

After this class you can

- manage continuous RVs via the probability density function and distribution function
- know four standard continuous distributions recognize the contexts in which they occur

Book: Sections 5.1, 5.2, 5.3, 5.4, 5.5

Probability

Before this class (week 3.2 lesson 2):

Watch prelecture 'Continuous random variables'

Book: Section 5.1

Context: Different experiments are described by different RVs

Four continuous distributions

Exercises

Describing the experiments

Let X be the result of the perfect random number generator from the pre-lecture. The density function of X is

A)
$$f(x) = 1 - x$$

B)
$$f(x) = x$$

C)
$$f(x) = \frac{1}{x}$$

D)
$$f(x) = 1$$

Let X be the result of the perfect random number generator from the pre-lecture. The distribution function of X on the interval (0,1) is

A)
$$F(x) = x - \frac{1}{2}x^2$$

B)
$$F(x) = x$$

C)
$$F(x) = \ln x$$

D)
$$F(x) = 1$$

Context

Context

Context

Signal with noise

Suppose we send a signal voltage as follows: $\begin{cases} -1V & \text{if signal is } 0 \\ 1V & \text{if signal is } 1 \end{cases}$

While sending this signal noise may occur. Noise is denoted with n. Suppose we send a signal x, then the receiver will have signal y = x + n.

How can you model this RV?

The uniform distribution

Definition:

A continuous random variable X has a <u>uniform distribution</u> on the interval $[\alpha, \beta]$ if its probability density function f is given by

$$f(x) = \begin{cases} \frac{1}{\beta - \alpha} & \text{for } x \in [\alpha, \beta] \\ 0 & \text{for } x \text{ not in } [\alpha, \beta] \end{cases}$$

Notation:

$$X \sim U(\alpha, \beta)$$

Uniform distribution: U(1,3)

FeedbackFruits

The distribution function of a uniformly distributed RV on the interval (a, b) is

A)
$$F(x) = \frac{x}{\beta - \alpha}$$

B)
$$F(x) = \frac{x - \alpha}{\beta - \alpha}$$

C)
$$F(x) = \frac{x - \beta}{\beta - \alpha}$$

$$F(x) = x$$

The exponential distribution

Definition:

A continuous random variable X has an <u>exponential</u> <u>distribution with parameter λ if its probability density function f is given by</u>

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{for } x \ge 0\\ 0 & \text{for } x < 0 \end{cases}$$

Notation:

$$X \sim \mathsf{Exp}(\lambda)$$

Exponential distribution: Exp(0.5)

Exercise

Let X be exponentially distributed with parameter 0.3 . Compute P(X>1) .

The Pareto distribution

Definition:

A continuous random variable X has a <u>Pareto distribution</u> with parameter $\alpha>0$ if its probability density function f is given by

$$f(x) = \begin{cases} \frac{\alpha}{x^{\alpha+1}} & \text{for } x \ge 1\\ 0 & \text{for } x < 1 \end{cases}$$

Notation:

$$X \sim \mathsf{Par}(\alpha)$$

Pareto distribution: Par(1.5)

The distribution function of a Pareto distributed RV with parameter α is

A)
$$F(x) = 1 - \alpha x^{-\alpha}$$

B)
$$F(x) = x^{-\alpha}$$

C)
$$F(x) = -\alpha x^{-\alpha}$$

$$F(x) = 1 - x^{-\alpha}$$

The normal distribution

Definition:

A continuous random variable X has a <u>normal distribution</u> with parameters μ and σ^2 if its probability density function f is given by

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

Notation:

$$X \sim N(\mu, \sigma^2)$$

Property: Symmetric around $\,\mu$

Normal distribution: N(2, 1)

The standard normal distribution

If $\mu=0$ and $\sigma^2=1$, the distribution N(0,1) is called the standard normal distribution.

In table B.1 of the book, right tail probabilities are given for the standard normal distribution:

$$P(Z \ge a)$$

Let Z be a standard normal RV. Compute P(Z > 0).

- A) 0.5
- B) 1
- **C)** 0.25
- **D**) 0

Let Z be a standard normal RV. Compute P(Z > 1.07)

- A) 0.2206
- B) 0.2389
- **C)** 0.1423
- D) 0.4721

Signal with noise

Suppose we send a signal voltage as follows; $\begin{cases} -1V & \text{if signal is } 0 \\ 1V & \text{if signal is } 1 \end{cases}$

While sending this signal noise may occur. Noise is denoted with n. Suppose we send a signal x, then the receiver will have signal y = x + n. This noise is called Additive White Gaussian Noise

(AWGN). The distribution is as follows:

Presume we send the following signals:

X	У	Interpretation
-1V	+0.2V	+1V
-1V	-0.9V	-1V
+1V	+0.3V	+1V

Signal with noise

-1 0 +1

We can conclude that the first signal is received wrongly.

Question 1: What is the probability that a zero signal is received as a one signal?

Question 2: What is the probability that a signal is wrongly received?

Exercise

Let Z be a standard normal RV. Compute $P(Z \le -2.03)$.

Exercise

Suppose we choose arbitrarily a point from the square with corners at (2,1), (3,1), (2,2) and (3,2). The random variable A is the area of the triangle with its corners at (2,1), (3,1) and the chosen point.

- (a) What is the largest area A that can occur, and what is the set of points for which $A \le 1/4$?
- (b) Determine the distribution function of A.
- (c) Determine the density function of A.

For next class (week 3.3 lesson 1):

Complete MyStatlab assignments and book exercises

Watch prelecture 'Expectation'

Book: Section 7.1

After this class you can

- Compute the expectation and variance of discrete and continuous RVs
- Apply the change-of-variables formula
- Apply the change-of-units formula

