UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/573,057	05/17/2007	David Wilson	2960-97005	8961
Gerald T Sheklo	7590 11/09/201 eton	EXAMINER		
Welsh & Katz		HALL, COREY JOHN		
Floor 22 120 South Riverside Plaza Chicago, IL 60606-3912			ART UNIT	PAPER NUMBER
			3743	
			MAIL DATE	DELIVERY MODE
			11/09/2010	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

	T			
	Application No.	Applicant(s)		
	10/573,057	WILSON, DAVID		
Office Action Summary	Examiner	Art Unit		
	COREY HALL	3743		
The MAILING DATE of this communication appears on the cover sheet with the correspondence address Period for Reply				
A SHORTENED STATUTORY PERIOD FOR REPLY WHICHEVER IS LONGER, FROM THE MAILING DA Extensions of time may be available under the provisions of 37 CFR 1.1 after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period v Failure to reply within the set or extended period for reply will, by statute Any reply received by the Office later than three months after the mailing earned patent term adjustment. See 37 CFR 1.704(b).	ATE OF THIS COMMUNICATION 36(a). In no event, however, may a reply be tim will apply and will expire SIX (6) MONTHS from , cause the application to become ABANDONEI	lely filed the mailing date of this communication. (35 U.S.C. § 133).		
Status				
Responsive to communication(s) filed on <u>28 O</u> This action is FINAL . 2b)⊠ This Since this application is in condition for alloware closed in accordance with the practice under E	action is non-final. nce except for formal matters, pro			
Disposition of Claims				
4) Claim(s) 1,4-21,24 and 25 is/are pending in the 4a) Of the above claim(s) is/are withdraw 5) Claim(s) is/are allowed. 6) Claim(s) 1,4-21,24 and 25 is/are rejected. 7) Claim(s) is/are objected to. 8) Claim(s) are subject to restriction and/o	wn from consideration.			
Application Papers				
9) ☐ The specification is objected to by the Examine 10) ☑ The drawing(s) filed on 11 September 2009 is/a Applicant may not request that any objection to the Replacement drawing sheet(s) including the correct 11) ☐ The oath or declaration is objected to by the Ex	are: a)⊠ accepted or b)⊡ object drawing(s) be held in abeyance. See ion is required if the drawing(s) is obj	e 37 CFR 1.85(a). ected to. See 37 CFR 1.121(d).		
Priority under 35 U.S.C. § 119				
 12) Acknowledgment is made of a claim for foreign a) All b) Some * c) None of: 1. Certified copies of the priority document 2. Certified copies of the priority document 3. Copies of the certified copies of the priority application from the International Bureau * See the attached detailed Office action for a list 	s have been received. s have been received in Application rity documents have been receive u (PCT Rule 17.2(a)).	on No ed in this National Stage		
Attachment(s) 1) Notice of References Cited (PTO-892) 2) Notice of Draftsperson's Patent Drawing Review (PTO-948) 3) Information Disclosure Statement(s) (PTO/SB/08) Paper No(s)/Mail Date 7/26/2010, 8/9/2010, 10/18/2010.	4) Interview Summary Paper No(s)/Mail Da 5) Notice of Informal P 6) Other:	ite		

Application/Control Number: 10/573,057 Page 2

Art Unit: 3743

DETAILED ACTION

Response to Arguments

1. Applicant's arguments with respect to claims 1, 4-21, and 24-25 have been considered but are most in view of the new ground(s) of rejection.

Information Disclosure Statement

2. The information disclosure statement filed 8/9/2010 fails to comply with 37 CFR 1.98(a)(3) because it does not include a concise explanation of the relevance, as it is presently understood by the individual designated in 37 CFR 1.56(c) most knowledgeable about the content of the information, of each patent listed that is not in the English language. It has been placed in the application file, but the information referred to therein has not been considered.

Claim Objections

3. Claims 1, 4, 17, and 19 are objected to because of the following informalities: in claim 1, line 7 "said inlet to said outlet" should be changed to "said open upper inlet to said open lower outlet", in claim 4, line 2 "said permeable walls" should be changed to "said gas permeable walls", in claim 17, line 5 "an inlet" should be changed to "an open upper inlet" to conform with claim 1 to which claim 17 refers, and in claim 19, line 2 "mixing/conditioning" should be changed to "mixing and conditioning". Appropriate correction is required.

Claim Rejections - 35 USC § 112

4. The following is a quotation of the second paragraph of 35 U.S.C. 112:

The specification shall conclude with one or more claims particularly pointing out and distinctly claiming the subject matter which the applicant regards as his invention.

Application/Control Number: 10/573,057 Page 3

Art Unit: 3743

5. Claims 1, 4-21, and 24-25 are rejected under 35 U.S.C. 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.

6. Claims 1 and 20 recite the limitation "covering ingress and egress openings" in line 14 of claim 1 and line 13 of claim 20. There is insufficient antecedent basis for this limitation in the claim.

Claim Rejections - 35 USC § 103

- 7. The text of those sections of Title 35, U.S. Code not included in this action can be found in a prior Office action.
- 8. Claims 1, 4-9, 11-13, 17-19, 21, and 24 are rejected under 35 U.S.C. 103(a) as being unpatentable over Wilson et al. (Wilson, David et al., <u>The Coldry Process</u>, AIE 7th Australian Coal Science Conference, December 1996 provided by Applicant in IDS dated 6/25/2009) in view of Pietsch (US Patent No. 912,322) and further in view of McClaren (US Patent No. 4,242,806).
- 9. Regarding claims 1, 4-9, 11-13, 17-19, 21, and 24, Wilson et al. discloses a dryer (fig. 2) for drying pellets containing brown coal (page 3, line 3-page 4, line 13 describing a dryer for drying brown coal pellets), comprising at least one substantially vertical elongate container (fig. 2 and Figure A below) having: an open upper inlet (fig. 2 and Figure A below) for receiving a charge of moisture and brown coal containing pellets (fig. 2 and Figure A below showing an open upper inlet of the dryer for receiving moist brown coal pellets, page 3, line 3-page 4, line 13 describing drying moist brown coal pellets); an open lower outlet (fig. 2 and Figure A below) for discharging dried brown coal containing pellets ("Dried pellets are extracted from the bottom"

page 4, lines 1-2), whereby said pellets travel under the influence of gravity from said inlet (fig. 2 and Figure A below) to said outlet (fig. 2 and Figure A below) in a substantially continuous manner ("slowly descending mass of pellets" page 4, lines 1-13); two substantially vertical and opposed gas permeable walls (fig. 2 and Figure A below) through which a drying gas can pass to contact said pellets ("dried by means of a crossflow of air" page 3, line 31-page 4, line 13); . . . ; said dryer also comprising plenums (fig. 2 and Figure A below) on exterior surfaces of said gas permeable walls (fig. 2 and Figure A below), covering ingress and egress openings ("long vertical walls, which are perforated" page 4, lines 3-4) within . . . said gas permeable walls (fig. 2 and Figure A below showing plenums covering the gas permeable walls through which a crossflow of air passes), wherein the plenums (fig. 2 and Figure A below showing plenums divided into zones) are divided into zones . . . , wherein ingress openings and egress openings ("long vertical walls, which are perforated" page 4, lines 1-4 describing a crossflow of air passing through the perforated walls) are respectively provided within said permeable walls (fig. 2 and Figure A below), wherein a plenum (fig. 2 and Figure A below showing plenums on the left side of the container where the plenums on the right show fans used to draw the drying air) covering ingress openings comprises at least one inlet ("Drying air enters at one side, is drawn through the slowly descending mass of pellets, and discharged from the opposite side" page 4, lines 4-5 where it is implicit that the plenums on the left side would have at least one air inlet) and a plenum (fig. 2 and Figure A below showing plenums on the right side of the container) covering egress openings comprises at least one outlet ("discharged from the opposite side" page 4, lines 4-5 where it is implicit that the plenums on the right side would have at least one air outlet), wherein drying gas is drawn ("Drying air . . . is drawn through the slowly descending

mass of pellets" page 4, lines 4-5) into the at least one inlet by a circulator (fig. 2 and Figure A below), wherein the circulator is an induced draft fan (fig. 2 and Figure A below, "Drying air . . . is drawn" page 4, lines 4-5), a drying plant (fig. 2, "plant layout in Fig. 2" page 4, lines 3-13) comprising: (a) a conditioning bed ("Pellet Conditioning Chamber and Elevator" fig. 2, page 3, lines 17-23 describing surface conditioning moist brown coal pellets in an elevating tray system where the trays would form a bed of pellets for conditioning) for subjecting moisture and brown coal containing pellets to surface conditioning; (b) at least one conveyer (fig. 2 and Figure A below) for conveying said surface conditioned pellets to an inlet (fig. 2 and Figure A below) of a dryer according to claim 1; ..., further comprising a compactor (fig. 2 and Figure A below) for production of brown coal containing compacted bodies (page 3, lines 3-16 describing compacting brown coal into pellets), wherein the compactor (fig. 2 and Figure A below) comprises a mixing/conditioning device (fig. 2 and Figure A below and fig. 1 showing mixing/blending) and a pelletiser (fig. 2 and Figure A below and fig. 1 showing pelletising), a method (fig. 1 showing a coldry process) of drying brown coal which comprises introducing brown coal fines (fig. 1 showing brown coal and "brown coal fines bunker" fig. 2) into the compactor (fig. 1 showing mixing/blending and pelletising and fig. 2 and Figure A below showing the compactor) of the drying plant (fig. 2) according to claim 18, and wherein said plenums (fig. 2 and Figure A below) are located external to said substantially vertical elongate container (fig. 2 and Figure A below), except for wherein the gas permeable walls comprise a substantially continuous corrugated plate, wherein each corrugation comprises a supporting leg and a permeable leg angled with respect to each other, said permeable leg, of differing air stream properties, wherein the at least one outlet comprises at least one extract duct, wherein the

direction of drying gas flow through the charge of pellets is reversed from one plenum zone to an adjacent plenum zone, having a height to width ratio of at least 3:1, having a height to width ratio of at least 5:1, having a height to width ratio of at least 10:1, (c) a collection surface for retrieving dried pellets from the dryer; and (d) a pellet remover for removing dried pellets from said collection surface. However, Pietsch teaches gas permeable walls (1, 2, fig. 1, page 1, lines 34-41 describing gas permeable walls 1 and 2) comprise a substantially continuous corrugated plate (figs. 1-3 showing the walls 1 and 2 as substantially continuous corrugated plates), wherein each corrugation comprises a supporting leg (fig. 3 showing a supporting leg at 2) and a permeable leg (fig. 3 showing a permeable leg with perforations 5 located below the supporting leg at 2) angled with respect to each other (fig. 3), said permeable leg (fig. 3) in order to provide the perforated and substantially louvered shaped walls required by Wilson et al. (Wilson et al., page 4, lines 3-4) and to provide constant circulation of air through the walls from the downward movement of the material (Pietsch, page 1, lines 64-76). Therefore, it would have been obvious to one of ordinary skill in the art at the time of invention was made to modify the Wilson et al. reference, to include wherein the gas permeable walls comprise a substantially continuous corrugated plate, wherein each corrugation comprises a supporting leg and a permeable leg angled with respect to each other, said permeable leg, as suggested and taught by Pietsch, for the purpose of providing the perforated and substantially louvered shaped walls required by Wilson et al. and providing constant circulation of air through the walls from the downward movement of the material. The Applicant is merely combining prior art elements according to known methods to yield predictable results. One would be motivated to combine Wilson et al. with Pietsch because Pietsch teaches that using continuous corrugated gas permeable walls can

provide a constant circulation of air through the walls from the downward movement of the material and Wilson et al. could be similarly improved while additionally providing the perforated and substantially louvered shaped walls it requires, thus providing improved circulation of air and the type of walls required for effective drying of the brown coal.

McClaren teaches of differing air stream properties (col. 4, lines 19-23 describing plenums having drying air of different temperatures), at least one outlet (figs. 1-2 showing an outlet 18 in lower plenum 17) comprises at least one extract duct (fig. 1 showing a duct 18, "duct 18" col. 2, line 48), a direction of drying gas flow through a charge of material is reversed from one plenum zone to an adjacent plenum zone (fig. 2 showing drying gas flow reversing from one plenum zone at 16 to an adjacent plenum zone at 17), (c) a collection surface (39, fig. 3 showing collection surface 39 retrieving dried material from the dryer) for retrieving dried material from the dryer; and (d) a material remover (40, fig. 3) for removing dried material from said collection surface (39, fig. 3) in order to gradually temper the material being dried (col. 4, lines 24-42), to recycle drying air (col. 2, lines 48-58 and col. 4, lines 24-42), and to continuously discharge the dried material (col. 3, lines 42-61). Therefore, it would have been obvious to one of ordinary skill in the art at the time of invention was made to modify the Wilson et al. in view of Pietsch reference, to include of differing air stream properties, wherein the at least one outlet comprises at least one extract duct, wherein the direction of drying gas flow through the charge of pellets is reversed from one plenum zone to an adjacent plenum zone, (c) a collection surface for retrieving dried pellets from the dryer; and (d) a pellet remover for removing dried pellets from said collection surface, as suggested and taught by McClaren, for the purpose of gradually tempering the material being dried, recycling drying air, and continuously discharging the dried

material. The Applicant is merely combining prior art elements according to known methods to yield predictable results. One would be motivated to combine Wilson et al. with McClaren because McClaren teaches a packed bed dryer providing different air drying temperatures to gradually temper the material being dried which can prevent dried material from being damaged by high temperatures after its moisture has been substantially removed, recycling the drying air which reduces the waste of energy and continuously discharging the dried material so that the dryer can be continuously supplied with more material to be dried and the packed bed dryer of Wilson et al. could be similarly improved by providing different air drying temperatures, recycling the drying air, and continuously discharging the dried material, thus providing different drying air temperatures suited to the pellets as they change during drying (Wilson et al., page 4, lines 9-10) to prevent damage to the pellets, reducing waste of energy to increase efficiency in a system intended to improve thermal efficiencies (Wilson et al., page 6, lines 1-12), and achieving a continuous flow of pellets to reduce pellet damage and maximize residence time (Wilson et al., page 4, lines 1-11).

It would have been an obvious matter of design choice to make a dryer for which the "Height, width and length can all be tailored to suit a particular application" (Wilson et al., page 4, lines 5-6) have a height to width ratio of at least 3:1, 5:1 or 10:1, since such a modification would have involved a mere change in the size of a component. A change in size is generally recognized as being within the level of ordinary skill in the art. *In re Rose, 105 USPQ 237 (CCPA 1955)*.

10. Claim 10 is rejected under 35 U.S.C. 103(a) as being unpatentable over Wilson et al. (Wilson, David et al. The Coldry Process, AIE 7th Australian Coal Science Conference,

Art Unit: 3743

Page 9

December 1996) in view of Pietsch (US Patent No. 912,322) and further in view of McClaren (US Patent No. 4,242,806) as applied to claim 5 above, and further in view of Johnson (US Patent No. 4,337,584 previously cited in notice of references cited mailed 2/19/2009).

11. In regards to claim 10, Wilson et al. in view of Pietsch and further in view of McClaren discloses the claimed invention, except for wherein a desiccator or refrigerator is provided in conjunction with the at least one outlet to recover water from drying gas exiting the dryer. However, Johnson teaches wherein a refrigerator (38, fig. 1, "evaporator 38 of a refrigeration system" col. 3, lines 16-17) is provided in conjunction with an at least one outlet (82, fig. 1) to recover water (col. 3, lines 16-21 describing recovering water condensed by the refrigerator) from drying gas exiting a dryer (10, fig. 1) in order to dehumidify the recycled drying air (abstract, lines 14-21). Therefore, it would have been obvious to one of ordinary skill in the art at the time of invention was made to modify the Wilson et al. in view of Pietsch and further in view of McClaren reference, to include wherein a refrigerator is provided in conjunction with the at least one outlet to recover water from drying gas exiting the dryer, as suggested and taught by Johnson, for the purpose of dehumidifying recycled drying air. The Applicant is merely combining prior art elements according to known methods to yield predictable results. One would be motivated to combine Wilson et al. with Johnson because Johnson teaches dehumidifying its drying air to increase its capacity to dry and Wilson et al. could be similarly improved by dehumidifying its drying air, thus increasing the drying capacity of the air without having to increase the volume or temperature of the drying air in a system that achieves best results by slow drying at low temperatures (Wilson et al., page 3, line 25).

Art Unit: 3743

12. Claims 14-16 are rejected under 35 U.S.C. 103(a) as being unpatentable over Wilson et

Page 10

al. (Wilson, David et al. The Coldry Process, AIE 7th Australian Coal Science Conference,

December 1996) in view of Pietsch (US Patent No. 912,322) and further in view of McClaren

(US Patent No. 4,242,806) as applied to claim 1 above, and further in view of Hess (US Patent

No. 618,508).

13. In regards to claims 14-16, Wilson et al. in view of Pietsch and further in view of

McClaren discloses the claimed invention, except for comprising lateral supporting members

joining opposing gas permeable walls, wherein the supporting members are internal membrane

walls that divide the dryer into a plurality of adjacent cells, and a cell of a dryer according to

claim 15. However, Hess teaches comprising lateral supporting members (2, fig. 4) joining

opposing gas permeable walls (figs. 2 and 4 at C showing opposing gas permeable walls of

container C), wherein the supporting members (2, fig. 4 showing internal membrane walls 2

dividing the dryer into adjacent cells) are internal membrane walls that divide the dryer into a

plurality of adjacent cells (fig. 4 at 1 showing a plurality of cells at 1), and a cell (fig. 4 at 1) of a

dryer according to claim 15 in order to divide the dryer into a number of separate sections for

individual control (page 3, lines 6-11). Therefore, it would have been obvious to one of ordinary

skill in the art at the time of invention was made to modify the Wilson et al. in view of Pietsch

and further in view of McClaren reference, to include comprising lateral supporting members

joining opposing gas permeable walls, wherein the supporting members are internal membrane

walls that divide the dryer into a plurality of adjacent cells, and a cell of a dryer according to

claim 15, as suggested and taught by Hess, for the purpose of dividing the dryer into a number of

separate sections for individual control. The Applicant is merely combining prior art elements

Art Unit: 3743

according to known methods to yield predictable results. One would be motivated to combine Wilson et al. with Hess because Hess teaches a packed bed dryer having lateral supporting members joining opposing gas permeable walls to divide the dryer into separate sections or cells for individual control and the packed bed dryer of Wilson et al. could be similarly improved by having lateral supporting members joining its gas permeable walls to divide it into separate sections or cells, thus allowing the individual plenum sections of Wilson et al. to provide a more individualized crossflow of drying air through the dryer to optimize drying conditions for the coal, providing additional structural support for the dryer, and providing lateral supporting members that could provide the three separate cells shown in the top view of the dryer in figure 2 of Wilson et al.

Page 11

- 14. Claims 20 and 25 are rejected under 35 U.S.C. 103(a) as being unpatentable over Wilson et al. (Wilson, David et al. The Coldry Process, AIE 7th Australian Coal Science Conference, December 1996) in view of Pietsch (US Patent No. 912,322) and further in view of McClaren (US Patent No. 4,242,806) and further in view of Hess (US Patent No. 618,508).
- 15. Regarding claims 20 and 25, Wilson et al. discloses a dryer (fig. 2) for drying pellets containing brown coal (page 3, line 3-page 4, line 13 describing a dryer for drying brown coal pellets) comprising at least one substantially vertical elongate container (fig. 2 and Figure A below) having: an open upper inlet (fig. 2 and Figure A below) for receiving a charge of brown coal containing pellets (fig. 2 and Figure A below showing an open upper inlet of the dryer for receiving moist brown coal pellets, page 3, line 3-page 4, line 13 describing drying moist brown coal pellets); an open lower outlet (fig. 2 and Figure A below) for discharging dried pellets of brown coal ("Dried pellets are extracted from the bottom" page 4, lines 1-2), whereby said

pellets travel under the influence of gravity from said inlet (fig. 2 and Figure A below) to said outlet (fig. 2 and Figure A below) in a substantially continuous manner ("slowly descending mass of pellets" page 4, lines 1-13); two opposing substantially vertical gas permeable walls (fig. 2 and Figure A below) through which a drying gas can pass to contact said pellets ("dried by means of a crossflow of air" page 3, line 31-page 4, line 13); . . . ; said dryer also comprising plenums (fig. 2 and Figure A below) on external surfaces of the gas permeable walls (fig. 2 and Figure A below) covering ingress and egress openings ("long vertical walls, which are perforated" page 4, lines 3-4) within . . . said gas permeable walls (fig. 2 and Figure A below showing plenums covering the gas permeable walls through which a crossflow of air passes), wherein the plenums (fig. 2 and Figure A below showing plenums divided into zones) are divided into zones . . . , and wherein said plenums (fig. 2 and Figure A below) are located external to said substantially vertical elongate container (fig. 2 and Figure A below), except for wherein the gas permeable walls comprise a substantially continuous corrugated plate, wherein each corrugation comprises a supporting leg and a permeable leg angled with respect to each other, said permeable leg, of differing air stream properties and wherein the direction of drying gas flow through the charge of brown coal containing pellets is reversed from one plenum zone to an adjacent plenum zone; the dryer comprising lateral internal membrane walls joining opposing gas permeable walls that divide the dryer into a plurality of adjacent cells. However, Pietsch teaches gas permeable walls (1, 2, fig. 1, page 1, lines 34-41 describing gas permeable walls 1 and 2) comprise a substantially continuous corrugated plate (figs. 1-3 showing the walls 1 and 2 as substantially continuous corrugated plates), wherein each corrugation comprises a supporting leg (fig. 3 showing a supporting leg at 2) and a permeable leg (fig. 3 showing a

77.1.07.10

permeable leg with perforations 5 located below the supporting leg at 2) angled with respect to each other (fig. 3), said permeable leg (fig. 3) in order to provide the perforated and substantially louvered shaped walls required by Wilson et al. (Wilson et al., page 4, lines 3-4) and to provide constant circulation of air through the walls from the downward movement of the material (Pietsch, page 1, lines 64-76). Therefore, it would have been obvious to one of ordinary skill in the art at the time of invention was made to modify the Wilson et al. reference, to include wherein the gas permeable walls comprise a substantially continuous corrugated plate, wherein each corrugation comprises a supporting leg and a permeable leg angled with respect to each other, said permeable leg, as suggested and taught by Pietsch, for the purpose of providing the perforated and substantially louvered shaped walls required by Wilson et al. and providing constant circulation of air through the walls from the downward movement of the material. The Applicant is merely combining prior art elements according to known methods to yield predictable results. One would be motivated to combine Wilson et al. with Pietsch because Pietsch teaches that using continuous corrugated gas permeable walls can provide a constant circulation of air through the walls from the downward movement of the material and Wilson et al. could be similarly improved while additionally providing the perforated and substantially louvered shaped walls it requires, thus providing improved circulation of air and the type of walls required for effective drying of the brown coal.

McClaren teaches of differing air stream properties (col. 4, lines 19-23 describing plenums having drying air of different temperatures) and wherein a direction of drying gas flow through the charge of material is reversed from one plenum zone to an adjacent plenum zone (fig. 2 showing drying gas flow reversing from one plenum zone at 16 to an adjacent plenum

zone at 17) in order to gradually temper the material being dried (col. 4, lines 24-42) and to recycle drying air (col. 4, lines 24-42). Therefore, it would have been obvious to one of ordinary skill in the art at the time of invention was made to modify the Wilson et al. in view of Pietsch reference, to include of differing air stream properties and wherein the direction of drying gas flow through the charge of brown coal containing pellets is reversed from one plenum zone to an adjacent plenum zone, as suggested and taught by McClaren, for the purpose of gradually tempering the material being dried and recycling drying air. The Applicant is merely combining prior art elements according to known methods to yield predictable results. One would be motivated to combine Wilson et al. with McClaren because McClaren teaches a packed bed dryer providing different air drying temperatures to gradually temper the material being dried which can prevent dried material from being damaged by high temperatures after its moisture has been substantially removed and recycling the drying air which reduces the waste of energy and the packed bed dryer of Wilson et al. could be similarly improved by providing different air drying temperatures and recycling the drying air, thus providing different drying air temperatures suited to the pellets as they change during drying (Wilson et al., page 4, lines 9-10) to prevent damage to the pellets and reducing waste of energy to increase efficiency in a system intended to improve thermal efficiencies (Wilson et al., page 6, lines 1-12).

Hess teaches a dryer (title) comprising lateral internal membrane walls (2, fig. 4) joining opposing gas permeable walls (figs. 2 and 4 at C showing opposing gas permeable walls of container C) that divide the dryer into a plurality of adjacent cells (fig. 4 at 1 showing a plurality of cells at 1) in order to divide the dryer into a number of separate sections for individual control (page 3, lines 6-11). Therefore, it would have been obvious to one of ordinary skill in the art at

Art Unit: 3743

the time of invention was made to modify the Wilson et al. in view of Pietsch and further in view of McClaren reference, to include the dryer comprising lateral internal membrane walls joining opposing gas permeable walls that divide the dryer into a plurality of adjacent cells, as suggested and taught by Hess, for the purpose of dividing the dryer into a number of separate sections for individual control. The Applicant is merely combining prior art elements according to known methods to yield predictable results. One would be motivated to combine Wilson et al. with Hess because Hess teaches a packed bed dryer having lateral internal membrane walls joining opposing gas permeable walls to divide the dryer into separate sections or cells for individual control and the packed bed dryer of Wilson et al. could be similarly improved by having lateral internal membrane walls joining its gas permeable walls to divide it into separate sections or cells, thus allowing the individual plenum sections of Wilson et al. to provide a more individualized crossflow of drying air through the dryer to optimize drying conditions for the coal, providing additional structural support for the dryer, and providing lateral internal walls that could provide the three separate cells shown in the top view of the dryer in figure 2 of Wilson et al.

Page 15

Figure A.

Application/Control Number: 10/573,057 Page 17

Art Unit: 3743

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to COREY HALL whose telephone number is (571)270-7833. The examiner can normally be reached on Monday - Friday, 9AM to 5PM EST.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Kenneth Rinehart can be reached on (571)272-4881. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Corey Hall/ Examiner, Art Unit 3743 /Kenneth B Rinehart/ Supervisory Patent Examiner, Art Unit 3743