

What is the Perceptron Doing???

- - When we discussed logistic regression:
 - $\begin{tabular}{ll} \hline Started from \maximizing conditional log-likelihood \\ $\gamma_{\rm cy}$ & $P(Y|X_{\rm f} w)$ \\ \hline \end{tabular}$
 - When we discussed the Perceptron:
 - □ Started from description of an algorithm
 - What is the Perceptron optimizing????

©Carlos Guestrin 2005-201

Perceptron Prediction: Margin of

Confidence

Light mish k

g(w.x)

y(w.x)

y(w.x)

y(w.x)

y(w.x)

y(w.x)

y(w.x)

y(w.x)

A

Confidence

Prohy

Osjeche

hazz

Mins-g(w.x)

y(w.x)

y(w.x)

y(w.x)

A

Society

Confidence

Osjeche

Margin of

Osjeche

Nava:

No mins-g(w.x)

y(w.x)

y(w.x)

A

Society

Socie

Subgradient Descent for Hinge Minimization

Given data:
$$(x^1, y^1)$$
 (y^n, y^n)

Want to minimize: (y^n, y^n) (y^n, y^n)

Subgradient descent works the same as gradient descent:

But if there are multiple subgradients at a point, just pick (any) one: (x^1, y^1) (y^1, y^1) $(y^1,$

©Carlos Guestrin 2005-2013

What you need to know

- Perceptron is optimizing hinge loss
- Subgradients and hinge loss
- (Sub)gradient decent for hinge objective

©Carlos Guestrin 2005-2013

11

