SMART PODAJNIK DO EKO – KARMY

TWÓJ PUPIL JUŻ NIGDY NIE BĘDZIE GŁODNY!

OPIS ZAGADNIENIA I CEL

 stworzenie aplikacji na bazie modelu klasyfikacyjnego zdjęcia psów i kotów do zastosowania w smart podajniku karmy dla zwierząt

Sposób działania:

- rozpoznanie zwierzęcia za pomocą kamery
- zwolnienie zapadni odpowiedniego pojemnika z karmą
- dodatkowo: wydawanie karmy zgodnie ze zdefiniowanym harmonogramem

- zestaw danych zawiera dwie klasy obrazów:
 - CAT
 - DOG
- ilość danych: 12,5 tys. zdjęć w każdej klasie
- rozmiar obrazów: 419 x 408 pikseli

Zestaw danych wykorzystano do klasyfikacji binarnej.

Zbiór danych zawiera obrazy znajdujące się w katalogach CAT i DOG (etykiety). Zestaw danych podzielono na:

- zestaw treningowy
- zestaw walidacyjny
- zestaw testowy

Dla wszystkich zestawów wykonano:

- normalizację danych/pikseli
- przeskalowanie do określonego wymiaru modelu
- konwersję kolorów do RGB

Architektury:

VGG16. VGG19.

*DenseNet121. DenseNet121. DenseNet169. DenseNet201. ResNet50, EfficientNetV2B3. Inception V3.

Wyjście:

Aktywacja: Sigmoid/Softmax

Optymalizator: Adam, learning rate = 0.00001

12 - 30 epok, wraz z walidacją

Architektura	Accuracy	Loss	F1-score	Precision	Recal
EfficientNetV2B3	0.541	0.664	0.63	0.634	0.639

Architektura	Accuracy	Loss	F1-score	Precision	Recal
ResNet50	0.727	0.562	0.729	0.726	0.733
EfficientNetV2B3	0.541	0.664	0.63	0.634	0.639

Architektura	Accuracy	Loss	F1-score	Precision	Recal
DenseNet121*	0.779	0.446	0.780	0.780	0.779
ResNet50	0.727	0.562	0.729	0.726	0.733
EfficientNetV2B3	0.541	0.664	0.63	0.634	0.639

Architektura	Accuracy	Loss	F1-score	Precision	Recal
VGG19	0.895	0.304	0.897	0.902	0.893
DenseNet121*	0.779	0.446	0.780	0.780	0.779
ResNet50	0.727	0.562	0.729	0.726	0.733
EfficientNetV2B3	0.541	0.664	0.63	0.634	0.639

Architektura	Accuracy	Loss	F1-score	Precision	Recal
VGG16	0.915	0.256	0.909	0.915	0.904
VGG19	0.895	0.304	0.897	0.902	0.893
DenseNet121*	0.779	0.446	0.780	0.780	0.779
ResNet50	0.727	0.562	0.729	0.726	0.733
EfficientNetV2B3	0.541	0.664	0.63	0.634	0.639

Architektura	Accuracy	Loss	F1-score	Precision	Recal
DenseNet121	0.983	0.051	0.983	0.981	0.984
VGG16	0.915	0.256	0.909	0.915	0.904
VGG19	0.895	0.304	0.897	0.902	0.893
DenseNet121*	0.779	0.446	0.780	0.780	0.779
ResNet50	0.727	0.562	0.729	0.726	0.733
EfficientNetV2B3	0.541	0.664	0.63	0.634	0.639

Architektura	Accuracy	Loss	F1-score	Precision	Recal
DenseNet201	0.984	0.049	0.984	0.986	0.983
DenseNet121	0.983	0.051	0.983	0.981	0.984
VGG16	0.915	0.256	0.909	0.915	0.904
VGG19	0.895	0.304	0.897	0.902	0.893
DenseNet121*	0.779	0.446	0.780	0.780	0.779
ResNet50	0.727	0.562	0.729	0.726	0.733
EfficientNetV2B3	0.541	0.664	0.63	0.634	0.639

Architektura	Accuracy	Loss	F1-score	Precision	Recal
Inception V3	0.985	0.026	0.985	0.986	0.982
DenseNet201	0.984	0.049	0.984	0.986	0.983
DenseNet121	0.983	0.051	0.983	0.981	0.984
VGG16	0.915	0.256	0.909	0.915	0.904
VGG19	0.895	0.304	0.897	0.902	0.893
DenseNet121*	0.779	0.446	0.780	0.780	0.779
ResNet50	0.727	0.562	0.729	0.726	0.733
EfficientNetV2B3	0.541	0.664	0.63	0.634	0.639

Architektura	Accuracy	Loss	F1-score	Precision	Recal
DenseNet169	0.990	0.043	0.989	0.989	0.988
Inception V3	0.985	0.026	0.985	0.986	0.982
DenseNet201	0.984	0.049	0.984	0.986	0.983
DenseNet121	0.983	0.051	0.983	0.981	0.984
VGG16	0.915	0.256	0.909	0.915	0.904
VGG19	0.895	0.304	0.897	0.902	0.893
DenseNet121*	0.779	0.446	0.780	0.780	0.779
ResNet50	0.727	0.562	0.729	0.726	0.733
EfficientNetV2B3	0.541	0.664	0.63	0.634	0.639

MODEL DenseNet169

LIME - CZYLI CO WIDZI MODEL DenseNet169

APLIKACJA - MODEL DenseNet169

ANALIZA SWOT

S

- smart rozwiązanie, do zastosowania w każdym miejscu
- wysoka dokładność klasyfikacji
- wydanie właściwej pełnowartościowej karmy dla psa lub kota

W

 możliwość błędu, nie właściwej klasyfikacji 0

- zainteresowanie rozwiązaniem wśród zapracowanych lub często podróżujących właścicieli czworonogów
- stosowanie rozwiązania np. w schroniskach dla zwierząt

T

 reklamacje lub zwroty podajnika karmy

- stworzono 9 modeli klasyfikacyjnych (klasyfikacja binarna)
- wybrano najlepszy model DenseNet169 i zaprezentowano jego wyniki
- stworzono aplikację wykorzystującą wytrenowany model
- smart podajnik karmy to synonim wygody i jednocześnie inteligentne rozwiązanie, które ułatwi opiekę nad zwierzętami, szczególnie wtedy gdy, nie będzie nas w pobliżu.

DZIĘKUJEMY ZA UWAGĘ

GIT_SQUAD

