

UNIVERSITY OF GHANA

(All rights reserved)

BSc/BA, FIRST SEMESTER EXAMINATIONS: 2021/2022

DEPARTMENT OF MATHEMATICS

MATH 121: ALGEBRA AND TRIGONOMETRY (3 credits)

INSTRUCTION:

Answer all questions in Sections A and B. Submit both the question paper and the answer booklet.

TIME ALLOWED: 2 Hours

Section A: Multiple Choice Questions (40 marks)

- This section is composed of 20 multiple choice questions requiring 20 answers. Each correct answer is worth 2 marks.
- For each question, indicate your answer by circling True or False, or the letter that matches your answer on this question paper.

EXAMINERS: S. Sarfo, B. V. Normenyo, R. Twum, C. P. N. Ogbogbo, Page 1 A. Asare-Tuah, J. S. Bansah, A. Abubakar, D. Adu-Gyamfi

Index	Number:	•
-------	---------	---

- 1. For any bijective function f, $f \circ f^{-1}(x)$ is equal to $\underline{\hspace{1cm}}$
 - (a) x^2
 - (b) 1
 - (c) x
 - (d) 2x
- 2. When to prove that $P \implies Q$ is true, we proceed with the assumption that P is true and the conclusion Q false, that type of proof is known as ____.
 - (a) Direct proof
 - (b) Vacuous proof
 - (c) Proof by contraposition
 - (d) Proof by contradiction
- 3. If A is a subset of B and B is a subset of C, then the cardinality of $A \cup B \cup C$ is ____.
 - (a) Cardinality of A
 - (b) Cardinality of B
 - (c) Cardinality of C
 - (d) Cardinality of A + B + C
- 4. Let $A = \{1, 2, 3, \{1, 4\}\}$. All of the following are true except \bot ,
 - (a) $2 \in A$
 - (b) $4 \in A$
 - (c) $\{1,4\} \in A$
 - (d) $\{1,2,3\} \subseteq A$
- 5. Let p be the proposition, "high speed driving is dangerous" and q the proposition, "Kofi was a wise man". Which of the following is the appropriate logical representation of the statement, "High speed driving is not dangerous or Kofi was a wise man."?
 - (a) $p \vee q$
 - (b) $p \wedge q$
 - (c) $\neg (p \lor q)$
 - (d) $\neg p \lor q$
- 6. What is the inverse of the conditional statement "A positive integer is a composite only if it has divisors other than 1 and itself."?
 - (a) If a positive integer has no divisors other than 1 and itself, then it is not composite.
 - (b) If a positive integer is not composite, then it has no divisors other than 1 and itself.
 - (c) A positive integer is a composite if it has divisors other than 1 and itself.
 - (d) None of the above.

EXAMINERS: S. Sarfo, B. V. Normenyo, R. Twum, C. P. N. Ogbogbo, Page 1 A. Asare-Tuah, J. S. Bansah, A. Abubakar, D. Adu-Gyamfi

- 7. $A = \{1, 3, 5\}, B = \{2, 4, 6\}, \text{ and } C = \{0, 2, 4, 6, 8\}.$ Which of the following may be considered as a universal set for all of the three sets A, B and C?
 - (a) $\{0, 1, 2, 3, 4, 5, 6\}$
 - (b) $\{1, 2, 3, 4, 5, 6, 7, 8\}$
 - (c) $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
 - (d) None of the above.
- 8. Which of the following quantifier notation best represents the statement?

There is an integer n for which $n^2 = 2$

- (a) $\exists n \in n^2, n=2$
- (b) $\forall n \in \mathbb{Z}, n^2 = 2$
- (c) $\exists n \in \mathbb{Z}, n^2 = 2$
- (d) $\exists n \in n^2 = 2$
- 9. The set difference of the set A with null set is ____.
 - (a) Set A
 - (b) Null set
 - (c) Universal set
 - (d) Set B
- 10. The converse of the statement $P \implies Q$ is ____.
 - (a) $Q \implies P$
 - (b) $\neg Q \implies P$
 - (c) $\neg P \implies \neg Q$
 - (d) $\neg Q \implies \neg P$
- 11. All the following are odd functions except___.
 - (a) $f(x) = x^5 + x^3$
 - (b) $t(x) = 3x^4 5$
 - $(c) k(x) = x^3 x$
 - (d) $r(x) = x + \frac{1}{x}$
- 12. Which of the following statements is the negation of the statement, "4 is odd or -9 is positive."
 - (a) 4 is odd or -9 is not negative.
 - (b) 4 is even or -9 is not negative.
 - (c) 4 is odd and -9 is not negative.
 - (d) 4 is even and -9 is negative.

		Index Number:
13. Let <i>A</i>	$= \{1, 2, 3, 4\}$, and U be the set of all natural numbers.	Then $U \setminus A'$ is given by set.
(a)	$\{1, 2, 3, 4, 5, 6, \dots\}$	
(b)	$\{5,6,7,8,9,\dots\}$	
(c)	$\{1, 2, 3, 4\}$	
(d)	All of the above.	
14. The f	unction $f(x) = x + 1$ from the set of integers to itself is	\circ onto.
(a)	True	
(b)	False	•
(c)	Neither of the above.	
	and g be functions from the set of integers to itsel $=3x+4$ respectively. Then the composition $f(g(x))$ is	
(a)	6x + 6	
(b)	6x + 7	
(c)	6x + 8	
(d)	6x + 9	
16. What	is the domain of the function $f(x) = x^{\frac{1}{2}}$?	
(a)	$(2,\infty)$	•
(b)	$(-\infty,1)$	
(c)	$[0,\infty)$	
(d)	None of the above	•
17. If A =	= $\{x: x=4n+1, 2\leq n\leq 5 \text{ where } n\in\mathbb{Z}\}$, then the nu	
(a)	2	
(b)	4	
(c)	8	
(d)	16	
	has 4 elements and B has 8 elements then the minimum ents in $A \cup B$ are $__$.	and maximum possible number of
(a)	4,8	
(b)	8, 12	
(c)	4, 12	
(d)	None of the above.	
19. Whic	h of the following two sets are disjoint?	•
(a)	$\{1,3,5\}$ and $\{1,3,6\}$	
*	(1 0 2)	
(b)	$\{1,2,3\}$ and $\{1,2,3\}$	
(b) (c)	$\{1, 2, 3\}$ and $\{1, 2, 3\}$ $\{1, 3, 5\}$ and $\{2, 3, 4\}$	

A. Asare-Tuah, J. S. Bansah, A. Abubakar, D. Adu-Gyamfi

Index	Number:
111001	1 1 G1110 C1

- 20. Let C and D be two sets. Which of the following statements is/are true?
 - i) $C \cup D = D \cup C$
 - ii) $C \cap D = D \cap C$
 - (a) Statement i.
 - (b) Statement ii.
 - (c) Both statements
 - (d) None of the statements.

EXAMINERS: S. Sarfo, B. V. Normenyo, R. Twum, C. P. N. Ogbogbo, Page 4 A. Asare-Tuah, J. S. Bansah, A. Abubakar, D. Adu-Gyamfi

Section B: Written Answer Questions (60 marks)

- This section is composed of 3 questions, Answer ALL. Each question is worth 20 marks.
- You are to write complete solutions to all questions in the answer booklet provided by the invigilators.
- You must fasten this test paper together with your answer booklet, and then turn in the fastened papers to the invigilators at the end of the examination.
- 1. a) Prove by mathematical induction that for all $n \ge 1$.

$$\sum_{r=1}^{n} r(r+1) = \frac{1}{3}n(n+1)(n+2).$$

[10 MARKS]

- b) Find a counterexample to disprove each of the following statements.
 - i. For every positive integer n, $n^2 + n + 1$ is always a prime.

[5 MARKS]

ii. If n is an integer and n^2 is divisible by 4, then n is divisible by 4.

[5 MARKS]

2. (a) i. Prove $f:(-2,\infty)\to\mathbb{R}^+$ given by $f(x)=\frac{2}{\sqrt{x+2}}$ is injective.

[5 MARKS]

ii. Find the inverse function f^{-1} of f above.

[7 MARKS]

iii. State the range of f.

- [4 MARKS]
- (b) Evaluate each expression using the functions f and g respectively defined by f(x) = 2 x, and

$$g(x) = \begin{cases} 2x+1, & \text{if } x < -2\\ x^2 - 1, & \text{if } -2 \le x \le 3\\ 4 - x, & \text{if } x > 3 \end{cases}$$

i. f(g(-2))

[2 MARKS]

ii. f(g(-4))

[2 MARKS]

- 3. (a) Suppose $A = \{1, 2, 3\}$ and $B = \{a, b\}$, list all elements of $A \times B$.
- [3 MARKS]
- (b) Let $I = \{1, 2, 3\}$, and for each $i \in I$ let $A_i = \{i, i+1, i+2, i+3\}$. Find
 - i. A_i for each $i \in I$.

[3 MARKS]

ii. $\bigcap_{i \in I} A_i$.

[2 MARKS]

iii. $\bigcup_{i \in I} A_i$.

[2 MARKS]

- c) Let A, B and D be sets with $B \subset D$.
 - i. Prove that $A \times B \subseteq A \times D$.

[5 MARKS]

ii. Is $A \times B = A \times D$? Justify your answer,

[5 MARKS]

EXAMINERS: S. Sarfo, B. V. Normenyo, R. Twum, C. P. N. Ogbogbo, Page 5 A. Asare-Tuah, J. S. Bansah, A. Abubakar, D. Adu-Gyamfi