2019/2020

Continuité

Ex 1 Ecrire comme composées de fonctions élémentaires :

a)
$$x \mapsto \sqrt{1 - \ln(x)}$$

b)
$$x \mapsto \sqrt{1 + \sin^2(x)}$$

c)
$$x \mapsto 1 - e^{2-x^2}$$

d)
$$x \mapsto \cos(3x^2 - 1)$$

e)
$$x \mapsto \frac{1}{1 - e^x}$$

f)
$$x \mapsto \frac{a\sqrt[3]{x} + b}{c\sqrt[3]{x} + d}$$

Ex 2 Etudier la continuité sur \mathbb{R} de la fonction $f: x \to \lfloor x \rfloor + \sqrt{x - \lfloor x \rfloor}$.

Ex 3 Les fonctions suivantes sont-elles prolongeables par continuité en 0 ?

a)
$$x \mapsto x \left| 1 + \frac{1}{x} \right|$$

b)
$$x \mapsto \sin \frac{1}{x}$$

c)
$$x \mapsto x \sin \frac{1}{x}$$

d)
$$x \mapsto \left(x + \sqrt{1 + x^2}\right)^{1/x}$$

Ex 4 Soit f la fonction définie sur \mathbb{R} par f(0) = 0 et $\forall x \neq 0, \ f(x) = \frac{e^{1/x}}{x^2}$.

Justifier la continuité de f sur \mathbb{R}^* , puis étudier la continuité à droite et à gauche de f en 0.

Ex 5 Soit $f: \mathbb{R} \to \mathbb{R}$ continue en 0 telle que $\forall (x,y) \in \mathbb{R}^2, \ f(x+y) = f(x) + f(y)$. Montrer que f est continue sur \mathbb{R} .

Ex 6 Trouver toutes les fonctions continues en 0 vérifiant $\forall x \in \mathbb{R}, \ f(2x) = f(x)$. Indication: raisonner par analyse-synthèse: pour un x donné, considérer la suite de terme général $f\left(\frac{x}{2^n}\right)$

Dérivabilité

Ex 7 Calculer les domaines de définition-continuité-dérivabilité puis calculer la dérivée des fonctions suivantes :

a)
$$x \mapsto \sqrt[3]{\tan x}$$

b)
$$x \mapsto \ln\left(1 + \sqrt[6]{x}\right)$$

c)
$$x \mapsto \sqrt[3]{\frac{x^3 + 1}{x^3 - 1}}$$

$$d) \quad x \mapsto \frac{1}{\sqrt{\ln x}}$$

e)
$$x \mapsto \sqrt{\frac{ax+b}{cx+d}}$$

f)
$$x \mapsto \frac{ax^n + b}{cx^n + d}$$
 $(cd \neq 0)$

g)
$$x \mapsto \sin(\cos(\sin(x)))$$

h)
$$x \mapsto (x^2 + 1)^2 (x^3 - 1)^2$$

i)
$$x \mapsto \sqrt[3]{\arcsin x}$$

j)
$$x \mapsto \arctan(\operatorname{th} x)$$

$$k) \quad x \mapsto \operatorname{ch}(x)^{1/x}$$

$$1) \quad x \mapsto (x+2)e^{1/x}$$

$$\mathbf{m}) \quad x \mapsto x^{\ln(x)}$$

$$n) \quad x \mapsto x^{(x^x)}$$

Ex 8 Soit $f: x \mapsto 2 \arctan \sqrt{\frac{1 - \sin x}{1 + \sin x}}$.

a) Etudier l'ensemble de définition \mathcal{D}_0 , de continuité \mathcal{D} et de dérivabilité \mathcal{D}' de f.

b) Calculer et simplifier f' sur l'intervalle $I_k = \left[(2k-1) \frac{\pi}{2}, (2k+1) \frac{\pi}{2} \right]$.

c) En déduire que pour tout $x \in I_k$, $f(x) = \frac{\pi}{2} - (-1)^k (x - k\pi)$ et donner l'allure de la courbe de f.

d) Retrouver le résultat précédent directement sur l'intervalle I_0 .

Ex 9 a) Montrer que $\forall x \in \mathbb{R}$, $|\arctan[\sinh(x)]| = \arccos\left[\frac{1}{\cosh(x)}\right]$

b) Montrer que $\forall x \in \mathbb{R}$, $\arcsin(\operatorname{th}(x)) = \arctan(\operatorname{sh}(x))$

Ex 10 Soit f une fonction dérivable en a. Calculer $\lim_{h\to 0} \frac{f\left(a+h\right)-f\left(a-h\right)}{2h}$.

PCSI 1 Thiers

- **Ex 11** Montrer que la fonction $f: x \mapsto \sqrt{x} \sin(\sqrt{x})$ est de classe C^1 sur \mathbb{R}_+
- **Ex 12** Montrer que la fonction $f: x \mapsto x^2 \sin \frac{1}{x}$ se prolonge en une fonction dérivable sur $\mathbb R$. Est-elle C^1 sur $\mathbb R$?
- **Ex 13** Soit $n \in \mathbb{N}^*$, a_1, \ldots, a_n des réels et $f: x \mapsto \sum_{k=1}^n a_k \sin(kx)$. On suppose que $\forall x \in \mathbb{R}, |f(x)| \leq |\sin(x)|$. Montrer que $|a_1 + 2a_2 + \cdots + na_n| \leq 1$
- **Ex 14** Pour tout paramètre m, on définit $f_m: x \mapsto \frac{x+m}{x^2+1}$ dont la courbe représentative est notée \mathcal{C}_m .
 - a) Montrer que toutes les tangentes au point d'abscisse x = 0 aux courbes C_m sont parallèles.
 - b) Montrer que toutes les tangentes au point d'abscisse x = 1 aux courbes C_m sont concourantes.
- **Ex 15** Soient 0 < a < b . et $f: x \mapsto \frac{\ln(1+ax)}{\ln(1+bx)}$. Etudier la monotonie de f sur \mathbb{R}_+^* et en déduire que :

$$\ln\left(1 + \frac{a}{b}\right) \ln\left(1 + \frac{b}{a}\right) \leqslant (\ln(2))^2$$

- **Ex 16** Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction décroissante sur \mathbb{R} . Quel est le sens de variation de $f \circ f$? de $f \circ f \circ f$? Redémontrer ces résultats en supposant f dérivable sur \mathbb{R} .
- **Ex 17** Soit $f: I \to \mathbb{R}$ vérifiant : $\forall (x, y) \in I^2$, $|f(y) f(x)| \le k |y x|^{\alpha}$, où k > 0 et $\alpha > 1$. Montrer que f est constante sur I (intervalle de \mathbb{R})
- **Ex 18** Soit $f: \mathbb{R}^+ \to \mathbb{R}^+$ une fonction dérivable vérifiant : $\forall x \in \mathbb{R}^+, \ f'(x) \leqslant f(x)$ et f(0) = 0. Etudier les variations de $g(x) = e^{-x} f(x)$, puis en déduire f.
- - b) Montrer que la composée de deux fonctions de classe \mathbb{C}^1 l'est aussi.
- Ex 20 Soit f une fonction dérivable sur \mathbb{R} , et paire (resp. impaire, resp. T-périodique). Que peut-on dire de f'?
- **Ex 21** Montrer que $f: x \mapsto \frac{1}{\sin x}$ réalise une bijection de $\left]0, \frac{\pi}{2}\right]$ dans un intervalle à préciser. Sur quel intervalle J sa réciproque est-elle dérivable? Calculer alors la dérivée de f^{-1} sur J.
- **Ex 22** On pose $f: x \mapsto x^2 + \ln(x)$.
 - a) Montrer que f est une bijection de \mathbb{R}_+^* dans un intervalle à préciser. On note g sa réciproque.
 - b) Montrer que g est dérivable sur son ensemble de définition et exprimer g' en fonction de g.