Apocalypse of the Four Fouriers and Other Tales of Mathematical Horror

Roger Green

Analysis and Synthesis Equations

Signal x is	Aperiodic	Periodic	
Continuous	FT (Analysis): $X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$ IFT (Synthesis): $x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega)e^{j\omega t} d\omega$	FS (Analysis): $X_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-jk\omega_0 t} dt$ FS (Synthesis): $x(t) = \sum_{k=-\infty}^{\infty} X_k e^{jk\omega_0 t}$	
Discrete	DTFT (Analysis): $X(\Omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n}$ IDTFT (Synthesis): $x[n] = \frac{1}{2\pi} \int_{2\pi} X(\Omega)e^{j\Omega n} d\Omega$	$DFT (Analysis):$ $X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\Omega_0kn},$ where $k = \{0: N-1\}$ and $\Omega_0 = \frac{2\pi}{N}$ $IDFT (Synthesis):$ $x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k]e^{j\Omega_0kn},$ where $n = \{0: N-1\}$ and $\Omega_0 = \frac{2\pi}{N}$	

The discrete-time Fourier series (DTFS) differs from the DFT by the scale factor $\frac{1}{N}$, and both use $\Omega_0 = \frac{2\pi}{N}$. The DTFS analysis and synthesis equations are thus

$$X[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j\Omega_0 kn}$$
 and $x[n] = \sum_{k=0}^{N-1} X[k] e^{j\Omega_0 kn}$.

Summary of Properties

Time (or Frequency)	\longleftrightarrow	Frequency (or Time)
Real	\longleftrightarrow	Conjugate symmetric
Imaginary	\longleftrightarrow	Conjugate antisymmetric
Even	\longleftrightarrow	Even
Odd	\longleftrightarrow	Odd
Continuous	\longleftrightarrow	Aperiodic
Discrete	\longleftrightarrow	Periodic

Linear Vector Spaces

A Linear Vector Space \mathcal{X} is a set of elements called vectors together with two operations:

- 1. Addition: $x, y \in \mathcal{X} \Rightarrow x + y \in \mathcal{X}$.
- 2. Scalar mult.: $x \in \mathcal{X}, \alpha \in \mathcal{C} \Rightarrow \alpha x \in \mathcal{X}$.

These two operations satisfy the following properties:

- 1. Commutative law: x + y = y + x.
- 2. Associative law: (x + y) + z = x + (y + z).
- 3. Additive identity: $\exists \theta \in \mathcal{X} \text{ s.t. } x + \theta = x.$
- 4. $\alpha(x+y) = \alpha x + \alpha y$.
- 5. $(\alpha + \beta)x = \alpha x + \beta x$.
- 6. $0x = \theta$.
- 7. 1x = x.

An **Inner Product** $\langle x, y \rangle \in \mathcal{C}$ defined on $\mathcal{X} \times \mathcal{X}$ (meaning $x \in \mathcal{X}$ and $y \in \mathcal{X}$), satisfies:

- 1. $\langle x, y \rangle = \langle y, x \rangle^*$.
- 2. $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$.
- 3. $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$.
- 4. $\langle x, x \rangle > 0$ and $\langle x, x \rangle = 0$ iff $x = \theta$.

Orthogonal (or perpendicular) elements x and y of a linear vector space \mathcal{X} satisfy $\langle x, y \rangle = 0$ $(x \perp y)$.

A **Norm** ||x|| on a linear vector space \mathcal{X} satisfies:

- 1. $||x|| \ge 0$ for all $x \in \mathcal{X}$, with ||x|| = 0 iff $x = \theta$.
- 2. Triangle inequality: $||x+y|| \le ||x|| + ||y||$ for all $x, y \in \mathcal{X}$.
- 3. $\|\alpha x\| = |\alpha| \|x\|$.

Note: The quantity $\sqrt{\langle x, x \rangle} = \sqrt{\|x\|^2}$ is a valid norm.

Example: The set of all continuous-time energy signals is a linear vector space. For two energy signals $x(\cdot)$ and $y(\cdot)$, define

$$\langle x, y \rangle = \int_{-\infty}^{\infty} x(t) y^*(t) dt,$$

and note that $E_x = ||x||^2 = \langle x, x \rangle$ is a valid norm.

The Orthogonality Principle

Let \mathcal{X} be a linear vector space, $x \in \mathcal{X}$, and let $\{\phi_k\}_{k=1}^K$ be a set of basis vectors in \mathcal{X} . We want to estimate x with \hat{x}_K , where

$$\hat{x}_K = \sum_{k=1}^K c_k \phi_k$$

is a linear combination of the K basis vectors. We want to find the K constants $\{c_k\}_{k=1}^K$ to minimize the norm-squared error between x and \hat{x}_K ; i.e., find $\{c_k\}_{k=1}^K$ to minimize

$$\mathcal{E}_K = \|x - \hat{x}_K\|^2 = \langle x - \hat{x}_K, x - \hat{x}_K \rangle.$$

The best choice satisfies the orthogonality principle: The error must be orthogonal to the data used in the estimate, or

$$(\text{error} = x - \hat{x}_K) \perp \phi_\ell, \qquad \ell = 1, 2, \dots, K.$$

Consequently,

$$\langle x - \hat{x}_K, \phi_\ell \rangle = 0, \qquad \ell = 1, 2, \dots, K,$$

or

$$\langle \hat{x}_K, \phi_\ell \rangle = \langle x, \phi_\ell \rangle, \qquad \ell = 1, 2, \dots, K.$$

Substituting for \hat{x}_K , we find that the c's must satisfy

$$\sum_{k=1}^{K} c_k \langle \phi_k, \phi_\ell \rangle = \langle x, \phi_\ell \rangle, \qquad \ell = 1, 2, \dots, K.$$

If $\{\phi_k\}_{k=1}^K$ is an orthogonal set of basis vectors (meaning that $\langle \phi_\ell, \phi_k \rangle = 0$ for $\ell \neq k$), then

$$c_k = \frac{\langle x, \phi_k \rangle}{\|\phi_k\|^2}.$$

For mutually orthogonal basis vectors ϕ_k , notice that each c_k posseses the important "finality property". That is, the optimal value of any coefficient c_k is independent of the other coefficients as well as the number of terms used.

The resulting minimum value of \mathcal{E}_K is

$$\mathcal{E}_{K,\min} = \|x\|^2 - \sum_{k=1}^K c_k \langle \phi_k, x \rangle.$$

Properties of the Fourier Transform and the Fourier Series

Fourier Transform	Fourier Series	
Synthesis: $x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$	Synthesis: $x(t) = \sum_{-\infty}^{\infty} X_k e^{jk\omega_0 t}$	
Analysis: $X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$	Analysis: $X_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-jk\omega_0 t} dt$	
Duality: if $x(t) \iff X(\omega)$, then $X(t) \iff 2\pi x(-\omega)$	Duality:	
Linearity: $ax(t) + by(t) \iff aX(\omega) + bY(\omega)$	Linearity: $ax(t) + by(t) \iff aX_k + bY_k$	
Complex Conjugation: $x^*(t) \Longleftrightarrow X^*(-\omega)$	Complex Conjugation: $x^*(t) \iff X_{-k}^*$	
Scaling and Reversal:	Scaling and Reversal:	
$x(at) \iff \frac{1}{ a } X\left(\frac{\omega}{a}\right)$ $x(-t) \iff X(-\omega)$	$x(-t) \Longleftrightarrow X_{-k}$	
Shifting: $x(t-t_0) \iff X(\omega)e^{-j\omega t_0}$	Shifting: $x(t-t_0) \iff X_k e^{-jk\omega_0 t_0}$	
$x(t)e^{j\omega_0 t} \Longleftrightarrow X(\omega - \omega_0)$	$x(t)e^{jk_0\omega_0t} \iff X_{k-k_0}$	
Differentiation:	Differentiation:	
$ \frac{\frac{d}{dt}x(t) \iff j\omega X(\omega)}{-jtx(t) \iff \frac{d}{d\omega}X(\omega)} $	$\frac{d}{dt}x(t) \Longleftrightarrow jk\omega_0 X_k$	
Time Integration:	Time Integration:	
$\int_{-\infty}^{t} x(\tau)d\tau \iff \frac{X(\omega)}{j\omega} + \pi X(0)\delta(\omega)$		
Convolution:	Convolution:	
$x(t) * y(t) \iff X(\omega)Y(\omega)$ $x(t)y(t) \iff \frac{1}{2\pi}X(\omega) * Y(\omega)$	$ \frac{\frac{1}{T_0}x(t)\circledast y(t) \iff X_k Y_k}{x(t)y(t) \iff X_k * Y_k} $	
Correlation: $\rho_{x,y}(\tau) = x(\tau) * y^*(-\tau) \Longleftrightarrow X(\omega)Y^*(\omega)$	Correlation: $\rho_{x,y}(\tau) = \frac{1}{T_0} x(\tau) \circledast y^*(-\tau) \Longleftrightarrow X_k Y_k^*$	
Parseval's: $E_x = \int_{-\infty}^{\infty} x(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) ^2 d\omega$	Parseval's: $P_x = \frac{1}{T_0} \int_{T_0} x(t) ^2 dt = \sum_{k=-\infty}^{\infty} X_k ^2$	

Properties of the DTFT and the DFT

Discrete-Time Fourier Transform	Discrete Fourier Transform	
Synthesis: $x[n] = \frac{1}{2\pi} \int_{2\pi} X(\Omega) e^{j\Omega n} d\Omega$	Synthesis: $x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j\Omega_0 k n}, \Omega_0 = \frac{2\pi}{N}$	
Analysis: $X(\Omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n}$	Analysis: $X[k] = \sum_{n=0}^{N-1} x[n] e^{-j\Omega_0 k n}, \Omega_0 = \frac{2\pi}{N}$	
Duality:		
Linearity: $ax[n] + by[n] \iff aX(\Omega) + bY(\Omega)$	Linearity: $ax[n] + by[n] \longleftrightarrow aX[k] + bY[k]$	
Complex Conjugation: $x^*[n] \iff X^*(-\Omega)$ $x^*[-n] \iff X^*(\Omega)$	Complex Conjugation: $x^*[n] \longleftrightarrow X^*[\langle -k \rangle_N]$ $x^*[\langle -n \rangle_N] \longleftrightarrow X^*[k]$	
Reversal: $x[-n] \iff X(-\Omega)$	Reversal: $x[\langle -n\rangle_N] \longleftrightarrow X[\langle -k\rangle_N]$	
Shifting: $x[n-m] \iff X(\Omega)e^{-j\Omega m}$ $x[n]e^{j\Omega_0 n} \iff X(\Omega - \Omega_0)$	Shifting: $x[\langle n-m\rangle_N] \longleftrightarrow X[k]e^{-j\Omega_0km}, \Omega_0 = \frac{2\pi}{N}$ $x[n]e^{j\Omega_0mn} \longleftrightarrow X[\langle k-m\rangle_N], \Omega_0 = \frac{2\pi}{N}$	
Convolution: $x[n] * y[n] \iff X(\Omega)Y(\Omega)$ $x[n]y[n] \iff \frac{1}{2\pi}X(\Omega)\circledast Y(\Omega)$	Convolution: $x[n] \circledast y[n] \longleftrightarrow X[k]Y[k]$ $x[n]y[n] \longleftrightarrow \frac{1}{N}X[k] \circledast Y[k]$	
Correlation: $\rho_{x,y}[l] = x[l] * y^*[-l] \Longleftrightarrow X(\Omega)Y^*(\Omega)$	Correlation: $\rho_{x,y}[l] = x[l] \circledast y^*[\langle -l \rangle_N] \longleftrightarrow X[k]Y^*[k]$	
Parseval's: Parseval's: $E_x = \sum_{n=-\infty}^{\infty} x[n] ^2 = \frac{1}{2\pi} \int_{2\pi} X(\Omega) ^2 d\Omega \qquad E_x = \sum_{n=0}^{N-1} x[n] ^2 = \frac{1}{N} \sum_{k=0}^{N-1} X(n) ^2 d\Omega$		

Properties of the Laplace Transform

Bilateral Laplace Transform

Synthesis:
$$x(t) = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} X(s) e^{st} \, ds$$

Analysis:
$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st} dt$$
, ROC: R_x

Linearity:

$$ax(t) + by(t) \stackrel{\mathcal{L}}{\Longleftrightarrow} aX(s) + bY(s)$$
, ROC: At least $R_x \cap R_y$

Complex Conjugation:

$$x^*(t) \stackrel{\mathcal{L}}{\Longleftrightarrow} X^*(s^*)$$
, ROC: R_x

Scaling and Reversal:

$$x(at) \stackrel{\mathcal{L}}{\Longleftrightarrow} \frac{1}{|a|} X\left(\frac{s}{a}\right)$$
, ROC: R_x scaled by $1/a$
 $x(-t) \stackrel{\mathcal{L}}{\Longleftrightarrow} X(-s)$, ROC: R_x reflected

Shifting:

$$x(t-t_0) \stackrel{\mathcal{L}}{\Longleftrightarrow} X(s)e^{-st_0}$$
, ROC: R_x
 $x(t)e^{s_0t} \stackrel{\mathcal{L}}{\Longleftrightarrow} X(s-s_0)$, ROC: R_x shifted by Re $\{s_0\}$

Differentiation:

$$\frac{d}{dt}x(t) \stackrel{\mathcal{L}}{\Longleftrightarrow} sX(s)$$
, ROC: At least R_x

$$-tx(t) \stackrel{\mathcal{L}}{\Longleftrightarrow} \frac{d}{ds}X(s)$$
, ROC: R_x

Time Integration:

$$\int_{-\infty}^{t} x(\tau)d\tau \iff \frac{L}{s}X(s), \text{ ROC: At least } R_x \cap (\text{Re } \{s\} > 0)$$

Convolution:

$$x(t)*y(t) \stackrel{\mathcal{L}}{\Longleftrightarrow} X(s)Y(s),$$
 ROC: At least $R_x \cap R_y$

Unilateral Laplace Transform

$$\begin{array}{c} \textbf{Synthesis:} \\ x(t) = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} X(s) e^{st} \, ds \end{array}$$

Analysis:
$$X(s) = \int_{0^{-}}^{\infty} x(t)e^{-st} dt$$

Linearity:

$$ax(t) + by(t) \stackrel{\mathcal{L}_u}{\iff} aX(s) + bY(s)$$

Complex Conjugation:

$$x^*(t) \stackrel{\mathcal{L}_u}{\iff} X^*(s^*)$$

Scaling and Reversal:

If
$$a > 0$$
: $x(at) \stackrel{\mathcal{L}_u}{\iff} \frac{1}{a} X\left(\frac{s}{a}\right)$

Shifting:

If
$$t_0 > 0$$
: $x(t - t_0) \stackrel{\mathcal{L}_u}{\iff} X(s)e^{-st_0}$
 $x(t)e^{s_0t} \stackrel{\mathcal{L}_u}{\iff} X(s - s_0)$

Differentiation:

$$\frac{\frac{d}{dt}x(t) \stackrel{\mathcal{L}_{u}}{\Longleftrightarrow} sX(s) - x(0^{-})}{\text{(general case shown below)}}$$

$$-tx(t) \stackrel{\mathcal{L}_u}{\iff} \frac{d}{ds}X(s)$$

Time Integration:

$$\int_{0^{-}}^{t} x(\tau) d\tau \stackrel{\mathcal{L}_{u}}{\iff} \frac{1}{s} X(s)$$

Convolution:

$$x(t)*y(t) \stackrel{\mathcal{L}_u}{\Longleftrightarrow} X(s)Y(s)$$

Unilateral Laplace Transform Time Differentiation, General Case

$$x^{(k)}(t) = \frac{d^k}{dt^k}x(t) \stackrel{\mathcal{L}_u}{\iff} s^k X(s) - \sum_{i=0}^{k-1} s^{k-1-i} x^{(i)}(0^-)$$

Properties of the z-Transform

Bilateral z-Transform

Synthesis:

$$x[n] = \frac{1}{2\pi j} \oint X(z) z^{n-1} dz$$

Analysis:
$$X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$$
, ROC: R_x

Linearity:

$$ax[n] + by[n] \stackrel{\mathcal{Z}}{\Longleftrightarrow} aX(z) + bY(z),$$

ROC: At least $R_x \cap R_y$

Complex Conjugation:

$$x^*[n] \stackrel{\mathcal{Z}}{\Longleftrightarrow} X^*(z^*)$$
, ROC: R_x

Time Reversal:

$$x[-n] \stackrel{\mathcal{Z}}{\Longleftrightarrow} X(1/z)$$
, ROC: $1/R_x$

Time Shifting:

$$x[n-m] \stackrel{\mathcal{Z}}{\Longleftrightarrow} z^{-m}X(z)$$
, ROC: Almost R_x

z-Domain Scaling:

$$\gamma^n x[n] \stackrel{\mathcal{Z}}{\Longleftrightarrow} X(z/\gamma)$$
, ROC: $|\gamma| R_x$

z-Domain Differentiation:

$$nx[n] \stackrel{\mathcal{Z}}{\Longleftrightarrow} -z \frac{d}{dz} X(z)$$
, ROC: R_x

Time Convolution:

$$x[n]*y[n] \stackrel{\mathcal{Z}}{\Longleftrightarrow} X(z)Y(z),$$
 ROC: At least $R_x \cap R_y$

Unilateral z-Transform

Synthesis:
$$x[n] = \frac{1}{2\pi j} \oint X(z) z^{n-1} dz$$

Analysis:
$$X(z) = \sum_{n=0}^{\infty} x[n] z^{-n}$$

Linearity:

$$ax[n] + by[n] \stackrel{\mathcal{Z}_u}{\Longleftrightarrow} aX(z) + bY(z)$$

Complex Conjugation:

$$x^*[n] \stackrel{\mathcal{Z}_u}{\Longleftrightarrow} X^*(z^*)$$

Time Reversal:

Time Shifting:

If
$$m > 0$$
: $x[n-m]u[n-m] \stackrel{\mathcal{Z}_u}{\iff} z^{-m}X(z)$ (general case given below)

z-Domain Scaling:

$$\gamma^n x[n] \stackrel{\mathcal{Z}_u}{\iff} X(z/\gamma)$$

z-Domain Differentiation:

$$nx[n] \stackrel{\mathcal{Z}_u}{\Longleftrightarrow} -z \frac{d}{dz} X(z)$$

Time Convolution:

$$x[n] * y[n] \stackrel{\mathcal{Z}_u}{\Longleftrightarrow} X(z)Y(z)$$

 $r \neq 1$

Unilateral z-Transform Time Shifting, General Case

If
$$m > 0$$
: $x[n-m]u[n] \stackrel{\mathcal{Z}_u}{\iff} z^{-m}X(z) + z^{-m} \sum_{n=1}^m x[-n]z^n$
If $m < 0$: $x[n-m]u[n] \stackrel{\mathcal{Z}_u}{\iff} z^{-m}X(z) - z^{-m} \sum_{n=0}^{-m-1} x[n]z^{-n}$

A Selection of Useful Sums

1.
$$\sum_{m=p}^{n} r^m = \frac{r^p - r^{n+1}}{1 - r}$$

2.
$$\sum_{m=0}^{n} m = \frac{n(n+1)}{2}$$

3.
$$\sum_{m=0}^{n} m^2 = \frac{n(n+1)(2n+1)}{6}$$

3.
$$\sum_{m=0}^{n} m^2 = \frac{n(n+1)(2n+1)}{6}$$
4.
$$\sum_{m=0}^{n} mr^m = \frac{r + [n(r-1)-1]r^{n+1}}{(r-1)^2}$$

$$r \neq 1$$

5.
$$\sum_{m=0}^{n} m^2 r^m = \frac{r[(1+r)(1-r^n)-2n(1-r)r^n-n^2(1-r)^2r^n]}{(r-1)^3} \quad r \neq 1$$

Selected Fourier Transform Pairs

	x(t)	$X(\omega)$	
1.	$e^{\lambda t}u(t)$	$\frac{1}{j\omega - \lambda}$	$\operatorname{Re}\left\{\lambda\right\} < 0$
2.	$e^{\lambda t}u(-t)$	$-\frac{1}{j\omega-\lambda}$	$\operatorname{Re}\left\{\lambda\right\} > 0$
3.	$e^{\lambda t }$	$\frac{-2\lambda}{\omega^2 + \lambda^2}$	$\operatorname{Re}\left\{\lambda\right\} < 0$
4.	$t^k e^{\lambda t} u(t)$	$\frac{k!}{(j\omega - \lambda)^{k+1}}$	$\operatorname{Re}\left\{\lambda\right\} < 0$
5.	$e^{-at}\cos(\omega_0 t)u(t)$	$\frac{a+j\omega}{(a+j\omega)^2+\omega_0^2}$	a > 0
6.	$e^{-at}\sin(\omega_0 t)u(t)$	$\frac{\omega_0}{(a+j\omega)^2 + \omega_0^2}$	a > 0
7.	$\Pi\left(\frac{t}{\tau}\right)$	$\tau \operatorname{sinc}\left(\frac{\tau\omega}{2\pi}\right)$	$\tau > 0$
8.	$\frac{B}{\pi}$ sinc $\left(\frac{Bt}{\pi}\right)$	$\Pi\left(\frac{\omega}{2B}\right)$	B > 0
9.	$\Lambda\left(\frac{t}{ au}\right)$	$\frac{\tau}{2}\mathrm{sinc}^2\left(\frac{\tau\omega}{4\pi}\right)$	$\tau > 0$
10.	$\frac{B}{2\pi}$ sinc ² $\left(\frac{Bt}{2\pi}\right)$	$\Lambda\left(rac{\omega}{2B} ight)$	B > 0
11.	$e^{-t^2/2\sigma^2}$	$\sigma\sqrt{2\pi}e^{-\sigma^2\omega^2/2}$	$\sigma > 0$
12.	$\delta(t)$	1	
13.	1	$2\pi\delta(\omega)$	
14.	u(t)	$\pi\delta(\omega)+rac{1}{j\omega}$	
15.	sgn(t)	$\frac{2}{j\omega}$	
16.	$e^{j\omega_0t}$	$2\pi\delta(\omega-\omega_0)$	
17.	$\cos(\omega_0 t)$	$\pi \left[\delta(\omega - \omega_0) + \delta(\omega + \omega_0) \right]$	
18.	$\sin(\omega_0 t)$	$\frac{\pi}{j} \left[\delta(\omega - \omega_0) - \delta(\omega + \omega_0) \right]$	
19.	$\cos(\omega_0 t)u(t)$	$\frac{\pi}{2} \left[\delta(\omega - \omega_0) + \delta(\omega + \omega_0) \right] + \frac{j\omega}{\omega_0^2 - \omega^2}$	
20.	$\sin(\omega_0 t) u(t)$	$\frac{\pi}{2j} \left[\delta(\omega - \omega_0) - \delta(\omega + \omega_0) \right] + \frac{\omega_0}{\omega_0^2 - \omega^2}$	
21.	$\sum_{k=-\infty}^{\infty} \delta(t - kT)$	$\omega_0 \sum_{k=-\infty}^{\infty} \delta(\omega - k\omega_0)$	$\omega_0 = \frac{2\pi}{T}$

Selected Discrete-Time Fourier Transform Pairs

	x[n]	$X(\Omega)$	
1.	$\delta[n-k]$	$e^{-jk\Omega}$	integer k
2.	$\gamma^n u[n]$	$rac{e^{j\Omega}}{e^{j\Omega}-\gamma}$	$ \gamma < 1$
3.	$-\gamma^n u[-n-1]$	$rac{e^{j\Omega}}{e^{j\Omega}-\gamma}$	$ \gamma > 1$
4.	$\gamma^{ n }$	$\frac{1-\gamma^2}{1-2\gamma\cos(\Omega)+\gamma^2}$	$ \gamma < 1$
5.	$n\gamma^n u[n]$	$rac{\gamma e^{j\Omega}}{(e^{j\Omega}-\gamma)^2}$	$ \gamma < 1$
6.	$ \gamma ^n \cos(\Omega_0 n + \theta) u[n]$	$\frac{e^{j\Omega}[e^{j\Omega}\cos(\theta)- \gamma \cos(\Omega_0-\theta)]}{e^{j2\Omega}-2 \gamma \cos(\Omega_0)e^{j\Omega}+ \gamma ^2}$	$ \gamma < 1$
7.	$u[n] - u[n - L_x]$	$\frac{\sin(L_x\Omega/2)}{\sin(\Omega/2)} e^{-j\Omega(L_x-1)/2}$	
8.	$\frac{B}{\pi}\operatorname{sinc}\left(\frac{Bn}{\pi}\right)$	$\sum_{k=-\infty}^{\infty} \Pi\left(\frac{\Omega - 2\pi k}{2B}\right)$	
9.	$\frac{B}{2\pi}\operatorname{sinc}^2\left(\frac{Bn}{2\pi}\right)$	$\sum_{k=-\infty}^{\infty} \Lambda\left(\frac{\Omega - 2\pi k}{2B}\right)$	
10.	1	$2\pi \sum_{k=-\infty}^{\infty} \delta(\Omega - 2\pi k)$	
11.	u[n]	$\frac{e^{j\Omega}}{e^{j\Omega}-1} + \pi \sum_{k=-\infty}^{\infty} \delta(\Omega - 2\pi k)$	
12.	$e^{j\Omega_0 n}$	$2\pi \sum_{k=-\infty}^{\infty} \delta(\Omega - \Omega_0 - 2\pi k)$	
13.	$\cos(\Omega_0 n)$	$\pi \sum_{k=-\infty}^{\infty} \delta(\Omega - \Omega_0 - 2\pi k) + \delta(\Omega + \Omega_0)$	$(2n-2\pi k)$
14.	$\sin(\Omega_0 n)$	$\frac{\pi}{j} \sum_{k=-\infty}^{\infty} \delta(\Omega - \Omega_0 - 2\pi k) - \delta(\Omega + \Omega_0 - 2\pi k)$	
15.	$\cos(\Omega_0 n) u[n]$	$\frac{e^{j2\Omega} - e^{j\Omega}\cos(\Omega_0)}{e^{j2\Omega} - 2\cos(\Omega_0)e^{j\Omega} + 1} + \frac{\pi}{2}\sum_{k=-\infty}^{\infty}\delta(\Omega - \Omega_0 - 2\pi k) + \delta(\Omega + \Omega_0 - 2\pi k)$	
16.	$\sin(\Omega_0 n) u[n]$	$\frac{e^{j\Omega}\sin(\Omega_0)}{e^{j2\Omega}-2\cos(\Omega_0)e^{j\Omega}+1} + \frac{\pi}{2j}\sum_{k=-\infty}^{\infty}\delta(\Omega_0)e^{j\Omega}$	$2 - \Omega_0 - 2\pi k) - \delta(\Omega + \Omega_0 - 2\pi k)$

Selected DTFT Pairs Using the Fundamental Band

	x[n]	$X(\Omega)$ for $-\pi \le \Omega < \pi$	
1.	$\delta[n-k]$	$e^{-jk\Omega}$	integer k
2.	$\gamma^n u[n]$	$rac{e^{j\Omega}}{e^{j\Omega}-\gamma}$	$ \gamma < 1$
3.	$-\gamma^n u[-n-1]$	$rac{e^{j\Omega}}{e^{j\Omega}-\gamma}$	$ \gamma > 1$
4.	$\gamma^{ n }$	$\frac{1-\gamma^2}{1-2\gamma\cos(\Omega)+\gamma^2}$	$ \gamma < 1$
5.	$n\gamma^n u[n]$	$rac{\gamma e^{j\Omega}}{(e^{j\Omega}-\gamma)^2}$	$ \gamma < 1$
6.	$ \gamma ^n \cos(\Omega_0 n + \theta) u[n]$	$\frac{e^{j\Omega}[e^{j\Omega}\cos(\theta) - \gamma \cos(\Omega_0 - \theta)]}{e^{j2\Omega} - 2 \gamma \cos(\Omega_0)e^{j\Omega} + \gamma ^2}$	$ \gamma < 1$
7.	$u[n] - u[n - L_x]$	$\frac{\sin(L_x\Omega/2)}{\sin(\Omega/2)} e^{-j\Omega(L_x-1)/2}$	
8.	$\frac{B}{\pi}\operatorname{sinc}\left(\frac{Bn}{\pi}\right)$	$\Pi(rac{\Omega}{2B})$	$0 < B \leq \pi$
9.	$\frac{B}{2\pi}\operatorname{sinc}^2\left(\frac{Bn}{2\pi}\right)$	$\Lambdaig(rac{\Omega}{2B}ig)$	$0 < B \leq \pi$
10.	1	$2\pi\delta(\Omega)$	
11.	u[n]	$rac{e^{j\Omega}}{e^{j\Omega}-1}+\pi\delta(\Omega)$	
12.	$e^{j\Omega_0 n}$	$2\pi\delta(\Omega\!-\!\Omega_0)$	$ \Omega_0 < \pi$
13.	$\cos(\Omega_0 n)$	$\pi \left[\delta(\Omega - \Omega_0) + \delta(\Omega + \Omega_0) \right]$	$ \Omega_0 < \pi$
14.	$\sin(\Omega_0 n)$	$rac{\pi}{j}\left[\delta(\Omega\!-\!\Omega_0)-\delta(\Omega\!+\!\Omega_0) ight]$	$ \Omega_0 < \pi$
15.	$\cos(\Omega_0 n) u[n]$	$\frac{e^{j2\Omega} - e^{j\Omega}\cos(\Omega_0)}{e^{j2\Omega} - 2\cos(\Omega_0)e^{j\Omega} + 1} + \frac{\pi}{2} \left[\delta(\Omega - \Omega_0) + \delta(\Omega + \Omega_0) \right]$	$ \Omega_0 < \pi$
16.	$\sin(\Omega_0 n) u[n]$	$\frac{e^{j\Omega}\sin(\Omega_0)}{e^{j2\Omega}-2\cos(\Omega_0)e^{j\Omega}+1}+\frac{\pi}{2j}\left[\delta(\Omega-\Omega_0)-\delta(\Omega+\Omega_0)\right]$	$ \Omega_0 < \pi$

Selected Laplace Transform Pairs

	x(t)	X(s)	ROC
1.	$\delta(t)$	1	All s
2.	u(t)	$\frac{1}{s}$	$\operatorname{Re}\left\{ s\right\} >0$
3.	$t^k u(t)$	$\frac{k!}{s^{k+1}}$	$\operatorname{Re}\left\{ s\right\} >0$
4.	$e^{\lambda t}u(t)$	$\frac{1}{s-\lambda}$	$\operatorname{Re}\left\{ s\right\} >\operatorname{Re}\left\{ \lambda\right\}$
5.	$t^k e^{\lambda t} u(t)$	$\frac{k!}{(s-\lambda)^{k+1}}$	$\operatorname{Re}\left\{ s\right\} >\operatorname{Re}\left\{ \lambda\right\}$
6.	$\cos(\omega_0 t)u(t)$	$\frac{s}{s^2+\omega_0^2}$	$\operatorname{Re}\left\{ s\right\} >0$
7.	$\sin(\omega_0 t)u(t)$	$\frac{\omega_0}{s^2+\omega_0^2}$	$\operatorname{Re}\left\{ s\right\} >0$
8.	$e^{-at}\cos(\omega_0 t)u(t)$	$\frac{s+a}{(s+a)^2+\omega_0^2}$	$\operatorname{Re}\left\{ s\right\} >-a$
9.	$e^{-at}\sin(\omega_0 t)u(t)$	$\frac{\omega_0}{(s+a)^2 + \omega_0^2}$	$\operatorname{Re}\left\{ s\right\} >-a$
10.	$e^{-at}\cos(\omega_0 t + \theta) u(t)$	$\frac{\cos(\theta)s + a\cos(\theta) - \omega_0\sin(\theta)}{s^2 + 2as + (a^2 + \omega_0^2)}$	$\operatorname{Re}\left\{ s\right\} >-a$
		$= \frac{0.5e^{j\theta}}{s+a-j\omega_0} + \frac{0.5e^{-j\theta}}{s+a+j\omega_0}$	
11.	u(-t)	$-\frac{1}{s}$	$\operatorname{Re}\left\{ s\right\} <0$
12.	$t^k u(-t)$	$-\frac{k!}{s^{k+1}}$	$\operatorname{Re}\left\{ s\right\} <0$
13.	$e^{\lambda t}u(-t)$	$-\frac{1}{s-\lambda}$	$\operatorname{Re}\left\{ s\right\} <\operatorname{Re}\left\{ \lambda\right\}$
14.	$t^k e^{\lambda t} u(-t)$	$-rac{k!}{(s-\lambda)^{k+1}}$	$\operatorname{Re}\left\{ s\right\} <\operatorname{Re}\left\{ \lambda\right\}$
15.	$\cos(\omega_0 t)u(-t)$	$-\frac{s}{s^2+\omega_0^2}$	$\operatorname{Re}\left\{ s\right\} <0$
16.	$\sin(\omega_0 t) u(-t)$	$-rac{\omega_0}{s^2+\omega_0^2}$	$\operatorname{Re}\left\{ s\right\} <0$
17.	$e^{-at}\cos(\omega_0 t)u(-t)$	$-\frac{s+a}{(s+a)^2+\omega_0^2}$	$\operatorname{Re}\left\{ s\right\} <-a$
18.	$e^{-at}\sin(\omega_0 t)u(-t)$	$-\frac{\omega_0}{(s+a)^2+\omega_0^2}$	$\operatorname{Re}\left\{ s\right\} <-a$
19.	$e^{-at}\cos(\omega_0 t + \theta) u(-t)$	$-\frac{\cos(\theta)s + a\cos(\theta) - \omega_0\sin(\theta)}{s^2 + 2as + (a^2 + \omega_0^2)}$	$\operatorname{Re}\left\{ s\right\} <-a$
		$= -\frac{0.5e^{j\theta}}{s+a-j\omega_0} + \frac{0.5e^{-j\theta}}{s+a+j\omega_0}$	

Selected z-Transform Pairs

	x[n]	X(z)	ROC
1.	$\delta[n]$	1	All z
2.	u[n]	$\frac{z}{z-1}$	z > 1
3.	$\gamma^n u[n]$	$\frac{z}{z-\gamma}$	$ z > \gamma $
4.	$\gamma^{n-1}u[n-1]$	$\frac{1}{z-\gamma}$	$ z > \gamma $
5.	$n\gamma^n u[n]$	$\frac{\gamma z}{(z-\gamma)^2}$	$ z > \gamma $
6.	$n^2 \gamma^n u[n]$	$\frac{\gamma z(z+\gamma)}{(z-\gamma)^3}$	$ z > \gamma $
7.	$\frac{n!}{(n-m)!m!}\gamma^{n-m}u[n]$	$\frac{z}{(z-\gamma)^{m+1}}$	$ z > \gamma $
8.	$ \gamma ^n \cos(\beta n) u[n]$	$\frac{z[z- \gamma \cos(\beta)]}{z^2-2 \gamma \cos(\beta)z+ \gamma ^2}$	$ z > \gamma $
9.	$ \gamma ^n \sin(\beta n) u[n]$	$\frac{z \gamma \sin(\beta)}{z^2-2 \gamma \cos(\beta)z+ \gamma ^2}$	$ z > \gamma $
10.	$ \gamma ^n \cos(\beta n + \theta) u[n]$	$\frac{z[z\cos(\theta)- \gamma \cos(\beta-\theta)]}{z^2-2 \gamma \cos(\beta)z+ \gamma ^2}$	$ z > \gamma $
		$= \frac{(0.5e^{j\theta})z}{z - \gamma e^{j\beta}} + \frac{(0.5e^{-j\theta})z}{z - \gamma e^{-j\beta}}$	
11.	$r \gamma ^n\cos(\beta n+\theta)u[n]$	$\frac{z(az+b)}{z^2+2cz+ \gamma ^2}$	$ z > \gamma $
	$r = \sqrt{\frac{a^2 \gamma ^2 + b^2 - 2abc}{ \gamma ^2 - c^2}}$		
	$\beta = \cos^{-1}\left(\frac{-c}{ \gamma }\right)$		
	$\theta = \tan^{-1} \left(\frac{ac - b}{a\sqrt{ \gamma ^2 - c^2}} \right)$		
12.	$\delta[n-k]$	z^{-k}	$\begin{aligned} z &> 0 & k > 0 \\ z &< \infty & k < 0 \end{aligned}$
13.	-u[-n-1]	$\frac{z}{z-1}$	z < 1
14.	$-\gamma^n u[-n-1]$	$\frac{z}{z-\gamma}$	$ z < \gamma $
15.	$-n\gamma^n u[-n-1]$	$\frac{z\gamma}{(z-\gamma)^2}$	$ z < \gamma $