

Jul 09, 2024

RNA collection, cDNA conversion and qPCR (SH-SY5Y cells)

DOI

dx.doi.org/10.17504/protocols.io.14egn3ymzl5d/v1

Stephanie Vrijsen^{1,2}, Peter Vangheluwe^{1,2}

¹Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium;

²Aligning Science Across Parkinson's (ASAP) Collaborative Research Network Chevy Chase, MD 20815, USA

ASAP Collaborative Rese...

Stephanie Vrijsen

Laboratory of Cellular Transport Systems

OPEN ACCESS

DOI: dx.doi.org/10.17504/protocols.io.14egn3ymzl5d/v1

Protocol Citation: Stephanie Vrijsen, Peter Vangheluwe 2024. RNA collection, cDNA conversion and qPCR (SH-SY5Y cells). **protocols.io** https://dx.doi.org/10.17504/protocols.io.14egn3ymzl5d/v1

License: This is an open access protocol distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working
We use this protocol and it's
working

Created: December 05, 2023

Last Modified: July 09, 2024

Protocol Integer ID: 91851

Keywords: ASAPCRN

Funders Acknowledgement: Aligning Science Across Parkinson's (ASAP) Grant ID: ASAP-000458

Abstract

This protocol describes the isolation of RNA from SH-SY5Y cells and the subsequent conversion to cDNA for qPCR.

Materials

- NucleoSpin RNA plus kit: 740984.50, Macherey-Nagel
- High-Capacity cDNA Revers Transcription Kit: 4368814, Thermo Fisher Scientific
- SYBR Green master mix: 04707516001, Roche

RNA collection

1 Cells were seeded in 10 cm dishes and used for collection when reaching 70-80% confluency. (e.g. 3 million cells for collection after 48:00:00)

2d

- 2 Remove medium.
- 3 Wash once with PBS (-/-).
- 4 Scrape and collect cells in PBS(-/-).
- 5 Spin down cells (450xg, 00:05:00).

5m

- 6 Wash with PBS(-/-).
- 7 Spin down cells (450xg, 00:05:00).

5m

- 8 Remove supernatant.
- 9 Isolate RNA following the instructions of the NucleoSpin RNA Plus kit (740984.50, Macherey-Nagel).
 - ! Use a separate, desinfected area to isolate RNA. Use filter tips and dedicated pipets for RNA
- 10 Determine the concentration and the purity of the isolated RNA using a Nanodrop spectrometer.

cDNA conversion

11 Convert RNA to cDNA using the High-Capacity cDNA Reverse Transcription Kit (4368814, Thermo Fisher Scientific).

Prepare 5 µg RNA in 20 µl total volume (dilute with RNase free water). 11.1

11.2 Prepare a 2x Mastermix:

A	В
Volume (μl)	Component
2	μl RT buffer
0,8	μl dNTPs (100 μM)
2	μl random primers (10x)
1	μl Multiscribe transcriptase
4,2	μl AD

Volumes are given for one sample, multiply according to your number of samples.

- 11.3 Add 10 μ l of the mastermix to 10 μ l of the RNA dilution.
- Perform a quick vortex and spin down using a table-top centrifuge. 11.4
- 11.5 Start program for RNA to cDNA conversion:

A	В	С	D	E
	Step 1	Step 2	Step 3	Step 4
Temp (°C)	25	37	85	4
Time	10 min	120 min	5 sec	8

qPCR

- 12 Prepare a serial dilution of the sample that you choose as standard (1/5, 1/25, 1/125, 1/625, 1/3125). Include water as a negative control. Pipet in duplo in a 96-well plate (5 µl per well).
- 13 Prepare a master mix containing per sample:
 - 10 µl SYBR Green master mix (Roche)
 - 1 μl of 5 μM forward primer
 - 1 μl of 5 μM reverse primer
 - 3 µl water
- 14 Prepare a ten-fold dilution of the cDNA samples in duplicates (5 µl cDNA per well). Include a negative control where the cDNA is exchanged by an equivalent volume of water.
- 15 Add 15 µl of the master mix to each well.
- 16 Cover plate with a film and spin samples down.
- 17 Start the qPCR reaction:

- 95 °C for () 00:10:00
- 50 cycles at 95 °C for (00:00:10
- 55 °C for 🚫 00:00:30
- 95 °C for 🚫 00:01:00

Determine a melting curve from 55 to 95 °C.

11m 40s