Fields and Waves I

Lecture 19

Maxwell's Equations, Displacement Current, EM Waves

James D. Rees

Electrical, Computer, and Systems Engineering Department Rensselaer Polytechnic Institute, Troy, NY

Exam 2

Skill	Description	Score
21	Calculate a single-stub match for an open-circuit or short-circuit load using a Smith chart.	2.81
2b	Be able to successfully calculate the voltage between two points based on the electric field between them.	2.72
2c	Use Gauss's Law to calculate an electric field from the geometries of a region's materials and charge distributions, or vice versa.	2.98
2d	Demonstrate an understanding of the geometry of electric fields and be able to draw a diagram of a given electric field distribution.	3.07
2e	Calculate electric force from electric charge using Coulomb's Law.	4.35
2f	Evaluate a static electric field at a boundary between two materials with different permittivities.	3.57

Exam 2

2g	Demonstrate an understanding of the effect of perfect conductors on the electric field both inside of them and outside their surfaces.	2.32
2h	Calculate the capacitance of a given distribution of conductors and/or dielectrics with simple geometries.	3.1
2i	Calculate the energy density in an electric field.	2.7
2 <u>j</u>	Calculate the dielectric breakdown of a given dielectric medium.	2.35
2k	Use Laplace and/or Poisson's equations via the Finite Difference Method to solve a simple voltage field.	3.67
21	Know the relationship between conductivity, current density, and electric field. Given appropriate information, be able to calculate these or related quantities (such as resistance or current).	3.52

How to account for forces on currents?

Giphy

Force on Currents

Force on a point charge: $ec{F}=q\cdot(ec{v} imesec{B})$

 For a constant B-field like the one below, F causes a change in v which in turn causes a change in F, creating a circular path.

Fields and Waves I

5

Force on Currents

First approach - similar to that for individual particles

For one particle:

 $F = qE = q \cdot (v \times B)$ $\frac{F}{volume} = \rho \cdot (v \times B) = j \times B$ For many particles:

For a wire in a magnetic field.

$$F = \int j \times B dv = \int I dl \times B$$

http://www.ac.wwu.edu/~vawter/PhysicsNet/Topics/MagneticField/MFOnWire.html

Rail Gun

If a sliding contact is placed across a two wire transmission line carrying a large current, a very large force can result on the contact. Assume that all the wires (including the slider) have a radius = a and that the transmission line wires are separated by a distance d.

Rail Gun

Current Loop

The force on a current loop in a magnetic field can result in rotational torque if the loop has a fixed axis as shown.

$$F = \int j \times B dv = \int I dl \times B$$

$$C$$

Current Loop

$$F = \int j \times B dv = \int I dl \times B$$

$$\tau = IABsin\theta$$

B = field strength θ = angle between the loop surface normal and direction of B field A = area of loop

libretexts.org

Current Loop

The presence of the rotational torque suggests that this loop could be used to make a DC motor. What happens when the is placed at an angle relative to the field, then allowed to rotate freely?

http://physics.bu.edu/~duffy/semester2/c13_torque.html

The Commutator

- A commutator allows a current loop to switch current direction at different stages of its rotation.
- As a result, the loop can achieve an average positive net torque through its rotation, and can rotate continuously while current is applied.

- The stator is the stationary outside part of a motor. The rotor is the inner part which rotates.
- In the motor animations, red represents a magnet or winding with a north polarization, while green represents a magnet or winding with a south polarization. Opposite, red and green, polarities attract.

http://www.freescale.com/files/microcontrollers/doc/train_ref_material/MOTORDCTUT.html

- Just as the rotor reaches alignment, the brushes move across the commutator contacts and energize the next winding.
- Above, the commutator contacts are brown and the brushes are dark grey.

http://www.freescale.com/files/microcontrollers/doc/train_ref_material/MOTORDCTUT.html

homofaciens.de

Another animated example

Fields and Waves I

15

Motors vs Generators

Mechanical Work

Electrical Work

homofaciens.de

- In general, motors and generators can perform a two-way conversion of electrical and mechanical work (a motor can act as a generator and vice versa)
- You can think of motors and generators as a <u>single class</u> of electromechanical device with variations for specific applications

Full Version

Added term in curl H equation for time varying electric field that gives a magnetic field.

$$\oint \vec{H} \cdot \vec{dl} = \int \vec{J} \cdot \vec{dS} + \underbrace{\int \frac{\partial \vec{D}}{\partial t} \cdot \vec{dS}}_{}$$

$$abla imes ec{H} = ec{J} + \left(rac{\partial ec{D}}{\partial t}
ight)$$

$$\oint \vec{B} \cdot \vec{dS} = 0$$

$$\nabla \cdot \vec{B} = 0$$

$$\oint \vec{E} \cdot \vec{dl} = -\frac{d}{dt} \int \vec{B} \cdot \vec{dS}$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\oint \vec{D} \cdot dS = \oint \rho dv = Q_{encl}$$

$$\nabla \cdot \vec{D} = \rho$$

First introduced by Maxwell in 1873

Fields and Waves I

Displacement current is the current that flows into and out of a capacitor, not due any connection between the two plates but due to the electric field between them.

Ampere's Law - Curl H Equation

$$\nabla \times H = j$$

Time varying field

$$\nabla \times H = j + \frac{\partial D}{\partial t}$$

Displacement current density

Integral Form of Ampere's Law for time varying fields

$$\int_{C}^{T} H \bullet dl = I_{c} + \int_{S}^{2} \frac{\partial D}{\partial t} \bullet ds$$
Displacement current

- I_c Conduction Current [A] linked to a conductivity property
- D Electric Flux Density (Electric Displacement) [in C/unit area]
- j_c Conduction Current Density (in A/unit area)

Fields and Waves I

19

$$\oint H \bullet dl = I_c + I_d = I \longrightarrow Total current$$

Conduction current density

$$I_c = \int j_c \bullet ds = \int \sigma E \bullet ds \qquad (j_c = \sigma E)$$

$$I_d = \int_S j_d \cdot ds = \int_S \frac{\partial D}{\partial t} \cdot ds$$

Displacement current density

Connection between electric and magnetic fields under time varying conditions

Parallel Plate Capacitor

$$V_s(t) = V_0 \cos \omega t$$

S₁=cross section of the

S₂=cross section of the

wire

wire capacitor I_{1c}, I_{1d}: conduction and displacement currents in the wire

I_{2c}, I_{2d}: conduction and displacement currents through the capacitor

Parallel Plate Capacitor

The wire is considered as a perfect conductor

$$I_{1d} = 0$$

From circuit theory:

$$V_c = V_s(t)$$

$$I_{1c} = C \frac{dV_C}{dt} = C \frac{d}{dt} (V_0 \cos \omega t) = -C V_0 \omega \sin \omega t$$

Total current in the wire:

$$I_1 = I_{1c} = -C V_0 \omega \sin \omega t$$

 $V_{c}(t)$

Parallel Plate Capacitor

The dielectric is considered as perfect (zero conductivity)

Electrical charges can't move physically through a perfect dielectric medium

$$I_{2c}$$
= 0 no conduction between the plates

The electric field between the capacitors

$$\vec{E} = \frac{V_c}{d} \hat{a}_y = \frac{V_0}{d} \cos \omega t \hat{a}_y$$

d :spacing between the plates

Parallel Plate Capacitor

The displacement current I2d

$$I_{2d} = \int_{S} \frac{\partial D}{\partial t} \cdot ds$$

$$= \int_{A} \left[\frac{\partial}{\partial t} \left(\frac{\varepsilon V_0}{d} \cos \omega t \hat{a}_y \right) \right] \cdot (\hat{a}_y ds)$$

$$= -\frac{\varepsilon A}{d} V_0 \omega \sin \omega t = -C V_0 \omega \sin \omega t \qquad \Box \Rightarrow \qquad I_{2d} = I_{1c}$$

Displacement current doesn't carry real charge, but behaves like a real current

If wire has a finite conductivity σ then both wire and dielectric have conduction AND displacement currents

Do Lecture 18 Exercise 1 in groups of up to 4.

Full Version

$$\oint \vec{H} \cdot d\vec{l} = \int \vec{J} \cdot d\vec{S} + \left(\int \frac{\partial \vec{D}}{\partial t} \cdot d\vec{S}\right) \qquad \nabla \times \vec{H} = \vec{J} + \left(\frac{\partial \vec{D}}{\partial t}\right)$$

$$\oint \vec{B} \cdot d\vec{S} = 0 \qquad \qquad \nabla \cdot \vec{B} = 0$$

$$\oint \vec{E} \cdot d\vec{l} = \left(-\frac{d}{dt} \int \vec{B} \cdot d\vec{S}\right) \qquad \nabla \times \vec{E} = \left(-\frac{\partial \vec{B}}{\partial t}\right)$$

$$\oint \vec{D} \cdot dS = \oint \rho dv = Q_{encl} \qquad \nabla \cdot \vec{D} = \rho$$

Note that the time-varying terms couple electric and magnetic fields in both directions. Thus, in general, we cannot have one without the other.

Fields and Waves I

A parallel plate capacitor with circular plates and an air dielectric has a plate radius of 5 mm and a plate separation of d=10 μ m. The voltage across the plates is V=5 cos ωt where $\omega=2$ $\pi 1$ 0 0 kHz

- a. Find **D** between the plates.
- a. Determine the displacement current density, $\partial \mathbf{D}/\partial t$.
- c. Compute the total displacement current, $\int \partial \mathbf{D}/\partial t \cdot \mathbf{ds}$, and compare it with the capacitor current, $I = C \, dV/dt$.

e. What is the induced emf?

The electric field for a parallel plate capacitor driven by a time-varying source is

$$E(t) = -\frac{V(t)}{d}\hat{z} = -\frac{\rho_s(t)}{\varepsilon}\hat{z}$$

The time-varying electric field now produces a source for a magnetic field through the displacement current. We can solve for the magnetic field in the usual manner.

$$\int H \cdot dl = \int J \cdot dS + \frac{d}{dt} \int D \cdot dS$$

The total displacement current between the capacitor plates

$$I_d = -\epsilon \int \frac{\partial}{\partial t} (-\frac{V(t)}{d}) \hat{z} \cdot d\vec{S} = \frac{\epsilon \pi a^2}{d} \frac{\partial V(t)}{\partial t}$$

Using phasor notation for the voltage and current

$$V(t) = \operatorname{Re}\left(V_{o}e^{j\omega t}\right) \qquad I_{D} = j\omega \frac{\varepsilon \pi a^{2}}{d}V_{o}$$

Applying Ampere's Law to a circular contour with radius r < a, the fraction of the displacement current enclosed is $\frac{r^2}{\sqrt{2}}$

Ampere's Law then gives us

$$\int H \cdot dl = H_{\phi} 2\pi r = I_{D} \frac{r^{2}}{a^{2}}$$

$$H_{\phi} = I_{D} \frac{r}{2\pi a^{2}} = j\omega \frac{\varepsilon\pi a^{2}}{d} V_{o} \frac{r}{2\pi a^{2}} = j\omega \frac{\varepsilon r}{2d} V_{o}$$

Thus, we now have both electric and magnetic fields between the plates

For II plate capacitor

$$\vec{E} \approx \text{constant between plates} = -\nabla V$$
 $\vec{E} = -\frac{\Delta V}{\Delta z} \frac{-5 \cos \omega t}{10 \mu m} \hat{a}_z = -5 \times 10^5 \cos \omega t \hat{a}_z$
 $\vec{D} = E_0 \vec{E} = -4.43 \times 10^{-6} \hat{a}_z^{\cos \omega t}/m^2 = -D_0 \cos \omega t \hat{a}_z$
 $\vec{D} = \frac{\partial \vec{D}}{\partial t} = \omega D_0 \sin \omega t \hat{a}_z = (5 \pi \times 10^5)(4.43 \times 10^{-6}) \sin \omega t \hat{a}_z$
 $\vec{D} = \frac{\partial \vec{D}}{\partial t} = 2.78 \sin \omega t \hat{a}_z$

No
$$I_{D} = \int_{\frac{\partial D}{\partial t}}^{\frac{\partial D}{\partial t}} \cdot d\vec{s} = \frac{\partial D}{\partial t} \times \Pi r^{2} \quad \text{since } \frac{\partial D}{\partial t} \text{ is constant} \quad r = 5 \times 10^{-3}$$

$$I_{D} = 2.78 \, \Pi \left(5 \times 10^{-3} \right)^{2} \quad \text{sin } \omega t = \left[\frac{2.18 \times 10^{-4} \text{ sin } \omega t}{10^{-5}} \right]^{2} = 6.95 \times 10^{-4} \text{ F}$$

$$I^{2} = C \quad dV \quad ; \quad C = \mathcal{E}_{O} \frac{A}{d} = \mathcal{E}_{O} \frac{\Pi r^{2}}{d} = \mathcal{E}_{O} \frac{\Pi \left(5 \times 10^{-3} \right)^{2}}{10^{-5}} = 6.95 \times 10^{-4} \text{ F}$$

$$dV = -5 \omega \quad \text{sin } \omega t \quad ; \quad I = -5 \omega C \quad \text{sin } \omega t = -5 \left(2 \pi \times 10^{-5} \right) \left(6.95 \times 10^{-4} \right) \quad \text{sin } \omega t$$

$$I = -3.18 \times 10^{-4} \quad \text{sin } \omega t \quad \text{sign difference} \quad \overline{\omega} \uparrow \lor \quad I = c \frac{dV}{dt} \quad \text{convention}$$

$$I = -3.18 \times 10^{-4} \quad \text{sin } \omega t \quad \text{sign difference} \quad \overline{\omega} \uparrow \lor \quad I = c \frac{dV}{dt} \quad \text{convention}$$

$$I = -3.18 \times 10^{-4} \quad \text{sin } \omega t \quad \text{convention}$$

$$I = -3.18 \times 10^{-4} \quad \text{sin } \omega t \quad$$

Fields and Waves I

33

Conductors vs. Dielectrics

The analysis of the capacitor under time-varying conditions assumed that the insulator had no conductivity. If we generalize our results to include both σ and ε we will have both a conduction and a displacement current.

$$I = I_C + I_D = \sigma \pi a^2 \frac{V_o}{d} + j \omega \frac{\varepsilon \pi a^2}{d} V_o = (\sigma + j \omega \varepsilon) \pi a^2 \frac{V_o}{d}$$

Note that the conduction current has a phase angle of zero degrees while the displacement current has an angle of 90 degrees.

Conductors vs. Dielectrics

The material will behave mostly like a conductor when

$$\frac{|I_c|}{|I_D|} = \frac{\sigma}{\omega \varepsilon} >> 1$$

The material will behave mostly like a dielectric when

$$\frac{|I_c|}{|I_D|} = \frac{\sigma}{\omega \varepsilon} << 1$$

Conductors vs. Dielectrics

Loss tangent of the material:

$$\tan \delta = \frac{\sigma}{\omega \varepsilon}$$

This tells us the phasor-domain angle of the current that results from the conduction and displacement currents combined.

Source: LibreTexts

Fields and Waves I

36

Full Version

Added term in curl H equation for time varying electric field that gives a magnetic field.

$$\oint \vec{H} \cdot \vec{dl} = \int \vec{J} \cdot \vec{dS} + \underbrace{\int \frac{\partial \vec{D}}{\partial t} \cdot \vec{dS}}_{}$$

$$\nabla imes \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$$

$$\oint \vec{B} \cdot \vec{dS} = 0$$

$$\nabla \cdot \vec{B} = 0$$

$$\oint \vec{E} \cdot \vec{dl} = -\frac{d}{dt} \int \vec{B} \cdot \vec{dS}$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\oint ec{D} \cdot dS = \oint
ho dv = Q_{encl}$$

$$\nabla \cdot \vec{D} = \rho$$

First introduced by Maxwell in 1873

Fields and Waves I

Quasi-Static Solutions

Maxwell's Equations.

Need a simultaneous solution for the electric and magnetic fields

Lead to a wave equation identical in form to the wave equation found for transmission lines

Quasi static approach

Valid if the system dimensions are small compared to a wavelength.

$$\lambda = \frac{2\pi}{k} = \frac{2\pi}{\omega \sqrt{\varepsilon \mu}} = \frac{c}{f} = \frac{3 \cdot 10^8}{10^5} = 300m$$

real meaning of low frequencies.

Full Solution

$$\overrightarrow{B} = 1.39 \text{ r sin } \omega + \widehat{\phi}$$

$$\overrightarrow{B} = N_0 1.39 \text{ r sin } \omega + \widehat{\phi}$$

$$\overrightarrow{B} = N_0 1.39 \text{ r sin } \omega + \widehat{\phi}$$

$$\overrightarrow{B} = N_0 1.39 \text{ r sin } \omega + \widehat{\phi}$$

$$\overrightarrow{B} = N_0 1.39 \text{ r sin } \omega + \widehat{\phi}$$

$$\overrightarrow{B} = N_0 1.39 \text{ r sin } \omega + \widehat{\phi}$$

$$\overrightarrow{B} = N_0 1.39 \text{ r sin } \omega + \widehat{\phi}$$

$$\overrightarrow{B} = N_0 1.39 \text{ r sin } \omega + \widehat{\phi}$$

$$\overrightarrow{B} = N_0 1.39 \text{ r sin } \omega + \widehat{\phi}$$

- What if we cannot make the quasistatic assumption?
- We must then calculate the B-field between the plates, then the emf generated by the B-field

Full Solution

$$\iint \overrightarrow{B} \cdot \overrightarrow{ds} = \iint \int 1.39 r \sin \omega t dr$$

$$= \frac{1.39}{2} \sin \omega t \left[(r+l)^2 - (r)^2 \right]$$

$$= \frac{1.39}{2} \left[2rl + l^2 \right] \sin \omega t$$

$$= \frac{1.39}{2} \left[2rl + l^2 \right] \sin \omega t$$

$$= \frac{1.39}{2} \left[2rl + l^2 \right] \sin \omega t$$

The emf will apply to a loop that goes up/down in z and in/out in r. What does this mean?

- In a conductor, a changing B-field gives rise to additional "eddy currents" that circulate within the conductor.
- Magnetic circuits can have eddy currents as well. In both cases, they lead to power losses.

- If the capacitor dielectric does not conduct, no current will flow in it due to this emf.
- However, there WILL be radial eddy current in the capacitor plates.

- These eddy currents have magnetic fields of their own as governed by Ampere's Law. And these magnetic fields produce yet additional eddy currents!
- Ultimately, the total energy in this infinite series of currents/fields/emfs is finite, and the terms get progressively smaller.
- However, it is obvious why we resort to quasistatic approximations for time-varying field problems.

Fields and Waves I