MATH300 Homework 10 (due 4/19)

1. (10 pts) Let A be a set. Prove that $f: \mathcal{P}(A) \to \mathcal{P}(A)$ defined by $f(X) = \overline{X}$ is bijective.

- 2. (27 pts) Prove that each of the following functions is not bijective.
 - (a) $f: (-\infty, 1) \to \mathbb{R}, f(x) = x^3$.

(b) $D: \mathbb{R}[x] \to \mathbb{R}[x]$, D(f) = f' (where $\mathbb{R}[x] = \{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \mid n \geq 0, a_i \in \mathbb{R}\}$, the set of all polynomials over x with real coefficients. Simply put, D sends a polynomial to its derivative, e.g., $D(3x^2 + \pi x) = 6x + \pi$.)

(c) $s: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, s(m, n) = m + n. (Simply put, s sends an ordered pair of natural numbers to their sum.)

3. (14 pts) Let $f: X \to Y$ and $g: Y \to Z$. Prove that if $g \circ f$ is one-to-one, then f is one-to-one, but g need not be. (For "g need not be", you may use a diagram.)

- 4. (9 pts) Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2 + 1$. Find each of the following (you do not need to prove your answers.)
 - (a) $f(\{-3,2,7\})$
 - (b) f([-1,3])
 - (c) $f((-\infty, -2))$

- 5. (18 pts) Let $f: X \to Y$ and $g: Y \to Z$.
 - (a) Prove that if f and g are invertible, then $g \circ f$ is invertible. (Hint: use Theorem 4 of Section 5.4 notes.)

(b) ("Socks and Shoes Theorem") It turns out that $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$. Prove this by showing $(f^{-1} \circ g^{-1}) \circ (g \circ f) = \mathrm{id}_X \quad \text{ and } \quad (g \circ f) \circ (f^{-1} \circ g^{-1}) = \mathrm{id}_Z.$

6.	(6 pts)	Let f	$: \mathbb{R} \to \mathbb{I}$	$\mathbb R$ be defined	by $f(x) =$	= 2024 - 2x.	Compute	f([-3,5]).	Justify your answer
٠.	(OPOD)	\perp	• 114 / 1	a oc acimica	$\sim_J J(\omega)$	-0-1 -w.	compace,	$J \cap \{1, \dots, \infty\}$	o about j jour and it

7. (6 pts) Let
$$f: \mathbb{R} \to \mathbb{R}$$
 be defined by $f(x) = x^4$. Compute $f((0,2))$. Justify your answer.

8. (10 pts) Disprove: Let
$$f: X \to Y$$
 and $A_1, A_2 \subseteq X$. If $f(A_1) \subseteq f(A_2)$, then $A_1 \subseteq A_2$.