Bayesian Statistics and Modeling Part II

Time series modeling with pymc

Based on this example

Modeling airline trends

$$Passengers \sim \alpha + \beta \cdot t$$

Just a simple linear trend for now. α is an intercept term, and β is our slope term

Let's go to the code here to start building our model

Prior predictions (WHAT??)

Prior predictions (WHAT??)

- Look at a large array of possible "reasonable" outcomes given our assumptions about the data
- Gives us an idea of whether our priors make sense
- In this case, we want to make some corrections

Updated priors

Posterior predictions

- Incorporate our actual data and then compare our model to observed outcomes
- Decide if we think that our model can make reasonable predictions

Posterior predictions

Adding seasonality

We add a group of periodic functions (fourier features) to function as our "seasonality splines" (if we think of our model as a GAM). They will get stretched or weighted based on observations.

Seasonality (multiplicative)

$$Passengers \sim (\alpha + \beta \cdot t) \cdot (1 + seasonality)$$

Our seasonal terms interact with each term in our original model to increase/decrease the expected number of passengers

Seasonal priors

Seasonal posteriors

Modeling baseball outcomes

A revised/updated version of this tutorial

Follow along with the tweaked code here

- ϕ (phi) Our population-level expectation of batting average
- κ (kappa) Population variance in batting average
- α, β Parameters of our beta distribution
- p_i Individual batting average

$$lpha = \phi \cdot \kappa$$
 $eta = (1 - \phi) \cdot \kappa$

Beta distribution

- Used where there are binary outcomes (hit or no hit)
- Tilts toward 1 or 0
 based on observed
 outcomes and
 concentration of
 those outcomes

Population values

Player with 4 at-bats, no hits

Player with 25 at-bats, no hits

Player with 50 at-bats, no hits

Mariners 2021

Data Storytelling

Probabilistic programming will unlock narrative explanations of data, one of the holy grails of business analytics and the unsung hero of scientific persuasion. People think in terms of stories - thus the unreasonable power of the anecdote to drive decision-making, wellfounded or not. But existing analytics largely fails to provide this kind of story; instead, numbers seemingly appear out of thin air, with little of the causal context that humans prefer when weighing their options.

-- B. Cronin (full article)