Estructures de Dades i Algorismes

FIB

Antoni Lozano

(amb edicions d'altres professors)

Q1 2023-2024

Versió de 26 d'octubre de 2023

- 1 Preliminars matemàtics
- 2 Cues amb prioritat
 - Introducció
 - Heaps
 - Operacions bàsiques
 - Implementació recursiva
 - Implementació iterativa
- 3 Heapsort
 - Algorisme bàsic
 - Implementació sobre vector únic
 - Construcció d'un heap en temps lineal
- 4 Altres aplicacions
 - El problema de selecció

- 1 Preliminars matemàtics
- 2 Cues amb prioritat
 - Introducció
 - Heaps
 - Operacions bàsiques
 - Implementació recursiva
 - Implementació iterativa
- 3 Heapson
 - Algorisme bàsic
 - Implementació sobre vector únic
 - Construcció d'un heap en temps lineal
- 4 Altres aplicacions
 - El problema de selecció

Definicions

- El nivell d'un node en un arbre és la distància de l'arrel al node.
- Un arbre binari és perfecte si totes tots els nodes interns tenen dos fills i les fulles són al mateix nivell.

Exemples

Qüestić

És possible que tots els nodes interns d'un arbre binari tinguin dos fills però no totes les seves fulles siguin al mateix nivell? I que totes les fulles siguin al mateix nivell però no tots els nodes interns tinguin dos fills?

Definicions

- El nivell d'un node en un arbre és la distància de l'arrel al node.
- Un arbre binari és perfecte si totes tots els nodes interns tenen dos fills i les fulles són al mateix nivell.

Exemples

Qüestió

És possible que tots els nodes interns d'un arbre binari tinguin dos fills però no totes les seves fulles siguin al mateix nivell? I que totes les fulles siguin al mateix nivell però no tots els nodes interns tinguin dos fills?

Definicions

- El nivell d'un node en un arbre és la distància de l'arrel al node.
- Un arbre binari és perfecte si totes tots els nodes interns tenen dos fills i les fulles són al mateix nivell.

Exemples

Qüestió

És possible que tots els nodes interns d'un arbre binari tinguin dos fills però no totes les seves fulles siguin al mateix nivell? I que totes les fulles siguin al mateix nivell però no tots els nodes interns tinguin dos fills?

Definicions

- L'alçària d'un node és la distància màxima del node a una fulla.
- L'alçària d'un arbre és l'alçària de l'arrel (o el nivell màxim dels nodes).

Exercici

Indiqueu les alçàries i els nivells de tots els nodes dels arbres següents i digueu quines són les alçàries dels arbres.

Definicions

- L'alçària d'un node és la distància màxima del node a una fulla.
- L'alçària d'un arbre és l'alçària de l'arrel (o el nivell màxim dels nodes).

Exercici

Indiqueu les alçàries i els nivells de tots els nodes dels arbres següents i digueu quines són les alçàries dels arbres.

Proposició

Un arbre binari perfecte d'alçària h té $2^{h+1} - 1$ nodes.

Demostració

Fem inducció en l'alçària. Sigui *T* un arbre binari perfecte d'alçària *h*.

- Base d'inducció: h = 0.
 L'arbre té un sol node, i 1 = 2⁰⁺¹ 1.
- Pas d'induccio: n > 0.
 Els subarbres esquerre i dret tenen alçària h 1 i, per hipòtesi d'inducció, cadascun té 2^h 1 nodes. El nombre de nodes de T és la suma d'aquests nodes més un (l'arrel):

nodes de
$$T = 2(2^h - 1) + 1 = 2^{h+1} - 2 + 1 = 2^{h+1} - 1$$
.

Proposició

Un arbre binari perfecte d'alçària h té $2^{h+1} - 1$ nodes.

Demostració

Fem inducció en l'alçària. Sigui T un arbre binari perfecte d'alçària h.

- Base d'inducció: h = 0. L'arbre té un sol node, i $1 = 2^{0+1} - 1$.
- Pas d'inducció: h > 0.
 Els subarbres esquerre i dret tenen alçària h 1 i, per hipòtesi d'inducció, cadascun té 2^h 1 nodes. El nombre de nodes de T és la suma d'aquests nodes més un (l'arrel):

nodes de
$$T = 2(2^h - 1) + 1 = 2^{h+1} - 2 + 1 = 2^{h+1} - 1$$
.

Definició

Un arbre binari d'alçària h és complet si

- \bigcirc hi ha tots els nodes possibles amb nivells $0 \dots h-1$
- 2 tots els nodes de nivell h són el màxim a l'esquerra

Exemple: arbres binaris complets d'alçària 2

Proposició

Un arbre binari complet d'alçària h té entre 2^h i $2^{h+1} - 1$ nodes.

Demostració

Sigui T un arbre binari complet d'alçària h

- El mínim nombre de nodes de T es produeix quan té un sol node a nivell h. Com que fins a nivell h 1, T té $2^h 1$ nodes, sumant l'únic node a nivell h, s'obtenen 2^h nodes.
- El màxim nombre de nodes de T correspon a un arbre perfecte d'alçària h, que té 2^{h+1} – 1 nodes.

Proposició

Un arbre binari complet d'alçària h té entre 2^h i $2^{h+1} - 1$ nodes.

Demostració

Sigui *T* un arbre binari complet d'alçària *h*:

- El mínim nombre de nodes de T es produeix quan té un sol node a nivell h. Com que fins a nivell h 1, T té $2^h 1$ nodes, sumant l'únic node a nivell h, s'obtenen 2^h nodes.
- El màxim nombre de nodes de T correspon a un arbre perfecte d'alçària h, que té $2^{h+1} 1$ nodes.

Corol·lari

L'alçària d'un arbre binari complet de n nodes és $\lfloor \log n \rfloor \in \Theta(\log n)$.

Demostració

Per la proposició anterior, un arbre binari complet d'alçària *h* i *n* nodes compleix:

$$2^h \le n < 2^{h+1}$$
.

Si prenem logaritmes en base 2, tenim

$$h \le \log n < h + 1.$$

I prenent la part baixa del logaritme,

$$h = \lfloor \log n \rfloor$$
.

Per tant, $h \in \Theta(\log n)$.

Corol·lari

L'alçària d'un arbre binari complet de n nodes és $\lfloor \log n \rfloor \in \Theta(\log n)$.

Demostració

Per la proposició anterior, un arbre binari complet d'alçària *h* i *n* nodes compleix:

$$2^h \le n < 2^{h+1}$$
.

Si prenem logaritmes en base 2, tenim

$$h \leq \log n < h + 1.$$

I prenent la part baixa del logaritme,

$$h = \lfloor \log n \rfloor$$
.

Per tant, $h \in \Theta(\log n)$.

- 1 Preliminars matemàtics
- 2 Cues amb prioritat
 - Introducció
 - Heaps
 - Operacions bàsiques
 - Implementació recursiva
 - Implementació iterativa
- 3 Heapson
 - Algorisme bàsic
 - Implementació sobre vector únic
 - Construcció d'un heap en temps linea
- 4 Altres aplicacions
 - El problema de selecció

Introducció

Moltes aplicacions requereixen processar les entrades seguint un ordre parcial donat per certes prioritats.

- Programació de tasques: s'executen abans les més curtes o importants
- Sistemes de simulació: se simulen esdeveniments en ordre cronològic
- Algorismes voraços: en cada moment es prova la millor opció disponible

Les cues amb prioritat són una eina bàsica en el disseny d'algorismes.

Introducció

Cua

Cua amb prioritat

Operacions

Definició

Una cua amb prioritat és una estructura de dades que disposa de dues operacions bàsiques:

- afegir: inserir un element (clau més informació)
- treure_min (treure_max): esborrar i retornar l'element amb la clau més petita (o més gran)

Cues amb prioritat de l'STL

Descripció

- La implementació fa servir heaps
- Per defecte, max-heaps (clau més alta disponible amb cost $\Theta(1)$)
- Mètodes: push, pop, top, empty, size

Exemple: max-heap

```
#include <queue>
int main() {
    priority_queue<int> Q;
    Q.push(5);
    Q.push(3);
    cout << Q.top();
    Q.pop();
}</pre>
```

S'obté 5 al canal de sortida.

Cues amb prioritat de l'STL

Descripció

- La implementació fa servir heaps
- Per defecte, max-heaps (clau més alta disponible amb cost $\Theta(1)$)
- Mètodes: push, pop, top, empty, size

Exemple: min-heap

```
#include <queue>
int main() {
    priority_queue<int, vector<int>, greater<int> > Q;
    Q.push(5);
    Q.push(3);
    cout << Q.top();
    Q.pop();
}</pre>
```

S'obté 3 al canal de sortida.

implementacions	afegir	treure_min
vector desordenat	Θ(1)	$\Theta(n)$
vector ordenat	$\Theta(n)$	$\Theta(n)$
vector ordenat (decreixent)	$\Theta(n)$	$\Theta(1)$
vector circular ordenat	$\Theta(n)$	$\Theta(1)$
heaps	$\Theta(\log n)$	$\Theta(\log n)$

	implementacions	afegir	treure_min
$\overline{\triangleright}$	vector desordenat	Θ(1)	Θ(<i>n</i>)
	vector ordenat	$\Theta(n)$	$\Theta(n)$
	vector ordenat (decreixent)	$\Theta(n)$	$\Theta(1)$
	vector circular ordenat	$\Theta(n)$	$\Theta(1)$
	heaps	$\Theta(\log n)$	$\Theta(\log n)$

	implementacions	afegir	treure_min
	vector desordenat	Θ(1)	$\Theta(n)$
\triangleright	vector ordenat	$\Theta(n)$	$\Theta(n)$
	vector ordenat (decreixent)	$\Theta(n)$	$\Theta(1)$
	vector circular ordenat	$\Theta(n)$	$\Theta(1)$
	heaps	$\Theta(\log n)$	$\Theta(\log n)$

	implementacions	afegir	treure_min
	vector desordenat	Θ(1)	$\Theta(n)$
	vector ordenat	$\Theta(n)$	$\Theta(n)$
\triangleright	vector ordenat (decreixent)	$\Theta(n)$	$\Theta(1)$
	vector circular ordenat	$\Theta(n)$	$\Theta(1)$
	heaps	$\Theta(\log n)$	$\Theta(\log n)$

	implementacions	afegir	treure_min
	vector desordenat	Θ(1)	$\Theta(n)$
	vector ordenat	$\Theta(n)$	$\Theta(n)$
	vector ordenat (decreixent)	$\Theta(n)$	$\Theta(1)$
\triangleright	vector circular ordenat	$\Theta(n)$	$\Theta(1)$
	heaps	$\Theta(\log n)$	$\Theta(\log n)$

	implementacions	afegir	treure_min
	vector desordenat	Θ(1)	$\Theta(n)$
	vector ordenat	$\Theta(n)$	$\Theta(n)$
	vector ordenat (decreixent)	$\Theta(n)$	$\Theta(1)$
\triangleright	vector circular ordenat	$\Theta(n)$	$\Theta(1)$
	heaps	$\Theta(\log n)$	$\Theta(\log n)$

	implementacions	afegir	treure_min
	vector desordenat	Θ(1)	$\Theta(n)$
	vector ordenat	$\Theta(n)$	$\Theta(n)$
	vector ordenat (decreixent)	$\Theta(n)$	$\Theta(1)$
	vector circular ordenat	$\Theta(n)$	$\Theta(1)$
\triangleright	heaps	$\Theta(\log n)$	$\Theta(\log n)$

Definició

Un *min-heap* és un arbre binari complet on la clau d'un node és sempre més petita o igual que les claus dels seus fills.

Exemples

Són *min-heaps*:

No són min-heaps:

Qüestió

On seria la clau més gran en un min-heap? Per què?

Definició

Un *max-heap* és un arbre binari complet on la clau d'un node és sempre més gran o igual que les claus dels seus fills.

Exemples

Són max-heaps:

No són max-heaps:

Qüestió

Contenen necessàriament les fulles d'un *max-heap* les claus més petites de tot l'arbre? Per què o per què no?

Terminologia

- Quan parlem de heaps sense especificar res més, ens referirem als min-heaps
- En català, dels heaps se'n diu munts o monticles

Els *heaps* es representen de manera compacta mitjançant vectors.

Representació d'un heap mitjançant vectors

El heap

es repesenta amb el vector

No calen apuntadors perquè per a un node en posició i:

- el pare és a la posició [i/2]
- el fill esquerre és a la posició 2i
- el fill dret és a la posició 2i + 1

Operacions bàsiques

Operació afegir

S'afegeix l'element en la següent posició lliure del vector i es fa ascendir fins la posició en què es torna a complir la propietat del *heap*.

Operació treure-min

L'element en l'última posició del vector es trasllada a la primera i es fa descendir fins que troba la seva posició. Es retorna l'antiga arrel.

Costos de les operacions en heaps

cas pitjor	cas mitjà
$\Theta(\log n)$	Θ(1)
$\Theta(\log n)$	$\Theta(\log n)$
	$\Theta(\log n)$

Anàlisi del cas pitjor

Donat un heap amb n nodes, el cost de afegir i treure_min és proporcional al nombre d'intercanvis, que està fitat per l'alçària: $\Theta(\log n)$.

Idea de l'anàlisi del cas mitjà (afegir

Donat un *heap* amb *n* nodes i distribució uniforme de claus, una nova clau inserida en l'última posició té:

- probabilitat 1/2 de ser més petita que el pare
- probabilitat 1/2 de ser més petita que l'avi si és més petita que el pare (en total, 1/4), i així successivament

Llavors, el nombre esperat d'intercanvis és

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots = 1$$

i, per tant, la inserció té un cost $\Theta(1)$ en mitjana.

Anàlisi del cas pitjor

Donat un heap amb n nodes, el cost de afegir i treure_min és proporcional al nombre d'intercanvis, que està fitat per l'alçària: $\Theta(\log n)$.

Idea de l'anàlisi del cas mitjà (afegir)

Donat un *heap* amb *n* nodes i distribució uniforme de claus, una nova clau inserida en l'última posició té:

- probabilitat 1/2 de ser més petita que el pare
- probabilitat 1/2 de ser més petita que l'avi si és més petita que el pare (en total, 1/4), i així successivament

Llavors, el nombre esperat d'intercanvis és

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots = 1$$

i, per tant, la inserció té un cost $\Theta(1)$ en mitjana.

Anàlisi del cas pitjor

Donat un heap amb n nodes, el cost de afegir i treure_min és proporcional al nombre d'intercanvis, que està fitat per l'alçària: $\Theta(\log n)$.

Idea de l'anàlisi del cas mitjà (afegir)

Donat un *heap* amb *n* nodes i distribució uniforme de claus, una nova clau inserida en l'última posició té:

- probabilitat 1/2 de ser més petita que el pare
- probabilitat 1/2 de ser més petita que l'avi si és més petita que el pare (en total, 1/4), i així successivament

Llavors, el nombre esperat d'intercanvis és

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots = 1$$

i, per tant, la inserció té un cost $\Theta(1)$ en mitjana.

Implementació recursiva

Definició de la classe CuaPrio

El heap es forma en la taula t. La posició 0 no s'utilitza.

```
template <typename Elem>
class CuaPrio {

private:
vector<Elem> t;
```

Constructura

Crea una cua amb prioritat buida. Cost: $\Theta(1)$.

```
CuaPrio () {
    t.push_back(Elem());
}
```

Consultar la talla

Retorna la talla de la cua amb prioritat. Cost: $\Theta(1)$.

```
int talla () {
    return t.size()-1;
}
```

Consultar si és buida

Indica si la cua amb prioritat és buida. Cost: $\Theta(1)$.

```
bool buida () {
    return t.talla() == 0;
}
```

Retornar element mínim

Retorna un element amb prioritat mínima. Cost: $\Theta(1)$.

```
Elem minim () {
    if (buida()) throw "CuaPrio_buida";
    return t[1];
}
```

afegir

```
Afegeix un nou element. Cost: \Theta(\log n).
```

```
void afegir (Elem& x) {
   t.push_back(x);
   surar(talla());
}
```

treure_min

Treu i retorna l'element mínim. Cost: $\Theta(\log n)$.

```
Elem treure_min () {
    if (buida()) throw "CuaPrio_buida";
    Elem x = t[1];
    t[1] = t.back();
    t.pop_back();
    enfonsar(1);
    return x;
}
```

Implementació recursiva: funcions privades

surar

Fer ascendir un element fins que ocupi una posició compatible amb la condició d'ordenació del *heap*. Cost: $\Theta(\log n)$.

```
void surar (int i) {
    if (i != 1 and t[i/2] > t[i]) {
        swap(t[i],t[i/2]);
        surar(i/2);
}
```

Implementació recursiva: funcions privades

enfonsar

Fer descendir un element fins que ocupi una posició compatible amb la condició d'ordenació del *heap*. Cost: $\Theta(\log n)$.

```
void enfonsar (int i) {
   int n = talla();
   int c = 2*i;
   if (c <= n) {
      if (c+1 <= n and t[c+1] < t[c]) c++;
      if (t[i] > t[c]) {
            swap(t[i],t[c]);
            enfonsar(c);
      }
}
```

Implementació iterativa

Les operacions que canvien són **afegir** i **treure_min**, on les antigues **surar** i **enfonsar** estan optimitzades.

Els costos asimptòtics no canvien: $\Theta(\log n)$.

afegir

```
void afegir (Elem& x) {
    t.push_back(x);
    int i = talla();
    while (i != 1 and t[i/2] > x) {
        t[i] = t[i/2];
        i = i/2;
    }
    t[i] = x;
}
```

Implementació iterativa

treure_min

```
Elem treure_min () {
    if (buida()) throw "CuaDePrio buida";
    int n = talla();
    Elem e = t[1], x = t[n];
    t.pop_back(); --n;
    int i = 1; c = 2 * i;
    while (c <= n) {
        if (c+1 \le n \text{ and } t[c+1] \le t[c]) ++c;
        if (x <= t[c]) break;</pre>
        t[i] = t[c];
        i = c;
        c = 2 * i;
    t[i] = x;
    return e;
```

Tema 4. Cues amb prioritat

- 1 Preliminars matemàtics
- 2 Cues amb prioritat
 - Introducció
 - Heaps
 - Operacions bàsiques
 - Implementació recursiva
 - Implementació iterativa
- 3 Heapsort
 - Algorisme bàsic
 - Implementació sobre vector únic
 - Construcció d'un heap en temps lineal
- 4 Altres aplicacions
 - El problema de selecció

Heapsort és un algorisme d'ordenació basat en les cues amb prioritat. Donat un vector de *n* elements.

- ① afegeix els n elements a un heap: $\Theta(n \log n)$
- ② fa n operacions **treure_min** per construir un vector ordenat: $\Theta(n \log n)$

El temps total és $\Theta(n \log n)$, el mínim asimptòtic per a un algorisme d'ordenació.

Heapsort va ser inventat per J.W.J. Williams l'any 1964.

Heapsort

```
Amb vectors separats per al heap i l'entrada/sortida.
Temps: \Theta(n \log n).
Espai: \approx 2n.
template <typename elem>
void heapsort (vector<elem>& v) {
    n = v.size();
    CuaPrio<elem> h;
    for (int i = 0; i < n; ++i)
        h.afegir(v[i]);
    for (int i = 0; i < n; ++i)
        v[i] = h.treure_min();
```

Exemple

Suposem que partim del vector:

i afegim els elements a un heap, un per un.

+4, +2, +7:

El heap resultant s'emmagatzema en el vector:

Ara traspassem els elements en ordre al vector original.

Exemple: evolució dels vectors (operació afegir)

heap

Exemple: evolució dels vectors (operació treure_min)

Exemple: evolució dels vectors (operació treure_min)

Exemple: evolució dels vectors (operació treure_min)

entrada/sortida 1 2 3 4 5 6 7 8 3 4 7 5 9 16

heap

Exemple: evolució dels vectors (operació treure_min)

Exemple: evolució dels vectors (operació treure_min)

entrada/sortida

Exemple: evolució dels vectors (operació treure_min)

entrada/sortida

Exemple: evolució dels vectors (operació treure_min)

entrada/sortida

Exemple: evolució dels vectors (operació treure_min)

entrada/sortida

entrada/sortida 1 2 3 4 5 7 9 16 1 2 3 4 5 6 7 8

Idea general

Implementar l'algorisme sobre un únic vector fent una divisió en:

- una part esquerra per mantenir el heap
- una part dreta per a l'entrada/sortida

Cada cop que es fa una operació de **treure_min**, s'escriu el mínim com a primer element de la part dreta. Els elements queden ordenats de manera descendent.

Si es volen en ordre ascendent, es pot fer servir un *max-heap*.

De vegades un *heap* es construeix a partir d'una col·lecció inicial d'ítems.

• En *heapsort* es fa amb *n* insercions successives:

```
for (int i = 0; i < n; ++i)
    h.afegir(v[i]);</pre>
```

- El cost de cada afegir és:
 - Θ(1) en mitjana
 - $\Theta(\log n)$ en el cas pitjor
- Com que no hi ha altres operacions involucrades, és raonable esperar un cost
 - $\Theta(n)$ en mitjana
 - ullet $\Theta(n \log n)$ en el cas pitjon

per a les *n* insercions

De vegades un *heap* es construeix a partir d'una col·lecció inicial d'ítems.

• En *heapsort* es fa amb *n* insercions successives:

```
for (int i = 0; i < n; ++i)
    h.afegir(v[i]);</pre>
```

- El cost de cada afegir és:
 - Θ(1) en mitjana
 - $\Theta(\log n)$ en el cas pitjor
- Com que no hi ha altres operacions involucrades, és raonable esperar un cost
 - $\Theta(n)$ en mitjana
 - $\Theta(n \log n)$ en el cas pitjor

per a les *n* insercions

De vegades un *heap* es construeix a partir d'una col·lecció inicial d'ítems.

• En *heapsort* es fa amb *n* insercions successives:

```
for (int i = 0; i < n; ++i)
    h.afegir(v[i]);</pre>
```

- El cost de cada afegir és:
 - \bullet $\Theta(1)$ en mitjana
 - $\Theta(\log n)$ en el cas pitjor
- Com que no hi ha altres operacions involucrades, és raonable esperar un cost
 - $\Theta(n)$ en mitjana
 - $\Theta(n \log n)$ en el cas pitjor

per a les *n* insercions

Funció buildHeap

Construir el *heap* en temps $\Theta(n)$ en cas pitjor en lloc de $\Theta(n \log n)$:

- 1 Introduir els elements en el heap en qualsevol ordre (i temps lineal)
- ② Si el heap té h nivells, per a i = h 1, h 2, ..., 1:
 - enfonsar tots els elements del nivell i

El fet que la majoria de *subheaps* tractats siguin petits fa que el nombre d'intercanvis fets per **enfonsar** sigui lineal.

Exemple

Per a un heap de 31 nodes, hi ha

- 8 heaps de mida 3 (arrel en verd)
- 4 heaps de mida 7 (arrel en groc)
- 2 heaps de mida 15 (arrel en blau)
- 1 heap de mida 31 (arrel en vermell)

Constructor que pren els elements d'un vector com a entrada.

```
explicit PrioQueue (const vector<Elem>& v)
   : t(v.size()+1) {
   for (int i = 0; i < v.size(); ++i)
       t[i+1] = v[i];
   buildHeap();
}</pre>
```

Establir propietat d'ordre del heap a partir d'una ordenació arbitrària d'ítems.

```
void buildHeap () {
    for (int i = size()/2; i > 0; --i)
        enfonsar(i);
}
```


El temps de càlcul de buildHeap està fitat per la suma de les alçàries de tots els nodes.

Volem demostrar que aquesta suma és O(n).

Teorema

Per a l'arbre binari perfecte d'alçària h i $2^{h+1} - 1$ nodes, la suma de les alçàries dels seus nodes és $2^{h+1} - 1 - (h+1)$.

Demostració

Com que hi ha 2^i nodes d'alçària h - i, la suma de totes les alçàries és:

$$S = \sum_{i=0}^{h} 2^{i} (h - i)$$

= $h + 2(h - 1) + 4(h - 2) + 8(h - 3) + 16(h - 4) + \dots + 2^{h-1}(1)$

Multiplicant per 2, tenim

$$2S = 2h + 4(h-1) + 8(h-2) + 16(h-3) + \cdots + 2^{h}(1)$$

Teorema

Per a l'arbre binari perfecte d'alçària h i $2^{h+1} - 1$ nodes, la suma de les alçàries dels seus nodes és $2^{h+1} - 1 - (h+1)$.

Demostració

Ara, a partir de

$$S = h + 2(h-1) + 4(h-2) + 8(h-3) + 16(h-4) + \dots + 2^{h-1}(1)$$

$$2S = 2h + 4(h-1) + 8(h-2) + 16(h-3) + \cdots + 2^{h}(1)$$

calculem 2S - S i obtenim

$$S = -h + 2 + 4 + 8 + \dots + 2^{h-1} + 2^h$$

= -h + (2^{h+1} - 1) - 1
= 2^{h+1} - 1 - (h + 1)

Teorema

Per a l'arbre binari perfecte d'alçària h i $2^{h+1} - 1$ nodes, la suma de les alçàries dels seus nodes és $2^{h+1} - 1 - (h+1)$.

Donat un arbre binari complet T de n nodes i alçària h, hem vist que $2^h \le n$. Per tant, $2^{h+1} \le 2n$.

La suma d'alçàries de T és com a màxim la de l'arbre binari perfecte d'alçària h que, pel teorema, és:

$$2^{h+1} - 1 - (h+1) < 2^{h+1}$$

$$\leq 2n \in O(n).$$

Corol·lari

La suma d'alçàries d'un arbre binari complet de n nodes és O(n).

Teorema

Per a l'arbre binari perfecte d'alçària h i $2^{h+1} - 1$ nodes, la suma de les alçàries dels seus nodes és $2^{h+1} - 1 - (h+1)$.

Donat un arbre binari complet T de n nodes i alçària h, hem vist que $2^h \le n$. Per tant, $2^{h+1} \le 2n$.

La suma d'alçàries de T és com a màxim la de l'arbre binari perfecte d'alçària h que, pel teorema, és:

$$2^{h+1} - 1 - (h+1) < 2^{h+1}$$

 $\leq 2n \in O(n).$

Corol·lar

La suma d'alçàries d'un arbre binari complet de n nodes és O(n).

Teorema

Per a l'arbre binari perfecte d'alçària h i $2^{h+1} - 1$ nodes, la suma de les alçàries dels seus nodes és $2^{h+1} - 1 - (h+1)$.

Donat un arbre binari complet T de n nodes i alçària h, hem vist que $2^h \le n$. Per tant, $2^{h+1} \le 2n$.

La suma d'alçàries de T és com a màxim la de l'arbre binari perfecte d'alçària h que, pel teorema, és:

$$2^{h+1} - 1 - (h+1) < 2^{h+1}$$

\le 2n \in O(n).

Corol·lari

La suma d'alçàries d'un arbre binari complet de n nodes és O(n).

Tema 4. Cues amb prioritat

- 1 Preliminars matemàtics
- 2 Cues amb prioritat
 - Introducció
 - Heaps
 - Operacions bàsiques
 - Implementació recursiva
 - Implementació iterativa
- 3 Heapson
 - Algorisme bàsic
 - Implementació sobre vector únic
 - Construcció d'un heap en temps lineal
- 4 Altres aplicacions
 - El problema de selecció

El problema de selecció

Problema de selecció

Donada una llista S de naturals i un $k \in \mathbb{N}$, determinar el k-èsim element més petit de S.

Fent servir heaps, podem trobar un nou algorisme:

- **①** Construir un *min-heap* a partir de $S \longrightarrow \Theta(n)$
- ② Efectuar k operacions **treure_min** del *min-heap* $\longrightarrow \Theta(k \log n)$
- Retornar l'últim element extret → ⊖(1)

Cost total: $\Theta(n + k \log n)$

La mediana correspon a k=n/2. Cost: $\Theta(n \log n)$. En el cas $k=\frac{n}{\log n}$, el cost és $\Theta(n)$.

El problema de selecció

Problema de selecció

Donada una llista S de naturals i un $k \in \mathbb{N}$, determinar el k-èsim element més petit de S.

Fent servir heaps, podem trobar un nou algorisme:

- ① Construir un *min-heap* a partir de $S \longrightarrow \Theta(n)$
- ② Efectuar k operacions treure_min del min-heap $\longrightarrow \Theta(k \log n)$
- 3 Retornar l'últim element extret $\longrightarrow \Theta(1)$

Cost total: $\Theta(n + k \log n)$.

La mediana correspon a k = n/2. Cost: $\Theta(n \log n)$.

En el cas $k = \frac{n}{\log n}$, el cost és $\Theta(n)$.