Search Queries Anomaly Detection using python

```
In [4]:
        import pandas as pd
        from collections import Counter
        import re
        import plotly.express as px
        import plotly.io as pio
        pio.templates.default = "plotly_white"
        queries_df = pd.read_csv(r"C:\Users\JANHAVI\Desktop\Dataset\Queries.csv")
In [5]:
        print(queries_df.head())
                                        Top queries Clicks Impressions
                                                                            CTR \
                        number guessing game python
                                                      5223
                                                                  14578 35.83%
        1
                                                      2809
                                thecleverprogrammer
                                                                  3456 81.28%
                   python projects with source code 2077
                                                                 73380 2.83%
        3 classification report in machine learning 2012
                                                                 4959 40.57%
                                                                  2528 76.38%
                              the clever programmer
                                                     1931
          Position
        a
              1.61
        1
              1.02
              5.94
        3
              1.28
              1.09
        import warnings
In [6]:
        warnings.filterwarnings("ignore")
```

Exploratory Data Analysis

```
print(queries_df.info())
In [7]:
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1000 entries, 0 to 999
         Data columns (total 5 columns):
                     Non-Null Count Dtype
          # Column
            Top queries 1000 non-null object
             Clicks 1000 non-null int64
             Impressions 1000 non-null int64
          2
                          1000 non-null object
             CTR
          3
                        1000 non-null float64
             Position
         dtypes: float64(1), int64(2), object(2)
         memory usage: 39.2+ KB
         queries_df['CTR'] = queries_df['CTR'].astype(str)
In [16]:
In [17]: # Function to clean and split the queries into words
         def clean_and_split(query):
             words = re.findall(r'\b[a-zA-Z]+\b', query.lower())
             return words
         # Split each query into words and count the frequency of each word
```

```
word_counts = Counter()
for query in queries_df['Top queries']:
    word_counts.update(clean_and_split(query))

word_freq_df = pd.DataFrame(word_counts.most_common(20), columns=['Word', 'Frequence']

# Plotting the word frequencies
fig = px.bar(word_freq_df, x='Word', y='Frequency', title='Top 20 Most Common Words
fig.show()
```

```
In [18]: # Top queries by Clicks and Impressions
top_queries_clicks_vis = queries_df.nlargest(10, 'Clicks')[['Top queries', 'Clicks'
top_queries_impressions_vis = queries_df.nlargest(10, 'Impressions')[['Top queries'
# Plotting
fig_clicks = px.bar(top_queries_clicks_vis, x='Top queries', y='Clicks', title='Top
fig_impressions = px.bar(top_queries_impressions_vis, x='Top queries', y='Impressions_clicks.show()
fig_impressions.show()
```

```
import numpy as np
# Clean CTR column before using nlargest/nsmallest
queries_df['CTR'] = (queries_df['CTR'].astype(str).str.replace('%', '', regex=False

# Queries with highest and lowest CTR
top_ctr_vis = queries_df.nlargest(10, 'CTR')[['Top queries', 'CTR']]
bottom_ctr_vis = queries_df.nsmallest(10, 'CTR')[['Top queries', 'CTR']]

# Plotting
fig_top_ctr = px.bar(top_ctr_vis, x='Top queries', y='CTR', title='Top Queries by (fig_bottom_ctr = px.bar(bottom_ctr_vis, x='Top queries', y='CTR', title='Bottom Quefig_top_ctr.show()
fig_bottom_ctr.show()
```

```
In [24]: # Correlation matrix visualization
    correlation_matrix = queries_df[['Clicks', 'Impressions', 'CTR', 'Position']].corr(
    fig_corr = px.imshow(correlation_matrix, text_auto=True, title='Correlation Matrix'
    fig_corr.show()
```

Detecting Anomalies in Search Queries

```
In [25]: from sklearn.ensemble import IsolationForest

# Selecting relevant features
features = queries_df[['Clicks', 'Impressions', 'CTR', 'Position']]

# Initializing Isolation Forest
iso_forest = IsolationForest(n_estimators=100, contamination=0.01) # contamination

# Fitting the model
iso_forest.fit(features)

# Predicting anomalies
queries_df['anomaly'] = iso_forest.predict(features)

# Filtering out the anomalies
anomalies = queries_df[queries_df['anomaly'] == -1]
In [26]: print(anomalies[['Top queries', 'Clicks', 'Impressions', 'CTR', 'Position']])
```

			•	•			
		Top queries	Clicks	Impressions	CTR	Position	
	0	number guessing game python	5223	14578	0.3583	1.61	
	1	thecleverprogrammer	2809	3456	0.8128	1.02	
	2	python projects with source code	2077	73380	0.0283	5.94	
	4	the clever programmer	1931	2528	0.7638	1.09	
	15	rock paper scissors python	1111	35824	0.0310	7.19	
	21	classification report	933	39896	0.0234	7.53	
	34	machine learning roadmap	708	42715	0.0166	8.97	
	82	r2 score	367	56322	0.0065	9.33	
	167	text to handwriting	222	11283	0.0197	28.52	
	929	python turtle	52	18228	0.0029	18.75	
In []:							
In []:							