

Aula 05 - Introdução a Pandas: uma visão para probabilidade

Ivanovitch Silva Março 2019

Atualizar o repositório

git clone https://github.com/ivanovitchm/imd0033_2019_1

Ou

git pull

Year (each data point represents a rolling 7-year average of average lifespan)

DATA: INNOSIGHT/Richard N. Foster/Standard & Poor's

company	rank	revenues	revenue_change	profits	assets	profit_change	ceo	industry
Walmart	1	485873	0.8	13643.0	198825	-7.2	C. Douglas McMillon	General Merchandisers
State Grid	2	315199	-4.4	9571.3	489838	-6.2	Kou Wei	Utilities
Sinopec Group	3	267518	-9.1	1257.9	310726	-65.0	Wang Yupu	Petroleum Refining
China National Petroleum	4	262573	-12.3	1867.5	585619	-73.7	Zhang Jianhua	Petroleum Refining
Toyota Motor	5	254694	7.7	16899.3	437575	-12.3	Akio Toyoda	Motor Vehicles and Parts

```
import pandas as pd
```

```
f500 = pd.read_csv("f500.csv")
```

ceo	profit_change	assets	profits	revenue_change	revenues	rank	company	
C. Douglas McMillon	-7.2	198825	13643.0	0.8	485873	1	Walmart	0
Kou Wei	-6.2	489838	9571.3	-4.4	315199	2	State Grid	1
Wang Yupu	-65.0	310726	1257.9	-9.1	267518	3	Sinopec Group	2
Zhang Jianhua	-73.7	585619	1867.5	-12.3	262573	4	China National Petroleum	3
Akio	-12.3	437575	16899.3	7.7	254694	5	Toyota	4

Pandas

shape, dtype, head(), tail(), info(), describe()

Dataframes

Selecting a column by label

rank revenues profits country Walmart 485873 13643.0 USA 2 315199 9571.3 China State Grid 3 267518 1257.9 China Sinopec Group 262573 1867.5 China 4 5 254694 16899.3 Japan

China	Natural	Petroleum
	To	yota Motor

f500_selection.loc[:,"rank"]

f500_selection

Walmart	1
State Grid	2
Sinopec Group	3
China Natural Petroleum	4
Toyota Motor	5

Selecting columns by label

by label		rank	revenues	profits	country
	Walmart	1	485873	13643.0	USA
	State Grid	2	315199	9571.3	China
f500_selection	Sinopec Group	3	267518	1257.9	China
	China Natural Petroleum	4	262573	1867.5	China
	Toyota Motor	5	254694	16899.3	Japan

	_		
	Walmart	USA	1
	State Grid	China	2
<pre>f500_selection.loc[:,["country","rank"]]</pre>	Sinopec Group	China	3
Ch	ina Natural Petroleum	China	4
	Toyota Motor	Japan	5

country

rank

Selecting columns by label

, , , , , , , , , , , , , , , , , , , ,		rank	revenues	profits	country
	Walmart	1	485873	13643.0	USA
	State Grid	2	315199	9571.3	China
f500_selection	Sinopec Group	3	267518	1257.9	China
China Na	atural Petroleum	4	262573	1867.5	China
	Toyota Motor	5	254694	16899.3	Japan

		rank	revenues	profits
	Walmart	1	485873	13643.0
	State Grid	2	315199	9571.3
f500_selection.loc[:,"rank":"profits"]	Sinopec Group	3	267518	1257.9
China Na	tural Petroleum	4	262573	1867.5
	Toyota Motor	5	254694	16899.3

Column selection shortcuts

Select by Label	Explicit Syntax	Common Shorthand	Other Shorthand
Single column	<pre>df.loc[:,"col1"]</pre>	df["col1"]	df.col1
List of columns	<pre>df.loc[:,["col1", "col7"]]</pre>	df[["col1", "col7"]]	
Slice of columns	df.loc[:,"col1":"col4"]		

Series vs Dataframe

ingle_row is a series object

Dataframe vs Series

	Series	DataFrame
Dimensions	One	Two
Has 'index' axis	Yes	Yes
Has 'columns' axis	No	Yes
Number of dtypes	One	Many (one per column)

Series and Dataframe Describe Methods

```
revs = f500["revenues"]
                                      print(f500["assets"].describe())
print(revs.describe())
                                                5.000000e+02
                                      count
            500.000000
count
                                                2.436323e+05
                                      mean
          55416.358000
mean
                                      std
                                                4.851937e+05
std
          45725.478963
                                      min
                                                3.717000e+03
min
          21609.000000
                                                3.658850e+04
                                      25%
25%
          29003.000000
                                      50%
                                                7.326150e+04
50%
          40236,000000
                                      75%
                                                1.805640e+05
75%
          63926,750000
                                                3.473238e+06
                                      max
         485873,000000
max
                                            assets, dtype: float64
      revenues, dtype:
Name:
```


Calculates result for each column.

Calculates result for each row.

```
medians = f500[["revenues", "profits"]].median(axis=0)
# we could also use .median(axis="index")
print(medians)
```

```
40236.0
revenues
profits
             1761.6
dtype: float64
```

More data exploration methods


```
Walmart 1 485873
State Grid 2 315199
Sinopec Group 3 267518
China National Petroleum 4 262573
Toyota Motor 5 254694
```

>>> top5_rank_revenue["revenues"] = 0

>>> print(top5_rank_revenue)

>>> print(top5 rank revenue)

	rank	revenues
Walmart	1	0
State Grid	2	0
Sinopec Group	3	0
China National Petroleum	4	0
Toyota Motor	5	0

Assignment with Pandas

Assignment with Pandas

Add a new column

```
>>> top5_rank_revenue["year_founded"] = 0
>>> print(top5_rank_revenue)
```

	rank	revenues
Walmart	1	0
State Grid	2	0
Sinopec Group	3	999
China National Petroleum	4	0
Toyota Motor	5	0

ar_founded
0
0
0
0
0
0

Add a new row

```
>>> top5_rank_revenue.loc["My New Company"] = 555
>>> print(top5_rank_revenue)
```

	rank	revenues	year_founded
Walmart	1	0	0
State Grid	2	0	0
Sinopec Group	3	999	0
China National Petroleum	4	0	0
Toyota Motor	5	0	0
My New Company	555	555	555

Using boolean indexing with pandas objects

(<)

Using boolean indexing with pandas objects

False 12 Kylie 8 Rahul True Rahul result = df.loc[num_bool, "name"] 5 Michael False Sarah result 8 Sarah True

result = df[num_bool]

		name	num	5		
False	W	Kylie	12		name	num
True	\rightarrow x	Rahul	8	\rightarrow x	Rahul	8
False	у	Michael	5	Z	Sarah	8
True	\rightarrow z	Sarah	8		result	

name

Using boolean arrays to assign values

```
f500.loc[f500["sector"] == "Motor Vehicles & Parts", "sector"] = "Motor Vehicles and Parts"
```


Challenge

Finding top performers by country

