

Configurable Cloud-Scale Real-Time Deep Learning

Bita Rouhani

Senior Research Manager Cloud AI Systems & Technologies (CAST) Microsoft Azure

AI/DL ubiquitously fuels our technology

Scale of the model plays a key role in the quality of the AI solution

GPT-3: Powerful language model and generator

"The Industrial Revolution has given us the gut feeling that we are not prepared for the major upheavals that intelligent technological change can cause. There is evidence that the world began to collapse once the Luddites started smashing modern automated looms. It is therefore important to use reason and the faculty of wisdom to continue the changes as we have done before time and time again."

GPT-3, Editorial, The Guardian, September 8, 2020

Source: https://www.theguardian.com/commentisfree/2020/sep/08/robot-wrote-this-article-gpt-3

Dominant AI building blocks evolve rapidly

Al infrastructures should be:

Scalable

Future proof

Sustainable

Project Brainwave

Silicon alternatives for AI models

FLEXIBILITY

Project Catapult + Brainwave History

Field Programmable Gate Arrays

2011: Project Catapult Launched

2013: Bing pilot runs decision trees 40X faster

2015: Bing ranking throughput increased 2X

2016: Azure Accelerated Networking delivers industry-leading cloud performance

2017: Over 1M servers deployed with FPGAs at hyperscale

2017: Hardware Microservices harness FPGAs for distributed computing

2017: FPGAs enable real-time AI, ultra-low latency inferencing without batching; Bing launches first FPGA-accelerated Deep Neural Network

2018: Project Brainwave launched in Azure Machine Learning

Brainwave runs on a configurable cloud at massive scale

Scalable hardware microservice

Why FPGAs for AI/DL?

Balance: Performance and flexibility

Scale: Multiple Exa-Ops of aggregate Al capacity

Optimize: Synthesize variants of the DNN engine based on individual model requirements

Adaptability: Ability to add customized datatypes, sparsity, etc.

Future proof: Ability to pivot as fundamental shifts in models happen

Conventional acceleration approach

Local offload and streaming

Conventional acceleration approach

Local offload and streaming

Model Parameters Initialized in DRAM

For memory-intensive DNNs with low compute-to-data ratios (e.g., LSTM), HW utilization limited by off-chip DRAM bandwidth

Improving HW utilization with batching

Improving HW utilization with batching

Batching improves HW utilization but also increases latency

Improving HW utilization with batching

Batching improves HW utilization but increases latency

Ideally want high HW utilization at low batch sizes

Observations

State-of-art FPGAs have O(10K) distributed Block RAMs O(10MB)

→ Tens of TB/sec of memory BW

Large-scale cloud services and DNN models run persistently

Solution: persist all model parameters in FPGA on-chip memory during service lifetime

When single request arrives, all chip resources (onchip memories and compute units) are used to process a single query (no batching required)

Persistency at datacenter scale

Multiple FPGAs at datacenter scale can form a persistent DNN HW microservice, enabling scale-out of models at ultra-low latencies

Why FPGAs for AI/DL?

Balance: Performance and flexibility

Scale: Multiple Exa-Ops of aggregate Al capacity

Optimize: Synthesize variants of the DNN engine based on individual model requirements

Adaptability: Ability to add customized datatypes, sparsity, etc.

Future proof: Ability to pivot as fundamental shifts in models happen

Matrix multiplication is a key part of current DL models

Dense Matrix Multiply

Matrix multiplication is a key part of current DL models

Millions to Billions of operations per sample

Datatype plays a key role in cost of matrix multiplication

Variants of MSFP together form a new Pareto frontier for computational performance compared to a collection of industry standard datatypes such as Bfloat16 and INT8.

^{*}ImageNet classification using ResNet50

IEEE floating-point datatype

Floating-point encodes values using sign, exponent, and mantissa

value =
$$(-1)^{sign} \times 2^{e-127} \times (1 + \sum_{i=1}^{23} b_{23-i} 2^{-i})$$

IEEE floating-point datatype

Traditional reduced precision data type

IEEE floating-point datatype

MSFP: custom datatype for DL

Represent a vector of N numbers using 1 shared exponent and N low-precision mantissas

Conversion to MSFP

Shared exponent = exponent of largest element

^{*} We refer to the span of a shared exponent as the bounding box size

^{**}shared exponent can be selected based on other metrics such as standard deviation of elements

Computing with MSFP datatype

$$\begin{split} \overrightarrow{x_0}.\overrightarrow{x_1}^T &= \ 2^{e_0} \left[(-1)^{s_{0,0}} \ m_{0,0} \ , \ (-1)^{s_{0,1}} \ m_{0,1} \ , \dots \ , (-1)^{s_{0,n-1}} \ m_{0,n-1} \ \right] . \\ & 2^{e_1} \left[(-1)^{s_{1,0}} \ m_{1,0} \ , \ (-1)^{s_{1,1}} \ m_{1,1}' \ , \dots \ , (-1)^{s_{1,n-1}} \ m_{1,n-1} \ \right]^T \\ &= \ 2^{e_0 + e_1} \sum_{i=0}^{n-1} \left((-1)^{s_{0,i} \oplus s_{1,i}} \ m_{0,i} * m_{1,i} \right) , \end{split}$$

Computing with MSFP datatype

Dynamic scaling hardware is small compared to multiplier area reduction

The input vectors within a single mat-mul operations that reduce to a single accumulated output are assigned a shared exponent in contiguous static-sized bounding box

Trade-off between graduality of shared exponent and mantissa bits

(Bounding box size is the span of a shared exponent)

MSFP: Efficient custom data format for DL

		Memory Density	Multiplier Density
IEEE Float-32	Sign Exponent [8 bits] Mantissa [23 bits]	1X	1X
IEEE Float-16	Mantissa [10 bits] Sign Exponent [5 bits]	2X	2X
Bfloat16	Mantissa [7 bits] Sign Exponent [8 bits]	2X	3X
MSFP16	Signs and Mantissa [8 bits] Shared Exponent [8 bits]	4X	9X

MSFP mat-mul configuration

All conversions being handled directly in hardware through special instructions

The dimension of shared exponent is dictated by the inner dimension in the mat-mul

Example of using MSFP in a convolution layer

All conversions being handled directly in hardware through special instructions

Example of using MSFP in a convolution layer

All conversions being handled directly in hardware through special instructions

Example of using MSFP in a convolution layer

All conversions being handled directly in hardware through special instructions

End-to-end HW + SW integrated stack at cloud-scale

Generalizability of MSFP datatype

Models	Float32	MSFP16	MSFP15	MSFP14	MSFP13	MSFP12
Resnet-50	1.000 (75.26)	1.000	0.999	0.994	0.989	0.967
Resnet-101	1.000 (76.21)	1.000	1.000	0.998	0.991	0.964
Resnet-152	1.000 (76.58)	1.000	1.001	0.997	0.991	0.968
Inception-v3	1.000 (77.98)	1.000	1.005	1.001	0.990	0.943
Inception-v4	1.000 (80.18)	1.000	1.001	1.000	0.993	0.963
MobileNet-V1	1.000 (70.90)	0.998	0.997	0.990	0.965	0.863
VGG16	1.000 (70.93)	1.000	1.004	1.005	1.003	1.002
VGG19	1.000 (71.02)	1.000	1.002	1.001	1.002	1.000
EfficientNet-S	1.000 (77.61)	1.000	0.998	0.992	0.979	0.949
EfficientNet-M	1.000 (78.98)	1.000	0.998	0.993	0.980	0.950
EfficientNet-L	1.000 (80.47)	1.000	0.999	0.993	0.974	0.945
RNN-DR	1.000 (76.10)	1.000	1.008	1.003	1.009	1.000
RNN-DS	1.000 (73.10)	1.000	1.012	1.005	1.022	0.992
BERT-MRPC	1.000 (88.39)	1.000	1.005	1.002	1.008	1.018
BERT-SQuAD1.1	1.000 (88.45)	1.000	0.998	0.998	0.997	0.990
BERT-SQuADv2	1.000 (77.23)	1.000	0.999	0.999	0.993	0.989
Memory density	1.0x	3.8x	4.3x	4.9x	5.8x	7.1x
Arithmetic density	1.0x	8.8x	10.8x	13.9x	18.3x	31.9x

Closing Thoughts ...

Biology vs. Deep Learning

Biology vs. Deep Learning

Biology	Deep Learning		
Low power ~25W	Up to tens of MWs at scale		
Low precision ~ few bits	High precision (floating point)		
lens or nertz	Gigahertz clock speeds		
Complex neuron model	Artificial (linear) neuron model		
Unsupervised learning algorithm	Supervised (or semi-supervised) with stochastic gradient descent		
Few (unlabeled) samples needed to train	Many labeled samples required to train		
Sparsely connected, sparsely activated	Dense weights and dense activations		
Sparsely computed in time domain	Densely computed with no timing		
1 quadrillion (biological) weights @ ~25W	Less than 1 trillion weights @ ~30MW		

Bending the AI ambition-cost curve

We are hiring

Sends Resumes To: bita.rouhani@microsoft.com

