Tutorial on filter bank methods TSIA202b

Roland Badeau

Exercise 1: Capon Estimate of the Parameters of a Single Sine Wave

Assume that the data under study consists of a sinusoidal signal observed in white noise: $\forall t \in \mathbb{Z}$,

$$X_t = \alpha e^{i(2\pi v_0 t + \varphi)} + Z_t$$

where $\alpha \in \mathbb{C}$, $v_0 \in \mathbb{R}$, φ is a random variable uniformly distributed on $[0, 2\pi]$, and $Z_t \sim BB(0, \sigma^2)$ is independent from φ .

- 1. Prove that X_t is a WSS process and give the mathematical expression of its mean μ_X and its autocovariance function $r_{XX}(k)$.
- 2. Explain the expression *line spectrum* that is used to name the spectral measure of X_t .
- 3. Show that the $N \times N$ covariance matrix R_{XX} of $X_1 \dots X_N$ is given by:

$$R_{XX} = |\alpha|^2 e(v_0) e(v_0)^H + \sigma^2 I_N$$

where $e(\xi) = [1, e^{i2\pi\xi} \dots e^{i2\pi\xi(N-1)}]^{\top}$ and I_N denotes the $N \times N$ identity matrix.

- 4. Check that $\left\{\frac{e(v_0+\frac{k}{N})}{\sqrt{N}}\right\}_{k\in\{0...N-1\}}$ forms a unitary basis of eigenvectors of R_{XX} and give the expressions of the corresponding eigenvalues.
- 5. Prove that the Capon spectrum $\hat{S}_{CAP,XX}(v) = \frac{N}{e(v)^H R_{XX}^{-1} e(v)}$ peaks at $v = v_0$, and show that the height of the peak is $N|\alpha|^2 + \sigma^2$.