A few more things about sets

Marco Vergura

September 2018

In class we saw a few things about sets. I will gather here some other useful concepts that might appear here and there as we move on, just in case you haven't seen them before. I will be using the number sets $(\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R})$ and the intervals we already introduced in class to give a few illustrative examples of the notions I will talk about.

Recall that, given a set X, we write:

- $x \in X$ to mean that x is an element of X;
- $x \notin X$ to mean that x is not an element of X.

There is a special set called the **empty set** and denoted by \emptyset . Its defining property is that it has no elements. In other words, given any x, we always have that $x \notin \emptyset$.

We also saw in class that there is a very handy way of defining sets. Namely, we can define a set by just specifying a property that is satisfied precisely by all the elements of that set. For example,

$$\mathbb{R}_{>0} := \{x: \ x \in \mathbb{R} \text{ and } x > 0\}$$

is the set defined by the property " $x \in \mathbb{R}$ and x > 0", so that an x is an element of $\mathbb{R}_{>0}$ precisely if it is a positive real number.

Fix now two sets X and Y.

1. We say that Y is a subset of X, written $Y \subseteq X$, if every element of Y is also an element of X.

EXAMPLES

- $\mathbb{Z} \subseteq \mathbb{Q}$ because every integer n can be written as a fraction (for example, as $\frac{n}{1}$).
- $(1,5) \subseteq (1,5] \subseteq [1,5] \subseteq (0,7) \subseteq \mathbb{R}_{>0} \subseteq (-3,+\infty) \subseteq \mathbb{R}$. (Every time you see the symbol " \subseteq " here, think about why the left-hand side is a subset of the right-hand side).
- $X \subseteq X$ and $\emptyset \subseteq X$.
- 2. We say that the sets X and Y are **equal** if $X \subseteq Y$ and $Y \subseteq X$. In other words, X and Y are equal sets if every element of X is an element of Y and, also, every element of Y is an element of X.

EXAMPLES (Try to understand why the examples below are true!)

- $\{x: x \in \mathbb{R} \text{ and } x^2 < 0\} = \emptyset$
- $\{x: x \in \mathbb{R} \text{ and } x^3 = 1\} = \{1\}$
- $\{(x,y): x,y \in \mathbb{R} \text{ and } x+y=0\} = \{(x,y): x,y \in \mathbb{R} \text{ and } y=-x\}.$
- 3. The **union** of X and Y is the set $X \cup Y$ defined by

$$X \cup Y := \{z : z \in X \text{ or } z \in Y\}.$$

In plain words, z is an element of $X \cup Y$ if and only if z is an element of X or z is an element of Y (this includes the possibility that z is an element of both X and Y). To put it differently, $X \cup Y$ is made of all elements of X and all elements of Y.

EXAMPLES (Try to understand why the examples below are true!)

- $(-2,3) \cup (6,9]$ is the set of all real numbers x such that -2 < x < 3 or 6 < x < 9.
- $(3,8) \cup \{8\} = (3,8], (3,8) \cup \{3,8\} = [3,8].$
- $[-4,7) \cup (2,9] = [-4,9], (-\infty,4) \cup [-6,+\infty) = \mathbb{R}.$
- If $Y \subseteq X$, $X \cup Y = X$. In particular, $X \cup \emptyset = X$ and $X \cup X = X$.
- 4. The **intersection** of X and Y is the set $X \cap Y$ defined by

$$X \cap Y := \{z : z \in X \text{ and } z \in Y\}.$$

In other words, the elements of $X \cap Y$ are all and only the elements of X that are also elements of Y.

EXAMPLES (Try to understand why the examples below are true!)

- $(2,4) \cap (3,12] = (3,4), [-3,8] \cap (-3,10] = (-3,8].$
- $(1,2] \cap [2,4] = \{2\}, [3,6] \cap ([-4,3] \cup [6,9]) = \{3,6\}, \mathbb{Z} \cap (4,8) = \{5,6,7\}, \mathbb{R}_{\geq 0} \cap \mathbb{R}_{\leq 0} = \{0\}.$
- $(2,7) \cap (-3,0) = \emptyset$, $\mathbb{R}_{>0} \cap \mathbb{R}_{<0} = \emptyset$, $\mathbb{Z} \cap (4,5) = \emptyset$.
- If $Y \subseteq X$, $X \cap Y = Y$.
- If $f: X \to Y$ and $g: Z \to W$ are functions, with X, Y, Z, W subsets of \mathbb{R} , the functions f+g and fg are defined on $X \cap Z$, whereas $\frac{f}{g}$ is defined on the subset of $X \cap Z$ consisting of all those x in $X \cap Z$ such that $g(x) \neq 0$.
- 5. The **complement** of Y in X is the set $X \setminus Y$ defined by

$$X \setminus Y := \{x : x \in X \text{ and } x \notin Y\}.$$

In other terms, $X \setminus Y$ has as elements exactly those elements of X that are not elements of Y.

EXAMPLES (Try to understand why the examples below are true!)

- $\mathbb{R} \setminus \{2,4,6\}$ is the set of all real numbers that are different from 2,4 and 6.
- $(2,4) \setminus [3,4) = (2,3), (2,4) \setminus (3,4) = (2,3], \mathbb{R} \setminus \mathbb{R}_{\geq 0} = \mathbb{R}_{\leq 0}$.

- $[-2,10) \setminus (0,9) = [-2,0] \cup [9,10), \mathbb{R} \setminus (-9,9) = (-\infty,-9] \cup [9,+\infty).$
- $(1,2] \setminus (1,2) = \{2\}, [1,2] \setminus (1,2) = \{1,2\}.$
- For any set $X, X \setminus X = \emptyset, X \setminus \emptyset = X$.

Note. One can often use the concepts introduced above to describe the same set in many different ways. For example the sets

$$(2,4) \cup (3,6), \quad (-7,6) \cap (2,9), \quad (0,6) \setminus (0,2]$$

are all equal to the interval (2,6). (Why?)

EXERCISES

Explain in words what the elements of the following sets are and find another way of describing each of these sets. Exercise number 0 is already solved so as to give an example of what I am asking you to do.

- 0. $(2,6) \cap (3,9]$. By definition of intersection and of the displayed intervals, this is the set of all real numbers x such that both 2 < x < 6 and 3 < x < 9. But these two conditions together imply that 3 < x < 6. Therefore, $(2,6) \cap (3,9)$ can also be described as the interval (3,6). In more symbolical terms, $(2,6) \cap (3,9) = (3,6)$.
- 1. $(-7,8) \cap [0,9]$.
- 2. $\mathbb{N} \cap (-3, 8)$.
- 3. $(1,7) \cup (-3,4)$.
- 4. $(-\infty, 2) \cup (1, 5)$.
- 5. $\mathbb{N} \cup \{x \in \mathbb{R} : -x \in \mathbb{N}\}.$
- 6. $(4, +\infty) \setminus [6, +\infty)$.
- 7. $(4, +\infty) \setminus (-2, 5)$.
- 8. $\mathbb{R} \setminus \{-60, 34, 189\}$
- 9. $(-2,5) \setminus (1,2)$.
- 10. $(3,12) \cap ((-2,4) \cup (7,35))$
- 11. $[-3,1] \cup ((0,7] \cap (-2,9))$
- 12. $\mathbb{R}_{>0} \setminus ((9,15) \cup (-4,5))$