

R01.06 - Mathématiques discrètes Contrôle Continu (1h15) Mardi 12 octobre 2021 - A. Ridard



Exercice 1.
Soit P et Q deux assertions.
On considère l'assertion R définie par :

$$R \sim (P \wedge Q) \Longrightarrow (P \vee \neg Q)$$

1. Compléter la table de vérité de R.

| P | Q | PAQ | 7 Q | PV7Q | R |
|---|---|-----|-----|------|---|
| V | V | V   | F   | V    | V |
| V | F | F   | V   | V    | V |
| F | V | F   | F   | F    | V |
| F | F | F   | V   | V    | V |

2

2. Transformer R en une assertion équivalente  $^1$  ne contenant que les connecteurs  $\neg$  et  $\land$ .

$$R \sim (P \wedge Q) \Rightarrow (P \vee \neg Q)$$
  
 $\sim \neg (P \wedge Q) \vee (P \vee \neg Q)$   
 $\sim \neg (\neg (\neg (P \wedge Q) \vee (P \vee \neg Q)))$   
 $\sim \neg ((P \wedge Q) \wedge \neg (P \vee \neg Q))$   
 $\sim \neg ((P \wedge Q) \wedge (\neg P \wedge Q))$   
 $\sim \neg (P \wedge \neg P \wedge Q)$ 

2)

<sup>1.</sup> Vous pouvez d'ailleurs vous en servir pour "vérifier" la table de vérité de R

Exercice 2. Soit  $(u_n)_{n \in \mathbb{N}} = (u_0, u_1, u_2, ...)$  une suite réelle.

On rappelle les définitions suivantes :

• On dit que la suite  $(u_n)_{n\in\mathbb{N}}$  est *croissante* quand elle vérifie :

$$\forall n \in \mathbb{N}, u_{n+1} \ge u_n$$

• On dit que la suite  $(u_n)_{n\in\mathbb{N}}$  est *bornée* quand elle vérifie :

$$\exists m \in \mathbb{R}, \ \exists M \in \mathbb{R}, \forall n \in \mathbb{N}, \ m \leq u_n \leq M$$

• On dit que la suite  $(u_n)_{n\in\mathbb{N}}$  converge vers 0 quand elle vérifie :

$$\forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge n_0 \Longrightarrow |u_n| < \epsilon)$$

En niant ces définitions, exprimer à l'aide d'une phrase quantifiée chacune des assertions suivantes.

1. La suite  $(u_n)_{n\in\mathbb{N}}$  n'est pas croissante.



2. La suite  $(u_n)_{n\in\mathbb{N}}$  n'est pas bornée.

YMER, YMER, BNEN, (un<m ou un>M)



3. La suite  $(u_n)_{n\in\mathbb{N}}$  ne converge pas vers 0.

JE>O, ∀no ∈ N, Jn ∈ N, n> no et lun|> E



Les assertions suivantes sont-elles vraies ou fausses? Justifier 2.

1.  $\exists x \in \mathbb{R}^*, \forall y \in \mathbb{R}^*, \forall z \in \mathbb{R}^*, z - xy = 0$ 

(OT) FAUX - Démontions tack\*, 3 yek\*, 3 = xy + 0. (0,5) Soit x E R\*

(05) Posons y=-1 ER\* et z=x ER\*.

Writions que y et z conviennent bien:

3-xy=x-xx(-1)=2x +0 carx +0.

2.  $\forall y \in \mathbb{R}^*, \forall z \in \mathbb{R}^*, \exists x \in \mathbb{R}^*, z - xy = 0$ 

65 VRAI. SityER\* etzER\*.

(95) Véntions que « convient bien:

$$3-xy=3-\left(\frac{3}{y}\right)y=0.$$

3.  $\forall \epsilon > 0$ ,  $\exists a > 0$ ,  $a < \epsilon$ 

(O,S) VRAI

. c<3 tid

(95) Possons  $a = \frac{\varepsilon}{2} > 0$ . Vénfions que a convient bien:

a = = ( E car 1 (1 (et E)0)

2. Démontrer l'assertion si elle est vraie, et démontrer sa négation si elle est fausse

```
4. 3a>0, Ve>0, a<e

(AT) FAUX. Démontions ta>0, 7 E>0, a> E (0,T)

Bita>0.

Posons E = a >0.

(91) Worling aux & convient bien:
```

5. 
$$\forall x \in \left[ -\frac{5}{4}, +\infty \right[, x = \sqrt{4x+5} \Longleftrightarrow x^2 - 4x - 5 = 0$$

boson 
$$x = -1 \in \left[-\frac{5}{4}, +\infty\right[$$
.

(b) Vérifions que x convient bien:

$$x^2-4x-5=0$$
 et  $\sqrt{4x+5}=1 \neq \infty$ 



1. Soit a et b des réels. Démontrer par contraposition l'implication :

$$a+b\notin\mathbb{Q}\Longrightarrow a\notin\mathbb{Q}$$
 ou  $b\notin\mathbb{Q}$ 

On rappelle qu'un réel x est rationnel  $^3$  s'il peut s'écrire comme une fraction de deux entiers relatifs :

$$\exists p \in \mathbb{Z}, \ \exists q \in \mathbb{Z}^*, \ x = \frac{p}{q}$$

Ruposos a EQ et b EQ. ) (1)

Nontrous a + b EQ.

Comme a  $\in \mathbb{Q}$ , il existe  $p \in 2$  et  $q \in 2^*$  to  $a = \frac{p}{q}$ De même, il existe p'ez et q'ez\*tq b = f. On en déduit: a+b = \( \frac{p}{q} + \frac{p'}{q'} = \frac{pq' + qp'}{qq'} \) En posant p"= pq'+qp' ∈2 et q"= qq' ∈2\* on a bien a+b = e" c'est à dire a+b & Q.

<sup>3.</sup> On désigne par Q l'ensemble des rationnels

2. Soit f une application de  $\mathbb R$  dans  $\mathbb R$ . Démontrer par double implication l'équivalence  $^4$ :

 $\left(\exists b \in \mathbb{R}, \forall x \in \mathbb{R}, |f(x)| \le b\right) \Longleftrightarrow \left(\exists m \in \mathbb{R}, \exists M \in \mathbb{R}, \forall x \in \mathbb{R}, m \le f(x) \le M\right)$ 

On rappelle que  $|f(x)| \le b$  signifie  $-b \le f(x) \le b$ .

Montrous =>

Syponus 36 ER, treR, 1/(2) (6.

Butions FMER, JMER, YZER, m & g(2) < M.

Bbm m=-bER dM=bER.

Véntions que m et M convennent sien:

BITKER.

Comme 18/2/18b, on a -688(2) 16 c'est à dire m 18(2) 6M.

Thatious <

Supposes FMER, FMER, HZER, MLJRZ) < M.

Bootisus 75 ER, 42 ER, 18(2) 1 6.

Booms b = max } |m|, |m| & ER.

Vénfors que b convient bien:

SitzER.

-b <- |m| < m < f(x) < M < |m| < b

D'si - b \ g(x) \ b \ c'at \ a dire 1g(x) \ \ b.

<sup>4.</sup> Elle exprime qu'une fonction est bornée si et seulement si elle est minorée et majorée