Assignment -4

Assignment Date	17 November 2022	
Student Name	Sai kumar reddy.r	
Student Roll Number	111619104121	
Maximum Marks	4 Marks	

```
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression

df=pd.read_csv("/content/drive/NyDrive/Colab Notebooks/abalone.csv")

d-F['age'] = d-F['Rings']+1.5
df = df.drop('Rings', axis = 1)
```

Univariate Analysis

```
df.hist(figsize=(20,10), grid=False, layout=(2, 4), bins = 3B)
    array([[<matplotlib.axes._subplots.AxesSubplot object at 8x7f3d1b8fb698>,
             <matplotlib.axes. subplots.AxesSubplot object at 0x7f3dlade4d98>,
<matplotlib.axes. subplots.AxesSubplot object at 0x7f3dladaa398>,
           <matplotlib.axes._subplots.AxesSubplot object at Bx7f3dlac8fc58>,
             <matplotlib.axes._subplots.AxesSubplot object at 8x7f3dlac53ld8>]],
           dtype=object)
                     Length
                                                                                                 Height
                                                                                                                                    Whole weight
      400
                                                                                                                        300
                                            350
                                                                                 1400
      350
                                                                                                                       250
                                            300
                                                                                 1200
      300
                                            250
                                                                                                                       200
                                                                                 1000
                                            200
      200
                                            150
     150
                                                                                                                       100
                                            100
                                                                                  400
     100
                                                                                                                        50
                                            50
      50
                                                              0.4
                                                                                                                                    1.0
                 Shucked weight
                                                                                              Shell weight
                                                        Viscera weight
                                                                                                                                        age
                                                                                                                        700
      350
      300
                                            300
                                                                                  300
                                                                                                                       500
      250
                                            250
                                                                                 250
                                                                                                                        400
      200
                                            200
                                                                                 200
                                                                                                                        300
     150
                                            150
                                                                                 150
                                                                                                                       200
     100
                                            100
                                                                                 100
      50
                                            50
                                                                                                                        100
                                                                                  50
         0.00 0.25 0.50 0.75 1.00 1.25 1.50
```

Length Diameter Height whole weight Shucked weight Viscera weight Shell weight age

	0.427746	0.326494	0.107996	0.431363	0.191035	0.092010	0.128182	9.390462
М	0.561391	0.439287	0.151381	0.991459	0.432946	0.215545	0.281969	12.205497
F	0.579093	0.454732	0.158011	1.046532	0.446188	0.230689	0.302010	12.629304

Bivariate Analysis

numerical_features = df.select_dtypes(include = [np.number]).columns
sns.pairplot(df[numerical_features])

Descriptive statistics

df.d	escribe()									
		Length	Diameter	Height	whole weight	Shucked weight	viscera weight	Shell weight	age	70.
	count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	
	mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	11.433684	
	std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169	
	min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	2.500000	
	25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	9.500000	
	50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	10.500000	
	75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	12.500000	
	max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	30.500000	

Check for missing values

df.isnull().sum()

```
df - pd.get_dummies(df)
dummy_da ta = df . copy()
var = 'Viscera weight'
plt.scatter(x = df[var], y = df['age'],)
plt.grid(True)
# outliers removal
d-F. drop(df[ (d-F[ 'VI scera weight '] > 0. 5) & (df-[ 'age '] < 20) ] . Index, inp1ace=True)
\tt df.drop(df[(df['Uiscera\ weight']<0.5)\ \&\ (df['age']\ \to\ 25)].index,\ inplace=True)
var - 'Shell weight'
plt.scatter(x = df[var], y = df['age'],)
plt.grid(True)
#Outliers removal
\label{eq:dfdf} $$ df.drop(df[(df['Shell weight'] > 0.6) & (df['age'] < 25)].index, inplace=True) $$
\label{eq:df_def} $$ df.drop(df[(df['Shell weight']<8.8) 8 (df['age'] > 25)].index, inplace=True) $$
var = 'Shucked weight'
plt.scatter(x = df[var], y = df['age'],)
plt.grid(True)
#Outlier removal
\label{eq:dfdf} $$ df.drop(df[(df['Shucked weight'] >= 1) & (df['age'] < 28)].index, inplace=True) $$
\label{eq:df_drop} $$ df.drop(df[(df['Shucked weight']<1) & (df['age'] > 28)].iudex, inplace=True) $$
var = ' Nhole weight '
pit . scatter (x = df-[var], y = df['age'])
p1t . grid(True)
df.drop(df[(df['Whole weight'] >= 2.5) &
                               (df['age'] < 25)].index, inplace = True)</pre>
df. drop(df-[(df['Nhole weight']<2.5) & (
d-F['age'] > 25)]. Index, 1nplace = True)
var = ' Diameter '
pit . scatter (x = df-[var] , y = df[ ' age ' ] )
p1t . grid(True)
df.drop (df-[(df['Diazeten'] <8.1) &
(\texttt{df['age']} \leftarrow \texttt{5)]}.index, \; \texttt{inplace} = \texttt{True}) \; \texttt{df.} \; \texttt{drop(df-[(df['Diameter'] < 0.6) \& (}))} \; \texttt{and} \; 
d-F['age']>25)]. Index, 1nplace = True)
d-F-. drop(df-[ (d1°[ 'Diameter '] >=0.6) & (
df-[ ' age ' ] < 25) ] . Index, 1nplace = True)
var = 'Height'
p1t . scatter (x - df[var], y - df['age'])
p1t.grid(True)
d-F. drop(d-I- [ (df-[ ^{\prime} Height ^{\prime} ] > 6 . 4) &
                                (df[ 'age '] < 15) ] . Index, Inplace = True)
d-F. drop(df-[ (d-F[ ' Height '] <0. 4) & (
d-I°[ 'age '] > 25) ] . index, 1nplace = True)
var = 'Length'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
df.drop(df[(df['Leugth'] <8.1) &</pre>
                              (df['age'] < 5)].index, inplace = True)</pre>
dfdropd[df['Leugth]<0.8) & (
df['age'] > 25)].index, inplace = True)
df.dropd[df['Length]>=8.8) & (
df['age'] < 25)].iudex, inplace = True)</pre>
```


Categorical columns

 $numerical_features = df.select_dtypes(include = [np.number]).columns \\ categorica1_features = df.select_dtypes(include = [np.object]).columns$

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: Deprecationwarning: 'up.object' is a deprecated alias for the builtin 'object' To siler Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.8-notes.html#deprecations

numerical_features

```
Index(['Length','Dl ameter','Height','Mhole weight','Shucked weight',
'Uiscera weight','Shell weight', 'age'],
dtype='object')
```

categonica I_featunes

Index(['Sex'], dtype='object')

ENCODING

from sklearn.preprocessing import LabelEncoder le=LabelEncoder() print(df.Sex.value_counts())

M 1525 1 1341 F 1301

Name: Sex, dtype: int64

x=df.iloc[:, :5]

10	Nhole we1ght	Helght	Diameter	Length	Sex		
	0.5140	0.095	0.365	0.455	М	0	
	0.2255	0.090	0.265	0.350	М	1	
	0.6770	0.135	0.420	0.530	F	2	
	0.5160	0.125	0.365	0.440	М	3	
	0.2050	0.080	0.255	0.330		4	
	0.8870	0.165	0.450	0.565	F	4172	
	0.9660	0.135	0.440	0.590	М	4173	
	1.1760	0.205	0.475	0.600	М	4174	
	1.0945	0.150	0.485	0.625	F	4175	
	1.9485	0.195	0.555	0.710	М	4176	

4167 rows • 5 columns

y=df.iloc[:,5:]

	Shucked weight	VIscera weight	Shell weight	age	7
0	0.2245	0.1010	0.1500	16.5	
1	0.0995	0.0485	0.0700	8.5	
2	0.2565	0.1415	0.2100	10.5	
3	0.2155	0.1140	0.1550	11.5	
4	0.0895	0.0395	0.0550	8.5	
4172	0.3700	0.2390	0.2490	12.5	
4173	0.4390	0.2145	0.2605	11.5	
4174	0.5255	0.2875	0.3080	10.5	
4175	0.5310	0.2610	0.2960	11.5	
4176	0.9455	0.3765	0.4950	13.5	
4167 rd	ws 4 columns				

 $from \ sk1earn.model_selection \ import \ train_test_split \\ x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)$

Model Building

 $\label{linearRegression} from sklearn.linear_model import LinearRegression \\ mlr=LinearRegression() \\ mlr.fit(x_train,y_train)$

Train and Test model

x_test [6:5]

	Sex	Length	Diameter	Height	Nhole we1ght
661		0.535	0.450	0.170	0.781
370	F	0.650	0.545	0.165	1.566
2272	М	0.635	0.510	0.210	1.598
1003	М	0.595	0.455	0.150	1.044
1145	М	0.580	0.455	0.195	1.859

y_test[0:5]

	Shucked we1ght	vlscera we1ght	Shell we1ght	age
661	0.3055	0.1555	0.295	12.5
370	0.6645	0.3455	0.415	17.5
2272	0.6535	0.2835	0.580	16.5
1003	0.5180	0.2205	0.270	10.5
1145	0.9450	0.4260	0.441	10.5

Feature Scaling

from sklearn.preprocessing import StandardScaler ss=StandardScaler() x_train=ss.fit_transform(x_train) mlrpred=mlr.predict(x_test[B:9]) mlrpred

Performance measure

I-rom sklearn .metric s Import r2_score r2_s core(m1r . predict (x_test) , y_test)

0.5597133867640833