A Tale of Two Tasks: Data Control and Modeling

Wayne D. Gray

Beyond OpenData Sharing: Making Sense of Massive Data Sets

Milliseconds Matter: An Introduction to Microstrategies and to Their Use in Describing and Predicting Interactive Behavior

Wayne D. Gray and Deborah A. Boehm-Davis George Mason University

Interactive behavior is constrained by the design of the artifacts available (e.g., a mouse and button) as well as by the ways in which elementary cognitive, perceptual, and motor operations can be combined. Any 2 basic activities, for example, (a) moving to and (b) clicking on a button, can be combined to yield a finited number of microstrategies. The results of an experimental study suggest that alternative microstrategies can be deployed that shave milliacconds from routine interactive behavior. Data from a subsility study are used to explore the potential of microstrategies (or (a) bracking left range of individual performance, (b) profiling individual differences, and (c) diagnosing mismatches between expected and obtained performance. These 2 studies support the surgements that the miscrostrategies deployed can be sensitive to small features of an interface and that task analyses at the milliaccond level can inform design.

Interactive technology consists of two parts: the interactive device used to input user commands and the interactive object to which the commands are directed. The direct-manipulation interface is a common interactive technology that uses a mouse and keyboard (interactive devices) to operate on buttons, text, icons,

of low-level processes is supported by research. For example, changing information gathering from an eye movement to a mouse movement influenced the decision-making strategies adopted in a classic decision-making paradigm (Lohse & Johnson, 1996). When the cost of making a move in solving simple puzzles

Beyond Open Data Sharing

- High bandwidth data collection with well formatted records, easy to reuse documentation, and ability to address new questions after the data is collected
- Tools that will aggregate sampled data to form meaningful units at different levels of analysis
- Visualizing and exploring data in terms of sequence, cooccurrence, and other patterns
- Newell's Dream: Automated or semi-automated protocol analyses, which enable theory-based parsing of log files to form runnable cognitive models

Then & Now

- MacSHAPA
 - MacSHAPA (1995's) Submarine Commanders: managing complexity of verbal and action protocols
 - MacSHAPA Cognitive Metrics Profiling
- Action Protocol Tracer
 - Finite state grammars for pattern recognition in action protocol data
- SANLab
 - SANLab tool for Stochastic Analytic Network modeling +++
 - Newell's Dream: Automating production of cognitive models from behaviorial/action protocol analysis

Experience with MacSHAPA

- Submariners (≈ 1995 to 2000)
- Tool for examining output of computational cognitive modeling

Project Nemo, or, Subgoaling Submariners

Seven Phased Approach

Phase 1: Data Collection using pulation (at NUWC) -- > COMPLETED < --

- Phase 2: Encoding
 -->COMPLETED
- Phase 3: Developme. An ed simulation (scaled world) -->COMPLETED<--
- Phase 4: Development of preliminary computational cognitive models **CURRENT**
- Phase 5: Data Collection using scaled world **CURRENT**
- Phase 6: Analysis of data and refinement of models
- Phase 7: Modifications of suite of models and scaled world as deliverables

rotocols from Phase 1

Table 2: Segment Shown in Table 1 Following Resegmentation and Encoding of Goals by the Experimenters

Time	L1	L2	L3	Operator	Info-Source	Ship	Attribute	Value	Duration
	DETE	CT-SUB							
62.428				DISPLAY-NAV	SONAR-NB-TOWED				
63.98				QUERY	NBT-WATERFALL				
66.82				RECEIVE	NBT-WATERFALL	SUB	ON-SONAR	NO	4.221
	POP								
	LOCA	II IZF-ME	RC.						
		SET-T	RACKER						
67.02				SET-TRACKER	SONAR-NB-TOWED	MERC			
68.201				RECEIVE	NRT-WATERFALL	MERC	ON-SONAR	YES	4 221
68.201				RECEIVE	NBT-WATERFALL	MERC	BEARING	BEAM	4.221
68.201				RECEIVE	NBT-WATERFALL	MERC	TRACKING	YES	4.221
	POP								
	DETE	RMINE-C	ONICAL-	ANGLE					
70.063				QUERY	NRT-CONICAL-ANGLE-FIELD	MERC	CONICAL-ANGLE		
70.724				RECEIVE	NBT-CONICAL-ANGLE-FIELD	MERC	CONICAL-ANGLE	82 15	0.661
	POP								
	DETE	RMINF-F	Y						
71.111				QUERY	NBT-BEARING-FIELD	MERC	BEARING		
72.088				RECEIVE	NBT-BEARING-FIELD	MERC	BEARING	152 OR 314	0.977
	POP								
	DETE	RMINE-S	NR						
72 393				OUFRY	NRT-SNR-FIFLD	MERC	SNR		
72.987				RECEIVE	NBT-SNR-FIELD	MERC	SNR	6.63	0.594
		POP							
	POP	. 0.							
	FVΔI	IATE-AR	RAY-STATI	IS					
74.635	LVAL	OAI L'AII	ioni Sizii	OUFRY	NBT-ARRAY-STATUS-FIELD	OS	ARRAY		
75.601				RECEIVE	NBT-ARRAY-STATUS-FIELD	OS	ARRAY	STABLE	0.966
, 5.001	POP			MEGETAL	THE PARTY STATES	00	CHINCH	JIMBEL	5.700

Note: The headings are the same as in Table 1 with the addition of three fields for goals and subgoals: levels 1 (L1), 2 (L2), and 3 (L3). No L3 goals are encoded in this segment.

Phase 2: Tool Development -- To facilitate

Encoding of Data we developed a Tool to playback the files collected at NUWC

Phase 3: NED

One of Ned's 10 displays that AOs use for situation assessment. In data-collection mode, all AO interactions with Ned are recorded and time stamped at 60hz (16.67 msec); along with the current state of the simulation (truth!)

Experience with MacSHAPA

- Submariners (≈ 1995 to 2000)
- Tool for examining output of computational cognitive modeling

Visualizing the Output of a Process Model (ACT-R)

- ? We were asking whether we could use this approach to develop a predictions of cognitive workload by identifying tasks or subtasks where the resource demands are excessive
- Especially places where the using the system (i.e., the structure of the interactive system) consumes resources required for doing the task

Our Focus was on Discrete Action Protocols

- E.g. Mouse clicks, key presses collected by a computer system
- Characteristics:
 - A large volume of protocols can be easily collected
 - High temporal resolution (e.g. 16.67 msec)
 - Constrained and easy to interpret (compared to verbal protocols)
 - Easy to aggregate across subjects

But, approach could be applied to any data process data that could be encoded in SHAPA spreadsheets

Action protocol analysis

- Two approaches to do the analysis:
 - Exploratory: searching for possible patterns in the protocols
 - Confirmatory: Looking for evidence supporting the researcher's theory
 - Both approaches require some kind of pattern matching to patterns generated by the researcher
- Automatic (or semi-automatic) protocol analyzer
 - Reduce effort
 - Increase objectivity

	WINDOW	BUTTON	REC-MODE	PR								KP-10MIN	
	SHOW-INFO-WIN	Start Trial	CLICKON	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL
	VCR-WINDOW	Start Trial	CLOCKSET-MODE		15:00		NIL	WED		ON	15		
	VCR-WINDOW	NIL	VCR-LEAVE	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL
	VCR-WINDOW	NIL	VCR-LEAVE	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL
	VCR-WINDOW	START-RADIO-BUT			E :EE	1		WED		ON	E	E	E
	VCR-WINDOW	DAY-OF-WEEK	START-MODE	OFF	15:00	1		WED		ON	15		
	VCR-WINDOW	DAY-OF-WEEK	START-MODE	OFF	15:00	1		THU	NIL	ON	15		
	VCR-WINDOW	DAY-OF-WEEK	START-MODE	OFF	15:00	1		FRI	NIL	ON	15		
	VCR-WINDOW	DAY-OF-WEEK	START-MODE	OFF	15:00	1		SAT		ON	15		
	VCR-WINDOW	DAY-OF-WEEK	START-MODE	OFF	15:00	1		SUN		ON	15		
	VCR-WINDOW	DAY-OF-WEEK	START-MODE	OFF	15:00	1		MON		ON	15		
	VCR-WINDOW	DAY-OF-WEEK	START-MODE	OFF	15:00	1		TUE	NIL	ON	15		
	VCR-WINDOW	HOUR	START-MODE	OFF	16:00	1		TUE	NIL	ON	16		
	VCR-WINDOW	HOUR	START-MODE	OFF	17:00	1		TUE	NIL	ON	17		
	VCR-WINDOW	HOUR	START-MODE	OFF	18:00	1		TUE	NIL	ON	18		
	VCR-WINDOW	HOUR	START-MODE	OFF	19:00	1		TUE	NIL	ON	19		
	VCR-WINDOW	HOUR	START-MODE	OFF	20:00	1		TUE	NIL	ON	20		
	VCR-WINDOW	HOUR	START-MODE	OFF	21:00	1		TUE	NIL	ON	21	0	
	VCR-WINDOW	HOUR	START-MODE	OFF	22:00	1		TUE	NIL	ON	22		
142650	VCR-WINDOW	HOUR	START-MODE	OFF	23:00	1	15	TUE	NIL	ON	23		
142730	VCR-WINDOW	10MIN	START-MODE	OFF	23:10	1	15	TUE	NIL	ON	23	1	
142824	VCR-WINDOW	10MIN	START-MODE	OFF	23:20	1	15	TUE	NIL	ON	23	2	
142853	VCR-WINDOW	10MIN	START-MODE	OFF	23:30	1	15	TUE	NIL	ON	23	3	
142909	VCR-WINDOW	NIL	VCR-LEAVE	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL
142980	CCL::VCR-WINDOW	CH-DOWN	START-MODE	OFF	23:30	1	14	TUE	NIL	ON	23	3	
142993	CCL::VCR-WINDOW	CH-DOWN	START-MODE	OFF	23:30	1	13	TUE	NIL	ON	23	3	
143066	CCL::VCR-WINDOW	CH-DOWN	START-MODE	OFF	23:30	1	12	TUE:	NIL	ON	23	3	
143076	CCL::VCR-WINDOW	CH-DOWN	START-MODE	OFF	23:30	1	11	TUE	NIL	ON	23	3	- 0
143084	CCL::VCR-WINDOW	CH-DOWN	START-MODE	OFF	23:30	1	10	TUE	NIL	ON	23	3	
143092	CCL::VCR-WINDOW	CH-DOWN	START-MODE	OFF	23:30	1	9	TUE	NIL	ON	23	3	- (
143099	CCL::VCR-WINDOW	CH-DOWN	START-MODE	OFF	23:30	1		TUE	NIL	ON	23	3	
143111	CCL::VCR-WINDOW	CH-DOWN	START-MODE	OFF	23:30	1		TUE	NIL	ON	23	3	- (
143132	CCL::VCR-WINDOW	CH-DOWN	START-MODE	OFF	23:30	1		TUE	NIL	ON	23	3	
143141	CCL::VCR-WINDOW	CH-DOWN	START-MODE	OFF	23:30	1		TUE	NIL	ON	23	3	
143150	CCL::VCR-WINDOW	CH-DOWN	START-MODE	OFF	23:30	1		TUE	NIL	ON	23	3	
143178	CCL::VCR-WINDOW	CH-DOWN	START-MODE	OFF	23:30	1	3	TUE	NIL	ON	23	3	
143194	CCL::VCR-WINDOW	CH-DOWN	START-MODE	OFF	23:30	1		TUE	NIL	ON	23	3	
	CCL::VCR-WINDOW		START-MODE	OFF	23:30	1		TUE	NIL	ON	23	3	-
143255	VCR-WINDOW	NIL	VCR-LEAVE	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL
143324	VCR-WINDOW	END-RADIO-BUT	END-MODE	OFF	E :EE	1	15	NIL	NIL	ON	E	E	E
	VCR-WINDOW	NIL	VCR-LEAVE	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL
143371	VCR-WINDOW	NIL	VCR-LEAVE	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL
	VCR-WINDOW	HOUR	END-MODE	OFF	23:30	1		NIL	NIL	ON	23		
	VCR-WINDOW	NIL	VCR-LEAVE	NIL	NIL.	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL
	VCR-WINDOW	NIL	VCR-LEAVE	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL
	VCR-WINDOW	CS-RADIO-BUT	CLOCKSET-MODE		15:00			WED		ON	15		
	VCR-WINDOW	PROGREC	CLOCKSET-MODE		15:00		NIL	WED		ON	15		
	VCR-WINDOW	NIL.	VCR-LEAVE	NIL	NIL	NIL	NIL	NIL	NIL.	NIL	NIL.	NIL.	NIL
	SHOW-INFO-WIN	Stop Trial	CLICKON	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL
		Otop it is											
	ERROR-TRIAL	RESET	SHOW-ET	NIL	NIL	NIL.	NIL	NIL	NIL	NIL	NIL	NIL	NIL

Finding patterns in data

A sequential stream of discrete action protocol

A B C B C F A B C D F G A B C D F G B C F B A F......

1st level
X Y X Z X Z Y Grouping

P1 P2 P3 2nd level
Hierarchy

Macro Pattern

Structure of ACT-PRO

Table 2 Grammar That Captures Variations of the Action Sequence Formed by Pressing the Buttons Channel, Up-Arrow, Down-Arrow, and Enter

SET-CHANNEL: [Object1][Object2][Object3]	(1)
$[Object1] \rightarrow channel$	(2)
[Object2] → up-arrow	(3)
[Object2] → down-arrow	(4)
[Object2] → up-arrow [Object2]	(5)
[Object2] → down-arrow [Object2]	(6)
[Object2] → enter [Object2]	(7)
[Object3] → enter	(8)

Table 3	
An Example of the Trace and	Validation Results of
Using the Hierarchical Goal S	Structure of Figure 1

Using the merarchical	Goal Structure of Figure 1
Trace	Validation results
Push goal: PROGRAM-SHOW	Push goal match
Push goal: SET-START-TIME	Push goal match
Push goal: SET-START-HOUR	Push goal match
Action: start-hour	
Action: start-hour	
Pop goal: SET-START-HOUR	Pop goal match
Push goal: SET-START-10MIN	Push goal match
Action: start-10min	
Pop goal: SET-START-10MIN	Pop goal match
Pop goal: SET-START-TIME	Pop goal mismatch
Push goal: SET-CHANNEL	Push goal match
Action: channel	
Pop goal: SET-CHANNEL	Pop goal match
Push goal: SET-START-TIME	Push goal match
Push goal: SET-START-MIN	Push goal match
Action: start-min	

Figure 1. The simplified task-relevant hierarchical goal structure of a VCR interface (Gray, 2000; Gray & Fu, 2000).

Table 3 An Example of the Trace and Validation Results of Using the Hierarchical Goal Structure of Figure 1

Trace	Validation results
Push goal: PROGRAM-SHOW	Push goal match
Push goal: SET-START-TIME	Push goal match
Push goal: SET-START-HOUR	Push goal match
Action: start-hour	
Action: start-hour	
Pop goal: SET-START-HOUR	Pop goal match
Push goal: SET-START-10MIN	Push goal match
Action: start-10min	
Pop goal: SET-START-10MIN	Pop goal match
Pop goal: SET-START-TIME	Pop goal mismatch
Push goal: SET-CHANNEL	Push goal match
Action: channel	_
Pop goal: SET-CHANNEL	Pop goal match
Push goal: SET-START-TIME	Push goal match
Push goal: SET-START-MIN	Push goal match
Action: start-min	_
-	

Output Trace and Goodness-of-fit

aculte

<u>Trace</u>

Push M Push P1

> Push X Actions: A B C

Pop X

Push Y Actions: B C F

Pop Y Pop P1

Push P2 Push W Actions: D F G

Actions: DF GPop W

:

Validation Results

Push match Push match

Push match

Pop match Push match

Pop match
Pop mismatch
Push match

Push match
Pop match

M

M

P2

WV

P2

X Y Z

M

Results

- 64 subjects, 1,228 trials, 51,232 actions
- 8 grammars were constructed for each interface, each representing a structural pattern (a strategy)
- Worst-fitting trial: 81.1%; best-fitting trial: 100% Average: 95.1% of the actions were captured by the grammars
- By inspecting the results, we found change of strategies in different interfaces
- Two different hierarchies were used in the two interfaces
- We also found differences in the higher-level patterns in the two interfaces
- 15,245 higher-level patterns are parsed
- 464 (3%) of the patterns were identified as mismatches between the data and the hierarchy

AT:ST Ratio – Analysis Time to Sequence Time

- Pre-Action Protocol Tracer
 - Gray (2000) estimated as 100:1
 - Analyzed data from 9 Ss, ≈ 72 trials
- With the Action Protocol Tracer
 - For the 3 data sets described in the Fu 2001 the building of grammars, on average, took the researchers 2–3 h, and the average running time was about 1 h.
 - 1:10

Then & Now

- MacSHAPA
 - MacSHAPA (1995's) Submarine Commanders: managing complexity of verbal and action protocols
 - MacSHAPA Cognitive Metrics Profiling
- Action Protocol Tracer
 - Finite state grammars for pattern recognition in action protocol data
- SANLab-CM
 - SANLab tool for Stochastic Analytic Network Cognitive Modeling
 - Automating production of cognitive models from behaviorial/ action protocol analysis

SANLab-CM

- An extension of the tools used by Gray & John (1993) and Gray & Boehm-Davis (2000) & other studies
- Schweickert in numerous studies

Schweickert, R., Fisher, D. L., & Proctor, R. W. (2003). Steps toward building mathematical and computer models from cognitive task analyses. *Human Factors*, 45(1), 77–103.

Schweickert, R. (1978). A critical path generalization of the additive factor method: Analysis of a Stroop task. *Journal of Mathematical Psychology*, 18(2), 105–139. Gray, W. D., & Boehm-Davis, D. A. (2000). Milliseconds Matter: An introduction to microstrategies and to their use in describing and predicting interactive behavior. *Journal of Experimental Psychology: Applied, 6*(4), 322–335.
Gray, W. D., John, B. E., & Atwood, M. E. (1993). Project Ernestine: Validating a

Gray, W. D., John, B. E., & Atwood, M. E. (1993). Project Ernestine: Validating GOMS analysis for predicting and explaining real-world performance. Human-Computer Interaction, 8(3), 237–309.

Model Window and Model Overview Window

Telephone Operator Workstation CPM-GOMS Level

SANLab-CM

- Stochastic Activity Network Laboratory for Cognitive Modeling
- Idea inspiring SANLab-CM
 - Cognitive, perceptual, and motor processes are inherently variable
 - This variability may result in changes in workload even when load conditions are constant
- Hence, SANLab-CM is a tool for analyzing and predicting variability with and without extra workload

Model Window and Model Overview Window

Example 1: Constructing a very simple CPM-GOMS model in SANLab

- Parts
- Interleaving
- Stochasticity
- Comparison of very simple models

Building a Preliminary CPM-GOMS Model CPM-GOMS Templates

Perceive Visual Information
With Eye Movement

Perceive Simple Sound

Building a Preliminary CPM-GOMS Model Cut & Paste & String Together

Inserted dependency line

Building a Preliminary CPM-GOMS Model Insert Operator Durations

Building a Preliminary CPM-GOMS Model Interleave Operators + Stochastic Operation Times

Rensselaer Cognitive Science

(randomly sampled on each model run)

Three Critical Paths

Very Simple Model: Summary

Interleaving	Fixed/ Stochastic	Critical Path	Predicted Times
No Interleaving	Fixed	One	620 ms
Interleaving	Fixed	One	470 ms
Interleaving	Stochastic	Average	490 ms
Interleaving	Stochastic	90%	511 ms
Interleaving	Stochastic	9%	317 ms
Interleaving	Stochastic	1%	230 ms

Running a Model 5,000 Times

Histogram: Runtime Distribution of 5000 model runs – min \approx 10s, max \approx 16s

Most Frequent Critical Path Accounts for 27% of Runs

2nd Most Frequent Critical Path Accounts of 16% of Runs

2nd Most Frequent Critical Path Accounts of 16% of Runs

CogTool to SANLab

Demonstration of predicting the distribution of time taken by a skilled pilot to perform a routine task in the cockpit using CogTool and SANLab-CM

Bonnie E. John Carnegie Mellon University 30 August 2011

Newell's Dream

- CogTool to SANLab is an important but limited step
- How about the ability to go from log files of people performing tasks directly to modeling?
- Newell's dream of an automatic protocol analyzer

Newell's Dream

- SANLab+
 - Requires cognitive architectures that encompass
 - Control of cognition
 - Cognition
 - Perception
 - Action
 - Ability to swap out architectural assumptions
 - For example, ACT-R, Soar, EPIC
 - Initial data sets will be taken from people performing three different paradigms

Newell's Dream

- SANLab+
 - Initial data sets will be taken from people performing three different paradigms
 - PRP psychological refractory period
 - Behaviorally this is a very simple response time paradigm
 - NavBack a dual-task paradigm
 - Continuous motor movement
 - Eye movements
 - Working memory maintainance
 - DMAP Decision Making Argus Prime
 - Complex visual search and decision making task

Then & Now

- MacSHAPA
 - MacSHAPA (1995's) Submarine Commanders: managing complexity of verbal and action protocols
 - MacSHAPA Cognitive Metrics Profiling
- Action Protocol Tracer
 - Finite state grammars for pattern recognition in action protocol data
- SANLab
 - SANLab tool for Stochastic Analytic Network modeling +++
 - Automating production of cognitive models from behaviorial/ action protocol analysis

