MELODY/MATLAB OBJECT-ORIENTED MODEL OF GRAVITATIONAL-WAVE INTERFEROMETERS USING MATLAB

Raymond G. Beausoleil

Stanford University/Hewlett-Packard Laboratories 13837 175th Pl. NE, Redmond, WA 98052-2180 beausol@hpl.hp.com

August 2001

LIGO-G010301-00-Z

MELODY/MATLAB OVERVIEW

- Goals and features
- Propagation model
- Object-level features
 - Interferometer configurations
 - Mirror physics: thermal loading, position, orientation
 - Four-stage resonator length pseudolocking
- Script-level features
 - Modulation schemes
 - Mirror parameters: thermal, position, orientation
 - Full interactive MATLAB functionality
- Milestones

ACKNOWLEDGMENTS

- · Stanford
 - Eric Gustafson
 - Marty Fejer

- \cdot MIT
 - Ryan Lawrence
 - Peter Frischel
- · UCF
 - Guido Mueller

- · Caltech
 - Erika D'Ambrosio
 - Bill Kells
 - Jordan Camp
- · Glasgow
 - Ken Strain

- · LIGO
 - Daniel Sigg

MELODY/MATLAB GOALS

- Provide an easily usable, flexible multiplatform framework for LIGO
 I/II calculations and simulations
- · Allow users to write scripts to drive simulations tailored to their needs (post-processing, graphics, numerical analysis)
- · Easily include physical effects in mirrors: aperture diffraction, curvature mismatch, thermal lensing, thermoelastic surface deformation
- · Allow translation to a lower-level language for performance
- Provide a simple interface to industry-standard software for modeling control systems (SIMULINK)

MELODY/MATLAB FEATURES

- MATLAB classes for fields, mirrors, interferometers, and detectors; driven by user-written scripts \rightarrow self-consistent solutions
- Prebuilt LIGO I/II configurations
 - Power, signal, and dual recycling
 - Arbitrary modulation schemes
 - Resonator length pseudolocking for self-contained simulations
- Mirror physics
 - Aperture diffraction
 - Mirror surface/laser wavefront curvature mismatch
 - Thermal lensing due to bulk and coating absorption (TEM_{00})
 - Thermoelastic surface deformation (reflection, transmission)

NEW MELODY/MATLAB FEATURES

- Overall performance improvement v1.9/v1.8: 20%
- Updated model of thermoelastic surface deformation
 - Analytical calculations of thermoelastic surface deformation verified with MATLAB FEM
 - * substrate absorption (symmetric)
 - * HR and AR coating absorption (asymmetric)
 - Reflection *and* transmission effects included
- · Write-up (manual) 90% complete

MELODY/MATLAB LIMITATIONS

- \cdot Models thermal loading due to TEM_{00} absorption only, summed over all frequency components
- Correct numerical beamsplitter treatment underway (FEMLAB)
 - Arbitrary non-normal incidence angle
 - Thermoelastic surface deformations
- Transient thermal loading not yet implemented calculations complete, but will require nontrivial architectural changes

GRAVITATIONAL WAVE DETECTION

$$\Delta \Phi pprox rac{\Delta L}{L} rac{L}{\lambda} \equiv h rac{L}{\lambda} > rac{1}{\sqrt{N}}$$

$$h_{\min} pprox rac{\lambda}{L} rac{1}{\sqrt{N}}$$

- · Use Fabry-Perot interferometers: $L \longrightarrow BL$
 - Improved sensitivity
 - Longer storage time → lower signal frequencies
- \cdot Dark fringe operation \rightarrow use power recycling
 - Improved sensitivity

LIGO IFO CONFIGURATION

FORWARD PROPAGATION: HUYGENS-FRESNEL INTEGRAL

Huygens Integral:

$$E(x, y, z) = \int_{\mathcal{A}_1} dx' \, dy' \, K(x, y; x', y') E(x', y', z') \equiv \hat{K}[E(x', y', z')]$$

Fresnel Approximation:

$$K(x, y; x', y') =$$

$$\frac{1}{i\lambda B} \exp\left\{i\frac{\pi}{\lambda B} \left[A(x'^2 + y'^2) - 2(x'x + y'y) + D(x^2 + y^2)\right]\right\}$$

R. G. Beausoleil August 2001

UNPERTURBED BASIS FUNCTIONS

Forward and backward unperturbed basis functions:

$$\gamma_{mn}u_{mn}(x,y,0) = \int_{A_1} dx' dy' K_0(x,y;x',y')u_{mn}(x',y',0)$$

$$y_{mn}^{\dagger} u_{mn}^{\dagger}(x, y, 0) = \int_{\mathcal{A}_1} dx' \, dy' \, K_0^{\dagger}(x, y; x', y') u_{mn}^{\dagger}(x', y', 0)$$

Biorthogonality relation (Siegman), satisfied discretely:

$$\int_{\mathcal{A}_1} dx \, dy \, u_{mn}^{\dagger}(x, y, z) u_{m'n'}(x, y, z) = \delta_{mm'} \delta_{nn'}$$

Expand intracavity field:

$$E(x, y, z, t) = \sum_{mn} E_{mn}(t) u_{mn}(x, y, z)$$

PROPAGATOR MATRIX ELEMENTS

Calculate $K_{mn;m'n'}(t)$ as the matrix element of the fully perturbed forward propagator (from reference plane \mathcal{A}_1 to reference plane \mathcal{A}_2) in the unperturbed basis:

$$K_{mn;m'n'}(t) = \int_{\mathcal{A}_2} dx \, dy \, \int_{\mathcal{A}_1} dx' \, dy'$$
$$\times u_{mn}^{\dagger}(x,y)K(x,y;x',y';t)u_{m'n'}(x',y')$$

We compute $K_{mn;m'n'}(t)$ for each propagation region in the extended unperturbed basis of the interferometer; then construct a representation of the perturbed interferometer using matrix multiplication.

APERTURE DIFFRACTION

$$A_{mn,m'n'} = \iint_{\mathcal{A}} dx \, dy \, u_{mn}^*(x,y) \, u_{m'n'}(x,y)$$
$$\equiv \delta_{m,m'} \, \delta_{n,n'} - e^{-\alpha} I_{mn,m'n'}(\alpha),$$

where $\alpha \equiv 2(a/w)^2$, and nonzero elements of $I(\alpha)$ satisfy

$$I_{mn,m'n'}(\alpha) \approx O\left[\alpha^{\frac{1}{2}(m+n+m'+n')}\right]$$

CURVATURE MISMATCH

Unitary approximation:

$$C \cong \exp(i \gamma c)$$
,

where

$$\gamma \equiv \frac{\pi w^2}{\lambda} \left(\frac{1}{R_F} - \frac{1}{R_M} \right)$$
 ,

and, in the Hermite-Gauss basis,

$$c_{mn,m'n'} \equiv \frac{2}{w^2} \iint_{-\infty}^{\infty} dx \, dy \, |u_{mn}(x,y) \, u_{m'n'}(x,y)| \, (x^2 + y^2)$$
$$= X_{m,m'}^2 \, \delta_{n,n'} + \delta_{m,m'} \, X_{n,n'}^2$$

THERMAL LENSING

- Hello-Vinet model of substrate thermal lensing due to both substrate and coating absorption
- H-V bulk absorption result agrees with approximations:
 - Infinite half-space approximation:

$$T(r) - T(0) = -\frac{\alpha_P P}{4\pi k_T} \left[\gamma + \ln\left(\frac{2r^2}{w^2}\right) + E_1\left(\frac{2r^2}{w^2}\right) \right]$$

– Near r = 0, thin lens approximation:

$$f = \frac{\pi w^2}{\alpha_P h P} \frac{\kappa_T}{dn/dT}$$

· Numerical implementation of astigmatic thermal loading in beamsplitter almost complete (Hermite-Gauss basis)

HELLO-VINET THERMAL LENS MODEL

Reference: P. Hello and J.-Y. Vinet, J. Phys. France 51, 1267 (1990)

Coating absorption:

$$T_c(r,z) = \frac{P_c}{k_T a} \sum_{k=0}^{\infty} a^2 p_k \left[A_k \cosh\left(\zeta_k \frac{z}{a}\right) + B_k \sinh\left(\zeta_k \frac{z}{a}\right) \right] J_0\left(\zeta_k \frac{r}{a}\right)$$

Substrate absorption:

$$T_{s}(r,z) = \frac{P_{s}}{k_{T}h} \sum_{k=0}^{\infty} \frac{a^{2}p_{k}}{\zeta_{k}^{2}} \left[1 - 2\tau A_{k} \cosh\left(\zeta_{k}\frac{z}{a}\right) \right] J_{0}\left(\zeta_{k}\frac{r}{a}\right)$$

HELLO-VINET THERMAL CONSTANTS

 ζ_k : Roots of the equation

$$\zeta J_1(\zeta) - \tau J_0(\zeta) = 0$$

Since $\tau = 4\epsilon T^3 a/k_T = 0.27734$ for fused silica at room temperature,

$$\zeta_k \approx (k+1/4) \, \pi, \quad k \in \{0,1,2,\ldots\}$$

 p_k : Normalized expansion coefficients

$$u_{00}^2 = \sum_{k=0}^{\infty} p_k J_0 \left(\zeta_k \frac{r}{a} \right)$$

Since $(w/a)^2 \ll 1$,

$$p_k \approx \frac{P}{\pi a^2} \frac{\zeta_k^2}{(\zeta_k^2 + \tau^2) J_0^2(\zeta_k)} e^{-(\zeta_k w/a)^2/8}$$

THERMAL LENS OPERATOR

The propagation phase perturbation due to the substrate OPD is

$$\phi(r) = \frac{2\pi}{\lambda_0} \frac{dn}{dT} \int_{-h/2}^{h/2} dz \, T(r, z)$$

where T(r, z) is the *linear* sum of contributions from heating due to absorption in both coatings (HR and AR) and the substrate.

Matrix elements of the thermal lens operator (per unit power absorbed):

$$\Phi_{m'n';mn} = \int_{-\infty}^{\infty} dx dy \, u_{m'n'}^{\dagger}(x,y) \, u_{mn}(x,y) \, \phi(r)$$

Since $\phi(r) \propto r^2$, TEM₀₀ is coupled to both TEM₂₀ and TEM₀₂.

FINAL THERMAL LENS MATRICES

Unitary approximation:

$$S = \exp \left\{ i \left[P_s \Phi_s + (P_h + P_a) \Phi_c \right] \right\}$$

Region	Absorbed Power
SS	$P_s = \alpha_s h \frac{1}{2} \sum_q \left(E_{00q}^+ ^2 + F_{00q}^- ^2 \right)$
HR	$P_h = a_{hr} \frac{1}{2} \sum_{q} \left(F_{00q}^+ ^2 + F_{00q}^- ^2 \right)$
AR	$P_a = a_{ar} \frac{1}{2} \sum_{q} \left(E_{00q}^+ ^2 + F_{00q}^- ^2 \right)$

HELLO-VINET THERMOELASTIC SURFACE DEFORMATION

Reference: P. Hello and J.-Y. Vinet,

J. Phys. France 51, 2243 (1990)

$$\gamma_k \equiv \zeta_k h/2a$$

$$u_c\left(r, \pm \frac{h}{2}\right) = \mp P_c \frac{(1+\nu)\alpha_T}{k_T} \sum_{k=0}^{\infty} \frac{a^2 p_k}{\zeta_k} \left[A_k \sinh\left(\gamma_k\right) \pm B_k \cosh\left(\gamma_k\right) \right]$$
$$\times J_0\left(\zeta_k \frac{r}{a}\right) - \frac{1}{2} \frac{(1-\nu)\alpha_T}{k_T} C_1 \left(\frac{r}{a}\right)^2$$

$$u_{s}\left(r,\pm\frac{h}{2}\right) = \mp P_{s}\frac{(1+v)\alpha_{T}}{k_{T}}\sum_{k=0}^{\infty}\frac{a^{2}p_{k}\sinh\left(y_{k}\right)}{\zeta_{k}^{2}}\times\left[\tau A_{k}-\frac{\sinh\left(y_{k}\right)}{\gamma_{k}+\cosh\left(y_{k}\right)\sinh\left(y_{k}\right)}\right]J_{0}\left(\zeta_{k}\frac{r}{a}\right)$$

THERMAL DEFORMATION OPERATOR

The propagation phase perturbation due to the surface OPD at the HR is

$$\phi(r, \pm h/2) = \frac{2\pi}{\lambda_0} \Delta n(z) u(r, \pm h/2)$$

where $u(r, \pm h/2)$ is the *linear* sum of contributions from deformations due to absorption in both coatings (HR and AR) and the substrate.

Matrix elements of the thermal deformation operator (unitary approx):

$$U_{m'n';mn} = \iint_{-\infty}^{\infty} dx dy \, u_{m'n'}^{\dagger}(x,y) \, u_{mn}(x,y) \, e^{i\phi(r)}$$

$$\equiv \exp \left[i \iint_{-\infty}^{\infty} dx dy \, u_{m'n'}^{\dagger}(x,y) \, u_{mn}(x,y) \, \phi(r) \right]$$

Since $\phi(r) \propto r^2$, TEM₀₀ is coupled to both TEM₂₀ and TEM₀₂.

MIRROR TRANSFER MATRIX

$$\begin{bmatrix} E^- \\ E^+ \end{bmatrix} = \begin{bmatrix} T^- & R^- \\ R^+ & T^+ \end{bmatrix} \begin{bmatrix} F^- \\ F^+ \end{bmatrix}$$

$$T^{-} = i t t_{s} (C^{-}C^{+})^{1/2} S U A$$

$$T^+ = i t t_s U S (C^+ C^-)^{1/2} A$$

$$R^- = -r e^{-i 2k \Delta z} C^- A$$
, and

$$R^+ = -r t_s^2 e^{+i2k\Delta z} U S C^+ S U A$$

FABRY-PEROT INTERFEROMETER TRANSFER MATRIX

Transfer matrix:

$$\begin{bmatrix} E_q^- \\ E_q^+ \end{bmatrix} = \begin{bmatrix} T_{\text{FPI}}^-(\Delta \, \omega_q) & R_{\text{FPI}}^-(\Delta \, \omega_q) \\ R_{\text{FPI}}^+(\Delta \, \omega_q) & T_{\text{FPI}}^+(\Delta \, \omega_q) \end{bmatrix} \begin{bmatrix} F_q^- \\ F_q^+ \end{bmatrix},$$

Example:

$$R_{\text{FPI}}^{-}(\Delta \omega) = R_1^+ + T_1^+ H_1^+(\Delta \omega)$$

$$H_1^+(\Delta \omega) = \left(1 - e^{i 2 \Delta \omega \tau_{13}} G_{13} R_3^- G_{31} R_1^-\right)^{-1} e^{i 2 \Delta \omega \tau_{13}} G_{13} R_3^- G_{31} T_1^-$$

MODEL OF IFO COUPLING

- Choose a *primary* FPI as a reference cavity; initial mirror properties define the "fundamental" unperturbed eigenmodes → basis functions
- Propagate the unperturbed basis functions from the FPI to the PRM and SRM; choose wavefront curvatures at mirror reference planes as unperturbed mirror curvatures
- · Propagate basis to the secondary FPI; load FPI with fundamental basis
- · Propagate out through the PRM to define a basis for the input field
- Provides a basis for the recycled fields even if recycling cavities are unstable

MICHELSON INTERFEROMETER TRANSFER MATRIX

LIGO INTERFEROMETER TRANSFER MATRIX

RESONATOR LENGTH PSEUDOLOCKING

RESONATOR LENGTH PSEUDOLOCKING

Self-contained simulations: implicit four-stage *pseudolocker*

- 1. *FPI* stage adjusts the positions of the FPI ITMs to maximize round-trip carrier TEM_{00} enhancement.
- 2. *Dark Port* stage adjusts the beamsplitter position so that the amplitude of the carrier TEM_{00} mode is minimized at the dark port.
- 3. *Power Recycling* stage adjusts the position of the PR mirror to maximize carrier TEM_{00} enhancement.
- 4. Signal Recycling stage adjusts the position of the SR mirror to optimize carrier TEM_{00} phase at the SR.

MELODY/MATLAB FEATURES

- Simple object-oriented architecture in MATLAB
- · Flexible modulation and resonance schemes
- · Arbitrary number of spatial basis functions
- Aperture diffraction and mirror/field curvature mismatch
- · Hello-Vinet mirror thermal lens and surface deformation
- Pseudolockers for LIGO I/II
- Astigmatic beamsplitter thermal lens
- Precomputation of all matrix operators available

MELODY FEATURE LIFE-CYCLE

- Transient thermal loading
- Static thermal compensation

· Mirror misalignment

- Static thermal loading
- Static thermal deformation

NEW FEATURE PRIORITIES

- 1. Correct model of thermal compensation (MIT)
- 2. IFO eigenmode extraction for mode-matching
- 3. Quadratic thermoelastic surface curvature reporting at runtime
- 4. Add artificial differential gravitational-wave signal sidebands
- 5. Add compensation plates to basic configuration
- 6. Sideband optimization: common & differential lengths, Schnupp asymmetry, modulation frequency
- 7. Finish numerical calculation of beamsplitter thermoelastic surface deformation \rightarrow 45° incidence

NEW FEATURE PRIORITIES

- 8. Demodulation routine for detector class
- 9. Transient thermal loading
- 10. Mirror misalignment operators

IMPLEMENTATION

- · Use object-oriented programming in MATLAB: primitive classes, encapsulation, function/operator overloading, and inheritance
- · Define classes for mirrors, Fabry-Perot and LIGO interferometers, electric fields (Hermite-Gauss, RF-modulated), and detectors
- Encapsulate classes representing simpler entities (mirrors, beamsplitters, laser fields) in classes representing interferometers
- Design simple class interfaces allowing calculations and simulations to be driven by MATLAB scripts

61

User-defined driver scripts

Melody architecture and classes (@mirror, ...)

"Qui ci sono dei mostri."

SCRIPT-LEVEL FEATURES

- · Input powers, modulation frequencies and depths
- · All mirror parameters (e.g., thermal constants, orientation and microposition)
- All interferometer cavity lengths
- Power/signal recycling
- Iteration and solution methods
- Graphics, object storage(!), post-processing
- Full interactive MATLAB functionality

TWO-PHASE THERMAL/TEMPORAL SIMULATIONS

Characteristic time: $t_c = \rho C a^2/k_T \approx 5$ h for fused silica (a = 0.125 m)

THERMAL (Script-driven)

- 1. Run thermal relaxation code, including power-dependent optimizations (e.g., modulation depths, SRM reflectivity)
- 2. SAVE ligo object after stability is reached for each power level

TEMPORAL (Script-driven, SIMULINK)

- 1. LOAD ligo object for a specified input power
- 2. Perturb mirrors and simulate temporal response

SUBSET OF CLASSES

laser_field Stores all spatial components for all operating sidebands, and the frequencies of those sidebands.

mirror Maintains all perturbation matrices (e.g., thermal and angular); encapsulates mirror parameters, two laser_field objects, detectors.

beamsplitter Special case of mirror for 45° beamsplitter; uses numerical temperature distribution.

detector Demodulation detector array; almost complete.

fpi Fabry-Perot Interferometer

ligo LIGO I/II Interferometers

LASER_FIELD OBJECT DATA

- · laser_field class consists of data fields (*members*) and routines which operate on those fields
- Routines fall into two broad categories:
 - **procedures** which alter the internal state of the object but do not return results (e.g., object update procedures)
 - **functions** which return results but do not alter the internal state of the object (e.g., overloaded arithmetic operators)

SIDEBAND REPRESENTATION

Define the propagation vector

$$k = k_0 + \Delta k_q,$$

where $\Delta k_q/k_0 \ll 1$, $\omega_0 \equiv k_0 c$, and $\Delta \omega_q \equiv \Delta k_q c$. Write the time-dependent length as

$$L(t) \equiv L_0 + \Delta L(t),$$

where
$$2k_0L_0 - \varphi_{00} = 2N\pi$$
 and $\Delta L(t) \approx \lambda = 2\pi/k_0$. Then
$$e^{i[2kL(t) - \varphi_{00}]} = e^{i(2k_0L_0 - \varphi_{00})}e^{i[2k_0\Delta L(t)]}e^{i(2\Delta\omega_q L_0/c)}e^{i[2\Delta k_q\Delta L(t)]}$$
$$= e^{i[2k_0\Delta L(t) + \Delta\omega_q \tau_0]}$$

Include $\Delta L(t)$ in mirror class; implement $\Delta \omega_q \tau_0$ as a diagonal propagation matrix.

FPI OBJECT UPDATE PROCEDURE

```
% Get the total field propagating away from the
% vacuum-coating interface of m 1, and then
% propagate that field to the vacuum-coating
% interface of m 2. This is the new 'front
% field' of m 2.
e 1 r = get field(m 1, 'front');
e_2 = fp.gouy_prop * e_1_r * fp.kz_prop;
set field(m 2, e 2, 'front');
% Get the total field propagating away from the
% vacuum-coating interface of m 2, and then
% propagate that field to the vacuum-coating
% interface of m 1. This is the new 'front
% field' of m_1.
e 2 r = get field(m 2, 'front');
e_1 = fp.gouy_prop * e_2_r * fp.kz_prop;
set field(m 1, e 1, 'front');
```

```
function e_3 = mtimes(e_1, e_2)
용
if isa(e 1, 'laser field') & ~isa(e 2, 'laser field')
% Initialize the structure e 3 with the same basis and sidebands
% as e 1, and multiply (matrix, using *) the elements of the
% matrix e 2 by the components of e 1.
   e_3.basis = e_1.basis;
   e_3.sideband = e_1.sideband;
   e_3.component = e_1.component*e_2;
elseif ~isa(e_1, 'laser_field') & isa(e_2, 'laser_field')
% Initialize the structure e_3 with the same basis and sidebands
% as e_2, and multiply (matrix, using *) the components of
% e_2 by the elements of the matrix e_1.
   e_3.basis = e_2.basis;
   e_3.sideband = e_2.sideband;
   e_3.component = e_1*e_2.component;
else
   error('Matrix multiplication of two laser field objects is not allowed.');
end
% Create a new laser field object from the struct e 3.
e 3 = class(e 3, 'laser field');
```

MATLAB/OOP REFERENCES

- Duane Hanselman and Bruce Littlefield, Mastering MATLAB 6: A
 Comprehensive Tutorial and Reference (Prentice-Hall, 2001); ISBN 0-13-019468-9
- Bertrand Meyer, **Object-Oriented Software Construction**, Second Edition (Prentice-Hall, 1997); ISBN 0-13-629155-4
- Paul F. Dubois, **Object Technology for Scientific Computing: Object-Oriented Numerical Software in Eiffel and C** (Prentice-Hall, 1997); ISBN 0-13-257808-X
- · John J. Barton and Lee R. Nackman, **Scientific and Engineering C++** (Addison-Wesley, 1995); ISBN 0-201-53393-6