# Numeričko rješavanje PDJ 2

Ljetni semestar

Srpanj

## Zadatak ES-5

1. Treba riješiti zadaću provođenja topline

$$-\operatorname{div}(k(x)\nabla T) = 0 \quad u \quad \Omega$$

u domeni na slici:



Koeficijent k(x) prima četiri različite vrijednosti u četiri kvadranta:

$$k(x) = \begin{cases} 0.1 & \text{u 1. kvadrant} \\ 1 & \text{u 2. kvadrantu} \\ 0.01 & \text{u 3. kvadrantu} \\ 10 & \text{u 4. kvadrantu} \end{cases}$$

Na unutarnjem krugu zadana je temperatura -70 C, a na vanjskom 120 C. Naći razdiobu temperature. Zadaću treba riješiti metodom konačnih elemenata, sa P1 i P2 elementima.

- 2. Verificirati kod na artificijelnom rješenju u slučaju konstantnog koefcijenta k.
- 3. Napisati izvještaj o rezultatima simulacija u pdf formatu koristeči IAT<sub>E</sub>X.

## Izvještaj treba sadržavati:

- 1. Opis problema.
- 2. Opis diskretizacije zadaće.
- 3. Diskusiju rezultata testova. Kako diskontinuiteti koeficijenta k utječu na rješenje.
- 4. Grafičku ilustraciju rješenja.

## Opis problema

Pretpostavimo da je T(x, y, t) temperatura homogenog toplinski vodljivog tijela koji **nema** izvor topline. Tada temperatura zadovoljava jednadžbu provođenja topline

 $\frac{\partial T}{\partial t} = k\nabla^2 T \tag{1}$ 

gdje veličina t predstavlja vremensku varijablu, veličine x i y predstavljaju prostorne varijable, a u ovom slučaju koeficijent toplinske vodljivosti materijala k je konstantan, dakle vrijedi

$$\operatorname{div}(k\nabla T) = k\operatorname{div}(\nabla T) = k\nabla^2 T.$$

Jednadžbu (1) nazivamo i difuzijska jednadžba jer opisuje difuzijske procese u tvarima. U zadatku koji riješavamo zadano je stacionarno vođenje topline, što znači da je unutarnja energija tijela konstantna, odnosno nema promijene temperature s vremenom, pa je

$$\frac{\partial T}{\partial t} = 0,$$

te je eventualno koeficijent k varijabilan. Problem vođenja topline možemo riješiti uz poznavanje odgovarajućih graničnih uvjeta. Budući da je područje s kojim ćemo raditi ograničeno koncentričnim kružnicama, na svakoj od njih biti će poznata temperatura.

Numerički rješavamo zadani problem!

## Diskretizacija jednadžbe

Da bi uspješno numerički riješili jednadžbu provođenja topline započetak moramo obaviti diskretizaciju problema. Dakle, uvodna faza je izvođenje varijacijske formulacije problema

-div
$$(k(x)\nabla T) = 0$$
 u  $\Omega$   
 $T = -70$  na  $\partial \Omega_1 = \{(x,y)|x^2 + y^2 = 1\}$   
 $T = 120$  na  $\partial \Omega_2 = \{(x,y)|x^2 + y^2 = 9\}$ 

Pri čemu je  $\partial \Omega = \partial \Omega_1 \cup \partial \Omega_2$ .

Dakle, klasično rješenje navedenog problema je funkcija

$$T \in C^2(\Omega) \cup C(\overline{\Omega}).$$

Izvod varijacijske formulacije u našem slučaju ne ovisi o nehomogenosti Dirichletovog rubnog uvjeta jer test funkciju koju uzimamo jednaka je nuli na rubu. Jednadžbu -div $(k(x)\nabla T)=0$  množimo s test funkcijom  $v\in C_0^\infty(\Omega)$  i integriramo po domeni  $\Omega$ . Situacija je sljedeća:

$$-\int_{\Omega} \operatorname{div}(k\nabla T)v dx = 0.$$

Iz generalnog identiteta  $\operatorname{div}(uv) = \nabla u \nabla v + v \operatorname{div}(u)$  dobivamo

$$-\int_{\Omega} \operatorname{div}(k\nabla T)v dx = -\int_{\Omega} \operatorname{div}(k\nabla Tv) + \int_{\Omega} k\nabla T\nabla v.$$

Iz teorema o divergenciji ili njemu ekvivalentnog u dvije dimenzije, Greenovog teorema vrijedi relacija

$$\int_{\Omega} \operatorname{div}(k\nabla Tv) = \int_{\partial \Omega} (k\nabla Tv) \cdot ndS$$

gdje je n jedinična normala na  $\partial\Omega$ . Budući da je vrijednost test funkcije v na rubu jednaka nula, integral po  $\partial\Omega$  se poništava, pa na kraju dobivamo

$$-\int_{\Omega} \operatorname{div}(k\nabla T)v dx = \int_{\Omega} k\nabla T \nabla v.$$

Nadalje, prostor  $C_0^{\infty}(\Omega)$  je gust u  $H_0^1(\Omega)$ , pa test funkcije možemo birati tako da je  $v \in H_0^1(\Omega)$ . Zaključno, varijacijska formulacija sada izgleda

Naći 
$$T \in H^1(\Omega)$$
,  $T = -70 \ u \ \partial \Omega_1$ ,  $T = 120 \ u \ \partial \Omega_2$  t.d. je 
$$\int_{\Omega} k \nabla T \nabla v = 0, \ \forall v \in H^1_0(\Omega).$$

Konkretno, dio koda koji integrira "prethodno" vidimo na slici 1.

```
Slika 1.

RF f =0.0;

// integrirano : & * grad & * grad phi_i

RF factor = it->weight() *eg.geometry().integrationElement(it->position());

for (size type i=0; i<lfsu.size(); ++i)
```

r.accumulate(lfsu, i, (k1(x\_1)\*(gradu\*gradphi[i]) - f\*phi[i]) \* factor);

U principu za desnu stranu naše jednadžbe uzimamo funkciju f=0. Ukoliko je funkcija  $f\neq 0$  (neprekidna) varijacijska formulacija bi izgledala

Naći 
$$T \in H^1(\Omega)$$
,  $T = -70 \ u \ \partial \Omega_1$ ,  $T = 120 \ u \ \partial \Omega_2$  t.d. je 
$$\int_{\Omega} k \nabla T \nabla v = \int_{\Omega} f v dx, \ \forall v \in H^1_0(\Omega).$$

## Verifikacija koda

Korektnost programa testiramo na artificijelnom rješenju. Odabrati ćemo dvije funkcije T(x,y), a zatim ćemo navedene funkcije uvrstiti u -div $(k\nabla T)$ . Primjeri funkcija pomoću kojih testiramo točnost su

$$T(x,y) = x^2 - y^2$$
$$T(x,y) = x^3 - y^3.$$

Računamo:

$$-\operatorname{div}(k\nabla T) = -\operatorname{div}(k\nabla(x^2 - y^2))$$
$$= -\operatorname{div}(k(2x, -2x))$$
$$= -k(2-2)$$
$$= 0$$

Dakle, desna strana jednadžbe iznosi 0, odnosno f=0. Sada tu funkciju uvrstimo u dio koda kao gore na slici 1, pri čemu za rubni uvijet uzimamo točno rješenje. U ovom slučaju možemo mjeriti razliku točnog rješenja i aproksimativnog rješenja. Za koeficijent k smo stavili vrijednost 1 i u prvom i u drugom slučaju. Rezultati su navedeni malo kasnije. Sličnu stvar radimo i s drugim primjerom.

Računamo:

$$-\operatorname{div}(k\nabla T) = -\operatorname{div}(k\nabla(x^3 - y^3))$$
$$= -\operatorname{div}(k(3x^2, -3y^2))$$
$$= -k(6x - 6y)$$
$$= -6x + 6y.$$

Desna strana jednadžbe iznosi -6x + 6y, tj. f = -6x + 6y. Sada tu funkciju uvrstimo u dio koda, kao na slici 2 ispod, pri čemu za rubni uvijet također uzimamo točno rješenje. Odnosno rješavamo problem

$$-\operatorname{div}(k(x)\nabla T(x,y)) = -6x + 6y.$$

Kao i u prethodnom slučaju mjerimo razliku između točnog i aproksimativnog rješenja. Rezultati su navedeni malo kasnije.

#### Slika 2.

```
RF f= -6*(x_1[0]-x_1[1]);
// integrirang : k * grad u * grad phi_i
RF factor = it->weight()*eg.geometry().integrationElement(it->position());
for (size_type i=0; i<lfsu.size(); ++i)
  r.accumulate(lfsu, i, (k1(x_1)*(gradu*gradphi[i]) - f*phi[i]) * factor);</pre>
```

## Rezultati

Problem -div $(k\nabla T)=0$  pri čemu zadana temperatura na unutarnjem krugu iznosi -70 C, a na vanjskom 120 C, rješavamo pomoću P1 i P2 elemenata. Što se tiče početnih rezultata, budući je Dirichletov rubni uvijet nekako simetrično postavljen na problem rezultat ne ovisi o varijabilnosti koeficijenta k. Štoviše rezultat je vizualno fiksiran i za profinjavanje mreže i za promjenu elemenata.

Slika 3.



Sljedeće slike prikazuju kako izgleda profinjenje mreže.

Slika 4.



Slika 5.



## Ostali rezultati

Nadalje, navodim neka rješenja koja direktno nisu vezana za zadatk. Prvo rješenje je grafički prikaz provođenja topline za različite poznate vrijednosti na rubovima po kvadrantima na unutarnjem krugu i na vanjskom krugu (pogledati kod).

Slika 6.



Ukoliko promatramo problem s Neumannovim rubnim uvijetom (pogledati kod) pri čemu koeficijet k(x) poprima četiri različite vrijednosti u četiri kvadranta na sljedeći način

$$k(x) = \begin{cases} 0.001 & \text{u 1. kvadrant} \\ 0.001 & \text{u 2. kvadrantu} \\ 10 & \text{u 3. kvadrantu} \\ 10 & \text{u 4. kvadrantu} \end{cases}$$

rezultat koji dobivamo je

Slika 7.



Za koeficijet  $k(\boldsymbol{x})$  definiran kao

$$k(x) = \begin{cases} 0.001 & \text{u 1. kvadrant} \\ 10 & \text{u 2. kvadrantu} \\ 10 & \text{u 3. kvadrantu} \\ 10 & \text{u 4. kvadrantu} \end{cases}$$

rezultat je

Slika 8.



## Vizualna verifikacija

Egzaktno i numeričko rješenje, primjer

$$T(x,y) = x^2 - y^2$$
Slika 9.



Egzaktno i numeričko rješenje, primjer

$$T(x,y) = x^3 - y^3$$

Slika 10.



## Konvergencija

Zanima nas da li razlika aproksimativnog rjesešnja i egzaktnog rješenja opada s profinjenjem mreže. Dakle, ono što ćemo ispitivati je da li

||aproksimacija - egzaktno|| $_2 \rightarrow 0$ , kada profinjenje raste.

Promatrati ćemo konvergenciju za **oba** primjera redom. Konvergenciju gledamo posebno za P1 elemente, te posebno za P2 elemente. Mreža s kojom radimo početno izgleda ovako



Slika 11.

Rezultati konvergencije vezani za prvi primjer, odnosno

$$||T(x,y) - (x^2 - y^2)||_2$$

navedeni su ispod. Profinjujemo mrežu tri puta, radimo s P1 elementima.

```
antonio@pr3-02 /tmp/pdelab_ss/simulations $ ./pdelab_ss 1
L2 norma greske =0.0119538

antonio@pr3-02 /tmp/pdelab_ss/simulations $ ./pdelab_ss 2
L2 norma greske =0.004381

antonio@pr3-02 /tmp/pdelab_ss/simulations $ ./pdelab_ss 3
L2 norma greske =0.00227035
```

Profinjujemo mrežu tri puta, radimo s P2 elementima. Dobili smo egzaktno rješenje, do na greške zaokruživanja.

```
antonio@pr3-02 /tmp/pdelab ss/simulations $ ./pdelab_ss 1
L2 norma greske =6.08313e-07

antonio@pr3-02 /tmp/pdelab_ss/simulations $ ./pdelab_ss 2
L2 norma greske =4.01236e-07

antonio@pr3-02 /tmp/pdelab_ss/simulations $ ./pdelab_ss 3
L2 norma greske =1.25268e-06
```

Rezultati konvergencije vezani za drugi primjer, odnosno

$$||T(x,y) - (x^3 - y^3)||_2$$

navedeni su ispod. Profinjujemo mrežu dva puta, radimo s P1 elementima.

```
antonio@pr2-16 /tmp/pdelab_ss/build-cmake/src $ ./pdelab_ss 0
L2 norma greske =0.136916

antonio@pr2-16 /tmp/pdelab_ss/build-cmake/src $ ./pdelab_ss 1
L2 norma greske =0.0842338

antonio@pr2-16 /tmp/pdelab_ss/build-cmake/src $ ./pdelab_ss 2
L2 norma greske =0.033132
```

Profinjujemo mrežu dva puta, radimo s P2 elementima.

```
antonio@pr2-16 /tmp/pdelab_ss/build-cmake/src $ ./pdelab_ss 0
L2 norma greske =0.000774198

antonio@pr2-16 /tmp/pdelab_ss/build-cmake/src $ ./pdelab_ss 1
L2 norma greske =0.00048784

antonio@pr2-16 /tmp/pdelab_ss/build-cmake/src $ ./pdelab ss 2
L2 norma greske =0.000120376
```