Rheinisch-Westfälische Technische Hochschule Aachen Lehrstuhl I für Mathematik Prof. Dr. Christof Melcher

Übungen zur Höheren Mathematik 3 Serie 02 vom 19. Oktober 2009

Teil A

Aufgabe A3

(a) Zeigen Sie, dass die Funktion $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$,

$$f(x_1, x_2) := \begin{cases} 19 + 5x_1 + 7x_2^2 + x_1^4 \cos\left(\frac{9}{(x_1^2 + x_2^2)^2}\right) & \text{für } x_1^2 + x_2^2 > 0, \\ 19 & \text{für } x_1^2 + x_2^2 = 0 \end{cases}$$

im Punkt (0,0) differenzierbar ist, indem Sie die Definition der Differenzierbarkeit von Funktionen mehrerer Veränderlicher verifizieren.

(b) Untersuchen Sie die partiellen Ableitungen von f auf Stetigkeit im Punkt (0,0).

Aufgabe A4 Es sei $f : \mathbb{R}^n \to \mathbb{R}$, und f sei differenzierbar an $x_0 \in \mathbb{R}^n$. Zeigen Sie, f ist an x_0 in jeder Richtung $a \in \mathbb{R}^n$ differenzierbar, und es gilt:

$$\frac{\partial f}{\partial a}(x_0) = \nabla f(x_0) \cdot a \text{ und } \left| \frac{\partial f}{\partial a}(x_0) \right| \le \|\nabla f(x_0)\|.$$

Ferner ist $a_0 = \frac{\nabla f(x_0)}{\|\nabla f(x_0)\|}$ die Richtung des stärksten Anstiegs von f im Punkt x_0 .

Aufgabe A5 Entwickeln Sie die Funktion $f : \mathbb{R}^2 \to \mathbb{R}$ gegeben durch

$$f(x,y) = x^2 e^{xy} + y \sin(y(1-x))$$

um den Punkt (0,0) in ein Taylorpolynom zweiten Grades. Zeigen Sie damit, dass f im Punkt (0,0) ein lokales Minimum hat.

Aufgabe A6 Seien p, q > 1 und $\frac{1}{p} + \frac{1}{q} = 1$. Bestimmen Sie, für $x \ge 0, y \ge 0$ die Extrema der Funktion f(x,y) := xy unter der Nebenbedingung g(x,y) = c > 0, wobei $g(x,y) := \frac{1}{p}x^p + \frac{1}{q}y^q$. Sie können dabei die Existenz eines Maximums voraussetzen. Folgern Sie die Youngsche Ungleichung $xy \le \frac{1}{p}x^p + \frac{1}{q}y^q$.

Teil B

Aufgabe B5 Es sei $f: \mathbb{R}^3 \to \mathbb{R}$, $f(x, y, z) = 3x^2 - y^2 + z$. Bestimmen Sie die Richtungsableitung von f im Punkt (1, 2, 3) in Richtung des Vektors $a = \frac{1}{\sqrt{3}}(1, 1, 1)$.

Aufgabe B6 Bestimmen Sie für die Funktion $f : \mathbb{R}^2 \to \mathbb{R}$, definiert durch

$$f(x,y) = \begin{cases} \frac{\sin(2\sqrt{x^2 + y^2})}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0) \\ 2, & (x,y) = (0,0) \end{cases}$$

die Tangentialebene an den Graphen z = f(x, y) im Punkt $\left(\frac{\pi}{2}, 0, 0\right)$.

Aufgabe B7 Bestimmen Sie für die Funktion $f(x, y) = \sin(mx + ny)$ das Taylor-Polynom 3. Grades um den Entwicklungspunkt (0, 0) und geben Sie das Restglied (nach Lagrange) an.

Aufgabe B8 Sei $f: \mathbb{R}^2 \to \mathbb{R}$ definiert durch $f(x,y) := \frac{1}{8}(x^2 - y^2)$. Bestimmen Sie den Punkt auf dem Graph von f

 $\mathcal{F} := \{(x, y, f(x, y)); (x, y) \in \mathbb{R}^2\}$

der zu dem Punkt P := (0, 0, 1) den kleinsten Abstand besitzt.

HM3 642 2 1. OKT. 2009 A3.) $f(x_1,x_1) = \begin{cases} 19 + 5x_1 + 7x_2^2 + x_1^4 \cos(\frac{9}{(x_1^2 + x_2^2)^2}) & x_1^2 + x_2^2 > 0 \\ 19 + 5x_1 + 7x_2^2 + x_1^4 \cos(\frac{9}{(x_1^2 + x_2^2)^2}) & x_1^2 + x_2^2 > 0 \end{cases}$ a) zu zelgen: Es gibt a eR und ehre Funktion $R(t_1,t_2)$ wit $\frac{|R(t_1,t_2)|}{||(t_1,t_2)||} \rightarrow 0$, soclass $f(x_1, x_2) - f(0,0) = \alpha \cdot (x_1, x_2) \left[Skalar produlef \right]$ $= \alpha_1 \cdot x_1 + \alpha_2 \cdot x_2 + R(x_1, x_2)$ f(x1,x2) - f(0,0) = 5x1 + 7x2 +x14. cos (3) für (x, x,) \$(0,0) $= 5 \cdot x_1 + 0 \cdot x_2 + 7 \cdot x_1^2 + x_1^4 \cdot \cos\left(\frac{3}{(x_1^2 + x_1^2)^2}\right)$ (5,0).(x,x) R(x,x) Es bloth zer zalgen, dess R(+1,+2) >0 für 1/2 1/2 0 $\frac{\mathbb{R}(\chi_1,\chi_2)}{\|(\chi_1,\chi_2)\|} = \frac{\left|\chi_2^2 + \chi_1^4 \cdot \cos\left(\frac{1}{(\chi_1^2 + \chi_1^2)^2}\right)\right|}{\left|\chi_2^2 + \chi_2^4\right|}$ $\leq \frac{7x_1^2 + x_1^4 \cdot |\cos(\frac{9}{(x_1^2 + x_2^2)^2})|}{\sqrt{x_1^2 + x_2^2}} |\cos(\frac{9}{(x_1^2 + x_2^2)^2})|$

= 7. x2 + x4 1

$$\leq 7 \cdot \frac{x_{1}^{2} + x_{2}^{2}}{\sqrt{x_{1}^{2} + x_{2}^{2}}} + \frac{(x_{1}^{2} + x_{2}^{2})^{2}}{\sqrt{x_{1}^{2} + x_{2}^{2}}} \\
= 7 \cdot ||(x_{1}, x_{2})|| + ||(x_{1}, x_{2})||^{3}}$$

$$\Rightarrow 0 \quad f_{1}^{2} \cdot ||(x_{1}, x_{2})|| -> 0, \quad d.h. \quad \frac{R(x_{1}, x_{2})}{||(x_{1}, x_{1})||} -> 0$$

$$f_{1}^{2} \cdot ||(x_{1}, x_{2})|| -> 0$$

$$\downarrow h_{1} \quad dx_{1} \quad dx_{2} \quad dx_{1} \quad dx_{2} \quad dx_{3} \quad dx_{2} \quad dx_{3} \quad dx_{3} \quad dx_{4} \quad d$$

2 1. OKT. 2009

za A3 b.)

$$\partial_{x_{1}}(f(x_{1},0)) = \begin{cases} 5+4x_{1}^{3} \cdot \cos(\frac{9}{x_{1}^{4}}) + 36\frac{1}{x_{1}} - 5, \ln(\frac{9}{x_{1}^{4}}) & x_{1} \neq 0 \\ 5 & x_{1} = 0 \end{cases}$$

existient wicht!

nicht konvergent für x, -> 0 1

Also: Aus Differenzierbærkett folgt wicht por stetig partiell diffbær.

$$=> (s,0) = \nabla f(o,0)$$

A4.) i.) Annahme f in x_0 diff box, d.h. $f(x) = f(x_0) + C \cdot (x - x_0) + R(x)$ $f(x) = f(x_0) + C \cdot (x - x_0)$

Sei l'all=1. Setzen x=xo+h·a, so gilt für kleine |h| = 11x-xoll.

 $f(x_0 + h \cdot a) - f(x_0) = c \cdot h \cdot a + R(x_0 + h \cdot a)$ $Num \text{ is } f \frac{\partial f}{\partial a}(x_0) = \lim_{h \to 0} \frac{f(x_0 + h \cdot a) - f(x_0)}{h}$ $= \lim_{h \to 0} \frac{h \cdot c \cdot a + R(X_0 + h \cdot a)}{h}$

 $= C \cdot \alpha + Q$

[wool Eigenschaft von R(x)]

= \f(x_0) \cdot a

 \Box

ii.) $\left|\frac{\partial f}{\partial \alpha}(x_0)\right| = \left|\nabla f(x_0) \cdot \alpha\right|$ $\int n \cdot \alpha \cdot dx \cdot Cauchy - schwarz schen - Ungleichung$ $= ||\nabla f(x_0)|| \cdot ||\alpha|| = ||\nabla f(x_0)|| \quad (weil ||\alpha|| = 1)$

iii.) Gilt $\nabla f(x_0) = 0 \Rightarrow Fir elle Ridgeman a:$ $\frac{\partial f}{\partial a}(x_0) = 0$

Also abjeted $\nabla f(x_0) \neq 0$. Down wird durch $a_0 = \frac{\nabla f(x_0)}{||\nabla f(x_0)||}$ etne Richtung definiert, $\text{with } \frac{\partial f}{\partial a_0}(x_0) = \nabla f(x_0) \cdot a_0 = \frac{(\nabla f(x_0))^2 \in Sk_0 \text{ for product}}{||\nabla f(x_0)||}$ $= \frac{||\nabla f(x_0)||^2}{||\nabla f(x_0)||} = ||\nabla f(x_0)||$

=) Of (xo) ist maximal.

$$\frac{45.}{} f(x,y) = x^{2} e^{xy} + y \cdot \sin(y(1-x))$$

$$f(0,0) = 0$$

$$f_{x}(x,y) = 2x e^{xy} + x^{2}y e^{xy} - y^{2} \cos(y(1-x))$$

$$f_{x}(0,0) = 0$$

$$f_{x}(x,y) = 7e^{xy} + 7e^$$

$$R_{2}(h,k) = \frac{7}{3!} \left(h \cdot \partial_{x_{1}} + k \cdot \partial_{x_{2}} \right)^{3} \cdot f\left(\gamma \cdot (h,k) \right) \quad \text{wit } T \in (0,1)$$

$$\left[\text{Noch einigen Abbitungen} \right]$$

$$= O\left(\sqrt{h^{2} + k^{2}}^{3} \right) \quad \text{ol. 4.}$$

$$\left| \frac{R_{2}(h,k)}{\sqrt{h^{2} + k^{2}}^{3}} \right| \leq C \in \mathbb{R}$$

 $= \int f(h,k) = h^{2} + k^{2} + O(\sqrt{h^{2}+k^{2}})$ $= \|(h,k)\|^{2} \cdot (1 + O(\|(h,k)\|))$ $= \|(h,k)\|^{2} \cdot (1 - c \cdot \|(h,k)\|)$ $= 0 \quad \text{for geningend before}$ $= \|(h,k)\|^{2} \cdot (1 - c \cdot \|(h,k)\|)$

d.h. $f(h,k) \ge 0$ für genügend klerne ||(h,k)||f(0,0)=0, d.h.

f het in (0,0) Coledes Kinimum.