Mark Scheme Resolving Past Paper Questions

Jan 2002 to Jan 2009

3(a)

components at right angle 3/Jan 2002 vertical component in line with weight ✓ (both components to start from the •)

(2)

(b)(i) (horizontal component) =
$$25 \sin \theta = 12$$
 (or 13) N (12.5) \checkmark (± 0.5 N if scale drawing)

(ii) (vertical component) =
$$25 \cos \theta = 22 \text{ N}$$
 (21.7) \checkmark ($\pm 0.5 \text{ N}$ if scale drawing) (2)

(c)(i) vertical component of
$$F = 21.7 + 2.5 = 24 \text{ N}$$
 (24.2) [or 25 (24.5)] \checkmark (allow C.E. from (b))

- horizontal component of F = 12 (or 13) N \checkmark (12.5) (allow C.E. from (b)) (ii)
- $F = \sqrt{(12.5^2 + 24.2^2)}$ (allow C.E. from parts (I) and (ii)) $= 27 \text{ N} (27.2) \text{ [or } 28 (28.2)] \checkmark (26 \text{ N to } 29 \text{ N if scale drawing)}$ [if θ measured on diagram and F cos θ used, \checkmark \checkmark (same tolerance)] (4) (8)

4

horizontal component of the tension in the cable ✓ (a)(i)

Q4 Jun 2003

(b)(i)
$$T_{\text{vert}} = 250 \times 9.81 = 2500 \text{ N} \checkmark (2452 \text{ N})$$

(b)(ii)
$$T_{\text{horiz}} = 1200 \text{ N} \checkmark$$

(b)(iii)
$$T^2 = (1200)^2 + (2500)^2 \checkmark$$

 $T = (1.44 \times 10^6 + 6.25 \times 10^6)^{1/2} = 2800 \text{ N} \checkmark (2773 \text{ N})$
(if use of $T_{\text{vert}} = 2450 \text{ N}$ then $T = 2730 \text{ N}$)
(allow C.E. for values from (b)(i) and (b)(ii))

(b)(iv)
$$\tan \theta = \frac{1200}{2500}$$
 \checkmark $\theta = 26^{\circ}$ \checkmark

(6) (8)

(7)

- (a) vector quantities have direction (as well as magnitude)
 and scalar quantities do not ✓ (1)
- (b) vector: e.g. velocity, acceleration, momentum ✓ scalar: e.g. mass, temperature, energy ✓ (2)
- (c)(i) addition of forces (12 + 8) (use of F = ma gives) $a = \frac{(12 + 8)}{6.5} = 3.1 \text{ m s}^{-2}$ \checkmark (3.08 m s^{-2})
- (ii) subtraction of forces (12 8) \checkmark $a = \frac{(12 8)}{6.5} = 0.62 \,\text{m s}^{-2} \,\checkmark \quad (0.615 \,\text{m s}^{-2})$ (4)

Question 2 (a) (i) horizontal component = $850 \times \cos 42$ ✓ $= 630 \text{ N} \checkmark (632 \text{ N})$ Q2 Jun 2005 vertical component = $850 \times \sin 42 = 570 \text{ N} \checkmark (569 \text{ N})$ (ii) (if mixed up sin and cos then CE in (ii)) 5 (iii) weight of girder = $2 \times 570 = 1100 \text{ N} \checkmark (1142 \text{ N})$ (use of 569 N gives weight = 1138 N) (allow C.E. for value of vertical component in (ii)) arrow drawn vertically downwards at centre of girder ✓ (iv)

Question 6		
(a)	component (parallel to ramp) = $7.2 \times 10^3 \times \sin 30 \checkmark (= 3.6 \times 10^3 \text{ N})$	1
(b)	mass = $\frac{7.2 \times 10^3}{9.81}$ = 734 (kg) \checkmark Q6 Jun 2005 $a = \frac{3600}{734}$ = 4.9(1) m s ⁻² \checkmark	2
(c)	(use of $v^2 = u^2 + 2as$ gives) $0 = 18^2 - (2 \times 4.9 \times s) \checkmark$ $s = 33(.1) \text{ m} \checkmark$ (allow C.E. for value of a from (b))	2
(d)	frictional forces are acting \(\square \) increasing resultant force [or opposing motion] \(\square \) hence higher deceleration [or car stops quicker] \(\square \) energy is lost as thermal energy/heat \(\square \)	Max 2

Ques	stion 6		
(a)	(i) (ii)	(horizontal) force = zero \checkmark Q6 Jan 2006 (vertical) force = 2 × 15 sin 20 \checkmark = 10(.3) N \checkmark	3
(b)	(i) (ii)	weight (of block) = 10(.3) N ✓ (allow C.E. for value from (a) (ii)) resultant force must be zero ✓ with reference to an appropriate law of motion ✓	3
		Total	6

Question 3	Q3 Jan 2007		
(a) (i)	(use of $F_H = F \cos \theta$ gives) resultant force = 2 × 6500 cos 35 resultant force = 11 000 N (10 649) (1 out of 2 if only one component given)	/ /	,
(ii)	(use of work = force × distance gives) work = 11 000 × 1.5 × 60 work = 990 000 J (958 408) (if use 10 649 then 960 000 J)	/ /	4
(b)	there is an opposing force or mention of friction/drag work is done on this force or overall resultant force is zero	√√	2
(c)	initially accelerates as horizontal component increases (so) forward force now larger than drag or resultant force no longer zero or now a resultant forward force eventually reaches new higher constant speed	///	max 3
		Total	9

- (a)(i) a quantity that has magnitude only [or has no direction] <
 - (ii) any two: e.g. energy ✓ temperature ✓ (3)

scale ✓ $5 \, \text{N}$ and $9.5 \, \text{N}$ correct answer (8.1 N \pm 0.2 N) \checkmark

[or
$$9.5^2 = 5.0^2 + F^2 \checkmark$$

 $F^2 = 90.3 - 25 \checkmark$
 $F = 8.1 \text{ N} \checkmark$ (8.07 N)]

(ii)
$$\cos \theta = \frac{5.0}{9.5}$$

gives $\theta = 58^{\circ} \checkmark (\pm 2^{\circ} \text{ if taken from scale diagram})$

(<u>4</u>) (<u>7</u>)

Que	stion 2		
(a)	(i)	to balance (or oppose) the weight ✓ or stop ladder moving downwards	2
	(ii)	to balance P ✓ or stop slipping or stop ladder moving right	
(b)		Q2 Jun 2007	1
		correct arrow ✓	
(c)	(i)	43 N ✓	•
	(ii)	150 N ✓	2
(d)		increases (in magnitude) ✓	
		as greater downward force (or vertical component increase) ✓	3
		direction moves closer to vertical ✓	
		Total	8

Que	stion 5		
(a)	(i)	(use of $F = ma$)	
		$a = 1.9 \times 10^{5}/5.6 \times 10^{4} = 3.4 \mathrm{m s^{-2}} \checkmark$	2000
	(ii)	(use of $v^2 = u^2 + 2as$) Q5 Jan	2000
		$82^2 = 2 \times 3.4 \times s \checkmark$	
		s = 989 m ✓ c.e. from (i)	
(b)		air resistance increases with speed ✓	2
		hence runway will be longer ✓	2
(c)	(i)	(use of $F_h = F \cos \theta$)	
		$F_h = 1.9 \times 105 \times \cos 22$	2
		$F_h = 1.8 \times 105 \mathrm{N} \checkmark$	2
	(ii)	$F_V = 1.9 \times 10^5 \times \sin 22 = 7.1 \times 10^4 \text{N} \checkmark$	
		Total	7

Question 2		
(a)	resultant force must be zero ✓	
	because sledge is moving at constant velocity ✓ (or zero acceleration)	2
(b)	parallel component = 4.5 × 9.81 × sin 22 = 16.5 N ✓ Q2 Ju	n 2008
	perpendicular component = 4.5 × 9.81 × cos 22 = 41 N ✓	2
	(if components swapped -1) (if no g then 1 max but must have unit as kg)	_
(c)	same as (b) (i) e.g. 16.5 N ✓	
	same as (b) (ii) e.g. 41 N ✓	2
	(ignore units)	
		6
Question 2	Q2 Jan 2009	

Question 2		Q2 Jan 200	9
(a)	(i)	vector has direction and a scalar does not ✓	
	(ii)	scalar examples; any two e.g. speed, mass, energy, time, power	
		vector examples; any two e.g. displacement, velocity, acceleration, force or weight	4
		✓✓✓ for 4 correct, ✓✓ for 3 correct, ✓ for 2 correct	
(b)	(i)	horizontal component (= 2.8 cos 35) = 2.3 (kN) (2293.6) ✓	
		vertical component (= 2.8 sin 35) = 1.6 (kN) (1606.0) ✓	
	(ii)	power = force × velocity or 2.3 kN × 8.3 m s ⁻¹ ✓ (ecf from 2 (b) (i))	5
		= 1.9 × 10⁴ (19037 or 19100) ✓ ecf	
		W (or Js ⁻¹) ✓ (or 19W (or kJs ⁻¹))	
(c)		(area of cross-section of cable =) $\pi \times (\frac{1}{2} 0.014)^2 \checkmark = 1.5(4) \times 10^{-4} (\text{m}^2) \checkmark$	
		stress (= F/A) = $\frac{2800 \mathrm{N}}{1.54 \times 10^{-4} \mathrm{m}^2}$ (allow ecf here if attempt to calculate area) \checkmark	5
		= 1.8(2) × 10 ⁷ ✓ ecf	
		Pa (or N m ⁻²) ✓	
		Total	14