5	What is claimed is:
6	
7	
8	1. A bipolar transistor structure comprising:
9 :	a collector region having a first conductivity type formed in
10	a semiconductor substrate;
11	a base region having a second conductivity type opposite
12	the first conductivity type formed on the collector region, the
13	base region including a lower highly doped layer formed on the
14	collector region and a relatively low doped upper layer formed on
.15	the lower layer; and
16	an emitter region having the first conductivity type formed
17	on the upper layer of the base region.
18	
19	2. A bipolar transistor structure as in claim 1, and
20	wherein the base region comprises a silicon/germanium (SiGe)
21	layer that includes a lower highly doped SiGe layer formed on
22	the collector and a low doped upper SiGe layed formed on the
23	lower layer.
. 24	3. A bipolar transistor structure as in claim 2, and
25	wherein the dopant in the both the lower SiGe and the upper SiGe
26	
27	
28	
29	lower doped SiGe layer formed on the collector and on undoped
-30	
3	5. A method for forming a bipolar transistor structure,
. 32	
33	·
3	opposite the first-conductivity type, the base region including a

5	lower highly doped layer formed on the confection region and a
6	relatively low doped upper layer formed on the lower; and
7	forming on emitter region having the first conductivity type
8	on the upper layer of the base region.
9	6. A method as in claim 5, and wherein the step of
10	forming the base region comprises:
11	forming a lower doped SiGe layer on the collector utility a
12	first dopant concentration; and
13	forming an upper doped SiGe layer on the lower SiGe layer
14	utilizing a second dopant concentration that is less than the first
15	dopant concentration.
16	7. A method as in claim 6, and wherein the second
17	dopant concentration is zero.
1 8	