Hardware Trojan

Yu Bi

ELE594 – Special Topic on Hardware Security & Trust University of Rhode Island

IP Threats

Hardware Trojan

Hardware Trojan:

A malicious addition or modification to the existing circuit elements.

What hardware Trojans can do?

- Change the functionality
- Reduce the reliability
- Leak valuable information

Applications that are likely to be targets for attackers

- Military applications
- Aerospace applications
- Civilian security-critical applications
- Financial applications
- Transportation security
- IoT devices
- Commercial devices
- More

IP Threats

 Chip design and fabrication has become increasingly vulnerable to malicious activities and alterations with globalization.

IP Vendor and System Integrator:

- IP vendor may place a Trojan in the IP
- □ IP Trust problem

Designer and Foundry:

- Foundry may place a Trojan in the layout design.
- □ IC Trust problem

Hardware Trojan Threats

Any of these steps can be untrusted

Untrusted Foundry

Untrusted Designer

Hardware Trojan Examples

Comb. Trojan Example

Seq. Trojan Example

Comb. Trojan model

in 2010, the U.S. military had a problem. It had bought over precord manadays declared for militation on every thing from model defense system to prelips that the firsted from for Thi high terrord out to be constructed to turn Chan, but it avoid have been even were. In the dead of mappy. Chinese takes being put into Novy ovapous systems, the chips could have been basked, shie to that off a missile in the event of our or be assumd just washing to mailmarking. HW Trojan

evidenc

Bug vs. Trojan

Verification **Trust** (Traditional) Verification Malicious Bugs change (Unintentional) (Intentional) Unwanted Bounded by functionality Spec (Unbounded)

Backdoor

Time Bomb

Counter

Finite state machine (FSM)

Comparator to monitor key data

Wires/transistors that violate design rules

- ➤ Such Trojan cannot be detected since it does not change the functionality of the circuit.
- ➤ In some cases, adversary has little control on the exact time of Trojan action
- Cause reliability issue

Hardware Trojan Threats

Thousands of chips are being fabricated in untrusted foundries

Threat Models

Model	Description	3PIP Vendor	SoC Developer	Foundry
A	Untrusted 3PIP vendor	Untrusted	Trusted	Trusted
В	Untrusted foundry	Trusted	Trusted	Untrusted
С	Untrusted EDA tool or rogue employee	Trusted	Untrusted	Trusted
D	Commercial-off-the-shelf component	Untrusted	Untrusted	Untrusted
Е	Untrusted design house	Untrusted	Untrusted	Trusted
F	Fabless SoC design house	Untrusted	Trusted	Untrusted
G	Untrusted SoC developer with trusted IPs	Trusted	Untrusted	Untrusted

Trojan Taxonomy

Trust-Hub

Functional

- Functional
- Addition or deletion of components
- Sequential circuits
- Combinational circuits
- Modification to function or no change

Parametric

Parametric

- Modifications of existing components
 - Wire: e.g. thinning of wires
 - Logic: Weakening of a transistor, modification to physical geometry of a gate
 - Modification to power distribution network
- Sabotage reliability or increase the likelihood of a functional or performance failure

- Size:
 - Number of components added to the circuit
 - Small transistors
 - Small gates
 - Large gates

- In case of layout, depends on availability of:
 - Dead spaces
 - Filler cells
 - Decap cells
 - Change in the structure

- Tight Distribution
 - Trojan components are topologically close in the layout

Loose

- Loose Distribution
 - Trojan components are dispersed across the layout of a chip
- Distribution of Trojans depends on the availability of dead spaces on the layout

No-change

- The adversary may be forced to regenerate the layout to be able to insert the Trojan, then the chip dimensions change
 - It could result in different placement for some or all the design components

- A change in physical layout can change the delay and power characteristics of chip
 - It is easier to detect the Trojan

