5.2 Unüberwachte Lernverfahren

Erinnerung Folie 228

• Unüberwachtes Lernen: Gegeben Merkmalvektoren $\langle In \rangle$, leite Fkt. f ab, die Regularitäten/Einteilungen beschreibt

Hier behandelte Verfahren

- Induktives Logisches Programmieren (ILP) (nach Russell/Norvig)
- Clustering-Verfahren

ILP: Lernen in Logik

Beispiel: Aus Lernbeispielen (und evtl. Weiterem) erzeuge z.B.

```
\forall r. \ Warten(r) \Leftrightarrow G\"{a}ste(r,Einige) \\ \lor [G\"{a}ste(r,Voll) \land Hungrig(r) \land Typ(r,Franz\"{o}sisch)] \\ \lor [G\"{a}ste(r,Voll) \land Hungrig(r) \land Typ(r,Thai) \land Frei/Sams(r)] \\ \lor [G\"{a}ste(r,Voll) \land Hungrig(r) \land Typ(r,Burger)]
```

... und bevorzuge "einfache" Formeln (Ockham's Razor)!

Vorteile

- Überwachtes Lernen (wie mit DTL) ist echte Untermenge davon
- Lerne <u>beliebige</u> Prädikate/Relationen (nicht nur 1-stell.)
- Kann Regeln induzieren <u>ohne</u> explizite Lernbeispiele
- Kann "Hintergrundwissen" einbeziehen bzw. ausbauen

(Potenzieller) Nachteil

Größere Ausdrucksfähigkeit macht Lernen komplexer

Struktur des ILP-Lernproblems

... am Beispiel von Klassifikation:

Wissensbasiertes induktives Lernen (KBIL):

 $KB \land Hypothese \land Lernbeispiele \models Klassifikation$

- Hypothese ist zu finden → induktives Lernverfahren
- Hypothese muss konsistent sein mit *KB* ∧ *Lernbeispiele*

Hier: Induktives Logisches Programmieren (ILP)

Verwendet CWA-Folgerung ⊨_{cwa} wie Prolog (Folie 110)

Gegeben:

- Vollständige Repräsentation des Stammbaums mittels Prädikaten Vater, Mutter, Paar, Mann, Frau
- einige der 20x20 Instanzen (pos., neg.) des Prädikats Opa(x,y)

Gesucht:

- Definition von *Opa(x,y)* in Termini der anderen
 Prädikate
- Form der Definition:
 Disjunktion von
 Hornklauseln

Beispiel: Opadefinitionskandidaten

Gegeben: $Opa(George, Anne), Opa(Philip, Peter), Opa(Spencer, Harry), <math display="block">\neg Opa(Anne, Anne), \neg Opa(Harry, Zarah), \neg Opa(Charles, Philip)$

Kandidaten f. Definitionen ("PROLOG-artige" Notation, aber "⇒")

- $\bullet \Rightarrow Opa(x,y).$
 - Richtig für alle Beispiele; falsch f. a. Gegenbeispiele
 - ⇒ spezialisieren (durch "Raten")! Zufällige Kandidaten:
- $Vater(x,y) \Rightarrow Opa(x,y)$. (Falsch für alle Beispiele)
- $Paar(x,z) \Rightarrow Opa(x,y)$. (Falsch für einige (CWA!) Gegenbeispiele)
- $Vater(x,z) \Rightarrow Opa(x,y)$. (Falsch für weniger Gegenbeispiele)
- … wähle #3 zum Spezialisieren etc.

... bis Klauseln gefunden, die alle Positiv-, keine Negativbeispiele implizieren — deren Disjunktion ist die Definition!

Klauselkopf in Prolog

FOIL (First Order Inductive Learner)

```
function FOIL(examples, target) returns a set of Horn clauses inputs. examples, set of examples target, a literal for the goal predicate local variables: clauses, set of clauses, initially empty

while examples contains positive examples do

clause ← NEW-CLAUSE(examples, target)

remove examples covered by clause from examples add clause to clauses

return clauses
```

- Potenziell jede Klausel der Sprache f. NEW-CLAUSE möglich, die kein Gegenbeispiel wahr macht
- Heuristiken/Bedingungen zu Klauseln: # Variablen, Länge, ...
- Mehr bei Russell/Norvig, Kap. 19.5

Inverse Resolution

- Der Suchraum beim "Klauselraten" à la FOIL ist riesig!
- Wenn das Gelernte die Form

 $KB \land Hypothese \land Lernbeispiele \vdash Klassifikation$ haben soll, muss

KB ∧ Hypothese ∧ Lernbeispiele ∧ ¬Klassifikation durch Resolution widerlegbar sein

 Könnte man dann nicht statt Klauselraten gezielt solche Klauseln als Hypothese nehmen, die für die Widerlegung von KB ∧ Lernbeispiele ∧ ¬Klassifikation fehlen?

→ Inverse Resolution

Konstruiere "rückwärts" Klauseln, die zur Resolution fehlen, bis zu einer "Definition" (Hornklausel) des gesuchten Prädikats

Beispiel für Inverse Resolution

Ziel: widerlege Lernbeispiel Opa(George, Anne) mittels anderer Lernbeispiele, um Definition von Opa(x, z) zu hypothetisieren

ILP und die Praxis

- Um Klauselraten/FOIL oder Inverse Resolution praxistauglich zu machen, gibt es viel an Theorie und Heuristiken
- Es ist sogar möglich, <u>neue</u>, Sinn tragende Prädikate zu "entdecken", welche die Klauselmenge "kompakter" machen
- Mehr bei Russell/Norvig, Kap. 19.5
- ILP-Systeme werden praktisch beim data mining eingesetzt

... helping you transform data into knowledge

Logo der Firma von Ross Quinlan, Entwickler von FOIL, www.rulequest.com/

Clustering-Verfahren

Ziel

- Finde <u>neue</u> "Ballungen"/Gruppierungen in vorhandenen Daten
- Unterschied zu Klassifikation: Klassen sind hier <u>nicht</u> vorher bekannt/gegeben (unüberwachtes Verfahren!)

Beispiel

- In Volltextdatenbank sortiere Dokumente, die unterschiedlichen Bedeutungen desselben Worts entsprechen (z.B. "Decke")
- Daten: Lexikon mit z.B. 50.000 Wörtern
 (einschl. Flexionsformen und Ableitungen: z.B. "Decke", "Decken",
 "decken", "Zudecke" sind unterschiedliche Wörter)
- Jedes Dokument repräsentiert durch 50.000-stell. Vektor, x_i , $1 \le i \le 50.000$, ist Häufigkeit von Wort i im Dokument
- Gruppiere Dokumente mit "Decke" nach häufigen Kontexten ("schlafen", "Bett", "Kissen", ... vs. "Stuck", "Farbe", "Lampe", ...)

k-Means Clustering

Idee

- Ein Cluster entspricht Datenpunkten, die "benachbart" sind
- Abstandsmaße s. Folie 232, z.B. Euklidischer Abstand im \mathbb{R}^n

k-Means Clustering

- Voraussetzung: Es ist bekannt/erwartet, dass in den Daten k
 Cluster zu finden sind!
- Verfahren: wähle initial (z.B. zufällig) k Punkte μ_1, \ldots, μ_k im Datenraum als Clustermittelpunkte; dann wiederhole bis Konvergenz:
 - ordne jeden Datenpunkt dem nächsten (→Abstandsmaß!)
 der k Clustermittelpunkte μ_i zu
 - aktualisiere alle μ_i als Mittelwerte der Datenpunkte, die ihnen zugeordnet sind

Iteration O/Initialisierung

Beispiel im \mathbb{R}^2

- initial μ_i (Kringel) zufällig gewählt; zugehörige Datenpunkte gleich eingefärbt
- in Iterationen: μ_i (Kringel) sind Mittelpunkte aller Punkte gleicher Farbe in voriger Iteration

k-Means Clustering Algorithmus

K-Means $(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_{\!\scriptscriptstyle N},k)$

initialisiere μ_1, \ldots, μ_k (z.B. zufällig)

zuordne Repeat

Klassifiziere $oldsymbol{x}_1,\dots,oldsymbol{x}_N$ zum jeweils nächsten $oldsymbol{\mu}_i$

Berechne ${m \mu}_1,\ldots,{m \mu}_k$ neu

Until keine Änderung in μ_1, \ldots, μ_k

 $\mathsf{Return}(\boldsymbol{\mu}_1,\ldots,\boldsymbol{\mu}_k)$

= keine Änderung der Zuordnung von Datenpunkten zu μ_i

Eigenschaften von k-means

- Ertel sagt "keine Konvergenzgarantie", gibt aber eine Komplexität an: ???!
- Optimales k-Clustering zu finden, ist NP-vollständig
- Algorithmus konvergiert in der Regel schnell, aber nicht notwendig mit optimalen k Clustern (kleinste Abstandssumme)
- Startpositionen der μ_i beeinflussen Ergebnis und effektive Laufzeit
- Unterschiedliche k können in Clustern von drastisch unterschiedlicher Qualität resultieren!
- Einzelne Cluster können leer laufen (und bleiben dann leer)
- Da optimale/tatsächliche Clusterzahl k i.A. unbekannt: Restart des Algorithmus mit Variation von k und Start- μ_i

Hierarchisches Clustering

Idee

- Cluster "wachsen" aus einzelnen Datenpunkten, die mit ihren Nachbarpunkten zusammengefasst werden
- Abbruch nach vorgegebenem Kriterium (Clusterzahl, Clusterweite, , ...)

Selber Datensatz wie bei k-Means vorher;
 beachte völlig unterschiedliche Gestalt der gefundenen Cluster!

Algorithmus Hierarchisches Clustering

HIERARCHISCHES-CLUSTERING $(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_N,k)$

initialisiere $C_1 = \{\boldsymbol{x}_1\}, \dots, C_n = \{\boldsymbol{x}_N\}$

Repeat

Finde zwei Cluster C_i und C_j mit kleinstem Abstand Vereinige C_i und C_j

Until Abbruchbedingung erreicht **Return**(Baum mit Clustern)

 Abstand d. Cluster sei Abstand (Maße s. Folie 232) der nächstgelegenen (Rand-)Punkte aus beiden Clustern

 Alternativen: Betrachte Abstand der Clustermittelpunkte oder Minimum der entferntesten Clustermitglieder

Eigenschaften des Hierarchischen Clusterns

- Terminiert garantiert
- gefundene Cluster hängen ab von Abstandsmaß und Abbruchbedingung
- Abstandsermittlung implementiert z.B. über Adjazenzmatrix: Speicher $O(N^2)$
- Für Clustern mach max. N-1 Durchläufe, also Zeit $O(N^3)$

5.3 Vertiefung: Neuronale Netze

Ertel schreibt uns

- Menschliches Gehirn hat ca. 10-100 Milliarden Nervenzellen (Neuronen)
- Jedes Neuron verbunden mit ca. 1.000–10.000 anderen, also Größenordnung: über 10¹⁴ Verbindungen
- Erstes mathematisches Modell der Signalverarbeitung durch Neuronen: McCulloch/Pitts 1943
- Dieses Modell aufgenommen durch "Bionik-Zweig innerhalb der KI" (Ertel) (s. dazu Kritik auf Folie 303!!)

X_1 \vdots X_j \vdots X_{n_i} $y_i = f\left(\sum_j w_{ij} x_j\right)$ y_i Neuron i

- Aktivierung des Neurons i ist gewichtete Summe der Inputs
- Ausgabe y_i definiert über Schwellwertfunktion, z.B.

$$f(z) = H_{\theta}(z) = \begin{cases} 0 & \text{falls } z < \theta \\ 1 & \text{sonst } \end{cases}$$

(alternativ: Sigmoid-Funktion; vgl. Perzeptron mit Schwelle θ , Folie 234)

- Wert y_i ist Eingabe für andere Neuronen
- Aktivierungen und Ausgaben aller Neuronen für Zeit t+1 werden synchron aus Werten für t berechnet

