Incyte Genomics, 1991, Palo Alto, CA, www.incyte.com, genomic and expression databases, contract sequencing services, and bioreagent products and services

Innogenetics, 1985, Ghent, Belgium, www.innogenetics.com, diagnostic products for human diseases

Integrated Micromachines, 1995, Monrovia, CA, www.micromachines.com, MEMS-based optical switches

IntelliSense, 1991, Wilmington, MA, www.intellisense.com, MEMS design, development, and manufacturing

Irvine Sensors Corp., 1980, Costa Mesa, CA, www.irvine-sensors.com, inventor of three-dimensional (3D) semiconductors and the SIRComm technology used for wireless infrared (IR) communications

i-STAT Corp., East Windsor, NJ, www.iSTAT.com, point-of-care blood analysis

Jenoptik Mikrotechnik GmbH, 1996, Jena, Germany, www.jo-mikrotechnik.com, fabrication of plastic microcomponents and microsystems

Kistler, www.kistler.com, piezoelectric, piezoresistive, and variable capacitance based sensors

MEMSIC, 1999, Andover, MA, www.memsic.com, sensors/accelerometers with advanced on-chip signal processing capability

MicroChem Corp., Newton, MA, www.microchem.com, novel photoresists for MEMS

Microflow, 1990, Neuchatel, Switzerland, www.microflow.ch, microfluidics in the field of minimally invasive drug delivery, diagnostics, and packaging

Micronics, 1996, Redmond, WA, www.micronics.net, microfluidic diagnostic and analytical products

Microsensor Technology, 1981, CA (sold to Tylan in 1986), www.microsensor.ru

Microsensors, 1997, Costa Mesa, CA, www.microsensors.com, micromachined sensors and sensor readout circuits for MEMS applications

Motorola Sensor Products Division, www.motorola.com/sensors/, automotive sensors

Mycometrix, 1997, South San Francisco, CA, www.mycometrix.com, microfluidic biochips

Nanogen, 1993, San Diego, CA, www.nanogen.com, semiconductor based platform technology

Nanomat, North Huntington, PA, www.nanomat.com, nanotechnologies for structural, nonstructural, microelectronic, and biomedical applications

Nanosphere, Alachua, FL, www.nanosphere.com, drug delivery systems

Nanosphere, Evanston, IL, www.nanosphere-inc.com, nanoparticle DNA probes and detection and screening assays

Nanostructures, 1988, Santa Clara, CA, www.nanostructures.com, thin film and micromachined MEMS devices

NimbleGen Systems, Madison, WI, www.nimblegen.com, DNA microarrays

Orchid BioSciences, 1995, Princeton, NJ, www.orchidbio.com, SNP scoring

Pacific Microinstruments, 1999, Sierra Madre, CA, www.pacificmicroinstruments.com, microinstruments for handheld measurement, sensor data acquisition, and distributed systems

Quantum Dot, 1998, Palo Alto, CA, www.qdots.com, genetic analysis, drug discovery, and disease diagnostics

Redwood Microsystems, 1988, Menlo Park, CA, www.redwoodmicro.com, microvalve-based flow and pressure controllers

Robert Bosch, Gmbh, www.bosch-pt.de, micromachined automotive products

Sensym, 1972, CA (called SenSym ICT since 1999), www.sensym.com, high-grade pressure sensors and monitors

Sentir, 1991, Santa Clara, CA, www.sentir.net, silicon die and package sensors

Seyonic SA, 1998, Neuchatel, Switzerland, www.seyonic.com, sensors and actuators

Siemens AG, www.siemens.de, micromachined automotive products

Standard Microsystems, Burlington, MA, www.stdmems.com, MEMS devices

STEAG microParts GmbH, 1990, Dortmund, Germany, www.microparts.de, mechanical, optical, and fluidic microcomponents

Surface Technology Systems, www.stssystems.com

Symyx Technologies, 1999, Santa Clara, CA, www.symyx.com, high speed technologies for discovery of new materials

System Planning Corporation, www.sysplan.com, microfabrication consulting and marketing

Tecan Boston, 1994, Boston, MA (formerly Gamera Bioscience), microfluidics based on centrifuge platform for high throughput screening

TiNi Alloys, 1988, San Leandro, CA, www.sma-mems.com, thin film shape memory alloys

Tomtec, 1971, Hamden, CT, www.tomtec.com, automated assay workstations

Transensory Devices, 1982, CA (sold to IC Sensors in 1987)

TRW NovaSensor, 1985, Fremont, CA, www.novasensor.com, pressure sensors and transducers

Twente MicroProducts (acquired by Kymata), www.microproducts.nl, microsystems and components, prototyping, and consultancy

Weidmann Plastics Technology, Rapperswil, Switzerland, www.weidmann-plastics.com, multipolymer injection molding

Xensor Integration, 1988, Delft, Netherlands, www.xensor.nl, microsensors, microsystems, and sensor signal conditioning electronics

Zyomyx, 1998, Hayward, CA, www.zyomyx.com/default.htm, protein biochip technologies

G

Glossary

- Abrasive A hard and wear-resistant material (such as a ceramic) used to wear, grind, or cut away other material.
- Absolute zero The lowest temperature theoretically possible, corresponding to -273.15° Celsius.
- **Acceptor** An impurity atom which has fewer valence electrons than the atom it replaces. When introduced into a semiconductor it produces a hole.
- Accuracy The degree of correctness with which the measuring system yields the "true value" of a measured quantity, where the "true value" refers to an accepted standard, such as a standard meter or volt. Typically described in terms of a maximum percentage of deviation expected based on a full-scale reading.
- Actin A soluble protein found in muscle cells. It is the main component of the thin filaments.
- Affinity A thermodynamic measurement of the strength of binding between molecules, say between an antibody and antigen. Each antibody/antigen pair has an association constant, K_{av} expressed in L/mol.
- **AFM** For *atomic force microscopy*. A variant of the STM method. In AFM, the surface is probed mechanically rather than electronically.
- **Algorithm** A set of well-defined mathematical rules or operations for solving a problem in a finite number of steps.
- AM 1 The air mass 1 spectrum of a light source is equivalent to that of sunlight at the Earth's surface when the sun is at zenith.
- Amino acids Naturally occurring biological molecules with a variety of functions. Among the amino acids, there are 20 that are used as building blocks for making proteins.
- Amorphous silicon Silicon lacking a preferred crystalline orientation, typically consisting of extremely fine grains each measuring a few nanometers in size.
- Ampere (amp) [A] Measure of electric current; 1 A = 1 coulomb/second.
- Amperometric sensor Amperometric sensors involve a heterogeneous electron transfer as a result of an oxidation/reduction of an electro-active species at a sensing electrode surface. A current is measured at a certain imposed voltage of the sensing electrode with respect to the reference electrode. Analytical information is obtained from the current-concentration relationship at that given applied potential.

a.m.u See atomic mass unit.

- **Analyte** A chemical species targeted for qualitative or quantitative analysis.
- Angiography The x-ray study of the blood vessels. An angiogram uses a radiopaque substance, or dye, to make the blood vessels visible under x-ray.
- Angstrom [Å] Measure of length; 1 Å= 10⁻¹⁰ m.
- **Anisotropic** Exhibiting different values of a property in different crystallographic directions.
- **Anneal** Heat process used to remove stress, crystallize, or render deposited material more uniform.
- Anode The electrode in an electrochemical cell or galvanic couple that experiences oxidation, or gives up electrons.
- **Anodic bonding** A process to bond silicon to glass, specifically Pyrex® or equivalent.
- Antibiotic An organic substance that suppresses multiplication of bacteria, but that is not poisonous to humans or animals. The first antibiotic was penicillin, isolated by Alexander Fleming from fungi in 1929. The discovery of antibiotics produced a revolutionary breakthrough in the treatment of many diseases that had previously resisted any medical treatment, such as pneumonia and tuberculosis. However, the broad and uncontrolled reliance on antibiotics caused bacteria to develop a resistance to them. As a result, traditional antibiotics are now much less effective than they were during the first decades of their application. Antibiotics are utterly irrelevant in combating viral diseases.
- **Antibody** A large protein that specifically recognizes foreign structures such as bacteria or viruses and triggers an immune response against them.
- Antigen A molecule or part of a molecule that triggers an immune response following molecular recognition by an antibody.
- Arrhenius equation The equation representing the rate constant as $k = Ae^{Ea/RT}$, where A represents the product of the collision frequency and a steric factor, and $e^{-Ea/RT}$ is fraction of collisions with sufficient energy to produce a reaction.
- ASIC For application-specific integrated circuit. An electronic integrated circuit with a functionality designed specifically for one particular application; for example, the detection of minute changes in capacitance and conversion into an output voltage.
- Atomic mass unit (a.m.u.) A unit of mass used to express relative atomic masses. It is equal to 1/12 of the mass of an atom of the isotope carbon-12 and is equal to 1.66033×10^{-27} .

Atomic number (also proton number, Z) The number of protons within the atomic nucleus of a chemical element.

Atomic weight The weighted average mass of the atoms in a naturally occurring element.

ATP For *adenosine triphosphate*. A building block for making DNA and RNA, ATP also is the most important carrier of chemical energy in all cells. To use the stored energy, the cell cleaves off the outermost of the three phosphate groups contained in the molecule, yielding ADP (adenosine diphosphate) and an inorganic phosphate ion.

Austenite Face-centered cubic iron; also iron and steel alloys that have the FCC crystal structure.

Avogadro's number The number of atoms in exactly 12 g of pure 12 C, equal to 6.022×10^{23} .

Bacteria Single-cell microorganisms. The world of bacteria is extraordinarily varied and plays an immense role in ensuring the existence of other living things on Earth. Many bacteria survive in the most primitive conditions, requiring for their multiplication only the simplest molecules containing chemical elements that are part of biological molecules. Thus, to meet their carbon needs, some bacteria need only petroleum; they get their nitrogen and oxygen from the air. Bacteria are everywhere; they cause the souring of milk or broth; they dwell inside us, helping us to digest food (*E. coli*); and they also cause many infectious diseases.

Band gap The energy difference between the conduction and valence bands, and equal in magnitude to the energy required to create an electron-hole pair.

Band gap energy (E_g) For semiconductors and insulators, the energies that lie between the valence and conduction bands; for intrinsic materials, electrons are forbidden to have energies within this range.

Bandwidth The range of frequencies over which the measurement system can operate within a specified error range.

Base One of the building blocks of DNA or RNA. A nitrogencontaining base combines with sugar and phosphate molecules to make a nucleotide. The four bases in DNA are adenine (A), guanine (G), cytosine (C), and thymine (T).

Base pair Two nucleotides held together by a weak bond between complementary bases. In DNA molecules, adenine is paired with thymine and guanine is paired with cytosine.

BAW For bulk acoustic wave.

BCC See body-centered cubic.

Bilayer lipid membrane (BLM) The structure found in most biological membranes in which two layers of lipid molecules are so arranged that their hydrophobic parts interpenetrate, whereas their hydrophilic parts form the two surfaces of the bilayer.

Bimetallic actuation The resulting motion when a stack of two materials having dissimilar coefficients of thermal expansion is heated. One material expands more than the other, giving rise to bending stresses. The amount of bending is proportional to the temperature of the stack and the difference in coefficients of thermal expansion.

Binary Numbering system based on powers of 2 using only the digits 0 and 1, called *bits*.

Binding energy The amount of energy required in order to remove a particle from a given system. For example, the binding energy of the electron in a hydrogen atom is given by the energy required to remove the electron far from the nucleus.

Bioluminescence Generation of light from metabolic energy. In addition to fireflies, bioluminescence is found in dozens of other species including fish, jellyfish, and mushrooms.

Biosensor The term *biosensor* is a general designation that denotes either a sensor to detect a biological substance or a sensor which incorporates the use of biological molecules such as antibodies or enzymes. Biosensors are a subcategory of chemical sensors.

Bipolar-junction transistor Transistor with n-type and p-type semiconductors having base-emitter and collector-base junctions.

Bit See binary.

BLM See bilayer lipid membrane.

Body-centered cubic (BCC) A common crystal structure found in some elemental metals. Within the cubic unit cell, atoms are located at corner and cell center positions.

Bond pad A metal area on a die or wafer to which a gold or aluminum wire is bonded. The wire and bond pad provide electrical connectivity between electrical components on the die and electronic circuitry external to the die.

Brazing A metal-joining technique that uses a molten filler metal alloy having a melting temperature greater than about 425°C (800°F).

Breakdown Failure of a material resulting from an electrical overload. The resulting damage may be in the form of thermal damage (melting or burning) or electrical damage (loss of polarization in piezoelectric materials).

Brownian motion A chaotic motion of microparticles suspended in a liquid, as a consequence of thermal agitation of molecules.

Bulk micromachining A class of micromachining processes that yields micromechanical structures with thicknesses in the tens or hundreds of micrometers. Very often, it also refers to micromechanical structures formed using wet anisotropic etch solutions, such as potassium hydroxide.

Bus Transmission medium for electrical or optical signals that perform a particular function, such as computer control.

Byte A group of eight bits that can represent any of $2^8 = 256$ different entities.

Calibration A process of adapting a sensor output to a known physical quantity to improve sensor output accuracy.

Capacitance (C) The charge-storing ability of a capacitor, defined as the magnitude of charge stored on either plate divided by the applied voltage. A 1-F capacitor charged to 1 V contains C of charge (see also *capacitor*) and 1 C is an amount of charge equal to that of about 6.24×10^{18} electrons.

Capacitor Energy storage circuit element having two conductors separated by an insulator.

Catalysis Acceleration of a chemical reaction by lowering the energy barrier achieved by a catalyst. The strict definition of catalysis requires that the catalyst not be affected by the overall reaction.

- **Cathode** The electrode in an electrochemical cell or galvanic couple at which a reduction reaction occurs; in other words, the electrode receiving electrons from an external circuit.
- CD For critical dimension or compact disc.
- Cells The basic structural units of life.
- **Ceramic** A nonmetallic material made from clay and hardened by firing at high temperature; it contains minute silicate crystals suspended in a glassy cement.
- Cermet A composite material consisting of a combination of ceramic and metallic materials. The most common cermets are the cemented carbides, composed of an extremely hard ceramic (e.g., WC, TiC), bonded together by a ductile metal such as cobalt or nickel.
- Chaperones Specialized proteins that carry out, inside the cell, the folding of a polyamino acid chain (newly synthesized on ribosome) into a native protein molecule.
- Chemical vapor deposition (CVD) A process based on the principle of initiating a chemical reaction in a vacuum chamber, resulting in the deposition of a reacted species on a heated substrate. Materials that can be deposited by CVD include polysilicon, silicon dioxide, and silicon nitride.
- Chip A die (unpackaged semiconductor device) cut from a silicon wafer, incorporating semiconductor circuit elements such as a sensor, actuator, resistor, diode, transistor, and/or capacitor.
- Cholesterol A complex organic molecule of the steroid class. In moderate quantities, it is necessary for building the cell membrane and serves as the predecessor for a number of hormones (including sex hormones). Excess cholesterol in blood leads to atherosclerosis.
- **Chromatography** The general name for a series of methods for separating mixtures by employing a system with a mobile phase and a stationary phase.
- **Chromophore** The part of a molecule that is responsible for its color or more generally for its response to light.
- **Chromosome** A complex structured set of DNA with proteins inside the cell nucleus. It stores genetic information.
- Cloning Obtaining a large number of cells from the same cell. Now also used in relation to DNA molecules.
- Cluster A structure consisting of a small number of (metal) atoms.
- CMOS For complementary metal oxide semiconductor. Integrated circuit containing n-channel and p-channel MOS-FETs.
- **Codon** A triplet of nucleotides that is part of the genetic code and specifies the particular amino acid to be added to a growing chain to make a protein.
- Coefficient of thermal expansion (CTE) The rate of change in length of an object as a function of temperature. In general, CTE = $(\Delta L/L)/\Delta T$, where $(\Delta L/L)$ is the fractional change in length corresponding to a ΔT change in temperature. It is measured in inverse units of temperature (1° C).
- Collagen A protein of connecting tissue. A major example of a protein that, not being an enzyme, plays a structural role. Collagen is the principal component of bones and tendons. In everyday life, it is known as *gelatin*. It is used to make things such as jellies, glue, and gelatins.

- **Collector** One region of a bipolar transistor. In an npn transistor, the electrons flow into this region when the device is switched ON.
- Conduction band The range of energies in a semiconductor in which an electron is able to move relatively easily through a crystal, and therefore contribute toward the process of electrical conduction. An electron in this band is called a *conduction* electron.
- **Conductor** Material such as the metals copper or aluminum that conducts electricity via the motion of electrons.
- **Copolymer** A polymer that consists of two or more dissimilar monomer units in combination in its molecular chains. Also, a polymer formed from the polymerization of more than one type of monomer.
- **Corrosion** Deteriorative loss of a metal as a result of dissolution environmental reactions.
- **Coulomb** [C] Measure of electrical charge; 1 C is an amount of charge equal to that of about 6.24×10^{18} electrons.
- **Covalent bond** A primary interatomic bond that is formed by the sharing of electrons between neighboring atoms.
- Creep The time-dependent permanent deformation that occurs under stress; for most materials, it is important only at elevated temperatures.
- Critical temperature Usually abbreviated T_c ; the temperature below which a material becomes a superconductor. The recently discovered materials with critical temperatures in excess of about 30 Kelvins are referred to as high- T_c superconductors.
- Critical thickness The maximum thickness of a layer of strained material which can be grown before the crystal structure is disrupted.
- Cross-linked polymer A polymer in which adjacent linear molecular chains are joined at various positions by covalent bonds.
- Cross-sensitivity The influence of one measurand on the sensitivity of a sensor, another measurand.
- **Cross talk** Electromagnetic noise transmitted between leads or circuits in close proximity to each other.
- Crystal The regular arrangement of atoms that is present in virtually all solids.
- Crystal structure For crystalline materials, the manner in which atoms or ions are arrayed in space. It is defined in terms of the unit cell geometry and the atom positions within the unit cell.
- CTE See coefficient of thermal expansion.
- Curie temperature (also Curie point) (T_c) The temperature above which a ferromagnetic or ferrimagnetic material becomes paramagnetic. For iron the Curie point is 760°C and for nickel 356°C.
- **Current** [A] Measure of rate of flow of electric charge. A one-ampere current is a flow of 1 coulomb of charge per second.
- Current density A measure of the amount of current flowing through a wire divided by the cross-sectional area of the wire.
- Cutoff Condition in a diode or bipolar-junction transistor in which the potential across a p-n junction prevents current flow.
- CVD See chemical vapor deposition.

Cyclotron A type of particle accelerator in which an ion introduced at the center is accelerated in an expanding spiral path by use of alternating electrical fields in the presence of a magnetic field.

Cytoplasm The content of a cell without the nucleus.

Debye shielding The Debye length in front of a sensing electrode depends on the ionic strength of the electrolyte used. In a 0.001-N NaCl, the Debye length measures 96.5 Å, while for a 1.0-N solution, it is reduced to 3.0 Å. An adsorbed protein can stick out from the surface for as much as 50 to 100 Å. As a result, the charges that could contribute to the surface potential will be shielded in a 1.0-N solution. To make more sensitive measurements a solution of low ionic strength should be used.

Degradation A term used to describe the deteriorative processes that occur with polymeric materials, including swelling, dissolution, and chain scission.

Denaturation The breaking down of the three-dimensional structure of a protein resulting in the loss of its function.

Density of states A measure of the number of electrons allowed over a given small energy range. The density of states is very low at the extremes of the valence and conduction bands and increases toward the middle of these bands.

Deoxyribonucleic acid See DNA.

Depletion layer The region around a p-n junction that is depleted of carriers. This forms because the conduction electrons and holes in this region have recombined as a result of the diffusion of carriers across the interface.

Design To plan and delineate with an end in mind and subject to constraints.

Devitrification The process in which a glass (noncrystalline or vitreous solid) transforms to a crystalline solid.

Dialysis A phenomenon in which a semipermeable membrane allows transfer of both solvent molecules and small solute molecules and ions.

Diamagnetism A weak form of induced or nonpermanent magnetism for which the magnetic susceptibility is negative. A type of magnetism associated with paired electrons, which causes a substance to be repelled from the inducing magnetic field.

Die See chip.

Dielectric Any material that is electrically insulating.

Dielectric (breakdown) strength The magnitude of an electric field necessary to cause significant current passage through a dielectric material.

Dielectric constant (e) The ratio of the permittivity of a medium to that of a vacuum. Also called the *relative dielectric* constant or relative permittivity.

Dielectric displacement The magnitude of charge per unit area of capacitor plate.

Diffusion A thermochemical process whereby controlled dopants are introduced into a substrate.

Diffusion coefficient The constant of proportionality between the diffusion flux and the concentration gradient in Fick's first law. Its magnitude is indicative of the rate of atomic diffusion. **Digital** Refers to systems employing only quantized (discrete) states to convey information.

Dimer A molecule formed by the joining of two identical monomers.

Diode A two-terminal device that conducts current well in one direction and poorly in the other.

DIP For *dual in-line package*. Common ceramic or plastic enclosure for an integrated circuit.

Dipole (electric) A pair of equal, yet opposite, electrical charges that are separated by a small distance.

Direct gap semiconductor A material in which the recombination of conduction electrons and holes is an efficient process.

Dislocation A linear crystalline defect around which there is atomic misalignment. Plastic deformation corresponds to the motion of dislocations in response to an applied shear stress. Edge, screw, and mixed dislocations are possible.

DNA (deoxyribonucleic acid) Biological chain molecule built from four kinds of building blocks, the nucleotides. DNA, normally found as a double helix spiral of two complementary strands, is the carrier of genetic information in all cellular life forms and many viruses.

DNA polymerase An enzyme responsible for DNA synthesis on the DNA template. The process is called *DNA replication*.

DNA probes A DNA or nucleic acid probe is a short strand of DNA that locates and binds to its complementary sequence in samples containing single strands of DNA or RNA enabling identification of specific sequences. Nucleic acid probe assays exploit the fundamental hybridization reaction that occurs spontaneously between two complementary DNA:DNA or DNA:RNA strands. As in immunoassays, detection of the hybrid requires that the probe be labeled. Various direct and indirect methods have been devised for the detection of the hybrid. Direct labeling involves attaching the label directly to the probe sequence; indirect labeling binds an antibody to the DNA:DNA or DNA:RNA hybrid. As in immunoassays, non-isotopically labeled probes are preferred over radiolabeled probes primarily because of radiation hazards, disposal problems, and short reagent shelf life. In addition, the factors determining the detection limits of hybridization assays based on labeled probes are similar to those in immunoassays. Therefore, the development of a simple, inexpensive, and sensitive direct detection system which eliminates the use of labels is highly desirable.

DNA sequencing There are two main classical methods for sequencing DNA. The first method, developed by Allan Maxam and Walter Gilbert, involves chemicals used to cleave the DNA at certain positions, generating a set of fragments that differ by one nucleotide. The second method, developed by Fred Sanger and Alan Coulson, involves enzymatic synthesis of DNA strands that terminate in a modified nucleotide. Analysis of fragments is similar for both methods and involves gel electrophoresis and autoradiography or fluorescence. The enzymatic method has largely replaced the chemical method as the technique of choice, although there are some situations where chemical sequencing can provide data more easily than the enzymatic method.

Domain A region of a ferromagnetic or ferrimagnetic material in which all atomic or ionic magnetic moments are aligned in the same direction.

- **Donor** An impurity that has more valence electrons than the atom that it replaces. This generally gives rise to a conduction electron.
- **Doping** Process of introducing impurity atoms into a semiconductor to affect its conductivity.
- Double heterostructure laser A laser in which the active region is enclosed between the two heterojunctions. The distinction from a quantum well laser is that the wave-like nature of the electrons and holes does not play a significant role.
- **Drain** The region of a MOSFET through which the carriers flow out of the device.
- **DRAM** For *dynamic random access memory*. Memory in which each stored bit must be refreshed periodically.
- Drift Gradual departure of the instrument output from the calibrated value. An undesired slow change of the output signal.
- DSP For *digital signal processing*. A process by which a sampled and digitized data stream (real-time data such as sound or images) is modified so as to extract relevant information. Also, a digital signal processor.
- Dynamic characteristics A description of an instrument's behavior between the time a measured quantity changes value and the time the instrument obtains a steady response.
- **Dynamic error** The error that occurs when the output does not precisely follow the transient response of the measured quantity.
- **Dynamic range** The ratio of the largest to the smallest values of a range, often expressed in decibels.
- Ductility A measure of a material's ability to undergo plastic deformation before fracture; expressed as percent elongation (%EL) or percent area reduction (%AR) from a tensile test.

EDP Ethylene diamine pyrocatechol.

Effective mass An electron in a crystal appears to be accelerated more rapidly by an electric field than we would expect. We explain this by saying that the electron has an effective mass. It is important to remember that this is a property of the crystal, not of the electron.

EIA See enzyme immunoassay.

EIS See electrolyte/insulator/silicon.

Elastic deformation A nonpermanent deformation that totally recovers upon release of an applied stress.

Elastomer A polymeric material that may experience large and reversible elastic deformations.

Electrical breakdown Condition in which, particularly with a high electric field, a nominal insulator becomes electrically conducting.

Electric field [V/m] In simplest form, the potential difference between two points divided by the distance between the two.

Electroluminescence In electrical engineering, the emission of visible light by a p-n junction across which a forward-biased voltage is applied. In electrochemistry, emission of light by a molecule that is being reduced or oxidized on a biased electrode. If the exciting cause is a photon rather than an electron, the process is called *photoluminescence*.

Electrolyte A solution through which an electric current may be carried by the motion of ions.

Electrolyte/insulator/silicon (EIS) Structures at the heart of a broad family of potentiometric silicon sensors. The bestknown member of the family is the ion-sensitive field effect transistor known as the ISFET or CHEMFET and the lightaddressable potentiometric sensor LAPS. The principle of operation of devices using such structures is as follows. A potential with respect to a reference electrode is generated at the interface between the liquid solution and the insulator. The surface potential (y_0) is determined by the ionic species that has the fastest exchange rate (i_0) with the membrane covering the insulator. If no intentional membrane is deposited on an oxide covered insulator that species will be H⁺. Surface potential changes in turn change the Si flat-band voltage V_{FB} . The flat-band voltage is the potential one needs to apply to the Si to have the bands flat throughout the semiconductor. The flat band voltage of an EIS structure has been shown to be given by $V_{FB} = E_{REF} - f^{Si}/q - y_0 - Q_{ins}/C_{inss}$, where V_{FB} stands for the flat-band voltage of the structure, E_{REF} for the reference electrode potential, F^{Si} for the work function of silicon, y_0 for the surface potential at the insulator/electrolyte interface, Qins for the charge at the insulator/silicon interface, and C_{INS} for the insulator capacitance. At least two terms in the above equation are not known with a precision greater than a few hundred millivolts. This is true for E_{REF} as well as for Q_{INS}/C_{INS} , which can vary from device to device by several hundred millivolts. For a given EIS sensor, these inaccurately known quantities are constant, and variations in flat-band voltage can be equated to variations of the surface potential.

- Electromigration The physical destruction of a wire caused by the movement of ions from their position in the crystal. The effect is typically caused when a narrow wire is subject to a large current density.
- Electromotive force (emf) series A series of chemical elements arranged in order of their electromotive force. The electromotive force is the greatest potential difference that can be generated by a particular source of electric current. In practice, this potential may be observable only when the source is not supplying current, because of its internal resistance.
- Electron Elementary negative particle whose charge is -1.602×10^{19} coulombs.
- Electronegative Describing elements that tend to gain electrons and form negative ions. The halogens are typical electronegative elements.
- Electron-hole pair The excitation of a valence electron into the conduction band leaves behind a hole in the valence band. Thus, the two carriers are created simultaneously.
- Electron state (level) One of a set of discrete, quantized energies that are allowed for electrons. In the atomic case, each state is specified by four quantum numbers.

EMI For electromagnetic interference.

Emitter One region of a bipolar transistor. In an npn transistor the electrons flow out of this region into the base.

Energy [J] Capacity for performing work or to cause heat flow. Like work itself, it is measured in joules. Enthalpy (H) A property of a system equal to E + PV, where E is the internal energy of the system, P is the pressure of the system, and V is the volume of the system. At constant pressure, the change in enthalpy equals the energy flow as heat.

Enzyme A large molecule, usually a protein, that catalyzes biological reactions.

Enzyme immunoassay (EIA) In an EIA, an enzyme-labeled antibody or antigen is used for the detection and quantification of the antigen-antibody reaction. In an electrochemical EIA, the enzyme-catalyzed reaction is monitored electrochemically (amperometric, potentiometric, voltametric, or conductometric). In EIA, the antibody-antigen reaction furnishes the needed specificity. The enzyme label provides the sensitivity via chemical amplification.

Epitaxial or epi A single-crystal semiconductor layer grown upon a single-crystal substrate having the same crystallographic characteristics as the substrate material.

EPROM For *electrically programmable read-only memory*. Non-volatile memory device.

Escherichia coli A bacterium living in natural conditions in man's bowels. Abbreviated *E. coli*. Frequently used in research by molecular biologists.

Eukaryotes Organisms having a cell nucleus.

Exciton A system composed of a conduction electron and a hole that are attracted together by their opposing electrical charges and therefore move through the crystal as a single entity.

Exclusion principle A fundamental rule in quantum theory. It states that no more than two electrons are allowed to occupy a given quantum state at any one time.

Exon A DNA segment that stores information about a part of the amino acid sequence of protein.

Expression Realization of the genetic information encoded in DNA leading to the synthesis of a protein or a stable RNA. The term is used in particular when a foreign gene is introduced into a host cell, which then expresses the gene, that is, produces a recombinant protein, or when the rate of synthesis is artificially enhanced (overexpression).

Extrinsic Characterizes doped, rather than pure, semiconductor.

Fab For *fabrication*, a term referring to the making of semiconductor devices such as microprocessors.

Face-centered cubic (FCC) A crystal structure found in common elemental metals. Within the cubic unit cell, atoms are located at all corner and face-centered positions.

Farad The unit of capacitance. See capacitance.

Faraday A constant representing the charge on one mole of electrons; 96,485 coulombs.

FCC See face-centered cubic.

FEA For finite element analysis.

Fermi energy A quantity that is characteristic of the energy of the electron in a material. At absolute zero, the Fermi energy corresponds to the highest energy electrons; that is, all the states with lower energy are occupied by electrons, and all the ones with higher energy are vacant. At higher temperatures, the Fermi energy corresponds to the average maximum energy of the electron; that is, there are as many electrons above the Fermi energy as there are vacant states below it.

Ferroelectric material A dielectric material such as Rochelle salt and barium titanate with a domain structure containing dipoles (asymmetric distributions of electrical charge) that spontaneously align. Their domain structure makes them analogous to ferromagnetic materials. They exhibit hysteresis and usually the piezoelectric effect.

Ferromagnetism Permanent and large magnetizations found in some metals (e.g., Fe, Ni, and Co) resulting from the parallel alignment of neighboring magnetic moments.

FET For *field-effect transistor*. Semiconductor device whose insulated gate electrode controls current flow.

Fiber-optic Relates to transmission of information as modulated light in tiny transparent fibers instead of copper wires.

Fick's first law The diffusion flux is proportional to the concentration gradient. This relationship is employed for steadystate diffusion situations.

Fick's second law The time rate of change of concentration is proportional to the second derivative of concentration. This relationship is employed in non-steady-state diffusion situations.

Filler An inert foreign substance added to a polymer to improve or modify its properties.

Firing A high-temperature heat treatment that increases the density and strength of a ceramic piece.

Flat-band potential See electrolyte/insulator/silicon (EIS).

Flip-flop Binary device whose outputs change value only in response to an input pulse.

Fluorescence Luminescence (see also *luminescence*) that persists less than a second after the exciting cause has been removed. If the luminescence persists significantly longer, it is called *phosphorescence*.

FM For *frequency modulation*. Information coding scheme in which the frequency of a steady wave is changed.

Forward bias The conducting bias for a p-n junction rectifier that assures electron flow to the n side of the junction.

Free energy (G) A thermodynamic quantity that is a function of the enthalpy (H), the Kelvin temperature (T), and the entropy (S) of a system; G = H - TS. At equilibrium, the free energy is at a minimum. Under certain conditions, the change in free energy for a process is equal to the maximum useful work.

Frequency Number of times per second that a quantity representing a signal, such as a voltage, changes state. Also, the number of waves (cycles) per second that pass a given point in space.

Frequency response Two relations between sets of inputs and outputs. One relates frequencies to the output-input amplitude ratio; the other relates frequencies to the phase difference between the output and input.

Gain The ratio of the amplitude of an output to input signal. Galvanic corrosion The preferential corrosion of the more chemically active of two metals electrically coupled and exposed to an electrolyte.

Gate Circuit whose logical output variables are determined by its inputs.

- Gauss The cgs unit used in measuring magnetic induction.
- Gel A polymer network saturated with a solvent. Like a solid substance, a gel retains its form (e.g., gelatins and jellies). Electrophoresis in gels is widely used in decoding DNA sequences, in genetic engineering, and in investigating circular DNA.
- Gene The physical unit of inheritance, made up of a particular sequence of nucleotides on a particular site on a particular chromosome.
- Gene expression The conversion of the gene's nucleotide sequence into an actual process or structure in the cell. Some genes are expressed only at certain times during an organism's life and not at others.
- Genetic code The sequence of nucleotides in a gene, coded in triplets (codons). The genetic code determines the sequence of amino acids in protein synthesis.
- Genetic engineering An applied branch of molecular biology that engages in purposeful modification of heredity by cutting and "stitching together" DNA molecules and subsequently building them into a living cell.
- Genome All the genes in a complete set of chromosomes.
- **Genotype** A term from classical genetics, denoting the totality of genes of the given organism. Today, the term *genome*, which has the same meaning, is used more frequently.
- Glass An amorphous solid obtained when silica is mixed with other compounds, heated above its melting point, and then cooled rapidly.
- Glass state If a substance is cooled below its freezing (crystallization) temperature but cannot rearrange its atoms or molecules in the way necessary to form an ordered structure, it remains a "vitrified" liquid. Common glass is transparent because it is a supercooled liquid.
- Glass transition temperature (T_g) The temperature at which, upon cooling, a noncrystalline ceramic or polymer transforms from a supercooled liquid to a rigid glass.
- **Grain boundary** The interface separating two adjoining grains having different crystallographic orientations.
- **Grain growth** The increase in average grain size of a polycrystalline material. For most materials, an elevated temperature heat treatment is necessary.
- Grain size The average grain diameter as determined from a random cross section.
- **Green ceramic body** A ceramic piece, formed as a particulate aggregate, that has been dried but not fired.
- Ground To make electrical connection to the Earth or to the chassis of a device (verb); the connection point so used (noun).
- GUI For *graphical user interface*. Hardware, software, and firmware that produces the display on modern personal computers.
- Hall effect The phenomenon whereby a force is applied to a moving electron or hole by a magnetic field that is applied perpendicular to the direction of motion. The force direction is perpendicular to both the magnetic field and the particle motion directions.
- **Hardness** The measure of a material's resistance to deformation by surface indentation or by abrasion. There are various

scales in use to express hardness. The Mohs scale is qualitative and somewhat arbitrary and ranges from 1 on the soft end for talc to 10 for diamond. Quantitative scales are the Rockwell (indicated by HR), Brinell (HB), Knoop (HK), and Vickers (HV). Knoop and Vickers are referred to as microhardness testing methods on the basis of load and indenter size.

- Heat capacity (C_v at constant volume and C_p at constant pressure) The quantity of heat required to produce a unit temperature rise per mole of material.
- **Helix** Structure wound up like a screw. In biochemistry, helices are commonly found in proteins (alpha helix) and in nucleic acids (double helix).
- Heme An iron complex.
- Hemoglobin A biomolecule composed of four myoglobin-like units (proteins plus heme) that can bind and transport four oxygen molecules in the blood.
- HEMT For high electron mobility transistor. These are also called MODFETs.
- Henry (H) Unit of inductance (*see inductance*). One henry (H) is the inductance of a closed circuit in which an electromotive force of one volt is produced when the electric current in the circuit varies uniformly at the rate of one ampere per second.
- Henry's law The amount of gas dissolved in a solution is directly proportional to the pressure of the gas above the solution.
- **Heterostructure** A device consisting of two (or more) different types of material. A heterojunction is the interface between these two materials.
- **Hirudin** A potent clotting inhibitor produced by leeches. The gene for this protein has now been genetically engineered into canola plants.
- **Histones** Proteins that are part of chromosomes. They form the protein core of nucleosomes.
- Hole A particle that corresponds to the absence of an electron in the valence band of a semiconductor. The particle behaves as though it carries a positive charge. In most semiconductors, the holes at the top of the valence band can have one of two different values of effective mass and are referred to as *light holes* and *heavy holes*. Since their mobility depends on their effective mass, it is often necessary to distinguish between the two.
- Home page A site or "page" on the World Wide Web (WWW).
- Homogeneous and heterogeneous assays A homogeneous assay does not require a separation step to remove free antigen from bound antigen and relies on the fact that the function of the label is modified upon binding, leading to a change in signal intensity. Because of high background signal, a heterogeneous approach incorporating a separation step of bound and unbound makes the detection limit lower, approaching the values obtained by RIA. The homogeneous assay is less technically demanding.
- Hormones Molecules of protein and other origins that regulate many processes in the organism. The lack or excess of a particular hormone causes many chronic ailments. Such hormones as insulin, growth hormone, and others are widely known.

http For hypertext transfer protocol. Transfer protocol used on the WWW.

Human genome project An international research effort begun in the 1980s to map and sequence all 100,000 or so genes found in human DNA.

Hydrophobic Water-avoiding.

Hydrophobic interaction Tendency of hydrophobic molecules or parts of molecules to cluster with other hydrophobic groups to minimize their exposure to water. Hydrophobic interactions are important factors for the stability of cellular structures such as the double layer membrane and the inner core of proteins.

Hyperthermophilic Extremely heat-loving, normally used to describe microorganisms whose optimal growth temperature exceeds 80°C.

Hysteresis The difference in the output when a specific input value is approached first with an increasing and then with a decreasing input. This phenomenon occurs in ferroelectric materials and results in irreversible loss of energy through heat dissipation.

IC See integrated circuit.

Immunoglobulin G The most common class of antibodies present in human serum (i.e., the liquid part of blood).

Impedance The complex ratio of a force-like quantity (force, pressure, voltage, temperature, or electric field) to a corresponding related velocity-like quantity (velocity, volume velocity, current, heat flow, or magnetic field strength).

Impurity scattering The presence of impurities in a sample deflects the electrons and therefore gives rise to resistance. This is particularly important when the impurities form ions.

Index of refraction (n) The ratio of the velocity of light in a vacuum to the velocity in some medium.

Indirect gap semiconductor A material in which the recombination of conduction electrons and holes occurs by an inefficient process.

Inductance [in Henry, H] The property of an electric circuit that tends to oppose change in current in the circuit. One henry (H) is the inductance of a closed circuit in which an electromotive force of one volt is produced when the electric current in the circuit varies uniformly at the rate of one ampere per second.

Inductor Energy storage circuit component consisting of a coil of wire and possibly a magnetic material.

Infrared Invisible electromagnetic radiation having a longer wavelength, and lower frequency, than visible red light.

Inhibitor A chemical substance that, when added in relatively low concentrations, slows down a chemical reaction.

Insertion point (in lithography context) Adaptation of a new lithography technique is referred to as the insertion point of that technique.

Insulator Material that conducts electricity very poorly.

Insulin A hormone consisting of 51 amino acids in two polypeptide chains. Insulin reduces the glucose level in the blood. Failure to produce insulin is one of the causes of diabetes.

Integrated circuit (IC) Semiconductor circuit, typically on a very small silicon chip, containing microfabricated transistors, diodes, resistors, capacitors, etc.

Interference A phenomenon that is characteristic of waves. When the waves are in phase, the interference is constructive and the amplitude of the resultant waves is increased. When the waves are out of phase, the interference is destructive and the waves cancel each other out.

Internet Worldwide digital communication network in which packets of information travel between senders and recipients.

Interstitial diffusion A diffusion mechanism that causes atomic motion from interstitial site to interstitial site.

Intrinsic semiconductor Characterizes pure undoped semiconductor; electrical conductivity depends only on temperature and the band gap energy.

Intron A DNA section that divides exons.

I/O Input/output information transfer between computer and peripherals such as keyboard or printer.

Ion An atom that has gained or lost one or more electrons and therefore has a net electric charge. Ionic bonding occurs in materials where the electrons are transferred from one type of atom to another. The bond is a result of the attractive forces between the positive and negative ions.

Ion channels Pores in the cell membrane that allow and regulate the transport of ions across the membrane.

Ionic bond A coulombic interatomic bond existing between two adjacent and oppositely charged ions.

Ion implantation A method of introducing dopant atoms into a crystal by projecting them at high speed toward the crystal surface.

Ionophore A macro-organic molecule capable of specifically solubilizing an inorganic ion of suitable size in organic medi-

ISE For *ion selective electrode*. Ions in solution are quantified by measuring the change in voltage (i.e., potentiometric) resulting from the distribution of ions (by ion exchange controlled by the ion exchange current i_o) between a sensing membrane (the ion selective membrane) and the solution. This potential is measured at zero current with respect to a reference electrode which is also in contact with the solution. The potential measured is proportional to the logarithm of the analyte concentration. The oldest and best known ISE is the pH sensor based on a glass membrane. More recently, polymeric membranes have been formed incorporating ion-ophores (see *ionophore*) rendering the membrane specific to certain ions only.

ISFET For ion sensitive field effect transistor. A logical extension of ISEs. They can be conceptualized by imagining that the lead from an ion selective electrode, attached via a cable to an FET in the high-impedance input stage of a voltmeter, is made shorter until no lead exists and the selective membrane is attached directly to the FET. For an ISFET, the property measured is the lateral conductivity between two opposing doped regions (the source and drain) surrounding the active area. The underlying change is a change in flat-band voltage.

Isomorphous Having the same structure. In the phase diagram sense, isomorphicity means having the same crystal structure or complete solid solubility for all compositions.

Isothermal At a constant temperature. In an isothermal process heat is, if necessary, supplied or removed from the system at just the right rate to maintain constant temperature.

Isotropic Having identical values of a property in all crytallographic directions.

Josephson junction A device formed by placing a very thin layer of insulator between two superconductors. The insulator is said to form a weak superconductor because the flow of superconducting current across the junction is extremely sensitive to a magnetic field.

Kilobyte (kB) 2¹⁰ (= 1024, or about 1000) bytes of information. Kilohertz (kHz) One thousand cycles per second (see also *frequency*).

Kinesin A motor protein used for transport processes within the cell and which migrates along the microtubules.

Kinetic molecular theory A model that assumes that an ideal gas is composed of tiny particles (molecules) in constant motion.

Label or marker A problem endemic in immunoassays is the absence of a chemical signal created by the antibody-antigen binding, in contrast with an enzyme-substrate binding reaction which produces a chemical reaction. As a result of this absence, the use of a label or marker is usually required to detect the bound antibody-antigen complex. Several markers have been established for use in immunoassays. Examples of such markers are as follows:

- Particles (e.g., latex, gold particles, erythrocytes)
- Metal and dye sols (e.g., Au, Palanil® Luminous Red G)
- Chemiluminescent and bioluminescent compounds (e.g., Luciferase/luciferins, Luminol and derivatives, Acridinium esters, Peroxidase)
- Electrochemical active species (ions, redox species, ionophores)
- Fluorophores (e.g., dansyl chloride DANS, rare earth metal chelates, Umbelliferones)
- Chromophores
- Enzymes (e.g., alkaline phosphatase, b-D-Galactosidase, Peroxidase), substrates, cofactors
- · Liposomes
- · Iodine-125, tritium, 14C, 75Se, 57Co.

Langmuir-Blodgett film A single layer of molecules that has been transferred from the surface of a liquid onto a solid substrate.

Laser For *light amplification by the stimulated emission of radiation.* Quantum device that produces coherent light.

Laser trimming A method for adjusting the value of thin or thick film resistors by using a computer-controlled laser system.

LCD For *liquid crystal display*. Display device employing light source and electrically alterable optically active thin film.

Leakage The loss of all or parts of a useful agent, as of the electric current that flows through an insulator or the magnetic flux that passes outside useful flux circuits.

LED For *light-emitting diode*. Semiconducting diode that produces visible or infrared radiation.

Lewis acid An electron-pair acceptor.

Lewis base An electron-pair donor.

Life (**lifetime**) The length of time the sensor can be used before its performance changes.

Limit of detection The smallest measurable input. This differs from resolution, which defines the smallest measurable change in input. For a temperature measurement, this would provide an indication of the lowest temperature in response to which a sensor could generate an output.

Linear coefficient of thermal expansion See thermal expansion coefficient, linear.

Linearity The degree to which the calibration curve of a device conforms to a straight line.

Lipids Water-insoluble substances than can be extracted from cells by nonpolar organic solvents.

Luminescence Defined as the emission of light from a substance in an electronically excited state. Depending on whether the excited state is singlet or triplet, the emission is called *fluorescence* (less than 1 s decay) or *phosphorescence* (longer than 1 s decay). Depending on the source from which molecules get the needed extra energy, different types of luminescence are distinguished: radioluminescence, photoluminescence (in the same category are fluorescence and phosphorescence), chemiluminescence and bioluminescence, electrochemiluminescence, sonochemiluminescence and thermoluminescence.

Magnetic field strength (designated by H) [A/m] Magnetic field produced by a current, independent of the presence of magnetic material. The units of H are ampere-turns per meter, or just amperes per meter.

Magnetic flux density or magnetic induction (designated by

- B) The magnetic field produced in a substance by an external magnetic field. The units of B are tesla (T). One tesla is the magnetic flux density given by a magnetic flux of 1 weber per square meter. One weber is a magnetic flux that, linking a circuit of one turn, would produce in it an electromotive force of one volt if it were reduced to zero at a uniform rate in one second. Both B and H are field vectors. One henry (H) is the inductance of a closed circuit in which an electromotive force of one volt is produced when the electric current in the circuit varies uniformly at the rate of one ampere per second. The magnetic field strength and flux density are related according to $B = \mu H$, where μ is the permeability (*see* permeability).
- Magnetic susceptibility (c_m) The proportionality constant between the magnetization M (see magnetization) and the magnetic field strength H. The magnetic susceptibility is unitless.
- Magnetization (M) The total magnetic moment per unit volume of material. Also, a measure of the contribution to the magnetic flux by some material within an H field. The magnetic flux by some material within an H field.

- nitude of M is proportional to the applied field as $M = c_m \times H$, with c_m the magnetic susceptibility.
- Magnetostrictive material A material that changes dimension in the presence of a magnetic field or generates a magnetic field when mechanically deformed.
- Majority/minority carriers In a semiconductor, the majority carrier is the one introduced by doping the material. The minority carriers are the other type of carrier (conduction electrons or holes) present because of thermal excitation.
- **Martensite** A metastable iron phase supersaturated in carbon that is the product of a diffusionless (a thermal) transformation from austenite.
- Mask Pattern on glass, like a photographic negative, for producing integrated-circuit elements on a semiconductor wafer.
- MBE For *molecular beam epitaxy*. One way of producing high-quality atomically layered structures.
- MCM For *multichip module*. The interconnection of two or more semiconductor chips in a semiconductor-type package. Mean Numerical average of data values.
- **Measurand** A physical quantity, condition, or property that is to be measured.
- **Mechatronics** The synergistic combination of precision mechanical engineering with electronic control.
- Megabyte (MB) 2²⁰ (= 1,048,576, or about 1 million) bytes of information.
- **Megahertz** (MHz) One million cycles per second (see also *frequency*).
- MEMS Stood originally for *microelectromechanical system*. Microscopic mechanical elements, fabricated on silicon chips by techniques similar to those used in integrated circuit manufacture, for use as sensors, actuators, and other devices. Today, almost any miniaturized device (based on Si technology or traditional precision engineering, chemical or mechanical) is referred to as a MEMS device.
- MESFET The name given to an FET structure fabricated from gallium arsenide. The principle of operation is slightly different from that of a MOSFET because there is no oxide layer above the gate (since gallium arsenide has no native oxide).

Messenger RNA See mRNA.

- Metallic bonding The bond that forms between a collection of positive ions as a result of the associated sea of electrons. Materials that bond in this way are called *metals*. Owing to the large number of essentially free electrons, these materials make good electrical conductors.
- **Microphone** Device that produces voltage or current in response to a sound wave.
- **Microprocessor** Chip containing the logical elements for performing calculations and carrying out stored instructions.
- **Microstructure** In materials engineering the structural features of a material such as grain boundaries, grain size and structure, subject to observation under a microscope, selective etching, etc. In MEMS microstructure, unfortunately, it is also used to designate a micromachined feature.
- Microtubules Hollow tubes made of subunits of the protein tubulin. They serve both for structural stability of higher cells and as a "rail" for transport processes mediated by the motor protein kinesin.

- Miller indices A set of three integers (four for hexagonal) that designate crystallographic planes, as determined from reciprocals of fractional axial intercepts.
- MIPS For *millions of instructions per second*. A measure of computing power.
- **Mitochondrion** A cigar-shaped body located in the cytoplasm. It is the cell's power plant, transforming food products into adenosine triphosphoric acid (ATP) energy.
- **Mobility** (**electron**, **and hole**) The proportionality constant between the carrier drift velocity and applied electric field.
- **Modulus of elasticity** (E) The ratio of stress to strain when deformation is totally elastic. Also the Young's modulus.
- **Molality** The molality or molal concentration (symbol m) is the amount of substance per unit mass of solvent or mol kg⁻¹.
- Molarity Concentration in a liquid solution (symbol c), in terms of the number of moles of a solute dissolved in 10⁶ mm³ (10³ cm³) of solution in mol L⁻¹.
- Molding (plastics) Shaping a plastic material by forcing it, under pressure at a high temperature, into a mold cavity.
- **Molecular chaperone** A protein that helps unfolded or freshly synthesized proteins to fold to the correct three-dimensional structure by suppressing unwanted side reactions.
- Monoclonal antibodies Produced by injecting animals to elicit a response from lymphocytes to produce antibodies. Lymphocytes that produce antibodies with strong binding capability can be isolated and used to produce only one kind of antibody (monoclonal) on a permanent basis once the lymphocytes are immortalized. This is accomplished by fusing them (combining them genetically) with cancer cells, which have the distinction of living indefinitely in a culture. Monoclonal antibodies can be produced repeatedly and collected for use in immunodetection.
- Moore's law (after Gordon Moore) "The number of transistors per computer chip will double roughly every two years."
- MOSFET For metal-oxide-semiconductor field effect transistor.

 Device in which gate electrode potential controls current flow.
- mRNA (messenger RNA) The information carrier used by the ribosome during protein biosynthesis. The mRNA arises from the process of DNA transcription. In contrast to transfer and ribosomal RNA, it is quite short-lived. The latter two, therefore, may be called stable RNAs.
- MUX Device for combining several signals or data streams into a single flow.
- Myosin The motor protein that generates the force and movement in contraction of muscles.
- **NAND** For *NOT-AND*. Logic gate whose output is the negation of that of the AND gate.
- Nanotubes Tubes with an inner diameter in the nanometer range.
- **Nernst equation** An equation relating the potential of an electrochemical cell to the concentrations of the cell components $E = E^{\circ} + RT/zF \ln C_1/C_2$ with z the charge exchanged at the electrode and C_1 and C_2 concentrations of two electroactive compounds.
- **NOR** For *NOT-OR*. Logic gate whose output is the negation of that of the OR gate.

- NOT Logic gate whose output is binary 1 when its input is 0, and whose output is a 0 when its input is a 1.
- **n-type semiconductor** Characterizes a semiconductor containing predominantly mobile electrons (see also *p-type semiconductor*).
- **Nucleation** The initial stage in a phase transformation, evidenced by the formation of small particles (nuclei) of the new phase, which are capable of growing.
- Nucleosome The principal structural element of the chromosome. It consists of a protein (histone) core, on which is wound DNA with a length of 140 base pairs, thus making about two turns.
- **Nucleotide** A monomer of the nucleic acids composed of a fivecarbon sugar, a nitrogen-containing base, and phosphoric acid.
- Nucleotide sequence (or base sequence) The particular arrangement of nucleotides along a strip of DNA. Genes are defined as a particular nucleotide sequence.
- Nucleus Part of the cell containing the chromosomes.
- Ohm (Ω) Unit of resistance. One ohm is the electrical resistance between two points of a conductor when a constant potential difference of one volt, applied to these points, produces a current of one ampere in the conductor.
- Ohmmeter Tool for measuring electrical resistance.
- **Op-amp** For *operational amplifier*. Semiconductor amplifier characterized by high gain and high internal resistance.
- OR Logic gate whose output is a binary 1 if any of its inputs is a 1; otherwise it is 0.
- Organelles Compartments of the eukaryotic cell, which are separated from the cytoplasm by a membrane and fulfill specialized function. Examples are mitochondria (energy metabolism) and chloroplasts (photosynthesis).
- Oscillator Circuit that produces an alternating voltage (current) when supplied by a steady (DC) energy source.
- Osmosis The flow of solvent into a solution through a semipermeable membrane.
- Osmotic pressure (p) The pressure that must be applied to a solution to stop osmosis p = MRT.
- **Oxidation** The removal of one or more electrons from an atom, ion, or molecule.
- **Package** Protective enclosure for a chip or a sensor, typically made of plastic or ceramic.
- Paramagnetism A relatively weak form of magnetism resulting from the independent alignment of atomic dipoles (magnetic) with an applied magnetic field. Also, a type of induced magnetism, associated with unpaired electrons, that causes a substance to be zapped into the inducing magnetic field.
- PCR See polymerase chain reaction.
- Peptide A chain molecule that consists of amino acids like a protein but is usually too small to adopt a protein-like structure.
- Periodic table A system in which the chemical elements are classified according to certain properties. In particular, the elements in Group I have one valence electron, those in Group II have two valence electrons, etc.

Permeability [m] From the relation between magnetic induction and magnetic field ($B = \mu \times H$); for free space, $\mu_0 = 1.26 \times 10^{-6}$ H/m.

- Permittivity [e] From the relation between polarization charge and electric field; for free space, $e_0 = 8.85 \times 10^{-12}$ F/m.
- Phase A term describing the specific stage that a wave is at in its cycle. In general, we are interested in determining the phase of one wave relative to another. If the peaks of the waves coincide, we say that they are in phase; if the peak of one coincides with the trough of the other, then they are out of phase.
- Phase shift A time difference between the input and output signals.
- **Phase transformation** A change in the number and/or character of the phases that make up the microstructure of an alloy.
- **Phenotype** A notion of classical genetics signifying the totality of external characteristics and properties of a living organism, which have evolved in the course of its development.
- Phonon A single quantum of vibrational or elastic energy.
- **Phosphorescence** Luminescence that occurs at times greater than on the order of a second after an electron excitation event (see also *luminescence*).
- **Photodiode** Semiconductor diode that produces voltage (current) in response to illumination (see also *phototransistor*).
- **Photolithography** The process that is most commonly used to transfer the layout of an integrated circuit on to a wafer.
- Photomicrograph The picture made with a microscope.
- **Phototransistor** Transistor that, when powered, produces amplified voltage (current) in response to illumination.
- Piezoelectric material A ferroelectric material in which an electrical potential difference is created due to mechanical deformation or, conversely, in which the application of a voltage causes dimensional changes in the material.
- Pinhole The term embraces a wide variety of oxide defects and is used in a broad sense today. Listed in this category are cracks caused by thermal contraction after oxidation or by handling, and regions of oxide with low dielectric strength caused by dust particles, inadequate masking, contamination, or poor resist adhesion.
- **Pin-out** Diagram showing the relations between connecting pins and internal components for electronic devices.
- Pixel For *picture element*. Smallest element of an image, such as a dot on a computer monitor screen.
- **Pitting** A form of very localized corrosion wherein small pits or holes form, usually in a vertical direction.
- **pK value** A measure of the strength of an acid on a logarithmic scale. The pK value is given by $\log_{10} (1/K_a)$, where K_a is the acid dissociation constant. pK values often are used to compare the strengths of different acids.
- Planck's constant The fundamental constant associated with quantum theory. The energy of a photon is equal to Planck's constant multiplied by the speed of light and divided by the wavelength of the light.
- **Plasmid** A small circle of bacterial DNA separate from the single bacterial chromosome and capable of replicating independently. Plasmids are also occasionally found in certain fungi and plants.

- **Plastic deformation** Permanent or nonrecoverable deformation, accompanied by permanent atomic displacement.
- Plasticizer A low-molecular-weight polymer additive that enhances flexibility and workability and reduces stiffness and brittleness.
- **p-n junction** A device formed from a single crystal containing regions that are doped p-type and n-type. Among other applications, the device can be used as a diode or in a p-n junction laser.
- Point defect A crystalline defect associated with one or several atomic sites.
- Poisson's ratio (n) For elastic deformation, the negative ratio of lateral and axial strains that result from an applied axial stress.
- **Polarization** (P) The total electric dipole moment per unit volume of dielectric material.
- Polyclonal antibodies Antibodies produced by an animal's white blood cells (lymphocytes, specifically) in response to an antigen. This response occurs naturally or can purposely be created by injecting an animal, such as a rabbit or goat, with a specific antigen. More than one kind of antibody is produced, since more than one lymphocyte is producing antibodies. This is referred to as *polyclonal*. The polyclonal antibodies are isolated from the animal and can be used for detection purposes. Because the antibodies are actually a mixture with different affinities (binding capability) for the antigen of interest, some variability in performance can occur from one test to another or one batch of antibodies to another.
- Polymerase chain reaction (PCR) A method for making multiple copies of fragments of DNA. It uses a heat-stable DNA polymerase enzyme and cycles of heating and cooling to successively split apart the strands of double-stranded DNA and uses the single strands as templates for building new double-stranded DNA.
- Polypeptide Any polymer made of amino acid building blocks. Used in particular for those cases when the polymer is unstructured—as opposed to a protein, which is a polypeptide that normally adopts a well defined three-dimensional structure.
- **Polysilicon** Polycrystalline silicon used as conductor in integrated circuits, and especially FETs.
- Potentiometric device Monitors the voltage between a sensing electrode and a reference electrode. A high input impedance voltmeter is used to minimize current flow. The voltage typically is proportional to the logarithm of the analyte concentration.
- **Power** [W] Product of voltage and current in a component; also, refers to the field of electric energy supply.
- **Precision** The degree of reproducibility among several independent measurements of the same true value under specified conditions.
- **Primary structure** First level of structure in proteins, comprising the order or sequence of amino acids in the polypeptide chain.
- **Primer** A single-stranded oligonucleotide (DNA or RNA) that binds, via complementary pairing, to DNA or RNA single-

- stranded molecules and serves for the priming of polymerases working on both DNA and RNA.
- **Printed circuit board** Selectively metallized insulating sheet for supporting and interconnecting circuit components.
- **Protein biosynthesis** The process of linking up amino acid building blocks to form a protein molecule. It is carried out by the ribosome together with a set of other cellular factors.
- Protein folding The process in which the linear chain of amino acids (i.e., polypeptide) arising from protein biosynthesis or from denaturation of a protein forms a three-dimensional structure stabilized by many weak interactions. Most proteins have to be folded to be biologically active.
- Proteins Molecules made up of long chains of amino acids. They build tissues and carry out many critical functions in the body. Proteins literally make us what we are.
- **p-type semiconductor** A semiconductor for which the predominant charge carriers responsible for electrical conduction are holes.
- Pyroelectricity The property of certain crystals, such as tourmaline, of acquiring opposite electrical charges on opposite faces when heated.
- Q factor A rating, applied to coils, capacitors, and resonant circuits, equal to the reactance divided by the resistance. The ratio of energy stored to energy dissipated per cycle in an electrical or mechanical system.
- Q particles Nanometer-sized particles of semiconductor materials, whose behavior is governed by quantum-mechanical effects.
- **Quantization** The concept that energy can occur only in discrete units called *quanta*.
- **Quantum dot** An artificial structure in which the carriers exhibit wave-like properties along all three dimensions.
- Quantum Hall effect The anomalous results obtained from the Hall effect when the carriers are confined in one dimension.
- Quantum well An artificial structure in which the carriers are confined in one dimension. In other words, the electrons exhibit wave-like properties in one dimension but behave as free electrons in the other two dimensions. A quantum well laser uses these properties to produce a semiconductor laser which is far more efficient than a p-n junction laser.
- Quantum wire An artificial structure in which carriers are confined in two dimensions. The carriers are free to travel along the axis of the wire, but exhibit wave-like properties in the other directions.
- RAM For *random access memory*. Read-write memory with elements accessible in any order.
- Range The difference between the minimum and maximum values of sensor output in the intended operating range. Defines the overall operating limits of a sensor.
- **Reactance** Portion of impedance that characterizes nondissipative, energy storage effects (see also *impedance*).
- **Reactant** A starting substance in a chemical reaction. It appears to the left of the arrow in a chemical reaction.
- Recombinant DNA Novel DNA made by joining DNA fragments from different sources.
- **Recombination** The process by which a conduction electron is reunited with a hole. As a result, both carriers are annihilated,

and there is a release of energy (usually in the form of a photon).

- **Recrystallization** The formation of a new set of strain-free grains within a previously cold-worked material due to an annealing heat treatment.
- Rectifier Device that converts bidirectional to one-way current flow
- Reduction The addition of one or more electrons to an atom, ion, or molecule.
- **Reflection** Deflection of a light beam at the interface between two media.
- **Refraction** Bending of a light beam when passing from one medium to another, at different velocities of light.
- **Refractory** A metal or ceramic that does not deteriorate rapidly or does not melt when exposed to extremely high temperatures.
- Relative magnetic permeability (μ_r) The ratio of the magnetic permeability of some medium to that of a vacuum (unitless), or $\mu_r = \mu/\mu_0$, where μ_0 is the permeability of vacuum, a universal constant, which has a value of 1.257×10^{-6} H/m.
- Reliability (life, multi-use vs. single, calibration vs. accuracy drift) How well a sensor maintains both precision and accuracy over its expected lifetime. Also includes the robustness of the sensor.
- Repeatability The exactness with which a measuring instrument repeats indications when it measures the same property under the same conditions.
- **Residual stress** A persisting stress in a material free of external forces or temperature gradients.
- Resistance $[\Omega, ohm]$ Characteristic of a resistor. In a 1- Ω resistance, a current of 1 A produces a voltage drop of 1 V.
- Resistivity (ρ) The reciprocal of electrical conductivity, and a measure of a material's resistance to passing electric current.
- **Resistor** Energy dissipative element consisting of a poor conductor in series with connecting wires.
- **Resolution** The smallest measurable change in input that will produce a small but noticeable change in the output. In the context of chemical separations, defines the completeness of separation.
- **Resonant frequency** The frequency at which a moving member or a circuit has a maximum output for a given input.
- **Resonant tunneling** A process in which the probability of an electron tunneling through a barrier increases dramatically for a specific energy. This principle is applied in the resonant tunneling transistor.
- Response time The time it takes for the sensor's output to reach its final value. A measure of how quickly the sensor will respond to changes in the environment. In general, this parameter is a measure of the speed of the sensor and must be compared with the speed of the process.
- **Restriction endonuclease (or enzyme)** An enzyme that cuts a DNA molecule at a particular base sequence.
- Reverse bias The insulating bias for a p-n junction rectifier; electrons flow into the p side of the junction.
- RF For *radio frequency*. Refers to alternating voltages and currents having frequencies between 9 kHz and 3 MHz.
- RHEED For reflection high-energy electron diffraction.

Rhodopsin A protein molecule that plays a key role in transforming light into the visual signal in the eye.

Ribonucleic acid See RNA.

Ribosome A complex of more than 50 proteins and several RNA molecules, which carries out the synthesis of proteins following the genetic instructions read from the messenger RNA with the help of transfer RNAs and various protein factors.

rms For root mean square.

- RNA (ribonucleic acid) A nucleotide chain that differs from DNA in having the sugar ribose instead of deoxyribose and having the base uracil instead of thymine. RNA helps translate the instructions encoded in DNA to build proteins.
- RNA polymerase An enzyme synthesizing messenger RNA on the DNA template, which carries out the transcription pro-
- ROM For *read only memory*. Memory used for permanent storage of unalterable data; nonvolatile memory.
- Sacrificial anode An active metal or alloy that corrodes and protects another metal or alloy to which it is electrically coupled.
- Sacrificial layer A thin film that is later removed to release a microstructure from its substrate.
- **Scanning electron microscope** (SEM) A microscope producing an image by using reflected electron beams that scan the surface of a specimen.
- Scanning tunneling microscope (STM) A technique that uses the quantum-mechanical effect called *tunneling* (i.e., that electrons can jump through "forbidden" space across very short distances) to probe surfaces at nearly atomic resolution.
- Secondary structure Certain structural features of proteins that can directly form from the linear protein chain. Secondary structure elements include alpha helices and beta-pleated sheets.
- Selectivity The ability of a sensor to measure only one metric or, in the case of a chemical sensor, to measure only a single chemical species.
- SEM See scanning electron microscope.
- **Semiconductor** Nonmetallic material, such as silicon, whose electrical conductivity is moderate and alterable by doping.
- Sensitivity The amount of change in a sensor's output in response to a change at a sensor's input over the sensor's entire range. Provides an indication of a sensor's ability to detect changes. For some sensors, the sensitivity is defined as the input parameter change required to produce a standardized output change.
- SHE See standard hydrogen electrode.
- **Signal-to-noise-ratio** The ratio of the output signal with an input signal to the output signal with no input signal.
- Single crystal A crystalline solid for which the periodic and repeated atomic pattern extends throughout its entirety without interruption.
- **Sintering** Particle coalescence of a powdered aggregate by diffusion that is accomplished by firing at an elevated temperature.
- SI units International system of units based on the metric system and units derived from the metric system.

- Slip Plastic deformation resulting from dislocation motion; also, the shear displacement of two adjacent planes of atoms.
- Slip casting A forming technique used to shape ceramic materials. A slip or suspension of solid particles in water is poured into a porous mold. A solid layer forms on the inside wall as water is absorbed by the mold, leaving a shell (or a solid piece) in the shape of the mold.
- **Smart sensor** A sensor in which the electronics that process the output from the sensor are partially or fully integrated on a single chip.
- Solvent The component of a solution that dissolves a solute.
- Source The region of an FET through which the carriers flow into the device.
- **Span** The difference between the highest and lowest scale values of an instrument.
- Specific heat The heat capacity per unit mass of material.
- **Specific modulus (specific stiffness)** The ratio of elastic modulus to specific gravity for a material.
- **Specific strength** The ration of tensile strength to specific gravity for a material.
- **Spinning** Fiber forming process. A multitude of fibers are spun as molten material is forced through many small orifices.
- **Spontaneous emission** A randomly occurring process in which a conduction electron recombines with a hole to produce a photon.
- **Squeeze-film damping** Effect of ambient fluid and spacing on the vertical movement of a structural member with respect to a substrate.
- **Stability** The ability of a sensor to retain specified characteristics after being subjected to designated environmental or electrical test conditions.
- **Stabilizer** A polymer additive that counteracts deteriorative processes.
- Standard atmosphere A unit of pressure equal to 760 mm Hg. Standard hydrogen electrode (SHE) A platinum conductor in contact with a 1 M H $^+$ ions and bathed by hydrogen gas at one atmosphere.
- **Steady-state diffusion** The diffusion condition for which there is no net accumulation or depletion of diffusing species. The diffusion flux is independent of time.
- **Step response** The response of a system to an instantaneous jump in the input signal.
- Stiction Static friction; adhering of thin micromachined layers to a substrate.
- Stimulated emission A process in which the presence of one photon induces recombination of an electron and hole to produce another identical photon.
- STM See scanning tunneling microscope.
- Stoichiometry For ionic compounds, the state of having exactly the ratio of cations to anions specified by the chemical formula. Stoichiometric quantities refer to quantities of reactants mixed in exactly the correct amounts so that all are used up at the same time.
- Strain (ε) The change in gauge length of a specimen, in the direction of an applied stress, divided by its original gauge length.

- Strain gauge An element (wire or foil) that measures a strain based on electrical resistance changes of the gauge that result from a change in length or dimension strain of the wire or foil
- **Stress concentration** The concentration or amplification of an applied stress at the tip of a notch or small crack.
- Stress corrosion (cracking) A form of failure resulting from the combined action of a tensile stress and a corrosion environment, occurring at lower stress levels than required when the corrosion environment is absent.
- **Superconductivity** A phenomenon characterized by the disappearance of the electrical resistivity at temperatures approaching 0 K.
- Superconductor A state of matter, generally achieved at extremely low temperatures, in which (among other things) the material exhibits no resistance to the flow of a direct current.
- Superlattice An artificial structure formed by constructing a large number of quantum wells side by side, separated by thin barrier layers. Interaction of electrons in neighboring wells produces a series of allowed minibands.
- **Surface plasmon** A collective motion of electrons in the surface of a metal conductor, excited by the impact of light of appropriate wavelength at a particular angle.
- **Synchrotron** A particle accelerator providing synchronized particles and high-energy x-rays.
- Systematic error An error that always occurs in the same direc-
- TAB bonding Tape automated bonding. Semiconductor packaging technique that uses a tiny lead-frame to connect circuitry on the surface of the chip to a substrate instead of wire bonds.
- TEM See transmission electron microscope.
- **Tensile strength** (TS) The maximum engineering stress, in tension, sustainable without fracture; also called *ultimate* (*tensile*) *strength*.
- **Tertiary structure** Comprises the complete folded structure of a native protein, including through-space links (tertiary contacts) between separate elements of secondary structure.
- Tesla [T] Unit of magnetic induction 1 T = 1 weber/m² (also, 1 T = 10^4 gauss).
- TFT For thin film transistor.
- Thermal conductivity (κ) For steady-state heat flow, the proportionality constant between the heat flux and the temperature gradient. Also, a parameter characterizing the ability of a material to conduct heat.
- Thermal expansion coefficient, linear (α) The fractional change in length divided by the change in temperature.
- Thermal fatigue A type of fatigue failure that introduces the cyclic stresses by fluctuating thermal stresses.
- **Thermal shock** The fracture of a brittle material resulting from stresses introduced by a rapid temperature change.
- Thermal stress A residual stress introduced within a body resulting from a change in temperature.
- Thermistor A temperature-measuring device that contains a resistor or semiconductor whose resistance varies with temperature.

Thermocouple A temperature-measuring device that contains a pair of end-joined dissimilar conductors in which an electromotive force is developed by thermoelectric effects when the joined ends and the free ends of the conductors are a different temperature.

Thermophilic Heat-loving.

- Thermoplastic polymer A substance that when molded to a certain shape under appropriate conditions can later be remelted.
- Thermoset polymer A substance that, when molded to a certain shape under pressure and high temperatures, cannot be softened again or dissolved.
- Threshold The smallest input signal that will cause a readable change in the output signal.
- Time constant The time it takes for the output change to reach 63% of its final value.
- Toughness A measure of the amount of energy absorbed by a material as it fractures, indicated by the total area under the material's tensile stress-strain curve.
- **Transcription** Copying of the genetic information from DNA onto RNA by the enzyme RNA polymerase. The regulation of transcription by specialized proteins, the transcription factors, is a central switchboard for all life processes in a cell.
- **Transduction** (self-generating or modulating) The conversion of the signal to be measured into another, more easily accessible form. Source of energy for transmission of the sensor signal.
- Transduction mode (direct or indirect) How the sensor acquires the desired information from the material. In general, this parameter is an indication of the ability of the sensor signal to provide information regarding a material property or state of interest.

Transfer RNA See tRNA.

- **Transformer** Device using magnetically linked inductors to change AC voltage level.
- **Transgenic organism** An organism into which the genes of other species have been engineered.
- **Transient response** The response of the sensor to a step change in the measurand.
- **Translation** Another term for protein biosynthesis, used to emphasize the aspect that the ribosome "translates" the 4-letter genetic code used in DNA and RNA into the 20-letter amino acid code of the proteins.
- **Transmission** Refers to system for carrying electric power at voltages above 100,000 V.
- Transmission electron microscope (TEM) A microscope that produces an image by using electron beams to transmit (pass through) the specimen, making examination of internal features at high magnifications possible.
- **Transistor** Semiconductor device used for amplification and switching.
- **Tribology** The science and technology of two interacting surfaces in relative motion and of related subjects and practices. The popular equivalent is friction, wear, and lubrication in surfaces sliding against each other, as in bearings and gears.

tRNA (transfer RNA) Stable RNA molecules that act as specific carriers for the amino acid molecules to be incorporated in protein biosynthesis.

TS See tensile strength.

- Turn-on-voltage Applied voltage required to produce conduction in a diode.
- ULSI For *ultra large scale integration*. A chip with over 1,000,000 components.
- Unit cell The basic structural unit of a crystal structure, defined in terms of atom (or ion) positions within a parallelepiped volume.
- URL For universal resource locator. Address of a World Wide Web site.
- Usenet Interlinked bulletin board available via Internet and commercial on-line services.
- UV For *ultraviolet*. Characterization of short-wavelength light for exposing photoresist in making semiconductor devices.
- Valence band The electron energy band that contains the valence electrons in solid materials.
- Valence electrons Those electrons in the outermost orbit of an atom. On forming a solid, these electrons interact to produce the valence band. In a semiconductor or insulator, this band is full.
- van der Waals bond A secondary, permanent or induced, interatomic bond between adjacent molecular dipoles.
- **Viscoelasticity** A type of deformation exhibiting the mechanical characteristics of viscous flow and elastic deformation.
- Viscosity (η) The ratio of the magnitude of an applied shear stress to the velocity gradient that it produces; in other words, a measure of a noncrystalline material's resistance to permanent deformation.
- **Vitrification** During firing of a ceramic body, the formation of a liquid phase that becomes a glass-bonding matrix upon cooling.
- **VLSI** For *very large scale integration*. A chip with 100,000 to 1,000,000 components.
- Volt Unit of electrical potential difference (see *voltage*).
- **Voltage** [V] Potential difference between two points: energy to move a one-coulomb charge through a one-volt potential difference is one joule.
- Wafer Semiconductor disk out of which integrated circuits are made (see also *chip*, *mask*).
- Watt (W) Unit of power. One watt is the power that in one second gives rise to an energy of one joule.
- Weber Unit of magnetic flux. One weber is a magnetic flux that linking a circuit of one turn would produce in it an electromotive force of one volt if it were reduced to zero at a uniform rate in one second.
- Weight percent (wt%) Concentration specification on the basis of weight (or mass) of a particular element relative to the total alloy weight (or mass).
- Whisker A very thin, single crystal of high perfection that has an extremely large length-to-diameter ratio. Whiskers are used as the reinforcing phase in some composites.
- World Wide Web (WWW) Graphical hypertext system linking many Internet computers.
- WWW See World Wide Web.

Yielding The onset of plastic deformation.

Yield strength The stress required to produce a very slight yet specified amount of plastic strain; a strain offset of 0.002 is commonly used.

Zener diode Semiconductor diode that has a well defined turn-on voltage for conduction in the reverse direction.

Zero offset The output of a sensor at zero input for a specified supply voltage or current.

Zone refining A metallurgical process for obtaining a highly pure metal that depends on continuously melting the impure material and recrystallizing the pure metal.

A	thin film vs. thick film deposition in, 168-170, see also Thin
Ablation deposition, 141–143, 327	film(s)
Abrasive jet machining, 418	wafer flatness, and defect parameters in, 127
Abrasive water jet machining, 417–418	Alignment, in miniaturized devices, 29–30
Absolute pressure sensors, 483	Alignment targets, 219–220
Absorbers	Alloys, 126
CNC machined, 333	Amide bond, 434
materials used for, 332	Ammonium hydroxide water (AHW), 215–217
single layer, 332–333	Ampholytes, 568
stepped, 333	Analog device accelerometer, 306–308
Accelerometers	Analytical monitoring instrumentation, 652–655
analog device, 306–308	gas chromatography, 652-654
in automotive MEMS applications, 634–635	ion mobility spectrometer, 655
silicon, hybrid, 499	mass spectrometry, 654–655
Acoustic sensing	optical absorption instruments, 655
application of, 657	Analytical separation systems, 593–594
chemical, 557	band broadening in, 595–596
mechanical, 557–558	scaling parameters in, 596–600
	terminology used with, 594-595
Acoustic streaming, 501	theoretical plates in, 599
Actin, 431–432	Analytical techniques, comparison of, 172
Actuators, 535, 547, 618, 619	Angular rate sensors, 637–638
chemical and electrochemical, 600	Anisotrophy ratio, 213
electric, 547–574, see also Electric actuators	Anisotropic coefficient, 198
electric and magnetic, compared, 578–579, 580	Anisotropic reactions
fluidic, 579–587, see also Fluidics	dopant driven, 100–101
magnetic, 574–578, see also Magnetic actuators	elastic constants in, 197
thermal, 587–593, see also Thermal actuators	energy driven, 97–99
Additive process(es), 123–125	inhibitor driven, 99–100
in BIOMEMS, 159–168	Anisotropic wet etching, 184, 191–193, 212
chemical vapor deposition as, 144–154, see also Chemical vapor	in (100) oriented silicon wafers, 188
deposition (CVD)	in (110) orientated wafers, 190
doctor's blade as, 157, see also Doctor's blade	in [110] oriented wafers, 192
examples of, 170–174	in {110} oriented wafers, 191
materials used, and deposition method, 126	ammonium hydroxide/water system in, 215–217
in micromachining, 171	Arrhenius plots for, 212–214
in microsensor creation, 171	compared to isotropic etching, 191–192, 226–228
physical vapor deposition as, 134-144, see also Physical vapor	etch rate(s)
deposition (PVD)	vertical, as function of temperature for crystal orientations
plasma spraying as, 157–159	(100), (110), (111), 214
screen printing as, 154–156	etch rate(s) in, 216
selection criteria for, 170	as function of KOH concentration, 218, 222
silicon crystal growth as, 125–127	as function of temperature for crystal orientations {111},
silicon doping in, 127–131, see also Silicon, doping	{110}, {100}, 221
silicon oxidation as, 131-133, see also Wafers, silicon	lateral underetch, as function of orientation, 220
silk screening as, 154–156, see also Silk screening	etchant systems for, 212–217
sol-gel deposition as, 156–157, see also Sol-gel deposition	characteristics of, 215
tape casting as, 157, see also Tape casting	ethylenediamine pyrocatechol system in, 215

hydrazine in, 217	scaling migration of, 634
masking in, 217–218	resonant beam technology in, 635–636
of membrane, process summary, 214	AWH (ammonium hydroxide water), 215–217
models of, 220–221	AZ-4000 resist, for master micromolds, 342
Elwenspoek, and others, 224–226	
Seidel, and others, 221–224	В
potassium hydroxide system in, 214–215	Bacteriorhodopsin, 438
rough surfaces left by, 217	Barium titanate (BaTiO3), 559
tetramethyl ammonium hydroxide/water system in, 215–217	Base layer, 273
water concentration and pH effects on, 223	deposition of, and etching, 274
Annealing, 261	Batteries, 601
Anodic bonding, 484	Bead array counter, 602, 603
Anodic oxidation etch stop, 236	Beer's law, 540
Anodization, 395	Beyond batch fabrication, 174
APCVD (atmospheric pressure chemical vapor deposition), 146,	Biaxial modulus, 264
150	BICMOS process, 306–308
Arc-free plasma jet, 96	Bilayer lipid membrane, 449
Areal density, 354	Bimetallic thermal actuators, 591
Arrays, see Patterning, and arrays	Biocompatibility, 508–509
Arrhenius plot(s)	biological processes involved in, 509–510
for anisotropic wet etching, 212–214	historical context of, 509
for isotropic wet etching, 209–210	mechanical and chemical components of, 510–512
Artificial intelligence, 467, 473–474	of silicon, 511
computer development in, 474	surface modifications in, 511–512
and modeling of human brain, 474–475	Biogenesis, 427–429
natural approach to, 476	BIOMEMS, 159, 160, 616, see also MEMS (microelectromechanical
top-down and bottom-up approach, 475	systems)
traditional, 475–476	additive processes in, 159–168
Artificial life, 426, 477	application(s) of, 639–641, 646
Artificial neural network software, 477–478	flow cytometry, 647–648
Ashing, 13–14, 94	lab-on-a-chip, 650
Assay(s)	microphysiometry, 648–650
direct binding, 448	miniaturized well plates, 646–647
heterogeneous, 448	in vitro diagnostic, 641–644
label less, 448	in vivo diagnostic, 644–646
Assembly process(es), 503, 504	biocompatibility in, 508–512
DNA mediated, 507–508	market for applications of, 639–641
parallel, 505–507	micro and nano assembly in, 503–508
scaling of, 503–504	nanoconstructs in, 452–453
self, 503, see also Self assembly	packaging in, 478–496
serial, 504–505	partitioning in, 497–503
stochastic, 503	patterning and arrays in, 161
Aston dark space, 83	conductive polymer patterning, 167
Astrolabe, 382–383	microcontact printing, 167
Atmospheric downstream plasma etching, 95–96	microspotting, 164–167
Atmospheric downstream plasma etchnig, 93–70 Atmospheric pressure chemical vapor deposition (APCVD), 146,	photolithographic, 161–164
150	plasma polymerization in, 160–161
Atom lithography, 61	plastic spraying deposition in, 160
Atom relay transistor, 61, 62	sample preparation in, 512–518
Atomic force microscopy, 59	scaling in, 535–543, see also Actuators; Analytical separation
Atomic rocessing microscope, 62	systems
Atomic processing microscope, 62 Atomic processing microscopy, 61	self-assembled monolayers in, 161
	spin coating deposition in, 159
Automotive applications, of MEMS	Biomimetics, 424
accelerometers, 634–635	
manufacturing options for, 636–637	examples of, 424–425
resonant beam technology in, 635–636	Biomolecules, 434
angular rate sensors and gyroscopes, 637–638	self assembly of, 452–453
market for, 630–631	Biotechnology, 443–444, see also BIOMEMS
pressure sensors	and nanofabrication, 452–456
applications for, 631–632	Biot's number, 590
generic design features of, 633–634	Black silicon, 106–107
micromachining approaches for, 632–633	Bodenstein number, 598

Bonding	Chemical vapor deposition (CVD), 32, 144, 385
alignment during, 491-492	arrival angle of molecules in, 147
eutectic, 490	atmospheric pressure, 146, 150
hermeticity of, 493–494	boundary layer thickness in, 145
imaging in, 492–493	electron cyclotron resonance, 151–152
with organic photopatternable layers, 490	energy sources for, 147–148
plastic to plastic, 490–491	energy supply of reactions in, 145
silicon fusion, 487–489	epitaxy as, 141, 152–154
testing, 493–494	equipment for, 154
thermal	film growth rate in, 145–146
field-assisted, 484–487	gas transport in, 145
with intermediate layers, 489–490	laser assisted, 410–411
Boron etch stop, 233–235	low pressure, 146, 150–151
Bosch advanced silicon etch, 105	mean free path of molecules in, 146–147
Brain, human, 474–475	metallorganic, 152
Bubble jet, 165	plasma enhanced, 32, 94–95, 148–150
Buckminster fullerene, 453–454	plasma reactor settings and effects on, 149-150
Buckyballs, 453–454	reaction mechanisms in, 144–146
Buckytubes, 454	review of processes of, 148
Bulk micromachining	spray pyrolysis, 152, 170–172
compared to surface micromachining, 259–260, 292–293	step coverage in, 146–147
wet, 183, see also Wet etching	very low pressure, 151
	Chemically assisted ion beam etching (CAIBE), 97–99
C	Chemical-mechanical polishing, 32
CAD, see Software	Chiral molecules, 434–435
CAIBE (chemically assisted ion beam etching), 97–99	Chromosome(s), 440–441
Calmodulin, 435–436	cIEF (capillary isoelectric focusing), 568–569, 570
conformational changes in, 436, 438	Clausius-Mossotti factor, 570, 572
Cantilevers, SOI based piezoresistive, 310–313	Clean room classifications, U. S. Federal Standard 209b, 11
Capacitors, 601	Clean room maintenance, 10–13
parallel plate, 547–548	Cluster beam technology, 143–144
Capillary forces, 584–585	Cluster tools, 146, 154
and passive valving in pump driven systems, 585	CM (chemical milling), 387
and passive valving on centrifugal platform, 586–587	CMOS (complementary metal oxide semiconductors)
Capillary isoelectric focusing (cIEF), 568–569, 570	integration issues in surface micromachining and, 280–282
Cassette manufacturing, 503	and MEMS integration, 282
Casting, in liquid resin molding processes, 359	tungsten metallization process in, 281
Casting deposition, 160	CNC (computer numerically controlled) machining, 327, 413
Cathode-fall region, 82	micromold fabrication by, 342
Cavity ring down spectroscopy (CRDS), 540–542	Codon, 440
Cavity sealing, 481	Coherence, spatial, 26
epitaxial, 482	Cold field emission, 54
HEXSIL, 482, 484	Combustion engines, power from, 602
polysilicon and silicon nitride, 481–482	Communication devices
CD stampers, nickel, 361–362	market for MEMS applications in, 661
Cell(s), 431–432	optical switching, 661–664
genetic material of, 440–441	wireless, 664
structural components of, 440	Complexity theory, 426, 428–429, 476–477
Cell chemistry, 430–431	Compliance coefficient, 197–198
DNA in, 432–434	Compression molding, 364–365
proteins in, 434–439	hot embossing in, 365–367
self assembled molecular structures in, 452–453	pros and cons of, 367
Cellosolve, 7	replicated channels fabricated by, 366
Centrifugal pumping, 501	Computer numerically controlled (CNC) machining, 327, 383, 413
Ceramic substrates, 519–521	micromold fabrication by, 342
in LIGA process, 368	Conductive polymer patterning, 167
photosensitive, 389–390	Conductivity, of semiconductors, 128
Charge-coupled devices, 205	Contact printing, see Microcontact printing
Charged particle beam lithography, 52–53	Contaminant control, 10–13
with electron beams, 53–57	Contaminant sources, 11
Chemical formation methods, 385–387	Continuity equation, 129
Chemical milling (CM), 387	Continuum theory, 547–550
Chemical mining (Civi), 507	Continuum theory, 517 550

breakdown of, 551	amplification of, in polymerase chain reaction, 444-446
Contrast, 19–21	base pairing in, 433, 434
Cooling, 46	coding in, 440
Copper electroplating	complementary, 441
in damascene process, 353	discoverers of, 433
in printed circuit boards, 352–353	double helix of, 433
in thin film inductive magnetic heads, 353-354	errors in transcription and replication of, 441-442
Corner compensation, in wet etching, 240–245	in genetic code, 439–440
Corner compensation structures, 241	hybridization of, 433, see also DNA chip(s)
CRDS (cavity ring down spectroscopy), 540–542	junk, 440
Critical dimension (CD), 14, 21	in origin of life, 427
Crookes region, 81	replication of, 435
Curved glassy carbon structure, 64	selfish, 440
CVD, see Chemical vapor deposition (CVD)	transcription of, in protein synthesis, 439–440
Cyclized poly(cis-isoprene) resist, 8	and transposons, 442
Czochralski crystal pulling method, 125	DNA analysis devices, sample preparation protocols, 513–515
	DNA chip(s), 446–447, 602–603, 604
D	DNA microarrays, see DNA chip(s)
Dalton (unit), 434	DNA sequencing, 446
Damascene process, 353	Doctor's blade, 157, 160, 385
Dangling bonds, 222	DOF (depth of focus), 27–28
DC (diode chamber) plasmas, 79–83	Dopant(s), see also Silicon
Deep reactive ion etching (DRIE), 104	clustering of atoms of, 45–46
electron cyclotron resonance in, 105–106	concentration of, and etch rate, 218–219
equipment sources for, 106	diffusivity of, 130
inductively coupled plasma in, 104–105	Doping nonuniformity, 46
micromold fabrication by, 342	Double-sided alignment, of masks, 23
micromolding using, 327	system(s) for
problems associated with, 106–107	commercial, 29
Deep UV lithography (DUV), 2-47, 291-292, see also Photolithog-	jig, 29–30
raphy	DQN (diazoquinone ester/novolak resin) resist, 6–7
Deep x-ray lithography, 49	G value of, 16
Demolding, 367	Drake equation, 426
DEP (dielectrophoretic) chip, 517–518	DRAMs, 45
Deposition methods, see Additive process(es)	DRIE (deep reactive ion etching), 104
Depth of focus (DOF), 27–28	electron cyclotron resonance in, 105–106
Descumming process, 6	equipment sources for, 106
DESIRE process, 40–41	inductively coupled plasma in, 104–105
Detector, see Sensor(s)	micromold fabrication by, 342
Development process, 5–6	micromolding using, 327
Diamagnetism, 576	problems associated with, 106–107
Diamond, as cutting tool, 382–383, 413–415	Dry development, 6
Diamond thin films, properties of, 303–304	Dry etching process(es), 77–78
Dicing, 481	and carbon containing additives, 104
Dielectric induction, 560	combined with wet etching, 115, 117, see also Wet etching
Dielectrophoresis, 560, 569–570	compared to wet etching, 110, 395–398
applications of, 573–574	deep reactive ion etching as, 104–107
forces in, 570–571	etch performance of, 88
particle levitation in, forces in, 571–572	examples of, 110–116
scaling considerations in, 572–573	fluorine to carbon ratio in, 102
traveling wave, 571	and group III and IV compounds, 103–104
Dielectrophoretic (DEP) chip, 517–518	ion beam etching as, 89–90
Diffusion furnaces, 130	ion beam milling as, 89–90
Diffusion gradient, 129	ion etching as, 88–99
Diffusion length, 130	mask materials in, 103
Digital mirror array patterning, 164	and metals, 104
Digital infroi array patterning, 104 Dimensional stability, 413	in micromachining, 110–116
Diode chamber plasmas, 79–83	and organic masks, 104
Dip coating, 159–160	physical, 88–90
Disk method, of stress measurement, 265–266	physical, 66–70 physical/chemical, 97–104
Dissolved wafer process, 245	plasma etchants in, 79–88, 93–97, 101, 102
DNA (deoxyribonucleic acid), 432–434, see also Gene(s)	etch rates and etch ratios of, 103

for microelectronic materials, 103	photo assisted, 237–238
for polymeric materials, 114–115, 116	Electrochemical etching apparatus, 211
popular, 79	Electrochemical grinding (ECG), 391
profiles associated with techniques in, 80, 81	Electrochemical isotropic etch-etch stop, 211–212
radical etching as, 93–97	Electrochemical machining (ECM), 390–391
rule simplification in, 101–104	forming processes, 394–395
selective vs. unselective, 102–103	removal processes, 391–394
in situ monitoring of, 108–109	Electrochemical micromachining (EMM), 392–394
spectrum of, 98	Electrodeposition, 345–346, see also Electroplating
sputtering as, 88–99	Electrodischarge machining, see Electrical discharge machining
substrate bias in, 103	Electrohydrodynamics (EHD), 560
techniques in, 80	Electrokinetic actuators
terminology used in, 78–79	AC, 569-574, see also Dielectrophoresis; Dielectrophoresis,
vapor phase etching without plasma as, 107–108	traveling wave; Electrorotation
vias by, 496	DC, 562–569, see also Electro-osmosis; Electrophoresis
Dry film resist composition, 35	Electrokinetic injection, 565–566, 567
Dry lamination process, 35	Electrokinetic potential, 564–565
Dry stripping, 13–14	Electroless metal plating, 344–345, 356–357
DUV lithography, 2–47, 291–292, see also Photolithography	baths for, 345
Dynein, 431–432	of bevels, 395, 397
-	buried conductor process in, 345
E	in integrated circuitry, 345, 346
E beam writing, see Electron beam lithography	in micromachining applications, 345
EAPSMs, 42–43	thickness of, measuring, 345
EBM (electron beam machining), 383, 401–402	Electromagnetic micromotor, 369
ECG (electrochemical grinding), 391	Electron beam lithography, 53–54, 327
ECM (electrochemical machining), 390–391	compared to ion beam lithography, 58
forming processes, 394–395	electron emission sources in, 54–55
removal processes, 391–394	comparison of, 55
EDM (electrical discharge machining), 327, 383, 398, 399	micromachined, 55–57
micromold fabrication by, 342	micromold fabrication by, 342
sinker, 398–400	resists in, 54
wire electrode discharge grinding, 400-401	scattering with angular limitation projection in, 57
EDP (ethylenediamine pyrocatechol), 215	Electron beam machining (EBM), 383, 401–402
Effusion, 136	Electron cyclotron resonance, 105–106
EHD (electrohydrodynamics), 560	chemical vapor deposition by, 151–152
Elastic shear modulus, 196–197	Electro-osmosis, 501, 562, 563–565
Elasticity constants	capillary isoelectric focusing in, 568–569
of anisotropic crystals, 197	electrowetting in, 566
of silicon and germanium, 199	flow profiles for, 564–565
Electrets, 561–562	in fluidic networks, 566–568
Electric actuators	origin of, 564
AC electrokinetic, 569–574, see also Dielectrophoresis; Dielec-	Electro-osmotic mobility, 563–564
trophoresis, traveling wave; Electrorotation	Electrophoresis, 501, 562–563, see also Electro-osmosis
DC electrokinetic, 562–569, see also Electro-osmosis; Electro-	capillary, 563, 568–569, 570
phoresis	microchip for, 566
dielectric inductive, 560	open, 568
electrets in, 561–562	Electroplating, 346–347, 356–357
electrorheological fluidic, 562	automated, 354
electrostatic, 547–551, see also Electrostatic motor(s)	cathodic limiting current in, 347
electrostriction in, 560–561	copper, 352–354
magnetic, 574–578, see also Magnetic actuators	correction terms in, 348
piezoelectric, 551–560, see also Piezoelectric motors	current vs. time response in, 348
pyroelectricity in, 561	defect causes in, 350
thermoelectricity in, 561	diffusion layer thickness in, 348
Electrical breakdown, 84	diffusion-limited reactions in, 347
Electrical discharge machining (EDM), 327, 383, 398, 399	factors influencing deposition rate in, 349–350
micromold fabrication by, 342	finishing processes in, 350
sinker, 398–400	gold, 354
wire electrode discharge grinding, 400–401	microelectrode advantages in, 349
Electrochemical coupling coefficient, 553	nickel, 350–352
Electrochemical etch stop, 235–237	nonlinear diffusion effects on microelectrodes in, 348–350

other applications of, 354	alkaline, compared to acidic etchants, 226-228
problems in, 354–356	ammonium hydroxide water (AHW), 215-217
unit for, 355	for anisotropic wet etching, 212–217
Electrorheological fluids, 562	ethylenediamine pyrocatechol (EDP), 215
Electrorotation, 572	hydrazine, 217
application of, 573–574	for isotropic wet etching, 206–207, 208
Electrostatic bonding, 484	specific applications of, 213
Electrostatic eccentric drive micromotor, 549–550	plasmas as, 79–88, 101, 102
Electrostatic motor(s), 547–551	etch rates and etch ratios of, 103
linear, 548–549	for microelectronic materials, 103
Electrostriction, 560–561	polishing, 206–207
Electrothermal processes, 398	potassium hydroxide (KOH), 214–215
electrical discharge machining, 398, 399	preferential, 207, 212
sinker, 398–400	specific applications of, 213
wire electrode discharge grinding, 400–401	tetramethyl ammonium hydroxide water (TMAHW), 215-217
electron beam machining, 401–402	Etching
laser machining, 402–403	additive, 123–125, see also Additive process(es)
etchants used in, 408	chemical and photochemical, 383, see also specific processes
etching with chemical assist, 406–407	dry, 77–117, see also Dry etching process(es)
examples of shapes obtained with, 408	selective, 275–276
formation processes, 410–411	subtractive, 77–78, see also Subtractive process(es)
laser types used in, 411–412	wet, 183–249, see also Wet etching
removal processes, 406–409	Etching profiles, 91
applications of, 409–410	angular distribution of incident ions, 92–93
setup for, 407	backscattering, 92
short pulse etching, 407–409	control of, 93
substrates used in, 408	ditching or trenching, 92
theoretical background, 403–406	faceting, due to angle-dependent sputter rate, 91–92
plasma beam machining, 412–413	redeposition, 92
Electrowetting, 566	Ethylenediamine pyrocatechol (EDP), 215
ELISA (enzyme linked immunosorbent assay), 447–448	Eukaryotes, 432
Elwenspoek, and others, model of anisotropic chemical etching,	Eutectic bonding, 490
224–226	Evaporation
EMM (electrochemical micromachining), 392–394	reactive, 138
Enantiomers, 434	thermal, 135–138, see also Thermal evaporation
Endoplasmic reticulum, 440	Evolution, 429–430
Environmental monitoring	transposons in, 442
market for applications in, 650–651	Excimer laser ablation, 327
MEMS applications in	micromold fabrication by, 342
analytical instrumentation, 652–655	Exon, 440
electrochemical gas sensors, 652	Exposure process, 4–5
solid state gas sensors, 651–652 Enzyme linked immunosorbent assay (ELISA), 447–448	Extreme ultra violet lithography (EUVL), 48–49
Epi, 141	Extremophiles, 428
Epil, 141 Epilayer thickness, 154	F
Epitaxial cavity sealing, 482, 485	Faraday dark space, 83–84
Epitaxy, 141, 152–153	FEA (finite element analysis), 468–470
liquid and solid phase, 153	Fiber-chip coupling, LIGA, 370–371, 372
selective, 153–154, 290	Fick's first law, 128–129
Epitaxy growth chamber, 142	Fick's second law, 129–130
Epoxy delivery systems, 166	Fiducial marks, 28
Etch access window, 484	Field flow fractionation, 572
Etch performance, 88	Field ionization sources, 603–605
Etch rate, dependency on dopant concentration, 218–219	Finite element analysis (FEA), 468–470
Etch stop process(es), 232–233, 237	Flagellum (flagella), 431–432, 545
anodic oxidation, 236	Flexible manufacturing systems (FMS), 383, 415
with boron, 233–235	Flexural plate wave (FPW) delay line, 557
electrochemical, 235–237	Float zone crystal growth, 125–127
photo assisted, 237–238	Flow cytometry, 647–648
photo induced preferential, 238–239	Fluidic circuit boards, multilevel, 502
thin insoluble films in, 239	Fluidic networks, 566–568
Etchant(s)	optimal size of channels in, 568

passive valves in centrifugal, 586–587	Heater elements, micromachined, 171
passive valves in pump driven, 585	HEMA (hydroxyethyl methacrylate), 337
Fluidics, 579–580	Hexode reactor, 98
application of, 585–587	HEXSIL cavities, sealing, 482, 484, 486
capillary forces in, 584–587	HEXSIL process, 285–287
definitions in, 580	High aspect ratio integrated silicon microstructures, post CMOS
flow continuum breakdown in, 583–584	processing, 114
friction factor in, 581–583	High aspect ratio microlithography
Hagen-Poiseuille law in, 581	devices fabricated by, 369–371
hydrodynamic boundary layer in, 583	electroless and electroplating through polymer masks in,
Reynolds number in, 581–583	356–357
Stokes-Navier equations in, 580–581	electroplating defect causes in, 350
Focused ion beam (FIB) milling, 383, 418–419	transfer masks for, 334–335
Fourier law, of heat conduction, 587–589	High density plasma (HDP), 151–152
Fourier number, 597, 598	High electron mobility transistor (HEMT) process, 305
Fourier transform infrared (FTIR) sensor, 109	High-temperature superconductor (HTSC) films, 141–142
Fourier transform infrared (FTIR) spectrometer, 31	Hittorf region, 81
Four-point probe measurements, 128	HIV test, blister pouch, 446
Free etch simulator, 228	Holographic lithography, 65–66
Frequency, natural, 543	Homoepitaxy, 141
Fresnel diffraction, 339	Hooke's law, 552, 575
Friction factor, in fluidics, 581–583	Hot embossing, 365–367, 385
Fused deposition modeling, 167	continuous, 365
ruscu ucposition modeling, 107	cyclic, 365
G	Jenoptik machine for, 365, 366
G value(s), 15–16	Human Genome Project, 442–443
Gallium arsenide thin films, 305	Hybrid MEMS, see Partitioning
Gas chromatography, 652–654	Hydrazine, 217
Gas phase oxidation processes, 131–133	·
Gate plate, 358–359	Hydrodynamic boundary layer, 583
Gene(s), 440–441	Hydrogels, 162, 163
in aging process and death, 443	Hydroxyethyl methacrylate (HEMA), 337
	I
identification and mapping of, 442–443	IBE (ion beam etching), 89–90
jumping, 442	IBM (ion beam milling), 89–90, 418–419
Gene fusion, 437	
Genetic code, 439–440	IDTs (interdigital transducers), 557
Glass	IM, see Injection molding (IM)
in LIGA process, 368	Image reversal, 37–38
phosphosilicate thin films, 302–303	ImmunoFET, 450
photoformed, 629	Immunosensors, 447–448
photosensitive, 389–390	electrochemical
spin-on, 32	capacitive affinity sensors as, 449
transition temperatures of, 10	comparison of optical and, 451–452
Glassy carbon structure, curved, 64	direct, 450
Glow discharge, 83–84	example of, 456–457
Golay equation, 596, 598	Langmuir-Blodgett films as, 449
Gold Dot flex circuit technology, 496–497, 498	micromachined, 448–449
Gold electroplating, 354	reversible, 449, 451
Golgi apparatus, 440	surface plasmon resonance sensors as, 449–451
Grass residue, 41	optical
Grating frequency, 26	example of, 457–458
Green fluorescent protein (GFP), 436–438	micromachined, 449–451
Green tape technology, 386–387	Implantation, silicon doping by, 130–131
Grey tone masks (GTMs), 43–44	in vitro diagnostics, 642
Gyroscopes, 637–638	blood electrolyte and blood gas sensors, 642-643
-, <u>r</u> ,	glucose sensors, 643–644
Н	In vivo diagnostics, 644
Hagen-Poiseuille law, 565	glucose sensors, 645–646
in fluidics, 581	other MEMS devices, 646
Harmonic motors, 549–550	pH and blood gas sensors, 644–645
Heat conduction, 587–589, see also Thermal actuators	Indentation testing, 272
Heat sinks, 590	Industrial/automation applications, of MEMS, 655–656

ISFETs, 656–657, <i>see also</i> ISFETs (ion sensitive field effect transistors)	Isolation layer, 273–274 Isotropic wet etching, 184, 191–193, 208
microhygrometer, 657	Arrhenius plot for, 209–210
valves, 657–658	compared to anisotropic etching, 191–192, 226–228
Information and communication theory, 429	curves for, 208–209
Information technology/peripheral applications, of MEMS	dopants in, 211
ink jet cartridges, 660	electrochemical, 211–212
other devices, 660–661	etchants for, 206–207, 208
Information technology/peripheral devices	masking for, 210
market for, 658	masking for acidic, 210
read/write devices, 658–660	preferential, 212
Injection molding (IM), 359–361	problems associated with, 212
birefringence in, 362–363	reaction scheme for, 208
commercial machines for, 363	topology of silicon surface in, 209
conditions for, 362	uses of, 208, 217
conventional, 361–363	
injection rates in, 362	J
materials for, 364	Jet etching, 392–393
pros and cons of, 364	plasma, 95–96
skin thickness in, 361	
thin wall, 363–364	K
Ink(s)	Kinesin motor, 432
for chemical sensors, 156	Kinetic energy, power from, 602
electronic, 167	Kink sites, 224
traditional, 155–156	Knife coating, 385
Ink jet cartridges, 660	Knudsen cell, 136
Ink jet eartridges, 600 Ink jet printing, 164	Knudsen number, 146
array flexibility of, 165–166	
display drivers in, 167	L
mechanical microspotting in, 167	Lab-on-a-chip (LOC), 650
mechanism of, 165	companies manufacturing, 651
organic light emitting diodes in, 166	LACVD (laser assisted chemical vapor deposition), 410–411
piezoelectric, 165	Lambda probes, 172
Inorganic materials, in origin of life, 427–428	Langmuir-Blodgett resists, 62
	Langmuir-Blodgett technology, 161, 162, 449
Integrated circuitry (IC)	optical immunosensor as example of, 457–458
electroless metal plating in, 345, 346	Laser(s)
packaging in, 479, 480	carbon dioxide, 411
software applications from, in MEMS, 471	excimer, 411
synchrotron orbital radiation in, 327–328	Nd:YAG, 411
techniques in, 385	types of, and applications, 412
x-ray masks in, 330–331	Laser ablation, excimer, 327
Integrated fluidic system, 517–518	micromold fabrication by, 342
Integrated microdynamic systems, 280–282	·
Intensity profile, 30–31	Laser drilling, vias by, 496
Interconnections, 46	Laser machining, 327, 402–403
Interdigital transducers (IDTs), 557	and chemical vapor deposition, 410–411
Intron, 440	and electrochemical etching, 392–393
Ion beam etching (IBE), 89–90	and enhanced jet plating, 394–395
Ion beam lithography, 57–58	etchants used in, 408
compared to electron beam lithography, 58	etching with chemical assist, 406–407
Ion beam milling (IBM), 89–90, 418–419	examples of shapes obtained with, 408
Ion energy, vs. plasma relationship, 97	excimer, 327, 342
Ion etching, 88–89	in formation processes, 410–411
Ion implanters, 131	and induced fluorescence, 109
Ion mobility spectrometer, 603–605, 655	laser types used in, 411–412
Ion plating, 143	in removal processes, 406–409
Ion temperature, 82	applications of, 409-410
ISFETs (ion sensitive field effect transistors), 134, 135, 165	setup for, 407
in automation and industrial applications, 656–657	short pulse etching, 407–409
as immunosensors, 448–449	and sputtering methods, 141–143
integration of chemistry and electronics in, 193, 194	ceramic targets for, 142
Iso-etch curves, 208–209	substrates used in, 408

theoretical background of, 403–406	next generation, 48–58
Lateral straggle, 131	on nonplanar substrates, 67–68
Lattice, 185–186	resists in, see Resist(s)
Lattice constant, 185	scanning probe, 58–61
Lattice planes, silicon, 186–187	sensitivity of, 14–15
[100] orientation, 187–189	experimental determination of, 19-21
[110] orientation, 189–190	soft, 63–65, 359
selection of orientation of, 190–191	x-ray, 49–52
stiffness coefficient and compliance coefficient of, 197-198	Lithography simulator, 31
Law of Accelerating Returns, 46–47	Living organisms
Law of Time and Chaos, 47	characterization of, 425–426
Lead lanthanum zirconate titanate (PLZT), 559	construction principles in, 452–453
Lead magnesium niobate (PMN), 559	origins of, 427–429
Lead titanate (PbTiO3), 559	on other planets, 426–427
Lead zirconate titanate (PZT), 559	Loading effects, 95
Lens resolution, 26	Low pressure chemical vapor deposition (LPCVD), 146, 150–151
Lift-off profiles, 18–19	
LIGA (Lithographie, Galvanoformung, Abformung), 36, 49–50,	M
325, 383–384	Machining, see also MEMS (microelectromechanical systems)
alternative materials in, 368–369	accuracy of, progression of, 382
basic process of, 326	bottom-up processes in, 379–380, 423–458
development systems used in, 341	chemical formation methods in, 385-387
examples of, 369–371	chemical milling (CM) methods in, 387
exposure process in, 339–341	chemical vapor deposition (CVD) methods in, 385
history of, 325–327	doctor blading in, 385
and LIGA-like processes, 325–327	electrochemical grinding (ECG) in, 391
demolding in, 367	electrochemical machining (ECM) in, 391–392
master micromold fabrication by, 342–343	electrochemical methods in, 390–395
metal deposition in, 344–357	electrochemical micromachining (EMM) in, 392-394
primary substrate choice in, 335	electrothermal processes in, 398–413
resist application in, 336–339	flexible manufacturing systems in, 383, 415
resist requirements in, 335–336	focused ion beam (FIB) milling in, 418–419
stepped and slanted microstructures in, 340–341	green tape technology in, 386–387
x-ray masks in, 330–335	history of, 381–385
LIGA fiber-chip coupling, 370–371, 372	hot embossing in, 385
LIGA spinneret nozzles, 369–370, 371	ion beam milling (IBM) in, 418–419
LIGA structures, movable, 368	knife coating in, 385
LIGA walls, inclined, 69	laser, 402–412
Line width, 14, 15	micro-, see MEMS (microelectromechanical systems)
depth of focus and, 27–28	oxidation in, 385
Linear size, of various objects, 12	photochemical milling (PCM) in, 387–388
Lippman equation, 566	photofabrication in, 389–390
Liquid resin molding processes, 357	plasma beam, 412–413
casting in, 359	precision mechanical, 380, 413
gate plate in, 358–359	application field for, 381
reaction injection molding as, 357–358	compared to micromachining, 413
transfer molding as, 357–358	ultra high, 413–415
vacuum setup for, 358	reaction injection molding (RIM) in, 385
Lithography	silk screening in, 385
3D methods in, 65–68	tape casting in, 385, 386
atom, 61	thermoplastic injection molding in, 385
in BIOMEMS, 161–164	tolerance in, absolute and relative, 380–381
charged particle beam, 52–58, see also Electron beam lithogra-	top-down processes in, 379–380, 385–423
phy; Ion beam lithography	ultrasonic, 415–417
deep UV, 2–47, 291–292, <i>see also</i> Photolithography	water jet, 417–418
emerging technologies in, 58–70	wet vs. dry microfabrication in, 395–398, see also Dry etching
examples of, 68–70	process(es); Wet etching
extreme ultraviolet, 48–49	Maciossek method, 395, 396
history of, 1–2	Magnetic actuators, 574
LIGA, 49–50, see also LIGA (Lithographie, Galvanoformung,	diamagnetism in, 576
Abformung)	levitation in, 575
masks in, see Masks	with permanent and electromagnets, 575–576

with superconductors, 576	decision tree in, 621–622
magnetohydrodynamic pumps as, 576–577	European equivalent of, 616
magnetostriction in, 577–578	heat powered, 602
scaling in, 574	high aspect ratio, 616
Magnetically enhanced reactive ion etching (MERIE), 99	Japanese equivalent of, 616–617
polyimide posts created by cryogenic, 116	kinetic energy powered, 602
Magnetohydrodynamic (MHD) pumps, 576–577	markets for, 624–629
Magnetomechanical optical switch, 249	automotive, 630–639, see also Automotive applications
Magnetoresistive heads, 354	characteristics of, 629–630
Magnetostriction, 577–578	environmental monitoring, 650–655, see also Environmental
Mallory process, 484	monitoring
Manufacturing, see Machining; MEMS (microelectromechanical	industrial/automation, 655–658
systems)	information technology/peripheral, 658–661
Mask blank, 331–332	medical and biomedical, 639–650, see also BIOMEMS
Maskless array synthesizer, 164	numbers and projections for, 626
Masks, 3, see also specific etching processes	studies of, from 1990–2000, 627
alignment of	telecommunications, 661–664
double-sided, 23	materials used in, properties of, 295, 306
in projection printing, 28–30	mechanical, 616
	methods of, see also specific methods
self-, 22	comparison of, 419–422
conformable, 22	•
contact, 3	machining characteristics of, 423
design of, 3	micro and nano assembly of, 503–508
in dry etching, 103	optical, 616
erodible, 93	package inward designing in, 422–423
grey tone, 43–44	packaging in, 478–496
hard shifting, 42, 43	partitioning in, 497–503
nonerodible, 93	power sources in, 600–602
optical, vs. x-ray masks, 51	precision mechanical machining compared to, 413–415
phase-shifting, 42–43	processes and tools of, 384
sacrificial, 93	radio frequency, 616
soft shifting, 43, 44	scaling in, 535–543, see also Actuators; Analytical separation
software, 52–53	systems
technologic improvement of, and resolution enhancement,	solar cells in, 601–602
41–44	substrate choice in, 518–522, see also Substrate materials
in x-ray lithography, 51, see also X-ray masks	and terminology equivalents, 616–617, see also Terminology
Mass spectrometry, 654–655	tool suites for, ideal, 469
Mass transport limited deposition process, 146	tools used in, 384
MBE (molecular beam epitaxy), 140–141	ultra high precision, 414–415
MCMs (multichip modules), 495–496	vias in, 496–497
MDMD (minimum detectable mass density), 311, 557	wet processes and dry processes in, see also Dry etching pro-
Mean free path, 136–137, 146–147	cess(es); Wet etching
Meander beam, 115, 117	comparison of, 395–398, 399
Mechanical pumps, 499–501	MERIE (magnetically enhanced reactive ion etching), 99
Mechanosynthesis, 61	polyimide posts created by cryogenic, 116
Mechatronics, 616–617, 628	Mesh generation, 469
MEMO (methacryloxypropyl trimethoxy silane), 337, 338	Metal deposition, in master micromold replication, 344
MEMS (microelectromechanical systems), 261, 383, see also	electroless, 344–345
Machining	electroplating in, 345–350
applications of, 615–616	Metal oxides, 126
artificial intelligence in, 473–478	Metal Schottky field effect transistor (MESFET), 43
assembly of, 503–508	Metal Schottky field effect transistor (MESFET) process, 305
batch, serial, and continuous, 423	Metal shapes, slanted and curved plated, 395
batteries and capacitors in, 601	Metallic thin films, 126, 303
biocompatibility in, 508–512	MHD (magnetohydrodynamic) pumps, 576-577
CAD for, 470–473	Micelles, 430–431
California companies manufacturing, 185	Microclamping tool, 67
classification method for, interdisciplinary, 618–620	Microcomponents, 618, 619
combustion engines in, 602	Microcontact printing
commercial off-the-shelf, 616	in patterning and arrays, 167
development of	resolution in, 21–22
checklist for, 622–624	in soft lithography, 64

Microelectrode arrays, for electroplating, 349–350	digital, 308–310
Microfabrication, see MEMS (microelectromechanical systems)	array patterning, 164
Microhygrometer, 657	for optical switching, 206
Micro-jet plating, 394–395	self aligned vertical, 249
Microlaboratory, stacked, 517	Modeling, 467, 468–470
Microloading, 107	Modulation index, 24
Micromachining, see Machining; MEMS (microelectromechanical	Modulation transfer function (MTF), 23–25
systems)	critical values of, 25
Micromirrors, see Mirrors	Modulus of rigidity, 196–197
Micromold insert fabrication, 342–344	Molding, see Micromolding
Micromolding, 357	Molecular beam epitaxy (MBE), 140–141
alternative materials in, 368–369	Molecular self assembly, 62–63
in capillaries (MIMIC), 64, 65	Monitoring instrumentation, analytical, 652–655
compression molding processes in, 364–367	gas chromatography, 652–654
demolding in, 367	ion mobility spectrometer, 655
development systems used in, 341	mass spectrometry, 654–655
examples of, 369–371	optical absorption instruments, 655
exposure process in, 339–341	Monolayers, self assembled, 62–63
factors affecting precision in	Monolithic systems, compared to hybrid systems, 497
deposited dose, 339–340	Moore's law, 44–46, 380–381
optimal wavelength, 339	Motor proteins, 431–432, 545
injection molding processes in, 359–364	Motors, 578–579, see Electric actuators; Magnetic actuators
LIGA and LIGA-like processes in, 325–327	electromagnetic, 369
reaction injection molding and, 358–359	MST (microsystems technology), 616
LIGA compared to CNC machining in, 357	Multichip modules (MCMs), 495–496
liquid resin processes in, 357–359	Multilayer resists, 18
manufacturing precision in, 339–341	thin film imaging in, 41, 42
master fabrication technologies in, 342–344	Muscle cells, 543–544
requirements for optimal, 343–344	Myosin, 431–432, 543–544
master replication in, 344–357	MyOsiii, 431–432, 343–344
other processes for, 327	N
primary substrate choice in, 335	Nanochemistry, 424
resist application in, 336–339	Nanofabrication, 443, see also BIOMEMS
resist properties in, 336	and biotechnology, 452–456
resists used in, 335–336	fullerenes in, 453–454
sacrificial layers in, 367–368	future of, 456
stepped and slanted microstructures in, 340–341	nanoconstructs in, 452–453
synchrotron orbital radiation use in, 327–330	Q particles in, 455–456
x-ray masks used in, 330–335	of quantum structures, 454–455
Micromotor(s), 578–579, see also Electric actuators; Magnetic	Nanogen chip, 602–603, 604
actuators	Nanolithography, and micromachining, 56–57
electromagnetic, 369	Nanotube(s), carbon, 60–61
Micro-nozzles, see Nozzles	molecular assembly of, 454
Microphotoforming process, 66–67	physical properties of, 455
Microphysiometry, 648–650	Natural frequency, 543
Microposit SAL601, 54	Natural selection, 429–430
Microreplica molding, 64	Negative resists, 7–8
Microspotting, mechanical, 167	compared to positive resists, 8–9
Microstructures, 618	contrast using, 20
Microswitch, electrostatic, 550	G value of, 16
	image reversal with, 37–38
Microsystems technology (MST), 616 Micrototal analysis system, 499, 616	in x-ray lithography, 50
· · · ·	Negative tone, 6
Milor indices 185 186	Newton's cooling law, 589
Miller indices, 185–186	
MIMIC (micromolding in capillaries), 64, 65	Next generation lithography, 33, 48
Miniaturization, 621, see also Scaling	charged particle beam lithography as, 52–58
applications of, 615–664, see also MEMS (microelectromechan-	extreme ultraviolet lithography as, 48
ical systems)	ion beam lithography as, 57–58
reasons for, 535, 624	x-ray lithography as, 49–52
Mini-environments, 154 Mini-environdetectable mass density (MDMD) 211, 557	Nickel CD stampers, 361–362
Minimum detectable mass density (MDMD), 311, 557 Mirrors	Nickel electroplating properties of, 350–352
	1/100ELUENUL 1 NH 11/

by pulse plating, 352	mechanical pumps, 499–501
Ni pce process, 1–2, 184	heating and cooling in, 501-502
Nodes, 469	in microfluidic instrument, 497, 499
Noncrystalline silicon compounds, 126	monolithic systems compared to hybrid, 497
Nonplanar substrates, 67–68	sample introduction in, 502-503
Notching effect, 217	PAS (polyalkesulfone) resist, 336
Nozzles	Paschen's law curve, 84–85
fabrication process for, 401	Passive valving
LIGA spinneret, 369–370, 371	on centrifugal platform, 586–587
Nucleotide, 433	in pump driven systems, 585
Numeric aperture, 26	Pastes, resistive, 156
variable stepper for, 27	Patterning, and arrays, 161
	conductive polymer patterning, 167
0	ink jetting and microspotting, 164–167
Obstructed glow, 84	microcontact printing, 167
Optical absorption instruments, 655	photolithographic, 161–164
Optical biasing, 61	three main methods of, 168
Optical emission spectroscopy, 109	PBOCST, 33–34
Optical filter, 231	PC (polycarbonate), in injection molding, 364
Optical imaging quality, 24	PCM (photochemical milling), 387–388
Optical immunosensors, 449–451	PCR (polymerase chain reaction), 433–434, 444–446
Optical resonator, 541	in sample preparation for DNA analysis devices, 515–516
Optical switching devices	PDMS (polydimethylsiloxane) process
in communication applications, 662–664	CDs cast in, 69–70, 360
elements of, 308–310	in liquid resin molding, 359
examples of, 249	procedure for making stamp, 63–64
magnetic, 249	PE (polyethylene), in injection molding, 364
mirrors for, 206	Peak concentration, 131
Optical tweezers, 61	PEC (photoelectrochemical) etching, 229
Optical vernier, 28	
	P'clet number, 597–598 PECVD (plasma enhanced chamical vapor deposition) 32, 04, 05
Organic light emitting diodes, 166	PECVD (plasma enhanced chemical vapor deposition), 32, 94–95 148–150
Organic materials, see also BIOMEMS	reactors for, 149
deposition methods for, 159–161	· · · · · · · · · · · · · · · · · · ·
patterning of, 161–168	Peltier effect, 561
Organic thin films, 126	Peptide, 435
Organo-metallic vapor phase epitaxy, 152	Periodic table, 124
Orientation flat, 187	Perkin-Elmer, scanning projection system, 23
Overcut(s), 18	PGMA (poly(glycidyl methacrylate-co-ethyl acrylate)) resist, 50,
Overcut profile, 31	336
Overexposure, 17–18	Phase shifting masks (PSMs), 42–43
Oxidation furnaces, 133	alternating aperture, 42
Oxidation processes, 385	embedded attenuated, 42–43
gas phase, 131–133	Phosphatidylcholine, 430
P	Phosphosilicate glass thin films, 302–303
	Photochemical etching, 387–388
Packaging, 467, 478	Photochemical milling (PCM), 387–388
cavity sealing and bonding in, 481–494	Photochemical quantum efficiency, of resists, 15–16
connection between layers of, 496–497	experimental determination of, 16
dicing in, 481	Photoelectrochemical (PEC) etching, 229
examples of, 522–523	Photofabrication, 389–390
integrated circuit, compared to micromachines, 478–480	Photoforming process, 66–67
L2-L5, 494	Photoinduced preferential anodization, 238–239
multichip, 495–496	Photolithography, 2
nonstandard, 494	in BIOMEMS, 161–164
nontraditional, 522–523	clean room maintenance in, 10–13
stress isolation in, 494–495	contaminant control in, 10–13
thermal management in, 494–495	contrast in, 19–21
vias in, 496–497	critical dimensions in, 14
Panspermia theory, 426–427	descumming process in, 6
Partitioning	development process in, 5–6
cassette manufacturing in, 503	exposure process in, 4–5
fluid propulsion methods in, 499–501	intrinsic sensitivity of resist in, 15–16

Kurzweil's predictions and, 46-47	SOI based cantilever, 310–313
line width in, 14	Planar chemical membranes, 168
lithographic sensitivity in, 14–16, 19–21	Planarization, 31–32
mask making in, 3	Plasma(s), see also Plasma beam machining
micromold fabrication by, 327, 342	DC (diode chamber), 79–83
Moore's Law and, 44–46	in deposition techniques, 139–140
photochemical quantum efficiency in, 14-16	in dry etching processes, 79, 82–83
post baking in, 6	efficacy of, in dry etching processes, 82
post exposure treatment in, 4–5	as etchants, 79-88, 101, 102, see also Plasma etching
process steps in, 2–3	etch rates and etch ratios of, 103
reference books on, 44	for microelectronic materials, 103
resist profiles in, 16–19	high density, 151–152
resist stripping in, 13–14	inductively coupled, 104–105
resists in process of, 6–10	ion energy vs. pressure relationship in, 97
resolution in, 14, 21–32	ionization of, 82
enhancing techniques for, 5, 32–44	nonequilibrium in, 82
soft baking in, 4	and Paschen's law curve, 84-85
spinning resist in, 3–4	permanent positive charge of, 81–82
in surface micromachining, 292	and polymerization in BIOMEMS, 160-161
wafer cleaning in, 10–13	reactors for, 149–150
wafer priming in, 10	RF (radio frequency), 85–87
Photoresists, 6, see also Resist(s)	in deposition techniques, 139–140
basic properties of, 177	device damage using, 87
Photosensitive glasses, 389–390	plasma potential of, 86–87
Photosensitive plastics, 390	spatial zones in glow discharge of, 83-84
Physical etching, 88–90	Plasma arc cutting, 412–413
profiles in, 91	Plasma beam machining, 172–173, 412–413
angular distribution of incident ions, 92-93	and enhanced chemical vapor deposition, 32, 94–95, 148–150
backscattering, 92	reactors for, 149
control of, 93	Plasma etching, 83, 93
ditching or trenching, 92	atmospheric downstream, 95–96
faceting due to angle-dependent sputter rate, 91-92	equipment suppliers in, 104
redeposition, 92	loading effects in, 95
Physical vapor deposition (PVD), 134–135	reaction steps in, 94–95
cluster beam technology in, 143–144	reactor configuration in, 93–94
continuous, 141	Plasma jet etching, 95–96
ion plating in, 143	Plasma potential, 86
laser sputtering in, 141–143	Plasma spraying, 157, 412
molecular beam epitaxy in, 140–141	equipment for, 159
sputtering in, 138–140	process of, 157–159
thermal evaporation in, 135–138	Plastic(s)
Physical/chemical etching, 97, see also Dry etching process(es); Wet	photosensitive, 390
etching	vias in, 496–497
dopant driven anisotropy in, 100–101	Plastic microfabrication, process flow for, 326
energy driven anisotropy in, 97–99	Plastic spraying, 160
inhibitor driven anisotropy in, 99–100	Plastic to plastic bonding, 490–491
Piezoelectric coefficient, 553	PLG (poly(lactide-co-glycolide)) resist, 336
Piezoelectric constant, 553	PMI (polymethacrylimide) resist, 336
Piezoelectric crystals, 554, see also Piezoelectric materials	PMMA (poly(methylmethacrylate)), 6–7
Piezoelectric materials, 559–560	adhesion of, improving, 337
comparisons of, 560	application of
Piezoelectric motors, 555–560	casting, 337, 338
Piezoelectric pumping, 499–501, 556–557	sheet, 336–337
Piezoelectric strain, 553–554	spin coating, 336
Piezoelectricity	copolymers of, 335–336
applications of, 555	cracking of, stress induced, 336, 337–339
discovery of, 551	in electron beam lithography, 54
properties and parameters of, 551–554	G value of, 16
Piezopump, 499–501, 556–557	in injection molding, 354
Piezoresistance, 200	in LIGA process, 335–336
Piezoresistivity coefficients, 201–202	resonator, made by transfer mask method, 334
Piezoresistors, 201–202	in x-ray lithography, 50

Poisson ratio, 196	Projected straggle, 131
for thin films, 269	Projection printing, 3, 22–23
Polishing etchants, 206–207	depth of focus and resolution in, 27–28
Poly(methylmethacrylate), see PMMA (poly(methylmethacrylate))	error types in, 28–29
Polyalkesulfone (PAS) resist, 336	fiducial marks in, 28
Polycarbonate (PC), in injection molding, 364	mask alignment in, 28-30
Polydimethylsiloxane (PDMS) process	mathematical expression of resolution in, 25-27
CDs cast in, 69–70, 360	methods of, 23
in liquid resin molding, 359	modulation transfer function in, 23–25
procedure for making stamp, 63–64	numeric aperture of lens in, 26
Polyethylene (PE), in injection molding, 364	optical imaging quality in, 24
Polyimide(s)	resist profiles in, 30–31
for master micromolds, 342	Projection scanners, 23
as substrates, 521–522	Prokaryotes, 431, 432
surface structure of, 291–292	Proof mass formation, 242
Polymerase chain reaction (PCR), 433-434, 444-446	Proportional limit, 199
in sample preparation for DNA analysis devices, 515-516	Protein(s)
Polymers	examples of, 435–438
conductive, patterning, 167, 169	motor, 431–432, 545
environmentally sensitive, for drug delivery, 600	N-terminus and C-terminus of, 436
Polymethacrylimide (PMI) resist, 336	origin of, 427, 439
Polyoxymethylene (POM) resist, 336	recycling of, 438–439
Polypropylene (PP), in injection molding, 364	role of, in cell, 434
Poly(lactide-co-glycolide) (PLG) resist, 336	self-repair in, 438–439
Polysilicon	structure and conformation of, 435, 437
coarse and fine grained, material properties of, 297	synthesis of, 434–435, 437, 439
deposition of, 294–295	water release in, 436
PECVD and sputter, 298	Protein patterning, 68–69, 163–164
doped, material properties of, 296–298	Proximity effects, 53
hinged, 283–285	Proximity printing, resolution in, 21–22
material properties of, 294–295	PS (polystyrene), in injection molding, 354
milliscale, molded, 285–287	PSMs (phase shifting masks), 42–43
porous, 283	alternating aperture, 42
thick, 285	embedded attenuated, 42–43
undoped, material properties of, 295–296	Pump driven systems
Polysilicon cavity sealing, 481–482	centrifugal, 501
Polystyrene (PS), in injection molding, 354	electrohydrodynamic, 560
Polyvinylchloride (PVC), in injection molding, 364	magnetohydrodynamic, 576-577
Polyvinylidene fluoride (PVDF)	mechanical, 499–501
as resist, 368	osmotic, 600
as sensor material, 559	passive valving in, 585
POM (polyoxymethylene) resist, 336	piezoelectric, 556–557
Poor man's LIGA, 36	PVC (polyvinylchloride), in injection molding, 364
Positive resists, 6–7	PVD, see Physical vapor deposition (PVD)
adhesion properties of, 10	PVDF (polyvinylidenefluoride)
compared to negative resists, 8–9	as resist, 368
G value of, 16	as sensor material, 559
image reversal with, 37	Pyroelectricity, 561
presoak process for undercut in, 19	
profiles of, 30–31	Q
Positive tone, 6	Q particles, 455–456
Post baking, 6	Quantum structures, nanofabrication of, 454–455
Post exposure treatment, 4–5	Quartz, 559
Potassium hydroxide (KOH), 214–215	Quartz substrates, 519
Potassium niobate (KNbO3), 559	R
Power, 535	
Power sources, MEMS, 600–602	Radical etching, 93–97
PP (polypropylene), in injection molding, 364	imaging of, 109
Preferential etching, 207, 212	Radio frequency MEMS, 616
specific applications of, 213	Radio frequency plasmas, 85–87
Presoak process, for undercut on positive resist, 19	in deposition techniques, 139–140
Projected range, 130	device damage using, 87

plasma potential of, 86–87	typical, and photosensitivities, 10
Rayleigh criterion, 22–23	ultrathin film, 63
RCA1, and RCA2, 11	very thin layer, 61–63
solution components, and cleaning procedure, 11	for x-ray lithography, 50-51, 336, see also X-ray lithography
Reaction injection molding (RIM), 357–358, 385	Resist stripping, 13–14
in LIGA and LIGA-like processes, 358–359	Resist tone, 6
pros and cons of, 359	Resistance change, 201
Reactive ion beam etching (RIBE), 97–99, 419	Resistive heating, 135
Reactive ion etching (RIE), 87, 97, 98	Resistive pastes, 156
Reactive sputter etching, 87, 140	Resistivity coefficients, 201–202
Read/write heads	Resistors
magnetoresistive, 354	in-diffused, 201
markets for, 658–660	n type, 203
thin film, 47, 353–354	p type, 203
Redeposition, rotating and, 92–93	Resolution, 14, 21
Reference electrode, onboard electrochemical, 177	in microcontact printing, 21–22
Relief printing, 364, see also Compression molding	planarization in, 31–32
Residual stress, 198	in projection printing, 22–31
Resist(s), $6-10$	in proximity printing, 21–22
chemically amplified, 33–37	with self-aligned masks, 22
contrast and resolution of, 20–21	Resolution enhancing techniques (RETs), 5, 21, 32–33
for deep UV lithography, 291–292, see also Photolithography	antireflective coatings in, 38
for deep x-ray lithography, 336, see also X-ray lithography	image reversal in, 37–38
dual-tone, 37–38, 39	mask technology in, 41–44
for electron beam lithography, 54, 336	resist improvement in, 33–37
G value of, 15–16	thin film imaging in, 38–41
glass transition temperatures of, 10	Resonant beam technology, in automotive MEMS market, 635–636
improved, 33–37	Resonator, optical, 541
intrinsic sensitivity of, 15–16	Retina chip, 205–206
Langmuir-Blodgett, 62	Reynolds number, 145
lift-off profiles of, 18–19	in fluidics, 581–583
for LIGA, 335–336, 368–369, see also LIGA (Lithographie, Gal-	vs. friction factor, 583
vanoformung, Abformung)	RF (radio frequency) plasmas, 85–87
multilayer, 18	in deposition techniques, 139–140
thin film imaging in, 41, 42	device damage using, 87
negative, 7–8	plasma potential of, 86–87
compared to positive resists, 8–9	RIBE (reactive ion beam etching), 97–99, 419
contrast using, 20	Ribosomes, 440
G value of, 16	RIE (reactive ion etching), 87, 97, 98
image reversal with, 37–38	RIM (reaction injection molding), 357–358, 385
in x-ray lithography, 50	in LIGA and LIGA-like processes, 358–359
negative and positive, comparison of, 8–9	pros and cons of, 359
permanent, 9–10	RNA (ribonucleic acid)
photochemical, 388–390	in genetic code, 439–440
photochemical quantum efficiency of, 15–16	messenger, 440
positive, 6–7	in origin of life, 427
adhesion properties of, 10	translation of, in protein synthesis, 439–440
compared to negative resists, 8–9	transport, 440
G value of, 16	Rohm and Haas resist, 38, 39
image reversal with, 37	Roughening transition temperature, 225
presoak process for undercut in, 19	Roughness, macroscopic, and microscopic, 217
profiles of, 30–31	Ruling engines, 382
profiles for, 16–19	Runing engines, 302
mathematical expressions for, 30–31	S
Rohm and Haas, 38, 39	Sacrificial layer
self assembled monolayers as, 62–63	in micromolding applications, 367–368
single layer, 38	in surface micromachining, 273, 274
spinning, 3–4	SACVD (subatmospheric pressure chemical vapor deposition), 302
SU-8, 35-37	SAMPLE, 137–138
for surface micromachining, 291–292	Samples, in molecular diagnostics
tBOC based, 33–35	introduction of, 502–503
thin film interference effects in, 38	preparation of, 467, 512, 513–515

examples of, 515–518	in gas monitoring applications, 652
Scaling, 535, 536, 622	planar, 156
in analytical separation equipment, 593–600, see also Analytical	high temperature, 289
separation systems	immuno-, 447–448
of concentration and volume, 541	life, 426
dimensional ratios in, 537	polymer/metal based, 174
effects of	pressure, see also Automotive applications
on diffusion, 539–540	absolute, 483
on drag forces, 537–538	comparisons of t, 634
on frictional forces, 537–538	with diffused piezoresistive elements, 202–203
on fundamental frequency, 543	by SIMOX surface micromachining, 290
on inertia, 542–543	retinal, 206
in insects, 539	silicon, 193–195
on lift forces, 538	bending of, 203–204
on quality factor, 543	elasticity constants off, 195–198
on strength-to-weight ratio, 542–543	piezoresistivity of, 200–203
on surface tension, 538–539	smart, 617
in electrochemistry, 540	stress-strain curve of, 195–198
microintuition in, 536	thermal properties of, 204–205
in micromachining, 547–593, see also Actuators	yield, tensile strength, hardness and creep in, 199–200
of minimal analytical sample size, 540	solid state gas, 651–652
nature as guide in, 536–537	solid state oxygen, fabrication of, 172–173
in optics, 540–542	surface plasmon resonance, 449–451, 523
of physical phenomena, 546	in transportation context, 633
Trimmer's vertical bracket notation in, 545–546	wide range air-to-fuel ratio, 172–173, 386–387
SCALPEL (scattering with angular limitation projection electron	Sensor die, 617, 618
beam lithography), 57	Sensor element, 617
Scanning electrochemical microscopy (SECM), 59, 393	Sensor technologies, comparison of, 170
Scanning electrochemical inicroscopy (SEM), 54–55	Separation systems, analytical, 593–594
Scanning probe lithography (SPL), 57, 58–61, 59	band broadening in, 595–596
pattern generation in, 59–61	
writing speeds in, 60–61	scaling parameters in, 596–600
Scanning tunneling microscopy (STM), 56–57, 58–59	terminology used with, 594–595
	theoretical plates in, 599
Scattering with angular limitation projection electron beam lithog-	SETI (search for extraterrestrial intelligence), 426
raphy (SCALPEL), 57	Shadow printing, 3
Schottky emission, 54	resolution in, 21–22
SCREAM (single crystal reactive etching and metallization), 111–114	Shadowing, 137
	Shape memory alloy (SMA)
Screen printing, see Silk screening	in thermal actuators, 591–593
SDA (strand displacement amplification), 517–518	in valves, 468
GECM (scanning electrochemical microscopy), 59, 393	Shear modulus, for silicon, 198
Seebeck coefficient, 561	Shear strains, 196–198
Seebeck effect, 561	Shipley 1800, 37
Seidel, and others, model of anisotropic chemical etching, 221–224	SIA Road Map, 45–46
key points of, 223	Silicates, 32
Selective etching, 207	Silicon, see also Polysilicon
Self assembly	amorphous and hydrogenated amorphous, properties of,
in BIOMEMS, 161, 452–453	298–299
of biomolecules, 452–453	bending, 203–204
of monolayers, 62–63, 384	biocompatibility of, 511
Self bias, 85	compared to other technologic materials, 205
SEM (scanning electron microscopy), 54–55	creep in, 199–200
Semiconductors, conductivity of, 128	crystalline, 185
Sensitivity curve(s), 19–20	characteristics of, 207
Sensocompatibility, 510	growth of, 125–127
Sensor(s), 617–618	lattice planes in, 186–187
additive processes in making, 171	mechanical properties of, 205
angular rate, 637–638	Miller indices of, 185–186
biomodule, 176	orientation of, 186–187
chemical, modular approach, 175	doping, 127–128
electrochemical	and conductivity of semiconductors, 128
in BIOMEMS applications, 246–247, 642–646	by diffusion, 128–130