

Algorithm

- Finite
- Set
- Unambiguous
- Instructions
- Specific task

Why do we study algorithms?

Business

- Google Business Growth
 - **►** 25,762 Million USD in 2017-2.
 - 5,186 Million USD in 2008-1.

Issues

- General Pervez Musharraf
 - There is a date and a country
- Prime Minister Nawaz Sharif
 - There is a date and a country
- All sonar animals not bat nor dolphin
 - Bat and dolphin must excluded
- American president not Trump
 - Trump must excluded

Why do we study algorithms?

- To develop a computer based solution of a problem
- To know a standard set of important algorithms from different areas of computing
- To design new algorithms and analyze their efficiency
- To develop analytical skills

Correct Algorithm???

zeshan.khan@nu.edu.pk

Correct Algorithm

- An algorithm is said to be correct if given input as described in the input specifications:
 - the algorithm terminates in a finite time
 - on termination the algorithm returns output as described in the output specifications

Algorithm?

- A name
- Finite Input
- Finite Output

Algorithm?

```
Algorithm SumOfSquares
INPUT: a; b; where a and b are integers
OUTPUT: c; where c is a sum of the squares of input numbers.
start;
c := a*a + b*b;
return c;
end;
```

■ The name of this algorithm is SumOfSquares. Its input and output are integer sequences of length 2 and 1, respectively.

Algorithm

- At least three important questions need to be answered for each algorithm
 - Is it correct?
 - How much time does it take, as a function of n?
 - And can we do better?

Trivial Problem Solving

- 1. Understand the problem
- 2. Formulate a solution / algorithm
- 3. Analyze the algorithm
 - Design a program
 - Implement the program
 - Execute the code
 - Measure the time
- 4. See if the solution is ok
 - End The procedure
- 5. Otherwise go to step 1

Algorithmic Problem Solving

- 1. Understand the problem
- 2. Formulate a solution / algorithm
 - Ascertaining the Capabilities of the Computational Device
 - Choosing between Exact and Approximate Problem Solving
 - Algorithm Design Techniques
 - Designing an Algorithm and Data Structures
- 3. Analyze the algorithm
 - 1. Methods of Specifying an Algorithm
 - 2. Proving an Algorithm's Correctness
- 4. See if the solution is ok
 - Coding an Algorithm
 - End The procedure
- Else go to step 1

Algorithmic Problem Solving

- Trivial Approach
- Analyze the algorithm
 - Design a program
 - Implement the program
 - Éxecute the code
 - Measure the time
- See if the solution is ok
 - End The procedure

- Algorithmic Approach
- Analyze the algorithm
 - Methods of Specifying an Algorithm
 - Proving an Algorithm's Correctness
- See if the solution is ok
 - Coding an Algorithm
 - End The procedure

Some Problems

- Knapsack problem
- Graph Visits Problems (Longest / Hamiltonian)
- Travelling salesman problem
- Subgraph isomorphism problem
- Vertex cover problem
- Graph coloring problem

Formulas

$$\sum_{i=1}^{n} 1 = 1 + 1 + 1 + \dots + 1 = n$$

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2} \cong (\frac{1}{2})n^2$$

$$\sum_{i=1}^{n} i^2 = 1 + 4 + 9 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6} \cong (\frac{1}{3})n^3$$

$$\sum_{i=1}^{n} i^k = 1^k + 2^k + 3^k + \dots + n^k \cong \left(\frac{1}{k+1}\right) n^{k+1}$$

$$\sum_{i=1}^{n} a^{i} = a^{1} + a^{2} + a^{3} + \dots + a^{n} = \frac{a^{n+1}-2}{a-1}$$

$$\sum_{i=1}^{n} 2^{i} = 2^{1} + 2^{2} + 2^{3} + \dots + 2^{n} = 2^{n+1} - 2$$

$$\sum_{i=1}^{n} i2^{i} = 1.2^{1} + 2.2^{2} + 3.2^{3} + \dots + n.2^{n} = (n-1)2^{n+1} - 2$$

$$\sum_{i=1}^{n} 1/i = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \cong \ln n + 0.5772$$

$$\sum_{i=1}^{n} \log i \cong n \log n$$

Formulas

$$\sum_{i=x}^{n} i = \sum_{i=1}^{n} i - \sum_{i=1}^{x-1} i$$

$$\sum_{i=x}^{y} ca_i = c \sum_{i=x}^{y} a_i$$

$$\sum_{i=x}^{y} (a_i \pm b_i) = \sum_{i=x}^{y} a_i \pm \sum_{i=x}^{y} b_i$$

$$\sum_{i=x}^{y} (a_i - a_{i-1}) = \sum_{i=x}^{y} (a_y - a_{x-1})$$

Floor and Ceiling Formulas

- $x 1 < [x] \le x \le [x] < x + 1$

- [n/2] + [n/2] = n

Modular Arithmetic

- Modular arithmetic (n, m are integers, p is a positive integer and % is for Mod)
- (n + m) %p = (n %p + m %p) %p
- (nm) %p = ((n %p)(m %p)) %p

Logarithm Formulas

- $\log_a a = 1$

Analysis of Algorithms

Time efficiency is analyzed by determining the number of repetitions of the basic operation as a function of input size

Algorithm

- How do we write algorithms?
- Pseudo Code:
 - Similar construct / keywords as in a high level programming languages, e.g. in C, Pascal etc.
 - Structured semantics of the high level languages without caring about the syntactic errors / grammatical rules

Sample Pseudo Code

Max-Subsequence-Sum(Array, N) //Where N is size of Array

```
int this-sum = 0, Max-sum = 0;
for(int i = 0; i < N; i++)
{ for(int j = i; j < N; j++)
       this-sum = 0;
      for(int k = i; k <= j; k++)
           this-sum = this-sum + Array[k];
       if(this-sum > Max-sum)
           Max-sum = this-sum;
  return(Max-sum);
```

Analysis

- How much time each construct / keyword of a pseudo code takes to execute.
- Assume it takes t_i (the ith construct)
- Sum / Add up the execution time of all the constructs / keywords.
- if there are m constructs then total time for all the constructs is the function of the input size T(n)
- $T_n = \sum_{i=1}^m t_i$

Analysis

- What are the constructs / Keywords.
- Time for each construct
- ► Total Time
- Total time as a function of input size

Constructs

- Constructs:
 - Sequence
 - Selection
 - Iterations
 - Recursion

Constructs

Sequence Statements

Just add the running time of the statements (int x, x=5, x++, y-=x etc.)

Selection

- Add the time of maximum conditional code (if else, switch).
- Iteration is at most the running time of the statements inside the loop (including tests) times the number of iterations.

■ If-Then-Else:

- ightharpoonup if (condition) S_1 else S_2
- \blacksquare Running time of the test plus the larger of the running times of S_1 and S_2 .
- Nested Loops: Analyze these inside out. The total Running time of a statement inside a group of nested loops is the running time of the statement multiplied by the product of the size of all the loops.
- Function Calls: Analyzing from inside to out. If there are function calls, these must be analyzed first.

Example 1

- Analyze Time for the following algorithm
 - Find the value of the largest element in a list of n numbers.

```
MaxElement(A[0..n-1)

maxVal = A[0];

for(i = 1; i < n; i++)

if(A[i] > maxVal)

maxVal = A[i];

return maxVal
```

Example 2

Check whether all the elements in a given array are distinct.

```
UniqueElements(A[0..n-1])
  for(i= 0; i<n-1; i++)
    for(j = i+1; j<n; j++)
        if(A[i] = A[j])
        return false
  return true</pre>
```

```
Max-Subsequence-Sum(Array, N)
                                     //Where N is size of Array
     int this-sum = 0, Max-sum = 0;
     for(int i = 0; i < N; i++)
     { for(int j = i; j < N; j++)
           this-sum = 0;
           for(int k = i; k <= j; k++)
               this-sum = this-sum + Array[k];
           if(this-sum > Max-sum)
               Max-sum = this-sum;
       return(Max-sum);
```

```
bubbleSort()
         temp;
         for (long i = 0; i < length; i++)
                   for (long j = 0; j < length - i - 1; j++)
                            if (list[j] > list[j + 1])
                                      temp = list[j];
                                      list[j] = list[j + 1];
                                      list[j + 1] = temp;
```

```
Max_Diff($) {
    x=max($)
    y=min($)
    return x,y;
}
```

```
palindrom(s,x) {
    for(i=x,j=x;i>=1;i--,j++)
    if(s[i]!=s[j])
        return false;
    return true;
}
```

Order Notation

There may be a situation, e.g.

 T_{t} $1 \qquad n_{0} \qquad n$

g(n)

$$f(n) \le g(n)$$
 for all $n >= n_0$ Or

$$f(n) \le cg(n)$$
 for all $n \ge n_0$ and $c = 1$

g(n) is an **asymptotic upper bound** on f(n).

f(n) = O(g(n)) iff there exist two positive constants c and n_0 such that

$$f(n) \le cg(n)$$
 for all $n >= n_0$

Order Notation

Asymptotic Lower Bound:

$$f(n) = \Omega(g(n)),$$

iff there exit positive constants c and n_0 such that

$$f(n) >= cg(n)$$
 for all $n >= n_0$

Order Notation

Asymptotically Tight Bound: $f(n) = \theta(g(n))$,

iff there exit positive constants c_1 and c_2 and n_0 such that

$$c_1 g(n) \le f(n) \le c_2 g(n)$$
 for all $n >= n_0$

This means that the best and worst case requires the same amount of time to within a constant factor.

Some Rules About Asymptotic Notation

- 1. If $T_1(n) = O(f(n))$ and $T_2(n) = O(g(n))$ Then $T_1(n) + T_2(n) = Max(O(f(n)), O(g(n)))$ $T_1(n) * T_2(n) = O(f(n) *g(n))$
- 2. If T(x) is a polynomial of degree n, then $T(x) = \theta(x^n)$
- 3. log^k(n) = O(n) for any constant k. This tells that logarithms grow very slowly.
- 4. Do not include any constants or low order terms inside a big-Oh, e.g.,

$$T(n) = O(2n^2)$$
 ----- wrong $T(n) = O(n^2 + n)$ ---- wrong

Order Notation

Example: show that $(1/2)n^2 - 3n = \theta(n^2)$

- * To do so we must determine positive constants c_1 , c_2 and n_0 such that $c_1 n^2 \le (1/2) n^2 3n \le c_2 n^2$, $n >= n_0$
- ***** Dividing by n^2 $c_1 <= \frac{1}{2} \frac{3}{n} <= c_2$
- * Right Hand Inequality $\frac{1}{2} \le c_2 + \frac{3}{n}$
- * For positive n, if $c_2 \ge 1/2$ then the inequality holds.
- * Left Hand Inequality $c_1 + 3/n \le \frac{1}{2}$
- * For n = 7 and $c_1 \le 1/14$, the inequality holds.
- $*c_1 \le 1/14$, $c_2 \ge 1/2$ and n = 7

How to compare the efficiency of two algorithms?

Standard Functions

n	Ign	nlgn	n ²	n^3	2 ⁿ
0			0	0	1
1	0	0	1	1	2
2	1	2	4	8	4
4	2	8	16	64	16
8	3	24	64	512	256
16	4	64	256	4096	65536
32	5	160	1024	32768	4294967296
64	6	384	4096	262144	1.84467E+19
128	7	896	16384	2097152	3.40282E+38
256	8	2048	65536	16777216	1.15792E+77
512	9	4608	262144	134217728	1.3408E+154
1024	10	10240	1048576	1073741824	
2048	11	22528	4194304	8589934592	

Execution Times

Execution time for algorithms with the given time complexities (one time constant is 1 nano seconds)

	า	f(n) = Ign	f(n) = n	f(n) = nlgn	$f(n) = n^2$	$f(n) = n^3$	f(n) = 2 ⁿ
1	10	0.003 micro sec	0.01 micro sec	0.033 micro sec	0.1 micro sec	1 micro sec	1 micro sec
4	20	0.004 micro sec	0.02 micro sec	0.086 micro sec	0.4micro sec	8 micro sec	1 milli sec
4	3 0	0.005 micro sec	0.03 micro sec	0.147 micro sec	0.9 micro sec	27micro sec	1 sec
4	10	0.005 micro sec	0.04 micro sec	0.213 micro sec	1.6 micro sec	64 micro sec	18.3 min
<u> </u>	5 0	0.006 micro sec	0.05 micro sec	0.282 micro sec	2.5 micro sec	125 micro sec	13 days
ŀ	1.0^2	0.007 micro sec	0.10 micro sec	0.664 micro sec	10 micro sec	1 milli sec	4 exp 13 years
	1 0 ³	0.010 micro sec	1.00 micro sec	9.966 micro sec	1 milli sec	1 sec	
_		0.013 micro sec	10 micro sec	130 micro sec	100 milli sec	16.7 min	
Ŀ	I 0 ⁵	0.017 micro sec	0.10 milli sec	1.67 milli sec	10 s	11.6 days	
ŀ	I 0 ⁶	0.020 micro sec	1 milli sec	19.93 milli sec	16.7 min	31.7 years	
Ŀ	I 0 ⁷	0.023 micro sec	0.01sec	0.23 sec	1.16 days	31709 years	
	I 0 ⁸	0.027 micro sec	0.10 sec	2.66 sec	115.7 days	3.17 exp 7 years	
L	1 0 ⁹	0.030 micro sec	1 sec	29.90 sec	31.7 years		

Using Limits for Comparing Orders of Growth

- A much more convenient method
- computing the limit of the ratio of two functions

$$\lim_{n \to \infty} \frac{t(n)}{g(n)} = \begin{cases} 0 & \text{implies that } t(n) \text{ has a smaller order of growth than } g(n), \\ c & \text{implies that } t(n) \text{ has the same order of growth as } g(n), \\ \infty & \text{implies that } t(n) \text{ has a larger order of growth than } g(n).^3 \end{cases}$$

- ▶ the last two mean that $t(n) \in (g(n))$,
- and the second case means that $t(n) \in (g(n))$.

$$\frac{1}{2}n(n-1)$$
 and n^2

Compare the orders of growth of

$$\lim_{n \to \infty} \frac{\frac{1}{2}n(n-1)}{n^2} = \frac{1}{2} \lim_{n \to \infty} \frac{n^2 - n}{n^2} = \frac{1}{2} \lim_{n \to \infty} (1 - \frac{1}{n}) = \frac{1}{2}.$$

Since the limit is equal to a positive constant, the functions have the same order of growth

Basic asymptotic efficiency classes

Class	Name	Comments
1	constant	Short of best-case efficiencies, very few reasonable examples can be given since an algorithm's running time typically goes to infinity when its input size grows infinitely large.
log n	logarithmic	Typically, a result of cutting a problem's size by a constant factor on each iteration of the algorithm (see Section 4.4). Note that a logarithmic algorithm cannot take into account all its input or even a fixed fraction of it: any algorithm that does so will have at least linear running time.
n	linear	Algorithms that scan a list of size n (e.g., sequential search) belong to this class.

Basic asymptotic efficiency classes

n log n	linearithmic	Many divide-and-conquer algorithms (see Chapter 5), including mergesort and quicksort in the average case, fall into this category.
n^2	quadratic	Typically, characterizes efficiency of algorithms with two embedded loops (see the next section). Elementary sorting algorithms and certain operations on $n \times n$ matrices are standard examples.
n^3	cubic	Typically, characterizes efficiency of algorithms with three embedded loops (see the next section). Several nontrivial algorithms from linear algebra fall into this class.

Basic asymptotic efficiency classes

2^n	exponential	Typical for algorithms that generate all subsets of an
		<i>n</i> -element set. Often, the term "exponential" is used
,		in a broader sense to include this and larger orders of
		growth as well.
n!	factorial	Typical for algorithms that generate all permutations of an <i>n</i> -element set.