

MAT 520142: ALGEBRA y ALGEBRA LINEAL

Primer Semestre 2002, Universidad de Concepción

CAPITULO 6

DEPARTAMENTO DE INGENIERIA MATEMATICA

Facultad de Ciencias Físicas y Matemáticas

Definición: Polinomio

Un polinomio en x sobre el cuerpo \mathbb{K} (\mathbb{Q}, \mathbb{R} o \mathbb{C}) es una expresión

$$p(x) = \sum_{i=0}^{n} a_i x^i = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n, \quad n \in \mathbb{N} \cup \{0\}.$$

con $a_i \in \mathbb{K}, i = 0, 1, ..., n$, llamados coeficientes del polinomio.

- Si n es el mayor valor tal que $a_n \neq 0$, entonces se dice que el polinomio p(x) tiene grado n y se escribe gr(p(x)) = n.
- Si n=0, entonces $p(x)=a_0, \, a_0\neq 0$ es un polinomio constante. p(x)=0 se llama polinomio nulo, se denota $\theta(x)$ y se conviene que no tiene grado.
- lacksquare a_n se llama el coeficiente principal de p(x) y a_0 el término libre o independiente de x. Si $a_n=1$, entonces el polinomio se dice mónico.

Se denota por $\mathbb{K}[x]$ al conjunto de todos los polinomios en x concoeficientes en \mathbb{K} . Por ejemplo, $\mathbb{Q}[x], \mathbb{R}[x]$ o $\mathbb{C}[x]$.

Si

$$p(x) = \sum_{i=0}^{n} a_i x^i, \qquad q(x) = \sum_{i=0}^{n} b_i x^i,$$

entonces

$$p(x) = q(x) \iff m = n \land a_i = b_i, \quad i = 1, ..., n.$$

Operaciones con polinomios.

Definición : suma y multiplicación de polinomios.

Sean $p(x)=\sum_{i=0}^n a_i x^i, \qquad q(x)=\sum_{i=0}^n b_i x^i$ dos polinomios cualquiera en $\mathbb{K}[x]$.

Suma

$$p(x) + q(x) = \sum_{i=0}^{r} c_i x^i,$$

donde $c_i = a_i + b_i$, i = 0, 1, ..., r y $r \le máx\{m, n\}$.

Multiplicación

$$p(x) \cdot q(x) = \sum_{i=0}^{s} d_i x^i,$$

donde $d_i = \sum_{i=k+j} a_k b_j$, i = 0, 1, ..., s, $0 \le s \le m+n$.

Propiedades de la suma y el producto en $\mathbb{K}[x]$.

 $\forall p,q,r \in \mathbb{K}[x]$ se tiene:

S1).	(p+q) + r = p + (q+r).	S2).	p+q=q+p.
S3).	$\exists\theta\in\mathbb{K}[x]:p+\theta=p$	S4).	$\exists -p \in \mathbb{K}[x] : p + (-p) = \theta$
M1).	$(p \cdot q) \cdot r = p \cdot (q \cdot r)$	M2).	$p \cdot q = q \cdot p$
M3).	El polinomio 1 es tal que	D).	$p \cdot (q+r) = p \cdot q + p \cdot r$
	$p \cdot 1 = p$		
N).	$p \cdot q = \theta \Longrightarrow p = \theta \text{ o } q = \theta$		

Observaciones:

- Las operaciones de suma y multiplicación pueden ejecutarse también término a término.
- El cuociente de polinomios tiene mucha semejanza con el de los números enteros.

Si $p(x), q(x) \in \mathbb{K}[x]$, entonces $\frac{p(x)}{q(x)}$ se llama **función racional** de x y en general no es un polinomio.

Teorema.

Si $p(x), d(x) \in \mathbb{K}[x]$ y $d(x) \neq 0$, entonces existen dos únicos polinomios $q(x), r(x) \in \mathbb{K}[x]$ llamados cuociente y resto de dividir p(x) por d(x), tales que:

$$p(x) = q(x)d(x) + r(x), \qquad r(x) = 0 \quad o \quad gr(r(x)) < gr(d(x)).$$

Por ejemplo, el cuociente y resto de dividir $p(x) = 6x + 4x^3 + 5x^4 - x^2$ por $d(x) = x^2 + 1$ son $q(x) = 5x^2 + 4x - 6$ y r(x) = 2x + 6, respectivamente.

Observación. \blacksquare En el teorema se tiene que p(x) es el dividendo, d(x) es

el diviror y

$$\frac{p(x)}{d(x)} = q(x) + \frac{r(x)}{d(x)}.$$

