Machine Learning Course

Fall 2025

Westlake University

Department of Artificial Intelligence, SOE

Tao Lin

 $https://github.com/LINs-lab/course_machine_learning$

Final Exam

Student Name:	Student ID:	

Rules:

- This exam counts 40 percent towards your final grade.
- You have 180 minutes (from 14:00 till 17:00) to complete the exam.
- This is a closed book exam.
- Place on your desk: your student ID, one double-sided handwritten A4 page of summary if you have one, highly sugary drinks and ... if you need them.
- Place all your other personal belongings at the entrance or under your desk
- Write all your answers on the provided space. If you need extra paper let us know.

Good Luck!

1 Multiple Choice Questions [25 pts]

will not converge

1. (XXX pts) Which of the following statements is true about the logistic regression model?

(a) \square Logistic regression gives a max-margin classifier

(b) \square By minimizing negative log-likelihood, we can obtain a closed-form solution for logistic regression

(c) \square In logistic regression, we calculate the weights $\hat{\theta} = (X^TX)^{-1}X^Ty$, and then fit responses as $\hat{y} = \sigma(X\hat{\theta})$ (d) \square If we run Gradient Descent to solve a logistic regression task on linearly separable data, the weights

2 Multiple-Output Regression [25 pts]

Let $S = \{(\mathbf{y}_n, \mathbf{x}_n)\}_{n=1}^N$ be our training set for a regression problem with $\mathbf{x}_n \in D$ as usual. But now $\mathbf{y}_n \in K$, i.e., we have K outputs for each input. We want to fit a linear model for each of the K outputs, i.e., we now have K regressors $f_k(\cdot)$ of the form

$$f_k(\mathbf{x}) = \mathbf{x}^\top \mathbf{w}_k,$$

where each $\mathbf{w}_k^{\top} = (w_{k1}, \cdots, w_{kD})$ is the weight vector corresponding to the k-th regressor. Let \mathbf{W} be the $D \times K$ matrix whose columns are the vectors \mathbf{w}_k .

Our goal is to minimize the following cost function \mathcal{L} :

$$\mathcal{L}(\mathbf{W}) = \sum_{k=1}^{K} \sum_{n=1}^{N} \frac{1}{2\sigma_{k}^{2}} (y_{nk} - \mathbf{x}_{n}^{\top} \mathbf{w}_{k})^{2} + \frac{1}{2} \sum_{k=1}^{K} \|\mathbf{w}_{k}\|_{2}^{2},$$

where the σ_k are known real-valued scalars. Let $\boldsymbol{\sigma}=(\sigma_1,\cdots,\sigma_K)$.

For the solution, let X be the $N \times D$ matrix whose rows are the feature vectors \mathbf{x}_n .

1. (XXX pts) Write down the normal equations for \mathbf{W}^* , the minimizer of the cost function. I.e., what is the first-order condition that \mathbf{W}^* has to fulfill in order to minimize $\mathcal{L}(\mathbf{W})$.

2. (XXX pts) Is the minimum	\mathbf{W}^{\star} unique?	Assuming it is,	write down an	expression for	this unique solution.

	minimizing t	he above cos	t function. No	model, so tha ote that this wi egression term).	ll involve specif	ution for this n ying the the lik	nodel coincides v elihoods as well a	vith as a