4.1 Máquinas de Turing

4. Lenguajes recursivos y recursivamente enumerables

Adaptación de transparencias de Fernando Rosa Velardo (a su vez, traducción y adaptación de las de Ananth Kalyanaraman (http://www.eecs.wsu.edu/~ananth/))

Máquinas de Turing

- Modelo equivalente a un ordenador
 - En cuanto a potencia de cómputo
 - O capacidad descriptiva
 - iNo hablamos de eficiencia!
- Lo que no pueda computarse/resolverse con una MT no es computable/resoluble
 - Lo que no pueda decidir una MT no es decidible

Idea de Turing al definir las MTs

- Formalizar el comportamiento humano al usar lápiz y papel para resolver un problema
 - Nº finito de estados mentales (según Turing)
 - Papel cuadriculado: todo el necesario
 - Cinta infinita dividida en celdas que contienen símbolos
 - En un solo paso de cómputo podemos:
 - 1) Cambiar de estado (mental)
 - 2) Alterar el contenido de la cuadrícula que miramos
 - 3) Y mirar a otra casilla (la de la dcha. o la de la izda.)

Componentes de una MT (idea)

• M = (Q, Σ , Γ , δ , q₀, B, F) con $\Sigma \subset \Gamma$ y B $\in \Gamma$

B: blanco (símbolo especial)

Símbolos de entrada (y salida)

Componentes de una MT

- M = (Q, \sum , Γ , δ , q_0 , B, F)
 - Q es el conjunto finito de estados
 - ∑ es el alfabeto de entrada
 - Γ es el alfabeto de cinta ($\Sigma \subset \Gamma$)
 - $q_0 \in Q$ es el estado inicial
 - B $\in \Gamma \setminus \Sigma$ es el símbolo del blanco
 - F ⊆ Q es el conjunto de estados de aceptación
 - δ : Q x Γ ----> Q x Γ x {L, R} es la fc. de transición

Función de transición de una MT

- Un paso de cómputo hace lo siguiente:
 - Si q es el estado actual

- X es el símbolo contenido en la casilla de trabajo
- Y la función de transición dice $\delta(q, X) = (p, Y, D)$
 - Cambiamos el estado actual de q a p
 - Sustituimos el contenido X de la casilla de trabajo por Y
 - Movemos la cabeza lectora/escritora en la dirección D
 - Si D = "L" o D = "←" una posición a la izquierda (left)
 - Si D = "R" o D = "→" una posición a la derecha (right)

Configuraciones en una MT

- Una configuración (o descripción instantánea) describe a la MT en un momento dado
 - $a_1a_2...a_{i-1}qa_ia_{i+1}...a_n$ o $(a_1a_2...a_{i-1}, q, a_ia_{i+1}...a_n)$
 - q es el estado actual
 - a; es el símbolo contenido en la casilla de trabajo
 - a₁a₂...a_{i-1}a_ia_{i+1}...a_n es el contenido de la cinta
 - \bullet $a_1a_2...a_{i-1}qa_ia_{i+1}...a_n$ |--- (o \rightarrow) (paso de cómputo)
 - $a_1 a_2 ... a_{i-1} Y p a_{i+1} ... a_n$
 - $a_1 a_2 \dots p a_{i-1} Y a_{i+1} \dots a_n$ si $\delta(q, a_i) = (p, Y, L)$
- si $\delta(q, a_i) = (p, Y, R)$

Lenguaje reconocido por una MT

- ¿Pertenece x al lenguaje descrito por una MT?
 - Se coloca la cadena de entrada x en la cinta, precedida y seguida por infinitos blancos, con la cabeza apuntando al primer símbolo de x
 - Si la MT para:

para porque llega a una configuración en la que la función de transición no está definida

- acepta x si lo hace en un estado final (o de aceptación)
- rechaza x si lo hace en un estado no final
- Las MTs pueden no parar...
 - En ese caso diremos que cicla (con la entrada x)

Ejemplo 1: $L = \{0^n1^n \mid n \ge 1\}$

Idea para x = 000111

Ejemplo 1: $L = \{0^n1^n \mid n \ge 1\}$

- Marcamos con X el siguiente 0 +D
 - 2. **D** hasta el 1º 1 y lo marcamos con Y +I
 - 3. I hasta encontrar X +D
 - 4. Si leemos un 0 pasamos a 1. Si no, **D** para comprobar que no hay más 1's. Si es así, nos movemos hasta el siguiente B, paramos y aceptamos

Probar con ejemplos: ε, 01, 001, 011, 10, etc.

Ejemplo 1: $L = \{0^n1^n \mid n \ge 1\}$

Representación tabular de la fc. de transición

	Siguiente símbolo de cinta				
Estado actual	0	1	X	Y	В
> q ₀	(q ₁ , X, R)	-	-	(q ₃ , Y, R)	-
q_1	(q ₁ , 0, R)	(q ₂ , Y, L)	-	(q ₁ , Y, R)	-
q_2	(q ₂ , 0, L)	-	(q ₀ , X, R)	(q ₂ , Y, L)	-
q_3	-	-	-	(q ₃ , Y, R)	(q ₄ , B, R)
*q ₄	-	-	-	-	-

Más vueltas

- Probad siempre con cadenas sencillitas, a ver si se reconocen o se rechazan
- ¿Qué hacer si quisiésemos que también se reconociese la cadena vacía?
- ¿Cómo modificar la idea para reconocer el lenguaje no independiente del contexto

$${a^nb^nc^n \mid n \ge 1} \text{ o } {a^nb^nc^n \mid n \ge 0}$$
?

Lenguajes reconocidos por MTs

• Lenguajes recursivamente enumerables (RE)

MTs para cálculos

- Aunque nuestro propósito fundamental es el de describir lenguajes
 - Las MTs nos sirven para ello
 - Lenguaje reconocido = conjunto de cadenas aceptadas
- El propósito original de Turing era el de calcular/computar funciones sobre naturales
 - Los naturales se representaban como bloques de un solo carácter (código unario)
 - Por ejemplo, n podría representarse como 0ⁿ

Ejemplo 2: suma

- Función binaria: hay que separar argumentos
 - entrada: 0^m10ⁿ salida: 0^{m+n}
 - ¿Ideas?
 - Cambiamos el 1 central por un 0
 - Y borramos un 0

Ejemplo 2: m+n

Ejemplo 3: resta *propia*

- "m -- n" = $max\{m-n, 0\}$
 - entrada: 0^m10ⁿ salida: 0^{m-n} o ...BB...B...
 - 1. Por cada 0 de la izquierda (marcamos B –borramos-), buscamos el primer 0 de la derecha (y marcamos 1)
 - 2. Repetir hasta que:
 - No quedan Os a la izquierda del 1 (m ≤ n)
 El resultado es 0: borrar también Os sobrantes a la derecha del 1 (y el 1) y parar (devolvemos 0º = ε -ningún símbolo-)
 - No quedan 0s a la derecha del 1 (m > n)
 El resultado es m-n: borrar los 1s y escribir un 0 de más (por el borrado de más) y parar (devolvemos 0^{m-n})

Ejemplo 3: " $m -- n'' = max\{m-n, 0\}$

Ejemplo 4: Producto

- 0^m10ⁿ1 (entrada) 0^{mn} (salida)
 - » El 1 final puede escribirse antes (MT previa, p.ej.)
 - » Suponemos n,m > 0
- Idea:
 - Por cada 0 de 0^m se escriben n 0s a la derecha del último 1 (subrutina copia)
 - 2. Una vez hecho lo anterior, se borra el 0 considerado (se sobreescribe con B)
 - 3. Tras completar lo anterior para cada 0, borramos los n 0s y los 1s

Ejemplo 4: Subrutina copia

Ejemplo 4: Multiplicación

