4 bottom FALSE }
                 appearance Appearance {
                        material Material { emissiveColor 1 0 0 }
            Transform {
                       scale .5 .5 .5
                       translation 3 0 0
                       children USE kuzel1 }
```


Geometrie

- 10 uzlů
 - Box
 - Cone
 - Cylinder
 - Sphere

- IndexedFaceSet
- IndexedLineSet
- PointSet
- Extrusion
- ElevationGrid
- Text

Skupinove uzly

- Group
 - skupina uzlů
- Transform
 - transformace
 - translace
 - rotace
 - změna velikosti
- Shape
 - jeden objekt a jeho vzhled (geometry + appearance)
- Inline
 - externí soubory

Group

- vlastnoti
 - children []
 - pole potomků
 - bboxSize -1 -1 -1
 - nápověda pro prohlížeč, velikost bounding boxu = ohraničujícího kvádru
 - bboxCenter 0 0 0
 - střed bounding boxu

K čemu se Group hodí

- k ovládání skupiny uzlů jako celku
- transformace na celou skupinu

Transform

- transformace aplikované na potomky
- skludají se z
 - změny velikosti
 - rotace
 - translace

Transform

- scale # 1st transf.
- scaleOrientation # rotation before scaling
- rotation # rotation (2nd transf.)
- center # pivot point for rotation
- translation # 3rd transf.

Transform

```
Transform {
    center C
    rotation R
    scale S
    scaleOrientation SR
    translation T
    children [...]
```



```
Transform {
 translation T
 children Transform {
  translation C
  children Transform {
    rotation R
   children Transform {
     rotation SR
     children Transform {
      scale S
      children Transform {
       rotation -SR
       children Transform {
         translation -C
         children [...]
}}}}}}
```


Ukázka Translation

- jednoduchý stolek
 - http://www.cgg.cvut.cz/LaskavyPruvodce/kap3/p-3-03.wr

Shape

- appearance
 - vzhled
- geometry

Shape příklad

```
#VRML V2.0 utf8
Group { children [
 Transform {
  translation -3 0 0
  children Shape {
   geometry Box {}
   appearance Appearance {
         material Material { diffuseColor 1 0 0 }
 Transform {
  children Shape {
   geometry Sphere {}
   appearance Appearance {
         material Material { diffuseColor 0 1 0 }
 Transform {
  translation 3 0 0
  children Shape {
   geometry Cone {}
   appearance Appearance {
         material Material { diffuseColor 0 0 1 }
```


Textury

- Existuji 3 druhy textury
 - PixelTexture pole pixelů
 - ImageTexture obrázek PNG, JPG nebo GIF
 - MovieTexture MPEG nebo animovaný GIF
- Textury jsou potomky uzlu Appearance
- texture nahrazuje parametr diffuseColor v uzlu Material

PixelTexture

- 4 typy:
 - 1: gray
 - 2: gray + α (alpha)
 - 3: RGB
 - 4: RGB + α (alpha)

- exposedField image 0 0 0 ¹
- width, height, type + hexadecimal values
- ukázka:

http://www.cs.vu.nl/~eliens/documents/vrml/reference/EGS/PIXTEXE.W

ImageTexture

- url []
- repeatS
- repeatT
- ukázka:

```
http://www.cgg.cvu
```

```
#VRML V2.0 utf8
WorldInfo {title "Jiri Zara - Obrazek: Textura bez opakovani" }
Background (skyColor 1 1 1)
Viewpoint {
   position 28 0 50
   orientation 0 1 0 0.51
   description "Mirne zboku"
   fieldOfView 0.06
Transform {
 rotation 1 0 -0.59 0.3
 children
 Shape askavyPruvodce/kap3/p-3-07.wrl
   geometry Box {}
   appearance Appearance {
    texture ImageTexture {
         url "obr-rgb.gif"
         repeatS FALSE
         repeatT FALSE
    textureTransform TextureTransform {
         scale 22
         translation -0.25 -0.25
```


Materiály a barvy

- Material
 - definuje jednu barvu pro celý bojekt
 - je to potomek Appearance

```
Material {
ambientIntensity 0.2
diffuseColor 0.8 0.8 0.8
emissiveColor 0 0 0
shininess 0.2
specularColor 0 0 0
transparency 0
}
```

- Color
 - pro jednotlivé plochy

Material - parametry

- ambientIntensity
 - kolik ambientního světla bude odraženo
- diffuseColor
 - odráží světlo z definovaných zdrojů, záleží na směru
- emissiveColor
 - pro modelování zářících objektů
- specularColor
 - přidává se tehdy, když úhel pohledu je skoro stejný jako úhel dopadu, způsobuje odlesk
- transparency
 - průhlednost objektu

Materialy

- doporučení: nastavte co nejvíce parametrů na 0
- výkonnostní problémy

Zdroje světla

- Existuje několik zdrojů světla
- pozor, materiály s emissiveColor nejsou zdroji svetla
- 3. Čelovka avatara (headlight)
- 4. Směrové světlo (DirectionalLight)
 - svítí podle pozice ve sceneGraph.
 - svítí jen na svoje potomky
- 5. Všesměrové bodové světlo
 - svítí všemi směry stejně
 - má svůj horizont a definovaný útlum
- 6. Směrové bodové světlo

Světlo

- amientIntensity
 - všudypřítomné nesměrové světlo
- color
- intensity
- on

Zdroje světla – všesměrové bodové světlo

```
PointLight {
  ambientIntensity 0
  attenuation 1 0 0
  color 1 1 1
  intensity 1
  location 0 0 0
  on TRUE
  radius 100
```


attenuation: útlum, výpočet

1

 $\max(attenuation[0] + attenuation[1] * r + attenuation[2] * r^2,1)$

Směrové bodové světlo

- Svítí určitým směrem
- má rozptyl
- definovaná oblast s plným osvětlením

SpotLight {

ambientIntensity 0

attenuation 10

beamWidth 1.570796

exposedField 1111

cutOffAngle 0.785398

direction 0 0 -1

intensity 1

location 0 0 0

on TRUE

radius 100

Jak dostat VRML model do HTML stránky

- přímý odkaz na .wrl soubor
- 2. <EMBED src="soubor.wrl" width="640" height="480" align="middle">

Odkazy

- Annotate VRML97 manual
 - http://www.cs.vu.nl/~eliens/documents/vrml/reference/
- Předmět x36MUS přednášky
 - http://service.felk.cvut.cz/courses/36MUS/
- Laskavý průvodce virtuálními světy (Jiří Žára)
 - http://service.felk.cvut.cz/courses/36MUS/
- Předmět x36MUS galerie
 - http://service.felk.cvut.cz/courses/36MUS/galerie.html

