



# **Lower Power Design**

Lecture 1: Energy Sources

Anuj Pathania on behalf of Prof. Dr. Jörg Henkel Summer Semester 2017

## CES – Chair for Embedded Systems



ces.itec.kit.edu





- Slides available for download -
  - http://cesweb.itec.kit.edu/teaching/LPD/s17/slides/
  - Username: student
  - Password: CES-Student
- Homework
  - Read a relevant scientific paper.
  - Discussion next class.
- Oral Exam
  - Make appointment with KIT CES secretary 6-8 weeks in advance.
  - Exam will be in English (or German if told in advance).
  - More information: http://ces.itec.kit.edu/972.php

#### Lectures



- 27.04.2017 Lecture 0: Introduction
- 04.05.2017 Lecture 1: Energy Sources
- 11.05.2017 Lecture 2: Battery Modelling Part 1
- 18.05.2017 Lecture 3: Battery Modelling Part 2
- 25.05.2017 Ascension Day (Holiday)
- 01.06.2017 TBA
- 08.06.2017 TBA
- 15.06.2017 Corpus Christi (Holiday)
- 22.06.2017 TBA
- 29.06.2017 TBA
- 06.07.2017 TBA
- 13.07.2017 TBA
- 20.07.2017 TBA
- 27.07.2017 TBA

# **Overview for Today**



- Fuel Cells
- Human-Generated Power for Portable Devices
- Solar Energy Harvesting
- Super Capacitors
- Hybrid Electric Storage System

# **Battery Gap**





Source: Paradiso [2005]

#### **Fuel Cells 1**



- Direct conversion of fuel to electricity (direct current).
- High efficiency (~40-60%).
- Different types of fuel cells exist beside Hydrogen-Oxygen fuel cell.
- Hydrogen-Oxygen: Environmentally (mostly) clean; byproduct is water.
  - · Not yet mass produced.
- Solid Oxide Fuel Cells (SOFC):
  - Needs 800-850°C
- Proton Exchange Membrane (PEM)
  - Reaction positive electrode:

• 
$$\frac{1}{2}$$
 O<sub>2</sub> + 2 H<sub>3</sub>O<sup>+</sup> + 2e<sup>-</sup>  $\rightarrow$  3 H<sub>2</sub>O

Reaction negative electrode:

• 
$$H_2 + 2 H_2O \rightarrow 2H_3O^+ + 2 e^-$$

Overall reaction:

• 
$$H_2 + \frac{1}{2} O_2 \rightarrow H_2 O E_0 = 1.229 V$$



## **Fuel Cells 2: Alkaline Fuel Cell**



- 1. Hydrogen
- 2. Electron Flow
- 3. Load
- 4. Oxygen
- 5. Cathode
- 6. Electrolyte
- 7. Anode
- 8. Water
- 9. Hydroxyl Ion

70% Efficiency



$$2H_2 + 4OH^- \rightarrow 4H_2O + 4e^-$$
  
 $O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$ 

## **Fuel Cells 3: Principle**



#### Core parts

- Two electrodes separated by an ion-conducting polymeric membrane (electrolyte).
- Fuel (i.e. H<sub>2</sub>) is transformed on catalytic sites at the negative electrode and form protons (H<sup>+</sup>) which cross the membrane and electrons on the other hand which produce a current outside the cell.
- Electrical energy is obtained when electrons recombine at the positive electrode with protons (H+) coming from the negative electrode and oxygen from the air.
  - Chemical reaction results in: electricity, water and heat.
  - A whole system is shown on the next page.



Source: Bloch [2004]





- Whole system contains besides the core (stack):
  - electrical management systems.
  - thermal management systems.
  - fluidic management systems.



### **Miniature Fuel Cells**



- Application domain: portable electronic devices (smartphone, etc.)
- Two approaches.
  - "Bipolar" Technology
    - Built with bipolar plates forming the fuel cell stack.
    - Typically 20-500 W.
    - Smaller stacks seem not to be competitive with Lithium-Ion batteries.
    - Example: SFC Energy fuel cells (sfc.com).
  - Various approaches with new concepts e.g. micro-fabrication techniques.
    - Typically 0.1 25 W.
    - Substrate (thin-film)-based.

## Silicon Fuel Cells



#### Silicon Fuel Cells

- Silicon wafer; grown and treated with lithographic techniques.
- Often less than a centimeter wide.
- Available from various companies: Neah Power, Integrated Fuel Cell Technologies.



### Human-Generated Power for Portable Devices



Can energy for portable electronic devices be harvested from humans?



1 gram of Fat = 37,700J of Energy

68 kg Human (with 15% fat) = 384 MJ !!!



Source: WarnerBros and ExtremeTech

## Human Power Consumption for Various Activities

13



- A span of ~20x!
- Difficult to harvest.
- Need to be converted to DC/AC.
- Must be non-intrusive.

#### Human Energy Expenditures for Selected Activities

| Activity                    | Kilocal/hr | Watts |
|-----------------------------|------------|-------|
| Sleeping                    | 70         | 81    |
| Lying quietly               | 80         | 93    |
| Sitting                     | 100        | 116   |
| Standing at case            | 110        | 128   |
| Conversation                | 110        | 128   |
| Eating a meal               | 110        | 128   |
| Strolling                   | 140        | 163   |
| Driving a car               | 140        | 163   |
| Playing the violin or piano | 140        | 163   |
| Housekeeping                | 150        | 175   |
| Carpentry                   | 230        | 268   |
| Hiking, 4 mph               | 350        | 407   |
| Swimming                    | 500        | 582   |
| Mountain climbing           | 600        | 698   |
| Long-distance run           | 900        | 1048  |
| Sprinting                   | 1400       | 1630  |

Source: Morton [1952]



## **Human Power Consumption for Various Activities**





Source: Morton [1952]

### **Human Power Sources 1**



- Body Heat.
  - (T\_Body T\_Ambient)/T\_body = (310K 293K)/310K = 5.5% [Carnot Efficiency]
  - Not very efficient (even theoretically); real-world only 0.8% efficient at best.
- Breathing.
  - Exploit difference breathing pressure and atmospheric pressure.
  - Only 2% difference.
- Blood Pressure.
- Vibrations from motion.

#### **Human Power Sources 2**



- Power from typing
  - Ex: 50 g key pressure, depress by 0.5 cm.
  - .05 kg/stroke \* 9.8 m/s<sup>2</sup> \* .005 m \* 7.5 strokes/sec = 19 mW (too less).
  - User is not continuously typing.
  - Can at least power the keyboard (if not whole system).
- Inertial micro systems
  - Used for hundred of years in watches
- Electrical version
  - The mass winds a spring.
  - Drive a generator at 15000 rpm.
  - Yield 6 mA and 16 V for 50 ms.



Source: Paradiso [2004]





- Walking (68 kg Human, 5.6 km/h) cost 324 Watts of power.
  - Most of this power is used to move legs.
- Power through the fall of the heel:
  - 68 kg \* 9.8 m/s<sup>2</sup> \* 0.05 m \* 2 steps/sec = 67 Watts.
  - This power cannot be converted into electrical power w/o significant intrusion.
  - Use piezoelectric device like Quartz.



Source: Paradiso [2004]

## Vibrations into Electricity



### **Piezoelectric**

Strain in piezoelectric material causes a charge separation (voltage across capacitor)



## **Capacitive**

Change in capacitance causes either voltage or charge increase.



## **Inductive**

Coil moves through magnetic field causing current in wire.



Amirtharajah et. al., 1998

Source: Hande [2007]



# Karlsruhe Institute of Technology

# Other power/energy sources

| Energy Source                 | Power/Energy Density                    |
|-------------------------------|-----------------------------------------|
| Batteries (Zinc-Air, primary) | 1050-1560 mWh/cm <sup>3</sup>           |
| Batteries (Li, rechargeable)  | 300 mWh/cm <sup>3</sup>                 |
| Solar (outdoors)              | 15 mW/cm <sup>2</sup> (direct sun)      |
|                               | 1 mW/cm <sup>2</sup> (24 hour avg)      |
| Solar (indoors)               | 0.006 mW/cm <sup>2</sup> (office desk)  |
|                               | 0.57mW/cm <sup>2</sup> (<60W desk lamp) |
| Vibrations                    | $0.01-0.1 \text{ mW/cm}^3$              |
| Acoustic (noise)              | 3 e-6 mW/cm <sup>2</sup> @ 75dB         |
|                               | 9.6 e-4 mW/cm <sup>2</sup> @ 100dB      |
| Miniature Fuel cells          | 0.1-500W                                |

Source: Hande [2007]

# **Solar Energy**



Energy from almighty Sun.



Floating Solar Power Plant in Japan (2.9 MW)

Canal Top Power Plant in India (10 MW)



Source: Kyocera and SSND Ltd.

# **Solar Energy Distribution**





Outside Earth: Constant 1353 W/m<sup>2</sup>



### Swanson's Law



- Solar cell price drop 20% for doubling of cumulative cells shipped.
  - Half every ten years at current speed.

#### **Swanson's Law**





# **Solar Energy**



- Energy harvesting through photo-voltaic conversion provides high power density.
  - Good for embedded systems that need some mW power.
  - Characteristics of solar cells need to be taken into consideration for system design.

| Harvesting technology          | Power density   |  |  |
|--------------------------------|-----------------|--|--|
| Solar cells (outdoors at noon) | $15mW/cm^2$     |  |  |
| Piezoelectric (shoe inserts)   | $330\mu W/cm^3$ |  |  |
| Vibration                      | $116\mu W/cm^3$ |  |  |
| Thermoelectric (10°C gradient) | $40\mu W/cm^3$  |  |  |
| Acoustic noise (100dB)         | $960nW/cm^3$    |  |  |

## **Shockley-Queisser Limit**



Solar cell efficiency has a theoretical upper limit.

Single-Layer: 33.7%

• Multi-Layer: 86.8%



## **Solar Panels 2**







#### **Solar Panels 3**



- Characteristics:
  - Solar panel behaves as a voltage limited current source.
    - Current tend be to constant, voltage vary over a wide range.
    - Remember: Battery is a voltage source.
  - There is an optimum operation point for maximum power extraction.
- Since it behaves like a current source (supply voltage depends on varying load), an energy storage element like a battery is necessary.

## **Super Capacitors (Ultra Capacitors)**



- Capacitors with very high capacitance (10x 100x normal capacitor).
- Bridge gap between normal capacitors and rechargeable batteries.
- Advantages
  - High power density.
  - Very long life (10 12 Years); charge/discharge cycles > 500,000 cycles.
  - No danger of overcharge.
- Disadvantage
  - Low energy density.
  - Relatively expensive.
  - High self-discharge (20% per Day).



# **Super Capacitors 2**



| Parameter                               | Aluminum Electrolytic Capacitors | Double-layer<br>Capacitors<br>for Memory<br>Backup | Super-<br>Capacitors<br>for Power<br>Applications | Pseudo and<br>Hybrid<br>Capacitors<br>(Li-Ion<br>capacitors) | Lithium-Ion<br>Batteries |
|-----------------------------------------|----------------------------------|----------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------|--------------------------|
| temperature range (°C)                  | -40 to 125                       | -20 to +70                                         | -20 to +70                                        | -20 to +70                                                   | -20 to +60               |
| cell voltage (V)                        | 4 to 550                         | 1.2 to 3.3                                         | 2.2 to 3.3                                        | 2.2 to 3.8                                                   | 2.5 to 4.2               |
| charge/discharge cycles                 | unlimited                        | 10 <sup>5</sup> to 10 <sup>6</sup>                 | 10 <sup>5</sup> to 10 <sup>6</sup>                | 2*10 <sup>4</sup> to 10 <sup>5</sup>                         | 500 to 104               |
| capacitance range (F)                   | ≤1                               | 0.1 to 470                                         | 100 to 12000                                      | 300 to 3300                                                  |                          |
| energy density (Wh/kg)                  | 0.01 to 0.3                      | 1.5 to 3.9                                         | 4 to 9                                            | 10 to 15                                                     | 100 to 265               |
| power density (kW/kg)                   | > 100                            | 2 to 10                                            | 3 to 10                                           | 3 to 14                                                      | 0.3 to 1.5               |
| self discharge time at room temperature | short<br>(days)                  | middle<br>(weeks)                                  | middle<br>(weeks)                                 | long<br>(month)                                              | long<br>(month)          |
| efficiency (%)                          | 99                               | 95                                                 | 95                                                | 90                                                           | 90                       |
| life time at room temperature (years)   | > 20                             | 5 to 10                                            | 5 to 10                                           | 5 to 10                                                      | 3 to 5                   |



# **Super Capacitors 3**



Type: Storage Capacitor

Execution: Gold-Cap

Material: Cadmium Free

Capacity: 22 Faraday

Tension DC: 2.3 Volts

Dimensions: 18.00 mm

• Price: 5.60 Euros



Source: reichelt.de

## **Ragone Chart**



Performance comparison of various energy-storage devices.



Energy density = 
$$\frac{V \times I \times t}{m}$$
,  
Power density =  $\frac{V \times I}{m}$ ,

## **Hybrid Electric Storage System**





Source: Xie [2013]

# **Hybrid Electric Storage System 2: Design**





Source: Xie [2013]



# **Hybrid Electric Storage System 3: Process**



Source: Xie [2013]



#### **Source**



- Homework >> Paradiso, Joseph A., and Thad Starner. "Energy scavenging for mobile and wireless electronics." *IEEE Pervasive computing* 4.1 (2005): 18-27.
- Bloch, Didier. "Miniature fuel cells for portable applications." *Low-Power Electronics Design*. CRC Press, 2004. 44-1.
- Morton, Dudley Joy. Human locomotion and body form: a study of gravity and man. Williams & Wilkins, 1952.
- Paradiso, Joseph A., and Thad E. Starner. "Human-generated power for mobile electronics." *Low-power electronics design*. CRC Press, 2004. 45-1.
- Hande, Abhiman, et al. "Indoor solar energy harvesting for sensor network router nodes." *Microprocessors and Microsystems* 31.6 (2007): 420-432.
- Raghunathan, Vijay, et al. "Design considerations for solar energy harvesting wireless embedded systems." *Proceedings of the 4th international symposium on Information processing in sensor networks*. IEEE Press, 2005.
- Xie, Qing, et al. "Charge allocation in hybrid electrical energy storage systems." IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 32.7 (2013): 1003-1016.