Rectangular Matrix A in Ax = b

• What if A is a rectangular matrix, e.g., $A \in \mathbb{R}^{m \times n}$, where $m \neq n$?

Person ID	Weight	Height	ls_smoking	g Life-span		F.C.O.		47	Γγ ¬	F.C.	~ ¬
1	60kg	5.5ft	Yes (=1)	66	60 65 55	5.5	1	$\begin{bmatrix} \lambda_1 \\ \lambda_1 \end{bmatrix}$	66)	
2	65kg	5.0ft	No (=0)	74		65	5.0	0	$ x_2 $ =	= 74	4
3	55kg	6.0ft	Yes (=1)	78		L55	6.0	1	$[x_3]$	L78	3 J

- Recall m = # equations and n = # variables. $A = \mathbf{x} = \mathbf{b}$
- m < n: more variables than equations
 - Usually infinitely many solutions exist (under-determined system).
- m > n: more equations than variables
 - Usually no solution exists (over-determined system).
- To study how to compute the solution in these general cases, check out Lay Ch1.2 and Lay Ch1.5.