

Table of Contents

- 1. Goal
- 2. Korean Singing Voice Synthesis with Diffusion
 - 2.1 Methods
 - 2.2 Experiments and Results
- 3. Audio-Visual Speech-Separation with Diffusion (aka. History of Failure)
 - 3.1 Problem Definition
 - 3.2 Approach 1 : Generator Only
 - 3.3 Approach 2 : Generator with Predictor

1. Goal

Getting the hang of the diffusion models

• DDPM : DiffSinger

• VPSDE : Grad-TTS

• VESDE: SGMSE

2.1 Method

- We have referenced <u>Grad-TTS</u>: A <u>Diffusion Probabilistic Model for Text-to-Speech</u> extensively.
 - Score-based decoder to produce mel-spectrograms of given text.
 - It generalizes the DPM by transforming the forward diffusion over an infinite time horizon, converting all data distributions not to N(0, I) but to a normal distribution N(μ , Σ =I) in forward diffusion process.
 - During sampling, it employs reverse diffusion starting from sampling $N(\mu, \Sigma=I)$.
 - Consists of three modules: encoder, duration predictor, and decoder.

2.1 Method

- Unlike TTS, the duration of each syllable is predetermined, so a duration predictor is not needed.
- Therefore, the duration predictor is removed from the Grad-TTS model architecture.
- We added text encoder and a pitch encoder to encode the input information.

2.1 Method

- Data Representation and Encoder
 - We followed data representation skim of Tae et al (2021).
 - After passing through the text encoder and pitch encoder, the pitch and text, originally represented at the phoneme level, can be transformed to the mel spectrogram frame level.
 - Following the approach from, we allot 3 frames for the onset(초성) and coda(종성), and n 6 for the nucleus(중성) per each syllable.
 - The text and pitch embeddings are then concatenated and processed through several convolutional layers to match the dimensions of the original mel-spectrogram, ultimately forming μ .

2.2 Experiments and Results

- Dataset
 - Children's Song Dataset (Choi et al, 2020)
 - Composed of English and Korean children songs sung by a professional female singer.
 - Each song is accompanied by MIDI and text annotations and sung twice in two different keys.
 - We used 50 Korean songs, which totals approximately two hours in length excluding silence intervals.

2.2 Experiments and Results

- Results (left: ground truth, right: generated)
 - 당신은 누구십니까

• 창밖을 보라

3.1 Problem Definition

• Audio-visual speech separation (AVSS): leverages both audio and visual cues to separate speech signals from a mixture of speeches.

3.2 Approach 1 : Generator Only

 Attempted to implement AVDiffuSS (Lee et al., 2023) in a more compact form with few modifications.

3.2 Approach 1 : Generator Only

- Unlike AVDiffuSS,
 - I separated lip motion encoder and facial attributes encoder for encoding purpose.
 - Remove predictor for simplicity.

3.2 Approach 1 : Generator Only

Error stop decreasing at some point.

3.2 Approach 1 : Generator Only

3.2 Approach 1 : Generator Only

- Approaches Tried
 - Switching to a Pre-trained Encoder
 - Increasing Model Size
 - Reducing Learning Rate
 - Modifying Cross Attention Code
 - Multi-phase Training
 - Begin training with easy samples (mixed speech with different gender speakers) and then gradually generalize to more complex cases.
 - Adding Predictor as in the Original Paper -> Approach 2

3.2 Approach 2 : Generator with Predictor

- In the predictive stage, the same Unet model used in the generator is employed to directly predict the spectrogram.
 - The predicted spectrogram is then optimized with MSE loss.
- The output of the predictive stage is then fed into the generator, which employs a diffusion-based model.

3.2 Approach 2 : Generator with Predictor

3.2 Approach 2 : Generator with Predictor

Mixed Speech

Predictor Output

Separated Speech GroundTruth

Final Output

- Possible Reasons for Failure
 - Insufficient training time: The original AVDiffuSS paper trained the model for 12 days.
 - Inadequate hyperparameter tuning
 - Suboptimal model architecture