Exercise 11

February 4, 2021

1. Consider the time-series model

$$x_{t+1} = Ax_t + w, w \sim \mathcal{N}(0, Q)$$

$$y_t = Cx_t + v, v \sim \mathcal{N}(0, R)$$

Where w, v are i.i.d. Gaussian noise variables. Further, assume that $p(x_0) = \mathcal{N}(\mu_0, \Sigma_0)$

- (a) What is the form of $p(x_0, x_1, ..., x_T)$? Justify your answer (you do not have to explicitly compute the joint distribution).
- (b) Assume that $p(x_t|y_1,...,y_t) = \mathcal{N}(\mu_t, \Sigma_t)$
 - i. Compute $p(x_{t+1}|y_1, ..., y_t)$
 - ii. Compute $p(x_{t+1}, y_{t+1}|y_1, ..., y_t)$
 - iii. At time t+1, we observe the value $y_{t+1} = \hat{y}$. Compute the conditional distribution $p(x_{t+1}|y_1,...,y_{t+1})$
- 2. Consider a Gaussian random variable $x \sim \mathcal{N}(x|\mu_x, \Sigma_x)$ where $x \in \mathbb{R}^D$ Furthermore, we have

$$y = Ax + b + w$$

where $y \in R^E$, $A \in R^{E \times D}$, $b \in R^E$, and $w \sim \mathcal{N}(w|0,Q)$ is independent Gaussian noise. "Independent" implies that x and w are independent random variables and that Q is diagonal.

- (a) Write down the likelihood p(y|x)
- (b) The distribution $p(y) = \int p(y|x)p(x)dx$ is Gaussian. Compute the mean μ_y and the covariance Σ_y . Derive your result in detail.

- (c) The random variable y is being transformed according to measurement mapping z = Cy + v, where $z \in R^F, C \in R^{F \times E}, v \sim \mathcal{N}(v|0,R)$ is independent Gaussian noise.
 - i. Write down p(z|y)
 - ii. Compute the mean μ_z and the covariance Σ_z . Derive your result in detail.
- (d) Now, a value \hat{y} is measured. Compute the posterior distribution $p(x|\hat{y})$
- 3. Given a continuous random variable X, with cdf $F_X(x)$. Show that the random variable $Y := F_X(X)$ is uniformly distributed.