U19CS076 DAA ASSIGNMENT 3

KRITHIKHA BALAMURUGAN

- 1. Write a program to sort an array arr, consisting n numbers using the divide and conquer approach Use only merge sort.
- (1) The divide step should split the array into two (nearly) equal sub-arrays.
- (2) The divide step should split the array into three (nearly) equal sub-arrays. Answer the following questions.
- 1.1. Write pseudocodes to design the algorithms for above mentioned computa tional problem. Both algorithms should sort the data by dividing them into two and three (nearly) equal sub-arrays respectively.
 - 1.2 Analyze the time complexity of both algorithms (split the array into two and three sub-arrays) using the recursion tree method (Include the handwritten analysis of these algorithms as an image in the latex/word file. Make sure that the images/contents are readable.).

# 2 100	
Assignment - 3 DAA	
U19 CS 076	1. 4.
Mound wast	- I Note to
-> Merge soit	(-1
void merge sort (arr [], l,	
	Instruction
I. START	- Force
2. IF (l < 91):	CI
3. Set m = l + (2r -l)/2	
3. merge_sort (arr, l, m)	Ca
5. merge sort (arr, m+1, r):	Cip
7. STOP	
T. S 10P	
void meage (aret) l m, sr)	112 . (
void way (was	
I. START	
2. Set n 1 = m - l + 1	
3. Set n2 = 91 - m	* * (6.51.65)*
4. Set * left to some size of n1 (throw	gh malloc)
5. Set * right array to size of n2	
6. For i = 0 to Len	(1)
7 left [i] = avr[l+.	i_
8. For j=0 to j <n2< td=""><td> 7</td></n2<>	7
9 right[j]= avor [m+1	+ 1
10 . While ($i \leq n \mid and \mid \leq n2$)	
11. 1F [left[i] <= right[j]	r:7.
12. arr [k] = left	
$13. \qquad i + = 1$	
14. ELSE and [k] = right	+ 1.7
16-	

V19 CS076

14.		k	+=			A REST		
18.	whi	e (i	< n1)					
19	4	091	or [k	J = le	ft [i		<u>, </u>	
20.		i	+=1	, k+	()			
21.	While	e si	< n 2	,		11	4	1
22		9	2907 [k] = ,	rical [17		
23		No.	+=1		0	J-		1
24			R+=1	3 11	- 4			
25.	STO					1-	10.7	
			(4.0			7	(
4	me	somolo	vifi.	of me	ser as	cont	function	-
i			V		V		7	,
	TIn)	= C.	+ C-	+ 0	2m/2)	+ C, 1	m) + Co	- (n).
	1.(-1.1	1	72	110 1	5(-2)	-4-((2)	
	TIM	1) = 3	2 T ("	7/)+	C.	n +	- Cb ,	n>1
				2/	0		Koz	4
1	1	9 .	# (n)		1	No of nod	es. Cost
3.00		/			1 1.	1		- Cn
	1	m/2		T	(m/2)	1.	2	2(5)=0
	/		6	111/		7	1. 1. 1	(2)
-T/n	1	7	,	Tan	7	-(m)	. 4	4 (m) = Cn
a'	*)	(7/4		(2)		(4)		(4)
_ ×		\wedge		/	1	1	\	
/\		_/、	1	-	1			
· 17m	T/n)	T(n)	1(5)	1(5)	TIE	17m)	T(n/a) 8	8 (m.) = Cn
(8)	87		,		,(8)	1(8)	10 10	8(n) = Cn
	,	:		:		1 10	0	
4	:	T(n)	Tm)	T(n)	T(n)	T(n)	7/m/2	Cn
T(1)	T(m)	T(n)	(2:1	(22)	(24)	27)	T(m) 2 i	Cri
2.1	24	:		:		7	•	
di			•	-	•			-
:	: ,		1	4		- 2		
1	T(1)	T(1)	T(1)	T(i)	T(1)	T(1)	TINDA	
10	T(1)	T(i)	T(n	T(1)	T(1)	T(1)	T(1) 2"	

U19CS 076

$\frac{m}{2^{k}} = 1 \rightarrow$	R = loon Divide = 2	T/n)
2E JR	and Conquer	2)
2	k = logn Divid e = 2 and (onquer [merge_sort] -	-C
-> =(0)	0	
= $(n) = n$	logn marge = A	(n)
$= T(n) = n$ $= 0 (n \log n)$	møge = 0 function	
V>	function	-
		7.3
> Meorge Sort [3 W (arr[],n] Void merge_sort, // To	ay]	- 30
(and Com	8	
Void merge sort 1/ To	mon into durlicate avoi	ast
	copy into supples	0
1- START .	1211	
2 15 -2 - 0 2 +	2.1.V. 14	
3. Set * dun array with	2:22 20 2 (2000)	
!	size of n (using money	
4. FOR 1=0 to U <n< td=""><td>.7</td><td></td></n<>	.7	
dup [i] = arr[
5. merge sort funct dup 6. For i=0to i <n< td=""><td>, o, n, arr</td><td></td></n<>	, o, n, arr	
6. For i=oto i/2n		
// Bring back dato	to array	
// Brung back dato	<i>i</i>) , 0 ,	
4. STOP	<u> </u>	2
	a frica de la companya de la company	1.
void merge_sort-func	(dup [] I il ann []	,
voca inegersone june	(ast	
I CTART		
1. STAK	,	
2. 1F (h-1<2) netur	7	
3. mid1 = l+ (h-1)/3)		* .
4. mid2 = l + 2+ ((h-l		-
5. merge- sort func (arr, l,	mid dup) T(m)	(2)
6. mence _ sort_func (are, mic	1, mid2, dup) / T(n/	a) .
7. merge sort func (are, mi	de hydup) / T(n/	2)
8. merge (arr, l, mid), mid2	h, dup) T(n)
	4	

U19CS076

1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Void meige (dup[], lw, mid 1, mid 2, h, avor[])- "I lw is lower limit, h is higher limit 1. START
Il lw is lower limit, h is higher limit
1. START
1.
2. Set i = lw j = mid 1 k = mid 2 l = lw
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3. while (i < mid) & (mid) & (mid)
4 IF dup[i] < dup[k]
4 IF dip[l] < dup[j] 5. IF dup[i] < dup[k] 6. apr [l++] = dup[i++]
ELSE 7
and [let] adup b t t
CIAC
9. FLSE
10. IF (dup[j] < dup[k] avor[l++] = dup[j++]
7 / (1)
13 while arr (1+1= aup [K++]
12. Stor (j2maz) & (k2h)
16 arr [] + +] = dup [j + +]
ELSE
18 $arr[l+t] = dup[k+t]$
Ly. While (ic mid!) & (R <h)< td=""></h)<>
20 IF dup[i] < dup [k]
2) arr[l+] = dup[i++]
122 ELSE
23 arr[1++] = dup [k++]
24. While (i < mid 1)
25 avr[l++] = dup[i++]
26: While (j < mid2)
27 and (1++) = dup [i++]
28 While (k <h)< td=""></h)<>
20.91 [] - d - []
O.T. O
26 5104

VI9CSO76

For mage_sort_func

$$T(n) = 3 \left(T\left(\frac{m}{3}\right) + C_{n} + \left(C_{1} + C_{2} + C_{3}\right)\right)$$

$$= \left(3 + \frac{m}{3}\right) + C_{n} + C_{k} + C_{k} + C_{k}\right)$$

$$= \left(3 + \frac{m}{3}\right) + C_{k} + C_{k} + C_{k} + C_{k}\right)$$

$$= \left(3 + \frac{m}{3}\right) + C_{k} + C_{k} + C_{k} + C_{k}\right)$$

$$= \left(3 + \frac{m}{3}\right) + C_{k} + C_{k} + C_{k} + C_{k}\right)$$

$$= \left(3 + \frac{m}{3}\right) + C_{k} + C_{k} + C_{k} + C_{k}\right)$$

$$= \left(3 + \frac{m}{3}\right) + C_{k} + C_{k} + C_{k} + C_{k}\right)$$

$$= \left(3 + \frac{m}{3}\right) + C_{k} + C_{k} + C_{k}\right)$$

$$= \left(3 + \frac{m}{3}\right) + C_{k} + C_{k} + C_{k}$$

$$= \left(3 + \frac{m}{3}\right) + C_{k} + C_{k} + C_{k}$$

$$= \left(3 + \frac{m}{3}\right) + C_{k} + C_{k} + C_{k}$$

$$= \left(3 + \frac{m}{3}\right) + C_{k} + C_{k} + C_{k}$$

$$= \left(3 + \frac{m}{3}\right) + C_{k} + C_{k} + C_{k}$$

$$= \left(3 + \frac{m}{3}\right) + C_{k} + C_{k} + C_{k}$$

$$= \left(3 + \frac{m}{3}\right) + C_{k} + C_{k} + C_{k}$$

$$= \left(3 + \frac{m}{3}\right) + C_{k} + C_{k} + C_{k}$$

$$= \left(3 + \frac{m}{3}\right) + C_{k} + C_{k} + C_{k}$$

$$= \left(3 + \frac{m}{3}\right) + C_{k} + C_{k} + C_{k}$$

$$= \left(3 + \frac{m}{3}\right) + C_{k} + C_{k} + C_{k}$$

$$= \left(3 + \frac{m}{3}\right) + C_{k} + C_{k} + C_{k}$$

$$= \left(3 + \frac{m}{3}\right) + C_{k} + C_{k} + C_{k}$$

$$= \left(3 + \frac{m}{3}\right) + C_{k} + C_{k} + C_{k}$$

$$= \left(3 + \frac{m}{3}\right) + C_{k} + C_{k} + C_{k}$$

$$= \left(3 + \frac{m}{3}\right) + C_{k} + C_{k} + C_{k}$$

$$= \left(3 + \frac{m}{3}\right) + C_{k} + C_{k} + C_{k} + C_{k}$$

$$= \left(3 + \frac{m}{3}\right) + C_{k} + C_{k} + C_{k} + C_{k}$$

$$= \left(3 + \frac{m}{3}\right) + C_{k} + C_{k} + C_{k} + C_{k}$$

$$= \left(3 + \frac{m}{3}\right) + C_{k} + C_{k} + C_{k} + C_{k} + C_{k}$$

$$= \left(3 + \frac{m}{3}\right) + C_{k} + C_$$

1.3Provide the details of Hardware/Software you used to implement algorithms and to measure the time.

Compiler Dev C++ 5.11

OS Name Microsoft Windows 10 Home (i5 8th Gen)

Version 10.0.19042 Build 19042

System Name DESKTOP-BLE6CMQ

System Model HP Pavilion x360 Convertible 14-ba1xx

System Type x64-based PC

Processor Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz, 1800 Mhz, 4 Core(s), 8 Logical

Processor(s)

BIOS Version/Date Insyde F.54, 04-12-2019

Installed Physical Memory (RAM) 8.00 GB

Total Physical Memory 7.88 GB

Available Physical Memory 1.75 GB

Total Virtual Memory 12.4 GB

Available Virtual Memory 4.59 GB

Page File Space 4.50 GB

1.4 Submit the code (complete programs).

```
#include<stdio.h>
```

#include<string.h>

#include<stdlib.h>

#include<time.h>

clock_t begin, end;

double time_;

//u19cs076

void merge(long long arr[], long long I, long long m, long long r)

{

```
long long i;
      long long j;
      long long k;
long long n1 = m - l + 1;
long long n2 = r - m;
long long *left;
long long *right;
left=(long long*)malloc(n1*(sizeof(long long)));
      right=(long long*)malloc(n2*(sizeof(long long)));
for (i = 0; i < n1; i++)
  left[i] = arr[l + i];
for (j = 0; j < n2; j++)
  right[j] = arr[m + 1 + j];
i = 0;
j = 0;
k = I;
while (i < n1 && j < n2) \{
  if (left[i] <= right[j]) {</pre>
     arr[k] = left[i];
     i++;
  }
```

```
else {
    arr[k] = right[j];
    j++;
  }
  k++;
}
while (i < n1) \{
  arr[k] = left[i];
  i++;
  k++;
}
while (j < n2) {
  arr[k] = right[j];
  j++;
  k++;
}
free(left);
free(right);
```

}

```
void merge_sort(long long arr[], long long I, long long r)
{
  if (I < r) {
    long long m = l + (r - l) / 2;
     merge_sort(arr, I, m);
    merge_sort(arr, m + 1, r);
     merge(arr, I, m, r);
  }
}
void merge_dec(long long arr[], long long I, long long m, long long r)
{
 long long i;
 long long j;
  long long k;
  long long n1 = m - l + 1;
  long long n2 = r - m;
  long long *left;
  long long *right;
  left=(long long*)malloc(n1*(sizeof(long long)));
        right=(long long*)malloc(n2*(sizeof(long long)));
  for (i = 0; i < n1; i++)
    left[i] = arr[l + i];
```

```
for (j = 0; j < n2; j++)
  right[j] = arr[m + 1 + j];
i = 0;
j = 0;
k = I;
while (i < n1 && j < n2) \{
  if (left[i] >= right[j]) {
     arr[k] = left[i];
     i++;
  }
  else {
     arr[k] = right[j];
     j++;
  }
  k++;
}
while (i < n1) {
  arr[k] = left[i];
   i++;
   k++;
}
while (j < n2) {
  arr[k] = right[j];
  j++;
```

```
k++;
  }
}
void merge_sort_dec(long long arr[], long long I, long long r)
{
  if (I < r) {
    long long m = I + (r - I) / 2;
    merge_sort(arr, I, m);
    merge_sort(arr, m + 1, r);
    merge_dec(arr, I, m, r);
  }
}
long long count(char file[])
{
        FILE *fp = fopen(file, "r");
        long long count = 0;
        char b[100];
                while(fscanf(fp, "%s\n", &b) == 1)
                                 count++;
        fclose(fp);
        return count;
```

```
}
int main()
{
       long long n;
       long long j;
       long long *arr;
                             //array to hold data
       int i;
       char filename[15];
       FILE *fp;
       printf("******************************\n");
       for(i=0;i<10;i++)
       {
              sprintf(filename, "File %d.txt", i+1);
              n = count(filename);
              printf("-------\n",i+1);
              printf("File %d has %lld elements\n",i+1,n);
              fp = fopen(filename, "r");
              arr=(long long*)malloc(n*((long long)sizeof(long long)));
              for(j=0; j<n; j++)
              {
                      fscanf(fp, "%lld", &arr[j]);
              }
              begin= clock();
              merge_sort(arr,0,n-1);
              end = clock();
```

```
fclose(fp);
               time_ = ((double)(end-begin)) / CLOCKS_PER_SEC;
               printf("AVERAGE case : %0.10If\n", time_);
               begin = clock();
               merge_sort(arr,0,n-1);
               end = clock();
               fclose(fp);
               time_= ((double)(end-begin)) / CLOCKS_PER_SEC;
               printf("Best case : %0.10lf\n",time_);
               begin = clock();
               merge_sort_dec(arr,0,n-1);
               end = clock();
               fclose(fp);
               time_ = ((double)(end-begin)) / CLOCKS_PER_SEC;
               printf("Worst case %0.10lf\n\n", time_);
               free(arr);
       }
}
```


3 WAY MERGE SORT

#include<stdio.h>

#include<string.h>

#include<stdlib.h>

#include<time.h>

```
clock_t begin, end;
double time_;
void merge(long long dup[], long long lw, long long mid1,
      long long mid2, long long h, long long arr[])
{
  long long i = lw, j = mid1, k = mid2, l = lw;
  while ((i < mid1) && (j < mid2) && (k < h))
  {
    if(dup[i] < dup[j])
    {
      if(dup[i] < dup[k])
      {
         arr[l++] = dup[i++];
      }
      else
      {
         arr[l++] = dup[k++];
      }
    }
    else
    {
      if(dup[j] < dup[k])
```

```
{
      arr[l++] = dup[j++];
    }
    else
    {
      arr[I++] = dup[k++];
    }
  }
}
while ((i < mid1) && (j < mid2))
{
  if(dup[i] < dup[j])
  {
    arr[l++] =dup[i++];
  }
  else
  {
    arr[l++] = dup[j++];
  }
}
while ((j < mid2) \&\& (k < h))
```

```
{
  if(dup[j] < dup[k])
  {
    arr[l++] =dup[j++];
  }
  else
    arr[l++] = dup[k++];
  }
}
while ((i < mid1) && (k < h))
{
  if(dup[i] < dup[k])
   arr[l++] = dup[i++];
  }
  else
    arr[l++] = dup[k++];
  }
}
while (i < mid1)
```

```
arr[l++] = dup[i++];
  while (j < mid2)
    arr[l++] = dup[j++];
  while (k < h)
    arr[l++] = dup[k++];
}
void mergeD(long long dup[], long long lw, long long mid1,
      long long mid2, long long h, long long arr[])
{
  long long i = lw, j = mid1, k = mid2, l = lw;
  while ((i < mid1) && (j < mid2) && (k < h))
  {
    if(dup[i] > dup[j])
    {
      if(dup[i] > dup[k])
         arr[l++] = dup[i++];
       }
       else
       {
```

```
arr[l++] = dup[k++];
    }
  }
  else
  {
    if(dup[j] > dup[k])
      arr[l++] = dup[j++];
    }
    else
      arr[l++] = dup[k++];
    }
  }
}
while ((i < mid1) && (j < mid2))
{
  if(dup[i] > dup[j])
    arr[l++] =dup[i++];
  }
  else
  {
```

```
arr[l++] = dup[j++];
  }
}
while ((j < mid2) \&\& (k < h))
  if(dup[j] > dup[k])
  {
    arr[l++] =dup[j++];
  }
  else
  {
    arr[l++] = dup[k++];
  }
}
while ((i < mid1) && (k < h))
  if(dup[i] > dup[k])
  {
    arr[l++] = dup[i++];
  }
  else
```

```
{
      arr[l++] = dup[k++];
    }
  }
  while (i < mid1)
    arr[l++] = dup[i++];
  while (j < mid2)
    arr[l++] = dup[j++];
  while (k < h)
    arr[l++] = dup[k++];
}
void merge_sort_func(long long dup[], long long I,
            long long h, long long arr[])
{
  if (h - l < 2)
     return;
  long long mid1 = I + ((h - I) / 3);
                                         //1/3 part
  long long mid2 = I + 2 * ((h - I) / 3) + 1; //2/3part
  merge_sort_func(arr,l,mid1,dup) ;
```

```
merge_sort_func(arr,mid1,mid2,dup);
  merge_sort_func(arr,mid2,h,dup) ;
  merge(arr, I, mid1, mid2, h, dup);
}
void merge_sort(long long arr[], long long n)
{
  if (n == 0)
     return;
  long long *dup=(long long*)malloc(n*((long long)sizeof(long long)));
        long long i;
  for (i = 0; i < n; i++)
    dup[i] = arr[i];
  merge_sort_func(dup, 0, n, arr);
  for (i = 0; i < n; i++)
    arr[i] = dup[i];
}
```

```
void merge_sort_dfunc(long long dup[], long long l,
            long long h, long long arr[])
{
  if (h - l < 2)
    return;
  long long mid1 = I + ((h - I) / 3);
                                       //1/3 part
  long long mid2 = I + 2 * ((h - I) / 3) + 1; //2/3part
  merge_sort_func(arr,l,mid1,dup) ;
  merge_sort_func(arr,mid1,mid2,dup);
  merge_sort_func(arr,mid2,h,dup) ;
  mergeD(arr, I, mid1, mid2, h, dup);
}
void merge_sort_dec(long long arr[], long long n)
{
  if (n == 0)
    return;
  long long *dup=(long long*)malloc(n*((long long)sizeof(long long)));
```

```
long long i;
  for (i = 0; i < n; i++)
    dup[i] = arr[i];
  merge_sort_dfunc(dup, 0, n, arr);
  for (i = 0; i < n; i++)
    arr[i] = dup[i];
  free(dup);
}
long long count(char file[])
{
        FILE *fp = fopen(file, "r");
        long long count = 0;
        char b[100];
                while(fscanf(fp, "%s\n", &b) == 1)
                                  count++;
        fclose(fp);
        return count;
}
int main()
{
```

```
long long n;
long long j;
long long *arr; //array to hold data
int i;
char filename[15];
FILE *fp;
printf("**********************************/n");
for(i=0;i<10;i++)
{
       sprintf(filename, "File %d.txt", i+1);
       n = count(filename);
       printf("-------\n",i+1);
       printf("File %d has %lld elements\n",i+1,n);
       fp = fopen(filename, "r");
       arr=(long long*)malloc(n*((long long)sizeof(long long)));
       for(j=0; j<n; j++)
       {
              fscanf(fp, "%lld", &arr[j]);
       }
       begin= clock();
       merge_sort(arr,n-1);
       end = clock();
       fclose(fp);
       time_ = ((double)(end-begin)) / CLOCKS_PER_SEC;
```

```
printf("AVERAGE case : %0.10If\n", time_);
        sprintf(filename, "File %d_asc.txt", i+1);
        fp = fopen(filename, "r");
        for(j=0; j<n; j++)
        {
                fscanf(fp, "%lld", &arr[j]);
        }
        begin = clock();
        merge_sort(arr,n-1);
        end = clock();
        fclose(fp);
        time_= ((double)(end-begin)) / CLOCKS_PER_SEC;
        printf("Best case : %0.10lf\n",time_);
        begin = clock();
        merge_sort_dec(arr,n-1);
        end = clock();
        fclose(fp);
        time_ = ((double)(end-begin)) / CLOCKS_PER_SEC;
        printf("Worst case %0.10lf\n\n", time_);
        free(arr);
}
```

}

1.5Measure the best-case time, average-case time and worst-case time of the above two algorithms for all ten files (Assignment 1). Plot a graph.

2 way merge sort

N	AVG CASE	BEST CASE	WORST CASE
1024	0	0	0.002
4096	0	0	0.002
16384	0.004	0.004	0.004
65536	0.018	0.016	0.017
262144	0.094	0.069	0.074
1048576	0.347	0.259	0.286
2097152	0.732	0.505	0.634
4194304	1.49	1.048	1.08
8388608	2.98	2.14	2.16
16777216	6.109	4.34	4.54

3 way merge sort

File	N	AVG CASE	BEST CASE	WORST CASE
1	1024	0	0	0
2	4096	0	0	0
3	16384	0.002	0.002	0
4	65536	0.006	0.002	0.002
5	262144	0.034	0.016	0.016
6	1048576	0.153	0.066	0.066
7	2097152	0.307	0.125	0.129
8	4194304	0.642	0.289	0.289
9	8388608	1.291	0.681	0.644
10	16777216	2.611	1.33	1.44

MERGE SORT 2 WAY

ALL CASES

MERGE SORT 3 WAY

ALL CASES

1.6 Compare the best-case performance of bubble sort, selection sort, insertion sort, and merge sort for all ten files. Plot a graph.

Best Case Analysis

Bubble Sort: $\Omega(n)$

Selection Sort: Ω (n^2)

Insertion Sort: Ω (n)

Merge Sort: O(n log(n))

FILE	N	bubble sort	selection sort	insertion sort	merge sort
1	1024	0.001	0	0	0
2	4096	0.02	0.02	0	0
3	16384	0.3	0.309	0	0.004
4	65536	4.753	4.949	0.001	0.016
5	262144	74	79.263	0.002	0.069

ALL SORTS BEST CASE

- Merge Sort takes least Time in Best Case as its Time Complexity is least.
- Next is Insertion Sort as there is no swapping so number of instructions are less.
- Next is Bubble Sort and Selection Sort takes the most time in Best Case.

1.7. (L) Compare the average-case performance of bubble sort, selection sort, insertion sort, and merge sort for all ten files. Plot a graph.

Average Case Analysis

Bubble Sort: Θ(n^2)

Selection Sort: Θ(n^2)

Insertion Sort: Θ(n^2)

Merge Sort: Θ(n log(n))

FILE	N	bubble sort	selection sort	insertion sort	merge sort
1	1024	0.002	0	0	0
2	4096	0.023	0.022	0	0
3	16384	0.304	0.309	0	0.004
4	65536	4.766	4.955	0.04	0.018
5	262144				

ALL SORTS AVG CASE

- Merge Sort(GREEN) takes least Time in Average Case as its Time Complexity is least.
- All the rest Sorting Algorithm have Average Time complexity O(n^2)

1.8. Compare the worst-case performance of bubble sort, selection sort, insertion sort, and merge sort for all ten files. Plot a graph.

Worst Case Analysis

Bubble Sort: O(n^2)

Selection Sort: O(n^2)

Insertion Sort: O(n^2)

Merge Sort: O(n log(n))

FILE	N	bubble sort	selection sort	insertion sort	merge sort
1	1024	0.003	0.002	0.002	0.002
2	4096	0.022	0.02	0.002	0.002
3	16384	0.497	0.32	0.004	0.004
4	65536	4.784	4.944	0.008	0.017
5	262144	85.34	79	73.22	0.074

ALL SORTS WORST CASE

ALL CASES

- Merge Sort takes least Time in Worst Case as its Time Complexity is least.
- All the rest Sorting Algorithm have Worst Time complexity O(n^2)