Using CVC4 for Proofs by Induction

Andrew Reynolds

March 19th, 2015

Overview

- Satisfiability Modulo Theories (SMT) solvers
 - Lack support for inductive reasoning
- "Induction for SMT solvers"

With Viktor Kuncak, VMCAI 2015

- Contributions :
 - Techniques for induction in SMT solvers
 - Subgoal generation
 - Encodings that leverage theory reasoning
 - Benchmarks/Evaluation

SMT Solvers

- SMT solvers:
 - Used in numerous formal methods applications:
 - Software verification, automated theorem proving
 - Determine the satisfiability of:
 - Boolean combinations of ground theory constraints
 - Linear arithmetic, BitVectors, Arrays, Datatypes, etc.
 - Have limited support for quantified formulas ∀
 - Approaches tend to be heuristic (e.g. E-matching)
 - Often fail on simple examples
 - Notably for problems requiring inductive reasoning

SMT Solver

Communicate via DPLL(T) Framework

SMT Solver

Ground Constraints SAT Ground Solver Solver Datatypes

SMT Solver

Running Example

• Datatype List

```
List:= cons(hd:Int,tl:List) | nil
```

• Length function len : List -> Int

```
len(nil)=0,
\forall xy.len(cons(x,y))=1+len(y)
```

Example #1 : Ground Conjecture

```
len(nil)=0

\forall xy.len(cons(x,y))=1+len(y)

\neglen(cons(0,nil))=1

(Negated)

Conjecture
```

Ground Solver

Example #2 : Quantified Conjecture

```
len(nil)=0

\forallxy.len(cons(x,y))=1+len(y)

Axioms

\neg∀x.len(x)≥0

(Negated)

Conjecture
```

Ground Solver


```
len (nil) =0

\forall xy.len (cons(x,y)) = 1+len(y)

\neg \forall x.len(x) \ge 0

Skolemize: statement (does not) hold for fresh constant \mathbf{k}

\neg len(\mathbf{k}) \ge 0
```

Ground Solver


```
len(nil)=0,
         len(k) < 0,
    len(k) = 1 + len(tl(k))
                                 \forall xy.len(cons(x,y))=1+len(y)
len(tl(k))=1+len(tl(tl(k)))
    Ground
                                            ∀ Module
     Solver
```



```
len(nil)=0,
          len(k) < 0,
    len(k) = 1 + len(tl(k))
len(tl(k)) = 1 + len(tl(tl(k)))
                                    \forall xy.len(cons(x,y))=1+len(y)
                             Instantiate:
                          ...repeat
     Groun
                        indefinitely
                                                   Module
      Solver
                         Partial model:
```

 $\{..., len(k) = -3, len(tl(k)) = -2, len(tl(tl(k))) = -1,$

tl(tl(k)) = cons(hd(tl(tl(k))), tl(tl(tl(k))))

Challenge: Inductive Reasoning

- This example requires induction
- Existing techniques
 - Within inductive theorem provers:
 - ACL2 [Chamarthi et al 2012]
 - HipSpec [Claessen et al 2013]
 - IsaPlanner [Johansson et al 2010]
 - Zeno [Sonnex et al 2012]
 - ...
 - Induction as preprocessing step to SMT solver:
 - Dafny [Leino 2012]
- No SMT solvers support induction natively
 - \Rightarrow Until now, in CVC4

Solution: Inductive Strengthening

Given negated conjecture:

$$\neg \forall x.len(x) \ge 0$$

Assume property does not for fresh k:

$$\neg$$
 len(k) ≥ 0

AND

Assume k is the smallest CE to property:

```
k=cons(hd(k),tl(k)) \Rightarrow len(tl(k)) \ge 0
```

Example #2: revised

```
len(nil)=0,
      len(k)<0,
    len(tl(k))\geq 0,
                             \forall xy.len(cons(x,y))=1+len(y)
len(k) = 1 + len(tl(k))
Ground
                                        ∀ Module
Solver
```

Example #2: revised

Skolemization with Inductive Strengthening

General form:

$$\forall x . P(x) \lor (\neg P(k) \land \forall y . (y \lt k \Rightarrow P(y)))$$

- For well-founded relation "<"</p>
- Extends for multiple variables
- Common examples of "<" in SMT:
 - (Weak) structural induction on inductive datatypes
 - Assume property holds for direct children of k of same type
 - (Weak) well-founded induction on integers
 - Assume property holds for (k-1), with base case 0

Challenge: Subgoal Generation

- Unfortunately, inductive strengthening is not enough
- Consider conjecture:

$$\forall x.len(rev(x)) = len(x)$$

– where rev is axiomatized by:

```
rev(nil)=nil,
Vxy.rev(cons(x,y))=app(rev(y),cons(x,nil))
```

To prove, requires induction, and "subgoals":

```
\forall xy.len(app(x,y))=plus(len(x),len(y))
\forall xy.plus(x,y)=plus(y,x)
```

Generating candidate subgoals

- How to generate necessary subgoals?
 - Idea: Enumerate/prove them in a principled way
 - QuickSpec [Claessen et al 2010]

```
∀x.len(x)=Z
∀x.len(x)=S(Z)
∀x.app(x,nil)=nil
∀x.app(x,nil)=x
∀x.app(x,nil)=cons(0,x)
...
∀xy.plus(x,y)=plus(x,0)
∀xy.plus(x,y)=plus(y,x)
...
∀xy.len(app(x,y))=plus(len(x),len(y))
...
```


Subgoal Generation in SMT

Subgoal Generation: Challenges

- Main challenge: scalability
- Keys to success:
 - Enumerate subgoals in a fair manner (smaller first)
 - Filter out subgoals that are not useful

Subgoal Filtering

- Given: $\forall x.len(rev(x)) = len(x)$
- Filtering based on "active" symbols:
- Filtering based on canonicity:
 - \forall x.len(x)=len(app(x,nil))
 Redundant, if we know \forall x.x=app(x,nil)
- Filtering based on counterexamples:
 - $\forall x. len(x) = len(app(x, x))$ Falsified, e.g. if partial model contains equality len(t) = len(app(t, t))
- ⇒ Typically can remove >95-99% subgoals

Benchmarks

- Four benchmark sets (in SMT2):
 - 1. IsaPlanner [Johansson et al 2010]
 - 2. Clam [Ireland 1996]
 - 3. HipSpec [Claessen et al 2013]
 - 4. Leon
 - Amortized Queues, Binary search trees, Leftist Heaps
- Two encodings:
 - Base encoding
 - Theory encoding

Base Encoding

Base Encoding

All functions over datatypes:

```
Nat := S(P:Nat) \mid Z
                                                           Datatype
List:= cons(hd:Int,tl:List)
                                             nil
                                                           Definitions
\forall x.plus(Z,x)=x
\forall xy.plus(S(x),y)=S(plus(x,y))
                                                 Function
len(nil) = Z
                                                 Definitions
\forall xy.len(cons(x,y)) = S(len(y))
\forall xy.len(app(x,y))=plus(len(x),len(y))
                                                        Necessary
                                                        Subgoals for
\forall xy.plus(x,y)=plus(y,x)
```

UNSAT

$$\neg \forall x.len(rev(x)) = len(x)$$

All functions over datatypes:

```
Nat := S(P:Nat) | Z
List:= cons(hd:Int,tl:List) | nil

Vx.plus(Z,x)=x
∀xy.plus(S(x),y)=S(plus(x,y))
len(nil)=Z
∀xy.len(cons(x,y))=S(len(y))
...
Function
Definitions
```

?

```
Nat := S(P:Nat) \mid Z
                                                          Datatype
List:= cons(hd:Int,tl:List)
                                             nil
                                                          Definitions
\forall x.plus(Z,x)=x
\forall xy.plus(S(x),y)=S(plus(x,y))
                                                 Function
len(nil) = Z
                                                 Definitions
\forall xy.len(cons(x,y)) = S(len(y))
toInt(zero)=0, \forallx.toInt(S(x))=1+toInt(x)
                                                       Mapping
\forall xy.toInt(plus(x,y)) = toInt(x) + toInt(y)
                                                       toInt: Nat→Int
```

All functions over datatypes:

```
Nat := S(P:Nat) \mid Z
                                                            Datatype
List:= cons(hd:Int,tl:List)
                                              nil
                                                            Definitions
\forall x.plus(Z,x)=x
\forall xy.plus(S(x),y)=S(plus(x,y))
                                                   Function
len(nil) = Z
                                                   Definitions
\forall xy.len(cons(x,y)) = S(len(y))
toInt(zero)=0, \forallx.toInt(S(x))=1+toInt(x)
                                                         Mapping
\forall xy.toInt(plus(x,y)) = toInt(x) + toInt(y)
                                                         toInt: Nat→Int
    ⇒ Allows SMT solver to make use of theory reasoning
            Above axioms imply, e.g. \forall xy.plus(x,y) = plus(y,x)
```

 $\neg \forall x. len(rev(x)) = len(x)$

Negated Conjecture

```
Nat := S(P:Nat) \mid Z
                                                           Datatype
List:= cons(hd:Int,tl:List)
                                             nil
                                                           Definitions
\forall x.plus(Z,x)=x
\forall xy.plus(S(x),y)=S(plus(x,y))
                                                 Function
len(nil) = Z
                                                 Definitions
\forall xy.len(cons(x,y)) = S(len(y))
toInt(zero)=0, \forallx.toInt(S(x))=1+toInt(x)
                                                       Mapping
\forall xy.toInt(plus(x,y)) = toInt(x) + toInt(y)
                                                       toInt: Nat→Int
                                                      Necessary
\forall xy.len(app(x,y))=plus(len(x),len(y))
                                                      Subgoals for
                                                         UNSAT
\neg \forall x. len(rev(x)) = len(x)
```

Results: SMT solvers

	no-th	th	
z 3	35	75	
cvc4	29	68	
cvc4+i	204	240	
cvc4+ig	260	277	

cvc4+i: with induction

cvc4+ig: with induction +subgoal gen.

- Results for 311 benchmarks from 4 classes
- 300 second timeout

Results: Subgoal Generation

- With subgoals, solved +37 for theory encoding
 - Only solved +1 when filtering turned off
- Overhead of subgoal generation was small:
 - 30 cases (out of 933) was 2x slower
 - 9 cases (out of 933) went solved -> unsolved
- Most subgoals were small: term size ≤ 3
 - Some were non-trivial (not discovered manually)

Comparison with Other Provers

Benchmark class

		Isaplanner	Clam	HipSpec	Leon
	cvc4+ig (th)	80	39	18	42
	ACL2	73			
	Clam		41		
Solvers	Dafny	45		_	
	Hipspec	80	47	26	
	Isaplanner	43			
	Zeno	82	21		
	Total	85	50	26	45

- Translated/evaluated in previous studies
- CVC4 fairly competitive

Future Work

Improvements to subgoal generation

- Filtering heuristics
- Configurable approaches for signature of subgoals
 Incorporate more induction schemes
 Completeness criteria
- Identify cases approach is guaranteed to succeed
 Better comparison with other tools
 Applications:
 - Tighter integration with Leon (http://leon.epfl.ch)

Thanks!

- CVC4 publicly available:
 - http://cvc4.cs.nyu.edu/downloads/
 - Induction techniques:
 - Enabled by "--quant-ind"
- Benchmarks (SMT2) available:
 - http://lara.epfl.ch/~reynolds/VMCAI2015-ind

