DEX-0287

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
C12N 15/12, C07K 14/47, 16/18, C12Q 1/68

(11) International Publication Number:

WO 99/33982

(43) International Publication Date:

8 July 1999 (08.07.99)

(21) International Application Number:

PCT/US98/27610

A2

(22) International Filing Date:

22 December 1998 (22.12.98)

(30) Priority Data:

iorny Dam.		
60/068,755	23 December 1997 (23.12.97)	US
60/080,664	3 April 1998 (03.04.98)	US
60/105,234	21 October 1998 (21.10.98)	US
60/105,877	27 October 1998 (27.10.98)	US
09/217,471	21 December 1998 (21.12.98)	US

- (71) Applicants: CHIRON CORPORATION [US/US]; 4560 Horton Street - R440, Emeryville, CA 94608 (US). HYSEQ INC. [US/US]; 675 Almanor Avenue, Sunnyvale, CA 94086 (US).
- (72) Inventors: WILLIAMS, Lewis, T.; 3 Miroflores, Tiburon, CA 94920 (US). ESCOBEDO, Jaime; 1470 Lavorna Road, Alamo, CA 94507 (US). INNIS, Michael, A.; 315 Constance Place, Moraga, CA 94556 (US). GARCIA, Pablo, Dominguez; 882 Chenery Street, San Francisco, CA 94131 (US). SUDDUTH-KLINGER, Julie; 280 Lexington Road, Kensington, CA 94707 (US). REINHARD, Christoph; 1633 Clinton Avenue, Alameda, CA 94501 (US). GIESE, Klaus; Chausseetrabe 92, D-10115 Berlin (DE). RANDAZZO, Filippo; Apt. 403, 690 Chestnut Street, San Francisco, CA 94133 (US). KENNEDY, Giulia, C.; 360 Castenada Av-

enue, San Francisco, CA 94116 (US). POT, David; 1565 5th Avenue #102, San Francisco, CA 94112 (US). KASSAM, Altaf; 2659 Harold Street, Oakland, CA 94602 (US). LAM-SON, George; 232 Sandringham Drive, Moraga, CA 94556 (US). DRMANAC, Radoje; 850 East Greenwich Place, Palo Alto, CA 94303 (US). CRKVENJAKOV, Radomir, 762 Haverhill Drive, Sunnyvale, CA 94068 (US). DICKSON, Mark; 1411 Gabilan Drive #B, Hollister, CA 95025 (US). DRMANAC, Snezana; 850 East Greenwich Place, Palo Alto, CA 94303 (US). LABAT, Ivan; 140 Acalanes Drive, Sunnyvale, CA 94086 (US). LESHKOWITZ, Dena; 678 Durshire Way, Sunnyvale, CA 94087 (US). KITA, David; 899 Bounty Drive, Foster City, CA 94404 (US). GARCIA, Veronica; Apartment 412, 396 Ano Nuevo, Sunnyvale, CA 94086 (US). JONES, Lee, William; 396 Ano Nuevo #412, Sunnyvale, CA 94086 (US). STACHE-CRAIN, Birgit; 345 South Mary Avenue, Sunnyvale, CA 94086 (US).

- (74) Agent: BLACKBURN, Robert, P.; Chiron Corporation, P.O. Box 8097, Emeryville, CA 94662-8097 (US).
- (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: HUMAN GENES AND GENE EXPRESSION PRODUCTS I

(57) Abstract

This invention relates to novel human polynucleotides and variants thereof, their encoded polypeptides and variants thereof, to genes corresponding to these polynucleotides and to proteins expressed by the genes. The invention also relates to diagnostic and therapeutic agents employing such novel human polynucleotides, their corresponding genes or gene products, e.g., these genes and proteins, including probes, antisense constructs, and antibodies.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	- Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	1E	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

NOVEL HUMAN GENES AND GENE EXPRESSION PRODUCTS I

Cross-References to Related Applications

This application is a continuation-in-part of U.S. provisional patent application serial no. 60/068,755, filed December 23, 1997, and of U.S. provisional patent application serial no. 60/080,664, filed April 3, 1998, and of U.S. provisional patent application serial no. 60/105,234, filed October 21, 1998, each of which applications are incorporated herein by reference.

10 Field of the Invention

5

15

20

25

The present invention relates to novel polynucleotides, particularly to novel polynucleotides of human origin that are expressed in a selected cell type, are differentially expressed in one cell type relative to another cell type (e.g., in cancerous cells, or in cells of a specific tissue origin) and/or share homology to polynucleotides encoding a gene product having an identified functional domain and/or activity.

Background of the Invention

Identification of novel polynucleotides, particularly those that encode an expressed gene product, is important in the advancement of drug discovery, diagnostic technologies, and the understanding of the progression and nature of complex diseases such as cancer. Identification of genes expressed in different cell types isolated from sources that differ in disease state or stage, developmental stage, exposure to various environmental factors, the tissue of origin, the species from which the tissue was isolated, and the like is key to identifying the genetic factors that are responsible for the phenotypes associated with these various differences

This invention provides novel human polynucleotides, the polypeptides encoded by these polynucleotides, and the genes and proteins corresponding to these novel polynucleotides.

30 Summary of the Invention

This invention relates to novel human polynucleotides and variants thereof, their encoded polypeptides and variants thereof, to genes corresponding to these polynucleotides

and to proteins expressed by the genes. The invention also relates to diagnostic and therapeutic agents employing such novel human polynucleotides, their corresponding genes or gene products, *e.g.*, these genes and proteins, including probes, antisense constructs, and antibodies.

Accordingly, in one embodiment, the present invention features a library of polynucleotides, the library comprising the sequence information of at least one of SEQ ID NOS:1-844. In related aspects, the invention features a library provided on a nucleic acid array, or in a computer-readable format.

5

25

30

In one embodiment, the library is comprises a differentially expressed polynucleotide 10 comprising a sequence selected from the group consisting of SEQ ID NOS:9, 39, 42, 52, 62, 74, 119, 172, 317, and 379. In specific related embodiments, the library comprises: 1) a polynucleotide that is differentially expressed in a human breast cancer cell, where the polynucleotide comprises a sequence selected from the group consisting of SEQ ID NOS: 4, 9, 39, 42, 52, 62, 65, 66, 68, 74, 81, 114, 123, 144, 130, 157, 162, 172, 178, 183, 202, 214, 15 219, 223, 258, 298, 317, 338, 379, 384, 386, and 388; 2) a polynucleotide differentially expressed in a human colon cancer cell, where the polynucleotide comprises a sequence selected from the group consisting of SEQ ID NOS: 1, 39, 52, 97, 119, 134, 172, 176, 241, 288, 317, 357, 362, and 374; or 3) a polynucleotide differentially expressed in a human lung cancer cell, where the polynucleotide comprises a sequence selected from the group 20 consisting of SEO ID NOS: 9, 34, 42, 62, 74, 106, 119, 135, 154, 160, 260, 308, 323, 349, 361, 369, 371, 379, 395, 381, and 400.

In another aspect, the invention features an isolated polynucleotide comprising a nucleotide sequence having at least 90% sequence identity to an identifying sequence of SEQ ID NOS:1-844 or a degenerate variant thereof. In related aspects, the invention features recombinant host cells and vectors comprising the polynucleotides of the invention, as well as isolated polypeptides encoded by the polynucleotides of the invention and antibodies that specifically bind such polypeptides.

In one embodiment, the invention features an isolated polynucleotide comprising a sequence encoding a polypeptide of a protein family selected from the group consisting of: 4 transmembrane segments integral membrane proteins, 7 transmembrane receptors, ATPases associated with various cellular activities (AAA), eukaryotic aspartyl proteases,

GATA family of transcription factors, G-protein alpha subunit, phorbol esters/diacylglycerol binding proteins, protein kinase, protein phosphatase 2C, protein tyrosine phosphatase, trypsin, wnt family of developmental signaling proteins, and WW/rsp5/WWP domain containing proteins. In a specific related embodiment, the invention features a polynucleotide comprising a sequence of one of SEQ ID NOS: 24, 41, 101, 157, 291, 305, 315, 341, 63, 116, 134, 136, 151, 384, 404, 308, 213, 367, 188, 251, 202, 315, 367, 397, 256, 382, 169, 23, 291, 324, 330, 341, 353, 188, 379, and 395.

5

10

15

20

25

30

In another embodiment, the invention features a polynucleotide comprising a sequence encoding a polypeptide having a functional domain selected from the group consisting of: Ank repeat, basic region plus leucine zipper transcription factors, bromodomain, EF-hand, SH3 domain, WD domain/G-beta repeats, zinc finger (C2H2 type), zinc finger (CCHC class), and zinc-binding metalloprotease domain. In a specific related embodiment, the invention features a polynucleotide comprising a sequence of one of SEQ ID NOS: 116, 251, 374, 97, 136, 242, 379, 306, 386, 18, 335, 61, 306, 386, 322, 306, and 395.

In another aspect, the invention features a method of detecting differentially expressed genes correlated with a cancerous state of a mammalian cell, where the method comprises the step of detecting at least one differentially expressed gene product in a test sample derived from a cell suspected of being cancerous, where the gene product is encoded by a gene corresponding to a sequence of at least one of SEQ ID NOS:4, 9, 39, 42, 52, 62, 65, 66, 68, 74, 81, 114, 123, 144, 130, 157, 162, 172, 178, 183, 202, 214, 219, 223, 258, 298, 317, 338, 379, 384, 386, 388, 1, 39, 52, 97, 119, 134, 172, 176, 241, 288, 317, 357, 362, 374, 9, 34, 42, 62, 74, 106, 119, 135, 154, 160, 260, 308, 323, 349, 361, 369, 371, 379, 395, 381, and 400. Detection of the differentially expressed gene product is correlated with a cancerous state of the cell from which the test sample was derived. In one embodiment, the detecting is by hybridization of the test sample to a reference array, wherein the reference array comprises an identifying sequence of at least one of SEQ ID NOS:1-844.

In one embodiment of the method of the invention, the cell is a breast tissue derived cell, and the differentially expressed gene product is encoded by a gene corresponding to a sequence of at least one of SEQ ID NOS: 4, 9, 39, 42, 52, 62, 65, 66, 68, 74, 81, 114, 123.

WO 99/33982 PCT/US98/27610 144, 130, 157, 162, 172, 178, 183, 202, 214, 219, 223, 258, 298, 317, 338, 379, 384, 386, and 388.

In another embodiment of the method of the invention, the cell is a colon tissue derived cell, and differentially expressed gene product is encoded by a gene corresponding to a sequence of at least one of SEQ ID NOS: 1, 39, 52, 97, 119, 134, 172, 176, 241, 288, 317, 357, 362, and 374.

5

10

15

20

25

30

In yet another embodiment of the method of the invention, the cell is a lung tissue derived cell, and differentially expressed gene product is encoded by a gene corresponding to a sequence of at least one of SEQ ID NOS: 9, 34, 42, 62, 74, 106, 119, 135, 154, 160, 260, 308, 323, 349, 361, 369, 371, 379, 395, 381, and 400.

Other aspects and embodiments of the invention will be readily apparent to the ordinarily skilled artisan upon reading the description provided herein.

Detailed Description of the Invention

The invention relates to polynucleotides comprising the disclosed nucleotide sequences, to full length cDNA, mRNA and genes corresponding to these sequences, and to polypeptides and proteins encoded by these polynucleotides and genes.

Also included are polynucleotides that encode polypeptides and proteins encoded by the polynucleotides of the Sequence Listing. The various polynucleotides that can encode these polypeptides and proteins differ because of the degeneracy of the genetic code, in that most amino acids are encoded by more than one triplet codon. The identity of such codons is well-known in this art, and this information can be used for the construction of the polynucleotides within the scope of the invention.

Polynucleotides encoding polypeptides and proteins that are variants of the polypeptides and proteins encoded by the polynucleotides and related cDNA and genes are also within the scope of the invention. The variants differ from wild type protein in having one or more amino acid substitutions that either enhance, add, or diminish a biological activity of the wild type protein. Once the amino acid change is selected, a polynucleotide encoding that variant is constructed according to the invention.

The following detailed description describes the polynucleotide compositions encompassed by the invention, methods for obtaining cDNA or genomic DNA encoding a full-length gene product, expression of these polynucleotides and genes, identification of

structural motifs of the polynucleotides and genes, identification of the function of a gene product encoded by a gene corresponding to a polynucleotide of the invention, use of the provided polynucleotides as probes and in mapping and in tissue profiling, use of the corresponding polypeptides and other gene products to raise antibodies, and use of the polynucleotides and their encoded gene products for therapeutic and diagnostic purposes.

I. Polynucleotide Compositions

5

10

15

20

25

30

The scope of the invention with respect to polynucleotide compositions includes, but is not necessarily limited to, polynucleotides having a sequence set forth in any one of SEQ ID NOS:1-844; polynucleotides obtained from the biological materials described herein or other biological sources (particularly human sources) by hybridization under stringent conditions (particularly conditions of high stringency); genes corresponding to the provided polynucleotides; variants of the provided polynucleotides and their corresponding genes, particularly those variants that retain a biological activity of the encoded gene product (e.g., a biological activity ascribed to a gene product corresponding to the provided polynucleotides as a result of the assignment of the gene product to a protein family(ies) and/or identification of a functional domain present in the gene product). Other nucleic acid compositions contemplated by and within the scope of the present invention will be readily apparent to one of ordinary skill in the art when provided with the disclosure here.

The invention features polynucleotides that are expressed in cells of human tissue, specifically human colon, breast, and/or lung tissue. Novel nucleic acid compositions of the invention of particular interest comprise a sequence set forth in any one of SEQ ID NOS:1-844 or an identifying sequence thereof. An "identifying sequence" is a contiguous sequence of residues at least about 10 nt to about 20 nt in length, usually at least about 50 nt to about 100 nt in length, that uniquely identifies a polynucleotide sequence, *e.g.*, exhibits less than 90%, usually less than about 80% to about 85% sequence identity to any contiguous nucleotide sequence of more than about 20 nt. Thus, the subject novel nucleic acid compositions include full length cDNAs or mRNAs that encompass an identifying sequence of contiguous nucleotides from any one of SEQ ID NOS:1-844.

The polynucleotides of the invention also include polynucleotides having sequence similarity or sequence identity. Nucleic acids having sequence similarity are detected by

hybridization under low stringency conditions, for example, at 50°C and 10XSSC (0.9 M saline/0.09 M sodium citrate) and remain bound when subjected to washing at 55°C in 1XSSC. Sequence identity can be determined by hybridization under stringent conditions, for example, at 50°C or higher and 0.1XSSC (9 mM saline/0.9 mM sodium citrate).

5

10

15

20

25

30

Hybridization methods and conditions are well known in the art, see, e.g., U.S. Patent No. 5,707,829. Nucleic acids that are substantially identical to the provided polynucleotide sequences, e.g. allelic variants, genetically altered versions of the gene, etc., bind to the provided polynucleotide sequences (SEQ ID NOS:1-844) under stringent hybridization conditions. By using probes, particularly labeled probes of DNA sequences, one can isolate homologous or related genes. The source of homologous genes can be any species, e.g. primate species, particularly human; rodents, such as rats and mice, canines, felines, bovines, ovines, equines, yeast, nematodes, etc.

Preferably, hybridization is performed using at least 15 contiguous nucleotides of at least one of SEQ ID NOS: 1-844. That is, when at least 15 contiguous nucleotides of one of the disclosed SEQ ID NOs. is used as a probe, the probe will preferentially hybridize with a gene or mRNA (of the biological material) comprising the complementary sequence, allowing the identification and retrieval of the nucleic acids of the biological material that uniquely hybridize to the selected probe. Probes from more than one SEQ ID NO. will hybridize with the same gene or mRNA if the cDNA from which they were derived corresponds to one mRNA. Probes of more than 15 nucleotides can be used, but 15 nucleotides represents enough sequence for unique identification.

The polynucleotides of the invention also include naturally occurring variants of the nucleotide sequences (e.g., degenerate variants, allelic variants, etc.). Variants of the polynucleotides of the invention are identified by hybridization of putative variants with nucleotide sequences disclosed herein, preferably by hybridization under stringent conditions. For example, by using appropriate wash conditions, variants of the polynucleotides of the invention can be identified where the allelic variant exhibits at most about 25-30% base pair mismatches relative to the selected polynucleotide probe. In general, allelic variants contain 15-25% base pair mismatches, and can contain as little as even 5-15%, or 2-5%, or 1-2% base pair mismatches, as well as a single base-pair mismatch.

The invention also encompasses homologs corresponding to the polynucleotides of SEQ ID NOS:1-844, where the source of homologous genes can be any mammalian species, e.g., primate species, particularly human; rodents, such as rats, canines, felines, bovines, ovines, equines, yeast, nematodes, etc. Between mammalian species, e.g., human and mouse, homologs have substantial sequence similarity, e.g., at least 75% sequence identity, usually at least 90%, more usually at least 95% between nucleotide sequences. Sequence similarity is calculated based on a reference sequence, which may be a subset of a larger sequence, such as a conserved motif, coding region, flanking region, etc. A reference sequence will usually be at least about 18 contiguous nt long, more usually at least about 30 nt long, and may extend to the complete sequence that is being compared. Algorithms for sequence analysis are known in the art, such as BLAST, described in Altschul et al., J. Mol. Biol. (1990) 215:403-10.

In general, variants of the invention have a sequence identity greater than at least about 65%, preferably at least about 75%, more preferably at least about 85%, and can be greater than at least about 90% or more as determined by the Smith-Waterman homology search algorithm as implemented in MPSRCH program (Oxford Molecular). For the purposes of this invention, a preferred method of calculating percent identity is the Smith-Waterman algorithm, using the following. Global DNA sequence identity must be greater than 65% as determined by the Smith-Waterman homology search algorithm as implemented in MPSRCH program (Oxford Molecular) using an affine gap search with the following search parameters: gap open penalty, 12; and gap extension penalty, 1.

The subject nucleic acids can be cDNAs or genomic DNAs, as well as fragments thereof, particularly fragments that encode a biologically active gene product and/or are useful in the methods disclosed herein (e.g., in diagnosis, as a unique identifier of a differentially expressed gene of interest, etc.). The term "cDNA" as used herein is intended to include all nucleic acids that share the arrangement of sequence elements found in native mature mRNA species, where sequence elements are exons and 3 and 5 non-coding regions. Normally mRNA species have contiguous exons, with the intervening introns, when present, being removed by nuclear RNA splicing, to create a continuous open reading frame encoding a polypeptide of the invention.

A genomic sequence of interest comprises the nucleic acid present between the initiation codon and the stop codon, as defined in the listed sequences, including all of the introns that are normally present in a native chromosome. It can further include the 3 and 5 untranslated regions found in the mature mRNA. It can further include specific transcriptional and translational regulatory sequences, such as promoters, enhancers, *etc.*, including about 1 kb, but possibly more, of flanking genomic DNA at either the 5 and 3 end of the transcribed region. The genomic DNA can be isolated as a fragment of 100 kbp or smaller; and substantially free of flanking chromosomal sequence. The genomic DNA flanking the coding region, either 3 and 5, or internal regulatory sequences as sometimes found in introns, contains sequences required for proper tissue, stage-specific, or disease-state specific expression.

The nucleic acid compositions of the subject invention can encode all or a part of the subject differentially expressed polypeptides. Double or single stranded fragments can be obtained from the DNA sequence by chemically synthesizing oligonucleotides in accordance with conventional methods, by restriction enzyme digestion, by PCR amplification, *etc*. Isolated polynucleotides and polynucleotide fragments of the invention comprise at least about 10, about 15, about 20, about 35, about 50, about 100, about 150 to about 200, about 250 to about 300, or about 350 contiguous nucleotides selected from the polynucleotide sequences as shown in SEQ ID NOS:1-844. For the most part, fragments will be of at least 15 nt, usually at least 18 nt or 25 nt, and up to at least about 50 contiguous nt in length or more. In a preferred embodiment, the polynucleotide molecules comprise a contiguous sequence of at least twelve nucleotides selected from the group consisting of the polynucleotides shown in SEQ ID NOS:1-844.

Probes specific to the polynucleotides of the invention can be generated using the polynucleotide sequences disclosed in SEQ ID NOS:1-844. The probes are preferably at least about 12, 15, 16, 18, 20, 22, 24, or 25 nucleotide fragment of a corresponding contiguous sequence of SEQ ID NOS:1-844, and can be less than 2, 1, 0.5, 0.1, or 0.05 kb in length. The probes can be synthesized chemically or can be generated from longer polynucleotides using restriction enzymes. The probes can be labeled, for example, with a radioactive, biotinylated, or fluorescent tag. Preferably, probes are designed based upon an identifying sequence of a polynucleotide of one of SEQ ID NOS:1-844. More preferably,

probes are designed based on a contiguous sequence of one of the subject polynucleotides that remain unmasked following application of a masking program for masking low complexity (e.g., XBLAST) to the sequence., i.e., one would select an unmasked region, as indicated by the polynucleotides outside the poly-n stretches of the masked sequence produced by the masking program.

5

10

15

20

25

The polynucleotides of the subject invention are isolated and obtained in substantial purity, generally as other than an intact chromosome. Usually, the polynucleotides, either as DNA or RNA, will be obtained substantially free of other naturally-occurring nucleic acid sequences, generally being at least about 50%, usually at least about 90% pure and are typically "recombinant", e.g., flanked by one or more nucleotides with which it is not normally associated on a naturally occurring chromosome.

The polynucleotides of the invention can be provided as a linear molecule or within a circular molecule. They can be provided within autonomously replicating molecules (vectors) or within molecules without replication sequences. They can be regulated by their own or by other regulatory sequences, as is known in the art. The polynucleotides of the invention can be introduced into suitable host cells using a variety of techniques which are available in the art, such as transferrin polycation-mediated DNA transfer, transfection with naked or encapsulated nucleic acids, liposome-mediated DNA transfer, intracellular transportation of DNA-coated latex beads, protoplast fusion, viral infection, electroporation, gene gun, calcium phosphate-mediated transfection, and the like.

The subject nucleic acid compositions can be used to, for example, produce polypeptides, as probes for the detection of mRNA of the invention in biological samples (e.g., extracts of human cells) to generate additional copies of the polynucleotides, to generate ribozymes or antisense oligonucleotides, and as single stranded DNA probes or as triple-strand forming oligonucleotides. The probes described herein can be used to, for example, determine the presence or absence of the polynucleotide sequences as shown in SEQ ID NOS:1-844 or variants thereof in a sample. These and other uses are described in more detail below.

WO 99/33982 PCT/US98/27610
Use of Polynucleotides to Obtain Full-Length cDNA and Full-Length Human Gene and

Promoter Region

25

30

Full-length cDNA molecules comprising the disclosed polynucleotides are obtained as follows. A polynucleotide having a sequence of one of SEQ ID NOS:1-844, or a portion 5 thereof comprising at least 12, 15, 18, or 20 nucleotides, is used as a hybridization probe to detect hybridizing members of a cDNA library using probe design methods, cloning methods, and clone selection techniques such as those described in U.S. Patent No. 5,654,173. Libraries of cDNA are made from selected tissues, such as normal or tumor tissue, or from tissues of a mammal treated with, for example, a pharmaceutical agent. 10 Preferably, the tissue is the same as the tissue from which the polynucleotides of the invention were isolated, as both the polynucleotides described herein and the cDNA represent expressed genes. Most preferably, the cDNA library is made from the biological material described herein in the Examples. Alternatively, many cDNA libraries are available commercially. (Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed., (1989) Cold Spring Harbor Press, Cold Spring Harbor, NY). The choice of cell type for library 15 construction can be made after the identity of the protein encoded by the gene corresponding to the polynucleotide of the invention is known. This will indicate which tissue and cell types are likely to express the related gene, and thus represent a suitable source for the mRNA for generating the cDNA. Where the provided polynucleotides are isolated from 20 cDNA libraries, the libraries are prepared from mRNA of human colon cells, more preferably, human colon cancer cells, even more preferably, from a highly metastatic colon cell, Km12L4-A.

Techniques for producing and probing nucleic acid sequence libraries are described, for example, in Sambrook *et al.*, *Molecular Cloning: A Laboratory Manual, 2nd Ed.*, (1989) Cold Spring Harbor Press, Cold Spring Harbor, NY. The cDNA can be prepared by using primers based on sequence from SEQ ID NOS:1-844. In one embodiment, the cDNA library can be made from only poly-adenylated mRNA. Thus, poly-T primers can be used to prepare cDNA from the mRNA.

Members of the library that are larger than the provided polynucleotides, and preferably that encompass the complete coding sequence of the native message, are obtained. In order to confirm that the entire cDNA has been obtained, RNA protection experiments

are performed as follows. Hybridization of a full-length cDNA to an mRNA will protect the RNA from RNase degradation. If the cDNA is not full length, then the portions of the mRNA that are not hybridized will be subject to RNase degradation. This is assayed, as is known in the art, by changes in electrophoretic mobility on polyacrylamide gels, or by detection of released monoribonucleotides. Sambrook *et al.*, *Molecular Cloning: A Laboratory Manual, 2nd Ed.*, (1989) Cold Spring Harbor Press, Cold Spring Harbor, NY. In order to obtain additional sequences 5' to the end of a partial cDNA, 5' RACE (*PCR Protocols: A Guide to Methods and Applications*, (1990) Academic Press, Inc.) is performed.

5

10

15

20

25

30

Genomic DNA is isolated using the provided polynucleotides in a manner similar to the isolation of full-length cDNAs. Briefly, the provided polynucleotides, or portions thereof, are used as probes to libraries of genomic DNA. Preferably, the library is obtained from the cell type that was used to generate the polynucleotides of the invention, but this is not essential. Most preferably, the genomic DNA is obtained from the biological material described herein in the Examples. Such libraries can be in vectors suitable for carrying large segments of a genome, such as P1 or YAC, as described in detail in Sambrook *et al.*, 9.4-9.30. In addition, genomic sequences can be isolated from human BAC libraries, which are commercially available from Research Genetics, Inc., Huntville, Alabama, USA, for example. In order to obtain additional 5' or 3' sequences, chromosome walking is performed, as described in Sambrook *et al.*, such that adjacent and overlapping fragments of genomic DNA are isolated. These are mapped and pieced together, as is known in the art, using restriction digestion enzymes and DNA ligase.

Using the polynucleotide sequences of the invention, corresponding full-length genes can be isolated using both classical and PCR methods to construct and probe cDNA libraries. Using either method, Northern blots, preferably, are performed on a number of cell types to determine which cell lines express the gene of interest at the highest level. Classical methods of constructing cDNA libraries are taught in Sambrook *et al.*, *supra*. With these methods, cDNA can be produced from mRNA and inserted into viral or expression vectors. Typically, libraries of mRNA comprising poly(A) tails can be produced with poly(T) primers. Similarly, cDNA libraries can be produced using the instant sequences as primers.

PCR methods are used to amplify the members of a cDNA library that comprise the desired insert. In this case, the desired insert will contain sequence from the full length

cDNA that corresponds to the instant polynucleotides. Such PCR methods include gene trapping and RACE methods. Gene trapping entails inserting a member of a cDNA library into a vector. The vector then is denatured to produce single stranded molecules. Next, a substrate-bound probe, such a biotinylated oligo, is used to trap cDNA inserts of interest.

5

10

15

20

25

30

Biotinylated probes can be linked to an avidin-bound solid substrate. PCR methods can be used to amplify the trapped cDNA. To trap sequences corresponding to the full length genes, the labeled probe sequence is based on the polynucleotide sequences of the invention. Random primers or primers specific to the library vector can be used to amplify the trapped cDNA. Such gene trapping techniques are described in Gruber *et al.*, WO 95/04745 and Gruber *et al.*, U.S. Pat. No. 5,500,356. Kits are commercially available to perform gene trapping experiments from, for example, Life Technologies, Gaithersburg, Maryland, USA.

"Rapid amplification of cDNA ends," or RACE, is a PCR method of amplifying cDNAs from a number of different RNAs. The cDNAs are ligated to an oligonucleotide linker, and amplified by PCR using two primers. One primer is based on sequence from the instant polynucleotides, for which full length sequence is desired, and a second primer comprises sequence that hybridizes to the oligonucleotide linker to amplify the cDNA. A description of this methods is reported in WO 97/19110. In preferred embodiments of RACE, a common primer is designed to anneal to an arbitrary adaptor sequence ligated to cDNA ends (Apte and Siebert, *Biotechniques* (1993) 15:890-893; Edwards et al., Nuc. Acids Res. (1991) 19:5227-5232). When a single gene-specific RACE primer is paired with the common primer, preferential amplification of sequences between the single gene specific primer and the common primer occurs. Commercial cDNA pools modified for use in RACE are available.

Another PCR-based method generates full-length cDNA library with anchored ends without needing specific knowledge of the cDNA sequence. The method uses lock-docking primers (I-VI), where one primer, poly TV (I-III) locks over the polyA tail of eukaryotic mRNA producing first strand synthesis and a second primer, polyGH (IV-VI) locks onto the polyC tail added by terminal deoxynucleotidyl transferase (TdT). This method is described in WO 96/40998.

The promoter region of a gene generally is located 5' to the initiation site for RNA polymerase II. Hundreds of promoter regions contain the "TATA" box, a sequence such as

TATTA or TATAA, which is sensitive to mutations. The promoter region can be obtained by performing 5' RACE using a primer from the coding region of the gene. Alternatively, the cDNA can be used as a probe for the genomic sequence, and the region 5' to the coding region is identified by "walking up." If the gene is highly expressed or differentially expressed, the promoter from the gene can be of use in a regulatory construct for a heterologous gene.

5

10

15

20

25

30

Once the full-length cDNA or gene is obtained, DNA encoding variants can be prepared by site-directed mutagenesis, described in detail in Sambrook *et al.*, 15.3-15.63. The choice of codon or nucleotide to be replaced can be based on disclosure herein on optional changes in amino acids to achieve altered protein structure and/or function.

As an alternative method to obtaining DNA or RNA from a biological material, nucleic acid comprising nucleotides having the sequence of one or more polynucleotides of the invention can be synthesized. Thus, the invention encompasses nucleic acid molecules ranging in length from 15 nucleotides (corresponding to at least 15 contiguous nucleotides of one of SEQ ID NOS: 1-844) up to a maximum length suitable for one or more biological manipulations, including replication and expression, of the nucleic acid molecule. The invention includes but is not limited to (a) nucleic acid having the size of a full gene, and comprising at least one of SEQ ID NOS: 1-844; (b) the nucleic acid of (a) also comprising at least one additional gene, operably linked to permit expression of a fusion protein; (c) an expression vector comprising (a) or (b); (d) a plasmid comprising (a) or (b); and (e) a recombinant viral particle comprising (a) or (b). Once provided with the polynucleotides disclosed herein, construction or preparation of (a) - (e) are well within the skill in the art.

The sequence of a nucleic acid comprising at least 15 contiguous nucleotides of at least any one of SEQ ID NOS: 1-844, preferably the entire sequence of at least any one of SEQ ID NOS: 1-844, is not limited and can be any sequence of A, T, G, and/or C (for DNA) and A, U, G, and/or C (for RNA) or modified bases thereof, including inosine and pseudouridine. The choice of sequence will depend on the desired function and can be dictated by coding regions desired, the intron-like regions desired, and the regulatory regions desired. Where the entire sequence of any one of SEQ ID NOS: 1-844 is within the nucleic acid, the nucleic acid obtained is referred to herein as a polynucleotide comprising the sequence of any one of SEQ ID NOS: 1-844.

II. Expression of Polypeptide Encoded by Full-Length cDNA or Full-Length Gene The provided polynucleotide (e.g., a polynucleotide having a sequence of one of SEQ ID NOS:1-844), the corresponding cDNA, or the full-length gene is used to express a partial or complete gene product.

5

10

15

20

25

30

Constructs of polynucleotides having sequences of SEQ ID NOS:1-844 can be generated synthetically. Alternatively, single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides is described by, e.g., Stemmer et al., Gene (Amsterdam) (1995) 164(1):49-53. In this method, assembly PCR (the synthesis of long DNA sequences from large numbers of oligodeoxyribonucleotides (oligos)) is described. The method is derived from DNA shuffling (Stemmer, Nature (1994) 370:389-391), and does not rely on DNA ligase, but instead relies on DNA polymerase to build increasingly longer DNA fragments during the assembly process. For example, a 1.1-kb fragment containing the TEM-1 beta-lactamase-encoding gene (bla) can be assembled in a single reaction from a total of 56 oligos, each 40 nucleotides (nt) in length. The synthetic gene can be PCR amplified and cloned in a vector containing the tetracycline-resistance gene (Tc-R) as the sole selectable marker. Without relying on ampicillin (Ap) selection, 76% of the Tc-R colonies were Ap-R, making this approach a general method for the rapid and cost-effective synthesis of any gene.

Appropriate polynucleotide constructs are purified using standard recombinant DNA techniques as described in, for example, Sambrook *et al.*, *Molecular Cloning: A Laboratory Manual, 2nd Ed.*, (1989) Cold Spring Harbor Press, Cold Spring Harbor, NY, and under current regulations described in United States Dept. of HHS, National Institute of Health (NIH) Guidelines for Recombinant DNA Research. The gene product encoded by a polynucleotide of the invention is expressed in any expression system, including, for example, bacterial, yeast, insect, amphibian and mammalian systems. Suitable vectors and host cells are described in U.S. Patent No. 5,654,173.

Bacteria. Expression systems in bacteria include those described in Chang et al., Nature (1978) 275:615; Goeddel et al., Nature (1979) 281:544; Goeddel et al., Nucleic Acids Res. (1980) 8:4057; EP 0 036,776; U.S. Patent No. 4,551,433; DeBoer et al., Proc. Natl. Acad. Sci. (USA) (1983) 80:21-25; and Siebenlist et al., Cell (1980) 20:269.

Yeast. Expression systems in yeast include those described in Hinnen et al., Proc. Natl. Acad. Sci. (USA) (1978) 75:1929; Ito et al., J. Bacteriol. (1983) 153:163; Kurtz et al., Mol. Cell. Biol. (1986) 6:142; Kunze et al., J. Basic Microbiol. (1985) 25:141; Gleeson et al., J. Gen. Microbiol. (1986) 132:3459; Roggenkamp et al., Mol. Gen. Genet. (1986)
202:302; Das et al., J. Bacteriol. (1984) 158:1165; De Louvencourt et al., J. Bacteriol. (1983) 154:737; Van den Berg et al., Bio/Technology (1990) 8:135; Kunze et al., J. Basic Microbiol. (1985) 25:141; Cregg et al., Mol. Cell. Biol. (1985) 5:3376; U.S. Patent Nos. 4,837,148 and 4,929,555; Beach and Nurse, Nature (1981) 300:706; Davidow et al., Curr. Genet. (1985) 10:380; Gaillardin et al., Curr. Genet. (1985) 10:49; Ballance et al., Biochem.
Biophys. Res. Commun. (1983) 112:284-289; Tilburn et al., Gene (1983) 26:205-221; Yelton et al., Proc. Natl. Acad. Sci. (USA) (1984) 81:1470-1474; Kelly and Hynes, EMBO J. (1985) 4:475479; EP 0 244,234; and WO 91/00357.

Insect Cells. Expression of heterologous genes in insects is accomplished as described in U.S. Patent No. 4,745,051; Friesen et al., "The Regulation of Baculovirus Gene Expression", in: The Molecular Biology Of Baculoviruses (1986) (W. Doerfler, ed.); EP 0 127,839; EP 0 155,476; and Vlak et al., J. Gen. Virol. (1988) 69:765-776; Miller et al., Ann. Rev. Microbiol. (1988) 42:177; Carbonell et al., Gene (1988) 73:409; Maeda et al., Nature (1985) 315:592-594; Lebacq-Verheyden et al., Mol. Cell. Biol. (1988) 8:3129; Smith et al., Proc. Natl. Acad. Sci. (USA) (1985) 82:8844; Miyajima et al., Gene (1987) 58:273; and Martin et al., DNA (1988) 7:99. Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts are described in Luckow et al., Bio/Technology (1988) 6:47-55, Miller et al., Generic Engineering (1986) 8:277-279, and Maeda et al., Nature (1985) 315:592-594.

15

20

25

30

Mammalian Cells. Mammalian expression is accomplished as described in Dijkema et al., EMBO J. (1985) 4:761, Gorman et al., Proc. Natl. Acad. Sci. (USA) (1982) 79:6777, Boshart et al., Cell (1985) 41:521 and U.S. Patent No. 4,399,216. Other features of mammalian expression are facilitated as described in Ham and Wallace, Meth. Enz. (1979) 58:44, Barnes and Sato, Anal. Biochem. (1980) 102:255, U.S. Patent Nos. 4,767,704, 4,657,866, 4,927,762, 4,560,655, WO 90/103430, WO 87/00195, and U.S. RE 30,985.

Polynucleotide molecules comprising a polynucleotide sequence provided herein propagated by placing the molecule in a vector. Viral and non-viral vectors are used,

including plasmids. The choice of plasmid will depend on the type of cell in which propagation is desired and the purpose of propagation. Certain vectors are useful for amplifying and making large amounts of the desired DNA sequence. Other vectors are suitable for expression in cells in culture. Still other vectors are suitable for transfer and expression in cells in a whole animal or person. The choice of appropriate vector is well within the skill of the art. Many such vectors are available commercially. The partial or full-length polynucleotide is inserted into a vector typically by means of DNA ligase attachment to a cleaved restriction enzyme site in the vector. Alternatively, the desired nucleotide sequence can be inserted by homologous recombination in vivo. Typically this is accomplished by attaching regions of homology to the vector on the flanks of the desired nucleotide sequence. Regions of homology are added by ligation of oligonucleotides, or by polymerase chain reaction using primers comprising both the region of homology and a portion of the desired nucleotide sequence, for example.

5

10

15

20

25

30

The polynucleotides set forth in SEQ ID NOS:1-844 or their corresponding full-length polynucleotides are linked to regulatory sequences as appropriate to obtain the desired expression properties. These can include promoters (attached either at the 5' end of the sense strand or at the 3' end of the antisense strand), enhancers, terminators, operators, repressors, and inducers. The promoters can be regulated or constitutive. In some situations it may be desirable to use conditionally active promoters, such as tissue-specific or developmental stage-specific promoters. These are linked to the desired nucleotide sequence using the techniques described above for linkage to vectors. Any techniques known in the art can be used.

When any of the above host cells, or other appropriate host cells or organisms, are used to replicate and/or express the polynucleotides or nucleic acids of the invention, the resulting replicated nucleic acid, RNA, expressed protein or polypeptide, is within the scope of the invention as a product of the host cell or organism. The product is recovered by any appropriate means known in the art.

Once the gene corresponding to a selected polynucleotide is identified, its expression can be regulated in the cell to which the gene is native. For example, an endogenous gene of a cell can be regulated by an exogenous regulatory sequence as disclosed in U.S. Patent No. 5,641,670.

III. Identification of Functional and Structural Motifs of Novel Genes

5

10

15

20

25

30

A. Screening Polynucleotide Sequences and Amino Acid Sequences Against
Publicly Available Databases

Translations of the nucleotide sequence of the provided polynucleotides, cDNAs or full genes can be aligned with individual known sequences. Similarity with individual sequences can be used to determine the activity of the polypeptides encoded by the polynucleotides of the invention. For example, sequences that show similarity with a chemokine sequence can exhibit chemokine activities. Also, sequences exhibiting similarity with more than one individual sequence can exhibit activities that are characteristic of either or both individual sequences.

The full length sequences and fragments of the polynucleotide sequences of the nearest neighbors can be used as probes and primers to identify and isolate the full length sequence corresponding to provided polynucleotides. The nearest neighbors can indicate a tissue or cell type to be used to construct a library for the full-length sequences corresponding to the provided polynucleotides..

Typically, a selected polynucleotide is translated in all six frames to determine the best alignment with the individual sequences. The sequences disclosed herein in the Sequence Listing are in a 5' to 3' orientation and translation in three frames can be sufficient (with a few specific exceptions as described in the Examples). These amino acid sequences are referred to, generally, as query sequences, which will be aligned with the individual sequences. Databases with individual sequences are described in "Computer Methods for Macromolecular Sequence Analysis" *Methods in Enzymology* (1996) 266, Doolittle, Academic Press, Inc., a division of Harcourt Brace & Co., San Diego, California, USA. Databases include Genbank, EMBL, and DNA Database of Japan (DDBJ).

Query and individual sequences can be aligned using the methods and computer programs described above, and include BLAST, available over the world wide web at http://ww.ncbi.nlm.nih.gov/BLAST/. Another alignment algorithm is Fasta, available in the Genetics Computing Group (GCG) package, Madison, Wisconsin, USA, a wholly owned subsidiary of Oxford Molecular Group, Inc. Other techniques for alignment are described in Doolittle, *supra*. Preferably, an alignment program that permits gaps in the sequence is

utilized to align the sequences. The Smith-Waterman is one type of algorithm that permits gaps in sequence alignments. See *Meth. Mol. Biol.* (1997) 70: 173-187. Also, the GAP program using the Needleman and Wunsch alignment method can be utilized to align sequences. An alternative search strategy uses MPSRCH software, which runs on a MASPAR computer. MPSRCH uses a Smith-Waterman algorithm to score sequences on a massively parallel computer. This approach improves ability to identify sequences that are distantly related matches, and is especially tolerant of small gaps and nucleotide sequence errors. Amino acid sequences encoded by the provided polynucleotides can be used to search both protein and DNA databases.

5

10

15

20

25

30

Results of individual and query sequence alignments can be divided into three categories, high similarity, weak similarity, and no similarity. Individual alignment results ranging from high similarity to weak similarity provide a basis for determining polypeptide activity and/or structure. Parameters for categorizing individual results include: percentage of the alignment region length where the strongest alignment is found, percent sequence identity, and p value.

The percentage of the alignment region length is calculated by counting the number of residues of the individual sequence found in the region of strongest alignment, e.g., contiguous region of the individual sequence that contains the greatest number of residues that are identical to the residues of the corresponding region of the aligned query sequence. This number is divided by the total residue length of the query sequence to calculate a percentage. For example, a query sequence of 20 amino acid residues might be aligned with a 20 amino acid region of an individual sequence. The individual sequence might be identical to amino acid residues 5, 9-15, and 17-19 of the query sequence. The region of strongest alignment is thus the region stretching from residue 9-19, an 11 amino acid stretch. The percentage of the alignment region length is: 11 (length of the region of strongest alignment) divided by (query sequence length) 20 or 55%.

Percent sequence identity is calculated by counting the number of amino acid matches between the query and individual sequence and dividing total number of matches by the number of residues of the individual sequences found in the region of strongest alignment. Thus, the percent identity in the example above would be 10 matches divided by 11 amino acids, or approximately, 90.9%

P value is the probability that the alignment was produced by chance. For a single alignment, the p value can be calculated according to Karlin *et al.*, *Proc. Natl. Acad. Sci.* (1990) 87:2264 and Karlin *et al.*, *Proc. Natl. Acad. Sci.* (1993) 90. The p value of multiple alignments using the same query sequence can be calculated using an heuristic approach described in Altschul *et al.*, *Nat. Genet.* (1994) 6:119. Alignment programs such as BLAST program can calculate the p value.

5

10

15

20

25

30

Another factor to consider for determining identity or similarity is the location of the similarity or identity. Strong local alignment can indicate similarity even if the length of alignment is short. Sequence identity scattered throughout the length of the query sequence also can indicate a similarity between the query and profile sequences. The boundaries of the region where the sequences align can be determined according to Doolittle, *supra*; BLAST or FAST programs; or by determining the area where sequence identity is highest.

High Similarity. In general, in alignment results considered to be of high similarity, the percent of the alignment region length is typically at least about 55% of total length query sequence; more typically, at least about 58%; even more typically; at least about 60% of the total residue length of the query sequence. Usually, percent length of the alignment region can be as much as about 62%; more usually, as much as about 64%; even more usually, as much as about 66%. Further, for high similarity, the region of alignment, typically, exhibits at least about 75% of sequence identity; more typically, at least about 78%; even more typically; at least about 80% sequence identity. Usually, percent sequence identity can be as much as about 82%; more usually, as much as about 84%; even more usually, as much as about 86%.

The p value is used in conjunction with these methods. If high similarity is found, the query sequence is considered to have high similarity with a profile sequence when the p value is less than or equal to about 10^{-2} ; more usually; less than or equal to about 10^{-3} ; even more usually; less than or equal to about 10^{-4} . More typically, the p value is no more than about 10^{-5} ; more typically; no more than or equal to about 10^{-15} ; even more typically; no more than or equal to about 10^{-15} for the query sequence to be considered high similarity.

Weak Similarity. In general, where alignment results considered to be of weak similarity, there is no minimum percent length of the alignment region nor minimum length of alignment. A better showing of weak similarity is considered when the region of

alignment is, typically, at least about 15 amino acid residues in length; more typically, at least about 20; even more typically; at least about 25 amino acid residues in length. Usually, length of the alignment region can be as much as about 30 amino acid residues; more usually, as much as about 40; even more usually, as much as about 60 amino acid residues.

Further, for weak similarity, the region of alignment, typically, exhibits at least about 35% of sequence identity; more typically, at least about 40%; even more typically; at least about 45% sequence identity. Usually, percent sequence identity can be as much as about 50%; more usually, as much as about 55%; even more usually, as much as about 60%.

5

10

15

20

25

30

If low similarity is found, the query sequence is considered to have weak similarity with a profile sequence when the p value is usually less than or equal to about 10^{-2} ; more usually; less than or equal to about 10^{-3} ; even more usually; less than or equal to about 10^{-4} . More typically, the p value is no more than about 10^{-5} ; more usually; no more than or equal to about 10^{-10} ; even more usually; no more than or equal to about 10^{-15} for the query sequence to be considered weak similarity.

Similarity Determined by Sequence Identity Alone. Sequence identity alone can be used to determine similarity of a query sequence to an individual sequence and can indicate the activity of the sequence. Such an alignment, preferably, permits gaps to align sequences. Typically, the query sequence is related to the profile sequence if the sequence identity over the entire query sequence is at least about 15%; more typically, at least about 20%; even more typically, at least about 20%; even more typically, at least about 50%. Sequence identity alone as a measure of similarity is most useful when the query sequence is usually, at least 80 residues in length; more usually, 90 residues; even more usually, at least 95 amino acid residues in length. More typically, similarity can be concluded based on sequence identity alone when the query sequence is preferably 100 residues in length; more preferably, 120 residues in length; even more preferably, 150 amino acid residues in length.

Determining Activity from Alignments with Profile and Multiple Aligned Sequences. Translations of the provided polynucleotides can be aligned with amino acid profiles that define either protein families or common motifs. Also, translations of the provided polynucleotides can be aligned to multiple sequence alignments (MSA) comprising the polypeptide sequences of members of protein families or motifs. Similarity or identity with profile sequences or MSAs can be used to determine the activity of the gene products (e.g.,

polypeptides) encoded by the provided polynucleotides or corresponding cDNA or genes. For example, sequences that show an identity or similarity with a chemokine profile or MSA can exhibit chemokine activities.

Profiles can designed manually by (1) creating an MSA, which is an alignment of the 5 amino acid sequence of members that belong to the family and (2) constructing a statistical representation of the alignment. Such methods are described, for example, in Birney et al., Nucl. Acid Res. (1996) 24(14): 2730-2739. MSAs of some protein families and motifs are publicly available. For example, http://genome.wustl.edu/Pfam/ includes MSAs of 547 different families and motifs. These MSAs are described also in Sonnhammer et al., Proteins (1997) 28: 405-420. Other sources over the world wide web include the site at 10 http://www.embl-heidelberg.de/argos/ali/ali.html; alternatively, a message can be sent to ALI@EMBL-HEIDELBERG.DE for the information. A brief description of these MSAs is reported in Pascarella et al., Prot. Eng. (1996) 9(3):249-251. Techniques for building profiles from MSAs are described in Sonnhammer et al., supra; Birney et al., supra; and 15 "Computer Methods for Macromolecular Sequence Analysis," Methods in Enzymology (1996) 266, Doolittle, Academic Press, Inc., a division of Harcourt Brace & Co., San Diego, California, USA.

Similarity between a query sequence and a protein family or motif can be determined by (a) comparing the query sequence against the profile and/or (b) aligning the query sequence with the members of the family or motif. Typically, a program such as Searchwise is used to compare the query sequence to the statistical representation of the multiple alignment, also known as a profile. The program is described in Birney et al., supra. Other techniques to compare the sequence and profile are described in Sonnhammer et al., supra and Doolittle, supra.

20

25

30

Next, methods described by Feng et al., J. Mol. Evol. (1987) 25:351 and Higgins et al., CABIOS (1989) 5:151 can be used align the query sequence with the members of a family or motif, also known as a MSA. Computer programs, such as PILEUP, can be used. See Feng et al., infra. In general, the following factors are used to determine if a similarity between a query sequence and a profile or MSA exists: (1) number of conserved residues found in the query sequence, (2) percentage of conserved residues found in the query sequence, (3) number of frameshifts, and (4) spacing between conserved residues.

Some alignment programs that both translate and align sequences can make any number of frameshifts when translating the nucleotide sequence to produce the best alignment. The fewer frameshifts needed to produce an alignment, the stronger the similarity or identity between the query and profile or MSAs. For example, a weak similarity resulting from no frameshifts can be a better indication of activity or structure of a query sequence, than a strong similarity resulting from two frameshifts. Preferably, three or fewer frameshifts are found in an alignment; more preferably two or fewer frameshifts; even more preferably, no frameshifts are found in an alignment of query and profile or MSAs.

5

10

15

20

25

30

Conserved residues are those amino acids found at a particular position in all or some of the family or motif members. For example, most chemokines contain four conserved cysteines. Alternatively, a position is considered conserved if only a certain class of amino acids is found in a particular position in all or some of the family members. For example, the N-terminal position can contain a positively charged amino acid, such as lysine, arginine, or histidine.

Typically, a residue of a polypeptide is conserved when a class of amino acids or a single amino acid is found at a particular position in at least about 40% of all class members; more typically, at least about 50%; even more typically, at least about 60% of the members. Usually, a residue is conserved when a class or single amino acid is found in at least about 70% of the members of a family or motif; more usually, at least about 80%; even more usually, at least about 95%.

A residue is considered conserved when three unrelated amino acids are found at a particular position in the some or all of the members; more usually, two unrelated amino acids. These residues are conserved when the unrelated amino acids are found at particular positions in at least about 40% of all class member; more typically, at least about 50%; even more typically, at least about 60% of the members. Usually, a residue is conserved when a class or single amino acid is found in at least about 70% of the members of a family or motif; more usually, at least about 80%; even more usually, at least about 90%; even more usually, at least about 95%.

A query sequence has similarity to a profile or MSA when the query sequence comprises at least about 25% of the conserved residues of the profile or MSA; more usually,

at least about 30%; even more usually; at least about 40%. Typically, the query sequence has a stronger similarity to a profile sequence or MSA when the query sequence comprises at least about 45% of the conserved residues of the profile or MSA; more typically, at least about 50%; even more typically; at least about 55%.

B. Screening Polynucleotide and Amino Acid Sequences Against Protein Profiles

5

10

15

20

25

30

The identify and function of the gene that correlates to a polynucleotide described herein can be determined by screening the polynucleotides or their corresponding amino acid sequences against profiles of protein families. Such profiles focus on common structural motifs among proteins of each family. Publicly available profiles are described above in Section IVA. Additional or alternative profiles are described below.

In comparing a novel polynucleotide with known sequences, several alignment tools are available. Examples include PileUp, which creates a multiple sequence alignment, and is described in Feng et al., J. Mol. Evol. (1987) 25:351. Another method, GAP, uses the alignment method of Needleman et al., J. Mol. Biol. (1970) 48:443. GAP is best suited for global alignment of sequences. A third method, BestFit, functions by inserting gaps to maximize the number of matches using the local homology algorithm of Smith et al., Adv. Appl. Math. (1981) 2:482. Exemplary protein profiles are provided below and in the examples.

<u>Chemokines.</u> Chemokines are a family of proteins that have been implicated in lymphocyte trafficking, inflammatory diseases, angiogenesis, hematopoiesis, and viral infection. See, for example, Rollins, *Blood* (1997) *90*(*3*):909-928, and Wells *et al.*, *J. Leuk. Biol.* (1997) *61*:545-550. U.S. Patent No. 5,605,817 discloses DNA encoding a chemokine expressed in fetal spleen. U.S. Patent No. 5,656,724 discloses chemokine-like proteins and methods of use. U.S. Patent No. 5,602,008 discloses DNA encoding a chemokine expressed by liver.

Chemokine mutants are polypeptides having an amino acid sequence that possesses at least one amino acid substitution, addition, or deletion as compared to native chemokines. Fragments possess the same amino acid sequence of the native chemokines; mutants can lack the amino and/or carboxyl terminal sequences. Fusions are mutants, fragments, or native chemokines that also include amino and/or carboxyl terminal amino acid extensions.

The number or type of the amino acid changes is not critical, nor is the length or number of the amino acid deletions, or amino acid extensions that are incorporated in the chemokines as compared to the native chemokine amino acid sequences. A polynucleotide encoding one of these variant polypeptides will retain at least about 80% amino acid identity with at least one known chemokine. Preferably, these polypeptides will retain at least about 85% amino acid sequence identity, more preferably, at least about 90%; even more preferably, at least about 95%. In addition, the variants exhibit at least 80%; preferably about 90%; more preferably about 95% of at least one activity exhibited by a native chemokine, which includes immunological, biological, receptor binding, and signal transduction functions.

5

10

15

30

Assays for chemotaxis relating to neutrophils are described in Walz et al., Biochem. Biophys. Res. Commun. (1987) 149:755, Yoshimura et al., Proc. Natl. Acad. Sci. (USA) (1987) 84:9233, and Schroder et al., J. Immunol. (1987) 139:3474; to lymphocytes, Larsen et al., Science (1989) 243:1464, Carr et al., Proc. Natl. Acad. Sci. (USA) (1994) 91:3652; to tumor-infiltrating lymphocytes, Liao et al., J. Exp. Med (1995). 182:1301; to hematopoietic progenitors, Aiuti et al., J. Exp. Med. (1997) 185:111; to monocytes, Valente et al., Biochem. (1988) 27:4162; and to natural killer cells, Loetscher et al., J. Immunol. (1996) 156:322, and Allavena et al., Eur. J. Immunol. (1994) 24:3233.

Assays for determining the biological activity of attracting eosinophils are described in Dahinden et al., J. Exp. Med. (1994) 179:751, Weber et al., J. Immunol. (1995) 154:4166, and Noso et al., Biochem. Biophys. Res. Commun. (1994) 200:1470; for attracting dendritic cells, Sozzani et al., J. Immunol. (1995) 155:3292; for attracting basophils, in Dahinden et al., J. Exp. Med. (1994) 179:751, Alam et al., J. Immunol. (1994) 152:1298, Alam et al., J. Exp. Med. (1992) 176:781; and for activating neutrophils, Maghazaci et al., Eur. J. Immunol. (1996) 26:315, and Taub et al., J. Immunol. (1995) 155:3877. Native chemokines can act as mitogens for fibroblasts, assayed as described in Mullenbach et al., J. Biol. Chem. (1986) 261:719.

Native chemokines exhibit binding activity with a number of receptors. Description of such receptors and assays to detect binding are described in, for example, Murphy et al., Science (1991) 253:1280; Combadiere et al., J. Biol. Chem. (1995) 270:29671; Daugherty et al., J. Exp. Med. (1996) 183:2349; Samson et al., Biochem. (1996) 35:3362; Raport et al., J.

Biol. Chem. (1996) 271:17161; Combadiere et al., J. Leukoc. Biol. (1996) 60:147; Baba et al., J. Biol. Chem. (1997) 23:14893; Yosida et al., J. Biol. Chem. (1997) 272:13803; Arvannitakis et al., Nature (1997) 385:347, and other assays are known in the art.

Assays for kinase activation of chemokines are described by Yen et al., J. Leukoc. Biol. (1997) 61:529; Dubois et al., J. Immunol. (1996) 156:1356; Turner et al., J. Immunol. (1995) 155:2437. Assays for inhibition of angiogenesis or cell proliferation are described in Maione et al., Science (1990) 247:77. Glycosaminoglycan production can be induced by native chemokines, assayed as described in Castor et al., Proc. Natl. Acad. Sci. (USA) (1983) 80:765. Chemokine-mediated histamine release from basophils is assayed as described in Dahinden et al., J. Exp. Med. (1989) 170:1787; and White et al., Immunol. Lett. (1989) 22:151. Heparin binding is described in Luster et al., J. Exp. Med. (1995) 182:219.

5

10

15

20

25

30

Chemokines can possess dimerization activity, which can be assayed according to Burrows et al., Biochem. (1994) 33:12741; and Zhang et al., Mol. Cell. Biol. (1995) 15:4851. Native chemokines can play a role in the inflammatory response of viruses. This activity can be assayed as described in Bleul et al., Nature (1996) 382:829; and Oberlin et al., Nature (1996) 382:833. Exocytosis of monocytes can be promoted by native chemokines. The assay for such activity is described in Uguccioni et al., Eur. J. Immunol. (1995) 25:64. Native chemokines also can inhibit hematopoietic stem cell proliferation. The method for testing for such activity is reported in Graham et al., Nature (1990) 344:442.

Death Domain Proteins. Several protein families contain death domain motifs (Feinstein and Kimchi, *TIBS Letters* (1995) 20:242). Some death domain containing proteins are implicated in cytotoxic intracellular signaling (Cleveland *et al.*, *Cell* (1995) 81:479, Pan *et al.*, *Science* (1997) 276:111; Duan *et al.*, *Nature* (1997) 385:86-89, and Chinnaiyan *et al.*, *Science* (1996) 274:990). U.S. Patent No. 5,563,039 describes a protein homologous to TRADD (Tumor Necrosis Factor Receptor-1 Associated Death Domain containing protein), and modifications of the active domain of TRADD that retain the functional characteristics of the protein, as well as apoptosis assays for testing the function of such death domain containing proteins. U.S. Patent No. 5,658,883 discloses biologically active TGF-B1 peptides. U.S. Patent No. 5,674,734 discloses RIP, which contains a C-terminal death domain and an N-terminal kinase domain.

Leukemia Inhibitory Factor (LIF). An LIF profile is constructed from sequences of leukemia inhibitor factor, CT-1 (cardiotrophin-1), CNTF (ciliary neurotrophic factor), OSM (oncostatin M), and IL-6 (interleukin-6). This profile encompasses a family of secreted cytokines that have pleiotropic effects on many cell types including hepatocytes, osteoclasts, neuronal cells and cardiac myocytes, and can be used to detect additional genes encoding such proteins. These molecules are all structurally related and share a common co-receptor gp130 which mediates intracellular signal transduction by cytoplasmic tyrosine kinases such as src.

Novel proteins related to this family are also likely to be secreted, to activate gp130 and to function in the development of a variety of cell types. Thus new members of this family would be candidates to be developed as growth or survival factors for the cell types that they stimulate. For more details on this family of cytokines, see Pennica *et al*, *Cytokine and Growth Factor Reviews* (1996) 7:81-91. U.S. Patent No. 5,420,247 discloses LIF receptor and fusion proteins. U.S. Patent No. 5,443,825 discloses human LIF.

10

15

20

25

30

Angiopoietin. Angiopoietin-1 is a secreted ligand of the TIE-2 tyrosine kinase; it functions as an angiogenic factor critical for normal vascular development. Angiopoietin-2 is a natural antagonist of angiopoietin-1 and thus functions as an anti-angiogenic factor. These two proteins are structurally similar and activate the same receptor (Folkman *et al.*, *Cell* (1996) 87:1153, and Davis *et al.*, *Cell* (1996) 87:1161). The angiopoietin molecules are composed of two domains: a coiled-coil region and a region related to fibrinogen. The fibrinogen domain is found in many molecules including ficolin and tesascin, and is well defined structurally with many members.

<u>Receptor Protein-Tyrosine Kinases.</u> Receptor Protein-Tyrosine Kinases or RPTKs are described in Lindberg, *Annu. Rev. Cell Biol.* (1994) 10:251-337.

Growth Factors: (Epidermal Growth Factor) EGF and (Fibroblast Growth Factor)

FGF. For a discussion of growth factor superfamilies, see *Growth Factors: A Practical Approach*, (Appendix A1) (1993) McKay and Leigh, Oxford University Press, NY, 237-243.

U.S. Patent No. 4,444,760 discloses acidic brain fibroblast growth factor, which is active in the promotion of cell division and wound healing. U.S. Patent No. 5,439,818 discloses DNA encoding human recombinant basic fibroblast growth factor, which is active in wound healing. U.S. Patent No. 5,604,293 discloses recombinant human basic fibroblast growth

factor, which is useful for wound healing. U.S. Patent No. 5,410,832 discloses brain-derived and recombinant acidic fibroblast growth factor, which act as mitogens for mesoderm and neuroectoderm-derived cells in culture, and promote wound healing in soft tissue, cartilaginous tissue and musculo-skeletal tissue. U.S. Patent No. 5,387,673 discloses biologically active fragments of FGF.

5

10

15

Proteins of the TNF Family. A profile derived from the TNF family is created by aligning sequences of the following TNF family members: nerve growth factor (NGF), lymphotoxin, Fas ligand, tumor necrosis factor (TNFα), CD40 ligand, TRAIL, ox40 ligand, 4-1BB ligand, CD27 ligand, and CD30 ligand. The profile is designed to identify sequences of proteins that constitute new members or homologues of this family of proteins. U.S. Patent No. 5,606,023 discloses mutant TNF proteins; U.S. Patent No. 5,597,899 and U.S. Patent No. 5,486,463 disclose TNF muteins; and U.S. Patent No. 5,652,353 discloses DNA encoding TNFα muteins.

Members of the TNF family of proteins have been show in vitro to multimerize, as described in Burrows et al., Biochem. (1994) 33:12741 and Zhang et al., Mol. Cell. Biol. (1995) 15:4851 and bind receptors as described in Browning et al., J. Immunol. (1994) 147:1230, Androlewicz et al., J. Biol. Chem. (1992) 267:2542, and Crowe et al., Science (1994) 264:707.

In vivo, TNFs proteolytically cleave a target protein as described in Kriegel et al., 20 Cell (1988) 53:45 and Mohler et al., Nature (1994) 370:218 and demonstrate cell proliferation and differentiation activity. T-cell or thymocyte proliferation is assayed as described in Armitage et al., Eur. J. Immunol. (1992) 22:447; Current Protocols in Immunology, ed. J.E. Coligan et al., 3.1-3.19; Takai et al., J. Immunol. (1986) 137:3494-3500, Bertagnoli et al., J. Immunol. (1990) 145:1706, Bertagnoli et al., J. Immunol. (1991) 25 133:327, Bertagnoli et al., J. Immunol. (1992) 149:3778, and Bowman et al., J. Immunol. (1994) 152:1756. B cell proliferation and Ig secretion are assayed as described in Maliszewski, J. Immunol. (1990) 144:3028, and Assays for B Cell Function: In Vitro Antibody Production, Mond and Brunswick, Current Protocols in Immunol., Coligan Ed vol 1 pp 3.8.1-3.8.16, John Wiley and Sons, Toronto 1994, Kehrl et al., Science (1987) 238:1144 30 and Boussiotis et al., PNAS USA (1994) 91:7007. Other in vivo activities include upregulation of cell surface antigens, upregulation of costimulatory molecules, and cellular

aggregation/adhesion as described in Barrett et al., J. Immunol. (1991) 146:1722; Bjorck et al., Eur. J. Immunol. (1993) 23:1771; Clark et al., Annu Rev. Immunol. (1991) 9:97; Ranheim et al., J. Exp. Med. (1994) 177:925; Yellin, J. Immunol. (1994) 153:666; and Gruss et al., Blood (1994) 84:2305.

Proliferation and differentiation of hematopoietic and lymphopoietic cells has also been shown in vivo for TNFs, using assays for embryonic differentiation and hematopoiesis as described in Johansson et al., Cellular Biology (1995) 15:141, Keller et al., Mol. Cell. Biol. (1993) 13:473, McClanahan et al., Blood (1993) 81:2903 and using assays to detect stem cell survival and differentiation as described in Culture of Hematopoietic Cells, Freshney et al. eds, pp 1-21, 23-29, 139-162, 163-179, and 265-268, Wiley-Liss, Inc., New York, NY, 1994, and Hirajama et al., PNAS USA (1992) 89:5907.

In vivo activities of TNFs also include lymphocyte survival and apoptosis, assayed as described in Darzynkewicz et al., Cytometry (1992) 13:795; Gorczca et al., Leukemia (1993) 7:659; Itoh et al., Cell (1991) 66:233; Zacharduk, J. Immunol. (1990) 145:4037; Zamai et al., Cytometry (1993) 14:891; and Gorczyca et al., Int'l J. Oncol. (1992) 1:639. Some members of the TNF family are cleaved from the cell surface; others remain membrane bound. The three-dimensional structure of TNF is discussed in Sprang and Eck, Tumor Necrosis Factors; supra.

15

30

TNF proteins include a transmembrane domain. The protein is cleaved into a shorter soluble version, as described in Kriegler et al., Cell (1988) 53:45, Perez et al., Cell (1990) 63:251, and Shaw et al., Cell (1986) 46:659. The transmembrane domain is between amino acid 46 and 77 and the cytoplasmic domain is between position 1 and 45 on the human form of TNFα. The 3-dimensional motifs of TNF include a sandwich of two pleated β sheets. Each sheet is composed of anti-parallel β strands. β strands facing each other on opposite sites of the sandwich are connected by short polypeptide loops, as described in Van Ostade et al., Protein Engineering (1994) 7(1):5, and Sprang et al., Tumor Necrosis Factors; supra. Residues of the TNF family proteins that are involved in the β sheet secondary structure have been identified as described in Van Ostade et al., Protein Eng. (1994) 7(1):5, and Sprang et al., supra.

TNF receptors are disclosed in U.S. Patent No. 5,395,760. A profile derived from the TNF receptor family is created by aligning sequences of the TNF receptor family, including

Apo1/Fas, TNFR I and II, death receptor 3 (DR3), CD40, ox40, CD27, and CD30. Thus, the profile is designed to identify from the polynucleotides of the invention sequences of proteins that constitute new members or homologues of this family of proteins.

Tumor necrosis factor receptors exist in two forms in humans: p55 TNFR and p75 TNFR, both of which provide intracellular signals upon binding with a ligand. The extracellular domains of these receptor proteins are cysteine rich. The receptors can remain membrane bound, although some forms of the receptors are cleaved forming soluble receptors. The regulation, diagnostic, prognostic, and therapeutic value of soluble TNF receptors is discussed in Aderka, *Cytokine and Growth Factor Reviews*, (1996) 7(3):231.

5

10

15

20

25

30

<u>PDGF Family.</u> U.S. Patent No. 5,326,695 discloses platelet derived growth factor agonists; bioactive portions of PDGF-B are used as agonists. U.S. Patent No. 4,845,075 discloses biologically active B-chain homodimers, and also includes variants and derivatives of the PDGF-B chain. U.S. Patent No. 5,128,321 discloses PDGF analogs and methods of use. Proteins having the same bioactivity as PDGF are disclosed, including A and B chain proteins.

Kinase (Including MKK) Family. U.S. Patent No. 5,650,501 discloses serine/threonine kinase, associated with mitotic and meiotic cell division; the protein has a kinase domain in its N-terminal and 3 PEST regions in the C-terminus. U.S. Patent No. 5,605,825 discloses human PAK65, a serine protein kinase.

The foregoing discussion provides a few examples of the protein profiles that can be compared with the polynucleotides of the invention. One skilled in the art can use these and other protein profiles to identify the genes that correlate with the provided polynucleotides.

C. <u>Identification of Secreted & Membrane-Bound Polypeptides</u>

Both secreted and membrane-bound polypeptides of the present invention are of particular interest. For example, levels of secreted polypeptides can be assayed in body fluids that are convenient, such as blood, urine, prostatic fluid and semen. Membrane-bound polypeptides are useful for constructing vaccine antigens or inducing an immune response. Such antigens would comprise all or part of the extracellular region of the membrane-bound polypeptides. Because both secreted and membrane-bound polypeptides comprise a fragment of contiguous hydrophobic amino acids, hydrophobicity predicting algorithms can be used to identify such polypeptides.

A signal sequence is usually encoded by both secreted and membrane-bound polypeptide genes to direct a polypeptide to the surface of the cell. The signal sequence usually comprises a stretch of hydrophobic residues. Such signal sequences can fold into helical structures. Membrane-bound polypeptides typically comprise at least one transmembrane region that possesses a stretch of hydrophobic amino acids that can transverse the membrane. Some transmembrane regions also exhibit a helical structure. Hydrophobic fragments within a polypeptide can be identified by using computer algorithms. Such algorithms include Hopp & Woods, *Proc. Natl. Acad. Sci. USA* (1981) 78:3824-3828; Kyte & Doolittle, *J. Mol. Biol.* (1982) 157: 105-132; and RAOAR algorithm, Degli Esposti *et al.*, *Eur. J. Biochem.* (1990) 190: 207-219.

5

10

15

20

25

30

Another method of identifying secreted and membrane-bound polypeptides is to translate the polynucleotides of the invention in all six frames and determine if at least 8 contiguous hydrophobic amino acids are present. Those translated polypeptides with at least 8; more typically, 10; even more typically, 12 contiguous hydrophobic amino acids are considered to be either a putative secreted or membrane bound polypeptide. Hydrophobic amino acids include alanine, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, threonine, tryptophan, tyrosine, and valine.

IV. <u>Identification of the Function of an Expression Product of a Full-Length Gene</u> <u>Corresponding to a Polynucleotide</u>

Ribozymes, antisense constructs, and dominant negative mutants can be used to determine function of the expression product of a gene corresponding to a polynucleotide provided herein. These methods and compositions are particularly useful where the provided novel polynucleotide exhibits no significant or substantial homology to a sequence encoding a gene of known function. Antisense molecules and ribozymes can be constructed from synthetic polynucleotides. Typically, the phosphoramidite method of oligonucleotide synthesis is used. See Beaucage *et al.*, *Tet. Lett.* (1981) 22:1859 and U.S. Patent No. 4,668,777. Automated devices for synthesis are available to create oligonucleotides using this chemistry. Examples of such devices include Biosearch 8600, Models 392 and 394 by Applied Biosystems, a division of Perkin-Elmer Corp., Foster City, California, USA; and Expedite by Perceptive Biosystems, Framingham, Massachusetts, USA. Synthetic RNA,

phosphate analog oligonucleotides, and chemically derivatized oligonucleotides can also be produced, and can be covalently attached to other molecules. RNA oligonucleotides can be synthesized, for example, using RNA phosphoramidites. This method can be performed on an automated synthesizer, such as Applied Biosystems, Models 392 and 394, Foster City, California, USA. See Applied Biosystems User Bulletin 53 and Ogilvie *et al.*, *Pure & Applied Chem.* (1987) 59:325.

Phosphorothioate oligonucleotides can also be synthesized for antisense construction. A sulfurizing reagent, such as tetraethylthiruam disulfide (TETD) in acetonitrile can be used to convert the internucleotide cyanoethyl phosphite to the phosphorothioate triester within 15 minutes at room temperature. TETD replaces the iodine reagent, while all other reagents used for standard phosphoramidite chemistry remain the same. Such a synthesis method can be automated using Models 392 and 394 by Applied Biosystems, for example.

Oligonucleotides of up to 200 nucleotides can be synthesized, more typically, 100 nucleotides, more typically 50 nucleotides; even more typically 30 to 40 nucleotides. These synthetic fragments can be annealed and ligated together to construct larger fragments. See, for example, Sambrook *et al.*, *supra*.

A. Ribozymes

5

10

15

20

25

30

Trans-cleaving catalytic RNAs (ribozymes) are RNA molecules possessing endoribonuclease activity. Ribozymes are specifically designed for a particular target, and the target message must contain a specific nucleotide sequence. They are engineered to cleave any RNA species site-specifically in the background of cellular RNA. The cleavage event renders the mRNA unstable and prevents protein expression. Importantly, ribozymes can be used to inhibit expression of a gene of unknown function for the purpose of determining its function in an in vitro or in vivo context, by detecting the phenotypic effect.

One commonly used ribozyme motif is the hammerhead, for which the substrate sequence requirements are minimal. Design of the hammerhead ribozyme is disclosed in Usman et al., Current Opin. Struct. Biol. (1996) 6:527. Usman also discusses the therapeutic uses of ribozymes. Ribozymes can also be prepared and used as described in Long et al., FASEB J. (1993) 7:25; Symons, Ann. Rev. Biochem. (1992) 61:641; Perrotta et al., Biochem. (1992) 31:16; Ojwang et al., Proc. Natl. Acad. Sci. (USA) (1992) 89:10802; and U.S. Patent No. 5,254,678. Ribozyme cleavage of HIV-I RNA is described in U.S.

Patent No. 5,144,019; methods of cleaving RNA using ribozymes is described in U.S. Patent No. 5,116,742; and methods for increasing the specificity of ribozymes are described in U.S. Patent No. 5,225,337 and Koizumi et al., Nucleic Acid Res. (1989) 17:7059. Preparation and use of ribozyme fragments in a hammerhead structure are also described by Koizumi et al., Nucleic Acids Res. (1989) 17:7059. Preparation and use of ribozyme fragments in a hairpin structure are described by Chowrira and Burke, Nucleic Acids Res. (1992) 20:2835. Ribozymes can also be made by rolling transcription as described in Daubendiek and Kool, Nat. Biotechnol. (1997) 15(3):273.

5

10

15

20

25

30

The hybridizing region of the ribozyme can be modified or can be prepared as a branched structure as described in Horn and Urdea, *Nucleic Acids Res.* (1989) 17:6959. The basic structure of the ribozymes can also be chemically altered in ways familiar to those skilled in the art, and chemically synthesized ribozymes can be administered as synthetic oligonucleotide derivatives modified by monomeric units. In a therapeutic context, liposome mediated delivery of ribozymes improves cellular uptake, as described in Birikh *et al.*, *Eur. J. Biochem.* (1997) 245:1.

Using the polynucleotide sequences of the invention and methods known in the art, ribozymes are designed to specifically bind and cut the corresponding mRNA species. Ribozymes thus provide a means to inhibit the expression of any of the proteins encoded by the disclosed polynucleotides or their full-length genes. The full-length gene need not be known in order to design and use specific inhibitory ribozymes. In the case of a polynucleotide or full-length cDNA of unknown function, ribozymes corresponding to that nucleotide sequence can be tested in vitro for efficacy in cleaving the target transcript. Those ribozymes that effect cleavage in vitro are further tested in vivo. The ribozyme can also be used to generate an animal model for a disease, as described in Birikh *et al.*. *supra*. An effective ribozyme is used to determine the function of the gene of interest by blocking its transcription and detecting a change in the cell. Where the gene is found to be a mediator in a disease, an effective ribozyme is designed and delivered in a gene therapy for blocking transcription and expression of the gene.

Therapeutic and functional genomic applications of ribozymes proceed beginning with knowledge of a portion of the coding sequence of the gene to be inhibited. Thus, for many genes, a partial polynucleotide sequence provides adequate sequence for constructing

an effective ribozyme. A target cleavage site is selected in the target sequence, and a ribozyme is constructed based on the 5' and 3' nucleotide sequences that flank the cleavage site. Retroviral vectors are engineered to express monomeric and multimeric hammerhead ribozymes targeting the mRNA of the target coding sequence. These monomeric and multimeric ribozymes are tested in vitro for an ability to cleave the target mRNA. A cell line is stably transduced with the retroviral vectors expressing the ribozymes, and the transduction is confirmed by Northern blot analysis and reverse-transcription polymerase chain reaction (RT-PCR). The cells are screened for inactivation of the target mRNA by such indicators as reduction of expression of disease markers or reduction of the gene product of the target mRNA.

B. Antisense

5

10

15

20

25

30

Antisense nucleic acids are designed to specifically bind to RNA, resulting in the formation of RNA-DNA or RNA-RNA hybrids, with an arrest of DNA replication, reverse transcription or messenger RNA translation. Antisense polynucleotides based on a selected polynucleotide sequence can interfere with expression of the corresponding gene. Antisense polynucleotides are typically generated within the cell by expression from antisense constructs that contain the antisense strand as the transcribed strand. Antisense polynucleotides based on the disclosed polynucleotides will bind and/or interfere with the translation of mRNA comprising a sequence complementary to the antisense polynucleotide. The expression products of control cells and cells treated with the antisense construct are compared to detect the protein product of the gene corresponding to the polynucleotide upon which the antisense construct is based. The protein is isolated and identified using routine biochemical methods.

One rationale for using antisense methods to determine the function of the gene corresponding to a disclosed polynucleotide is the biological activity of antisense therapeutics. Antisense therapy for a variety of cancers is in clinical phase and has been discussed extensively in the literature. Reed reviewed antisense therapy directed at the Bcl-2 gene in tumors; gene transfer-mediated overexpression of Bcl-2 in tumor cell lines conferred resistance to many types of cancer drugs. (Reed, J.C., N.C.I. (1997) 89:988). The potential for clinical development of antisense inhibitors of ras is discussed by Cowsert, L.M., Anti-Cancer Drug Design (1997) 12:359. Additional important antisense targets include

leukemia (Geurtz, A.M., Anti-Cancer Drug Design (1997) 12:341); human C-ref kinase (Monia, B.P., Anti-Cancer Drug Design (1997) 12:327); and protein kinase C (McGraw et al., Anti-Cancer Drug Design (1997) 12:315.

Given the extensive background literature and clinical experience in antisense therapy, one skilled in the art can use selected polynucleotides of the invention as additional potential therapeutics. The choice of polynucleotide can be narrowed by first testing them for binding to "hot spot" regions of the genome of cancerous cells. If a polynucleotide is identified as binding to a "hot spot", testing the polynucleotide as an antisense compound in the corresponding cancer cells clearly is warranted.

Ogunbiyi et al., Gastroenterology (1997) 113(3):761 describe prognostic use of allelic loss in colon cancer; Barks et al., Genes, Chromosomes, and Cancer (1997) 19(4):278 describe increased chromosome copy number detected by FISH in malignant melanoma; Nishizake et al., Genes, Chromosomes, and Cancer (1997) 19(4):267 describe genetic alterations in primary breast cancer and their metastases and direct comparison using modified comparative genome hybridization; and Elo et al., Cancer Research (1997) 57(16):3356 disclose that loss of heterozygosity at 16z24.1-q24.2 is significantly associated with metastatic and aggressive behavior of prostate cancer.

C. <u>Dominant Negative Mutations</u>

As an alternative method for identifying function of the gene corresponding to a polynucleotide disclosed herein, dominant negative mutations are readily generated for corresponding proteins that are active as homomultimers. A mutant polypeptide will interact with wild-type polypeptides (made from the other allele) and form a non-functional multimer. Thus, a mutation is in a substrate-binding domain, a catalytic domain, or a cellular localization domain. Preferably, the mutant polypeptide will be overproduced.

Point mutations are made that have such an effect. In addition, fusion of different polypeptides of various lengths to the terminus of a protein can yield dominant negative mutants. General strategies are available for making dominant negative mutants (see, e.g., Herskowitz, Nature (1987) 329:219). Such techniques can be used to create loss of function mutations, which are useful for determining protein function.

5

10

15

20

V. Construction of Polypeptides of the Invention and Variants Thereof

5

10

15

20

25

30

The polypeptides of the invention include those encoded by the disclosed polynucleotides. These polypeptides can also be encoded by nucleic acids that, by virtue of the degeneracy of the genetic code, are not identical in sequence to the disclosed polynucleotides. Thus, the invention includes within its scope a polypeptide encoded by a polynucleotide having the sequence of any one of SEQ ID NOS: 1-844 or a variant thereof.

In general, the term "polypeptide" as used herein refers to both the full length polypeptide encoded by the recited polynucleotide, the polypeptide encoded by the gene represented by the recited polynucleotide, as well as portions or fragments thereof. "Polypeptides" also includes variants of the naturally occurring proteins, where such variants are homologous or substantially similar to the naturally occurring protein, and can be of an origin of the same or different species as the naturally occurring protein (e.g., human, murine, or some other species that naturally expresses the recited polypeptide, usually a mammalian species). In general, variant polypeptides have a sequence that has at least about 80%, usually at least about 90%, and more usually at least about 98% sequence identity with a differentially expressed polypeptide of the invention, as measured by BLAST using the parameters described above. The variant polypeptides can be naturally or non-naturally glycosylated, i.e., the polypeptide has a glycosylation pattern that differs from the glycosylation pattern found in the corresponding naturally occurring protein.

The invention also encompasses homologs of the disclosed polypeptides (or fragments thereof) where the homologs are isolated from other species, *i.e.* other animal or plant species, where such homologs, usually mammalian species, *e.g.* rodents, such as mice, rats; domestic animals, *e.g.*, horse, cow, dog, cat; and humans. By homolog is meant a polypeptide having at least about 35%, usually at least about 40% and more usually at least about 60% amino acid sequence identity a particular differentially expressed protein as identified above, where sequence identity is determined using the BLAST algorithm, with the parameters described *supra*.

In general, the polypeptides of the subject invention are provided in a non-naturally occurring environment, e.g. are separated from their naturally occurring environment. In certain embodiments, the subject protein is present in a composition that is enriched for the protein as compared to a control. As such, purified polypeptide is provided, where by

purified is meant that the protein is present in a composition that is substantially free of non-differentially expressed polypeptides, where by substantially free is meant that less than 90%, usually less than 60% and more usually less than 50% of the composition is made up of non-differentially expressed polypeptides.

5

10

15

20

25

30

Also within the scope of the invention are variants; variants of polypeptides include mutants, fragments, and fusions. Mutants can include amino acid substitutions, additions or deletions. The amino acid substitutions can be conservative amino acid substitutions or substitutions to eliminate non-essential amino acids, such as to alter a glycosylation site, a phosphorylation site or an acetylation site, or to minimize misfolding by substitution or deletion of one or more cysteine residues that are not necessary for function. Conservative amino acid substitutions are those that preserve the general charge, hydrophobicity/hydrophilicity, and/or steric bulk of the amino acid substituted. For example, substitutions between the following groups are conservative: Gly/Ala, Val/Ile/Leu, Asp/Glu, Lys/Arg, Asn/Gln, Ser/Cys, Thr, and Phe/Trp/Tyr.

Variants can be designed so as to retain biological activity of a particular region of the protein (e.g., a functional domain and/or, where the polypeptide is a member of a protein family, a region associated with a consensus sequence). In a non-limiting example, Osawa et al., Biochem. Mol. Int. (1994) 34:1003, discusses the actin binding region of a protein from several different species. The actin binding regions of the these species are considered homologous based on the fact that they have amino acids that fall within "homologous residue groups." Homologous residues are judged according to the following groups (using single letter amino acid designations): STAG; ILVMF; HRK; DEQN; and FYW. For example, and S, a T, an A or a G can be in a position and the function (in this case actin binding) is retained.

Additional guidance on amino acid substitution is available from studies of protein evolution. Go et al, Int. J. Peptide Protein Res. (1980) 15:211, classified amino acid residue sites as interior or exterior depending on their accessibility. More frequent substitution on exterior sites was confirmed to be general in eight sets of homologous protein families regardless of their biological functions and the presence or absence of a prosthetic group. Virtually all types of amino acid residues had higher mutabilities on the exterior than in the interior. No correlation between mutability and polarity was observed of amino acid

residues in the interior and exterior, respectively. Amino acid residues were classified into one of three groups depending on their polarity: polar (Arg, Lys, His, Gln, Asn, Asp, and Glu); weak polar (Ala, Pro, Gly, Thr, and Ser), and nonpolar (Cys, Val, Met, Ile, Leu, Phe, Tyr, and Trp). Amino acid replacements during protein evolution were very conservative: 88% and 76% of them in the interior or exterior, respectively, were within the same group of the three. Inter-group replacements are such that weak polar residues are replaced more often by nonpolar residues in the interior and more often by polar residues on the exterior.

5

10

15

20

25

30

Additional guidance for production of polypeptide variants is provided in Querol et al., Prot. Eng. (1996) 9:265, which provides general rules for amino acid substitutions to enhance protein thermostability. New glycosylation sites can be introduced as discussed in Olsen and Thomsen, J. Gen. Microbiol. (1991) 137:579. An additional disulfide bridge can be introduced, as discussed by Perry and Wetzel, Science (1984) 226:555; Pantoliano et al., Biochemistry (1987) 26:2077; Matsumura et al., Nature (1989) 342:291; Nishikawa et al., Protein Eng. (1990) 3:443; Takagi et al., J. Biol. Chem. (1990) 265:6874; Clarke et al., Biochemistry (1993) 32:4322; and Wakarchuk et al., Protein Eng. (1994) 7:1379. Metal binding sites can be introduced, according to Toma et al., Biochemistry (1991) 30:97, and Haezerbrouck et al., Protein Eng. (1993) 6:643. Substitutions with prolines in loops can be made according to Masul et al., Appl. Env. Microbiol. (1994) 60:3579; and Hardy et al., FEBS Lett. 317:89.

Cysteine-depleted muteins are considered variants within the scope of the invention. These variants can be constructed according to methods disclosed in U.S. Patent No. 4,959,314, which discloses substitution of cysteines with other amino acids, and methods for assaying biological activity and effect of the substitution. Such methods are suitable for proteins according to this invention that have cysteine residues suitable for such substitutions, for example to eliminate disulfide bond formation.

Variants also include fragments of the polypeptides disclosed herein, particularly biologically active fragments and/or fragments corresponding to functional domains. Fragments of interest will typically be at least about 10 aa to at least about 15 aa in length, usually at least about 50 aa in length, and can be as long as 300 aa in length or longer, but will usually not exceed about 1000 aa in length, where the fragment will have a stretch of

amino acids that is identical to a polypeptide encoded by a polynucleotide having a sequence of any SEQ ID NOS:1-844, or a homolog thereof.

The protein variants described herein are encoded by polynucleotides that are within the scope of the invention. The genetic code can be used to select the appropriate codons to construct the corresponding variants.

VI. Computer-Related Embodiments

5

10

15

20

25

30

In general, a library of polynucleotides is a collection of sequence information, which information is provided in either biochemical form (e.g., as a collection of polynucleotide molecules), or in electronic form (e.g., as a collection of polynucleotide sequences stored in a computer-readable form, as in a computer system and/or as part of a computer program). The sequence information of the polynucleotides can be used in a variety of ways, e.g., as a resource for gene discovery, as a representation of sequences expressed in a selected cell type (e.g., cell type markers), and/or as markers of a given disease or disease state. In general, a disease marker is a representation of a gene product that is present in all affected by disease either at an increased or decreased level relative to a normal cell (e.g., a cell of the same or similar type that is not substantially affected by disease). For example, a polynucleotide sequence in a library can be a polynucleotide that represents an mRNA, polypeptide, or other gene product encoded by the polynucleotide, that is either overexpressed or underexpressed in a breast ductal cell affected by cancer relative to a normal (i.e., substantially disease-free) breast cell.

The nucleotide sequence information of the library can be embodied in any suitable form, e.g., electronic or biochemical forms. For example, a library of sequence information embodied in electronic form includes an accessible computer data file (or, in biochemical form, a collection of nucleic acid molecules) that contains the representative nucleotide sequences of genes that are differentially expressed (e.g., overexpressed or underexpressed) as between, for example, i) a cancerous cell and a normal cell; ii) a cancerous cell and a dysplastic cell; iii) a cancerous cell and a cell affected by a disease or condition other than cancer; iv) a metastatic cancerous cell and a normal cell and/or non-metastatic cancerous cell; v) a malignant cancerous cell and a non-malignant cancerous cell (or a normal cell) and/or vi) a dysplastic cell relative to a normal cell. Other combinations and comparisons of

cells affected by various diseases or stages of disease will be readily apparent to the ordinarily skilled artisan. Biochemical embodiments of the library include a collection of nucleic acids that have the sequences of the genes in the library, where the nucleic acids can correspond to the entire gene in the library or to a fragment thereof, as described in greater detail below.

5

10

15

20

25

30

The polynucleotide libraries of the subject invention include sequence information of a plurality of polynucleotide sequences, where at least one of the polynucleotides has a sequence of any of SEQ ID NOS:1-844. By plurality is meant at least 2, usually at least 3 and can include up to all of SEQ ID NOS:1-844. The length and number of polynucleotides in the library will vary with the nature of the library, *e.g.*, if the library is an oligonucleotide array, a cDNA array, a computer database of the sequence information, etc.

Where the library is an electronic library, the nucleic acid sequence information can be present in a variety of media. "Media" refers to a manufacture, other than an isolated nucleic acid molecule, that contains the sequence information of the present invention. Such a manufacture provides the genome sequence or a subset thereof in a form that can be examined by means not directly applicable to the sequence as it exists in a nucleic acid. For example, the nucleotide sequence of the present invention, e.g. the nucleic acid sequences of any of the polynucleotides of SEQ ID NOS:1-844, can be recorded on computer readable media, e.g. any medium that can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as a floppy disc, a hard disc storage medium, and a magnetic tape; optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media. One of skill in the art can readily appreciate how any of the presently known computer readable mediums can be used to create a manufacture comprising a recording of the present sequence information. "Recorded" refers to a process for storing information on computer readable medium, using any such methods as known in the art. Any convenient data storage structure can be chosen, based on the means used to access the stored information. A variety of data processor programs and formats can be used for storage, e.g. word processing text file, database format, etc. In addition to the sequence information, electronic versions of the libraries of the invention can be provided in conjunction or connection with other computer-readable information and/or other types of

computer-readable files (e.g., searchable files, executable files, etc, including, but not limited to, for example, search program software, etc..).

By providing the nucleotide sequence in computer readable form, the information can be accessed for a variety of purposes. Computer software to access sequence information is publicly available. For example, the BLAST (Altschul *et al.*, *supra.*) and BLAZE (Brutlag *et al. Comp. Chem.* (1993) 17:203) search algorithms on a Sybase system can be used identify open reading frames (ORFs) within the genome that contain homology to ORFs from other organisms.

5

10

15

20

25

30

As used herein, "a computer-based system" refers to the hardware means, software means, and data storage means used to analyze the nucleotide sequence information of the present invention. The minimum hardware of the computer-based systems of the present invention comprises a central processing unit (CPU), input means, output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based system are suitable for use in the present invention. The data storage means can comprise any manufacture comprising a recording of the present sequence information as described above, or a memory access means that can access such a manufacture.

"Search means" refers to one or more programs implemented on the computer-based system, to compare a target sequence or target structural motif with the stored sequence information. Search means are used to identify fragments or regions of the genome that match a particular target sequence or target motif. A variety of known algorithms are publicly known and commercially available, e.g. MacPattern (EMBL), BLASTN and BLASTX (NCBI). A "target sequence" can be any DNA or amino acid sequence of six or more nucleotides or two or more amino acids, preferably from about 10 to 100 amino acids or from about 30 to 300 nucleotide residues.

A "target structural motif," or "target motif," refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration that is formed upon the folding of the target motif, or on consensus sequences of regulatory or active sites. There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzyme active sites and signal sequences. Nucleic acid target motifs include, but are not limited to, hairpin structures,

promoter sequences and other expression elements such as binding sites for transcription factors.

A variety of structural formats for the input and output means can be used to input and output the information in the computer-based systems of the present invention. One format for an output means ranks fragments of the genome possessing varying degrees of homology to a target sequence or target motif. Such presentation provides a skilled artisan with a ranking of sequences and identifies the degree of sequence similarity contained in the identified fragment.

A variety of comparing means can be used to compare a target sequence or target motif with the data storage means to identify sequence fragments of the genome. A skilled artisan can readily recognize that any one of the publicly available homology search programs can be used as the search means for the computer based systems of the present invention.

10

15

20

25

30

As discussed above, the "library" of the invention also encompasses biochemical libraries of the polynucleotides of SEQ ID NOS:1-844, e.g., collections of nucleic acids representing the provided polynucleotides. The biochemical libraries can take a variety of forms, e.g., a solution of cDNAs, a pattern of probe nucleic acids stably associated with a surface of a solid support (i.e., an array) and the like. Of particular interest are nucleic acid arrays in which one or more of SEQ ID NOS:1-844 is represented on the array. By array is meant a an article of manufacture that has at least a substrate with at least two distinct nucleic acid targets on one of its surfaces, where the number of distinct nucleic acids can be considerably higher, typically being at least 10 nt, usually at least 20 nt and often at least 25 nt. A variety of different array formats have been developed and are known to those of skill in the art, including those described in 5,242,974; 5,384,261; 5,405,783; 5,412,087; 5,424,186; 5,429,807; 5,436,327; 5,445,934; 5,472,672; 5,527,681; 5,529,756; 5,545,531; 5,554,501; 5,556,752; 5,561,071; 5,599,895; 5,624,711; 5,639,603; 5,658,734; WO 93/17126; WO 95/11995; WO 95/35505; EP 742287; and EP 799897. The arrays of the subject invention find use in a variety of applications, including gene expression analysis, drug screening, mutation analysis and the like, as disclosed in the above-listed exemplary patent documents.

In addition to the above nucleic acid libraries, analogous libraries of polypeptides are also provided, where the where the polypeptides of the library will represent at least a portion of the polypeptides encoded by SEQ ID NOS:1-844.

5 VII. Utilities

10

15

20

25

30

A. <u>Use of Polynucleotide Probes in Mapping, and in Tissue Profiling</u>

Polynucleotide probes, generally comprising at least 12 contiguous nucleotides of a polynucleotide as shown in the Sequence Listing, are used for a variety of purposes, such as chromosome mapping of the polynucleotide and detection of transcription levels. Additional disclosure about preferred regions of the disclosed polynucleotide sequences is found in the Examples. A probe that hybridizes specifically to a polynucleotide disclosed herein should provide a detection signal at least 5-, 10-, or 20-fold higher than the background hybridization provided with other unrelated sequences.

Probes in Detection of Expression Levels. Nucleotide probes are used to detect expression of a gene corresponding to the provided polynucleotide. The references describe an example of a sandwich nucleotide hybridization assay. For example, in Northern blots, mRNA is separated electrophoretically and contacted with a probe. A probe is detected as hybridizing to an mRNA species of a particular size. The amount of hybridization is quantitated to determine relative amounts of expression, for example under a particular condition. Probes are also used to detect products of amplification by polymerase chain reaction. The products of the reaction are hybridized to the probe and hybrids are detected. Probes are used for in situ hybridization to cells to detect expression. Probes can also be used *in vivo* for diagnostic detection of hybridizing sequences. Probes are typically labeled with a radioactive isotope. Other types of detectable labels can be used such as chromophores, fluors, and enzymes. Other examples of nucleotide hybridization assays are described in WO92/02526 and U.S. Patent No. 5,124,246.

Alternatively, the Polymerase Chain Reaction (PCR) is another means for detecting small amounts of target nucleic acids (see, e.g., Mullis et al., Meth. Enzymol. (1987) 155:335; U.S. Patent No. 4,683,195; and U.S. Patent No. 4,683,202). Two primer polynucleotides nucleotides hybridize with the target nucleic acids and are used to prime the reaction. The primers can be composed of sequence within or 3' and 5' to the polynucleotides of the Sequence Listing. Alternatively, if the primers are 3' and 5' to these

polynucleotides, they need not hybridize to them or the complements. A thermostable polymerase creates copies of target nucleic acids from the primers using the original target nucleic acids as a template. After a large amount of target nucleic acids is generated by the polymerase, it is detected by methods such as Southern blots. When using the Southern blot method, the labeled probe will hybridize to a polynucleotide of the Sequence Listing or complement.

5

10

15

20

Furthermore, mRNA or cDNA can be detected by traditional blotting techniques described in Sambrook *et al.*, "Molecular Cloning: A Laboratory Manual" (New York, Cold Spring Harbor Laboratory, 1989). mRNA or cDNA generated from mRNA using a polymerase enzyme can be purified and separated using gel electrophoresis. The nucleic acids on the gel are then blotted onto a solid support, such as nitrocellulose. The solid support is exposed to a labeled probe and then washed to remove any unhybridized probe. Next, the duplexes containing the labeled probe are detected. Typically, the probe is labeled with radioactivity.

Mapping. Polynucleotides of the present invention are used to identify a chromosome on which the corresponding gene resides. Such mapping can be useful in identifying the function of the polynucleotide-related gene by its proximity to other genes with known function. Function can also be assigned to the polynucleotide-related gene when particular syndromes or diseases map to the same chromosome. For example, use of polynucleotide probes in identification and quantification of nucleic acid sequence aberrations is described in U.S. Patent No. 5,783,387.

For example, fluorescence in situ hybridization (FISH) on normal metaphase spreads facilitates comparative genomic hybridization to allow total genome assessment of changes in relative copy number of DNA sequences. See Schwartz and Samad, Curr. Opin.

Biotechnol. (1994) 8:70; Kallioniemi et al., Sem. Cancer Biol. (1993) 4:41; Valdes et al., Methods in Molecular Biology (1997) 68:1, Boultwood, ed., Human Press, Totowa, NJ. Preparations of human metaphase chromosomes are prepared using standard cytogenetic techniques from human primary tissues or cell lines. Nucleotide probes comprising at least 12 contiguous nucleotides selected from the nucleotide sequence shown in the Sequence

Listing are used to identify the corresponding chromosome. The nucleotide probes are labeled, for example, with a radioactive, fluorescent, biotinylated, or chemiluminescent label,

and detected by well known methods appropriate for the particular label selected. Protocols for hybridizing nucleotide probes to preparations of metaphase chromosomes are also well known in the art. A nucleotide probe will hybridize specifically to nucleotide sequences in the chromosome preparations that are complementary to the nucleotide sequence of the probe.

5

10

15

20

25

30

Polynucleotides are mapped to particular chromosomes using, for example, radiation hybrids or chromosome-specific hybrid panels. See Leach et al., Advances in Genetics, (1995) 33:63-99; Walter et al., Nature Genetics (1994) 7:22; Walter and Goodfellow, Trends in Genetics (1992) 9:352. Panels for radiation hybrid mapping are available from Research Genetics, Inc., Huntsville, Alabama, USA. Databases for markers using various panels are available via the world wide web at http://F/shgc-www.stanford.edu; and http://www-genome.wi.mit.edu/cgi-bin/contig/rhmapper.pl. The statistical program RHMAP can be used to construct a map based on the data from radiation hybridization with a measure of the relative likelihood of one order versus another. RHMAP is available via the world wide web at http://www.sph.umich.edu/group/statgen/software.

In addition, commercial programs are available for identifying regions of chromosomes commonly associated with disease, such as cancer. Polynucleotides based on the polynucleotides of the invention can be used to probe these regions. For example, if through profile searching a provided polynucleotide is identified as corresponding to a gene encoding a kinase, its ability to bind to a cancer-related chromosomal region will suggest its role as a kinase in one or more stages of tumor cell development/growth. Although some experimentation would be required to elucidate the role, the polynucleotide constitutes a new material for isolating a specific protein that has potential for developing a cancer diagnostic or therapeutic.

<u>Tissue Typing or Profiling.</u> Expression of specific mRNA corresponding to the provided polynucleotides can vary in different cell types and can be tissue-specific. This variation of mRNA levels in different cell types can be exploited with nucleic acid probe assays to determine tissue types. For example, PCR, branched DNA probe assays, or blotting techniques utilizing nucleic acid probes substantially identical or complementary to polynucleotides listed in the Sequence Listing can determine the presence or absence of the corresponding cDNA or mRNA.

For example, a metastatic lesion is identified by its developmental organ or tissue source by identifying the expression of a particular marker of that organ or tissue. If a polynucleotide is expressed only in a specific tissue type, and a metastatic lesion is found to express that polynucleotide, then the developmental source of the lesion has been identified. Expression of a particular polynucleotide is assayed by detection of either the corresponding mRNA or the protein product. Immunological methods, such as antibody staining, are used to detect a particular protein product. Hybridization methods can be used to detect particular mRNA species, including but not limited to in situ hybridization and Northern blotting.

Use of Polymorphisms. A polynucleotide of the invention will be useful in forensics, genetic analysis, mapping, and diagnostic applications if the corresponding region of a gene is polymorphic in the human population. Particular polymorphic forms of the provided polynucleotides can be used to either identify a sample as deriving from a suspect or rule out the possibility that the sample derives from the suspect. Any means for detecting a polymorphism in a gene are used, including but not limited to electrophoresis of protein polymorphic variants, differential sensitivity to restriction enzyme cleavage, and hybridization to allele-specific probes.

B. Antibody Production

5

10

15

20

25

30

Expression products of a polynucleotide of the invention, the corresponding mRNA or cDNA, or the corresponding complete gene are prepared and used for raising antibodies for experimental, diagnostic, and therapeutic purposes. For polynucleotides to which a corresponding gene has not been assigned, this provides an additional method of identifying the corresponding gene. The polynucleotide or related cDNA is expressed as described above, and antibodies are prepared. These antibodies are specific to an epitope on the polypeptide encoded by the polynucleotide, and can precipitate or bind to the corresponding native protein in a cell or tissue preparation or in a cell-free extract of an in vitro expression system.

Immunogens for raising antibodies are prepared by mixing the polypeptides encoded by the polynucleotides of the present invention with adjuvants. Alternatively, polypeptides are made as fusion proteins to larger immunogenic proteins. Polypeptides are also covalently linked to other larger immunogenic proteins, such as keyhole limpet hemocyanin. Immunogens are typically administered intradermally, subcutaneously, or intramuscularly.

Immunogens are administered to experimental animals such as rabbits, sheep, and mice, to generate antibodies. Optionally, the animal spleen cells are isolated and fused with myeloma cells to form hybridomas which secrete monoclonal antibodies. Such methods are well known in the art. According to another method known in the art, the selected polynucleotide is administered directly, such as by intramuscular injection, and expressed in vivo. The expressed protein generates a variety of protein-specific immune responses, including production of antibodies, comparable to administration of the protein.

Preparations of polyclonal and monoclonal antibodies specific for polypeptides encoded by a selected polynucleotide are made using standard methods known in the art. The antibodies specifically bind to epitopes present in the polypeptides encoded by polynucleotides disclosed in the Sequence Listing. Typically, at least 6, 8, 10, or 12 contiguous amino acids are required to form an epitope. However, epitopes which involve non-contiguous amino acids may require more, for example at least 15, 25, or 50 amino acids. A short sequence of a polynucleotide may then be unsuitable for use as an epitope to raise antibodies for identifying the corresponding novel protein, because of the potential for cross-reactivity with a known protein. However, the antibodies can be useful for other purposes, particularly if they identify common structural features of a known protein and a novel polypeptide encoded by a polynucleotide of the invention.

10

15

20

25

Antibodies that specifically bind to human polypeptides encoded by the provided polypeptides should provide a detection signal at least 5-, 10-, or 20-fold higher than a detection signal provided with other proteins when used in Western blots or other immunochemical assays. Preferably, antibodies that specifically polypeptides of the invention do not bind to other proteins in immunochemical assays at detectable levels and can immunoprecipitate the specific polypeptide from solution.

To test for the presence of serum antibodies to the polypeptide of the invention in a human population, human antibodies are purified by methods well known in the art.

Preferably, the antibodies are affinity purified by passing antiserum over a column to which the corresponding selected polypeptide or fusion protein is bound. The bound antibodies can then be eluted from the column, for example using a buffer with a high salt concentration.

In addition to the antibodies discussed above, genetically engineered antibody derivatives are made, such as single chain antibodies, according to methods well known in the art.

C. Use of Polynucleotides to Construct Arrays for Diagnostics

5

10

15

20

25

30

Polynucleotide arrays provide a high throughput technique that can assay a large number of polynucleotide sequences in a sample. This technology can be used as a diagnostic and as a tool to test for differential expression to determine function of an encoded protein. Arrays can be created by spotting polynucleotide probes onto a substrate (e.g., glass, nitrocelllose, etc.) in a two-dimensional matrix or array having bound probes.

The probes can be bound to the substrate by either covalent bonds or by non-specific interactions, such as hydrophobic interactions. Samples of polynucleotides can be detectably labeled (e.g., using radioactive or fluorescent labels) and then hybridized to the probes. Double stranded polynucleotides, comprising the labeled sample polynucleotides bound to probe polynucleotides, can be detected once the unbound portion of the sample is washed away. Techniques for constructing arrays and methods of using these arrays are described in EP No. 0 799 897; PCT No. WO 97/29212; PCT No. WO 97/27317; EP No. 0 785 280; PCT No. WO 97/02357; U.S. Pat. No. 5,593,839; U.S. Pat. No. 5,578,832; EP No. 0 728 520; U.S. Pat. No. 5,599,695; EP No. 0 721 016; U.S. Pat. No. 5,556,752; PCT No. WO 95/22058; and U.S. Pat. No. 5,631,734.

As discussed in some detail above, arrays can be used to examine differential expression of genes and can be used to determine gene function. For example, arrays of the instant polynucleotide sequences can be used to determine if any of the provided polynucleotides are differentially expressed between a test cell and control cell (e.g., cancer cells and normal cells). For example, high expression of a particular message in a cancer cell, which is not observed in a corresponding normal cell, can indicate a cancer specific protein. Exemplary uses of arrays are further described in, for example, Pappalarado et al., Sem. Radiation Oncol. (1998) 8:217; and Ramsay Nature Biotechnol. (1998) 16:40.

D. Differential Expression

The polynucleotides of the invention can also be used to detect differences in expression levels between two cells, e.g., as a method to identify abnormal or diseased tissue in a human. For polynucleotides corresponding to profiles of protein families as described

above, the choice of tissue can be selected according to the putative biological function. In general, the expression of a gene corresponding to a specific polynucleotide is compared between a first tissue that is suspected of being diseased and a second, normal tissue of the human. The tissue suspected of being abnormal or diseased can be derived from a different tissue type of the human, but preferably it is derived from the same tissue type; for example an intestinal polyp or other abnormal growth should be compared with normal intestinal tissue. The normal tissue can be the same tissue as that of the test sample, or any normal tissue of the patient, especially those that express the polynucleotide-related gene of interest (e.g., brain, thymus, testis, heart, prostate, placenta, spleen, small intestine, skeletal muscle, pancreas, and the mucosal lining of the colon). A difference between the polynucleotide-related gene, mRNA, or protein in the two tissues which are compared, for example in molecular weight, amino acid or nucleotide sequence, or relative abundance, indicates a change in the gene, or a gene which regulates it, in the tissue of the human that was suspected of being diseased. Examples of detection of differential expression and its use in diagnosis of cancer are described in U.S. Patent Nos. 5,688,641 and 5,677,125.

The polynucleotide-related genes in the two tissues are compared by any means known in the art. For example, the two genes can be sequenced, and the sequence of the gene in the tissue suspected of being diseased compared with the gene sequence in the normal tissue. The genes corresponding to a provided polynucleotide, or portions thereof, in the two tissues are amplified, for example using nucleotide primers based on the nucleotide sequence shown in the Sequence Listing, using the polymerase chain reaction. The amplified genes or portions of genes are hybridized to detectably labeled nucleotide probes selected from a nucleotide sequence shown in the Sequence Listing. A difference in the nucleotide sequence of the isolated gene in the tissue suspected of being diseased compared with the normal nucleotide sequence suggests a role of the gene product encoded by the subject polynucleotide in the disease, and provides guidance for preparing a therapeutic agent.

Alternatively, mRNA corresponding to a provided polynucleotide in the two tissues is compared. PolyA⁺RNA is isolated from the two tissues as is known in the art. For example, one of skill in the art can readily determine differences in the size or amount of mRNA transcripts between the two tissues using Northern blots and detectably labeled

nucleotide probes selected from the nucleotide sequence shown in the Sequence Listing. Increased or decreased expression of a given mRNA in a tissue sample suspected of being diseased, compared with the expression of the same mRNA in a normal tissue, suggests that the expressed protein has a role in the disease, and also provides a lead for preparing a therapeutic agent.

5

10

15

20

25

30

The comparison can also be accomplished by analyzing polypeptides between the matched samples. The sizes of the proteins in the two tissues are compared, for example, using antibodies of the present invention to detect polypeptides in Western blots of protein extracts from the two tissues. Other changes, such as expression levels and subcellular localization, can also be detected immunologically, using antibodies to the corresponding protein. A higher or lower level of expression of a given polypeptide in a tissue suspected of being diseased, compared with the same protein expression level in a normal tissue, is indicative that the expressed protein has a role in the disease, and provides guidance for preparing a therapeutic agent.

Similarly, comparison of polynucleotide sequences or of gene expression products, e.g., mRNA and protein, between a human tissue that is suspected of being diseased and a normal tissue of a human, are used to follow disease progression or remission in the human. Such comparisons are made as described above. For example, increased or decreased expression of a gene corresponding to an inventive polynucleotide in the tissue suspected of being neoplastic can indicate the presence of neoplastic cells in the tissue. The degree of increased expression of a given gene in the neoplastic tissue relative to expression of the same gene in normal tissue, or differences in the amount of increased expression of a given gene in the neoplastic tissue over time, is used to assess the progression of the neoplasia in that tissue or to monitor the response of the neoplastic tissue to a therapeutic protocol over time.

The expression pattern of any two cell types can be compared, such as low and high metastatic tumor cell lines, malignant or non-malignant cells, or cells from tissue which have and have not been exposed to a therapeutic agent. A genetic predisposition to disease in a human is detected by comparing expression levels of an mRNA or protein corresponding to a polynucleotide of the invention in a fetal tissue with levels associated in normal fetal tissue. Fetal tissues that are used for this purpose include, but are not limited to, amniotic

fluid, chorionic villi, blood, and the blastomere of an in vitro-fertilized embryo. The comparable normal polynucleotide-related gene is obtained from any tissue. The mRNA or protein is obtained from a normal tissue of a human in which the polynucleotide-related gene is expressed. Differences such as alterations in the nucleotide sequence or size of the same product of the fetal polynucleotide-related gene or mRNA, or alterations in the molecular weight, amino acid sequence, or relative abundance of fetal protein, can indicate a germline mutation in the polynucleotide-related gene of the fetus, which indicates a genetic predisposition to disease. Particular diagnostic and prognostic uses of the disclosed polynucleotides are described in more detail below.

5

10

15

20

25

30

E. Diagnostic, Prognostic, and Other Uses Based On Differential Expression

In general, diagnostic methods of the invention for involve detection of a level or amount of a gene product, particularly a differentially expressed gene product, in a test sample obtained from a patient suspected of having or being susceptible to a disease (e.g., breast cancer, lung cancer, colon cancer and/or metastatic forms thereof), and comparing the detected levels to those levels found in normal cells (e.g., cells substantially unaffected by cancer) and/or other control cells (e.g., to differentiate a cancerous cell from a cell affected by dysplasia). Furthermore, the severity of the disease can be assessed by comparing the detected levels of a differentially expressed gene product with those levels detected in samples representing the levels of differentially gene product associated with varying degrees of severity of disease.

The term "differentially expressed gene" is intended to encompass a polynucleotide that can, for example, include an open reading frame encoding a gene product (e.g., a polypeptide), and/or introns of such genes and adjacent 5' and 3' non-coding nucleotide sequences involved in the regulation of expression, up to about 20 kb beyond the coding region, but possibly further in either direction. The gene can be introduced into an appropriate vector for extrachromosomal maintenance or for integration into a host genome. In general, a difference in expression level associated with a decrease in expression level of at least about 25%, usually at least about 50% to 75%, more usually at least about 90% or more is indicative of a differentially expressed gene of interest, i.e., a gene that is underexpressed or down-regulated in the test sample relative to a control sample. Furthermore, a difference in expression level associated with an increase in expression of at

least about 25%, usually at least about 50% to 75%, more usually at least about 90% and can be at least about 1 ½-fold, usually at least about 2-fold to about 10-fold, and can be about 100-fold to about 1,000-fold increase relative to a control sample is indicative of a differentially expressed gene of interest, *i.e.*, an overexpressed or up-regulated gene.

5

10

15

20

25

30

"Differentially expressed polynucleotide" as used herein means a nucleic acid molecule (RNA or DNA) having a sequence that represents a differentially expressed gene, e.g., the differentially expressed polynucleotide comprises a sequence (e.g., an open reading frame encoding a gene product) that uniquely identifies a differentially expressed gene so that detection of the differentially expressed polynucleotide in a sample is correlated with the presence of a differentially expressed gene in a sample. "Differentially expressed polynucleotides" is also meant to encompass fragments of the disclosed polynucleotides, e.g., fragments retaining biological activity, as well as nucleic acids homologous, substantially similar, or substantially identical (e.g., having about 90% sequence identity) to the disclosed polynucleotides.

Methods of the subject invention useful in diagnosis or prognosis typically involve comparison of the abundance of a selected differentially expressed gene product in a sample of interest with that of a control to determine any relative differences in the expression of the gene product, where the difference can be measured qualitatively and/or quantitatively. Quantitation can be accomplished, for example, by comparing the level of expression product detected in the sample with the amounts of product present in a standard curve. A comparison can be made visually; by using a technique such as densitometry, with or without computerized assistance; by preparing a representative library of cDNA clones of mRNA isolated from a test sample, sequencing the clones in the library to determine that number of cDNA clones corresponding to the same gene product, and analyzing the number of clones corresponding to that same gene product relative to the number of clones of the same gene product in a control sample; or by using an array to detect relative levels of hybridization to a selected sequence or set of sequences, and comparing the hybridization pattern to that of a control. The differences in expression are then correlated with the presence or absence of an abnormal expression pattern. A variety of different methods for determining the nucleic acid abundance in a sample are known to those of skill in the art, where particular methods of interest include those described in: Pietu et al. Genome Res.

(1996) 6:492; Zhao et al., Gene (1995) 156:207; Soares, Curr. Opin. Biotechnol. (1977) 8: 542; Raval, J. Pharmacol Toxicol Methods (1994) 32:125; Chalifour et al., Anal. Biochem (1994) 216:299; Stolz et al., Mol. Biotechnol. (1996) 6:225; Hong et al., Biosci. Reports (1982) 2:907; and McGraw, Anal. Biochem. (1984) 143:298. Also of interest are the methods disclosed in WO 97/27317, the disclosure of which is herein incorporated by reference.

5

10

15

20

25

30

In general, diagnostic assays of the invention involve detection of a gene product of a the polynucleotide sequence (e.g., mRNA or polypeptide) that corresponds to a sequence of SEQ ID NOS:1-844. The patient from whom the sample is obtained can be apparently healthy, susceptible to disease (e.g., as determined by family history or exposure to certain environmental factors), or can already be identified as having a condition in which altered expression of a gene product of the invention is implicated.

In the assays of the invention, the diagnosis can be determined based on detected gene product expression levels of a gene product encoded by at least one, preferably at least two or more, at least 3 or more, or at least 4 or more of the polynucleotides having a sequence set forth in SEQ ID NOS:1-844, and can involve detection of expression of genes corresponding to all of SEQ ID NOS:1-844 and/or additional sequences that can serve as additional diagnostic markers and/or reference sequences. Where the diagnostic method is designed to detect the presence or susceptibility of a patient to cancer, the assay preferably involves detection of a gene product encoded by a gene corresponding to a polynucleotide that is differentially expressed in cancer. For example, a higher level of expression of a polynucleotide corresponding to SEQ ID NO:52 relative to a level associated with a normal sample can indicate the presence of cancer in the patient from whom the sample is derived. In another example, detection of a lower level of a polynucleotide corresponding to SEQ ID NO:39 relative to a normal level is indicative of the presence of cancer in the patient. Further examples of such differentially expressed polynucleotides are described in the Examples below. Given the provided polynucleotides and information regarding their relative expression levels provided herein, assays using such polynucleotides and detection of their expression levels in diagnosis and prognosis will be readily apparent to the ordinarily skilled artisan.

Any of a variety of detectable labels can be used in connection with the various embodiments of the diagnostic methods of the invention. Suitable detectable labels include fluorochromes, (e.g. fluorescein isothiocyanate (FITC), rhodamine, Texas Red, phycoerythrin, allophycocyanin, 6-carboxyfluorescein (6-FAM), 2',7'-dimethoxy-4',5'-dichloro-6-carboxyfluorescein (JOE), 6-carboxy-X-rhodamine (ROX), 6-carboxy-2',4',7',4,7-hexachlorofluorescein (HEX), 5-carboxyfluorescein (5-FAM) or N,N,N',N'-tetramethyl-6-carboxyrhodamine (TAMRA)), radioactive labels, (e.g. ³²P, ³⁵S, ³H, etc.), and the like. The detectable label can involve a two stage systems (e.g., biotin-avidin, hapten-anti-hapten antibody, etc.)

5

10

15

20

25

30

Reagents specific for the polynucleotides and polypeptides of the invention, such as antibodies and nucleotide probes, can be supplied in a kit for detecting the presence of an expression product in a biological sample. The kit can also contain buffers or labeling components, as well as instructions for using the reagents to detect and quantify expression products in the biological sample. Exemplary embodiments of the diagnostic methods of the invention are described below in more detail.

Polypeptide detection in diagnosis. In one embodiment, the test sample is assayed for the level of a differentially expressed polypeptide. Diagnosis can be accomplished using any of a number of methods to determine the absence or presence or altered amounts of the differentially expressed polypeptide in the test sample. For example, detection can utilize staining of cells or histological sections with labeled antibodies, performed in accordance with conventional methods. Cells can be permeabilized to stain cytoplasmic molecules. In general, antibodies that specifically bind a differentially expressed polypeptide of the invention are added to a sample, and incubated for a period of time sufficient to allow binding to the epitope, usually at least about 10 minutes. The antibody can be detectably labeled for direct detection (e.g., using radioisotopes, enzymes, fluorescers, chemiluminescers, and the like), or can be used in conjunction with a second stage antibody or reagent to detect binding (e.g., biotin with horseradish peroxidase-conjugated avidin, a secondary antibody conjugated to a fluorescent compound, e.g. fluorescein, rhodamine, Texas red, etc.). The absence or presence of antibody binding can be determined by various methods, including flow cytometry of dissociated cells, microscopy, radiography, scintillation counting, etc. Any suitable alternative methods can of qualitative or quantitative

detection of levels or amounts of differentially expressed polypeptide can be used, for example ELISA, western blot, immunoprecipitation, radioimmunoassay, etc.

5

10

15

20

25

30

In general, the detected level of differentially expressed polypeptide in the test sample is compared to a level of the differentially expressed gene product in a reference or control sample, e.g., in a normal cell (negative control) or in a cell having a known disease state (positive control). For example, a higher level of expression of a polypeptide encoded by SEQ ID NO:52 relative to a level associated with a normal sample can indicate the presence of cancer in the patient from whom the sample is derived. In another example, detection of a lower level of the polypeptide encoded by SEQ ID NO:39 relative to a normal level is indicative of the presence of cancer in the patient.

mRNA detection. The diagnostic methods of the invention can also or alternatively involve detection of mRNA encoded by a gene corresponding to a differentially expressed polynucleotides of the invention. Any suitable qualitative or quantitative methods known in the art for detecting specific mRNAs can be used. mRNA can be detected by, for example, in situ hybridization in tissue sections, by reverse transcriptase-PCR, or in Northern blots containing poly A+ mRNA. One of skill in the art can readily use these methods to determine differences in the size or amount of mRNA transcripts between two samples. For example, the level of mRNA of the invention in a tissue sample suspected of being cancerous or dysplastic is compared with the expression of the mRNA in a reference sample, e.g., a positive or negative control sample (e.g., normal tissue, cancerous tissue, etc.). In a specific non-limiting example, a higher level of mRNA corresponding to SEQ ID NO:52 relative to a level associated with a normal sample can indicate the presence of cancer in the patient from whom the sample is derived. In another example, detection of a lower level of mRNA corresponding to SEQ ID NO:39 relative to a normal level is indicative of the presence of cancer in the patient.

Any suitable method for detecting and comparing mRNA expression levels in a sample can be used in connection with the diagnostic methods of the invention (see, e.g., U.S. 5,804,382). For example, mRNA expression levels in a sample can be determined by generation of a library of expressed sequence tags (ESTs) from the sample, where the EST library is representative of sequences present in the sample (Adams, et al., (1991) *Science* 252:1651). Enumeration of the relative representation of ESTs within the library can be used

to approximate the relative representation of the gene transcript within the starting sample. The results of EST analysis of a test sample can then be compared to EST analysis of a reference sample to determine the relative expression levels of a selected polynucleotide, particularly a polynucleotide corresponding to one or more of the differentially expressed genes described herein.

5

10

15

20

25

30

Alternatively, gene expression in a test sample can be performed using serial analysis of gene expression (SAGE) methodology (Velculescu et al., *Science* (1995) 270:484). In short, SAGE involves the isolation of short unique sequence tags from a specific location within each transcript (e.g., a sequence of any one of SEQ ID NOS:1-6). The sequence tags are concatenated, cloned, and sequenced. The frequency of particular transcripts within the starting sample is reflected by the number of times the associated sequence tag is encountered with the sequence population.

Gene expression in a test sample can also be analyzed using differential display (DD) methodology. In DD, fragments defined by specific sequence delimiters (e.g., restriction enzyme sites) are used as unique identifiers of genes, coupled with information about fragment length or fragment location within the expressed gene. The relative representation of an expressed gene with a sample can then be estimated based on the relative representation of the fragment associated with that gene within the pool of all possible fragments. Methods and compositions for carrying out DD are well known in the art, see, e.g., U.S. 5,776,683; and U.S. 5,807,680.

Alternatively, gene expression in a sample using hybridization analysis, which is based on the specificity of nucleotide interactions. Oligonucleotides or cDNA can be used to selectively identify or capture DNA or RNA of specific sequence composition, and the amount of RNA or cDNA hybridized to a known capture sequence determined qualitatively or quantitatively, to provide information about the relative representation of a particular message within the pool of cellular messages in a sample. Hybridization analysis can be designed to allow for concurrent screening of the relative expression of hundreds to thousands of genes by using, for example, array-based technologies having high density formats, including filters, microscope slides, or microchips, or solution-based technologies that use spectroscopic analysis (e.g., mass spectrometry). One exemplary use of arrays in the diagnostic methods of the invention is described below in more detail.

Use of a single gene in diagnostic applications. The diagnostic methods of the invention can focus on the expression of a single differentially expressed gene. For example, the diagnostic method can involve detecting a differentially expressed gene, or a polymorphism of such a gene (e.g., a polymorphism in an coding region or control region), that is associated with disease. Disease-associated polymorphisms can include deletion or truncation of the gene, mutations that alter expression level and/or affect activity of the encoded protein, etc.

5

10

15

20

25

30

Changes in the promoter or enhancer sequence that affect expression levels of an differentially gene can be compared to expression levels of the normal allele by various methods known in the art. Methods for determining promoter or enhancer strength include quantitation of the expressed natural protein; insertion of the variant control element into a vector with a reporter gene such as β -galactosidase, luciferase, chloramphenicol acetyltransferase, *etc.* that provides for convenient quantitation; and the like.

A number of methods are available for analyzing nucleic acids for the presence of a specific sequence, e.g. a disease associated polymorphism. Where large amounts of DNA are available, genomic DNA is used directly. Alternatively, the region of interest is cloned into a suitable vector and grown in sufficient quantity for analysis. Cells that express a differentially expressed gene can be used as a source of mRNA, which can be assayed directly or reverse transcribed into cDNA for analysis. The nucleic acid can be amplified by conventional techniques, such as the polymerase chain reaction (PCR), to provide sufficient amounts for analysis, and a detectable label can be included in the amplification reaction (e.g., using a detectably labeled primer or detectably labeled oligonucleotides) to facilitate detection. The use of the polymerase chain reaction is described in Saiki, et al., Science (1985) 239:487, and a review of techniques can be found in Sambrook, et al., Molecular Cloning: A Laboratory Manual, (1989) pp. 14.2. Alternatively, various methods are known in the art that utilize oligonucleotide ligation as a means of detecting polymorphisms, for examples see Riley et al., Nucl. Acids Res. (1990) 18:2887; and Delahunty et al., Am. J. Hum. Genet. (1996) 58:1239.

The sample nucleic acid, e.g. amplified or cloned fragment, is analyzed by one of a number of methods known in the art. The nucleic acid can be sequenced by dideoxy or other methods, and the sequence of bases compared to a selected sequence, e.g., to a wild-type

sequence. Hybridization with the polymorphic or variant sequence can also be used to determine its presence in a sample (e.g., by Southern blot, dot blot, etc.). The hybridization pattern of a polymorphic or variant sequence and a control sequence to an array of oligonucleotide probes immobilized on a solid support, as described in US 5,445,934, or in WO 95/35505, can also be used as a means of identifying polymorphic or variant sequences associated with disease. Single strand conformational polymorphism (SSCP) analysis, denaturing gradient gel electrophoresis (DGGE), and heteroduplex analysis in gel matrices are used to detect conformational changes created by DNA sequence variation as alterations in electrophoretic mobility. Alternatively, where a polymorphism creates or destroys a recognition site for a restriction endonuclease, the sample is digested with that endonuclease, and the products size fractionated to determine whether the fragment was digested. Fractionation is performed by gel or capillary electrophoresis, particularly acrylamide or agarose gels.

5

10

15

20

25

30

Screening for mutations in an differentially expressed gene can be based on the functional or antigenic characteristics of the protein. Protein truncation assays are useful in detecting deletions that can affect the biological activity of the protein. Various immunoassays designed to detect polymorphisms in proteins can be used in screening. Where many diverse genetic mutations lead to a particular disease phenotype, functional protein assays have proven to be effective screening tools. The activity of the encoded protein can be determined by comparison with the wild-type protein.

Pattern matching in diagnosis using arrays. In another embodiment, the diagnostic and/or prognostic methods of the invention involve detection of expression of a selected set of genes in a test sample to produce a test expression pattern (TEP). The TEP is compared to a reference expression pattern (REP), which is generated by detection of expression of the selected set of genes in a reference sample (e.g., a positive or negative control sample). The selected set of genes includes at least one of the genes of the invention, which genes correspond to the polynucleotide sequences of SEQ ID NOS:1-844. Of particular interest is a selected set of genes that includes gene differentially expressed in the disease for which the test sample is to be screened.

"Reference sequences" or "reference polynucleotides" as used herein in the context of differential gene expression analysis and diagnosis/prognosis refers to a selected set of

polynucleotides, which selected set includes at least one or more of the differentially expressed polynucleotides described herein. A plurality of reference sequences, preferably comprising positive and negative control sequences, can be included as reference sequences. Additional suitable reference sequences are found in Genbank, Unigene, and other nucleotide sequence databases (including, *e.g.*, expressed sequence tag (EST), partial, and full-length sequences).

5

10

15

20

25

30

"Reference array" means an array having reference sequences for use in hybridization with a sample, where the reference sequences include all, at least one of, or any subset of the differentially expressed polynucleotides described herein. Usually such an array will include at least 3 different reference sequences, and can include any one or all of the provided differentially expressed sequences. Arrays of interest can further comprise sequences, including polymorphisms, of other genetic sequences, particularly other sequences of interest for screening for a disease or disorder (e.g., cancer, dysplasia, or other related or unrelated diseases, disorders, or conditions). The oligonucleotide sequence on the array will usually be at least about 12 nt in length, and can be of about the length of the provided sequences, or can extend into the flanking regions to generate fragments of 100 nt to 200 nt in length or more.

A "reference expression pattern" or "REP" as used herein refers to the relative levels of expression of a selected set of genes, particularly of differentially expressed genes, that is associated with a selected cell type, e.g., a normal cell, a cancerous cell, a cell exposed to an environmental stimulus, and the like. A "test expression pattern" or "TEP" refers to relative levels of expression of a selected set of genes, particularly of differentially expressed genes, in a test sample (e.g., a cell of unknown or suspected disease state, from which mRNA is isolated).

"Diagnosis" as used herein generally includes determination of a subject's susceptibility to a disease or disorder, determination as to whether a subject is presently affected by a disease or disorder, as well as to the prognosis of a subject affected by a disease or disorder (e.g., identification of pre-metastatic or metastatic cancerous states, stages of cancer, or responsiveness of cancer to therapy). The present invention particularly encompasses diagnosis of subjects in the context of breast cancer (e.g., carcinoma in situ (e.g., ductal carcinoma in situ), estrogen receptor (ER)-positive breast cancer, ER-negative

breast cancer, or other forms and/or stages of breast cancer), lung cancer (e.g., small cell carcinoma, non-small cell carcinoma, mesothelioma, and other forms and/or stages of lung cancer), and colon cancer (e.g., adenomatous polyp, colorectal carcinoma, and other forms and/or stages of colon cancer).

5

10

15

20

25

30

"Sample" or "biological sample" as used throughout here are generally meant to refer to samples of biological fluids or tissues, particularly samples obtained from tissues, especially from cells of the type associated with the disease for which the diagnostic application is designed (e.g., ductal adenocarcinoma), and the like. "Samples" is also meant to encompass derivatives and fractions of such samples (e.g., cell lysates). Where the sample is solid tissue, the cells of the tissue can be dissociated or tissue sections can be analyzed.

REPs can be generated in a variety of ways according to methods well known in the art. For example, REPs can be generated by hybridizing a control sample to an array having a selected set of polynucleotides (particularly a selected set of differentially expressed polynucleotides), acquiring the hybridization data from the array, and storing the data in a format that allows for ready comparison of the REP with a TEP. Alternatively, all expressed sequences in a control sample can be isolated and sequenced, *e.g.*, by isolating mRNA from a control sample, converting the mRNA into cDNA, and sequencing the cDNA. The resulting sequence information roughly or precisely reflects the identity and relative number of expressed sequences in the sample. The sequence information can then be stored in a format (*e.g.*, a computer-readable format) that allows for ready comparison of the REP with a TEP. The REP can be normalized prior to or after data storage, and/or can be processed to selectively remove sequences of expressed genes that are of less interest or that might complicate analysis (*e.g.*, some or all of the sequences associated with housekeeping genes can be eliminated from REP data).

TEPs can be generated in a manner similar to REPs, e.g., by hybridizing a test sample to an array having a selected set of polynucleotides, particularly a selected set of differentially expressed polynucleotides, acquiring the hybridization data from the array, and storing the data in a format that allows for ready comparison of the TEP with a REP. The REP and TEP to be used in a comparison can be generated simultaneously, or the TEP can be compared to previously generated and stored REPs.

In one embodiment of the invention, comparison of a TEP with a REP involves hybridizing a test sample with a reference array, where the reference array has one or more reference sequences for use in hybridization with a sample. The reference sequences include all, at least one of, or any subset of the differentially expressed polynucleotides described herein. Hybridization data for the test sample is acquired, the data normalized, and the produced TEP compared with a REP generated using an array having the same or similar selected set of differentially expressed polynucleotides. Probes that correspond to sequences differentially expressed between the two samples will show decreased or increased hybridization efficiency for one of the samples relative to the other.

Reference arrays can be produced according to any suitable methods known in the art. For example, methods of producing large arrays of oligonucleotides are described in U.S. 5,134,854, and U.S. 5,445,934 using light-directed synthesis techniques. Using a computer controlled system, a heterogeneous array of monomers is converted, through simultaneous coupling at a number of reaction sites, into a heterogeneous array of polymers. Alternatively, microarrays are generated by deposition of pre-synthesized oligonucleotides onto a solid substrate, for example as described in PCT published application no. WO 95/35505.

Methods for collection of data from hybridization of samples with a reference arrays are also well known in the art. For example, the polynucleotides of the reference and test samples can be generated using a detectable fluorescent label, and hybridization of the polynucleotides in the samples detected by scanning the microarrays for the presence of the detectable label. Methods and devices for detecting fluorescently marked targets on devices are known in the art. Generally, such detection devices include a microscope and light source for directing light at a substrate. A photon counter detects fluorescence from the substrate, while an x-y translation stage varies the location of the substrate. A confocal detection device that can be used in the subject methods is described in U.S. Patent no. 5,631,734. A scanning laser microscope is described in Shalon et al., *Genome Res.* (1996) 6:639. A scan, using the appropriate excitation line, is performed for each fluorophore used. The digital images generated from the scan are then combined for subsequent analysis. For any particular array element, the ratio of the fluorescent signal from one sample (e.g., a test

sample) is compared to the fluorescent signal from another sample (e.g., a reference sample), and the relative signal intensity determined.

Methods for analyzing the data collected from hybridization to arrays are well known in the art. For example, where detection of hybridization involves a fluorescent label, data analysis can include the steps of determining fluorescent intensity as a function of substrate position from the data collected, removing outliers, *i.e.* data deviating from a predetermined statistical distribution, and calculating the relative binding affinity of the targets from the remaining data. The resulting data can be displayed as an image with the intensity in each region varying according to the binding affinity between targets and probes.

5

10

15

20

25

30

In general, the test sample is classified as having a gene expression profile corresponding to that associated with a disease or non-disease state by comparing the TEP generated from the test sample to one or more REPs generated from reference samples (e.g., from samples associated with cancer or specific stages of cancer, dysplasia, samples affected by a disease other than cancer, normal samples, etc.). The criteria for a match or a substantial match between a TEP and a REP include expression of the same or substantially the same set of reference genes, as well as expression of these reference genes at substantially the same levels (e.g., no significant difference between the samples for a signal associated with a selected reference sequence after normalization of the samples, or at least no greater than about 25% to about 40% difference in signal strength for a given reference sequence. In general, a pattern match between a TEP and a REP includes a match in expression, preferably a match in qualitative or quantitative expression level, of at least one of, all or any subset of the differentially expressed genes of the invention.

Pattern matching can be performed manually, or can be performed using a computer program. Methods for preparation of substrate matrices (e.g., arrays), design of oligonucleotides for use with such matrices, labeling of probes, hybridization conditions, scanning of hybridized matrices, and analysis of patterns generated, including comparison analysis, are described in, for example, U.S. 5,800,992.

F. Use of the Polynucleotides of the Invention in Cancer

Oncogenesis involves the unbridled growth, dedifferentiation and abnormal migration of cells. Cancerous cells can have the ability to compress, invade, and destroy normal tissue. Cancerous cells may also metastasize to other parts of the body via the

bloodstream or the lymph system and colonize in these other areas. Different cancers are classified by the cell from which the cancerous cell is derived and from its cellular morphology and/or state of differentiation.

5

10

15

20

25

30

Somatic genetic abnormalities cause cancer initiation and progression. Cancer generally is clonally formed, *i.e.* gain of function of oncogenes and loss of function of tumor suppressor genes within a single cell transform the cell to be cancerous, and that single cell grows and divides to form a cancerous lesion. The genes known to be involved in cancer initiation and progression are involved in numerous cellular functions, including developmental differentiation, cell cycle regulation, cell signaling, immunological response, DNA replication, and DNA repair.

The identification and characterization of genetic or biochemical markers in blood or tissues that will detect the earliest changes along the carcinogenesis pathway and monitor the efficacy of various therapies and preventive interventions is a major goal of cancer research. Scientists have identified genetic changes in stool specimens that indicate the stages of colon cancer, and other biomarkers such as gene mutations, hormone receptors, proteins that inhibit metastasis, and enzymes that metabolize drugs are all being used to determine the severity and predict the course of breast, prostate, lung, and other cancers.

Recent advances in the pathogenesis of certain cancers has been helpful in determining patient treatment. The level of expression of certain polynucleotides can be indicative of a poorer prognosis, and therefore warrant more aggressive chemo- or radiotherapy for a patient. The correlation of novel surrogate tumor specific features with response to treatment and outcome in patients has defined certain prognostic indicators that allow the design of tailored therapy based on the molecular profile of the tumor. These therapies include antibody targeting and gene therapy. Moreover, a promising level of one or more marker polynucleotides can provide impetus for not aggressively treating a particular patient, thus sparing the patient the deleterious side effects of aggressive therapy. Determining expression of certain polynucleotides and comparison of a patients profile with known expression in normal tissue and variants of the disease allows a determination of the best possible treatment for a patient, both in terms of specificity of treatment and in terms of comfort level of the patient.

Surrogate tumor markers, such as polynucleotide expression, can also be used to better classify, and thus diagnose and treat, different forms and disease states of cancer. Two classifications widely used in oncology that can benefit from identification of the expression levels of the polynucleotides of the invention are staging of the cancerous disorder, and grading the nature of the cancerous tissue.

5

10

15

30

Staging. Staging is a process used by physicians to describe how advanced the cancerous state is in a patient. Staging assists the physician in determining a prognosis, planning treatment and evaluating the results of such treatment. Different staging systems are used for different types of cancer, but each generally involves the following determinations: the type of tumor, indicated by T; whether the cancer has metastasized to nearby lymph nodes, indicated by N; and whether the cancer has metastasized to more distant parts of the body, indicated by M. This system of staging is called the TNM system. Generally, if a cancer is only detectable in the area of the primary lesion without having spread to any lymph nodes it is called Stage I. If it has spread only to the closest lymph nodes, it is called Stage II. In Stage III, the cancer has generally spread to the lymph nodes in near proximity to the site of the primary lesion. Cancers that have spread to a distant part of the body, such as the liver, bone, brain or another site, are called Stage IV, the most advanced stage.

Dased more on the presence or absence of malignant tissue rather than the characteristics of the tumor type. Presence or absence of malignant tissue is based primarily on the gross morphology of the cells in the areas biopsied. The polynucleotides of the invention can facilitate fine-tuning of the staging process by identifying markers for the aggresivity of a cancer, e.g. the metastatic potential, as well as the presence in different areas of the body.

Thus, a Stage II cancer with a polynucleotide signifying a high metastatic potential cancer can be used to change a borderline Stage II tumor to a Stage III tumor, justifying more aggressive therapy. Conversely, the presence of a polynucleotide signifying a lower metastatic potential allows more conservative staging of a tumor.

Grading of cancers. Grade is a term used to describe how closely a tumor resembles normal tissue of its same type. Based on the microscopic appearance of a tumor, pathologists will identify the grade of a tumor based on parameters such as cell morphology,

cellular organization, and other markers of differentiation. As a general rule, the grade of a tumor corresponds to its rate of growth or aggressiveness. That is, undifferentiated or high-grade tumors grow more quickly than well differentiated or low-grade tumors. Information about tumor grade is useful in planning treatment and predicting prognosis.

5

10

15

20

The American Joint Commission on Cancer has recommended the following guidelines for grading tumors: 1) GX Grade cannot be assessed; 2) G1 Well differentiated; G2 Moderately well differentiated; 3) G3 Poorly differentiated; 4) G4 Undifferentiated. Although grading is used by pathologists to describe most cancers, it plays a more important role in treatment planning for certain types than for others. An example is the Gleason system that is specific for prostate cancer, which uses grade numbers to describe the degree of differentiation. Lower Gleason scores indicate well-differentiated cells. Intermediate scores denote tumors with moderately differentiated cells. Higher scores describe poorly differentiated cells. Grade is also important in some types of brain tumors and soft tissue sarcomas.

The polynucleotides of the invention can be especially valuable in determining the grade of the tumor, as they not only can aid in determining the differentiation status of the cells of a tumor, they can also identify factors other than differentiation that are valuable in determining the aggressivity of a tumor, such as metastatic potential.

<u>Familial Cancer Genes.</u> A number of cancer syndromes are linked to Mendelian inheritance of a predisposition to develop particular cancers. The following table contains a list of cancer types that can be inherited, and for which the gene or genes responsible have been identified. Most of the cancer types listed can occur as part of several different genetic conditions, each caused by alterations in a different gene.

Genetic Condition	Gene
Li-Fraumeni syndrome	TP53
Neurofibromatosis 1	NF1
Neurofibromatosis 2	NF2
von Hippel-Lindau syndrome	VHL
Tuberous sclerosis 2	TSC2
Hereditary breast/ovarian cancer 1	BRCA1
Hereditary breast/ovarian cancer 2	BRCA2
Li-Fraumeni syndrome	TP53
Ataxia telangiectasia	ATM
Familial adenomatous polyposis (FAP)	APC
Hereditary non-polyposis colon cancer (HNPCC) 1	HMSH2
Hereditary non-polyposis colon cancer (HNPCC) 2	hMLH1
	Li-Fraumeni syndrome Neurofibromatosis 1 Neurofibromatosis 2 von Hippel-Lindau syndrome Tuberous sclerosis 2 Hereditary breast/ovarian cancer 1 Hereditary breast/ovarian cancer 2 Li-Fraumeni syndrome Ataxia telangiectasia Familial adenomatous polyposis (FAP) Hereditary non-polyposis colon cancer (HNPCC) 1

64

Cancer Type	Genetic Condition	Gene
•	Hereditary non-polyposis colon cancer (HNPCC) 3	hPMS1
	Hereditary non-polyposis colon cancer (HNPCC) 4	hPMS2
Endocrine	Multiple endocrine neoplasia 1 (MEN1)	MEN1
(parathyroid, pituitary, GI endocrine)		
Endocrine	Multiple endocrine neoplasia 2 (MEN2)	RET
(pheochromacytoma, medullary thyroid)		
Endometrial	Hereditary non-polyposis colon cancer (HNPCC) 1	hMSH2
	Hereditary non-polyposis colon cancer (HNPCC) 2	hMLH1
	Hereditary non-polyposis colon cancer (HNPCC) 3	hPMS1
	Hereditary non-polyposis colon cancer (HNPCC) 4	hPMS2
Eye	Hereditary retinoblastoma	RB1
Hematologic	Li-Fraumeni syndrome	TP53
(lymphomas and leukemia)		
•	Ataxia telangiectasia	ATM
Kidney	Hereditary Wilms' tumor	WT1
	von Hippel-Lindau syndrome	VHL
	Tuberous sclerosis 2	TSC2
Ovary	Hereditary breast/ovarian cancer 1	BRCAl
·	Hereditary breast/ovarian cancer 2	BRCA2
Sarcoma	Hereditary retinoblastoma	RB1
	Li-Fraumeni syndrome	TP53
	Neurofibromatosis 1	NF1
Skin	Hereditary melanoma 1	CDKN2
	Hereditary melanoma 2	CDK4
	Basal cell naevus (Gorlin) syndrome	PTCH
Stomach	Hereditary non-polyposis colon cancer (HNPCC) 1	hMSH2
	Hereditary non-polyposis colon cancer (HNPCC) 2	hMLH1
	Hereditary non-polyposis colon cancer (HNPCC) 3	hPMS1
	Hereditary non-polyposis colon cancer (HNPCC) 4	hPMS2

The polynucleotides of the invention can be especially useful to monitor patients having any of the above syndromes to detect potentially malignant events at a molecular level before they are detectable at a gross morphological level. As can be seen from the table, a number of genes are involved in multiple forms of cancer. Thus, a polynucleotide of the invention identified as important for metastatic colon cancer can also have clinical implications for a patient diagnosed with stomach cancer or endometrial cancer.

5

10

Lung Cancer. Lung cancer is one of the most common cancers in the United States, accounting for about 15 percent of all cancer cases, or 170,000 new cases each year. At this time, over half of the lung cancer cases in the United States are in men, but the number found in women is increasing and will soon equal that in men. Today more women die of lung cancer than of breast cancer. Lung cancer is especially difficult to diagnose and treat because of the large size of the lungs, which allows cancer to develop for years undetected.

In fact, lung cancer can spread outside the lungs without causing any symptoms. Adding to the confusion, the most common symptom of lung cancer, a persistent cough, can often be mistaken for a cold or bronchitis.

5

10

15

20

25

Although there are more than a dozen different kinds of lung cancer, the two main types of lung cancer are small cell and nonsmall cell, which encompass about 90% of all lung cancer cases. Small cell carcinoma (also called oat cell carcinoma), which usually starts in one of the larger bronchial tubes, grows fairly rapidly, and is likely to be large by the time of diagnosis. Nonsmall cell lung cancer (NSCLC) is made up of three general subtypes of lung cancer. Epidermoid carcinoma (also called squamous cell carcinoma) usually starts in one of the larger bronchial tubes and grows relatively slowly. The size of these tumors can range from very small to quite large. Adenocarcinoma starts growing near the outside surface of the lung and can vary in both size and growth rate. Some slowly growing adenocarcinomas are described as alveolar cell cancer. Large cell carcinoma starts near the surface of the lung, grows rapidly, and the growth is usually fairly large when diagnosed. Other less common forms of lung cancer are carcinoid, cylindroma, mucoepidermoid, and malignant mesothelioma.

Currently, CT scans, MRIs, X-rays, sputum cytology, and biopsies are used to diagnose nonsmall cell lung cancer. The form and cellular origin of the lung cancer is diagnosed primarily through biopsy from either a surgical biopsy or a needle aspiration of lung tissue, and usually the biopsy is prompted from an abnormality identified on an X-ray. In some cases, sputum cytology can reveal lung cancers in patients with normal X-rays or can determine the type of lung cancer, but because it cannot pinpoint the tumor's location, a positive sputum cytology test is usually followed by further tests. Since these tests are based in large part on gross morphology of the tissue, the diagnosis of a particular kind of tumor is largely subjective, and the diagnosis can vary significantly between clinicians.

The polynucleotides of the invention can be used to distinguish types of lung cancer as well as identifying traits specific to a certain patient's cancer. For example, if the patient's biopsy expresses a polynucleotide that is associated with a low metastatic potential, it may justify leaving a larger portion of the patient's lung in surgery to remove the lesion.

Alternatively, a smaller lesion with expression of a polynucleotide that is associated with high metastatic potential may justify a more radical removal of lung tissue and/or the

surrounding lymph nodes, even if no metastasis can be identified through pathological examination.

5

10

15

20

25

30

Similarly, the expression of polynucleotides of the invention can be used in the diagnosis, prognosis and management of colorectal cancer. The differential expression of a polynucleotide in hyperplasia can be used as a diagnostic marker for metastatic lung cancer. The polynucleotides of the invention that would be especially useful for this purpose are those that exhibit differential expression between high metastatic versus low metastatic lung cancer, *i.e.* SEQ ID NOS: 9, 34, 42, 62, 74, 106, 119, 135, 154, 160, 260, 308, 323, 349, 361, 369, 371, 381, 395, and 400. Detection of malignant lung cancer with a higher metastatic potential can be determined using expression levels of any of these sequences alone or in combination with the levels of expression of other known genes.

Breast Cancer. The National Cancer Institute (NCI) estimates that about 1 in 8 women in the United States will develop breast cancer during her lifetime. Clinical breast examination and mammography are recommended as combined modalities for breast cancer screening, and the nature of the cancer will often depend upon the location of the tumor and the cell type from which the tumor is derived. The majority of breast cancers are adenocarcinomas subtypes, which can be summarized as follows:

Ductal carcinoma in situ (DCIS): Ductal carcinoma in situ is the most common type of noninvasive breast cancer. In DCIS, the malignant cells have not metastasized through the walls of the ducts into the fatty tissue of the breast. Comedocarcinoma is a type of DCIS that is more likely than other types of DCIS to come back in the same area after lumpectomy. It is more closely linked to eventual development of invasive ductal carcinoma than other forms of DCIS.

Infiltrating (or invasive) ductal carcinoma (IDC): this type of cancer has metastasized through the wall of the duct and invaded the fatty tissue of the breast. At this point, it has the potential to use the lymphatic system and bloodstream for metastasis to more distant parts of the body. Infiltrating ductal carcinoma accounts for about 80% of breast cancers.

Lobular carcinoma in situ (LCIS): While not a true cancer, LCIS (also called lobular neoplasia) is sometimes classified as a type of noninvasive breast cancer. It does not penetrate through the wall of the lobules. Although it does not itself usually become an

invasive cancer, women with this condition have a higher risk of developing an invasive breast cancer in the same breast, or in the opposite breast.

Infiltrating (or invasive) lobular carcinoma (ILC): ILC is similar to IDC, in that it has the potential metastasize elsewhere in the body. About 10% to 15% of invasive breast cancers are invasive lobular carcinomas. ILC can be more difficult to detect by mammogram than IDC.

5

10

15

20

25

Inflammatory breast cancer: This rare type of invasive breast cancer accounts for about 1% of all breast cancers and is extremely aggressive. Multiple skin symptoms associated with this cancer are caused by cancer cells blocking lymph vessels or channels in the skin over the breast.

Medullary carcinoma: This special type of infiltrating breast cancer has a relatively well defined, distinct boundary between tumor tissue and normal tissue. It accounts for about 5% of breast cancers. The prognosis for this kind of breast cancer is better than for other types of invasive breast cancer.

Mucinous carcinoma: This rare type of invasive breast cancer originates from mucusproducing cells. The prognosis for mucinous carcinoma is better than for the more common types of invasive breast cancer.

Paget's disease of the nipple: This type of breast cancer starts in the ducts and spreads to the skin of the nipple and the areola. It is a rare type of breast cancer, occurring in only 1% of all cases. Paget's disease can be associated with in situ carcinoma, or with infiltrating breast carcinoma. If no lump can be felt in the breast tissue, and the biopsy shows DCIS but no invasive cancer, the prognosis is excellent.

Phyllodes tumor: This very rare type of breast tumor forms from the stroma of the breast, in contrast to carcinomas which develop in the ducts or lobules. Phyllodes (also spelled phylloides) tumors are usually benign, but are malignant on rare occasions.

Nevertheless, malignant phyllodes tumors are very rare and less than 10 women per year in the US die of this disease. Benign phyllodes tumors are successfully treated by removing the mass and a narrow margin of normal breast tissue.

Tubular carcinoma: Accounting for about 2% of all breast cancers, tubular carcinomas are a special type of infiltrating breast carcinoma. They have a better prognosis than usual infiltrating ductal or lobularcarcinomas.

High-quality mammography combined with clinical breast exam remains the only screening method clearly tied to reduction in breast cancer mortality. Lower dose x-rays, digitized computer rather than film images, and the use of computer programs to assist diagnosis, are almost ready for widespread dissemination. Other technologies also are being developed, including magnetic resonance imaging and ultrasound. In addition, a very low radiation exposure technique, positron emission tomography has the potential for detecting early breast cancer.

It is also possible to differentiate between non-cancerous breast tissue and malignant breast tissue by analyzing differential gene expression between tissues. In addition, there may be several possible alterations that lead to the various possible types of breast cancer. The different types of breast tumors (e.g., invasive vs. non-invasive, ductal vs. axillary lymph node) can be differentiable from one another by the identification of the differences in genes expressed by different types of breast tumor tissues (Porter-Jordan et al., Hematol Oncol Clin North Am (1994) 8:73). Breast cancer can thus be generally diagnosed by detection of expression of a gene or genes associated with breast tumors. Where enough information is available about the differential gene expression between various types of breast tumor tissues, the specific type of breast tumor can also be diagnosed.

10

15

20

25

30

For example, increased estrogen receptor (ER) expression in normal breast epithileum, while not itself indicative of malignant tissue, is a known risk marker for development of breast cancer. Khan SA et al., Cancer Res (1994) 54:993. Malignant breast cancer is often divided into two groups, ER-positive and ER-negative, based on the estrogen receptor status of the tissue. The ER status represents different survival length and response to hormone therapy, and is thought to represent either: 1) an indicator of different stages of the disease, or 2) an indicator that allows differentiation between two similar but distinct diseases. K. Zhu et al., Med. Hypoth. (1997) 49:69. A number of other genes are known to vary expression between either different stages of cancer or different types of similar breast cancer.

Similarly, the expression of polynucleotides of the invention can be used in the diagnosis and management of breast cancer. The differential expression of a polynucleotide in human breast tumor tissue can be used as a diagnostic marker for human breast cancer. The polynucleotides of the invention that would be especially useful for this purpose are

those that exhibit differential expression between breast cancer tissue with a high metastatic potential and a low metastatic potential, *i.e.* SEQ ID NOS: 9, 42, 52, 62, 65, 66, 68, 114, 123, 144, 172, 178, 214, 219, 223, 258, 317, and 379. Detection of breast cancer can be determined using expression levels of any of these sequences alone or in combination.

5

10

15

20

25

30

Determination of the aggressive nature and/or the metastatic potential of a breast cancer can also be determined by comparing levels of one or more polynucleotides of the invention and comparing levels of another sequence known to vary in cancerous tissue, e.g. ER expression. In addition, development of breast cancer can be detected by examining the ratio of SEQ ID NO: to the levels of steroid hormones (e.g., testosterone or estrogen) or to other hormones (e.g., growth hormone, insulin). Thus expression of specific marker polynucleotides can be used to discriminate between normal and cancerous breast tissue, to discriminate between breast cancers with different cells of origin, to discriminate between breast cancers with different potential metastatic rates, etc.

Diagnosis of breast cancer can also involve comparing the expression of a polynucleotide of the invention with the expression of other sequences in non-malignant breast tissue samples in comparison to one or more forms of the diseased tissue. A comparison of expression of one or more polynucleotides of the invention between the samples provides information on relative levels of these polynucleotides as well as the ratio of these polynucleotides to the expression of other sequences in the tissue of interest compared to normal.

This risk of breast cancer is elevated significantly by the presence of an inherited risk for breast cancer, such as a mutation in BRCA-1 or BRCA-2. New diagnostic tools are being developed to address the needs of higher risk patients to complement mammography and physical examinations for early detection of breast cancer, particularly among younger women. The presence of antigen or expression markers in nipple aspirate fluid (NAF) samples collected from one or both breasts can be useful for useful for risk assessment or early cancer detection. Breast cytology and biomarkers obtained by random fine needle aspiration have been used to identify hyperplasia with atypia and overexpression of p53 and EGFR. The polynucleotides of the invention can be used in multivariate analysis with expression studies with genes such as p53 and EGFR as risk predictors and as surrogate endpoint biomarkers for breast cancer.

As well as being used for diagnosis and risk assessment, the expression of certain genes can also correlated to prognosis of a disease state. The expression of particular gene have been used as prognostic indicators for breast cancer including increased expression of c-erbB-2, pS2, ER, progesterone receptor, epidermal growth factor receptor (EGFR), neu, myc, bcl-2, int2, cytosolic tyrosine kinase, cyclin E, prad-1, hst, uPA, PAI-1, PAI-2, cathepsin D, as well as the presence of a number of cancer-specific antigens, e.g. CEA, CA M26, CA M29 and CA 15.3. Davis, Br. J. Biomed Sci. (1996) 53:157. Poor prognosis has also been linked to a decrease in expression of certain genes, such as p53, Rb, nm23. The expression of the polynucleotides of the invention can be of prognostic value for determining the metastatic potential of a malignant breast cancer, as this molecules are differentially expressed between high and low metastatic potential tissues tumors. The levels of these polynucleotides in patients with malignant breast cancer can compared to normal tissue, malignant tissue with a known high potential metastatic level, and malignant tissue with a known lower level of metastatic potential to provide a prognosis for a particular patient. Such a prognosis is predictive of the extent and nature of the cancer. The determined prognosis is useful in determining the prognosis of a patient with breast cancer, both for initial treatment of the disease and for longer-term monitoring of the same patient. If samples are taken from the same individual over a period of time, differences in polynucleotide expression that are specific to that patient can be identified and closely watched.

10

15

20

25

30

Colon Cancer. Colorectal cancer is one of the most common neoplasms in humans and perhaps the most frequent form of hereditary neoplasia. Prevention and early detection are key factors in controlling and curing colorectal cancer. Indeed, colorectal cancer is the second most preventable cancer, after lung cancer. Colorectal cancer begins as polyps, which are small, benign growths of cells that form on the inner lining of the colon. Over a period of several years, some of these polyps accumulate additional mutations and become cancerous. About 20 percent of all cases of colon cancer are thought to be related to heredity. Currently, multiple familial colorectal cancer disorders have been identified, which are summarized as follows:

Familial adenomatous polyposis (FAP): This condition results in a person having hundreds or even thousands of polyps in the colon and rectum that usually first appear during

the teenage years. Cancer nearly always develops in one or more of these polyps between the ages of 30 and 50.

Gardner's syndrome: Like FAP, Gardner's syndrome results in polyps and colorectal cancers that develop at a young age. It can also cause benign tumors of the skin, soft connective tissue and bones.

5

10

15

20

25

30

Hereditary nonpolyposis colon cancer (HNPCC): People with this condition tend to develop colorectal cancer at a young age, without first having many polyps. HNPCC has an autosomal dominant pattern of inheritance with variable but high penetrance estimated to be about 90%. HNPCC underlies 0.5%-10% of all cases of colorectal cancer. An understanding of the mechanisms behind the development of HNPCC is emerging, and genetic presymptomatic testing, now being conducted in research settings, soon will be available on a widespread basis for individuals identified at risk for this disease.

Familial colorectal cancer in Ashkenazi Jews: Recent research has found an inherited tendency to developing colorectal cancer among some Jews of Eastern European descent. Like people with FAP, Gardner's syndrome, and HNPCC, their increased risk is due to an inherited mutation present in about 6% of American Jews.

Several tests are currently used to screen for colorectal cancer, including digital rectal examination, fecal occult blood test, sigmoidoscopy, colonoscopy, virtual colonoscopy and MRI. Each of these tests identifies potential colorectal cancer lesions, or a risk of development of these lesions, at a fairly gross morphological level.

The sequential alteration of a number of genes is associated with malignant adenocarcinoma, including the genes DCC, p53, ras, and FAP. For a review, see e.g. Fearon ER, et al., Cell (1990) 61(5):759; Hamilton SR et al., Cancer (1993) 72:957; Bodmer W, et al., Nat Genet. (1994) 4(3):217; Fearon ER, Ann N Y Acad Sci. (1995) 768:101. Molecular genetic alterations are thus promising as potential diagnostic and prognostic indicators in colorectal carcinoma and molecular genetics of colorectal carcinoma since it is possible to differentiate between different types of colorectal neoplasias using molecular markers. Colorectal cancer can thus be generally diagnosed by detection of expression of a gene or genes associated with colorectal tumors.

Similarly, the expression of polynucleotides of the invention can be used in the diagnosis, prognosis and management of colorectal cancer. The differential expression of a

polynucleotide in hyperplasia can be used as a diagnostic marker for colon cancer. The polynucleotides of the invention that would be especially useful for this purpose are those that exhibit differential expression between malignant metastatic colon cancer and normal patient tissue, *i.e.* SEQ ID NOS: 52, 119, 172, 288. Detection of malignant colon cancer can be determined using expression levels of any of these sequences alone or in combination with the levels of expression.

5

10

15

20

25

30

Determination of the aggressive nature and/or the metastatic potential of a colon cancer can also be determined by comparing levels of one or more polynucleotides of the invention and comparing total levels of another sequence known to vary in cancerous tissue, e.g. p53 expression. In addition, development of colon cancer can be detected by examining the ratio of any of the polynucleotides of the invention to the levels of oncogenes (e.g. ras) or tumor suppressor genes (e.g. FAP or p53). Thus expression of specific marker polynucleotides can be used to discriminate between normal and cancerous breast tissue, to discriminate between breast cancers with different cells of origin, to discriminate between breast cancers with different potential metastatic rates, etc.

G. <u>Use of Polynucleotides to Screen for Peptide Analogs and Antagonists</u>

Polypeptides encoded by the instant polynucleotides and corresponding full length genes can be used to screen peptide libraries to identify binding partners, such as receptors, from among the encoded polypeptides.

A library of peptides can be synthesized following the methods disclosed in U.S. Pat. No. 5,010,175 ('175), and in WO 91/17823. As described below in brief, one prepares a mixture of peptides, which is then screened to identify the peptides exhibiting the desired signal transduction and receptor binding activity. In the '175 method, a suitable peptide synthesis support (e.g., a resin) is coupled to a mixture of appropriately protected, activated amino acids. The concentration of each amino acid in the reaction mixture is balanced or adjusted in inverse proportion to its coupling reaction rate so that the product is an equimolar mixture of amino acids coupled to the starting resin. The bound amino acids are then deprotected, and reacted with another balanced amino acid mixture to form an equimolar mixture of all possible dipeptides. This process is repeated until a mixture of peptides of the desired length (e.g., hexamers) is formed. Note that one need not include all amino acids in each step: one can include only one or two amino acids in some steps (e.g., where it is

known that a particular amino acid is essential in a given position), thus reducing the complexity of the mixture. After the synthesis of the peptide library is completed, the mixture of peptides is screened for binding to the selected polypeptide. The peptides are then tested for their ability to inhibit or enhance activity. Peptides exhibiting the desired activity are then isolated and sequenced.

5

10

15

20

25

30

The method described in WO 91/17823 is similar. However, instead of reacting the synthesis resin with a mixture of activated amino acids, the resin is divided into twenty equal portions (or into a number of portions corresponding to the number of different amino acids to be added in that step), and each amino acid is coupled individually to its portion of resin.

The resin portions are then combined, mixed, and again divided into a number of equal portions for reaction with the second amino acid. In this manner, each reaction can be easily driven to completion. Additionally, one can maintain separate "subpools" by treating portions in parallel, rather than combining all resins at each step. This simplifies the process of determining which peptides are responsible for any observed receptor binding or signal transduction activity.

In such cases, the subpools containing, e.g., 1-2,000 candidates each are exposed to one or more polypeptides of the invention. Each subpool that produces a positive result is then resynthesized as a group of smaller subpools (sub-subpools) containing, e.g., 20-100 candidates, and reassayed. Positive sub-subpools can be resynthesized as individual compounds, and assayed finally to determine the peptides that exhibit a high binding constant. These peptides can be tested for their ability to inhibit or enhance the native activity. The methods described in WO 91/7823 and U.S. Patent No. 5,194,392 (herein incorporated by reference) enable the preparation of such pools and subpools by automated techniques in parallel, such that all synthesis and resynthesis can be performed in a matter of days.

Peptide agonists or antagonists are screened using any available method, such as signal transduction, antibody binding, receptor binding, mitogenic assays, chemotaxis assays, etc. The methods described herein are presently preferred. The assay conditions ideally should resemble the conditions under which the native activity is exhibited *in vivo*, that is, under physiologic pH, temperature, and ionic strength. Suitable agonists or antagonists will exhibit strong inhibition or enhancement of the native activity at

concentrations that do not cause toxic side effects in the subject. Agonists or antagonists that compete for binding to the native polypeptide can require concentrations equal to or greater than the native concentration, while inhibitors capable of binding irreversibly to the polypeptide can be added in concentrations on the order of the native concentration.

The end results of such screening and experimentation will be at least one novel polypeptide binding partner, such as a receptor, encoded by a gene or a cDNA corresponding to a polynucleotide of the invention, and at least one peptide agonist or antagonist of the novel binding partner. Such agonists and antagonists can be used to modulate, enhance, or inhibit receptor function in cells to which the receptor is native, or in cells that possess the receptor as a result of genetic engineering. Further, if the novel receptor shares biologically important characteristics with a known receptor, information about agonist/antagonist binding can facilitate development of improved agonists/antagonists of the known receptor.

H. Pharmaceutical Compositions and Therapeutic Uses

5

10

15

20

25

30

Pharmaceutical compositions can comprise polypeptides, antibodies, or polynucleotides of the claimed invention. The pharmaceutical compositions will comprise a therapeutically effective amount of either polypeptides, antibodies, or polynucleotides of the claimed invention.

The term "therapeutically effective amount" as used herein refers to an amount of a therapeutic agent to treat, ameliorate, or prevent a desired disease or condition, or to exhibit a detectable therapeutic or preventative effect. The effect can be detected by, for example, chemical markers or antigen levels. Therapeutic effects also include reduction in physical symptoms, such as decreased body temperature. The precise effective amount for a subject will depend upon the subject's size and health, the nature and extent of the condition, and the therapeutics or combination of therapeutics selected for administration. Thus, it is not useful to specify an exact effective amount in advance. However, the effective amount for a given situation is determined by routine experimentation and is within the judgment of the clinician. For purposes of the present invention, an effective dose will generally be from about 0.01 mg/kg to 50 mg/kg or 0.05 mg/kg to about 10 mg/kg of the DNA constructs in the individual to which it is administered.

A pharmaceutical composition can also contain a pharmaceutically acceptable carrier.

The term "pharmaceutically acceptable carrier" refers to a carrier for administration of a

therapeutic agent, such as antibodies or a polypeptide, genes, and other therapeutic agents. The term refers to any pharmaceutical carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition, and which can be administered without undue toxicity. Suitable carriers can be large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, and inactive virus particles. Such carriers are well known to those of ordinary skill in the art.

5

10

15

20

25

30

Pharmaceutically acceptable salts can be used therein, for example, mineral acid salts such as hydrochlorides, hydrobromides, phosphates, sulfates, and the like; and the salts of organic acids such as acetates, propionates, malonates, benzoates, and the like. A thorough discussion of pharmaceutically acceptable excipients is available in *Remington's Pharmaceutical Sciences* (Mack Pub. Co., N.J. 1991).

Pharmaceutically acceptable carriers in therapeutic compositions can include liquids such as water, saline, glycerol and ethanol. Auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, can also be present in such vehicles. Typically, the therapeutic compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection can also be prepared. Liposomes are included within the definition of a pharmaceutically acceptable carrier.

Delivery Methods. Once formulated, the compositions of the invention can be (1) administered directly to the subject (e.g., as polynucleotide or polypeptides); (2) delivered ex vivo, to cells derived from the subject (e.g., as in ex vivo gene therapy); or (3) delivered in vitro for expression of recombinant proteins (e.g., polynucleotides). Direct delivery of the compositions will generally be accomplished by injection, either subcutaneously, intraperitoneally, intravenously or intramuscularly, or delivered to the interstitial space of a tissue. The compositions can also be administered into a tumor or lesion. Other modes of administration include oral and pulmonary administration, suppositories, and transdermal applications, needles, and gene guns or hyposprays. Dosage treatment can be a single dose schedule or a multiple dose schedule.

Methods for the ex vivo delivery and reimplantation of transformed cells into a subject are known in the art and described in e.g., International Publication No. WO

93/14778. Examples of cells useful in ex vivo applications include, for example, stem cells, particularly hematopoetic, lymph cells, macrophages, dendritic cells, or tumor cells. Generally, delivery of nucleic acids for both ex vivo and in vitro applications can be accomplished by, for example, dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei, all well known in the art.

5

10

15

20

25

30

Once a gene corresponding to a polynucleotide of the invention has been found to correlate with a proliferative disorder, such as neoplasia, dysplasia, and hyperplasia, the disorder can be amenable to treatment by administration of a therapeutic agent based on the provided polynucleotide or corresponding polypeptide.

Preparation of antisense polynucleotides is discussed above. Neoplasias that are treated with the antisense composition include, but are not limited to, cervical cancers, melanomas, colorectal adenocarcinomas, Wilms' tumor, retinoblastoma, sarcomas, myosarcomas, lung carcinomas, leukemias, such as chronic myelogenous leukemia, promyelocytic leukemia, monocytic leukemia, and myeloid leukemia, and lymphomas, such as histiocytic lymphoma. Proliferative disorders that are treated with the therapeutic composition include disorders such as anhydric hereditary ectodermal dysplasia, congenital alveolar dysplasia, epithelial dysplasia of the cervix, fibrous dysplasia of bone, and mammary dysplasia. Hyperplasias, for example, endometrial, adrenal, breast, prostate, or thyroid hyperplasias or pseudoepitheliomatous hyperplasia of the skin, are treated with antisense therapeutic compositions based upon a polynucleotide of the invention. Even in disorders in which mutations in the corresponding gene are not implicated, downregulation or inhibition of expression of a gene corresponding to a polynucleotide of the invention can have therapeutic application. For example, decreasing gene expression can help to suppress tumors in which enhanced expression of the gene is implicated.

Both the dose of the antisense composition and the means of administration are determined based on the specific qualities of the therapeutic composition, the condition, age, and weight of the patient, the progression of the disease, and other relevant factors.

Administration of the therapeutic antisense agents of the invention includes local or systemic

administration, including injection, oral administration, particle gun or catheterized

administration, and topical administration. Preferably, the therapeutic antisense composition contains an expression construct comprising a promoter and a polynucleotide segment of at least 12, 22, 25, 30, or 35 contiguous nucleotides of the antisense strand of a polynucleotide disclosed herein. Within the expression construct, the polynucleotide segment is located downstream from the promoter, and transcription of the polynucleotide segment initiates at the promoter.

5

10

15

20

25

30

Various methods are used to administer the therapeutic composition directly to a specific site in the body. For example, a small metastatic lesion is located and the therapeutic composition injected several times in several different locations within the body of tumor. Alternatively, arteries which serve a tumor are identified, and the therapeutic composition injected into such an artery, in order to deliver the composition directly into the tumor. A tumor that has a necrotic center is aspirated and the composition injected directly into the now empty center of the tumor. The antisense composition is directly administered to the surface of the tumor, for example, by topical application of the composition. X-ray imaging is used to assist in certain of the above delivery methods.

Receptor-mediated targeted delivery of therapeutic compositions containing an antisense polynucleotide, subgenomic polynucleotides, or antibodies to specific tissues is also used. Receptor-mediated DNA delivery techniques are described in, for example, Findeis et al., Trends Biotechnol. (1993) 11:202; Chiou et al., Gene Therapeutics: Methods And Applications Of Direct Gene Transfer (J.A. Wolff, ed.) (1994); Wu et al., J. Biol. Chem. (1988) 263:621; Wu et al., J. Biol. Chem. (1994) 269:542; Zenke et al., Proc. Natl. Acad. Sci. (USA) (1990) 87:3655; Wu et al., J. Biol. Chem. (1991) 266:338. Preferably, receptor-mediated targeted delivery of therapeutic compositions containing antibodies of the invention is used to deliver the antibodies to specific tissue.

Therapeutic compositions containing antisense subgenomic polynucleotides are administered in a range of about 100 ng to about 200 mg of DNA for local administration in a gene therapy protocol. Concentration ranges of about 500 ng to about 50 mg, about 1 μ g to about 2 mg, about 5 μ g to about 500 μ g, and about 20 μ g to about 100 μ g of DNA can also be used during a gene therapy protocol. Factors such as method of action and efficacy of transformation and expression are considerations which will affect the dosage required for ultimate efficacy of the antisense subgenomic polynucleotides. Where greater expression is

desired over a larger area of tissue, larger amounts of antisense subgenomic polynucleotides or the same amounts readministered in a successive protocol of administrations, or several administrations to different adjacent or close tissue portions of, for example, a tumor site, may be required to effect a positive therapeutic outcome. In all cases, routine experimentation in clinical trials will determine specific ranges for optimal therapeutic effect. A more complete description of gene therapy vectors, especially retroviral vectors, is contained in U.S. Serial No. 08/869,309, which is expressly incorporated herein, and in section G below.

For polynucleotide-related genes encoding polypeptides or proteins with antiinflammatory activity, suitable use, doses, and administration are described in U.S. Patent No. 5,654,173. Therapeutic agents also include antibodies to proteins and polypeptides encoded by the polynucleotides of the invention and related genes, as described in U.S. Patent No. 5,654,173.

I. Gene Therapy

10

15

20

25

30

The therapeutic polynucleotides and polypeptides of the present invention can be utilized in gene delivery vehicles. The gene delivery vehicle can be of viral or non-viral origin (see generally, Jolly, Cancer Gene Therapy (1994) 1:51; Kimura, Human Gene Therapy (1994) 5:845; Connelly, Human Gene Therapy (1995) 1:185; and Kaplitt, Nature Genetics (1994) 6:148). Gene therapy vehicles for delivery of constructs including a coding sequence of a therapeutic of the invention can be administered either locally or systemically. These constructs can utilize viral or non-viral vector approaches. Expression of such coding sequences can be induced using endogenous mammalian or heterologous promoters. Expression of the coding sequence can be either constitutive or regulated.

The present invention can employ recombinant retroviruses which are constructed to carry or express a selected nucleic acid molecule of interest. Retrovirus vectors that can be employed include those described in EP 0 415 731; WO 90/07936; WO 94/03622; WO 93/25698; WO 93/25234; U.S. Patent No. 5, 219,740; WO 93/11230; WO 93/10218; Vile and Hart, Cancer Res. (1993) 53:3860; Vile et al., Cancer Res. (1993) 53:962; Ram et al., Cancer Res. (1993) 53:83; Takamiya et al., J. Neurosci. Res. (1992) 33:493; Baba et al., J. Neurosurg. (1993) 79:729; U.S. Patent No. 4,777,127; GB Patent No. 2,200,651; and EP 0 345 242. Preferred recombinant retroviruses include those described in WO 91/02805.

Packaging cell lines suitable for use with the above-described retroviral vector constructs can be readily prepared (see, e.g., WO 95/30763 and WO 92/05266), and used to create producer cell lines (also termed vector cell lines) for the production of recombinant vector particles. Within particularly preferred embodiments of the invention, packaging cell lines are made from human (such as HT1080 cells) or mink parent cell lines, thereby allowing production of recombinant retroviruses that can survive inactivation in human serum.

5

The present invention also employs alphavirus-based vectors that can function as gene delivery vehicles. Such vectors can be constructed from a wide variety of alphaviruses, including, for example, Sindbis virus vectors, Semliki forest virus (ATCC VR-67; ATCC VR-1247), Ross River virus (ATCC VR-373; ATCC VR-1246) and Venezuelan equine encephalitis virus (ATCC VR-923; ATCC VR-1250; ATCC VR 1249; ATCC VR-532). Representative examples of such vector systems include those described in U.S. Patent Nos. 5,091,309; 5,217,879; and 5,185,440; WO 92/10578; WO 94/21792; WO 95/27069; WO 95/27044; and WO 95/07994. Gene delivery vehicles of the present invention can also employ parvovirus such as adeno-associated virus (AAV) vectors. Representative examples include the AAV vectors disclosed by Srivastava in WO 93/09239, Samulski et al., *J. Virol.* (1989) 63:3822; Mendelson et al., *Virol.* (1988) 166:154; and Flotte et al., PNAS (1993) 90:10613.

Representative examples of adenoviral vectors include those described by Berkner, Biotechniques (1988) 6:616; Rosenfeld et al., Science (1991) 252:431; WO 93/19191; Kolls et al., PNAS (1994) 91:215; Kass-Eisler et al., PNAS (1993) 90:11498; Guzman et al., Circulation (1993) 88:2838; Guzman et al., Cir. Res. (1993) 73:1202; Zabner et al., Cell (1993) 75:207; Li et al., Hum. Gene Ther. (1993) 4:403; Cailaud et al., Eur. J. Neurosci. (1993) 5:1287; Vincent et al., Nat. Genet. (1993) 5:130; Jaffe et al., Nat. Genet. (1992) 1:372; and Levrero et al., Gene (1991) 101:195. Exemplary adenoviral gene therapy vectors employable in this invention also include those described in WO 94/12649, WO 93/03769; WO 93/19191; WO 94/28938; WO 95/11984 and WO 95/00655. Administration of DNA linked to killed adenovirus as described in Curiel, Hum. Gene Ther. (1992) 3:147 can be employed.

Other gene delivery vehicles and methods can be employed, including polycationic condensed DNA linked or unlinked to killed adenovirus alone, for example Curiel, *Hum. Gene Ther.* (1992) 3:147; ligand linked DNA, for example see Wu, *J. Biol. Chem.* (1989) 264:16985; eukaryotic cell delivery vehicles cells, for example see U.S. Pat. No. 5,814,482; WO 95/07994; WO 96/17072; WO 95/30763; and WO 97/42338; deposition of photopolymerized hydrogel materials; hand-held gene transfer particle gun, as described in U.S. Patent No. 5,149,655; ionizing radiation as described in U.S. Patent No. 5,206,152 and in WO92/11033; nucleic charge neutralization or fusion with cell membranes. Additional approaches are described in Philip, *Mol. Cell Biol.* (1994) 14:2411, and in Woffendin, *Proc. Natl. Acad. Sci.* (1994) 91:1581.

Naked DNA can also be employed. Exemplary naked DNA introduction methods are described in WO 90/11092 and U.S. Patent No. 5,580,859. Uptake efficiency can be improved using biodegradable latex beads. DNA coated latex beads are efficiently transported into cells after endocytosis initiation by the beads. The method can be improved further by treatment of the beads to increase hydrophobicity and thereby facilitate disruption of the endosome and release of the DNA into the cytoplasm. Liposomes that can act as gene delivery vehicles are described in U.S. Patent No. 5,422,120; WO 95/13796; WO 94/23697; WO 91/14445; and EP 0524968.

15

25

30

Further non-viral delivery suitable for use includes mechanical delivery systems such as the approach described in Woffendin et al., Proc. Natl. Acad. Sci. USA (1994) 91(24):11581. Moreover, the coding sequence and the product of expression of such can be delivered through deposition of photopolymerized hydrogel materials. Other conventional methods for gene delivery that can be used for delivery of the coding sequence include, for example, use of hand-held gene transfer particle gun, as described in U.S. Patent No.

5,149,655; use of ionizing radiation for activating transferred gene, as described in U.S. Patent No. 5,206,152 and WO 92/11033.

The present invention will now be illustrated by reference to the following examples which set forth particularly advantageous embodiments. However, it should be noted that these embodiments are illustrative and are not to be construed as restricting the invention in any way.

EXAMPLES

The present invention is now illustrated by reference to the following examples which set forth particularly advantageous embodiments. However, these embodiments are illustrative and are not meant to be construed as restricting the invention in any way.

5

Example 1: Source of Biological Materials and Overview of Novel Polynucleotides Expressed by the Biological Materials

Human colon cancer cell line Km12L4-A (Morika, W. A. K. et al., Cancer Research

(1988) 48:6863) was used to construct a cDNA library from mRNA isolated from the cells. 10 As described in the above overview, a total of 4,693 sequences expressed by the Km12L4-A cell line were isolated and analyzed; most sequences were about 275-300 nucleotides in length. The KM12L4-A cell line is derived from the KM12C cell line. The KM12C cell line, which is poorly metastatic (low metastatic) was established in culture from a Dukes' stage B₂ surgical specimen (Morikawa et al. Cancer Res. (1988) 48:6863). The KML4-A is 15 a highly metastatic subline derived from KM12C (Yeatman et al. Nucl. Acids. Res. (1995) 23:4007; Bao-Ling et al. Proc. Annu. Meet. Am. Assoc. Cancer. Res. (1995) 21:3269). The KM12C and KM12C-derived cell lines (e.g., KM12L4, KM12L4-A, etc.) are wellrecognized in the art as a model cell line for the study of colon cancer (see, e.g., Moriakawa et al., supra; Radinsky et al. Clin. Cancer Res. (1995) 1:19; Yeatman et al., (1995) supra; 20 Yeatman et al. Clin. Exp. Metastasis (1996) 14:246). The sequences were first masked to eliminate low complexity sequences using the XBLAST masking program (Claverie "Effective Large-Scale Sequence Similarity Searches," In: Computer Methods for Macromolecular Sequence Analysis, Doolittle, ed., Meth. Enzymol. 266:212-227 Academic Press, NY, NY (1996); see particularly Claverie, in "Automated DNA Sequencing and Analysis Techniques" Adams et al., eds., Chap. 36, p. 267 Academic 25 Press, San Diego, 1994 and Claverie et al. Comput. Chem. (1993) 17:191). Generally, masking does not influence the final search results, except to eliminate of relative little interest due to their lox complexity, and to eliminate multiple "hits" based on similarity to repetitive regions common to multiple sequences, e.g., Alu repeats. Masking resulted in the 30 elimination of 43 sequences. The remaining sequences were then used in a BLASTN vs. Genbank search with search parameters of greater than 70% overlap, 99% identity, and a p value of less than 1 x 10⁻⁴⁰, which search resulted in the discarding of 1,432 sequences. Sequences from this search also were discarded if the inclusive parameters were met, but the sequence was ribosomal or vector-derived.

The resulting sequences from the previous search were classified into three groups (1, 2 and 3 below) and searched in a BLASTX vs. NRP (non-redundant proteins) database search: (1) unknown (no hits in the Genbank search), (2) weak similarity (greater than 45% identity and p value of less than 1×10^{-5}), and (3) high similarity (greater than 60% overlap, greater than 80% identity, and p value less than 1×10^{-5}). This search resulted in discard of 98 sequences as having greater than 70% overlap, greater than 99% identity, and p value of less than 1×10^{-40} .

5

10

15

20

25

30

The remaining sequences were classified as unknown (no hits), weak similarity, and high similarity (parameters as above). Two searches were performed on these sequences. First, a BLAST vs. EST database search resulted in discard of 1771 sequences (sequences with greater than 99% overlap, greater than 99% similarity and a p value of less than 1 x 10⁻⁴⁰; sequences with a p value of less than 1 x 10⁻⁶⁵ when compared to a database sequence of human origin were also excluded). Second, a BLASTN vs. Patent GeneSeq database resulted in discard of 15 sequences (greater than 99% identity; p value less than 1 x 10⁻⁴⁰; greater than 99% overlap).

The remaining sequences were subjected to screening using other rules and redundancies in the dataset. Sequences with a p value of less than 1 x 10⁻¹¹¹ in relation to a database sequence of human origin were specifically excluded. The final result provided the 404 sequences listed in the accompanying Sequence Listing. The Sequence Listing is arranged beginning with sequences with no similarity to any sequence in a database searched, and ending with sequences with the greatest similarity. Each identified polynucleotide represents sequence from at least a partial mRNA transcript. Polynucleotides that were determined to be novel were assigned a sequence identification number.

The novel polynucleotides and were assigned sequence identification numbers SEQ ID NOS: 1-404. The DNA sequences corresponding to the novel polynucleotides are provided in the Sequence Listing. The majority of the sequences are presented in the Sequence Listing in the 5' to 3' direction. A small number, 25, are listed in the Sequence Listing in the 5' to 3' direction but the sequence as written is actually 3' to 5'. These sequences are readily identified with the designation "AR" in the Sequence Name in Table 1 (inserted before the claims). The sequences correctly listed in the 5' to 3' direction in the Sequence Listing are designated "AF." The Sequence Listing filed herewith therefore contains 25 sequences listed in the reverse order, namely SEQ ID NOS:47, 97, 137, 171, 173, 179, 182, 194, 200, 202, 213, 227, 258, 264, 275, 302, 313, 324, 329, 330, 331, 338, 358, 379, and 404.

Because the provided polynucleotides represent partial mRNA transcripts, two or more polynucleotides of the invention may represent different regions of the same mRNA transcript and the same gene. Thus, if two or more SEQ ID NOS: are identified as belonging to the same clone, then either sequence can be used to obtain the full-length mRNA or gene.

In order to confirm the sequences of SEQ ID NOS:1-404, inserts of the clones corresponding to these polynucleotides were re-sequenced. These "validation" sequences are provided in SEQ ID NOS:405-800. These validation sequences were often longer than the original polynucleotide sequences. They validate, and thus often provide additional sequence information. Validation sequences can be correlated with the original sequences they validate by identifying those sequences of SEQ ID NOS:1-404 and the validation sequences of SEQ ID NOS:405-800 that share the same clone name in Table 1.

5

10

15

20

25

30

Example 2: Results of Public Database Search to Identify Function of Gene Products

SEQ ID NOS:1-404, as well as the validation sequences SEQ ID NOS:405-800, were translated in all three reading frames to determine the best alignment with the individual sequences. These amino acid sequences and nucleotide sequences are referred, generally, as query sequences, which are aligned with the individual sequences. Query and individual sequences were aligned using the BLAST programs, available over the world wide web at http://www.ncbi.nlm.nih.gov/BLAST/. Again the sequences were masked to various extents to prevent searching of repetitive sequences or poly-A sequences, using the XBLAST program for masking low complexity as described above in Example 1.

Table 2 (inserted before the claims) shows the results of the alignments. Table 2 refers to each sequence by its SEQ ID NO:, the accession numbers and descriptions of nearest neighbors from the Genbank and Non-Redundant Protein searches, and the p values of the search results. Table 1 identifies each SEQ ID NO: by SEQ name, clone ID, and cluster. As discussed above, a single cluster includes polynucleotides representing the same gene or gene family, and generally represents sequences encoding the same gene product.

For each of SEQ ID NOS:1-800, the best alignment to a protein or DNA sequence is included in Table 2. The activity of the polypeptide encoded by SEQ ID NOS:1-800 is the same or similar to the nearest neighbor reported in Table 2. The accession number of the nearest neighbor is reported, providing a reference to the activities exhibited by the nearest neighbor. The search program and database used for the alignment also are indicated as well as a calculation of the p value.

Full length sequences or fragments of the polynucleotide sequences of the nearest neighbors can be used as probes and primers to identify and isolate the full length sequence of SEQ ID NOS:1-800. The nearest neighbors can indicate a tissue or cell type to be used to construct a library for the full-length sequences of SEQ ID NOS:1-800.

SEQ ID NOS:1-800 and the translations thereof may be human homologs of known genes of other species or novel allelic variants of known human genes. In such cases, these new human sequences are suitable as diagnostics or therapeutics. As diagnostics, the human sequences SEQ ID NOS:1-800 exhibit greater specificity in detecting and differentiating human cell lines and types than homologs of other species. The human polypeptides encoded by SEQ ID NOS:1-800 are likely to be less immunogenic when administered to humans than homologs from other species. Further, on administration to humans, the polypeptides encoded by SEQ ID NOS:1-800 can show greater specificity or can be better regulated by other human proteins than are homologs from other species.

15 Example 3: Members of Protein Families

5

10

20

After conducting a profile search as described in the specification above, several of the polynucleotides of the invention were found to encode polypeptides having characteristics of a polypeptide belonging to a known protein families (and thus represent new members of these protein families) and/or comprising a known functional domain (Table 3). Thus the invention encompasses fragments, fusions, and variants of such polynucleotides that retain biological activity associated with the protein family and/or functional domain identified herein.

Table 3 Polynucleotides encoding gene products of a protein family or having a known functional domain(s).

SEQ ID NO:	Biological Activity (Profile hit)	Start	Stop	Dir
24	4 transmembrane segments integral membrane proteins	1218	578	rev
41	4 transmembrane segments integral membrane proteins	1086	413	rev
101	4 transmembrane segments integral membrane proteins	1206	544	rev
157	4 transmembrane segments integral membrane proteins	721	33	rev
341	4 transmembrane segments integral membrane proteins	1253	613	rev
395	4 transmembrane segments integral membrane proteins	530	10	for
395	4 transmembrane segments integral membrane proteins	696	17	for
395	4 transmembrane segments integral membrane proteins	471	39	rev
24	7 transmembrane receptor (Secretin family)	1301	491	rev
41	7 transmembrane receptor (Secretin family)	1309	10	rev
101	7 transmembrane receptor (Secretin family)	1330	296	rev
157	7 transmembrane receptor (Secretin family)	1173	249	rev
291	7 transmembrane receptor (Secretin family)	1400	269	rev

Table 3 Polynucleotides encoding gene products of a protein family or having a known functional domain(s).

CEO ID	runctional domain(s).	Ig	IC4	10.
SEQ ID	Biological Activity (Profile hit)	Start	Stop	Dir
NO: 291	7 transmamhrana racentor (Secretin family)	712	130	for
305	7 transmembrane receptor (Secretin family)	926	4	for
305	7 transmembrane receptor (Secretin family)	753	55	for
315	7 transmembrane receptor (Secretin family) 7 transmembrane receptor (Secretin family)	1058	270	rev
341	7 transmembrane receptor (Secretin family)	1265	534	rev
116	Ank repeat	1203		for
251	Ank repeat	290	218	for
251	Ank repeat	467	387	for
63	ATPases Associated with Various Cellular Activities	543		
116	ATPases Associated with Various Cellular Activities ATPases Associated with Various Cellular Activities	802	313	for for
134	ATPases Associated with Various Cellular Activities	525	57	
136	ATPases Associated with Various Cellular Activities	712	163	for
151	ATPases Associated with Various Cellular Activities	719	73	for
151	ATPases Associated with Various Cellular Activities	386	13	for
384	ATPases Associated with Various Cellular Activities	664	140	for
404	ATPases Associated with Various Cellular Activities	704	52	for
374	Basic region plus leucine zipper transcription factors	298	1146	for
97	Bromodomain (conserved sequence found in human,	230	63	for
97	Drosophila and yeast proteins.)	230	03	ior
136	EF-hand	121	207	for
242	EF-hand	238	155	for
379	EF-hand	212	126	for
308	Eukaryotic aspartyl proteases	1300	461	rev
213	GATA family of transcription factors	720	377	for
	G-protein alpha subunit	971	467	
L				rev
251	Phorbol esters/diacylglycerol binding	91	177	for
202	Phorbol esters/diacylglycerol binding		219	for
202	protein kinase	970	1	rev
315	protein kinase	739	158	rev
315	protein kinase	1023	197	for for
367	protein kinase	1023	285	-
397	protein kinase	511	6	rev for
256	Protein phosphatase 2C	113	90	
	Protein phosphatase 2C	163	86	for
382			_	C
	Protein Tyrosine Phosphatase	261	2	for
306	SH3 Domain	141	296	for
386	SH3 Domain	359	209	for
169	Trypsin	764	164	rev
188	WD domain, G-beta repeats	480	382	for
188	WD domain, G-beta repeats	206	117	for
335	WD domain, G-beta repeats	3	92	for
23	wnt family of developmental signaling proteins	1151	335	rev
291	wnt family of developmental signaling proteins	779	89	rev
291	wnt family of developmental signaling proteins	1347	382	rev
324	wnt family of developmental signaling proteins	1180	499	rev
330	wnt family of developmental signaling proteins	1180	499	rev
341	wnt family of developmental signaling proteins	1399	560	rev

Table 3 Polynucleotides encoding gene products of a protein family or having a known functional domain(s).

SEQ ID NO:	Biological Activity (Profile hit)	Start	Stop	Dir
353	wnt family of developmental signaling proteins	880	49	rev
188	WW/rsp5/WWP domain containing proteins	431	354	for
379	WW/rsp5/WWP domain containing proteins	12	89	for
395	WW/rsp5/WWP domain containing proteins	153	76	for
395	WW/rsp5/WWP domain containing proteins	156	64	for
61	Zinc finger, C2H2 type	254	192	for
306	Zinc finger, C2H2 type	428	367	for
386	Zinc finger, C2H2 type	191	253	for
322	Zinc finger, CCHC class	553	503	for
306	Zinc-binding metalloprotease domain	101	60	rev
395	Zinc-binding metalloprotease domain	28	69	rev

Start and stop indicate the position within the individual sequenes that align with the query sequence having the indicated SEQ ID NO. The direction (Dir) indicates the orientation of the query sequence with respect to the individual sequence, where forward (for) indicates that the alignment is in the same direction (left to right) as the sequence provided in the Sequence Listing and reverse (rev) indicates that the alignment is with a sequence complementary to the sequence provided in the Sequence Listing.

5

10

15

Some polynucleotides exhibited multiple profile hits because, for example, the particular sequence contains overlapping profile regions, and/or the sequence contains two different functional domains. These profile hits are described in more detail below.

a) Four Transmembrane Integral Membrane Proteins. SEQ ID NOS: 24, 41, 101, 157, 341, and 395 correspond to a sequence encoding a polypeptide that is a member of the 4 transmembrane segments integral membrane protein family (transmembrane 4 family). The transmembrane 4 family of proteins includes a number of evolutionarily-related eukaryotic cell surface antigens (Levy et al., J. Biol. Chem., (1991) 266:14597; Tomlinson et al., Eur. J. Immunol. (1993) 23:136; Barclay et al. The leucocyte antigen factbooks. (1993) Academic Press, London/San Diego). The proteins belonging to this family include: 1) Mammalian antigen CD9 (MIC3), which is involved in platelet activation and aggregation; 2)

Mammalian leukocyte antigen CD37, expressed on B lymphocytes; 3) Mammalian leukocyte antigen CD53 (OX-44), which is implicated in growth regulation in hematopoietic cells; 4) Mammalian lysosomal membrane protein CD63 (melanoma-associated antigen ME491; antigen AD1); 5) Mammalian antigen CD81 (cell surface protein TAPA-1), which is implicated in regulation of lymphoma cell growth; 6) Mammalian antigen CD82 (protein

R2; antigen C33; Kangai 1 (KAI1)), which associates with CD4 or CD8 and delivers costimulatory signals for the TCR/CD3 pathway; 7) Mammalian antigen CD151 (SFA-1; platelet-endothelial tetraspan antigen 3 (PETA-3)); 8) Mammalian cell surface glycoprotein A15 (TALLA-1; MXS1); 9) Mammalian novel antigen 2 (NAG-2); 10) Human tumorassociated antigen CO-029; 11) Schistosoma mansoni and japonicum 23 Kd surface antigen (SM23 / SJ23).

The members of the 4 transmembrane family share several characteristics. First, they all are apparently type III membrane proteins, which are integral membrane proteins containing an N-terminal membrane-anchoring domain which is not cleaved during biosynthesis and which functions both as a translocation signal and as a membrane anchor. The family members also contain three additional transmembrane regions, at least seven conserved cysteines residues, and are of approximately the same size (218 to 284 residues). These proteins are collectively know as the "transmembrane 4 superfamily" (TM4) because they span plasma membrane four times. A schematic diagram of the domain structure of these proteins is as follows:

5

10

15

30

- where Cyt is the cytoplasmic domain, TMa is the transmembrane anchor; TM2 to TM4 represents transmembrane regions 2 to 4, 'C' are conserved cysteines, and '* 'indicates the position of the consensus pattern. The consensus pattern spans a conserved region including two cysteines located in a short cytoplasmic loop between two transmembrane domains:

 Consensus pattern: G-x(3)-[LIVMF]-x(2)-[GSA]-[LIVMF](2)-G-C-x-[GA]-[STA]- x(2)[EG]-x(2)-[CWN]-[LIVM](2).
 - b) Seven Transmembrane Integral Membrane Proteins. SEQ ID NOS: 24, 41, 101, 157, 291, 305, 315, and 341 correspond to a sequence encoding a polypeptide that is a member of the seven transmembrane receptor family. G-protein coupled receptors (Strosberg, Eur. J. Biochem. (1991) 196:1; Kerlavage, Curr. Opin. Struct. Biol. (1991) 1:394; and Probst et al., DNA Cell Biol. (1992) 11:1; and Savarese et al., Biochem. J. (1992) 293:1) (also called R7G) are an extensive group of hormones, neurotransmitters, odorants and light receptors which transduce extracellular signals by interaction with guanine nucleotide-binding (G) proteins. The tertiary structure of these receptors is thought to be

the membrane. The N-terminus is located on the extracellular side of the membrane and is often glycosylated, while the C-terminus is cytoplasmic and generally phosphorylated. Three extracellular loops alternate with three intracellular loops to link the seven transmembrane regions. Most, but not all of these receptors, lack a signal peptide. The most conserved parts of these proteins are the transmembrane regions and the first two cytoplasmic loops. A conserved acidic-Arg-aromatic triplet is present in the N-terminal extremity of the second cytoplasmic loop (Attwood *et al.*, *Gene* (1991) 98:153) and could be implicated in the interaction with G proteins.

5

10

15

20

25

30

To detect this widespread family of proteins a pattern is used that contains the conserved triplet and that also spans the major part of the third transmembrane helix. Additional information about the seven transmembrane receptor family, and methods for their identification and use, is found in U.S. Patent No. 5,759,804. Due in part to their expression on the cell surface and other attractive characteristics, seven transmembrane protein family members are of particular interest as drug targets, as surface antigen markers, and as drug delivery targets (e.g., using antibody-drug complexes and/or use of anti-seven transmembrane protein antibodies as therapeutics in their own right).

c) Ank Repeats. SEQ ID NOS: 116 and 251 represent polynucleotides encoding Ank repeat-containing proteins. The ankyrin motif is a 33 amino acid sequence named after the protein ankyrin which has 24 tandem 33-amino-acid motifs. Ank repeats were originally identified in the cell-cycle-control protein cdc10 (Breeden et al., Nature (1987) 329:651). Proteins containing ankyrin repeats include ankyrin, myotropin, I-kappaB proteins, cell cycle protein cdc10, the Notch receptor (Matsuno et al., Development (1997) 124(21):4265); G9a (or BAT8) of the class III region of the major histocompatibility complex (Biochem J. 290:811-818, 1993), FABP, GABP, 53BP2, Lin12, glp-1, SW14, and SW16. The functions of the ankyrin repeats are compatible with a role in protein-protein interactions (Bork, Proteins (1993) 17(4):363; Lambert and Bennet, Eur. J. Biochem. (1993) 211:1; Kerr et al., Current Op. Cell Biol. (1992) 4:496; Bennet et al., J. Biol. Chem. (1980) 255:6424).

The 90 kD N-terminal domain of ankyrin contains a series of 24 33-amino-acid ank repeats. (Lux et al., Nature (1990) 344:36-42, Lambert et al., PNAS USA (1990) 87:1730.) The 24 ank repeats form four folded subdomains of 6 repeats each. These four repeat subdomains mediate interactions with at least 7 different families of membrane proteins. Ankyrin contains two separate binding sites for anion exchanger dimers. One site utilizes repeat subdomain two (repeats 7-12) and the other requires both repeat subdomains 3 and 4 (repeats 13-24). Since the anion exchangers exist in dimers, ankyrin binds 4 anion

exchangers at the same time. (Michaely and Bennett, *J. Biol. Chem.* (1995) 270(37):22050) The repeat motifs are involved in ankyrin interaction with tubulin, spectrin, and other membrane proteins. (Lux *et al.*, *Nature* (1990) 344:36.)

5

10

15

20

25

30

The Rel/NF-kappaB/Dorsal family of transcription factors have activity that is controlled by sequestration in the cytoplasm in association with inhibitory proteins referred to as I-kappaB. (Gilmore, Cell (1990) 62:841; Nolan and Baltimore, Curr Opin Genet Dev. (1992) 2:211; Baeuerle, Biochim Biophys Acta (1991) 1072:63; Schmitz et al., Trends Cell Biol. (1991) 1:130.) I-kappaB proteins contain 5 to 8 copies of 33 amino acid ankyrin repeats and certain NF-kappaB/rel proteins are also regulated by cis-acting ankyrin repeat containing domains including p105NF-kappaB which contains a series of ankyrin repeats (Diehl and Hannink, J. Virol. (1993) 67(12):7161). The I-kappaBs and Cactus (also containing ankyrin repeats) inhibit activators through differential interactions with the Relhomology domain. The gene family includes proto-oncogenes, thus broadly implicating IkappaB in the control of both normal gene expression and the aberrant gene expression that makes cells cancerous. (Nolan and Baltimore, Curr Opin Genet Dev. (1992) 2(2):211-220). In the case of rel/NF-kappaB and pp40/I-kappaB\beta, both the ankyrin repeats and the carboxyterminal domain are required for inhibiting DNA-binding activity and direct association of pp40/I-kappaBβ with rel/NF-kappaB protein. The ankyrin repeats and the carboxy-terminal of pp40/I-kappaBβ (form a structure that associates with the rel homology domain to inhibit DNA binding activity (Inoue et al., PNAS USA (1992) 89:4333).

The 4 ankyrin repeats in the amino terminus of the transcription factor subunit GABPβ are required for its interaction with the GABPα subunit to form a functional high affinity DNA-binding protein. These repeats can be crosslinked to DNA when GABP is bound to its target sequence. (Thompson *et al.*, *Science* (1991) 253:762; LaMarco *et al.*, *Science* (1991) 253:789).

Myotrophin, a 12.5 kDa protein having a key role in the initiation of cardiac hypertrophy, comprises ankyrin repeats. The ankyrin repeats are characteristic of a hairpin-like protruding tip followed by a helix-turn-helix motif. The V-shaped helix-turn-helix of the repeats stack sequentially in bundles and are stabilized by compact hydrophobic cores, whereas the protruding tips are less ordered.

d) <u>ATPases Associated with Various Cellular Activities (AAA).</u> SEQ ID NOS: 63, 116, 134, 136, 151, 384, and 404 polynucleotides encoding novel members of the "ATPases Associated with diverse cellular Activities" (AAA) protein family The AAA protein family

is composed of a large number of ATPases that share a conserved region of about 220 amino acids that contains an ATP-binding site (Froehlich et al., J. Cell Biol. (1991) 114:443; Erdmann et al. Cell (1991) 64:499; Peters et al., EMBO J. (1990) 9:1757; Kunau et al., Biochimie (1993) 75:209-224; Confalonieri et al., BioEssays (1995) 17:639; http://yeamob.pci.chemie.uni-tuebingen.de/AAA/Description.html). The proteins that

belong to this family either contain one or two AAA domains.

5

10

15

Proteins containing two AAA domains include: 1) Mammalian and drosophila NSF (N-ethylmaleimide-sensitive fusion protein) and the fungal homolog, SEC18, which are involved in intracellular transport between the endoplasmic reticulum and Golgi, as well as between different Golgi cisternae; 2) Mammalian transitional endoplasmic reticulum ATPase (previously known as p97 or VCP), which is involved in the transfer of membranes from the endoplasmic reticulum to the golgi apparatus. This ATPase forms a ring-shaped homooligomer composed of six subunits. The yeast homolog, CDC48, plays a role in spindle pole proliferation; 3) Yeast protein PAS1 essential for peroxisome assembly and the related protein PAS1 from Pichia pastoris; 4) Yeast protein AFG2; 5) Sulfolobus acidocaldarius protein SAV and Halobacterium salinarium cdcH, which may be part of a transduction pathway connecting light to cell division.

Proteins containing a single AAA domain include: 1) Escherichia coli and other

bacteria ftsH (or hflB) protein. FtsH is an ATP-dependent zinc metallopeptidase that 20 degrades the heat-shock sigma-32 factor, and is an integral membrane protein with a large cytoplasmic C-terminal domain that contain both the AAA and the protease domains; 2) Yeast protein YME1, a protein important for maintaining the integrity of the mitochondrial compartment. YME1 is also a zinc-dependent protease; 3) Yeast protein AFG3 (or YTA10). This protein also contains an AAA domain followed by a zinc-dependent protease domain; 25 4) Subunits from regulatory complex of the 26S proteasome (Hilt et al., Trends Biochem. Sci. (1996) 21:96), which is involved in the ATP-dependent degradation of ubiquitinated proteins, which subunits include: a) Mammalian 4 and homologs in other higher eukaryotes, in yeast (gene YTA5) and fission yeast (gene mts2); b) Mammalian 6 (TBP7) and homologs in other higher eukaryotes and in yeast (gene YTA2); c) Mammalian subunit 7 (MSS1) and 30 homologs in other higher eukaryotes and in yeast (gene CIM5 or YTA3); d) Mammalian subunit 8 (P45) and homologs in other higher eukaryotes and in yeast (SUG1 or CIM3 or TBY1) and fission yeast (gene let1); e) Other probable subunits include human TBP1, which influences HIV gene expression by interacting with the virus tat transactivator protein, and yeast YTA1 and YTA6; 5) Yeast protein BCS1, a mitochondrial protein essential for the

expression of the Rieske iron-sulfur protein; 6) Yeast protein MSP1, a protein involved in intramitochondrial sorting of proteins; 7) Yeast protein PAS8, and the corresponding proteins PAS5 from Pichia pastoris and PAY4 from Yarrowia lipolytica; 8) Mouse protein SKD1 and its fission yeast homolog (SpAC2G11.06); 9) Caenorhabditis elegans meiotic spindle formation protein mei-1; 10) Yeast protein SAP1' 11) Yeast protein YTA7; and 12) Mycobacterium leprae hypothetical protein A2126A.

5

10

25

In general, the AAA domains in these proteins act as ATP-dependent protein clamps(Confalonieri *et al.* (1995) *BioEssays 17*:639). In addition to the ATP-binding 'A' and 'B' motifs, which are located in the N-terminal half of this domain, there is a highly conserved region located in the central part of the domain which was used in the development of the signature pattern. The consensus pattern is: [LIVMT]-x-[LIVMT]-[LIVMF]-x-[GATMC]-[ST]-[NS]-x(4)-[LIVM]- D-x-A-[LIFA]-x-R.

e) <u>Basic Region Plus Leucine Zipper Transcription Factors.</u> SEQ ID NO:374 correspond to a polynucleotide encoding a novel member of the family of basic region plus leucine zipper transcription factors. The bZIP superfamily (Hurst, *Protein Prof.* (1995) 2:105; and Ellenberger, *Curr. Opin. Struct. Biol.* (1994) 4:12) of eukaryotic DNA-binding transcription factors encompasses proteins that contain a basic region mediating sequence-specific DNA-binding followed by a leucine zipper required for dimerization. Members of the family include transcription factor AP-1, which binds selectively to enhancer elements in the cis control regions of SV40 and metallothionein IIA. AP-1, also known as c-jun, is the cellular homolog of the avian sarcoma virus 17 (ASV17) oncogene v-jun.

Other members of this protein family include jun-B and jun-D, probable transcription factors that are highly similar to jun/AP-1; the fos protein, a proto-oncogene that forms a non-covalent dimer with c-jun; the fos-related proteins fra-1, and fos B; and mammalian cAMP response element (CRE) binding proteins CREB, CREM, ATF-1, ATF-3, ATF-4, ATF-5, ATF-6 and LRF-1. The consensus pattern for this protein family is: [KR]-x(1,3)-[RKSAQ]-N-x(2)-[SAQ](2)-x-[RKTAENQ]-x-R-x-[RK].

f) Bromodomain. SEQ ID NO:97 corresponds to a polynucleotide encoding a polypeptide having a bromodomain region (Haynes et al., 1992, Nucleic Acids Res. 20:2693-2603, Tamkun et al., 1992, Cell 68:561-572, and Tamkun, 1995, Curr. Opin. Genet. Dev. 5:473-477), which is a conserved region of about 70 amino acids found in the following proteins: 1) Higher eukaryotes transcription initiation factor TFIID 250 Kd subunit (TBP-associated factor p250) (gene CCG1); P250 is associated with the TFIID TATA-box binding protein and seems essential for progression of the G1 phase of the cell

cycle. 2) Human RING3, a protein of unknown function encoded in the MHC class II locus; 3) Mammalian CREB-binding protein (CBP), which mediates cAMP-gene regulation by binding specifically to phosphorylated CREB protein; 4) Mammalian homologs of brahma, including three brahma-like human: SNF2a(hBRM), SNF2b, and BRG1; 5) Human BS69, a protein that binds to adenovirus E1A and inhibits E1A transactivation; 6) Human peregrin (or Br140).

5

10

15

20

25

30

The bromodomain is thought to be involved in protein-protein interactions and may be important for the assembly or activity of multicomponent complexes involved in transcriptional activation. The consensus pattern, which spans a major part of the bromodomain, is: [STANVF]-x(2)-F-x(4)-[DNS]-x(5,7)-[DENQTF]-Y-[HFY]-x(2)-[LIVMFY]-x(3)-[LIVM]-x(4)-[LIVM]-x(6,8)-Y-x(12,13)-[LIVM]-x(2)-N-[SACF]-x(2)-[FY].

g) <u>EF-Hand</u>. SEQ ID NOS:136, 242, and 379 correspond to polynucleotides encoding a novel protein in the family of EF-hand proteins. Many calcium-binding proteins belong to the same evolutionary family and share a type of calcium-binding domain known as the EF-hand (Kawasaki *et al.*, *Protein. Prof.* (1995) 2:305-490). This type of domain consists of a twelve residue loop flanked on both sides by a twelve residue alpha-helical domain. In an EF-hand loop the calcium ion is coordinated in a pentagonal bipyramidal configuration. The six residues involved in the binding are in positions 1, 3, 5, 7, 9 and 12; these residues are denoted by X, Y, Z, -Y, -X and -Z. The invariant Glu or Asp at position 12 provides two oxygens for liganding Ca (bidentate ligand).

Proteins known to contain EF-hand regions include: Calmodulin (Ca=4, except in yeast where Ca=3) ("Ca=" indicates approximate number of EF-hand regions); diacylglycerol kinase (EC 2.7.1.107) (DGK) (Ca=2); 2) FAD-dependent glycerol-3-phosphate dehydrogenase (EC 1.1.99.5) from mammals (Ca=1); guanylate cyclase activating protein (GCAP) (Ca=3); MIF related proteins 8 (MRP-8 or CFAG) and 14 (MRP-14) (Ca=2); myosin regulatory light chains (Ca=1); oncomodulin (Ca=2); osteonectin (basement membrane protein BM-40) (SPARC); and proteins that contain an "osteonectin" domain (QR1, matrix glycoprotein SC1).

The consensus pattern includes the complete EF-hand loop as well as the first residue which follows the loop and which seem to always be hydrophobic.

Consensus pattern: D-x-[DNS]-{ILVFYW}-[DENSTG]-[DNQGHRK]-{GP}-[LIVMC]-[DENQSTAGC]-x(2)-[DE]-[LIVMFYW]

h) Eukaryotic Aspartyl Proteases. SEQ ID NO:308 corresponds to a gene encoding a novel eukaryotic aspartyl protease. Aspartyl proteases, known as acid proteases, (EC 3.4.23.-) are a widely distributed family of proteolytic enzymes (Foltmann B., Essays Biochem. (1981) 17:52; Davies D.R., Annu. Rev. Biophys. Chem. (1990) 19:189; Rao J.K.M., et al., Biochemistry (1991) 30:4663) known to exist in vertebrates, fungi, plants, 5 retroviruses and some plant viruses. Aspartate proteases of eukaryotes are monomeric enzymes which consist of two domains. Each domain contains an active site centered on a catalytic aspartyl residue. The two domains most probably evolved from the duplication of an ancestral gene encoding a primordial domain. Currently known eukaryotic aspartyl 10 proteases include: 1) Vertebrate gastric pepsins A and C (also known as gastricsin); 2) Vertebrate chymosin (rennin), involved in digestion and used for making cheese; 3) Vertebrate lysosomal cathepsins D (EC 3.4.23.5) and E (EC 3.4.23.34); 4) Mammalian renin (EC 3.4.23.15) whose function is to generate angiotensin I from angiotensinogen in the plasma; 5) Fungal proteases such as aspergillopepsin A (EC 3.4.23.18), candidapepsin (EC 15 3.4.23.24), mucoropepsin (EC 3.4.23.23) (mucor rennin), endothiapepsin (EC 3.4.23.22), polyporopepsin (EC 3.4.23.29), and rhizopuspepsin (EC 3.4.23.21); and 6) Yeast saccharopepsin (EC 3.4.23.25) (proteinase A) (gene PEP4). PEP4 is implicated in posttranslational regulation of vacuolar hydrolases; 7) Yeast barrierpepsin (EC 3.4.23.35) (gene BAR1); a protease that cleaves alpha-factor and thus acts as an antagonist of the 20 mating pheromone; and 8) Fission yeast sxal which is involved in degrading or processing the mating pheromones.

Most retroviruses and some plant viruses, such as badnaviruses, encode for an aspartyl protease which is an homodimer of a chain of about 95 to 125 amino acids. In most retroviruses, the protease is encoded as a segment of a polyprotein which is cleaved during the maturation process of the virus. It is generally part of the pol polyprotein and, more rarely, of the gag polyprotein. Because the sequence around the two aspartates of eukaryotic aspartyl proteases and around the single active site of the viral proteases is conserved, a single signature pattern can be used to identify members of both groups of proteases. The consensus pattern is: [LIVMFGAC]-[LIVMTADN]-[LIVFSA]-D-[ST]-G-[STAV]-[STAPDENQ]- x-[LIVMFSTNC]-x-[LIVMFGTA], where D is the active site residue.

25

30

i) <u>GATA Family of Transcription Factors.</u> SEQ ID NO:213 corresponds to a novel member of the GATA family of transcription factors. The GATA family of transcription factors are proteins that bind to DNA sites with the consensus sequence (A/T)GATA(A/G), found within the regulatory region of a number of genes. Proteins currently known to belong

to this family are: 1) GATA-1 (Trainor, C.D., et al., Nature (1990) 343:92) (also known as Eryfl, GF-1 or NF-E1), which binds to the GATA region of globin genes and other genes expressed in erythroid cells. It is a transcriptional activator which probably serves as a general 'switch' factor for erythroid development; 2) GATA-2 (Lee, M.E., et al., J. Biol. 5 Chem. (1991) 266:16188), a transcriptional activator which regulates endothelin-1 gene expression in endothelial cells; 3) GATA-3 (Ho, I.-C., et al., EMBO J. (1991) 10:1187), a transcriptional activator which binds to the enhancer of the T-cell receptor alpha and delta genes; 4) GATA-4 (Spieth, J., et al., Mol. Cell. Biol. (1991) 11:4651), a transcriptional activator expressed in endodermally derived tissues and heart; 5) Drosophila protein pannier 10 (or DGATAa) (gene pnr) which acts as a repressor of the achaete-scute complex (as-c); 6) Bombyx mori BCFI (Drevet, J.R., et al., J. Biol. Chem. (1994) 269:10660), which regulates the expression of chorion genes; 7) Caenorhabditis elegans elt-1 and elt-2, transcriptional activators of genes containing the GATA region, including vitellogenin genes (Hawkins, M.G., et al., J. Biol. Chem. (1995) 270:14666); 8) Ustilago maydis urbs1 (Voisard, C.P.O., 15 et al., Mol. Cell. Biol. (1993) 13:7091), a protein involved in the repression of the biosynthesis of siderophores; 9) Fission yeast protein GAF2.

All these transcription factors contain a pair of highly similar 'zinc finger' type domains with the consensus sequence C-x2-C-x17-C-x2-C. Some other proteins contain a single zinc finger motif highly related to those of the GATA transcription factors. These 20 proteins are: 1) Drosophila box A-binding factor (ABF) (also known as protein serpent (gene srp)) which may function as a transcriptional activator protein and may play a key role in the organogenesis of the fat body; 2) Emericella nidulans are (Arst, H.N., Jr., et al., Trends Genet. (1989) 5:291) a transcriptional activator which mediates nitrogen metabolite repression; 3) Neurospora crassa nit-2 (Fu, Y.-H., et al., Mol. Cell. Biol. (1990) 10:1056), a 25 transcriptional activator which turns on the expression of genes coding for enzymes required for the use of a variety of secondary nitrogen sources, during conditions of nitrogen limitation; 4) Neurospora crassa white collar proteins 1 and 2 (WC-1 and WC-2), which control expression of light-regulated genes; 5) Saccharomyces cerevisiae DAL81 (or UGA43), a negative nitrogen regulatory protein; 6) Saccharomyces cerevisiae GLN3, a 30 positive nitrogen regulatory protein; 7) Saccharomyces cerevisiae GAT1; 8) Saccharomyces cerevisiae GZF3.

The consensus pattern for the GATA family is: C-x-[DN]-C-x(4,5)-[ST]-x(2)-W-[HR]-[RK]-x(3)-[GN]-x(3,4)-C-N-[AS]-C, where the four C's are zinc ligands.

j) G-Protein Alpha Subunit. SEQ ID NO:367 corresponds to a gene encoding a novel polypeptide of the G-protein alpha subunit family. Guanine nucleotide binding proteins (G-proteins) are a family of membrane-associated proteins that couple extracellularly-activated integral-membrane receptors to intracellular effectors, such as ion channels and enzymes that vary the concentration of second messenger molecules. G-proteins are composed of 3 subunits (alpha, beta and gamma) which, in the resting state, associate as a trimer at the inner face of the plasma membrane. The alpha subunit has a molecule of guanosine diphosphate (GDP) bound to it. Stimulation of the G-protein by an activated receptor leads to its exchange for GTP (guanosine triphosphate). This results in the separation of the alpha from the beta and gamma subunits, which always remain tightly associated as a dimer. Both the alpha and beta-gamma subunits are then able to interact with effectors, either individually or in a cooperative manner. The intrinsic GTPase activity of the alpha subunit hydrolyses the bound GTP to GDP. This returns the alpha subunit to its inactive conformation and allows it to reassociate with the beta-gamma subunit, thus restoring the system to its resting state.

G-protein alpha subunits are 350-400 amino acids in length and have molecular weights in the range 40-45 kDa. Seventeen distinct types of alpha subunit have been identified in mammals. These fall into 4 main groups on the basis of both sequence similarity and function: alpha-s, alpha-q, alpha-i and alpha-12 (Simon *et al.*, *Science* (1993) 252:802). Many alpha subunits are substrates for ADP-ribosylation by cholera or pertussis toxins. They are often N-terminally acylated, usually with myristate and/or palmitoylate, and these fatty acid modifications are probably important for membrane association and high- affinity interactions with other proteins. The atomic structure of the alpha subunit of the G-protein involved in mammalian vision, transducin, has been elucidated in both GTP- and GDB-bound forms, and shows considerable similarity in both primary and tertiary structure in the nucleotide-binding regions to other guanine nucleotide binding proteins, such as p21-ras and EF-Tu.

k) Phorbol Esters/Diacylglycerol Binding. SEQ ID NO:188 and 251 represent polynucleotides encoding a protein belonging to the family including phorbol esters/diacylglycerol binding proteins. Diacylglycerol (DAG) is an important second messenger. Phorbol esters (PE) are analogues of DAG and potent tumor promoters that cause a variety of physiological changes when administered to both cells and tissues. DAG activates a family of serine/threonine protein kinases, collectively known as protein kinase C (PKC) (Azzi et al., Eur. J. Biochem. (1992) 208:547). Phorbol esters can directly stimulate PKC. The N-terminal region of PKC, known as C1, has been shown (Ono et al., Proc. Natl.

Acad. Sci. USA (1989) 86:4868) to bind PE and DAG in a phospholipid and zinc-dependent fashion. The C1 region contains one or two copies (depending on the isozyme of PKC) of a cysteine-rich domain about 50 amino-acid residues long and essential for DAG/PE-binding. Such a domain has also been found in, for example, the following proteins.

(1) Diacylglycerol kinase (EC 2.7.1.107) (DGK) (Sakane et al., Nature (1990) 344:345), the enzyme that converts DAG into phosphatidate. It contains two copies of the DAG/PE-binding domain in its N-terminal section. At least five different forms of DGK are known in mammals; and

5

10

15

20

25

30

(2) N-chimaerin, a brain specific protein which shows sequence similarities with the BCR protein at its C-terminal part and contains a single copy of the DAG/PE-binding domain at its N-terminal part. It has been shown (Ahmed *et al.*, *Biochem. J.* (1990) 272:767, and Ahmed *et al.*, *Biochem. J.* (1991) 280:233) to be able to bind phorbol esters.

The DAG/PE-binding domain binds two zinc ions; the ligands of these metal ions are probably the six cysteines and two histidines that are conserved in this domain. The signature pattern completely spans the DAG/PE domain. The consensus pattern is: H-x-[LIVMFYW]-x(8,11)-C-x(2)-C-x(3)-[LIVMFC]-x(5,10)-C-x(2)-C-x(4)-[HD]-x(2)-C-x(5,9)-C. All the C and H are probably involved in binding zinc.

1) Protein Kinase. SEQ ID NOS:202, 315, 367, and 397 represent polynucleotides encoding protein kinases. Protein kinases catalyze phosphorylation of proteins in a variety of pathways, and are implicated in cancer. Eukaryotic protein kinases (Hanks S.K., et al., FASEB J. (1995) 9:576; Hunter T., Meth. Enzymol. (1991) 200:3; Hanks S.K., et al., Meth. Enzymol. (1991) 200:38; Hanks S.K., Curr. Opin. Struct. Biol. (1991) 1:369; Hanks S.K., et al., Science (1988) 241:42) are enzymes that belong to a very extensive family of proteins which share a conserved catalytic core common to both serine/threonine and tyrosine protein kinases. There are a number of conserved regions in the catalytic domain of protein kinases. Two of the conserved regions are the basis for the signature pattern in the protein kinase profile. The first region, which is located in the N-terminal extremity of the catalytic domain, is a glycine-rich stretch of residues in the vicinity of a lysine residue, which has been shown to be involved in ATP binding. The second region, which is located in the central part of the catalytic domain, contains a conserved aspartic acid residue which is important for the catalytic activity of the enzyme (Knighton D.R., et al., Science (1991) 253:407). The protein kinase profile includes two signature patterns for this second region: one specific for serine/threonine kinases and the other for tyrosine kinases. A third profile is

based on the alignment in (Hanks S.K., et al., FASEB J. (1995) 9:576) and covers the entire catalytic domain. The consensus patterns are as follows:

- Consensus pattern: [LIV]-G-{P}-G-{P}-[FYWMGSTNH]-[SGA]-{PW}[LIVCAT]-{PD}-x-[GSTACLIVMFY]-x(5,18)-[LIVMFYWCSTAR]-[AIVP] [LIVMFAGCKR]-K, where K binds ATP. The majority of known protein kinases are detected by this pattern. Proteins kinases that are not detected by this consensus include viral kinases, which are quite divergent in this region and are completely missed by this pattern.
- 2) Consensus pattern: [LIVMFYC]-x-[HY]-x-D-[LIVMFY]-K-x(2)-N-[LIVMFYCT](3), where D is an active site residue. This consensus sequence identifies most serine/threonine-specific protein kinases with only 10 exceptions. Half of the exceptions are viral kinases, while the other exceptions include Epstein-Barr virus BGLF4 and Drosophila ninaC, which have Ser and Arg, respectively, instead of the conserved Lys. These latter two protein kinases are detected by the tyrosine kinase specific pattern described below.

15

20

25

30

3) Consensus pattern: [LIVMFYC]-x-[HY]-x-D-[LIVMFY]-[RSTAC]-x(2)-N-[LIVMFYC], where D is an active site residue. All tyrosine-specific protein kinases are detected by this consensus pattern, with the exception of human ERBB3 and mouse blk. This pattern also detects most bacterial aminoglycoside phosphotransferases (Benner S., *Nature* (1987) 329:21; Kirby R., J. Mol. Evol. (1992) 30:489) and herpesviruses ganciclovir kinases (Littler E., et al., Nature (1992) 358:160), which are structurally and evolutionary related to protein kinases.

The protein kinase profile also detects receptor guanylate cyclases and 2-5A-dependent ribonucleases. Sequence similarities between these two families and the eukaryotic protein kinase family have been noticed previously. The profile also detects Arabidopsis thaliana kinase-like protein TMKL1 which seems to have lost its catalytic activity.

If a protein analyzed includes the two of the above protein kinase signatures, the probability of it being a protein kinase is close to 100%. Eukaryotic-type protein kinases have also been found in prokaryotes such as Myxococcus xanthus (Munoz-Dorado J., et al., Cell (1991) 67:995) and Yersinia pseudotuberculosis. The patterns shown above has been updated since their publication in (Bairoch A., et al., Nature (1988) 331:22).

m) <u>Protein Phosphatase 2C</u>, SEQ ID NO:256 corresponds to a polynucleotide encoding a novel protein phosphatase 2C (PP2C), which is one of the four major classes of mammalian serine/threonine specific protein phosphatases. PP2C (Wenk *et al.*, *FEBS Lett*.

(1992) 297:135) is a monomeric enzyme of about 42 Kd which shows broad substrate specificity and is dependent on divalent cations (mainly manganese and magnesium) for its activity. Three isozymes are currently known in mammals: PP2C-alpha, -beta and -gamma.

n) Protein Tyrosine Phosphatase. SEQ ID NO:382 represents a polynucleotide encoding a protein tyrosine kinase. Tyrosine specific protein phosphatases (EC 3.1.3.48) (PTPase) (Fischer et al., Science (1991) 253:401; Charbonneau et al., Annu. Rev. Cell Biol. (1992) 8:463; Trowbridge, J. Biol. Chem. (1991) 266:23517; Tonks et al., Trends Biochem. Sci. (1989) 14:497; and Hunter, Cell (1989) 58:1013) catalyze the removal of a phosphate group attached to a tyrosine residue. These enzymes are very important in the control of cell growth, proliferation, differentiation and transformation. Multiple forms of PTPase have been characterized and can be classified into two categories: soluble PTPases and transmembrane receptor proteins that contain PTPase domain(s).

5

10

15

20

25

30

Soluble PTPases include PTPN3 (H1) and PTPN4 (MEG), enzymes that contain an N-terminal band 4.1-like domain and could act at junctions between the membrane and cytoskeleton; PTPN6 (PTP-1C; HCP; SHP) and PTPN11 (PTP-2C; SH-PTP3; Syp), enzymes that contain two copies of the SH2 domain at its N-terminal extremity.

Dual specificity PTPases include DUSP1 (PTPN10; MAP kinase phosphatase-1; MKP-1) which dephosphorylates MAP kinase on both Thr-183 and Tyr-185; and DUSP2 (PAC-1), a nuclear enzyme that dephosphorylates MAP kinases ERK1 and ERK2 on both Thr and Tyr residues.

Structurally, all known receptor PTPases are made up of a variable length extracellular domain, followed by a transmembrane region and a C-terminal catalytic cytoplasmic domain. Some of the receptor PTPases contain fibronectin type III (FN-III) repeats, immunoglobulin-like domains, MAM domains or carbonic anhydrase-like domains in their extracellular region. The cytoplasmic region generally contains two copies of the PTPAse domain. The first seems to have enzymatic activity, while the second is inactive but seems to affect substrate specificity of the first. In these domains, the catalytic cysteine is generally conserved but some other, presumably important, residues are not.

PTPase domains consist of about 300 amino acids. There are two conserved cysteines and the second one has been shown to be absolutely required for activity. Furthermore, a number of conserved residues in its immediate vicinity have also been shown to be important. The consensus pattern for PTPases is: [LIVMF]-H-C-x(2)-G-x(3)-[STC]-[STAGP]-x-[LIVMFY]; C is the active site residue.

o) SH3 Domain. SEQ ID NO:306 and 386 represent polynucleotides encoding SH3 domain proteins. The Src homology 3 (SH3) domain is a small protein domain of about 60 amino acid residues first identified as a conserved sequence in the non-catalytic part of several cytoplasmic protein tyrosine kinases (e.g. Src, Abl, Lck) (Mayer et al., Nature (1988) 332:272). The domain has also been found in a variety of intracellular or membrane-associated proteins (Musacchio et al., FEBS Lett. (1992) 307:55; Pawson et al., Curr. Biol. (1993) 3:434; Mayer et al., Trends Cell Biol. (1993) 3:8; and Pawson et al., Nature (1995) 373:573).

5

10

15

20

25

30

The SH3 domain has a characteristic fold that consists of five or six beta-strands arranged as two tightly packed anti-parallel beta sheets. The linker regions may contain short helices (Kuriyan et al., Curr. Opin. Struct. Biol. (1993) 3:828). It is believed that SH3 domain-containing proteins mediate assembly of specific protein complexes via binding to proline-rich peptides (Morton et al., Curr. Biol. (1994) 4:615). In general, SH3 domains are found as single copies in a given protein, but there is a significant number of proteins with two SH3 domains and a few with 3 or 4 copies.

SH3 domains have been identified in, for example, protein tyrosine kinases, such as the Src, Abl, Bkt, Csk and ZAP70 families of kinases; mammalian phosphatidylinositol-specific phospholipase C-gamma-1 and -2; mammalian phosphatidyl inositol 3-kinase regulatory p85 subunit; mammalian Ras GTPase-activating protein (GAP); mammalian Vav oncoprotein, a guanine nucleotide exchange factor of the CDC24 family; Drosophila lethal(1)discs large-1 tumor suppressor protein (gene Dlg1); mammalian tight junction protein ZO-1; vertebrate erythrocyte membrane protein p55; Caenorhabditis elegans protein lin-2; rat protein CASK; and mammalian synaptic proteins SAP90/PSD-95, CHAPSYN-110/PSD-93, SAP97/DLG1 and SAP102. Novel SH3-domain containing polypeptides will facilitate elucidation of the role of such proteins in important biological pathways, such as ras activation.

p) <u>Trypsin</u>. SEQ ID NO:169 corresponds to a novel serine protease of the trypsin family. The catalytic activity of the serine proteases from the trypsin family is provided by a charge relay system involving an aspartic acid residue hydrogen-bonded to a histidine, which itself is hydrogen-bonded to a serine. The sequences in the vicinity of the active site serine and histidine residues are well conserved in this family of proteases (Brenner S., *Nature* (1988) 334:528). Proteases known to belong to the trypsin family include: 1) Acrosin; 2) Blood coagulation factors VII, IX, X, XI and XII, thrombin, plasminogen, and protein C; 3) Cathepsin G; 4) Chymotrypsins; 5) Complement components C1r, C1s, C2, and complement

factors B, D and I; 6) Complement-activating component of RA-reactive factor; 7) Cytotoxic cell proteases (granzymes A to H); 8) Duodenase I; 9) Elastases 1, 2, 3A, 3B (protease E), leukocyte (medullasin).; 10) Enterokinase (EC 3.4.21.9) (enteropeptidase); 11) Hepatocyte growth factor activator; 12) Hepsin; 13) Glandular (tissue) kallikreins (including EGFbinding protein types A, B, and C, NGF-gamma chain, gamma-renin, prostate specific antigen (PSA) and tonin); 14) Plasma kallikrein; 15) Mast cell proteases (MCP) 1 (chymase) to 8; 16) Myeloblastin (proteinase 3) (Wegener's autoantigen); 17) Plasminogen activators (urokinase-type, and tissue-type); 18) Trypsins I, II, III, and IV; 19) Tryptases; 20) Snake venom proteases such as ancrod, batroxobin, cerastobin, flavoxobin, and protein C activator; 21) Collagenase from common cattle grub and collagenolytic protease from Atlantic sand fiddler crab; 22) Apolipoprotein(a); 23) Blood fluke cercarial protease; 24) Drosophila trypsin like proteases: alpha, easter, snake-locus; 25) Drosophila protease stubble (gene sb); and 26) Major mite fecal allergen Der p III. All the above proteins belong to family S1 in the classification of peptidases (Rawlings N.D., et al., Meth. Enzymol. (1994) 244:19; http://www.expasy.ch/cgi-bin/lists?peptidas.txt) and originate from eukaryotic species. It should be noted that bacterial proteases that belong to family S2A are similar enough in the

10

15

20

25

30

The consensus patterns for this trypsin protein family are: 1) [LIVM]-[ST]-A-[STAG]-H-C, where H is the active site residue. All sequences known to belong to this class detected by the pattern, except for complement components C1r and C1s, pig plasminogen, bovine protein C, rodent urokinase, ancrod, gyroxin and two insect trypsins; 2) [DNSTAGC]-[GSTAPIMVQH]-x(2)-G-[DE]-S-G-[GS]-[SAPHV]- [LIVMFYWH]- [LIVMFYSTANQH], where S is the active site residue. All sequences known to belong to this family are detected by the above consensus sequences, except for 18 different proteases which have lost the first conserved glycine. If a protein includes both the serine and the histidine active site signatures, the probability of it being a trypsin family serine protease is 100%.

regions of the active site residues that they can be picked up by the same patterns.

q) <u>WD Domain, G-Beta Repeats.</u> SEQ ID NOS:188 and 335 represent novel members of the WD domain/G-beta repeat family. Beta-transducin (G-beta) is one of the three subunits (alpha, beta, and gamma) of the guanine nucleotide-binding proteins (G proteins) which act as intermediaries in the transduction of signals generated by transmembrane receptors (Gilman, *Annu. Rev. Biochem.* (1987) 56:615). The alpha subunit binds to and hydrolyzes GTP; the functions of the beta and gamma subunits are less clear but

they seem to be required for the replacement of GDP by GTP as well as for membrane anchoring and receptor recognition.

In higher eukaryotes, G-beta exists as a small multigene family of highly conserved proteins of about 340 amino acid residues. Structurally, G-beta consists of eight tandem repeats of about 40 residues, each containing a central Trp-Asp motif (this type of repeat is sometimes called a WD-40 repeat). Such a repetitive segment has been shown to exist in a number of other proteins including: human LIS1, a neuronal protein involved in type-1 lissencephaly; and mammalian coatomer beta' subunit (beta'-COP), a component of a cytosolic protein complex that reversibly associates with Golgi membranes to form vesicles that mediate biosynthetic protein transport.

5

10

The consensus pattern for the WD domain/G-Beta repeat family is: [LIVMSTAC]-[LIVMFYWSTAGC]-[LIVMSTAG]-[LIVMSTAGC]-x(2)-[DN]-x(2)-[LIVMWSTAC]-x-[LIVMFSTAG]-W-[DEN]-[LIVMFSTAGCN].

- r) wnt Family of Developmental Signaling Proteins. SEQ ID NO: 23, 291, 324, 330, 15 341, and 353 correspond to novel members of the wnt family of developmental signaling proteins. Wnt-1 (previously known as int-1), the seminal member of this family, (Nusse R., Trends Genet. (1988) 4:291) is a proto-oncogene induced by the integration of the mouse mammary tumor virus. It is thought to play a role in intercellular communication and seems to be a signalling molecule important in the development of the central nervous system 20 (CNS). The sequence of wnt-1 is highly conserved in mammals, fish, and amphibians. Wnt-1 was found to be a member of a large family of related proteins (Nusse R., et al., Cell (1992) 69:1073; McMahon A.P., Trends Genet. (1992) 8:1; Moon R.T., BioEssays (1993) 15:91) that are all thought to be developmental regulators. These proteins are known as wnt-2 (also known as irp), wnt-3, -3A, -4, -5A, -5B, -6, -7A, -7B, -8, -8B, -9 and -10. At least 25 four members of this family are present in Drosophila; one of them, wingless (wg), is implicated in segmentation polarity. All these proteins share the following features characteristics of secretory proteins: a signal peptide, several potential N-glycosylation sites and 22 conserved cysteines that are probably involved in disulfide bonds. The Wnt proteins seem to adhere to the plasma membrane of the secreting cells and are therefore likely to signal over only few cell diameters. The consensus pattern, which is based upon a highly 30 conserved region including three cysteines, is as follows: C-K-C-H-G-[LIVMT]-S-G-x-C. All sequences known to belong to this family are detected by the provided consensus pattern.
 - s) <u>Ww/rsp5/WWP Domain-Containing Proteins.</u> SEQ ID NOS:188, 379, and 395 represent polynucleotides encoding a polypeptide in the family of WW/rsp5/WWP domain-

containing proteins. The WW domain (Bork et al., Trends Biochem. Sci. (1994) 19:531; Andre et al., Biochem. Biophys. Res. Commun. (1994) 205:1201; Hofmann et al., FEBS Lett. (1995) 358:153; and Sudol et al., FEBS Lett. (1995) 369:67), also known as rsp5 or WWP), was originally discovered as a short conserved region in a number of unrelated proteins, among them dystrophin, the gene responsible for Duchenne muscular dystrophy. The domain, which spans about 35 residues, is repeated up to 4 times in some proteins. It has been shown (Chen et al., Proc. Natl. Acad. Sci. USA (1995) 92:7819) to bind proteins with particular proline-motifs, [AP]-P-P-[AP]-Y, and thus resembles somewhat SH3 domains. It appears to contain beta-strands grouped around four conserved aromatic positions, generally Trp. The name WW or WWP derives from the presence of these Trp as well as that of a conserved Pro. It is frequently associated with other domains typical for proteins in signal transduction processes.

Proteins containing the WW domain include:

5

10

25

30

- Dystrophin, a multidomain cytoskeletal protein. Its longest alternatively
 spliced form consists of an N-terminal actin-binding domain, followed by 24 spectrin-like repeats, a cysteine-rich calcium-binding domain and a C-terminal globular domain.
 Dystrophins form tetramers and is thought to have multiple functions including involvement in membrane stability, transduction of contractile forces to the extracellular environment and organization of membrane specialization. Mutations in the dystrophin gene lead to muscular dystrophy of Duchenne or Becker type. Dystrophin contains one WW domain C-terminal of the spectrin-repeats.
 - 2. Vertebrate YAP protein, which is a substrate of an unknown serine kinase. It binds to the SH3 domain of the Yes oncoprotein via a proline-rich region. This protein appears in alternatively spliced isoforms, containing either one or two WW domains.
 - 3. IQGAP, which is a human GTPase activating protein acting on ras. It contains an N-terminal domain similar to fly muscle mp20 protein and a C-terminal ras GTPase activator domain.

For the sensitive detection of WW domains, the profile spans the whole homology region as well as a pattern. The consensus for this family is: W-x(9,11)-[VFY]-[FYW]-x(6,7)-[GSTNE]-[GSTQCR]-[FYW]-x(2)-P.

t) Zinc Finger, C2H2 Type. SEQ ID NO:61, 306, and 386 correspond to polynucleotides encoding novel members of the of the C2H2 type zinc finger protein family. Zinc finger domains (Klug et al., Trends Biochem. Sci. (1987) 12:464; Evans et al., Cell (1988) 52:1; Payre et al., FEBS Lett. (1988) 234:245; Miller et al., EMBO J. (1985) 4:1609;

and Berg, *Proc. Natl. Acad. Sci. USA* (1988) 85:99) are nucleic acid-binding protein structures first identified in the Xenopus transcription factor TFIIIA. These domains have since been found in numerous nucleic acid-binding proteins. A zinc finger domain is composed of 25 to 30 amino acid residues. Two cysteine or histidine residues are positioned at both extremities of the domain, which are involved in the tetrahedral coordination of a zinc atom. It has been proposed that such a domain interacts with about five nucleotides.

Many classes of zinc fingers are characterized according to the number and positions of the histidine and cysteine residues involved in the zinc atom coordination. In the first class to be characterized, called C2H2, the first pair of zinc coordinating residues are cysteines, while the second pair are histidines. A number of experimental reports have demonstrated the zinc-dependent DNA or RNA binding property of some members of this class.

10

15

20

25

30

Mammalian proteins having a C2H2 zipper include (number in parenthesis indicates number of zinc finger regions in the protein): basonuclin (6), BCL-6/LAZ-3 (6), erythroid krueppel-like transcription factor (3), transcription factors Sp1 (3), Sp2 (3), Sp3 (3) and Sp(4) 3, transcriptional repressor YY1 (4), Wilms' tumor protein (4), EGR1/Krox24 (3), EGR2/Krox20 (3), EGR3/Pilot (3), EGR4/AT133 (4), Evi-1 (10), GLI1 (5), GLI2 (4+), GLI3 (3+), HIV-EP1/ZNF40 (4), HIV-EP2 (2), KR1 (9+), KR2 (9), KR3 (15+), KR4 (14+), KR5 (11+), HF.12 (6+), REX-1 (4), ZfX (13), ZfY (13), Zfp-35 (18), ZNF7 (15), ZNF8 (7), ZNF35 (10), ZNF42/MZF-1 (13), ZNF43 (22), ZNF46/Kup (2), ZNF76 (7), ZNF91 (36), ZNF133 (3).

In addition to the conserved zinc ligand residues, it has been shown that a number of other positions are also important for the structural integrity of the C2H2 zinc fingers. (Rosenfeld *et al.*, *J. Biomol. Struct. Dyn.* (1993) 11:557) The best conserved position is found four residues after the second cysteine; it is generally an aromatic or aliphatic residue.

The consensus pattern for C2H2 zinc fingers is: C-x(2,4)-C-x(3)-[LIVMFYWC]-x(8)-H-x(3,5)-H. The two C's and two H's are zinc ligands.

u) Zinc Finger, CCHC Class. SEQ ID NO:322 corresponds to a polynucleotide encoding a novel member of the zinc finger CCHC family. The CCHC zinc finger protein family to date has been mostly composed of retroviral gag proteins (nucleocapsid). The prototype structure of this family is from HIV. The family also contains members involved in eukaryotic gene regulation, such as C. elegans GLH-1. The consensus sequence of this family is based upon the common structure of an 18-residue zinc finger.

v) Zinc-Binding Metalloprotease Domain. SEQ ID NO:306 and 395 represent polynucleotides encoding novel members of the zinc-binding metalloprotease domain protein family. The majority of zinc-dependent metallopeptidases (with the notable exception of the carboxypeptidases) share a common pattern of primary structure (Jongeneel et al., FEBS Lett. (1989) 242:211; Murphy et al., FEBS Lett. (1991) 289:4; and Bode et al., Zoology (1996) 99:237) in the part of their sequence involved in the binding of zinc, and can be grouped together as a superfamily, known as the metzing on the basis of this sequence similarity. Examples of these proteins include: 1) Angiotensin-converting enzyme (EC 3.4.15.1) (dipeptidyl carboxypeptidase I) (ACE), the enzyme responsible for hydrolyzing angiotensin I to angiotensin II. 2) Mammalian extracellular matrix metalloproteinases (known as matrixins) (Woessner, *FASEB J.* (1991) 5:2145): MMP-1 (EC 3.4.24.7) (interstitial collagenase), MMP-2 (EC 3.4.24.24) (72 Kd gelatinase), MMP-9 (EC 3.4.24.35) (92 Kd gelatinase), MMP-7 (EC 3.4.24.23) (matrylisin), MMP-8 (EC 3.4.24.34) (neutrophil collagenase), MMP-3 (EC 3.4.24.17) (stromelysin-1), MMP-10 (EC 3.4.24.22) (stromelysin-2), and MMP-11 (stromelysin-3), MMP-12 (EC 3.4.24.65) (macrophage metalloelastase). 3) Endothelin-converting enzyme 1 (EC 3.4.24.71) (ECE-1), which processes the precursor of endothelin to release the active peptide.

10

15

20

25

30

A signature pattern which includes the two histidine and the glutamic acid residues is sufficient to detect this superfamily of proteins, having the consensus pattern: [GSTALIVN]-x(2)-H-E-[LIVMFYW]-{DEHRKP}-H-x-[LIVMFYWGSPQ]. The two H's are zinc ligands, and E is the active site residue.

Example 4: Differential Expression of Polynucleotides of the Invention: Description of Libraries and Detection of Differential Expression

The relative expression levels of the polynucleotides of the invention was assessed in several libraries prepared from various sources, including cell lines and patient tissue samples. Table 4 provides a summary of these libraries, including the shortened library name (used hereafter), the mRNA source used to prepared the cDNA library, the "nickname" of the library that is used in the tables below (in quotes), and the approximate number of clones in the library.

Table 4 Description of cDNA Libraries

Library	Description	Number of
(lib #)		Clones in this Clustering
1	Km12 L4 Human Colon Cell Line, High Metastatic Potential (derived from Km12C) "High Colon"	307133
2	Km12C Human Colon Cell Line, Low Metastatic Potential "Low Colon"	284755
3	MDA-MB-231 Human Breast Cancer Cell Line, High Metastatic Potential; micro-metastases in lung "High Breast"	326937
4	MCF7 Human Breast Cancer Cell, Non Metastatic "Low Breast"	318979
8	MV-522 Human Lung Cancer Cell Line, High Metastatic Potential "High Lung"	223620
9	UCP-3 Human Lung Cancer Cell Line, Low Metastatic Potential "Low Lung"	312503
12	Human microvascular endothelial cells (HMEC) – Untreated PCR (OligodT) cDNA library	41938
13	Human microvascular endothelial cells (HMEC) – bFGF treated PCR (OligodT) cDNA library	42100
14	Human microvascular endothelial cells (HMEC) – VEGF treated PCR (OligodT) cDNA library	42825
15	Normal Colon – UC#2 Patient PCR (OligodT) cDNA library "Normal Colon Tumor Tissue"	34285
16	Colon Tumor – UC#2 Patient PCR (OligodT) cDNA library "Normal Colon Tumor Tissue"	35625
17	Liver Metastasis from Colon Tumor of UC#2 Patient PCR (OligodT) cDNA library "High Colon Metastasis Tissue"	36984
18	Normal Colon – UC#3 Patient PCR (OligodT) cDNA library "Normal Colon Tumor Tissue"	36216
19	Colon Tumor – UC#3 Patient PCR (OligodT) cDNA library "High Colon Tumor Tissue"	41388
20	Liver Metastasis from Colon Tumor of UC#3 Patient PCR (OligodT) cDNA library "High Colon Metastasis Tissue"	30956

The KM12L4 and KM12C cell lines are described in Example 1 above. The MDA-MB-231 cell line was originally isolated from pleural effusions (Cailleau, J. Natl. Cancer. Inst. (1974) 53:661), is of high metastatic potential, and forms poorly differentiated adenocarcinoma grade II in nude mice consistent with breast carcinoma. The MCF7 cell line 5 was derived from a pleural effusion of a breast adenocarcinoma and is non-metastatic. The MV-522 cell line is derived from a human lung carcinoma and is of high metastatic potential. The UCP-3 cell line is a low metastatic human lung carcinoma cell line; the MV-522 is a high metastatic variant of UCP-3. These cell lines are well-recognized in the art as models for the study of human breast and lung cancer (see, e.g., Chandrasekaran et al., 10 Cancer Res. (1979) 39:870 (MDA-MB-231 and MCF-7); Gastpar et al., J Med Chem (1998) 41:4965 (MDA-MB-231 and MCF-7); Ranson et al., Br J Cancer (1998) 77:1586 (MDA-MB-231 and MCF-7); Kuang et al., Nucleic Acids Res (1998) 26:1116 (MDA-MB-231 and MCF-7); Varki et al., Int J Cancer (1987) 40:46 (UCP-3); Varki et al., Tumour Biol. (1990) 11:327; (MV-522 and UCP-3); Varki et al., Anticancer Res. (1990) 10:637; (MV-522); 15 Kelner et al., Anticancer Res (1995) 15:867 (MV-522); and Zhang et al., Anticancer Drugs (1997) 8:696 (MV522)). The samples of libraries 15-20 are derived from two different patients (UC#2, and UC#3).

Each of the libraries is composed of a collection of cDNA clones that in turn are representative of the mRNAs expressed in the indicated mRNA source. In order to facilitate the analysis of the millions of sequences in each library, the sequences were assigned to clusters. The concept of "cluster of clones" is derived from a sorting/grouping of cDNA clones based on their hybridization pattern to a panel of roughly 300 7bp oligonucleotide probes (see Drmanac et al., Genomics (1996) 37(1):29). Random cDNA clones from a tissue library are hybridized at moderate stringency to 300 7bp oligonucleotides. Each oligonucleotide has some measure of specific hybridization to that specific clone. The combination of 300 of these measures of hybridization for 300 probes equals the "hybridization signature" for a specific clone. Clones with similar sequence will have similar hybridization signatures. By developing a sorting/grouping algorithm to analyze these signatures, groups of clones in a library can be identified and brought together computationally. These groups of clones are termed "clusters". Depending on the stringency of the selection in the algorithm (similar to the stringency of hybridization in a classic library cDNA screening protocol), the "purity" of each cluster can be controlled. For example, artifacts of clustering may occur in computational clustering just as artifacts can occur in "wet-lab" screening of a cDNA library with 400 bp cDNA fragments, at even the

20

25

30

highest stringency. The stringency used in the implementation of cluster herein provides groups of clones that are in general from the same cDNA or closely related cDNAs. Closely related clones can be a result of different length clones of the same cDNA, closely related clones from highly related gene families, or splice variants of the same cDNA.

5

10

15

20

25

30

Differential expression for a selected cluster was assessed by first determining the number of cDNA clones corresponding to the selected cluster in the first library (Clones in 1st), and the determining the number of cDNA clones corresponding to the selected cluster in the second library (Clones in 2nd). Differential expression of the selected cluster in the first library relative to the second library is expressed as a "ratio" of percent expression between the two libraries. In general, the "ratio" is calculated by: 1) calculating the percent expression of the selected cluster in the first library by dividing the number of clones corresponding to a selected cluster in the first library by the total number of clones analyzed from the first library; 2) calculating the percent expression of the selected cluster in the second library by dividing the number of clones corresponding to a selected cluster in a second library by the total number of clones analyzed from the second library; 3) dividing the calculated percent expression from the first library by the calculated percent expression from the second library. If the "number of clones" corresponding to a selected cluster in a library is zero, the value is set at 1 to aid in calculation. The formula used in calculating the ratio takes into account the "depth" of each of the libraries being compared, i.e., the total number of clones analyzed in each library.

In general, a polynucleotide is said to be significantly differentially expressed between two samples when the ratio value is greater than at least about 2, preferably greater than at least about 3, more preferably greater than at least about 5, where the ratio value is calculated using the method described above. The significance of differential expression is determined using a z score test (Zar, <u>Biostatistical Analysis</u>, Prentice Hall, Inc., USA, "Differences between Proportions," pp 296-298 (1974).

Tables 5 to 7 (inserted before the claims) show the number of clones in each of the above libraries that were analyzed for differential expression. Examples of differentially expressed polynucleotides of particular interest are described in more detail below.

Example 5: Polynucleotides Differentially Expressed in High Metastatic Potential Breast

Cancer Cells Versus Low Metastatic Breast Cancer Cells

A number of polynucleotide sequences have been identified that are differentially expressed between cells derived from high metastatic potential breast cancer tissue and low

metastatic breast cancer cells. Expression of these sequences in breast cancer can be valuable in determining diagnostic, prognostic and/or treatment information. For example, sequences that are highly expressed in the high metastatic potential cells can be indicative of increased expression of genes or regulatory sequences involved in the metastatic process. A patient sample displaying an increased level of one or more of these polynucleotides may thus warrant more aggressive treatment. In another example, sequences that display higher expression in the low metastatic potential cells can be associated with genes or regulatory sequences that inhibit metastasis, and thus the expression of these polynucleotides in a sample may warrant a more positive prognosis than the gross pathology would suggest.

The differential expression of these polynucleotides can be used as a diagnostic marker, a prognostic marker, for risk assessment, patient treatment and the like. These polynucleotide sequences can also be used in combination with other known molecular and/or biochemical markers.

10

15

The following table summarizes identified polynucleotides with differential expression between high metastatic potential breast cancer cells and low metastatic potential breast cancer cells.

WO 99/33982 PCT/US98/27610

 Table 8.
 Differentially expressed polynucleotides: High metastatic potential breast cancer vs. low metastatic breast cancer cells

SEQ ID	Differential Expression	Cluster	Clones in		Ratio
NO.		ID	1 st	2 nd	
9	High Breast > Low Breast (Lib3 > Lib4)	2623	Library 31	Library 4	7.561356
42	High Breast > Low Breast (Lib3 > Lib4)	307	196	7 5	2.549721
52	High Breast > Low Breast (Lib3 > Lib4)	19	1364	525	2.534854
62	High Breast > Low Breast (Lib3 > Lib4)	2623	31	4	7.561356
65	High Breast > Low Breast (Lib3 > Lib4)	5749	9	0	8.780930
66	High Breast > Low Breast (Lib3 > Lib4)	6455	6	0	5.853953
68	• • • • • • • • • • • • • • • • • • • •		6		
114	High Breast > Low Breast (Lib3 > Lib4) High Breast > Low Breast (Lib3 > Lib4)	6455 2030		0 4	5.853953
123	` ,		32		7.805271
144	High Breast > Low Breast (Lib3 > Lib4)	3389	13	2 2	6.341782
	High Breast > Low Breast (Lib3 > Lib4)	4623	12		5.853953
172 178	High Breast > Low Breast (Lib3 > Lib4)	102	278	116	2.338217
	High Breast > Low Breast (Lib3 > Lib4)	3681	10	1	9.756589
214	High Breast > Low Breast (Lib3 > Lib4)	3900	8	1	7.805271
219	High Breast > Low Breast (Lib3 > Lib4)	3389	13	2	6.341782
223	High Breast > Low Breast (Lib3 > Lib4)	1399	19	7	2.648217
258	High Breast > Low Breast (Lib3 > Lib4)	4837	10	0	9.756589
317	High Breast > Low Breast (Lib3 > Lib4)	1577	25	3	8.130490
379	High Breast > Low Breast (Lib3 > Lib4)	260	27	2	13.17139
4	Low Breast > High Breast (Lib4 > Lib3)	3706	22	4	5.637215
39	Low Breast > High Breast (Lib4 > Lib3)	4016	6	0	6.149690
74	Low Breast > High Breast (Lib4 > Lib3)	6268	18	3	6.149690
81	Low Breast > High Breast (Lib4 > Lib3)	40392	8	1	8.199586
130	Low Breast > High Breast (Lib4 > Lib3)	13183	7	0	7.174638
157	Low Breast > High Breast (Lib4 > Lib3)	5417	9	0	9.224535
162	Low Breast > High Breast (Lib4 > Lib3)	9685	7	0 .	7.174638
183	Low Breast > High Breast (Lib4 > Lib3)	7337	16	3	5.466391
202	Low Breast > High Breast (Lib4 > Lib3)	6124	9	1	9.224535
298	Low Breast > High Breast (Lib4 > Lib3)	1037	22	4	5.637215
338	Low Breast > High Breast (Lib4 > Lib3)	689	36	17	2.170478
384	Low Breast > High Breast (Lib4 > Lib3)	697	72	30	2.459876
386	Low Breast > High Breast (Lib4 > Lib3)	4568	9	0	9.224535
388	Low Breast > High Breast (Lib4 > Lib3)	5622	13	2	6.662164

5 Example 6: Polynucleotides Differentially Expressed in High Metastatic Potential Lung Cancer Cells Versus Low Metastatic Lung Cancer Cells

A number of polynucleotide sequences have been identified that are differentially expressed between cells derived from high metastatic potential lung cancer tissue and low metastatic lung cancer cells. Expression of these sequences in lung cancer tissue can be valuable in determining diagnostic, prognostic and/or treatment information. For example, sequences that are highly expressed in the high metastatic potential cells are associated can be indicative of increased expression of genes or regulatory sequences involved in the metastatic process. A patient sample displaying an increased level of one or more of these

10

polynucleotides may thus warrant more aggressive treatment. In another example, sequences that display higher expression in the low metastatic potential cells can be associated with genes or regulatory sequences that inhibit metastasis, and thus the expression of these polynucleotides in a sample may warrant a more positive prognosis than the gross pathology would suggest.

The differential expression of these polynucleotides can be used as a diagnostic marker, a prognostic marker, for risk assessment, patient treatment and the like. These polynucleotide sequences can also be used in combination with other known molecular and/or biochemical markers.

5

10

15

20

The following table summarizes identified polynucleotides with differential expression between high metastatic potential lung cancer cells and low metastatic potential lung cancer cells:

Table 9 Differentially expressed polynucleotides: High metastatic potential lung cancer vs. low metastatic lung cancer cells

SEQ ID	Differential Expression	Cluster		Clanca :-	Datis
NO.	Differential Expression	ID	Clones in 1 st	Clones in 2 nd	Ratio
			Library	Library	
400	High Lung > Low Lung (Lib8 > Lib 9)	14929	23	16	2.008868
9	High Lung > Low Lung (Lib8 > Lib9)	2623	6	1	8.384840
34	High Lung > Low Lung (Lib8 > Lib9)	5832	5	0.	6.987366
42	High Lung > Low Lung (Lib8 > Lib9)	307	79	27	4.088903
62	High Lung > Low Lung (Lib8 > Lib9)	2623	6	1	8.384840
74	High Lung > Low Lung (Lib8 > Lib9)	6268	5	0	6.987366
106	High Lung > Low Lung (Lib8 > Lib9)	10717	8	Ö	11.17978
119	High Lung > Low Lung (Lib8 > Lib9)	8	1355	122	15.52111
361	High Lung > Low Lung (Lib8 > Lib9)	1120	5	0	6.987366
369	High Lung > Low Lung (Lib8 > Lib9)	2790	6	0	8.384840
371	High Lung > Low Lung (Lib8 > Lib9)	8847	6	1	8.384840
379	High Lung > Low Lung (Lib8 > Lib9)	260	15	0	20.96210
395	High Lung > Low Lung (Lib8 > Lib9)	13538	9	1	12.57726
135	Low Lung > High Lung (Lib9 > Lib8)	36313	30	1	21.46731
154	Low Lung > High Lung (Lib9 > Lib8)	5345	27	6	3.220097
160	Low Lung > High Lung (Lib9 > Lib8)	4386	21	3	5.009039
260	Low Lung > High Lung (Lib9 > Lib8)	4141	27	4	4.830145
308	Low Lung > High Lung (Lib9 > Lib8)	15855	213	12	12.70149
323	Low Lung > High Lung (Lib9 > Lib8)	5257	25	5	3.577885
349	Low Lung > High Lung (Lib9 > Lib8)	2797	14	1	10.01807
381	Low Lung > High Lung (Lib9 > Lib8)	2428	19	2	6.797982

Example 7: Polynucleotides Differentially Expressed in High Metastatic Potential Colon

Cancer Cells Versus Low Metastatic Colon Cancer Cells

A number of polynucleotide sequences have been identified that are differentially expressed between cells derived from high metastatic potential colon cancer tissue and low

metastatic colon cancer cells. Expression of these sequences in colon cancer tissue can be valuable in determining diagnostic, prognostic and/or treatment information. For example, sequences that are highly expressed in the high metastatic potential cells can be indicative of increased expression of genes or regulatory sequences involved in the metastatic process. A patient sample displaying an increased level of one or more of these polynucleotides may thus warrant more aggressive treatment. In another example, sequences that display higher expression in the low metastatic potential cells can be associated with genes or regulatory sequences that inhibit metastasis, and thus the expression of these polynucleotides in a sample may warrant a more positive prognosis than the gross pathology would suggest.

5

10

25

The differential expression of these polynucleotides can be used as a diagnostic marker, a prognostic marker, for risk assessment, patient treatment and the like. These polynucleotide sequences can also be used in combination with other known molecular and/or biochemical markers.

The following table summarizes identified polynucleotides with differential expression between high metastatic potential colon cancer cells and low metastatic potential colon cancer cells:

Table 11: Differentially expressed polynucleotides: High metastatic potential colon cancer vs. low metastatic colon cancer cells

SEQ ID NO.	Differential Expression	Cluster ID	Clones in 1 st	Clones in 2 nd	Ratio
			Library	Library	
1	High Colon > Low Colon (Lib1 > Lib2)	6660	7	0	6.489973
176	High Colon > Low Colon (Lib1 > Lib2)	3765	19	6	2.935940
241	High Colon > Low Colon (Lib1 > Lib2)	4275	11	2	5.099264
362	High Colon > Low Colon (Lib1 > Lib2)	6420	8	0	7.417112
374	High Colon > Low Colon (Lib1 > Lib2)	6420	8	0	7.417112
39	Low Colon > High Colon (Lib2 > Lib1)	4016	14	5	3.020043
97	Low Colon > High Colon (Lib2 > Lib1)	945	21	9	2.516702
134	Low Colon > High Colon (Lib2 > Lib1)	2464	19	5	4.098630
317	Low Colon > High Colon (Lib2 > Lib1)	1577	40	12	3.595289
357	Low Colon > High Colon (Lib2 > Lib1)	4309	13	4	3.505407

20 Example 8: Polynucleotides Differentially Expressed at Higher Levels in High Metastatic Potential Colon Cancer Patient Tissue Versus Normal Patient Tissue

A number of polynucleotide sequences have been identified that are differentially expressed between cells derived from high metastatic potential colon cancer tissue and normal tissue. Expression of these sequences in colon cancer tissue can be valuable in determining diagnostic, prognostic and/or treatment information. For example, sequences that are highly expressed in the high metastatic potential cells are associated can be

indicative of increased expression of genes or regulatory sequences involved in the advanced disease state which involves processes such as angiogenesis, dedifferentiation, cell replication, and metastasis. A patient sample displaying an increased level of one or more of these polynucleotides may thus warrant more aggressive treatment.

The differential expression of these polynucleotides can be used as a diagnostic marker, a prognostic marker, for risk assessment, patient treatment and the like. These polynucleotide sequences can also be used in combination with other known molecular and/or biochemical markers.

5

20

The following table summarizes identified polynucleotides with differential expression between high metastatic potential colon cancer cells and normal colon cells:

Table 11: Differentially expressed polynucleotides: High metastatic potential colon tissue vs. normal colon tissue

SEQ ID NO.	Differential Expression	Cluster ID	Clones in 1 st	Clones in 2 nd	Ratio
			Library	Library	
52	High Colon Metastasis Tissue > Normal	19	10	0	11.69918
	Colon Tissue of UC#3 (Lib20 > Lib18)				
52	High Colon Metastasis Tissue > Normal	19	13	2	6.025646
	Tissue in UC#2 (Lib17 > Lib15)				
172	High Colon Metastasis Tissue > Normal	102	65	22	2.738930
	Tissue in UC#2 (Lib17 > Lib15)				

15 Example 9: Polynucleotides Differentially Expressed at Higher Levels in High Colon Tumor Potential Patient Tissue Versus Metastasized Colon Cancer Patient Tissue

A number of polynucleotide sequences have been identified that are differentially expressed between cells derived from high tumor potential colon cancer tissue and cells derived from high metastatic potential colon cancer cells. Expression of these sequences in colon cancer tissue can be valuable in determining diagnostic, prognostic and/or treatment information associated with the transformation of precancerous tissue to malignant tissue. This information can be useful in the prevention of achieving the advanced malignant state in these tissues, and can be important in risk assessment for a patient.

The following table summarizes identified polynucleotides with differential expression between high tumor potential colon cancer tissue and cells derived from high metastatic potential colon cancer cells:

Table 12: Differentially expressed polynucleotides: High tumor potential colon tissue vs. metastatic colon tissue

SEQ ID NO.	Differential Expression	Cluster ID	Clones in 1 st Library	Clones in 2 nd Library	Ratio
52	High Colon Tumor Tissue > Metastasis Tissue of UC#3 (Lib19 > Lib20)	19	69	10	5.160829
119	High Colon Tumor Tissue > Metastasis Tissue of UC#3 (Lib19 > Lib20)	8	14	1	10.47124
172	High Colon Tumor Tissue > Metastasis Tissue of UC#3 (Lib19 > Lib20)	102	43	10	3.216168

5 Example 10: Polynucleotides Differentially Expressed at Higher Levels in High Tumor Potential Colon Cancer Patient Tissue Versus Normal Patient Tissue

10

15

A number of polynucleotide sequences have been identified that are differentially expressed between cells derived from high tumor potential colon cancer tissue and normal tissue. Expression of these sequences in colon cancer tissue can be valuable in determining diagnostic, prognostic and/or treatment information associated with the prevention of achieving the malignant state in these tissues, and can be important in risk assessment for a patient. For example, sequences that are highly expressed in the potential colon cancer cells are associated with or can be indicative of increased expression of genes or regulatory sequences involved in early tumor progression. A patient sample displaying an increased level of one or more of these polynucleotides may thus warrant closer attention or more frequent screening procedures to catch the malignant state as early as possible.

The following table summarizes identified polynucleotides with differential expression between high metastatic potential colon cancer cells and normal colon cells:

20 **Table 13:** Differentially expressed polynucleotides: High tumor potential colon tissue vs. normal colon tissue

SEQ ID NO.	Differential Expression	Cluster ID	Clones in 1 st Library	Clones in 2 nd Library	Ratio
52	High Colon Tumor Tissue > Normal Tissue of UC#2 (Lib16 > Lib15)	19	13 '	2	6.255508
288	High Colon Tumor Tissue > Normal Tissue of UC#2 (Lib16 > Lib15)	1267	7	0	6.125253
52	High Colon Tumor Tissue > Normal Tissue of UC#3 (Lib19 > Lib18)	19	69	0	60.37750
119	High Colon Tumor Tissue > Normal Tissue of UC#3 (Lib19 > Lib18)	8	14	1	12.25050
172	High Colon Tumor Tissue > Normal Tissue of UC#3 (Lib19 > Lib18)	102	43	7	5.375222

Example 11: Polynucleotides Differentially Expressed Across Multiple Libraries

A number of polynucleotide sequences have been identified that are differentially expressed between cancerous cells and normal cells across all three tissue types tested (i.e., breast, colon, and lung). Expression of these sequences in a tissue or any origin can be valuable in determining diagnostic, prognostic and/or treatment information associated with the prevention of achieving the malignant state in these tissues, and can be important in risk assessment for a patient. These polynucleotides can also serve as non-tissue specific markers of, for example, risk of metastasis of a tumor. The following table summarizes identified polynucleotides that were differentially expressed but without tissue typespecificity in the breast, colon, and lung libraries tested.

10

Table 14: Polynucleotides Differentially Expressed Across Multiple Library Comparisons

SEQ ID NO.	Differential Expression	Cluster ID	Clones in	Clones in	Ratio
			Library	Library	
9	High Breast > Low Breast (Lib3 > Lib4)	2623	31	4	7.561356
	High Lung > Low Lung (Lib8 > Lib9)	2623	6	1	8.384840
39	Low Breast > High Breast (Lib4 > Lib3)	4016	6	0	6.149690
	Low Colon > High Colon (Lib2 > Lib1)	4016	14	5	3.020043
42	High Breast > Low Breast (Lib3 > Lib4)	307	196	75	2.549721
	High Lung > Low Lung (Lib8 > Lib9)	307	79	27	4.088903
52	High Breast > Low Breast (Lib3 > Lib4)	19	1364	525	2.534854
	High Colon Metastasis Tissue > Normal	19	10	0	11.69918
	Colon Tissue of UC#3 (Lib20 > Lib18)				
	High Colon Metastasis Tissue > Normal	19	13	2	6.025646
	Tissue in UC#2 (Lib17 > Lib15)				
	High Colon Tumor Tissue > Metastasis	19	69	10	5.160829
	Tissue of UC#3 (Lib19 > Lib20)				
	High Colon Tumor Tissue > Normal Tissue	19	13	2	6.255508
	of UC#2 (Lib16 > Lib15)				
	High Colon Tumor Tissue > Normal Tissue	19	69	0	60.37750
	of UC#3 (Lib19 > Lib18)				
62	High Breast > Low Breast (Lib3 > Lib4)	2623	31	4	7.561356
	High Lung > Low Lung (Lib8 > Lib9)	2623	6	1	8.384840
74	High Lung > Low Lung (Lib8 > Lib9)	6268	5	0	6.987366
	Low Breast > High Breast (Lib4 > Lib3)	6268	18	3	6.149690
119	High Colon Tumor Tissue > Metastasis	8	14	1	10.47124
	Tissue of UC#3 (Lib19 > Lib20)				
	High Colon Tumor Tissue > Normal Tissue	8	14	1	12.25050
	of UC#3 (Lib19 > Lib18)				
	High Lung > Low Lung (Lib8 > Lib9)	8	1355	122	15.52111
172	High Breast > Low Breast (Lib3 > Lib4)	102	278	116	2.338217
	High Colon Metastasis Tissue > Normal	102	65	22	2.738930
	Tissue in UC#2 (Lib17 > Lib15)				•
	High Colon Tumor Tissue > Metastasis	102	43	10	3.216168

WO S	99/33982			PCT	US98/27610
SEQ ID NO.	Differential Expression	Cluster ID	Clones in 1 st Library	Clones in 2 nd Library	Ratio
	Tissue of UC#3 (Lib19 > Lib20) High Colon Tumor Tissue > Normal Tissue of UC#3 (Lib19 > Lib18)	102	43	7	5.375222
317	High Breast > Low Breast (Lib3 > Lib4) Low Colon > High Colon (Lib2 > Lib1)	1577 15 7 7	25 40	3 12	8.130490 3.595289
379	High Breast > Low Breast (Lib3 > Lib4) High Lung > Low Lung (Lib8 > Lib9)	260 260	27 15	2 0	13.17139 20.96210

Example 12: Polynucleotides Exhibiting Colon-Specific Expression

The cDNA libraries described herein were also analyzed to identify those polynucleotides that were specifically expressed in colon cells or tissue, *i.e.*, the polynucleotides were identified in libraries prepared from colon cell lines or tissue, but not in libraries of breast or lung origin. The polynucleotides that were expressed in a colon cell line and/or in colon tissue, but were present in the breast or lung cDNA libraries described herein, are shown in Table 15.

10 Table 15 Polynucleotides specifically expressed in colon cells.

SEQ ID	Cluster	Clones in	Clones in	SEQ ID	Cluster	Clones in	Clones in
NO.		1 st Library	[,] 2 nd Library	NO.		1 st Library	
5	36535	2	0	229	39648	2	0
13	27250	2	0	231	85064	1	0
19	16283	3	0	234	39391	2	0
24	16918	4	0	236	39498	2	0
26	40108	2	0	242	22113	3	0
32	32663	1	1	247	19255	2	0
43	39833	2	0	252	22814	3	0
47	18957	3	0	253	39563	2	0
48	39508	2	0	254	39420	2	0
56	7005	8	2	257	39412	2	0
58	18957	3	0	261	38085	2	0
59	18957	3	0	265	40054	1	0
60	16283	3	0	266	39423	2	0
64	13238	4	1	267	39453	2	0
70	39442	2	0	270	78091	1	0
71	17036	4	0	276	39168	2	0
73	7005	8	2	277	39458	2	0
83	11476	6	0	278	14391	3	1
86	39425	2	0	279	39195	2	0
94	21847	2	1	282	12977	5	0
100	16731	3	1	284	14391	3	1
101	12439	4	0	290	16347	4	0
113	17055	4	0	293	39478	2	0
120	67907	1	0	294	39392	2	0
121	12081	4	0	297	39180	2	0
124	39174	2	0	299	6867	7	3

WO 9	9/33982					PC	CT/US98/27610
SEQ ID	Cluster		Clones in	SEQ ID	Cluster	Clones in	Clones in
NO.		1 st Library	2 nd Library			1 st Library	2 nd Library
126	8210	2	6	301	41633	1	1
128	40455	2	0	302	23218	3	0
139	22195	3	0	303	39380	2	0
143	86859	1	0	309	84328	1	0
150	8672	4	4	314	14367	3	0
153	16977	4	0	320	39886	2	0
156	17036	4	0	324	9061	5	2
159	40044	2	0	327	16653	3	1
161	40044	2	0	328	16985	4	0
163	22155	3	0	329	12977	5	0
166	15066	4	0	330	9061	5	2
170	11465	5	0	333	16392	3	0
176	3765	19	6	342	39486	2	0
181	86110	1	0	344	6874	6	3
182	39648	2	0	345	6874	6	3
185	17076	4	0	353	11494	4	0
186	22794	2	0	354	17062	3	0
187	39171	2	0	355	16245	4	0
	40455	2	0	356	83103	1	0
199	16317	3	0	358	13072	4	1
210	39186	2	0	366	14364	1	0
211	40122	2	0	368	84182	1	0
218	26295	2	0	372	56020	1	0
	4665	5	9	389	7514	5	3
226	82498	1	0	391	7570	5	3
227	35702	2	0	393	23210	3	0

In addition to the above, SEQ ID NOS:159 and 161 were each present in one clone in each of Lib16 (Normal Colon Tumor Tissue), and SEQ ID NOS:344 and 345 were each present in one clone in Lib17 (High Colon Metastasis Tissue). No clones corresponding to the colon-specific polynucleotides in the table above were present in any of Libraries 3, 4, 8, or 9. The polynucleotide provided above can be used as markers of cells of colon origin, and find particular use in reference arrays, as described above.

5

10

15

Example 13: Identification of Contiguous Sequences Having a Polynucleotide of the Invention

The novel polynucleotides were used to screen publicly available and proprietary databases to determine if any of the polynucleotides of SEQ ID NOS:1-404 would facilitate identification of a contiguous sequence, e.g., the polynucleotides would provide sequence that would result in 5' extension of another DNA sequence, resulting in production of a longer contiguous sequence composed of the provided polynucleotide and the other DNA sequence(s). Contiging was performed using the AssemblyLign program with the following

parameters: 1) Overlap: Minimum Overlap Length: 30; % Stringency: 50; Minimum Repeat Length: 30; Alignment: gap creation penalty: 1.00, gap extension penalty: 1.00; 2) Consensus: % Base designation threshold: 80.

5

10

15

20

25

Using these parameters, 44 polynucleotides provided contiged sequences. These contiged sequences are provided as SEQ ID NOS:801-844. The contiged sequences can be correlated with the sequences of SEQ ID NOS:1-404 upon which the contiged sequences are based by identifying those sequences of SEQ ID NOS:1-404 and the contiged sequences of SEQ ID NOS:801-844 that share the same clone name in Table 1. It should be noted that of these 44 sequences that provided a contiged sequence, the following members of that group of 44 did not contig using the overlap settings indicated in parentheses (Stringency/Overlap): SEQ ID NO:804 (30%/10); SEQ ID NO:810 (20%/20); SEQ ID NO:812 (30%/10); SEQ ID NO:814 (40%/20); SEQ ID NO:816 (30%/10); SEQ ID NO:832 (30%/10); SEQ ID NO:840 (20%/20); SEQ ID NO:841 (40%/20). To generalize, the indicated polynucleotides did not contig using a minimum 20% stringency, 10 overlap. There was a corresponding increase in the number of degenerate codons in these sequences.

The contiged sequences (SEQ ID NO:801-844) thus represent longer sequences that encompass a polynucleotide sequence of the invention. The contiged sequences were then translated in all three reading frames to determine the best alignment with individual sequences using the BLAST programs as described above for SEQ ID NOS:1-404 and the validation sequences SEQ ID NOS:405-800. Again the sequences were masked using the XBLAST profram for masking low complexity as described above in Example 1 (Table 2). Several of the contiged sequences were found to encode polypeptides having characteristics of a polypeptide belonging to a known protein families (and thus represent new members of these protein families) and/or comprising a known functional domain (Table 16). Thus the invention encompasses fragments, fusions, and variants of such polynucleotides that retain biological activity associated with the protein family and/or functional domain identified herein.

Table 16. Profile hits using contiged sequences

SEQ ID NO.	Sequence Name	Profile	Start (Stop)	Score
809	Contig_RTA00000177AF.n.18.3. Seq_THC123051	ATPases	778 (1612)	6040
824	Contig_RTA00000187AF.g.24.1. Seq_THC168636	homeobox	531 (707)	12080
824	Contig_RTA00000187AF.g.24.1. Seq_THC168636	MAP kinase kinase	769 (1494)	5784
833	Contig_RTA00000190AF.j.4.1. Seq_THC228776	protein kinase	170 (1010)	5027
833	Contig_RTA00000190AF.j.4.1. Seq_THC228776	protein kinase	170 (1010)	5027

All stop/start sequences are provided in the forward direction.

10

15

20

The profiles for the ATPases (AAA) and protein kinase families are described above in Example 2. The homeobox and MAP kinase kinase protein families are described further below.

Homeobox domain. The 'homeobox' is a protein domain of 60 amino acids (Gehring In: Guidebook to the Homeobox Genes, Duboule D., Ed., pp1-10, Oxford University Press, Oxford, (1994); Buerglin In: Guidebook to the Homeobox Genes, pp25-72, Oxford University Press, Oxford, (1994); Gehring Trends Biochem. Sci. (1992) 17:277-280; Gehring et al Annu. Rev. Genet. (1986) 20:147-173; Schofield Trends Neurosci. (1987) 10:3-6; http://copan.bioz.unibas.ch/ homeo.html) first identified in number of Drosophila homeotic and segmentation proteins. It is extremely well conserved in many other animals, including vertebrates. This domain binds DNA through a helix-turn-helix type of structure. Several proteins that contain a homeobox domain play an important role in development. Most of these proteins are sequence-specific DNA-binding transcription factors. The homeobox domain is also very similar to a region of the yeast mating type proteins. These are sequence-specific DNA-binding proteins that act as master switches in yeast differentiation by controlling gene expression in a cell type-specific fashion.

A schematic representation of the homeobox domain is shown below. The helix-turn-helix region is shown by the symbols 'H' (for helix), and 't' (for turn).

The pattern detects homeobox sequences 24 residues long and spans positions 34 to 57 of the homeobox domain. The consensus pattern is as follows: [LIVMFYG]-[ASLVR]-x(2)-[LIVMSTACN]-x-[LIVM]-x(4)-[LIV]-[RKNQESTAIY]-[LIVFSTNKH]-W-[FYVC]-x-[NDQTAH]-x(5)-[RKNAIMW].

5

10

15

20

25

30

MAP kinase kinase (MAPKK). MAP kinases (MAPK) are involved in signal transduction, and are important in cell cycle and cell growth controls. The MAP kinase kinases (MAPKK) are dual-specificity protein kinases which phosphorylate and activate MAP kinases. MAPKK homologues have been found in yeast, invertebrates, amphibians, and mammals. Moreover, the MAPKK/MAPK phosphorylation switch constitutes a basic module activated in distinct pathways in yeast and in vertebrates. MAPKK regulation studies have led to the discovery of at least four MAPKK convergent pathways in higher organisms. One of these is similar to the yeast pheromone response pathway which includes the stell protein kinase. Two other pathways require the activation of either one or both of the serine/threonine kinase-encoded oncogenes c-Raf-1 and c-Mos. Additionally, several studies suggest a possible effect of the cell cycle control regulator cyclin-dependent kinase 1 (cdc2) on MAPKK activity. Finally, MAPKKs are apparently essential transducers through which signals must pass before reaching the nucleus. For review, see, e.g., Biologique Biol Cell (1993) 79:193-207; Nishida et al., Trends Biochem Sci (1993) 18:128-31; Ruderman Curr Opin Cell Biol (1993) 5:207-13; Dhanasekaran et al., Oncogene (1998) 17:1447-55; Kiefer et al., Biochem Soc Trans (1997) 25:491-8; and Hill, Cell Signal (1996) 8:533-44.

Those skilled in the art will recognize, or be able to ascertain, using not more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such specific embodiments and equivalents are intended to be encompassed by the following claims.

All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference. The citation of any publication is for its disclosure prior to the filing date and should not be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention.

Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it is readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.

Deposit Information:

5

10

The following materials were deposited with the American Type Culture Collection:

CMCC = (Chiron Master Culture Collection)

Cell Lines Deposited with ATCC

Cell Line	Deposit Date	ATCC Accession No.	CMCC Accession No.
KM12L4-A	March 19, 1998	CRL-12496	11606
Km12C	May 15, 1998	CRL-12533	11611
MDA-MB-231	May 15, 1998	CRL-12532	10583
MCF-7	October 9, 1998	CRL-12584	10377

WO 99/33982 CDNA Library Deposits

cDNA Library ES1 - ATCC# Deposit Date - December 22, 1998

F	,	
Clone Name	Cluster ID	Sequence Name
M00001395A:C03	4016	79.A1.sp6:130016.Seq
M00001395A:C03	4016	RTA00000118A.c.4.1
M00001449A:D12	3681	RTA00000131A.g.15.2
M00001449A:D12	3681	79.E1.sp6:130064.Seq
M00001452A:D08	1120	79.C2.sp6:130041.Seq
M00001452A:D08	1120	RTA00000118A.p.15.3
M00001513A:B06	4568	79.D4.sp6:130055.Seq
M00001513A:B06	4568	RTA00000122A.d.15.3
M00001517A:B07	4313	79.F4.sp6:130079.Seq
M00001517A:B07	4313	RTA00000122A.n.3.1
M00001533A:C11	2428	RTA00000123A.1.21.1
M00001533A:C11	2428	79.A5.sp6:130020.Seq
M00001533A:C11	2428	RTA00000123A.I.21.I.Seq THC205063
M00001542A:A09	22113	79.F5.sp6:130080.Seq
M00001542A:A09	22113	RTA00000125A.c.7.1

cDNA Library ES2 - ATCC# Deposit Date - December 22, 1998

	,	
Clone Name	Cluster ID	Sequence Name
M00001343C:F10	2790	80.E1.sp6:130256.Seq
M00001343C:F10	2790	RTA00000177AF.e.2.1.Seq_THC229461
M00001343C:F10	2790	RTA00000177AF.e.2.1
M00001343D:H07	23255	100.C1.sp6:131446.Seq
M00001343D:H07	23255	RTA00000177AF.e.14.3.Seq_THC228776
M00001343D:H07	23255	80.F1.sp6:130268.Seq
M00001343D:H07	23255	RTA00000177AF.e.14.3
M00001345A:E01	6420	172.E1.sp6:133925.Seq
M00001345A:E01	6420	RTA00000177AF.f.10.3
M00001345A:E01	6420	RTA00000177AF.f.10.3.Seq_THC226443
M00001345A:E01	6420	80.G1.sp6:130280.Seq
M00001347A:B10	13576	80.D2.sp6:130245.Seq
M00001347A:B10	13576	100.E1.sp6:131470.Seq
M00001347A:B10	13576	RTA00000177AF.g.16.1
M00001353A:G12	8078	80.E3.sp6:130258.Seq
M00001353A:G12	8078	RTA00000177AR.I.13.1
M00001353A:G12	8078	172.C3.sp6:133903.Seq
M00001353D:D10	14929	RTA00000177AF.m.1.2
M00001353D:D10	14929	80.F3.sp6:130270.Seq
M00001353D:D10	14929	172.D3.sp6:133915.Seq
M00001361A:A05	4141	80.B4.sp6:130223.Seq
M00001361A:A05	4141	RTA00000177AF.p.20.3
M00001362B:D10	5622	80.D4.sp6:130247.Seq
M00001362B:D10	5622	RTA00000178AF.a.11.1

cDNA Library ES3 - ATCC#

Deposit Da	te - Decemb	ber 22, 1998
------------	-------------	--------------

= tp toit Butt Butt	22, 1770	
Clone Name	Cluster ID	Sequence Name
M00001362C:H11	945	RTA00000178AR.a.20.1
M00001362C:H11	945	100.E4.sp6:131473.Seq
M00001362C:H11	945	80.E4.sp6:130259.Seq
M00001362C:H11	945	180.C2.sp6:135940.Seq
M00001376B:G06	17732	RTA00000178AR.i.2.2
M00001376B:G06	17732	80.B5.sp6:130224.Seq
M00001387A:C05	2464	80.D6.sp6:130249.Seq
M00001387A:C05	2464	RTA00000178AF.n.18.1
M00001412B:B10	8551	RTA00000179AF.p.21.1
M00001412B:B10	8551	80.G7.sp6:130286.Seg
M00001415A:H06	13538	80.B8.sp6:130227.Seq
M00001415A:H06	13538	RTA00000180AF.a.24.1
M00001416B:H11	8847	80.C8.sp6:130239.Seq
M00001416B:H11	8847	RTA00000180AF.b.16.1
M00001429D:D07	40392	RTA00000180AF.j.8.1
M00001429D:D07	40392	80.H9.sp6:130300.Seq
M00001448D:H01	36313	80.A11.sp6:130218.Seq
M00001448D:H01	36313	RTA00000181AF.e.23.1

cDNA Library ES4 - ATCC# Deposit Date - December 22, 1998

Clone Name	Cluster ID	Sequence Name
M00001463C:B11	19	RTA00000182AF.b.7.1
M00001463C:B11	19	89.D1.sp6:130703.Seq
M00001470A:B10	1037	89.F2.sp6:130728.Seq
M00001470A:B10	1037	RTA00000121A.f.8.1
M00001497A:G02	2623	89.F3.sp6:130729.Seq
M00001497A:G02	2623	RTA00000183AF.a.6.1
M00001500A:E11	2623	RTA00000183AF.b.14.1
M00001500A:E11	2623	89.A4.sp6:130670.Seq
M00001501D:C02	9685	RTA00000183AF.c.11.1.Seq_THC109544
M00001501D:C02	9685	RTA00000183AF.c.11.1
M00001501D:C02	9685	89.C4.sp6:130694.Seq
M00001504C:H06	6974	89.F4.sp6:130730.Seq
M00001504C:H06	6974	RTA00000183AF.d.9.1
M00001504C:H06	6974	RTA00000183AF.d.9.1.Seq_THC223129
M00001504D:G06	6420	173.F5.SP6:134133.Seq
M00001504D:G06	6420	89.G4.sp6:130742.Seq
M00001504D:G06	6420	RTA00000183AF.d.11.1.Seq_THC226443
M00001504D:G06	6420	RTA00000183AF.d.11.1
M00001528A:C04	35555	89.B6.sp6:130684.Seq
M00001528A:C04	7337	RTA00000123A.b.17.1
M00001528A:C04	35555	184.A5.sp6:135530.Seq

cDNA Library ES5 - ATCC#

Deposit Date - December 22, 1998

Clone Name	Cluster ID	Sequence Name
M00001537B:G07	3389	RTA00000183AF.m.19.1
M00001537B:G07	3389	89.A8.sp6:130674.Seq
M00001541A:D02	3765	89.C8.sp6:130698.Seq
M00001541A:D02	3765	RTA00000135A.d.1.1
M00001544B:B07	6974	89.A9.sp6:130675.Seq
M00001544B:B07	6974	RTA00000184AF.a.15.1
M00001546A:G11	1267	89.D9.sp6:130711.Seq
M00001546A:G11	1267	RTA00000125A.o.5.1
M00001549B:F06	4193	89.G9.sp6:130747.Seq
M00001549B:F06	4193	RTA00000184AF.e.13.1
M00001556A:F11	1577	173.C9.SP6:134101.Seq
M00001556A:F11	1577	89.F11.sp6:130737.Seq
M00001556A:F11	1577	RTA00000184AF.i.23.1
M00001556B:C08	4386	RTA00000184AF.j.4.1
M00001556B:C08	4386	89.H11.sp6:130761.Seq

cDNA Library ES6 - ATCC# Deposit Date - December 22, 1998

	·	
Clone Name	Cluster ID	Sequence Name
M00001563B:F06	102	RTA00000184AF.o.5.1
M00001563B:F06	102	90.B1.sp6:130871.Seq
M00001571C:H06	5749	90.E1.sp6:130907.Seq
M00001571C:H06	5749	RTA00000185AF.a.19.1
M00001594B:H04	260	90.D2.sp6:130896.Seq
M00001594B:H04	260	RTA00000185AR.i.12.2
M00001597C:H02	4837	90.E2.sp6:130908.Seq
M00001597C:H02	4837	RTA00000185AR.k.3.2
M00001624C:F01	4309	90.C4.sp6:130886.Seq
M00001624C:F01	4309	RTA00000186AF.e.22.1
M00001679A:A06	6660	90.F6.sp6:130924.Seq
M00001679A:A06	6660	122.B5.sp6:132089.Seq
M00001679A:A06	6660	RTA00000187AF.h.15.1
M00003759B:B09	697	90.G8.sp6:130938.Seq
M00003759B:B09	697	RTA00000188AF.d.6.1
M00003759B:B09	697	RTA00000188AF.d.6.1.Seq_THC178884
M00003844C:B11	6539	176.D9.sp6:134556.Seq
M00003844C:B11	6539	RTA00000189AF.d.22.1
M00003844C:B11	6539	90.B10.sp6:130880.Seq
M00003857A:G10	3389	90.A11.sp6:130869.Seq
M00003857A:G10	3389	RTA00000189AF.g.3.1
		$oldsymbol{arphi}$

PCT/US98/27610 WO 99/33982

cDNA Library ES7 - ATCC#

Deposit Date -	December 22	. 1998
----------------	-------------	--------

Clone Name	Cluster ID	Sequence Name
M00003914C:F05	3900	99.E1.sp6:131278.Seq
M00003914C:F05	3900	RTA00000190AF.g.13.1
M00003922A:E06	23255	RTA00000190AF.j.4.1
M00003922A:E06	23255	99.F1.sp6:131290.Seq
M00003922A:E06	23255	RTA00000190AF.j.4.1.Seq_THC228776
M00003983A:A05	9105	99.C3.sp6:131256.Seq
M00003983A:A05	9105	RTA00000191AF.a.21.2
M00004028D:A06	6124	RTA00000191AR.e.2.3
M00004028D:A06	6124	99.D3.sp6:131268.Seq
M00004031A:A12	9061	RTA00000191AR.e.11.2
M00004031A:A12	9061	RTA00000191AR.e.11.3
M00004087D:A01	6880	RTA00000191AF.m.20.1
M00004087D:A01	6880	99.A5.sp6:131234.Seq
M00004108A:E06	4937	99.E5.sp6:131282.Seq
M00004108A:E06	4937	RTA00000191AF.p.21.1
M00004114C:F11	13183	123.D5.sp6:132305.Seq
M00004114C:F11	13183	RTA00000192AF.a.24.1
M00004114C:F11	13183	99.G5.sp6:131306.Seq
		•

cDNA Library ES8 - ATCC# Deposit Date - December 22, 1998

	,	
Clone Name	Cluster ID	Sequence Name
M00004146C:C11	5257	99.B6.sp6:131247.Seq
M00004146C:C11	5257	177.F5.sp6:134768.Seq
M00004146C:C11	5257	RTA00000192AF.f.3.1
M00004146C:C11	5257	RTA00000192AF.f.3.1.Seq THC213833
M00004157C:A09	6455	RTA00000192AF.g.23.1
M00004157C:A09	6455	99.D6.sp6:131271.Seq
M00004157C:A09	6455	123.E7.sp6:132319.Seq
M00004172C:D08	11494	RTA00000192AF.j.6.1
M00004172C:D08	11494	99.G6.sp6:131307.Seq
M00004172C:D08	11494	177.E6.sp6:134757.Seq
M00004229B:F08	6455	RTA00000193AF.b.9.1
M00004229B:F08	6455	99.C8.sp6:131261.Seq
		· · · · · · · · · · · · · · · · · · ·

cDNA Library ES9 - ATCC#

Deposit Date - December 22, 1998

Clone Name	Cluster ID	Sequence Name
M00001466A:E07	4275	RTA00000120A.j.14.1
M00001531A:H11		89.F6.sp6:130732.Seq
M00001531A:H11		RTA00000123A.g.19.1
M00001551A:B10	6268	79.G9.sp6:130096.Seq
M00001551A:B10	6268	184.C12.sp6:135561.Seq
M00001551A:B10	6268	RTA00000126A.o.23.1
M00001552A:B12	307	RTA00000136A.o.4.2
M00001552A:B12	307	79.C7.sp6:130046.Seq
M00001556A:H01	15855	RTA00000184AF.j.1.1
M00001586C:C05	4623	RTA00000185AF.f.4.1
M00001604A:B10	1399	79.G8.sp6:130095.Seq
M00001604A:B10	1399	RTA00000129A.o.10.1
M00003879B:C11	5345	RTA00000189AF.l.19.1
M00003879B:C11	5345	90.B12.sp6:130882.Seq
		•

cDNA Library ES10 - ATCC#

Deposit Date	- December	22, 1998
---------------------	------------	----------

	,		
Clone Name	Cluster ID	Sequence Name	
M00001358C:C06		RTA00000177AF.o.4.3	
M00001388D:G05	5832	80.F6.sp6:130273.Seq	
M00001388D:G05	5832	RTA00000178AF.o.23.1	
M00001394A:F01	6583	RTA00000179AF.d.13.1	
M00001394A:F01	6583	172.B8.sp6:133896.Seq	
M00001394A:F01	6583	80.H6.sp6:130297.Seq	
M00001429A:H04	2797	RTA00000180AF.i.19.1	
M00001447A:G03	10717	RTA00000181AF.d.10.1	
M00001448D:C09	8	80.H10.sp6:130301.Seq	
M00001448D:C09	8	RTA00000181AF.e.17.1	
M00001448D:C09	8	100.B11.sp6:131444.Seq	
M00001454D:G03	689	RTA00000181AR.1.22.1	

cDNA Library ES11 - ATCC# Deposit Date - December 22, 1998

Clone Name	Cluster ID	Sequence Name
M00003975A:G11	12439	RTA00000190AF.o.24.1
M00003978B:G05	5693	RTA00000190AF.p.17.2.Seq_THC173318
M00003978B:G05	5693	RTA00000190AF.p.17.2
M00004059A:D06	5417	RTA00000191AF.h.19.1
M00004068B:A01	3706	99.C4.sp6:131257.Seq
M00004068B:A01	3706	RTA00000191AF.i.17.2
M00004205D:F06		99.E7.sp6:131284.Seq
M00004205D:F06		177.G7.sp6:134782.Seq
M00004205D:F06		RTA00000192AF.o.11.1
M00004212B:C07	2379	RTA00000192AF.p.8.1
M00004223A:G10	16918	RTA00000193AF.a.16.1

cDNA Library ES12 - ATCC#

Deposit Date - December 22, 1998

Clone Name	Cluster ID	Sequence Name
M00004223B:D09	7899	RTA00000193AF.a.17.1
M00004249D:G12		RTA00000193AF.c.22.1
M00004251C:G07		RTA00000193AF.d.2.1
M00004372A:A03	2030	RTA00000193AF.m.20.1

cDNA Library ES13 - ATCC# Deposit Date - December 22, 1998

Deposit Date - December 22, 1998			
Clone Name	Cluster ID	Sequence Name	
M00001340B:A06	17062	80.A1.sp6:130208.Seq	
M00001340B:A06	17062	RTA00000177AF.b.8.4	
M00001340D:F10	11589	80.B1.sp6:130220.Seq	
M00001340D:F10	11589	RTA00000177AF.b.17.4	
M00001341A:E12	4443	80.C1.sp6:130232.Seq	
M00001341A:E12	4443	RTA00000177AF.b.20.4	
M00001342B:E06	39805	80.D1.sp6:130244.Seq	
M00001342B:E06	39805	RTA00000177AF.c.21.3	
M00001346A:F09	5007	RTA00000177AF.g.2.1	
M00001346A:F09	5007	80.H1.sp6:130292.Seq	
M00001346D:G06	5779	RTA00000177AF.g.14.3	
M00001346D:G06	5779	RTA00000177AF.g.14.1	
M00001348B:B04	16927	80.E2.sp6:130257.Seq	
M00001348B:B04	16927	RTA00000177AF.h.9.3	
M00001348B:G06	16985	RTA00000177AF.h.19.5	
M00001348B:G00	16985	80.F2.sp6:130269.Seq	
M00001348B:B08	3584	RTA00000177AF.h.20.1	
M00001349B:B08	3584		
M00001349B.B08 M00001350A:H01	7187	80.G2.sp6:130281.Seq 100.C2.sp6:131447.Seq	
M00001350A:H01 M00001350A:H01	7187 7187	80.A3.sp6:130210.Seq	
M00001350A:H01 M00001352A:E02		RTA00000177AF.i.8.2	
	16245	RTA00000177AF.k.9.3	
M00001352A:E02	16245	172.D2.sp6:133914.Seq	
M00001352A:E02	16245	80.D3.sp6:130246.Seq	
M00001355B:G10	14391	RTA00000177AF.m.17.3	
M00001355B:G10	14391	80.G3.sp6:130282.Seq	
M00001355B:G10	14391	172.H3.sp6:133963.Seq	
M00001355B:G10 M00001361D:F08	14391	100.E3.sp6:131472.Seq	
	2379	80.C4.sp6:130235.Seq	
M00001361D:F08	2379	RTA00000178AF.a.6.1	
M00001365C:C10	40132	RTA00000178AF.c.7.1	
M00001365C:C10	40132	80.F4.sp6:130271.Seq	
M00001368D:E03		80.G4.sp6:130283.Seq	
M00001368D:E03	(0/7	RTA00000178AF.d.20.1	
M00001370A:C09	6867	80.H4.sp6:130295.Seq	
M00001370A:C09	6867	RTA00000178AF.e.12.1	
M00001371C:E09	7172	100.A5.sp6:131426.Seq	
M00001371C:E09	7172	RTA00000178AF.f.9.1	
M00001371C:E09	7172	80.A5.sp6:130212.Seq	
M00001378B:B02	39833	80.C5.sp6:130236.Seq	
M00001378B:B02	39833	RTA00000178AF.i.23.1	
M00001379A:A05	1334	80.D5.sp6:130248.Seq	
M00001379A:A05	1334	RTA00000178AF.j.7.1	
M00001380D:B09	39886	RTA00000178AF.j.24.1	
M00001380D:B09	39886	80.E5.sp6:130260.Seq	
M00001381D:E06		80.F5.sp6:130272.Seq	
M00001381D:E06	****	RTA00000178AF.k.16.1	
M00001382C:A02	22979	80.G5.sp6:130284.Seq	
M00001382C:A02	22979	RTA00000178AF.k.22.1	
M00001384B:A11		80.B6.sp6:130225.Seq	
M00001384B:A11		RTA00000178AF.m.13.1	
M00001386C:B12	5178	80.C6.sp6:130237.Seq	

cDNA Library ES13 - ATCC# Deposit Date - December 22, 1998

Deposit Date - December	22, 1998	
Clone Name	Cluster ID	Sequence Name
M00001386C:B12	5178	RTA00000178AF.n.10.1
M00001387B:G03	7587	80.E6.sp6:130261.Seq
M00001387B:G03	7587	RTA00000178AF.n.24.1
M00001389A:C08	16269	RTA00000178AF.p.1.1
M00001389A:C08	16269	80.G6.sp6:130285.Seq
M00001396A:C03	4009	172.D8.sp6:133920.Seq
M00001396A:C03	4009	80.A7.sp6:130214.Seq
M00001396A:C03	4009	RTA00000179AF.e.20.1
M00001400B:H06		172.B9.sp6:133897.Seq
M00001400B:H06		80.B7.sp6:130226.Seq
M00001400B:H06		RTA00000179AF.j.13.1
M00001400B:H06		RTA00000179AF.j.13.1.Seq_THC105720
M00001402A:E08	39563	80.C7.sp6:130238.Seq
M00001402A:E08	39563	RTA00000179AF.k.20.1
M00001407B:D11	5556	RTA00000179AF.n.10.1
M00001407B:D11	5556	80.D7.sp6:130250.Seq
M00001407B.D11 M00001410A:D07	7005	180.H5.sp6:136003.Seq
M00001410A:D07	7005	RTA00000179AF.o.22.1
M00001410A:D07	7005	80.F7.sp6:130274.Seq
M00001410A:B01	7003	RTA00000180AF.a.9.1
M00001414A:B01		80.H7.sp6:130298.Seq
M00001414A:B01 M00001414C:A07		80.A8.sp6:130215.Seq
M00001414C:A07		RTA00000180AF.a.11.1
M00001414C.A07 M00001416A:H01	7674	
M00001416A:H01	7674 7674	79.C1.sp6:130040.Seq RTA00000118A.g.9.1
	36393	•
M00001417A:E02 M00001417A:E02	36393	RTA00000180AF.c.2.1
	15066	80.D8.sp6:130251.Seq
M00001423B:E07	15066	RTA00000180AF.e.24.1
M00001423B:E07		80.H8.sp6:130299.Seq
M00001424B:G09	10470	80.A9.sp6:130216.Seq
M00001424B:G09	10470	RTA0000180AF.f.18.1
M00001425B:H08	22195	RTA00000180AF.g.7.1
M00001425B:H08	22195	80.B9.sp6:130228.Seq
M00001426B:D12		RTA00000180AF.g.22.1
M00001426B:D12	1061	80.C9.sp6:130240.Seq
M00001426D:C08	4261	80.D9.sp6:130252.Seq
M00001426D:C08	4261	RTA00000180AF.h.5.1
M00001428A:H10	84182	100.G9.sp6:131502.Seq
M00001428A:H10	84182	RTA00000180AF.h.19.1
M00001428A:H10	84182	80.E9.sp6:130264.Seq
M00001449A:A12	5857	80.B11.sp6:130230.Seq
M00001449A:A12	5857	RTA00000118A.g.14.1
M00001449A:B12	41633	80.C11.sp6:130242.Seq
M00001449A:B12	41633	RTA00000118A.g.16.1
M00001449A:G10	36535	RTA00000181AF.f.5.1
M00001449A:G10	36535	80.D11.sp6:130254.Seq
M00001449A:G10	36535	100.D11.sp6:131468.Seq
M00001449C:D06	86110	RTA00000181AF.f.12.1
M00001449C:D06	86110	80.E11.sp6:130266.Seq
M00001450A:A02	39304	RTA00000118A.j.21.1.Seq_THC151859
M00001450A:A02	39304	RTA00000118A.j.21.1
M00001450A:A02	39304	79.F1.sp6:130076.Seq
		100

cDNA Library ES13 - ATCC# Deposit Date - December 22, 1998

Deposit Date - December		
Clone Name	Cluster ID	Sequence Name
M00001450A:A02	39304	180.G9.sp6:135995.Seq
M00001450A:A11	32663	80.F11.sp6:130278.Seq
M00001450A:A11	32663	RTA00000118A.l.8.1
M00001450A:B12	82498	100.F11.sp6:131492.Seq
M00001450A:B12	82498	RTA00000118A.m.10.1
M00001450A:B12	82498	79.G1.sp6:130088.Seq
M00001450A:D08	27250	80.G11.sp6:130290.Seq
M00001450A:D08	27250	180.B10.sp6:135936.Seq
M00001450A:D08	27250	RTA00000181AF.g.10.1
M00001452A:B04	84328	RTA00000118A.p.10.1
M00001452A:B04	84328	79.A2.sp6:130017.Seq
M00001452A:B12	86859	RTA00000118A.p.8.1
M00001452A:B12	86859	79.B2.sp6:130029.Seq
M00001452A:F05	85064	RTA00000131A.m.23.1
M00001452A:F05	85064	79.D2.sp6:130053.Seq
M00001452C:B06	16970	80.H11.sp6:130302.Seq
M00001152C:B06	16970	100.C12.sp6:131457.Seq
M00001452C:B06	16970	RTA00000181AR.i.18.2
M00001452E:B00	16130	80.A12.sp6:130219.Seq
M00001453A:E11	16130	100.D12.sp6:131469.Seq
M00001453A:E11	16130	RTA00000119A.c.13.1
M00001453A:E11 M00001453C:F06	16653	80.B12.sp6:130231.Seq
M00001453C:F06	16653	RTA00000181AF.k.5.3
M00001455C:1 00 M00001454A:A09	83103	RTA00000119A.e.24.2
M00001454A:A09	83103	79.G2.sp6:130089.Seq
M00001454B:C12	7005	121.D1.sp6:131917.Seq
M00001454B:C12	7005	RTA00000181AF.k.24.1
M00001454B:C12	7005	80.C12.sp6:130243.Seq
M00001454B:C12 M00001455B:E12	13072	80.F12.sp6:130279.Seq
M00001455B:E12	13072	RTA00000181AR.m.5.2
M00001455B:E12	2448	89.A1.sp6:130667.Seq
M00001460A:F06	2448	RTA00000119A.j.21.1
M00001460A.P00 M00001461A:D06	1531	89.C1.sp6:130691.Seq
M00001461A:D06	1531	RTA00000119A.o.3.1
M00001401A:D00	10145	79.F3.sp6:130078.Seq
M00001405A:B11	10145	RTA00000120A.g.12.1
M00001403A:B11	38759	89.F1.sp6:130727.Seq
M00001467A:B07	38759	RTA00000120A.m.12.3
M00001467A:D07	39508	RTA00000120A.ni.12.3
M00001467A:D04 M00001467A:D04	39508	89.G1.sp6:130739.Seq
M00001467A:E10	39442	89.A2.sp6:130668.Seq
M00001467A:E10		RTA00000120A.o.21.1
M00001467A:E10 M00001468A:F05	39442	
	7589 7580	RTA00000120A.p.23.1
M00001468A:F05	7589	89.B2.sp6:130680.Seq
M00001469A:A01		RTA00000121A.c.10.1
M00001469A:A01	10001	89.C2.sp6:130692.Seq
M00001469A:C10	12081	89.D2.sp6:130704.Seq
M00001469A:C10	12081	RTA00000133A.d.14.2
M00001469A:H12	19105	89.E2.sp6:130716.Seq
M00001469A:H12	19105	RTA00000133A.e.15.1
M00001470A:C04	39425	89.G2.sp6:130740.Seq
M00001470A:C04	39425	RTA00000133A.f.1.1
		4.00

cDNA Library ES13 - ATCC# Deposit Date - December 22, 1998

Deposit Date - Decemb		
Clone Name	Cluster ID	Sequence Name
M00001471A:B01	39478	89.H2.sp6:130752.Seq
M00001471A:B01	39478	RTA00000133A.i.5.1
M00001487B:H06		RTA00000182AF.I.15.1
M00001487B:H06		89.B3.sp6:130681.Seq
M00001488B:F12		RTA00000182AF.I.20.1
M00001488B:F12		89.C3.sp6:130693.Seq
M00001494D:F06	7206	RTA00000182AF.o.15.1
M00001494D:F06	7206	89.E3.sp6:130717.Seq
M00001499B:A11	10539	RTA00000183AF.a.24.1
M00001499B:A11	10539	89.G3.sp6:130741.Seq
M00001499B:A11	10539	173.B5.SP6:134085.Seq
M00001500A:C05	5336	RTA00000183AF.b.13.1
M00001500A:C05	5336	89.H3.sp6:130753.Seq
M00001504A:E01		RTA00000183AF.c.24.1
M00001504A:E01		89.D4.sp6:130706.Seq
M00001504A:E01		RTA00000183AF.c.24.1.Seq_THC125912
M00001504C:A07	10185	RTA00000183AF.d.5.1
M00001504C:A07	10185	89.E4.sp6:130718.Seq
M00001505C:C05		89.H4.sp6:130754.Seq
M00001505C:C05		RTA00000183AF.e.1.1
M00001506D:A09		89.A5.sp6:130671.Seq
M00001506D:A09		RTA00000183AF.e.23.1
M00001506D:A09		121.G6.sp6:131958.Seq
M00001507A:H05	39168	RTA00000121A.I.10.1
M00001507A:H05	39168	89.B5.sp6:130683.Seq
M00001535A:F10	39423	79.C5.sp6:130044.Seq
M00001535A:F10	39423	RTA00000134A.k.22.1
M00001541A:H03	39174	79.E5.sp6:130068.Seq
M00001541A:H03	39174	RTA00000124A.n.13.1
M00001544A:G02	19829	79.H5.sp6:130104.Seq
M00001544A:G02	19829	RTA00000125A.h.24.4
M00001545A:D08	13864	RTA00000125A.m.9.1
M00001545A:D08	13864	79.B6.sp6:130033.Seq
M00001551A:F05	39180	RTA00000126A.n.8.2
M00001551A:F05	39180	79.A7.sp6:130022.Seq
M00001552A:D11	39458	RTA00000126A.p.15.2
M00001552A:D11	39458	79.D7.sp6:130058.Seq
M00001557A:F03	39490	RTA00000128A.b.4.1

cDNA Library ES14 - ATCC# Deposit Date - December 22, 1998

Deposit Date - Decemb		
Clone Name	Cluster ID	Sequence Name
M00001511A:H06	39412	RTA00000133A.k.17.1
M00001511A:H06	39412	89.C5.sp6:130695.Seq
M00001512A:A09	39186	89.D5.sp6:130707.Seq
M00001512A:A09	39186	RTA00000121A.p.15.1
M00001512D:G09	3956	89.E5.sp6:130719.Seq
M00001512D:G09	3956	173.H5.SP6:134157.Seq
M00001512D:G09	3956	RTA00000183AF.g.3.1
M00001513B:G03		RTA00000183AF.g.9.1
M00001513B:G03		89.F5.sp6:130731.Seq
M00001513B:G03		RTA00000183AF.g.9.1.Seq_THC198280
M00001513C:E08	14364	RTA00000183AF.g.12.1
M00001513C:E08	14364	89.G5.sp6:130743.Seq
M00001514C:D11	40044	RTA00000183AF.g.22.1
M00001514C:D11	40044	RTA00000183AF.g.22.1.Seq_THC232899
M00001514C:D11	40044	89.H5.sp6:130755.Seq
M00001518C:B11	8952	89.A6.sp6:130672.Seq
M00001518C:B11	8952	RTA00000183AF.h.15.1
M00001528B:H04	8358	89.D6.sp6:130708.Seq
M00001528B:H04	8358	RTA00000183AF.i.5.1
M00001531A:D01	38085	RTA00000123A.e.15.1
M00001531A:D01	38085	89.E6.sp6:130720.Seq
M00001534A:C04	16921	RTA00000183AF.k.6.1
M00001534A:C04	16921	89.H6.sp6:130756.Seq
M00001534A:D09	5097	RTA00000134A.k.1.1
M00001534A:D09	5097	RTA00000134A.k.1.1.Seq_THC215869
M00001534C:A01	4119	RTA00000183AF.k.16.1
M00001534C:A01	4119	89.C7.sp6:130697.Seq
M00001535A:C06	20212	89.E7.sp6:130721.Seq
M00001535A:C06	20212 20212	RTA00000134A.l.22.1.Seq_THC128232
M00001535A:C06 M00001536A:B07	2696	RTA00000134A.l.22.1 RTA00000134A.m.13.1
M00001536A:B07	2696	89.F7.sp6:130733.Seq
M00001530A:B07	39420	89.H7.sp6:130757.Seq
M00001537A:F12	39420	RTA00000134A.o.23.1
M00001537A:112 M00001540A:D06	8286	89.B8.sp6:130686.Seq
M00001540A:D00	8286	RTA00000183AF.o.1.1
M00001540A:B00	39453	89.E8.sp6:130722.Seq
M00001542A:E06	39453	RTA00000135A.g.11.1
M00001544A:E06	37 133	RTA00000184AF.a.8.1
M00001544A:E06		173.G7.SP6:134147.Seq
M00001544A:E06		89.H8.sp6:130758.Seq
M00001545A:B02		89.B9.sp6:130687.Seq
M00001545A:B02		RTA00000135A.I.2.2
M00001548A:E10	5892	89.E9.sp6:130723.Seq
M00001548A:E10	5892	RTA00000184AF.d.11.1
M00001548A:E10	5892	RTA00000184AF.d.11.1.Seq_THC161896
M00001549C:E06	16347	89.H9.sp6:130759.Seq
M00001549C:E06	16347	RTA00000184AF.e.15.1
M00001550A:A03	7239	89.A10.sp6:130676.Seq
M00001550A:A03	7239	RTA00000126A.m.4.2
M00001550A:G01	5175	RTA00000184AF.f.3.1
M00001550A:G01	5175	89.B10.sp6:130688.Seq
		e e e e e e e e e e e e e e e e e e e

WO 99/33982 cDNA Library ES14 - ATCC# Deposit Date - December 22, 1998

Deposit Date - December		
Clone Name	Cluster ID	Sequence Name
M00001551A:G06	22390	RTA00000136A.j.13.1
M00001551A:G06	22390	89.C10.sp6:130700.Seq
M00001551C:G09	3266	RTA00000184AR.g.1.1
M00001551C:G09	3266	89.D10.sp6:130712.Seq
M00001553A:H06	8298	RTA00000127A.d.19.1
M00001553A:H06	8298	89.G10.sp6:130748.Seq
M00001553B:F12	4573	89.H10.sp6:130760.Seq
M00001553B:F12	4573	RTA00000184AF.h.9.1
M00001555A:B02	39539	RTA00000127A.i.21.1
M00001555A:B02	39539	89.B11.sp6:130689.Seq
M00001555A:C01	39195	89.C11.sp6:130701.Seq
M00001555A:C01	39195	RTA00000137A.c.16.1
M00001555D:G10	4561	RTA00000184AF.i.21.1
M00001555D:G10	4561	89.D11.sp6:130713.Seq
M00001556A:C09	9244	89.E11.sp6:130725.Seq
M00001556A:C09	9244	RTA00000127A.I.3.1
M00001556B:G02	11294	RTA00000184AF.j.6.1
M00001556B:G02	11294	89.A12.sp6:130678.Seq
M00001557B:H10	5192	173.E9.SP6:134125.Seq
M00001557B:H10	5192	RTA00000184AF.k.2.1
M00001557B:H10	5192	89.D12.sp6:130714.Seq
M00001557D:D09	8761	RTA00000184AF.k.12.1
M00001557D:D09	8761	89.E12.sp6:130726.Seq
M00001557B:B09	7514	RTA00000184AF.k.21.1
M00001558B:H11	7514 7514	89.G12.sp6:130750.Seq
M00001559B:F01	/314	89.H12.sp6:130762.Seq
M00001559B:F01		RTA00000184AF.l.11.1
M00001559B:F01 M00001560D:F10	6558	90.A1.sp6:130859.Seq
M00001560D:F10	6558	RTA00000184AF.m.21.1
M00001566B:D11	0220	
M00001566B:D11		RTA00000184AF.p.3.1
M00001583D:A10	6293	90.D1.sp6:130895.Seq RTA00000185AF.e.11.1
M00001583D:A10		
	6293	90.A2.sp6:130860.Seq
M00001590B:F03		RTA00000185AF.g.11.1
M00001590B:F03 M00001597D:C05	10470	90.C2.sp6:130884.Seq
	10470	RTA00000185AF.k.6.1
M00001597D:C05	10470	90.F2.sp6:130920.Seq
M00001598A:G03	16999	90.G2.sp6:130932.Seq
M00001598A:G03	16999	RTA00000185AF.k.9.1
M00001601A:D08	22794	RTA00000138A.b.5.1
M00001601A:D08	22794	90.H2.sp6:130944.Seq
M00001607A:E11	11465	RTA00000185AF.m.19.1
M00001607A:E11	11465	90.A3.sp6:130861.Seq
M00001608A:B03	7802	RTA00000185AF.n.5.1
M00001608A:B03	7802	90.B3.sp6:130873.Seq
M00001608B:E03	22155	RTA00000185AF.n.9.1
M00001608B:E03	22155	90.C3.sp6:130885.Seq
M00001608D:A11		RTA00000185AF.n.12.1
M00001608D:A11		90.D3.sp6:130897.Seq
M00001614C:F10	13157	RTA00000186AF.a.6.1
M00001614C:F10	13157	90.E3.sp6:130909.Seq
M00001617C:E02	17004	RTA00000186AF.b.21.1

cDNA Library ES14 - ATCC# Deposit Date - December 22, 1998

Deposit Date - December		
Clone Name	Cluster ID	Sequence Name
M00001617C:E02	17004	90.F3.sp6:130921.Seq
M00001619C:F12	40314	90.G3.sp6:130933.Seq
M00001619C:F12	40314	RTA00000186AF.c.15.1
M00001621C:C08	40044	RTA00000186AF.d.1.1
M00001621C:C08	40044	RTA00000186AF.d.1.1.Seq_THC232899
M00001621C:C08	40044	90.H3.sp6:130945.Seq
M00001621C:C08	40044	122.E1.sp6:132121.Seq
M00001623D:F10	13913	RTA00000186AF.e.6.1
M00001623D:F10	13913	90.A4.sp6:130862.Seq
M00001632D:H07		RTA00000186AF.h.14.1.Seq_THC112525
M00001632D:H07		RTA00000186AF.h.14.1
M00001632D:H07		90.E4.sp6:130910.Seq
M00001632D:H07		176.A3.sp6:134514.Seq
M00001644C:B07	39171	RTA00000186AF.I.7.1
M00001644C:B07	39171	90.F4.sp6:130922.Seq
M00001644C:B07	39171	217.A12.sp6:139369.Seq
M00001645A:C12	19267	RTA00000186AF.I.12.1.Seq_THC178183
M00001645A:C12	19267	176.G3.sp6:134586.Seq
M00001645A:C12	19267	RTA00000186AF.1.12.1
M00001645A:C12	19267	90.G4.sp6:130934.Seq
M00001648C:A01	4665	90.H4.sp6:130946.Seq
M00001648C:A01	4665	RTA00000186AF.m.3.1
M00001648C:A01 M00001657D:C03	23201	RTA00000187AF.a.14.1
M00001657D:C03	23201	90.B5.sp6:130875.Seq
M00001657D:F08	76760	90.C5.sp6:130887.Seq
M00001657D:F08	76760	RTA00000187AF.a.15.1
M00001057D:F08	23218	RTA0000187AF.a.15.1
M00001662C:A09	23218	90.D5.sp6:130899.Seq
M00001662C:A09	35702	90.E5.sp6:130911.Seq
M00001663A:E04	35702	RTA00000187AR.c.15.2
M00001669B:F02	6468	90.F5.sp6:130923.Seq
M00001669B:F02	6468	RTA00000187AF.d.15.1
M00001609B:1 02 M00001670C:H02	14367	90.G5.sp6:130935.Seq
M00001670C:H02	14367	RTA00000187AF.e.8.1
M00001673C:H02	7015	90.H5.sp6:130947.Seq
M00001673C:H02	7015	RTA00000187AF.f.18.1
M00001675A:C09	8773	RTA00000187AF.f.24.1
M00001675A:C09	8773	90.A6.sp6:130864.Seq
M00001075A:C09	8773	RTA00000187AF.f.24.1.Seq_THC220002
M00001075A:C09	11460	
M00001676B:F05	11460	RTA00000187AF.g.12.1 90.B6.sp6:130876.Seq
M00001076B:F05		•
M00001677D:A07	11460	219.F2.sp6:139035.Seq
	7570	90.D6.sp6:130900.Seq
M00001677D:A07	7570	RTA00000187AF. 24.1 See TUG168626
M00001677D:A07	7570	RTA00000187AF.g.24.1.Seq_THC168636
M00001678D:F12	4416	90.E6.sp6:130912.Seq
M00001678D:F12	4416	RTA0000187AF.h.13.1
M00001679A:F10	26875	RTA00000187AF.i.1.1
M00001679A:F10	26875	90.A7.sp6:130865.Seq
M00001679B:F01	6298	90.B7.sp6:130877.Seq
M00001679B:F01	6298	RTA00000187AR.i.10.2
M00001680D:F08	10539	90.F7.sp6:130925.Seq

cDNA Library ES14 - ATCC# Deposit Date - December 22, 1998

Deposit Date - December		
Clone Name	Cluster ID	Sequence Name
M00001680D:F08	10539	219.F6.sp6:139039.Seq
M00001680D:F08	10539	RTA00000187AF.I.7.1
M00001682C:B12	17055	90.G7.sp6:130937.Seq
M00001682C:B12	17055	RTA00000187AF.m.3.1
M00001682C:B12	17055	176.D6.sp6:134553.Seq
M00001688C:F09	5382	90.A8.sp6:130866.Seq
M00001688C:F09	5382	RTA00000187AF.m.23.2
M00001693C:G01	4393	RTA00000187AF.n.17.1
M00001693C:G01	4393	90.B8.sp6:130878.Seq
M00001716D:H05	67252	RTA00000187AF.o.6.1
M00001716D:H05	67252	90.C8.sp6:130890.Seq
M00003741D:C09	40108	90.D8.sp6:130902.Seq
M00003741D:C09	40108	RTA00000187AF.o.24.1
M00003747D:C05	11476	RTA00000187AF.p.19.1
M00003747D:C05	11476	90.E8.sp6:130914.Seq
M00003747D:C05	11476	RTA00000187AF.p.19.1.Seq_THC108482
M00003747D:C05	11476	219.H8.sp6:139065.Seq
M00003754C:E09		90.F8.sp6:130926.Seq
M00003754C:E09		RTA00000188AF.b.12.1
M00003761D:A09		RTA00000188AF.d.11.1
M00003761D:A09		90.H8.sp6:130950.Seq
M00003761D:A09		RTA00000188AF.d.11.1.Seq_THC212094
M00003762C:B08	17076	RTA00000188AF.d.21.1.Seq_THC208760
M00003762C:B08	17076	90.A9.sp6:130867.Seq
M00003762C:B08	17076	RTA00000188AF.d.21.1
M00003763A:F06	3108	RTA00000188AF.d.24.1
M00003763A:F06	3108	90.B9.sp6:130879.Seq
M00003774C:A03	67907	RTA00000188AF.g.11.1.Seq_THC123222
M00003774C:A03	67907	RTA00000188AF.g.11.1
M00003774C:A03	67907	90.C9.sp6:130891.Seq
M00003784D:D12		RTA00000188AF.i.8.1
M00003784D:D12		90.D9.sp6:130903.Seq
M00003839A:D08	7798	RTA00000189AF.c.18.1
M00003839A:D08	7798	90.A10.sp6:130868.Seq
M00003851B:D08		90.D10.sp6:130904.Seq
M00003851B:D08		RTA00000189AF.f.7.1
M00003851B:D10	13595	90.E10.sp6:130916.Seq
M00003851B:D10	13595	RTA00000189AF.f.8.1
M00003853A:D04	5619	90.F10.sp6:130928.Seq
M00003853A:D04	5619	RTA00000189AF.f.17.1
M00003853A:F12	10515	90.G10.sp6:130940.Seq
M00003853A:F12	10515	RTA00000189AF.f.18.1
M00003856B:C02	4622	90.H10.sp6:130952.Seq
M00003856B:C02	4622	RTA00000189AF.g.1.1
M00003857A:H03	4718	90.B11.sp6:130881.Seq
M00003857A:H03	4718	RTA00000189AF.g.5.1.Seq_THC196102
M00003857A:H03	4718	RTA00000189AF.g.5.1

cDNA Library ES15 - ATCC# Deposit Date - December 22, 1998

Deposit Date - Decem	ber 22, 1998	
Clone Name	Cluster ID	Sequence Name
M00003867A:D10	•	90.C11.sp6:130893.Seq
M00003867A:D10		RTA00000189AF.h.17.1
M00003871C:E02	4573	RTA00000189AF.j.12.1
M00003875C:G07	8479	90.G11.sp6:130941.Seq
M00003875C:G07	8479	RTA00000189AF.j.22.1
M00003875D:D11		90.H11.sp6:130953.Seq
M00003875D:D11		RTA00000189AF.j.23.1
M00003876D:E12	7798	90.A12.sp6:130870.Seq
M00003876D:E12	7798	RTA00000189AF.k.12.1
M00003906C:E10	9285	90.H12.sp6:130954.Seq
M00003906C:E10	9285	RTA00000190AF.d.7.1
M00003907D:A09	39809	99.A1.sp6:131230.Seq
M00003907D:A09	39809	RTA00000190AF.e.3.1.Seq_THC150217
M00003907D:A09	39809	RTA0000190AF.e.3.1
M00003907D:H04	16317	99.B1.sp6:131242.Seq
M00003907D:H04	16317	RTA00000190AF.e.6.1
M00003909D:C03	8672	RTA0000190AF.f.11.1
M00003909D:C03	8672	99.C1.sp6:131254.Seq
M00003968B:F06	24488	RTA00000190AF.n.16.1
M00003968B:F06	24488	99.C2.sp6:131255.Seq
M00003970C:B09	40122	RTA00000190AF.n.23.1
M00003970C:B09	40122	RTA00000190AF.n.23.1.Seq_THC109227
M00003970C:B09	40122	99.D2.sp6:131267.Seq
M00003974D:E07	23210	RTA00000190AF.o.20.1
M00003974D:E07	23210	RTA00000190AF.o.20.1.Seq THC207240
M00003974D:E07	23210	99.E2.sp6:131279.Seq
M00003974D:E07	23358	RTA00000190AF.o.21.1.Seq THC207240
M00003974D:H02	23358	RTA00000190AF.o.21.1.seq_111e207240
M00003974D:H02	23358	99.F2.sp6:131291.Seq
M00003974D:F102 M00003981A:E10	3430	99.A3.sp6:131232.Seq
M00003981A:E10	3430	RTA00000191AF.a.9.1
M00003981A:E10	2433	RTA00000191AF.a.15.1 RTA00000191AF.a.15.2
M00003982C:C02	2433	99.B3.sp6:131244.Seq
M00003982C:C02	2433	RTA00000191AF.a.15.2.Seq THC79498
M00003982C:C02 M00004028D:C05	40073	RTA00000191AF.a.15.2.3cq_111e79490
M00004028D:C05	40073	99.E3.sp6:131280.Seq
M00004028D:C03	37285	99.H3.sp6:131216.Seq
M00004035C:A07	37285 37285	RTA00000191AF.f.11.1
M00004035C:A07 M00004035D:B06	17036	RTA00000191AF.f.11.1
M00004035D:B06	17036	99.A4.sp6:131233.Seq
M00004033D:B00 M00004072A:C03	17030	RTA00000191AF.j.9.1
M00004072A:C03		99.D4.sp6:131269.Seq
M00004072A.C03	15069	99.F4.sp6:131293.Seq
		RTA00000191AF.I.6.1
M00004081C:D10	15069	
M00004086D:G06	9285	99.H4.sp6:131317.Seq
M00004105C: A04	9285	RTA00000191AF.m.18.1
M00004105C:A04	7221	99.D5.sp6:131270.Seq
M00004171D-D02	7221	RTA00000191AF.p.9.1
M00004171D:B03	4908	RTA00000192AF.j.2.1
M00004171D:B03	4908	99.F6.sp6:131295.Seq
M00004185C:C03	11443	RTA00000192AF.1.13.2
M00004185C:C03	11443	123.A8.sp6:132272.Seq

cDNA Library ES15 - ATCC# Deposit Date - December 22, 1998

Deposit Date - December 22, 1998			
Clone Name	Cluster ID	Sequence Name	
M00004185C:C03	11443	99.A7.sp6:131236.Seq	
M00004191D:B11		RTA00000192AF.m.12.1	
M00004191D:B11		99.B7.sp6:131248.Seq	
M00004191D:B11		123.C8.sp6:132296.Seq	
M00004197D:H01	8210	99.C7.sp6:131260.Seq	
M00004197D:H01	8210	123.E8.sp6:132320.Seq	
M00004197D:H01	8210	RTA00000192AF.n.13.1	
M00004203B:C12	14311	99.D7.sp6:131272.Seq	
M00004203B:C12	14311	RTA00000192AF.o.2.1	
M00004214C:H05	11451	177.D8.sp6:134747.Seq	
M00004214C:H05	11451	RTA00000192AF.p.17.1	
M00004223D:E04	12971	RTA00000193AF.a.20.1	
M00004223D:E04	12971	99.B8.sp6:131249.Seq	
M00004269D:D06	4905	99.H8.sp6:131321.Seq	
M00004269D:D06	4905	RTA00000193AF.e.14.1	
M00004295D:F12	16921	99.D9.sp6:131274.Seq	
M00004295D:F12	16921	RTA00000193AF.h.15.1	
M00004296C:H07	13046	99.E9.sp6:131286.Seq	
M00004296C:H07	13046	RTA00000193AF.h.19.1	
M00004307C:A06	9457	RTA00000193AF.i.14.2	
M00004307C:A06	9457	99.F9.sp6:131298.Seq	
M00004307C:A06	9457	123.D11.sp6:132311.Seq	
M00004312A:G03	26295	RTA00000193AF.i.24.2	
M00004312A:G03	26295	99.G9.sp6:131310.Seq	
M00004312A:G03	26295	RTA00000193AF.i.24.2.Seq_THC197345	
M00004318C:D10	21847	RTA00000193AF.j.9.1	
M00004318C:D10	21847	99.H9.sp6:131322.Seq	
M00004359B:G02		RTA00000193AF.m.5.1.Seq_THC173318	
M00004359B:G02		RTA00000193AF.m.5.1	
M00004505D:F08		RTA00000194AF.b.19.1	
M00004505D:F08		99.H10.sp6:131323.Seq	
M00004692A:H08		99.B11.sp6:131252.Seq	
M00004692A:H08		RTA00000194AF.c.24.1	
M00004692A:H08		377.F4.sp6:141957.Seq	
M00005180C:G03		RTA00000194AF.f.4.1	

WO 99/33982 cDNA Library ES16 - ATCC# Deposit Date - December 22, 1998

Deposit Date - December 22, 1998			
Clone Name	Cluster ID	Sequence Name	
M00001346D:E03	6806	RTA00000177AF.g.13.3	
M00001350A:B08		80.H2.sp6:130293.Seq	
M00001350A:B08		RTA00000177AF.i.6.2	
M00001357D:D11	4059	RTA00000177AF.n.18.3.Seq THC123051	
M00001357D:D11	4059	RTA00000177AF.n.18.3	
M00001409C:D12	9577	RTA00000179AF.o.17.1	
M00001409C:D12	9577	80.E7.sp6:130262.Seq	
M00001418B:F03	9952	RTA00000180AF.c.20.1	
M00001418B:F03	9952	RTA00000180AF.c.20.1.Seq_THC162284	
M00001418B:F03	9952	80.E8.sp6:130263.Seq	
M00001418D:B06	8526	RTA00000180AF.d.1.1	
M00001421C:F01	9577	RTA00000180AF.d.23.1	
M00001421C:F01	9577	80.G8.sp6:130287.Seq	
M00001429B:A11	4635	RTA00000180AF.i.20.1	
M00001432C:F06		RTA00000180AF.k.24.1	
M00001439C:F08	40054	RTA00000180AF.p.10.1	
M00001442C:D07	16731	RTA00000181AF.a.20.1	
M00001442C:D07	16731	80.C10.sp6:130241.Seq	
M00001443B:F01		80.D10.sp6:130253.Seq	
M00001443B:F01		RTA00000181AF.b.7.1	
M00001445A:F05	13532	80.E10.sp6:130265.Seq	
M00001445A:F05	13532	RTA00000181AF.c.4.1	
M00001446A:F05	7801	RTA00000181AF.c.21.1	
M00001455A:E09	13238	RTA00000181AF.m.4.1	
M00001455A:E09	13238	RTA00000181AF.m.4.1.Seq THC140691	
M00001460A:F12	39498	RTA00000119A.j.20.1	
M00001481D:A05	7985	RTA00000182AR.j.2.1	
M00001490B:C04	18699	RTA00000182AF.m.16.1	
M00001490B:C04	18699	89.D3.sp6:130705.Seq	
M00001500C:E04	9443	89.B4.sp6:130682.Seq	
M00001500C:E04	9443	RTA00000183AF.c.1.1	
M00001532B:A06	3990	89.G6.sp6:130744.Seq	
M00001532B:A06	3990	RTA00000183AF.j.11.1	
M00001534A:F09	5321	89.B7.sp6:130685.Seq	
M00001534A:F09	5321	RTA00000183AF.k.8.1	
M00001535A:B01	7665	RTA00000134A.1.19.1	
M00001536A:C08	39392	89.G7.sp6:130745.Seq	
M00001536A:C08	39392	RTA00000134A.m.16.1	
M00001541A:F07	22085	RTA00000135A.e.5.2	
M00001542B:B01		RTA00000183AF.p.4.1	
M00001542B:B01		89.F8.sp6:130734.Seq	
M00001544A:E03	12170	RTA00000125A.h.18.4	
M00001545A:C03	19255	RTA00000135A.m.18.1	
M00001545A:C03	19255	184.B10.sp6:135547.Seq	
M00001545A:C03	19255	89.C9.sp6:130699.Seq	
M00001548A:H09	1058	RTA00000126A.e.20.3.Seq_THC217534	
M00001548A:H09	1058	RTA00000126A.e.20.3	
M00001548A:H09	1058	79.F6.sp6:130081.Seq	
M00001549A:B02	4015	RTA00000136A.e.12.1	
M00001549A:B02	4015	79.G6.sp6:130093.Seq	
M00001549A:D08	10944	RTA00000126A.h.17.2	
M00001552B:D04	5708	RTA00000184AF.g.12.1	
		127	

WO 99/33982 cDNA Library ES16 - ATCC#

cDNA Library ES16 - ATCC#				
Deposit Date - December 22, 1998				
Clone Name	Cluster ID	Sequence Name		
M00001552B:D0	4 5708	89.E10.sp6:130724.Seq		
M00001552D:A0	1	89.F10.sp6:130736.Seq		
M00001552D:A0	1	RTA00000184AF.g.22.1		
M00001553D:D1		RTA00000184AF.h.14.1		
M00001553D:D1		89.A11.sp6:130677.Seq		
M00001558A:H0		RTA00000128A.c.20.1		
M00001558A:H0	5	89.F12.sp6:130738.Seq		
M00001561A:C0	5 39486	RTA00000128A.m.22.2		
M00001561A:C0		79.B8.sp6:130035.Seq		
M00001564A:B1		RTA00000184AF.o.12.1		
M00001578B:E0		RTA00000185AF.c.24.1		
M00001579D:C0		90.G1.sp6:130931.Seq		
M00001579D:C0		173.A12.SP6:134080.Seq		
M00001579D:C0		RTA00000185AF.d.11.1		
M00001582D:F0		RTA00000185AF.d.24.1		
M00001587A:B1		RTA00000129A.e.24.1		
M00001587A:B1		79.E8.sp6:130071.Seq		
M00001604A:F0		RTA00000138A.c.3.1		
M00001604A:F0		79.A9.sp6:130024.Seq		
M00001624A:B0		RTA00000138A.I.5.1		
M00001624A;B0		217.E1.sp6:139406.Seq		
M00001624A:B0		90.B4.sp6:130874.Seq		
M00001630B:H0		90.D4.sp6:130898.Seq		
M00001630B:H0	9 5214	122.C2.sp6:132098.Seq		
M00001630B:H0		RTA00000186AF.g.11.1		
M00001651A:H0		RTA00000186AF.n.7.1		
M00001651A:H0	1	90.A5.sp6:130863.Seq		
M00001677C:E1	0 14627	RTA00000187AF.g.23.1		
M00001679C:F0	l 78091	90.C7.sp6:130889.Seq		
M00001679C:F0	l 78091	RTA00000187AF.j.6.1		
M00001679C:F0	78091	176.G5.sp6:134588.Seq		
M00001686A:E0	6 4622	RTA00000187AF.m.15.2		
M00003796C:D0	5 5619	RTA00000188AF.I.9.1.Seq THC167845		
M00003796C:D0	5 5619	RTA00000188AF.I.9.1		
M00003826B:A0	6 11350	RTA00000189AF.a.24.2		
M00003826B:A0	6 11350	90.F9.sp6:130927.Seq		
M00003833A:E0	5 21877	RTA00000189AF.b.21.1		
M00003837D:A0	1 7899	90.H9.sp6:130951.Seq		
M00003837D:A0	1 7899	RTA00000189AF.c.10.1		
M00003846B:D0	6 6874	RTA00000189AF.e.9.1		
M00003846B:D0	6 68 74	90.C10.sp6:130892.Seq		
M00003879B:D1	0 31587	RTA00000189AF.I.20.1		
M00003879B:D1	0 31587	90.C12.sp6:130894.Seq		
M00003879D:A0	2 14507	90.D12.sp6:130906.Seq		
M00003879D:A0	2 14507	RTA00000189AR.1.23.2		
M00003891C:H0	9	90.G12.sp6:130942.Seq		
M00003891C:H0	9	RTA00000189AF.p.8.1		
M00003912B:D0	1 12532	99.D1.sp6:131266.Seq		
M00003912B:D0		RTA00000190AF.g.2.1		
M00004072B:B0	5 17036	RTA00000191AF.j.10.1		
M00004081C:D1	2 14391	RTA00000191AF.I.7.1		
M00004111D:A0	8 6874	RTA00000192AF.a.14.1		

WO 99/33982 PCT/US98/27610

cDNA Library ES16 - ATCC# Deposit Date - December 22, 1998

5

10

Deposit Date - Decenit	JEI 22, 1770	
Clone Name	Cluster ID	Sequence Name
M00004111D:A08	6874	99.F5.sp6:131294.Seq
M00004121B:G01		177.H4.sp6:134791.Seq
M00004121B:G01		99.H5.sp6:131318.Seq
M00004121B:G01		RTA00000192AF.c.2.1
M00004138B:H02	13272	99.A6.sp6:131235.Seq
M00004138B:H02	13272	RTA00000192AF.e.3.1
M00004151D:B08	16977	RTA00000192AF.g.3.1
M00004169C:C12	5319	99.E6.sp6:131283.Seq
M00004169C:C12	5319	RTA00000192AF.i.12.1
M00004169C:C12	5319	123.F7.sp6:132331.Seq
M00004183C:D07	16392	RTA00000192AF.I.1.1
M00004183C:D07	16392	RTA00000192AF.I.1.1.Seq_THC202071
M00004230B:C07	7212	RTA00000193AF.b.14.1
M00004230B:C07	7212	99.D8.sp6:131273.Seq
M00004249D:F10		RTA00000193AF.c.21.1.Seq_THC222602
M00004249D:F10		RTA00000193AF.c.21.1
M00004275C:C11	16914	99.A9.sp6:131238.Seq
M00004275C:C11	16914	RTA00000193AF.f.5.1
M00004283B:A04	14286	RTA00000193AF.f.22.1
M00004285B:E08	56020	RTA00000193AF.g.2.1
M00004327B:H04		RTA00000193AF.j.20.1
M00004377C:F05	2102	RTA00000193AF.n.7.1
M00004384C:D02		RTA00000193AF.n.15.1
M00004384C:D02		RTA00000193AF.n.15.1.Seq_THC215687
M00004461A:B08		RTA00000194AR.a.10.2
M00004461A:B09		RTA00000194AF.a.11.1
M00004691D:A05		RTA00000194AF.c.23.1
M00004896A:C07		RTA00000194AF.d.13.1

The above material has been deposited with the American Type Culture Collection, Rockville, Maryland, under the accession number indicated. This deposit will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for purposes of Patent Procedure. The deposit will be maintained for a period of 30 years following issuance of this patent, or for the enforceable life of the patent, whichever is greater. Upon issuance of the patent, the deposit will be available to the public from the ATCC without restriction.

This deposit is provided merely as convenience to those of skill in the art, and is not an admission that a deposit is required under 35 U.S.C. §112. The sequence of the polynucleotides contained within the deposited material, as well as the amino acid sequence of the polypeptides encoded thereby, are incorporated herein by reference and are controlling in the event of any conflict with the written description of sequences herein. A license may

be required to make, use, or sell the deposited material, and no such license is granted hereby.

Retrieval of Individual Clones from Deposit of Pooled Clones

5

10

15

20

Where the ATCC deposit is composed of a pool of cDNA clones, the deposit was prepared by first transfecting each of the clones into separate bacterial cells. The clones were then deposited as a pool of equal mixtures in the composite deposit. Particular clones can be obtained from the composite deposit using methods well known in the art. For example, a bacterial cell containing a particular clone can be identified by isolating single colonies, and identifying colonies containing the specific clone through standard colony hybridization techniques, using an oligonucleotide probe or probes designed to specifically hybridize to a sequence of the clone insert (e.g., a probe based upon unmasked sequence of the encoded polynucleotide having the indicated SEQ ID NO). The probe should be designed to have a T_m of approximately 80°C (assuming 2°C for each A or T and 4°C for each G or C). Positive colonies can then be picked, grown in culture, and the recombinant clone isolated. Alternatively, probes designed in this manner can be used to PCR to isolate a nucleic acid molecule from the pooled clones according to methods well known in the art, e.g., by purifying the cDNA from the deposited culture pool, and using the probes in PCR reactions to produce an amplified product having the corresponding desired polynucleotide sequence.

Table 1. Sequence identification numbers, cluster ID, sequence name, and clone name SEQ ID NO: Cluster ID Sequence Name Clone Name M00001429B:A11 1 4635 RTA00000180AF.i.20.1 2 M00001608D:A11 RTA00000185AF.n.12.1 4622 M00001686A:E06 3 RTA00000187AF.m.15.2 3706 4 RTA00000191AF.i.17.2 M00004068B:A01 5 36535 RTA00000181AF.f.5.1 M00001449A:G10 6 3990 RTA00000183AF.j.11.1 M00001532B:A06 7 5319 RTA00000192AF.i.12.1 M00004169C:C12 8 36393 RTA00000180AF.c.2.1 M00001417A:E02 9 2623 RTA00000183AF.a.6.1 M00001497A:G02 10 7587 RTA00000178AF.n.24.1 M00001387B:G03 11 7065 RTA00000137A.g.6.1 M00001557A:D02 12 10539 RTA00000187AF.I.7.1 M00001680D:F08 13 27250 RTA00000181AF.g.10.1 M00001450A:D08 14 5556 RTA00000179AF.n.10.1 M00001407B:D11 15 RTA00000192AF.m.12.1 M00004191D:B11 16 8761 RTA00000184AF.k.12.1 M00001557D:D09 17 4622 RTA00000189AF.g.1.1 M00003856B:C02 18 11460 RTA00000187AF.g.12.1 M00001676B:F05 19 16283 RTA00000120A.o.20.1 M00001467A:D08 20 3430 RTA00000191AF.a.9.1 M00003981A:E10 21 7065 RTA00000184AF.j.21.1 M00001557A:D02 22 RTA00000182AF.1.20.1 M00001488B:F12 23 RTA00000123A.g.19.1 M00001531A:H11 24 16918 RTA00000193AF.a.16.1 M00004223A:G10 25 16914 RTA00000193AF.f.5.1 M00004275C:C11 26 40108 RTA00000187AF.o.24.1 M00003741D:C09 27 14286 RTA00000193AF.f.22.1 M00004283B:A04 28 17004 RTA00000186AF.b.21.1 M00001617C:E02 29 RTA00000180AF.g.22.1 M00001426B:D12 30 13272 RTA00000192AF.e.3.1 M00004138B:H02 31 RTA00000194AF.f.4.1 M00005180C:G03 32 32663 RTA00000118A.I.8.1 M00001450A:A11 33 RTA00000180AF.a.9.1 M00001414A:B01 34 5832 RTA00000178AF.o.23.1 M00001388D:G05 35 7801 RTA00000181AF.c.21.1 M00001446A:F05 36 76760 RTA00000187AF.a.15.1 M00001657D:F08 37 40132 RTA00000178AF.c.7.1 M00001365C:C10 38 RTA00000183AF.e.1.1 M00001505C:C05 39 4016 RTA00000118A.c.4.1 M00001395A:C03 40 5382 RTA00000187AF.m.23.2 M00001688C:F09

WO 99/33	982		PCT/US98/27610
SEQ ID NO	: Cluster ID	Sequence Name	Clone Name
41	5693	RTA00000190AF.p.17.2	M00003978B:G05
42	307	RTA00000136A.o.4.2	M00001552A:B12
43	39833	RTA00000178AF.i.23.1	M00001378B:B02
44		RTA00000193AF.m.5.1	M00004359B:G02
45	5325	RTA00000191AF.o.6.1	M00004093D:B12
46	5325	RTA00000191AF.o.6.2	M00004093D:B12
47	18957	RTA00000190AR.m.9.1	M00003958A:H02
48	39508	RTA00000120A.o.2.1	M00001467A:D04
49	22390	RTA00000136A.j.13.1	M00001551A:G06
50	12170	RTA00000125A.h.18.4	M00001544A:E03
51	4393	RTA00000187AF.n.17.1	M00001693C:G01
52	19	RTA00000182AF.b.7.1	M00001463C:B11
53		RTA00000193AF.c.21.1	M00004249D:F10
54	7899	RTA00000189AF.c.10.1	M00003837D:A01
55	40073	RTA00000191AF.e.3.1	M00004028D:C05
56	7005	RTA00000179AF.o.22.1	M00001410A:D07
57		RTA00000187AF.h.22.1	M00001679A:F06
58	18957	RTA00000190AF.m.9.2	M00003958A:H02
59	18957	RTA00000183AF.h.23.1	M00001528A:F09
60	16283	RTA00000182AF.c.22.1	M00001467A:D08
61	6974	RTA00000183AF.d.9.1	M00001504C:H06
62	2623	RTA00000183AF.b.14.1	M00001500A:E11
63	9105	RTA00000191AF.a.21.2	M00003983A:A05
64	13238	RTA00000181AF.m.4.1	M00001455A:E09
65	5749	RTA00000185AF.a.19.1	M00001571C:H06
66	6455	RTA00000193AF.b.9.1	M00004229B:F08
67	23001	RTA00000185AF.c.24.1	M00001578B:E04
68	6455	RTA00000192AF.g.23.1	M00004157C:A09
69	13595	RTA00000189AF.f.8.1	M00003851B:D10
70	39442	RTA00000120A.o.21.1	M00001467A:E10
71	17036	RTA00000191AF.f.13.1	M00004035D:B06
72		RTA00000183AF.g.9.1	M00001513B:G03
73	7005	RTA00000181AF.k.24.1	M00001454B:C12
74	6268	RTA00000126A.o.23.1	M00001551A:B10
75	16130	RTA00000119A.c.13.1	M00001453A:E11
76	23201	RTA00000187AF.a.14.1	M00001657D:C03
77	5321	RTA00000183AF.k.8.1	M00001534A:F09
78	13157	RTA00000186AF.a.6.1	M00001614C:F10
79	2102	RTA00000193AF.n.7.1	M00004377C:F05
80	1058	RTA00000126A.e.20.3	M00001548A:H09
81	40392	RTA00000180AF.j.8.1	M00001429D:D07
82		RTA00000183AF.e.23.1	M00001506D:A09
83	11476	RTA00000187AF.p.19.1	M00003747D:C05

WO 99/3398	82		PCT/US98/27610
SEQ ID NO:	Cluster ID	Sequence Name	Clone Name
84	3584	RTA00000177AF.h.20.1	M00001349B:B08
85	10470	RTA00000180AF.f.18.1	M00001424B:G09
86	39425	RTA00000133A.f.1.1	M00001470A:C04
87	5175	RTA00000184AF.f.3.1	M00001550A:G01
88	13576	RTA00000189AF.o.13.1	M00003885C:A02
89	7665	RTA00000134A.l.19.1	M00001535A:B01
90	16927	RTA00000177AF.h.9.3	M00001348B:B04
91	6660	RTA00000187AF.h.15.1	M00001679A:A06
92	2433	RTA00000191AF.a.15.2	M00003982C:C02
93	5097	RTA00000134A.k.1.1	M00001534A:D09
94	21847	RTA00000193AF.j.9.1	M00004318C:D10
95	3277	RTA00000138A.l.5.1	M00001624A:B06
96	5708	RTA00000184AF.g.12.1	M00001552B:D04
97	945	RTA00000178AR.a.20.1	M00001362C:H11
98	16269	RTA00000178AF.p.1.1	M00001389A:C08
99		RTA00000183AF.c.24.1	M00001504A:E01
100	16731	RTA00000181AF.a.20.1	M00001442C:D07
101	12439	RTA00000190AF.o.24.1	M00003975A:G11
102	3162	RTA00000177AF.j.12.3	M00001351B:A08
103		RTA00000194AF.b.19.1	M00004505D:F08
104		RTA00000193AF.n.15.1	M00004384C:D02
105		RTA00000186AF.n.7.1	M00001651A:H01
106	10717	RTA00000181AF.d.10.1	M00001447A:G03
107	4573	RTA00000189AF.j.12.1	M00003871C:E02
108		RTA00000186AF.h.14.1	M00001632D:H07
109	11443	RTA00000192AF.1.13.2	M00004185C:C03
110	5892	RTA00000184AF.d.11.1	M00001548A:E10
111	3162	RTA00000177AF.j.12.1	M00001351B:A08
112	10470	RTA00000185AF.k.6.1	M00001597D:C05
113	17055	RTA00000187AF.m.3.1	M00001682C:B12
114	2030	RTA00000193AF.m.20.1	M00004372A:A03
115	6558	RTA00000184AF.m.21.1	M00001560D:F10
116	23255	RTA00000190AF.j.4.1	M00003922A:E06
117	9577	RTA00000179AF.o.17.1	M00001409C:D12
118		RTA00000180AF.a.11.1	M00001414C:A07
119	8	RTA00000181AF.e.17.1	M00001448D:C09
120	67907	RTA00000188AF.g.11.1	M00003774C:A03
121	12081	RTA00000133A.d.14.2	M00001469A:C10
122	2448	RTA00000119A.j.21.1	M00001460A:F06
123	3389	RTA00000189AF.g.3.1	M00003857A:G10
124	39174	RTA00000124A.n.13.1	M00001541A:H03
125	24488	RTA00000190AF.n.16.1	M00003968B:F06
126	8210	RTA00000192AF.n.13.1	M00004197D:H01

WO 99/33	982		PCT/US98/27610
SEQ ID NO	Cluster ID	Sequence Name	Clone Name
127		RTA00000135A.l.2.2	M00001545A:B02
128	40455	RTA00000190AF.m.10.2	M00003958C:G10
129	9577	RTA00000180AF.d.23.1	M00001421C:F01
130	13183	RTA00000192AF.a.24.1	M00004114C:F11
131	5214	RTA00000186AF.g.11.1	M00001630B:H09
132	67252	RTA00000187AF.o.6.1	M00001716D:H05
133	3108	RTA00000188AF.d.24.1	M00003763A:F06
134	2464	RTA00000178AF.n.18.1	M00001387A:C05
135	36313	RTA00000181AF.e.23.1	M00001448D:H01
136	23255	RTA00000177AF.e.14.3	M00001343D:H07
137	7985	RTA00000182AR.j.2.1	M00001481D:A05
138	8286	RTA00000183AF.o.1.1	M00001540A:D06
139	22195	RTA00000180AF.g.7.1	M00001425B:H08
140	4573	RTA00000184AF.h.9.1	M00001553B:F12
141	26875	RTA00000187AF.i.1.1	M00001679A:F10
142	7187	RTA00000177AF.i.8.2	M00001350A:H01
143	86859	RTA00000118A.p.8.1	M00001452A:B12
144	4623	RTA00000185AF.f.4.1	M00001586C:C05
145		RTA00000121A.c.10.1	M00001469A:A01
146	10185	RTA00000183AF.d.5.1	M00001504C:A07
147		RTA00000183AF.p.4.1	M00001542B:B01
148	15069	RTA00000191AF.l.6.1	M00004081C:D10
149	39304	RTA00000118A.j.21.1	M00001450A:A02
150	8672	RTA00000190AF.f.11.1	M00003909D:C03
151	13576	RTA00000177AF.g.16.1	M00001347A:B10
152	6293	RTA00000185AF.e.11.1	M00001583D:A10
153	16977	RTA00000192AF.g.3.1	M00004151D:B08
154	5345	RTA00000189AF.I.19.1	M00003879B:C11
155	4905	RTA00000193AF.e.14.1	M00004269D:D06
156	17036	RTA00000191AF.j.10.1	M00004072B:B05
157	5417	RTA00000191AF.h.19.1	M00004059A:D06
158	7172	RTA00000178AF.f.9.1	M00001371C:E09
159	40044	RTA00000186AF.d.1.1	M00001621C:C08
160	4386	RTA00000184AF.j.4.1	M00001556B:C08
161	40044	RTA00000183AF.g.22.1	M00001514C:D11
162	9685	RTA00000183AF.c.11.1	M00001501D:C02
163	22155	RTA00000185AF.n.9.1	M00001608B:E03
164	10515	RTA00000189AF.f.18.1	M00003853A:F12
165	6539	RTA00000185AF.d.11.1	M00001579D:C03
166	15066	RTA00000180AF.e.24.1	M00001423B:E07
167	4261	RTA00000180AF.h.5.1	M00001426D:C08
168	13864	RTA00000125A.m.9.1	M00001545A:D08
169	6539	RTA00000189AF.d.22.1	M00003844C:B11

SEQ ID NO: Cluster ID Sequence Name Clone Name 170 11465 RTA00000185AF.m.19.1 M00001607A:E11 171 3266 RTA00000184AR.g.1.1 M00001551C:G09 172 102 RTA00000181AR.i.18.2 M00001452C:B06 173 16970 RTA00000177AF.g.2.1 M00001452C:B06 174 12971 RTA00000177AF.g.2.1 M00001346A:F09 175 5007 RTA00000175A.d.1.1 M00001346A:F09 176 3765 RTA00000135A.d.1.1 M00001541A:D02 177 11294 RTA00000131A.g.15.2 M00001449A:D12 178 3681 RTA00000184AF.j.6.1 M00001495D:F09 180 18699 RTA00000181AF.f.12.1 M00001495D:F09 181 86110 RTA0000018AF.g.1.1 M00001495D:F09 182 39648 RTA0000018AF.j.7.1 M0000133A:C03 183 7337 RTA00000178AF.j.7.1 M00001528A:C04 184 1334 RTA0000018AF.j.7.1 M00001526A:C04 185 17076 RTA00000	WO 99/339	82		PCT/US98/27610
171 3266 RTA00000184AR.g.1.1 M00001551C:G09 172 102 RTA00000184AF.o.5.1 M00001563B:F06 173 16970 RTA00000181AR.i.18.2 M00001452C:B06 174 12971 RTA00000193AF.a.20.1 M00004223D:E04 175 5007 RTA00000177AF.g.2.1 M00001346A:F09 176 3765 RTA00000181AR.g.15.2 M00001541A:D02 177 11294 RTA00000181AR.g.15.2 M0000149A:D12 178 3681 RTA00000181AR.g.15.2 M0000149A:D12 179 9283 RTA00000181AR.m.12.1 M00001490B:C04 181 86110 RTA00000181AF.fi.12.1 M00001490B:C04 182 39648 RTA00000178AR.l.8.2 M00001383A:C03 183 7337 RTA00000178AF.j.7.1 M00001379A:A05 184 1334 RTA00000178AF.j.7.1 M00001379A:A05 185 17076 RTA00000138A.b.5.1 M00001379A:A05 186 22794 RTA00000138A.b.5.1 M00001440:D08 187 39171 RTA00	SEQ ID NO:	Cluster ID	Sequence Name	Clone Name
172 102 RTA00000184AF.o.5.1 M00001563B:F06 173 16970 RTA00000181AR.i.18.2 M00001452C:B06 174 12971 RTA0000017AF.g.2.1 M00001422D:E04 175 5007 RTA0000017AF.g.2.1 M00001346A:F09 176 3765 RTA00000135A.d.1.1 M00001541A:D02 177 11294 RTA00000181AR.g.15.2 M00001449A:D12 178 3681 RTA00000181AR.m.21.2 M00001490B:C04 180 18699 RTA00000182AF.m.16.1 M00001490B:C04 181 86110 RTA00000181AF.fi.12.1 M00001490B:C04 182 39648 RTA00000178AR.l.8.2 M00001383A:C03 183 7337 RTA00000178AF.j.7.1 M00001528A:C04 184 1334 RTA00000178AF.j.7.1 M00001379A:A05 185 17076 RTA0000018AF.j.7.1 M00001379A:A05 187 39171 RTA0000018AF.j.7.1 M00001601A:D08 187 39171 RTA0000018AF.p.2.1.1 M00001449A:A12 190 9443 RTA00	170	11465	RTA00000185AF.m.19.1	M00001607A:E11
173 16970 RTA00000181AR.i.18.2 M00001452C:B06 174 12971 RTA00000193AF.a.20.1 M00004223D:E04 175 5007 RTA00000177AF.g.2.1 M00001346A:F09 176 3765 RTA00000135A.d.1.1 M00001541A:D02 177 11294 RTA00000181AF.j.5.2 M00001449A:D12 178 3681 RTA00000131A.g.j.5.2 M00001449A:D12 179 9283 RTA00000181AR.m.21.2 M00001490B:C04 180 18699 RTA00000178AF.fil2.1 M00001490B:C04 181 86110 RTA00000178AF.fil2.1 M00001490B:C04 182 39648 RTA00000178AF.j.7.1 M00001522A:C04 184 1334 RTA00000178AF.j.7.1 M00001379A:A05 185 17076 RTA00000178AF.j.7.1 M00001379A:A05 186 22794 RTA0000018AF.J.7.1 M00001601A:D08 187 39171 RTA0000018AF.J.2.1 M0000144C:B07 188 8551 RTA00000179AF.p.21.1 M0000144C:B07 189 9457 RTA0	171	3266	RTA00000184AR.g.1.1	M00001551C:G09
174 12971 RTA00000193AF.a.20.1 M00004223D:E04 175 5007 RTA00000177AF.g.2.1 M00001346A:F09 176 3765 RTA0000013A.d.1.1 M00001541A:D02 177 11294 RTA0000013A.g.15.2 M00001455D:F69 178 3681 RTA00000181AR.m.21.2 M00001455D:F69 180 18699 RTA00000182AF.m.16.1 M00001490B:C04 181 86110 RTA0000018AR.I.8.2 M0000133A:C03 182 39648 RTA00000178AR.I.8.2 M0000133A:C04 184 1334 RTA00000178AF.j.7.1 M00001528A:C04 184 1334 RTA00000178AF.j.7.1 M00001528A:C04 185 17076 RTA0000018AF.d.21.1 M0000152A:C05 186 22794 RTA0000018AF.d.21.1 M000016A4C:B07 187 39171 RTA0000018AF.d.21.1 M00001644C:B07 188 8551 RTA0000018AF.c.1.1 M00001449A:A12 190 9443 RTA0000018AF.c.1.1 M00001449A:A12 190 9443 RTA0000018AF.	172	102	RTA00000184AF.o.5.1	M00001563B:F06
175 5007 RTA00000177AF.g.2.1 M00001346A:F09 176 3765 RTA00000135A.d.1.1 M00001541A:D02 177 11294 RTA00000184AF.j.6.1 M00001556B:G02 178 3681 RTA00000181A.g.15.2 M00001455D:F09 180 18699 RTA00000182AF.m.16.1 M00001490B:C04 181 86110 RTA00000181AF.fil2.1 M00001490E:C04 182 39648 RTA00000178AR.I.8.2 M0000138A:C03 183 7337 RTA00000123A.b.17.1 M00001379A:A05 184 1334 RTA0000018AF.j.7.1 M00001379A:A05 185 17076 RTA0000018AF.j.7.1 M00001379A:A05 186 22794 RTA0000018AF.j.7.1 M00001601A:D08 187 39171 RTA0000018AF.j.7.1 M00001440:B08 187 39171 RTA0000018AF.j.7.1 M00001440:B08 188 8551 RTA0000018AF.j.7.1 M00001440:B08 189 5857 RTA0000013A.g.j.1.1 M00001449A:A12 190 9443 RTA0000013AF.j.1	173	16970	RTA00000181AR.i.18.2	M00001452C:B06
176 3765 RTA00000135A.d.1.1 M00001541A:D02 177 11294 RTA00000184AF.j.6.1 M00001556B:G02 178 3681 RTA00000131A.g.15.2 M00001449A:D12 179 9283 RTA00000181AR.m.21.2 M00001455D:F09 180 18699 RTA00000181AF.fi.12.1 M00001490B:C04 181 86110 RTA00000178AR.I.8.2 M00001490E:C04 182 39648 RTA00000178AR.I.8.2 M0000138A:C03 183 7337 RTA00000178AF.j.7.1 M00001379A:A05 184 1334 RTA00000178AF.j.7.1 M00001379A:A05 185 17076 RTA0000018AF.J.7.1 M00001464C:B07 186 22794 RTA0000018AF.J.7.1 M000016A4C:B07 188 8551 RTA0000018AF.J.1.1 M00001449A:A12 189 5857 RTA0000018AF.c.1.1 M00001449A:A12 190 9443 RTA0000019AF.c.1.1 M0000149AP.C:A06 192 7206 RTA0000019AF.c.1.1 M0000449A:C:A06 193 22979 RTA0000015	174	12971	RTA00000193AF.a.20.1	M00004223D:E04
177 11294 RTA00000184AF.j.6.1 M00001556B:G02 178 3681 RTA00000131A.g.15.2 M00001449A:D12 179 9283 RTA00000181AR.m.21.2 M00001455D:F09 180 18699 RTA00000182AF.m.16.1 M00001490B:C04 181 86110 RTA0000018AF.f.12.1 M00001490E:D06 182 39648 RTA00000178AR.l.8.2 M0000138A:C03 183 7337 RTA00000123A.b.17.1 M000001528A:C04 184 1334 RTA00000178AF.j.7.1 M00001379A:A05 185 17076 RTA0000018AF.d.21.1 M00001379A:A05 186 22794 RTA0000018AF.J.7.1 M00001601A:D08 187 39171 RTA0000018AF.J.7.1 M00001442:BB10 188 8551 RTA00000179AF.p.21.1 M0000142B:B10 189 5857 RTA0000018A.g.14.1 M0000149A:B.12 190 9443 RTA0000018AF.c.1.1 M00001500C:E04 191 9457 RTA0000013AF.i.14.2 M00001500C:E04 192 7206 RTA0000015	175	5007	RTA00000177AF.g.2.1	M00001346A:F09
178 3681 RTA00000131A.g.15.2 M00001449A:D12 179 9283 RTA00000181AR.m.21.2 M00001455D:F09 180 18699 RTA00000181AF.m.16.1 M00001490B:C04 181 86110 RTA00000178AR.I.8.2 M00001490B:C04 182 39648 RTA00000178AR.I.8.2 M00001383A:C03 183 7337 RTA00000178AF.j.7.1 M00001528A:C04 184 1334 RTA00000178AF.j.7.1 M0000179A:A05 185 17076 RTA0000018AF.d.21.1 M00003762C:B08 186 22794 RTA0000018AF.d.21.1 M0000161A:D08 187 39171 RTA0000018AF.D.21.1 M00001644C:B07 188 8551 RTA0000018AF.p.21.1 M0000142B:B10 189 5857 RTA0000018AF.c.1.1 M00001449A:A12 190 9443 RTA0000018AF.c.1.1 M00004307C:A06 192 7206 RTA0000018AF.c.1.1 M00004307C:A06 193 22979 RTA0000017AF.g.2.1 M00001494D:F06 195 7221 RTA000001FAF.	176	3765	RTA00000135A.d.1.1	M00001541A:D02
179 9283 RTA00000181AR.m.21.2 M00001455D:F09 180 18699 RTA00000182AF.m.16.1 M00001490B:C04 181 86110 RTA00000178AR.I.8.2 M00001383A:C03 182 39648 RTA00000178AR.I.8.2 M00001383A:C03 183 7337 RTA00000178AF.j.7.1 M00001379A:A05 184 1334 RTA00000178AF.j.7.1 M00001379A:A05 185 17076 RTA0000018AF.d.21.1 M00001601A:D08 186 22794 RTA0000018AF.I.7.1 M00001601A:D08 187 39171 RTA0000018AF.I.7.1 M00001604C:B07 188 8551 RTA00000179AF.p.21.1 M00001412B:B10 189 5857 RTA0000018AF.j.21.1 M00001449A:A12 190 9443 RTA0000018AF.c.1.1 M00004307C:A06 192 7206 RTA0000018AF.c.1.5.1 M00004307C:A06 193 22979 RTA0000017AF.g.2.1 M00001382C:A02 194 40455 RTA0000014F.p.9.1 M00004972A:C03 197 7239 RTA000001	177	11294	RTA00000184AF.j.6.1	M00001556B:G02
180 18699 RTA00000182AF.m.16.1 M00001490B:C04 181 86110 RTA00000181AF.f.12.1 M00001449C:D06 182 39648 RTA00000178AR.l.8.2 M00001383A:C03 183 7337 RTA00000123A.b.17.1 M00001528A:C04 184 1334 RTA00000188AF.j.7.1 M00001379A:A05 185 17076 RTA00000188AF.d.21.1 M00003762C:B08 186 22794 RTA00000138A.b.5.1 M00001601A:D08 187 39171 RTA00000186AF.l.7.1 M00001644C:B07 188 8551 RTA00000186AF.l.7.1 M0000144D:B07 189 5857 RTA0000018A.g.14.1 M0000144D:B07 190 9443 RTA00000183AF.c.1.1 M00001500C:E04 191 9457 RTA0000013AF.i.14.2 M00004307C:A06 192 7206 RTA0000013AF.k.2.1 M00001382C:A02 194 40455 RTA0000015A.m.10.1 M00003958C:G10 195 7221 RTA000001FA.g.1.1 M00004072A:C03 197 7239 RTA0000018AF.	178	3681	RTA00000131A.g.15.2	M00001449A:D12
181 86110 RTA00000181AF.f.12.1 M00001449C:D06 182 39648 RTA00000178AR.l.8.2 M00001383A:C03 183 7337 RTA00000123A.b.17.1 M00001528A:C04 184 1334 RTA0000018AF.j.7.1 M00001379A:A05 185 17076 RTA00000188AF.d.21.1 M00001601A:D08 186 22794 RTA00000186AF.l.7.1 M00001644C:B07 187 39171 RTA00000186AF.l.7.1 M0000144C:B07 188 8551 RTA0000018AF.p.21.1 M00001442B:B10 189 5857 RTA0000018AF.c.1.1 M00001449A:A12 190 9443 RTA0000183AF.c.1.1 M00001500C:E04 191 9457 RTA00000183AF.c.1.1 M00001494D:F06 192 7206 RTA0000193AF.i.14.2 M00001382C:A02 194 40455 RTA0000018AF.k.22.1 M00001382C:A02 194 40455 RTA0000018AF.p.9.1 M00004105C:A04 195 7221 RTA0000018AF.l.2.0.1 M0000472A:C03 197 7239 RTA00000189AF.l.20.1 M00001550A:A03 198 31587 RT	179	9283	RTA00000181AR.m.21.2	M00001455D:F09
182 39648 RTA00000178AR.I.8.2 M00001383A:C03 183 7337 RTA00000123A.b.17.1 M00001528A:C04 184 1334 RTA00000178AF.j.7.1 M00001379A:A05 185 17076 RTA00000188AF.d.21.1 M00003762C:B08 186 22794 RTA00000138A.b.5.1 M00001601A:D08 187 39171 RTA00000186AF.I.7.1 M00001644C:B07 188 8551 RTA00000179AF.p.21.1 M00001412B:B10 189 5857 RTA00000118A.g.14.1 M00001449A:A12 190 9443 RTA00000183AF.c.1.1 M00001500C:E04 191 9457 RTA00000193AF.i.14.2 M00004307C:A06 192 7206 RTA00000182AF.o.15.1 M00001494D:F06 193 22979 RTA0000018AF.k.22.1 M00001382C:A02 194 40455 RTA0000019AR.m.10.1 M00003958C:G10 195 7221 RTA0000019AF.p.9.1 M00004105C:A04 196 RTA0000019AF.p.9.1 M00004072A:C03 198 31587 RTA00000189AF.l.20.1	180	18699	RTA00000182AF.m.16.1	M00001490B:C04
183 7337 RTA00000123A.b.17.1 M00001528A:C04 184 1334 RTA00000178AF.j.7.1 M00001379A:A05 185 17076 RTA00000188AF.d.21.1 M00003762C:B08 186 22794 RTA00000138A.b.5.1 M00001601A:D08 187 39171 RTA00000186AF.I.7.1 M00001644C:B07 188 8551 RTA00000179AF.p.21.1 M00001412B:B10 189 5857 RTA00000118A.g.14.1 M00001449A:A12 190 9443 RTA00000183AF.c.1.1 M00001500C:E04 191 9457 RTA00000193AF.i.14.2 M00004307C:A06 192 7206 RTA00000182AF.o.15.1 M00001494D:F06 193 22979 RTA0000018AF.k.22.1 M00001382C:A02 194 40455 RTA0000019AR.m.10.1 M0000388C:G10 195 7221 RTA0000019AF.p.9.1 M00004072A:C03 197 7239 RTA0000018AF.j.20.1 M0000472A:C03 198 31587 RTA0000018AF.c.20.1 M00003879B:D10 199 16317 RTA00000	181	86110	RTA00000181AF.f.12.1	M00001449C:D06
184 1334 RTA00000178AF,j.7.1 M00001379A:A05 185 17076 RTA00000188AF,d.21.1 M00003762C:B08 186 22794 RTA00000138A,b.5.1 M00001601A:D08 187 39171 RTA00000186AF,l.7.1 M00001644C:B07 188 8551 RTA00000179AF,p.21.1 M00001412B:B10 189 5857 RTA00000183AF,c.1.1 M00001449A:A12 190 9443 RTA00000183AF,c.1.1 M00001500C:E04 191 9457 RTA00000183AF,c.1.1 M00001494D:F06 192 7206 RTA00000182AF,c.15.1 M00001494D:F06 193 22979 RTA00000178AF,k.22.1 M00001382C:A02 194 40455 RTA00000190AR,m.10.1 M00003958C:G10 195 7221 RTA00000191AF,p.9.1 M00004072A:C03 197 7239 RTA00000189AF,l.20.1 M00001550A:A03 198 31587 RTA00000189AF,c.6.1 M0000385C:A02 201 5779 RTA00000189AF,c.6.1 M0000385C:A02 201 5779 RTA000	182	39648	RTA00000178AR.I.8.2	M00001383A:C03
185 17076 RTA00000188AF.d.21.1 M00003762C:B08 186 22794 RTA00000138A.b.5.1 M00001601A:D08 187 39171 RTA00000186AF.I.7.1 M00001644C:B07 188 8551 RTA00000179AF.p.21.1 M00001412B:B10 189 5857 RTA00000183AF.c.1.1 M00001449A:A12 190 9443 RTA00000183AF.c.1.1 M00001500C:E04 191 9457 RTA00000193AF.i.14.2 M00004307C:A06 192 7206 RTA00000182AF.o.15.1 M00001494D:F06 193 22979 RTA00000178AF.k.22.1 M00001382C:A02 194 40455 RTA00000190AR.m.10.1 M00003958C:G10 195 7221 RTA00000191AF.p.9.1 M00004105C:A04 196 RTA00000191AF.j.9.1 M00004072A:C03 197 7239 RTA00000189AF.l.20.1 M00003879B:D10 199 16317 RTA00000189AF.c.6.1 M00003879B:D10 200 13576 RTA00000189AR.o.13.1 M0000385C:A02 201 5779 RTA00000177AF.g.14.3 <td>183</td> <td>7337</td> <td>RTA00000123A.b.17.1</td> <td>M00001528A:C04</td>	183	7337	RTA00000123A.b.17.1	M00001528A:C04
186 22794 RTA00000138A.b.5.1 M00001601A:D08 187 39171 RTA00000186AF.I.7.1 M00001644C:B07 188 8551 RTA00000179AF.p.21.1 M00001412B:B10 189 5857 RTA00000118A.g.14.1 M00001449A:A12 190 9443 RTA00000183AF.c.1.1 M00001500C:E04 191 9457 RTA00000193AF.i.14.2 M00004307C:A06 192 7206 RTA00000182AF.o.15.1 M00001494D:F06 193 22979 RTA00000178AF.k.22.1 M00001382C:A02 194 40455 RTA00000190AR.m.10.1 M00003958C:G10 195 7221 RTA00000191AF.p.9.1 M00004105C:A04 196 RTA00000191AF.j.9.1 M00004072A:C03 197 7239 RTA00000189AF.1.20.1 M00003879B:D10 199 16317 RTA00000189AF.1.20.1 M00003879B:D10 199 16317 RTA00000189AF.0.13.1 M00003885C:A02 201 5779 RTA0000017AF.g.14.3 M00001346D:G06 202 6124 RTA0000018AF.c.20.1	184	1334	RTA00000178AF.j.7.1	M00001379A:A05
187 39171 RTA00000186AF.I.7.1 M00001644C:B07 188 8551 RTA00000179AF.p.21.1 M00001412B:B10 189 5857 RTA00000118A.g.14.1 M00001449A:A12 190 9443 RTA00000183AF.c.1.1 M00001500C:E04 191 9457 RTA00000193AF.i.14.2 M00004307C:A06 192 7206 RTA00000182AF.o.15.1 M00001494D:F06 193 22979 RTA00000178AF.k.22.1 M00001382C:A02 194 40455 RTA00000190AR.m.10.1 M00003958C:G10 195 7221 RTA00000191AF.p.9.1 M00004105C:A04 196 RTA00000191AF.j.9.1 M00004072A:C03 197 7239 RTA00000189AF.1.20.1 M00001550A:A03 198 31587 RTA00000189AF.1.20.1 M00003879B:D10 199 16317 RTA00000189AF.0.13.1 M00003885C:A02 201 5779 RTA0000017AF.g.14.3 M00001346D:G06 202 6124 RTA0000018AF.c.20.1 M0000148D:C03 204 RTA000000188AF.i.8.1 M00001492	185	17076	RTA00000188AF.d.21.1	M00003762C:B08
188 8551 RTA00000179AF.p.21.1 M00001412B:B10 189 5857 RTA00000118A.g.14.1 M00001449A:A12 190 9443 RTA00000183AF.c.1.1 M00001500C:E04 191 9457 RTA00000193AF.i.14.2 M00004307C:A06 192 7206 RTA00000182AF.o.15.1 M00001494D:F06 193 22979 RTA00000178AF.k.22.1 M00001382C:A02 194 40455 RTA00000190AR.m.10.1 M00003958C:G10 195 7221 RTA00000191AF.p.9.1 M00004105C:A04 196 RTA00000191AF.j.9.1 M00004072A:C03 197 7239 RTA00000126A.m.4.2 M00001550A:A03 198 31587 RTA00000189AF.l.20.1 M00003879B:D10 199 16317 RTA00000189AF.c.6.1 M00003885C:A02 201 5779 RTA00000177AF.g.14.3 M00001346D:G06 202 6124 RTA0000018AF.c.20.1 M00001418B:F03 204 RTA00000188AF.i.8.1 M00003784D:D12 205 5779 RTA00000177AF.g.14.1 M00001557A:F03 207 4416 RTA00000187AF.h.13.1 M	186	22794	RTA00000138A.b.5.1	M00001601A:D08
189 5857 RTA00000118A.g.14.1 M00001449A:A12 190 9443 RTA00000183AF.c.1.1 M00001500C:E04 191 9457 RTA00000193AF.i.14.2 M00004307C:A06 192 7206 RTA00000182AF.o.15.1 M00001494D:F06 193 22979 RTA00000178AF.k.22.1 M00001382C:A02 194 40455 RTA00000190AR.m.10.1 M00003958C:G10 195 7221 RTA00000191AF.p.9.1 M00004105C:A04 196 RTA00000191AF.j.9.1 M00004072A:C03 197 7239 RTA00000126A.m.4.2 M00001550A:A03 198 31587 RTA00000189AF.l.20.1 M00003879B:D10 199 16317 RTA00000189AF.e.6.1 M00003885C:A02 201 5779 RTA00000177AF.g.14.3 M00001346D:G06 202 6124 RTA00000180AF.c.20.1 M00001418B:F03 204 RTA00000180AF.c.20.1 M00001346D:G06 205 5779 RTA00000177AF.g.14.1 M00001346D:G06 206 39490 RTA00000180AF.c.20.1 M0000156	187	39171	RTA00000186AF.I.7.1	M00001644C:B07
190 9443 RTA00000183AF.c.1.1 M00001500C:E04 191 9457 RTA00000193AF.i.14.2 M00004307C:A06 192 7206 RTA00000182AF.o.15.1 M00001494D:F06 193 22979 RTA00000178AF.k.22.1 M00001382C:A02 194 40455 RTA00000190AR.m.10.1 M00003958C:G10 195 7221 RTA00000191AF.p.9.1 M00004105C:A04 196 RTA00000191AF.j.9.1 M0000472A:C03 197 7239 RTA00000126A.m.4.2 M00001550A:A03 198 31587 RTA00000189AF.l.20.1 M00003879B:D10 199 16317 RTA00000190AF.e.6.1 M00003907D:H04 200 13576 RTA00000189AR.o.13.1 M00003885C:A02 201 5779 RTA00000177AF.g.14.3 M00001346D:G06 202 6124 RTA00000180AF.c.20.1 M00001418B:F03 204 RTA00000180AF.c.20.1 M00001346D:G06 205 5779 RTA00000177AF.g.14.1 M00001557A:F03 206 39490 RTA00000187AF.h.13.1 M00001396A:C03	188	8551	RTA00000179AF.p.21.1	M00001412B:B10
191 9457 RTA00000193AF.i.14.2 M00004307C:A06 192 7206 RTA00000182AF.o.15.1 M00001494D:F06 193 22979 RTA00000178AF.k.22.1 M00001382C:A02 194 40455 RTA00000190AR.m.10.1 M00003958C:G10 195 7221 RTA00000191AF.p.9.1 M00004105C:A04 196 RTA00000191AF.j.9.1 M00004072A:C03 197 7239 RTA00000126A.m.4.2 M00001550A:A03 198 31587 RTA00000189AF.l.20.1 M00003879B:D10 199 16317 RTA00000190AF.e.6.1 M00003907D:H04 200 13576 RTA00000189AR.o.13.1 M00003885C:A02 201 5779 RTA00000177AF.g.14.3 M00001346D:G06 202 6124 RTA00000180AF.c.20.1 M00001418B:F03 204 RTA00000188AF.i.8.1 M00001346D:G06 205 5779 RTA00000177AF.g.14.1 M00001557A:F03 206 39490 RTA00000187AF.h.13.1 M00001678D:F12 208 4009 RTA00000179AF.e.20.1 M00001396A:C03	189	5857	RTA00000118A.g.14.1	M00001449A:A12
192 7206 RTA00000182AF.o.15.1 M00001494D:F06 193 22979 RTA00000178AF.k.22.1 M00001382C:A02 194 40455 RTA00000190AR.m.10.1 M00003958C:G10 195 7221 RTA00000191AF.p.9.1 M00004105C:A04 196 RTA00000191AF.j.9.1 M0000472A:C03 197 7239 RTA00000126A.m.4.2 M00001550A:A03 198 31587 RTA00000189AF.l.20.1 M00003879B:D10 199 16317 RTA00000190AF.e.6.1 M00003907D:H04 200 13576 RTA00000189AR.o.13.1 M00003885C:A02 201 5779 RTA00000177AF.g.14.3 M00001346D:G06 202 6124 RTA00000180AF.c.20.1 M00001418B:F03 204 RTA00000188AF.i.8.1 M00003784D:D12 205 5779 RTA00000177AF.g.14.1 M00001346D:G06 206 39490 RTA00000187AF.h.13.1 M00001678D:F12 208 4009 RTA00000179AF.e.20.1 M00001396A:C03	190	9443	RTA00000183AF.c.1.1	M00001500C:E04
193 22979 RTA00000178AF.k.22.1 M00001382C:A02 194 40455 RTA00000190AR.m.10.1 M00003958C:G10 195 7221 RTA00000191AF.p.9.1 M00004105C:A04 196 RTA00000191AF.j.9.1 M00004072A:C03 197 7239 RTA00000126A.m.4.2 M00001550A:A03 198 31587 RTA00000189AF.l.20.1 M00003879B:D10 199 16317 RTA00000190AF.e.6.1 M00003907D:H04 200 13576 RTA00000189AR.o.13.1 M00003885C:A02 201 5779 RTA00000177AF.g.14.3 M00001346D:G06 202 6124 RTA00000180AF.c.20.1 M00001418B:F03 204 RTA00000188AF.i.8.1 M00001346D:G06 205 5779 RTA00000177AF.g.14.1 M00001346D:G06 206 39490 RTA00000128A.b.4.1 M00001557A:F03 207 4416 RTA00000187AF.h.13.1 M00001396A:C03	191	9457	RTA00000193AF.i.14.2	M00004307C:A06
194 40455 RTA00000190AR.m.10.1 M00003958C:G10 195 7221 RTA00000191AF.p.9.1 M00004105C:A04 196 RTA00000191AF.j.9.1 M00004072A:C03 197 7239 RTA00000126A.m.4.2 M00001550A:A03 198 31587 RTA00000189AF.l.20.1 M00003879B:D10 199 16317 RTA00000190AF.e.6.1 M00003907D:H04 200 13576 RTA00000189AR.o.13.1 M00003885C:A02 201 5779 RTA00000177AF.g.14.3 M00001346D:G06 202 6124 RTA00000180AF.c.20.1 M00001418B:F03 204 RTA00000188AF.i.8.1 M00003784D:D12 205 5779 RTA00000177AF.g.14.1 M00001346D:G06 206 39490 RTA00000128A.b.4.1 M00001557A:F03 207 4416 RTA00000187AF.h.13.1 M00001678D:F12 208 4009 RTA00000179AF.e.20.1 M00001396A:C03	192	7206	RTA00000182AF.o.15.1	M00001494D:F06
195 7221 RTA00000191AF.p.9.1 M00004105C:A04 196 RTA00000191AF.j.9.1 M00004072A:C03 197 7239 RTA00000126A.m.4.2 M00001550A:A03 198 31587 RTA00000189AF.l.20.1 M00003879B:D10 199 16317 RTA00000190AF.e.6.1 M00003907D:H04 200 13576 RTA00000189AR.o.13.1 M00003885C:A02 201 5779 RTA00000177AF.g.14.3 M00001346D:G06 202 6124 RTA00000191AR.e.2.3 M00004028D:A06 203 9952 RTA00000180AF.c.20.1 M00001418B:F03 204 RTA0000018AF.i.8.1 M00001346D:G06 205 5779 RTA00000177AF.g.14.1 M00001346D:G06 206 39490 RTA0000018A.b.4.1 M00001557A:F03 207 4416 RTA00000187AF.h.13.1 M00001678D:F12 208 4009 RTA00000179AF.e.20.1 M00001396A:C03	193	22979	RTA00000178AF.k.22.1	M00001382C:A02
196 RTA00000191AF.j.9.1 M00004072A:C03 197 7239 RTA00000126A.m.4.2 M00001550A:A03 198 31587 RTA00000189AF.l.20.1 M00003879B:D10 199 16317 RTA00000190AF.e.6.1 M00003907D:H04 200 13576 RTA00000189AR.o.13.1 M00003885C:A02 201 5779 RTA00000177AF.g.14.3 M00001346D:G06 202 6124 RTA00000191AR.e.2.3 M00004028D:A06 203 9952 RTA00000180AF.c.20.1 M00001418B:F03 204 RTA00000188AF.i.8.1 M00003784D:D12 205 5779 RTA00000177AF.g.14.1 M00001346D:G06 206 39490 RTA00000128A.b.4.1 M00001557A:F03 207 4416 RTA00000179AF.e.20.1 M00001396A:C03	194	40455	RTA00000190AR.m.10.1	M00003958C:G10
197 7239 RTA00000126A.m.4.2 M00001550A:A03 198 31587 RTA00000189AF.I.20.1 M00003879B:D10 199 16317 RTA00000190AF.e.6.1 M00003907D:H04 200 13576 RTA00000189AR.o.13.1 M00003885C:A02 201 5779 RTA00000177AF.g.14.3 M00001346D:G06 202 6124 RTA00000191AR.e.2.3 M00004028D:A06 203 9952 RTA00000180AF.c.20.1 M00001418B:F03 204 RTA00000188AF.i.8.1 M00003784D:D12 205 5779 RTA00000177AF.g.14.1 M00001346D:G06 206 39490 RTA00000128A.b.4.1 M00001557A:F03 207 4416 RTA00000187AF.h.13.1 M00001396A:C03	195	7221	RTA00000191AF.p.9.1	M00004105C:A04
198 31587 RTA00000189AF.I.20.1 M00003879B:D10 199 16317 RTA00000190AF.e.6.1 M00003907D:H04 200 13576 RTA00000189AR.o.13.1 M00003885C:A02 201 5779 RTA00000177AF.g.14.3 M00001346D:G06 202 6124 RTA00000191AR.e.2.3 M00004028D:A06 203 9952 RTA00000180AF.c.20.1 M00001418B:F03 204 RTA00000188AF.i.8.1 M00003784D:D12 205 5779 RTA00000177AF.g.14.1 M00001346D:G06 206 39490 RTA00000128A.b.4.1 M00001557A:F03 207 4416 RTA00000187AF.h.13.1 M00001678D:F12 208 4009 RTA00000179AF.e.20.1 M00001396A:C03	196		RTA00000191AF.j.9.1	M00004072A:C03
199 16317 RTA00000190AF.e.6.1 M00003907D:H04 200 13576 RTA00000189AR.o.13.1 M00003885C:A02 201 5779 RTA00000177AF.g.14.3 M00001346D:G06 202 6124 RTA00000191AR.e.2.3 M00004028D:A06 203 9952 RTA00000180AF.c.20.1 M00001418B:F03 204 RTA00000188AF.i.8.1 M00003784D:D12 205 5779 RTA00000177AF.g.14.1 M00001346D:G06 206 39490 RTA00000128A.b.4.1 M00001557A:F03 207 4416 RTA00000187AF.h.13.1 M00001678D:F12 208 4009 RTA00000179AF.e.20.1 M00001396A:C03	197	7239	RTA00000126A.m.4.2	M00001550A:A03
200 13576 RTA00000189AR.o.13.1 M00003885C:A02 201 5779 RTA00000177AF.g.14.3 M00001346D:G06 202 6124 RTA00000191AR.e.2.3 M00004028D:A06 203 9952 RTA00000180AF.c.20.1 M00001418B:F03 204 RTA00000188AF.i.8.1 M00003784D:D12 205 5779 RTA00000177AF.g.14.1 M00001346D:G06 206 39490 RTA00000128A.b.4.1 M00001557A:F03 207 4416 RTA00000187AF.h.13.1 M00001678D:F12 208 4009 RTA00000179AF.e.20.1 M00001396A:C03	198	31587	RTA00000189AF.1.20.1	M00003879B:D10
201 5779 RTA00000177AF.g.14.3 M00001346D:G06 202 6124 RTA00000191AR.e.2.3 M00004028D:A06 203 9952 RTA00000180AF.c.20.1 M00001418B:F03 204 RTA00000188AF.i.8.1 M00003784D:D12 205 5779 RTA00000177AF.g.14.1 M00001346D:G06 206 39490 RTA00000128A.b.4.1 M00001557A:F03 207 4416 RTA00000187AF.h.13.1 M00001678D:F12 208 4009 RTA00000179AF.e.20.1 M00001396A:C03	199	16317	RTA00000190AF.e.6.1	M00003907D:H04
202 6124 RTA00000191AR.e.2.3 M00004028D:A06 203 9952 RTA00000180AF.c.20.1 M00001418B:F03 204 RTA00000188AF.i.8.1 M00003784D:D12 205 5779 RTA00000177AF.g.14.1 M00001346D:G06 206 39490 RTA00000128A.b.4.1 M00001557A:F03 207 4416 RTA00000187AF.h.13.1 M00001678D:F12 208 4009 RTA00000179AF.e.20.1 M00001396A:C03	200	13576	RTA00000189AR.o.13.1	M00003885C:A02
203 9952 RTA00000180AF.c.20.1 M00001418B:F03 204 RTA00000188AF.i.8.1 M00003784D:D12 205 5779 RTA00000177AF.g.14.1 M00001346D:G06 206 39490 RTA00000128A.b.4.1 M00001557A:F03 207 4416 RTA00000187AF.h.13.1 M00001678D:F12 208 4009 RTA00000179AF.e.20.1 M00001396A:C03	201	5779	RTA00000177AF.g.14.3	M00001346D:G06
204 RTA00000188AF.i.8.1 M00003784D:D12 205 5779 RTA00000177AF.g.14.1 M00001346D:G06 206 39490 RTA00000128A.b.4.1 M00001557A:F03 207 4416 RTA00000187AF.h.13.1 M00001678D:F12 208 4009 RTA00000179AF.e.20.1 M00001396A:C03	202	6124	RTA00000191AR.e.2.3	M00004028D:A06
205 5779 RTA00000177AF.g.14.1 M00001346D:G06 206 39490 RTA00000128A.b.4.1 M00001557A:F03 207 4416 RTA00000187AF.h.13.1 M00001678D:F12 208 4009 RTA00000179AF.e.20.1 M00001396A:C03	203	9952	RTA00000180AF.c.20.1	M00001418B:F03
206 39490 RTA00000128A.b.4.1 M00001557A:F03 207 4416 RTA00000187AF.h.13.1 M00001678D:F12 208 4009 RTA00000179AF.e.20.1 M00001396A:C03	204		RTA00000188AF.i.8.1	M00003784D:D12
207 4416 RTA00000187AF.h.13.1 M00001678D:F12 208 4009 RTA00000179AF.e.20.1 M00001396A:C03	205	5779	RTA00000177AF.g.14.1	M00001346D:G06
208 4009 RTA00000179AF.e.20.1 M00001396A:C03	206	39490	RTA00000128A.b.4.1	M00001557A:F03
	207	4416	RTA00000187AF.h.13.1	M00001678D:F12
209 5336 RTA00000183AF.b.13.1 M00001500A:C05	208	4009	RTA00000179AF.e.20.1	M00001396A:C03
	209	5336	RTA00000183AF.b.13.1	M00001500A:C05
210 39186 RTA00000121A.p.15.1 M00001512A:A09	210	39186	RTA00000121A.p.15.1	M00001512A:A09
211 40122 RTA00000190AF.n.23.1 M00003970C:B09	211	40122	RTA00000190AF.n.23.1	M00003970C:B09
212 12532 RTA00000190AF.g.2.1 M00003912B:D01	212	12532	RTA00000190AF.g.2.1	M00003912B:D01

WO 99/339	982		PCT/US98/27610
SEQ ID NO:		Sequence Name	Clone Name
213	8078	RTA00000177AR.I.13.1	M00001353A:G12
214	3900	RTA00000190AF.g.13.1	M00003914C:F05
215	7589	RTA00000120A.p.23.1	M00001468A:F05
216	8298	RTA00000127A.d.19.1	M00001553A:H06
217	4443	RTA00000177AF.b.20.4	M00001341A:E12
218	26295	RTA00000193AF.i.24.2	M00004312A:G03
219	3389	RTA00000183AF.m.19.1	M00001537B:G07
220	7015	RTA00000187AF.f.18.1	M00001673C:H02
221	8526	RTA00000180AF.d.1.1	M00001418D:B06
222	4665	RTA00000186AF.m.3.1	M00001648C:A01
223	1399	RTA00000129A.o.10.1	M00001604A:B10
224	9244	RTA00000127A.1.3.1	M00001556A:C09
225		RTA00000179AF.j.13.1	M00001400B:H06
226	82498	RTA00000118A.m.10.1	M00001450A:B12
227	35702	RTA00000187AR.c.15.2	M00001663A:E04
228	38759	RTA00000120A.m.12.3	M00001467A:B07
229	39648	RTA00000178AF.1.8.1	M00001383A:C03
230	19105	RTA00000133A.e.15.1	M00001469A:H12
231	85064	RTA00000131A.m.23.1	M00001452A:F05
232	9285	RTA00000191AF.m.18.1	M00004086D:G06
233	9285	RTA00000190AF.d.7.1	M00003906C:E10
234	39391	RTA00000138A.c.3.1	M00001604A:F05
235		RTA00000178AF.d.20.1	M00001368D:E03
236	39498	RTA00000119A.j.20.1	M00001460A:F12
237	7798	RTA00000189AF.k.12.1	M00003876D:E12
238	7798	RTA00000189AF.c.18.1	M00003839A:D08
239	19829	RTA00000125A.h.24.4	M00001544A:G02
240		RTA00000188AF.d.11.1	M00003761D:A09
241	4275	RTA00000120A.j.14.1	M00001466A:E07
242	22113	RTA00000125A.c.7.1	M00001542A:A09
243	40314	RTA00000186AF.c.15.1	M00001619C:F12
244	10944	RTA00000126A.h.17.2	M00001549A:D08
245	39809	RTA00000190AF.e.3.1	M00003907D:A09
246	22085	RTA00000135A.e.5.2	M00001541A:F07
247	19255	RTA00000135A.m.18.1	M00001545A:C03
248	14311	RTA00000192AF.o.2.1	M00004203B:C12
249	8479	RTA00000189AF.j.22.1	M00003875C:G07
250		RTA00000189AF.j.23.1	M00003875D:D11
251	4193	RTA00000184AF.e.13.1	M00001549B:F06
252	22814	RTA00000184AF.h.14.1	M00001553D:D10
253	39563	RTA00000179AF.k.20.1	M00001402A:E08
254	39420	RTA00000134A.o.23.1	M00001537A:F12
255	11589	RTA00000177AF.b.17.4	M00001340D:F10
			,

WO 99/3398 SEQ ID NO:		Sequence Name	PCT/US98/27610 Clone Name
256	4937	RTA00000191AF.p.21.1	M00004108A:E06
257	39412	RTA00000133A.k.17.1	M00001511A:H06
258	4837	RTA00000185AR.k.3.2	M00001597C:H02
259	13046	RTA00000193AF.h.19.1	M00004296C:H07
260	4141	RTA00000177AF.p.20.3	M00001361A:A05
261	38085	RTA00000123A.e.15.1	M00001531A:D01
262		RTA00000189AF.p.8.1	M00003891C:H09
263	11451	RTA00000192AF.p.17.1	M00004214C:H05
264	14507	RTA00000189AR.I.23.2	M00003879D:A02
265	40054	RTA00000180AF.p.10.1	M00001439C:F08
266	39423	RTA00000134A.k.22.1	M00001535A:F10
267	39453	RTA00000135A.g.11.1	M00001542A:E06
268	10751	RTA00000187AF.k.7.1	M00001679D:D03
269	10751	RTA00000187AF.k.6.1	M00001679D:D03
270	78091	RTA00000187AF.j.6.1	M00001679C:F01
271	39539	RTA00000127A.i.21.1	M00001555A:B02
272		RTA00000182AF.I.15.1	M00001487B:H06
273		RTA00000194AF.d.13.1	M00004896A:C07
274		RTA00000128A.c.20.1	M00001558A:H05
275	9283	RTA00000181AR.m.22.2	M00001455D:F09
276	39168	RTA00000121A.l.10.1	M00001507A:H05
277	39458	RTA00000126A.p.15.2	M00001552A:D11
278	14391	RTA00000177AF.m.17.3	M00001355B:G10
279	39195	RTA00000137A.c.16.1	M00001555A:C01
280	7212	RTA00000193AF.b.14.1	M00004230B:C07
281	4015	RTA00000136A.e.12.i	M00001549A:B02
282	12977	RTA00000189AF.j.19.1	M00003875B:F04
283		RTA00000178AF.m.13.1	M00001384B:A11
284	14391	RTA00000191AF.1.7.1	M00004081C:D12
285		RTA00000194AF.c.23.1	M00004691D:A05
286		RTA00000181AF.b.7.1	M00001443B:F01
287	8358	RTA00000183AF.i.5.1	M00001528B:H04
288	1267	RTA00000125A.o.5.1	M00001546A:G11
289		RTA00000189AF.f.7.1	M00003851B:D08
290	16347	RTA00000184AF.e.15.1	M00001549C:E06
291	7899	RTA00000193AF.a.17.1	M00004223B:D09
292	2379	RTA00000178AF.a.6.1	M00001361D:F08
293	39478	RTA00000133A.i.5.1	M00001471A:B01
294	39392	RTA00000134A.m.16.1	M00001536A:C08
295	5053	RTA00000184AF.o.12.1	M00001564A:B12
296	16999	RTA00000185AF.k.9.1	M00001598A:G03
297	39180	RTA00000126A.n.8.2	M00001551A:F05
298	1037	RTA00000121A.f.8.1	M00001470A:B10

WO 99/339	82		PCT/US98/27610
SEQ ID NO:	Cluster ID	Sequence Name	Clone Name
299	6867	RTA00000178AF.e.12.1	M00001370A:C09
300	10539	RTA00000183AF.a.24.1	M00001499B:A11
301	41633	RTA00000118A.g.16.1	M00001449A:B12
302	23218	RTA00000187AR.c.5.2	M00001662C:A09
303	39380	RTA00000129A.e.24.1	M00001587A:B11
304		RTA00000185AF.d.24.1	M00001582D:F05
305		RTA00000177AF.o.4.3	M00001358C:C06
306	6974	RTA00000184AF.a.15.1	M00001544B:B07
307		RTA00000185AF.g.11.1	M00001590B:F03
308	15855	RTA00000184AF.j.1.1	M00001556A:H01
309	84328	RTA00000118A.p.10.1	M00001452A:B04
310	10145	RTA00000120A.g.12.1	M00001465A:B11
311	39805	RTA00000177AF.c.21.3	M00001342B:E06
312		RTA00000187AF.h.23.1	M00001679A:F06
313	6298	RTA00000187AR.i.10.2	M00001679B:F01
314	14367	RTA00000187AF.e.8.1	M00001670C:H02
315		RTA00000193AF.c.22.1	M00004249D:G12
316	16921	RTA00000183AF.k.6.1	M00001534A:C04
317	1577	RTA00000184AF.i.23.1	M00001556A:F11
318	8773	RTA00000187AF.f.24.1	M00001675A:C09
319		RTA00000194AF.a.11.1	M00004461A:B09
320	39886	RTA00000178AF.j.24.1	M00001380D:B09
321	13532	RTA00000181AF.c.4.1	M00001445A:F05
322		RTA00000193AF.d.2.1	M00004251C:G07
323	5257	RTA00000192AF.f.3.1	M00004146C:C11
324	9061	RTA00000191AR.e.11.2	M00004031A:A12
325	19267	RTA00000186AF.I.12.1	M00001645A:C12
326	20212	RTA00000134A.1.22.1	M00001535A:C06
327	16653	RTA00000181AF.k.5.3	M00001453C:F06
328	16985	RTA00000177AF.h.10.1	M00001348B:G06
329	12977	RTA00000189AR.j.19.1	M00003875B:F04
330	9061	RTA00000191AR.e.11.3	M00004031A:A12
331		RTA00000194AR.a.10.2	M00004461A:B08
332	6468	RTA00000187AF.d.15.1	M00001669B:F02
333	16392	RTA00000192AF.I.1.1	M00004183C:D07
334	14627	RTA00000187AF.g.23.1	M00001677C:E10
335	6583	RTA00000179AF.d.13.1	M00001394A;F01
336	6806	RTA00000177AF.g.13.3	M00001346D:E03
337	9635	RTA00000137A.e.23.4	M00001557A:F01
338	689	RTA00000181AR.1.22.1	M00001454D:G03
339	4119	RTA00000183AF.k.16.1	M00001534C:A01
340	8952	RTA00000183AF.h.15.1	M00001518C:B11
341	2379	RTA00000192AF.p.8.1	M00004212B:C07

	WO 99/3398	82		PCT/US98/27610
	SEQ ID NO:	Cluster ID	Sequence Name	Clone Name
	342	39486	RTA00000128A.m.22.2	M00001561A:C05
	343	21877	RTA00000189AF.b.21.1	M00003833A:E05
	344	6874	RTA00000192AF.a.14.1	M00004111D:A08
	345	6874	RTA00000189AF.e.9.1	M00003846B:D06
	346	37285	RTA00000191AF.f.11.1	M00004035C:A07
	347		RTA00000193AF.j.20.1	M00004327B:H04
	348	7674	RTA00000118A.g.9.1	M00001416A:H01
	349	2797	RTA00000180AF.i.19.1	M00001429A:H04
	350		RTA00000184AF.g.22.1	M00001552D:A01
	351	7802	RTA00000185AF.n.5.1	M00001608A:B03
	352	16921	RTA00000193AF.h.15.1	M00004295D:F12
	353	11494	RTA00000192AF.j.6.1	M00004172C:D08
	354	17062	RTA00000177AF.b.8.4	M00001340B:A06
	355	16245	RTA00000177AF.k.9.3	M00001352A:E02
	356	83103	RTA00000119A.e.24.2	M00001454A:A09
	357	4309	RTA00000186AF.e.22.1	M00001624C:F01
	358	13072	RTA00000181AR.m.5.2	M00001455B:E12
	359	4059	RTA00000177AF.n.18.3	M00001357D:D11
	360	5178	RTA00000178AF.n.10.1	M00001386C:B12
	361	1120	RTA00000118A.p.15.3	M00001452A:D08
	362	6420	RTA00000183AF.d.11.1	M00001504D:G06
	363	13913	RTA00000186AF.e.6.1	M00001623D:F10
	364		RTA00000192AF.c.2.1	M00004121B:G01
	365	3956	RTA00000183AF.g.3.1	M00001512D:G09
	366	14364	RTA00000183AF.g.12.1	M00001513C:E08
	367	6880	RTA00000191AF.m.20.1	M00004087D:A01
	368	84182	RTA00000180AF.h.19.1	M00001428A:H10
	369	2790	RTA00000177AF.e.2.1	M00001343C:F10
	370	4561	RTA00000184AF.i.21.1	M00001555D:G10
	371	8847	RTA00000180AF.b.16.1	M00001416B:H11
	372	56020	RTA00000193AF.g.2.1	M00004285B:E08
	373	1531	RTA00000119A.o.3.1	M00001461A:D06
	374	6420	RTA00000177AF.f.10.3	M00001345A:E01
•	375		RTA00000188AF.b.12.1	M00003754C:E09
	376		RTA00000180AF.k.24.1	M00001432C:F06
	377		RTA00000184AF.a.8.1	M00001544A:E06
	378	2696	RTA00000134A.m.13.1	M00001536A:B07
	379	260	RTA00000185AR.i.12.2	M00001594B:H04
	380	11350	RTA00000189AF.a.24.2	M00003826B:A06
	381	2428	RTA00000123A.I.21.1	M00001533A:C11
	382	4313	RTA00000122A.n.3.1	M00001517A:B07
	383		RTA00000184AF.p.3.1	M00001566B:D11
	384	697	RTA00000188AF.d.6.1	M00003759B:B09

WO 99/3398	32		PCT/US98/27610
SEQ ID NO:	Cluster ID	Sequence Name	Clone Name
385	5619	RTA00000188AF.1.9.1	M00003796C:D05
386	4568	RTA00000122A.d.15.3	M00001513A:B06
387		RTA00000177AF.i.6.2	M00001350A:B08
388	5622	RTA00000178AF.a.11.1	M00001362B:D10
389	7514	RTA00000184AF.k.21.1	M00001558B:H11
390	5619	RTA00000189AF.f.17.1	M00003853A:D04
391	7570	RTA00000187AF.g.24.1	M00001677D:A07
392	23358	RTA00000190AF.o.21.1	M00003974D:H02
393	23210	RTA00000190AF.o.20.1	M00003974D:E07
394	5192	RTA00000184AF.k.2.1	M00001557B:H10
395	13538	RTA00000180AF.a.24.1	M00001415A:H06
396		RTA00000189AF.h.17.1	M00003867A:D10
397		RTA00000192AF.o.11.1	M00004205D:F06
398		RTA00000184AF.I.11.1	M00001559B:F01
399	4718	RTA00000189AF.g.5.1	M00003857A:H03
400	14929	RTA00000177AF.m.1.2	M00001353D:D10
401	4908	RTA00000192AF.j.2.1	M00004171D:B03
402		RTA00000178AF.k.16.1	M00001381D:E06
403		RTA00000194AF.c.24.1	M00004692A:H08
404	17732	RTA00000178AR.i.2.2	M00001376B:G06
405	17062	80.A1.sp6:130208.Seq	M00001340B:A06
406	11589	80.B1.sp6:130220.Seq	M00001340D:F10
407	4443	80.C1.sp6:130232.Seq	M00001341A:E12
408	39805	80.D1.sp6:130244.Seq	M00001342B:E06
409	2790	80.E1.sp6:130256.Seq	M00001343C:F10
410	23255	80.F1.sp6:130268.Seq	M00001343D:H07
411	6420	80.G1.sp6:130280.Seq	M00001345A:E01
412	5007	80.H1.sp6:130292.Seq	M00001346A:F09
413	13576	80.D2.sp6:130245.Seq	M00001347A:B10
414	16927	80.E2.sp6:130257.Seq	M00001348B:B04
415	16985	80.F2.sp6:130269.Seq	M00001348B:G06
416	3584	80.G2.sp6:130281.Seq	M00001349B:B08
417		80.H2.sp6:130293.Seq	M00001350A:B08
418	7187	80.A3.sp6:130210.Seq	M00001350A:H01
419	16245	80.D3.sp6:130246.Seq	M00001352A:E02
420	8078	80.E3.sp6:130258.Seq	M00001353A:G12
421	14929	80.F3.sp6:130270.Seq	M00001353D:D10
422	14391	80.G3.sp6:130282.Seq	M00001355B:G10
423	4141	80.B4.sp6:130223.Seq	M00001361A:A05
424	2379	80.C4.sp6:130235.Seq	M00001361D:F08
425	5622	80.D4.sp6:130247.Seq	M00001362B:D10
426	945	80.E4.sp6:130259.Seq	M00001362C:H11
427	40132	80.F4.sp6:130271.Seq	M00001365C:C10

WO 99		_	PCT/US98/27610
_	NO: Cluster ID	Sequence Name	Clone Name
428	•	80.G4.sp6:130283.Seq	M00001368D:E03
429	6867	80.H4.sp6:130295.Seq	M00001370A:C09
430	7172	80.A5.sp6:130212.Seq	M00001371C:E09
431	17732	80.B5.sp6:130224.Seq	M00001376B:G06
432	39833	80.C5.sp6:130236.Seq	M00001378B:B02
433	1334	80.D5.sp6:130248.Seq	M00001379A:A05
434	39886	80.E5.sp6:130260.Seq	M00001380D:B09
435		80.F5.sp6:130272.Seq	M00001381D:E06
436	22979	80.G5.sp6:130284.Seq	M00001382C:A02
437	39648	80.H5.sp6:130296.Seq	M00001383A:C03
438		80.B6.sp6:130225.Seq	M00001384B:A11
439	5178	80.C6.sp6:130237.Seq	M00001386C:B12
440	2464	80.D6.sp6:130249.Seq	M00001387A:C05
441	7587	80.E6.sp6:130261.Seq	M00001387B:G03
442	5832	80.F6.sp6:130273.Seq	M00001388D:G05
443	16269	80.G6.sp6:130285.Seq	M00001389A:C08
444	6583	80.H6.sp6:130297.Seq	M00001394A:F01
445	4009	80.A7.sp6:130214.Seq	M00001396A:C03
446		80.B7.sp6:130226.Seq	M00001400B:H06
447	39563	80.C7.sp6:130238.Seq	M00001402A:E08
448	5556	80.D7.sp6:130250.Seq	M00001407B:D11
449	9577	80.E7.sp6:130262.Seq	M00001409C:D12
450	7005	80.F7.sp6:130274.Seq	M00001410A:D07
451	8551	80.G7.sp6:130286.Seq	M00001412B:B10
452		80.H7.sp6:130298.Seq	M00001414A:B01
453		80.A8.sp6:130215.Seq	M00001414C:A07
454	13538	80.B8.sp6:130227.Seq	M00001415A:H06
455	8847	80.C8.sp6:130239.Seq	M00001416B:H11
456	36393	80.D8.sp6:130251.Seq	M00001417A:E02
457	9952	80.E8.sp6:130263.Seq	M00001418B:F03
458	9577	80.G8.sp6:130287.Seq	M00001421C:F01
459	15066	80.H8.sp6:130299.Seq	M00001423B:E07
460	10470	80.A9.sp6:130216.Seq	M00001424B:G09
461	22195	80.B9.sp6:130228.Seq	M00001425B:H08
462		80.C9.sp6:130240.Seq	M00001426B:D12
463	4261	80.D9.sp6:130252.Seq	M00001426D:C08
464	84182	80.E9.sp6:130264.Seq	M00001428A:H10
465	40392	80.H9.sp6:130300.Seq	M00001429D:D07
466	16731	80.C10.sp6:130241.Seq	M00001442C:D07
467		80.D10.sp6:130253.Seq	M00001443B:F01
468	13532	80.E10.sp6:130265.Seq	M00001445A:F05
469	8	80.H10.sp6:130301.Seq	M00001448D:C09
470	36313	80.A11.sp6:130218.Seq	M00001448D:H01

WO 99/339	982		PCT/US98/27610
SEQ ID NO:		Sequence Name	Clone Name
471	5857	80.B11.sp6:130230.Seq	M00001449A:A12
472	41633	80.C11.sp6:130242.Seq	M00001449A:B12
473	36535	80.D11.sp6:130254.Seq	M00001449A:G10
474	86110	80.E11.sp6:130266.Seq	M00001449C:D06
475	32663	80.F11.sp6:130278.Seq	M00001450A:A11
476	27250	80.G11.sp6:130290.Seq	M00001450A:D08
477	16970	80.H11.sp6:130302.Seq	M00001452C:B06
478	16130	80.A12.sp6:130219.Seq	M00001453A:E11
479	16653	80.B12.sp6:130231.Seq	M00001453C:F06
480	7005	80.C12.sp6:130243.Seq	M00001454B:C12
481	13072	80.F12.sp6:130279.Seq	M00001455B:E12
482	9283	80.G12.sp6:130291.Seq	M00001455D:F09
483	23255	100.C1.sp6:131446.Seq	M00001343D:H07
484	13576	100.E1.sp6:131470.Seq	M00001347A:B10
485	7187	100.C2.sp6:131447.Seq	M00001350A:H01
486	14391	100.E3.sp6:131472.Seq	M00001355B:G10
487	945	100.E4.sp6:131473.Seq	M00001362C:H11
488	7172	100.A5.sp6:131426.Seq	M00001371C:E09
489	39648	100.A6.sp6:131427.Seq	M00001383A:C03
490	84182	100.G9.sp6:131502.Seq	M00001428A:H10
491	8	100.B11.sp6:131444.Seq	M00001448D:C09
492	36535	100.D11.sp6:131468.Seq	M00001449A:G10
493	82498	100.F11.sp6:131492.Seq	M00001450A:B12
494	16970	100.C12.sp6:131457.Seq	M00001452C:B06
495	16130	100.D12.sp6:131469.Seq	M00001453A:E11
496	7005	121.D1.sp6:131917.Seq	M00001454B:C12
497		121.G6.sp6:131958.Seq	M00001506D:A09
498	18957	121.F7.sp6:131947.Seq	M00001528A:F09
499	40044	122.E1.sp6:132121.Seq	M00001621C:C08
500	5214	122.C2.sp6:132098.Seq	M00001630B:H09
501	6660	122.B5.sp6:132089.Seq	M00001679A:A06
502	13183	123.D5.sp6:132305.Seq	M00004114C:F11
503	6455	123.E7.sp6:132319.Seq	M00004157C:A09
504	5319	123.F7.sp6:132331.Seq	M00004169C:C12
505	11443	123.A8.sp6:132272.Seq	M00004185C:C03
506		123.C8.sp6:132296.Seq	M00004191D:B11
507	8210	123.E8.sp6:132320.Seq	M00004197D:H01
508	9457	123.D11.sp6:132311.Seq	M00004307C:A06
509	6420	172.E1.sp6:133925.Seq	M00001345A:E01
510	16245	172.D2.sp6:133914.Seq	M00001352A:E02
511	8078	172.C3.sp6:133903.Seq	M00001353A:G12
512	14929	172.D3.sp6:133915.Seq	M00001353D:D10
513	14391	172.H3.sp6:133963.Seq	M00001355B:G10

WO 99/33982			PCT/US98/27610
SEQ ID NO:	Cluster ID	Sequence Name	Clone Name
514	6583	172.B8.sp6:133896.Seq	M00001394A:F01
515	4009	172.D8.sp6:133920.Seq	M00001396A:C03
516		172.B9.sp6:133897.Seq	M00001400B:H06
517		176.A3.sp6:134514.Seq	M00001632D:H07
518	19267	176.G3.sp6:134586.Seq	M00001645A:C12
519	78091	176.G5.sp6:134588.Seq	M00001679C:F01
520	17055	176.D6.sp6:134553.Seq	M00001682C:B12
521	6539	176.D9.sp6:134556.Seq	M00003844C:B11
522		177.H4.sp6:134791.Seq	M00004121B:G01
523	5257	177.F5.sp6:134768.Seq	M00004146C:C11
524	11494	177.E6.sp6:134757.Seq	M00004172C:D08
525		177.G7.sp6:134782.Seq	M00004205D:F06
526	11451	177.D8.sp6:134747.Seq	M00004214C:H05
527	9283	173.D2.SP6:134106.Seq	M00001455D:F09
528	16283	173.F3.SP6:134131.Seq	M00001467A:D08
529	10539	173.B5.SP6:134085.Seq	M00001499B:A11
530	6420	173.F5.SP6:134133.Seq	M00001504D:G06
531	3956	173.H5.SP6:134157.Seq	M00001512D:G09
532		173.G7.SP6:134147.Seq	M00001544A:E06
533	1577	173.C9.SP6:134101.Seq	M00001556A:F11
534	9635	173.D9.SP6:134113.Seq	M00001557A:F01
535	5192	173.E9.SP6:134125.Seq	M00001557B:H10
536	6539	173.A12.SP6:134080.Seq	M00001579D:C03
537	945	180.C2.sp6:135940.Seq	M00001362C:H11
538	7005	180.H5.sp6:136003.Seq	M00001410A:D07
539	39304	180.G9.sp6:135995.Seq	M00001450A:A02
540	27250	180.B10.sp6:135936.Seq	M00001450A:D08
541	35555	184.A5.sp6:135530.Seq	M00001528A:C04
542	19255	184.B10.sp6:135547.Seq	M00001545A:C03
543	6268	184.C12.sp6:135561.Seq	M00001551A:B10
544	3277	217.E1.sp6:139406.Seq	M00001624A:B06
545	39171	217.A12.sp6:139369.Seq	M00001644C:B07
546	11460	219.F2.sp6:139035.Seq	M00001676B:F05
547	10539	219.F6.sp6:139039.Seq	M00001680D:F08
548	11476	219.H8.sp6:139065.Seq	M00003747D:C05
549	4016	79.A1.sp6:130016.Seq	M00001395A:C03
550	7674	79.C1.sp6:130040.Seq	M00001416A:H01
551	3681	79.E1.sp6:130064.Seq	M00001449A:D12
552	39304	79.F1.sp6:130076.Seq	M00001450A:A02
553	82498	79.G1.sp6:130088.Seq	M00001450A:B12
554	84328	79.A2.sp6:130017.Seq	M00001452A:B04
555	86859	79.B2.sp6:130029.Seq	M00001452A:B12
556	1120	79.C2.sp6:130041.Seq	M00001452A:D08

WO 99/3398	2		PCT/US98/27610
SEQ ID NO:	Cluster ID	Sequence Name	Clone Name
557	85064	79.D2.sp6:130053.Seq	M00001452A:F05
558	83103	79.G2.sp6:130089.Seq	M00001454A:A09
559	10145	79.F3.sp6:130078.Seq	M00001465A:B11
560	16283	79.H3.sp6:130102.Seq	M00001467A:D08
561	4568	79.D4.sp6:130055.Seq	M00001513A:B06
562	4313	79.F4.sp6:130079.Seq	M00001517A:B07
563	2428	79.A5.sp6:130020.Seq	M00001533A:C11
564	39423	79.C5.sp6:130044.Seq	M00001535A:F10
565	39174	79.E5.sp6:130068.Seq	M00001541A:H03
566	22113	79.F5.sp6:130080.Seq	M00001542A:A09
567	19829	79.H5.sp6:130104.Seq	M00001544A:G02
568	13864	79.B6.sp6:130033.Seq	M00001545A:D08
569	1058	79.F6.sp6:130081.Seq	M00001548A:H09
570	4015	79.G6.sp6:130093.Seq	M00001549A:B02
571	39180	79.A7.sp6:130022.Seq	M00001551A:F05
572	307	79.C7.sp6:130046.Seq	M00001552A:B12
573	39458	79.D7.sp6:130058.Seq	M00001552A:D11
574	39490	79.G7.sp6:130094.Seq	M00001557A:F03
575	39486	79.B8.sp6:130035.Seq	M00001561A:C05
576	39380	79.E8.sp6:130071.Seq	M00001587A:B11
577	1399	79.G8.sp6:130095.Seq	M00001604A:B10
578	39391	79.A9.sp6:130024.Seq	M00001604A:F05
579	6268	79.G9.sp6:130096.Seq	M00001551A:B10
580		377.F4.sp6:141957.Seq	M00004692A:H08
581	2448	89.A1.sp6:130667.Seq	M00001460A:F06
582	1531	89.C1.sp6:130691.Seq	M00001461A:D06
583	19	89.D1.sp6:130703.Seq	M00001463C:B11
584	38759	89.F1.sp6:130727.Seq	M00001467A:B07
585	39508	89.G1.sp6:130739.Seq	M00001467A:D04
586	16283	89.H1.sp6:130751.Seq	M00001467A:D08
587	39442	89.A2.sp6:130668.Seq	M00001467A:E10
588	7589	89.B2.sp6:130680.Seq	M00001468A:F05
589		89.C2.sp6:130692.Seq	M00001469A:A01
590	12081	89.D2.sp6:130704.Seq	M00001469A:C10
591	19105	89.E2.sp6:130716.Seq	M00001469A:H12
592	1037	89.F2.sp6:130728.Seq	M00001470A:B10
593	39425	89.G2.sp6:130740.Seq	M00001470A:C04
594	39478	89.H2.sp6:130752.Seq	M00001471A:B01
595		89.B3.sp6:130681.Seq	M00001487B:H06
596		89.C3.sp6:130693.Seq	M00001488B:F12
597	18699	89.D3.sp6:130705.Seq	M00001490B:C04
598	7206	89.E3.sp6:130717.Seq	M00001494D:F06
599	2623	89.F3.sp6:130729.Seq	M00001497A:G02

WO 99/3398	32		PCT/US98/27610
SEQ ID NO:	Cluster ID	Sequence Name	Clone Name
600	10539	89.G3.sp6:130741.Seq	M00001499B:A11
601	5336	89.H3.sp6:130753.Seq	M00001500A:C05
602	2623	89.A4.sp6:130670.Seq	M00001500A:E11
603	9443	89.B4.sp6:130682.Seq	M00001500C:E04
604	9685	89.C4.sp6:130694.Seq	M00001501D:C02
605		89.D4.sp6:130706.Seq	M00001504A:E01
606	10185	89.E4.sp6:130718.Seq	M00001504C:A07
607	6974	89.F4.sp6:130730.Seq	M00001504C:H06
608	6420	89.G4.sp6:130742.Seq	M00001504D:G06
609		89.H4.sp6:130754.Seq	M00001505C:C05
610		89.A5.sp6:130671.Seq	M00001506D:A09
611	39168	89.B5.sp6:130683.Seq	M00001507A:H05
612	39412	89.C5.sp6:130695.Seq	M00001511A:H06
613	39186	89.D5.sp6:130707.Seq	M00001512A:A09
614	3956	89.E5.sp6:130719.Seq	M00001512D:G09
615		89.F5.sp6:130731.Seq	M00001513B:G03
616	14364	89.G5.sp6:130743.Seq	M00001513C:E08
617	40044	89.H5.sp6:130755.Seq	M00001514C:D11
618	8952	89.A6.sp6:130672.Seq	M00001518C:B11
619	35555	89.B6.sp6:130684.Seq	M00001528A:C04
620	18957	89.C6.sp6:130696.Seq	M00001528A:F09
621	8358	89.D6.sp6:130708.Seq	M00001528B:H04
622	38085	89.E6.sp6:130720.Seq	M00001531A:D01
623		89.F6.sp6:130732.Seq	M00001531A:H11
624	3990	89.G6.sp6:130744.Seq	M00001532B:A06
625	16921	89.H6.sp6:130756.Seq	M00001534A:C04
626	5321	89.B7.sp6:130685.Seq	M00001534A:F09
627	4119	89.C7.sp6:130697.Seq	M00001534C:A01
628	20212	89.E7.sp6:130721.Seq	M00001535A:C06
629	2696	89.F7.sp6:130733.Seq	M00001536A:B07
630	39392	89.G7.sp6:130745.Seq	M00001536A:C08
631	39420	89.H7.sp6:130757.Seq	M00001537A:F12
632	3389	89.A8.sp6:130674.Seq	M00001537B:G07
633	8286	89.B8.sp6:130686.Seq	M00001540A:D06
634	3765	89.C8.sp6:130698.Seq	M00001541A:D02
635	39453	89.E8.sp6:130722.Seq	M00001542A:E06
636		89.F8.sp6:130734.Seq	M00001542B:B01
637		89.H8.sp6:130758.Seq	M00001544A:E06
638	6974	89.A9.sp6:130675.Seq	M00001544B:B07
639		89.B9.sp6:130687.Seq	M00001545A:B02
640	19255	89.C9.sp6:130699.Seq	M00001545A:C03
641	1267	89.D9.sp6:130711.Seq	M00001546A:G11
642	5892	89.E9.sp6:130723.Seq	M00001548A:E10
		155	
		133	

WO 99/3398	27		PCT/US98/27610
SEQ ID NO:		Sequence Name	Clone Name
643	4193	89.G9.sp6:130747.Seq	M00001549B:F06
644	16347	89.H9.sp6:130759.Seq	M00001549C:E06
645	7239	89.A10.sp6:130676.Seq	M00001550A:A03
646	5175	89.B10.sp6:130688.Seq	M00001550A:G01
647	22390	89.C10.sp6:130700.Seq	M00001551A:G06
648	3266	89.D10.sp6:130712.Seq	M00001551C:G09
649	5708	89.E10.sp6:130724.Seq	M00001552B:D04
650	3700	89.F10.sp6:130736.Seq	M00001552D:A01
651	8298	89.G10.sp6:130748.Seq	M00001553A:H06
652	4573	89.H10.sp6:130760.Seq	M00001553B:F12
653	22814	89.A11.sp6:130677.Seq	M00001553D:D10
654	39539	89.B11.sp6:130689.Seq	M00001555A:B02
655	39195	89.C11.sp6:130701.Seq	M00001555A:C01
656	4561	89.D11.sp6:130713.Seq	M00001555D:G10
657	9244	89.E11.sp6:130725.Seq	M00001556A:C09
658	1577	89.F11.sp6:130737.Seq	M00001556A:F11
659	4386	89.H11.sp6:130761.Seq	M00001556B:C08
660	11294	89.A12.sp6:130678.Seq	M00001556B:G02
661	5192	89.D12.sp6:130714.Seq	M00001557B:H10
662	8761	89.E12.sp6:130726.Seq	M00001557D:D09
663	• • • • • • • • • • • • • • • • • • • •	89.F12.sp6:130738.Seq	M00001558A:H05
664	7514	89.G12.sp6:130750.Seq	M00001558B:H11
665		89.H12.sp6:130762.Seq	M00001559B:F01
666	6558	90.A1.sp6:130859.Seq	M00001560D:F10
667	102	90.B1.sp6:130871.Seq	M00001563B:F06
668		90.D1.sp6:130895.Seq	M00001566B:D11
669	5749	90.E1.sp6:130907.Seq	M00001571C:H06
670	6539	90.G1.sp6:130931.Seq	M00001579D:C03
671	6293	90.A2.sp6:130860.Seq	M00001583D:A10
672		90.C2.sp6:130884.Seq	M00001590B:F03
673	260	90.D2.sp6:130896.Seq	M00001594B:H04
674	4837	90.E2.sp6:130908.Seq	M00001597C:H02
675	10470	90.F2.sp6:130920.Seq	M00001597D:C05
676	16999	90.G2.sp6:130932.Seq	M00001598A:G03
677	22794	90.H2.sp6:130944.Seq	M00001601A:D08
678	11465	90.A3.sp6:130861.Seq	M00001607A:E11
679	7802	90.B3.sp6:130873.Seq	M00001608A:B03
680	22155	90.C3.sp6:130885.Seq	M00001608B:E03
681		90.D3.sp6:130897.Seq	M00001608D:A11
682	13157	90.E3.sp6:130909.Seq	M00001614C:F10
683	17004	90.F3.sp6:130921.Seq	M00001617C:E02
684	40314	90.G3.sp6:130933.Seq	M00001619C:F12
685	40044	90.H3.sp6:130945.Seq	M00001621C:C08

WO 99/3398	_		PCT/US98/27610
SEQ ID NO:	Cluster ID	Sequence Name	Clone Name
686	13913	90.A4.sp6:130862.Seq	M00001623D:F10
687	3277	90.B4.sp6:130874.Seq	M00001624A:B06
688	4309	90.C4.sp6:130886.Seq	M00001624C:F01
689	5214	90.D4.sp6:130898.Seq	M00001630B:H09
690		90.E4.sp6:130910.Seq	M00001632D:H07
691	39171	90.F4.sp6:130922.Seq	M00001644C:B07
692	19267	90.G4.sp6:130934.Seq	M00001645A:C12
693	4665	90.H4.sp6:130946.Seq	M00001648C:A01
694		90.A5.sp6:130863.Seq	M00001651A:H01
695	23201	90.B5.sp6:130875.Seq	M00001657D:C03
696	76760	90.C5.sp6:130887.Seq	M00001657D:F08
697	23218	90.D5.sp6:130899.Seq	M00001662C:A09
698	35702	90.E5.sp6:130911.Seq	M00001663A:E04
699	6468	90.F5.sp6:130923.Seq	M00001669B:F02
700	14367	90.G5.sp6:130935.Seq	M00001670C:H02
701	7015	90.H5.sp6:130947.Seq	M00001673C:H02
702	8773	90.A6.sp6:130864.Seq	M00001675A:C09
703	11460	90.B6.sp6:130876.Seq	M00001676B:F05
704	7570	90.D6.sp6:130900.Seq	M00001677D:A07
705	4416	90.E6.sp6:130912.Seq	M00001678D:F12
706	6660	90.F6.sp6:130924.Seq	M00001679A:A06
707		90.H6.sp6:130948.Seq	M00001679A:F06
708	26875	90.A7.sp6:130865.Seq	M00001679A:F10
709	6298	90.B7.sp6:130877.Seq	M00001679B:F01
710	78091	90.C7.sp6:130889.Seq	M00001679C:F01
711	10751	90.D7.sp6:130901.Seq	M00001679D:D03
712	10539	90.F7.sp6:130925.Seq	M00001680D:F08
713	17055	90.G7.sp6:130937.Seq	M00001682C:B12
714	5382	90.A8.sp6:130866.Seq	M00001688C:F09
715	4393	90.B8.sp6:130878.Seq	M00001693C:G01
716	67252	90.C8.sp6:130890.Seq	M00001716D:H05
717	40108	90.D8.sp6:130902.Seq	M00003741D:C09
718	11476	90.E8.sp6:130914.Seq	M00003747D:C05
719		90.F8.sp6:130926.Seq	M00003754C:E09
720	697	90.G8.sp6:130938.Seq	M00003759B:B09
721		90.H8.sp6:130950.Seq	M00003761D:A09
722	17076	90.A9.sp6:130867.Seq	M00003762C:B08
723	3108	90.B9.sp6:130879.Seq	M00003763A:F06
724	67907	90.C9.sp6:130891.Seq	M00003774C:A03
725		90.D9.sp6:130903.Seq	M00003784D:D12
726	11350	90.F9.sp6:130927.Seq	M00003826B:A06
727	7899	90.H9.sp6:130951.Seq	M00003837D:A01
728	7798	90.A10.sp6:130868.Seq	M00003839A:D08
		• •	· · · · · · ·

WO 99/3398	32		PCT/US98/27610
SEQ ID NO:	Cluster ID	Sequence Name	Clone Name
729	6539	90.B10.sp6:130880.Seq	M00003844C:B11
730	6874	90.C10.sp6:130892.Seq	M00003846B:D06
731		90.D10.sp6:130904.Seq	M00003851B:D08
732	13595	90.E10.sp6:130916.Seq	M00003851B:D10
733	5619	90.F10.sp6:130928.Seq	M00003853A:D04
734	10515	90.G10.sp6:130940.Seq	M00003853A:F12
735	4622	90.H10.sp6:130952.Seq	M00003856B:C02
736	3389	90.A11.sp6:130869.Seq	M00003857A:G10
737	4718	90.B11.sp6:130881.Seq	M00003857A:H03
738		90.C11.sp6:130893.Seq	M00003867A:D10
739	12977	90.F11.sp6:130929.Seq	M00003875B:F04
740	8479	90.G11.sp6:130941.Seq	M00003875C:G07
741		90.H11.sp6:130953.Seq	M00003875D:D11
742	7798	90.A12.sp6:130870.Seq	M00003876D:E12
743	5345	90.B12.sp6:130882.Seq	M00003879B:C11
744	31587	90.C12.sp6:130894.Seq	M00003879B:D10
745	14507	90.D12.sp6:130906.Seq	M00003879D:A02
746	13576	90.F12.sp6:130930.Seq	M00003885C:A02
747		90.G12.sp6:130942.Seq	M00003891C:H09
748	9285	90.H12.sp6:130954.Seq	M00003906C:E10
749	39809	99.A1.sp6:131230.Seq	M00003907D:A09
750	16317	99.B1.sp6:131242.Seq	M00003907D:H04
751	8672	99.C1.sp6:131254.Seq	M00003909D:C03
752	12532	99.D1.sp6:131266.Seq	M00003912B:D01
753	3900	99.E1.sp6:131278.Seq	M00003914C:F05
754	23255	99.F1.sp6:131290.Seq	M00003922A:E06
755	24488	99.C2.sp6:131255.Seq	M00003968B:F06
756	40122	99.D2.sp6:131267.Seq	M00003970C:B09
757	23210	99.E2.sp6:131279.Seq	M00003974D:E07
758	23358	99.F2.sp6:131291.Seq	M00003974D:H02
759	3430	99.A3.sp6:131232.Seq	M00003981A:E10
760	2433	99.B3.sp6:131244.Seq	M00003982C:C02
761	9105	99.C3.sp6:131256.Seq	M00003983A:A05
762	6124	99.D3.sp6:131268.Seq	M00004028D:A06
763	40073	99.E3.sp6:131280.Seq	M00004028D:C05
764	37285	99.H3.sp6:131316.Seq	M00004035C:A07
765	17036	99.A4.sp6:131233.Seq	M00004035D:B06
766	3706	99.C4.sp6:131257.Seq	M00004068B:A01
767		99.D4.sp6:131269.Seq	M00004072A:C03
768	15069	99.F4.sp6:131293.Seq	M00004081C:D10
769	9285	99.H4.sp6:131317.Seq	M00004086D:G06
770	6880	99.A5.sp6:131234.Seq	M00004087D:A01
771	5325	99.C5.sp6:131258.Seq	M00004093D:B12

WO 99/339	82		PCT/US98/27610
SEQ ID NO:	Cluster ID	Sequence Name	Clone Name
772	7221	99.D5.sp6:131270.Seq	M00004105C:A04
773	4937	99.E5.sp6:131282.Seq	M00004108A:E06
774	6874	99.F5.sp6:131294.Seq	M00004111D:A08
775	13183	99.G5.sp6:131306.Seq	M00004114C:F11
776		99.H5.sp6:131318.Seq	M00004121B:G01
777	13272	99.A6.sp6:131235.Seq	M00004138B:H02
778	5257	99.B6.sp6:131247.Seq	M00004146C:C11
779	6455	99.D6.sp6:131271.Seq	M00004157C:A09
780	5319	99.E6.sp6:131283.Seq	M00004169C:C12
781	4908	99.F6.sp6:131295.Seq	M00004171D:B03
782	11494	99.G6.sp6:131307.Seq	M00004172C:D08
783	11443	99.A7.sp6:131236.Seq	M00004185C:C03
784		99.B7.sp6:131248.Seq	M00004191D:B11
785	8210	99.C7.sp6:131260.Seq	M00004197D:H01
786	14311	99.D7.sp6:131272.Seq	M00004203B:C12
787		99.E7.sp6:131284.Seq	M00004205D:F06
788	12971	99.B8.sp6:131249.Seq	M00004223D:E04
789	6455	99.C8.sp6:131261.Seq	M00004229B:F08
790	7212	99.D8.sp6:131273.Seq	M00004230B:C07
791	4905	99.H8.sp6:131321.Seq	M00004269D:D06
792	16914	99.A9.sp6:131238.Seq	M00004275C:C11
793	16921	99.D9.sp6:131274.Seq	M00004295D:F12
794	13046	99.E9.sp6:131286.Seq	M00004296C:H07
795	9457	99.F9.sp6:131298.Seq	M00004307C:A06
796	26295	99.G9.sp6:131310.Seq	M00004312A:G03
79 7	21847	99.H9.sp6:131322.Seq	M00004318C:D10
798		99.H10.sp6:131323.Seq	M00004505D:F08
799		99.B11.sp6:131252.Seq	M00004692A:H08
800		99.D11.sp6:131276.Seq	M00005180C:G03
801	39304	RTA00000118A.j.21.1.Seq_THC151859	
802	2428	RTA00000123A.1.21.1.Seq_THC205063	
803	1058	RTA00000126A.e.20.3.Seq_THC217534	
804	5097	RTA00000134A.k.1.1.Seq_THC215869	
805	20212	RTA00000134A.l.22.l.Seq_THC128232	
806	23255	RTA00000177AF.e.14.3.Seq_THC228776	
807	2790	RTA00000177AF.e.2.1.Seq_THC229461	
808	6420	RTA00000177AF.f.10.3.Seq_THC226443	•
809	4059	RTA00000177AF.n.18.3.Seq_THC123051	
810		RTA00000179AF.j.13.1.Seq_THC105720	
811	9952	RTA00000180AF.c.20.1.Seq_THC162284	•
812	13238	RTA00000181AF.m.4.1.Seq_THC140691	
813	9685	RTA00000183AF.c.11.1.Seq_THC109544	
814		RTA00000183AF.c.24.1.Seq_THC125912	

WO 99/3398:	2		PCT/US98/27610
SEQ ID NO:	Cluster ID	Sequence Name	Clone Name
815	6420	RTA00000183AF.d.11.1.Seq_THC226443	
816	6974	RTA00000183AF.d.9.1.Seq_THC223129	
817	40044	RTA00000183AF.g.22.1.Seq_THC232899	
818		RTA00000183AF.g.9.1.Seq_THC198280	
819	5892	RTA00000184AF.d.11.1.Seq_THC161896	
820	40044	RTA00000186AF.d.1.1.Seq_THC232899	
821		RTA00000186AF.h.14.1.Seq_THC112525	
822	19267	RTA00000186AF.I.12.1.Seq_THC178183	
823	8773	RTA00000187AF.f.24.1.Seq_THC220002	
824	7570	RTA00000187AF.g.24.1.Seq_THC168636	
825	11476	RTA00000187AF.p.19.1.Seq_THC108482	
826		RTA00000188AF.d.11.1.Seq_THC212094	
827	17076	RTA00000188AF.d.21.1.Seq_THC208760	
828	697	RTA00000188AF.d.6.1.Seq_THC178884	
829	67907	RTA00000188AF.g.11.1.Seq_THC123222	
830	5619	RTA00000188AF.1.9.1.Seq_THC167845	
831	4718	RTA00000189AF.g.5.1.Seq_THC196102	
832	39809	RTA00000190AF.e.3.1.Seq_THC150217	
833	23255	RTA00000190AF.j.4.1.Seq_THC228776	
834	40122	RTA00000190AF,n.23.1.Seq_THC109227	
835	23210	RTA00000190AF.o.20.1.Seq_THC207240	
836	23358	RTA00000190AF.o.21.1.Seq_THC207240	
837	5693	RTA00000190AF.p.17.2.Seq_THC173318	
838	2433	RTA00000191AF.a.15.2.Seq_THC79498	
839	5257	RTA00000192AF.f.3.1.Seq_THC213833	
840	16392	RTA00000192AF.I.1.1.Seq_THC202071	
841		RTA00000193AF.c.21.1.Seq_THC222602	
842	26295	RTA00000193AF.i.24.2.Seq_THC197345	
843		RTA00000193AF.m.5.1.Seq_THC173318	
844		RTA00000193AF.n.15.1.Seq_THC215687	

Table 2

		<u>.</u>				
	Nearest			Nearest		
	Neighbor			Neighbor		
	(BlastN vs.			(BlastX vs.		
	Genbank)			Non-		
	'			Redundant		
				Proteins)		
SEQ	ACCESSION	DESCRIPTION	P	ACCESSION	DESCRIPTION	P
ID			VALUE			VALUE
1	<none></none>	<none></none>	<none></none>	<none></none>	<none></none>	<none></none>
2	<none></none>	<none></none>	<none></none>	<none></none>	<none></none>	<none></none>
3	<none></none>	<none></none>	<none></none>	<none></none>	<none></none>	<none></none>
4	<none></none>	<none></none>	<none></none>	BAR3_CHITE		1
1			 	İ	PROTEIN 3	
					PRECURSOR>PIR2:S	
					08167 Balbiani ring 3	
					protein - midge	
1			1		(Chironomus	
1			1		tentans)>GP:CTBR3 1	
į					C;tentans balbiani ring	
	•				3 (BR3) gene	
5	<none></none>	<none></none>	<none></none>	CVAA PODA	ADENYLATE	1
'	\NONL>	NOIAT'S	NONL	N N	CYCLASE (EC	1
				IN	4.6.1.1) (ATP	
					, ,	
				Ì	PYROPHOSPHATE-	
			ŀ		LYASE) (ADENYLYL	
ļ			[CYCLASE)>PIR2:JC4	
					747 adenylate cyclase	
1			ŀ		(EC 4.6.1.1) -	
			İ		Podospora	
1					anserina>GP:PANADC	
ŀ				:	Y_1 Podospora	
İ	1				anserina adenyl cyclase	
				1	gene, exons 1-4	
6	<none></none>	<none></none>	<none></none>	VP03 HSVSA		0.97
				i –	MEMBRANE	
					ANTIGEN 3	
	[(TEGUMENT	
					PROTEIN)>PIR2:C36	
					806 hypothetical	
	i 1				protein ORF3 -	
	Ì				saimiriine herpesvirus 1	
	İ				(strain	
				Ī	11)>GP:HSGEND_3	
	İ				Herpesvirus saimiri	
					complete genome	
]				DNA; ORF 03;	
			1			
			1		similarity to ORF 75	
<u>L. </u>	<u> </u>			<u> </u>	and EBV BNRF1	

Table 2

	Nearest Neighbor (BlastN vs. Genbank)			Nearest Neighbor (BlastX vs. Non- Redundant		
SEQ	ACCESSION	DESCRIPTION	P	Proteins) ACCESSION	DESCRIPTION	P
ID			VALUE			VALUE
7	<none></none>	<none></none>	<none></none>	ATFCA2_18	Arabidopsis thaliana DNA chromosome 4, ESSA I contig fragment No; 2; Hydroxyproline-rich glycoprotein homolog; Similarity to hydroxyproline-rich glycoprotein precursor- common tobacco	0.93
8	<none></none>	<none></none>	<none></none>	DHAL_ASPN G	ALDEHYDE DEHYDROGENASE (EC 1.2.1.3) (ALDDH)>GP:ASNA LDAA_1 Aspergillus niger aldehyde dehydrogenase (aldA) gene, complete cds	0.9
9	<none></none>	<none></none>	<none></none>	NCU50264_1	Neurospora crassa two- component histidine kinase (nik-1) gene, 5' region and partial cds	0.86
10	<none></none>	<none></none>	<none></none>	NEUG_BOVI N	NEUROGRANIN (P17) (B-50 IMMUNOREACTIVE C-KINASE SUBSTRATE) (BICKS) (FRAGMENT)>PIR2: A39034 neurogranin - bovine (fragment)	0.82
11	<none></none>	<none></none>	<none></none>	HUMBYSTIN _1	Homo sapiens bystin mRNA, complete cds	0.81
12	<none></none>	<none></none>	<none></none>	BTBMP1_1	Bos taurus BMP1 gene, partial sequence; Bone morphogenetic protein 1	0.69
13	<none></none>	<none></none>	<none></none>	_1	T;congolense mRNA for (prepro) cysteine proteinase	0.56
14	<none></none>	<none></none>	<none></none>	P60_LISIV	PROTEIN P60 PRECURSOR (INVASION- ASSOCIATED PROTEIN)>GP:LISIA PRELB_1 Listeria	0.15

Table 2

	Nearest Neighbor		·	Nearest Neighbor		, N
	(BlastN vs. Genbank)			(BlastX vs. Non-		
				Redundant Proteins)	•	
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
					ivanovii extracellular protein homologue (iap) gene, complete cds	
15	<none></none>	<none></none>	<none></none>	HEX_ADE31	HEXON PROTEIN (LATE PROTEIN 2) (FRAGMENT)>PIR2: S37217 hexon protein - human adenovirus 31 (fragment)>GP:HSAT3 1H_1 H;sapiens adenovirus type 31 hexon gene; Hexon protein; Internal fragment containing hypervariable regions	0.15
16	<none></none>	<none></none>	<none></none>	HSU77493_1	Human Notch2 mRNA, partial cds; Transmembrane protein; hN	0.13
17	<none></none>	<none></none>	<none></none>	CYB_PARTE		0.078
18	<none></none>	<none></none>		HUMERB27_ 1	Human c-erbB-2 gene, exon 7; C-erb-2 protein	0.054
19	<none></none>	<none></none>	<none></none>	DMTRXIII_2	D;melanogaster DNA for trxI and trxII genes; Trithorax protein trxI; Trithorax; putative>GP:DMTTHO RAX_2 D;melanogaster DNA for (putative) trithorax protein; Predicted trithorax protein	0.047

Table 2

	Nearest			Nearest		
	Nearest Neighbor			Nearest Neighbor		
	(BlastN vs.			(BlastX vs.		
	Genbank)			Non-		
	Gendank)			Redundant		
				Proteins)		
SEO	ACCESSION	DESCRIPTION	P	ACCESSION	DESCRIPTION	P
SEQ ID	ACCESSION	DESCRIPTION	VALUE	ACCESSION	DESCRIPTION	
	3103175		<u> </u>	CEL DOGG.		VALUE
20	<none></none>	<none></none>	<none></none>	CELB0281_5	Caenorhabditis elegans	0.043
İ					cosmid B0281; Similar	
					to reverse transcriptases	
21	<none></none>	<none></none>	<none></none>	MOTY_VIBP	SODIUM-TYPE	0.041
				A	FLAGELLAR	
1					PROTEIN MOTY	
					PRECURSOR>GP:VP	
					U06949_4 Vibrio	
					parahaemolyticus	
	j				BB22 RNase T (rnt)	
					gene and flagellar	
					motor component	
					(motY) gene, complete	
	Alours	Alours	AIONIES	1.66063	cds	0.04
22	<none></none>	<none></none>	<none></none>	A56263	beta-galactosidase (EC	0.04
					3.2.1.23) isozyme 12 -	
					Arthrobacter sp. (strain	
					B7)>GP:ASU17417_1 Arthrobacter sp; beta-	
			,		galactosidase gene,	
] :]				complete cds	
					l	
23	<none></none>	<none></none>	<none></none>	GSA_PSEAE	GLUTAMATE-1-	0.038
·					SEMIALDEHYDE	
ŀ					2,1-AMINOMUTASE	
					(EC 5.4.3.8) (GSA)	
1					(GLUTAMATE-1-	
					SEMIALDEHYDE	
					AMINOTRANSFERA	
İ					SE) (GSA-	
					AT)>PIR2:S57898	
	,				glutamate 1- semialdehyde 2,1-	
					aminomutase -	
					Pseudomonas	
					aeruginosa>GP:PAHE	
1	ļ				ML_1 P;aeruginosa	
					hemL gene; Glutamate	
					1-sem	
24	<none></none>	<none></none>	<none></none>	S16323	hypothetical protein -	0.035
~ '		.10/10	2.10112	510525	Arabidopsis	0.055
					thaliana>GP:ATHB1 1	
					A;thaliana homeobox	
					gene Athb-1 mRNA;	
					Open reading frame	
<u> </u>					- P 311 1 00 2 11 0 11 0 11 0 11 0 11 0 11	

	Nearest			None		
	Nearest Neighbor			Nearest		
	(BlastN vs.			Neighbor		
				(BlastX vs.		
	Genbank)			Non-		
				Redundant Proteins)		
SEQ	ACCESSION	DESCRIPTION	P	ACCESSION	DESCRIPTION	P
ID	ACCESSION	DESCRIPTION	VALUE	ACCESSION	DESCRIPTION	VALUE
25	<none></none>	<none></none>	<none></none>	IRS1 RAT	INSULIN RECEPTOR	0.027
23	VIVOIVE	-ITOITE	NOND	IKSI_KXI	SUBSTRATE-	0.027
			ŀ	ļ	1>PIR2:S16948	
			i		hypothetical protein IRS-1 -	
	·				rat>GP:RNIRS1IRM_1	
					R;Norvegicus IRS-1	
					mRNA for insulin-	
]					receptor; During insulin	
i		'			stimulation, undergoes	
İ					tyrosine	
					phosphorylation and	
				1	binds	
					phosphatidylinositol 3-	
1					kinase	
26	<none></none>	<none></none>	<none></none>	CEM02G9 2	Caenorhabditis elegans	0.0088
					cosmid M02G9;	0.000
					M02G9;1; Similar to	
				ļ	keratin like protein;	
					cDNA EST	
					yk308g11;5 comes	
					from this gene; cDNA	1
ļ					EST yk208e11;5 comes	
1 1					from this gene; cDNA	:
					EST yk208e11;3 comes	
27	<none></none>	<none></none>	<none></none>	S75490_3	competence region:	0.0041
					iga=IgA protease,	
					comA=transformation	
					competence [Neisseria	1
ļ					gonorrhoeae, MS11,	1
i I					Genomic, 3 genes,	1
	210				2664 nt]	
28	<none></none>	<none></none>	<none></none>	EXTN_TOBA		0.0025
				C	PRECURSOR (CELL	į
					WALL	Ì
					HYDROXYPROLINE-	
					RICH	J
					GLYCOPROTEIN)>PI	ľ
		!			R2:S06733	
					hydroxyproline-rich	Į
					glycoprotein precursor	f
					- common	
		ļ			tobacco>GP:NTEXT_1	ŀ
					Tobacco HRGPnt3	1
					gene for extensin;	
LI	<u>_</u>				Extensin (AA 1-620)	

	Norman			Nonwest		
	Nearest			Nearest Neighbor		
	Neighbor (BlastN vs.			(BlastX vs.		
	Genbank)			Non-		
	Gendank)			Redundant		
				Proteins)		
SEQ	ACCESSION	DESCRIPTION	P	ACCESSION	DESCRIPTION	P
ID			VALUE			VALUE
29	<none></none>	<none></none>	<none></none>	HPCEGS 1	Hepatitis C virus	0.0014
1				-	complete genome	
İ					sequence; Polyprotein	
30	<none></none>	<none></none>	<none></none>	HHVBC_4	Human hepatitis virus	0.00093
]				<u> </u>	(genotype C, HMA)	
				1	preS1, preS2, S, C, X,	
			1		antigens, core antigen,	
l					X protein and	
					polymerase	
31	<none></none>	<none></none>	<none></none>	HSLTGFBP4_	Homo sapiens mRNA	0.00061
				1	for latent transforming	
İ				l	growth factor-beta	
					binding protein-4;	
			1	1	Latent TGF-beta	
	2 1 2 2 1 7 7	310315	110115	25.1000	binding protein-4	0.000.51
32	<none></none>	<none></none>	<none></none>	S74909	transposase -	0.00051
	Į.				Synechocystis sp. (PCC	
1					6803)>GP:D90909_10	
				Į.	8 Synechocystis sp;	
				1	PCC6803 complete genome, 11/27,	
					1311235- 1430418;	
					Transposase;	
					ORF ID:slr2062	
33	<none></none>	<none></none>	<none></none>	GRN MOUS	GRANULINS	0.00022
			1.02	E	PRECURSOR	0.00022
					(ACROGRANIN)>GP:	
					MUSAP_1 Mouse gene	
ł					for acrogranin	
				· ·	precursor, complete cds	
34	<none></none>	<none></none>	<none></none>	CA21_MOUS	PROCOLLAGEN	0.00016
	}			Ē	ALPHA 2(I) CHAIN	
					PRECURSOR>PIR2:A	
					43291 collagen alpha	
					2(I) chain precursor -	
					mouse>GP:MMCOL1	
	1				A2_1 Mouse COL1A2	
					mRNA for pro-alpha-	
					2(I) collagen	
35	<none></none>	<none></none>	<none></none>	MMMHC29N	Mus musculus major	8.00E-05
	İ			7_2	histocompatibility	
					locus class III	
					region:butyrophilin-like	
					protein gene, partial	
					cds; Notch4, PBX2,	
	l				RAGE, lysophatidic	
L			L		acid acyl transferase-	

	INT			TST .		
	Nearest			Nearest		
	Neighbor			Neighbor		
	(BlastN vs.			(BlastX vs.		
	Genbank)			Non-		
				Redundant		
				Proteins)		
SEQ	ACCESSION	DESCRIPTION	P	ACCESSION	DESCRIPTION	P
ID			VALUE			VALUE_
				_	alpha, palmitoyl-	
]
1						1
36	<none></none>	<none></none>	<none></none>	NFH RAT	NEUROFILAMENT	2.40E-05
				_	TRIPLET H PROTEIN	
	İ				(200 KD	
					NEUROFILAMENT	
				1	PROTEIN) (NF-H)	
					(FRAGMENT)	
37	<none></none>	<none></none>	<none></none>	HUMVWFM_	Human von Willebrand	1.70E-05
				1	factor mRNA, 3' end;	
				-	Von Willebrand factor	
					prepropeptide	
38	<none></none>	<none></none>	<none></none>	CGHU2E	collagen alpha 2(XI)	2.00E-06
					chain - human	
					(fragment)	
39	<none></none>	<none></none>	<none></none>	A61183	hypothetical protein	4.90E-08
					(sdsB region) -	
				·	Pseudomonas sp.	
40	<none></none>	<none></none>	<none></none>	_		1.50E - 09
				Т	KD PROTEIN IN	•
					DSK2-CAT8	
					INTERGENIC	
l i					REGION>PIR2:S5458	
					5 hypothetical protein	
					YMR278w - yeast	
					(Saccharomyces	į
					cerevisiae)>GP:SC802 1X_4 S;cerevisiae	
					chromosome XIII	
					cosmid 8021;	
					Unknown; YM8021;04,	•
					unknown, len: 622,	
					CAI: 0;16,	
41	<none></none>	<none></none>	<none></none>	MTCY210 31	Mycobacterium	3.10E-10
'-		1101112			tuberculosis cosmid	2.100-10
					Y210; Unknown;	
					MTCY210;31,	j
		!			unknown, len: 299 aa,	
					slight similarity to	
					carboxykinases	j
	·			L		

Table 2

	Manuact			Nearest		
	Nearest					
	Neighbor			Neighbor		
	(BlastN vs.			(BlastX vs.		
	Genbank)			Non-		
				Redundant		
				Proteins)		
SEQ	ACCESSION	DESCRIPTION	P	ACCESSION	DESCRIPTION	P
ID			VALUE			VALUE
42	<none></none>	<none></none>	<none></none>	CEC01G10_5	Caenorhabditis elegans	2.30E-12
	1				cosmid C01G10,	
				}	complete sequence;	
				ł	C01G10;8; CDNA EST	
					CEMSC45R comes	
					from this	
					gene>GP:CEC01G10_	
1					5 Caenorhabditis	
					elegans cosmid	
				i	C01G10; C01G10;8;	
					CDNA EST	
			ł		CEMSC45R comes	
					from this gene	
43	<none></none>	<none></none>	<none></none>	HSU15779_1	Human p70 (ST5)	9.50E-14
				_	mRNA, alternatively	
					spliced, complete cds;	i
					Differentially	
					expressed; alternatively	
					spliced	
44	<none></none>	<none></none>	<none></none>	MTCY210_31	Mycobacterium	1.70E-17
					tuberculosis cosmid	
					Y210; Unknown;	
					MTCY210;31,	
					unknown, len: 299 aa,	
					slight similarity to	
		-			carboxykinases	
45	U61403	Dictyostelium	1	U93472_1	Danio rerio PPARB	0.95
		discoideum PrIA			gene, partial cds;	
	!	(prlA) mRNA,			Nuclear receptor C	
		partial cds.			domain	
46	Z92832	Caenorhabditis	1	U93472_1	Danio rerio PPARB	0.94
		elegans DNA ***			gene, partial cds;	
		SEQUENCING			Nuclear receptor C	
		IN PROGRESS			domain	
		*** from clone		l		
		F31D4; HTGS		1		
		phase 1.				
47	L36557	Oryza sativa	1	HSU61262 1	Human neogenin	0.89
		(clone pRG3)			mRNA, complete cds	
		repetitive			, -	
	-	element.				
	L	L		L	L	

WO 99/33982

179	Nearest Neighbor (BlastN vs. Genbank)			Nearest Neighbor (BlastX vs. Non- Redundant Proteins)			
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE	
48	AF005898	Homo sapiens Na,K-ATPase beta-3 subunit pseudogene, complete sequence.	1	LRP1_CHICK	LOW-DENSITY LIPOPROTEIN RECEPTOR- RELATED PROTEIN 1 PRECURSOR (LRP) (ALPHA-2- MACROGLOBULIN RECEPTOR) (A2MR)>PIR2:A53102 LDL receptor-related protein / alpha-2- macroglobulin receptor precursor - chicken>GP:GGLRPA 2MR_1 G;gallus mRNA for LRP/alp	0.85	
49	U18795	Saccharomyces cerevisiae chromosome V cosmids 9669, 8334, 8199, and lambda clone 1160.	1	NKC1_SQUA C	BUMETANIDE- SENSITIVE SODIUM- (POTASSIUM)- CHLORIDE COTRANSPORTER 2 (NA-K-CL SYMPORTER)>PIR2: A53491 bumetanide- sensitive Na-K-C1 cotransporter - spiny dogfish>GP:SANKCC 1_1 Squalus acanthias bumetanide-sensitive Na-K-C1 cotransport protein (NKCC	0.73	
50	AC002523	Homo sapiens; HTGS phase 1, 54 unordered pieces.	1	BXEN_CLOB O		0.71	

Table 2

				181		
	Nearest			Nearest		
	Neighbor			Neighbor		
	(BlastN vs.			(BlastX vs.		
	Genbank)			Non-		
				Redundant		
			,	Proteins)		
SEQ	ACCESSION	DESCRIPTION	P	ACCESSION	DESCRIPTION	P
ID			VALUE			VALUE
51	AC002345	***	1	P3K2_DICDI	PHOSPHATIDYLINO	0.58
		SEQUENCING	ľ		SITOL 3-KINASE 2	
		IN PROGRESS			(EC 2.7.1.137) (PI3-	
		*** Genomic			KINASE) (PTDINS-3-	
1		sequence from			KINASE)	
		Human 17;			(PI3K)>GP:DDU23477	
		HTGS phase 1,			1 Dictyostelium	
		10 unordered			discoideum	
		pieces.			phosphatidylinositol-	
1		•			4,5-diphosphate 3-	
					kinase (PIK2) mRNA,	
					complete cds	
52	X14253	Human mRNA	ì	I55651	noradrenaline	0.55
		for cripto protein.			transporter -	
		' '			bovine>GP:BTU09198	
]		1 Bos taurus	
1 :					noradrenaline	
1					transporter mRNA,	
1					complete cds	
53	U23516	Caenorhabditis	1	I69024	MHC sex-limited	0.47
		elegans cosmid			protein - mouse	
		B0416.			(fragment)>GP:MUSM	
					HC4AD 1 Mouse class	
					III H2-Slp sex-limited	
·					protein gene, exons 1, 2	
					and 3; MHC sex-	
					limited protein	
54	AB006698	Arabidopsis	1	S81293 1	L1 {insertion sequence,	0.25
		thaliana genomic		_	provirus} [human	
		DNA,			papillomavirus type 6b	
		chromosome 5,			HPV6b, KP4, Genomic	
		P1 clone:			Mutant, 121 nt];	
		MCL19.			Authors note this	İ
					reading frame results	
					from a 454 bp deletion	
					and resulting	
55	K03458	Human	1	S13383	hydroxyproline-rich	0.24
		immunodeficienc			glycoprotein - sorghum	
		y virus type 1,			5,	
	}	isolate Zaire 6,				
		vif, tat, rev, env,				
		nef genes and 3'				
1 1		LTR.		i		I
	L					

Table 2

	Nearest Neighbor (BlastN vs. Genbank)			Nearest Neighbor (BlastX vs. Non- Redundant Proteins)		
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
56	B26794	T1016TR TAMU Arabidopsis thaliana genomic clone T1016.	l	RK34_PORP U	CHLOROPLAST 50S RIBOSOMAL PROTEIN L34>PIR2:S73111 ribosomal protein L34 - red alga (Porphyra purpurea) chloroplast>GP:PPU38 804_4 Porphyra purpurea chloroplast genome, complete sequence; 50S ribosomal protein L34	0.021
57	Z98950	Human DNA sequence *** SEQUENCING IN PROGRESS *** from clone 507115; HTGS phase 1.	1	D41132	collagen-related protein 4 - Hydra magnipapillata (fragment)>PIR2:S219 32 mini-collagen - Hydra sp.>GP:HSNCOL4_1 Hydra N-COL 4 mRNA for mini- collagen; No start codon	0.02
58	U 570 57	Human WD protein IR10 mRNA, complete cds.	1	DMU15602_1		0.019
59	U57057	Human WD protein IR10 mRNA, complete cds.	1	CR2_MOUSE	COMPLEMENT RECEPTOR TYPE 2 PRECURSOR (CR2) (COMPLEMENT C3D RECEPTOR)>PIR2:A4 3526 complement C3d/Epstein-Barr virus receptor 2 precursor - mouse>GP:MUSCR2A A_1 Murine complement receptor type 2 (CR2) mRNA, complete cds; Complement receptor type	0.0074

Table 2

	Nearest Neighbor (BlastN vs.			Nearest Neighbor (BlastX vs.		
	Genbank)			Non- Redundant		
				Proteins)		
SEQ	ACCESSION	DESCRIPTION	P	ACCESSION	DESCRIPTION	P
ID	D (50 0 5	COM HOD	VALUE			VALUE
60	B65337	CIT-HSP- 2021H21.TF CIT-HSP Homo sapiens genomic clone 2021H21.]	A38096	perlecan precursor - human>GP:HUMHSP G2B_1 Human heparan sulfate proteoglycan (HSPG2) mRNA,	0.0051
				1	complete cds	
61	U84722	Human vascular endothelial cadherin mRNA, complete cds.	i	_	H;sapiens mRNA for TAFII135; Subunit of RNA polymerase II transcription factor TFIID	0.0012
62	L41493	Avian rotavirus (strain turkey 1) genomic segment 4 outer capsid protein (VP8*) gene.	1	Y328_MYCP N	HYPOTHETICAL PROTEIN MG328 HOMOLOG>PIR2:S73 693 MG328 homolog P01_orf1033 - Mycoplasma pneumoniae (ATCC 29342) (SGC3)>GP:MPAE000 035_2 Mycoplasma pneumoniae from bases 442306 to 452472 (section 35 of 63) of the complete genome; MG328 homolog,	0.00015
63	D63139	Aeromonas sp. gene for chitinase, complete and partial cds.	1	MTCY16B7_3	Mycobacterium tuberculosis cosmid SCY16B7; Unknown; MTCY16B7;03, initiation factor, len: 900, similar at C- terminal half to eg IF2_BACSU P17889 initiation factor if-2 (716 aa), fasta	6.30E-05

Table 2

	Nearest			Nearest		
	Neighbor			Neighbor		
	(BlastN vs.			(BlastX vs.		
	Genbank)			Non-		
				Redundant Proteins)		
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
64	J04974	Human alpha-2	I	GDF6 BOVI	GROWTH/DIFFEREN	1.00E-05
04	JU49/4	type XI collagen	'	N N	TIATION FACTOR	1.00E-03
		mRNA		14	GDF-6 PRECURSOR	
		(COL11A2).			(CARTILAGE-	
		(00211112).			DERIVED	
					MORPHOGENETIC	
					PROTEIN 2) (CDMP-	
					2)	
					(FRAGMENT)>PIR2:	
İ				Í	B55452 cartilage-	
					derived morphogenetic	
					protein 2 precursor -	
					bovine	
				1	(fragment)>GP:BTU13 661 1 Bos taurus	
					cartilage-derived morp	
65	AC002394	Homo sapiens	1	CELC14F11	Caenorhabditis elegans	4.60E-06
"	.10002571	Chromosome 16	•	6	cosmid C14F11;	4.002-00
		BAC clone			Similar to aspartate	
		CIT987-SKA-			aminotransferase;	
		211C6 ~complete			coded for by C; elegans	
į		genomic			cDNA CEMSF95FB;	
		sequence,			coded for by C; elegans	
		complete			cDNA yk41e4;3; coded	
66	AB002312	sequence. Human mRNA	1	NATI YEAS	for by C; elegans N-TERMINAL	1.00E-09
00	AB002312	for KIAA0314	J	T	ACETYLTRANSFER	1.00E-09
		gene, partial cds.		•	ASE 1 (EC 2.3.1.88)	
		8, F			(AMINO-TERMINAL,	
					ALPHA- AMINO,	
					ACETYLTRANSFER	
	. 22 - 12 12 - 1				ASE 1)	
67	AC003085	Human BAC	1	DP19_CAEEL		4.20E-11
		clone RG094H21			PROTEIN>PIR2:S446	
		from 7q21-q22, complete			29 f22b7.10 protein -	
		sequence.			Caenorhabditis elegans>GP:CELF22B	
		sequence.			7 9 C;aenorhabditis	
			•		elegans (Bristol N2)	i
	Į.				cosmid F22B7;	
		ļ			Putative	
68	X55026	P.anserina	1	NATI_YEAS	N-TERMINAL	8.40E-12
	ļ	complete		T	ACETYLTRANSFER	l
<u> </u>	ļ	mitochondrial			ASE 1 (EC 2.3.1.88)	
		genome.			(AMINO-TERMINAL,	
					ALPHA- AMINO,	ŀ
					ACETYLTRANSFER	
			177			

Table 2

	Nearest Neighbor (BlastN vs. Genbank)			Nearest Neighbor (BlastX vs. Non- Redundant Proteins)			
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE	
					ASE 1)		
69	Z95399	Caenorhabditis elegans DNA *** SEQUENCING IN PROGRESS *** from clone Y39B6; HTGS phase 1.	1	CER06B9_5	Caenorhabditis elegans cosmid R06B9, complete sequence; R06B9;b; Protein predicted using Genefinder; preliminary prediction	1.50E-24	
70	AC002339	Arabidopsis thaliana chromosome II BAC T11A07 genomic sequence, complete sequence.	0.99	POLG_BVDV S	GENOME POLYPROTEIN>PIR1 :A44217 genome polyprotein - bovine viral diarrhea virus (strain SD- 1)>GP:BVDPOLYPR O_1 Bovine viral diarrhea virus polyprotein RNA, complete cds; Putative	1	
71	Y08559	B.subtilis urease operon and downstream DNA.	0.99	LRP_CAEEL	LOW-DENSITY LIPOPROTEIN RECEPTOR- RELATED PROTEIN PRECURSOR (LRP)>PIR2:A47437 LDL-receptor-related protein - Caenorhabditis elegans>GP:CEF29D1 1_2 Caenorhabditis elegans cosmid F29D11, complete sequence; F29D11;1; Protein predicted using Genefi]	

Table 2

	137			IN.				
	Nearest			Nearest				
	Neighbor			Neighbor				
	(BlastN vs.			(BlastX vs.				
	Genbank)			Non-				
	1			Redundant				
				Proteins)				
SEQ	ACCESSION	DESCRIPTION	P	ACCESSION	DESCRIPTION	P		
ID			VALUE			VALUE		
72	U67548	Methanococcus	0.99	YB60_YEAS	HYPOTHETICAL 16.3	1		
		jannaschii from		T	KD PROTEIN IN			
		bases 986219 to		i	DUR1,2-NGR1			
!		996377 (section		ŀ	INTERGENIC			
		90 of 150) of the			REGION>PIR2:S4608			
1		complete			4 probable membrane			
		genome.			protein YBR210w -			
		genome.			yeast (Saccharomyces			
					cerevisiae)>GP:SCYB			
					R210W 1 S; cerevisiae			
					chromosome II reading			
<u></u>	1151515	71 11	2.00	TIDOTIDDI I	frame ORF YBR210w	0.00		
73	U51645	Plasmodium	0.99	HPSVRPL_1	Sin Nombre virus (NM	0.99		
		falciparum			H10) RNA L segment			
		cytidine			encoding RNA			
		triphosphate			polymerase (L protein),			
		synthetase gene,			complete cds; Viral			
		complete cds.			RNA polymerase (L			
1 .					protein);			
1					Putative>GP:HPSVRP			
					LA_1 Sin Nombre			
					virus (NM R11) RNA			
					L segment encoding			
					RNA polymerase (L			
					protein), complete cds;			
					Vir			
74	Z49889	Caenorhabditis	0.99	MUSHDPRO	Mouse alternatively	0.021		
		elegans cosmid		B_1	spliced HD protein			
'		T06H11,		_	mRNA, complete cds			
		complete			·			
		sequence.						
75	Z69374	Human DNA	0.99	NCPR_YEAS	NADPH-	0.017		
		sequence from		Ŧ	CYTOCHROME P450			
		cosmid L174G8,			REDUCTASE (EC			
		Huntington's			1.6.2.4) (CPR)			
	į	Disease Region,						
		chromosome						
1		4p16.3 contains a		ļ				
		pair of ESTs.						
		pan or Lors.	<u> </u>	L				

Table 2

		·				
\$00000000000000000000000000000000000000	rest			Nearest		
	ghbor			Neighbor		
	stN vs.			(BlastX vs.		
Gen	bank)			Non-		
				Redundant		
				Proteins)		
SEQ AC	CESSION	DESCRIPTION	P	ACCESSION	DESCRIPTION	P
ID			VALUE			VALUE
	235847	S.cerevisiae	0.99	CYPA CAEE	PEPTIDYL-PROLYL	0.0044
'0 '	233047	chromosome II	0.55	T	CIS-TRANS	0.0044
		reading frame		l '	ISOMERASE 10 (EC	
		ORF YBL086c.		•		
		ORT I BLUSGE.			5.2.1.8) (PPIASE)	
1 1					(ROTAMASE)	
					(CYCLOPHILIN-	
					10)>GP:CELB0252_4	
					Caenorhabditis elegans	
		1		·	cosmid B0252; Similar	
i I					to peptidyl-prolyl cis-	
		1			trans isomerase	
				1	(PPIASE)	
l l					(CYCLOPHILIN)>GP:	
					CEU34954_1	
					Caenorhabditis el	
77 L	J35330	Rattus norvegicus	0.99	CELR148_1	Caenorhabditis elegans	0.0032
		glutathione S-		_	cosmid R148; Contains	
		transferase Yb3			similarity to drosophila	
		subunit gene,			DNA-binding protein	
		complete cds.			K10 (NID:g8148);	
		•			coded for by C; elegans	
					cDNA yk118e11;5;	
1					coded for by C; elegans	
					cDNA	
78 Y	700324	Chicken	0.99	A56922	transcription factor shn	0.0023
1		vitellogenin gene			- fruit fly (Drosophila	
1		3' flanking			melanogaster)	
		region.				
79 N	132659	D.melanogaster	0.99	OMU25146 1	Oncorhynchus mykiss	0.0017
" "		Shab11 protein			recombination	······
		mRNA, complete			activating protein 2	
		cds.			gene, partial cds	
80 Z	69880	H.sapiens	0.99	M84D DRO	MALE SPECIFIC	0.0011
" '	207000	SERCA3 gene	0.79	ME	SPERM PROTEIN	0.0011
		(partial).		IVIL	MST84DD>PIR2:S257	
		(parnar).				
					75 testis-specific	
					protein Mst84Dd - fruit	
				,	fly (Drosophila	
					melanogaster)>GP:DM	
					MST84D_4	
	i				D;melanogaster	
					Mst84Da, Mst84Db,	
1 1					Mst84Dc and Mst84Dd	
]					genes for put; sperm	
į I					protein	

	I NI			INT.				
	Nearest			Nearest				
	Neighbor			Neighbor				
	(BlastN vs.			(BlastX vs.				
	Genbank)			Non-				
				Redundant				
	İ.,			Proteins)				
SEQ	ACCESSION	DESCRIPTION	P	ACCESSION	DESCRIPTION	P		
ID			VALUE			VALUE		
81	M99166	Escherichia coli	0.99	MTU88962 1	Mycobacterium	6.50E-07		
		Trp repressor	ĺ	_	tuberculosis unknown			
		binding protein		İ	protein gene, partial cds			
	1	(wrbA) gene,		İ	l.			
		complete cds.						
82	X99257	R.norvegicus	0.99	MIU68729 1	Meloidogyne incognita	1.60E-09		
1		mRNA for lamin		_	cuticle preprocollagen			
		C2.			(col-2) mRNA,			
	}				complete cds; Putative			
83	AC002432	Human BAC	0.98	1FMDC	Foot and mouth disease	0.14		
"	110002432	clone RG317G18	0.70	II WIDC	virus type c-s8c1, chain	0.14		
1		from 7q31,			C - foot and mouth			
1		complete			disease virus type c-			
		sequence.						
1		sequence.			s8c1 expressed in			
84	Z34799	Caenorhabditis	0.98	MANUSTREE 1	hamster kidney cells Mus musculus EGF	0.0028		
04	234133	elegans cosmid	0.90	101101037308_1	repeat transmembrane	0.0028		
		F34D10,			protein mRNA,			
•		complete			complete cds; Notch			
		sequence.						
85	B15207	344E15.TV	0.98	POLG HCVJ	like repeats; notch 2	0.00002		
0.5	B13207	CIT978SKA1	0.98		GENOME POLYPROTEIN	0.00083		
1		Homo sapiens		6				
					(CONTAINS: CAPSID			
		genomic clone A-344E15.			PROTEIN C (CORE			
		344E13.			PROTEIN); MATRIX	j		
					PROTEIN			
1					(ENVELOPE			
					PROTEIN M); MAJOR			
1					ENVELOPE			
		l			PROTEIN E;			
					NONSTRUCTURAL			
					PROTEINS NS1, NS2,			
					NS4A AND NS4B;			
					HELICASE (NS3);	İ		
					RNA-DIRECTED			
	ĺ				RNA POLYMERASE			
					(EC 2.7.7.48)			
	<u></u>				(NS5))>PI			

Table 2

	Nearest Neighbor (BlastN vs. Genbank)			Nearest Neighbor (BlastX vs. Non-			
				Redundant Proteins)			
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE	
86	AC002412	SEQUENCING IN PROGRESS *** Human Chromosome X; HTGS phase 1, 2 unordered pieces.	0.98	KDG1_ARAT H	KINASE 1 (EC 2.7.1.107) (DIGLYCERIDE KINASE) (DGK 1) (DAG KINASE 1)>PIR2:S71467 diacylglycerol kinase (EC 2.7.1.107) ATDGK1 - Arabidopsis thaliana>GP:ATHATD GK1_1 Arabidopsis thaliana mRNA for diacylglycerol kinase, complete c	0.00024	
87	X57010	Human COL2A1 gene for collagen II alpha 1 chain, exons E2-E15.	0.98	D80005_1	Human mRNA for KIAA0183 gene, partial cds	5.90E-10	
88	M83093	Neurospora crassa cAMP- dependent protein kinase (cot-1) gene, complete cds.	0.98	YA53_SCHP O	HYPOTHETICAL 24.2 KD PROTEIN C13A11.03 IN CHROMOSOME I>GP:SPAC13A11_3 S;pombe chromosome I cosmid c13A11; Unknown; SPAC13A11;03, unknown, len: 210	3.00E-22	
89	U96271	Helicobacter pylori heat shock protein 70 (hsp70) gene, complete cds.	0.97	SLMEN6_I	S;latifolia mRNA for Men-6 protein>GP:SLMEN6_ 1 S;latifolia mRNA for Men-6 protein	0.43	
90	U49944	Caenorhabditis elegans cosmid C39E6.	0.97	RON_HUMA N	MACROPHAGE STIMULATING PROTEIN RECEPTOR PRECURSOR (EC 2.7.1.112)>PIR2:I3818 5 protein-tyrosine kinase (EC 2.7.1.112), receptor type ron - human>GP:HSRON_1 H;sapiens RON mRNA for tyrosine kinase; Putative	0.034	

Table 2

£0000000000000000000000000000000000000	Names			IN		
	Nearest			Nearest		
	Neighbor			Neighbor		
	(BlastN vs.			(BlastX vs.		
	Genbank)			Non-		
				Redundant		
				Proteins)		
SEQ	ACCESSION	DESCRIPTION	P	ACCESSION	DESCRIPTION	P
ID			VALUE			VALUE
91	Y09255	B.cereus dnal	0.97	CELT05C1_5		0.00043
		gene, partial.		ļ	cosmid T05C1; Coded	
				1	for by C; elegans	
		,			cDNA yk30f6;3; coded	
					for by C; elegans	
					cDNA yk34f10;3	
92	AC002413	***	0.96	CELC44E4_5		1
		SEQUENCING	,		cosmid C44E4; Weak	
		IN PROGRESS		:	similarity to the	
		*** Human			drosophila hyperplastic	
		Chromosome X;			disc protein	
		HTGS phase 1, 2	•		(GB:L14644); coded	
		unordered pieces.			for by C; elegans	
					cDNA yk49h6;5; coded	
				ŀ	for by C; elegans	
					cDNA	
93	U41625	Caenorhabditis	0.96	HMGC_HUM	HIGH MOBILITY	1
		elegans cosmid		AN	GROUP PROTEIN	
		K03A1.			HMGI-	
					C>PIR2:JC2232 high	
	}				mobility group I-C	
					phosphoprotein -	
					human>GP:HSHMGIC	
					G5_1 Human high-	
					mobility group	
					phosphoprotein isoform	
					I-C (HMGIC) gene,	
1					exon	
					5>GP:HSHMGICP_I	
}					H;sapiens mRNA for	ŧ
		1			HMGI-C	
	700000		0.0.5		protein>GP:HSHMGIC	
94	Z82202	Human DNA	0.96	YTH3_CAEE	HYPOTHETICAL 75.5	0.73
		sequence ***		L	KD PROTEIN	
		SEQUENCING			C14A4.3 IN	
		IN PROGRESS			CHROMOSOME	
		*** from clone			II>GP:CEC14A4_3	į
		34P24; HTGS			Caenorhabditis elegans	
		phase 1.			cosmid C14A4,	j
		·			complete sequence;	
					C14A4;3; Weak	
					similarity with a B;	
					Flavum translocation	
					protein (Swiss Prot	
					accession number	
					P38376)	

Table 2

Neighbor (BlastN vs. Genbank)		Negreet			INIconos		
Galast N vs. Genbank		Nearest Neighbor			Nearest		
SEQ ACCESSION DESCRIPTION P							
SEQ ACCESSION DESCRIPTION P VALUE					`		
SEQ ACCESSION DESCRIPTION P VALUE			•		Redundant		i
Name		Ī			Proteins)		
95	_	ACCESSION	DESCRIPTION	. ~	ACCESSION	DESCRIPTION	~
Sequence *** SEQUENCING NPROGRESS SEQUENCING NPROGRESS Sequence *** SEQUENCING NPROGRESS Sequence *** SEQUENCING NPROGRESS Sequence *** Sequence		<u></u>			<u></u>		
Section Sect	95	AL008734	sequence *** SEQUENCING IN PROGRESS *** from clone 324M8; HTGS	0.96	S25299	(clone Tom L-4) - tomato>GP:TOMEXT ENB_1 L;esculentum extensin (class II) gene,	0.0004
protein-coupled receptor kinase (GRK5) mRNA, complete cds. 97 X97384 A.thaliana atran3 gene. 98 M62505 Human C5a anaphylatoxin receptor mRNA, complete cds. 99 D28778 Cucumber mosaic virus RNA 1 for 1a, complete sequence. 99 D28778 Cucumber mosaic virus RNA 1 for 1a, complete sequence. 99 D28778 Cucumber mosaic virus RNA 1 for 1a, complete sequence. 99 D28778 Cucumber mosaic virus RNA 1 for 1a, complete sequence. 99 D28778 Cucumber mosaic virus RNA 1 for 1a, complete sequence. 99 D28778 Cucumber mosaic virus RNA 1 for 1a, complete sequence. 99 D28778 Cucumber mosaic virus RNA 1 for 1a, complete sequence. 99 D28778 Cucumber mosaic virus RNA 1 for 1a, complete sequence. 99 D28778 Cucumber mosaic virus RNA 1 for 1a, complete sequence. 99 POLS_RUBV M POLYPROTEIN (CONTAINS: NUCLEOCAPSID PROTEIN C; MEMBRANE GLYCOPROTEINS EI AND E2)>PIR1:GNWVR3 structural polyprotein rubella virus (strain M33)>GP:TORUB24S _ 1 Rubella virus 24S subgenomic mRNA for structural proteins E1, E2 and C; Human reelin (RELN) immunoglobulin heavy chain munoglobulin heavy chain		1.15000	•		111111111111111111111111111111111111111		
98 M62505 Human C5a anaphylatoxin receptor mRNA, complete cds. 99 D28778 Cucumber mosaic virus RNA 1 for la, complete sequence. 99 D28778 Cucumber mosaic virus RNA 1 for la, complete sequence. 99 D28778 Cucumber mosaic virus RNA 1 for la, complete sequence. 99 D28778 Cucumber mosaic virus RNA 1 for la, complete sequence. 99 D28778 Cucumber mosaic virus RNA 1 for la, complete sequence. 99 D28778 Cucumber mosaic virus RNA 1 for la, complete sequence. 90 D28778 Cucumber mosaic virus RNA 1 for la, complete sequence. 90 POLS_RUBV STRUCTURAL POLYPROTEIN (CONTAINS: NUCLEOCAPSID PROTEIN C; MEMBRANE GLYCOPROTEIN SEI AND E2)>PIR1:GNWVR3 structural polyprotein rubella virus (strain M33)>GP:TORUB24S lables and structural proteins E1, E2 and C; labella virus 24S subgenomic mRNA for structural proteins E1, E2 and C; labella virus (RELN) immunoglobulin heavy chain labella virus (RELN) mRNA, complete cds			protein-coupled receptor kinase (GRK5) mRNA, complete cds.		X_1	CW52-2, CW27-6, CW15-2, CW26-5, 11- 67) collagen type VII intergenic region and (COL7A1) gene, complete cds	
anaphylatoxin receptor mRNA, complete cds. Structural polyprotein rubella virus (Strain M33)>GP:TORUB24S		X97384		0.95	<none></none>		<none></none>
virus RNA 1 for la, complete sequence. M POLYPROTEIN (CONTAINS: NUCLEOCAPSID PROTEIN C; MEMBRANE GLYCOPROTEINS E1 AND E2)>PIR1:GNWVR3 structural polyprotein - rubella virus (strain M33)>GP:TORUB24S _ 1 Rubella virus 24S subgenomic mRNA for structural proteins E1, E2 and C; 100 AF016202 Homo sapiens immunoglobulin heavy chain N POLYPROTEIN (CONTAINS: NUCLEOCAPSID PROTEIN (CONTA	98	M62505	anaphylatoxin receptor mRNA,	0.95	RIPB_BRYDI	INACTIVATING PROTEIN BRYODIN (RRNA N- GLYCOSIDASE) (EC 3.2.2.22) (FRAGMENT)>PIR2: S16491 rRNA N- glycosidase (EC 3.2.2.22) bryodin - red bryony (fragment)	0.83
immunoglobulin mRNA, complete cds heavy chain			virus RNA 1 for 1a, complete sequence.		_	STRUCTURAL POLYPROTEIN (CONTAINS: NUCLEOCAPSID PROTEIN C; MEMBRANE GLYCOPROTEINS E1 AND E2)>PIR1:GNWVR3 structural polyprotein - rubella virus (strain M33)>GP:TORUB24S _1 Rubella virus 24S subgenomic mRNA for structural proteins E1,	0.00037
	100	AF016202	immunoglobulin heavy chain	0.93	HSU79716_1	Human reelin (RELN)	1

	Nearest Neighbor (BlastN vs. Genbank) ACCESSION DESCRIPTION P			Nearest Neighbor (BlastX vs. Non- Redundant Proteins)			
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE	
		partial cds.					
101	Z68303	Caenorhabditis elegans cosmid ZK809, complete sequence.	0.93	HS5HT4SAR_ l	H;sapiens mRNA for serotonin 4SA receptor (5-HT4SA-R)	0.87	
102	X03049	E. coli DNA sequene 5' to origin of replication oriC.	0.93	S37594	mucin - human (fragment)	0.0019	
103	M32659	D.melanogaster Shab11 protein mRNA, complete cds.	0.93	S38480	nonstructural protein - rubella virus>GP:RVM33NP_ 1 Rubella virus M33 RNA for a nonstructural protein; Nonstructural protein genes	2.30E-06	
104	D88687	Human mRNA for KM-102- derived reductase-like factor, complete cds.	0.93	BAT3_HUMA N	LARGE PROLINE- RICH PROTEIN BAT3 (HLA-B- ASSOCIATED TRANSCRIPT 3)>PIR2:A35098 MHC class III histocompatibility antigen HLA-B- associated transcript 3 - human>GP:HUMBAT 3A_1 Human HLA-B- associated transcript 3 (BAT3) mRNA, complete cds>GP:HUMBAT3	8.70E-07	
105	D16847	Mouse mRNA for stromal cell derived protein-1, complete cds.	0.93	S52796	prpL2 protein - human (fragment)>GP:HSPRP L2_1 H;sapiens mRNA for PRPL-2 protein	3.20E-08	

Table 2

	Nearest Neighbor (BlastN vs. Genbank)			Nearest Neighbor (BlastX vs. Non- Redundant Proteins)			
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE	
106	D9091 <i>5</i>	Synechocystis sp. PCC6803 complete genome, 17/27, 2137259-2267259.	0.92	YEK9_YEAS T	HYPOTHETICAL 53.9 KD PROTEIN IN AFG3-SEB2 INTERGENIC REGION>PIR2:S5047 7 hypothetical protein YER019w - yeast (Saccharomyces cerevisiae)>GP:SCE95 37_20 Saccharomyces cerevisiae chromosome V cosmids 9537, 9581, 9495, 9867, and lambda clone 5898	5.90E-05	
107	AJ001101	Mus musculus mRNA for gC1qBP gene.	0.92	DMU58282_1	Drosophila melanogaster Bowel (bowl) mRNA, complete cds; Transcription factor; C2H2 zinc finger protein; zinc fingers have extensive sequence similarity to Drosophila odd- skipped	3.50E-05	
108	X57108	Human gene for cerebroside sulfate activator protein, exons 10- 14.	0.92	\$69032	hypothetical protein YPR144c - yeast (Saccharomyces cerevisiae)>GP:YSCP9 659_17 Saccharomyces cerevisiae chromosome XVI cosmid 9659; Ypr144cp; Weak similarity near C- terminus to RNA Polymerase beta subunit (Swiss Prot; accession number P11213)	4.30E-21	

Table 2

[00000000000000000000000000000000000000	<u> </u>			131		
	Nearest			Nearest		
	Neighbor			Neighbor (BlastX vs.		
	(BlastN vs.			Non-		
	Genbank)			Redundant		
				Proteins)		
SEQ	ACCESSION	DESCRIPTION	P	ACCESSION	DESCRIPTION	P
ID	ACCESSION	DESCRIPTION	VALUE	ACCESSION	DESCRIPTION	VALUE
109	D14635	Caenorhabditis	0.91	VM13 VEAS	PUTATIVE ATP-	0.69
	203	elegans DNA for EMB-5.	0.51	T	DEPENDENT RNA HELICASE YMR128W>PIR2:S53 058 probable membrane protein	
					YMR128w - yeast (Saccharomyces cerevisiae)>GP:SC955 3_4 S;cerevisiae chromosome XIII	
					cosmid 9553; Unknown; YM9553;04, probable ATP- dependent RNA helicase, len:	
110	B55500	CIT-HSP- 387J2.TFB CIT- HSP Homo sapiens genomic	0.91	Ú97553_79	Murine herpesvirus 68 strain WUMS, complete genome; Unknown	0.00016
111	X03049	clone 387J2. E. coli DNA	0.9	POL MLVAV	POL POLYPROTEIN	0.0019
		sequene 5' to origin of replication oriC.			(PROTEASE (EC 3.4.23); REVERSE TRANSCRIPTASE (EC 2.7.7.49); RIBONUCLEASE H (EC 3.1.26.4))>PIR1:GNM VGV pol polyprotein - AKV murine leukemia virus	
112	U91327	Human chromosome 12p15 BAC clone CIT987SK-99D8 complete sequence.	0.89	JC5568	serine protease (EC 3.4) h1 - Serratia marcescens	1
113	X13295	Rat mRNA for alpha-2u globulin-related protein.	0.89	MNGPOLY_1	polyprotein genome, complete cds withe repeats	1
114	Z78415	Caenorhabditis elegans cosmid C17G1, complete sequence.	0.89	AB000121_1	Mouse mRNA for TBPIP, complete cds; TBP1 interacting protein	0.39

Table 2

E	N			Ext		
000000000000000000000000000000000000000	Nearest			Nearest		
	Neighbor			Neighbor		
	(BlastN vs.			(BlastX vs.		
	Genbank)			Non-		
				Redundant		
				Proteins)	·	
	ACCESSION	DESCRIPTION	P	ACCESSION	DESCRIPTION	P
ID			VALUE			VALUE
115	AC002308	***	0.88	YLK2_CAEE	HYPOTHETICAL	0.0037
		SEQUENCING		L	122.7 KD PROTEIN	
i I		IN PROGRESS			D1044.2 IN	
		*** Human			CHROMOSOME	
		Chromosome			III>GP:CELD1044_4	
		22q11 BAC]	1	Caenorhabditis elegans	
1		Clone 1000e4;			cosmid D1044	
1 1		HTGS phase 1,				
		26 unordered				
		pieces.				
116	AC002073	Human PAC	0.88	S28499	probable finger protein	1.10E-31
		clone DJ515N1			- rat>GP:RNZFP 1	
		from 22q11.2-			R;norvegicus mRNA	
		q22, complete			for putative zinc finger	
		sequence.			protein	
117	Z83848	Human DNA	0.87	NDL DROM	SERINE PROTEASE	1
1		sequence ***		E	NUDEL PRECURSOR	i
		SEQUENCING			(EC 3.4.21	
1		IN PROGRESS)>PIR2:A57096 nudel	
		*** from clone		-	protein precursor - fruit	
		57A13; HTGS			fly (Drosophila	
		phase 1.		l	melanogaster)>GP:DM	
					U29153_1 Drosophila	
					melanogaster nudel	
					(ndl) mRNA, complete	
					cds; Serine protease;	
					Soma dependent gene	
					required matern	
118	U23449	Caenorhabditis	0.87	AF023268_3	Homo sapiens clk2	0.21
		elegans cosmid			kinase (CLK2),	
		K06A1.			propin1, cote1,	
					glucocerebrosidase	
					(GBA), and metaxin	
					genes, complete cds;	·
		•			metaxin pseudogene	1
	:				and glucocerebrosidase	ĺ
					pseudogene; and	
					thrombospondin3	
					(THBS3)	ŀ
119	Z68181	H.vulgaris	0.87	RABCY450C	Rabbit cytochrome P-	0.14
	ļ	mRNA for		_1	450 gene, clone pP-	
		elongation factor		_	450PBc3, 3' end	į
		EF1-alpha.				

Table 2

	r.,			Tay		
	Nearest			Nearest		
	Neighbor			Neighbor		
	(BlastN vs.			(BlastX vs.		
	Genbank)			Non-		
				Redundant		
				Proteins)		
SEQ	ACCESSION	DESCRIPTION	P	ACCESSION	DESCRIPTION	P
ID			VALUE	<u> </u>		VALUE
120	AC000033	Homo sapiens	0.87	VWF_CANF	VON WILLEBRAND	0.036
		chromosome 9,		Α	FACTOR	
1		complete			PRECURSOR>GP:DO	
		sequence.		ŀ	GVWG_1 Canis	ĺ
					familiaris von	
					Willebrand factor	
]	1	mRNA, complete cds	
121	U23449	Caenorhabditis	0.86	S48988_1	CRP-1=cystatin-related	0.64
		elegans cosmid	1	•	protein [rats, Wistar	
		K06A1.			albino, mRNA Partial,	
					213 nt]; Cystatin-	İ
				1	related protein;	
					Method: conceptual	
					translation supplied by	
					author; This sequence	
					comes from Fig;	
122	Z89651	F.rubripes GSS	0.86	CPU65981_1	Cryptosporidium	0.6
		sequence, clone			parvum P-ATPase gene	
		090124cD5.			(CppA-E1) gene,	
					complete cds; Putative	
					calcium-ATPase	
123	Z94055	Human DNA	0.86	GLTB_SYNY	FERREDOXIN-	0.03
		sequence from	!	3	DEPENDENT	
		PAC 24M15 on		1	GLUTAMATE	·
		chromosome 1.			SYNTHASE I (EC	
		Contains			1.4.7.1) (FD-	
		tenascin-R			GOGAT)>PIR2:S6022	
		(restrictin), EST.			8 glutamate synthase	
					(ferredoxin) (EC	
				l	1.4.7.1) gltB -	
					Synechocystis sp. (PCC	
					6803)>GP:D90902_66	
					Synechocystis sp;	
					PCC6803 complete	
				•	genome, 4/27, 402290-	
124	Z49250	Human DNA	0.04	TRECARCIE	524345; Gluta	2.005.00
124	£47230	sequence from	0.86	TRSCAPSID_	Tobacco ringspot virus	3.00E-06
				l l	capsid protein gene,	
		cosmid HW2,			complete cds	
		Huntington's			·	
		Disease Region, chromosome				
		4p16.3.				

Table 2

	Nearest Neighbor	· · · · · · · · · · · · · · · · · · ·		Nearest Neighbor		
	(BlastN vs.			(BlastX vs.		
	Genbank)			Non-		
				Redundant		
				Proteins)		
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
125	Z92855	Caenorhabditis	0.84	AE000809_8	Methanobacterium	1
		elegans DNA ***		_	thermoautotrophicum	
		SEQUENCING		ł	from bases 161632 to	
		IN PROGRESS			172569 (section 15 of	
		*** from clone			148) of the complete	
		Y48C3; HTGS			genome; Aspartyl	
		phase 1.			tRNA synthetase; Function Code:10;07 -	
					Metabolism of	
126	AC002340	***	0.83	CET01E8 3	Caenorhabditis elegans	0.86
		SEQUENCING			cosmid T01E8,	
		IN PROGRESS			complete sequence;	
		*** Arabidopsis			T01E8;3; Similar to 1-	
		thaliana 'TAMU'			phosphatidylinositol-	
1		BAC 'T11J7'			4,5-bisphosphate	
		genomic			phosphodiesterase;	
		sequence near			cDNA EST CEESG02F	
		marker 'm283'; HTGS phase 1, 2			comes from this gene;	
}		unordered pieces.				
127	AL008716	Human DNA	0.83	HIVU51189 5	HIV-1 clone 93th253	0.86
		sequence ***	0.00	, 661.65_6	from Thailand,	0.00
		SEQUENCING			complete genome; Tat	
		IN PROGRESS			protein	
		*** from clone				
1	,	206C7; HTGS				
128	AC002340	phase 1.	0.02	560067		0.0013
128	AC002340	SEQUENCING	0.83	S60257	meltrin alpha - mouse>GP:MUSMAB	0.0013
		IN PROGRESS			1 Mouse mRNA for	
		*** Arabidopsis			meltrin alpha, complete	
	ĺ	thaliana 'TAMU'			cds	
		BAC 'T11J7'				
		genomic				
		sequence near				
		marker 'm283';				
		HTGS phase 1, 2				
L		unordered pieces.				

Table 2

	157			INT .		
	Nearest			Nearest		
	Neighbor			Neighbor		
	(BlastN vs.			(BlastX vs.		
	Genbank)			Non-		
				Redundant		
				Proteins)		
SEQ	ACCESSION	DESCRIPTION	P	ACCESSION	DESCRIPTION	P
ID			VALUE			VALUE
129	Z83848	Human DNA	0.82	ARO1_PNEC	PENTAFUNCTIONAL	0.0098
		sequence ***		Α	AROM	
	ł	SEQUENCING			POLYPEPTIDE	:
	1	IN PROGRESS			(CONTAINS: 3-	
		*** from clone			DEHYDROQUINATE	
	1	57A13; HTGS			SYNTHASE (EC	
		phase 1.			4.6.1.3), 3-	
	l				DEHYDROQUINATE	
				l	DEHYDRATASE (EC	
					4.2.1.10) (3-	
					DEHYDROQUINASE)	
					, SHIKIMATE 5-	
					DEHYDROGENASE	
-					(EC 1.1.1.25),	
					SHIKIMATE KINASE	
					(EC 2.7.1.71), AND	
					EPSP SYNTHASE (E	
130	AF029308	Homo sapiens	0.8	CELZK84_5	Caenorhabditis elegans	2.00E-08
		chromosome 9			cosmid ZK84; Final	
		duplication of the			exon in repeat region;	
		T cell receptor			similar to long tandem	
		beta locus and			repeat region of	
		trypsinogen gene			sialidase	
		families.			(SP:TCNA_TRYCR,	
1					P23253) and	
					neurofilament H	
					protein; coded for by C;	
L	1.0000150				elegans	
131	AC002458	Human BAC	0.78	IGF2_PIG	INSULIN-LIKE	0.44
		clone RG098M04			GROWTH FACTOR II	
		from 7q21-q22,	•		PRECURSOR (IGF-	
		complete			II)>GP:SSIGF2_1	
		sequence.			S;scrofa mRNA IGF2	
					for insulin-like-growth	
					factor 2; Insulin- like-	
					growth factor 2	
122	Z83843	III DNIA	0.70	DADGIA	preproprotein	0.0014
132	L83843	Human DNA	0.78	PAR51A_1	P;tetraurelia 51A	0.0014
		sequence ***			surface protein gene,	
	,	SEQUENCING			complete cds	
		IN PROGRESS				
		*** from clone				
		368A4; HTGS				
L		phase 1.				

	Nearest Neighbor			Nearest Neighbor		
	(BlastN vs. Genbank)			(BlastX vs. Non- Redundant		
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	Proteins) ACCESSION	DESCRIPTION	P VALUE
133	X03021	Human gene for granulocyte-macrophage colony stimulating factor (GM-CSF).	0.78	CEF57B1_3	Caenorhabditis elegans cosmid F57B1, complete sequence; F57B1;3; Protein predicted using Genefinder; similar to collagen	2.20E-05
134	Z74825	S.cerevisiae chromosome XV reading frame ORF YOL083w.	0.77	SYLM_SCHP O	PUTATIVE LEUCYL- TRNA SYNTHETASE, MITOCHONDRIAL PRECURSOR (EC 6.1.1.4) (LEUCINE TRNA LIGASE)>PIR2:S6248 6 hypothetical protein SPAC4G8.09 - fission yeast (Schizosaccharomyces pombe)>GP:SPAC4G8 _9 S;pombe chromosome I cosmid c4G8; Unknown; SPAC	0.96
135	Z74825	S.cerevisiae chromosome XV reading frame ORF YOL083w.	0.77		Rattus norvegicus mannose 6- phosphate/insulin-like growth factor II receptor (M6P/IGF2r) mRNA, complete cds; Also termed IGF- II/Man 6-P receptor, MPR, CI-MPR	0.01
136	U80445	Caenorhabditis elegans cosmid C50F2.	0.76	S28499	probable finger protein - rat>GP:RNZFP_1 R;norvegicus mRNA for putative zinc finger protein	1.10E-31
137	Z78545	Caenorhabditis elegans cosmid M03B6, complete sequence.	0.75	RRU73586_1	Rattus norvegicus Fanconi anemia group C mRNA, complete cds; Fanconi anemia group C protein; Similar to human FAC protein, GenBank Accession Numbers X66893 and X66894	0.023

Table 2

	Nearest			IN		·····
	Nearest Neighbor			Nearest		
	(BlastN vs.			Neighbor		
				(BlastX vs.		
	Genbank)			Non-		
				Redundant Proteins)		
SEQ	ACCESSION	DESCRIPTION	P	ACCESSION	DESCRIPTION	P
ID			VALUE			VALUE
138	Z97630	Human DNA	0.74	HSMSHREC	H;sapiens mRNA for	0.036
		sequence ***		$\mathbf{A}_{-}1$	MSH receptor; Author-	
		SEQUENCING			given protein sequence	
		IN PROGRESS			is in conflict with the	
		*** from clone		,	conceptual translation	
		466N1; HTGS				
		phase 1.				
139	AF007269	Arabidopsis	0.71	HSU95090_1	Homo sapiens	0.16
		thaliana BAC		1	chromosome 19 cosmid	
		IG002N01.		•	F19541, complete	
					sequence; F19541_1;	
					Hypothetical (partial)	
					protein similar to	
140	AC002393	Mouse	0.7	DAIL TODO	proline oxidase	4.40E-05
140	AC002393	BAC284H12	0.7	RNLTBP2_1	Rattus norvegicus mRNA for LTBP-2 like	4.40E-05
i					protein; Latent TGF-	
		Chromosome 6, complete				
		sequence.			beta binding protein-2 like protein	
141	B15232	344G8.TV	0.67	DMSEVL2_2		0.41
1 1 1	D13232	CIT978SKA1	0.07	DIVISE VEZ_Z	melanogaster sevenless	0.41
		Homo sapiens			mRNA; Put; sevenless	
		genomic clone A-			protein (AA 1 - 2510)	
		344G08.			,	
142	D13748	Human mRNA	0.66	MMU53563_1	Mus musculus Brg1	0.00016
		for eukaryotic			mRNA, partial cds; N-	
1		initiation factor			terminal region of the	
		4Al.			protein	
143	S45791	band 3-related	0.66	POLS_RUBV	STRUCTURAL	5.60E-05
		protein=renal		R	POLYPROTEIN	
		anion exchanger			(CONTAINS:	
		AE2 homolog			NUCLEOCAPSID	
		[rabbits, New			PROTEIN C;	
		Zealand White,			MEMBRANE GLYCOPROTEINIS EL	
		ileal epithelial cells, mRNA,			GLYCOPROTEINS E1	
		3964 nt].			E2)>PIR1:GNWVRA	
		5704 III]. 			structural polyprotein -	
					rubella virus (strain	
					RA27/3	
[]					vaccine)>GP:RUBCE2	
		,	:		1 1 Rubella virus	
					RA27/3 RNA for	
					capsid, E2 and E1	
			:	i	proteins; Poly	
144	M22462	Chicken protein	0.66	HSHP8PROT	H;sapiens mRNA for	2.00E-06
		p54 (ets-1)		_1	HP8 protein; HP8	
					<u> </u>	

Table 2

	Nearest			Nearest		
	Neighbor			Neighbor		
	(BlastN vs.			(BlastX vs.		j
	Genbank)			Non-		
				Redundant		
				Proteins)		
SEQ	ACCESSION	DESCRIPTION	P	ACCESSION	DESCRIPTION	P
ID			VALUE			VALUE
		mRNA, complete cds.			peptide	
145	U27999	Human clone pDEL52A11 HLA-C region cosmid 52 genomic survey sequence.	0.65	CA18_HUMA N	COLLAGEN ALPHA 1(VIII) CHAIN PRECURSOR (ENDOTHELIAL COLLAGEN)>PIR2:S 15435 collagen alpha 1(VIII) chain precursor - human>GP:HSCOL8A 1_1 Human COL8A1 mRNA for alpha 1(VIII) collagen	5.70E-06
146	M54787	N.crassa mating type a-1 protein (mt a-1) gene, exons 1-3.	0.64	I50717	vacuolar H+-ATPase A subunit - chicken (fragment)>GP:GGU22 078_1 Gallus gallus vacuolar H+-ATPase A subunit gene, partial cds	0.0046
147	AC002094	Genomic sequence from Human 17, complete sequence.	0.63	PVPVA1_1	P;vivax pval gene	0.1
148	U32701	Haemophilus influenzae from bases 165345 to 176101 (section 16 of 163) of the complete genome.	0.63	FABG_HAEI N	3-OXOACYL-[ACYL-CARRIER PROTEIN] REDUCTASE (EC 1.1.1.100) (3-KETOACYL-ACYL CARRIER PROTEIN REDUCTASE)>PIR2: D64051 3-oxoacyl- [acyl-carrier-protein] reductase (EC 1.1.1.100) - Haemophilus influenzae (strain Rd KW20)>GP:HIU32701 7 Haemophilus	2.00E-12
149	Z37159	T.brucei serum	0.61	<none></none>	_/ Haemophilus <none></none>	<none></none>
		resistance associated (SRA) mRNA for VSG- like protein.				

Table 2

				Tax		
# 00 00 00 00 00 00 00 00 00 00 00 00 00	Nearest			Nearest		
	Neighbor			Neighbor		
	(BlastN vs.			(BlastX vs. Non-		
	Genbank)					
		•		Redundant		
CEO	ACCECCION	DESCRIPTION	P	Proteins) ACCESSION	DESCRIPTION	P
SEQ ID	ACCESSION	DESCRIPTION	VALUE	ACCESSION	DESCRIPTION	VALUE
	A F027066	Mus musculus		A 5 (5) A		
150	AF027865	Major	0.61	A56514	chromokinesin - chicken>GP:GGU1830	0.045
		Histocompatibilit				
		y Locus class II		l	9_1 Gallus gallus chromokinesin mRNA,	
		region.		ł	complete cds	
151	U40938	Caenorhabditis	0.61	YA53 SCHP	HYPOTHETICAL 24.2	1.90E-24
131	040750	elegans cosmid	0.01	0	KD PROTEIN	1.706-24
		D1009.		ľ	C13A11.03 IN	
1		2.005.			CHROMOSOME	
				ŀ	I>GP:SPAC13A11_3	
					S;pombe chromosome I	
				İ	cosmid c13A11;	
					Unknown;	
					SPAC13A11;03,	
					unknown, len: 210	
152	116670	Sequence 1 from	0.59	CELF21F8_7	Caenorhabditis elegans	0.39
		patent US		_	cosmid F21F8; Similar	
		5476781.			to eukaryotic aspartyl	
					proteases	
153	Z84468	Human DNA	0.59	CLG1_YEAS	CYCLIN-LIKE	0.0015
		sequence ***		T	PROTEIN	
		SEQUENCING			CLG1>PIR2:S37607	
ŀ		IN PROGRESS		· ·	cyclin-like protein	
		*** from clone			YGL215w - yeast	į.
		299D3; HTGS phase 1.			(Saccharomyces	
		phase 1.			cerevisiae)>GP:SCYG	
					L215W_1 S;cerevisiae chromosome VII	
					reading frame ORF	
					YGL215w>GP:YSCC	
					LG1CPR_1	
					Saccharomyces	
					cerevisiae cyclin-like	1
	l				protein (CLG1) gene	
154	U00054	Caenorhabditis	0.57	<none></none>	<none></none>	<none></none>
		elegans cosmid		-		
	į	K07E12.				į
155	M21207	Synthetic SV40 T	0.57	1CJL2	cathepsin L (EC	0.43
		antigen mutant		1	3.4.22.15) mutant	
	}	pseudogene, 3'			(F(78P)L, C25S,	
	}	end.			T110A, E176G,	
					D178G), fragment 2 -	ŀ
					human	

	Nearest Neighbor (BlastN vs. Genbank)			Nearest Neighbor (BlastX vs. Non- Redundant Proteins)		
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
156	AF020282	Dictyostelium discoideum DG2033 gene, partial cds.	0.56	AC002125_4	Homo sapiens DNA from chromosome 19- cosmid F25965, genomic sequence, complete sequence; F25965_5; Hypothetical 35;3 kDa protein similar to GTPase-activating proteins and orf3 from	0.6
157	M86352	Stigmatella aurantiaca reverse transcriptase (163 RT) gene, complete cds.	0.56	AC002398_4	Human DNA from chromosome 19- specific cosmid F25965, genomic sequence, complete sequence; F25965_3; Hypothetical 96 kDa human protein similar to alpha chimaerin; Hypothetical protein>GP:AC002398 _4 Human DNA from chromosome 19- specific cosmi	4.50E-06
158	AC003101	*** SEQUENCING IN PROGRESS **** Homo sapiens chromosome 17, clone HRPC41C23; HTGS phase 1, 33 unordered pieces.	0.54	<none></none>	<none></none>	<none></none>
159	B12117	F5L15-T7 IGF Arabidopsis thaliana genomic clone F5L15.	0.54	CEF32H2_5	Caenorhabditis elegans cosmid F32H2, complete sequence; F32H2;5; Similarity to Chicken fatty acid synthase (SW:P12276); cDNA EST yk16c2;5 comes from this gene; cDNA EST yk113h6;5 comes	1

Table 2

800000000000000000000000000000000000000			 _	Tay		
	Nearest			Nearest		
	Neighbor			Neighbor		
	(BlastN vs.			(BlastX vs.		
	Genbank)			Non-		
]			Redundant		
				Proteins)	_	
SEQ	ACCESSION	DESCRIPTION	P	ACCESSION	DESCRIPTION	P
ID			VALUE			VALUE
160	AE000664	Mus musculus	0.54	CET01G9_6	Caenorhabditis elegans	0.84
		TCR beta locus		1	cosmid T01G9,	
	l	from bases			complete sequence;	
		250554 to 501917			T01G9;4; CDNA EST	
		(section 2 of 3) of			yk29b7;5 comes from	ļ
		the complete			this gene	
	ŀ	sequence.			ing Bene	
161	B12117	F5L15-T7 IGF	0.54	A39718	nicotinic acetylcholine	0.27
'0'	D12117	Arabidopsis	0.54	1 1137710	receptor alpha chain -	0.27
		thaliana genomic			marbled electric ray	
		clone F5L15.			(fragments)	
162	Z71261	Caenorhabditis	0.5	KDGE DRO	EYE-SPECIFIC	4.60E-05
102	2/1201	elegans cosmid	0.5	ME		4.00E-03
				ME	DIACYLGLYCEROL	
		F21C3, complete			KINASE (EC	
		sequence.			2.7.1.107) (RETINAL	
					DEGENERATION A	
					PROTEIN)	
					(DIGLYCERIDE	
					KINASE)	
					(DGK)>GP:DRODAG	
					K_1 Fruit fly mRNA	
					for diacylglycerol	
					kinase, complete cds	
163	M61831	Human S-	0.49	P2C2_ARAT	PROTEIN	5.60E-08
		adenosylhomocys		H	PHOSPHATASE 2C	
ļ		teine hydrolase			(EC 3.1.3.16)	
1		(AHCY) mRNA,			(PP2C)>PIR2:S55457	
	;	complete cds.			phosphoprotein	
					phosphatase (EC	
					3.1.3.16) 2C -	
1					Arabidopsis	
					thaliana>GP:ATHPP2	
					CA 1 Arabidopsis	.
					thaliana mRNA for	i
					protein phosphatase 2C	
164	U42608	Glycine max	0.48	<none></none>	<none></none>	<none></none>
	0.2000	clathrin heavy	0.70	110110	3110112	-140141
	1	chain mRNA,				
		complete cds.				
		complete cas.				

Table 2

	Nearest Neighbor (BlastN vs. Genbank)			Nearest Neighbor (BlastX vs. Non- Redundant Proteins)			
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE	
165	Z93042	Human DNA sequence *** SEQUENCING IN PROGRESS *** from clone 6B17; HTGS phase 1.	0.47	PYRD_BACS U	DEHYDROGENASE (EC 1.3.3.1) (DIHYDROOROTATE OXIDASE) (DHODEHASE)>PIR1 :H39845 dihydroorotate oxidase (EC 1.3.3.1) - Bacillus subtilis>GPN:BSUB00 09_25 Bacillus subtilis complete genome (section 9 of 21): from 1598421 to 1807200;	0.002	
166	AC000044	Human Chromosome 22q13 Cosmid Clone p76e10, complete sequence.	0.47	MATK_MAR PO	PROBABLE INTRON MATURASE>PIR2:A 05034 hypothetical protein 370i - liverwort (Marchantia polymorpha) chloroplast>GP:CHMP XX_21 Liverwort Marchantia polymorpha chloroplast genome DNA; ORF370i	0.0011	
167	X51508	Rabbit mRNA for aminopeptidase N (partial).	0.47	S45361	LRR47 protein - fruit fly (Drosophila melanogaster)>GP:DM LRR47_1 D;melanogaster mRNA for LRR47	5.30E-07	
168	Z67035	H.sapiens DNA segment containing (CA) repeat; clone AFM323yf1; single read.	0.45	JQ2246	22.5K cathepsin D inhibitor protein precursor - potato>GP:POTCATH D_1 Potato cathepsin D inhibitor protein mRNA, complete cds	0.79	
169	Z93042	Human DNA sequence *** SEQUENCING IN PROGRESS *** from clone 6B17; HTGS phase 1.	0.44	SMU31768_1	Schistosoma mansoni elastase gene, 3045 bp clone, complete cds	0.0022	

	Nearest Neighbor			Nearest Neighbor		
	(BlastN vs. Genbank)			(BlastX vs. Non-		
				Redundant		
				Proteins)		
SEQ	ACCESSION	DESCRIPTION	P	ACCESSION	DESCRIPTION	P
ID			VALUE			VALUE
170	L11172	Plasmodium	0.43	HUMPKDIG0		i
		falciparum RNA polymerase I	ļ	8_1	polycystic kidney disease (PKD1) gene,	
		gene, complete			exons 43-46; Polycystic	
ľ		cds.			kidney disease 1	
					protein	
171	Z95889	Human DNA	0.43	A09811_1	R;norvegicus mRNA	0.00083
		sequence ***			for BRL-3A binding	
		SEQUENCING			protein; Author-given	
		IN PROGRESS *** from clone	ļ		protein sequence is in conflict with the	
		211A9; HTGS			conceptual translation	
		phase 1.	:		conceptant translation	
172	U32772	Haemophilus	0.43	YPT2_CAEE	HYPOTHETICAL 21.6	2.50E-28
		influenzae from		L	KD PROTEIN	
		bases 954819 to			F37A4.2 IN	
1		966363 (section			CHROMOSOME	
		87 of 163) of the complete			III>PIR2:S44639 F37A4.2 protein -	
		genome.	1		Caenorhabditis	
		genome.			elegans>GP:CELF37A	
1					4_8 Caenorhabditis	
					elegans cosmid F37A4	
173	Z99281	Caenorhabditis	0.42	PTU19464_1	Paramecium tetraurelia	1
		elegans cosmid			outer arm dynein beta	
		Y57G11C, complete			heavy chain gene, complete cds	
		sequence.			complete eds	
174	X04571	Human mRNA	0.42	YEK9 YEAS	HYPOTHETICAL 53.9	0.99
		for kidney		T	KD PROTEIN IN	
		epidermal growth			AFG3-SEB2	
		factor (EGF)			INTERGENIC	
		precursor.			REGION>PIR2:S5047	
			1		7 hypothetical protein YER019w - yeast	
					(Saccharomyces	
					cerevisiae)>GP:SCE95	
					37_20 Saccharomyces	
					cerevisiae chromosome	
					V cosmids 9537, 9581,	
		٠			9495, 9867, and	
				<u></u>	lambda clone 5898	

Table 2

				T		
	Nearest			Nearest		
	Neighbor			Neighbor		
	(BlastN vs.			(BlastX vs.		
	Genbank)			Non-		1
				Redundant		
				Proteins)		
SEQ	ACCESSION	DESCRIPTION	P	ACCESSION	DESCRIPTION	P
ID			VALUE			VALUE
175	U32772	Haemophilus	0.41	YPT2 CAEE	HYPOTHETICAL 21.6	7.80E-21
		influenzae from		ī	KD PROTEIN	
		bases 954819 to			F37A4.2 IN	
		966363 (section			CHROMOSOME	
		87 of 163) of the			III>PIR2:S44639	
	,	complete			F37A4.2 protein -	- 1
		genome.			Caenorhabditis	
		8			elegans>GP:CELF37A	
1					4 8 Caenorhabditis	
				j	elegans cosmid F37A4	- 1
176	AC002053	Human	0.4	HSU33837 1	Human glycoprotein	1
170	AC002033	Chromosome	0.4	113033637_1	receptor gp330	1
		9p22 Cosmid			precursor, mRNA,	
		Clone 92f5,			complete cds	
		complete			Complete cus	
		sequence.				
177	U88309	Caenorhabditis	0.4	DROMTTGN	Drosophila	0.99
1//	000309	elegans cosmid	0.4	C_1	melanogaster	0.99
		T23B3.		C_1	mitochondrial	
		12303.			cytochrome c oxidase	
					subunit I (COI) gene, 5'	j
					end, Trp-, Cys-, and	
					Tyr-tRNA genes,	
					NADH dehydrogenase	
					subunit 2 (ND2) gene,	
		•			3' end	
178	M34025	Human fetal lg	0.39	DNA2 YEAS	DNA REPLICATION	1
178	10134023	heavy chain	0.39	T	HELICASE	1
		variable region		1	DNA2>PIR2:S48904	
		(clone M44)				
		mRNA, partial			probable purine nucleotide-binding	
		cds.				
		cus.			protein YHR164c -	I
					yeast (Saccharomyces	
					cerevisiae)>GPN:YSC	
					H9986_3	
					Saccharomyces	
					cerevisiae chromosome	
					VIII cosmid 9986;	
					Dna2p: DNA	
					replication helicase;	ļ
L					YHR164C>GP:	
179	AC002395	Homo sapiens;	0.39	VV_MUMPE	NONSTRUCTURAL	0.11
		HTGS phase 1,			PROTEIN V	į
		127 unordered			(NONSTRUCTURAL	j
		pieces.			PROTEIN NS1)	
					L	

Table 2

****************	Ni			Nonwest		
	Nearest			Nearest		
	Neighbor			Neighbor		
	(BlastN vs.			(BlastX vs.		
	Genbank)			Non-		ļ
				Redundant		
				Proteins)		
ŠEQ	ACCESSION	DESCRIPTION	P	ACCESSION	DESCRIPTION	P
ID I			VALUE			VALUE
180	AC003101	***	0.39	YLK2 CAEE	HYPOTHETICAL	0.0001
	110005101	SEQUENCING	0.57	T.	122.7 KD PROTEIN	0.0001
		IN PROGRESS		ì	D1044.2 IN	
		*** Homo			CHROMOSOME	
		sapiens			III>GP:CELD1044_4	
		chromosome 17,	1		Caenorhabditis elegans	
		clone	1		cosmid D1044	
1		HRPC41C23;				
] ,		HTGS phase 1,				
		33 unordered	1			
		pieces.				· · · · · · · · · · · · · · · · · · ·
181	Z54335	Human DNA	0.39	HUMNFAT3	Homo sapiens NF-AT3	1.60E-06
		sequence from		A_1	mRNA, complete cds	
		cosmid L17A9,			İ	
		Huntington's				1
		Disease Region,			,	
ŀ		chromosome				
		4p16.3. Contains				
		VNTR and a CpG				
1		island.				
182	U95743	Homo sapiens	0.38	CEZC434_6	Caenorhabditis elegans	0.18
		chromosome 16	[cosmid ZC434,	
		BAC clone			complete sequence;	
		CIT987-SK65D3,			ZC434;6; CDNA EST	
		complete			CEESO02F comes	
		sequence.			from this gene; cDNA	
		_			EST CEESS60F comes	
					from this gene	
183	AC001229	Sequence of BAC	0.34	HSOCAM 1	H;sapiens mRNA for	0.051
		F5I14 from			immunoglobulin-like	0.001
		Arabidopsis			domain-containing 1	
		thaliana			protein	
		chromosome 1,			protein	
		complete				
		sequence.				
184	X01703	Human gene for	0.33	NTC2 MOUS	NEUDOCENIC	0.012
104	A01/03		0.33	_	NEUROGENIC	0.012
		alpha-tubulin (b		Е	LOCUS NOTCH 3	i
		alpha 1).			PROTEIN>PIR2:S453	Į
					06 notch 3 protein -]
] ·					mouse>GP:MMNOTC	
					_1 M;musculus mRNA	ļ
					for Notch 3	ĺ
	L	L	L	L		

Table 2

	Nearest			Nearest		
	Neighbor			Neighbor		
	(BlastN vs.			(BlastX vs.		
	Genbank)			Non-		
				Redundant		
				Proteins)		
SEQ	ACCESSION	DESCRIPTION	P	ACCESSION	DESCRIPTION	P
ID			VALUE			VALUE
185	Z82189	Human DNA	0.31	LG106_3	Lemna gibba	0.27
		sequence ***		_	negatively light-	ĺ
		SEQUENCING			regulated mRNA	
'		IN PROGRESS			(Lg106); Second	
		*** from clone		ŀ	longest ORF (2)	
		170A21; HTGS			(2)	
		phase 1.				
186	Z98051	Human DNA	0.3	S34960	NADH dehydrogenase	0.25
.	2,005.	sequence ***	0.5	05 1700	(ubiquinone) (EC	0.23
		SEQUENCING		ŀ	1.6.5.3) chain 5 -	
		IN PROGRESS		,	Crithidia oncopelti	
		*** from clone			mitochondrion	
		501A4; HTGS			(SGC6)>GP:MICOCN	
		phase 1.			NR 3 Crithidia	
		phase 1.			oncopelti mitochondrial	
					ND4, ND5, COI, 12S	
					ribosomal RNA genes	
					for NADH	
					dehydrogenase subunit	
					4/5, cytochrome	
105	700740	77 53.14		20110 1 710	oxidase subun	
187	Z98749	Human DNA	0.3	SCKC_LEIQ	CHARYBDOTOXIN	0.12
		sequence ***		Н	(CHTX) (CHTX-	
		SEQUENCING			LQ1)>PIR2:A60963	
		IN PROGRESS			charybdotoxin 1 -	
		*** from clone			scorpion (Leiurus	
		449O17; HTGS			quinquestriatus)>3D:2	
		phase 1.			CRD Charybdotoxin	
					(nmr, 12 structures) -	
					scorpion (Leiurus	
					quinquestriatus)	
188	X96763	C.albicans CDC4	0.29	CECC4_1	Caenorhabditis elegans	1.30E-17
1		gene.		_	cosmid CC4, complete	
					sequence; CC4;a;	
					Protein predicted using	
					Genefinder;	
					preliminary prediction	ŀ
				L	F	

Table 2

F				T.,		
	Nearest			Nearest		
	Neighbor			Neighbor		
	(BlastN vs.			(BlastX vs.		
	Genbank)			Non-		
				Redundant		
				Proteins)		
SEQ	ACCESSION	DESCRIPTION	P	ACCESSION	DESCRIPTION	P
ID			VALUE			VALUE
189	U38804	Dombyro	0.28	HIVHCDR3C	Human	1
189	U38804	Porphyra	0.28			1
		purpurea		_1	immunodeficiency	
		chloroplast			virus type 1 heavy-	
	İ	genome,			chain complemetarity-	
		complete		ŀ	determining region 3	
		sequence.			mRNA (clone 11),	
	l				partial cds; Heavy-	
]		chain complementarity-	
					determining region 3	
					(CDR3) from HIV	
					gp120-	
	Ì				>GP:HIVHCDR31_1	
					Human	
			ļ		immunodeficiency	
	<u> </u>				virus type 1 he	
190	U20657	Human ubiquitin	0.28	HSU20657_1	Human ubiquitin	5.60E-12
		protease (Unph)	į		protease (Unph) proto-	
		proto-oncogene			oncogene mRNA,	
		mRNA, complete	į		complete cds	
		cds.				
191	AC002037	Human	0.27	VRP1_YEAS	VERPROLIN>GP:SC	2.00E-11
		Chromosome 11		Ť	VERPRL_I	
		Overlapping			S;cerevisiae (A364)	
		Cosmids			gene for verprolin	
		cSRL72g7 and				
		cSRL140b8,				
		complete		1		
		sequence.				
192	U58748	Caenorhabditis	0.27	EXLP_TOBA	PISTIL-SECIFIC	4.10E-12
		elegans cosmid		С	EXTENSIN-LIKE	
		ZK180.			PROTEIN	
					PRECURSOR	
					(PELP)>PIR2:JQ1696	
					pistil extensin-like	
					protein precursor (clone	
					pMG15) - common	
					tobacco>GP:NTPMG1	
				1	5_1 N;tabacum mRNA	
		,		l	for pistil extensin like	
		1	1		protein	
193	Z68013	Caenorhabditis	0.26	<none></none>	<none></none>	<none></none>
		elegans cosmid				
		W02H3,				
		complete				
		sequence.				
	<u> </u>	L	<u> </u>	<u> </u>	<u> </u>	

	Nearest			Nearest		
	Neighbor			Neighbor		
	(BlastN vs.			(BlastX vs.		
	•					
	Genbank)			Non-		
				Redundant		
				Proteins)		
SEQ	ACCESSION	DESCRIPTION	P	ACCESSION	DESCRIPTION	P
ID			VALUE			VALUE
194	AF017042	Dictyostelium	0.26	SPBC31F10_1		1
		discoideum LTR-		4	II cosmid c31F10;	
		retrotransposon			Hypothetical protein;	
		Skipper, partial			SPBC31F10;14c,	
		genomic			unknown, len:1586aa,	
		sequence, 5' end.			some similarity eg; to	
					YJR140C,	
					YJ9H_YEAST,	
					P47171, involved in	
					cell cycle regulation	
195	B03174	cSRL-16e2-u	0.26	CELC30E1 7	Caenorhabditis elegans	0.38
		cSRL flow sorted			cosmid C30E1	0.50
		Chromosome 11				
		specific cosmid				
		Homo sapiens				
		genomic clone				
		cSRL-16e2.				
196	X70810	E.gracilis	0.25	CEK10H10 8	Caenorhabditis elegans	0.98
		chloroplast		_	cosmid K10H10,	
		complete			complete sequence;	
		genome.			K10H10;k; Protein	
					predicted using	
					Genefinder;	
1					preliminary prediction	
197	U80024	Caenorhabditis	0.25	MMAF001794	Mus musculus Treacher	0.017
		elegans cosmid		1	Collins Syndrome	
		C18B10.		_	protein (Tcof1) mRNA,	
]					complete cds; Putative	
					nucleolar	
		ŀ			phosphoprotein; similar	
					to Homo sapiens	
					Treacher Collins	
					syndrome TCOF1	
					protein	
					encoded>GP:MMAF00	
					1794_1 Mus musculus	
	}				Treacher Collins	
					Syndrome p	
		i		L	Syndrome b	

Table 2

E0000000000000000000000000000000000000				157		
	Nearest			Nearest		
	Neighbor			Neighbor		
	(BlastN vs.			(BlastX vs.		
	Genbank)			Non-		
				Redundant		
				Proteins)		
SEQ	ACCESSION	DESCRIPTION	P	ACCESSION	DESCRIPTION	P
ID			VALUE			VALUE
198	AC000591	Drosophila	0.25	YHGE ECOL	HYPOTHETICAL 64.6	0.00068
		melanogaster		ī	KD PROTEIN IN	
		(subclone 9_g3			MRCA-PCKA	
		from P1 DS01486			INTERGENIC	
		(D32)) DNA		ĺ	REGION	
		sequence,			(F574)>PIR2:E65135	
		complete		•	hypothetical 64.6 kD	
		sequence.			protein in mrcA-pckA	
					intergenic region -	
					Escherichia coli (strain	
					K-	
					12)>GP:ECAE000415	
]					7 Escherichia coli,	
1					mrcA, yrfE, yrfF, yrfG,	
					yrfH, yrfl	
199	AC000591	Drosophila	0.25	YHGE ECOL	HYPOTHETICAL 64.6	0.00068
		melanogaster	0.20	ī	KD PROTEIN IN	0.0000
		(subclone 9 g3		_	MRCA-PCKA	i
		from P1 DS01486			INTERGENIC	
		(D32)) DNA			REGION	
		sequence,			(F574)>PIR2:E65135	
		complete			hypothetical 64.6 kD	
		sequence.			protein in mrcA-pckA	
					intergenic region -	
					Escherichia coli (strain	
					K-	
					12)>GP:ECAE000415	
					7 Éscherichia coli,	
					mrcA, yrfE, yrfF, yrfG,	
					yrfH, yrfl	
200	Z99571	Human DNA	0.24	YA53 SCHP	HYPOTHETICAL 24.2	0.017
]		sequence ***		Ō	KD PROTEIN	
		SEQUENCING			C13A11.03 IN	
		IN PROGRESS			CHROMOSOME	
		*** from clone			I>GP:SPAC13A11 3	
		388N15; HTGS			S;pombe chromosome I	
		phase 1.			cosmid c13A11;	
		[Unknown;	
					SPAC13A11;03,	
					unknown, len: 210	
201	U00672	Human	0.24	TFDP00900	- Polypeptides entry	1.00E-05
		interleukin-10			for factor Oct-2.5	
		receptor mRNA,				
		complete cds.			·	
	<u> </u>			L		

Table 2

	TN:	···		187		
	Nearest			Nearest		
	Neighbor			Neighbor		
	(BlastN vs.			(BlastX vs.		
	Genbank)			Non-		
	1			Redundant		
,				Proteins)		
SEQ	ACCESSION	DESCRIPTION	P	ACCESSION	DESCRIPTION	P
ID			VALUE			VALUE
202	AC003061	***	0.23	CG1 HUMA	CG1	0.00078
1		SEQUENCING		- _N	PROTEIN>GP:HSU46	
}		IN PROGRESS			023_1 Human Xq28	ŀ
		*** Mouse			mRNA, complete cds;	
ļ		Chromosome 6			Orf	
1		BAC clone				ĺ
]		b245c12; HTGS				
Ì		phase 2, 8				
		ordered pieces.				
203	AF009420	Homo sapiens	0.22	PN0675	collagen alpha	0.00072
		microsatellite			1(XVIII) chain - mouse	
		sequence in the		1	(fragment)>GP:MUSC	
1		HNF3a gene.			OLLAG_1 Mouse	
					mRNA for collagen,	
					partial cds	
204	B18861	F20C18-Sp6 IGF	0.22	TFDP00659	- Polypeptides entry	0.0003
		Arabidopsis			for factor PR	
		thaliana genomic				
		clone F20C18.				
205	U00672	Human	0.22	TFDP00900	- Polypeptides entry	1.00E-05
		interleukin-10			for factor Oct-2.5	
		receptor mRNA,				
		complete cds.				
206	X52105	Dictyostelium	0.18	<none></none>	<none></none>	<none></none>
		discoideum SP60				
		gene for spore				
207	1.07(22	coat protein.	2.5	Doorst t		0.0000
207	L07628	Saccharopolyspor	0.17	D88764_1	Rana catesbeiana	0.00021
		a erythraea			mRNA for alpha 2 type	
		insertion			I collagen, complete	
		sequence IS1136,			cds	
200	740/31	copy B, 3' end.	0.16	VCCDALL	Carabana	
208	Z49631	S.cerevisiae	0.16	YSCDAL1A_	Saccharomyces	j
		chromosome X		1	cerevisiae alantoinase	
		reading frame ORF YJR131w.			(DAL1) gene, complete	
209	707002		0.16	CEL COZA 10	cds	1 200 00
209	Z87893	F.rubripes GSS	U.10	CELC27A12_	Caenorhabditis elegans	1.30E-07
		sequence, clone 043C17aB8.		8	cosmid C27A12;	
		U43C1/aD8.			Partial CDS; this gene	
					begins in the	
					neighboring clone;	
					coded for by C; elegans	
					cDNA yk127f1;3;	
					coded for by C; elegans	
					cDNA yk127f1;5	J

Table 2

	Nearest Neighbor (BlastN vs. Genbank)			Nearest Neighbor (BlastX vs. Non- Redundant Proteins)		
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
210	U92852	Rhoiptelea chiliantha maturase (matK) gene, chloroplast gene encoding chloroplast protein, complete cds.	0.15	SEU40259_5	Staphyloccous epidermidis trimethoprim resistance plasmid pSK639; Orf53	0.95
211	X62620	B.mori Abd-A gene homeobox.	0.15	ATAP22_36	Arabidopsis thaliana DNA chromosome 4, ESSA I AP2 contig fragment No; 2; Hypothetical protein; Similarity to NADH dehydrogenase, Chondrus crispus; MNOS:S59107	0.75
212	J02079	epstein-barr virus simple repeat array (ir3).	0.15	A38346	ultra-high-sulfur keratin 1 - mouse>GP:MUSSER1 _1 Mouse serine 1 ultra high sulfur protein gene, complete cds; Putative	7.50E-05
213	M35027	Vaccinia virus, complete genome.	0.14	MTF1_FUSN U	MODIFICATION METHYLASE FNUDI (EC 2.1.1.73) (CYTOSINE- SPECIFIC METHYLTRANSFER ASE FNUDI) (M.FNUDI)	0.87
214	AC003058	*** SEQUENCING IN PROGRESS *** Arabidopsis thaliana 'IGF' BAC 'F27F23' genomic sequence near marker 'CIC06E08'; HTGS phase 1, 8 unordered pieces.	0.14	HEXA_DICDI	BETA- HEXOSAMINIDASE ALPHA CHAIN PRECURSOR (EC 3.2.1.52) (N-ACETYL- BETA- GLUCOSAMINIDASE) (BETA-N- ACETYLHEXOSAMI NIDASE)>PIR2:A307 66 beta-N- acetylhexosaminidase (EC 3.2.1.52) A precursor - slime mold (Dictyostelium	0.006

Table 2

	Nearest Neighbor (BlastN vs. Genbank)			Nearest Neighbor (BlastX vs. Non- Redundant Proteins)			
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE	
			VALUE		discoideum)>GP:DDIN AGA_1 D;d	VALOU	
215	AC001229	Sequence of BAC F5I14 from Arabidopsis thaliana chromosome 1, complete sequence.	0.13	A49281	pol protein - simian T-cell lymphotropic virus type 1, STLV-1 (isolate Bab34) (fragment)>GP:STVB ABPOLA_1 Simian T-cell leukemia virus PCR derived (pol) gene, partial sequence BAB34POL; Bases 4779-4918 EMBL ATK numbering system; BAB34POL	0.77	
216	U46067	Capra hircus beta-mannosidase mRNA, complete cds.	0.12	S70663	lectin heavy chain, N- acetylgalactosamine- specific - Entamoeba histolytica (fragment)>GP:EHU33 443_1 Entamoeba histolytica GalNAc lectin heavy subunit (hgl4) gene, partial cds; N-acetylgalactosamine adherence lectin heavy subunit	0.8	
217	AC000380	SEQUENCING IN PROGRESS *** Human Chromosome 3 pac pDJ70i11; HTGS phase 1, 2 unordered pieces.	0.12	ATFCA8_19	Arabidopsis thaliana DNA chromosome 4, ESSA I contig fragment No; 8; Unnamed protein product	0.64	

Table 2

	Nearest Neighbor (BlastN vs. Genbank)			Nearest Neighbor (BlastX vs. Non- Redundant Proteins)		
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
218	X61207	A.brasilense hisB, H, A, F and E genes for imidazole glycerolphosphat e dehydratase, glutamine amidotransferase, phosphorybosilfo rmimino-5- amino- phosphorybosil- 4- imidazolecarboxa mide isomerase, cyclase and phosphorybosil- AMP- cyclohydrolase.	0.12	OCCLO2_1	O;circumcincta colost- 2 gene; Cuticular collagen	0.0074
219	AF014259	HIV-1 Patient 1088 from Edinburgh, MA- p17 (gag) gene, partial cds.	0.11	DMU88570_1	Drosophila melanogaster CREB- binding protein homolog mRNA, complete cds; CBP	1
220	AC000636	Drosophila melanogaster (subclone 2_c11 from P1 DS07660 (D44)) DNA sequence, complete sequence.	0.11	A64829	hypothetical protein in dmsC 3' region - Escherichia coli (strain K- 12)>GP:ECAE000192_ 1 Escherichia coli , ycaD, ycaK, pflA, pflB, focA genes from bases 944908 to 955952 (section 82 of 400) of the complete genome; Hypothetical protein in dmsC	0.051
221	AC002428	Human BAC clone GS039E22 from 5q31, complete sequence.	0.11	HSNMYC2_1		0.00014
222	L40949	Homo sapiens (clone AT7-5eu) opioid-receptor- like protein mRNA, 5' end.	0.11	CEUNC93_2	C;elegans unc-93 gene; Protein 2	1.20E-13

Table 2

	Nearest			Nearest		
	Neighbor			Neighbor		
	(BlastN vs.			(BlastX vs.		
				Non-		
	Genbank)			Redundant		
				Proteins)		
SEQ	ACCESSION	DESCRIPTION	P	ACCESSION	DESCRIPTION	P
ID	ACCESSION	DESCRIPTION	VALUE	ACCESSION	DESCRIPTION	VALUE
223	AL008636	Human DNA	0.1	XELCOL2A1	Xenopus laevis alpha-1	2.60E-06
223	ALUUGUSU	sequence ***	0.1	A_1	collagen type II'	2.00L-00
1		SEQUENCING	ł	,,-,	mRNA, complete cds;	
		IN PROGRESS			Alpha-1 type II'	
		*** from clone		1	collagen	
		722E9; HTGS			conagen	
		phase 1.				
224	D86993	Human (lambda)	0.1	CELM02B7 2	Caenorhabditis elegans	1.80E-09
		DNA for	٠	0200252	cosmid M02B7	7.002 07
		immunoglobulin				
		light chain.				
225	AC002539	Homo sapiens	0.098	MTCY7D11	Mycobacterium	0.026
		chromosome 17,		17	tuberculosis cosmid	
		clone 195o20,			Y7D11; Unknown;	
Į		complete			MTCY07D11;17c;	
		sequence.			unknown, len: 186 aa,	
					FASTA best: Q10390	
					Y009_MYCTU	
					hypothetical 31;0 KD	
}	i				protein MTCY190;09C	
					(299 aa) opt: 355 z-	1
					score: 316;8	
226	M88165	Human inter-	0.096	A54161	ryanodine-binding	1
		alpha-trypsin			protein alpha form -	
		inhibitor light			bullfrog>GP:D21070_1	
		chain (ITI) gene,			Rana catesbeiana	
		exon 1.			mRNA for bullfrog	
					skeletal muscle calcium	
	ļ				release channel	
					(ryanodine receptor) alpha isoform(RyR1),	
1					complete cds;	
					Ryanodine receptor	
					alpha isoform	
227	Z92851	Caenorhabditis	0.082	CYA7 BOVI	ADENYLATE	0.3
	2,2001	elegans DNA ***	0.502	N N	CYCLASE, TYPE VII	0.5
		SEQUENCING		1	(EC 4.6.1.1) (ATP	
		IN PROGRESS			PYROPHOSPHATE-	
		*** from clone			LYASE) (ADENYLYL	
		Y39G8; HTGS			CYCLASE)	
		phase 1.				
		F	i			

	r.,			IN .		
	Nearest			Nearest		
	Neighbor			Neighbor		
	(BlastN vs. Genbank)			(BlastX vs. Non-		
	Genbank)			Redundant		
				Proteins)		
SEQ	ACCESSION	DESCRIPTION	P	ACCESSION	DESCRIPTION	P
ID			VALUE			VALUE
228	L00638	Arabidopsis	0.072	NUCM_TRY	NADH-UBIQUINONE	0.24
	i	thaliana ubiquitin		BB	OXIDOREDUCTASE	
		conjugating			49 KD SUBUNIT	
		enzyme exons 2-			HOMOLOG (EC	
		4.			1.6.5.3) (NADH	
					DEHYDROGENASE	
					SUBUNIT 7	
					HOMOLOG)>PIR2:A3	
				:	5693 NADH	
				ł	dehydrogenase (EC	
					1.6.99.3) chain 7 -	
					Trypanosoma brucei mitochondrion (SGC6)	
229	U49169	Dictyostelium	0.071	MMI 165504 1	Mus musculus Brca2	1
	047107	discoideum V-	0.071	1411410055594_1	mRNA, complete cds;	1
		ATPase A			Similar to human breast	
		subunit (vatA)			cancer susceptibility	
;		mRNA, complete			gene BRCA2; Allele:	
		cds.			wild type; putative	
					tumor suppressor	
230	AF001549	Homo sapiens	0.07	PM22_HUMA	PERIPHERAL	0.0078
		chromosome 16		N	MYELIN PROTEIN 22	
		BAC clone			(PMP-	
1		CIT987SK-			22)>PIR2:JN0503	
		270G1 complete			peripheral myelin	
		sequence.			protein 22 -	
					human>GP:HUMGAS	
					3X_1 Human	
					peripheral myelin	
					protein 22 (GAS3)	
					mRNA, complete cds>GP:HUMPMP22_	
					1 Human peripheral	
					myelin protein 22	
	1				mRNA, complete	
					cds>GP:HUMPMP22	
231	L36829	Mus musculus	0.066	<none></none>	<none></none>	<none></none>
		alphaA-crystallin-				
		binding protein I				
		(AlphaA-				
		CRYBP1) gene,				
		complete cds.			Ì	i
232	AC000159	***	0.058	CEZK863_1	Caenorhabditis elegans	i
		SEQUENCING		_	cosmid ZK863,	
		IN PROGRESS	į		complete sequence;	ł
		*** Human BAC			ZK863;2; Similar to	}
		Clone 11q13;			collagen	1
				<u> </u>		

Table 2

	Nearest			Nearest		
	Neighbor			Neighbor		
	(BlastN vs.			(BlastX vs.		
	Genbank)			Non-		
				Redundant		
ŠEQ	ACCESSION	DESCRIPTION	P	Proteins) ACCESSION	DESCRIPTION	P
ID	ACCESSION	DESCRIPTION	VALUE	ACCESSION	DESCRIPTION	VALUE
		HTGS phase 1, 10 unordered pieces.				
233	AC000159	*** SEQUENCING IN PROGRESS *** Human BAC	0.058	CAC2_HAEC O	CUTICLE COLLAGEN 2C (FRAGMENT)>GP:H	1.20E-08
		Clone 11q13; HTGS phase 1, 10 unordered pieces.			AECOL2C_1 H;contortus collagen 2C mRNA, 3'end	
234	Z23908	H. sapiens (D5S630) DNA segment containing (CA) repeat; clone AFM268zd9; single read.	0.057	VEU34999_1	Venezuelan equine encephalitis virus nonstructural and structural polyprotein genes, complete cds; Nonstructural polyprotein; Internal stop codon, readthrough occurs 5% of the time	0.0002
235	B21875	T3E8-Sp6 TAMU Arabidopsis thaliana genomic clone T3E8.	0.055	YRR2_CAÈE L	HYPOTHETICAL 91.1 KD PROTEIN R144.2 IN CHROMOSOME III>GP:CELR144_7 Caenorhabditis elegans cosmid R144; Coded for by C; elegans cDNA CEESP84R; coded for by C; elegans cDNA yk23c4;5; coded for by C; elegans cDNA yk44f9;5; coded for by C; eleg	0.68
236	Z98303	Human DNA sequence *** SEQUENCING IN PROGRESS *** from clone 140H19; HTGS phase 1.	0.048	AC002330_3	Arabidopsis thaliana BAC T10P11, complete sequence; Putative zinc-finger protein; C2H2 Zn- finger signature from position 80 to 100 [CEICNKGFQRDQNL QLHRRGH]	0.99

Table 2

	Nearest			Nearest		
	Neighbor			Neighbor		
	(BlastN vs.			(BlastX vs.		
	Genbank)			Non-		
	,			Redundant		
				Proteins)		
SEQ	ACCESSION	DESCRIPTION	P	ACCESSION	DESCRIPTION	P
ID			VALUE			VALUE
237	D49911	Thermus	0.044	APP1_MOUS	AMYLOID-LIKE	8.90E-06
ŀ		thermophilus UvrA gene,		E	PROTEIN 1	
f		complete cds.		ł	PRECURSOR (APLP)>PIR2:A46362	
		complete cus.			amyloid precursor-like	
[protein -	
					mouse>GP:MUSAPLP	
					_1 Mouse amyloid	
İ				1	precursor-like protein	
					mRNA, complete cds	
238	D49911	Thermus	0.044	MMCOL18A1		1.60E-06
		thermophilus		1_2	l(XVIII) collagen	
i		UvrA gene,		İ	(COL18A1) gene,	
		complete cds.			exons 40-43, complete	
239	X78119	Damuadalus	0.042	CA 44 THINAA	cds COLLAGEN ALPHA	2.00E-06
239	A/0119	P.amygdalus, Batsch (Texas)	0.042	CA44_HUMA N	4(IV) CHAIN	2.00E-06
		prul mRNA.		N	PRECURSOR>PIR1:C	
ŀ		prar micrare.			GHU1B collagen alpha	
					4(IV) chain precursor -	
					human>GP:HSCOL4A	
					4_1 H;sapiens mRNA	
!					for collagen type IV	
					alpha 4 chain; Type IV	
240	1120022	D	0.041	VDD () OVOC	collagen alpha 4 chain	0.0000
240	U72877	Rana catesbeiana	0.041	-	HYPOTHETICAL 33.0 KD PROTEIN IN	0.0008
		L-epinephrine transporter		Α	LICA 3'REGION (ORF	
		mRNA, complete			R6)>PIR2:S42125	
		cds.			hypothetical protein 3 -	
		,			Mycoplasma	
					capricolum	
					(SGC3)>GP:MYCRP	
					MH_6 M; capricolum	
					rpmH, rnpA and licA	
	1 20001		0.04) (VICO 111111	gene; Orf R6	4.005.00
241	L39891	Homo sapiens	0.04	MUC2_HUM	MUCIN 2	5.90E-05
	}	polycystic kidney disease-		AN	(INTESTINAL	
		associated protein	:		MUCIN 2) (FRAGMENTS)	
		(PKD1) gene,			(r regoinments)	
		complete cds.				,
242	L40390	Candida glabrata	0.039	G01763	atrophin-1 -	9.00E-07
		ERG3 gene,			human>GP:HSU23851	
		complete cds.			_1 Human atrophin-1	
					mRNA, complete cds	

Table 2

	Nearest Neighbor (BlastN vs. Genbank)			Nearest Neighbor (BlastX vs. Non- Redundant			
SEQ	ACCESSION	DESCRIPTION	P	Proteins) ACCESSION	DESCRIPTION	P	
ID			VALUE			VALUE	
243	B28113	T2L16TRB TAMU Arabidopsis thaliana genomic clone T2L16.	0.038	CELZK1248_ 14	Caenorhabditis elegans cosmid ZK1248	1.60E-18	
244	AC000030	00175, complete sequence.	0.033	ATFCA8_40	Arabidopsis thaliana DNA chromosome 4, ESSA I contig fragment No; 8; Glycerol-3-phosphate permease homolog; Similarity to glycerol- 3-phosphate permease - Haemophilus influenzae	0.63	
245	B10738	F13G15-Sp6 IGF Arabidopsis thaliana genomic clone F13G15.	0.032	D87521_1	Mus musculus DNA- PKcs mRNA, complete cds	0.21	
246	AF024503	Caenorhabditis elegans cosmid F31F4.	0.03	I38344	titin - human	1	
247	Z49888	Caenorhabditis elegans cosmid F47A4, complete sequence.	0.027	KSU52064_1	Kaposi's sarcoma- associated herpes-like virus ORF73 homolog gene, complete cds; Herpesvirus saimiri ORF73 homolog>GP:KSU756 98_78 Kaposi's sarcoma-associated herpesvirus long unique region, 80 putative ORF's and kaposin gene, complete cds; OR	3.40E-10	
248	Z83822	Human DNA sequence from PAC 306D1 on chromosome X contains ESTs.	0.025	GRSB_BACB R	GRAMICIDIN S SYNTHETASE II (GRAMICIDIN S BIOSYNTHESIS GRSB PROTEIN) (EC 6)	1	
249	Z94161	Human DNA sequence *** SEQUENCING IN PROGRESS *** from clone N102C10; HTGS	0.025	S16323	hypothetical protein - Arabidopsis thaliana>GP:ATHB1_1 A;thaliana homeobox gene Athb-1 mRNA; Open reading frame	0.0079	

Table 2

	Nearest Neighbor (BlastN vs. Genbank)	·		Nearest Neighbor (BlastX vs. Non- Redundant Proteins)		
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
		phase 1.				
250	AC002094	Genomic sequence from Human 17, complete sequence.	0.021	S57447	HPBRII-7 protein - human>GP:HSHPBRII 4_1 H;sapiens HPBRII- 4 mRNA>GP:HSHPBRII 7_1 H;sapiens HPBRII- 7 gene	8.20E-08
251	D79994	Human mRNA for KIAA0172 gene, partial cds.	0.021	CÉR10H10_1	Caenorhabditis elegans cosmid R10H10, complete sequence; R11A8;7; Protein predicted using Genefinder; Similarity to Mouse ankyrin (PIR Acc; No; S37771); cDNA EST CEESX25F comes from this gene;	7.00E-16
252	Z97635	Human DNA sequence *** SEQUENCING IN PROGRESS *** from clone 438L4; HTGS phase 1.	0.017	CELW05H7_4	Caenorhabditis elegans cosmid W05H7	0.24
253	X84996	X.laevis mRNA for selenocysteine tRNA acting factor (Staf).	0.017	JN0786	integrin beta-4 chain precursor - mouse	0.088
254	AC002543	Human BAC clone RG300C03 from 7q31.2, complete sequence.	0.013	MZLMTCYT BT_1	Mendozellus isis mitochondrial NADH dehydrogenase, and cytochrome b genes, 3' end, and transfer RNA- Ser gene; This codes for the last 43 amino acids of NADH dehydrogenase subunit 1 followed	0.044

Table 2

	Nearest			Nearest		
	Neighbor			Neighbor		
	(BlastN vs.			(BlastX vs.		
	Genbank)			Non-		
	Gепрапк)			Redundant		
050	CORCOLON	DECODIFICAL		Proteins)	DECCRIPTION	ъ
SEQ	ACCESSION	DESCRIPTION	P	ACCESSION	DESCRIPTION	P
ID			VALUE			VALUE
255	U10401	Caenorhabditis	0.012	MMMHC29N	Mus musculus major	0.069
		elegans cosmid		7_2	histocompatibility	
		T20B12.			locus class III	
					region:butyrophilin-like	
					protein gene, partial	
					cds; Notch4, PBX2,	
					RAGE, lysophatidic	
					acid acyl transferase-	
					alpha, palmitoyl-	
256	L14593	Saccharomyces	0.011	D86995 1	Human (gene 1) DNA	2.20E-14
		cerevisiae protein		_	for phosphatase 2C	
		phosphatase			motif, partial cds	
		(PTC1) gene,			· •	
		complete cds.				
257	U62317	Chromosome	0.0093	P2Y8 XENL	P2Y PURINOCEPTOR	0.89
		22q13 BAC		Ā	8	
		Clone			(P2Y8)>GP:XLP2Y8	
		CIT987SK-			1 X;laevis mRNA for	
		384D8 complete			P2Y8 nucleotide	
		sequence.			receptor	
258	D29655	Pig mRNA for	0.0075	AF004858 1	Mus musculus platelet	1
		UMP-CMP		_	activating factor	
		kinase, complete			receptor mRNA, partial	
		cds.			cds; PAF-receptor	
259	AF002992	Homo sapiens	0.0054	FBN1 BOVI	FIBRILLIN 1	0.0004
23/	111 002772	cosmid from	0.0037	N N	PRECURSOR>PIR2:A	0.000
		Xq28, complete		.,	55567 fibrillin I -	
		sequence.			bovine>GP:BOVXAA	
		soquenoe.			AA 1 Bos taurus	
					mRNA, complete cds;	
					Putative	
260	B20752	T19M2-T7	0.0043	HSVT1IEP_1	Feline herpesvirus type	3.90E-05
200	D20132	TAMU	0.0043	112 4 1 11 11 1	1 gene for immediate	J.70L-0J
		Arabidopsis			early protein, complete	
		thaliana genomic			cds; Feline herpesvirus	
		clone T19M2.			type 1 immediate early	
		CIONE 1 19IVIZ.			* *	
L				<u> </u>	protein	<u>. </u>

Table 2

	N			Nearest		
	Nearest					
	Neighbor			Neighbor (BlastX vs.		
	(BlastN vs.			Non-		
	Genbank)					
				Redundant		
OBO	A CORCCION	DECCRIPTION	<u> </u>	Proteins)	DESCRIPTION	P
SEQ	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	VALUE
ID	1.5004400			100006 10000	Litte Continue Co.	
261	AB006699	Arabidopsis	0.0037	YHV5_YEAS		0.077
		thaliana genomic		T	143.6 KD PROTEIN	
		DNA,			IN SPO16-REC104	
		chromosome 5, P1 clone: MDJ22.			INTERGENIC	
	Ì	Pi cione: MDJ22.			REGION>PIR2:S4675	
					4 hypothetical protein	
					YHR155w - yeast	
					(Saccharomyces	
					cerevisiae)>GPN:YSC H9666 15	:
					Saccharomyces	:
					cerevisiae chromosome	
					VIII cosmid 9666;	
					Yhr155wp; Similar to	
					Sip3p (Snf	
262	Z99128	Human DNA	0.0032	ALUI_HUM	!!!! ALU	0.0087
		sequence ***		ĀN	SUBFAMILY J	
		SEQUENCING			WARNING ENTRY	
		IN PROGRESS			11111	
		*** from clone				
		422H11; HTGS				
		phase 1.				
263	B21848	T2D2-Sp6	0.0031	B31794	mdm-1 protein (clone	1.00E-05
		TAMU			c103) - mouse	
		Arabidopsis thaliana genomic				
		clone T2D2.				
264	L33853	Human germline	0.0027	B45550	cytochrome b homolog	0.99
204	255055	immunoglobulin	0.0027	D-13330	- Plasmodium yoelii	0.77
		kappa chain				
,		variable region		į		
		(Vk-IV subgroup)		,		
		for anti-B-				
		amyloid				
		autoantibodies in				
	,	Alzheimer's				
		disease.				
265	B36863	HS-1042-A1-	0.0027		HYPOTHETICAL 64.3	0.81
		F01-MR.abi CIT		L	KD PROTEIN	
		Human Genomic			C56G2.4 IN	
l i		Sperm Library C			CHROMOSOME	
		Homo sapiens			III>GP:CELC56G2_2	
		genomic clone Plate=CT 824			Caenorhabditis elegans	
		Col=1 Row=K.			cosmid C56G2	
		COI-1 KOW-K.				

Table 2

***	Nearest Neighbor (BlastN vs. Genbank)			Nearest Neighbor (BlastX vs. Non- Redundant Proteins)			
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE	
266	AC003041	*** SEQUENCING IN PROGRESS *** Homo sapiens chromosome 17, clone HCIT307A16; HTGS phase 1, 10 unordered pieces.	0.0024	GLB4_LAMS P	GIANT HEMOGLOBIN AIV CHAIN (FRAGMENT)>PIR2: S01810 hemoglobin AIV - tube worm (Lamellibrachia sp.) (fragment)	0.94	
267	AC002315	Mouse BAC- 146N21 Chromosome X contains iduronate-2- sulfatase gene; complete sequence.	0.0022	MG42_TARM A	SRY-RELATED PROTEIN MG42 (FRAGMENT)>PIR3:I 51369 Sry-related sequence - Tarentola mauritanica (fragment)>GP:TELM G42DNA_1 Gecko MG42 gene, partial cds; Sry-related sequence	0.99	
268	AF016674	Caenorhabditis elegans cosmid C03H5.	0.0015	SCYJL204C_ 1	S;cerevisiae chromosome X reading frame ORF YJL204c	1	
269	AF016674	Caenorhabditis elegans cosmid C03H5.	0.0015	CEM199_3	Caenorhabditis elegans cosmid M199, complete sequence; M199;e; Protein predicted using Genefinder; preliminary prediction	0.97	
270	AF016674	Caenorhabditis elegans cosmid C03H5.	0.0015	CEM199_3	Caenorhabditis elegans cosmid M199, complete sequence; M199;e; Protein predicted using Genefinder; preliminary prediction	0.97	
271	Z54199	L.esculentum DNA Ailsa craig encoding 1- aminocyclopropa ne-1-carboxylic acid oxidase.	0.0015	CELF20A1_5	Caenorhabditis elegans cosmid F20A1; Coded for by C; elegans cDNA yk9g1;3; coded for by C; elegans cDNA yk9g1;5; coded for by C; elegans cDNA CEESU55F;	0.11	

Table 2

	Nearest Neighbor (BlastN vs. Genbank)			Nearest Neighbor (BlastX vs. Non- Redundant		
SEQ	ACCESSION	DESCRIPTION	P	Proteins) ACCESSION	DESCRIPTION	P
ID			VALUE			VALUE
					weak similarity to putative	
272	Z99943	Human DNA sequence *** SEQUENCING IN PROGRESS *** from clone 313L4; HTGS phase 1.	0.0014	CEK08F8_5	Caenorhabditis elegans cosmid K08F8, complete sequence; K08F8;5b	0.93
273	S81083	beta - ADD=adducin beta subunit 63 kda isoform/membran e skeleton protein, beta - ADD=adducin beta subunit 63 kda isoform/membran e skeleton protein {alternatively spliced, exon 10 to 13 region} [human, Genomic, 1851 nt, segment 3 of 3].	0.0013	MTCY277_7	Mycobacterium tuberculosis cosmid Y277; Unknown; MTCY277;07c, unknown, len: 302	0.0001
274	Z82174	Human DNA sequence from cosmid B20F6 on chromosome 22q11.2-qter.	0.001	FBLA_HUM AN	FIBULIN-1, ISOFORM A PRECURSOR>GP:HS FIBUA_1 H;sapiens mRNA for fibulin-1 A	0.00063
275	Z82215	Human DNA sequence *** SEQUENCING IN PROGRESS *** from clone 68O2; HTGS phase 1.	0.00079	BFR1_SCHP O	BREFELDIN A RESISTANCE PROTEIN>PIR2:S522 39 hba2 protein - fission yeast (Schizosaccharomyces pombe)>GP:SPHBA2 GEN_1 S;pombe hba2 gene	0.15

Table 2

	Nearest Neighbor (BlastN vs. Genbank)			Nearest Neighbor (BlastX vs. Non- Redundant Proteins)		
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
276	U28153	Caenorhabditis elegans UNC-76 (unc-76) gene, complete cds.	0.00071	СХ2_НЕМНА	CYTOTOXIN 2 (TOXIN 12A)	0.32
277	Z82204	Human DNA sequence from clone J362G171.	0.00054	DMU34925_2	melanogaster DNA repair protein (mei-41) gene, complete cds, and TH1 gene, partial cds	0.045
278	AC002530	Human BAC clone RG341D10 from 7p15-p21, complete sequence.	0.00053	CELT28F2_2	Caenorhabditis elegans cosmid T28F2; Weak similarity to HSP90	0.037
279	U91322	Human chromosome 16p13 BAC clone CIT987SK-276F8 complete sequence.	0.00051	CEW08D2_2	Caenorhabditis elegans cosmid W08D2, complete sequence; W08D2;3; Protein predicted using Genefinder>GP:CEW0 8D2_2 Caenorhabditis elegans cosmid W08D2; W08D2;3; Protein predicted using Genefinder	0.26
280	D16986	Human HepG2 partial cDNA, clone hmd2b09m5.	0.00037	POLG_PPVN A	GENOME POLYPROTEIN (CONTAINS: N- TERMINAL PROTEIN; HELPER COMPONENT PROTEINASE (EC 3.4.22) (HC-PRO); 42-50 KD PROTEIN; CYTOPLASMIC INCLUSION PROTEIN (CI); 6 KD PROTEIN; NUCLEAR INCLUSION PROTEIN; NUCLEAR INCLUSION PROTEIN A (NI- A) (EC 3.4.22) (49K PROTEINASE) (49	0.48
281	U91318	Human chromosome 16p13 BAC clone CIT987SK- 962B4 complete	0.00031	<none></none>	<none></none>	<none></none>

Table 2

	Nearest Neighbor (BlastN vs. Genbank)			Nearest Neighbor (BlastX vs. Non- Redundant Proteins)		
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
		sequence.				
282	M93406	Human dispersed Alu repeats and dispersed L1 repeat.	0.0003	VG8_SPV4	GENE 8 PROTEIN>PIR1:G8BP SV gene 8 protein - spiroplasma virus 4 (SGC3)	0.23
283	AC002398	Human DNA from chromosome 19- specific cosmid F25965, genomic sequence, complete sequence.	0.00021	HMCA_DRO ME	HOMEOTIC CAUDAL PROTEIN>PIR2:A263 57 homeotic protein Cad - fruit fly (Drosophila melanogaster)>GP:DR OCADA2_1 D;melanogaster caudal gene (cad) encoding a maternal and zygotic transcript, exon 2; Caudal protein>TFD:TFDP001 59 - Polypeptides en	0.021
284	AC002530	Human BAC clone RG341D10 from 7p15-p21, complete sequence.	0.0002	PL0009	complement C3d/Epstein-Barr virus receptor precursor - human	0.7
285	X01871	Yeast mitochondrial ori(o) repeat unit of petite mutant 5 (petite strain s-10/7/2).	0.00015	RVZMTCYT BT_1	Reventazonia sp; mitochondrial NADH dehydrogenase, and cytochrome b genes, 3' end, and transfer RNA- Ser gene; This codes for the last 43 amino acids of NADH dehydrogenase subunit 1 followed	0.73
286	U89984	Acanthamoeba castellanii transformation-sensitive protein homolog mRNA, complete cds.	0.00015	ACU89984_1	Acanthamoeba castellanii transformation- sensitive protein homolog mRNA, complete cds; Similar to human transformation-	4.20E-13

	Nearest Neighbor (BlastN vs. Genbank)			Nearest Neighbor (BlastX vs. Non- Redundant Proteins)			
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE	
					sensitive protein: SwissProt Accession Number P31948		
287	AC002365	Homo sapiens chromosome X clone U177G4, U152H5, U168D5, 174A6, U172D6, and U186B3 from Xp22, complete sequence.	0.00011	S10340	DNA-directed RNA polymerase (EC 2.7.7.6) - yeast (Kluyveromyces marxianus var. lactis)	0.00062	
288	AC002390	Human DNA from overlapping chromosome 19- specific cosmids R30072 and R28588, genomic sequence, complete sequence.	9.90E-05	D86603_1	Mouse mRNA for Bach protein 1, complete cds; Bach1	1	
289	AC002980	Homo sapiens; HTGS phase 1, 34 unordered pieces.	9.20E-05	TRBKPCYB_ l	Trypanosoma brucei kinetoplast apocytochrome b gene, complete cds	0.52	
290	M99412	Human interleukin-8 receptor (IL8RB) gene, complete cds.	4.50E-05	S28832	microtubule-associated protein H1 (clone KS3.1) - longfin squid (fragment)	0.88	
291	AC000120	Human BAC clone RG161K23 from 7q21, complete sequence.	4.00E-05	SXSCRBA_1	S;xylosus scrB and scrR genes; Sucrose repressor	0.99	

Table 2

	Nearest Neighbor (BlastN vs.			Nearest Neighbor (BlastX vs.			
	Genbank)			Non- Redundant Proteins)			
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE	
292	AC003037	Homo sapiens; HTGS phase 1, 66 unordered pieces.	3.40E-05	\$13569	hypothetical protein 5 - Lactococcus lactis subsp. lactis insertion sequence 1076>GP:LLTLE_1 Lactococcus lactis DNA for the transposon-like element on the lactose plasmid; ORF5 (AA 1 - 43)	0.018	
293	Z81512	Caenorhabditis elegans cosmid F25C8, complete sequence.		MUSDBPRC_ l	Mus musculus DNA- binding protein Rc mRNA, complete cds; DNA binding protein Rc	1	
294	B16681	343C3.TVB CIT978SKA1 Homo sapiens genomic clone A- 343C03.	1.10E-05	T	COATOMER BETA' SUBUNIT (BETA'- COAT PROTEIN) (BETA'- COP)>PIR2:B55123 coatomer complex beta' chain - yeast (Saccharomyces cerevisiae)>GPN:SCY GL137W_1 S;cerevisiae chromosome VII reading frame ORF YGL137w>GP:SCU11 237_1 Saccharomyces cerevisiae	0.081	
295	Z16523	H. sapiens (D9S158) DNA segment containing (CA) repeat; clone AFM073yb11; single read.	1.00E-05	_	M;musculus mRNA for semaphorin F; Smaphorin F	0.78	
296	Z49704	S.cerevisiae chromosome XIII cosmid 8021.	5.60E-06	<none></none>	<none></none>	<none></none>	
297	AC003071	Human BAC clone BK085E05 from 22q12.1- qter, complete sequence.	3.00E-06	HSRCAER_1	H;sapiens mRNA for red cell anion exchanger (EPB3, AE1, Band 3) 3' non-coding region	0.21	

Table 2

				T		
	Nearest			Nearest		
	Neighbor			Neighbor		
	(BlastN vs.			(BlastX vs.		
	Genbank)			Non-		
,				Redundant		
				Proteins)		
SEQ	ACCESSION	DESCRIPTION	P	ACCESSION	DESCRIPTION	P
ID			VALUE			VALUE
298	U20428	Human SNC19 mRNA sequence.		HUMMUC2A _1	Human mucin-2 gene, partial cds	4.40E-06
299	U51903	Human RasGAP-	6.60E-07	IQGA_HUMA	RAS GTPASE-	1.60E-14
		related protein		N	ACTIVATING-LIKE	
		(IQGAP2)			PROTEIN IQGAPI	
i		mRNA, complete			(P195)>PIR2:A54854	
		cds.			Ras GTPase activating-	
				:	related protein -	
					human>GP:HUMIQG	
					A_1 Homo sapiens ras	
					GTPase-activating-like	
				'	protein (IQGAP1)	
					mRNA, complete cds;	
					Amino acid feature: IQ	
:				1	calmodulin-binding do	
300	AL000805	F.rubripes GSS	4.70E-07	MT13_MYTE		2.20E-10
		sequence, clone		D	10-III (MT-10-	
1		021G08aA1.			III)>PIR2:S39418	
1					metallothionein 10-III -	
					blue mussel	
301	AC003016	Human BAC	4.30E-07	SPC57A10_5	S;pombe chromosome I	0.00041
		clone RG134C19			cosmid c57A10;	
Ì		from 8q21,			Unknown;	
		complete			SPAC57A10;05;c,	
1		sequence.			unknown, len:606aa,	
ļ					similar to A; nidulans	
					Q00659, sulfur	
					metabolite repression	
					control, (678aa), fasta	
	4 0000000	7.0	2 005 05	***************************************	scores, opt:1355,	
302	AC003089	Human BAC	3.80E-07	HPBPRECK_	Hepatitis B virus type	0.41
		cione		1	11 precore protein (pre-	
		RG180F08A,			C region, C) gene, 5'	
		complete			end	
303	A C003074	sequence. Human BAC	2 400 07	A 47001 1	Saguenes 22 fr-	0.0016
303	AC002074		2.40E-07	A47021_1	Sequence 23 from	0.0016
		clone GS056H18			Patent WO9527787;	
	į	from 7q31-q32,			Unnamed protein	
		complete			product; Author-given	
		sequence.			protein sequence is in conflict with the	
						·
-		,			conceptual	
					translation>GP:A51260	
					_1 Sequence 23 from	
					Patent WO9614416;	
					Unnamed protein	
L					product; Author-given	

Table 2

	Nearest Neighbor (BlastN vs. Genbank)			Nearest Neighbor (BlastX vs. Non- Redundant Proteins)		
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
					protein sequence is i	
304	U04980	Rattus norvegicus fetal troponin T 3 (fetal TnT3) mRNA, partial cds.	2.20E-07	HUMFSHD_I	Human facioscapulohumeral muscular dystrophy (FSHD) gene region, D4Z4 tandem repeat unit; ORF	3.30E-08
305	U68704	Human chromosome 21q22.3 P1-clone 3804 subclone 4- 52.	2.00E-07	HHV6AGNM _96	Human herpesvirus-6 (HHV-6) U1102, variant A, complete virion genome; U88; Cys repeats; this loci is open in all six reading frames, part of IE-A	2.70E-05
306	U51583	Rattus norvegicus zinc finger homeodomain enhancer-binding protein-1 (Zfhep- 1) mRNA, partial cds.	8.70E-08	AF005370_67	Alcelaphine herpesvirus 1 L-DNA, complete sequence; Putative immediate early protein; ORF73; similar to H; saimiri and KSHV ORF73	6.10E-07
307	M80206	Mus domesticus poliovirus receptor homolog (MPH) mRNA, complete cds.	8.10E-08	153960	PRR2 alpha - human	1.70E-28
308	M60854	Human ribosomal protein S16 mRNA, complete cds.	5.70E-08	OLVPOL_1	Caprine arthritis encephalitis virus (isolate OVLV-N1) pol protein gene, 3' end of cds; Nt 2497-2695 from CAEV Co	0.27
309	U82828	Homo sapiens ataxia telangiectasia (ATM) gene, complete cds.	1.50E-08	C40201	artifact-warning sequence (translated ALU class C) - human	0.00044

	Nearest Neighbor (BlastN vs. Genbank)			Nearest Neighbor (BlastX vs. Non- Redundant Proteins)		
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
310	Z83836	Human DNA sequence from PAC 111J24 on chromosome 22q12-qter contains ESTs.	1.40E-08	HSU64473_1	Human rheumatoid arthritis synovium immunoglobulin heavy chain variable region mRNA, partial cds>GP:HSU64498_1 Human rheumatoid arthritis synovium immunoglobulin heavy chain variable region mRNA, partial cds	0.34
311	Z50029	Caenorhabditis elegans cosmid ZC504, complete sequence.	1.40E-08	_	Mus musculus NIK mRNA, complete cds	1.70E-50
312	AC002351	Homo sapiens; HTGS phase 1, 17 unordered pieces.	1.20E-08	D41132	collagen-related protein 4 - Hydra magnipapillata (fragment)>PIR2:S219 32 mini-collagen - Hydra sp.>GP:HSNCOL4_1 Hydra N-COL 4 mRNA for mini- collagen; No start codon	0.02
313	B65763	CIT-HSP- 2023A12.TR CIT-HSP Homo sapiens genomic clone 2023A12.	3.60E-09	S18106	type II site-specific deoxyribonuclease (EC 3.1.21.4) Abrl - Azospirillum brasilense	0.045
314	Z93021	Human DNA sequence *** SEQUENCING IN PROGRESS *** from clone 516C23; HTGS phase 1.		4	Chlorella vulgaris C-27 chloroplast DNA, complete sequence; RNA polymerase gamma subunit	0.6
315	D88035	Rat mRNA for glycoprotein specific UDP- glucuronyltransfe rase, complete cds.	1.50E-09	D88035_I	Rat mRNA for glycoprotein specific UDP-glucuronyltransferase, complete cds	1.00E-33

Table 2

	Nearest			Nearest			
	Neighbor			Neighbor			
	(BlastN vs.			(BlastX vs.			
	Genbank)			Non-			
	ĺ			Redundant			
				Proteins)			
SEQ	ACCESSION	DESCRIPTION	P	ACCESSION	DESCRIPTION	Р	
ID			VALUE			VALUE	
316	U85193	Human nuclear factor I-B2 (NFIB2) mRNA,	1.30E-10	VGF1_IBVB	F1 PROTEIN>PIR1:VFIH B1 F1 protein - avian	1	
		complete cds.			infectious bronchitis virus (strain		
					Beaudette)>GP:IBACG B_1 Avian infectious		
					bronchitis virus pol protein, spike protein,		
					small virion-associated protein, membrane		
:					protein, and nucleocapsid protein		
					gen		
317	B04719	cSRL-42G12-u cSRL flow sorted	7.90E-11	JC5238	galactosylceramide-like protein, GCP - human	0.31	
		Chromosome 11 specific cosmid					
		Homo sapiens					
		genomic clone					
210) (50 fo c	cSRL-42G12.	0.005.14	40.40	<u> </u>	4 105 16	
318	M73506	Mouse Tcp-10c (t allele) gene.	2.80E-11	A39487	T-complex protein 10a (allele 129) - mouse	4.10E-16	
319	U71148	Human Xq28 cosmids U225B5	1.20E-11	A56547	sex-peptide precursor - Drosophila suzukii	0.4	
		and U236A12, complete					
320	Z95116	sequence. Human DNA	9.90E-13	ALU2 HUM	!!!! ALU	0.0017	
		sequence ***		ĀN	SUBFAMILY SB		
		SEQUENCING			WARNING ENTRY		
		IN PROGRESS *** from clone			1!!!!		
		57G9; HTGS					
		phase 1.					
321	M64795	Rat MHC class I	1.70E-14	STC_DROME	SHUTTLE CRAFT	1.40E-13	
		antigen gene (RT1-u			PROTEIN>GP:DMU0		
		haplotype),			9306_1 Drosophila melanogaster shuttle		
		complete cds.			craft protein (stc)		
					mRNA, complete cds;		
					C-terminal 222 amino		
					acids encode a novel		
					single- stranded DNA		
					binding domain		

Table 2

	Nearest Neighbor (BlastN vs. Genbank)			Nearest Neighbor (BlastX vs. Non- Redundant Proteins)		
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
322	Y09036	H.sapiens NTRK1 gene, exon 17.	4.20E-15	AF010403_1	Homo sapiens ALR mRNA, complete cds; Alternatively spliced; similarity to ALL-1 and Drosophila trithorax	1
323	U12523	Rattus norvegicus ultraviolet B radiation- activated UV98 mRNA, partial sequence.	2.90E-15	SPBC30D10_ 4	S;pombe chromosome II cosmid c30D10; Hypothetical protein; SPBC30D10;04, unknown, len:148aa	2.40E-09
324	Z98755	Human DNA sequence *** SEQUENCING IN PROGRESS *** from clone 76C18; HTGS phase 1.	2.20E-15	RPON_HAL MA	DNA-DIRECTED RNA POLYMERASE SUBUNIT N (EC 2.7.7.6)>PIR2:D41715 DNA-directed RNA polymerase II chain RPB10 homolog - Haloarcula marismortui>GP:HAL HMAENOA_4 H;marismortui tRNA- Leu, HL29, HmaL13, HmaS9, OrfMMV, OrfMNA, 2- phosphoglycerate dehydr	0.019
325	M86917	Human oxysterol- binding protein (OSBP) mRNA, complete cds.	1.60E-15	CEF14H8_2	Caenorhabditis elegans cosmid F14H8, complete sequence; F14H8;1; Similarity to Human oxysterolbinding protein (SW:OXYB_HUMAN)	2.10E-18
326	AC001231	Genomic sequence from Human 17, complete sequence.	1.30E-15	AC002397_3	Mouse BAC284H12 Chromosome 6, complete sequence; DRPLA	0.0016
327	AL008626	Human DNA sequence *** SEQUENCING IN PROGRESS *** from clone 1114G22; HTGS phase 1.	5.30E-16	TAU48227_1	Triticum aestivum soluble starch synthase mRNA, partial cds	5.90E-05

Table 2

	Nearest Neighbor		<u></u>	Nearest Neighbor (BlastX vs.			
	(BlastN vs. Genbank)		:	Non-			
			i	Redundant			
				Proteins)			
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE	
328	L04483	Human ribosomal protein S21 (RPS21) mRNA, complete cds.	7.60E-17	RS21_HUMA N	40S RIBOSOMAL PROTEIN S21>PIR2:S34108 ribosomal protein S21- human>GP:SSZ84015_ 1 S;scrofa mRNA; expressed sequence tag (3'; clone c11g10); 40S ribosomal protein S21;	1.40E-09	
320	A D001800	Homo sonione	6 70E 17	I DDI LITIMA	Similar to human 40S ribosomal protein S21>GP:HUMRPS21X _1 Human ribosomal		
329	AB001899	Homo sapiens PACE4 gene, exon 2.	6.70E-17	N	LIPOPROTEIN RECEPTOR- RELATED PROTEIN 1 PRECURSOR (LRP) (ALPHA-2- MACROGLOBULIN RECEPTOR) (A2MR) (APOLIPOPROTEIN E RECEPTOR) (APOER)>PIR2:S0239 2 LDL receptor-related protein precursor - human>GP:HSLDLRR L_1 Human mRNA for LDL-recept	1	
330	Z98755	Human DNA sequence *** SEQUENCING IN PROGRESS *** from clone 76C18; HTGS phase 1.	4.40E-17	U97553_59	Murine herpesvirus 68 strain WUMS, complete genome; Ribonucleotide reductase large	0.06	
331	AF017187	Homo sapiens LTR HERV-K repetitive element fragment ltr_19_9a sequence.	3.90E-18	D84255_1	Ovophis okinavensis mitochondrial DNA for NADH dehydrogenase subunit 1, partial cds, Ile-tRNA, Pro-tRNA, Phe-tRNA, Gln- tRNA, Met-tRNA and control region (D-loop region); This cds	0.007	

	Nearest Neighbor (BlastN vs. Genbank)			Nearest Neighbor (BlastX vs. Non- Redundant Proteins)		
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
332	B36252	HS-1038-A2-G01-MR.abi CIT Human Genomic Sperm Library C Homo sapiens genomic clone Plate=CT 820 Col=2 Row=M.		PGBM_MOU SE	BASEMENT MEMBRANE- SPECIFIC HEPARAN SULFATE PROTEOGLYCAN CORE PROTEIN PRECURSOR (HSPG) (PERLECAN) (PLC)>PIR2:S18252 heparan sulfate proteoglycan - mouse>GP:MUSPERP A_1 Mouse perlecan mRNA, complete cds	0.00015
333	D78255	Mouse mRNA for PAP-1, complete cds.	2.70E-18	MUSPAP1_1	Mouse mRNA for PAP-1, complete cds	3.50E-18
334	AC003046	Human Xp22 PACs RPC11- 263P4 and RPC11-164K3 complete sequence.	1.40E-18	CEC34F6_1	Caenorhabditis elegans cosmid C34F6; C34F6;1; CDNA EST yk46b12;5 comes from this gene; cDNA EST yk44c4;5 comes from this gene; cDNA EST yk46b12;3 comes from this gene	0.0015
335	AC003002	Human DNA from overlapping chromosome 19- specific cosmids R29515 and R28253, genomic sequence, complete sequence.	1.40E-18	MUSZFP0_1	Mouse mRNA for zinc finger protein, partial sequence	1.30E-19
336	Y15054	Rattus norvegicus mRNA for 70 kDa tumor specific antigen, partial.	3.40E-19	_	(AG876 isolate) U2- IR2 domain encoding nuclear protein EBNA2, complete cds; Nuclear antigen 2	2.00E-06
337	Z97876	Human DNA sequence *** SEQUENCING IN PROGRESS *** from clone 295C6; HTGS	1.30E-19	AF003535_1	Homo sapiens L1 element ORF2-like protein gene, partial cds	7.00E-05

Table 2

SEQ ID	Nearest Neighbor (BlastN vs. Genbank)	DESCRIPTION phase 1.	P VALUE	Nearest Neighbor (BlastX vs. Non- Redundant Proteins) ACCESSION	DESCRIPTION	P VALUE
338	M97159	Mouse (clone pIL2) B1 dispersed repeat unit.	1.10E-19	A26882	pIL2 hypothetical protein - rat (fragment)>GP:RATT DR_1 Rat growth and transformation- dependent mRNA, 3' end; Growth and transformation dependent protein	0.2
339	U30817	Bos taurus very- long-chain acyl- CoA dehydrogenase mRNA, nuclear gene encoding mitochondrial protein, complete cds.	4.70E-20	ACDV_RAT	ACYL-COA DEHYDROGENASE, VERY-LONG-CHAIN SPECIFIC PRECURSOR (EC 1.3.99) (VLCAD)>PIR2:A548 72 acyl-CoA dehydrogenase (EC 1.3.99) very-long- chain-specific precursor - rat>GP:RATVLCAD 1 Rat mRNA for very- long-chain Acyl-CoA dehydrogenase, compl	8.10E-25
340	Y11535	H.sapiens mRNA for SHOXb protein.	2.80E-20	ALUI_HUM AN	!!!! ALU SUBFAMILY J WARNING ENTRY !!!!	0.00027
341	AL008730	Human DNA sequence *** SEQUENCING IN PROGRESS *** from clone 487J7; HTGS phase 1.	7.10E-21	C40201	artifact-warning sequence (translated ALU class C) - human	0.001
342	U96629	Human chromosome 8 BAC clone CIT987SK-2A8 complete sequence.	5.30E-23	ĀN	!!!! ALU SUBFAMILY J WARNING ENTRY !!!!	3.80E-10

Table 2

		 		Ix.		
	Nearest			Nearest		
	Neighbor			Neighbor		
	(BlastN vs.			(BlastX vs.		
	Genbank)			Non-		
		•		Redundant Proteins)		
SEQ	ACCESSION	DESCRIPTION	P	ACCESSION	DESCRIPTION	P
ID			VALUE			VALUE
343	U95743	Homo sapiens	2.10E-24	UROM HUM	UROMODULIN	1
		chromosome 16		AN	PRECURSOR	
1		BAC clone			(TAMM-HORSFALL	
		CIT987-SK65D3,			ÙRINARY	
i		complete			GLYCOPROTEIN)	
		sequence.		1	(THP)>PIR2:A30452	
1		sequence.			uromodulin precursor -	
					human>GP:HUMUMO	
					D 1 Human	
					uromodulin (Tamm-	
		•			Horsfall glycoprotein)	
					mRNA, complete cds;	
					Uromodulin precursor	
344	U15972	Mus musculus	4.00E-25	S20790	extensin -	0.34
544	013712	homeobox	4.00L-23	320770	almond>GP:PAEXTS	0.54
		(Hoxa7) gene,			1 P;amygdalus mRNA	
		complete cds.			for extensin	
		, -		0.01.01.00		
345	U15972	Mus musculus	4.00E-25	CA24_CAEE	COLLAGEN ALPHA	0.1
	ļ	homeobox		L	2(IV) CHAIN	
	İ	(Hoxa7) gene,			PRECURSOR>GP:CE	
	ł	complete cds.			COLA2IV_2 C;elegans	
1				1	a2(IV) collagen gene;	
					Alternatively spliced	
246	777010		4 000 06	OF COSTA C. O.	transcript	7.705.10
346	Z66242	H.sapiens CpG island DNA	4.80E-26	CEC35A5_8	Caenorhabditis elegans	7.70E-19
					cosmid C35A5,	
		genomic Msel			complete sequence;	
		fragment, clone		ŀ	C35A5;8; CDNA EST	
		84a4, reverse read	1		yk31f6;5 comes from	
		cpg84a4.rt1a.			this gene; cDNA EST	:
					yk38h1;3 comes from	
					this gene; cDNA EST	
1		•			yk38h1;5 comes from	
247	1 25221	Dottus no-issie	2 00E 26	I VOIL CUIC	this gene;	1 100 42
347	L25331	Rattus norvegicus lysyl hydroxylase	3.90ピ-20	LYSH_CHIC K	PROCOLLAGEN- LYSINE,2-	1.10E-43
				N.		
	l	mRNA, complete cds.			OXOGLUTARATE 5-	
1	i	cus.			DIOXYGENASE	
	Ī				PRECURSOR (EC	
					1.14.11.4) (LYSYL	
	ĺ				HYDROXYLASE)>PI R2:A23742	İ
	ĺ					
1	ĺ				procollagen-lysine 5-	
	ĺ				dioxygenase (EC	
	ĺ				1.14.11.4) precursor - chicken>GP:CHKLYH	
	l					
L	L		L	L	_1 Chicken lysyl	

Table 2

	Nearest Neighbor (BlastN vs. Genbank)			Nearest Neighbor (BlastX vs. Non- Redundant Proteins)		
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
					hydroxylase mRNA, complete cds	
348	L81569	Drosophila melanogaster (subclone 2_d7 from P1 DS04260 (D68)) DNA sequence, complete sequence.	3.30E-26	CELC52B9_2	Caenorhabditis elegans cosmid C52B9; Coded for by C; elegans cDNA cm11d6; weakly similar to S; cervisiae PTM1 precursor (SP:P32857)	8.40E-29
349	U78082	Human RNA polymerase transcriptional regulation mediator (h- MED6) mRNA, complete cds.	2.30E-26	HSU78082_1	Human RNA polymerase transcriptional regulation mediator (h- MED6) mRNA, complete cds; H- Med6p	1.50E-16
350	U43381	Human Down Syndrome region of chromosome 21 DNA.	2.10E-28	HSMRNAEB_ 1	H;sapiens genomic DNA, integration site for Epstein-Barr virus; Hypothetical protein	0.18
351	D50416	Mouse mRNA for AREC3, complete cds.	2.50E-29	A29947	prostaglandin- endoperoxide synthase (EC 1.14.99.1) precursor - sheep>GP:SHPCOXA_ 1 Sheep prostaglandin endoperoxide synthetase (cyclooxygenase), complete cds; Cyclooxygenase precursor (EC 1;14;99;1)	0.81

Table 2

	Nearest Neighbor (BlastN vs. Genbank)			Nearest Neighbor (BlastX vs. Non-		
				Redundant Proteins)		
SEQ	ACCESSION	DESCRIPTION	P	ACCESSION	DESCRIPTION	P
ID			VALUE			VALUE
352	U85193	Human nuclear factor I-B2 (NFIB2) mRNA, complete cds.	2.20E-29	CFU30222_1	Crithidia fasciculata fully edited ATPase subunit 6 (MURF4) mRNA, partial cds; Cryptogene	0.53
353	Z92826	Caenorhabditis elegans DNA *** SEQUENCING IN PROGRESS *** from clone C18D11; HTGS phase 1.	1.10E-30	SPAC1B3_5	S;pombe chromosome I cosmid c1B3; Hypothetical protein; SPAC1B3;05, probable transcriptional regulator, len:630aa, similar eg; to YIL038C, NOT3_YEAST, P06102, general negative regulator,	3.20E-35
354	L09604	Homo sapiens differentiation-dependent A4 protein mRNA, complete cds.	3.70E-32	PVU72769_1	Phaseolus vulgaris PvPRP-12 (Pvprp1-12) mRNA, partial cds; Similar to cell wall proline rich protein>GP:PVU72769 _1 Phaseolus vulgaris PvPRP-12 (Pvprp1-12) mRNA, partial cds; Similar to cell wall proline rich protein	0.00049
355	B42455	HS-1055-B2- G03-MR.abi CIT Human Genomic Sperm Library C Homo sapiens genomic clone Plate=CT 777 Col=6 Row=N.	1.30E-32	CELT05H4_8	Caenorhabditis elegans cosmid T05H4; Similar to the beta transducin family; coded for by C; elegans cDNA yk156e11;3; coded for by C; elegans cDNA yk14c8;3; coded for by C; elegans cDNA	6.90E-14
356	AF001905	Homo sapiens cosmids E079, B0920 and A8 from Xq25 X-linked lymphoproliferati ve disease gene candidate region, complete sequence.	1.80E-33	138344	titin - human	l

Table 2

	Nearest Neighbor (BlastN vs. Genbank)			Nearest Neighbor (BłastX vs. Non- Redundant Proteins)		
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
357	E03743	DNA sequence including male hormone dependent gene derived from hamster frankorgan.	1.10E-34	CELC03A7_2	Caenorhabditis elegans cosmid C03A7; Weak similarity to serotonin receptors	0.59
358	U31199	Human laminin gamma2 chain gene (LAMC2), exon 22 and flanking sequences.	1.20E-35	B44018	laminin B2t chain - human>GP:HSLAMB2 TB_1 H;sapiens mRNA for laminin	1.20E-14
359	D14678	Human mRNA for kinesin- related protein, partial cds.	2.00E-36	D49544_1	Mouse mRNA for KIFC1, complete cds	1.20E-23
360	AB000425	Porcine DNA for endopeptidase 24.16, exon 16 and complete cds.		POL4_DROM E	RETROVIRUS- RELATED POL POLYPROTEIN (PROTEASE (EC 3.4.23); REVERSE TRANSCRIPTASE (EC 2.7.7.49); ENDONUCLEASE) (TRANSPOSON 412)>PIR1:GNFF42 retrovirus-related pol polyprotein - fruit fly (Drosophila melanogaster) transposon 412>GP:DMRT412G_4	0.65
361	U39875	Rattus norvegicus EF-hand Ca2+- binding protein p22 mRNA, complete cds.	8.80E-42	156333	apolipoprotein B - rat (fragment)>GP:RATA POLPB_1 Rattus norvegicus (clone rb9E) apolipoprotein B apoB mRNA, 3' end	0.23

Table 2

	Nearest Neighbor (BlastN vs. Genbank)			Nearest Neighbor (BlastX vs. Non- Redundant		
SÉQ	ACCESSION	DESCRIPTION	P	Proteins) ACCESSION	DESCRIPTION	P
ID	ACCESSION	DESCRIPTION	VALUE	ACCESSION	DESCRIPTION.	VALUE
362	L09647	Rattus norvegicus hepatocyte nuclear factor 3a (HNF-3 beta) mRNA, complete cds.	6.60E-42	HN3B_RAT	HEPATOCYTE NUCLEAR FACTOR 3-BETA (HNF- 3B)>GP:RATHNF3B_ 1 Rattus norvegicus hepatocyte nuclear factor 3a (HNF-3 beta) mRNA, complete cds>TFD:TFDP01611 - Polypeptides entry for factor HNF-3 (beta)	8.10E-25
363	D25538	Human mRNA for KIAA0037 gene, complete cds.	4.10E-43	CELC34D4_1 2	Caenorhabditis elegans cosmid C34D4	0.018
364	Z 56764	H.sapiens CpG island DNA genomic Mse1 fragment, clone 13f7, reverse read cpg13f7.rt1a.	1.40E-43	S75263	hypothetical protein - Synechocystis sp. (PCC 6803)>GP:D90904_29 Synechocystis sp; PCC6803 complete genome, 6/27, 630555- 781448; Hypothetical protein; ORF_ID:sll0983	0.0028
365	AC002636	SEQUENCING IN PROGRESS **** Drosophila melanogaster (subclone 2_g4 from P1 DS03323 (D127)) DNA sequence; HTGS phase 2.	8.40E-44	_	melanogaster strawberry notch (sno) mRNA, complete cds; Notch pathway component; nuclear protein	3.40E-51
366	J05499	Rattus norvegicus L-glutamine amidohydrolase mRNA, complete cds.	8.00E-44	GLSL_RAT	GLUTAMINASE, LIVER ISOFORM PRECURSOR (EC 3.5.1.2) (GLS)>GP:RATGAH_ 1 Rattus norvegicus L- glutamine amidohydrolase mRNA, complete cds	8.00E-29

Table 2

[]	Nearest			Nearest		******
	Neighbor			Neighbor		
	(BlastN vs. Genbank)			(BlastX vs. Non-		
	oundamin,			Redundant		
				Proteins)		
SEQ A	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
367	U95760	Drosophila	5.00E-45	DMU95760_1	Drosophila	4.80E-45
		melanogaster		_	melanogaster	
		strawberry notch (sno) mRNA,		f	strawberry notch (sno) mRNA, complete cds;	
1		complete cds.			Notch pathway	
		•		i	component; nuclear	
3/0	1 10106		1.05		protein	
368	L10106	Mus musculus protein tyrosine	4.10E-45	PTPK_HUMA N	PROTEIN-TYROSINE PHOSPHATASE	4.70E-16
		phosphate		•	KAPPA PRECURSOR	
		mRNA, complete			(EC 3.1.3.48) (R-PTP-	
		cds.			KAPPA)>GP:HSPTPK AP 1 H;sapiens mRNA	
		!			for phosphotyrosine	
					phosphatase kappa;	
					Human phosphotyrosine	
					phosphatase kappa	
369		Human HepG2 3'	9.40E-47	MMU53563_1	Mus musculus Brg1	0.00012
		region MboI cDNA, clone	i		mRNA, partial cds; N-	
		hmd3g02m3.			terminal region of the protein	
370		Homo sapiens	8.10E-48	HSU78310_1	Homo sapiens	1.10E-21
		pescadillo mRNA, complete			pescadillo mRNA, complete cds	
		cds.			complete cas	
371		Genomic	7.40E-48	KIP2_YEAST	KINESIN-LIKE	0.14
		sequence from Mouse 9,			PROTEIN KIP2>PIR1:C42640	
		complete			kinesin-related protein]
		sequence.			KIP2 - yeast	
					(Saccharomyces	ł
					cerevisiae)>GP:SCKIP 2XVI 2S;cerevisiae	
					PEP4 and KIP2 genes	
				:	encoding PEP4	
					proteinase (partial) and kinesin-related protein	
					KIP2>GP:SCLACHX	İ
372	AC002327	***	1 405 49	CUVCLAGOS	VI_17 S;cerev	0.05
3,2		SEQUENCING	1.40E-48	CHKC1A205_ 1	Chicken alpha-2 type-1 collagen; amino acids -	0.024
	:	IN PROGRESS			16 to 3; Precollagen	İ
•		*** Genomic			alpha-2	
		sequence from Mouse 7; HTGS				
		phase 1, 3				1

Table 2

000000000000000000000000000000000000000	N1 4			Tay	·. 	
	Nearest Neighbor			Nearest Neighbor		
	(BlastN vs.			(BlastX vs.		
	Genbank)			Non-		
	0011001111)			Redundant		
				Proteins)		
SEQ	ACCESSION	DESCRIPTION	P	ACCESSION	DESCRIPTION	P
ID			VALUE		<u></u>	VALUE
		unordered pieces.				
373	X67016	H.sapiens mRNA	9.00E-49	CED2085_2	Caenorhabditis elegans	0.14
	110,010	for amphiglycan.	3.002 13	0222003_2	cosmid D2085,	0.14
		' ' ' '			complete sequence;	1
					D2085;1; Similar to	
					glutamine-dependent	
				ľ	carbamoyl-phosphate	
	:				synthase, aspartate	
1					carbamoyltransferase,	
					dihydroorotase; cDNA	
1					EST	
					cm16f3>GP:CED2085 2 Caenorhabditis	
					elegans cosmid D2085;	
					D	
374	L10409	Mouse fork head	1.50E-49	MMU04197_1	Mus musculus HNF3	1.20E-30
		related protein		_	beta transcription factor	
		(HNF-3beta)			(HNF3b) mRNA,	
		mRNA, complete			partial cds; Sequence of	
		cds.			this partial cDNA	
					begins in the first third of the conserved	
				•	HNF3/forkhead DNA	
					binding domain	- 1
375	U01139	Mus musculus	1.20E-49	SPBC3D5 14	S;pombe chromosome	0.00091
		B6D2F1 clone		_	II cosmid c3D5;	
1 1		2C11B mRNA.			Unknown;	
					SPBC3D5;14c,	
ļ .					unknown; partial;	
					serine rich, len:309aa,	
					similar eg; to	
					YNL283C,	
					YN23_YEAST, P53832, hypothetical	Ī
					52;3 kd protein,	
					(503aa),	İ
376	Z82170	Human DNA	9.00E-50	BSU55043_3	Bacillus subtilis	0.025
		sequence from			plasmid pPOD2000	
	1	PAC 326L13			Rep, RapAB, RapA,	
		containing brain-			ParA, ParB, and ParC	İ
i i		4 mRNA ESTs			genes, complete cds;	i
		and polymorphic CA repeat.			ORF3	
	<u> </u>	CA repeat.		L	<u>_</u> <u>_</u>	

Table 2

	IN			15.		
	Nearest			Nearest		
	Neighbor			Neighbor		
	(BlastN vs.			(BlastX vs.		
	Genbank)			Non-		
				Redundant		
				Proteins)		
SEQ	ACCESSION	DESCRIPTION	P	ACCESSION	DESCRIPTION	P
ID			VALUE			VALUE
377	Z99289	Human DNA	7.70E-50	A64431	hypothetical protein	5.60E-05
		sequence ***	l		MJ1050 -	
		SEQUENCING	!	i	Methanococcus	
		IN PROGRESS			jannaschii>GP:MJU67	
		*** from clone	İ		548 2 Methanococcus	
		142L7; HTGS			jannaschii from bases	
		phase 1.	ł	l	986219 to 996377	
		•			(section 90 of 150) of	
					the complete genome;	
	!				M; jannaschii predicted	
					coding region MJ1050;	
					Identified by	
					GeneMark; putativ]
378	X98260	H.sapiens mRNA	6.20E-50	ZRF1 MOUS	ZUOTIN RELATED	3.90E-30
		for M-phase		Ē	FACTOR>GP:MMU53	
		phosphoprotein,			208 1 Mus musculus	
		mppl1.			zuotin related factor	
					(ZRF1) mRNA,	l l
					complete cds; Similar	
					to DnaJ encoded by	
i					GenBank Accession	1
					Number L16953	
379	M18981	Human prolactin	9.00E-52	S106 HUMA	CALCYCLIN	8.80E-24
		receptor-		_N	(PROLACTIN	
	i	associated protein			RECEPTOR	
		(PRA) gene,			ASSOCIATED	ľ
		complete cds.			PROTEIN) (PRA)	
i l					(GROWTH FACTOR-	ŀ
					INDUCIBLE	· · ·
					PROTEIN 2A9) (S100	
	Į				CALCIUM-BINDING	- 1
					PROTEIN	Ì
					A6)>PIR1:BCHUY	J
	ł				calcyclin -	ľ
					human>GP:HUMCAC	
					Y_1 Human calcyclin	
		ļ			gene, complete	ł
		i			cds>GP:HUMCACYA	}
					_1 Human prolactin	
					recept	
380	AB006622	Homo sapiens	1.60E-53	S33015	hypothetical protein -	0.00088
1		mRNA for			human herpesvirus 4	3.3300
		KIAA0284 gene,				
		partial cds.				j
		•		_,		

Table 2

	Nearest Neighbor (BlastN vs. Genbank)			Nearest Neighbor (BlastX vs. Non- Redundant Proteins)		
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
381	U53225	Human sorting nexin 1 (SNX1) mRNA, complete cds.	1.80E-55	G02522	sorting nexin 1 - human>GP:HSU53225 _1 Human sorting nexin 1 (SNX1) mRNA, complete cds	9.20E-50
382	Z92844	Human DNA sequence from PAC 435C23 on chromosome X. Contains ESTs.	6.50E-56	D14487_1	Lentinus edodes Le;MFB1 mRNA, complete cds	1
383	D87450	Human mRNA for KIAA0261 gene, partial cds.	4.30E-56	D87450_1	Human mRNA for KIAA0261 gene, partial cds; Similar to D;melanogaster parallel sister chromatids protein	4.30E-30
384	AC002301	SEQUENCING IN PROGRESS **** Human chromosome +16p11.2 BAC clone CIT987SK- A-328A3; HTGS phase 2, 1 ordered pieces.	9.80E-57	S62328	kinesin-like DNA binding protein KID - human>GP:HUMKID_ 1 Human mRNA for Kid (kinesin-like DNA binding protein), complete cds	2.60E-27
385	L29766	Homo sapiens epoxide hydrolase (EPHX) gene, complete cds.	7.30E-57	HSBCTCF4_1	Homo sapiens mRNA for hTCF-4	2.30E-05
386	U58884	Mus musculus SH3-containing protein SH3P7 mRNA, complete cds. similar to Human Drebrin.	3.30E-58		Mus musculus SH3- containing protein SH3P7 mRNA, complete cds; similar to Human Drebrin; SH3- containing protein; similar to human drebrin	6.00E-43
387	Y15054	Rattus norvegicus mRNA for 70 kDa tumor specific antigen, partial.	9.50E-59	RNY15054_1	Rattus norvegicus mRNA for 70 kDa tumor specific antigen, partial; 70 kD tumor- specific antigen	4.70E-45

Table 2

	Nearest			Nearest	····	
	Neighbor			Neighbor		
	(BlastN vs.			(BlastX vs.		
	Genbank)			Non-		
	Genounk)			Redundant		
	Ī			Proteins)		
SEQ	ACCESSION	DESCRIPTION	P	ACCESSION	DESCRIPTION	P
ID	<u> </u>		VALUE			VALUE
388	AC000406	***	7.40E-59	<none></none>	<none></none>	<none></none>
		SEQUENCING				
İ		IN PROGRESS		1		!
		*** Human				
}		Chromosome 11				
i		overlapping pacs				
		pDJ235k10 and				
1		pDJ239b22;				
		HTGS phase 1, 17 unordered				
		pieces.				
389	L42612	Homo sapiens	3.60E-59	KRHUEA	keratin, type II	7.60E-30
	5,2012	keratin 6 isoform	3.002 37	RIGIOLA	cytoskeletal - human	7.00L-30
		K6f (KRT6F)			(fragment)>GP:HSKE	
		mRNA, complete			RA 1 Human	
		cds.			messenger fragment	
					encoding cytoskeletal	
					keratin (type II);	
i					mRNA from cultured	
					epidermal cells from	
				l	human	
]	foreskin>GP:HUMKE	
				1	R56K_1 Human 56k cytoskeletal type II	
					keratin mRNA	
390	L29766	Homo sapiens	2.70E-60	EGR2 HUMA		7.80E-06
		epoxide hydrolase		N	RESPONSE PROTEIN	
		(EPHX) gene,			2 (EGR-2) (KROX-20	
		complete cds.			PROTEIN)	
					(AT591)>GP:HUMEG	
l i					R2A_1 Human early	
					growth response 2	
					protein (EGR2)	
					mRNA, complete	
		 			cds>TFD:TFDP00485	
					- Polypeptides entry for	
391	L08758	Mus musculus	1.40E-60	PAALGYGE	factor Egr-2 P;aeruginosa algY	0.00031
	200,50	homeobox protein	02-00	N 1	gene; Alginate lyase	0.00031
		(Hox A10) gene,			D,	
		5' end of cds.				
392	129058	Sequence 3 from	4.20E-61	JC5106	stromal cell-derived	1.50E-32
		patent US			factor 2 -	
		5576423.			human>GP:D50645_1	
					Human mRNA for	
					SDF2, complete cds;	
					Stroma cell-derived	

Table 2

£	Mannet			150	 	
	Nearest Neighbor			Nearest		
	(BlastN vs.			Neighbor (BlastX vs.		
	Genbank)			Non-		
	Joen Dank)			Redundant		
				Proteins)		
SEQ	ACCESSION	DESCRIPTION	P	ACCESSION	DESCRIPTION	P
ID	<u>L</u>		VALUE	<u></u>		VALUE
	[.				factor-2	
			j			
393	129058	Sequence 3 from	4.20E-61	JC5106	stromal cell-derived	1.50E-32
		patent US			factor 2 -	1.502.52
		5576423.		i	human>GP:D50645_1	
					Human mRNA for	
					SDF2, complete cds;	
				Ì	Stroma cell-derived	
394	U46067	Canra himaya	1.90E-62	CHIMAGOGA	factor-2	2 705 70
374	040007	Capra hircus beta-mannosidase	1.902-02	CHU46067_1	Capra hircus beta- mannosidase mRNA,	2.70E-39
		mRNA, complete			complete cds]
		cds.			complete eas	
395	U40747	Mus musculus	6.90E-63	S64713	formin binding protein	3.00E-46
		formin binding			11 - mouse	
		protein 11			(fragment)>GP:MMU4	
		mRNA, partial			0747_1 Mus musculus	
		cds.			formin binding protein	
		·			11 mRNA, partial cds; FBP 11; Formin	
					binding protein 11;	
					tandem WWP/WW	
					domains separated by	
					15 amino acid linker	
396	M36164	Human	1.10E-63	BHT1UL_12	Bovine herpesvirus	0.003
		glyceraldehyde-3- phosphate			type 1 UL22-35 genes;	
		dehydrogenase			UL26;5>GP:BHU3180 9 2 Bovine herpesvirus	
		mRNA, 3' flank.			1 maturational	
1					proteinase (UL26)	
					gene, complete cds, and	
					scaffold protein	
					(UL26;5) gene,	ŀ
397	V00026	II aaniana	7.205.65) // // /20060 1	complete cds	0.0064
39/	Y09036	H.sapiens NTRK1 gene,	1.30E-65	MMU39060_1		0.0054
	ļ	exon 17.			glucocorticoid receptor interacting protein 1	
		J.1711 17.			(GRIP1) mRNA,	ļ
					complete cds;	
					Hormone-dependent	Į
					interaction with	i
			į		hormone binding	
					domains of steroid	Į.
LI					receptors;	

Table 2

	Nearest Neighbor (BlastN vs. Genbank)			Nearest Neighbor (BlastX vs. Non- Redundant Proteins)		
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
					transactivation	
398	U17901	Rattus norvegicus phospholipase A- 2-activating protein (plap) mRNA, complete cds.	2.70E-70	JC4239	phospholipase A2- activating protein - rat	8.40E-17
399	D12646	Mouse kif4 mRNA for microtubule- based motor protein KIF4, complete cds.	1.70E-74	KIF4_MOUS E	KINESIN-LIKE PROTEIN KIF4>PIR2:A54803 microtubule-associated motor KIF4 - mouse>GP:MUSKIF4_ 1 Mouse kif4 mRNA for microtubule-based motor protein KIF4, complete cds; ATP- binding site: base980- 1037, motor domain: base732-1781, alpha- helical co	1.10E-44
400	AF007860	Xenopus laevis xl-Mago mRNA, complete cds.	4.60E-75	AF007862_1	Mus musculus mm- Mago mRNA, complete cds; Similar to Drosophila melanogaster Mago protein	6.50E-68
401		Sequence 15 from patent US 5637463.	2.30E-82	RNU57391_1	Rattus norvegicus FceRI gamma-chain interacting protein SH2- B (SH2-B) mRNA, complete cds; Putative FceRI gamma ITAM interacting protein; SH2 domain- containing protein B; Method: conceptual	9.90E-42

Table 2

	Nearest			Nearest		
	Neighbor			Neighbor		
	(BlastN vs.			(BlastX vs.		
	Genbank)			Non-		
				Redundant		
	<u> </u>			Proteins)		
SEQ	ACCESSION	DESCRIPTION	P	ACCESSION	DESCRIPTION	P
ID			VALUE			VALUE
402	U29156	Mus musculus	1.00E-85	MMU29156_1	Mus musculus eps15R	4.90E-62
		eps15R mRNA,		_	mRNA, complete cds;	
		complete cds.			Involved in signaling	
		<u>-</u>	l	1	by the epidermal	
					growth factor receptor;	
					Method: conceptual	
					translation supplied by	
					author	
403	U70139	Mus musculus	1.00E-85	MMI170139 1	Mus musculus putative	7.20E-66
		putative CCR4	1.002 00		CCR4 protein mRNA,	7.202-00
		protein mRNA,			partial cds; Similar to	
		partial cds.			yeast transcription	
		partial vas.			factor CCR4;	
i					transcriptional	
					readthrough occurs	
	;					
					with transcription being initiated at the IAP and	
404	U82626	Datt	7.600.66	D)///00/04	continues	0.000
404	U82020	Rattus norvegicus	7.60E-96	RNU82626_1	Rattus norvegicus	8.20E-58
		basement			basement membrane-	
		membrane-			associated chondroitin	
		associated			proteoglycan Bamacan	•
		chondroitin			mRNA, complete cds;	
		proteoglycan			Chondroitin sulfate	ľ
		Bamacan mRNA,			proteoglycan; CSPG	1
		complete cds.				

Table 2

	Nearest Ne	ighbor (BlastN vs.	Genbank)	Nearest Neighbor (BlastX vs. Non-Redund	lant Proteins)
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
405	L09604	Homo sapiens differentiation- dependent A4 protein mRNA, complete cds.	2.00E-35	<none></none>	<none></none>	<none></none>
406	AB000516 Z94753	Homo sapiens mRNA for DSIF p160, complete cds	0.41	POLG_TUMVQ	GENOME POLYPROTEIN (CONTAINS: N- TERMINAL PROTEIN; HELPER COMPONENT PROTEINASE (EC 3.4.22) (HC-PRO); 42-50 KD PROTEIN; CYTOPLASMIC INCLUSION PROTEIN (CI); 6 KD PROTEIN; VPG PROTEIN; NUCLEAR INCLUSION PROTEIN A (NI-A)	2.9
		Human DNA sequence from PAC 465G10 on chromosome X contains Menkes Disease (ATP7A) putative Cu++- transporting P- type ATPase exons 22, 23 and STS	0.004	<none></none>	<none></none>	<none></none>
408		Homo sapiens mRNA for KIAA0551 protein, partial cds	0	MI15_CAEEL	Q23356 caenorhabditis elegans. serine/threonine- protein kinase mig- 15 (ec 2.7.1). 11/98	2.00E-51
409		Human HepG2 3' region MboI cDNA, clone hmd3g02m3	e-123	NARG_BACSU	NITRATE REDUCTASE ALPHA CHAIN (EC 1.7.99.4)	9.9
410		Bos taurus lysozyme gene (cow 2), complete cds	1.1	HAIR_MOUSE	HAIRLESS PROTEIN	8.00E-10

Table 2

		eighbor (BlastN vs.	Genbank)	Nearest Neighbor (I	BlastX vs. Non-Redund	dant Proteins)
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
411	Z60048	H.sapiens CpG DNA, clone 187a9, reverse read cpg187a9.rt1a.	4.00E-54	HN3B_MOUSE	HEPATOCYTE NUCLEAR FACTOR 3-BETA (HNF-3B)	4.00E-21
412	Z48975	P.magnus gene for protein urPAB	0.014	YPT2_CAEEL	HYPOTHETICAL 21.6 KD PROTEIN F37A4.2 IN CHROMOSOME III	2.00E-12
413	AJ001296	Notophthalmus viridescens mRNA for cytokeratin 8	0.37	YA53_SCHPO	HYPOTHETICAL 24.2 KD PROTEIN C13A11.03 IN CHROMOSOME I	5.00E-21
414	J03831	Xenopus laevis (clone pXEC1.3) C protein mRNA, complete cds.	0.37	PDR5_YEAST	SUPPRESSOR OF TOXICITY OF SPORIDESMIN	3.3
415	AB007157	Homo sapiens gene for ribosomal protein S21, partial cds	e-142	RS21_HUMAN	40S RIBOSOMAL PROTEIN S21	0.002
416	X86340	H.sapiens C7 gene, exon 13	3.3	STC_DROME	SHUTTLE CRAFT PROTEIN	4.3
417	U12404	Human Csa-19 mRNA, complete cds.	0	R10A_PIG	60S RIBOSOMAL PROTEIN L10A (CSA-19) (FRAGMENT)	9.00E-57
418		Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	8.00E-08	<none></none>	<none></none>	<none></none>
419		Human FKBP-12 pseudogene, clone lambda-512, 5' flank and complete cds.	5.00E-14	RCO1_NEUCR	TRANSCRIPTIONA L REPRESSOR RCO-1	0.008
420		Homo sapiens DNA polymerase eta (POLH) mRNA, complete cds	0	<none></none>	<none></none>	<none></none>
421		Homo sapiens MAGOH mRNA, complete cds	e-131	_	MAGO NASHI PROTEIN	4.00E-39
422	ļ	Homo sapiens clone 23832 mRNA sequence	0.12	<none></none>	<none></none>	<none></none>

Table 2

		ighbor (BlastN vs.	Genbank)	Nearest Neighbor (I	BlastX vs. Non-Redund	ant Proteins)
	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
ID						
423	U95098	Xenopus laevis mitotic phosphoprotein 44 mRNA, partial cds	6.00E-05	<none></none>	<none></none>	<none></none>
424	U95094	Xenopus laevis XL-INCENP (XL-INCENP) mRNA, complete cds	7.00E-07	<none></none>	<none></none>	<none></none>
425	D43952	Mouse gene for reticulocalbin, exon1 and promoter region	0.36	<none></none>	<none></none>	<none></none>
426	X68553	C.elegans repetitive DNA sequence	0.4	TCB1_RABIT	T-CELL RECEPTOR BETA CHAIN PRECURSOR (ANA 11)	0.11
427	M83314	Tomato phenylalanine ammonia lyase (pal) gene, complete cds and promoter region.	3.3	SMB2_HUMAN	DNA-BINDING PROTEIN SMUBP-2 (GLIAL FACTOR-1) (GF-1)	0.65
428		Homo sapiens clone 24686 mRNA sequence	5.00E-23	<none></none>	<none></none>	<none></none>
429	<none></none>	<none></none>	<none></none>	IQGA_HUMAN	RAS GTPASE- ACTIVATING- LIKE PROTEIN IQGAP1 (P195)	2.00E-06
430		Mus musculus DNA cytosine-5 methyltransferase 3B2 (Dnmt3b) mRNA, alternatively spliced, complete cds	5.00E-04	LOX1_LENCU	LIPOXYGENASE (EC 1.13.11.12)	9.9
431		Homo sapiens chromosome- associated polypeptide	0	YJH4_YEAST	HYPOTHETICAL 141.3 KD PROTEIN IN SCP160-MRPL8 INTERGENIC REGION	4.00E-16
432		ross river virus 26s subgenomic rna and junction region.	0.12	CUL2_HUMAN	CULLIN HOMOLOG 2 (CUL-2)	7.4

Table 2

	Nearest Ne	ighbor (BlastN vs.	Genbank)	Nearest Neighbor (BlastX vs. Non-Redundant Proteins)			
ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE	
433	AF005664	Homo sapiens properdin (PFC) gene, complete cds	0.005	UL88_HCMVA	PROTEIN UL88	5.8	
434	Z70705	H.sapiens mRNA (fetal brain cDNA com5)	2.00E-05	PH87_YEAST	INORGANIC PHOSPHATE TRANSPORTER PHO87	1.5	
435	U29156	Mus musculus eps15R mRNA, complete cds.	e-125	EP15_HUMAN	EPIDERMAL GROWTH FACTOR RECEPTOR SUBSTRATE SUBSTRATE 15 (PROTEIN EPS15) (AF-1P PROTEIN)	1.00E-13	
436	AE000750	Aquifex aeolicus section 82 of 109 of the complete genome	0.37	<none></none>	<none></none>	<none></none>	
437		Dictyostelium discoideum V- ATPase A subunit (vatA) mRNA, complete cds	0.12	VCAP_HSV6U	MAJOR CAPSID PROTEIN (MCP)	5.6	
438		Homo sapiens uncoupling protein 3 (UCP3) gene, exon 1 and partial exon 2	0.13	WEE1_SCHPO	MITOSIS INHIBITOR PROTEIN KINASE WEE1 (EC 2.7.1)	3.7	
439		Porcine DNA for endopeptidase 24.16, exon 16 and complete cds	4.00E-32	<none></none>	<none></none>	<none></none>	
440		Mus musculus 11- zinc-finger transcription factor	0.04	<none></none>	<none></none>	<none></none>	
441		Homo sapiens ubiquitin conjugating enzyme G2	e-110	<none></none>	<none></none>	<none></none>	
442		Homo sapiens clone HEB8 Cri- du-chat region mRNA	2.00E-14	LMG1_HUMAN	LAMININ GAMMA-1 CHAIN PRECURSOR (LAMININ B2 CHAIN)	8.1	

Table 2

	Nearest Ne	ighbor (BlastN vs.	Genbank)	Nearest Neighbor (I	BlastX vs. Non-Redund	ant Proteins)
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
443	AF024578	Homo sapiens type-1 protein phosphatase skeletal muscle glycogen targeting subunit (PPP1R3) gene, exon 4, and complete cds	1.1	<none></none>	<none></none>	<none></none>
444	M24486	Human prolyl 4- hydroxylase alpha subunit mRNA, complete cds, clone PA-11.	0	DACHA	<none></none>	4.00E-58
445	X96400	P.tetraurelia alpha-51D gene	0.37	<none></none>	<none></none>	<none></none>
446	<none></none>	<none></none>	<none></none>	<none></none>	<none></none>	<none></none>
447	X84996	X.laevis mRNA for selenocysteine tRNA acting factor (Staf)	0.12	POL_MLVRD	POL POLYPROTEIN (PROTEASE (EC 3.4.23); REVERSE TRANSCRIPTASE (EC 2.7.7.49); RIBONUCLEASE H (EC 3.1.26.4))	2.00E-08
448	AF019980	Dictyostelium discoideum ZipA (zipA) gene, partial cds	3.4	HMDL_BRAFL	HOMEOBOX PROTEIN DLL HOMOLOG	0.23
449	X78424	D.carota (Queen Anne's Lace) Inv*Dc2 gene, 3432bp	0.38	<none></none>	<none></none>	<none></none>
450	<none></none>	<none></none>	<none></none>	<none></none>	<none></none>	<none></none>
451	_	P.patens mRNA for 5- aminolevulinate dehydratase	1.1	CKR6_HUMAN	C-C CHEMOKINE RECEPTOR TYPE 6 (C-C CKR-6) (CCR6)	9.9
452		Methanococcus jannaschii section 13 of 150 of the complete genome	0.12	YR72_ECOLI	HYPOTHETICAL 53.2 KD PROTEIN (ORF2) (RETRON EC67)	5.8
453		Mus musculus strain C57BL/6 zinc finger protein 106 (Zfp106) mRNA, H3a-a allele, complete cds	1.00E-62	YOJ8_CAEEL	HYPOTHETICAL 51.6 KD PROTEIN ZK353.8 IN CHROMOSOME III	1.7

Table 2

	Nearest Ne	ighbor (BlastN vs.	Genbank)	Nearest Neighbor (E	BlastX vs. Non-Redunc	lant Proteins)
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
454	U70667	Human Fas-ligand associated factor 1 mRNA, partial cds	0	YKB2_YEAST	HYPOTHETICAL 69.1 KD PROTEIN IN PUT3-CCE1 INTERGENIC REGION	3.00E-09
455	M95858	Bos taurus recoverin mRNA, complete cds.	0.35	GIDA_MYCGE	GLUCOSE INHIBITED DIVISION PROTEIN A	1.4
456	U67594	Methanococcus jannaschii section 136 of 150 of the complete genome	0.36	<none></none>	<none></none>	<none></none>
457	X06747	Human hnRNP core protein A1	3.00E-31	<none></none>	<none></none>	<none></none>
458	Z65575	H.sapiens CpG DNA, clone 47c5, reverse read cpg47c5.rt1a.	1.3	<none></none>	<none></none>	<none></none>
459		C.jacchus intron 4 of visual pigment gene	5.00E-15	<none></none>	<none></none>	<none></none>
460		Maize stripe virus RNA 3 nonstructural protein	0.33	DSC2_MOUSE	DESMOCOLLIN 2A/2B PRECURSOR (EPITHELIAL TYPE 2 DESMOCOLLIN)	6.5
461		Yeast TEF1 gene for elongation factor EF-1 alpha	1.1	PPOL_DROME	POLY (ADP- RIBOSE) POLYMERASE (EC 2.4.2.30) (PARP)	3.5
462		S.typhimurium glutamate 1- semialdehyde aminotransferase (hemL) gene, complete cds.	1.1	EPB4_MOUSE	EPHRIN TYPE-B RECEPTOR 4 PRECURSOR (EC 2.7.1.112) KINASE 2) (TYROSINE KINASE MYK- 1)	2.5
463		Rabbit mRNA for aminopeptidase N (partial)	0.36	ACHG_XENLA	ACETYLCHOLINE RECEPTOR PROTEIN, GAMMA CHAIN PRECURSOR	1.5
464		Mus musculus protein tyrosine phosphate mRNA, complete cds.	2.00E-58	VG13_BPML5	GENE 13 PROTEIN (GP13)	2.5

Table 2

	Nearest Ne	ighbor (BlastN vs.	Genbank)	Nearest Neighbor (BlastX vs. Non-Redundant Proteins)			
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE	
465	M77235	Human cardiac tetrodotoxin-insensitive voltage-dependent sodium channel alpha subunit (HH1) mRNA, complete cds.		ZPBOC1	<none></none>	6.9	
466	M58330	C.maltosa autonomously replicating sequence.	0.004	EPB4_MOUSE	EPHRIN TYPE-B RECEPTOR 4 PRECURSOR (EC 2.7.1.112) KINASE 2) (TYROSINE KINASE MYK- 1)	2.4	
467	X51508	Rabbit mRNA for aminopeptidase N (partial)	0.35	ACHG_XENLA	ACETYLCHOLINE RECEPTOR PROTEIN, GAMMA CHAIN PRECURSOR	2.4	
468	L10106	Mus musculus protein tyrosine phosphate mRNA, complete cds.	7.00E-59	VGLI_PRVRI	GLYCOPROTEIN GP63 PRECURSOR	4.3	
469		Azotobacter vinelandii GTPase (ftsA) gene, partial cds, and ATP binding protein (ftsZ) gene, complete cds	1.1	TRUA_BACSP	Q45557 bacillus sp. (strain ksm-64). trna pseudouridine synthase a (ec 4.2.1.70) (pseudouridylate synthase i) (pseudouridine synthase i) (uracil hydrolyase). 11/98	0.001	
470		Mus musculus 11- zinc-finger transcription factor	0.041	<none></none>	<none></none>	<none></none>	
471		Human platelet glycoprotein IIIa, exon 14.	3.6	<none></none>	<none></none>	<none></none>	

Table 2

	Nearest Ne	eighbor (BlastN vs.	Genbank)	Nearest Neighbor (I	BlastX vs. Non-Redund	lant Proteins)
ŠEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
472	U82691	Phrynocephalus raddei CAS 179770 NADH dehydrogenase subunit 1 (ND1), partial cds, tRNA-Gln, tRNA-Ile and tRNA-Met, NADH dehydrogenase subunit 2 tRNA-Cys and tRNA-Tyr and c	1.1	<none></none>	<none></none>	<none></none>
473	D85430	Mouse Murrl mRNA, exon	0.12	EPA5_CHICK	EPHRIN TYPE-A RECEPTOR 5 PRECURSOR (EC 2.7.1.112)	2.5
474	U20661	Dictyostelium discoideum unknown internal repeat protein gene, complete cds, and unknown orf1, orf2 and orf3 genes, partial cds	0.36	YHL1_EBV	HYPOTHETICAL BHLF1 PROTEIN	4.00E-04
475	X56537	Human novel homeobox mRNA for a DNA binding protein	0.04	FA5_HUMAN	COAGULATION FACTOR V PRECURSOR (ACTIVATED PROTEIN C COFACTOR)	9.5
476		Haemophilus influenzae Rd section 158 of 163 of the complete genome	5	<none></none>	<none></none>	<none></none>
477		Methanococcus jannaschii section 96 of 150 of the complete genome	0.36	<none></none>	<none></none>	<none></none>
478		Narke japonica mRNA for Nj- synaphin 1b, complete cds	1.1	NIA1_ORYSA	NITRATE REDUCTASE 1 (EC 1.6.6.1) (NR1)	1.00E-07
479		Homo sapiens full length insert cDNA YQ80A08	1.00E-12	<none></none>	<none></none>	<none></none>

Table 2

	Nearest Ne	ighbor (BlastN vs.	Genbank)	Nearest Neighbor (E	BlastX vs. Non-Redund	ant Proteins)
SEQ ID	ACCESSION		P VALUE	ACCESSION	DESCRIPTION	P VALUE
480	AE000723	Aquifex aeolicus section 55 of 109 of the complete genome	1	YKK0_YEAST	HYPOTHETICAL 67.5 KD PROTEIN IN APE1/LAP4- CWP1 INTERGENIC REGION	9.1
481	X73902	H.sapiens mRNA for nicein B2 chain	0	LMG2_HUMAN	LAMININ GAMMA-2 CHAIN PRECURSOR	3.00E-93
482	U95094	Xenopus laevis XL-INCENP (XL-INCENP) mRNA, complete cds	3.00E-10	P53_CRIGR	CELLULAR TUMOR ANTIGEN P53	5.7
483		Plasmodium falciparum DNA *** SEQUENCING IN PROGRESS *** from contig 4-64, complete sequence	1.2	<none></none>	<none></none>	<none></none>
484	U49919	Arabidopsis thaliana lupeol synthase mRNA, complete cds	0.54	YA53_SCHPO	HYPOTHETICAL 24.2 KD PROTEIN C13A11.03 IN CHROMOSOME I	6.00E-10
485	AF077618	Homo sapiens p73 gene, exon 3	0.39	MYOD_MOUSE	MYOBLAST DETERMINATION PROTEIN 1	2.1
486	AF054994	Homo sapiens clone 23832 mRNA sequence	0.13	<none></none>	<none></none>	<none></none>
487		Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	3.00E-10	<none></none>	<none></none>	<none></none>
488		Mus musculus DNA cytosine-5 methyltransferase 3B2 (Dnmt3b) mRNA, alternatively spliced, complete cds	5.00E-04	ACE2_YEAST	METALLOTHIONE IN EXPRESSION ACTIVATOR	1.5
489		Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	3.00E-07	RINI_PIG	RIBONUCLEASE INHIBITOR	0.19

Table 2

	Nearest Ne	ighbor (BlastN vs.	Genbank)	Nearest Neighbor (I	BlastX vs. Non-Redunc	lant Proteins)
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
490	L77886	Human protein tyrosine phosphatase mRNA, complete cds	1.00E-21	VS48_TBRVS	SATELLITE RNA 48 KD PROTEIN	1.6
491	U95098	Xenopus laevis mitotic phosphoprotein 44 mRNA, partial cds	5.00E-04	CRP3_LIMPO	C-REACTIVE PROTEIN 3.3 PRECURSOR	3.5
492	U95094	Xenopus laevis XL-INCENP (XL-INCENP) mRNA, complete cds	8.00E-08	EPA5_CHICK	PHRIN TYPE-A RECEPTOR 5 PRECURSOR (EC 2.7.1.112)	2.7
493	U95094	Xenopus laevis XL-INCENP (XL-INCENP) mRNA, complete cds	3.00E-09	<none></none>	<none></none>	<none></none>
494	U28153	Caenorhabditis elegans UNC-76 (unc-76) gene, complete cds.	0.37	<none></none>	<none></none>	<none></none>
495		Xenopus laevis XL-INCENP (XL-INCENP) mRNA, complete cds	0.37	NCPR_YEAST	NADPH- CYTOCHROME P450 REDUCTASE (EC 1.6.2.4) (CPR)	7.00E-05
496		Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	0.013	YMB3_CAEEL	PROBABLE INTEGRIN ALPHA CHAIN F54G8.3 PRECURSOR	3.3
497		Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	7.00E-07	<none></none>	<none></none>	<none></none>
498		Xenopus laevis XL-INCENP (XL-INCENP) mRNA, complete cds	1.00E-10	<none></none>	<none></none>	<none></none>
499		Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	2.00E-07	VGLY_LYCVW	GLYCOPROTEIN POLYPROTEIN PRECURSOR (CONTAINS: GLYCOPROTEINS G1 AND G2)	3.2

Table 2

	Nearest Ne	ighbor (BlastN vs.	Genbank)	Nearest Neighbor (I	BlastX vs. Non-Redund	ant Proteins)
SEQ ID		DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
500	U95098	Xenopus laevis mitotic phosphoprotein 44 mRNA, partial cds	8.00E-06	HR78_DROME	NUCLEAR HORMONE RECEPTOR HR78 (DHR78) (NUCLEAR RECEPTOR XR78E/F)	2.5
501	U95102	Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	9.00E-10	MYSH_BOVIN	MYOSIN I HEAVY CHAIN-LIKE PROTEIN (MIHC) (BRUSH BORDER MYOSIN I) (BBMI)	4.00E-04
502	U95094	Xenopus laevis XL-INCENP (XL-INCENP) mRNA, complete cds	2.00E-04	BAL_HUMAN	BILE-SALT- ACTIVATED LIPASE PRECURSOR (EC 3.1.1.3) (EC 3.1.1.13) (BAL) (BILE-SALT- STIMULATED LIPASE) (BSSL) ESTERASE) (PANCREATIC LYSOPHOSPHOLIP ASE)	2.6
503		Drosophila melanogaster mitotic checkpoint control protein kinase BUB1 (Bub1) mRNA, complete cds	1.1	NATI_YEAST	N-TERMINAL ACETYLTRANSFE RASE 1 (EC 2.3.1.88)	2.00E-23
504	U59706	Gallus gallus alternatively spliced AMPA glutamate receptor, isoform GluR2 flop, (GluR2) mRNA, partial cds.	0.014	<none></none>	<none></none>	<none></none>
505		Xenopus laevis XL-INCENP (XL-INCENP) mRNA, complete cds	2.00E-05	<none></none>	<none></none>	<none></none>
506		Xenopus laevis mitotic phosphoprotein 44 mRNA, partial cds	2.00E-04	<none></none>	<none></none>	<none></none>

Table 2

	Nearest Ne	eighbor (BlastN vs.	Genbank)	Nearest Neighbor (BlastX vs. Non-Redundant Proteins)			
SEQ			P VALUE	ACCESSION	DESCRIPTION	P VALUE	
ID							
507	AF100661	Caenorhabditis	0.38	<none></none>	<none></none>	<none></none>	
		elegans cosmid					
		H20E11					
508	U95102	Xenopus laevis	3.00E-11	CA1A_HUMAN	COLLAGEN	0.024	
l		mitotic			ALPHA 1(X)		
		phosphoprotein 90 mRNA,			CHAIN		
		complete cds			PRECURSOR		
509	U47322	Cloning vector	2.00E-38	COA1 SV40	COAT PROTEIN	6.2	
		DNA, complete			VPI	0.2	
		sequence.					
510	AF031924	Homo sapiens	e-156	CCMA_HAEIN	HEME EXPORTER	3.5	
		homeobox			PROTEIN A		
		transcription factor barx2	'		(CYTOCHROME C-]	
		lactor barx2			TYPE BIOGENESIS		
					ATP-BINDING PROTEIN CCMA)		
511	AF010484	Homo sapiens ICI	3.00E-10	<none></none>	<none></none>	<none></none>	
		YAC 9IA12, right	0.002	110112	NONE	VIVOINE	
		end sequence				,	
512	Z63829	H.sapiens CpG	5.00E-22	NFIR_MESAU	NUCLEAR	2.4	
		DNA, clone 90h2,		_	FACTOR 1 CLONE	ľ	
		forward read			PNF1/RED1 (NF-I)		
İ		cpg90h2.ft1a.			(CCAAT-BOX	1	
					BINDING	1	
l					TRANSCRIPTION FACTOR) (CTF)		
					(TGGCA-BINDING		
					PROTEIN)		
513	Z35094	H.sapiens mRNA	5.00E-97	SUR2_HUMAN	SURFEIT LOCUS	1.00E-46	
		for SURF-2			PROTEIN 2		
514		Xenopus laevis	7.00E-06	<none></none>	<none></none>	<none></none>	
I		mitotic					
	İ	phosphoprotein 90 mRNA,					
ļ		complete cds					
515		Mouse mRNA for	e-154	TEGU EBV	LARGE	3.4	
		arylhydrocarbon		-200_22 v	TEGUMENT	J. 4	
		receptor,	İ		PROTEIN	ľ	
		complete cds				ļ	
516		Homo sapiens	e-117	<none></none>	<none></none>	<none></none>	
		splicing factor					
		(CC1.4) mRNA, complete cds.]	
		complete cus.			<u> </u>	Ī	

Table 2

	Nearest Ne	ighbor (BlastN vs.	Genbank)	Nearest Neighbor (BlastX vs. Non-Redundant Proteins)			
ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE	
517	X17093	Human HLA-F gene for human leukocyte antigen F	0.009	YENI_SCHPO	O13695 schizosaccharomyces pombe (fission yeast). hypothetical 52.9 kd serine-rich protein c11g7.01 in chromosome i. 11/98	5.4	
518		Mus musculus mRNA for oxysterol-binding protein, complete cds	0	OXYB_HUMAN	OXYSTEROL- BINDING PROTEIN	1.00E-40	
519	X55038	Mouse mCENP-B gene for centromere autoantigen B	0.001	YNW7_YEAST	HYPOTHETICAL 68.8 KD PROTEIN IN URE2-SSU72 INTERGENIC REGION	3.00E-04	
520		Homo sapiens mRNA for KIAA0780 protein, partial cds	3.00E-41	LBR_CHICK	LAMIN B RECEPTOR	2.3	
521		Xenopus laevis XL-INCENP (XL-INCENP) mRNA, complete cds	1.00E-10	CA25_HUMAN	PROCOLLAGEN ALPHA 2(V) CHAIN PRECURSOR	0.002	
522		Human mRNA for elongation factor 1 alpha subunit	0	EF11_HUMAN	ELONGATION FACTOR 1-ALPHA 1 (EF-1-ALPHA-1)	e-110	
523		Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	3.00E-11	YMT8_YEAST	HYPOTHETICAL 36.4 KD PROTEIN IN NUP116-FAR3 INTERGENIC REGION	8.00E-07	
524		Homo sapiens mRNA for KIAA0691 protein, complete cds	0		GENERAL NEGATIVE REGULATOR OF TRANSCRIPTION SUBUNIT 2	8.00E-05	
525		Homo sapiens DNA for TRKA, exon 17 and complete cds	0	-	HIGH AFFINITY NERVE GROWTH FACTOR RECEPTOR PRECURSOR PROTEIN) (P140- TRKA)	2.00E-27	

Table 2

	Nearest Ne	ighbor (BlastN vs. (Genbank)	Nearest Neighbor (B	lastX vs. Non-Redund	ant Proteins)
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
526	U95102	Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	5.00E-15	CNG4_BOVIN	240K PROTEIN OF ROD PHOTORECEPTOR CNG-CHANNEL CYCLIC- NUCLEOTIDE- GATED CATION CHANNEL 4 (CNG CHANNEL 4) MODULATORY SUBUNIT))	0.018
527	U95094	Xenopus laevis XL-INCENP (XL-INCENP) mRNA, complete cds	2.00E-06	HMZ1_DROME	ZERKNUELLT PROTEIN 1 (ZEN-1)	0.88
528	J03750	Mouse single stranded DNA binding protein p9 mRNA, complete cds.	e-135	P15_HUMAN	ACTIVATED RNA POLYMERASE II TRANSCRIPTIONA L COACTIVATOR P15 (PC4) (P14)	3.00E-21
529	U95094	Xenopus laevis XL-INCENP (XL-INCENP) mRNA, complete cds	1.00E-12	RS5_DROME	40S RIBOSOMAL PROTEIN S5	0.42
530	Z57610	H.sapiens CpG DNA, clone 187a10, reverse read cpg187a10.rt1a.	8.00E-61	HN3B_MOUSE	HEPATOCYTE NUCLEAR FACTOR 3-BETA (HNF-3B)	4.00E-15
531	U95760	Drosophila melanogaster strawberry notch (sno) mRNA, complete cds	3.00E-60	<none></none>	<none></none>	<none></none>
532	U95094	Xenopus laevis XL-INCENP (XL-INCENP) mRNA, complete cds	4.00E-11	<none></none>	<none></none>	<none></none>
533	U50535	Human BRCA2 region, mRNA sequence CG006	4.00E-12	ALU1_HUMAN	!!!! ALU SUBFAMILY J WARNING ENTRY !!!!	1.1
534	X92841	H.sapiens MICA gene	1.00E-55	LIN1_HUMAN	LINE-I REVERSE TRANSCRIPTASE HOMOLOG	6.00E-09

Table 2

	Nearest Ne	ighbor (BlastN vs. 0	Genbank)	Nearest Neighbor (E	BlastX vs. Non-Redund	ant Proteins)
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
535	U60337	Homo sapiens beta-mannosidase mRNA, complete cds	0	NODC_BRAEL	N- ACETYLGLUCOSA MINYLTRANSFER ASE (EC 2.4.1)	1.4
536	M21731	Human lipocortin- V mRNA, complete cds.	e-169	ANX5_HUMAN	ANNEXIN V (LIPOCORTIN V) (ENDONEXIN II) (CALPHOBINDIN I) (CBP-I) (PLACENTAL ANTICOAGULANT PROTEIN I) (PAP-I) ANTICOAGULANT -ALPHA) (VAC-ALPHA) (ANCHORIN CII)	1.00E-05
537	Y08013	S.salar DNA segment containing GT repeat	0.006	<none></none>	<none></none>	<none></none>
538	<none></none>	<none></none>	<none></none>	<none></none>	<none></none>	<none></none>
539	M98502	Mus musculus protein encoding twelve zinc finger proteins (pMLZ-4) mRNA, complete cds.	2.00E-17	DYNA_CHICK	DYNACTIN, 117 KD ISOFORM	7.4
540	U95102	Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	6.00E-05	HXA3_HAÉIN	HEME:HEMOPEXI N-BINDING PROTEIN PRECURSOR	2.6
541	U95094	Xenopus laevis XL-INCENP (XL-INCENP) mRNA, complete cds	1.00E-13	AMO_KLEAE	AMINE OXIDASE PRECURSOR (EC 1.4.3.6) (MONAMINE OXIDASE) (TYRAMINE OXIDASE)	1.5
542		Homo sapiens centriole associated protein CEP110 mRNA, complete cds	e-133	CA34_HUMAN	PROCOLLAGEN ALPHA 3(IV) CHAIN PRECURSOR	1.5
543	J03746	Human glutathione S- transferase mRNA, complete cds.	e-170	GTMI_HUMAN	GLUTATHIONE S- TRANSFERASE, MICROSOMAL (EC 2.5.1.18)	5.00E-39

Table 2

	Nearest Ne	ighbor (BlastN vs. 0	Genbank)	Nearest Neighbor (BlastX vs. Non-Redundant Proteins)			
SEQ		DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE	
ID							
544		Methanococcus jannaschii section 64 of 150 of the complete genome	0.37	A1AA_HUMAN	ALPHA-1A ADRENERGIC RECEPTOR	4.3	
545	U95102	Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	2.00E-07	<none></none>	<none></none>	<none></none>	
546	<none></none>	<none></none>	<none></none>	<none></none>	<none></none>	<none></none>	
547	<none></none>	<none></none>	<none></none>	<none></none>	<none></none>	<none></none>	
548	D87001	Human (lambda) DNA for immunoglobulin light chain	0.35	VAL3_TYLCU	AL3 PROTEIN (C3 PROTEIN)	3.2	
549	U95094	Xenopus laevis XL-INCENP (XL-INCENP) mRNA, complete cds	3.00E-08	TEGU_HSVII	LARGE TEGUMENT PROTEIN (VIRION PROTEIN UL36)	0.004	
550	D16991	Human HepG2 partial cDNA, clone hmd2d01m5	8.00E-09	PTM1_YEAST	PROTEIN PTM1 PRECURSOR	0.033	
551		Human fetal Ig heavy chain variable region	3.2	<none></none>	<none></none>	<none></none>	
552		Mus musculus protein encoding twelve zinc finger proteins (pMLZ-4) mRNA, complete cds.	5.00E-14	<none></none>	<none></none>	<none></none>	
553		Xenopus laevis mitotic phosphoprotein 44 mRNA, partial cds	0.002	<none></none>	<none></none>	<none></none>	
554		H.sapiens flow- sorted chromosome 6 HindIII fragment, SC6pA15C3	3.00E-20	ALU1_HUMAN	!!!! ALU SUBFAMILY J WARNING ENTRY !!!!	5.00E-06	
555		Human chromosome 4q35 subtelomeric sequence	8.00E-08	ICP4_VZVD	TRANS-ACTING TRANSCRIPTIONA L PROTEIN ICP4	0.39	

Table 2

	Nearest Ne	ighbor (BlastN vs.	Genbank)	Nearest Neighbor (BlastX vs. Non-Redund	lant Proteins)
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
556	U39 8 75	Rattus norvegicus EF-hand Ca2+- binding protein p22 mRNA, complete cds.	2.00E-56	YHFK_ECOLI	HYPOTHETICAL 79.5 KD PROTEIN IN CRP-ARGD INTERGENIC REGION (0696)	9.8
557	U65416	Human MHC class I molecule (MICB) gene, complete cds	0.12	<none></none>	<none></none>	<none></none>
558	AG000037	Homo sapiens genomic DNA, 21q region, clone: 9H11A22	5.00E-25	<none></none>	<none></none>	<none></none>
559	U95102	Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	5.00E-05	<none></none>	<none></none>	<none></none>
560	AB007918	Homo sapiens mRNA for KIAA0449 protein, partial cds	0.015	VGLE_HSV11	GLYCOPROTEIN E PRECURSOR	2.2
561	1	Mus musculus SH3-containing protein SH3P7 mRNA, complete cds. similar to Human Drebrin	1.00E-73	YCV2_YEAST	HYPOTHETICAL 13.8 KD PROTEIN IN PWP2-SUP61 INTERGENIC REGION	2.6
562		Homo sapiens KIAA0418 mRNA, complete cds	e-110	GLU2_MAIZE	GLUTELIN 2 PRECURSOR (ZEIN-GAMMA) (27 KD ZEIN)	0.72
563		Homo sapiens sorting nexin 2 (SNX2) mRNA, complete cds	0	YJD6_YEAST	HYPOTHETICAL 49.0 KD PROTEIN IN NSP1-KAR2 INTERGENIC REGION	1.4
564		Stealth virus 1 clone 3B11 T7	0.002	SYNI_HUMAN	SYNAPSINS IA AND IB (BRAIN PROTEIN 4.1)	1.6
565		Homo sapiens importin beta subunit mRNA, complete cds	2.00E-68	VP2_BRD	STRUCTURAL CORE PROTEIN VP2	1.1
566		Homo sapiens clone 23763 unknown mRNA, partial cds	e-165	YOHI_AZOVI	HYPOTHETICAL 33.2 KD PROTEIN IN IBPB 5'REGION	7.5

Table 2

	Nearest Ne	ighbor (BlastN vs.	Genbank)	Nearest Neighbor (I	BlastX vs. Non-Redund	lant Proteins)
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
567	Z56295	H.sapiens CpG DNA, clone 10c2, forward read cpg10c2.ft1a.	0.12	A1AB_CANFA	ALPHA-1B ADRENERGIC RECEPTOR (FRAGMENT)	0.85
568	Z83792	G.gallus microsatellite DNA (LEI0222	0.12	<none></none>	<none></none>	<none></none>
569		Feline immunodeficienc y virus USIL2489_7B gag polyprotein (gag) gene, complete cds, polymerase polyprotein (pol) gene, partial cds, vif protein (vif), complete cds, and envelope glycoprotein (env), complete cds, complete g	1.1	<none></none>	<none></none>	<none></none>
570	M18065	Mouse 18S and 28S ribosomal DNA, 5' hypervariable (Vr) region, clone M1.	6.00E-04	CC40_YEAST	CELL DIVISION CONTROL PROTEIN 40	3.7
571		Homo sapiens cellular apoptosis susceptibility protein (CSE1) gene, exons 3 through 10	2.00E-07	YMQ4_CAEEL	HYPOTHETICAL 25.8 KD PROTEIN K02D10.4 IN CHROMOSOME III	4.3
572	X04588	Human 2.5 kb mRNA for cytoskeletal tropomyosin TM30(nm)	0	<none></none>	<none></none>	<none></none>
573		Homo sapiens (subclone 1_h9 from PAC H92) DNA sequence	5.00E-04	XYND_CELFI	ENDO-1,4-BETA- XYLANASE D PRECURSOR (EC 3.2.1.8)	7.3
574		H.sapiens CpG DNA, clone 2c10, forward read cpg2c10.ft1aa.	4.00E-13	<none></none>	<none></none>	<none></none>
575		Homo sapiens clone 24781	e-164	<none></none>	<none></none>	<none></none>

Table 2

	Nearest Ne	eighbor (BlastN vs.	Genbank)	Nearest Neighbor (I	BlastX vs. Non-Redund	ant Proteins)
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
		mRNA sequence				
-576	Y11306	Homo sapiens mRNA for hTCF- 4	2.00E-48	TCF1_HUMAN	T-CELL-SPECIFIC TRANSCRIPTION FACTOR I (TCF-I)	2.00E-15
577	X65279	pWE15 cosmid vector DNA	7.00E-69	OCLN_POTTR	Q28793 potorous tridactylus (potoroo). occludin. 11/98	0.71
578	M10296	Mouse DNA with homology to EBV IR3 repeat, segment 1, clone Mu2.	0.001	LMB1_HYDAT	LAMININ BETA-1 CHAIN PRECURSOR (FRAGMENTS)	1.9
579	X53744	Canine mRNA for 68kDA subunit of signal recognition particle (SRP68)	e-162	SR68_CANFA	SIGNAL RECOGNITION PARTICLE 68 KD PROTEIN (SRP68)	5.00E-16
580	AF086438	Homo sapiens full length insert cDNA clone ZD80G11	2.00E-04	<none></none>	<none></none>	<none></none>
581	U15140	Mycobacterium bovis ribosomal proteins IF-1 complete cds, and S4 (rpsD) gene, partial cds	1.3	<none></none>	<none></none>	<none></none>
582		Human mRNA for ryudocan core protein	e-166	RSP4_ARATH	40S RIBOSOMAL PROTEIN SA (P40) (LAMININ RECEPTOR HOMOLOG)	1.4
583		neoplasm-related C140 product [human, thyroid carcinoma cells, mRNA, 670 nt]	9.00E-30	RL6_HUMAN	60S RIBOSOMAL PROTEIN L6 (TAX- RESPONSIVE ENHANCER ELEMENT BINDING PROTEIN 107) (TAXREB107)	5.6
584		Anopheles gambiae complete mitochondrial genome	0.014	<none></none>	<none></none>	<none></none>
585		H.sapiens gene for chemokine HCC-1.	1.1	AMY1_DICTH	ALPHA-AMYLASE 1 (EC 3.2.1.1) (1,4- ALPHA-D- GLUCAN GLUCANOHYDRO LASE)	2.5

Table 2

	Nearest Ne	ighbor (BlastN vs. 0	Genbank)	Nearest Neighbor (I	BlastX vs. Non-Redund	ant Proteins)
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
586	U95098	Xenopus laevis mitotic phosphoprotein 44 mRNA, partial cds	2.00E-04	<none></none>	<none></none>	<none></none>
587	AF029893	Homo sapiens i- beta-1,3-N- acetylglucosamin yltransferase mRNA, complete cds	0.13	HEMO_PIG	HEMOPEXIN PRECURSOR (HYALURONIDAS E) (EC 3.2.1.35)	3.5
588	J05109	T.thermophila calcium-binding 25 kDa (TCBP 25) protein gene, complete cds.	0.014	<none></none>	<none></none>	<none></none>
589	U95098	Xenopus laevis mitotic phosphoprotein 44 mRNA, partial cds	6.00E-04	<none></none>	<none></none>	<none></none>
590	AF060246	Mus musculus strain C57BL/6 zinc finger protein 106 (Zfp106) mRNA, H3a-a allele, complete cds	1.00E-83	SCRB_PEDPE	SUCROSE-6- PHOSPHATE HYDROLASE (EC 3.2.1.26) (SUCRASE)	10
591	Y11966	B.aphidicola (host T.suberi) plasmid pBTs1 genes leuA, hspA, repA2, repA1, leuB, leuC, leuD, leuA	0.37	<none></none>	<none></none>	<none></none>
592		Human SNC19 mRNA sequence	1.00E-64	YY22_MYCTU	HYPOTHETICAL 30.8 KD PROTEIN CY49.22	0.29
593		Lycopersicon esculentum ethylene receptor homolog (ETR1) mRNA, complete cds	0.37	KNIR_DROME	ZYGOTIC GAP PROTEIN KNIRPS	9.9
594	X65279	pWE15 cosmid vector DNA	5.00E-66	COA1_SV40	COAT PROTEIN VP1	0.001
595		Xenopus laevis mitotic phosphoprotein 44 mRNA, partial	0.041	UL88_HSV7J	PROTEIN U59	5.8

Table 2

	Nearest Ne	eighbor (BlastN vs.	Genbank)	Nearest Neighbor (BlastX vs. Non-Redund	lant Proteins)
SEQ ID		DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
		cds				
596	M91452	Sus scrofa ryanodine receptor (RYR1) gene, complete cds.	3.2	<none></none>	<none></none>	<none></none>
597	U77327	Human Ki-1/57 intracellular antigen mRNA, partial cds	e-158	GAT1_CHICK	ERYTHROID TRANSCRIPTION FACTOR (GATA-1) (ERYF1)	1.2
598	U77327	Human Ki-1/57 intracellular antigen mRNA, partial cds	0	RPB7_ARATH	DNA-DIRECTED RNA POLYMERASE II 19 KD POLYPEPTIDE (EC 2.7.7.6) (RNA POLYMERASE II SUBUNIT 5)	6.2
599	Y16964	Saccharomyces sp. mitochondrial DNA for OL11 gene, strain CID1	0.37	NMD5_YEAST	NONSENSE- MEDIATED MRNA DECAY PROTEIN 5	1.9
600	U95102	Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	6.00E-06	<none></none>	<none></none>	<none></none>
601		Xenopus laevis mitotic phosphoprotein 44 mRNA, partial cds	8.00E-08	<none></none>	<none></none>	<none></none>
602		Brugia pahangi nuclear hormone receptor (bhr-1) gene, partial cds	1.1	INVO_PONPY	INVOLUCRIN	0.23
603		Human replication factor C, 37-kDa subunit mRNA, complete cds	0	AC12_HUMAN	ACTIVATOR 1 37 KD SUBUNIT (REPLICATION FACTOR C 37 KD SUBUNIT) (A1 37 KD SUBUNIT) (RF- C 37 KD SUBUNIT) (RFC37)	1.00E-38
604		Human genes for collagen type IV alpha 5 and 6, exon 1 and exon	0.39	<none></none>	<none></none>	<none></none>

Table 2

				Nearest Neighbor (BlastX vs. Non-Redundant Proteins)			
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE	
		1'				·	
605	U95102	Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	2.00E-06	<none></none>	<none></none>	<none></none>	
606	AE001149	Borrelia burgdorferi (section 35 of 70) of the complete genome	0.13	<none></none>	<none></none>	<none></none>	
607	X14168	Human pLC46 with DNA replication origin	6.00E-16	Z136_HÜMAN	ZINC FINGER PROTEIN 136	0.31	
608	Z57610	H.sapiens CpG DNA, clone 187a10, reverse read cpg187a10.rt1a.	7.00E-90	HN3B_RAT	HEPATOCYTE NUCLEAR FACTOR 3-BETA (HNF-3B)	1.00E-19	
609	U95098	Xenopus laevis mitotic phosphoprotein 44 mRNA, partial cds	0.043	PGCV_MOUSE	VERSICAN CORE PROTEIN PRECURSOR (LARGE FIBROBLAST PROTEOGLYCAN) (CHONDROITIN SULFATE PROTEOGLYCAN CORE PROTEIN 2) (PG-M)	3.5	
610	U95094	Xenopus laevis XL-INCENP (XL-INCENP) mRNA, complete cds	7.00E-07	CA11_CHICK	PROCOLLAGEN ALPHA 1(I) CHAIN PRECURSOR	0.4	
611		Homo sapiens mRNA, chromosome 1 specific transcript KIAA0487	e-106	RRPB_CVMA5	RNA-DIRECTED RNA POLYMERASE (EC 2.7.7.48) (ORF1B)	9.7	
612	U95102	Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	0.005	<none></none>	<none></none>	<none></none>	

Table 2

	Nearest Ne	ighbor (BlastN vs. 6	Genbank)	Nearest Neighbor (E	BlastX vs. Non-Redunda	ant Proteins)
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
613	U95094	Xenopus laevis XL-INCENP (XL-INCENP) mRNA, complete cds	6.00E-05	UL52_EBV	HELICASE/PRIMA SE COMPLEX PROTEIN (PROBABLE DNA REPLICATION PROTEIN BSLF1)	5.9
614	U95760	Drosophila melanogaster strawberry notch (sno) mRNA, complete cds	3.00E-71	POLG_PVYHU	GENOME POLYPROTEIN (CONTAINS: N- TERMINAL PROTEIN; HELPER COMPONENT PROTEINASE (EC 3.4.22) (HC-PRO); 42-50 KD PROTEIN; CYTOPLASMIC INCLUSION PROTEIN (CI); 6 KD PROTEIN; NUCLEAR INCLUSION PROTEIN A (NI- A) (EC 3.4.22) (49K PROTEINASE) (49	4.3
615	U95102	Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	9.00E-09	VP3_ROTPC	INNER CORE PROTEIN VP3	7.7
616	J05499	Rattus norvegicus L-glutamine amidohydrolase mRNA, complete cds	e-143	GLSL_RAT	GLUTAMINASE, LIVER ISOFORM PRECURSOR (EC 3.5.1.2) (GLS)	7.00E-67
617	M19262	Rat clathrin light chain (LCB3) mRNA, complete cds.	0.37	Y642_METJA	HYPOTHETICAL PROTEIN MJ0642	5.8
618	M21191	Human aldolase pseudogene mRNA, complete cds.	1.00E-32	LINI_NYCCO	LINE-I REVERSE TRANSCRIPTASE HOMOLOG	6.00E-17
619	. U95094	Xenopus laevis XL-INCENP (XL-INCENP) mRNA, complete cds	1.00E-11	NUCM_BOVIN	NADH- UBIQUINONE OXIDOREDUCTAS E 49 KD SUBUNIT (EC 1.6.5.3) (EC 1.6.99.3) (COMPLEX 1- 49KD) (CI-49KD)	0.044

THIS PAGE BLANK (USPTO)

Table 2

	Nearest Ne	ighbor (BlastN vs. 0	Genbank)	Nearest Neighbor (E	BlastX vs. Non-Redund	
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
620	U95098	Xenopus laevis mitotic phosphoprotein 44 mRNA, partial cds	0.005	HEMZ_RHOCA	FERROCHELATAS E (EC 4.99.1.1) (PROTOHEME FERRO-LYASE)	4.4
621	AF041428	Homo sapiens ribosomal protein s4 X isoform gene, complete cds	0.002	<none></none>	<none></none>	<none></none>
622	X07158	Chironomus thummi DNA for Cla repetitive element	0.13	<none></none>	<none></none>	<none></none>
623	U95094	Xenopus laevis XL-INCENP (XL-INCENP) mRNA, complete cds	8.00E-04	<none></none>	<none></none>	<none></none>
624	AF100470	Rattus norvegicus ribosome attached membrane protein 4 (RAMP4) mRNA, complete cds	1.00E-53	<none></none>	<none></none>	<none></none>
625	U85193	Human nuclear factor I-B2 (NFIB2) mRNA, complete cds	2.00E-38	<none></none>	<none></none>	<none></none>
626	M13452	Human lamin A mRNA, 3'end.	6.00E-16	<none></none>	<none></none>	<none></none>
627	U95094	Xenopus laevis XL-INCENP (XL-INCENP) mRNA, complete cds	0.014	ACDV_RAT	ACYL-COA DEHYDROGENAS E, VERY-LONG- CHAIN SPECIFIC PRECURSOR (EC 1.3.99) (VLCAD)	4.00E-20
628	U95094	Xenopus laevis XL-INCENP (XL-INCENP) mRNA, complete cds	3.00E-10	<none></none>	<none></none>	<none></none>
629	<none></none>	<none></none>	<none></none>	<none></none>	<none></none>	<none></none>
630	U95102	Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	2.00E-05	<none></none>	<none></none>	<none></none>

Table 2

	Nearest Ne	ighbor (BlastN vs. 0	Genbank)	Nearest Neighbor (BlastX vs. Non-Redundant Proteins)		
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
631	U95102	Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	6.00E-05	<none></none>	<none></none>	<none></none>
632	U95094	Xenopus laevis XL-INCENP (XL-INCENP) mRNA, complete cds	6.00E-05	YS83_CAEEL	HYPOTHETICAL 86.9 KD PROTEIN ZK945.3 IN CHROMOSOME II	0.65
633	U95102	Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	3.00E-09	NRP_MOUSE	NEUROPILIN PRECURSOR (A5 PROTEIN)	2.7
634	U95098	Xenopus laevis mitotic phosphoprotein 44 mRNA, partial cds	2.00E-05	Y4JN_RHISN	HYPOTHETICAL 16.3 KD PROTEIN Y4JN	5.9
635	U95102	Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	6.00E-05	<none></none>	<none></none>	<none></none>
636	X64707	H.sapiens BBC1 mRNA	e-179	RL13_HUMAN	60S RIBOSOMAL PROTEIN L13 (BREAST BASIC CONSERVED PROTEIN 1)	5.00E-40
637	U95102	Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	3.00E-08	<none></none>	<none></none>	<none></none>
638	X14168	Human pLC46 with DNA replication origin	5.00E-14	SP3_HUMAN	TRANSCRIPTION FACTOR SP3 (SPR- 2) (FRAGMENT)	0.19
639	X90999	H.sapiens mRNA for Glyoxalase II	9.00E-20	GLO2_HUMAN	HYDROXYACYLG LUTATHIONE HYDROLASE (EC 3.1.2.6)	0.007
640	AF083322	Homo sapiens centriole associated protein CEP110 mRNA, complete cds	9.00E-51	KIF4_MOUSE	KINESIN-LIKE PROTEIN KIF4	0.005

Table 2

	Nearest Ne	ighbor (BlastN vs. 0	Genbank)	Nearest Neighbor (BlastX vs. Non-Redundant Proteins)			
SEQ ID	ACCESSION		P VALUE	ACCESSION	DESCRIPTION	P VALUE	
641	Z12002	M.musculus Pvt-1 mRNA.	0.36	CP5F_CANTR	CYTOCHROME P450 LIIA6 (ALKANE- INDUCIBLE) (EC 1.14.14.1) (P450- ALK3)	5.6	
642	M10206	R.sphaeroides reaction center L subunit (complete cds) and M subunit (5' end) genes.	1.1	YGR1_YEAST	HYPOTHETICAL 34.8 KD PROTEIN IN SUT1-RCK1 INTERGENIC REGION	0.006	
643	K02668	E. coli ddl gene encoding D- alanine:D-alanine ligase and ftsQ and ftsA genes, complete cds, and ftsZ gene, 5' end.	3.3	ANKB_HUMAN	ANKYRIN, BRAIN VARIANT I (ANKYRIN B) (ANKYRIN, NONERYTHROID)	7.00E-07	
644	<none></none>	<none></none>	<none></none>	<none></none>	<none></none>	<none></none>	
645	X53616	C.domesticus calnexin (pp90) mRNA	1.1	<none></none>	<none></none>	<none></none>	
646	X57010	Human COL2A1 gene for collagen II alpha 1 chain, exons E2-E15	3.3	PRIO_PIG	MAJOR PRION PROTEIN PRECURSOR (PRP)	1.9	
647	U95097	Xenopus laevis mitotic phosphoprotein 43 mRNA, partial cds	1.1	UL07_HSV2H	PROTEIN UL7	7.3	
648	X52956	Human CAMII- psi3 calmodulin retropseudogene	0.37	PRTP_EBV	PROBABLE PROCESSING AND TRANSPORT PROTEIN	7.5	
649	M93425	Human protein tyrosine phosphatase (PTP-PEST) mRNA, complete cds.	0	PTNC_HUMAN	PROTEIN- TYROSINE PHOSPHATASE G1 (EC 3.1.3.48) (PTPG1)	e-107	
650	L47615	Mus musculus DNA-binding protein (Fli-1) gene, 5' end of cds.	0.13	YA53_SCHPO	HYPOTHETICAL 24.2 KD PROTEIN C13A11.03 IN CHROMOSOME I	2.00E-07	
651	U60337	Homo sapiens beta-mannosidase mRNA, complete	0	GIL1_ENTHI	GALACTOSE- INHIBITABLE LECTIN 170 KD	0.22	

Table 2

	Nearest Ne	ighbor (BlastN vs. 0	Genbank)	Nearest Neighbor (B	lastX vs. Non-Redund	ant Proteins)
SEQ ID		DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
		cds			SUBUNIT	
652	U08813	Oryctolagus cuniculus Na+/glucose cotransporter- related protein mRNA, complete cds.	1.00E-22	NAG1_HUMAN	SODIUM/GLUCOS E COTRANSPORTER 1 (NA(+)/GLUCOSE COTRANSPORTER 1) (HIGH AFFINITY SODIUM- GLUCOSE COTRANSPORTER)	0.1
653	Y00282	Human mRNA for ribophorin II	2.00E-78	RIB2_HUMAN	DOLICHYL- DIPHOSPHOOLIG OSACCHARIDE PROTEIN GLYCOSYLTRANS FERASE 63 KD SUBUNIT PRECURSOR (EC 2.4.1.119) (RIBOPHORIN II)	5.00E-19
654	D10051	Human gene for 92-kDa type IV collagenase, 5'- flanking region	0.014	TAGB_DICDI	PRESTALK- SPECIFIC PROTEIN TAGB PRECURSOR (EC 3.4.21)	7.6
655	M29930	Human insulin receptor (allele 2) gene, exons 14, 15, 16 and 17.	8.00E-08	<none></none>	<none></none>	<none></none>
656	U78310	Homo sapiens pescadillo mRNA, complete cds	0	YG2S_YEAST	HYPOTHETICAL 69.9 KD PROTEIN IN MIC1-SRB5 INTERGENIC REGION	0.002
657	X68792	S.coelicolor A3(2) promoter sequence pth270	3.2	YBS0_YEAST	HYPOTHETICAL 27.0 KD PROTEIN IN VAL1-HSP26 INTERGENIC REGION	0.073
658	U50535	Human BRCA2 region, mRNA sequence CG006	4.00E-12	ALU1_HUMAN	IIII ALU SUBFAMILY J WARNING ENTRY IIII	1.2

Table 2

	Nearest Ne	ighbor (BlastN vs. 0	Genbank)	Nearest Neighbor (BlastX vs. Non-Redundant Proteins)			
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE	
659	U15522	Sus scrofa clone pvgla Ig heavy chain variable VDJ region mRNA, partial cds.	3.2	Z165_HUMAN	ZINC FINGER PROTEIN 165	3.2	
660	M20918	C.thummi piger haemoglobin (Hb) gene DNA, complete cds.	0.12	YT25_CAEEL	HYPOTHETICAL 59.9 KD PROTEIN B0304.5 IN CHROMOSOME II	0.033	
661	U60337	Homo sapiens beta-mannosidase mRNA, complete cds	0	<none></none>	<none></none>	<none></none>	
662	U95098	Xenopus laevis mitotic phosphoprotein 44 mRNA, partial cds	0.001	ENV_MLVFP	ENV POLYPROTEIN PRECURSOR (CONTAINS: KNOB PROTEIN GP70; SPIKE PROTEIN P15E; R PROTEIN)	3.3	
663	M97287	Human MAR/SAR DNA binding protein (SATB1) mRNA, complete cds. > :: gb 158691 158691 Sequence 1 from patent US 5652340	0	SAT1_HUMAN	DNA-BINDING PROTEIN SATBI (SPECIAL AT-RICH SEQUENCE BINDING PROTEIN 1)	2.00E-20	
664	L42612	Homo sapiens keratin 6 isoform K6f (KRT6F) mRNA, complete cds	e-168	K2C4_BOVIN	KERATIN, TYPE II CYTOSKELETAL 59 KD, COMPONENT IV	4.00E-10	
665	U17901	Rattus norvegicus phospholipase A- 2-activating protein (plap) mRNA, complete cds.	e-152	PLAP_MOUSE	PHOSPHOLIPASE A-2-ACTIVATING PROTEIN (PLAP)	4.00E-13	
666	M73047	Homo sapiens tripeptidyl peptidase II mRNA, complete cds.	0	MERT_STRLI	MERCURIC TRANSPORT PROTEIN (MERCURY ION TRANSPORT PROTEIN)	4.4	

Table 2

		ighbor (BlastN vs.	Genbank)		lastX vs. Non-Redund	
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
667		Human ribosomal protein L9 gene, 5' region and complete cds.	0	RL9_HUMAN	60S RIBOSOMAL PROTEIN L9	2.00E-11
668		H.sapiens mRNA for ryanodine receptor 2	1.1	HS74_MOUSE	HEAT SHOCK 70 KD PROTEIN AGP- 2	0.034
669	U95094	Xenopus laevis XL-INCENP (XL-INCENP) mRNA, complete cds	0.002	RPC2_DROME	DNA-DIRECTED RNA POLYMERASE III 128 KD POLYPEPTIDE	1.1
670		Homo sapiens okadaic acid-inducible phosphoprotein (OA48-18) mRNA, complete cds	7.00E-80	LEGB_PEA	LEGUMIN B (FRAGMENT)	0.011
671	Z71419	S.cerevisiae chromosome XIV reading frame ORF YNL143c	1.1	FOCD_ECOLI	OUTER MEMBRANE USHER PROTEIN FOCD PRECURSOR	9.7
672	AF044965	Homo sapiens polio virus related protein 2 gene, alpha isoform, exon 6 and partial cds	e-167	PVR_MOUSE	POLIOVIRUS RECEPTOR HOMOLOG PRECURSOR	1.00E-12
673	X65319	Cloning vector pCAT-Enhancer	2.00E-80	S106_HUMAN	CALCYCLIN (PROLACTIN RECEPTOR ASSOCIATED PROTEIN) CALCIUM- BINDING PROTEIN A6)	3.00E-15
674	D29655	Pig mRNA for UMP-CMP kinase, complete cds	e-103	V319_ASFB7	J319 PROTEIN	4.3
675	U95094	Xenopus laevis XL-INCENP (XL-INCENP) mRNA, complete cds	8.00E-08	VEGR_RAT	VASCULAR ENDOTHELIAL GROWTH FACTOR RECEPTOR 1 PRECURSOR RECEPTOR FLT) (FLT-1)	3.3

Table 2

	Nearest Ne	ighbor (BlastN vs. (Genbank)	Nearest Neighbor (B	BlastX vs. Non-Redunda	ant Proteins)
SEQ ID	ACCESSION	•	P VALUE	ACCESSION	DESCRIPTION	P VALUE
676	D90217	S. cerevisiae gene for YmL33, mitochondrial ribosomal proteins of large subunit	2.00E-07	MALY_ECOLI	MALY PROTEIN (EC 2.6.1)	5.6
677	AF038952	Homo sapiens cofactor A protein mRNA, complete cds	e-160	TICA_MOUSE	TCP1- CHAPERONIN COFACTOR A	4.00E-19
678	Z96950	Gorilla gorilla DNA sequence orthologous to the human Xp:Yp telomere-junction region	5.00E-14	YHBZ_ECOLI	HYPOTHETICAL 43.3 KD GTP- BINDING PROTEIN IN DACB-RPMA INTERGENIC REGION (F390)	3.3
679	D50418	Mouse mRNA for AREC3, partial cds	2.00E-79	CYGX_RAT	OLFACTORY GUANYLYL CYCLASE GC-D PRECURSOR (EC 4.6.1.2)	1.1
680	Ú95098	Xenopus laevis mitotic phosphoprotein 44 mRNA, partial cds	8.00E-08	P2C2_SCHPO	PROTEIN PHOSPHATASE 2C HOMOLOG 2 (EC 3.1.3.16)	1.00E-04
681	AL010280	Plasmodium falciparum DNA *** SEQUENCING IN PROGRESS *** from contig 4-106, complete sequence	0.12	<none></none>	<none></none>	<none></none>
682	U95094	Xenopus laevis XL-INCENP (XL-INCENP) mRNA, complete cds	5.00E-04	VSM2_TRYBB	VARIANT SURFACE GLYCOPROTEIN MITAT 1.2 PRECURSOR (VSG 221)	4.3
683	U00238	Homo sapiens glutamine PRPP amidotransferase (GPAT) mRNA, complete cds	0	<none></none>	<none></none>	<none></none>
684	U95102	Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	0.005	PRPR_SALTY	PROPIONATE CATABOLISM OPERON REGULATORY PROTEIN	1.5

Table 2

	Nearest Ne	ighbor (BlastN vs. 0	Genbank)	Nearest Neighbor (E	BlastX vs. Non-Redunda	
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
685	U95102	Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	7.00E-07	YAND_SCHPO	HYPOTHETICAL 30.4 KD PROTEIN C3H1.13 IN CHROMOSOME I	0.38
686		Human mRNA for KIAA0037 gene, complete cds	0	<none></none>	<none></none>	<none></none>
687	U95102	Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	2.00Ê-07	A1AA_RAT	ALPHA-1A ADRENERGIC RECEPTOR (RA42)	4.4
688	L26956	Mesocricetus auratus stearyl- CoA desaturase sequence including male hormone dependent gene derived from hamster frankorgan	4.00E-33	<none></none>	<none></none>	<none></none>
689	U95102	Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	3.00E-10	<none></none>	<none></none>	<none></none>
690	U95102	Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	3.00E-09	YO93_CAEEL	HYPOTHETICAL 58.5 KD PROTEIN T20B12.3 IN CHROMOSOME III	2.00E-08
691	U95102	Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	8.00E-09	<none></none>	<none></none>	<none></none>
692		Mus musculus mRNA for oxysterol-binding protein, complete cds	0	OXYB_RABIT	OXYSTEROL- BINDING PROTEIN	1.00E-34
693	U95098	Xenopus laevis mitotic phosphoprotein 44 mRNA, partial cds	6.00E-04	UFO2_MAIZE	FLAVONOL 3-O- GLUCOSYLTRANS FERASE (EC 2.4.1.91)	3.1

Table 2

	Nearest Ne	ighbor (BlastN vs. 0	Genbank)	Nearest Neighbor (E	BlastX vs. Non-Redund	ant Proteins)
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
694		Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	5.00E-04	<none></none>	<none></none>	<none></none>
695		Caenorhabditis elegans cyclophilin isoform 10	5.00E-24	CYPA_CAEEL	PEPTIDYL- PROLYL CIS- TRANS ISOMERASE 10 (EC 5.2.1.8)	2.00E-29
696		Homo sapiens mRNA for KIAA0595 protein, partial cds	0	RFX5_HUMAN	BINDING REGULATORY FACTOR	2.1
697		Human GS2 mRNA, complete cds.	2.00E-28	SKD1_MOUSE	SKD1 PROTEIN	4.00E-17
698	AF086275	Homo sapiens full length insert cDNA clone ZD45C02	3.00E-41	SPT7_YEAST	TRANSCRIPTIONA L ACTIVATOR SPT7	0.82
699	U95102	Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	3.00E-10	CAIE_HUMAN	COLLAGEN ALPHA I(XV) CHAIN PRECURSOR	1.1
700	U95102	Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	4.00E-11	E434_ADECC	Q65962 canine adenovirus type 1 (strain cll). early e4 31 kd protein. 11/98	4.4
701		Drosophila melanogaster germline transcription factor gene, complete cds.	3.3	CISY_TETTH	CITRATE SYNTHASE, MITOCHONDRIAL PRECURSOR (EC 4.1.3.7) (14 NM FILAMENT- FORMING PROTEIN)	9.7
702	X58170	M.musculus mRNA for t- Complex Tcp-10a gene	2.00E-45	PME2_LYCES	PECTINESTERASE 2 PRECURSOR (EC 3.1.1.11) (PECTIN METHYLESTERAS E) (PE 2)	7.4
703	Z96207	H.sapiens telomeric DNA sequence, clone 12PTEL049, read 12PTELOO049.se	8.00E-08	<none></none>	<none></none>	<none></none>

Table 2

	Nearest Ne	ighbor (BlastN vs. 0	Genbank)	Nearest Neighbor (B	lastX vs. Non-Redunda	ant Proteins)
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
		q				
704	X58430	Human Hox1.8 gene	e-146	HXAA_HUMAN	HOMEOBOX PROTEIN HOX-A10 (HOX-1H) (HOX- 1.8) (PL)	4.00E-05
705	U95094	Xenopus laevis XL-INCENP (XL-INCENP) mRNA, complete cds	6.00E-06	YN39_SYNP7	HYPOTHETICAL 9.2 KD PROTEIN IN CYST-CYSR INTERGENIC REGION (ORF 81)	0.89
706	U95094	Xenopus laevis XL-INCENP (XL-INCENP) mRNA, complete cds	1.00E-11	MYSH_BOVIN	MYOSIN I HEAVY CHAIN-LIKE PROTEIN (MIHC) (BRUSH BORDER MYOSIN I) (BBMI)	0.001
707	M19961	Human cytochrome c oxidase subunit Vb (coxVb) mRNA, complete cds.	e-123	OTHU5B	<none></none>	3.00E-30
708	X68380	M.musculus gene for cathepsin D, exon 3	5.00E-04	42_MOUSE	ERYTHROCYTE MEMBRANE PROTEIN BAND 4.2 (P4.2) (PALLIDIN)	9.9
709	U95102	Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	1.00E-11	TCPA_DROME	T-COMPLEX PROTEIN 1, ALPHA SUBUNIT (TCP-1-ALPHA)	4.3
710		Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	3.00E-10	<none></none>	<none></none>	<none></none>
711	U95094	Xenopus laevis XL-INCENP (XL-INCENP) mRNA, complete cds	4.00E-12	<none></none>	<none></none>	<none></none>
712	U95102	Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	0.002	<none></none>	<none></none>	<none></none>

Table 2

	Nearest Ne	ighbor (BlastN vs.	Genbank)	Nearest Neighbor (B	lastX vs. Non-Redund	ant Proteins)
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
713		Homo sapiens mRNA for KIAA0780 protein, partial cds	3.00E-41	LBR_CHICK	LAMIN B RECEPTOR	3.4
714	U95102	Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	6.00E-06	YM8L_YEAST	HYPOTHETICAL 71.1 KD PROTEIN IN DSK2-CAT8 INTERGENIC REGION	3.00E-08
715	U95102	Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	4.00E-13	PSC_DROME	POSTERIOR SEX COMBS PROTEIN	0.6
716	L28101	Homo sapiens kallistatin (PI4) gene, exons 1-4, complete cds	7.00E-07	IRKX_RAT	INWARD RECTIFIER POTASSIUM CHANNEL BIR9 (KIR5.1)	5.4
717	AC001038	Homo sapiens (subclone 2_h2 from P1 H49) DNA sequence	8.00E-09	MGMT_YEAST	METHYLATED- DNAPROTEIN- CYSTEINE METHYLTRANSFE RASE	0.48
718	U95094	Xenopus laevis XL-INCENP (XL-INCENP) mRNA, complete cds	1.00E-11	YWDE_BACSU	HYPOTHETICAL 19.9 KD PROTEIN IN SACA-UNG INTERGENIC REGION PRECURSOR	1.8
719	U01139	Mus musculus B6D2F1 clone 2C11B mRNA.	e-110	GSC_DROME	HOMEOBOX PROTEIN GOOSECOID	7.2
720		Homo sapiens mRNA for kinesin-like DNA binding protein, complete cds	0	YBAV_ECOLI	HYPOTHETICAL 12.7 KD PROTEIN IN HUPB-COF INTERGENIC REGION	0.17
721	U95094	Xenopus laevis XL-INCENP (XL-INCENP) mRNA, complete cds	0.001	CPCF_SYNP2	PHYCOCYANOBIL IN LYASE BETA SUBUNIT (EC 4)	2.4
722	U95102	Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	9.00E-10	<none></none>	<none></none>	<none></none>

Table 2

	Nearest Ne	ighbor (BlastN vs. 0	Genbank)	Nearest Neighbor (B	BlastX vs. Non-Redund	ant Proteins)
SEQ	ACCESSION	-	P VALUE	ACCESSION	DESCRIPTION	P VALUE
ID	/ CCESSIOI V	Descrat from		71002551611	<i>D</i> 255111.77511	
723	U95102	Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	0.04	YKK7_CAEEL	HYPOTHETICAL 54.9 KD PROTEIN C02F5.7 IN CHROMOSOME III	0.057
724	U95094	Xenopus laevis XL-INCENP (XL-INCENP) mRNA, complete cds	8.00E-08	H5_CAIMO	HISTONE H5	0.39
725	U95094	Xenopus laevis XL-INCENP (XL-INCENP) mRNA, complete cds	3.00E-09	DED1_YEAST	PUTATIVE ATP- DEPENDENT RNA HELICASE DEDI	0.5
726	J04617	Human elongation factor EF-1-alpha gene, complete cds. > :: dbj E02629 E0262 9 DNA of human polypeptide chain elongation factor-1 alpha	5.00E-36	ALU7_HUMAN	!!!! ALU SUBFAMILY SQ WARNING ENTRY !!!!	0.84
727	X54859	Porcine TNF- alpha and TNF- beta genes for tumour necrosis factors alpha and beta, respectively.	3.3	Z165_HUMAN	ZINC FINGER PROTEIN 165	5.6
728	D49911	Thermus thermophilus UvrA gene, complete cds	0.014	CC48_CAPAN	CELL DIVISION CYCLE PROTEIN 48 HOMOLOG	9.9
729	U95098	Xenopus laevis mitotic phosphoprotein 44 mRNA, partial cds	2.00E-06	CA25_HUMAN	PROCOLLAGEN ALPHA 2(V) CHAIN PRECURSOR	0.011
730	D15057	Human mRNA for DAD-1, complete cds	0	DAD1_HUMAN	DEFENDER AGAINST CELL DEATH 1 (DAD-1)	8.00E-16
731	U95098	Xenopus laevis mitotic phosphoprotein 44 mRNA, partial cds	6.00E-06	ANFD_RHOCA	NITROGENASE IRON-IRON PROTEIN ALPHA CHAIN (EC 1.18.6.1) (NITROGENASE COMPONENT I) (DINITROGENASE	9.6

Table 2

	Nearest Ne	ighbor (BlastN vs. C	Genbank)	Nearest Neighbor (E	BlastX vs. Non-Redund	ant Proteins)
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
732	U95098	Xenopus laevis mitotic phosphoprotein 44 mRNA, partial cds	7.00E-07	EFTU_CHLVI	ELONGATION FACTOR TU (EF- TU)	2.5
733	AB018335	Homo sapiens mRNA for KIAA0792 protein, complete cds	0	TRYM_RAT	MAST CELL TRYPTASE PRECURSOR (EC 3.4.21.59)	5.6
734	X98743	H.sapiens mRNA for RNA helicase (Myc-regulated dead box protein)	0.04	<none></none>	<none></none>	<none></none>
735	U95098	Xenopus laevis mitotic phosphoprotein 44 mRNA, partial cds	2.00E-07	<none></none>	<none></none>	<none></none>
736	Z49314	S.cerevisiae chromosome X reading frame ORF YJL039c	3.2	<none></none>	<none></none>	<none></none>
737	D12646	Mouse kif4 mRNA for microtubule- based motor protein KIF4, complete cds	0	KIF4_MOUSE	KINESIN-LIKE PROTEIN KIF4	2.00E-76
738	J04038	Human glyceraldehyde-3- phosphate dehydrogenase	2.00E-47	SDC1_HUMAN	SYNDECAN-1 PRECURSOR (SYND1) (CD138)	3.5
739	AF010238	Homo sapiens von Hippel- Lindau tumor suppressor	1.00E-09	LINI_HUMAN	LINE-1 REVERSE TRANSCRIPTASE HOMOLOG	0.001
740	U95102	Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	2.00E-06	YQJX_BACSU	HYPOTHETICAL 13.2 KD PROTEIN IN GLNQ-ANSR INTERGENIC REGION	9.9

Table 2

	Nearest Ne	ighbor (BlastN vs. 0	Genbank)	Nearest Neighbor (B	BlastX vs. Non-Redund	ant Proteins)
SEQ ID	ACCESSION		P VALUE	ACCESSION	DESCRIPTION	P VALUE
741	L21186	Human lysyl oxidase-like protein mRNA, complete cds.	e-145	OXRTL	<none></none>	1.00E-34
742	U95094	Xenopus laevis XL-INCENP (XL-INCENP) mRNA, complete cds	2.00E-05	CC48_SOYBN	CELL DIVISION CYCLE PROTEIN 48 HOMOLOG (VALOSIN CONTAINING PROTEIN HOMOLOG) (VCP)	7.6
743		Homo sapiens YAC clone 377A1 unknown mRNA, 3'untranslated region	3.3	<none></none>	<none></none>	<none></none>
744	Z74894	S.cerevisiae chromosome XV reading frame ORF YOL152w	0.12	CD14_RABIT	Q28680 oryctolagus cuniculus (rabbit). monocyte differentiation antigen cd14 precursor. 11/98	1.9
745	U95094	Xenopus laevis XL-INCENP (XL-INCENP) mRNA, complete cds	9.00E-10	KIN3_YEAST	SERINE/THREONI NE-PROTEIN KINASE KIN3 (EC 2.7.1)	2.5
746	U95102	Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	2.00E-05	YA53_SCHPO	HYPOTHETICAL 24.2 KD PROTEIN C13A11.03 IN CHROMOSOME I	7.00E-17
747	S61044	ALDH3=aldehyd e dehydrogenase isozyme 3 [human, stomach, mRNA Partial, 1362 nt]		DHAP_HUMAN	ALDEHYDE DEHYDROGENAS E, DIMERIC NADP- PREFERRING (EC 1.2.1.5) (CLASS 3)	2.00E-71
748	U95094	Xenopus laevis XL-INCENP (XL-INCENP) mRNA, complete cds	2.00E-08	CA1E_CHICK	COLLAGEN ALPHA 1(XIV) CHAIN PRECURSOR (UNDULIN)	0.36
749	U95102	Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	7.00E-06	<none></none>	<none></none>	<none></none>

Table 2

	Nearest Ne	ighbor (BlastN vs. 0	Genbank)	Nearest Neighbor (B	lastX vs. Non-Redund	ant Proteins)
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
750	L14815	Entamoeba histolytica HM- 1:IMSS galactose- specific adhesin 170kD subunit (hgl3) gene, complete cds.	0.12	<none></none>	<none></none>	<none></none>
751	X63785	T.thermophila gene for snRNA U2-2	1.1	<none></none>	<none></none>	<none></none>
752	M83756	Mytilus edulis mitochondrial NADH dehydrogenase subunit 5 (ND5) gene, 3' end; NADH dehydrogenase subunit 6 (ND6) gene, complete cds; and cytochrome b (cyt b), 5' end.	0.042	DSC1_HUMAN	DESMOCOLLIN 1A/1B PRECURSOR (DESMOSOMAL GLYCOPROTEIN 2/3) (DG2 / DG3)	2.6
753	AB001066	Brown trout microsatellite DNA sequence	0.38	IMB3_HUMAN	IMPORTIN BETA-3 SUBUNIT (KARYOPHERIN BETA-3 SUBUNIT)	1.2
754	AF064787	Lotus japonicus rac GTPase activating protein 1 mRNA, complete cds	0.51	<none></none>	<none></none>	<none></none>
755	U20608	Dictyostelium discoideum unknown spore germination- specific protein- like protein, orf1, orf2 and orf3 genes, complete cds	0.043	<none></none>	<none></none>	<none></none>
756	M77812	Rabbit myosin heavy chain mRNA, complete cds.	1.2	RBLI_HUMAN	RETINOBLASTOM A-LIKE PROTEIN 1 (107 KD RETINOBLASTOM A-ASSOCIATED PROTEIN) (PRB1) (P107)	4.9

Table 2

	Nearest Ne	ighbor (BlastN vs. 0	Genbank)	Nearest Neighbor (B	lastX vs. Non-Redunda	ant Proteins)
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
757	X63789	T.thermophila genes for snRNA U5-1, snRNA U5- 2	0.058	<none></none>	<none></none>	<none></none>
758	D50646	Mouse mRNA for SDF2, complete cds	2.00E-27	PMT3_YEAST	DOLICHYL- PHOSPHATE- MANNOSE PROTEIN MANNOSYLTRAN SFERASE 3 (EC 2.4.1.109)	0.002
759	L81583	Homo sapiens (subclone 3_g2 from P1 H11) DNA sequence	3.00E-19	ALU5_HUMAN	!!!! ALU SUBFAMILY SC WARNING ENTRY !!!!	0.86
760	U95102	Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	2.00E-06	SYFA_YEAST	PHENYLALANYL- TRNA SYNTHETASE ALPHA CHAIN CYTOPLASMIC	5.7
761	AF000370	Homo sapiens polymorphic CA dinucleotide repeat flanking region	6.00E-89	APP1_MOUSE	AMYLOID-LIKE PROTEIN I PRECURSOR (APLP)	5.7
762	U95098	Xenopus laevis mitotic phosphoprotein 44 mRNA, partial cds	0.002	<none></none>	<none></none>	<none></none>
763	U95102	Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	7.00E-06	PSF_HUMAN	PTB-ASSOCIATED SPLICING FACTOR (PSF)	0.72
764		Homo sapiens mRNA for KIAA0745 protein, partial cds	0	TC2A_CAEBR	TRANSPOSABLE ELEMENT TCB2 TRANSPOSASE	1.5
765	AF020282	Dictyostelium discoideum DG2033 gene, partial cds	0.38	PMT2_YEAST	DOLICHYL- PHOSPHATE- MANNOSE PROTEIN MANNOSYLTRAN SFERASE 2 (EC 2.4.1.109)	0.18

Table 2

	Nearest Ne	ighbor (BlastN vs. (Genbank)	Nearest Neighbor (B	lastX vs. Non-Redunda	ant Proteins)
SEQ ID	ACCESSION		P VALUE	ACCESSION	DESCRIPTION	P VALUE
766	AF017357	Oryza sativa low molecular early light-inducible protein mRNA, complete cds	0.38	RGS3_HUMAN	REGULATOR OF G-PROTEIN SIGNALLING 3 (RGS3) (RGP3)	0.23
767	U67599	Methanococcus jannaschii section 141 of 150 of the complete genome	0.13	<none></none>	<none></none>	<none></none>
768	X74178	B.taurus microsatellite DNA INRA 153	0.13	FAG1_SYNY3	P73574 synechocystis sp. (strain pcc 6803). 3- oxoacyl-[acyl-carrier protein] reductase 1 (ec 1.1.1.100) (3- ketoacyl- acyl carrier protein reductase 1). 11/98	5.00E-16
769	AF041858	Mus musculus synaptojanin 2 isoform delta mRNA, partial cds	0.043	CA44_HUMAN	COLLAGEN ALPHA 4(IV) CHAIN PRECURSOR	0.24
770	J01404	Drosophila melanogaster mitochondrial cytochrome c oxidase subunits, ATPase6, 7 tRNAs (Trp, Cys, Tyr, Leu(UUR), Lys, Asp, Gly) genes, and unidentified reading frames A6l, 2 and 3.	0.021	NU1M_CITLA	NADH- UBIQUINONE OXIDOREDUCTAS E CHAIN 1 (EC 1.6.5.3)	7.2
771	AL022317	Human DNA sequence from clone 140L1 on chromosome 22q13.1-13.31, complete sequence [Homo sapiens]	3.00E-41	ALU7_HUMAN	!!!! ALU SUBFAMILY SQ WARNING ENTRY !!!!	4.00E-08
772	U95094	Xenopus laevis XL-INCENP (XL-INCENP) mRNA, complete cds	1.00E-09	<none></none>	<none></none>	<none></none>

Table 2

	Nearest Ne	ighbor (BlastN vs. 0	Genbank)	Nearest Neighbor (E	BlastX vs. Non-Redund	ant Proteins)
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
773	AF095927	Rattus norvegicus protein phosphatase 2C mRNA, complete cds	0	P2C_PARTE	PROTEIN PHOSPHATASE 2C (EC 3.1.3.16) (PP2C)	1.00E-16
774	X87212	H.sapiens mRNA for cathepsin C	0	CATC_HUMAN	DIPEPTIDYL- PEPTIDASE I PRECURSOR (EC 3.4.14.1)	2.00E-46
775	X05283	Drosophila melanogaster PKCG7 gene exons 7-14 for protein kinase C	4.5	<none></none>	<none></none>	<none></none>
776	X03558	Human mRNA for elongation factor 1 alpha subunit	0	EF11_HUMAN	ELONGATION FACTOR 1-ALPHA 1 (EF-1-ALPHA-1)	1.00E-83
777	X06960	Aspergillus nidulans mitochondrial DNA for cytochrome oxidase subunit 3, tRNA-Tyr	0.23	<none></none>	<none></none>	<none></none>
778	U95102	Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	3.00E-09	YMT8_YEAST	HYPOTHETICAL 36.4 KD PROTEIN IN NUP116-FAR3 INTERGENIC REGION	5.00E-07
779	U95102	Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	2.00E-07	NATI_YEAST	N-TERMINAL ACETYLTRANSFE RASE 1 (EC 2.3.1.88)	5.00E-23
780	U59706	Gallus gallus alternatively spliced AMPA glutamate receptor, isoform GluR2 flop, (GluR2) mRNA, partial cds.	0.014	PPOL_SARPE	POLY (ADP- RIBOSE) POLYMERASE (EC 2.4.2.30) (PARP)	0.021
781	U57391	Rattus norvegicus FceRI gamma- chain interacting protein SH2-B (SH2-B) mRNA, complete cds	1.00E-84	<none></none>	<none></none>	<none></none>

Table 2

	Nearest Ne	ighbor (BlastN vs. (Genbank)		BlastX vs. Non-Redund	
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
782	AB014591	Homo sapiens mRNA for KIAA0691 protein, complete cds	7.00E-57	SSGP_VOLCA	SULFATED SURFACE GLYCOPROTEIN 185 (SSG 185)	5.3
783		Chrysolina bankii 16S rRNA gene, mitotype B2	0.043	<none></none>	<none></none>	<none></none>
784	AF067212	Caenorhabditis elegans cosmid F37F2	0.005	MEK1_RAT	MAPK/ERK KINASE KINASE 1 (EC 2.7.1) (MEK KINASE 1)	4.5
785	U95094	Xenopus laevis XL-INCENP (XL-INCENP) mRNA, complete cds	0.042	<none></none>	<none></none>	<none></none>
786	U95102	Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	9.00E-09	<none></none>	<none></none>	<none></none>
787	Y13401	Homo sapiens CD3 delta gene, enhancer sequence	8.00E-08	<none></none>	<none></none>	<none></none>
788	AE001038	Archaeoglobus fulgidus section 69 of 172 of the complete genome	0.13	<none></none>	<none></none>	<none></none>
789	U95102	Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	2.00E-06	<none></none>	<none></none>	<none></none>
790	AF041463	Manihot esculenta elongation factor 1-alpha	1.4	<none></none>	<none></none>	<none></none>
791	U95102	Xenopus laevis mitotic phosphoprotein 90 mRNA, complete cds	0.002	HXA3_HAEIN	HEME:HEMOPEXI N-BINDING PROTEIN PRECURSOR	2.7
792	Z12112	pWE15A cosmid vector DNA	3.00E-29	PKWA_THECU	PUTATIVE SERINE/THREONI NE-PROTEIN KINASE PKWA (EC 2.7.1)	2.00E-04

Table 2

	Nearest Ne	ighbor (BlastN vs. 0	Genbank)	Nearest Neighbor (B	lastX vs. Non-Redund	
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE
793	U85193	Human nuclear factor I-B2 (NFIB2) mRNA, complete cds	4.00E-44	<none></none>	<none></none>	<none></none>
794	U89331	Human pseudoautosomal homeodomain- containing protein (PHOG) mRNA, complete cds	7.00E-06	NRL_HUMAN	NEURAL RETINA- SPECIFIC LEUCINE ZIPPER PROTEIN (NRL)	6.3
795	AF055666	Mus musculus kinesin light chain 2 (Klc2) mRNA, complete cds	0.52	PSPD_BOVIN	PULMONARY SURFACTANT- ASSOCIATED PROTEIN D PRECURSOR	0.33
796	L13321	Homo sapiens iduronate-2-sulfatase (IDS) gene, exon 1, incomplete 5' end.	0.14	YRP2_YEAST	HYPOTHETICAL 84.4 KD PROTEIN IN RPC2/RET1 3'REGION	0.27
797	AL010270	Plasmodium falciparum DNA *** SEQUENCING IN PROGRESS *** from contig 4-96, complete sequence	0.37	YTH3_CAEEL	HYPOTHETICAL 75.5 KD PROTEIN C14A4.3 IN CHROMOSOME II	2
798	U95098	Xenopus laevis mitotic phosphoprotein 44 mRNA, partial cds	0.015	IMB3_HUMAN	IMPORTIN BETA-3 SUBUNIT (KARYOPHERIN BETA-3 SUBUNIT)	0.063
799	U70139	Mus musculus putative CCR4 protein mRNA, partial cds	0	CCR4_YEAST	GLUCOSE- REPRESSIBLE ALCOHOL DEHYDROGENAS E TRANSCRIPTIONA L EFFECTOR (CARBON CATABOLITE REPRESSOR PROTEIN 4)	5.00E-11
800	L26507	Mouse myocyte nuclear factor (MNF) mRNA, complete cds.	3.00E-41	MNF_MOUSE	MYOCYTE NUCLEAR FACTOR (MNF)	4.00E-18

Table 2

	Nearest Neis	ghbor (BlastN vs. 0	Genbank)	Nearest Neighbo	r (BlastX vs. Non-Redundar	t Proteins)
SEQ		DESCRIPTION		ACCESSION	DESCRIPTION	P VALUE
ID`						
801	U20527	Mus musculus chemokine KC gene, 5' region.	0		GROWTH REGULATED PROTEIN PRECURSOR (PLATELET-DERIVED GROWTH FACTOR-INDUCIBLE PROTEIN KC) (SECRETORY PROTEIN N51)	1.00E-28
802	AF065482	Homo sapiens sorting nexin 2 (SNX2) mRNA, complete cds	0	MYSA_DROME	MYOSIN HEAVY CHAIN, MUSCLE	0.089
803	U05823	Mus musculus pericentrin mRNA, complete cds.	1.00E-94	_ 	MALE SPECIFIC SPERM PROTEIN MST84DD	0.099
804	U67468	Methanococcus jannaschii section 10 of 150 of the complete genome	0.4	<none></none>	<none></none>	<none></none>
805	U14178	Human type II IL-1 receptor gene, exon 1B	1.00E-19	AMPH_HUMAN	AMPHIPHYSIN	2.9
806	L40411	Homo sapiens thyroid receptor interactor	0		THYROID RECEPTOR INTERACTING PROTEIN 8 (TRIP8)	4.00E-86
807	D17218	Human HepG2 3' region MboI cDNA, clone hmd3g02m3	e-136	_	COLLAGEN ALPHA 1(X) CHAIN PRECURSOR	3.00E-04
808	Z57610	H.sapiens CpG DNA, clone 187a10, reverse read cpg187a10.rt1a.	e-102	HN3B_MOUSE	HEPATOCYTE NUCLEAR FACTOR 3- BETA (HNF-3B)	1.00E-24
809	D14678	Human mRNA for kinesin- related protein, partial cds	0	NCD_DROME	CLARET SEGREGATIONAL PROTEIN	1.00E-70

Table 2

	Nearest Nei	ghbor (BlastN vs. 0	Genbank)	Nearest Neighbo	r (BlastX vs. Non-Redundar	t Proteins)
SEQ ID			P VALUE	ACCESSION	DESCRIPTION	P VALUE
810	X56317	Xiphophorus maculatus Xmrk(proto- oncogene) gene for receptor tyrosine kinase.	0.49	WN1B_MOUSE	WNT-10B PROTEIN PRECURSOR (WNT-12)	7.2
811	M36200	Human synaptobrevin 1 (SYB1) gene, exon 5.	0.2	VE2_HPV14	REGULATORY PROTEIN E2	3.1
812	M18157	Human glandular kallikrein gene, complete cds.	1.5	EKLF_MOUSE	KRUEPPEL-LIKE TRANSCRIPTION FACTOR (EKLF)	1.1
813	D25215	Human mRNA for KIAA0032 gene, complete cds	1.9	YXIS_SACER	HYPOTHETICAL 28.9 KD PROTEIN IN XIS 5'REGION (ORF1)	1.3
814	M96628	Human gene sequence, 5' end.	2.00E-06	AGRI_DISOM	AGRIN (FRAGMENT)	9.5
815	Z57610	H.sapiens CpG DNA, clone 187a10, reverse read cpg187a10.rt1a.	e-102	HN3B_MOUSE	HEPATOCYTE NUCLEAR FACTOR 3- BETA (HNF-3B)	1.00E-19
816	X14168	Human pLC46 with DNA replication origin	5.00E-16	ZN44_HUMAN	ZINC FINGER PROTEIN 44 (ZINC FINGER PROTEIN KOX7)	1.6
817	M19262	Rat clathrin light chain (LCB3) mRNA, complete cds.	0.28	LMA_DROME	LAMININ ALPHA CHAIN PRECURSOR	4.7
818	AF058055	Mus musculus monocarboxylate transporter 1		<none></none>	<none></none>	<none></none>
819		Homo sapiens mRNA for KIAA0670 protein, partial cds	0.16	_	HYPOTHETICAL 34.8 KD PROTEIN IN SUT1- RCK1 INTERGENIC REGION	4.00E-06
820	M19262	Rat clathrin light chain (LCB3) mRNA, complete cds.	0.27	LMA_DROME	LAMININ ALPHA CHAIN PRECURSOR	4.5

Table 2

	Nearest Nei	ghbor (BlastN vs.	Genbank)	Nearest Neighbo	r (BlastX vs. Non-Redundar	nt Proteins)
SEQ		DESCRIPTION	P VALUE		DESCRIPTION	P VALUE
ID						
821	Z54367	H.sapiens gene for plectin	0.29		HYPOTHETICAL 58.5 KD PROTEIN T20B12.3 IN CHROMOSOME III	1.00E-14
822		Mus musculus mRNA for oxysterol- binding protein, complete cds	0	OXYB_HUMAN	OXYSTEROL-BINDING PROTEIN	2.00E-49
823	X58170	M.musculus mRNA for t- Complex Tcp- 10a gene	1.00E-20	UL52_HSV11	DNA HELICASE/PRIMASE COMPLEX PROTEIN (DNA REPLICATION PROTEIN UL52)	5.3
824	X58430	Human Hox1.8 gene	0	HXAA_HUMAN	HOMEOBOX PROTEIN HOX-A10 (HOX-1H) (HOX-1.8) (PL)	1.00E-44
825	X53754	Porcine sarcoplasmic/end oplasmic- reticulum Ca(2+) pump gene 2 3'- end region		<none></none>	<none></none>	<none></none>
826	AB005786	Arabidopsis thaliana tRNA- Glu gene	0.46	<none></none>	<none></none>	<none></none>
827	AB012130	Homo sapiens SBC2 mRNA for sodium bicarbonate cotransporter2, complete cds	1.9	<none></none>	<none></none>	<none></none>
828	AB017430	Homo sapiens mRNA for kinesin-like DNA binding protein, complete cds		-	HYPOTHETICAL 12.7 KD PROTEIN IN HUPB- COF INTERGENIC REGION	0.063
829	AB007886	Homo sapiens KIAA0426 mRNA, complete cds	0.042	YDF3_SCHPO	PROBABLE EUKARYOTIC INITIATION FACTOR C17C9.03	0.52
830	AB018335	Homo sapiens mRNA for KIAA0792 protein, complete cds	e-172	UROT_BOVIN	TISSUE PLASMINOGEN ACTIVATOR PRECURSOR (EC 3.4.21.68)	0.86

Table 2

	Nearest Neis	ghbor (BlastN vs. 0	Genbank)	Nearest Neighbo	r (BlastX vs. Non-Redundar	t Proteins)
SEQ	-		P VALÚE	ACCESSION	DESCRIPTION	P VALUE
ID						
831	D12646	Mouse kif4 mRNA for microtubule- based motor protein KIF4, complete cds	0	KIF4_MOUSE	KINESIN-LIKE PROTEIN KIF4	9.00E-96
832	U38376	Rattus norvegicus cytosolic phospholipase A2 mRNA, complete cds	0.048	<none></none>	<none></none>	<none></none>
833	L40411	Homo sapiens thyroid receptor interactor	0	TRI8_HUMAN	THYROID RECEPTOR INTERACTING PROTEIN 8 (TRIP8)	4.00E-86
834	U08110	Mus musculus RNA1 homolog (Fug1) mRNA, complete cds.	8.00E-04	YNW7_YEAST	HYPOTHETICAL 68.8 KD PROTEIN IN URE2- SSU72 INTERGENIC REGION	0.02
835	D50646	Mouse mRNA for SDF2, complete cds	1.00E-40	YB64_YEAST	HYPOTHETICAL 57.2 KD PROTEIN IN MET8- HPC2 INTERGENIC REGION	4.9
836	D50646	Mouse mRNA for SDF2, complete cds	1.00E-40	YB64_YEAST	HYPOTHETICAL 57.2 KD PROTEIN IN MET8- HPC2 INTERGENIC REGION	4.9
837		Methanococcus jannaschii section 1 of 150 of the complete genome	5.00E-05	GCS1_HUMAN	OLIGOSACCHARIDE GLUCOSIDASE (EC 3.2.1.106)	9.2
838	U18657	Haemophilus influenzae LeuA (leuA) gene, partial cds, DprA (dprA+), orf272 and orf193 genes, complete cds, and PfkA (pfkA) gene, partial cds.	0.01	STE6_YEAST	MATING FACTOR A SECRETION PROTEIN STE6 (MULTIPLE DRUG RESISTANCE PROTEIN HOMOLOG) (P-GLYCOPROTEIN)	7

Table 2

	Nearest Neig	ghbor (BlastN vs.	Genbank)	Nearest Neighbor (BlastX vs. Non-Redundant Proteins)				
SEQ ID	ACCESSION	DESCRIPTION	P VALUE	ACCESSION	DESCRIPTION	P VALUE		
839	U12523	Rattus norvegicus ultraviolet B radiation- activated UV98 mRNA, partial sequence.	1.00E-10	YMT8_YEAST	HYPOTHETICAL 36.4 KD PROTEIN IN NUP116-FAR3 INTERGENIC REGION	2.00E-06		
840	D78255	Mouse mRNA for PAP-1, complete cds	e-175	<none></none>	<none></none>	<none></none>		
841	D17263	Human HepG2 3' region MboI cDNA, clone hmd5f07m3	1.00E-58	<none></none>	<none></none>	<none></none>		
842	AF006751	Homo sapiens ES/130 mRNA, complete cds	0.061	YRP2_YEAST	HYPOTHETICAL 84.4 KD PROTEIN IN RPC2/RET1 3'REGION	2.00E-07		
843	U67459	Methanococcus jannaschii section 1 of 150 of the complete genome	6.00E-05	YC14_METJA	HYPOTHETICAL PROTEIN MJ1214	8.1		
844	D88689	Mus musculus mRNA for flt-1, complete cds	0.084	ICP0_HSV2H	TRANS-ACTING TRANSCRIPTIONAL PROTEIN ICP0 (VMW118 PROTEIN)	0.014		

Table 5 All Differential Data for Libs 1-4 and 8-9

Clone Name	Cluster ID	Clones in Lib1	Clones in Lib2	Clones in Lib3	Clones in Lib4	Clones in Lib8	Clones in Lib9
M00001340B:A06	17062	3	0	0	0	0	0
M00001340D:F10	11589	2	2	1	3	3	8
M00001341A:E12	4443	10	6	2	6	3	11
M00001342B:E06	39805	2	0	0	0	1	0
M00001343C:F10	2790	7	15	13	14	6	0
M00001343D:H07	23255	3	0	1	1	0	0
M00001345A:E01	6420	8	0	2	0	1	0
M00001346A:F09	5007	4	8	3	6	2	6
M00001346D:E03	6806	5	2	1	2	0	3
M00001346D:G06	5779	5	4	3	4	0	0
M00001346D:G06	5779	5	4	3	4	0	0
M00001347A:B10	13576	5	0	0	0	12	11
M00001347H:B10	16927	4	0	0	2	0	0
M00001348B:G06	16985	4	0	0	0	0	0
M00001349B:B08	3584	5	11	5	0	0	2
M00001349B:B00	7187	5	3	1	0	- 1	0
M000013507:1101	3162	10	14	i	6	6	5
M00001351B:A08	3162	10	14	i	6	6	5
M00001351B:1100	16245	4	0	0	0	0	0
M00001352A:E02	8078	4	3	1	0	1	0
M00001353A:G12	14929	4	0	0	1	23	16
M00001355B:G10	14391	3	1	0	0	0	0
M00001357D:D11	4059	8	6	8	16	0	1
M00001357B:B11	4141	5	2	10	16	4	27
M00001361A:A03	2379	26	13	4	2	2	3
M00001361B:108	5622	7	4	2	13	ī	2
M00001362C:H11	945	9	21	2	13	0	0
M00001362C:H11	40132	2	0	0	0	3	0
M00001363C:C10	6867	7	3	0	0	0	0
M00001370A:C09	7172	3	5	1	2	0	1
M00001371C.E09	17732	1	3	5	0	1	4
M00001378B:B02	39833	2	0	0	0	0	0
M00001378B.B02	1334	27	38	35	28	3	0
	39886	2	0	0	0	0	0
M00001380D:B09		2	1	0	0	0	0
M00001382C;A02	22979	_	_	_	0		0
M00001383A:C03	39648 39648	2	0	0	0	0	0
M00001383A:C03 M00001386C:B12		2 5	5	4	2	5	2
	5178	5 5	19	25	16		0
M00001387A:C05	2464				0	1 0	0
M00001387B:G03	7587	6	2	1			0
M00001388D:G05	5832	10	3	0	1	5	1
M00001389A:C08	16269	3	0	0	0	1	-
M00001394A:F01	6583	2	7	3	2	0	0
M00001395A:C03	4016	5	14	0	6	0	0
M00001396A:C03	4009	6	4	13	5	4	10
M00001402A:E08	39563	2	0	0	0	0	0

Table 5 All Differential Data for Libs 1-4 and 8-9

Clone Name	Cluster ID	Clones in Lib1	Clones in Lib2	Clones in Lib3	Clones in Lib4	Clones in Lib8	Clones in Lib9
M00001407B:D11	5556	8	1	5	0	2 .	0
M00001409C:D12	9577	5	2	0	1	11	12
M00001410A:D07	7005	8	2	0	0	0	0
M00001412B:B10	8551	4	4	0	3	0	0
M00001415A:H06	13538	5	0	0	0	9	1
M00001416A:H01	7674	5	2	0	5	0	0
M00001416B:H11	8847	4	1 .	3	0	6	1
M00001417A:E02	36393	2	0	0	1	0	0
M00001418B:F03	9952	4	2	1	i	0	0
M00001418D:B06	8526	3	2	1	5	1	0
M000014102:E00	9577	5	2	0	1	11	12
M00001421C:F07	15066	4	0	0	0	0	0
M00001423B:E07	10470	5	1	0	2	0	1
M00001424B:009	22195	3	0	0	0	0	0
M00001425D:1108	4261	4	9	7	9	12	15
M00001420D:C08	84182	1	0	ó	Ó	0	0
M00001428A:H10	2797	15	11	18	16	1	14
M00001429A:1104	4635	7	9	2	0	0	0
M00001429B:A11	40392	2	0	1	8	12	16
M00001429D:D07	40054	1	0	0	0	0	0
M00001439C.F08	16731	3	1	0	0	0	0
M00001442C:D07	13532	3	2	1	0	1	2
M00001445A:F05	7801	5	2	4	6	1	0
M00001446A:F03	10717	3 7	2	0	5	.ı 8	0
	8	1850	2127	1703	3133	1355	122
M00001448D:C09			0	0	9133	1333	30
M00001448D:H01	36313 5857	2 6	=	3	4	0	0
M00001449A:A12			2 1	_	0	0	0
M00001449A:B12	41633	1	•	0	•	2	5
M00001449A:D12	3681	12	5	10	1		0
M00001449A:G10	36535	2	0	0	0	0	
M00001449C:D06	86110	1	0	0	0	0	0
M00001450A:A02	39304	2	0	0	0	0	0
M00001450A:A11	32663	1	1	0	0	0	0
M00001450A:B12	82498	1	0	0	0	0	0
M00001450A:D08	27250	2	0	0	0	0	0
M00001452A:B04	84328	1	0	0	0	0	0
M00001452A:B12	86859	1	0	0	0	0	0
M00001452A:D08	1120	44	41	5	11	5	0
M00001452A:F05	85064	1	0	0	0	0	0
M00001452C:B06	16970	4	0	0	0	3	4
M00001453A:E11	16130	3	1	0	0	0	1
M00001453C:F06	16653	3	1	0	0	0	0
M00001454A:A09	83103	Ī	0	0	0	0	0
M00001454B:C12	7005	8	2	0	0	0	0
M00001454D:G03	689	58	95	17	36	66	95
M00001455A:E09	13238	4	1	0	0	0	0
M00001455B:E12	13072	4	1	0	0	0	0
M00001455D:F09	9283	4	1	0	1	0	1

Table 5 All Differential Data for Libs 1-4 and 8-9

Clone Name	Cluster ID	Clones in Lib1	Clones in Lib2	Clones in Lib3	Clones in Lib4	Clones in Lib8	Clones in Lib9
M00001455D:F09	9283	4	1	0	1	0	1
M00001460A:F06	2448	23	22	2	3	3	1
M00001460A:F12	39498	2	0	0	0	0	0
M00001461A:D06	1531	20	23	32	17	14	14
M00001463C:B11	19	1415	1203	1364	525	479	774
M00001465A:B11	10145	2	0	2	0	0	0
M00001466A:E07	4275	11	2	5	0	4	2
M00001467A:B07	38759	2	0	0	0	1	1
M00001467A:D04	39508	2	0	0	Ō	0	0
M00001467A:D08	16283	3	0	0	Ō	0	0
M00001467A:D08	16283	3	0	0	0	0	ŏ
M00001467A:E10	39442	2	0	0	Ö	Ö	Ö
M00001468A:F05	7589	6	2	1	1	1	0
M00001469A:C10	12081	4	0	0	0	0	0
M00001469A:H12	19105	2	0	2	0	1	0
M00001470A:B10	1037	53	48	4	22	0	0
M00001470A:C04	39425	2	0	0	0	0	0
M00001471A:B01	39478	2	0	0	Ö	0	0
M0000147171:B01	7985	3	1	4	0	1	0
M00001401B:703	18699	2	i	0	0	0	3
M00001490D:C04	7206	4	3	3	1	2	0
M00001494B:100	2623	12	4	31	4	6	1
M00001497A:G02	10539	2	1	1	0	1	0
M00001499B:A11	5336	9	2	4	8	3	15
M00001500A:E03	2623	12	4	31	4	6	1
M00001500A:E11	9443	4	2	1	1	0	0
M00001500C:204	9685	3	2	0	7	2	3
M00001501D:C02	10185	5	1	0	0	2	4
M00001504C:H06	6974	7	3	0	1	0	0
M00001504C:1100	6420	8	0	2	0	1	0
M00001504D:000 M00001507A:H05	39168	2	0	0	0	0	0
M00001507A:1105	39412	2	0	0	0	0	0
M00001511A:A09	39186	2	0	0	0	0	-
M00001512A:A09	39160	9	9	5	2	0	0
M00001512D:G09	4568	10	4	0	9	2	0
M00001513A:B00 M00001513C:E08	14364	10	0	=	-	_	0
M00001513C.E08	40044	2		0	0	0	0
M00001514C:D11	4313	13	0 6	0	0	0	0
M00001517A:B07		3		1	0	1	0
M00001518C:B11	8952		4	0	4	2	0
	7337	4	4	3	16	12	21
M00001528A:F09	18957	3	0	0	0	0	0
M00001528B:H04	8358	3	3	2	0	0	0
M00001531A:D01	38085	2	0	0	0	0	0
M00001532B:A06	3990	6	12	4	1	3	1
M00001533A:C11	2428	14	14	13	9	2	19
M00001534A:C04	16921	4	0	0	1	2	1
M00001534A:D09	5097	6	5	1	1	3	2
M00001534A:F09	5321	11	7	1	5	10	26

Table 5 All Differential Data for Libs 1-4 and 8-9

Clone Name	Cluster ID	Clones in Lib1	Clones in Lib2	Clones in Lib3	Clones in Lib4	Clones in Lib8	Clones in Lib9
M00001534C:A01	4119	9	4	2	2	5	3
M00001535A:B01	7665	3	1	5	0	0	0
M00001535A:C06	20212	2	0	1	1	0	0
M00001535A:F10	39423	2	0	0	0	0	0
M00001536A:B07	2696	23	11	9	18	10	21
M00001536A:C08	39392	2	0	0	0	0	0
M00001537A:F12	39420	2	0	0	0	0	0
M00001537B:G07	3389	4	11	13	2	0	0
M00001540A:D06	8286	6	1	0	3	4	0
M00001541A:D02	3765	19	6	0	0	0	0
M00001541A:F07	22085	3	0	0	0	0	1
M00001541A:H03	39174	2	0	0	0	0	0
M00001542A:A09	22113	3	0	0	0	0	0
M00001542A:E06	39453	2	0	0	0	0	0
M00001544A:E03	12170	2	1	2	0	0	0
M00001544A:G02	19829	2	0	1	0	0	0
M00001544B:B07	6974	7	3	0	1	0	0
M00001545A:C03	19255	2	0	0	0	0	0
M00001545A:D08	13864	3	0	2	1	2	4
M00001546A:G11	1267	43	55	5	0	0	0
M00001548A:E10	5892	5	1	4	4	1	3
M00001548A:H09	1058	40	44	37	47	39	59
M00001549A:B02	4015	10	5	8	15	2	0
M00001549A:D08	10944	3	0	3	1	0	7
M00001549B:F06	4193	12	7	2	2	0	1
M00001549C:E06	16347	4.	0	0	0	0	0
M00001550A:A03	7239	5	2	1	0	2	0
M00001550A:G01	5175	8	1	3	2	0	0
M00001551A:B10	6268	6	4	3	18	5	0
M00001551A:F05	39180	2	0	0	0	0	0
M00001551A:G06	22390	2	1	0	0	0	1
M00001551C:G09	3266	12	14	0	1	0	6
M00001552A:B12	307	73	60	196	75	79	27
M00001552A:D11	39458	2	0	0	0	0	0
M00001552B:D04	5708	5	4	4	3	1	4
M00001553A:H06	8298	4	3	1	3	0	0
M00001553B:F12	4573	5	7	2	5	0	1
M00001553D:D10	22814	3	0	0	0	0	0
M00001555A:B02	39539	2	0	0	0	1	0
M00001555A:C01	39195	2	0	0	0	0	0
M00001555D:G10	4561	8	4	4	8	0	0
M00001556A:C09	9244	2	0	3	2	10	17
M00001556A:F11	1577	12	40	25	3	4	0
M00001556A:H01	15855	2	1	1	2	12	213
M00001556B:C08	4386	7	8	3	1	3	21
M00001556B:G02	11294	4	0	2	0	0	1
M00001557A:D02	7065	5	3	2	1	0	0
M00001557A:D02	7065	5	3	2	1	0	0

Table 5 All Differential Data for Libs 1-4 and 8-9

Clone Name	Cluster ID	Clones in Lib1	Clones in Lib2	Clones in Lib3	Clones in Lib4	Clones in Lib8	Clones in Lib9
M00001557A:F01	9635	3	0	2	1	0	0
M00001557A:F03	39490	2	0	0	0	1	0
M00001557B:H10	5192	8	5	0	5	0	0
M00001557D:D09	8761	3	4	0	·1	0	1
M00001558B:H11	7514	5	3	0	0	0	0
M00001560D:F10	6558	4	3	4	0	0	5
M00001561A:C05	39486	2	0	0	0	0	0
M00001563B:F06	102	289	233	278	116	123	184
M00001564A:B12	5053	11	4	2	2	1	1
M00001571C:H06	5749	4	1	9	0	0	0
M00001578B:E04	23001	2	1	0	2	0	0
M00001579D:C03	6539	8	3	0	0	0	1
M00001583D:A10	6293	3	5	2	6	0	0
M00001586C:C05	4623	3	4	12	2	1	1
M00001587A:B11	39380	2	0	0	0	0	0
M00001594B:H04	260	189	188	27	2	15	0
M00001597C:H02	4837	6	2	10	0	3	1
M00001597C:1102	10470	5	1	0	2	0	1
M00001597D:C03	16999	4	0	Ö	0	0	0
M00001598A:D08	22794	2	0	0	Ö	Õ	0
M00001601A:B00	1399	49	27	19	7	10	23
M00001604A:B10	39391	2	0	0	0	0	0
M00001607A:F03	11465	5	0	0	0	0	0
M00001607A:E11	7802	5	4	0	1	0	0
M00001608A:B03	22155	3	0	0	0	0	0
M00001608B:E03	13157	4	1	0	3	1	0
M00001617C:E02	17004	4	0	1	0	1	0
M00001617C.E02	40314	2	0	0	0	1	0
M00001619C.F12	40044	2	0	0	0	0	0
M00001621C.C08	13913	2	1	2	0	0	1
M00001623D:F10	3277	10	11	8	3	5	i
M00001624A:B00	4309	4	13	3	10	0	0
M00001624C:F01	5214	10	2	2	2	4	3
M00001630B.H09	39171	2	0	0	0	0	0
M00001645A:C12	19267	2	0	0	0	0	1
	4665		9	0	0	0	0
M00001648C:A01		5	0	0	0	3	Ö
M00001657D:C03	23201	3	0	2	2	0	5
M00001657D:F08	76760	1		0	0	0	0
M00001662C:A09	23218	3	0			0	0
M00001663A:E04	35702	2	0	0	0	1	0
M00001669B:F02	6468	4	3	3	8	1	0
M00001670C:H02	14367	3	0	0	0	0	
M00001673C:H02	7015	6	3	1	2	1	1
M00001675A:C09	8773	4	1	4	4	4	6
M00001676B:F05	114.60	4	2	0	0	0	0
M00001677C:E10	14627	1	2	1	0	1	0
M00001677D:A07		5	3	0	0	0	0
M00001678D:F12	4416	9	5	2	6	1	3

Table 5 All Differential Data for Libs 1-4 and 8-9

· Clone Name	Cluster ID	Clones in Lib1	Clones in Lib2	Clones in Lib3	Clones in Lib4	Clones in Lib8	Clones in Lib9
M00001679A:A06	6660	7	0	4	2	1	0
M00001679A:F10	26875	1	0	0	0	1	0
M00001679B:F01	6298	2	4	5	3	1	0
M00001679C:F01	78091	1	0	0	0	0	0
M00001679D:D03	10751	3	2	0	1	0	1
M00001679D:D03	10751	3	2	0	1	0	1
M00001680D:F08	10539	2	1	1	0	1	0
M00001682C:B12	17055	4	0	0	0	0	0
M00001686A:E06	4622	7	6	4	2	3	0
M00001688C:F09	5382	6	2	6	2	0	3
M00001693C:G01	4393	10	6	2	4	1	1
M00001716D:H05	67252	1	0	0	i	0	0
M00003741D:C09	40108	2	0	0	0	0	Õ
M00003747D:C05	11476	6	0	0	0	0	0
M00003759B:B09	697	76	52	30	72	21	30
M00003762C:B08	17076	4	0	0	0	0	0
M00003763A:F06	3108	14	11	7	5	0	1
M00003703711 00 M00003774C:A03	67907	1	0	Ó	0	0	0
M00003774C:H05	5619	3	5	3	3	0	4
M00003736E:B05	11350	3	3	0	0	1	0
M00003820B:R00	21877	2	1	0	0	0	1
M00003837D:A01	7899	5	4	0	2	1	0
M00003837D:R01	7798	5	2	2	0	0	1
M00003837A:B08	6539	. 8	3	0	0	0	1
M00003844C:B11	6874	6	3	0	0	0	0
M00003840B:D00	13595	4	0	1	0	0	1
M00003851B:D10	5619	3	5	3	3	. 0	4
M00003853A:F12	10515	5	1	0	1	1	2
M00003856B:C02	4622	7	6	4	1	3	
	3389	4		•	2	-	0
M00003857A:G10		•	11	13	2	0	0
M00003857A:H03	4718	4	5 7	5	2	4	6
M00003871C:E02	4573	5 5	•	2	5	0	ì
M00003875B:F04 M00003875B:F04	12977	=	0	0	0	0	0
	12977	5	0	0	0	0	0
M00003875C:G07 M00003876D:E12	8479	4	3	1	1	2	4
M00003879B:C11	7798	5	2	2	0	0	1
	5345	7	1	7	4	6	27
M00003879B:D10	31587	1	1	0	0	1	0
M00003879D:A02	14507	3	1	0	0	3	1
M00003885C:A02	13576	5	0	0	0	12	11
M00003885C:A02	13576	5	0	0	0	12	11
M00003906C:E10	9285	4	3	0	0	1	2
M00003907D:A09	39809	1	0	0	0	2	1
M00003907D:H04	16317	3	0	0	0	0	0
M00003909D:C03	8672	4	4	0	0	0	0
M00003912B:D01	12532	4	1	0	1	0	1
M00003914C:F05	3900	9	6	8	1	7	13
M00003922A:E06	23255	3	0	1	1	0	0

Table 5 All Differential Data for Libs 1-4 and 8-9

Clone Name	Cluster ID	Clones in Lib1	Clones in Lib2	Clones in Lib3	Clones in Lib4	Clones in Lib8	Clones in Lib9
M00003958A:H02	18957	3	0	0	0	0	0
M00003958A:H02	18957	3	0	0	0	0	0
M00003958C:G10	40455	2	0	Ö	Ô	0	0
M00003958C:G10	40455	2	0	0	. 0	0	0
M00003968B:F06	24488	2	0	1	4	0	0
M00003970C:B09	40122	2	0	0	0	0	Õ
M00003974D:E07	23210	3	0	Ö	0	0	0
M00003974D:H02	23358	3	0	0	0	1	0
M00003975A:G11	12439	4	0	0	Õ	0	0
M00003978B:G05	5693	7	4	1	3	1	1
M00003981A:E10	3430	9	10	7	3	0	0
M00003982C:C02	2433	10	13	21	18	8	8
M00003983A:A05	9105	5	1	1	1	0	0
M00004028D:A06	6124	4	8	1	9	1	0
M00004028D:C05	40073	2	0	1 1	0	0	1
M00004031A:A12	9061	5	2	0	0	0	0
M00004031A:A12	9061	5	2	0	0	0	0
M00004035C:A07	37285	2	0	0	1	0	1
M00004035D:B06	17036	4	0	0	0	0	0
M00004059A:D06	5417	10	4	0	9	2	0
M00004068B:A01	3706	7	14	4	22	1	0
M00004072B:B05	17036	4	0	0	0	0	0
M00004081C:D10	15069	3	0	0	1	0	0
M00004081C:D12	14391	3	1	0	0	0	0
M00004086D:G06	9285	4	3	0	0	1	2
M00004087D:A01	6880	2	6	1	1	0	0
M00004093D:B12	5325	5	5	2	0	2	1
M00004093D:B12	5325	5	5	2	0	2	1
M00004105C:A04	7221	5	2	2	2	0	0
M00004108A:E06	4937	4	9	3	1	3	1
M00004111D:A08	6874	6	3	0	0	0	. 1
M00004114C:F11	13183	2	3	0	7	0	1
M00004138B:H02	13272	3	2	0	3	0	0
M00004146C:C11	5257	2	8	5	5	5	•
M00004151D:B08	16977	4	0	0	0	0	25 0
M00004157C:A09	6455	3	1	6	0	0	
M00004169C:C12	5319	6	2	8	2	2	0 3
M00004171D;B03	4908	6	7	2	2	2	0
M00004172C:D08	11494	4	0	0	0	0	0
M00004183C:D07	16392	3	0	0	0	0	0
M00004185C:C03	11443	5	1	0	0	0	
M00004197D:H01	8210	2	6	0	0	0	0
M00004203B:C12	14311	4	0	0			0
M00004203B:C12		26	13	4	0 2	1 2	2 3
M00004214C:H05	23/4				7.	/.	•
	2379 11451						
M00004223A ·G10	11451	3	2	1	2	1	1
M00004223A:G10 M00004223B:D09							

Table 5 All Differential Data for Libs 1-4 and 8-9

Clone Name	Cluster ID	Clones in Lib1	Clones in Lib2	Clones in Lib3	Clones in Lib4	Clones in Lib8	Clones in Lib9
M00004229B:F08	6455	3	1	6	0	0	0
M00004230B:C07	7212	3	5	2	1	3	0
M00004269D:D06	4905	7	6	3	1	3	1
M00004275C:C11	16914	3	0	0	1	0	0
M00004283B:A04	14286	3	1	0	1	1	1
M00004285B:E08	56020	1	0	0	0	0	0
M00004295D:F12	16921	4	0	0	1	2	1
M00004296C:H07	13046	4	1	0	1	0	0
M00004307C:A06	9457	2	0	5	0	3	0
M00004312A:G03	26295	2	0	0	0	0	0
M00004318C:D10	21847	2	1	0	0	0	0
M00004372A:A03	2030	13	10	32	4	0	0
M00004377C:F05	2102	12	20	23	21	6	5

Table 6 All Differential Data for Libs 15-20

Clone Name	Cluster ID	Clones in Lib15	Clones in Lib16b	Clones in Lib17	Clones in Lib18	Clones in Lib19	Clones in Lib20
M00001340B:A06	17062	0	0	0	0	0	0
M00001340D:F10	11589	0	0	0	0	0	0
M00001341A:E12	4443	0	0	0	1	0	0
M00001342B:E06	39805	0	0	0	-0	0	0
M00001343C:F10	2790	0	0	0	0	0	0
M00001343D:H07	23255	0	0	0	0	0	0
M00001345A:E01	6420	0	0	0	0	0	0
M00001346A:F09	5007	Ŏ	0	0	0	0	0
M00001346D:E03	6806	0	0	. 0	0	0	0
M00001346D:G06	5779	0	0	0	0	0	0
M00001346D:G06	5779	0	Õ	0	0	0	0
M00001347A:B10	13576	0	0	0	0	0	Ö
M00001347A:B10	16927	0	0	0	0	Ŏ	0
M00001348B:G06	16985	0	0	0	0	ő	0
M00001348B:B08	3584	0	0	0	0	0	0
M00001349B:B08	7187	0	0	0	0	0	0
M00001350A:H01	3162	0	1	0	0	1	0
M00001351B:A08	3162	0	1	0	0	1	0
M00001351B.A08	16245	0	0	0	0	0	0
M00001352A:E02 M00001353A:G12	8078	0	0	0	0	0	0
M00001353A:G12	14929	0	3	1	0	5	0
		•	0	0	0	0	0
M00001355B:G10	14391	0	•	-	0	0	0
M00001357D:D11	4059	0	0 0	0	0	0	0
M00001361A:A05	4141	0	•	0	0	0	0
M00001361D:F08	2379	0	0	0	0	0	0
M00001362B:D10	5622	0	0	0	_	-	
M00001362C:H11	945	0	0	0	0	0	1 0
M00001365C:C10	40132	0	0	0	0	0	=
M00001370A:C09	6867	0	0	0	0	0	0
M00001371C:E09	7172	0	0	0	0	0	0
M00001376B:G06	17732	0	0	0	0	0	1
M00001378B:B02	39833	0	0	0	0	0	0
M00001379A:A05	1334	0	0	0	0	0	1
M00001380D:B09	39886	0	0	0	0	0	0
M00001382C:A02	22979	0	0	0	0	0	0
M00001383A:C03	39648	0	0	0	0	0	0
M00001383A:C03	39648	0	0	0	0	0	0
M00001386C:B12	5178	0	0	0	0	0	0
M00001387A:C05	2464	0	0	0	0	0	0
M00001387B:G03	7587	0	0	0	0	0	0
M00001388D:G05	5832	0	0	0	0	0	0
M00001389A:C08	16269	0	1	0	0	0	0
M00001394A:F01	6583	1	4	1	0	0	0
M00001395A:C03	4016	0	0	0	0	0	0
M00001396A:C03	4009	0	0	0	0	0	0
M00001402A:E08	39563	0	0	0	0	0	0
M00001407B:D11	5556	0	0	0	0	0	0
M00001409C:D12	9577	0	0	0	0	0	0

Table 6 All Differential Data for Libs 15-20

Table 6 All Differentia						~. .	a .
Clone Name	Cluster	Clones in	Clones in	Clones in	Clones in	Clones in	Clones in
	ID	Lib15	Lib16b	Lib17	Lib18	Lib19	Lib20
M00001410A:D07	7005	0	0	0	0	0	0
M00001412B:B10	8551	0	0	0	0	0	0
M00001415A:H06	13538	0	0	0	0	0	0
M00001416A:H01	7674	0	0	0	0	0	0
M00001416B:H11	8847	0	0	0	0	0	0
M00001417A:E02	36393	0	0	0	0	0	0
M00001418B:F03	9952	0	0	0	0	0	0
M00001418D:B06	8526	0	0	0	0	0	0
M00001421C:F01	9577	0	0	0	0	0	0
M00001423B:E07	15066	0	0	0	0	0	0
M00001424B:G09	10470	0	0	0	0	0	0
M00001425B:H08	22195	0	0	0	0	0	0
M00001426D:C08	4261	0	0	1	0	0	1
M00001428A:H10	84182	0	0	0	0	0	0
M00001429A:H04	2797	0	0	0	0	0	0
M00001429B:A11	4635	0	0	0	0	0	0
M00001429D:D07	40392	0	0	0	0	0	0
M00001439C:F08	40054	0	0	0	0	0	0
M00001442C:D07	16731	0	0	0	0	0	0
M00001445A:F05	13532	0	0	0	0	0	0
M00001446A:F05	7801	0	0	0	0	0	0
M00001447A:G03	10717	0	0	0	0	0	0
M00001448D:C09	8	1	6	6	1	14	1
M00001448D:H01	36313	0	3	0	0	3	0
M00001449A:A12	5857	0	0	0	0	0	0
M00001449A:B12	41633	Ö	0	0	0	0	0
M00001449A:D12	3681	. 0	0	0	0	0	0
M00001449A:G10	36535	Ö	Ŏ	Ŏ	0	0	0
M0000144971:G10	86110	Õ	Õ	Ö	0	0	Ö
M00001450A:A02	39304	Ö	Ö	0	0	0	0
M00001450A:A02	32663	Õ	0	0	0	Ŏ	0
M00001450A:R11	82498	0	0	0	0	Ö	Õ
M00001450A:D08	27250	0	0	0	0	0	0
M00001450A:B04	84328	0	0	0	0	0	0
M00001452A:B04	86859	0	0	0	0	0	Ö
M00001452A:B12		0	0	0	0	0	0
	1120 85064	0	0	0	0	0	0
M00001452A:F05		0	0	2	0	1	0
M00001452C:B06	16970	-		0	0	0	0
M00001453A:E11	16130	0	0		_		0
M00001453C:F06	16653	0	0	0	0	0	_
M00001454A:A09	83103	0	0	0	0	0	0
M00001454B:C12	7005	0	0	0	0	0	0
M00001454D:G03	689	0	2	2	0	4	2
M00001455A:E09	13238	0	0	0	0	0	0
M00001455B:E12	13072	0	0	0	0	0	0
M00001455D:F09	9283	0	0	0	0	0	0
M00001455D:F09	9283	0	0	0	0	0	0
M00001460A:F06	2448	0	0	0	0	0	0
M00001460A:F12	39498	0	0	0	0	0	0

Table 6 All Differential Data for Libs 15-20

				.	~ .	Ol
Cluster ID	Clones in Lib15	Clones in Lib16b	Clones in Lib17	Clones in Lib18	Lib19	Clones in Lib20
1531	0	0	0	0	0	0
19	2	13	13	0	69	10
10145	0	0	0	0	0	0
4275	0	0	0	0	0	0
38759	0	0	0	0	0	0
39508	0	0	0	0	0	0
16283	0	0	0	0	0	0
16283	0	0	0	0	0	0
39442	0	0	0	0	0	0
7589	0	0	0	0	0	0
12081	0	0	0	0	0	0
19105	0	0	0	0	0	0
1037	0	0	0	0	0	0
39425	0	0	0	0	0	0
39478	0	0	0	0	0	0
7985	0	0	0	0	0	0
	0	0	0	0	0	0
	0		0	0	0	0
	0	0		0	0	0
	0	0	0	0	0	0
	0	0	0	0	0	0
	0	0	0	0	0	0
9443	0	0	0	0	0	0
9685	0	0	0	0	0	0
10185	0	0	0	0	0 .	0
6974	0	0	0	0	0	0
6420	. 0	0	0	0	0	0
39168	0	0	0	0	0	0
39412	0	0	0	0	0	0
39186	0	0	0	0	0	0
3956	0	0	1	0	0	0
4568	0	0	0	0	0	0
14364	0	0	0	0	0	0
40044	0	1	0	0	0	0
4313	0	0	0	0	0	0
8952	0	0	0	0	0	0
7337	0	0	0	0	0	0
18957	0	0	0	0	0	0
8358	0	0	0	0	0	0
38085	0	0	0	0	0	0
3990	1	1	0	0	0	0
2428	0	0	1	0	0	0
16921	0	0	0	0	0	0
5097	0	0	0	0	0	0
5321	0	1	0	0	2	0
4119	0	0	0	0	0	0
7665	0	0	0	0	0	0
20212	0	0	0	0	0	0
39423	0	0	0	0	0	0
	Cluster ID 1531 19 10145 4275 38759 39508 16283 16283 39442 7589 12081 19105 1037 39425 39478 7985 18699 7206 2623 10539 5336 2623 9443 9685 10185 6974 6420 39168 39412 39186 3956 4568 14364 40044 4313 8952 7337 18957 8358 38085 3990 2428 16921 5097 5321 4119 7665 20212	ID Lib15 1531 0 19 2 10145 0 4275 0 38759 0 39508 0 16283 0 39508 0 16283 0 39442 0 7589 0 12081 0 19105 0 1037 0 39478 0 7985 0 18699 0 7206 0 2623 0 9443 0 9685 0 10185 0 6974 0 6420 0 39168 0 39412 0 39186 0 39412 0 39186 0 39412 0 39186 0 39412 0 39186	Cluster Clones in Lib15 Clones in Lib16b 1531 0 0 19 2 13 10145 0 0 4275 0 0 38759 0 0 39508 0 0 16283 0 0 16283 0 0 39442 0 0 7589 0 0 12081 0 0 19105 0 0 1037 0 0 39425 0 0 39478 0 0 7985 0 0 18699 0 0 7206 0 0 2623 0 0 9443 0 0 9443 0 0 9685 0 0 10185 0 0 6974 0 0 6420<	Cluster ID Clones in Lib15 Clones in Lib16b Clones in Lib17 1531 0 0 0 19 2 13 13 10145 0 0 0 4275 0 0 0 38759 0 0 0 39508 0 0 0 16283 0 0 0 16283 0 0 0 39442 0 0 0 7589 0 0 0 12081 0 0 0 19105 0 0 0 1937 0 0 0 39478 0 0 0 7985 0 0 0 18699 0 0 0 7206 0 0 0 2623 0 0 0 9443 0 0 0 9443	Cluster ID Clones in Lib15 Clones in Lib16b Clones in Lib17 Clones in Lib18 1531 0 0 0 0 19 2 13 13 0 4275 0 0 0 0 38759 0 0 0 0 39508 0 0 0 0 16283 0 0 0 0 16283 0 0 0 0 16283 0 0 0 0 16283 0 0 0 0 16283 0 0 0 0 15281 0 0 0 0 12081 0 0 0 0 19105 0 0 0 0 1937 0 0 0 0 19425 0 0 0 0 39425 0 0 0 <	Cluster ID

Table 6 All Differential Data for Libs 15-20

Table 6 All Differentia							
Clone Name	Cluster ID	Clones in Lib15	Clones in Lib16b	Clones in Lib17	Clones in Lib18	Clones in Lib19	Clones in Lib20
M00001536A:B07	2696	0	0	0	0	3	0
M00001536A:C08	39392	0	0	0	0	0	0
M00001537A:F12	39420	0	0	0	0	0	0
M00001537B:G07	3389	0	0	0	0	0	0
M00001540A:D06	8286	0	0	0	0	0	0
M00001541A:D02	3765	0	0	0	0	0	0
M00001541A:F07	22085	0	0	0	0	0	0
M00001541A:H03	39174	0	0	0	0	0	0
M00001542A:A09	22113	0	0	0	0	0	0
M00001542A:E06	39453	0	0	0	0	0	0
M00001544A:E03	12170	0	0	0	0	0	0
M00001544A:G02	19829	0	0	0	0	0	0
M00001544B:B07	6974	0	0	0	0	0	0
M00001545A:C03	19255	0	0	0	0	0	0
M00001545A:D08	13864	0	0	0	0	0	0
M00001546A:G11	1267	1	0	0	0	7	0
M00001548A:E10	5892	0	0	0	0	0	0
M00001548A:H09	1058	0	0	1	0	0	0
M00001549A:B02	4015	0	0	0	0	0	0
M00001549A:D08	10944	0	0	0	0	0	0
M00001549B:F06	4193	0	0	0	0	0	0
M00001549C:E06	16347	0	0	0	0	0	0
M00001550A:A03	7239	0	0	0	0	0	0
M00001550A:G01	5175	0	0	0	0	0	0
M00001551A:B10	6268	0	0	0	0	0	0
M00001551A:F05	39180	0	0	0	0	0	0
M00001551A:G06	22390	. 0	0	0	0	0	0
M00001551C:G09	3266	0	0	1	0	0	0
M00001552A:B12	307	0	0	0	0	3	0
M00001552A:D11	39458	0	0	0	0	0	0
M00001552B:D04	5708	0	1	0	0	0	0
M00001553A:H06	8298	0	0	0	0	0	0
M00001553B:F12	4573	0	0	0	0	0	0
M00001553D:D10	22814	0	0	0	0	0	0
M00001555A:B02	39539	0	0	0	0	0	0
M00001555A:C01	39195	0	0	0	0	0	0
M00001555D:G10	4561	0	0	0	0	0	0
M00001556A:C09	9244	0	0	0	0	0	0
M00001556A:F11	1577	0	0	0	0	0	0
M00001556A:H01	15855	3	5	5	0	3	1
M00001556B:C08	4386	1	2	0	0	0	0
M00001556B:G02	11294	0	0	0	0	0	0
M00001557A:D02	7065	0	0	0	0	0	0
M00001557A:D02	7065	0	0	0	0	0	0
M00001557A:F01	9635	0	0	0	0	0	0
M00001557A:F03	39490	0	0	0	0	0	0
M00001557B:H10	5192	0	0	0	0	0	0
M00001557D:D09	8761	0	0	0	0	0	0
M00001558B:H11	7514	0	0	0	0	0	0

Table 6 All Differential Data for Libs 15-20

Table 6 All Differentia							
Clone Name	Cluster ID	Clones in Lib15	Clones in Lib16b	Clones in Lib17	Clones in Lib18	Clones in Lib19	Clones in Lib20
M00001560D:F10	6558	0	0	0	0 Tip19	O .	0
M00001561A:C05	39486	0	0	0	0	0	0
M00001561A:C05	102	22	38				10
				65	7	43	-
M00001564A:B12	5053	0	0	1	0	0	0
M00001571C:H06	5749	0	0	. 0	0	0	0
M00001578B:E04	23001	0	0	0	0	0	0
M00001579D:C03	6539	0	0	0	0	0	0
M00001583D:A10	6293	0	0	0	0	0	0
M00001586C:C05	4623	0	0	0	0	1	0
M00001587A:B11	39380	0	0	0	0	0	0
M00001594B:H04	260	0	0	0	0	1	0
M00001597C:H02	4837	0	0	0	0	0	0
M00001597D:C05	10470	0	0 _	0	0	0	0
M00001598A:G03	16999	1	1	1 .	0	0	0
M00001601A:D08	22794	0	0	0	0	0	0
M00001604A:B10	1399	0	0	0	0	0	0
M00001604A:F05	39391	0	0	0	0	0	0
M00001607A:E11	11465	0	0	0	0	. 0	0
M00001608A:B03	7802	0	0	0	0	0	0
M00001608B:E03	22155	0	0	0	0	0	0
M00001614C:F10	13157	0	0	0	0	0	0
M00001617C:E02	17004	0	0	0	0	1	0
M00001619C:F12	40314	0	0	0	0	0	0
M00001621C:C08	40044	0	1	0	0	0	0
M00001623D:F10	13913	0	0	0	0	0	0
M00001624A:B06	3277	0	0	0	0	0	0
M00001624C:F01	4309	0	0	0	0	0	0
M00001630B:H09	5214	1	0	0	1	1	0
M00001644C:B07	39171	0	0	0	0	0	0
M00001645A:C12	19267	0	0	0	0	1	0
M00001648C:A01	4665	0	0	0	0	0	0
M00001657D:C03	23201	0	0	0	0	0	0
M00001657D:F08	76760	0	0	0	0	0	0
M00001662C:A09	23218	0	0	0	0	0	0
M00001663A:E04	35702	0	0	0	0	0	0
M00001669B:F02	6468	0	0	0	0	0	0
M00001670C:H02	14367	0	0	0	0	0	0
M00001673C:H02	7015	0	0	0	0	0	0
M00001675A:C09	8773	0	0	0	0	0	0
M00001676B:F05	11460	0	0	0	0	0	0
M00001677C:E10	14627	0	1	0	0	0	0
M00001677D:A07	7570	0	0	0	0	0	0
M00001678D:F12	4416	0	0	Ö	0	0	0
M00001679A:A06	6660	0	0	0	0	0	0
M00001679A:F10	26875	Ö	Ŏ	ő	0	0	0
M00001679B:F01	6298	0	0	0	0	0	0
M00001679C:F01	78091	0	0	0	0	0	0
M00001679D:D03	10751	0	0	0	0	0	0
M00001679D:D03	10751	0	0	0	0	0	0
	10/21	J	J	v	v	v	v

Table 6 All Differential Data for Libs 15-20

Table 6 All Differentia			. .	 .	<i>~</i> .	a	.
Clone Name	Cluster ID	Clones in Lib15	Clones in Lib16b	Clones in Lib17	Clones in Lib18	Clones in Lib19	Clones in Lib20
M00001680D:F08	10539	0	0	0	0	0	0
M00001682C:B12	17055	0	0	Ö	0	0	0
M00001686A:E06	4622	0	0	0	0	0	0
M00001688C:F09	5382	0	Õ	0	0	0	0
M00001693C:G01	4393	0	0	0	0	0	0
M00001716D:H05	67252	0	0	0	0	0	0
M00001710D:1103	40108	0	0	0	0	0	0
M00003747D:C05	11476	0	0	0	0	0	0
M00003747B:C03	697	0	0	0	0	1	0
M00003759B:B09	17076	0	0	0	0	0	0
M00003762C:B08	3108	0	0	0	0	0	0
M00003703A:F00	67907	0	0	0	0	0	0
M00003774C:A03	5619	. 0	0	0	0	0	0
M00003790C:D03	11350	0	0	0	0	0	0
	21877	0	0	0	0	0	0
M00003833A:E05 M00003837D:A01	7899	0	0	0	0	0	0
M00003837D:A01	7798	0	0	0	0	0	0
	6539	0	0	0	0	0	0
M00003844C:B11	6874	0	0	1	0	0	0
M00003846B:D06	13595	0	0	0	0	0	0
M00003851B:D10 M00003853A:D04	5619	0	0	0	0	0	0
	10515	0	0	0	0	0	0
M00003853A:F12 M00003856B:C02	4622	0	0	0	0	0	0
	3389	0	0	0	0	0	0
M00003857A:G10	3389 4718	0	0	0	0	0	. 0
M00003857A:H03	4718	0	0	0	0	0	0
M00003871C:E02 M00003875B:F04	4373 12977	.0	0	0	0	0	0
M00003875B:F04	12977	0	0	0	0	0	0
M00003875C:G07	8479	0	0	0	0	0	1
M00003875C:G07	7798	0	0	0	. 0	0	0
M00003879B:C11	5345	0	0	0	2	0	1
M00003879B:D10	31587	0	0	0	0	0	0
M00003879B:D10	14507	0	0	0	0	0	0
M00003879D:A02 M00003885C:A02	13576	0	0	0	0	0	. 0
M00003885C:A02	13576	0	0	Ö	0	0	0
		0	0		_	0	0
M00003906C:E10 M00003907D:A09	9285 39809	0	0	0	0	0	0
M00003907D:A09	16317	0	0	0	0	0	0
M00003907D:H04 M00003909D:C03	8672	• 0	0	0	0	0	0
M00003909D:C03	12532	0	0	0	0	0	0
M00003912B:D01	3900	0	0	0	0	1	0
M00003914C.F03	23255	0	0	0	0	0	0
M00003922A:E00 M00003958A:H02	23233 18957	0	0	0	0	0	0
M00003958A:H02	18957	0	0	0	0	0	0
M00003958A:H02	40455	0	0	0	0	0	0
M00003958C:G10	40455	0	0	0	0	0	0
M00003958C:G10 M00003968B:F06	40433 24488	0	0	0	0	0	0
M00003968B:F06	40122	0	0	0	0	0	0
		0	0	0	0	0	0
M00003974D:E07	23210	U	U	U	U	U	U

Table 6 All Differential Data for Libs 15-20

Table 6 All Differentia							.
Clone Name	Cluster ID	Clones in Lib15	Clones in Lib16b	Clones in Lib17	Clones in Lib18	Clones in Lib19	Clones in Lib20
M00003974D:H02	23358	0	0	0	0	0	0
M00003975A:G11	12439	0	0	0	0	0	0
M00003978B:G05	5693	0	0	0	0	0	0
M00003981A:E10	3430	0	0	0	0	1	0
M00003982C:C02	2433	0	0	0	0	0	0
M00003983A:A05	9105	0	0	0	0	0	0
M00004028D:A06	6124	0	0	0	0	0	0
M00004028D:C05	40073	0	0	0	0	0	0
M00004031A:A12	9061	0	0	0	0	0	0
M00004031A:A12	9061	0	0	0	0	0	0
M00004035C:A07	37285	0	0	0	0	0	0
M00004035D:B06	17036	Ö	0	0	0	0	0
M00004059A:D06	5417	Ö	0	0	0	0	0
M00004068B:A01	3706	0	0	0	Ö	0	0
M00004072B:B05	17036	Õ	0	0	0	0	0
M00004081C:D10	15069	0	Ő	Õ	Ö	Ö	Ö
M00004081C:D12	14391	0	Ö	Ö	Ö	Ŏ	Ö
M0000408fC:D12	9285	0	0	0	0	0	0
M00004087D:A01	6880	0	0	0	0	0	Ö
M00004097D:R01	5325	1	1	0	1	0	1
M00004093D:B12	5325	1	1	0	1	0	1
M00004093B:B12	7221	0	0	0	0	0	0
M00004103C:A04	4937	0	0	0	0	0	0
M00004100A:E00	6874	0	0	1	0	0	Ö
M00004111B:A08	13183	0	0	0	0	0	0
M00004114C:111	13272	0	0	0	0	0	0
M00004136B:1102	5257	. 0	1	0	0	0	0
M00004140C:C11	16977	0	0	Õ	0	0	Ö
M00004157D:B08	6455	0	0	0	0	0	0
M00004157C:A09	5319	0	0	0	0	0	0
M00004103C:C12	4908	0	0	0	0	0	0
M00004171D:B03	11494	0	0	0	0	0	Ö
M00004172C:D08	16392	0	0	0	0	0	0
M00004185C:D07	11443	0	0	0	0	0	0
M00004183C:C03	8210	0	0	0	0	0	0
M00004197B:I101	14311	0	0	0	0	0	0
M00004203B:C12	2379	0	0	0	0	0	0
M00004212B:C07	11451	0	0	0	0	0	0
M00004214C:1103	16918	0	0	0	0	0	0
M00004223A:G10 M00004223B:D09	7899	0	0	0	0	0	0
M00004223B:D09 M00004223D:E04	12971	0	0	0	0	0	0
M00004223D:E04 M00004229B:F08	6455	0	0	0	0	0	0
M00004229B:F08 M00004230B:C07	7212	0	0	0	0	0	. 0
	4905				0	0	0
M00004269D:D06 M00004275C:C11	4905 16914	0	0 0	0 0	0	0	0
M00004275C:C11 M00004283B:A04	16914	0	0	0	0	0	0
		=	0	0	0	0	0
M00004285B:E08	56020	0	0	0	0	0	0
M00004295D:F12	16921	0	0	0	0	0	0
M00004296C:H07	13046	0	U	U	U	U	U

Table 6 All Differential Data for Libs 15-20

Clone Name	Cluster ID	Clones in Lib15	Clones in Lib16b	Clones in Lib17	Clones in Lib18	Clones in Lib19	Clones in Lib20
M00004307C:A06	9457	0	0	0	0	0	0
M00004312A:G03	26295	0	0	0	0	0	0
M00004318C:D10	21847	0	0	0	0	0	0
M00004372A:A03	2030	0	0	0	0	0	0
M00004377C:F05	2102	0	0	0	0 .	0	0

Clone Name	Cluster ID	Clones in Lib12	Clones in Lib13	Clones in Lib14
M00001340B:A06	17062	0	0	0
M00001340D:F10	11589	0	0	0
M00001341A:E12	4443	4	2	0
M00001342B:E06	39805	0	0	0
M00001343C:F10	2790	0	0	0
M00001343D:H07	23255	0	0	0
M00001345A:E01	6420	0	0	0
M00001346A:F09	5007	0	0	0
M00001346D:E03	6806	0	1	1
M00001346D:G06	5779	0	0	0
M00001346D:G06	5779	0	0	0
M00001347A:B10	13576	Ö	0	0
M00001348B:B04	16927	ő	ő	Õ
M00001348B:G06	16985	ő	Ö	ő
M00001349B:B08	3584	Ö	ŏ	ő
M00001349B:B00	7187	ŏ	Ö	ő
M000013501:1101	3162	Ö	.0	ì
M00001351B:A08	3162	ŏ	0	i
M000013512:A00	16245	Ŏ	ŏ	o
M00001352A:B02	8078	ŏ	ŏ	ŏ
M00001353A::G12	14929	0	1	ŏ
M00001355B:G10	14391	0	Ô	ŏ
M00001353B:G10	4059	0	ő	ő
M00001357B:B11	4141	1	2	Ĭ
M00001361D:F08	2379	0	0	o
M00001362B:D10	5622	0	2	1
M00001362C:H11	945	0	0	Ö
M00001365C:C10	40132	ő	ŏ	ő
M00001303C:C10	6867	0	0	ő
M00001370A:C09	7172	0	ŏ	1
M00001371C:E09	17732	2	ŏ	Ô
M00001378B:B02	39833	0	Ö	0
M00001378B:B02	1334	0	ő	0
M00001379A:A03	39886	0	0	0
M00001380D.B09 M00001382C:A02	22979	1	0	0
M00001382C.A02	39648	0	0	0
M00001383A:C03	39648	0	0	0
M00001385A.C03	5178	0	0	0
M00001387A:C05	2464	0	0	0
M00001387A.C03	7587	0	0	0
M00001387B.G05	5832	0	0	0
	16269	2	0	0
M00001389A:C08	6583	0	0	0
M00001394A:F01				
M00001395A:C03	4016 4000	0	0	0
M00001396A:C03	4009 39563	2	0	0
M00001402A:E08		0 0	0 0	0 0
M00001407B:D11	5556	U	U	U

Table 7 All Differential Data for Libs 12-14

Clone Name	Cluster ID	Clones in Lib12	Clones in Lib13	Clones in Lib14
M00001409C:D12	9577	0	0	0
M00001410A:D07	7005	0	0	0
M00001412B:B10	8551	0	0	0
M00001415A:H06	13538	0	0	0
M00001416A:H01	7674	0	0	0
M00001416B:H11	8847	1	0	0
M00001417A:E02	36393	0	0	0
M00001418B:F03	9952	0	0	0
M00001418D:B06	8526	0	0	0
M00001421C:F01	9577	0	0	0
M00001423B:E07	15066	0	0	0
M00001424B:G09	10470	Ō	0	0
M00001425B:H08	22195	0	0	0
M00001426D:C08	4261	0	0	0
M00001428A:H10	84182	Ō	0	0
M00001429A:H04	2797	Ō	0	0
M00001429B:A11	4635	0	0	0
M00001429D:D07	40392	Õ	0	0
M00001123C:F08	40054	Õ	0	0
M00001442C:D07	16731	Ö	0	0
M00001445A:F05	13532	Ö	0	0
M00001446A:F05	7801	Ö	1	0
M00001447A:G03	10717	0	0	0
M00001448D:C09	8	7	6	9
M00001448D:H01	36313	1	0	0
M00001449A:A12	5857	0	0	0
M00001449A:B12	41633	0	0	0
M00001449A:D12	3681	1	0	0
M00001449A:G10	36535	0	0	0
M00001449C:D06	86110	0	0	0
M00001450A:A02	39304	0	1	0
M00001450A:A11	32663	0	0	0
M00001450A:B12	82498	0	0	0
M00001450A:D08	27250	0	0	0
M00001452A:B04	84328	0	0	0
M00001452A:B12	86859	0	0	0
M00001452A:D08	1120	0	0	0
M00001452A:F05	85064	0	0	0
M00001452C:B06	16970	1	0	0
M00001453A:E11	16130	0	0	0
M00001453C:F06	16653	0	0	0
M00001454A:A09	83103	0	0	0
M00001454B:C12	7005	Ö	Ö	0
M00001454D:G03	689	Ö	0	1
M00001455A:E09	13238	0	0	0
M00001455B:E12	13072	Ö	Ö	Ö
M00001455D:F09	9283	Ö	0	Ö
M00001455D:F09	9283	0	0	0
_			•	

Table 7 All Differential Data for Libs 12-14

Clone Name	Cluster ID	Clones in Lib12	Clones in Lib13	Clones in Lib14
M00001460A:F06	2448	0	0	0
M00001460A:F12	39498	0	0	0
M00001461A:D06	1531	0	0	1
M00001463C:B11	19	17	32	31
M00001465A:B11	10145	0	0	0
M00001466A:E07	4275	0	0	0
M00001467A:B07	38759	0	0	0
M00001467A:D04	39508	0	0	0
M00001467A:D08	16283	0	0	0
M00001467A:D08	16283	0	0	0
M00001467A:E10	39442	0	0	0
M00001468A:F05	7589	0	0	0
M00001469A:C10	12081	0	0	0
M00001469A:H12	19105	0	0	0
M00001470A:B10	1037	0	0	0
M00001470A:C04	39425	0	0	0
M00001471A:B01	39478	0	0	0
M00001481D:A05	7985	0	0	0
M00001490B:C04	18699	0	0	0
M00001494D:F06	7206	Ö	0	0
M00001497A:G02	2623	1	0	0
M00001499B:A11	10539	0	1	0
M00001500A:C05	5336	0	0	0
M00001500A:E11	2623	1	0	0
M00001500C:E04	9443	0	0	0
M00001501D:C02	9685	0	0	0
M00001504C:A07	10185	0	0	0
M00001504C:H06	6974	0	0	0
M00001504D:G06	6420	0	0	0
M00001507A:H05	39168	0	0	0
M00001511A:H06	39412	0	0	0
M00001512A:A09	39186	0	0	0
M00001512D:G09	3956	0	0	0
M00001513A:B06	4568	0	0	0
M00001513C:E08	14364	0	0	0
M00001514C:D11	40044	0	0	0
M00001517A:B07	4313	0	0	0
M00001518C:B11	8952	0	0	0
M00001528A:C04	7337	1	2	2
M00001528A:F09	18957	0	0	0
M00001528B:H04	8358	0	0	0
M00001531A:D01	38085	0	0	0
M00001532B:A06	3990	0	0	0
M00001533A:C11	2428	. 0	0	0
M00001534A:C04	16921	0	0	0
M00001534A:D09	5097	0	0	0
M00001534A:F09	5321	4	7	6
M00001534C:A01	4119	0	0	0

Table 7 All Differential Data for Libs 12-14

Clone Name	Cluster ID	Clones in Lib12	Clones in Lib13	Clones in Lib14
M00001535A:B01	7665	0	2	4
M00001535A:C06	20212	0	0	0
M00001535A:F10	39423	0	0	0
M00001536A:B07	2696	0	0	0
M00001536A:C08	39392	0	0	0
M00001537A:F12	39420	0	0	0
M00001537B:G07	3389	0	0	0
M00001540A:D06	8286	0	0	0
M00001541A:D02	3765	0	0	0
M00001541A:F07	22085	0	0	0
M00001541A:H03	39174	0	0	0
M00001542A:A09	22113	0	. 0	0
M00001542A:E06	39453	0	0	0
M00001544A:E03	12170	0	0	. 0
M00001544A:G02	19829	0	0	0
M00001544B:B07	6974	0	0	0
M00001545A:C03	19255	0	0	0
M00001545A:D08	13864	Ö	Ö	0
M00001546A:G11	1267	0	0	0
M00001548A:E10	5892	0	1	0
M00001548A:H09	1058	1	3	0
M00001549A:B02	4015	0	1	0
M00001549A:D08	10944	1	0	0
M00001549B:F06	4193	0	0	0
M00001549C:E06	16347	0	0	0
M00001550A:A03	7239	0	1	0
M00001550A:G01	5175	1	0	0
M00001551A:B10	6268	0	0	1
M00001551A:F05	39180	0	0	0
M00001551A:G06	22390	0	0	1
M00001551C:G09	3266	0	0	0
M00001552A:B12	307	6	11	4
M00001552A:D11	39458	0	0	0
M00001552B:D04	5708	0	0	0
M00001553A:H06	8298	0	0	0
M00001553B:F12	4573	0	0	0
M00001553D:D10	22814	0	0	0
M00001555A:B02	39539	0	0	0
M00001555A:C01	39195	0	0	0
M00001555D:G10	4561	0	0	0
M00001556A:C09	9244	. 0	1	0
M00001556A:F11	1577	0	0	2
M00001556A:H01	15855	1	1	0
M00001556B:C08	4386	3	0	1
M00001556B:G02	11294	0	0	0
M00001557A:D02	7065	0	0	0
M00001557A:D02	7065	0	0	0
M00001557A:F01	9635	0	0	0

Table 7 All Differential Data for Libs 12-14

Clone Name	Cluster ID	Clones in Lib12	Clones in Lib13	Clones in Lib14
M00001557A:F03	39490	0	0	0
M00001557B:H10	5192	0	0	0
M00001557D:D09	8761	0	0	0
M00001558B:H11	7514	0	0	0
M00001560D:F10	6558	0	0	0
M00001561A:C05	39486	0	0	0
M00001563B:F06	102	2	1	2
M00001564A:B12	5053	0	0	0
M00001571C:H06	5749	0	0	0
M00001578B:E04	23001	0	0	0
M00001579D:C03	6539	0	0	0
M00001583D:A10	6293	0	0	0
M00001586C:C05	4623	0	0	0
M00001587A:B11	39380	0	0	0
M00001594B:H04	260	1	0	0
M00001597C:H02	4837	1	0	0
M00001597D:C05	10470	0	0	0
M00001598A:G03	16999	4	2	6
M00001601A:D08	22794	0	0	0
M00001604A:B10	1399	6	3	3
M00001604A:F05	39391	0	0	0
M00001607A:E11	11465	0	0	0
M00001608A:B03	7802	0	0	0
M00001608B:E03	22155	0	0	0
M00001614C:F10	13157	0	0	0
M00001617C:E02	17004	0	0	0
M00001619C:F12	40314	0	0	0
M00001621C:C08	40044	0	0	0
M00001623D:F10	13913	0	0	0
M00001624A:B06	3277	0	0	0
M00001624C:F01	4309	0	0	0
M00001630B:H09	5214	0	l	2
M00001644C:B07	39171	0	0	0
M00001645A:C12	19267	0	0	0
M00001648C:A01	4665	0	0	0
M00001657D:C03	23201	0	0	0
M00001657D:F08	76760	0	0	0
M00001662C:A09	23218	0	0	0
M00001663A:E04	35702	0	0	0
M00001669B:F02	6468	0	0	0
M00001670C:H02	14367	0	0	0
M00001673C:H02	7015	0	0	0
M00001675A:C09	8773	Ö	Ö	0
M00001676B:F05	11460	2	Ö	0
M00001677C:E10	14627	õ	Ö	0
M00001677D:A07	7570	0	ő	0
M00001677D:A07	4416	1	2	0
M00001678D.F12	6660	0	0	0
141000010/3A.A00	0000	U	U	v

Table 7 All Differential Data for Libs 12-14

Clone Name	Cluster ID	Clones in Lib12	Clones in Lib13	Clones in Lib14
M00001679A:F10	26875	0	0	0
M00001679B:F01	6298	0	0	0
M00001679C:F01	78091	0	0	0
M00001679D:D03	10751	0	0	0
M00001679D:D03	10751	0	0	0
M00001680D:F08	10539	0	1	0
M00001682C:B12	17055	0	0	0
M00001686A:E06	4622	0	0	0
M00001688C:F09	5382	0	0	0
M00001693C:G01	4393	0	0	0
M00001716D:H05	67252	ŏ	0	Õ
M00001710D:1103 M00003741D:C09	40108	Ö	ŏ	Õ
M00003747D:C05	11476	ő	Ö	Ö
M00003747D:C03	697	0	0	0
M00003759B:B09	17076	0	0	0
M00003762C.B08	3108	0	0	0
	67907	0	0	0
M00003774C:A03		·=		,
M00003796C:D05	5619	0	1	0
M00003826B:A06	11350	0	0	0
M00003833A:E05	21877	0	0	0
M00003837D:A01	7899	. 0	0	0
M00003839A:D08	7798	0	0	0
M00003844C:B11	6539	0	0	0
M00003846B:D06	6874	0	0	0
M00003851B:D10	13595	0	0	0
M00003853A:D04	5619	0	1	0
M00003853A:F12	10515	0	0	1
M00003856B:C02	4622	0	0	0
M00003857A:G10	3389	0	0	0
M00003857A:H03	4718	0	0	0
M00003871C:E02	4573	0	0	0
M00003875B:F04	12977	0	0	0
M00003875B:F04	12977	0	0	0
M00003875C:G07	8479	1	0	0
M00003876D:E12	7798	0	0	0
M00003879B:C11	5345	4	8	3
M00003879B:D10	31587	0	0	0
M00003879D:A02	14507	0	0	0
M00003885C:A02	13576	0	0	0
M00003885C:A02	13576	0	0	0
M00003906C:E10	9285	0	0	0
M00003907D:A09	39809	0	0	0
M00003907D:H04	16317	0	0	0
M00003909D:C03	8672	0	0	0
M00003912B:D01	12532	0	0	0
M00003914C:F05	3900	0	1	0
M000039112.i. 05	23255	ő	0	Ŏ
M00003958A:H02	18957	Ö	Õ	Ö
		_	-	-

Table 7 All Differential Data for Libs 12-14

Clone Name	Cluster ID	Clones in Lib12	Clones in Lib13	Clones in Lib14
M00003958A:H02	18957	0	0	0
M00003958C:G10	40455	0	0	0
M00003958C:G10	40455	0	0	0
M00003968B:F06	24488	0	0	0
M00003970C:B09	40122	0	0.	0
M00003974D:E07	23210	0	0	0
M00003974D:H02	23358	0	0	0
M00003975A:G11	12439	0	0	0
M00003978B:G05	5693	0	0	0
M00003981A:E10	3430	0	0	0
M00003982C:C02	2433	2	4	0
M00003983A:A05	9105	0	0	0
M00004028D:A06	6124	0	0	0
M00004028D:C05	40073	0	1	0
M00004031A:A12	9061	0	0	0
M00004031A:A12	9061	Ö	Ö	0
M00004035C:A07	37285	Ö	ő	Ö
M00004035D:B06	17036	Ö	0	Ö
M00004059A:D06	5417	Ö	Ŏ	0
M00004068B:A01	3706	Ō	Ō	0
M00004072B:B05	17036	Ō	0	0
M00004081C:D10	15069	Õ	0	0
M00004081C:D12	14391	0	0 .	0
M00004086D:G06	9285	Ō	0	0
M00004087D:A01	6880	0	0	0
M00004093D:B12	5325	0	0	0
M00004093D:B12	5325	0	0	0
M00004105C:A04	7221	0	0	0
M00004108A:E06	4937	0	0	0
M00004111D:A08	6874	0	0	0
M00004114C:F11	13183	0	0	0
M00004138B:H02	13272	0	0	0
M00004146C:C11	5257	0	0	1
M00004151D:B08	16977	0	0	0
M00004157C:A09	6455	0	0	0
M00004169C:C12	5319	0	0	0
M00004171D:B03	4908	0	0	0
M00004172C:D08	11494	0	0	0
M00004183C:D07	16392	0	0	0
M00004185C:C03	11443	2	0	0
M00004197D:H01	8210	0	0	0
M00004203B:C12	14311	0	0	0
M00004212B:C07	2379	0	0	0
M00004214C:H05	11451	0	0	0
M00004223A:G10	16918	0	0	0
M00004223B:D09	7899	0	0	0
M00004223D:E04	12971	0	0	0
M00004229B:F08	6455	0	0	0

Table 7 All Differential Data for Libs 12-14

Clone Name	Cluster ID	Clones in Lib12	Clones in Lib13	Clones in Lib14
M00004230B:C07	7212	0	0	1
M00004269D:D06	4905	0	0	0
M00004275C:C11	16914	0	0	0
M00004283B:A04	14286	0	0	0
M00004285B:E08	56020	0	0	0
M00004295D:F12	16921	0	0	0
M00004296C:H07	13046	0	0	0
M00004307C:A06	9457	1	0	0
M00004312A:G03	26295	0	0	0
M00004318C:D10	21847	0	0	0
M00004372A:A03	2030	0	0	0
M00004377C:F05	2102	0	0	0

We Claim:

1. A library of polynucleotides, the library comprising the sequence information of at least one of SEQ ID NOS:1-844.

5

- 2. The library of claim 1, wherein the library is provided on a nucleic acid array.
- 3. The library of claim 1, wherein the library is provided in a computer-readable format.

10

4. The library of claim 1, wherein the library comprises a differentially expressed polynucleotide comprising a sequence selected from the group consisting of SEQ ID NOS:9, 39, 42, 52, 62, 74, 119, 172, 317, and 379.

15

5. The library of claim 1, wherein the library comprises a polynucleotide differentially expressed in a human breast cancer cell, where the polynucleotide comprises a sequence selected from the group consisting of SEQ ID NOS: 4, 9, 39, 42, 52, 62, 65, 66, 68, 74, 81, 114, 123, 144, 130, 157, 162, 172, 178, 183, 202, 214, 219, 223, 258, 298, 317, 338, 379, 384, 386, and 388.

20

6. The library of claim 1, wherein the library comprises a polynucleotide differentially expressed in a human colon cancer cell, where the polynucleotide comprises a sequence selected from the group consisting of SEQ ID NOS: 1, 39, 52, 97, 119, 134, 172, 176, 241, 288, 317, 357, 362, and 374.

25

7. The library of claim 1, wherein the library comprises a polynucleotide differentially expressed in a human lung cancer cell, where the polynucleotide comprises a sequence selected from the group consisting of SEQ ID NOS: 9, 34, 42, 62, 74, 106, 119, 135, 154, 160, 260, 308, 323, 349, 361, 369, 371, 379, 395, 381, and 400.

30

8. An isolated polynucleotide comprising a nucleotide sequence having at least 90% sequence identity to an identifying sequence of SEQ ID NOS:1-844 or a degenerate variant thereof.

9. An isolated polynucleotide according to claim 8, wherein the polynucleotide comprises a sequence encoding a polypeptide of a protein family selected from the group consisting of: 4 transmembrane segments integral membrane proteins, 7 transmembrane receptors, ATPases associated with various cellular activities (AAA), eukaryotic aspartyl proteases, GATA family of transcription factors, G-protein alpha subunit, phorbol esters/diacylglycerol binding proteins, protein kinase, protein phosphatase 2C, protein tyrosine phosphatase, trypsin, wnt family of developmental signaling proteins, and WW/rsp5/WWP domain containing proteins.

10

5

10. The polynucleotide of claim 9, wherein the polynucleotide comprises a sequence of one of SEQ ID NOS: 24, 41, 101, 157, 291, 305, 315, 341, 63, 116, 134, 136, 151, 384, 404, 308, 213, 367, 188, 251, 202, 315, 367, 397, 256, 382, 169, 23, 291, 324, 330, 341, 353, 188, 379, and 395.

15

11. The polynucleotide of claim 8, wherein the polynucleotide comprises a sequence encoding a polypeptide having a functional domain selected from the group consisting of: Ank repeat, basic region plus leucine zipper transcription factors, bromodomain, EF-hand, SH3 domain, WD domain/G-beta repeats, zinc finger (C2H2 type), zinc finger (CCHC class), and zinc-binding metalloprotease domain.

20

12. The polynucleotide of claim 11, wherein the polynucleotide comprises a sequence of one of SEQ ID NOS: 116, 251, 374, 97, 136, 242, 379, 306, 386, 18, 335, 61, 306, 386, 322, 306, and 395.

25

- 13. A recombinant host cell containing the polynucleotide of claim 8.
- 14. An isolated polypeptide encoded by the polynucleotide of claim 8.
- 30
- 15. An antibody that specifically binds a polypeptide of claim 14.
- 16. A vector comprising the polynucleotide of claim 8.

18. A method of detecting differentially expressed genes correlated with a cancerous state of a mammalian cell, the method comprising the step of:

5

10

detecting at least one differentially expressed gene product in a test sample derived from a cell suspected of being cancerous, where the gene product is encoded by a gene corresponding to a sequence of at least one of SEQ ID NOS:4, 9, 39, 42, 52, 62, 65, 66, 68, 74, 81, 114, 123, 144, 130, 157, 162, 172, 178, 183, 202, 214, 219, 223, 258, 298, 317, 338, 379, 384, 386, 388, 1, 39, 52, 97, 119, 134, 172, 176, 241, 288, 317, 357, 362, 374, 9, 34, 42, 62, 74, 106, 119, 135, 154, 160, 260, 308, 323, 349, 361, 369, 371, 379, 395, 381, and 400; wherein detection of the differentially expressed gene product is correlated with a

wherein detection of the differentially expressed gene product is correlated with a cancerous state of the cell from which the test sample was derived.

- 19. The method of claim 18, wherein said detecting step is by hybridization of the test sample to a reference array, wherein the reference array comprises an identifying sequence of at least one of SEQ ID NOS:1-844.
- 20. The method of claim 18, wherein the cell is a breast tissue derived cell, and the differentially expressed gene product is encoded by a gene corresponding to a sequence of at least one of SEQ ID NOS: 4, 9, 39, 42, 52, 62, 65, 66, 68, 74, 81, 114, 123, 144, 130, 157, 162, 172, 178, 183, 202, 214, 219, 223, 258, 298, 317, 338, 379, 384, 386, and 388.
- 21. The method of claim 18, wherein the cell is a colon tissue derived cell, and the differentially expressed gene product is encoded by a gene corresponding to a sequence of at least one of SEQ ID NOS: 1, 39, 52, 97, 119, 134, 172, 176, 241, 288, 317, 357, 362, and 374.
- 22. The method of claim 18, wherein the cell is a lung tissue derived cell, and the differentially expressed gene product is encoded by a gene corresponding to a sequence of at least one of SEQ ID NOS: 9, 34, 42, 62, 74, 106, 119, 135, 154, 160, 260, 308, 323, 349, 361, 369, 371, 379, 395, 381, and 400.

SEQUENCE LISTING

<110> Lewis T. Williams Jaime Escobedo Michael A. Innis Pablo Dominiguez Garcia Julie Sudduth-Klinger Christoph Reinhard Klause Giese Filippo Randazzo Giulia C. Kennedy David Pot Altaf Kassan George Lamson Radoje Drmanac Radomir Crkvenjakov Mark Dickson Snezana Drmanac Ivan Labat Dena Leshkowitz David Kita Veronica Garcia William Lee Jones Birjit Stache-Crain

- <120> Novel Human Genes and Gene Expression Products I
- <130> 2300-1480P
- <140> 09/
- <141> 1998-12-21
- <150> 60/068,755
- <151> 1997-12-23
- <150> 60/080,664
- <151> 1998-04-03
- <150> 60/105,234
- <151> 1998-10-21
- <160> 844
- <170> FastSEQ for Windows Version 3.0
- <210> 1
- <211> 300
- <212> DNA
- <213> Homo sapiens

```
<400> 1
teteceetga getgeaggee tgeatateea gtaqqtetae tqqacatetq tactqqttqt
                                                                     60
tgnggaggaa cctctggctt gctcattaag tcctactqat tttcactatc ccctqaattt
                                                                    120
ccccacttat ttttgtcttt cactatcgca ggccttagaa gaggtctacc tgcctccagt
                                                                    180
ettacctagt ccagtctacc ccctggagtt agaatggcca tcctgaagtg aaaagtaatg
                                                                    240
teacattact ccetteagtg attiettgta gaagtgecaa teeetgaatg ccaecaagat
                                                                    300
      <210> 2
      <211> 299
      <212> DNA
      <213> Homo sapiens
      <400> 2
cccagctgct caggaggctg aggcaggaga attgcttgaa cccaagaggc ggaggttgtg
                                                                     60
gtgagccgag attgcacctt tgtactccag cctgggcaac gagcaaaaaa ctctgtctca
                                                                    120
180
ggcgncnagt cccaaanten tacettgtaa gacetttann tnncetgngg tntttntnna
                                                                    240
cnettanata nnnntntttn etateaanta tagggagant tttentttng gggeaaett
                                                                    299
     <210> 3
      <211> 300
      <212> DNA
     <213> Homo sapiens
      <400> 3
atacgattcg aacnnggaca agacgagtat ggaataatat cccactnnnt ttacaatact
                                                                     60
ganattatgc ngngatagng cttgttccat tcnaccagcg aatnatgcat tnacncnaca
                                                                    120
cnngagttac tatccaaaca cacgttttca cgntacctga ngctggtnga naattatgcg
                                                                    180
accatgaggc tttccangat ntttctannt ancagaenqn qnacaatqnt qaanaaqenq
                                                                    240
tacacaccgc nctngncnnc cnncactgan cangtnacnn ngctcactgn ngcctctttc
                                                                    300
      <210> 4
      <211> 287
     <212> DNA
     <213> Homo sapiens
     <400> 4
aaancngcac gangccacgt ncgnnnngnt nntactnnnc natngccncn tcantggcng
                                                                     60
ncagctagac gcctaacagc cgangancca nccntnntgt gancengten tgacngnnag
                                                                    120
entgeeggte ttgetenttt tgtetacenn gagganannn ntntgggaca teccagactg
                                                                   180
agtgaggaga tetgengetg ennetgtaet tggttacane neacacgang actntneett
                                                                   240
ggactanana cactagecta anattengea etacetante etetgge
                                                                    287
     <210> 5
     <211> 300
     <212> DNA
     <213> Homo sapiens
     <400> 5
gtccttttga accaccccaa agaactcaac atggcaaagc aaatggtaaa agcttcccga
                                                                    60
etgttetaet ttgggteege gegaageeca etcaegtgtg atetgtgttg eccetgggag
                                                                   120
```

geocggggeg accggaaaag ggetetetea agttetgaaagaatttegac ceetgagett gtteggaegt atggteeaa	a agagaatetg ecaceagate a tteagattaa ggtggteace	180 240
caacccgaga tgtcaggaaa ggccttctgc agagaaaatg		300
<210> 6		
<211> 284		
<212> DNA		
<213> Homo sapiens		
<400> 6		
tntccccttt gacgccttan tgccctnncg ctacnngtcc		60
contegtttn gcattetgcc nnagantgac tttncnatca		120
ggggctnggg tgaattntta caccetgena ntecatance		180
cctcntgaat aaatgcaata aantttengt tgatettata ateageeetn tnttacnana tenanttatg enggtattaa		240 284
<210> 7		
<211> 277		
<212> DNA		
<213> Homo sapiens		
<400> 7		
gtgctgcaga caacacct tcctgatgga ggtgtccggc	tgatggagaa gtctgtgggc	60
ttgtaaatca tctttgatgt taaccaggcc gacgctgtgg	g ccacattccg aaagattaac	120
cctgtcaaac cctannnnn nnnnnnnnn nnnggatttg	g atnageetgt necanacete	180
tgcagcctcn ancggtngtn ntaccatagt ggggatgacc	c ctctgatact ttgncctggt	240
ngancatgnt gacanntgct tctacagctt nngggac		277
<210> 8		
<211> 292		
<212> DNA <213> Homo sapiens		
1		
<400> 8		
cttgggaggc tgagtcagga gaattgcttg agcccaggag		60
agatcatgcc actgcactcc agactgggca acagagggag		120
aaaaaaaata catttagtat agcggggggt gggcgggaga aaatgacgnn nnnnnnnnnn cccatggtaa atgtnaatat		180
gccttttant aaangagtct tanatgaatc tctanntnat		240 292
<210> 9		
<211> 300		
<212> DNA		
<213> Homo sapiens		
<400> 9		
ccaggttagc tgctgaatca aagcttcaaa cagaagttaa	agaaggaaaa gaaacttcaa	60
gcaaattgga aaaagaaact tgtaagaaat cacaccctat		120
ctactccaga gacccagtgc cctcaacagt aaagactttt	ctttaataag agtacggtgc	180
cacttgcctc aaaagttact atggtgctta agattgtctt		240
ctgggttatt tactcattgt gccaggacct ggcattttca	tgtgcctttg accaagtgtt	300

```
<210> 10
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 10
aggaggcgga gcttgcagtg agctgagatc gcgccactgc actccagcct gggcaacaga
                                                                       60
gtgagactct gtctcaaaaa aaaaaaaaa nnnnnnnnn nnnnnnnnaa nctcgtnttn
                                                                      120
gnaaggaaan ggggnaangg accggtntta tncctatgtn gtntttgcag gcaaangaaa
                                                                      180
nggaccentt tttgtaaaaa aaagtetttt gnncaantaa aeggggtntg ngggtneagg
                                                                      240
ccctggnggg gcncncantt gcctggnggc ttntgnnaaa tcggnaaagg gaggaaaggc
                                                                      300
      <210> 11
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 11
cgtctgtaat cccagctgct tgggaggctg aggcaggaga atcacttgaa ccctggaggt
                                                                       60
ggcggtttca gtgagcacag atcatgccac tgcactccag cctgggcaac aaaacgagac
                                                                      120
ttegteteaa aaaaaaaaan nnnnnnnnn nnnnnnnnn nnegggttet cecaaattnt
                                                                      180
ttnnaggggn ccatggncaa ctgnttnacn tttgtttngg naaccccntg cccnaagncg
                                                                      240
cananagget gtnnttnncc ttgttnccaa ggntgaggan caaaaagtac cctntgtttt
                                                                      300
      <210> 12
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 12
caaagatggt cgtattacta aaggtgaata accagegegg ggggcaegtg gagteaetgg
                                                                       60
aacatttgtg caatgctggt gggaatgtca acccgtgcgg ccctctggaa taagcctggc
                                                                      120
agetecteca agagttaceg tgtgacecag caattecaet eetageteea eecacaggaa
                                                                      180
ttgaaagcaa agacgcaaac agatgcctgt gcaccaaagt tcacggcagc atccttcgcc
                                                                      240
atagtggcag catccgtcgt cacagcggca tcatccttca tcatagcggc agcatccgtc
                                                                      300
      <210> 13
      <211> 278
      <212> DNA
      <213> Homo sapiens
      <400> 13
cctgcagcca ctaatgcatt gtgtatgata acaaaaactc tggtatgaca cattttctgt
                                                                       60
gatcattgtt aattagtgac atagtaacat ctgtagcagc tggttagtaa acctcatgtg
                                                                      120
ggggaggtgt gggaggtttt nncgnnannn nnngcnnnnn annccccggn nngnnngaag
                                                                      180
ctgnnnnttn naannngcnn nnnannatga naannnccnn ngactggnnn nangaggcct
                                                                      240
anccentgnt ttananaaac nnnenneagn ntetetea
                                                                      278
     <210> 14
     <211> 300
```

```
<212> DNA
      <213> Homo sapiens
      <400> 14
60
cagacaccaa aatctagcca gatgcctcgg ccttcagtgc caccattagt taaaacatca
                                                                    120
ctgttttctt caaaattatc tacacctgat gttgtgagcc catttgggac cccatttggc
                                                                    180
tctagtgtaa tgaatcggat ggctggaatt tttgatgtaa acacctgcta tgggtcaccg
                                                                    240
caaagtcctc agctaataag aagggggcca agattgtgga catcagcttc tgatcagcaa
                                                                    300
      <210> 15
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 15
gttatattaa attattettt gtttttettt ttettttaat aaageetgea agttaetaaa
                                                                     60
ttgtagtttc ataaattctg tagtaaagta tcatcttggc agtgtgccaa aggtgaaaat
                                                                    120
gatgetttet etaacagaga aattettagt gaetecagte gtagaaaaac gtetttacaa
                                                                    180
cctgaataag attgaagaat tgtgaacata ccatggccta ttggatgaat catttgccgt
                                                                    240
aggctaaatc agactgtagg gtttgcgatg gatttatgga gtatgtgggt atagaaatca
                                                                    300
      <210> 16
      <211> 276
      <212> DNA
     <213> Homo sapiens
      <400> 16
gtttcattta agaagaatga gctagataaa tgtgctcttc tggttacccc accctgacag
                                                                     60
agtgcatttt tacacggcta gcaggggttg agactgcagc ctggcctnnn nnnnnnnnn
                                                                    120
ngnnnnnngc nnacttnact teeengaane actataattg gnanaenttn etaannggtn
                                                                    180
atctngccga cctgnnagat anactcnnga taaaanccnn tgcagaaagc gcccttccat
                                                                    240
gtcangenen tnaganaenn nentacenee tangna
                                                                    276
     <210> 17
     <211> 300
     <212> DNA
     <213> Homo sapiens
     <400> 17
ggtgcccatc accacaccca gctaactttt gtatttttag tagagacggg gtttcaccat
                                                                    60
gttggccagg ctggtcttga actcctgacc tcgtgatccg cccgccttgg ccccgcaaag
                                                                   120
tgctgggatt acaagcatga gcccagcgcc tggctgtatc tttcatttta cccaagtcac
                                                                   180
tttacccaag taagtaatta ggggaaagcc tgagtcttgt accacctgtt catttgggga
                                                                   240
actgtgggaa acggagccaa cggacctaag tgccctttga cagtgagttt cataccattt
                                                                   300
     <210> 18
     <211> 273
     <212> DNA
     <213> Homo sapiens
```

```
<400> 18
ctcagctgag gcaattaaac tggaaaagaa atagattgaa aagatactac agaagaagca
                                                                        60
gtacagaagt tgggggactg aaggagaggg agccactgca ggtgctagct gcttaagggg
                                                                       120
ataccagtcc ttttacagat ataatagata cagcttctga ggtggagggt gataggagtg
                                                                       180
tgtagagaaa ttgcagttca gaactggagc atgcagttag gcaagaggca tcccatgtga
                                                                       240
agatgtcaag caagtactgg aaaatgctga act
                                                                       273
      <210> 19
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 19
gggtcctggt gggagttcca tccagcagtg agtgcatttt ttccccagag cagttaaggg
                                                                        60
tettattaaa agecaccact ttgctgagge ctgtacagge cttggggggtt tggggaagag
                                                                       120
aaataaggca ggcacttgtc ccttcaggga gggacttgtc cctcactggg aggtttgggg
                                                                       180
ttgacettgg etecageaga gatacecage etggegtgga aggggcaggt etgagettae
                                                                       240
gcttgactgc agggcaagct gcaggcctct tctgccttcc cctgcattca ccaaggacag
                                                                       300
      <210> 20
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 20
atggcatgca ctgacctctt cttggagccc agaactttat agagttgcct accagggtta
                                                                        60
ctgtaatgga atttatgatc ttaagaaatt actagttgta ttatttatcc tatgattcat
                                                                       120
tcattcaata agcttttact gcataaactt tacatccagc actgtagtta agtacccaaa
                                                                       180
attgaataga aataatggct tttgaaaatc gcacaaagca ggccaggcac ggtggctcac
                                                                       240
gcctgtaatc ccagcatttt gggaggccga ggcaggcgga tcacgaggtc aagagatcca
                                                                       300
      <210> 21
      <211> 293
      <212> DNA
      <213> Homo sapiens
      <400> 21
cgtctgtaat cccagctgct tgggaggctg aggcaggaga atcacttgaa ccctggaggt
                                                                        60
ggcggttgca gtgagcacag atcatgccac tgcactccag cctgggcaac aaaacgagac
                                                                      120
ttcgtctcaa aaaaaaaan nnnnnnnnn nnnnccttng gncgggttnt cccaaattnt
                                                                      180
tttgaggngn ccatggncaa ctgcttnanc tttgttttgg caaccccntg cccnaagtcg
                                                                      240
catatagget gtnetteace ttgttteeaa ggetgnggaa canaaagtaa eet
                                                                      293
      <210> 22
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 22
ctggtctcga acacctgacc tcaggtgatc cattcgtctt ggcctctcga agtgctggga
                                                                       60
ttccaggcgt gagccactgc ggccagcaca tttccacttt tagatcctac tccataccac
                                                                      120
```

aggtttcatt taagaagaaa gagctagata aatgtgctct tctggt agagtgcatt tttacacggc tagcaggggt tgagactgca gcctgg	
gaggtgttta aggaagggca gataatgtga ctctttgcgg ggtgc	, , ,
<210> 23 <211> 300	
<211> 300 <212> DNA	
<213> Homo sapiens	
•	
<400> 23	
gaaccaaaga cgtgtatgga gtgttctctt gtccttatcg acttgc	
tccaagcgac cggatctgag tgatgcttct agaacatttg ggtgtt	
agtagaaagg gtccccattc ctgctcagca ccgcacctct ctaccc atgcagacac acacatgcag acaacacgca gacacacaca tgcagg	
cccatgcaca cacacgtgca cacacatgca gagacatgca gacacg	
Juguenegen guenegen	,,-
<210> 24	
<211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 24	
cctcccacaa cacgtgggaa ttcaagatga gatttggttg gggaca	acage caacccatat 60
cacccatgcc tggatgccct tctcatgctt gggttctgtc atctgc	acca ggccttctgc 120
tgcccgtctg tcttacccac caggactctg actctccacg ctgggc	
aacactgcta tggattgaat gtttatgtta tccccaaatt tgcatg	
tccaatgcca tagtattagg aggtgggggc ctttgggagg tgattt	ggtc atgaaggtgg 300
<210> 25	
<211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 25	
ggaaaatgaa atctgactat ctgctagttg ccaaaaccca gaaaca	ttcc tqtqtaatqq 60
ttagttggga aagaaggcag cacttgaaaa aatttaccag gttcct	
ggaaggggcg tgggacgcac gcggtcactc cctctcagcc ccccac	
ctgtagctgt gcctctacag actcccgctg cctggcctcc acagat	
ccagtaggca aagcttggcc ctattagctt tttctctcca tggctc	tgtg ggaatgtgcg 300
<210> 26	
<211> 300	
<212> DNA	
<213> Homo sapiens	
.400- 26	
<400> 26 ctgcagtgag attctctgca atgactggcc tcagcaaggg ggcagc	ttag gaccctgaca 60
teccaggica ctaagecaca taggataagi aatgggtgga cagaag	
ggcagggcac atgtttaaaa cttgaacttt ctgaggctaa gactgg	
cagctgatat atttggatac cagttgacta tttttaggaa aaaaac	

aacatcacag tgtgatacag tctaactcag aattagagac aggcaaaaca gaactccatc	300
<210> 27	
<211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 27	
gtactgcttc tgtggctctt cacagacctc acggatgtga ccggagatga gtgccgatga	60
ccacgtttta aaggagaaag agagctcctg gtggggccct cggggtggtc tcaggtccca	120
tttgcagtct gcaacagtga cgcgcagccc ggtccggagc gtggtgagct ttgtttgcct	180
tctgggtcag ctttcgctgt gtctcctgtg tgtgttagaa tccagagccc agaggaagtg	240
caagegggte eteegeeaae ggggagagee tettegegge getgttggeg acageaeget	300
<210> 28	
<211> 298	
<212> DNA	
<213> Homo sapiens	
<400> 28	
aangnaannn nggggngttg antcnacctn ngaaccgtgt anaaacccat ggaaacagct	60
antaganntt gggcagganc agagngaggc caagntacgg gggaggcnag gagcngagan	120
tggggnnnnn nnangnnaan tnnngaaggg gngngannga gggggggana naagggggga	180
ngagggcgaa ngncaggann nagaaaannn ggggacgana nggngaacag ggnnnaaacg	240
gaannnngga gnnnnnanag atgnegggea gngnengngn aggnganann ngagaegg	298
<210> 29	
<211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 29	
cctcagcccc acaccagctc tatttcaggg gtgagagtca gagagcactg caatatgtgc	60
ttcatgggat ttcgattcga agatcctaga ccagggagac actgtgagcc agggatacaa	120
caaaatacta ggtaagtcac tgcagaccga cctccctgca gtttgggaaa gaagctgggt	180
ttgtggagaa tcagagcatc ttgacatgac tgctgaccta aagatccctg gcattggcca	240
gggatcctgt ggaacctctt ctagttcagg ggtgtgagca ttagactgcc agttgtctag	.300
<210> 30	
<211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 30	
gtttgtttcc ccgagatgtg aacttgctga aggaaaacag tgtaaagagg aaggccatac	60
agagaactgt cagctcttca ggatgtgaag gcaagaggaa tgaagacaag gaagcagtga	120
gcatgttggt taactgccct gcctactaca gtgtgtctgc tcccaaggct gagctactga	180
acaaaatcaa agagatgcca nnnnnnnnn nntgaggaag aggaacaggc anatgtcaat	240
gaaaagaagg ctgatetcat tggaagtete acceacaage tggagaceet ccaggaggeg	300

<210> 31

```
<211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 31
tttaaactqa qctccaaatq acqttcaaac acccctctcg ggtagagttt tcatggtgga
                                                                       60
acggttgcgc ccaccaaaca gaagcttatg tttttggcac agaaggcctg ggccattttc
                                                                       120
atggacacct ggctggacct cggtggaagt gaactccgta ggttgttgcg ttcactgcag
                                                                      180
cacctcacat gataccgtcc cctctcatgg aacggagcct cccccatgca gcccccactc
                                                                       240
                                                                       300
aaatggagtt ttaaaggctg ggttcaggtt acgggggcgt ttctcaccgt ctgaatgcgg
      <210> 32
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 32
                                                                       60
gtgaaacaga aagtggagat gctttccttg acctgaagaa gcctcctgcc tccaaatgcc
                                                                       120
cccatcgcta tacaaaagaa gaactcttgg atataaaaga actcccccat tccaaacaga
                                                                       180
ggccttcatg cctttctgaa aaatatgaca gtgatggtgt ctgggaccct gagaagtggc
atgeetetet etacecaget teagggegga geteaceagt ggaaagtetg aagaaagagt
                                                                       240
tggatacaga ccggccttcc ctggtgcgca ggatagtaga tccacgagag cgtgtgaaag
                                                                       300
      <210> 33
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 33
                                                                       60
gtctgattga agctgttcag gtttatcatg caaatcctcg cctctggcta cggctggctg
aatgctgcat tgctgccaat aaggggactt ctgaacaaga aactaaaggc cttcccagca
                                                                       120
                                                                       180
aaaaaggaat tgtacagtct attgttggtc aaggctatca tcgtaaaata gttttggcat
                                                                       240
cacagtetat acagaatact gtttataatg atgggcagte ttcggccatt cctgtagcca
gtatggagtt tgcagccata tgtctcagaa atgccttgtt gctgctacct gaagaacagc
                                                                       300
      <210> 34
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 34
                                                                        60
tgacagaget gttcagegta caccagateg atgagetgge caagtgeaca teagacactg
tgttcctgga gaagaccagt aagatctcgg accttatcag cagcatcacg caggactacc
                                                                       120
                                                                       180
acctggatga gcaggatgct gagggccgcc tggtacgcgg catcattcgc attattaccc
gaaagageeg tgetegeeca cagacetegg agggtegtte aacteggget getgeeccaa
                                                                       240
ccgctgctgc ccctgacagt ggccatgaga ccatggtggg ctcaggtctc agccaggatg
                                                                       300
      <210> 35
      <211> 300
      <212> DNA
      <213> Homo sapiens
```

400 35				
<400> 35	ettaat etaeeatett	agaetttaga	acatcattct	60
cttttttaag caaagcagtt tcta taagcttgtt gtgcccggta acca				120
gettetteae ceagacacea aggt				180
aaacaaaaac attctaaagc catt				240
tgccagggtg ccctggtctg agct				300
2900299929 0000330003 2300	330000 000003000	5-5-5-	355-45-4-5	
<210> 36				
<211> 300				
<212> DNA				
<213> Homo sapiens				
	*			
<400> 36				
gctggccaaa gccaaatctc ctaa	gtccac cgcccaggag	ggaaccctga	agcctgaagg	60
agttacggag gccaaacatc cago	tgcagt tcgcctccaa	gaaggggtcc	atggccctag	120
tcgagtccat gtgggctctg ggga				180
aaagatgeet geeetagtea ttee				240
ggacatcacc atcaaacctg tett	gtcctt gggcccagct	gcccttcgcc	ccatgcatag	300
			•	
<210> 37				
<211> 300				
<212> DNA				
<213> Homo sapiens				
<400> 37				
gtccaaggac aacttcgaga catt	tettt tgccaccgta	tctaacaggg	agcaggaaga	60
tctctgccga ggaattgtcc agct				120
ggtccagccc tctgactctt tcct				180
gcacgtcctg gaaggactcc agga				240
cgtggagtgt aactctcatg tgaa				300
<210> 38				
<211> 300				
<212> DNA				
<213> Homo sapiens				
<400> 38		*	t antatttaa	60
catccaggga gaacctcggg gctg				120
agtectcagt gecceacace ggt				180
cccaaacgct gcctcttggt gaca				240
accettgage ttggggaaat atggaegetggee eggtgggetg ggae				300
acggergger eggraggerg ggar	ccccgc acgaacemea	aucacccagg	geccaeeee	300
<210> 39				
<211> 300				
<212> DNA				
<213> Homo sapiens				
<400> 39				
gggaaggagc gggcgtgagg ccag				60
aggccagctg aggcatggcg acco	ctggga aggagcgggc	gtgaggccag	ctgaggcatg	120

gtgacccctg ggaaggagcg ggcgtgaggc cagctgaggc atggtgaccc ctgggtacgg gggacttggg ggccgcacct tggtttgccc agggcccctc ctgcaccacg ggccacatgc ggaggacggc gtgggatagg ctccctgggt ccacagcttc tgcccgtgta tggggaaccc	180 240 300
<210> 40 <211> 300 <212> DNA <213> Homo sapiens	
<400> 40 ccaaaaagctt gtggcaaatt tgaaatttet gccattaggg accttacaac tggctatgat gatagccaac ctgataaaaa agctgttett cccactagta aaagcagcca aatgatcacc ttcacctttg ctaatgagg cgtggccacc atgcgcacca gtgggacaga gcccaaaatc aagtactatg cagagctgtg tgccccacct gggaacagtg atcctgagca gctgaagaag gaactgaatg aactggtcag tgctattgaa gaacatttt tccagccaca gaagtacaat	60 120 180 240 300
<210> 41 <211> 300 <212> DNA <213> Homo sapiens	
<400> 41 aaaaggtece cettetggga aagacegagt gaagaaaggt ggateetaca tgtgecatag gtettattgt tacaggtate getgtgetge teggageeag aacacacetg atagetetge teggaatetg ggateete getgageega eegeetgeee actatggaet gacaaceaag gaaagtette eecagteeaa ggageagteg tgtetgaeet acattggget ttteteagaa etttgaaega teecatgeaa agaatteeca eeetgaggtg ggttacatae etgeecaatg	60 120 180 240 300
<210> 42 <211> 300 <212> DNA <213> Homo sapiens	
<pre><400> 42 ttctaagtca ggagtacagt acaaaggaca tgtggagatc cccaatttgt ctgatgaaaa cagcgtggat gaagtggaga ttagtgtgag ccttgccaaa gatgagcctg acacaaatct cgtggcctta atgaaggaag aaggggtgaa acttctaaga gaagcaatgg gaatttacat cagcaccctc aaaacagagt tcacccaggg catgatctta cctacaatga atggagagtc agtagaccca gtggggcagc cagcactgaa aactgaggag cgcaaggcta agcctgctcc</pre>	60 120 180 240 300
<210> 43 <211> 300 <212> DNA <213> Homo sapiens	
<pre><400> 43 gccaccgaag cttcaggatg acatcttaga ctctcttggt caggggatca atgagttaaa gactgcagaa caaatcaacg agcatgtttc aggccccttt gtgcagttct ttgtcaagat tgtgggccat tatgcttcct atatcaagcg ggaagcaaat gggcaaggcc acttccaaga aagatccttc tgtaaggctc tgacctccaa gaccaaccgc cgatttgtga agaagttgt gaagacacag ctcttctcac ttttcatcca ggaagccgag aagagcaaga atcctcctgc</pre>	60 120 180 240 300

```
<210> 44
      <211> 300
     <212> DNA
     <213> Homo sapiens
      <400> 44
                                                                       60
ggcttataca acatagtggg gaacgcatgg gaatggactt cagactggtg gactgttcat
                                                                      120
cattetqttq aaqaaacget taacccaaaa ggteeceett etgggaaaga eegagtgaag
aaaggtggat cctacatgtg ccataggtct tattgttaca ggtatcgctg tgctgctcgg
                                                                      180
agccagaaca cacctgatag ctctgcttcg aatctgggat tccgctgtgc agccgaccgg
                                                                      240
                                                                      300
ctgcccacta tggactgaca accaaggaaa gtcttcccca gtccaaggag cagccgtgtc
      <210> 45
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 45
gtggaagaaa attttttgct gcttctggtt cccagaaaag ggagccattt taacagacac
                                                                       60
                                                                      120
atctgtcaaa agaaatgact tgtcgattat ttctggctaa tttttcttta tagcagagtt
totcacacot ggogagotgt ggoatgottt taaacagagt toatttocag taccotocat
                                                                      180
                                                                      240
cagtgcaccc tgctttaaga aaatgaactt atgcaaatag acatccacag cgtcggtaaa
                                                                      300
ttaaggggtg atcaccaagt ttcataatat tttcccttta taaaaggatt tgttggccag
      <210> 46
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 46
gtggaagaaa attttttgct gcttctggtt cccagaaaag ggagccattt tangngacac
                                                                       60
atctgtcaaa agaaatgact tgtcgattat ttctggctaa tttttcttta tagcagagtt
                                                                      120.
totcacacot ggogagotgt ggoatgottt taaacagagt toatttocag taccotcoat
                                                                      180
cagtgcaccc tgctttaaga aaatgaactt atgcaaatag acatccacag cgtcggtaaa
                                                                      240
                                                                      300
ttaaggggtg atcaccaagt ttcataatat tttcccttta taaaaggatt tgttggccag
      <210> 47
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 47
                                                                       60
acacagataa ttttaataca atgtgaaaaa gtgtatgggt gtgtagaaga ggggttctta
                                                                      120
gagtttctgg agagaatgat tctgagctcg gttttgacaa aagaggagct gctgaggcta
                                                                      180
aaagtggatg aaaagggcct tataattaaa agaaacaaga caggactcag aggtgtgaaa
caaatattat gcatggtgaa ttacaatgag ttgggggtat tctgtagccc taaagtacaa
                                                                      240
                                                                      300
ggtataaaga gacagaaaat gatcctggaa tatagacaga ggatacttca tctctcatga
      <210> 48
      <211> 300
```

<212> DNA

<213> Homo sapiens

<213> Homo sapiens

```
<400> 48
gatggaacat gagtggaagt gggcagtctt tttctttccc tatcagctga gtgaatgaag
                                                                       60
                                                                      120
atttaqaqqq caqcaqaqtc atqacatqqa tqacqttqqq tctctggatg gctaaatgga
agacceqccc cccaacqcca ctctaccccc ctqctttqaa ctatgctttg agaaatgagc
                                                                      180
ttatgagacc actgagactt gggggctgtt tgttcagcag ttcacctaca cttattagga
                                                                      240
aaqqttqact tcttgtaact acgcctttcc ttaaatcatc ttttgtataa ttctcagaag
                                                                      300
      <210> 49
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 49
ccctccccgg cttcccccgg agtgggtcac cacactgttt tttatcatca tgggaatcat
                                                                       60
ttcattgact gtcacatgtg gtttgctggt ggcttcccac tggcgaagag aagctacaaa
                                                                      120
                                                                      180
atatqctcqa tggatagcat tcactggaac cactatgaga agattatagg aaaaacacca
                                                                      240
agactagagg actotgggtt cottttatgc aaagtcaact cttctgggtc acagttaccc
agcaacaaaa ataaagagag gaccaggacg atgccagcac cccgtttatc ctgagtgaac
                                                                      300
      <210> 50
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 50
ctcctgtctc agcctcctgg gtagctggga ctacaggtgc atgccaccat gcctggctaa
                                                                       60
cttttgtatt tttagtacag acagggtttc accacattgg tcaggctggt ctcgaactcc
                                                                      120
                                                                      180
taacctcaqq tqatccacct gccttggcct cccaaagtgc tgagattaca ggcgtgagcc
                                                                      240
accgcgcctg gcctgattgg ttttttaaca tgatttttct ctaagcttaa ataccacaag
gccaaagaga aatggtcata atttaaacca ttattatatt ggtgaggtat ccctagctat
                                                                      300
      <210> 51
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 51
ggaggetaga etcaagetgt etggagagtg tgaaacaaaa gtgtgtgaag agttgtaact
                                                                       60
qtqtqactqa qcttqatqqc caagttgaaa atcttcattt ggatctgtgc tgccttgctg
                                                                      120
gtaaccagga agaccttagt aaggactctc taggtcctac caaatcaagc aaaattgaag
                                                                      180
                                                                      240
gagetggtac cagtatetea gageeteegt etectateag teegtatget teagaaaget
gtggaacgct acctetteet ttgagacett gtggagaagg gtetgaaatg gtaggcaaag
                                                                      300
      <210> 52
      <211> 300
      <212> DNA
```

```
<400> 52
atatggtata gttggaaata ggttattgtg agttatttgt agtcatgtct ttaatggccc
                                                                       60
ttgcatggtg tctaacttct gcaataaatg atctgccagt cctagtgtct ggctttatgc
                                                                      120
aatttgtttt cctttgtgga tgaagtggga gtaagacttg ttgctgtgag gattagatga
                                                                      180
                                                                      240
agtggctagg atatggacac actttacttg aattggaaaa caagccatgt atccctaatc
                                                                      300
tgcaaaatgt ggcatgtcac acgtgtaatc tctgaggttt agtttttgct caagattgca
      <210> 53
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 53
aagaagetet gettggtaet aetattatga acaacattgt tatttggaat ttaaaaactg
                                                                       60
gtcaactcct gaaaaagatg cacattgatg attcttacca agettcagte tgtcacaaag
                                                                      120
cctattctga aatggggctt ctctttattg tcctgagtca tccctgtgcc aaagagagtg
                                                                      180
agtcqttqcq aaqccctqtq tttcaqctca ttqtqattaa ccctaagacq actctcaqcq
                                                                      240
tqqqtqtqat qctqtactqt cttcctccag ggcaggctgg caggttcctg gaaggtgacg
                                                                      300
      <210> 54
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 54
ccaagatgcc aatttccatg aagtcttgat ttatatatat gtacacatgt tatgcacata
                                                                       60
                                                                      120
catgtttgtt ttctaacagt tattttttaa gcttttgaga taattttaga cttacagaag
                                                                      180
agttgtaaaa gtagtagagt tettgtatae tetgeaceca cettgeeett atgttaacat
cttacqtaac aataqaacat ttqtcaaaat taagaaatta accttgatat aatactaact
                                                                      240
aaaqtaqaaa qtttaaaaag taqagatttt agtcttttca ctaatgtcct tttactgttc
                                                                      300
      <210> 55
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 55
                                                                       60
gggagggacc cttgggggca ggttgtgggt agccagttgc agtctgtggc ctccctcaga
                                                                      120
ggtttggagt cgggcgtggc atgctgctgt tggcctcttt ccgagggagt gccatccact
ccctqtccca ccqctqtccq cqqtqaqqac aqtgaqqqca gtgctacgtg gtggggaggt
                                                                      180
gtgtgagaag ccacggaagg gcttcacagg gcagatgcca aggccagtgg gccccggaca
                                                                      240
gagtcagget ceetgggegg cettgtgtet tggtggeeet gatcateetg ceaatgcaaa
                                                                      300
      <210> 56
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 56
ctttgctctc tccattccaa gttgttctct gttctagaaa gcagatgtag tagacatcta
                                                                       60
ctgtttttgc ctaaacagaa tccctttttc ctttttttgt taaaagtact catccctaat
                                                                      120
```

attacattgt tctggaagga ctgaaaataa cagaactcag caccatgatc ggaccatcagatta tttcattcct cagcaaacgg agatcgatcc gaaaagtgga aatatcttctttggt gttggcatat ggaccctgag agaaagaact ttaattttt ctctt	gagct 240
<210> 57 <211> 276 <212> DNA <213> Homo sapiens	
<pre><400> 57 cctccctgga tgtgcagaca tggaggagga cagaaggccc agctcagtgg cccccccaccccca cgcccgaaca gcaggggcag agccagnnnn nnntcgaagt gtgtcttttga nccttgttnt ggngccttgc ctanatgtat ntnntnnnn tntnnntnn ntnnnttnct nttnntaaat tgnttnnaan ttntnntann ttnttnnnnnnnnn ntantgtnnt gnattgntat nnatca</pre>	enngt 120 tnatt 180
<210> 58 <211> 300 <212> DNA <213> Homo sapiens	
<pre><400> 58 ctgtaagtct ctttcttgcc catcaccaca tccctagtac tgggtatcag tctgg tggctttctg gtttgcccca atgtggtcta ttcttgatgc agctaccaaa gtaat aaaaccatta taccaagtta ctatccttgt caaaaccccc agtaactgcc aatct agaataaaat ccggactcct gtgaagcaca gcataaactg gccactgcct atgca ctcatcttta ccgtttcctg ccttgctcac tcccttccag cgccgttatt cttcc</pre>	gtttt 120 cactt 180 gcaac 240
<210> 59 <211> 300 <212> DNA <213> Homo sapiens	
<pre><400> 59 gacccaggta gaccagctca agagttcatg ttctttgtca tcctngtgtg agctc aagtctcttt cttgcccatc accacatccc tagtactggg tatcagtctg gccac tttctggttt gccccaatgt ggtctattct tgatgcagct accaaagtaa tgttt ccattatacc aagttactat ccttgtcaaa acccccagta actgccaatc tcact taaaatccgg actcctgtga agcacagcat aaactggcca ctgcctatgc agcaa</pre>	ettggc 120 etaaaa 180 etagaa 240
<210> 60 <211> 300 <212> DNA <213> Homo sapiens	
<pre><400> 60 gggtcctggt gggagttcca tccagcagtg agtgcatttt ttccccagag caggg gtcttattaa aagccaccac tttgctgagg cctgtacagg ccttgggggt ttggg gaaataaggc aggcacttgt cccttcaggg agggacttgt ccctcactgg gaggt gttgaccttg gctccagcag agatacccag cctggcgtgg aaggggcagg tctga cgcttgactg cagggcaagc tgcaggcctc ttctgccttc ccctgcattc accas</pre>	ggaaga 120 sttggg 180 agctta 240

```
<210> 61
     <211> 292
     <212> DNA
     <213> Homo sapiens
     <400> 61
                                                                       60
caaggeega ggtgeeatee cetetgggaa geagaageet ggnggeacee agagtgggta
                                                                      120
ctqtnqnqqt aaaqnqntca ccctctcaca gcaccaccag cggcgagaca gaccccacca
ccatcttccc ctgcaaggag tgnggcaaag tcttcttcaa gatcaaaagc cgaaatgcac
                                                                      180
acatgaaaac tcacaggcag caggaggaac aacagaggcn aaaggctcag aaggcggctt
                                                                      240
                                                                      292
tngcagctga gatggcagcc acgattgaga ggactacggg gcccgtgggg gc
     <210> 62
     <211> 300
     <212> DNA
     <213> Homo sapiens
     <400> 62
                                                                       60
agcaaatcaa gatcttcagg tacagttgga ccaggcactc cagcaagcct tggatcccaa
tagtaaaggc aactctttgt ttgcagaggt ggaagatcga agggcagcaa tggaacgtca
                                                                      120
                                                                      180
gcttatcagt atgaaagtca agtatcagtc actaaagaag caaaatgtat ttaacagaga
                                                                      240
acagatgcac agaatgaagt tacaaattgc cacgttgcta cagatgaaag ggtctcaaac
                                                                      300
tgaatttgag cagcaggaac ggttgcttgc catgttggag cataataatg gtgaaataaa
     <210> 63
     <211> 300
     <212> DNA
     <213> Homo sapiens
     <400> 63
caggoctgga cttcgcccc aggoctagga ccgcggaggg tggaaccctg ctactgcccc
                                                                       60
                                                                      120
aacagggact ccaatcaatc ggagttetec cettgeegga getgeeette acetttgggg
                                                                      180
cccgagacag tcataaggga tggacttagt tttcttgcag ggaaaaaggt ggacagccgt
                                                                      240
gtttcttaag gatgctgagg gcatggggcc aggaccaggg gagaggcaca gctccttcct
                                                                      300
gagcagecte teaceaetge cacaaggete cetaatgetg gtetetgete cacteceegg
     <210> 64
      <211> 294
      <212> DNA
     <213> Homo sapiens
     <400> 64
gctgcatctg caatgaggat gccaccctac gctgcgctgg ctgcgatggg gacctcttct
                                                                       60
gtgcccgctg cttccggtgg gtgcaggtgg aatgttctgt gcgagagctc aagggctgcc
                                                                      120
                                                                      180
tggatccctg acttgtatcc ctttgttcca cagagagggc catgatgcct ttgagcttaa
agageaeeag acatetgeet acteteetee aegtgeagge caagageaet gaagacaeee
                                                                      240
tggtcctccc ggaagggcag tcccacaggc agcggcaccc atttctgggc cccg
                                                                      294
      <210> 65
```

<211> 300

```
<212> DNA
      <213> Homo sapiens
      <400> 65
                                                                       60
aattgatgag ccttattaac tatcttttca ttatgagaca aaggttctga ttatgcctac
tggttgaaat tttttaatct agtcaagaag gaaaatttga tgaggaagga aggaatggat
                                                                      120
                                                                      180
atottoagaa gggottogoo taagotggaa catggataga ttocattota acataaagat
                                                                      240
ctttaaqttc aaatatagat gagttgactg gtagatttgg tggtagttgc tttctcggga
tataaqaagc aaaatcaact gctacaagta aagaggggat ggggaaggtg ttgcacattt
                                                                      300
      <210> 66
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 66
agcagatttg tgataaactt gctgtagaag aaaccaaagg ggaacttctg ttgcaactat
                                                                       60
gtcgtttgga agatgctgca gatgtttata gaggattgca agagagaaat cctgaaaact
                                                                      120
gggcctatta caaaggcttg gaaaaagcac tcaagccagc taatatgtta gaacggctaa
                                                                      180
                                                                      240
aaatttatga ggaagcetgg actaaatate ceaggggaet ggtgeeaaga aggetgeegt
taaacttttt atctggtgag aagtttaaag aatgtttgga taagttccta aggatgaatt
                                                                      300
      <210> 67
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 67
tgttcttgta gtgtttgttg ctattgttag aaagattatt agtgatatgt ggggtgtctt
                                                                       60
anctaaacaa cagacacatg taagaaaaca ccagtttgat catggagagc tggtttacca
                                                                      120
tgcattgcaa ttgttagcat atacagccct tggtatttta attatgagac taaaactctt
                                                                      180
cttgacacca cacatgtgtg ttatggcatc actgatctgc tcaagacagc tatttggatg
                                                                      240
                                                                      300
gctcttttgc aaagtacatc ctggtgctat tgagtttgct atattagcag caatgtcaat
      <210> 68
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 68
agacaaagaa aaggtggcaa tcatagaaga gttagtagta ggttatgaaa cctctctaaa
                                                                       60
aagctgccgg ttatttaacc ccaatgatga tggaaaggag gaaccaccaa ccacattact
                                                                      120
ttgggtccag tactacttgg cacaacatta tgacaaaatt ggtcagccat ctattgcttt
                                                                      180
ggagtacata aatactgcta ttgaaagtac acctacatta atagaactct ttctcgtgaa
                                                                      240
agctaaaatc tataagcatg ctggaaatat taaagaagct gcaaggtgga tggatgaggc
                                                                      300
      <210> 69
      <211> 300
      <212> DNA
```

<213> Homo sapiens

```
<400> 69
                                                                       60
aattcnacac gaggtggccc ataagtttta ccttttaaac atccggctgc ctgtgaatga
                                                                      120
qaaqaataaa atcaatgtgg gaattgggga gataaaggat atccggttgg tggggatcca
                                                                      180
ccacaatqqa qqcttcacca aggcqtqqtt tqccatqaaq acctttctta cgcccagcat
                                                                      240
cttcatcatt atggtgtggt attggaggag gatcaccatq atgtcccgac ccccagtgct
totggaaaaa gtoatotttg coottgggat ttocatgaco tttatcaata toccagtagg
                                                                      300
      <210> 70
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 70
cccaaqqcaa qctqttaaca aaatcaacct gggccaatca tcaaaggqtt ggacctaagg
                                                                       60
ttgctatact caatagaaca agcattttaa ataaatttct cgtaagttgt tgctttcttt
                                                                      120
atgtggtggg tgtggcttta aagagcacaa aaccacaaca aatcaaagag tagctcgggc
                                                                      180
ttgtcttttg ctttatggct gagggtttga aggatgattc atggacttgt gaatgccage
                                                                      240
cccagtcccg gcttaggtct atctgccaat accaccaggg ccaacaaatt cacgcaacaa
                                                                      300
      <210> 71 .
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 71
ggaaatgcaa gtcaaaacag ctttgtaggt ctcagagttt gcttttaaga agtagtacaa
                                                                       60
qaaqqaataq ttatatcaat acaccagtgg ctgaaattat catgaaacca aatgttggac
                                                                      120
aaggcagcac aagtgtgcaa acagctatgg aaagtgaact cggagagtct agtgccacaa
                                                                      180
tcaataaaag actctgcaaa agtacaatag aactttcaga aaattcttta cttccagctt
                                                                      240
cttctatgtt gactggcaca caaagcttgc tgcaacctca tttagagagg gttgccatcg
                                                                      300
      <210> 72
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 72
ggattettte actgageaca aagagttgtt ggggetttag catetgactg attttgttae
                                                                       60
ggggttgatt ctgaccatag gaagtatgca atgtgaatca ctatttacag agaaacctac
                                                                      120
                                                                      180
aacagatgct tgatgttgta gaaactggga catatagata ccaagcaaaa ttataagaaa
                                                                      240
cctataaggt gttcaatacg cttgtgtttc caaaattcac tgtacatgat cagtttggtg
ttcttgtacc acagttttta actgaaggaa ccagttgtaa cagtctcaat tttaactaaa
                                                                      300
      <210> 73
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 73
ataacacaca tcacagtatg ctctcagaaa tttctttatt tgaaccctat accaatatct
                                                                       60
gttgatcaat gaccattttt gctcagcatg gagaaacagt gccctgcatg aagggtagtg
                                                                      120
```

agaataaaaa ggatettaee acetttatea tgagggtgge tttgetetet eea ttgttetetg ttetagaaag cagatgtagt agacatetae tgtttttgee taa ceetttttee tttttttgtt aaaagtaete ateeetaata ttacattgtt etg	aacagaat 240
<210> 74 <211> 300 <212> DNA <213> Homo sapiens	
<400> 74 cagagtcaac atggagcatc tcactgtgaa atgatccatg gattgaagga tattgtttatagg ttactttgaa agtaaaatat actatgtctt ggttttgagg atgaaaatctct ttcctttagg gctactgaga cttgattcct gatcatcaga aatgaacaactt gcttccaata tacccaattc tatatgaaga attcatggag agtactgnnnnn nnnnnnngan ncntgctgct ncgaanntnt nntattnact gar	attggata 120 attcacca 180 agtactgg 240
<210> 75 <211> 300 <212> DNA <213> Homo sapiens	
<400> 75 caagagagag tgatagaatt ggcagtgaaa tatacgaacc accetectge cet cacaatacgt gtacacttga ctgtgaagtg gctgtgagag tgggtggaga gtt gacceteage etgeggatge etctagaaac etegtgttga ttgcaggagg agt aaccetetge tttccatect geggeacgea geagatetee tcagagagea ggaagaatggat atgagatagg aacaataaaa etattetaca gtgcaaaaaa tagagaatggat	tettettt 120 teggaatt 180 caaacaaa 240
<210> 76 <211> 300 <212> DNA <213> Homo sapiens	
<400> 76 getagaegaa gtggtgaage ceaaggaett atttttgage tegetgtaag act caegtaetee tteetgaaae caetaagagg aaaaatgtet gtgaeaetge ata aggtgatatt aaaattgaag tettetgtga gaggaeaeee agaaeatgtg agt tegetgtgte eeceaggetg gagtaeaatg gegegatete ggeteaetge aactgeggtte aageaagtet tetgeeteag ceteeegaga actgeaagag gag	acagatgt 120 atggagtc 180 cctccgcc 240
<210> 77 <211> 300 <212> DNA <213> Homo sapiens	
<400> 77 agagactttt gtttgtgttt aattagggct atgagagatt tcaggtgaga agt gagacagaga gcaagtaagc tgtccctttt aactgttttt ctttggtctt taggttgcacact ggcattttct tgctgcaagc ttttttaaat ttctgaactc aagcagaagatgt cagtcacctc tgataactgg aaaaatgggt ctcttgggcc ctg	gtcaccca 120 ggcagtgg 180

ttetecatgg ceteagecae agggteeeet tggaceeeet etetteeete cagateecag	300
<210> 78	
<211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 78	
caggagcaat caattootgt cgaagtgaat accatgcagc ttttaacagt atgatgatgg	60
aacgcatgac cacagatatc aatgcactga agcggcagta ctctcgaatt aaaaagaagc	120
aacagcagca ggttcatcag gtgtacatca gggcagacaa agggccagtg accagcattc	180
tocogtotoa ggtaaacagt totocagtta taaaccacct tottttagga aagaagatga	240
aaatgactaa cagagctgcc aagaatgctg tcatccacat ccctggtcac acaggaggga	300
<210> 79	
<211> 278	
<212> DNA	
<213> Homo sapiens	-
<400> 79	
gtgctgcaga ggaagacagc ctgtcaggat actgacgagg aggaggaaga ggaagatgat	60
gatcaggetg aatacgacge catgttgetg gagcacgetg gagaggecat cectgeeetg	120
gcagccgcgg ctgggggaga ctcctttgcc ccattctttg ccggtttcct gccattattg	180
gtgtgcaaga caaaacaggg ctgcacagtg gcagagaagt cctttgcagt ggggaccttg	240
geagagaeta tteagggeet gggtgetget eageeeag	278
<210> 80	
<211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 80	
ggaacttetg agtaattggt atcattteet agtgaetegg etettgtaet ecaateeeae	60
agtaaaaccc attgatctgc actactatgc ccagtccagc ctggacctgt ttctgggagg	120
tgagagcagc ccagaacccc tggacaacat cttgttggca gcctttgagt ttgacatcca	180
tcaagtaatc aaagagtgca gcatcgccct gagcaactgg tggtttgtgg cccacctgac	240
agacetgetg gaccaetgea ageteeteea gteacacaac etetattteg gttecaacat	300
<210> 81	
<211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 81	
acctgtaccg cctggccact ggctgtcacc ggcgtgatga gctgccggtg ttngaacgca	60
acctatgctg gacteteeeg geagaetgee tggatatggt egeeatgeag gaageegeee	120
agcacctcct cggcacacac gacttcagcg ccttccagtc cgctggcagc ccggtgccga	180
geceegtgeg aacgetgege egggteteeg ttteeceagg ccaagecage ceettggtea	240
cccccgagga gagcaggaag ctgcggttct ggaacctgga gtttgagagc cagtctttcc	300

<210> 82

```
<211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 82
cccagctgga cctggtggcc ctttcctagt gcctctgctg ggggaggaga acctgggtcc
                                                                       60
                                                                      120
acgtggaggc taggaggtct caggtgctgc cctggcagca ccagagtgtg ggccgggccc
                                                                      180
gagtgtctgc ccctcggccc tcagggtggg gcacttagca cccagaaggg accaaaagca
                                                                      240
gggcatggcg gtgcagagga gtttgggagg tgtaaacagc cccatgcacg tggaggagga
                                                                      300
gctggctttc agccccagac cccacgctag cactttccac gctgcttgcc cgctgttgat
      <210> 83
      <211> 272
      <212> DNA
      <213> Homo sapiens
      <400> 83
tctagatatt gcccaatcgc tgcccacagt gcacatacct ttccaccagt cacatgtgag
                                                                       60
agggcagatt ttccaaatgc tcatcaccac ttggcactgt gtggactata attttggcca
                                                                      120
gttaggaaat ggcatctcat tgttttcatc ttaatttgcg tcagcctgat tactcattga
                                                                      180
aacttgtgag gttgagaaac ttttcttaag cttattggcc attcaagttt cctcctttat
                                                                      240
                                                                      272
gaaatggttg ttcatgtcat ttgctcattt tt
      <210> 84
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 84
cccactqccc ccqqtcaaca aacccacttt tatgacaqtt ttcttccgca gcttggctct
                                                                       60
taaattttac tggcaggtgt atggttgttg gagggttcct agtgagttgg gggacctggc
                                                                      120
aatagagetg ettggttgga ggaagtgaag etggettagt accageaget gatetettee
                                                                      180
acgtgctgct gctttttttg ccactctgat actaaaccag agaaagctgc aggtggataa
                                                                      240
                                                                      300
agaagctgtg gctgtttttt gcttttgggt ggcaatgaga aagagtcaca gtgtgggtta
      <210> 85
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 85
ctgggagcca ccaacatagc agattaccat gtgaagttgc cactgctgca tctcctgaaa
                                                                       60
                                                                      120
cctggctgat gggagaggtc tcattttgtg tctgagaatg tccaggttgt ctgcagacca
                                                                      180
cagcactgat ttcccattag cagttattat ttcctggcca tttcttcctg aaggttttgt
                                                                      240
ggttaaactc cctgtcctca atattttatc agcagtaggg ctgtcattct tctggttatc
aacctctaca ttatgaagta aggttcaacc cttctgcttt tctcaggccc ccaaaacggt
                                                                      300
      <210> 86
      <211> 300
      <212> DNA
      <213> Homo sapiens
```

```
<400> 86
agaacattgg tgtgtgagtg ttttttgatg gtgcaggacc cggaggtgct ttccttgcca
                                                                       60
                                                                      120
agaatagaaa catccagaat gctcctcccc atcccccaat cccagacagc aattatgtca
                                                                      180
gccctgtaag gcattgcctg ctcttgaccc tttggcccat ctttttattt ttaaaaaatt
                                                                      240
cccatgtcac agatgccctg tctatgcaga gggtggcgtg ggatgggtga ccactaagtt
taggetggtg aaggtggtga geeettetga ggeeetgata gaaettteea ggagtteatg
                                                                      300
      <210> 87
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 87
                                                                       60
ctccaaggaa aatccacctc gcagcttgta aatctacagc ctgattacat caaccccaga
geogtgeage tgggeteect tetegteege ggeeteacea etetggtttt agteaacage
                                                                      120
gcatgtggct tcccctggaa gacgagtgat ttcatgccct ggaatgtatt tgacgggaag
                                                                      180
ctttttcatc agaagtactt gcaatctgaa aagggttatg ctgtggaggt tcttttagaa
                                                                      240
                                                                      300
caaaatagat ctcggctcac caaattccac aacctgaagg cagtcgtctg caaggcctgc
      <210> 88
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 88
ctgaaacaaa agatgtattt caattaaaag acttggagaa gattgctccc aaagagaaaag
                                                                       60
                                                                      120
gcattactgc tatgtcagta aaagaagtcc ttcaaagctt agttgatgat ggtatggttg
actgtgagag gatcggaact tctaattatt attgggcttt tccaagtaaa gctcttcatg
                                                                      180
caaggaaaca taagttggag gttctggaat ctcagttgtc tgagggaagt caaaagcatg
                                                                      240
                                                                      300
caagcctaca gaaaagcatt gagaaagcta aaattggccg atgtgaaacg gaagagcgaa
      <210> 89
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 89
ggggacatgt gtccctcagc tcagcagagg ctgtggtaca acatggtcct tggtgaagac
                                                                       60
ctgcacccct ggaacctccc accatcgtca caactgtagt ctcatttgca gtggagaaaa
                                                                      120
                                                                      180
gaacccgatg teccacagec agatatacac ceageteeat gecagecett catgtttace
ttttgctttg ttaattacat gtcagactcc tagagggcct ccagactaat aggaagcatt
                                                                      240
                                                                      300
totgtaacca acctgccacc cactgattca gaaatggaaa tcacattcca caatctatgg
      <210> 90
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 90
ctcatacaga aagtcagatc aacaaagagt ccaagaaaaa tgcgacccag ctagaccatt
                                                                        60
```

tgatcccagg cttagcacac acatccagga agctggactc aaaccccatt ttcaactgag atagtcatac cccactggct <210> 91 <211> 300 <212> DNA	tctcctcagt ctatctttgc	ccctccagac tccagcctga	ttctggccac tactccagac	cacagaatga tgtgctggag	120 180 240 300	
<213> Homo sapie	ens					
<400> 91						
aatgcaaagg gctgcagttc					60	
atttcagact tggaaacatg					120 180	
tgcaaaattg caaagagaaa					240	
tgcatataaa ggaatgaaag aatacaaggc acctacagaa					300	
aacacaagge acceacagaa	cycacagyca	geacegeece	caccadaage	cccagcgggc	300	
<210> 92						
<211> 300						
<212> DNA						
<213> Homo sapi	ens'					
<400> 92						
aagatatgca gagatattcc	aggatettt	agetttggtg	caateteeta	gagacagtgt	60	
tattcgccaa cagtgtgttg					120	
cattgcactt atcttaccaa	_	_	-		180	
caattctcta ccaaataaag					240	
agctaactct gagagcagtt	acaactgttt	actgacatgt	gtcagaacaa	tgatgtttct	300	
<210> 93						
<211> 300						
<212> DNA	ona					
<213> Homo sapi	EIIS					
<400> 93						
cgattcgcca gttctccatt	ctgagagtca	atcacgttcc	tgataggttg	tcattgattt	60	
ttttcttcgt tggttttaac	cttctaaaca	tctccaggcc	actttcttag	cctttttcta	120	
ggtactaaaa agaggtccta	· -				180	
agtttggagg ggcttgggtg					240	
ccaggettgg gttcactttc	accatgcatt	ggcaaaacta	gaaaagtaag	cttgtgacaa	300	
<210> 94						
<211> 300						
<212> DNA						
<213> Homo sapi	ens					
<400> 94						
tttgtgcctg agcacccaca	atttcaggat	ttagactgtg	tggcacctca	gettteetet	60	
ggatgtaacc actccttggt					120	
aggcaatctt cattctgctt					180	
aactttgctg ggtgatccca					240	

aagtettatg aggteaceet gaetagaaaa aattgaacte acetacaaat agtetgaaag	300
<210> 95	
<211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 95	
gtgagtccga gcatcagtgg cttctggagc agaccagcca cgtggaagag aagccttaca	60
gagatgggtc ggcagagccc tgctgatggc tgggccttgt gggcagccac tctgtgtgag	120
cagggtgttg ggcccataca cttcaaagac cagagccctg cactgggaga gtgctcctgg	180
cccaggctgg gaatcacctt tcgaggccct tcagactctg gcggggcttg ctgtggcctc	240
cctccagcta gtggtgtggc tgagcagact ccagggccag ggccagttcc cttctcccct	300
<210> 96	
<211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 96	
acaactccag acataattaa agactggccc aggaggaaga gggcggtggg ctgtggcgcc	60
ggeteetett eegggaggg egaggteggt geagacette etgggageet gteaetgett	120
gagacagagg gcaaggacca cggccttgaa ctcagcatcc acaggacgcc catcttggag	180
gattttgagc tcgagggagt gtgccagctc ccagaccagt cgcctcccag gaacagcatg	240
cctaaggccg aggaagcctc ttcctgggga cagtttgggt tgagttccag gaagagagtc	300
<210> 97	
<211> 286	
<212> DNA	
<213> Homo sapiens	
<400> 97	
gtccagggcc cangttttaa tttnttttta aaaagcttta ggtcttgccg ggacggtggt	60
tcacncnnnn nnnnnnnnn nnnnnnnagg cctaggcggg tggatcacaa ggtcagcagt	120
tcaagaccag cctgaccagc atggtgagac cctgtctcta ctggaaatac aaaaaaattg	180
gctgggcgag gtggcaggca cctgtggtcc cagctacctg ggaggctgag gcgggagagt	240
ctcttgaaac tggaaggcag aggttgcggt gagccgagat tgcgcc	286
<210> 98	
<211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 98	
caccattttt attttgatgc ttacactcat ttattctgtt tttgtaaaac agtttcggga	60
atttaaaaat ccttccagtt aatagagctt ttgttattat attataattt tgtaaaccca	120
ctttgttttt cccactttaa agccacaggg tcgactcatg gatgatacct ctattgctgc tgcatgatgt tcaagaccgg cccttggctg ttgttacaga gatgttgggc agagctatgc	180
	240
aggtgtttca ttgtgaactc tagctttgat catggtaaaa agttaaccct ttctattttt	300

<210> 99

```
<211> 300
     <212> DNA
     <213> Homo sapiens
     <400> 99
agcetegeet gggeeggeet gtggeteeca tttteettte agegggacaa aggggacttg
                                                                       60
                                                                      120
ttaccaggec attitctgga tggcctgtga gatctctgcc cctccaagac cctccaagtc
tgagcctgac ccacagctgg gacactgaat tcagccctgg gaaccatggg ggcttctatc
                                                                      180
                                                                      240
tggcaccagg ctgcagcctc cccaatccca gcccactttg ctgtgtctct ggcgggctgt
                                                                      300
cctccttggt gggagctgtc ctgcacactg taggatgctt aaaggtatcc ctggcctcca
      <210> 100
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 100
tecaaceetg gegatgteae cageatggtg geteaggtta gagetetetg aggaeceage
                                                                       60
atagagcact ggtgccaggg accaaactga gaccccacca ccgtcatcaa cacttacata
                                                                      120
ccataaaggt cttcagagtg ccttggccct agacctccct tcattctttg tagagatgga
                                                                      180
atctaagaat gaaacatctc cactcagtcc tgcaaatatg gaagttcttg agataccttt
                                                                      240
ttttggtaga tacttgtgct ggtattctga gagtcacttt actctgatgg tttgcaagat
                                                                      300
      <210> 101
     <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 101
gtgtttcttc tacctcccct gcacaacatt gtttatatgc cccctaaaat gtaacttctt
                                                                       60
tagattctgt tgttacgtgc aacactgtat atctctccat agcacttaat cagagtttgt
                                                                      120
aattaggcat ctttttgtgt gattatttgg taaatgtcca tatcccctac tagcctataa
                                                                      180
getecatgae ttetaggtae cetgtetgae taegtgtate aetggtteta eegeetaaca
                                                                      240
ttgcctagca cattcattgc ttcacaggca tctgaatatg ggtttataaa atacattgct
                                                                      300
      <210> 102
      <211> 270
      <212> DNA
     <213> Homo sapiens
      <400> 102
cctggccctg ctgcccctcc tgaatctcgt atgatggtca cagtccggtg gccgtggggg
                                                                       60
                                                                      120
tgetetgeet teeetggtee ceaetgeeca tatetgtgga etgeeeette caaagaeeee
tggaggaggt gtnnnnnnn nnnttnntgn ncccactacc ntgcactgaa ctggccntgt
                                                                      180
tacancaann actgnncccn nttgttatna cacctntnac aaacacctgc tgctgtacat
                                                                      240
                                                                      270
gncnctactt taaggactnn anacctgtgc
      <210> 103
      <211> 300
      <212> DNA
      <213> Homo sapiens
```

```
<400> 103
gctggagcac gctggagagg ccatccctgc cctggcagcc gcggctgggg gagactcctt
                                                                    60
tgccccattc tttgccggtt tcctgccatt attggtgtgc aagacaaaac agggctgcac
                                                                   120
                                                                   180
agtggcagag aagtcctttg cagtggggac cttggcagag actattcagg gcctgggtgc
tgcctcagcc cagtttgtgt ctcggctgct ccctgtgctg ttgagcaccg cccaagaggc
                                                                   240
agaccccgag gtgcgaagca atgccatctt cgggatgggc gtgctggcag agcatggggg
                                                                   300
     <210> 104
     <211> 300
     <212> DNA
      <213> Homo sapiens
     <400> 104
ctegegtete tteaetgeae attgeaatge atttgegatt eccatttete tgetaggage
                                                                    60
cagcetgggt ggcgctgctc ccagagecgt gggtcccaga ccttgcgttc cttttgttcc
                                                                   120
tgtccgttta tcaggacacg ggcccacct gtcacgtgcc cgaggccacc caagcccagc
                                                                   180
                                                                   240
ctgcggggcg ttcccactgc ctggatgccg gcttgagttc tgcgcacgca ggattcagtg
                                                                   300
tggggacggc coctgccgga taggcctagc cctggcccag gtggtgagcg gtttgcagtg
     <210> 105
     <211> 300
     <212> DNA
     <213> Homo sapiens
     <400> 105
gggcactgtg gggctctccc cgcctctcct gccttgtttg cccctcagcg tgccaggcag
                                                                    60
actgggggca ggacagccgg aagctgagac caaggctcct cacagaaggg cccaggaagt
                                                                   120
ccccgcctt gggacagcct cctccgtagc ccctgcacgg caccagttcc ccgagggacg
                                                                   180
                                                                   240
300
caggagetgg gactetgeta cacceagtga aatgetgtgt ecetteteec cegtgeeect
     <210> 106
      <211> 300
      <212> DNA
     <213> Homo sapiens
     <400> 106
gctcaacgcc tatgtgaccc atctccatgc cgaatacaat cgacagaagg acatctacct
                                                                    60
agcacatcgt gtggcccaag cttgggaatt ggcccagttc atccaccaca catccaagaa
                                                                   120
ggcagacgtg gttctgttgt gtggagacct caacatgcac ccagaagacc tgggctgctg
                                                                   180
                                                                   240
cctgctgaag gagtggacag ggcttcatga tgcctatctt gaaactcggg acttcaaggg
                                                                   300
ctctgaggaa ggcaacacaa tggtacccaa gaactgctac gtcagccagc aggagctgaa
      <210> 107
      <211> 300
     <212> DNA
     <213> Homo sapiens
      <400> 107
tgtgagtttc ctatctgttc cagactagta tcgccaatct ctcccagctc tcttctttcc
                                                                    60
tccctggcct ttgtcctgca ggaggtagca tcacctcttg gcattttgta catgctttta
                                                                   120
```

aacaattgga ggagctgccc aggcagtttt atggcctcct ggttgtgtgc cttcacaccc gcctacagcc ccacctcacc atcaagcgct gagccaatgc gggtgtggct ggccctgagt tcctgagtca gctccttgcc agggccagag ctggtaacag cggggcagca gggtgggtag	180 240 300
<210> 108 <211> 300 <212> DNA <213> Homo sapiens	
<400> 108	
aggttgetea cetgaaggag cacaggaggg ttttecagge catgtggete aggtteetea	60
agcacaaget geceeteage etetacaaga aggtgetget gattgtgeat gaegeeatee	120
tgccgcaget ggcgcagece acgetcatga tegaetteet caceegegee tgcgaeeteg	180
ggggggccct cagcctcttg gccttgaacg ggctgttcat cttgattcac aaacacaacc	240
tggagtaccc tgacttctac cggaagctct acggcctctt ggacccctct gtctttcacg	300
<210> 109	
<211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 109	
cacaaggaga agaaagttaa ttaacattga aagatgagaa gacatcttgg aagaacttga	60
attgggcctt ggaagaagaa cagccattca aatagataga attgtggtag caaaggcata	120
gaggtaggaa agtatagatc tccagggaca gtagtcatgg ggttggggca ctgttggaat	180
ttaaggttgg aaggatatat tggagcccct tgaatacggt aacaaggcac accttgggca	240
gtggagagtt atcagagtgt ttgaaaagga gggttattga gtaaataaat	300
<210> 110	
<211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 110	60
gacaccccag atgcagccac caccagcaga agcgatcagc tgaccccaca agggcacgtg gctgtggccg tgggctcagg tggcagctat ggagccgagg atgaggtgga ggaggagagt	60 120
gacaaggccg cgctcctgca ggagcagcag cagcagcagc agccgggatt ctggaccttc	180
agctactate agagettett tgaegtggae aceteacagg teetggaeeg gateaaagge	240
tcactgctgc cccggcctgg ccacaacttt gtgcggcacc atctgcggaa tcggccggat	300
<210> 111 <211> 271	
<212> DNA	
<213> Homo sapiens	
•	
<400> 111	
cctggccctg ctgcccctcc tgaatctcgt atgatggtca cagtccggtg gccgtggggg	60
tgetetgeet teeetggtee ceaetgeeea tatetgtgga etgeeeette caaagaeeee tggggggggt ggggnnttee ttetanneen ntaenetatg tgtttaatnn nentantnet	120 180
ttantantat tinccantgn tintnatatn nitnanana nichtnetta ninacattat	240
tttanntang ngatnntacc ttnntgnaan g	271

```
<210> 112
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 112
                                                                       60
gttccctcac cttattcctc caagttcccc cttgggaacc tctgagatta acttgataag
ctccttgggc aagctcttta tcctaagatt cctcaqtqaq ccttatagag ttgctgcgag
                                                                      120
aattacattt gttcatgatg tcaagtgtct ggtatgtagc taatgcttat tgaacacata
                                                                      180
                                                                      240
gtaatttatt gaataattgt catgatcact ggatgagata tagccactgt ggaggtaggc
                                                                      300
acaccagggt tttagaggct tgggatcttg caacaggatt ttcctcttgc ctctccaaac
      <210> 113
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 113
cccacatgta ccaggttgag tttgaagatg gatcccagat agcaatgaag agagaggaca
                                                                      60
tctacacttt agatgaagag ttacccaaga gagtgaaagc tcgattttcc acagcctctg
                                                                      120
acatgcgatt tgaagacacg ttttatggag cagacattat ccaaggggag agaaagagac
                                                                      180
aaagagtget gageteeagg tttaagaatg aatatgtgge egaceetgta tacegeactt
                                                                      240
ttttgaagag ctctttccag aagaagtgcc agaagagaca gtagtctgca tacatcgctg
                                                                      300
      <210> 114
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 114
acagttagtg taaaggatct gaatggcata gacttaactc ctgtgcaaga tactcctgtg
                                                                       60
gcttcaagaa aagaagatac atatgtacat tttaatgtgg acattgagct ccagaagcat
                                                                      120
gttgaaaaat taaccaaagg tgcagctatc ttctttgaat tcaaacacta caagcctaaa
                                                                      180
aaaaggttta ccagcaccaa gtgttttgct ttcatggaga tggatgaaat taaacctggg
                                                                      240
ccaattgtaa tagaactata cacgaaaccc actgacttta aaagaaagaa attgcaatta
                                                                      300
      <210> 115
      <211> 288
      <212> DNA
      <213> Homo sapiens
      <400> 115
gtgatctgcc tgccttggtc tcccaaagtg ctgggaatac aggcatgagc caccgcactc
                                                                       60
ggccaggage tagttttate ageatectge tecaetgeet teetetagtg cageetggaa
                                                                      120
gacatggcag cgggtagctc ctggggctga gccagaagca tcactgcagt gaaagtctct
                                                                      180
gcttacctgt ctggctcagc ttgggcaagg gctgggccat atgtgctcag ggacgtgctt
                                                                      240
ctcttgtaag gcaggaggat anaanaggac cannaanggn gggagctg
                                                                      288
      <210> 116
```

<211> 300

```
<212> DNA
      <213> Homo sapiens
      <400> 116
                                                                       60
tcaattagta acatctgaaa aaacagcttt gtcctgggtg aaaaaggatg ccaaaattgc
ctggaaaaga gcagtgagag gagtccggga gatgtgtgat gcatgtgaag caacattgtt
                                                                      120
taacattcac tgggtctgcc aaaaatgtgg atttgtggtc tgcttagatt gttacaaggc
                                                                      180
aaaggaaagg aagagttcta gagataaaga actatatgct tggatgaagt gtgtgaaggg
                                                                      240
acageeteat gateacaaac atttaatgee aacceaaatt atacetggtt etgttttgae
                                                                      300
     <210> 117
      <211> 300
      <212> DNA
      <213> Homo sapiens
     <400> 117
gcactttcca gaattetete atatttgtgg gctgggatca agcctgcage ttgaggaaag
                                                                       60
cacaaggaaa ggaaagaaga tetggtggaa ageteaggtg geageggaet etgaeteeac
                                                                      120
tgaggaactg cctcagaagc tgcgatcaca actttggctg aagcccctgc ctcactctag
                                                                      180
                                                                      240
ggcacctgac ctggcctctt gcctaaacca caaggctaag ggctatagac aatggtttcc
ttaggaacag taaaccagtt tttctaggga tggcccttgg ctgggggatg acagtgtggg
                                                                      300
      <210> 118
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 118
agaacgttct caggttgacc agctgctgaa tatttcttta agggaggaag aacttagtaa
                                                                       60
                                                                      120
gtcattgcag tgcatggata acaatcttct gcaagcccgt gcagcccttc agacagctta
                                                                      180
tgtggaagtt cagaggctac ttatgctcaa gcagcagata actatggaga tgagtgcact
                                                                      240
gaggacccat agaatacaga ttctacaggg attacaagaa acatatgaac cttctgagca
                                                                      300
cccaggtttg gcatagaaat ggtacccctt gttcaaaatg aacaagaagc cttagatttg
      <210> 119
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 119
gaacaaagaa ggaatgtctt cctcatgttt gggtctatag aagacgttaa agaaaacttc
                                                                       60
                                                                      120
cagaaagtgg gtttgaggca tgagccacca cgcctggcca aaggatttaa tgaattaatg
                                                                      180
gatgtacagt gctggggctg gtattctagg gcctgcattg agactcacat tttgccatca
aaageetttt aagaggtgga ggttgeggtg agetgacatg gtgecactge acteeggeet
                                                                      240
                                                                      300
gagtgacaga gtgagactct gtctcacaaa aaaaataatg ccctttaaat aatgaataat
      <210> 120
      <211> 273
      <212> DNA
      <213> Homo sapiens
```

<400> 120	
cctcagcctt ctaaaaagct ggggctacac ccagctgaag aaattgtaac taaagataga	60
ttgtttaaag caaagcaaga aacttctgaa gaaatggaac aaagtggaga agcctcagga	120
aagcccaaca gagagtgtgc accccagatt ccttgtagta ctcctattgc tactgaaagg	180
acagttgcac atttgaacac tctgaaggac cgtcacccag gtgatttgtg ggcccgcatg	240
cacatctcat cccttggaat atgctgcagg aga	273
<210> 121	
<211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 121	
agaacgttct caggttgacc agctgctgaa tatttcttta agggaggaag aacttagtaa	60
gtcattgcag tgcatggata acaatcttct gcaagcccgt gcagcccttc agacagctta	120
tgtggaagtt cagaggctac ttatgctcaa gcagcagata actatggaga tgagtgcact	180
gaggacccat agaatacaga ttctacaggg attacaagaa acatatgaac cttctgagca	240 300
cccaggtttg gcatagaaat ggtacccctt gttcaaaatg aacaagaagc cttagatttg	300
<210> 122	
<211> 300	
<212> DNA	
<213> Homo sapiens	
•	
<400> 122	
gttgcaagca gccttggaat agtaactctt ctcatttgtt tgggatctgg ccaccaagtt	60
ccagaatgat acacggatca gtgcagaagt tcatcaggct ctcggacctt agggctgttg	120
gagaaggett cageageaga actgatggtg aaggetegtg ttetecatee teaaetttet	180
ttgcttcgat catacacaag aatacatttg gaagggcaaa aaaatgaaca ctgtcgttca	240
ttgcagccgt gttttgtgac acagatgcac agtctgctgt gaagaccttc tctcaagtgg	300
<210> 123	
<211> 300	
<212> DNA <213> Homo sapiens	
(213) HOURO SAPIERS	
<400> 123	
gtgatttcag cttccaaact ggtatacatt ccaaactgat agtacattgc catctccagg	60
aagacttgac ggctttggga ttttgtttaa acttttataa taaggatcct aagactgttg	120
cctttaaata gcaaagcagc ctacctggag gctaagtctg ggcagtgggc tggcccctgg	180
tgtgagcatt agaccagcca cagtgcctga ttggtatagc cttatgtgct ttcctacaaa	240
atggaattgg aggccgggcg cagtggctca cgcctgtaat cccagcactt tgggaggcca	300
<210> 124	
<211> 300	
<212> DNA	
<213> Homo sapiens	
.400. 104	
<400> 124	60
catgetggcc ageatecetg cetgtgcaag etetggatga getgtgagec cetgccacec	120
acaccccac tecetgecag cetggeetea gggeetetga tecatgtgea etggagagga	120

gatgactgac agggccactg gggcatttcc acgttaacag cagctgccac tggcaaa agtgactcgc caatggaggc atctcagatg tgggcccagg agtctgggga gctactt acagggctat ccattcattg tcccaccaaa ggctatggag cccacccacc atgtgct	tga 240
<210> 125 <211> 300 <212> DNA <213> Homo sapiens	
<400> 125	
ggtaaattgg ttgaattatt gtattgaagc ttgagctgta gctaaaagta atttagg	
cccctaagat gttattatgt tagggacata acacttttgg gaggttgttg tgggaga	
ttgatttagg ttttcaaaag ctagaaataa aatttacatg ccttagattt cataaaa tgctctaatt gggtggaagg tgctgtatct aacttgtgtt cctcctaagg ttatgtc	
ataactattc ttttaggagt atacttctac tttatagaag gttgcttttc tttttaa	
<210> 126	
<211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 126	
tgaagaggag atcggtgacc tgggctcctt atgtgcctga aagagtttga gtttcct aactccaaat caacagtatt ttcaacaaga aatgtgcaat tgaaatcaag tgctgtt	
gtgcagctag gatttccaca ggaagacact tgcagtgaac agagttatgg agcagca	
acacagatet atttggaaaa agagaaaaca tatgegttgt attttgette aattata	
taccatcctc tcaaaggtgg ttctaaatta caaaggactt tgatttctag gtagatt	ctg 300
<210> 127	
<211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 127	
ggtgattccc atgctgaaca gtttgatctc ctgccagagt gtcgggccac aaactgg	
gcacatcagg atcacctggg ggccttcaaa aatcaaaaat ccaccccag gccatgc ggacccactg caccaggaca agaaatccac cccaggcctc tccccagacc cactgca	
ggacaagaaa tecaceecca ggecacgeec cagaceeact gecetaggat gtggggg	
gaaccaggtg gtgctttgta aagacgtgca ggtggtaacc ccaggccccc acgctcg	
<210> 128	
<211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 128	
tgagctggga gaaggggaga aagtttgtga agaggagatc ggtgacctgg gctcctt	
tgcctgaaag agtttgagtt tcctgttaac tccaaatcaa cagtattttc aacaaga gtgcaattga aatcaagtgc tgtttaagtg cagctaggat ttccacagga agacact	
agtgaacaga gttatggagc agcaaaaaca cagatctatt tggaaaaaaga gaaaaca	
gegttgtatt ttgetteaat tataaaatae eateetetea aaggtggtte taaatta	

```
<210> 129
      <211> 285
      <212> DNA
      <213> Homo sapiens
      <400> 129
ggaaagcaca aggaaaggaa agaagatctg gtggaaagct caggtggcag cggactctga
                                                                       60
                                                                      120
ctccactgag gaactgcctc agaagctgcg atcacaactt tggctgaagc ccctgcctca
ctctagggca cctgacctgg cctcttgcct aaaccacaag gctaagggct atagacaatg
                                                                      180
                                                                      240
gtttccttag gaacagtaaa ccagtttttc tagggatggc ccttggctgg gggatnnnnn
                                                                      285
nnnnnnnn nnnnnnnnn nnaggaagat accatttett gaegg
      <210> 130
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 130
ccggacgcag gccctcgggc aggagcatct ggcagagtgg ggggcgtggc aggcaccctc
                                                                       60
ctttgcaggg cgaggtgggg cctctgcagc catcctggac aggccggggt ggcggcagct
                                                                      120
ttgcccacgt ggaagegggg tgggteteac ttgcgtggtg geccetggee ceatettgee
                                                                      180
tgctgcggcc tggggagcag gcgctgggtg gtggttctgc ctgcttgctg ctcgttcccc
                                                                      240
gggcatgcgt gggcagcggg gggcatgcgt gggcagcagg gggccgtggg cagcgggggc
                                                                      300
      <210> 131
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 131
gatetetata etagtgaaca gtgecagtte caeaetttgg aettagaact gttetetagt
                                                                       60
tattgtaaca cagaatactg tcaatcccta atttacttaa tgttacttat tggaagtggg
                                                                      120
gctgatgaaa tacgcacagg agggaaatct actgtgttta ggcacaggca gccccagtgt
                                                                      180
ataaggagat catattecaa aaggttgtea gttggttgtt tgeaacetgg aatgtatttt
                                                                      240
cctttagaga ccaggttatc catggtggtt aggcccctag agcagctgga aaagatgatc
                                                                      300
      <210> 132
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 132
ctcccatgga ggtggtggga atggcaccga gaagtttgat gacagttatc taatggacta
                                                                       60
gaggttggca aactttctgt aaatggccag gtagtaaata gttctgcttt tgaaggcata
                                                                      120
                                                                      180
tggtctcttg cacctactcg aggctgaaag cagctataga caatacataa atgaatgagc
gtgagtgtgt tccaataaga aaaaaacatg gctgtttgct tcggccccag ggttgtagct
                                                                      240
taccagteet gtaacagate acagtttget ettttggtca caaataettg aacceeteee
                                                                      300
      <210> 133
      <211> 269
```

<212> DNA

<213> Homo sapiens <400> 133 60 atgctatgcc aaagcctgct gccagctcca tagcctggac ctacagcact gcatggtgga gtccacagct gtggtgagct tcttggagga ggcagggtcc cgaatgcgca agttgtggct 120 180 gacctacage teccagaega cagecatect gggegeaetg etgggeaget getgeeecea gctccaggtc ctggaggtga gcaccggcat caaccgtaat agcattcccc ttcagctgcc 240 269 tgtccaggct ntgcaaaaag gctgccctc <210> 134 <211> 300 <212> DNA <213> Homo sapiens <400> 134 gatggatgag actgttgctg agttcatcaa gaggaccatc ttgaaaatcc ccatgaatga 60 120 actgacaca atcctgaagg cctgggattt tttgtctgaa aatcaactgc agactgtaaa 180 tttccgacag agaaaggaat ctgtagttca gcacttgatc catctgtgtg aggaaaagcg 240 tgcaagtatc agtgatgctg ccctgttaga catcatttat atgcaatttc atcagcacca gaaagtttgg gatgtttttc agatgagtaa aggaccaggt gaagatgttg acctttttga 300 <210> 135 <211> 300 <212> DNA <213> Homo sapiens <400> 135 ggcgagcggg aacagctctt gaggagtgag actgcaggag atgtgggccg tgccaaagag 60 atggatgaga ctgttgctga gttcatcaag aggaccatct tgaaaaatccc catgaatgaa 120 ctgacaacaa tcctgaaggc ctgggatttt ttgtctgaaa atcaactgca gactgtaaat 180 240 ttccgacaga gaaaggaatc tgtagttcag cacttgatcc atctgtgtga ggaaaagcgt gcaagtatca gtgatgctgc cctgttagac atcatttata tgcaatttca tcagcaccag 300 <210> 136 <211> 300 <212> DNA <213> Homo sapiens <400> 136 gacttctaaa tatatcttgg atataatagg tgataagttc tgtcaattag taacatctga 60 120 aaaaacagct ttgtcctggg tgaaaaagga tgccaaaatt gcctggaaaa gagcagtgag aggagtccgg gagatgtgtg atgcatgtga agcaacattg tttaacattc actgggtctg 180 ccaaaaatgt ggatttgtgg tctgcttaga ttgttacaag gcaaaggaaa ggaagagttc 240 tagagataaa gaactatatg cttggatgaa gtgtgtgaag ggacagcctc atgatcacaa 300 <210> 137 <211> 300 <212> DNA <213> Homo sapiens

<400> 137

```
ttgacaaatt gctggaacac acttattgtg gtttacccgg ttttaattat gtcagagatt
                                                                        60
                                                                       120
gcatcatcct tatgcttgtt tacatctata atcttctatg aaatggtggt accaaggggc
gcccaacagc ttttatcccc attcttagag catattcttt attataatga ttatccaaca
                                                                       180
tatttcttta attttaatac aaaaaataca tcatttaatt tttgttacat atgaacattc
                                                                      240
                                                                      300
attittaaat geteageete aagtgeagge attittgagt ggeetgatta eatatteete
      <210> 138
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 138
ggaaggggag ggttggtgag tcccagacct taaaaataca aggttaagag ggaccccaaa
                                                                       60
gcaaaaaatt ccaacccttt tcctcccagt cattgaaaca ccaaaactat tataccggag
                                                                      120
ggtgtaatag ttttgctgcc cagttgtggt aggccaqtag tggcctccca agatqcccat
                                                                      180
gtcctaatcc caggaacctg tcaaaattac cttgtatggc caaaggggct ttgcagatgt
                                                                      240
aatgaagtta aggatettte geeaggaaga ttateecage ttgtteagga gggettgatg
                                                                      300
      <210> 139
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 139
gacatcattt tettatteta gtaagagaaa gtacacagat teaactttag agaggaettt
                                                                       60
tttttttctg gagctaaatc aaggaaggat tatcacgtgg cctcccttga atataatttt
                                                                      120
gaagetgtga acagtaccat cagtaacatt ttatggacag etetgatggt ttttatacca
                                                                      180
eggeactett ettacetttg ggggaageta tetggagtta tgaetgatgt gtaaagtggt
                                                                      240
ttactgttag aatcctggtg tgctaggatt ctgggagagt cactttcagg aagttacctg
                                                                      300
      <210> 140
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 140
getgeecagg cagttttatg geeteetggt tgtgtgeett cacaecegee tacageecea
                                                                       60
cctcaccatc aagcgctgag ccaatgcggg tgtggctggc cctgagttcc tgagtcagct
                                                                      120
ccttgccagg gccagagctg gtaacagcgg ggcagcaggg tgggtagcct ctaccagcca
                                                                      180
                                                                      240
gggcagtccc tgaggggcca gcaggggggc tgactgccta gtggctcaac ctcctgaacc
cacccactcc cagcgatgct acccagaacc ccaacggcat gaatcctgca cagtgccggg
                                                                      300
      <210> 141
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 141
cccaaactta tcgggggtgc cagaggcaga gtagacaagc cttagtggcc gccatttgtt
                                                                       60
gaatatetae tgtgegeeaa geagtgegte acaactttat gaagtaggta ttattateat
                                                                      120
ccccatttta caggtgaaga aactgagtct ctgagagacc aacttttcca aggtcacaca
                                                                      180
```

gaggtgggat ccagcccact tccgtctgac cccaagcccc tgctgttaac ccctgcccca ttgtggggag gttccggccc actctggagt tctctggtct gcgtcagtcc tcaggagaag	240 300
<210> 142 <211> 300 <212> DNA	
<213> Homo sapiens	
<400> 142	
gaaaggtggc gcgcttctca cggctgagtt gctgcgcctg cagacggaag ctccccacag	60
gcagagctgc ttggatgtgt gagtcatgaa gccagagaag ccccgctcca tgagcagtga	120
ctccccagge cctgtgacct ccctcctgtc ttgcagctcc tcctggcacc agtccccagg	180
gctctcctgt tggtagttcc tgcttttctt cttggaaatt cctcgtggac ctcgagatct	240 300
ttaccctaaa atagttctgt tgaatttcac cctggcaatg taaattgata gcttatcttc	300
<210> 143	
<211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 143	
cttggccttg cttctctgag aaaactttgg tcacacctcc agagccaggg tgggtgcctc	60
cctggaggag ggggctttcc tggttggtgg cacagcagga gtccaggctt tgtaccgtgg	120
acaccatggg ctatggcaac accttectea ceatecttee atgaggaeet egggagagag	180
tggacatgaa accetttgtg ctctgaagca ttcaacagaa getttetggt tetgtgeeta	240
tttctttggc acttgagcgt gtttgcaggt tcattacaca catgatgaaa gctctggccc	300
.010: 144	
<210> 144 <211> 300	
<211> 300 <212> DNA	
<213> Homo sapiens	
(22) nome supreme	
<400> 144	
cctgactgag tgcctgacgg tggaccccct cagtgccagc gtctgaaggc agctgtaccc	60
taagcacctg tcacagtcca gccttctgct ggagcacttg ctcagctcct gggagcagat	120
toccaagaag gtacagaagt otttgcaaga aaccattcag tocctcaago ttaccaacca	180
ggagetgetg aggaagggta geagtaacaa eeaggatgte gteacetgtg acatggeetg	240
caagggcctg ttgcagcagg ttcagggtcc tcggctgccc tggacgcggc tcctcctgtt	300
<210> 145	
<211> 300	
<212> DNA <213> Homo sapiens	
(213) HOMO Sapiens	
<400> 145	
gccagagcct agaggagaga tcaaagaccc tggccgaagt gaagcccatt ctgcaagcaa	60
ctgggttccc atggcatgtg gtggccttag aggaggtgtt cagcctgcca ccgtcggtgc	120
tttggtgctc tgcccaggag ctggtgggat ccgagggggc ctacaaggcg gccgtggaca	180
getteeteca geageageat gtgetggggg cegggggtgg teetggneeg acteaagggg	240
annnnnnnn nnncncaacc cccgctggac ccccngaanc tggcaagacc ngctgcccct	300

```
<210> 146
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 146
                                                                       60
tgactttgta cctggtccaa gctgttgggg aattgctgct gttgacccag gcaggagtct
gactagagaa caaactaagg ttgctgcaac aaacaaggac ctcttccaag aagggctccc
                                                                      120
                                                                      180
aggeotggeg cagtgactca tgeetgtgat cecageactt gggaggeega ggegggtgga
                                                                      240
tcatttgagg ccaggagttc gagaccagct tggccaacat gatgagaccc cgtctctatt
                                                                      300
aaaaatacaa aaattagcca ggcgtggtgg cgcctgtagt cccagctact caggaggttg
      <210> 147
      <211> 295
      <212> DNA
      <213> Homo sapiens
      <400> 147
ggnaangena nngnaggaga nagagaagna neagtnnagn cecangaaac cenntgaaac
ccttagaagn cagaggagng aaaggangaa aaananggnn ggangagaac nnannnnggn
                                                                      120
caaannaagg anganngnta ggngngaaaa anaanaacaa anggggaaaa ngggaaaaaa
                                                                      180
ggcganaaag gnaanannag nanaaggngg aananannn annagaaagg ncaanaaaag
                                                                      240
aagnacaaag aaaaangana anaagnaann annanannga cagagacaag aagga
                                                                      295
      <210> 148
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 148
cgctgtgctt gagaccaacc tgacgggtac cttctacatg tgcaaagcag tttacagctc
                                                                       60
ctggatgaaa gagcatggag gatctatcgt caatatcatt gtccctacta aagctggatt
                                                                      120
tecattaget gtgcattetg gagetgcaag ageaggtgtt tacaacetea ccaaatettt
                                                                      180
                                                                      240
agetttggaa tgggcctgca gtggaatacg gatcaattgt gttgcccctg gagttattta
                                                                      300
ttcccagact gctgtggaga actatggttc ctggggacaa agcttctttg aagggtcttt
      <210> 149
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 149
agtgtcagtt ttcctaatct cagtccaggt aggaattaag aaatatctca agtgttgatg
                                                                       60
ctatccaagc atgttggggt ggaagggaat tggtgcccag aaaatgggac tggagtgagg
                                                                      120
                                                                      180
aatatetttt ettttgagag taeceecagt ttatttetae tgtgetttat tgetaetgtt
ctttattqtq aatqttqtaa cattttaaaa atgttttgcc atagcttttt aggacttggt
                                                                      240
gttaaaggag ccagtggtct ctctgggtgg gtactataat gagttattgt gacccacagc
                                                                      300
      <210> 150
      <211> 300
```

<212> DNA

<213> Homo sapiens

<213> Homo sapiens

<400> 150 tgtagacttt atgtcagttc tgtgtagact ttatgtcagt ttttgtcatt atttgaaaat 60 ctattctgac aactttttaa ttcctttgat cttataagtt aaagctgtaa caactgaaat 120 tgcatggatc aagtaagcat agttttatcc agggagaaaa ataaaaggaa gccatagaat 180 tgctctggtc aaaaccaagc acaccatagc cttaactgaa tatttaggaa atctgcctaa 240 tetgettata titiggigitt gittitigae tgitigggett igggaagaig tiattiatga 300 <210> 151 <211> 300 <212> DNA <213> Homo sapiens <400> 151 gegggeeegg ceageggaag ceeetgegee egegeeatgt caaagaaaaa aggaetgagt 60 gcagaagaaa agagaactcg catgatggaa atattttctg aaacaaaaga tgtatttcaa 120 ttaaaagact tggagaagat tgctcccaaa gagaaaggca ttactgctat gtcagtaaaa 180 gaagteette aaagettagt tgatgatggt atggttgact gtgagaggat eggaacttet 240 aattattatt gggcttttcc aagtaaagct cttcatgcaa ggaaacataa gttggaggtt 300 <210> 152 <211> 300 <212> DNA <213> Homo sapiens <400> 152 gatattcaca cagtatgtat tatattaacc atatcacact taagttatta aattcagact 60 atttgtaact tattgttata gggcctgccg tatggcttag gatatttgag taatcatata 120 tttaaagtaa aaactttggg ctgggcacag tggctcacac ctgtaatccc agcacttggg 180 gaagctgagg tgggcagatc agttgaggtc aggagttcta gaccagcctg gtcaacatgg 240 cgaaacccca tctctactaa aaatacaaaa attagctggg cgtggtggca cacacctgta 300 <210> 153 <211> 300 <212> DNA <213> Homo sapiens <400> 153 cagagaccag ccttctccag aggctgtcac tgcaggagcc gtgggcctgg gaagacttgg 60 aageggeete teteaactgg tttetgtete egtggagetg gaactgeetg cacttgeett 120 cagagggagg cacagtccac ccagatccac ctttccagca agacccccag tggctgccca 180 gcctgggagc acctctttgc ttttcacacc aaaccaaaac tggcgagagc ccctcctagc 240 caccagtgat ccccaagcat ccagtacaga accaggcatc gagctagctc cctgcacggc 300 <210> 154 <211> 300 <212> DNA

<400>	154					
cttgacctct	gtactttaaa	gaaatcacta	accaaatttt	caaagtttcc	ttttaaatgc	60
gtttagctag	aaatctatgt	atttatccct	ttcctatttt	gcattcttct	cccactattt	120
				caacagtatc		180
				tcagaatacg		240
				tgtgataatt		300
	55			- 5 - 5	33.3	
<210>	155					
<211>						
<212>						
	· Homo sapi	225				
(213)	· Homo sapie	2113				
<400>	155					
		atastaasat	atataaaaa	teettaetaa	aggtgatgtg	60
			ciglageage	tggttagtaa	accidatgig	
ggggaggtgt	gggaggtttt	a				81
<210>						
<211>						
	DNA					
<213>	· Homo sapie	ens				
<400>	156					
ggcagcacaa	gtgtgcaaac	agctatggaa	agtgaactcg	gagagtctag	tgccacaatc	60
aataaaagac	tctgcaaaag	tacaatagaa	ctttcagaaa	attctttact	tccagcttct	120
tctatgttga	ctggcacaca	aagcttgctg	caacctcatt	tagagagggt	tgccatcgat	180
gctctacagt	tatgttgttt	gttacttccc	ccaccaaatc	gtagaaagct	tcaactttta	240
atgcgtatga	tttcccgaat	gagtcaaaat	gttgatatgc	ccaaacttca	tgatgcaatg	300
<210>	157					
<211:	300					
<212>	DNA					
<213	Homo sapie	ens				
	-					
<400>	157					
ctggtgagga	qtctttqcqa	gagcgaggag	cagcggttac	tggaacaggt	gcatggcgaa	60
				actgggccga		120
				ctcacctgga		180
				aagcagaggg		240
				ctcggagccc		300
0000033430	cggaaacgcc	audoccuau	Juguuguguu	0009949000	accaccgacc	
<210>	. 158					
<2112						
	DNA	•				
		-ma				
<213	Homo sapie	2110				
-400-	150					
<400			~~~~	~~~~~ ~	totta	60
			-	ccaagacagt		60
				acgtgtgcag		120
				cccagggcaa		180
				ctaaatacaa		240
ctgcacggga	cctattagag	tattttccac	aatgatgatg	atttcagcag	ggatgacgtc	300

```
<210> 159
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 159
agtacccaga gttgcgagga gttttttaac tgatttagcc aggtggcaat catgagtgaa
                                                                       60
tggatgaaga aaggcccctt agaatggcaa gattacattt acaaagaggt ccgagtgaca
                                                                      120
gccagtgaga agaatgagta taaaggatgg gttttaacta cagacccagt ctctgccaat
                                                                      180
attgtccttg tgaacttcct tgaagatggc agcatgtctg tgaccggaat tatgggacat
                                                                      240
gctgtgcaga ctgttgaaac tatgaatgaa ggggaccata gagtgaggga gaagctgatg
                                                                      300
      <210> 160
      <211> 294
      <212> DNA
      <213> Homo sapiens
      <400> 160
ctttgagcta ggataaaaat tgggtaaagg acatttgctt acctgcaaat gaatcactgt
                                                                       60
ggaaatgtga tetteecata teateaagaa aettgtttte tggatgaata etgggagaat
                                                                      120
aaaatgagaa ctctggagtg agctaaattg atcccaatta agtttttctg cttagcagac
                                                                      180
agaaggtata attttttgac accettteee acetggtgee tatgetagge ttgtnetgat
                                                                      240
aacatccctc actnactnga tnntcacatn gnncttncnc tgangtccca tttt
                                                                      294
      <210> 161
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 161
etteeteaaa geatggttge tgagtaeeea gagttgegag gagtttttta aetgatttag
                                                                       60
ccaggtggca atcatgagtg aatggatgaa gaaaggcccc ttagaatggc aagattacat
                                                                      120
ttacaaagag gtccgagtga cagccagtga gaagaatgag tataaaggat gggttttaac
                                                                      180
tacagaccca gtctctgcca atattgtcct tgtgaacttc cttgaagatg gcagcatgtc
                                                                      240
tgtgaccgga attatgggac atgctgtgca gactgttgaa actatgaatg aaggggacca
                                                                      300
      <210> 162
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 162
gccccgtgtg gggagacgga cagcaccctc ctcatctggc aggtgccctt gatgctatag
                                                                       60
egecteccet etecceteag agggeacage tgeaggeetg aceaaggeea egeceggete
                                                                      120
togtgotota ggacotgoac gggacotgtg gatgggootg gactotocag aaactacttg
                                                                      180
ggccagagca aaggaaaacc tettgtttta aaaaaatttt tttcagagtg ttttggggag
                                                                      240
gagttttagg gcttggggag agggaggaca catctggagg aaatggcctt ctttttaaaa
                                                                      300
      <210> 163
      <211> 300
```

<212> DNA

<213> Homo sapiens

```
<400> 163
gaccggctgg gcctacaaaa agatcgagct ggaggatctc aggtttcctc tggtctgtgg
                                                                       60
ggagggcaaa aaggctcggg tgatggccac cattggggtg acccgaggct tgggagacca
                                                                      120
cageettaag gtetgeagtt ceaccetgee cateaageee ttteteteet getteeetga
                                                                      180
ggtacgagtg tatgacctga cacaatatga gcactgccca gatgatgtgc tagtcctggg
                                                                      240
aacagatggc ctgtgggatg tcactactga ctgtgaggta tctgccactg tggacagggt
                                                                      300
      <210> 164
      <211> 300
      <212> DNA
      <213> Homo sapiens
     <400> 164
aaaatttata ngtaatgaca aatgacttat cagtgttcat catctgaaag ctaagtggtt
                                                                       60
cgttcaatca ctttttcaaa gttgatagta gattgcatgg tttcatgttt cctcatattg
                                                                      120
gtttattaat totatttaat caaggaaaat aacttcagat tocataaagt ttcagtttat
                                                                      180
ttttagttta ctactaggtg agatagcaca ttacatactt ttactatcaa atattatttt
                                                                      240
agcagcttcc catagtacca aatgatttga ttccctactc tcatttttta aagcatataa
                                                                      300
     <210> 165
      <211> 300
      <212> DNA
     <213> Homo sapiens
      <400> 165
etggaetetg agtegtettg gteccaggag ceagtagtga aggeaacagt etgeceaeet
                                                                       60
gtggacacca gatcctggga gctcctggtt agcaagtgag atctctggga tgtcagtgag
                                                                      120
gctggttgaa gaccagaggt aaactgcaga ggtcaccacc cccaccatgt cccaggtgat
                                                                      180
gtccagccca ctgctggcag gaggccatgc tgtcagcttg gegccttgtg atgagcccag
                                                                      240
gaggaccetg cacceageae ceageeceag cetgecacee cagtgttett actacaceae
                                                                      300
      <210> 166
      <211> 300
      <212> DNA
     <213> Homo sapiens
      <400> 166
cttctgttga ttggtttgtt taaagtacct aagtactacc ctttgactcc ctaccaaaag
                                                                       60
ttcttttgtt ttttaaacaa cttttatttg tgacttactt tcttgagaag tgttcttaat
                                                                      120
gaattgcata aaatagtggt agcagcttat ttcttaagta ctttattatt tgtgctttac
                                                                      180
catttcaggt tcttatcttt aacccttatt tactcagttt tccatctgaa tgatcctatc
                                                                      240
tctaaattaa ggatttaata aatgctgcaa attgtccact ttgcaaattg tccaaaagct
                                                                      300
      <210> 167
      <211> 300
      <212> DNA
      <213> Homo sapiens
     <400> 167
```

gcgagatgaa gctacactgt gaggtggagg tgatcagccg gcacttgccc gccttggggc ttaggaaccg gggcaagggc gtccgagccg tgttgagcct ctgtcagcag acttccagga gtcagccgcc ggtccgagcc ttcctgctca tctccaccct gaaggacaag cgcgggaccc gctatgagct aagggagaac attgagcaat tcttcaccaa atttgtagat gaggggaaag ccactgttcg gttaaaggag cctcctgtgg atatctgtct aagtaaggat tccatatggc	60 120 180 240 300
<210> 168 <211> 300 <212> DNA <213> Homo sapiens	
<400> 168	60
gtotgggcag cotacgottt coggataaaa atggcagaat gaaagaatta tgagtggaac tagagaatag gaaagacatg aaccaacgoo caaaatgaga aagaaggaca tataaagaaa	120
aagacaaata caagtgaaaa aaatatacta atggattaac gtccctgtcg agtgacattt	180
totgactatg gaaatgatat tagacaaaaa gcaacttcaa gtgggtttct tatttgagtt	240
caaaatgggt cataacgcag catagataac ttgaaacatg aacagcgcat ttggcccagg	300
<210> 169 <211> 296 <212> DNA <213> Homo sapiens	
<400> 169	
gagatetetg ggatgteagt gaggetggtt gaagaceaga ggtaaaetge ggaggteaee	60
acceteacea tgteceaggt gatgtecage ceaetgetgg caggaggeea tgetgteage	120
ttggcgcctt gtgatgagcc caggaggacc ctgcacccag cacccagccc cagcctgcca	180 240
ccccagtgtt cttactacac cacggaaggc tggggagccc aagccctgat ggccccgtgc cctncattgg gncccctggc tanttcancn agncccncag gtngagncca aagcca	296
concactagy greecetyge tantitudent agreecentary gengagnota aageea	2,0
<210> 170 <211> 300 <212> DNA <213> Homo sapiens	
<400> 170	
gggtgttgga gcagattgta gttgatccac agcaaagagc atcaccaaag ccattccagg	60
aggaactaga tocaccactt cototgotgg goatgotoca aaaatggttg tggottocag	120
agaggactee aaaagaaage acaaaaacta gacagtggga gggcatacee aaaageeetg	180
agtttctgaa aaaatattga aagtttctat ggtgaaatag gaagttaatg tgcttaggaa	240
gaaaaaagtg gtaatgattc aaggaaacat aatcacacac ggttttagtt ttaatggaca	300
<210> 171	
<211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 171	
atggaggcac cagcaggtag tggcccctgt aagcagggcc agagtcggga caaagagcag	60
gagtgaagca gccaagagag agaggaccag gctggagcca gtgggcacgc aggagcctgc	120
ctgggaaaag ccggggggca aggctggcat gggaatgaac acctgctggt gacacctctc	180

tgagetteag tteeettaae tagaaaaata gaacaggeee ggtgeggtgg eteatacetg taateeeage aetttgggag getgaggegg gtggateatg aggteaggag ateaagaeea	240 300
<210> 172 <211> 300 <212> DNA <213> Homo sapiens	
<400> 172	
ggcggaggag cagaagctca agctggagcg gctcatgaag aacccggaca aagcagttcc	60
aattccagag aaaatgagtg aatgggcacc tcgacctccc ccagaatttg tccgagatgt catgggttca agtgctgggg ccggcagtgg agagttccac gtgtacagac atctgcgccg	120 180
gagagaatat cagcgacagg actacatgga tgccatggct gagaagcaaa aattggatgc	240
agagtttcag aaaagactgg aaaagaataa aattgctgca gaggagcaga ccgcaaagcg	300
<210> 173	
<211> 300 <212> DNA	
<212> DNA <213> Homo sapiens	
<400> 173	
gtctttccca ttcacttctc tagaaagctg ccaagacaga ggcagaaaga aatggatgat	60
agttctgtca agcacacttc tgttctctta gaacttagaa gtgtttctaa gagaacagaa	120
gtaataagag aaacagttac gtgtggaatt caacatcttt ggttggaacg cattggcttt	180
ttttttcttg ttttgataga aatggaatta agcaaaagta gtttttgtct tttctgttgt cttcaaattt caggccatct atttttaatt taatcccgtt caagtacttg attgttatac	240 300
coolaatee taggetatee accordate taateeeget taagtateeg accyctatat	300
<210> 174	
<211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 174	
attatttcca aagcagccta cagtagaaaa tagtcattat ggcagcagct tctgatgttt	60 120
ttgtttggta ggttttctga tttcaatata tagaatcata ttcatagagt atcttctttt aacgaattgc acaaagtacc catttaaaat ttacatgcac agttcattgc cacctttctt	180
aggcctatgc atagttaata aggttataat ctactcaaca tggaaaatgg agcctatttg	240
caaacacaca agtaattaaa gtaccaattc tctcttagtt tcttttttta tagttggttt	300
<210> 175 <211> 300	
<211> 500 <212> DNA	
<213> Homo sapiens	
<400> 175	
tgganactct ttantatgga aggtgaattt cctgtcaaca tagtccagga caaagcagtt	60
ccaattccag agaaaatgag tgaatgggca cctcgacctc ccccagaatt tgtccgagat	120
gtcatgggtt caagtgctgg ggccggcagt ggagagttcc acgtgtacag acatctgcgc cggagagaat atcagcgaca ggactacatg gatgccatgg ctgagaagca aaaattggat	180 240
gcagagtttc agaaaagact ggaaaagaat aaaattgctg cagaggagca gaccgcaaag	300

```
<210> 176
     <211> 300
     <212> DNA
     <213> Homo sapiens
     <400> 176
tataaacttt attttattct cttctggggt agagttacat gacaagaaat tgaattaatt
                                                                     60
caataaaatt ttagtteggg ttgettaggt ttttactget eccattettg ettttactaa
                                                                    120
tttatccaaq attaqatqtq attactattt aataataatt taqtcctcac acttacaaac
                                                                    180
                                                                    240
cacttacaat accagcatgc ttctatcact gtaattctat tcaattctca ggcccatgag
                                                                    300
gcatgccagc cagacgacca gacagcattt atagagaggg cactcaatac cagccacaaa
     <210> 177
     <211> 300
     <212> DNA
     <213> Homo sapiens
     <400> 177
gactggagaa gtcagaagta gaaaagcaga ttgctaggag agacaggatg acagattttg
                                                                    60
gtcagaaaat gggatattgg agtttaaagt atcaaataca gaatagttcc agatgttcag
                                                                    120
agatecagea tgggattagg taetgaaatg gattagaaet aaaagteaet agaatttaga
                                                                    180
aattgagaac catgagagtg gatgcaatga cttgttgctt gattgaaaaa taaattaata
                                                                    240
ataataaagg accatgagac tagcctgtta tagggggtat ctccatgann nttgtttttc
                                                                    300
   <210> 178
     <211> 300
     <212> DNA
     <213> Homo sapiens
     <400> 178
tectggtgte aaacactata aacctttgae cagetgaget gtgactgetg teacatatet
                                                                    60
gagteetgtg tgeacagtaa tateetgggt caggtaaaat ceaggtette aagttttaag
                                                                    120
gattttttga agaattcggg cttctttaag acgatccatg cccaaatcca caagcttgtt
                                                                    180
                                                                    240
gacagtggat tacagtttgt gtggcaaagt ccaagttgtt acactgtgct ttaaaaaaaa
                                                                    300
tettatetge atgtattgtt aacttagaga ceatgagate tatttateag gaccaggaag
     <210> 179
     <211> 300
     <212> DNA
     <213> Homo sapiens
     <400> 179
ctcatgcctg taatcccagc actttgggaa gcagaggtgg caggatcatt ccagcccagg
                                                                    60
agttcaagac cagcctgggc aacacagtga gtgagaccct gtctctattt aagaaaaaat
                                                                    120
                                                                    180
aattaagaaa ttttattaaa aaagaagaat caggaaacca agtccaaccc aactaaacct
                                                                    240
tecatggeee gteatttate aaggetgeag etttgtaaat gtggetattt ttatgttgtg
                                                                    300
     <210> 180
     <211> 300
```

<213> Homo sapiens <400> 180 gtgatetgee tgeettggte teecaaagtg etgggaatae aggeatgage caeegeacte 60 ggccaggage tagttttate agcatectge tecaetgeet teetetagtg cageetggaa 120 180 gacatggcag cgggtagctc ctggggctga gccagaagca tcactgcagt gaaagtctct gcttacctgt ctggctcagc ttgggcaagg gctgggccat atgtgctcag ggacgtgctt 240 300 ctcttgtaag gcaggaggat agaagaggac caagaaggga gggagctgcc ctgtggtgca <210> 181 <211> 300 <212> DNA <213> Homo sapiens <400> 181 cccatgccgg gatcttccca cacccgtcct cacagatcca gccccagccc cttgcttccc 60 aggecatete teageageae etgeaggatg egggeaeeeg ggagtggage eeteagaaeg 120 catccatgtc ggagtctctc tccatcccag cttccctgaa cgacgcggct ttggctcaga 180 tgaacagtga ggtgcagctc ctgactgaaa aggccctgat ggagcttggg ggtgggaagc 240 egetteegea ceceegggeg tggttegtet cettggatgg caggteeaac geteacqtta 300 <210> 182 <211> 300 <212> DNA <213> Homo sapiens <400> 182 tttgcagtgt tgtcagaaac aaataataaa gccccaaaag attaactagt tgaaaaaact 60 ggcaaaatct gtatacgtgg aaatttacca ggacagagac tgaagaataa agaaaatgag 120 tttcattgcc agatcatgaa atccaaagaa actttaaaga agatgagttg tgtaaatgga 180 actgaaggga gggaagaget geettegeet gggacaaaga aaacatgtgt atacacatgg 240 gtcaagcagt gctggtctgt ggctgcctgt ccagaggaat ggaaatatcc cttgtcttta 300 <210> 183 <211> 300 <212> DNA <213> Homo sapiens <400> 183 eggacecate ggagegtaac etggatetee geaggeetgg eggaggeegg eeacetggag 60 gggcattgct tggttcgcgt ggtagcagag gagcttgaga atgttcgcat cttaccacat 120 acagttettt acatggetga tteagaaaet tteattagte tggaagagtg tegtggeeat 180 aagagagcaa ggaaaagaac tagtatggaa acagcacttg cccttgagaa gctattcccc 240 aaacaatgcc aagtccttgg gattgtgacc ccaggaattg tagtgactcc aatgggatca 300 <210> 184 <211> 300 <212> DNA

<213> Homo sapiens

<400> 184

```
ctgttttgca gatgaggaaa ctgaggtaca gaattcttag ggaacttacc caaaatggct
                                                                       60
tttctgcact ctgccctttg gtattgtccc atgtgaattg tttaaaactt atgtgtatag
                                                                      120
                                                                      180
tggcatgagt aggtgatttc agaaacagaa ctcacttttg ttgtttggtc ttaaaattag
                                                                      240
qaacttttct tcatctqqqc ttcatttccc tqcaccttcc caqctttcta qtcatqcaag
                                                                      300
ccacatgtct ccacgtgagg ggttcattgg aaagcagcca cagagccacc ccctggctgg
      <210> 185
     <211> 260
     <212> DNA
     <213> Homo sapiens
      <400> 185
attatagaga ttaatctcct ttgctcgaag tctatttaaa tattagtcac atctaaaaca
                                                                       60
tacttttaca gcaacatcta gactggtgtt tgaccaaaca actgggcatc atagctgaca
                                                                      120
cataaaatta accatcacaa ccatgttcta ggcactgttc ctcactgcct qaqaagacac
                                                                      180
cgttatgttt attagggttt ttgagtttta tccacagett ttggttatct gcaaccatgt
                                                                      240
ctcccacctt taacatagtt
                                                                      260
     <210> 186
      <211> 300
      <212> DNA
     <213> Homo sapiens
      <400> 186
gataaactct tcagtgacga atattagaaa aagttagtta tacatttgag gaaaactata
                                                                       60
aaagtaccaa taatgagtag gaaatcactt ctgcagtatt tttggagcat tttccttaag
                                                                      120
catgacataa aagccaaagg tcacaaggga aaaaactgat agatttgtct gtgatattga
                                                                      180
                                                                      240
gagatgtatg cacatataca tacaacagtc atagtaagac accgttagac aaaaggtgat
gtatgaaaaa gaggcaaaac aacaagaaga aaagattgaa aaaatgagag ctgaagacgg
                                                                      300
      <210> 187
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 187
aaaaaqtaaa qcttttcatq aqcacaaatc ccttqcattq tttqatqtta ctqatattcg
                                                                       60
taaaatgaat attttttgtt ttgttttgtt ttattttttt gagacaagtc ttgctttgtt
                                                                      120
gcccaggctg gagtgcaatg gcatgatctt ggctcactgc aacccctgcc ttgcgagttc
                                                                      180
aagtgattet tetgeeteag ceteetgagt agetgggatt acaggegete accaccacae
                                                                      240
ccagctaatt tctgtatttt tagtagacac agggttttac catgttggcc angctggtct
                                                                      300
      <210> 188
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 188
gagcattect cettigttaa egaagcaaca titacacaag atggacatta cattattagt
                                                                       60
gcatgctctg atggcactgt aaagatctgg aatatgaaga ccacagaatg ttcaaatacc
                                                                      120
tttaaatece tgggeageac egeagggaca gatattaeeg teaacagtgt gattetaett
                                                                      180
```

```
240
cctaaaaacc ctgagcactt tgtggtgtgc aacagatcaa acacggtggt catcatgaac
                                                                       300
atgcaggggc agattgtcag aagcttcagt tctggtaaaa gagaaggtgg ggactttgtt
      <210> 189
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 189
ctaatatcca gaatctacaa agaactcaac aagaaaaaaa ccaaccccac aagcgggcaa
                                                                       60
aggacatgaa cagacatttc ccaaaagaag acatacaagc aacctaaaat aatctaaaat
                                                                       120
aatttttaaa aagaaaaaat gettgacaga gttttgatag taettagtaa aaagttatat
                                                                       180
ctagtggctt tttgtttgtt tgtttttgtt ttgtttttaa gaaatagtct ctgtttccca
                                                                       240
agctggagta cagtggcgca atcttggctc actgcaacct cgaactcctg ggctcaagcg
                                                                       300
      <210> 190
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 190
aaccactatg gaggcatgat tggtggccac tacactgcct gtgcacgcct gcccaatgat
                                                                        60
cgtagcagtc agcgcagtga cgtgggctgg cgcttgtttg atgacagcac agtgacaacg
                                                                       120
gtagacgaga gccaggttgt gacgcgttat gcctatgtac tcttctaccg ccggcggaac
                                                                       180
tetectgtgg agaggeecce cagggeaggt caetetgage accaeccaga cetaggeect
                                                                       240
gcagctgagg ctgctgccag ccagggacta ggccctggcc aggcccccga ggtggcccca
                                                                       300
      <210> 191
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 191
geggegetga eceggeegge eceacaeceg etetteetet tetttgeege ggaeteeett
                                                                        60
tectgeetee aagacetggt gteteccaet gtgageecag etgteecaea ggeagteece
                                                                       120
atggacetag acteaectte ecettgeete tatgaacete tgetgggeee ageecetgte
                                                                       180
ccagctcccg acctgcactt cctgctggac tcaggcctcc agctccctgc ccagcgageg
                                                                       240
gcctcagcca ccgcctcccc tttcttccgg gccctgctgt caggcagctt tgcagaagcc
                                                                       300
      <210> 192
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 192
gacagaccgt tgagaggacg tggaggcccg agagggggta tgcgcggcag aggcagaggt
                                                                       60
ggccctggga acagagtttt tgacgctttt gaccagagag gaaagcgaga atttgaaaga
                                                                       120
tatggtggga atgacaaaat agcagtcaga actgaagaca acatgggtgg atgtggagtt
                                                                       180
cgaacctggg gatcgggtaa agataccagt gatgtggagc caactgcacc gatggaggaa
                                                                       240
cccacagtgg tggaggagtc ccagggcacc ccggaagagg agtctccagc caaagttcct
                                                                       300
```

```
<210> 193
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 193
ctcaagaaag gagaagtttt tttgtatgaa attggaggaa atattgggga acgctgcctt
                                                                       60
gatgatgaca cttacatgaa ggatttatat cagcttaacc caaatgctga gtgggttata
                                                                       120
aagtcaaagc cattgtagaa gacttaacaa gctgcagata accatgtgga cttctgtcat
                                                                       180
                                                                       240
aattettget gagteaagag tgtaaataaa agaaatggea ggacteatat tatteagttg
tacccaagta tttaaaaatg actctcttaa gccttaaaaa gtcatagatt tgtgctgctg
                                                                      300
      <210> 194
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 194
cagaagetta gteatattte aaaatgatea aatateaaga aaaattetga getgeataae
                                                                       60
ttgtataaag taattttcag tgattttttt catggttatg ataaaagaac tggattagca
                                                                      120
gaaactttta ccctgaatca agatttaatt tttctttgag ctcatcttaa ggatatcgga
                                                                      180
acatagggag caaacgatgg tgtggctgcc tcagtgcttg atttttaacg gttttgaaga
                                                                      240
gaatagttac atttcttctc ctagtaagaa ctaataaata cattaacaga aatgaattcc
                                                                      300
      <210> 195
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 195
ctctactaaa aatacaaaaa ttagctgggc gtggtggcac acacctgtaa tcccagttac
                                                                       60
ttgggagget qagqcacaag aatcgettga accegggagg eggaggttge agttagccaa
                                                                      120
                                                                      180
gategeeetg etgeacteea geetgggeaa cagagggaga etetgtetee aaaaacaaaa
acaaaaactg ttagtgaagg ttccctggga cttttgatat tttaaaaaatt gatcttatga
                                                                      240
                                                                      300
ctaagtagat aaattcattg ccataatgag gctagctccc agataaacag cgtattttct
      <210> 196
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 196
tggatactga caatggtggc aggcatttca agccttttaa attagtactt tttgtcgtct
                                                                       60
tgcttattaa aattttgtta attttagcaa agaccaattg ttgtgataaa ctggtgtttt
                                                                      120
ttggatgett caageacacg ttaaccaatt ttttaattee cettttggtt ceteccattg
                                                                      180
ttctaaaata ggactttcat attattaaaa cctcaaaaga tgatccaccc aggatgaaca
                                                                      240
aagatcacca aggggaaaga aaacattttt tatctttaca gaaaacatgt taagattata
                                                                      300
      <210> 197
      <211> 300
```

<213> Homo sapiens

<400> 201

```
<400> 197
                                                                       60
atccagatgg gatacctcta aacacgaaaa gaaagaagat tccattagtg aatttttaag
tttggctaga tcaaaagccg agccacctaa acaacagtcc agccccttag taaacaaaga
                                                                       120
ggaagagcat gcaccagaat catccgcaaa tcagacagtc aacaaagatg tggacgcaca
                                                                      180
ggctgaagga gaagggagcc gcccatccat ggacttattc agggccatct ttgccagttc
                                                                      240
ctcagatgaa aagtcctcat cctccgagga tgagcaaggt gacagtgaag atgatcaggc
                                                                      300
      <210> 198
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 198
gcaacatttg tctacaactc tactgtaaaa ttggaaatgc ttttccacag aaaaacctct
                                                                       60
caaaatgctg aatgcaaaag ttgggatcac agaaacattg tgcctatttt tggtctgctg
                                                                      120
gaaactgtat ttttacaagg taatccctgt tttcaatata gttcctgtct tgccactggc
                                                                      180
ggttttcttg tagcattttt ctagttctga gattgctact acccaaagta ttcatttctt
                                                                      240
tettactggg gtgtcctctg tettcacage etgettetgg attgtaggtt ttttccttte
                                                                      300
      <210> 199
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 199
gcaacatttg totacaactc tactgtaaaa ttggaaatgc ttttccacag aaaaacctct
                                                                       60
caaaatgctg aatgcaaaag ttgggatcac agaaacattg tgcctatttt tggtctgctg
                                                                      120
gaaactgtat ttttacaagg taatccctgt tttcaatata gttcctgtct tgccactggc
                                                                      180
ggttttcttg tagcattttt ctagttctga gattgctact acccaaagta ttcatttctt
                                                                      240
tottactggg gtgtcctctg tottcacage etgettetgg attgtaggtt ttttccttte
                                                                      300
      <210> 200
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 200
agtagaaaaa tacaaagact gtgatccgca agttgtggaa gaaatacgcc aagcaaataa
                                                                       60
agtagccaaa gaagctgcta acagatggac tgataacata ttcgcaataa aatcttgggc
                                                                      120
caaaagaaaa tttgggtttg aagaaaataa aattgataga acttttggaa ttccagaaga
                                                                      180
ctttgactac atagactaaa atattccatg gtggtgaagg atgtacaagc ttgtgaatat
                                                                      240
gtaaatttta aactattatc taactaagtg tactgaattg tcgtttgccc tgtaactgtg
                                                                      300
      <210> 201
      <211> 300
      <212> DNA
      <213> Homo sapiens
```

ttetaetttg ggteegegg aageecaete aegtgtgate tgtgttgee eteteggtgg teecaggega teeageeatg eeceetgee etetgeecag atgetteagg ggeeggett tteaggettg eecteaceag eggeegteag eegaeaetea gggatgtage taacaceaet eegeeagtge ttteagtagg aagagetgag getgeetggg aggeeegggg egaeeggaaa agggetetet eaagttetga aaagagaate tgeeaceaga tegaattteg aeceetgage	60 120 180 240 300
<210> 202 <211> 281 <212> DNA <213> Homo sapiens	
<400> 202	
ggccatggga cagttgcaac agcagttaaa tggactgtca gtcagtgaag gtcatgattc tgaagatatt ttgagcaaaa gtaacctgaa cccagatgcc aaggagttta ttccaggaga gaagtactga gccgagaaag ctttgaggaa gacttgtctg tccccacatc tggggatagt aatgcccaaa atggtggagc tgaagagggg gatggggcgg gcgaggggtg cacagcggga aggggagtgg tggtctcacg atactgtgac tctgagtaac t	60 120 180 240 281
<210> 203 <211> 300 <212> DNA	
<213> Homo sapiens	
<400> 203	
geocteagee acceccatee etgeccette tgagacteae ageacecett teetteetet	60
ceteceacet ceteceteag ecceteatte teettgggaa tetgeagagg getetgggae	120
tcactgccgg atgtgaaatc caggcgtcag ctgtttccta ggcaagggca ggaaagtggt	180
ctccagccct tgctccactc atgcctgggg gcctggggct gagtggtatc cctacctggc	240
ctccccctgg cctctgggcc tccagcgctg ggtttgtcga gtgagagaga gagaggagct	300
<210> 204 <211> 269 <212> DNA <213> Homo sapiens	
<400> 204	
gcggactctc aggacgaaaa gagccaaacc tttttgggaa aatcagagga agtaactgga	60
aagcaagaag atcatggtat aaaggagaaa ggggtcccag tcagcgggca ggaggcgaaa	120
gagccagaga gttgggatgg gggcaggctg ggggcattgg gaagagcgag gagcagggaa	180
gaggagaatg agcatcatgg gccttcaatg cccgctctga tagcccctga ggactctcct	240
cactgtgacc tgtttcagga gcctcatat	269
<210> 205 <211> 300 <212> DNA <213> Homo sapiens	
<400> 205	
ttctactttg ggtccgcgcg aagcccactc acgtgtgatc tgtgttgccc ctctcggtgg	60
teccaggega tecagecatg ecceptgee etetgeecag atgetteagg ggeeggett	120
ttcaggcttg ccctcaccag cggccgtcag ccgacactca gggatgtagc taacaccact	180

```
240
ccgccagtgc tttcagtagg aagagctgag gctgcctggg aggcccgggg cgaccggaaa
                                                                      300
agggetetet caagttetga aaagagaate tgecaccaga tegaattteg acceetgage
      <210> 206
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 206
gggattacag gcatgaccca ccgcgcccag cctgtaattt cttatacttq gtattttqta
                                                                       60
cttggattat gcttctgata cgctataatt atttatgtac atgttatttt tcttcaatag
                                                                      120
actgtgaact cttcgaatgt aggactccta gagctagata ctcaattatt ttttattaaa
                                                                      180
ttgaatgact tgaaactaca gateetttat ttaaacttee caaatttetg etttatetag
                                                                      240
gcaactettt aaattetttg ateteatgta gatteeaaag getgaaataa ttgagatttt
                                                                      300
      <210> 207
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 207
tectgaaget egggggetg eaggteetga ggaceetggt geaggagaag ggeaeggagg
                                                                       60
tgctcgccgt gcgcgtggtc acactgctct acgacctggt cacggagaag atgttcgccg
                                                                      120
aggaggagge tgagetgace caggagatgt ceecagagaa getgeageag tategeeagg
                                                                      180
tacacetect gecaggeetg tgggaacagg getggtgega gateaeggee caceteetgg
                                                                      240
cgctgcccga gcatgatgcc cgtgagaagg tgctgcagac actgggcgtc ctcctgacca
                                                                      300
      <210> 208
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 208
attccaaagg tttcaaagaa cttggtcata aatatgataa tgagaagaca aagtatttat
                                                                       60
attaaaacag tttagtagcc ttcagttttg tgaaaatagt tttcagcaca gaaactgact
                                                                      120
tetttagaca aagttttaac caatgatggt gtttgettet aggatataca etttaaaaga
                                                                      180
acteactgte ceagtggtgg teattgatgg cetttagtaa attggagetg ettaateata
                                                                      240
ttgatateta atttetttta accacaatga attgteetta attaccaaca gtgaagcact
                                                                      300
      <210> 209
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 209
gagacagcag cccccaggga atgaagctga tgccagagtc agacccgagg aggaagagga
                                                                       60
gccactgatg gagatgcggc tccgggatgc gcctcagcac ttctatgcag cactgctqca
                                                                      120
getgggeete aagtaeetet ttateettgg tatteagatt etggeetgtg eettggeage
                                                                      180
ctccatcctt cgcaggcatc tcatggtctg gaaagtgttt gcccctaagt tcatatttga
                                                                      240
ggctgtgggc ttcattgtga gcagcgtggg acttctcctg ggcatagctt tggtgatgag
                                                                      300
```

```
<210> 210
      <211> 300
      <212> DNA
      <213> Homo sapiens
     <400> 210
qtaacqtqac acgtatttta cttcttttag taggcggaca cactttctta aagtggtaat
                                                                       60
                                                                      120
acqtcatqqc cctqctataa ggtagtagtt ctagaagact gtttatctaa taattcagac
taaagctatt tatattgctg tgacaccacg tggaaaactt ttataattcc atcttatttc
                                                                      180
                                                                      240
tgatgtatat gttttatttt ctctgccttc ataagaacta aaaaccaaag ttatttacgt
gaaaacaaga tttttgtttg agttcattta cttgagatat gtttaaaaaa tccaccttct
                                                                      300
     <210> 211
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 211
gtccgtcagc tggtagcttt cattcgtaaa agagataaaa gagtgcaggc gcatcgaaaa
                                                                       60
cttgtggaag aacagaatgc agagaaggcg aggaaagccg aagagatgag gcggcagcag
                                                                      120
aagctaaagc aggccaaact ggtggagcag tacagagaac agagctggat gactatggcc
                                                                       180
                                                                       240
aatttggaga aagagctcca ggagatggag gcacggtacg agaaggagtt tggagatgga
tcggatgaaa atgaaatgga agaacatgaa ctcaaagatg aggaggatgg taaagacagt
                                                                      300
      <210> 212
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 212
geotgetget teatgeegee ggegteetge teeaegtete tgtgetgetg ggeeetgeae
                                                                       60
tqtcqqccct qctqcqagcc cacacqcccc tccacatggc tgccctcctc ctgcttccct
                                                                       120
                                                                       180
ggeteatgtt geteacagge agagtgtete tggeacagtt tgeettggee ttegtgaegg
acacgtgcgt ggcgggtgcg ctgctgtgcg gggctgggct gctcttccat gggatgctgc
                                                                       240
                                                                      300
tgctgcgggg ccagaccaca tgggagtggg ctcggggcca gcactcctat gacctgggtc
      <210> 213
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 213
ggtatggttg gagtgtagga atgaatattc atgaaatgtt tcttattgct tttccttccc
                                                                       60
taattcatac aatgaatgta tttggaatac ttacatatta taaaataaac tatacctctt
                                                                      120
caagaggtat cctgttctgt aagatcagat gtttttattg caggtcaata taatactgcc
                                                                      180
agagacagaa aataccccct tatcagtccc ttagtgcctc tttctgtttg tggcatggtg
                                                                      240
aqaaaaccca tqctqaaaaq attgtacttt gtgatcccaa tcagagggag gagctaatct
                                                                      300
      <210> 214
      <211> 300
```

<213> Homo sapiens

```
<400> 214
ggaaagggcc ctaaaagaga tgaacaatac ccgtatcatg tggaatgaat tagaaaccct
                                                                    60
                                                                    120
tgtcagagcc catatcaaca actcagagaa acatcaaaga gtcttggaat gtctgatggc
                                                                    180
240
caaagaggac aagtcagaga aagcagtgaa agattatgaa caggaaaagt cttggcaaga
ctcagagaga ttaaaaggaa tcttagaacg tggaaaagaa gaattggctg aagctgagat
                                                                    300
     <210> 215
     <211> 300
     <212> DNA
     <213> Homo sapiens
     <400> 215
atacttttta aacctttttt ggcagctcag atggtgtaaa ttttaaaatt ttgtataggt
                                                                    60
atttcataac aaaaatatgt atttcttttt tgttatttta tcttgaaaac ggtacatatt
                                                                    120
ttagtatttg tgcagaaaaa caagtcctaa agtatttgtt tttatttgta ccatccactt
                                                                    180
gtgccttact gtatcctgtg tcatgtccaa tcagttgtaa acaatggcat ctttgaacag
                                                                    240
tgtgatgaga ataggaatgt ggtgttttaa agcagtgttg cattttaatc agtaatctac
                                                                    300
     <210> 216
     <211> 300
     <212> DNA
     <213> Homo sapiens
     <400> 216
gcagatattt actgaaggaa tctaggttgt attttcagtg gacaatggga ataaagcatt
                                                                    60
tctaaagcac cgactggaga ggaaggcaac agagacaagg agagaagccg agagacatgt
                                                                    120
ctgcgtgctg ccacgcatct gagcgattgc tctgtgaaga gttgtacact gaacattttc
                                                                    180
aggggagget gtttacccag gcaatgteet caaacaagee tgtgeegggg agteetggaa
                                                                    240
totgtgccag gactgtgttt ttagcccttc acctctcagc tttagcagga catgaaccag
                                                                    300
     <210> 217
     <211> 300
     <212> DNA
     <213> Homo sapiens
     <400> 217
ccccatctt cactggttat tccacttatt taaaatgtcc agaataagca aatctccata
                                                                    60
tagaggaagt agattagtgg ttgcttcggg atgggaggaa tgggaagatt gaggtctttc
                                                                    120
ttttgcagtg ataaaaatgt cctaaaattg actgtagcga tggtcacaca actctgaata
                                                                    180
tgcttaagac cattgaatta cacactttac gttggtgaat tgtatggtat gtaaattata
                                                                   240
gttcaataac atagttacaa aagataatca aaagcatgaa agcactgttg atgtggtttg
                                                                   300
     <210> 218
     <211> 300
     <212> DNA
     <213> Homo sapiens
     <400> 218
```

```
60
acggcctggt ggagcagctg tacgacctca ccctggagta cctgcacagc caggcacact
gcateggett eceggagetg gtgetgeetg tggteetgea getgaagteg tteeteeggg
                                                                       120
agtgcaaggt ggccaactac tgccggcagg tgcagcagct gcttgggaag gttcaggaga
                                                                       180
actoggoata catotgoago egocgocaga gggttteett eggegtetet gagcagcagg
                                                                       240
cagtggaagc ctgggagaag ctgacccggg aagaggggac acccttgacc ttgtactaca
                                                                       300
      <210> 219
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 219
caactagaga agattggaca gcaggtcgac agagaacctg gagatgtagc tactccacca
cggaagagaa agaagatagt ggttgaagcc ccagcaaagg aaatggagaa ggtagaggag
                                                                       120
atgccacata aaccacagaa agatgaagat ctgacacagg attatgaaga atggaaaaga
                                                                       180
aaaattttgg aaaatgetge cagtgeteaa aaggetacag cagagtgatt teagetteea
                                                                       240
aactggtata cattccaaac tgatagtaca ttgccatctc caggaagact tgacggcttt
                                                                       300
      <210> 220
      <211> 260
      <212> DNA
      <213> Homo sapiens
      <400> 220
ggtaagtcag gtgattgaat cccggaaagg ttcattgtct tcaagctcac aatactattt
                                                                        60
tgggacaaac agttgtctag tgtttggact catgaaccct gattcttgag ggtggtattt
                                                                       120
tactgetttt gtgatttggt ttcaacatat atagtetttt eteeggagtt acettaggte
                                                                       180
agtggccagt gtttcagccc ctggaaaggg catgggctgc cactgaggtt ggtcacaggc
                                                                       240
ctctcagctc atggtgggag
                                                                       260
      <210> 221
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 221
gggttccatc ccttccaccc aggaaatgga ggcacgactt gcagcgttgc agggcagagt
                                                                       60
totacottot caaacccccc agccggcaca toacacaccg gacaccagga cocaagccca
                                                                       120
gcagacacag gatctgctaa cgcagctggc agctgaggtg gctatcgatg aaagctggaa
                                                                       180
aggaggaggc ccagtgaccc tccaggacta tcgcctccca gacagtgatg acgacgagga
                                                                       240
tgaggagaca gccatccaaa gagtcctgca gcagctcact gaagaagctg ccctgatgag
                                                                       300
     <210> 222
      <211> 300
      <212> DNA
      <213> Homo sapiens
     <400> 222
geggtgacce aegtgteetg catgattgee etactgetgt ggagaceteg tgetgaccat
                                                                       60
ctggcagtgt tcttcgtatt ctctggcctg tggggcgtgg cagatgccgt ctggcagaca
                                                                       120
caaaacaatg ctctctacgg cgttctgttt gagaagagca aggaagctgc cttcgccaat
                                                                      180
```

taccgcctgt gggaggccct gggcttcgtc attgccttcg ggtacagcac gtttttgtgc gtgcacgtca agctctacat tctgctgggg gtcctgagcc tgaccatggt ggccgtatgg	240 300
<210> 223 <211> 300 <212> DNA <213> Homo sapiens	
<400> 223	
gccccctctg gatcctgagc tecctgctct agacagtgat ggtgattcag atgatggcga	60
agatggtcga ggtgatgaga aacggaaaaa taaaggcact tcggacagct cctctggcaa	120
tgtatctgaa gggggaaagc cctcctgaca gccaggagga ctctttccag ggaagacaga	180
aatcaaaaga caaagctgcc actccaagaa aagatggtcc caaacgttct gtactgtcca	240
agtcagttcc tgggtacaag ccaaaggtca ttccaaatgc tatatgtgga atttgtctga	300
<210> 224	
<211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 224	
ctgcggccgc aggagctgtg gcggttttcc taatcctgcg aatatgggta gtgcttcgtt	60
ccatggacgt tacgccccgg gagtctctca gtatcttggt agtggctgag tccggtgggc	120
ataccactga gatcctgagg ctgcttggga gcttgaccaa tgcctactca cctagacatt	180
atgtcattgc tgacactgat gaaatgagtg ccaataaaat aaattctttt gaactatgat	240
cgagctgata gagaccctag taacatgtat accaaatact acattcaccg aattccaaga	300
<210> 225	
<211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 225	
geoecgetee atgageagtg acteeceage testeetgge accagteece agggetetee	60
tgttggtagt teetgetttt ettettggaa atteetegtg gaeetegaga tetttaeeet	120
aaaatagttc tgttgaattt caccctggca atgtaaattg atagcttatc ttcacagatg	180
ccagacaatg gacaactcac catcagtcct ctgctcacct gagacaaatg catgtctgat	240
tgcttcctct gccctattgt ttatgtgaaa atgcagattc actgagccag actaaggcat	300
<210> 226	
<211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 226	
tatataacaa cttttgcttt caaagttggg tgggactaga acacacaatg gaaggatgga	60
gtcaggagac ctggattctt gtgcccgctc tggcttttac agtctgccta actctatgca	120
gtcacttcct gccagcctgt ttccttacct acaagaggga gagacactcc ctggccagcc	180
tagttctcag ggtgaacgaa aggtcattat cactgcatcc tctagtcatt tgcttcttcg	240
ctaattaaca catcttgagc acctgcgatg ttccaggaac aggagatggc agcgtgcaag	300

```
<210> 227
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 227
ttgctgaaat gggcacttct gctgtgatgc tagtgttgat tttgctctca gatgaacaca
                                                                       60
atgtctcata ctaaccaaga agcaagaaaa gccccatgca ttcatttttc acttggagtg
                                                                      120
acaatgggag aggtcaggaa tcaagttcac tttcaagatc taagggagtc cactatctgt
                                                                      180
gcaattgtat ttggcttttt tttgcactgt ttcaatgctg gtaattgaaa ccattttaat
                                                                      240
atatttggtt gtattcactt tatatgtcct tccaaaaatg ttgttgtgta cataccatgc
                                                                      300
      <210> 228
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 228
gctatgtatt gtgtcctacc atgaattcac tccatgctag ccacattggc ctgtatggct
                                                                       60
attecttgga cacacctagg atgttcttgc ctcttagctt gcctaccttt ctctcatcat
                                                                      120
ttgggcctca gcgaggatat catctcctca gagaagcctt ctgtgaccat gctatctaaa
                                                                      180
atactccagc acttcagtca ccctttatcc cattactctg ctttttcaga aacattggtg
                                                                      240
ctccctgaaa catatttgtt tacttgctta gtgtcttttc tcccgcacta ccatgtaagc
                                                                      300
      <210> 229
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 229
gattttegaa actetteage taettgeeet tttttatetg aaaccateat acettetgaa
                                                                       60
agaaaaaagc atatcttcat tgacataaca gaagtgagat ggcccagtct tgatacagat
                                                                      120
                                                                      180
ggtaccatga tatatatgga gagtggcatt gtgaagataa catctttaga tggtcatgca
tacctctgcc tgcccagatc tcagcatgaa tttacagtac attttttgtg taaagttagc
                                                                      240
                                                                      300
cagaagtcag actcatctgc agtgttgtca gaaacaaata ataaagcccc aaaagataaa
      <210> 230
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 230
acttcttgtt tgcctttttt ataaggaaat gttggagagt tacatcattg ctaatgtaga
                                                                       60
aatgttaagt ggaaaaatat acagtttggt aaaataaact agattctaca tttatttgtg
                                                                      120
ggtttttttc ccctcctttc tttccacagc acttttgata tcaagcaagt ggcttccttt
                                                                      180
                                                                      240
ttgagatatt aaaaaaaaaa agaaaaggaa aaaagtaaat gannnnnnnn nnnnnaaccc
tttctnattn gnattngttt nagnattgng aagttgngtt aaanagtnct agntagaaat
                                                                      300
      <210> 231
      <211> 300
```

<213> Homo sapiens

<400> 231	
tgattctttt tgttnttttt tttgatattg acaaaagctt anncnttncn attaaaaaang	60
ccactaatta gactttttan ntaaaaaaang tagggggttt taaaactact ttcctactac	120
caaaaaatca naaagtatct agctttctaa atngggaaag caagcaatgt tataaaaaacn	180
ctgaaggaat ctctttcttc gggacctttt gttaaactcg gttnaagctg taaaccttat	240
ttaaaataaa atttaccaca naacaggaaa tanaacctgg ggaanactcn aaatacncct	300
.210. 222	
<210> 232	
<211> 300	
<212> DNA <213> Homo sapiens	
(213) NOMO Sapiens	
<400> 232	
ggaagccaag gcctggagct gcaggtcccc cggcatctct ctctgtcccg gcagcccagg	60
atggcctggt gcccccacct gctgcagcag gagccccaag gagtgctagc tgagggtggt	120
tgctggggtg gtcctcatgg acagtgaggt gtgcaagggt gcactgaggg tggtgggagg	180
ggatcacctg ggttccaggc catccttgct gagcatcttt gagcctgcct tccggtggga	240
gcagaaaagg ccagaccctg ctgagttaga ggctgctggg atccactgtt tccacacagc	300
<210> 233	
<211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 233	
gaggaagagg cctgctccac ttgtctggga acctgggcag gaggcacaga ggaagccaag	60
gcctggagct gcaggtcccc cggcatctct ctctgtcccg gcagcccagg atggcctggt	120
gccccacct gctgcagcag gagccccaag gagtgctagc tgagggtggt tgctggggtg	180
gtcctcatgg acagtgaggt gtgcaagggt gcactgaggg tggtgggagg ggatcacctg	240
ggttccaggc catccttgct gagcatcttt gagcctgcct tccggtggga gcagaaaagg	300
<210> 234	
<211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 234	
ggaacataat tagcttactg atttgatggt tctgtgtagt tcctgaaact cttggctctt	60
gtttgccttt ctttaactct ggctccttct ccttcttctg tttgtgtatc tgtttaattc	120
attgagtgag gaggacaggc agaactgtgt ctgccaagga ccggatgtac ttctttcctt	180
gctcttggtt ttttgctcac ttttatatgt aaggtattag tacaaaccta aaggagagaa	240
agtagaggat cagatcattg ggacttgttc tggtttcaag aaagaattaa caaattgccg	300
<210> 235	
<211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 235	

gttggctcaa gggccaccag a cattaaaggg tctattagct t ggagtgcctt ccttttgctc c ggtgggggtg tctcctggct g cagtggagag caggctggag a	tettteegt ectectaget gggaaggagg	ctgtctcaac gggagtgacg gaaagggagg	agctgagatg ggtgggagtg gagagttttg	gggccgccaa tgtgtgccca cgggggttgg	60 120 180 240 300
<210> 236 <211> 300 <212> DNA <213> Homo sapien	ıs		·		
<pre><400> 236 gaatcatcga aggttgagac c gatgccttct aaatgtctat c caccctcacc atctctaaaa g ttccttccca actttgccca c gatcccacta ttcactcagt c</pre>	etccagtatg ggcatttcaa egccagcctg	gtcttttcct actgaacaca ctcctccttc	ttaagctcta tctgatacag acgctttcca	gatccattga aacttttcat cttagtatat	60 120 180 240 300
<210> 237 <211> 300 <212> DNA <213> Homo sapien	ıs				
<pre><400> 237 caggacatgg agcagtacct g ataggcagca tgtcatccat g gacatatcgg accaggaggc c gtgctgtccc ccgccttagg g gttccaaatc cctcagaatt a</pre>	ggaagtgaac cetggaegte geetgaatee	gtggacatgc ttcctgaact agtacctgtc	tggagcagat ctggaggaga agaatgagat	ggacctgatg agagaacact taccctccag	60 120 180 240 300
<210> 238 <211> 300 <212> DNA <213> Homo sapien	າຣ				
<pre><400> 238 cactggctac ctgcagattg c agtgaacgtg gacatgctgg a ggacgtcttc ctgaactctg g tgaatccagt acctgtcaga a agccaagcca ccttcttctt c</pre>	agcagatgga gaggagaaga atgagattac	cctgatggac gaacactgtg cctccaggtt	atateggace etgteeceeg ecaaateeet	aggaggccct ccttagggcc cagaattaag	60 120 180 240 300
<210> 239 <211> 300 <212> DNA <213> Homo sapien	ns				
<pre><400> 239 atttcctcca gtcctgggcc c aagaactggg ggaacacagg a gcggccaagg cctgcccctg g</pre>	acctagggg	aggagggag	cgctgggcat	cctcaggctg	60 120 180

gctgcaggga ggaggaggag ggaggtatct ggtgtgagcg ttgcccctgc gacatttggg accacacagg tgggcttcct tattccctga caaagcctct gtttccagct cttccgccct	240 300
<210> 240	
<211> 274	
<212> DNA	
<213> Homo sapiens	
<400> 240	
catgagtgat attittggtct gggtttcctc ttaagattit agtittgtctg aattaaggaa	60 120
aaatgttttt aatatacatt ottattttgt occaccoote cagaaataag otggaaatot taactttttg gggggtottt tttggtgttt taatgggood agaactgtgg tttaaatttt	180
tatgtatgta ttttcttttt tgtggagtat aaatttaaaa actggatttg ggacctaaaa	240
tactcctcag gttgatgtat tcatgaaagt ttta	274
<210> 241	
<211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 241	
ctgttgcctg ccaagetcag ggcccattta tcatgcatct tcccatectt gtctcccca	60
actgtccctt acctgagtca caatttcgcc aaagccaaag ggattgtcct aagccaatgt	120
tgatttatca ctcttcctgc tcaaaagccc ccaagatcac ctatcaatca cctacttgag	180
tgcaagcttt gactetgtca cetgacatte aagteeeect etgeeeceat gecagtetta	240
teceetecee tacatatgee etatgeetea gtttgeette eetecaettt aaaaageete	300
<210> 242	
<211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 242	
ccgctggcta tgtggacgct ggggcagagc caggccggag tcgaatgatc agccaggaag	60 120
agtttgccag gcagctacag ctctctgatc ctcagacggt ggctggtgcc tttggctact tccagcagga taccaagggt ttggtggact tccgagatgt ggcccttgca ctagcagctc	180
tggatggggg caggagcctg gaagagctaa ctcgtctggc ctttgaggta atggggggtg	240
gcggtggtgg ggggtgctta gtggctatgc tcaccccgct ccaggaggcc tattttggta	300
<210> 243 <211> 300	
<211> 300 <212> DNA	
<213> Homo sapiens	
<400> 243	
caagatctgg aggaatgcag agaggaactt gatacagatg aatatgaaga aaccaaaaag	60 120
gaaactctgg agcaactaag tgaatttaat gattcactaa agaaaattat gtctggaaat atgactttgg tagatgaact aagtggaatg cagctggcta ttcaggcagc tatcagccag	120 180
gcctttaaaa ccccagaggt catcagattg tttgcaaaga aacaaccagg tcagcttcgg	240
acaaggttag cagagatgga tagagatctg atggtaggaa agctggaaag agacctgtac	300

```
<210> 244
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 244
agtaaatttt ttatgcatat tttattgcaa taaaaaatga aaacagtttc aatctaggag
                                                                       60
qattttqqat qcatctatgc cttqaqaaat qaatqqtttq atqtaaatqc atqqtaqcaa
                                                                      120
gaataaataa ttatgttaat tcatataata tgttatatat agttttaaag aaaattctat
                                                                      180
cactgtette ctatgggtag ggctataatg tecagttett teagggatta agagggtagg
                                                                      240
gtctgaagtt aatccttgtt tgtcgtaatg ttattaattt attcaaccaa gacttaattg
                                                                      300
      <210> 245
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 245
tagacataga aaacatacag taagaatatg gtattataat cttacgggac cactgtcaaa
                                                                       60
tacgoggtct gtctttgaaa agttgtaatg cggcgcatga ctataaatac ctagctggtt
                                                                      120
agcatttaca ttccttgcca gggagtttga aatttatact atagaaataa ctttaggttt
                                                                      180
taggtagagt taaagaggta aagcacatgt tgccacaacc caggaaagta tttttaagaa
                                                                      240
agattggatt ttcctacctt tagagatcta aaaaaaattt aatataaaaa atcattttgt
                                                                      300
      <210> 246
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 246
tggaatattt gctgtgaagg gagaaaggga gagaaaactc ttctgaggat catttgtctt
                                                                       60
ggtagtatag taaaaccaac cagctgaacc tttcaggcta caagagaacc cgggtcggta
                                                                      120
atgtettttt aagaataatt tttaattget tataacaage atattttgtg geatttgaae
                                                                      180
tatatttact gctccaatat ccgttatttt ccaaaggatt ttgtatcttt ttgaaaatgt
                                                                      240
ttacatcatc agatgatcca cagaattcac tttatgtgag atctcccgag agtttccatc
                                                                      300
      <210> 247
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 247
gtgttgctca gtgagcagac ccgactccag aaggacatca gtgaatgggc aaataggttt
                                                                       60
gaagactgtc agaaagaaga ggagacaaaa caacaacaac ttcaagtgct tcagaatgag
                                                                      120
attgaagaaa acaagctcaa actagtccaa caagaaatga tgtttcagag actccagaaa
                                                                      180
gagagagaaa gtgaagaaag caaattagaa accagtaaag tgacactgaa ggagcaacag
                                                                      240
caccagctgg aaaaggaatt aacagaccag aaaagcaaac tggaccaagt gctctcaaag
                                                                      300
      <210> 248
      <211> 300
```

<213> Homo sapiens

<400> 252

```
<400> 248
qaqaqqatca cttqaqctta qgaqttcaaa tccaqcctqa qccaacataa caaqactttg
                                                                       60
tctctaaaca aaacagttat tgtttaaaga atctgaaatc ttcatcttta attcaggtag
                                                                      120
caatgaatcg agcccaagtt tgtttgatat ccagttccaa gtctggagag aggcatcttt
                                                                      180
atcttattaa agtatcgaga gacaaaatat cagacagcaa tgaccaagag tcagcaaatt
                                                                      240
                                                                      300
gtgatgcaaa agggctatca aagggaggct ttttacagag aactaaggaa gagaaggagg
      <210> 249
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 249
ctagcctggg caatatagta cgaccctgtc tttactaaaa atgcaaaaat taaccacgta
                                                                       60
tggtggctca cacctgtagt cctggctact gaggaggctg atgcaggaga atcatttgaa
                                                                      120
cccaggaggt caaggctgca gtgagctatg attgcaccac tgcaatccag cctggacaac
                                                                      180
acagtgagae cetgeeteae aaaaattata ttetgatttt etgagteeat gaacacattg
                                                                      240
tccaaatgga tttttctagc tcctccaagt tacagatagt tccacgcaca cacagaactc
                                                                      300
      <210> 250
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 250
                                                                       60
aggaaggtgg aggggcagga acaggacgga caggccccgg gctctggcac atcctgggga
acaagggacc acaaggacgg gggcagtctc cagacttccc ctgggcgctt gaccccaggc
                                                                      120
cttgcagggg agagagccag ggcctccctc aggtctttgt tcatgctgtt ttccctgccg
                                                                      180
tggacaccet ttecegetet eegattetet aaateetgee eeateteeca gatettgtte
                                                                      240
atgtecaage ttttecagga agtettagea geteceacae egeagagete gagatgtete
                                                                      300
      <210> 251
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 251
gaaggcagaa gtgtaaatga acatacagaa gaaggagaaa gcctgctgtg tttggcttgt
                                                                       60
tcagcagggt attatgaatt agcacaagta ttgcttgcta tgcatgctaa tgttgaagat
                                                                      120
cgagggaata aaggagacat aactcccctg atggcagctt ccagtggagg ttacttagat
                                                                      180
attgtgaaat tattacttct tcatgatgct gatgtcaact cccagtctgc aacaggaaac
                                                                      240
actgcgctaa cttatgcatg tgctggagga tttgttgaca ttgttaaagt gctccttaat
                                                                      300
      <210> 252
      <211> 300
      <212> DNA
      <213> Homo sapiens
```

```
gcacttctct ctcactggaa agagaactgt tctcctttct ctttcttctg cctattaagc
                                                                        60
ctctgctcct aaactcctca tgtgtgtctg tgtcctaaat tttcctggca tggcaggaca
                                                                      120
aaccccgggt atttaccaca gacaacaaaa ccgcttcact atgatgtatg catgctgcaa
                                                                      180
aggaagagac agaatettge tetateacce agetggagtg cagtggcace attgcagett
                                                                      240
actgoagect caaactcotg getcaaggga teetteaget teagecteet ggttaactag
                                                                      300
      <210> 253
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 253
gtctgatgca ggagaattgc taaaacccag gagggagagg ttacattgag ccgagattgc
                                                                       60
gccactgcac tctagcctgg gcgacagagc aagactccgt ctcgaaagaa agaaagagaa
                                                                      120
aggaaattcc ccagggaagt acctcggctt atttcataaa caggtactga aggaagcaga
                                                                      180
ggcatgtgga ggacttcccc acctcgtgca gctatttggg ccgtggcatc tgaaatttct
                                                                      240
tatttcagag tcaccccttt gatgaccttg gcagtgaact gcagtcatct gtttaggcct
                                                                      30Ò
      <210> 254
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 254
atgttacaga catgaaatat gaacagaatg ctaaaagaac ataaaagaat aagagctcct
                                                                       60
taaagattat aaataaatgg tgatgttaaa gtaatagcac cattggacga agctagggaa
                                                                      120
tcaacacttg acagaaagat acatattttt tttatacaaa ctacatatat ttgagcaatc
                                                                      180
aagtagtaga catagagaat tttcttttta tggaagtact ctaataagta aagggctgat
                                                                      240
agaattatat cagcattttc tagctcctgg ggaattatgc attgggcatc catggctgct
                                                                      300
      <210> 255
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 255
gctgcctgtg gcatagccac tgctgtacgt ttttggttgt tnttaagaaa ctcgatgaag
                                                                       60
aggggtgtca ttctgggctc ggggtggttg ccaatttttc accagaaagg gagccacccc
                                                                      120
ttgcaaccac ttctgtctcc gttagccccc cctctgccct cctccaagcc aaagcgtggc
                                                                      180
                                                                      240
ctggcttttg tcttcccatt tagttttcct cttttaccct tccttttgtg cttaatttat
taaaatagtt gctgtataat ttattttcat aaactataaa aaaatactaa atggttaaaa
                                                                      300
      <210> 256
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 256
acagtotogg gtttcatatt ttgctgtttt tgatggacat ggaggaatto gagootcaaa
                                                                       60
atttgctgca cagaatttgc atcaaaactt aatcagaaaa tttcctaaag gagatgtaat
                                                                      120
cagtgtagag aaaaccgtga agagatgcct tttggacact ttcaagcata ctgatgaaga
                                                                      180
```

gttccttaaa caagcttcca gccagaagcc tgcctggaaa gatgggtcca ctgccacgtg tgttctggct gtagacaaca ttctttatat tgccaacctc ggagatagtc gggcaatctt	240 300
<210> 257	
<211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 257	60
atagaactag gcactgattt gtttatattt atcctgctcg agacacatga tgtttcatgt atctgtggct ttttatagtt taaaataatt tctggaaaag tcatagtcat tatctcttta	120
acceptacet etettecatt etettigite tetetteete gaacteetgt tagteattig	180
atcctccata tctctgaata tttttgtatt tcttttatta tttatttctt gtctctgcta	240
cattttacat tgagtaaaag tgggatgtga cagtgggaaa tcattagtga cttagaaatt	300
<210> 258	
<211> 285	
<212> DNA <213> Homo sapiens	
(213) Nome Supreme	
<400> 258	60
tactetatta tattgtgeat geteetgatt tagetgetet tggeateatt ggtegeagtg gaacettgaa atgeatetgg etagatttat geteaaatea tteteagtta geettttagt	120
gcctcttcaa aggtttttt ttgtatgttt tctattctta ataaaagctt aggattaatt	180
agaaagaate tgatatggtt atgtttcccc ttgtgtacge tgacctcatt catacgtttt	240
tcatagtcca gtggtctaaa cgctttcaag agcccagctc cttgg	285
<210> 259	
<211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 259	
gccttctctg gcctcaccaa ttaggtcaaa tgttccttag aatgtgttgt ggggcatggt	60
ctctccctgt gaggacctgt ccagctggac ctccgccttc ctgcgactgt attggtgtct	120
ttccctctca agcctatgag ctctgcaagg gcagggaccc tgtatgattt tgcctatcgt atgtcctcca gcccccagca cagcgcctgg tgtccagtga gagctcagca aatactttgt	180 240
gagttaagga caggcggctg ggtagatgga tcgtctgcct agacagggca gttattcgct	300
<210> 260	
<211> 300 <212> DNA	
<213> Homo sapiens	
<400> 260	
gaaaagggag ccgcgcagcg cctacgggag tccggcggca gcagccggta ccggcaacca	60 120
egggeagete teagggaate teegtegtga ggeeagagge teeagteeee gegagteeag atgeetgtee ageeteeaag eaaagaeaca gaagagatgg aageagaggg tgattetget	180
gctgagatga atggggagga ggaagagagt gaggaggagc ggagcggcag ccagacagag	240
tcagaagagg agagctccga gatggatgat gaggactatg agcgacgccg cagcgagtgt	300

```
<210> 261
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 261
tttgctttca gtggttggct ttcactgaaa gaaagtgtaa aaaaagtcag aatttatagc
                                                                        60
tttcactatg tccaagacta ggactgggtt ataaagattt tcttttgtga aggaaaataa
                                                                       120
aagaaaattt gccactactg catttacttt actattgtaa acttaagatt cattccttag
                                                                       180
                                                                       240
tctttggaat tttgatgtct caaaaccaga tgagtggaag tgctgaattt gcaaaataaa
gctaagaatg cttaactctg cactttaagt tctactctga ccaaattgaa gatgagcaga
                                                                       300
      <210> 262
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 262
ttttttaaga gataaggtet tgetatgtta tetaggetgg eetaaaette tgggetgaag
                                                                       60
tgatcctcct gtgtagctgg gactacaagc atgtgccacc aatgcctggc ttctcacact
                                                                       120
gttttgtaac atagatatgt gaagatgtgt attatagaat tgtttgtaat actgtagtgt
                                                                       180
tgtaggcaat gtgactgtct atagggaagt ggacaggtta tttgtggtaa atactcatgg
                                                                       240
aaaacggtca agcagttaaa agcaatcaat tatggtcacc cagcaatgca gataaatctt
                                                                       300
      <210> 263
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 263
agaacaggga gaagagagga agagggagct gcaggtgcca gaagagaaca gggcggactc
                                                                       60
tcaggacgaa aagagtcaaa cctttttggg aaaatcagag gaagtaactg gaaagcaaga
                                                                       120
agatcatggt ataaaggaga aaggggtccc agtcagcggg caggaggcga aagagccaga
                                                                       180
gagttgggat gggggcaggc tgggggcagt gggaagagcg aggagcaggg aagaggagaa
                                                                       240
tgagcatcat gggccttcaa tgcccgctct gatagcccct gaggactctc ctcactgtga
                                                                       300
      <210> 264
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 264
ttaaaggtag ttttagaagg aagtacaaat tggctttcat cttgcaaaca atcgttttt
                                                                       60
acticattat citaatitigc titigicacte ataaaaagga aaccatacet gagtigitaga
                                                                       120
caatgaggaa acacttgagg cttctgctgt gtgttctttt gttattgttg ttattgttgt
                                                                       180
tactcagtaa cttgaatatt gtttaatgtg ttgtaagacg tagagtttat ctcaagctgt
                                                                       240
taaaaatggt aatgtacaaa tgtgaataga cacttatcta tataatatgg gtaagttttg
                                                                       300
      <210> 265
      <211> 300
```

<213> Homo sapiens <400> 265 caggaaagtc ttcctagagg taatttttaa gctgattgtt ttagaattag tagaagcttg 60 ccagatggaa aagtccaggc aaagtgtaac atgaatggga aaggccacag tctagaaatg 120 gcagagtgtg ttcctagttt gtttgtttgt ttgtttgtac ctgccttgtt ccaggaagga 180 tttaatgtgg tttatattcc agtcctttaa tgctggaagg gctgagatga gactgaaaga 240 tgggcaggaa gtatatcatc acaagetttg tgtttgatgt taatgtgtat gatttttata 300 <210> 266 <211> 300 <212> DNA <213> Homo sapiens <400> 266 tqtqccacca cacccagctc attattatta ttattattat tattattttq aqacqaaqtt 60 teactettat cecceagget ggagtgeaat ggtgegatae tggeteaetg eaacetetge 120 ctcctgggtt caageggttc tcctgccttg gcaggcacct gtagtgtcag ctactcgaag 180 gctgaggtgg gagaatcgct tgaacctggg gggcggagat tgcaatggtg tggtctcggc 240 300 <210> 267 <211> 300 <212> DNA <213> Homo sapiens <400> 267 atataactct ggaggtcagg acataggaga tattgattca ggacttgcca gagtatggtc 60 ttggggtgtg ccctgatatt acaaacaggg atcttagtgg ctaggtgatg aggccatggc 120 aaatgtagat ggaccaagat caatttgcct ttctagatga ggttttctag gtgaaatgtt 180 240 tttgaaacta ttttgtagcc tagtataatt tataaaagta gagagaaact ataaatataa atttggaagg ggttagctaa aaggagaaaa cagcagaatc ttcatatata tagaaatgga 300 <210> 268 <211> 300 <212> DNA <213> Homo sapiens <400> 268 cctacttatt ggatgttggc tctttggtgt catggagatg gctttactgt aggtttgtgt 60 gtgttgcatt acttttcatt gggattgaac tgagaaataa caaacaagct ttaagtggga 120 aattaaaaaa aagaagtaac ctatgtagat ccaaacttaa aatgtgagaa attattgaaa 180 tttcattttc tacaaacttg aaattagcct gctaattgta aagttgtttt aataatgctg 240 acaaatgtca gttacgtttg caaaggagtg tatggttcta ggtatttgcc tactgttacc 300 <210> 269 <211> 300 <212> DNA <213> Homo sapiens

<400> 269

cctacttatt ggatgttggc tctttggtgt catggagatg gctttactgt aggtttgttg tgttgcatta cttttcattg ggattgaact gagaaataac aaacaagctt taagtgggaa attaaaaaaa agaagtaacc tatgtagatc caaacttaaa atgtgagaaa ttattgaaat ttcattttct acaaacttga aattagcctg ctaattgtaa agttgtttta ataatgctga caaatgtcag ttacgtttgc aaaggagtgt atggttctag gtatttgcct actgttaacc	60 120 180 240 300
<210> 270 <211> 300 <212> DNA <213> Homo sapiens	
<pre><400> 270 cctacttatt ggatgttggc tctttggtgt catggagatg gctttactgt aggtttgttg tgttgcatta cttttcattg ggattgaact gagaaataac aaacaagctt taagtgggaa attaaaaaaa agaagtaacc tatgtagatc caaacttaaa atgtgagaaa ttattgaaat ttcattttct acaaacttga aattagcctg ctaattgtaa agttgtttta ataatgctga caaatgtcag ttacgtttgc aaaggagtgt atggttctag gtatttgcct actgttaacc</pre>	60 120 180 240 300
<210> 271 <211> 300 <212> DNA <213> Homo sapiens	
<pre><400> 271 ccacatttaa gtgagatatg ggaaggagga gcagattgtt tttgaaggga ggaagagcag ttacttaggg tcaaattaag ttgtaaaatc cccccggga ttttgtatgt aagtcaaagt gaattgtatt tggaagaaga actggggagc ccacctctgg tattttttt atgtccctca tatggacaaa taaacctctg gtattaaatg aattttcttt tgggggattc tatatattcg ggatttcaac caccaaccta tctggttttt cccgctgaaa tgttgggtga tggaatcagg</pre>	60 120 180 240 300
<210> 272 <211> 300 <212> DNA <213> Homo sapiens	
<pre><400> 272 gaacgcttcc attttatacc tgtgtctagt tagtttctgc ctatctatcc aagaagcttt tatcaagggt ccaccatgtg ccagccactg aagtagatat aaatacaagg atgtgtaagg tatggatgat ggtatacgaa ctgtcatctt actggatttg tccgctctgt taaagatacg gttccgaaaa ctttttaaag ccctagagag ggctttaagg caatgtagca tcatatatag aggcatcaac ctgttcatat ctttctattt aacagaactg tgcacctggg cacaagggtg</pre>	60 120 180 240 300
<210> 273 <211> 300 <212> DNA <213> Homo sapiens	
<400> 273 gaatggcgtg aacccgggag gcagatggtc ttaaagtggg gagacccggg ttacaggcct gactgcatca ctaactcgct gtgtgtccct gggcaagtca gtgcagtgca	60 120 180

<210> 274 <211> 300 <212> DNA <213> Homo sapiens
<400> 274 ggaaccaggg gctgcagaac cagcccttc ccaatgagga cccctctgg acgcccttc 60
35
ccatggagaa caccaggagc cacagacccc agaccacagg agcacacagg ggagggcacg 120 gggcggccgg ggcagggtgt ctgctgcctc gtttatggga tttgctccgc gtctagcaca 180
ctgctgcctg cagtgctcct gtcccctgca gtggctactc tgggcctacg ggcctaatcc 240
tggttggcat gaaaatgtcc tgaggctact gtgacaaatt tccacaagct gagtggctta 300
<210> 275
<211> 300
<212> DNA
<213> Homo sapiens
<400> 275
ctttgggaag cagaggtggc aggatcattc cagcccagga gttcaagacc agcctgggca 60
acacagtgag tgagaccctg tctctattta agaaaaaata attaagaaat tttattaaaa 120
aagaagaatc aggaaaccaa gtccaaccca actaaacctc aaatgaacca gcccctaaca 180
cagatgaggg gatttgggac tgataagctc tgtgctgtgt ccatggcccg tcatttatca 240
aggetgeage titgtaaatg tggetattit tatgttgtgt atagtiteta teatitatit 300
<210> 276
<211> 300
<212> DNA
<213> Homo sapiens
<400> 276
tttgtatttt tagtagagac agggtttett catgttggte aggetggtet caaacteeta 60 acetegtgat eegeetgeet egaeeteeca aagtgetggg attacaggea tgagecacca 120
2000030300 0030003000 03m00000 mm3030 mm3030 03m030
tgcccagcca aagatcattt ttttatatag acttcagccc tttgtaaata ttgtaactgg 180 ggagtataga gtagaaaaaa agtatagtta aaacatttgt tctacaaatt aacctttaaa 240
aatataatta ctgctaaaaa tagagtgctg ttacacttaa ggaaaattag tgccattttg 300
<210> 277
<211> 300
<212> DNA
<213> Homo sapiens
<400> 277
ctcacacage atgtgtcaga tecatggggt aggagtegge cagagaettg gtaacagaca 60
gattgctgga toccacccct agactctctg attcagttag tttggggtaa ggcgcaagac 120
tgaatttttc acaagtttcc cagtggtgct gatacttctg gtccaggaac ttagtgggag 180
agaacgacta atctagacca tttcacttca cattctgagc ttcttgtaca ctgtcacact 240
gcatcetttt aacaatgcat teeetateet attgcaatae tgacatetea teaatatttt 300

```
<210> 278
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 278
ctgacaactt gattgggttc tccttcaggt ttgaagegcc ctcgagaagt gtctaaagga
                                                                       60
gacagttgat agccaaacaa cagttttgga ttcactgact gattatgaaa gaagcagtag
                                                                      120
actggtatca agaatcagtc agcaaggagg ccctcaccag acqccagtgc catgttcttg
                                                                      180
gacttetcag cetecatatt catgaactaa gtttttggaa teettagget teeacgtgtg
                                                                      240
gaaagcctga gctaacctac tggaggatga gccatcacct ggagcagatt caggccatcc
                                                                      300
      <210> 279
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 279
ggtaaaccta tttatataat agaaggatga ttataaacat ttaataaatt atatcaaata
                                                                       60
gatattatat attaaatggg cagataatag aaatctgtcc aaqcaaaact ctggataatt
                                                                      120
tttatgttgc cttatttttt gttttctgtg aactccaaga aaaatgagat accaqtttgg
                                                                      180
aacagatgta atattgctga tttaacagtt tagggatact ccccaagttc aataattttg
                                                                      240
ccaagataca aatttaaatg gaacctttta tgaagcttca tagtgtgtga agaacttacc
                                                                      300
      <210> 280
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 280
ataactgctt gcgaagatgt agtttctctt tggaaagcta cacacacgag attatacaca
                                                                       60
teaggeactg gaactatetg taatactgga acctetgega agtgeeaggt ataaagtttt
                                                                      120
tcccactgcc aagcatccag agctttggga aatttggaaa tcagagagat cagggcattg
                                                                      180
ttttgttcct ctgatgatga aagtgaaaag caagtactac tgaagtctgg aaatataaaa
                                                                      240
gctgtgcttg gcctgacaaa gaggaggcta gttagtagca gtgggaccct ttctgatcaa
                                                                      300
      <210> 281
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 281
caccategaa tatttttatt tattttgaga gacagaetet gteacceagg etagtettaa
                                                                       60
actgttggtg aatcttaagt gattctccca cctcagcctc ccaaagtgct gggattacag
                                                                      120
gcatgagcca ctacccttgg ctgtgatcaa gtatttagtc tgttgttaaa tgtttactaa
                                                                      180
atagtetgaa gtagagaaaa tageaceeaa tetaaaataa ggtgaggtet agteaettat
                                                                      240
ttaaatctac attttaagct atagtttact attagtttaa actttaagac aggtaatgtt
                                                                      300
     <210> 282
     <211> 300
```

<213> Homo sapiens <400> 282 qeaacetteq cetectgggt teaagtgatt etecteete ageateeeaa gtagetggga 60 ctacaggcac gtgccaccac acccagctaa tttttgcatt tttagtagag gcagggtttc 120 atcatgttgg ccaggetggt ctcaaactcc tgatctcaag taatctgccc actttggcct 180 cccaaagtgc tggcattaca ggaatggagc caccgcgccc agcctgattt cttttttag 240 gtcttgtcag gaaagatatt gattcttttg attcgtgaac atggtttttg gtcgtcttta 300 <210> 283 <211> 300 <212> DNA <213> Homo sapiens <400> 283 cccaggtagc tgagactacc cacaccttgg tcccagctac ttgggaggct gaggtgggaa 60 aatcactttg cccaggaatt caaggccgca gtgagctatg attgcaccac tgcactccag 120 gcaacagagt gagaccctgt cttaaaaaaa gaagggagaa agtgtcagat ggtgatgagg 180 240 tctggggggg aaatagagaa tggggatcag gagtgtggat ggtggtattc cctcaccaag aggtgacatg tgagcaggga gctgggaggt gagggtgtga cccgtgtgga aatcagggaa 300 <210> 284 <211> 300 <212> DNA <213> Homo sapiens <400> 284 ggtgtcctcc ccagtgcgcc gcgatttttg tgtccaagcc ccagagtccc tctgagacca 60 acceccagee ageacagact teetgeette ecagetegga agegeeeteg agaagtgtet 120 180 aaaggagaca gttgatagcc aaacaacagt tttggattca ctgactgatt atgaaagaag 240 cagtagactg gtatcaagaa tcagtcaggt ttttggaatc cttaggcttc cacgtgtgga 300 aagectqaqc taacctactg gaggatgage catcacctgg ageagattca ggccatccta <210> 285 <211> 300 <212> DNA <213> Homo sapiens <400> 285 aatteegttg etgtegggee gecatgteat tetggagaga gacagagtaa aacaaagaag 60 gtgatgggta aagcgcagtc gcctgctata tattgtctat tttttggtttt tcacttacct 120 tttatattta tgtcttttat gtacaacagg attataagta gcttgagtcc agtgaatata 180 ccatttcatt ttqctatcct tcactgcact tagcttagag qaaataatca cagcttatta 240 ttgattaatt aattaattaa tagatgaatg gtgaacacat gactatcatc ccaagaaatg 300 <210> 286 <211> 300 <212> DNA

<213> Homo sapiens

<400> 286

agccaatgag gcttttgcct gccagcagtg gacccaagcc attcagcttt acagcaaggc tgtgcagagg gcccctcaca atgccatgct ttatggaaac cgagcagcag cctacatgaa gcgcaagtgg gatggtgacc actatgatgc cctgagggac tgcctcaagg ccatctccct aaacccatgc cacctgaagg cacactttcg cctggccgc tgcctctttg agctcaagta tgtggctgaa gccctggagt gcctggacga cttcaaaggg aaatttccgg agcaggccca	60 120 180 240 300
<210> 287 <211> 300 <212> DNA <213> Homo sapiens	
<400> 287	
gggtgacaga gtgaaactcg tatctccaaa caaacaaaca aaaagtcctt aaacatatgt	60
gaacaaaaat tttgtgatgg aaggattcta gttaatgagt attgcatcaa gatttacatc	120
tttcttacta aggaaaagag ttaataaaaa ttgttcttta ttttacaggc agttactgag	180 240
gctcttccca gatctcagta aacagccact cagccttgaa aatggagtgt tgttgtttct aaacatatat ttatgtcatt tattaagtac agttcactta aataacataa gtagattttc	300
additional transferance currently and agreemental advantage and grayutters	300
<210> 288	
<211> 300	
<212> DNA	
<213> Homo sapiens	
400× 200	
<400> 288	60
accactaaca gcatctactt gactactgat actttgatca tggagttagg gcatgccact tgatagaaat ttgaagagca attatatttt tcaaaaagag ttttgaataa tgttaagata	120
gattgcaaca tgactatcaa ttcttccctt cccatcaaag gagagagtcc gtttatccag	180
cctttgaatc ttgattattc aagtgacttg cttcacccaa tgtaacatta ataagcacaa	240
tacaagcaga ggcttgccaa gaacttggtt tgtttctaat gcttagaaga agaatggtgt	300
<210> 289	
<211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 289	
tgtccttatc tgaaattcag cgatcttcat gaataagcat ttctctgatt gtggnatatg	60
cctttaattt tatttctaga gtgacaaatt tttggttttg acagtttttt tctagcttta	120
tagtttcttc ttggggagag aatatgtcaa cctcactcca tcatgctgaa gtaaatcttc	180
atctcttaat tttatctctc aaaaatatcc taaggattcc ctctggagcc tgataagtaa	240
ttgcagtatc tggtttctat ggttggatga ttcaggattc caggaataat agttactttt	300
<210> 290	
<211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 290	
ggaaccatga gaaccgaagc tagaattgct attgaattac tttattttct cttcccttat	60 120
tgggtagaga tacatcatta ctggcctcag gggtttaccc aaagaaaggg tatttttgag caaataatgt gatttcctgg ctattttgtt gggggcttaa gatttttttt tttcaaatgc	120 180
	100

atttttagtc actaaaaatt aactgtcgta ccatctagaa ctatactgtc cagta gcctctagcc gtatgtagct atttgtatta agattaatgg aaattttaaa tcca	
<210> 291 <211> 300 <212> DNA <213> Homo sapiens	
<400> 291	
tatgatttta tttttggcct aatataggaa tgtttaaaaa aggcttttct atga	aaatta 60
gaaatttata cttgaaatta aaagtctaca agggggagga ccttaaagct aagc	
taagacaatg aataattcag aagagaacac tattctttta ctgactgagt gccca	aagatg 180
ccaatttcca tgaagtcttg atttatatat atgtacacat gttatgcaca taca	tgtttg 240
ttttctaaca gttattcttt aagcttttga gataatttta gacttacaga agag	ttggaa 300
<210> 292	
<211> 278	
<212> DNA	
<213> Homo sapiens	
<400> 292	
cccagaccta tggagtcaga cagtaggttt gaggcccagc aatctatggt ttaac	caaqcc 60
atccaggtgt ttctgatgca cagtgaaatt ggggtaccac tggtattagg tttg	
caactttttc atcacttgtt ttatgtagtt gtctgatcaa ttgtgaaaac ataa	
ttggaaatgg aacagtaaaa taacgaaagc caactttttt ttttttttn nnnnn	nnnnn 240
nntgntttnn cccccaggnt gnanngcagg gncccaat	278
<210> 293	
<211> 297	
<212> DNA	
<213> Homo sapiens	
<400> 293	
ggaaggcagt gggaggagag gaccaagtet caaactecag aagccccace teec	tgagct 60
cageteetet gecaageeee eteagegega agteetegte cagagaagge aaeg	
aacaaatcca acatcctggg ctgctttttc cttcccccac tttttaaaaag tttg	
aagtcacttg acaaacccag accctaacaa tgatattttg tgtagaattc tggga	atcaaa 240
atataatttc aaaaataata tattttctga catcccccaa aaaaaaaaa aaaaa	aaa 297
<210> 294	
<211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 294	
ggaacagttt gagcaaaggc teteaagtaa tagggtgtet gaettgttea tttt	tgaaag 60
tagaactaat aggatttett attggaacgt agggtgtaag agaaaagagg agte	
agccacaaga tttttggtct cagcaattag aaggatagaa ttgacattta ctga	_
tgtttttgtt tttgagacgg agtttcgcta ttgttgccca agctggcgtg caate	•
atctcggctc agtgcaacct ccacctccca gattcaagcg attctcctgc ctca	geetee 300

```
<210> 295
      <211> 299
      <212> DNA
      <213> Homo sapiens
      <400> 295
                                                                       60
gtaatattga tgtgattgtt gtcgcttgag aaaaaaaggc aacagctgat tctttcaaca
actgtcacag aatggctggg ctgagaacgc tgcccagggc cctgcagctg gcgggagnnn
                                                                      120
nnnnnnnnn nnnngtgen tgetgeaaca tntggttana tngtateett ceetanagnt
                                                                      180
                                                                      240
gctacnnett nnateccett gtnaatatgt tgagntnnet tngenttenn gntnnteeng
ntnnttgaca entatgnaan ttntntngte tngetetget ngatnnettn nangetgee
                                                                      299
      <210> 296
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 296
gcagaacctt ttcccctcta ctcttgtcta aaagttctgt gtggcacaca gagatgcgac
                                                                       60
ctactcaatc tgacttagta aaaccatgct gaaaaatttt ggtctaaaaa ggacccatac
                                                                      120
ccagcaccca tgaaataaaa gattcatctg taattgggat tcaaagggat taaattcctt
                                                                      180
tggtcatact cataaatagc actaaagtgt tataacattt tcatttacct atttttagtt
                                                                      240
ccttcatttt aacttaataa aaatcttgga ttgatattct ttttttttt ttttgggacg
                                                                      300
      <210> 297
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 297
gctaggatta caggtgtgag ccaccatgcc cagccactta tctttaaagg attaagttta
                                                                       60
tgtttcctac tatgggaaac catcccaccc caaacttgat gaccgcatta tgtgctttta
                                                                      120
tagaacatgg cacttctcca ggatagcatt tattctgttt tgtaagtgtg aatgtaatta
                                                                      180
                                                                      240
ccctacacac agcatacaca taatcttcat attctttgcc ttgtcttgtg aaggcaaggg
ccatgtctat cttattcgtc attagattcc cacatccaac atagtcctgg ggacagcacc
                                                                      300
      <210> 298
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 298
ccaaatctgc ctagagattg agttcacagt gtatgttctg ggggcgctgg tgcagtcagc
                                                                       60
ggtccagtct ccagcctgca ggcgtgcaca ctggggtgga cgatgggtgg ccccgcaggt
                                                                      120
gtacacattt gggtggcccc ggcccctata ccccagtgtt ctctttgatc cagtcccgaa
                                                                      180
acagagggag cettgtgtac acgcetecaa agtggagetg ggaggtagaa ggggaggaca
                                                                      240
ctggtggttc tactgaccca actgggggca aaggtttgaa gacacagcct cccccgccag
                                                                      300
      <210> 299
      <211> 300
```

<213> Homo sapiens <400> 299 ctccattgtg aagatccagg catttttccg agccaggaaa gcccaagatg actacaggat 60 attagtgcat gcaccccacc ctcctctcag tgtggtacgc agatttgccc atctcttgaa 120 tcaaagccag caagacttct ctgctgctgt gatctgcaca ccctccaacc tgggcaggga 180 ctggggggat gcagtgtgtg ttagtgccca tgtggcattg tggcactgtt gccccccatg 240 gcggcatggg caagatgacc ttccattagc ttcaagtctt gttctcttgt ctgtggtctg 300 <210> 300 <211> 300 <212> DNA <213> Homo sapiens <400> 300 agcaattcca ctcctagctc cacccacagg aattgaaagc aaagacgcaa acagatgcct 60 gtgcaccaaa gttcacggca gcatccttcg ccatagtggc agcatccgtc gtcacaqcgq 120 catcatectt catcatageg geageateeg tegteacage ggeageatee ttegeeacag 180 eggeageate tgtegteaca geggeageat cettegeeaa ageggeagea teettegtea 240 tageggeage atcetttgcc atageggeaa ggtggaaacc etgtecatec actgaggegt 300 <210> 301 <211> 300 <212> DNA <213> Homo sapiens <400> 301 tcacagatat gaaagttcag tcagaggggc tgggccgaca tctgtgcttt tccctgcagg 60 atttttagga tcagtgagac ggtgtgtatt tggaagcatt tcaaatgtgt taccatcgtg 120 ttacttccgt gggcacctgg tgttattggt tggactagtc aggattctcc agagcagcag 180 aagcaatggg atgtgtgtc atgtgtttgt gcagagacag aaagagagat tttaaggaac 240 tggcttatgc agttgtgggg gctagcaagt ctgaaatttg cagggegggc cagcaagctg 300 <210> 302 <211> 300 <212> DNA <213> Homo sapiens <400> 302 tcaccaggaa tacagtgaca ttaaaagtgt gatatggttt agctgtgccc ccacccacat 60 ttcaacttga actgtatcta tctcccagaa ttcccacatg ttgtgggagg gacccagggg 120 gaggtaactg aatcatgggg gctggtcttt cccgtgctat tctcgtgatg gtgaagtctc 180 acgagatctg atgggtttat caggggtttc cacttttgtt tcttcatttt ctcttgccac 240 cagcatgtaa gaagtgcctt tggtctccta ccatgattct gaggcctccc tagccatggg 300 <210> 303 <211> 300 <212> DNA <213> Homo sapiens

<400> 303

```
60
gccctctcca ttttctgagg aggtgatatt tgggcagatt acaaactgag gaagcatact
                                                                       120
ggatagacat caggatgaag agaataggca gttgaaaagt cccagaaagg ggagtgtgct
tagagtgttt gaggaacagc aaggaagcaa gcccttgttg aaacagattg agcaaggtag
                                                                       180
aaagtggtaa aagatgaagt taaagaggta gctgagagcc agatcatgta aagccttggt
                                                                       240
aaggactgac ttttatttta agagggttag gaagacattg gtaggttttg actctggctt
                                                                       300
      <210> 304
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 304
aacaggaata tggaaagaaa ctcagagccg agttagtgga aaagtggaaa gcagagagag
                                                                        60
aggctcggct ggcaagagga gaaaaggaag aggaggagga agaggaggaa gagatcaaca
                                                                       120
tctatgcagt caccgaggag gagtcggacg aggaaggcag ccaggagaaa ggaggggacg
                                                                      180
acagecagea gaagtteatt geteaegtee etgtteeete geageaagag attgaggagg
                                                                       240
cactggtgcg aaggaagaaa atggaactcc tccagaagta tgcaagcgag accctgcagg
                                                                       300
      <210> 305
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 305
aatagtagaa agggteecca tteetgetea geacegeace tetetaecee eecacagaca
                                                                       60
cacatgeaga cacacacatg cagacaacac geagacacae acatgeagge acteacatge
                                                                      120
aggcccatgc acacacagt gcacacacat gcagagacat gcagacacgc aggcacacat
                                                                      180
gcacacatgc aaagacacgc atgcaggcac acgcagacgc acacagagac acacatgcag
                                                                      240
atacacatgc acacacacat acacacactg gcccctgttt ttctgtggtg tcactgggtg
                                                                      300
      <210> 306
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 306
cagcaaagac tttatttttg tacagaagat ggtgaagtcc aagacggtgg ctcagtgcgt
                                                                       60
ggagtactac tacacgtgga aaaagatcat gcggctgggg cggaaacacc ggacacgcct
                                                                      120
ggcagaaatc atcgacgatt gtgtgacaag tgaagaagaa gaagagttag aggaggagga
                                                                      180
ggaggaggac ccggaagaag ataggaaatc cacaaaagaa gaagggagtg aggtgccgaa
                                                                      240
gtccccggag ccaccaccg tccccgtcct ggctcccacg gaggggccgc ccctgcaggc
                                                                      300
      <210> 307
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 307
gctgcttctg gctggggggt ccttggcctt catcctgctg agggtgagga ggaggaggaa
                                                                       60
gagecetgga ggageaggag gaggageeag tggegaeggg ggattetaeg ateegaaage
                                                                      120
tcaggtgttg ggaaatgggg accccgtctt ctggacacca gtagtccctg gtcccatgga
                                                                      180
```

accagatggc aaggatgagg aggaggagga ggaggannnn nnnnnnnnna ntggcettnt gtggceteca ccagcagetn tnnannatga catggagtec caactgnacg neteceteat	240 300
<210> 308 <211> 300 <212> DNA <213> Homo sapiens	
<400> 308	
agttaagagt gtgaacccta gatttgccat ctgaaagtca tgtgtccttc agtgatgcat	60
ttaacetete tgtgceteaa attteteeet etggggtatg ttaggagtat acaaattaac	120
acatgtaaag tgcttagaat agattggtac tgttaaatat gagctaacgt cacatttgat	180
atttttttaa aaagaaaaaa tcattatgga gtctcagtcc tagagattct gattcattaa	240
ttctgcttct cggcaaggag cgatttgctg gtgtagacat tccgggtccg tgtaaagggt	300
<210> 309	
<211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 309	
ccaacaccca gttctcactc tgtcatccag gctggtgtgc agtggtgcaa tgtgggctta	60
ctgcagcctt gacctccagg acaagtgatc tcccacctca gcctccggaa tagctgggac	120
tacageteaa caaegeeeet etgaaagtag gaetettgga aatgaaeett gttgggagta	180
aagctgaacc ttcacctctc ctttccagga ttctactcca ttcatacggc ctcacactga	240
attaatggtt ctagcagcca catcactttg ttacccaatt gatctagtag taaagtcttc	300
<210> 310	
<211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 310	
aggaaacacc cccttataaa accatcatat caggctgggt gatctgacag agctagacac	60
tgtcaaacaa acaaacaaac aaacaaaaaa accccatcac atctcatgag acttatttac	120
tatcatgaga gcagctcagg aaacacccac tcccgtgatt cagttacatc ccactgggtc	180
tgtcccacaa attgtgggag ctacaattca agatgaggtt tgggtgggga cacagccaaa	240
ccctatcacc atgtaaaata atatctaatt tgtagagatt aaagaacaag ataacttaaa	300
<210> 311	
<211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 311	
ttntgcagat ctccagcaca agcctctgct agttgatctc acggtagaag aaggtcaaag	60
attaaaggtt atgtttggtt cacacactgg tttccatgta attgatgttg attcaggaaa	120
ctcttatgat atctacatac catctcatat tcagggcaat atcactcctc atgctattgt	180
catcttgcct aaaacagatg gaatggaaat gcntgtttgc tatgaggatg anggggtgna	240
	200
tgtaaacacc tatggccgga taacnaagga tgtggtgctc caatggggag aaatgcccac	300

```
<210> 312
      <211> 275
      <212> DNA
      <213> Homo sapiens
      <400> 312
cetecetgga tgtgcagaca tggaggagga cagaaggeee ageteagtgg eeeeegetee
                                                                       60
ccaccccca cgcccgaaca gcaggggcag aggcagnnnn nnnnnntaag ngtgtnnaan
                                                                      120
tntnnatttn ttcctntttt ttttnnnttn aaatatnntg nnnttttttn ntantantta
                                                                      180
ttatnntntn nttattannn tntttttcnt ntnttacttt gttnttgatt ttanncnttt
                                                                      240
natnttttt ttgttcttct nttntattnn atctt
                                                                      275
      <210> 313
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 313
tectgtette ttgcccaaat gttgcatttt ccaagaccac tctggcctgc catgccaccc
attetgtgcc tataaaaacc etgagacccc agegggcaca cacacaageg getggacgte
                                                                      120
aagaggaaca cactggcaga agaacacatc gaaagacgct ggcaggccat tgatggtgga
                                                                      180
acgattcgga cgccaaggga aattcggcca aggacagtag gagatcccgg ctgctgagca
                                                                      240
gccagactec agaggaagac tacetteeca tgetateece ettetggete eecagecate
                                                                      300
      <210> 314
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 314
ataagggtgg ggccttaatt cagtagaatt ggtggcctcc taagcagagg aagagagatt
                                                                       60
tttctttctc tctctgccat gtgaagacag tgaggagtcg gccgtctgca agccaagaag
                                                                      120
agcccttate aggaacagae ttggctagea cetteategt ggaceteeag cetecagaat
                                                                      180
tgcaagaaaa tacatttccg tcgttgaaac cacccagtct gtggtatttt gttatggcag
                                                                      240
cccaggcaga ctaatacgtg aagcctgctc taaatagata aaataagaaa ttactacaga
                                                                      300
      <210> 315
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 315
gtctcagtgt ggcctgtggg gctggtgggc ggcctgcgat tcgagggccc tcaggtacag
                                                                       60
gacggccggg tagtgggctt ccacacagca tgggagccca gcaggccctt ccctgtggat
                                                                      120
atggctggat ttgccgtggc cctgcccttg ctgttagata agcccaatgc ccaatttgat
                                                                      180
tecacegete eceggggeea cetggagage agtettetga gecacettgt ggateceaag
                                                                      240
gacctggagc cacgggctgc caactgcact cgggtactgg tgtggcatac tcggacagag
                                                                      300
      <210> 316
      <211> 300
      <212> DNA
```

<213> Homo sapiens <400> 316 gaaatgeete tatgtaggtg aagtgttete tetgeatgea acaggaaaaa ttaataat 60 attttcccca caaaagaaac acttaacaga ggcaagtgca atttataaat ttatatctaa 120 aggggaatca tgattataag tccttcagcc cttggactct aaattgaggg gattaaaaag 180 aatttaaaat aattttgaac gaatttattt teeeteagt ttttgaggge attaaaaagg 240 cattaaatca agacaaatca tgtgcttgag aaaaataaaa ttaatgaaaa cacagcactt 300 <210> 317 <211> 295 <212> DNA <213> Homo sapiens <400> 317 acactgtccc actccatcac ccaggctgga gtccagtggt gtgatcatag ctcgctgcat 60 cctccagttc ctgggttcaa gccatccctc ctgcctcagc ctccccagta gctggaacta 120 caggigigig ccatcacacc tggctttaca titticigig gggacttact atgitgccca 180 ggccggcctc aaactcctga gctcaagtga tcctctgcct cagcctccaq aqtatctqqq 240 attacatatg teggetaceg tgtetggeeg tteacatett tggecaetat ttget 295 <210> 318 <211> 261 <212> DNA <213> Homo sapiens <400> 318 cctgaatata aagaggagga ggaagaccaa gacatacagg gagaaatcag tcatcctgat 60 ggaaaggtgg aaaaggttta taagaatggg tgccgtgtta tactgtttcc caatggaact 120 cgaaaggaag tgagtgcaga tgggaagacc atcactgtca ctttctttaa tggtgacgtg 180 aagcaggtca tgccgaccca agaannnnn nnnnnnnnn nnntngccnn aacnnttcac 240 caaatncccc gggggggctt g 261 <210> 319 <211> 300 <212> DNA <213> Homo sapiens <400> 319 gggacetetg eccaagaaag eetgggtatt gaceaaggtt teeeceecae tgagacagee 60 tgagatatgg cctcatggga agggaaagac ctgactgtcc cccagcccga cacctgtaaa 120 gggtcggtgc tgaggaggaa tagtgaagga gggaggcctc tttgcagttg agataagagg 180 aaggettetg teteetgett gteeetggta atggaatgte teggtqtaaa getgaeeatt 240 cccattcgtt ctattctgag ataggagaaa accgccctgt ggctggaggt gagatatgct 300 <210> 320 <211> 289

76

<212> DNA

<400> 320

<213> Homo sapiens

caccttgcct ggccaagggg ctagacctcc caggctaage ctcagattca gtgcaggaca caagctcatg ccccgtctt gccagtgaca cttgaagcct cccgacttcc acagagtgct tcaggacaca ttttgagtgg tattttcttt tcttttttc ttctttttt ttttnnnnnn nnnnnntngt tntgtnnccc aggctgnann gcaggggcct gatntnggnt aantgnaacc ttngcctccn aggttaaagc natttttng cctaancctc naaagtacc	60 120 180 240 289
<211> 300 <212> DNA <213> Homo sapiens	
<400> 321 gaaagaccga gatagagaga gagacagaga cagagagcga gaccgtgatc gggacagaga aagagaacgc accagagaga gagagaggga gcgtgatcac agtcctacac caagtgtttt caacagcgat gaagaacgat acagatacag ggaatatgca gaaagaggtt atgagcgtca cagagcaagt cgagaaaaag aagaacgaca tagagaaaga cgacacaggg agaaagagga aaccagacat aagtcttctc gaagtaatag tagacgtcgc catgaaagtg aagaaggaga	60 120 180 240 300
<210> 322 <211> 300 <212> DNA <213> Homo sapiens	
<pre><400> 322 cgccctttaa ctgcagttct gctctatttt cttttctctc tctggagctg agagtcagag ggcccttctc ctcctccttt cagcccccaa cactaagctg atggattgat aaatacctca gcccctcgcc ttcctcaacc cacctggcaa gtcttcttag gatctgatcc cagttttctg gaagcaatcc taccccagcc caagcttccc aagagtcgag ccttaatcct tctcacttct cagtgtcaga gcagaaatga atcctggggt tgactgttc cattcgggtt attagcagct</pre>	60 120 180 240 300
<210> 323 <211> 300 <212> DNA <213> Homo sapiens	
<pre><400> 323 agattatgag catgtagaag atgaaacttt tcctcctttc ccacctccag cctctccaga gagacaagat ggtgaaggaa ctgagcctga tgaagagtca ggaaatggag cacctgttcc tgtacctcca aagagaacag ttaaaagaaa tatacccaag ctggatgctc agagattaat ttcagagaga ggacttccag ccttaaggca tgtatttgat aaggcaaaat tcaaaggtaa aggtcatgag gctgaagact tgaagatgct aatcagacac atggagcact gggcacatag</pre>	60 120 180 240 300
<210> 324 <211> 300 <212> DNA <213> Homo sapiens	
<pre><400> 324 gtctgagaag tcaaggatcg gggtgctggc ctattcagtt cctggtaagg gctgtcttcc tggcttgcag ttgaactact tcttgctgtg tcttcacaag catgccccca tcctgtgccg ataagaactc cagaccccaa actcagctca tacacacacg gaagagagaa gcatctgaac</pre>	60 120 180

atcaagaaga gaagaagctg ctggacatca gaaactgtga aaggagagga gtttggctga gctccagggg aagactgcct gcacattcta tccccttttc agttccccat cctgctgtca	240 300
<210> 325 <211> 283 <212> DNA <213> Homo sapiens	
<400> 325	
gtccgaagaa aaagactgtg gtggcggaga tgctctctcc aatggcatca agaaacacag	60
aacaagtttg cetteteeta tgtttteeag aaatgaette agtatetgga geateeteag	120
aaaatgtatt ggaatggaac tatccaagat cacgatgcca gttatattta atgagcctct	180
gagetteeta cagegeetaa etgaataeat ggageataet tacetegtee acaaggeeag	240
ttcactctct gatcctgtgg aaaggatgcn ngtgtgtagc tgc	283
<210> 326	
<211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 326	60
atgacatect cattatecae actgeaaage caaceatece tatgatgggt teattgtgga	120
tcatgactta gtgggtcaag agtttggaag tggctcagct gggcggttct tctgctccat gtggctgcca gatggtaccc tgctggtggg cagtctggtc tagagggtcc atgatggctt	180
tactcacatg cetggcatet tgacagggac agetggaagg caaggttcag etgggactgt	240
ccacagaget cetecetyty geetttecay catygtgte teagggtage tygaetteet	300
<210> 327	
<211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 327	
ggtagactgg ctagggatcc tggacccagg gttccacgta gcaacacctg ctgagttctc	60
tgggttttct tcctgcctca tgtagcccag acttggagct gaagaagctg gaaacatgga	120
aacaccaaca gctacagacc aaaaaaagtc ccaacaaagg cctgtcagtc tgccagcctg	180
ttctgtggat ttccaactca agattgcagc atcaactcac acctgaagtt ctggcttccc	240
tacaaacttt gaacttgcca gtccccacaa tggcataagc caattcctta aaatgaatgt	300
<210> 328	
<211> 300	
<212> DNA .	
<213> Homo sapiens	
<400> 328	
gtcacaggca ggtttaatgg ccagtttaaa acttatgcta tctgcggggc cattcgtagg	60
atggtgagtg tttccctggg ctttgctcat cacttcggga catcgtggac tttaccgtgc	120
gcattggagt gtgtgatggt gcctgagtag atctgctggc agagtagttt gagccagctg	180
gactgggctg gccgcctgcc gcttcttgag ggtggaagag gggtgctctg agaagacact	240
caggcagcag actetgeete teaettaagg tgeeceeegg acceegetee accatagtea	300

```
<210> 329
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 329
ttttggtcgt ctttaatttg tctcatcagt gcctccatgt gtttttgatg cctttgaact
                                                                        60
                                                                       120
ggtattttta aaatttcaat ttctaattgt tcattataga aacacaattg ggttttatat
attggcattg tattttgcaa ctttcctaaa ctcactagta attctagtag ctttttttgg
                                                                       180
tagattetta aggattttet gtgtaaatag teatgteatt tgtgaataaa gecatttttt
                                                                       240
tttccttttc aaattttgtg ccttttattt cttattctta ccatatcaca ttggcaaaga
                                                                       300
      <210> 330
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 330
tcaaggatcg gggtgctggc ctattcagtt cctggtaagg gctgtcttcc tggcttgcag
                                                                        60
ttgaactact tettgetgtg tetteacaag catgeececa teetgtgeeg ataagaacte
                                                                       120
cagaccccaa actcagctca tacacacacg gaagagagaa gcatctgaac atcaagaaga
                                                                       180
gaagaagctg ctggacatca gaaactgtga aaggagagga gtttggctga gctccagggg
                                                                       240
aagactgcct gcacattcta teccetttte agtteeccat cetgetgtea gccacattta
                                                                       300
      <210> 331
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 331
accgccctgt ggctggaggt gagatatgct ggcagcaata ctgctctgtt actccttgct
                                                                        60
acactgagat gtttgggtaa agagaaacat aaatctagcc tacgtgcaca tctgggcaca
                                                                       120
gtacctttcc ttgaacttat tcgtgataca gattcctttg ctcacatgtt tccctgctga
                                                                       180
ccttcttccc acctgttgcc ctgctacact cccctcgcta agacagtaaa aataatgatc
                                                                       240
aataaatact gagggaacte agaggeeage geeggtgegg gteeceeeca tgetgagege
                                                                       300
      <210> 332
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 332
ggaaaaacaa caggtttgag teetataaag eeataattta aeteeagtag etgatgteag
                                                                        60
acaagettgt cetatgteet atttgagtgg cageagegee ageecageaa gaaggetggg
                                                                       120
ggttgtcaag gttgtcccca gaccttgctt gcagtggttg gagaacccag ggggctgcct
                                                                       180
tgggccctct ggccagaggg aagcgggcag ctctagccct ggagattgtg gtcacattgg
                                                                       240
ggcttgttta ggattggagg gccaggtcac ctccccagcc accctccctt ctctcctctg
                                                                       300
      <210> 333
      <211> 300
      <212> DNA
```

<213> Homo sapiens <400> 333 60 cctcctactc ccaaacaaat ctttggggaa aaaaaaacta ccaactgtca gccatgggcc tgacggcgct aagctctggg gctccgtgca ctgacgtggg gccagccaca gggaggcggg 120 180 gatcaagtag cggaggccag gattttggcc acctcccggg caagttgcag ggcagtggcg ccgggagcaa aagcagcatg atgcagctca tgcacctgga gtccttttat gaaaaaacct 240 cctcctgggc ttatcaagga agatgacact aagccagaag actgcatacc agatgtacca 300 <210> 334 <211> 262 <212> DNA <213> Homo sapiens <400> 334 gccatgccca tttgtttact cattgtctat ggttgctttc atgccctcac agcaaaggcg 60 agtagttgtg atggatcaaa tggcccacaa agcctgaaat atttactctt tgacccttta 120 180 cagaaaaaaa ccttgttgac ccctgcttta gagaatgaga agccatgcag ggatcagtga 240 tgccagagga agggaaggaa ctgcttccag ctattgtgac aataataata ataataatat tgggtctttg actagaacgt gt 262 <210> 335 <211> 300 <212> DNA <213> Homo sapiens <400> 335 tentnteten ntattnttgn gtagtneete nttteettgt nenntnnten netnttgnet 60 120 tttgcggacc ctcgattcta tctcatatga gtgagaacgc ttaccagtgc agcgaatgtg 180 ggaaagcett cegagggeac teggaetttt etaggeatea gagteaceac ageagtgaga 240 ggccttatat gtgtaatgaa tgtggaaaag ccttcagcca gaactcgagc cttaaaaaagc accaaaagtc tcacatgagt gagaagccct atgaatgcaa tgaatgtggg aaggctttta 300 <210> 336 <211> 300 <212> DNA <213> Homo sapiens <400> 336 gaggacccac tcccccagga ctcctttgaa ggcgtggacg aggacgagtg ggactagcct 60 120 gegeeeegt cacetecace teacetgtge tgecaettee tagtgcacac eteacggete atecteaage tggaagatac etetetggee eeggeacatg teacecetge acteetgeet 180 tecegtggge acttecacat cetetgggee tetggeagtt eccagggaet gtttteacet 240 ctgctgtctc tggggtcagc tgctgctcat cagctgcccg ctagcatgtg gccaggggtg 300 <210> 337 <211> 300 <212> DNA <213> Homo sapiens

<400> 337

agacaaccca gaaacaaatt a acatacactg gggaaaagat a tatgcagaag aatgaaacta g aaaaagttaa atctaagacc ctccaggaca ttggagtggg	aatgtcttta gacccccatc tcaaactatg	ataaatggtg tcttagcata aaacagctaa	ctgggaaaac tacaaaaatc aagaaaacat	tggatatcca aaaattaatt cggggaatct	60 120 180 240 300
<210> 338 <211> 292 <212> DNA <213> Homo sapie	ns				
<pre><400> 338 tcaataacca tgaagatgca actcgcatct tcatggttat agcttgaact tagaaaagaa gagtagcaga ggtatccgtg gcttgtatta aaaaggatgt</pre>	tgagggcaag agctcgtctg ttggctggat	aaggetgeee aaagaggaag tttgaaaate	aaagacacga cagctatgaa caggaattat	gactttaaca ggccaaaaca gttataacgt	60 120 180 240 292
<210> 339 <211> 300 <212> DNA <213> Homo sapie	ns				
<pre><400> 339 gaaatttgca ctgatggctc a agggggggct ggaccaacct t tttcagctc cgaggccgcc tgggctacac aagggactat tcttcgaggg aaccaatgag</pre>	ggettteeeg tggeagtgtg eegtaegage	actgctccat tgagtgaggc gcatactgcg	cgaggcagcc gctgcagatc tgacacccgc	atggtgaagg ctcgggggct atcctcctca	60 120 180 240 300
<210> 340 <211> 300 <212> DNA <213> Homo sapie	ns				
<pre><400> 340 ctcagngcan cgatcatggc acctcaacct cctgagtagc ttattttgta gagatggggt aagcaatcct cccacctcgg ctggcccttg gtggaatctt</pre>	taggactata ctcactatgt cctcccaaag	ggcacacagc tgcccaggct tgctgggatt	accatgcccc agtcttgaac aaaggcgtga	ggctattttt tcctggcctc gccaccgtac	60 120 180 240 300
<210> 341 <211> 296 <212> DNA <213> Homo sapie	ns				
<400> 341 atccaggtgt ttctgatgca caactttttc atcacttgtt ttggaaatgg aacagtaaaa	ttatgtagtt	gtctgatcaa	ttgtgaaaac	ataatgaatg	60 120 180

nnnnnnnnt threeceeng rengrannge aggggeeeaa nntnggntnn rtgrancere enceneeggg rtnnneceet ttreenngee taaceeneee nagraenngg aactae	240 296
<210> 342 <211> 300 <212> DNA	
<213> Homo sapiens	
<400> 342	
ggcacgatca tggctcattg cagcctctaa ctccggggct caagcaatcc tcccacctca	60
gcctaccaag tagctgtgac cacagctgcc cctcaccatg ctaagctaat tttttaatt	120
agatagtaca taaacgtccc aaaattagaa gataaaaaga catgagggat ccattctaat	180
ttgtgtttgg agtgtaatgg tccagctcca ttcttctgca catggatatc cagttttaca	240
caacactgtg aatgtaatga atgccactga atcatacact caaaaatagc taaaatggca	300
<210> 343	
<211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 343	
gttttcatca ctacatattc tacacacact gggaagctct gacaacttat tccctgctat	60
tatcaactaa agatcaccct ttctactgct gtctctggag caggagctgg caaactatgg	120
cctgctgtct gtttttgtac agttttactg aaacacagcc atgcccattt gtttactcat	180
tgtctatggt tgctttcatg ccctcacagc aaaggcgagt agttgtgatg gatcaaatgg	240
cccacaaagc ctgaaatatt tactctttga ccctttacag aaaaaaacct tgttgacccc	300
<210> 344	
<211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 344	
ccccaacctg cactctaccc acccccatca cctactccag ctcccaactt ttgtggactg	60
ageggeegea gagaetgggt egeettggat tecetetgee teegaggaee eeaaaagaea	120
cccccaaccc caggccagcc ggccctgctc tggcgcgtcc aaaatactac ctagcacagg	180
cctctgctcg aggcaccccc aaactaccta tgtatccagc cccagagggc ctccattccc	240
aggaagteee tatgtateee aacaetggea gacacecage accaecetee eagaceegea	300
<210> 345	
<211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 345	
ccccatcac ctactccagc tcccaacttt tgtggactga gcggccgcag agactgggtc	60
gccttggatt ccctctgcct ccgaggaccc caaaagacac ccccaacccc aggccagccg	120
gccctgctct ggcgcgtcca aaatactacc tagcacaggc ctctgctcga ggcaccccca	180
aactacctat gtatccagee ccagagggee tecatteeca ggaagteeet atgtateeca	240
acactggcag acacccagca ccaccctccc agacccgcaa gaaagtgaat ctcactacta	300

```
<210> 346
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 346
gtccacggtg ctgaacatca tcatctttga agactgtagg aaccagtggt ctatgtcccg
                                                                       60
accactactt ggcttgatat tgcttaatga aaagtatttt tctgacctaa gaaacagtat
                                                                       120
tgtgaacagc cagccaccgg agaagcagca ggccatgcac ctgtgttttg agaacctgat
                                                                       180
ggaaggcatc gagcgaaatc ttcttacgaa aaacagagac aggttcaccc agaacctgtc
                                                                       240
agcattccgt cgagaagtca acgactcaat gaagaattcc acttatggcg tgaatagcaa
                                                                      300
      <210> 347
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 347
gctctgagcc caggcgaggc cagggacatg gccatggacc tgtgtcggca ggaccccgag
                                                                       60
tgtgagttet actteageet ggaegeegae getgteetea ceaacetgea gaecetgegt
                                                                       120
atcctcattg aggagaacag gaaggtgatc agaccccatg ctgtcccgcc acggcaagct
                                                                       180
                                                                       240
gtggtccaac ttctggggcg ccctgagccc cgatgagtac tacgcccgct ccgaggacta
                                                                       300
cgtggagctg gtgcagcgga agcgagtggg tgtgtggaat gtaccataca tctcccaggc
      <210> 348
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 348
gttetgtggc tggcatggte tgcetgctac tggagagatc tcctgagaat tcaggtttgg
                                                                       60
attggtgctg tcatcttcct gggaatgctt gagaaagctg tcttctatgc ggaatttcag
                                                                       120
aatatccgat acaaaggaga atctgtccag ggtgctttga tccttgcaga gctgctttca
                                                                       180
                                                                       240
gcagtgaaac gctcactggc tcgaaccctg gtcatcatag tcagtctggg atatggcatc
                                                                       300
gtcaagccac gccttggagt cactcttcat aaggttgtag tagcaggagc cctctatctt
      <210> 349
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 349
gtcagctttt gatgaagcta tgtcatactg tcgatatcat ccttccaaag ggnattggtg
                                                                       60
gcacttcaaa gatcatgaag agcaagataa agtcagacct aaagccaaaa ggaaagaaga
                                                                       120
accaagetet attttteaga gacaaegtgt ggatgettta ettttagace teagacaaaa
                                                                       180
atttccaccc aaatttgtgc agctaaagcc tggagaaaag cctgttccag tggatcaaac
                                                                       240
aaagaaagag gcagaaccta taccagaaac tgtaaaacct gaggagaagg agaccacaaa
                                                                       300
      <210> 350
      <211> 270
```

<212> DNA

<213> Homo sapiens <400> 350 ccatgctgnt aacgggtttc aaggggactc ttgaggaant qccccctaaa atagaacaca 60 gcaatanggn gggcttcctg tccccaggnc caccccacaq tgctntntgg cactggnaac 120 tctgctangg agngantgna nnnnaccant aannnnnan nnatcnacan nnnnnnnncn 180 nnnnncntn tnnccnannn ntannctncc ntannnnanc cnnccannan cactcncnat 240 naacgnnnnn ttantgagan nttctcaact 270 <210> 351 <211> 300 <212> DNA <213> Homo sapiens <400> 351 aaatgactcc ctgcaaaacc caacccatgc tgctggctgt gggatttttg gtgtaagcct 60 atctatgcac tctatcagcc agaatttggc atttagctct tagttaaatc tagtaaagga 120 cagtctattg tttaaagaga aggtgcattt gttcctcaat caagcaagag cacctgtgtt 180 gtactgcttt atatctcatg tatatttata gtaatgaaaa gactttttaa attqtacacq 240 tttcagtgcc tttcttgtgt tatgaaaggc aggtagatat tatagccata ggtaaaaatc 300 <210> 352 <211> 300 <212> DNA <213> Homo sapiens <400> 352 aagaaatgcc tctatgtagg tgaagtgttc tctctgcatg caacagtaaa aattaatata 60 atattttccc cacaaaagaa acacttaaca gaggcaagtg caatttataa atttatatct 120 aaaggggaat catgattata agtccttcag cccttggact ctaaattgag gggattaaaa 180 agaatttaaa ataattttga acgaatttat tttcccctca gtttttgagg gcattaaaaa 240 ggcattaaat caagacaaat catgtgcttg agaaaaataa aattaatgaa aacacagcac 300 <210> 353 <211> 300 <212> DNA <213> Homo sapiens <400> 353 cccacacteg gacactgtgg aattetacca gegeetgteg acegagacae tettetteat 60 cttctactat ctggagggca ctaaggcaca gtatctggca gccaaggccc taaagaagca 120 gtcatggcga ttccacacca agtacatgat gtggttccag aggcacgagg agcccaagac 180 catcactgac gagtttgagc agggcaccta catctacttt qactacqaqa aqtqqqqcca 240 geggaagaag gaaggettea cetttgagta eegetacetg gaggaceggg acetecagtg 300 <210> 354 <211> 299 <212> DNA <213> Homo sapiens

<400> 354

gaaggaggac ctaggcacac acatatggtg gccacac atttcagagt ccaggcccta ggttgggacc cactcca tggttctata gagggataaa tgaataataa acattgt aaaaaaaaa aaaaaaaaa aaaaaaaa aaaaaaaa	aat aatctcctcg gtgtgggtgg 120 taa aatatacgaa aaaaaaaaaa 180 aaa aaaaaaaaa aaaaaaaaa 240
<210> 355 <211> 300 <212> DNA <213> Homo sapiens	·
<pre><400> 355 actgttcatc ctaagttcca ctataaacag gctcatg gtgacttttt cctatgatgg taatgtcctt gcctctc ttatgggaca tccgacaatt taataaacca ctttttt ttcccaatga ctgactgctg tttcagtcca gatgata attcaaagag gatgtggcag cggcaaactt gttttct</pre>	gtg gaggtgacga ttcattaaaa 120 cag cetegggtet teecaceatg 180 age teatagteae tggtacatet 240
<210> 356 <211> 300 <212> DNA <213> Homo sapiens	
<pre><400> 356 ttcagaaaga aacatttaat agggacttac aaacaaa agcaagacaa gatggtggat ccccatgcca ttacctg tagtggagag gtgattccga aggaatgttg taagaca ttatttgacc taagggcagg agttacagta agtatcc taaactggaa atcttggagc ccttcctgga actgggg</pre>	cta gactcagggt ttatatactg 120 att gaagagcagt aacatcaaag 180 act tttatacaag aaacaataga 240
<210> 357 <211> 300 <212> DNA <213> Homo sapiens	
<pre><400> 357 acaaaaccta cagatggaga taaaaattac tactgtt tattttgggg agtaaagtca attgggcaga ggatcct gcttgagaag aatgttgaca tgatgtaata agaattc tggcaatctc aactcttatt tggaatactt ctgtgca gaaaagcata tccataacgt ttacagttgt agtacag</pre>	gcc cttaaggaaa ttgttctgca 120 att tctgacatat tttacatttc 180 ttt gtctgtccac cgtaatttta 240
<210> 358 <211> 300 <212> DNA <213> Homo sapiens	
<400> 358 ggtgattaca gaagcccaga aggttgatac cagagcc agacacactc aacacattag acggcctcct gcatctg agctggcacc acccagatca ataaactggc ttatttg	atg gaccetgeae ttgatggace 120

actgactcag tgcaagaaga cagcttcgac tccctgtgat ttcatctctg accaatccgc actcctggct cactggcttc cccaacccat gaagttttcc ttaaaaactc tgctcccgaa	240 300
<210> 359 <211> 300	
<212> DNA <213> Homo sapiens	
400 250	
<400> 359 atcaggtgtt ceteccatgg caggagggaa gaaacecage aaacggecag cetgggaett	60
aaagggtcag ttatgtgacc taaatgcaga actaaaacgg tgccgtgaga ggactcaaac	120
gttggaccaa gagaaccagc agcttcagga ccagctcaga gatgcccagc agcaggtcaa	180
ggccctgggg acagagcgca caacactgga ggggcattta gccaaggtac aggcccaggc	240
tgagcagggc caacaggagc tgaagaactt gcgtgcttgn gtcctggagc tggaagagcg	300
<210> 360	
<211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 360	
totgtotggt gatttttatt ttaagtgaac ctttggatct atctttaact ctctttattg	60
tgagtggtaa attccaattc tgcagcagat cagtaaactc acagtatttt tcctgtggaa	120
atctattcaa taaggaaacc aagacaggat aataaaattt aaaaaaaaac aactttgaat	180 240
teccetgeet aggtetteca gttgttttee agegeataee teaggtatga etttgetage egggggacaaa attageaeet teegattete tagteeaaat gaaetttgtg etaaataaaa	300
eggggacaaa accagcacca cocgacocca cagcocaaac gaaccocgcg ccaaacaaaa	300
<210> 361	
<211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 361	
gtagaacaga aaatgagcat ccgatttctt cactaaagga gaccaaactg ttccttgcgg	60
totagtattg aagaactgga acttgaaagt cotcottota coaactccac ctccaccccc	120
tcattcccct tctcccaaag tactactgct gttgcatgac aaccccaaat atgttctgtc	180
aacacaaacc tgcctttggt gtataaacag ggcattacag aatggtacac cctatatatt	240
totgttoagt atocattoac tagttottoa tttataaata toatottooc cattotgotg	300
<210> 362	
<211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 362	
actacceegg ctaeggttee eccatgeetg geagettgge catgggeeeg gteacgaaca	60
aaacgggcct ggacgcctcg cccctggccg cagatacctc ctactaccag ggggtgtact	120 180
cccggcccat tatgaactcc tettaagaag acgacggett caggcccgge taactetgge	
accceggate gaggacaagt gagagagcaa gtgggggteg agactttggg gagacggtgt	240

```
<210> 363
      <211> 271
      <212> DNA
      <213> Homo sapiens
      <400> 363
ggcaattagc ctcgcttaag ttgccttttt tacacaccaa aactttttac atgaagggct
                                                                       60
ggtttcacat gaatactata ctgaaatctg tgctctcaag atctagcagt gaccagggct
                                                                      120
gcccggcggg ggctctcctg gcaagtcagg aaggtnnnnn nnnnnnnnn nnnnnnnnn
                                                                      180
canattantn netgatente tntnangaan nnngantnge tetnttggne nttgtnnnnn
                                                                      240
gncntnnnnt naantntttn ntnatgtngc t
                                                                      271
      <210> 364
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 364
agaggaccct gcagttaggg ggtgttactt tgtcgcccag gatggcctgg acccccaggt
                                                                       60
teagggatte teeegeeget getteetgag tagetgggae eteaggette egeetegtge
                                                                      120
                                                                      180
ccgcatccct gctgtgttta ggcagcaggt ggtgacctca ctcctccctg gcctgagctc
                                                                      240
teegteeege ateecaggeg gaggeeetag ggaacaettt gaagetgage aeggggtgga
ccctccctcc tgagtgaatg gagaatagaa agggagagga tttctgttct gttctgtggg
                                                                      300
      <210> 365
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 365
gttcttcaaa gccaaccaag acaggcttag cagttttaga gcttcagaac aaattgccaa
                                                                       60
aagccagagt tgtttatgct agtgcaactg gtgcttctga accacgcaac atggcctata
                                                                      120
tgaaccgtct tggcatatgg ggtgagggta ctccatttag agaattcagt gattttattc
                                                                      180
aagcagtaga acggagagga gttggtgcca tggaaatagt tgctatggat atgaagctta
                                                                      240
gaggaatgta cattgctcga caactgagct ttactggagt gaccttcaaa attgaggaag
                                                                      300
      <210> 366
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 366
gccagtcctc accttcccta gtcctcgtgt gtattttagg agatgcgtgg gtgtggaaca
                                                                       60
gcctcctgcc teeggtccag gtgtactggg gtctgtgtgt tgtgtttctg egtgttcteg
                                                                      120
                                                                      180
gcagaaagtg gcatgctgtc ccgcctgggt gatttgctct tttacactat tgctgaagga
caggaacqaa tccctatcca caaqttcacc actgcactaa aggccactgg actgcagaca
                                                                      240
tcagatcctc ggctccgaga ctgcatgagc gagatgcacc gcgtggtcca agagtccagt
                                                                      300
      <210> 367
      <211> 300
```

<212> DNA

<213> Homo sapiens <400> 367 cattgccaga gagcggtttc agcaagctgc agatctgatt gatgctgagc aacgaatgaa 60 qaaqtccatq tqqqqtcagt tctgqtctgc tcaccagagg ttcttcaaaat acttatgcat 120 180 agcatccaaa gttaaaaggg ttgtgcaact agctcgagag gaaatcaaga atggaaaatg tgttgtaatt ggtctgcagt ctacaggaga agctagaaca ttagaagctt tggaagaggg 240 cgggggagaa ttgaatgatt ttgtttcaac tgccaaaggt gtgttgcagt cactcattga 300 <210> 368 <211> 300 <212> DNA <213> Homo sapiens <400> 368 geceggeeeg gegaegetgg egaegettte geceetgagg tagtttggeg acegegaaga 60 aggaaaaagg gegggeggge ggetgteete teacegteet cacecegega ggeeeggeee 120 180 gctcctccgt cgtggatttc gcggcgatcc ccccggcagc tctttgcaaa gctgcttgaa 240 acttetecca aacteggeat ggatacgact geggeggegg egetgeetge ttttgtggeg ctcttqctcc tctctccttq qcctctcctq qgatcqqccc aaggccagtt ctccqcaggt 300 <210> 369 <211> 300 <212> DNA <213> Homo sapiens <400> 369 gtggggtgtg cotogtgtgc gtggattcgt gtgtgtgtgt gtgtcttgta tatgtgtgcg 60 cagagtgcat cattttcaga ctctactatt tccgtcaagt attctgtttg atttggatca 120 tetcaggate ggattetgtt ttagagtgtt tetgggecag gateegggee eetgeeetee 180 240 totgcacctg accacactco ctactcaggg ctagtctgtt cttcccggac atcttctggt 300 agccgtgcag gagagggctg ggtggggcag aggccacaga ggggacctgg tgtgtcacct <210> 370 <211> 273 <212> DNA <213> Homo sapiens <400> 370 60 cagaggetgg ttcagaaaag gaggaagagg cccggetggc agccctggaa gagcagagga tggaggggaa gaagcccagg gtgatggcag gcaccttgaa gctggaggat aagcagcggc 120 tggcccagga tgaggagagt gaggcctagc gcctggccat tatgatgatg aagaagctnn 180 240 nnnnnnnnn nnnnnnnnc atcatgteen ntgeatgget acctateeea tatttnatnt 273 ccctnncqtt qnttcnaatt ncacattntc ttt <210> 371 <211> 300 <212> DNA <213> Homo sapiens

<400> 371

gatgaggagt gtttaatcat tgatacagaa tgtaaaaata atagtgatgg aaag gttgtgggtt ctaacttaag ttccagacca gctagtccaa attcttcctc agga tctgtaggaa accagactaa tactgcttgt agtcctgaag agtcatgtgt ttta cctatcaaac gagtatataa aaaatttgat ccagttggag agattttaaa aatg gagctcttaa agccaatttc cagaaaagta ccagaattgc ccttaatgaa ttta	caggct 120 aaaaaa 180 caggat 240
<211> 300 <212> DNA <213> Homo sapiens	
gggcccaat gcagctgccc tctccagata cctggcagcc tcatatatca gcca ggctcggcgg caggggcctg ggggaggggc ccccgcagcc tcccggggct cctg tgctccacg tcacgggcat cttcgccgcc cccccagccc cagccaccac ctcc caggcggctc agctatgcca cgacggttaa catccacgtg ggcgggggtg ggcg gccagccaag gcccaggtcc ggttgaacca ccctgctctc ttggcctcca cacag	gtcctc 120 cgcagc 180 gctgcg 240
<210> 373 <211> 300 <212> DNA <213> Homo sapiens	
<pre><400> 373 accctttctg ccttctgttt gggacccagc tggtgttctt tggtttgctt tcttctagggctgt gctatccaat acagtaacca catgcggctg tttaaagtta agccaatcacataa gattaaaaat tccttcctca gttgcactaa ccacgtttct agagctgtatgtag ttcatggcta ctgtactgac agcgagagca tgtccatctg ttggcctattctaga gaactaaact ggcttaacga gtcacagcct cagctgtgct gggaccaatctaga gaactaaact ggcttaacga gtcacagcct cagctgtgct gggaccaatcaact</pre>	aattaa 120 gcgtca 180 acagca 240
<210> 374 <211> 300 <212> DNA <213> Homo sapiens	
<pre><400> 374 tcaaggccta cgaacaggtg atgcactacc ccggctacgg ttcccccatg cctggccatggg cccggtcacg aacaaaacgg gcctggacgc ctcgccctg gccgccctctacta ccagggggtg tactcccggc ccattatgaa ctcctcttaa gaagggctcccggcccgg</pre>	cagata 120 acgacg 180 gtgggg 240
<210> 375 <211> 300 <212> DNA <213> Homo sapiens	
<pre><400> 375 cttcagtgca cacaacagga gagaggagaa agaagaaacg ctagtaattc caaga aattaagttg ccttcatcag tgtttgcttc agagtttgag gaagatgttg tgata ataaagcagc tccagtttca ggacctcgac tggattttga tcctgacatt gttga</pre>	tgttaa 120

ttgatgatga ttttgacttt gatgatccag ataatctgct tgaggatgac tttattcttc aggccaataa ggcaacagga gaggaagagg gaatggatat acagaaatct gagaatgaag	240 300
<210> 376 <211> 300	
<211> 300 <212> DNA	
<213> Homo sapiens	
<400> 376	
gggagactgg ggtctatttc acccctgcag tctcgaccat aagagatggc tacacccagg	60 120
ggggccagtt cagagaccca ctcccaggtg tgcattetet ttetcaagga tgtteettge tgagaaaaag aattcagtga tatttetec atttgettgt gaaagaagag aaatgtgget	180
ttgttccacc tggctcaccg gcggtcagaa tttaaggtta tctctcttgt ttcctaaaca	240
ttgctgttat cctgttcttt tttcaaggtg cccagatttc atattgctca aacacacatg	300
<210> 377 <211> 300	
<211> 300 <212> DNA	
<213> Homo sapiens	
<400> 377	
gatcagecca ceteggeete acaaagtget gggattacag gegtgageca cettgeecag	60 120
cccacatcat acagtttgaa atgaaacttt gccacaacca gcctttgctg tagcacacac atatatcact gaacctgttt gaaataaagt tttttttctt tttcctctgg tattctgggt	180
totgaagtot ggtattotgg tattotgggt toaaaagtat gacttgagag tgttgctotg	240
gtattctgag agttgctctg tattctgggt tctgaagatt atttgaaaaa taactcctac	300
<210> 378	•
<211> 300	
~212× DNA	
<212> DNA <213> Homo sapiens	
<212> DNA <213> Homo sapiens	
<213> Homo sapiens <400> 378	
<213> Homo sapiens <400> 378 tcgctgtgat ccaaggataa aaaagttcaa ggaagaagaa aaagccaaga aagaagcaga	60
<213> Homo sapiens <400> 378 tcgctgtgat ccaaggataa aaaagttcaa ggaagaagaa aaagccaaga aagaagcaga aaagaaag	120
<213> Homo sapiens <400> 378 tcgctgtgat ccaaggataa aaaagttcaa ggaagaagaa aaagccaaga aagaagcaga aaagaaag	120 180
<213> Homo sapiens <400> 378 tcgctgtgat ccaaggataa aaaagttcaa ggaagaagaa aaagccaaga aagaagcaga aaagaaag	120
<213> Homo sapiens <400> 378 tcgctgtgat ccaaggataa aaaagttcaa ggaagaagaa aaagccaaga aagaagcaga aaagaaag	120 180 240
<pre><213> Homo sapiens <400> 378 tcgctgtgat ccaaggataa aaaagttcaa ggaagaagaa aaagccaaga aagaagcaga aaagaagca aaagcagaag ctaaacggaa ggagcaagaa gctaaagaaa aacaaagaca agctgaatta gaagctgctc ggttagctaa ggagaaagaa gaggaggaag tcagacagca agcattgctg gcaaagaagg aaaaagatat ccagaaaaaa gccattaaga aggaaaggca aaaacttcga aactcatgca agacctggaa tcatttttct gataatgagg cagagcgggt <210> 379</pre>	120 180 240
<pre><213> Homo sapiens <400> 378 tcgctgtgat ccaaggataa aaaagttcaa ggaagaagaa aaagccaaga aagaagcaga aaagaagca aaagcagaag ctaaacggaa ggagcaagaa gctaaagaaa aacaaagaca agctgaatta gaagctgctc ggttagctaa ggagaaagaa gaggaggaag tcagacagca agcattgctg gcaaagaagg aaaaagatat ccagaaaaaa gccattaaga aggaaaggca aaaacttcga aactcatgca agacctggaa tcatttttct gataatgagg cagagcgggt <210> 379 <211> 300</pre>	120 180 240
<pre><213> Homo sapiens <400> 378 tcgctgtgat ccaaggataa aaaagttcaa ggaagaagaa aaagccaaga aagaagcaga aaagaagca aaagcagaag ctaaacggaa ggagcaagaa gctaaagaaa aacaaagaca agctgaatta gaagctgctc ggttagctaa ggagaaagaa gaggaggaag tcagacagca agcattgctg gcaaagaagg aaaaagatat ccagaaaaaa gccattaaga aggaaaggca aaaacttcga aactcatgca agacctggaa tcatttttct gataatgagg cagagcgggt <210> 379</pre>	120 180 240
<pre><213> Homo sapiens <400> 378 tcgctgtgat ccaaggataa aaaagttcaa ggaagaagaa aaagccaaga aagaagcaga aaagaagca aaagcagaag ctaaacggaa ggagcaagaa gctaaagaaa aacaaagaca agctgaatta gaagctgctc ggttagctaa ggagaaagaa gaggaggaag tcagacagca agcattgctg gcaaagaagg aaaaagatat ccagaaaaaa gccattaaga aggaaaggca aaaacttcga aactcatgca agacctggaa tcatttttct gataatgagg cagagcgggt <210> 379 <211> 300</pre>	120 180 240
<pre><213> Homo sapiens <400> 378 tcgctgtgat ccaaggataa aaaagttcaa ggaagaagaa aaagccaaga aagaagcaga aaagaagca aaagcagaag ctaaacggaa ggagcaagaa gctaaagaaa aacaaagaca agctgaatta gaagctgctc ggttagctaa ggagaaagaa gaggaggaag tcagacagca agcattgctg gcaaagaagg aaaaagatat ccagaaaaaa gccattaaga aggaaaggca aaaacttcga aactcatgca agacctggaa tcatttttct gataatgagg cagagcgggt <210> 379</pre>	120 180 240
<pre><213> Homo sapiens <400> 378 tcgctgtgat ccaaggataa aaaagttcaa ggaagaagaa aaagccaaga aagaagcaga aaagaaagca aaagcagaag ctaaacggaa ggagcaagaa gctaaagaaa aacaaagaca agctgaatta gaagctgctc ggttagctaa ggagaaagaa gaggaggaag tcagacagca agcattgctg gcaaagaagg aaaaagatat ccagaaaaaa gccattaaga aggaaaggca aaaacttcga aactcatgca agacctggaa tcatttttct gataatgagg cagagcgggt <210> 379</pre>	120 180 240 300
<pre><213> Homo sapiens <400> 378 tcgctgtgat ccaaggataa aaaagttcaa ggaagaagaa aaagccaaga aagaagcaga aaagaaag</pre>	120 180 240 300
<pre><213> Homo sapiens <400> 378 tcgctgtgat ccaaggataa aaaagttcaa ggaagaagaa aaagccaaga aagaagcaga aaagaagca aaagcagaag ctaaacggaa ggagcaagaa gctaaagaaa aacaaagaca agctgaatta gaagctgctc ggttagctaa ggagaaagaa gaggaggaag tcagacagca agcattgctg gcaaagaagg aaaaagatat ccagaaaaaa gccattaaga aggaaaggca aaaacttcga aactcatgca agacctggaa tcatttttct gataatgagg cagagcggt <210> 379</pre>	120 180 240 300 60 120 180
<pre><213> Homo sapiens <400> 378 tcgctgtgat ccaaggataa aaaagttcaa ggaagaagaa aaagccaaga aagaagcaga aaagaaag</pre>	120 180 240 300

```
<210> 380
      <211> 296
      <212> DNA
      <213> Homo sapiens
      <400> 380
                                                                       60
acctggacag ggccagctgc tgggggagcg gcactgggga ctggaggctg gaagcgggtg
                                                                      120
gtgtgtgtcc cctgtttact tttagctgag ctggggttgg gtgtacgggt tctgttcctc
                                                                      180
tqaqccctqc qqcccacctq atqtttacqt gtgtgtgta gggggggcnn nnnnnnnnn
nnnnnnnn ngtnatangc ttaacanatg nanagnenac tnactnetga ttntttatne
                                                                      240
atttgtgcat tnnaactatg cttttncgat cttnctgntg nnatnacngg catgat
                                                                      296
      <210> 381
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 381
cagaaaagag tatagtaggg atgaccaagg tcaaagtggg taaagaagac tcatcatcca
                                                                       60
ctgagtttgt agaaaaacgg agagcagctc ttgaaaggta tcttcaaaga acagtaaaac
                                                                      120
atccaacttt actacaggat cctgatttaa ggcagttctt ggaaagttca gagctgccta
                                                                      180
gagcagttaa tacacaggct ctgagtggag caggaatatt gaggatggtg aacaaggctg
                                                                      240
ccgacgctgt caacaaaatg acaatcaaga tgaatgaatc ggatgcatgg tttgaagaaa
                                                                      300
      <210> 382
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 382
                                                                       60
gccaccggtc tcttcctaat ctgcacagac tattttgggt atttctgggc gggcagttcc
                                                                      120
tttgcatgtt tcgggagagg tttgctgatt tggggcttat atgtcaggcc tttggtttgc
gtcttatttt aggggttgtt tgggggcctg ggtggtcggc ctcacatggg aaggggatgg
                                                                      180
                                                                      240
gtagtggatg gggtttctgt tgtatcttgt gggcgggtga ttttgctttt gttttttt
cacattette eccetecaca agecaaagte gttteatttg gttteeactg tgtggactgt
                                                                      300
      <210> 383
      <211> 273
      <212> DNA
      <213> Homo sapiens
      <400> 383
gagatttgat attcgagtgc tgggcttagg tctgttgata aatctagtgg agtatagtgc
                                                                       60
teggaategg caetgtettg teaacatgga aacategtge tettttgatt ettecatetg
                                                                      120
tagtggagaa ggggatgata gtttaaggat aggtggnnnn nnnnnnnngc engenttnac
                                                                      180
ttnatngcnn ctttttcttg atcnacgncn gnnatncnna nnngtntata ntaatncnga
                                                                      240
ananttnttt gnnntgcttt atcaantntt cnt
                                                                      273
      <210> 384
```

<211> 259

```
<212> DNA
      <213> Homo sapiens
      <400> 384
                                                                       60
aagagaagga cctagagatt gagaggctta agacgaagca aaaagaactg gaggccaaga
tgttggccca gaaggctgag gaaaaggaga accattgtcc cacaatgctc cggccccttt
                                                                      120
cacategeac agteacaggg geaaageece tgaaaaagge tgtggtgatg eecetacage
                                                                      180
taattcagga gcaggcagca tccccaaatg ccgagatcca catcctgaag aataaaggcc
                                                                      240
                                                                      259
cgaagagaaa gctggagtc
      <210> 385
      <211> 296
      <212> DNA
      <213> Homo sapiens
      <400> 385
agageetgea agtgacaaag gaagtgagge agaggeeeae atgeeeeeae egtteacaee
                                                                       60
ctacgtgcct cggattctga acggcttggc ctcggagagg acagcactgt ctccgcagca
                                                                      120
gcagcagcag cagacctatg gtgccatcca caacatcagc gggactatcc ctggacagtg
                                                                      180
cttggcgcat agcgccacgg gcagtgtggc ttgctgccc ccaggaggcc tgaggctggg
                                                                      240
tctcactgct ctgaaaaaga cccnnccaaa atgggccttg gggctnnagg cccttg
                                                                      296
      <210> 386
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 386
gaagaggagg ctgtgtatga ggaacctcca gagcaggaga ccttctacga gcagcccca
                                                                       60
ctggtgcagc agcaaggtgc tggctctgag cacattgacc accacattca gggccagggg
                                                                      120
ctcagtgggc aagggctctg tgcccgtgcc ctgtacgact accaggcagc cgacgacaca
                                                                      180
gagateteet ttgaeceega gaaceteate aegggeateg aggtgatega egaaggetgg
                                                                      240
                                                                      300
tggcgtggct atgggccgga tggccatttt ggcatgttcc ctgccaacta cgtggagctc
      <210> 387
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 387
ccgcagaggg cctggaagag gtgctcacca cgccagagac tgtgctcaca ggccacacgg
                                                                       60
agaagatetg etecetgege ttecaeceae tggeageeaa tgtgetggee tegteeteet
                                                                      120
atgaceteae tgttegeate tgggacette aggetggage tgateggetg aagetgeagg
                                                                      180
gccaccaaga ccagatette ageetggeet ggagteetga tgggcageag etggecaetg
                                                                      240
tetgeaagga tgggegtgtg egggtetaca ggeeceggag tggeecetgag eecetgeagg
                                                                      300
      <210> 388
      <211> 300
      <212> DNA
      <213> Homo sapiens
```

<400> 388 tggaggtete etttegeece ageceaggtg gecaageeca teetggeete agaacatget gageacattt tgtagggtgg cacettttta teeaagttae tagetacaca teagtgttta	60 120
aagagaaaaa agtgaccttt cattttttt tcttgaaact tgaggaaaca agatacatac tactgatttt tttttctta aaactaaaatg catgactgca gagcggtaga ggtgtatatt	180 240
tttcatactg tggggcaaag tatttgtgct gctttttgga gatggactgg aacgtctggt	300
<210> 389 <211> 293 <212> DNA	
<213> Homo sapiens	
<pre><400> 389 gtcaagctgg ccctggatgt ggagatcgcc acctaccgca agctgctgga gggcgaggag</pre>	60
tgcaggctga atggcgaagg cgttggacaa gtcaacatct ctgtagtgca gtccaccgtc tccagtggct atggcggtgc cagcggtgtc ggcannnnn nnnnnnnnn nnnatgaanc	120 180
agntacteet atggnnttag entintanet atnacetgen enaactanne thangtgeta	240
gnnettgece caaccectae ttttgtattt atattgtgtg tgegtgtgtg egt	293
<210> 390 <211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 390	
ctcacacctg ctttggatgc ttcaagcacc tcagccctct gaactacaaa acagangagc	60 120
ctgcaagtga caaaggaagt gaggcagagg cccacatgcc cccaccgttc acaccctacg tgcctcggat tetgaacggc ttggcetcgg agaggacagc actgtctccg cagcagcagc	180
agcagcagac ctatggtgcc atccacaaca tcagcgggac tatccctgga cagtgcttgg	240
cgcagagcgc cacgggcagt gtggctgctg ccccccagga ggcctgaggc tgggtctcac	300
<210> 391	
<211> 257 <212> DNA	
<213> Homo sapiens	
<400> 391	60
accegteegg ggeeggeeaa tttgeatatt tggaatgege egetataaae eeggetgggg tttttgeageg atttettaga tgtaaaaatg agateteaat ageageggge tgggeacate	120
ctetestete teettetete tetgecegga getggtttee gtetetegge teggggetgg	180
aactccggcc caacctaggc gcgcagccgc cacgagatgg cgcacttccg atcaatgtca	240
aagccgccgg ggagccc	257
<210> 392 <211> 300	
<212> DNA	
<213> Homo sapiens	
<400> 392	
gcgcgagcgt cggctccgcc tgggcccttg cggtgcgctg cgggcaggcg gtgaggctca cgcatgtgct tacgggcaag aacctgcaca cgcaccactt cccgtcgccg ctgtccaaca	60 120

```
accaggaggt gagtgccttt ggggaagacg gcgagggcga cgacctggac ctatggacag
                                                                      180
tgegetgete tggacageac tgggagegtg aggetgetgt gegettecag catgtgggca
                                                                      240
cctctgtgtt cctgtcagtc acgggtgagc agtatggaag ccccatccgt gggcagcatg
                                                                      300
      <210> 393
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 393
gegegagegt eggeteegee tgggeeettg eggtgegetg egggeaggeg gtgaggetea
                                                                       60
cqcatqtqct tacqqqcaaq aacctqcaca cqcaccactt cccqtcqccq ctqtccaaca
                                                                      120
accaggaggt gagtgccttt ggggaagacg gcgagggcga cgacctggac ctatggacag
                                                                      180
tgcgctgctc tggacagcac tgggagcgtg aggctgctgt gcgcttccag catgtgggca
                                                                      240
cetetgtgtt cetgtcagtc acgggtgagc agtatggaag ceccatecgt gggcagcatg
                                                                      300
      <210> 394
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 394
gtccatacat ggagctccct ggagcccgtg tgctctcgtg tgactgaacg ttttgtgatg
                                                                       60
aaaggaggag aggctgtctg cctttatgag gagccagtgt ctgaattgct gaggagatgt
                                                                      120
gggaattgca cacgggaaag ctgtgtggtt tccttttacc tttcagctga ccatgaactc
                                                                      180
ctgagcccga ccaactacca cttcctgtcc tcaccgaagg aggccgtggg gctctgcaag
                                                                      240
gegeagatea etgecateat eteteaenag gngaceatat tggtttttga eetggagaee
                                                                      300
      <210> 395
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 395
gcaaaatcaa tgtggactga acataaatca cctgatggaa ggacttacta ctacaacact
                                                                       60
gaaaccaaac agtctacctg ggagaaacca gatgatctta aaacacctgc tgagcaactc
                                                                      120
ttatctaaat gcccctggaa ggaatacaaa tcagattctg gaaagcctta ctattataat
                                                                      180
teteaaacaa aagaateteg etgggeeaaa eetaaagaae ttgaggatet tgaageaatg
                                                                      240
atcaaagctg aagaaagcag taagcaagaa gagtgcacca caacatcaac agccccagtc
                                                                      300
      <210> 396
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 396
aagagcacaa gaggaagaga gagaccetca etgetgggga gteeetgeea caeteagtee
                                                                       60
cccaccacac tgaatctccc ctcctcacag ttgccatgta gaccccttga agaggggagg
                                                                      120
ggcctaggga gccgcacctt gtcatgtacc atcaataaag taccctgtgc tcaaccaaaa
                                                                      180
aaaaaaaaa aaaaacnnnn nnnnnnnnn nntntngggn gnctnntnnc nnaaanccan
                                                                      240
```

```
ncttnataaa anccttngnt natttggaac aacccncann taaanngcag ggaaaaaaag
                                                                      300
      <210> 397
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 397
gataaatacc tcagcccctc gccttcctca acccacctgg caagtcttct taggatctga
                                                                       60
teccagtttt etggaageaa teetaeecea geceaagett eecagagteg ageettaate
                                                                      120
cttctcactt ctcagtgtca gagcagaaat gaatcctggg gttgactgtg tccattcggg
                                                                      180
ttattagcag ctaagaagcc cagacgagta gtgtgagctg ccttgggagc ctcagtgagg
                                                                      240
geactgggac tggcctcact ctcttgcccc cagcctagtg ggctttctcc tctgtctctc
                                                                      300
      <210> 398
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 398
ctgaacccta aaggaaagcc agcaaaccag ctgcttgctc tcaggacttt ttgcaattgt
                                                                       60
tttgttggcc aggcaggaca aaaactcatg atgtcccaga gggaatcact gatgtcccat
                                                                      120
gcaatagaac tgaaatcagg gagcaataag aacattcaca ttgctctggc tacattggcc
                                                                      180
ctgaactatt ctgtttgttt tcataaagac cataacattg aagggaaagc ccaatgtttg
                                                                      240
tcactaatta gcacaatctt ggaagtagta caagacctag aagccacttt tagacttctt
                                                                      300
      <210> 399
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 399
gctgacctac agcagaagct gctggatgca gaaagtgaag acagaccaaa acaacgctgg
                                                                       60
gagaatattg ccaccattct ggaagccaag tgtgccctga aatatttgat tggagagctg
                                                                      120
gtctcctcca aaatacaggt cagcaaactt gaaagcagcc tgaaacagag caagaccagc
                                                                      180
tgtgctgaca tgcataagat gctgtttgag gaacgaaatc attttgccga gatagagaca
                                                                      240
gagttacaag ctgagctggt cacaatggag caacagcacc aagagaaggt gctgtacctt
                                                                      300
      <210> 400
      <211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 400
ggctagcgat ttctacctgc gctactacgt agggcacaag ggcaagtttg ggcaccgagt
                                                                       60
ttctggagtt cgaatttcgg ccggacggaa agcttagata tgccaacaac agcaattaca
                                                                      120
aaaatgatgt gatgatcaga aaagaggctt atgtgcacaa gagtgtaatg gaagaactga
                                                                      180
agagaattat tgatgacagt gaaattacaa aagaagatga tgctttgtgg cctcccctg
                                                                      240
atagggttgg ccgacaggag cttgaaattg taattggaga tgagcacata tcttttacca
                                                                      300
```

<210> 401

```
<211> 300
      <212> DNA
      <213> Homo sapiens
      <400> 401
accecettea tggacagate ecceacagee tggggcagaa gaggegtega gggegecaga
                                                                    60
120
tggaggggtc ccggaagagc tggtccccgt ggttgagctg gtccccgtgg ttgaattgga
                                                                   180
agaggccata gccccaggct cagaggccca gggcgctggg tctggtgggg acgcgggggt
                                                                   240
gcccccaatg gtgcagctgc agcagtcacc actagggggt gatggagagg aagggggcca
                                                                   300
     <210> 402
     <211> 300
     <212> DNA
     <213> Homo sapiens
     <400> 402
ggatecttte cagacagaag acceetteaa atetgaceea tttaaaggag etgaceeett
                                                                    60
caaaggegae eegtteeaga atgaceeett tgeagaacag eagacaaett caacagatee
                                                                   120
atttggaggg gaccetttca aagaaagtga cecatteegt ggetetgeea etgacgaett
                                                                   180
cttcaagaaa cagacaaaga atgacccatt tacctcggat ccattcacga aaaacccttc
                                                                   240
cttaccttcg aagetcgacc cctttgaatc cagtgatccc ttttcatcct ccagtgtctc
                                                                   300
     <210> 403
     <211> 300
     <212> DNA
     <213> Homo sapiens
     <400> 403
aatteegttg etgteggaca gattgeecta gtacceacce acetateagg gttatgeaat
                                                                    60
ggaacatcct cgcccaagct cttggagaag gcaaagacaa ctttgtacag tgccctgttg
                                                                   120
aagcactcaa atgggaagaa aggaaatgtc tcatcctgga agaaatcctg gcctaccagc
                                                                   180
ctgatatatt gtgcctccaa gaggtggacc actattttga caccttccag ccactcctca
                                                                   240
gtagactagg ctatcaaggc acgtttttcc ccaaaccctg gtcaccttgt ctagatgtag
                                                                   300
     <210> 404
     <211> 300
     <212> DNA
     <213> Homo sapiens
     <400> 404
agtgggataa aatgagacga gccctggaat ataccattta caatcaggaa cttaacgaga
                                                                    60
ctcgtgccaa acttgatgag ctttctgcta agcgagagac tagtggagaa aaatccagac
                                                                   120
aattaagaga tgctcagcag gatgcaagag ataaaatgga ggatatcgaa cgccaagtta
                                                                   180
gagaattgaa aacaaaaatt tcagctatga aagaagaaaa agaacagctt agtgctgaaa
                                                                   240
gataagagca gattaagcag aggactaagt tggagcttaa agccaaggat ttacaagatg
                                                                   300
     <210> 405
     <211> 856
     <212> DNA
     <213> Homo sapiens
```

```
<400> 405
tggtgcengt tectatteeg tgetntegtn etnenceagg anenangegt ntegaatteg
                                                          60
gcacgaggaa ggaggaccta ggcacacaca tatggtggcc acacccagga gggtagtggg
                                                         120
gagttagatt tcagagtcca ggccctaggt tgggacccac tccaaataat ctcctcggtg
                                                         180
tgggtggtgg ttctatagag ggataaatga ataataaaca ttgttaaaat atacgaaaaa
                                                         240
300
360
nattengggg ggntttttee tecanneenn ntntttaata nnetnettnt tgnntettng
                                                         420
                                                         480
nctcaccnnt tcttttggtn ggcnntaana naaaatnttn nttttttttn ggntanaaat
nenntnneng ttttttntnn tttttttten aaacceteet nttntanete negtntenaa
                                                         540
aaanntnttt ntccncnncn nttnnntnnt nctntttcta tttttnnttc ttntncaann
                                                         600
tteenangtg nnnngngtnt nntgnggett gtttnttttt nenneetnge gteateenne
                                                         660
caataatttc ttnncncccc nannccnnat tttttntnnc ctctatntnn gnngngnnat
                                                         720
atnanteece tttattnttn atnantagte ntntnttttn ttnteentng tnatannatt
                                                         780
ttntntcccn ntntaanttc ctcannnnat ttnntnnncn ncgngntata tttnangnta
                                                         840
nntenneggg gttnet
                                                         856
     <210> 406
     <211> 843
     <212> DNA
     <213> Homo sapiens
     <400> 406
tnntnnnnc gnangetggn nnnttetnec entttetaat ngttnetaat actanggatn
                                                          60
gtcacgaggn tcccangtag gcatagcgca ctgctgtacg tttttggttg tttttaagaa
                                                         120
                                                         180
actegatgaa gaggggtgtc attetgggct eggggtggtt gecaattttt caccagaaag
ggagccacco ettgcaacca ettetgtete egttagecce ecetetgeee teetecaage
                                                         240
caaagegtgg cetggetttt gtetteecat ttagttttee tettttaece tteettttgt
                                                         300
                                                         360
gcttaattta ttaaaatagt tgctgtataa tttattttca taaactataa aaaaatacta
aatggttaaa atagacttgc aggccaatct taaatggggt gggaggggtc tgagggtggg
                                                         420
                                                         480
atggggaaag ggaaagaggt tttgatntaa acaaaacaaa tgcactttgg gtgtgtnnng
gnattttnct ggggatanan ggggtggggg nnnnngnann nnnnnnnnn nnnnnnnnn
                                                         540
600
660
720
780
                                                         840
ncn
                                                         843
     <210> 407
     <211> 743
     <212> DNA
     <213> Homo sapiens
     <400> 407
tgggenggnn ctantngngg getetegaet tentaegane ttecaatggt tnggnggeae
                                                          60
gagcccccat cttcactggt tattccactt atttaaaatg tccagaataa gcaaatctcc
                                                         120
atatagagga agtagattag tggttgcttc gggatgggag gaatgggaag attgaggtct
                                                         180
ttcttttgca gtgataaaaa tgtcctaaaa ttgactgtag cgatggtcac acaactctga
                                                         240
atatgettaa gaccattgaa ttacacaett taegttggtg aattgtatgg tatgtaaatt
                                                         300
atagttcaat aacatagtta caaaagataa tcaaaagcat gaaagcactg ttgatgtggt
                                                         360
```

```
420
ttggatctgt gtcctcaccg agtctcatgt tgaaatgtaa gccccctggt gggaggcgat
                                                                      480
gggattatgg ggcagagtcc tcacaaacgg tttacaccac ccgctcagtg ctggtctcct
                                                                      540
gatattgagt cctcatcaca tctggttgct tcaaagtgtg tggtgcctcc cctctatctc
                                                                      600
cotnetque tqqccatata aqatqtqcct qcttctcttc qccttctaac atgattgnaa
gtttcctqaq gcctncctag aacaaaactg ctgtgctttc tgnncccatc tacaggaccc
                                                                      660
                                                                      720
qqaqccaatt naacccttt tctttataaa aaaaaannnn nnnnnnnnn nnnnnnnnn
                                                                       743
nnnnnnnnn nnnnnnnnnn nnt
      <210> 408
      <211> 746
      <212> DNA
      <213> Homo sapiens
      <400> 408
tgtccgnttc ttangntgng ctctngcttc ctaggagtnt cnaatcgctt ggtgcagacc
                                                                       60
tccagcacaa gcctctgcta gtngatctca cggtagaaga aggtcaaaga ttaaaggtna
                                                                      120
tttttggttc acacactggt ttccatgtaa tngatgttga ttcaggaaac tcttatgata
                                                                      180
tctacatacc atctcatatt cagggcaata tcactcctca tgctattgtc atcttgccta
                                                                      240
aaacagatgg aatggaaatg cttgtttgct atgaggatga gggggtgtat gtaaacacct
                                                                      300
atggccggat aactaaggat gtggtgctcc aatggggaga aatgcccacg tctgtggcct
                                                                      360
acattcattc caatcagata atggctgggg cgagaaagct attgagatcc ggcagtggaa
                                                                      420
caggacattt ggatggagta ttnatgcata agcgagctca aaggttaaag tttctatgtg
                                                                      480
aaagaaatga taaggnattt tttgcattcc gtgcgatctg gaggaagtag cccaagtgtt
                                                                      540
tttcatgacc ctcaacagaa attccatgat gaacctggta accagaagaa ccccttggca
                                                                      600
cttatcttca tggcgttatt ctaatttaaa aagaacataa ctcatgngga cttatgccca
                                                                      660
gtctagaggc agaatcagaa ggcttgggtg gaacatatcg ntttcctttt tcctttcctt
                                                                      720
eggeeetnee agneeagtee atnttt
                                                                      746
      <210> 409
      <211> 761
      <212> DNA
      <213> Homo sapiens
      <400> 409
ggatccggtt tccaatgctc gggcnctcga gctncctaag annttgctaa tgcttggngg
                                                                       60
ngtgcctcgt gtgcgtggat tcgtgtgtgt gtgtgtct ngtatatgtg tgcgcagagt
                                                                      120
geateatitt cagactetae tattteegte aagtttetgt tigattigga teateteagg
                                                                      180
ateggattet gttttagagt gtttetggge caggateegg geeeetgeee teetetgeae
                                                                      240
ctgaccacac tecetactea gggetagtet gttetteeeg gacatettet ggtageegtg
                                                                      300
caggagaggg ctgggtgggg cagagccagg aggggacctg gtgtgtcacc tgcccaccac
                                                                      360
ctggctcatc cctcangccc accctgaccc tacattacat aggttacgtc agcctactgt
                                                                      420
ggctgttgag caaagcattt cteetttetn gggcetcatt gcactagatg ggectgtggt
                                                                      480
cccaaagtag gtcagtaggt tggggttgct gacacccctt gggttgcaact ttgggacaag
                                                                      540
atgaantggc tetgteetgt caetggeete teettgeetg ggggetatgt geaetteaaa
                                                                      600
accetggeca ageteaagee catgaagnat tggagaacae cetgggeece caagaactgg
                                                                      660
angeaccegg ceantteece tgggatteea netttgeean ggtgaaccet tettttacce
                                                                      720
naaacttntg tccccctgnt tccacttcca aaaanaactg g
                                                                      761
      <210> 410
      <211> 748
```

<212> DNA

<213> Homo sapiens

<400> 410 gatgeeggtt cetatgatgn getetegget teetaggagt teeaanactn ggetngeneg 60 aggnettnta aatatatetn ggntttanta ggtgataagt netgteantt agtaneatet 120 gaaaaancag ctttgtcctg ggtgaaaaag gatgccaaaa ttgcctggaa aagagcagtg 180 anaggagtcc gggagatgtg tgatgcntgt gaagcancat tgtttancat tcactgggtc 240 tgccaaaaat gtggatttgt ggtctgctta gattgttnca aggcaaagga aaggaagagt 300 tctagagata aagaactata tgcttggatg aagtgtgtga agggacagcc tcatgatcac 360 aaacntttaa tgccaaccca aattatacct ggttctgttt tgacagatct tctagatgcc 420 atgcacactc ttagggaaaa atatggtatt aaatcccatt gncattgtct aacaaacaga 480 atttacaagt tggaaatttt cctncatgaa tggtgtatct caagtttaca gaatgtctta 540 atcacagtat aaaattctct gngcatgcct gagtctcagc gccaaaatcc tcctccgaag 600 tctgagaaaa atggtggcag cnnccccana aagtgatgtt nggcnccaga ttaccaggtt 660 aactteetee agaatneeag teaceaetgn actggntage anatettgee gagecaaaaa 720 gcccnaagng ggaaaaaaaa aaaaaaaa 748 <210> 411 <211> 773 <212> DNA <213> Homo sapiens <400> 411 gnangnnngn ttcntagtgc ccgtgggagt cttagatncc ctaaaaaaatt gntaatgctn 60 ggtcggcacg agtcaaggcc tacgaaacag gtgatgcact accccggcta cggttccccc 120 atgectggea getnggeeat gggeeeggte acqaacaaaa egggeetgga egeetegeee 180 ntggeegeag ataceteeta etaceagggg gtgtacteec ggeecattat gaacteetet 240 taagaagacg acggcttcag gcccggctaa ctttggcacc ccggatcgag gacaagtgag 300 agagcaagtg ggggtcgaga ctttggggag acggtgttgc agagacgcaa gggagaagaa 360 atecataaca cececacee aacaceeea agacageaat ettetteace egettgeaac 420 ccgttccgtc ccaaacagag ggccacacag ataccccacg ttctatataa ggaggaaacc 480 gggaaaagaa tataaagtta aaaaaaaagc ctccqqtttc cactactqnq taqacttcct 540 gettetteaa cacetgeaga ttetgatttt tttgttgttg gttgttetet ceattgetgn 600 tggtgcangg aagtcttact taaaaaaaaa aaaattttgn gagtgactcg gtgtaaaacc 660 atgttanttt taacagaacc nanaagggtt gncctattgg ttaaaaaaaaa aaaaaaaaa 720 aaacttngng cctttagaac tattanngag nccnatttac nttaatccan nct 773 <210> 412 <211> 774 <212> DNA <213> Homo sapiens <400> 412 gnannccgga ttcntagcgn tcgtggaagt gcatcggctg ntaacaattt gctaatgctt 60 ggagttccaa ttccagagaa aatgagtgaa tgggcacctc gacctccccc agaaatttgt 120 cegagatgte atgggtteaa gtgctgggge eggeagtgga gagttecaeg tgtacagaca 180 tetgegeegg agagaatate agegacagga etacatggat gecatggetg agaagcaaaa 240 attggatgca gagtttcaga aaagactgga aaagaataaa attgctgcag aggagcagac 300 cgcaaagcgc cggaagaagc gccagaagtt aaaagagaag aaattactgg caaagaagat 360 gaaacttgaa cagaagaaac aagaaggacc cggtcagccc aaggagcagg ggtccagcag 420

480

ctctgcggag gcatctggaa cagaggagga ggaggaagtg cccagtttca ccatggggcg

```
540
atgacaatgt ttgccacagc ctctgcctgg aacctggctc gtgctgtgac cagaagggaa
                                                                       600
aggeggetgt ttggetettt etteeeegea aggaceeege ttaeeegetg gatggagage
aaaggagacc cccttccgag cccgntcaca gtcctgtatt tggcaaggtt tgggaacctg
                                                                       660
aaqqqqccaa tntnccttqa cacttananq cacttqcctt tcaqacacca ttccqnqcnt
                                                                       720
ctggtaaaag gggacaagaa aagccttaac cttggcnnca tattttgaca gggg
                                                                       774
      <210> 413
    <211> 773
      <212> DNA
      <213> Homo sapiens
      <400> 413
gnngnnnnnn tttctaatgc ttgggnnnnn ngtcnatgcn taagagccan gcggntcgaa
                                                                        60
ttcggcacga ggcgggcccg gccagcggaa gcccctgcgc ccgcgccatg tcaaaqaaaa
                                                                       120
aaaggactga gtgcagaaga aaagagaact cgcntgatgg aaatattttc tgaaacaaaa
                                                                       180
gatgtatttc anttaaaaga cttggagaag attgctccca aagagaaagg ctttactgct
                                                                       240
atgtcagtaa aagaagtcct tcaaagctta gttgatgatg gtatggttga ctqtqaqaqq
                                                                      300
atoggaactt ctaattatta ttgggctttt ccaagtaaag ctcttcatgc aaggaaacat
                                                                       360
aagttggagg ttctggaatc tcagttgtct gagggaagtc aaaagcatgc aagcctacag
                                                                       420
aaaagcattg agaaagctaa aattggccga tgttgaaacg gaagagcgac caggcttagc
                                                                       480
aaaagacttt cttcacttcg agaccaaang ggaacagcta aaggcagaag tagaaaaaat
                                                                       540
ncaaagactg tgatcccgca agttgtngga agaaatcgcc aagcaaatna agtagcccaa
                                                                      600
ggaactgctt acagatggac tgattacata ttcgcaataa aatcttnggc ccaaagaaaa
                                                                      660
atttngggtt tgaaggaaaa ttaaattggt tngaacettt tggaatttee cgaaagaett
                                                                      720
ttgcctncnt ngacttaaaa tatttccatg gnggtgaaag gttgtccaan ctt
                                                                       773
      <210> 414
      <211> 755
      <212> DNA
      <213> Homo sapiens
      <400> 414
gnagnnnnn nttctaatgc ttggggnnnn nngtcaatnc ctnnganena ggcggntcgc
                                                                       60
tcatccagaa angtcagatc ancaaagaag tccangaaaa antgcgaccc agctngaccn
                                                                      120
tttgatccca ggcttagcac acgattgcat ggcntcccct ttagccactt naaccactgc
                                                                      180
agachtecag gaagetggae teteteetea gteentecag aettetggee aecacagant
                                                                      240
gaaaacccca ttttcaactq aqctatcttt qctccaqcct qatactccaq actqtqctqq
                                                                      300
agatagteat accecactgg ctttttcctt caccgaggac ttggaaagtt cttgtttgct
                                                                      360
agaccgaaag gaagaaaaag gggattctgc caggaaatgg gaatggcttc atgagtctaa
                                                                      420
gaagactatc agagtatgga gaaacacacc aaactacctg gggacaaatg ctgtcagccc
                                                                      480
ttaggcaaga ctaaattgga aagaaaggtg tctgccaaag aaaacaggca ggcccctgtc
                                                                      540
ctccttcaaa catacaggga atcctggaat ggagaaaaca tagaatcagt gaaacaaacc
                                                                      600
cgtagtccag ttctgngttt tcctgggata tgaaaagaat gaccanggac tnctggagtc
                                                                      660
aacttttcac ttgaagaatc tcaaggccac cggtcattgg ccacacactn gaactccttt
                                                                      720
ttaagatgta cccattactg gaattgggct taggg
                                                                      755
      <210> 415
      <211> 852
      <212> DNA
      <213> Homo sapiens
```

```
<400> 415
gnagnaannn ttctaatgct tgggnnnnnn ngtcaaacct tannaacctg gcntgncgaa
                                                                       60
tteggeaega ggteaeagge aggtttantg geeagtttaa aacttatget ntetgegggg
                                                                      120
controgtag gatggtgagt gtttccctgg gctttgctca tcacttcggg acatcgtgga
                                                                      180
ctttaccgtg cgcnttggag tgtgtgatgg tgcctgagta gatctgctgg cagagtagtt
                                                                      240
tgagccaget ggactgggct ggccgcctge cgcttcttga gggtggaaga ggggtgctct
                                                                      300
gagaagacac tcaggcagca gactctgcct ctcactagga ggtgcccccc cgaccccgtt
                                                                      360
ccaccatagt caaggetgea ggetgeeceg ggagaagtgg cteceettet tgegeetgte
                                                                      420
ttccattcgc ttcaccgggg gganaagacn ttgggcttgg ttggcacagc ntgacccttc
                                                                      480
tgcccatctt naaggcagnc ccggaantgg gaaaaatatt tctttaaatg gtggcctttn
                                                                      540
ntttttttt nctttnaaag gggttgaagt tccannaatg natttcccaa tttccttccc
                                                                      600
gaattgggnc ccaaagggcc ccaatggggc antcggtcct ttaaaaagna acctttttgg
                                                                      660
acctgggaag aagaaaatca cccagattgt tgggaaatat tttggncatt aaaataaant
                                                                      720
aatgqaaaac ctnaaaaaaa aaaaaaaaaa aaaactcqaq cccnttaaaa acttttaqtq
                                                                      780
agtennatta centtanate canaenttga tangaanett tggataattt tgggncaaac
                                                                      840
cnnaacttng at
                                                                      852
      <210> 416
      <211> 754
      <212> DNA
      <213> Homo sapiens
      <400> 416
ggnnnnnnng tnaaaccttc cnaannagge tnggegteac tgnccceggt caacaaaccc
                                                                       60
actititatga cagitticit ccgcagcitg gcinttaaat titactqqca qqtqtatqqt
                                                                      120
tgttggaggg ttcctagtga gttgggggac ctggcantan agctgcttgg ttggaggaag
                                                                      180
tgaanctggc ttantaccag cagetgatet ettecaegtg etgetgettt ttttgecaet
                                                                      240
ctgatactaa accagagaaa gctgcaggtg gataaagaag ctgtggctgt tttttgcttt
                                                                      300
tgggtggcaa tgagaaagag tcacagtgtg ggttaaaggg atctgcagtg gggccaagga
                                                                      360
tgccacccca ccctcagctg tangcaagct tgcacataaa taacccccgt cagtggagtg
                                                                      420
ttegggatge agggggeant atagtgttet tggaetttgt cegteetggg geagttttta
                                                                      480
agttetttat atttaagtgg ggteagtgee aagtgetace acttteecaa taaangaatg
                                                                      540
ggggacccan aaggetgggg teeetggeta cettgttatg aaggttttgn tntttetetg
                                                                      600
acaaganttg ctttggaaag ancctgtttt taggggatta ttttttgnat accccgatgg
                                                                      660
gganccaggg ttctnctcaa aaccettaca accettagga tcatagggaa aaggggccen
                                                                      720
tnttttnctg ctggcttncc caacttaaaa acnt
                                                                      754
     <210> 417
     <211> 755
      <212> DNA
     <213> Homo sapiens
     <400> 417
ngtntatagc ttnctaatgc ttcntancga attcggancg agagaagccn tgagcagcaa
                                                                       60
agtetnicge gacaccetgi acgaggeggi gegggaagie etgeaeggga neeagegeaa
                                                                      120
gcgccgcaag ttcctggaaa cggtggagtt gcagatcagc ttgaagaact ntgatcccca
                                                                      180
naaggacaag cgcttttcgg gcaccgtcag gcttaagtcc actccccgcc ctaagttctc
                                                                      240
tgtgtgtgtc ctgggggacc agcagcactg tgacgaggct aaggccgtgg atatccccca
                                                                      300
catggacatc gaggcgctga aaaaactcaa caggaataaa aactggtcaa gaagcttggc
                                                                      360
caagaagtat gatgcgtttt tggcctcaga gtcttttgat caagcagatt ccacgaatcc
                                                                      420
teggeceagg tttaaataag geaggaaagt teeettteet gtnacacaca acgaaacatg
                                                                      480
```

```
gtggccaaag tggatgangt gaagtncaca atcaagttnc aaatgaagaa ggtgttatgt
                                                                       540
                                                                       600
ctggctgtan cttgttggtc acgttgaaga tgacnnqacq atqaancttg gggtataaca
                                                                       660
ttcacctggc tgtcaacttc ttggnggtca attgcntcaa agaaaaaact tgggcagaaa
tgttccnggc cttatnttnt caagaaccnc catggggcna agccccaacg ccctttnttt
                                                                       720
aaaggeneat ttggaattaa attentnttt neeeg
                                                                       755
      <210> 418
      <211> 757
      <212> DNA
      <213> Homo sapiens
      <400> 418
tggggnntnn nttctaatgc tgggatgttc taaangntgg gctactcgtt ctttccgcag
                                                                       60
ganceenteg attegaatte ggeacqaqqa aaqqtqqcqc qetteteacq qetqaqttqc
                                                                       120
tgcgcctgca gacggaagct ccccacaggc agagctgctt ggatgtgtga gtcatgaagc
                                                                       180
cagagaagee cegetecatg ageagtgaet ecceaggeee tgtgaeetee etectgtett
                                                                       240
geageteete etggeaceag teeceaggge tetectgttg gtagtteetg ettttettet
                                                                       300
tggaaattcc tcgtggacct cgagatcttt accctaaaat agttctgttg aatttcaccc
                                                                       360
tggcaatgta aattgatagc ttatcttcac agatgccaga caatggacaa ctcaccatca
                                                                       420
gtcctctgct cacctgagac aaatgcatgt ctgattgctt cctctgccct attgnttatq
                                                                       480
tgaaaatgca gattcactga gccagactaa ggcatcagtg actgttcctc tactgcctct
                                                                       540
cacatggaga ttgtgtattc agtgaaaggc tgatcaaaga ccccaaagga atgcaccagt
                                                                      600
ttatctctta tctacctatg acctgcgagc tgnccaccac ccccagttgt tgcgcctttc
                                                                      660
cagacagaac cagtgtcatc ttacacgtat taattggatg teetgngnet teettaatat
                                                                      720
gtatcaaaac aagctngcct tgaacacctt gggcacn
                                                                      757
      <210> 419
      <211> 738
      <212> DNA
      <213> Homo sapiens
      <400> 419
gnnngncgtt cnaattncgn ggnntctttc tngccnanna nnannngcgt gnqngaattc
                                                                       60
ggcacgagac tgttcatcct aagttccact ataaacaggc tcatgactcg ggcacagaca
                                                                      120
cttcttgcgt gactttttcc tatgatggta atgtccttgc ctctcgtgga ggtgacgatt
                                                                      180
cattaaaatt atgggacatc cgacaattta ataaaccact tttttcagcc tcgggtcttc
                                                                      240
ccaccatgtt cccaatgact gactgctgtt tcagtccaga tgataagctc ataqtcactg
                                                                      300
gtacatctat tcaaagagga tgtggcagcg gcaaacttgt tttctttgag cgtaggactt
                                                                      360
tccaaagggt gtatgaaata gacatcacag atgcgagtgt tgttcgctgc ctgtggcatc
                                                                      420
caaagctgaa ccagatcatg gttggaactg gaaatggatt ggctaaagtc tattacgacc
                                                                      480
ccaacaagag tcagagggga gcaaaattat gtgtggttaa aacccancgg aaggcaaaac
                                                                      540
aagctgagac tetactcagg actacatcat cacccetcat geettgeeta tqttcccqtq
                                                                      600
agccccgnca acggagtaca aaggaaacag ctggagaagg acagactgga tccctgaagt
                                                                      660
cgcattaacc tgaacctcct gtancangcc cangtcgtgg tggccgattt ggaacccacg
                                                                      720
ggggcactnt ttttcct
                                                                      738
      <210> 420
      <211> 739
      <212> DNA
      <213> Homo sapiens
```

```
<400> 420
                                                                        60
gegntnntat tagegtggge tegntetege tenacneane nngngetggn egaatteggt
                                                                      120
acqaqaatca qaqqagqctt cttcatcctt caactccatg atgaactcct atatgaagtg
                                                                      180
gcagaagaag atgttgttca ggtagctcag attgtcaaga atgaaatgga aagtgctgta
aaactgtctg tgaaattgaa agtgaaagtg aaaataggcg ccagctgggg agagctaaag
                                                                       240
                                                                      300
gaetttgatg tgtaactgtg etgttgatga agteeteeca gggaageetg tgeagatgea
                                                                      360
gtcacctgga aagaacagag attccctttc acctacctca gcaaaacaaa ctttcaagtc
ttgatagact tagcctagta attttatagt gagagtttca aactatatat caagtgtcta
                                                                       420
                                                                       480
tagcatcaaa aacttetggg ggegtggggg aaagtagaat accaagtata atagttacat
                                                                       540
tcactttcaa agagcatcta tgaatttgcc ttttgtaact tactgtggct ttaaacatat
                                                                      600
tcagaacaga tgcttgaaat atgcacttag cactttggtt ccacatctgt ctgggtaaac
catgaagaaa atgaagctgc tgcctcaatc gancccagac agcagccata ggcagataaa
                                                                      660
gatttnggtt caccettggt ggtgggagge atcgtgtgtg cettttttc etetaatate
                                                                      720
                                                                       739
aattttacag tccgggaan
      <210> 421
      <211> 727
      <212> DNA
      <213> Homo sapiens
      <400> 421
gtgatctttn tgagtggggg ccntnctngc tctannanat aggttnggng ggctagcgat
                                                                        60
ttctacctgc gctactacgt agggcacaag ggcaagtttg ggcacgagtt tctggagttc
                                                                     . 120
qaatttegge eeqqaeggaa agettagata tgecaacaac ageaattaca aaaatgatgt
                                                                      180
gatgatcaga aaagagctta tgtgcacaag agtgtaatgg aagaactgaa gagaattatt
                                                                       240
gatgacagtg aaattacaaa agaagatgat gctttgtggc ctcccctgat agggttggcc
                                                                       300
gacaggagct tgaaattgta attggagatg agcacatatc ttttaccaca tcaaaaatag
                                                                       360
gttctcttat tgatgtaaat caagtcaaag gatcctgaag gccttcgagt attttactat
                                                                      420
ttggtacaag acttgaaatg tttagttttc agtcttattg gattacactt caagattaaa
                                                                       480
ccaatttaaa ttgtatgttt tcaagctggt tgnatattta attaaaggga tgggaagggg
                                                                       540
ttatttgtca tttacagtat tggggtttta tgaatgtgaa gcaaccaaaa aaaattnnaa
                                                                       600
tgtaaaactg gaaaatagga aaattcatta ncagcttaat gggtatcctt acttgatncn
                                                                      660
ctgggtttgg aagtccccac acacattaaa tctgtaatga aancnctttt ggttaaaatt
                                                                       720
tctctat
                                                                       727
      <210> 422
      <211> 753
      <212> DNA
      <213> Homo sapiens
      <400> 422
                                                                        60
gtntngnnng nngttnnatt atatggnteg netnnetena nnanenange ttgngetgae
                                                                       120
aacttgattg ggttctcctt caggtttgaa gcgccctcna gaagtgtcta aaggagacag
                                                                       180
ttgatagcca aacaacagtt ttggattcac tgactgatta tgaaagaagc agtagactgg
tatcaagaat cagtcagcaa ggaggccctc accagacgcc agtgccatgt tcttggactt
                                                                       240
ctcagcctcc atattcatga actaagtttt tggaatcctt aggcttccac gtgtggaaag
                                                                       300
cctgagctaa cctactggag gatgagccat cacctggagc agattcaggc catcctagtt
                                                                       360
gaagcetece taggecaage aacegtecaa etaceagaea ttgaceatte ageettgaae
                                                                       420
attcagcaca aagacaaaac agaccagacc agaagagtcc cacagaatag gggaaactat
                                                                       480
tcagagaaaa cttaagccac taagttttat ggtgttttgt tcttgtagcc agaagcatag
                                                                       540
gcatactggc caatacaaac cgaaatcctt ctaacgtant ggaccctttt caggccagca
                                                                       600
```

```
660
ttttttccct tgaaaacctg ggaqccttgt attccatctt attagcagaa gatcactttc
accaatggtt tgggctcttg atttggaatt gatgatgtaa tgagcctnta ttcnanatgn
                                                                       720
                                                                       753
gacttaatac ctctgcgaat tgactggatt con
      <210> 423
      <211> 844
      <212> DNA
      <213> Homo sapiens
      <400> 423
nggnnnttnn nnnnnatnec ntgategtgt ntegttettt etneaggatn nnntegttte
                                                                        60
gaatteggea egaggaaaag ggageegege agngeetaeg ggagtnegge ggeageagee
                                                                       120
ggtaccggca accacgggca gctctcaggg aatctccgtc gttgaggcca naggctccag
                                                                       180
teccegegag tecagatgee tgtecageet ecaageaaag acacagaaga gatggaagea
                                                                       240
qaqqqtqatt ctgctgctga gatqaatggg gaqqaqqaaq aqaqtqaqqa qqaqcqqanc
                                                                       300
ggcagccaga cagagtcaga agaggagagc tccgagatgq atgatgagga ctatgagcqa
                                                                       360
cgccgcancn agtgtttcag tnagatgctg gacctggaga agcagttctc ggaagctaaa
                                                                       420
nggagaagtt gttcaaggga acgacttgan tcanctgccg gnttgcggct tggaaggaaa
                                                                       480
ntgggggggc ttgaanaaga agcccctgga atnccaccgg aagccccctt ttgggggggg
                                                                       540
gccttgcaaa ccgggaancc ctttnaaagg aatttcngcc antttcaang gttgggccaa
                                                                      600
ggggaatcht acchaagggg cettetngge ettggnatgg tgaatceang gnaaattaag
                                                                      660
gtncccaatt gntgaancet tecaanggga aneceaaace aqeaceettg naanaagttg
                                                                       720
agaaaacttg cttgcntctt ntgacacccc tncnaggggg aacttcaagg aaccggttcc
                                                                       780
tnaggettgg aaggaggace cecananece tgganeetaa attnttaaat gggtnggace
                                                                       840
accn
                                                                       844
      <210> 424
      <211> 799
      <212> DNA
      <213> Homo sapiens
      <400> 424
ggagnnnngn ntccnaattn nntgggnnnn nnngtcaaan nctngctact cgttctttcc
                                                                       60
                                                                       120
gcaggatece atgegatteg aatteggeae gageecagae etatggagte agacagtagg
tttgaggccc agcaatctat ggtttaacaa gccatccagg tgtttctgat gcacagtgaa
                                                                       180
attggggtac cactggtatt aggtttggta tggcaacttt ttcatcactt gttttatgta
                                                                      240
gttgtctgat caattgtgaa aacataatga atgttggaaa tggaacagta aaataacgaa
                                                                      300
agecaacttt ttttttttt tttgagacgg agtettgete tgtegeecag getggagtge
                                                                      360
agtggcgcga tctcggctca ctgcaagctc cgcctcctgg gttcacgcca ttctcctgcc
                                                                      420
tcagcctccc gagtagctgg gactacaggc gcccgncacc acgcccggct aattttttgn
                                                                      480
atttttagta gagacggggt ttcaccgtgt tagccaggat ggtctcgatc tcctgacctc
                                                                      540
gtgatccacc cgcctngggc ttccaaagtg ctgggattac aggcgtgagc caccgggccc
                                                                      600
gggccaaaag ccaactettt atgcctagaa aatattgtgc accetatgac ccaageccat
                                                                      660
tgaatttttn cngggaaatt tatggtaaat tattgaaatg gatggtacct ttaaaaagtt
                                                                       720
atttggcaca ttccccttgg gttacctttg gnatggtttg ccagggaatt naaaactttg
                                                                       780
ggntnaaacc ttttttann
                                                                       799
      <210> 425
      <211> 750
      <212> DNA
      <213> Homo sapiens
```

```
<400> 425
                                                                        60
gangeeggat tecaattnic nggetnetet naaannetgt ntaatgettg gieegeanga
neceatgega ttegtggagg teteettteg ecceageeca ggtggecaag eccateetgg
                                                                      120
cctcagaaca tgctgagcac attttgtagg gtggcacctt tttatccaag ttactagcta
                                                                      180
cacatcagtg tttaaagaga aaaaagtgac ctttcatttt tttttcttga aacttgagga
                                                                      240
aacaagatac atactactga tttttttttt cttaaaacta aatgcatgac tgcagagcgg
                                                                       300
tagaggtqta tatttttcat actqtqqqqc aaaqtatttq tqctqctttt tqqaqatqqa
                                                                      360
ctggaacgtc tggtttctgt ccccgggccc ggcagctacg tctattttct qtaqaaqgtg
                                                                      420
ccacagtgag acctggagcc accepttect geetggegee gtttanaget gggageeegt
                                                                      480
ggactccggc ctgtttctac cttctattca accactctga cgtggggaga caagaagaaa
                                                                      540
tagaactttt tqataqtqtq qtaaaaacat tqqattttqa actattttaq taaaaqqaqt
                                                                      600
taccaacaag aatgtnatag gtgctacttt gagctagata aataaaggct ctttgtgagc
                                                                      660
ctcctgaaaa aaaaaaantt nnnnnnnnn atnannnnnn annaaaaaaa ctqqnccttt
                                                                      720
aaaactttan gggncgttta cctanaccct
                                                                      750
      <210> 426
      <211> 819
      <212> DNA
      <213> Homo sapiens
      <400> 426
gnagnneggn ttettatgat egtggetnet entetanngg ttgtgtaatg etnggtenne
                                                                       60
angannnnnt gegannegaa tteggeaega aggggggtte ceaatagtag aaaaqqqtee
                                                                      120
ccattcctgc tcagcaccgc acctctctac cccccacag acacacatgc agacacacac
                                                                      180
atgcagacaa cacgcagaca cacacatgca ggcactcaca tgcaggccca tgcacacaca
                                                                      240
cgtgcacaca catgcagaga catgcagaca cgcaggcaca catgcacaca tqcaaaqaca
                                                                      300
cgcatgcagg cacacgcaga cgcacacaga gacacacatg cagatcacat gcacacacac
                                                                      360
atacacaca tggcccctqt ttttctqtqq tqtcactqqq tqccaqcaac tcqqtatctn
                                                                      420
ccaccttcca ctaaaacctg ggccttaatt tctctcccgt ccccacccct aaattcctga
                                                                      480
tggatgaacc tagagctgtc ctgtccactc caggccggac tgacgtancc tatgqqccca
                                                                      540
graggtreag ggreeargtt ttaatttett tttnaaaage tttaggtett ggrenggreg
                                                                      600
coggtggttc acgccttggg agttcccage atttttnggg aaggccnaag gccqqqttqq
                                                                      660
attcacaaag gtcaagcaag tttcaaggaa ccaagcettg aaccaggeca ttgggtgagg
                                                                      720
aaccctgggc ttnttactng ggnaaattcc caaaaaaaaa ttqqccttqq qccnaaqqqt
                                                                      780
gggcaagggc accettgttg gggtccccaa antttacet
                                                                      819
      <210> 427
      <211> 750
      <212> DNA
      <213> Homo sapiens
      <400> 427
gagnnngatt cnaattnetg ggetnetete ttnntatnta atgetgggte egeanganee
                                                                       60
nntgcgattc gaattcggca cgaggtccaa ggacaacttc gagacatttc tttttgccac
                                                                      120
cgtatctaac agggagcagg aagatctctg ccgaggaatt gtccagctct gcttcaatqa
                                                                      180
gcaaagccaa cagctgctag cagaggtcca gccctctgac tctttcctca tggtagagac
                                                                      240
aactgcatac tttgaggcct acaggcacgt cctggaagga ctccaggagg tccaggagga
                                                                      300
agatgttece ttecagagga atategtgga gtgtaactet catgtgaagg agecaaggta
                                                                      360
cttgctaatg gggggcagat atgactttac ccccttaata gagaatcctt cagccactgg
                                                                      420
ggaatttcta agaaatgtcg agggtttgag acatcccaga attaatgtct tagatcctqq
                                                                      480
ccagtggccc tcaaaagaag ccctgaactg gatgactcca gatggaagcc ttgcaqtttq
                                                                      540
```

```
600
ctctcacaag ggaactggct attattcaag gaccttctqq aacaqgcnaa acctatgtgg
gtctnaaaaa ttgttcaagc ccttctacca acgagtcttg tttggcaaaa ttaaccttca
                                                                       660
gaaattccca tcttggttgn gtgtatacta atcatgcttt ggaccanttc tggaangctt
                                                                       720
ttccattgtc agaaaaccan atttggccgg
                                                                       750
      <210> 428
      <211> 943
      <212> DNA
      <213> Homo sapiens
      <400> 428
gnngnccggt ttcctattct cnggcanctc tcttcctncn acctattanc tggactctaa
                                                                       60
anaaaagnnt gnngcggttg gctcaagggc caccanaaca tttctttatt attattattt
                                                                      120
tttaacctgn acatgcntta aagggtctat tacctttctt tccgtctgtc tcaacagctg
                                                                      180
aaatggggcc nccaaggagt gccttccttt tgctccctcc tactgggact gacggntggn
                                                                      240
antgtntgnn cccanntggg ggtgtctcct gnctgggaag ganggaaagg gaggcanagt
                                                                      300
tttgccgggg ttgcanntng acancangct gnanaggana tggctaataa ctgtttaatg
                                                                      360
gaaacctgct tgggcttgga nggaacttag nctgaatttt cccqacttcc tctqccaqtt
                                                                      420
attgacacan tetetttnta agacangaaa taaactaaac cccacccaa ggnantnatn
                                                                      480
ncangengaa aacnneneat ngeceacatt neetnateee ntaneaeenn etenttnttt
                                                                      540
nncccaanac tncttcccan ntntcnccnt ttacccntan ncntnnttnt atcccnctaa
                                                                      600
tnectnannn centnnttnt cennatnett aenenenenn ntnnnnecen nntetttnnn
                                                                      660
cccaaanctn nectenennt tennetnaac entntnnnea nnanacacce ttetnatnne
                                                                      720
ccannntctn cacnntnnnt ntctccnnnt nnncnccnnn ntcntnnnna nancntntnn
                                                                      780
nananchatc thithchcnn chanthninh tcanttcach ctctninnnn thtancchat
                                                                      840
tnnccntcnn tnnccnntta nnncntnnnn nncnaantnn nnnnanctct ncnnncnnct
                                                                      900
canntnnnnt nnnnnncnnt cnanaccntn nnnntctatn ccc
      <210> 429
      <211> 775
      <212> DNA
      <213> Homo sapiens
      <400> 429
gnangnnnnn nntttctaan tncttgggnn nnnngtcann gattnngcta aaggttngga
                                                                       60
tenenegeag naangetgtg gegeteeatt gtgaaagate caggeatttt teegagecag
                                                                      120
gaaaageeca agatgaetae aggatattag tgeatgeace ecaceeteet eteagtgtgg
                                                                      180
tacgcagatt tgcccatctc ttgaatcaaa gccagcaaga cttctctgct gctgtgatct
                                                                      240
gcacaccctc caacctgggc agggactggg gggatgcagt gtgtgttagt gcccatgtgg
                                                                      300
cattgtggca ctgttgcccc ccatggcggc atgggcaaga tgaccttcca ttagcttcaa
                                                                      360
gtettgttet ettgtetgtg gtetgtttaa tatgtgggte actagggtat ttattettte
                                                                      420
teccateett acaetetgga teattgtgea gaettaatea gggttttaac gettteattn
                                                                      480
nnnnnnnnt ttttttgagc tcaaagaaag ttctcatttt ccctattcaa ctaataccca
tgccgngttt tttaccttgg atttaaaggc accttangtt ggggcaacag attctcactc
                                                                      600
atgtttaana cetggnatte anetteataa gaccaaagan ggagetttee etttetettt
                                                                      660
accectnagg atteteatee tttacanntn gaetttttee aggeeaattt cecatnnaat
                                                                      720
etgenannee engeettttg neecaagett tintgningn ceecceattt accen
                                                                      775
      <210> 430
      <211> 763
      <212> DNA
```

<213> Homo sapiens

<400> 430 ngqqtqnnnn nntttctaat nctqqqqnnc nntnnncnnn ntttcctaat ncttaqqnqc 60 tegttettte tecangeagn nnngegttte gegacagete tecaatacte aggttaatge 120 tgaaaaatca tccaagacag ttattgcaag agtttaattt ttgaaaactg gctactgctc 180 tgtgtttaca gacgtgtgca gttgtaggca tgtagctaca ggacattttt aagggcccag 240 gategttttt teccagggea ageagaagag aaaatgttgt atatgtettt taeceggeae 300 atteccettg cetaaataca agggetggag tetgcaeggg acetattaga gtatttteca 360 caatgatgat gatttcagca gggatgacgt catcatcaca ttcagggcta tttttcccc 420 cacaaaccca agggcagggg ccactcttag ctaaatccct ccccgtgact gcaatagaac 480 cctctgggga gctcangaag gggtgtgctg agttctataa tataagctgc catatatttt 540 gtagacaagt atggctcctc cgtatctcct cttcctagga gaggagtgtg aacaaggagc 600 ttagataaga cacccttaa acccattccc ttttccagga gacctaccct tcacaggcac 660 aggtccccaa atgagaagtc tgctacctca tttctcatct ttttactaaa ctcaaangca 720 ntgacagcag tcagggacag acattcattt cttnatacct tcc 763 <210> 431 <211> 761 <212> DNA <213> Homo sapiens <400> 431 tggtgttnnn ntcctaatgc ttggnngnnn ggtnannctt ctaattactt tggggctcgt 60 tetntetena ennngenngg egttnegaat teggeaegag ettgaagege tggtttttet 120 cgaagcaatc cttattatat tgttaaacaa ggaaagatca accagatggc aacagcacca 180 gattctcaga gattaaagct attaagagaa gtagctggta ctagagtgta tgacgaacga 240 aaggaagaaa gcatctcctt aatgaaagaa acagagggca aacgggaaaa aatcaatgag 300 ttgttaaaat acattgaaga gagattacat actctagagg aagaaaagga agaactagct 360 cagtatcaga agtgggataa aatgagacga gccctggaat ataccattta caatcaggaa 420 cttaacgaga ctcgtgccaa acttgatgag ctttctgcta agcgagagac tagtggagaa 480 aaatccagac aattaagaga tgctcancag gatgcaagag ataaaatgga ggatatcgaa 540 cgccaagtta gagaattgaa aacaaaaatt tcagctatga aagaagaaaa agaacagctt 600 aatgctgaaa gacaagaacn gattaagcag aggactaant tggagcttaa agcccaagat 660 720 ttacaagatg aactaccggc aatagtgaac aaaggaaacc gttttttaaa agaaangccn aanctgcttg aaaaaaaaa aaaaaaactc ggcctntaan t 761 <210> 432 <211> 748 <212> DNA <213> Homo sapiens <400> 432 gnngantnng tettattate gtggngetet nactnnetet aaatanaatt gtgttgnggg 60 aatteggeac gaggeeaceg aagetteagg atgacatett agaetetett ggteagggga 120 tcaatgagtt aaagactgca gaacaaatca acgagcatgt ttcaggcccc tttgtgcagt 180 tctttgtcaa gattgtgggc cattatgctt cctatatcaa gcgggaagca aatgggcaag 240 gccacttcca agaaagatcc ttctgtaagg ctctgacctc caagaccaac cgccgatttg 300 tgaagaagtt tgtgaagaca cagctcttct cacttttcat ccaggaagcc gagaagagca 360 agaatcctcc tgcaggctat ttccaacaga aaatacttga atatgaggaa cagaagaaac 420

480

agaagaaacc aagggaaaaa actgtgaaat aagagctgtg gtgaataaga atgactagag

```
540
ctacacacca tttctggact tcagcccctg ccagtgtggc aggatcagca aaactgtcag
cttccaaaat ccatatcctc actctgagtc ttggtatcca ggtatttgtt tcaaactggt
                                                                      600
                                                                      660
qtctqaqatt tggatccctg gnattggatt tcttaaggac ttttggangg ctcttgacac
                                                                      720
catgetteac agaacttggg cttcanaagc ttcanttttt tgcanaggtg ccccaggtta
                                                                      748
ggaaaacagt tntncttgtt ttgtannt
      <210> 433
      <211> 769
      <212> DNA
      <213> Homo sapiens
      <400> 433
gggnaaaagt ttnnnannng ggnagnnnng ntnnaccntt cctattactt tggagctcga
                                                                       60
actequecea canannaqt quentquet qttttgcaga tgaggaaaac tgaggtacag
                                                                      120
aattettagg gaacttaccc aaaatggett ttetgeacte tgeeetttgg tattgteeca
                                                                      180
tgtgaattgt ttaaaactta tgtgtatagt ggcatgagta ggtgatttca gaaacagaac
                                                                      240
teacttttgt tgtttggtet taaaattagg aacttttett catetggget teattteeet
                                                                      300
gcaccttccc agctttctag tcatgcaagc cacatgtctc cacgtgaggg gttcattgga
                                                                      360
aaqcaqccac agagccaccc cetggetggg ttettececa getetgette etecttecee
                                                                      420
aagteetgea getgetetet eeatggeaga accaettete eeettaetgg aggggaggte
                                                                      480
cactgaacaa atccaggaga ggaatcattg tgttttccac agaagagaaa gtacactgga
                                                                      540
ctttctgtgc aacctgttac tacattttca caganactca tatttgtgca ntgtaactca
                                                                      600
                                                                      660
atttgaaacc cagcaaaatt aggeteeegt gteteeataa aaggeeacca tgatggtaac
cgttggactt caccttgtgt ttnggacana ngctgattgg attttaccca tcatcacanc
                                                                      720
                                                                      769
cgtgtcttac attctcnttt cctgggcttt ggacccctgn tanaaaaan
      <210> 434
      <211> 764
      <212> DNA
      <213> Homo sapiens
      <400> 434
ctancettee taaannetng getactegnt etttetnnan gannennntg egatnegaat
                                                                       60
                                                                       120
teggeaegag caeettgeet ggeeaagggg etagaeetee caggetaage eteagattea
gtgcaggaca caagetcatg eccegtett gecagtgaca ettgaageet eccgaettee
                                                                      180
acagagtgct tcaggacaca ttttgagtgg tattttcttt tctttttttc ttctttttt
                                                                      240
tttttgagat ggagtetegt tetgttgeee aggetggagt geagtggeet gatetegget
                                                                      300
cactgcaacc tetgcetece aggttcaage gattettetg cetcageete cagagtaget
                                                                      360
                                                                      420
gggactatag acatgcacca ccacgcccgg ctaattttgt atttttggtc gagacggggt
tttgccatgt tagtcangct ggtcttgaac tnctgacctc aagtgatcca ccactcggcc
                                                                      480
tccaaagtgt tgagatgaca ggcacgagcc accagcccaa cctgagtggt attttcttta
                                                                       540
gggaccangt agactttaaa acgagggtaa gagaaaaagc ccagtggtct tttctgangg
                                                                      600
taaataaatt tetgeecagg aaacnttnee aageeceaac cagcaageea accettaaaa
                                                                       660
                                                                       720
aaaaaatcac ttcgtgttcc ccaangggan ctttnttaaa gctttggggg cttccaggna
aaatcatttc cagtnnaant ttggaagaat tcannagnat ttnt
                                                                       764
      <210> 435
      <211> 755
      <212> DNA
      <213> Homo sapiens
```

```
<400> 435
gnnnnntttc taatgtggnn nngnnngnta annttctaaa ncttgggntc tcgttctttc
                                                                       60
threagather ntegattega atteggeacg agggatectt tecaqacaga agaccette
                                                                       120
aaatotgaco catttaaagg agotgacooo ttoaaaggog accogttoca gaatgacooo
                                                                       180
tttgcaqaac agcagacaac ttcaacagat ccatttgqag gggacccttt caaaqaaagt
                                                                       240
gacccattcc gtggctctgc cactgacgac ttcttcaaga aacagacaaa gaatgaccca
                                                                      300
tttacctcgg atccattcac gaaaaaccct tccttacctt cgaaqctcqa cccctttgaa
                                                                      360
tocagtgate cetttteate etceagtgte tecteaaaag gateagatee etttggaace
                                                                       420
ttagatccct tcggaagtgg gtccttcaat agtgctgaag gctttgccga cttcagccag
                                                                       480
atgtccaagg gtgcctgggg aagagccact gcgcatqtta tctttqqtqt tactccaqtq
                                                                      540
ttgaacanag agctggtcag aggcagtgca tcgcanagag acattaataa qqqaatcctt
                                                                      600
tgaatcccta ancagcanca gctttnctga nggggccnat gatgccagtg acctnttcan
                                                                      660
ggnaagtetg ggacattggg accaccetgg ggggaagaac ttgtgggatg tggettttet
                                                                      720
tttatgaata aagtactttg agttggttgn aatcn
                                                                      755
      <210> 436
      <211> 760
      <212> DNA
      <213> Homo sapiens
      <400> 436
aaggetggnn nnngnnntge nnnnettent attantetgg gggetegtne tetetenann
                                                                       60
nagnnaggcg ntgngaattc ggcacgagct caagaaaagg agaaagtttt tttgtatgaa
                                                                      120
attggaggaa atattgggga acgctgcctt gatgatgaca cttacatgaa qqatttatat
                                                                      180
cagcttaacc caaatgctga gtgggttata aagtcaaagc cattgtagaa gacttaacaa
                                                                      240
gctgcagata accatgtgga cttctgtcat aattcttgct qaqtcaaqaq tqtaaataaa
                                                                      300
agaaatggca ggactcatat tattcagttg tcccaagtat ttaaaaaatga ctctcttaag
                                                                      360
ccttaaaaag tcatagattt gtgctgctgc cagaattata ttaattatta ttaatggtat
                                                                      420
tattagaaaa aaaatttctg gagtgagagt naagangctt aattagtttg tgggcagttt
                                                                      480
tcatatgctc tgtgaaatgt gtccaqatgt gacataagtt tttttttta atatgqqqqa
                                                                      540
aatgncttct ctttcccatt cttttctcct aaaaatcata tatactggga atatatgcct
                                                                      600
ctnttacctc tattaccctc ctcacattta ccctttccca gttnggtttt gctttttnac
                                                                      660
caaaaagatt ccaatnccna ggtattggca agttntnaaa accgcccntt aaacatccct
                                                                      720
aattteneag natteennne ttgeeaaatn ttngtntenn
                                                                      760
      <210> 437
      <211> 748
      <212> DNA
      <213> Homo sapiens
      <400> 437
ggnnnnngnn ngntnnegtt cectattant caggngeteg ntetnteten annnanenng
                                                                       60
gcgtgtncga attcggcacg aggattttcg aaactettca gctacttgcc cttttttatc
                                                                      120
tgaaaccatc ataccttctg aaagaaaaaa gcatatcttc attgacataa cagaagtgag
                                                                      180
atggcccagt cttgatacag atggtccatg atatatatgg agagtggcat tgtgaaqata
                                                                      240
acatetttag atggteatge atacetetge etgeceagat eteageatga atttacagta
                                                                      300
cattttttgt gtaaagttag ccagaagtca gactcatctg cagtgttqtc aqaaacaaat
                                                                      360
aataaagccc caaaagataa actagttgaa aaaactggca aaatctgtat acqtqqaaat
                                                                      420
ttaccaggac agagactgaa gaataaagaa aatgagtttc attgccagat catgaaatcc
                                                                      480
```

```
540
aaagaaactt taaagaagat gagttgtgta aatggaactg aagggagggg aagaactgcc
ttcgcctggt acaaagcaca catgtgtata cacatgggtc aagcagtgct ggtctgtggc
                                                                      600
                                                                      660
tgnctgtcca gangaatgga aatateettg getttagcac ttcattttca taataaaate
                                                                      720
agcaattntg tctaaaaaaa aaaannnana aaaaactnga gcctntanaa ctntagtgag
tcgtattacg tagatncnna catgataa
                                                                      748
      <210> 438
      <211> 823
      <212> DNA
      <213> Homo sapiens
      <400> 438
taateettnn tattgntegg gtactngnte tntetenaag annntntegt tnegeeeagg
                                                                       60
tagetgagac tacccacace ttggteccag ctacttggga ggetgaggtg ggaaaaatcac
                                                                      120
tttgcccagg aattcaaggc cgcagtgagc tatgattgca ccactgcact ccaggcaaca
                                                                      180
gagtgagacc ctgtcttaaa aaaagaaggg agaaagtgtc agatggtgat gaggtctggg
                                                                      240
ggggaaatag agaatgggga tcaggagtgt ggatggtggt attccctcac caagaggtga
                                                                      300
catgttgagc agggaacttg ggaggtgagg gtgtgacccg tgtggaaatc agggaaaagc
                                                                      360
attncagect gagggacage caatgcanag geegtgaggt ggeeagtgee actgageagt
                                                                      420
gagettggga tagggggean gtgangagge tggagagegg ggteagacaa accaatatge
                                                                      480
ttatttaaaa caaggttgtt ncagcaccct tgccttaaag ccttgagcct gnaanctnga
                                                                      540
aaaatttggg cacnttcaaa agcanggang gaaaccaaaa gaagattggg agggaaaagc
                                                                      600
ccttncnttc ccttancagg aaatgaagtt nccacccttn aaaacaggnc caggaccttt
                                                                      660
ttgggaccct tttggccttt tggttcctta gaatcctctt ggtngcttnn gaatnaaaag
                                                                      720
gnaaaagggg cetttaaggg gggateceat tntttecaaa atteaaaggg ggettteeet
                                                                      780
gggcttaccc aaaatttctt ggncttaant aaaaaaattt ntt
                                                                      823
      <210> 439
      <211> 767
      <212> DNA
      <213> Homo sapiens
      <400> 439
gnnnnngntt ctaatgetgg nnnnnnnngg taccetttee aaaacetggg ctetegntet
                                                                       60
ttctncangn agccnngcga ttcgtctgtc tggtgatttt tattttaagt gaacctttgg
                                                                      120
atctatcttt aactctcttt attgtgagtc taaattccaa ttctgcagca gatcagtaaa
                                                                      180
ctcacagtat ttttcctgtg gaaatctatt caataaggaa accaagacag gatantaaaa
                                                                      240
tttaaaaaaa ancaactttg aattcccctg cctaggtctt ccagttgttt tccagcgcat
                                                                      300
acctcaggta tgactttgct agccggggac aaaattagca ccttccgatt ctctagtcca
                                                                      360
aatgaacttt ggctaaataa aaaattatta tactacataa taaagttnca gatagcagga
                                                                      420
aatgcaagag ctaggagatt cctagattat atctggccaa gccaaatacc ttaaacatcc
                                                                      480
acctggaaat cctctacccc ctcttctgag ataatttgcc cagccctttc ttcccacaca
                                                                      540
ctcactcaat gtcacccct tctaatcccc aaaactgttt ttgtggcctt ggtagcctat
                                                                      600
agtagtttet cacatetttt cecetanact tttetgtttt cagttteaga ccaaaaaaac
                                                                      660
tetteaactt ttttecagtg gggtetteet taccagtaac tttaccactt gnaatettat
                                                                      720
ttcattgaaa aaaccttaaa tgggntggga aaaggcttgc cnncann
                                                                      767
      <210> 440
      <211> 752
      <212> DNA
      <213> Homo sapiens
```

<400> 440					
nagnnnnntt tctaatgctt					60
tttctccaag atncnngcgn					120
tcatcaagag gaccatcttg					180
gggatttttt gtctgaaaat					240
tagttcagca cttgatccat					300
tgttagacat catttatatg	caattcatca	gcaccagaaa	gtttgggatg	tttttcagat	360
gagtaaagga ccaggtgaag					420
aagaaaattc ttcagagagc					480
aatgcagtct ggattcgaat		_	_	_	540
ctcctacgtg gtgtctactc					600
cgcaatacac cgcttcttgg					660
agaagagatc attttagatn	-		cattagtgac	attgaaaggg	720
aaataaaaat tootacagto	naaaaaaaa	at			752
<210> 441					
<211> 775					
<211> 773					
<213> Homo sapie	ne				
(213) Homo Supre	.115				
<400> 441					
gnagccngat tccaaaacct	gggnnccgat	ccaatgcttn	ccaattactt	gggagctcnn	60
actngcncna ncaanctngc	cntgcgaatt	cggcacgaga	agnaggcgga	gcttgcagtg	120
agctgagatc gcgccactgc	actccagcct	gggcaacaga	gtgagactct	gtctcaaaaa	180
aaaaaaaaa aaatggaacg	cagggcaaga	actcgtnttt	ggaaggagat	gggggaaagg	240
ancggtatta tacctatgtt	gnatttgcag	gcaaatgaga	tgganccctc	tctgtaaaga	300
agagtcattt gtgcaagtag	acggggtctg	tgggtgcang	ccctggaggg	gcacacaatt	360
gcctgnangc ttctgtgana	tcgggagang	gaggagaagc	agtctcttga	caaaataaag	420
tatttttatt cattngtatt	tattaaatga	aaaaacaatc	ccatggtgtc	ccttgtgtgt	480
ggtggaacct aatgactgtt	gaaataaagt	ctgngttttc	ccttcaaaaa	aaaaacncnn	540
anaanaaaaa ctcgagccct	ntaaaacctn	tngngagtcc	gnattaccnt	anatcccnga	600
cnttgataag gatccattga	tnaantttgn	cccaacccca	actnngaatg	ccnngaaaaa	660
aaattgcttt atttgggaaa	tttgcnaatn	ctttgcttta	ntttgnaccc	antttanent	720
cannnnccaa gttacnancn	ncaattgcnt	tcatttangg	ttcaaggttc	aaggg	775
.010. 440					
<210> 442 <211> 804					
<211> 004 <212> DNA					
<213> Homo sapie	ns			•	
(213) Nomo Bapic					
<400> 442					
gagnnngntt ctatacctgg	gnncgatcca	aancttncct	attaccttgg	atcttnngct	60
atctcnaann aaaangcttn	cgaattcggc	acgaggccac	ctgcactgag	gtctgggccc	120
ggggacaggg tgctttagcc					180
accagatgca agttggtggg					240
cctaaccagt cgtcctatgg					300
acctgctgnt ccccgcacac					360
ttgaaaaact agcatgtgan					420
gggangccaa ngcgggtgga					480
gtgaaaccct gtctctacta					540
agtnccaann tacttgggaa	gctnangcan	gaanaatggc	ntgaacccaa	gaaggaagaa	600
				-	

```
660
cnttgcantg aancttaaaa ttgcgcccac tggaatttca aaccttgggc cnanaanaat
                                                                       720
tgaagaatcc cgtcttaaga aaaaaggaaa aaantttncc nttntnaaag gcccggccac
                                                                       780
aantnqqctt taacqccctg gtaaatnccc aancactttt tqqqqaaqqc ccaaaggcaa
                                                                       804
ggccnggatt caattttnna aggg
      <210> 443
      <211> 786
      <212> DNA
      <213> Homo sapiens
      <400> 443
gnageeggat ettattattg gennegnttt aatgetgget aatnintegt aatneitggt
                                                                       60
nnccccaann annnaggngg ggngaattcg gcacqaqcac catttttatt ttgatgctta
                                                                       120
cactcattta ttctgttttt gtaaaacagt ttcaagaatt taaaaatcct tccagttaat
                                                                       180
agagettttg ttattatatt ataattttgt aaacccactt tgtttttccc actttaaagc
                                                                       240
cacagggtcg actcatggat gatacctcta ttgctgctgc atgatgttca agaccggccc
                                                                       300
ttggctgttg ttacagagat gttgggcaga gctatgcagg tgtttcattg ngaactctag
                                                                       360
ctttgatcat ggtaaaaagt taaccctttc tattttttaa tggatgttat accaactatt
                                                                       420
cagaggactc atacttcaaa aatattagga aaatctgtct tatagttctc taataaatat
                                                                       480
ctgaaatctc aagtacgaca tgaaagaatg tcagaccatt gntattggtg aaagtcattt
                                                                       540
gatgaatggn aaattctatg aaaagtaagt ggatttgcat ggattaatat cagggaaaat
                                                                       600
ttaageette ccaagtgtga etgggeeaaa gagageeaga tgeeeceagt geetgtgeee
                                                                       660
ataaagttcc cgaatccccc aatggggtct nttttcaaaa acttggncca gacccggaaa
                                                                       720
ataaaancat tenteataaa tteaannggg gneeteanga aacaenttee eecancaace
                                                                       780
cttngg
                                                                       786
      <210> 444
      <211> 760
      <212> DNA
      <213> Homo sapiens
      <400> 444
gnagnceggt tennangent nggetnnate caatgetgge taaagttena ananctggea
                                                                       60
acnecaggan neangegttg egaattegge aegaggagga attacaggta geaaattatg
                                                                       120
gagttggagg acagtatgaa ccccattttg actttgcacg gaaagatgag ccagatgctt
                                                                       180
tcaaagaget ggggacagga aatagaattg ctacatgget gtttnatatg agtgatgtgt
                                                                       240
ctgcaggagg agccactgtt tttcctgaag ttggagctag tgtttggccc aaaaaaggaa
                                                                       300
ctgctgtttt ctggtataat ctgttgccag tgggagaagg agattatagt acacggcatg
                                                                       360
cagcetytee agtyctagtt gcaacaaaty ggtatecaat aaatygetee atgaacytyg
                                                                       420
acaagaatte gaagacettg taegttgtea gaattggaat gacaaacagg etteeetttt
                                                                       480
tetectatng gtgnactett atgtgetgat atnecattte etagtettaa ettteaggag
                                                                       540
tttacaatng ctaacactnc atgatngatt cantcatgaa cctcatccat gttcatctgn
                                                                       600
ggcaattgct taccttgggg gntcttttaa aaagtaccac gaaatcatca tattgcatta
                                                                       660
aaacccttaa aagttctggt gggnatcaca gaagacaagg ccnaanttna aagnggagga
                                                                       720
attttattat ttaaaagaac cttttgggtn ggatnaaaan
                                                                       760
      <210> 445
      <211> 761
      <212> DNA
      <213> Homo sapiens
```

```
<400> 445
tggtgccqgt tettantetq ngeteteqte tteettetta taeetqqqea nenettqqeq
                                                                       60
gccccnaggn tcccangnag ccnngcngng ncngattcqq cacqaqattc caaaqqtttc
                                                                      120
aaagaacttg gtcataaata tgataatgag aagacaaagt atttatatta aaacagttta
                                                                      180
gtagccttca gttttgtgaa aatagttttc agcacagaaa ctgacttctt tagacaaagt
                                                                      240
tttaaccaat gatggtgttt gcttctagga tatacacttt aaaagaactc actgtcccag
                                                                      300
tggtggtcat tgatggcctt tagtaaattg gagctgctta atcatattga tatctaattt
                                                                      360
cttttaacca caatgaattg tccttaatta ccaacagtga agcactacag gaggcaactg
                                                                      420
tggcattget tecttaacca geteatggtg tgtgaatgtt ataaaattgt cactcagata
                                                                      480
tattttttaa atgtaatgtt atataagatg atcatgtgat gtgtccaaac tatggtgaaa
                                                                      540
agtgccagtg gtagtaactg tgtaaagttt ctaattcaca acnttaattc ctttaaaatn
                                                                      600
cacancette tgeetetgna tttggaagtt gteagtneaa eteateaaag aaaactgeet
                                                                      660
aatntnaaaa tcatattntg ggaataattt ccctcttttq tagtctqccc aaqatcctta
                                                                      720
aagattggat ttttattact atttaaacca gtggattaat n
                                                                      761
     <210> 446
     <211> 770
     <212> DNA
      <213> Homo sapiens
     <400> 446
tgggnnngnn ccnaangeng gggannnggt ccccgttcca anactggaan nettggcann
                                                                       60
cgaactcgct cnannagnaa ggccgggnga attcggcacg aggccccgct ccatgagcag
                                                                      120
tgactcccca gctcctcctg gcaccagtcc ccagggctct cctgttggta gttcctgctt
                                                                      180
ttcttcttgg aaattcctcg tggacctcga gatctttacc ctaaaatagt tctgttgaat
                                                                      240
ttcaccctgg caatgtaaat tgatagctta tcttcacaga tgccagacaa tggacaactc
                                                                      300
accatcagtc ctctgctcac ctgagacaaa tgcatgtctg attgcttcct ctgccctatt
                                                                      360
ggntatgtga aaatgcagat tcactgagcc agactaaggc atcagtgact ggtcctctac
                                                                      420
ctgcctctca catggagatt gggtattcag tgaaaggctg atcaaagacc caaaggaatg
                                                                      480
caacagttta tetettatet acetatgace tgeganetge caccacece agntggngeg
                                                                      540
cctttccaga cagaaccagt gtacatctta cacgtattaa atngatgtcc cnggggctcc
                                                                      600
cnaanangna tcaaacaagc ngggcctcga ccaccttggg cacatatccc nanggacatc
                                                                      660
annetggagg etngngneae tggeattgge cetnaceetn ggeaaaataa acettetaaa
                                                                      720
attggnaaaa aanaaanaan aaaaacctng nnccctntna naacnntacg
                                                                      770
     <210> 447
     <211> 757
     <212> DNA
     <213> Homo sapiens
     <400> 447
tggtatnntt tnaangctgg nngnnnggcn ccgttccaat gnctggganc nttggcaatc
                                                                       60
gctctttccg nangatccca tcgattcggt ctgatgcagg agaattgcta aaacccagga
                                                                      120
gggagaggtt ncattgagcc gagattgcgc cactgcactc tagcctgggc gacagagcaa
                                                                      180
gactccgtct cgaaagaaag aaagagaaag gaaattcccc agggaagtac ctcggcttat
                                                                      240
ttcataaaca ggtactgaag gaagcagagg catgtggagg acttccccac ctcqtqcaqc
                                                                      300
tatttgggcc gtggcatctg aaatttctta tttcagagtc acccctttga tgaccttggc
                                                                      360
agtgaactgc agtcatctgt ttaggccttt ccatggccca cgtcaatgcc ggtatttctg
                                                                      420
tttgttgcac atttgatttc cttgttgttg gcatttagaa ggccccccgt ttcccagatc
                                                                      480
acaccacggg catggaccac agagattgca tcttgtgagt ctgtagaaat ggtcaaggcc
                                                                      540
ttgtcctctc ttaagtccag agctcangtt aatgcaaaat tttnccggnc atctgtqctq
                                                                      600
```

```
660
aaatcccttt ggggaagctc ctggctggtt tcctgtaggt aggacagcta cacgtnctgc
                                                                      720
cetttattgg cttettttea tgaaqeteet gecatntaen aaacatgtet ceettettga
                                                                      757
atcacatctc tggtattgna actctanaat cgcccgg
      <210> 448
      <211> 770
      <212> DNA
      <213> Homo sapiens
      <400> 448
gggtgnnnng tttctaatgc ttggtngnnc nggnccnacn tttctaatgt tcggaanggc
                                                                       60
ttqqctactc qntctttctn canqnaqccc ntcqqtncga attcqqcacg aggtqtcttc
                                                                      120
atcttaccca gtggaaccta agaaattaaa ttctccagaa gaaactgctt ttcagacacc
                                                                      180
aaaatctagc cagatgcctc ggccttcagt gccaccatta gttaaaacat cactgttttc
                                                                      240
ttcaaaatta tctacacctg atgttgtgag cccatttggg accccatttg gctctagtgt
                                                                      300
aatgaatcgg atggctggaa tttttgatgt aaacacctgc tatgggtcac cgcaaagtcc
                                                                      360
tcagctaata agaaggggc caagattgtg gacatcagct tctgatcagc aaatgactga
                                                                      420
attttctaat ccttctccat ctacctctat tagtgctgag ggtaagacaa tgagacaacc
                                                                      480
cagtgtgatt tattcatgga ttcagaataa acgtgaacag attaagaatt tcttgtcaaa
                                                                      540
acgggtgctg ataatgtatt ttttcagtaa gcacccagag gcctncattc aggctgtttt
                                                                      600
                                                                      660
ttcagatgcc caaatgcata tttgggcatt agaaaggtct gtcgcactta gtagcagcat
                                                                      720
cattttacag aggatagatt tggagttgtc cagacgacac taccagctat ccttaatact
ttgttgacac ttgcaagang cagtcngaca agtactttaa cttcctcatg
                                                                      770
      <210> 449
      <211> 792
      <212> DNA
      <213> Homo sapiens
      <400> 449
ngagaaangt ttctaatgct ggnnnngnna gntcancctt tctaatgttc taatacttgg
                                                                       60
ganntegaac thtenenaca cagnnangen ntgegaatte ggeaegaggn ennetenatn
                                                                      120
atnacttgnt encaneggne tggeatenae negneacace taentnageg enttgtageg
                                                                      180
caatatncac ctnntnaaac ccnnnagtcc cagggctctg ccnnnnnact gntcaactga
                                                                      240
cnaacnacnn nctancncaa cntnnnntta ngccnctqnc tqnctctatg gcacctnncc
                                                                      300
tneentenen entnaceene taegeteagg getatataea atgggaacet tneeaaeagt
                                                                      360
                                                                      420
aancentgga tetnaggnat ggeeettgne tggeggatea eageettnna gentateagn
                                                                      480
atcttgagga agacaccatt ccgtcccnga ttntgaccaa ncnctcggat gtgnctatgg
gctcnattga ggnacaacaa ctnncactgc nnataggcca tcctcnnnan nctacacatg
                                                                      540
ngactttnen nnneatntna aatgnnnana tgtetetene aageateace enetgteeet
                                                                      600
negnentent ggaagaeett etgnneaaet ganeteette ntgnnnennn ngattnttne
                                                                      660
                                                                      720
nnncnnaata tncntncccc aatgnccttg tnnngnattt atnangggnt ttccaatttg
                                                                      780
ggntaattca ntnecenceg nannetannn neceatnaac entengngee ttettgnaac
cttttnncct gg
                                                                      792
      <210> 450
      <211> 848
      <212> DNA
      <213> Homo sapiens
      <400> 450
```

```
60
gnatgncccg atttccttaa tgatggggnn nnnnngagcg anncttccga aanttccaat
                                                                                                                             120
annotgggng ntcgcaactc nctcnanaca gnaaggncgn gggctttgct ctctccattc
                                                                                                                             180
caaqttqntc tctqttctaq aaaqcaqatq taqtaqacat ctactqttgt tgcctgaaca
quatecettt gteettttt tgntaaaagt acteateeet aatatteatt gtnetggaag
                                                                                                                             240
gactgaaaat acagaactca caccatgatc ggccgggaca atcagattat ttcattccnc
                                                                                                                             300
agcaaacgga gatcganccg aaaagtggaa anatgagcnc ttctttggng ttggcatatg
                                                                                                                             360
gaccetgaga gaaagaactn tnattnttte tettggaetg caataaagta tagetgeeta
                                                                                                                             420
aaatacqntt cctgacactt ggaqqnttgt ccacaatcgg ngaaataaag gcgagaccgn
                                                                                                                             480
acactggatg aaaaaaanaa gnnnccngnn gaanacccac tnnnccannn nccnnnccnn
                                                                                                                             540
thenecanng nngancennn tancegnnan naggeennng enntngenne nnngeennnn
                                                                                                                             600
nnnnnngggn aaaccennnn gnnnnncnnn nnnnnnnncn nnnnannnnn nnncnncnng
                                                                                                                             660
nnggnnetnn nnnnannnne ecennennee enneneennn nggnaannee nnnnnnnann
                                                                                                                             720
annnngggnn nnnnenannn cennnnnnn cannnennen ennnnnggnn nnnnnennnn
                                                                                                                             780
nnnnnnnn nenngngnnn aennnngngn nnnneennnn nnnnnnengg nnnnnennnn
                                                                                                                             840
nnnncccc
                                                                                                                             848
           <210> 451
           <211> 765
           <212> DNA
           <213> Homo sapiens
           <400> 451
gnnnnnnntt tcctaaatgc ttgggnnnnn nnngagngnn nttncnnagt ttcctaanta
                                                                                                                               60
gcttnggcna ctcgttctnt ctncangcag nnnntgcgtn gncgaattcg gcacgagcat
                                                                                                                             120
tcctcctttg ttaacgaagc aacatttaca caagatggac attacattat tagtgcatcc
                                                                                                                             180
tctgatggca ctgtaaagat ctggaatatg aagaccacag aatgttcaaa tacctttaaa
                                                                                                                             240
tecetgggea geacegeagg gacagatatt acegteaaca gtgtgattet acttectaaa
                                                                                                                             300
aaccctgagc actttgtggt gtgcaacaga tcaaacacgg tggtcatcat gaacatgcag
                                                                                                                             360
gggcagattg cagaagcttc agttctggta aaagagaagg tggggacttt gtttgctgtg
                                                                                                                             420
conteted of of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the co
                                                                                                                             480
cagtcagtca ctggcaaact ggagagaact ttgacagtgc acganaagga tgtgattggt
                                                                                                                             540
attgcacatc acceteatca gaacetgatt geteetacag tgaagatgga eteetaaage
                                                                                                                             600
totggaaacc ataattcaac ttttctttt taaatcaact cgaaagcatg tncttaaatg
                                                                                                                             660
aacatattca tgtaangggc tttttttttt tgncactttt ctaagcaaat agatggctga
                                                                                                                             720
attagtcacn gaataaattt gngaaaatca tggttaaatn ccaac
                                                                                                                             765
           <210> 452
           <211> 765
           <212> DNA
           <213> Homo sapiens
           <400> 452
nnngnnnnnn ntttcctaaa tgcttggggn nnnnnngngn nnnnnttctn atgttcctan
                                                                                                                              60
ngcnnnggng ctcgttctnt ctncacgnng ccngtgcggt gncggtctga ttgaaagctg
                                                                                                                             120
ttcaggttta tcatgcaaat cetegeetet ggetaegget ggetgaatge tgeattgetg
                                                                                                                             180
ccaataaggg gacttctgaa caagaaacta aaggccttcc cagcaaaaaa ggaattgtnc
                                                                                                                             240
agtctattgt tggtcaagct atcatcgtaa aatagttttg gcatcacagt ctatacagaa
                                                                                                                             300
tactgtttat aatgatgggc agtctteggc catteetgta ceagtatgga gtttgeagec
                                                                                                                             360
atatgtetea gaaatgeett gttgetgete etgaagaaca geaagateea aageaggaaa
                                                                                                                             420
atggggctaa aaatagtaat caattaggtg ggaacacaga gagcacgaaa gcagtgaaac
                                                                                                                             480
```

540

ttgcagcagt naaagccatg atggagatna attcattcca gcttcacctt cttctccatt

```
600
qaqaaaacaq qaattagaaa acttaaagtg ctccatactt gcttgcagtg cctacgtggc
totggotttt gggtgatacc toatggottt gaatcatgen gatnaacttc ttcagcagcc
                                                                       660
                                                                       720
caaqctqcaq qatctcttaa gttttqqqac atttatatqc tqcaqaaccc ttatcttctt
cgacngaatn totgtgcont totcacttga coccgagaat gtnct
                                                                       765
      <210> 453
      <211> 833
      <212> DNA
      <213> Homo sapiens
      <400> 453
gngtnnnnnt ttetaangtt entaatannn tnggetaete gttetttete eaggnateee
                                                                        60
ntgegatteg aatteggeac gagagaaacg tteteaggtt gaccagetge tgaatattte
                                                                       120
tttaagggag gaagaactta gtaagtcatt gcagtgcatg gataacaatc ttctgcaagc
                                                                       180
ccgtgcagcc cttcagacag cttatgtgga agtcaagagg ctacttatgc tcaagcagca
                                                                       240
gatactatgg agatgaatgc actgaggacc catagaatac agattctaca ggggattaca
                                                                       300
agaaacatat gaaccttctt gagcacccca ggttttggca ttagaaaatg ggtacccctt
                                                                       360
qqttcaaaaa tqaacaaaga aagccttaga tttggatggg ggaacctgat ctgtccagtc
                                                                       420
tagaaggatt ccagtgggga aagtgtttcc atttccttng tcccctggct tggccaagga
                                                                       480
aagcgaaagc cetttettga anagcaaccg tggateattn gaccaggaac tteettetgg
                                                                       540
ggtattaagc ttctttcaan tggaagggaa aggttccang gccaaaggaa aaatggaagc
                                                                       600
ccccaaccng atgggtttca ccctaantaa cctcaattgg aagggcttgg accaagaacc
                                                                       660
enggaaagge nanceattge accettaaaa neaaggaaag tggaceacet ttggggettg
                                                                       720
nentteentt cegaaceagg ttgaaaangg gettgaaaaa tggttgetta cecaaaaggg
                                                                       780
cgnacnttaa tggcaccaat tattcctntg gaccnttttt aatanccttt ngn
                                                                       833
      <210> 454
      <211> 737
      <212> DNA
      <213> Homo sapiens
      <400> 454
gnggnnnntt ctaagtteet aatnetggge taetngttet ttetgeaggn ateecatega
                                                                       60
ttcggcaaaa tcaatgtgga ctgaacataa atcacctgat ggaaggactt actactacaa
                                                                       120
cactgaaacc aaacagtcta cctgggagaa accagatgat cttaaaacac ctgctgagca
                                                                       180
actettatet aaatgeeest ggaaggaatn caaateagat tetggaagee ttaetattat
                                                                       240
aatteteaaa acaaaagaat etegettggg ccaacetaaa gaaettgagg atettgaage
                                                                       300
aatgatcaaa gettgaagaa ageagtaage aagaagagtg caccacaaca teaacageee
                                                                       360
cagtecetae aacagaaatt eegaceacaa tgageaceat ggetgetgee egaageagea
                                                                       420
gctgctgttg ttgcagcagc agcagcggca gcagcagcag cagctgcagc caatgctaat
                                                                       480
gettecaett etgettetaa taetgteagt ggaactgtte cagttgttee tgaeetgaag
                                                                       540
ttacttccat tggtgctact gntgtagata atgagaatac agtaactatt tcaactgagg
                                                                       600
aacaagcaca acttactagt acccctgcta ttcaggatca aagtgtggaa agtatncagt
                                                                       660
aatctggaga agaaacatnt taaccaggaa actgtanctg attttacttc caaaaaagaa
                                                                       720
gaagaggaga gccacct
                                                                       737
      <210> 455
      <211> 718
      <212> DNA
```

<213> Homo sapiens

```
<400> 455
ggnnnnnntt tnnnengttn entaaaanne tgggetaete gttetttetn cangnageee
                                                                       60
ntgcgatncg aattcggcac gaggatgagg agtgtttaat cattgataca gaatgtaaaa
                                                                      120
ataatagtga tggaaagaca getgttgtgg gttctaactt aagttccaga ccagctagtc
                                                                      180
caaattette etcaggacag gettetgtag gaaaccagae taataetget tgtagteetg
                                                                      240
                                                                      300
aagagtcatg tgttttaaaa aaacctatca aacgagtata taaaaaattg atccagttgg
                                                                      360
agagatttta aaaatgcagg atgagctctt aaagccaatt tccagaaaag taccagaatt
gcccttaatg aatttagaaa attctaaaca gccttctgtt tctgagcaat tgtctggtcc
                                                                      420
ttcagactcc tctagttggc ccgaaatctg gatggccttc tgcatttcag aagccaaaag
                                                                      480
gacgattgcc atatgaactt caggactatg ttgaagatac atcggaatac ctagctcctc
                                                                      540
aggaaggaaa ttttggttat aagttattta geetgeaaga eetgttgtte tegtegetge
                                                                      600
agtgtncaga ggatagagne agaccacgtt ctaaaacnga gaaatcagaa gacatttnca
                                                                      660
gttatgtctc caaaagtgag tntcagctgt atgagttgac tctgctgaaa gtgacttg
                                                                      718
      <210> 456
      <211> 739
      <212> DNA
      <213> Homo sapiens
      <400> 456
gtggnnnntt ctnngtttcc aatangntgg gtctcgttct ttctnnacga tcnnntgcga
                                                                       60
ttcgcttggg aggctgagtc aggagaaatt gcttgagccc aggagatgga ggttgcagtg
                                                                      120
agccaagatc atgccactgc actccagact gggcaacaga gggagactcc gtctcaaaaa
                                                                      180
ctaaaaaaaa aaatncattt agtataccgg ggggtggggg ggagaaataa tgttatttcc
                                                                      240
tatgcgaaat gacgtgtatc cctgtaccca tgggtaaatg taaatatact gtgtctcttt
                                                                      300
tgggagagec ttttagtaga ggagtettat atgaagtete teataagtag tteaettgag
                                                                      360
ttttgcagtt tgaaatctta aaggagcttt aattgacatt tattatacca attaagcttg
                                                                      420
gaatggggca atggatgcat ttccaaaacg tgtgaaagcc taacagctta tattgctgaa
                                                                      480
tgagaatete etgggtgtaa tttancaett agggaaetge gtgaacaete ecagecatta
                                                                      540
tgatgctggt accagcttta ntgtntaaat gccatganta ttctttctgn tctgttttgt
                                                                      600
gctctcttgg tncatttatt ttacccttta cngaataatt tcttgtaaaa tccntaaaaa
                                                                      660
tntttggcat ttaaaagtcc nntcttggan tnaananann nnnaanaaaa ancttncccc
                                                                      720
tttanaactt tngngggct
                                                                      739
      <210> 457
      <211> 743
      <212> DNA
      <213> Homo sapiens
      <400> 457
gtgnnntnnt tetnnngttt ceaattante tgggngeteg ttettteten annennnan
                                                                       60
tggttgncga attcggcacg aggnnanagg gnagctacat gnntnaccnt nttngnnctc
                                                                      120
teagecange tennetnnnn etggteetae tgetacatag aacaettgtt ntnennggna
                                                                      180
actnntntat gtnnccnnga ntctctgnna ctngtttaaa tgctanttga taacaggcta
                                                                      240
tgcaaggnct gnaagtggan agcgtcatca ttcatcatnc ntnttanctn gantnnntgt
                                                                      300
atcctacatg ctttgattgg taaatgngcn tcagactggg actctcaata aatgnatata
                                                                      360
ganganettg etgtggaaan etgteetete ntatetntne atgngnaant tecaetneag
                                                                      420
tntgaactcc aaatgcnntn atnggnganc cctncttgta tagtggtgtc cattccaanc
                                                                      480
tgcnagggnc tagaaaccgt cggctntngg aaacnatggt gnnagttgan ctggtacang
                                                                      540
engttntcac etgcanetac cataaaatgg gnttacccaa getttatcat ggaatggnta
                                                                      600
taaaaaacgc attnattgng cctttntaan cccattatnt gttnaatttn acttatggtt
                                                                      660
```

cccccattn aaattatnca attgggnann gangetter ttnncaaaaa aacgnttttt ttt	na gtcnccatnt ttnaatggnn 720 743
<210> 458	
<211> 906	
<212> DNA	
<213> Homo sapiens	•
-	
<400> 458	
gnngnnnnnn nttnctaatg cttgggnncn cgtttcta	
ttggttaggn gctcgnnctn tctccacnna gnnnngcg	
aatcaaggat cacaaactnc acatttngca cnttggtc	V V V
teneagtnaa catggetntg gaaactnatn ttngnetng	
gggacceann ntcennnate negnnttnee tegnnnate	
atgggctcc nanaatangn ntnncnnngn nnatncand	
nnnnngecc tnntncctna tggnnngctn catgnccc	
naaanggtet ntteeenega nnecennnn eenetaac	
aggenttnne tngnaaacca nnttngccaa nggtantte cenannnnge entggnnnta eeeegggnaa anggtngn	
coeggnenng gaaanaaatt teennggnac coagnntne	
ccancenaa entingece neancentin gnnnntgn	
nccaannegg cenggnnaen nnettnnaec tntttnene	
nannaaaggg nggnnnnnnn nnncnttnec nnnggnage	_
aaaaattenn enntgnanen eeeetnnnnt nangngnee	
nnaccc	906
<210> 459	
<211> 765	
<212> DNA	
<213> Homo sapiens	
<400> 459	
gnngnnnngg nttcctaang ctggggnccg ntctnnnn	_
ctaggngctc gntctngctc cacgcagnen gggcgtgg	
ttgattggtt tgtttaaagt acctaagtac taccettte	
tgttttttaa acaactttta tttgtgactt actttcttg	
cataaaatag tggtagcagc ttatttctta agtncttn	
ggtcttatct ttaaccctta tttactcagt tttccatc	-
aaggatttaa taaatgctgc aaattgtcca ctttgcaa	
ggacettgng aactttttt ttaataacac attatttg	
agaccageet ggccaatgtg gtgaagacet ceggtteta	2 22 2
tancaaggca tggnggtgca cgcctgnaat ctcagcta	
atgettgace ngggangcan anatgancen anattgaa	333
nanantgaga anctggetea aaacceaaaa acceaaaa	
<210> 460	
<211> 677	
<212> DNA	
<213> Homo sapiens	

```
<400> 460
gtttncgctg ggagccacca acatagcaga ttaccatgtg aagttgccac tgctgcatct
                                                                       60
cctgaaacct ggctgatggg agaggtctca ttttgtgtct gagaatgtcc aggttgtctg
                                                                      120
                                                                      180
cagaccacag cactgattte ccattageag ttattattte etggecattt etteetgaag
                                                                      240
gttttgtggt taaactccct gtcctcaata ttttatcagc agtagggctg tcattcttct
                                                                      300
ggttatcaac ctctacatta tgaagtaagg ttcaaccctt ctgcttttct caggccccca
aaacggttcc tatccaatcg aacacaaaaa cgggtattga gaaggaattg gcagggctca
                                                                      360
gtggctgttt ccgttgctcc tacctcatgg agactcttac tcatgctgga tttattgaga
                                                                      420
                                                                      480
gaacttotaa otgaccacto accoccacco actottatgo agtotgttca ttootgaaaa
caccactttc atccctcctg cacacaaccc atgagggatt gctacttcct ataagattcc
                                                                      540
tcagtgagcc ttatagagtt gctgcgagaa ttacatttgg tcatgatgtc aagtgtctgg
                                                                      600
tatgtagctn atgcttattg aacacatagt aatttattgg aataattgnc atgatcactg
                                                                      660
                                                                      677
gatgagaata tagcccn
      <210> 461
      <211> 787
      <212> DNA
      <213> Homo sapiens
      <400> 461
gnnnnnnag ggnnnngngg ggcctcncaa agcccgngcn acaggtcccc gttccaaagc
                                                                       60
                                                                       120
ntgggngane gennegeeee ancagnaagg egggggaang eggcacgagg acateatenn
                                                                      180
cttattctag taagagaaag tacacagatt caactttaga gaggacnggg gggnnnncng
                                                                      240
gagenaaate aaggaaggan tateaegngg cenecennga atataannnn gaagetgnga
                                                                      300
acagnaccat cagnaacann nnatggacag ctctgatggg gnnnatacca cggcactctn
                                                                      360
cnnaccnnng gnggaagena teeggagnna tgaetgangn gnaaagnggn nnaetgnnag
aancenggng ngetaggann etgggagagn eacttteang aagnnaeeng gegangagne
                                                                      420
atcanaagaa ceegganaag ngagaagaen ggaaaaagnn encanegnae ngageeeagn
                                                                       480
nannnnenet gagecanggg etnegaaang ceceaeenga ageneeatea canggnacaa
                                                                       540
                                                                       600
ggnnngggaa aaggaanena ennngengae angneeneen aanagngeea aaneaengen
                                                                      660
nngccenene geceaaagaa naenggaeng enggenenna neanaaggag enenanggee
                                                                      720
cnnggnaang aaactnenag nageecaane ecaaaggeee enanggannn eenneaaggg
                                                                      780
gaaaacanna nncacccaag gggcctgggc naanaaggcn ncccacneng gcccnccnnc
                                                                       787
nnnaccg
      <210> 462
      <211> 747
      <212> DNA
      <213> Homo sapiens
      <400> 462
                                                                       60
ctaatggctt ggnnnnnnng nnnnccgntt cttaattgnc ttgggcnnct cgctctntct
ccannagnn nntgcgttng cgaattcggc acgagcctca gccccacacc agctctattt
                                                                       120
                                                                       180
caggggtgag agtcagagag cactgcaata tgtgcttcat gggatttcga ttcgaagatc
ctagaccagg gagacactgt gagccaggga tacaacaaaa tactaggtaa gtcactgcag
                                                                       240
accgacctcc ctgcagtttg ggaaagaagc tgggtttgtg gagaatcaga gcatcttgac
                                                                       300
atgactgctg acctaaagat ccctggcatt ggccagggat cctgtggaac ctcttctagt
                                                                       360
teaggggtgt gageattaga etgecagttg tetagtgaca tetgatgett getgtgaact
                                                                       420
tttaagatcc ccgaatcctg agcacctcaa tctttaattg ccctgtattc cgaagggtaa
                                                                       480
tataatttat ctggatggaa attttaaaga tgaatccccc ttttttcttt tctnctctct
                                                                       540
```

600

tttctttcct tctccctttc ttctttgcct tctaaatata ctgaaatgat ttanatatgt

```
660
gtcaccaatt aatgatcttt tattcaatct aagaaatggn ttaagttttt ctctttagct
                                                                     720
ctatggcatt tcactcaagt gggacagggg aaaaagtaan tgccatnggc tccaaagaat
                                                                     747
tnntttatgt tttagctatt taaaaaa
      <210> 463
      <211> 750
      <212> DNA
     <213> Homo sapiens
      <400> 463
tneettteta angennntng nnaanngten eegttetaan tnettgggea gnnegetetn
                                                                      60
tetncannca gnenntgegt tgegaatteg geacgaggeg agatgaaget acactgtgag
                                                                     120
gtggaggtga tcagccggca cttgcccgcc ttggggctta agaaccgggg caagggcgtc
                                                                     180
cgagccgtgt tgagcctctg tcagcagact tccaggagtc agccgccggt ccgagccttc
                                                                     240
ctgctcatct ccaccctgaa ggacaagcgc gggacccgct atgagctaag ggagaacatt
                                                                     300
gagcaattet teaceaaatt tgtagatgag gggaaageea etgtteggtt aaaggageet
                                                                     360
cctgtggata tctgtctaag taaggattcc atatggctct catatcattc cattccatct
                                                                     420
ctgccaagat ttggataccg caaaaatttg tgttngngga agattctgnc tgaactcttt
                                                                     480
cattcaagga actactacca tgaatctgca ttctgntgcc cacactgagg ncttagtaga
                                                                     540
taattgggtg gtctgaaaca cctattatct cttatntctg gtctctangc tggnatgtta
                                                                     600
attcctctga aatgntaaaa gtaatgggtg anaccngaaa aagaaatttc aatnacagat
                                                                     660
caanntgggg ngcatgtatn attttcaagc gtcaaaatgg aataagggaa gantnctgga
                                                                     720
tacctgcttg gaaaaggaag natgtgtatn
                                                                     750
      <210> 464
      <211> 748
      <212> DNA
      <213> Homo sapiens
      <400> 464
gnngtgtett tgnaaageet ttggggaann gneneettet aatgettgge tategntett
                                                                     60
tacgcagnnc ccatcgattc gaattcggca cgaggccggc cggcgacgct ggcgacgctt
                                                                     120
tegeceetga ggtagtttgg egacegegaa gaaggaaaaa gggegggegg geggetgtee
                                                                     180
teteacegte etcacecege gaggecegge eegeteetee gtegtggatt tegeggegat
                                                                     240
cccccggca gctctttgca aagctgcttg aaacttctcc caaactcggc atggatacga
                                                                     300
360
tgggatcggc ccaaggccag ttctccgcag gttggntgct tctttcgttc tctcctctgg
                                                                     420
gggctctgaa gtttcaccag gtggacgctg gggagcgggc tcccgagcac ttgtctacct
                                                                     480
neegecagte etgacaactt ttetggecaa cetacecage ttegettgge tggegagege
                                                                     540
atctgctgct ggggttcgcg gtgcaaatgg agacgcagtg gtggccagag ggtgatggag
                                                                     600
aagacgggaa aagcgacagc cacgctnctg gcttgaagcc gcaggacgca aataacttac
                                                                     660
tttggacctg acagttctac gttgntgtgg angccctgtt tcctggaaat aaaactcaaa
                                                                     720
atggtggttt tttggaaaaa aaaaaaat
                                                                     748
      <210> 465
      <211> 863
      <212> DNA
      <213> Homo sapiens
      <400> 465
gggnnnnnnn aanggnnnnn ggnnnnngtc ccgttccaan gaccnngaga tcgnngncgc
                                                                     60
```

PCT/US98/27610 WO 99/33982

```
tecanaagaa aggeggtgng aatteggeae gagaeetgta eegeetggee aetggetgte
                                                          120
                                                          180
accggcgtga tgagctgccg gtgtttgaac gcngcctatg cngggacttt cccggcanan
nggenngaan atggeeneea theaggaage egeecagaac etectnggnn acaenaettn
                                                          240
agngcetten agteegntgg nacceggnee aageeeegge aanenetgee eegggtenee
                                                          300
gttcccaagg ccaaccagcc ctgggnaccc ccggggagcc gaaacnctgg ggctnggana
                                                          360
ccgngantga gagncncact tttcnntgta nacacgggcc cagganacan ctntgctcgt
                                                          420
480
540
600
660
720
780
840
nnnnnnnnn nnnnnnnnn ncc
                                                          863
    <210> 466
    <211> 713
     <212> DNA
    <213> Homo sapiens
    <400> 466
ngtetttega gentggngnt egttetnget enannanatt ggttgnggga atteggeaeg
                                                           60
agcctcagcc ccacaccagc tctatttcag gggtgagagt cagagagcac tgcaatatgt
                                                          120
gcntcatggg atttcgattc gaagatccta gaccagggag acactgtgag ccagggatac
                                                          180
aacaaaatac taggtaagtc actgcagacc gacctccctg cagtttggga aagaagctgg
                                                          240
gtttqtqqaq aatcaqaqca tcttqacatq actqctqacc taaaqatccc tqqcattqqc
                                                          300
cagggatect gtggaacete ttetagttea ggggtgtgag cattagaetg ceagttgtet
                                                          360
agtgacatet gatgettget gtgaactttt aagateeeeg aateetgage aceteaatet
                                                          420
ttaattgccc tgtattccga agggtaatat aatttatctg gatggaaatt ttaaagatga
                                                          480
ateccecttt tttettttet tetetetttt ettteettet ecetttette tttgeettet
                                                          540
aaatatactg aaatgattta gatatgtgtc aacaattaat gatcttttat caatctaaga
                                                          600
aaatggttta attttttctc tttactctat qqcanttcac tcaantqqac aqqqqaaaaa
                                                          660
agtaattgcc atgggcttcc aaaagaattg ntttatgntt tagctatttn aaa
                                                          713
    <210> 467
    <211> 732
    <212> DNA
    <213> Homo sapiens
    <400> 467
gnnnggtnnt ctaatnettg nnnnnnnte neeettetaa geentggnet egnetnneen
                                                           60
acnancingc tinegaatte ggeacgagge gagatgaact acaetgtgag gtggaggtga
                                                          120
teageeggea ettgeeegee ttggggetta ngaacegggg caagggegte egageegtgt
                                                          180
tgagectetg teageagaet teeaggagte agecgeeggt eegageette etgeteatet
                                                          240
ccaccctgaa ggacaagcgc gggacccgct atgagctaag ggagaacatt gagcaattct
                                                          300
tcaccaaatt tgtagatgag gggaaagcca ctgttcggtt aaaggagcct cctgtggata
                                                          360
tetgtetaag taaggattee atatggetet catateatte catteeatet etgecaagat
                                                          420
ttggataccg caaaaatttg tgtttgtgga agattctgtc tgaactcttt cattcaagga
                                                          480
actactacca tgaatctgca ttctgntgcc cacactgtgg tcttagtaga taatttgggt
                                                          540
ggtctgaagc acctattatc tcttatttct ggtctctagg ctggtatgtt aatcctctga
                                                          600
tatgttaaaa gtaatgggtg agaccngaaa aagaaatttc aatacngatc aantttqqqq
```

660

tgcatgttga atttgcaacc tcaaattgga g aggaggaatg tn	gtaagggaan	attctggata	cttgctggaa	720 732
<210> 468				
<211> 748				
<212> DNA				
<213> Homo sapiens		•		
<400> 468				
gnnagnnttc taatngcttg tnnnnnnna g				60
ctncagnann contogatto gaattoggoa o				120
tcgccctga ggtagtttgg cgaccgcgaa g				180
teteacegte eteacecege gaggecegge e				240
cccccggca gctctttgca aagctgcttg a				300 360
ctgcggcggc ggcgctgcct gcttttgtgg c tgggatcggc ccaaggccag ttctccgcag g				420
gggetetgaa gtttcaccag gtggacgetg g				480
teegecagte etgacaactt ttetggecaa o				540
atctgctgct ggggttcgcg gtgcagatgg a				600
aagacgggaa aaagcgacag ccaagctcct g				660
actttgnacc tgacagtttc tnacgtttgt t				720
tcaaattggt ggtttcttgg aaaaaaaa				748
<210> 469				
<211> 776				
<212> DNA				
2010: Homo caniona				
<213> Homo sapiens				
<213> Homo sapiens <400> 469				
<u>-</u>	tctataacng (gntaatnott	ggncctacna	60
<400> 469		-		60 120
<400> 469 gggngnteta atgettgnnn tgatteteeg t	taccgcctgg	ccactggctg	tcaccggcgt	120 180
<pre><400> 469 gggngntcta atgettgnnn tgatteteeg t aaaggetang ngaattegge acgagaeetg t gatgagetge eggtgtttga acgeaaceta t atggtegeea tgeaggaage egeceageae eg</pre>	tacegeetgg tgetggaete eteeteggea	ccactggctg tcccggcaga cacacgactt	tcaccggcgt ctgcctggat cagcgccttc	120 180 240
<pre><400> 469 gggngntcta atgcttgnnn tgattctccg t aaaggctang ngaattcggc acgagacctg t gatgagctgc cggtgtttga acgcaaccta t atggtcgcca tgcaggaagc cgccagcac c cantccgctg gcagcccggt gccgagcccc g</pre>	tacegeetgg tgetggaete etecteggea gtgegaaege	ccactggctg tcccggcaga cacacgactt tgcgccgggt	tcaccggcgt ctgcctggat cagcgccttc ctccgtttcc	120 180 240 300
<pre><400> 469 gggngntcta atgcttgnnn tgattctccg t aaaggctang ngaattcggc acgagacctg t gatgagctgc cggtgtttga acgcaaccta t atggtcgcca tgcaggaagc cgcccagcac c cantccgctg gcagcccggt gccgagcccc g ccaggccaag ccagcccctt ggtcaccccc g</pre>	tacegeetgg tgetggaete eteeteggea gtgegaaege gaggagagea	ccactggctg tcccggcaga cacacgactt tgcgccgggt ggaagctgcg	tcaccggcgt ctgcctggat cagcgccttc ctccgtttcc gttctggaac	120 180 240 300 360
<pre><400> 469 gggngntcta atgcttgnnn tgattctccg t aaaggctang ngaattcggc acgagacctg t gatgagctgc cggtgtttga acgcaaccta t atggtcgcca tgcaggaagc cgccagcac c cantccgctg gcagcccggt gccgagcccc g ccaggccaag ccagccctt ggtcaccccc g ctggagtttg agagccagtc tttcctgtat a</pre>	tacegeetgg tgetggaete eteeteggea gtgegaaege gaggagagea gagaeggtae	ccactggctg tcccggcaga cacacgactt tgcgccgggt ggaagctgcg ngaggatgac	tcaccggcgt ctgcctggat cagcgccttc ctccgtttcc gttctggaac ngctgtgctg	120 180 240 300 360 420
<pre><400> 469 gggngntcta atgcttgnnn tgattctccg t aaaggctang ngaattcggc acgagacctg t gatgagctgc cggtgtttga acgcaaccta t atggtcgcca tgcaggaagc cgccagcac c cantccgctg gcagcccggt gccgagcccc g ccaggccaag ccagccctt ggtcaccccc g ctggagtttg agagccagtc tttcctgtat a gtggccgtgg ggcttnaann tnannnnnnn n</pre>	tacegeetgg tgetggaete eteeteggea gtgegaaege gaggagagea agacaggtae mnncennnae	ccactggctg tcccggcaga cacacgactt tgcgccgggt ggaagctgcg ngaggatgac caantctncn	tcaccggcgt ctgcctggat cagcgccttc ctccgtttcc gttctggaac ngctgtgctg nannannnnn	120 180 240 300 360 420 480
<pre><400> 469 gggngntcta atgcttgnnn tgattctccg t aaaggctang ngaattcggc acgagacctg t gatgagctgc cggtgtttga acgcaaccta t atggtcgcca tgcaggaagc cgccagcac c cantccgctg gcagcccggt gccgagcccc g ccaggccaag ccagccctt ggtcaccccc g ctggagtttg agagccagtc tttcctgtat a gtggccgtgg ggcttnaann tnannnnnn n ccnacnnnta aaantnncnn ncnnnnncan n</pre>	taccgcctgg tgctggactc ctcctcggca gtgcgaacgc gaggagagca agacaggtac nnnccnnnac	ccactggctg tcccggcaga cacacgactt tgcgccgggt ggaagctgcg ngaggatgac caantctncn cnnnnanncc	tcaccggcgt ctgcctggat cagcgccttc ctccgtttcc gttctggaac ngctgtgctg nannannnnn nnnncttnnn	120 180 240 300 360 420 480 540
<pre><400> 469 gggngntcta atgcttgnnn tgattctccg t aaaggctang ngaattcggc acgagacctg t gatgagctgc cggtgtttga acgcaaccta t atggtcgcca tgcaggaagc cgccagcac cantccgetg gcagcccggt gccgagcccc g ccaggccaag ccagccctt ggtcaccccc g ctggagtttg agagccagtc tttcctgtat a gtggccgtgg ggcttnaann tnannnnnnn n ccnacnnnta aaantnncnn ncnnnncan n naancnnnnn nnnnnnnanc nnnncancna n</pre>	taccgectgg tgetggaete etecteggea gtgegaaege gaggagagea agacaggtae nnneennnae nnnnnnnna	ccactggctg tcccggcaga cacacgactt tgcgccgggt ggaagctgcg ngaggatgac caantctncn cnnnnanncc	tcaccggcgt ctgcctggat cagcgccttc ctccgtttcc gttctggaac ngctgtgctg nannannnnn nnnncttnnn	120 180 240 300 360 420 480 540 600
cantcegetg geageceett ggteacecee getgggetttg agagecett ggtegetttg acgagecee getgggetttg acgagecee getggggtttg acgeaecee getgggetttg acgeaecee getgggetttg geageceett ggteacecee getgggetttg agageceett ggteacecee gtgggetttg agagecagte ttteetgtat agtggeegtgg ggettnaann tnannnnnn nennnnnnnn nannennnn nnnnnnnnnn	taccgectgg tgetggacte etecteggea gtgegaaege gaggagagea agacaggtac nnneennnae nnnnnnnnn	ccactggctg tcccggcaga cacacgactt tgcgccgggt ggaagctgcg ngaggatgac caantctncn cnnnnanncc nnncnnncnn	tcaccggcgt ctgcctggat cagcgccttc ctccgtttcc gttctggaac ngctgtgctg nannannnn nnnncttnnn nnnncttnnn nnnnnnnnnn	120 180 240 300 360 420 480 540 600
cantcegetg geageceett geteacecee getegagtttg agagecagte ttteetgtat aggectttg aggectttg aggeceett geteacecee getegagtttg aggeceett geteacecee getegagtttg agageceett geteacecee getegagtttg agagecagte ttteetgtat agtgecegtgg gettnaann tnannnnnn nnnnnnnnnn nnnnnnnnnn	taccgectgg tgetggacte etecteggea gtgegaaege gaggagagea agacaggtac anneennnae annnnnnnna	ccactggctg tcccggcaga cacacgactt tgcgccgggt ggaagctgcg ngaggatgac caantctncn cnnnnanncc nnncnnncnn	tcaccggcgt ctgcctggat cagcgccttc ctccgtttcc gttctggaac ngctgtgctg nannannnn nnnncttnnn nnnncttnnn nnnnnnnnnn	120 180 240 300 360 420 480 540 600 660 720
cantcegetg geageceett ggteacecee getgggetttg agagecett ggtegetttg acgagecee getgggetttg acgagecee getggggtttg acgeaecee getgggetttg acgeaecee getgggetttg geageceett ggteacecee getgggetttg agageceett ggteacecee gtgggetttg agagecagte ttteetgtat agtggeegtgg ggettnaann tnannnnnn nennnnnnnn nannennnn nnnnnnnnnn	taccgectgg tgetggacte etecteggea gtgegaaege gaggagagea agacaggtac anneennnae annnnnnnna	ccactggctg tcccggcaga cacacgactt tgcgccgggt ggaagctgcg ngaggatgac caantctncn cnnnnanncc nnncnnncnn	tcaccggcgt ctgcctggat cagcgccttc ctccgtttcc gttctggaac ngctgtgctg nannannnn nnnncttnnn nnnncttnnn nnnnnnnnnn	120 180 240 300 360 420 480 540 600
cantcegetg geageceett geteacecee getegagtttg agagecagte ttteetgtat aggectttg aggectttg aggeceett geteacecee getegagtttg aggeceett geteacecee getegagtttg agageceett geteacecee getegagtttg agagecagte ttteetgtat agtgecegtgg gettnaann tnannnnnn nnnnnnnnnn nnnnnnnnnn	taccgectgg tgetggacte etecteggea gtgegaaege gaggagagea agacaggtac anneennnae annnnnnnna	ccactggctg tcccggcaga cacacgactt tgcgccgggt ggaagctgcg ngaggatgac caantctncn cnnnnanncc nnncnnncnn	tcaccggcgt ctgcctggat cagcgccttc ctccgtttcc gttctggaac ngctgtgctg nannannnn nnnncttnnn nnnncttnnn nnnnnnnnnn	120 180 240 300 360 420 480 540 600 660 720
qggngntcta atgettgnnn tgatteteeg taaaggetang ngaattegge acgagaeetg tgatgagetge eggtgtttga acgeaaceta tgatgetegea tgeaggaage egeceageae eanteegetg geageceegt geegageeee eanteegetg geageceett getgagtttg agageeett gtteetgtat agtggeegtgg ggettnaann tnannnnnnn nannennnn nnnnnnnnnn	taccgectgg tgetggacte etecteggea gtgegaaege gaggagagea agacaggtac anneennnae annnnnnnna	ccactggctg tcccggcaga cacacgactt tgcgccgggt ggaagctgcg ngaggatgac caantctncn cnnnnanncc nnncnnncnn	tcaccggcgt ctgcctggat cagcgccttc ctccgtttcc gttctggaac ngctgtgctg nannannnn nnnncttnnn nnnncttnnn nnnnnnnnnn	120 180 240 300 360 420 480 540 600 660 720
<pre><400> 469 gggngntcta atgcttgnnn tgattctccg t aaaggctang ngaattcggc acgagacctg t gatgagctgc cggtgtttga acgcaaccta t atggtcgca tgcaggaagc cgccagcac c cantccgctg gcagcccgt gccgagcccc g ccaggccaag ccagccctt ggtcaccccc g ctggagtttg agagccagtc tttcctgtat a gtggccgtgg ggcttnaann tnannnnnnn n cenacnnnta aaantnnenn nennnncan n nnnnnnnnnn nanncennnn nnnnnanenn n nnnnnnnnnn nnnnnnnnnn</pre>	taccgectgg tgetggacte etecteggea gtgegaaege gaggagagea agacaggtac anneennnae annnnnnnna	ccactggctg tcccggcaga cacacgactt tgcgccgggt ggaagctgcg ngaggatgac caantctncn cnnnnanncc nnncnnncnn	tcaccggcgt ctgcctggat cagcgccttc ctccgtttcc gttctggaac ngctgtgctg nannannnn nnnncttnnn nnnncttnnn nnnnnnnnnn	120 180 240 300 360 420 480 540 600 660 720
<pre><400> 469 gggngntcta atgcttgnnn tgattctccg tgatgagctgc cggtgtttga acgcaaccta tgaggagccggt gcgagcccggt gcgagcccggt gcgagcccc gcaggccaag ccantccgctg gcagccctt gggtcaccccc gcaggccaag ccagccctt gggtcaccccc gggtgggggggggg</pre>	taccgectgg tgetggacte etecteggea gtgegaaege gaggagagea agacaggtac anneennnae annnnnnnna	ccactggctg tcccggcaga cacacgactt tgcgccgggt ggaagctgcg ngaggatgac caantctncn cnnnnanncc nnncnnncnn	tcaccggcgt ctgcctggat cagcgccttc ctccgtttcc gttctggaac ngctgtgctg nannannnn nnnncttnnn nnnncttnnn nnnnnnnnnn	120 180 240 300 360 420 480 540 600 660 720
<pre></pre>	taccgectgg tgetggacte etecteggea gtgegaaege gaggagagea agacaggtac anneennnae annnnnnnna	ccactggctg tcccggcaga cacacgactt tgcgccgggt ggaagctgcg ngaggatgac caantctncn cnnnnanncc nnncnnncnn	tcaccggcgt ctgcctggat cagcgccttc ctccgtttcc gttctggaac ngctgtgctg nannannnn nnnncttnnn nnnncttnnn nnnnnnnnnn	120 180 240 300 360 420 480 540 600 660 720
<pre><400> 469 gggngntcta atgcttgnnn tgattctccg taaaggctang ngaattcggc acgagacctg tagatgagctgc cggtgtttga acgcaaccta taggtcgcca tgcaggaagc cgcccagcac cantccgctg gcagcccgt gccgagcccc ccaggccaag ccagccctt ggtcaccccc ctggagtttg agagccagtc tttcctgtat agtggccgtgg ggcttnaann tnannnnnnn ncenacnnnta aaantnnenn nennnncan nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn</pre>	taccgcctgg tgctggactc ctcctcggca gtgcgaacgc gaggagagca annecnnnac annnnnnnna annannnnnn	ccactggctg tcccggcaga cacacgactt tgcgccgggt ggaagctgcg ngaggatgac caantctnen ennnannen nnnnnnnnnn nnnnnnnnnn	tcaccggcgt ctgcctggat cagcgccttc ctccgtttcc gttctggaac ngctgtgctg nannannnnn nnnncttnnn nnnnnnnnnn nnnnnnnnnn	120 180 240 300 360 420 480 540 600 660 720 776
<pre></pre>	taccgcctgg tgctggactc ctcctcggca gtgcgaacgc gaggagagca agacaggtac annncnnnnn annnnnnnnn annnnnnnnn annnnnnnn	ccactggctg tcccggcaga cacacgactt tgcgccgggt ggaagctgcg ngaggatgac caantctnen ennnannen nnnnnnnnnn nnnnnnnnnn nnnnnnnn	tcaccggcgt ctgcctggat cagcgccttc ctccgtttcc gttctggaac ngctgtgctg nannannnnn nnnncttnnn nnnnnnnnnn nnnnnnnnnn	120 180 240 300 360 420 480 540 600 660 720

```
gctcttgagg agtgagactg cnggagatnt gggccgtgcc aaagagatgg atgagactgg
                                                                      180
tgctgagttc atcaagagga ccatcttgaa aatccccatg aatgaactga caacaatcct
                                                                      240
                                                                      300
qaaqqcctqq qattttttqt ctqaaaatca actgcagact gtaaatttcc gacagagaaa
                                                                      360
qqaatctqta qttcaqcact tqatccatct gtgtgaggaa aagcgtgcaa gtatcagtga
tgctgccctg ttagacatca tttatatgca atttcatcag caccagaaag tttgggatgt
                                                                      420
                                                                      480
ttntcaqatq agtaaaggac caggtgaaga tgttgacctt tttgatatga aacantttaa
aaattcqttc aagaaaattc ttcanagagc attaaaaaat gtgacagtca gcttcagaga
                                                                      540
                                                                      600
aactgangag aatgcannet ggattecaat tgeeegggga acacagtaca caaageecaa
                                                                      660
ccaqtcaaac ctacctacgn gggggactac tccagactcc cgnacncctt cacgtcctcc
tocatqctqa qqcqcaatca ccgcttctgg gncaagaagt tanaaacnct gggaaaaact
                                                                      720
acctncgaca agaaggggan catttanatt tacccnaaat gaana
                                                                      765
      <210> 471
      <211> 820
      <212> DNA
      <213> Homo sapiens
      <400> 471
cnnnnngggn nnngngggn cntccnaaan ccggggcgac agngccnnng ttccaacaga
                                                                       60
cenggngnge egnengngee eeanacagea ngggngggge nnnggggnnn ennegnennn
                                                                      120
cnnancnaca aagaactcaa caagaaaaaa acnaacccca caagcgggca aaggacgnga
                                                                      180
acagacantn cccaaaagaa gacatacaag caaccnaaaa taatcnaaaa taagnnncaa
                                                                      240
aaagaaaaaa ngcnagacag agnngngana gnactnagna aaaagngana tctagcggcn
                                                                      300
annagnangn nngnnnacgg ncngnnncna agaaanagnc nctggnnccc aagenggagn
                                                                      360
acageggege aagennggen cactgeaace gegaacneee gggeteaage gaaceneeag
                                                                      420
cctcaqcctc ccaaqnaqcn qnnaaaqqca ngcaccacca cacccgacna aaatancngc
                                                                      480
nancaanaac ananaanggc nccccngngc nnanncagga aanaaacacn cnnangcnnc
                                                                      540
ngaaaanaan naancncncn cnnnacaaaa aaacnnnagc cnnagaacaa nnnnggaggc
                                                                      600
ggaanacggn nnancccgac anganaanga nacnanngan gganganngg gaccaaaccn
                                                                      660
                                                                      720
cancceggga anggennngn aaaaaaaang cennnaaann gggggaaaan neggngnang
                                                                      780
ccnaaaqqqc cnnaaanggg gaaacccnan naaaangccg ggcanannan aaccnagcnn
nancnanccn nccaangggg nannnccncn nncnaggccg
                                                                      820
      <210> 472
      <211> 738
      <212> DNA
      <213> Homo sapiens
      <400> 472
                                                                       60
gnngtgtete taatgettgg etactngtte ttteegeega aenettgeta atgettggen
                                                                      120
ntegttettt etecaennae nnngenntne gaatteggea egaggteaca ganatnaaag
tecaateata qqqqetqqne enaentetnt getnnteect geangantea tangateagn
                                                                      180
nanaccgtgc gnntttgnaa gcntttcaaa tgtgntacca tcgngttact tncnnnggca
                                                                      240
                                                                      300
cctgntgann tnggttgnac tnnncnggat netecaaane cacennnnen atgggntnng
tgngcatgng ntggnncann nacagannna ganactttaa ngaannngnt tntgcaaccn
                                                                      360
tnggnnctag caancntgan antnccaggg nnggccacna agctgaaaat nnatgttana
                                                                      420
ncnnatgntg naatetetag natgaettee neannnanen aaaetnange anggetgena
                                                                      480
tgttagaanc tanaggccna atttcttntc natgnaacca ntntatgctt ttaagaccnt
                                                                      540
caactgtnnc natgaagccc atntacatna ttncggtaat anggctatnc ttaaannnaa
                                                                      600
ctgctgaaaa tnatgatnca nctacgaaat cctnncancc ncatntggct naatcattac
                                                                      660
caaccatttg acaccnncat ngnctaccca cntgcattnc catgaccnan tccantgcca
                                                                      720
```

```
738
cccgcncaga tntacctt
      <210> 473
      <211> 752
      <212> DNA
      <213> Homo sapiens
      <400> 473
tatgnntncc taanagagtt ntgnnacacg gcccgccttc tnaaancttc ctaatncttg
                                                                       60
ggcgctcgtt ctntctncac ncagnnnntg cggtncgaat tcggcacgag gtccttttga
                                                                      120
accaccccaa agaactcaac atggcaaagc aaatggtaaa agcttcccga ctgttctact
                                                                      180
ttgggtccgc gcgaagccca ctcacgtgtg atctgtgttg cccctgggag gcccggggcg
                                                                      240
accggaaaag ggctctctca agttctgaaa agagaatctg ccaccagatc gaatttcgac
                                                                      300
ccctgagctt gttcggacgt atggtccaaa ttcagattaa ggtggtcacc caacccgaga
                                                                      360
tgtcaggaaa ggccttctgc agagaaaatg tccccccacc cgccatctgc agccaggtgt
                                                                      420
qtqccacacq qcaqccttcc cqaaacataq tatqqatttt aaaaatqtqt ntatttttqq
                                                                      480
ttctcaacca ctttataacg tatttttaa tttattttgt aatgtcttgt tttgaagtat
                                                                      540
tgctgctatc cttggtatcc ttcccactgg ttttatcact ganttatttt gngaaagttg
                                                                      600
ncactaatgt totatgtcaa aatcaaaagt atttaatgaa atactanntc tatttaatgt
                                                                      660
ggntatggaa ccagctggaa acacaaaaca aacagtgatt gacancaagc tgggcccaag
                                                                      720
agneaggtea ttttgnacat atgecaataa ac
                                                                      752
      <210> 474
      <211> 752
      <212> DNA
      <213> Homo sapiens
      <400> 474
ttgcanacnn aatanttgct gtaaaagtcc cnnctttttn ccctttctaa tgnttgngcg
                                                                       60
ctcgntctnt ctccacnagn nnntgcgttn cgaattcggn tctnagccca tgccgggatc
                                                                      120
tteecacaec egteeteaca gatecagece cageceetqt etteecagge cateteteag
                                                                      180
cagcacctgc aggatgcggg cacccgggag tggagccctc agaacgcatc catgtcggag
                                                                      240
totototoca toccagetto cotquacque geggetttqq ctcaqatqua caqtqaqqtq
                                                                      300
                                                                      360
cageteetga etgaaaagge eetgatggag ettgggggtg ggaageeget teegeaeeee
cgggcgtggt tcgtctcctt ggatggcagg tccaacgctc acgttagaca ttcatacatt
                                                                      420
                                                                      480
gatctccaaa gagctggaag gaacggaagt aatgatgcca gtttggactc tggcgtagat
                                                                      540
atgaatgaac caaaatcanc ccggaaggga angggagatg ctttgtctct gcagcagaac
taccegneeg tecaagagea ceancagaaa ganceteane eecagacage acggnetaca
                                                                      600
cgcanctcgt gnacctggat gacntggaac anaatggtan cnaatgtggg accacngnct
                                                                      660
tgtancccna ggacaaggcc ctncnangct tgntggangg gtcnantcng anaaatggng
                                                                      720
gccactgccc aacccgcang aaganaacaa nn
                                                                      752
      <210> 475
      <211> 742
      <212> DNA
      <213> Homo sapiens
      <400> 475
gntttctntt aatnottttn naaangegnn ntttacentt etangnntgn gnetegttet
                                                                       60
ttcccacnna nnnnncggtn cgaattcggc ncgaggtgaa acagaaagtg gagatgcttt
                                                                      120
ccttgacctg aagaagcctc ctgcctccaa atgcccccat cgctatacaa aagaagaact
                                                                      180
```

```
cttggatata aaagaactcc cccattccaa acagagcctt catgcctttc tgaaaaatat
                                               240
gacagtgatg gtgtctggga ccctgagaag tggcatqcct ctctctaccc agcttcaggg
                                               300
cggageteac cagtggaaag tetgaagaaa gagttggata cagaceggee tteectggtg
                                               360
cgcaggatag tagatccacg agagcgtgtg aaagaagatg acttanatgt tgttctcagc
                                               420
cctcagagac ngagctttgg agggggctgc cacgtgacag ccgctgtcag ctcccggcgc
                                               480
tcangaagtc cattagagaa agatagtgat gggcttcgtc tgcttggtgg acgtaggatt
                                               540
ggcagtggga ggataatctc tgcccggacc tttgagaagg atcaccgctt aacgataagg
                                               600
acctgcggga cttgagagac agagaccnan anaaggactt caaggacaac gtttcangan
                                               660
anaanttttg gagaaagtaa ncntgtcttt tggtgancgt anaaanaaat gattcttacn
                                               720
cnnaanaaga acccgaatgg tt
                                               742
    <210> 476
    <211> 1122
    <212> DNA
    <213> Homo sapiens
    <400> 476
gnnngggnnn ttctaaaagc tgggnnnnnn nnngaggnnc ttctaatnct tctaatggtt
                                                60
ggetetegtt etttetneae geagennnge gnnneqaatt eggeaegage etgeageeae
                                               120
taatgcattg tgtatgataa caaaaactct ggtatgacac attttctgng atcattgnta
                                               180
240
300
360
420
480
540
600
תחתחתחת תחתחתחתחת תחתחתחתחת תחתחתחתחת תחתחתחתחת תחתחתחתחת תחתחתחתחת
                                               660
720
780
840
900
960
תמתחתחת תחתחתחתחת תחתחתחתחת תחתחתחתחת תחתחתחתחת תחתחתחתחת
                                               1020
1080
nnnnnnnn annnnnnnn nnnnnnnnn nnnnnnnnn nc
                                               1122
    <210> 477
    <211> 747
    <212> DNA
    <213> Homo sapiens
    <400> 477
gnngtgcctt tgaaannccn tttgnnnnng nggcccttct aatgctnttn cgntcgnggg
                                                60
gtcgaactcg ccccacncng cnaggcgggg gctncaagcg attctaaacc acctatgagt
                                               120
atttetttta gggeteaett aaatacatgt ntgngnntae tgggggetag eengaataat
                                               180
tttagatctg atcaggtngn ngctnaaatt ngaaaaanac cnnntngatg cttaaagaat
                                               240
tngcntccat ttttgagtct aaatctttta aaatntactg ngatccacat ctagngaaat
                                               300
gtcngtgtca anatattctn gatnatcgct naaatccnca ttaatactcn ttnggggtnn
                                               360
nnnatagngg aacttentag nnntnenaaa ageacatngn etteetgnet eegetgetee
                                               420
cacagnnggt nttgnaactg ggnaaatcag nnnnnngata gcgngngnnt ntnaganaaa
                                               480
```

```
540
ntngatncac acatnettnn nnetcagnen neacatngat tgaacaetet ggecaagatg
ctgnggngga tgangttgga gttcgannga agaagcenge getggeetgg ettgnaagae
                                                                       600
                                                                       660
conngnettt ccentnecet enetngaaag etgecengae ngaggeenaa ngnaaatggn
                                                                       720
tganngnnen gtenngecen ettengnene ttngaacenn nnaqnggnne tnnnngnaee
cnnngnnntn cqnqnaaccq nnccnqc
                                                                       747
      <210> 478
      <211> 746
      <212> DNA
      <213> Homo sapiens
      <400> 478
gnnnnnngeg egneetteta atgettenta attnnetngg atactegtte tttetneagg
                                                                       60
natennntge gnttegeaag gagnagagtg atagnaattg geagtgaaat ataeqaacea
                                                                       120
ccctcctgcc ctctgggttc acaatacgtg tacacttgac tgtgaagtgg ctgtgagagt
                                                                       180
gggtggagag ttcttctttg accctcagcc tgcggatgcc tctagaaacc tcgtgttgat
                                                                       240
tgcaggagga gtcggaatta accetetget ttccateetg eggeacgeag cagateteet
                                                                       300
cagagagcag gcaaacaaaa gaaatggata tgagatagga acaataaaac tattctacag
                                                                       360
tgcaaaaaat accagcgaac tcctgtttaa gaaaaatatc cttgatttag taaatgaatt
                                                                       420
tcctgagaag attgcatgca gtttgcatgt tacaaaacag actacacaaa tcaatgcgga
                                                                       480
actcaagcca tacatcacgg aaggaagaat aacggagaag gagataagag atcatatttc
                                                                      540
aaaagagact ttgttctata tttgtggccc acctccaatg acagactttt tctccaagca
                                                                       600
actggaaaac aaccatgtac ccaaagaaca catttgcttt gagaagtggt ggtaggaggc
                                                                       660
aagaccaaag gcaggaaaaa attaangagg tgagatctac tcaaggagag ctcaaaaaaa
                                                                      720
aaaaaaaaa actngggccc tttaga
                                                                       746
      <210> 479
      <211> 750
      <212> DNA
      <213> Homo sapiens
      <400> 479
gnnnnnnnn nngngnnnnn ttctannntt cntattnnct nggagetegt tctttctnca
                                                                       60
ggatcccntg cgattcgaat tcggcacgag ggtagactgg ctagggatcc tggacccagg
                                                                      120
gttccacgta gcaacacctg ctgagttctc tgggttttct tcctgcctca tgtagcccag
                                                                      180
acttggagct gaagaagctg gaaacatgga aacaccaaca gctacagacc aaaaaaagtc
                                                                      240
ccaacaaagg cctgtcagtc tgccagcctg ttctgtggat ttccaactca agattqcaqc
                                                                      300
atcaactcac acctgaagtt ctggcttccc tacaaacttt gaacttgcca gtccccacaa
                                                                      360
tggcataagc caatteetta aaatgaatgt ctagttetag ataatgtgtg tattetactg
                                                                      420
gttctgtttc tctggagaag cctactaata gatcatttgt cttagtcaat tcaagctact
                                                                      480
ggtacagatt accatagact gggtggttaa aactaccaat cttattactc acagtttttg
                                                                      540
gagtetggaa agtetgagat cagggtteca geaggattga gttetttggt gaacatnete
                                                                      600
tttctggnct acagaatact gggttacttt aagtnggaaa aagtagggtg aagctgggtc
                                                                      660
ntttggcctc ttcttttaag ggggactaat tcatgaaggg ttccaccctt attgacctat
                                                                      720
tttaccttnc caaanggntt ccattttccn
                                                                      750
      <210> 480
      <211> 714
      <212> DNA
      <213> Homo sapiens
```

<400	> 480					
gnnnnnngnn	nngnggnnnt	tcnaccgttc	ttntgaccta	gnetegntnt	nnccnacnna	60
		acgagataac				120
		tatctgntga				180
		tagtgagaat				240
		ccaagttgtt				300
		agaatccctt				360
		aggactgaaa				420
		tcctcancaa	_	_		480
		atatggaccc				540
		gcctaaaata				600
		cgtacacttg				660
		gtcgatacnt				714
5 · ·	_	5 5	3	.	J	
<210:	> 481					
<211:	> 742					
<212:	> DNA					
<213:	> Homo sapi	ens				
	_					
<400	> 481					
agccnttcta	aangccnttt	gnctnngnnc	cccnttccta	annentgget	aatncttggc	60
nactcgttct	ttctncacgc	acccatcgnn	ncgaattcgg	cacgaggcat	gaaaggagtc	120
		ggacggtgct				180
		gcagttgaca				240
		tctccgcctc				300
		ggaagaagca				360
		tatggatgag				420
		gctcttacag				480
		tcttgctaaa				540
		tgagagcatc				600
		ctgaagaacc				660
ttcagancca	atgacaagac	ccancaagca	naagagccct	ggggagccct	ctgctgatcc	720
	aaaatggggc					742
<210:	> 482					
<211:	> 752					
<212:	> DNA					
<213:	> Homo sapie	ens				
<400						
		ctttgntcta				60
		gatcccatcg				120
		gagtggcacc				180
		ctttggccac				240
		gctactgctt				300
		ggctatcagc				360
tccagaactc	aggatacctc	agggataggt	cacagccaag	agtacaaagg	aatcttcagt	420
actgaacaaa	acagaaccct	tcatgatttg	acaaaggtca	ctttctgttt	gcctggacca	480
		ccaactctta				540
		gaagcaaang				600
agancagcct	ggcaacacag	tgagtgagac	cctgtctcta	tttaagaaaa	aaattattaa	660

```
720
gaaattttat taaaaaagga agaatcagga aaccaaagtc aaccccaact taaccctcaa
                                                                      752
tgaaccagcc ctaacacaga tgangggatt tg
      <210> 483
      <211> 849
      <212> DNA
      <213> Homo sapiens
      <400> 483
gnnnnnattn ccctttnaaa tnccncngaa ancccttgga agcactaccn ctcngacccc
                                                                       60
                                                                      120
tttggaacgn cgactnctnn atatatcnng gatataatag gtgataagtt ctgncaatta
gtaacatcng gaaaaaacag ctnngncctg ggngaaaaag gatgccaaaa tngcctggaa
                                                                      180
aaqagcagng gagaggagtc cgggagatgn gngatgcatc gggacgcanc atngntnaac
                                                                      240
attcactggg tctgccaaaa atgtggattt gngggctgct tagatngtta caaggcaaaa
                                                                      300
ggaaaggaaa gagttctaga gataaaagaa ctatatgctt ggatgaagtg tgtgaaggga
                                                                      360
cagecteatg atcaccaaca tttaatgeee aacceaaaat tatacenggt tetgntttga
                                                                      420
cagacttcta gatgccatgc acactcttag ggaaaaaata ttgggattaa ancccatngg
                                                                      480
cattggacta acaaacagga atttacaagg tnggaaantt ttncnaccaa tgaaaggggg
                                                                      540
qatcncaagg ttttccagaa nggntentaa tencaggnaa taaaaattne tetngqqcaa
                                                                      600
gccctgagtc ttaancagca aaaanactcc tcccgaancc tgnagaaaaa aggggggga
                                                                      660
gccaggcccn naaanggaan gtnaggccn agatnaacaa ngtnacctcc ncccagnaaa
                                                                      720
ccccannccc caactggnac cngggnaacc cacaacnttt gcngaagncc aaaaaagncc
                                                                      780
nnnagangga aaaaaaaaa naananaaaa aacctnnnag cccctaagaa accttagggg
                                                                      840
nggcccncc
                                                                      849
     <210> 484
      <211> 1098
      <212> DNA
      <213> Homo sapiens
      <400> 484
gnnnnnnnt ttnnnnnttt ttgnaaaanc ccccttttgc naaatngncc ctttttntgg
                                                                       60
cangggatec ccatntttat nteggacatt ttegggecac eggaagggge egggggecec
                                                                      120
cgggccncca ggnccgggna aaggcccccc ttgggcggcc cccggncggc cccaatgggt
                                                                      180
tccaaaaagg gaaaaaaaa aaagggggaa cctgggaagt tggcccanga aaangnaaaa
                                                                      240
aaaggnaagn aaaccttccg ccaatgggaa tggggaaaaa taattttttc ttgaaaaacc
                                                                      300
caaaaaagga atggttattt ttcaaattta aaaaaggaac nttgggaaga aagaattggc
                                                                      360
ttcccacncg cagaaagggc attactggct atgtcaagta aaagaagtcc ttcaaagctt
                                                                      420
agttgatgat ggtatggttg actgtgagag gatcggaact tctaattatt attgggcttt
                                                                      480
tecaagtaaa getetteatg caagggaaac ataagttgga ggttetggaa teteaagttg
                                                                      540
tctgagggaa gtcaaaagca tgcaagccta cagaaaagca tttgagaaag ctaaaattgg
                                                                      600
ccgatgttga aacggaagag cgaaccaagg ctntgcaaaa agagcttttc tttcactttc
                                                                      660
gagaccaaag gggaaccagc tnnaagggcn agaaaagttn gaaaaaaatt ccaaaggaac
                                                                      720
tggtggaatc ccccaaaagg tttggttggg gaaagaaaaa ttcccgcccc aangccaaaa
                                                                      780
tttaaaaggt ttngcccca aagggaaaag ncttgncctt taacccagga attggggacc
                                                                      840
ctgggantta aaaccnataa ttttcccgcc naattnnaaa aaattcnttt ngggqncccc
                                                                      900
naaaanggna aaaaaatttt nggggggttt tggnaaggna aaaatttnaa atttqqattt
                                                                      960
ngaaactttt ttngggaatt ccccagaaag aacttttgac cttccnttng acctnaaaaa
                                                                     1020
ttttcccttg ggggggtgna anggatgttc ccaagctttg tggnatattg gtaaaatttt
                                                                     1080
naaccttttn tncttacc
                                                                     1098
```

PCT/US98/27610 WO 99/33982

```
<210> 485
      <211> 798
      <212> DNA
      <213> Homo sapiens
      <400> 485
gnnnnnant nnnntttnaa atcettnntg aatcetttga antaccatec enttttnega
                                                                      60
attnggcacg aggaaaggtg gcgcgcttct cacggctgag ttgctgcgcc ttgcagacgg
                                                                     120
aageteeeca caggeagage tgettggatg tgtgagteat gaaccagaga ageceegete
                                                                     180
catgagcagt gactccccan gccctgtgac ctccctcctn cttgcagctc ctcctggcac
                                                                     240
cagtececag ggetetectg ttggtagtte etgettttet tettggaaat teetegtgga
                                                                     300
cctcgagatc tttaccctaa aatagttctg ttgaatttca ccctqqcaat qtaaattqat
                                                                     360
agettatett cacagatgee agacaatgga caacteacea teagteetet geteacetga
                                                                     420
gacaaatgca tgtctgattg cttcctctgc cctattgntt atgtgaaaat gcagattcac
                                                                     480
tgagccagac taaggcatca gtgactgttc ctctacctgc ctctcacatg gagattgtgt
                                                                     540
attcagtgaa aggctgatca aagacccaaa ggaatgcaac agtttatctc ttatctacct
                                                                     600
atgacctgcg aactggccaa caacccagtt gttgncgcct tttcagacag aaccagtgtc
                                                                     660
atcttacacg tattnaaatg gatgtcctgg ngtctnccta atatgtattc aaaagcaagc
                                                                     720
tggggcctng accacccttn ggcacatatt cctcanggac atcattcctg angctgtgtc
                                                                     780
actggcatgt ccttaanc
                                                                     798
      <210> 486
      <211> 785
      <212> DNA
     <213> Homo sapiens
      <400> 486
gnnnnnnttt gaaanceett tenaatnett ggeattgnte tetttgeagg atecetegat
                                                                     60
tegetgacaa ettgattggg tteteettea ggtttgaage geeetegaga agtgtetaaa
                                                                     120
ggagacagtt gatagccaaa caacagtttt ggattcactg actgattatg aaagaagcag
                                                                     180
tagactggta tcaagaatca gtcagcaagg aggccctcac cagacgccag tgccatgttc
                                                                     240
ttggacttct cagcetecat atteatgaac taagtttttg gaateettag gettecaegt
                                                                     300
gtggaaagcc tgagctaacc tactggagga tgagccatca cctggagcag attcaggcca
                                                                     360
tectagttga agecteecta ggecaageaa cegtecaact accagacatt gaecatteag
                                                                     420
480
gaaactattc agagaaaact taagccacta agttttatgg tgttttgttc tgtagcagaa
                                                                     540
gcataggcat actgacaata caaaccgaaa tccttctaac gtagtggacc ttttcangcc
                                                                     600
agcatttttt ccttgaaaac ctggagcatg tatccatctt atagcagaga tcactttcac
                                                                     660
aatggttggg ctcttggatt tgaattgatg atgtaatgag ccctctttnc ngattgnaac
                                                                     720
ttaattactc tgggnatttg ntggattccc aaccttctaa tatttacttt tcctctttan
                                                                     780
taanc
                                                                     785
     <210> 487
     <211> 797
     <212> DNA
     <213> Homo sapiens
     <400> 487
ttgtnnnncc cttttnaaat neetttgget anttgntetn tttgetngat cecategatt
                                                                     60
cgaattcggc acgagnnngg actaccttnc aaaaccnggt ngggaagent gttacagaan
                                                                    120
tgatntctan teccetgnat tetggatget geagaceaac acetgeenae aanaeneana
```

180

```
240
cacacacann caancantat catgtaagac agnncgntna ntnnnnnatt ntnatncttn
                                                                     300
nncatttacn cantnttqta nantqqntca tqnqtctata natnnttqta antattntnt
                                                                     360
gananangac ganantetga atettaagea tatgeteeat enttnnatat getntggtgg
agaggetnge entnatteat nttnncatgg agneaagttt aatgeeteta gantacatte
                                                                     420
tgggcttcaa gcatncttat ttnnaactcc ctgagtgatg ggtggataaa tcnaacattg
                                                                     480
nctnagtggn ntcaagacaa ctttgntggt ggttttgntc acaatcatga aaatggttnn
                                                                     540
qccagataaa tattttgata ttagntttcn tttttnatat annqcqqtaq qtttgaattg
                                                                     600
                                                                     660
nacnttnaaa tgnntngggt tgtnaagaca ntggnttnca atnnaattta tnacatgaat
tggngnetee cetttggnga aacettaaag aanttntgna taettettea taaaagggtg
                                                                     720
tgngatttng naantttegg gggttttnaa tttttnntga agettattte ntganaatnt
                                                                     780
acttggntta ccaagcc
                                                                     797
     <210> 488
      <211> 762
     <212> DNA
      <213> Homo sapiens
      <400> 488
caaatcnntt gctctngttc tttttgcagg atcccatcga ttcgcgacag ctctccaata
                                                                     60
ctcaggttaa tgctgaaaaa tcatccaaga cagttattgc aagagtttaa tttttgaaaa
                                                                     120
ctggctactg ctctgtgttt acagacgtgt gcagttgtag gcatgtagct acaggacatt
                                                                     180
tntannggcc caggategtt ttttcccagg gcaagcagaa gagaaaatgt tgtatatgtc
                                                                     240
ttttacccgg cacattcccc ttgcctaaat acaagggctg gagtctgcac gggacctatt
                                                                     300
agagtatttt ccacaatgat gatgatttca gcagggatga cgtcatcatc acattcaggg
                                                                     360
ctattttttc cccacaaacc caagggcagg ggccactctt agctaaatcc ctccccgtga
                                                                     420
ctgcaataga accctctggg gagctcagga aggggtgtgc tgagttctat aatataagct
                                                                     480
540
tgtgaagcaa ggagcttaga taagacaccc cctcaaaccc attccctctt caggagacct
                                                                     600
accetteaca ggeacangte ecceaaatga gaagtetgnt acceeteatt tettnatett
                                                                     660
tttacttaaa ctcaagaggc agtgacaggn agtcaggggc aagacattac attttcata
                                                                     720
ctttcccaca tctgaaaaga tgacagggga aactgcaaag cc
                                                                     762
      <210> 489
      <211> 822
     <212> DNA
      <213> Homo sapiens
     <400> 489
ttnnnnnnct nnnggnnttt cnaatnottg tttotognoc tttotgoagg atoccatoga
                                                                     60
ttcgaattcg gcacgaggat tttcgaaact cttcagctac ttgccctttt ttatctgaaa
                                                                     120
ccatcatacc ttctgaaaga aaaaagcata tcttcattga cataacagaa gtgagatggc
                                                                     180
ccagtcttga tacagatggt accatcntnt atatggagag tggcattgtg aagataacat
                                                                     240
ctttagatgg tcatgcatac ctctgcctgc ccagatctca gcatgaattt acagtacatt
                                                                     300
ttttgtgtaa agttagccag aagtcagact catctgcagt gttgtcagaa acaaataata
                                                                     360
aagccccaaa agataaacta gttgaaaaaa ctggcaaaat ctgtatacgt ggaaatttac
                                                                     420
cangacagag actgaagaat aaagaaaatg agtttcattg ccagatcatg aaatccaaag
                                                                     480
aaactttaaa gaagatgagt tgtgtaaatg gaactgaagg gagggaagag ctgccttcgc
                                                                     540
ctggtacaaa gcacacatgt gtatacacat gggtcaagca gtgctggtct gtggctgcct
                                                                    600
gtccagagga atgggaaata ttcctttgtc tttagcactt catttttcta aataaaaatc
                                                                    660
anccaatatg totaaaaaaa aantttnttn ataataaacc tngaagccct nttanaacct
                                                                     720
tntnntggag gtcctnnttt accntatgat tcccggaact tggataagga atcccntttg
                                                                     780
```

PCT/US98/27610 WO 99/33982

```
gattgganat tttgggccna aaacccncna nncttggaat cc
                                                                       822
      <210> 490
      <211> 789
      <212> DNA
      <213> Homo sapiens
      <400> 490
ntgtaancet tttcaaatee ettggetaet tgntetttet geaggateee ategattega
                                                                        60
atteggeacg aggeeggaen gtgaetetgg nnaegettge gneentnaeg tagntngnng
                                                                       120
accntgcang anggaanaan ggctggccnn cngntgtacn ctnaccgtcc taaccccgcg
                                                                       180
aggtecaggn cegeteettt eggngnggat tetegeggaa nateeeteeg geagetettt
                                                                      240
gcaaagctgn ttagaaactt ctcccaaact cggcntggat acgactgcta tagggctcgc
                                                                       300
tgctgctttt gtggagctct tgctcctcta tccttggcct ctcctgggat acggcccaag
                                                                      360
gccaagtntt cacgcangtt ggtacgctta tttcgttctg gactctgggg qctntqaann
                                                                      420
ttcaccacgt ggactgctgg ggancgggnt necgancact ngnntacctt acnccanaat
                                                                      480
ctgacaactt ttctggacaa cctacccanc ttcaattggc tngngagcnc ntcngntgct
                                                                       540
ggggnntncn gtgcaaatgg agncncaatt ggtgggcaaa tngttgatgg ncaaaacggg
                                                                      600
aaaaagcaac nnncaangct tttggctnaa agccgatang acncaaatta nttnctttgg
                                                                      660
accttganaa tttcctcaan nnttttnagn anncnctttt ttncttggan aaanacttaa
                                                                      720
aagtgaacga ttnttgggaa anaaacaaac tataataact naaagctttt ntaaaaaaaa
                                                                      780
annaatnnt
                                                                      789
      <210> 491
      <211> 790
      <212> DNA
      <213> Homo sapiens
      <400> 491
tocaaaatno cottggantn attocccott noaatacott toottngnac actoccngtt
                                                                       60
tngntngatc ccatcgattc gaattcggca cgaggnaaca aagaaggaat gtcttcctca
                                                                      120
tgtttnggtc tatagaagac gttaaagaaa acttccagaa agtgggtttg aggcatgagc
                                                                      180
caccacgcct ggccaaagga tttaatgaat taatggatgt acagtgctgg ggctgttatt
                                                                      240
ctagggcctg cattgagact cacattttgc catcaaaagc cttttaagag gtggaggttg
                                                                      300
cggtgagctg acatggtgcc actgcactcc ggcctgagtg acagagtgag actctgtctc
                                                                      360
acaaaaaaa taatgccctt taaataatga ataatagtga tagaaaatgt catttcttgg
                                                                      420
acaaatgaaa aattgaaatt aatgtatata attagatatt attagctact cttaggtagc
                                                                      480
ttcatttgtt gaaagtttga caagtgaatg aagttcacat ctggaaatcg ttgaacattt
                                                                      540
ttcgttcatg gaactcaatg gctacgttag tcgtttatgc ttttcactgt tgtggtaggg
                                                                      600
gctttggaaa gtnaatgcca tcaacaatgg atacagaang acctggattt ggaataaggg
                                                                      660
caaaaattta ttttgatggg gctgaattgc tctgccaggg agcattttgg gtattgagat
                                                                      720
gaaaatggcc tetetttgag actgagetge cacetggcaa attattgnet gettaanggt
                                                                      780
tctctttatn
                                                                      790
      <210> 492
      <211> 804
      <212> DNA
      <213> Homo sapiens
      <400> 492
tenaaateee tittgnnagn tienenetti gitteeetti neinggeine tigttettit
```

60

```
tgcaggaatc ccatcgattc gaattcggca cgaggtcctt ttgaaccacc ccaaagaact
                                                                       120
caacatggca aagcaaatgg taaaagcttc ccqactqttc tactttqqqt ccgcgcgaag
                                                                       180
cccactcacg tgtgatctgt gttgcccctg ggaggcccqg ggcgaccqga aaagggctct
                                                                       240
ctcaagttct gaaaagagaa tctgccacca gatcgaattt cgacccctga gcttgttcgg
                                                                       300
acgtatggtc caaattcaga ttaaggtggt cacccaaccc gagatgtcag gaaaggcctt
                                                                       360
ctgcagagaa aatgtccccc cacccgccat ctgcagccag gtgtgtgcca cacggcagcc
                                                                       420
ttcccgaaac atagtatgga ttttaaaaat gtgtttattt ttgtttctca accactttat
                                                                       480
aacgtatttt ttaatttatt ttgtaatgtc ttgttttgaa gtattgctgc tatccttgnt
                                                                       540
atcettecea etgittitat caetgatita tittigigaaa agitgitacae taatgiteta
                                                                       600
tgtcaaaatc aaaaagtatt taatgaaata ctagttctat ttaatgtggg ntatggaacc
                                                                       660
ancttggaaa cacaaaacaa acaggggatt gtacaagcan gettggggee caagnaaggt
                                                                       720
caaggttcat ttggttacca tatgccnata aaacctcanc qaanttttaa aaaaaaaann
                                                                       780
nnnnnnaaaa aancttggng ggct
                                                                       804
      <210> 493
      <211> 800
      <212> DNA
      <213> Homo sapiens
      <400> 493
ggnncnnttt nccccccttt tgaaaacccc ttttgggnga ancccncttc tttnaaatcn
                                                                        60
cttggctact cgctctttnt gcaggatccc atcgattcga attcggcacg agtatataac
                                                                       120
aacttttgct ttcaaagttg ggtgggacta gaacacacaa tqqaaqqatq qaqtcaqqaq
                                                                       180
acctggattc ttgtgcccgc tctggctttt acagtctgcc taactctatg cagtcacttc
                                                                       240
etgecageet gttteettae etacaagagg gagagacaet eeetggecag eetagttete
                                                                       300
agggtgaacg aaaggtcatt atcactgcat cctctagtca tttgcttctt cgctaattaa
                                                                       360
cacatcttga gcacctgcga tgttccagga acaggagatg gcagcgtgca agataaaagt
                                                                       420
ccctgacttc tagagactgc atgttagtgg caatcggcgt ctacccggcc ttcaataaac
                                                                       480
tactgaatga aggaaaattc tacctagcac cagacacaat tactgggttt ctaaaatgga
                                                                       540
attattcccc eggececetg catecageag cetgetgeag ggaageteet eegaagetgt
                                                                       600
aggcaggagc gggacaaatg cttgctatca gcttcacaga atgttaccta agtactattc
                                                                       660
ctacacageg cettacagaa caaacagtaa aaaccaaatg gnaagcatge aenggettaa
                                                                       720
aaactcaaac ttcctaacta ctcagtaatt anganggtca ttttacccca aaatagaatt
                                                                       780
ttcnatttat ccaataanaa
                                                                       800
      <210> 494
      <211> 757
      <212> DNA
      <213> Homo sapiens
      <400> 494
nggnttcnnt ctaactnaaa engttnggna acteneetet ntetgtngat eccategatt
                                                                       60
cgctaacaag cgattctaaa ccacctatga gtatttcttt tagggctcac ttaaatacat
                                                                      120
gtttgtatat actgtattct agccagaata attttagatc tgatcaggta gtagctaaaa
                                                                      180
ttagaaaaaa acaaaataga tgcttaaaga atttgcatcc atttttgagt ctaaatcttt
                                                                       240
taaaatatac tgagatccac atctagtgaa atgtcagtgt caaaatatta tagattatag
                                                                      300
ctaaaatcca gattaatact catttggggt tttttatagt ggaacttcat agtaatacaa
                                                                      360
aaagcagatt gtcttcctgt ctccgctgct cccacagtag gtattgaaac tggtaaaatc
                                                                      420
agttttttga tagtgtgtgt atataagaaa aaatagatac acacattctt ttttctcagt
                                                                      480
caacacattg attgaacact ctggcaaaga tgctgtggtg gatgangttg gagttcgaaa
                                                                      540
agaagaagca agcgctggcc tgccttgaaa gaacccgaaa gtctttccca ttcacttctc
                                                                      600
```

```
660
tagaaagctg ccaagacaga ngcagaaagg aaatggatga tagttctgtc aagcacactt
                                                                       720
ctgntctcnt agaacttaga aatggttcta agagaacaga agttatngag aacagttcnt
                                                                       757
gtggaattca acatcttggg tgggacncat tggcttt
      <210> 495
      <211> 756
      <212> DNA
      <213> Homo sapiens
      <400> 495
ggnnnnnntc ttttcnaatg cttggctctc gttctttntg caggatccct cgattcgcaa
                                                                        60
gagagagtga tagaattggc agtgaaatat acgaaccacc ctcctgccct ctgggttcac
                                                                       120
aatacgtgta cacttgactg tgaagtggct gtgagagtgg gtgqagagtt cttctttqac
                                                                       180
cctcagcctg cggatgcctc tagaaacctc gtgttgattg caggaggagt cggaattaac
                                                                       240
cctctgcttt ccatcctgcg gcacgcagca gatctcctca gagagcaggc aaacaaaaga
                                                                       300
aatggatatg agataggaac aataaaacta ttctacagtg caaaaaatac cagcgaactc
                                                                       360
ctgtttaaga aaaatatcct tgatttagta aatgaatttc ctgagaagat tgcatgcagt
                                                                       420
ttgcatgtta caaaacagac tacacaaatc aatgcggaac tcaagccata catnacqqaa
                                                                       480
ggaagaataa cggagaagga gataagagat catatttcaa aagagacttt gttctatatt
                                                                       540
tgtggccacc ttcaatgaca gactttttct ccaagcaact ggaaaacaac catgtcccaa
                                                                       600
agaacacatt tgctttgaga agtggtggta ggaggcagac aaaggcagaa aaaattaaga
                                                                       660
ggtgagatct actcaggaga gctcaaaann aaaaaaaaa aaactnggac ctntagaact
                                                                       720
atagtgagtc gtnttccgta gatccagaca tgataa
                                                                       756
      <210> 496
      <211> 744
      <212> DNA
      <213> Homo sapiens
      <400> 496
etttnaatee ettgeaeteg tettntgnag gacettateg attegaatte ggeaegagat
                                                                        60
aacacacatc acagtatgct ctcagaaatt tctttatttg aaccctatac caatatctgt
                                                                      120
tgatcaatga ccatttttgc tcagcatgga gaaacagtgc cctgcatgaa gggtagtgag
                                                                      180
aataaaaagg atcttaccac ctttatcatg agggtggctt tgctctctcc attccaagtt
                                                                      240
gttctctgtt ctagaaagca gatgtagtag acatctactg tttttgccta aacagaatcc
                                                                       300
ctttttcctt tttttgttaa aagtactcat ccctaatatt acattgttct qqaaqqactq
                                                                      360
aaaataacag aactcagcac catgatcgga ccgggacaat cagattattt cattcctcag
                                                                      420
caaacggaga tcgatccgaa aagtggaaat atgagctctt ctttggtgtt ggcatatgga
                                                                       480
ccctgagaga aagaacttta attttttctc ttggactgca ataaagtata gctgcctaaa
                                                                       540
ataccgtttc ctgacacttg gaggtttgcc acaatcggtg aaataaaggc aagacgtaac
                                                                       600
actggatgaa aaaaaaaan nnnnnnaaaa aaactcgagc ctntagaact atqtgatcga
                                                                      660
ttcgtagatc cagaatgata gatcattgtg agtttggaca accacactng atqcaqtgaa
                                                                      720
aaaatcttat tgngaattgn gatn
                                                                       744
      <210> 497
      <211> 772
      <212> DNA
      <213> Homo sapiens
      <400> 497
gnttgnngtn taantttnta aggateeett tntntgaane eetttetgea ggateeeate
                                                                        60
```

```
gattcgaatt cggcacgagg caggagnaat cacttgaacc ctggaggttn cggttgcagt
                                                                     120
gagcacagat catgccactg cactccagcc tgggcaacaa aacgagactt cgtctcaaaa
                                                                     180
aaaaaaaaca tagaatttgg atcetttggt egggttetee caaattettt tgaggtgtee
                                                                     240
atggtcaact gcttcagctt tgttttggca accccctgcc cgaagtcgca tataggctgt
                                                                     300
tetteacett gtttecaagg etgaggaaca gaaagtagee tetgttttga ggaggtggaa
                                                                     360
gttaagtata catttatttt ttactgtgac ttgttcagga ccacatttta caaaatgcct
                                                                     420
tgtttccttc attgtttctg gaaaggaaag ttctattaat attgntttac tttgaatata
                                                                     480
gaatagtttt tttaattagg gcttattttg aaaaattctg agtttaattc aaatgtatgc
                                                                     540
caatacette caaagtaagg taatatteag agacagttgt tggtgateag atggettaga
                                                                     600
gaaaatttct qqaatattca cattcqaaqa tccttattat qaatqtcttt qacttaaatc
                                                                     660
taaccaaaaa ctgcacatta ttctttgnac attttcatta tataqngtta acaaqcttan
                                                                     720
772
     <210> 498
     <211> 773
     <212> DNA
     <213> Homo sapiens
     <400> 498
nttnagenta nnageegttg tantgaagee entttgetae ttgetetttt tgeaggatee
                                                                      60
categatteg aatteggeac gaggacccag gtagaccage teaagagtte atgttetttg
                                                                     120
teatectect gtgagetete tgtaagtete tntettgeee ateaceaeat ecetaqtaet
                                                                     180
gggtatcagt ctggccactt ggctttctgg tttgccccaa tgtggtctat tcttgatgca
                                                                     240
gctaccaaaq taatqttnta aaaccattat accaaqttac tatccttqtc aaaaccccca
                                                                     300
gtaactgcca atctcactta gaataaaatc cggactcctg tgaagcacag nataaactgg
                                                                    360
cactgoetat gcagcaacet catetttace gtttetgeet tgeteactee etteagegee
                                                                     420
ggtattette etgatgeece tagtacacaa caacteette etgetecaag agtaggaaaa
                                                                     480
tnactgtete tetgecagtg agatteetet tetggtatta cetntqette attgetqaat
                                                                     540
cttctgcaat atcatcttct aaaaagagcc tttnaaaatc accttttcta ttatgcccta
                                                                     600
ctcantttcc agtccctgaa tggccattcc ccactttcat agccacttaa ttgctatctg
                                                                     660
aaattacact taaaatggtc accttcatga tgggaaggca attaattgcc tttgtcactg
                                                                     720
                                                                     773
gtatgtctag agaacaagca gnttggctca tagtaggcac tcaacaaaaa ttt
     <210> 499
     <211> 735
     <212> DNA
     <213> Homo sapiens
     <400> 499
getteaatan ettttetaa ngetettttt geaggattee ategattega atteggeacg
                                                                      60
agagtaccca nanttgcnag gagtntnntn actgatntag ccaggtggca atnatgagtg
                                                                    120
aatggatnaa naaaggcccc ttagaatggc aagatnncat ttacnnagag gtccnagtgn
                                                                     180
canccagtga cangaatgag tttnaaggga tgggttttaa ctacagaccc agnctctgcc
                                                                     240
aatatngacc ttgtgaactt ccttgaagat ggcancatgt ctgagaccgg aattatggga
                                                                     300
catgctgtgc agactgttga aactntgaat gaaggggacc atagagtgag ggataagctg
                                                                     360
                                                                    420
atgcattttg ttcacgtctg gagactgcaa agcatacagc ccacaggatc tggaagagag
                                                                    480
aaagaacagc ctanagnaaa tggctngaga ngaaccacat tcccatcact gaacagggan
acgetteaag gaetetetgt gtggetgggg neetgaetat ngaeceaeca tatggteana
                                                                    540
naaattncac cagctctnat gagantattn tgtcgcgtgt tcaggatctt antgaaggac
                                                                    600
atcttacant ttnccaanna naagncatga aatgtgacat tctgcttgaa naagacnata
                                                                    660
ttttatcctc atnaatgttt aaatgtaaaa nnnnananaa aanactcgag ctntnaaatn
                                                                    720
```

```
tngtgagttn anang
                                                                       735
      <210> 500
      <211> 926
      <212> DNA
      <213> Homo sapiens
      <400> 500
tttaagccct ttctactnct cttttgcagg attccatcgn ttcgaattcg gcacgaggat
                                                                       60
ctctatacta gtgaacagtg ccagttccac actttqqact taqaactqtt ctctaqttat
                                                                       120
tgtaacacag aatactgtca atccctaatt tacttaatgt tacttattgg aagtggggct
                                                                       180
gatgaaatac gcacaggagg gaaatctact gtgtttaggc acaggcagnc ccagtgtata
                                                                       240
aggagateat attecaaang gttgteagtt ggntgtttge aacctggaat gtatttteet
                                                                       300
ttagagacca ngttatccat ggtggttagg cccctagagc agctggaaaa agatgatcaa
                                                                       360
accaataggt tngctgacat cnaataatgt aataagtttg ctaaaggaat ctaccatcaa
                                                                       420
atntnatatt gnttccaggg aaggttgtnn nttaanntnc cntcttngtg ncatantgga
                                                                       480
controcents coagteaint sentsansse inggenngt singstiff intertings
                                                                       540
cnnctnanca atattcata tenecectng ctaaaattet ttnanannaa ntteteantt
                                                                       600
tctcccttta ctanaanttt ngtntttnnt ccntttanta tttnnnccta tntntntcqt
tennanatnt cattnnntnn ttntnngetn ntnnateace ettanetenn teteanntat
                                                                      720
entnntenta ttatetetnt attnntenet tntnatnate ntteennntt gtntannena
                                                                      780
ttatntcttg ttnntntnct cncatctctn tcntnttctc ngctnannnn actccnnnnn
                                                                      840
tenenetent nnnnanatne atatnetnet tingnitatat annnnnntni niaentanet
                                                                      900
cnnnatnnca tnncnatatn nttngt
                                                                      926
      <210> 501
      <211> 706
      <212> DNA
      <213> Homo sapiens
      <400> 501
naatnettgg etettgttet ttntgeagga teecategat tegaattegg caegagaatg
                                                                       60
caaagggctg cagttctcat tcaggctact ttcaggatgc acagaacata tattacattt
                                                                      120
cagacttgga aacatgcttc aattctaatt cagcaacatt atcgaacata tagagctgca
                                                                      180
aaattgcaaa gagaaaatta tatcagacaa tggcattctg ctgtggttat tcaggctgca
                                                                      240
tataaaggaa tgaaagcaag acaactttta agggaaaaac acaaagcttc tattgtaata
                                                                      300
caaggcacct acagaatgta taggcagtat tgtttctacc aaaagcttca gtgggctaca
                                                                      360
aaaatcatac aagaaaaata tagagcaaat aaaaagaaac agaaagtatt tcaacacaat
                                                                      420
gaacttaaga aagagacttg tgttcaggca ggttttcagg acatgaacat aaaaaaacag
                                                                      480
attcaggaac agcaccaggc tgccattatt attcagaagc attgtaaagc ctttaaaata
                                                                      540
aggaagcatt atctccacat tagagcacag tagtttctat tcaaaqaaqa tacaqaaaac
                                                                      600
taactgcagt gcgtcccaag cagttatttg tatcagtctt attacagagc tttaaqtcca
                                                                      660
aagatatcaa atatgcacgg gctgcacact aatcagtctt ctatca
                                                                      706
      <210> 502
      <211> 784
      <212> DNA
      <213> Homo sapiens
      <400> 502
ttnntttttt tggttaccct ttgctctngg nctttttgca ggatccctcg attcqaatte
                                                                       60
```

```
ggcacgagcc ttccacggtt atttcacaga tatggagagc tggaagcagg gagtgagtct
                                                                   120
ctgagtgttg gaattgtaag ggatcagaag cagggatcag aagcagtggt gaagttcatc
                                                                   180
                                                                   240
caccataaaa cacacaggtg actttgcctt gaatctgcag gactgaagcc aactcttggg
cacagaccet tagtecette ettggecact etaagteaga tagtecagag ecaggecett
                                                                   300
tqqqatqtqa caccqaqata aatcaqaqaa aaqctqtqaa qcttqqqqaa caqaqqqact
                                                                   360
tttggtgaag taggtggtct gcagtttcta tcttcttggg aaaagcaagc tggaaaagtg
                                                                   420
480
tgatgttatt agcaactgtg tggtggagta gttgtgggct ggacaaatca atcgtgtgga
                                                                   540
600
ntncnnannn nccncccacc nancntncna aaaaaancet cgancettta aaaacnnntn
                                                                   660
qnnqaqqccn tatttacqtt anattccaqa cnttqaatan qqatnccatt tqnattqaaa
                                                                   720
ntttngggcc aaacccccaa ccttngaatt gccattngaa aaaaaaatgc cttttatttt
                                                                   780
                                                                   784
annt
     <210> 503
     <211> 764
     <212> DNA
     <213> Homo sapiens
     <400> 503
ttnntnttcc ttgaancett tttctacann cncctttgca gatcccncgt tcgaattcgg
                                                                    60
cacgagagac aaagaaaagg tggcaatcat agaagagttt ntagtaggtt atgaaacctc
                                                                   120
tctaaaaagc tgccggttat ttaaccccaa tgatgatgga aaggaggaac caccaaccac
                                                                   180
attactttgg gtccagtact acttggcaca acattatgac aaaattggtc agccatctat
                                                                   240
tgctttggag tacataaata ctgctattga aagtacacct acattaatag aactctttct
                                                                   300
cgtgaaagct aaaatctata agcatgctgg aaatattaaa gaagctgcaa ggtggatgga
                                                                   360
tgaggcccag gccttggaca cagcagacag atttatcaac tccaaatgtg caaaatacat
                                                                   420
gctaaaagcc aacctgatta aagaagctga agaaatgtgc tcaaagttta caagggaagg
                                                                   480
aacatcageg gtagagaatt tgaatgaaat gcagtgcatg tggttccaaa cagaatgtgc
                                                                   540
ccaggettat aaagcaatga attaaatttg gtgaagcact taagaaatgt cattgagatt
                                                                   600
gagagacttt tataggaaat cactgatgac ccagtttgac tttcatacat actgtatgan
                                                                   660
ggaanattac ccttagnatc ttatggtggg actttattta aaaacttnca nnaatgttcn
                                                                   720
ttcgacagcc ttccatttta acttcnaagg cnncaangaa ttnt
                                                                   764
     <210> 504
     <211> 795
     <212> DNA
     <213> Homo sapiens
     <400> 504
ttgtacntct ttttnnaaac centngetac ttgttetett tgcanggate cetegatteg
                                                                    60
ggaatctcct agaaagttgt gattttcgag ccatatcctt ctgtggtaga tcctaatgat
                                                                   120
cctcagatgt tggccttcaa ccccaggaaa aagaactatg atcgagtaat gaaaqcactg
                                                                   180
gatagcataa cttctatcag agaaatgaca caagcaccat atctggaaat caaqaaqcaa
                                                                   240
atggataaac aggaccccct tgctcatccc ttactgcaat gggttatatc aagtaataga
                                                                   300
tracatattg tgaaactgcc agttaacagg caattgaagt ttatgcatac trcacatrag
                                                                   360
ttccttcttc tcagcagtcc accagccaaa gaatccaatt ttagagctgc taaaaaactc
                                                                   420
tttggaagca cctttgcatt tcatgqctca cacattgaaa actgqcactc ctcctqanqa
                                                                   480
atggtctggt ngttgcttct aatacacgat tgcagctnca tggngcaatg tatggaagtg
                                                                   540
gaatctatct tagtccaatg tcaagcntat cattttgntt actcagggat gaaccangaa
                                                                   600
acagaaaggt ntcagcccag gacgagccac cttcaagcng ttaanaagcc agcaattaca
                                                                   660
```

```
720
ttcacagtcn ccaggaaana aaaggncagn cctatcccc ctttncctgg caaaaggccc
                                                                    780
gtnaacctta aanaaactgc ctttagccct ttatnntqqa aaqtqqattc ncncttnatt
cttqqacccc tqncn
                                                                    795
     <210> 505
     <211> 774
     <212> DNA
      <213> Homo sapiens
     <400> 505
tnntntnntt nantngaace etttnetett getetttttg caggatecet egattegaat
                                                                     60
tcggcacgag cacaaggaga agaagttaat taacattgaa ngatgagaag acatcttgga
                                                                    120
agaacttgaa ttgggccttg gaagaagaac agccattcaa atagatagaa ttgtggtagc
                                                                    180
aaaggcatag aggtaggaaa gtatagatct ccagggacag tagtcatggg gttggggcac
                                                                    240
tgttggaatt taaggttgga aggatatatt ggagccctt gaatacggta acaaggcaca
                                                                    300
360
gactggtact ttaggaattt taaaatgtgg atcattgtac tactaataac tatttatttt
                                                                    420
atatttacta totactaagt aatttacatg tattttcttg tactgactgt aaaccttctg
                                                                    480
ggtgtgggtg ttttaagtgc cattttactg atnaagaaac tgaggcttaa atagttgaaa
                                                                    540
taagtcaccc tgttagtgag tggccagaat gacaagtcag atctanggtt tgtctaactn
                                                                    600
ccaaagatna tataaaaata atggatetet eetttteeet tatgeataaa atatggggag
                                                                    660
cntttttaaa tcattaccca tncgattgnc caaaaaaata cctttnggga aaactgatta
                                                                    720
ttantattcc anaataaatt tcaacggcct gcntngnctn ctttacaact ttnt
                                                                    774
     <210> 506
     <211> 796
     <212> DNA
     <213> Homo sapiens
     <400> 506
geoneecenn tttngntete aacttgtace etttttgean nanenegnne tnettgeagg
                                                                     60
ntcccatcga ttcgaattcg ccacgangtt atattaaatt attctttgtt tttctttttc
                                                                    120
ttttaataaa geetgeaagt taetaaattg tagttteata aattetgtag taaagtatea
                                                                    180
tcttggcagt gtgccaaagg tgaaaatgat gctttctcta acagagaaat tcttagtgac
                                                                    240
tccagtcgta gaaaaacgtc tttacaacct gaataagatt gaagaattgt gaacatacca
                                                                    300
tggcctattg gatgaatcat ttgccgtagg ctaaatcaga ctgtagggtt tgtgatggat
                                                                    360
ttatggagta tgtgggtata gaaatcatga atctagcatt tgttttcaga gattcaagca
                                                                    420
tagtettaag ggtanateag aaatgacaaa tgaatteaaa acetageagg tgeattgtna
                                                                    480
atgtgtgccc agttntgttt tggaaatggc agttccttgg ggtcatgttt ctactggcaa
                                                                    540
aatttgcaat antgtnctat tgtntgtaat ttcaaaattt ataagattat cccccgttcg
                                                                    600
cccaagtaaa acctgtnctg cccaatanaa tcctggantc gnngagaaat cgcntccatt
                                                                    660
cgnngntcaa ctcgggatnc ntcgncttaa naaaatnttn tccnggancc ccntcatnan
                                                                    720
gaanaacacc anactattnn gggnacctgn aangeteaat ngeeenngee nennangnen
                                                                    780
nttttccngg naannn
                                                                    796
     <210> 507
     <211> 774
     <212> DNA
     <213> Homo sapiens
```

<400> 507

```
ctnntttntt ttngaancet tngetettgt tetttttgeg gateceateg attegtgaag
                                                                      60
aggagacggt gacctgggct ccttatgtgc ctgaaagagt ttgagtttcc tgttaactcc
                                                                     120
aaatcaacag tattttcaac aagaaatgtg caattgaaat caagtgctgt ttaagtgcag
                                                                     180
ctaggatttc cacaggaaga cacttgcagt gaacagagtt atggagcagc aaaaacacag
                                                                     240
                                                                     300
atctatttgg aaaaagagaa aacatatgcg ttgtattttg cttcaattat aaaataccat
cctctcaaag gtggttctaa attacaaagg actttgattt ctaggtagat tctgggtaga
                                                                     360
gactteettt catattgagg cattaatgae acettttaae etgggaagea atatgaetgg
                                                                     420
agttgtactt tgagaagatt aatcaggttt ggttgcagaa tgaaagagaa gatqaagtca
                                                                     480
agagattggt ttagaggctc tagcagaagc ttagtcatat ttcaaaattga tcaaatatca
                                                                     540
agaaaaattc tgagctgcat aacttgtata aagtaatttt cagtgatttt ttcatggtta
                                                                     600
tgatnaaaga actggattta nccaqaaacc tttacctgqa ttcaaqattt aatttttcct
                                                                     660
ttgagcctca tccttaaagg attttcggga aaacattaag gggagccaaa nccnattggn
                                                                     720
tggttgggen tgccctnnaa ttgcctttgg acttttttaa ccgggctttt gnnn
                                                                     774
      <210> 508
     <211> 724
      <212> DNA
     <213> Homo sapiens
     <400> 508
cttgcctttg aaaancgttg gctactngtt ctttttgcag gatcccatcg attcgaattc
                                                                     60
ggcacgaggc ggcgctgacc cggccggccc cacacccqct cttcctcttc tttqccqcqq
                                                                     120
actecettte etgeeteeaa gaeetggtgt etcecaetgt gageecaget gteecacagg
                                                                     180
cagtececat ggacetagae teacetteee ettgeeteta tgaacetetg etgggeecag
                                                                     240
eccetytece agetecegae etgeaettee tyetygaete aggeetecag etceetyeee
                                                                     300
agegagegge cteagecace geeteceett tetteeggge eetgetgtea ggeagetttg
                                                                     360
cagaagccca gatggacctg gtgcccctgc gaggtctgtc gcctggtgca gcctqgcctq
                                                                     420
tcctgcatca tttgcatggt tgtcgggggt gtggggctgn nntggggccc gtgcccacac
                                                                     480
cangenance cetgtatggg atcanaggen egaagangea ntgnangetg ntggcanntn
                                                                     540
aantactgnc tgggctggaa nangaactnn taaaagtcnt ngcccnnatc caccttggna
                                                                     600
cccnannttn nnccintant cnnngggntn angtggtnnn nnctngggac agntcnntnt
                                                                     660
ggnntgncna tngnncnnat gnanacttgg ggttcannaa ncntttccnn atgnaancng
                                                                     720
ngtc
                                                                     724
     <210> 509
     <211> 803
     <212> DNA
     <213> Homo sapiens
     <400> 509
tnnnnnttta tttcnttcgt tctngntttt attacatcag ctctttctt tttgcggtcc
                                                                     60
ctcgttcgca attcagagac acacataaga aactggaaga agagaaaggc aaaaaqqaaa
                                                                    120
aagaaagaca ggaaattgag aaagaacgga gagaaagaga gagggagcgt gaaagggaac
                                                                    180
gagaaaggcg agaacgggaa cgagaaaggg aaagagaacg tgaacgagaa aaggagaaag
                                                                    240
aacgggagcg ggaacgagaa cgggataggg accgtgaccg gacaaaagaa gagaccgaga
                                                                    300
tegggatega gagagagate gtgaceggga tagagaaagg ageteagate gtaataagga
                                                                    360
tegeagtega teaagagaaa aaageagaga tegtgaaagg gaacgagage gggaaaqaga
                                                                    420
480
gaaccgggag cgagaaagag aaaaagacaa aaaacgggac ccgagaagaa qatqaaqaaq
                                                                    540
atgcatacga accgaaaaaa aaaaaaaaa aactcgagcc tnttaactat agtgagtcgt
                                                                    600
attacgtaga tccagacatg ataagataca ttgntgagtt tggacaaccc ccacttgaat
                                                                    660
```

```
gcaqtqaaaa aaatqctttn tttqtqaaat tttqnqatqc tnttqctttt tttgtaacca
                                                                       720
                                                                       780
tttttagctt gcaataaaca agtttnccac caaccanttg cnttcatttt nttntttcan
                                                                       803
gttcaagggg aagtttttgg aag
      <210> 510
      <211> 789
      <212> DNA
      <213> Homo sapiens
      <400> 510
gntttnnnnc nnttttaatn tacatacanc tacttgttct ttttgcaggg atcccatcga
                                                                       60
ttcgaattcg gcacgaggga acccccacca ttaagctaaa gtaaaaccct tttgagggaa
                                                                      120
gagggagact ggggagaagg gaaaagagag aaggcaggga gagtagggag agaaaacctt
                                                                      180
ccagcagccc agtaaactgc gggcgaagag atctacccgt ctccctccct cccacagtta
                                                                      240
ccattggcct tgtcatcgca agcatttgac aaaqacttqc ttqtttqqqc ctqtcacctc
                                                                      300
ctgaaaggct gctttagctg tggatgccct tgattaaggg agagagcgcc taggagctgc
                                                                      360
ctgccccanc tggggtgacg gctgtagggc tgggtctatg ttqcaaqccc tatatcctan
                                                                      420
catgcagtgg aaagtgctta gctctctccc tcctgacctc tgggcagcca gtcatcaaaaq
                                                                      480
cagagagacg tggcggcatg tgggcagcat gcccaggttc cttgctgact cagcacttat
                                                                       540
ttctgtagtt ttaaaaaaga atttaatgtt tttggttgta tttttttggg qqqqtqaqqq
                                                                      600
tgggcaaaaa catgggggta gttctgagtt gttagaaatg tttctgaatc aagtttqttt
                                                                      660
gaaaacacgt tgtgcctttg tacccattat aagatggtca taanacccaa gaactgataa
                                                                      720
getttgggtt ttttttggtt tggtttggtt ttttgettca ttttacccat tcatgcctag
                                                                      780
ggtttccat
                                                                      789
      <210> 511
      <211> 776
      <212> DNA
      <213> Homo sapiens
      <400> 511
catanagnic tigccttttt gnaggacnet cgattcgaat teggcacqaq cecccatett
                                                                       60
cactggttat tccacttatt taaaatgtcc agaataagca aatctccata tagaggaagt
                                                                      120
agattagtgg ttgcttcggg atgggaggaa tgggaagatt gaggtctttc ttttgcagtg
                                                                      180
ataaaaatgt cctaaaattg actgtagcga tggtcacaca actctgaata tgcttaagac
                                                                      240
cattgaatta cacactttac gttggtgaat tgtatggatg taaattatag ttcaataaca
                                                                      300
tagttacaaa agataatcaa aagcatgaaa gcactgttga tgtggnttgg atctgtgtcc
                                                                      360
tcaccgagtc tnatgttgaa atgtaagccc cctggtggga ggcgatggga ttatqqqqca
                                                                      420
gantecteae aaacgggtta geceaecege teaggetgtt eteetgatat tgagteetea
                                                                      480
tcacatctgg ttgcttcaaa gtgtgtggng ccttccctct atctcctact gctctggcca
                                                                      540
tataagangt gcctgcttct ccttcgcctt ntacatgatt gtaaagtttc ctgagcctcc
                                                                      600
tagaacnaaa gctgctgngc tttctgtcca tctacangan cqtqaqccca attaaacctc
                                                                      660
ttttttttt ttnngaggnn ntttnntnnc nntccnnnca ntttnanann cctngnanng
                                                                      720
gtttnnaaaa anaananngn naannnnnn nncccccngc ccttttaaaa taaaaa
                                                                      776
     <210> 512
      <211> 917
      <212> DNA
     <213> Homo sapiens
      <400> 512
```

```
ttatttcata aactattgtt ctttttgcag gatccatcqa ttcqaattcg gcacgagggc
                                                                        60
tgcgaggttt tcggctttgg ctcctgatat gcagcgacag aattttcggc ccccaactcc
                                                                       120
teettaeeet ggteegggtg gaggaggttg gggtagegga ageagettee ggggaaceee
                                                                       180
gggcgggggc ggaccacggc cgccctcccc tcqaqacgqq tacqqqaqtc cqcaccacac
                                                                       240
gccgccgtac gggccccggt ctaggccgta cgggaqcaqt cactetccqc gacacqqcgg
                                                                       300
cagetteccg gggggceggt tegggtetec gteccetqge gqctaccetq getectacte
                                                                       360
caggicecce geggggicec ageageaatt eggetaetee eeaaggeagg annanaanea
                                                                       420
nccncanggt tntncaagga catntacacc atttggatca nggcgtntta naaaaaaaan
                                                                       480
aatgttaatg anttggaaaa ntatttnaaa qootttnaat qnttnnnnna atcottnggg
                                                                       540
nttggcctta naaanccaan attntngtng gngggntntt aannccnnnc aantncnnnn
                                                                       600
nnattnentt naaaaenttt nnneeanggn ennaaaaaaa nggggnaann aaaaaaettt
                                                                       660
tttnnttnaa nnanttttt tggaaaattt naaanentng gaaaanentt tnnntngttn
                                                                       720
ntnangggaa annantnttt tgggnncnaa aaaacntttt naannnntnn nggttnnnan
                                                                       780
nnnttaaaaa ntttnnnccc ccaannnnnt nnanngnanc ttttnnantt ngggantaaa
                                                                       840
nttnnnnnna nggggnnttt tttnngnnna atttnnnnnn annnnnnnan nnangggnnt
                                                                       900
ttngnnnqna annntnn
                                                                       917
      <210> 513
      <211> 780
      <212> DNA
      <213> Homo sapiens
      <400> 513
tnnnnnnttt aaatecatta getaettgtt etttttgeag gateceateg attegtgegg
                                                                       60
gagcacccga gcctgcggct ccagacggac gcccgcaaqq tqaqqtqcat cctqacaqqt
                                                                       120
cacgagetge cetgeegeet geeggagete caggtetaca eeegeggeaa aaaqtaccaq
                                                                      180
cggctggtcc gcgcctcccc ggccttcgac tatgcagagt tcgagccgca catcgtgccc
                                                                      240
agcaccaana accegtangt ggteenegge ggegegggga ggeecaggge aatnngacag
                                                                      300
neceteegnt tgacteegee agtgetgeag necetactet tteanagttg ggaqeeetqg
                                                                      360
gacccaggca ccaattgttc ttgcaaactc accctgcggc acatcaacaa gtqcccanaa
                                                                      420
cacgtgctga ngcacaccca aggccggcgg taccagcgag cttttgtgta aatatgaaga
                                                                      480
atgtetnaag caaggggtgg agtacatgee tgetgeetgg tgcaccegan gangaagang
                                                                      540
gaaggacaaa tggacngtga acggccttcg cccgcgggaa agcttctggg agcccacatt
                                                                      600
caatgatgaa gggggagctg caagtgatga cagcatgaca gacctgtncc cctgactttt
                                                                      660
caccagaagg accttgaaca cngaggatgg ggatggactg atgatttttg acaacaaaga
                                                                      720
ggttgaaagg caaancccca aaaaaaaggc cttgtgaagg cagganaaan acaacctntc
                                                                      780
      <210> 514
      <211> 793
      <212> DNA
      <213> Homo sapiens
      <400> 514
tttnnnngnt ttannncatt ttgctactng ttctttttgc aggatcccat cgattcggaa
                                                                       60
ttatagtatt gacgtgaatc ccactgtggt atagattcca taatatgctt gaatattatg
                                                                      120
atatagccat ttaataacat tgatttcatt ctgtttaatg aatttggaaa tatgcactga
                                                                      180
aagaaatgta aaacatttag aatagctcgt gttatggaaa aaagtgcact gaatttatta
                                                                      240
nacaaactta cgaatgctta acttntttac acagcatagg tgaaatcata tttgggctat
                                                                      300
tgtatactat gaacaatttg taaatgtctt aatttgatgt aaataactct gaaacaagag
                                                                      360
aaaaggtttt taacttanag tagccctaaa atatggatgt gcttatataa tcgcttagtt
                                                                      420
ttggaactgt atctgagtaa cagaggacag ctgtttttta accetettet qcaaqtttqt
                                                                      480
```

```
tgacctacat gggctaatat ggatactaaa aatactacat tgatctaaga agaaactagc
                                                                       540
cttgtggagt atatagatgc ttttcattat acacacaaaa atccctgagg gacattttga
                                                                       600
ggcatgaata taaaacattt ttatttcagt aactttnccc cctgtgtaaa gttactatgg
                                                                       660
tttgggggta caacttcatt ctatagaata ttaagtggga agtgggtgaa ttctactttt
                                                                       720
tatggttggg gtggaccaat ggctatcaag agtgacaaat naaggttaan ggatgattcc
                                                                       780
caaaaaaaa aaa
                                                                       793
      <210> 515
      <211> 770
      <212> DNA
      <213> Homo sapiens
      <400> 515
cttattncat nnagctcttg ttctttttgc aggatcccat cgattcgaat tcggcacgag
                                                                       60
gttgtattgg aaagcagtag tgtggacgaa ttgcgagaga agcttagtga aatcagtggg
                                                                      120
attectttgg atgatattga atttgctaag ggtagaggaa catttccctg tgatatttct
                                                                      180
gtccttgata ttcatcaaga tttagactgg aatcctaaag tttctaccct gaatgtctgg
                                                                      240
cctctttata tctgtgatga tggtgcggtc atatttatag ggataaaaca gaagaattaa
                                                                      300
tggaattgac agatgagcaa agaaatgaac tgatgaaaaa agaaaqcagt cqactccaga
                                                                      360
agactggaca tcgtgtaaca tactcacctc gtaaagagaa agcactaaaa atatatctgg
                                                                      420
atggagcacc aaataaagat ctgactcaag actgactctg atagtgtagc attttccctg
                                                                      480
ggggagtttt ggttttaatt agatggttca ctaccactgg gtagtgccat tttggccgga
                                                                      540
catggttggg gtaacccagt gacaccacac tgattggact gccctacacc aatcagaact
                                                                      600
cagtgcccaa tgggccactg ttttgactcg gaatcatgtt gtgcactata gtcaaatgta
                                                                      660
ctgtaaagtg gaaanggatg tgccaaaaaa ttaaaaaaaa ccnccaaaaa aqcttccaaa
                                                                      720
aaaaaacctt taaactatag tgagtcgtnt acntagatcc aacatgataa
                                                                      770
      <210> 516
      <211> 825
      <212> DNA
      <213> Homo sapiens
      <400> 516
tttccagttt tanttttttc ancttttnga tcnntttgca ggatccntct tttcgaattc
                                                                       60
ggcacgagat tetecetaaa tigingatee caetgittae naaacigite intigigetg
                                                                      120
gentgetnan tgetntgtag nneetttetg naenntagge attgetettg gagaaennga
                                                                      180
tgtgctttnt ntnaaanggc anaccagngn tgnnctgnnt ttaatgatgc agancctnac
                                                                      240
tttatccaca cctggcccgt ttnacatttn agtaangnac gatatttggc tgatggctga
                                                                      300
acantttctg aaatacacnt ttagtgtatg gaantacaag accnntaaag gnctgccagg
                                                                      360
ttancatctc atctngcatt cnnntccttt ggcnanaaag gganatntca gaattatatt
                                                                      420
tcttgatggg gtcttttcaa tcantgtatc tgtcgaaann tcttaganaa anctatgtgn
                                                                      480
tcncggtgtt gtctaaaaan atnctttcaa anatgacccc tggaattncc tgananangc
                                                                      540
ttaaacgtga gaagacnggt nggcaaaaca ccctncnaag gttnttggna angcccnant
                                                                      600
ntgttttgtc tggcccatat aancttngcn ccattnaagc cncgggngag ctttgnatnt
                                                                      660
atattngngg ngttactttc tttgnncctt tgcggggaac ancttnnata atgcttntcn
                                                                      720
nccenanntg gaentttget ttttgnnnce nnacceccc aaagggngen cacetecant
                                                                      780
gaaaaagtct ttttnnaaaa gggctccttn ctnaaaaaaa nnnnt
                                                                      825
      <210> 517
      <211> 1444
```

<212> DNA

PCT/US98/27610 WO 99/33982

<213> Homo sapiens

<400> 517 ctctcncnnc nnnncnnntc tctnncnntn nnnntnntn nnnctcnnnn cnnnatctnn 60 nnnennetnn nnnnnentnn enteentete ttntntnget etentntete ntneatettn 120 conctattnt cntnntnntc nntentennn antnetnnnt tetnectnnc canetnteca 180 tnntntactn tcnntnntct ggctnttnta tntggggggt ctatttnttn ncttaaatcg 240 actngttcca agtctcntan engentetnt etnnetntet ntgenetnen etggggentt 300 aattncccnn gctnttatan aagngngnaa ttaaggtntc nnntctanng ctntgcaagg 360 ctaatgntta gatccngnta gaanncgnta catgttggga acngacanct tnctgcncaa 420 agngggctna ggcanngnnn tntgcaaann ctcnnntntc nnancttgnn tcncgtagan 480 eggnnnecce tgaattttnn anennggane nttaaatnnt ntngnggtae ganneenenn 540 ncgnnnnnc gnntannccn canngttaan tgcncccnna nnnantcaac tctntnntcc 600 tnntnnaacn nnnttantet annatnntta ennntnagnt ttteetenet nacnnetetg 660 tnettnttnn atettntnet tetenettna tttntatete ntntntntne tnecetnate 720 tatctnetae netetnttee netteteeet nnentetete ateatateee aegenaetna 780 necectetnn etettaeetn nntneteten tentateten nnacectett tetntntett 840 atnncnccta tectetaett atteteetee tattntneca eteaceette ntntntetne 900 nctnntcttn tnctatttnt actntcncta ttcctncntc tctnntgnct cccacccct 960 cttcctctcn ctctcctnnn nnnactactc tcaccntctc nnctntcnct ctacnnntnn 1020 anannteett antiteetne teateacant actetteeet eteatnntea nanetaantt 1080 ntnctctcac tctaccactc tntnctccac tcatatnana cttctatant nctaatccta 1140 tottottaaa entotootot tateneteta aneteetett entoqotane teenntneaa 1200 ctcgnaaatc tctccaatnc tnccccactc taaaaatnnc ncntcngant cccacttttc 1260 ngngcanaat nnaacnonan toonctooot ttagctatot ototanaaac coontttoto 1320 aacaggnacc necetnthte tenaaateet cathetheta etttatatht enecaageet 1380 cncctntgta anagcatete netnteenee aatnnanate teeetnetee natanatntn 1440 anat 1444 <210> 518

<211> 706

<212> DNA

<213> Homo sapiens

<400> 518

ctaatggetg gnngetegtt ettteegeaa caneeengeg antegaatte ggeaegaggt 60 ccgaagaaaa agactgtggt ggcggagatg ctctctccaa tggcatcaag aaacacagaa 120 caagtttgcc ttctcctatg ttttccagaa atgacttcag tatctggagc atcctcagaa 180 aatgtattgg aatggaacta tccaagatca cgatgccagt tatatttaat gagcctctga 240 getteetaca gegeetaact gaatacatgg ageatactta ceteateeac aaggeeagtt 300 cactetetga teetgtggaa aggatgeagt gtgtagetge gtttgetgta tetgetgttg 360 cttctcagtg ggaacggact ggaaaacctt tcaacccact gctgggagag acttatgaat 420 tagtgcgaga tgaccttgga tttagactca tctccgaaca ggtcagccat cacccaccaa 480 tcagtgcatt tcatgctgaa ggattaaaca atgacttcat ctttcatggc tctatctatc 540 ccaaactgaa attctggggg aagagtgtag aagcagaacc caaaggaacc atcaccttgg 600 ageteettga acacaatgag geatatacat ggacaaatee caeetgetgt gtgcataata 660 tcattgtggg taaactgtgg atcgaacagt atggcaatgt ggaaat 706

<210> 519

<211> 734

<212> DNA

<213> Homo sapiens

<400> 519 60 tngtaccaat tatctgctgg ctanntagcc taaanagntt ggtcngggcg aattcggcac gagggnaaag cagnaagtaa tgagcttgtc cgtcagctgg tagctttcat tcgtnaaaga 120 gataaaagag tgcaggcgca tcgaaaactt gtggaagaac agaatgcaga gaaggcgagg 180 240 aaagccgaan agatgaggcg gcagcagaag ctaaagcagg ccaaactggt ggagcagtac agagaacaga qctggatgac tatqqccaat ttggagaaag agctccaqqa gatqqaqqca 300 cggtacgaga aggagtttgg agatggatcg gatgaaaatg aaatggaaga acatgaactc 360 420 aaagatgagg aggatggtaa agacagtgat gaggccnagg acgctgagct ctatgatgac ctttactgtc cancatgtga caaatcnttc aagacanaaa atggccatga agaatcacga 480 gaagtcnaan aagcatcggg aaatggtggc cttgctaaaa caacagctng angangaacg 540 aagaaaattt ttcaagacct caaattgatt gaaaatccat tagatgacaa ttcttgagga 600 agaaatgnga aagatgcacc aaaaacaana agctttctac acantnaaat ccnannaact 660 ccatecntet anaactatnn gtgagteett nttacntena tecagacatg antanenata 720 cnattgatgg aacc 734 <210> 520 <211> 701 <212> DNA <213> Homo sapiens <400> 520 ctaatgctgg ctnttgttct ttttgcagga tcccatcgat tcgaattcgg cacgagccca 60 catgtaccag gttgagtttg aagatggatc ccagatagca atgaagagag aggacatcta 120 cactttagat gaagagttac ccaagagagt gaaagctcga ttttccacag cctctgacat 180 gcgatttgaa gacacgtttt atggagcaga cattatccaa ggggagagaa agagacaaag 240 agtgctgagc tccaggttta agaatgaata tgtggccgac cctgtatacc gcactttttt 300 gaagagetet ttecagaaga agtgecagaa gagacagtag tetgeataca tegetgeagg 360 ccacagagca gcttgggttg gaagagagaa gatgaaggga catccttggg gctgtgccgt 420 gagttttgct ggcataggtg acagggtgtg tctctgacag tggtaaatcg ggtttccaga 480 gtttggtcac caaaaataca aaatacaccc aatgaattgg acgcagcaat ctgaaatcat 540 ctctagtctt gctttcactt gtgagcagtt gtcttctatg atcccaaaga agttttctaa 600 gtgaaaggaa atactagtga atcacccaca aggaaaagcc actgccacag aggaggcggg 660 teceettgtg eggettangg eeetgteagg aaacacaegg g 701 <210> 521 <211> 784 <212> DNA <213> Homo sapiens <400> 521 naacacttng ctacnngttc tttttgcagg atcccatcga ttcgaattcg gcacgaggag 60 atctctggga tgtcagtgag gctggttgaa gaccagaggt aaactgcaga ggtcaccacc 120 cccaccatgt cccaggtgat gtccagccca ctgctggcag gaggccatgc tgtcagcttg 180 gegeettgtg atgageceag gaggaeeetg cacecageae ecageeeeag eetgeeacee 240 cagtgttett actacaccae ggaaggetgg ggageecagg ecetgatgge eceegtgeec 300 tgcatggggc cccctggccg actccagcaa gccccacagg tggaggccaa agccacctgc 360 ttcctgccgt cccctggtga gaaggccttg gggaccccag aggaccttga ctcctacatt 420 gactteteae tggagageet caateagatg atcetggaae tggaceeeae ettecagetg 480

540

cttcccccag ggactggggg ctcccaggct gagctggccc agagcaccat gtcaatgaga

```
600
aagaaggagg aatctgaagc cttgggtaag gatttggggc acagtaccag gagggggct
                                                                      660
tggtgccaga cctcatgagg aagaaggatt ttcctatgta cagagaaggg gacccctgtc
                                                                      720
ctgttgggan gtgctgtgca aacctaacca aagttactaa cccctctggt ttctgnggtt
                                                                      780
acacaaangg ggataaatac aaagctttnc ctnaactaqc caattctatt tgggtttcct
                                                                      784
gagt
     <210> 522
     <211> 719
     <212> DNA
      <213> Homo sapiens
     <400> 522
ttctaatttn aatccttnaa atnggttctt tntgcaggat cccatcgatt cgaattcggc
                                                                       60
acgagagaac acaggtgtcg tgaaaactac ccctaaaagc caaaatggga aaggaaaaga
                                                                      120
ctcatatcaa cattgtcgtc attggacacg tagattcggg caagtccacc actactggcc
                                                                      180
atctgatcta taaatgcggt ggcatcgaca aaagaaccat tgaaaaattt gagaaggagg
                                                                      240
ctgctgagat gggaaagggc tccttcaagt atgcctgggt cttggataaa ctgaaagctg
                                                                      300
agegtgaaeg tggtateace attgatatet eettgtggaa atttgagaee ageaagtaet
                                                                      360
atgtgactat cattgatgcc ccaggacaca gagactttat caaaaacatg attacaggga
                                                                      420
catctcaggc tgactgtgct gtcctgattg ttgctgctgg tgttggtgaa tttgaagctg
                                                                      480
gtatetecaa gaatgggeag accegagage atgeeettet ggettacaea etgggtgtga
                                                                      540
aacaactaat tgtcggtgtt aacaaaatgg attccactga gccaccctac agccagaaga
                                                                      600
gatatgagga aattgttaag gaagtcagca cttacattaa gaaaattggc tacaaccccg
                                                                      660
acacagtane atttgtgcca atttctggtt tggaatggtg acaacatgct ggagccaat
                                                                      719
     <210> 523
     <211> 710
     <212> DNA
     <213> Homo sapiens
     <400> 523
tnnncttcaa atcgntngct cttgttcttt ttgcaggatc ccatcgattc qaattcggca
                                                                       60
cgagagatta tgagcatgta gaagatgaaa cttttcctcc tttcccacct ccagcctctc
                                                                      120
                                                                      180
cagagagaca agatggtgaa ggaactgagc ctgatgaaga gtcaggaaat ggagcacctg
ttcctgtacc tccaaagaga acagttaaaa gaaatatacc caagctggat gctcagagat
                                                                      240
taatttcaga gagaggactt ccagccttaa ggcatgtatt tgataaggca aaattcaaag
                                                                      300
gtaaaggtca tgaggctgaa gacttgaaga tgctaatcag acacatggag cactgggcac
                                                                      360
ataggetatt cectaaactg cagtttgagg attttattga cagagttgaa tacctgggaa
                                                                      420
gtaaaaagga agttcagacc tgtttaaaac gaattcgact tgatctccct attttacatg
                                                                      480
aagattttgt tagcaataat gatgaagttg cggagaataa tgaacatgat gtcacttcta
                                                                      540
ctgaattaga tecetttetg acaaacttat etgaaagtga gatgtttget tetgagttaa
                                                                      600
gtagaageet aacagaagag caacaacaaa gaaattgaga gaaataaaca etggeettgg
                                                                      660
aaagaaggca ggcaaagctg ctgagtaata gtcagaccct aggaaatgat
                                                                      710
     <210> 524
     <211> 730
      <212> DNA
      <213> Homo sapiens
     <400> 524
ttnnnnnttt aanchttcaa atchctaggc tacttgttct ttttgcagga tcccatcgat
                                                                       60
```

PCT/US98/27610 WO 99/33982

120

```
togaattogg cacgagecea cactoggaca etgtggaatt etaccagege etgtegaceg
                                                                     180
agacactett etteatette taetatetgg agggeaetaa ggeaeagtat etggeageea
aggeectaaa gaageagtea tggegattee acaccaagta catqatgtgg ttecagagge
                                                                     240
acgaggagcc caagaccatc actgacgagt ttgagcaggg cacctacatc tactttgact
                                                                     300
acgagaagtg gggccagcgg aagaaggaag gcttcacctt tgagtaccgc tacctggagg
                                                                     360
accgggacct ccagtgacac cggcccctnc ctctacccac ccccttcccc cgcatgctga
                                                                     420
tecceetgee caggtaaggg ceetgeeetg gaagaetgga gggaggeeee aageeaeggg
                                                                     480
gcatccccct ctcccaggaa gcagggaggg ggccgggagg ttttcctctc aagccccacc
                                                                     540
600
gtaaaaccta ttttcatttt ggaaaatatt tatgaataaa tagttttata tgaaaaaaat
                                                                     660
tntngnnntt nnnatnnnan aataaaancn tcgnncctct taaaactata gtgaagtcgt
                                                                     720
attaccttag
                                                                     730
      <210> 525
      <211> 711
      <212> DNA
      <213> Homo sapiens
      <400> 525
gengntnttn anttteaaat egetnggeta ettgttettt ttgeaggate eeategatte
                                                                      60
gaatteggea egaggataaa taceteagee eetegeette eteaaceeae etggeaagte
                                                                     120
ttcttaggat ctgatcccag ttttctggaa gcaatcctac cccagcccaa gcttcccaga
                                                                     180
gtegageett aateettete aetteteagt gteagageag aaatgaatee tggggttgae
                                                                     240
tgtgtccatt cgggttatta gcagctaaga agcccagacg agtagtgtga gctgccttgg
                                                                     300
gagcctcagt gagggcactg ggactggcct cactctcttg cccccagcct agtgggcttt
                                                                     360
ctcctctgtc tctccggtgg ccccaggcaa tcgactgcat cacgcaggga cgtgagttgg
                                                                     420
ageggecacg tgcctgccca ccagaggtct acgccatcat gcggggctgc tggcagcggg
                                                                     480
agccccagca acgccacagc atcaaggatg tgcacgcccg gctgcaagcc ctggcccagg
                                                                     540
cacctnctgt ctacctggat gtcctgggct agggggcgg ccaggggctg ggagtggtta
                                                                     600
gcccggaata ctggggcctg ccttagcatc ccccatagct tccacaqccc caqqqtqatc
                                                                     660
tcaaagtatc taattcacct taacatgtgg gaagggacag gtggggcttg g
                                                                     711
      <210> 526
      <211> 692
      <212> DNA
      <213> Homo sapiens
      <400> 526
tacangetae ttgttetttt tgcaggatee categatteg aatteggeae gagagaacag
                                                                     60
ggagaagaga ggaagaggga getgeaggtg ceagaagaga acagggegga eteteaggae
                                                                     120
gaaaagagtc aaaccttttt gggaaaatca gaggaagtaa ctggaaagca agaagatcat
                                                                    180
ggtataaagg agaaaggggt cccagtcagc gggcaggagg cgaaagagcc agagagttgg
                                                                    240
gatgggggca ggctgggggc agtgggaaga gcgaggagca gggaagagga gaatgagcat
                                                                    300
catgggcctt caatgcccgc tctgatagcc cctgaggact ctcctcactg tgacctgttt
                                                                    360
ccaggtgcct catatetegt gacteagatt ecegggacte agacagagte cagggetgag
                                                                    420
gaactgtccc ccgcagctct gtctcccttg ctagagccca tcagatgctc tcaccagccc
                                                                    480
atttetetac tgggeteett tttgactgag gagteacetg acaaggaaaa acttetatea
                                                                    540
gtactttgat atgtcacagt ttcatgttta tccagttcaa tgtattttta aatttttcct
                                                                    600
tgagacttct ttgactgata gattattgtg aatgtgtttt taaatttcca aatgtttang
                                                                    660
gattttcata tctttcttat gctgatttcc aa
                                                                    692
```

```
<210> 527
      <211> 769
      <212> DNA
      <213> Homo sapiens
      <400> 527
gttctngttc tttttgcagg atccctcgat tcgaattcgg cacgaggcca agcctcggcc
                                                                       60
tecaetgeae etgetgegga gtgggeaeet ttgeetgeaa ggeettttne ecantgneea
                                                                      120
atggtanttt aaccagggtt tttgncnntt aaggaggcct tngtggtggg tngttaatct
                                                                      180
ggccnttccn tattgaaaag ctcctgttat tgtccacaga ccagaaggac ttgtaacctt
                                                                      240
                                                                      300
ggtcccacag tctgacttng gcttttcaag cacccagaaa acttagaggg aatcttatag
attccagaac ttaaggatac ctcaagggat agggtcacag ccaagaagtn caaaggaatc
                                                                      360
ttcagtctgg aacaaaaaca gaaccetttc atgattgaca aangtcactt tctgtttgcc
                                                                      420
tggaccaage tactneagat catetgacca actettaaaa atcacggeca ggcacagtgg
                                                                      480
ctcatgcctg taatcccagc actttgggaa gcaaaagtgg caggatcatt ncagcccaag
                                                                      540
agttcaagac cagcctgggc aacacagtga gtgagaccct gctctattta agaaaaatna
                                                                      600
ttaagaaatt tattaaaaaa gaagaatcag gaaaccaagt ncaacccaac ttaacctcaa
                                                                      660
tgaaccagcc cctaacacag atgangggat ttgggactga taagctctgt qctqnqtcca
                                                                      720
tggcccgtca nttatcaagg ttgcactttt aaatgnggta tttttatgn
                                                                      769
      <210> 528
      <211> 757
      <212> DNA
      <213> Homo sapiens
      <400> 528
tnaatatcag ctcttgttct ttttgcagga tccctcgatt cgcangaggg tgttcgactg
                                                                       60
ctngagecna gegaanegat gectaaatea anggaaettg nttetteaag etettetgge
                                                                      120
ngngattetg acagtgaggt tgacananag ntaancagga aaaacaagtn getecagaaa
                                                                      180
ancetgtaca gaaacataag acaggtgana ettegagage eetgteatet tetaaacaga
                                                                      240
gcagcatcng cagagatnat nacatgtntc atattgggaa aatgaggcac gttantgttc
                                                                      300
gcnattttaa aggcaaagtg ctaattgata ttanagaata ttgnatggat cctgaaggtg
                                                                      360
aaatgaaacc aggaagaaaa ggtatttett taaatecana acantggage cagetgaang
                                                                      420
aacagattct gacattgatg atgcagtaag aaactgtgaa attcgagcca tataaataaa
                                                                      480
acctgtactg tetagttgnt ntaatetgte tttttacatt ggettttgtt nnetnaatgt
                                                                      540
tctccangct attgtatgtt tggattgcag angaatttgn angatgaata cttnntttta
                                                                      600
atgngcatta ttaaaaatat tqaqtqaaqc tnatnqtcaa ctttattaaq qattactttq
                                                                      660
ctgccaccac ctagtgtcaa ataaaatcaa gtaatacaat cttaataaac ntttaaacta
                                                                      720
taaaaactcg acccttagac ctatantnag tcggttn
                                                                      757
      <210> 529
      <211> 821
      <212> DNA
      <213> Homo sapiens
      <400> 529
tnannnannc annnnnnnn nnnnntttga agccattgct acttgttctt tttgcaggat
                                                                       60
cccatcgatt cgaattcggc acgagagcaa ttccactcct agctccaccc acaggaaatt
                                                                      120
gaaagcaaag acgcaaacag atgcctgtgc accaaagttc acgggcaagc atccttcggc
                                                                      180
cttaatgggc agcattccgt cgtcacaagc gggcattcat cctttcatca atagcgggca
                                                                      240
gcattccgtc gtcacaagcg ggcagcattc ctttcgccac aaqcqqgcaq catcttqtcc
                                                                      300
```

```
gtcacaagcg ggcagcatcc ttcgccaaag cgggcaagca tccttcgtca tagcggcagc
                                                                     360
atcetttgcc atagegggca aggtggaaac cetgtecate caetgaggeg tgcatagact
                                                                     420
aaacatggcc agtccaggca ctggaatcca ggcccgtaga acggcgccca cggtcaaaag
                                                                     480
gaatgagacc ctgatgcact gggcgacaca gacgggcgac acagacttgg agacatcatg
                                                                     540
ctaagtgaaa agccaggcac acggagcgga cggcgtgatc ctgctcacgt gatgtgtccc
                                                                     600
gaatgggcac gttcagaggg aagaagggag atggcgcttg ccqqtqcccq qqqacngggg
                                                                     660
ttgggagcga cggttgctgg tttggggttt ctttctgggg tgangaantg gttttgatat
                                                                     720
ttggnccgtt ggtgatgttt gcatacctct gaatatgett aaganccaca gaattgacca
                                                                     780
ctttaaatgg atgaattgna tggtattggg aattacccaa n
                                                                     821
      <210> 530
      <211> 765
      <212> DNA
      <213> Homo sapiens
      <400> 530
gnntttnnnn nnnnnnttt tatnnntaca gctacttgtt ctttttgcag gatcccatcg
                                                                      60
attcgaattc ggcacgagac taccccggct acggttcccc catgcctggc agcttggcca
                                                                     120
tgggcccggt cacgaacaaa acgggcctgg acgcctcgcc cttgcccgca gatacctcct
                                                                     180
actaccangg ggtgtactcc ggcccattat gaactccttt aagaaagacg acggcttcag
                                                                     240
cccggtaact ctggcacccc ggatcgagga caagtgagag agcaagtggg ggtcgagact
                                                                     300
ttggggagac ggtgttgcag agacgcaagg gagaagaaat ccataacacc cccaccccaa
                                                                     360
cacceccaag acagcagtet tettaccege tgcagecegt cegtecaaac agagggecac
                                                                     420
acagataccc cacgttctat ataaggagga aaacgggaaa gaatataaag ttaaaaaaaa
                                                                     480
gcctccggtt tccactactg tgtagactcc tgcttcttca agcacctgca gattctgatt
                                                                     540
600
aaattttgtg agtgactcgg tgtaaaacca tgtagtttaa cagaaccaga nggttgacta
                                                                     660
ttgttaaaaa caggaaaaaa ataatgtaag gtctgttgta aatgaccaan aaaaaaaaaa
                                                                     720
aaactcngcc thtaaactnt thtgagtcgt httcgtaaat ccaan
                                                                     765
      <210> 531
      <211> 768
      <212> DNA
      <213> Homo sapiens
      <400> 531
gnntttnnnn nnnnnnnttt taagntactg ctacttgttc tttttgcagg atcccatcga
                                                                     60
ttcgaattcg gcacgaggtt cttcaaagcc aaccaagaca ggcttagcag ttttagagct
                                                                     120
tcagaacaaa ttgccaaaag ccagagttgt ttatgctagt gcaactgggt gcttctgaac
                                                                    180
cacgcaacat ggcctatatg aaccgcttgg catatggggt gaggggtact ccatttagag
                                                                    240
aattcaagtg attttattca agcagtagaa cggagaggag ttggtgccat ggaaatagtt
                                                                    300
gctatggata tgaagcttag aggaatgtac attgctcgac aactgagctt tactggagtg
                                                                    360
accttcaaan ttgaggaagt tettettet cagagetaeg ttaaaatgta taacaaaget
                                                                    420
gtcaagctgt nggtcattgn cagagagccg gntcagcaag ctgcagatct gattgatgct
                                                                    480
gancaacgaa tgaagaagtn catgtggggt cagttctggc tgtcaccaga ggttcttcaa
                                                                    540
atacttatgc atagcatcca aagttaaaaag ggttgtgcac tagctcgaga ggaaatcang
                                                                    600
aatggaaaat gtgtngtaat tggctgcagt ctcaggagaa gctnnaacat tagaactttn
                                                                    660
gaagaaggen ggggagaatt gatganttgg tteaactgee aaagtgtgtg canteactea
                                                                    720
ttggaaaaca tttnctgctc cagcngggaa aacttatggt tacttggn
                                                                    768
```

<211> 761 <212> DNA <213> Homo sapiens <400> 532 cgtnttttnn nnccnannga aagccettgg ctacttgnte tttttgcagg atcccatega 60 ttcgaattcg gcacgaggat cagcccacct cggcctcaca aagtgntggg attacaggcg 120 tgagccacct tgcccaccca catcatacag ttgaaatgaa actttgccac aaccagcctt 180 tgctgtacac acacatatat cactgaacct ggttgaaata aagntttttt tctttttcct 240 ctggtattct qqqttctqaa qtctggtatt ctqqtattct qqqttcaaaa qtatqacttq 300 agagtgttgc tctggtattc tgagagttgc tctgtattct gggttctgaa gattatttga 360 aaaataactc ctactacatt gaaatgcaga cttaaaaatt taaacattgg attaggcagt 420 caaaaaaacc aagcaagcat aaaaggtcaa taagttgtaa tettgatagt aaaqqtqqaa 480 aacttattat aaatggaaag aaagtttatt toottttttg gttgatgggc agtatgccat 540 600 ttqaqqqaaq taccaaqqca qcttttttcc tcaaaaqtac ctqqtcctct ttqqqaataq 660 cacattttan gggcattggg taatcctgag attttactca ntaaatcctq atggtactqq 720 gtgtaaaata tctttagtng gattgaaggc cttgnggggg a 761 <210> 533 <211> 735 <212> DNA <213> Homo sapiens <400> 533 taaacateng getaettgtt etttttgeag ggateecate gattegaatt eggeaegaga 60 cactgtecca etecateace caggetggag tecagtggtg tgateatage tegetgeate 120 ctccagttcc tgggttcaag ccatccctcc tgcctcagcc tccccagtag ctggaactac 180 aggtgtgtgc catcacact ggctttacat ttttctgtgg ggtcttacta tgttgcccag 240 geoggtetea aacteetgag eteaagtgat cetetgeete ageeteeaga gtatetggga 300 ttacatatgt eggetaeegt gtetggeegt teacatettt ggecaetatt tgettgtgaa 360 aaggtataat gaggtggtac ttatcatttt tactgngtct catgttttgt atatttttgt 420 ttcatcaact aagatgcact gtaacatctc tgaaatctgg atatattatc aatggtttat 480 catagttttg ttagcaatac actgtctttt agtggtgcct aaaataatgg tatagttgtg 540 aggtgatett agatttgatg aagcacagta tgcaggtagg cctaatgggg gaagatggta 600 atataaaagc aagaagtatt ttttttttgt aatgactgaa agctgtctgt ggatgaccta 660 ccctttnctt taaacacgat tntntcactt ncaactncaa acttgctcaa ctaatncttt 720 aaaaataact tgagc 735 <210> 534 <211> 735 <212> DNA <213> Homo sapiens <400> 534 natngnttgc tcctngttct ttttgcagga tcccatcgat tcgagacaac ccagaaacaa 60 attcatacat ctatggtgac cacttttgac aaaggaatga agaacataca ctgggggaaa 120 agataatgtc tttaataaat ggtgctggga aaactggntn tccantntgc agaagaatga 180 aactagaccc ccatctctta gcatatacaa aaatcaaaat taattaaaaa gttaaatcta 240 agaceteaaa etatgaaaca getaaaagaa aacategggg aatetetea ggacattgga 300

360

gtgggcaaag atttcttgtg taatacctga caaacaggca accaaagcaa aagtggacaa

```
atgggatcac atcaagttaa aaatcttctg cattgcaaag gaaataacaa agtgaagaga
                                                                       420
cacccataga atgtgagata atatttgcaa actatccatc tgtattaggc catttttgaa
                                                                       480
gtctacaaag aaatacttga gactgagtaa tttataaaga agaggtttaa ttggctcacg
                                                                       540
gttttgcagg ctgtcaggaa gcatggtgct aacatctgat caqcttgtag ggaggcatca
                                                                       600
ggaagtttcc acccatggtg gangcaaaag gggaataagt ttctccatgg caggtgcagg
                                                                       660
gcaaaaanan gggggaaggg aagtgccnca caaccagatc ttgtgaqtnc tcaqatttqn
                                                                       720
ggngggngct tgngg
                                                                       735
      <210> 535
      <211> 735
      <212> DNA
      <213> Homo sapiens
      <400> 535
tnaannanag ctacttgttc tttttgcagg atcccatcga ttcgaattcg gcacgaggtc
                                                                       60
catacatgga gctccctgga cccgtgtgct ctcgtgtgac tgaacgtttt gtgatgaaag
                                                                      120
gaggagaggc tgtctgcctt tatgaggagc cagtgtctga attgctgagg agatgtggga
                                                                      180
attgcacacg ggaaagctgt gtggtttcct tttacctttc agctgaccat gaactcctga
                                                                      240
gcccgaccaa ctaccacttc ctgtcctcac cgaaggaggc cgtggggctc tgcaaggcgc
                                                                      300
agateactge cateatetet cageaaggtg acatatttgt ttttgacetg gagaceteag
                                                                      360
ctgtcgctcc ctttgtttgg ttggatgtag gaagcatccc agggagattt agtgacaatg
                                                                      420
gtttcctcat gactgagaag acacgaacta tattatttta cccttgggag cccaccagca
                                                                      480
agaatgagtt ggagcaatct tttcatgtga cctccttaac agatatttac tgaaggaatc
                                                                      540
taggttgtat tttcagtgga caatgggaat aaagcatttc taaagcaccg actggagagg
                                                                      600
aaggcaacag aaacaaggag agaagcccga gagacatgtc tgcgtgctgc cacqcatctq
                                                                      660
ancgattgct cttgtgaaga gtttgtcact gaacattttc aggggaggct gtttacccaq
                                                                      720
cnatgtnctn aacan
                                                                      735
      <210> 536
      <211> 785
      <212> DNA
      <213> Homo sapiens
      <400> 536
gcccccnnn nnnnnnnttt tcaaanncen ttnnnnnnn nngnnnnttt tannnnnttn
                                                                       60
ttannnnaca getettgtte tttttgeagg atecetegat tegattegge aegagetace
                                                                      120
ttgggctggc cctctatnat gctntgaggg gagctgggac agatgatent necetentea
                                                                      180
gngtcatggn tnccangngt gagnttnatc tgccnnacat ngtgacggag tttaggaaga
                                                                      240
atgntgccnc ctctntttat tccatgatta aggganatcc atnnggggac tataagaaaa
                                                                      300
gennttttne tgetntgngg neaanangan tnacnngnee egggnnanag etectatget
                                                                      360
gtntgcctgc accacccct gccttccttc atacctttcc ntggatatgn atgccagggc
                                                                      420
ttnncacatt gcctnattna tactnacntg ctnatgacca anacatncac gtgataacac
                                                                      480
aaacantggg tgcttgnttc tgatcnctag aggnganctn ttqqnnnqnt qqaqnactna
                                                                      540
antnttctna gtgtnacttn agttcaatgc ctggccatnt gcnatnacct tatatcntnc
                                                                      600
aaagaggcta ctgtgctttt ancctttttt aaaacctcca tctgtattac attgnnaacc
                                                                      660
angtttettt aatnaggage ttgaceteta nantgggaae tettgggaat ggnettagtg
                                                                      720
aagttcgcna ctaacttaac ctgaaaatta tnatgnnctg tttnacctat catqttnata
                                                                      780
actnt
                                                                      785
     <210> 537
```

<211> 967

<212> DNA

<213> Homo sapiens <400> 537 agtanggcgn ttcctaatnn annnggctaa gcgactttna aagangaggc tngcgtgntg 60 aataccgnnc gagggggat nacaatagta nacnnggtnc caatncatgc ttaacaccgc 120 athtetttac ceceenannn neacanatge agacheacae athgeanneg nacacheaga 180 cacacacang caagcactnn catgcatggc ccatgctcac acacntgnan nnaacatgcn 240 gtagacatnt nagacacgtc atgtnacaca tgnnacacan gnnnaanaca ctqctttnca 300 ngcanacnca gacggcacnn ngagacanac atgcnnaaac aacatgctcn ctcacntnna 360 nncgntgggc cngtagtagt gtactgtggg tgnnactggg tgccatcnac nnnqtatttt 420 acgnnetttn aactaaaaan ettggageet tnanttnntn tggtgantne aatneetana 480 antinictiga gngggatgaa ccctaananc ctggccctnn thccnctttc aaqqccnaqn 540 aattganatt attncntant ngnncacgaa gcttntggta ncangngncc cqaqnnctnt 600 tnaaanttnn ctnttttnan aatnaaacat tttaneggtt ctnagganec qnqcctnenq 660 ggtanggann naattgtncc tgggnatagt tctcacaant natnttnaag gggnnaagng 720 atnngngngg nccntntatg nggcnngcca annaangggg tcgnngttaa natattccaa 780 gntaacanan gnacnatggn accnatccct ntnngaagna aggaactncc tgnncgacta 840 nnnactatgn naaatattet cacatntaca naaaaagnag gnnccnnggt nettnaagnt 900 tntgcatagn nactatnent gggacgngtt aacnnanatt ntatgettta nnngatnggg 960 gcttnnn 967 <210> 538 <211> 892 <212> DNA <213> Homo sapiens <400> 538 gctagttnga agaggtgttt ctaangnntn ggaatcgaca tctnnnnagg cngnccntgc 60 gattegettt getetetea tteeaagttg ttetetgtte tagaaageng atqnnqqqnt 120 acatctactg tttttgccta aacagaatcc ctttntcctt tttttgttaa aaggctcatn 180 cctaatatta cattgctctg gaacgantga caataccana actcagcacc ntgatcggac 240 cgggacaatc agattatcta attcctcagc aaacggagat cgatccgaaa agtggaaata 300 tganctentn etttgtgntg geatatggae eetgagagaa agaaaettta atettttaet 360 cttggactgc aatnaagtnt agctgcctaa aaatcnnttt cntgacactt ngnaggtttg 420 tccacaatcg ggngaaatta nngggtnnga cntaancact qqatqaaaaa aaatnccqnt 480 tanttntatt ncnnttccan ncttntnaaa tanananttt ntcanccttn nntaatacta 540 ttanntatat ntnttnnncc cnnatnnncc ttcttnctcc tacnncnntn cnatntnnnn 600 nnangntcnn cnannnnttc tnttatttct annatatntc ntancnttna ctaaaacctc 660 cnctcgtnna nattncnnta taatattntc tctaganntt ntnntntntt gnnncttaaa 720 anctenteta tecetantat nantnattet taccatnaaa tacactanaa gtnntnteae 780 gagacnegnt atgttantne anactataat egettneatn tanntatatn taaaantget 840 atnoagnnag nngntnttat atntttanct ngnnaggnta tectenatan ce 892 <210> 539 <211> 751 <212> DNA <213> Homo sapiens <400> 539

60

gnnnaggttn tagancaget ettgttentt gngeaggate eetegatteg aatteggeae

```
gagagtgtca gttttcctaa tctcagtcca ggtaggaatt aagaaatatc tcaagtgttg
                                                                      120
                                                                      180
atgctatcca agcatgttgg ggtggaaggg aattggtgcc cagaaaatgg gactggagtg
                                                                      240
aggaatatet tttettttga gagtaceece agtttattte taetgtgett tattgetaet
gttctttatt gtgaatgttg taacatttta aaaatgtttt gccatagctt tttaggactt
                                                                      300
                                                                      360
ggtgttaaag gagccagtgg tctctctggg tgggtactat aatgagttat tgtgacccac
agctgtgtgg gaccacatca cttgttaata acacaacctt taaagtaacc catcttccag
                                                                      420
gggggttcct tcatgttgcc actccttttt aaggacaaac tcaggcaagg agcatgtttt
                                                                      480
tttgntattt acaaaatcta gcagactgtg ggtatccata ttttaattgt cgggtgacac
                                                                      540
atgttcttgg taactaaact caaatatgtc ttttctcata tatgttgctg atggttttaa
                                                                      600
taaatgtcaa agttctcctg ttaaaaaaaa aaaaaaaaa actcgancct ntanactata
                                                                      660
gtgagtccnt attacgtaga tccagacatg atnagatcat tgatgaattt ggaccaaccc
                                                                      720
aactagaatg cagtgaaaaa aatgcttttn t
                                                                      751
      <210> 540
      <211> 761
      <212> DNA
      <213> Homo sapiens
      <400> 540
gntnggnten agancageta ettgttettt tgeaggatee etegattega atteggeaeg
                                                                       60
agcctgcagc cactaatgca ttgtgtatga taacaaaaac tctggtatga cacattttct
                                                                      120
gtgatcattg ttaattagtg acatagtaac atctgtagca gctggttagt aaacctcatg
                                                                      180
tgggggtggg gtgggggtgt attccttggg ggatggtttg ggccgaatgg ggagtggaat
                                                                      240
atttgacatt tttcctgttt taaattctag gatagatttt aacatccttt gcggtcccag
                                                                      300
tecaaggtag getggtgtca tagtettete acteetaate catgaceact gttttttee
                                                                      360
tatttatatc accaggtagc ccactgagtt aatatttaag ttgtcaatag ataagtgtcc
                                                                      420
ctgttttgtg gcataatata actgaatttc atgagaagat ttattccacc aggggtattt
                                                                      480
cagetttgaa accaaatetg tgtatetaat actaaccaat etgttggatg tgggttttaa
                                                                      540
aaaatgtttg ctaactaccc aagtnagatt tactggatta aatggccctt cgggtctgaa
                                                                      600
aaagettttt taacttettn gettaaaatg eegtttaatt ttgataagat nettnaaatn
                                                                      660
gcctccaaaa gtgttananc caatcatttn aaataaaccn gqntgtatat tqcatnatgt
                                                                      720
gtacatgent atnecettet ggttaaaaet naaaaaaaa t
                                                                      761
      <210> 541
      <211> 748
      <212> DNA
      <213> Homo sapiens
      <400> 541
ggtttanttt aaatcentne neagetaett gttetttttg eaggateeca tegattegaa
                                                                       60
tteggeacga geggacceat eggagegtaa cetggatete egeaggeetg geggaggeeg
                                                                      120
gccacctgga ggggcattgc ttggttcqcq tqqtancaqa qqaqcttqaq aatqttcqca
                                                                      180
tettaceaca tacagttett tacatggetg atteagaaac ttteattagt etggaagagt
                                                                      240
gtcgtggcca taagagagca aggaaaagaa ctagtatgga aacagcactt gcccttgaga
                                                                      300
agctattccc caaacaatgc caagtccttg ggattgtgac cccaggaatt gtagtgactc
                                                                      360
caatgggatc angtagcaat cgacctcagg aaatagaaat tggagaatct ggttttgctt
                                                                      420
tattattccc ttcaaattga aggaataaaa atncaaccct ttcattttat taaqqatcca
                                                                      480
aagaatttaa cattagaaag acatnaactt actgaagtag gtcttttaga taccctgaac
                                                                      540
ttcgtgtggt cttgnctttg gttataattg ctgtaaggtg ggagccagta attatctgca
                                                                      600
gcaagtagtc acnettttca gtgatatgaa tateatettt ggettggang ccantngaca
                                                                      660
acctgncatt actgactttt tgaaaanaac cctctggata ttgatgcctc gggtgtggtt
                                                                      720
```

```
748
ggactgncat ttagtggacc ccgaatcc
      <210> 542
      <211> 784
      <212> DNA
      <213> Homo sapiens
      <400> 542
gtnnnnntng tgtaateget tggctgcagg atccctcgat ggcgaattcg gcacgaggtg
                                                                        60
ttgctcaang agcagacccg actccntaag gtcatcattg aatgggcatn atangtttga
                                                                       120
anactgtcca ananantang ngtcaataca tcaacnnctt tanntgcttg atattgnnat
                                                                       180
tgaanaacac angnetengn etagttegee tganatgatg tttaagatac teeggaagga
                                                                       240
gacanantgt tntgantgcg gattaganac cacngaagnn acactnaagg ancancatct
                                                                       300
ccaccingna actgnatinn cngaccanaa aagngaactg gaccaaatgc tctcaaaggt
                                                                       360
gctggcagct taanagcgtg ttangactct gcacgaagan gacaggtnnt ntgagagcct
                                                                       420
ggnnannaca eteteceaaa etaaactgna nettteaaca nanggganee ecannttggt
                                                                       480
ggagaaatca ggtganctgt tggcccttcc acaaagangc aaattctntq aqqqcnaqac
                                                                       540
ttnanccttt ttgcngaacc agtncttgac tgactaaatg aaagcttttt aagccaggtg
                                                                       600
gcccancctt aangaagcna ctttttaatc cancggaacc ngcttgagan aaaaccnttt
                                                                       660
ttgacccaaa accnggagaa ccagctggcc taccaaaggg aaatgggccc ccatttgaac
                                                                       720
ttggggttnc ccangaacaa nccttgnccg ggncaaagcc cnttgttgga aaggacctca
                                                                       780
acct
                                                                       784
      <210> 543
      <211> 764
      <212> DNA
      <213> Homo sapiens
      <400> 543
ntantaaatc ccttgctctt gttctttntg caggatccca tcgattcgaa tncggcacga
                                                                        60
ggacceggeg gegeggacag gettgetget teeteeteet nngacteace attneagane
                                                                       120
agaanntgaa aaaatggnng anctcaccca ggtaanggat gatgaagtnt tnatggctnn
                                                                       180
tgcatactat gcannanttn tncttntgna aatgatgcnt atgagtactg taanngnntt
                                                                       240
ctatncattg ncaagaangg ntnttgncaa tncatangac tgtgtagcat tcggcanagg
                                                                       300
agaaaatgnc aagaactatc ttcgaacaga tgacanagtg taacgggtac gcagagncca
                                                                       360
cctgaatgac cttgaaaata tnattccatt ncttgnaatt ggcatnctgt attccttgag
                                                                       420
tggtcccgac ccctctacag cnntcctgta ctttagacta tntgtcggag cncggntcta
                                                                       480
ccacaccatg tgcatatttg acaccccttt cnnatccaaa tatagctatg actttttttn
                                                                       540
gtaggatatg gannactctt tccatggctt acacgntgcn gtaaagtaaa ttggccctgt
                                                                       600
gcagaaaaac attccactca gtnttccaan tggcttntta aggaattctn gaccttgcaa
                                                                       660
ttnatantgg agnnetttee ttaagattta aaggtttgan ggngageenn aggaattntn
                                                                       720
aaccnggggt aaaccctttt tggaattttn agcnttgnca anaa
                                                                       764
      <210> 544
      <211> 755
      <212> DNA
      <213> Homo sapiens
      <400> 544
gatgctggnt ncnnatgctt gnngatccct cgattcgaat tcggcacgag gaaatgtgta
                                                                       60
tttcagtgac aatttcgtgg tctttttaga ggtatattcc aaaatttcct tgtattttta
                                                                       120
```

```
qqttatqcaa ctaataaaaa ctaccttaca ttaattaatt acaqttttct acacatggta
                                                                      180
atacaggata tgctactgat ttaggaagtt tttaagttca tggtattctc ttgattccaa
                                                                      240
                                                                      300
caaaqtttqa ttttctcttq tattacattt tttatttttc aaattggatg ataatttctt
                                                                      360
qqaaacattt tttatgtttt agtaaacagt attttttgn tgtttcaaac tgaagtttac
tgagagatcc atcaaattga acaatctgtt gtaatttaaa attttggcca cttttttcag
                                                                      420
attttacatc attcttqctq aacttcaact tqaaattqtn ttttnttttc tttttggatg
                                                                      480
tgaaggtgaa catteetgat ttttgetgat gtgaaaaage ettggtattt tacattttga
                                                                      540
aaattcaaaq aaqcttaata taaaaggttg cattctctca ggaaaaagcc atcttcttgn
                                                                      600
atatgtenta aatgtatttt tgneeteata taeeggaaag ttettaattg gattttaeea
                                                                      660
qctqnaatqc tttqanqqtt ttaaaaataa taacattttt aataattttt taaaaqqaca
                                                                      720
aactttcata atnatcccgq ngntcctttn ccnnn
                                                                      755
      <210> 545
      <211> 767
      <212> DNA
      <213> Homo sapiens
      <400> 545
agnttttnaa teetttggee antegenett tntgeangat eecategatt egaattegge
                                                                       60
acqaqaaaaa qtnaaqcttt tcatqaqcac anntnccttq cattqttnga tqttactqat
                                                                      120
attegtaaaa tgaatatttt etgttttgtt etgttnnatt tttttgagae aagtettget
                                                                      180
ttgttgccca ggctggagtg caatggcatg atcttggctc actgnaaccc ctgccttgcg
                                                                      240
agttcaagtg attcttctgc ctnagnctcc tgagtagctg ggattacagg cgctcaccac
                                                                      300
                                                                      360
cacacccage taatttetgt ettttnagtn gacacagggt tttaccatgn tggccagget
ggtetcaaac tnetgacetg aaactnetca cacengtnat etcagcaett tgggaggetg
                                                                      420
angtggaaag gatcacttga agccatgagt ttgagaccag cctgngcnac acagcngaga
                                                                      480
cccnqtqnt qtacaaaaqc ttncnacatt tanctqqctq aggaqtnnct cacccntaac
                                                                      540
ttccancnan tennttaage nnanneatnt tgaacaentg ageceannta nggtegatge
                                                                      600
tnntagtnaa ccgtgactgg accacttaca gtccaagccc gggtngcctt ataaaagaan
                                                                      660
cggaaaacat ttcnttaatt cgggttnnag cnttanctat ttcggaatnc cttgngtttt
                                                                      720
naaaaacttg aatctccaan aaacagggtt ttttcttttg gnccann
                                                                      767
      <210> 546
      <211> 989
     <212> DNA
      <213> Homo sapiens
      <400> 546
tnecettgtt gaaaneeett tgeteetttn tnetneegtt tgneatnena ttegeteage
                                                                       60
tgaggcaatt aaactggaaa agaaatagat tgaaaagata ctntngaaga agcagtacag
                                                                      120
aagttggggg actgaaggag agggagccac tgcaggtgct agctgcttaa ggggatacca
                                                                      180
gtccttttac agatataata gatacagctt ctgaggtgga gggtgatagg agtgtgtatg
                                                                      240
agaaanttgc agnttnacaa ctgctcntgc ctcctnggca anaggannan cntttcnccn
                                                                      300
nttnennece ttatngnaca cacattgnee tgattggnen tneenenget agettneagt
                                                                      360
cttnantnta ctcannagnn nntnggggaa cncnctntcn nantatgntc ccttttcctc
                                                                      420
tnnentnnec nnatancace cenetenett teetttetaa aettneacan nteeetgana
                                                                      480
atgnetteeg aatggantet tngaatttet negeceetne ntenteataa tenttttget
                                                                      540
nctccnqctc nccctcattt tnctacqtnc cnccttctnn ttnactqnct ttaaatntta
                                                                      600
ttancnnent ntnenttnen atetneaant tttennneen aennnntttt netnntnnea
                                                                      660
aatcgcgnna aataagtntt gcncactcnn ntnctanent attntccctc gennttnten
                                                                      720
teateteeeg enneaeteae ntnnnennnt caattnntnn nnaenenene tgetetaenn
                                                                      780
```

```
nenatntetn tneetneaca ceetntanen tntenetean aatgeetttt etneettann
                                                                       840
nctntcnttc ncnnatctan ccaantttnc tttnacatcc cctncnnntc tnncccgacn
                                                                       900
ataththace tetthnaten cagngentan nateneecen tentenetht eneteteann
                                                                       960
cttntnttna tcttcatnna tcannence
                                                                       989
      <210> 547
      <211> 781
      <212> DNA
      <213> Homo sapiens
      <400> 547
tgtnnctttn cnncctcnnc cgaaatcnct ttgnttctaa ctttcctaat tacctqqqct
                                                                       60
acttgcacta tecentegat negeatagat ggeenngtta etaanggtga ntttecageg
                                                                      120
cggggggcac gtggagtcac tggaacattt gngcaatgct ggtgggaatg tcaacccgng
                                                                      180
enggeetetg gaatangeet ggennnteet genagagtta centqtqaee caqcaattee
                                                                      240
actectaget ceaccacag gantngaaag enaagaegea nacagatgee tqnqenecaa
                                                                      300
anticacggc agcatectic gecatantgg cancatecgt eginacaqeq qeateatect
                                                                      360
teateattae ggeancatee gtegtaacag eggetacate acttegecae agnageagea
                                                                      420
tetgtngtea cagnggenge ancettngce aaageggeaq enteettegt catageggna
                                                                      480
neatnetttg ceatanenge naggtggaaa ceetgneeat ceaetgagge ntneatanae
                                                                      540
tanncatggn cagtccaggg cactggaanc cangccgtng aacggcgccn acggtnanna
                                                                      600
ggaatganac cntgatgcnc tggggccana catactggct anacanactt ggagacatca
                                                                      660
tgcttanttg nannnccant cacacttgcn nncggcgtna tcctgctcac gtgatncgac
                                                                      720
ccgaatgggc acttcaaatg ggaanaaggg ngatggcact nccggtnncc tnganaggg
                                                                      780
                                                                      781
      <210> 548
      <211> 735
      <212> DNA
      <213> Homo sapiens
      <400> 548
tetaaaeget tggnnettge tetttetnea ngnaneennt gegntnegaa tteggeaega
                                                                       60
tetagatatt geccaatege tgeccaeagt geacatacet ttecaecagt eacatgtgag
                                                                      120
agggcagatt ttccaaatgc tcatcaccac ttggcactgt gtggactata attttggcca
                                                                      180
gttaggaaat ggcatctcat tgttttcatc ttaatttgcg tcagcctgat tactcattga
                                                                      240
aacttgtgag gttgagaaac ttttcttaag cttattggcc attcaagttt cctcctttat
                                                                      300
gaaatggttg ttcatqtcat ttqctcattt ttatattaqa ttqtttttct tttttccaqc
                                                                      360
tgacttgtag gaactctaca tcttatcaat attaatcatt tatcgaaaac tatttgggtg
                                                                      420
ccattatett etectagtea atgttttttg tttgtgatat ettttataat atataagttt
                                                                      480
ttaatgttgg cagaagtaaa gttaatcttt ttggctgtgt tgtgtgtctt gtttgatgta
                                                                      540
aagatagttt ctgtaatagt tttgcagttt gattgntcat ctttaggtct tcaattcaac
                                                                      600
ctgcacatcc atcccctcta tcctctttct tactctgttt ttctccatac cacttatcat
                                                                      660
ccaataatat ggtcatgccc tttattnacc ngntttgcat atataatttg gcttgtnccc
                                                                      720
ggttccttcc ctana
                                                                      735
     <210> 549
      <211> 812
      <212> DNA
      <213> Homo sapiens
```

```
<400> 549
ttctaatact tggctctngt tctttcngca ggatcccatc gattcgaatt cggcacgagg
                                                                        60
ggaaggagcg ggcgtgaggc cagctgaggc atggtgaccc ctqqqaagga gcgggcgtga
                                                                       120
ggccagctga ggcatggcga cccctgggaa ggancgggcg tgaggccagc ttgaggcatg
                                                                       180
gtgacccctg ggaaggancg gncgtgaggc cagctgaggc atggtgaccc ctgggtacgg
                                                                       240
gggacttggg ggccgacctt ggtttgccca gggcccctnc tgcaccacgg ccacatgcgg
                                                                       300
aggacggcgt tgggatangc tecetgggte cacagettet gecegtgtat tggggaacce
                                                                       360
tnottggtca aggettcang ctcttggcag atggggcaaq gaaccctgag gettccqcqc
                                                                       420
cettecatgg netetgatgt gggacaettg aacgangeae gattetgaag gactecatgg
                                                                       480
atcttgggan gattangccc accttengtt ggtggnenaa ageegteett neggggeeeg
                                                                       540
gettgtttaa enggacaact tttenggteg ggettgttgg geeceaaten ttgggttggg
                                                                       600
naanttenee ttaaacettg ggeeegneet tttaaeettt ttteeeaate ttttgaeett
                                                                       660
tttccaaaaa ggggtncccc tgggcttttt ngggncaatt ggttccgggg gccaaaggtt
                                                                       720
gggaaaaaat gccttncatt gggnaaaacc ctggatccct tgttaancct ttgggagntt
                                                                       780
aaaatggaat gaattttccc cccgggcttt tt
                                                                       812
      <210> 550
      <211> 742
      <212> DNA
      <213> Homo sapiens
      <400> 550
ggnnantena tgetggtett gtetetntet aaaagttgge nattegaatt eggeaegagg
                                                                       60
ttctgtggct ggcatggtct gcctgctact ggagagatct cctgagantt cagttttgga
                                                                       120
ttggtgctgt catcttcctg ggaatgcttg anaaagctgt cttctntgcg gaatttcaga
                                                                       180
nthtccgntc caaaggagaa thtgtccagg gtgctttgat ccttgcaaag ctgctttcan
                                                                       240
cagtgaaacg ctnactggct cgaaccetgg catcatagtc agtetgggat atggcatcgt
                                                                       300
caagccacgc cttggagtca ctcttcataa ggttgtagta ncaggagccc tctatctttt
                                                                       360
gtnetetgea tggaaggggt ceteagagta etgggtattt tnettateee ttgaetetga
                                                                       420
tagtaaacct ggccctntca gcagtttgac gcctgggtat ttatggatat taattagcct
                                                                       480
gactcaaaca atgaagcttt taaaacttcg gaggaacatt gtaaaactct ctttgtatcg
                                                                       540
gcatttcacc aacacgctta tttggcagtg gcagcatcca ttgggttaat catctggaca
                                                                       600
acccatgaag tcaanaatag tgacatgtca ntcggactgg ccggnagctn ttgggtagac
                                                                       660
catgccatnt ggcgccttgc tggtcttcca tgancccctt tggcaatcat gggtcttntg
                                                                      720
gcgaaccatt ttgcaaacaa ct
                                                                       742
      <210> 551
      <211> 736
      <212> DNA
      <213> Homo sapiens
      <400> 551
agtetaatge tggtettgte ttttetaatg etnggegatt egteetggtg teaaacaeta
                                                                       60
taaacctttg accagetgag etgtgaetgg etgteaentn tetgagteet gtgtgeaeag
                                                                      120
tantntcctg ggtcaggtaa aatccaggtn ttcaagtttt aaggnttttt tqaanaattc
                                                                      180
gggcttnttt aanacgatcc ntgcccaant ccacaagctt gttgacagtg gnttacagtt
                                                                      240
ngngtggcaa agtccaagtt gttacactgn gctttaaaaa aaatcttatc tgcatgtatt
                                                                      300
gttaacttag agaccatgag atctatttat caggaccagg aagatncaca cttcaggtcc
                                                                      360
attgcaactg actititiet tgtttttett aaaaccetgg tggageetgg gaagggggee
                                                                      420
tecacaatte tgtggetttg atattagece caattttaca ageacataca agececataa
                                                                      480
ttgccgcagg aaaacacaag atggaaaatg caataaccca tgcactgaga cttagaaaat
                                                                      540
```

```
catcettact aggeaaaatg tattatgatg caataagtge cactgggnat tttnacgttg
                                                                       600
ggactggnca ggaactgctg caaagaaaaa taacagctcc ttctccatta tttacattta
                                                                       660
agatgttggt ggggggaagg ttgggagaaa ttagttctga gggtatcata tgcctttttt
                                                                      720
aaaqaaaatq qqaata
                                                                       736
      <210> 552
      <211> 733
      <212> DNA
      <213> Homo sapiens
      <400> 552
nagtttaann gtatgtcttg tcttttccaa gatcctatcc gattcgaatt cgqcacqaqa
                                                                       60
agtgtcagtt ttcctaatct cagtccaggt aggatttaaa aantntctca agtgttgatg
                                                                      120
ctntccaagc ntgttggggt ggaagggaat tggtgcccag aaaatgggac tggagtgagg
                                                                      180
aatatetttt ettttgagag tneecccagt taatttnine tgtgetinat tgeinetgin
                                                                      240
ctttattgtg aatgttgtaa cattttaaaa atgttttgcc ntagcttttt aggacttggn
                                                                      300
gttaaaggag ccagtggtct ctctgggtgg gtnctataat gagttattgt gacccacagc
                                                                      360
ttgtgtggga ccacatcact tgttaataac acaaccttta aagtaaccca tcttccaggq
                                                                      420
gggttccttc atgttgccac tcctttttaa nggacaaact caggcaagga gcatgttttt
                                                                      480
tngtnattta caaaatctan cagactgtgg gtatccatat ttnaattgtc gggtgacaca
                                                                      540
tgttcttggt aactaaactc aaatatgtct ttctcatata tgtgctgatg gttttaataa
                                                                      600
atgtcaaagt tctcctgtta aaaaaaaaaa aaaaaaaac tcgagccttt anaactntnt
                                                                      660
gagtegtnta entagateen gacatgataa gateatgatg agtttggaca aceneaetnq
                                                                      720
aagcagtgaa aaa
                                                                      733
      <210> 553
      <211> 870
      <212> DNA
      <213> Homo sapiens
      <400> 553
nagttaanag taggtettgt ettttgeaag atentanega ttegaatteg geaegagtat
                                                                       60
ataacaactt ttgctttcaa agttgggtgg gactagancn cncantggaa ggntggagtc
                                                                      120
agganacetg gattnttgng ecegntntgg nttttacagt ntgeetaant ttntgcagtn
                                                                      180
acttentgee ancetgttte nttaentnea anagggaaag acanteettg geeageetag
                                                                      240
ttttnagggt gaacgaaagg tenttntcac tgenteetet agteatttge ttettegnta
                                                                      300
attaacacat cttgagcacc tgcnatgttc caggaacagg agatggcanc gtgcaagata
                                                                      360
aagteeetga ettetagaga etgeatgtta gtggeaateg gegtntaeee ggeettnaat
                                                                      420
aaactactga atgaaggaaa attctaccta caccagacac aattactggg gtttctaaaa
                                                                      480
tggaattatt cccccggccc cntgcatcca gcagcctgnt gcagggaaac tcctccnaaa
                                                                      540
ggcttgtaag gcaaggaanc cgggacaatg gcntggctat ttaagcttnc aacaagatgg
                                                                      600
ttacccctaa gtncctaatt ccctaacacc aagggggccc tttaccaqqa aaccaaaacc
                                                                      660
aggttaaaaa accccaaagt tgggnaaaaa gccatttgcc anccggggcc nttttaaaaa
                                                                      720
aaacctttna aaaacctttc ccttttaaaa ctttaccttc aagntaaaan tttaagggga
                                                                      780
atgggnccaa nttttttaac canceccaaa aaaaanttng gnaatttttt tteecnaaat
                                                                      840
tttttnaant tccccaaatt tnggaaaang
                                                                      870
      <210> 554
      <211> 766
      <212> DNA
      <213> Homo sapiens
```

```
<400> 554
tatcaatgnt atgtntggtc tnttcgaaag anctagncgg ntcgaattcg gcacgagcca
                                                                        60
acacccagtt ctnactctgt catccagget ggtgtgcagt ggtgcaatgt gggcttactg
                                                                       120
cagcettgac etccaggaca agtgatetee cacetnagee teeggaatag etgggactae
                                                                       180
agntcaacaa cgcccctctg aaagtaggac tcttggaaat gaaccttgtt gggagtaaag
                                                                       240
ctgaaccttc acctctcctt tccaggattc tactccattc atacggcctc acactgaatt
                                                                       300
aatgtttnta gcagccacat cacttngtta cccaattgat ctagtagtaa agtcttccca
                                                                       360
tctnttcatg taaaaaaaa aannnaaaan gggnnaggaa ccntnangnt nnnaanaaaa
                                                                       420
aaaaaaanca ggnggngngc nttttttaac ctataacctg ntttnaggcc tttccccang
                                                                       480
tttntccnaa ncnnggttan taggggccna aagctaaccg natttttgnt cccntnaggt
                                                                       540
taggeengaa attaacengg gtttaaagaa encattgant aaageettge etnggeeaat
                                                                       600
tccgggaaaa gggaanagcc tccttgtttt acanattggg aaaaattggc cccaangggg
                                                                       660
gttaaccang tttgcccntt aataactnaa anggattttt gncaaaacct ggttccaagg
                                                                       720
ntttaanccc aancettttn aaanntnggn enetttggat gnaann
                                                                       766
      <210> 555
      <211> 770
      <212> DNA
      <213> Homo sapiens
      <400> 555
gttatccnat gngcgtntgt ngnnnncnct aanananttg gctngncgct gggccttgct
                                                                       60
tetetgagaa aactttggte acaenteeaa ageeagggtg ggtgeeteen tgnaggaggg
                                                                       120
ggctttcctg gttggtggcn cagnaggagt ccaggctttg taccgtggac accatgggct
                                                                       180
atggcaacac cttcctaacc atccttccat gaggacctcg gnaganagtg gacatgaaac
                                                                       240
cetttgtget etgaancatt caacagaage tttetggtte tgtgeetatt tetttggeae
                                                                       300
ttgancgtgt ttgcaggttc attacncaca tgatgaaagc tctggcccat agcactagaa
                                                                       360
ttcatgtttt nagggtttgt gagtgtgaca ggtgctatgg tttqqatgtg gtttqtttcc
                                                                       420
accaaaactc ttgcttgaag tttaactgcc agcatggcaa ttgttggnag gtggggccta
                                                                       480
ccgggaggtg attgggtcat gggggcttga accetccgga atagattacn gctgcctcct
                                                                       540
ganaaagttc tacctgtcat gggggctgga tcagtcaaca ttgannantg gggttgttat
                                                                       600
aaagcaagac tnactcctta tgcaccgttt ntttgcatat gcccctctgg gggnancttc
                                                                       660
tttggctgct aacatttttg gacccaaccc aatgggcctt nacccagaaa nccggaacaa
                                                                       720
aatgccnnnn gccattcctt tnngganctt tccaacttnc canaaataat
                                                                       770
      <210> 556
      <211> 756
      <212> DNA
      <213> Homo sapiens
      <400> 556
gtngtcnatg anatgtcttg cctnncgaag aacnaggcgn ntcggtagaa cagaaaatga
                                                                       60
gcatccgatt tcttcactaa aggagaccaa actggttcct tgcggcctag tnttnaagan
                                                                       120
ctggancttg aaagtcctcc ttntaccaac tccacntcca ccccntnatt cccnttntcc
                                                                       180
caaagtncta ctgntgttgc ntgacanccc caaatntgtn ctgtcaacac aaacctgcct
                                                                       240
ttggngtata aacagggcnt tacagaatgg tncaccctat atatttctgt tcagtatcca
                                                                       300
ttcactagtt cttcattaat aaatatcatc ttccccattc tgctgctgaa tgccacacat
                                                                      360
ccatccagtc tgagaaagtg agagaggcaa tcatgccaag aacaagccag caaagctctt
                                                                       420
teaccagatg tagactgtag ecetgetgee tteectecaq eqaqtetqee aqeatqette
                                                                       480
ttcatccttt taatatgtcc tttgcttcct acttccctgn cttccaacat actgtcactt
                                                                       540
actotggcag tottotgctt ttcattaagc ctcaaaatct cctctgtcta cttggcacca
                                                                      600
```

```
caagetatgt cetatatatg natttetgga ettggeangg atagtteaag gggtettgge
                                                                       660
aagtttttat ttaccttcat tatttaaaan gggccttttg gggatgttgg cctntttaag
                                                                       720
gagccttttt ggggaaatca atacttctct taanaa
                                                                       756
      <210> 557
      <211> 742
      <212> DNA
      <213> Homo sapiens
      <400> 557
tegtenaaan nnatgteetg getateegea ggateeagge ggntegaatt eggeaegagt
                                                                       60
gatttttttg gtttttttt ttgntnttgn caaaagetta ntentttean ttaaaantge
                                                                       120
cactantttg actttttaag taaaaantgt agggggtttt aaanctactt tectnetnee
                                                                       180
aaaaantcag aaagtttcta nctttntaaa ttgggaaagc aagcantgtt ttaaaancac
                                                                       240
tgaaggaatc tettintieg ngneettitg ttaaactegg titaagetqt agacetinti
                                                                       300
taaantaaaa tttaccacag aacaggaaat agaanctgtg gaagactcga aatacacctt
                                                                       360
tgtnettete tgttetteae etgetetete getgteteta cacacacaca cacaaacaca
                                                                       420
cacacaccta tatttgcatt aaaaatgggt agtaaaagca gtgaagggca aacagaaggt
                                                                       480
ccattncatc aagtaagagg ttgaatataa actggaccaa gtcttaattt tttatttcct
                                                                       540
tcattcggat ncgtttacta atttctttgc tagctttaag acttttaaaa cattctttgq
                                                                       600
ccctgggagg gagttgttta cccctaaact tggagaatcc tgqccctaga ataaatgttc
                                                                       660
cttttaaacc cccanggccg gaaaattgaa tncngctgtg ccaaaaagga aaaaannnaa
                                                                       720
aaaaaaactc qnqqcctnta na
                                                                       742
      <210> 558
      <211> 730
      <212> DNA
      <213> Homo sapiens
      <400> 558
gggtcnntaa tntnnagcnt gtnaaacccc tgagncttnc gggncgttca caaagaaaca
                                                                       60
tttaataggg acttncaanc aaataattnt cggtttntca ggtggcagca agacaagatg
                                                                       120
gtggatcccc atgccattac ctgctagact cagggttnat atactgtagt ggaaaggtga
                                                                       180
ttccgaagga atgttgtaag acaattgaag tgcagtanca tcaaagttat ttgacctaag
                                                                      240
ggcaggagtt ncagtaagta tccactttta tncaagaaac antagataaa ctggaaatct
                                                                      300
tggagccctt cctggaactg gggttaatga gaagtcaaca tggtggatta ncatggaaga
                                                                      360
tggagttgct tagtctccca ttcaagatgg agtttcttta gcctccattg atagggagtn
                                                                      420
tttaacaaaa ncangaaata agtctttgat ccattgaatc tctaaqaqtq agcccttgat
                                                                      480
gactcaggtt taaacagtnc tgagacaatt taggagatag ttttgaagnt caatttgaat
                                                                      540
tgtaaaaggt caggattttt taactttttc acatctttga anaaaagccc atagagcgca
                                                                      600
agttttcagc aaganctgga aancnatatt nctatggaat taaatagctc ctcaqqqcaa
                                                                      660
teaattngge etggganaac ataatgette aanggetgan gnaatetgga atttetatgg
                                                                      720
gatttcttca
                                                                      730
      <210> 559
      <211> 743
      <212> DNA
      <213> Homo sapiens
      <400> 559
gttagtctat aangtnngnt atgtactngc cctttccgnn ggatcccntc gnttcgaatt
                                                                       60
```

```
cggcacgaga ggaaacaccc ccttataaaa ccatcatntc aggctgggtg atctgacaga
                                                                     120
gctagacact gtcaaacaaa caaacaaaca aacaaaaaa ccccatcaca tctcatgaga
                                                                     180
cttatttact atcatgagag cagctcagga aacacccact cccgtgattc agttacatcc
                                                                     240
cactgggtet gteccacaaa ttgtgggage tacaattcaa qatqaqqttt qqqtqqqqac
                                                                     300
acagccaaac cctatcacca tgtaaaataa tatctaattt qtaqaqatta aaqaacaaqa
                                                                    360
taacttaaat cttggatgta agttaagaga gtggtggtca gagttaaatc attttaaggt
                                                                    420
tcatttattg tctggacaag aataaaattt tgattatcag gaaatacaag taaaaccaca
                                                                     480
gggagacatt gnttatatcc aaattgtcaa aaattacaaa gtcttataat accaagtttt
                                                                    540
gctganggtg tggagcaaca gaaacttttg ttcactqqtq qqtatataaa ttqaataatt
                                                                    600
tcagcttgga cattacctag caaaattgaa ggctgtatac gtacatacct accaatctag
                                                                    660
caattcactt ctagatatta agtcttgaaa aactcacatg tttccagaga cgtqttaaaa
                                                                    720
ggtggttaaa tcattntgng aat
                                                                    743
      <210> 560
      <211> 833
      <212> DNA
      <213> Homo sapiens
      <400> 560
atcongttot ntannnngto tngttottto tncacgaton nntgcgatto gaattoggoa
                                                                     60
cgaggggtcc tggtgggagt tccatccagc agtgagtgca tttttcccc agagcagtta
                                                                    120
agggtcttat taaaagccac cactttgctg aggcctgtac aggccttggg ggtttgggga
                                                                    180
agagaantaa ggcaggcact tgtcccttca gggagggact tgtccntact qqqaqqtttq
                                                                    240
gggttgacct tggctccagc agagataccc agcctggcnt ggaagggcag gtcttgagct
                                                                    300
tacgettgae tgeaagggea agetgeagge etettetgee tteecetgea tteaceaagg
                                                                    360
acaagtagga ccaagaagtc aagggaaaag tgccaagata gatctattcc catttctttc
                                                                    420
ttccacctgg agaattcctg agctatgctt caaacctctt ttgggccagg gaaagactgg
                                                                    480
gggacatttt ttagtcaagg atgctttaag aaagtaaatt cctgcttggg ggcccaggcc
                                                                    540
ttcttttca agggcttgct tgtgaatgcc caaccaaaaa aaaggggccc ccaaggccca
                                                                    600
atcccttact tcctnggtcc ccccaaaaag ggatnccaan ttggggaatt gggaaaactt
                                                                    660
gggcanncac ccnaanccca ctttggtagg anttnaccaa cccaaccaac ccaaaccan
                                                                    720
780
nannnnnnn nnnaaaaaaa ctttgangcc ttttaaaaac tntttngngn ggn
                                                                    833
      <210> 561
     <211> 773
     <212> DNA
      <213> Homo sapiens
     <400> 561
tagtctaatg tnnnaaantn ngcnctngtt ctttctgcag gatcccatcg attcgaattc
                                                                     60
ggcacgagga agaggaggct gtgtatgagg aacctccaga gcaggagacc ttctacgagc
                                                                    120
agececcaet ggtgeageag caaggtgetg getetgagea cattgaceae cacatteagg
                                                                    180
gccaggggct cagtgggcaa gggctctgtg cccgtgccct gtacgactac caggcagccg
                                                                    240
acgacacaga gateteettt gaeeeegaga aceteateae gggeategag gtgategaeg
                                                                    300
aagetggtgg egtggetatg geeggatgge cattttggea tgtteeetge caactaegtt
                                                                    360
ggageteatt gagtganget ganggeacat ettgeeette eetetnaaca tggetteett
                                                                    420
attgctggaa gaagaagcct gggaattgac attcagcact cttncaggaa taggacccc
                                                                    480
agtgangatg aagceteagg getteettee ggettggeag actaacetgt caccecaaat
                                                                    540
gcagcaatgg cctggtgatt nccacacatn ctttcttgca ttcccccgac cttccagaca
                                                                    600
getttggete ttgeceetga caggataett gageenagee ettgeetgtn qqccaaacee
                                                                    660
```

tgaattgggc cacttgccaa act			_	-	720 773
<210> 562 <211> 655					
<212> DNA					
<213> Homo sapiens			•		
<400> 562					
nnatanacat taangnnaga ngr					60 120
cgaattcggc acgaggccac cgg tgggcgggca gttcctttgc atg					180
aggeetttgg tttgcgtett att					240
atgggaaggg gatgggtagt gga					300
tnncgnnctg tttcacattc ttc					360
tgtggactgt ctgagcttgc cct	gccagaa	aaatttgggg	ctaggcaccc	aggtgcanac	420
tttggaagaa gcantccacc tgt					480
cctacttgaa catggaaaca gca				_	540
tnnannannn nengacanne nno					600 655
nncaantacn ncnaaaacac acc	Jiniccana	ammmaami	innininicanii	Illinac	655
<210> 563					
<211> 738					
<212> DNA					
<213> Homo sapiens					
<400> 563					
tnntaatget ggaatteetn atr	ncttagac	tactcqttct	ttctncagga	tecentgega	60
ttcgcagaaa agagtatagt agg		_			120
atccactgag tttgtagaaa aac					180
aaaacatcca actttactac ago	gatcctga	tttaaggcag	ttcttggaaa	gttcagagct	240
gcctagagca gttaatacac agg	ctctgag	tggagcagga	atattgagga	tggtgaacaa	300
ggctgccgac gctgtcaaca aaa					360
agaaaagcag cagcaatttg aga					420
tgaagccttg gtctgtcata gaa					480
tgctgccatg ttaggtaatt ctg					540
tgcagaggtt gaggagaaga tag atatgttttc agaactactt aat					600 660
tgccatcgat gaatgctgca gaa					720
cttaaccaaa atgatggt		3	ooooogoooa		738
3 33					
<210> 564					
<211> 798					
<212> DNA					
<213> Homo sapiens					
<400> 564					
nggggngtct aatgctgcnc nna	tcnannc	anggnneteg	ctctngctcn	acnnanaagg	60
cgntgngtgt gccaccacac cca					120
cgaagtttca ctcttatccc cca					180
cctctgcctc ctgggttcaa gcg	gttctcc	tgccttggca	ggcacctgta	gtgtcagcta	240

```
ctcqaaqctq aggtgggaqa atcqcttgaa cctggqqqqc qqaqattqca atggtgtggt
                                                                       300
ctcggctcac tgcactcgag cctggcgaca gagcaaqact ctgtctcaaa aaaaaaaaaa
                                                                       360
                                                                       420
aaaaaaactc gagccntnna actattngng aggtcgtatt acgtagatcc agacattgat
aagatccatt gatgaagttt gggccaaacc ncaacttgaa tgcnnngaaa aaaagcttaa
                                                                       480
ttqqqaaaat ttqqqaatqc ctatnqcttt atttqqaacc ctttntaaqc tqcaantaaa
                                                                       540
acaagttaan caccncccaa ttgqcntcca ttttaatqtt tncaqqqttn aqqqqqaaq
                                                                       600
gttttgggaa ggttttttna aatteneggg cennggggne ceaatgettt ggggeeeegg
                                                                      660
gtncccaann ttttgggncc cttttaangg gngggnttan attggccccc cttggggna
                                                                      720
aaancgnggn anatacctng gtcccctgtg nanaaatngg nttcccntta caaaatttcc
                                                                       780
cacnnanatt tnngnncc
                                                                       798
      <210> 565
      <211> 744
      <212> DNA
      <213> Homo sapiens
      <400> 565
ttntnngttt naatnntcnn ggnntcgntc tnnctcnaan nanaataggt ttggcgaatt
                                                                       60
cggcacgagc atgctggcca gcatccctgc ctgtgcaagc tctggatgag ctgtgtgccc
                                                                      120
ctgccacnca caccongcac tecetgccag cetggeetea gggeetetga tecatgtgca
                                                                      180
ctggagtggt gatgactgac agggccactg gggcatttnc acgttaacag cagctgccac
                                                                      240
tggcaaaaga agtgactcgc caatggtggc atctcagatg tgggcccagg agtctgggga
                                                                      300
gctactttga acagggctat ccattcattg tcccaccaaa ggctatggag cccacccacc
                                                                      360
atgtgctgga gtagtcaagg gaaataagac actctccttg tccttgttaa ctcaatcaac
                                                                      420
aagcatttgc agagcaccgc ctatatgccg gcgctgtccq aagtgctgaa gatacaqcaa
                                                                      480
tgagctaagt aagcactgac ttcgtagaaa accataacat cggccatctt tggaaaagag
                                                                      540
aaaaacaatg gagttactta tttaaaaaaa aaagaaagaa agttatctct tccanganag
                                                                      600
qctaqaaqta cttttctqct ttttqqccaq tqcccantqq aatqcctqqt ttqqqqqaaq
                                                                      660
aagaagggac tgggttaact gtggtgcttt tgttgtaaaa aggcanctgg cctttgtact
                                                                      720
tgaggagaaa natggagcct tggg
                                                                      744
      <210> 566
      <211> 756
      <212> DNA
      <213> Homo sapiens
      <400> 566
gnagtnntat tgatttntct ccgtgaatcg ttctnnctnn annanaagtg ngttnngccq
                                                                       60
ctggctatgt ggacgctggg gcagagccag gccggagtcg aatgatcagc caggaagagt
                                                                      120
ttgccaggca getacagete tetgateete agaeggtgge tggtgeettt ggetaettee
                                                                      180
agcaggatac caagggtttg gtggacttcc gagatgtggc ccttgcacta gcagctctgg
                                                                      240
atgggggeag gagcctggaa gagctaactc gtctggcctt tgaggtaatg gggggtggcg
                                                                      300
gtggtggggg gtgcttantg gctatgctca ccccgctnca ttanqcctat tttggtctqc
                                                                      360
tgtttccaaa tgcttctana tctaggcatt tggtatccaa cctattgcca cantgcctan
                                                                      420
aactncanac ccccngccnc tatgntnana cctacttggc acaagaacaa nngnanacnt
                                                                      480
tgnnnatatn ccanaangnn naanattaca nantnttata ataccaattn ntnttgangg
                                                                      540
tgttnnnnnc anaaacnttt gntnacngnn nnnnntatna atnnataatt nnnnntttgn
                                                                      600
nancannanc tatgnnnaat taaangnntn tntncnnnnc nnnacnnnna nnnnnnttan
                                                                      660
nnanttnenn ttnnnntnnn nnnnnnnnt tnaanaannt nnnnnttnat nnnannnen
                                                                      720
nctnnaangt ntntttnnnn nnatnnnnnn nnnncg
                                                                      756
```

```
<210> 567
      <211> 746
      <212> DNA
      <213> Homo sapiens
      <400> 567
gnntgtnntt nncnnannnn anganagagn tactegetet ntetetaega tanantgngt
                                                                     60
                                                                    120
tnegaatteg geaegagatt teeteeagte etgggeeeca teettnaggg eetteeeage
caqccaqcaq qaqaqqcaag aactqqqqqa acacaggaac ctaqqqqaqq aqqqqaqcqc
                                                                    180
tgggcatcct caggctggcg gccaagcctg cccctggagg cactagagga gggcatctgt
                                                                    240
ctgtgggagc ccagagctgc agggaggagg aggagggagg tatctggtgt gagcgttgcc
                                                                    300
cctgcgacat ttgggaccac acaggtgggc ttccttattc cctgacaaag cctctgtttc
                                                                    360
cagetettee gecetetetg gatgagggaa cagaagtgga ggaaacaaaa gaagcagcag
                                                                    420
cacqcacaqt cctqtcqctq qqtqcqqaqa caqcctqqca aaqtcccact caqccatqqc
                                                                    480
ctgatgcang ccccagccct nctttcttgg gtgtcaaatg actqtqtcct qqacatctqa
                                                                    540
tgcaccacct gccctgcctg ttgcaaacgt gatgctcccg gatggaatgg agaaactagg
                                                                    600
agactgggac aagcaaaang ctgcaaacaa cccagaaccc attcttagaa nactggagaa
                                                                    660
atgattgagg aatcattggc accgtggncc tgtgcttcat nacaaacacc tttnagaaca
                                                                    720
acttgggatt gaaaaaccaa gacant
                                                                    746
     <210> 568
      <211> 738
     <212> DNA
     <213> Homo sapiens
     <400> 568
gnnnntngtn gttcttanng ttnggatctc gttctttctn cacgatcncn tcgattcggt
                                                                     60
ctgggcagcc tacgctttcc ggataaaaat ggcagaatga aagaaattat gagtggaact
                                                                    120
agagaatagg aaagacatga accaacgccc aaaatgagaa agaaggacat ataaagaaaa
                                                                    180
agacaaatac aagtgaaaaa aatagactaa tggattaacg tccctgtcgt gtgacatttt
                                                                    240
ctgctatgga aatgatatta gacaaaaagc acttcaagtg gttttcttat ttgagttcaa
                                                                    300
aatgggtcat aacgcagcag agataacttg aaacatgaac agcgcatttg gcccaggaac
                                                                    360
tactaacgaa catacagggc agctgtgatt caagaagttt tgcaaagcag actagagcct
                                                                    420
tgaatatgag gaacacagtg gccagccatt ggatgcttca cttcttgaag catcttgaca
                                                                    480
gctttttgca ggtgaaatgc ttncacacca gcaggatgca gaaaaatgct ttccaagagt
                                                                    540
ttgttgaatn cagaacatgg atgtttatgc tgcaggaatt aacaaattta tttctcgttg
                                                                    600
gcaaaaaagt gttgattgna atgggtccta tttgattaat aaagatgtgt ttgagcctaa
                                                                    660
720
nnnnnnnnn nnnnnnat
                                                                    738
     <210> 569
     <211> 753
     <212> DNA
     <213> Homo sapiens
     <400> 569
gtttntgant ntgattetta tgettngnet aatgetttnt etnnangate cennegatte
                                                                     60
gctggaggag aggagctcag agttctacag agtctttnct gaacaatatc agaaagctqc
                                                                    120
tgaagaggtg gaagcaaagt tcaagcgata tgagtctcat ccagtctgtg ctgatctgca
                                                                    180
ggccaaaatt cttcagtgtt accgtgagaa cacccaccag accctcaaat gctccgctct
                                                                    240
ggccacccag tatatgcact gtgtcaatca tgccaaacag agcatgcttg agaagggagg
                                                                    300
```

```
ataaaaactt tcagaatgag caaaacacca tcaacgttaa ttccagagat ggaacatttt
                                                                       360
ttttcctagt gagaaaacaa cccatttqaa gagaaqaccc taatqaqaaq accctaaaga
                                                                       420
gagacatcaa gaatggatte agcagaatca tttcacgttt tgaacagcag cagtttgaan
                                                                       480
ggccaaagcc tttgatcagg gatcccgtca ttaaaggaca ctcttgagta ttagtaaacc
                                                                       540
ctcttatgat gattaaaaga gaagggcagc cctnttcacc tttttggtct ttctattcaa
                                                                       600
cttgcctgac cataaaatgg ttctcttctg nacaaagccc catcatttgg tgaacctcac
                                                                       660
ccttaacaaa gtaggattgg ggttgggggg cttaattaat tqqaatqqqq ccaaqqaqaa
                                                                       720
gagecegaaa eettagatne eangggnana agt
                                                                       753
      <210> 570
      <211> 832
      <212> DNA
      <213> Homo sapiens
      <400> 570
tnatnaataa ggtttgantt cttatgcttn ccaanngctt ggacctannt anccangegg
                                                                       60
tgcgaattcg gcacgagcca ggccccaata atctgggntt naaactttga ggaaatgcca
                                                                       120
gtgacttatt ccagagtgcc tcagttaggg gaacttctct gtaaagaacc ctgggtattg
                                                                       180
agcaaaaacc ttattatcgt taatgaccta taattggaag cttcctgcct ttttctttqq
                                                                       240
ttgctcctgt ggaaaatact gaaaagatta ctttgtttta ttttgttgtc tttttataaa
                                                                       300
aggggaggtg gagagacccc ttcagagcag ggattgtgcc gggagagtgc ctctqacttt
                                                                       360
gggacatttc atccacagaa atttncaagc caatggtttc ttttgggttt tgggttttta
                                                                       420
tgtttgnttt ttgggggttt ggaaaaacat gcatttttac cgtgcacgta aaattggtca
                                                                       480
nagaaaaagg gagcccagaa aangcagcan atgggccatg cccctttgct gggttttcct
                                                                       540
tttcttttgg gactgtnaag gggaaatggg tttttanaag gtgaaggttt ggtcctqttg
                                                                       600
gaaggaaaag aantgtotot gttngggggg acaanaaggn accottgggg gaggtocatt
                                                                       660
cgcaatggtn cctaccaaaa cnnggntctt taanaacacc ngggcctttg ncccaqqnaa
                                                                       720
aaaaccctgg gcccctttaa naaactttqq nanggqaacc ccqqaaaacc cccttqqqcc
                                                                       780
ttnccaaatc ttttttccca aagnencece eggggggece aaaaaaaaac et
                                                                       832
      <210> 571
      <211> 748
      <212> DNA
      <213> Homo sapiens
      <400> 571
agtnttaatn ntggacttct aanganttng gctnntcgnt tggaannnnn cagtnctcta
                                                                       60
nnagcccatc gatgcgaatt cggcacgagg ctaggattac aggtgtgagc caccatgccc
                                                                       120
agccacttat ctttaaagga ttaagtttat gtttcctact atqqqaaacc atcccacccc
                                                                       180
aaacttgatg accgcattat gtgcttttat agaacatggc acttctccag gatagcattt
                                                                       240
attotgtttt gtaagtgtga atgtaattac cotacacaca gcatacacat aatottcata
                                                                       300
ttetttgeet tgtettgtga aggeaaggge catgtetate ttattegtea ttaqatteee
                                                                       360
acatccaaca tagtcctggg gacagcacca atgcactttt ggtgcataag caaatagtgc
                                                                      420
atttataget ettacetaca atatetgata gactaateaa atatagtagg ttatetggge
                                                                      480
ctttttgatt catgtctcta gcttaacttt cattttttc ttatttggta tctctcactt
                                                                      540
tgccttttga tatactctta cagtttcgct cactgagtaa aagaaaatnt aaacagcaag
                                                                      600
aagtaaactt gtgttttatg gatttngata acatcttcta aaagaccccc caaqattgtt
                                                                       660
gatgtctaaa aaaattaaag ggccttcaac tcataataat acttaatagt tcttaaaata
                                                                      720
ttacaaactg attggaacat tgcctaac
                                                                      748
```

```
<211> 755
      <212> DNA
      <213> Homo sapiens
      <400> 572
agtettatta nnnngtteta ateetttett aangagnnta ggetaetegt netttetgea
                                                                       60
ggtatcccnt gcgatncgaa ttcggcacga ggctgagcac ctttggaaac aacatttaag
                                                                      120
ggaatgtgag cacaatgcat aatgtcttta aaaagcatgt tgtgatgtac acattttgta
                                                                      180
attacctttt ttgttgtttt gtagcaacca tttgtaaaac attccaaata attccacagt
                                                                      240
cctgaaqcaq caatcgaatc cctttctcac ttttgqaaqq tqacttttca ccttaatqca
                                                                      300
tattcccctc tccatagagg agaggaaaag gtgtaggcct gccttaccga gagccaaaca
                                                                      360
gageceaggg agacteeget gtgggaaace teattgttet gtacaaagta etagetaaac
                                                                      420
cagaaaggtg attccaggag gagttagcca aacaacanca aaaacaaaaa atgtgctgtt
                                                                      480
caagttttca getttaagat atetttggat aatgttattt etatetttat tttttteatt
                                                                      540
anaaqttacc anattaaqat qqtaaqacct ctqaqaccaa aattttqtcc catctctacc
                                                                      600
ccctnacaac tgcttacaga atggatcatg tcccccttat gttqagqtqa ccacttaatt
                                                                      660
gctttnctgc ctccttgaaa gaaagaaaag aaagaagact gtgtttttgc cactgattta
                                                                      720
accatgtgaa actcatctna ttaccctttt ctngg
                                                                      755
      <210> 573
      <211> 743
      <212> DNA
      <213> Homo sapiens
      <400> 573
cangitetaat getggetein ateggitett ninantnaag niactegite titetneang
                                                                       60
natchnntgc gnthcgctca cacagcatgt gtcagatcca tggggtagga gtcggccaga
                                                                      120
gacttgqtaa caqacaqatt qctqqatccc acccctaqac tctctqattc aqttaqtttq
                                                                      180
gggtaaggcg caagactgaa tttttcacaa gtttcccagt ggtgctgata cttctggtcc
                                                                      240
aggaacttag tggggagaga acgactaatc tagaccattt cacttcacat tctgagcttc
                                                                      300
ttgtcactgt cacactgcat ccttttaaca atgcattccc tatcctattg caatactgac
                                                                      360
atctcatcaa tattttaaaa catgcgtttt cagaaacaat attttatatc aaatactcac
                                                                      420
ttttagtaat atttctgcaa ttttgcccta tggatctgag atctaacaaa tactattctg
                                                                      480
gacatggget acaacagttg aggetggaag taaaaatgtt aaaccetget gaccaegtta
                                                                      540
ttttaaagtg tattttagtt aagaataata tggcttagga gcagggctaa acagtagcag
                                                                      600
tcacatgggg aatgatactt tgcttttgca cataaaatgt cctgaaggga aaaaataaag
                                                                      660
cagaaaattn ncagatgaac tgaaaatctg tacaaatgtt gggctgaata ctgccagcgt
                                                                      720
tgangtgtag gaaaatgaac cnt
                                                                      743
      <210> 574
      <211> 737
      <212> DNA
      <213> Homo sapiens
      <400> 574
ccgtctaatg ctggnttcta atcgctttct taangctcnn gggctcgntc tcnctncacg
                                                                       60
cagcccggcg gtgcgaattc ggcacgaggg gattacaggc atgacccacc gcgcccagcc
                                                                      120
tgtnatttet tataetnigi attitggnet igtattaige tietgataeg etataattai
                                                                      180
ttatgtccat gtncntttct tcaatagact gtgaactctt cgaatgtngg actcctagag
                                                                      240
ctagatnete nattattnnn tattaaattg aatgaettgn aactacagat cetttattta
                                                                      300
```

360

aacttcccaa atttctgctt tatctaggen actctttaaa ttcttttatc tcatgtagat

```
ttcanaggct gaaataattg agatttttag tttgaagaaa agagaactgn ggatttaatg
                                                                       420
gcnttattat tatattttta atggctgttt gggagtnagg ttgcagacat tggtcacttt
                                                                       480
cctcctaaat ncttaaatat ttcctaaaaa caggncattc tttnttttnt tatggagtct
                                                                       540
ggetetggen tecaggetgg antgeegngg eccatettgg ettactgeag eteceettee
                                                                       600
egattenege tggteteetg netngetget egggaggetn aqqeengqqa ategttgace
                                                                       660
ccggaggcgg aggttncnan agcctnnacg ggccctnggn ctcccggctg ggtacnngac
                                                                       720
cggacctccg nctgnat
                                                                       737
      <210> 575
      <211> 766
      <212> DNA
      <213> Homo sapiens
      <400> 575
gnagttnaaa ageggntttt anteeteten aatengnttg ggetaetnge tetttetgna
                                                                       60
ggnateceat egattegaat teggeacqag ettteteet etgtgeetee tgetteettt
                                                                       120
ctctcctct cctctcctct cccccatc ccactttctc atctqcctcc ttttctcact
                                                                       180
tetgteagte tgtaagettt gataacetge ttaatactee aaagtgtgag tteetetgat
                                                                       240
ctcttgattc cttagttcta atctcacgtt ttgtttttaa gagatggagt ctctcactct
                                                                       300
gtggcccagg ctggagtgca gtggcatgat catagctcat tgcatccttg aaatcctggg
                                                                       360
ctcaggtgat cctnccgcct gagcctcctg agtatctggg actacagatg cqtqccacca
                                                                       420
agectggeta attttgtete atgtetteta aaaattattt tgtgaageee etteacaaaa
                                                                       480
aaccttaang gaaatctgat ggtgctcagg aatctaactc tccctaaacc atcctctttt
                                                                       540
aactgettet aaaatatete tggtggeett tettageett titetggtte atteaatget
                                                                       600
tcaaagcgct ttttgnttct aagttgagtn ctttgggggt ttgacaggta gtgacgtgta
                                                                       660
gttttgacac tgttaacttg ttnaatacag tgaaaangtt tgtgaagtga aaaatgcttg
                                                                      720
anaaagaatg gnaatgcctt tntacaaata aaagtnttgt taaaat
                                                                       766
      <210> 576
      <211> 761
      <212> DNA
      <213> Homo sapiens
      <400> 576
ggggtnnnna gngnnttgan cccctttctt attatcaagg ngctngcnct nnctnnannn
                                                                       60
ancacaggeg ntgngaatte ggeacgagaa gataacetet taatgeatte atgttgtata
                                                                      120
tgaaggaaat gagagcaaag gtcgtagctg agtgcacgtt gaaagaaagc gcggccatca
                                                                      180
accagateet tgggengagg tggeatgeae tgteeagtag tatttattge tttagagatt
                                                                      240
gcttgtcgta cctgtatgtc gtcccttttt aaatatgttt tcctttttct tgaaactgta
                                                                      300
taaagttttt ttccccctta gcataagcat cttatatata acaactcatt tqtacaaqqt
                                                                      360
ttttaagttt atatataaaa tgtgtatata tatttttgnt tccccttttt gactttttt
                                                                      420
ttctgtatga aacccagatg tcaccaaatg gacattaata gttgcattaa qqatcaqtaq
                                                                      480
cattaacaaa agttgcttta aaagccatta tgtaaaacaa gacttgaaaa tgagtgaggg
                                                                      540
aattttageg acactgtetg agcacagtgg gaaccatett eqttteecet ttgaacteca
                                                                      600
antgggatgc cctaccctgg cgccccttag gaccccggac tggcccgngt acaaaacttt
                                                                      660
accytyccaa aattettaay tyaatttaee tttetneete tttttyaaye tnyaaatttt
                                                                      720
tggtcatcan gntttgcttg tgatngtaca tanggtngaa n
                                                                      761
     <210> 577
     <211> 803
      <212> DNA
```

<213> Homo sapiens

<400> 577 gggtngttnn nnngtggnnt tnttnnnngt ttctaatnnt cgngqngntc qanctnnctc 60 nananagaat aggtttgnga attcggcacg aggtctcccq cccggcgccc ccaqtqtttt 120 ctgagggcgg aaatggccaa ttcgggcctg cagttgctgg gcttctccat ggccctqctg 180 ggctgggtgg ggtctggtgg cctgcaccgn catcccgcag tggcagatga gctcctatgc 240 gggtgacaac atcatcacgg tccagccatg tacaangggc tgtggatgga ctgcgtcacg 300 cagcetetag aactatagtg agtegtatta egtagateca qacatgataa qateattgat 360 gagtttggac aaaccacaac tagaatgcag tgaaaaaaat gctttatttg tgaaatttgt 420 gatgctattg ctttatttgt aaccattata agctgcaata aacaaagtta acaacaacaa 480 ttgcattcat tttatgttca agttcagggg gaggtgttgg aggtttttta aatnnncggc 540 chengegeea atgeattggg cecegtacee acttttggth cetttaantq aaqqqtttaa 600 tttgccccnc tntgccgtaa ttcatgggnc atanncttgn tttcctgqng ttgaaaattg 660 gntaatcccc ttcnacaaat ttccnccaca atcatttacc aaaccccngg gaggcctttn 720 aaagnngtna aaanccctgg gggtggccct taatttaagt ggnnccttaa ctcncnttta 780 antgeenttg ceetteactg cet 803 <210> 578 <211> 738 <212> DNA <213> Homo sapiens <400> 578 tegtecentn gateggggta aegteettne etatnaaant tettteggga aageagaaae 60 caagctggca gaagcacaga tagaagagct ntcgtcagaa aacacaggag gaaggggagg 120 agegggetga gteggageag gaggeetace tgegtgagga ttgagggeet gageacactg 180 ccctgtctcc ccactcagtg gggaaagcag gggcagatgc caccctgccc agggttggca 240 tgactgtctg tgcaccgaga agaggeggca gatcctgccc tggccaatca ggcgagacgc 300 ctttgtgagc tgtgagtgcc tcctgtggtc tcaggcttgc gctggacctg gttcttagcc 360 cttgggcact gcaccctgtt taacatttca ccccactctg tacagctgct cttacccatt 420 ttttttacct cacacccaaa gcattttgcc tacctgggtc agagagagga gtcctttttg 480 tcatgccctt aagttcagca actgtttaac ctgttttcag tcttatttac gtcgtcaaaa 540 atgatttagt acttgttccc tctgttggga tgccagttgt ggcaagggga ggggaacctg 600 tecagtttgt accatttett tgnatgtatt tetgatgtgn tetettgate tgccccaet 660 gtcctgtgaa ggacagctna ngncaaggag tgaaaaactt tacttcttaa aaaaaaaaan 720 nnnnnnnnn nnnnnaa 738 <210> 579 <211> 758 <212> DNA <213> Homo sapiens <400> 579 gnngtgncta nctaaatnnt tggntntaaa cgtncnttct gcatnatccc tnnttgacga 60 attnggcacg agacagagtc ctgaaatatg caaatgaagt aaattctgat qctqqcqcct 120 tcaagaaaca gcctaaagga cctgcctgat gtgcaagagc tcatcactca agtgcggtca 180 gagaagtgct ccctgcaggc cgaagccatc cttgatgcaa acgacgctca tcaaacagag 240 accttctcct cccaagtcaa agggacaaat aagcctctgg gttgaacggt ttgagacatt 300 ctgccttgga ccttcccttg tcaccaaaca agccaacctt gtgcacttcc accaggcttt 360

420

cacccattcc ctgcaagcct tggtcttttg acctggccct caaccatgtg gctttccacc

```
cettgaggae aagttggaac agaagaecaa gagtggeete actggataca teaanggeat
                                                                       480
ctttggattc aggagctaac caggctettn ctcggggggg ggggagattc tgactettaa
                                                                       540
tetggattgt gagaaaaate cagcaagtte catgatattt aaatecaggt etgeattgge
                                                                       600
ccggggcaag agtttaacat cttcgggccc tgcatttcct acatcttggg gtctgtacac
                                                                       660
gttcttaagc aagcgtgtca ngagagcacc ctgttggctt cttggtaaaa tgtgtgcaag
                                                                       720
gtcatnctgt cttctgnacc ttctggggaa aagggncc
                                                                       758
      <210> 580
      <211> 816
      <212> DNA
      <213> Homo sapiens
      <400> 580
tttctaaatn gcttgggttt cnaaatccct tggttgacgc cctcgcctaa nntggcgtgn
                                                                        60
nantgecene gattegetgn caagtetgga anteatattg gageetgngt ngaetgaaaa
                                                                       120
ctcagcanga gttgatgtta aagtcttggg tctgaaattn gtngggcagg agattaggct
                                                                       180
ggaaactcag gcagaatttc tgtgttacaa tcttgaggca taattcttct ccaaaaaaat
                                                                       240
ctccattttt ttctcttaaa gccttggatg agccttggat gattggatga ggactaccca
                                                                       300
cattatetag ggtaatetee tttgettaaa gtaaaeteae tgtgttaate acateaacaa
                                                                       360
aatacettea cagetacatg tagtgtttga ccaaacaact aggeaccata geetageeac
                                                                       420
ataaaattac tatcattata ctttgtctta tcacatactt ctaccttgga agggatattt
                                                                       480
cccagttggt atagctacaa aacagaggca gatcatttag cctgcattng attngtantg
                                                                       540
aaaaataagc ctttggtgng tttaaccact gaaaatgttt gcggcctatt agtantngca
                                                                       600
caacttatcc tatnctggcc aaacatagaa tgctttcggt ttgcaaggta acangatccc
                                                                       660
ctttacagnt gtacnaaaaa tnancnntaa aaaaactnga gccctntaga acntnntagt
                                                                       720
ggagtcggan ttaacgttng ancccagacc ntggattang gatncattgg atggagtttg
                                                                       780
gacataccac cancttggaa tggcnantga aaaaaa
                                                                       816
      <210> 581
      <211> 868
      <212> DNA
      <213> Homo sapiens
      <400> 581
conngannen nnecnnnnne nnacaaaane nnnnnnnann nnnnnnanen nnnnnnetet
                                                                       60
tcnaannctg ctnacgccca nagcatgacc cacgatcgaa tcggcacgag gttgcaagca
                                                                      120
gccttggaat agtaactctt ctcatttgtt tgggatctgg ccaccaagtn ccagaatgat
                                                                      180
acacggatca gngcanaagn tcatcaggct ctcggacctt agggctgntg gagaagcttc
                                                                      240
agcagcagaa ctgatggtga aggctcgtgt tctccatcct caactttctt tgcttcgatc
                                                                      300
atacacaaga atacattngg aagggcaaaa aaatgaacac tgtcgnncat tgcagcccgn
                                                                      360
gtttngtgac acagatgcac agtctgcttg tgaagacctt ctctcaagtg gcatttggga
                                                                      420
gtccatgcca gancatggtg cttcatgaga gactgacagc tatcaggggt tgnggcactt
                                                                      480
agngaggact ctcctccccc agtgtgtgct gatgacacat cacacctgac aatagctnga
                                                                      540
agnethetet gaccenthtt actetgtage caacatacca catganttta aaaccentte
                                                                      600
taaaatatcc aancaatggg gtcatacntg gcccaaatgc cagaantcna gagcctaata
                                                                      660
ggacttccaa tnattaactt tnccaaannc gaaaaaagna gggcnttccn nttatggcaa
                                                                      720
aaaaatnaan nnaaaaggan atntggnatn gttngccnaa aaaaaaagcc cnntnngaaa
                                                                      780
cctaatanga ggaggtccca cttaaccggn cgnancccca gaacantgga atacaggant
                                                                      840
accnatngga ntgaanattt ggggancc
                                                                      868
```

```
<211> 745
      <212> DNA
      <213> Homo sapiens
      <400> 582
ttctgaatac cttnttacnc gccttcttca ggantttcaa gacctaattc ggcacgagac
                                                                        60
cettletgee tretgtttgg gacceagetg gtgttetttg gtttgettte treaggetet
                                                                       120
agggotgtgc tatccaatac agtaaccaca tgcggctgtt taaagttaag ccaattaaaa
                                                                       180
tcacataaga ttaaaaattc cttcctcagt tgcactaacc acgtttctag aggcqtcact
                                                                       240
gtatgtagtt catggctact gtactgacag cgagagcatg tccatctgtt ggacagcact
                                                                       300
attetagaga actaaactgg cttaacgagt cacagcetca getgtgetgg gacgaccett
                                                                       360
gtctccctgg gtaggagggg ggggaatggg ggaagggctg atgagacccc agctggggcc
                                                                       420
tgttgtctgg gacccttcct ctnctganaa gggaggcctg gtggcttaac ctgggcangt
                                                                       480
cnngtcttct ctgaccccan tggctgcngt gaaggggaac cacccttcct tgcttgacca
                                                                       540
ntggccatta nctnccntna ccacttgnaa cccanggtcc canctggctg ggaccctntt
                                                                       600
ntncccccaa ngncctttcc cttgggctnt nttggantga gcaccttctn tgtnngcacc
                                                                       660
ttttanaant gnnnnntgn tactgatttt tttgntaaaa agannttaaa anctggnant
                                                                       720
ttntnaaaaa aaannannaa aannn
                                                                       745
      <210> 583
      <211> 748
      <212> DNA
      <213> Homo sapiens
      <400> 583
gnttctaatn cttggcctac tcgcctntct ncaggatctt atcgatncna attcggcacg
                                                                        60
agatatggta tagttggaaa taggttattg tgagttattt gtagtcatgt ctttaatggc
                                                                      120
ccttgcatgg tgtctaactt ctgcaataaa tgatctgcca gtcctagtgt ctgggcttta
                                                                      180
tgcaatttgt tttcctttgt ggatgaagtg ggagtaagac ttgttgctgt gaggatcaga
                                                                      240
tgaagtggct aggatatgga cacactttac ttgaattgga aaacaagcca tgtatcccta
                                                                      300
atctgcaaaa tgtggcatgt cacacgtgta atctctgagg tttagttttt gctcaagatt
                                                                      360
gcaaaggtga cttgcttgat gctttctttg cttgagcaca catctcattc attaaatggt
                                                                       420
gtctcctttt ttgcacacag gatgcagaac ataattgacc ttttccaagt ctacttagca
                                                                      480
gaaatgaaaa tggaatcata taaatacagt attatacttt aaaataaaaa ggctgtacaa
                                                                      540
aagtttggct gacatagctt gcttctagta atctgaatgg cttatttaaa taaagttgga
                                                                      600
totatggact cttcacagnc tagatattat cctactggaa gatgtgcctc gaaagctgtt
                                                                      660
gaaccacngc aaaaaaaccc ttcagtcagc acgtgagaaa acctgcgagc ccacatttcc
                                                                      720
cccgggacca ttctgaacat cctactgg
                                                                      748
      <210> 584
      <211> 773
      <212> DNA
      <213> Homo sapiens
      <400> 584
tttaatgett gttacaegee ttetgeagga tttategatt enaattegge aegaggetat
                                                                       60
gtattgtgtc ctaccatgaa ttcactccat gctagccaca ttggcctgta tggctattcc
                                                                      120
ttggacacac ctaggatgtt cttgcctctt agcttgccta cctttctctc atcatttggg
                                                                      180
cctcancgag gatatcatct cctcagagaa gccttctgtg accatgctat ctaaaatact
                                                                      240
ccagcacttc agtcaccctt tatcccatta ctctgctttt tcagaaacat tggtgctccc
                                                                      300
```

360

tgaaacatat ttgtttactt gcttagtgtc ttttctcccg cactaccatq taaqcttctt

```
gagggttaag ggaccttgtt agggataacc actgtatcct tagagtgtga cacatagtag
                                                                       420
gttctcaata catatttttg aaactctacc ctgatgcaaa agagatatca aataattata
                                                                       480
gtttttgcat tataaatggc tttggtgaaa tccctggcac aaaactaata ataaaagaaa
                                                                       540
taaacaqata atqttqaaqt tctqqqcctq caaaacctaa ctcttttaaa qcaqtcccaq
                                                                       600
taaatgtgtc attgggatcc ataagacttt gtgggaaagt caacataatt ttattnggga
                                                                       660
aaaagcattg aaccttcaaa agtnaaaact ttatnggncc aaaatctcaa ttactqqqqq
                                                                       720
gccgttcttt aagtcatttt aaaccctttg angccnacag ttttacacca aat
                                                                       773
      <210> 585
      <211> 745
      <212> DNA
      <213> Homo sapiens
      <400> 585
ttcaatacnt ntttcnngcc ttttgcagga tcnctcgatt cgatggaaca tgagtggaag
                                                                       60
tgggcagtct ttttctttcc ctatcagctg agtgaatgaa gatttagagg gcaqcagagt
                                                                      120
catgacatgg atgacgttgg gtctctggat ggctaaatgg aagacccgcc ccccaacqcc
                                                                      180
actotacccc cotgotttga actatgottt gagaaatgag ottatgagac cactgagact
                                                                      240
tgggggctgt ttgttcagca gttcacctac acttattagg aaaggttgac ttcttgtact
                                                                      300
acgcctttcc ttaaatcatc ttttgtataa ttctcagaac actgctggtt tgggtggtct
                                                                      360
cacacatttc tcacatccaa attttaaaga tttcatgaat gttcattaca gtggatttat
                                                                      420
ttttctcttt ctgcttctcg gcatgccctc tcaatttggg agaaatctct aattggatga
                                                                      480
ctttggtggg accacaggag tgtaaggatc gtaattccct cacttcatcc cctgcaaatt
                                                                      540
aaagcctggg cacttaagac tcactcaact gaatcttgat atqtqqqact ttanatctta
                                                                      600
agcaaatqan gcaaaaqaaq gaaaaqacag ttgagaaaat caatctctga agttcagcac
                                                                      660
ttgattteca cegtggaceg gacteetgea netttgeatt ngeettggtt cetggeeatt
                                                                      720
ttccnaaccc gggttccttt ttgan
                                                                      745
      <210> 586
      <211> 749
      <212> DNA
      <213> Homo sapiens
      <400> 586
tgttctaata ctaggtntac tcgccttttg caggatctna tcgattcnaa ttcggcacga
                                                                       60
ggggtcctgg tgggagtnnc atncagcagn ganngcattc tttccncaca ncaqtnaacq
                                                                      120
gtcttattaa nagccaccac tttnctgang cctgtacagg ccttgnnggt tnggngaaca
                                                                      180
gaaatnncgc aggcacttgt accttcaagn anggacttgt gcctnactgn nagggttggc
                                                                      240
gttgaccttg gctcnacnga catacccant ctgacttnna acgngcncgt ctnagcttac
                                                                      300
gctagactgc acnnccaagn ttgcangcct nttntgnctt ccctgcattn accaatgaca
                                                                      360
gtacgaccaa cagtcaanga aaagtgccaa gatatatcta tcccatttct tctacacctq
                                                                      420
tanatteetn actatgetea aactatgtgg ngcaangaan actgqnnqac atttttagte
                                                                      480
aatgatgctg acaattaatt actggtgngg ccaggcatat nttcacggct gcttgtgatg
                                                                      540
ccaacnaaga acgggcccca gcccatcctt actcctngnc cccaaanaga tccaqtqnqa
                                                                      600
atgggaaget gnnannacca acceaactnn tgatttacca ccaacnecaa anateacgea
                                                                      660
tgnnnacage aaaacaacaa enenatgeae ttaacaagna neenaaaant naactegnge
                                                                      720
ctctaaaact attngggant cctttanct
                                                                      749
      <210> 587
     <211> 783
```

with the contract of the contr

<212> DNA

<213> Homo sapiens

```
<400> 587
gttctaatnc ttggcctact cgcctntctg caggatettn tcgaccttat tcggcacgag
cccaaggcaa gctgttaaca aaatcaacct gggccaatca tcaaagggtt ggacctaagg
                                                                      120
                                                                      180
ttqctatact caataqaaca aqcattttaa ataaatttct cgtaagttgt tgctttcttt
atgtggtggg tgtggcttta aagagcacaa aaccacaaca aatcaaagag tagctcgggc
                                                                      240
ttgtcttttg ctttatggct gagggtttga aggatgattc atggacttgt gaatgccagc
                                                                      300
cccagtcccg gcttaggtct atctgccaat accaccaggg ccaacaaatt cacgcaacaa
                                                                      360
atteteteat titttacagt tiatcagttg cacteatagt tattgtcata atcactecee
                                                                      420
acaqtaacct qtaaqqcata taaaqtaqct attttagtaa gataaatgat attttatata
                                                                      480
tqttatqata aqataaatct tatcatttta agaaqaaact gagctcggag agatgaaatg
                                                                      540
acttecteag ttgctgctgt aataaaagte tactttttgc taaaaaaaaa aaannnaaat
                                                                      600
atnntntann attnnantaa naanaaaac ttcgagccnt tttnaaactt tnantggagt
                                                                      660
                                                                      720
cnntttntcc cgtaaaatcc nnnactttgg atnaanannc catttngatn aagtttttgg
                                                                      780
qacaaacccc ccaacttaga aattgcnntn ggaaaaaaaa ntgcntttta ttttgnggaa
                                                                      783
     <210> 588
     <211> 771
     <212> DNA
     <213> Homo sapiens
      <400> 588
                                                                       60
tottotaatg otggttacan goottotgon gatocotoga ttogaattog goacgagata
ctttttaaac cttttttggc agctcagatg gtgtaaattt taaaattttg tataggtatt
                                                                      120
tcataacaaa aatatgtatt tcttttttgt tattttatct tgaaaacggt acatatttta
                                                                      180
gtatttgtgc agaaaaacaa gtcctaaagt atttgttttt atttgtacca tccacttgtg
                                                                      240
                                                                      300
ccttactgta tcctgtgtca tgtccaatca gttgtaaaca atggcatctt tgaacagtgt
gatgagaata ggaatgtggt gttttaaagc agtgttgcat tttaatcagt aatctacctg
                                                                      360
                                                                      420
gtggatttgt ttttaaccaa aaagatgaat tatcaatgat ttgtaattat atcggttgat
                                                                      480
tntttttgaa aagatgaacc aaaggatttg actgctaata ttttattcct tacacttttt
                                                                      540
totgaataag tototoataa tgagtgoagt gtoagactgt gootactotg atggtatngt
gccatttgta aaatnanaat aagagcagaa aaaacacaaa nangagaaca ctggnttcag
                                                                      600
acattcantg gggcaagtta aattatggga ctgcaaaaat aatggatttt ttattcaaag
                                                                      660
aaaagettta aaaagtttta ttateeanat ttacaaeeea etanttaage taaataanee
                                                                      720
                                                                      771
tactttnaaa aatngnaaat ggttnctatc tttataangt gccaanttna n
      <210> 589
      <211> 844
      <212> DNA
      <213> Homo sapiens
      <400> 589
tncactnnaa tccttntnta aaaagccttc tgcntgatcc catcgattcg aattcggcac
                                                                       60
gaggecagag cetagaggag agateaaaga entingeega agigaageee attetgeaag
                                                                      120
                                                                      180
caactgggtt cccatggcat gtggtggcct tagaggaggt gttcagcctg ccaccgtcgg
tgctttggtg ctctgcccag gagctggtgg gatccgaggg ggcctacaag gcggccgtgg
                                                                      240
acagetteet ceageageag catgtgetgg gggeeggggg tggteetgge eegacteaag
                                                                      300
gggaggaaca gecaececag ecceegetgg acceecagaa eetggcaaga eegeetgeee
                                                                      360
```

420

ctgcccagac tgaggctctt tcccaactgt tctgctcaat gaggacactg actgccaagg

```
480
aggagettet geagaceetg eggaceeace tgateetnea egtggeeega geeeacgget
                                                                      540
actccaaqqt catgactggg gacagntgca cacgcttggc tatcaagctc atgaccaacc
tqcnctqqqt ccaaaqggcc ttcctggcct gggatacngg ctttcttgga tgaaccngna
                                                                      600
                                                                      660
ccgggngaac gtnggtggtn ggtgccggnn cattgcctgg gaaccaccac ccccttnaaa
anguangnte gnttatttet aacaaaacce ggneettgnt tentacentn tteeetntet
                                                                      720
                                                                      780
tggnnnnttt tnaanacnen annneecaat tngnaanaac cenaaaangg gneectttgn
                                                                      840
aaaaaaangg qqccnatatn ntntntcana cccgnggnct ttgaatnngg aaaangccnc
tnct
                                                                      844
     <210> 590
     <211> 767
     <212> DNA
     <213> Homo sapiens
     <400> 590
tctaatgctt ggntctngcc ttttgcggat ctttcgattc gnattcggca cgagagaacg
                                                                       60
ttctcaggtt gaccagctgc tgaatatttc tttaagggag gaagaactta gtanntcatt
                                                                      120
gcagtgcatg gataacaatc ttctgcaagc ccgtgcagcc cttcagacag cttatgtgga
                                                                      180
agttcagagg ctacttatgc tcaagcagca gataactatg gagatgagtg cactgaggac
                                                                      240
ccatagaata cagattctac agggattaca agaaacatat gaaccttctg agcacccagg
                                                                      300
tttggcatag aaatggtacc ccttgttcaa aatgaacaag aagccttaga tttggatggg
                                                                      360
gaacctgate tgtccagtet agaaggatte cagtgggaag gtgtttecat tteetegtee
                                                                      420
cctqqcttqq caaqaaagcg aagcctttct gagagcagcg tgatcatgga cagagctcct
                                                                      480
tctqtgtata gcttcttcag tgaggaangt acaggcaaag aaaatgagcc ccagcagatg
                                                                      540
gtttcaccta gtaactcatt ganggctgga cagaaccaga aagcaaccat gcaccctcaa
                                                                      600
acaaggaagt nacaceteng getggeette cetteegaac aggtgaaagg ggettgaaaa
                                                                      660
atgttgctac cccaaaggcg acattnntgg caccaaatta tccctcttga ccnntttaat
                                                                      720
accttttgat tncatttngg caaaagactt tgnaccagcc nnggaga
                                                                      767
      <210> 591
      <211> 765
      <212> DNA
      <213> Homo sapiens
      <400> 591
tetttgaate ettttgtaaa ageettttge atgateette gattegaatt eggeaegaga
                                                                       60
cttcttgttt gcctttttta taaggaaatg ttggagagtt acatcattgc taatgtagaa
                                                                      120
atgttaagtg gaaaaatata cagtttggta aaataaacta gattctacat ttatttgtgg
                                                                      180
gtttttttcc cctcctttct ttccacagca cttttgatat caagcaagtg gcttcctttt
                                                                      240
tgagatatta aaaaaaaaa gaaaaggaaa aaagtaaatg aagcccaact acctaaccct
                                                                      300
ttcttatttg tatttgtttt agtattgtga agttgtgtta aatagtacta gctagaaata
                                                                      360
caaatttctg gttatcattt ctcttccctg tggcacttga cattttaatt gtcttaaagt
                                                                      420
ttttgaagtc atcttctggc cccttgagta ctgccagagg caaaagatgt ttgtttctta
                                                                      480
ttcattccac ttttgtctcc tgggatccct tctgtagcct aaagtatggc tgggaaatgg
                                                                      540
acttgagaag attggcttga attangatca taatcatgtg tgatcccatc atgaattcat
                                                                      600
                                                                      660
tggaatntgg ggtncatgta angcaatcnt tctggtgtaa atcttccttt ttttaatgna
catatanttt tggaaaaaat tttgaattaa ccctgaaaat ttttaaaaaaa gccctcttan
                                                                      720
                                                                      765
aactattann ggaggtenea ttaccetaga atccanacat tnant
      <210> 592
      <211> 757
```

<212> DNA <213> Homo sapiens <400> 592 60 tnttcnaana ctnqttctng ncttttgcag gatcccatcg attcgccaaa tctgcctaga 120 gattgagttc acagtgtatg ttctgggggc gctggtgcag tcagcggtcc agtctccagc 180 ctgcaggcqt gcacactggg gtggacgatg ggtggccccg caggtgtaca catttgggtg 240 qeeceggeee etataceeca gtgttetett tgatecagte eegaaacaga gggageettg 300 tqtacacgcc tncaaagtgg agctgggagg tagaagggga ggacactggt ggttctactg acceaactgg gggcaaaggt ttgaagacac agcetecece gecageeeca agetgggeeg 360 aggegegttt gtgcatatct geeteeectg tetetaagga geagegggaa eggagetteg 420 gggcctcctc agtgaaggtg gtggggctgc cggatctggg ctgtggggcc cttgggccac 480 540 gctcttgagg aacccagget cggaggaccc tggaaaacag acgggtctga gactgaaatt qttttaccaq ctcccaaggt ggacttcant gtgtgtattt gtgtaaatga gtaaaacatt 600 ttatttcttt ttaaaaaaaa aaaaaaaaaa actcgancct ntanaactat tagtgagtcc 660 720 tatttacctt agatncagac atgataagaa tncattgatg aattttggac aaaccacaac 757 ttggaatgca ntgaaaaaaa atgctttatt tgtgnat <210> 593 <211> 766 <212> DNA <213> Homo sapiens <400> 593 tettqaatne tnqttnntge etttttegga teeetegatt egaattegge aegagagaae 60 attgqtgtgt gagtgttttt tgatggtgca ggacccggag gtgctttcct tgccaagaat 120 180 agaaacatcc agaatgctcc tccccatccc ccaatcccag acagcaatta tgtcagccct gtaaggcatt gcctgctctt gaccctttgg cccatctttt tatttttaaa aaattcccat 240 gtcacagatg ccctgtctat gcagagggtg gcgtgggatg ggtgaccact aagtttaggc 300 tggtgaaggt ggtgagccct tctgaggccc tgatagaact ttccaggagt tcatggtccg 360 eggetecage tteteactgt aaagttgtea teetggeaga ggeagecaat getttteatt 420 ctagggggta gagatttatg ctaatgagtg aatattgcac cactagtgac tttctgttta 480 540 aagttcagct cttagaaaat ggaatcttac ctgaccccta gtgaattatg tacataagca gggaatgttt ccaactagat ctccttcaga agagtccctg tgctggaata ggtcactgaa 600 tottatttgg ntttgtnaaa caaaagcttt tgggtctcgt ggggtgtgtg tgtgntttgg 660 720 ngtgtgttgc cccntntgcc gtttcaaata aaaggtttgg taccaccttt tcaaaaaaaa 766 aaaatantnt anntnanant nntntancnt ttnttnncnt tanant <210> 594 <211> 754 <212> DNA <213> Homo sapiens <400> 594 60 ttgnttagga teccategat tegaattegg caegagggaa ggcagtggga ggagaggaee 120 aagtotoaaa otooagaago oocaootooo tgagotoago toototgooa agooocotoa gcgcgaagtc ctcgtccaga gaaggcaacg gcgagaaaca aatccaacat cctgggctgc 180

240

300

360

420

tttttccttc ccccactttt taaaagtttg gtgtccaagt cacttgacaa acccagaccc

taacaatgat attttgtgta gaattctggg atcaaaatat aatttcaaaa ataatatat

ttctgacatc ccccaaaaaa aaaaanaaaa aaaactcgag cctctagaac tatagtgagt

cgtattacgt agatccagac atgataagat acattgatga gtttggacaa accacaacta

```
gaatgcantg aaaaaaatgc tttatttgtg aaattttgtg atgctattgc tttatttgna
                                                                      480
accattataa agctgcaata aacaagttaa caacaacaat tgcattcatt ttatgtttca
                                                                      540
aggttcangg ggaggtntgg gangtttttt taattengen ggegengene caatgeattg
                                                                      600
                                                                      660
qqqcccqqt nncccanctt ttqqntccct ttaagnngan gggtaaantg ncgcncttgg
cntaatcttt gnncatnggt tggnttnctg nggngnaaat tggttttccn ggnnanaatt
                                                                      720
teccencatn trangatece nggnngntnt aang
                                                                      754
      <210> 595
      <211> 767
      <212> DNA
      <213> Homo sapiens
      <400> 595
ggtttaatgc tgttnnaanc cttcttnanc ctttgtacag catccctcga ttcgaattcg
                                                                       60
gcacgaggaa cgcttccatt ttatacctgt gtctagttag tttctgccta tctatccaag
                                                                      120
aagcttttat caagggtcca ccatgtgcca gccactgaag tagatataaa tacaaggatg
                                                                      180
tgtaaggtat ggatgatggt atacgaactg tcatcttact ggatttgtcc gctctgttaa
                                                                      240
agatacggtt ccgaaaactt tttaaagccc tagagagggc tttaaggcaa tgtagcatca
                                                                      300
tatatagagg catnaacctg ttcatatctt tctatttaac agaactgtgc acctgggcac
                                                                      360
aagggtgtgc acaacaggat gtgtacagca gcactgttaa agtgtancac atccatacta
                                                                      420
cangatetta tgcaactgtt ggaaagaatg aagcgatget gcactgtggt catgcagtga
                                                                      480
tototaagac atattaacto gaaagcaaaa ggtttaacaa tgtatnacaa actgggctgo
                                                                      540
aattgactcg cgcctgtaat cccagcnctt tgggaggctt gantaaggcg gatcacctga
                                                                      600
nqtcanqaqt ttqaqaccaa acctqqccaa tqttqqccna aaccnctqct tctactnaaa
                                                                      660
ctacnaaaaa ttaacctngg gentggttgg eteegtgeet tntaateeen gettactegg
                                                                      720
caatgettga gngaangnan aattngettt gaacetnggg gaggnng
                                                                      767
      <210> 596
      <211> 743
      <212> DNA
      <213> Homo sapiens
      <400> 596
tnttnaatnc tnttttaatn cttgctgcan gatctttcga tgatcccatc gattcnctgg
                                                                       60
tetegaacae etgaceteag gtgatecatt egnettggee tetegaagtg ttgggattee
                                                                      120
aggegtgage cactgeggee ageacattte cacttntaga tectacteca taccacaggt
                                                                      180
ttcatttaag angaaaganc tanataaatg tgctcttntg gataccccac cctgacagan
                                                                      240
tgcattgtta cacagntanc atgggttgac actgcaanct ggcctgtcag ccatnggagg
                                                                      300
ngtttannga aaggcanatn atgtnactct gtgncagggn gccatntgct taccentnac
                                                                      360
ctagcatang gggnttctac gggtgacccc nagcatattt ctaggttact tatgggcaga
                                                                      420
tttgtaagtg acaaaactcc agctgatgct gggaatgggg agagggccct tganggactt
                                                                      480
tgtggntttg tgcttctggt ttcctggcca accccagggt cacttgtctg gagcccagct
                                                                      540
                                                                      600
gggcactaat gtctgccanc gactatntta cagtgtataa atgattcctc tatttgggga
                                                                      660
gagatettee aateeagaag ageecetntt ggaetgeetg ggttaaatet geatageana
agtggttgat gagtcatctg aagaaattca gccccaactt nncaacctgc ccttcctgnt
                                                                      720
tcctttttaa tggnggcctn tgg
                                                                      743
     <210> 597
      <211> 786
      <212> DNA
      <213> Homo sapiens
```

```
<400> 597
                                                                       60
ngtttnnncc ngtttttaat ncnttgctac tngctctttt tgcaggatcc catcgattcg
aattcqqcac qaqqacanac cgttgagagg acgtgqaqqc ccnttagggg gtntgcncng
                                                                      120
nanaggcaga ngtggccctg ggaacagagt tttatgacnc ttttnaccat anangaangn
                                                                      180
gagaatttna aagatatggt gggaatgaca aaatagcagn cataactgaa gacaacatgg
                                                                      240
gtggatgtgg agtttggnac ctngggatcg ngnaaagata ccagtgatgt ggagccaact
                                                                      300
gctccgatgg aggaacccac agtggtggag gagttccant gcanccngga agaggagtat
                                                                      360
ccaqcctaag ttnctgactg gatgtcaaga agaaacccaa nttataanag atgactntan
                                                                      420
ntgantggnn aaatctttca gatcanncca gaccatancn tgagtttaac atccgnaanc
                                                                      480
cacaatccan tgnnccttac taagccgtgg tgattnacaa gtcataaatc cattanatga
                                                                      540
tgtggtnaaa gatgcctatn atgaccnatt ctccatngtt ntccngaaac ccgtcaattg
                                                                      600
acatcacatn teetnttgga gattaaattt tnggtnanen tneettegte ettgggeatt
                                                                      660
ngaacncata aqaatgcacc cccnggntag gcccngtnna aaggttnatg aaggccntta
                                                                      720
taanttttgn nnccccaanc attaaantgg ctngattccc ttaatntttt cctcccnaac
                                                                      780
ccagnt
                                                                      786
     <210> 598
     <211> 809
     <212> DNA
     <213> Homo sapiens
      <400> 598
ngttttnnnn cnnnttttet aatgettget tetegtteet ttgeaggate ceategatte
                                                                       60
qaatteggea eqaqqacaga eegttgagag gaegtggagg eeegagaggg ggtatneneg
                                                                      120
gcagaggcag aggtggccct gggaacagag tttttgacgc ttttgaccag agaggaaagc
                                                                      180
gagaatttga aagatatggt gggaatgaca aaatagcagt cagaactgaa gacaacatgg
                                                                      240
                                                                      300
gtggatgtgg agttcgaacc tgnggatcgg gtaaagatac cagtgatgtg gagccaactg
caccgatgga ggaacccaca gtggtggagg agtcccaggg caccccggaa gaggagtctc
                                                                      360
cagccaaagt teetgagttg gaggtagaag aagaaaccca agtteaagag atgactttag
                                                                      420
atgagtggaa aaatcttcaa gaacagacca gaccaaagcc tgagtttaac atccggaaac
                                                                      480
cagaatccac tgttcttcca aagccgtggt gattcacaag tcaaaataca tagatgatat
                                                                      540
ggtaaaaaga tgactatgag gaccattccc atgttttccg gaaaaccccc cattgacatc
                                                                      600
acattccaac ttggagatta aattttgggt aaccetteet ttgtnettgg geettngaac
                                                                      660
centgaagga aggeaceeen ggtgaaggge eengggggaa agggattean ggnaagggge
                                                                      720
cantaanaaa ccttttggga cccccttaa nccaataaaa tttggtngaa ttgcnangga
                                                                      780
                                                                      809
atggtttgnc cccccnaaac cccnaaant
     <210> 599
     <211> 759
      <212> DNA
     <213> Homo sapiens
     <400> 599
tttntaatnc tttttcnaat gctngcttca ggannntntg cangatccct cgattcgaat
                                                                       60
teggeacgag ceaggttage tgetgaatea aagetteaaa eagaagttaa agaaggaaaa
                                                                      120
gaaacttcaa gcaaattgga aaaagaaact tgtaagaaat cacaccctat tctatatgtg
                                                                      180
tettetaaat etaeteeaga gaeeeagtge eeteaacagt aaagaetttt etttaataag
                                                                      240
agtacggtgc cacttgcctc aaaagttact atggtgctta agattgtctt gatctgacat
                                                                      300
atateacett etgggttatt tacteattgt geeaggacet ggeattttea tgtgeetttg
                                                                      360
accaagigt cagaattigc tigactctaa cciggagagc ticttaagig atgeceette
                                                                      420
atggagette tatgacagtg aataaactat taattgaagg aaaatgttat aattaatgta
                                                                      480
```

```
tctatttqct gcattgtata tggattaaat gataaaaaac aagtaatcta ccctcagagc
                                                                      540
                                                                      600
catqtatttq agaatgcttc aatcatattt tcctatgtac ctttttttta taaacttagt
                                                                      660
tttagactat gttgtaaaaa tggggaaagg ttgtaaacta tgtngtaaaa aatngggaaa
                                                                      720
tqtqqcttta aaatatatnc attatatttq qttcaaqqat tttqqcaqqq gntaaaggaa
                                                                      759
ncnatggttc aatctttgna tttatatacc ntgatttaa
      <210> 600
      <211> 769
      <212> DNA
      <213> Homo sapiens
      <400> 600
ttttaatacn tttttnaatn cttgcttneg ntcctttgca ggatcccatc gattcgaatt
                                                                       60
cggcacgaga gcaattccac tcctagctcc acccacaggt aattgaaagc aaagacgcaa
                                                                      120
acagatgeet gtgcaccaaa gttcacggca gcatcetteg ccatagtggc agcatcegte
                                                                      180
gtcacagegg natcatectt catcatageg gcagcatecg tegtcacage ggcagcatec
                                                                      240
ttegedadag eggeageate tgtegteaca gnggeageat cettegecaa ageggeagea
                                                                      300
tecttegtea tageggeage atcetttgee atageggeaa ggtggaaace etgtecatee
                                                                      360
actgaggcgt gcatagacta aacatggcca gtccaggcac tggaatccag gccgtanaac
                                                                      420
ggngcccacn gtcaaaagga atgagaccct gatgcactgg gcgacacaga cgggcgacac
                                                                      480
agacttggag acatcatgct aagtgaaaag ccaggcacac ggagcggacg gggtgatcct
                                                                      540
gctcacgtga tgtgtcccga atgggcacnt tcagagggga agaanggaga tggcgcttga
                                                                      600
engtgneegg gaenggggtt gggagegaee ggttgttggt ttngggttte tttetngggt
                                                                      660
gaaggaaatg tttttgatat tggggccgtt tgggtgatnt ttgcattacc ctttgaatat
                                                                      720
gcttanaacc cnctagaaat tgnnacactt tttaaatngn ttggaaatt
                                                                      769
      <210> 601
      <211> 755
      <212> DNA
      <213> Homo sapiens
      <400> 601
ntgtttaata ctattttcta atacttgctt tcgttctntt tgcangatcc catcgattcn
                                                                       60
                                                                      120
aatteggeac gaggagacag cagececcag ggaatgaage tgatgecaga gteagaceeg
aggaggaaga ggagccactg atggagatgc ggctccggga tgcgcctcag cacttntatg
                                                                      180
cagcaactgc tgcagctggn cctcaagtac ctctttatcc ttggtattca gattctggcc
                                                                      240
tgtgccttgg cannot ncat cettngnagg catetcatgg tetggaaagt gtttgcccet
                                                                      300
aagttcatat ttgangctgt gggcttcatt gnnagcancg nnggacttnt nctgggcata
                                                                      360
getttggtga tnagagtgga tggtgetgtn anetnetggt teangeanet atttetggee
                                                                      420
agcagatgta nnctatatct gtgattactg gcacttggct acagagagtg ctggataaca
                                                                      480
gtgtageetg cetgtacagg tactggatga tetgnaanac aggeteagen atactettae
                                                                      540
tatcatgcaa ccaggggccg gttgacatct aagacttgnt tattctatag ttcnagganc
                                                                      600
acaatggaat atgatccctt aactcctgat ttgggatcat ctgaaggacc aaggnnggca
                                                                      660
gtcttcgaag tggaataaaa tagccccggc ngtngtgact tgcacctata ttcccagact
                                                                      720
                                                                      755
tttgggaggc naannttnga aggattgntt gccct
      <210> 602
      <211> 773
      <212> DNA
      <213> Homo sapiens
```

```
<400> 602
nttgtaatag ctggtttcta aannntngnt ttcaacccct ttgcatgatn ccatcgattc
                                                                       60
                                                                      120
qaqcaaatca aqatcttcaq qtacagttgg accaggcact ccagcaagcc ttggatccca
                                                                      180
atagttaagg caactetttg tttgcaqagg tggaagatcg aagggcagca atggaacgte
agettateag tatgaaagte aagtateagt caetaaagaa geaaaatgta tttaacagag
                                                                      240
aacanatgca gagaatgaag ttacaaattg ccacgttgct acagatgaaa gggtctcaaa
                                                                      300
                                                                      360
ctqaatttqa qcaqcaqqaa cqqttqcttg ccatgttgga gcanaagaat ggtgaaataa
                                                                      420
aacatctttn aaqtqaaatt ngaaatctgg anaaatttaa gaatttatat gacagnatgg
aatctaaqcc tttaqtcqac tctqqtactc tggaanataa cacctattat acaqatttac
                                                                      480
ttcatatgaa gctggataac tnaaaacaat agaaattgaa ngcactaaan gtgaattqtc
                                                                      540
atacaagcga aatgaaancn ttatttgana gccngcgggc ttctaacata ttgagcgata
                                                                      600
actttttgca aatgaaagat gcccttcngc tttntgaatt gnaaaatatt gaaacctgan
                                                                      660
                                                                      720
agntnanctt agntgaattg aaacttaaat ttgaaccctg nacnanaccg gttaantgcc
tqttcctqat aaaaanaagc cntnangtgc ttncctgntn gatttanccc ccg
                                                                      773
     <210> 603
     <211> 784
     <212> DNA
     <213> Homo sapiens
     <400> 603
tgctttntaa tagctgtttt taaatnentn gctttgcgct cnntttgcag gcatcccatc
                                                                       60
gattcgaatt cggcacgagg gggacatcag tgatcgtaag tctcctgggn ccgttattct
                                                                      120
canattaggt gacggagcta agacttcgag accatctcgt cctttntgta tcgcggaaac
                                                                      180
ctgangaacg agccggcggc ggtgacctgc acgagaagcc aggctaactg ggtgaagtac
                                                                      240
catgcaagca tttcttaaag gtacatccat cagnactaaa cccccgctga ccaaggatcg
                                                                      300
aggagtaget gecagtgeng gaagtagegg agagaacaag aaagecaaac cegtteeetg
                                                                      360
ggtggaaaaa tatcgcccaa aatgtgtgga tgaagttgct ttccaggaan aagtggttgc
                                                                      420
antgettgaa aaaatettta gaaggnngca natetteeta atetettgte ttaeggacca
                                                                      480
cctqqaactq qaaaaacntc cactattttg gcagcaaact tgagaactct ttgggcctga
                                                                      540
acttttccqa ttaaqaattc ttqaqttaaa tqcatctgat gaacctggaa tacaanttag
                                                                      600
nttcganaag aaagtgaaaa atttttgctc aattaanctn gtgtcaagga aaatngnttc
                                                                      660
                                                                      720
anatgggaaa gccgttttcc ncctttttaa gantgggaat tcttngatga ngncnaattc
                                                                      780
ntnttganct taactgnntt angeagettt taaaaaanta eeattggata aangagteen
                                                                      784
aant
      <210> 604
      <211> 801
      <212> DNA
      <213> Homo sapiens
      <400> 604
gttncnnctn aaccettttt tgaaatennt ngettetaet etttggcatn catnecateg
                                                                       60
atneggeece gtgtggggag aengacagea ceetttttnt etggeatttg eeettgange
                                                                      120
                                                                      180
tatagegeet ecceteteee eteagaggge acagetgeag geetgaceaa ggeeaegeee
                                                                      240
ggctctcqtq ctctaggacc tgcacgggac ttgtggatgg gcctggactc tccagaaact
acttgggcca gagcaaanga aaacctcttg ttttaaaaaa attttnttca nagtgttttg
                                                                      300
nggaggagtt ttagggcttg gggagaggga ggacacatnt ggaggaaatg gccttctttt
                                                                      360
taaaagcana naacacataa ccttacaact gcctggcaag cccaatatca cttgtttggg
                                                                      420
ccctancggg actccaangn agccacacgc cccttctgga agggtgtgng catgtnaant
                                                                      480
gtgtgccanc gcgtgggctg gcgtgtgaan atctatnaaa taagtatana tgggngtnta
                                                                      540
```

```
600
ntatatgtgt ntaaaataaa ngantggaca tatttggncc tctgngnana nncttngaat
                                                                      660
ctaagncaag agtnnntctn gaaaaacnaa ananagtnct ntntanannt ttacgtaatn
                                                                      720
atcaatactn tntccacntn accetnetnn tanntntnce natatanteg antaattent
                                                                      780
cactentnna tteetngtna acaenaatna atnnaactat naaatatntn tnetnnntan
                                                                      801
tngacatann cathchnncc g
      <210> 605
      <211> 759
      <212> DNA
      <213> Homo sapiens
      <400> 605
qnttctaatq tqqttcnaan acttgctttn gctcctttgc aggatcccat cgattcgaat
                                                                       60
teggeaegag agestegest gggeeggest gtggeteesa titteetite agegggasaa
                                                                      120
aggggacttg ttaccaggcc attttctgga tggcctgtga gatctctgcc cctccaagac
                                                                      180
cctccaagtc tgagcctgac ccacagctgg gacactgaat tcagccctgg gaaccatggg
                                                                      240
ggettetate tggcaccagg etgeageete eccaatecea geceaetttg etgtgtetet
                                                                      300
qqqqqctqt cctccttqqt qqqaqctqtc ctgcacactg taggatgctt aaaggtatcc
                                                                      360
ctggccttca cccatnccta gccagcagct cccagtcaga caacagccag aaatgtctcc
                                                                      420
                                                                      480
agactetgee cageeteeca ggtagecace etegagacat gaceteagag tetetgtgte
tectagaage etgacagaga eececangge agtgggtggg tggegggeta gagaceettg
                                                                      540
cctgtgtccg ggaccctggc gccgntcttc cctcctgtgg atcccttcgc acttacaagt
                                                                      600
                                                                      660
gttctnaant gggcagacgc ctgggcaccc cttgggccct gcccaancat ggccatngng
                                                                      720
cangettttt naaccegcat nggnttteca ngcetggtga atettgettt tecanggaen
nnttggaacc tttcctncgg ggcggggccc ccnagcnct
                                                                      759
      <210> 606
      <211> 809
      <212> DNA
      <213> Homo sapiens
      <400> 606
tetnegtnaa tennnnnttt aaaageettt gettttgete netttgettg ateceatega
                                                                       60
                                                                      120
ttcgtgactt tgtacctggt ccaagctgat ggggttttgc tgctgttgac ccaggcagga
                                                                      180
gtctgactag agaacaaact aaggttgctg caacaaacaa ggacctcttc caagaagggc
                                                                      240
teccaquet qqcqcaqtqa etcatqcetq tgateccaqe acttgggagg cenaggeggg
tggatcattt gaggccagga gttcgagacc agcttggcca acatgatgag accccgtctc
                                                                      300
                                                                      360
tattaaaaat acaaaaatta nccaggcgtg gtggcgcctg tagtcccaac tactcaggag
gttgaggcag gagaattgtt gaacceggga ggeggangtt gcaatgagcc aanatagcac
                                                                      420
cactgcactg catccttggg tgacagaagc gagactccat cttaaaagaa gggctcctgt
                                                                      480
gtctacgtca tggtgggct anagagangt cccngcagct gggctgtgtt gagtganngg
                                                                      540
ctnntctttt naannccagg caatagtttg tcttgactct gtccttttct gngtccacat
                                                                      600
gacattttac atntttncnn agtttnctta atttaaagtt gnctaatttt accattatac
                                                                      660
attttnaatt ggcatttctt ttaccnatnc tttttgtntg aaaatggtan tntttgaaat
                                                                      720
                                                                      780
engnatengt tetaatgngn tntattttna cenaatgeea atnntaeetn etttgnaana
                                                                      809
atntattcgt tttcnaagnt tnaacctct
      <210> 607
      <211> 788
      <212> DNA
      <213> Homo sapiens
```

```
<400> 607
                                                                       60
tntttctaat acnagtttnc aagnettget ttnnnatece tttgcaggat cecategatt
                                                                       120
cgcaaggccc gaggtgccat cccctctggg aagcagaagc ctggtggcac ccagagtggg
tactqttcqq taaaqaqctc acctctcac aqcaccacca qcqqcqaqac agaccccacc
                                                                       180
accatettee eetgeaagga gtgtggeaaa gtettettea agateaaaag eegaaatgea
                                                                       240
cacatgaaaa ctcacaggca gcaggaggaa caacagaggc aaaaggctca gaaggcggct
                                                                       300
tttgcagetg agatggcage caegattgag aggactaegg ggecegtggg ggegeegggg
                                                                       360
ctgctgcccc tggaccagct gagtctgatc aaacccatca aggatgtgga catcctcgac
                                                                       420
gacgacgtcg tecaacantt gggaggtgtc atggaagang ctgaanttgt ggacaccgat
                                                                       480
cttctcttgg atgatcaaga ttcantcttg cttcatggtg acgcagaact ataaagccct
                                                                       540
gtgtncactt atagacagtg aaaacccacg ggtcttcatc tttattaatc nngaaacctt
                                                                       600
ggaatgeetg etttgttttg taaceeettt ttaaaaceta eetgttttta aaaagtggte
                                                                       660
atttttantt nacgntttan aaanaaaaan tootatttot ttttootttt nattttaaaa
                                                                       720
aaaaattngn tttttgttgg ggggntttgg ggggaattaa aataatttgg cccccaactt
                                                                       780
taaaaaat
                                                                       788
      <210> 608
      <211> 796
      <212> DNA
      <213> Homo sapiens
      <400> 608
tettttaatg etttttneaa geettgtttn aaateetttg eaggateeca tegattegaa
                                                                       60
ttcggcacga gactaccccg gctacggttc ccccatgcct ggcagcttgg ccatggqccc
                                                                      120
ggtcacqaac aaaacgggcc tggacqcctc qcccctggcc gcaqatacct cctactacca
                                                                      180
gggggtgtac tcccgqccca ttatgaactc ctcttaaqaa qacqacqqct tcaqqccqq
                                                                      240
ctaactctgg caccccggat cgaggacaag tgagagagca agtgggggtc gagactttgg
                                                                      300
ggagacggtg ttgcaagaga cgcaagggag aagaaatcat aacaccccca cccnaacacc
                                                                      360
nncaagacag cagtettett caccegetge ageegttneg ttecaaacag agggecacae
                                                                      420
agaatacccc acgtttttat ataaggagga aaaccggnaa aanaatttaa aagttaaaaa
                                                                      480
aatancettt engttttaca etactgntgt agaeteetgn tttetteaan eacetgnaga
                                                                      540
ttettgattt ttttgttgtt gatgntetet ceattgettg tngtttgent gggaantttt
                                                                      600
atttaaaaaa aaaaaaaatt cttgtgagtn gactttggnt tttaaaccan tgntagattt
                                                                      660
taacngnacc cttaatgggt tgtacntata tgntttnaaa acatgnnaan aaatatttaa
                                                                      720
tgtaaaggnn ctgttnntaa atntaaccac ntanagaant tnnaaannnn ttnanccctt
                                                                      780
tagaacnatt nntgng
                                                                      796
     <210> 609
     <211> 790
     <212> DNA
     <213> Homo sapiens
     <400> 609
gnnntttaaa nacctntttc aatnottggt ttnnaatont tttgcaggat cccatcgatt
                                                                       60
egeatecagg gagaaceteg gggetgggae aceteetgge ceteaceetg ggteatgttt
                                                                      120
acagteetea gtgeeceaca ceggtggeec cetgaggaca cetecaceet gaeettgatt
                                                                      180
ttcccaaacg ctgcctcttg gtgacagact cagcccaaaa ccccttcctt ctgtctctgg
                                                                      240
agaccettga gettggggaa atatggaggg gtgtgtgtet geaatcaagg cetetgeage
                                                                      300
tcacggctgg cccggtgggc tgggacttcc gtctgaattt taaatactta gggntcattt
                                                                      360
tttttctctg gcaacaaagc ttgatgtttt cactgcttta gtttcctgtt tgctggtggg
                                                                      420
aggggatacg gtctgtgact ctggacttgc tctgggggaa cagttgtcac tgcccccngg
                                                                      480
```

```
gagaggggca gcttgggctt ggaagaaagc acaccccnga gaccagagcc ccttcnagag
                                                                      540
qgatnettqq etqetteatt qnettteece cageaagece tgetetteea caageneett
                                                                      600
ntggggtett gggtatggte eccegnicae ettetteea nanteeetga nntggtgtag
                                                                      660
qqttqtqqqt tqqcacanqq aattttqqqq cattqqqqaa qqqqntttca aaacttttnc
                                                                      720
caaanacccc cqtqttcctn nqnaaaattn aanttggtgg gcttnggqtq ntnacccca
                                                                      780
                                                                      790
antcttngnc
      <210> 610
      <211> 786
      <212> DNA
      <213> Homo sapiens
      <400> 610
qatqtttnnn annetggtte taatnettgg aaanetnenn etttgttann ngenntttet
                                                                       60
geaggatece ategattega atteggeacg ageceagetg gacetggtgg ceettteeta
                                                                      120
gtgcctctgc tgggggagga gaacctctgt ccacgtggag gctaggaggt ctcaggtgct
                                                                      180
gccctggcag caccagagtg tgggccgggc ccgagtgtct gcccctcggc cctcagggtg
                                                                      240
gggcacttag cacccagaag ggaccaaaag cagggcatgg cggtgcagag gagtttggga
                                                                      300
ggtgtaaaca gccccatgca cgtggaggag gagctggctt tcagccccag accccacgct
                                                                      360
ageaetttee aegetgettg eeegetgttg atgtgeagtt eeeagtgeet gtgtgageeg
                                                                      420
acatetgete agtectatee etegteageg tgtggagaee eageteetge aageeettet
                                                                      480
gcttccacgc ccccagacag cttggtggag ggtcctgcat ctgggccaag ctggggtgca
                                                                      540
cccagccaaa gacaaagctg ccttcacgtg cccaaaggat tcaagatggt gcactggccc
                                                                      600
cgggaggagt cttgaccaaa aatgggagcc cgctcttgtg gggaaanccc cgacttcccc
                                                                      660
caccnanaaa ccgntcccac ggtgccggan cttccccctt ttcctttgtg ggggcaacaa
                                                                      720
nattggeett gggenettte aattnttneg gaagetttee tgggtgtngg ettttgaeet
                                                                      780
                                                                      786
taaaat
      <210> 611
      <211> 938
      <212> DNA
      <213> Homo sapiens
      <400> 611
tgttttaaag ceetntttng aatnentgge ttnegneece ttggeaagat enetetetge
                                                                       60
aggateceat egattegttt gtatttttag tagagacagg gtttetteat gttggteagg
                                                                      120
ctggtctnaa actcctaacc tcgtgatccg cctgcctcga cctcccaaag tgctgggatt
                                                                      180
acaggcatga gccaccatgc ccagccaaag atcatttttt tatatagact tcagnccttt
                                                                      240
gtaaatattg taactgggga gtatagagta gaaaaaaagt atagntaaaa catttgttct
                                                                      300
acaaattaac ctttaaaaat ataattactg ctaaaaatag agtgctgtta cacttaagga
                                                                      360
aaattagtgc cattttggaa atgagatctt gtgccataaa tncagctgaa ctgaatataa
                                                                      420
atgttcacaa attaatgctg tnaaaggaat gagttaagca gaaaaacttt taaccagcac
                                                                      480
ttctcaaaaa anaaaannna nnaattaaat nntataancn ncatnnanat ntatnntann
                                                                      540
tttncntctn nattncanta attttgtntt ncaaatantt nnacctnnan ctntgttntn
                                                                      600
nttnnnncna tnnantatcn ntttatcnan tatatnatta nctnattntn nngnanngna
                                                                      660
tentneteta thennnatnn theatathne gteenntnnn nnaantatge eteathatat
                                                                      720
ntacnnnaaa ngtntangta tgnttantgc atnnncatna ctnntgatgt cnnagtnnna
                                                                      780
natattttgc cnctcattat tntgctnatn tatntgtttg acacannata ctnnnancna
                                                                      840
ttcatcttct cgcaatnngn gnacttttna nttacnnnna tgntannnnt natatatnta
                                                                      900
tcattagana ccttttnaat tntnnntncn nanacgcg
                                                                      938
```

The control of the co

```
<210> 612
      <211> 771
      <212> DNA
      <213> Homo sapiens
      <400> 612
                                                                       60
tgtttgnaan nncggntntt gaaatnentg gtaennaaac netttngnaa aneneceete
                                                                      120
nctqtntqat cccatcqatt cqaattcqqc acgaqataga aactagqcac tgatttqttt
atatttntcc tgctcgagac acatgatgtt tcatgtatct gtggcttttt atagtttaaa
                                                                      180
ataatttctg gaaaagtcat agtcattatc tetttaaccg ctccctctct tccattctct
                                                                      240
                                                                      300
ttgttetete tteetegaac teetgttagt eatttgatee teeatatete tgaatatttt
                                                                      360
tgtatttctt ttattattta tttcttgtct ctgctacatt ttacattgag taaaagtggg
atgtgacagt gggaaatcat tagtgactta gaaattccag ttggtcattg ggccaatttt
                                                                      420
gatgctacct tctctcttt atttctcact tcaaaataaa atttgcaaaa acaaaaaatt
                                                                      480
aaatatagta tgagtccagt tactggccta aggagctaaa agcattctgg gtttgtatga
                                                                      540
agacagctga gttataacaa atgagagtac tgttgtgtga ctgcattaat tattcccttt
                                                                      600
ttaaatgtac aagagcaang cattctacct gactgngtta ttgagctctg cancatacat
                                                                      660
qqtqacanaq ctaaaacaan acaaqccnaa ccnanaaqqa aaaccccaqc tttaqqqata
                                                                      720
ctctgntcat ngaatatage ctgaaaaatg gntaatcaag aaagtnaacn t
                                                                      771
      <210> 613
      <211> 774
      <212> DNA
      <213> Homo sapiens
      <400> 613
tttgaatcct tgctttcaaa tncttggcac tngccctctc tgnaggaatc ccatcgattc
                                                                       60
gaatteggea egaggtaacg tgacacgtat tttacttett ttantaggeg gacacacttt
                                                                      120
cttaaagtaa taatacgtca tggccctgct ataaggtagt agttctagaa gactgtntat
                                                                      180
ctaataattc aqactaaagc tatttatatt gctgtgacac cacgtggaaa acttttataa
                                                                      240
ttccatctta tttctgatgt atatgtttta ttttctctgc cttcataaga actaaaaacc
                                                                      300
aaagttattt acgtgaaaac aagatttttg tttgagttca tttacttgag atatgtttaa
                                                                      360
aaaatccacc ttctgtcaca ctatagaagt atattttgaa ttatcaaaag gtagaattat
                                                                      420
aactttcana aaagaaaaa atggtcaatt tantttaact ctatgtcaaa aatttattta
                                                                      480
tagteteata tatteattee acaceceeg ttettette ettettete ectetgeett
                                                                      540
nttcttaatn atnattttta aattctgacc aaaaataaag tngtggcaag tactttctta
                                                                      600
gcataacctq gactggttga agnagtaatt ctgntccttt aaaaaaantc cccaactggg
                                                                      660
nccenggnea ggnacaaaaa nttntaanga acatntggga attangenaa atggatntte
                                                                      720
cttggaggtc caacccccaa aaatcattag gncnaccaaa attnaaaata atcg
                                                                      774
      <210> 614
      <211> 754
      <212> DNA
      <213> Homo sapiens
      <400> 614
ttggantett etengaaacn ettngenatt genetntetg naggateeca tegattegaa
                                                                       60
ttcggcacga ggttcttcaa agccaaccaa gacaggcttn tnagttttag agcttcagaa
                                                                      120
caaattgcca aaagccagag ttgtttatgc tagtgcaact ggtgcttctg aaccacgcaa
                                                                      180
catggectat atgaaccgtc ttggcatatg gggtgagggt actccattta gagaattcag
                                                                      240
```

300

tgattttatt caagcagtag aacggagagg agttggtgcc atggaaatag ttgctatgga

```
360
tatgaagett agaggaatgt acattgeteg acaactgage tttactggag tgacetteaa
                                                                      420
aattgaggaa gttcttcttt ctcagagcta cgttaaaatg tataacaaag ctgtcaagct
                                                                      480
qtqqqtcatt qccaqaqaqc qqtttcaqca aqctqcaqat ctgattgatg ctgagcaacg
aatqaaqaaq tecatgtggg gtcagttetg gtctgetnac cagaggttet tcaaatetta
                                                                      540
                                                                      600
tgcatagcaa tccaaagtta aaagggtttg tgccactagc tcgagaggaa atcaangaat
                                                                      660
ggaaaaatgt gttgtaattg gtctgcantc tacaaggaga agctangaac atttagaaag
                                                                      720
ctttggaaag aaggccggng ggagaaattg aatgattttt ggtttcaact nccaaaaggt
                                                                      754
gtgttgcnct cccttctttg aaaaaacatt ttct
      <210> 615
      <211> 774
      <212> DNA
      <213> Homo sapiens
      <400> 615
tgtttnaatg ctgttttgaa atcttgtttc aaatcctttg gctacttgct ctntctgnan
                                                                       60
gateceateg attegaatte ggeaegaggg attettteae tgageaeaaa gagttgttgg
                                                                      120
ggctttagca tctgactgat tttgttacgg ggttgattct gaccatagga agtatgcaat
                                                                      180
gtgaatcact atttacagag aaacctacaa cagatgcttg atgttgtaga aactgggaca
                                                                      240
tatagatacc aagcaaaatt ataagaaacc tataaggtgt tcaatacgct tgtgtttcca
                                                                      300
aaattcactg tncatgatca gtttggtgtt cttgtaccac agtttttaac tgaaggaacc
                                                                      360
agttgtaaca gtctcaattt ttaactaaaa cttgaagaac taanacaaca atgcaaacct
                                                                      420
ttcagcattg tttggccaaa cttgttaaaa ctgtaatgca agaaccaaat gcactgtgat
                                                                      480
gtggcaccaa ctaattagca agcatgaatt tttcacccaa nagtgaaaaa aggaaaatct
                                                                      540
accatggett naagtttaag agcagaactt cetgaetnee attetatgae tgateaaaaa
                                                                      600
nactaatagt ttaaaacctn agcangcctt gttcacgata tgcngaaaaa aaaagtgctt
                                                                      660
gcagtttann atccttatgg aantttttca cantgtnaca nggtnttgta atacnttgga
                                                                      720
ngccctacat tttcntanga atntattttn cttggcctaa nttggnntca angc
                                                                      774
      <210> 616
      <211> 769
      <212> DNA
      <213> Homo sapiens
      <400> 616
atnnentttt tgnaateete tetgaaatee tttgetaett getetttntg caggateeca
                                                                       60
tegattegge eagteeteae etteeetagt eetegtgtgt attttaggag atgegtgggt
                                                                      120
gtggaacagc ctcctgcctc cggtccaggt gtactggggt ctgtgtgttg tgtttctgcg
                                                                      180
tgttctcggc agaaagtggc atgctgtccc gcctgggtga tttgctcttt tacactattg
                                                                      240
ctgaaggaca ggaacgaatc cctatccaca agttcaccac tgcactaaag gccactggac
                                                                      300
tgcagacatc agatcctcgg ctccgagact gcatgagcga gatgcaccgc gtggtccaag
                                                                      360
agtccagtag tggtggcctc ttggaccgag atctcttccg aaagtgtgtg agcagcaaca
                                                                      420
ttgtgctcct gacccaagca ttccgaaaga agtttgtcat tcctgatttt gaggagttca
                                                                      480
cgggccatgt ggatcgcatc tttgaggatg tcaaanagct tactggaggc aaagtggcan
                                                                      540
cctacatece cttnetggcc aagtcaaace cagacetgtn gggtgtetne ctgtgcactg
                                                                      600
gtggatngtc aanngcactc ttgtgggcca cacaanagat tccctttttg cctgcaanac
                                                                      660
cntgtntgaa acccccttaa cttatngccn atttncntna agcaaccctt aggcnanttg
                                                                      720
actnnentte acaanttttt ggggenaaag annenaattg geetgeeet
                                                                      769
      <210> 617
```

<211> 766

<212> DNA <213> Homo sapiens <400> 617 60 aganntette etttetaatn netngetaen ttetetntet geaggnatee categatteg cttcctcaaa gcatggttgc tgagnaccca nagttgcgag gngttttttt actgatttag 120 180 ccaggtggca atcatgagtg aatggatgaa gaaaggcccc ttagaatggc aagattacat 240 ttacaaagag gtccgagtga cagccagtga gaagaatgag tataaaggat gggttttaac 300 tacagaccca gtctctgcca atattgtcct tgtgaacttc cttgaagatg gcagcatgtc tgtgaccgga attatgggac atgctgtgca nactgttgaa actatgaatg aaggggacca 360 420 tagagtgagg gagaagctga tgcatttgtt cacgtctgga gactgcaaag catacagccc 480 agaggatetg gaagagagaa agaacageet aaagaaatgg ettgagaaga accacateee catcactqaa caqqqaqacq ctccaaaqac tctctgtgtn gctggggtnc tgactataga 540 cccaccatat qqqtccacaa naantqcaqc atctctaatq aganttattc ttgcccttng 600 ttcaangatc ttattgaaag gacatcttac agcttttccc aatgagaang cccangaagt 660 gttaaacata ctgnnttgaa aaaagcactn tatnttntcc cntnttaana tggtntctaa 720 aatgtanaaa naaannaaaa naaaanctcg atccctctnn aacnct 766 <210> 618 <211> 762 <212> DNA <213> Homo sapiens <400> 618 tttnnagnnt cttcctttct aatggcttgg ctactngttc tttntgcagg atcccatcga 60 ttcgctcagt gcagcgatca tggctcagtg cagcctcaaa ctcttgggct caagcagtgc 120 tecaacetea geeteetgag tagetaggae tataggeaea cageaceatg eeceggetat 180 ttttttattt tgtagagatg gggtctcact atgttgccca ggctagtctt gaactcctgg 240 cctcaagcaa tcctcccacc tcggcctccc aaagtgctgg gattaaaggc gtgagccacc 300 360 tggcaaacag agataatttt acttcctcct ttccaatttg gatgccttag atttcttttc 420 cttgcctaac tgctctgtct agaactccca gcactatgct gaatagagtg gcaagagcag 480 gcatttgcct tgttcctaac cttagagaaa aatccttcag ccttttacca ttgaggatga 540 tgtttgctgt tagtttttca taaatgatct atatcaggct tgaataaatt tctatttcta 600 660 ntaaaactta taqtnqaqtc qtttnaccgt anatcccana ntttgataan gatacattgg 720 atnanttttg gacaancene aactaggaat ngenntgnaa at 762 <210> 619 <211> 754 <212> DNA <213> Homo sapiens <400> 619 tttggagntc tttctttcta atncttggct actngntctt tntgcaggat cccatcgatt 60 cgaattegge acgageggae ccateggage gtaacetgga teteegeagg cetggeggag 120 geeggeeace tggaggggea ttgcttggtt egegtggtag cagaggaget tgagaatgtt 180 cgcatcttac cacatacagt tctttacatg gctgattcag aaactttcat tagtctggaa 240

300

360

420

gagtgtcgtg gccataagag agcaaggaaa agaactagta tggaaacagc acttgccctt

gagaagctat tccccaaaca atgccaagtc cttgggattg tgaccccagg aattgtagtg

actccaatgq gatcaggtag caatcgacct catgaaatag aaattggaga atctggtttt

```
480
gctttattat tccctcaaat tgaaggaatn aaaatacaac cctttcattt tattaaggat
ccaaagaatt taacattaga aagacatcaa cttcactgaa gtaggtcttt tagataaccc
                                                                      540
ctgaacttcg tgtggtccct tgtctttqqn tataaatqct qtaaqqtqqn aqccantaat
                                                                      600
tntctgcaan aagtangnca gcacttttca gtgatttqaa tatcatcttg gcttngangc
                                                                      660
cangiggaca accitigicat aactigactic tigaaaagaac cciningata titigatigcci
                                                                      720
enggtgtngg tggaactgtc atttantngg anna
                                                                       754
      <210> 620
      <211> 767
      <212> DNA
      <213> Homo sapiens
      <400> 620
gcgttctttg aaagccctnt tttgaaaggc ttgcttctaa ttacqgqaaa cctttqcaac
                                                                       60
tgcagatccc atcgattcga attcggcacg aggacccagg tagaccagct caagagttca
                                                                      120
tgttctttgt natcctcctg tgagctctct gtaagtcnnt ttcttgccca tcaccacatc
                                                                      180
cctagtactg ggtatcagtc tggccacttg gctttctggt ttgccccaat qtqqtctatt
                                                                      240
cttgatgcag ctaccaaagt aatgttttaa aaccattata ccaagttact atccttgtca
                                                                      300
aaacccccag taactgccaa tctcacttag aataaaatcc ggactcctgt gaagcacagc
                                                                      360
ataaactggc cactgcctat gcagcaacct catctttacc gnttcctgcc ttgctcactc
                                                                      420
cettecageg cegttattet teetgatgee cetagtacae aacaacteet teetgeteea
                                                                      480
agagtaggaa aattactggt ctctctgcca gngagaancc tcttctggna ttacctttgc
                                                                      540
ttcattgcng aatcttctnc aatatcatct tctaaaaaga gccttttaaa aatcaccttt
                                                                      600
nctatnatgc cctactcatt tccagtccct gaaanggcca ttcccacttn antannactt
                                                                      660
attgctaacn tgaaatacac taaatgnnan ccttcatgaa nggtanggca anttaaatgc
                                                                      720
nttngcactg gnnaggcnaa gagaacaagc ancntggntt canaagn
                                                                       767
      <210> 621
      <211> 828
      <212> DNA
      <213> Homo sapiens
      <400> 621
tttctaatag cttgctttct aatnctnggn aacgctnggt ctctgnagga tccctcgatt
                                                                       60
cgaattcggc ncgaggggtg acagagtgaa actcgtatct ccaancaaac aaacaaaaag
                                                                      120
tncttaaaca tatgtgaaca aaaatttngt gatggaagga ttctagttaa tgagtattgc
                                                                      180
atcaagattt acatctttct tactaaqqaa aaqaqttaat aaaaatnqnt ctttatttta
                                                                      240
caggcagnta ctgaggctct tcccanntcn cagtanacag ccactcagcc ttgaaaatgg
                                                                      300
agtgttgttg tttctaaaca tatatttatg tcatttattn aggtacagtt cacttaaata
                                                                      360
accataagtn gantctctct tgtnagtgat ttgggtagga agaggccatg tctanagttc
                                                                      420
natttctctg ttgggtccna ntgaaattgg accttttnag ttgttcanaa aaatnaanat
                                                                      480
aaattnetea tattaaatea agannetent caanttataq atgtggggta gggtteenng
                                                                      540
taaaacccat tatnaatcta gaaaattatc nctatngana angcntttaa tatctnttac
                                                                      600
cntgaaattc attactttag tncaaggcct acctttaaan gtttnnncnn gaaccatttt
                                                                      660
tannuntten nettttgnne caananntea ttttaaneea ecaaaanten caattuttut
                                                                      720
tncattnnaa tannggatgn naattatnnn atcnatgtgt catatttnac canganaata
                                                                      780
ctgngctncn tgnaataatn ggtacactaa anncnngann tttnntcn
                                                                      828
      <210> 622
      <211> 784
```

<212> DNA

<213> Homo sapiens

```
<400> 622
                                                                       60
gtctttgaaa cctttttcta atncttgctt tctaatnctt ggcnactcnn ctctcnctgc
                                                                      120
agnneceate gattegtttg ettteagtgg ttggetttea etgaaagaaa gtgtaaanaa
agtcagaatt tatagctttc actatgtcca agactaggac tgggttataa agattttctt
                                                                      180
ttgtgaagga aaataaaaga aaatttgcca ctactgcatt tactttacta ttgtaaactt
                                                                      240
aagattcatt ccttagtctt tggaattttg atgtctcaaa accagatgag tggaagtgct
                                                                      300
gaatttgcaa aataaagcta agaatgctta actctgcact ttaagttcta ctctgaccaa
                                                                      360
attgaagatg agcagagcag ccctgaacag cattingtit atacagtcit gittaagaat
                                                                      420
agaatttttt taactcttca tttnttgtct ctgtggaagc tgtgtaactc tttttaaaat
                                                                      480
qcaatttaaa acattntqqt attctaacaa ttctctcaan aaacaqcatt tccaatqqna
                                                                      540
atnggtattg ntacgctgta ccttatgtat tncctgtacc tgaacacttg atgctgcctn
                                                                      600
acangaaaat agaactttat gttaaaaaaat aaaagtctgg tncttctttg naaaaacaac
                                                                      660
nncnctnctn ctcnaaatcc ncnacannnc tnnnaatntn ctaanntnag tctnnnttnn
                                                                      720
ngcannettn tnnnecenet naneteeetn tntentntte atatetanan tnacanecet
                                                                      780
                                                                      784
ccct
      <210> 623
      <211> 1164
      <212> DNA
      <213> Homo sapiens
      <400> 623
gggacttntt angcontttt cgaaatcont tnottconaa toocttngca actntcnnct
                                                                       60
ntetgeanga teccategat tegaattegg caegnagnga gennattene gttttnagng
                                                                      120
ttctntttct ntnatnnaca ngngaaantt ccaggnnatc ntgnnnccnt atctgantna
                                                                      180
ngctnqnttn aacntngnna caccnngnct nnnaancaaa tttnanaaaa gggnancncn
                                                                      240
nanancatnn nanntnncca atctaccaaa atcanaacac ncantgaaca acacananna
                                                                      300
tnnnatacnn tetaeneeaa anenneneat nneaegeaeg ataanacane nnnnaaaaan
                                                                      360
ancnaancan atatcanann caaccntana cnannaatca nacnctnanc teeencacag
                                                                      420
canngngacn aanaacnanc antgataaan cncacctnnn tannacacac ctnannancc
                                                                      480
nntntantcc cgaataacca atngccacnn ctannccnat aacanantcn ctnanccctc
                                                                      540
ntgcatcaaa ttantaaatt cncnancata aagnanatca cagcctcntt cnaccnntga
                                                                      600
tenaanetnt anacenangn nannenntat naaaenetat aneantnnna etnnaaentt
                                                                      660
nnatengene ntanaaatta aanatenaan acteaatatn neggaatant nnenteteta
                                                                      720
nataannnta naacggngna aanacncctc anacataann gncntacnna tegatctatc
                                                                      780
anntnancat aaagtcaccc gcatattnac cnacgnncaa cataannnaa atnctactct
                                                                      840
cagaccatat aaatntegen teentanate agngenanan tacaaanaeg tegennnngt
                                                                      900
ntggaccaca cgncntagat aaacacnnat aaacantttt tanatgtaac acatttcnna
                                                                      960
tctatnaaat ancatcattn atgnanacga tnacaacaaa nnctacncna tgntactaaa
                                                                     1020
nacaantaaa nntnanatta aaaaagttgc aannatncng ngaaanntcc cnanaaacan
                                                                     1080
tanatnenta tttannnntn aenneggngt nneentaaaa anaactetnn nntnnetggn
                                                                     1140
ttgtanatnt annncnanct cgcg
                                                                     1164
```

<210> 624

<211> 798

<212> DNA

<213> Homo sapiens

<400> 624

```
60
ttgttaagcc tnttttcnaa ntccttcctt tnaaatcttt tgnaaacctt ggtanttgca
                                                                      120
ggnateccat egattegagt aaageateet geeteagaat gaettteeta teatgettta
tgtgtcattc caaggtttct tcatgagtca ttccaagttt tctagtccat accacagtgc
                                                                      180
cttgcaaaaa acaccacatg aataaagcaa taaaatttga ttgttaagat acagtagtgg
                                                                      240
                                                                      300
accetactta tteagteaat taagagtaag tttttttatg tggttattaa aacagtatga
                                                                      360
acaattagtc taactctgca tagacagggt ctagattttg ttaacccaaa tgtataactg
                                                                      420
cagttagett aaattacaat ttgaagtett gtggnttnta tatagetngg cactttatta
ctcttttgaa ctgaaagcac actcccttat aggttcatgt aactgtcctg taataaggtg
                                                                      480
cttataaatg ggaacaacta cacagcctag ttttgncaca acctttagca tctaaaaaaag
                                                                      540
                                                                      600
ttttaaaagc ttcttaaatg nctaatataa anggagatgc tnatanccac aacatctatt
ttaccaatat tngtttcctt acacttacct tgggantttg cattgagtga ngttttngta
                                                                      660
aaccccaaan atncccatta atanaaaaaa nttggtacgt tttnatgact ttaatccann
                                                                      .720
ttncttgtng gnnttcncct aaaangcttn ccnnnggnnt ggaantnnna ntnatttntg
                                                                      780
gggnaaggtt tnngttnt
                                                                      798
      <210> 625
      <211> 793
      <212> DNA
      <213> Homo sapiens
      <400> 625
ttcttaagcc ncttttctaa tgcttgcttt naaatctttt gnaancgctc ggctntntgc
                                                                       60
aggateccat eegattegaa tteggeaega ggaaatgeet etatgtangt gaagtgttet
                                                                      120
ctctgcatgc aacagtaaaa attaatataa tattttcccc acaaaagaaa cacttaacag
                                                                      180
aggcaagtgc aatttataaa tttatatcta aaggggaatc atgattataa gtccttcagc
                                                                      240
ccttggactc taaattgagg ggattaaaaa gaatttaaaa taattttgaa cgaatttatt
                                                                      300
ttcccctcag tttttgaggg cattaaaaag gcattaaatc aagacaaatc atgtgcttga
                                                                      360
gaaaaataaa attaatgaaa acacagcact tatgttggtt tagctgcagc ctccttggag
                                                                      420
gtagaattta tttatttaaa attactggtt gcatcaagaa ccccataggg tgtacaaaag
                                                                      480
                                                                      540
gttctataaa atctgcatta tagagacaaa gangcaggca aatncatgtc acaagggtna
agcttacagt ttacaaactg gggaacgccc agggtgtang atttnaaaaa cgncactctt
                                                                      600
gagaaaacan atgtaatcan ggntgctgaa aactttgcat ggnggctttn aagacattta
                                                                      660
gnccttgttc aaaccaaaat ttnttggnat ttgccagatt ccttantntt gccatgggcc
                                                                      720
atgacaccat ttttggcctt tatgncnctt taaaattttn aattaaaaat accntttcca
                                                                      780
gtaannctaa ttn
                                                                      793
      <210> 626
      <211> 825
      <212> DNA
      <213> Homo sapiens
      <400> 626
ntttgaatne etttgnaaat eettntttet aatntntgga teettggena etegetntnt
                                                                       60
ctgnangatc ccatcgattc gaaacggcnc taggaatcat cgaaggttga gaccgtgacn
                                                                      120
anttacatag tgatnaatac ccatctatgt actgnngcct nctaaatgtn tntctncnnn
                                                                      180
atggannttn cctttaanct ctagatccat tgacancctg ancatntcta aaaggcatta
                                                                      240
ngaaactgaa cacatctgat acagaactct gcattnnctt ccnaantntg cccannccna
                                                                      300
geetgnteet nntteaeget tancacttat natatgatee cactatteae tnantetetg
                                                                      360
aagettaaaa eetangatte atgettgaet aetgnataat nntacaatet aeteetaatg
                                                                      420
cattagcaat tettgetage tetacettea aaatatatte tgaatagaet atntettgee
                                                                      480
gnttcccttg cctncncatt tcccatctgc accccttctc tnctncccaa aatcaataca
                                                                      540
```

```
600
ctaqntqttt ctaaaaaaaa tatnganann tagnnnaaaa ncntaaataa atntaaaana
                                                                      660
anguntanen tuacanaana ttuetaatat aggunauntu utgucaanaa euntaantut
                                                                      720
tnaatacqnn aaaactctct cnaanngann aanntatnnn agttaaaagn naaatannnn
                                                                      780
aanantncca aatntanaag ataangncat aannntatna gncnnaacgc taantgnnga
                                                                      825
tganntntaa tnngnatana nnantngtta nnacaaaatn tacnn
     <210> 627
     <211> 772
     <212> DNA
     <213> Homo sapiens
     <400> 627
tttttaatgc ttngtcgnac ttctcccagn aatcgnttng aaactengen actcgttctc
                                                                       60
tetgeangat eccategatt eggaaatttg caetgatgge teanaagget taegttttgg
                                                                      120
                                                                      180
agagtatgac ctacctcaca gnagggatgc tggaccaacc tggctttccc gactgctcca
tcgaggcagc catggtgaag gtgttcanct ccgaggccgn ctgncagtgt gtgagtgagg
                                                                      240
cnctgcagat cctcgggggc tngggctaca caagggacta tccgtacgag cgcatactgc
                                                                      300
gtgacacccg catcctactc atcttcnagg gaaccaatga gattctccgg atgtacatcg
                                                                      360
ncctgacggg tctgcagcat gccggccgca tcctgactac caggatccat gagcttaaac
                                                                      420
aggccaaagt gagcacagtc atggataccg ttggccggag gcttcgggac tncctgggcc
                                                                      480
naactgtgga cetggggetg acaggcaacc atngagttgt gcaccccagt cttgcngaca
                                                                      540
qtqccaacaa atttqaqqaq aacacctact gctttanctc ngaccgtgag acacttgctg
                                                                      600
ntnccntttg gcaaagacca tcatgganga ncanntnggt nctnaancng nntggccaac
                                                                      660
atnoteatea acctgtattg geatgnaceg enettgetgn acnnengnge caaanenete
                                                                      720
nantcegeca ttggggette eggnaaceae tnnacaceaa ggttetnttg ge
                                                                      772
      <210> 628
      <211> 808
      <212> DNA
      <213> Homo sapiens
      <400> 628
tenetegnaa entttnanne ttggetaete gntetetetg eaggateeea tegattegaa
                                                                       60
ttcggcacga gatgacatcc tcattatcca cantgcaaag ccaaccatcc ctatgatggg
                                                                      120
ttcattqtgq atcatgactt antgggtcaa gagtttggaa gtggctcagc tgggcggnct
                                                                      180
tetgetneat gtggetgeea natggtneee tgetggtnng cagnetngte tagagggtee
                                                                      240
                                                                      300
atgatggett tactcacatg cetggcatet tgacagggac agetggnang caaagnnnat
                                                                      360
ctgggactgt ncacagaget nettentgtg geetttecag catggtggte taagggtage
tggacttnct gcatnacagc tcagggctcc cagagctact gtcccaagag atnnaaagtg
                                                                      420
gnaactgnca atcttttang ctaangncca gaaaccatta cccctgcacc ncacagtctt
                                                                      480
tttntanctg ntgaaataaa cattnnnttt atcaattnta ancattcgca aattggaatt
                                                                      540
                                                                      600
aaataccttt tactaatttt gncgtgacca tctgcccctn gttcaagatc taaaaaactt
                                                                      660
ttatngntca tcntgnngat ntaaaaaact nttgtgttng catttanaac ccntaagcan
nttnggcant tanannnaan annttnnnaa accettntat anaacettat taagttgang
                                                                      720
catningnant tteneettna aateenaggt cettaggget anginatace nttentating
                                                                      780
                                                                      808
naactttngg gaacctaaan cctctcct
      <210> 629
      <211> 827
      <212> DNA
      <213> Homo sapiens
```

<400> 629					
ggccnncttt gaaccttntt c	caaatcnttt	ggcactcgcc	nctctctgnt	ngntcccatc	60
gattegetgt gatecaagge a	atgaaaagag	tgcaaggtaa	ncangnggca	genttnatng	120
aagcatnaaa taangcnaaa g					180
acannotano tgnntnotaa t					240
nagactncan genttgettg		_	_	-	300
ctaangagtg gctacnncct t					360
aggcaanagc gggtnnaant n					420
attannttnc attnntntna a					480
ctnnnntcnn anntnnctga c	-	-			540
ttnanntncc tnncgntccn c		_			600
tctacnggqn qnnacnttgg n					660
naccaattnt nnaanntcta a					720
tcgatttann ngncnngntt n					780
cctcntggng cntnttnnaa n					827
			3030300		02.
<210> 630					
<211> 793					
<212> DNA					
<213> Homo sapier	ns				
<400> 630					
ttcnaatgct tggncnngag t	tccncctttg	aacnttttca	aatnncttgg	caactcgcnc	60
tetetgeatg ateccatega t	ttcgaattcg	gcacgaggcg	ngttgttcta	cactgcnntc	120
ngaagntttn ntaanaagcc a	accacttagc	ngaggennet	acangtettg	gggncttagc	180
gaagagaaat enegetggea o	cttgncccgt	tcacntaagn	actnntgnct	gantccnagg	240
gtannngtnc accttgngnn o		_	_		300
aagettaene tngaetneae n					360
aaatngacag tnngaccaag a			_	_	420
nttctacacc tntanattcc n					480
acttgggcaa cattnttnaa t	_	=			540
natntttacn cgagetnttg t					600
antnetggne ecceanaang a					660
caacttning gattachnca a	actccanaan	atccgacggc	atnnaanang	caaaacaaca	720
acttenenan natnnaanna a			-		780
ggacccatne ccc	•			_	793
<210> 631					
<211> 752					
<212> DNA					
<213> Homo sapier	ns				
<400> 631					
gnagtnncct tngancctct n					60
catcgattcg aattcggcac g					120
aacataaaag aataagagct o	ccttaaagat	tataaataaa	tggtgatgtt	aaagtaatag	180
caccattgga cgaagctagg g	gaatcaacac	ttgacagaaa	gatacatatt	ttttttatac	240
aaactacata tatttgagca a	atcaagtagt	agacatagag	aattttcttt	ttatggaagt	300
actctaataa gtaaagggct g	gatagaatta	tatcagcatt	ttctagctcc	tggtgaatta	360
tgcattgggc atccatggct g			_		420
atgaaagatc acaccaccac c	ctgtgaaata	gtcttcccca	caaaaaatcc	aacccaaatc	480

```
540
ctatccagcc tgtagatggt actcgagatc ttctataaga aataaagaga gcangctggt
                                                                      600
caeggtggat tgtgcctgta atcccagcac tntgggaggc caangcaggt ggatcgcctg
angtaaagaa gttcnagacc agcctgccaa catggtgaaa ccccctctn tacttaaaag
                                                                      660
                                                                      720
taccnaggat gagcccggcc gttgtggcaa gcacctgtgg tccccagcta cttgggaagc
                                                                      752
tgagcangaa aaatcgcttg aanctgggga ng
     <210> 632
      <211> 751
     <212> DNA
     <213> Homo sapiens
     <400> 632
gnnnnnnttn nnnnnttcta atgettgget actegttett tntgeaggat eccategatt
                                                                       60
cgcaactaga gaagattgga cagcaggtcg acagagaacc tggagatgta gctactccac
                                                                      120
cacggaagag aaagaagata gtggttgaag ccccagcaaa ggaaatggag aaggtagagg
                                                                      180
agatgccaca taaaccacag aaagatgaag atctgacaca ggattatgaa gaatggaaaa
                                                                      240
gaaaaatttt ggaaaatget gecagtgete aaaaggetae ageagagtga ttteagette
                                                                      300
caaactggta tacattccaa actgatagta cattgccatc tccaggaaga cttgacggct
                                                                      360
ttgggatttt gtttaaactt ttataataag gatcctaaga ctgttgcctt taaatagcaa
                                                                      420
agcagcctac ctggaggcta agtctgggca gtgggctggc ccctggtgtg agcattagac
                                                                      480
cagccacagt gcctgattgg tatagcctta tgtgctttcc tacaaaatgg aattggaggc
                                                                      540
cgggcgcant ggctcacgcc tgtaatccca gcactttggg aggccaaggt gggtggatca
                                                                      600
cctgaggtca aggagctcga gaccagcctg gccaacatgg tgaaacccca ttctttctt
                                                                      660
aaaaatacca aaaaatttag cccangtgtt gaatggntgc atgcctgtaa ttcccagctt
                                                                      720
ctnanntagg ctnanacaag gagcttncnt t
                                                                      751
     <210> 633
     <211> 806
     <212> DNA
      <213> Homo sapiens
      <400> 633
ttnnannncn ttttnaaaag geetnnnntt gannettten aatgettgge taetngntet
                                                                       60
ttctgcanga tcccatcgat tcgaattcgg ctntagggaa ggggagggtt ggtgagtccc
                                                                      120
agaccttaaa aatacaaggt taagagggac cccaaagcaa aaaattccaa cccttttcct
                                                                      180
cccagtcatt gaaacaccaa aactattata ccggagggtg taatagtttt gctgcccagt
                                                                      240
tgtggtaggc cagtagtggc ctcccaagat gcccatgtcc taatcccagg aacctgtcaa
                                                                      300
aattaccttg tatggccaaa ggggctttgc agatgtaatg aagttaagga tctttcgcca
                                                                      360
ggaagattat cccagcttgt cangagggct tgatgtcctc acccgggtct gtataacaga
                                                                      420
agagcaggtg acgggagagg aggttggagg tgtancgatg gacangaaac tggagttata
                                                                      480
ggagggcagc tnaagccaca gaatccaggc cancttanga gcccaggaaa atgcatttct
                                                                      540
ttccacaaaa gcccttggaa ggccccaanc cctgcttccc acccttggac tnggcttcaa
                                                                      600
tgaggcttaa tttttataaa ttcntggctt gattttagaa ctcntaaggg gaaataaatt
                                                                      660
ttgtgttngn tttaantcan aaaataaatn aattaaaaaa aacttgaanc ctttanaaac
                                                                      720
tntantggaa ttcntattan cttaaancen aancttggat taaaggatne atttgtttna
                                                                      780
anttttggga cnaaccccca anttnt
                                                                      806
     <210> 634
     <211> 775
     <212> DNA
      <213> Homo sapiens
```

```
<400> 634
                                                                       60
ngggaetteg cetnacgaac egetnggaaa tecentnint gnaggatece ategattega
atteggeacg agtataaact ttattttatt etettetggt tttgtgttae atgacaagaa
                                                                      120
                                                                      180
attgaattaa nncaatanaa ttttagtteg ggttgettag gtttttaetg eteceattet
tgcttttact aatttatcca agattagatg tgattactat ttaataataa tttagtcctc
                                                                      240
acacttacaa accacttaca ataccagcat gcttctatca ctqtaattct attcaattct
                                                                      300
caqqcccatq agqcatqcca qccaqacgac cagacagcat ttataqaqtq qqcactcaat
                                                                      360
accagecaca aaagateetg tgteagaagg ggaaacagge ttggaggett ggagtatgte
                                                                      420
gtgatagect cectecagte cacacaactg gtactgetgg ggetgaaact agaacteang
                                                                      480
cctatqcctc tcaaqctcaa qqqtcqqatq tccatqtnct tcqcctctaq aactatannn
                                                                      540
gagtegnaat taegtagate caagacatgg gtaagataca tnggatgagt tnggaccaac
                                                                      600
ccaccaacct aagaatgcan tggaaaaaaa tgcttaattt ggtgaaaaat ttgtgatggc
                                                                      660
tattnngctt aaatttngnn aaccatttna taaagnctng cnantaaaan aaaggtttaa
                                                                      720
ccaacccaac caattggcaa ttccatttca anggtttcaa gggtccaang ggggg
                                                                      775
      <210> 635
      <211> 784
      <212> DNA
      <213> Homo sapiens
      <400> 635
ttgagngtcc tnctttnacc ctttcnaatn gcttggcnac tcgctctntn tgnaggcatc
                                                                       60
ccatcgattc gaattcggca cgagatatag ctctggaggt caggacatag gagatattga
                                                                      120
ttcaggactt gccagagtat ggtcttgggg tgtgccctga tattacaaac agggatctta
                                                                      180
gtggctaggt gatgaggcca tggcaaatgt agatggacca agatcaattt gcctttctag
                                                                      240
atgaggtttt ctaggtgaaa tgtttttgaa actattttgt agcctagtat aatttataaa
                                                                      300
agtagagaga aactataaat ataaatttgg aangggttag ctaaaaggag aaaacagcan
                                                                      360
aatottoata tatatanaaa tggatattaa tttgotagaa ttaanagact gcaggtaaag
                                                                      420
atagnttttt ttaatacctc tttttgctgt anaaaggaca ggattaaatg atnaagggat
                                                                      480
gctqqaatqa qqaatqqtaa ctttagqcaa gatagtcttc tqnqacqqct qatatqaaca
                                                                      540
atngagagta anacatttnn aatacaanaa attgtcctgc tgctcaccca tcaagccttt
                                                                      600
tcangtttct tcccttgcca aaantngtaa naacttntgg tacttttnna ncttgtatnn
                                                                      660
ttccngttna ttggttanaa ccccttcgat naanaanncc atantttnaa tttgggnttg
                                                                      .720
accecenagg ttaaaanttn centttnete aattteeeet ttteaaagnt ttaaentaat
                                                                      780
                                                                      784
taan
      <210> 636
      <211> 765
      <212> DNA
      <213> Homo sapiens
      <400> 636
ttnnannett tenaatnett ggenactegt tetttetgea ggateceate gattegteet
                                                                       60
gcgcaggagc cgcagggccg taggcagcca tggcgcccag ccggaatggc atggtcttga
                                                                      120
agccccactt ccacaaggac tggcagcggc gcgtggccac gtggttcaac cagccggccc
                                                                      180
ggaagateeg cagaegtaag geeeggeaag ceaaggegeg eegcateget eegegeeeeg
                                                                      240
cgtcgggtcc catccggccc atcgtgcgct gccccacggt tcggtaccac acgaaggtqc
                                                                      300
gegeeggeeg eggetteage etggaggage teagggtgge eggeatteae aagaaggtgg
                                                                      360
cccggaccat cggcatttct gtggatccga ggaggcngga acaagtccac ggagtccctg
                                                                      420
caggccaacg tgcagnggct tgaaggagta ccgctccaaa ctcatcctct tcccaggaag
                                                                      480
ccctcngccc ccaagaaggg aagacaagtt cttgctgaan gaacttgaaa cttggcccac
                                                                      540
```

```
ccaactgaac cgggacccgg tcatgcccgt tccnggaaan gtctattata aaggagaaag
                                                                       600
                                                                       660
cttcgaqtca tcanttgang gaanaagaag aatttcaaaa gccttcgctt atnttcngta
                                                                       720
ttngcccgtg ccaaacnecc engetttttn ggettaccgg ccaaaaagaa gccaanggan
                                                                       765
gcccnnanaa cagggatntt gaaaaagaaa naatnaaacc ctcnn
      <210> 637
      <211> 853
      <212> DNA
      <213> Homo sapiens
      <400> 637
                                                                       60
ttttggancc nttctttgan nctttctaat gctgggntac tcgntctctc tgcaggntcc
                                                                       120
categatteg aatteggene gaggateage eeacetegge eteneaaagt getgggatta
caggogtgag ccaccttgcc cagcccacat catacagttt gaaatgaaac tttgccacaa
                                                                       180
ccagcetttg ctgtagcaca cacatatate actgaacetg tttgaaataa agtttttttt
                                                                       240
ctttntcctc tggtattctg ggttctgaag tctggtattc tggtattctg ggttcaaaag
                                                                      300
tatgacttga gagtgttgct ctggtattct gagagttgct ctgtattctg ggttctgaag
                                                                      360
attatttgaa aaataactcc tactacattg aaatgcagac ttaaaaaattt aaacattgga
                                                                       420
ttanqcaqtc aaaaaaacca agcaagcata aaaggtcaat aagttgtaat cttgatagta
                                                                       480
aaggtggaaa acttattata aatggnaang aaagttttat ttcctttttt gtttgaatgg
                                                                       540
gcaagtatgc catattatac ccaaaagttc ttttaaaaaa atatttccca ttcaacccat
                                                                       600
ttttaattna aaattaaaac cattttgnaa gggaaanttt acccaanggc aancettttt
                                                                       660
tttcctccaa aaaggttnac cntgttnatc cttctttttn ggnaaattta nccaccaatt
                                                                      720
tttttaaagg ngggncaatg gggnttaaaa ntanccctgn aagnnatttt ttnanccttc
                                                                       780
caggtttaaa antccccttg gatngggtct taacctgggn gggtngnata naaaaaaata
                                                                       840
natcctnttt anc
                                                                       853
      <210> 638
      <211> 740
      <212> DNA
      <213> Homo sapiens
      <400> 638
                                                                       60
anttgntctt tntgcaggat cccatcgatt cgcagcaaag actttatttt tgtacagaag
atggtgaagt ccaagacggt ggctcagtgc gtggagtact actacacgtg gaaaaagatc
                                                                       120
atgeggetgg ggeggaaaca ceggacaege etggeagaaa teategaega ttgtgtgaea
                                                                       180
agtgaagaag aagaagagtt agaggaggag gaggaggagg acccggaaga agataggaaa
                                                                       240
tccacaaaag aagaagggag tgaggtgccg aagtccccgg agccaccacc cgtccccgtc
                                                                       300
ctggetecea eggagggee geeetgeag geeetgggee ageeeteagg eteetteate
                                                                      360
tgtgaaatgc ccaactgtgg ggctgtgttc agctcccgac aggcactgaa tggccatgcc
                                                                       420
cgcatccacg ggggcaccaa ccaggtgacc aaggcccgag gtgccatccc ctctgggaag
                                                                       480
cagaaqcctq qtqqcaccca qaqtqqqtac tqttcqqtaa aqaqctcacc ctctcacagc
                                                                       540
accaccageg gegagacaga ecceaceace atetteeetg caaggagtgt ggcaaagtet
                                                                      600
tcttcaagat caaaagccga aatgcacaca tgaaaactta cangcagcan gaggaacaac
                                                                      660
agangcaaaa aggcttaaaa aggcggtttt tcagctgaaa tggcaccnnc aattganagg
                                                                       720
actacngggc cccgtggggg
                                                                       740
      <210> 639
      <211> 774
      <212> DNA
```

<213> Homo sapiens

```
<400> 639
                                                                       60
ttttnnctnt taatcaatcc tttgttgact ccttggctac ttgttctttt tgcaggatcc
categatnen aatteggeac gangtgatgn cagattgnna ntncactaaa etgggeannn
                                                                      120
                                                                      180
catcaggate acctgtggge cttcannaat cananatnea cececaggee atgeeetnga
                                                                      240
cccagtgcac caggacaaga aatccacccc aggcctctcc cnagacccac tgnaccagna
caaqaaatcc acccccangc cangccccnt acncactgcc ctangatntn nnggtgtnaa
                                                                      300
conggtggtq ctttgtaaag acgtgcangt ggtaacccca cgccgncncn ctcnnnacnt
                                                                      360
tggacacatg atcatccacg tgtctgtgat ttgnttcctc ggnttnnttt gtgaatngaa
                                                                      420
aataantgtn ncgtttgact agggtttaag agcagcaggc agnccctcag ctcagcaagc
                                                                      480
                                                                      540
ngccctctca gctcagcang cagcccaagt ctcctgtang acttctatgg accatnctgg
cgqqaatgaa qaaactggtc aagctggatt cgggactgaa agtgtaccnt ggtgacaccg
                                                                      600
tatgactnan ctgactnana aagatcactn atctttccac acttgnnggg naggagccnn
                                                                      660
tannangttc aatatgcnnt ggtngantcc catngctaca atttcatgga cacantttga
                                                                      720
ttacttnnga taannnagge eettggagge eeettnteee ettttaacng gaat
                                                                      774
      <210> 640
      <211> 743
      <212> DNA
      <213> Homo sapiens
      <400> 640
ctnnncctcc ttgatccntt cctnctttga anncatnngc tacttgttct ttttgcagga
                                                                       60
                                                                      120
teccategat tegaattegg caegaggetg acetacatea gaagetgetg gatgeagnaa
agtgaaaaca gaccaaaaca acacngggcg aatcttnaca ccattntggg tgccnnatnt
                                                                      180
                                                                      240
nnccnnngat atttgcttgc tnagctctac tcctccaaga nannangnnt caaacnctnc
                                                                      300
agcangntag agcanntnaa gaccgcntnt nctnacctnc tnaagannct ctgngaggan
                                                                      360
cgcaatcctt tngtggaana tagaatcaac agaccacact gcnctctgga ccatgngctc
tcaaangngc tagaaggtgc tgaccttttn agactcttgc agaagaggcg angtggtgng
                                                                      420
                                                                      480
anaccetnna ggaanacttt ceegaactag acenennett nengaaenng nteaactgtt
ggggnngaaa nentgtgann tgtngneett engagagaeg geatatteta tgatggenga
                                                                      540
                                                                      600
cttnatnctt ctgcggaacc anactngacn tactgaaaga aanctganac caagcgtctt
                                                                      660
cettaaggae cettatatee agachateet tiggataata cenetnggee aaaacetnnt
                                                                      720
aactntgcat acaatcngga tggcaacatt tgaactggng gccttnanna ccnttaccgg
cttttcncat tatgnaagag ntn
                                                                      743
      <210> 641
      <211> 740
      <212> DNA
      <213> Homo sapiens
      <400> 641
                                                                       60
ctttcctttg antcttcttc tannaaacgt tngaacgaan tcngcacgag accactaaca
                                                                      120
gcatctactt gactactgat actttgatca tggagtttgg gcatgccact tgatagaaat
ttgaagagca attatatttt tcaaaaagag ttttgaataa tgttaagata gattgcaaca
                                                                      180
                                                                      240
tgactatcaa ttcttccctt cccatcaaag gagagagtcc gtttatccag cctttgaatc
ttgattattc aagtgacttg cttcacccaa tgtaacatta ataagcacaa tacaagcaga
                                                                      300
                                                                      360
ggcttgccaa gaacttggtt tgtttctaat gcttagaaga agaatggtgt atgccatatt
                                                                      420
tetgeattta gaacteacgt ggagacatgt gtggcccaat tgctcctctt teatctcagg
caataaccag acacgggact gaggccatcc atgaccagcc agccctagtc aacacacaac
                                                                      480
acacaagctg atcacagatg catgagtaag cctaactgag accagccaag accagcctag
                                                                      540
aatagaactg ctcagcagca ataaaaacta aataaattgt taccttaagc tacttttaga
                                                                      600
```

```
660
gctatttgga agtgtatttt tgtgcagcta acatttacta tcagataaaa tggtgattgn
                                                                       720
ttatctctgn tttaatgatg ntttaaggaa atggttctat taaaaggaaa tatctggggc
                                                                       740
tttgtcaccg ttaaaaaaat
      <210> 642
      <211> 737
      <212> DNA
      <213> Homo sapiens
      <400> 642
                                                                        60
tancetttga nnettteten nentgnentn nnngnaacga eeteggeacg aggacacece
                                                                       120
agatgcagcc accaccagca gaagcgatca nctgacccca caaggttttc gtggctgtgg
ccgtgggctc aggtggcagc tatggagccg aggatgaggt ggaggaggag agtgacaagg
                                                                       180
                                                                       240
eegegeteet geaggageag eageageage ageageeggg attetggace tteagetact
atcagagett etttgaegtg gacaceteae aggteetgga eeggateaaa ggeteaetge
                                                                       300
tgccccggcc tggccacaac tttgtgcggc accatctgcg gaatcggccg gatctgtatg
                                                                       360
gccccttctg gatctgtgcc acgttggcct ttgtcctggc cgtcactggc aacctgacgc
                                                                       420
tggtgctggc ccagaggagg gacccctcca tccactacag cccccagttc cacaaggtga
                                                                       480
ccgtggcagg catcagcatc tactgctatg cgtggctggt gcccctggcc ctgtggggct
                                                                       540
                                                                       600
tetgeggtgg egeaagggtg tteaggageg catggggeec tacacettee tggagaetgt
gtgcatctac ngntacttcc tctttgcttc atccccatgg tggtcctgtg gctcatccct
                                                                       660
                                                                       720
gtgccttggc ttgaatggct ttttggggcc tggncctggg ctgttaaacc gccgggctgg
                                                                       737
natttaacct ntnggcn
      <210> 643
      <211> 748
      <212> DNA
      <213> Homo sapiens
      <400> 643
cttttaaccn tttganccnt ccctcnaaac cttngatncg anttcggcac gaggaaggca
                                                                        60
gaagtgtaaa tgaacataca ntttaaggag aaagcctgct gtgtttnnct tgttcagcag
                                                                       120
ggtattatga attagcacaa gtattgcttg ctatgcatgc taatgttgaa gatcgaggga
                                                                       180
                                                                       240
ataaaggaga cataactccc ctgatggcag cttccagtgg aggttactta gatattgtga
aattattact tottoatgat gotgatgtoa actoccagto tgoaacagga aacactgogo
                                                                       300
taacttatgc atgtgctgga ggatttgtat gacattgtta aagtgctcct taatgaaggt
                                                                       360
gcaaatatag aagatcataa tgaaaatgga catactccct taatggaagc agccagngca
                                                                       420
ggtcatgtgg aagttgcaag agttctttta gatcatggng caagcatcan cactcattct
                                                                       480
aatgaattca aagaaangtg ctctaacact ngcttgctac aaangccatt tggatatggg
                                                                       540
gcgctttcta cntgaagctg gtgcagatca agagcncaaa acagatgana tgcacactgc
                                                                       600
cttaatggan gcctgcatgg atnggacatg tanaggtggc acgtttgctt tttggatant
                                                                       660
nggtgetean gtgaacatge etgeataate atnttgaate tecattgaeg etagetgeet
                                                                       720
gtgganggac atgttgaaat tgcngcct
                                                                       748
      <210> 644
      <211> 759
      <212> DNA
      <213> Homo sapiens
      <400> 644
tennnenett ttegatettt tgagnettge etttgaacee ettggntaeg antteggeae
                                                                        60
```

```
gagggaacca tgananccna gagctagaat tgctattgga tnncgtctat tctctntttg
                                                                       120
cttattgggn cgngntncgt ggttnctggc ctcangggtn nncccqaanq anggggtatc
                                                                       180
tnngagenan ttntgenntt tacnggetag ettgntgggg gettaanntg ceactnttan
                                                                       240
acatgetnta ctantcantg agannntnen ntegaccatn tannacnatn etgtgnnnte
                                                                       300
engtacnetn tggccgnatg gagetattag etteaanatg nntegnantg ttacatgean
                                                                       360
ncactgannt nactatccan natntaagtn ctcttngctt actgtgaaca nnngctactn
                                                                       420
ncttggatat tatagnaagg ntcnttgata cncgatnatc ntncntgtca gatcnataaa
                                                                       480
tancanctat accnactgtn naaatnccat ctggnggnct tncnatccan acataattgc
                                                                       540
attannncgt cnaattgnga tanagtnttg aaagantctn ggtttagacn ttggatgttg
                                                                       600
caatgnttgt gncttanaan ttatgtgctg gctactgant aanctggggg catgacntta
                                                                       660
ctggnttgac ctaagnggng aantcnatgg tccgattgct ggnccctanc cttaagnttt
                                                                       720
gccatgaata ggncttttgc cctaaaataa naccccttt
                                                                       759
      <210> 645
      <211> 766
      <212> DNA
      <213> Homo sapiens
      <400> 645
tnnnnnnntt tcaatntttn ancgtccctt aggatccntc gattcgatcc agatgggata
                                                                        60
cctctaaaca cgaaaagaaa gaagattcca ttantgaatt tttaagtttg gtttnatcaa
                                                                       120
aagccgagcc acctangcaa cagtccaccc ccttagtaaa caaagaggaa nagcatgcac
                                                                       180
cagaatcatc cgcaaatnag acagtcaaca aagatgtgga cgcacaggct gaanqaqaaq
                                                                       240
gganccgcca tccatggact tattcatggc catctttgcc agttcctcat atgaaaagtc
                                                                       300
ctnatcctgc gangatganc acggtgacag tnaanatgat caggcacgct ctggngagga
                                                                       360
caacttccaa agctggmaag acactgactt ggmggaaaca tcatctgtgg ctcacgctnt
                                                                       420
tgtgccagng ccctaggagc cgtcaccttc cttcccgata caaangatgc agatagatna
                                                                       480
naganaagag nteggeengn ngetgeetee egtettatgt necaatgete gteagaeact
                                                                       540
tgaagttnct canaaagaga aacattccaa gaacaaagac nagcacaang gcaatanaqa
                                                                       600
acacaggccn gaaagaattg anangaaatt ggaaacactn gaagcacnaa acacctaang
                                                                       660
naatccaaaa naattggcaa accaggggaa aagtaggtnc ctncgngaag tttcgacagc
                                                                       720
cngcggacaa gccanaattg acnatgaaac cgcatacgtg tcttnc
                                                                       766
      <210> 646
      <211> 752
      <212> DNA
      <213> Homo sapiens
      <400> 646
ttnnnnnntt tttatcctnt natncttnct ctttggatcc atcgattcgc tccaaggaaa
                                                                        60
atccacctcg cagettgtaa atctacagee tgattacate aaccccagag ccgtgcaget
                                                                       120
gggctccctt ctcgtccgcg gcctcaccac tctggtttta gtcaacagcg catgtggctt
                                                                       180
cccctggaag acgagtgatt tcatgccctg gaatgtattt gacgggaagc tttttcatca
                                                                       240
gaagtacttg caatctgaaa agggttatgc tgtggaggtt cttttagaac aaaatagatc
                                                                       300
teggeteace aaatteeaca acetgaagge agtegtetge aaggeetgea tgaaggagaa
                                                                       360
cagacgcatc actggccgag cccactgggg ctcacaccac gcagggaggt ggggaagaca
                                                                       420
gggctccagc taccacagga cgggctctgg gtatagccgt tccagtcagg gacagccgtg
                                                                       480
gagagaccag ggaccaggaa gcagacagta tgagcatgac cagtggagaa ggtactagtc
                                                                       540
aaccttcaga aagagtatgg agagaaaaag aggcacacct ggacgcagag ccctgccagc
                                                                       600
gccctctctg ctgttgcagc tgcaaggaga ccatgcctgt gggagccagg cctcgcttgc
                                                                       660
atgaanaagg aacgatgeet titteaatgg tgtetteett eeattgtgea naanaacett
                                                                       720
```

```
ttggtggctt ctcttccgac ttgtgcctga tt
                                                                  752
     <210> 647
     <211> 743
     <212> DNA
     <213> Homo sapiens
     <400> 647
ttaatccttt caattcgttc ntctttggat ccatcgattc gaattcggca cgagcctcc
                                                                   60
120
                                                                  180
gactgtcaca tgtggtttgc tggtggcttc ccactggcga agagaagcta caaaatatgc
tcgatggata gcattcactg gaaccactat gagaagatta taggaaaaac accaagacta
                                                                  240
gaggactetg ggttcctttt atgcaaagtc aactettetg ggtcacagtt acccagcaac
                                                                  300
aaaaataaaq agaqqaccaq qacqatqcca qcaccccgtt tatcctqaqt qaactctccq
                                                                  360
gaggeetett caagettgtg ggttetetge tgtettgaag ceatecatee atttgatagg
                                                                  420
ttttgcaaag acttggtcct gccaagatgg ttttaatcat ttctgctaaa aggaatggac
                                                                  480
togaggattt gatotoattt tagatgoagt tgtootoact tggccatttt acagcacttt
                                                                  540
agtaaatatg gccagtgtat ttggtcacta ttaaatcaat ccccattcat tatctgtcan
                                                                  600
ggcaactcag tgaactaaat actatgttct gacctctggc actctttctc atgttggtta
                                                                  660
aatatttaat attqnctaag qcaattcaag tatttttctt aaataaaaaa tatqaaaact
                                                                  720
caaaaaaaaa aaaaaaaaan ana
                                                                  743
     <210> 648
     <211> 759
     <212> DNA
     <213> Homo sapiens
     <400> 648
                                                                   60
ttttaatccc tttcatttcn ttccttngta ggatcccatc gattcgtttt tttttttt
ggtgattgga ttaacaattt tattctgnnt ccactacaaa ngggctggtg ttttgttcca
                                                                  120
aatgtttagc tgggaggget gtagggaccc ctgttacccc cattaaacac agtaaagcat
                                                                  180
ggatccagtc agccccctgc tggcaggtgt gggcctggca actacacaga tccaacccca
                                                                  240
ccctcctggg tgcggccaga ggccaaggca gtcgcccgag ctcctgaatc ccaagaatgg
                                                                  300
360
                                                                  420
ccatggctaa gccttgtgga aaccagaccc caaagcccct gccatgccan gggtctcaac
nccagacgct tgttatggag gcaccancng gtantggccc ctgtaagcan ggccagagtc
                                                                  480
gggacaaaga gcaagantga aacanccaag agacanagga ccatgctgga ccattgggca
                                                                  540
cncangaacc tgcctgggaa aaaccggggg gcaangctgg catgggaatg aacacctgct
                                                                  600
tgntgacacc tatntgagct tcanttnect taacttgaaa aattgaacan geceggtneg
                                                                  660
gtggctcata ccctgtaatc ccancacttt tgggangctt tangccgntt ggatcattga
                                                                  720
ngttaggaag attaaagaac cancetggge enacattgg
                                                                  759
     <210> 649
     <211> 746
     <212> DNA
     <213> Homo sapiens
     <400> 649
tnancetttg aateettgaa ngnngateee tegattegee ggaaceteat eeagtgeeae
                                                                   60
ccatcttgac accttctccc tcttcagctt ttccaacagt cactactgtg tggcaggaca
                                                                  120
atgatagata ccatccaaag ccagtgttgc atatggtttc atcagaacaa cattcagcag
                                                                  180
```

```
acctcaacag aaactatagt aaatcaacag aacttccagg gaaaaatgaa tcaacaattg
                                                                       240
aacagataga taaaaaattg gaacgaaatt taagttttga gattaagaag gtccctctcc
                                                                       300
aaqaqqqacc aaaaaqtttt gatqqqaaca cacttttqaa taqqqqacat qcaattaaaa
                                                                       360
ttaaatctqc ttcaccttgt ataqctqata aaatctctaa qccacaggaa ttaaqttcag
                                                                       420
atctaaatgt cggtgatact tcccagaatt cttgtgtgga ctgcagtgta acacaatcaa
                                                                       480
                                                                       540
acaaagtttc agttactcca ccagaagaat cccagaattc agacacact tcaaggccag
accgcttgcc tcttgatgag aaaggacatg taacgtggca tttcatggac ctgaaaatcc
                                                                       600
atacccatac ctgatttatc tgaangcaat tcctcagatt tcaactatca aaactaggga
                                                                       660
aaactqnqag tttaacacca agtnctacaa cacaaqqttq gaaacacctg aacttqqngg
                                                                       720
atcatgatac cacttnacca ctccnt
                                                                       746
      <210> 650
      <211> 789
      <212> DNA
      <213> Homo sapiens
      <400> 650
tgaccetttt gaaanteett geatntttea nacentttgg taennneant ttnngntgga
                                                                       60
tecetegite geignacaaa agaigtitti eaattaaaag aetiggagaa nnitgeteee
                                                                       120
aaagagaaan gcattactgn tgtgtcagtn aaaggaancc ttcaaagctt tattngatga
                                                                      180
tgggtttggt tggactgtga gaggatcgga acttctaatt attattgggc ttttccaagt
                                                                      240
naagctcttc atgcaaggga aacataagtt ggaggttctg gaatctcagt tgtctgaagg
                                                                      300
gaagtcaaaa gcatgcaagc ctacagaaaa gcattgagaa agctaaaatt ggcccgatgt
                                                                      360
gaaacgqaag aqcqaaccaq qctaqcaaaa qaqctttctt cacttcqaqa ccaaaqqqaa
                                                                      420
cagctaaagg cagaaagtag anaaatacaa agactgtgat ccgcaagttg tggaagaaat
                                                                      480
ccccaagcaa attaagtagc caaaagaagc tgctaacagg atggactgat taccatattc
                                                                      540
gcaataaaat cttgggccaa aagaaaattt gggttttgaa agaaaataaa aattgatngg
                                                                      600
aactttttgg aattccagaa gactttgact acatagactt aaaatattcc atggttggtg
                                                                      660
aaaggatgta ccaagctttg tgaaatattg taaattttta aacctattat ctactaaagt
                                                                      720
ngtactggaa ttgtccnttt gcctgttnac ttgngqtnta ntcatttnta tttaatqntn
                                                                      780
aaattaang
                                                                      789
      <210> 651
      <211> 757
      <212> DNA
      <213> Homo sapiens
      <400> 651
tnnnnnctaa neetttgaaa tegteentge atgateeete gattegaatt eggeaegage
                                                                       60
agatatttac tgaaggaatc taggttgttt tttcagtgga caatgggaat aanncatttc
                                                                      120
taaagcaccg actggagagg aaggcaacag agacaaggag agaagccgag agacatgtct
                                                                      180
gcgtgctgcc acgcatctga gcgattgctc tgtgaagagt tgtacactga acattttcag
                                                                      240
gggaggctgt ttacccaggc aatgtcctca aacaagcctg tgccggggtg tcctggaatc
                                                                      300
tgtgccagga ctgtgttttt agcccttcac ctctcagctt tagcaggaca tgaaccagtt
                                                                      360
ataacaagat ggccctgcag ctggttacag gaatgtgaca tggcaggatc tatggaacca
                                                                      420
aatggaaggt tttnaggtga tgtaggtctt tcacagttag ctttggggaa tacaqaatac
                                                                      480
tcaaataaag tgctttgtta ttatttcaga gggaatggcg attgaaatgt tacaacagag
                                                                      540
atttcttggt ggtagctatt tgggtaaang tatatggata tttntctgta catgtgaaat
                                                                      600
tatntaaaat aaaagttata taaattacat tgacaaaaa aanangtana aaaaaaactc
                                                                      660
gaacctttaa aaactatngt ggagtccgta ttacgttaga tccagacctt gataaganac
                                                                      720
cattgatgaa ttttggacaa accccactng aatgcnn
                                                                      757
```

```
<210> 652
      <211> 759
      <212> DNA
      <213> Homo sapiens
      <400> 652
                                                                       60
tennnecttt aatgetttga actegttgea etgeangate categatteg aatteggeae
gaggetgnee aggeagttnn atggeetnet ggttgtgtge etteacacce geetacagee
                                                                      120
                                                                      180
ccacctcacc atcaagegct gagccaatgc ggntgtggct ggccctgagt tcctgagtca
                                                                       240
gctccttgcc agggccagag ctggtnacag cggggcanca nggtgggtag cctctaccag
                                                                      300
ncagggcagt ccctgagggg ccagcanggg ggctgactgc ctagtggctn aacctactga
                                                                      360
acccaccac teccagegat getacecaga accccaaegg entgaateet geacantgee
qqqcantqcc aqactcnaaa gggctcgctg tggggacagc cccgtcatgg ccacanactc
                                                                      420
                                                                      480
tqtcctcacc tttgattgtc aggatgacag nccccaccac catgatgagc gtctgcaggg
cgtccgtgta gattacagca gccaggcccc ctgccaatgg aagcaaggtt gctggaaggg
                                                                      540
gccctggtcc agggaggaag gacaccggga ggaacttctg ggcttctgct ggggccactt
                                                                      600
cctgggctgn tnctcnggnc tgtatgggga agtggccttn tgaccccttt acacgttccc
                                                                      660
tgggtggacc ttccctgntt gcangcaccc ataccttgcg atggtgtnca nggctnttga
                                                                       720
tgcccnaaac tttaggattg ttggatangt nnaatctnc
                                                                       759
      <210> 653
      <211> 820
      <212> DNA
      <213> Homo sapiens
      <400> 653
tgcaatcccn engnnaatcg etttgaaanc neentenetg tatgatccca tegattegca
                                                                       60
acagtecagg etetgeagac ageateceae etgteceagn tngetgaeet gaggageate
                                                                      120
gtggnggaga ttgaggacct tgtngctcgc ctggatgaac tcgngggcnt gtatctccag
                                                                      180
ncanaanaan qacnqcatac aacagaccat tangangntg tcatctacan tntnanngat
                                                                      240
catntgngna engacecate cattaatgag gateanggen tecanetgat gaacgetgat
                                                                      300
cttctgcaan aagaacgttc tagntctanc nnanngcent cancetnegn ctcttgagct
                                                                      360
cagtgngtca ngctcntaan atcttnncac ntgccaanct gtgnggnctg ccttnagnct
                                                                      420
teeggatagg eactntnatn ngacntgeec tatanttgee ngengnnant naaccaantg
                                                                      480
naccatngtc actetgttga catcanggen atntgnntaa actaatnnct tngcngcact
                                                                      540
ctagtnngcq ttqncactqc ccncqtnnnc tancntacca nttcncattn cccntttaat
                                                                      600
gggnaaagan atnateeeta enateatatt necentnnaa tggattegag negnaantet
                                                                      660
tnnntantna tetnaaneet aaatgnteae atnnaaaett tanangneat ennnnatgna
                                                                      720
accnancnat ggctaaangg cctcattaan gccngntttt tcaaacttga aaantgcatn
                                                                      780
conccattga naaagganta cacgggcccc cntgngnggg
                                                                      820
      <210> 654
      <211> 768
      <212> DNA
      <213> Homo sapiens
      <400> 654
tttnnccccn ttttgtncct nttgattcnc ttgctacntn ttcaaatcng tnggatccca
                                                                       60
tcgattcgcc acatttaagt gagatatggg aaggaggagc agattgtttt tgaagggagg
                                                                      120
aagagcagtt acttagggtc aaattaagtt gtaaaatccc ccccgggatt ttgtatgtaa
                                                                      180
```

240

gtcaaagtga attgtatttg gaagaagaac tggggagccc acctctggta ttttttttat

```
300
gtccctcata tggacaaata aacctctggt attaaatgaa ttttcttttg ggggattcta
                                                                      360
tatatteqqq attteaacea ceaacetate tqqtttttee eqetqaaatq ttgggtgatg
                                                                      420
gaatcaggag agcagatttg gagactcttt atattttata attgagagag acaaagagaa
aaccgtttga tttgaaaaag ttttctaggt tccctcaggt agatggaaat tttcatcaaa
                                                                      480
                                                                      540
aacagtttat tcaaggtaca tagcctacta gtttcccatt tgagagtacc gcagaatgat
acgacgtgta ctgcttctct acgcagaatg aagtataaaa ttagcaccna atagtacttt
                                                                      600
aatttgcagg tgctaaactt tttacatgct tnatctcatt taattcttag aagaaactaa
                                                                      660
                                                                      720
ttttaccaag taaantgtct ggaccaacca tntgcaggtc caaaannctg gaaaaaccgt
naggtttgga ctcctacata gcctnttttn taagtnncnt nntaaatn
                                                                      768
      <210> 655
      <211> 752
      <212> DNA
      <213> Homo sapiens
      <400> 655
tntncctntt gatccttgca ctannaaatc cgtggatccc tcgattcgaa ttcggcacga
                                                                       60
gggtaaacct atttatataa tagaaggatg attataaaca tttaataaat tatatcaaat
                                                                      120
agatattata tattaaatgg gcagataata gaaatctgtc caagcaaaac tctggataat
                                                                      180
ttttatgttg ccttattttt tgttttctgt gaactccaag aaaaatgaga taccagtttg
                                                                      240
gaacagatgt aatattgctg atttaacagt ttagggatac tccccaagtt caataatttt
                                                                      300
gccaagatac aaatttaaat ggaacctttt atgaagcttc atagtgtgtg aagaacttac
                                                                      360
cttgtttata tgtttgaaga catacatatt tcacatttca gaagagtcta tacatagctc
                                                                      420
accaaatatc aaaaccacct tgttagaaaa cattaaggtc tgtcttattt atttgttcat
                                                                      480
ttgnttatga gacacantct cactctgtaa tctcactctg ttgtagaggt tgagtgcagt
                                                                      540
ggcacqatca cggctcactg caacctncat ctccctgact caaggaatcc ttccacctca
                                                                      600
gccttccaag tagcanggac caccaqqtqc accccactat qcccaqctta attttttqna
                                                                      660
ttttattgga cagattgggg ttttgcccat gttattcagg ctggatcctt nnggcctcaa
                                                                      720
actectgggg cttcaageca atetggeetg ce
                                                                      752
      <210> 656
      <211> 754
      <212> DNA
      <213> Homo sapiens
      <400> 656
ttttcctttt natcttgctc nanaancent ggatccctcg attcgcagag gctggttcag
                                                                       60
aaaaggagga agaggcccgg ctggcagccc tggaagagca gangatggag gggaagaagc
                                                                      120
ccagggtgat ggcaggcacc ttgaagctgg aggataagca gcggctggcc cangaggagg
                                                                      180
agagtgaggc caagegeetg gccattatga tgatgaagaa gegggagaag tacetgtace
                                                                      240
agaagatcat gtttggcaan aggcgaaaaa tccgagaggc caacaagctg gcngagaagc
                                                                      300
ggaaageeca egatgaggeg gtgaggtetg agaagaagge caagaaggea aggeeggagt
                                                                      360
gagtgcctgc ggcccctcac agggctgang ccagcccta tcagctggat gtggcagagg
                                                                      420
catgccanag gacctaagtg tgatggacca gantcacttc tnctcctcct ttctncacca
                                                                      480
gccctgaccc ctcatgctct ctggctgggc cantgggcaa ccctcgcttc cttggatgga
                                                                      540
ctgcctgctg gtgcctggtc agagaanagc ctnttttccc agnctgattc tntgctccca
                                                                      600
ggaaccaatt gaccatnaag gtgcaaangc cnanccaatc cccttacnta ctggccccca
                                                                      660
ttnattcctq qctttttcan aagcccccnt qccaaacann ttqqqacccc ctqattnntt
                                                                      720
aagggtgcct tttnatnggg gttaaaggtt aant
                                                                      754
```

```
<211> 734
      <212> DNA
      <213> Homo sapiens
      <400> 657
tntgttccnc natgaacgnt ngaancnnna tnccnttgga tcccatcgat tcgctgcggc
                                                                        60
cgcaggaget gtggcggttt tectaateet gcgnttatgg gtagtgette nttecatgga
                                                                       120
cgttacgccc cgggagtctc tcagtatctt ggtagtggct gggtccggtg ggcataccac
                                                                       180
tgagatectg aggetgettg ggagettgte caatgeetac teacetagae attatgteat
                                                                       240
tgctgacact gatgaaatga ntgccantna aatnaantcn tnngaactan ancgagctga
                                                                       300
ttganaccct agtaacatgt ataccaaata ctacattcac cqaattccaa gaaqccqqqa
                                                                       360
ggttcagcag tcctggncct ncaccgnttt caccaccttg cactccatgt ggctctcctt
                                                                       420
tnccctaatt cacagggnga agccngattt ggtgatgngt tacngaccac gaacatgtgt
                                                                       480
tectatetgn gtatetgnee ttatecantg ggatactagg aataaagaaa gtgateattg
                                                                       540
ntactttcaa agcatctqcc qqqttqaaac qatntncatq tcccnaaaqa tttqttqatn
                                                                       600
tqcaqctnct cantqctann gtcggttttg aanaaagttt nccaaatnnn tgtaccttgg
                                                                       660
gccaatttnt ngacaantng aactgacttg tnagaatctt gcagntaacn gtcttgtntc
                                                                       720
ntccaattng ggng
                                                                       734
      <210> 658
      <211> 783
      <212> DNA
      <213> Homo sapiens
      <400> 658
ttotootgaa acgottngca ottoootono tgoaggatoo catogattog aattoggoac
                                                                        60
gagacactgt cccactccat cacccaggct ggagtccagt ggtgtgatca taqctcqctq
                                                                       120
catectecag tteetgggtt caagecatee etectgeete agecteeeca gtagetggaa
                                                                       180
ctacaggtgt gtgccatcac acctggcttt acatttttct gtggggtctt actatgttgc
                                                                       240
ccaggccggt ctcaaactcc tgagctcaag tgatcctctg netcagcctc cagagtatct
                                                                       300
gggattacat atgtcggcta ccgtgtctgg ccgttcacat ctttggccac tattnqcttg
                                                                       360
tgaaaaggta tnatgaggtg gtacttatca tngttactgt gtctcatgtt nngtatattt
                                                                       420
ttgcttcatc aactaagatg cactgtaaca tctgtgaaat ctggatatat tatcaaangg
                                                                       480
tttatcatag ttttgttaac aatacactgt cgttttactn ggtgcctaan ataatggtat
                                                                       540
agttgngagg tgatcttaga tttgatgaag cacagtatgc aangtaggcc taatggnggg
                                                                       600
aaagaatggg naattttcan angcnnggaa gtatttgntn ttttgtaaat ggacttgaaa
                                                                       660
agettgttet gnnggattgg acceaaccc tttccctttn aaaccccgaa ttctnatnga
                                                                       720
ctnttccaac ttngaaaact ttgctcnaac ttaaatacct ttnaaaaatt aaccntgacc
                                                                       780
ccq
                                                                       783
      <210> 659
      <211> 741
      <212> DNA
      <213> Homo sapiens
      <400> 659
tetteettig tatacetget nttgetettt ntgeaggate cetegatteg etttgageta
                                                                        60
ggataaaaat tgggtaaagg acatttgctt acctgcaaat gaatcactgt ggaaatgtqa
                                                                       120
tetteecata teateaagaa aettgtttte tggatgaata etgggagaat aaaatgagaa
                                                                       180
ctctggagtg agctaaattg atcccaatta agtttttctg cttagcagac agaaggtata
                                                                       240
attitttgac accetttece acctggtgee tatgetagge ttgteetgag aacateeete
```

300

```
agtaacttga tattcacatg acctacagga tgtcccatct gcagggctga gtcagttggg
                                                                       360
gaacaccaga ggctacacag tagctcttcc tgctactcgg ttaatgagct tggcaggttc
                                                                       420
tttgtctcac tgaattctta tcatggaaac agcagcagca gccgctagga aatcttcaag
                                                                       480
tgtagtgtct gtgctaaccc agtggtaaat cccttagatc ccctqctqqt ctctqqcagt
                                                                       540
etecttgatt ttgggtacca tgtatatttt ccgctttgac tttaacqctt tctaggatag
                                                                       600
ggtaagcacc cttaattcan gcactgtcca ttagcttcct ttgcaaaagc tacttatggn
                                                                       660
                                                                       720
eggteacaat neaacaetna nacagageea aggeaatate etettgeeca tggetatgat
gtcagacagt ggatggctcn t
                                                                       741
      <210> 660
      <211> 734
      <212> DNA
      <213> Homo sapiens
      <400> 660
tetgnnetnt ginteetige tegigitett tigeaggate eetegatieg aatteggeae
                                                                        60
gaggactgga gaagtcagaa gtagaaaagc agattgctag gagagacagg atgacagatt
                                                                       120
ttggtcagaa aatgggatat tggagtttaa agtatcaaat acagaatagt tccagatgtt
                                                                       180
cagagateca geatgggatt aggtaetgaa atggattaga aetaaaagte aetagaattt
                                                                       240
agaaattgag aaccatgaga gtggatgcaa tgacttgttg cttgattgaa aaataaatta
                                                                       300
ataataataa aggaccatga gactagcctg ttataggggt tatctccatg aacattgaat
                                                                       360
tttcccagga tcatagcagg aattgggtag agaaaaagat tatgagaagg tgccagagtc
                                                                       420
ttcagtgaat gtcaggaaat taccaggaag tcagcatatg acagagaaaa ggacagtatg
                                                                       480
ttatctgcat caaaggaaaa tgtgcttttg ttgaaaagta cagaaaaagc caatactaca
                                                                       540
atactgtgct aagcccctac ctqtactcct ctcccacagc tgcattccaq ccctqtqqta
                                                                       600
taaaaggtgt gagaatgagc ttttccacca gaatcagcag gtttagttaa agcatgagca
                                                                       660
gaacaagcat nctatgaaga gactgaggat gtaggtgagt ggtctaaatc tcatnnaagg
                                                                       720
acattgcagt ngat
                                                                       734
      <210> 661
      <211> 762
      <212> DNA
      <213> Homo sapiens
      <400> 661
ttnnnnnnct conaatecte engatnanat enetttgnan etneetgeag gateceateg
                                                                       60
attegaatte ggeaegaggt ceatacatgg ageteeetgg agecegtgtg ntntegtgtg
                                                                       120
actgaacgtt ttgtgatgaa aggaggagag gctgtctgcc tttatgagga gccagtgtct
                                                                       180
                                                                       240
gaattgctga ggagatgtgg gaattgcaca cgggaaagct gtgtggtttc cttttacctt
teagetgace atgaacteet gageeegace aactaceaet teetgteete aeegaaggan
                                                                       300
gccntngggc tctgcaaggc gcanatcact gccatcatct ntcagcaagg ngacntatat
                                                                       360
gtnnntgacc tgnagacctc agctgacnct necttngtan ggttngatnt nggaagcatc
                                                                       420
ccaaggngat ttagngacnn tggantcctn atnactgata anacncnaac tatantnttt
                                                                       480
taccettggn agcccaccag caagaatgag ttggagcaat cttttcatgt gacctnctta
                                                                       540
acanatatac tetgaatgaa tetacgttgt atttatcagg nggacaatgg gaataaagen
                                                                       600
tttntaaagc accnantgga catgaaagca acagacacna ggagnnaagc cttgagacat
                                                                       660
gtctgnnntc tgaccgcatn ttgatccant gntctgtgan ganttnttca ctgaacattt
                                                                      720
tcaagaggag ggtgnatacc cctggcaatn gcccnaanaa ag
                                                                       762
      <210> 662
```

<211> 745

<212> DNA <213> Homo sapiens <400> 662 60 nanateenne nantnettnt tgttentgte egnangatee categatteg aatteggeae gaggtttcat ttaagaagaa tganctagat anatgtgctc ttctggttac cccaccctga 120 cagagtgcat ttttacacgg ctagcagggg ttgagactgc agcctggcct gccagccatt 180 ggaggtgttt aaggaagggc agataatgtg actetttgeg gggtgeeate tgettaeeea 240 300 ttagegagea nagggggttt etgegggtga eecceageat atttetaggt taettatggg 360 cagatttgta agtgacaaaa ctccagctga tgctgggaat ggggagaggg cccttgaggg 420 actttgtggt tttgtgcttc tggtttcctg gccaacccca gggtcacttg tctggaggcc cagetgggea ctaatgtetg ceacegacta tgttaaagtg tataaatgat teetetattt 480 540 gggagagate ttecaateca gaggageeen tettggaetg cetgggttaa atetgeatan cagangtggt tgatgaagtt catctgaaga aattcagccc cacctnecca ccctgccntt 600 cctgctccct tttgatagtg gcttctgggt actcgggcnn gtncttggga caccancett 660 ntctgggggt ctnaagccat cccgttgggg ctgtcggcca agcctaagtt aatcgtgtgc 720 ctntattggg aggatngctn ntcct 745 <210> 663 <211> 748 <212> DNA <213> Homo sapiens <400> 663 taateetntt gataanaate ettgtnettg etnntganee ntegattega atteggeaeg 60 agggcaagtt tccaaagatc agtgtggagt gctacagaaa taattatagg agaggaaatc 120 ataatcacag aaggtataat gcttgtttga ggctccggaa taagaactaa aaaaaaacaa 180 240 aaaacactgg tttcatgctt acggggtaca cactttggtg catcccgtga acacaaattt 300 taataccaaa caatcettga tgetteacet ggggetgeea ageagtttgt aaaacagagg 360 aaaacattta gtgcagtctg tattatcctt ttccaacttt tctgtttgtg caagtttttg 420 aagattcatt ggccaaacaa tgaacaacaa aggttttctg agagaagaca aggtggactt ttcattttgt tagtaaatac cagtggcact gttgaacgaa acaaatactt ttatctcagt 480 ctttcaaatc agtattaatg tctgtgtttc cttccactga cagctcttct tctagtttca 540 ctgaaaaaag ggtgttagta tttttatctt ggacactctc ttccaaatcc ttcagcagct 600 660 cctcttcttt atattctgcc acatcgacct ctaaaccgga attgtccttc agtttgccgt ggtgcttgag atantacccg ctggttctga aagaacttga tgatggtgta ctttgggaag 720 748 gtcnaactgg gcanacagag tctggatt <210> 664 <211> 785 <212> DNA <213> Homo sapiens <400> 664 gtnnnncene nnaccetnnt gaatntaate ettgttettg etgeatgate eeategatte 60 ggtcaagetg gecetggatg tggagatege cacetneege aagetgetgt agggenagga 120 gtgcaggctg aatggcgaag gcatatggac aagtcaacat cnntgnagng cagtccaccg 180 netteagtgg ctatggcgnt gccagcgntg taggcageng cttaggcctg ggngnnggaa 240 geagntacte etatggeant ngnettgnen ttggatgeng enntagtnee ageageggna 300 nagccactgg gggtggcctn agctctgtng gaggcggcag ttccaccatc aagtacacca 360

420

ccacctcctt ctccagcatg aagagctaca ngcactgaan tqctqccqcc aqctctnagt

```
480
cccacagett teaggeeest etetggeage atageeetet cetnangttg ettgteetne
                                                                       540
cetqueetee anteteceet geeetacegn gnagagetgg gatgeeetea etttntnete
atnaatacct qtttcactqa actcctqttq cttaccatca tqtcncaqtt atcaqcactn
                                                                       600
                                                                       660
aaancatget aatgneettt tataagneee ngtatttatt acaagnatet tgaantetge
cattaaattc ttgaggaang aaaatgacct attatccccc ataaagaacc tgaaacttca
                                                                       720
                                                                       780
agnetaangt cecagentne aacanggaag gagnteentt tittinatin getaaacean
                                                                       785
tcctc
      <210> 665
      <211> 763
      <212> DNA
      <213> Homo sapiens
      <400> 665
ggnngntgnn nntnntaatt netnttnaat nncanteett ggntetngnt ntagganece
                                                                        60
ategattege tgaaccetaa aggaaageca geaaaceage tgettgetet caggaetttt
                                                                       120
tgcaattgtt ttgttggcca ggcaggacaa aaactcatga tgtcccagag ggaatcactg
                                                                       180
atgtcccatg caatagaact gaaatcaggg agcaataaga acattcacat tgctctggct
                                                                       240
acattggccc tgaactattc tgtttgtttt cataaagacc ataacattga agggaaagcc
                                                                       300
caatgtttgt cactaattag cacaatcttg gaagtagtac aagacctaga agccactttt
                                                                       360
agacttettg tggetettgg aacacttate agtgatgatt caaatgetgt acaattagee
                                                                       420
aagtetttan gtgttgatte teaaataaaa aagtatteet eagtateaga accagetaaa
                                                                       480
gtaagtgaat gctgtagatt tatcctaaat ttgctgtagc agtggggaag agggacggat
                                                                       540
ntttttaatt gattagtgtt tttttcctca catttgacat gactgataac agataattaa
                                                                       600
aaaaagagaa tacngtggat taaagtaaaa attttacatc ttgtaaagtg gtggggaggg
                                                                       660
gaaacagaaa taaaattttt gcactgctna aannnaaann actttccagc naanctaaaa
                                                                       720
aactnnancc tttaaactat antgagttcg nanaccnggn ccn
                                                                       763
      <210> 666
      <211> 759
      <212> DNA
      <213> Homo sapiens
      <400> 666
nnttnnatan nnqctcttqt tctttttqca qqatccctcq attcqtctaq acctctqaca
                                                                        60
tcatggtgtt ttcttaatgc ctcacattgc tggcacgggg atgtgccctg cctgccagca
                                                                       120
cctaggactt cgagttgggt tgcagcttat gacatgcatg ataggttttg gaaggtaact
                                                                       180
tttaactgca aacctataaa gtactatttt ttattttata aatgaacagg gttttaacgt
                                                                       240
geteaaettt aattittte aattgtatga aggeettaaa aaagetaeat taagegtage
                                                                       300
taaaattatt tattggacta aaaactaaca gaacttcatt tccagaattt tttttttttgg
                                                                       360
caaatgttta cattcaatta aggggaaaaa gtagaaccag cacaaatgag tggcagttgc
                                                                       420
tggagcataa ctgcttcaat aaatcttcat cttggggtaa ttacaggcaa gtcattttca
                                                                       480
catcctcttg aggttcagag catcagaatg aactctatga atacatgtgt aagtgccaga
                                                                       540
cagctgaatc tttatcaggt attgnaaaga tacacatatg atatgnttat taaaattgaa
                                                                       600
ataatgtaaa acacatgaat aaatttgcaa aaccaagatc acagtccacc atatgcactc
                                                                       660
tggtacctta aattttttt ataaataatt naaaagggaa tattggaagc ttcttaaaaa
                                                                       720
aaaaaaaaan aaaaaactcg agcctntana acttttgng
                                                                       759
      <210> 667
      <211> 760
      <212> DNA
```

<213> Homo sapiens

<400> 667	
ggnnttnaaa ctnctaatnc tgtnttgcag gatcccatct atncntatan angctctagg	60
eggngeggnt eccaeteteg gaacettgte etgtttgtee eccagetegg caagegecat	120
atgageetgg eggegeeaga tgegaateet gttetggget ttttggeeta tteeegeeee	180
teagtettge egggatggea eegeeegeat aggaetteea gggttggget gantgggagt	240
togactgotg ggootogtaa ttotogottt ggggotgoto ottocaggot gggacacact	300
ggggcccgct gtcggtctcc cgtcctccga catcttgtct ggaacttccg cctggcagtc	360
tccagtagga gtggagctct gtgcggcgta ntttggtgga aaaacnggcc ttgcgtcggc	420
ctcacccca gtgtttgtgt ttcagaatga agactattct cagcaatcag actgtcgaca	480
ttccagaaaa tgtcgacatt actctgaagg gacgcacagt tatcgtgaag ggcccagagg	540
aaccetgegg agggaettna ateacateaa tgtagaaete ancettettg gaaaagaaaa	600
aaaagagget teeggtttga enaaatggtg gggtaacaga aaggaactgg etaceegtte	660
cggactattt gtaagtentg tneagaacat gateaaaggg tgttacactg ggettteegt	720
tacaaagatg aangtotgng natgottaat ttocatnaan	760
<210> 668	
<211> 763	
<212> DNA	
<213> Homo sapiens	
(213) Nomo Baptens	
<400> 668	
gntctatgtg gctctngttn ttttgcggat cccatttgac gccttggcac gagaagaaaa	60
cccatggaaa gtagcagtgt tgtgagttgc agagacagga aagatagaag acgttccatg	120
tgttattctg atggtcgaag tttacatttg gaaaaaaatg gaaatcacac accatcctcc	180
agtgtgggca gctctgtaga aattagttta gaaaattctg aactgtttaa agatttgtct	240
gatgccattg agcaaacctt tcagaggaga aatagtgaaa ccaaagtgcg acgtagcacg	300
aggetacaga aggatttaga aaacgaaggt cttgtatgga tttcacttcc acttccttcc	360
acttcccaaa aagccaaaag aagaacaata tgtacatttg acagcagtgg atttgaaagt	420
atgtctccca taaaagaaac tgtgtcctcc agacaaaaac cgcagatggc acctcccgtc	480
tcagatccag aaaacagcca gggccctgct gctggttctt ccgatgaacc tggtnagagg	540
aggaagaget tttgtatate tacaettgca aataetaaag ccaettteca gttnaaagge	600
tnccggagaa gatcctctct ttaatgggga aagggagaga gctctcttga ctggccttgg	660
gaaagggatt ggaacataat ggggagaaaa gaaagccgta attgacattt tctggcanan	720
tettgtnane aagaggggna aagtnaceet tntntgettg aaa	763
<210> 669	
<211> 754	
<212> DNA	
<213> Homo sapiens	
·	
<400> 669	60
tgnttctaat gctngctctc gttctttctg caggatccca tctattcgaa ttgatgagcc	60
ttattaacta tcttttcatt atgagacaaa ggttctgatt atgcctactg gttgaaattt	120
tttaatctag tcaagaagga aaatttgatg aggaaggaag gaatggatat cttcagaagg	180
gcttcgccta agctggaaca tggatagatt ccattctaac ataaagatct ttaagttcaa	240
atatagatga gttgactggt agatttggtg gtagttgctt tctcgggata taagaagcaa	300
aatcaactgc tacaagtaaa gaggggatgg ggaaggtgtt gcacatttaa agagagaaag	360
tgtgaaaaag cctaattgtg ggaatgcaca ggtttcacca gatcagatga tgtctggtta	420
ttctgtaaat tatagtttct tatcccagaa attactgcct tcaccatccc taatatcttc	480

```
taattggtat catataatga cccactcttt cttatgttat ccaaacagtt atgtggcatt
                                                                       540
tagtaatggg aatgtacatg ggaatttccc actgacttac ctttctgtcc ttgggaaget
                                                                       600
taaactctga atcttctcat ctgttnaaat gtgnattaaa gtatctacct aactgagtng
                                                                       660
tgantgtant gaaagaaagg ncatatntta aacnttgaat ttancaagcc cacnctcqna
                                                                       720
ttttatgncc tttcttttgc ctngggattg aanc
                                                                       754
      <210> 670
      <211> 752
      <212> DNA
      <213> Homo sapiens
      <400> 670
tgnttctaat anttgctact tgttcttttt gcaggatccc ttttgacgnc tttggcacga
                                                                        60
gaaagaaagg gctcgtgaca gagaaagaag aaagagaagt cgttcacgaa gtagacactc
                                                                       120
aagccgaaca tcagacagaa gatgcagcag gtctcgggac cacaaaaggt cacgaagtag
                                                                       180
agaaagaagg cggagcagaa gtagagatcg acgaagaagc agaagccatg atcgatcaga
                                                                       240
aagaaaacac agatctcgaa gtcgggatcg aagaagatca aaaagccggg atcgaaagtc
                                                                       300
atataagcac aggagcaaaa gtcgggacag agaacaagat agaaaatcca aggagaaaga
                                                                       360
aaagagggga totgatgata aaaaaagtag tgtgaagtoo ggtagtogag aaaagcagag
                                                                       420
tgaagacaca aacactgaat cgaaggaaag tgatactaag aatgaggtca atgggaccag
                                                                       480
tgaagacatt aaatctgaag gtgacactca gtccaattaa aactgatctg ataagacctc
                                                                       540
agatcagaca gaggactact gttcgaagat ttttggaaga atactgagaa cggcataaag
                                                                       600
tgaagatcga catttaaaaa atgaggtgaa agaaagctnt tgtggcataq aaaaagtntt
                                                                       660
aageteaant agtittitta ttattattat tattaaaagt tatteaggae tgatqtqaet
                                                                       720
ncngatttna gaacatgtgg taatagtnta nt
                                                                       752
      <210> 671
      <211> 752
      <212> DNA
      <213> Homo sapiens .
      <400> 671
tgnttctaat gttgctactc gttcttttgc ggatcccatn ttattcgaat tcggcacgag
                                                                        60
gatattcaca cagtatgtat tatattaacc atatcacact taagttatta aattcagact
                                                                       120
atttgtaact tattgttata gggcctgccg tatggcttag gatatttgag taatcatata
                                                                       180
tttaaagtaa aaactttggg ctgggcacag tggctcacac ctgtaatccc agcacttggg
                                                                       240
gaagetgagg tgggcagate agttgaggte aggagtteta gaccageetg gtcaacatgg
                                                                       300
cgaaacccca tctctactaa aaatacaaaa attagctggg cgtggtggca cacacctgta
                                                                       360
atcccagtta cttgggaggc tgaggcacaa gaatcgcttg aacccgggag gcggaggttg
                                                                       420
cagttagcca agatcgccct gctgcactcc agcctgggca acagagggag actctgtctc
                                                                       480
Caaaaacaaa aacaaaaact gttagtgaag gttccctggg acttttgata ttttaaaaaat
                                                                       540
tggtcttatg actagtagat aaattcattg ccataatgag gctagctccc agataaacag
                                                                       600
tgtattttct tcttttttt ttttggtgag tggtccaaac tttaagctac ttttccagt
                                                                       660
antitgccac titctccgan gtaantitgg ctggtcttin agtaatgcta attgngtgtc
                                                                       720
aaaatttgtc tacaacagtt nggcaacaga tn
                                                                      752
      <210> 672
      <211> 792
      <212> DNA
      <213> Homo sapiens
```

```
<400> 672
tgnttctaat actngctact ngttctttct gcaggatccc tctattcgaa ttcggcacga
                                                                        60
ggctgcttct ggctgggggg tccttggcct tcatcctgct gagggtgagg aggaggagga
                                                                       120
agagccctgg aggagcagga ggaggagcca gtggcgacgg gggattctac gatccgaaag
                                                                       180
ctcaggtgtt gggaaatggg gaccccgtct tctggacacc agtagtccct ggtcccatgg
                                                                       240
aaccagatgg caaggatgag gaggaggagg aggaggaaga gaaggcagag aaaggcctca
                                                                       300
tgttgcctcc acccccagca ctcgaggatg acatggagtc ccagctggac ggctccctca
                                                                       360
teteacggeg ggeagtttat gtgtgaeetg gaeacagaea gagaeagage caggeeggn
                                                                       420
cettetgece cegacetgae caegeeggee tagggtteca gaetggttgg acttgttegt
                                                                       480
ctggacnaca ctggagtgga acactgnctc ccactttctt gggactttgg agggangtgg
                                                                       540
aaccggcaca ctggacttct tccgtctcta nggctgcatg gggagccctg gggagcttna
                                                                       600
atnnttgggg gatccennaa aangaceeee tgteeeceat anaettgggt ttttngettt
                                                                       660
cancecttte ecettggeee ennttgacea etteatggag tttaattaaa atngeeettg
                                                                       720
gtangaaaan anaatantnt tootontttt antgntnttt tnntataatt tnatnatoot
                                                                       780
antnatchtn nt
                                                                       792
      <210> 673
      <211> 755
      <212> DNA
      <213> Homo sapiens
      <400> 673
nttctaatnc tngctacttg ttctttntgc aggatccctc gattcgaatt cggcacgagg
                                                                        60
cagettegag ccaatggtga geteettetg gateagetee tteageteet tettgeteag
                                                                       120
gatgctgaaa ttgcaaggct gatggaagac ttggaccgga acaaggacca ggaggtgaac
                                                                       180
ttccaggagt atgtcacctt cctgggggcc ttggctttga tctacaatga agccctcaag
                                                                       240
ggctgaaaat aaatagggaa gatggagaca ccctctgggg gtcctctctg agtcaaatcc
                                                                       300
agtggtgggt aattgtacaa taaatttttt ttggtcaaat ttaaaaaaaa aaaaaaaaa
                                                                       360
ctcgagcctc tagaactata gtgagtcgta ttacgtagat ccagacatga taagatacat
                                                                       420
tgatgagttt ggacaaacca caactagaat gcagtgaaaa aaatgcttta tttgtgaaat
                                                                       480
ttgtgatgct attgctttat ttgtaaccat tataagctgc aataaacaag ttaacaacaa
                                                                       540
caattgcatt cattttatgt ttcaggttca gggggaggtg tgggaagttt tttaattcgc
                                                                       600
ggccccggnn gccaatgcat tgggccccgg tacccaactt ttgttccctt tantgagggt
                                                                       660
taattgcncc ccttggccgt aatcatggta atagctgttt cctggtgnga aattgtttcc
                                                                       720
cgtnacaatt ncacacactt ttcancccgg ggacn
                                                                       755
      <210> 674
      <211> 753
      <212> DNA
      <213> Homo sapiens
      <400> 674
tgcttctaat gcttgctact cgttctttnt gcaggatccc tcgattcgca gatttttgac
                                                                       60
aaggaagget aattetaaac etgaaageat eettgaaate atgettgaat attgetttga
                                                                      120
tagetgetat catgaccect ttttaaggea attetaatet tteataaeta cateteaatt
                                                                      180
agtggctgga aagtacatgg taaaacaaag taaatttttt tatgttcttt tttttggtca
                                                                      240
caggagtaga cagtgaattc aggtttaact tcaccttagt tatggtgctc accaaacgaa
                                                                      300
gggtatcagc tattttttt taaattcaaa aagaatatcc cttttatagt ttgtgccttc
                                                                      360
tgtgagcaaa actttttagt acgcgtatat atccctctag taatcacaac attttaggat
                                                                      420
ttagggatac ctgcttcctc tttttcttgc aagttttaaa tttccaacct taagtgaatt
                                                                      480
tgtggaccaa atttcaaagg aactttttgt gtagtcagtt cttgcacaat gtgtttggta
                                                                      540
```

```
aacaaactca aaatggattc ttaggagcat tttaatgttt attaaataac tgaccatttg
                                                                       600
ctgtanaaag atnanaaaac ttaagctttg ttttactaca acttgtacaa agttgtatga
                                                                       660
cagggcatat tetttgettn caanattttg ggttgggggc actangggtt caaaaccetg
                                                                       720
gcanaattgt cnactttagn ctgaccataa tnc
                                                                       753
      <210> 675
      <211> 760
      <212> DNA
      <213> Homo sapiens
      <400> 675
tgntttctaa acnttgctct cgttntttnt gcaggatccc atctattcga attcggcacg
                                                                        60
aggitecete accitatice tecaagitee eccitgggaa ecictgagai taacitgata
                                                                       120
agctccttgg gcaagctctt tatcctaaga ttcctcagtg agccttatag agttgctgcg
                                                                       180
agaattacat ttgttcatga tgtcaagtgt ctggtatgta gctaatgctt attgaacaca
                                                                       240
tagtaattta ttgaataatt gtcatgatca ctggatgaga tatagccact gtggaggtag
                                                                       300
gcacaccagg gttttagagg cttgggatct tgcaacagga ttttcctctt gcctctccaa
                                                                       360
actgcccttt gcccagatgg cttcagcatc tttttgcatc cctgtttcct tgtttggtga
                                                                      420
acacctgtct caacctgtct gcaaggcgtg gtgagattct gcatccttgg taagcactca
                                                                       480
tgtcactcca aaacagctgt ttgatgctaa tagcacacat gaggtcttgc aaatttgtct
                                                                       540
gaggaactac aggacattgg agagatattt atcaaacacc cactacatgc ctgatactta
                                                                       600
actanggaac tatnaaagtg ggtggtgaag acaagtgnga agtaaantgc aaacctattt
                                                                      660
ccatatatgt ttgnncgcta gattgntncc ancaattngc ntcttggaat tgttgaattn
                                                                      720
ggccctgtgt gtgtgcctgt ggtaantgga nntgngtttc
                                                                       760
      <210> 676
      <211> 751
      <212> DNA
      <213> Homo sapiens
      <400> 676
ntttgaaact tnctactngt tetttttgeg gateeetena ttegaatteg geacgaggea
                                                                       60
gaaccttttc ccctctactc ttgtctaaaa gttctgtgtg gcacacagag atgcgaccta
                                                                      120
ctcaatctga cttagtaaaa ccatgctgta gaatttttgt cttaaaaaga ccacataccc
                                                                      180
agcacccatg aaataaaaga ttcatctgta attgggattc aaagtgatta aattcctttg
                                                                      240
ttcatactca taaatagcac taaagtgtta taacattttc atttacctat ttttagttcc
                                                                      300
ttcattttaa cttaataaaa atcttggatt gatattcttt ttttttttt ttgggacgga
                                                                      360
gtctcgctct gtcacccagg ctggagtaca gtggctctat cttggctcac tgcgagctcc
                                                                      420
geetneeggg tteacgeeat teteetgeet eggeetgeeg agtagetggg actgeaggeg
                                                                      480
cccgccacca cacccggcta attttttgt atttttagta gagacggggt ttcaccctgt
                                                                      540
tagecaggat ggtetegate teetgacete gtgatecace tgeetnggee teeaaagtge
                                                                      600
tggaattnca ggcgtgagcc accgcgcccg ggnctaaatt ggatattctt taaccattaa
                                                                      660
aaggtttact gggtgnccna tttgccatat tattggaaac ttggaaaggg taatttgaaa
                                                                      720
caaagntttg aagttaactg aaatttgggg a
                                                                      751
      <210> 677
      <211> 756
      <212> DNA
      <213> Homo sapiens
      <400> 677
```

```
tgctttgaat cctttgtaan cgccctntnt gcatgatccc tcnattcqaa ttcqqcacqa
                                                                        60
ggataaactc ttcagtgacg aatattagaa ttagttagtt atacatttga ggaaaactat
                                                                       120
aaaagtacca ataatgagta ggaaatcact totgoagtat ttttggagca ttttccttaa
                                                                       180
gcatgacata aaagccaaag gtcacaaggg aaaaaactga tagatttgtc tgtgatattg
                                                                       240
agagatgtat gcacatatac atacaacagt catagtaaga caccgttaga caaaaggtga
                                                                       300
tgtatgaaaa agaggcaaaa caacaagaag aaaagattga aaaaatgaga gctgaagacg
                                                                       360
gtgaaaatta tgacattaaa aagcaggcag agatcctaca agaatccagg atgatgatcc
                                                                       420
cagattgcca gcgcaggttg gaagccgcat atttggatct tcaacggata ctagaaaatg
                                                                       480
aaaaagactt ggaagaagct gaggaatata aagaagcacg tttagtactg gattcagtga
                                                                       540
agtttagaag cctgaaactt ttctcgtatg gggtggtttt tgcattaaat nctggggtcc
                                                                       600
attttacaat ccattatttt tgaccactgc tatgtgttca agtagtatga gaatgtgatt
                                                                       660
gntnttatct ggntcatata tatttctttg gctaatttaa tatgtcaaat aaatgagttc
                                                                       720
atttaaaaaa aaaaaaaaa acccggactg ttttnt
                                                                       756
      <210> 678
      <211> 756
      <212> DNA
      <213> Homo sapiens
      <400> 678
gnnnnnnnn nnnttnnaat agnnagctac ttgttctttt tgcaggatcc catcgattcg
                                                                       60
aattcggcac gaggggtgtt ggagcagatt gtagttgatc cacagcaaag agcatcacca
                                                                       120
aagccattcc aggaggaact agatccacca cttcctctgc tgggcatgct ccaaaaatgg
                                                                       180
ttgtggcttc cagagaggac tccaaaagaa agcacaaaaa ctagacagtg ggagggcata
                                                                       240
cccaaaagcc ctgagtttct gaaaaatat tgaaagtttc tatggtgaaa taggaagtta
                                                                      300
atgtgcttag gaagaaaaa gtggtaatga ttcaaggaaa cataatcaca cacggtttta
                                                                      360
gttttaatgg acatgggagg agccataaaa gtagtctatc tatcatcagt tacatatcta
                                                                      420
atgaactgtc tatctgggat accetatect gttttaatet gagtgactet eteteagetg
                                                                      480
agagagetgg acagacteca ttttageete tteaettgea gteeeettat ecceeteeet
                                                                      540
taagggaata actagtgcaa gctgacttca agcacattca ggaatgcact tactgataag
                                                                      600
atattgagge aagetgtace ageagettet gggggaeetg eteantggat ggteecaace
                                                                      660
cctgcattta tctctttggg atagtttaag cccctgnacc tggaactgng tatttttctg
                                                                      720
tactatctct gtancattaa ttttttact ttttgg
                                                                      756
      <210> 679
      <211> 747
      <212> DNA
      <213> Homo sapiens
      <400> 679
tetaatnett ggetetegtt etttetgett gatecetega ttegaatteg geacgagaaa
                                                                       60
tgactccctg caaaacccaa cccatgctgc tggctgtggg atttttggtg taagcctatc
                                                                      120
tatgcactct atcagccaga atttggcatt tagctcttag ttaaatctag taaaggacag
                                                                      180
tctattgttt aaagagaagg tgcatttgtt cctcaatcaa gcaagagcac ctgtgttgta
                                                                      240
ctgctttata tctcatgtat atttatagta atgaaaagac tttttaaatt gtacacgttt
                                                                      300
cagtgccttt cttgtgttat gaaaggcagg tagatattat agccataggt aaaaatccat
                                                                      360
agttaaattg cacactgacc ttaaatctct ctgtgtatgc ccttgtatct tgcatgttaa
                                                                      420
aagttggatt attgggcatg tgtggcagcc tgccctgcta catgctagac aagtgtgctt
                                                                      480
tagtacatag ccacaagttc ttcattcttt aaaatgtttt gacagatcat ctcataataa
                                                                      540
aaataattca ngaaaactat ggggaaatag ttacatttca caaaagatat tttaaactct
                                                                      600
ttgtaaaact tagataatag agcctancaa gttactttgn atctaattgg atacatttta
                                                                      660
```

```
tgnttaattt taccaccata cattttatta atcaaaattg gttagcatgt gactcttttt
                                                                       720
ggcttcanaa gttntcaaaa aaattat
                                                                       747
      <210> 680
      <211> 750
      <212> DNA
      <213> Homo sapiens
      <400> 680
ttctaatnct tggctctcgt tctttctgca ngatcccatc gattcgaatt cggcacgagg
                                                                        60
accggctggg cctacaaaaa gatcgagctg gaggatctca ggtttcctct ggtctgtggg
                                                                       120
gagggcaaaa aggctcgggt gatggccacc attggggtga cccgaggctt gggagaccac
                                                                       180
agcettaagg tetgeagtte caccetgeee ateaageeet tteteteetg etteeetgag
                                                                       240
gtacgagtgt atgacctgac acaatatgag cactgcccag atgatgtgct agtcctggga
                                                                       300
acagatggcc tgtgggatgt cactactgac tgtgaggtag ctgccactgt ggacagggtg
                                                                       360
ctgtcggcct atgagcctaa tgaccacagc aggtatacaa gctctggccc aagctctggt
                                                                       420
cctgggggcc cggggtaccc cccgagaccg tggctggcgt ntccccaaca acaagctggg
                                                                       480
ttccggggat gacatctctg tcttcgtcat cccctggga nggccaggca gttactcctg
                                                                       540
aggggettga acaccatece tnecactage etetecatae ttaeteetet nacageecaa
                                                                       600
attettgaaa gttgteteee ttgaeeette tttaatggea aettaaetga anaaagggat
                                                                       660
gtncncttat atccaaaatt cagctatttg gcaaataaac canatggatt aaaaaaaata
                                                                       720
attntntctt aananaaana actccggcct
                                                                       750
      <210> 681
      <211> 748
      <212> DNA
      <213> Homo sapiens
      <400> 681
ctaatnottg getetegtte tttetgetng atceetegat tegaattegg caegageeca
                                                                        60
gctgctcagg aggctgaggc aggagaattg cttgaaccca agaggcggag gttgtggtga
                                                                       120
gccgagattg cacctttgta ctccagcctg ggcaacgagc aaaaaactct gtctcaaaaa
                                                                       180
aaaaaaaaaa aaagaaaaag aaaaatggct tccaggacag agcatgctca tttgctggcg
                                                                       240
gacagttcca gaaacagacc ctgttagtcc ttctacttac ctgctggatt tttcaagcac
                                                                       300
taaatttata actttttgaa acaaaataat gtgtaatttt ccatttgggg gcaaactcta
                                                                       360
ttcttgtgag cattattaaa atcttgtttg taaatatatt gtctttctct taatatttgc
                                                                       420
tctgggtcan gaagaagctg ttcacggtgt gataatactc tttanattgt gctttcatta
                                                                       480
ttatagatgc atcatgtctt ctgctttcac gtgtctggga tggggtcaga aatgcatnct
                                                                       540
ccagntgaca naaaaatccn agnatgagat caanaaggat actggtgttt tctgactttt
                                                                      600
acaaaaatta ctttgntgtt ttcattaaaa aaaaagcttt aacctantgn ttncntantc
                                                                      660
cttttagaaa ntattaaatt tnaaaatgaa ttcnatanaa atanaannac naaaaaactt
                                                                      720
nntnccttta naactttagt gangcgtn
                                                                      748
      <210> 682
      <211> 755
      <212> DNA
      <213> Homo sapiens
      <400> 682
ctaatgctng gctttcgttc tttctgcagg atccctcgat tcgaattcgg cacgagcagg
                                                                       60
agcaatcaat teetgtegaa gtgaatacca tgeagetttt aacagtatga tgatggaacg
                                                                      120
```

```
catgaccaca gatatcaatg cactgaagcg gcagtactct cgaattaaaa agaagcaaca
                                                                       180
gcagcaggtt catcaggtgt acatcagggc agacaaaggg ccagtgacca gcattctccc
                                                                       240
gtctcaggta aacagttctc cagttataaa ccaccttctt ttaggaaaga agatgaaaat
                                                                       300
gactaacaga gctgccaaga atgctgtcat ccacatccct ggtcacacag gagggaaaat
                                                                       360
atctcctgtc ccctaccgaa gaccttaaga cgaagctcaa ctncccgtgg cgaactnaca
                                                                       420
tecgagteca caaaaagaac atgecaagga ecaagagtea tnegggetgt ggggacaceg
                                                                       480
tanggctgat agatgagcag aacgaggcca gcaagaccaa tgggctgggg gcagcagagg
                                                                       540
cattcccctt tggntgtcan gcgacagctg ggagagaang caagnaagcc ctgaangcna
                                                                       600
gtccaggagg accnncnaag ggcagtttcc ggagcccgnt gttccggaga tgctgatgtg
                                                                       660
ggntgtgtct gcanttcang gccaaanttg gggacccctg ggaactgtac cctangggnt
                                                                       720
nettgnagnt taaaacttga cettaanggn ngeet
                                                                       755
      <210> 683
      <211> 755
      <212> DNA
      <213> Homo sapiens
      <400> 683
ggntttnnnt ctttctaatg cttggctctc gcctntctgc ttgatcccat cnattcgaat
                                                                        60
teggeacgag aattagtate aacttacaat ecaagteeaa gtateatett ataateaett
                                                                       120
ttttctacta tattaagatc taatgaattt gatttctttt ttgaagtttt ttcttgtaac
                                                                       180
atctgagatt agaagtttaa gatcacttga ccccaaacct ttgtttatgt aagaattttt
                                                                       240
aaacataaaa gtgtttgttt ctgttatgtt accataattt gatgtatata gtgtccagat
                                                                       300
ccatttagaa atttaatatt tattaataac tgaaactgtt tgtcttcctt tggtatatag
                                                                       360
totogoatat tatattatag caggocaaga taaaattttg acagotottt aagoccacat
                                                                       420
gcagcagtgg gtcagataac cctgtggcag tgacacgggc aaattggcat ttgaataaag
                                                                       480
ccctgggacc acctcaacat gcgtagcctc ttgtcttaaa tgtactcccc atggcagcat
                                                                       540
ggaggaggca agacctgtgg gtcaattttg aactggnctt actttgattt taaaacaaga
                                                                       600
gactcagggg aaagtactaa accaaaaact ctgattntac tttgcgtttt ctggaagtnn
                                                                       660
ttggtttact gagatgcttt tgtaaaggaa aataatgctt gngacanttt agtaatttct
                                                                       720
acanaatten ttaatattte tteetentgg gettn
                                                                       755
      <210> 684
      <211> 774
      <212> DNA
      <213> Homo sapiens
      <400> 684
ggntttnann ctttnnaatn cctttgctnc tcgntctttn tgctggatcc catcgattcg
                                                                       60
caagatctgg aggaatgcag agaggaactt gatacagatg aatatgaaga aaccaaaaag
                                                                      120
gaaactctgg agcaactaag tgaatttaat gattcactaa agaaaattat gtctggaaat
                                                                      180
atgactttgg tagatgaact aagtggaatg cagctggcta ttcaggcagc tatcagccag
                                                                      240
gcctttaaaa ccccagaggt catcagattg tttgcaaaga aacaaccagg tcagcttcgg
                                                                      300
acaaggttag cagagatgga tagagatctg atggtaggaa agctggaaag agacctgtac
                                                                      360
actcaacaga aagtggagat actaacagct cttaggaaac ttggagagaa gctgactgca
                                                                      420
gatgatgagg ccttcttgtc agcaaatgca ggtgctatac tcagccagtt tgagaaagtc
                                                                      480
tctacagacc ttggctctgg agacaaaatt cttgctctgg caagttttna ggttgaaaaa
                                                                      540
acaaaaaaa tgacatgggt gcagaagctt gtaacattga tcacattctt aatgtaaatg
                                                                      600
gtgtctttct tctggggttt cagtatttgc aaagaaantg aagaagaatt ctggaaatgc
                                                                      660
cattcaatta accctnagga aaaaagccga ccttanaaat ttaccttant gcnttgnnnn
                                                                      720
ttaaaaanaa aaaaaantna aaaaactttn accctttana ccttttgtgg ggnc
                                                                      774
```

```
<210> 685
      <211> 759
      <212> DNA
      <213> Homo sapiens
      <400> 685
ggntttnnan nctttctaat ncttggcttn agttcttttg caggatccca tcgattcgaa
                                                                    60
ttcggcacga gagtacccag agttgcgagg agtttttaa ctgatttagc cnnntggcaa
                                                                   120
tcatgagtga atggatgaag aaaggcccct tagaatggca agattacatt tacaaagagg
                                                                   180
tccgagtgac agccagtgag aagaatgagt ataaaggatg ggttttaact acagacccag
                                                                   240
tctctgccaa tattgtcctt gtgaacttcc ttgaagatgg cagcatgtct gtgaccggaa
                                                                   300
ttatgggaca tgctgtgcag actgttgaaa ctatgaatga aggggaccat agagtgaggg
                                                                   360
agaagctgat gcatttgttc acgtctggag actgcaaagc atacagccca gaggatctgg
                                                                   420
aagagagaaa gaacagccta aagaaatggc ttgagaagaa ccacatcccc atnactgaac
                                                                   480
agggagacgc tccaaggact ctctgtgtgg ctggggtcct gactatagac ccaccatatg
                                                                   540
gtccagaaaa ttgcagcagc tctaatgaga atattctgtc ncgtgttcaa ggatcttatt
                                                                   600
ggaaggacat cttacagctt ccaatgagaa gccaagaagt tgtgaacata ctgattgaaa
                                                                   660
720
acttcgagct tttaaactat ngtgagtcga ttcntataa
                                                                   759
      <210> 686
      <211> 749
      <212> DNA
      <213> Homo sapiens
      <400> 686
ggnnttnnnn nctttgaaat cccttngctn ctagcncttt ttgcaggatc ccatcgattc
                                                                    60
gaattcggca cgagggcaat tagcctcgct taagttgcct tttttacaca ccaaaacttt
                                                                   120
ttacatgaag ggctggtttc acatgaatac tatactgaaa tctgtgctct caagatctag
                                                                   180
cagtgaccag ggctgcccgg cgggggctct cctggcaagt caggaaggtt tctgttgcta
                                                                   240
atataacata gaaacacatt agtgcactgg gcctctctga ggtcagcata tttgtactct
                                                                   300
tggaatattt gttttttct tcagtaacaa cagaaacccc agttgggagt ttaacaaata
                                                                   360
420
tcagataata atagtttgta agtaaaagtt tttagttttc agtgttcagg ttatagaata
                                                                   480
taactgacca taaaaaattac ctgcaggtat tttcttttta tgaacttgtt tttaaattac
                                                                   540
caagtaatta ctggtgtcat tttgttttat gacagacaca cgtatctaac aaacaaacaa
                                                                   600
acagtgacct tctccatggg tcaaggactt ccttacaatt tctnctgagt taacttttgt
                                                                   660
gaaaataatc ctaaggtttt ctggcttatt gaggaaattn ctacaaacaa caaaccaaca
                                                                   720
acngaagaga agatcatcaa ccactgttt
                                                                   749
     <210> 687
     <211> 760
     <212> DNA
     <213> Homo sapiens
     <400> 687
ggnnttctaa tgctttctaa taccttggct ctngctcttt ctgcaggatc ccatcgattc
                                                                   60
gaattcggca cgaggaaatg tgtatttcag tgacaatttc gtggtctttt tagaggtata
                                                                  120
ttccaaaatt tccttgtatt tttaggttat gcaactaata aaaactacct tacattaatt
                                                                  180
aattacagtt ttctacacat ggtaatacag gatatgctac tgatttagga agtttttaag
                                                                  240
ttcatggtat tctcttgatt ccaacaaagt ttgattttct cttgtattac attttttatt
                                                                  300
```

```
tttcaaattg gatgataatt tcttggaaac attttttatg ttttagtaaa cagtatttt
                                                                       360
 ttgttgtttc aaactgaagt ttactgagag atccatcaaa ttgaacaatc tgttgtaatt
                                                                       420
taaaattttg gccacttttt tcagatttta catcattctt gctgaacttc aacttgaaat
                                                                       480
tgtntttttt tttctttttg gatgtgaagg tgaacattcc tgatttttng tctgatgtga
                                                                       540
aaaagccttg gtattttaca ttttgaaaat tcaaanaagc ttaatataaa aqtttqcatt
                                                                       600
ctactcanga aaaagcatct tcttggatat gtcttaaaat gtatttctgt cctctataca
                                                                       660
naaaagttct taaattgatt tttacagtct ggaatgcttg gatgntttaa aatantaaca
                                                                       720
ttttatattt tttaaaagac aaancttata ttnatcctng
                                                                       760
      <210> 688
      <211> 752
      <212> DNA
      <213> Homo sapiens
      <400> 688
tgntttctaa tgcttctaat agcttggctc tngttctttc tgcaggatcc catcgattcg
                                                                        60
aattcggcac gagacaaaac ctacagatgg agataaaaat tactactgtt attcaacatg
                                                                       120
tgttccagaa ccttattttg gggagtaaag tcaattgggc agaggatcct gcccttaagg
                                                                       180
aaattgttet geagettgag aagaatgttg acatgatgta ataagaatte atttetgaca
                                                                       240
tattttacat ttctggcaat ctcaactctt atttggaata cttctgtgca tttgtctgtc
                                                                       300
caccgtaatt ttagaaaagc atatccataa cgtttacagt tgtagtacag ttgtggttag
                                                                       360
ttatttgtag tgggattgaa agtaattttt ttcttttat atttctatat ttagtttgtt
                                                                       420
tttttgttgt tgttgttttt tgagatggag tctcgctttg ttgcccagac tggagggcag
                                                                       480
tggcgcgatc tcggctcact gcaacctctg cctcccgggt tcaagcagtt ctgcctcagc
                                                                       540
ctnccaagta gctgtgacta aaggtgcacg ccgccatgcc canctaattt tttggatttt
                                                                       600
aagtagaaac cgggtttcac ccgtgttgcc caagctgctc tnaaaactcc tgagctcaag
                                                                       660
cagtecacce gnettngeta ceggantget aggatteaga egtaageeee egaaneetgg
                                                                       720
ctagtttgcn ttnttttctn tcattttata aq
                                                                       752
      <210> 689
      <211> 806
      <212> DNA
      <213> Homo sapiens
      <400> 689
gtgntttcta atgcttctaa tngcttggct actcgttctt tntgcaggat cccatcgatt
                                                                        60
cgaattcggc acgaggannt ctntgctatn gaacagnggc tggtnnacac tnnggantta
                                                                       120
nnnntgnach ntannnattg nancanntan tactggnnnt centaathen nttaatgtna
                                                                       180
cntnttgcaa gnngnnctga tnaaatacac gacaggaggg aaanctantg cgtcataggc
                                                                       240
acaggcagac ctaccgnnta aggagatnat ntnccnnang gntggctgtt gagnncatgc
                                                                       300
aactetggna tgtattteee tttataggae cacettgtne atngtggata aageeectaa
                                                                       360
agnaggatgn naaagatgat engateeaat aegttaenet gacannaaan nntgtnatae
                                                                       420
ntengetgan caatetntee anennntnta atategtgna teacetaggg tgtatgaten
                                                                       480
taggaactet geneetnean tenggaetgt ceateaenga etnntggget netaetgtae
                                                                       540
antangegna gaananennt cannetacan ntaaccagat tggtgetgnn anatggtant
                                                                       600
genntttnan eneceaegae neaataaagn nennetntne eccanancet ntnnagggaa
                                                                       660
gaaaggaatt ttncatagtg ggctcaatga anggggtacc cttggncttt ntaaaaaacg
                                                                       720
ttncatggnn cctaccttaa acctgngtna actnanancn nttngncata angggtctaa
                                                                       780
cgnctatang gggnacnnat ttttnc
                                                                       806
```

<210> 690

```
<211> 772
      <212> DNA
      <213> Homo sapiens
      <400> 690
ntntttgaat ctttgaaata cctttgctat ngttctttnt gcaggatccc atcgattcga
                                                                      60
atteggeacg agaggttget cacetgaagg ageacaggag ggttttecag gecatgtgge
                                                                     120
tcagetteet caageacaag etgeeectea geetetacaa gaaggtgetg etgattgtge
                                                                     180
atgacgccat cctgccgcag ctggcgcagc ccacgctcat gatcgacttc ctcacccgcg
                                                                     240
cetgegaect egggggggee etcagectet tggeettgaa egggetgtte atettgatte
                                                                     300
acaaacacaa cctggagtac cctgacttct accggaagct ctacqqcctc ttqqacccct
                                                                     360
ctgtctttca cgtcaagtac cgcgcccgct tcttccacct ggctgacctc ttcctgtcct
                                                                     420
ceteceaetn ceegectace tggtggeege ettegecaag eggetggeee geetggeeet
                                                                     480
gacggctccc cctgaggccc tgctcatggt cctgcctttc atctgtaacc tgctgcgccq
                                                                     540
geaccetgee tgeegggtee ttgtgeaccg tecacaeggg cetgagtttg gaegeegaee
                                                                     600
cctacgaccc tggagaggag gacccagccc aagacccggg cctttggaaa acttccctgt
                                                                     660
gggaagettt aagnneette nanangeeae ttacccaace ttgaggggnt ccaaangeee
                                                                     720
gccanceggt nattaaccaa ggccetggne aatgeetgaa ggtcaaacaa tn
                                                                     772
      <210> 691
      <211> 755
      <212> DNA
      <213> Homo sapiens
      <400> 691
ntgetttena atetttntaa atgeetttgg ettetegnte tttetgeagg ateceatega
                                                                      60
ttcgaattcg gcacgagaaa aagtaaagct tttcatgagc acaaatncct tgcattgttt
                                                                     120
180
acaagtettg etttgttgee eaggetggag tgeaatggea tgatettgge teactgeaac
                                                                     240
ccctgccttg cgagttcaag tgattcttct gcctcagcct cctgagtagc tgggattaca
                                                                     300
ggcgctcacc accacacca gctaatttct gtatttttag tagacacagg gttttaccat
                                                                     360
gttggccagg ctggtctcaa actcctgacc tcaaactcct cacacctgta atctcagcac
                                                                     420
tttgggaggc tgaggtggaa ggatcacttg aagccagagt ttgagaccag cctgtgcaac
                                                                     480
acagcaagac cccgtctcta caaaaactta aaaaattagc tggctgtggt gttgctcacc
                                                                     540
catagttcca gctactcggg aagctgagca ntaagatcac ttgagcccan gaggccnatg
                                                                     600
cttncantga actgtgattg tttccantac agnccacctg ggtgacanag taaanaaaan
                                                                     660
gaaacattac ataatttggc tagagcataa taaattgatt tctgggttnt gaaattnnag
                                                                     720
ttgccataaa aggnntttna atgngcnant tcant
                                                                     755
     <210> 692
      <211> 748
      <212> DNA
      <213> Homo sapiens
      <400> 692
tgnttttaat cnttctaatn cttggctctt gttctttttg caggatccct cgattcgaat
                                                                     60
teggeacgag gteegaagaa aaagaetgtg gtggeggaga tgetetete aatggeatea
                                                                    120
agaaacacag aacaagtttg ccttctccta tgttttccag aaatgacttc agtatctgga
                                                                    180
gcatcctcag aaaatgtatt ggaatggaac tatccaagat cacgatgcca gttatattta
                                                                    240
atgageetet gagetteeta eagegeetaa etgaataeat ggageataet taeeteatee
                                                                    300
acaaggccag ttcactctct gatcctgtgg aaaggatgca gtgtgtagct gcgtttgctg
                                                                    360
```

```
tatetgetgt tgetteteag tgggaaegga etggaaaace ttteaaecea etgetgggag
                                                                       420
agacttatga attagtgcga gatgaccttg gatttagact catctccgaa caggtcagcc
                                                                       480
atcacccacc aatcagtgca tttcatgctg aaggattaaa caatgacttc atctttcatg
                                                                       540
getetateta teccaaactg aaattetggg ggaagagtgt agaacagaac ecaaaggaac
                                                                       600
catcaccttg gagctnettg aacacaatga ggcatataca tggacaaatc cacctgetgt
                                                                       660
gtgcataata tcattgnggg taaactgtgg atcgaacagt ntggcaatgt ggaaattnta
                                                                       720
accncagact ggggacaaat ntgtgttg
                                                                       748
      <210> 693
      <211> 881
      <212> DNA
      <213> Homo sapiens
      <400> 693
tgnnnngtna accagggaaa agctnngttt gaactccttg ggcatgatcc catcgattcg
                                                                        60
aattoggcac gaggcggtga cocacgtgto ottttgattg coctactgot gtggagacct
                                                                       120
cgtgctgacc atctggcagt gntcttcgta ttctctggcc tgtggggcgt ggcaagatgc
                                                                       180
ccgtctggca gacacaaaac aatgctctct acggcgttct gtttganaag agcaaggaag
                                                                       240
ctgccttcgc caattaccgc ctgtgggagg ccctgggctt cgtcattgcc ttcnggtaca
                                                                       300
gcacgttttn gtgcntgcac gtcaagctct acattctgct gggggtccng agcctgacca
                                                                       360
tggtggcgta tgggcttgtg gantgcgtgg agtcccaaga accccgaatc anacccnact
                                                                       420
ctttcaggac aggtcaanca agtcagagga tgaagaanat tcanacaaan atgtgatanc
                                                                       480
cngngaggcc naangaggan naantnataa aagcaccagc cagaagaatt ttcttanaan
                                                                       540
atgectnagg gacatatean ceggggttet cattacecat ettaanence anatttngne
                                                                       600
ccattcttga aataagantc nttgnttnaa ttntcaactt ctttttatgg tnatttcnat
                                                                       660
ntatctantt antaaaacca caaatntgtt nncnatnacc accanttctt ttaaaccatn
                                                                       720
tagnaattca aangntgtgt nnttacnaat ntntaanggg ttattcaaan ttcnaaattt
                                                                       780
taaanattnt tatgcantnc ncacaatnta tataanangg teetnaaaac gngnnccaat
                                                                       840
atnncannnc nataatntag nanatntntn nnccntgtan n
                                                                       881
      <210> 694
      <211> 742
      <212> DNA
      <213> Homo sapiens
      <400> 694
atngcttggc tctngttctt tctgcaggat cccatcgatt cgaaaattta tagtaatgac
                                                                       60
aaatgactta tcagtgttca tcatctgaaa gctaagtggt tcgttcaatc actttttcaa
                                                                       120
agttgatagt agattgcatg gtttcatgtt tcctcatatt ggtttattaa ttctatttaa
                                                                      180
tcaaggaaaa taacttcaga ttccataaag tttcagttta tttttagttt actactaggt
                                                                      240
gagatagcac attacatact tttactatca aatattattt tagcagcttc ccatagtacc
                                                                      300
aaatgatttg attccctact ctcattttt aaagcatata aatatttatg ggcttaaaaa
                                                                      360
gggggttttt aaaaactgag gatatcanta ataaattgca gaatattttg caaagctttc
                                                                      420
ttttggaaag caaacttttg tgcctgccta tatgcnaagt attttatcag ggacttgaac
                                                                      480
aaagacctca ctcttttca cttgtcttat gtcgagagaa aaggttattg gcagncacat
                                                                      540
tcctaanact ggggaatggt gtgtnctttt naaatttgaa gataactttt agggtaatta
                                                                      600
tggaaactcc tcaaangagg ganaaagtna tttttttcca gacatttttc ctcaattctg
                                                                      660
ggtctttcac acactanntt tccatagtnc nagaatttct gnntttttac catttgggct
                                                                      720
gtgaaatgtt cacaatntcn ng
                                                                      742
```

```
<211> 745
      <212> DNA
      <213> Homo sapiens
      <400> 695
tttcaaatng cttggctact tgttcttttt gcagggatcc catcgattcg aattcggcac
                                                                        60
gaggctagac gaagtggtga agcccaaaga cttatttttg agctcgctgt aagactgaga
                                                                       120
aatcacgtag tccttcctga aaccactaag aggaaaaatg tctgtgacac tgcatacaga
                                                                       180
tgtaggtgat attaaaattg aagtcttctg tgagaggaca cccaaaacat gtgagatgga
                                                                       240
gtetegetgt gteeceeagg etggagtaca atggegegat eteggeteae tgeaacetee
                                                                       300
gcctcctggg ttcaagcaag tcttctgcct cagcctcccg agaactggaa gaggaggcaa
                                                                       360
cagtatttgg ggcaagaagt ttgaggatga atacagtgaa tatcttaagc acaatgttag
                                                                       420
aggtgttgta tctatggcta ataatggccc gaacaccaat ggatctcagt tcttcatcac
                                                                       480
ctatggcaaa cagccacatt tggacatgaa atacaccgta tttggaaagg taatagatgg
                                                                       540
tetggaaact etagatgagt tggagaaagt tgecagtaaa tgagaaagac ataccgacet
                                                                       600
cttaatgatg tacacattaa gggccntaac tattcatgcc aacccatttg ctcagtagct
                                                                       660
attgatngan ctggacaaat tactttgncc aaattgctng aacacacttt attggggggt
                                                                       720
taccccgntt ttaattatgt canaa
                                                                       745
      <210> 696
      <211> 795
      <212> DNA
      <213> Homo sapiens
      <400> 696
tttcaaatng cttggctant ngttcttttt gcaggatccc atcgattcga attcggcacg
                                                                        60
aggetggeea aageeaaate teetaagtee aeegeeeagg agggaaceet gaageetgaa
                                                                       120
ggagttacgg aggccaaaca tccagctgca gttcgcctcc aagaaggggt ccatggccct
                                                                       180
agtcgagtcc atgtgggctc tggggaccat gactattgtg tccggagcag gaccccccca
                                                                       240
aaaaagatgc ctgccctagt cattccagag gtgggctccc gatggaatgt caagcgccat
                                                                       300
caggacatca ccatcaaacc tgtcttgtcc ttgggcccag ctgcccctcc gcccccatgc
                                                                       360
atanctgcct cccgggagcc gcttgatcac aggactagca gtgagcaggc agatccctca
                                                                       420
geaccetgee ttgeeceate cagettgetg teecetgagg cetnaccetg ceggaatgae
                                                                       480
atnaacacta ggactnecce tgaaccetca gccaagcane ggtcaatgeg etgttaceeg
                                                                       540
aaaaagcctg caggtcaagc cagcccctta agccagggct tggcangggc ccgccnaagg
                                                                       600
ccgnaacaag accgntctgt naactcttgg gttccaaacc cggaactttg cccgaaagca
                                                                       660
tttntttccc ttaattcctt caattcaatc cggnctttcc ttaatttccn ggattcttng
                                                                       720
ggtccaaggg tccccttttt tcccccccaa naacaaagaa aaggttgggc ccgaaanggt
                                                                       780
cccaaccttn ttnnt
                                                                       795
      <210> 697
      <211> 734
      <212> DNA
      <213> Homo sapiens
      <400> 697
ctaatagett ggetaetegt tettintgea ggateceate gattegeage cetetteeet
                                                                        60
eccetyteaa gteaettace atgeaaacea caggetetaa gagtttgtee ecagggacat
                                                                       120
ccatccaagt catctccatg gctcctgggt cccctggtga gcatggagtc aggaggtcat
                                                                       180
caatcatcat gctggggttg gtgcgagagg ggccacagac ctgaaaccaa atggatctga
                                                                       240
ctggggcagc tgcccctcag tgtcagaggg gctcgacccc tccggtctct aaggaagtcc
                                                                       300
```

```
caaagagaat getetgtggg teeetageat etgaggagga egggeteett cagaactegg
                                                                       360
gctgggtggt ccgagcgact catgatttgc atgggactct ggcaatctgt agccccaatg
                                                                       420
ccttgatgtc ttcctcatta acactgtcac gtctcaccag gaatacagtg acattaaaag
                                                                       480
tgtgatatgg tntagetgtg cccccaccca catttcaact tgaactgtat ctatctccca
                                                                       540
gaattcccac atgttgtggg anggacccag ggggaggtaa ctgaatcatg gnggctggtc
                                                                       600
ttttcccgtg ctattctcgt gaatngtgaa ntttnacgag atctgatggg tttatcaggg
                                                                       660
gttttccaat ttttggttct tatttttctn ttgcaatctg catttaagna antgccnttn
                                                                       720
ggtctctaac antn
                                                                       734
      <210> 698
      <211> 728
      <212> DNA
      <213> Homo sapiens
      <400> 698
ttcnaatngc tnggcttttn gttctctttg caggatccca tcgattcgaa ttcggcacga
                                                                       60
ggtttaattt aaacctctca tettttttta agcactcact gantttgacc gagacagcca
                                                                       120
gtcgccgttg aggaatcctc tgttgtcaac atcgagaccc ctggttttcg ggaaacccaa
                                                                       180
tggtgatgca gttgattatc agaaacagct gaagcagatg attaaggatt tagccaaaga
                                                                      240
aaaagataaa actgagaaag aattgcccaa aatgagccag agagaattta tccagttctg
                                                                      300
taaaactctg tacagtatgt tccatgaaga tccagaagaa aatgatttgt atcaagccat
                                                                      360
cgccacagtc accacactgc tgctgcagat cggggaggtg gggcagcgag gcagcagctc
                                                                      420
tggaagetge teccaggagt gtggggagga getgeggget teageteett eteetgagga
                                                                      480
ctcggttttt gcagacactg ggaagacgcc ccaggactcc caggcatttc cagaggcggc
                                                                      540
agaaggggac tggactgtct cccttgaaca tattttagct tcacttctga ctgaacagtc
                                                                      600
attagtcaac tttttttgaa aagccactgg acatgaaatc caaacttgaa aatgccaaga
                                                                      660
tcaatcagtn caatctcaaa cttttgaaat gaccncaatc caatctggac ntaagctgag
                                                                      720
tacttgtn
                                                                      728
      <210> 699
      <211> 746
      <212> DNA
      <213> Homo sapiens
      <400> 699
tttcaaatcn cttggctntt ngttcttttt gcaggatccc atcgattcga attcggcacg
                                                                       60
agggaaaaac aacaggtttg agtcctataa agccataatt taactccagt agctgatgtc
                                                                      120
agacaagett greetatgre etattrgagt ggeageageg ceageceage aagaaggetg
                                                                      180
ggggttgtca aggttgtccc cagaccttgc ttgcagtggt tggagaaccc agggggctgc
                                                                      240
cttgggccct ctggccagag ggaagcgggc agctctagcc ctggagattg tggtcacatt
                                                                      300
ggggettgtt taggattgga gggeeaggte aceteceeag ceaceeteee tteteteete
                                                                      360
tggggtcccc actttagggc gactttgccc gagcccacgc atccatccac tcctttagtg
                                                                      420
cettgaatet catteacaag cagecceete cetteecete ceetteteac tetgttgatg
                                                                      480
taatcctncc acccccagtg tccatcctaa gacaggcatc aaaaagaggc cctaacttta
                                                                      540
cttnccaaat ggtgcttttt aaaaaacacc atcactacat tangggcaat tttttcacac
                                                                      600
cttcctgtct tcagaatgta aaagggtggg ggaattattg tctctggtta aatntgcacn
                                                                      660
cccttgactt gtgggggttt tggggcatgt tcanntattt angaatgaat tncaattnga
                                                                      720
caaaaggggg tttantnaat tgttnt
                                                                      746
      <210> 700
```

<211> 759

PCT/US98/27610 WO 99/33982

<212> DNA <213> Homo sapiens <400> 700 gntttgaaat ccctttgctt tnaaatcctt tgctanttgn tctttttgca ggatcccatc 60 gattcgaatt cggcacgaga taagggtggg gccttaattc agtaqaattq qtqqcctcct 120 aagcagagga agagagattt ttctttctct ctctgccatg tgaagacagt gaggagtcgg 180 ccgtctgcaa gccaagaaga gcccttatca ggaacagact tggctagcac cttcatcgtg 240 gacctccagc ctccagaatt gcaagaaaat acatttccgt cgttgaaacc acccagtctg 300 tggtattttg ttatggcagc ccaggcagac taatacgtga agcctgctct aaatagataa 360 aataagaaat tactacagag ggctctttag aaattgtatt taaaaacaag acaatccata 420 tttacctaag atttacagaa tgtatgtcta taaaaggagg gatttctgga ctagatgatg 480 atgaaaaatg ttcatataaa ggcaccttca gcttcgagtt gccaacacag gaggaagaat 540 getecetget gttcagatge tgatatgtgt cetgtgettt etggatggee agtgggatca 600 taagctggta gaagccagaa ctttcatcca ctgacttcat attcttncac atnctggaac 660 tgtgggtgtt tgacctttta aaaaataaat ttaagcaaat tgaaatgntt tcctttgaga 720 nttttggcca naaacccaca tnganatttt ncgtctncc 759 <210> 701 <211> 751 <212> DNA <213> Homo sapiens <400> 701 gettnnaatt centteeaaa gnaaaceett tgnaaattne eetttetgnt tggateeeat 60 ccgattcgaa ttcggcacga gggtaagtca ggtgattgaa tcccggaant nttcattgtc 120 ttcaagetea caatactatt ttgggacaaa cagttgteta gtgtttggae teatgaacee 180 tgattcttga gggtggtatt ttactgcttt tgtgatttgg tttcaacata tatagtcttt 240 teteeggagt tacettaggt cagtggccag tgtttcagec cetggaaagg geatgggetg 300 ccactgaggt tggtcacagg cctctcagct catggtggga gtgggttcag gagttggtaa 360 gtagggttca gttctgttgt tgccaccgat ggcaacaggg gtttgtaata atccctagtt 420 gtgtcaatta tgtcacttaa ttttcacaac aggtctctga agtgtttctc atctcatttt 480 tacagatgag gcctgcctgt gttaatacac ctagtgagga gtggagctga atttgaatgc 540 aageettgge accttaattg ageaagtttg aaaceteget tgttgeeett etggaaggag 600 teangaattt neagttetgg geetgggetg tgggtetgge agacagacet etqqeectaa 660 ggtttgggtn ccangttete tgetteeaga atgagaaget ttgetgtgea ccaagnanet 720 gggcccctct ggnatctcnt gaatnaaaan n 751 <210> 702 <211> 748 <212> DNA <213> Homo sapiens <400> 702 gntttgaanc ccctttnntt naaatccttt gctacttgnt ctttttgcag gatcccatcg 60 attcgaattc ggcacgagcc tgaatataaa gaggaggagg aagaccaaga catacaggga 120 gaaatcagtc atcctgatgg aaaggtggaa aaggtttata agaatgggtg ccgtgttata 180 ctgtttccca atggaactcg aaaggaagtg agtgcagatg ggaagaccat cactgtcact 240 ttetttaatg gtgacgtgaa geaggteatg eeagaceaaa gagtgateta etaetatgea 300 gctgcccaga ccactcacac gacatacccg gagggactgg aagtcttaca tttctcaagt

360

420

```
gttaaaaact tatttcctga tggacaagaa gaaagcattt tcccagatgg tacaattgtc
                                                                       480
agagtacaac gtgatggcaa caaactcata gagtttaata atggccaaag agaactacat
                                                                       540
actgcccagt tcaagagacg ggaatcccag atggcactgt taaaaccgta tatgcaaacg
                                                                       600
gtcatcaaga aacgaagtac agatccngtc ggataagagt taanggcaag gagggtaatg
                                                                       660
tgctaatgga cccgaactgt gacgatcctc atgtgatcat gaagtaccag tactgacttt
                                                                       720
ttatgttaaa aaatgtccat ttactgng
                                                                       748
      <210> 703
      <211> 769
      <212> DNA
      <213> Homo sapiens
      <400> 703
ggnnntnnna gnntttgaan teeetttnnt tetaatneta ggettetngt tetttttgea
                                                                        60
ggatcccatc gattcgctca gctgaggcaa ttaaactgga aaagaaatag attgaaaaga
                                                                       120
tactacagaa gaagcagtac agaagttggg ggactgaagg agagggagcc actgcaggtg
                                                                       180
ctagctgctt aaggggatac cagtcctttt acagatataa tagatacagc ttctgaggtg
                                                                       240
gagggtgata ggagtgtgta gagaaattgc agttcagaac tggagcatgc agttaggcaa
                                                                       300
gaggcatccc atgtgaagat gtcaagcaag tactggaaaa tgctgaacta aaactcaggg
                                                                       360
atggatatgt agatttagag aacttcattg tagaggcagt cattgaaagc taaaagggct
                                                                       420
gataataaaa ttgccaagga tggaaatagt aagagggagt cagtgttatt aggattagaa
                                                                       480
ttctgttttg ttttttcttt aaacagattc tcgctctgtc accctggctg gagtgaagtg
                                                                       540
gtgtgatete ggeteactge ggeetegaee teecaggete aagttateet eccaactete
                                                                       600
agcettecaa gtagetggga ccacagecat tcaaacacat geetgeetta tgtttggatt
                                                                       660
tttttgtana aaccaaggtt ttgccatgtt tnccaggctg gnctnngaac ttctgggctt
                                                                       720
aagccattcc cccacccttg ggtctcccaa aatgctngcc attatangg
                                                                       769
      <210> 704
      <211> 759
      <212> DNA
      <213> Homo sapiens
      <400> 704
cnaannncnn ggnttcnaat annaggetac ttgttctttt tgcaggatcc catcgattcg
                                                                        60
aatteggeac gagaceegte eggggeegge caatttgeat atttggaatg egeegetata
                                                                       120
aacceggetg gggttttgca gegatttett agatgtaaaa atgagatete aatageageg
                                                                       180
ggctgggcac atcetetet eteteettet etetetgece ggagetggtt teegtetete
                                                                       240
ggctcggggc tggaactccg gcccaaccta ggcgcgcagc cgccacgaga tggcgcactt
                                                                       300
ccgatcaatg tcaaagccgc cggggagccg ggaaccccag catgattctt ggcctttgtt
                                                                       360
cgcttctgat actaagagca gcacggtaca ttatttcact tgtcccgctc cccttcataa
                                                                       420
cagaaaaagg ggactcaccc tcaagaagtg attggtatgg taatttaaag caacgcgcat
                                                                       480
tegetaggee tegegagegt egeegegegg agaageeage tgteeettgg eagtgattte
                                                                       540
ggaaatgtgt caaggcaatt ccaaaggtga aaacgcagcc aactggctca cggcaaaaga
                                                                       600
gtggtcngaa aaaagcgctt gccccttaca cgaagcacca gacactggag ctggaagaan
                                                                       660
ggagtttctg ttcaatatgt accettacte gaaaageggn geetagagaa taaceegean
                                                                       720
cgttccacct taacggacag gacaagtgga aaaatcttg
                                                                      759
      <210> 705
      <211> 777
      <212> DNA
      <213> Homo sapiens
```

```
<400> 705
 tttgaaatcc cntttnttna aatcctttgc tncttgttct ttttgcagga tcccatcgat
                                                                        60
 tegteetgaa getegggggg etgeaggtee tgaggaeeet ggtgeaggag aagggeaegg
                                                                        120
aggtgetege egtgegegtg gteacaetge tetacgaeet ggteacggag aagatgtteg
                                                                        180
ccgaggagga ggctgagctg acccaggaga tgtccccaga gaagctgcag cagtatcgcc
                                                                        240
aggtacacct cotgocaggo ctgtgggaac agggctggtg cgagatcacg gcccacctcc
                                                                       300
tggcgctgcc cgagcatgat gcccgtgaga aggtgctgca gacactgggc gtcctcctga
                                                                       360
ccacctgccg ggaccgctac cgtcaggacc cccagctcgg caggacactg gccagcctgc
                                                                       420
aggetgagta ceaggtgetg geeageetgg agetgeagga tggtgaggae gagggetaet
                                                                       480
tecaggaget actgggetet gteaacaget tgetgaagga getgagatga ggeeceacae
                                                                       540
cangactgga ctgggatgcc cgctagtgaa gcttgaaggg tgccaaccgt gggttgggct
                                                                       600
ttcttaagca tggaggacat ttttggcaat gcttggcttt gggccattta aatgggaaac
                                                                       660
cttgaaaggc caaaaaaaaa aaaaaantna tntnaaaaan aaacttnnac cttttaaaac
                                                                       720
ttttaantgn ngnccgnttt tacnttanat tccagacttg attaggaatc cattttt
                                                                       777
      <210> 706
      <211> 760
      <212> DNA
      <213> Homo sapiens
      <400> 706
gntttgaaat nccnttnntt caaatnotng gctacttgtt ctttttgcag gatcccatcg
                                                                        60
attegaatte ggeaegagna atgeaaaggg etgeagttet catteagget acttteagga
                                                                       120
tgcacagaac atatattaca tttcagactt ggaaacatgc ttcaattcta attcagcaac
                                                                       180
attatcgaac atatagagct gcaaaattgc aaagagaaaa ttatatcaga caatggcatt
                                                                       240
ctgctgtggt tattcaggct gcatataaag gaatgaaagc aagacaactt ttaagggaaa
                                                                       300
aacacaaagc ttctattgta atacaaggca cctacagaat gtataggcag tattgtttct
                                                                       360
accaaaagct tcagtgggct acaaaaatca tacaagaaaa atatagagca aataaaaaga
                                                                       420
aacagaaagt atttcaacac aatgaactta agaaagagac ttgtgttcag gcaggttttc
                                                                       480
aggacatgaa cataaaaaaa cagattcagg aacagcacca ggctgccatt attattcaga
                                                                       540
agcattgtaa agcctttaaa ataaggaagc attatctcca cattagagca acagtagttt
                                                                       600
ctattcaaag aagatacaga aaactaactg cagtgcgtcc ccaacaagtt atttgtatac
                                                                       660
agtottatta cagangottt aaagttocaa aaggatatto aaaaatatgo cacoggott
                                                                       720
gccacactta attcagncat tctatcnaat gccccagggc
                                                                       760
      <210> 707
      <211> 856
      <212> DNA
      <213> Homo sapiens
      <400> 707
gttgctttga agcctttgaa atncnttgtt tnaaatnctt ggctttngnt ctntttgcag
                                                                        60
gateceateg attegeetee etggatgtge agacatggag gaggacagaa ggeeeagete
                                                                       120
agtggccccc getccccacc ccccacgccc gaacagcagg ggcagagcag tctggaggtg
                                                                       180
gtgntcccac ttgatgaaga gcaggcgact ggnttggaga gggagatcat gctggctgna
                                                                       240
aagaanggac tggacccata caatgtactg gccncaaagg gancttcagg caccagngaa
                                                                       300
gacccaaant tantncccta catntccaac aagagaatag naagctgcat ntgtgaanag
                                                                       360
gacaatacca gentenantg gttttggetn nacaaangce angneeanen atgeeceenn
                                                                       420
tttgnaaccc attacaanct gntgccccan tagctggcac actgancncc tnntctaaat
                                                                       480
tacttaaaat natgctgtan aagtatantn tttncagaan agactaanca ntncatngnc
                                                                       540
tacttctcca aaaaaaantg anaaaaatna taaaantcaa antaaatact aaatnannan
```

```
ataanancan tannaantta tatttcnnan atantanann nancnnttta naannantta
                                                                       660
nggnnancan nnattantnn tnnatanntt acattaaant tattnanann anaaannnan
                                                                       720
nananannat atattannan anantnacht aaactnnnnt naatnntcca nanacttnaa
                                                                       780
naanaataag nnntanatna nnnnttangn ntnatatann ttnanatann nnnnacnata
                                                                       840
nnacatnnnn tannga
                                                                       856
      <210> 708
      <211> 766
      <212> DNA
      <213> Homo sapiens
      <400> 708
ctaatactgg ctacttgttc tttcnaagcn ctggnntttn annnatnnag ctacttgttc
                                                                       60
tttttgcagg acccatcgat tcgcccaaac ttatcggggg tgccagaggc agagtagaca
                                                                       120
agcettagtg geogecattt gttgaatate tactgtgege caageagtge gteacaactt
                                                                       180
tatgaagtag gtattattat catccccatt ttacaggtga agaaactgag tctctgagag
                                                                       240
accaactttt ccaaggtcac acagaggtgg gatccagccc acttccgtct gaccccaaqc
                                                                      300
ccctgctgtt aacccctgcc ccattgtggg gaggttccgg cccactctgg agttctctgg
                                                                      360
tetgegteag teeteaggag aagaaagaat gggggtgatg eteeaaatat tgaggeteee
                                                                      420
atctgtctgt cctgcactag gcagagccag gcttctccat ggggcacagg agagagggca
                                                                      480
ccagatctga ggagcaaata ggttcttggt ctgagatctc atgggatcag gttgccagcc
                                                                      540
ctgcaaaccc ccgctcangt ctagaggaca tggagctgcc tttcaaggtq catttqcttc
                                                                      600
ctttacagac tcggactctg tnctctggct actttgggcc gtcccggact cgggaatgcg
                                                                      660
tnctacactt gtaggggcaa aaccccggtt tgactctttc cgggttccta cccttaacca
                                                                      720
agcetttact ttetngggat caccetgttg ggaetttttg tecace
                                                                      766
      <210> 709
      <211> 743
      <212> DNA
      <213> Homo sapiens
      <400> 709
gaanncentt nnnttgcaaa tnntnggeta ettgttettt ttgcaggate ecategate
                                                                       60
gaatteggea egaggttttt tttttttttt tttggagaat qaatqeaaqa tttattqaqt
                                                                      120
ggtggaagta gctctcagca gatggctggg gagccagaag ggggatagca tgggaaggta
                                                                      180
gtcttcctct ggagtctggc tgctcagcag ccgggatctc ctactgtcct tggccgaatt
                                                                      240
tecettggeg teegaategt tecaceatea atggeetgee agegtettte gatgtgttet
                                                                      300
tctgccagtg tgttcctctt gacgtccagc cgcttgtgtg tgtgcccgct ggggtctcag
                                                                      360
ggtttttata ggcacagaat gggtggcatg gcaggccaga gtggtcttgg aaaatgcaac
                                                                      420
atttgggcaa gaagacagga gtccttgttc tcattaggtc catgggcaca agcctgaggg
                                                                      480
tggagccctt gccagtgacc ctgcccttct ctacccagca cttccctgtc cccctcccat
                                                                      540
atcaccettg ccatcitgic citigatgagg aatacaactc ccaattcagt gnttqcitqt
                                                                      600
gggaagatgc aatcctcttt atgacaagtt tctaanaagt tgataagaaa aatggggacc
                                                                      660
tgcctaaggg ctagtatctc atttaatact ctatagaata ttatgnggtt ttccctttta
                                                                      720
ngttttaaat gttgaananc nan
                                                                      743
      <210> 710
      <211> 753
      <212> DNA
      <213> Homo sapiens
```

```
<400> 710
gnnnnnnnn nagngtttga antecteett ngaaateett tqqenaeteq etetttntqe
                                                                        60
aggateceat egattegaat teggeaegag gggeaatgea gttataatae tqtqttaatt
                                                                       120
tcagacatct tctggtcctc cgagccttgt atttacatac tagctgaaac tgcaagtgga
                                                                       180
aatgaatgga gctgatgata tttgccttat cctaattttt ctgtgaggag gagaaaaaca
                                                                       240
cttgtgcttc aaataagcag atgtgaaaac acttctcact aatcaaaatg tttaccacta
                                                                       300
ggttatgaga gtctgcctct cataggcagt gaatctgata tgtatactta gtaatataag
                                                                       360
totatttagt ttgacaaaac cttagagcag aatttttgca gcttagttca ggatgatcac
                                                                       420
tagcaatgcc aaacttcatt ttttattgaa cttggatcca agaaggcctg ctgtgtctat
                                                                       480
ttcagtatag actctcatac caatatattt atgctccaag tcactacacc cagaagtgat
                                                                       540
gcagtggggg aaatgcaaag acaacatcac tgtaagattc acagaatgga tcttttgtaa
                                                                       600
aatattttat attgacttaa ggaaaacctt tcattgggaa ttaattaaat taagtctcta
                                                                       660
atatcctgga agacagtaaa aantnaagcn ggtgntctca antttgaacc cggcnattng
                                                                       720
naatttcatt ataggaattt ctgaaaataa tcc
                                                                       753
      <210> 711
      <211> 718
      <212> DNA
      <213> Homo sapiens
      <400> 711
naatngctag getacttgtt ctttttgeag gateceateg attegaatte ggeacgagee
                                                                        60
tacttattgg atgttggctc tttggtgtca tggagatggc tttactgtag gtttgttgtg
                                                                       120
ttgcattact tttcattggg attgaactga gaaataacaa acaagcttta agtgggaaat
                                                                       180
taaaaaaaaa aagtaaccta tgtagatcca aacttaaaat gtgagaaatt attgaaattt
                                                                       240
cattttctac aaacttgaaa ttagcctgct aattgtaaag ttgttttaat aatgctgaca
                                                                       300
aatgtcagtt acgtttgcaa aggagtgtat ggttctaggt atttgcctac tgttaaccgt
                                                                       360
tgagaaaaac attgtcaggt tagcaagtct attgaaatag agacctcctt agtttacagc
                                                                       420
aaagaataaa tagctgatga ctggagattg ggactaaggt tttatttatt tatattcttt
                                                                       480
gaaagaaatc ggacagttaa taagtggttt gtggtagagt tgaaggatgt ctgagagatg
                                                                       540
gaaagagagt gacaaaggag gagaaggaat agtatttett ttttagtatt gntttgaaat
                                                                       600
taaaactctg ntattttaat atggtaaaga gcaagaattt gggttgggcc gcngtgactc
                                                                       660
acgcctataa tcccagcact ttgggaagcc ntggtgggca aatcacctga aattangg
                                                                       718
      <210> 712
      <211> 783
      <212> DNA
      <213> Homo sapiens
      <400> 712
agttgaantn cttgctacnn aaaacctttg gcnactngct ctttntgnag gatcccatcg
                                                                        60
attegeaaag atggtegtat tactaaaggt gaataaceag egeggnnnge aegtggagte
                                                                      120
actggaacat ttgtgcaatg ctggtgggaa tgtcaacccg tgcggccctc tggaataaqc
                                                                      180
ctggcagctc ctccaagagt taccgngtga cccancaatt ccactcctag ctccacccac
                                                                      240
aggaattgaa agcaaanacg caaacagatg cctgtncacc aaagttcacg gcagcatnct
                                                                      300
tegneatagt ggeageatee gtegteacag eggeateate etteateata geggeageat
                                                                      360
ccgtcgtcac aagcggcagc atccttcgcc acagnggcan gcatctgtcg tcacancggn
                                                                      420
agcatectte gacaaagegg cagcatnett egtnatagen geageateet ttgecatane
                                                                      480
cggcaaggtg gaaaccctgt ccatccactg aggcgtgcat agactaaaca tgggcagtcc
                                                                      540
agcactggaa ttccaagccg tacaacggng nccacngtca aaaangaatg aggaccctga
                                                                      600
ngcacctgng cnganaacaa gaacnngcga nnccaanact tttnagacat tattgcctta
                                                                      660
```

PCT/US98/27610 WO 99/33982

```
agtngaaaaa cccagngcac caacgggaaa ccngaccgnc ntgnanccct gnttaacntt
                                                                       720
nantnngttn cccgaaaatg ggggcacntt nccaaaaagg ggaataaaag gggagaattn
                                                                       780
cct
                                                                       783
      <210> 713
      <211> 765
      <212> DNA
      <213> Homo sapiens
      <400> 713
gttgaantcc ttcctttcaa atngcttggc tactcgntct ntntgcagga tcccatcgat
                                                                        60
togaattogg cacgagocca catgtaccag gttgagtttg aagatggato ccagatagca
                                                                       120
atgaagagag aggacatcta cactttagat gaagagttac ccaagagagt gaaagctcga
                                                                       180
ttttccacag cctctgacat gcgatttgaa gacacgtttt atggagcaga cattatccaa
                                                                       240
ggggagagaa agagacaaag agtgctgagc tccaggttta agaatgaata tgtggccgac
                                                                       300
cctgtatacc gcactttttt gaagagctct ttccagaaga agtgccagaa gagacagtag
                                                                       360
tetgeataca tegetgeagg ceacagagea gettgggttg gaagagagaa gatgaaggga
                                                                       420
catecttggg getgtgeegt gagttttget ggcatangtg acagggtgtg tetetgacag
                                                                       480
tggtaaatcg ggtttccaga gtttggtcac caaaaataca aaatacaccc aatgaattgg
                                                                       540
acgcagcaat ctgaaatcat ctctagtctt gctttccttg tgagcagttg tctttctatg
                                                                       600
atccccaaag aagtttttct aaagtnaaaa ggaaaattcc tagtggaatt cancccccaa
                                                                       660
gggaaaaaag cccacttgnc cacannagga agccnggntn ccccttngtt ccggcttaan
                                                                       720
ggccccttgt tcaggaaacc acactggggg ancttntttt ttttn
                                                                       765
      <210> 714
      <211> 740
      <212> DNA
      <213> Homo sapiens
      <400> 714
gtttgaanne ettngnttte naatgetngg etaettgtte tttntgeagg ateceatega
                                                                        60
ttcgccaaaa gcttgtggca aatttgaaat ttctgccatt agggacctta caactggcta
                                                                       120
tgatgatagc caacctgata aaaaagctgt tcttcccact agtaaaagca gccaaatgat
                                                                       180
caccttcacc tttgctaatg gaggcgtggc caccatgcgc accagtggga cagagcccaa
                                                                       240
aatcaagtac tatgcagagc tgtgtgcccc acctgggaac agtgatcctg agcagctgaa
                                                                       300
gaaggaactg aatgaactgg tcagtgctat tgaagaacat tttttccagc cacagaagta
                                                                       360
caatctgcag ccaaaagcag actaaaatag tccagccttg ggtatacttg catttaccta
                                                                       420
caattaagct gggtttaact tgttaagcaa tatttttaag ggccaaatga ttcaaaacat
                                                                       480
cacaggtatt tatgtgtttt acaaagacct acattcctca ttgtttcatg tttgaccttt
                                                                      540
aaggtgaaaa aagaaaatgg ccaaacccaa caaactaaca ttcctactaa aaagttgagc
                                                                      600
ttggacatat tttgaatttt tgtaagtgaa agatttttaa actgactaac ttaaaaaaat
                                                                      660
agattgtaat tgatgtgcct taatttgcat aaatcataaa tgtatgtcct ctctgtaatt
                                                                      720
ggtttaatgt gtgcttgaan
                                                                      740
      <210> 715
      <211> 708
      <212> DNA
      <213> Homo sapiens
      <400> 715
tttgcaaatn gcttggctac ttgttctttt tgcaggatec catcgattcg aattcggcac
```

60

```
gagggaggct agactcaagc tgtctggaga gtgtgaaaca aaagtgtgtg aagagttgta
                                                                       120
actgtgtgac tgagettgat ggccaagttg aaaatettea tttqqatetq tqctqccttq
                                                                       180
ctggtaacca ggaagacctt agtaaggact ctctaggtcc taccaaatca agcaaaattg
                                                                       240
aaggagetgg taccagtate teagageete egteteetat eagteegtat getteagaaa
                                                                       300
gctgtggaac gctacctctt cctttgagac cttgtggaga agggtctgaa atggtaggca
                                                                       360
aagagaatag ttccccagag aataaaaact ggttgttggc catggcagcc aaacggaagg
                                                                       420
ctgagaatcc atctccacga agtccgtcat cccagacacc caattccagg agacagagcg
                                                                       480
gaaagacatt gccaagcccg gtcaccatca cgcccagctc catgaggaaa atctgcacat
                                                                       540
acttccatag aaagtcccag gaggacttct gtggtcctga cactcaacag aattatagat
                                                                       600
tctaatctga tgagttactg agctttggtc ccttaaaaca agctgacttg gtccctaaac
                                                                       660
cagatgaaaa tccagatgct ctatacttgg ctttaagaac tgctttcn
                                                                       708
      <210> 716
      <211> 730
      <212> DNA
      <213> Homo sapiens
      <400> 716
ttgcaaatng ctnggctact tgttcttttt gcaggatccc atcgattcgc tcccatggag
                                                                        60
gtggtgggaa tggcaccgag aagtttgatg acagttatct aatggactag aggttggcaa
                                                                       120
actitictgta aatggccagg tagtaaatag tictgctitt gaaggcatat ggtctcttgc
                                                                       180
acctactcga ggctgaaagc agctatagac aatacataaa tgaatgagcg tgagtgtgtt
                                                                       240
ccaataagaa aaaaacatgg ctgtttgctt cggccccagg gttgtagctt accagtcctg
                                                                       300
taacagatca cagtttgctc ttttggtcac aaatacttga acccctccct agttcagagc
                                                                       360
atttgatacc gtaatattta aagctcactt gtaaaacatc gtttgttgcc tccatccata
                                                                       420
gtatctcaaa cagaatgtct ctcccaaata tacctaaatt ccatattctc tgaagcacaa
                                                                       480
ccagctattt tcttgacata cttcctaaca caccccacag ttcacaattt gatctgaaaa
                                                                       540
cttgttaagg gaggttcttt ggcatgtgat gccataaaaa gagaggtatg ggctctcctt
                                                                       600
taaaaaagag accettttta tgagactcac aataggataa aagageeeat geetattttt
                                                                       660
aaacattttt ttcactatat aagacatgca tgcctgnaaa atggttttta attagtatna
                                                                       720
ntgcttaatn
                                                                       730
      <210> 717
      <211> 728
      <212> DNA
      <213> Homo sapiens
      <400> 717
naatngctng getettgtte tttttgeagg atecetegat tegetgeagt gagattetet
                                                                        60
gcaatgactg gcctcagcaa gggggcagct taggaccctg acatcccagg tcactaagcc
                                                                       120
acataggata agtaatgggt ggacagaagc gggaaaggag aagggcaggg cacatgttta
                                                                       180
aaacttgaac tttctgaggc taagactgga aaaggaatgg tttcagctga tatatttgga
                                                                      240
taccagttga ctatttttag gaaaaaaaca caaatggctt ttaaacatca cagtgtgata
                                                                      300
cagtetaaet cagaattaga gacaggeaaa acagaaetee atettaaaaa ataaataaat
                                                                      360
aaaataaaat aaatgacatc actttggttc agagctctaa aatggaggga ggaagccatt
                                                                      420
ctaaaaagga ctccctacat gacctgcaac ttgaaaaaaa attaaaagct ccaaaaaaaa
                                                                      480
caatncagga gcttaccttg aaccttttga attgggccaa attgccgatg accactgcat
                                                                      540
cctggaaaat tttatttcac cagcactaca acttctcaac agcaccaacc aatttaacta
                                                                      600
tggatttttg tactaanccc agttgcctct ttnaaaacaa cttgtcaact ttgtctaatc
                                                                      660
accetcaget tttttttaaa aaccectnet etaceeetnt etetteagaa caccaaagtg
                                                                      720
gncttttn
                                                                      728
```

```
<210> 718
       <211> 730
       <212> DNA
       <213> Homo sapiens
      <400> 718
gaanteettn nntttnaaat enttggetae ttgttetttt tgcaggatee categatteg
                                                                         60
aattoggcac gatctagata ttgcccaatc gctgcccaca gtgcacatac ctttccacca
                                                                        120
gtcacatgtg agagggcaga ttttccaaat gctcatcacc acttggcact gtgtggacta
                                                                        180
taattttggc cagttaggaa atggcatctc attgttttca tcttaatttg cgtcagcctg
                                                                        240
attactcatt gaaacttgtg aggttgagaa acttttctta agcttattgg ccattcaagt
                                                                        300
ttcctccttt atgaaatggt tgttcatgtc atttgctcat ttttatatta gattgttttt
                                                                       360
cttttttcca gctgacttgt aggaactcta catcttatca atattaatca tttatcgaaa
                                                                       420
actatttggg tgccattatc ttctcctagt caatgttttt tgtttgtgat atcttttata
                                                                        480
atatataagt ttttaatgtt ggcagaagta aagttaatct ttttggctgt gttgtgtgtc
                                                                       540
ttgtttgatg taaagatagt ttctgtaata gttttgcagt ttgattggtc atctttaggt
                                                                       600
cttcaattac aacctgcaca ttcatccctc tatcctcttt cttactctgg ttttctccat
                                                                       660
agcacttatc atccaataat atggcatgca cttatttaat ctggtttgca tatatatttt
                                                                       720
ngctggtacq
                                                                       730
      <210> 719
      <211> 733
      <212> DNA
      <213> Homo sapiens
      <400> 719
ttcaaatcgc ttggctactt gttctttntg caggatccct cgattcgctt cagtgcacac
                                                                        60
aacaggagag aggagaaaga agaaacgcta gtaattccaa gcactggaat taagttgcct
                                                                       120
tcatcagtgt ttgcttcaga gtttgaggaa gatgttggat tgttaaataa agcagctcca
                                                                       180
gtttcaggac ctcgactgga ttttgatcct gacattgttg cagctcttga tgatgatttt
                                                                       240
gactttgatg atccagataa ttctgcttga ggatgacttt attcttcagg ccaataaggc
                                                                       300
aacaggagag gaagagggaa tggatataca gaaatctgag aatgaagatg acagcgagtg
                                                                       360
ggaagatgtg gatgatgaga agggagatag caatgatgac tatgactctg caggcctatt
                                                                       420
gtcagatgaa gactgtatgt ctgtgcccgg aaaaactcac agagctatag cagatcactt
                                                                       480
gttctggagt gaggaaacaa agagtcgctt cacggagtat tcqatqactt nctcaqtcat
                                                                       540
gaggagaaat gaacagcttg accetacatg atgagangtt tgagaaagtt ttatgagcca
                                                                       600
tattgatgat gatgaaattg ggagctctgg ataatgccag aatttggaaa ggttctattc
                                                                       660
aagtgggaca gcaattcgct ttcnaggaag ttttgaatga ctactattaa aqaqaangcc
                                                                       720
caanaattnt ntt
                                                                       733
      <210> 720
      <211> 740
      <212> DNA
      <213> Homo sapiens
      <400> 720
agttnnnttn ntnctnttca aatcettggc tacttgntct ttttgcagga teccategat
                                                                        60
tcgaattcgg cacgagaaga gaaggaccta gagattgaga ggcttaagac gaagcaaaaa
                                                                       120
gaactggagg ccaagatgtt ggcccagaag gctgaggaaa aggagaacca ttgtcccaca
                                                                       180
atgeteegge ceettteaca tegeacagte acaggggeaa ageceetgaa aaaggetgtg
                                                                       240
gtgatgcccc tacagctaat tcaggagcag gcagcatccc caaatgccga gatccacatc
```

300

```
ctgaagaata aaggccggaa gagaaagctg gagtccctgg atgccctaga gcctgaggag
                                                                     360
aaggetgagg aetgetggga getacagate ageeeggage taetggetea tgggegeeaa
                                                                     420
aaaatactgg atctgctgaa cgaaggctca gcccqaqatc tccqcaqtct tcaacqcatt
                                                                     480
ggcccgaaga aggcccagct aatcgtgggc tggcgqqaqc ttcacqqncc cttcaccaqq
                                                                     540
tggaggacct ggaacgcntg gagggcataa cngggaaaca qatqqaqtcc tttctqaaqq
                                                                     600
caaacattct gggtctcggc ggccgccanc gctntggcgc cttctgaccg tcgctnctac
                                                                     660
ttncgncttt tcaaattttt ggnataaccc ccgtgtttgn gtaaaatcca gtttttgttc
                                                                     720
cgntaaaaaa aaaaaaaaat
                                                                     740
      <210> 721
      <211> 736
      <212> DNA
      <213> Homo sapiens
      <400> 721
nnttnnnttt tnnaaatccc ttggctactt gttctttttg cagggatccc atcgattcgc
                                                                      60
atgagtgata ttttggtctg ggtttcctct taagatttta gtttgtctga attaaggaaa
                                                                     120
aatgttttta atatacattc ttattttgtc ccacccctcc agaaataagc tggaaatctt
                                                                     180
aactttttgg ggggtctttt ttggtgtttt aatgggccca gaactgtggt ttaaattttt
                                                                     240
atgtatgtat tttctttttt gtggagtata aatttaaaaa ctggatttgg gacctaaaat
                                                                     300
actectcagg ttgatgtatt catgaagttt taaaacatet ttagttttca aagtaaactg
                                                                     360
gatatgtgga ccttaaagtt attgagttta agctacaaat tgtaacgtca ttactggaca
                                                                     420
tgtcagcatc aaccctctca aaatagcttg gtcactttat gaaggggcgt tttaaagttq
                                                                     480
ttgtttagca gtgacattta atatggtcca attgcttttc tttttaacgt gacaaaaaga
                                                                    540
gaataaggaa caaacactat tgctgccgaa tgccataaca ctgagttgtc aaattgtgat
                                                                    600
660
cttcaaatgg aataaattat tcatgaagcc cttaaaaaaa aaaaaaaaa aactcgaacc
                                                                    720
tntaaaactn tngngg
                                                                    736
     <210> 722
     <211> 751
      <212> DNA
     <213> Homo sapiens
     <400> 722
attnccttgg cttttcaaat ccttggctac tngttctttn tgcaggatcc catcgattcg
                                                                     60
aatteggeac gagattatag agattaatet eetttgeteg aagtetattt aaatattagt
                                                                    120
cacatctaaa acatactttt acagcaacat ctagactggt gtttgaccaa acaactgggc
                                                                    180
atcatagetg acacataaaa ttaaccatca caaccatgtt ctaggcactg tteetcactg
                                                                    240
cctgagaaga caccgttatg tttattaggg tttttgagtt ttatccacag cttttggtta
                                                                    300
tetgeaacca tgteteccae cattaacata gtteacaetg agatgaggat tecetattta
                                                                    360
acacttggtc ccaacttctt cacagtccat ctggttttgt agagggaaca taactggaca
                                                                    420
ttctggtcag gttaggtgag gtcaggcctt caggacgcta ttttcactga gttgctttat
                                                                    480
aaggcacatt atgcaaaatt ccatcagctc ttctgttcac tacattcact gttgaaattc
                                                                    540
taagagtgag actgctgtct cacaccaaag ccagtgggta ctatcttcag taggcacqca
                                                                    600
gcatcatgtt tgtatttgat ccanctagat gacatgtaag agaaaacttt attgnggact
                                                                    660
ctgtaaagtg tgacattcgt ttgtgactca atttgctcat gtatttggtc ctggggagtc
                                                                    720
attacatago taactttcag ctgctttcaa t
                                                                    751
     <210> 723
```

<211> 749

PCT/US98/27610 WO 99/33982

<212> DNA <213> Homo sapiens <400> 723 tttaatneet ttenntaate ettngttten ngenetttnt geaggateee ategattega 60 tgctagccaa agcctgctgc cagctccata gcctggacct acagcactcc atggtggagt 120 ccacagetgt ggtgagette ttggaggagg cagggteeeg aatgegeaag ttgtggetga 180 cctacagete ccagaegaca gecateetgg gegeactget gggeagetge tgeececage 240 tocaggtect ggaggtgage accggcatea accgtaatag catteceett cagetgeetg 300 tegaggetet geanaaagge tgeeeteage teeageetgg acettgeece caggtgetge 360 ggctgttgaa cctgatgtgg ctgcccaagc ctccgggacg aggggtggct cccggaccag 420 getteetage etagaggage tetgeetgne gageteaace tgeaactttg tgageaacqa 480 ggtcctnggc cgnctactcc acggctctcc caacctgcgc ttactggatc ttcgtggctg 540 tgcncgcatc acgccggctg gccttcagga tctgccatgt cgggagctgg agcagcttca 600 tetgggeetg tatggeacgt cagacegget gaettttace aangagggea agneeettt 660 gaccagaant ggtgcataca ctgcgaagaa ctggactttg aatggccaag ggttcaattg 720 agaaagacct ggaacangcc cttgctnct 749 <210> 724 <211> 761 <212> DNA <213> Homo sapiens <400> 724 ttnnnnccct ttttaatncc ttctactaat ccttggctct cgntctttct gcaggatccc 60 ategattega atteggeaeg ageeteagee ttetaaaaag etggggetae acceagetga 120 180 acaaagtgga gaagcctcag gaaagcccaa cagagagtgt gcaccccaga ttccttqtaq 240 tactcctatt gctactgaaa ggacagttgc acatttgaac actctgaagg accgtcaccc 300 aggtgatttg tgggcccgca tgcacatctc atccctggaa tatgctqcan qaqacattac 360 ccgaaaaggg agaaaaaaag acaaagctcg agtgagtgaa ctgctccaag gcctctcatt 420 ctctggtgac tcagatgtgg aaaaagataa tgagcctgag atccagcctg ctcaaaagaa 480 gttaaaggta tcatgtttcc cagaaaagag ttggaccaaa agagacatta aacccaattt 540 tccaagctgg tcagcactgg attctggact tttgaatctc aagagcgaaa agtttgaacc 600 cagtagaget ttttgaatta ttttttgatg atgaaacatt caacttaatt gtcaatgaaa 660 ccnataatta tgcttctcag aaaaatgtca gctttggaag tccagttcag gaaaaaaaan 720 nnnnannaaa aaactcgagc ctntanaact atngtgagtc c 761 <210> 725 <211> 760 <212> DNA <213> Homo sapiens <400> 725 tttcnccccn tttttanccc cttnctctaa tccttggntc tngttctttt tgcaggatcc 60 catcgattcg aattcggcac gaggcggact ctcaggacga aaagagtcaa acctttttgg 120 gaanttcaga ggaagtaact ggaaagcaag aagatcatgg tataaaggag aaaggggtcc 180 cagtcagcgg gcaggaggcg aaagagccag agagttggga tgggggcagg ctgggggcag 240 tgggaagagc gaggagcagg gaagaggaga atgagcatca tgggccttca atgcccgctc

tgatagecce tgaggactet ceteactgtg acetgtttee aggtgeetea tatetegtga

ctcagattcc cgggactcag acagagtcca gggctgagga actgtccccc gcagctctgt

300

360

420

```
ctcccttgct agageccatc agatgetete accageccat ttetetactg ggeteetttt
                                                                       480
tgactgagga gtcacctgac aaggaaaaac ttctatcagt actttgatat gtcacagttt
                                                                       540
catgtttatc cagttcaatg tatttttaaa tttttccttg agacttcttt gactgataga
                                                                       600
ttattgtgaa gtgtgttttt aaatttncaa atgtttangg attttcatat ctttcttatg
                                                                       660
ctgatttcca attggattcc ttacaatgat ttttgggttt catctgctct tggatgatta
                                                                       720
ctatctcttt taaatttggt gtggccaagt tttagggccn
                                                                       760
      <210> 726
      <211> 741
      <212> DNA
      <213> Homo sapiens
      <400> 726
ttntgccctt tgtntnatcc ttgntcttgc ctttttgcag gatcccatcg attcgaattc
                                                                        60
ggcacgagac aagttctatt gagtgctatt cagaatagga acaaggttct aatagaaaaa
                                                                       120
gatggcaatt tgaagtagct ataaaattag actaatctac attgcttttc tcctgcagag
                                                                       180
tctaatacct tttatgcttt gataattagc agtttgtcta cttggtcact aggaatgaaa
                                                                       240
ctacatggta ataggcttaa caggtgtaat agcccactta ctcctgaatc tttaagcatt
                                                                       300
tgtgcatttg aaaaatgctt ttcgcgatct tcctgctggg attacaggca tgagccactg
                                                                       360
tgcctgacct cccatatgta aaagtgtcta aaggtttttt ttggttataa aaggaaaatt
                                                                       420
tttgcttaag tttgaaggat aggtaaaatt aaaggacatg ctttctgttt gtgtgatggt
                                                                       480
ttttaaaatt ttttttaag atggagttct tgttgcccag gctagaatgc aatggcaaaa
                                                                       540
teteactgea ateteeteet catgggttea ageaattete etaetteage eteceaagta
                                                                       600
gctgggatta caggcatgtg ctaatttggt gtttttaata gagatgaggg ttttccatgt
                                                                       660
tggtcangct ggtctcaaac tcctgcctta ngtgatcgcc tcggcctnct aaagtgctgg
                                                                       720
aattcaggca tgaancncca t
                                                                       741
      <210> 727
      <211> 751
      <212> DNA
      <213> Homo sapiens
      <400> 727
cettetteen aangetnigt igaacneett tennnatege getigegett igagetagga
                                                                       60
taaaaattgg gtaaagggac atttgcttac ctgnntnatg aatcactntt tgaaatgtga
                                                                      120
tettgecata teateaagaa aettgttte tggatgaata etgggagaat aaaatgagaa
                                                                      180
ctctggagtg agctaaattg atcccaatna agtttttctg cttagcagac agaaggtata
                                                                      240
attntttgac accetttece acctggtgcc tatgetagge ttgtcctgan aacatnecte
                                                                      300
agtaacttga tattcacatg acctacagga tgtcccatct gcagggctga gtcagttggg
                                                                      360
gaacaccaga ggctacacag tagctattcc tgctactcgg ttaatgagct tggcaggttc
                                                                      420
tttgtctcac tgaattctta tcatggaaac agcagcagca gccgctagga aatcttcaag
                                                                      480
tgtagnggcc tgtgctaacc cagtggtaaa tcccttagat cccctgctgg tctctggcaa
                                                                      540
aacteettga tnttgggtae catgtatant ttgeetttga entttaacge tttetaegat
                                                                      600
anggtaanca cncntttaat ttangcnctg gancattaac tttctttgca aaggctactt
                                                                      660
atngcengne acaantgeag ecteggaean anennangnn atateetgtt ggeeatgget
                                                                      720
ntgatgtttg acancegata ngeettetne g
                                                                      751
      <210> 728
      <211> 765
      <212> DNA
      <213> Homo sapiens
```

```
<400> 728
 tngnntttnt ttaacnttgt ttgacgcctt tctgcaggat ccctcgattc gcactggcta
                                                                        60
cctgcagatt gcagagcggc gagagcccat aggcagcatg tcatccatgg aagtgaacgt
                                                                       120
ggacatgctg gagcagatgg acctgatgga catatcggac cangaggccc tggacgtctt
                                                                       180
cetgaactet ggaggagaag agaacaetgt getgteecee geettaggge etgaateeag
                                                                       240
tacctgtcac aatganatta ccctccaggt tccaaatncc tcagaattaa gagccaancc
                                                                       300
ncettettnt teetneacet geacegaetn ggneaceeng nacateanng agggtgggga
                                                                       360
gtncenennt gttcagtccg atgaggagga anttcangtg gacactgncc tgnccacatn
                                                                       420
acacactnac agagangeca etenngatgg tgntnangac ageaactntt aaattgggac
                                                                       480
atgggcgtng tntggccaca ctggaatcca nntttggctg tatgcggaat ttcacctgcn
                                                                       540
aagccaggtt nnttnataga cgttcttgat tattacataa ttgccaatca tgtggtgagn
                                                                       600
aacttgtgng aacantttaa caattaantg tgaagaccgt acaangaatt agttaaangc
                                                                       660
nathnaggge taaacaaget attactthtg annhaantta anghathtaa nhttthetgh
                                                                       720
ttctnaaaat nttcaatntn nngggaacan ttgtaanttt nncnt
                                                                       765
      <210> 729
      <211> 743
      <212> DNA
      <213> Homo sapiens
      <400> 729
tannnnttnc tntannnttt ctgangccct tntgcaggat cccatcgatt cgaattcggc
                                                                        60
acgaggagat ctctgggatg tcagtgaggc tggttgaaga ccagaggtaa actgcagagg
                                                                       120
teaceacece caecatgtee caggtgatgt ceageceact getggeagga ggecatgetg
                                                                       180
tcagettggc gccttgtgat gageccagga ggaccetgca cccageacce agecccagec
                                                                       240
tgccacccca gtgttcttac tacaccacgg aaggctgggg agcccaggcc ctgatggccc
                                                                       300
cegtgecetg catggggece cetggeegae tecageaage cecacaggtg gaggecaaag
                                                                       360
ccacctgett cctgccgtcc cctggtgaga aggccttggg gaccccagag gaccttgact
                                                                       420
cctacattga cttctcactg gagagcctca atcagatgat cctggaactg gaccccacct
                                                                       480
tecaactget tececeangg actggggget eccangetga netggeecag ageaceatgt
                                                                       540
caatgagaaa gaaggaggaa totgaacott gggtaaggat ttggggcaca gtaccaggaa
                                                                       600
gggggcttgg tgccagacct tatgaggaag aaggattttc ctatgtacag agaangggac
                                                                       660
cctgtnctgt tgggaagtgc ttgtgcaaac ctaaccaagt tactaacccc tctgntttct
                                                                       720
gtgctacaca aaggggataa att
                                                                       743
      <210> 730
      <211> 744
      <212> DNA
      <213> Homo sapiens
      <400> 730
tttnttcctt cctctaatcc ttttancgcc tttctgcagg atcccatcga ttcgaattcg
                                                                        60
gcacgagggg tcctccaaga gtttggggcg cggacnnnag taccttgcgt gcagttatgt
                                                                       120
eggegtnigt agiginigte attregeggt tettacaaca gractigage tecactegge
                                                                       180
agegtetgaa gttgetggae gegtaeetge tgtatataet getgaeeggg gegetgeage
                                                                       240
acggttactg tetectegtg gggacettee cetteaactn ttttetetng ggettnatet
                                                                       300
cttgtgtggn tgagtttnat cctagcggtt tgcctgataa tacngatcaa cccacngaac
                                                                       360
aaagcngatt tccaaggcnt ctgcccagag cnagcctttg ntgannttct ctttgccagc
                                                                      420
accatectge accttgttgt natnanenta ggtgnetgaa teattetean ttnentaatt
                                                                      480
gangagtang anactaaaag aatgttgact ctttgaatct gctggataag agactngaga
                                                                      540
tggcagctta ttggacacat ggattttctt cngatntgca cttactgcta gctntgctan
                                                                      600
```

```
ctatgcagga gaaaagccca tagttactgc gtgtnacaac aactntctaa cnaacattca
                                                                       660
ttaatccann nganncettt caangaatgg taancetatg centteaana tactqaactt
                                                                       720
nntgccactt ntggcaaaaa aaat
                                                                       744
      <210> 731
      <211> 746
      <212> DNA
      <213> Homo sapiens
      <400> 731
cttattccct ttgnaactna ctctttntca tccctttgtg caggatccca tcgattcgaa
                                                                        60
ttcggcacga gtgtccttat ctgaaattca gcgatcttnt tgaataagca tttctctqat
                                                                       120
tgtggtatat gcctttaatt ttatttctag agtgacaaat ttttggtttt gacagttttt
                                                                       180
ttctagcttt atagtttctt cttggggaga gaatatgtca acctcactcc atcatgctga
                                                                       240
agtaaatctt catctcttaa ttttatctct caaaaatatc ctaaggattc cctctggagc
                                                                       300
ctgataagta attgcagtat ctggtttcta tggttggatg attcaggatt ccaggaataa
                                                                       360
tagttacttt ttagacctct aaagaagaag taacaaccac gtaaatgaaa agatgcttct
                                                                       420
taaatcatgg agaatcaggg cttagtatca ctgtattttc aaactgtttc agccttactt
                                                                       480
tataactgat ttagtatatt tttcttttaa tttcagactt cagtgaagtt ccttatgact
                                                                       540
tcccctgaaa ttgcttcctt atcatggggg caaatgaaag taaaaggctc taatacaacc
                                                                       600
tataaggact gcaaagtatg gccagggggt agtcngactt gggattggag agaaacagga
                                                                       660
actgagcatt ctcctggtgt gcacctgcag atgtgaagga agttgttgag aanggtgtcc
                                                                       720
agactcttgt gattggncna nggata
                                                                       746
      <210> 732
      <211> 756
      <212> DNA
      <213> Homo sapiens
      <400> 732
ttnnnnncnn nnatcetttn gatttnatte etntnteang teetttgtge aggateceat
                                                                        60
cgattcgaat tcggcacgag gtggcccata agttttacct tttaaacatc cggctgcctg
                                                                       120
tgaatgagaa gaagaaaatc aatgtgggaa ttggggagat aaaggatatc cggttggtgg
                                                                       180
ggatccacca aaatggaggc ttcaccaagg tgtggtttgc catgaagacc ttccttacgc
                                                                       240
ccagcatctt catcattatg gtgtggtatt ggaggaggat caccatgatg tcccgacccc
                                                                       300
cagtgettet ggaaaaagte atetttgeee ttgggattte catgacettt ateaatatee
                                                                       360
cagtggaatg gttttccatc gggtttgact ggacctggat gctgctgttt ggtgacatcc
                                                                       420
gacagggcat cttctatgcg atgcttctgt ccttctggat catcttctgt ggcgagcaca
                                                                       480
tgatggatca ncacgagcgg aaccacatcg canggtattg gaagcaagtc ggacccattg
                                                                       540
ccgntggctc cttctgcctc ttcatatttg acatgtgtga gaaaggggta caactnacga
                                                                       600
atcccttcta cagtatctgg actacagaca ttggaacana gctggccatg gncttcatca
                                                                       660
togtggctgg aatotgcctc tgcctctact tcctgtttct atgcttnatg gnatttcaag
                                                                       720
tgtttcngac atcantggga agcaatccac ctgccn
                                                                       756
      <210> 733
      <211> 742
      <212> DNA
      <213> Homo sapiens
      <400> 733
cntatecttt nntttattee ttnataagne ettnngeagg atecategat tegaattegg
                                                                       60
```

```
cacgagetea cacetgettt ggatgettea ageaceteag ceetetgaae tacaaaacag
                                                                     120
aagageetge aagtgacaaa ggaagtgagg cagaggeeca catgeeeca eegtteacae
                                                                     180
cctacgtgcc tcggattctg aacggcttgg cctcggagag gacagcactg tctccgcagc
                                                                     240
agcagcagca gcagacctat ggtgccatcc acaacatcag cgggactatc cctggacagt
                                                                     300
gettggegea gagegeeaeg ggeagtgtgg etgetgeeee ceaggaggee tgaggetggg
                                                                     360
teteaetget etgaaaagae acaaccagaa tggeetgggg etcaqqeeet tqqetqaqtq
                                                                     420
ggaatgcgtt gggactgccc agctgagcta tcaggtgccc atctttctg gtcccagcag
                                                                     480
tggtgaggag agcacaggca ggcctcgccc ctcccttgct cacccagttt cccctncggc
                                                                     540
acaagettee agetetgeag etggggtgae atececagtg gtttgtegee aagacatgtg
                                                                     600
gtggactttt cgcccccaa actgatgagt nccggagaat atatggagag agagatgtaa
                                                                     660
720
nnnnnnnna annnnananc tc
                                                                     742
      <210> 734
      <211> 749
      <212> DNA
      <213> Homo sapiens
      <400> 734
nntanaatcc ntttnnctnt aatccctcta ncaaatccct tgggcaggat cccatcgatt
                                                                      60
cgaaaattta tagtaatgac aaatgactta tcagtgttca tcatctgaaa qctaaqtqqt
                                                                     120
togttcaatc actttttcaa agttgatagt agattgcatg gtttcatgtt toctcatatt
                                                                     180
ggtttattaa ttctatttaa tcaaggaaaa taacttcaga ttccataaag tttcagttta
                                                                     240
tttttagttt actactaggt gagatagcac attacatact tttactatca aatattattt
                                                                     300
tagcagette ceatagtace aaatgatttg attecetact eteattttt aaagcatata
                                                                     360
aatatttatg ggcttaaaaa gggggttttt aaaaactgag gatatcagta ataaattgca
                                                                     420
gaatattttg caaagctttc ttttggaaag caaacttttg tgcctgccta tatgcaaagt
                                                                     480
attttatcag ggacttgaac aaagacctca ctctttttca cttgtcttat gtcgagagaa
                                                                     540
aagggtattg gcagccacat tcctaagact ggggaatggt gtgtcccttt aaatttgaag
                                                                    600
ataactttan gtaattatng gaactcctca aagaggagaa agtaattttt tncagacatt
                                                                    660
ttctcaatct gggnctttca cacactantt tncatagtcg agaatctggt tttacccatt
                                                                    720
gggctgngaa tgtccaatat cagtcctgg
                                                                    749
      <210> 735
      <211> 770
      <212> DNA
     <213> Homo sapiens
     <400> 735
gngntnngnn gttnnnttnt tttnaatnta atcettgtnt naanteettt tgeaggatee
                                                                     60
categatteg aatteggeae gagggtgeee ateaceaeae ceagetaaet tttgtatttt
                                                                    120
tagtagagac ggggtttcac catgttggcc aggctggtct tgaactcctg acctcgtgat
                                                                    180
cegecegeet tggeceegea aagtgetggg attacaagca tgageceage geetggetgt
                                                                    240
atctttcatt ttacccaagt cactttaccc aagtaagtaa ttaggggaaa gcctgagtct
                                                                    300
tgtaccacct gttcatttgg ggaactgtgg gaaacggagc caacggacct aagtgccctt
                                                                    360
tgacagtgag tttcatacca tttcagtagt gtatttcttt cttaatctga ataaaccaga
                                                                    420
atgatactct cagcacagaa gaataaaggg agcgagtcat taacgttntc tttttaaacc
                                                                    480
tttatgatga cttncttatg aattactgaa cgaacactgg aatgggactc acgtatcctg
                                                                    540
aggacatete teaactetgg cettanttte eeetetgtaa aattagggtg ceaactaaat
                                                                    600
gatetacaag gteeetttne aagegeeegn cattetgtaa ttacateatg tggaactgna
                                                                    660
ttaaacatac accagtgaac tggcangcat tgggaatgta actttcccag taaaatgctt
                                                                    720
```

```
tnggtttggt tcaaaataca ctntgaactt cttttcaaag acnggttnng
                                                                       770
      <210> 736
      <211> 746
      <212> DNA
      <213> Homo sapiens
      <400> 736
tttnnctttt attcaaatnc ttgenggatc cettgatteg aatteggeac gagggatgne
                                                                        60
catcgatgct natcnggcac gaggtgatgn cagcttgcaa actggtctac atnncaaact
                                                                       120
gatagtacat tgccatctnc aggaagactt gacggctttg ggattttgtt taaactttta
                                                                       180
taataaggat cctaagactg ttgcctttaa atagcaaanc agcctacctg gaggctaagt
                                                                       240
ctgggcagtg ggctggcccc tggtgtgagc attagaccan ccacagtgcc tgattggtat
                                                                       300
agcettatgt gettteetae aaaatggaat tggaggeegg gegeagtgge teaegeetgt
                                                                       360
aatcccagca ctttgggagg ccaaggtggg tggatcacct gaggtcagga nctcgagacc
                                                                       420
agcctggcca acatggtgaa accccatctc tactaaaaat acaaaaatta gccangtgtg
                                                                       480
atggtgcatg cctgtaatcc cagctcctca gtaggctgag acaggagcat cacttgaacg
                                                                       540
tgggangcag angttgcagt gagcccgaga ttgcaccacc gtactnnaac ctgggtgaca
                                                                       600
gagcgagact tatcttatan ataaatagat ngatcttcac ctgggtgaca naacgagact
                                                                       660
tatagataga tagatagata gatggataga tngatngatn gatagataga ttgataaacg
                                                                       720
gaattgggcc ttttgcttta atgaaa
                                                                       746
      <210> 737
      <211> 751
      <212> DNA
      <213> Homo sapiens
      <400> 737
ntnnnncttt ttgatcantc ctttnttgga tcccnttgct acttgttctt tttgcaggat
                                                                        60
cccatcgatt cgaattcggc acgaggctga cctacagcag aagctgctgg atgcagaaag
                                                                       120
tgaagacaga ccaaaacaac gctgggagaa tattgccacc attctggaag ccaagtgtgc
                                                                       180
cctgaaatat ttgattggag agctggtctc ctccaaaata caggtcagca aacttgaaag
                                                                       240 -
cagcetgaaa cagageaaga ceagetgtge tgacatgeag aagatgetgt ttgaggaacg
                                                                       300
aaatcatttt gccgagatag agacagagtt acaagctgag ctggtcagaa tggagcaaca
                                                                       360
gcaccaagag aaggtgctgt accttctcag ccagctgcag caaagccaaa tggcagagaa
                                                                       420
gcagttagag gaatcagtca gtgaaaagga acagcagctg ctgagcacac tgaagtgtca
                                                                       480
ggatgaagaa cttgagaaaa tgcgagaagt gtgtgagcaa aatcagcagc ttctccgaga
                                                                       540
gaatgaaatc atcaagcaga aactgaccct tcttcaggta gccagcagac agaaacatct
                                                                       600
tectaaggat accettetat etneagacte ttettttgaa tatgteecac etaageeaaa
                                                                       660
accttntcgt gttaaagaaa agttnctgga caaaacatgg acatngagga tctaaaattt
                                                                       720
ggtcanagca tctgtgaatg agcatganga t
                                                                       751
      <210> 738
      <211> 795
      <212> DNA
      <213> Homo sapiens
      <400> 738
aatccctttg ctttaancct tgtttgaacc cctttggaac tncctctntn tgnaggatcc
                                                                        60
categatteg aagagenean geaggaagag agagaeeetn aetgetgggg anttnetgee
                                                                       120
acactcaagt ccccaaccca ctggaatctc ccctactaca agtgccatgt anaccccttg
                                                                       180
```

```
aaaaggggag gggcctaggg agccgacctt gtcatgtacc atcaataaag taccctgtgc
                                                                       240
 tcaaccaaaa aganaantan anaaaactcn agcctctaga actatagtga gtcttattac
                                                                       300
gtagatccag acatgattng anacattgat gagtntngac aaaccacanc tcgaatgcng
                                                                       360
 tgaaaaaaat gcnttatntn tgaaanntga natgctatat nnntcattnn ttaccattnt
                                                                       420
antctgcagt aaacaaantt tacagcancn nttgnntnga tttcatgtnt caagttcaag
                                                                       480
gnganntgtt tggcgttnat ntaattcggc ccnacncgng accettttgc attgggcccn
                                                                       540
nnacccanct ntagttccct nttagngagg ggnaattgcg cnctttggcg taataatngg
                                                                       600
gcanangctg nttttcccnn tgtnnaaatt ggtttatcca gtttannaat ttcaacacga
                                                                       660
tnaatatcaa acccggtaag cnattaaatg gtnaaaaacn ntgnggggng cccttaanga
                                                                       720
gttgaactta accnganatt aaattgcnnt tncgcnttna atntcccncn ttttaaatcc
                                                                       780
nggaaaacct tcccc
                                                                       795
      <210> 739
      <211> 763
      <212> DNA
      <213> Homo sapiens
      <400> 739
ttnnnnncct catnaatccc ttctttgatc cctcnccnca aaacccttgg cnactcgctc
                                                                        60
tttntgcagg atcccatcga ttcgaattcg gcacgaggca nccttcgcct cctgggttca
                                                                       120
agtgattete eteceteaca teccaagtag etgggaetae aggeaegtge caccacace
                                                                       180
agctaattnt tgcattttta gtacaggcag ggcttcatca tgttggccag gctggtctca
                                                                       240
aacteetgat eteaagtnat etgeecaett tggeeteeca aagtgetgge attacaggaa
                                                                       300
tggagceacc gcgcccagcc tgatttcttt anntangtct tgtcangaaa natattgant
                                                                       360
ctnttgattc ntnaacatgg cnttnggtcg tctttaatnn gnctcatcan tgcctccatg
                                                                       420
tgttnttgat gccttngaac tggtattttt aaaatnncaa tttctaattg nnnattatnn
                                                                       480
aaacacaatt gggntnnata tattggcatt gtattaatgc aactttccta aactcactag
                                                                       540
taattctagt agentnantt ggtanattct taaggatttn ctgngtnaat agncatgtca
                                                                       600
tctgtgaatn aagccattct ttganccttt tcaaattttg agccttgtat ttcttattct
                                                                       660
taccatatca cattggcaaa gacctccagt atganattga ataaangtgg tganagaaaa
                                                                       720
caccetneta aaantgetng aattacagge atgaaccace ntn
                                                                       763
      <210> 740
      <211> 765
      <212> DNA
      <213> Homo sapiens
      <400> 740
tnnnnnnnn tttttnaacc ntttnttgna tncntctntc aaatcgcttg gctacttgtt
                                                                       60
ctttttgcag gatcccatcg attcgctagc ctgggcaata tagtacgacc ctgtctttac
                                                                      120
taaaaatgca aaaattaacc acgtatggtg gctcacacct gtagtcctgg ctactgagga
                                                                      180
ggctgatgca ggagaatcat ttgaacccag gaggtcaagg ctgcagtgag ctatgattgc
                                                                      240
accactgcaa tccagcctgg acaacacagt gagaccctgc ctcacaaaaa ttatattctg
                                                                      300
attttctgag tccatgaaca cattgtccaa atggattttt ctagctcctc caagttacag
                                                                      360
atagttccac gcacacacag aactcaccac tctcaaatat tttccccact agtattacta
                                                                      420
ttaaattttt caaacatgca aaagatgaaa gaattgctca gtgaacacca tgtacccacc
                                                                      480
acctagattc tacaattaac attttaccct actttcttta tcacatatat gtacctatcc
                                                                      540
atctatccat tcttccatga atccatcaat tcatctaatt ttttatatat ttcaagttaa
                                                                      600
gttgcagata tgtagcttat gtttcacctt aaatgtttct gcctggctat tattaactgg
                                                                      660
agtgcaatat gtttttggnt cttctttatg gtaaaatcta tgttcagtga aatgcacaag
                                                                      720
acttangtat gccattaata gggtttgacg aatagacaaa ccttn
                                                                      765
```

PCT/US98/27610 WO 99/33982

```
<210> 741
      <211> 753
      <212> DNA
      <213> Homo sapiens
      <400> 741
ttngancent tnnntnnttn nntnaatgaa gecatttget acttgntett tttgeaggat
                                                                        60
cccatcgatt cgaggaaggt ggagggcag gnaacaggac ggacaggccc cgggctctgg
                                                                       120
cacateetgg ggaacaaggg accacaagga egggggcagt etecagaett eeeetgggeg
                                                                       180
cttgacccca ggccttgcag gggagagagc cagggcctcc ctcaggtctt tgttcatgct
                                                                       240
gttttccctg ccgtggacac cctttcccgc tctccgattc tctaaatcct gccccatctc
                                                                       300
ccagatettg tteatgteea agetttteea ggaagtetta geageteeca caeegeagag
                                                                       360
ctcgagatgt ctccctgact tggtcccaga ccccaactat gtgcaagcat ccacttatgt
                                                                       420
qcagagagcc cacctgtact ccctgcgctg tgctgcggag gagaagtgtc tggccagcac
                                                                       480
agectatgee cetgaggeea eegactaega tgtgegggtg etactgeget teeceanege
                                                                       540
gtgaagaacc agggcacagc agacttetne ceaaceggea eggcacacet gggagtggea
                                                                       600
caactgccac cagcattacc acagcatgga cgagttcanc cactacgacc tactggatgc
                                                                       660
aaccacagge aaanaangtg geecanggee acaaaggeea atttetgnet ggaggacane
                                                                       720
acctgtgact tnggcaacct naaacgctat gcn
                                                                       753.
      <210> 742
      <211> 767
      <212> DNA
      <213> Homo sapiens
      <400> 742
tngancettt cgnttetnen etectaagee tttgetaett getetttttg caggatecea
                                                                        60
tegattegea ggacatggag cagtacetgt ceaetggeta eetgeagatt geagagegge
                                                                       120
gagageceat aggeageatg teatecatgg aagtgaaegt ggaeatgetg gageagatgg
                                                                       180
acctgatgga catateggac caggaggecc tggacgtett cetgaactet ggaggagaag
                                                                       240
agaacactgt gctgtccccc gccttanggc ctgaatccag tacctgtcag aatgagatta
                                                                       300
eccteeággt tecaaatece teagaattaa gageeaagee anettettet teetneacet
                                                                       360
gcaccgactc nggcacccgg gacatcagtn agggtgggga gtcccccgtt gttcaanccg
                                                                       420
atnaggagga agttcaggtg gacactgccc tggccacatc acacactgac aganaggcca
                                                                       480
ctccggatgg tggtgaggac agncactctt aaattgggac atgggcnttg nctggccaca
                                                                       540
ctggaatcca ngtttggctg tatgcngaat tncacctgga aaagccaagg ttggtntata
                                                                       600
ganggtettg atttttaent anttgneaat aatgggttga gnaaacttaa agaaccagtt
                                                                       660
taacaataaa atngttaggg acccgttnan aaaatggang tctnccttcc atntnaacct
                                                                       720
ggannccttn aaacntttnt gngtccnaat tttcgttnca tccannn
                                                                       767
      <210> 743
      <211> 768
      <212> DNA
      <213> Homo sapiens
      <400> 743
naancettte nnnettegen attenaanng ntnggaaage teantegete natagngenn
                                                                       60
gggcttcgcg agnnntggga natnacanag gctngttanc ataccngttt ttnactgcan
                                                                       120
aggnnnccac angeageatg gcccatgnna tgnccatgcc antgatggcn ggnggccatg
                                                                       180
ctgtcagcgg annegcactt gtgagganec nntntggann engtannena canneacce
                                                                       240
cagtetggna cccnagtgtt ettactacae caantgaaac getggnnage caagageen
```

300

```
gatggcccac gtnccctgca tgganccccc tgancngact ccaccagcct atacangngg
                                                                       360
aagccanaag cagctgtttt cngccntgcc ctgctgataa tgccttgaag accccatacg
                                                                       420
acctnnacgg nctacattga cantnngact gtgncancct ngatcagatn atcctggaac
                                                                       480
tgggnccnng attccaggan cttnccntca atggacctgg gngcttgtaa tcngttntgg
                                                                       540
accatacane entigianna gataaaagan ngaggaaate tgaaacenin gnaataagat
                                                                       600
ctgnggcatt agtnnntcaa ggggaggntn ggtnncaaaa cnctatgagg aagaacgatg
                                                                       660
gnactatgtc catgnaaggg gaacatntan tgttgganna tgcnatgcaa ncntnnccnt
                                                                       720
gatntaacne tttganaaac tnangettna caaaggggga aaaanact
                                                                       768
      <210> 744
      <211> 757
      <212> DNA
      <213> Homo sapiens
      <400> 744
tnnnnncnnt tnnnnttnat ncntctctca aatcgcttgg ctacttgttc tttttgcagg
                                                                        60
gatcccatcg attcgcttga cctctgtact ttaaaggaaa tcactaacca aattttcaaa
                                                                       120
gtttcctttt aaatgcgttt agctagaaat ctatgtattt atccctttcc tattttgcat
                                                                       180
tettetecca etattttaa aaacteattt acagtagaaa ecattettet tteteccaae
                                                                       240
agtateettt geeaagaeea tgagaaeagt aaggageatg ttgttggtea gggttteaga
                                                                       300
atacgcgtga tgtcactgag aatgtttgct cacagtcaat aattgtcttt gtggatgtga
                                                                       360
taattttgga gatacacttc tggtcagaac tcaggtgaga taatcttgca atactccaaa
                                                                       420
tgcagatact ccagccaccc gcaaggttcc aggaaaggac aatgtcctgc gagaaaatca
                                                                       480
ggaggcetee actteetggg ceaettgaga agtteetggg catgteacta catgttggtt
                                                                       540
gactcagcca tttctcatgc tgntttgttt cttgcggtgg ccacttaacc ccaaaqaatg
                                                                       600
aanggaggat ccacagtgaa agtgcctgag tttctctatg agaccagatg ctgtcgaaac
                                                                       660
caaacatett tteetttget etatnggaac attttaaggg ttggtttgea caactggttt
                                                                       720
tcagactngg aagattacca agtttgggtc cccctn
                                                                       757
      <210> 745
      <211> 751
      <212> DNA
      <213> Homo sapiens
      <400> 745
cttnttnnnt ttnntttgat ncctctacnc aaacccttgg ctactngctc tttntgcagg
                                                                       60
ateceatega ttegaatteg geaegaggaa naacagacag gttteaacat ggatggatet
                                                                      120
gaaatgctgt tgaagcatat catttgcata aaaatcaggg acagtttcca aagaattata
                                                                      180
tattttttc agttggctct ctagttagtt tttttgggag taaggacaaa cctggaatag
                                                                      240
atagcaaaac tgaaaatcan cagtgctgat ggtggtacat atgtctttcc tttagcttct
                                                                      300
cccctgataa ttcccatctg cttttacttc gggtgagcag agggggatgt gtgtgtgcgt
                                                                      360
gtgtgtcagt ctgtttgtga gtgtgttaaa ggctacagac cacagttggt ttaaaatgct
                                                                      420
tggaacttcc caaactggct ttactttatg tttatacagt gctcagggtt aacgcagtac
                                                                      480
atccatgcca ttgctgtggg aggtatcccc ggatgcatgt gttttgagtc tataaatata
                                                                      540
gaaaatatat attggtttct ttttccaact taatangttt attaaagcat gaaatgaaag
                                                                      600
ggtgcatatc atgcattcaa gntatntcct aatttttggt ctgacagtgc atgtctttgg
                                                                      660
agcatgctga aacaanaatn acacaggaat tgantaaccn gaaagaaaca ttgttaaatg
                                                                      720
tccaacattt gttatgcatt tntattgggg g
                                                                      751
      <210> 746
      <211> 760
```

PCT/US98/27610 WO 99/33982

<212> DNA <213> Homo sapiens <400> 746 tnnnnntntn nnnnntttnn nttcntnnnn ctttgaance ctttgetact tgetetttt 60 gcaggatccc atcgattcgc tgaaacaaaa gatgtatttc aattaaaaga cttggagaag 120 attgctccca aagagaaagg ctttactggn tntgtcangt aaaagaagtc cttcaangct 180 tagttgatga tggtatggtt gactgtgaga ggatcggaac ttctaattat tattgggctt 240 ttccaagtaa agctcttcat gcaaggaaac ataagttgga ggttctggaa tctnagttgt 300 ctgagggaag tcaaaagcat gcaagcctac agaaaagcat tgagaaagct aaaattggcc 360 gatgtgaaac ggaagagcga accangctag caaaagagct ttcttcactt cgagaccaaa 420 gggaacagct aaaggcagaa gtagaaaaat acaaagactg tgatccgcaa gttgtggaag 480 aaatacgcca agcaaataaa gtagccaaag aagctgctaa cagatggact gatnacatat 540 tccaataaaa tcttgggcca aaagaaaatt tgggtttgaa gaaaataaaa ttgatagaac 600 ttttggaatt ncagaagact ttgactacct ngactaaaat attccatggt ggtqaaagat 660 tttcaagctt gngaatttgt aaattttnaa ctattatcta actaatgtnc tgaattgccn 720 ttggctgtac tgggttatca ttttattaat ggtaaataaa 760 <210> 747 <211> 786 <212> DNA <213> Homo sapiens <400> 747 tnngncttta nnccntttnn attgnnnnnn nttgaaaccc ttggcnactn gctctttntg 60 caggatecca tegattegaa tteggeacga ggaggetgtg teaaagaatg aatggaacge . 120 ctactatgag gaggtgggtg tacgtnctag anggagatcg agtacatgat ccagaaqctc 180 cctgagtggg ccncggatga gcccgtggag aagacgcccc anactcanca ggacgagctc 240 tacatccact cggagccact gggcgtggtc ctcgtcattg gcacctggaa ctaccccttc 300 aacctcacca tccagcccat ggtgggcgcc atcnctgcan ggaactcagt ggtcctcaag 360 ccctcggagc tgagtgagaa catggcgagc ctgctggcta ccatnatccc ccagtacctg 420 gacaaggatc tgtacccagt aatcaatggg ggtgtccctg agaccacgga gctgctnaag 480 ganaggttcg accatatect gtncaeggge ageaeggggg tggggaagat cateatgaee 540 gctgntgcca agcacctgac cctgtnacgc tggaactggg aaggaagagt ccctqctacq 600 tgggacaaat aactgtgaac tggaccttgg ncttnctaac attggncttg gggggaaatt 660 catnaacaag ttngccaana cctgcgtggg cccctgaaat acattctttt nggacccct 720 tgnatccaga accccaattg nnngnngaaa acttnaaana aantnncttt naaaannntt 780 tttnct 786 <210> 748 <211> 722 <212> DNA <213> Homo sapiens <400> 748 tggaactngc tetttntgca ggateceate gattegaatt eggeacgagg aggaagagge 60 ctgctccact tgtctgggaa cctgggcagg aggcacagag gaagccaagg cctggagctg 120 caggtccccc ggcatctctc tctgtcccgg cagcccagga tggcctggtg cccccacctg

ctgcagcagg agccccaagg agtgctagct gagggtggtt gctggggtgg tcctcatgga

cagtgaggtg tgcaagggtg cactgagggt ggtgggaggg gatcacctgg gttccaggcc

atcettgetg agcatetttg agcetgeett eeggtgggag canaaaagge eagacetge

180

240

300

360

```
tgagttanag gctgctggga tccactgttt ccacacancn ggaaggctgc tgggaacagg
                                                                       420
tggcanagaa gtgccatgtt tgcgtngaac cttgcantct tncanctggg gactggtnct
                                                                       480
tgctgaaacc cacgagctgn acantnanga gctgtccanc ttgcttggct cactgngacc
                                                                       540
aggaaageet gtetttggtt agetegtgte ttetgeagga aaaaaaaaag gatgtgteat
                                                                       600
ttggccatga tatttgaaaa aggggaagga tngccnaant ttgtttncca tttattccag
                                                                       660
tanttggaaa attttttgac cccctnngct taattctttt gcaanaacta ctqqqqqtn
                                                                       720
tg
                                                                       722
      <210> 749
      <211> 821
      <212> DNA
      <213> Homo sapiens
      <400> 749
tttnaannee ettgetaetn gttetttttg caggatecca tegattegtn gacatagaaa
                                                                        60
acatacagta agaatatggt attataatct tacggggacc actgtcaaat cgcggtctgt
                                                                       120
ctttgaaaag ttgtnatggc ggcgcatgac tataaatacc ctagctggtt agcatttaca
                                                                       180
ttccttgcca gggagtttga aatttatnct nggcgggctg nctttaggnt ttaggtagag
                                                                       240
ttaaagaggt aaagcacatg tttgccacaa cccaggaaag tatttttaag aaagatttgg
                                                                       300
attttcctac ctttagagat ctaaaaaaaa tttaatataa aaaatcattt tgagntggtg
                                                                       360
tttattacta gttcagaatg agtggctgct gaagggggcc cccttgnnat tttcattata
                                                                       420
acccaatttt ncactttatt ttgaactctt aagtcataaa tgtataatga ctttatgaat
                                                                       480
tagcacaggn taagttgaca ctttgaaact ggccatttct gnattacact atcaaatagg
                                                                       540
aaacattgga aagatnggga aaaaaaattc ttattttaaa atggcttaga aaagttttca
                                                                       600
agattacttt ggaaaattct aaacnttnct ttctgngttc caaaactttg gaaaatatgg
                                                                       660
tagatnggac ctcattgcca tttaagactg gttttcaaaa gctttccctc aacattttt
                                                                       720
aaaggtgtgg anttttccct ttttaaatat tccataattt aantttcctt ttnaaaggcc
                                                                       780
nctnnttttc ccaaacccat ngncttttgg ggnaaatccc c
                                                                       821
      <210> 750
     <211> 770
      <212> DNA
      <213> Homo sapiens
      <400> 750
gntttnnnnn nnetttnttn nntgnetntt tetaagaget tngennatge tnggteggea
                                                                       60
cgaggcaaca tttgtctaca actctactgt aaaattggaa atgcttttcc acagaaaaac
                                                                      120
ctctcaaaat gctgaatgca aaagttggga tcacagaaac attgtgccta tttttggtct
                                                                      180
gctggaaact gtatttntac aaggtaatcc ctgttctcaa tatagttcct gtcttgccac
                                                                      240
tggcggtttt cttgtagcat ttttctagtt ctgagattgc tactacccaa agtattcatt
                                                                      300
tetttettae tggggtgtee tetgtettea eageetgett etggattgta ggtttttee
                                                                      360
tttctttctg ttgagatatt tatggcattt gatagagtca aaccagatgt attgcagccg
                                                                      420
gacatactta tgtggcttca gatgtgtaaa ataagtaact tcctatcttt gtctgtctag
                                                                      480
ctcaagagtt gactgtggac gaggaatgcc tgtattgatt cattaatgta ataactattt
                                                                      540
actgactgcc taccatgtac aaccagaaac acagttccta acctcatgaa cttaccatgt
                                                                      600
aacatgggaa gacaagccta agttcttatt tggntggnaa ttgcgataac gctcacagaa
                                                                      660
caaattcccg attcctacga acccatgtat aggggggaaa tatttaaggt cccatttaat
                                                                      720
actgacattn gecenecece etnntatttt aagetgagaa tetgaaggnn
                                                                      770
     <210> 751
     <211> 774
```

<212> DNA <213> Homo sapiens <400> 751 cgttnnnttt ccncctttga agcccttttt gcaggacttt cnaatncttg gtagacttta 60 tgtcagttct gtgtagactt tatgtcagtt tttgtcatta tttgaaaatc tattctgaca 120 actttttaat tcctttgatc ttataagtta aagctgtaac aactgaaatt gcatggatca 180 agtaagcata gttttatcca gggagacngc tcnnnggaag ccatagaatt gctctggtca 240 aaaccaagca caccatagcc ttaactgaat atttaggaaa tctgcctaat ctgcttatat 300 ttggtgtttg ttttttgact gttgggcttt gggaagatgt tatttatgac caatatctgc 360 cagtaacgct gtttatctca cttgctttga aagccaatgg gggaaaaaaa tccatgaaaa 420 aaaaaagatt gataaagtag atgattttgt ttgtatccct acccatctcc tggcagccct 480 actgagtgaa attgggatac atttggctgt cagaaattat accgagtcta ctgggtataa 540 catgtctcac ttggaaagct agtcctttta aatgggtgcc aaaggtcaac tgtnatgaga 600 taattatccc tgcctgntgt ccatgtcaga cttttgagct gatcctgaat aataaagcct 660 tttaccttat ctggaaaaaa aaaacattnt anancaaaaa aaaactnnga gccctttana 720 actnttagng agncentttt cegtagaate cengaentgg ntaaggaane nnne 774 <210> 752 <211> 778 <212> DNA <213> Homo sapiens <400> 752 gntttgaann contigttte gnatectttt tgnaggacte tgaagneett tgtteggene 60 gagaagaaac tctgcctcag aaaatgttta cagcttccag tggaatcaaa cataccatga 120 concaattta tocaagttot aacacattag tagaaatgac tottggtatg aagaaattaa 180 aggaagagat ggaaggggtg gttaaagacn ttgctgaaaa taaccacatt ttagaaaggt 240 ttggctcttt aaccatggat ggtggccttc gcaacgttga ctgtctttag ctttctaata 300 gaagtttaag aaaagtttcc gtttgcacaa gaaaataacg cttgggcatt aaatgaatgc 360 ctttatagat agtcacttgt ttctacaatt cagtatttga tgtggtcgtg taaatatgta 420 caatattgta aatacataaa aaatatacaa atttttggct gctgtgaaga tgtaatttta 480 tcttttaaca tttataatta tatgaggaaa tttgacctca gtgatcacga gaagaaagcc 540 atgaccgacc aatatgttga catactgatc ctctactctg agtggggcta aataagttat 600 tttctctgac cgcctactgg gaaatatttt taagtggaac caaaataggc atcccttacc 660 aaatcaagga agactgactt ggacaccgtt tggaaaatgg gtaaaaacgg tggnttactg 720 gtganttggg gagcnagaac cggacccact ggtatactgg ggantaacaa ttttttc 778 <210> 753 <211> 775 <212> DNA <213> Homo sapiens <400> 753 gettttgaaa ceettttgtt aacgeettte tgeatgatet tetegteett qaaagggee 60 taaaagagat gaacaatacc gtatcatgtg gtttgaatta gaaacccttg tcagagccca 120 tatcaacaac tcagagaaac atcaaagagt cttggaatgt ctgatggcat gcaggagcaa 180 acccccagaa gaggaagaac gaaaganacg cggctgaaag agggaagaca aagaggacaa 240

300

360

420

gtcagagaaa gcagtgaaag attatgaaca ggaaaagtct tggcaagact cagagagatt

aaaaggaatc ttagaacgtg gaaaagaaga attggctgaa gctgagatta taaaagattc

gcctgattcc ccagaacctn caaacaaaaa accccttgtt gaaatggatg aaactccaca

```
agtggaaaaa tcaaaagggc cagtgtcgtt attatccttg tggaqtaata qaatcaatac
                                                                       480
tgccaattcc agaaaacatc aggaatttgc tggaccgttt gaactctqtt aataacaqaq
                                                                       540
ctgaactata tcaacatctt aaagaggaaa atgggatgga gacaacagaa aatggaaaag
                                                                       600
ccagccggca gtgaagagtg acttgangaa ctaaatttta gcatattgca aaaatatttt
                                                                       660
gtgcgggaat tcgatatnag tacttttacc agcaagatgg natngttatg tttgcctgga
                                                                       720
ctggntttta catttttnaa attttttcag tgnccttttt tggtcctaaa ttatc
                                                                       775
      <210> 754
      <211> 1032
      <212> DNA
      <213> Homo sapiens
      <400> 754
ggnntttttc ccaaaaaaa ggggccccct nggggntttt tncncaanng gncccctttt
                                                                        60
tetttgneca gggnaaentt ttttgngaaa aganeeeet ttttggatnn aeeggggeee
                                                                       120
cccggaaggt tccnaaattt tnagggttna aacccaaatc cttggggaaa aaaaaaaaa
                                                                       180
ccagggcent ntntggggnc cccctngggg gggtngggaa aaaaaaaaa gggggaatgg
                                                                       240
cccccaaaaa aaaatnnggg gcccctnggg ggaaaaaaaa gggaaagccc aggtngggaa
                                                                       300
nggaaagggg gaaggntccc ccggggggaa aggaaatggg tgggtnggna atggcccaat
                                                                       360
ggttggaaaa ggcccaaacc aatttgggnt ntaaaacaat ttcaacctgg gggggtcctg
                                                                       420
gcccanaaaa aatgcngggc acccncgngg ggtctggctt aagaattggt tacaagggca
                                                                       480
aagggaaagg gaagagttot agagataaag aactatatgo ttggatgaag tgtgtgaagg
                                                                       540
gacagoctca tgatcacaaa catttaatgo caacccaaat tatacctggt totqttttga
                                                                       600
cagatettet agatgecatg cacactetta gggaaaaata tggtattaaa teccattgne
                                                                       660
attggactaa caaacagaat ttacaagttg gaaattttcc tacaatgaat ggtgtatctc
                                                                       720
aagttttaca gaatgntett aatcacagna ataaaattte tetgtgcatg cetgagtett
                                                                       780
cagcagcaaa aatactcctc cgaagtctga gaaaaatggn ggcagcagcc caagaagagt
                                                                       840
gatgtaggca cagataacna aggntaacct cctccagaat ccccagtcac cactgcactg
                                                                       900
gttaagcaga acttngcagg agcaaaaaaa cccngangan ggaaaaaaaa aannaaaaaa
                                                                      960
aactcggagc cctcttagaa ctatangggg ggccgnnnta ccgnangatc cccgacctga
                                                                     1020
anaggaaccc cc
                                                                     1032
      <210> 755
      <211> 798
      <212> DNA
      <213> Homo sapiens
      <400> 755
ngnnnnnttt nncccnacna aatccctttt ttgaagcctt ctantgnctt catcgtnctg
                                                                       60
gtaaattggn tgaattattg tattgaagct tgagctgtat tttnaagtaa tttnggttnc
                                                                    . 120
ccctaagatg ttattatgtt agggacataa cacttttggg aggttgttgt gggagatggt
                                                                      180
tgatttaggt tttcaaaagc tagaaataaa atttacatnn ccccggntnn cataaaattc
                                                                      240
tgctctaatt gggtggaagg tgctgtatct aacttgtgtt cctnctaagg ttatqtccta
                                                                      300
ataactattc ttttaggagt atacttctac tttatagaag gttgcttttt ctttttaatt
                                                                      360
ttntctaaca aagaaaagaa tnaagtattt attaataaag aaccagaaag cacttgaaac
                                                                      420
tgatgttttt aaatgggctc acttanggta gatttattta tctcattaac ttaaaaacag
                                                                      480
ctatgtgnat tgaaataagt cacaacagaa cttgaacacc agggtgggtg tctgagcaat
                                                                      540
cccctttctt atggggaaaa acaaatggtt cttgtttgaa cangaaggta tcattgcagt
                                                                      600
engeatteae eegtgtataa ttgnnatata agntgnataa tatgetegta aaggetnaag
                                                                      660
gtnagctgga tctggatgcc ctttnaccaa ttangatttt aacttttaan aataaaattt
                                                                      720
naaanctaat tgncnaaata aaaaaaatan naaacttegg neetetacaa nttntagatg
                                                                      780
```

```
ngtcgattnn cgnncanc
                                                                       798
      <210> 756
      <211> 834
      <212> DNA
      <213> Homo sapiens
      <400> 756
tttgaaaccc ntttnttnaa gcctttttaa tgactttanc gncctttatt cggcacgagg
                                                                        60
tectteaget ggtagettne attegnantt nnanatanta tntqtqcatq enennttqaa
                                                                       120
tttttgtgga agaacagant gcagaagaag gcnaggaaag ccgaagagan tnntncggca
                                                                       180
ncagaagctt aaagnaggee aaactggtgg tgenetttee teggnacaga agetggatga
                                                                       240
ctatggccaa tttggagaaa nagctccagg agatggaggc acggttcgag aaggagtttg
                                                                       300
nagatggatc ggatgaaaat gaaantggaa gaacatganc tcaaagatga ngatggatgg
                                                                       360
taangacagt gatgaggncc gaagacnctg agetetatga tgacetttta etgnecanca
                                                                       420
tgtgacaaat cgtnaanaac agtaaaggcc atgaanaatc acntagaagt caaangaaag
                                                                       480
cnnttgggaa aaatggnggn nctttgntaa aaccacnagc tgganggang gaagaannna
                                                                       540
aaatttttta agnacctcaa attgattgaa aaatncatta tgatgacaat tcctgnanga
                                                                       600
ataaattggn agatgcncta naancaaaan gcntttttn antnnaaana nacaaannnt
                                                                       660
nnagectntt ngaachtata gthnanneth entttaneth thtatecegg actttnttnt
                                                                       720
ggatacentt gactnagett ttggacaaaa nenenaettt gtattneatt ngnnaaaaaa
                                                                       780
atgentttat ttttegnaaa tttggtgaat nentaattng ntnntattnn nnne
                                                                       834
      <210> 757
      <211> 1062
      <212> DNA
      <213> Homo sapiens
      <400> 757
tttttccaaa aaaatcnccc conttttttg goottnaana nanngggood cottttttt
                                                                        60
gggccagggg aatncccca atnccggaat tttccggggt ntttgggaggg nttggaaagg
                                                                      120
gccccttggg gaaagggncn tttccnaagn aaaggggtng gaaaattttn taaatggcct
                                                                      180
tttngggggg aaaaagcccc ctnggaatnc ccccaaaaaa cccttgggaa aaaggggga
                                                                      240
aaaagggggg aacctttngg gnaatccttn cccnttnaat aatttggggn aattaaancc
                                                                      300
ctggtttggg aaagggaaaa gggttggtct tggtcttggg ggaanggaat tgggggccaa
                                                                      360
nttaaaatgg aaggtttggc canaatnggc cncttcgggg gcttnttcaa aagccaagcc
                                                                      420
tttgggancc ctgcttcatt tttngggccc tttnctgcca aggaanccca acccttaact
                                                                      480
tancaggaaa anggagatga aaggeettet tecaaggaag gtaaggteet ttggetgeee
                                                                      540
cnacttaaat getttttgaa antetettag atgtggnaaa tatttttee gaacettgaa
                                                                      600
atcaactngg tagaatttca attggaagca taatccattg taaaatatat tttagttgat
                                                                      660
atttggtaaa atgccttttt tggtggtgtg gttngaatcc tgggtttccc aagaatcttg
                                                                      720
natttcaaat ggtttaacaa angggaagga aaggganctt ttcccttaac cttccctttt
                                                                      780
tgaccaggaa agattttnaa aagtaccttt ctttttaagg aaaaaaaaaa attaaatttt
                                                                      840
gaagaaaaat tgggatttgg attttanaaa aaangggaaa aaaaatatna ntattnatan
                                                                      900
ntennannat nnttnatnnt etanntantt netntnnnta ntnetnntnt ntnnannnna
                                                                      960
nannnannaa ataaatanto nnnoatnott anotacanat noonntottn nttntannao
                                                                     1020
tttnannnta nntatctaan tctntcccta ttntaccctn nc
                                                                     1062
      <210> 758
      <211> 845
```

<212> DNA

PCT/US98/27610 WO 99/33982

<213> Homo sapiens

<400> 758 aaancccttn tttnaaatcc tttttanang attcatcgat tcgaattcgg nacgaggcgc 60 tagegteggn teegentggg ceettgeggt gegetgnggg caggeggtga ggettaegen 120 tntgcttacg ggcaaaaacc tgcacacgca ccanttcccg tnnccgttgt ccaacaacca 180 gaaggtgatt gcctttgggg aancttctan gncaacnacn tgaacntatg gacagtgcgc 240 tgntttggac agaantggga acnttnaggn tgntgtgcgc ttcnagcatn tgggcacctt 300 tgtgttcctg tcantcacgg gtgagcanta tggaagcccc atccgtgggg cagcatgaag 360 gtccacggca tgcccaattg caacacgcac aaatacttgg aangccatgg aangcatntt 420 natcaagcct aatgtgggag cccttttgca agtcacgaat taactctnaa nngtntggat 480 ggattgggtg ggantggang gttgcaagtt ngggccnttt tgaaaggcca ctttttggna 540 aaaaactttt gggtttttaa ngggttcntc aaaatgccct ttgnnaattn aaagaaatgt 600 tgggcctatt naaaaaaaan atnatacttt atntaatctn nataataata nttantaata 660 aaantettnn ageettttta aaanttttta atgaanetet ttattttane gttanantne 720 ntaacnttta attaaaggaa taacaatttg ttgaantttt ggtataaana ncccccantt 780 tttaaaattc ntntngaaaa aaaatncntt tattttggta aaaatttgng gaatcnnttt 840 tgctn 845 <210> 759 <211> 947 <212> DNA <213> Homo sapiens <400> 759 tngggggggg ccccnanttt ggggccccaa accettnggg gaaacccccc ttnnnnnttt 60 ttnccntttt gggggggaaa ngccccccc caaangnaaa aacccntttt nnnnaatttn 120 ngggnanggg ntntggggnc ccnttaaccc caangggggg gggttttnan cctgggggnn 180 naaaatnggg ggaanaantn nnnaatgggn antcccttna angggaaaaa naatttnncc 240 ttaaggnnat gggncattaa tnttnatccc tantggattn caatttcatt cgnattaaag 300 gcttttactg gnataatcct tnncggcccg cnctggtagt ttaaagtgcc canaanttga 360 atgggaaatn acgggttttg aaaatcgcac aaagcagtgc cnggcacnga ggngtcacgc 420 cngtaatncc agcattttgg gaggcctgag gcangcggat cacganggca anagagtcca 480 gaccattnct ggctaacacn gggaaacccc gggnctaata aaaaatcaaa aattaggntg 540 gacatggtgg cacgtgccng taatcncagc tacttangga agctggatgc aggaagaatt 600 gcgtgnnanc cnggccccng tggaangntg cattgatacg aagaaccgtg ccaaatgaan 660 ttanannctg ggcngaannn gagcggaaaa agccctnttt aaaaaaaaan gggantggaa 720 aaantggtgc canagncatn nggggaaaaa attttnnnnt tnnttnancg gttttnanct 780 tgnggaaggc cntctttaat nttggggaaa aggcactttt gggntnggtt ttggaaaacg 840 nntggctttt ccctttnaaa agggaaaaan ggnnttaanc ccctgaaaaa ngngcngnnt 900 tttaaanggg gnnnnaaaca nggggncttt ggaancccca nnaaacc 947 <210> 760 <211> 759 <212> DNA <213> Homo sapiens <400> 760 gnntttctaa tgcttgtnnn nngcntttnt gcaggatccc atcgattcga attcggcacg 60 agaagatatg cagagatatt ccaggatctt ttagctttgg tgcggtctcc tggagacagt 120 gttattcgcc aacagtgtgt tgaatatgtc acatccattt tgcagtctct ctgtgatcan

180

```
gacattgcac ttatcttacc ggctcttctg aagggtctat ttctgaactg gagcagctct
                                                                       240
ccaattetet accaaataaa gaattgatga ceteaatetg tgaetgtetg ttggetaege
                                                                       300
tagetaacte tgagageagt tacaactgtt tactgacatg tgtcagaaca atgatgttte
                                                                       360
ttgcanagca tgattatgga ttatttcatt taaaaagttc tttaaagaaa aacagtagtg
                                                                       420
ctctgcatag tttactgaaa cgagtggtca gcacatttag taaggacaca ggagagcttg
                                                                       480
catcttcatt tttagaattt atgagacaaa ttcttaactc tgacacaatt ggatgctgtg
                                                                       540
gagatgataa tggtctcatg gaagtanaag gagctcatac atcacggacg atgagtatta
                                                                       600
atgctgcaga gttaaaacag cttctacaaa gccaaagaag aaagtncaga aaaatttgtn
                                                                       660
ccttgaacta gagaaacttg ntntggaaca tttcaaaaga tgaatgacaa tctggattcn
                                                                       720
ttggtngaca gtgtaatttg gactttaacc ngatgctcg
                                                                       759
      <210> 761
      <211> 752
      <212> DNA
      <213> Homo sapiens
      <400> 761
cctnactaaa cctttgcnaa ngccnttnnt gctgatccca tcgattcgca ggcctggact
                                                                        60
tegececeag geetaggace geggtgggtn ttaaccetge tnetgececa acagggacte
                                                                       120
caatcaatcg gagtteteec cttgeeggag etgeeettea eetttgggge eegagaeagt
                                                                       180
cataagggat ggacttacnt ttcttgcagg gaaaaaggtg gacagccgtg tttcttaagg
                                                                       240
atgctgaggg catggggcca ggaccagggg agaggcacag ctccttcctg agcagcctct
                                                                       300
caccactgcc acaaggetee ctaatgetgg tetetgetee acteeeegge tteeegtgag
                                                                       360
gcangaggca gagccacage caaggccctg accaettetg tgccagttgt ctaagcagag
                                                                       420
cgcctcaggg acgctggaaa tgccttaagg atagaggctg ggcatcacat caaatgggac
                                                                       480
tgtggtgttt ggtgaaaacc ttcctgagga tctggattca ggaccctcca tgactggcct
                                                                       540
atttactggt tacagetgge cagtgeanan etgetgetet tttacetttt taggeceetg
                                                                       600
taacttncca cctttaaact gcccaanaag catgcctntt ccacaggaag aagggagcag
                                                                       660
acagggaaat ctgcctacca anaagggtgt tgtgtgtctt tgtgcccaca cgtggtggct
                                                                       720
ggggaatgcc tggatggtgc cgtggntgat ct
                                                                       752
      <210> 762
      <211> 1032
      <212> DNA
      <213> Homo sapiens
      <400> 762
ttctaatgct tggaaacgcn ttgatgnang atnccatcga ttcgaattcg gcacgagggc
                                                                       60
aagtggtagt ggcgcttntc gggtgntgtg cttcacgttt tggtctaaag gncgagactg
                                                                      120
ttgtggcnac ngngnaantn tacnggaang gnttaaantn tnnntgnagt nggaanaatt
                                                                      180
cnatcngaan gaanttgggg gggntagnnn nggttanatn attgatgaat ggnttcaana
                                                                      240
tngnaaantt tatnancgan atgnnatant tnnaaangan gaccaactgg gntnanatgg
                                                                      300
agnannnatn aannggntaa ncnatanana tantncattt ggtanganaa tngangaagg
                                                                      360
attntcaaat agncatgtng gangatgaac ntnnaggnnn nagaatattt ggataaaatt
                                                                      420
ggtantatga agatntggnn taataatacc nanaaatnnn nnantttnat nanngangaa
                                                                      480
ntagganttn atgnctatgn ggatannntn nanntatnat agngataaan tatgatactg
                                                                      540
tttannntat ntnganttag tnattnaatg ntcttgtnan aanttattt ncgntagtta
                                                                      600
gntagnnnta tnnactttgg naancanana tgtaattctc tctanacggg aatntttnta
                                                                      660
tnntnnntat caagaggtnt ntnnattgna aatantatac nnttgnanaa antatatcna
                                                                      720
tanaanaaan ggnnattatt ntatatganc aaanaaaaaa ntattgngga nntanattat
                                                                      780
ctctcatnat ngattatncn gtantgtata atggnnnata antatgtnnn tntaanataa
                                                                      840
```

```
atggatataa gtnttatant atgcncntna aggnggtcng anaantatgt aattatattn
                                                                       900
angctanata cnatnnanat gtntnactaa atatngntgt gaaangtntg cgnggnaaaa
                                                                       960
tntgttanta ntnaaacang gtataganat atanatgngn ngaatatota ctatntgtan
                                                                      1020
atacttatan ca
                                                                      1032
      <210> 763
      <211> 817
      <212> DNA
      <213> Homo sapiens
      <400> 763
aanneeettn tttetaatne ttggetaete gtnetttetg caggateeca tegattegaa
                                                                        60
tttcggcacg aggggaggga cccttggggn caggttgtgg gtagccagtt gcagtctgtg
                                                                       120
gcctccctca gaggtttgga gtcgggcgtg gcatgctgct gttggcctct ttccgaggga
                                                                       180
gtgccatcca ctccctgtcc caccgctnnc cctngtgagg acagtgaggg cagtgctacg
                                                                       240
tggtgggag gtgtgtgtga agccacggaa gggcttcaca gggcaaatgc caaggccagt
                                                                       300
gggccccgga cagagtnagg ctccctgggc ggncttgtgt cttggtggcc ctgatcatcc
                                                                       360
tgccaatgca naaagccagc aggcaagaga cccctactcc ctttaaggac cattagcata
                                                                       420
aacaaaccat tgngttgaat gcaatgatcc aggtgcactt tnagggtaca agctggactn
                                                                       480
gttggaacag gattacatgg aaaannggaa angggggcan gctgtctctt gggacatnag
                                                                       540
taatgtettt ttacccantt gncactetng aantteaaan ttggneatgt tttetgggge
                                                                       600
ctnctngnaa aagcagtttt ttcaccncat natgaagaaa aaacttgttg gcttgganng
                                                                      660
tanngggatt nttgntnana cttnccctaa anggntncct ttnggggcat ttntgaaggn
                                                                      720
taaataatgg gggatacctt tttaannttc cttgcagatt taaaaatgtt ccttaaanga
                                                                      780
nncctcaatg nttnggtctt nttccaaaaa acnattc
                                                                      817
      <210> 764
      <211> 777
      <212> DNA
      <213> Homo sapiens
      <400> 764
taatgcttgg ntctcgnttt tntgcaggat cccatcgatt cgaattcggc acgaggtcca
                                                                       60
cggtgctgaa catcatcatc tttgaagact gtaggaacca gtggtctatg tcccgaccac
                                                                      120
tacttggctt gatattgctt aatgaaaagt atttttctga cctaagaaac agtattgtga
                                                                      180
acagecagee accegegaag canenggeea tgeacetgtg ttttgagaac etgatggaag
                                                                      240
gcatcgagcg aaatcttctt acgaaaaaca gagacaggtt cacccagaac ctgtcagcat
                                                                      300
tccgtcgaga agtcaacgac tcaatgaaga attccactta tggcgtgaat agcaatgaca
                                                                      360
tgatgagetg acacetnett ggactetace tgtacagage agegteeett tggtttggee
                                                                      420
cagaggggcg aacaattgca agggagaggg cctggctgat cctggctctt ttctccaggg
                                                                      480
gtgtggggaa aaatggcaaa ggtcaactag ctgcttcccc aagggaatag gggtgtgagt
                                                                      540
acactcacta nggggcaagg cgctgcttgg ttcctggggg gactgggtgg gaaagggtgg
                                                                      600
tgnganggag ataaagagat tcaaactgag actccagtct ttccttctgg gggccaccca
                                                                      660
aagttgggga gnaaccccct antggtneet gecaacaace ttgeettggg attaaacatt
                                                                      720
ntncattttt ttcantaana tttttgaaca aagggttant attgnctnaa gtttann
                                                                      777
     <210> 765
     <211> 774
     <212> DNA
     <213> Homo sapiens
```

```
<400> 765
ntttctaatg cttggctctc gntttgatgc angatcccat cqattcggga aatgcaagtc
                                                                        60
aaaacagctt tgtaggtctc agagtttgct tttaagaagt agtacaagaa ggaatagtta
                                                                       120
tatcaataca ccagtggctg aaattatcat gaaaccaaat gttggacaag gcagcacaag
                                                                       180
tgtgcaaaca gctatggann gtgaactcgg agagtctagt gccacaatca ataaaagact
                                                                       240
ctgcaaaagt acaatagaac tttcagaaaa ttctttactt ccagcttctt ctatgttgac
                                                                       300
tggcacacaa agcttgctgc aacctcattt agagagggtt gccatcgatg ctctacagtt
                                                                       360
atgttgtttg ttacttcccc caccaaatcg tagaaagctt caacttttaa tgcgtatgat
                                                                       420
ttcccgaatg agtcaaaatg ttgatatgcc caaacttcat gatgcaatgg gtacgaggtc
                                                                       480
actgatgata catacetttt etegatgtgt gttatgetgt getgaagaag tggatettga
                                                                       540
tgagettett getggaagat tagtttettt ettaatggat catcateagg aaattettea
                                                                       600
agtaccetet taettacaga etgeagtgga aaaacatett gaetaettaa aaaaanggga
                                                                       660
catatttgaa aaateetggg agaanggaet atttggetne ttttgccaae ttaetteata
                                                                       720
ctggnaagcc agattantng ctcaaggaag ttttgatgag ccaaaaaagt tttn
                                                                       774
      <210> 766
      <211> 779
      <212> DNA
      <213> Homo sapiens
      <400> 766
ttnnncgctn ntgaanaccc cttctcctna aatccttttt aantnccttg ctgnntgatc
                                                                        60
ccatcgattc gcgaaattcg gtggcgccac gtccgcccgt cttngccttc tgcatngcgg
                                                                       120
cttcggcggc ttccacctag acacctaaca gtcgcggagc cggccgcgtc gtgagggggt
                                                                       180
cggcacgggg agtcgggcgg tcttgtgcat cttggctacc tgcgggtcga agatgtcgga
                                                                       240
categgagae tggttcagga gcatecegge gatcaegge tattggtteg eegecaeegt
                                                                       300
egeogtgeee ttggteggea aacteggeet cateageeeg geetacetet teetetggee
                                                                       360
cgaagccttc ctttatcgct ttcagatttg gaggccaatc actgccacct tttatttccc
                                                                       420
tgtgggtcca ggaactggat ttctttattt ggtcaattta tatttcttat atcagtattc
                                                                       480
tacgcgactt gaaacaggag cttttgatgg gaggccagca gactatttat tcatgctcct
                                                                       540
ctttaactgg atttgcatcg tgattactgg cttagcaaat ggatatgcaa gttgctgatg
                                                                       600
attectetga teatgteagt aetttatgte tgggeceane tgaacagaga catgattgna
                                                                       660
tcatttttgg tttggaacac gaatttaagg cctgctattt accctggggt atccttggat
                                                                       720
tcaactatat catcggangc tcngtaatca atgagctaat tggnaaattn ggtggacac
                                                                       779
      <210> 767
      <211> 799
      <212> DNA
      <213> Homo sapiens
      <400> 767
gnnnnnnttn cocgcetttn gaaaneeest tetttetaat gettgtteaa egeetttget
                                                                       60
gcaggatccc atcgattcgt ggatactgac aatggtggca ggcatttcaa gccttttaaa
                                                                      120
ttagtacttt ttgtcgnctt gcttattaaa attttgttaa ttttagcaaa gaccaattgt
                                                                      180
tgtgataaac tggtgttttt nggatgcttc aagcacacgt taaccaatcn gccaatnccc
                                                                      240
ctttnggttc ctcccattgn tctaaaatag gactttcata ttattaaaac ctcaaaagat
                                                                      300
gatccaccca ggatgaacaa agatcaccaa ggggaaagaa aacatttttt atctttacag
                                                                      360
aaaacatgtt aagattatat atagatgtat tetttacatt ggatattgta ttagagteet
                                                                      420
ccttacaaga aatgaaatag gtttttagca ctcttagcat tagagttcct agattggtgt
                                                                      480
tgatagctac agttttaaaa tgtataacct gaaaatgaag gttaattttg cattgtaaag
                                                                      540
agcacatttg atctatgtaa aaagtgtcca tttggtgtat ttttttaaa aaagagaaag
                                                                      600
```

```
cactttcata ttaagtagca tgtgtatgaa tttaagattt tcatatttgn tgngtctggt
                                                                       660
attcagtgaa gtaaaattga gcattttaaa agtttggtgg atggcaacca ttaactatta
                                                                       720
aattaaaagc caccttatac totgotgott aacttgottg naaattgoac otttggnacc
                                                                       780
ctgcacattt tcatattnc
                                                                       799
      <210> 768
      <211> 826
      <212> DNA
      <213> Homo sapiens
      <400> 768
gnnnntnncn ccctttctaa tggcttgttt ctaaatgctt tttcnaatcc ttggtacatg
                                                                        60
atcccatcgn ttcgcgctgt gcttgagacc aacctgacgg gtaccttcta catgtgcaaa
                                                                       120
gcagtttaca gctcctggat gaaagagcat ggaggatcta tcgtcaatat cattgtccct
                                                                       180
actaaagctg gatttccatt agctgtgcat tctggagctg caagacnggg tgtttacaac
                                                                       240
ctcaccaaat ctttagcttt ggaatgggcc tgcagtggaa tacggatcaa ttgtgttgcc
                                                                       300
cctggagtta tttattccca gactgctgtg gagaactatg gttcctgggg acaaagcttc
                                                                       360
tttgaagggt cttttcagaa aatccccgct aaacgaattg gtgttcctga ggaggtctcc
                                                                       420
tctgtggtct gcttcctact gtctcctgca gcttccttca tcactggaca agtnggtgga
                                                                       480
tgtngatggg ggccnggagt ctctatactc actcgtatga ngtccagatc atgacaactg
                                                                       540
gcccaaggga gcangggacc tttctggtgt caaaaaagat gaaaggagac ctttaaggag
                                                                       600
aaagctaagc tcttgagctt gangaaaaca aggggtcctt ccatncccca aatgccttta
                                                                       660
catttttgga ggatatgcct nnnggnacnt ttttaaaaaa gcttatnagt tngntatggg
                                                                       720
naaaacaatt ttttccttan tttttaaagt ggntaataaa tnaaantcct aatggnaaaa
                                                                       780
aaactantcc ttggnaanta ttttccaggn cttnantgtn cccncn
                                                                       826
      <210> 769
      <211> 802
      <212> DNA
      <213> Homo sapiens
      <400> 769
gnnnttctaa tgctgttcta atgcttgtca atncttgana cgttcatcga ttcgggaagc
                                                                        60
caageetgga getgeaggte ecceggeate tetetetgte ecggeageee aggatggeet
                                                                       120
ggtgccccca cctgctgcag caggagcccc aaggagtgct agctgagggt ggttgctggg
                                                                       180
gtggtcctca tggacagtga ggtgtgcccg ggtgcactga gggtggtggg aggggatcac
                                                                       240
ctgggttcca ggccatcctt gctgagcatc tttgagcctg ccttccggtg ggagcagaaa
                                                                       300
aggccagacc ctgctgagtt agaggctgct gggatccact gtttncacac agcgggaagg
                                                                       360
ctgctgggaa caggtggcag agaagtgcca tgttngcntt gagccttgca gctcttcagc
                                                                       420
tggggactgg tgcttgctga aacccaagag ctgaacagtg aggaggctgt ccaccttgct
                                                                       480
tggctcactg ggaccaggaa agcctgtctt tggttaggct cgtgtacttc tgcaggaaaa
                                                                       540
aaaaaaagga tgtgtcattg gtcatgatat ttgaaaaggg ggaaggangc cnaaanttgt
                                                                      600
teceatttta tteaagtatt ggaaaatatt tggeeceet ttggetgaaa ttettttge
                                                                      660
aanaactaac tgngtggctt gttcncttac cctttttcan gnttaattgg tttnaatttt
                                                                      720
ttgcattgaa attaaagacg tttttaaatt tcntttncaa naacaaaggg cttanatncc
                                                                      780
ngantenana nattggnant te
                                                                      802
     <210> 770
     <211> 1157
     <212> DNA
      <213> Homo sapiens
```

```
<400> 770
ccctttttt tttttcccnn aaaaaaanat tggggncccn tttttttggg nttttttttc
                                                                        60
ccnaaaaaaa aattgggncc ctttttgggg ggnntnaaaa aaannnnnn nccccccntt
                                                                       120
tttttggggn nnnnnaaann tnnnnnncnn nttnnnnnnn nnnnnnnnn ggnnttnnng
                                                                       180
gggnnnannc chececcaa ttteeeggnn attntteegg geceaatttt tgggaccee
                                                                       240
cagggnnnag aataaggccc ggggnttttt tttncnaggg ncccaaaagg gcccttqqqc
                                                                       300
caaaggnaaa teenttggga aattttggga atttggeett tggnanntee caataceggn
                                                                       360
aaaaatgggg aaangnaaaa aaggnttncn ccaaattggt tgggggggg ttccaaagat
                                                                       420
tttcattggg ggtncntggg ctttcaaccc naaggnaang ggtttncttt caaaaaatta
                                                                       480
cctttaattg ccattaagca attcccaang gttannaaag ggtgtttntt ctcanctatg
                                                                       540
cttcganagn gaaaatcaac naatggaaaa tgtgttgtaa ttggtctgca ntctacanga
                                                                      600
gaagctagaa cattagaagc tttggaanag ggcggnggag aattgaatga tntttgnttc
                                                                      660
aactgccaaa gagtgttgtt gcagtcactc atttgaaaaa ctattttcct gctccagaca
                                                                      720
ngaaaaaaac tttatangtt tactaggaat cgatttgaca agcnttcang taacaaacag
                                                                      780
ttctnccaag agatatcctt gttnaagaan nattanaata ncnngaaagc ggaaanngtg
                                                                      840
aataaatnnc ttcnagaagc ccaaaaannc acngaanaag tatggtgggn cttactggtt
                                                                      900
agcacgttct tgacnacaga tggaaattga antctngatt ncctctgatt antgaatgaa
                                                                      960
aaggtgacta ttnaanagct cttnanatac catgagtntt tggancattg attgaccaat
                                                                     1020
ttcaanncca tttttangat ngaattntta tnaatgattn attnanaant gannnccttn
                                                                     1080
gtttaaatta nnaaanaanc cntcnaaana cnanagggga tttataaaat ctaataanan
                                                                     1140
ttttnnncnt ntnaann
                                                                     1157
      <210> 771
      <211> 760
      <212> DNA
      <213> Homo sapiens
      <400> 771
ngncctttna tnccttntga anccntttgn aattnctcnn nnngttgatc ccatcgattc
                                                                       60
gaatteggea egaggtggaa gaaaattttt tgetgettet ggttneeaga aaagggagee
                                                                      120
attttaacag acacatctgt caaaagaaat gacttgtcga ttatttctgg ctaatttttc
                                                                      180
tttatagcag agtttctcac acctggcgag ctgtggcatg cttttaaaca gagttcattt
                                                                      240
ccagtaccet ccatcagtgc accetgettt aagaaaatga acttatgcaa atagacatce
                                                                      300
acagogtogg taaattaagg ggtgatcaco aagtttoata atattttooc tttataaaag
                                                                      360
gatttgttgg ccaggtgcag tggttcatgc ctgtaatccc agcagtttgg gaggctgagg
                                                                      420
tgggtggatc acctgaggtc aggagttcga gaccaacctg accaacatgg tgagacccc
                                                                      480
gtctctacta aaaataaaaa aaaaattagc tgggagtggn ggtgggcacc tgtaatccta
                                                                      540
gctacttggg aggctgaacc aggagaatct cttgaacctg ggaggcanag gttgcaagtg
                                                                      600
agcccgagat cgtgccattg cactccaacc agggcaacaa gagtgaaact ccatcttaaa
                                                                      660
aaanaaaaan gaaaactcga gcctctagaa ctatagtgag tcgtattacg tagatccaga
                                                                      720
catgataaga tacattgatg aattttggac aaaccccann
                                                                      760
      <210> 772
      <211> 777
      <212> DNA
      <213> Homo sapiens
      <400> 772
gaaancccat ttnnnnnttc cncttcnaat cccttggnta ctcgntcttt ntgcaggatc
                                                                       60
ccatcgattc gaattcggca cgagctctac taaaaataca aaaattagct gggcgtggtg
                                                                      120
gcacacacct gtaatcccag ttacttggga ggctgaggca caagaatcgc ttgaacccgg
                                                                      180
```

```
gaggcggagg ttgcagttag ccaagatcgc cctgctgcnc tccagcctgg gcaacagagg
                                                                     240
gagactetgt etceaaaaac aaaacaaaa actgttagtg aaggtteeet gggacttttg
                                                                     300
atattttaaa aattgttett atgactagta gataaattca ttgccataat gaggctaget
                                                                     360
cccagataaa cagtgtattt tcttctttt tttttttggt gagtggtcca gagctttaag
                                                                     420
ctacttttcc agtagtttgc cactttctcc gaggtanttt ggctgctctt tcagtaatgc
                                                                     480
taattgtgtg tcaaattttg tctacaacag taggcaacag atgaagataa gttggttgaa
                                                                     540
tgtctccagc actatgcatc cctattttct atttattggg gtacactcac tttcagtaat
                                                                     600
gngtttcaaa ctggtatttt ttaaaaaaca aatcaatgta aggactgaag ttgaaatanc
                                                                     660
720
tctagaaact atangtgagt cgnnttacct tgaatcccag accttgataa gatacnc
                                                                     777
      <210> 773
      <211> 782
      <212> DNA
      <213> Homo sapiens
      <400> 773
gnntnnattc ccctttcnaa tncttggcaa acgctctctn tgttggatcc catcgattcg
                                                                      60
aatteggeae gagacagtet egggttteat attttgetgt ttttgatgga catggaggaa
                                                                     120
ttcgagcctc aaaatttgct gcacagaatt tgcatcaaaa cttaatcaga aaatttccta
                                                                     180
aaggagatgt aatcagtgta nenecegeeg tgaagagatg cettttggac aetttcaage
                                                                     240
atactgatga agagtteett aaacaagett eeageeagaa geetgeetgg aaagatgggt
                                                                     300
ccactgccac gtgtgttctg gctgtagaca acattcttta tattgccaac ctcggagata
                                                                     360
gtcgggcaat cttgtgtcgt tataatgagg agagtnaaaa acatgcagcc ttaagcctna
                                                                     420
gcaaagagca taatccaact cagtatgaag agcggatgaa gatacagaaa gctggaggaa
                                                                     480
acgttaaggg atgggcgtgt tttgggcgtg ctagangtgt cacgctacat tggggacngn
                                                                     540
cantacaage getgengtgt nacetttgtg eccegacate agacgetgee agetnacece
                                                                     600
caatgacagg ttcattttgn tggccttgtt atnggctctt naaaggnctt tnccccatna
                                                                     660
aggaageeng tggaacttte atettgneet gnantegang atnaaaaagn atneagaace
                                                                     720
cggggaaggg gaaaatcctn aannetgaet teeeggttte caaaccagtn ttgnaacaaa
                                                                     780
nc
                                                                     782
      <210> 774
      <211> 793
      <212> DNA
      <213> Homo sapiens
      <400> 774
gnannngeen egnttttgat teeeettntt caaateettt gnnaategee etenetgttt
                                                                     60
tgatcccatc cgattcgaat tcggcacgag atggcagttg cttttgaagt atatgatgnn
                                                                     120
ttcctccact acaaaaaggg gatctaccac cacactggtc taagagaccc tttcaacccc
                                                                     180
tttgagetga etaateatge tgttetgett gtgggetate ngeactgaet cageetetgg
                                                                    240
gatggattac tggattgtta aaaacagctg gggcaccggc tggggtgaga atggctactt
                                                                    300
ccggatccgc agaggaactg atgagtgtgc aattgagagc atagcagtgg cagccacacc
                                                                    360
aattootaaa ttgtagggta tgoottooag tatttoataa tgatotgoat cagttgtaaa
                                                                    420
ggggaattgg tatattcaca gactgtagac tttcagcagc aatctcagaa gcttacaaat
                                                                    480
agatttccat gaagatattt gtcttcagaa ttaaaactgc ccttaatttt aatatacctt
                                                                    540
tcaatcggcc actggccatt tttttctaag tattcaatta agtgggaatt ttctggaaga
                                                                    600
tggtcagcta tgaaagtaat agagtnttgc ttaatcattn ggaattcaaa catgctatat
                                                                    660
tttttttaaa aatcaatgtg aaaacataga cttattttta aattgntacc aattacaata
                                                                    720
aaaataatgg gcaattaatt tttnaaaact ttttaaaata gnatgctcat atttttaaaa
                                                                    780
```

```
ataaaanttt tnc
                                                                       793
      <210> 775
      <211> 1009
      <212> DNA
      <213> Homo sapiens
      <400> 775
agentittit ngaantteee ettinnitna aaaateeeet tittiggeaa aaaatineee
                                                                        60
continua ingittitini gaticccaca thonghaath thogggonog ggnnactgno
                                                                       120
nannggenee ettegggggn eengtgntaa gnenatnett gtntntanaa agntggnnnt
                                                                       180
nttttncgat ngngactatt gncnacnctc ttccntnttg gcagngngtc tgganggttg
                                                                       240
nggtngctca tntggntaan cenatectgg ngaccaanng geegnggtgn gentgeaage
                                                                       300
tttgnccacn tgggaaancc gnnagtggtn gtctcanttg cntgntgggn nentgncccc
                                                                       360
atettgnetg etgnaneett ggggageagg nnetnggtng tggtnetgee tgettgetge
                                                                       420
tngttccccg ggcatgcgtn nncannaagg gncatgcntn gggcaanaag gtgcgtggnc
                                                                       480
ancgtnngna tnnnnaggac caccntgggt cgngaatcnn tgggttncct gataggaacc
                                                                       540
ntnaannnct gengntttta ttaaatggga nnanangggt ncanttcaaa gecagtnnaa
                                                                       600
tgcccttatg gaanggngtg natnacatan cnnnntatgt gtcntanann angaaatcgt
                                                                       660
tnnncaaatt tnnacaanaa tntttntaan aaagggtatt tnantntngg tgaaanaaca
                                                                       720
angntttaaa gtnaaatgnt tntancanaa ttaantaaac nggtnttnat gattncttac
                                                                       780
naaantaacn atncnnaage atttacnget tanangteen enngataetn neanaatatg
                                                                       840
gnnnnaattn tannanatng cgataatctn gnananactn tcatnnnnna tngtgtaatc
                                                                       900
antanntach tgatttnnnt naaatgaaaa cathtgathc aagattaath cattanntat
                                                                       960
acnaaaatnt tcanatanta natntacata taatggtttc naataaacn
                                                                      1009
      <210> 776
      <211> 785
      <212> DNA
      <213> Homo sapiens
      <400> 776
gnnnnnnntt cccctttcta atcncttgga nntcgctctn tntgnangat cccatngatt
                                                                       60
cgaattcggc acgagagaaa cacaggtgtc gtgaaaacta cccctaaaag ccaanatggg
                                                                       120
aaaggaaaag actcatatca acattgtcgt cattggacac gtanattcng gcaagtccac
                                                                       180
cactactggc catctgatct ataaatnngg tggnntcgac aaaagaacca ttgaaaaatt
                                                                       240
tganaaggag gctgctgaga tgggaaaggg ctccttcaag tntgcctggg tcttggataa
                                                                       300
actgaaagct gagcgtgaac gtggtatcac cattgatatc tccttgtgga aatttgagac
                                                                      360
cagcaagtac tatgtgacta tcattgatgc cccaggacac agagacttta tcaaaaacat
                                                                      420
gattacaggg acatctcagg ctgactgtgc tgncctgatt gttgctgctg gtgtnggtga
                                                                      480
atttgaaget ggtatetnea agaatgggea naccenaaag catgenettn tggentacae
                                                                      540
actgggtgtg aaacaactaa ttgtcggngt taacaaaatg gattcacttg accaccctan
                                                                      600
aggcengaag agatattgan gaaattgtta aaggaagtca geaettneat taagaaaatt
                                                                      660
ggcctacaaa tccnnganac aataancatt tgtgccaatt tnngggttgg gaatgggtga
                                                                      720
ccaacattgc ttggagccca agtgnttaac aatgccttng gttnaaaggg antggaaaag
                                                                      780
ttacc
                                                                      785
     <210> 777
      <211> 1366
      <212> DNA
```

<213> Homo sapiens

```
<400> 777
60
tnnanaannn aagnngnttc nanncttttc aaagcttgga aaacgcannc aannnnnggg
                                                                     120
aaagcaagaa agaacagcta aagnnngncn cagaganagc ttttangang tntangaaga
                                                                     180
aggaatannn gnggncaata nnnnannnnc ngaaantatc atganacnca aatganggan
                                                                     240
aaggcagcac aagctgngca aacagctatn gngacggggg ggccgggaga gnctaaangn
                                                                     300
cananatnca atatataagg actgcatgen aagggataen aaacaagnan actnntetag
                                                                     360
gaagaaataa ntnttgacnt ancnnacntt cataacgaat agcaccgtac atcgagncaa
                                                                     420
ccaactaana ggnctaagga aatggcaaan nacnttaatn nntgagcnaa ggaagggngt
                                                                     480
atngnccnan anngaaatgc ntcntaacca anttttaatn gtaacggnat nangatnaan
                                                                     540
ncntnanccc acgcaactca aaaanattac attanntaaa aaaganctat ancaaaacta
                                                                     600
gtnttcaaaa tngnacgagn aaatgggnaa nantttntnn ccgggaaaat tggnagagat
                                                                     660
ccanaaacac tggntnaggg naatanatgn ccgcccnaaa aaaccntnac cataggnatn
                                                                     720
ggctancata gangagatat anchatnagg ggatcaanan chtaggnatt ngaaaantaa
                                                                     780
ncgagttaaa acancnagat nnggnantac gaganatagc ttggacgngt atcaaatcgg
                                                                     840
accetnggat gggcntangg aaaaanaaaa aggntngagn gaantteete anaggaanng
                                                                     900
tganagagen aaanaanatn aagggeettg gngaaaangg aaaaacagat agngteatne
                                                                     960
natatatnen natgananan tggggnaatn taatetaenn tanatnnggg ggaaaaaaat
                                                                    1020
cnnncatgac nnnaaaanga gntaatgnna nnatgagaga ttaaacnnat aaaacnagag
                                                                    1080
aantttgngn aaanctgnga gataaaaaat aaataaattc tntntggaac atntanaccn
                                                                    1140
tctatnnaaa aaaaagaggg gaaaccatct ngattatgca cananaaatn tnacntngng
                                                                    1200
gaaataaatn gggnacaata acatatatgn ggatgtacan tnntggncng aaaaactata
                                                                    1260
caacntgaga nnnnacnang atataaagcn nnaggnagtn tatangggca tcatcaangg
                                                                    1320
gaagntataa agcaactgna nnctcatata naaaactgnn cnncaa
                                                                    1366
      <210> 778
      <211> 775
      <212> DNA
      <213> Homo sapiens
      <400> 778
gntttnnatn cetettteta atnnettgge tactegntet ntetgnanga teccategat
                                                                      60
togaattogg cacgagagat tatgagcatg tagaagatga aacttttoot cotttoccac
                                                                     120
ctccagcete tecagagaga caagatggtg aaggaactga geetgatgaa gagtcaggaa
                                                                     180
atggagcacc tgttcctgta cctcccgccg ccgaacagtt aaaagaaata tacccaagct
                                                                     240
ggatgctcag agattaattt cagagagagg acttccagcc ttaaggcatg tatttgataa
                                                                     300
ggcaaaattc aaaggtaaag gtcatgaggc tgaagacttg aagatgctaa tcagacacat
                                                                     360
ggagcactgg gcacataggc tattccctaa actgcagttt gaggatttta ttgacagagt
                                                                     420
tgaatacctg ggaagtaaaa aggaagttca nacctgttta aaacgaattc gacttgatct
                                                                     480
ccctatttta catgaagatt tttgttagca ataatgatga agttgcggag aataatgaac
                                                                     540
atgatgtene ttetactgaa ttagateeet ttetgacaaa ettatetgaa agtgagatgt
                                                                    600
ttgcttcttg agttaagtag aagcctaaca gaaggagcca accacaaaga attgagagaa
                                                                    660
atnaacaact gggccttngg aaagaaangc nggccaagct gcttgagtaa tagtcaganc
                                                                    720
ctanggaaat gatntggtta atgaattcac cccaggncac acccngttga agagc
                                                                    775
     <210> 779
     <211> 781
     <212> DNA
     <213> Homo sapiens
     <400> 779
```

```
gettttnann necetnettt enaancetet teaaateett ggntategtt etntetgnng
                                                                       60
gateceateg attegaatte ggeacgagag acaaagaaaa aggtggeaat catagaagag
                                                                       120
ttagtagtag gttatgaaac ctctctaaaa agctqccqgt tatttaaccc caatgatgat
                                                                       180
ggaaaggagg aaccaccaac cacattactt tgggtccnnt nctacttggc acaacattat
                                                                       240
gacaaaattg gtcagccatc tattgctttg gagtacataa atactgctat tgaaagtaca
                                                                       300
cctacattaa tagaactctt tctcgtgaaa gctaaaatct ataagcatgc tggaaatatt
                                                                       360
aaagaagctg caaggtggat ggatgaggcc caggccttgg acacaqcaqa caqatttatc
                                                                       420
aactccaaat gtgcaaaata catgctaaaa gccaacctga ttaaagaagc tgaagaaatg
                                                                       480
tgctcaaagt ttacaaggga aggaacatca gcggtagaga atttgaatga aatqcagtgc
                                                                       540
atgtggttcc aaacagaatg tgcccaggct tataaagcaa tgaataaatt tggtgaagca
                                                                       600
cttaagaaat gtcatgagat tgagagacat tttataggaa atcactgatg accagtttga
                                                                       660
ctttcataca tactggatga aggaagatta cccttagatc atatgtggac ttattnaaac
                                                                       720
tatgaagatg tactttnaca gcatncattt tacttcaagg cagcaagaat tqcttttaga
                                                                       780
                                                                       781
      <210> 780
      <211> 783
      <212> DNA
      <213> Homo sapiens
      <400> 780
gnntttnnan nnccngnttt ctaatnctnt tcnaatnctt tgnnancgtt ctntatgcan
                                                                       60
gacccatega ttegggaate teetagaaaa gttgtgattt tegagecata teettetgtg
                                                                      120
gtagatecta atgatectea natgttggee tteaacecea ggaaaaagaa etatgatega
                                                                      180
gtaatgaaag cactggatag cataacttct atcagcnaaa tgacacaagc accatatctg
                                                                      240
gaaatcaaga agcaaatgga taaacaggac ccccttgctc atcccttact gcaatgggtt
                                                                      300
atatcaagta atagatcaca tattgtgaaa ctgccagtta acaggcaatt gaagtttatg
                                                                      360
catactccac atcagttcct tetteteage agtecaccag ccaaagaate caattttaga
                                                                      420
gctgctaaaa aactctttgg aagcaccttt gcatttcatg gctcacacat tgaaaactgg
                                                                      480
cactccatcc tgaggaatgg tctggttgtt gcttctaata cacgattgca gctccatggt
                                                                      540
gcaatgtatg gaagtggaat ctatcttagt ccaatgtcaa gcatatcatt tggtactcag
                                                                      600
ggatgaacaa gaaacagaag gtgtcagcca aggacgagcc agcttcaagc agtaaaagca
                                                                      660
gcaaatacat cacagtcacn ggaaaaaagg acagcaatcc caattcctgc caaagccgta
                                                                      720
acttaaaatg catagnoott atgtgaaagg gatcacette atetggacet geacaaacat
                                                                      780
ggc
                                                                      783
      <210> 781
      <211> 796
      <212> DNA
      <213> Homo sapiens
      <400> 781
gnnntncgcc ttcaatnctn ttcantctnt tcaatctttg aatcntcttt gttgtccatc
                                                                       60
gttcaattcg gacgagaccc ttatggcaga tccccacagt ctggggcaga agaggcgtcg
                                                                      120
aggngccaga agtgncggca gcagcagccg cagcagccca aagagaggca agagaaagag
                                                                      180
aaageggeeg gtggagggt nnneggaaga getggteece gtggttgage tgggteeceg
                                                                      240
tggttgaatt ggaagaggcc atagccccag gctcagaggc ccagggcgct tgggtctggt
                                                                      300
ggggacgcgg gggttgcccc caatggtgca gctgcagcag tcaccactag ggggtgatgg
                                                                      360
agaggaaggg ggccacccca gggccattaa caaccagtac tccttcgtgt gagccaaccc
                                                                      420
caccegetee accetttta aaccecccag ceettgeteg tgagattggg ettgggtagg
                                                                      480
gacagaagag gcccgaaatc cctcccccat gcttnctgac ccttgtttgg ccaaagggca
                                                                      540
```

```
tetttgatgg tacaaagcag angetteggg anaagettee gteacaacae tneaaggtee
                                                                     600
cttcccaagg gcaaggggat ttnggcttca tgagctnctt tgaggggctt ttttttggtc
                                                                     660
annececace tinggggeea tittececaa tiaactiace eccaacecea agneanggit
                                                                     720
nagggggnaa agggctttcn anttccatta aagggggttt gtttgttgnt gttttaaacc
                                                                     780
aaaatgggga aancnn
                                                                     796
      <210> 782
      <211> 886
      <212> DNA
      <213> Homo sapiens
      <400> 782
cggnnnnnnn gnagccentt tggnaaange etetaaggga aangeetttt tgaaaacnan
                                                                      60
angaaaacct ntgggaaaag nccncannna ttttngngaa annggcnnga gcnnanantn
                                                                     120
ggacacngtt ntaannnnan nagngnnngt tttnnganan agggnnnnna gnggnannna
                                                                     180
ngngnnggag ggaannaagg nanagnannn ggnagnnaag gnnnnaaaga agnagnnang
                                                                     240
gaganggnnn gnggngggc atgangnggg nncagaggca cgaggagccc aagaccatca
                                                                     300
cngangagna ngagcagggn accnacatnn acnnggacna cgagaagngg ggccagcgga
                                                                     360
agaaggaagg nagnacctng agnaccgnta ccaggaggan cgggaccnac agngacanag
                                                                     420
480
nncngnncnn ggaaaganng ggagggaggn ncgaaggcaa aggggggann cgnnannncc
                                                                     540
aggaagnang gaagggggn cgggaggnna annganaaga ngaaccnngg gggnncaggg
                                                                     600
gggcgagggn agcanaannn nnccnnagnc aanngaaggg gananaagag ngggaaaann
                                                                     660
aannagaaag agggaaaana agnnaaggaa anaaaagang ngnnaannng gganaaaana
                                                                     720
nggnganann gnngganaaa ngngnannan aaaanngagg aggncanngg gnaaanaana
                                                                     780
nggggagggn nganananag ngaannagac aaggaanagn gaannagngn anagnanngn
                                                                     840
gnannaaagg nannggggna anaagnanna nannnnnagn gaagan
                                                                     886
      <210> 783
      <211> 805
      <212> DNA
      <213> Homo sapiens
      <400> 783
cnaatnettg etettgneet ntttenaatn ettggenaet egetttetnt geggateeet
                                                                      60
cnnganncna tegttegaat teggeaegag cacaaggaga agaaagttaa ttaacattga
                                                                     120
aagatgagaa gacatcttgg aagacttgaa ttgggccttg gaagaagaac agccattcaa
                                                                     180
atagatagaa ttgtggtagc aaaggcatac ngntcggaaa gtatagatct ccagggacag
                                                                     240
tagtcatggg gttggggcac tgttggaatt taaggttgga aggatatatt ggagccctt
                                                                     300
gaatacggta acaaggcaca ccttgggcag tggagagtta tcagagtgtt tgaaaaggag
                                                                     360
ggttattgag taaataaata gactggtact ttaggaattt taaaatgtgg atcattgtac
                                                                     420
tactaataac tatntatttt atatttacta tctactaagt aatttacatg tattttcttg
                                                                     480
tactgactgt aaaccttctg ggtgtgggtg ttttaagtgc cattttactg ataaagaaac
                                                                     540
tgangcttaa atagntgaaa tanntcaccc tgttagtgag tggcacaatg acaagtcann
                                                                     600
atcttanggt tgccnanntc caaaanncat ttaaanttnn agnatnattg annnttttnc
                                                                     660
cttatggcnt nnnaaatttg gggagccatt attgaaatcc nttacnacnt angaattgnc
                                                                     720
caaaaaaaat actttttggg gaaaactgga tttattaatt atccaaaata atttnantgg
                                                                     780
cttgnttggc ttntttccac tntnc
                                                                     805
     <210> 784
```

<211> 776

<212> DNA <213> Homo sapiens <400> 784 taatgctggt tactgccctt caaatccttg caatcccttg gnaancggnc cngcngaccc 60 atcgattcga attcggcacg aggttatatt aaattattct ttgntnttct ttgtctttta 120 ataaagcctg caagttacta aattgnagtt ncataaattc tgtagtnaag tatcatcttg 180 gcagngtgcc aaaggtgaaa angntgcttn ctctaacaga gaaattctta gngactccag 240 tcgtanaaaa acgtctttac aacctgaata agatnganga attgngaaca taccatggcc 300 tattggatga atcatttgcc ggnggctana ncagactgta gggtttgtga tggatntatg 360 gagtatgtgg gtatagaaat catgaatntn ccatttgnnn ncagagattc aagcntanac 420 ttaatgggta gatcataaat gacagaatga attcaaaacc tagcacgtgc attgtaaatg 480 tgtgcccaga tatgtnttgg aaatggcagn tccttggggt catgtntcta ctggcaaaat 540 ttgctatagn gnnactattg nantgtaatt ataaaattna tcannattat ncaccgattn 600 gccaagtaaa ctgtactgtn cataggaatt ttgggaattg tgcanaaatt ggatcaattg 660 aanttnagaa engatgtetg ggettaaaaa tttatenggg accaennatt angaaaetna 720 catntttcgg ngctgaggtt cattgnccaa ggccangaag gtntttnccg aaaanc 776 <210> 785 <211> 778 <212> DNA <213> Homo sapiens <400> 785 ttngaaaacn cettngettn gttnececta engaaaceet tttgaaaace ntttgenann 60 teetetttnt gnaggateee ategattegt gaaagaggag ateggtgace tgggeteett 120 atgtgcctga atgagtttga gtttcctgtt aactccaaat caacagtatt ttcaacaaga 180 aatgtgcaat tgaaatcaag tgctgtttaa gtgcagctag gantccacag gaagacactt 240 gcagtgaaca gagttatgga gcagcaaaaa cacagatcta tttggaaaaa gagaaaacat 300 atgcgttgta ttttgcttca attataaaat accatcctct caaaggtggt tctaaattac 360 aaaggacttt gatttctagg tagattctgg gtagagactt cctttcatat tgaggcatta 420 atgacacett ttaacetggg aagcaatatg actggagttg tactttgaga agattaatca 480 ggtttggttg cagaatgaaa gagaagatga agtcaagaga ttggtttaga ggctctagca 540 gaagettagt catatttcaa aatgatcaaa tatcaagaaa aattctgage tgcataactt 600 gtataaagta attttcagtg attttttca tggttatgat aaaagaactg gattagcaga 660 aacttttacc ctgaatcaag atttaatttt tctttgagct catcttaagg atatcggaac 720 atagggagca aacgatggtg tggctgcctc antgcttgaa ttttaacngt tttgaaan 778 <210> 786 <211> 805 <212> DNA <213> Homo sapiens <400> 786 ngcccccct ttcccccctn ttgaaanccc ctttggnana nnccnntttc aaatcncttg 60 naaatccttg gcnactcgtn ctntctgcag gatcccatcg attcgaattc ggacgaggag 120 aggatcactt gagcttagga gttcaaatcc agcctgagcc aacataacaa gactttgtct 180 ctaaacaaaa cagttattgt ttaaagaatc tgaaatcttc atctttaatt caggtagccg 240 tgaatcgagc ccaagtttgt ttgatatcca gttccaagtc tggagagagg catctttatc

ttattaaagt atcgagagac aaaatatcag acagcaatga ccaagagtca gcaaattgtg

atgcaaaagg gctatcaaag ggaggctttt tacagagaac taaggaagag aaggaggttg

300

360

420

```
ttaaagagac ttgagatcag aaaaagatca agaacaactt gaatctcaaa gtatgaattt
                                                                       480
gaagtatttt getgageaaa catttgaatg cetgtatgta eegtaateet etateaetqq
                                                                       540
ggtccccaac cccggtacca gcccgtggcc tgctagggac tgggccgcac aqcaqqaggt
                                                                       600
gagcagtggg tgggcaagcg accattccca cctgagcttc ccctcctgtc agatcagcag
                                                                       660
cagcgttaga ttctcatagg agtgcaaaac cctattgtaa actgcccatg ccaagggatc
                                                                       720
tangttgcaa cgcttcctta tgagaanttg aatgcctgan ngaactgtca ctgncttcca
                                                                       780
tnaaccccca gatgggtact ngttc
                                                                       805
      <210> 787
      <211> 775
      <212> DNA
      <213> Homo sapiens
      <400> 787
cettggnnag nngccccett naaancettt gaaaaccett ggcaaangce ctnncngnnn
                                                                        60
gateceateg attegaatte ggacgaggag aggateaett gagettagga gtteaaatee
                                                                       120
agcctgagcc aacataacaa gactttgtct ctaaacaaaa cagttattgt ttaaagaatc
                                                                       180
tgaaatcttc atctttaatt caggtagcac cgactcgagc ccaagtttgt ttgatatcca
                                                                       240
gttccaagtc tggagagag catctntatc ttattaaagt atcgagagac aaaatatcag
                                                                       300
acagcaatga ccaagagtca gcaaattgtg atgcaaaagg gctatcaaag ggaggctttt
                                                                       360
tacagagaac taaggaagag aaggaggttg ttaaagagac ttgagatcag aaaaagatca
                                                                       420
agaacaactt gaatctcaaa gtatgaattt gaagtatttt gctgagcaaa catttqaatq
                                                                       480
cctgtatgta ccgtaatcct ctatcactgg ggtccccaac cccggtacca gcccgtqqcc
                                                                       540
tgctagggac tgggcccgca cagcaggagg tgagcagngg gtgggcaagc cgaccattcc
                                                                       600
cacctgaget tnecectect gteagateag cancagegtt agatteteat aggagtgeaa
                                                                       660
ccctattgta aactgccatg cnagggatct aggttgcacg ctccttatga ggaattgaat
                                                                       720
gecetgatga acttgneact gnetteeate acceecagaa ngganetgge taace
                                                                       775
      <210> 788
      <211> 774
      <212> DNA
      <213> Homo sapiens
      <400> 788
gaaaccettt tgtnaanage enetteaace enttetaatg ettggeaate getetnietg
                                                                       60
cangacccat cgattcgaat tcggcacnag attatttcca aagcagccta cagtagaaaa
                                                                      120
tagtcattat ggcagcagct tctgatgttt ttgtttggta ggttttctga tttcaatata
                                                                      180
tagaatcata ttcatagagt atcttctntn ccgcctngca caaagtaccc atttaaaatt
                                                                      240
tacatgcaca gttcattgcc acctttctta ggcctatgca tagttaataa ggttataatc
                                                                      300
tactcaacat ggaaaatgga gcctatttgc aaacacacaa gtaattaaag taccaattct
                                                                      360
ctcttagttt cttttttat agttggttta ttttgcaatt ataaatgtta aacatcccta
                                                                      420
gagatgaaag ttaaaatggt tgatcacaga tcagtagcaa aatacaaatt gacaattcaa
                                                                      480
aattataaat aaaactctgt tgaggatgtt taactttgag tctccaaatt taagagctaa
                                                                      540
gcttggaaga aacaaattta taggttatat ttccctctta aattaaanaa acaaacttcc
                                                                      600
tctggcagta gtttggtgaa ttcctttcat tgnaatgata ccatgattac aggatcaaaa
                                                                      660
atgcttaact tacttgccat tctgctcaca tcatcacagg ttgttntttt tttaaagcac
                                                                      720
tcnatgtagg cattttaaac cttcnggata accagagtat cttttgagaa anno
                                                                      774
      <210> 789
      <211> 773
      <212> DNA
```

<213> Homo sapiens

```
<400> 789
ngcccctttg aancenacng aaatcctttg genantenen etntetgtng gateccateg
                                                                      60
attegaatte ggcacgagag cagatttgng ataaacntnn tgnaggttna accnaagggg
                                                                     120
aactnntggt gcaactatgn ngnttggaag atgctgcnta tgtttattga ggattgcann
                                                                     180
anananatee tgaatneteg centttneaa aggettggat aaageactea agceagetae
                                                                     240
atatgtatag aacggnttaa aatcnatgag gaagcctgga ctaaatatnc catnggactg
                                                                     300
gngccnanaa ngctgncgat gaactttgna tctggnnaga agtntaaaga atggcaggat
                                                                     360
nantnnctaa ngatgaattt cannacnggn nnnccaccan tcttnaatnc tttaagatca
                                                                     420
ttatacgaag ncnangaaaa ggtggcaatc atngaanaat gngnatnatg ttangaaacc
                                                                     480
tctctaaaaa gntgacggca ctttaacccc natgatgatg ggaaggaggn accaccaacc
                                                                     540
acattanttt ngggtccagt actacttggc acancettat nacgaaactg gnengtnent
                                                                     600
ctattgettt gggagtacen taaaataeng eentngngag tneacetnea atgaatnnaa
                                                                     660
netetttnte anganagetn nngatecata ngaentgetg ganatnttta aggaanette
                                                                     720
nanggnggan tggattagge neaggeentt ggacacanee ntnettnatt tne
                                                                     773
      <210> 790
      <211> 953
      <212> DNA
      <213> Homo sapiens
      <400> 790
aanannnngg gnnnnnnnn nnnnannnn nnnnnnnnan nggngnnttn aaancettnt
                                                                     60
aanngncnnt nengettnaa acettggnaa neneegeeen nttgeannaa angngaannn
                                                                     120
atgcttngtg aagcctgann ccaaanctna aggnanggac ctggatcccc ttatatngaa
                                                                     180
naancggtnt ggaggaanga gnntgtcngg gaggatgggg cagaaaatga ngnnggcaga
                                                                     240
ntggncccgg gggctctgca naccagcctt ggagcctgct cattctgggc ccttgctgcc
                                                                    300
aagganccca gcctnaccta gcangaaang anatgaaagc ccttctccca ngaggtaggg
                                                                    360
tctaggctgc ccnaacttaa atgcattnag aaanctcnta gatgtggaaa natttttncg
                                                                    420
aacctgaaaa tgcagctggt anaatntcaa tgggaagcat aaatncatgt aaaatataat
                                                                    480
tnagntngaa tatnanngta aaaatgcact tttnngcggt gtgacngatc ctgggnnccc
                                                                    540
annatctgnn attnaagngn tttacnaang gaanggaaag gacctttncc taaactacct
                                                                    600
ttttgaacag ancattaaga angnncnttc ttttaagnaa aaaaaaatca aattttgang
                                                                    660
aaaantggna ttngaatgtn nagaaaaang gatananaan aaaanccaat nntaannacc
                                                                    720
nannetetet gganttenae tateteeaet aentaentnt aentatngeg ntaanatnna
                                                                    780
ctnttacntc nnnntantcn cacanacntc ntcnaacnta atnangenen canaateete
                                                                    840
tatannatnt antgtnnntc acannncnna enggntaant ntnnncaaeg ceatateaec
                                                                    900
netnmnateg nenagntana taacaentat ategneacte neacananae tee
                                                                    953
     <210> 791
     <211> 798
     <212> DNA
     <213> Homo sapiens
     <400> 791
tggnancgcn ctntntgttt gatcccatcg attcgaattc ggcacgagga tcattgttaa
                                                                     60
120
gggtgtattc cttgggggat ggtttgggcc gaatggggag tggaatattt gcncttcncc
                                                                    180
tgttttaaat tctaggatag attttaacat cctttgcggt cccagtccaa ggtangctgg
                                                                    240
tgtcatagtc ttctcactcc taatccatga ccactgtttt tttcctattt atatcaccag
```

300

```
gtagcctact gagttaatat ttaagttgtc aatagataag tgtccctgtt ttgtggcata
                                                                       360
atataactga atttcatgag aagatttatt ccaccanggg tatttcannc tttgaaacca
                                                                       420
aatctgtgta tctaatacta acccaatctg tttqqatqtq qattttaaaa aaatqtttqc
                                                                       480
taaacctacc caaagtnaga tttacctgna tttaaatggc ctttngggtc ttgaaaaagc
                                                                       540
tttntnaacc tcttggcttt aaaatgcgtt ttattctnga taagatactt cnaaatancc
                                                                       600
tnncaaaagg tgttngatnc naattacttt aaaataaaac ctgtaattgn ataatgncat
                                                                       660
aatgntgntc catgcctnan tccccttcta gnnntanaaa cntnantaan aantatatca
                                                                       720
atnntcgatn aaatnntann actataaaaa ctncggccct cttananact tnatncttga
                                                                       780
agttctcant ataaccnc
                                                                       798
      <210> 792
      <211> 788
      <212> DNA
      <213> Homo sapiens
      <400> 792
ctnttgttct ttttgcagga tccatcgatt cgaattcggc acgaggcaga gctcacatcc
                                                                       60
tgtgcgcagc atcttctgtc ccctcatgtc cttccgccag ggggcctgcg tggtgacggg
                                                                       120
cagtgaggac atgtgcgtgc acttctttga tgtggagcgg gcggccaagg ctgctgtcaa
                                                                      180
caagetgeag ggccacagtg cacetgtget tgatgteage tteaactgeg acgagageet
                                                                      240
actggcctcc agtgacgcca gcggcatggt catcgtctgg aggcgggagc agaagtaggg
                                                                      300
tectgtenge cetgetgetg tectecatee caccectett actecacete gtgttgtaaa
                                                                      360
taaagtttcg gtggtcatgc tganggccgg ctcccagctc tgccggggac ggacagggca
                                                                      420
gaaggcancg ggcaacttca ggaacacggt gaaaaaaaaa aaaaaaaaac tcgagcctct
                                                                      480
agaactatag tgagtcgtat tacgtagatc cagacatgat aagatacatt gatgagtttg
                                                                      540
gacaaaccac aactagaatg cantgaaaaa aatgctttat tttggggaaa atttgggatg
                                                                      600
ctattgctta atttgnnaac cattntaaac ctgcaaatta aaccaagttt aacaaccaan
                                                                      660
caattggcan ttcattttta atggttttna aggttcaagg ggggaaggtt tttgggaagg
                                                                      720
ttttttaaa attnncgggn ccnnnggngc ccaatgcatt tggggccccg ggnccccaaa
                                                                      780
ntttttt
                                                                      788
      <210> 793
      <211> 806
      <212> DNA
      <213> Homo sapiens
      <400> 793
gaatcccttt gcttctgtcc tttaagnnat cgttggaaca accatgnctt tttgtaggtg
                                                                       60
aagtgttctc tctgcatgca acagtaaaaa ttaatataat atttttncca caaaagaaac
                                                                      120
acttaacaga ggcnagtgcc aatttataaa atttatgatc taaaqqqqqa aatcatqqat
                                                                      180
tataaagtcc ttcagccctt tgggactcta aattggnggg ggattaaaaa gaatttaaaa
                                                                      240
taattttnga accgaattta ttttcccctc agtttttgag ggcattaaaa aggcattaaa
                                                                      300
tcaagacaaa tcatgtgctt gagaaaaata aaattaatga aaacncagca ctttatgttg
                                                                      360
gtttaacntg cancetnett tggaggtaga atttatttat ttaaaattae tgggtgeate
                                                                      420
angaacccat agggtgtaca aaangttcta ttaaaatctg cnttatagag acaaagaggc
                                                                      480
aggcaaatcc atgtnacaaa gggtaaagct tacagtttac aaactgngaa cgccanggtg
                                                                      540
taggatataa aaacgcactc ttgagaaaac anatggtcat cagggtgctg aaaacttgca
                                                                      600
tggtgctttt caacattagc ctttggtcca caaatttctt gtatttgaca ggatccatag
                                                                      660
tgtgccatgg ggcaaganac nattttgccc tctatggtnt tctttaaaaa ttttcanttt
                                                                      720
aaaaatacct cttttnncag gaatcctaat tttggcnccg aagcntattn ntggtnccac
                                                                      780
atttaccgtt gcccttgccn ttggan
                                                                      806
```

```
<210> 794
      <211> 815
      <212> DNA
      <213> Homo sapiens
      <400> 794
tttcaaatnc cttggcttta necetttgtt tgannteett gttcgaatte ggcacgagge
                                                                        60
cttctctggc ctcaccaatt aggtcaaatg ttccttattt tgtgttgtgg ggcatggctc
                                                                       120
the ctgtgag gacctgtece agettggace tecquettee tqcqactqta ttqqtqtetn
                                                                       180
teceteteaa geetatgage tettgeaagg geagggacee tgtatgattt tgeetategt
                                                                       240
atgteeteca gececcagea cangegeetg gtgteeagtg agageteage aaataetttg
                                                                       300
tgagttaaan gacangcggg cttggggtag atggatccgt ctgcctanac aqqqcangtt
                                                                       360
attoccgctt gtgagcaact cttaanagaa acttcatttt ttttcggcgc ctgcncgaac
                                                                       420
tttcaaagat gtttcccggc cangaacngt ggctcacacc tqtaatccca qcactttqqq
                                                                       480
aggettgaag tgggtngate acettgaggt cangantttn tagaccagne tqqccaacac
                                                                       540
cggtgaaacc ccgtcctctn ctaaaaatac aaaanttaac tgggtgtngt tggtngqqqq
                                                                       600
ctttgnantc tcactacttn ggaangctga ngcnatgaan aatttgcttn aaccccnqqa
                                                                       660
nggengaagt tteaattgan gtenanaett naneceattt gegeettean accetgggge
                                                                       720
aacangtate annaacttna aenattaaaa aatnaanana netettatee etttannaae
                                                                       780
nattattgan gntacntatt ntcntagaaa tccct
                                                                       815
      <210> 795
      <211> 1050
      <212> DNA
      <213> Homo sapiens
      <400> 795
tttctaatgc ttggctttga gncctctntt taaaatcctt tggcnactac tctgcacgat
                                                                        60
geggegetga ceeggneggn ceeacaceeg etetttnete ttetttgeeg eggacteeet
                                                                       120
tteetgeete caagacetgg gtgtetacaa etgtgageee agettgnnee aaaggeagte
                                                                       180
cccatgggac ctagactcac ettnecettg cetetatgaa acettetget tgggeceane
                                                                       240
ccctgttcca getcccgacc tgcacttcct tgctgggact cangcetcca agetccctgc
                                                                       300
ccagcnageg gnetteagee acceptettee cetttette gggeeetgnt tgtnageane
                                                                       360
tttgcagaaa cccananggg acctngtgcc ccttgcnaag nctgtcgcct tggtgcaaga
                                                                       420
etgneetgtn etgeateatt ttneatggtt gnegggggtg tggggntnnn enngnegnnn
                                                                       480
entgnteaca ateaancatn tatneetnan ntngggtatn acnaatggce tnaagantge
                                                                       540
tachtchtan nnnnganttn tcangnnntn ttactaacht nchatngnnc ntnganatag
                                                                       600
ncatgnantn ttagtntntg atntancene nattgeagee neataattat eetacaceae
                                                                       660
anannaance nteettnnag aanntgnent etatgnaana gnetnnnaat gtggennena
                                                                       720
atataanntn ntntnctnnc atcntannnn nntcctacgt nannnnncat nnncnctntn
                                                                       780
ggnnactate neatantaca tenntnannn cacceatnet nntntnanat ntetentggg
                                                                       840
nantnnnntc tcctnnanat ncnctaatna ngatctctca nntacatgan ntanatnacn
                                                                       900
natanngnnn anatchannn ngtctctcht atnnnttath nannghtcan nttachnnan
                                                                       960
nannnaanng tatnntngtt cnaaanntat ntataaancn negtnnnttt nnannagatg
                                                                     1020
tacnccnntn anntaannat ctangctccg
                                                                     1050
      <210> 796
      <211> 884
      <212> DNA
      <213> Homo sapiens
```

```
<400> 796
ggnnntttng ageteggaaa tenettnggt nnageettte nttgaeecea ttgttegaat
                                                                        60
teggeacgag acggeetggt ggageagetg tnegacettt neetggagtt eetgeacage
                                                                       120
caggcacact gcatcggctt cccggacctg gggctgcctg tggtcctgca gntgaagtcg
                                                                       180
ttcctccggg agtgcaaggt ggccaactac tgccggcagg tgcagcagct gcttgggaag
                                                                       240
gttcaggaga actcggcata catntgcaag ccgccgccag agggttncct tnggcgtttc
                                                                       300
tgagcagcag gcagtggaag cctggganaa gctgacccgg gaagagggga cacccttgac
                                                                       360
cttgtcctac agccacttgg cgcaagcttg cgttgaccgg ggaagatcca acttgggaga
                                                                       420
tcaanngggc aaaagaaccg gcttggaaag acctggaact ttcccttgag atcaaaaccg
                                                                       480
aaanggaaga atgggcttga canggaangg atgaaggaca gggaagccaa ttttaaaaga
                                                                       540
ccctctttga cctgnacaag ctcttgaaaa aggacgacac ccgaggggat tcttcggaga
                                                                       600
nnagggatac tgangccccc tgagcacctc ggcatggggg tngggaagac cattgnaaac
                                                                       660
aaggaccaag gaaggaaggg ccnaaggaag ggacaagcan ncaaactcgg aanggntgna
                                                                       720
atgggncctt ngggantngg aggaacccca naaccccaaa aaggccgggg ggcttgggcc
                                                                       780
cccttggggg gaancttnnc aacaaaatnt gggccccaag ggggccccgg aaaggaacga
                                                                       840
aaccttggaa gggaatcttg ncaagcttct tanaaaaggg ancg
                                                                       884
      <210> 797
      <211> 773
      <212> DNA
      <213> Homo sapiens
      <400> 797
taatgcttgg ctctgtctnt tgttgacccn tngttcgttt gtgcctgagc acccacaatt
                                                                        60
tcaggattta gactgtgtgg gcacctcagc tttcctctgg ntgtaaccac tccttggtga
                                                                       120
nagagggaac tectaacean teccatttgn caaaggetag geaatettea ttetgettgg
                                                                       180
ctttagtcat tcttgtcatt gggctgcaga agaaaaacaa ctttgctggg tgatcccact
                                                                       240
gccttgattt cacctcggan cgaggctggg ccatgtccaa gtcttatgag gtcaccctga
                                                                       300
ctagaaaaaa ttgaactcac ctacaaatag tctgaaagag tggtgtatat caaatacgtg
                                                                       360
ggtagtgttg catttcaaat gangetette tgggttgaaa tgatatattt ataaaaccag
                                                                       420
aatatcaaaa atgggtgatg tataatgtct ctttagtttt tttggtattt ggcctctttt
                                                                       480
aaagcctgtc ngatgtatgg gagaaaaaca atgaaccgtg ctttgatttc ctatcaaqtc
                                                                       540
actettaaga acatacatat tggttaaagt aacteggtet ttttttatet gattetttga
                                                                       600
ggcactatgg gtagcaaaat aaccacttac aaatttaaat gtaatataca cttctttct
                                                                      660
gngtgtcaag tccttatttt tangtgccta attggacatt ttaaaaggtt aaattattng
                                                                      720
gttggcatat taatntcaaa aaatctatta attnatttta atgcctggta ccg
                                                                      773
      <210> 798
      <211> 812
      <212> DNA
      <213> Homo sapiens
      <400> 798
gtcaatnctn ttcatgaccc tatcgattcg aattcggcac gaggctggag cacgctggag
                                                                       60
aggecatece tgccctggca geccgegget gggggagaet cetttgccc attetttgcc
                                                                      120
ggtttcctgc cattattggt gtgcaagaca aaacagggct gcacagtggc agagaagtcc
                                                                      180
tttgcagtgg ggaccttggc agagactatt cagggcctgg gtgctgcctc agcccagttt
                                                                      240
gtgtctcggc tgctccctgt gctgttgagc accgcccaag aggcagaccc cgaggtgcga
                                                                      300
agcaatgcca tcttcgggat gggcgtgctg gcagagcatg ggggccaccc tgcccaggaa
                                                                      360
cacttteeca agetgetggg geteettttt eeeetetgge gegggagega catgategtg
                                                                      420
tecgtgaeaa catetgtggg geaettgeee getgttgatg gecantecea ecaggaaace
                                                                      480
```

```
agaccccaag tgctggctgc ctactgcatg ccctgncact gaaaggagga acttgnaaga
                                                                       540
atgggtcacc atttgggcgc ctttttaact ttctgtacca gancaacccc ttgacaaggt
                                                                       600
tataaaatgt nggctccccg aaccttnttg cgtattcttg caqncctcaa ttcttqqctt
                                                                       660
gaccaaccaa aggattccca cccangaaaa cccnaanggg cccnaaactt gttnncttgn
                                                                       720
ttnccttgga ccgtttcctt ggggccaaaa acaggnanaa cccggacang gtttttnaa
                                                                       780
accagnitti tggggcttta aattggcctt gg
                                                                       812
      <210> 799
      <211> 758
      <212> DNA
      <213> Homo sapiens
      <400> 799
ctaatagett tteattenaa tgettgtgat eeetegatte gaatteegtt getgteggae
                                                                       60
agattgccct agtacccacc cacctatcag ggttatgcaa tggaacatcc tcgcccaagc
                                                                      120
tettggagaa ggcaaagaca aetttgtaca gtgeeetgtt gaageaetea aatgggaaga
                                                                      180
aaggaaatgt ctcatcctgg aagaaatcct ggcctaccag cctgatatat tgtgcctcca
                                                                      240
agaggtggac cactattttg acacetteca gecacteete agtagactag getateaagg
                                                                      300
cacgtttttc cccaaaccct ggtcaccttg tctagatgta gaacacaaca atggaccaga
                                                                      360
tggttgtgcc ttatttttc ttcaaaaccg attcaagcta gtcaacagtg ccaatattag
                                                                      420
gctgacagcc atgacattga aaaccaacca ggtggccatt gcacagaccc tggagtgcaa
                                                                      480
ggagtcaggc cgacagttct gcatcgctgt tacccatcta aaagcacqca ctqqctqqqa
                                                                      540
ageggttteg ateagettaa ggettgtgga etetteagaa eetgeaaaac atnaceeaag
                                                                      600
gagcccaaga ttncccttat tgtgtgtggg gacttcaatg canaccaaca gaanaaggtc
                                                                      660
tncaaacact ttgcttcttn cagnctnaac cttganagnc ggcctacaag ntgctgaatg
                                                                      720
cttgatgggc aatttagaac ccccatacac ctacctgg
                                                                      758
      <210> 800
      <211> 770
      <212> DNA
      <213> Homo sapiens
      <400> 800
ttnaaancng cnttggactc cttgcaggat cccatcgatt cgtttaaact gagctccaaa
                                                                       60
tgacgttcaa acacccctct cgggtagagt tttcatggtg gaacggttgc gcccaccaaa
                                                                      120
cagaagetta tgtttttggc acagaageet gggccatttt catqqacace tqqctqqace
                                                                      180
teggtggaag tgaacteegt aggttgttge gtteactgea geaceteaca tgatacegte
                                                                      240
ccctctcatg gaacggagcc tcccccatgc agcccccact caaatggagt tttaaaggct
                                                                      300
gggttcaggt tacgggggcg tttctcaccg tctgaatgcg gaggacagag acnagctcca
                                                                      360
gggagcgtgg gcgggtgacg gcgctgagat gcgtgatgtc tcggaaacgt cctcgcatcc
                                                                      420
cteancgegg gegetgactg cegeggeeet tgeetgtett caggageget ceaqettege
                                                                      480
ccacacaccc egggetgatg teceeteget eeggeggeet geagacecca nagtgeetgt
                                                                      540
ctcgggaggg ctccccattc acacgaccct gagtttgggt ccaagttagc ttctgtccca
                                                                      600
aagtacengt atteceaaag egeaeeeggt aaagganeeg ggeeggneet tntttgeggg
                                                                      660
gccgggggcc ggggccggga actcgtnggg ggttgccngg aanggggtta accgtnccgg
                                                                      720
ttnttccgnc cttncgtgca aggcttnccc cgttaagngg cccaaacent
                                                                      770
      <210> 801
     <211> 573
      <212> DNA
      <213> Homo sapiens
```

```
<400> 801
ggagecetag agetecacaa caggaeteag agetetaac cagttecage actecagaet
                                                                        60
ccagccacac tccaacacag caccatgatc ccagccaccc gctcgcttct ctgtgcagcg
                                                                       120
ctgctgctgc tggccaccag ccgcctggcc acaggtaggt ctcgccactg ccactggggg
                                                                       180
aggagggacc tctggtgagc gcagcctccc acagtcccgc tgaccaagag tcttctccca
                                                                       240
tagggegeet ategecaatg agetgegetg teagtgeetg cagaccatgg etgggattea
                                                                       300
cctcaagaac atccagagct tgaaggtgtt gccctcaggg ccccactgca cccaaaccga
                                                                       360
agteatgtga gtatetteec ggttagette tgecaettee agaetegeec aaacceteec
                                                                       420
gegececcae acttetecta gtgggaatge etaacatgtg ggtetateet tetetetgea
                                                                       480
gagecacaet caagaatggt egegaggett geettgaeee tgaageteee ttggtteaga
                                                                       540
aaattgtcca aaagatgcta aagtgagttg tga
                                                                       573
      <210> 802
      <211> 1390
      <212> DNA
      <213> Homo sapiens
      <400> 802
ttttttttt cacaaggaat atcattttat tactgtaatc acaaaatcgt aatttctgta
                                                                        60
caggaatgta taagtgaaca ttattcaaag cattggtaat tcacttcata aagagggtaa
                                                                       120
acatactaca gaacatattg taaagaaaaa atattgtaaa attttctggt cttgcagtgc
                                                                       180
actatttagt gcaagtattt aagacacaat agtgttcaat tcagcaaagt attgcagaat
                                                                       240
gtcatgccac agtccactta attcaaagag ggtcaggaca tgcagcttgt aataaaatgt
                                                                       300
cagagtgtgt gtgtgtgtgt gtgtgtgtat ataaaaccac atgtaattca taaaatatat
                                                                       360
agtggtttat ttagatggtt ttaaatgatt tcactgtgga atccagcata actggaacaa
                                                                       420
catccaaggt cttcttaacg gcaacaatct tattgctagg caatggcytt ggcttcaggt
                                                                       480
argaatgcyt cccagtattt tatcagctgt tgttgtgttt gaactagtga ttctaagtac
                                                                       540
ttgatgataa cggttttaaa atccttcact cgttctttct caaatcttcc cacttctttt
                                                                       600
cgaatcgttt tagatatctg ttcaaaatct ctttcccctt gttgcacttt cgcctcccac
                                                                       660
tctcttattt catttttagc ttgctgtatt ttatctggtt tgttagcaac catcattttt
                                                                       720
getteagett caegtttttt gageaaagta atttgageat etteecattt etgeeageae
                                                                       780
ttcattcgat ggtcaaacac acctttcact gcagcaataa gacgaatgta gtcactaagt
                                                                       840
agttctgaaa acatataaaa gtcagmaaaa gcttgttctt gatgtaactg gtctatcttc
                                                                       900
tecteaacet etgeaagetg agacaaaget etagataaag eagtatgate eteagaatta
                                                                       960
cctaacatgg cagcactttt agcaaaggca gctgtgttgg ctgaaagttc ttttctatga
                                                                     1020
cagamcaagg cttcaacact gacatgaagt ttcctaagtt gctgatccag attctcaaat
                                                                     1080
tgctgctgct tttcttcaaa ccatgcatcc gattcattca tcttgattgt cattttgttg
                                                                     1140
acagegicgg cageetigti caccatecte aatatteetg etceacteag ageetigta
                                                                     1200
ttaactgctc taggcagctc tgaactttcc aagaactgcc ttaaatcagg atcctqtagt
                                                                     1260
aaagttggat gttttactgt tctttgaaga tacctttcaa gagctgctct ccgtttttct
                                                                     1320
acaaactcag tggatgatga gtcttcttta cccactttga ccttggtcat ccctactata
                                                                     1380
ctcttttctq
                                                                     1390
      <210> 803
      <211> 947
      <212> DNA
      <213> Homo sapiens
      <400> 803
ggaacttctg agtaattggt atcatttcct agtgactcgg ctcttgtact ccaatcccac
                                                                       60
agtaaaaccc attgatctgc actactatgc ccagtccagc ctggacmtky kkcwsgsagg
                                                                      120
```

```
ngagagcagc ccagaacccc tggacaacat cttgttggca gcctttgagt ttqacatcca
                                                                       180
tcaagtaatc aaagagtgca gcatcgccct gagcaactgg tggtttgtgg cccacctgac
                                                                       240
agacctgctg gaccactgca agctcctcca gtcacacaac ctctatttcg gttccaacat
                                                                       300
gagagagtte etcetgetgg agtacgeete gggaetgttt geteateeca geetgtggea
                                                                       360
gctgggggtc gattactttg attactgccc cgagctgggc cgagtctccc tggagctgca
                                                                       420
cattgagegg atacetetga acacegagea gaaageeetg aaggtgetge ggatetgtga
                                                                       480
gcagcggcag atgactgaac aagttcgcag catttgtaag atcttagcca tgaaagccgt
                                                                       540
ccgcaacaat cgcctgggtt ctgccctctc ttggagcatc cgtgctaagg atgccgcctt
                                                                       600
tgccacgete gtgtcagaca ggttcctcag ggattactgt gagcgagget gettttctga
                                                                       660
tttggatctc attgacaacc tggggccagc catgatgctc agtgaccgac tgacattcct
                                                                       720
gggaaagtat cgcgagttcc accgtatgta cggggagaag cgttttgccg acgcagcttc
                                                                       780
teteettetg teettgatga egteteggat tgeecetegg tetttetgga tgaetetget
                                                                       840
gacagacgcc ttgccccttt tggaacagaa acaggtgatt ttctcagcag aacagactta
                                                                       900
tgagttgatg cggtgtctgg aggacttgac gtcaagaaga cctgtgc
                                                                       947
      <210> 804
      <211> 532
      <212> DNA
      <213> Homo sapiens
      <400> 804
cctctgccct cccaggttca agccattttc ctgcctcagc ctcccgagnt agactgggac
                                                                        60
tgcaggtgcg catcaccacg cctggntaat ttttgtattt tgagtagaga tggggtttca
                                                                       120
ccatgttggc caggctggtn tcgaactcct ggccctcaag tgatccaccc acctcagcct
                                                                       180
cccaaagtac agggnttata ggcgtgcgcc antntgcccg gccgagaaca atttntcaca
                                                                       240
agnttacttt tctagttttg ccaatgcatg gtgaaagtga acccaagcct gggaactgca
                                                                       300
ggcctagaca atgcaggrmm ykksttsamm cwsrsmsrmr smsstysmar ywmrsssagm
                                                                       360
cttggaaagg agaagtgtga ggcaggtgtg ggtaggacct ctttttagta cctagaaaaa
                                                                       420
ggctaagaaa gtggcctgga gatgtttaga aggttaaaac caacgaagaa aaaaatcaat
                                                                       480
gacaacctat caggaacgtg attgactctc agaatggaga actggcgaat cg
                                                                       532
      <210> 805
      <211> 552
      <212> DNA
      <213> Homo sapiens
      <400> 805
aatgcattnt tgatttttta ttgcagatga tgaaaaagtt ttagatatag acagtgccga
                                                                       60
tggttacaca atgttgtaaa tgtatttaat cccacttacg aatgattaaa atgataaatc
                                                                       120
ttatgtttat ttcatcacta ccaaaaggct gtgggtgcag gggtgctggt ttctggtcct
                                                                      180
agcctaagag actggcagtt tecacettet atetettggg acagtagete tgggagecet
                                                                       240
gagetgteat geaggaagte cagetaceet gagaceacea tgetggaaag gecacaggga
                                                                      300
ggagetetgt ggacagtece agetgaacet tgeettecag etgteeetgt caagatgeca
                                                                      360
ggsatgtgag taaagccatc atggacccty tagaccagac tgcccaccag cagggtaccw
                                                                      420
tetggcagee acatggagea gaagaacege ecagetgage cacttecaaa etettgacee
                                                                      480
actaagtcat gatccacaat gaacccatca tagggatggt tggctttgca gtgtggataa
                                                                      540
tgaggatgtc at
                                                                      552
      <210> 806
      <211> 1646
      <212> DNA
```

<213> Homo sapiens

<400> 806 aactagtata tttacaacat cagaaacttc aatatggaga tttgttgttc ctatatcatg 60 atctttagca gcaactacac cataggcact gcacaacctg ggtcctagat caggacgtac 120 aaaaaatcct ggcaaatgag aggccaaatt gaattttcct tctggattac aatattctqq 180 caatggcaga ctttttaaaa gatcttcgta tcttgctggc atcatagtct tgaagtcttc 240 teetgaagge caatetttea attttaaaae aactgtttet ceaetettgt ttttetgeeg 300 ttttgaaact tcttcaaaac catcccagaa ttccttaaca ttggcatttg aaatgatgct 360 atctttgcag ttcaggagat cagcttggtg gtctccaaaa tcaagactaa ttgattccgc 420 cttccatagg ctaatgttca ttttcttatg cacaccagaa accactgcag gctgtccttg 480 tttccaacat tctttgaaaa gcttccaatt actgctattc ttataatcct taagccataa 540 aatatgcttc tcacagatcc aagaatgtgg tatatcactg tataatttat tattttcatc 600 cactgcagat attatgcttt cttcaggctc ttctttaagc tctggtttta catttatctt 660 ggaggtttta cttggtggaa ttttgttttc aacaactgaa gcaattatgt catcaagaat 720 gttaggcata gtccgtccac ttttgctact tggggctccc attgaatata ctggggcaaa 780 ggcaatgcca gcatctgtas accccacacg tagctttcca gctgttgtag tcagcaaatc 840 ccgtaaggtt gagccttgtt cattattctg ggacacaaga ggtgatgttc tgccatttgg 900 agattcagag tigictigit cictitcitc titaattigg tittcaaggg taagtictit 960 gttttctttt ttttcctctc tggctttttg ctctgcaaga tctgctaacc agtgcagtgg 1020 tgactgggat tetggaggag ttaacttgtt atetgtgeet acateactet etgggetget 1080 gccaccattt ttctcagact tcggaggagt attttgctgc tgagactcag gcatgcacag 1140 agaaatttta ttactgtgat taagaacatt ctgtaaaact tgagatacac cattcattgt 1200 aggaaaattt ccaacttgta aattctgttt gttagtacaa tgacaatggg atttaatacc 1260 atatttttcc ctaagagtgt gcatggcatc tagaagatct gtcaaaacag aaccaggtat 1320 aatttgggtt ggcattaaat gtttgtgatc atgaggctgt ccyttcacac acttcatcca 1380 agcatattag ttetttatee etagramyye tyeettteet ttngeettgt aacaatetaa 1440 gcaganccac aawkccacat tttkggcaga cccagtnraw kktaancawk gntgcttcac 1500 atgcatcaca catctcccgg actcctctca ctgctctttt ccaggcaatt ttggcatcct 1560 ttttcaccca ggacaaagct gtttttcag atgttactaa ttgacagaac ttatcaccta 1620 ttatatccaa gatatattta gaagtc 1646 <210> 807 <211> 1029 <212> DNA <213> Homo sapiens <400> 807 tggggctgtg actgtattta cttcattctt gaatcccgcg tccccgtggc tgggggctga 60 cacatecetg ggcaccactg tgactteetg tgggteeett ecettetgte eetgactetg 120 tagacccccc acaggaaggg tcctaggtag ggggaggttc ctcctccctt gaaaccctgg 180 gccactctgt caaggcaaag ctctgggccc agcaccttgt aaaggctttg atgagaggag 240 ctctggcttt tgctcagggc ctttggaccc caccctccag cccccaggaa tgcaggcgct 300 caaagcctgt ggtnaggctg cccgaagcac gtgccgcagt tcttctggag tgggagcagg 360 gggacagagc tttgggtaga ggagggtcac ctgcaaagct ggaatgccag gggagtgggc 420 ggtgcctcca gctcctgggg gccagggtgt ctccatacct catgggcctg agcctgggca 480 ggggtctgga gtgcacatag cccccaggca gggagagggc agtgacagga cagagccact 540 catctgtccc aaagctgcac caaggggtgt cagcaacccc aacctactga cctactttgg 600 gaccacagge ccatetagtg caaatgagge ccagaaagga gaaatgettt geteaacage

cacagtaggc tgacgtaacc tatgtaatgt agggtcaggg tgggcctgag ggatgancca

ggtggtgggc aggtganaca ccaggtcccc tcctggcctc tgccccaccc agccctctcc

660

720

780

```
840
tgcacggcta ccagaagatg tccgggaaga acanactagc cctgagtagg gagtgtggtc
                                                                       900
aggtgcagag gagggcaggg gcccggatcc tggcccagaa acactctaaa acagaatccg
atcctgagat gatccaaatc aaacagaata cttgacggaa atagtagagt ctgaaaatga
                                                                       960
                                                                      1020
tgcactctgc gcacacatat acaagacaca cacacacaca cgaatccacg cacacgaggc
                                                                      1029
acaccccac
      <210> 808
      <211> 836
      <212> DNA
      <213> Homo sapiens
      <400> 808
aaaaccgggt ataacacttt aatatagatt tgtggaactc tggcccttgc aqccaqaata
                                                                        60
cacatttata agccataaat aaagcacgca gaaaccataa attaatcgga cccgagacct
                                                                       120
ggatttcacc gtgtcaagat tgggaatgct ttttttttct ttttcttggt catttacaac
                                                                       180
agaccettae attattttt tteetgtttt taaacaatag tacaaccete tggttetgtt
                                                                       240
aaaactacat ggttttacac cgagtcactc acaaaatttt ttttttttt taagtaagac
                                                                       300
ttccctgcaa caacagcaat ggaggagaac aacaacaaca aaaaaatcag aatctgcagg
                                                                       360
tgcttgaaga agcaggagtc tacacagtag tggaaaccgg aggctttttt ttaactttat
                                                                       420
attettteee gtttteetee ttatatagaa egtggggtat etgtgtggee etetgtttgg
                                                                       480
gacggaacrg ctgcagcggg tgaaggaaga ctgctgtctt gggggtgttg gggtggggt
                                                                       540
gttatggatt tetteteet tgegtetetg caacacegte tecccaaagt etegaeeee
                                                                       600
acttgetete teaettrice tegateeggg gigeeagagt tageenggee tgaageegte
                                                                       660
gtettettaa gaggagttea taatgggeeg ggagtacace eeetggtagt aggaggtate
                                                                       720
tgcggccagg ggcgaggcgt ccaggcccgt tttgttcgtg accgggccca tggccaagct
                                                                       780
gccaggcatg ggggaaccgt agccggggta gtgcatcacc tgttcgtagg ccttga
                                                                       836
      <210> 809
      <211> 1844
      <212> DNA
      <213> Homo sapiens
      <400> 809
atcaggtgtt cctcccatgg caggagggaa gaaacccagc aaacggccag cctgggactt
                                                                        60
aaagggtcag ttatgtgacc taaatgcaga actaaaacgg tgccgtgaga ggactcaaac
                                                                       120
gttggaccaa gagaaccagc agcttcagga ccagctcaga gatgcccagc agcaggtcaa
                                                                       180
ggccctgggg acagagcgca caacactgga ggggcattta gccaaggtac aggcccaggc
                                                                       240
tgagcagggc caacaggagc tgaagaactt gcgtgcttgt gtcctggagc tggaagagcg
                                                                       300
gctgagcacg ccaggagggc ttggtgcaag agcttcagaa aaaacaggtg gaattgcagg
                                                                       360
aagaacggag gggactgatg tcccaactag aggagaagga gaggaggctg caacatcaga
                                                                       420
ageagecetg teaageagee aageagaagt ggeatetetg eggeaggaga etgtggeeea
                                                                       480
ggcagcctta ctgactgagc gggaagaacg tcttcatggg ctagaaatgg agcgccggcg
                                                                       540
actgcacaac cagctgcagg aactcaaggg caacatccgt gtattctgcc gggtccgccc
                                                                       600
tgtcctgccg ggggagccca ctccaccccc tggcctcctc ctgtttccct ctggccctgg
                                                                       660
tgggccctct gatcctccaa cccgccttag cctctcccgg tctgacgagc ggcgtgggac
                                                                       720
cctgagtggg gcaccagctc ccccaactcg ccatgatttt tcctttgacc gggtattccc
                                                                       780
accaggaagt ggacaggatg aagtgtttga agagattgcc atgcttgtcc agtcagccct
                                                                       840
ggatggctat ccagtatgca tetttgccta tggccagaca ggcagtggca agacettcac
                                                                       900
aatggagggt gggcctgggg gagaccccca gttggagggg ctgatccctc gggccctgcg
                                                                      960
geacetette tetgtggete aggagetgag tggteaggge tggaeetaea getttgtage
                                                                     1020
aagctacgta gagatctaca atgagactgt ccgggacctg ctggccactg gaacccggaa
                                                                     1080
```

```
1140
gggtcaaggg ggcgagtgtg agattcgccg tgcagggcca gggagtgagg agctcactgt
caccaatgct cgatatgtcc ctgtctcctg tgagaaagaa gtggacgccc tgcttcatct
                                                                     1200
ggcccgccag aatcgggctg tggcccgcac agcccagaat gaacggtcat cacgcagcca
                                                                     1260
cagtgtattc cagctacaga tttctgggga gcactccagc cgaggcctgc agtgtggggc
                                                                     1320
eccectcagt cttgtggacc tggccgggag tgagcgactt gaccccggct tagccctcgg
                                                                     1380
ccccggggag cgggaacgct tcgggaaaca caggccatta acagcagcct gtccacgctg
                                                                     1440
gggctggtta tcatggccct gagcaacaag gagtcccacg tgccttaccg gaacagcaaa
                                                                     1500
ctgacctacc tgctgcagaa ctctctgggt ggtagtgyta agatgctcat gtttgtgaac
                                                                     1560
atttyteeay tggaagagaa egtyteegag teeeteaact etetaegett tgeeteeaag
                                                                     1620
gtgaaccagt gtgttattgg tactgctcag gccaacagga agtgaagacg gatccagatc
                                                                     1680
tgtgtgtgtg tgtgtgtgt tgtgtgtgtg tgtgtgtcct atgtctatgt atcqqqtqaq
                                                                     1740
gggtgggagg gttgctggag ggtgctttat tgggtggagg gcaccatgtc ccagggctat
                                                                     1800
caaataaaga atagtttggt ttttttttta aataaaggtt ttat
                                                                     1844
      <210> 810
      <211> 489
      <212> DNA
      <213> Homo sapiens
      <400> 810
gccccgctcc atgagcagtg actccccagc tcctcctggc accagtcccc agggctctcc
                                                                       60
tgttggtakw wmmwgctwyw ywtsyysswm mywmmycgkg racctcraga tctyyacct
                                                                      120
aaaatarttc tgttgaattt caccetgger atgtaaaytg akagettate tteacagatg
                                                                      180
ysrganaakr gmcmayycmy cwkcaswcct swgncwmays tswrwcwrat ksmtkycykw
                                                                      240
kccctattta tgtaaaaata cagggtccct gagccagcct aaggcataag tgacttatcc
                                                                      300
ctcctccctg ctcacatata aattgtgtat ttagtgaaag gctgatcaaa grttcaaagr
                                                                      360
atgttatttg ttatctacct gtggacccag naggtcccca attccagtta tttccacctt
                                                                      420
tccaggaccg ggaccaatgt atatatgtaa ctggattggc tqttctcqtq tqtttqttaa
                                                                      480
aatgtgtgg
                                                                      489
      <210> 811
      <211> 471
      <212> DNA
      <213> Homo sapiens
      <400> 811
geocteagee acceptated etgeceette tgagacteae ageacceett teetteetet
                                                                       60
ceteccaect ceteceteag ecceteatte teettgggaa tetgeagagg getetgggae
                                                                      120
teactgoogg atgtgaaate caggegteag etgttteeta ggeaagggea ggaaagtggt
                                                                      180
ctccagccct tgctccactc atgcctgggg gnctgggsyy gagtggtatc cctacctggc
                                                                      240
ctcccctgg cctctggcct ccagcgctgg gtttgtcgag tgagagagag agagagctt
                                                                      300
gggttgette cetgteeceg ceceetetgt ggeattgtee eteceaetet tatttteeta
                                                                      360
ccaattgcta tttttccgaa caatccttgt agagtatgta ccatccaaag gcaggagggc
                                                                      420
cctcggtggc cggctctggt tggagatggt acagttttat tgtacaggtq c
                                                                      471
      <210> 812
      <211> 579
      <212> DNA
     <213> Homo sapiens
     <400> 812
```

```
60
eccaatgaat caacatactt tattagacce actaagtgee aggggagggg cetgtgeeta
ngagecaggt tacagggete acceptagat teagtetggt etetececat catgeetete
                                                                      120
acttccagtc tgggcttcta ataggagggc cccgacttct tccctcccag tcattctctc
                                                                      180
gaatggagaa totttootoa ttooagggac accaaggoto aggaaggggo otatooatoa
                                                                      240
tcagtagagc cagacaagct ctcccatcgg acgtcctgtg gctgggccca gaaatgggtg
                                                                      300
                                                                      360
cegetgeetg tgggactgee etteegggaa ggaceagggt gtetteagtg etettggeet
                                                                      420
gcacgtggna ggagagtagg cagatgtctg gtgctcttta agctcaaagg catcatggcc
ctctckgnwg sarcrrrsrs akamragkym sssatcncag scagcscwnk arskstsgca
                                                                      480
nwsmwcatts casmtgcasc mmcmggrrrs mkcsksywcm kmagnsktnm scmtsgsrgy
                                                                      540
                                                                      579
cagegeageg tagggtggea tecteattge agatgeage
      <210> 813
      <211> 562
      <212> DNA
      <213> Homo sapiens
      <400> 813
tttttttttt tccagatgta actettgtct tttattccag catctcccag agetccaata
                                                                       60
tgtacagact ttatttatac acatataata tacaccatat atacttattt atagatattc
                                                                      120
acacaccage ccacacacte gcacacacte acacgeacac accettecag gaggggggtg
                                                                      180
tggctgcctt ggagtcccgc tagscccaaa caagtgatac tgggcttgcc aggcagttgt
                                                                      240
gaggttttgt gttttttget tttaaaaaga aggecattte etecagatgt gteeteeete
                                                                      300
tccccaaqcc ctaaaactcc tccccaaaac actctgaaaa aaatttttt aaaacaaqrq
                                                                      360
gnttttcctt tgctytggsc caagtagttt ctngganagn tccrggscca tccacaagny
                                                                      420
ccgtgcaggt cctagagcac gagagccggg cgtggccttg gtcaggcctg cagctgtgcc
                                                                      480
ctctgagggg agaggggagg cgctatagca tcaagggcac ctgccagatg aggagggtgc
                                                                      540
tgtccgtctc cccacacggg gc
                                                                      562
      <210> 814
      <211> 594
      <212> DNA
      <213> Homo sapiens
      <400> 814
agectegeet gggeeggeet gtggeteeca tttteettte agegggaeaa aggggaettg
                                                                       60
ttaccaggcc attttctgga tggcctgtga gatctctgcc cctccaagac cckccaaryc
                                                                      120
tsmsyckgwc scmswgytsk smsmmwgmmt ycwgcmsygs smrccntgss rryktswrkc
                                                                      180
tggcaccagg ctgnagnete cecaateeca geceaetttg etgtgtetet ggegggetgt
                                                                      240
cctccttggt gggagctgtc ctgcacactg taggatgctt aaaggtatcc ctkgcctcca
                                                                      300
cccacccta qccaqcaqct cccaqtcaqa caacaqccaq awatgtctcc agactctqcc
                                                                      360
cagectecce aggtageeac ectegagaca egaceteaga gtetetgtgt etectagaag
                                                                      420
cctgacagag acccccaggg cagtgggtgg gtngcgggct agagaccctt gcctgtntcc
                                                                      480
gggaccetgg cgccgctctc ccctcctgtg gatccctccg gactaacagt gttcttagtn
                                                                      540
ggcaganget ggggcacece ttnggceetg neaggeatng ceattggege ange
                                                                      594
      <210> 815
      <211> 812
      <212> DNA
      <213> Homo sapiens
      <400> 815
```

```
aaaaccgggt ataacacttt aatatagatt tgtggaactc tggcccttgc agccaqaata
                                                                      60
cacatttata agccataaat aaagcacgca gaaaccataa attaatcgga cccgagacct
                                                                     120
180
agaccettae attattttt tteetgtttt taaacaatag tacaaccete tggttetgtt
                                                                     240
aaaactacat ggttttacac cgagtcactc acaaaatttt ttttttttt taaqtaaqac
                                                                     300
ttccctgcaa caacagcaat ggaggagaac aacaacaaca aaaaaatcag aatctgcagg
                                                                     360
tgcttgaaga agcaggagtc tacacagtag tggaaaccgg aggctttttt ttaactttat
                                                                     420
attetttece gtttteetee ttatatagaa egtggggtat etgtgtggee etetgtttgg
                                                                     480
gacggaacrg ctgcagcggg tgaaggaaga ctgctgtctt gggggtgttg gggtgggggt
                                                                     540
gttatggatt tetteteect tgegtetetg caacacegte teeccaaagt etegacece
                                                                     600
acttgctctc tcacttrtcc tcgatccggg gtgccagagt tagccnggcc tgaagccgtc
                                                                     660
gtcttcttaa gaggagttca taatgggccg ggagtacacc ccctggtagt aggaggtatc
                                                                     720
tgcggccagg ggcgaggcgt ccaggcccgt tttgttcgtg accgggccca tggccaagct
                                                                     780
gccaggcatg ggggaaccgt agccggggta gt
                                                                     812
      <210> 816
      <211> 999
      <212> DNA
      <213> Homo sapiens
      <400> 816
aagcegeett etgageettt ngeetetgtt gtteeteetg etgeetgtga gtttteatgt
                                                                     60
gtgcatttcg gcttttgatc ttgaagaaga ctttgccnca ctccttgcag gggaagatgg
                                                                     120
tggtggggtc tgtctcgccg ctggtggtgc tgtgagaggg tgancncttt accncnacag
                                                                     180
tacccactct gggtgccncc aggcttctgc ttcccagags gkrtrrmmmc kmgggccttg
                                                                     240
ctttgccccc tgnaaaagct gccccctanc catagtatct cccaggcaaa gatgccatgc
                                                                     300
tcactgcaaa ctatggaatg aggtcagaac agaatcaaag taacgcttga tgggaaaagt
                                                                    360
tggccccaag accccagtac taagagggtc gcctgcgtct cacacacaca cactcacage
                                                                    420
aagctttggg ataaaaggca accgggatgg ttgacatctg aatgcaatgg aacatgaagg
                                                                    480
tragettrag treetactgg gaatgattte atgagaaggt agreeagatg aaacacetet
                                                                    540
taaagatagt tgtgccaatt atttattccc ccaacccccc acaaaaacaa attttttaa
                                                                    600
ataaaaggaa aagaaatagg atttttttt ctaaacctga ataaaatgac cacttttaaa
                                                                    660
acagrtagtt taaaagggtt acaaaacaag caggcagtcc aggtttcctg attaatgaag
                                                                    720
atggaggccg tgggttttca ctgtctctaa gtgacacaca gggctttata gttctgcgtc
                                                                    780
accetgaage aagactgaat ettgateate caagagaaga teggtgteea caactteage
                                                                    840
ctcttccatg acacctccca actgctggac gacgtcgtcg tcgaggatgt ccacatcctt
                                                                    900
gtatgggttt gatcagactc agctggtcca ggggcagcag cmcgrcagca ccccacgggc
                                                                    960
ccgtagtcct ctcaatcgtg gctgccatct cagctgcaa
                                                                    999
     <210> 817
     <211> 653
     <212> DNA
     <213> Homo sapiens
     <400> 817
atttttaywt ttaaaacatt ttatgaggga taaaatatag tctttttcta tcagtatgtt
                                                                     60
cacacttect ggeeteteat tgggaagetg taagatgtee tteaataaga teetqaacae
                                                                    120
gcgacagaat aatctcatta gagctgctgc aattttctgg accatatggt gggtctatag
                                                                    180
tcaggacccc agccacacag agagtccttg gagcgtctcc ctgttcagtg atggggatgt
                                                                    240
ggttettete aageeattte tttaggetgt tetttetete tteeagatee tetgggetgt
                                                                    300
atgetttgea gtetecagae gtgaacaaat geateagett eteceteaet etatggteee
                                                                    360
```

```
420
cttcattcat agtttcaaca gtckgcacag catgtcccat aattccggtc acagacatgc
tgccatcttc aaggaagttc acaaggacaa tattggcaga gactgggtct gkagttaaam
                                                                      480
cccatccttt atactcattc ttctcactgg ctgtcactcg gacctctttg taaatgtaat
                                                                      540
                                                                      600
cttgccattc taaggggcct ttcttcatcc attcactcat gattgccacc tggctaaatc
                                                                      653
agttaaaaaa ctcctcgcaa ctctgggtac tcagcaacca tgctttgagg aag
      <210> 818
      <211> 1225
      <212> DNA
     <213> Homo sapiens
      <400> 818
ggattettte actgageaca aagagttgtt ggggetttag catetgaetg attttgttae
                                                                       60
qqqqttqatt ctqaccatag gaaqtatqca atgtgaatca ctatttacag agaaacctac
                                                                      120
aacagatgct tgatgttgta gaaactggga catatagata ccaagcaaaa ttataagaaa
                                                                      180
cctataaggt gttcaatacg cttgtgtttc caaaattcac tgtacatgat cagtttggtg
                                                                      240
ttcttgtacc acagttttta actgaaggaa ccagttgtaa cagtctcaat tttaactaaa
                                                                      300
acttgaagaa ctaaaacaac aatgcaaacc tttcagcatt gtttggccaa acttgttaaa
                                                                      360
actgtaatgc aagaaccaaa tgcactgtga tgtggcacca actaattagc aagcatgaat
                                                                      420
ttttcaccca aqaqtqaaaa aaqqaaaatc taccatggct tgaagttaaa gagcagaact
                                                                      480
cctgactacc attctatgac tgatcaaaag actaatagtt aaaaacctca gcaggccttg
                                                                      540
ttcacgatat gcagaaaaaa aagtgctgca gtttagatac ctctggaatt tttccacagt
                                                                      600
gtcacaggtt tgtaatactt gaagccctac atttctaaga atatatttct tgctcagttg
                                                                      660
tttcakgcaa gcccaagact ttgtaatttt taaagggccc aagatttttt tttttttt
                                                                      720
tttttcaaat aacagaccag cttcttttc ttgcagttac agatgtaatt tcctttttgt
                                                                      780
tgtcaaacat aaggtaccaa atatgatgca ataaattgtt ttgaaaaaca gttgtgtgaa
                                                                      840
tatttcaact aatctgtgtt gggcttctgt gaaatacaca ggtggaaaca gaggtgcaag
                                                                      900
ccagagcaat ngtaatatgc tgtaaggcta gtgcagatgg gagcttttta gaaggggcta
                                                                      960
agtgctggtg tcagggaaat tccataatga agtagaatgc tgctcctgca ttaagatttc
                                                                     1020
attgagggca aggctggtgg caggtactat gaatgtaatt cataatttaa aaggaaaact
                                                                     1080
aaaaactatt ttgatttggg aaaatgagcc ttaatttgtt aaacctatac actgaggaac
                                                                     1140
tagecteagg etttaatatt eteattggea tittgeeaagg teetgaggee aaataaggtt
                                                                     1200
taagttaaaa caaatccaat tgtnt
                                                                     1225
      <210> 819
      <211> 1024
      <212> DNA
      <213> Homo sapiens
      <400> 819
gacaccccag atgcagccac caccagcaga agcgatcagc tgaccccaca agggcacgtg
                                                                       60
gctgtggccg tgggctcagg tggcagctat ggagccgagg atgaggtgga ggaggagagt
                                                                      120
gacarggeeg egeteetgea ggageageag cageageage ageegggatt etggacette
                                                                      180
agctactatc agagettett tgacgtggac acctcacagg teetggaceg gatcaaagge
                                                                      240
                                                                      300
tcactgctgc cccggcctgg ccacaacttt gtgcggcacc atctgcggaa tcggccggat
etgtatggcc cettetggat etgtgccaeg ttggcetttg teetggcegt caetggcaac
                                                                      360
ctgacgmtgg tgctggccca gaggagggac ccctccatcc actacagccc ccagttccac
                                                                      420
aaggtgaccg tggcaggcat cagcatctac tgctatrcgt ggctggtgcc cctggccctg
                                                                      480
tggggcttcc tgcggtggcg caagggtgtc caggagcgca tggggcccta caccttcctg
                                                                      540
gagactgtgt gcatctacgg ctactccctc tttgtcttca tccccatggt ggtcctgtgg
                                                                      600
etcattecet gtgeetntgg etacagtgge tetttggggg egetggeeet gggeetgtne
                                                                      660
```

```
720
aaccaccggg ctggtaatca ccctctggcc cgtggtccgt gaggacacca ggctggtggc
cacagtgctg ctgtccgtgg tcgtgctgcn ccacgccctc ctggccatgg gctgtaagtt
                                                                       780
gtacttcttc cagtcgctgc ctcnggagna cgtggctcct ccaccccaaa tcanatctct
                                                                       840
gccctcaaac atcgcgctgt cccctacctt gccgcagtcc ctggccccct cctaggaagg
                                                                       900
ncegggtece acaggeaaca cetaagtgga ceaaccete tgeetgteet geececeaga
                                                                      960
cgatgactga aggeteettt gacacettga gatgantetg etaettteea gacttttett
                                                                      1020
acaa
                                                                      1024
      <210> 820
      <211> 631
      <212> DNA
      <213> Homo sapiens
      <400> 820
atttttaywt ttaaaacatt ttatgaggga taaaatatag tctttttcta tcagtatgtt
                                                                       60
cacacttect ggeeteteat tgggaagetg taagatgtee tteaataaga teetgaacae
                                                                      120
gegacagaat aateteatta gagetgetge aattttetgg accatatggt gggtetatag
                                                                      180
traggarcer agreearag agagtering gagegieter rightraging atggggatgt
                                                                      240
ggttettete aagecattte tttaggetgt tetttetete ttecaqatee tetqqqetqt
                                                                      300
atgetttgea gteteeagae gtgaacaaat geateagett eteeeteact etatggteee
                                                                      360
cttcattcat agtttcaaca gtckgcacag catgtcccat aattccggtc acagacatgc
                                                                      420
tgccatcttc aaggaagttc acaaggacaa tattggcaga gactgggtct gkagttaaam
                                                                      480
cccatccttt atactcattc ttctcactgg ctgtcactcg gacctctttg taaatgtaat
                                                                      540
cttgccattc taaggggcct ttcttcatcc attcactcat gattgccacc tggctaaatc
                                                                      600
agttaaaaaa ctcctcgcaa ctctgggtac t
                                                                      631
      <210> 821
      <211> 635
      <212> DNA
      <213> Homo sapiens
      <400> 821
aggttgetea eetgaaggag caeaggaggg tttteeagge eatgtggete aggtteetea
                                                                       60
agcacaaget geceeteage etetacaaga aggtgetget gattgtgeat gaegecatee
                                                                      120
tgccgcagct ggcgcagccc acgctcatga tcgacttcct cacccgcgcc tssgacctcg
                                                                      180
ggggggccct cagcctcttg gccttgaacg ggctgttcat cttgattcac aaacacaacc
                                                                      240
tggagtaccc tgacttctac cggaagctct acggcctctt ggacccctct gtctttcacg
                                                                      300
tcaagtaceg egecegette ttecaectgg etgacetett cetqtectee teccaectee
                                                                      360
cegectaect ggtggeegee ttegecaage ggetggeeeg eetggeeetg acqqeteeee
                                                                      420
ctgaggeect geteatggte etgeetttea tetgtaaect getgegeegg caccetgeet
                                                                      480
gccgggtcct cgtgcaccgt ccacacggcc ctcgagttgg aacgccgacc cttacgaacc
                                                                      540
ctgggagagg aggacccagc ccagagccgg gctttgggag agttccttgt tggatttttc
                                                                      600
agggccttnc agcggcatta ccaacttgag gtttt
                                                                      635
      <210> 822
      <211> 752
      <212> DNA
      <213> Homo sapiens
      <400> 822
tgcttttatc ttgaatgtag ccttcaactt tgtgtaattc cttaccaaaa aggccacatg
                                                                       60
```

```
gcttaaaatt caacacacat ttgtccccag tcttgtggtt tataatttcc acattgccat
                                                                       120
actgttcgat ccacagttta cccacaatga tattatgcac acagcaggtg ggatttgtcc
                                                                       180
atgtatatgc ctcattgtgt tcaaggagct ccaaggtgat ggttcctttg ggttctgctt
                                                                       240
ctacactctt cccccagaat ttcagtttgg gatagataga gccatgaaag atgaagtcat
                                                                       300
tgtttaatcc ttcagcatga aatgcactga ttggtgggtg atggctgacc tgttcggaga
                                                                       360
tgagtctaaa tccaaggtca tctcgcacta attcataagt ctctcccagc agtgggttga
                                                                       420
aaggttttcc agtccgttcc cactgagaag caacagcaga tacagcaaac gcagctacac
                                                                       480
actgcatcct ttccacagga tcagagagtg aactggcctt gtggaygagg taaqtatqct
                                                                       540
ccatgtattc agttaggcgc tgtaggaagc tcagaggctc attaaatata actggcatcg
                                                                       600
tgatcttgga tagttccatt ccaatacatt ttctgaggat gctccagata ctgaagtcat
                                                                      660
ttctggaaaa cataggagaa ggcaaacttg ttctgtgttt cttgatgcca ttggagagag
                                                                      720
catctccgcc accacagtct ttttcttcgg ac
                                                                       752
      <210> 823
      <211> 899
      <212> DNA
      <213> Homo sapiens
      <400> 823
tttgccacag ggtaaacttt tattttagaa tccaatcttt tccccacaca tacacaataa
                                                                       60
attaaacaga atccacagta aatgtacatt ttttaacata aaaagtcagt tactqttact
                                                                      120
teatgateae atgaggateg teacagetee gtgteeatta geacattace eteettgtee
                                                                      180
ttaactetta teegaeegga tetgtaette gtttettgat gaeegtttge atataeggtt
                                                                      240
ttaacagtgc catctgggta ttcccgtctc ttgaactggg cagtatgtag ttctctttgg
                                                                      300
ccattattaa actctatgag tttgttgcca tcacgttgta ctctgacaat tgtaccatct
                                                                      360
gggaaaatgc tttcttcttg tccatcagga aataagtttt taacagtctg gtcaggaaac
                                                                      420
gtgatttctt ttcttccatc tgggtaatgt ttttctrttt aaaaagttgt tacaqtaaat
                                                                      480
attttttgaa ggaagggaag aatttaatga gagggtggag caagtttgta cctatttgtc
                                                                      540
cacttgagaa atgtaagact tecagteete egggtatgte gtgtgagtgg tetgggeage
                                                                      600
tgcatagtag tagatctgta aagacacaca gtcagtctgc cttttctcca gagatggtta
                                                                      660
aactatggag gagaacactt ctggaaacat accactcttt ggtctggcat gacctgcttc
                                                                      720
acgtcaccat taaagaaagt gacagtgatg gtcttcccat ctgcactcac ttcctttcga
                                                                      780
gttccattgg gaaacagtat aacacggcac ccattcttat aaaccttttc cacctttcca
                                                                      840
teaggatgae tgatttetee etgtatgtet tggtetteet ceteetett atatteagg
                                                                      899
      <210> 824
      <211> 1980
      <212> DNA
      <213> Homo sapiens
      <400> 824
accegteegg ggeeggeeaa tttgcatatt tggaatgege egetataaac eeggetgggg
                                                                       60
ttttgcagcg atttcttaga tgtaaaaatg agatctcaat agcagcgggc tgggcacatc
                                                                      120
ctcksmwytc ysskwswskm tstgcccrga gctggtttcc gtctctcggc tcggggctgg
                                                                      180
aacteeggee caacetagge gegeaneege sacgagatgg egeactteeg ateaatgtea
                                                                      240
aagccgccgg ggagccggga accccagcat gattettgge etttgttege ttetgataet
                                                                      300
aagagcagca eggtacatta tttcacttgt eeegcteece ttcataacag aaaaagggga
                                                                      360
ctcaccctca agaagtgatt ggtatggtaa tttaaagcaa cgcgcattcq ctaqqcctcq
                                                                      420
egagegtege egegeggaga agecagetgt ceettggeag tgatttegga aatqtqteaa
                                                                      480
ggcaattcca aaggtgaaaa cgcagccaac tggctcacqq caaaqaqtqq tcqqaaqaaq
                                                                      540
cgctgcccct acacgaagca ccagacactg gagctggaga aggagtttct gttcaatatg
                                                                      600
```

```
taccttactc gagageggeg cetagagatt ageegeageg tecaceteae ggacagacaa
                                                                      660
gtgaaaatct ggtttcagaa ccgcagatng aaactgaaqa aaatgaatcg agaaaaccgg
                                                                      720
atcegggage teacagecaa etttaatttt teetgatgaa tetecaggeg acgeggtttt
                                                                      780
ttcacttccc gagcgctggt cccctccctc tgtcttcagg ctctgccagg aactcgcacc
                                                                      840
                                                                      900
tgtgctggag coctgttcct ccctcccaca ctcgccatct cctgggccgt tacatctgtg
cagggctggt ttgttctgac tttttgtttc tttgtgtttg cttggtgctg gttwatttgt
                                                                      960
tgttttctgg gggaaaaagc catatcatgc taaaattcta tagagataga tattgtccta
                                                                     1020
agtgtcaagt cctgactggg ctgggtttgc tgtcttgggg tcccactgct cgaaatggcc
                                                                     1080
cctgtcttcg gccgagcntg gtttcctgcc cagcctgggg caaacctagc cgaaggccga
                                                                     1140
ggtcccattg ttggcgctga ggtgtctggc ctgaggtcaa tggtgcaaag gagccgccac
                                                                     1200
eggeatgtet geetggagtg etgtgetgtg tttaateaqq qqatacaqqe eeetqqqttt
                                                                     1260
ctttttctt tcttcctttc ttccttggcc aagagaaggg cttacaggca tggacatgca
                                                                     1320
ggttggcaaa cgggcttgac tttggctgat ttaaaaaagtg agaaagaaag taaaaaaggt
                                                                     1380
taatttttcc ttcctctgta agatatccca gctttaaaaa gaaaaaaaa aagaattacc
                                                                     1440
aagagaaggg gacttetett ccagtttetg taaggtetta cattqcetqa ctaaaatgtt
                                                                     1500
tcatttacct ctaaatttcc atatccttct ggctgtagat aaataatgta gttttgttta
                                                                     1560
tgcatttgga attagtggat ttttttqtca ttaaaattqt taccactqqt aacatqtqac
                                                                     1620
aagcacacca caattctccc tatcttqtqa agttqttttt ttaaatcqcc ttqaacaaaa
                                                                     1680
agttttttt tttgtttgtt tttgctttct gaaattcaca gaagcctagg aggactgggg
                                                                     1740
taagoggaat aaactagaga agggagacat tgtttggatt tccttcctat aaatacaaat
                                                                     1800
ctgtataaat gtctattatt atgaagaatt gccaatcttg ttttaagcaa atgcattcta
                                                                     1860
togttattat aaatgttagt totageteta tttactteta atettaaate aqaataaatt
                                                                     1920
aatattgtat tgctgctgtg cgtggaaaaa gacgatgttt atgttcttat agaataaaag
                                                                     1980
      <210> 825
      <211> 333
      <212> DNA
     <213> Homo sapiens
      <400> 825
totagatatt geccaatege tgeccaeagt geacatacet ttecaecagt cacatgtgag
                                                                       60
agggcagatt ttccaaatgc tcatcaccac ttggcactgt gtggactata attttggcca
                                                                      120
gttaggaaat ggcatctcat tgttttcatc ttaatttgcg tcagcctgat tactcattga
                                                                      180
aacttgtgag gttgagaaac ttttcttaag cttattggcc attcaagttt cctcctttat
                                                                      240
gaaatggttg ttcatgtcat ttkctcattt ttatattaga ttgkwtttmt wttttccaqc
                                                                      300
tgacttgtag gaactctaca tcttatcaat att
                                                                      333
     <210> 826
     <211> 658
     <212> DNA
     <213> Homo sapiens
     <400> 826
ttttttttt tttttttt ttttgaaggc ttcatgaata atttattcca tttgaagttt
                                                                       60
tgttttttgt ttttgttttt tttttttaa aaagtataaa ccttttcatt tcctcaatca
                                                                      120
caatttgtac aactcagtgt tatggcattc ggcagcaata gtgtttgttc cttattctct
                                                                      180
ttttgtcacg ttaaaaanaa agcaattgga ccatattaaa tgtcactgct aaacaacaac
                                                                      240
tttaaaacgc cccttcataa agtgaccaag ctattttgag agggttgatg ctqacatqtc
                                                                      300
cagtaatgac gttacaattt gtagcttaaa ctcaataact ttaaggtcca catatccagt
                                                                      360
ttactttgaa aactaaagat gttttaaaac ttcatgaata catcaacctg aggagtattt
                                                                      420
taggkcccaa atccagtttt taaatttata ctccacnaaa aangaaaata catacataaa
                                                                      480
```

```
awtttaaacc mcngttytgg gcccattwaa acaccmaaaa agaccccccn aaaagttaag
                                                                       540
                                                                       600
anttccagct tanttctgga ngggtgggnc aaaatarraw kktwtawwma wwwymytwwt
ccnkmattca gacaaactaa aatcttaaga ggaaacccag accaaaatat cactcatg
                                                                       658
      <210> 827
      <211> 453
      <212> DNA
      <213> Homo sapiens
      <400> 827
attatagaga ttaatctcct ttgctcgaag tctntttaaa tattagtcac atctaaaaca
                                                                        60
tacttttaca gcaacatcta gactggtgtt tgaccaaaca actgggcatc atagctgaca
                                                                      120
cataaaatta accatcacaa ccatgttcta ggcactgttc ctcactgcct gagaaqacac
                                                                      180
cgttatgttt attagggttt ttgagtttta tccacagctt ttggttatct gcaaccatgt
                                                                      240
ctcccaccat taacatagtt cacactgaga tgaggattcc ctatttaaca cttgqtccca
                                                                       300
acttetteae agteeatetg gttttgtaga gggaacataa etggacatte tggteaggtt
                                                                      360
aggtgaggtc aggccttcag gacgctattt tcactgagtt gctttataag gcacattatg
                                                                      420
caaaattcca tcagctcttc tgttcactac att
                                                                       453
      <210> 828
      <211> 657
      <212> DNA
      <213> Homo sapiens
      <400> 828
aagagaagga cctagagatt gagaggctta agacgaagca aaaagaactg qaqqccaaqa
                                                                       60
tqttqqccca qaaqqctqaq qaaaaqqaqa accattqtcc cacaatqctc cqqcccttt
                                                                      120
cacategeae agteaeaggg geaaageeee tgaaaaagge tgtggtgatg eeectaeage
                                                                      180
taattcagga gcaggcagca tccccaaatg ccgagatcca catcctgaag aataaaggcc
                                                                      240
ggaagagaaa gctggagtcc ctggatgccc tagagcctga ggagaaggct gaggactgct
                                                                      300
gggagctaca gatcagcccg gagctactgg ctcatgggcg ccaaaaaata ctggatctgc
                                                                      360
tgaacqaaqq ctcaqccqa qatctccqca qtcttcagcq cattqqcccq aaqaaqqccc
                                                                      420
agctaatcgt gggctggcgg gagctccacg gccccttcag ccaggtggag gacctggaac
                                                                      480
gcgtggaggg cataacgggg aaacagatgg agtccttcct gaaggcaaac atcctgggtc
                                                                      540
tegeegeegg ccagegetgt ggegeeteet gaeegtegte teeteactee geetttteaa
                                                                      600
atttttgtat aaccccgtgt tgtgtaaata cagtttttgc tccggtaaaa aaaaaaa
                                                                      657
      <210> 829
      <211> 775
      <212> DNA
      <213> Homo sapiens
      <400> 829
ggtttgagaa aatcaattca aatctgnccc ttctgattgc anctctaacc aggttctgan
                                                                       60
cggtgtcaga gacttcccaa tacatttccc ttctagnatg cctcataaat ccactcaaaa
                                                                      120
gtaagacacc aaacacac ctcatttcct gaactgtgac ttccaagctg acatttttct
                                                                      180
gagaagcata attattggtt tcattgacaa ttaagttgaa tgtttcatca tcaaaaaata
                                                                      240
attcaaaaaq ctctactqqq ttcaactttt cqctcttqaq attcaaaaqt ccaqaatcca
                                                                      300
gtgctgacca gcttggaaaa ttgggtttaa tgtctctttt ggtccaactc ttttctggga
                                                                      360
aacatgatac ctttaacttc ttttgagcag gctggatctc aggctcatta tcttttcca
                                                                      420
catctgagtc accagagaat gagaggcctt ggagcagttc actcactcga gctttqtctt
                                                                      480
```

```
tttttctccc ttttcgggta atgtctcctg cagcatattc cagggatgag atgtgcatgc
                                                                       540
                                                                       600
gggcccacaa atcacctggg tgacggtcct tcagagtgtt caaatgtgca actgtccttt
cagtagcaat aggagtacta caaggaatct ggggtgcaca ctctctgttg ggctttcctg
                                                                       660
                                                                       720
aggettetee actitigates attituteag aagtituting cittigetita aacaatetat
                                                                       775
ctttagttac aatttcttca gctgggtgta gccccagctt tttagaaggc tgagg
      <210> 830
      <211> 413
      <212> DNA
      <213> Homo sapiens
      <400> 830
agageetgea agtgacaaag gaagtgagge agaggeecac atgeeeceac egtteacace
                                                                       60
ctacgtgcct cggattctga acggcttggc ctcggagagg acagcactgt ctccgcagca
                                                                       120
gcagcagcag cagacctatg gtgccatcca caacatcagc gggactatcc ctggacagtg
                                                                       180
                                                                       240
cttggcgcak agcsmcasgk gcagtgtggc ntgctgcccc ccaggaggcc tgaggctggg
teteaetget etgaaaagae acaaccagaa tggeetgggg eteaggeeet tggetgagtg
                                                                       300
                                                                       360
ggaatgcgtt gggactgccc agctgagcta tcaggtgccc atcttttctg gtmccagcag
tggtgaggag agcacaggca ggcctcgccc ctcccttgct canccagttt ccc
                                                                       413
      <210> 831
      <211> 876
      <212> DNA
      <213> Homo sapiens
      <400> 831
gctgacctac agcagaagct gctggatgca gaaagtgaag acagaccaaa acaacgctgg
                                                                       60
gagaatattg ccaccattct ggaagccaag tgtgccctga aatatttgat tggagagctg
                                                                       120
gteteeteea aaatacaggt cagcaaactt gaaagcagee tgaaacagag caagaccage
                                                                       180
                                                                       240
tgtgnykaca tgcakaagat gctgtttgag gaacgaaatc attttgccga gatagagaca
gagttacaag ctgagctggt cagaatggag caacagcacc aagagaaggt gctgtacctt
                                                                       300
ctcagccagc tgcagcaaag ccaaatggca gagaagcagt tagaggaatc agtcagtgaa
                                                                       360
aaggaacagc agctgctgag cacactgaag tgtcaggatg aagaacttga gaaaatgcga
                                                                       420
gaagtgtgtg agcaaaatca gcagettete egagagaatg aaatcatcaa gcagaaactg
                                                                       480
                                                                       540
accetectee aggtageeag cagacagaaa catetteeta aggataceet tetateteea
                                                                       600
gactettett ttgaatatgt cecacetaag ecaaaacett etegtgttaa agaaaagtte
ctggagcaaa gcatggacat cgaggatcta aaatattgtt cagagcattc tgtgaatgag
                                                                       660
catgaggatg gtgatggtga tgatgatgag ggggatgacg aggaatggaa gccaacaaaa
                                                                       720
ttagttaagg tgtccaggga agaacatcca agggtgttcc tgcaagggct ggtgtgggaa
                                                                       780
ccangccagt gtggggttcc aggnaagcca aaagtncaga ctggtggtgt tgactgtttg
                                                                       840
ctgtgacccc cacaaagttt ncggaaccgc ccacca
                                                                       876
      <210> 832
      <211> 768
      <212> DNA
      <213> Homo sapiens
      <400> 832
tagacataga aaacatacag taagaatatg gtattataat cttacggsam mamygysrmm
                                                                       60
trnsckkknw rwmktkgwaa agykgyrmyr sgrcsyanra mtanmmmtas ctrgytrrky
                                                                       120
mrywtwwmma tycctksccm gggagtttga aatttnatac tatagaaata actttaggtt
                                                                       180
```

PCT/US98/27610 WO 99/33982

240

```
ttaggtagag ttaaagaggt aaagcacatg ttgnccacaa ncccaggaaa gtatttttaa
                                                                      300
gaaagattgg attttcctac ctttagagat ctaaaaaaaa tttaatataa aaaatcattt
tgtqttggtg tttattacta gttcagatga gtggctqctg aaggggcccc cttgtcattt
                                                                      360
tcattataac ccaatttcca cttatttgaa ctcttaagtc ataaatgtat aatgacttat
                                                                      420
gaattagcac agttaagttg acactagaaa ctgcccattt ctgtattaca ctatcaaata
                                                                      480
                                                                      540
ggaaacattg gaaagatggg gaaaaaaatc ttattttaaa atggcttaga aagttttcag
                                                                      600
attactttga aaattctaaa cttctttctg tttccaaaac ttgaaaatat gtagatggac
tcatgcatta agactgtttt caaagctttc ctcacatttt taaagtgtga ttttcctttt
                                                                      660
aatatacata tttattttcy ttaaagcagc tatatcccaa cccatgactt tgggrgatat
                                                                      720
acccataaaa ccmatataac agcaggggta ttggagcagc tttctcaa
                                                                      768
      <210> 833
      <211> 1604
      <212> DNA
      <213> Homo sapiens
      <400> 833
aactagtata tttacaacat cagaaacttc aatatggaga tttgttgttc ctatatcatq
                                                                       60
atctttagca gcaactacac cataggcact gcacaacctg ggtcctagat caggacgtac
                                                                      120
aaaaaatcct ggcaaatgag aggccaaatt gaattttcct tctggattac aatattctgg
                                                                      180
caatggcaga ctttttaaaa gatcttcgta tcttgctggc atcatagtct tgaagtcttc
                                                                      240
teetgaagge caatetttea attttaaaac aactgtttet ceactettgt ttttetgeeg
                                                                      300
ttttgaaact tcttcaaaac catcccaqaa ttccttaaca ttggcatttg aaatgatget
                                                                      360
atctttgcag ttcaggagat cagcttggtg gtctccaaaa tcaagactaa ttgattccgc
                                                                      420
cttccatagg ctaatgttca ttttcttatg cacaccagaa accactgcag gctgtccttg
                                                                      480
tttccaacat tctttgaaaa gcttccaatt actgctattc ttataatcct taagccataa
                                                                      540
aatatgette teacagatee aagaatgtgg tatateactg tataatttat tatttteate
                                                                      600
cactgcagat attatgcttt cttcaggctc ttctttaagc tctggtttta catttatctt
                                                                      660
qqaqqtttta cttqqtqqaa ttttqttttc aacaactqaa qcaattatqt catcaaqaat
                                                                      720
qttagqcata qtccqtccac ttttqctact tqqqqctccc attqaatata ctqqqqcaaa
                                                                      780
ggcaatgcca gcatctgtas accccacacg tagctttcca gctgttgtag tcagcaaatc
                                                                      840
ccgtaaggtt gagccttgtt cattattctg ggacacaaga ggtgatgttc tgccatttgg
                                                                      900
agattcagag ttqtcttgtt ctctttcttc tttaatttgg ttttcaaggg taagttcttt
                                                                      960
gttttetttt tttteetete tggetttttg etetgeaaga tetgetaace agtgeagtgg
                                                                     1020
tgactgggat tctggaggag ttaacttgtt atctgtgcct acatcactct ctgggctgct
                                                                     1080
gccaccattt ttctcagact tcggaggagt attttgctgc tgagactcag gcatgcacag
                                                                     1140
agaaatttta ttactgtgat taagaacatt ctgtaaaact tgagatacac cattcattgt
                                                                     1200
aggaaaattt ccaacttgta aattctgttt gttagtacaa tgacaatggg atttaatacc
                                                                     1260
atatttttcc ctaagagtgt gcatggcatc tagaagatct gtcaaaacag aaccaggtat
                                                                     1320
aatttqqqtt qqcattaaat qtttqtqatc atqaqqctqt ccyttcacac acttcatcca
                                                                     1380
agcatantag ttetttatey etagaactne tyeettteet ttngcettgt aacaatetaa
                                                                     1440
gcaganccac aawkccacat tttkggcaga cccagtnraw kktaancawk gntgcttcac
                                                                     1500
atgratraca catetecegg actectetea etgetetttt ecaggeaatt ttggcateet
                                                                     1560
ttttcaccca ggacaaaget gtttttcag atgttactaa ttga
                                                                     1604
      <210> 834
      <211> 617
      <212> DNA
      <213> Homo sapiens
      <400> 834
```

```
gtccgtcagc tggtagcttt cattcgtaaa agagataaaa gagtgcaggc gcatcgaaaa
                                                                       60
cttgtggaag aacagaatgc agagaaggcg aggaaagccg aagagatgag gcggcagcag
                                                                       120
aagctaaagc aggccaaact ggtggagcag tacagagaac agagctggat gactatggcc
                                                                      180
aatttggaga aagagctcya ssangrtgrm srcrsgkkac gagaaggagt ttggagatgg
                                                                      240
ateggatgaa aatgaaatgg aagaacatga actcaaagat gaggaggatg gtaaagacag
                                                                      300
tgatgaggcc gaggacgctg agctctatga tgacctttac tgcccagcat gtgacaaatc
                                                                      360
gttcaagaca gaaaaggcca tgaagaatca cgagaagtca aagaagcatc gggaaatggt
                                                                      420
ggccttgcta aaacaacagc tggaggagga agaagaaaat ttttcaagac ctcaaattga
                                                                      480
tgaaaatcca ttagatgaca attctgagga agaaatggaa gatgcaccaa aacaaaagct
                                                                      540
ttctaaaaaa cagargaaaa agaaacagaa accagcacag qatqtacctq qcaaaqattc
                                                                      600
atatetgeet geagete
                                                                      617
      <210> 835
      <211> 542
      <212> DNA
      <213> Homo sapiens
      <400> 835
ttttttttt agaccaacat tctttaatca caaaggcact tgaggacccc tacaaaccca
                                                                       60
aagtetetge caagagtgge cetgeagaeg ecceacetge caecetecat ceacecatee
                                                                      120
atccacacac tcagagttca tcgtgacctg cagagggctc cacactaggc ttgatgaaga
                                                                      180
tgccttccat ggccttccac gtattgtgcg tgttggcact gggcatgccq tqqacctcat
                                                                      240
gctgcccacg gatggggctt ccatactgct cacccgtgac tgacaggaac acagaggtgc
                                                                      300
ccacatgctn grarsgcaca gcagcctcac gctcccagnn gctgntccag agcagcgcac
                                                                      360
tgtccatann gktccaggtc gtcgccctcg ccgtcttccc caaaggcact cacctcctgg
                                                                      420
ttgttggaca gcggcgangg gaagtggtgc gtgtgcaggt tcnttgnccg taaqcacatq
                                                                      480
egtgageete acegeetgee egcagegeae egcaagggee caggeggage egacgetege
                                                                      540
gc
                                                                      542
     <210> 836
     <211> 542
     <212> DNA
      <213> Homo sapiens
     <400> 836
ttttttttt agaccaacat tctttaatca caaaggcact tgaggacccc tacaaaccca
                                                                       60
aagtetetge caagagtgge cetgeagaeg ceecacetge caccetecat ceacceatee
                                                                      120
atccacacac tcagagttca tcgtgacctg cagagggctc cacactaggc ttgatgaaga
                                                                      180
tgccttccat ggccttccac gtattgtgcg tgttggcact gggcatgccg tgqacctcat
                                                                      240
gctgcccacg gatggggctt ccatactgct cacccgtgac tgacaggaac acagaggtgc
                                                                      300
ccacatgctn grarsgcaca gcagcctcac gctcccagnn gctgntccag agcagcqcac
                                                                      360
tgtccatann gktccaggtc gtcgccctcg ccgtcttccc caaaggcact cacctcctgg
                                                                      420
ttgttggaca gcggcgangg gaagtggtgc gtgtgcaggt tcnttgnccg taagcacatg
                                                                      480
egtgageete acegeetgee egeagegeae egeaagggee caggeggage egacqetege
                                                                      540
gc
                                                                      542
     <210> 837
     <211> 719
     <212> DNA
```

<213> Homo sapiens

```
<400> 837
aaaaggtccc ccttctggga aagaccgagt gaagaaaggt ggatcctaca tgtgccatag
                                                                        60
gtettattgt tacaggtate getgtgetge teggagecag aacacacetg atagetetge
                                                                       120
ttcgaatctg grnttccgct gtncagccga ccgnctgccc actatngact gacaaccaag
                                                                       180
gaaagtette eecanteeaa ggageagteg tgtetgaeet acattggget ttteteagaa
                                                                       240
ctttgaacga tcccatgcaa agaattccca ccctgaggtg tttnacatac ctgcccaatg
                                                                       300
ncaaaggaac cgccttgtga gaccaaattg ctgacctggg tcagtgcatg tgctttatgg
                                                                       360
tgtggtgcat ctttggagat catcgccata ttttactttt gagagtcttt aaagaggaag
                                                                       420
gggagtggag ggaaccetga getaggette aggaggeeeg egteetaege aggetetgea
                                                                       480
caggggttag accccaggtc cgacgcttga ccttcctqqq cctcaaqtqc cctcccctat
                                                                       540
caaatgacag ggatggacag catgacctct gggtgtctct ccaactcacc aqttctaaaa
                                                                       600
agggtatcag attctattgt gacttcataa gtgagaattt atgatagatt attttttagc
                                                                       660
tattttttcc atgtgtgaac cttgaqtgat actaatcatq taaaqtaaqa qttccctta
                                                                       719
      <210> 838
      <211> 579
      <212> DNA
      <213> Homo sapiens
      <400> 838
aagatatgca gagatattcc aggatctttt agctttggtg cggtctcctg gagacagtgt
                                                                        60
tattegecaa cagtgtgttg aatatgteae atceattttg cagtetetet gtgateagga
                                                                       120
cattgcactt atcttaccaa getettetga aggttetatt tetganetgg aggagetete
                                                                       180
caatteteta ccaaataaag aattgatgae etcaatetgt qaetgtetgt tggetacget
                                                                       240
agctaactct gagagcagtt acaactgttt actgacatgt gtcagaacaa tgatgtttct
                                                                       300
tgcagagatg attatggatt atttcattta aaaagttett taaggaaaaa cagtagtget
                                                                       360
ctgcatagtt tactgaaacg agtggtcagc acatttagta aggacacagg agagcttgca
                                                                       420
tetteatttt tagaatttat gagacaaatt ettaactetg acacaattgg gatgetgtgg
                                                                       480
gagatgataa tgggtctcat gggaagtagg aggggagctc atacatcacg gacgatgagt
                                                                       540
attaatgctg cagagttaaa ccagcttctt ccaaggcaa
                                                                       579
      <210> 839
      <211> 1172
      <212> DNA
      <213> Homo sapiens
      <400> 839
aaccaaacct cccaacttag tgaaaacaag gcattcaatg acagaccagc agcagaaact
                                                                       60
gentattace tectaateat tttatgaaga aatacetata taaaaacaaa cactaaagag
                                                                       120
nacaaataga tttaactaaa gtgacaagca taattataaa taaataccag attatcagat
                                                                      180
tttaaacaat aatctataac agttttacta tctaaggatt ttcactccaa gaagaaaaaa
                                                                      240
tacatagtaa cgccaagctt gcaggacgat gacttaacag atacattttc tcttaatqqa
                                                                      300
aacttateta getteagtaa tatttetgga tgtageatea agttgetgtt geacattttt
                                                                      360
aaaagactgg tccagcagtg tttcctcttc atttaaagta ttggcaatag catcattaca
                                                                      420
tggattgtcc agaatgtett cgtttaatcc atttgactcc tccttttgat cctcatcagt
                                                                      480
attaacctct tcaaccgtgt gtgccctggg tgtattcatt aacatatcat ttccyagggt
                                                                      540
ctgactatta ctcagcagct tkgcctgcct tetttccarg gccagttggt twatttcycy
                                                                      600
caattetttg ttgttgctct tctgttaggc ttctacttaa ctcagaagca aacatctcac
                                                                      660
tttcagataa gtttgtcaga aagggatcta attcagtaga agtgacatca tgttcattat
                                                                      720
totocgcaac ticatcatta tigotaacaa aatottoatq taaaataqqq aqatcaaqto
                                                                      780
gaattcgttt taaacaggtc tgaacttcct ttttacttcc caggtattca actctgtcaa
                                                                      840
```

```
taaaatcctc aaactgcaqt ttagggaata qcctatqtqc ccaqtqctcc atqtqtctga
                                                                      900
                                                                      960
ttagcatctt caagtcttca gcctcatgac ctttaccttt gaattttgcc ttatcaaata
catgccttaa ggctggaagt cctctctctg aaattaatct ctgagcatcc agcttgggta
                                                                     1020
                                                                     1080
tatttettt aactgttete tttggaggta caggaacagg tgetecattt cetgaetett
catcaggete agtteettea ceatettgte tetetggaga ggetggaggt gggaaaggag
                                                                     1140
gaaaagtttc atcttctaca tgctcataat ct
                                                                     1172
      <210> 840
      <211> 1145
      <212> DNA
      <213> Homo sapiens
      <400> 840
cctcctactc ccaaacaaat ctttggggaa aaaaaaacta ccaactgtca gccatgggcc
                                                                       60
tgacggcgct aagctctggg gctccgtgca ctgacgtggg gccagccaca gggaggcggg
                                                                      120
gatsmrgymg cgngassscm ggakywkgrs cwscwscsrs gymrgkwgca gnrgcrgygg
                                                                      180
crhcrsganc mrmagcagcn tgmwgcagct cawgcacctg gagtcctttt aygaaaaamc
                                                                      240
yyctcctggg cttatcaagg aagatgagac taagccagaa gattgcatac caqatgtacc
                                                                      300
aggeaatgaa caegeeaggg aatttetgge teatgeacea aetaaaggae tttggatgee
                                                                      360
actggggaaa gaagtcaaag ttatgcagtg ttggcgttgc aaacgctatg gtcaccgaac
                                                                      420
gggtgacaaa gaatgccctt tctttatcaa aggcaaccaa aagttagagc agttcagagt
                                                                      480
ggcacatgaa gatcccatgt atgacatcat acgagacaat aaacgacatg aaaaggacgt
                                                                      540
aaggatacag cagttaaaac agttactgga ggattctacc tcagatgaag ataggagcag
                                                                      600
ctccmgttcc tctgaaggta aagagaaaca caagaaaaag aagaagaaag aaaagcataa
                                                                      660
gaaaaggaag aaagaaaaga aaaagaagaa aaaacggaag cacaaatctt ccaagtcaaa
                                                                      720
tgagggttct qactcagagt qacaaggatq tqacttqttc aacattctct tctcaaacac
                                                                      780
tgaccaagga acagaggaag atgcagtcag agaaagcagc aggatagaga cgccgagaga
                                                                      840
ggagtatatg tgggtcacag cagtgagctc ccaccegcct tgcagtgaag atgtgacccc
                                                                      900
aggagaggga gtgtctcctt ccaggtgcta gctctggaca gcagctgatt ttaggcagga
                                                                      960
aagtttette ategttgtee teeetgetgg teacatgagt ttaegattee tttgaagtgt
                                                                     1020
ctcccacagg gtggcaggac tgggagaatc tctgaggcgt gtcttccagg ccctcccaca
                                                                     1080
gcttgtgccc tccacagtgt ggactcaggt cccatagaca tcaggctgga gtcttctctg
                                                                     1140
ttgtt
                                                                     1145
      <210> 841
      <211> 642
      <212> DNA
      <213> Homo sapiens
      <400> 841
ttttttataa aaataaatat ttattgccat ttgaagcttt atgtacacct ttaaaagcac
                                                                       60
atgtacaaat gtgggaaatt acaaaaatca acctaaaacc ctttttctca aagtatacat
                                                                      120
aaatgtacat ccaagatcag tggtgctacc atcattagaa taaaaaataa gtctgtctgg
                                                                      180
acataaacaa gcaatcattt taagtgtcat tcagatattc tcctttatat ttaaaactcc
                                                                      240
aaaaaatact aagaggccca atatatccag aaaattgtgt tttcacttta ccctaactta
                                                                      300
tgaatagtgg tatacaaata tatttccatc tttttgtcca gccagcaaat gagagtctgt
                                                                      360
accegaceat tteacaaaag accaatgttg gteagagaca gskskgagrr ksgymktasr
                                                                      420
stkamysasa akkarstsmm amayrgsrmt tnykcmasra stcamkmtyk ytgsyrcasr
                                                                      480
gwkrwctyws rmswmwmwk msargmmcca tttcagaata ggctttgtga cagactgaag
                                                                      540
cttggtaaga atcatcaatg tgcatctttt tcaggagttg accagttttt aaattccaaa
                                                                      600
taacaatgtt gttcataata gtagtaccaa gcagagcttc tt
                                                                      642
```

PCT/US98/27610 WO 99/33982

```
<210> 842
      <211> 452
      <212> DNA
      <213> Homo sapiens
      <400> 842
acggcctggt ggagcagctg tacgacctca ccctggagta cctgcacagc caggcacact
                                                                        60
gcatcggctt cccggagctg gtgctgcctg tggtcctgca gctgaagtcg ttcctccggg
                                                                       120
agtgcaaggt ggccaactac tgccggcagg tgcagcagct gcttgggaag gttcaggaga
                                                                       180
actoggcata catctroago ogcogocaga gggtttoott oggogtotot gagcagcagg
                                                                       240
cagtggaagc ctgggagaag ctgacccggg aagaggggac acccytgacc ttgtactaca
                                                                       300
gccactggcg caantgcgtg accgggagat ccagctggag atcagtggca aagagcggct
                                                                       360
ggaagacctg wacttccctg agatcaaacg aaggaagatg gctgacagga aggatgagga
                                                                       420
caggwagcaa tttaaagacc tcttttgacc tg
                                                                       452
      <210> 843
      <211> 805
      <212> DNA
      <213> Homo sapiens
      <400> 843
ggcttataca acatagtggg gaacgcatgg gaatggactt cagactggtg gactgttcat
                                                                        60
cattetgttg aagaaacget taacccaaaa ggteeceett etgggaaaga eegagtgaag
                                                                       120
aaaggtggat cetacatgtg ceataggtet tattgttaca ggtategetg tgetgetegg
                                                                       180
agccagaaca cacctgatag ctctgcttcg aatctggrnt tccgctgtnc agccgaccgn
                                                                       240
ctgcccacta tngactgaca accaaggaaa gtcttcccca ntccaaggag cagtcgtgtc
                                                                       300
tgacctacat tgggcttttc tcagaacttt gaacgatccc atgcaaagaa ttcccaccct
                                                                       360
gaggtgtttn acatacctgc ccaatgncaa aggaaccgcc ttgtgagacc aaattgctga
                                                                       420
cctgggtcag tgcatgtgct ttatggtgtg gtgcatcttt ggagatcatc gccatatttt
                                                                       480
acttttgaga gtctttaaag aggaagggga gtggagggaa ccctgagcta ggcttcagga
                                                                       540
ggcccgcgtc ctacgcaggc tctgcacagg ggttagaccc caggtccgac gcttgacctt
                                                                       600
cctgggcctc aagtgccctc ccctatcaaa tgacagggat ggacagcatg acctctgggt
                                                                       660
gtctctccaa ctcaccagtt ctaaaaaggg tatcagattc tattgtgact tcataagtga
                                                                       720
gaatttatga tagattattt tttagctatt ttttccatgt gtgaaccttg agtgatacta
                                                                       780
atcatgtaaa gtaagagttc cctta
                                                                       805
      <210> 844
      <211> 702
      <212> DNA
      <213> Homo sapiens
      <400> 844
ttttttttt ttttttgca ggtgcatttg tttctttatt taaaaaaatc atctgggggc
                                                                       60
atggtctgag gaggacaccc ctcccatggc tttggggagg acgcaggttc caggagtcac
                                                                      120
agggcagaaa cacgcggggt gggtgggggc gtggccggag tggggagggg ctgtsccagg
                                                                      180
cacctggggg tggctcccac ggcaccaggt gggctagggc aacagtatgt acaggcgagc
                                                                       240
agtgctcctg gacccggtcg gggccggctg gggcccattt ctgcggcagg ggagctctgg
                                                                      300
ggcacagggt ctgagtccca tcttgggctk cagggaccgc gaggscgtcc agggaggctg
                                                                      360
gacagegggg geetttatet gggeecatea ggtggatgag aaeggacaet gcaaaeeget
                                                                      420
caccacctgg gccagggcta ggctatccgg cagggcctcc ccmmctgaat cctgcgtgcg
                                                                      480
cagaactcaa gccggcatnc aggcagtkgg aacgncccgc angctgggct tggktgsyck
```

540

crsgcacgtg	acaggtgggg	cccgtgtcct	gataaacgga	caggaacaaa	aggaacgcaa	600
ggtctgggac	ccacggctct	gggagcagcg	ccacccaggc	tggctcctag	cagagaaatg	660
ggaatcgcaa	atgcattgca	atgtgcagtg	aagagacgcg	ag		702

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:				
C12N 15/12, C07K 14/47, 16/18, C12Q 1/68				

(11) International Publication Number:

WO 99/33982

(43) International Publication Date:

8 July 1999 (08.07.99)

(21) International Application Number:

PCT/US98/27610

A3

(22) International Filing Date:

22 December 1998 (22.12.98)

(30) Priority Data:

riority Data:		
60/068,755	23 December 1997 (23.12.97)	US
60/080,664	3 April 1998 (03.04.98)	US
60/105,234	21 October 1998 (21.10.98)	US
60/105,877	27 October 1998 (27.10.98)	US
09/217,471	21 December 1998 (21.12.98)	US

- (71) Applicants: CHIRON CORPORATION [US/US]; 4560 Horton Street - R440, Emeryville, CA 94608 (US). HYSEQ INC. [US/US]; 675 Almanor Avenue, Sunnyvale, CA 94086 (US).
- (72) Inventors: WILLIAMS, Lewis, T.; 3 Miroflores, Tiburon, CA 94920 (US). ESCOBEDO, Jaime; 1470 Lavoma Road, Alamo, CA 94507 (US). INNIS, Michael, A.; 315 Constance Place, Moraga, CA 94556 (US). GARCIA, Pablo, Dominguez; 882 Chenery Street, San Francisco, CA 94131 (US). SUDDUTH-KLINGER, Julie; 280 Lexington Road, Kensington, CA 94707 (US). REINHARD, Christoph; 1633 Clinton Avenue, Alameda, CA 94501 (US). GIESE, Klaus; Chausseetrabe 92, D-10115 Berlin (DE). RANDAZZO, Filippo; Apt. 403, 690 Chestnut Street, San Francisco, CA 94133 (US). KENNEDY, Giulia, C.; 360 Castenada Av-

enue, San Francisco, CA 94116 (US). POT, David; 1565 5th Avenue #102, San Francisco, CA 94112 (US). KASSAM, Altaf; 2659 Harold Street, Oakland, CA 94602 (US). LAM-SON, George, 232 Sandringham Drive, Moraga, CA 94556 (US). DRMANAC, Radoje; 850 East Greenwich Place, Palo Alto, CA 94303 (US). CRKVENJAKOV, Radomir, 762 Haverhill Drive, Sunnyvale, CA 94068 (US). DICKSON, Mark; 1411 Gabilan Drive #B, Hollister, CA 95025 (US). DRMANAC, Snezana; 850 East Greenwich Place, Palo Alto, CA 94303 (US). LABAT, Ivan; 140 Acalanes Drive, Sunnyvale, CA 94086 (US). LESHKOWITZ, Dena; 678 Durshire Way, Sunnyvale, CA 94087 (US). KITA, David; 899 Bounty Drive, Foster City, CA 94404 (US). GARCIA, Veronica; Apartment 412, 396 Ano Nuevo, Sunnyvale, CA 94086 (US). JONES, Lee, William; 396 Ano Nuevo #412, Sunnyvale, CA 94086 (US). STACHE-CRAIN, Birgit; 345 South Mary Avenue, Sunnyvale, CA 94086 (US)

- (74) Agent: BLACKBURN, Robert, P.; Chiron Corporation, P.O. Box 8097, Emeryville, CA 94662-8097 (US).
- (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(88) Date of publication of the international search report:

23 December 1999 (23.12.99)

(54) Title: HUMAN GENES AND GENE EXPRESSION PRODUCTS I

(57) Abstract

This invention relates to novel human polynucleotides and variants thereof, their encoded polypeptides and variants thereof, to genes corresponding to these polynucleotides and to proteins expressed by the genes. The invention also relates to diagnostic and therapeutic agents employing such novel human polynucleotides, their corresponding genes or gene products, e.g., these genes and proteins, including probes, antisense constructs, and antibodies.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Јарап	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore	•	

INTERNATIONAL SEARCH REPORT

Informational Application No

		107/02/03/03/
A. CLASSIF IPC 6	C12N15/12 C07K14/47 C07K16/	18 C12Q1/68
According to	International Patent Classification (IPC) or to both national classifica	ation and IPC
B. FIELDS		
Minimum do IPC 6	cumentation searched (classification system followed by classification C12N C07K C12Q	on symbols)
	on searched other than minimum documentation to the extent that s	
Electronio di	ata base consulted during the international search (name of data ba	se and, where practical, search terms used)
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the rel	evant passages Relevant to claim No.
X	CARMECI, C. ET AL.: "Identifica gene (GPR30) with homolgy to the G-protein-coupled receptor super associated with estrogen recepto expression in breast cancer." GENOMICS, vol. 45, no. 3, 1 November 1997 (1997-11-01), pa 607-17, XP002099963 abstract page 608, left-hand column, para	family r ges
	ner documents are listed in the continuation of box C.	Patent family members are listed in annex.
"A" docume consider the consider the consideration of the constant of the cons	tegories of cited documents: ent defining the general state of the last which is not letted to be of particular relevance document but published on or after the international late in the published on priority claim(s) or its cited to establish the publication date of another in or other special reason (as specified) entreferring to an oral disclosure, use, exhibition or means ent published prior to the international filing date but can the priority date claimed actual completion of the international search	T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family Date of mailing of the international search report
1	5 April 1999	71, 11, 99
Name and r	mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Authorized officer Smalt, R

1

INTERNATIONAL SEARCH REPORT

International Application No
FCF/US 98/27610

		PC1/02 98/2/610
ategory °	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	Change of Cooking the Cooking	
х	YEATMAN, T.J. ET AL.: "Identification of genetic alterations associated with the process of human experimental colon cancer liver metastasis in the nude mouse." CLINICAL AND EXPERIMENTAL METASTASIS, vol. 14, no. 3, May 1996 (1996-05), pages 246-252, XP002099961 abstract	1-7
X	NUCLEIC ACID RESEARCH, vol. 23, no. 19, 1995, pages 4007-8, XP002099962 cited in the application the whole document	1-7
A	RADINSKY, R. ET AL.: "Level and function of epidermal growth factor receptor predict the metastatic potential of human colon carcinoma cells." CLINICAL CANCER RESEARCH, vol. 1, January 1995 (1995-01), pages 19-31, XP002099964 the whole document	
A	BALDI, A. ET AL.: "Differential expression of the retinoblastoma gene family members pRb/p105, p107, and pRb2/p130 in lung cancer." CLINICAL CANCER RESEARCH, vol. 2, July 1996 (1996-07), pages 1239-45, XP002099965 the whole document	

1

INTERNATIONAL SEARCH REPORT

mational application No.

PCT/US 98/27610

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
·
Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
see FURTHER INFORMATION SHEET
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this International application, as follows:
SEE ADDITIONAL SHEET
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. X No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-7
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

1. Claims: Invention 1: claims 1-7

A library of polynucleotides comprising the sequence information of at least one of the sequences 1-844.

2. Claims: Invention 2: claims 8,13-19,21 all partially

The isolated nucleic acid with seq.ID 1, sequences with at least 90% sequence identity therewith and degenerate variants thereof, host comprising said nucleic acid, peptide encoded by said nucleic acid, antibody against said protein, vector comprising said nucleic acid, and a method for detecting the differential expression of said nucleic acid.

3. Claims: Inventions 3-845: claims 8-22, all partially, as far as applicable

As invention 2, but limited respectively to the seq.ID's 2-844

For the sake of conciseness, the second subject matter is explicitly defined, the subject matters of inventions 3-845 are defined by analogy thereto.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

In view of the large number of libraries, which are defined by the general definition in the independent claim 1, the search had to be restricted for economic reasons. The search was limited to the libraries for which data was given in the description, or libraries derived from cell lines mentioned in table 4 of the description, and to the general idea underlying the application (see Guidelines, Part B, Chapter III, paragraph 3.6).