Matematická analýza III

Tomáš Krejčí <tomas789@gmail.com>

20. prosince 2012

10 Konvergence posloupností a řad funkcí

10.1 Bodová a stejnoměrná konvergence posloupnosti funkcí

Definice. Nechť $J \subset \mathbb{R}$ je interval a nechť máme $f: J \to \mathbb{R}$ a $f_n: J \to \mathbb{R}$ pro $n \in \mathbb{N}$. Řekneme, že posloupnost funkcí $\{f_n\}$:

1. konverguje bodově kf na J, pokud pro každé $x\in J$ platí $\lim_{n\to\infty}f_n(x)=f(x),$ neboli

$$\forall x \in J \forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n \ge n_0 : |f_n(x) - f(x)| < \epsilon$$

 $Zna\check{c}ime\ f_n \to f\ na\ J.$

2. konverguje stejnoměrně k f na J, pokud

$$\forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n \ge n_0 \forall x \in J : |f_n(x) - f(x)| < \epsilon$$

Značíme $f_n \Longrightarrow f$.

3. konverguje lokálně stejnoměrně, pokud pro každý omezený uzavřený interval $[a,b] \subset J$ platí: $f_n \Rightarrow f$ na [a,b]. Značíme $f_n \stackrel{loc}{\Rightarrow} f$

Věta L 1 (kritérium stejnoměrné konvergence). Nechť $f_n, f: J \to \mathbb{R}$ pak

$$f_n \rightrightarrows f_n = f_n = \lim_{n \to \inf} \sup\{|f_n(x) = f(x)|; x \in J\} = 0$$

Věta T 2 (Bolzano-Cauchyho podmínka pro stejnoměrnou konvergenci). Nechť $f_n, f: J \to \mathbb{R}$. Pak

$$f_n \rightrightarrows fnaJ \Leftrightarrow \forall \epsilon > 0 \\ \exists n_0 \\ \forall m,n \geq n_0 \\ \forall x \in J: |f_n(x) - f_m(x)| < \epsilon$$

Věta T 3 (Moore-Osgood). Nechť x_0 je krajní bod intervalu J (může být $i \pm \infty$). Nechť $f, f_n : J \to \mathbb{R}$ splňují

- 1. $f_n \Longrightarrow f \ na \ J$,
- 2. existuje $\lim_{x\to x_0} f_n(x) = a_n \in \mathbb{R}$ pro všechna $n \in \mathbb{N}$

Pak existují $\lim_{n\to\infty} a_n$ a $\lim_{x\to x_0} f(x)$ a jsou si rovny, neboli:

$$\lim_{n \to \infty} \lim_{x \to x_0} f_n(x) = \lim_{x \to x_0} \lim_{n \to \infty} f_n(x)$$

Důsledek. Nechť $f_n \Rightarrow f$ na I a nechť f_n jsou na I spojité. Pak f je spojitá na I.

Věta L 4 (o záměně limity a integrálu). Nechť funkce $f_n \Rightarrow f$ na [a,b] a nechť $f_n \in \mathbb{R}([a,b])$. Pak $f \in \mathbb{R}([a,b])$ a

$$(R)\int_{a}^{b} f(x)dx = \lim_{n \to \infty} (R)\int_{a}^{b} f_{n}(x)dx$$

Věta T 5 (o záměně limity a derivace). Nechť funkce f_n , $n \in \mathbb{N}$, mají vlastní derivaci na intervalu (a, b) a nechť:

- 1. existuje $x_0 \in (a,b)$ tak, že $\{f_n(x_0)\}_{n=0}^{\infty}$ konverguje,
- 2. pro derivace f_n' platí $f_n' \stackrel{loc}{\Longrightarrow} na (a, b)$

Potom existuje funkce f tak, že $f_n \stackrel{loc}{\Longrightarrow} f$ na (a,b), f má vlastní derivaci a platí $f'_n \stackrel{loc}{\Longrightarrow} f'$ na (a,b).

10.2 Stejnoměrná konvergence řady funkcí

Definice. Řekneme, že řada funkcí $\sum_{k=1}^{\infty} u_k(x)$ konverguje stejnoměrně (popřípadě lokálně stejnoměrne) na intervalu J, pokud posloupnost částečných součtů $s_n(x) = \sum_{k=1}^n u_k(x)$ konverguje stejnoměrně (popřípadě lokálně stejnoměrně) na J.

Věta L 6 (nutná podmínka stejnoměrné konvergence řady). Nechť $\sum_{n=1}^{\infty} u_k(x)$ je řada funkcí definovaná na intervalu J. Pokud $\sum_{k=1}^{\infty} u_n \rightrightarrows na$ J, pak posloupnost funkcí $u_n(x) \rightrightarrows 0$ na J.

Věta L 7 (Weirstrassovo kritérium). Nechť $\sum_{k=1}^{\infty} u_n(x)$ je řada funkcí definovaná na intervalu J. Pokud pro $a_n := \sup\{|u_n(x)|; x \in J\}$ platí, že číselná řada $\sum_{n=1}^{\infty} a_n$ konverguje, pak $\sum_{n=1}^{\infty} u_n \Rightarrow na$ J.

Věta L 8 (o spojitosti a derivování řad funkcí). Nechť $\sum_{n=1}^{\infty} u_n(x)$ je řada funkcí definovaná na intervalu (a,b).

- 1. Nechť u_n jsou spojité na (a,b) a nechť $\sum_{n=1}^{\infty} u_n(x) \stackrel{loc}{\Rightarrow}$ na (a,b). Pak $F(x) = \sum_{n=1}^{\infty} u_n(x)$ je spojitá na (a,b).
- 2. Nechť funkce u_n , $n \in \mathbb{N}$ mají vlastní derivace na intervalu (a,b) a nechť
 - (a) existuje $x_0 \in (a, b)$ tak, že $\sum_{n=1}^{\infty} u_n(x_0)$ konverguje,
 - (b) pro derivace u_n' platí $\sum_{n=1}^{\infty} u_n' \stackrel{loc}{\Longrightarrow} na(a,b)$

Potom je funkce $F(x) = \sum_{n=1}^{\infty} u_n(x)$ dobře definovaná diferencovatelná a navíc $\sum_{n=1}^{\infty} u_n(x) \stackrel{loc}{\Rightarrow} F(x)$ a $\sum_{n=1}^{\infty} u'_n(x) \stackrel{loc}{\Rightarrow} F'(x)$ na (a,b).

Vraťme se ke konvergenci obyčejných řad. Následující kritérium bude užitečné v kapitole Fourierovy řady. Existuje i varianta tohoto tvrzení pro stejnoměrnou konvergenci, tu však nebudeme potřebovat.

Věta T 9 (Abel-Dirichletovo kriterium, bez důkazu). Nechť $\{a_n\}_{n\in\mathbb{N}}$ je posloupnost reálných čísel a $\{b_n\}_{n=1}^{\infty}$ je nerostoucí posloupnost nezáporných čísel. Jestliže je některá z následujících podmínek splněna, pak je $\sum_{n=1}^{\infty} a_n b_n$ konvergentní.

- 1. $\sum_{n=1}^{\infty} a_n$ je konvergentní,
- 2. $\lim_{n\to\infty} b_n = 0$ a $\sum_{n=1}^{\infty} a_n$ má omezené součty, tedy

$$\exists K > 0 \quad \forall m \in \mathbb{N} \quad : |s_m| = \left| \sum_{i=1}^m a_i \right| < K$$

11 Mocninné řady

Definice. Nehcť $x_0 \in \mathbb{R}$ a $a_n \in \mathbb{R}$ pro $n \in \mathbb{N}_0$. Řadu funkcí $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ nazýváme mocninnou řadou s koeficienty a_n o středu x_0 .

Definice. Poloměrem konvergence mocninné řady $\sum_{n=0}^{\infty} a_n(x-x_0)^n$ nazveme

$$R = \sup \left\{ r \in [0, \infty) : \sum_{n=0}^{\infty} a_n (x - x_0)^n \text{ konverguje } \forall x \in [x_0 - r; x_0 + r] \right\}$$

Věta L 1 (o poloměru konvergence mocninné řady). Nechť $\sum_{n=0}^{\infty} a_n(x-x_0)^n$ je mocninná řada a $R \in [0,\infty]$ její poloměr konvergence. Pak řada konverguje obsolutně pro všechna x taková, že $|x-x_0| < R$ a diverguje pro všechna x taková, že $|x-x_0| > R$.

Věta L 2 (výpočet poloměru konvergence). Nechť $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ je mocninná řada a $R \in [0,\infty]$ její poloměr konvergence. Pak platí

$$R = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_n|}}$$

Pokud existuje $\lim_{n\to\infty} \frac{|a_n|}{|a_{n+1}|}$, pak $R = \lim_{n\to\infty} \frac{|a_n|}{|a_{n+1}|}$.

Věta L 3. Nechť $\sum_{n=0}^{\infty} a_n(x-x_0)^n$ je mocninná řada s poloměrem konvergence R>0. Pak řada konverguje lokálně stejnoměrně na (x_0-R,x_0+R) (je-li $R=\infty$, pak na celém \mathbb{R}).

Věta L 4 (o derivaci mocninné řady). Nechť $\sum_{n=0}^{\infty} a_n(x-x_0)^n$ je mocninná řada s poloměrem konvergence R>0. Pak $\sum_{n=1}^{\infty} na_n(x-x_0)^{n-1}$ je také mocninná řada se stejným středem a poloměrem konvergence. Navíc pro $x\in (x_0-R,x_0+R)$ (\mathbb{R} pro $R=\infty$) platí

$$\left(\sum_{n=0}^{\infty} a_n (x - x_0)^n\right)' = \sum_{n=+}^{\infty} n a_n (x - x_0)^{n-1}$$

Věta L 5 (o integrování mocninné řady). Nehcť $\sum_{n=0}^{\infty} a_n(x-x_0)^n$ je mocninná řada s poloměrem konvergence R>0. Pak $\sum_{n=0}^{\infty} \frac{a_n}{n+1} (x-x_0)^{n+1}$ je také mocninná řada se stejným poloměrem konvergence. Navíc platí

$$\int \sum_{n=0}^{\infty} a_n (x - x_0)^n dx = \sum_{n=1}^{\infty} \frac{a_n}{n+1} (x - x_0)^{n+1} + C \quad na \ (x_0 - R, x_0 + R)$$

Věta T 6 (Abelova). Nechť $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ je mocninná řada s poloměrem konvergence R>0. Nechť navíc $\sum_{n=0}^{\infty} a_n R^n$ konverguje. Potom řada $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ konverguje stejnoměrně na $[x_0, x_0+R]$ a platí

$$\sum_{n=0}^{\infty} a_n R^n = \lim_{r \to R_-} \sum_{n=0}^{\infty} a_n r^n$$

 $D\mathring{u}kaz$. Předpokládejme bez újmy na obecnosti, že $x_0=0$. Označme $t_N=\sum_{n=N+1}^\infty a_n R^n$. Víme, že $\sum a_n R^n$ konverguje, tedy

$$\forall \varepsilon > 0 \quad \exists n_0 \quad \forall n \ge n_0 \quad : \quad |t_N| < \varepsilon$$

$$a_n = a_n R^n \left(\frac{x}{R}\right)^n$$

$$= -t_N \left(\left(\frac{x}{R}\right)^n - \left(\frac{x}{R}\right)^{n+1}\right) + t_{n-1} \left(\frac{x}{R}\right)^n - t_n \left(\frac{x}{R}\right)^{n+1}$$

Sečteme od N do N+k

$$\sum_{n=N}^{N+k} a_n x^n = \left[\sum_{n=N}^{N+k} -t_n \left(\left(\frac{x}{R} \right)^n - \left(\frac{x}{R} \right)^{n+1} \right) \right] + t_{N-1} \left(\frac{x}{R} \right)^n - t_{N+k} \left(\frac{x}{R} \right)^{n+k+1}$$

Protože $x \in [0, R]$, tak $\left(\frac{x}{R}\right)^n \in [0, 1]$. Dále platí $\left(\frac{x}{R}\right)^n - \left(\frac{x}{R}\right)^{n+1} \ge 0$.

$$\left| \sum_{n=N}^{N+k} a_n x^n \right| \leq \sum_{n=N}^{N+k} |t_n| \left(\left(\frac{x}{R} \right)^n - \left(\frac{x}{R} \right)^{n+1} \right) + |t_{N-1}| + |t_{N+k}|$$

$$\leq \epsilon \sum_{n=N}^{N+k} |t_n| \left(\left(\frac{x}{R} \right)^n - \left(\frac{x}{R} \right)^{n+1} \right) + 2\epsilon$$

$$= \epsilon \left(\left(\frac{x}{R} \right)^N - \left(\frac{x}{R} \right)^{N+k+1} \right) + 2\epsilon$$

$$\leq 3\epsilon$$

 Z BC podmínky pro stejnoměrnou konvergenci řady dostaneme $\sum_{n=0}^{\infty} a_n x^n \implies$ na [0,R] Z MO věty dostaneme

$$\lim_{n \to \infty} \lim_{r \to R_{-}} \sum_{n=0}^{N} a_n R^n = \lim_{r \to R_{-}} \lim_{n \to \infty} \sum_{n=0}^{N} a_n R^n$$

$$\lim_{n \to \infty} \lim_{r \to R_{-}} \sum_{n=0}^{N} a_n R^n = \lim_{n \to \infty} \sum_{n=0}^{N} a_n R^n = \sum_{n=0}^{\infty} a_n R^n$$

$$\lim_{r \to R_{-}} \lim_{n \to \infty} \sum_{n=0}^{N} a_n R^n = \lim_{r \to R_{-}} \sum_{n=0}^{\infty} a_n r^n$$

Příklad. Sečtěte $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{3n-2}$

 $\check{R}e\check{s}en\acute{i}$. Nechť $f(x)=\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{3n-2}x^{3n-2}$. To je mocninná řada poloměrem konvergence R=1. Podle Laibnitze $f(1)=\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{3n-2}$ konverguje. Tedy podle Abelovy věty $\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{3n-2}=\lim_{x\to 1_{-}}f(x)$ Dle věty o derivaci mocninné řady máme $\forall x\in (-1,1)$

$$f'(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{3n-2} (3n-2) x^{3n-3} = \sum_{n=1}^{\infty} (-x^3)^{n-1} = \frac{1}{1+x^3}$$
$$f(x) = \int \frac{1}{1+x^3} dx = \dots = \frac{1}{3} \ln(x+1) - \frac{1}{6} \ln(x^2 - x + 1) + \frac{1}{\sqrt{3}} \arctan\left(\frac{2x-1}{\sqrt{3}}\right) + C$$

$$0 = f(0) = \frac{1}{3}0 - \frac{1}{6}0 + \frac{1}{\sqrt{3}}\arctan\left(-\frac{1}{\sqrt{3}}\right) + C \Rightarrow C = \frac{1}{\sqrt{3}}\arctan\left(\frac{1}{\sqrt{3}}\right)$$

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{3n-2} = \lim_{x \to 1_{-}} \left(\frac{1}{3}\ln(x+1) - \frac{1}{6}\ln(x^{2}-x+1) + \frac{1}{\sqrt{3}}\arctan\left(\frac{2x-1}{\sqrt{3}}\right)\frac{1}{\sqrt{3}}\arctan\left(\frac{1}{\sqrt{3}}\right)\right)$$

$$= \frac{1}{3}\ln(2) + \frac{2}{\sqrt{3}}\arctan\left(\frac{1}{\sqrt{3}}\right)$$

12 Fourierovy řady

Definice. Nechť $a_k \in \mathbb{R}$ pro $k \in \mathbb{N}_0$ a $b_k \in \mathbb{R}$ pro $k \in \mathbb{N}$. \check{R} adu $\frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos(kx) + b_k \sin(kx) \right)$ pro $x \in \mathbb{R}$ nazveme trigoniometrickou řadou. Pro dané n je $\frac{a_0}{2} + \sum_{k=1}^{n} \left(a_k \cos(kx) + b_k \sin(kx) \right)$ trigoniometrický polynom stupně n. $\mathcal{P}_{2\pi}$ značí množinu všech 2π -periodických funkcí majících Reimannův integrál na $[0, 2\pi]$

Cílem je danou $f \in \mathcal{P}_{2\pi}$ rozvinout do trigoniometrické řady a:

- 1. spočítat a_k, b_k
- 2. zjistit, zda-li je řada rovna původní funkci

Věta BD 1. Nechť $\{a_n\}_{n\in\mathbb{N}}$ je posloupnost reálných čísel a $\{b_n\}_{n=1}^{\infty}$ je nerostoucí posloupnost reálných čísel. Jestliže buď

- (A) $\sum_{n=1}^{\infty} a_n$ je konvergentní, nebo
- (D) $\lim_{n \to \infty} b_n = 0$ a $\sum_{n=1}^{\infty} a_n$ má omezené částečné součty

 $Pak \sum_{n=1}^{\infty} a_n b_n \ konverguje.$

Příklad. Vyšetřete konvergenci řady

$$\sum_{n=1}^{\infty} \frac{\sin(nx)}{n}$$

Řešení. Pokud $x = \pi k, k \in \mathbb{Z} \Leftrightarrow \sum 0 \leftarrow$ konverguje.

Dále předpokládejme, že $x \neq \pi k$. Označme $a_n = \sin(nx)$, $b_n = \frac{1}{n}$. b_n je monotonní nerostoucí a $\lim_{n\to\infty} b_n = 0$. Nechť $m \in \mathbb{N}$.

$$\left| \sum_{n=a}^{m} \sin(nx) \right| = \left| Im \left(\sum_{n=0}^{m} e^{inx} \right) \right| = \left| Im \left(\frac{1 - (e^{ix})^{n+1}}{1 - e^{ix}} \right) \right| \le \frac{3}{|1 - e^{ix}|}$$

Dle Dirichletova kriteria tato suma konverguje.

Věta L 2 (o ortogonalitě trigoniometrických funkcí). Nechť $m, n \in \mathbb{N}$, pak

$$\int_0^{2\pi} \sin(nx)\cos(mx)dx = 0$$

$$\int_0^{2\pi} \sin(nx)\sin(mx)dx = \pi \ (pro \ n = m), 0 \ (pro \ n \neq m)$$

$$\int_0^{2\pi} \cos(nx)\cos(mx)dx = \pi \ (pro \ n \neq m), 0 \ (pro \ n = m)$$

Poznámka proč se věta jmenuje o ortogonalitě trigoniometrických funkcí? Vraťme se zpět k lineární algebře. Skalární součin vektorů x a y jsme definovali jako $\langle x,y\rangle = \sum_{i=0}^n x_i y_i$. Zcela ekvivalentně byl zaveden skalární součit funkcí f a g jako $\langle f,g\rangle = \int f(x)g(x)dx$. O vektorech řekneme, že jsou na sebe kolmé (ortogonální), pokud je jejich skalární součin roven nule. Nejinak je tomu i u skalárního součinu funkcí.

Poznámka 2 Skalární součin funkcí se nazývá Hilbertovy prostory

Důkaz.

$$\sin \alpha \sin \beta = \frac{1}{2} (\cos(\alpha - \beta) - \cos(\alpha + \beta))$$
$$\cos \alpha \cos \beta = \frac{1}{2} (\cos(\alpha - \beta) + \cos(\alpha + \beta))$$
$$\sin \alpha \cos \beta = \frac{1}{2} (\cos(\alpha - \beta) + \sin(\alpha + \beta))$$

$$\int_{0}^{2\pi} \sin(nx)\cos(mx) = \int_{0}^{2\pi} \left[\frac{1}{2}\cos((n-m)x) - \frac{1}{2}((n+m)x) \right] =$$

Pro $n \neq m$

$$= \left[\frac{1}{2} \frac{\sin((n-m)x)}{n-m} \right]_0^{2\pi} - \left[\frac{1}{2} \frac{\sin((n+m)x)}{n+m} \right]_0^{2\pi} = 0$$

Pro n=m

$$= \int_0^{2\pi} \frac{1}{2} \cos 0 + (2.clenstejne) = \pi$$

Zbylé rovnosti analogicky.

Opakování (Vlastnosti Reimanovsky integrovantelných funkcí).

1.
$$f \in R((a,b)) \Leftrightarrow \forall \varepsilon > 0 \ d\check{e}leni(a,b) : S(f,D) - s(f,D) < \varepsilon$$

2.
$$f \in R((a,b))$$
 a $f \in R((b,c)) \Leftrightarrow f \in R((a,c))$ pro $a < b < c$

- 3. f je spojitá na $[a,b] \Rightarrow f \in R((a,b))$
- 4. f je spojitá na (a,b) a omezená na $[a,b] \Rightarrow f \in R((a,b))$
- 5. $f, g \in R((a,b)) \Rightarrow f \pm g, f * g \in R((a,b))$

Věta L 3 (Fourierovy vzorce). Nechť $f \in \mathcal{P}_{2\pi}$ a nechť $f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(kx) + b_k \sin(kx)$, nechť navíc řada napravo konverguje stejnoměrně. Pak

$$a_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(kx) dx, \quad k \in \{0, 1, 2, \ldots\}$$

$$b_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin(kx) dx, \quad k \in \{1, 2, \ldots\}$$

 $D\mathring{u}kaz$. Idea d $\mathring{u}kazu$ je, že identitu pro f(x) přenásobíme $\cos(kx)$ resp. $\sin(kx)$ a přeintegrujeme přes $[0, 2\pi]$ a díky větě "Věta L 2"(! odpovídá značení na přednášce, nikoliv v tomto skriptu) mnoho člen \mathring{u} vypadne.

Opakování. $f_n \rightrightarrows f \ na \ (a,b) \Rightarrow \int_a^b f_n \to \int_a^b f$

Pozorování. $\sum_{k=1}^{\infty} (a_k \cos(kx) \sin(lx) + b_k \sin(kx) \sin(lx))$ konverguje stejnoměrně.

$$\int_0^{2\pi} f(x)\sin(lx)dx = \int_0^{2\pi} \left[\frac{a_0}{2}\sin(lx) + \sum \left(a_k \cos(kx)\sin(lx) + b_k \sin(kx)\sin(lx) \right) \right] dx = b_k \int_0^{2\pi} \sin^2(lx)dx = b_k \pi \Rightarrow b_k = \frac{1}{\pi} \int_0^{2\pi} f(x)\sin(lx)dx$$

podobně přenásobím funkcí $\sin(lx)$ dostanu vzorec pro a_k pro $k \in \mathbb{N}$. Přenásobím funkcí $\cos(0x) = 1$:

$$\int_0^{2\pi} 1 * f(x) dx = \int_0^{2\pi} \frac{a_0}{2} + 0 + 0 + \dots + 0 \Rightarrow a_0 = \frac{1}{\pi} \int_0^{2\pi} f(x) dx = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(0x) dx$$

Definice. Nehchť $f \in \mathcal{P}_{2\pi}$. Pak definujeme čísla

$$a_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(kx) dx, \quad k = 0, 1, \dots$$

 $b_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin(kx) dx, \quad k = 1, 2, \dots$

a nazveme je Fourierovými koeficienty funkce f a

$$aF_f = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(kx) + b_k \sin(kx)$$

nazveme Fourierovou řadou funkce f.

Poznámka.

- díky 2π -periodicitě lze funkci integrovat přes libovolný interval délky 2π (velmi často $\int_{-\pi}^{\pi}$)
- Fourierovy řady lze zavést i pro funkce s periodou l, pak mají vzorce tvar

$$F_f = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos\left(\frac{2k\pi}{l}x\right) + b_k \sin\left(\frac{2k\pi}{l}x\right)$$

$$a_k = \frac{2}{l} \int_0^l f(x) \cos\left(\frac{2k\pi}{l}x\right) dx$$

$$b_k = \frac{2}{l} \int_0^l f(x) \sin\left(\frac{2k\pi}{l}x\right) dx$$

- někdy se pracuje s rozvoji vůči jinému systému než je trn trigoniometrický
- je- $li f lichá, pak platí <math>\forall k : a_k = 0$

- je- $li\ f\ sud\acute{a},\ pak\ plat\acute{i}\ \forall k:b_k=0$
- $opecn\check{e} neplati F_f = f$

Příklad. Rozviňte funkci $f(x) = x^2$ do Fourierovy řady na $(-\pi, \pi)$.

Funkce f je sudá $\Rightarrow \forall kb_k = 0$.

$$a_{0} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)dx = \frac{2}{\pi} \int_{0}^{\pi} x^{2}dx = \frac{2}{\pi} \left[\frac{x^{3}}{3} \right]_{0}^{\pi} = \frac{2}{3}\pi^{2}$$

$$a_{k} = \frac{2}{\pi} \int_{0}^{\pi} x^{2} \cos(kx)dx = \frac{2}{\pi} \left(\left[x^{2} \frac{\sin(kx)}{k} \right]_{0}^{\pi} - \int_{0}^{\pi} 2x \frac{\sin(kx)}{k} dx \right)$$

$$= \frac{2}{\pi} \left(0 - 0 - \frac{2}{k} \int_{0}^{\pi} x \sin(kx)dx \right) = \frac{4}{k^{2}\pi} \left(\left[x \frac{\cos(kx)}{k} \right]_{0}^{\pi} - \int_{0}^{\pi} 1 * \frac{\cos(kx)}{k} dx \right)$$

$$= \frac{4}{k^{2}\pi} \left(\pi \cos(k\pi) - 0 - 0 \right) = \frac{4}{k^{2}} \cos(k\pi) = \frac{4}{k^{2}} (-1)^{k}$$

$$F_f(x) = \frac{1}{3}\pi^2 + \sum_{k=1}^{\infty} \frac{4}{k^2} (-1)^k \cos(kx)$$

Definice. Nechť $n \in \mathbb{N}$. Pak Dirichletovým jádrem nazveme funkci

$$D_n(x) = \frac{1}{2} + \cos(x) + \cos(2x) + \dots + \cos(nx)$$

Důsledek. 1. D_n je spojitá funkce, sudá, 2π -periodická, $D_n(0) = n + \frac{1}{2}$

2.
$$\int_{-\pi}^{\pi} D_n(x) dx = \pi$$

3.
$$D_n(x) = \frac{\sin(n + \frac{1}{2}x)}{2\sin\frac{x}{2}}, \quad \forall x \in \mathbb{R} \setminus \{2k\pi\}_{k \in \mathbb{Z}}$$

Důkaz. 1. č

Věta L 4 (vlastnosti Dirichletova jádra). *Pro Dirichletovo jádro D_n platí*

1. D_n je spojitá, sudá, 2π -periodická funkce

2.
$$\int_{-\infty}^{\infty} D_n(x) dx = \pi$$

3.
$$D_n(x) = \frac{\sin(n+\frac{1}{2})x}{2\sin(\frac{x}{2})}, \forall x \in \mathbb{R} \setminus \bigcup_{k \in \mathbb{Z}} \{2k\pi\}$$

Věta L 5 (částečné součty Fourierovy řady). Nechť $f \in \mathcal{P}_{2\pi}$ a F_f je Fourierova řada pro f. Potom pro částečné součty $s_n(x) = \frac{a_0}{2} + \sum_{k=1}^n (a_k \cos(kx) + b_k \sin(kx))$ platí

$$s_n(x) = \frac{1}{\pi} \int_{-m}^{\pi} f(x+z) D_n(y) dy = \frac{1}{\pi} \int_{0}^{\pi} \left(f(x+y) + f(x-y) \right) D_n(y) dy$$

Věta T 6 (Riemann-Lebesqueovo lemma). Nechť $[a,b] \subset \mathbb{R}$ a $f \in R([a,b])$. Potom

$$\lim_{t \to \infty} \int_a^b f(x) \cos(tx) dx = 0 \operatorname{a} \lim_{t \to \infty} \int_a^b f(x) \sin(tx) dx = 0$$

Speciálně pro Fourierovy koeficienty funkce $f \in \mathcal{P}_{2\pi}$ platí $a_k \to 0$ a $b_k \to 0$.

Věta T 7 (Diniho kriterium). Nechť $f \int \mathcal{P}_{2\pi} \ a \ x \in \mathbb{R}$. Nechť existují vlastní limity $f(x+) = \lim_{y \to x+} f(y)$ a $f(x-) = \lim_{y \to x-} f(y)$ a nechť existují vlastní limity

$$\lim_{y \to x+} \frac{f(y) - f(x+)}{y - x} \quad \text{a} \quad \lim_{y \to x-} \frac{f(y) - f(x-)}{y - x}$$

Potom Fourierova řada funkce f konverguje v bodě x k hodnotě $\frac{f(x+)+f(x-)}{2}$.

Důsledek. Nechť $x \in \mathbb{R}$ a nechť pro $f \in \mathcal{P}_{2\pi}$ existuje f'(x). Potom $f(x) = F_f(x)$.

Věta T 8 (Jordan-Dirichletovo kriterium - bez důkazu). Nechť $f \in \mathcal{P}_{2\pi}$ je po částech monotónní. Tedy nechť existuje konečně mnoho bodů $0 = a_1 < a_2 < \ldots < a_m = 2\pi$ tak, že f je monotónní na (a_i, a_{i+1}) pro $i \in \{1, \ldots, m-1\}$. Potom Fourierova řada funkce f konverguje v bodě x k hodnotě $\frac{f(x+)+f(x-)}{2}$ pro všechna $x \in \mathbb{R}$.

13 Základy komplexní analýzy

Připomenutí vlastností \mathbb{C} a operací + a × na \mathbb{C} . Limita posloupnosti $z_n = a_n + ib_n \in \mathbb{C}$ je definována jako $\lim_{n\to\infty} b_n$, pokud obě limity reálných čísel existují.

13.1 Holomorfní funkce a křivkový integrál

Definice. Nechť f je funkce definovaná na okolí bodu $z_0 \in \mathbb{C}$ a zobrazující do \mathbb{C} . Komplexní derivací f v z_0 nazýváme komplexní číslo

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

pokud tato limita existuje.

Definice. Nechť $G \subset \mathbb{C}$ je otevřená. Funkce $f: G \to C$ se nazývá holomorfní, má-li ve všech bodech G komplexní derivaci.

Poznámka. Jsou-li f a g holomorfní na G, pak jsou f+g i fg holomorfní na G a f/g je holomorfní na $G \cap \{g \neq 0\}$.

Definice. Zobrazení $\varphi:[a,b]\to\mathbb{C}$ je křivka a $f:\langle\varphi\rangle\to\mathbb{R}$ je spojité zobrazení. Definujeme křivkový integrál

$$\int_{\langle \varphi \rangle} f(z) dz = \int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) dt$$

existuje-li integrál na pravé straně. Tento integrál můžeme značit i $\int_{\omega} f(z)dz$.

Věta T 1 (Cauchyho věta pro trojúhélník). Nechť f je holomorfní na otevřené množině $G \subset \mathbb{C}$ a $\Delta \subset G$ je trojúhelník. Pak $\int_{\delta\Delta} f(z)dz = 0$.

Věta BD 2 (Cauchy). Nechť f je holomorfní na otevřené množině $G \subset \mathbb{C}$. Nechť $\langle \varphi \rangle \subset G$ je uzavřená křivka taková, že vnitřek $\langle \varphi \rangle \subset G$ (tedy případné "díry"uvnitř G nejsou uvnitř $\langle \varphi \rangle$). Pak $\int_{\varphi} f(z)dz = 0$.

Věta L 3 (Cauchyův vzorec). Nechť f je holomorfní na kruhu $B(z_0,R)$ a 0 < r < R. Pro křivku $\varphi(t) = z_0 + re^{it}, t \in [0,2\pi], platí$

$$\frac{1}{2\pi i} \int_{\omega} \frac{f(z)}{z - s} = \begin{cases} f(z) & pro |s - z_0| < r \\ 0 & pro |s - z_0| > r \end{cases}$$

Věta T 4 (Liouville). Nechť f je holomorfní a omezená na \mathbb{C} . Pak f je konstantní.

Věta L 5 (Základní věta algebry). Každý nekonstantní polynom (s komplexními koeficienty) má v \mathbb{C} alespoň jeden kořen.

13.2 Rozvoj do Taylorovy a Laurentovy řady

Definice. Nehcť $z_0 \in \mathbb{R}$ a $a_n \in \mathbb{C}$ pro $n \in \mathbb{N}_0$. Řadu funkcí $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ pro $z \in \mathbb{C}$ nazýváme mocninnou řadou s koeficienty a_n o středu z_0 .

Věta T 6 (o rozvoji do Taylorovy řady). Nechť f je holomorfní na kruhu $B(z_0, R)$. Pak existuje právě jedna mocninná řada s poloměrem konvergence alespoň R, že na $B(z_0, R)$ platí

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

Navíc platí $a_n = \frac{f^{(n)}(z_0)}{n!}$ pro všechna $n \in \mathbb{N}_0$.

Jako u reálných mocninných řad lze na kruhu konvergence prohazovat \sum a derivaci a důkaz je podobný.

Důsledek. Je-li f holomorfní na G, pak na G existují derivace všech řádů $f^{(k)}$ pro $k \in \mathbb{N}$.

Definice. Množina $G \subset \mathbb{C}$ se nazývá oblast, pokud je otevřená a souvislá. Tedy pokud platí

$$\forall A, B \in G \text{ otevrene } v G, G = A \cup B, A \cap B = \emptyset \Rightarrow A = \emptyset \text{ nebo } B = \emptyset$$

Věta L 7 (o jednoznačnosti holomorfní funkce). Nechť $G \subset \mathbb{C}$ je oblast a f, g jsou holomorfní na G. Předpokládejme, že množina

$$M = \{ z \in G : f(z) = g(z) \}$$

má hromadný bod v G, neboli existují $z_n \in M$ a $z_0 \in G$ takové, že $z_n \overset{n \to \infty}{\to} z_0$. Pak f = g na G.

Definice. $\check{R}ekneme$, $\check{z}e$ funkce f má v bodě z_0 pól násobnosti nejvýše $k \in \mathbb{N}$, je-li funkce

$$F(z) = \begin{cases} (z - z_0)^{k+1} f(z) & pro \ z \neq z_0 \\ 0 & pro \ z = z_0 \end{cases}$$

holomorfní na nějakém okolí bodu z_0 . Řekneme, že má pól násobnosti k, je-li $k \in \mathbb{N}$ nejmenší s touto vlastností.

Například funkce $f(z)=1/z^k$ má v bodě 0 pól násobnosti k.

Definice. Nechť $M \subset G \subset \mathbb{C}$ je konečná množina. Řekneme, že funkce $f: G \backslash M \to \mathbb{C}$ je meromorfní v G, pokud je f holomorfní na $G \backslash M$ a v bodech M má f póly (konečné násobnosti).

Věta T 8 (o rozovji do Laurentovy řady). Nehcť f je holomorfní na mezikruží $B(z_0, R) \setminus \overline{B(z_0, r)}$, 0 < r < R. Pak existují jednoznačně určená čísla $a_k \in \mathbb{C}$, $k \in \mathbb{Z}$, že platí

$$f(z) = \sum_{k=-\infty}^{\infty} a_k (z - z_0)^k \text{ pro všechna } z \in B(z_0, R) \setminus \overline{B(z_0, r)}$$

13.3 Reziduová věta a její aplikace

Definice. Nechť $\sum_{k=-\infty}^{\infty} a_k(z-z_0)^k$ je Laurentova řada funkce f. Rezuduum funkce f v bodě z_0 nazveme koeficient $a_{(-1)}$ a značíme ho $res_{z_0}f$.

Definice. Index bodu z_0 vzhledem v uzavřené křivce φ je definován jako

$$ind_{\varphi}z_0 = \frac{1}{2\pi i} \int_{\varphi} \frac{1}{z - z_0} dz$$

Index bodu udává, kolikrát oběhne křivka φ okolo bodu z_0 , pokud uvažujeme násobnost a obíhání v opačném směru bereme s opačným znaménkem.

Věta T 9 (Reziduová věta). Nechť $G \subset \mathbb{C}$ je oblast, f je meromorfní funkce na G, φ je křivka a póly f neleží na $\langle \varphi \rangle (\subset G)$. Pak platí

$$\int_{\varphi} f(z)dz = 2\pi i \sum_{\{z:z \text{ je p\'ol } f\}} res_z fint_z f$$

Důkaz. Označme $P=\{z\in G: f(z)=+\infty \text{ resp. } f \text{ má pól v } z\}.$ Pro $z_0\in G$ označme

$$H_{z_0} = \sum_{k=-kz}^{-1} a_k (z - z_0)^k$$

část rozvoje f do Laurentovy řady. Pak

$$F(z) = f(z) - \sum_{z_0 \in P} H_{z_0}(z)$$

je F holomorfní na G. Podle Cauchyovy věty $\int_{\varphi} F(z)dz = 0$. Tedy

$$\int_{\varphi} F(z)dz = \int_{\varphi} \sum_{z_0 \in P} H_{z_0}(z)dz$$

$$= \sum_{z_0 \in P} \sum_{k=-kz}^{-1} \int_{\varphi} a_k (z - z_0)^k dz$$

$$= \sum_{z_0 \in P} res_{z_0} f \int_{\varphi} \frac{1}{z - z_0} dz$$

$$= 2\pi i \sum_{z_0 \in P} res_{z_0} find_{\varphi} z_0$$

Pravidla pro výpočet rezidua

1. Je-li h holomorfní na okolí a a g má v a jednoduchý pól, pak

$$res_a(hq) = h(a)res_a(q)$$

2. Jsou-li $h,\,g$ holomorfní na okolí aa gmá vajednoduchý kořen, pak

$$res_a\left(\frac{h}{g}\right) = \frac{h(a)}{g'(a)}$$

3. Má-li f v a pól násobnosti n, pak lze reziduum spočítat za pomoci derivování řádu (n-1) jako

$$res_a(f) = \lim_{z \to a} \frac{1}{(n-1)!} [(z-a)^n f(z)]^{(n-1)}$$

Výpočet integrálů za pomoci reziduové věty:

Nechť Q je racionální funkce.

- 1. $\int_0^{2\pi} Q(\cos(t), \sin(t)) dt$
- $2. \int_{-\infty}^{\infty} Q(x) dx$
- 3. $\int_{-\infty}^{\infty} Q(x) \sin(x) dx$
- 4. $\int_{-\infty}^{\infty} Q(x) \cos(x) dx$
- 5. $\int_0^\infty Q(x)x^{p-1}dx$

14 Metrické prostory II

Definice. Metrickým prostorem budeme rozumět dvojici (P, ϱ) , kde P je množina bodů a $\varrho : P \times P \to \mathbb{R}$ splňuje

- 1. $\forall x, y \in P : \rho(x, y) = 0 \Leftrightarrow x = y$
- 2. $\forall x, y \in P : \rho(x, y) = \rho(y, x)$ (symetrie)
- 3. $\forall x, y, z \in P : \varrho(x, z) \leq \varrho(x, y) + \varrho(x, z)$ (trojúhelníková nerovnost)

Funkce o nazýváme metrika.

Definice. Nechť (P, ϱ) je metrický prostor a $\{x_n\}_{n=1}^{\infty}$ je posloupnost prvků P a $x \in P$. Řekneme, že $\{x_n\}_{n=1}^{\infty}$ konverguje k x (v (P, ϱ)), pokud $\lim_{n\to\infty} \varrho(x_n, x) = 0$. Značíme $\lim_{n\to\infty} x_n = x$, nebo $x_n \stackrel{\varrho}{\to} x$.

Definice. Nechť (P, ϱ) je metrický prostor v $K \subset P$. Řekneme, že K je kompaktní, jestliže z každé posloupnosti prvků K lze vybrat konvergentní podposloupnost s limitou v K.

Věta BD 1 (charakterizace kompaktních množin \mathbb{R}^n). Množina $K \subset \mathbb{R}^n$ je kompaktní, přávě když je omezená a uzavřená.

Věta L 2 (nabývání extrémů na kompaktu). Nechť (P, ϱ) je metrický prostor a $K \subset P$ je kompaktní. Nechť $f: K \to \mathbb{R}$ je spojitá. Pak f nabývá na K svého maxima i minima. Speciálně je tedy f na K omezená.

14.2 Úplné metrické prostory

Definice. Nechť (P, ϱ) je metrický prostor a nechť $x_n \in P, n \in \mathbb{N}$, je posloupnost bodů z P. Posloupnost $\{x_n\}_{n\in\mathbb{N}}$ nazveme cauchyovskou, pokud

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall m, n \ge n_0 : \varrho(x_n, x_m) < \varepsilon$$

Posloupnost $\{x_n\}_{nin\mathbb{N}}$ nezveme konvergentní, pokud existuje $x\in P$ tak, že

$$\lim_{n \to \infty} \varrho(x_n, x) = 0$$

 $\check{R}ekneme,\ \check{z}e\ (P,\varrho)\ je\ \text{úplný},\ pokud\ je\ ka\check{z}d\acute{a}\ cauchzovsk\acute{a}\ poslouopnost\ konvergentn\'i.$

Věta L 3 (úplnost \mathbb{R}^n). Metrický prostor $(\mathbb{R}, |.|)$ je úplný.

Příklad. 1. Metrický prostor (Q, |.|) není úplný.

2. Metrický prostor všech spojitých funkcí C([0,1]) s metrikou

$$\varrho_1(f,g) = (R) \int_0^1 |f(x) - g(x)| dx$$

není úplný.

3. Metrický prostor všech Lebesqueovsky integrovatelných funkcí L([0,1]) s metrikou

$$\varrho(f,g) = (L) \int_0^1 |f(x) - g(x)| dx$$

je úplný

Věta T 4 (úplnost spojitých funkcí). Metrický prostor spojitých funkcí $(C([0,1]), \varrho)$ se supremovou metrikou

$$\varrho(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)|$$

je úplný

Věta T 5 (Banachova věta o kontrakci). Nechť (P, ϱ) je úplný metrický prostor a K < 1. Nechť $T: P \to P$ je zobrazení takové, že

$$\varrho(Tx, Ty) \le K\varrho(x, y) \quad \forall x, y \in P$$

Pak existuje právě jeden bod $x_0 \in P$ tak, že $T(x_0) = x_0$

Věta T 6 (o zúplnění metrického prostoru). Nechť (Q, ϱ) je metrický prostor. Pak existuje úplný metrický prostor (P, σ) tak, že $Q \subset P$ a

$$\sigma(x,y) = \varrho(x,y) \quad \forall x,y \in Q$$

Věta L 7 (úplnost a uzavřená podmnožina). Nechť (P, ϱ) je úplný metrický prostor a $F \subset P$ je uzavřená podmnožina. Pak je metrický prostor (F, ϱ) úplný.