(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

OR DER BEWEREN DE BEREIR WERE BEREIR BEREIR BEWEREN EIN BEREIR BEREIR BEREIR BEWERE BEWEREN BEWEREN EINER BEWEREN BEWEREN.

(43) Internationales Veröffentlichungsdatum 25. März 2004 (25.03.2004)

(10) Internationale Veröffentlichungsnummer WO 2004/024933 A2

- C12P 13/04, (51) Internationale Patentklassifikation7: 13/12
- PCT/EP2003/009453 (21) Internationales Aktenzeichen:
- (22) Internationales Anmeldedatum:

26. August 2003 (26.08.2003)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

- (30) Angaben zur Priorität: 26. August 2002 (26.08.2002) DE 102 39 082.7
- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BASF AKTIENGESELLSCHAFT [DE/DE]; 67056 Ludwigshafen (DE).

- (72) Erlinder; und
- (75) Erfinder/Anmelder (nur für US): KRÖGER, Burkhard [DE/DE]; Im Waldhof 1, 67117 Limburgerhof (DE). ZELDER, Oskar [DE/DE]; Franz-Stützel-Str. 8, 67346 Speyer (DE). KLOPPROGGE, Corinna [DE/DE]; Rastatter Str. 10, 68239 Mannheim (DE). SCHRÖDER, Hartwig [DE/DE]; Benzstr. 4, 69226 Nussloch (DE). HÄFNER, Stefan [DE/DE]; Luitpoldstr. Ludwigshafen (DE).
- (74) Anwalt: KINZEBACH, Werner; Reitstötter, Kinzebach & Partner (GbR), Sternwartstr. 4, 81679 München (DE).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR,

[Fortsetzung auf der nächsten Seite]

- (54) Title: METHOD FOR ZYMOTIC PRODUCTION OF FINE CHEMICALS (METY) CONTAINING SULPHUR
- (54) Bezeichnung: VERFAHREN ZUR FERMENTATIVEN HERSTELLUNG SCHWEFELHALTIGER FEINCHEMIKALIEN (METY)

- (57) Abstract: The invention relates to methods for the zymotic production of fine chemicals, especially L-methionine, containing sulphur using bacteria, wherein a nucleotide sequence coding for a (metH)-gene methionine-synthase expressed.
- (57) Zusammenfassung: Die Erfindung betrifft Verfahren zur fermentativen Herstellung von schwefelhaltigen Feinchemikalien, insbesondere L-Methionin, unter Verwendung von Bakterien, in denen eine für ein Methionin-Synthase (metH)-Gen kodierende Nukleotidsequenz exprimiert wird.

KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL,

PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

 ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

VERFAHREN ZUR FERMENTATIVEN HERSTELLUNG SCHWEFELHALTIGER FEINCHEMIKALIEN (METY)

Beschreibung

5

20

25

Gegenstand der Erfindung ist ein Verfahren zur fermentativen Herstellung von schwefelhaltigen Feinchemikalien, insbesondere L-Methionin, unter Verwendung von Bakterien, in denen eine für ein O-Acetyl-Homoserin-Sulfhydrolase (metY)-Gen kodierende Nukleotidsequenz exprimiert wird.

Stand der Technik

Schwefelhaltige Feinchemikalien, wie zum Beispiel Methionin, Homocystein, S-Adenosyl-10 Methionin, Glutathion, Cystein, Biotin, Thiamin, Liponsäure werden über natürliche Stoffwechselprozesse in Zellen hergestellt und werden in vielen Industriezweigen verwendet, einschließlich der Nahrungsmittel-, Futtermittel-, Kosmetik- und pharmazeutischen Industrie. Diese Substanzen, die zusammen als "schwefelhaltige Feinchemikalien" bezeichnet werden, umfassen organische Säuren, sowohl proteinogene als auch nicht-proteinogene Aminosäuren, Vitamine 15 und Cofaktoren. Ihre Produktion erfolgt am zweckmäßigsten im Großmaßstab mittels Anzucht von Bakterien, die entwickelt wurden, um große Mengen der jeweils gewünschten Substanz zu produzieren und sezemieren. Für diesen Zweck besonders geeignete Organismen sind coryneforme Bakterien, gram-positive nicht-pathogene Bakterien.

Es ist bekannt, dass Aminosäuren durch Fermentation von Stämmen coryneformer Bakterien, insbesondere Corynebacterium glutamicum, hergestellt werden. Wegen der großen Bedeutung wird ständig an der Verbesserung der Herstellverfahren gearbeitet. Verfahrensverbesserungen können fermentationstechnische Maßnahmen, wie zum Beispiel Rührung und Versorgung mit Sauerstoff, oder die Zusammensetzung der Nährmedien, wie zum Beispiel die Zuckerkonzentration während der Fermentation, oder die Aufarbeitung zum Produkt, beispielsweise durch lonenaustauschchromatographie, oder die intrinsischen Leistungseigenschaften des Mikroorganismus selbst betreffen.

Über Stammselektion sind eine Reihe von Mutantenstämmen entwickelt worden, die ein Sorti-30 ment wünschenswerter Verbindungen aus der Reihe der schwefelhaltigen Feinchemikalien produzieren. Zur Verbesserung der Leistungseigenschaften dieser Mikroorganismen hinsichtlich der Produktion eines bestimmten Moleküls werden Methoden der Mutagenese, Selektion und Mutantenauswahl angewendet. Dies ist jedoch ein zeitaufwendiges und schwieriges Verfahren. Auf diese Weise erhält man z.B. Stämme, die resistent gegen Antimetabolite, wie z.B. die Methio-35 nin-Analoga α -Methyl-Methionin, Ethionin, Norleucin, N-Acetylnorleucin, S-Trifluoromethylhomocystein, 2-Amino-5-heprenoitsäure, Seleno-Methionin, Methioninsulfoximin, Methoxin, 1-Aminocyclopentan-Carboxylsäure oder auxotroph für regulatorisch bedeutsame Metabolite sind und schwefelhaltige Feinchemikalien, wie z. B. L-Methionin, produzieren.

- Seit einigen Jahren werden ebenfalls Methoden der rekombinanten DNA-Technik zur Stammverbesserung von L-Aminosäure produzierender Stämme von Corynebacterium eingesetzt, indem man einzelne Aminosäure-Biosynthesegene amplifiziert und die Auswirkung auf die Aminosäure-Produktion untersucht.
- Die WO-A-02/18613 beschreibt die Nukleinsäure- und Aminosäuresequenz für metY aus C. glutamicum und dessen Verwendung zur Herstellung von L-Lysin.

Kurze Beschreibung der Erfindung

20

25

35

Der Erfindung lag die Aufgabe zugrunde, ein neues Verfahren zur verbesserten fermentativen Herstellung von schwefelhaltige Feinchemikalien, insbesondere L-Methionin, bereitzustellen.

Gelöst wird obige Aufgabe durch Bereitstellung eines Verfahrens zur fermentativen Herstellung einer schwefelhaltigen Feinchemikalie, umfassend die Expression einer heterologen Nukleotidsequenz, welche für ein Protein mit metY-Aktivität kodiert, in einem coryneformen Bakterium.

Ein erster Gegenstand der Erfindung ist Verfahren zur fermentativen Herstellung wenigstens einer schwefelhaltigen Feinchemikalie, welches folgende Schritte umfasst:

- a) Fermentation einer die gewünschte schwefelhaltige Feinchemikalie produzierenden coryneformen Bakterienkultur, wobei in den coryneformen Bakterien zumindest eine heterologe Nukleotidsequenz exprimiert wird, welche für ein Protein mit O-Acetyl-Homoserin-Sulfhydrolase (metY) –Aktivität kodiert;
 - b) Anreicherung der schwefelhaltigen Feinchemikalie im Medium oder in den Zellen der Bakterien, und
- 30 c) Isolieren der schwefelhaltigen Feinchemikalie, welche vorzugsweise L-Methionin umfasst.

Vorzugsweise besitzt obige heterologe metY-kodierende Nukleotidsequenz zur metY-kodierenden Sequenz aus Corynebacterium glutamicum ATCC 13032 eine Sequenzhomologie von weniger als 100%, wie z.B. mehr als 70%, wie 75, 80, 85, 90 oder 95 %, oder weniger als 70%, wie z.B. bis zu 60, 50, 40, 30, 20 oder 10 %. Die metY-kodierende Sequenz ist vorzugsweise aus einem der folgenden Organismen von Liste I abgeleitet:

Liste I

1 http://	ATCC 14779
Corynebacterium diphteriae	ATCC 25584
Mycobacterium tuberculosis	Aree 2555
CDC1551	ATCC 824
Clostridium acetobutylicum	ATCC21591
Bacillus halodurans	ATCC 12980
Bacillus stearothermophilus	ATCC 49652
Chlorobium tepidum	ATCC27104
Synechococcus sp.	ATCC 36104
Emericella nidulans	ATCC 25285
Bacteroides fragilis	ATCC 7962
Lactococcus lactis	ATCC 19395
Bordetella bronchiseptica	ATCC 17933
Pseudomonas aeruginosa	ATCC 19718
Nitrosomonas europaea	ATCC 4399
Sinorhizobium meliloti	ATCC 43589
Thermotoga maritima	ATCC 25175
Streptococcus mutans	ATCC 25416
Burkholderia cepacia	ATCC 13939
Deinococcus radiodurans	ATCC 11166
Rhodobacter capsulatus	ATCC 6530
Pasteurella multocida	ATCC 9689
Clostridium difficile	ATCC 33560
Campylobacter jejuni	ATCC 6308
Streptococcus pneumoniae	ATCC 2704
Saccharomyces cerevisiae	ATCC 8585
Kluyveromyces lactis	ATCC 10231
Candida albicans	ATCC 24969
Schizosaccharomyces pombe	A1CC 24707

5 ATCC: American Type Culture Collection, Rockville, MD, USA

10

Die erfindungsgemäß eingesetzte metY-kodierende Sequenz umfasst vorzugsweise eine kodierende Sequenz gemäß SEQ ID NO:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51 und 53 oder eine dazu homologe Nukleotidsequenz, welche für ein Protein mit metY-Aktivität kodiert.

Die erfindungsgemäß eingesetzte metY-kodierende Sequenz kodiert außerdem vorzugsweise für ein Protein mit metY-Aktivität, wobei das Protein eine Aminosäuresequenz gemäß SEQ ID NO:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52

25

30

8

und 54 oder eine dazu homologe Aminosäuresequenz, welche für ein Protein mit metY-Aktivität steht, umfasst.

Die kodierende metY-Sequenz ist vorzugsweise eine in coryneformen Bakterien replizierbare oder eine stabil in das Chromosom intregrierte DNA oder eine RNA.

Gemäß einer bevorzugten Ausführungsform wird das erfindungsgemäße Verfahren durchgeführt, indem man

- 10 a) einen mit einem Plasmidvektor transformierten Bakterienstamm einsetzt der wenigstens eine Kopie der kodierenden metY-Sequenz unter der Kontrolle regulativer Sequenzen trägt, oder
 - b) einen Stamm einsetzt, in dem die kodierende metY-Sequenz in das Chromosom des Bakteriums integriert wurde
- 15 Es ist weiterhin bevorzugt, die kodierende metY-Sequenz für die Fermentation zu überexprimieren.

Außerdem kann es wünschenswert sein, Bakterien zu fermentieren, in denen zusätzlich wenigstens ein weiteres Gen des Biosyntheseweges der gewünschten schwefelhaltigen Feinchemikalie verstärkt ist; und / oder

in denen wenigstens ein Stoffwechselweg zumindest teilweise ausgeschaltet sind, der die Bildung der gewünschten schwefelhaltigen Feinchemikalie verringert.

Außerdem kann es wünschenswert sein, Bakterien zu fermentieren, in denen zusätzlich wenigstens ein weiteres Gen des Biosyntheseweges der gewünschten schwefelhaltigen Feinchemikalie durch Stoffwechselmetabolite in seiner Aktivität nicht in unerwünschter Weise beeinflusst wird.

Gemäß einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens werden deshalb coryneforme Bakterien fermentiert, in denen gleichzeitig wenigstens eines der Gene, ausgewählt unter

- a) dem für eine Aspartatkinase kodierenden Gen lysC,
- b) dem für eine Aspartat-Semialdehyd-Dehydrogenase kodierenden Gen asd
- c) dem für die Glycerinaldehyd-3-Phosphat Dehydrogenase kodierenden Gen gap,
- 35 d) dem für die 3-Phosphoglycerat Kinase kodierenden Gen pgk,
 - e) dem für die Pyruvat Carboxylase kodierenden Gen pyc,
 - f) dem für die Triosephosphat Isomerase kodierenden Gen tpi,

10

25

30

- dem für die Homoserin O-Acetyltransferase kodierenden Gen metA, g) dem für die Cystathionin-gamma-Synthase kodierenden Gen metB, h) dem für die Cystathionin-gamma-Lyase kodierenden Gen metC, i) dem für die Serin-Hydroxymethyltransferase kodierenden Gen glyA, j) dem für die Methionin Synthase kodierenden Gen metH, k) dem für die Methylen-Tetrahydrofolat-Reduktase kodierenden Gen, metF I) dem für die Phosphoserin-Aminotransferase kodierenden Gen serC m) dem für die Phosphoserin-Phosphatase kodierenden Gen serB, n) dem für die Serine Acetyl-Transferase kodierenden Gen cysE, 0) dem für die Homoserin-Dehydrogenase kodierenden Gen hom, p) überexprimiert ist.
- Gemäß einer anderen Ausführungsform des erfindungsgemäßen Verfahrens werden coryneforme Bakterien fermentiert, in denen gleichzeitig wenigstens eines der Gene ausgewählt unter Genen der oben genannten Gruppe a) bis p) mutiert ist, so dass die korrespondierenden Proteine, verglichen mit nicht mutierten Proteinen, in geringerem Maße oder nicht durch Stoffwechselmetabolite in ihrer Aktivität beeinflusst werden und dass insbesondere die erfindungsgemäße Produktion der Feinchemikalie nicht beeinträchtigt wird.
- 20 Gemäß einer anderen Ausführungsform des erfindungsgemäßen Verfahrens werden coryneforme Bakterien fermentiert, in denen gleichzeitig wenigstens eines der Gene, ausgewählt unter
 - q) dem für die Homoserine-Kinase kodierenden Gen thrB,
 - r) dem für die Threonin Dehydratase kodierenden Gen ilvA,
 - s) dem für die Threonin Synthase kodierenden Gen thrC
 - t) dem für die Meso-Diaminopimelat D-Dehydrogenase kodierenden Gen ddh
 - u) dem für die Phosphoenolpyruvat-Carboxykinase kodierenden Gen pck,
 - v) dem für die Glucose-6-Phosphat-6-Isomerase kodierenden Gen pgi,
 - w) dem für die Pyruvat-Oxidase kodierenden Gen poxB,
 - x) dem für die Dihydrodipicolinat Synthase kodiernden Gen dapA,
 - y) dem für die Dihydrodipicolinat Reduktase kodiemden Gen dapB; oder
 - z) dem für die Diaminopicolinat Decarboxylase kodiemden Gen lysA

abschwächt ist, insbesondere durch Verringerung der Expressionsrate des korrespondierenden Gens.

35 Gemäß einer anderen Ausführungsform des erfindungsgemäßen Verfahrens werden coryneforme Bakterien fermentiert, in denen gleichzeitig wenigstens eines der Gene der obigen Gruppen

10

15

20

q) bis z) mutiert ist, so dass die enzymatische Aktivität des korrespondierenden Proteins teilweise oder vollständig verringert wird.

Vorzugsweise werden in dem erfindungsgemäßen Verfahren Mikroorganismen der Art Corynebacterium glutamicum eingesetzt.

Ein weiterer Gegenstand der Erfindung betrifft ein Verfahren zur Herstellung eines L-Methioninhaltigen Tierfuttermittel-Additivs aus Fermentationsbrühen, welches folgende Schritte umfasst

- a) Kultivierung und Fermentation eines L-Methionin produzierenden Mikroorganismus in einem Fermentationsmedium;
- b) Entfernung von Wasser aus der L-Methionin haltigen Fermentationsbrühe;
- c) Entfernung der während der Fermentation gebildeten Biomasse in einer Menge von 0 bis 100 Gew.-%; und
- Trocknung der gemäß b) und/oder c) erhaltenen Fermentationsbrühe, um das Tierfuttermittel-Additiv in der gewünschten Pulver- oder Granulatform zu erhalten.

Gegenstand der Erfindung sind ebenfalls die erstmalig aus obigen Mikroorganismen isolierten kodierenden metY-Sequenzen, die davon kodierten O-Acetyl-Homoserin-Sulfhydrolasen sowie die funktionalen Homologen dieser Polynukleotide bzw. Proteine.

Detaillierte Beschreibung der Erfindung

a) Allgemeine Begriffe

Als Proteine mit der Aktivität der O-Acetyl-Homoserin Sulfhydrolase auch metY (EC 4.2.99.10) genannt, werden solche Proteine beschrieben, die in der Lage sind O-Acetyl-Homoserin und Sulfid unter Verwendung des Cofaktors Pyrodoxal-Phosphat zu Homocystein umzusetzen. Der Fachmann unterscheidet die Aktivivät der O-Acetyl-Homoserin Sulfhydrolase von der O-Succinyl-Homoserin-Sulfhydrolase auch metZ genannt. In dem letztgenannten Enzym dient O-Succinyl-Homoserin und nicht O-Acetyl-Homoserin als Substrat der Reaktion. Der Fachmann kann die enzymatische Aktivivtät von metY durch Enzymtests nachweisen, Vorschriften dafür können sein: Shimizu H. Yamagata S. Masui R. Inoue Y. Shibata T. Yokoyama S. Kuramitsu S. Iwama T. Biochimica et Biophysica Acta. 1549(1):61-72, 2001, Yamagata S. Isaji M. Nakamura K. Fujisaki S. Doi K. Bawden S. D'Andrea R. Applied Microbiology & Biotechnology. 42(1):92-9,

10

20

25

30

35

Im Rahmen der vorliegenden Erfindung umfasst der Begriff "schwefelhaltige Feinchemikalie" jegliche chemische Verbindung, die wenigstens ein Schwefelatom kovalent gebunden enthält und durch ein erfindungsgemäßes Fermentationsverfahrens zugänglich ist. Nichtlimitierende Beispiele dafür sind Methionin, Homocystein, S-Adenosyl-Methionin, insbesondere Methionin, und S-Adenosyl-Methionin.

Im Rahmen der vorliegenden Erfindung umfassen die Begriffe "L-Methionin", "Methionin", Homocystein und S-Adenosylmethionin auch die korrespondierenden Salze, wie z. B. Methionin-Hydrochlorid oder Methionin-Sulfat.

"Polynukleotide" bezeichnet im allgemeinen Polyribonukleotide (RNA) und Polydeoxyribonukleotide (DNA), wobei es sich um nicht modifizierte RNA oder DNA oder modifizierte RNA oder DNA handeln kann.

Unter "Polypeptiden" versteht man erfindungsgemäß Peptide oder Proteine, die zwei oder mehr über Peptidbindungen verbundene Aminosäuren enthalten.

Der Begriff "Stoffwechselmetabolit" bezeichnet chemische Verbindungen, die im Stoffwechsel von Organismen als Zwischen- oder auch Endprodukte vorkommen und die neben ihrer Eigenschaft als chemische Bausteine auch modulierende Wirkung auf Enzyme und ihre katalytische Aktivität haben können. Dabei ist aus der Literatur bekannt, dass solche Stoffwechselmetabolite sowohl hemmend als auch stimulierend auf die Aktvität von Enzymen wirken können (Biochemistry, Stryer, Lubert, 1995 W. H. Freeman & Company, New York, New York.). In der Literatur ist auch beschrieben, dass es möglich ist durch Maßnahmen wie Mutation der genomischen DNA durch UV-Strahlung, ionisierender Strahlung oder mutagene Substanzen und nachfolgender Selektion auf bestimmte Phänotypen in Organismen solche Enzyme zu produzieren, in denen die Beeinflussung durch Stoffwechselmetabolite verändert wurde (Sahm H. Eggeling L. de Graaf AA. Biological Chemistry 381(9-10):899-910, 2000; Eikmanns BJ. Eggeling L. Sahm H. Antonie van Leeuwenhoek. 64:145-63, 1993-94). Diese veränderten Eigenschaften können auch durch gezielte Maßnahmen erreicht werden. Dabei ist dem Fachmann bekannt, dass in Genen für Enzyme bestimmte Nukleotide der für das Protein kodierenden DNA gezielt verändert werden können, so dass das aus der exprimierten DNA-Sequenz resultierende Protein bestimmte neue Eigenschaften aufweist, so zum Beispiel, dass die modulierende Wirkung von Stoffwechselmetaboliten gegenüber dem nicht veränderten Protein verändert ist

Enzyme können derart in ihrer Aktivität beeinflußt werden, dass es zu einer Verringerung der Reaktionsgeschwindigkeit, oder zu einer Veränderung der Affinität gegenüber dem Substrat o-

der zu einer Änderung der Reaktionsgeschwindigkeiten kommt.

Die Begriffe "exprimieren" bzw. "Verstärkung" oder "Überexpression" beschreiben im Kontext der Erfindung die Produktion bzw. Erhöhung der intrazellulären Aktivität eines oder mehrerer Enzyme in einem Mikroorganismus, die durch die entsprechende DNA kodiert werden. Dazu kann man beispielsweise ein Gen in einen Organismus einbringen, ein vorhandenes Gen durch ein anderes Gen ersetzen, die Kopienzahl des Gens bzw. der Gene erhöhen, einen starken Promotor verwenden oder ein Gen verwenden, das für ein entsprechendes Enzym mit einer hohen Aktivität kodiert und man kann gegebenenfalls diese Maßnahmen kombinieren.

10

5

b) Erfindungsgemäße metY-Proteine

Erfindungsgemäß mit umfasst sind ebenfalls "funktionale Äquivalente" der konkret offenbarten metY-Enzyme aus Organismen obiger Liste I.

15

"Funktionale Äquivalente" oder Analoga der konkret offenbarten Polypeptide sind im Rahmen der vorliegenden Erfindung davon verschiedene Polypeptide, welche weiterhin die gewünschte biologische Aktivität, wie z.B. Substratspezifität, besitzen.

20

25

Unter "funktionalen Äquivalenten" versteht man erfindungsgemäß insbesondere Mutanten, welche in wenigstens einer der oben genannten Sequenzpositionen eine andere als die konkret genannte Aminosäure aufweisen aber trotzdem eine der oben genannten biologische Aktivitäten besitzen. "Funktionale Äquivalente" umfassen somit die durch eine oder mehrere Aminosäure-Additionen, -Substitutionen, -Deletionen und/oder -Inversionen erhältlichen Mutanten, wobei die genannten Veränderungen in jeglicher Sequenzposition auftreten können, solange sie zu einer Mutante mit dem erfindungsgemäßen Eigenschaftsprofil führen. Funktionale Äquivalenz ist insbesondere auch dann gegeben, wenn die Reaktivitätsmuster zwischen Mutante und unverändertem Polypeptid qualitativ übereinstimmen, d.h. beispielsweise gleiche Substrate mit unterschiedlicher Geschwindigkeit umgesetzt werden

30

"Funktionale Äquivalente" umfassen natürlich auch Polypeptide welche aus anderen Organismen zugänglich sind, sowie natürlich vorkommende Varianten. Beispielsweise lassen sich durch Sequenzvergleich Bereiche homologer Sequenzregionen festlegen und in Anlehnung an die konkreten Vorgaben der Erfindung äquivalente Enzyme ermitteln.

35

"Funktionale Äquivalente" umfassen ebenfalls Fragmente, vorzugsweise einzelne Domänen oder Sequenzmotive, der erfindungsgemäßen Polypeptide, welche z.B. die gewünschte biologi-

WO 2004/024933

9

sche Funktion aufweisen.

"Funktionale Äquivalente" sind außerdem Fusionsproteine, welche ein der oben genannten Polypeptidsequenzen oder davon abgeleitete funktionale Äquivalente und wenigstens eine weitere, davon funktionell verschiedene, heterologe Sequenz in funktioneller N- oder C-terminaler Verknüpfung (d.h. ohne gegenseitigen wesentliche funktionelle Beeinträchtigung der Fusionsproteinteile) aufweisen. Nichtlimitiemde Beispiele für derartige heterologe Sequenzen sind z.B. Siginteile) aufweisen. Nichtlimitiemde Beispiele für derartige heterologe Sequenzen oder Rezeptorligannalpeptide, Enzyme, Immunoglobuline, Oberflächenantigene, Rezeptoren oder Rezeptorliganden.

10

4

5

Erfindungsgemäß mit umfasste "funktionale Äquivalente" sind Homologe zu den konkret offenbarten Proteinen. Diese besitzen wenigstens 30%, oder etwa 40%, 50 %, vorzugsweise wenigstens etwa 60 %, 65%, 70%, oder 75% ins besondere wenigsten 85 %, wie z.B. 90%, 95% oder 99%, Homologie zu einer der konkret offenbarten Sequenzen, berechnet nach dem Algorithmus von Pearson und Lipman, Proc. Natl. Acad, Sci. (USA) 85(8), 1988, 2444-2448.

15

Homologe der erfindungsgemäßen Proteine oder Polypeptide können durch Mutagenese erzeugt werden, z.B. durch Punktmutation oder Verkürzung des Proteins. Der Begriff "Homolog", wie er hier verwendet wird, betrifft eine variante Form des Proteins, die als Agonist oder Antagonist der Protein-Aktivität wirkt.

20

25

Homologe des erfindungsgemäßen Proteine können durch Screening kombinatorischer Banken von Mutanten, wie z.B. Verkürzungsmutanten, identifiziert werden. Beispielsweise kann eine variegierte Bank von Protein-Varianten durch kombinatorische Mutagenese auf Nukleinsäurebene erzeugt werden, wie z.B. durch enzymatisches Ligieren eines Gemisches synthetischer Oligonukleotide. Es gibt eine Vielzahl von Verfahren, die zur Herstellung von Banken potentieller Homologer aus einer degenerierten Oligonukleotidsequenz verwendet werden können. Die chemische Synthese einer degenerierten Gensequenz kann in einem DNA-Syntheseautomaten durchgeführt werden, und das synthetische Gen kann dann in einen geeigneten Expressionsvektor ligiert werden. Die Verwendung eines degenerierten Gensatzes ermöglicht die Bereitstellung sämtlicher Sequenzen in einem Gemisch, die den gewünschten Satz an potentiellen Proteinsequenzen codieren. Verfahren zur Synthese degenerierter Oligonukleotide sind dem Fachmann bekannt (Z.B. Narang, S.A. (1983) Tetrahedron 39:3; Itakura et al. (1984) Annu. Rev. Biochem. 53:323; Itakura et al., (1984) Science 198:1056; Ike et al. (1983) Nucleic Acids Res. 11:477).

35

30

30

35

10

Zusätzlich können Banken von Fragmenten des Protein-Codons verwendet werden, um eine variegierte Population von Protein-Fragmenten zum Screening und zur anschließenden Selektion von Homologen eines erfindungsgemäßen Proteins zu erzeugen. Bei einer Ausführungsform kann eine Bank von kodierenden Sequenzfragmenten durch Behandeln eines doppelsträngigen PCR-Fragmentes einer kodierenden Sequenz mit einer Nuklease unter Bedingungen, unter denen ein Nicking nur etwa einmal pro Molekül erfolgt, Denaturieren der doppelsträngigen DNA, Renaturieren der DNA unter Bildung doppelsträngiger DNA, die Sense-/Antisense-Paare von verschiedenen genickten Produkten umfassen kann, Entfemen einzelsträngiger Abschnitte aus neu gebildeten Duplices durch Behandlung mit S1-Nuclease und Ligieren der resultierenden Fragmentbank in einen Expressionsvektor erzeugt werden. Durch dieses Verfahren kann eine Expressionsbank hergeleitet werden, die N-terminale, C-terminale und interne Fragmente mit verschiedenen Größen des erfidungsgemäßen Proteins kodiert.

Im Stand der Technik sind mehrere Techniken zum Screening von Genprodukten kombinatorischer Banken, die durch Punktmutationen oder Verkürzung hergestellt worden sind, und zum 15 Screening von cDNA-Banken auf Genprodukte mit einer ausgewählten Eigenschaft bekannt. Diese Techniken lassen sich an das schnelle Screening der Genbanken anpassen, die durch kombinatorische Mutagenese erfindungsgemäßer Homologer erzeugt worden sind. Die am häufigsten verwendeten Techniken zum Screening großer Genbanken, die einer Analyse mit hohem Durchsatz unterliegen, umfassen das Klonieren der Genbank in replizierbare Expressionsvekto-20 ren, Transformieren der geeigneten Zellen mit der resultierenden Vektorenbank und Exprimieren der kombinatorischen Gene unter Bedingungen, unter denen der Nachweis der gewünschten Aktivität die Isolation des Vektors, der das Gen codiert, dessen Produkt nachgewiesen wurde, erleichtert. Recursive-Ensemble-Mutagenese (REM), eine Technik, die die Häufigkeit funktioneller Mutanten in den Banken vergrößert, kann in Kombination mit den Screeningtests verwendet 25 werden, um Homologe zu identifizieren (Arkin und Yourvan (1992) PNAS 89:7811-7815; Delgrave et al. (1993) Protein Engineering 6(3):327-331

c) <u>Erfindungsgemäße Polynukleotide</u>

Gegenstand der Erfindung sind ebenso Nukleinsäuresequenzen (einzel- und doppelsträngige DNA- und RNA-Sequenzen, wie z.B. cDNA und mRNA), kodierend für eines der obigen metY-Enzyme und deren funktionalen Äquivalenten, welche z.B. auch unter Verwendung künstlicher Nukleotidanaloga zugänglich sind.

Die Erfindung betrifft sowohl isolierte Nukleinsäuremoleküle, welche für erfindungsgemäße Polypeptide bzw. Proteine oder biologisch aktive Abschnitte davon kodieren, sowie Nukleinsäure-

20-

35

fragmente, die z.B. zur Verwendung als Hybridisierungssonden oder Primer zur Identifizierung oder Amplifizierung von erfindungsgemäßer kodierenden Nukleinsäuren verwendet werden können.

5 Die erfindungsgemäßen Nukleinsäuremoleküle können zudem untranslatierte Sequenzen vom 3'- und/oder 5'-Ende des kodierenden Genbereichs enthalten

Ein "isoliertes" Nukleinsäuremolekül wird von anderen Nukleinsäuremolekülen abgetrennt, die in der natürlichen Quelle der Nukleinsäure zugegen sind und kann überdies im wesentlichen frei von anderem zellulären Material oder Kulturmedium sein, wenn es durch rekombinante Techniken hergestellt wird, oder frei von chemischen Vorstufen oder anderen Chemikalien sein, wenn es chemisch synthetisiert wird.

Die Erfindung umfasst weiterhin die zu den konkret beschriebenen Nukleotidsequenzen komplementären Nukleinsäuremoleküle oder einen Abschnitt davon.

Die erfindungsgemäß Nukleotidsequenzen ermöglichen die Erzeugung von Sonden und Primern, die zur Identifizierung und/oder Klonierung von homologer Sequenzen in anderen Zelltypen und Organismen verwendbar sind. Solche Sonden bzw. Primer umfassen gewöhnlich einen Nukleotidsequenzbereich, der unter stringenten Bedingungen an mindestens etwa 12, vorzugsweise mindestens etwa 25, wie z.B. etwa 40, 50 oder 75 aufeinanderfolgende Nukleotide eines Sense-Stranges einer erfindungsgemäßen Nukleinsäuresequenz oder eines entsprechenden Antisense-Stranges hybridisiert.

Weitere erfindungsgemäße Nukleinsäuresequenzen sind abgeleitet von SEQ ID NO:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51oder 53 und unterscheiden sich davon durch Addition, Substitution, Insertion oder Deletion einzelner oder mehrerer Nukleotide, kodieren aber weiterhin für Polypeptide mit dem gewünschten Eigenschaftsprofil. Dies können Polynukleotide sein, die zu obigen Sequenzen in mindestens etwa 50%, 55%, 06%, 70%, 80% oder 90%, vorzugsweise in mindestens etwa 95%, 96%, 97%, 98% oder 99% der Sequenzpositionen identisch sind.

Erfindungsgemäß umfasst sind auch solche Nukleinsäuresequenzen, die sogenannte stumme Mutationen umfassen oder entsprechend der Codon-Nutzung eins speziellen Ursprungs- oder Wirtsorganismus, im Vergleich zu einer konkret genannten Sequenz verändert sind, ebenso wie natürlich vorkommende Varianten, wie z.B. Spleißvarianten oder Allelvarianten, davon. Gegenstand sind ebenso durch konservative Nukleotidsubstutionen (d.h. die betreffende Aminosäure

wird durch eine Aminosäure gleicher Ladung, Größe, Polarität und/oder Löslichkeit ersetzt) erhältliche Sequenzen.

Gegenstand der Erfindung sind auch die durch Sequenzpolymorphismen von den konkret offenbarten Nukleinsäuren abgeleiteten Moleküle. Diese genetischen Polymorphismen können zwischen Individuen innerhalb einer Population aufgrund der natürlichen Variation existieren. Diese natürlichen Variationen bewirken üblicherweise eine Varianz von 1 bis 5 % in der Nukleotidsequenz eines Gens.

- Weiterhin umfasst die Erfindung auch Nukleinsäuresequenzen, welchen mit oben genannten kodierenden Sequenzen hybridisieren oder dazu komplementär sind. Diese Polynukleotide lassen sich bei Durchmusterung von genomischen oder cDNA-Banken auffinden und gegebenenfalls daraus mit geeigneten Primern mittels PCR vermehren und anschließend beispielsweise mit geeigneten Sonden isolieren. Eine weitere Möglichkeit bietet die Transformation geeigneter Mikroorganismen mit erfindungsgemäßen Polynukleotiden oder Vektoren, die Vermehrung der Mikroorganismen und damit der Polynukleotide und deren anschließende Isolierung. Darüber hinaus können erfindungsgemäße Polynukleotide auch auf chemischem Wege synthetisiert werden
- Unter der Eigenschaft, an Polynukleotide "hybridisieren" zu können, versteht man die Fähigkeit 20 eines Poly- oder Oligonukleotids unter stringenten Bedingungen an eine nahezu komplementäre Sequenz zu binden, während unter diesen Bedingungen unspezifische Bindungen zwischen nicht-komplementären Partnern unterbleiben. Dazu sollten die Sequenzen zu 70-100%, vorzugsweise zu 90-100%, komplementär sein. Die Eigenschaft komplementärer Sequenzen, spezifisch aneinander binden zu können, macht man sich beispielsweise in der Northem- oder Sou-25 thern-Blot-Technik oder bei der Primerbindung in PCR oder RT-PCR zunutze. Üblicherweise werden dazu Oligonukleotide ab einer Länge von 30 Basenpaaren eingesetzt. Unter stringenten Bedingungen versteht man beispielsweise in der Northern-Blot-Technik die Verwendung einer $50-70\,^{\circ}\text{C}$, vorzugsweise $60-65\,^{\circ}\text{C}$ warmen Waschlösung, beispielsweise $0.1\times$ SSC-Puffer mit 0,1% SDS (20x SSC: 3M NaCl, 0,3M Na-Citrat, pH 7,0) zur Elution unspezifisch hybridisierter 30 cDNA-Sonden oder Oligonukleotide. Dabei bleiben, wie oben erwähnt, nur in hohem Maße komplementäre Nukleinsäuren aneinander gebunden. Die Einstellung stringenter Bedingungen ist dem Fachmann bekannt und ist z:B. in Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. beschrieben. 35
 - c) <u>Isolierung der kodierenden metY-Gene</u>

10

15

Die für das Enzym O-Acetyl-Homoserin-Sulfhydrolase kodierenden met Y Gene aus den Organismen obiger Liste I sind in an sich bekannter Weise isolierbar.

Zur Isolierung der metY-Gene oder auch anderer Gene der Organismen aus obiger Liste I wird zunächst eine Genbank dieses Organsimus in Escherichia coli (E. coli) angelegt. Das Anlegen von Genbanken ist in allgemein bekannten Lehrbüchern und Handbüchern ausführlich beschrieben. Als Beispiel seien das Lehrbuch von Winnacker: Gene und Klone, Eine Einführung in die Gentechnologie (Verlag Chemie, Weinheim, Deutschland, 1990), oder das Handbuch von Sambrook et al.: Molecular Cloning, A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1989) genannt. Eine sehr bekannte Genbank ist die des E. coli K-12 Stammes W3110, die von Kohara et al. (Cell50, 495-508 (198)) in λ -Vektoren angelegt wurde.

Zur Herstellung einer Genbank von Organismen der Liste I in E. coli können Cosmide, wie der Cosmidvektor SuperCos I (Wahl et al., 1987, Proceedings of the National Academy of Sciences USA, 84: 2160-2164), aber auch Plasmide, wie pBR322 (BoliVal; Life Sciences, 25, 807-818 (1979)) oder pUC9 (Vieira et al., 1982, Gene, 19: 259-268), verwendet werden. Als Wirte eignen sich besonders solche E. coli Stämme, die restriktions- und rekombinationsdefekt sind. Ein Beispiel hierfür ist der Stamm DH5lphamcr, der von Grant et al. (Proceedings of the National Academy of Sciences USA, 87 (1990) 4645-4649) beschrieben wurde. Die mit Hilfe von Cosmiden klonierten langen DNA-Fragmente können anschließend wiederum in gängige, für die Sequenzierung geeignete Vektoren subkloniert und anschließend sequenziert werden, so wie es z. B. bei San-**2**0 🗀 ger et al. (proceedings of the National Academy of Sciences of the United States of America, 74: 5463-5467, 1977) beschrieben ist.

Die erhaltenen DNA-Sequenzen können dann mit bekannten Algorithmen bzw. Sequenzanalyse-Programmen, wie z. B. dem von Staden (Nucleic Acids Research 14,217-232(1986)), dem von 25 Marck (Nucleic Acids Research 16, 1829-1836 (1988)) oder dem GCG-Programm von Butler (Methods ofBiochemical Analysis 39, 74-97 (1998)), untersucht werden.

Die für die metY-Gene kodierenden DNA-Sequenzen von Organismen gemäß obiger Liste I wurden gefunden. Insbesondere wurden DNA-Sequenzen gemäß SEQ ID NO:1, 3, 5, 7, 9, 11, 30 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51 und 53 gefunden. Weiterhin wurde aus diesen vorliegenden DNA-Sequenzen mit den oben beschriebenen Methoden die Aminosäuresequenzen der entsprechenden Proteine abgeleitet. Durch SEQ ID NO:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52 und 54 sind die sich ergebenden Aminosäuresequenzen der metY Genprodukte dargestellt. 35

20

Kodierende DNA-Sequenzen, die sich aus den Sequenzen gemäß SEQ ID NO:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51 und 53 durch die Degeneration des genetischen Kodes ergeben, sind ebenfalls Gegenstand der Erfindung. In gleicher Weise sind DNA-Sequenzen, die mit diesen Sequenzen oder davon abgeleiteten Sequenzeteilen hybridisieren, Gegenstand der Erfindung.

Anleitungen zur Identifizierung von DNA-Sequenzen mittels Hybridisierung findet der Fachmann unter anderem im Handbuch "The DIG System Users Guide für Filter Hybridization" der Firma Boehringer Mannheim GmbH (Mannheim, Deutschland, 1993) und bei Liebl et al. (International Journal of Systematic Bacteriology (1991) 41: 255-260). Anleitungen zur Amplifikation von DNA-Sequenzen mit Hilfe der Polymerase-Kettenreaktion (PCR) findet der Fachmann unter anderem im Handbuch von Gait: Oligonukleotide synthesis: A Practical Approach (IRL Press, Ox- ford, UK, 1984) und bei Newton und Graham: PCR (Spektrum Akademischer Verlag, Heidelberg, Deutschland, 1994).

Weiterhin ist bekannt, dass Änderungen am N- und/oder C- Terminus eines Proteins dessen Funktion nicht wesentlich beeinträchtigen oder sogar stabilisieren können. Angaben hierzu findet der Fachmann unter anderem bei Ben-Bassat et al. (Journal of Bacteriology 169: 751-757 (1987)), bei O'Regan et al. (Gene 77: 237-251 (1989), bei Sahin-Toth et al. (Protein Sciences 3: 240-247 (1994)), bei Hochuli et al. (Biontechnology 6: 1321-1325 (1988)) und in bekannten Lehrbüchern der Genetik und Molekularbiologie.

Aminosäuresequenzen, die sich in entsprechender Weise aus den SEQ ID NO:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52 und 54 ergeben, sind ebenfalls Bestandteil der Erfindung.

d) <u>Erfindungsgemäß verwendete Wirtszellen</u>

- Weitere Gegenstände der Erfindung betreffen als Wirtszelle dienende Mikroorgansismen, insbesondere coryneforme Bakterien, die einen Vektor, insbesondere Pendelvektor oder Plasmidvektor, der wenigstens ein metY Gen gerfindungsgemäßer Definition trägt, enthalten oder in denen ein erfindungsgemäßes metY Gen exprimiert bzw. verstärkt ist.
- Diese Mikroorganismen k\u00f6nnen schwefelhaltige Feinchemikalien, insbesondere L-Methionin, aus Glucose, Saccharose, Lactose, Fructose, Maltose, Melasse, St\u00e4rke, Cellulose oder aus Glycerin und Ethanol herstellen. Vorzugsweise sind dies coryneforme Bakterien, insbesondere der

Gattung Corynebacterium. Aus der Gattung Corynebacterium ist insbesondere die Art Corynebacterium glutamicum zu nennen, die in der Fachwelt für ihre Fähigkeit bekannt ist, L-Aminosäuren zu produzieren.

Als Beispiele für geeignete Stämme coryneformer Bakterien sind solche der Gattung Corynebacterium, insbesondere der Art Corynebacterium glutamicum (C. glutamicum), wie 5 Corynebacterium glutamicum ATCC 13032, Corynebacterium acetoglutamicum ATCC 15806,

Corynebacterium acetoacidophilum ATCC 13870,

Corynebacterium thermoaminogenes FERM BP-1539, 10 Corynebacterium melassecola ATCC 17965

oder

25

der Gattung Brevibacterium, wie

Brevibacterium flavum ATCC 14067 15 Brevibacterium lactofermentum ATCC 13869 und Brevibacterium divaricatum ATCC 14020 zu nennen; oder davon abgeleitete Stämme, wie Corynebacterium glutamicum KFCC10065

Corynebacterium glutamicum ATCC21608 20

> welche ebenfalls die gewünschte Feinchemikalie oder deren Vorstufe(n) produzieren. Mit der Abkürzung KFCC ist die Korean Federation of Culture Collection gemeint, mit der Abkürzung ATCC die American type strain culture collection und mit der Abkürzung FERM die Sammlung des National institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology, Japan.

Durchführung der erfindungsgemäßen Fermentation e)

Erfindungsgemäß wurde festgestellt, dass coryneforme Bakterien nach Überexpression eines metY Gens aus Organismen der Liste I in vorteilhafter Weise schwefelhaltige Feinchemikalien, 30 insbesondere L-Methionin, produzieren.

Zur Erzielung einer Überexpression kann der Fachmann unterschiedliche Maßnahmen einzeln oder in Kombination ergreifen. So kann die Kopienzahl der entsprechenden Gene erhöht werden, oder es kann die Promotor- und Regulationsregion oder die Ribosomenbindungsstelle, die 35 sich stromaufwärts des Strukturgens befindet, mutiert werden. In gleicher Weise wirken Expres-

sionskassetten, die stromaufwärts des Strukturgens eingebaut werden. Durch induzierbare Promotoren ist es zusätzlich möglich, die Expression im Verlaufe der fermentativen L-Methionin-Produktion zu steigern. Durch Maßnahmen zur Verlängerung der Lebensdauer der mRNA wird ebenfalls die Expression verbessert. Weiterhin wird durch Verhinderung des Abbaus des Enzymproteins ebenfalls die Enzymaktivität verstärkt. Die Gene oder Genkonstrukte können entweder in Plasmiden mit unterschiedlicher Kopienzahl vorliegen oder im Chromosom integriert und amplifiziert sein. Alternativ kann weiterhin eine Überexpression der betreffenden Gene durch Veränderung der Medienzusammensetzung und Kulturführung erreicht werden.

Anleitungen hierzu findet der Fachmann unter anderem bei Martin et al. (Biontechnology 5, 137-10 146 (1987)), bei Guerrero et al. (Gene 138, 35-41 (1994)), Tsuchiya und Morinaga (Bio/Technology 6, 428-430 (1988)), bei Eikmanns et al. (Gene 102, 93-98 (1991)), in der Europäischen Patentschrift 0472869, im US Patent 4,601,893, bei Schwarzer und Pühler (Biotechnology 9, 84-87 (1991), bei Remscheid et al. (Applied and Environmental Microbiology 60,126-132 (1994), bei LaBarre et al. (Journal of Bacteriology 175, 1001-1007 (1993)), in der Patentanmel-15 dung WO 96/15246, bei Malumbres et al. (Gene 134, 15-24 (1993)), in der japanischen Offenlegungsschrift JP-A-10-229891, bei Jensen und Hammer (Biotechnology and Bioengineering 58,.191-195 (1998)), bei Makrides (Microbiological Reviews 60 : 512-538 (1996) und in bekannten Lehrbüchern der Genetik und Molekularbiologie.

20

25

30

35

5

Gegenstand der Erfindung sind deshalb auch Expressionskonstrukte, enthaltend unter der genetischen Kontrolle regulativer Nukleinsäuresequenzen eine für ein erfindungsgemäßes Polypeptid kodierende Nukleinsäuresequenz; sowie Vektoren, umfassend wenigstens eines dieser Expressionskonstrukte. Vorzugsweise umfassen solche erfindungsgemäßen Konstrukte 5'stromaufwärts von der jeweiligen kodierenden Sequenz einen Promotor und 3'-stromabwärts eine Terminatorsequenz sowie gegebenenfalls weitere übliche regulative Elemente, und zwar jeweils operativ verknüpft mit der kodierenden Sequenz. Unter einer "operativen Verknüpfung" versteht man die sequentielle Anordnung von Promotor, kodierender Sequenz, Terminator und gegebenenfalls weiterer regulativer Elemente derart, dass jedes der regulativen Elemente seine Funktion bei der Expression der kodierenden Sequenz bestimmungsgemäß erfüllen kann. Beispiele für operativ verknüpfbare Sequenzen sind Aktivrieungssequenzen sowie Enhancer und dergleichen. Weitere regulative Elemente umfassen selektierbare Marker, Amplifikationssignale, Replikationsursprünge und dergleichen. Geeignete regulatorische Sequenzen sind z.B. beschrieben in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990).

Zusätzlich zu den artifiziellen Regulationssequenzen kann die natürliche Regulationssequenz

25

30

35

vor dem eigentlichen Strukturgen noch vorhanden sein. Durch genetische Veränderung kann diese natürliche Regulation gegebenenfalls ausgeschaltet und die Expression der Gene erhöht oder erniedrigt werden. Das Genkonstrukt kann aber auch einfacher aufgebaut sein, das heißt oder erniedrigt werden. Das Genkonstrukt kann aber auch einfacher aufgebaut sein, das heißt es werden keine zusätzlichen Regulationssignale vor das Strukturgen insertiert und der natürliche Promotor mit seiner Regulation wird nicht entfernt. Statt dessen wird die natürliche Regulationssequenz so mutiert, dass keine Regulation mehr erfolgt und die Genexpression gesteigert oder verringert wird. Die Nukleinsäuresequenzen können in einer oder mehreren Kopien im Genkonstrukt enthalten sein.

Beispiele für brauchbare Promotoren sind: die Promotoren, ddh, amy, lysC, dapA, lysA aus Corynebacterium glutamicum, aber auch gram-positiven Promotoren SPO2 wie sie in Bacillus Subtilis and Its Closest Relatives, Sonenshein, Abraham L.,Hoch, James A., Losick, Richard; ASM Press, District of Columbia, Washington und Patek M. Eikmanns BJ. Patek J. Sahm H. Microbiology. 142 1297-309, 1996 beschrieben sind, oder aber auch cos-, tac-, trp-, tet-, trp-tet-, lpp-, lac-lpp-lac-, laclq-, T7-, T5-, T3-, gal-, trc-, ara-, SP6-, λ-PR- oder im λ-PL-Promotor, die vorteilhafterweise in gram-negativen Bakterien Anwendung finden. Bevorzugt ist auch die Verwendung induzierbarer Promotoren, wie z.B. licht- und insbesondere temperaturinduztierbarer Promotoren, wie der P₂P₂-Promotor. Prinzipiell können alle natürlichen Promotoren mit ihren Regulationssequenzen verwendet werden. Darüber hinaus können auch synthetische Promotoren vorteilhaft verwendet werden.

Die genannten regulatorischen Sequenzen sollen die gezielte Expression der Nukleinsäuresequenzen ermöglichen. Dies kann beispielsweise je nach Wirtsorganismus bedeuten, dass das Gen erst nach Induktion exprimiert oder überexprimiert wird, oder dass es sofort exprimiert und/oder überexprimiert wird.

Die regulatorischen Sequenzen bzw. Faktoren können dabei vorzugsweise die Expression positiv beeinflussen und dadurch erhöhen oder erniedrigen. So kann eine Verstärkung der regulatorischen Elemente vorteilhafterweise auf der Transkriptionsebene erfolgen, indem starke Transkriptionssignale wie Promotoren und/oder "Enhancer" verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der mRNA verbessert wird.

Die Herstellung einer Expressionskassette erfolgt durch Fusion eines geeigneten Promotors, einer geeigneten Shine-Dalgamow-Sequenz mit einer metY-Nukleotidsequenz sowie einem geeigneten Terminationssignal. Dazu verwendet man gängige Rekombinations- und Klonierungstechniken, wie sie beispielsweise in Current Protocols in Molecular Biology, 1993, John

WO 2004/024933

5

30

35

Wiley & Sons, Incorporated, New York New York, PCR Methods, Gelfand, David H., Innis, Michael A., Sninsky, John J. 1999, Academic Press, Incorporated, California, San Diego, ., PCR Cloning Protocols, Methods in Molecular Biology Ser., Vol. 192, 2nd ed., Humana Press, New Jersey, Totowa. T. Maniatis, E.F. Fritsch und J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) sowie in T.J. Silhavy, M.L. Berman und L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) und in Ausubel, F.M. et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley Interscience (1987) beschrieben sind.

Das rekombinante Nukleinsäurekonstrukt bzw. Genkonstrukt wird zur Expression in einem geeigneten Wirtsorganismus vorteilhafterweise in einen wirtsspezifischen Vektor insertiert, der eine optimale Expression der Gene im Wirt ermöglicht. Vektoren sind dem Fachmann wohl bekannt und können beispielsweise aus "Cloning Vectors" (Pouwels P. H. et al., Hrsg, Elsevier, Amsterdam-New York-Oxford, 1985) entnommen werden. Unter Vektoren sind außer Plasmiden auch alle anderen dem Fachmann bekannten Vektoren, wie beispielsweise Phagen, Transposons, IS-Elemente, Phasmide, Cosmide, und lineare oder zirkuläre DNA zu verstehen. Diese Vektoren können autonom im Wirtsorganismus repliziert oder chromosomal repliziert werden.

Zur Verstärkung wurden erfindungsgemäße metY Gene beispielhaft mit Hilfe von episomalen
Plasmiden überexprimiert. Als Plasmide eignen sich solche, die in coryneformen Bakterien repliziert werden. Zahlreiche bekannte Plasmidvektoren, wie z. B. pZ1 (Menkel et al., Applied and Environmental Microbiology (1989) 64: 549-554), pEKEx1 (Eikmanns et al., Gene 102: 93-98 (1991)) oder pHS2-1 (Sonnen et al., Gene 107: 69-74 (1991)) beruhen auf den kryptischen Plasmiden pHM1519, pBL1 oder pGA1. Andere Plasmidvektoren, wie z. B. pCLiK5MCS, oder solche, die auf pCG4 (US-A 4,489,160) oder pNG2 (Serwold-Davis et al., FEMS Microbiology Letters 66, 119-124 (1990)) oder pAG1 (US-A 5,158,891) beruhen, können in gleicher Weise

Weiterhin eignen sich auch solche Plasmidvektoren mit Hilfe derer man das Verfahren der Genamplifikation durch Integration in das Chromosom anwenden kann, so wie es beispielsweise von Remscheid et al. (Applied and Environmental Microbiology 60,126-132 (1994)) zur Duplikation bzw. Amplifikation des hom-thrB-Operons beschrieben wurde. Bei dieser Methode wird das vollständige Gen in einen Plasmidvektor kloniert, der in einem Wirt (typischerweise E. coli), nicht aber in C. glutamicum replizieren kann. Als Vektoren kommen beispielsweise pSUP301 (Simon et al., Bio/ Technology 1,784-791 (1983)), pK18mob oder pK19mob (Schäfer et al., Gene 145,69-73 (1994)), Bernard et al., Journal ofMolecular Biology, 234: 534-541 (1993)), pEM1 (Schrumpf et al. 1991, Journal of Bacteriology 173: 4510–4516) oder pBGS8 (Spratt et al., 1986,

10

20

25

35

Gene 41: 337-342) in Frage. Der Plasmidvektor, der das zu amplifizierende Gen enthält, wird anschließend durch Transformation in den gewünschten Stamm von C. glutamicum überführt. Methoden zur Transformation sind beispielsweise bei Thierbach et al. (Applied Microbiology and Biotechnology 29, 356-362 (1988)), Dunican und Shivnan (Biotechnology 7, 1067-1070 (1989)) und Tauch et al. (FEMS Microbiological Letters 123,343-347 (1994)) beschrieben.

Enzyme können durch Mutationen in den korrespondierenden Genen derart in ihrer Aktivität beeinflußt werden, dass es zu einer teilweisen oder vollständigen Verringerung der Reaktionsgeschwindigkeit der enzymatischen Reaktion kommt. Beispiele für solche Mutationen sind dem Fachmann bekannt (Motoyama H. Yano H. Terasaki Y. Anazawa H. Applied & Environmental Microbiology. 67:3064-70, 2001, Eikmanns BJ. Eggeling L. Sahm H. Antonie van Leeuwenhoek. 64:145-63, 1993-94.)

Zusätzlich kann es für die Produktion von schwefelhaltige Feinchemikalien, insbesondere L-Methionin, vorteilhaft sein, neben einer Expression bzw. Verstärkung eines erfindungsgemäßen metY-Gen eines oder mehrere Enzyme des jeweiligen Biosyntheseweges, des Cystein-15 Stoffwechselwegs, der Aspartatsemialdehyd-Synthese, der Glykolyse, der Anaplerotik, des Pentose-Phosphat-Stoffwechsels, des Zitronensäure-Zyklus oder des Aminosäure-Exports zu verstärken.

So kann für die Herstellung von schwefelhaltige Feinchemikalien, insbesondere L-Methionin, eines oder mehrere der folgenden Gene verstärkt sein:

- das für eine Aspartatkinase kodierende Gen lysC (EP 1 108 790 A2; DNA-SEQ NO. 281), -das für eine Aspartatsemialdehyd Dehydrogenase kodierende Gen asd (EP 1 108 790 A2;
- DNA-SEQ NO. 282),
- das für die Glycerinaldehyd-3-Phosphat Dehydrogenase kodierende Gen gap (Eikmanns (1992), Journal of Bacteriology 174: 6076-6086),
- das für die 3-Phosphoglycerat Kinase kodierende Gen pgk (Eikmanns (1992), Journal of Bacteriology 174: 6076-6086),
- das für die Pyruvat Carboxylase kodierende Gen pyc (Eikmanns (1992), Journal of Bacteriology 30 174: 6076-6086),
 - -das für die Triosephosphat Isomerase kodierende Gen tpi (Eikmanns (1992), Journal of Bacteriology 174: 6076-6086),
 - das für die Homoserin O-Acetyltransferase kodierende Gen metA (EP 1 108 790 A2; DNA-SEQ NO. 725),
 - das für die Cystahionin-gamma-Synthase kodierende Gen metB (EP 1 108 790 A2; DNA-SEQ NO. 3491),

- das für die Cystahionin-gamma-Lyase kodierende Gen metC (EP 1 108 790 A2; DNA-SEQ NO. 3061),
- das für die Serin-Hydroxymethyltransferase kodierende Gen glyA (EP 1 108 790 A2; DNA-SEQ NO. 1110),
- das für die MethioninSynthase kodierende Gen metH (EP 1 108 790 A2),
 - das für die Methylentetrahydrofolat-Reduktase kodierende Gen metF (EP 1 108 790 A2; DNA-SEQ NO. 2379),
 - das für die Phosphoserin-Aminotransferase kodierende Gen serC (EP 1 108 790 A2; DNA-SEQ NO. 928)
- eines für die Phosphoserin-Phosphatase kodierende Gen serB (EP 1 108 790 A2; DNA-SEQ
 NO. 334, DNA-SEQ NO. 467, DNA-SEQ NO. 2767)
 - das für die Serine Acetyl-Transferase kodierende Gen cysE (EP 1 108 790 A2; DNA-SEQ NO. 2818)
- das für eine Homoserin-Dehydrogenase kodierende Gen hom (EP 1 108 790 A2; DNA-SEQ
 NO. 1306)

So kann für die Herstellung von schwefelhaltige Feinchemikalien, insbesondere L-Methionin, in coryneformen Bakterien, vorteilhaft sein, gleichzeitig wenigstens eines der nachfolgenden Gene zu mutieren, so dass die korrespondierenden Proteine, verglichen mit nicht mutierten Proteinen, in geringerem Maße oder nicht durch einen Stoffwechselmetaboliten in ihrer Aktivität beeinflusst werden:

- das für eine Aspartatkinase kodierende Gen lysC (EP 1 108 790 A2; DNA-SEQ NO. 281),
- das für die Pyruvat Carboxylase kodierende Gen pyc (Eikmanns (1992), Journal of Bacteriology 174: 6076-6086),
- das für die Homoserin O-Acetyltransferase kodierende Gen metA (EP 1 108 790 A2; DNA-SEQ NO. 725),
- das für die Cystahionin-gamma-Synthase kodierende Gen metB (EP 1 108 790 A2; DNA-SEQ NO. 3491),
- das für die Cystahionin-gamma-Lyase kodierende Gen metC (EP 1 108 790 A2; DNA-SEQ NO.
 3061),
 - das für die Serin-Hydroxymethyltransferase kodierende Gen glyA (EP 1 108 790 A2; DNA-SEQ NO. 1110),
 - das für die Methionin Synthase kodierende Gen metH (EP 1 108 790 A2),
- das für die Methylentetrahydrofolat-Reduktase kodierende Gen metF (EP 1 108 790 A2; DNA-SEQ NO. 2379),
 - das für die Phosphoserin-Aminotransferase kodierende Gen serC (EP 1 108 790 A2; DNA-

SEQ NO. 928)

- eines für die Phosphoserin-Phosphatase kodierende Gen serB (EP 1 108 790 A2; DNA-SEQ NO. 334, DNA-SEQ NO. 467, DNA-SEQ NO. 2767)
- das für die Serine Acetyl-Transferase kodierende Gen cysE (EP 1 108 790 A2; DNA-SEQ NO.
- 5 2818)

25

- das für eine Homoserin-Dehydrogenase kodierende Gen hom (EP 1 108 790 A2; DNA-SEQ NO. 1306)
- Weiterhin kann es für die Produktion von schwefelhaltige Feinchemikalien, insbesondere L-Methionin, vorteilhaft sein, zusätzlich zur Expression bzw. Verstärkung eines der erfindungsge-10 mäßen metY-Gene eines oder mehrere der folgenden Gene abzuschwächen, insbesondere deren Expression zu verringem, oder auszuschalten:
 - das für die Homoserine-Kinase kodierende Gen thrB (EP 1 108 790 A2; DNA-SEQ NO. 3453)
- das für die Threonin Dehydratase kodierende Gen ilvA (EP 1 108 790 A2; DNA-SEQ NO. 15 2328)
 - das für die Threonin Synthase kodierende Gen thrC (EP 1 108 790 A2; DNA-SEQ NO. 3486)
 - das für die Meso-Diaminopimelat D-Dehydrogenase kodierende Gen ddh (EP 1 108 790 A2; DNA-SEQ NO. 3494)
- 20 das für die Phosphoenolpyruvat-Carboxykinase kodierende Gen pck (EP 1 108 790 A2; DNA-SEQ NO. 3157)
 - das für die Glucose-6-Phosphat-6-Isomerase kodierende Gen pgi (EP 1 108 790 A2; DNA-SEQ NO. 950)
 - das für die Pyruvat-Oxidase kodierende Gen poxB (EP 1 108 790 A2; DNA-SEQ NO. 2873)
 - das für die Dihydrodipicolinat Synthase kodiernde Gen dapA(EP 1 108 790 A2; DNA-SEQ NO. 3476)
 - das für die Dihydrodipicolinat Reduktase kodiemde Gen dapB (EP 1 108 790 A2; DNA-SEQ NO. 3477)
 - das für die Diaminopicolinat Decarboxylase kodiemde Gen lysA (EP 1 108 790 A2; DNA-SEQ NO. 3451) 30

Weiterhin kann es für die Produktion von schwefelhaltige Feinchemikalien, insbesondere L-Methionin, vorteilhaft sein, zusätzlich zur Expression bzw. Verstärkung eines der erfindungsgemäßen metY-Gene in Coryneformen Bakterien gleichzeitig wenigstens eines der folgenden Gene so zu mutieren, dass die enzymatische Aktivität des korrespondierenden Proteins teilweise 35 oder vollständig verringert wird:

- das für die Homoserine-Kinase kodierende Gen thrB (EP 1 108 790 A2; DNA-SEQ NO. 3453)
- das für die Threonin Dehydratase kodierende Gen ilvA (EP 1 108 790 A2; DNA-SEQ NO. 2328)
- das für die Threonin Synthase kodierende Gen thrC (EP 1 108 790 A2; DNA-SEQ NO. 3486)
- das für die Meso-Diaminopimelat D-Dehydrogenase kodierende Gen ddh (EP 1 108 790 A2; DNA-SEQ NO. 3486)

 DNA-SEQ NO. 3494)
 - das für die Phosphoenolpyruvat-Carboxykinase kodierende Gen pck (EP 1 108 790 A2; DNA-SEQ NO. 3157)
- das für die Glucose-6-Phosphat-6-Isomerase kodierende Gen pgi (EP 1 108 790 A2; DNA SEQ NO. 950)
 - das für die Pyruvat-Oxidase kodierende Gen poxB (EP 1 108 790 A2; DNA-SEQ NO. 2873)
 - das für die Dihydrodipicolinat Synthase kodiemde Gen dapA(EP 1 108 790 A2; DNA-SEQ NO. 3476)
 - das für die Dihydrodipicolinat Reduktase kodiernde Gen dapB (EP 1 108 790 A2; DNA-SEQ NO. 3477)
 - das für die Diaminopicolinat Decarboxylase kodiemde Gen lysA (EP 1 108 790 A2; DNA-SEQ NO. 3451)
- Weiterhin kann es für die Produktion von schwefelhaltige Feinchemikalien, insbesondere LMethionin, vorteilhaft sein, neben der Expression bzw. Verstärkung eines erfindungsgemäßen
 metY-Gens unerwünschte Nebenreaktionen auszuschalten (Nakayama: "Breeding of Amino
 Acid Producing Microorganisms", in: Overproduction of Microbial Products, Krumphanzl, Sikyta,
 Vanek (eds.), Academic Press, London, UK, 1982).
- Die erfindungsgemäß hergestellten Mikroorganismen können kontinuierlich oder diskontinuierlich im batch- Verfahren (Satzkultivierung) oder im fed batch (Zulaufverfahren) oder repeated fed batch Verfahren (repetitives Zulaufverfahren) zur Produktion von schwefelhaltige Feinchemikalien, insbesondere L-Methionin, kultiviert werden. Eine Zusammenfassung über bekannte Kultivierungsmethoden ist im Lehrbuch von Chmiel (Bioprozeßtechnik 1. Einführung in die Bioverfahren und periphere Einrichtungen (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)) zu finden.
- Das zu verwendende Kulturmedium hat in geeigneter Weise den Ansprüchen der jeweiligen Stämme zu genügen. Beschreibungen von Kulturmedien verschiedener Mikroorganismen sind im Handbuch "Manual of Methods für General Bacteriology" der American Society für Bacteriology (Washington D. C., USA, 1981) enthalten.

10

15

20 :

25

35

Diese erfindungsgemäß einsetzbaren Medien umfassen gewöhnlich eine oder mehrerenKohlenstoffquellen, Stickstoffquellen, anorganische Salze, Vitamine und/oder Spurenelemente.

Bevorzugte Kohlenstoffquellen sind Zucker, wie Mono-, Di- oder Polysaccharide. Sehr gute Kohlenstoffquellen sind beispielsweise Glucose, Fructose, Mannose, Galactose, Ribose, Sorbose, Ribulose, Lactose, Maltose, Saccharose, Raffinose, Stärke oder Cellulose. Man kann Zucker auch über komplexe Verbindungen, wie Melassen, oder andere Nebenprodukte der Zucker-Raffinierung zu den Medien geben. Es kann auch vorteilhaft sein, Gemische verschiedener Kohlenstoffquellen zuzugeben. Andere mögliche Kohlenstoffquellen sind Öle und Fette wie z. B. Sojaöl. Sonnenblumenöl. Erdnußöl und Kokosfett, Fettsäuren wie z. B. Palmitinsäure, Stearinsäure oder Linolsäure, Alkohole wie z. B. Glycerin, Methanol oder Ethanol und organische Säuren wie z. B. Essigsäure oder Milchsäure.

Stickstoffquellen sind gewöhnlich organische oder anorganische Stickstoffverbindungen oder Materialien, die diese Verbindungen enthalten. Beispielhafte Stickstoffquellen umfassen Ammoniak-Gas oder Ammoniumsalze, wie Ammoniumsulfat, Ammoniumchlorid, Ammoniumphosphat, Ammoniumcarbonat oder Ammoniumnitrat, Nitrate, Harnstoff, Aminosäuren oder komplexe Stickstoffquellen, wie Maisquellwasser, Sojamehl, Sojaprotein, Hefeextrakt, Fleischextrakt und andere. Die Stickstoffquellen können einzeln oder als Mischung verwendet werden.

Anorganische Salzverbindungen, die in den Medien enthalten sein können, umfassen die Chlorid-, Phosphor- oder Sulfatsalze von Calcium, Magnesium, Natrium, Kobalt, Molybdän, Kalium, Mangan, Zink, Kupfer und Eisen

Als Schwefelquelle für die Herstellung von schwefelhaltigen Feinchemikalien, insbesondere von Methionin, können anorganische schwefelhaltige Verbindungen wie beispielsweise Sulfate, Sulfite, Dithionite, Tetrathionate, Thiosulfate, Sulfide aber auch organische Schwefelverbindungen, wie Mercaptane und Thiole, verwendet werden.

30 Als Phosphorquelle k\u00f6nnen Phosphors\u00e4ure, Kaliumdihydrogenphosphat oder Dikaliumhydrogenphosphat oder die entsprechenden Natrium haltigen Salze verwendet werden.

Chelatbildner können zum Medium gegeben werden, um die Metallionen in Lösung zu hatten. Besonders geeignete Chelatbildner umfassen Dihydroxyphenole, wie Catechol oder Protocatechuat, oder organische Säuren, wie Citronensäure.

Die erfindungsgemäß eingesetzten Fermentationsmedien enthalten üblicherweise auch andere

10

15

20

25

30

Wachstumsfaktoren, wie Vitamine oder Wachstumsförderer, zu denen beispielsweise Biotin, Riboflavin, Thiamin, Folsäure, Nikotinsäure, Panthothenat und Pyridoxin gehören. Wachstumsfaktoren und Salze stammen häufig von komplexen Medienkomponenten, wie Hefeextrakt, Melassen, Maisquellwasser und dergleichen. Dem Kulturmedium können überdies geeignete Vorstufen zugesetzt werden. Die genaue Zusammensetzung der Medienverbindungen hängt stark vom jeweiligen Experiment ab und wird für jeden spezifischen Fall individuell entschieden. Information über die Medienoptimierung ist erhältlich aus dem Lehrbuch "Applied Microbiol. Physiology, A Practical Approach" (Hrsg. P.M. Rhodes, P.F. Stanbury, IRL Press (1997) S. 53-73, ISBN 0 19 963577 3). Wachstumsmedien lassen sich auch von kommerziellen Anbietem beziehen, wie Standard 1 (Merck) oder BHI (Brain heart infusion, DIFCO) und dergleichen.

Sämtliche Medienkomponenten werden, entweder durch Hitze (20 min bei 1,5 bar und 121°C) oder durch Sterilfiltration, sterilisiert. Die Komponenten können entweder zusammen oder nötigenfalls getrennt sterilisiert werden. Sämtliche Medienkomponenten können zu Beginn der Anzucht zugegen sein oder wahlfrei kontinuierlich oder chargenweise hinzugegeben werden.

Die Temperatur der Kultur liegt normalerweise zwischen 15°C und 45°C, vorzugsweise bei 25°C bis 40°C und kann während des Experimentes konstant gehalten oder verändert werden. Der pH-Wert des Mediums sollte im Bereich von 5 bis 8,5, vorzugsweise um 7,0 liegen. Der pH-Wert für die Anzucht läßt sich während der Anzucht durch Zugabe von basische Verbindungen wie Natriumhydroxid, Kaliumhydroxid, Ammoniak bzw. Ammoniakwasser oder saure Verbindungen wie Phosphorsäure oder Schwefelsäure kontrollieren. Zur Kontrolle der Schaumentwicklung können Antischaummitte,I wie z. B. Fettsäurepolyglykolester, eingesetzt werden. Zur Aufrechterhaltung der Stabilität von Plasmiden können dem Medium geeignete selektiv wirkende Stoffe, wie z. B. Antibiotika, hinzugefügt werden. Um aerobe Bedingungen aufrechtzuerhalten, werden Sauerstoff oder Sauerstoff haltige Gasmischungen, wie z. B. Umgebungsluft, in die Kultur eingetragen. Die Temperatur der Kultur liegt normalerweise bei 20°C bis 45°C. Die Kultur wird solange fortgesetzt, bis sich ein Maximum des gewünschten Produktes gebildet hat. Dieses Ziel wird normalerweise innerhalb von 10 Stunden bis 160 Stunden erreicht.

Die so erhaltenen, insbesondere L-Methionin enthaltenden, Fermentationsbrühen haben üblicherweise eine Trockenmasse von 7,5 bis 25 Gew.-%.

Vorteilhaft ist außerdem auch, wenn die Fermentation zumindest am Ende, insbesondere jedoch über mindestens 30% der Fermentationsdauer zuckerlimitiert gefahren wird. Das heißt, dass während dieser Zeit die Konzentration an verwertbarem Zucker im Fermentationsmedium auf ≥ 0 bis 3 g/l gehalten, beziehungsweise abgesenkt wird.

10

15

25

30

35

Die Fermentationsbrühe wird anschließend weiterverarbeitet. Je nach Anforderung kann die Biomasse ganz oder teilweise durch Separationsmethoden, wie z. B. Zentrifugation, Filtration, Dekantieren oder einer Kombination dieser Methoden aus der Fermentationsbrühe entfernt oder vollständig in ihr belassen werden.

Anschließend kann die Fermentationsbrühe mit bekannten Methoden, wie z. B. mit Hilfe eines Rotationsverdampfers, Dünnschichtverdampfers, Fallfilmverdampfers, durch Umkehrosmose, oder durch Nanofiltration, eingedickt beziehungsweise aufkonzentriert werden. Diese aufkonzentrierte Fermentationsbrühe kann anschließend durch Gefriertrocknung, Sprühtrocknung, Sprühgranulation oder durch anderweitige Verfahren aufgearbeitet werden.

Es ist aber auch möglich die schwefelhaltigen Feinchemikalien, insbesonder L-Methionin, weiter aufzureinigen. Hierzu wird die produkthaltige Brühe nach dem Abtrennen der Biomasse einer Chromatographie mit einem geeigneten Harz unterworfen, wobei das gewünschte Produkt oder die Verunreinigungen ganz oder teilweise auf dem Chromatographieharz zurückgehalten werden. Diese Chromatographieschritte können nötigenfalls wiederholt werden, wobei die gleichen oder andere Chromatographieharze verwendet werden. Der Fachmann ist in der Auswahl der geeigneten Chromatographieharze und ihrer wirksamsten Anwendung bewandert. Das gereinigte Produkt kann durch Filtration oder Ultrafiltration konzentriert und bei einer Temperatur aufbe-**20** · wahrt werden, bei der die Stabilität des Produktes maximal ist.

Die Identität und Reinheit der isolierten Verbindung(en) kann durch Techniken des Standes der Technik bestimmt werden. Diese umfassen Hochleistungs-Flüssigkeitschromatographie (HPLC), spektroskopische Verfahren, Färbeverfahren, Dünnschichtchromatographie, NIRS, Enzymtest oder mikrobiologische Tests. Diese Analyseverfahren sind zusammengefaßt in: Patek et al. (1994) Appl. Environ. Microbiol. 60:133-140; Malakhova et al. (1996) Biotekhnologiya 11 27-32; und Schmidt et al. (1998) Bioprocess Engineer. 19:67-70. Ulmann's Encyclopedia of Industrial Chemistry (1996) Bd. A27, VCH: Weinheim, S. 89-90, S. 521-540, S. 540-547, S. 559-566, 575-581 und S. 581-587; Michal, G (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley and Sons; Fallon, A. et al. (1987) Applications of HPLC in Biochemistry in: Laboratory Techniques in Biochemistry and Molecular Biology, Bd. 17.

Die Erfindung wird nun anhand der folgenden nicht-limitierenden Beispiele und unter Bezugnahme auf beiliegende Figuren näher beschrieben. Dabei zeigt

Figur 1 die Plasmidkarte zu Plasmid pClysC;

Figur 2 die Plasmidkarte zu Plasmid pClSlysCthr311ile;

Figur 3 die Plasmidkarte zu Plasmid pCPhsdhmetY_Mt.

Restriktionsschnittstellen mit der entsprechenden Positionsangabe in Klammern sind in den Plasmidkarten angegeben. Wesentliche Sequenzabschnitte sind fettgedruckt beschrieben.

5 KanR steht für Kanamycin-Restistenzgen; ask steht für Aspartatkinasegen

Beispiel 1: Konstruktion von pCLiK5MCS

Zunächst wurden Ampicillinresistenz und Replikationsursprung des Vektors pBR322 mit den 10 Oligonukleotiden p1.3 (SEQ ID NO:55) und p2.3 (SEQ ID NO:56) mit Hilfe der Polymerase-Kettenreaktion (PCR) amplifiziert.

p1.3 (SEQ ID NO:55)

5'-CCCGGGATCCGCTAGCGGCGCCGGCCGGCCGGCCGGTGTGAAATACCGCACAG-3'

p2.3 (SEQ ID NO:56)

15

25

30

5'-TCTAGACTCGAGCGGCCGGCCGGCCTTTAAATTGAAGACGAAAGGGCCTCG-3'

Neben den zu pBR322 komplementären Sequenzen, enthält das Oligonukleotid p1.3 (SEQ ID NO:55) in 5'-3' Richtung die Schnittstellen für die Restriktionsendonukleasen Smal, BamHI, Nhel 20 und Ascl und das Oligonukleotid p2.3 (SEQ ID NO:56) in 5'-3' Richtung die Schnittstellen für die Restriktionsendonukleasen Xbal, Xhol, Notl und Dral. Die PCR Reaktion wurde nach Standardmethode wie Innis et al. (PCR Protocols. A Guide to Methods and Applications, Academic Press (1990)) mit PfuTurbo Polymerase (Stratagene, La Jolla, USA) durchgeführt. Das erhaltene DNA Fragment mit einer Größe von ungefähr 2,1 kb wurde mit dem GFX™PCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) nach Angaben des Herstellers gereinigt. Die stumpfen Enden des DNA-Fragmentes wurden mit dem Rapid DNA Ligation Kit (Roche Diagnostics, Mannheim) nach Angaben des Herstellers miteinander ligiert und der Ligationsansatz nach Standardmethoden wie in Sambrook et al. (Molecular Cloning. A Laboratory Manual, Cold Spring Harbor, beschrieben(1989)), in kompetente E.coli XL-1Blue (Stratagene, La Jolla, USA) transformiert. Eine Selektion auf Plasmid tragende Zellen wurde durch das Ausplattieren auf Ampicillin (50µg/ml) haltigen LB Agar (Lennox, 1955, Virology, 1:190) erreicht.

Die Plasmid-DNA eines individuellen Klons wurde mit dem Qiaprep Spin Miniprep Kit (Qiagen, Hilden) nach Angaben des Herstellers isoliert und über Restriktionsverdaus überprüft. Das so 35 erhaltene Plasmid erhält den Namen pCLiK1.

Ausgehend vom Plasmid pWLT1 (Liebl et al., 1992) als Template für eine PCR Reaktion wurde mit den Oligonukleotiden neo1 (SEQ ID NO:57) und neo2 (SEQ ID NO:58) eine Kanamycin-Resistenzcassette amplifiziert.

5

15

20

25

30

neo1 (SEQ ID NO:57): 5'-GAGATCTAGACCCGGGGATCCGCTAGCGGGCTGCTAAAGGAAGCGGA-3'

neo2 (SEQ ID NO:58):

10 5'-GAGAGGCGCCGCTAGCGTGGGCGAAGAACTCCAGCA-3'

Neben den zu pWLT1 komplementären Sequenzen, enthält das Oligonukleotid neo1 in 5'-3' Richtung die Schnittstellen für die Restriktionsendonukleasen Xbal, Smal, BamHl, Nhel und das Oligonukleotid neo2 (SEQ ID NO:58) in 5'-3' Richtung die Schnittstellen für die Restriktionsendonukleasen AscI und Nhel. Die PCR Reaktion wurde nach Standardmethode wie Innis et al. (PCR Protocols. A Guide to Methods and Applications, Academic Press (1990)) mit PfuTurbo Polymerase (Stratagene, La Jolla, USA) durchgeführt. Das erhaltene DNA Fragment mit einer Größe von ungefähr 1,3 kb wurde mit dem GFX™PCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) nach Angaben des Herstellers gereinigt. Das DNA-Fragment wurde mit den Restriktionsendonukleasen Xbal und Ascl (New England Biolabs, Beverly, USA) geschnitten und im Anschluß daran erneut mit dem GFX™PCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) nach Angaben des Herstellers gereinigt. Der Vektor pCLiK1 wurde ebenfalls mit den Restriktionsendonukleasen Xbal und Ascl geschnitten und mit alkalischer Phosphatase (Roche Diagnostics, Mannheim) nach Angaben des Herstellers dephosphoryliert. Nach Elektrophorese in einem 0,8%igen Agarosegel wurde der linearisierte Vektor (ca. 2,1kb) mit dem GFX™PCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) nach Angaben des Herstellers isoliert. Dieses Vektor-Fragment wurde mit Hilfe des Rapid DNA Ligation Kit (Roche Diagnostics, Mannheim) nach Angaben des Herstellers mit dem geschnittenen PCR Fragment ligiert und der Ligationsansatz nach Standardmethoden wie in Sambrook et al. (Molecular Cloning. A Laboratory Manual, Cold Spring Harbor, beschrieben(1989)), in kompetente E.coli XL-1Blue (Stratagene, La Jolla, USA) transformiert. Eine Selektion auf Plasmid tragende Zellen wurde durch das Ausplattieren auf Ampicillin (50µg/ml) und Kanamycin (20µg/ml) haltigen LB Agar (Lennox, 1955, Virology, 1:190) erreicht.

35 Die Plasmid-DNA eines individuellen Klons wurde mit dem Qiaprep Spin Miniprep Kit (Qiagen, Hilden) nach Angaben des Herstellers isoliert und über Restriktionsverdaus überprüft. Das so

10

20

30

35

erhaltene Plasmid erhält den Namen pCLiK2.

Der Vektor pCLiK2 wurde mit der Restriktionsendonuklease Dral (New England Biolabs, Beverly, USA) geschnitten. Nach Elektrophorese in einem 0,8%igen Agarosegel wurde ein ca. 2,3 kb großes Vektorfragment mit dem GFXTMPCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) nach Angaben des Herstellers isoliert. Dieses Vektor-Fragment wurde mit Hilfe des Rapid DNA Ligation Kit (Roche Diagnostics, Mannheim) nach Angaben des Herstellers religiert und der Ligationsansatz nach Standardmethoden wie in Sambrook et al. (Molecular Cloning. A Laboratory Manual, Cold Spring Harbor, beschrieben (1989)), in kompetente E.coli XL-1Blue (Stratagene, La Jolla, USA) transformiert. Eine Selektion auf Plasmid tragende Zellen wurde durch das Ausplattieren auf Kanamycin (20μg/ml) haltigen LB Agar (Lennox, 1955, Virology, 1:190) erreicht.

Die Plasmid-DNA eines individuellen Klons wurde mit dem Qiaprep Spin Miniprep Kit (Qiagen, Hilden) nach Angaben des Herstellers isoliert und über Restriktionsverdaus überprüft. Das so erhaltene Plasmid erhält den Namen pCLiK3.

Ausgehend vom Plasmid pWLQ2 (Liebl et al., 1992) als Template für eine PCR Reaktion wurde mit den Oligonukleotiden cg1 ((SEQ ID NO:59) und cg2 (SEQ ID NO:60) der Replikationsursprung pHM1519 amplifiziert.

cg1 (SEQ ID NO:59):

5'-GAGAGGGCGGCCGCGCAAAGTCCCGCTTCGTGAA-3'

25 cg2 (SEQ ID NO:60):

5'-GAGAGGGCGGCCGCTCAAGTCGGTCAAGCCACGC-3'

Neben den zu pWLQ2 komplementären Sequenzen, enthalten die Oligonukleotide cg1 (SEQ ID NO:59) und cg2 (SEQ ID NO:60) Schnittstellen für die Restriktionsendonuklease Notl. Die PCR Reaktion wurde nach Standardmethode wie Innis et al. (PCR Protocols. A Guide to Methods and Applications, Academic Press (1990)) mit PfuTurbo Polymerase (Stratagene, La Jolla, USA) durchgeführt. Das erhaltene DNA Fragment mit einer Größe von ungefähr 2,7 kb wurde mit dem GFXTMPCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) nach Angaben des Herstellers gereinigt. Das DNA-Fragment wurde mit der Restriktionsendonuklease Notl (New England Biolabs, Beverly, USA) geschnitten und im Anschluß daran erneut mit dem GFXTMPCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) nach Angaben

10

20

þ

des Herstellers gereinigt. Der Vektor pCLiK3 wurde ebenfalls mit der Restriktionsendonuklease NotI geschnitten und mit alkalischer Phosphatase (Roche Diagnostics, Mannheim)) nach Angaben des Herstellers dephosphoryliert. Nach Elektrophorese in einem 0,8%igen Agarosegel wurde der linearisierte Vektor (ca. 2,3kb) mit dem GFX™PCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) nach Angaben des Herstellers isoliert. Dieses Vektor-Fragment wurde mit Hilfe des Rapid DNA Ligation Kit (Roche Diagnostics, Mannheim) nach Angaben des Herstellers mit dem geschnittenen PCR Fragment ligiert und der Ligationsansatz nach Standardmethoden wie in Sambrook et al. (Molecular Cloning. A Laboratory Manual, Cold Spring Harbor, beschrieben(1989)), in kompetente E.coli XL-1Blue (Stratagene, La Jolla, USA) transformiert. Eine Selektion auf Plasmid tragende Zellen wurde durch das Ausplattieren auf Kanamycin (20µg/ml) haltigen LB Agar (Lennox, 1955, Virology, 1:190) erreicht.

Die Plasmid-DNA eines individuellen Klons wurde mit dem Qiaprep Spin Miniprep Kit (Qiagen, Hilden) nach Angaben des Herstellers isoliert und über Restriktionsverdaus überprüft. Das so erhaltene Plasmid erhält den Namen pCLiK5. 15

Für die Erweiterung von pCLik5 um eine "multiple cloning site" (MCS) wurden die beide synthetischen, weitestgehend komplementären Oligonukleotide HS445 ((SEQ ID NO:61) und HS446 (SEQ ID NO:62), die Schnittstellen für die Restriktionsendonukleasen Swal, Xhol, Aatl, Apal, Asp718, Mlul, Ndel, Spel, EcoRV, Sall, Clal, BamHl, Xbal und Smal enthalten, durch gemeinsames erhitzen auf 95°C und langsames abkühlen zu einem doppelsträngigen DNA-Fragment vereinigt.

HS445 (SEQ ID NO:61):

5'-TCGAATTTAAATCTCGAGAGGCCTGACGTCGGGCCCGGTACCACGCGTCATATGACTAG 25 TCTAGACCCGGGATTTAAAT-3'

HS446 (SEQ ID NO:62):

- TGTCGACGATATCCCTAGGTCCGAACTAGTCATATGACGCGTGGTACCGGGCCCGACGTC 30 AGGCCTCTCGAGATTTAAAT-3'
- Der Vektor pCLiK5 wurde mit den Restriktionsendonuklease XhoI und BamHI (New England Biolabs, Beverly, USA) geschnitten und mit alkalischer Phosphatase (I (Roche Diagnostics, Mannheim)) nach Angaben des Herstellers dephosphoryliert. Nach Elektrophorese in einem 35

0,8%igen Agarosegel wurde der linearisierte Vektor (ca. 5,0 kb) mit dem GFX™PCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) nach Angaben des Herstellers isoliert. Dieses Vektor-Fragment wurde mit Hilfe des Rapid DNA Ligation Kit (Roche Diagnostics, Mannheim) nach Angaben des Herstellers mit dem synthetischen Doppelsträngigen DNA-Fragment ligiert und der Ligationsansatz nach Standardmethoden wie in Sambrook et al. (Molecular Cloning. A Laboratory Manual, Cold Spring Harbor, beschrieben(1989)), in kompetente E.coli XL-1Blue (Stratagene, La Jolla, USA) transformiert. Eine Selektion auf Plasmid tragende Zellen wurde durch das Ausplattieren auf Kanamycin (20μg/ml) haltigen LB Agar (Lennox, 1955, Virology, 1:190) erreicht.

10

5

Die Plasmid-DNA eines individuellen Klons wurde mit dem Qiaprep Spin Miniprep Kit (Qiagen, Hilden) nach Angaben des Herstellers isoliert und über Restriktionsverdaus überprüft. Das so erhaltene Plasmid erhält den Namen pCLiK5MCS.

Sequenzierungsreaktionen wurden nach Sanger et al. (1977) Proceedings of the National Academy of Sciences USA 74:5463-5467 durchgeführt. Die Sequenzierreaktionen wurden mittels ABI Prism 377 (PE Applied Biosystems, Weiterstadt) aufgetrennt und ausgewertet.

Das entstandene Plasmid pCLiK5MCS ist als SEQ ID NO: 65 aufgeführt.

20

25

35

Beispiel 2: Konstruktion von pCLiK5MCS integrativ sacB

Ausgehend vom Plasmid pK19mob (Schäfer et al., Gene 145,69-73(1994)) als Template für eine PCR Reaktion wurde mit den Oligonukleotiden BK1732 und BK1733 das Bacillus subtilis sacB Gen (kodierend für Levan Sucrase) amplifiziert.

BK1732 (SEQ ID NO:63):

5'-GAGAGCGGCCGCCGATCCTTTTTAACCCATCAC-3'

30 BK1733 (SEQ ID NO:64):

5'-AGGAGCGGCCGCCATCGGCATTTTCTTTTGCG-3'

Neben den zu pEK19mobsac komplementären Sequenzen, enthalten die Oligonukleotide BK1732 und BK1733 Schnittstellen für die Restriktionsendonuklease Notl. Die PCR Reaktion wurde nach Standardmethode wie Innis et al. (PCR Protocols. A Guide to Methods and Applications, Academic Press (1990)) mit PfuTurbo Polymerase (Stratagene, La Jolla, USA) durchge-

10

15

führt. Das erhaltene DNA Fragment mit einer Größe von ungefähr 1,9 kb wurde mit dem GFX™PCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) nach Angaben des Herstellers gereinigt. Das DNA-Fragment wurde mit der Restriktionsendonuklease Notl (New England Biolabs, Beverly, USA) geschnitten und im Anschluß daran erneut mit dem GFX™PCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) nach Angaben des Herstellers gereinigt.

Der Vektor pCLiK5MCS (hergestellt gemäß Beispiel 1) wurde ebenfalls mit der Restriktionsendonuklease Nott geschnitten und mit alkalischer Phosphatase (I (Roche Diagnostics, Mannheim)) nach Angaben des Herstellers dephosphoryliert. Nach Elektrophorese in einem 0,8%igen Agarosegel wurde ein ungefähr 2,4 kb großes Vektorfragment mit dem GFXTMPCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) nach Angaben des Herstellers isoliert. Dieses Vektor-Fragment wurde mit Hilfe des Rapid DNA Ligation Kit (Roche Diagnostics, Mannheim) nach Angaben des Herstellers mit dem geschnittenen PCR Fragment ligiert und der Ligationsansatz nach Standardmethoden wie in Sambrook et al. (Molecular Cloning. A Laboratory Manual, Cold Spring Harbor, beschrieben(1989)), in kompetente E.coli XL-1Blue (Stratagene, La Jolla, USA) transformiert. Eine Selektion auf Plasmid tragende Zellen wurde durch das Ausplattieren auf Kanamycin (20µg/ml) haltigen LB Agar (Lennox, 1955, Virology, 1:190) erreicht.

- Die Plasmid-DNA eines individuellen Klons wurde mit dem Qiaprep Spin Miniprep Kit (Qiagen, Hilden) nach Angaben des Herstellers isoliert und über Restriktionsverdaus überprüft. Das so erhaltene Plasmid erhält den Namen pCLiK5MCS integrativ sacB.
- Sequenzierungsreaktionen wurden nach Sanger et al. (1977) Proceedings of the National Academy of Sciences USA 74:5463-5467 durchgeführt. Die Sequenzierreaktionen wurden mittels ABI Prism 377 (PE Applied Biosystems, Weiterstadt) aufgetrennt und ausgewertet.

Das entstandene Plasmid pCLiK5MCS integrativ sacB ist als SEQ ID NO: 66 aufgeführt.

30 Weitere Vektoren die zur erfindungsgemäßen Expression oder Überproduktion von metY-Genen geeignet sind, können in analoger Weise herstellt werden.

Beispiel 3: Isolierung des lysC Gens aus dem C. glutamicum Stamm LU1479

35 Im ersten Schritt der Stammkonstruktion soll ein allelischer Austausch des lysC Wildtypgens, kodierend für das Enzym Aspartatkinase, in C. glutamicum ATCC13032, im folgenden LU1479

Ausgehend von der chromosomalen DNA aus LU1479 als Template für eine PCR Reaktion 5 wurde mit den Oligonukleotidprimern SEQ ID NO:67 und SEQ ID NO:68 lysC mit Hilfe des Pfu-Turbo PCR Systems (Stratagene USA) nach Angaben des Herstellers amplifiziert. Chromosomale DNA aus C. glutamicum ATCC 13032 wurde nach Tauch et al. (1995) Plasmid 33:168-179 oder Eikmanns et al. (1994) Microbiology 140:1817-1828 präpariert. Das amplifizierte Frag-10 ment wird an seinem 5'-Ende von einem Sall Restriktionsschnitt und an seinem 3'-Ende von einem Mlul Restriktionsschnitt flankiert. Vor der Klonierung wurde das amplifizierte Fragment durch diese beiden Restriktionsenzyme verdaut und mit GFX™PCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) aufgereinigt.

15 SEQ ID NO:67

5'-GAGAGAGAGACGCGTCCCAGTGGCTGAGACGCATC -3'

SEQ ID NO:68

5'-CTCTCTCTGTCGACGAATTCAATCTTACGGCCTG-3'

20

25

30

Das erhaltenen Polynukleotid wurde über die Sall und Mlul Restriktionsschnitte in pCLIK5 MCS integrativ SacB (im folgenden pCIS genannt; SEQ ID NO: 66 aus Beispiel 2) kloniert und in E.coli XL-1 blue transformiert. Eine Selektion auf Plasmid-tragende Zellen wurde durch das Ausplattieren auf Kanamycin (20µg/ml)-haltigen LB Agar (Lennox, 1955, Virology, 1:190) erreicht. Das Plasmid wurden isoliert und durch Sequenzierung die erwartete Nukleotidsequenz bestätigt. Die Präparation der Plasmid-DNA wurde nach Methoden und mit Materialien der Firma Quiagen durchgeführt. Sequenzierungsreaktionen wurden nach Sanger et al. (1977) Proceedings of the National Academy of Sciences USA 74:5463-5467 durchgeführt. Die Sequenzierreaktionen wurden mittels ABI Prism 377 (PE Applied Biosystems, Weiterstadt) aufgetrennt und ausgewertet. Das erhaltene Plasmid pCIS lysC ist als SEQ ID NO:69 aufgeführt. Die entsprechende Plasmidkarte ist in Figur 1 dargestellt.

Die Sequenz SEQ ID NO:69 umfasst die folgenden wesentlichen Teilbereiche:

pCIS\lysC 5860 bp DNA circular LOCUS

35 **FEATURES** Location/Qualifiers CDS¹⁾

155..1420 /vntifkey="4"

/label=lysC

complement²⁾(3935..5356) CDS

/vntifkey="4"

/label=sacB\(Bacillus\subtilis)

complement(5357..5819) promoter 5

/vntifkey="30"

/label=Promotor\sacB

complement(3913..3934) C_region

/vntifkey="2"

/label=sacB\downstreambereich 10

1974..2765 CDS

/vntifkey="4"

/label=Kan\R

complement(3032..3892) CDS

/vntifkey="4"

/label=Ori\-EC\(pMB)

15

25

35

Beispiel 4: Mutagenese des lysC Gens aus C. glutamicum 20

Die gerichtete Mutagenese des lysC Gens aus C. glutamicum (Beispiel 3) wurde mit dem QuickChange Kit (Fa. Stratagene/USA) nach Angaben des Herstellers durchgeführt. Die Mutagenese wurde im Plasmid pCIS lysC, SEQ ID NO:69 durchgeführt. Für den Austausch von thr311 nach 311ile mit Hilfe der Quickchange Methode (Stratagene) wurden folgende Oligonukleotidprimer synthetisiert

SEQ ID NO:70

5'-CGGCACCACCGACATCATCTTCACCTGCCCTCGTTCCG -3'

SEQ ID NO:71 30

5'-CGGAACGAGGGCAGGTGAAGATGATGTCGGTGGTGCCG -3'

Der Einsatz dieser Oligonukleotidprimer in der Quickchange Reaktion führt in dem lysC Gen zu einem Austausch des Nukleotids in Position 932 (von C nach T) (vgl. SEQ ID NO:72) und im korrespondierenden Enzym zu einem Aminosäuresubstitution in Position 311 (Thr→lle) (vgl. SEQ ID NO:73). Der resultierende Aminosäureaustausch Thr311lle im lysC Gen wurde nach Transformation in E.coli XL1-blue und Plasmidpräparation durch Sequenzierung bestätigt. Das

¹⁾ kodierende Sequenz

²⁾ auf Komplementärstrang

Plasmid erhielt die Bezeichnung pCIS lysC thr311ile und ist als SEQ ID NO:74 aufgeführt. Die entsprechende Plasmidkarte ist in Figur 2 dargestellt.

34

Die Sequenz SEQ ID NO:74 umfasst die folgenden wesentlichen Teilbereiche: 5

pCIS\lysC\thr311ile 5860 bp DNA circular LOCUS

FEATURES

Location/Qualifiers

CDS¹⁾

155..1420

10

/vntifkey="4" /label=lysC

CDS

complement²⁾(3935..5356)

/vntifkey="4"

/label=sacB\(Bacillus\subtilis)

15

promoter complement(5357..5819)

/vntifkey="30"

/label=Promotor\sacB

C_region

complement(3913..3934)

/vntifkey="2"

20

/label=sacB\downstreambereich

CDS

1974..2765

/vntifkey="4"

/label=Kan\R

CDS

complement(3032..3892)

25

/vntifkey="4"

/label=Ori\-EC\(pMB)

30 Das Plasmid pCIS lysC thr311ile wurde in C. glutamicum LU1479 mittels Elektroporation wie bei Liebl, et al. (1989) FEMS Microbiology Letters 53:299-303 beschrieben, transformiert. Modifikationen des Protokolls sind in DE-A-10046870 beschrieben. Die chromosomale Anordnung des lysC-Lokus einzelner Transformanten wurde mit Standardmethoden durch Southernblot und Hybridisierung, wie in Sambrook et al. (1989), Molecular Cloning. A Laboratory Manual, Cold Spring Harbor, beschrieben, überprüft. Dadurch wurde sichergestellt, dass es sich bei den 35 Transformanten um solche handelt, die das transformierte Plasmid durch homologe Rekombination am lysC-Lokus integriert haben. Nach Wachstum solcher Kolonien über Nacht in Medien, die kein Antibiotikum enthielten, wurden die Zellen auf ein Saccharose-CM-Agarmedium (10%

¹⁾ kodierende Sequenz

²⁾ auf Komplementärstrang

10

15

20

25

30

35

Saccharose) ausplattiert und bei 30°C für 24 Stunden inkubiert.

Da das im Vektor pClS lysC thr311ile enthaltende sacB Gen Saccharose in ein toxisches Produkt umwandelt, können nur solche Kolonien anwachsen, die das sacB Gen durch einen zweiten homologen Rekombinationsschritt zwischen dem Wildtyp lysC Gen und dem mutierten Gen lysC thr311ile deletiert haben. Während der homologen Rekombination kann entweder das Wildtyp Gen oder das mutierte Gen zusammen mit dem sacB Gen deletiert werden. Wenn das sacB Gen zusammen mit dem Wildtyp Gen entfernt wird, resultiert eine mutierte Transformante.

Anwachsende Kolonien wurden gepickt, und auf eine Kanamycin-sensitiven Phänotyp hin untersucht. Klone mit deletiertem SacB Gen müssen gleichzeitg Kanamycin-sensitives Wachstumsverhalten zeigen. Solche Kan-sensitiven Klone wurde im einem Schüttelkolben auf ihre Lysin-Produktivität hin untersucht (siehe Beispiel 6). Zum Vergleich wurde der nichtbehandelte Stamm LU1479 angezogen. Klone mit einer gegenüber der Kontrolle erhöhten Lysin-Produktion wurden selektiert, chromosomale DNA wurde gewonnen und der entsprechende Bereich des lysC Gens wurde durch eine PCR-Reaktion amplifiziert und sequenziert. Ein solcher Klon mit der Eigenschaft erhöhter Lysin-Synthese und nachgewiesener Mutation in lysC an der Stelle 932 wurde mit LU1479 lysC 311ile bezeichnet).

Beispiel 5: Herstellung Ethionin-resistenter C. glutamicum Stämme

Im zweiten Schritt der Stammkonstruktion wurde der erhaltene Stamm LU1479 lysC 311ile (Beispiel 4) behandelt, um eine Ethionin-Resistenz (Kase, H. Nakayama K.Agr. Biol. Chem. 39 153-106 1975 L-methionine production by methionine analog-resistant mutants of Corynebacterium glutamicum) zu induzieren: Eine Übernachtkultur in BHI-Medium (Difco) wurde in Citratpuffer (50mM pH 5,5) gewaschen und bei 30°C für 20 min mit N-Methyl-nitrosoguanidin (10mg/ml in 50mM Citrat pH5,5) behandelt. Nach der Behandlung mit dem chemischen Mutagen N-Methyl-nitrosoguanidin wurden die Zellen gewaschen (Citratpuffer 50mM pH 5,5) und auf ein Medium plattiert, das aus folgenden Komponenten, berechnet auf 500ml, zusammengesetzt war: 10g (NH₄)₂SO₄, 0.5g KH₂PO₄, 0.5g K₂HPO₄, 0.125g MgSO₄,7H₂O, 21g MOPS, 50mg CaCl₂, 15mg Proteokatechuat, 0,5mg Biotin, 1mg Thiamin, 5g/l D,L-Ethionin (Sigma Chemicals Deutschland), pH 7,0. Außerdem enthielt das Medium 0.5ml einer Spurensalzlösung aus: 10g/l FeSO₄-7H₂O, 1g/l MnSO₄*H₂O, 0.1g/l ZnSO₄*7H₂O, 0.02g/l CuSO₄, 0.002g/l NiCl₂*6H₂O, Alle Salze wurden in 0,1M HCl gelöst. Das fertig zusammengestellte Medium wurde sterilfiltriert und nach Zugabe von 40ml steriler 50% Glucoselösung, mit flüssigem sterilem Agar in einer Endkonzentration von 1,5% Agar versetzt und in Kulturschalen ausgegossen.

Auf Platten mit dem beschriebenen Medium wurden mutagenisierte Zellen aufgebracht und 3-7 Tage bei 30°C inkubiert. Erhaltene Klone wurden isoliert, mindestens einmal auf dem Selektionsmedium vereinzelt und dann auf ihre Methionin-Produktivität in einem Schüttelkolben in Medium II untersucht (siehe Beispiel 6

5

Beispiel 6: Herstellung von Methionin mit dem Stamm LU1479 lysC 311ile ET-16.

Die in Beispiel 5 hergestellten Stämme wurden auf einer Agar-Platte mit CM-Medium für 2 Tag bei 30°C angezogen.

10 CM-Agar:

10,0 g/l D-Glucose, 2,5 g/l NaCl, 2,0 g/l Harnstoff, 10,0 g/l Bacto Pepton (Difco), 5,0 g/l Yeast Extract (Difco), 5,0 g/l Beef Extract (Difco), 22,0 g/l Agar (Difco), autoklaviert (20 min., 121°C)

Anschließend wurden die Zellen von der Platte abgekratzt und in Saline resuspendiert. Für die Hauptkultur wurden 10 ml Medium II und 0,5 g autoklaviertes CaCO₃ (Riedel de Haen) in einem 100 ml Erlenmeyerkolben mit der Zellsuspension bis zu einer OD600nm von 1,5 beimpft und für 72h auf einem Orbitalschüttler mit 200 Upm bei 30°C inkubiert.

20 Medium II:

40g/l

Saccharose

60g/l

Melasse (auf 100% Zuckergehalt berechnet)

10g/l

(NH₄)₂SO₄

0.4g/l

MgSO₄*7H₂O

25 0.6g/l

KH₂PO₄

0.3mg/I

Thiamin*HCI

1mg/l

Biotin (aus einer 1 mg/ml steril filtrierten Stammlösung die mit NH₄OH auf pH

8,0 eingestellt wurde)

2mg/l

FeSO₄

30 2mg/l

MnSO₄

mit NH₄OH auf pH 7,8 eingestellt, autoklaviert (121°C, 20 min). Zusätzlich wird Vitamin B12 (Hydroxycobalamin Sigma Chemicals) aus einer Stammlösung (200 μg/ml, steril filtriert) bis zu einer Endkonzentration von 100 μg/l zugegeben

35 Gebildetes Methionin, sowie andere Aminosäuren in der Kulturbrühe wurde mit Hilfe der Aminosäuresäure-Bestimmungsmethode von Agilent auf einer Agilent 1100 Series LC System

HPLC. Eine Derivatisierung vor der Säulentrennung mit Ortho-Phthalaldehyd erlaubte die Quantifizierung der gebildeten Aminosäuren. Die Auftrennung des Aminosäuregemisch fand auf einer Hypersil AA-Säule (Agilent) statt.

Solche Klone wurden isoliert, deren Methionin-Produktivität mindestens doppelt so hoch war, wie die des Ausgangsstamm LU1479 lysC 311ile. Ein solcher Klon wurde für die weiteren Versuche eingesetzt und bekam die Bezeichnung LU1479 lysC 311ile ET-16.

Beispiel 7: Klonierung von metY aus Mycobacterium tuberculosis und Klonierung in das Plas-10 mid pC Phsdh metY_Mt

Chromosomale DNA von *Mycobacterium tuberculosis* wurde von der American Type Strain Culture Collection (ATCC, Atlanta-USA) aus dem Stamm ATCC 25584 bezogen. Chromosomale DNA aus C. glutamicum ATCC 13032 wurde nach Tauch et al. (1995) Plasmid 33:168-179 oder Eikmanns et al. (1994) Microbiology 140:1817-1828 präpariert.

Mit den Oligonukleotidprimer SEQ ID NO:75 und SEQ ID NO:76, der chromosomalen DNA aus C. glutamicum als Template und Pfu Turbo Polymerase (Fa. Stratagene) wurde mit Hilfe der Polymerase-Kettenreaktion (PCR) nach Standardmethoden wie Innis et al. (1990) PCR Protocols. A Guide to Methods and Applications, Academic Press ein DNA Fragment von ca. 180 Basenpaaren aus dem nichtkodierenden 5'-Bereich (Promotorregion) der Homoserindehydrogenase (HsDH) amplifiziert. Das amplifizierte Fragment ist an seinem 5'-Ende von einer BamHl-Restriktionsschnittstelle und am 3'-Ende von einem über das Oligo eingeführten zu metY aus Mycobacterium tuberculosis homologen Bereich flankiert.

25

20

15

SEQ ID NO:75
5'-GAGAGGATCCGGAAGGTGAATCGAATTTCGG -3'
und
SEQ ID NO:76

30 5'-CTATTGCTGTCGGCGCTCATGATTCTCCAAAAATAATCGC -3'

Das erhaltene DNA Fragment wurde mit dem GFX™PCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) nach Angaben des Herstellers gereinigt.

Ausgehend von der chromosomalen DNA aus *Mycobacterium tuberculosis* als Template für eine PCR Reaktion wurde mit den Oligonukleotidprimern SEQ ID NO:77 und SEQ ID NO:78 metY mit

Hilfe des GC-RICH PCR Systems (Roche Diagnostics, Mannheim) nach Angaben des Herstellers amplifiziert. Das amplifizierte Fragment ist an seinem 3'-Ende von einer Xbal-Restriktionsschnittstelle, die über das Oligo eingeführt wurde, flankiert.

5 SEQ ID NO:77

5'-ATGAGCGCCGACAGCAATAG --3'

und

SEQ ID NO:78

5'-GAACTCTAGATCAGAACGCCGCCACGGAC -3'

10

25

Das ca. 1,4 kb große erhaltene DNA Fragment wurde mit dem GFX™PCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) nach Angaben des Herstellers gereinigt.

In einer weiteren PCR Reaktion wurden die beiden oben erhaltenen Fragmente gemeinsam als

Template eingesetzt. Durch die mit dem Oligonukleotidprimer SEQ ID NO:76 eingebrachte, zu
dem metY Fragment homologen Bereichen, kommt es im Zuge der PCR-Reaktion zu einer
Anlagerung beider Fragmente aneinander und einer Verlängerung zu einem durchgehenden
DNA-Strang durch die eingesetzte Polymerase. Die Standardmethode wurde dahingehend modifiziert, dass die verwendeten Oligonukleotidprimer SEQ ID NO:75 und SEQ ID NO:78 erst mit

Beginn des 2. Zykluses dem Reaktionsansatz zugegeben wurden.

Das amplifizierte DNA Fragment von ungefähr 1,6 kb wurde mit dem GFXTMPCR, DNA and Gel Band Purification Kit nach Angaben des Herstellers gereinigt. Im Anschluß daran wurde es mit den Restriktionsenzymen BamHI und Xbal (Roche Diagnostics, Mannheim) gespalten und gelektrophoretisch aufgetrennt. Anschließend wurde das ca. 1,6 kb große DNA Fragment mit GFXTMPCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) aus der Agarose aufgereinigt.

Der Vektor pClik5MCS SEQ ID NO:65, im folgenden pC genannt, wurde mit den Restriktionsenzymen BamHI und Xbal (Roche Diagnostics, Mannheim) geschnitten und ein 5 kb großes Fragment nach elektrophoretischer Auftrennung mit GFX™PCR, DNA and Gel Band Purification Kit
isoliert.

Das Vektorfragment wurde zusammen mit dem geschnittenen und aufgereinigten PCR-Fragment mit Hilfe des Rapid DNA Ligation Kit (Roche Diagnostics, Mannheim) nach Angaben des Herstellers ligiert und der Ligationsansatz nach Standardmethoden wie in Sambrook et al.

(Molecular Cloning. A Laboratory Manual, Cold Spring Harbor, beschrieben(1989)), in kompetente E.coli XL-1Blue (Stratagene, La Jolla, USA) transformiert. Eine Selektion auf Plasmid tragende Zellen wurde durch das Ausplattieren auf Kanamycin (20µg/ml) haltigen LB Agar (Lennox, 1955, Virology, 1:190) erreicht.

5

Die Präparation der Plasmid DNA wurde nach Methoden und mit Materialien der Fa. Quiagen durchgeführt. Sequenzierungsreaktionen wurden nach Sanger et al. (1977) Proceedings of the National Academy of Sciences USA 74:5463-5467 durchgeführt. Die Sequenzierreaktionen wurden mittels ABI Prism 377 (PE Applied Biosystems, Weiterstadt) aufgetrennt und ausgewertet.

10

Das entstandene Plasmid pC Phsdh metY_Mt (Mycobacterium tuberculosis) ist als SEQ ID NO:79 aufgeführt. Die entsprechende Plasmidkarte ist in Figur 3 dargestellt.

Die Sequenz SEQ ID NO:79 umfasst die folgenden wesentlichen Teilbereiche:

15

LOCUS	pC\Phsdh\metY_Mt	6591 bp	DNA	circular	21-JUL-2003
	. - ·				

FEATURES

Location/Qualifiers

CDS

156..1505

20

/vntifkey="4" /label=metY\aus\M\tuberculosis

CDS

1855..2646

/vntifkey="4"

/label=Kan\R

25

CDS

4927..6048

/vntifkey="4"

/label=Rep\Protein

CDS

3919..4593

/vntifkey="4"

30

/label=ORF\1

CDS

complement(2913..3773)

/vntifkey="4"

/label=Ori\-EC\(pMB)

35

Beispiel 8:Transformation des Stammes LU1479 lysC 311ile ET-16 mit dem Plasmid pC Phsdh metY_Mt

Der Stamm LU1479 lysC 311ile ET-16 wurde mit dem Plasmid pC Phsdh metY_Mt nach der

beschriebenen Methode (Liebl, et al. (1989) FEMS Microbiology Letters 53:299-303) transformiert. Die Transformationsmischung wurde auf CM-Platten plattiert, die zusätzlich 20mg/l Kanamycin enthielten, um eine Selektion auf Plasmid-haltige Zellen zu erreichen. Erhaltene Kanresistente Klone wurden gepickt und vereinzelt. Die Methionin-Produktivität der Klone wurde in einem Schüttelkolbenversuch (s. Beispiel 6) untersucht. Der Stamm LU1479 lysC 311ile ET-16 pC Phsdh metY_Mt produzierte im Vergleich zu LU1479 lysC 311ile ET-16 signifikant mehr Methionin.

<u>Patentansprüche</u>

- Verfahren zur fermentativen Herstellung wenigstens einer schwefelhaltigen
 Feinchemikalie, welches folgende Schritte umfasst:
 - a) Fermentation einer die gewünschte schwefelhaltige Feinchemikalie produzierenden coryneformen Bakterienkultur, wobei in den coryneformen Bakterien zumindest eine heterologe Nukleotidsequenz exprimiert wird, welche für ein Protein mit O-Acetyl-Homoserin-Sulfhydrolase (metY) Aktivität kodiert;
 - b) Anreicherung der schwefelhaltigen Feinchemikalie im Medium oder in den Zellen der Bakterien, und
 - c) Isolieren der schwefelhaltigen Feinchemikalie.
- 15 2. Verfahren nach Anspruch 1, wobei die schwefelhaltige Feinchemikalie L-Methionin umfasst.
- Verfahren nach einem der vorhergehenden Ansprüche, wobei die heterologe metY-kodierende Nukleotidsequenz zur metY-kodierenden Sequenz aus Corynebacterium glutamicum ATCC 13032 eine Sequenzhomologie vom weniger als 100% aufweist.
 - 4. Verfahren nach Anspruch 3, wobei die metY-kodierende Sequenz aus einem der folgenden Organismen abgeleitet ist:

	11700 44770
Corynebacterium diphteriae	ATCC 14779
Mycobacterium tuberculosis	ATCC 25584
CDC1551	
Clostridium acetobutylicum	ATCC 824
Bacillus halodurans	ATCC21591
Bacillus stearothermophilus	ATCC 12980
Chlorobium tepidum	ATCC 49652
Chlorobium tepidum	ATCC27104
Synechococcus sp.	ATCC 36104
Emericella nidulans	ATCC 25285
Bacteroides fragilis	ATCC 7962
Lactococcus lactis	ATCC 19395
Bordetella bronchiseptica	ATCC 19595
Pseudomonas aeruginosa	ATCC 17933
Nitrosomonas europaea	ATCC 19718
Sinorhizobium meliloti	ATCC 4399
Thermotoga maritima	ATCC 43589
Streptococcus mutans	ATCC 25175
Streptococcus motaris	ATCC 25416
Burkholderia cepacia	ATCC 13939
Deinococcus radiodurans	17.1.0

10

Rhodobacter capsulatus	ATCC 11166
Pasteurella multocida	ATCC 6530
Clostridium difficile	ATCC 9689
Campylobacter jejuni	ATCC 33560
Streptococcus pneumoniae	ATCC 6308
Saccharomyces cerevisiae	ATCC 2704
Kluyveromyces lactis	ATCC 8585
Candida albicans	ATCC 10231
Schizosaccharomyces pombe	ATCC 24969

- Verfahren nach einem der vorhergehenden Ansprüche, wobei die metY-kodierende Sequenz eine kodierende Sequenz gemäß SEQ ID NO:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51 und 53 oder eine dazu homologe Nukleotidsequenz, welche für ein Protein mit metY-Aktivität kodiert, umfasst.
- 6. Verfahren nach einem der vorhergehenden Ansprüche, wobei die mety-kodierende Sequenz für ein Protein mit mety-Aktivität kodiert, wobei das Protein eine Aminosäuresequenz gemäß SEQ ID NO:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52 und 54 oder eine dazu homologe Aminosäuresequenz, welche für ein Protein mit mety-Aktivität steht, umfasst.
- Verfahren nach einem der vorhergehenden Ansprüche, wobei die kodierende metYSequenz eine in coryneformen Bakterien replizierbare oder eine stabil in das
 Chromosom intregrierte DNA oder eine RNA ist.
 - 8. Verfahren gemäß Anspruch 7, wobei man
 - einen mit einem Plasmidvektor transformierten Bakterienstamm einsetzt der wenigstens eine Kopie der kodierenden metY-Sequenz unter der Kontrolle regulativer Sequenzen trägt, oder
 - b) einen Stamm einsetzt, in dem die kodierende metY-Sequenz in das Chromosom des Bakteriums integriert wurde
- 25 9. Verfahren nach einem der vorhergehenden Ansprüche, wobei die kodierende metY-Sequenz überexprimiert wird.
 - 10. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei man Bakterien fermentiert, in denen zusätzlich wenigstens ein weiteres Gen des Biosyntheseweges der

15

20

25

30

gewünschten schwefelhaltigen Feinchemikalie verstärkt ist oder derart mutiert ist, dass es durch Stoffwechselmetabolite nicht in seiner Aktivität beeinflusst wird.

- Verfahren gemäß einem der vorhergehenden Ansprüche, wobei man Bakterien fermentiert, in denen wenigstens ein Stoffwechselweg zumindest teilweise ausgeschaltet ist, der die Bildung der gewünschten schwefelhaltigen Feinchemikalie verringert.
 - 12. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei man coryneforme Bakterien fermentiert, in denen gleichzeitig wenigstens eines der Gene, ausgewählt unter
 - a) dem für eine Aspartatkinase kodierenden Gen lysC,
 - a) dem für eine Aspartakinase kodierenden Gen gap,
 b) dem für die Glycerinaldehyd-3-Phosphat Dehydrogenase kodierenden Gen gap,
 - c) dem für die 3-Phosphoglycerat Kinase kodierenden Gen pgk,
 - d) dem für die Pyruvat Carboxylase kodierenden Gen pyc,
 - e) dem für die Triosephosphat Isomerase kodierenden Gen tpi,
 - e) dem für die Homoserin O-Acetyltransferase kodierenden Gen metA,
 - dem für die Cystahionin-gamma-Synthase kodierenden Gen metB,
 g)
 dem für die Cystahionin-gamma-Synthase kodierenden Gen metC
 - h) dem für die Cystahionin-gamma-Lyase kodierenden Gen metC,
 - i) dem für die Serin-Hydroxymethyltransferase kodierenden Gen glyA,
 - i) dem für die Senn-Hydroxymetriylatiliserenden Gen metF,
 j) dem für die Methylen-Tetrahydrofolat-Reduktase kodierenden Gen metF,
 - dem für die Metnylen-Tettanydiolotist voorbestellt.

 k) dem für die Vitamin B12 abhängige Methionin-Synthase kodierenden Gen metH,
 - dem für die Phosphoserin-Aminotransferase kodierenden Gen serC
 - m) dem für die Phosphoserin-Phosphatase kodierenden Gen serB
 - n) dem für die Serine Acetyl-Transferase kodierenden Gen cysE, und
 - o) dem für eine Homoserin-Dehydrogenase kodierenden Gen hom,

überexprimiert oder so mutiert ist, dass die korrespondierenden Proteine, verglichen mit nicht mutierten Proteinen, in geringerem Maße oder nicht durch Stoffwechselmetabolite in ihrer Aktivität beeinflusst werden.

- 13. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei man coryneformen Bakterien fermentiert, in denen gleichzeitig wenigstens eines der Gene, ausgewählt unter
 - a) dem für die Homoserine-Kinase kodierenden Gen thrB,
 - b) dem für die Threonin Dehydratase kodierenden Gen ilvA,
- 35 c) dem für die Threonin Synthase kodierenden Gen thrC
 - d) dem für die Meso-Diaminopimelat D-Dehydrogenase kodierenden Gen ddh

- e) dem für die Phosphoenolpyruvat-Carboxykinase kodierenden Gen pck,
- f) dem für die Glucose-6-Phosphat-6-Isomerase kodierenden Gen pgi,
- g) dem für die Pyruvat-Oxidase kodierenden Gen poxB,
- h) dem für die Dihydrodipicolinat Synthase kodiernden Gen dapA,
- i) dem für die Dihydrodipicolinat Reduktase kodiernden Gen dapB; oder
- j) dem für die Diaminopicolinat Decarboxylase kodiemden Gen

durch Veränderung der Expressionsrate oder durch Einführung einer gezielten Mutation abschwächt ist.

10

20

5

 Verfahren gemäß einem oder mehreren der vorhergehenden Ansprüche, wobei man Mikroorganismen der Art Corynebacterium glutamicum einsetzt.

- Verfahren zur Herstellung eines L-Methionin haltigen Tierfuttermittel-Additivs aus
 Fermentationsbrühen, welches folgende Schritte umfasst
 - a) Kultivierung und Fermentation eines L-Methionin produzierenden Mikroorganismus in einem Fermentationsmedium;
 - b) Entfernung von Wasser aus der L-Methionin haltigen Fermentationsbrühe;
 - c) Entfemung der während der Fermentation gebildeten Biomasse in einer Menge von 0 bis 100 Gew.-%; und
 - d) Trocknung der gemäß b) und/oder c) erhaltenen Fermentationsbrühe, um das Tierfuttermittel-Additiv in der gewünschten Pulver- oder Granulatform zu erhalten.
- Verfahren gemäß Anspruch 15, wobei man Mikroorganismen gemäß der Definition in
 einem der Ansprüche 1 bis 14 einsetzt.

Fig. 1

THIS PAGE BLANK (USPTO)

Fig. 2

THIS PAGE BLANK (USPTO)

Fig. 3

THIS PAGE BLANK (USPTO)

SEQUENZPROTOKOLL

<110> BASF AG

<120> Verfahren zur Herstellung schwefelhaltiger Feinchemikalien

<130> M/43128

<160> 66

<170> PatentIn version 3.1

<210> 1

<211> 1317

<212> DNA

<213> Corynebacterium diphtheriae

<220>

<221> CDS

<222> (1)..(1317)

<223>

atg	aca		_		_		tgg Trp			48
							gat Asp			96
_		_				_	ttt Phe 45	_	_	144
							ggc Gly		tac Tyr	192
							gaa Glu			240

								gta Val									288
gcc Ala	gaa Glu	acc Thr	gcc Ala 100	gca Ala	atc Ile	ctc Leu	aac Asn	atc Ile 105	gcc Ala	cgc Arg	gcg Ala	ggt Gly	tcc Ser 110	cac His	atc Ile		336
			Pro					ggc									384
								acc Thr									432
								gtt Val									480
					Ala			caa Gln									528
								cat His 185									576
								gta Val									624
								aag Lys									672
								ggc									720
								ccc Pro									768
								gat Asp 265									816
								cgc Arg								•.	864
Pro								caa Gln									912
cga Arg 305																٠	960
gcc Ala	aac Asn	cac His	gag Glu	aaa Lys	gta Val	gcc Ala	aag Lys	gtt Val	aac Asn	tac Tyr	gca Ala	ggc	ctt Leu	ccc Pro	gac Asp	1	800.

3/130

									3	130						
•				325					330	•				335		
tcc Ser	cct Pro	tgg Trp	tac Tyr 340	cca Pro	gtc Val	aaa Lys	gaa Glu	aaa Lys 345	ctc Leu	gga Gly	ttc Phe	gac Asp	tac Tyr 350	acc Thr	ggc	1056
tcc Ser	gta Val	ctt Leu 355	tcc Ser	ttt Phe	gac Asp	gtt Val	aaa Lys 360	ggt Gly	gga Gly	aaa Lys	aac Asn	gaa Glu 365	gca Ala	tgg Trp	cgc Arg	1104
ttt Phe	atc Ile 370	gac Asp	gca Ala	ctc Leu	aaa Lys	cta Leu 375	cac His	tcg Ser	aac Asn	ctc Leu	gcc Ala 380	aac Asn	gtc Val	gga Gly	gac Asp	1152
gta Val 385	cgt Arg	tcc Ser	ctc Leu	gta Val	gtc Val 390	cac His	cca Pro	gcg Ala	acc Thr	acc Thr 395	acg Thr	cac His	tca Ser	caa Gln	tcg Ser 400	1200
Glu	Glu	Ser	Ala	Leu 405	Leu	Ala	Ala	GIÀ	11e 410	Asn	GIR	gca Ala	THE	415	Arg	1248
ctc Leu	tcc Ser	gtc Val	ggc Gly 420	atc Ile	gaa Glu	tcc Ser	atc Ile	gac Asp 425	gac Asp	atc Ile	atc Ile	gcc Ala	gac Asp 430	Den	aca Thr	1296
gca Ala	ggt Gly	ttc Phe 435	gac Asp	gca Ala	atc Ile	taa								•		1317
<21	0>	2														
<21 <21		2 438														
	1> 2>	438 PRT														
<21	1> 2>	438 PRT	neba	cter	ium (diph	ther	iae								
<21 <21 <21 <40	1> 2> 3>	438 PRT Cory														
<21 <21 <21 <40	1> 2> 3>	438 PRT Cory							Ala 10	Asn	LYE	: Trp	o Gly	, Pho 15	e Glu	
<21: <21: <21: <40 Met 1	1> 2> 3> 0>	438 PRT Cory 2	Lys	Tyr 5	Asp	Asn	Ser	Asn	10					12	e Glu r Ala	
<21 <21 <21 <40 Met 1	1> 2> 3> 0> Arg	438 PRT Cory 2 Thr	Lys Ile 20	Tyr 5 His	Asp Ala	Asn	Ser	Asn Ser 25	10 Val	Asp	Se:	c Ası	30	. Se:		
<21 <21 <40 Met 1 Thr	1> 2> 3> 0> Pro	438 PRT Cory 2 Thr Ser	Lys Ile 20	Tyr 5 His	Asp Ala Tyr	Asn Gly Leu	Ser Gln Thr 40	Asn Ser 25	Val	Asp	Ser	r Asp l Phe 45	Thi 30	Se:	r Ala	

PCT/EP2003/009453

4/130

Asn Leu Glu Gly Gly Val His Ala Val Leu Phe Ala Ser Gly Met Ala 85 90 95

Ala Glu Thr Ala Ala Ile Leu Asn Ile Ala Arg Ala Gly Ser His Ile 100 105 110

Val Ser Ser Pro Arg Ile Tyr Gly Gly Thr Glu Thr Leu Phe Ala Val 115 120 125

Thr Leu Ala Arg Leu Gly Ile Glu Thr Thr Phe Val Glu Asn Pro Asp 130 135 140

Asp Pro Ala Ser Trp Glu Ala Ala Val Gln Asp Asn Thr Val Ala Leu 145 150 155 160

Tyr Gly Glu Thr Phe Ala Asn Pro Gln Ala Asp Val Leu Asp Ile Pro 165 170 175

Ala Ile Ala Glu Val Ala His Lys His Gln Val Pro Leu Ile Val Asp 180 185 190

Asn Thr Leu Ala Thr Ala Ala Leu Val Arg Pro Leu Glu Leu Gly Ala 195 200 205

Asp Val Val Val Ala Ser Leu Thr Lys Phe Tyr Thr Gly Asn Gly Ser 210 215 220

Gly Leu Gly Gly Val Leu Ile Asp Gly Gly Asn Phe Asp Trp Thr Val 225 230 235 240

Thr Arg Asn Gly Glu Pro Ile Phe Pro Asp Phe Val Thr Pro Asp Pro 245 250 255

Ala Tyr His Gly Leu Lys Tyr Ser Asp Leu Gly Ala Pro Ala Phe Gly
260 265 270

Leu Lys Ala Arg Val Gly Leu Leu Arg Asp Thr Gly Ala Ala Pro Ser 275 280 285

Pro Leu Asn Ala Trp Ile Thr Ala Gln Gly Leu Asp Thr Leu Ser Leu 290 295 300

Arg Val Gln Arg His Asn Glu Asn Ala Leu Ala Val Ala Gln Phe Leu 305 310 315 320

Ala Asn His Glu Lys Val Ala Lys Val Asn Tyr Ala Gly Leu Pro Asp 325 330 335

Ser Pro Trp Tyr Pro Val Lys Glu Lys Leu Gly Phe Asp Tyr Thr Gly 345 340 Ser Val Leu Ser Phe Asp Val Lys Gly Gly Lys Asn Glu Ala Trp Arg 360

Phe Ile Asp Ala Leu Lys Leu His Ser Asn Leu Ala Asn Val Gly Asp 370

Val Arg Ser Leu Val Val His Pro Ala Thr Thr His Ser Gln Ser 390 385

Glu Glu Ser Ala Leu Leu Ala Ala Gly Ile Asn Gln Ala Thr Ile Arg 415

Leu Ser Val Gly Ile Glu Ser Ile Asp Asp Ile Ile Ala Asp Leu Thr 420 425

Ala Gly Phe Asp Ala Ile 435

<210> 3

<211> 1350

<212> DNA

<213> Mycobacterium tuberculosis

<220>

CDS <221>

(1) . . (1350) <222>

35

<223>

<400> 3 atg age gee gae age aat age ace gae gee gat eeg ace geg cat tgg 48 Met Ser Ala Asp Ser Asn Ser Thr Asp Ala Asp Pro Thr Ala His Trp teg tte gaa ace aaa cag ata cae get ggt cag cae cet gat eeg ace 96 Ser Phe Glu Thr Lys Gln Ile His Ala Gly Gln His Pro Asp Pro Thr acc aac gcc cgg gct ctg ccg atc tat gcg acc acg tcg tac acc ttc 144 Thr Asn Ala Arg Ala Leu Pro Ile Tyr Ala Thr Thr Ser Tyr Thr Phe

D'		PCT/EP2003/0094	5.
	6/130		

gac Asp	gac Asp 50	acc Thr	gcg Ala	Cae His	gce S Ala	c gcc a Ala 55	e ge	c ct a Le	g tt u Ph	c gg e Gl	a ctg y Leo 60	g gaa u Glu	a att 1 Ile	e Pro	g ggc	192
aat Asn 65	atc Ile	tac Tyr	acc Thr	Arg	g ato g Ile 70	e Gly	aa Asi	c cc n Pr	c ac	c ac x Th	c gad r Asj	gto Val	gto L Val	gag Glu	g cag 1 Gln 80	240
cgc Arg	atc Ile	gcc Ala	gcg Ala	cto Leu 85	gaç Glu	g ggd	ggt Gl	t gt y Va	g gc 1 Al 90	a Ala	g cto a Lev	j tto 1 Phe	ctg Lev	tcg Ser 95	tcg Ser	288
Gly 999	cag Gln	gcc Ala	gcg Ala 100	gag Glu	acg Thr	ttc Phe	gco Ala	a Ile 10	e Le	g aad u Asi	c cto Lev	g gcc Ala	ggc Gly 110	Ala	ggc Gly	33 <i>6</i>
gat (Asp]	UTS	atc Ile 115	gtg Val	tcc Ser	agc Ser	ccg Pro	Arg	, Lei	g tad 1 Tyn	r Gly	ggc Gly	acc Thr 125	Tyr	aac Asn	ctg Leu	384
ttc o Phe I	cac : His :	tat Tyr	tcg Ser	ctg Leu	gcc Ala	aag Lys 135	ctc Leu	Gl ⁷ Gg ²	ato / Ile	gag Glu	gtc Val 140	Ser	ttc Phe	gtc Val	gac Asp	432
gat o Asp I 145		zap z	rsp .	Deu	150	Inc	ırp	GII	ı Ala	155	. Val	Arg	Pro	Asn	Thr 160	480
aag g Lys A	ua r	ne i	ine i	165	GIU	Thr	11e	Ser	170	Pro	Gln	Ile	Asp	Leu 175	Leu	528
gac a Asp T	111 2	10 1	.80	Val	ser	GIU	vaı	185	His	Arg	Asn	Gly	Val 190	Pro	Leu	576
atc g Ile V	ai A	sp A 95	sn 1	Inr	IIe .	AIA	Thr 200	Pro	Tyr	Leu	Ile	Gln 205	Pro	Leu	Ala	624
	10 A	IA A	ъЪ т	.16	val	215	HIS	ser	Ala	Thr	Lys 220	Tyr	Leu	Gly	Gly	672
cac go His G 225	Ly A.	La A.	La I	16 2	230	et A	vaı	11e	Val	Asp 235	Gly	Gly	Asn	Phe	Asp 240	720
tgg ad Trp Tì	ir Gi	in Gi	2 ·	19 E 45	ne i	ro (3 T Y ∶	Phe	Thr 250	Thr	Pro	Asp	Pro	Ser 255	Tyr	768
cac gg His Gl	.y va	11 Va 26	.0 IT 51	ne A	та с	Iu I	eu (Gly 265	Pro	Pro .	Ala	Phe :	Ala : 270	Leu	Lys	816
gct cg Ala Ar	27	5	n ne	iu D	eu A	rg A 2	sp 1 80	lyr (gīħ '	Ser 1	Ala :	Ala : 285	Ser]	Pro	Phe	864
aac gc Asn Al 29	a Ph	c tt e Le	g gt u Va	g g 1 A	Ia G.	ag g ln G	gt c ly L	tg g eu (gaa a Slu :	Thr I	etg a Leu S 300	agc d Ser I	etg d Leu <i>I</i>	rgg (atc Ile	912

gag Glu 305	cgg Arg	cac His	gtc Val	gcc Ala	aac Asn 310	gcg Ala	cag Gln	cgc Arg	gtc Val	gcc Ala 315	gag Glu	ttc Phe	ctg Leu	gcc Ala	gcc Ala 320	960
cgc Arg	gac Asp	gac Asp	gtg Val	ctt Leu 325	tcg Ser	gtc Val	aac Asn	tat Tyr	gcg Ala 330	61 Å 888	ctg Leu	ccc Pro	tcc Ser	tcg Ser 335	ccc Pro	1008
tgg Trp	cat His	gag Glu	cgg Arg 340	gcc Ala	aag Lys	agg Arg	ctg Leu	gcg Ala 345	ccc Pro	aag Lys	gga Gly	acc Thr	320 GJA 333	gcc Ala	gtg Val	1056
Leu	Ser	Phe 355	Glu	ttg Leu	Ala	Gly	360	Ile	Glu	Ala	Gly	Lys 365	Ala	Pne	Val	1104
Asn	Ala 370	Leu	Lys		His	Ser 375	His	Val	Ala	Asn	11e 380	Gly	Asp	Val	Arg	1152
Ser 385	Leu	Val	Ile	His	Pro 390	Ala	Ser	Thr	Thr	His 395	Ala	Gln	Leu	ser	Pro 400	1200
Ala	Glu	Gln	Leu	Ala 405	Thr	Gly	Val	Ser	Pro 410	Gly	Leu	Val	Arg	415		1248
Val	Gly	Ile	Glu 420	Gly	Ile	Ąap	Asp	11e 425	Leu	Ala	Asp	Leu	G1u 430	. ьет	ggc	1296
ttt Phe	gcc Ala	gcg Ala 435	Ala	cgc Arg	aga Arg	ttc Phe	agc Ser 440	gcc Ala	gac Asp	Pro	cag Gln	tcc Ser 445	Val	gcg Ala	gcg Ala	1344
ttc Phe	tga		•				٠									1350

<210> 4

<211> 449

<212> PRT

<213> Mycobacterium tuberculosis

<400> 4

Met Ser Ala Asp Ser Asn Ser Thr Asp Ala Asp Pro Thr Ala His Trp

1 10 15

Ser Phe Glu Thr Lys Gln Ile His Ala Gly Gln His Pro Asp Pro Thr 20 25 30

Thr Asn Ala Arg Ala Leu Pro Ile Tyr Ala Thr Thr Ser Tyr Thr Phe

40

45

Asp Asp Thr Ala His Ala Ala Ala Leu Phe Gly Leu Glu Ile Pro Gly 50 55 60

Asn Ile Tyr Thr Arg Ile Gly Asn Pro Thr Thr Asp Val Val Glu Gln 65 70 75 80

Arg Ile Ala Ala Leu Glu Gly Gly Val Ala Ala Leu Phe Leu Ser Ser 85 90 95

Gly Gln Ala Ala Glu Thr Phe Ala Ile Leu Asn Leu Ala Gly Ala Gly
100 105 110

Asp His Ile Val Ser Ser Pro Arg Leu Tyr Gly Gly Thr Tyr Asn Leu 115 120 125

Phe His Tyr Ser Leu Ala Lys Leu Gly Ile Glu Val Ser Phe Val Asp 130 135 140

Asp Pro Asp Asp Leu Asp Thr Trp Gln Ala Ala Val Arg Pro Asn Thr 145 150 155 160

Lys Ala Phe Phe Ala Glu Thr Ile Ser Asn Pro Gln Ile Asp Leu Leu 165 170 175

Asp Thr Pro Ala Val Ser Glu Val Ala His Arg Asn Gly Val Pro Leu 180 185 190

Ile Val Asp Asn Thr Ile Ala Thr Pro Tyr Leu Ile Gln Pro Leu Ala 195 200 205

Gln Gly Ala Asp Ile Val Val His Ser Ala Thr Lys Tyr Leu Gly Gly 210 215 220

His Gly Ala Ala Ile Ala Gly Val Ile Val Asp Gly Gly Asn Phe Asp 225 230 235 240

Trp Thr Gln Gly Arg Phe Pro Gly Phe Thr Thr Pro Asp Pro Ser Tyr
245 250 255

His Gly Val Val Phe Ala Glu Leu Gly Pro Pro Ala Phe Ala Leu Lys 260 265 270

Ala Arg Val Gln Leu Leu Arg Asp Tyr Gly Ser Ala Ala Ser Pro Phe 275 280 285 Asn Ala Phe Leu Val Ala Gln Gly Leu Glu Thr Leu Ser Leu Arg Ile 290 295 300

Glu Arg His Val Ala Asn Ala Gln Arg Val Ala Glu Phe Leu Ala Ala 305 310 315 320

Arg Asp Asp Val Leu Ser Val Asn Tyr Ala Gly Leu Pro Ser Ser Pro 325 330 335

Trp His Glu Arg Ala Lys Arg Leu Ala Pro Lys Gly Thr Gly Ala Val

Leu Ser Phe Glu Leu Ala Gly Gly Ile Glu Ala Gly Lys Ala Phe Val

Asn Ala Leu Lys Leu His Ser His Val Ala Asn Ile Gly Asp Val Arg 370 375 380

Ser Leu Val Ile His Pro Ala Ser Thr Thr His Ala Gln Leu Ser Pro 385 390 395 400

Ala Glu Gln Leu Ala Thr Gly Val Ser Pro Gly Leu Val Arg Leu Ala 405 410 415

Val Gly Ile Glu Gly Ile Asp Asp Ile Leu Ala Asp Leu Glu Leu Gly 420 425 430

Phe Ala Ala Arg Arg Phe Ser Ala Asp Pro Gln Ser Val Ala Ala 435 440 445

Phe

<210> 5

<211> 1284

<212> DNA

<213> Clostridium acetobutylicum

<220>

<221> CDS

<222> (1)..(1284)

<223>

<400> 5						
atg agt ga Met Ser Gl 1	a gaa aga aa u Glu Arg Ly 5	a ttt ggt t vs Phe Gly P	ett gaa aca Phe Glu Thr 10	tta cag gtt Leu Gln Val	cat gca His Ala 15	48
gga caa gt Gly Gln Va	t gct gat co l Ala Asp Po 20	o Thr Thr G	gga tca aga Gly Ser Arg 25	gct gta cct Ala Val Pro 30	att tat Ile Tyr	96
caa aca ac Gln Thr Th 35	r Ser Tyr Va	a ttt aaa a 1 Phe Lys A 40	aat gct gat Asn Ala Asp	cat gca gca His Ala Ala 45	aat tta Asn Leu	144
ttt caa tt Phe Gln Le 50	g aaa gaa co u Lys Glu Pr	t gga aat g o Gly Asn V 55	gta tat aca Val Tyr Thr	agg ata atg Arg Ile Met 60	aat cca Asn Pro	192
aca act ga Thr Thr As 65	t gta ttt ga p Val Phe Gl 70	u Gln Arg V	ta gca gct al Ala Ala 75	ctt gag ggc Leu Glu Gly	gga gtt Gly Val 80	240
gct gga ct Ala Gly Le	t gca aca go ı Ala Thr Al 85	a tca gga c a Ser Gly Lo	ett gca gca eu Ala Ala 90	att acc tat Ile Thr Tyr	gct att Ala Ile 95	288
tta aat gt Leu Asn Va	g gca agt gc l Ala Ser Al 100	a Gly Asp G	aa att gtt lu Ile Val 05	gca gca agt Ala Ala Ser 110	acc tta Thr Leu	336
tat ggt gga Tyr Gly Gly 115	Thr Tyr Gl	a tta ttt gg u Leu Phe G 120	gg gtt act ly Val Thr	ctt aag aag Leu Lys Lys 125	ctt gga Leu Gly	384
ata aag gtt Ile Lys Val 130	gtt ttt gt Val Phe Va	a gat cca ga l Asp Pro As 135	at aat cct sp Asn Pro	gaa aat ata Glu Asn Ile 140	aga aaa Arg Lys	432
gca ata aat Ala Ile Asr 145	gat agg ac Asp Arg Th 15	r Lys Ala Va	ta tat ggg al Tyr Gly 155	gaa act att Glu Thr Ile	gga aat Gly Asn 160	480
cca aga ata Pro Arg Ile	aat gtt tte Asn Val Lee 165	g gat ata ga 1 Asp Ile Gl	ag gca gta lu Ala Val 170	gct aaa att Ala Lys Ile	gcc cat Ala His 175	528
gaa aat aaa Glu Asn Lys	ata cca ct Ile Pro Leu 180	ata atc ga Ile Ile As 18	sp Asn Thr	ttt ggt aca Phe Gly Thr 190	ccg tat Pro Tyr	576
ctt ata aga Leu Ile Arg 195	Pro Ile Glu	ttt gga gc Phe Gly Al 200	ca gat ata la Asp Ile	gtt gta cat Val Val His 205	tca gca Ser Ala	624
aca aag ttt Thr Lys Phe 210	ata gga gga Ile Gly Gly	cat gga ac His Gly Th 215	r Thr Ile	ggt gga att Gly Gly Ile 220	ata gtt Ile Val	672
gat ggt gga Asp Gly Gly 225	aaa ttt gat Lys Phe Asp 230	Trp Arg Al	t agt gga a a Ser Gly 1 235	aag ttt cct Lys Phe Pro	gat ttt Asp Phe 240	720

WO 2004/024933

11/130

	•																
	aca Thr	aca Thr	ccg Pro	gat Asp	aag Lys 245	agc Ser	tat Tyr	aat Asn	gga Gly	ctt Leu 250	IIe	tat Tyr	gct Ala	gat Asp	cta Leu 255	ggt Gly	768
	gca Ala	cct Pro	gct Ala	ttt Phe 260	gct Ala	tta Leu	aaa Lys	gca Ala	aga Arg 265	gtt Val	caa Gln	ctt Leu	tta Leu	aga Arg 270	aat Asn	aca Thr	816
	ggt Gly	gca Ala	acg Thr 275	ctt Leu	agt Ser	cca Pro	caa Gln	agt Ser 280	gct Ala	ttt Phe	tat Tyr	ttc Phe	cta Leu 285	caa Gln	gly aaa	ttg Leu .	864
	gaa Glu	tca Ser 290	ctt Leu	tca Ser	ctt Leu	agg Arg	gtt Val 295	caa Gln	aaa Lys	cat His	gtt Val	gat Asp 300	aat Asn	aca Thr	aga Arg	aag Lys	912
	gta Val 305	gtt Val	gaa Glu	ttc Phe	ttg Leu	aag Lys 310	aac Asn	cat His	cca Pro	aaa Lys	gtt Val 315	tca Ser	tgg Trp	ata Ile	aat Asn	tat Tyr 320	960
i	cct Pro	gaa Glu	ctt Leu	gag Glu	gaa Glu 325	agt Ser	cct Pro	tat Tyr	aaa Lys	gag Glu 330	tta Leu	gca Ala	aat Asn	aaa Lys	tat Tyr 335	ctt	1008
	cca Pro	aag Lys	ggt Gly	gca Ala 340	Gly	tca Ser	ata Ile	ttt Phe	aca Thr 345	Pne	gga Gly	ata Ile	aag Lys	99ª Gly 350	GI	ctt Leu	1056
	gaa Glu	gct Ala	ggt Gly 355	. Lys	aga Arg	ttt Phe	ata Ile	aat Asn 360	Ser	gtt Val	aaa Lys	cta	tto Phe 365	: 261	: ctt : Le:	ttg Leu	1104
	gca Ala	aat Asn 370	Val	gca Ala	gat Asp	gca Ala	aaa Lys 375	Ser	ctt Lev	gtt Val	ata Ile	cat His 380	PLC	tca Sei	a agi r Sei	t aca r Thr	1152
	act Thr 385	His	gct Ala	gaa Glu	ctt Leu	aat Asn 390	Glu	gaa Glu	ı gaa ı Glu	ı caə	aaa Lys 399	HIC	a gci a Ala	t gg a Gl	t gt y Va	t act l Thr 400	1200
•	cca Pro	gat Asp	ato Met	g ata : Ile	aga Arg	Leu	tca Ser	ata Ile	a gga e Gly	a gta Y Val 410	GIL	g gat 1 As]	t gca p Ala	a ga a Gl	g ga u As 41	t tta p Leu 5	1248
	ata Ile	tgg Tr	gaq Asi	tta Lev 420	a aat 1 Asr)	caa Glr	gct Ala	cto	gaa u Glu 42!	u Gli	a gct n Ala	t ta: a	a				1284

<210> 6

<211> 427

<212> PRT

<213> Clostridium acetobutylicum

<400> 6

Met Ser Glu Glu Arg Lys Phe Gly Phe Glu Thr Leu Gln Val His Ala

- Gly Gln Val Ala Asp Pro Thr Thr Gly Ser Arg Ala Val Pro Ile Tyr 25
- Gln Thr Thr Ser Tyr Val Phe Lys Asn Ala Asp His Ala Ala Asn Leu 35 40
- Phe Gln Leu Lys Glu Pro Gly Asn Val Tyr Thr Arg Ile Met Asn Pro 50 55
- Thr Thr Asp Val Phe Glu Gln Arg Val Ala Ala Leu Glu Gly Gly Val 65 70
- Ala Gly Leu Ala Thr Ala Ser Gly Leu Ala Ala Ile Thr Tyr Ala Ile
- Leu Asn Val Ala Ser Ala Gly Asp Glu Ile Val Ala Ala Ser Thr Leu 100
- Tyr Gly Gly Thr Tyr Glu Leu Phe Gly Val Thr Leu Lys Lys Leu Gly 115 120
- Ile Lys Val Val Phe Val Asp Pro Asp Asn Pro Glu Asn Ile Arg Lys 130 135
- Ala Ile Asn Asp Arg Thr Lys Ala Val Tyr Gly Glu Thr Ile Gly Asn 145 150 155
- Pro Arg Ile Asn Val Leu Asp Ile Glu Ala Val Ala Lys Ile Ala His 170
- Glu Asn Lys Ile Pro Leu Ile Ile Asp Asn Thr Phe Gly Thr Pro Tyr 180
- Leu Ile Arg Pro Ile Glu Phe Gly Ala Asp Ile Val Val His Ser Ala 195 200
- Thr Lys Phe Ile Gly Gly His Gly Thr Thr Ile Gly Gly Ile Ile Val 210 215
- Asp Gly Gly Lys Phe Asp Trp Arg Ala Ser Gly Lys Phe Pro Asp Phe 225 230 235
- Thr Thr Pro Asp Lys Ser Tyr Asn Gly Leu Ile Tyr Ala Asp Leu Gly 250

13/130

Ala Pro Ala Phe Ala Leu Lys Ala Arg Val Gln Leu Leu Arg Asn Thr 260 265 270

Gly Ala Thr Leu Ser Pro Gln Ser Ala Phe Tyr Phe Leu Gln Gly Leu 275 280 285

Glu Ser Leu Ser Leu Arg Val Gln Lys His Val Asp Asn Thr Arg Lys 290 295 300

Val Val Glu Phe Leu Lys Asn His Pro Lys Val Ser Trp Ile Asn Tyr 305 310 315 320

Pro Glu Leu Glu Glu Ser Pro Tyr Lys Glu Leu Ala Asn Lys Tyr Leu 325 330 335

Pro Lys Gly Ala Gly Ser Ile Phe Thr Phe Gly Ile Lys Gly Gly Leu
340 345 350

Glu Ala Gly Lys Arg Phe Ile Asn Ser Val Lys Leu Phe Ser Leu Leu 355 360 365

Ala Asn Val Ala Asp Ala Lys Ser Leu Val Ile His Pro Ser Ser Thr 370 375 380

Thr His Ala Glu Leu Asn Glu Glu Glu Gln Lys Ala Ala Gly Val Thr 385 390 395 400

Pro Asp Met Ile Arg Leu Ser Ile Gly Val Glu Asp Ala Glu Asp Leu
405 410 415

Ile Trp Asp Leu Asn Gln Ala Leu Glu Gln Ala 420 425

<210> 7

<211> 1293

<212> DNA

<213> Bacillus halodurans

<220>

<221> CDS

<222> (1)..(1293)

<223>

<40		7														
atg Met 1	aat Asn	cat His	gaa Glu	aad Asr 5	c caa 1 Glr	tgg Trp	cag Gln	tta Leu	gaa Glu 10	aca Thr	Lys aag	gcc Ala	gtt Val	cat His 15	tca Ser	48
gga Gly	cag Gln	gag Glu	ato Ile 20	gat Asp	ceg Pro	aca Thr	acg Thr	ttg Leu 25	tcg Ser	cga Arg	gcc Ala	gtc Val	cca Pro 30	ttg Leu	tac Tyr	96
caa Gln	acg Thr	acg Thr 35	tcc Ser	tac Tyr	gga Gly	ttt Phe	aaa Lys 40	gat Asp	aca Thr	gac Asp	cat His	gcg Ala 45	gcg Ala	aat Asn	tta Leu	144
ttt Phe	tca Ser 50	cta Leu	agt Ser	gaa Glu	ttt Phe	ggc Gly 55	aat Asn	atc Ile	tat Tyr	acc Thr	cga Arg 60	ttg Leu	atg Met	aac Asn	cca Pro	192
acg Thr 65	aca Thr	gat Asp	gtg Val	ttt Phe	gaa Glu 70	aaa Lys	cgt Arg	gtg Val	gct Ala	gcg Ala 75	tta Leu	gaa Glu	gga Gly	gga Gly	gcg Ala 80	240
gca Ala	gct Ala	tta Leu	gcg Ala	acg Thr 85	gcc Ala	tca Ser	ggg Gly	cag Gln	gcg Ala 90	gcc Ala	att Ile	acg Thr	tat Tyr	tcg Ser 95	att Ile	288
tta Leu	aat Asn	att Ile	gcg Ala 100	gag Glu	gct Ala	gga Gly	gat Asp	gaa Glu 105	atc Ile	gtg Val	tcc Ser	gct Ala	agt Ser 110	agc Ser	ctt Leu	336
tac Tyr	ggc Gly	gga Gly 115	acg Thr	tat Tyr	aat Asn	tta Leu	ttt Phe 120	tcg Ser	att Ile	acg Thr	ttg Leu	cca Pro 125	aag Lys	cta Leu	61 y 999	384
gta Val	aac Asn 130	gtc Val	cgt Arg	ttc Phe	gtt Val	gat Asp 135	cca Pro	tcg Ser	gac Asp	cca Pro	gaa Glu 140	aac Asn	ttc Phe	aaa Lys	gca Ala	432
gcg Ala 145	att Ile	act Thr	gaa Glu	aag Lys	acg Thr 150	aaa Lys	gcc Ala	att Ile	ttc Phe	gct Ala 155	gag Glu	tcg Ser	att Ile	gga Gly	aac Asn 160	480
cct Pro	aag Lys	gga Gly	gac Asp	gtg Val 165	tta Leu	gat Asp	att Ile	gaa Glu	gcg Ala 170	gtg Val	gcg Ala	aaa Lys	gtt Val	gca Ala 175	cac His	528
gat Asp	cat His	cac His	ctt Leu 180	ccc Pro	ctc Leu	att Ile	gtc Val	gat Asp 185	aac Asn	acg Thr	ttt Phe	cca Pro	agc Ser 190	cca Pro	tat Tyr	576
ttg Leu	ctt Leu	caa Gln 195	ccg Pro	ata Ile	aag Lys	cac His	ggc Gly 200	gca Ala	gac Asp	att Ile	gtt Val	gtg Val 205	cat His	tca Ser	gca Ala	624
aca Thr	aaa Lys 210	ttt Phe	atc Ile	ggt Gly	Gly	cat His 215	gjå aaa	acg Thr	tcg Ser	ata Ile	gga Gly 220	Gly 999	atc Ile	att Ile	gtc Val	672
gat (Asp (225	gga Gly	Gly 999	acg Thr	ttt Phe	gat Asp 230	tgg Trp	gcg Ala	aaa Lys	acg Thr	gat Asp 235	cga Arg	tat Tyr	cca Pro	gja aaa	cta Leu 240	720

15/130

	•																	
	aca Thr	aca Thr	cct Pro	gat Asp	ccg Pro 245	agt Ser	tac Tyr	cac His	ggt Gly	gtt Val 250	Val	tat Tyr	aca Thr	gat Asp	gcg Ala 255	gtc Val	•	768
	ggt Gly	cca Pro	att Ile	gct Ala 260	tat Tyr	att Ile	att Ile	aaa Lys	gcg Ala 265	cgt Arg	gtt Val	cag Gln	cta Leu	ttg Leu 270	cgt Arg	gac Asp	;	816
	atg Met	gjå aaa	gca Ala 275	gcc Ala	ata Ile	tcg Ser	cca Pro	ttt Phe 280	aac Asn	tcg Ser	ttt Phe	tta Leu	ctg Leu 285	ttg Leu	caa Gln	61Å 333		864
	ttg Leu	gaa Glu 290	acg Thr	ttg Leu	cat His	tta Leu	cgg Arg 295	atg Met	gag Glu	aga Arg	cat His	agt Ser 300	gaa Glu	aat Asn	gcc Ala	tac Tyr		912
	aaa Lys 305	gta Val	gca Ala	gag Glu	ttc Phe	ctt Leu 310	gag Glu	caa Gln	cat His	caa Gln	gcg Ala 315	gtc Val	gaa Glu	tcg Ser	gtg Val	agc Ser 320		960
Aur)	tac Tyr	tct Ser	gga Gly	ctg Leu	cca Pro 325	tcc Ser	cat His	cca Pro	tcc Ser	tac Tyr 330	cca Pro	tta Leu	gcg Ala	aaa Lys	aaa Lys 335	tac Tyr	1	.008
	tta Leu	cct Pro	aaa Lys	ggc Gly 340	caa Gln	gly ggg	gct Ala	atc Ile	tta Leu 345	acg Thr	ttc Phe	gag Glu	gta Val	aag Lys 350	ggc	Gly ggc	1	.056
	gtt Val	gaa Glu	gca Ala 355	gga Gly	aag Lys	aaa Lys	ctc Leu	att Ile 360	cat His	tcg Ser	gtc Val	cag Gln	cta Leu 365	ttc Phe	tcc Ser	cac His	. 1	104
	ctt Leu	gcc Ala 370	aac Asn	gta Val	ggt Gly	gat Asp	tca Ser 375	aaa Lys	tcg Ser	ttg Leu	atc Ile	atc Ile 380	cat	cct	gca Ala	agc Ser	. 3	1152
	acg Thr 385	acc Thr	cac His	caa Gln	cag Gln	ctc Leu 390	tcg Ser	gaa Glu	gca Ala	gaa Glu	cag Gln 395	cga Arg	gac Asp	gca Ala	gga Gly	gtg Val 400	1	L200
Ì	aca Thr	cct Pro	ggg Gly	atg Met	atc Ile 405	aga Arg	ctt Leu	tcg Ser	gta Val	gga Gly 410	acc Thr	gaa Glu	tcg Ser	att Ile	cat His 415	gat Asp	1	1248
	att Ile	atc Ile	acc Thr	gat Asp 420	ctc Leu	aaa Lys	cag Gln	gcg Ala	att Ile 425	gag Glu	gcg Ala	agt Ser	caa Gln	gcg Ala 430	Ł	l	:	1293

<210> 8

<211> 430

<212> PRT

<213> Bacillus halodurans

<400> 8

Met Asn His Glu Asn Gln Trp Gln Leu Glu Thr Lys Ala Val His Ser 1 5 10 15

Gly Gln Glu Ile Asp Pro Thr Thr Leu Ser Arg Ala Val Pro Leu Tyr
20 25 30

Gln Thr Thr Ser Tyr Gly Phe Lys Asp Thr Asp His Ala Ala Asn Leu 35 40 45

Phe Ser Leu Ser Glu Phe Gly Asn Ile Tyr Thr Arg Leu Met Asn Pro 50 55 60

Thr Thr Asp Val Phe Glu Lys Arg Val Ala Ala Leu Glu Gly Gly Ala
65 70 75 80

Ala Ala Leu Ala Thr Ala Ser Gly Gln Ala Ala Ile Thr Tyr Ser Ile 85 90 95

Leu Asn Ile Ala Glu Ala Gly Asp Glu Ile Val Ser Ala Ser Ser Leu 100 105 110

Tyr Gly Gly Thr Tyr Asn Leu Phe Ser Ile Thr Leu Pro Lys Leu Gly
115 120 125

Val Asn Val Arg Phe Val Asp Pro Ser Asp Pro Glu Asn Phe Lys Ala 130 135 140

Ala Ile Thr Glu Lys Thr Lys Ala Ile Phe Ala Glu Ser Ile Gly Asn 145 150 155 160

Pro Lys Gly Asp Val Leu Asp Ile Glu Ala Val Ala Lys Val Ala His 165 170 175

Asp His His Leu Pro Leu Ile Val Asp Asn Thr Phe Pro Ser Pro Tyr 180 . 185 190

Leu Leu Gln Pro Ile Lys His Gly Ala Asp Ile Val Val His Ser Ala 195 200 205

Thr Lys Phe Ile Gly Gly His Gly Thr Ser Ile Gly Gly Ile Ile Val 210 215 220

Asp Gly Gly Thr Phe Asp Trp Ala Lys Thr Asp Arg Tyr Pro Gly Leu 225 230 235 240

Thr Thr Pro Asp Pro Ser Tyr His Gly Val Val Tyr Thr Asp Ala Val
245 250 255

Gly Pro Ile Ala Tyr Ile Ile Lys Ala Arg Val Gln Leu Leu Arg Asp

17/130

260

265

270

Met Gly Ala Ala Ile Ser Pro Phe Asn Ser Phe Leu Leu Gln Gly 275 280 285

Leu Glu Thr Leu His Leu Arg Met Glu Arg His Ser Glu Asn Ala Tyr 290 295 300

Lys Val Ala Glu Phe Leu Glu Gln His Gln Ala Val Glu Ser Val Ser 305 310 315 320

Tyr Ser Gly Leu Pro Ser His Pro Ser Tyr Pro Leu Ala Lys Lys Tyr 325 330 335

Leu Pro Lys Gly Gln Gly Ala Ile Leu Thr Phe Glu Val Lys Gly Gly 340 345 350

Val Glu Ala Gly Lys Lys Leu Ile His Ser Val Gln Leu Phe Ser His 355 360 365

Leu Ala Asn Val Gly Asp Ser Lys Ser Leu Ile Ile His Pro Ala Ser 370 375 380

Thr Thr His Gln Gln Leu Ser Glu Ala Glu Gln Arg Asp Ala Gly Val

Thr Pro Gly Met Ile Arg Leu Ser Val Gly Thr Glu Ser Ile His Asp 405 410 415

Ile Ile Thr Asp Leu Lys Gln Ala Ile Glu Ala Ser Gln Ala
420 425 430

<210> 9

<211> 1203

<212> DNA

<213> Bacillus stearothermophilus

<220>

<221> CDS

<222> (1)..(1203)

<223>

atg	0> tcg Ser	9 tai	t gta r Val	a tt l Ph	c cg e Ar	ic ga	c aç	jc ga er Gl	g ca	c gc	g gc	c aat	t ttg	y tti	t ggt e Gly	48
•				.					10					15		
ttg Leu	aaa Lys	gaç Glı	g gaa 1 Glu 20	agg aGl	t tt y Ph	t at e Il	t ta e Ty	t ac r Th	ır Ar	c at g Il	t at	g aat t Ası	t cca n Pro 30	a aco	g aac r Asn	96
gac Asp	gtg Val	tto Phe 35	gaa Glu	a aag 1 Lys	g cg s Ar	g at g Il	c gc e Al 40	a Al	g ct a Le	t ga u Gl	a gg u Gl	c ggd y Gly 45	e att / Ile	: 999	g gcg / Ala	144
ctc Leu	gcg Ala 50	ctg Leu	tca Ser	tc <u>e</u> Ser	g 99:	g ca y Gl: 55	g gc	g gc a Al	g gt a Va	g tti l Pho	t tai e Tyi 60	t tog r Sei	g ato	ato Ile	e aac e Asn	192
atc Ile 65	gcc Ala	tcg Ser	gcg Ala	ggc	gat Asj 70	t gaa	a ato u Ilo	c gt	c tcg l Se	g tol Sei 75	t tog r Sei	g tcc Ser	att Ile	tac Tyr	ggc Gly	240
gga Gly	acg Thr	tac Tyr	aac Asn	ttg Leu 85	tto Phe	geo Ala	c cat a His	ace Thi	g cto r Lev 90	g ego 1 Arg	aag J Lys	g tto B Phe	ggc Gly	att Ile 95	acg Thr	288
gtg Val	aag Lys	ttt Phe	gtc Val 100	gat Asp	Pro	tco Ser	gad Asp	2 ccc 2 Pro 105	o Glu	aac Asn	ttt Phe	gag Glu	cgg Arg 110	gcg Ala	atc Ile	336
1111 1	мsр	115	THE	ьув	ATA	ьeu	120	: Ala	. Glu	Thr	· Ile	Gly 125	Asn	Pro	_	384
aac q Asn A	gat Asp 130	gtg Val	ttg Leu	gac Asp	att Ile	gaa Glu 135	Ата	gtg Val	gcc Ala	gac Asp	atc Ile 140	Ala	cat His	cgc Arg	cat His	432
gcc a Ala 1 145	itt (ccg Pro	ctc Leu	att Ile	gtc Val 150	gac Asp	aac Asn	acg Thr	gtg Val	gcc Ala 155	agt Ser	cca Pro	tac Tyr	tta Leu	ttg Leu 160	480
cgg c Arg P	ro I	att Ile	GIU	ttc Phe 165	ggc Gly	gcc Ala	gat Asp	atc Ile	gtc Val 170	gt <i>c</i> Val	cac His	tca Ser	gcg Ala	acg Thr 175	aag Lys	528
ttc a Phe I	tc g	этА (180 GJA 1 333 (cac His	Gly	aat Asn	tcg Ser	atc Ile 185	ggc	ggt Gly	gtg Val	att Ile	gtg Val 190	gac Asp	agc Ser	576
ggc a Gly L	ys F	tt g he A	gac (Asp 1	tgg Trp	aaa Lys	61 <i>\</i> 999	agc Ser 200	ggc Gly	aag Lys	ttt Phe	ccg Pro	gag Glu 205	ttc Phe	acc Thr	gag Glu	624
cca g Pro A 2:	ac c sp P 10	ca a	agc t Ser l	ac Tyr :	HIS	ggt Gly 215	ttg Leu	gtg Val	tat Tyr	gtg Val	gac Asp 220	gcc Ala	gtc Val	gly	gaa Glu	672
gcg gc Ala Al 225	eg t la T	ac a yr I	itc a le T	'nr i	aaa Lys 230	gcg Ala	cgc Arg	atc Ile	Gln	ctc Leu 235	ttg Leu	cgc Arg	gat Asp	ttg Leu	gga Gly 240	720
gcg gc Ala Al	eg ti La Le	tg t eu S	cg c er P	cg t ro I	tt a	aat Asn	gcg Ala	ttt Phe	ttg Leu :	ctt Leu	ttg Leu	caa Gln	Gly 1	ttg Leu	gag Glu	768

19/130

•		13, 100		
	245	250	255	
acg ctc cat ttg Thr Leu His Leu 260	ı Arg Met Gln A	gc cat agc gaa a rg His Ser Glu A 265	ac gcc ctt gcc sn Ala Leu Ala 270	gtc 816 Val
gcc aag ttt tta Ala Lys Phe Let 275	ı Glu Glu Glu G	aa gcg gtc gaa t lu Ala Val Glu S 80	eg gtc aat tac ser Val Asn Tyr 285	cca 864 Pro
ggg ctt ccg ago Gly Leu Pro Ser 290	c cat ccg tcg c His Pro Ser H 295	at gaa ctg gcg a is Glu Leu Ala L 3	aa aaa tat ttg ys Lys Tyr Leu 00	cca 912 Pro
aac ggg caa gga Asn Gly Gln Gly 305	a gcg atc gtc a 7 Ala Ile Val T 310	cg ttt gaa atc a hr Phe Glu Ile L 315	aa ggc ggc gtc ys Gly Gly Val	gaa 960 Glu 320
gcc ggc aaa aaa Ala Gly Lys Lys	ctg atc gac t Leu Ile Asp S 325	cg gtc aaa ctg t er Val Lys Leu P 330	tc tct cat ttg he Ser His Leu 335	gcc 1008 Ala
aac atc ggc gat Asn Ile Gly Asn 340	Ser Lys Ser L	tc atc atc cac c eu Ile Ile His P 345	ecg gcc agc aca Pro Ala Ser Thr 350	acg 1056 Thr
His Glu Gln Lev 355	Ser Pro Asp G	aa cag ctg tcc g lu Gln Leu Ser A 60	da Gly Val Thr 365	Pro
Gly Leu Val Arg 370	Leu Ser Val G 375		le Asp Asp Ile 80	Leu
gac gac ttg cgc Asp Asp Leu Arg 385	caa gcc att c Gln Ala Ile A 390	gc caa agc cag a rg Gln Ser Gln T 395	cg gtg ggg gtg chr Val Gly Val	aag 1200 Lys 400
tag				1203
<210> 10				
<211> 400				
<212> PRT				
<213> Bacillus	stearothermopl	UTIUS		

<400> 10

Met Ser Tyr Val Phe Arg Asp Ser Glu His Ala Ala Asn Leu Phe Gly
1 5 10 15

Leu Lys Glu Glu Gly Phe Ile Tyr Thr Arg Ile Met Asn Pro Thr Asn 20 25 30

Asp Val Phe Glu Lys Arg Ile Ala Ala Leu Glu Gly Gly Ile Gly Ala 35 40 45

- Leu Ala Leu Ser Ser Gly Gln Ala Ala Val Phe Tyr Ser Ile Ile Asn 50 55 60
- Ile Ala Ser Ala Gly Asp Glu Ile Val Ser Ser Ser Ser Ile Tyr Gly
 65 70 75 80
- Gly Thr Tyr Asn Leu Phe Ala His Thr Leu Arg Lys Phe Gly Ile Thr 85 90 95
- Val Lys Phe Val Asp Pro Ser Asp Pro Glu Asn Phe Glu Arg Ala Ile
- Thr Asp Lys Thr Lys Ala Leu Phe Ala Glu Thr Ile Gly Asn Pro Lys
 115 120 125
- Asn Asp Val Leu Asp Ile Glu Ala Val Ala Asp Ile Ala His Arg His 130 135 . 140
- Ala Ile Pro Leu Ile Val Asp Asn Thr Val Ala Ser Pro Tyr Leu Leu 145 150 155 160
- Arg Pro Ile Glu Phe Gly Ala Asp Ile Val Val His Ser Ala Thr Lys
 165 170 175
- Phe Ile Gly Gly His Gly Asn Ser Ile Gly Gly Val Ile Val Asp Ser 180 185 190
- Gly Lys Phe Asp Trp Lys Gly Ser Gly Lys Phe Pro Glu Phe Thr Glu 195 200 205
- Pro Asp Pro Ser Tyr His Gly Leu Val Tyr Val Asp Ala Val Gly Glu 210 215 220
- Ala Ala Tyr Ile Thr Lys Ala Arg Ile Gln Leu Leu Arg Asp Leu Gly 235 230 240
- Ala Ala Leu Ser Pro Phe Asn Ala Phe Leu Leu Leu Gln Gly Leu Glu 245 250 255
- Thr Leu His Leu Arg Met Gln Arg His Ser Glu Asn Ala Leu Ala Val 260 265 270
- Ala Lys Phe Leu Glu Glu Glu Glu Ala Val Glu Ser Val Asn Tyr Pro 275 280 285

WO 2004/024933

Glv	Leu	Pro	Ser	His	Pro	Ser	His	Glu	Leu	Ala	Lys	Lys	Tyr	Leu	Pro
~-1											200				
	290					295					300				

Asn Gly Gln Gly Ala Ile Val Thr Phe Glu Ile Lys Gly Gly Val Glu 305 310 315 320

Ala Gly Lys Lys Leu Ile Asp Ser Val Lys Leu Phe Ser His Leu Ala 325 330 335

Asn Ile Gly Asp Ser Lys Ser Leu Ile Ile His Pro Ala Ser Thr Thr 340 345 350

His Glu Gln Leu Ser Pro Asp Glu Gln Leu Ser Ala Gly Val Thr Pro 355 360 365

Gly Leu Val Arg Leu Ser Val Gly Thr Glu Ala Ile Asp Asp Ile Leu 370 375 380

Asp Asp Leu Arg Gln Ala Ile Arg Gln Ser Gln Thr Val Gly Val Lys 385 390 395 400

<210> 11

<211> 1290

<212> DNA

<213> Chlorobium tepidum

<220>

<221> CDS

<222> (1)..(1290)

<223>

<400> 11 atg agt ga Met Ser Ga 1	ag gat aac lu Asp Asn 5	acc ttc Thr Phe	cgg ttc Arg Phe	gag acc Glu Thr 10	ttg cag Leu Gln	gtt cac Val His 15	gcc 48 Ala
ggg cag g Gly Gln G	ag cct gat lu Pro Asp 20	ccg gtg Pro Val	acc gga Thr Gly 25	tcg cgc Ser Arg	gcc gtg Ala Val	ccc att Pro Ile 30	tac 96 Tyr
cag acc ac Gln Thr Ti	r Ser Tyr	gtg ttc Val Phe	gag aac Glu Asn 40	gcc gag Ala Glu	cac ggc His Gly 45	gct gac Ala Asp	ctg 144 Leu
ttc gcg c	t cgc aag au Arg Lys	gcg ggc Ala Gly	aat atc Asn Ile	tac acg Tyr Thr	cgc ctg Arg Leu	atg aac Met Asn	ccg 192 Pro

50 55 60

				60		
65 ASP	val beu	70	rg Met Ala	gcg ctc gaa Ala Leu Glu 75	Gly Gly	Lys 80
ALC ALC DEU	85	sia ser G.	ly His Ser 90	gcg cag tto Ala Gln Phe	e Ile Ala : 95	Ile
wra III II6	100	rra GIÅ Ve	Sp Asn Ile 105	gtg tca tcg Val Ser Ser	Ser Tyr 1	Leu
171 GIY GIY	IMI IYI A	12	e Lys Val	gcc ttc aag Ala Phe Lys 125	Arg Leu 0	€ly
130	Arg File V	135	y Asn Asp	cag gag gcg Gln Glu Ala 140	Phe Arg I	ys
gct atc gac Ala Ile Asp 145	1	50	a Leu Tyr	Met Glu Ser 155	Ser Gly A	asn .60
ccg gcg ttc Pro Ala Phe	165	ro Asp Pne	e Asp Ala 170	Ile Ala Lys	Ile Ala A 175	rg
	180	d lie val	185	Thr Phe Gly	Cys Ala G 190	ly
tat ctc tgc Tyr Leu Cys 195	arg Pro 11	200	GIY Ala :	Ser Ile Val 205	Val Glu S	er
gcc acc aag (Ala Thr Lys 2 210	rib iie Gi	215	GIY Thr	Ser Met Gly 220	Gly Ile I	le
gtc gat gcc g Val Asp Ala 6 225	23	e Asp Trp 0	Gly Asn C	Sly Lys Phe 135	Pro Leu Pi 24	ne 10
acc gag cca t Thr Glu Pro S	245	y TYT HIS	250	ys Phe Tyr	Glu Ala Va 255	al
	60 File 116	: lie Arg	Ala Arg V 265	al Glu Gly :	Leu Arg As 270	sp.
ttc ggc ccg g Phe Gly Pro A 275	ia ile ser	280	Asn Ser P	he Met Leu I 285	Leu Gln Gl	У
ctt gaa acg ct Leu Glu Thr Le 290	d ser heu	295	Gin Arg H	is Leu Asp A 300	sn Thr Le	u .
gaa ctg gcc cg	je tgg ete	gaa agg (cac gat go	g gtt gcg t	gg gtg aa	c 960

									2.	3/130						
Glu 305	Leu	Ala	Arg	Trp	Leu 310	Glu	Arg	His	Asp	Ala 315	Val	Ala	Trp	Val	Asn 320	
tat Tyr	cca Pro	ggc Gly	ctc Leu	gaa Glu 325	agc Ser	cat His	ccg Pro	aca Thr	cac His 330	gcc Ala	ctg Leu	gca Ala	aaa Lys	aaa Lys 335	tat Tyr	1008
ctc Leu	acg Thr	cat His	ggc Gly 340	ttc Phe	ggc Gly	tgc Cys	gtg Val	ctg Leu 345	act Thr	ttc Phe	ggc Gly	gtg Val	aag Lys 350	ggt Gly	ggt Gly	1056
tat Tyr	gaa Glu	aac Asn 355	gcg Ala	gtg Val	aag Lys	ttc Phe	atc Ile 360	gac Asp	agc Ser	gtg Val	aag Lys	ctg Leu 365	gcg Ala	agc Ser	cac His	1104
ctg Leu	gcc Ala 370	aac Asn	gtg Val	ggt Gly	gat Asp	gca Ala 375	aaa Lys	acg Thr	ctc Leu	gtc Val	att Ile 380	cat His	ccg Pro	gca Ala	tcg Ser	1152
acg Thr 385	acg Thr	cac His	cag Gln	cag Gln	ctc Leu 390	agc Ser	gcc Ala	gag Glu	gaa Glu	cag Gln 395	gta Val	tcg Ser	gcg Ala	Gly	gtc Val 400	1200
acc Thr	gcc Ala	gat Asp	atg Met	gtg Val 405	cgc Arg	gtg Val	tcg Ser	gtt Val	ggt Gly 410	atc Ile	gag Glu	cat His	atc Ile	gat Asp 415	gac Asp	1248
atc Ile	aag Lys	gct Ala	gat Asp 420	ttc Phe	agc Ser	cag Gln	gct Ala	ttc Phe 425	GIU	aat Asn	tta Leu	gca Ala	tga			1290
<21	0>	12														
<21	1>	429														
<21	2>	PRT														
<21	3>	Chlo	robi	um t	epid	um										
								÷								•
<40	0>	12														
Met 1	. Ser	Glu	Asp	Asn 5	Thr	Phe	Arg	Phe	Glu 10	Thr	· Let	ı Glı	ı Va.	l Hi: 15	s Ala	
Gly	Gln	Glu	Pro 20	Asp	Pro	Val	Thr	Gly 25	Ser	Arg	, Ala	a Va	l Pro	o Il	e Tyr	
Glr	ı Thr	Thr 35	Ser	Tyr	Val	Phe	Glu 40	. Asr	a Ala	Glu	ı Hi	s Gl 45	y Al	a As	p Leu	
Phe	e Ala	Leu	Arg	Lys	Ala	Gly 55	Asn	Ile	туг	Thr	Ar 60	g Le	u Me	t As	n Pro	
	50															

Ala Ala Leu Gly Val Ala Ser Gly His Ser Ala Gln Phe Ile Ala Ile 85 90 95

Ala Thr Ile Cys Gln Ala Gly Asp Asn Ile Val Ser Ser Ser Tyr Leu 100 105 110

Tyr Gly Gly Thr Tyr Asn Gln Phe Lys Val Ala Phe Lys Arg Leu Gly
115 120 125

Ile Glu Val Arg Phe Val Asp Gly Asn Asp Gln Glu Ala Phe Arg Lys
130 140

Ala Ile Asp Glu Asn Thr Lys Ala Leu Tyr Met Glu Ser Ser Gly Asn 145 150 155 160

Pro Ala Phe His Val Pro Asp Phe Asp Ala Ile Ala Lys Ile Ala Arg 165 170 175

Glu Asn Gly Ile Pro Leu Ile Val Asp Asn Thr Phe Gly Cys Ala Gly
180 185 190

Tyr Leu Cys Arg Pro Ile Asp His Gly Ala Ser Ile Val Val Glu Ser 195 200 205

Ala Thr Lys Trp Ile Gly Gly His Gly Thr Ser Met Gly Gly Ile Ile 210 215 220

Val Asp Ala Gly Thr Phe Asp Trp Gly Asn Gly Lys Phe Pro Leu Phe 225 230 235 240

Thr Glu Pro Ser Glu Gly Tyr His Gly Leu Lys Phe Tyr Glu Ala Val 245 250 255

Gly Glu Leu Ala Phe Ile Ile Arg Ala Arg Val Glu Gly Leu Arg Asp 260 265 270

Phe Gly Pro Ala Ile Ser Pro Phe Asn Ser Phe Met Leu Leu Gln Gly
275 280 285

Leu Glu Thr Leu Ser Leu Arg Val Gln Arg His Leu Asp Asn Thr Leu 290 295 300

Glu Leu Ala Arg Trp Leu Glu Arg His Asp Ala Val Ala Trp Val Asn 305 310 315 320

Tyr Pro Gly Leu Glu Ser His Pro Thr His Ala Leu Ala Lys Lys Tyr
325 330 335

Leu Thr His Gly Phe Gly Cys Val Leu Thr Phe Gly Val Lys Gly Gly 340 Tyr Glu Asn Ala Val Lys Phe Ile Asp Ser Val Lys Leu Ala Ser His 360 Leu Ala Asn Val Gly Asp Ala Lys Thr Leu Val Ile His Pro Ala Ser 375 380 Thr Thr His Gln Gln Leu Ser Ala Glu Glu Gln Val Ser Ala Gly Val 395 390 Thr Ala Asp Met Val Arg Val Ser Val Gly Ile Glu His Ile Asp Asp 410 Ile Lys Ala Asp Phe Ser Gln Ala Phe Glu Asn Leu Ala 425 420 <210> 13 <211> 1281 <212> DNA <213> Lactococcus lactis <220> <221> CDS <222> (1)..(1281) <223> <400> /13

ato	act Thr	aat	cac His	aat Asn 5	tat Tyr	aaa Lys	ttc Phe	gac Asp	act Thr 10	ttg Leu	caa Gln	gtc Val	cat His	gca Ala 15	gga Gly	4	8
caa Gln	gtc Val	cct Pro	gat Asp 20	cct Pro	gtc Val	acg Thr	ggt Gly	tca Ser 25	cgc Arg	gcc Ala	gtt Val	ccg Pro	ctc Leu 30	tat Tyr	caa Gln	9	96
aca Thr	act Thr	tct Ser 35	ttc Phe	gtt Val	ttt Phe	aac Asn	aat Asn 40	tca Ser	gac Asp	cat His	gcc Ala	gaa Glu 45	gct Ala	cgt Arg	ttt Phe	14	14
gct Ala	tta Leu 50	caa Gln	gat Asp	cct Pro	gga Gly	gct Ala 55	att Ile	tat Tyr	tca Ser	cgt Arg	tta Leu 60	gga Gly	aat Asn	cca Pro	acc Thr	19	92

65	at gtt sp Val		7	o Arg	116	АТА	Ala	ьец 75	Glu	Gly	Gly	Ser	Ala 80	240
	tt ggt eu Gly		85	or Gry	ser	Ата	90	IIe	Thr	Tyr	Ala	Ile 95	Leu	288
	tc gct le Ala	100	di Ci	·y Asp	ASI	105	vai	Ser	Ala	Ser	Thr 110	Leu	Tyr	336
		-72 -	TD DC	u Phe	120	GIĀ	Thr	Leu	Pro	Lys 125	Tyr	Gly	Ile	384
aca ac Thr Th 13		ttt g Phe V	tc aa al As	t cca n Pro 135	gat (Asp	gac Asp	ccg Pro	ràs .	aat Asn 140	ttt Phe	gaa Glu	gag Glu	gcg Ala	432
att ga Ile As 145		_,	15		TTE :	ıyı	ıyr (Glu ' 155	Thr :	Leu (31y	Asn	Pro 160	480
gga aa Gly Ası		16	55	, 191 1	rsp A	ua :	11e (170	₃TÀ (3ln :	Ile 2	la :	Lys 175	Lys	528
cat gga His Gl		L80		· vul p	1 1	85	inr i	ne T	Chr 1	Chr I	90	Val '	Thr	576
ttt aaa Phe Lys	195			2	00 00	sn v	ar I	.ie v	al E	lis S 205	er 2	Ala :	Thr	624
aaa tto Lys Phe 210		-7 -2	,	215	TE S	er 1	Te G	5: TA G	17 V 20	al I	le V	al 1	Asp	672
ggc gga Gly Gly 225		,ı	230	,u A	eri Gl	LYA	2:	ne P	ro A	sp P	he I	hr o	31n 240	720
gct gat Ala Asp		245	5	GIY I	ге ту	25 25	ne A. 50	La G	lu L	eu G	ly G 2	lu I 55	le	768
gct ttt Ala Phe	gtg ac Val Tì 26	3	gtt Val	aga go Arg Al	t at a Il 26	е те	a tt	a co eu Ar	gt ga	at ac sp Th 27	ır G	gt g ly A	cg la	816
	275			28	0 ге	u Pn	e re	u GI	n G1	y Le 15	u G]	lu T	hr	864
ctc tca Leu Ser : 290	ctc cg Leu Ar	g gta g Val		gt cad arg His 95	c ato	tc Se:	c aa r As	t ac n Th: 30	r Ly	a aa s Ly	g at s Il	t gi .e Va	a al	912

•																
Glu 305	Phe	Leu	Asp	Asn	His 310	Pro	гЛа	Val	gaa Glu	315	VAL	13011			320	960
ctt Leu	gaa Glu	agt Ser	aat Asn	tcc Ser 325	tat Tyr	cat His	gcg Ala	ctc Leu	tat Tyr 330	cag Gln	aaa Lys	tat Tyr	tat Tyr	cca Pro 335	aaa Lys	1008
gat Asp	gct Ala	gga Gly	tct Ser 340	atc Ile	ttt Phe	acc Thr	ttt Phe	gaa Glu 345	ctc Leu	aaa Lys	gac Asp	aaa Lys	gat Asp 350	gag Glu	aaa Lys	1056
aaa Lys	gcg Ala	cgt Arg 355	gat Asp	ttg Leu	att Ile	gat Asp	cat His 360	Leu	gaa Glu	att Ile	ttc Phe	tca Ser 365		cta Leu	gcc Ala	1104
Asn	Val 370	Gly	Asp	Thr	Lys	ser 375	rea	Ala	. IIE	HIP	380)			act Thr	1152
cac His 385	Gln	cag (Gln	ctg Leu	aat Asn	gcc Ala 390	GLu	gaa Glu	ctt Leu	gct Ala	agt Ser 395	ALC	ggg Gly	ı att	tco Sei	Lys 400	1200
G1A GGs	acc Thr	att Ile	cga Arg	tta Jeu 405	Ser	gtt Val	ggt	att Ile	gaa Glu 410	r vol	gta Val	a act	gac Ası	tte Lev 41	g att i Ile 5	1248
gct Ala	gat Asp	tta Le	a gag a Glu 420	ı Glr	gca Ala	tta Lev	gaa Glu	a aaa a Lys 425	a ata s Ile 5	a taa	a					1281

<210> 14

<211> 426

<212> PRT

<213> Lactococcus lactis

<400> 14

Met Thr Asn His Asn Tyr Lys Phe Asp Thr Leu Gln Val His Ala Gly
1 5 10 15

Gln Val Pro Asp Pro Val Thr Gly Ser Arg Ala Val Pro Leu Tyr Gln 20 25 30

Thr Thr Ser Phe Val Phe Asn Asn Ser Asp His Ala Glu Ala Arg Phe 35 40 45

Ala Leu Gln Asp Pro Gly Ala Ile Tyr Ser Arg Leu Gly Asn Pro Thr 50 55 60

Asn Asp Val Phe Glu Ala Arg Ile Ala Ala Leu Glu Gly Gly Ser Ala

65 70

75

80

Ala Leu Gly Val Gly Ser Gly Ser Ala Ala Ile Thr Tyr Ala Ile Leu 85 90 95

Asn Ile Ala Thr Val Gly Asp Asn Ile Val Ser Ala Ser Thr Leu Tyr
100 105 110

Gly Gly Thr Tyr His Leu Phe Ser Gly Thr Leu Pro Lys Tyr Gly Ile 115 120 125

Thr Thr Lys Phe Val Asn Pro Asp Asp Pro Lys Asn Phe Glu Glu Ala 130 135 140

Ile Asp Glu Lys Thr Lys Ala Ile Tyr Tyr Glu Thr Leu Gly Asn Pro 150 155 160

Gly Asn Asn Val Ile Asp Tyr Asp Ala Ile Gly Gln Ile Ala Lys Lys 165 170 175

His Gly Ile Pro Val Ile Val Asp Ala Thr Phe Thr Thr Pro Val Thr 180 185 190

Phe Lys Pro Phe Glu His Gly Ala Asn Val Ile Val His Ser Ala Thr 195 200 205

Lys Phe Ile Gly Gly His Gly Thr Ser Ile Gly Gly Val Ile Val Asp 210 215 220

Gly Gly Asn Phe Asp Trp Ala Asn Gly Asn Phe Pro Asp Phe Thr Gln
225 230 235 240

Ala Asp Glu Ser Tyr Asn Gly Ile Lys Phe Ala Glu Leu Gly Glu Ile 245 250 255

Ala Phe Val Thr Arg Val Arg Ala Ile Leu Leu Arg Asp Thr Gly Ala 260 265 270

Ala Leu Ser Pro Phe His Ser Trp Leu Phe Leu Gln Gly Leu Glu Thr 275 280 285

Leu Ser Leu Arg Val Glu Arg His Ile Ser Asn Thr Lys Lys Ile Val 290 295 300

Glu Phe Leu Asp Asn His Pro Lys Val Glu Leu Val Asn His Pro Leu 305 310 315 320

Leu Glu Ser Asn Ser Tyr His Ala Leu Tyr Gln Lys Tyr Tyr Pro Lys 325 330 335

Asp Ala Gly Ser Ile Phe Thr Phe Glu Leu Lys Asp Lys Asp Glu Lys 340

Lys Ala Arg Asp Leu Ile Asp His Leu Glu Ile Phe Ser Leu Leu Ala 355 360 365

Asn Val Gly Asp Thr Lys Ser Leu Ala Ile His Pro Ala Ser Thr Thr 370 375 380

His Gln Gln Leu Asn Ala Glu Glu Leu Ala Ser Ala Gly Ile Ser Lys 385 390 395 400

Gly Thr Ile Arg Leu Ser Val Gly Ile Glu Asp Val Thr Asp Leu Ile 405 410 415

Ala Asp Leu Glu Gln Ala Leu Glu Lys Ile 420 425

<210> 15

<211> 1173

<212> DNA

<213> Synechococcus sp.

<220>

<221> CDS

<222> (1)..(1173)

<223>

400> 15
atg tct cag cgt ttc gaa acc ctc cag ctg cat gcc ggc cag tct cca
Met Ser Gln Arg Phe Glu Thr Leu Gln Leu His Ala Gly Gln Ser Pro
10 15

gac tcg gcc acc aat gcc aga gcg gtg ccg att tat cag acc agc tcc
Asp Ser Ala Thr Asn Ala Arg Ala Val Pro Ile Tyr Gln Thr Ser Ser
20 25 30

tac gtc ttc aac gac gcc gag cac ggc gcc aac ctg ttt gga ctg aag
Tyr Val Phe Asn Asp Ala Glu His Gly Ala Asn Leu Phe Gly Leu Lys
35 40 45

192

gaa ttc ggc aac atc tac acc cgt ctg atg aac ccg acg acg gat gtg Glu Phe Gly Asn Ile Tyr Thr Arg Leu Met Asn Pro Thr Thr Asp Val

50 55 60

65	GIU	пур	ΝĽ	y va	70	a A.	ra L	eu (GIu	GI	y G. 75	ly Va 5	al A	Ala	Ala	Le:	g gcc 1 Ala 80	
1111	AIG	ser	GI	85 85	пъе	r Al	La G	TU)	Phe	Let 90	u A]	la I	le 1	hr	Asn	95	c atg s Met	
GIN	Ald	GTÀ	100	ASI	n PN	e Va	ıı S	er 1	Thr 105	Sei	r Ph	e Le	eu T	Эr	Gly 110	Gl	acc Thr	
ıyı	ASII	115	Pne	гÀг	s va.	I GI	n Pi 12	ne I 20	?ro	Arg	J Le	u Gl	у I 1	le 25	Asp	Va]	g cgc Arg	384
rne	130	Asp	СТĀ	Asp) Asp	13.	5 1 G1	lu S	er	Phe	: Al	a Al 14	a G O	ln	Ile	Asp	gac Asp	432
145	****	nys	GIŸ	Deu	150	va.	I GI	u A	.za	Met	G1;	y As 5	n P	ro .	Arg	Phe	160	480
atc (PIO	Asp	Pne	165	GTÀ	Let	ı Se	r A	la	Leu 170	Ala	a Ly	s G	lu :	Arg	Gly 175	Ile	528
cca t Pro I	Jeu	:	180	Asp	ASI	Thr	. Le	u G.	1y 1 85	Ala	Cys	Gl	y Al	la] :	Նеս 190	Met	Arg	576
ccg a	:	195	112	GTÀ	ATA	Asp	200	l Va	al A	Val	Glu	Sei	2 A.J	la 7)5	thr	Lys	Trp	624
	10	эту г	lis (GIÀ	THE	215	Let	ı Gl	y (3ly	Val	11e 220	≀ Va	ıl A	lsp	Ala	Gly	672
aca t Thr P 225	ne r	sn 1	тр	œτλ΄	230	GIA	Lys	Ph	e P	Pro	Leu 235	Leu	Se	rG	ln	Pro	Ser 240	720
gcg g Ala A	Ta I	Ar u	15 (245	pen	vaı	HIS	Tr	р А 2	sp . 50	Ala	Phe	Gl	уP	he	Gly 255	Ser	768
gac g Asp Va	ar C	у ъ Б у 20	60	iet i	ueu	стА	Val	26!	o A 5	sp 1	Asn	Arg	As	n V 2	al : 70	Ala	Phe	816
gcc ct Ala Le	2'	75	ia A	ra .	/aı (31U	280	Let	ı Aı	rg A	Asp	Trp	Gl ₃ 28	γ P: 5	ro 1	Ala	Val	864
agt co Ser Pr 29	U PI	c aa ne As	n S	gc t er P	11E 1	etg Jeu 195	ctg Leu	ctg Leu	g ca i Gl	aa g ln G	ggt Ely	cta Leu 300	gaa Glu	a ao 1 Tì	ec o	etc Leu :	agc Ser	912
ctg cg	g gt	g ga	g c	gc c	ac a	cg (gag	aac	gc	c a	tg	gcg	ctg	gg	C a	icc 1	tgg	960

WO 2004/024933

•									_	.,,,,,,,								
Leu 305	Arg	Val	Glu	Arg	His 310	Thr	Glu	Asn	Ala	Met 315	Ala	Leu	Ala	Thr	Tr 32	p		-
cta Leu	gca Ala	acg Thr	cac His	ccc Pro 325	aat Asn	gtg Val	gag Glu	cat His	gtg Val 330	agc Ser	tac Tyr	cca Pro	gjy ggc	ctg Leu 335	ag Se	er er	1008	
agc Ser	gat Asp	ccg Pro	tat Tyr 340	cac His	gca Ala	gct Ala	gcc Ala	aag Lys 345	aaa Lys	tac Tyr	ctg Leu	acg Thr	ggc Gly 350	cgg Arg	G]	jc ly	1056	
atg Met	gga Gly	tgc Cys 355	Met	ctg Leu	atg Met	ttc Phe	teg Ser 360	ьеи	aag Lys	ggc	ggt Gly	tac Tyr 365		gat Asp	go A.	ca la	1104	
gtc Val	cgt Arg 370	Phe	atc Ile	aac Asn	agc Ser	ctt Leu 375	caa Gln	ctg Leu	gcc Ala	agt Ser	cac His	<u> </u>	gcc	aat Asn	g V	tg al	1152	
999 Gly 385	gat Asp	gcc Ala	aaa Lys	acc Thr	tgg Trp 390												1173	
<21	0 >	16																
<21	1>	390																
<21	2>	PRT																
<21		Syne	choc	occu	ıs sp	٠.												
		_																
<40	Ω>	16																
			n Arg	g Phe 5	e Glu	Thi	. Lev	ı Glr	1 Le	u Hi	s Al	a Gl	, Gl	n Se 15	er 1	Pro		
Ast	Se:	r Ala	a Th: 20	r Ası	n Ala	a Arg	g Ala	a Val 25	l Pr	o Il	е Ту	r Gl	n Th 30	r Se	r	Ser		
Туз	r Va	1 Ph		n Asj	p Ala	a Glı	40	s Gly	y Al	a As	n Le	u Ph 45	e Gl	y Le	eu	Lys		
Glı	u Ph 50		y As	n Il	e Ty	r Th: 55	r Ar	g Le	u Me	t As	n Pi 60	ro Th	r Th	nr As	gp	Val		
Ph 65	e Gl	u Ly	s Ar	g Va	1 Ala 70	a Al	a Le	u Gl	u Gl	у G] 75	ly Va	al Al	la A	la L	eu '	Ala 80		
Th	r Al	a Se	r Gl	y Gl 85	n Se	r Al	a Gl	n Ph	e Le 90	eu Al	la I	le Ti	ar A	sn C	ys S	Met	•	
Gl	n Al	a Gl	y As 10		n Ph	e Va	l Se	r Th 10	r Se 5	er Pl	ne L	eu Ty	yr G	ly G 10	ly	Thr		

- Tyr Asn Gln Phe Lys Val Gln Phe Pro Arg Leu Gly Ile Asp Val Arg 115 120 125
- Phe Ala Asp Gly Asp Asp Val Glu Ser Phe Ala Ala Gln Ile Asp Asp 130 135 140
- Lys Thr Lys Gly Leu Tyr Val Glu Ala Met Gly Asn Pro Arg Phe Asn 145 150 155 160
- Ile Pro Asp Phe Glu Gly Leu Ser Ala Leu Ala Lys Glu Arg Gly Ile 165 170 175
- Pro Leu Ile Val Asp Asn Thr Leu Gly Ala Cys Gly Ala Leu Met Arg 180 185 190
- Pro Ile Asp His Gly Ala Asp Val Val Val Glu Ser Ala Thr Lys Trp 195 200 205
- Ile Gly Gly His Gly Thr Ser Leu Gly Gly Val Ile Val Asp Ala Gly 210 215 220
- Thr Phe Asn Trp Gly Asn Gly Lys Phe Pro Leu Leu Ser Gln Pro Ser 225 230 235 240
- Ala Ala Tyr His Gly Leu Val His Trp Asp Ala Phe Gly Phe Gly Ser 245 250 255
- Asp Val Cys Lys Met Leu Gly Val Pro Asp Asn Arg Asn Val Ala Phe 260 265 270
- Ala Leu Arg Ala Arg Val Glu Gly Leu Arg Asp Trp Gly Pro Ala Val 275 280 285
- Ser Pro Phe Asn Ser Phe Leu Leu Gln Gly Leu Glu Thr Leu Ser 290 295 300
- Leu Arg Val Glu Arg His Thr Glu Asn Ala Met Ala Leu Ala Thr Trp 305 310 315 320
- Leu Ala Thr His Pro Asn Val Glu His Val Ser Tyr Pro Gly Leu Ser 325 330 335
- Ser Asp Pro Tyr His Ala Ala Ala Lys Lys Tyr Leu Thr Gly Arg Gly 340 345 350
- Met Gly Cys Met Leu Met Phe Ser Leu Lys Gly Gly Tyr Asp Asp Ala 355 360 365

Val Arg Phe Ile Asn Ser Leu Gln Leu Ala Ser His Leu Ala Asn Val 370

Gly Asp Ala Lys Thr Trp

<210> 17

<211> 1314

<212> DNA

<213> Emericella nidulans

<220>

<221> CDS

(1)..(1314) <222>

115

<223>

<400	. 1	7														
	- -		cct Pro	tca Ser 5	ccg Pro	aaa Lys	cgt Arg	ttc Phe	gag Glu 10	acc Thr	ctc Leu	cag Gln	ctc Leu	cat His 15	gcg Ala	48
ggc Gly	cag Gln	gag Glu	cct Pro 20	gac Asp	cct Pro	gca Ala	act Thr	aat Asn 25	tcc Ser	cgg Arg	gct Ala	gtc Val	cca Pro 30	atc Ile	tat Tyr	96
gcg Ala	aca Thr	acg Thr 35	tcc Ser	tac Tyr	acc Thr	ttc Phe	aat Asn 40	gac Asp	tcc Ser	gca Ala	cac His	ggc Gly 45	gcc Ala	agg Arg	ctt Leu	144
ttt Phe	ggc Gly 50	ctc Leu	aaa Lys	gag Glu	ttt Phe	ggc Gly 55	aat Asn	att Ile	tac Tyr	agc Ser	cga Arg 60	att Ile	atg Met	aat Asn	ccc Pro	192
aca Thr 65	gtc Val	gat Asp	gtc Val	ttc Phe	gaa Glu 70	aaa Lys	cgt Arg	att Ile	gct Ala	gca Ala 75	ctc Leu	gag Glu	gga Gly	ggt Gly	gtc Val 80	240
gct Ala	gcg Ala	gtg Val	gct Ala	gcc Ala 85	tca Ser	tct Ser	ggc Gly	cag Gln	gca Ala 90	gcc Ala	cag Gln	ttc Phe	atg Met	gcc Ala 95	atc Ile	288
tct Ser	gct Ala	cta Leu	gcc Ala 100	cat His	gct Ala	ggt Gly	gac Asp	aat Asn 105	atc Ile	gtt Val	tcc Ser	aca Thr	agt Ser 110	ABII	ttg Leu	336
tat Tyr	Gly	Gly	Thr	Tyr	aat Asn	Gln	ttt Phe	Lys	gtc Val	ctt Leu	ttc Phe	cca Pro 125	cga Arg	ctg Leu	gga Gly	384

120

PCT/EP2003/009453

34/130

att Ile	ace Thi	. 111	a aa r Ly	a tt s Ph	c gt le Va	g ca l Gl 13	n G	ga g ly A	ac a sp L	aa go ys A	La G	ag ga lu As 10	ac at sp Il	t go .e Al	c gcc a Ala	432
gct Ala 145	TTE	e ga e As	t ga p Asj	c cg p Ar	t ac g Th 15	т Ьу	g go 's A.	cc g la V	to ta	ac gt yr Va 15	al G	ag ac lu Tì	a at ir Il	a gg .e Gl	a aac y Asn 160	480
ect Pro	cgc Arg	ta Ty:	c aat r Ası	t gt n Va 16	T LL	c ga o As	c tt p Pl	it ga	ag gi lu Va 17	al I	t go le Al	ca aa la Ly	ia gt 's Va	a gc l Al 17	c cat a His 5	528
gag Glu	aag Lys	gg: Gly	a att y Ile 180	: LT	c ct o Le	t gt u Va	g gt l Va	t ga il As 18	aA qa	ic ac in Th	c tt ir Ph	c gg le Gl	y Al 19	a Gl	a ggc y Gly	576
tac Tyr	ttt Phe	gtt Val 195	LArc	a cc	c ati	t gaa	a ca u Hi 20	s Gl	y Al	c ga a As	c at p Il	t gt e Va 20	l Va	g ca l Hi	c agt s Ser	624
gca Ala	act Thr 210	aaa Lys	tgg Trp	g att	t gga e Gly	ggt Gl ₃ 215	/ Hi	t gg s Gl	c ac y Th	a ac r Th	c at r Il 22	e Gl	a gg y Gl	c gti y Val	t gtc L Val	672
225	Asp	sei	GIY	гĀг	230	. Asp	Tr	b GI	у Lу	23	n Al 5	a Al	a Ar	g Phe	cct Pro 240	720
GIII	Pne	THE	GIN	245	ser	GIU	ı Gl	у Ту	r Hi:	B Gl O	y Le	u Ası	n Phe	255		768
****	rne	GIY	260	TTE	Ala	Pne	ALa	26!	e Arg	y Val	l Arg	g Val	1 Gl:	l Ile	ctg Leu	816
Alg	Asp	275	GIÀ	ser	gcg Ala	Leu	280	Pro) Phe	≥ Ala	a Ala	285	Glr	Leu	Ile	864
neu :	290	neu	GIU	Thr	cta Leu	295	Leu	Arg	, Ala	ı Glu	300	y His	Ala	Ser	Asn	912
gct (Ala) 305	Leu .	АІА	ren	Ala	310	Trp	Leu	Lys	Lys	Asn 315	Asp	His	Val	Ser	Trp 320	960
gtt 1 Val 8	er ·	TYL	vai	325	ren	GIU	Glu	His	Ser 330	Ser	His	Glu	Val	Ala 335	Lys	1008
aag t Lys 7	yr i	Leu	140	Arg	GIÀ	Phe	Gly	Gly 345	Val	Leu	Ser	Phe	Gly 350	Val	Lys	1056
ggt g Gly G	3	355	AIG	val	GIY .	ser	360	Val	Val	Asp	Asn	Phe 365	Lys	Leu	Ile	1104
tcc a Ser A 3	at c sn L 70	ta e	gca a Ala <i>l</i>	aat (Asn '	var (gga g Sly 1 175	gac Asp	tcc Ser	aag Lys	acc Thr	ctc Leu 380	gcg Ala	att Ile	cac His	ccc Pro	1152

tgg agc acc act Trp Ser Thr Thr 385	cac gag cag His Glu Gln 390	ttg acc gac Leu Thr Asp	cag gag cga a Gln Glu Arg I 395	tc gat tct 1200 le Asp Ser 400
ggt gtt acg gas Gly Val Thr Glu	gat gcc atc Asp Ala Ile 405	cgc atc tct Arg Ile Ser 410	gtc ggc act g Val Gly Thr G	ag cac atc 1248 lu His Ile 415
gac gac atc atc Asp Asp Ile Ile 420	Ala Asp Phe	gaa cag tca Glu Gln Ser 425	Phe Ala Ala	acc ttc aaa 1296 Thr Phe Lys 130
gtt gtc cgg agt Val Val Arg Ser 435	get tag Ala .			1314
<210> 18				
<211> 437				*
<212> PRT				
<213> Emerice	lla nidulans			
<400> 18 Met Ser Asp Pro	n Ser Pro Lvs	Arg Phe Glu	Thr Leu Gln	Leu His Ala
1	5	10		15
Gly Gln Glu Pro 20	o Asp Pro Ala	Thr Asn Ser 25	Arg Ala Val	Pro Ile Tyr 30
Ala Thr Thr Se	r Tyr Thr Phe	e Asn Asp Ser 40	Ala His Gly 45	Ala Arg Leu
Phe Gly Leu Ly 50	s Glu Phe Gly 55	Asn Ile Tyr	Ser Arg Ile 60	Met Asn Pro
Thr Val Asp Va	l Phe Glu Lys 70	Arg Ile Ala	Ala Leu Glu 75	Gly Gly Val 80
Ala Ala Val Al	a Ala Ser Sei 85	Gly Gln Ala	Ala Gln Phe	Met Ala Ile 95
Ser Ala Leu Al 10		Asp Asn Ile	e Val Ser Thr	Ser Asn Leu 110
Tyr Gly Gly Th	r Tyr Asn Gli	n Phe Lys Val	Leu Phe Pro 125	Arg Leu Gly

Ile Thr Thr Lys Phe Val Gln Gly Asp Lys Ala Glu Asp Ile Ala Ala

130

135

140

36/130

Ala Ile Asp Asp Arg Thr Lys Ala Val Tyr Val Glu Thr Ile Gly Asn 145 150 155 160

Pro Arg Tyr Asn Val Pro Asp Phe Glu Val Ile Ala Lys Val Ala His
165 170 175

Glu Lys Gly Ile Pro Leu Val Val Asp Asn Thr Phe Gly Ala Gly Gly
180 185 190

Tyr Phe Val Arg Pro Ile Glu His Gly Ala Asp Ile Val Val His Ser 195 200 205

Ala Thr Lys Trp Ile Gly Gly His Gly Thr Thr Ile Gly Gly Val Val 210 215 220

Val Asp Ser Gly Lys Phe Asp Trp Gly Lys Asn Ala Ala Arg Phe Pro 225 230 235 240

Gln Phe Thr Gln Pro Ser Glu Gly Tyr His Gly Leu Asn Phe Trp Glu 245 250 255

Thr Phe Gly Pro Ile Ala Phe Ala Ile Arg Val Arg Val Glu Ile Leu 260 265 270

Arg Asp Leu Gly Ser Ala Leu Asn Pro Phe Ala Ala Gln Gln Leu Ile 275 280 285

Leu Gly Leu Glu Thr Leu Ser Leu Arg Ala Glu Arg His Ala Ser Asn 290 295 300

Ala Leu Ala Leu Ala Asn Trp Leu Lys Lys Asn Asp His Val Ser Trp 305 310 315 320

Val Ser Tyr Val Gly Leu Glu Glu His Ser Ser His Glu Val Ala Lys 325 330 335

Lys Tyr Leu Lys Arg Gly Phe Gly Gly Val Leu Ser Phe Gly Val Lys 340 345 350

Gly Glu Ala Ala Val Gly Ser Gln Val Val Asp Asn Phe Lys Leu Ile 355 360 365

Ser Asn Leu Ala Asn Val Gly Asp Ser Lys Thr Leu Ala Ile His Pro 370 375 380

336

Trp Ser	Thr	Thr I	Ais (Glu 390	Gln 1	Leu '	Phr :	Asp (Gln (395	3lu A	rg I	le A	.sp 8	Ser 100		
Gly Val	Thr		Asp 405	Ala	Ile .	Arg :	Ile	Ser 410	Val (3ly T	Thr G	lu F	lis :	Ile		
Asp Asp	lle	Ile 2 420	Ala	Asp	Phe	Glu	Gln 425	Ser	Phe i	Ala 1	Ala 7	Thr 1	Phe	ГÀа		
Val Val	l Arg 435	Ser	Ala													
<210>	19															-
<211>	1287			•						,						
<212>	DNA															
<213>	Bact	eroid	es f	rag	ilis				•						•	
<220>														•		
<221>	CDS							٠			•					
<222>	(1).	. (128	17)													
<223>																
											٠					
<400> atg ga Met Gl 1	19 a acg u Thr	aaa Lys	aaa Lys 5	tta Leu	cat His	ttt Phe	gag Glu	act Thr 10	tta Leu	caa Gln	ctc Leu	cat His	gtt Val 15	gga Gly		48
cag ga Gln Gl	g act u Thr	ccc Pro 20	gac Asp	ccg Pro	gca Ala	acc Thr	gat Asp 25	gcg	cgt Arg	gcc Ala	gta Val	cct Pro 30	att Ile	tat		96
																144
cag ac Gln Th	a act ir Thi 35	tcc Ser	tat Tyr	gtg Val	ttc Phe	cgg Arg 40	gat Asp	tcg Ser	gcc Ala	cat His	gcc Ala 45	gcc Ala	gca	cga Arg		
cag ac Gln Th ttt gg Phe Gl	ar Thi 35 ga ttg Ly Lei	Ser	Tyr	Val	Phe	Arg 40	Asp att	Ser tat	: Ala	иль cga	45 ctg	acc	aat	tcc		192
Gln The	ga tto	Ser caa Gln	gac Asp	cct	Phe 999 55	Arg 40 aat Asn	att	tate Tyr	gga Gly	cga Arg 60	45 ctg Leu	acc Thr	aat Asr	tcc Ser		

gag aat atc acc cgt tcc ggt gat cat att gtg gct gcc aag acc att

Glı	u Ası	n Il	e Th	ır Ai 90	rg S	er G	ly A	sp H 1	is 05	Ile	• Va.	l Ala	a Al	a Ly:		r Ile	
tat Tyr	ggs Gly	y Gl 11	утп	a ta ir Ty	at a	ac to sn Lo	eu L	tg g eu A 20	cg la	cat His	act Thi	t cto	g cc u Pro 12:	o Ala	tai a Ty:	t gga r Gly	384
gta Val	a acg Thi 130	r Th	c ac r Th	t tt	t gi le Va	ta ga al As 13	p P	cg t ro S	cc er .	gat Asp	ctt Lev	tti Phe	aA s	t tto n Phe	gaa Glu	a cgg 1 Arg	432
gcg Ala 145	1116	e Ar	t ga g Gl	a aa u As	t ac n Th	ır Ly	ng go rs Al	eg af la II	ta 1 le 1	ttc Phe	att Ile 155	Glu	a act	t Cto	g gga	a aac / Asn 160	480
ccc Pro	aat Asn	: tc:	c aa r Asi	t at n Il 16	e II	c ga .e As	t at p Me	g ga et As	sp 2	gcc Ala 170	gta Val	gct Ala	gco Ala	att a Ile	gcc Ala 175	cat His	528
aaa Lys	tat Tyr	Arg	y ato y Ilo 180	e Pr	g ct o Le	g at u Il	t gt e Va	g ga 1 As 18	p Z	aat Asn	act Thr	ttc Phe	ggt Gly	acg Thr	Pro	tac Tyr	576
ctt Leu	atc Ile	cgt Arg 195	Pro	e ato	t ga e Gl	g ca u Hi	c gg s Gl 20	y Al	a g	lac fac	att Ile	gtg Val	gta Val 205	. His	tct Ser	gcc Ala	624
aca Thr	aaa Lys 210	ttc Phe	att Ile	ggo Gly	gg, Gl	a cac y His 21!	s Gl	c ag y Se	t t	cg er	ttg Leu	gga Gly 220	gga	gtt Val	att Ile	gtc Val	672
gat Asp 225	tcc Ser	ggt Gly	aaa Lys	ttt Phe	gad Asp 230	TI	g gti Val	t gc l Al	t t a s	er	ggt Gly 235	aaa Lys	ttc Phe	ccg Pro	caa Gln	ctg Leu 240	720
acc Thr	gag Glu	ccg Pro	gat Asp	gca Ala 245	Ser	tat Tyr	cat His	999 Gl	y V	ta al 50	cgg Arg	ttt Phe	gtc Val	gat Asp	gct Ala 255	gcc Ala	768
G1y 999	gct Ala	Ата	gcc Ala 260	Tyr	att Ile	gtc Val	cgt Arg	ata 110 265	2 A:	gt g rg i	gcc Ala	gtg Val	ttg Leu	ctg Leu 270	cgc Arg	gat Asp	816
acg Thr	ggt Gly	gct Ala 275	gcc Ala	at <i>c</i> Ile	agc Ser	ccg	ttc Phe 280	Asr	e go	ct (la 1	ttt Phe	atc Ile	ttg Leu 285	ctg Leu	caa Gln	gly ggg	864
ttg (Leu (gag Glu 290	act Thr	ttg Leu	tct Ser	ttg Leu	cgt Arg 295	gta Val	gaa Glu	a co	gg d	lis	gtg Val 300	gcc Ala	aat Asn	gct Ala	ttg Leu	912
aag (Lys \ 305	gtt Val	att Ile	gat Asp	ttt Phe	ctg Leu 310	gtg Val	aac Asn	cat His	c CC	OI	ys 15	gta Val	gcg Ala	gct Ala	gtt Val	aat Asn 320	960
cat o	cca Pro	tca Ser	ttg Leu	ccc Pro 325	ggt Gly	cat His	ccg Pro	gat Asp	ca Hi 33	s A	cc a la :	atc Ile	tat Tyr	Gln	egt Arg 335	tat Tyr	1008
ttt c	ro (31A	999 Gly 340	gca Ala	ggt Gly	tct Ser	Ile	ttc Phe 345	ac Th	t t r P	tc c	gag g Blu	Val	aag Lys 350	gga Gly	gga Gly	1056

WO 2004/024933

		V	VO :	200-	1/024	933					3	9/130							101	2000,000
	•										_									
a T	cg hr	gag Glu	ga Gl 35	.u /	gcg Ala	cag Gln	aag Lys	ttt Phe	atc Ile 360	gat Asp	agt Ser	cto Lev	ca Gl		ta le 65	ttc Phe	t ct Sei	t t	tg eu	1104
C	tg eu	gcc Ala 370	As	at 9 sn '	gtg Val	gec Ala	gat Asp	gtg Val 375	aag Lys	tcg Ser	ctg Leu	gtg Va	g at 1 11 38		at His	ccg Pro	G1;	c a y I	ct hr	1152
3	hr 85	Thr	H:	is	Ser	Gln	ttg Leu 390	Asn	Ala	GIII	GIU	39	5					4	100	1200
ā	ys aaa	Pro	: g:	ga ly	acg Thr	gtc Val 405	aga Arg	ctt Leu	tcg Ser	ata Ile	ggt Gly 410	111	g ga r Gi	ag lu	cat His	att	ga G1 41	.u /	Jac Asp	1248
ć	att Ile	att Ile	: g	at sp	gac Asp 420	Leu	cgt Arg	cag Gln	gca Ala	tta Leu 425	i GI	g aa 1 Ly	a a s I	tt le	taa					1287
	<21	0>	20	•																٠,
	<21	1>	42	8																
	<21	.2>	PR	2 T																
	<21	L3>	Ва	cto	eroi	des	frag	jilis	3				*							
			2																	•
		00>				-	s Le	. 174	~ Dh	a (3)	ነነ ጥት	r L	eu (3ln	Le	ı Hi	s V	al	Gly	
	Me ¹	t Gl	u '	Fhr	гÀ	5 5	s ne	Y WT	5 - 11	. 01	10)					3	L 5		
	Gl	n G]	u '	Thr	Pr 20		p Pr	o Al	a Th	r As 25	p Al	la A	rg 2	Ala	. Va	1 Pr 30	to 1	[le	Tyr	
7	Gl	n Tì		Thr 35	: Se	r Ty	r Va	l Ph	e Ar 40	g As	p S	er A	la:	His	Al 45	a A	la i	Ala	Arg	• •
	Ph	ie G: 5		Lev	ı Gl	n As	p Pr	o Gl 55	y As	n II	le T	yr C	€ly	Arg 60	g Le	u T	hr :	Asn	Ser	
•	Tì 65		ln	Gly	y Va	l Le	eu Gl 70	u G]	.u Ai	rg I	le A	la i	Ala 75	Le	u Gl	Lu G	ly	Gl y	y Val 80	
	G]	ly G	ly	Le	u Al	la Va 85	l Al	a Se	er G	ly A	la A 9	la /	Ala	Va	1 T	hr I	yr	Ala 95	a Ile	•

Tyr Gly Gly Thr Tyr Asn Leu Leu Ala His Thr Leu Pro Ala Tyr Gly 115 120 125

Glu Asn Ile Thr Arg Ser Gly Asp His Ile Val Ala Ala Lys Thr Ile

100

Val Thr Thr Phe Val Asp Pro Ser Asp Leu Phe Asn Phe Glu Arg

WO 2004/024933

Ala Ile Arg Glu Asn Thr Lys Ala Ile Phe Ile Glu Thr Leu Gly Asn

Pro Asn Ser Asn Ile Ile Asp Met Asp Ala Val Ala Ala Ile Ala His 170

Lys Tyr Arg Ile Pro Leu Ile Val Asp Asn Thr Phe Gly Thr Pro Tyr 185

Leu Ile Arg Pro Ile Glu His Gly Ala Asp Ile Val Val His Ser Ala

Thr Lys Phe Ile Gly Gly His Gly Ser Ser Leu Gly Gly Val Ile Val

Asp Ser Gly Lys Phe Asp Trp Val Ala Ser Gly Lys Phe Pro Gln Leu 235

Thr Glu Pro Asp Ala Ser Tyr His Gly Val Arg Phe Val Asp Ala Ala

Gly Ala Ala Ala Tyr Ile Val Arg Ile Arg Ala Val Leu Leu Arg Asp

Thr Gly Ala Ala Ile Ser Pro Phe Asn Ala Phe Ile Leu Leu Gln Gly 280

Leu Glu Thr Leu Ser Leu Arg Val Glu Arg His Val Ala Asn Ala Leu

Lys Val Ile Asp Phe Leu Val Asn His Pro Lys Val Ala Ala Val Asn 310

His Pro Ser Leu Pro Gly His Pro Asp His Ala Ile Tyr Gln Arg Tyr 335

Phe Pro Gly Gly Ala Gly Ser Ile Phe Thr Phe Glu Val Lys Gly Gly 345

Thr Glu Glu Ala Gln Lys Phe Ile Asp Ser Leu Gln Ile Phe Ser Leu 360

Leu Ala Asn Val Ala Asp Val Lys Ser Leu Val Ile His Pro Gly Thr

T/EP2003/009453

41/130

370 375 380

Thr Thr His Ser Gln Leu Asn Ala Gln Glu Leu Glu Glu Gln Gly Ile 385 390 395 400

Lys Pro Gly Thr Val Arg Leu Ser Ile Gly Thr Glu His Ile Glu Asp 405 410 415

Ile Ile Asp Asp Leu Arg Gln Ala Leu Glu Lys Ile 420 425

<210> 21

<211> 1278

<212> DNA

<213> Pseudomonas aeruginosa

<220>

<221> CDS

<222> (1)..(1278)

<223>

<400>

atg Met 1	aaa Lys	ctg Leu	gaa Glu	acc Thr 5	ctg Leu	gcc Ala	gtc Val	cac His	gcc Ala 10	ggc	tac Tyr	Ser	Pro	gac Asp 15	Pro	48	
acc Thr	acc Thr	cgc	gcg Ala 20	gtg Val	gcg Ala	gtġ Val	ccg Pro	atc Ile 25	tac Tyr	cag Gln	acc Thr	acc Thr	tcc Ser 30	tac Tyr	gcc Ala	96	
ttc Phe	gac Asp	gac Asp 35	acc	cag Gln	cat His	Gly	gcc Ala 40	gac Asp	ctg Leu	ttc Phe	gac Asp	ctg Leu 45	aag Lys	gta Val	ccg Pro	144	
ggc Gly	aac Asn 50	atc Ile	tac Tyr	aca Thr	cgg Arg	atc Ile 55	atg Met	aac Asn	ccc Pro	acc Thr	aac Asn 60	gac Asp	gta Val	ctg Leu	gaa Glu	192	
cag Gln 65	cgc Arg	gtc Val	gcg Ala	gcg Ala	ctg Leu 70	gaa Glu	ggc	gjå aaa	gtc Val	999 Gly 75	gcg Ala	ctg Leu	gcg Ala	gtg Val	gcc Ala 80	240	
tcg Ser	G1A aaa	atg Met	gcg Ala	gcc Ala 85	atc Ile	acc Thr	tac Tyr	gcg Ala	atc Ile 90	cag Gln	acc Thr	gtc Val	gcc Ala	gag Glu 95	gcc Ala	288	
ggc	qac	aac	atc	gtc	tcg	gtg	gcc	aag	ctc	tac	ggc	ggc	acc	tac	aac	336	

Gly Asp Asn Ile Val Ser Val Ala Lys Leu Tyr Gly Gly Thr Tyr Asn

ctg Leu	ctg Leu			acc Thr	ctg Leu	cca	a cgo	ate	c gg e Gl	c at	c ca e Gl:	g gc n Al	g cg a Ar	c tt	c gcc	384
			•				12(,				12	5			
	130		, ,,,,,,	val	AIG	135	Бес	I GII	1 AI	a Lei	140	e As; O	p Gl	u Ar	g acc	
145		, ,	1110	cys	150	1111	TTE	. GIŽ	/ As:	n Pro 155	o Ala	a Gl	y As	n Il	c atc e Ile 160	: !
	Deu	OIII	AIG	165	ALA	Asp	Ala	ALA	17(a Arg	y His	Gly	y Va	1 Pr 17	_	
		тор	180	*****	vaı	ATA	THE	185	Val	. Leu	Cys	Arg	190	o Ph	c gag e Glu	
	1	195	nsp	116	vaı	val	200	ser	Leu	Thr	_L ys	Tyr 205	Met	: Gl	y Gly c ggc	624
	210		JCI	110	G _T y	215	116	vaı	vaı	Asp	Ser 220	Gly	. PAE	Phe	c gac e Asp	672
225				Lys :	230	лд	Pne	Pro	Leu	Leu 235	Asn	Thr	Pro	Asp	ccg Pro 240	720
tcc t Ser 1	.,		317	245		yr :	Inr	GIU	Ala 250	Phe	Gly	Pro	Ala	Ala 255	Phe	768
atc g	, . .	2	260	ug v	ar v	at 1	PFO .	Leu 265	Arg	Asn	Met	Gly	Ala 270	Ala	Leu	816
tcg c Ser P	2	75				2	80	seu (GIN	GIA	Leu	Glu 285	Thr	Leu	Ala	864
ctg c Leu A 2	gc a rg M 90	tg g et G	ag c lu A	gc c rg H	15 C	gc g	ac a	aac g Asn <i>l</i>	gcc Ala	Leu 1	gcc Ala 300	gtg Val	gcc Ala	cgc Arg	tac Tyr	912
ctg ca Leu Gi 305	ag ca ln G	ag c	at c		ag gt ln Va LO	g g	СС t la Т	rp V	aı .	aaa (Lys : 315	tac (gcc Ala	ggc	ctc Leu	gcc Ala 320	960
gac aa Asp As	ac co sn Pr	ec ga	ag ca lu Hi 32	LS AI	c ct .a Le	g go u Al	cc c la A	rg A	gc (130	tac d Tyr I	etg (Leu (31y (ggc Gly	cgc Arg 335	ccg Pro	1008
gcg gc Ala Al	g at a Il	c ct e Le 34		t tt r Ph	c gg e Gl	c at y Il	·e G	ag g ln G 45	gc g ly G	gc a Hy S	gc g er A	Mla A	gcc Ala 850	ggc Gly	gcg Ala	1056
cgc tt Arg Ph	c at e Il	c ga e As	c gc p Al	c ttg a Lei	g aag u Lyg	g ct s Le	g gt u Va	g gt	tg c	gg c rg L	tg g eu V	tc a al A	ac i	atc Ile	ggc ggc	1104

_					100									PCT/EP	2003/009453
`	WO 200)4/024	933					43/	130					2 2 27 = 2	
	355					360					365				·
gac go Asp Al	a Lys	tcc Ser	ctg Leu	gcc Ala	tgc Cys 375	cac His	ccg Pro	gcg Ala	agc Ser	acc Thr 380	acc Thr	cac His	cgc Arg	cag Gln	1152
ttg as Leu As 385	nc gcg sn Ala	gag Glu	gaa Glu	ctg Leu 390	gcc Ala	cgc Arg	gcc Ala	gga Gly	gtc Val 395	tcc Ser	gac Asp	gac Asp	atg Met	gtg Val 400	1200
cgg ct Arg Le	g tcg eu Ser	atc Ile	ggc Gly 405	atc Ile	gag Glu	cac His	atc Ile	gac Asp 410	gac Asp	atc Ile	ctc Leu	gcc Ala	gac Asp 415	ctc Leu	1248
gac ca Asp Gl	ng gco .n Ala	ctg Leu 420	gcc Ala	gcc Ala	gcc Ala	gca Ala	cgc Arg 425	tga							1278
<210>	22							,				•			
-011-	42E														

<211> 425

<212> PRT

<213> Pseudomonas aeruginosa

<400> 22

Met Lys Leu Glu Thr Leu Ala Val His Ala Gly Tyr Ser Pro Asp Pro

Thr Thr Arg Ala Val Ala Val Pro Ile Tyr Gln Thr Thr Ser Tyr Ala

Phe Asp Asp Thr Gln His Gly Ala Asp Leu Phe Asp Leu Lys Val Pro

Gly Asn Ile Tyr Thr Arg Ile Met Asn Pro Thr Asn Asp Val Leu Glu

Gln Arg Val Ala Ala Leu Glu Gly Gly Val Gly Ala Leu Ala Val Ala

Ser Gly Met Ala Ala Ile Thr Tyr Ala Ile Gln Thr Val Ala Glu Ala 85

Gly Asp Asn Ile Val Ser Val Ala Lys Leu Tyr Gly Gly Thr Tyr Asn 100

Leu Leu Ala His Thr Leu Pro Arg Ile Gly Ile Gln Ala Arg Phe Ala 120 125 115

Ala His Asp Asp Val Ala Ala Leu Glu Ala Leu Ile Asp Glu Arg Thr 130 135 140

Lys Ala Val Phe Cys Glu Thr Ile Gly Asn Pro Ala Gly Asn Ile Ile 145 150 155 160

Asp Leu Gln Ala Leu Ala Asp Ala Ala His Arg His Gly Val Pro Leu 165 170 175

Ile Val Asp Asn Thr Val Ala Thr Pro Val Leu Cys Arg Pro Phe Glu 180 185 190

His Gly Ala Asp Ile Val Val His Ser Leu Thr Lys Tyr Met Gly Gly
195 200 205

His Gly Thr Ser Ile Gly Gly Ile Val Val Asp Ser Gly Lys Phe Asp 210 215 220

Trp Ala Ala Asn Lys Ser Arg Phe Pro Leu Leu Asn Thr Pro Asp Pro 225 230 235 240

Ser Tyr His Gly Val Thr Tyr Thr Glu Ala Phe Gly Pro Ala Ala Phe 245 250 255

Ile Gly Arg Cys Arg Val Val Pro Leu Arg Asn Met Gly Ala Ala Leu 260 265 270

Ser Pro Phe Asn Ala Phe Leu Ile Leu Gln Gly Leu Glu Thr Leu Ala 275 280 285

Leu Arg Met Glu Arg His Cys Asp Asn Ala Leu Ala Val Ala Arg Tyr 290 295 300

Leu Gln Gln His Pro Gln Val Ala Trp Val Lys Tyr Ala Gly Leu Ala 305 310 315 320

Asp Asn Pro Glu His Ala Leu Ala Arg Arg Tyr Leu Gly Gly Arg Pro 325 330 335

Ala Ala Ile Leu Ser Phe Gly Ile Gln Gly Gly Ser Ala Ala Gly Ala 340 345 350

Arg Phe Ile Asp Ala Leu Lys Leu Val Val Arg Leu Val Asn Ile Gly 355 360 365

Asp Ala Lys Ser Leu Ala Cys His Pro Ala Ser Thr Thr His Arg Gln 370 375 380

384

Leu Asn Ala Glu Glu Leu Ala Arg Ala Gly Val Ser Asp Asp Met Val 385 390 395 400

Arg Leu Ser Ile Gly Ile Glu His Ile Asp Asp Ile Leu Ala Asp Leu 405 410 415

Asp Gln Ala Leu Ala Ala Ala Arg 420 425

<210> 23

<211> 1296

<212> DNA

<213> Bordetella bronchiseptica

<220>

<221> CDS

<222> (1)..(1296)

<223>

	> 2 agc Ser	C22	ccg Pro	aac Asn 5	caa Gln	ccc Pro	atc Ile	tgg Trp	cgg Arg 10	ctg Leu	gag Glu	acc Thr	atc Ile	gcc Ala 15	gta Val	48
cat His	gjà aaa	ggc Gly	tac Tyr 20	Arg	ccc Pro	gac Asp	ccg Pro	acc Thr 25	acg Thr	cgc Arg	gcg Ala	gtg Val	gcg Ala 30	gtg Val	ccg Pro	96
atc Ile	tac Tyr	cag Gln 35	acc Thr	gtg Val	gcc Ala	tat Tyr	gcg Ala 40	ttc Phe	gac Asp	gac Asp	acc Thr	cag Gln 45	cat His	ggc	gcg Ala	144
gac Asp	ctg Leu 50	ttc Phe	gac Asp	ctg Leu	aag Lys	gtg Val 55	ccg Pro	ggc Gly	aat Asn	at <i>c</i> Ile	tac Tyr 60	acc Thr	cgc Arg	atc Ile	atg Met	192
aac Asn 65	ccc Pro	acc Thr	acc Thr	gac Asp	gtg Val 70	ctg Leu	gag Glu	cag Gln	cgc Arg	gtg Val 75	gcg Ala	gcg Ala	ctg Leu	gaa Glu	tgc Cys 80	240
Gly	gtg Val	gcc Ala	gcg	ctg Leu 85	gcg Ala	ctg Leu	gcc Ala	tcc Ser	ggc Gly 90	cag Gln	gcg Ala	gcg Ala	gtg Val	acc Thr 95	tat Tyr	288
gcg Ala	atc Ile	ctg Leu	acc Thr 100	atc Ile	gcc Ala	gag Glu	gcg Ala	ggc Gly 105	gac Asp	aac Asn	atc Ile	gtg Val	tcg Ser 110	ser	agc Ser	336

acg ctg tat ggc ggc acg tac aac ctg ttc gcc cac acg ctg ccg cag

PCT/EP2003/009453

46/130

Th	r Le	u T 1	yr 15	Gly	, Gl	.у Т	hr I	:yr	Asn 120	Le	u Pl	ne P	lla	His	Th:		u Pro	o Gln	
tac Ty:	gg Gl 13	λт	tc le	acg Thr	ac Th	e c	rg F	tc he	gcc Ala	ga As	t co p Pr	eg o	gc Yrg	aac Asr 140	Le	g gc 1 Al	t tcg a Sem	g ttc r Phe	432
gaç Gli 145	1 AT	g c a L	tg eu	atc Ile	ga As	рG.	ag c lu A 50	rg	acc Thr	aa Ly	g go s Al	a I	ltt le .55	ttc Phe	gco Ala	ga a Gl	g tog u Sei	g gtg Val 160	480
Gly	aa As:	t c	cg (ctg Leu	99 Gl 16	y As	ic g	tc al	acc Thr	ga As _l	2 at 2 Il 17	e A	cc la	gcg	cto Leu	g gc	c gaq a Glu 179	g atc 1 Ile 5	528
gcg Ala	Ca Hi	c co	rg i	cat His 180	gg gl	c gt y Va	g c	cg ro	ctg Leu	ato Ile 185	e Va	c g l A	ac sp	aac Asn	acg Thr	gt: Va:	l Pro	g tcg Ser	576
ccc Pro	tac Ty:	c Ct Le 19	en 1	ctg Leu	Arg	c cc g Pr	c at o I	Le (gag Glu 200	Cac	gg Gl	c g y A	cc la	gac Asp	ato Ile 205	Va]	g gtg L Val	cag Gln	624
tcg Ser	cto Lev 210	LTE	c a	iys iag	tac Tyi	c ct	g gg u Gl 21	y (31y 31y	cac His	999 Gl	c a y Ti	hr	agc Ser 220	ctg Leu	Gly ggd	999 Gly	gcc Ala	672
atc Ile 225	atc Ile	ga As	t t	er	ggg	230	s Ph	t d	ecc Pro	tgg Trp	gcc	a G	ag lu 35	cac His	aag Lys	gcç	g ego Arg	ttc Phe 240	720
aag Lys	ege	Ct Le	ga uA	sn	gag Glu 245	Pro	ga As	c g p V	rtg Val	agc Ser	Tyr 250	H	ac is	ggc	gtg Val	gto Val	tac Tyr 255	Thr	768
gag Glu	gcg Ala	tt. Ph	e G	eo Jà ac	gcg Ala	geg	g gc	c t a T	yr :	atc Ile 265	ggc	ce Ar	g i	gcc Ala	cgc Arg	gtg Val 270	gtg Val	ccg Pro	816
ctg Leu	ege Arg	aa: As: 27!	n T	ec (ggc Gly	gcg Ala	AI.	c a a I 2	le s	tcg Ser	ccg Pro	t t Ph	ic a	aac Asn	gcc Ala 285	ttc Phe	cag Gln	atc Ile	864
Leu	cag Gln 290	999 Gl ₃	e at	tc q le (gag Glu	acg	cto Let 299	ı A.	cg d la I	etg Seu	cgc Arg	gt Va	1 7	gac Asp 300	cgc Arg	atc Ile	gtc Val	gag Glu	912
aac Asn 305	tcg Ser	gto Va]	e aa L Ly	ag g	gtg Val	gcc Ala 310	Gl)	j ti	ic c	tg eu	cgc Arg	ga As: 31	P F	cat His	ccc Pro	aag Lys	gtc Val	gaa Glu 320	960
tgg (gtc Val	aac Asn	ta Ty	r P	gcc Ala 325	ggc	ctg Leu	Pr	c g	sp	cat His 330	gc	c g a A	gac Asp	cat His	gcg Ala	ctg Leu 335	gtg Val	1008
cgc a Arg I	aag Lys	tac Tyr	at Me 34	et G	lly igc	Gly	aag Lys	gc Al	a P	cc ro 45	ggc Gly	cto	g t	tc he	Thr	ttc Phe 350	ggc	gtg Val	1056
aag g Lys G	TA	ggc Gly 355	cg Ar	c g g G	ag lu	gcc Ala	gly ggc	gc; Ala 36	a Aı	gc (rg]	ttc Phe	cag Gli	g A	sp 1	gcc Ala 865	ttg Leu	cag Gln	ctg Leu	1104

	,	WO 2 00)4/024	933					47	(120			IC I/EI	2003/00/
-									4//	130				
	ttc ac Phe Th	r Arg												1152
	ccg gc Pro Al 385													1200
	gcc gg Ala Gl													1248
	atc ga Ile As												tga	1296
	<210>	24												
	<211>	431												
	<212>	PRT												
	<213>	Bord	etel]	la br	onch	isep	tica	ı						

<400> 24

Met Ser Glu Pro Asn Gln Pro Ile Trp Arg Leu Glu Thr Ile Ala Val 1 5 10 15

His Gly Gly Tyr Arg Pro Asp Pro Thr Thr Arg Ala Val Ala Val Pro
20 25 30

Ile Tyr Gln Thr Val Ala Tyr Ala Phe Asp Asp Thr Gln His Gly Ala 35 40 45

Asp Leu Phe Asp Leu Lys Val Pro Gly Asn Ile Tyr Thr Arg Ile Met 50 55 60

Asn Pro Thr Thr Asp Val Leu Glu Gln Arg Val Ala Ala Leu Glu Cys 65 70 75 80

Gly Val Ala Ala Leu Ala Leu Ala Ser Gly Gln Ala Ala Val Thr Tyr 85 90 95

Ala Ile Leu Thr Ile Ala Glu Ala Gly Asp Asn Ile Val Ser Ser Ser 100 105 110

Thr Leu Tyr Gly Gly Thr Tyr Asn Leu Phe Ala His Thr Leu Pro Gln
115 120 125

Tyr Gly Ile Thr Thr Arg Phe Ala Asp Pro Arg Asn Leu Ala Ser Phe 130 135 140

Glu Ala Leu Ile Asp Glu Arg Thr Lys Ala Ile Phe Ala Glu Ser Val 145 150 155 160

Gly Asn Pro Leu Gly Asn Val Thr Asp Ile Ala Ala Leu Ala Glu Ile 165 170 175

Ala His Arg His Gly Val Pro Leu Ile Val Asp Asn Thr Val Pro Ser 180 185 190

Pro Tyr Leu Leu Arg Pro Ile Glu His Gly Ala Asp Ile Val Val Gln
195 200 205

Ser Leu Thr Lys Tyr Leu Gly Gly His Gly Thr Ser Leu Gly Gly Ala 210 215 220

Ile Ile Asp Ser Gly Lys Phe Pro Trp Ala Glu His Lys Ala Arg Phe 225 230 235 240

Lys Arg Leu Asn Glu Pro Asp Val Ser Tyr His Gly Val Val Tyr Thr 245 250 255

Glu Ala Phe Gly Ala Ala Ala Tyr Ile Gly Arg Ala Arg Val Val Pro 260 265 270

Leu Arg Asn Thr Gly Ala Ala Ile Ser Pro Phe Asn Ala Phe Gln Ile 275 280 285

Leu Gln Gly Ile Glu Thr Leu Ala Leu Arg Val Asp Arg Ile Val Glu 290 295 300

Asn Ser Val Lys Val Ala Gly Phe Leu Arg Asp His Pro Lys Val Glu 305 . 310 315 320

Trp Val Asn Tyr Ala Gly Leu Pro Asp His Ala Asp His Ala Leu Val 325 330 335

Arg Lys Tyr Met Gly Gly Lys Ala Pro Gly Leu Phe Thr Phe Gly Val 340 345 350

Lys Gly Gly Arg Glu Ala Gly Ala Arg Phe Gln Asp Ala Leu Gln Leu 355 360 365

Phe Thr Arg Leu Val Asn Ile Gly Asp Ala Lys Ser Leu Ala Thr His 370 375 380

Pro Ala Ser Thr Thr His Arg Gln Leu Asn Pro Glu Glu Leu Glu Lys

WO 2004/024933

49/130

CT/EP2003/009453

385 390

395

400

Ala Gly Val Arg Glu Glu Thr Val Arg Leu Ser Ile Gly Ile Glu His
405 410 415

Ile Asp Asp Leu Ile Ala Asp Leu Glu Gln Ala Leu Ala Gln Val
420 425 430

<210> 25

<211> 1269

<212> DNA

<213> Nitrosomonas europaea

<220>

<221> CDS

<400> 25

<222> (1)..(1269)

115

<223>

						ggc Gly 10							48
						tac Tyr							96
_	_	_		 _	_	ttg Leu	_	_	_		_	1	44
			_	_		ccg Pro		_	_	_	_	1	92
						gtg Val						2	40
						gtg Val 90						2	88
						gtt Val						3:	36
						ggt Gly						31	84

120

gat Asp	ggf Gl ₃	y Ar	t aa g As:	t cc n Pr	g gc o Al	c gc a Ala 13	a Pho	t gce e Ala	c gat a Asp	gcc Ala	ato Ile 140	a Asp	gac Asp	aat Asn	acc Thr	432
aga Arg 145	, Met	g at	t ta e Ty:	t tg r Cy	c ga s Gl	u Se:	g ato r Ilo	e gga	a aat y Ası	ccg Pro 155	Ala	ggt Gly	aat Asr	gtg Val	gtg Val 160	480
gat Asp	ato Ile	e ge	c gca a Ala	a cte a Le	u Ala	t gaa a Gli	a gto ı Val	g gcg l Ala	g cat a His 170	Ala	gcg Ala	g ggc Gly	gtg Val	Pro 175	ctg Leu	528
gta Val	gtg Val	g gad L Asj	aat Ası 180	2 Th:	gta r Val	a cca l Pro	a aco	e ccg Pro	o Val	j ctt Leu	tgt Cys	cgt Arg	Pro	Phe	gaa Glu	576
cat His	ggt Gly	gco Ala 195	a Ası	ato Ile	gto Val	gto l Val	cat His 200	a Ala	g ctg a Leu	acc Thr	aaa Lys	tac Tyr 205	Met	Gly	ggt Gly	624
cac His	ggc Gly 210	Thi	ago Ser	ato Ile	Gly	gga Gly 215	7 Il∈	ato Ile	gtg Val	gat Asp	tcc Ser 220	Gly	aag Lys	ttc Phe	ccc Pro	672
Trp 225	Glu	Gly	Asn	Ser	230	y Phe	Pro	Gln	Phe	Asn 235	Gln	Pro	Asp	Pro	agc Ser 240	720
Tyr	His	GTA	Val	Val 245	Tyr	· Val	Asp	Ala	250	Gly	Pro	Ala	Ala	Phe 255	Ile	768
GIÀ	Arg	Ala	Arg 260	Val	Val	Pro	Leu	Arg 265	Asn	Met	Gly	Ala	Ala 270	Ile	tca Ser	816
Pro	Phe	Asn 275	Ser	Phe	Leu	Ile	Leu 280	Gln	ggt Gly	Ile	Glu	Thr 285	Leu	Pro	Leu	864
Arg	Ме с 290	GLu	Arg	His	Сув	Thr 295	Asn	Ala	ctg Leu	Ala	Ile 300	Ala	Arg	Tyr	Leu	912
305	Arg	His	Pro	Lys	Val 310	Ser	Trp	Val	aat Asn	Phe 315	Ala	Gly	Leu	Glu	Asp 320	960
Asn	Arg	Asp	Tyr	Ala 325	Leu	Val	Gln	Lys	tac Tyr 330	Met	Asp	Gly	Gly	Ile 335	Pro	1008
	Ser	116	Leu 340	Ser	Phe	GIÀ	Ile	Lys 345	Gly	Gly	Arg	Glu	Ala 350	Cys	Ala	1056
cgc Arg	Phe	atg Met 355	gac Asp	aga Arg	ctg Leu	Met	ctg Leu 360	atc Ile	aaa Lys	cgg Arg	Leu	gtc Val 365	aac Asn	atc Ile	ejà aaa	1104
gat (Asp	gcc Ala	aaa Lys	acg Thr	ctg Leu	gcc Ala	tgc Cys	cac His	ccg Pro	gcg Ala	acg Thr	acc Thr	acc Thr	cac His	egt Arg	cag Gln	1152

WO 2004/024933

51/130

375 380 370 1200 ctc aat gat gaa gaa ctg gca aaa gcc ggt gtc agt gct gat ctg gtg Leu Asn Asp Glu Glu Leu Ala Lys Ala Gly Val Ser Ala Asp Leu Val 385 390 cgt tta tgt gtc ggc atc gag cat att gac gat ctg att gcc gat gta 1248 Arg Leu Cys Val Gly Ile Glu His Ile Asp Asp Leu Ile Ala Asp Val 410 405 gag cag gct ttc cag gat tag 1269 Glu Gln Ala Phe Gln Asp 420 <210> 26 <211> 422 <212> Nitrosomonas europaea <400> 26 Met Lys Arg Glu Thr Leu Ala Ile His Gly Gly Phe Ala Gly Asp Pro 15 10 Gln Thr His Ala Val Ala Val Pro Ile Tyr Gln Thr Thr Ser Tyr Tyr 20 25 30 Phe Asp Asp Thr Gln His Gly Ala Asp Leu Phe Asp Leu Lys Val Gln 40 45 35 Gly Asn Ile Tyr Thr Arg Ile Met Asn Pro Thr Thr Ala Val Leu Glu 60 55 50 Glu Arg Val Ala Leu Leu Glu Gly Gly Val Gly Ala Leu Ala Met Ala 80 70 75 Ser Gly Met Ala Ala Ile Thr Ala Cys Val Gln Thr Leu Ala Arg Ala 95 Gly Asp Asn Ile Ile Ser Thr Ser Gln Val Tyr Gly Gly Thr Tyr Asn 110 Phe Phe Cys His Thr Leu Pro Asn Leu Gly Ile Glu Val Arg Met Val 115

Asp Gly Arg Asn Pro Ala Ala Phe Ala Asp Ala Ile Asp Asp Asn Thr

135

130

Arg Met Ile Tyr Cys Glu Ser Ile Gly Asn Pro Ala Gly Asn Val Val 145 150 155 160

Asp Ile Ala Ala Leu Ala Glu Val Ala His Ala Ala Gly Val Pro Leu 165 170 175

Val Val Asp Asn Thr Val Pro Thr Pro Val Leu Cys Arg Pro Phe Glu
180 185 190

His Gly Ala Asp Ile Val Val His Ala Leu Thr Lys Tyr Met Gly Gly
195 200 205

His Gly Thr Ser Ile Gly Gly Ile Ile Val Asp Ser Gly Lys Phe Pro 210 215 220

Trp Glu Gly Asn Ser Arg Phe Pro Gln Phe Asn Gln Pro Asp Pro Ser 225 230 235 240

Tyr His Gly Val Val Tyr Val Asp Ala Phe Gly Pro Ala Ala Phe Ile 245 250 255

Gly Arg Ala Arg Val Val Pro Leu Arg Asn Met Gly Ala Ala Ile Ser 260 265 270

Pro Phe Asn Ser Phe Leu Ile Leu Gln Gly Ile Glu Thr Leu Pro Leu 275 280 285

Arg Met Glu Arg His Cys Thr Asn Ala Leu Ala Ile Ala Arg Tyr Leu 290 295 300

Gln Arg His Pro Lys Val Ser Trp Val Asn Phe Ala Gly Leu Glu Asp 305 310 315 320

Asn Arg Asp Tyr Ala Leu Val Gln Lys Tyr Met Asp Gly Gly Ile Pro 325 330 335

Ser Ser Ile Leu Ser Phe Gly Ile Lys Gly Gly Arg Glu Ala Cys Ala 340 345 350

Arg Phe Met Asp Arg Leu Met Leu Ile Lys Arg Leu Val Asn Ile Gly 355 360 365

Asp Ala Lys Thr Leu Ala Cys His Pro Ala Thr Thr His Arg Gln 370 380

Leu Asn Asp Glu Glu Leu Ala Lys Ala Gly Val Ser Ala Asp Leu Val 385 390 395 400

Arg Leu Cys Val Gly Ile Glu His Ile Asp Asp Leu Ile Ala Asp Val 405 410 415

Glu Gln Ala Phe Gln Asp 420

<210> 27

<211> 1281

<212> DNA

<213> Sinorhizobium meliloti

<220>

<221> CDS

<400> 27

<222> (1)..(1281)

<223>

atg Met 1	aaa Lys	gcc Ala	gga Gly	ccc Pro 5	gga Gly	ttc Phe	agc Ser	acg Thr	ctt Leu 10	gca Ala	att Ile	cac His	gcc Ala	999 Gly 15	gcc Ala		48
cag Gln	ecc Pro	gat Asp	ccg Pro 20	acg Thr	acc Thr	ggt Gly	gcg Ala	cgg Arg 25	gcg Ala	acg Thr	ccg Pro	atc Ile	tat Tyr 30	cag Gln	acg Thr		96
acc Thr	agc Ser	ttc Phe 35	gtc Val	ttc Phe	aac Asn	gac Asp	acg Thr 40	gat Asp	cat His	gcg Ala	gcc Ala	gca Ala 45	ctc Leu	ttc Phe	Gly		144
Leu	cag Gln 50	caa Gln	ttc Phe	gly ggc	Asn	atc Ile 55	tat Tyr	acc Thr	cgc Arg	atc Ile	atg Met 60	aat Asn	ccg Pro	acg Thr	cag Gln		192
gcg Ala 65	gtg Val	ctg Leu	gag Glu	gag Glu	cgg Arg 70	atc Ile	gcg Ala	gcg Ala	ctc Leu	gaa Glu 75	ggc Gly	gjå aaa	acc Thr	gcc Ala	80 Gly 999	•	240
ctg Leu	gcc Ala	gtt Val	tcc Ser	tcg Ser 85	Gly 999	cat His	gcg Ala	gcc Ala	cag Gln 90	ctg Leu	ctg Leu	gtt Val	ttc Phe	cat His 95	acg Thr		288
atc Ile	atg Met	agg Arg	ccg Pro 100	ggt Gly	gac Asp	aat Asn	ttc Phe	gtt Val 105	tcc Ser	gcc Ala	aga Arg	cag Gln	ctt Leu 110	tac Tyr	Gly ggc		336
GJA 333	tcg Ser	gcc Ala 115	aat Asn	cag Gln	ttc Phe	ggc Gly	cat His 120	gcc Ala	ttc Phe	aag Lys	gcc Ala	tt <i>c</i> Phe 125	gac Asp	tgg Trp	cag Gln		384

PCT/EP2003/009453

54/130

		Trp	gcc Ala				Glu									432
	Glu		acc Thr			Ile										480
ggc	acc Thr	ttc Phe	gtc Val	gac Asp 165	Ile	gcc Ala	gca Ala	atc Ile	gct Ala 170	gac Asp	gtt Val	gcg Ala	cgg Arg	cga Arg 175	cac His	528
			ctc Leu 180	Ile					Met							576
			gaa Glu					Ile								624
			ggt Gly													672
	Thr		gac Asp													720
			gaa Glu													768
			gcc Ala 260													816
			tcg Ser													864
			ctg Leu													912
			ctg Leu													960
			gac Asp													1008
			gga Gly 340													1056
gcg Ala	gga Gly	aag Lys 355	cgc Arg	ttt Phe	gtc Val	Glu	gca Ala 360	ctg Leu	gaa Glu	atg Met	ttc Phe	tcc Ser 365	cat His	ctt Leu	gcc Ala	1104
			gac Asp		Arg											1152

<400> 28

Met Lys Ala Gly Pro Gly Phe Ser Thr Leu Ala Ile His Ala Gly Ala 1 5 10 15

Gln Pro Asp Pro Thr Thr Gly Ala Arg Ala Thr Pro Ile Tyr Gln Thr 20 25 30

Thr Ser Phe Val Phe Asn Asp Thr Asp His Ala Ala Ala Leu Phe Gly 35 40 45

Leu Gln Gln Phe Gly Asn Ile Tyr Thr Arg Ile Met Asn Pro Thr Gln 50 55 60

Ala Val Leu Glu Glu Arg Ile Ala Ala Leu Glu Gly Gly Thr Ala Gly 65 70 75 80

Leu Ala Val Ser Ser Gly His Ala Ala Gln Leu Leu Val Phe His Thr 85 90 95

Ile Met Arg Pro Gly Asp Asn Phe Val Ser Ala Arg Gln Leu Tyr Gly
100 105 110

Gly Ser Ala Asn Gln Phe Gly His Ala Phe Lys Ala Phe Asp Trp Gln 115 120 125

Val Arg Trp Ala Asp Ser Ala Glu Pro Glu Ser Phe Asp Ala Gln Ile 130 135 140

Asp Glu Arg Thr Lys Ala Ile Phe Ile Glu Ser Leu Ala Asn Pro Gly

PCT/EP2003/009453

56/130

Gly Thr Phe Val Asp Ile Ala Ala Ile Ala Asp Val Ala Arg Arg His Gly Leu Pro Leu Ile Val Asp Asn Thr Met Ala Thr Pro Tyr Leu Met Arg Pro Leu Glu His Gly Ala Asp Ile Val Val His Ser Leu Thr Lys Phe Ile Gly Gly His Gly Asn Ser Met Gly Gly Ile Ile Val Asp Gly Gly Thr Phe Asp Trp Ser Lys Ser Gly Lys Tyr Pro Leu Leu Ser Glu Pro Arg Pro Glu Tyr Gly Gly Val Val Leu His Gln Ala Phe Gly Asn Phe Ala Phe Ala Ile Ala Ala Arg Val Leu Gly Leu Arg Asp Phe Gly Pro Ala Ile Ser Pro Phe Asn Ala Phe Leu Ile Gln Thr Gly Val Glu Thr Leu Pro Leu Arg Met Gln Arg His Cys Asp Asn Ala Leu Glu Val . Ala Lys Trp Leu Lys Gly His Glu Lys Val Ser Trp Val Arg Tyr Ser Gly Leu Glu Asp Asp Pro Asn His Ala Leu Gln Lys Arg Tyr Ser Pro Lys Gly Ala Gly Ala Val Phe Thr Phe Gly Leu Ala Gly Gly Tyr Glu Ala Gly Lys Arg Phe Val Glu Ala Leu Glu Met Phe Ser His Leu Ala Asn Ile Gly Asp Thr Arg Ser Leu Val Ile His Pro Ala Ser Thr Thr

His Arg Gln Leu Thr Pro Glu Gln Gln Val Ala Ala Gly Ala Gly Pro

Asp Val Ile Arg Leu Ser Val Gly Ile Glu Asp Val Ala Asp Ile Ile 405 410 415

Ala Asp Leu Glu Gln Ala Leu Gly Lys Ala 420 425

<210> 29

<211> 1293

<212> DNA

<213> Thermotoga maritima

<220>

<221> CDS

<400> 29

<222> (1)..(1293)

<223>

	atg Met 1	gac Asp	tgg Trp	aag Lys	aaa Lys 5	tac Tyr	ggt Gly	tac Tyr	aac Asn	aca Thr 10	agg Arg	Ala	Leu	His	gca Ala 15	ggt	48
-	tat Tyr	gaa Glu	cca Pro	ccc Pro 20	gag Glu	cag Gln	gcc Ala	aca Thr	gga Gly 25	tcg Ser	aga Arg	gcg Ala	gtc Val	cct Pro 30	ata Ile	tat Tyr	96
	caa Gln	acg Thr	act Thr 35	tct Ser	tac Tyr	gtt Val	ttc Phe	aga Arg 40	gac Asp	tct Ser	gat Asp	cac His	gcg Ala 45	gcg Ala	aga Arg	ctc Leu	144
	ttc Phe	gca Ala 50	ctg Leu	gaa Glu	gaa Glu	cct Pro	999 999 999	ttc Phe	atc Ile	tat Tyr	aca Thr	agg Arg 60	att Ile	gga Gly	aat Asn	cct Pro	192
	acc Thr 65	gtc Val	tca Ser	gtt Val	ctt Leu	gaa Glu 70	gaa Glu	aga Arg	ata Ile	gcc Ala	gcc Ala 75	ctg Leu	gaa Glu	gaa Glu	gjå aaa	gtg Val 80	240
	gga Gly	gcc Ala	tta Leu	gcg Ala	gtt Val 85	gcc Ala	agt Ser	gga Gly	caa Gln	gcc Ala 90	gct Ala	ata Ile	act Thr	tac Tyr	gcc Ala 95	att Ile	288
	ttg Leu	aac Asn	atc Ile	gcg Ala 100	Gly	cca Pro	gga Gly	gat Asp	gag Glu 105	atc Ile	gtc Val	agc Ser	Gly aaa	agc Ser 110	gcg Ala	ctg Leu	336
	tat Tyr	Gly 999	gga Gly 115	acg Thr	tac Tyr	aat Asn	ctg Leu	ttc Phe 120	aga Arg	cac His	act Thr	ctc Leu	tat Tyr 125	aaa Lys	aaa Lys	tcc Ser	384
										aca Thr							432

130 135 140

7.70	
gag gcc atc acc gag aaa aca aag gcg gtg tac ctt gaa act atc ggg Glu Ala Ile Thr Glu Lys Thr Lys Ala Val Tyr Leu Glu Thr Ile Gly 145 150 155	480
aat ccc ggt ctc aca gtg ccg gac ttt gaa gcg ata gcg gag atc gct Asn Pro Gly Leu Thr Val Pro Asp Phe Glu Ala Ile Ala Glu Ile Ala 165 170 175	528
cac aga cac ggt gtt cct ttg ata gtg gac aat acg gta gct ccg tac His Arg His Gly Val Pro Leu Ile Val Asp Asn Thr Val Ala Pro Tyr 180 185 190	576
ata ttc agg ccc ttc gaa cac ggt gcc gac atc gtt gtt tat tcg gcc Ile Phe Arg Pro Phe Glu His Gly Ala Asp Ile Val Val Tyr Ser Ala 195 200 205	624
acg aaa ttc atc gga gga cac gga aca tcg ata ggc ggt ctc atc gta Thr Lys Phe Ile Gly Gly His Gly Thr Ser Ile Gly Gly Leu Ile Val 210 215 220	672
gac agc gga aaa ttc gac tgg acg aac gga aag ttt cca gaa ctc gtg Asp Ser Gly Lys Phe Asp Trp Thr Asn Gly Lys Phe Pro Glu Leu Val 235 240	720
gaa cca gat ccc agc tac cac ggt gtg agt tat gtg gag acg ttc aaa Glu Pro Asp Pro Ser Tyr His Gly Val Ser Tyr Val Glu Thr Phe Lys 245 250 255	768
gaa gca gcc tac ata gca aaa tgt aga acc cag ctt ttg agg gac ctg Glu Ala Ala Tyr Ile Ala Lys Cys Arg Thr Gln Leu Leu Arg Asp Leu 260 265 270	816
gga agc tgt atg agc ccg ttc aac gcg ttt ctg ttc atc ctc gga ctt Gly Ser Cys Met Ser Pro Phe Asn Ala Phe Leu Phe Ile Leu Gly Leu 275 280 285	864
gaa acc ctc agc ttg agg atg aag aaa cac tgt gaa aac gca ctg aag Glu Thr Leu Ser Leu Arg Met Lys Lys His Cys Glu Asn Ala Leu Lys 290 295 300	912
atc gtt gaa ttt ctg aaa tcg cat ccc gcc gtg agc tgg gtc aac tat Ile Val Glu Phe Leu Lys Ser His Pro Ala Val Ser Trp Val Asn Tyr 305 310 315 320	960
ccg ata gct gaa ggc aat aaa acc aga gaa aat gcg ctg aaa tac ctc Pro Ile Ala Glu Gly Asn Lys Thr Arg Glu Asn Ala Leu Lys Tyr Leu 325 330 335	1008
aaa gaa gga tac ggt gcg att gta acg ttc ggt gtg aaa ggc gga aaa Lys Glu Gly Tyr Gly Ala Ile Val Thr Phe Gly Val Lys Gly Gly Lys 340 345 350	1056
gag gcg gga aag aag ttc ata gac agt ctc aca ctc att tcc cac ctc Glu Ala Gly Lys Lys Phe Ile Asp Ser Leu Thr Leu Ile Ser His Leu 355 360 365	1104
gcc aac att ggt gat gca aga act ctg gct att cat ccc gct tcg aca Ala Asn Ile Gly Asp Ala Arg Thr Leu Ala Ile His Pro Ala Ser Thr 370 375 380	1152
acc cat cag cag ctc acg gaa gaa gag cag ttg aaa acg ggt gtt act	1200

•	•	/ O 20	U -7 /U2·	4/33		*			5	9/130						
Thr 385	His	Gln	Gln	Leu	Thr 390	Glu	Glu	Glu	Gln	Leu 395	Lys	Thr	Gly	Val	Thr 400	
ccg Pro	gat Asp	atg Met	ata Ile	aga Arg 405	ttg Leu	tct Ser	gtt Val	gga Gly	ata Ile 410	gaa Glu	gat Asp	gtg Val	gaa Glu	gat Asp 415	atc Ile	1248
ata Ile	gcc Ala	gat Asp	ctg Leu 420	gat Asp	cag Gln	gct Ala	ctc Leu	aga Arg 425	aaa Lys	tct Ser	cag Gln	gag Glu	gga Gly 430	tga		1293
<210)>	30														
<211	.>	430														
<212	?>	PRT														
<213	3>	Ther	noto	ga ma	ariti	ima										
<400														•		
Met 1	Asp	Trp	Lys	Lys 5	Tyr	Gly	Tyr	Asn	Thr 10	Arg	Ala	Leu	His	Ala 15	Gly	
Tyr	Glu	Pro	Pro 20	Glu	Gln	Ala	Thr	Gly 25	Ser	Arg	Ala	Val	Pro 30	Ile	Tyr	
Gln	Thx	Thr 3,5	Ser	Tyr	Val	Phe	Arg 40	Asp	Ser	Asp	His	Ala 45	Ala	Arg	Leu	
Phe	Ala 50	Leu	Glu	Glu	Pro	Gly 55	Phe	Ile	Tyr	Thr	Arg 60	Ile	Gly	Asn	Pro	
Thr 65	Val	Ser	Val	Leu	Glu 70	Glu	Arg	Ile	Ala	Ala 75	Leu	Glu	Glu	Gly	Val 80	
Gly	Ala	Leu	Ala	Val 85	Ala	Ser	Gly	Gln	Ala 90	Ala	Ile	Thr	Туг	Ala 95	Ile	
Leu	Asn	Ile	Ala 100	Gly	Pro	Gly	Asp	Glu 105		Val	Ser	Gly	Ser 110		Leu	
туг	Gly	Gly 115	Thr	Tyr	Asn	Leu	Phe 120	Arg	His	Thr	Leu	125		. Lys	s Ser	
Gly	Ile 130		Val	Lys	Phe	Val 135	Asp	Glu	Thr	Asp	Prc 140		Asr	ı Ile	Glu	

Glu Ala Ile Thr Glu Lys Thr Lys Ala Val Tyr Leu Glu Thr Ile Gly 145 150 155 160

- Asn Pro Gly Leu Thr Val Pro Asp Phe Glu Ala Ile Ala Glu Ile Ala 165 170 175
- His Arg His Gly Val Pro Leu Ile Val Asp Asn Thr Val Ala Pro Tyr
 180 185 190
- Ile Phe Arg Pro Phe Glu His Gly Ala Asp Ile Val Val Tyr Ser Ala
 195 200 205
- Thr Lys Phe Ile Gly Gly His Gly Thr Ser Ile Gly Gly Leu Ile Val 210 215 220
- Asp Ser Gly Lys Phe Asp Trp Thr Asn Gly Lys Phe Pro Glu Leu Val 225 230 235 240
- Glu Pro Asp Pro Ser Tyr His Gly Val Ser Tyr Val Glu Thr Phe Lys

 245 250 255
- Glu Ala Ala Tyr Ile Ala Lys Cys Arg Thr Gln Leu Leu Arg Asp Leu 260 265. 270
- Gly Ser Cys Met Ser Pro Phe Asn Ala Phe Leu Phe Ile Leu Gly Leu 275 280 285
- Glu Thr Leu Ser Leu Arg Met Lys Lys His Cys Glu Asn Ala Leu Lys 290 295 300
- Ile Val Glu Phe Leu Lys Ser His Pro Ala Val Ser Trp Val Asn Tyr 305 310 315 320
- Pro Ile Ala Glu Gly Asn Lys Thr Arg Glu Asn Ala Leu Lys Tyr Leu 325 330 335
- Lys Glu Gly Tyr Gly Ala Ile Val Thr Phe Gly Val Lys Gly Gly Lys 340 345 350
- Glu Ala Gly Lys Lys Phe Ile Asp Ser Leu Thr Leu Ile Ser His Leu 355 360 365
- Ala Asn Ile Gly Asp Ala Arg Thr Leu Ala Ile His Pro Ala Ser Thr 370 375 380
- Thr His Gln Gln Leu Thr Glu Glu Glu Gln Leu Lys Thr Gly Val Thr 385 390 395 400
- Pro Asp Met Ile Arg Leu Ser Val Gly Ile Glu Asp Val Glu Asp Ile

405

410

415

Ile Ala Asp Leu Asp Gln Ala Leu Arg Lys Ser Gln Glu Gly
420 425 430

<210> 31

<211> 1314

<212> DNA

<213> Streptococcus mutans

<220>

<221> CDS

<222> (1)..(1314)

31

<223>

<400>

atg Met 1	gag Glu	cta Leu	att Ile	aat Asn 5	aat Asn	aaa Lys	agg Arg	aga Arg	gct Ala 10	tcc Ser	atg Met	act Thr	cga Arg	gaa Glu 15	ttt Phe		48
tct Ser	ttt Phe	gaa Glu	act Thr 20	tta Leu	caa Gln	tta Leu	cat His	gcg Ala 25	gga Gly	caa Gln	agt Ser	gtt Val	gat Asp 30	cct Pro	aca Thr		96
aca Thr	aaa Lys	tcg Ser 35	cgt Arg	gca Ala	gta Val	cca Pro	atc Ile 40	tat Tyr	cag Gln	acg Thr	act Thr	tcc Ser 45	tat Tyr	gtg Val	ttt Phe		144
aat Asn	gat Asp 50	gca Ala	caa Gln	gat Asp	gct Ala	gaa Glu 55	gat Asp	tct Ser	ttt Phe	gca Ala	ctt Leu 60	cgt Arg	aca Thr	ecc Pro	Gly	•	192
aat Asn 65	att Ile	tat Tyr	acg Thr	cgg Arg	atc Ile 70	act Thr	aat Asn	ccg Pro	act Thr	aca Thr 75	gcc	gtt Val	ttt Phe	gaa Glu	gaa Glu 80		240
cgg Arg	atg Met	gcc Ala	gct Ala	ctt Leu 85	gaa Glu	ggt Gly	ggt Gly	gtc Val	ggt Gly 90	gca Ala	ctg Leu	gca Ala	aca Thr	gct Ala 95	tct Ser		288
ggt Gly	atg Met	gca Ala	gca Ala 100	gta Val	act Thr	tat Tyr	att Ile	gcc Ala 105	ttg Leu	gct Ala	ctt Leu	gct Ala	cat His 110	Ala	ggt Gly		336
gat Asp	cat His	att Ile 115	gtg Val	tca Ser	gca Ala	gcg Ala	aca Thr 120	gtt Val	tac Tyr	ggt Gly	ggc Gly	act Thr 125	Pne	aat Asn	ctt Leu		384
ctt Leu	aag Lys 130	gaa Glu	act Thr	tta Leu	cct Pro	cgc Arg 135	tat Tyr	ggc Gly	att Ile	act Thr	aca Thr 140	Ser	ttt Phe	gtt Val	gat Asp		432

gtt Val 145	L Ala	a Ası	t tte	c gc e Al	t ga a Gl 15	u Ile	t gaa e Glu	a gcg	g gct a Ala	att a Ile 155	≥ Th:	a gad r Asp	aag Lys	g act s Thr	aag Lys 160	480
ttt Phe	att E Ile	ate Ile	c gct e Ala	t ga a Gli 16	u Th	g tta r Lei	a gga u Gly	a aat / Asr	cet Pro 170	Lev	gga Gly	a aat y Asr	ato l Ile	gct Ala 175	gat Asp	528
ctt	gaa Glu	a aaa Lys	a tta s Lev 180	ı Ala	t gag a Gli	g att u Ile	c gcc e Ala	cat His 185	Arg	a cat His	get Ala	t att a Ile	Pro	Leu	gtt Val	576
att	gat Asp	aat Asr 199	ı Thı	tti Phe	t ggt e Gl	t act y Thi	e cct Pro 200	тут	ttg Leu	ctt Leu	: aat I Asr	gto Val 205	Phe	tct Ser	tac Tyr	624
ggt	yat Val 210	Ası	att Ile	gct Ala	z gtt a Val	cat l His 215	Ser	ged Ala	act Thr	aaa Lys	ttt Phe 220		ggt Gly	gga Gly	cat His	672
Gly 225	Thr	Ser	Ile	: Gly	/ Gly 230	/ Val	. Ile	· Val	Asp	Ser 235	Gly	/ Asn	Phe	Asp	240	720
Glu	Lys	Ser	· Gly	Lys 245	Phe	Pro	Gln	Phe	Val 250	Glu	Pro	gat Asp	Pro	Ser 255	Tyr	768
His	Asp	Ile	Ser 260	Tyr	Thr	Arg	Asp	Ile 265	Gly	Lys	Ala	gct Ala	Phe 270	Val	Thr	816
Ala	Val	Arg 275	Thr	Gln	Leu	Leu	Arg 280	Asp	Thr	Gly	Ala	tgc Cys 285	Leu	Ser	Pro	864
Phe	Asn 290	Ala	Phe	Leu	Leu	Leu 295	Gln	Gly	Leu	Glu	Thr 300		Ser	Leu	Arg	912
Val 305	Glu	Arg	His	Val	Glu 310	Asn	Ala	Lys	Lys	Ile 315	Ala	tac Tyr	Tyr	Leu	Glu 320	960
Asn	His	Pro	Lys	Val 325	Thr	Lys	Val	Asn	Tyr 330	Ala	Ser	ttg Leu	Pro	Ser 335	Ser	1008
Pro	Tyr	Tyr	Asp 340	Leu	Ala	Gln	Lys	Tyr 345	Leu	Pro	Lys	gga Gly	Ala 350	Ser	Ser	1056
IIe	Pne	355	Phe	Asn	Val	Ala	Gly 360	Ser	Ala	Lys	Ala	gct Ala 365	Arg	Glu	Val	1104
Ile	370	Ser	Leu	Glu	Ile	Phe 375	Ser	Asp	Leu	Ala	Asn 380	gtt Val	Ala	Asp	Ala	1152
aaa Lys	tca Ser	cta Leu	gtt Val	gtt Val	cat His	ccg Pro	gca Ala	aca Thr	acc Thr	act Thr	cat His	ggt Gly	caa Gln	atg Met	act Thr	1200

WO 2004/024933

T/EP2003/009453

63/130

390 395 400 385 gaa gaa gat cta cga gct tgc ggt att gaa cct gag caa atc cgt gtt 1248 Glu Glu Asp Leu Arg Ala Cys Gly Ile Glu Pro Glu Gln Ile Arg Val 405 410 tct att ggt ttg gaa aat gct gat gac tta atc gaa gat ttg cgc cta 1296 Ser Ile Gly Leu Glu Asn Ala Asp Asp Leu Ile Glu Asp Leu Arg Leu 420 425 gca ctt gaa aaa ata taa 1314 Ala Leu Glu Lys Ile 435 <210> 32 <211> 437 <212> PRT Streptococcus mutans <213> <400> 32 Met Glu Leu Ile Asn Asn Lys Arg Arg Ala Ser Met Thr Arg Glu Phe 10 Ser Phe Glu Thr Leu Gln Leu His Ala Gly Gln Ser Val Asp Pro Thr 25 20 Thr Lys Ser Arg Ala Val Pro Ile Tyr Gln Thr Thr Ser Tyr Val Phe 35 40 Asn Asp Ala Gln Asp Ala Glu Asp Ser Phe Ala Leu Arg Thr Pro Gly 50 Asn Ile Tyr Thr Arg Ile Thr Asn Pro Thr Thr Ala Val Phe Glu Glu 70 65 Arg Met Ala Ala Leu Glu Gly Gly Val Gly Ala Leu Ala Thr Ala Ser Gly Met Ala Ala Val Thr Tyr Ile Ala Leu Ala Leu Ala His Ala Gly 100 110 105 Asp His Ile Val Ser Ala Ala Thr Val Tyr Gly Gly Thr Phe Asn Leu 115 120 125

Leu Lys Glu Thr Leu Pro Arg Tyr Gly Ile Thr Thr Ser Phe Val Asp

130

- Val Ala Asn Phe Ala Glu Ile Glu Ala Ala Ile Thr Asp Lys Thr Lys 145 150 155 160
- Phe Ile Ile Ala Glu Thr Leu Gly Asn Pro Leu Gly Asn Ile Ala Asp 165 170 175
- Leu Glu Lys Leu Ala Glu Ile Ala His Arg His Ala Ile Pro Leu Val 180 185 190
- Ile Asp Asn Thr Phe Gly Thr Pro Tyr Leu Leu Asn Val Phe Ser Tyr
 195 200 205
- Gly Val Asp Ile Ala Val His Ser Ala Thr Lys Phe Ile Gly Gly His 210 215 220
- Gly Thr Ser Ile Gly Gly Val Ile Val Asp Ser Gly Asn Phe Asp Trp 235 230 235 240
- Glu Lys Ser Gly Lys Phe Pro Gln Phe Val Glu Pro Asp Pro Ser Tyr 245 250 255
- His Asp Ile Ser Tyr Thr Arg Asp Ile Gly Lys Ala Ala Phe Val Thr 260 265 270
- Ala Val Arg Thr Gln Leu Leu Arg Asp Thr Gly Ala Cys Leu Ser Pro 275 280 285
- Phe Asn Ala Phe Leu Leu Gln Gly Leu Glu Thr Leu Ser Leu Arg 290 295 300
- Val Glu Arg His Val Glu Asn Ala Lys Lys Ile Ala Tyr Tyr Leu Glu 305 310 315 320
- Asn His Pro Lys Val Thr Lys Val Asn Tyr Ala Ser Leu Pro Ser Ser 325 330 335
- Pro Tyr Tyr Asp Leu Ala Gln Lys Tyr Leu Pro Lys Gly Ala Ser Ser 340 345 350
- Ile Phe Thr Phe Asn Val Ala Gly Ser Ala Lys Ala Ala Arg Glu Val 355 360 365
- Ile Asp Ser Leu Glu Ile Phe Ser Asp Leu Ala Asn Val Ala Asp Ala 370 375 380
- Lys Ser Leu Val Val His Pro Ala Thr Thr His Gly Gln Met Thr 385 390 395 400

48

Glu Glu Asp Leu Arg Ala Cys Gly Ile Glu Pro Glu Gln Ile Arg Val 405 410

Ser Ile Gly Leu Glu Asn Ala Asp Asp Leu Ile Glu Asp Leu Arg Leu 420

Ala Leu Glu Lys Ile 435

<210> 33

<211> 1431

<212> DNA

<213> Burkholderia cepacia

<220>

<221> CDS

(1)..(1431) <222>

<223>

Leu 1	Lys	Arg	Arg	Thr 5	Pro	Val	Ile	Gly	Trp 10	Pro	Pro	Leu	Ser	Pro 15	Phe	
gcg Ala	agg Arg	ccg Pro	tcc Ser 20	gtg Val	gcc Ala	ccg Pro	ccg Pro	ccc Pro 25	agc Ser	atg Met	tcc Ser	gcg Ala	aac Asn 30	cgt Arg	ttc Phe	96
gac Asp	acg Thr	ctt Leu 35	gcg Ala	ctg Leu	cac His	gcc Ala	ggc Gly 40	gct Ala	gct Ala	ccc Pro	gac Asp	ccg Pro 45	acc Thr	acc Thr	Gly ggc	144
gcg Ala	cgc Arg 50	gcc Ala	acg Thr	ccg Pro	att Ile	tac Tyr 55	cag Gln	act Thr	acc Thr	tcg Ser	ttt Phe 60	tcg Ser	ttc Phe	ege Arg	gat Asp	192
tcc Ser 65	gac Asp	cac His	gcc Ala	gcg Ala	gcg Ala 70	ctc Leu	ttc Phe	aat Asn	atg Met	gag Glu 75	cgc Arg	gcc Ala	ggt Gly	cat His	gtt Val 80	240
tat Tyr	tcg Ser	cgc Arg	att Ile	tcg Ser 85	aac Asn	ccg Pro	acc Thr	gtg Val	gcc Ala 90	gtg Val	ttc Phe	gag Glu	gaa Glu	cgc Arg 95	gtg Val	288
gcc Ala	gcg Ala	ctg Leu	gaa Glu 100	aac Asn	Gly	gcg Ala	ggc	gcg Ala 105	atc Ile	ggc Gly	acg Thr	gca Ala	agc Ser 110	ggc	cag Gln	336
gcg	gcc	ctg	cat	ctg	gcc	att	gcc	acg	ctg	atg	ggc	gcg	ggt	tcg	cat	384

ttg aag cgc cgc acg ccg gtg ata gga tgg ccg cca ctt tca cct ttc

PCT/EP2003/009453

											•	,0,10	•							
		113	,					120)					3	L25				His	
at <i>c</i> Ile	gtc Val 130		tce Sei	c ag r Se	r A	La I	etg Leu 135	tac Tyr	gg G1	y (ggc 31y	tc:	r H:	ac a is <i>P</i> 40	at Isn	ct Le	g ci u L	tg eu	cac His	432
145		200	M. S	,	15	50	тĀ	TIE	GI.	u 1	inr	Th:	r Pł	ne V	al	Ly	s Pı	ro	ggc Gly 160	480
			ALG	16	5	y A	Te .	AIA	тe	u A	.70	Pro) As	n T	hr	Arg	7 Le	eu 75	ctg Leu	528
	1		180	200		y A	en i	PIO	18	у 5	eu	Asp	Va	l L	eu	Asp 190	o Il	.e	Ala	576
gcc Ala		195	OIL	776	· Al	а п.	2	300 31u	Hls	5 A.	rg	Val	Pr	O L	eu 05	Leu	ı Va	1	Asp	624
	210	- 110			FI	21	.5	eu	rer	ιι	ys .	Pro	Pho 220	e G] 0	lu :	His	Gl;	Y	Ala	672
gac Asp 225		· aı	-1-	HIS	230)	a T	nr	гуѕ	Ph	ie i	Leu 235	Gly	y Gl	.y 1	His	G1	Y '	Thr 240	720
acg a		, (JIJ	245	Ded	. va	I A	sp (σту	G1 25	y 1	rhr	Phe	: As	p l	Phe	As ₁ 25!	9 <i>i</i> 5	Ala	768
tcg g Ser G	, -	2	60	-10	GIU	F116	= 11	ir (31u 265	Pr	0 I	yr	Asp	Gl	y E 2	he 70	His	3 (3ly	816
atg g Met V	2	75	ua (31 u	GIU	set	28	ir v	/aI	Ala	аР	ro	Phe	Le: 28.	12 I. 5	eu	Arg	Ţ F	lla	864
	90	IU G	- y 1	Jeu .	arg	295	PD	e G	тÀ	Ala	a C	ys 1	Leu 300	Hi	s P	ro	Gln	. <i>2</i> A	la	912
gca to Ala T 305	. p	2	- 4	ieu (310	GΙΥ	11	e G	ıα	Thr	3 1	eu 1 15	Pro	Lei	ı A	rg	Met	3	lu 20	960
cgg ca Arg Hi			3:	25		Arg	Arg	g va	31	330	. G1	lu F	he	Leu	LA.	la	Gly 335	H	is	1008
gcc go Ala Al	g gt .a Va	c gg l Gl 34	<i>y</i>	cc g la V	al ;	gcc Ala	tat Tyr	2 CC Pr 34	-O (gaa Blu	ct Le	g c u P	cc ro	acg Thr	Ca H:	s	ccc Pro	g: A:	ac sp	1056
cac gc His Al	g ct a Le 35		g aa a Ly	ag c /s A	gg d rg I	nea	ctg Leu 360	PY	g c	gc rg	gg Gl	cg yA	la	ggt Gly 365	gc	c g a l	gtg /al	t t Pł	c ne	1104

	W	O 200	4/024	933		1			67.	/130						/EP2003/009-
•																
agc Ser	ttc Phe 370	gat Asp	ctg Leu	cgc Arg	ggc	gac Asp 375	cgc Arg	gcc Ala	gcc Ala	gga Gly	cgc Arg 380	agc Ser	ttt Phe	atc Ile	gaa Glu	1152
gcg Ala 385	ctc Leu	tcg Ser	ctg Leu	ttc Phe	tcg Ser 390	cat His	ctc Leu	gcg Ala	aac Asn	gtg Val 395	ggc Gly	gac Asp	gcg Ala	cgc Arg	tcg Ser 400	1200
ctc Leu	gtg Val	atc Ile	cat His	ccc Pro 405	Ala	tcg Ser	acc Thr	acc Thr	cac His 410	ttt Phe	cgc Arg	atg Met	gac Asp	gcc Ala 415	gct Ala	1248
gcc Ala	ctt Leu	gcc Ala	gcg Ala 420	gcc Ala	ggt Gly	atc Ile	gcc Ala	gaa Glu 425	ggc Gly	acg Thr	atc Ile	cgc Arg	ctc Leu 430	tcg Ser	atc Ile	1296
ggc Gly	ctc Leu	gaa Glu 435	gat Asp	ccc Pro	gac Asp	gat Asp	ctg Leu 440	atc Ile	gac Asp	gat Asp	ctc Leu	aag Lys 445	cgc Arg	gcg Ala	cta Leu	1344
aag Lys	gcc Ala 450	gca Ala	cag Gln	aaa Lys	gcg Ala	ggc Gly 455	agt Ser	tcg Ser	agc Ser	gca Ala	gcg Ala 460	His	ggc	Gly	gca Ala	1392
tcc Ser 465	ggc	agt Ser	gcc Ala	gcc Ala	caa Gln 470	ccc Pro	egc	ccg Pro	gag Glu	tcc Ser 475	Ala	tga				1431
<21	0>	34														
<21	1>	476														
<21	2>	PRT														
<21	3>	Burk	hold	eria	cepa	acia	,									
<40	0>	34														
Leu 1	Lys	Arg	Arg	Thr 5	Pro	Val	Ile	Gly	Trp 10	Pro	Pro	Leu	Ser	Pro 15) Phe	
Ala	Arg	Pro	Ser 20	Val		Pro	Pro	Pro 25	Ser	Met	. Ser	Ala	Asn 30	Arg	g Phe	
Asp	Thr	Leu	Ala	Leu	His	Ala	Gly	Ala	Ala	Pro) Asr	Pro	Thr	Thi	Gly	•

Ala Arg Ala Thr Pro Ile Tyr Gln Thr Thr Ser Phe Ser Phe Arg Asp

Ser Asp His Ala Ala Ala Leu Phe Asn Met Glu Arg Ala Gly His Val

Tyr Ser Arg Ile Ser Asn Pro Thr Val Ala Val Phe Glu Glu Arg Val

- Ala Ala Leu Glu Asn Gly Ala Gly Ala Ile Gly Thr Ala Ser Gly Gln
 100 105 110
- Ala Ala Leu His Leu Ala Ile Ala Thr Leu Met Gly Ala Gly Ser His 115 120 125
- Ile Val Ala Ser Ser Ala Leu Tyr Gly Gly Ser His Asn Leu Leu His 130 135 140
- Tyr Thr Leu Arg Arg Phe Gly Ile Glu Thr Thr Phe Val Lys Pro Gly
 145 150 155 160
- Asp Leu Asp Ala Trp Arg Ala Ala Leu Arg Pro Asn Thr Arg Leu Leu 165 170 175
- Phe Gly Glu Thr Leu Gly Asn Pro Gly Leu Asp Val Leu Asp Ile Ala
 180 185 190
- Ala Val Ala Gln Ile Ala His Glu His Arg Val Pro Leu Leu Val Asp 195 200 205
- Ser Thr Phe Thr Thr Pro Tyr Leu Leu Lys Pro Phe Glu His Gly Ala 210 215 220
- Asp Phe Val Tyr His Ser Ala Thr Lys Phe Leu Gly Gly His Gly Thr 225 230 235 240
- Thr Ile Gly Gly Val Leu Val Asp Gly Gly Thr Phe Asp Phe Asp Ala
 245 250 255
- Ser Gly Arg Phe Pro Glu Phe Thr Glu Pro Tyr Asp Gly Phe His Gly 260 265 270
- Met Val Phe Ala Glu Glu Ser Thr Val Ala Pro Phe Leu Leu Arg Ala 275 280 285
- Arg Arg Glu Gly Leu Arg Asp Phe Gly Ala Cys Leu His Pro Gln Ala 290 295 300
- Ala Trp Gln Leu Leu Gln Gly Ile Glu Thr Leu Pro Leu Arg Met Glu 305 310 315 320
- Arg His Val Ala Asn Thr Arg Arg Val Val Glu Phe Leu Ala Gly His 325 330 335
- Ala Ala Val Gly Ala Val Ala Tyr Pro Glu Leu Pro Thr His Pro Asp

340

345

350

His Ala Leu Ala Lys Arg Leu Leu Pro Arg Gly Ala Gly Ala Val Phe 355 360 365

Ser Phe Asp Leu Arg Gly Asp Arg Ala Ala Gly Arg Ser Phe Ile Glu 370 375 380

Ala Leu Ser Leu Phe Ser His Leu Ala Asn Val Gly Asp Ala Arg Ser 385 390 395 400

Leu Val Ile His Pro Ala Ser Thr Thr His Phe Arg Met Asp Ala Ala 405 410 415

Ala Leu Ala Ala Gly Ile Ala Glu Gly Thr Ile Arg Leu Ser Ile 420 425 430

Gly Leu Glu Asp Pro Asp Asp Leu Ile Asp Asp Leu Lys Arg Ala Leu 435 440 445

Lys Ala Ala Gln Lys Ala Gly Ser Ser Ser Ala Ala His Gly Gly Ala 450 455 460

Ser Gly Ser Ala Ala Gln Pro Arg Pro Glu Ser Ala 475 475

<210> 35

<211>. 1722

<212> DNA

<213> Deinococcus radiodurans

<220>

<221> CDS

<222> (1)..(1722)

<223>

<400> 35
gtg gcc ttc ccg tgc ggt cag gcg ggg aac aag ata aca agg ccg ggc
Val Ala Phe Pro Cys Gly Gln Ala Gly Asn Lys Ile Thr Arg Pro Gly
1 5 10 15

caa tgt gtc aac ggg ggc agg gca cgc tca gcc ccg tct aag ttt cgc Gln Cys Val Asn Gly Gly Arg Ala Arg Ser Ala Pro Ser Lys Phe Arg

48

96

	V	VO 20	004/02	24933		•)		7	0/130					PC*	T/EP2003/00945
ctt Leu	gac Asp	ccc Pro 35	tta Leu	ccc	gcc Ala	tcc Ser	gcg Ala 40	cta Leu	ctt Leu	ttt Phe	gag Glu	gag Glu 45	ctc Leu	ccg Pro	cag Gln	144
cag Gln	gag Glu 50	cca Pro	ccc Pro	act Thr	tca Ser	gag Glu 55	cgc Arg	ccg Pro	aga Arg	gac Asp	ctg Leu 60	gct Ala	cga Arg	cga Arg	cgg Arg	192
cgc Arg 65	ggc	aac Asn	cgg Arg	acc Thr	cca Pro 70	tca Ser	cgt Arg	cac His	ggt Gly	gcc Ala 75	aag Lys	gcc Ala	agc Ser	ccc Pro	ctg Leu 80	240
ggc Gly	gtg Val	tca Ser	acg Thr	atg Met 85	agc Ser	cgc Arg	cgg Arg	gcg Ala	gga Gly 90	cca Pro	agc Ser	gly ggg	aag Lys	gcc Ala 95	acg Thr	288
cgg Arg	atg Met	acg Thr	ata Ile 100	ttc Phe	aag Lys	tgt Cys	ccc Pro	ttc Phe 105	tcg Ser	att Ile	cac His	agc Ser	agg Arg 110	cag Gln	G1A aaa	336
gag Glu	tgc Cys	cgt Arg 115	gac Asp	tgg Trp	cgc Arg	ccc Pro	cga Arg 120	acc Thr	tgc Cys	ttc Phe	ccc Pro	cga Arg 125	gga Gly	gcc Ala	gcc Ala	384
Thr	atg Met 130	acc Thr	gat Asp	acc Thr	aaa Lys	cag Gln 135	ccg Pro	cag Gln	cct Pro	ctg Leu	cac His 140	ttc Phe	gag Glu	acc Thr	ttg Leu	432
cag	ata	cac	acc	aas	caa	cac	ccc	~a~	000	atà	200	~~-				

		275					280					285				
gaa Glu	acc Thr 290	atc Ile	ggc	aac Asn	ccg Pro	gcg Ala 295	ctg Leu	aac Asn	att Ile	ccc Pro	gat Asp 300	ttc Phe	gag Glu	ggc	gtg Val	912
gcg Ala 305	aaa Lys	gtc Val	gcg Ala	cac His	gag Glu 310	cac His	ggc	gtc Val	gcg Ala	gtg Val 315	gtc Val	gtg Val	gac Asp	aac Asn	acc Thr 320	960
ttc Phe	Gly 333	gcc Ala	ggc	gga Gly 325	tac Tyr	tac Tyr	tgc Cys	cag Gln	ccg Pro 330	ctg Leu	cgg Arg	cac His	ggc Gly	gcc Ala 335	aac Asn	1008
atc Ile	gtg Val	ctg Leu	cac His 340	tcg Ser	gcg Ala	agc Ser	aag Lys	tgg Trp 345	atc Ile	ggc Gly	GJA 333	cac His	ggc Gly 350	aac Asn	ggc	1056
atc Ile	ggc Gly	999 Gly 355	gtc Val	atc Ile	gtg Val	gac Asp	ggc 360	Gly aaa	aac Asn	ttc Phe	Asp	tgg Trp 365	ggc Gly	agc Ser	Gly 999	1104
cgg Arg	tat Tyr 370	ccg Pro	ctg Leu	atg Met	acc Thr	gag Glu 375	ccc Pro	tcg Ser	ccg Pro	agt Ser	tat Tyr 380	cac His	Gly ggg	ctg Leu	aag Lys	1152
ttc Phe 385	tgg Trp	gag Glu	acg Thr	ttc Phe	390 GJA 333	gaa Glu	G1A GGC	aac Asn	GJA aaa	ctg Leu 395	Gly	ctg Leu	ccg Pro	aac Asn	atc Ile 400	1200
gcc Ala	ttc Phe	atc Ile	acc Thr	cgc Arg 405	gcc Ala	cgc Arg	acc Thr	gag Glu	999 Gly 410	ctg Leu	cgc Arg	gac Asp	ctg Leu	gga Gly 415	acg Thr	1248
acc	ctg Leu	gcg Ala	ccg Pro 420	cag Gln	cag Gln	gcg Ala	tgg Trp	cag Gln 425	ttt Phe	ctg Leu	caa Gln	Gly	ctt Leu 430	Glu	acc Thr	1296
ctg Leu	agc Ser	ctg Leu 435	cgc Arg	gcc Ala	gag Glu	cgc Arg	cac His 440	gcc Ala	gag Glu	aac Asn	acc Thr	ctg Leu 445	Ala	ctg Leu	gcg Ala	1344
cac His	tgg Trp 450	ctc Leu	atc Ile	agc Ser	cac His	ccg Pro 455	gac Asp	gtg Val	aag Lys	cag Gln	gtc Val 460	Thr	tac Tyr	Pro	ggc	1392
ctg Leu 465	Ser	aac Asn	cac His	ccc Pro	cac His 470	tac Tyr	gac Asp	Arg	gcg Ala	cag Gln 475	acc Thr	tac Tyr	ttg Lev	ccg Pro	cgc Arg 480	1440
ggg ggg	gcg Ala	ggc Gly	gcg Ala	gtg Val 485	ctc Leu	acc Thr	ttc Phe	gag Glu	ctg Leu 490	cgc Arg	Gly 999	ggc Gly	cgg Arg	g gcg Ala 499	gcg Ala	1488
ggc Gly	gaa Glu	gcg Ala	ttt Phe 500	att Ile	cgc Arg	tcg Ser	gtc Val	aag Lys 505	ctc Leu	gcg Ala	cag Gln	cac His	gto Val	. Ala	aac Asn	1536
gtg Val	ggc	gac Asp 515	acc Thr	cgc Arg	acg Thr	ctg Leu	gtc Val 520	att Ile	cat His	ccg Pro	gcg Ala	ago Ser 525	Thi	t acc	cac His	1584
agc	cag	ctc	gac	gag	gtg	acg	cag	acg	aac	gcc	999	gto	acc	l ccc	ggc	1632

Ser	Gln	Leu	Asp	Glu	Val	Thr	Gln	Thr	Asn	Ala	Glv	Val	Thr	Pro	Glv
	530					535					540				- 1

ctc atc cgg gtg tcg gtg ggc atc gag cac gta gac gac atc cgc gag
Leu Ile Arg Val Ser Val Gly Ile Glu His Val Asp Asp Ile Arg Glu
545 550 555 560

gac ttc gcg cag gcc ctg gcg agc gct ggg gag cgg gcg tga 1722
Asp Phe Ala Gln Ala Leu Ala Ser Ala Gly Glu Arg Ala
565 570

<210> 36

<211> 573

<212> PRT

<213> Deinococcus radiodurans

<400> 36

Val Ala Phe Pro Cys Gly Gln Ala Gly Asn Lys Ile Thr Arg Pro Gly
1 10 15

Gln Cys Val Asn Gly Gly Arg Ala Arg Ser Ala Pro Ser Lys Phe Arg 20 25 30

Leu Asp Pro Leu Pro Ala Ser Ala Leu Leu Phe Glu Glu Leu Pro Gln 35 40 45

Gln Glu Pro Pro Thr Ser Glu Arg Pro Arg Asp Leu Ala Arg Arg Arg 50 55 60

Arg Gly Asn Arg Thr Pro Ser Arg His Gly Ala Lys Ala Ser Pro Leu 65 70 75 80

Gly Val Ser Thr Met Ser Arg Arg Ala Gly Pro Ser Gly Lys Ala Thr 85 90 95

Arg Met Thr Ile Phe Lys Cys Pro Phe Ser Ile His Ser Arg Gln Gly

Glu Cys Arg Asp Trp Arg Pro Arg Thr Cys Phe Pro Arg Gly Ala Ala

Thr Met Thr Asp Thr Lys Gln Pro Gln Pro Leu His Phe Glu Thr Leu 130 140

Gln Val His Ala Gly Gln Arg Pro Asp Pro Val Thr Gly Ala Gln Gln 145 150 155 160

- Thr Pro Ile Tyr Ala Thr Asn Ser Tyr Val Phe Glu Ser Pro Glu His 165 170 175
- Ala Ala Asp Leu Phe Gly Leu Arg Gln Phe Gly Asn Ile Tyr Ser Arg 180 185 190
- Ile Met Asn Pro Thr Asn Asp Val Phe Glu Gln Arg Val Ala Ala Leu 195 200 205
- Glu Gly Gly Val Gly Ala Leu Ser Val Ser Ser Gly His Ala Gly Gln 210 215 220
- Leu Val Thr Leu Leu Thr Leu Ala Gln Ala Gly Asp Asn Ile Val Ser 225 230 235 240
- Ser Pro Asn Leu Tyr Gly Gly Thr Val Asn Gln Phe Arg Val Thr Leu 245 250 255
- Lys Arg Leu Gly Ile Glu Val Arg Phe Thr Ser Lys Asp Glu Arg Pro 260 265 270
- Glu Glu Phe Ala Ala Leu Ile Asp Glu Arg Thr Arg Ala Val Tyr Leu 275 280 285
- Glu Thr Ile Gly Asn Pro Ala Leu Asn Ile Pro Asp Phe Glu Gly Val 290 295 300
- Ala Lys Val Ala His Glu His Gly Val Ala Val Val Asp Asn Thr 305 310 315 320
- Phe Gly Ala Gly Gly Tyr Tyr Cys Gln Pro Leu Arg His Gly Ala Asn 325 330 335
- Ile Val Leu His Ser Ala Ser Lys Trp Ile Gly Gly His Gly Asn Gly 340 345 350
- Ile Gly Gly Val Ile Val Asp Gly Gly Asn Phe Asp Trp Gly Ser Gly 355 360 365
- Arg Tyr Pro Leu Met Thr Glu Pro Ser Pro Ser Tyr His Gly Leu Lys 370 375 380
- Phe Trp Glu Thr Phe Gly Glu Gly Asn Gly Leu Gly Leu Pro Asn Ile 385 390 395 400
- Ala Phe Ile Thr Arg Ala Arg Thr Glu Gly Leu Arg Asp Leu Gly Thr
 405 410 415

Thr Leu Ala Pro Gln Gln Ala Trp Gln Phe Leu Gln Gly Leu Glu Thr
420 425 430

Leu Ser Leu Arg Ala Glu Arg His Ala Glu Asn Thr Leu Ala Leu Ala 435 440 445

His Trp Leu Ile Ser His Pro Asp Val Lys Gln Val Thr Tyr Pro Gly
450 460

Leu Ser Asn His Pro His Tyr Asp Arg Ala Gln Thr Tyr Leu Pro Arg 465 470 475 480

Gly Ala Gly Ala Val Leu Thr Phe Glu Leu Arg Gly Gly Arg Ala Ala 485 490 490

Gly Glu Ala Phe Ile Arg Ser Val Lys Leu Ala Gln His Val Ala Asn 500 505 510

Val Gly Asp Thr Arg Thr Leu Val Ile His Pro Ala Ser Thr Thr His 515 520 525

Ser Gln Leu Asp Glu Val Thr Gln Thr Asn Ala Gly Val Thr Pro Gly 530 540

Leu Ile Arg Val Ser Val Gly Ile Glu His Val Asp Asp Ile Arg Glu 545 550 555 560

Asp Phe Ala Gln Ala Leu Ala Ser Ala Gly Glu Arg Ala 565 570

<210> 37

<211> 1284

<212> DNA

<213> Rhodobacter capsulatus

<220>

<221> CDS

<222> (1)..(1284)

<223>

	•																	
	atg Met 1	acc Thr	gac Asp	cag Gln	gcc Ala 5	ttt Phe	gac Asp	acg Thr	ctg Leu	caa Gln 10	att Ile	cac His	gcg Ala	Gly	gcc Ala 15	gaa Glu		48
	ccc Pro	gat Asp	ccc Pro	gcg Ala 20	acg Thr	ggc Gly	gcg Ala	cgg Arg	cag Gln 25	gtg Val	ccg Pro	att Ile	tac Tyr	cag Gln 30	acc Thr	acc Thr		96
	tcc Ser	tat Tyr	gtc Val 35	ttc Phe	aag Lys	gac Asp	gcc Ala	gac Asp 40	cat His	gcc Ala	gcg Ala	cgc Arg	ctg Leu 45	ttc Phe	Gly 333	ctg Leu	.:	144
	cag Gln	gag Glu 50	gtg Val	ggc Gly	tat Tyr	atc Ile	tat Tyr 55	tcc Ser	cgc Arg	ctg Leu	acc Thr	aac Asn 60	ccg Pro	acc Thr	gtt Val	tcg Ser		192
	gca Ala 65	ctg Leu	gcc Ala	gcc Ala	cgc Arg	gtt Val 70	gcg Ala	gcg Ala	ctt Leu	gaa Glu	ggc Gly 75	ggc Gly	gtg Val	ggc	gcg Ala	gtc Val 80		240
	tgc Cys	tgc Cys	tcg Ser	tcc Ser	ggc Gly 85	cat His	gcg Ala	gcg Ala	cag Gln	atc Ile 90	atg Met	gcg Ala	ctg Leu	ttt Phe	ccg Pro 95	ctg Leu		288
	atg Met	ejå aaa	ccg Pro	100 GJA 333	ctg Leu	aac Asn	atc Ile	gtc Val	gcc Ala 105	tcg Ser	acc Thr	cgg Arg	ctt Leu	tac Tyr 110	ggc	ggc		336
	acg Thr	atc Ile	acc Thr 115	cag Gln	ttc Phe	agc Ser	cag Gln	acc Thr 120	atc Ile	aaa Lys	cgc Arg	ttc Phe	ggc Gly 125	tgg Trp	tcc Ser	tgc Cys	٠	384
	acc Thr	ttt Phe 130	gtc Val	gat Asp	ttc Phe	gac Asp	Asp 135	ctg Leu	gcg Ala	gcg Ala	ctc Leu	gag Glu 140	gcc Ala	gcg Ala	gtg Val	gat Asp		432
	gac Asp 145	aac Asn	acc Thr	cgg Arg	gcg Ala	atc Ile 150	ttt Phe	tgc Cys	gaa Glu	tcg Ser	atc Ile 155	tcg Ser	aac Asn	ecg	ggc	ggc Gly 160		480
	tac Tyr	atc Ile	acc Thr	gac Asp	ctg Leu 165	ccc Pro	gcc Ala	gtc Val	gcg Ala	gcg Ala 170	gtg Val	gcg Ala	aac Asn	aag Lys	gtc Val 175	Gly		528
	ctg Leu	ccg Pro	ctc Leu	att Ile 180	gtc Val	gac Asp	aac Asn	acg Thr	ctg Leu 185	gcc Ala	tcg Ser	cct Pro	tat Tyr	ctc Leu 190	Cys	cgc Arg		576
,	ccg Pro	atc Ile	gag Glu 195	cat His	ggc Gly	gcg Ala	acg Thr	ctg Leu 200	gtt Val	gtc Val	cat His	tcc Ser	gcc Ala 205	Thr	aaa Lys	tac Tyr		624
	ctg Leu	acc Thr 210	ggc Gly	aac Asn	ggc Gly	acg Thr	gtg Val 215	acg Thr	ggc Gly	gly ggg	gtg Val	atc Ile 220	Val	gat Asp	tcg Ser	ggc		672
	aag Lys 225	ttc Phe	gac Asp	tgg Trp	tcg Ser	gcc Ala 230	tcg Ser	ggc Gly	aag Lys	ttc Phe	ccc Pro 235	agc Ser	ctt Leu	tcg Ser	gcg Ala	Pro 240		720
	gaa Glu	ccc Pro	gcc Ala	tat Tyr	cac His 245	ej aaa	ctg Leu	aag Lys	ttc Phe	cac His 250	gag Glu	gca Ala	ctc Leu	ggc Gly	ecg Pro 255	atg Met		768

gcc Ala	tto Phe	aco Thi	Phe 260	Hi	t tcg s Sei	g ato	gcc Ala	gto Val 265	Gly	ctg Leu	cgc Arg	gat Asp	ctg Leu 270	ggc Gly	atg Met	816
acg Thr	atg Met	aad Asr 275	ı Pro	g cag o Gli	n Gly g ggc	geg Ala	cat His 280	Tyr	acg Thr	ctg Leu	atg Met	999 Gly 285	atc Ile	gag Glu	acg Thr	864
ctc Leu	ago Ser 290	Leu	g cgc	ato Met	g gac : Asp	aag Lys 295	His	gtc Val	gcc Ala	aat Asn	gcg Ala 300	aag Lys	gcg Ala	gtg Val	gcg Ala	912
gaa Glu 305	tgg Trp	ctg Leu	gco Ala	aaa Lys	gac Asp 310	Pro	cgc Arg	atc Ile	gac Asp	ttc Phe 315	gtc Val	acc Thr	tgg Trp	gcc Ala	999 Gly 320	960
ctg Leu	ccc Pro	tcc Ser	tcg Ser	ecc Pro 325	tgg Trp	cac His	gaa Glu	cgc Arg	gcc Ala 330	gag Glu	cgg Arg	ctt Leu	tgc Cys	ccg Pro 335	aag Lys	1008
Gly 999	gcg Ala	Gly 333	gcg Ala 340	ctt Leu	ttc Phe	acc Thr	gtc Val	gcg Ala 345	gtc Val	aag Lys	gly	ggc	tat Tyr 350	gag Glu	gcc Ala	1056
tgc Cys	gtg Val	aaa Lys 355	ttg Leu	gtc Val	aac Asn	aat Asn	ctc Leu 360	aag Lys	ctg Leu	ttc Phe	agc Ser	cat His 365	gtg Val	gca Ala	aac Asn	1104
ctg Leu	ggc Gly 370	gac Asp	gcg Ala	cgc Arg	tcg Ser	ctg Leu 375	atc Ile	atc Ile	cat His	tcg Ser	gcc Ala 380	tcg Ser	acc Thr	acg Thr	cac His	1152
385	GIn	Leu	Thr	GIu	gaa Glu 390	Gln	Gln	Ile	Lys	Ala 395	Gly	Ala	Ala	Pro	Asn 400	1200
gtg Val	gtg Val	cgg Arg	ctc Leu	tcg Ser 405	atc Ile	gjà aaa	atc Ile	Glu	aat Asn 410	gcc Ala	gcc Ala	gat Asp	ctg Leu	atc Ile 415	gcc Ala	1248
gat Asp :	ctg Leu	Asp	cag Gln 420	gct Ala	ctg Leu .	gcc Ala	Ala	gcc Ala 425	acc Thr	gcc Ala	tga					1284

<210> 38

<211> 427

<212> PRT

<213> Rhodobacter capsulatus

<400> 38

Met Thr Asp Gln Ala Phe Asp Thr Leu Gln Ile His Ala Gly Ala Glu

1 10 15

Pro Asp Pro Ala Thr Gly Ala Arg Gln Val Pro Ile Tyr Gln Thr Thr

20

77/130

30

Ser Tyr Val Phe Lys Asp Ala Asp His Ala Ala Arg Leu Phe Gly Leu 35 40 45

25

Gln Glu Val Gly Tyr Ile Tyr Ser Arg Leu Thr Asn Pro Thr Val Ser 50 55 60

Ala Leu Ala Ala Arg Val Ala Ala Leu Glu Gly Gly Val Gly Ala Val 65 70 75 80

Cys Cys Ser Ser Gly His Ala Ala Gln Ile Met Ala Leu Phe Pro Leu 85 90 95

Met Gly Pro Gly Leu Asn Ile Val Ala Ser Thr Arg Leu Tyr Gly Gly
100 105 110

Thr Ile Thr Gln Phe Ser Gln Thr Ile Lys Arg Phe Gly Trp Ser Cys
115 120 125

Thr Phe Val Asp Phe Asp Asp Leu Ala Ala Leu Glu Ala Ala Val Asp 130 135 140

Asp Asn Thr Arg Ala Ile Phe Cys Glu Ser Ile Ser Asn Pro Gly Gly 145 150 155 160

Tyr Ile Thr Asp Leu Pro Ala Val Ala Ala Val Ala Asn Lys Val Gly
165 170 175

Leu Pro Leu Ile Val Asp Asn Thr Leu Ala Ser Pro Tyr Leu Cys Arg 180 185 190

Pro Ile Glu His Gly Ala Thr Leu Val Val His Ser Ala Thr Lys Tyr 195 200 205

Leu Thr Gly Asn Gly Thr Val Thr Gly Gly Val Ile Val Asp Ser Gly 210 215 220

Lys Phe Asp Trp Ser Ala Ser Gly Lys Phe Pro Ser Leu Ser Ala Pro 225 230 235 240

Glu Pro Ala Tyr His Gly Leu Lys Phe His Glu Ala Leu Gly Pro Met 245 250 255

Ala Phe Thr Phe His Ser Ile Ala Val Gly Leu Arg Asp Leu Gly Met 260 265 270

WO 2004/024933

78/130

Thr Met Asn Pro Gln Gly Ala His Tyr Thr Leu Met Gly Ile Glu Thr 275 280 285

Leu Ser Leu Arg Met Asp Lys His Val Ala Asn Ala Lys Ala Val Ala 290 . 295 300

Glu Trp Leu Ala Lys Asp Pro Arg Ile Asp Phe Val Thr Trp Ala Gly 305 310 315 320

Leu Pro Ser Ser Pro Trp His Glu Arg Ala Glu Arg Leu Cys Pro Lys 325 330 335

Gly Ala Gly Ala Leu Phe Thr Val Ala Val Lys Gly Gly Tyr Glu Ala 340 345 350

Cys Val Lys Leu Val Asn Asn Leu Lys Leu Phe Ser His Val Ala Asn 355 360 365

Leu Gly Asp Ala Arg Ser Leu Ile Ile His Ser Ala Ser Thr Thr His 370 375 380

Arg Gln Leu Thr Glu Glu Gln Gln Ile Lys Ala Gly Ala Ala Pro Asn 385 390 395 400

Val Val Arg Leu Ser Ile Gly Ile Glu Asn Ala Ala Asp Leu Ile Ala 405 410 415

Asp Leu Asp Gln Ala Leu Ala Ala Ala Thr Ala 420 425

<210> 39

<211> 1269

<212> DNA

<213> Pasteurella multocida

<220>

<221> CDS

<222> (1)..(1269)

<223>

<400> 39

atg gaa ttt gca aca aaa tgt cta cat gcc ggt tat aca ccg aaa aat Met Glu Phe Ala Thr Lys Cys Leu His Ala Gly Tyr Thr Pro Lys Asn

•																
1				5					10					15		
ggt Gly	gag Glu	cct Pro	cgt Arg 20	gtt Val	caa Gln	ccg Pro	atc Ile	gta Val 25	caa Gln	agt Ser	acc Thr	act Thr	ttt Phe 30	acc Thr	tac Tyr	96
gat Asp	tcc Ser	gcc Ala 35	gaa Glu	gaa Glu	att Ile	ggt Gly	aag Lys 40	tta Leu	ttt Phe	gat Asp	tta Leu	caa Gln 45	gcg Ala	gct Ala	Gly	144
tat Tyr	ttt Phe 50	tac Tyr	acc Thr	cgc Arg	ctt Leu	tca Ser 55	aat Asn	cct Pro	act Thr	acc Thr	aat Asn 60	gcg Ala	gca Ala	gaa Glu	gaa Glu	192
Lys 65	Ile	Thr	Ala	Leu	Glu 70	Gly	Gly	Val	gca Ala	75	Met	Сув	THE	Ala	80	240
gly ggg	caa Gln	gcc Ala	gcc Ala	gtg Val 85	ttt Phe	tac Tyr	gcg Ala	atg Met	ctc Leu 90	aat Asn	att	tta Leu	caa Gln	gcc Ala 95	ggt Gly	288
Asp	His	Phe	Ile 100	Ser	Ser	Ser	Tyr	Val 105	TYT	GIĀ	GIĀ	ser	110	ASII	tta Leu	336
Phe	Ala	His 115	Thr	Phe	Lys	Lys	Met 120	GTÀ	IIe	GIU	Val	125	PHE	Val	gat Asp	384
Gln	Asp 130	Leu	Pro	Leu	Glu	Glu 135	Leu	Lys	Lys	Ala	140	Arg	Pro	ABII	acg Thr	432
aaa Lys 145	Ala	att Ile	ttt Phe	gcc Ala	gaa Glu 150	act Thr	att Ile	gcc Ala	aat Asn	ccc Pro 155	AIa	tta Leu	a cgc	gtg Val	ttg Leu 160	480
Asp	Ile	Glu	Lys	Phe 165	Val	Ala	Leu	Ala	170	ATS	ALa	GID	Ale	175		528
tta Leu	gtt Val	gac Asp	aat Asn 180	Thr	ttt 'Phe	gca Ala	acc Thr	ccg Pro 185	Tyr	ttt Phe	tgt Cys	cgc Arg	pro 190	, 116	gaa Glu	576
ttt Phe	ggt	gct Ala 195	Asn	gtg Val	gta Val	att Ile	cat His 200	Ser	acg Thr	tca Ser	aaa Lys	tat Tyr 205	. ner	a gat 1 Asj	o GJA e aaa	624
cat His	gcg Ala 210	Ile	gcg Ala	ttg Leu	gga Gly	ggt Gly 215	Ser	ato : Ile	aca Thr	gat Asp	gg(Gl ₃ 22	A GT	y aat	t tti n Phe	t gat e Asp	672
tgg Trp 225	Asn	aat Asn	ggt	aaa Lys	ttc Phe 230	Pro	caa Gln	tta Leu	ago Ser	aca Thr 235	Pro	t gat o Asp	caa o Gli	a act	t tat r Tyr 240	720
cac His	ggt	tta Leu	gtt Val	tat Tyr 245	acc Thr	gaa Glu	acc Thr	ttt Phe	gtt Val 250	. Pro	geo Ala	c gct a Ala	t tai	t at r Ile 25	t gtc e Val 5	768
aaa	gcc	cgt	gtg	caa	tta	atg	cgt	gat	tta	ggt	gc	c aca	a cc	a gc	a cca	816

Lys	Ala	Arg	Val 260	Gln	Leu	Met	Arg	Asp 265	Leu	Gly	Ala	Thr	Pro 270	Ala	Pro	
caa Gln	aat Asn	agt Ser 275	Phe	ttg Leu	ctc Leu	aat Asn	gtg Val 280	ggc	atg Met	gaa Glu	act Thr	ctt Leu 285	gca Ala	ctg Leu	cgt Arg	864
atg Met	caa Gln 290	cgt Arg	cat His	tat Tyr	gaa Glu	aat Asn 295	gca Ala	caa Gln	gcg Ala	gtc Val	gcc Ala 300	gaa Glu	ttt Phe	tta Leu	gaa Glu	912
aat Asn 305	cat His	cca Pro	caa Gln	gtg Val	gca Ala 310	aaa Lys	gtg Val	agt Ser	tat Tyr	ccg Pro 315	ggc Gly	ttg Leu	gca Ala	agt Ser	tca Ser 320	960
cct Pro	gat Asp	cat His	gca Ala	cta Leu 325	aaa Lys	caa Gln	aaa Lys	tat Tyr	tta Leu 330	cca Pro	aac Asn	ggt Gly	tta Leu	tgt Cys 335	ggt Gly	1008
gtg Val	att Ile	tcc Ser	ttt Phe 340	gaa Glu	att Ile	aga Arg	gjå aaa	gga Gly 345	aga Arg	gaa Glu	act Thr	gca Ala	gca Ala 350	aaa Lys	tgg Trp	1056
ctg Leu	aat Asn	gcg Ala 355	cta Leu	caa Gln	ctg Leu	gct Ala	tct Ser 360	cgt Arg	gaa Glu	gtc Val	cat His	gta Val 365	gcg Ala	gat Asp	att Ile	1104
egc Arg	act Thr 370	tgt Cys	gct Ala	tta Leu	cat His	ccg Pro 375	gcg Ala	acg Thr	tca Ser	aca Thr	cac His 380	cgt Arg	caa Gln	tta Leu	agt Ser	1152
gag Glu 385	gct Ala	gaa Glu	tta Leu	gaa Glu	aaa Lys 390	gtg Val	Gly 999	att Ile	tct Ser	gcg Ala 395	ggt Gly	tta Leu	att Ile	cgt Arg	ctt Leu 400	1200
tct Ser	tgc Cys	ggt Gly	Ile	gaa Glu 405	agt Ser	atc Ile	caa Gln	Asp	att Ile 410	ttg Leu	gct Ala	gac Asp	tta Leu	gaa Glu 415	caa Gln	1248
		His			aaa Lys	taa										1269

<210> 40

<211> 422

<212> PRT

<213> Pasteurella multocida

<400> 40

Met Glu Phe Ala Thr Lys Cys Leu His Ala Gly Tyr Thr Pro Lys Asn 1 5 10 15

Gly Glu Pro Arg Val Gln Pro Ile Val Gln Ser Thr Thr Phe Thr Tyr 20 25 30

- Asp Ser Ala Glu Glu Ile Gly Lys Leu Phe Asp Leu Gln Ala Ala Gly 35 40 45
- Tyr Phe Tyr Thr Arg Leu Ser Asn Pro Thr Thr Asn Ala Ala Glu Glu 50 55 60
- Lys Ile Thr Ala Leu Glu Gly Gly Val Ala Thr Met Cys Thr Ala Ser 65 70 75 80
- Gly Gln Ala Ala Val Phe Tyr Ala Met Leu Asn Ile Leu Gln Ala Gly 85 90 95
- Asp His Phe Ile Ser Ser Ser Tyr Val Tyr Gly Gly Ser Tyr Asn Leu 100 105 110
- Phe Ala His Thr Phe Lys Lys Met Gly Ile Glu Val Thr Phe Val Asp 115 120 125
- Gln Asp Leu Pro Leu Glu Glu Leu Lys Lys Ala Ile Arg Pro Asn Thr 130 135 140
- Lys Ala Ile Phe Ala Glu Thr Ile Ala Asn Pro Ala Leu Arg Val Leu 145 150 155 160
- Asp Ile Glu Lys Phe Val Ala Leu Ala Lys Ala Ala Gln Ala Pro Leu 165 170 175
- Leu Val Asp Asn Thr Phe Ala Thr Pro Tyr Phe Cys Arg Pro Ile Glu 180 185 190
- Phe Gly Ala Asn Val Val Ile His Ser Thr Ser Lys Tyr Leu Asp Gly 195 200 205
- His Ala Ile Ala Leu Gly Gly Ser Ile Thr Asp Gly Gly Asn Phe Asp 210 215 220
- Trp Asn Asn Gly Lys Phe Pro Gln Leu Ser Thr Pro Asp Gln Thr Tyr 225 230 235 240
- His Gly Leu Val Tyr Thr Glu Thr Phe Val Pro Ala Ala Tyr Ile Val 245 250 255
- Lys Ala Arg Val Gln Leu Met Arg Asp Leu Gly Ala Thr Pro Ala Pro 260 265 270
- Gln Asn Ser Phe Leu Leu Asn Val Gly Met Glu Thr Leu Ala Leu Arg 275 280 285

Met Gln Arg His Tyr Glu Asn Ala Gln Ala Val Ala Glu Phe Leu Glu 290 295 300

Asn His Pro Gln Val Ala Lys Val Ser Tyr Pro Gly Leu Ala Ser Ser 305 310 315 320

Pro Asp His Ala Leu Lys Gln Lys Tyr Leu Pro Asn Gly Leu Cys Gly 325 330 335

Val Ile Ser Phe Glu Ile Arg Gly Gly Arg Glu Thr Ala Ala Lys Trp 340 345 350

Leu Asn Ala Leu Gln Leu Ala Ser Arg Glu Val His Val Ala Asp Ile 355 360 365

Arg Thr Cys Ala Leu His Pro Ala Thr Ser Thr His Arg Gln Leu Ser 370 375 380

Glu Ala Glu Leu Glu Lys Val Gly Ile Ser Ala Gly Leu Ile Arg Leu 385 390 395 400

Ser Cys Gly Ile Glu Ser Ile Gln Asp Ile Leu Ala Asp Leu Glu Gln
405 410 415

Ala Phe His Ala Ala Lys 420

<210> 41

<211> 1266

<212> DNA

<213> Clostridium difficile

<220>

<221> CDS

<222> (1)..(1266)

<223>

<400> 41
atg tat aat aaa gaa aca ata tgt gtg caa gga aat tat aaa cca ggt
Met Tyr Asn Lys Glu Thr Ile Cys Val Gln Gly Asn Tyr Lys Pro Gly
1

•	•																
						a cta l Leu											96
tat Tyr	ago Ser	agt Sex 35	ata Ile	gac Asp	c caa Glr	a ctt 1 Leu	get Ala 40	gaa Glu	a tta 1 Leu	ttt. Phe	gat Asp	tta Leu 45	aaa Lys	gtt Val	gat Asp		144
gga Gly	cat His 50	ata Ile	tat Tyr	tca Ser	aga Arg	a ata J Ile 55	agc Ser	aat Asr	cct Pro	act Thr	att Ile 60	caa Gln	gct Ala	ttt Phe	gaa Glu		192
gaa Glu 65	aaa Lys	ata Ile	agt Ser	tta Leu	cta Leu 70	ı gag ı Glu	ggt Gly	gga	gta Val	tct Ser 75	tct Ser	gta Val	gct Ala	gta Val	tca Ser 80		240
tca Ser	Gly ggg	Gln Gln	tct Ser	gca Ala 85	aat Asn	: atg Met	ttg Leu	gca	gtt Val 90	tta Leu	aat Asn	ata Ile	tgt Cys	aaa Lys 95	tca Ser		288
gga	gat Asp	agt Ser	ata Ile 100	ctt Leu	tgt Cys	tct Ser	tca Ser	aaa Lys 105	Val	tat Tyr	gga Gly	gga Gly	aca Thr 110	ttc Phe	aat Asn	٠.	336
tta Leu	cta Leu	gga Gly 115	Pro	agt Ser	ctt Leu	aaa Lys	aaa Lys 120	ttt Phe	ggt	ata Ile	gat Asp	tta Leu 125	ata Ile	tcg Ser	ttt Phe	4.	384
gac Asp	tta Leu 130	Asp	tca Ser	agt Ser	gaa Glu	gat Asp 135	gag Glu	ata Ile	gta Val	gaa Glu	ctt Leu 140	gca Ala	aag Lys	gaa Glu	aat Asn		432
act Thr 145	Lys	gtt Val	gtg Val	ttt Phe	gca Ala 150	gaa Glu	aca Thr	ctt Leu	gca Ala	aat Asn 155	cca Pro	act Thr	ctt Leu	gaa Glu	gtc Val 160		480
ata Ile	gat Asp	ttt Phe	gaa Glu	aaa Lys 165	ata Ile	gca Ala	aat Asn	gta Val	gct Ala 170	aag Lys	aga Arg	att Ile	aat Asn	gtt Val 175	cca Pro		528
ttt Phe	att Ile	gtt Val	gat Asp 180	aat Asn	tca Ser	tta Leu	gca Ala	tct Ser 185	cca Pro	gtg Val	ctt Leu	tgt Cys	aac Asn 190	cct Pro	tta Leu		576
aag Lys	tat Tyr	gga Gly 195	gca Ala	aat Asn	ata Ile	gtt Val	act Thr 200	cat His	ser	acc Thr	aca Thr	aaa Lys 205	tat Tyr	tta Leu	gat Asp		624
Gly ggg	cat His 210	gct Ala	tca Ser	agt Ser	gtt Val	gga Gly 215	gga Gly	att Ile	ata Ile	gtg Val	gat Asp 220	ggt Gly	gga Gly	aac Asn	ttt Phe		672
aac Asn 225	tgg Trp	gat Asp	aat Asn	gga Gly	aaa Lys 230	ttt Phe	cca Pro	gaa Glu	tta Leu	gtt Val 235	gag Glu	cca Pro	gac Asp	cca Pro	aca Thr 240		720
tat Tyr	cat His	ggt Gly	Ile	agc Ser 245	tat Tyr	act Thr	caa Gln	aaa Lys	ttt Phe 250	gga Gly	aat Asn	gcc Ala	gca Ala	tat Tyr 255	gca Ala	,	768
act Thr	aaa Lys	Ala	aga Arg 260	gtt Val	cag Gln	ttg Leu	Leu	aga Arg 265	gac Asp	tat Tyr	gga Gly	aat Asn	tgt Cys 270	tta Leu	agc Ser	. (816

cca Pro	ttc Phe	aat Asn 275	Ala	tat Tyr	ctt Leu	act Thr	aat Asn 280	Leu	aat Asn	gtt Val	gaa Glu	aca Thr 285	cta Leu	cat His	ctt Leu	864
aga Arg	atg Met 290	gag Glu	aga Arg	cat His	agt Ser	gaa Glu 295	aat Asn	gca Ala	ctt Leu	aaa Lys	ata Ile 300	gct Ala	aga Arg	ttt Phe	tta Leu	912
gaa Glu 305	aaa Lys	cat His	gaa Glu	aat Asn	gta Val 310	gat Asp	tgg Trp	att Ile	aat Asn	tac Tyr 315	cca Pro	gga Gly	ctt Leu	gaa Glu	gat Asp 320	960
aac Asn	aag Lys	tat Tyr	tat Tyr	gag Glu 325	aat Asn	gcc Ala	aaa Lys	aag Lys	tat Tyr 330	tta Leu	tca Ser	aga Arg	gga Gly	tgt Cys 335	agt Ser	1008
ggt Gly	gtt Val	tta Leu	tca Ser 340	ttt Phe	gga Gly	gta Val	aga Arg	ggt Gly 345	gly aaa	tta Leu	gaa Glu	aat Asn	gcc Ala 350	aaa Lys	aaa Lys	1056
Phe	Val	Glu 355	Гуs	Leu	cag Gln	Ile	Ala 360	Ser	Leu	Val	Thr	His 365	Val	Ser	Asp	1104
Val	Arg 370	Thr	Суз	Val	ata Ile	His 375	Pro	Ala	Ser	Thr	Thr 380	His	Arg	Gln	Leu	1152
Thr 385	Glu	Glu	Gln	Leu	att Ile 390	Ala	Ser	Gly	Val	Leu 395	Pro	Ser	Leu	Ile	Arg 400	1200
tta Leu	tct Ser	gtt Val	Gly	ata Ile 405	gaa Glu	aat Asn	gta Val	Glu	gat Asp 410	tta Leu	ata Ile	gct Ala	gat Asp	tta Leu 415	aat Asn	1248
caa Gln		Leu	aat Asn 420		taa											1266

<210> 42

<211> 421

<212> PRT

<213> Clostridium difficile

<400> 42

Met Tyr Asn Lys Glu Thr Ile Cys Val Gln Gly Asn Tyr Lys Pro Gly
1 10 15

Asn Gly Glu Pro Arg Val Leu Pro Leu Tyr Gln Ser Thr Thr Phe Lys 20 25 30

Tyr Ser Ser Ile Asp Gln Leu Ala Glu Leu Phe Asp Leu Lys Val Asp

45

35 40

Gly His Ile Tyr Ser Arg Ile Ser Asn Pro Thr Ile Gln Ala Phe Glu
50 55 60

Glu Lys Ile Ser Leu Leu Glu Gly Gly Val Ser Ser Val Ala Val Ser 65 70 75 80

Ser Gly Gln Ser Ala Asn Met Leu Ala Val Leu Asn Ile Cys Lys Ser 85 90 95

Gly Asp Ser Ile Leu Cys Ser Ser Lys Val Tyr Gly Gly Thr Phe Asn
100 105 110

Leu Leu Gly Pro Ser Leu Lys Lys Phe Gly Ile Asp Leu Ile Ser Phe 115 120 125

Asp Leu Asp Ser Ser Glu Asp Glu Ile Val Glu Leu Ala Lys Glu Asn 130 135 140

Thr Lys Val Val Phe Ala Glu Thr Leu Ala Asn Pro Thr Leu Glu Val 145 150 155 160

Ile Asp Phe Glu Lys Ile Ala Asn Val Ala Lys Arg Ile Asn Val Pro 165 170 175

Phe Ile Val Asp Asn Ser Leu Ala Ser Pro Val Leu Cys Asn Pro Leu 180 185 190

Lys Tyr Gly Ala Asn Ile Val Thr His Ser Thr Thr Lys Tyr Leu Asp 195 200 205

Gly His Ala Ser Ser Val Gly Gly Ile Ile Val Asp Gly Gly Asn Phe 210 215 220

Asn Trp Asp Asn Gly Lys Phe Pro Glu Leu Val Glu Pro Asp Pro Thr 225 230 235 240

Tyr His Gly Ile Ser Tyr Thr Gln Lys Phe Gly Asn Ala Ala Tyr Ala 245 250 255

Thr Lys Ala Arg Val Gln Leu Leu Arg Asp Tyr Gly Asn Cys Leu Ser 260 265 270

Pro Phe Asn Ala Tyr Leu Thr Asn Leu Asn Val Glu Thr Leu His Leu 275 280 285

PCT/EP2003/009453

Arg Met Glu Arg His Ser Glu Asn Ala Leu Lys Ile Ala Arg Phe Leu 290 295 300

86/130

Glu Lys His Glu Asn Val Asp Trp Ile Asn Tyr Pro Gly Leu Glu Asp 305 310 315 320

Asn Lys Tyr Tyr Glu Asn Ala Lys Lys Tyr Leu Ser Arg Gly Cys Ser 325 330 335

Gly Val Leu Ser Phe Gly Val Arg Gly Gly Leu Glu Asn Ala Lys Lys

Phe Val Glu Lys Leu Gln Ile Ala Ser Leu Val Thr His Val Ser Asp

Val Arg Thr Cys Val Ile His Pro Ala Ser Thr Thr His Arg Gln Leu 370 375 380

Thr Glu Glu Gln Leu Ile Ala Ser Gly Val Leu Pro Ser Leu Ile Arg 385 390 395 400

Leu Ser Val Gly Ile Glu Asn Val Glu Asp Leu Ile Ala Asp Leu Asn 405 410 415

Gln Ala Leu Asn Phe 420

<210> 43

<211> 1272

<212> DNA

<213> Campylobacter jejuni

<220>

<221> CDS

<222> (1)..(1272)

<223>

<400> 43

atg aat ttc aat aaa gaa act tta gca tta cac gga gct tat aat ttt Met Asn Phe Asn Lys Glu Thr Leu Ala Leu His Gly Ala Tyr Asn Phe 1 5 10 15

gat act caa aga agt att agt gtg cct ata tat caa aac act gcg tat Asp Thr Gln Arg Ser Ile Ser Val Pro Ile Tyr Gln Asn Thr Ala Tyr

96

48

20 25 aat ttt gaa aat ttg gat caa gct gca gca agg ttt aat ctt caa gaa 144 Asn Phe Glu Asn Leu Asp Gln Ala Ala Ala Arg Phe Asn Leu Gln Glu ctt ggc aat att tac tca aga ctt agc aat cct aca agc gat gtt tta Leu Gly Asn Ile Tyr Ser Arg Leu Ser Asn Pro Thr Ser Asp Val Leu gga caa aga ctt gct aat gtc gaa gga ggg gct ttt gga att cct gtt 240 Gly Gln Arg Leu Ala Asn Val Glu Gly Gly Ala Phe Gly Ile Pro Val gct agc ggt atg gca gct tgt ttt tat gct ctt atc aat tta gca agt 288 Ala Ser Gly Met Ala Ala Cys Phe Tyr Ala Leu Ile Asn Leu Ala Ser 85 90 teg gga gat aat gte geg tat teg aae aaa att tat ggt ggg aet eaa 336 Ser Gly Asp Asn Val Ala Tyr Ser Asn Lys Ile Tyr Gly Gly Thr Gln 100 act tta att tct cac aca ctt aaa aat ttt ggc ata gaa gct agg gaa 384 Thr Leu Ile Ser His Thr Leu Lys Asn Phe Gly Ile Glu Ala Arg Glu 115 ttt gat atc gat gat tta gat agc ttg gaa aaa gtt ata gat caa aac 432 Phe Asp Ile Asp Asp Leu Asp Ser Leu Glu Lys Val Ile Asp Gln Asn 130 aca aaa gcg att ttt ttc gaa agt ctt tca aat cct caa att gcc ata 480 Thr Lys Ala Ile Phe Phe Glu Ser Leu Ser Asn Pro Gln Ile Ala Ile 145 160 gct gat ata gaa aaa ata aac caa ata gca aaa aaa cat aaa atc gtt 528 Ala Asp Ile Glu Lys Ile Asn Gln Ile Ala Lys Lys His Lys Ile Val 165 age att tgt gat aat ace gtt get act cet tte tta ete caa eet ttt 576 Ser Ile Cys Asp Asn Thr Val Ala Thr Pro Phe Leu Leu Gln Pro Phe 180 aaa cat ggc gtg gat gta atc gtg cat agt tta agt aaa tat gta agc 624 Lys His Gly Val Asp Val Ile Val His Ser Leu Ser Lys Tyr Val Ser 195 ggt caa ggc act gct ttg ggt gga gca ctt ata gaa aga aaa gat tta 672 Gly Gln Gly Thr Ala Leu Gly Gly Ala Leu Ile Glu Arg Lys Asp Leu 210 aac gac ttg ctt aaa aat aac gat aga tat aaa gct ttt aac act cct 720 Asn Asp Leu Leu Lys Asn Asn Asp Arg Tyr Lys Ala Phe Asn Thr Pro 225 230 235 240 gat cca agt tat cat gga ctg aat tta aat aca ctt gat ttg ccg att 768 Asp Pro Ser Tyr His Gly Leu Asn Leu Asn Thr Leu Asp Leu Pro Ile 245 ttt agt att aga gtc atc atc act tgg ctt aga gat cta gga gct agc 816 Phe Ser Ile Arg Val Ile Ile Thr Trp Leu Arg Asp Leu Gly Ala Ser 260 tta gca cct caa aat gct tgg tta ctt tta caa gga ctt gaa acc ttg 864

Leu	Ala	Pro 275	Gln	Asn	Ala	Trp	Leu 280	Leu	Leu	Gln	Gly	Leu 285	Glu	Thr	Leu	
gca Ala	gtg Val 290	Arg	ata Ile	gaa Glu	aaa Lys	cac His 295	agt Ser	caa Gln	aat Asn	gct Ala	gaa Glu 300	aaa Lys	gtt Val	geg Ala	aat Asn	912
ttt Phe 305	Leu	aat Asn	tct Ser	cat His	cct Pro 310	gat Asp	atc Ile	aag Lys	ggc	gta Val 315	aat Asn	tat Tyr	cct Pro	act Thr	tta Leu 320	960
gca Ala	agt Ser	aat Asn	gct Ala	tat Tyr 325	cat His	aat Asn	tta Leu	ttt Phe	aaa Lys 330	aaa Lys	tat Tyr	ttt Phe	gat Asp	aaa Lys 335	aat Asn	1008
Phe	Ala	Ser	999 Gly 340	Leu	Leu	Ser	Phe	Glu 345	Ala	Lys	Asp	Tyr	Glu 350	His	Ala	1056
Arg	Arg	11e 355	tgt Cys	Asp	Lys	Thr	Gln 360	Leu	Phe	Leu	Leu	Ala 365	Ala	Asn	Leu	1104
Gly	Asp 370	Ser	aag Lys	Ser	Leu	Ile 375	Ile	His	Pro	Ala	Ser 380	Thr	Thr	His	Ser	1152
Gln 385	Leu	Ser	gaa Glu	Glu	Glu 390	Leu	Gln	Lys	Ala	Gly 395	Ile	Thr	Lys	Äla	Thr 400	1200
Ile	Arg	Leu	agc Ser	Ile 405	GŢĀ	Leu	Glu	aat Asn	agc Ser 410	gat Asp	gat Asp	ttg Leu	ata Ile	gcg Ala 415	gat Asp	1248
			gct Ala 420				taa									1272

<210> 44

<211> 423

<212> PRT

<213> Campylobacter jejuni

<400> 44

Met Asn Phe Asn Lys Glu Thr Leu Ala Leu His Gly Ala Tyr Asn Phe 1 5 10 15

Asp Thr Gln Arg Ser Ile Ser Val Pro Ile Tyr Gln Asn Thr Ala Tyr 20 25 30

Asn Phe Glu Asn Leu Asp Gln Ala Ala Ala Arg Phe Asn Leu Gln Glu 35 40 45

Leu Gly Asn Ile Tyr Ser Arg Leu Ser Asn Pro Thr Ser Asp Val Leu 50 55 60

Gly Gln Arg Leu Ala Asn Val Glu Gly Gly Ala Phe Gly Ile Pro Val 65 70 75 80

Ala Ser Gly Met Ala Ala Cys Phe Tyr Ala Leu Ile Asn Leu Ala Ser 85 90 95

Ser Gly Asp Asn Val Ala Tyr Ser Asn Lys Ile Tyr Gly Gly Thr Gln
100 105 110

Thr Leu Ile Ser His Thr Leu Lys Asn Phe Gly Ile Glu Ala Arg Glu 115 120 125

Phe Asp Ile Asp Asp Leu Asp Ser Leu Glu Lys Val Ile Asp Gln Asn 130 135 140

Thr Lys Ala Ile Phe Phe Glu Ser Leu Ser Asn Pro Gln Ile Ala Ile 145 150 155 160

Ala Asp Ile Glu Lys Ile Asn Gln Ile Ala Lys Lys His Lys Ile Val 165 170 175

Ser Ile Cys Asp Asn Thr Val Ala Thr Pro Phe Leu Leu Gln Pro Phe 180 185 190

Lys His Gly Val Asp Val Ile Val His Ser Leu Ser Lys Tyr Val Ser 195 200 205

Gly Gln Gly Thr Ala Leu Gly Gly Ala Leu Ile Glu Arg Lys Asp Leu 210 215 220

Asn Asp Leu Leu Lys Asn Asn Asp Arg Tyr Lys Ala Phe Asn Thr Pro 225 230 235 240

Asp Pro Ser Tyr His Gly Leu Asn Leu Asn Thr Leu Asp Leu Pro Ile 245 250 255

Phe Ser Ile Arg Val Ile Ile Thr Trp Leu Arg Asp Leu Gly Ala Ser 260 265 270

Leu Ala Pro Gln Asn Ala Trp Leu Leu Gln Gly Leu Glu Thr Leu 275 280 . 285

Ala Val Arg Ile Glu Lys His Ser Gln Asn Ala Glu Lys Val Ala Asn 290 295 300

Phe Leu Asn Ser His Pro Asp Ile Lys Gly Val Asn Tyr Pro Thr Leu 305 310 315 320

Ala Ser Asn Ala Tyr His Asn Leu Phe Lys Lys Tyr Phe Asp Lys Asn 325 330 335

Phe Ala Ser Gly Leu Leu Ser Phe Glu Ala Lys Asp Tyr Glu His Ala 340 345 350

Arg Arg Ile Cys Asp Lys Thr Gln Leu Phe Leu Leu Ala Ala Asn Leu 355 360 365

Gly Asp Ser Lys Ser Leu Ile Ile His Pro Ala Ser Thr Thr His Ser 370 375 380

Gln Leu Ser Glu Glu Glu Leu Gln Lys Ala Gly Ile Thr Lys Ala Thr 385 390 395 400

Ile Arg Leu Ser Ile Gly Leu Glu Asn Ser Asp Asp Leu Ile Ala Asp
405
410
415

Leu Lys Gln Ala Ile Glu Ser 420

<210> 45

<211> 1041

<212> DNA

<213> Streptococcus pneumoniae

<220>

<221> CDS

<222> (1)..(1041)

<223>

-400× 45

ttg agg aaa cca ggg aac att tat act cgt atc acc aat cct aca aca Leu Arg Lys Pro Gly Asn Ile Tyr Thr Arg Ile Thr Asn Pro Thr Thr 1 5 10 15

gct gcc ctt gaa ggt ggt gtt gaa gcg cta gca aca gca tca ggt atg Ala Ala Leu Glu Gly Gly Val Glu Ala Leu Ala Thr Ala Ser Gly Met

96

48

	-																	
				1 Th												cat His		144
	gta Va	a gt l Va 50	g gc l Al	t gc a Al	t to a Se	g ac er Th	t at r Il 55	t tad	c ggt r Gly	t gga Y Glj	a acc	tto Phe 60	e aat e Asi	ctt Leu	ttg Leu	l aaa Lys		192
																gat Asp 80		240
						l Gl										gtc Val		288
ı	t t <u>c</u> Lev	g att	ga Gl	a accurate The	r Le	g gg(u Gl)	t aad y Asi	e ecc	ttg Lev 105	ı Ile	: aat : Asr	att lle	cca Pro	gac Asp 110	Leu	gaa Glu	·	336
,	aaa Lys	ctg Lev	g gca 1 Ala 11!	a Glı	g at u Il	t gct e Ala	cat A His	aaa Lys 120	His	caa Gln	ato Ile	e cca	ctt Leu 125	Val	tca Ser	gac Asp		384
	Asn	130	Phe	e Ala	a Th	a cct r Pro	135	Leu	Ile	Asn	Val	Phe 140	e Ser	His	Gly	Val		432
	Asp 145	Ile	: Ala	Ile	Hi:	s Ser 150	· Val	Thr	Lys	Phe	Ile 155	Gly	Gly	His	Gly	Thr 160		480
	Thr	Ile	Gly	r Gly	169		Val	Asp	Ser	Gly 170	Arg	Phe	Asp	Trp	Thr 175	Ala		528
	Ser	Gly	Lys	180	Pro	caa Gln	Phe	Val	Asp 185	Glu	Gly	Pro	Ser	Сув 190	His	Asn		576
	Leu	Ser	Tyr 195	Thr	Arg	gat Asp	Val	Gly 200	Ala	Ala	Ala	Phe	Ile 205	Ile	Ala	Val		624
	Arg	Val 210	Gln	Leu	Leu	cgt Arg	Asp 215	Thr	Gly	Ala	Ala	Leu 220	Ser	Pro	Phe	Asn		672
	Ala 225	Phe	Leu	Leu	Leu	Gln 230	Arg	Leu	Glu	Thr	Ser 235	Ser	Leu	Arg	Val	Glu 240		720
	Arg	His	Val	Gln	Asn 245	gct Ala	Glu	Thr	Ile	Val 250	Asp	Phe	Leu	Val	Asn 255	His		768
	Pro	Lys	Val	Glu 260	ГЛЯ	gta Val	Asn	Tyr	Pro 265	Lys	Leu	Ala	Asp	Ser 270	Pro	Tyr		816
	cat His	gcc Ala	ttg Leu 275	gct Ala	gag Glu	aaa Lys	Tyr	ttg Leu 280	cca Pro	aaa Lys	ggt Gly	gtc Val	ggt Gly 285	tca Ser	atc Ile	ttt Phe		864

acc Thr	ttc Phe 290	cac His	gtc Val	aaa Lys	ggt Gly	ggc Gly 295	gag Glu	gaa Glu	gaa Glu	gca Ala	cgc Arg 300	aag Lys	gtc Val	att Ile	gat Asp	912
aat Asn 305	tta Leu	gaa Glu	at <i>c</i> Ile	ttt Phe	tct Ser 310	gac Asp	ctt Leu	gca Ala	aac Asn	gcg Ala 315	gca Ala	gat Asp	gct Ala	aaa Lys	tcg. Ser 320	960
ctt Leu	gtt Val	gtc Val	cat His	cca Pro 325	gca Ala	aca Thr	acc Thr	act Thr	cac His 330	ggt Gly	caa Gln	ttg Leu	tca Ser	gaa Glu 335	aaa Lys	1008
				gca Ala						taa						1041

<210> 46

<211> 346

<212> PRT

<213> Streptococcus pneumoniae

<400> 46

Leu Arg Lys Pro Gly Asn Ile Tyr Thr Arg Ile Thr Asn Pro Thr Thr 1 5 10 15

Ala Ala Leu Glu Gly Gly Val Glu Ala Leu Ala Thr Ala Ser Gly Met
20 25 30

Thr Ala Val Thr Tyr Thr Ile Leu Ala Ile Ala His Ala Gly Asp His 35 40 45

Val Val Ala Ala Ser Thr Ile Tyr Gly Gly Thr Phe Asn Leu Leu Lys 50 55 60

Glu Pro Leu Pro Arg Tyr Gly Ile Thr Thr Thr Phe Phe Asp Ile Asp 65 70 75 80

Asn Leu Glu Glu Val Glu Ala Ala Ile Lys Asp Asn Thr Lys Leu Val 85 90 95

Leu Ile Glu Thr Leu Gly Asn Pro Leu Ile Asn Ile Pro Asp Leu Glu
100 105 110

Lys Leu Ala Glu Ile Ala His Lys His Gln Ile Pro Leu Val Ser Asp 115 120 125

Asn Thr Phe Ala Thr Pro Tyr Leu Ile Asn Val Phe Ser His Gly Val

130 135 140

Asp Ile Ala Ile His Ser Val Thr Lys Phe Ile Gly Gly His Gly Thr 145 150 155 160

Thr Ile Gly Gly Ile Ile Val Asp Ser Gly Arg Phe Asp Trp Thr Ala 165 170 175

Ser Gly Lys Phe Pro Gln Phe Val Asp Glu Gly Pro Ser Cys His Asn 180 185 190

Leu Ser Tyr Thr Arg Asp Val Gly Ala Ala Phe Ile Ile Ala Val 195 200 205

Arg Val Gln Leu Leu Arg Asp Thr Gly Ala Ala Leu Ser Pro Phe Asn 210 215 220

Ala Phe Leu Leu Leu Gln Arg Leu Glu Thr Ser Ser Leu Arg Val Glu 225 230 235 240

Arg His Val Gln Asn Ala Glu Thr Ile Val Asp Phe Leu Val Asn His
245 250 255

Pro Lys Val Glu Lys Val Asn Tyr Pro Lys Leu Ala Asp Ser Pro Tyr 260 265 270

His Ala Leu Ala Glu Lys Tyr Leu Pro Lys Gly Val Gly Ser Ile Phe 275 280 285

Thr Phe His Val Lys Gly Glu Glu Glu Ala Arg Lys Val Ile Asp 290 295 300

Asn Leu Glu Ile Phe Ser Asp Leu Ala Asn Ala Ala Asp Ala Lys Ser 305 310 315 320

Leu Val Val His Pro Ala Thr Thr His Gly Gln Leu Ser Glu Lys 325 330 335

Asp Leu Glu Ala Ala Gly Val Thr Pro Asn 340 345

<210> 47

<211> 1335

<212> DNA

<213> Saccharomyces cerevisiae

<220>

<221> CDS

<222> (1)..(1335)

<223>

ato	00> g cca : Pro	tct	cat His	tto Phe 5	e gat e Asp	act Thr	gtt Val	caa Gln	cta Leu 10	cac His	gcc Ala	ggc	caa Gln	gag Glu 15	aac Asn	48
ect Pro	ggt Gly	gac Asp	aat Asn 20	gct Ala	cac His	aga Arg	tcc Ser	aga Arg 25	gct Ala	gta Val	cca Pro	att Ile	tac Tyr 30	gcc Ala	acc Thr	96
act Thr	tct Ser	tat Tyr 35	gtt Val	tto Phe	gaa Glu	aac Asn	tct Ser 40	aag Lys	cat His	ggt	tcg Ser	caa Gln 45	ttg Leu	ttt Phe	ggt Gly	144
cta Leu	gaa Glu 50	gtt Val	cca Pro	ggt Gly	tac Tyr	gtc Val 55	tat	tcc Ser	cgt Arg	ttc Phe	caa Gln 60	aac Asn	cca Pro	acc Thr	agt Ser	192
aat Asn 65	gtt Val	ttg Leu	gaa Glu	gaa Glu	aga Arg 70	att	gct Ala	gct Ala	tta Leu	gaa Glu 75	ggt	ggt Gly	gct Ala	gct Ala	gct Ala 80	240
ttg Leu	gct Ala	gtt Val	tcc Ser	tcc Ser 85	ggt	caa Gln	gec Ala	gct Ala	caa Gln 90	acc Thr	ctt Leu	gcc Ala	atc Ile	caa Gln 95	ggt Gly	288
ttg Leu	gca Ala	cac His	act Thr 100	ggt Gly	gac Asp	aac Asn	atc Ile	gtt Val 105	tcc Ser	act Thr	tct Ser	tac Tyr	tta Leu 110	tac Tyr	ggt Gly	336
ggt Gly	act Thr	tat Tyr 115	aac Asn	cag Gln	ttc Phe	aaa Lys	atc Ile 120	tcg Ser	ttc Phe	aaa Lys	aga Arg	ttt Phe 125	ggt Gly	atc Ile	gag Glu	384
gct Ala	aga Arg 130	ttt Phe	gtt Val	gaa Glu	ggt Gly	gac Asp 135	aat Asn	cca Pro	gaa Glu	gaa Glu	ttc Phe 140	gaa Glu	aag Lys	gtc Val	ttt Phe	432
gat Asp 145	gaa Glu	aga Arg	acc Thr	aag Lys	gct Ala 150	gtt Val	tat Tyr	ttg Leu	gaa Glu	acc Thr 155	att Ile	ggt Gly	aat Asn	cca Pro	aag Lys 160	480
tac Tyr	aat Asn	gtt Val	ccg Pro	gat Asp 165	ttt Phe	gaa Glu	aaa Lys	att Ile	gtt Val 170	gca Ala	att Ile	gct Ala	cac His	aaa Lys 175	cac His	528
ggt Gly	att Ile	cca Pro	gtt Val 180	gtc Val	gtt Val	gac Asp	aac Asn	aca Thr 185	ttt Phe	ggt Gly	gcc Ala	ggt Gly	ggt Gly 190	tac Tyr	ttc Phe	576
tgt Cys	cag Gln	cca Pro	att Ile	aaa Lys	tac Tyr	ggt Gly	gct Ala	gat Asp	att Ile	gta Val	aca Thr	cat His	tct Ser	gct Ala	acc Thr	624

		19	5				200	•				205				
		Ile					Thr		atc : Ile			Ile		_	_	672
	Gly		•			Lys	_		cca Pro	_	Lys					720
					ı Gly				act Thr 250	Ile						768
				Tyr					aga Arg							816
			Leu					Ala	tct Ser							864
Val	Glu 290	Thr	Leu	Ser	Leu	Arg 295	Ala	Glu	aga Arg	His	Gly 300	Glu	Asn	Ala	Leu	912
Lys 305	Leu	Ala	Lys	Trp	Leu 310	Glu	Gln	Ser	cca Pro	Tyr 315	Val	Ser	Trp	Val	Ser 320	960
Tyr	Pro	Gly	Leu	Ala 325	Ser	His	Ser	His	cat His 330	Glu	Asn	Ala	Lys	Lys 335	Tyr	1008
Leu	Ser	Asn	Gly 340	Phe	Gly	Gly	Val	Leu 345	tct Ser	Phe	Gly	Val	Lys 350	Asp	Leu	1056
Pro	Asn	Ala 355	Asp	Lys	Glu	Thr	Asp 360	Pro	ttc Phe	Lys	Leu	Ser 365	Gly	Ala	Gln	1104
Val	Val 370	Asp	Asn	Leu	Lys	Leu 375	Ala	Ser	aac Asn	Leu	Ala 380	Asn	Val	Gly	Asp	1152
Ala 385	Lys	Thr	Leu	Val	Ile 390	Ala	Pro	Tyr	ttc Phe	Thr 395	Thr	His	Lys	Gln	Leu 400	1200
Asn	Asp	Lys	Glu	Lys 405	Leu	Ala	Ser	Gly	gtt Val 410	Thr	Lys	Asp	Leu	Ile 415	Arg	1248
Val	Ser	Val	Gly 420	Ile	Glu	Phe	Ile	Asp 425	gac Asp	Ile	Ile	Ala				1296
						Phe .			caa Gln			tga				1335

<210> 48

<211> 444

<212> PRT

<213> Saccharomyces cerevisiae

<400> 48

Met Pro Ser His Phe Asp Thr Val Gln Leu His Ala Gly Gln Glu Asn

1 10 15

Pro Gly Asp Asn Ala His Arg Ser Arg Ala Val Pro Ile Tyr Ala Thr 20 25 30

Thr Ser Tyr Val Phe Glu Asn Ser Lys His Gly Ser Gln Leu Phe Gly
35 40 45

Leu Glu Val Pro Gly Tyr Val Tyr Ser Arg Phe Gln Asn Pro Thr Ser 50 55 60

Asn Val Leu Glu Glu Arg Ile Ala Ala Leu Glu Gly Gly Ala Ala Ala 65 70 75 80

Leu Ala Val Ser Ser Gly Gln Ala Ala Gln Thr Leu Ala Ile Gln Gly 85 90 95

Leu Ala His Thr Gly Asp Asn Ile Val Ser Thr Ser Tyr Leu Tyr Gly
100 105 110

Gly Thr Tyr Asn Gln Phe Lys Ile Ser Phe Lys Arg Phe Gly Ile Glu 115 120 125

Ala Arg Phe Val Glu Gly Asp Asn Pro Glu Glu Phe Glu Lys Val Phe
130 135 140

Asp Glu Arg Thr Lys Ala Val Tyr Leu Glu Thr Ile Gly Asn Pro Lys 145 150 155 160

Tyr Asn Val Pro Asp Phe Glu Lys Ile Val Ala Ile Ala His Lys His 165 170 175

Gly Ile Pro Val Val Val Asp Asn Thr Phe Gly Ala Gly Gly Tyr Phe 180 185 190

Cys Gln Pro Ile Lys Tyr Gly Ala Asp Ile Val Thr His Ser Ala Thr 195 200 205

Ser Gly Lys Phe Pro Trp Lys Asp Tyr Pro Glu Lys Phe Pro Gln Phe 225 230 235 240

Ser Gln Pro Ala Glu Gly Tyr His Gly Thr Ile Tyr Asn Glu Ala Tyr
245 250 255

Gly Asn Leu Ala Tyr Ile Val His Val Arg Thr Glu Leu Leu Arg Asp 260 265 270

Leu Gly Pro Leu Met Asn Pro Phe Ala Ser Phe Leu Leu Gln Gly 275 280 285

Val Glu Thr Leu Ser Leu Arg Ala Glu Arg His Gly Glu Asn Ala Leu 290 295 300

Lys Leu Ala Lys Trp Leu Glu Gln Ser Pro Tyr Val Ser Trp Val Ser 305 310 315 320

Tyr Pro Gly Leu Ala Ser His Ser His His Glu Asn Ala Lys Lys Tyr 325 330 335

Leu Ser Asn Gly Phe Gly Gly Val Leu Ser Phe Gly Val Lys Asp Leu 340 345 350

Pro Asn Ala Asp Lys Glu Thr Asp Pro Phe Lys Leu Ser Gly Ala Gln 355 360 365

Val Val Asp Asn Leu Lys Leu Ala Ser Asn Leu Ala Asn Val Gly Asp 370 375 380

Ala Lys Thr Leu Val Ile Ala Pro Tyr Phe Thr Thr His Lys Gln Leu 385 390 395 400

Asn Asp Lys Glu Lys Leu Ala Ser Gly Val Thr Lys Asp Leu Ile Arg
405 410 415

Val Ser Val Gly Ile Glu Phe Ile Asp Asp Ile Ile Ala Asp Phe Gln
420 425 430

Gln Ser Phe Glu Thr Val Phe Ala Gly Gln Lys Pro 435 440

<211> 1335

<212> DNA

<213> Kluyveromyces lactis

<220>

<221> CDS

<222> (1)..(1335)

<223>

<40	0> 4	49									
			cac His							48	1
			gct Ala 20							96	;
			ttc Phe							144	ŧ
			ggt Gly							192	}
			aag Lys							240)
			tct Ser							288	}
			ggt Gly 100							336	;
			caa Gln							384	Ł
			gat Asp							432	<u>}</u>
			aag Lys							480)
			gac Asp							528	1

•																
				l Va					ggt Gly					Phe		576
			e Lys) Ile	gtt Val				Ala			624
tgg Trp	g ato Ile 210	e Gly	t ggt y Gly	cat	ggt Gly	gto Val 215	. Thr	gtt Val	ggt	ggt Gly	gto Val	. Ile	att Ile	gac Asp	tct Ser	672
	' Lys					aaA			gaa Glu		Phe					720
					Tyr				atc Ile 250	Phe						768
				Ile					acc Thr							816
			Leu					Gly	ttc Phe							864
		Leu							cac His							912
	Ala								tac Tyr							960
cca Pro	ggt Gly	ttg Leu	cca Pro	tct Ser 325	cac His	tct Ser	cac His	cac His	gaa Glu 330	aac Asn	gct Ala	aag Lys	aaa Lys	tac Tyr 335	ttg Leu	1008
gaa Glu	aat Asn	ggt Gly	ttc Phe 340	ggt	ggt Gly	gtt Val	tta Leu	tcc Ser 345	ttc Phe	ggt Gly	gtc Val	aaa Lys	gat Asp 350	ttg Leu	cct Pro	1056
aac Asn	gct Ala	tcc Ser 355	gag Glu	gaa Glu	tct Ser	gat Asp	cca Pro 360	ttc Phe	aag Lys	gct Ala	tct Ser	ggt Gly 365	gcc Ala	caa Gln	gtt Val	1104
gtt Val	gac Asp 370	aac Asn	ttg Leu	aag Lys	ctg Leu	gct Ala 375	tct Ser	aac Asn	ttg Leu	gca Ala	aac Asn 380	gtt Val	ggt Gly	gac Asp	tcc Ser	1152
									act Thr							1200
gac Asp	gaa Glu	gaa Glu	aag Lys	tta Leu 405	gct Ala	tct Ser	ggt Gly	gtt Val	acc Thr 410	aag Lys	gac Asp	ttg Leu	atc Ile	cgt Arg 415	gtt Val	1248
tct Ser	gtt Val	ggt Gly	act Thr 420	gaa Glu	ttc Phe	att Ile	Asp	gac Asp 425	att Ile	att Ile	gct Ala	gac Asp	ttt Phe 430	gaa Glu	gca Ala	1296

tct ttc gct act gtc ttc aat ggc caa aaa cct gaa taa Ser Phe Ala Thr Val Phe Asn Gly Gln Lys Pro Glu 435 440

1335

<210> 50

<211> 444

<212> PRT

<213> Kluyveromyces lactis

<400> 50

Met Pro Ser His Phe Asp Thr Leu Gln Leu His Ala Gly Gln Glu Lys

1 10 15

Thr Ala Asp Ala His Asn Pro Arg Ala Val Pro Ile Tyr Ala Thr Thr 20 25 30

Ser Tyr Val Phe Asn Asp Ser Lys His Gly Ala Gln Leu Phe Gly Leu 35 40 45

Glu Thr Pro Gly Tyr Ile Tyr Ser Arg Ile Met Asn Pro Thr Leu Asp 50 55 60

Val Leu Glu Lys Arg Leu Ala Ala Leu Glu Gly Gly Ile Ala Ala Leu 65 70 75 80

Ala Thr Ser Ser Gly Gln Ala Ala Gln Thr Leu Ala Val Thr Gly Leu 85 90 95

Ala His Thr Gly Asp Asn Ile Val Ser Thr Ser Phe Leu Tyr Gly Gly 100 105 110

Thr Tyr Asn Gln Phe Lys Val Ala Phe Lys Arg Leu Gly Ile Glu Ala 115 120 125

Arg Phe Val Asp Gly Asp Lys Pro Glu Asp Phe Glu Lys Leu Phe Asp 130 135 140

Glu Lys Thr Lys Ala Leu Tyr Leu Glu Ser Ile Gly Asn Pro Lys Tyr 145 150 155 160

Asn Val Pro Asp Phe Glu Lys Ile Val Ala Val Ala His Lys His Gly
165 170 175

Ile Pro Val Val Val Asp Asn Thr Phe Gly Ala Gly Gly Phe Phe Cys

180 185 190

Gln Pro Ile Lys Tyr Gly Ala Asp Ile Val Thr His Ser Ala Thr Lys 195 200 205

Trp Ile Gly Gly His Gly Val Thr Val Gly Gly Val Ile Ile Asp Ser 210 215 220

Gly Lys Phe Pro Trp Lys Asp Tyr Pro Glu Lys Phe Pro Gln Phe Ser 225 230 235 240

Gln Pro Ser Glu Gly Tyr His Gly Leu Ile Phe Asn Asp Ala Phe Gly
245 250 255

Pro Ala Ala Phe Ile Gly His Val Arg Thr Glu Leu Leu Arg Asp Leu 260 265 270

Gly Pro Val Leu Ser Pro Phe Ala Gly Phe Leu Leu Gln Gly Leu 275 280 285

Glu Thr Leu Ser Leu Arg Gly Glu Arg His Gly Ser Asn Ala Leu Lys 290 295 300

Leu Ala Gln Tyr Leu Glu Ser Ser Pro Tyr Val Ser Trp Val Ser Tyr 305 310 315 320

Pro Gly Leu Pro Ser His Ser His His Glu Asn Ala Lys Lys Tyr Leu 325 330 335

Glu Asn Gly Phe Gly Gly Val Leu Ser Phe Gly Val Lys Asp Leu Pro
340 345 350

Asn Ala Ser Glu Glu Ser Asp Pro Phe Lys Ala Ser Gly Ala Gln Val 355 360 365

Val Asp Asn Leu Lys Leu Ala Ser Asn Leu Ala Asn Val Gly Asp Ser 370 380

Lys Thr Leu Val Ile Ala Pro Tyr Phe Thr Thr His Gln Gln Leu Thr 385 390 395 400

Asp Glu Glu Lys Leu Ala Ser Gly Val Thr Lys Asp Leu Ile Arg Val 405 410 415

Ser Val Gly Thr Glu Phe Ile Asp Asp Ile Ile Ala Asp Phe Glu Ala 420 425 430

Ser Phe Ala Thr Val Phe Asn Gly Gln Lys Pro Glu 435 440

<210> 51

<211> 1323

<212> DNA

<213> Candida albicans

<220>

<221> CDS

<222> (1)..(1323)

<223>

	0>															
atg Met 1	cct Pro	tct Ser	cac His	ttt Phe 5	gat Asp	aca Thr	ctt Leu	caa Gln	tta Leu 10	cat His	gct Ala	ggt Gly	caa Gln	cca Pro 15	gtt Val	48
gaa Glu	aaa Lys	cca Pro	cac His 20	caa Gln	cca Pro	aga Arg	gcc Ala	cca Pro 25	cca Pro	att Ile	tat Tyr	gca Ala	acc Thr 30	acc Thr	tcc Ser	96
tat Tyr	gtt Val	ttc Phe 35	aat Asn	gac Asp	tct Ser	aaa Lys	cac His 40	ggt Gly	gct Ala	caa Gln	tta Leu	ttt Phe 45	ggt Gly	tta Leu	gaa Glu	144
acc Thr	cca Pro 50	gga Gly	tac Tyr	att Ile	tac Tyr	tcc Ser 55	aga Arg	att Ile	atg Met	aat Asn	cca Pro 60	aca Thr	aac Asn	gat Asp	gtg Val	192
ttt Phe 65	gaa Glu	caa Gln	aga Arg	att Ile	gct Ala 70	gcc Ala	ttg Leu	gaa Glu	ggt Gly	ggt Gly 75	att Ile	ggt Gly	gca Ala	ttg Leu	gcc Ala 80	240
act Thr	tct Ser	tct Ser	ggt Gly	caa Gln 85	tca Ser	gct Ala	caa Gln	ttc Phe	ttg Leu 90	gcc Ala	att Ile	gct Ala	glà aaa	ttg Leu 95	gct Ala	288
								aca Thr 105								336
tat Tyr	aat Asn	caa Gln 115	ttc Phe	aaa Lys	gtt Val	gct Ala	ttc Phe 120	aaa Lys	cgt Arg	ttg Leu	gly ggc	att Ile 125	gaa Glu	acc Thr	aaa Lys	384
ttc Phe	gtt Val 130	aat Asn	ggt Gly	gac Asp	gcc Ala	gct Ala 135	gaa Glu	gat Asp	ttt Phe	gct Ala	aaa Lys 140	ttg Leu	att Ile	gac Asp	gac Asp	432
aag Lys	aca Thr	aaa Lys	gct Ala	att Ile	tat Tyr	att Ile	gaa Glu	acc Thr	att Ile	gga Gly	aac Asn	cct Pro	aaa Lys	tat Tyr	aat Asn	480

_																
145					150)				155					160	
					u Lys			aaa Lys		Ala						528
				. Asj				ggt Gly 185	Ala							576
			His					gtt Val								624
		Gly					Ile	gct Ala								672
	Phe					Tyr		gaa Glu								720
					His			atc Ile								768
				Gly				att Ile 265								816
			Asn					ttt Phe								864
	_		_	_	_	_	_	caa Gln		_		_	_		_	912
Ala	Gln	Trp	_	Glu	Lys	Asn	Pro	aat Asn	Val		Ser				_	960
								gaa Glu								1008
aat Asn	gac Asp	gct Ala	aag Lys 340	tac Tyr	ttt Phe	ggt Gly	ggt Gly	gct Ala 345	tta Leu	gca Ala	ttt Phe	act Thr	gtc Val 350	aag Lys	Asp	1056
								ttc Phe								1104
								aac Asn								1152
								ttt Phe								1200
gat	gaa	gaa	aag	ttg	gct	tet	ggt	gtt	acc	aag	ggc	tta	atc	aga	gtt	1248

WO 2004/024933 104/130 Asp Glu Glu Lys Leu Ala Ser Gly Val Thr Lys Gly Leu Ile Arg Val 405 410 415 tct act ggt act gaa tat att gat gat att att aac gac ttt gaa caa 1296 Ser Thr Gly Thr Glu Tyr Ile Asp Asp Ile Ile Asn Asp Phe Glu Gln 420 gca ttc aag aag gtt tat aac aac taa 1323 Ala Phe Lys Lys Val Tyr Asn Asn 435 <210> 52 <211> 440 <212> PRT <213> Candida albicans <400> 52 Met Pro Ser His Phe Asp Thr Leu Gln Leu His Ala Gly Gln Pro Val

Glu Lys Pro His Gln Pro Arg Ala Pro Pro Ile Tyr Ala Thr Thr Ser 20

Tyr Val Phe Asn Asp Ser Lys His Gly Ala Gln Leu Phe Gly Leu Glu 40

Thr Pro Gly Tyr Ile Tyr Ser Arg Ile Met Asn Pro Thr Asn Asp Val

Phe Glu Gln Arg Ile Ala Ala Leu Glu Gly Gly Ile Gly Ala Leu Ala

Thr Ser Ser Gly Gln Ser Ala Gln Phe Leu Ala Ile Ala Gly Leu Ala 85

His Ala Gly Asp Asn Ile Ile Ser Thr Ser Tyr Leu Tyr Gly Gly Thr 100 105

Tyr Asn Gln Phe Lys Val Ala Phe Lys Arg Leu Gly Ile Glu Thr Lys

Phe Val Asn Gly Asp Ala Ala Glu Asp Phe Ala Lys Leu Ile Asp Asp 130

Lys Thr Lys Ala Ile Tyr Ile Glu Thr Ile Gly Asn Pro Lys Tyr Asn 150 155

Val Pro Asp Phe Glu Lys Ile Thr Lys Leu Ala His Glu His Gly Ile 165 170 175

Pro Val Val Asp Asn Thr Phe Gly Ala Gly Gly Phe Leu Val Asn 180 185 190

Pro Ile Ala His Gly Ala Asp Ile Val Val His Ser Ala Thr Lys Trp
195 200 205

Ile Gly Gly His Gly Thr Thr Ile Ala Gly Val Ile Val Asp Ser Gly 210 215 220

Asn Phe Pro Trp Thr Glu Tyr Pro Glu Lys Tyr Pro Gln Phe Ser Lys 225 230 235 240

Pro Ser Glu Gly Tyr His Gly Leu Ile Leu Asn Asp Ala Leu Gly Lys 245 250 255

Ala Ala Tyr Ile Gly His Leu Arg Ile Glu Leu Leu Arg Asp Leu Gly
260 265 270

Pro Ala Leu Asn Pro Phe Gly Ser Phe Leu Leu Leu Gln Gly Leu Glu 275 280 285

Thr Leu Ser Leu Arg Val Glu Arg Gln Ser Glu Asn Ala Leu Lys Leu 290 295 300

Ala Gln Trp Leu Glu Lys Asn Pro Asn Val Glu Ser Val Ser Tyr Leu 305 310 315 320

Gly Leu Pro Ser His Glu Ser His Glu Leu Ser Lys Lys Tyr Leu Asn 325 330 335

Asn Asp Ala Lys Tyr Phe Gly Gly Ala Leu Ala Phe Thr Val Lys Asp 340 345 350

Ile Thr Asn Thr Ser Ser Asp Pro Phe Asn Glu Ala Ser Pro Lys Leu 355 360 365

Val Asp Asn Leu Glu Ile Ala Ser Asn Leu Ala Asn Val Gly Asp Ser 370 375 380

Lys Thr Leu Val Ile Ala Pro Trp Phe Thr Thr His Gln Gln Leu Ser 385 390 395 400

Asp Glu Glu Lys Leu Ala Ser Gly Val Thr Lys Gly Leu Ile Arg Val

Ser Thr Gly Thr Glu Tyr Ile Asp Asp Ile Ile Asn Asp Phe Glu Gln 420 425 430

Ala Phe Lys Lys Val Tyr Asn Asn 435 440

<210> 53

<211> 1290

<212> DNA

<213> Schizosaccharomyces pombe

<220>

<221> CDS

<222> (1)..(1290)

<223>

<400> 53

ca gtc ro Val										48
ag cct lu Pro										96
 ct tcc hr Ser 35	_	_	_	_	_		 	_	3	44
ta cag eu Gln O									3	192
ac gtt sp Val									7	240
tc gct le Ala										288
tg gct zu Ala									3	336
gt act ly Thr 115		Phe							3	384

		C Lys					/ Asj		cct Pro			Leu				432
	a Āsī					a Ala			gtt Val							480
) Asp				atc JIle 170	Ala						528
				Lev					act Thr							576
Leu	. Val	Arg 195	Pro	Ile	e Asp	His	Gly 200	Ala	gat Asp	Ile	Val	Thr 205	His	Ser	Ala	624
Thr	Lys 210	Trp	Ile	`Gly	Gly	His 215	Gly	Thr	act Thr	Ile	Gly 220	Gly	Val	Ile	Val	672
Asp 225	Ser	Gly	_L ys	Phe	230	Trp	Lys	Lys	aac Asn	Ser 235	Lys	Arg	Phe	Pro	Glu 240	720
Phe	Asn	Glu	Pro	His 245	Pro	Gly	Tyr	His	ggc Gly 250	Met	Val	Phe	Thr	Glu 255	Thr	768
Phe	Gly	Asn	Leu 260	Ala	Tyr	Ala	Phe	Ala 265		Arg	Thr	Gln	Thr 270	Leu	Arg	816
Asp	Val	Gly 275	Gly	Asn	Ala	Asn	Pro 280	Phe	ggt Gly	Val	Phe	Leu 285	Leu	Leu	Gln	864
Gly	Leu 290	Glu	Thr	Leu	Ser	Leu 295	Arg	Met	gag Glu	Arg	His 300	Val	Gln	Asn	Ala	912
Phe 305	Ala	Leu	Ala	Lys	Tyr 310	Leu	Glu	Lys	cac	Pro 315	Lys	Val	Asn	Trp	Val 320	960
Ser	Tyr	Pro	Gly	Leu 325	Glu	Ser	His	Val	ser 330	His	Lys	Leu	Ala	Lys 335	Lys	1008
Tyr	Leu	Lys	Asn 340	Gly	Tyr	Gly	Ala	Val 345	ctc Leu	Ser	Phe	Gly	Ala 350	Lys	Gly	1056
Gly	Pro	Asp 355	Gln	Ser	Arg	Lys	Val 360	Val	aat Asn	Ala	Leu	Lys 365	Leu	Ala	Ser	1104
cag Gln	ttg Leu 370	gcc Ala	aat Asn	gtt Val	Gly	gat Asp 375	gcc Ala	aaa Lys	act Thr	ttg Leu	gtt Val 380	atc Ile	gct Ala	cct Pro	gcc Ala	1152

	Thr				caa Gln 390											1200
					att Ile											1248
				Asp	ttt Phe				Leu				taa			1290
<21	0>	54														
<21	1>	429														
<21	2>	PRT														
<21	3>	Schi	zosa	ccha	romy	ces p	dmoq	е								
<40	0>	54						· e								
Met 1	Pro	Val	Glu	Ser 5	Glu	His	Phe	Glu	Thr 10	Leu	Gln	Leu	His	Ala 15	Gly	
Gln	Glu	Pro	Asp 20	Ala	Ala	Thr	Ser	Ser 25	Arg	Ala	Val	Pro	Ile 30	Tyr	Ala	
Thr	Thr	Ser 35	туг	Val	Phe	Arg	Asp 40	Cys	Asp	His	Gly	Gly 45	Arg	Leu	Phe	
Gly	Leu 50	Gln	Glu	Pro	Gly	Тут 55	Ile	Tyr	Ser	Arg	Met 60	Met	Asn	Pro	Thr	
Ala 65	Asp	Val	Phe	Glu ,	Lys 70	Arg	Ile	Ala	Ala	Leu 75	Glu	His	Gly	Ala	Ala 80	
Ala	Ile	Ala	Thr	Ser 85	Ser	Gly	Thr	Ser	Ala 90	Leu	Phe	Met	Ala	Leu 95	Thr	
Thr	Leu	Ala	Lys 100	Ala	Gly	Asp	Asn	Ile 105	Val	Ser	Thr	Ser	Туг 110	Leu	Tyr	
Gly	Gly	Thr 115	Tyr	Asn	Leu	Phe	Lys 120	Val	Thr	Leu	Pro	Arg 125	Leu	Gly	Ile	
Thr	Thr 130	Lys	Phe	Val	Asn	Gly 135	Asp	Asp	Pro	Asn	Asp 140	Leu	Ala	Ala	Gln	

Ile Asp Glu Asn Thr Lys Ala Val Tyr Val Glu Ser Ile Gly Asn Pro

•										109	/130					
	145					150					155					160
	Met	туг	Asn	Val	Pro 165	Asp	Phe	Glu	Arg	Ile 170	Ala	Glu	Val	Ala	His 175	Ala
	Ala	Gly	Val	Pro 180	Leu	Met	Val	Asp	Asn 185	Thr	Phe	Gly	Gly	Gly 190	Gly	Tyr
	Leu	Val	Arg 195	Pro	Ile	Asp	His	Gly 200	Ala	Asp	Ile	Val	Thr 205	His	Ser	Ala
	Thr	Lys 210	Trp	Ile	Gly	Gly	His 215	Gly	Thr	Thr	Ile	Gly 220	Gly	Val	Ile	Val
	Asp 225	Ser	Gly	ГÀв	Phe	Asp 230	Trp	Lys	Lys	Asn	Ser 235	Lys	Arg	Phe	Pro	Glu 240
	Phe	Asn	Glu	Pro	His 245	Pro	Gly	Tyr		Gly 250	Met	Val	Phe	Thr	Glu 255	Thr
	Phe	Gly	Asn	Leu 260	Ala	Tyr	Ala	Phe	Ala 265	Сув	Arg	Thr	Gln	Thr 270	Leu	Arg
	Asp	Val	Gly 275	Gly	Asn	Ala	Asn	Pro 280	Phe	Gly	Val	Phe	Leu 285	Leu	Leu	Gln
	Gly	Leu 290	Glu	Thr	Leu	Ser	Leu 295	Arg	Met	Glu	Arg	His 300	Val	Gln	Asn	Ala
	Phe 305	Ala	Leu	Ala	Lys	Туг 310		Glu	Lys	His	Pro 315	ГÀЗ	Val	Asn	Trp	Val 320
	Ser	Tyr	Pro	Gly	Leu 325	Glu	Ser	His	Val	ser 330	His	Lys	Leu	Ala	Lys 335	
	Tyr	Leu	_	Asn 340	Gly	Tyr	Gly	Ala	Val 345	Leu	Ser	Phe	Gly	Ala 350	Lys	Gly
	Gly	Pro	Asp 355	Gln	Ser	Arg	Lys	Val 360	Val	Asn	Ala	Leu	Lys 365		Ala	Ser
	Gln	Leu 370	Ala	Asn	Val	Gly	Asp 375	Ala	Lys	Thr	Leu	Val 380	Ile	Ala	Pro	Ala
															_	_

Tyr Thr Thr His Leu Gln Leu Thr Asp Glu Glu Gln Ile Ser Ala Gly 385 390 395 400

Val Thr Lys Asp Leu Ile Arg Val Ala Val Gly Ile Glu His Ile Asp 405 410 415

Asp Ile Ile Ala Asp Phe Ala Gln Ala Leu Glu Val Ala
420
425

<210> 55

<211> 52

<212> DNA

<213> Künstliche Sequenz

-22Ns

<223> Beschreibung der künstlichen Sequenz:PCR primer

<400> 55

cccgggatcc gctagcggcg cgccggccgg cccggtgtga aataccgcac ag 52

<210> 56

<211> 53

<212> DNA

<213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz:PCR primer

<400> 56

tctagactcg agcggccgcg gccggccttt aaattgaaga cgaaagggcc tcg 53

<210> 57

<211> 47

<212> DNA

<213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz:PCR primer

<400> 57

gagatctaga cccggggatc cgctagcggg ctgctaaagg aagcgga 47

<210> 58

<211> 38

<212> DNA

<213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz:PCR primer

<400> 58

gagaggcgcg ccgctagcgt gggcgaagaa ctccagca

38

<210> 59

<211> 34

<212> DNA

<213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz:PCR primer

<220>


```
<400> 59
  gagagggcgg ccgcgcaaag tcccgcttcg tgaa
                                                                      34
  <210> 60
  <211> 34
  <212> DNA
  <213> Künstliche Sequenz
  <220>
  <223> Beschreibung der künstlichen Sequenz:PCR primer
  <400> 60
  gagagggggg ccgctcaagt cggtcaagcc acgc
                                                                      34
  <210> 61
  <211> 140
  <212> DNA
  <213> Künstliche Sequenz
 <223> Beschreibung der künstlichen Sequenz:PCR primer
 <400> 61
 tcgaatttaa atctcgagag gcctgacgtc gggcccggta ccacgcgtca tatgactagt 60
 teggacetag ggatategte gacategatg etettetgeg ttaattaaca attgggatee 120
 tctagacccg ggatttaaat
 <210> 62
 <211> 140
 <212> DNA
 <213> Künstliche Sequenz
 <223> Beschreibung der künstlichen Sequenz:PCR primer
 <400> 62
gatcatttaa atcccgggtc tagaggatcc caattgttaa ttaacgcaga agagcatcga 60
tgtcgacgat atccctaggt ccgaactagt catatgacgc gtggtaccgg gcccgacgtc 120
aggcctctcg agatttaaat
<210> 63
<211> 33
<212> DNA
<213> Künstliche Sequenz
<223> Beschreibung der künstlichen Sequenz:PCR primer
<400> 63
gagageggee geegateett tttaacceat cae
                                                                    33
<210> 64
<211> 32
<212> DNA
<213> Künstliche Sequenz
```


<223> Beschreibung der künstlichen Sequenz:PCR primer

<400> 64 aggagcggcc gccatcggca ttttcttttg cg

32

<210> 65 <211> 5091 <212> DNA

<213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz:Plasmid

<400> 65 gccgcgactg ccttcgcgaa gccttgcccc gcggaaattt cctccaccga gttcgtgcac 60 acceptatge caagettett teacectaaa ttegagagat tggattetta eegtggaaat 120 tettegcaaa aategteece tgategeect tgegaegttg gegteggtge egetggttge 180 gettggettg accgaettga teageggeeg etegatttaa atetegagag geetgaegte 240 gggeceggta ccaegegtea tatgactagt teggacetag ggatategte gacategatg 300 ctcttctgcg ttaattaaca attgggatcc tctagacccg ggatttaaat cgctagcggg 360 ctgctaaagg aagcggaaca cgtagaaagc cagtccgcag aaacggtgct gaccccggat 420 gaatgtcagc tactgggcta tctggacaag ggaaaacgca agcgcaaaga gaaagcaggt 480 agettgeagt gggettacat ggegataget agaetgggeg gttttatgga cageaagega 540 accggaattg ccagctgggg cgccctctgg taaggttggg aagccctgca aagtaaactg 600 gatggctttc ttgccgccaa ggatctgatg gcgcagggga tcaagatctg atcaagagac 660 aggatgagga tegtttegea tgattgaaca agatggattg cacgeaggtt ctccggccgc 720 ttgggtggag aggctattcg gctatgactg ggcacaacag acaatcggct gctctgatgc 780 cgccgtgttc cggctgtcag cgcaggggcg cccggttctt tttgtcaaga ccgacctgtc 840 eggtgccctg aatgaactgc aggacgaggc agcgcggcta tcgtggctgg ccacgacggg 900 cgtteettge geagetgtge tegacgttgt caetgaageg ggaagggaet ggetgetatt 960 gggcgaagtg ccggggcagg atctcctgtc atctcacctt gctcctgccg agaaagtatc 1020 catcatggct gatgcaatgc ggcggctgca tacgcttgat ccggctacct gcccattcga 1080 ccaccaageg aaacategca tegagegage acgtactegg atggaageeg gtettgtega 1140 tcaggatgat ctggacgaag agcatcaggg gctcgcgcca gccgaactgt tcgccaggct 1200 caaggegege atgeeegacg gegaggatet egtegtgace catggegatg cetgettgee 1260 gaatatcatg gtggaaaatg gccgcttttc tggattcatc gactgtggcc ggctgggtgt 1320 ggcggaccgc tatcaggaca tagcgttggc tacccgtgat attgctgaag agcttggcgg 1380 cgaatggget gaccgettee tegtgettta eggtategee geteeegatt egeagegeat 1440 cgccttctat cgccttcttg acgagttctt ctgagcggga ctctggggtt cgaaatgacc 1500 gaccaagega egeccaacet gecateaega gatttegatt ecacegeege ettetatgaa 1560 aggttggget teggaategt ttteegggac geeggetgga tgateeteea gegeggggat 1620 ctcatgctgg agttcttcgc ccacgctagc ggcgcgcgg ccggcccggt gtgaaatacc 1680 gcacagatgc gtaaggagaa aataccgcat caggcgctct tccgcttcct cgctcactga 1740 ctcgctgcgc tcggtcgttc ggctgcggcg agcggtatca gctcactcaa aggcggtaat 1800 acggttatcc acagaatcag gggataacgc aggaaagaac atgtgagcaa aaggccagca 1860 aaaggccagg aaccgtaaaa aggccgcgtt gctggcgttt ttccataggc tccgccccc 1920 tgacgagcat cacaaaaatc gacgctcaag tcagaggtgg cgaaacccga caggactata 1980 aagataccag gegttteece etggaagete eetegtgege teteetgtte egaccetgee 2040 gettacegga tacetgteeg cetttetece ttegggaage gtggegettt etcatagete 2100 acgetgtagg tateteagtt eggtgtaggt egttegetee aagetggget gtgtgcaega 2160 accecegtt cagecegace getgegeett atceggtaac tategtettg agtecaacce 2220 ggtaagacac gacttatege cactggcage agecactggt aacaggatta gcagagegag 2280 gtatgtaggc ggtgctacag agttcttgaa gtggtggcct aactacggct acactagaag 2340 gacagtattt ggtatctgcg ctctgctgaa gccagttacc ttcggaaaaa gagttggtag 2400 ctcttgatcc ggcaaacaaa ccaccgctgg tagcggtggt ttttttgttt gcaagcagca 2460 gattacgcgc agaaaaaaag gatctcaaga agatcctttg atcttttcta cggggtctga 2520 cgctcagtgg aacgaaaact cacgttaagg gattttggtc atgagattat caaaaaggat 2580 cttcacctag atccttttaa aggccggccg cggccgcgca aagtcccgct tcgtgaaaat 2640 tttcgtgccg cgtgattttc cgccaaaaac tttaacgaac gttcgttata atggtgtcat 2700 gacetteacg acgaagtact aaaattggee egaateatea getatggate tetetgatgt 2760 cgcgctggag tccgacgcgc tcgatgctgc cgtcgattta aaaacggtga tcggattttt 2820 ccgagetete gatacgacgg acgegecage atcacgagae tgggecagtg ccgegagega 2880

cctagaaact ctcgtggcgg atcttgagga gctggctgac gagctgcgtg ctcggccagc 2940 gccaggagga cgcacagtag tggaggatgc aatcagttgc gcctactgcg gtggcctgat 3000 tcctccccgg cctgacccgc gaggacggcg cgcaaaatat tgctcagatg cgtgtcgtgc 3060 cgcagccagc cgcgagcgcg ccaacaaacg ccacgccgag gagctggagg cggctaggtc 3120 gcaaatggcg ctggaagtgc gtcccccgag cgaaattttg gccatggtcg tcacagagct 3180 ggaagcggca gcgagaatta tcgcgatcgt ggcggtgccc gcaggcatga caaacatcgt 3240 aaatgccgcg tttcgtgtgc cgtggccgcc caggacgtgt cagcgccgcc accacctgca 3300 ccgaatcggc agcagcgtcg cgcgtcgaaa aagcgcacag gcggcaagaa gcgataagct 3360 gcacgaatac ctgaaaaatg ttgaacgccc cgtgagcggt aactcacagg gcgtcggcta 3420 acccccagtc caaacctggg agaaagcgct caaaaatgac tctagcggat tcacgagaca 3480 ttgacacacc ggcctggaaa ttttccgctg atctgttcga cacccatccc gagctcgcgc 3540 tgcqatcacg tggctggacg agcgaagacc gccgcgaatt cctcgctcac ctgggcagag 3600 aaaattteca gggcagcaag acccgcgact tcgccagcgc ttggatcaaa gacccggaca 3660 cggagaaaca cagccgaagt tataccgagt tggttcaaaa tcgcttgccc ggtgccagta 3720 tgttgctctg acgcacgcgc agcacgcagc cgtgcttgtc ctggacattg atgtgccgag 3780 ccaccaggcc ggcgggaaaa tcgagcacgt aaaccccgag gtctacgcga ttttggagcg 3840 ctgggcacgc ctggaaaaag cgccagcttg gatcggcgtg aatccactga gcgggaaatg 3900 ccagctcatc tggctcattg atccggtgta tgccgcagca ggcatgagca gcccgaatat 3960 gegeetgetg getgeaacga eegaggaaat gaeeegegtt tteggegetg accaggettt 4020 ttcacatagg ctgagccgtg gccactgcac tctccgacga tcccagccgt accgctggca 4080 tgcccagcac aatcgcgtgg atcgcctagc tgatcttatg gaggttgctc gcatgatctc 4140 aggcacagaa aaacctaaaa aacgctatga gcaggagttt tctagcggac gggcacgtat 4200 cgaagcggca agaaaagcca ctgcggaagc aaaagcactt gccacgcttg aagcaagcct 4260 gccgagcgcc gctgaagcgt ctggagagct gatcgacggc gtccgtgtcc tctggactgc 4320 tecagggegt geegeeegtg atgagaegge ttttegeeae getttgaetg tgggatacea 4380 gttaaaagcg gctggtgagc gcctaaaaga caccaagggt catcgagcct acgagcgtgc 4440 ctacaccgtc gctcaggcgg tcggaggagg ccgtgagcct gatctgccgc cggactgtga 4500 cegecagaeg gattggeege gaegtgtgeg eggetaegte getaaaggee agceagtegt 4560 ccctgctcgt cagacagaga cgcagagcca gccgaggcga aaagctctgg ccactatggg 4620 aagacgtggc ggtaaaaagg ccgcagaacg ctggaaagac ccaaacagtg agtacgcccg 4680 agcacagcga gaaaaactag ctaagtccag tcaacgacaa gctaggaaag ctaaaggaaa 4740 tcgcttgacc attgcaggtt ggtttatgac tgttgaggga gagactggct cgtggccgac 4800 aatcaatgaa gctatgtctg aatttagcgt gtcacgtcag accgtgaata gagcacttaa 4860 ggtctgcggg cattgaactt ccacgaggac gccgaaagct tcccagtaaa tgtgccatct 4920 cgtaggcaga aaacggttcc cccgtagggt ctctctcttg gcctcctttc taggtcgggc 4980 tgattgctct tgaagctctc taggggggct cacaccatag gcagataacg ttccccaccg 5040 gctcgcctcg taagcgcaca aggactgctc ccaaagatct tcaaagccac t

```
<210> 66
<211> 4323
<212> DNA
```

<213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz:Plasmid

ctotctcagcg tatggttgtc gcctgagctg tagttgcctt catcgatgaa ctgctgtaca 60 ttttgatacg tttttccgtc accgtcaaag attgatttat aatcctctac accgttgatg 120 ttcaaagagc tgtctgatgc tgatacgtta acttgtgcag ttgtcagtgt ttgtttgccg 180 taatgtttac cggagaaatc agtgtagaat aaacggattt ttccgtcaga tgtaaatgtg 240 gctgaacctg accattcttg tgtttggtct tttaggatag aatcatttgc atcgatttt taaagacgcg gccagcgttt ttccagctgt caatagaagt ttcgccgact 360 ttttgataga acatgtaaat cgatgtgca tccgcatttt taggatctcc ggctaatgca 420 aagacgatgt ggtagccgtg atagtttgcg acagtgccgt cagcgttttg taatggccag 480 ctgtcccaaa cgtccaggcc ttttgcagaa gagatatttt taattgtgga cgaatcaaat 540 gataatatggg aaatgccgta tgttcctta tatggctttt ggttcgttc tttcgcaaac 660 gcttgagttg cgcctcctgc cagcagtgcg gtagtaaagg ttaatactgt tgcttgtttt 720 gcaaactttt tgatgttcat cgttcatgtc tccttttta tgtactgtgt tagcggtctg 780 cttcttccag ccctcctgtt tgaagatggc aagttagtta cgcacaataa aaaaagacct 840

aaaatatgta aggggtgacg ccaaagtata cactttgccc tttacacatt ttaggtcttg 900 cctgctttat cagtaacaaa cccgcgcgat ttacttttcg acctcattct attagactct 960 cgtttggatt gcaactggtc tattttcctc ttttgtttga tagaaaatca taaaaggatt 1020 tgcagactac gggcctaaag aactaaaaaa tctatctgtt tcttttcatt ctctgtattt 1080 tttatagttt ctgttgcatg ggcataaagt tgccttttta atcacaattc agaaaatatc 1140 ataatatete attteaetaa ataatagtga aeggeaggta tatgtgatgg gttaaaaagg 1200 ateggeggee getegattta aatetegaga ggeetgaegt egggeeeggt accaegegte 1260 atatgactag ttcggaccta gggatatcgt cgacatcgat gctcttctgc gttaattaac 1320 aattgggatc ctctagaccc gggatttaaa tcgctagcgg gctgctaaag gaagcggaac 1380 acgtagaaag ccagtccgca gaaacggtgc tgaccccgga tgaatgtcag ctactgggct 1440 atctggacaa gggaaaacgc aagcgcaaag agaaagcagg tagcttgcag tgggcttaca 1500 tggcgatagc tagactgggc ggttttatgg acagcaagcg aaccggaatt gccagctggg 1560 gegeeetetg gtaaggttgg gaageeetge aaagtaaaet ggatggettt ettgeegeea 1620 aggatctgat ggcgcagggg atcaagatct gatcaagaga caggatgagg atcgtttcgc 1680 atgattgaac aagatggatt gcacgcaggt tctccggccg cttgggtgga gaggctattc 1740 ggetatgaet gggcacaaca gacaategge tgetetgatg cegeegtgtt ceggetgtca 1800 gegeagggge geeeggttet ttttgteaag acegaeetgt eeggtgeeet gaatgaactg 1860 caggacgagg cagcgcgct atcgtggctg gccacgacgg gcgttccttg cgcagctgtg 1920 ctcgacgttg tcactgaagc gggaagggac tggctgctat tgggcgaagt gccggggcag 1980 gateteetgt cateteacet tgeteetgee gagaaagtat ceateatgge tgatgeaatg 2040 eggeggetge atacgettga teeggetace tgeccatteg accaecaage gaaacatege 2100 atcgagcgag cacgtactcg gatggaagcc ggtcttgtcg atcaggatga tctggacgaa 2160 gagcatcagg ggctcgcgcc agccgaactg ttcgccaggc tcaaggcgcg catgcccgac 2220 ggcgaggatc tegtegtgac ccatggcgat geetgettge egaatateat ggtggaaaat 2280 qqccqctttt ctggattcat cgactgtggc cggctgggtg tggcggaccg ctatcaggac 2340 atagegttgg ctaccegtga tattgctgaa gagettggeg gegaatggge tgaccgette 2400 ctegtgettt aeggtatege egeteeegat tegeagegea tegeetteta tegeettett 2460 gacgagttet tetgageggg actetggggt tegaaatgae egaccaageg aegeccaace 2520 tgccatcacg agaittcgat tccaccgccg ccttctatga aaggttgggc ttcggaatcg 2580 ttttccggga cgccggctgg atgatcctcc agcgcgggga tctcatgctg gagttcttcg 2640 cccacgctag cggcgccg gccggcccgg tgtgaaatac cgcacagatg cgtaaggaga 2700 aaataccgca tcaggcgctc ttccgcttcc tcgctcactg actcgctgcg ctcggtcgtt 2760 cggctgcggc gagcggtatc agctcactca aaggcggtaa tacggttatc cacagaatca 2820 ggggataacg caggaaagaa catgtgagca aaaggccagc aaaaggccag gaaccgtaaa 2880 aaggeegegt tgetggegtt tttecatagg eteegeeeee etgaegagea teacaaaaat 2940 cgacgctcaa gtcagaggtg gcgaaacccg acaggactat aaagatacca ggcgtttccc 3000 cctggaagct ccctcgtgcg ctctcctgtt ccgaccctgc cgcttaccgg atacctgtcc 3060 gcctttctcc cttcgggaag cgtggcgctt tctcatagct cacgctgtag gtatctcagt 3120 teggtgtagg tegttegete caagetggge tgtgtgcacg aacececegt teagecegae 3180 cgctgcgcct tatccggtaa ctatcgtctt gagtccaacc cggtaagaca cgacttatcg 3240 ccactggcag cagccactgg taacaggatt agcagagcga ggtatgtagg cggtgctaca 3300 gagttettga agtggtggee taactaegge tacactagaa ggacagtatt tggtatetge 3360 getetgetga agecagttae etteggaaaa agagttggta getettgate eggeaaacaa 3420 accaccgctg gtagcggtgg tttttttgtt tgcaagcagc agattacgcg cagaaaaaaa 3480 ggateteaag aagateettt gatettttet aeggggtetg aegeteagtg gaacgaaaac 3540 tcacgttaag ggattttggt catgagatta tcaaaaagga tcttcaccta gatcctttta 3600 aaggeeggee geggeegeea teggeatttt ettttgegtt tttatttgtt aactgttaat 3660 tgtccttgtt caaggatgct gtctttgaca acagatgttt tcttgccttt gatgttcagc 3720 aggaageteg gegeaaacgt tgattgtttg tetgegtaga atcetetgtt tgteatatag 3780 cttgtaatca cgacattgtt tcctttcgct tgaggtacag cgaagtgtga gtaagtaaag 3840 gttacatcgt taggatcaag atccattttt aacacaaggc cagttttgtt cagcggcttg 3900 tatgggccag ttaaagaatt agaaacataa ccaagcatgt aaatatcgtt agacgtaatg 3960 ccgtcaatcg tcatttttga tccgcgggag tcagtgaaca ggtaccattt gccgttcatt 4020 ttaaagacgt tegegegtte aattteatet gttactgtgt tagatgeaat cageggttte 4080 atcacttttt tcagtgtgta atcatcgttt agctcaatca taccgagagc gccgtttgct 4140 aactcagccg tgcgtttttt atcgctttgc agaagttttt gactttcttg acggaagaat 4200 gatgtgcttt tgccatagta tgctttgtta aataaagatt cttcgccttg gtagccatct 4260 tcagttccag tgtttgcttc aaatactaag tatttgtggc ctttatcttc tacgtagtga 4320 4323 gga

<210> 67 <211> 35 <212> DNA	
<213> Künstliche Sequenz	
<220> <223> Beschreibung der künstlichen Sequenz:PCR primer	
<400> 67 gagagagaga cgcgtcccag tggctgagac gcatc	35
<210> 68 <211> 34 <212> DNA <213> Künstliche Sequenz	
<220> <223> Beschreibung der künstlichen Sequenz:PCR primer	
<400> 68 ctctctctgt cgacgaattc aatcttacgg cctg	34
<210> 69 <211> 5860 <212> DNA <213> Künstliche Sequenz	
<220> <223> Beschreibung der künstlichen Sequenz:Plasmid	
<400> 69 cccggtacca cgcgtcccag tggctgagac gcatccgcta aagccccagg aaccctgtgc	60
agaaagaaaa cactcctctg gctaggtaga cacagtttat aaaggtagag ttgagcgggt	120
aactgtcagc acgtagatcg aaaggtgcac aaaggtggcc ctggtcgtac agaaatatgg	180
cggttcctcg cttgagagtg cggaacgcat tagaaacgtc gctgaacgga tcgttgccac	240
caagaagget ggaaatgatg tegtggttgt etgeteegea atgggagaea ceaeggatga	300
acttctagaa cttgcagcgg cagtgaatcc cgttccgcca gctcgtgaaa tggatatgct	360
cctgactgct ggtgagcgta tttctaacgc tctcgtcgcc atggctattg agtcccttgg	420
cgcagaagcc caatctttca cgggctctca ggctggtgtg ctcaccaccg agcgccacgg	480
aaacgcacgc attgttgatg tcactccagg tcgtgtgcgt gaagcactcg atgagggcaa	540
gatetgeatt gttgctggtt tecagggtgt taataaagaa accegegatg teaceaegtt	600
gggtcgtggt ggttctgaca ccactgcagt tgcgttggca gctgctttga acgctgatgt	660
gtgtgagatt tactcggacg ttgacggtgt gtataccgct gacccgcgca tcgttcctaa	720
tgcacagaag ctggaaaagc tcagcttcga agaaatgctg gaacttgctg ctgttggctc	780
caagattttg gtgctgcgca gtgttgaata cgctcgtgca ttcaatgtgc cacttcgcgt	840
acgetegtet tatagtaatg atceeggeae tttgattgee ggetetatgg aggatattee	900

tgtggaagaa gcagtcctta ccggtgtcgc aaccgacaag tccgaagcca aagtaaccgt 960 tctgggtatt tccgataagc caggcgaggc tgcgaaggtt ttccgtgcgt tggctgatgc 1020 agaaatcaac attgacatgg ttctgcagaa cgtctcttct gtagaagacg gcaccaccga 1080 cateacette acetgecete gtteegaegg cegeegegeg atggagatet tgaagaaget 1140 tcaggttcag ggcaactgga ccaatgtgct ttacgacgac caggtcggca aagtctccct 1200 cgtgggtgct ggcatgaagt ctcacccagg tgttaccgca gagttcatgg aagctctgcg 1260 cgatgtcaac gtgaacatcg aattgatttc cacctctgag attcgtattt ccgtgctgat 1320 1380 cgaagacgaa gccgtcgttt atgcaggcac cggacgctaa agttttaaag gagtagtttt 1440 acaatgacca ccatcgcagt tgttggtgca accggccagg tcggccaggt tatgcgcacc 1500 cttttggaag agcgcaattt cccagctgac actgttcgtt tctttgcttc cccacgttcc 1560 gcaggccgta agattgaatt cgtcgacatc gatgctcttc tgcgttaatt aacaattggg 1620 atcctctaga cccgggattt aaatcgctag cgggctgcta aaggaagcgg aacacgtaga 1680 aagccagtcc gcagaaacgg tgctgacccc ggatgaatgt cagctactgg gctatctgga 1740 caagggaaaa cgcaagcgca aagagaaagc aggtagcttg cagtgggctt acatggcgat 1800 agctagactg ggcggtttta tggacagcaa gcgaaccgga attgccagct ggggcgccct 1860 ctggtaaggt tgggaagccc tgcaaagtaa actggatggc tttcttgccg ccaaggatct 1920 gatggcgcag gggatcaaga tctgatcaag agacaggatg aggatcgttt cgcatgattg 1980 aacaagatgg attgcacgca ggttctccgg ccgcttgggt ggagaggcta ttcggctatg 2040 actgggcaca acagacaatc ggctgctctg atgccgccgt gttccggctg tcagcgcagg 2100 ggcgcccggt tetttttgtc aagaccgacc tgtccggtgc cctgaatgaa ctgcaggacg 2160 aggeagegeg getategtgg ctggecaega egggegttee ttgegeaget gtgetegaeg 2220 ttgtcactga agcgggaagg gactggctgc tattgggcga agtgccgggg caggatctcc 2280 tgtcatctca ccttgctcct gccgagaaag tatccatcat ggctgatgca atgcggcggc 2340 tgcatacgct tgatccggct acctgcccat tcgaccacca agcgaaacat cgcatcgagc 2400 gagcacgtac tcggatggaa gccggtcttg tcgatcagga tgatctggac gaagagcatc 2460 aggggctcgc gccagccgaa ctgttcgcca ggctcaaggc gcgcatgccc gacggcgagg 2520 atctcgtcgt gacccatggc gatgcctgct tgccgaatat catggtggaa aatggccgct 2580 tttctggatt catcgactgt ggccggctgg gtgtggcgga ccgctatcag gacatagcgt 2640 tggctacccg tgatattgct gaagagettg geggegaatg ggctgaccgc ttcctcgtgc 2700 tttacggtat cgccgctccc gattcgcagc gcatcgcctt ctatcgcctt cttgacgagt 2760 tettetgage gggaetetgg ggttegaaat gaeegaeeaa gegaegeeea aeetgeeate 2820

acgagatttc	gattccaccg	ccgccttcta	tgaaaggttg	ggcttcggaa	tegtttteeg	2880
ggacgccggc	tggatgatcc	tccagcgcgg	ggatctcatg	ctggagttct	tegeceaege	2940
tageggegeg	ccggccggcc	cggtgtgaaa	taccgcacag	atgcgtaagg	agaaaatacc	3000
gcatcaggcg	ctcttccgct	tcctcgctca	ctgactcgct	gcgctcggtc	gttcggctgc	3060
ggcgagcggt	atcagctcac	tcaaaggcgg	taatacggtt	atccacagaa	tcaggggata	3120
acgcaggaaa	gaacatgtga	gcaaaaggcc	agcaaaaggc	caggaaccgt	aaaaaggccg	3180
cgttgctggc	gtttttccat	aggctccgcc	cccctgacga	gcatcacaaa	aatcgacgct	3240
caagtcagag	gtggcgaaac	ccgacaggac	tataaagata	ccaggcgttt	ccccctggaa	3300
gctccctcgt	gcgctctcct	gttccgaccc	tgccgcttac	cggatacctg	teegeettte	3360
tcccttcggg	aagcgtggcg	ctttctcata	gctcacgctg	taggtatctc	agttcggtgt	3420
aggtcgttcg	ctccaagctg	ggctgtgtgc	acgaaccccc	cgttcagccc	gaccgctgcg	3480
ccttatccgg	taactatcgt	cttgagtcca	acccggtaag	acacgactta	tcgccactgg	3540
cagcagccac	tggtaacagg	attagcagag	cgaggtatgt	aggcggtgct	acagagttct	3600
tgaagtggtg	gcctaactac	ggctacacta	gaaggacagt	atttggtatc	tgcgctctgc	3660
tgaagccagt	taccttcgga	aaaagagttg	gtagctcttg	atccggcaaa	caaaccaccg	3720
ctggtagcgg	tggtttttt	gtttgcaagc	agcagattac	gcgcagaaaa	aaaggatctc	3780
aagaagatcc	tttgatcttt	tctacggggt	ctgacgctca	gtggaacgaa	aactcacgtt	3840
aagggatttt	ggtcatgaga	ttatcaaaaa	ggatcttcac	ctagatcctt	ttaaaggccg	3900
gccgcggccg	ccatcggcat	tttcttttgc	gtttttattt	gttaactgtt	aattgtcctt	3960
		acaacagatg				4020
tcggcgcaaa	cgttgattgt	ttgtctgcgt	agaatcctct	gtttgtcata	tagcttgtaa	4080
_	`*	gcttgaggta				4140
		·			ttgtatgggc	4200
		taaccaagca				4260
		gagtcagtga				4320
		tctgttactg				4380
	*	tttagctcaa		•		4440
		tgcagaagtt				4500
	,	ttaaataaag				4560
		aagtatttgt				4620
tcagcgtatg	gttgtcgcct	gagetgtagt	tgccttcatc	gatgaactgc	tgtacatttt	4680

gatacgtttt teegteaceg teaaagattg atttataate etetacaceg ttgatgttea	4740
aagagetgte tgatgetgat aegttaaett gtgeagttgt eagtgtttgt ttgeegtaat	4800
gtttaccgga gaaatcagtg tagaataaac ggatttttcc gtcagatgta aatgtggctg	4860
aacctgacca ttcttgtgtt tggtctttta ggatagaatc atttgcatcg aatttgtcgc	4920
tgtctttaaa gacgcggcca gcgtttttcc agctgtcaat agaagtttcg ccgacttttt	4980
gatagaacat gtaaatcgat gtgtcatccg catttttagg atctccggct aatgcaaaga	5040
cgatgtggta gccgtgatag tttgcgacag tgccgtcagc gttttgtaat ggccagctgt	5100
cccaaacgtc caggcctttt gcagaagaga tatttttaat tgtggacgaa tcaaattcag	5160
aaacttgata tttttcattt ttttgctgtt cagggatttg cagcatatca tggcgtgtaa	5220
tatgggaaat geegtatgtt teettatatg gettttggtt egtttettte geaaacgett	5280
gagttgcgcc tcctgccagc agtgcggtag taaaggttaa tactgttgct tgttttgcaa	5340
actttttgat gttcatcgtt catgtctcct tttttatgta ctgtgttagc ggtctgcttc	5400
ttccagccct cctgtttgaa gatggcaagt tagttacgca caataaaaaa agacctaaaa	5460
tatgtaaggg gtgacgccaa agtatacact ttgcccttta cacattttag gtcttgcctg	5520
ctttatcagt aacaaacccg cgcgatttac ttttcgacct cattctatta gactctcgtt	5580
tggattgcaa ctggtctatt ttcctctttt gtttgataga aaatcataaa aggatttgca	5640
gactacgggc ctaaagaact aaaaaatcta tctgtttctt ttcattctct gtatttttta	5700
tagtttctgt tgcatgggca taaagttgcc tttttaatca caattcagaa aatatcataa	5760
tatctcattt cactaaataa tagtgaacgg caggtatatg tgatgggtta aaaaggatcg	5820
geggeegete gatttaaate tegagaggee tgaegteggg	5860

<210> 70

<211> 38

<212> DNA

<213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz:PCR primer

<400> 70

cggcaccacc gacatcatct tcacctgccc tcgttccg

<210> 71

<211> 38

<212> DNA

<213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz:PCR primer

<400> 71

cggaacgagg gcaggtgaag atgatgtcgg tggtgccg

38

																•
<2	10>	72														
<2	11>	126	6							•						
	12>	DNA														
	13>			tant	_											
	20>	Lyb	C 1-10	Cunc				•								
		~~~														
	21>	CDS														
	22>	(1)	(1	266)												
<2	23>															
<4	<b>00&gt;</b>	72														
gt	g gc	c ctg	gt	c gt	a ca	g aa	a ta	t gg	c aat	t tcc	tc:	a ctt	: aac	agt	gcg	48
Va.	Àla	a Lei	ı Va	l Va	1 G1:	n Lv:	s Tv	r Gl	v Glv	/ Set	Se	r T.e.	. Glu	Cer	Ala	
1				5		4			10	,				15	nzu	
gaa	a car	att	: ag	a aa	c at	c act	т па:	- ca	a atc	att					gct	0.5
GI	· Arc	7 Tle	- 72°	T Act	n Və	ם שני ומו	o Gl	2 C9:	9 acc	. w.l	. 90	o mb	aag	aag	Ala	96
<b>U</b> I.	, AL	,		y Ap.	u va.	r wre	a GI		a rre	: val	AL	a ini	_	гλа	Ala	
			20					25					30			
			·		• -		_									
99	a aat	gat	gre	gt	ggti	gto	tgo	e te	gca	ı atg	ı gga	a gac	acc	acg	gat	144
GT?	/ Asr		Va.	l Va.	l Va.	l Val	l Cys	s Sei	r Ala	. Met	: Gly	/ Asp	Thr	Thr	Asp	
		35					40					45				
gaa	ctt	: cta	gaa	a ctt	: gca	a geg	g gca	gtg	, aat	ccc	gtt	: ccg	cca	gct	cgt	192
Glu	ı Lev	ı Lev	ı Glı	ı Leı	ı Ala	a Ala	ı Ala	a Val	l Asn	Pro	Va]	Pro	Pro	Ala	Arg	
	50					55					60				3	•
									•					•		
gaa	atg	gat	atg	cto	cte	act	get	: ggt	gag	cat	att	: tct	aac	act	ctc	240
Glu	Met	Aso	Met	Lev	Lev	Thr	· Āla	Glv	Glu	Ara	Tle	Ser	Aen	7) =	Len	210
65		•			70					75				ALG	80	
	٠ .				. •					,,					80	
atc	acc	ato	act	att	. gad	tee	ctt		gca	~	~~					
Val	Ala	Met	פומ	Tle	. Gl.,	Cor	Len	990	Ala	gaa	33-	: Caa		272	acg	288
VAI	ALG	Mec	A10	85	. Glu	Ser	neu	GIY		GIU	AIa	GIN	ser		Thr	
				65					90					95		
~~~	+-+		~													
990		cag	900	990	909	CLC	acc	acc	gag	cgc	cac	gga	aac	gca	cgc	336
GIY	ser	GIN			val	ren	Thr		Glu	Arg	His	Gly	Asn	Ala	Arg	
	•		100					105				•	110			
att	gtt	gat	gtc	act	cca	ggt	cgt	gtg	cgt	gaa	gca	ctc	gat	gag	ggc	384
Ile	Val	Asp	Val	Thr	Pro	Gly	Arg	Val	Arg	Glu	Ala	Leu	Asp	Glu	Gly	
		115					120					125	_		-	
aag	atc	tgc	att	gtt	gct	ggt	ttc	cag	ggt	qtt	aat	aaa	gaa	acc	cac	432
Lys	Ile	Cys	Ile	Val	Ala	Gly	Phe	Gln	Gly	Val	Asn	LVS	Glu	Thr	Ara	436
-	130					135			2		140	_			9	
											110					
gat	atc	acc	acq	tta	aat	cat	aat	aat	tct	~~~		-at	~~~	-++		
Δen	Val	Thr	Thr	T.eu	Glv	Ara	alv	990	Ser	yac Nam	acc mb	act mb-	yca	gr.	aca	480
145	V 4.1			DCU	150	9	Cly	GIY	Ser		THE	THE	AIa	val		
147					130			•		155					160	
				A- A												
ceg	gca	gce	gct	EEg	aac	get	gat	gtg	tgt	gag	att	tac	tcg	gac	gtt	528
Leu	Ala	Ala	Ala	Leu	Asn	Ala	Asp	Val	Cys	Glu	Ile	Tyr	Ser	Asp	Val	
				165					170					175		
gac	ggt	gtg	tat	acc	gct	gac	ccq	cac	atc	att	cct	aat	gca	cag	aaa	576
Asp	Gly	Val	Tyr	Thr	Ala	Asp	Pro	Ara	Ile	Val	Pro	Δen	Ala	Gln	Lug	376
-	-3	-	180	-			~-	185		- 41			190		กไล	
								103					13U			
cta	gaa	227	ota	200	ttc	gee.	G2 ~	a t								÷
Lev	27	Tare	Len	age	Dho	عمم دا	gad Gl	acg	ctg	gaa	CLL	gct	gct	gtt	ggc	624
Leu	JIU	-ys	≝ ⊂u	Sel	£ 11C	JIU	30. GT (T	Mec	Leu	GIU	ren		AIA	val	Gly	
		195					200					205				

tco Ser	: aag : Lys 210	i Ile	ttg Lev	g gtg 1 Va	g ctg L Lev	g cgc Arg 215	Sei	gtt Val	gaa Glu	tac Tyr	gct Ala 220	Arg	gca Ala	ttc Phe	aat Asn	672
gtg Val 225	Pro	t ctt	cgo Arg	gta g Val	a cgc l Arg 230	, Ser	tct Ser	tat Tyr	agt Ser	aat Asn 235	Asp	ccc Pro	Gly	act Thr	ttg Leu 240	720
att Ile	gcc	ggo Gly	tct Ser	ato Met 245	: Glu	gat Asp	att Ile	cct Pro	gtg Val 250	Glu	gaa Glu	gca Ala	gtc Val	ctt Leu 255	acc Thr	768
ggt Gly	gto Val	gca Ala	acc Thr 260	Asp	aag Lys	tcc Ser	gaa Glu	gcc Ala 265	Lys	gta Val	acc Thr	gtt Val	ctg Leu 270	ggt Gly	att Ile	816
tcc Ser	gat Asp	aag Lys 275	Pro	ggc	gag Glu	gct Ala	gcg Ala 280	Lys	gtt Val	ttc Phe	cgt Arg	gcg Ala 285	ttg Leu	gct Ala	gat Asp	864
gca Ala	gaa Glu 290	Ile	aac Asn	att Ile	gac Asp	atg Met 295	gtt Val	ctg Leu	cag Gln	aac Asn	gtc Val 300	tct Ser	tct Ser	gta Val	gaa Glu	912
gac Asp 305	ggc	acc Thr	acc Thr	gac Asp	atc Ile 310	atc Ile	ttc Phe	acc Thr	tgc Cys	cct Pro 315	cgt Arg	tcc Ser	gac Asp	ggc Gly	cgc Arg 320	960
cgc Arg	gcg Ala	atg Met	gag Glu	atc Ile 325	ttg Leu	aag Lys	aag Lys	ctt Leu	cag Gln 330	gtt Val	cag Gln	ggc	aac Asn	tgg Trp 335	acc Thr	1008
aat Asn	gtg Val	ctt Leu	tac Tyr 340	gac Asp	gac Asp	cag Gln	gtc Val	ggc Gly 345	aaa Lys	gtc Val	tcc Ser	ctc Leu	gtg Val 350	ggt Gly	gct Ala	1056
ggc Gly	atg Met	aag Lys 355	tct Ser	cac His	cca Pro	ggt Gly	gtt Val 360	acc Thr	gca Ala	gag Glu	ttc Phe	atg Met 365	gaa Glu	gct Ala	ctg Leu	1104
cgc Arg	gat Asp 370	gtc Val	aac Asn	gtg Val	aac Asn	atc Ile 375	gaa Glu	ttg Leu	att Ile	tcc Ser	acc Thr 380	tct Ser	gag Glu	att Ile	cgt Arg	1152
att Ile 385	tcc Ser	gtg Val	ctg Leu	atc Ile	cgt Arg 390	gaa Glu	gat Asp	gat Asp	ctg Leu	gat Asp 395	gct Ala	gct Ala	gca Ala	cgt Arg	gca Ala 400	1200
ttg Leu	cat His	gag Glu	Gln	ttc Phe 405	cag Gln	ctg Leu	Gly ggc	ggc ggc	gaa Glu 410	gac Asp	gaa Glu	gcc Ala	gtc Val	gtt Val 415	tat Tyr	1248
gca Ala		Thr			taa											1266

<210> 73

<211> 421 <212> PRT

<213> LysC Mutante

<400> 73

Val Ala Leu Val Val Gln Lys Tyr Gly Gly Ser Ser Leu Glu Ser Ala 1 5 10 15

Glu Arg Ile Arg Asn Val Ala Glu Arg Ile Val Ala Thr Lys Lys Ala 20 25 30

Gly Asn Asp Val Val Val Cys Ser Ala Met Gly Asp Thr Thr Asp 35 40 45

Glu Leu Leu Glu Leu Ala Ala Ala Val Asn Pro Val Pro Pro Ala Arg

Glu Met Asp Met Leu Leu Thr Ala Gly Glu Arg Ile Ser Asn Ala Leu 65 70 75 80

Val Ala Met Ala Ile Glu Ser Leu Gly Ala Glu Ala Gln Ser Phe Thr 85 90 95

Gly Ser Gln Ala Gly Val Leu Thr Thr Glu Arg His Gly Asn Ala Arg 100 105 110

Ile Val Asp Val Thr Pro Gly Arg Val Arg Glu Ala Leu Asp Glu Gly
115 120 125

Lys Ile Cys Ile Val Ala Gly Phe Gln Gly Val Asn Lys Glu Thr Arg 130 135 140

Asp Val Thr Thr Leu Gly Arg Gly Gly Ser Asp Thr Thr Ala Val Ala 145 150 155 160

Leu Ala Ala Leu Asn Ala Asp Val Cys Glu Ile Tyr Ser Asp Val 165 170 175

Asp Gly Val Tyr Thr Ala Asp Pro Arg Ile Val Pro Asn Ala Gln Lys 180 185 190

Leu Glu Lys Leu Ser Phe Glu Glu Met Leu Glu Leu Ala Ala Val Gly 195 200 205

Ser Lys Ile Leu Val Leu Arg Ser Val Glu Tyr Ala Arg Ala Phe Asn 210 215 220

Val Pro Leu Arg Val Arg Ser Ser Tyr Ser Asn Asp Pro Gly Thr Leu 225 230 235 240

Ile Ala Gly Ser Met Glu Asp Ile Pro Val Glu Glu Ala Val Leu Thr

245

250

255

Gly Val Ala Thr Asp Lys Ser Glu Ala Lys Val Thr Val Leu Gly Ile 260 265 270

Ser Asp Lys Pro Gly Glu Ala Ala Lys Val Phe Arg Ala Leu Ala Asp 275 280 285

Ala Glu Ile Asn Ile Asp Met Val Leu Gln Asn Val Ser Ser Val Glu 290 295 300

Asp Gly Thr Thr Asp Ile Ile Phe Thr Cys Pro Arg Ser Asp Gly Arg 305 310 315 320

Arg Ala Met Glu Ile Leu Lys Lys Leu Gln Val Gln Gly Asn Trp Thr 325 330 335

Asn Val Leu Tyr Asp Asp Gln Val Gly Lys Val Ser Leu Val Gly Ala 340 345 350

Gly Met Lys Ser His Pro Gly Val Thr Ala Glu Phe Met Glu Ala Leu 355 360 365

Arg Asp Val Asn Val Asn Ile Glu Leu Ile Ser Thr Ser Glu Ile Arg 370 375 380

Ile Ser Val Leu Ile Arg Glu Asp Asp Leu Asp Ala Ala Ala Arg Ala 385 390 395 400

Leu His Glu Gln Phe Gln Leu Gly Gly Glu Asp Glu Ala Val Val Tyr
405 410 415

Ala Gly Thr Gly Arg 420

<210> 74

<211> 5860

<212> DNA

<213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz:Plasmid

<400> 74

cccggtacca cgcgtccag tggctgagac gcatccgcta aagccccagg aaccctgtgc 60
agaaagaaaa cactcctctg gctaggtaga cacagtttat aaaggtagag ttgagcgggt 120
aactgtcagc acgtagatcg aaaggtgcac aaaggtggcc ctggtcgtac agaaatatgg 180
cggttcctcg cttgagagtg cggaacgcat tagaaacgtc gctgaacgga tcgttgccac 240

caagaagget ggaaatgatg tegtggttgt etgeteegea atgggagaea eeaeggatga 300 acttctagaa cttgcagcgg cagtgaatcc cgttccgcca gctcgtgaaa tggatatgct 360 cctgactgct ggtgagcgta tttctaacgc tctcgtcgcc atggctattg agtcccttgg 420 cgcagaagcc caatctttca cgggctctca ggctggtgtg ctcaccaccg agcgccacgg 480 aaacgcacgc attgttgatg tcactccagg tcgtgtgcgt gaagcactcg atgagggcaa 540 gatctgcatt gttgctggtt tccagggtgt taataaagaa acccgcgatg tcaccacgtt 600 gggtcgtggt ggttctgaca ccactgcagt tgcgttggca gctgctttga acgctgatgt 660 gtgtgagatt tactcggacg ttgacggtgt gtataccgct gacccgcgca tcgttcctaa 720 tgcacagaag ctggaaaagc tcagcttcga agaaatgctg gaacttgctg ctgttggctc 780 caagattttg gtgctgcgca gtgttgaata cgctcgtgca ttcaatgtgc cacttcgcgt 840 acgetegtet tatagtaatg atceeggeae tttgattgee ggetetatgg aggatattee 900 tgtggaagaa gcagtcctta ccggtgtcgc aaccgacaag tccgaagcca aagtaaccgt 960 tctgggtatt tccgataagc caggcgaggc tgcgaaggtt ttccgtgcgt tggctgatgc 1020 agaaatcaac attgacatgg ttctgcagaa cgtctcttct gtagaagacg gcaccaccga 1080 catcatette acetgeeete gtteegaegg eegeegegeg atggagatet tgaagaaget 1140 tcaggttcag ggcaactgga ccaatgtgct ttacgacgac caggtcggca aagtctccct 1200 cgtgggtgct ggcatgaagt ctcacccagg tgttaccgca gagttcatgg aagctctgcg 1260 cgatgtcaac gtgaacatcg aattgatttc cacctctgag attcgtattt ccgtgctgat 1320 1380 cgaagacgaa gecgtegttt atgeaggeae eggaegetaa agttttaaag gagtagtttt 1440 acaatgacca ccatcgcagt tgttggtgca accggccagg tcggccaggt tatgcgcace 1500 cttttggaag agcgcaattt cccagctgac actgttcgtt tctttgcttc cccacgttcc 1560 gcaggccgta agattgaatt cgtcgacatc gatgctcttc tgcgttaatt aacaattggg 1620 atcetetaga ecegggattt aaategetag egggetgeta aaggaagegg aacaegtaga 1680 aagccagtec geagaaacgg tgetgaeeee ggatgaatgt cagetaetgg getatetgga 1740 caagggaaaa cgcaagcgca aagagaaagc aggtagcttg cagtgggctt acatggcgat 1800 agctagactg ggcggtttta tggacagcaa gcgaaccgga attgccagct ggggcgccct 1860 ctggtaaggt tgggaagccc tgcaaagtaa actggatggc tttcttgccg ccaaggatct 1920 gatggcgcag gggatcaaga tctgatcaag agacaggatg aggatcgttt cgcatgattg 1980 aacaagatgg attgcacgca ggttctccgg ccgcttgggt ggagaggcta ttcggctatg 2040 actgggcaca acagacaatc ggctgctctg atgccgccgt gttccggctg tcagcgcagg 2100

			124/100			
ggcgcccggt	tetttttgt	aagaccgacc	tgtccggtgc	cctgaatgaa	ctgcaggacg	2160
aggcagcgcg	gctatcgtgg	, ctggccaega	cgggcgttcc	ttgcgcagct	gtgctcgacg	2220
ttgtcactga	agegggaagg	gactggctgc	: tattgggcga	agtgccgggg	caggatetee	2280
tgtcatctca	ccttgctcct	gccgagaaag	tatccatcat	ggctgatgca	atgcggcggc	2340
tgcatacgct	tgatccggct	acctgcccat	tcgaccacca	agcgaaacat	cgcatcgagc	2400
gagcacgtac	tcggatggaa	geeggtettg	tcgatcagga	tgatctggac	gaagagcatc	2460
aggggctcgc	gccagccgaa	ctgttcgcca	ggctcaaggc	gcgcatgccc	gacggcgagg	2520
atctcgtcgt	gacccatggc	gatgcctgct	tgccgaatat	catggtggaa	aatggccgct	2580
tttctggatt	catcgactgt	ggccggctgg	gtgtggcgga	ccgctatcag	gacatagcgt	2640
tggctacccg	tgatattgct	gaagagettg	gcggcgaatg	ggctgacege	ttcctcgtgc	2700
tttacggtat	cgccgctccc	gattcgcagc	gcatcgcctt	ctatcgcctt	cttgacgagt	2760
tcttctgagc	gggactctgg	ggttcgaaat	gaccgaccaa	gcgacgccca	acctgccate	2820
acgagatttc	gattccaccg	ccgccttcta	tgaaaggttg	ggcttcggaa	tcgttttccg	2880
ggacgccggc	tggatgatcc	tccagcgcgg	ggatctcatg	ctggagttct	tcgcccacge	2940
tagcggcgcg	ccggccggcc	cggtgtgaaa	taccgcacag	atgcgtaagg	agaaaatacc	3000
gcatcaggcg	ctcttccgct	tcctcgctca	ctgactcgct	gcgctcggtc	gttcggctgc	3060
ggcgagcggt	atcagctcac	tcaaaggcgg	taatacggtt	atccacagaa	tcaggggata	3120
acgcaggaaa	gaacatgtga	gcaaaaggcc	agcaaaaggc	caggaaccgt	aaaaaggccg	3180
cgttgctggc	gtttttccat	aggeteegee	cccctgacga	gcatcacaaa	aatcgacgct	3240
caagtcagag	gtggcgaaac	ccgacaggac	tataaagata	ccaggcgttt	cccctggaa	3300
geteeetegt	gegeteteet	gttccgaccc	tgccgcttac	cggatacctg	tccgccttte	3360
tecetteggg	aagcgtggcg	ctttctcata	getcaegetg	taggtatete	agttcggtgt	3420
aggtcgttcg	ctccaagctg	ggctgtgtgc	acgaaccccc	cgttcagccc	gaccgctgcg	3480
ccttatccgg	taactatcgt	cttgagtcca	acccggtaag	acacgactta	tcgccactgg	3540
cagcagccac	tggtaacagg	attagcagag	cgaggtatgt	aggcggtgct	acagagttct	3600
tgaagtggtg	gectaactac	ggctacacta	gaaggacagt	atttggtatc	tgcgctctgc	3660
tgaagccagt	taccttcgga	aaaagagttg	gtagctcttg	atccggcaaa	caaaccaccg	3720
ctggtagcgg	tggtttttt	gtttgcaagc	agcagattac	gcgcagaaaa	aaaggatctc	3780
aagaagatcc	tttgatcttt	tctacggggt (ctgacgctca	gtggaacgaa	aactcacgtt	3840
aagggatttt	ggtcatgaga	ttatcaaaaa g	ggatcttcac	ctagatectt	ttaaaggccg	3900
gccgcggccg	ccatcggcat (tttcttttgc (gttttattt (gttaactgtt	aattgtcctt	3960
gttcaaggat q	gctgtctttg a	acaacagatg t	tttcttgcc	tttgatgttc	agcaggaagc	4020

teggegeaaa egttgattgt ttgtetgegt agaateetet gtttgteata tagettgtaa 4080 tcacgacatt gtttcctttc gcttgaggta cagcgaagtg tgagtaagta aaggttacat 4140 cgttaggatc aagatccatt tttaacacaa ggccagtttt gttcagcggc ttgtatgggc 4200 cagttaaaga attagaaaca taaccaagca tgtaaatatc gttagacgta atgccgtcaa 4260 tegteatttt tgateegegg gagteagtga acaggtaeca tttgeegtte attttaaaga 4320 cgttcgcgcg ttcaatttca tctgttactg tgttagatgc aatcagcggt ttcatcactt 4380 ttttcagtgt gtaatcatcg tttagctcaa tcataccgag agcgccgttt gctaactcag 4440 4500 ccgtgcgttt tttatcgctt tgcagaagtt tttgactttc ttgacggaag aatgatgtgc ttttgccata gtatgctttg ttaaataaag attcttcgcc ttggtagcca tcttcagttc 4560 cagtgtttgc ttcaaatact aagtatttgt ggcctttatc ttctacgtag tgaggatctc 4620 teagegtatg gttgtegeet gagetgtagt tgeetteate gatgaactge tgtacatttt 4680 gatacgtttt teegteaceg teaaagattg atttataate etetacaceg ttgatgttea 4740 aagagetgte tgatgetgat aegttaaett gtgeagttgt eagtgtttgt ttgeegtaat 4800 gtttaccgga gaaatcagtg tagaataaac ggatttttcc gtcagatgta aatgtggctg 4860 aacctgacca ttcttgtgtt tggtctttta ggatagaatc atttgcatcg aatttgtcgc 4920 tgtctttaaa gacgcggcca gcgtttttcc agctgtcaat agaagtttcg ccgacttttt 4980 gatagaacat gtaaatcgat gtgtcatccg catttttagg atctccggct aatgcaaaga 5040 cgatgtggta gccgtgatag tttgcgacag tgccgtcagc gttttgtaat ggccagctgt 5100 cccaaacgtc caggcetttt gcagaagaga tatttttaat tgtggacgaa tcaaattcag 5160 aaacttgata tttttcattt ttttgctgtt cagggatttg cagcatatca tggcgtgtaa 5220 tatgggaaat gccgtatgtt tccttatatg gcttttggtt cgtttctttc gcaaacgctt 5280 gagttgcgcc tcctgccagc agtgcggtag taaaggttaa tactgttgct tgttttgcaa 5340 actttttgat gttcatcgtt catgtctcct tttttatgta ctgtgttagc ggtctgcttc 5400 ttccagccct cctgtttgaa gatggcaagt tagttacgca caataaaaaa agacctaaaa 5460 tatgtaaggg gtgacgccaa agtatacact ttgcccttta cacattttag gtcttgcctg 5520 ctttatcagt aacaaacccg cgcgatttac ttttcgacct cattctatta gactctcgtt 5580 tggattgcaa ctggtctatt ttcctctttt gtttgataga aaatcataaa aggatttgca 5640 gactacgggc ctaaagaact aaaaaatcta tctgtttctt ttcattctct gtatttttta 5700 tagtttctgt tgcatgggca taaagttgcc tttttaatca caattcagaa aatatcataa 5760 tateteattt cactaaataa tagtgaacgg caggtatatg tgatgggtta aaaaggateg 5820 5860 gcggccgctc gatttaaatc tcgagaggcc tgacgtcggg

<210> 75	
<211> 31	
<212> DNA	
<213> Künstliche Sequenz	
<220>	
<223> Beschreibung der künstlichen Sequenz:PCR primer	
<400> 75	
gagaggatee ggaaggtgaa tegaattteg g	
	31
<210> 76	
<210> 76 <211> 40	
<212> DNA	
<213> Künstliche Sequenz	
varas vanacizene beduenz	
<220>	
<223> Beschreibung der künstlichen Sequenz:PCR primer	
<400> 76	
ctattgctgt cggcgctcat gattctccaa aaataatcgc	40
<210> 77	
<211> 20	
<212> DNA	
<213> Künstliche Sequenz	
<220>	
<223> Beschreibung der künstlichen Sequenz:PCR primer	
<400> 77	
atgagcgccg acagcaatag	20
<210> 78	
<211> 29	
<212> DNA	
<213> Künstliche Sequenz	
<220>	
<223> Beschreibung der künstlichen Sequenz:PCR primer	
beddenz:FCR primer	
<400> 78	
gaactctaga tcagaacgcc gccacggac	29
<210> 79	
<211> 6591	
<212> DNA	
<213> Künstliche Sequenz	
<220>	
<223> Beschreibung der künstlichen Sequenz:Plasmid	
<400> 79	
gateeggaag gtgaategaa tttegggget ttaaagcaaa aatgaacage ttggtetata	
	60
gtggctaggt accctttttg ttttggacac atgtagggtg gccgaaacaa agtaatagga	120
	120
caacaacget egacegegat tatttttgga gaateatgag egeegaeage aatageaeeg	180

acgccgatcc	gaccgcgcat	tggtcgttcg	aaaccaaaca	gatacacgct	ggtcagcacc	240
ctgatccgac	caccaacgcc	cgggctctgc	cgatctatgc	gaccacgtcg	tacaccttcg	300
acgacaccgc	gcacgccgcc	gccctgttcg	gactggaaat	teegggeaat	atctacaccc	360
ggatcggcaa	cccaccacc	gacgtcgtcg	agcagcgcat	cgccgcgctc	gagggcggtg	420
tggccgcgct	gttcctgtcg	teggggcagg	ccgcggagac	gttcgccatc	ttgaacctgg	480
ccggcgcggg	cgatcacatc	gtgtccagcc	cgcgcctgta	cggcggcacc	tacaacctgt	540
tccactattc	gctggccaag	ctcggcatcg	aggtcagctt	cgtcgacgat	ccggacgatc	600
tggacacctg	gcaggcggcg	gtacggccca	acaccaaggc	gttcttcgcc	gagaccatct	660
ccaacccgca	gatcgacctg	ctggacaccc	cggcggtttc	cgaggtcgcc	catcgcaacg	720
gggtgccgtt	gatcgtcgac	aacaccatcg	ccacgccata	cctgatccaa	ccgttggccc	780
agggcgccga	catcgtcgtg	cattcggcca	ccaagtacct	gggcgggcac	ggtgccgcca	840
tcgcgggtgt	gatcgtcgac	ggcggcaact	tegattggae	ccagggccgc	ttccccggct	900
tcaccacccc	cgaccccagc	taccacggcg	tggtgttcgc	cgagctgggt	ccaccggcgt	960
ttgcgctcaa	agctcgagtg	cagetgetee	gtgactacgg	ctcggcggct	tegeegttea	1020
acgcgttctt	ggtggcgcag	ggtctggaaa	cgctgagcct	gcggatcgag	cggcacgtcg	1080
ccaacgcgca	gegegtegee	gagttcctgg	ccgcccgcga	cgacgtgctt	teggteaact	1140
	geceteeteg					1200
	gctgtccttc					1260
	gctgcacagc					1320
	gaccactcat					1380
					ctggccgacc	1440
					gtggcggcgt	1500
		-			gaacacgtag	
					ggctatctgg	1620
					tacatggcga	1680
	•				tggggegeee	1740
					gccaaggatc	1800
					tegeatgatt	1860
					attcggctat	1920
					gtcagcgcag	1980
gggcgcccgg	ttctttttgt	caagaccgac	ctgtccggtg	ccctgaatga	actgcaggac	2040

	PCT/EP2003/009453
--	-------------------

gaggcagege ggctategtg getggecaeg aegggegtte ettgegeage tgtgetegae 2100 gttgtcactg aagcgggaag ggactggctg ctattgggcg aagtgccggg gcaggatctc 2160 etgteatete acettgetee tgeegagaaa gtateeatea tggetgatge aatgeggegg 2220 ctgcatacgc ttgatccggc tacctgccca ttcgaccacc aagcgaaaca tcgcatcgag 2280 cgagcacgta ctcggatgga agccggtctt gtcgatcagg atgatctgga cgaagagcat 2340 caggggctcg cgccagccga actgttcgcc aggctcaagg cgcgcatgcc cgacggcgag 2400 gatetegteg tgacceatgg cgatgeetge ttgeegaata teatggtgga aaatggeege 2460 ttttctggat tcatcgactg tggccggctg ggtgtggcgg accgctatca ggacatagcg 2520 ttggctaccc gtgatattgc tgaagagctt ggcggcgaat gggctgaccg cttcctcgtg 2580 ctttacggta tcgccgctcc cgattcgcag cgcatcgcct tctatcgcct tcttgacgag 2640 ttcttctgag cgggactctg gggttcgaaa tgaccgacca agcgacgccc aacctgccat 2700 cacgagattt cgattccacc gccgccttct atgaaaggtt gggcttcgga atcgttttcc 2760 gggacgccgg ctggatgatc ctccagcgcg gggatctcat gctggagttc ttcgcccacg 2820 ctageggege geeggeegge eeggtgtgaa atacegeaca gatgegtaag gagaaaatae 2880 egeateagge getetteege tteetegete actgaetege tgegeteggt egtteggetg 2940 eggegagegg tateagetea eteaaaggeg gtaataeggt tateeacaga ateaggggat 3000 aacgcaggaa agaacatgtg agcaaaaggc cagcaaaagg ccaggaaccg taaaaaggcc 3060 gcgttgctgg cgtttttcca taggctccgc cccctgacg agcatcacaa aaatcgacgc 3120 tcaagtcaga ggtggcgaaa cccgacagga ctataaagat accaggcgtt tccccctgga 3180 ageteceteg tgegetetee tgtteegace etgeegetta ceggatacet gteegeettt 3240 ctcccttcgg gaagcgtggc gctttctcat agctcacgct gtaggtatct cagttcggtg 3300 taggtcgttc gctccaagct gggctgtgtg cacgaaccc ccgttcagcc cgaccgctgc 3360 gccttatccg gtaactatcg tcttgagtcc aacccggtaa gacacgactt atcgccactg 3420 gcagcagcca ctggtaacag gattagcaga gcgaggtatg taggcggtgc tacagagttc . 3480 ttgaagtggt ggcctaacta cggctacact agaaggacag tatttggtat ctgcgctctg 3540 ctgaagccag ttaccttcgg aaaaagagtt ggtagctctt gatccggcaa acaaaccacc 3600 gctggtagcg gtggtttttt tgtttgcaag cagcagatta cgcgcagaaa aaaaggatct 3660 caagaagatc ctttgatctt ttctacgggg tctgacgctc agtggaacga aaactcacgt 3720 taagggattt tggtcatgag attatcaaaa aggatcttca cctagatcct tttaaaggcc 3780 ggccgcggcc gcgcaaagtc ccgcttcgtg aaaattttcg tgccgcgtga ttttccgcca 3840 aaaactttaa cgaacgttcg ttataatggt gtcatgacct tcacgacgaa gtactaaaat 3900 tggcccgaat catcagctat ggatctctct gatgtcgcgc tggagtccga cgcgctcgat 3960

gctgccgtcg atttaaaaac ggtgatcgga tttttccgag ctctcgatac gacggacgcg 4020 ccagcatcac gagactgggc cagtgccgcg agcgacctag aaactctcgt ggcggatctt 4080 gaggagetgg etgaegaget gegtgetegg eeagegeeag gaggaegeae agtagtggag 4140 gatgcaatca gttgcgccta ctgcggtggc ctgattcctc cccggcctga cccgcgagga 4200 cggcgcgcaa aatattgctc agatgcgtgt cgtgccgcag ccagccgcga gcgcgccaac 4260 aaacgccacg ccgaggaget ggaggcgget aggtcgcaaa tggcgctgga agtgcgtccc 4320 ccgagcgaaa ttttggccat ggtcgtcaca gagctggaag cggcagcgag aattatcgcg 4380 atcgtggcgg tgcccgcagg catgacaaac atcgtaaatg ccgcgtttcg tgtgccgtgg 4440 ecgeceagga egtgteageg eegecaceac etgeacegaa teggeageag egtegegegt 4500 cgaaaaagcg cacaggcggc aagaagcgat aagctgcacg aatacctgaa aaatgttgaa 4560 cgccccgtga gcggtaactc acagggcgtc ggctaacccc cagtccaaac ctgggagaaa 4620 gcgctcaaaa atgactctag cggattcacg agacattgac acaccggcct ggaaattttc 4680cgctgatctg ttcgacaccc atcccgagct cgcgctgcga tcacgtggct ggacgagcga 4740 agaccgccgc gaattcctcg ctcacctggg cagagaaaat ttccagggca gcaagacccg 4800 cgacttcgcc agcgcttgga tcaaagaccc ggacacggag aaacacagcc gaagttatac 4860 cgagttggtt caaaatcgct tgcccggtgc cagtatgttg ctctgacgca cgcgcagcac 4920 gcagccgtgc ttgtcctgga cattgatgtg ccgagccacc aggccggcgg gaaaatcgag 4980 cacgtaaacc ccgaggtcta cgcgattttg gagcgctggg cacgcctgga aaaagcgcca 5040 gettggateg gegtgaatee actgageggg aaatgeeage teatetgget cattgateeg 5100 gtgtatgccg cagcaggcat gagcagcccg aatatgcgcc tgctggctgc aacgaccgag 5160 gaaatgaccc gegttttcgg cgctgaccag gctttttcac ataggctgag ccgtggccac 5220 tgcactctcc gacgatccca gccgtaccgc tggcatgccc agcacaatcg cgtggatcgc 5280 ctagetgate ttatggaggt tgetegeatg ateteaggea cagaaaaace taaaaaaege 5340 tatgagcagg agttttctag cggacgggca cgtatcgaag cggcaagaaa agccactgcg 5400 gaagcaaaag cacttgccac gcttgaagca agcctgccga gcgccgctga agcgtctgga 5460 gagetgateg aeggegteeg tgteetetgg aetgeteeag ggegtgeege eegtgatgag 5520 acggetttte gecaegettt gaetgtggga taccagttaa aageggetgg tgagegeeta 5580 aaagacacca agggtcatcg agcctacgag cgtgcctaca ccgtcgctca ggcggtcgga 5640 ggaggccgtg agcctgatct gccgccggac tgtgaccgcc agacggattg gccgcgacgt 5700 gtgcgcggct acgtcgctaa aggccagcca gtcgtccctg ctcgtcagac agagacgcag 5760 agccagccga ggcgaaaagc tctggccact atgggaagac gtggcggtaa aaaggccgca 5820

gaacgctgga	aagacccaaa	cagtgagtac	gcccgagcac	agcgagaa aa	actagctaag	5880
tccagtcaac	gacaagctag	gaaagctaaa	ggaaatcgct	tgaccattgc	aggttggttt	5940
atgactgttg	agggagagac	tggctcgtgg	ccgacaatca	atgaagctat	gtctgaattt	6000
agcgtgtcac	gtcagaccgt	gaatagagca	cttaaggtct	gcgggcattg	aacttccacg	6060
aggacgccga	aagcttccca	gtaaatgtgc	catctcgtag	gcagaaaacg	gtteccccgt	6120
agggtctctc	tcttggcctc	ctttctaggt	cgggctgatt	gctcttgaag	ctctctaggg	6180
gggeteacae	cataggcaga	taacgttccc	caccggctcg	cctcgtaagc	gcacaaggac	6240
tgctcccaaa	gatcttcaaa	gccactgccg	cgactgcctt	cgcgaagcct	tgccccgcgg	6300
aaatttcctc	caccgagttc	gtgcacaccc	ctatgccaag	cttctttcac	cctaaattcg	6360
agagattgga	ttcttaccgt	ggaaattctt	cgcaaaaatc	gtcccctgat	egecettgeg	6420
acgttggcgt	cggtgccgct	ggttgcgctt	ggcttgaccg	acttgatcag	eggeegeteg	6480
atttaaatct	cgagaggcct	gacgtcgggc	ccggtaccac	gcgtcatatg	actagttcgg	6540
acctagggat	atcgtcgaca	tcgatgctct	tctgcgttaa	ttaacaattg	g	6591

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER: _______

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)