Chapter 2: Differentiation

2.3 Differentiation

2.3 Differentiation

Key Points in this Section.

1. Given $f: U \subset \mathbb{R}^3 \to \mathbb{R}$, where U is open, the **partial derivative** with respect to x is defined by

$$f_x(x,y,z) = \frac{\partial f}{\partial x}(x,y,z) = \lim_{h \to 0} \frac{f(x+h,y,z) - f(x,y,z)}{h}$$

if it exists. The partial derivatives $\partial f/\partial y$ and $\partial f/\partial z$ are defined similarly and the extension to function of n variables is analogous.

2. The *linear approximation* to f(x,y) at (x_0,y_0) is

$$\ell_{(x_0,y_0)}(x,y) = f(x_0,y_0) + \left[\frac{\partial f}{\partial x}(x_0,y_0)\right](x-x_0) + \left[\frac{\partial f}{\partial y}(x_0,y_0)\right](y-y_0)$$

3. The function f(x, y) is **differentiable** at (x_0, y_0) if the partials exist at (x_0, y_0) and if

$$\lim_{(x,y)\to(x_0,y_0)} \frac{f(x,y) - \ell_{(x_0,y_0)}(x,y)}{\parallel (x,y) - (x_0,y_0) \parallel} = 0$$

4. If f is differentiable at (x_0, y_0) , the **tangent plane** to the graph of f at (x_0, y_0, z_0) , where $z_0 = f(x_0, y_0)$ is

$$z = \ell_{(x_0, y_0)}(x, y).$$

5. The definition of differentiability is motivated by the idea that the tangent plane should give a good approximation to the function.

6. If $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$ has partial derivatives at $\mathbf{x}_0 \in U$, the **derivative** matrix is the $m \times n$ matrix $\mathbf{D}f(\mathbf{x}_0)$ given by

$$\mathbf{D}f(\mathbf{x}_0) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots & \frac{\partial f_2}{\partial x_n} \\ \vdots & & & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \dots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

where the partials are all evaluated at \mathbf{x}_0 .

7. We say $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$ is **differentiable** at \mathbf{x}_0 provided the partials exist and

$$\lim_{\mathbf{x} \to \mathbf{x}_0} \frac{\|f(\mathbf{x}) - f(\mathbf{x}_0) - \mathbf{D}f(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0)\|}{\|\mathbf{x} - \mathbf{x}_0\|} = 0.$$

8. For $f: U \subset \mathbb{R}^3 \to \mathbb{R}$, its **gradient** is

$$\nabla f = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{i} + \frac{\partial f}{\partial z}\mathbf{k}.$$

Similarly, for $f: U \subset \mathbb{R}^n \to \mathbb{R}$, ∇f is the vector with components

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right).$$

9. If f is differentiable at \mathbf{x}_0 , then it is continuous at \mathbf{x}_0 . If the partials exist and are continuous in a neighborhood of \mathbf{x}_0 (that is, f is C^1), then f is differentiable at \mathbf{x}_0 .

DEFINITION: Partial Derivatives Let $U \subset \mathbb{R}^n$ be an open set and suppose $f: U \subset \mathbb{R}^n \to \mathbb{R}$ is a real-valued function. Then $\partial f/\partial x_1, \ldots, \partial f/\partial x_n$, the *partial derivatives* of f with respect to the first, second, ..., nth variable, are the real-valued functions of n variables, which, at the point $(x_1, \ldots, x_n) = \mathbf{x}$, are defined by

$$\frac{\partial f}{\partial x_j}(x_1, \dots, x_n) = \lim_{h \to 0} \frac{f(x_1, x_2, \dots, x_j + h, \dots, x_n) - f(x_1, \dots, x_n)}{h}$$
$$= \lim_{h \to 0} \frac{f(\mathbf{x} + h\mathbf{e}_j) - f(\mathbf{x})}{h}$$

if the limits exist, where $1 \le j \le n$ and \mathbf{e}_j is the *j*th standard basis vector defined by $\mathbf{e}_j = (0, \dots, 1, \dots, 0)$, with 1 in the *j*th slot (see Section 1.5). The domain of the function $\partial f/\partial x_j$ is the set of $\mathbf{x} \in \mathbb{R}^n$ for which the limit exists.

DEFINITION: Differentiable: Two Variables Let $f: \mathbb{R}^2 \to \mathbb{R}$. We say f is *differentiable* at (x_0, y_0) , if $\partial f/\partial x$ and $\partial f/\partial y$ exist at (x_0, y_0) and if

$$\frac{f(x,y) - f(x_0, y_0) - \left[\frac{\partial f}{\partial x}(x_0, y_0)\right](x - x_0) - \left[\frac{\partial f}{\partial y}(x_0, y_0)\right](y - y_0)}{\|(x,y) - (x_0, y_0)\|} \to 0$$
(2)

as $(x, y) \rightarrow (x_0, y_0)$. This equation expresses what we mean by saying that

$$f(x_0, y_0) + \left[\frac{\partial f}{\partial x}(x_0, y_0)\right](x - x_0) + \left[\frac{\partial f}{\partial y}(x_0, y_0)\right](y - y_0)$$

is a **good approximation** to the function f.

DEFINITION: Tangent Plane Let $f: \mathbb{R}^2 \to \mathbb{R}$ be differentiable at $\mathbf{x}_0 = (x_0, y_0)$. The plane in \mathbb{R}^3 defined by the equation

$$z = f(x_0, y_0) + \left[\frac{\partial f}{\partial x}(x_0, y_0)\right](x - x_0) + \left[\frac{\partial f}{\partial y}(x_0, y_0)\right](y - y_0),$$

is called the *tangent plane* of the graph of f at the point (x_0, y_0) .

DEFINITION: Differentiable, *n* Variables, *m* Functions Let *U* be an open set in \mathbb{R}^n and let $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$ be a given function. We say that f is *differentiable* at $\mathbf{x}_0 \in U$ if the partial derivatives of f exist at \mathbf{x}_0 and if

$$\lim_{\mathbf{x} \to \mathbf{x}_0} \frac{\|f(\mathbf{x}) - f(\mathbf{x}_0) - \mathbf{T}(\mathbf{x} - \mathbf{x}_0)\|}{\|\mathbf{x} - \mathbf{x}_0\|} = 0,$$
(4)

where $\mathbf{T} = \mathbf{D}f(\mathbf{x}_0)$ is the $m \times n$ matrix with matrix elements $\partial f_i/\partial x_j$ evaluated at \mathbf{x}_0 and $\mathbf{T}(\mathbf{x} - \mathbf{x}_0)$ means the product of \mathbf{T} with $\mathbf{x} - \mathbf{x}_0$ (regarded as a column matrix). We call \mathbf{T} the *derivative* of f at \mathbf{x}_0 .

 $\mathbf{D}f(\mathbf{x})$: derivative, matrix of partial derivatives, or Jacobian matrix

DEFINITION: Gradient Consider the special case $f: U \subset \mathbb{R}^n \to \mathbb{R}$. Here $\mathbf{D}f(\mathbf{x})$ is a $1 \times n$ matrix:

$$\mathbf{D}f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \cdots & \frac{\partial f}{\partial x_n} \end{bmatrix}.$$

We can form the corresponding vector $(\partial f/\partial x_1, \dots, \partial f/\partial x_n)$, called the **gradient** of f and denoted by ∇f or grad f.

THEOREM 8 Let $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$ be differentiable at $\mathbf{x}_0 \in U$. Then f is continuous at \mathbf{x}_0 .

THEOREM 9 Let $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$. Suppose the partial derivatives $\partial f_i/\partial x_j$ of f all exist and are continuous in a neighborhood of a point $\mathbf{x} \in U$. Then f is differentiable at \mathbf{x} .

 $f(x, y) = xy/\sqrt{x^2 + y^2}$ [with f(0, 0) = 0]

- **1.** Find $\partial f/\partial x$, $\partial f/\partial y$ if
 - (a) f(x, y) = xy
 - (b) $f(x, y) = e^{xy}$
 - (c) $f(x, y) = x \cos x \cos y$
 - (d) $f(x, y) = (x^2 + y^2) \log(x^2 + y^2)$
- 2. Evaluate the partial derivatives $\partial z/\partial x$, $\partial z/\partial y$ for the given function at the indicated points.
 - (a) $z = \sqrt{a^2 x^2 y^2}$; (0, 0), (a/2, a/2)
 - (b) $z = \log \sqrt{1 + xy}$; (1, 2), (0, 0)
 - (c) $z = e^{ax} \cos(bx + y)$; $(2\pi/b, 0)$
- **3.** In each case following, find the partial derivatives $\partial w/\partial x$, $\partial w/\partial y$.
 - (a) $w = xe^{x^2 + y^2}$
 - (b) $w = \frac{x^2 + y^2}{x^2 y^2}$
 - (c) $w = e^{xy} \log (x^2 + y^2)$
 - (d) w = x/y
 - (e) $w = \cos(ye^{xy})\sin x$