Motions

Special Orthogonal Properties Composition of Rotations

A short treatise on robots' kinematic geometry and kinetics.

Author: Lekan Molu

Dissemination Venue: Microsoft Research RL Group, New York City, NY 10012

June 09, 2022

Table of Contents I

Motions

Movement in R³
Special Orthogonal Properties
Composition of

- Motions
 - Movement in \mathbb{R}^3
 - Special Orthogonal Properties
 - Composition of Rotations

Lecture III Outline

Motions

Movement in \mathbb{R}^3 Special Orthogonal Properties
Composition of

Lecture III Outline

Rigid Body Transformations and Screws Theory.

Rigid body motions: Properties; Direction cosines; Rotation compositions; Rotation Parameterizations.

Rodrigues' formula; the matrix exponential, $SO(3), SO(n), \mathbb{SE}(3)$ group properties.

Transformations: Translations and rotations in \mathbb{R}^3 , planar rotations, SO(3), SE(3) motions; homogeneous transformations; Euler and Fick angles.

Rigid Body Motions

Motions

Movement in R°

Special Orthogona
Properties

Composition of

Rigid Body Motion - Intro

A mapping $g:\mathbb{R}^3 \to \mathbb{R}^3$ is a rigid body motion if

$$||g(x) - g(y)|| = ||x - y|| \text{ for all } x, y \in \mathbb{R}^3;$$
 (1)

$$g(x \times y) = g(x) \times g(y) \text{ for all } x, y \in \mathbb{R}^3;$$
 (2)

Rigid Body Motion Preserves Inner Products

For two vectors \boldsymbol{a} and \boldsymbol{b} , $\langle \boldsymbol{a}, \boldsymbol{b} \rangle = g(\boldsymbol{a}) \times g(\boldsymbol{b})$.

Rigid Body Transformations

Motions

Movement in R³

Special Orthogonal Properties

Composition of

Translation of Point q between Two Frames

For a reference frame, $o_0x_0y_0$ and a moving coordinate frame, $o_1x_1y_1$, the translation of \boldsymbol{q} is given as below:

$$q^0 = \begin{pmatrix} q_x^0 \\ q_y^0 \end{pmatrix}, \quad q^1 = \begin{pmatrix} q_x^1 \\ q_y^1 \end{pmatrix}$$

Translation of Origin between Two Frames

$$o_1^0 = \begin{pmatrix} o_x^0 \\ o_y^0 \end{pmatrix}, \quad o_0^1 = \begin{pmatrix} o_x^1 \\ o_y^1 \end{pmatrix}.$$
 (3)

Rigid Body Transformations

Movement in R³
Special Orthogonal Properties
Composition of

Applications to Screws

Applies to Chasles' displacement theorem and Poinsot's force and couple transformations too.

Screw Transformations

$$\boldsymbol{t}_1^0 = \begin{pmatrix} t_x^0 \\ t_y^0 \end{pmatrix}, \quad \boldsymbol{t}_1^1 = R(-\theta)q^0 \tag{4}$$

$$\boldsymbol{t}_{2}^{0}=R(\theta)q^{0},\quad \boldsymbol{t}_{2}^{1}=\left(egin{array}{c} t_{x}^{1} \\ t_{y}^{1} \end{array}
ight)$$
 (5)

where θ is the angle coordinate frame $o_1x_1y_1$ makes w.r.t $o_0x_0y_0$.

Rotations in \mathbb{R}^3

Motions

Movement in R³

Special Orthogonal Properties

Composition of

Rotations in \mathbb{R}^3

Conventions: Bodies' orientations are measured along a corkscrew direction, specified by a local coordinate frame. Thus, relative orientation is measured from the local coordinate frame to an inertial coordinate frame.

Direction Cosines

Motions Movement in R³ Special Orthogonal Properties

Conventions

I: Inertial frame; *J*: Body frame.

 $q:(x_{ij},y_{ij},z_{ij})\in\mathbb{R}^3$: coordinates of the principal axes of J relative to I.

Rotation Matrix from Direction Cosines

Movement in R³

Special Orthogonal Properties

Composition of

Rotation as Composition of Projections Between Frames

$$R_{ij} = \begin{bmatrix} \boldsymbol{x}_{ij} & \boldsymbol{y}_{ij} & \boldsymbol{z}_{ij} \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}.$$
 (6)

Rotation Matrix as Unit Axes' Dot Products

$$R_{ij} = \begin{bmatrix} x_j \cdot x_i & y_j \cdot x_i & z_j \cdot x_i \\ x_j \cdot y_i & y_j \cdot y_i & z_j \cdot y_i \\ x_j \cdot z_i & y_j \cdot z_i & z_j \cdot z_i \end{bmatrix}.$$
(7)

Rotation Matrix from Direction Cosines

Viotions
Movement in R³
Special Orthogonal
Properties
Composition of

Rotation Matrices are Direction Cosines!

$$egin{aligned} oldsymbol{x}_j \cdot oldsymbol{x}_i &= \cos(\measuredangle(oldsymbol{x}_j, oldsymbol{x}_i)), \quad oldsymbol{y}_j \cdot oldsymbol{x}_i &= \cos(\measuredangle(oldsymbol{y}_j, oldsymbol{x}_i)), \\ \cdots, oldsymbol{y}_j \cdot oldsymbol{z}_i &= \cos(\measuredangle(oldsymbol{y}_j, oldsymbol{z}_i)), \\ \end{array}$$

Properties of Rotation Matrices

Rows of R_{ij} are the unit vector coordinates of I in the frame J so that

$$R_{ij} = R_{ji}^{-1} = R_{ji}^{T}. (8)$$

That is, the inverse of the rotation matrix is equal to its transpose.

Special Orthogonal 3, SO(3)

Motions

Movement in R³

Special Orthogonal Properties

Orthogonal properties!

Observe: det $\mathbf{R} = \mathbf{r}_1^T \cdot (\mathbf{r}_2 \times \mathbf{r}_3)$. In corkscrew notation, det $\mathbf{R} = +1$ i.e. $\mathbf{r}_2 \times \mathbf{r}_3 = \mathbf{r}_1$ so that det $\mathbf{R} = \mathbf{r}_1^T \cdot \mathbf{r}_1 = +1$. A matrix that satisfies the above property is said to possess a special orthogonal 3, denoted SO(3), property.

SO(n) Property

Special orthogonal means det R=+1. The set of all SO matrices in $\mathbb{R}^{n\times n}$ is

$$SO(n) = \{ \mathbf{R} \in \mathbb{R}^{n \times n} : \mathbf{R} \cdot \mathbf{R}^T = \mathbf{I}, \text{det } \mathbf{R} = +1 \}.$$
 (9)

Rotations on Vectors

Motions

Movement in \mathbb{R}^3

Special Orthogonal Properties

Rotating a Vector

Suppose that a point p_j is on a frame J, then the vector that connects a point q_j in the frame J to p_j is $v_j=q_j-p_j$. Now, the rotation matrix's action on v_j is

$$\mathbf{R}_{ij}(v_j) := \mathbf{R}_{ij}q_j - \mathbf{R}_{ij}p_j = q_i - p_i = v_i.$$
 (10)

Planar Rotations

Motions

Movement in \mathbb{R}^3 Special Orthogonal Properties

Planar Rotations

Let the angle of rotation between the two coordinate frames be θ . Then,

$$R_1^0 = \left(\begin{array}{cc} x_1^0 \mid y_1^0 \end{array} \right) \quad (11)$$

Planar Rotations

It follows that

$$R = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \tag{12}$$

Planar Rotations

Motions

Movement in \mathbb{R}^3

Special Orthogonal Properties

Composition of

Planar Rotations via Direction Cosines

$$R_{1}^{0} = \begin{bmatrix} \boldsymbol{x}_{0} \cdot \boldsymbol{x}_{1} & \boldsymbol{y}_{1} \cdot \boldsymbol{x}_{0} \\ \boldsymbol{x}_{0} \cdot \boldsymbol{y}_{1} & \boldsymbol{y}_{1} \cdot \boldsymbol{y}_{0} \end{bmatrix} = \begin{bmatrix} \cos \alpha & -\cos(\pi/2 - \alpha) \\ \cos(\pi/2 - \alpha) & \cos \alpha \end{bmatrix}$$
$$= \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}. \tag{13}$$

Projection of y_1 on x_0 is negative because of our adopted right-handed frame.

Composition of Rotations

Motions

Movement in R³

Special Orthogonal Properties

Composition of

Rotations

Rotations Composition

Let the relative orientation of a frame K to a frame J be R_{jk} , and let frame J's relative orientation to frame I be R_{ij} , then the relative orientation of frame K w.r.t I is

$$\mathbf{R}_{ik} = \mathbf{R}_{ij} \cdot \mathbf{R}_{jk}. \tag{14}$$

Rotations Composition

Equivalent to rotating J relative to frame I according to R_{ij} ; then aligning frame J to K, we rotate K relative to I according to R_{jk} . This frame relative to which rotation occurs is termed the current frame.

Composition of Rotations About A Current Axis

Movement in \mathbb{R}^3 Special Orthogonal

Composition of

Composition of Rotations About A Current Axis

Motions

Special Orthogona Properties Composition of

Compositions

$$\mathbf{R} = \mathbf{R}_{x,\theta} \mathbf{R}_{z,\psi} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{\theta} & -s_{\theta} \\ 0 & s_{\theta} & c_{\theta} \end{pmatrix} \cdot \begin{pmatrix} c_{\psi} & -s_{\psi} & 0 \\ s_{\psi} & c_{\psi} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
(15)

$$\mathbf{R} = \begin{pmatrix} c_{\psi} & -s_{\psi} & 0\\ 0 & c_{\theta}c_{\psi} & -s_{\theta}\\ s_{\theta}s_{\psi} & s_{\theta}c_{\psi} & c_{\theta} \end{pmatrix}$$
(16)

Notice how the order of multiplication is carried out, owing to the axis about which we are making the transformation.

Composition of Rotations About A Current Axis

Rotations

Movement in R°

Special Orthogonal Properties

Composition of

Skew Symmetry Operations

What happens when the order of multiplication is reversed?

Composition of Rotations

Motions

Rotations

Movement in \mathbb{R}^3 Special Orthogonal Properties
Composition of

Skew Symmetric Matrix

$$(S)^{\wedge} = \begin{pmatrix} 0 & -s_z & s_y \\ s_z & 0 & -s_x \\ -s_y & s_x & 0 \end{pmatrix}$$
 (17)

Skew Symmetric Matrix

Observe $s_{ij} = -s_{ji}$ for $i \neq j$ and $s_i i = 0$

Composition of Rotations

Motions

Rotations

Movement in R"

Special Orthogonal
Properties

Composition of

Pre-multiplication of Rotations

A rotation about a fixed axis requires a pre-multiplication.

Post-multiplication of Rotations

A rotation about a current axis necessitates a post-multiplication.

Rotations' Composition

Movement in R³
Special Orthogonal Properties
Composition of

Rotations Composition

Suppose all axes of the inertial frame are successively rotated by β around x_0, y_0, z_0 respectively. What is the transformation? Verify that (1) $R_{e,\beta} = I$ where e is the axes about which we are rotating and β is the angle of rotation; (2) The composition of rotations about β and α in a successive manner implies that $R_{z,\beta}, R_{z,\alpha} = R_{z,\beta+\alpha}$, and (3) $(R_{z,\beta})^{-1} = R_{z,-\beta}.$

Relative orientation between two frames.

A-43-...

Rotations

Movement in ℝ³
Special Orthogonal Properties
Composition of

Relative orientation between two frames.

Motion

Rotations

Movement in R³

Special Orthogonal Properties

Composition of

Euler (ZYZ) Angles

$$\mathbf{R}_{ij}(\alpha,\beta,\gamma) = \mathbf{R}_{z}(\alpha)\mathbf{R}_{y}(\beta)\mathbf{R}_{z}(\gamma) \tag{18}$$

$$= \begin{bmatrix} c_{\alpha} & -s_{\alpha} & 0 \\ s_{\alpha} & c_{\alpha} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_{\theta} & 0 & s_{\theta} \\ 0 & 1 & 0 \\ -s_{\theta} & 0 & c_{\theta} \end{bmatrix}$$

$$= \begin{bmatrix} c_{\alpha}c_{\beta}c_{\gamma} - s_{\alpha}s_{\gamma} & -c_{\alpha}c_{\beta}s_{\gamma} - s_{\alpha}c_{\gamma} & c_{\alpha}s_{\beta} \\ s_{\alpha}c_{\beta}c_{\gamma} + c_{\alpha}s_{\gamma} & -s_{\alpha}c_{\beta}s_{\gamma} + c_{\alpha}c_{\gamma} & s_{\alpha}s_{\beta} \\ -s_{\beta}c_{\gamma} & s_{\beta}s_{\gamma} & c_{\beta} \end{bmatrix}$$

$$(19)$$

Matiana

Rotations

Movement in R³
Special Orthogonal Properties
Composition of

Euler (ZYZ) Angles. Case $\sin(\beta) > 0$

$$\beta = \arctan 2(r_{33}, \sqrt{1 - r_{33}^2})$$
 (20a)

$$\alpha = \arctan 2(r_{23}/\sin \beta, r_{13}/\sin \beta)$$
 (20b)

$$\gamma = \arctan 2(r_{32}/\sin \beta, -r_{31}/\sin \beta) \tag{20c}$$

where $\arctan 2(y,x)$ determines the quadrant of the angle based on the sign of x and y.

Motions

Movement in R³
Special Orthogonal Properties
Composition of

Euler (ZYZ) Angles. Case $\sin(\beta) < 0$

$$\beta = \arctan 2(r_{33}, -\sqrt{1 - r_{33}^2})$$
 (21a)

$$\alpha = \arctan 2(-r_{23}/\sin \beta, -r_{13}/\sin \beta)$$
 (21b)

$$\gamma = \arctan 2(-r_{32}/\sin \beta, r_{31}/\sin \beta) \tag{21c}$$

Euler angles are not unique owing to the sign of the angle about which the y axis rotates!

Other Axes Parameterization of Rotations

Motions

Rotations

Movement in R³

Special Orthogonal Properties

Composition of

Fick (ZYX), Helmholtz (YZX) Angles.

We could permute the order of rotation such as rotating successively about different axes. Examples include successive rotations about ZYX axes for the Fick angles and successive rotations about YZX axes for Helmholtz angles.

Fick (ZYX) and Helmholtz (YZX) Angles.

These avoid Euler angle singularities at R=I. This does not preclude singularities at other configurations.

Fick angles and Yaw, Pitch, and Roll Axes

Motions

Movement in R³

Special Orthogona

Properties

Composition of

Rotations

Fick angles

Otherwise called the yaw, pitch, and roll angles. R_{ij} found by rotating about the x-axis (roll), then the y-axis (pitch), and finally the z-axis – all in the body frame.

Aircraft Principal Axes in the right-hand frame. Courtesy of Wikimedia commons.