Homework 1

Warren Kim

 $January\ 11,\ 2024$

Please grade my HW carefully. Thank you.

Let $f: X \to Y$ and $g: Y \to Z$ be two maps. Prove that if f and g are injective (resp. surjective), then so is the composition $g \circ f$.

Response

Injective

Proof. Let f and g both be injective; i.e. $\forall x_1, x_2 \in X, f(x_1) = f(x_2) \implies x_1 = x_2$ and $\forall y_1, y_2 \in Y, g(y_1) = g(y_2) \implies y_1 = y_2$. Take any $x_1, x_2 \in X$. Then we have

$$(g \circ f)(x_1) = g(f(x_1))$$

$$= g(y_1)$$

$$= g(y_2)$$

$$= g(f(x_2))$$
Since g is injective, $g(y_1) = g(y_2)$

$$= g(f(x_2))$$
Since f is injective, $f(x_1) = f(x_2)$

$$(g \circ f)(x_1) = (g \circ f)(x_2)$$

Surjective

Proof. Let f and g both be surjective; i.e. $\forall y \in Y, \exists x \in X : y = f(x)$ and $\forall z \in Z, \exists y \in Y : z = g(y)$. Take any $z \in Z$. Then, we have

$$(g \circ f)(x) = g(f(x))$$

= $g(y)$ Since f is surjective, $y = f(x)$
 $(g \circ f)(x) = z$ Since g is surjective, $z = g(y)$

Prove that $(1 + 2 + \dots + n)^2 = 1^3 + 2^3 + \dots + n^3$.

Response

Proof. Let P(n) be the statement: " $(1+2+\cdots+n)^2=1^3+2^3+\cdots+n^3$ ". We will induct on $n\in\mathbb{N}$.

- (I) P(1) reads " $1 = 1^3 = 1$ which is true.
- (II) Assume P(n) holds true for some $n \in \mathbb{N}$. We want to prove P(n+1):

$$1^{3} + 2^{3} + \dots + n^{3} + (n+1)^{3} = (1+2+\dots+n)^{2} + (n+1)^{3}$$
 By the Inductive Hypothesis
$$= \left[\frac{n(n+1)}{2}\right]^{2} + (n+1)^{3}$$

$$= \frac{n^{2}(n+1)^{2}}{4} + (n+1)(n+1)^{2}$$

$$= \frac{n^{2}(n+1)^{2}}{4} + \frac{4(n+1)(n+1)^{2}}{4}$$

$$= \frac{n^{2}(n+1)^{2}}{4} + \frac{4(n+1)(n+1)^{2}}{4}$$

$$= \frac{(n^{2} + 4n + 4)(n+1)^{2}}{4}$$

$$= \frac{(n+2)^{2}(n+1)^{2}}{4}$$

$$= \left[\frac{(n+2)(n+1)}{2}\right]^{2}$$

$$1^{3} + 2^{3} + \dots + n^{3} + (n+1)^{3} = (1+2+\dots+n)^{2}$$

So P(n+1) is true, concluding the induction.

Prove that 13 divides $14^n - 1$ for any $n \in \mathbb{N}$.

Response

Proof. Let P(n) be the statement: "13 divides $14^n - 1$ for any $n \in \mathbb{N}$ ". We will induct on $n \in \mathbb{N}$.

- (I) P(1) reads "13 | $(14^1 1) = 13$ " which is true.
- (II) Assume P(n) holds true for some $n \in \mathbb{N}$. We want to prove P(n+1). Recall that $13 \mid (14^n 1)$ can be expressed as $14^n 1 = 13q \iff 14^n = 13q + 1$ where $q \in \mathbb{Z}$.

$$14^{n+1}-1=(14\cdot 14^n)-1$$

= $(14\cdot [13q+1])-1$ By the Inductive Hypothesis
= $182q+14-1$
= $182q+13$
= $13(14q+1)$
 $14^{n+1}-1=13p$ Let $p=14q+1$

So P(n+1) is true, concluding the induction.

Show that if $a^n - 1$ is prime and n > 1, then a = 2 and n is prime. If $2^n + 1$ is prime, what can you say about n?

Response

Proof. Note that $x^n - 1 = (x - 1)(x^{n-1} + x^{n-2} + \dots + x + 1)$.

Let n > 1. Then, we have

$$a^{n} - 1 = (a - 1)(a^{n-1} + a^{n-2} + \dots + a + 1)$$

 $\implies (a - 1) \mid (a^{n} - 1)$

But $a^n - 1$ is prime $\implies a - 1 = 1$ so a = 2.

Now assume by contradiction that n is composite; i.e. n = pq for some 1 < p, q < n. Then we get

$$a^{pq} - 1 = (a^p)^q - 1$$

= $(a^p - 1)([a^p]^{q-1} + [a^p]^{q-2} + \dots + a^p + 1)$

So $a^n - 1$ is composite, a contradiction. Therefore, n must be prime.

If $2^n + 1$ is prime, then n must be either 0 or a power of 2.

Find all integer solutions of 93x + 39y = -6.

Response

$$a = 93, b = 39$$

$$93 = 2(39) + 15 \iff 15 = 93 - 2(39)$$

$$39 = 2(15) + 9 \iff 9 = 39 - 2(15)$$

$$15 = 1(9) + 6 \iff 6 = 15 - 1(9)$$

$$9 = 1(6) + 3 \iff 3 = 9 - 1(6)$$

$$6 = 2(3) + 0$$

So
$$(93,39) = 3$$
. Then,

$$3 = 9 - 1(6)$$

$$= 9 - 1[15 - 1(9)]$$

$$= 2(9) - 15$$

$$= 2[39 - 2(15)] - [93 - 2(39)]$$

$$= 4(39) - 4(15) - 93$$

$$= 4(39) - 4[93 - 2(39)] - 93$$

$$= 12(39) - 5(93)$$

$$3 = 39(12) - 93(5)$$

$$-6 = 93(10) + 39(-24)$$

Multiply both sides by -2

Then we get x = 10 - 13k, y = -24 + 31k where $k \in \mathbb{Z}$ (from **Question 6**) to be all the integer solutions of 93x + 39y = -6.

Let a, b, c be non-zero integers and let $d = \gcd(a, b)$. Prove that the equation ax + by = c has a solution x, y in integers if and only if $d \mid c$. Moreover, if $d \mid c$ and x_0, y_0 is a solution in integers then the general solution in integers is $x = x_0 + \frac{b}{d}k$, $y = y_0 - \frac{a}{d}k$ for all integers k.

Response

(i)

Proof. (\Longrightarrow) Let $d = \gcd(a, b)$ and ax + by = c have solutions $x, y \in \mathbb{Z}$. Since $d \mid a, b$, we can write a = dp, b = dq for some $p, q \in \mathbb{Z}, p \neq q$. Now, use the assumption that ax + by = c has integer solutions x, y to get:

$$c = ax + by$$

 $= (dp)x + (dq)y$ Substitute a, b
 $= d(px + qy)$ Factor d
 $c = dr \iff d \mid c$ Let $r = px + qy$

Here, $r \in \mathbb{Z}$ because $x, y, p, q \in \mathbb{Z}$ and the integers are closed under addition and multiplication. So $d \mid c$.

(\longleftarrow) Let $d \mid c$. Then by definition, c = dq for some $q \in \mathbb{Z}$. Using Bezout's Identity, we have

$$ax' + by' = d$$

 $(ax' + by')q = dq$ Multiply both sides by q
 $a(x'q) + b(y'q) = c$ $c = dq$
 $ax + by = c$ Let $x = x'q, y = y'q$

Here, $x, y \in \mathbb{Z}$ because $x', y', q \in \mathbb{Z}$ and the integers are closed under multiplication. Thus, ax + by = c has integer solutions.

(ii)

Proof. Let $d \mid c$ and x_0, y_0 be integer solutions. Using Bezout's Identity, we get a = dp, b = dq for some $p, q \in \mathbb{Z}, p \neq q$. Then we have: $ax_0 + by_0 = c = ax + by$:

$$ax_0 + by_0 = ax + by$$

$$a(x - x_0) = b(y_0 - y)$$

$$dp(x - x_0) = dq(y_0 - y)$$
Substitute a, b

$$p(x - x_0) = q(y_0 - y)$$

Since gcd(p,q) = 1, it must be true that $p \mid (y_0 - y)$ (similarly, $q \mid (x - x_0)$). That is:

$$y_0 - y = pk$$
 $k \in \mathbb{Z}$ $y = pk + y_0$ $y = y_0 - \frac{a}{d}k$ Substitute p

and

$$x-x_0=qk$$
 $k\in\mathbb{Z}$
$$x=x_0+qk$$

$$x=x_0+\frac{b}{d}k$$
 Substitute q

Therefore, the general solution in integers is $x = x_0 + \frac{b}{d}k$ and $y = y_0 - \frac{a}{d}k$ for all integers k.

Show that if for $a, b \in \mathbb{N}$, ab is a square of an integer and (a, b) = 1, then a and b are squares.

Response

Proof. Note that $x = p_1^{k_1} p_2^{k_2} \dots p_n^{k_n}$ is a square $\iff k_1, k_2, \dots, k_n$ are all even. (i) Let $a, b \in \mathbb{N}, \ p \in \mathbb{Z}$ such that $p^2 = ab$ and (a, b) = 1. Then, we can write both a and b in their unique prime factorizations (from the Fundamental Theorem of Arithmetic) as:

$$a = p_1^{k_1} p_2^{k_2} \dots p_n^{k_n}$$

$$b = q_1^{s_1} q_2^{s_2} \dots q_m^{s_m}$$

Then, we have:

$$p^2 = ab = (p_1^{k_1} p_2^{k_2} \dots p_n^{k_n}) (q_1^{s_1} q_2^{s_2} \dots q_m^{s_m})$$

Since (a,b) = 1 (i.e. a and b have no common divisor) and ab is a square, by (i), k_1, k_2, \ldots, k_n and s_1, s_2, \ldots, s_n are all even $\implies a$ and b are squares, respectively.

Prove that if (a, n) = 1 and (b, n) = 1, then (ab, n) = 1.

Response

Proof. Let $a, b, n \in \mathbb{Z}$. First we use the Bezout Identity for a and b:

$$ax + ny = 1$$

$$bx' + ny' = 1$$

where $x, x', y, y' \in \mathbb{Z}$. Then we have:

$$(ax + ny)(bx' + ny') = (ax)(bx') + (ax)(ny') + (ny)(bx) + (ny)(ny')$$
$$= ab(xx') + n(axy' + bxy + nyy')$$
$$= (ab)p + nq = 1$$
Let $p = xx', q = axy' + bxy + nyy'$

Here, p is an integer because $x, x' \in \mathbb{Z}$ and integers are closed under multiplication. Analogously, q is an integer because $a, x, x', b, y, y', n \in \mathbb{Z}$ are integers, and integers are closed under addition. Now, we reverse the Bezout Identity to get

$$(ab)p + nq = 1 \iff (ab, n) = 1$$

Is $2^{10} + 5^{12}$ a prime? (Hint: use the identity $4x^4 + y^4 = (2x^2 + y^2)^2 - (2xy)^2$.)

Response

The number $2^{10} + 5^{12}$ is not prime.

Proof. Let
$$x = 2^2 = 4, y = 5^3 = 125$$
. Then,
$$2^{10} + 5^{12} = 2^2 \cdot 2^8 + 5^{12}$$

$$= 4(2^2)^4 + (5^3)^4$$

$$= 4x^4 + y^4$$

$$= (2x^2 + y^2)^2 - (2xy)^2$$

$$= (2x^2 + y^2 + 2xy)(2x^2 + y^2 - 2xy)$$

$$= (2[4]^2 + [125]^2 + 2[4][125])(2[4]^2 + [125]^2 - 2[4][125])$$

$$= (32 + 15625 + 1000)(32 + 15625 - 1000)$$

$$= (16657)(14657)$$

Since $2^{10} + 5^{12}$ can be represented as the product of two integers that are both greater than 1, it is composite and therefore not prime.

Show that there are infinitely many primes $p \equiv 2 \pmod{3}$. (Hint: consider $3p_1p_2 \dots p_n - 1$.)

Response

Proof. Assume by contradiction that we have an ordered finite set $S = \{p_1, p_2, \dots, p_n\}$ of primes of the form $p \equiv 2 \pmod{3}$ where $n \in \mathbb{N}$. Let $N = 3p_1p_2 \dots p_n - 1$. Then there are two cases:

- (i) N is prime: If N is prime, then we are done since $N \equiv 2 \pmod{3}$ and is greater than any element in S, a contradiction.
- (ii) N is composite: If N is composite, then by the Fundamental Theorem of Arithmetic, N has a unique prime factorization. Clearly, N cannot be congruent to 0 (mod 3) since N takes the form 3k-1. If N is a product of primes all congruent to 1 (mod)3, then N must be congruent to 1 (mod 3) ($[1] \cdot [1] \cdot \ldots \cdot [1] \equiv [1]$). However, Since $N \equiv 2 \pmod{3}$, this cannot be true. Therefore, there should be at least one prime congruent to 2 (mod 3) as a factor of N.