Tutoriat 6

Aver
$$e^+(V_0 \longrightarrow V_0) = e^+(V_0) \longrightarrow e^+(V_0) = e(V_0) \longrightarrow e(V_0)$$

Met Ω :

 $\begin{array}{c|c}
V_0 & V_0 \longrightarrow V_0 \\
\hline
0 & \Delta
\end{array}$

Metî:
$$e(V_0) = 1 = e^+(V_0 \longrightarrow V_0) = 1$$

 $e(V_0) = 0 \implies e^+(V_0 \longrightarrow V_0) = 1$

b) Vrum ex
$$e^+(\neg(v_0 \rightarrow v_0)) = 0$$
 (4) e e evaluare

Avera $e^+(\neg(v_0 \rightarrow v_0)) = \neg e^+(v_0 \rightarrow v_0)$.

Dar $e^+(v_0 \rightarrow v_0) = 1$ (4) e e evaluare (din a)) $=$
 $=$ $e^+(\neg(v_0 \rightarrow v_0)) = 0$ (4) e e evaluare

Def: (4)
$$9. \times 0.000$$
 \in Forem, definim $9. \times 0.000$ $= \exp(x^2)$ expressia obt. din $9. \times 0.000$ $= \exp(x^2)$.

Obs!
$$\varphi_{\mathcal{X}}(\mathcal{X}') \in \mathbf{Form}$$

 $\varphi_{\mathcal{Y}}(\mathcal{X}') = \mathcal{X}'$
 $\varphi_{\mathcal{X}}(\mathcal{X}') = \mathcal{X}'$
 $\varphi_{\mathcal{X}}(\mathcal{X}') = \varphi_{\mathcal{X}}(\mathcal{X}') = \varphi_{\mathcal{X}}(\mathcal{X$

Prop: (4)
$$9.\%.\%$$
 (2) Form a cuem: $0.\%.\%$ (2) $0.\%$ (2) $0.\%$ (2) $0.\%$ (2) $0.\%$ (3) $0.\%$ (4) $0.\%$ (4) $0.\%$ (4) $0.\%$ (5) $0.\%$ (6) $0.\%$ (6) $0.\%$ (6) $0.\%$ (6) $0.\%$ (6) $0.\%$ (6) $0.\%$ (7) $0.\%$ (7) $0.\%$ (8) $0.\%$ (8) $0.\%$ (9) $0.\%$ (9) $0.\%$ (9) $0.\%$ (9) $0.\%$ (9) $0.\%$ (9) $0.\%$ (9) $0.\%$ (9) $0.\%$ (9) $0.\%$ (9) $0.\%$ (9) $0.\%$ (9) $0.\%$ (9) $0.\%$ (9) $0.\%$ (9) $0.\%$ (9) $0.\%$ (9) $0.\%$ (1

Prop. 3.22.

2)
$$(\forall) e: V \longrightarrow 30,13$$
 o evaluate a arem:
a) $e^{+}(\varphi_{\perp} \wedge \dots \wedge \varphi_{n}) = 1 \iff e^{+}(\varphi_{i}) = 1 \iff i \in \overline{l_{i}n}$.
b) $e^{+}(\varphi_{\perp} \vee \dots \vee \varphi_{n}) = 1 \iff e^{+}(\varphi_{i}) = 1 \implies i \in \overline{l_{i}n}$.

Sd: a) $e^{+}(\gamma_{1} \wedge ... \wedge \gamma_{n}) = 1$ $e^{+}(\gamma_{1}) \wedge ... \wedge e^{+}(\gamma_{n}) = 1$.

Pentru n=2 aveu :	e+(91)	e+(42)	e+(91)1 e+(92)
e+(92) 1 e+(92) -1 <> e+(92)=e+(92)=1.	0	0	0
Rationau inductiv:	0	1	0
P.p. e+(91) 1 1 e+(9n-1)=1 ()	1	0	0
\Leftrightarrow $e^{+}(\psi_i) = 1$ $\Rightarrow i = \overline{\lambda_1 v_i - 1}$	1	1	1

 $e^{+}(\mathcal{I}_{L}) \wedge ... \wedge e^{+}(\mathcal{I}_{R}) = (e^{+}(\mathcal{I}_{L}) \wedge ... \wedge e^{+}(\mathcal{I}_{R-1})) \wedge e^{+}(\mathcal{I}_{R})$

deci
$$e^{+}(\P_{1}) \wedge ... \wedge e^{+}(\P_{n}) = 1 \iff e^{+}(\P_{1} \wedge ... \wedge \P_{n-1}) = 1 = e^{+}(\P_{n}) \iff e^{+}(\P_{1}) \wedge ... \wedge e^{+}(\P_{n}) = 1 = e^{+}(\P_{n}) \iff e^{+}(\P_{1}) \wedge ... \wedge e^{+}(\P_{n}) = 1 = e^{+}(\P_{n}) \iff e^{+}(\P_{n}) \wedge ... \wedge e^{+}(\P_{n}) = 1 = e^{+}(\P_{n}) \iff e^{+}(\P_{n}) \wedge ... \wedge e^{+}(\P_{n}) = 1 = e^{+}(\P_{n}) \iff e^{+}(\P_{n}) \wedge ... \wedge e^{+}(\P_{n}) = 1 = e^{+}(\P_{n}) \iff e^{+}(\P_{n}) \wedge ... \wedge e^{+}(\P_{n}) = 1 = e^{+}(\P_{n}) \iff e^{+}(\P_{n}) \wedge ... \wedge e^{+}(\P_{n}) = 1 = e^{+}(\P_{n}) \iff e^{+}(\P_{n}) \wedge ... \wedge e^{+}(\P_{n}) = 1 = e^{+}(\P_{n}) \iff e^{+}(\P_{n}) \wedge ... \wedge e^{+}(\P_{n}) = 1 = e^{+}(\P_{n}) \iff e^{+}(\P_{n}) \wedge ... \wedge e^{+}(\P_{n}) = 1 = e^{+}(\P_{n}) \iff e^{+}(\P_{n}) \wedge ... \wedge e^{+}(\P_{n}) = 1 = e^{+}(\P_{n}) \wedge ... \wedge e^{+}(\P_{n}) = 1 =$$

 \Leftrightarrow $e^{+}(\hat{y}_{1}) = \cdots = e^{+}(\hat{y}_{n}) = 1 = e^{+}(\hat{y}_{n})$. \Leftrightarrow $e^{+}(\hat{y}_{i}) = 1$ (v) $i = \sqrt{n}$ b) Tend!

Sol: a) Vram că (v) e e evaluare ru e e $Mod(\neg(g_1 \vee ... \vee f_n)) \iff$ e e $Mod(\neg(g_1 \vee ... \vee f_n))$. Fie e e $Mod(\neg(g_1 \vee ... \vee f_n)) \iff$ e⁺ $(\neg(g_1 \vee ... \vee f_n)) = 1 \iff$ $\Rightarrow \neg e^+(g_1 \vee ... \vee f_n) = 1 \iff \neg(e^+(g_1) \vee ... \vee e^+(g_n)) = 1$ Fentru n = 2 ovem: $\neg(e^+(g_1) \vee e^+(g_2)) = \neg e^+(g_1) \wedge \neg e^+(g_2)$

3 (45)	et(9a)	7e*(%)	7e+(%)	e+(91) V e+(92)	7(et(92) Ve+(92))	7e+(91) 1 7e+(92)
0	0	1	1	0	1	1
0	1	1	0	1	0	0
1	0	0	1	1	0	0
1	1	0	0	1	0	0

Rationand cinductiv (ea la ex. 2)) obtineu cis:

¬(e+(91) V... V e+(9n)) = 1 (>> ¬e+(91) 1 ¬e+(92) 1 ... 1 ¬e+(9n) = 1 (>> e+(¬91) 1 ... 1 ¬9n) = 1.

6) Tema.

Def: Fie 1 0 multime de formule.

- · e: V → 30,23 model pt. 17 dacă e = 8 (+) 8 = 17 Not. e = 17
- · 1 satisfiabile dacé are un model
- · 17 finit satisfiabile dacci orice subruultime finità a sa e satisfiabile

Del: Fie 1, A multime de formule.

- · 9 ∈ Forom e consecintà semanticó a lui Γ dacă Mod(r) ∈ Mod(g) Not. Γ = 9 Cn(Γ) = 2 9 ∈ Forom | Γ = P3
- Δ consecimtà semantice a lui M dacé $Mod(M) \in Mod(\Delta)$ Not. $M \models \Delta$
- · T si Δ logie echivalente daca Mod(T) = Mod(Δ) Not. T ~ Δ.