

Comunicaciones

UD N° 7 MEDIOS DE COMUNICACIONES

Ingeniero ALEJANDRO ECHAZÚ aechazu@comunicacionnueva.com.ar

CIRCUITO TELEINFORMÁTICO BÁSICO

ONDAS ELECTROMAGNÉTICAS

$$\lambda = \frac{c}{f}$$

ESPECTRO ELECTROMAGNÉTICO

CARACTERÍSTICAS FUNDAMENTALES DE LOS MEDIOS DE COMUNICACIONES

- •ANCHO DE BANDA / VELOCIDAD DE TRANSMISIÓN
- · COSTO
- •PARÁMETROS FÍSICOS (PESO, PROTECCIÓN, ETC)
- •ATENUACIÓN (ALCANCE) Y DISTORSIÓN
- •INMUNIDAD CONTRA EL RUIDO Y LA INTERFERENCIA
- CONFIABILIDAD
- •FACILIDAD PARA LA INSTALACIÓN Y ESTÉTICA
- FLEXIBILIDAD

TIPOS DE MEDIOS DE COMUNICACIONES

SEGÚN LA FORMA EN QUE SE PROPAGAN LAS ONDAS ELECTROMAGNÉTICAS (OEM)

TRANSMISIÓN POR ESPACIO LIBRE

RADIOCOMUNICACIONES HF VHF UHF MICROONDAS SATÉLITE

LÁSER

TRANSMISIÓN GUIADA

COAXIL
COBRE DESNUDO
CABLE TELEFÓNICO
CABLE TRENZADO
FIBRA ÓPTICA
GUÍA DE ONDA

TRANSMISIÓN EN MEDIOS CONDUCTORES

Características eléctricas

$$Z = R + j (X_L - X_C) \text{ ohms}$$

$$R = \rho l/S \quad X_L = \omega L \quad X_c = 1 / \omega C$$

TRANSMISIÓN EN MEDIOS CONDUCTORES

Impedancia Característica

$$Z_0 = \frac{V}{I}$$

$$Z_0 = \sqrt{\frac{R + j\omega L}{G + j\omega C}}$$

$$Z_0 = g(R, L, C, G, \omega)$$

Si R y G son muy pequeñas (línea de bajas pérdidas) o la frecuencia de operación es elevada

$$Z_0 = \sqrt{\frac{L}{C}}$$

TRANSMISIÓN EN MEDIOS CONDUCTORES

Efecto pelicular

Profundidad de penetración (δ)

$$\delta = \sqrt{\frac{2}{\omega\mu\sigma}}$$

Depende de:

Frecuencia de operación (ω)

Permeabilidad magnética (µ)

Conductividad eléctrica (σ)

PARES TELEFÓNICOS

Telefonía interior - Instalaciones

Normas: GTER f5104 del Grupo Telefónica,

ISO 527-1-2, IEC 61156

Temp. Máx. de servicio: 80 °C

Normas: ISO 527-1-2, Norma 755, IEC 61156,

AR. ER. f5010 de Grupo Telefónica

Temp. Máx. de servicio: 80 °C

PAR TRENZADO

UTP - Caregoría 5e - Interior

Normas: EIA - TIA - 568 B HD 608 EN 50167 / 50169 / 50173 / 50288 ISO/IEC 11801 - IEC 61156-1 IEC 332.1 - IEC 61156-2

FTP - categoría 5e - Interior

Normas: EIA - TIA - 568-B-5 - HD 608 EN 50167 / 50169 / 50173 / 50288 ISO/IEC 11801 - IEC 61156-1 IEC 332.1 - IEC 61156-2

 FTP - Categoría 5e - Exterior y Autosuspendido

Normas: EIA - TIA - 568-B-5 - HD 608 EN 50167 / 50169 / 50173 / 50288 ISO/IEC 11801 - IEC 61156-1 IEC 332.1 - IEC 61156-2

PAR TRENZADO

Asignación pin/par

568A

568B (opcional)

Configuración UTP

Recto

Cruzado

568 A - 568 B

Entre panel-dispositivo, WS-roseta, WS-dispositivo, dispositivo-puerto crossover.

Entre dispositivos, entre WSs, WS-Servidor.

CATEGORÍAS DEL UTP

Atributo	Cat 6	Cat 6a	Cat 7	Cat 8
Frequencia	250MHz	550MHz	600MHz	2000MHz
Velocidad de transmisión	1 Gbps/10 Gbps	10 Gbps	10 Gbps	25 Gbps/40 Gbps
Distancia	100m con 1 Gbps/37-55m con 10 Gbps	100m	100m	30m
Número de conectores en el canal	4	4	4	2
Construcción de cable	UTP o SFTP	SETP	SFTP o SSTP	SFTP
Tipo de Conector	RJ45	RJ45	No RJ45	Clase I: RJ45 Clase II: No RJ45
Costo	Caro que las categorías anteriores	Caro que las categorías anteriores	Caro que las categorías anteriores	Caro

http://www.infonetics.com/pr/2013/2H12-Networking-Ports-Market-Highlights.asp

^{*} http://www.delloro.com/news/internet-moved-to-100-gigabit-technologies-at-record-rate-in-the-third-quarter

http://www.infonetics.com/pr/2013/2H12-Networking-Ports-Market-Highlights.asp

OTROS CABLEADOS ESTANDARIZADOS

Acrónimo	Impedancia	Significado			
STP	150 ohms	Par trenzado blindado			
FTP	120 ohms		ubierto de pantalla de aluminio		
SFTP	120 ohms	FTP con una ma	alla de cobre adicional		
SSTP	120 ohms		una pantalla de aluminio y una malla exterior de cobre		
	UTP	STP	FTP		

Longitud de trenzado

- La longitud de trenzado oscila entre 5 y 15 cm.
- Cuanto menor sea la longitud de trenzado mayor será la calidad del cable.

RELACIÓN DIAFONÍA CON LONGITUD DE TRENZADO O DE TORSIÓN

MENOR LONGITUD, MEJOR FRENTE A LA DIAFONÍA, MAYOR CALIDAD Y COSTO

PERFORMANCE DATA

Frequency (MH	lz)	.772	1	4	8	10	16	. 20	25	31.25	62.5	100	-
Allenuation*	Nominal	1.6	1.8	3.6	5.3	6.1	7.5	8.5	2.5	10.8	_15./_	20.7	
(db/100m)	Maximum	1.8	2.0	4.1	5.8	6.5	8.2	9.3	3024	11.7	17.0_	_22.0	+
NEXT (GB):	(Worst Case)	64	62	53	48	47	44	42	41	40	35	32	_
Impedance*	100 m	100	Ohms 1	1-1%1	ypical (+/- 159	maxim	um) 1-	100 49 1		-		C.F.

DC Resistance: 9.38 ohms/100m max. Mutual Capacitance: 13.5 pF/ft nom.

ORDERING DATA

PLENUM	UL LISTED	CMP	CSA PCC	76/74	100.00
Part No.	AWG	No. Pairs	Diameter	1bs/kft.	Jacket 🗽
230205	24 BC	2	.142	- 11	Polymer Allay
230247	24 BC.	4	_149	18	Fluoropolymer
230292	24 BC	4	.161	21	Polymer Allay
230316	24 BC	8(2 × 4)1	.149 x .340	-13	Polymer Allry
230356	74 BC	8(2 x 4) ²	.149 x .325	35	Polymer Alloy

^{*} CAT 5 - CAT 5; * CAT 5 - CAT 3

Risér	UL Listed	CMR	C\$A PCC	H. H.	
Part No.	AWG	No. Pairs	Diameter	Lbs/ldt	Jacket
530121	24	2	.185	16	FR-PVC
530123	24	4	.199	. 77	FR-PVC1
530141*	24	4	187	20	TRIVC
530131	24	4	.255	29	TR PVC
540121*	24 (7)	4	-215	23. :	18 PVC

[&]quot;Ill Lested may

APPLICATION NOTE

Hyper Grade cables are designed and ideally suited for TIA/EIA-568A horizontal network cabling installations.

Berk Tok's Ultra Grade, Category 5, 25 pair, Power Sum NEXT cables are also available.

major to respect to extensional models the ejecutivations of these product continues pour

Premises Networking & Interconnection Technology Products Division 132 White Ook Road New Holland, PA 17557 P/17/354-6200 F/17/354-7944

1-800-BERK-TEK

FOLLETO TÉCNICO DE PAR TRENZADO UTP

^{*}Measurements are perfounced using swept-frequency testing.

^{*} Lategary S Patch Cable per BA/BA 568A.

COAXIL

- -Outer conductor is braided shield
- -Inner conductor is solid metal
- -Separated by insulating material
- -Covered by padding

Estructura de un cable:

Estructura básica de un cable coaxial en la que se muestran los conductores y aislantes que lo constituyen

Componentes de un Cable Coaxial

Componentes de un Cable Coaxial con Mensajero

Con cinta de aluminio adicional

Coaxial RG 58 A/U FOAM - Flexible / Sólido

Normas: IRAM 4045, MIL C17

CERT

Temp. Máx de servicio: 80 °C

Autosoportado o con mensajero

IMPEDANCIA (en ohms) **USO 75**

50

Televisión Video **Datos**

Radio

CARACTERISTICAS: (tabla 2)

Eléctricos						4.000	Oper	ativas		
	IMPEDÁNCIA		VELOC.	TENSION MAX.	ATENUACION A 20°C					
COAXIAL TIPO	$Z_{\bullet} = [\Omega]$	C-[pF/m]	V _o =[%]	U_ma = [KV]	10	50	100	200	400	1000
	±2Ω			1000			11-11	AHz]		
RG 174 A/U	50	101	66	1,5	12,8	23	29,2	39,4	61	98,4
RG 122/U	50	101	56	1,9	5,9	14,2	23	36,1	56	95,2
211111111111111111111111111111111111111	50	101	66	1,9	4,9	12	17 :	26	38	65
RG 58 C/U	50	101	66	1,9	4,3	10	14	20	29	45
RFA 58 C/U	50	101	66	1,9	1 3,9	9,5	15,8	23	33	54,2
RG 223/U	50	101	66	5	2	4,9	6,9	10,3	15,5	27,5
• RG 213/U	50	101	GG	5 1	2,2	5,4	7,6	11,5	17,5	30
RFA 9 8/U	100	101	66	5 1	2,2	5,4	7,6	10,9	17	28,9
RG 214/U	50	101	66	11	0,7	1,8	2,8	4,3	6,8	13
RG 218/U RG 177/U	50	101	66	11	8,0	1,8		4,9	7,9	14,5

FOLLETO TÉCNICO DE COAXIL 50 ohms

COAXILES COMPARADOS

CARACTERISTICAS Y USOS DE CABLE COAXIAL

TIPO DE CABLE	IMPEDANCIA (Ohms)	DIAMETRO DIELECTRICO (pulgadas)	DIAMETRO CONDUCTOR (pulgadas)	USO TIPICO
Ethernet (thick)	50	0.275	0.075	Redes Ethernet.
Ethernet (thin)	50	0.144	0.034	Redes Ethernet.
RG-8	50	0.285	0.085	Sustituye Ethernet (thick).
RG-58	50	0.116	0.036	Sustituye Ethernet (thin).
RG-59	75	0.242	0.023	T.V. porcable y video.
RG-62	93	0.242	0.025	Conexión de mainframe a terminal.

CONECTORES DE COAXIL - SU IMPORTANCIA

Gráfico de conectores según la frecuencia

RG 6

Espectro de frecuencias

TIPO F

GUÍA DE ONDA

COMUNICACIONES POR RADIO

COMPONENTES

TRANSMISOR / RECEPTOR (TRANSCEPTOR)

IRRADIANTE (ANTENA)

LÍNEA DE TRANSMISIÓN

ALTA FRECUENCIA (HF)

BANDAS DE OPERACIÓN MUY ALTA FRECUENCIA (VHF)

ULTRA ALTA FRECUENCIA (UHF)

SUPER ALTA FRECUENCIA (SHF)

DISTINTAS ATENUACIONES, ANCHOS DE BANDA, CAPACIDADES

Antenas

Son conductores que liberan (transmisión) o captan (recepción) ondas electromagnética.

Antenas

•Ganancia y Directividad

Polarización

·Diagramas de irradiación-

Direccionales

Antena	Cálculo de longitud (metros)
1/4 de onda	75 / f (MHz)
½ de onda	150 / f (MHz)
Onda completa	300 / f (MHz)

Modos de Propagación

ONDA IONOSFÉRICA

Modos de propagación de onda

Características según la Banda de Operación

Onda lonosférica

Capas de la Atmósfera

Altura respecto de la corteza terrestre

Tropósfera

Estratósfera

Ionósfera (60 a 350 km)

- •**D**
- •E
- •F F1 F2

IONÓSFERA

La densidad de ionización depende de factores como la altitud, hora del día, la estación del año y la ubicación geográfica.

Capa/Región	Altitud durante el día (km)	Altitud durante la noche
D	50 - 100	Desaparece
E	100 - 140	Se mantiene
F1	180 - 240	Desaparece
F2	230 - 400	Se mantiene

Onda lonosférica Cálculo de distancia de salto

Onda Directa

Onda Directa

Donde:

D: Distancia al horizonte en kilómetros

H: Altura de la antena en metros

FENÓMENO DE DIFRACCIÓN POR EFECTO DE LA ATMÓSFERA EN LA CURVATURA DE LA TIERRA

 $D = 4.14 (H)^{1/2}$

Cálculo de enlace en un sistema de radio con onda directa (radioenlace)

Ecuación de un enlace

Antenas de Radioenlaces (Microondas)

COMUNICACIONES SATELITALES

Componentes de una comunicación satelital

ANTENAS SATELITALES

TIPOS DE SATÉLITES DE COMUNICACIONES

- de órbita baja (LEO Low Earth Orbit), con altura entre 150 y 450 km, dan la vuelta a la Tierra en aproximadamente 1,5 horas, permaneciendo a la vista de una estación terrena durante alrededor de un cuarto de hora.
- de órbita media (MEO Medium Earth Orbit), con altura entre 9000 y 18000 km, tiene un período de rotación comprendido entre 5 y 12 horas, permaneciendo a la vista de una estación terrena entre 2 y 4 horas.
- geoestacionarios (GEO Geosynchronous Earth Orbit), con altura de 36000 km, tiene un período de rotación de 24 horas por lo que se llaman geosincrónicos también.

TIPOS DE SATÉLITES DE COMUNICACIONES

Figura 2-15. Satélites de comunicaciones y algunas de sus propiedades, entre ellas: altitud sobre la Tierra, tiempo de duración de un viaje de ida y vuelta y la cantidad de satélites necesarios para abarcar toda la Tierra.

Constelaciones satelitales

CARACTERÍSTICAS DE INTERÉS

CANTIDAD DE TRANSPONDERS DE UN SATÉLITE ANCHO DE BANDA DE CADA TRANSPONDER CAPACIDAD TOTAL DEL SATÉLITE

BANDA DE OPERACIÓN (C, Ku, Ka)
CALIDAD DE LA SEÑAL (ATENUACIONES)
CONFIABILIDAD
TAMAÑO DE LA ANTENA

TIPO DE SATÉLITE COBERTURA RETARDOS, SENSIBLE A ECLIPSES Y LLUVIA

CARACTERÍSTICAS DE INTERÉS

COSTOS DEPENDENCIA CONFIABILIDAD

SERVICIOS (VSAT, SCPC, DAMA, MCPC) SEGÚN TIPO DE INFORMACIÓN A TRANSFERIR

VSAT (VERY SMALL APERTURE TERMINAL)
SCPC (SINGLE CHANNEL PER CARRIER)
MCPC (MULTI CHANNEL PER CARRIER)
DAMA (DEMAND ASSIGNMENT MULTIPLE ACCESS)
TDMA (TIME DIVISION MULTIPLEX ACCESS)

CARACTERÍSTICAS DE INTERÉS

ENLACE PUNTO A PUNTO (SCPC) ENLACE PUNTO A MULTIPUNTO (VSAT)

DESIGNACIÓN UIT	FREC (GHz) BANDA	CARACTERÍSTICAS
G	4/6	MENOR ATENUACIÓN MAYOR TAMAÑO ANTENA
Ku	11 / 14 12 / 14	
Ka	20 30	MAYOR ATENUACIÓN MENOR TAMAÑO ANTENA

<u>VSAT</u>

