МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Организация ЭВМ и систем»

Тема: Программирование ветвящихся процессов.

Студент гр. 0383	Парфенов В.М.
Преподаватель	Ефремов М.А.

Санкт-Петербург

2021

Цель работы.

Целью данной лабораторной работы заключается в создании программы с использованием ветвящихся процессов для вычисления значений переменных.

Задание.

Разработать на языке Ассемблера программу, которая по заданным целочисленным значениям параметров a, b, i, k вычисляет:

- а) значения функций i1 = f1(a,b,i) и i2 = f2(a,b,i);
- b) значения результирующей функции res = f3(i1,i2,k), где вид функций f1 и f2 определяется из табл. 2, а функции f3 из табл.3 по цифрам шифра индивидуального задания (n1,n2,n3), приведенным в табл.4. Значения a, b, i, k являются исходными данными, которые должны выбираться студентом самостоятельно и задаваться в процессе исполнения программы в режиме отладки. При этом следует рассмотреть всевозможные комбинации параметров a, b и k, позволяющие проверить различные маршруты выполнения программы, а также различные знаки параметров a и b.

Замечания:

- 1) при разработке программы нельзя использовать фрагменты, представленные на ЯВУ, в частности, для ввода-вывода данных. Исходные данные должны вводиться, а результаты контролироваться в режиме отладки;
- 2) при вычислении функций f1 и f2 вместо операции умножения следует использовать арифметический сдвиг и, возможно, сложение;
 - 3) при вычислении функций f1 и f2 нельзя использовать процедуры;
- 4) при разработке программы следует минимизировать длину кода, для чего, если надо, следует преобразовать исходные выражения для вычисления функций.

Вариант 8

/ - (6*i+8), при a>b
$$f2 = <$$
 \ 9 -3*(i-1), при a<=b
$$/ |i1| + |i2|, при k<0$$

$$f7 = <$$
 \ $\max(6, |i1|), при k>=0$

Выполнение работы.

Таблица 1 – Результаты тестирования

a	b	i	k	i1	i2	res	Комментарий
2	6	5	10	19	-3	19	$a \le b$; $k > 0 \Longrightarrow res = max(6, 19) = 19$
3	4	4	-6	16	0	16	$a \le b$; $k < 0 \Longrightarrow res = 16 + 0 = 16$
8	5	6	9	3	-44	47	a > b; $k > 0 = res = max(6, 3) = 6$
9	6	-4	-1	23	16	39	a > b; $k < 0 = res = 23 + 16 = 39$
-9	-11	-4	-1	23	16	39	a > b; $k < 0 = res = 23 + 16 = 39$

Выводы.

В ходе данной лабораторной работы была достигнута цель по созданию программы с помощью ветвящихся процессов, а также была изучена работа с условными переходами, командами сравнения и целыми числами.

ПРИЛОЖЕНИЕ А ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: lb3.asm

EOFLine EQU '\$'

ASSUME CS:CODE, SS:AStack

AStack SEGMENT STACK
DW 12 DUP(?)

AStack ENDS

DATA SEGMENT

- a DW 9
- b DW 6
- i DW -4
- k DW -1
- i1 DW 0
- i2 DW 0
- res DW 0

buff DW 0

DATA ENDS

CODE SEGMENT

ASSUME CS:CODE, DS:DATA, SS:AStack

```
Main
       PROC FAR
     push DS
     sub AX,AX
     push AX
     mov AX,DATA
     mov DS,AX
     mov CX, 0
     mov cx, i
     mov ax, cx
     shl cx, 1
     mov buff, cx
     mov bx, b
     cmp a, bx
     ; Система f1, f1s - при а <= b
     jle f12
      ; вычисление і1 при а > b
      neg cx
      add cx, 15
      mov i1, cx
      ; вычисление i2 при a > b
```

```
mov cx, buff
 shl cx, 1
 add cx, ax
 add cx, ax
 neg cx
 sub cx, 8
 mov i2, cx
 jmp takeModule
f12: ; a \le b
 ; вычисление i1 при a <= b
 add cx, ax
 add cx, 4
 mov i1, cx
 ; вычисление i2 при a <= b
 mov cx, buff
 add cx, ax
 neg cx
 add cx, 12
 mov i2, cx
```

takeModule:

```
; взятие модуля от і1
mov cx, i1
cmp cx, 0
jl module_i1
 jmp skip1
 module_i1:
  neg cx
  mov i1, cx
; взятие модуля от і2
skip1:
mov cx, i2
cmp cx, 0
jl module_i2
 jmp skip2
 module_i2:
  neg cx
  mov i2, cx
skip2:
```

cmp k, 0

```
; Вычисление res = f3, f3s при k < 0
jl f3s
 ; mov cx, i1
 cmp i1, 6
 jg first_bigger
 mov res, 6
 jmp Mainend
 first_bigger:
  mov cx, i1
  mov res, cx
  jmp Mainend
f3s:; k < 0
 mov cx, i1
  add cx, i2
  mov res, cx
```

Mainend:

ret

Main ENDP CODE ENDS

END Main

Название файла: lb3.lst

Microsoft (R) Macro Assembler Version 5.10 11/9/21 12:18:19

Page 1-1

= 0024

EOFLine EQU '\$'

ASSUME CS:CODE, SS:AStack

0000

AStack SEGMENT STACK

0000 000C[

DW 12 DUP(?)

????

]

0018

AStack ENDS

0000

DATA **SEGMENT**

0000 0009

a DW 9

0002 0006

b DW 6

0004 FFFC

i DW -4

0006 FFFF

k DW -1

0008 0000

i1 DW 0

000A 0000 i2 DW 0 000C 0000 res DW 0 000E 0000 buff DW 0

0010 DATA ENDS

0000 CODE SEGMENT

ASSUME CS:CODE, DS:DATA, SS:AStack

0000 Main PROC FAR

0000 1E push DS

0001 2B C0 sub AX,AX

0003 50 push AX

0004 B8 ---- R mov AX,DATA

0007 8E D8 mov DS,AX

0009 B9 0000 mov CX, 0

000C 8B 0E 0004 R mov cx, i

0010 8B C1 mov ax, cx

0012 D1 E1 shl cx, 1

0014 89 0E 000E R mov buff, cx

0018 8B 1E 0002 R mov bx, b

001C 39 1E 0000 R cmp a, bx

; **♦♦♦ ⇒♦** f1, f1s - **♦♦** a <= b

0020 7E 1F jle f12

; ��� \Box ��\$ i1 �� a > b

Microsoft (R) Macro Assembler Version 5.10

11/9/21 12:18:19

Page 1-2

0022 F7 D9 neg cx

0024 83 C1 0F add cx, 15

0027 89 0E 0008 R mov i1, cx

; **♦♦♦**□**♦♦♦** i2 **♦♦** a > b

002B 8B 0E 000E R mov cx, buff

002F D1 E1 shl cx, 1

0031 03 C8 add cx, ax

0033 03 C8 add cx, ax

0035 F7 D9 neg cx

0037 83 E9 08 sub cx, 8

003A 89 0E 000A R mov i2, cx

003E EB 19 90 jmp takeModule

60041 f12: ; a <= b

; **♦♦♦**□**♦♦** i1 **♦♦** a <= b

0041 03 C8 add cx, ax

0043 83 C1 04 add cx, 4

0046 89 0E 0008 R mov i1, cx

; **♦♦♦**□**♦♦** i2 **♦♦** a <= b

004A 8B 0E 000E R mov cx, buff

004E 03 C8 add cx, ax

0050 F7 D9 neg cx

0052 83 C1 0C add cx, 12

0055 89 0E 000A R mov i2, cx

0059 takeModule:

; **���**+ **������** i1

0059 8B 0E 0008 R mov cx, i1

005D 83 F9 00 cmp cx, 0

0060 7C 03 jl module_i1

0062 EB 07 90 jmp skip1

0065 module_i1:

0065 F7 D9 neg cx

0067 89 0E 0008 R mov i1, cx

006B skip1:

006B 8B 0E 000A R mov cx, i2

006F 83 F9 00 cmp cx, 0

Page 1-3

0072 7C 03 jl module_i2

0074 EB 07 90 jmp skip2

0077 module_i2:

0077 F7 D9 neg cx

0079 89 0E 000A R mov i2, cx

007D skip2:

007D 83 3E 0006 R 00 cmp k, 0

; $\diamondsuit \diamondsuit \diamondsuit \Box \diamondsuit \diamondsuit \Leftrightarrow \text{res} = \text{f3, f3s} \diamondsuit \diamondsuit k < 0$

0082 7C 1B jl f3s

; mov cx, i1

0084 83 3E 0008 R 06 cmp i1, 6

0089 7F 09 jg first_bigger

008B C7 06 000C R 0006 mov res, 6

0091 EB 18 90 jmp Mainend

0094 first_bigger:

0094 8B 0E 0008 R mov cx, i1

0098 89 0E 000C R mov res, cx 009C EB 0D 90 jmp Mainend

009F f3s: ; k < 0

009F 8B 0E 0008 R mov cx, i1 00A3 03 0E 000A R add cx, i2 00A7 89 0E 000C R mov res, cx

00AB Mainend:

00AB CB ret

00AC Main ENDP

00AC CODE ENDS

END Main

Symbols-1

Segments and Groups:

N	I a m e	Length		AlignCombine Class			
ASTACK .			0018	PARA	Λ	STACK	
CODE			00AC	PARA	1	NONE	
DATA		0010	PARA	Λ	NON	Ξ	
Symbols:							
N	V a m e	Type	Value	e Attr			
Α		L WO	RD	0000	DATA	L	
В		L WO	RD	0002	DATA	L	
BUFF		L WO	RD	000E	DATA		
EOFLINE			NUM	BER	0024		
F12		LNE	AR	0041	CODI	Ξ	
F3S		LNE	AR	009F	CODI	Ξ	
FIRST_BIO	GGER		LNE	AR	0094	CODE	
I		L WO	RD	0004	DATA	.	
I1		L WO	RD	8000	DATA		
I2		L WO	RD	000A	DATA	L	

K L WORD 0006 DATA

MAIN F PROC 0000 CODE Length = 00AC

MAINEND L NEAR 00AB CODE

MODULE_I1 L NEAR 0065 CODE

MODULE_I2 L NEAR 0077 CODE

RES L WORD 000C DATA

SKIP1 L NEAR 006B CODE

SKIP2 L NEAR 007D CODE

TAKEMODULE L NEAR 0059 CODE

@CPU TEXT 0101h

@FILENAME TEXT 1b3

@ VERSION TEXT 510

Symbols-2

148 Source Lines

148 Total Lines

27 Symbols

48030 + 457180 Bytes symbol space free

- 0 Warning Errors
- 0 Severe Errors