Методичка по проективной геометрии

11 января 2025 г.

1 Проективная плоскость

(Сипачёва) Одна из возможных моделей проективной плоскости - связки прямых и плоскостей в трёхмерном аффинном (или точечно-евклидовом) пространстве.

Определение 1.1 (Комбаров). *Проективная плоскость* Р - произвольное множество, элементы которого называются *точками*, и набор его подмножеств, именуемых *прямыми* вместе с отношением инцидентности, если при этом выполняются аксиомы П1-П4.

- $\Pi 1.$ Любые две различные точки плоскости инцидентны одной и только одной прямой.
- П2. Любые две различные прямые плоскости инцидентны одной и только одной точке.
- ПЗ. Существуют три точки, не инцидентные одной прямой.
- П4. Каждая прямая инцидентна по меньшей мере трём точкам.

Определение 1.2 (Комбаров). Две проективные плоскости P_1 и P_2 называются *изоморфными*, если существует биекция $f: P_1 \to P_2$, которая переводит точки в точки, прямые в прямые и сохраняет отношение инцидентности.

(Сипачёва) Изоморфизмы между евклидовыми аффинными плоскостями тоже можно определить как биекции, сохраняющие структуры этих плоскостей: отображение одной евклидовой плоскости в другую является изоморфизмом тогда и только тогда, когда оно сохраняет расстояния между точками (и взаимно однозначно переводит прямые в прямые, но это можно не добавлять, так как эти условия выполнены автоматически, если сохраняются расстояния) - это мы доказали раньше; отображение одной аффинной плоскости в другую является изоморфизмом тогда и только тогда, когда оно взаимно однозначно и переводит прямые в прямые - это доказывается в курсе линейной алгебры.

В отличие от евклидовой и аффинной плоскостей, проективная плоскость определяется аксиомами неоднозначно: существуют неизоморфные проективные плоскости. Две проективные плоскости (точнее, две разные можели одной и той же проективной плоскости) мы уже построили и доказали, что они изоморфны. Ешё одну можно описать так:

1.1 Плоскость Фано

Точки - A, B, C, D, E, F, G

Прямые - $\{A,B\}$, $\{B,C\}$, $\{C,A\}$, $\{A,D\}$, $\{B,E\}$, $\{C,F\}$, $\{D,E,F\}$

Все аксиомы выполнены. Это минимальная модель проективной плоскости.

Замечание 1.1. Проективная плоскость не может содержать меньше семи точек.

Определение 1.3 (Сипачёва). C6язка c центром O - множество всех прямых и плоскостей трёхмерного пространства, проходящих через данную точку O. Прямые связки называются mочкамu, а плоскости - nрямымu проективной плоскости.

2 Перспективное соответствие

(Сипачёва) Возьмём в аффинном пространстве какую-нибудь плоскость π , не проходящую через центр связки O. Через каждую точку M плоскости π проходит единственная прямая OM связки (точка проективной плоскости), и через каждую прямую l на плоскости π проходит единственная плоскость связки (обозначим её Ol) (это прямая проективной плоскости).

Обратно, каждой прямой связки (если только она не параллельна π) соответствует единственная точка плоскости π , через которую она проходит. Каждой плоскости связки (не параллельной π) соответствует прямая на π .

Получилось почти биективное соответствие между точками (прямыми) проективной плоскости и точками (прямыми) на аффинной плоскости π . Чтобы сделать его совсем биективным, надо что-то поставить в соответствие прямым и плоскостям связки, которые параллельны π . Для этого плоскость π придётся пополнить.

3 Пополненная плоскость

(Сипачёва) К каждой прямой $l \subset \pi$ добавим одну бесконечно удалённую точку. Эта точка будет соответствовать прямой связки, параллельной прямой l. Таким образом, ко всем прямым из несобственного пучка всех прямых, параллельных прямой l, будет добавлена одна и та же бесконечно удалённая точка. Её можно отождествить c самим несобственным пучком прямых на π , параллельных прямой l.

Определение 3.1. Пополненная плоскость $\overline{\pi}$ - плоскость π вместе с добавленными бесконечно удалёнными точками.

Несобственные точки - добавленные (бесконечно удалённые) точки.

Несобственная прямая (бесконечно удалённая прямая) - множество всех несобственных точек.

 $Coбственные\ npsmue\ nonoлненной\ nnockocmu\ \pi$ - пpsmue $l\subset\pi$ вместе с добавленными точками.

Собственные точки плоскости π - точки плоскости π . Несобственная прямая соответствует плоскости связки, параллельной плоскости π .

(Комбаров) Для данной прямой l обычной плоскости π обозначим через [l] несобственный пучок прямых, параллельных прямой l. Этот пучок [l] назовём несобственной точкой плоскости π . Остальные её точки будем называть собственными. Добавим к плоскости π . все её несобственные точки и обозначим это новое множество через $\overline{\pi}$. Эти прямые обозначаются теми же символами l. Несобственная точка [l] называется несобственной точкой прямой l. Множество $\overline{\pi}$ π всех несобственных точек называется несобственной плоскости $\overline{\pi}$. Множество $\overline{\pi}$ c выделенными в нём собственными и несобственными прямыми называется пополненной плоскости $\overline{\pi}$. Месобственные точки пополненной плоскости называются также бесконечно удалёнными, несобственная прямая - бесконечно удалённой прямой. Напомним, что выражения "точка инцидентна прямой" и "прямая инцидентна точке" означают, что данная точка принадлежит данной прямой.

Пополненную плоскость моожно воспринимать и как множество всех пучков на плоскости как собственных, так и несобственных. Если мы поставим в соответствие каждому собственному пучку прямых на плоскости центр этого пучка, то мы получим взаимно однозначное соответствие между всеми точками плоскости и всеми собственными пучками. Каждый несобственный пучок мы отождествляем с несобственной точкой. Собственные прямые пополняются несобственными точками. При этом множество всех несобственных пучков объявляется несобственной прямой.

Итак, на проективной плоскости всякие две различные прямые l_1 и l_2 пересекаются в одной точке: собственной, если прямые l_1 и l_2 на обычной плоскости не параллельны, и несобственной, если параллельны. Если одна из двух прямых несобственная, то она пересекается со второй прямой в единственной несобственной точке последней. Легко видеть, что на проективной плоскости (так же как и на обыкновенной) через всякие две различные точки M и N проходит ровно одна прямая. Это очевидно, если обе точки собственные. Если M - собственная, а N - несобственная, то прямая MN проходит через точку M и принадлежит несобственному пучку, соответствующему точке N. Наконец, если обе точки несобственные, то прямая MN - несобственная прямая проективной плоскости.

4 Однородные координаты

(Сипачёва) Пусть в трёхмерном (аффинном) пространстве задана связка с центром O. Возьмём какойнибудь репер $Oe_1e_2e_3$ (с началом в O). Для каждой прямой l из связки (точки проективной плоскости) координаты (x_1, x_2, x_3) любого её направляющего вектора пропорциональны координатам любого другого её направляющего вектора. Получается отношение эквивалентности между ненулевыми тройками координат:

$$(x_1, x_2, x_3) \sim (y_1, y_2, y_3) \Leftrightarrow \exists \lambda (\neq 0) \in \mathbb{R} : (y_1, y_2, y_3) = (\lambda x_1, \lambda x_2, \lambda x_3).$$

Класс эквивалентности всех ненулевых троек координат, пропорциональных данной тройке (x_1, x_2, x_3) (т.е. множество троек координат всех направляющих векторов прямой l) называется однородными координатыми прямой l в репере $Oe_1e_2e_3$ и обозначается $(x_1:x_2:x_3)$. Ясно, что однородные координаты любой прямой однозначно определяются любой тройкой координат из класса троек, представляющего собой эти однородные координаты, поэтому запись $(x_1:x_2:x_3)$ удобна и однозначно определяет однородные координаты; двоеточия говорят о том, что она определена с точностью до пропорциональности, т.е.

$$(x_1:x_2:x_3)=(\lambda x_1,\lambda x_2,\lambda x_3), \ \forall \lambda \neq 0.$$

Однородные координаты точки проективной плоскости (связки), которая является прямой l связки, - это однородные координаты прямой l. Тем самым каждой точке проективной плоскости мы поставили во взаимно однозначное соответствие класс (множество) пропорциональных друг другу ненулевых троек чисел.

Каждая плоскость λ (это прямая проективной плоскости) из связки задаётся уравнением вида

$$a_1x_1 + a_2x_2 + a_3x_3 = 0.$$

Тройки коэффициентов $\{a_1, a_2, a_3\}$ в разных уравнениях, задающих одну и ту же плоскость λ , пропорциональны друг другу.

Определение 4.1. Класс всех (ненулевых пропорциональных друг другу) троек коэффициентов $\{a_1, a_2, a_3\}$ уравнений, задающих плоскость λ в репере $Oe_1e_2e_3$, называется однородными координатами плоскости λ в репере $Oe_1e_2e_3$ и обозначается $\{a_1:a_2:a_3\}$.

 $Odnopodnue\ koopdunamu\ npsmou$ проективной плоскости (т.е. плоскости в связке) - это однородные координаты соответствующей плоскости в связке.

Таким образом, каждой прямой проективной плоскости мы тоже поставили во взаимно однозначное соответствие класс пропорциональных друг другу ненулевых троек чисел.

Точка проективной плоскости с однородными координатами $(x_1:x_2:x_3)$ иниидентна прямой с однородными координатами $\{a_1:a_2:a_3\}$ тогда и только тогда, когда $a_1x_1+a_2x_2+a_3x_3=0$. Таким образом, в отношении инцидентности точки и прямые равноправны.

Замечание 4.1. Точки и прямые проективной плоскости равноправны всегда, не только в модели связки: легко показать, что аксиомы П1-П4 равносильны тем же аксиомам, в которых слова "точка" и "прямая" поменяны местами. Единственное, что отличает точку от прямой - это то, что прямая является множеством точек. Однако с тем же успехом можно объявить точку множеством всех инцидентных ей прямых.

5 Арифметическая модель проективной плоскости

(Сипачёва) Рассмотрим два (совершенно идентичных) множества всех классов ненулевых пропорциональных друг другу троек чисел. Назовём классы троек из первого множества точками и будем записывать их в виде $(x_1:x_2:x_3)$, а классы из второго множества назовём прямыми и будем записывать их в виде $\{a_1:a_2:a_3\}$. Скажем, что точка $(x_1:x_2:x_3)$ и прямая $\{a_1:a_2:a_3\}$ инцидентны друг другу, если

$$a_1x_1 + a_2x_2 + a_3x_3 = 0.$$

Получилась почти проективная плоскость - все аксиомы выполнены, и есть лишь одна беда: прямые не являются множествами точек. Однако каждая прямая однозначно определяется множеством точек, которые ей инцидентны. Поэтому окончательное определение таково:

Определение 5.1. *Точки* - классы ненулевых троек чисел, пропорциональных друг другу, обозначаются $(x_1:x_2:x_3)$. *Прямая* - множество всех точек (классов троек), удовлетворяющих одному и тому же уравнению вида

$$a_1x_1 + a_2x_2 + a_3x_3 = 0$$
, $a_1^2 + a_2^2 + a_3^2 \neq 0$.

Каждая прямая однозначно определяется ненулевой тройкой чисел, пропорциональной тройке a_1, a_2, a_3 , т.е. классом ненулевых троек, пропорциональных a_1, a_2, a_3 (обозначается $\{a_1: a_2: a_3\}$), и наоборот - любой такой класс $\{a_1: a_2: a_3\}$ однозначно задаёт прямую. Таким образом, в рассуждениях прямые тоже можно отождествлять с тройками чисел, только надо помнить, что они другого сорта (однако если поменять местами роли прямых и точек, то ничего не изменится).

Получившаяся проективная плоскость называется арифметической моделью проективной плоскости.

Утверждение 5.1. Арифметическая модель проективной плоскости изоморфна и пополненной плоскости, и связке.

Доказательство. Изоморфизм между проективной плоскостью-связкой и арифметической моделью строится очевидным образом с помощью однородных координат. Изоморфизм между пополненной плоскостью и арифметической моделью получается как композиция изоморфизмов между пополненной плоскостью и связкой и между связкой и арифметической моделью.

В дальнейшем под проективной плоскостью мы будем иметь в виду одну (любую) из этих изоморфных моделей.

6 Принцип двойственности

(Сипачёва) Неоднократно отмечавшееся выше равноправие точек и прямых проективной плоскости формулируется в виде принципа так:

Теорема 6.1 (Принцип двойственности). Утверждение, касающееся точек и прямых проективной плоскости и отношения инцидентности между ними, верно тогда и только тогда, когда верно двойственное утверждение, которое получается из данного заменой слова "прямая" на "точка" и наоборот.

(Комбаров) В самом деле, числовое равенство

$$a_1x_1 + a_2x_2 + a_3x_3 = 0,$$

выражающее условие инцидентности точки $(x_1:x_2:x_3)$ и прямой $\{a_1:a_2:a_3\}$, не зависит от того, какую из троек мы заключаем в круглые, а какую - в фигурные скобки. Принцип двойственности иллюстрирует равноправие точек и прямых на проективной плоскости, представленной рассматриваемыми моделями.

Рассмотрим пример двойственных утверждений. Две точки инцидентны одной и только одной прямой. Двойственное утверждение: две прямые инцидентны одной и только одной точке. Иными словами, аксиомы П1 и П2 являются двойственными утверждениями.

7 Проективные системы координат

Определение 7.1 (Комбаров). Два репера $Oe_1e_2e_3$ и $Oe'_1e'_2e'_3$ с общим началом O называются эквивалентными, если существует такое число λ , что

$$e'_{i} = \lambda e_{i}, i = 1, 2, 3.$$

Следующее утверждение необходимо для последующего определения проективных координат.

Утверждение 7.1. Реперы $Oe_1e_2e_3$ и $Oe'_1e'_2e'_3$ эквивалентны тогда и только тогда, когда каждая прямая связки O имеет одни и те же однородные координаты в этих реперах.

Доказательство. В книге А.П. Комбарова, Ю.В. Садовничего "Аналитическая геометрия".

Определение 7.2. Проективной системой координат в связке O называется класс эквивалентных между собой аффинных реперов (или, что то же самое, аффинных систем координат) с началом O.

Проективная система координат в связке O однозначно определяется упорядоченной четвёркой прямых X_1, X_2, X_3, E связки, таких что никакие три прямые не лежат в одной плоскости. Такая четвёрка прямых (точек проективной плоскости) называется $\phi yndamenmanbhoù четвёркой$. Прямые X_1, X_2, X_3 называются координатными, а E - единичной.

Определение 7.3. Тройки однородных координат произвольной прямой связки O в аффинном репере $Oe_1e_2e_3$, или, что то же самое, в любом аффинном репере, эквивалентном реперу $Oe_1e_2e_3$, называются mpoйками проективных координат этой прямой в проективной системе X_1, X_2, X_3, E .

В частности, прямые X_1, X_2, X_3, E имеют в этой системе координат следующие координаты:

$$X_1 = (1:0:0), X_2 = (0:1:0), X_3 = (0:0:1), E = (1:1:1).$$

7.1 Переход от одной проективной системы координат к другой

Пусть на проективной плоскости P заданы две проективные системы координат - исходная, "старая" $X_1X_2X_3E$ и "новая" система $X_1'X_2'X_3'E'$. Выберем какой-нибудь параллелепипед, соответствующий "новой" системе координат, и запишем координаты векторов e_1' , e_2' , e_3' , совпадающих со сторонами параллелепипеда, в "старой" системе координат $Oe_1e_2e_3$. То есть, "новая" система задана какими-то тройками проективных координат относительно "старой" системы:

$$\begin{cases} X'_1 = (c_{11} : c_{21} : c_{31}), \\ X'_2 = (c_{12} : c_{22} : c_{32}), \\ X'_3 = (c_{13} : c_{23} : c_{33}), \\ X'_1 = (\varepsilon_1 : \varepsilon_2 : \varepsilon_3). \end{cases}$$

Надо найти формулы преобразования координат, выражающие координаты x_1, x_2, x_3 любой точки m относительно "старой" системы координат через координаты x_1', x_2', x_3' той же точки в "новой" системе координат. Заметим, что, поскольку был выбран конкретный параллелепипед, тройки координат точек X_1', X_2', X_3', E' выбраны согласованными, т.е. подчинены условию

$$(c_{11}:c_{21}:c_{31})+(c_{12}:c_{22}:c_{32})+(c_{13}:c_{23}:c_{33})=(\varepsilon_1:\varepsilon_2:\varepsilon_3).$$

Тогда, возвращаясь к связке O и предполагая, что ("старая") проективная система $X_1X_2X_3E$ порождается аффинным репером $Oe_1e_2e_3$, видим, что векторы

$$e'_1 = \{c_{11}, c_{21}, c_{31}\}, e'_2 = \{c_{12}, c_{22}, c_{32}\}, e'_3 = \{c_{13}, c_{23}, c_{33}\},$$

заданные координатами в базисе e_1, e_2, e_3 , линейно независимы, поскольку прямые X_1, X_2, X_3 не лежат в одной плоскости. Заметим, что матрица

$$C = \begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{pmatrix}$$

является матрицой перехода от базиса e_1, e_2, e_3 к базису e'_1, e'_2, e'_3 , то есть

$$(e'_1, e'_2, e'_3) = (e_1, e_2, e_3) \cdot C.$$

Далее, каждая тройка x_1, x_2, x_3 проективных координат в системе $X_1 X_2 X_3 E$ произвольной прямой m есть тройка координат в репере $Oe_1e_2e_3$ некоторого направляющего вектора a этой прямой. Аналогичным образом тройка координат x_1', x_2', x_3' прямой m в системе $X_1'X_2'X_3'E'$ есть тройка координат в репере $Oe_1'e_2'e_3'$ какого-то направляющего вектора $a' = \lambda a$ той же прямой m. Поэтому из формул преобразования аффинных координат получаем

$$\lambda \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{pmatrix} \begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix}.$$

Здесь λ - множитель, принимающий все отличные от нуля значения. Это и есть формула перехода от проективной системы $X_1X_2X_3E$ к проективной системе $X_1'X_2'X_3'E'$.

8 Линии второго порядка на проективной плоскости

(Сипачёва) Будем рассматривать проективную плоскость как пополненную плоскость $\overline{\pi}$. При этом π задаётся уравнением $x_3 = 1$ в некотором аффинном репере $Oe_1e_2e_3$ в трёхмерном пространстве, а $\overline{\pi}$ получается из π добавлением бесконечно удалённых точек. Реперу $Oe_1e_2e_3$ соответствует репер Oe_1e_2 на π . Будем рассматривать однородные координаты точек $\overline{\pi}$, которые получаются с использованием этого же репера.

Линия второго порядка на π задаётся уравнением

$$(x \quad y \quad 1) A \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = 0, \ A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

Перейдём к однородным координатам

$$x = \frac{x_1}{x_3}, \ y = \frac{x_2}{x_3}:$$

$$(x_1 \quad x_2 \quad x_3) A \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0,$$
(1)

т.е.

$$a_{11}x_1^2 + a_{22}x_2^2 + a_{33}x_3^2 + 2a_{12}x_1x_2 + 2a_{13}x_1x_3 + 2a_{23}x_2x_3 = 0.$$

Определение 8.1. Линией второго порядка на проективной плоскости называется множество точек проективной плоскости, проективные координаты которых удовлетворяют уравнению вида (1), где $A \neq 0$, в некоторой проективной системе координат.

На пополненной плоскости уравнению (1) удовлетворяют, во-первых, все собственные точки, однородные координаты которых удовлетворяют уравнению (1) (т.е. обычные координаты в репере Oe_1e_2 удовлетворяют

уравнению
$$\begin{pmatrix} x & y & 1 \end{pmatrix} A \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = 0$$
).

Замечание 8.1. Заметим, что это не обязательно линия второго порядка на π , так как ненулевая матрица A

может иметь вид $\begin{pmatrix} 0 & 0 & a_{13} \\ 0 & 0 & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$, а тогда это прямая вида $2a_{13}x+2a_{23}y+a_{33}=0$.

Несобственные точки (с однородными координатами $(x_1:x_2:0)$), удовлетворяющие уравнению (1), т.е. такие, что $a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2 = 0$. Они отвечают асимптотическим направляениям линии второго

порядка на π , заданной уравнением $\begin{pmatrix} x & y & 1 \end{pmatrix} A \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = 0$, если не все элементы a_{11}, a_{12}, a_{22} матрицы A

равны 0. Если же они все равны 0, то уравнению (1) удовлетворяют все несобственные точки пополненной плоскости $\overline{\pi}$, т.е. вся несобственная прямая.

Итак, всякая линия второго порядка на пополненной плоскости - это либо

- линия второго порядка на π , пополненная асимптотическим направлением, либо
- пара пересекающихся прямых, одна из которых несобственная (когда $a_{11} = a_{12} = a_{22} = 0$ и $a_{12}^2 + a_{23}^2 \neq 0$),
- пара совпадающих несобственных прямых (когда $a_{11}=a_{12}=a_{13}=a_{22}=a_{23}=0$, в этом случае $a_{33}\neq 0$, т.к. $A \neq 0$).

Определение 8.2. Уравнения вида (1) линий второго порядка на проективной плоскости проективно эк*вивалентны*, если одно из них можно превратить в другое проективной заменой координат.

У нас есть соответствующие друг другу реперы $Oe_1e_2e_3$ в пространстве и Oe_1e_2 на π . Мы знаем, что

если
$$a_{11}^2+a_{12}^2+a_{22}^2\neq 0$$
 (1 случай), то аффинной заменой координат матрицу A можено привести к виду $\begin{pmatrix} a_{11}'&0&0\\0&a_{22}'&0\\0&0&a_{33}'\end{pmatrix}$ (не парабола) или $\begin{pmatrix} 0&0&a_{13}'\\0&a_{22}'&0\\a_{13}'&0&0\end{pmatrix}$ (парабола), где $a_{11}',a_{22}',a_{33}'=\pm 1$ или $0;\ a_{22}'=a_{13}'=1.$

- 1. Эллипс: $x^2 + y^2 = 1$. В однородных координатах: $x_1^2 + x_2^2 x_3^2 = 0$.

2. Гипербола: $x^2-y^2=1$. В однородных координатах: $x_1^2-x_2^2-x_3^2=0 \Leftrightarrow -x_1^2+x_2^2+x_3^2=0$. Проективная замена координат $\begin{cases} \lambda x_1=x_3', \\ \lambda x_2=x_1', \\ \lambda x_3=x_2' \end{cases}$ приводит это уравнение к виду: $x_1^{'2}+x_2^{'2}-x_3^{'2}=0$.

3. Парабола: $y^2 - 2x = 0$. В однородных координатах: $x_2^2 - 2x_1x_3 = 0$. Проективная замена $\begin{cases} \lambda x_1 = x_2, \\ \lambda x_2 = \frac{x_2' + x_1'}{\sqrt{2}}, \\ \lambda x_3 = \frac{x_3' - x_1'}{\sqrt{2}} \end{cases}$

приводит это уравнение к виду $x_1^{'2} + x_2^{'2} - x_3^{'2} = 0.$

Вывод: Уравнение линий второго порядка на проективной плоскости, собственные точки которой образуют эллипс, гиперболу или параболу, проективно эквивалентны.

Определение 8.3. Линия второго порядка на проективной плоскости, которая в некоторой проективной системе координат описывается уравнением $x_1^2 + x_2^2 - x_3^2 = 0$, называется овалом.

- 4. *Мнимый эмлипс*: $x^2+y^2+1=0$. В однородных координатах: $x_1^2+x_2^2+x_3^2=0$. Эта линия называется *мнимым овалом*. Это пустое множество.
- 5. Пара пересекающихся прямых: $x^2 y^2 = 0$. В однородных координатах: $x_1^2 x_2^2 = 0$. Это и в проективной плоскости пара пересекающихся прямых.
- 6. Пара мнимых пересекающихся прямых (точка): $x^2 + y^2 = 0$. В однородных координатах: $x_1^2 + x_2^2 = 0$. Это, по-прежнему, точка.
- 7. Пара совпадающих прямых: $y^2 = 0$, т.е. $x_2^2 = 0$. Это уравнение проективно эквивалентно $x_1^2 = 0$.
- 8. Параллельные прямые: $y^2 1 = 0$. В однородных координатах: $x_2^2 x_3^2 = 0$. Проективно эквивалентно уравнению пары пересекающихся прямых.
- 9. *Мнимые параллельные прямые*: $y^2 + 1 = 0$, т.е. $x_2^2 + x_3^2 = 0$. Проективно эквивалентно уравнению пары мнимых пересекающихся прямых.

Итак, существуют 5 классов проективной эквивалентности уравнений линий второго порядка на проективной плоскости:

- 1. $x_1^2 + x_2^2 x_3^2 = 0$ овал;
- 2. $x_1^2 + x_2^2 + x_3^2 = 0$ мнимый овал;
- 3. $x_1^2 x_2^2 = 0$ пара пересекающихся прямых;
- 4. $x_1^2 + x_2^2 = 0$ пара мнимых пересекающихся прямых (точка);
- 5. $x_1^2 = 0$ пара совпадающих прияых.

Утверждение 8.1. Уравнения 1.-5. попарно НЕ проективно эквивалентны. Следует помнить, что с точки зрения проективной плоскости собственные и несобственные прямые на пополненной плоскости совершенно равноправны, т.к. их уравнения можно преобразовать друг в друга проективной заменой координат.

9 Проективные преобразования

(Сипачёва)

Определение 9.1. Отображение $f: P \to P$ проективной плоскости P в себя называется проективным преобразованием, если существуют две проективные системы координат $X_1X_2X_3E$ и $\tilde{X_1}\tilde{X_2}\tilde{X_3}\tilde{E}$ такие, что $\forall M \in P$ точка f(M) имеет во второй системе координат те же координаты, что M имела в первой.

Замечание 9.1. Очевидно, это биекция.

Ситуация совершенно аналогична случаю линейных преобразований. Если C - матрица перехода от $X_1X_2X_3E$ к $\tilde{X_1}\tilde{X_2}\tilde{X_3}\tilde{E}$, т.е. от аффинного репера (какого-нибудь из них), определяющего проективный репер $X_1X_2X_3E$, к аффинному реперу, определяющему $\tilde{X_1}\tilde{X_2}\tilde{X_3}\tilde{E}$, то координаты $(x_1:x_2:x_3)$ точки M относительно первого репера выражаются через её координаты $(\tilde{x_1}:\tilde{x_2}:\tilde{x_3})$ относительно второго так:

$$\begin{pmatrix} \lambda x_1 \\ \lambda x_2 \\ \lambda x_3 \end{pmatrix} = C \begin{pmatrix} \tilde{x_1} \\ \tilde{x_2} \\ \tilde{x_3} \end{pmatrix}.$$

Пусть $(x_1':x_2':x_3')$ - координаты в $X_1X_2X_3E$ точки f(M), где $M\simeq (x_1:x_2:x_3)$. Тогда

$$\lambda \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = C \begin{pmatrix} \tilde{x_1} \\ \tilde{x_2} \\ \tilde{x_3} \end{pmatrix}.$$

Матрица C называется матрицей проективного преобразования f.

Утверждение 9.1. Пусть l - прямая c координатами $a_1:a_2:a_3$ на проективной плоскости. Тогда f(l) - прямая c координатами $\{a_1:a_2:a_3\}C^{-1}$.

Определение 9.2. Линии второго порядка на проективной плоскости *проективно эквиваленты*, если одну из них можно перевести в другую проективным преобразованием.

Замечание 9.2. В отличие от евклидова и аффинного случаев, линии второго порядка на проективной плоскости проективно эквивалентны тогда и только тогда, когда их уравнения проективно эквивалентны.

10 Теорема Дезарга

Теорема 10.1. Если прямые, проходящие через соответственные вершины треугольников $A_1B_1C_1$ и $A_2B_2C_2$, пересекаются в одной точке, то точки пересечения соответственных сторон лежат на одной прямой.

