## ชุดข้อมูล: ข้อมูลทั่วไปของนักศึกษาคณะวิทยาศาสตร์

มหาวิทยาลัยสงขลานครินทร์ วิทยาเขตหาดใหญ่ ปีการศึกษา
 2567 (3.1)

Link: <a href="https://docs.google.com/spreadsheets/d/1Ro8KTCX40HuK9s2vXS9qR9SjfitL8Y89/edit?usp=sharing&ouid=115842441160570853727&rtpof=true&sd=true">https://docs.google.com/spreadsheets/d/1Ro8KTCX40HuK9s2vXS9qR9SjfitL8Y89/edit?usp=sharing&ouid=115842441160570853727&rtpof=true&sd=true</a>

```
from google.colab import drive
drive.mount('/content/drive')
```





```
#เช็คข้อมูลเบื้องต้น
import pandas as pd
df = pd.read_excel('/content/drive/My Drive/แบบสอบถามนักศึกษา.xlsx')
df.head()
```



|   | เพศ  | ชั้น<br>ปี         | สาขา                    | เกรด<br>เฉลี่ย<br>สะสม | จังหวัด<br>ภูมิลำเนา | โรงเรียนที่<br>จบการ<br>ศึกษา<br>มัธยมศึกษา<br>ตอนปลาย         | รายได้<br>ต่อเดือน<br>ของ<br>นักศึกษา<br>(บาท) | หอพัก     | รายจ่าย<br>ต่อเดือน<br>ของ<br>นักศึกษา<br>(บาท) | รายได้ต่อ<br>เดือนของ<br>ครอบครัว<br>(บาท) |  |
|---|------|--------------------|-------------------------|------------------------|----------------------|----------------------------------------------------------------|------------------------------------------------|-----------|-------------------------------------------------|--------------------------------------------|--|
| 0 | หญิง | ชั้น<br>ปีที่<br>2 | วัสดุศาสตร์             | 2.09                   | สงขลา                | โรงเรียน<br>เทศบาล 1<br>(เอ็งเสียง<br>สามัคคี)                 | 10000                                          | หอน<br>อก | 5000                                            | 100000(                                    |  |
| 1 | หญิง | ชั้น<br>ปีที่<br>4 | วิทยาการ<br>คอมพิวเตอร์ | 3.25                   | นครศรีธรรมราช        | โรงเรียน<br>ทุ่งใหญ่<br>เฉลิมราชอนุ<br>สรณ์รัชมัข<br>คลากภิเษก | 13000                                          | หอน<br>อก | 10000                                           | 300000                                     |  |
| 2 | ชาย  | ชั้น<br>ปีที่<br>3 | คณิตศาสตร์              | 3.20                   | สงขลา                | โรงเรียน<br>หาดใหญ่<br>วิทยาลัย                                | 3000                                           | หอน<br>อก | 3000                                            | 10000                                      |  |
| 4 |      | ž.                 |                         |                        |                      |                                                                |                                                |           |                                                 |                                            |  |

#จำนวน record และ feature (3.2) df.shape

→ (171, 18)

#เช็ค feature (3.3) df.columns

→ Index(['เพศ', 'ชั้นปี', 'สาขา', 'เกรดเฉลี่ยสะสม', 'จังหวัดภูมิลำเนา',
 'โรงเรียนที่จบการศึกษามัธยมศึกษาตอนปลาย',
 'รายได้ต่อเดือนของนักศึกษา (บาท)', 'หอพัก',
 'รายจ่ายต่อเดือนของนักศึกษา (บาท)', 'รายได้ต่อเดือนของครอบครัว (บาท)',
 'การกู้ กยศ.', 'ความต้องการในการศึกษาต่อ',
 'มีความสนใจที่จะรับราชการหรือไม่',
 'ชั่วโมงในการเรียนในห้องเรียนเฉลี่ยต่อสัปดาห์',
 'ยานพาหนะที่ใช้มาเรียน ', 'ระบบปฏิบัติการโทรศัพท์',
 'ระยะทางจากที่พักมาห้องเรียน (กิโลเมตร)',
 'การใช้อินเตอร์อินเน็ตกี่ชั่วโมงใน 1 วัน '],
 dtype='object')

#### ทำความสะอาดข้อมูล (3.4)

#Data cleansing df = df.drop(['จังหวัดภูมิลำเนา', 'โรงเรียนที่จบการศึกษามัธยมศึกษาตอนปลาย', 'การกู้ กยศ.', 'ความต้องการใ df.head()



|   | เพศ  | ชั้น<br>ปี         | สาขา                    | เกรด<br>เฉลี่ย<br>สะสม | รายได้<br>ต่อเดือน<br>ของ<br>นักศึกษา<br>(บาห) | หอพัก     | รายจ่าย<br>ต่อเดือน<br>ของ<br>นักศึกษา<br>(บาท) | รายได้ต่อ<br>เดือนของ<br>ครอบครัว<br>(บาท) | ยาน<br>พาหนะ<br>ที่ใช้มา<br>เรียน | ระยะทาง<br>จากที่พัก<br>มา<br>ห้องเรียน<br>(กิโลเมตร) | กา<br>อินแ<br>อิน<br>ชั่ว<br>ใ |
|---|------|--------------------|-------------------------|------------------------|------------------------------------------------|-----------|-------------------------------------------------|--------------------------------------------|-----------------------------------|-------------------------------------------------------|--------------------------------|
| 0 | หญิง | ชั้น<br>ปีที่<br>2 | วัสดุศาสตร์             | 2.09                   | 10000                                          | หอน<br>อก | 5000                                            | 1000000                                    | รถส่วน<br>ตัว                     | 7.6                                                   |                                |
| 1 | หญิง | ชั้น<br>ปีที่<br>4 | วิทยาการ<br>คอมพิวเตอร์ | 3.25                   | 13000                                          | หอน<br>อก | 10000                                           | 300000                                     | รถส่วน<br>ตัว                     | 2.0                                                   |                                |
| 4 |      | 2                  |                         |                        |                                                |           |                                                 |                                            |                                   |                                                       |                                |

#เช็ค Null df.isnull().sum()



dtype: int64

```
#តា Outlier

def remove_outliers(df, column):
    Q1 = df[column].quantile(0.25)
    Q3 = df[column].quantile(0.75)
    IQR = Q3 - Q1
    upper_bound = Q3 + 1.5 * IQR
    df.drop(df[df[column] > upper_bound].index, inplace=True)
```

```
columns_to_check = [
    'รายได้ต่อเดือนของนักศึกษา (บาท)',
    'รายล่ายต่อเดือนของนักศึกษา (บาท)',
    'รายได้ต่อเดือนของครอบครัว (บาท)',
]

for column in columns_to_check:
    remove_outliers(df, column)

#ตรวจสอบจำนวน record และ feature ที่เหลือ df.shape

→ (145, 11)

#Data transformation df = pd.get_dummies(df, dtype = int) df.head()

→ 

→ (145, 11)
```

|       | เกรด<br>เฉลี่ย<br>สะสม | รายได้<br>ต่อเดือน<br>ของ<br>นักศึกษา<br>(บาท) | รายจ่าย<br>ต่อเดือน<br>ของ<br>นักศึกษา<br>(บาท) | รายได้ต่อ<br>เดือนของ<br>ครอบครัว<br>(บาท) | ระยะทาง<br>จากที่พัก<br>มา<br>ห้องเรียน<br>(กิโลเมตร) | การใช้<br>อินเตอร์<br>อินเน็ต<br>ที่<br>ชั่วโมง<br>ใน 1<br>วัน | เพศ_ชาย | เพศ_หญิง | ชั้น<br>ปี_ชั้น<br>ปีที่ 2 | ว<br>ปั_ว<br>ปีที่ |
|-------|------------------------|------------------------------------------------|-------------------------------------------------|--------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------|---------|----------|----------------------------|--------------------|
| 2     | 3.20                   | 3000                                           | 3000                                            | 10000                                      | 8.0                                                   | 14                                                             | 1       | 0        | 0                          |                    |
| 3     | 2.60                   | 6000                                           | 5600                                            | 60000                                      | 3.0                                                   | 6                                                              | 1       | 0        | 0                          |                    |
| 4     | 2.98                   | 6000                                           | 5000                                            | 35000                                      | 2.0                                                   | 9                                                              | 1       | 0        | 1                          |                    |
| 16    | 2.90                   | 6000                                           | 4500                                            | 70000                                      | 0.5                                                   | 12                                                             | 0       | 1        | 1                          |                    |
| 18    | 3.24                   | 6000                                           | 5500                                            | 18000                                      | 0.5                                                   | 10                                                             | 1       | 0        | 0                          |                    |
| 5 row | 10 x 70 1              | columne                                        |                                                 |                                            |                                                       |                                                                |         |          |                            |                    |

#เช็ค feature df.columns

```
'ยานพาหนะที่ใช้มาเรียน _รถรับจ้าง', 'ยานพาหนะที่ใช้มาเรียน _รถส่วนตัว', 'ยานพาหนะที่ใช้มาเรียน _เดิน'], dtype='object')
```

### ✓ เตรียม Features (X) และ Target (y) (3.5)

```
X = df.drop('รายจ่ายต่อเดือนของนักศึกษา (บาท)', axis=1)
y = df['รายจ่ายต่อเดือนของนักศึกษา (บาท)']
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 49
#บันทึกเก็บลงไฟล์ csv (3.6)
df.to_csv("ข้อมูลทั่วไปนักศึกษา_Cleansed.csv", index = False)
```

## วิธีการดำเนินการ (4)

▼ เลือกอัลกอริทึม: Linear regression, Decision tree, kNN (4.1)

วิธีการประเมิน (Evaluation matrices) ที่เลือกใช้: MSE (Mean Squared Error), RMSE (Root Mean Squared Error), MAE (Mean Absolute Error) (4.3)

```
from sklearn.metrics import mean_squared_error, mean_absolute_error
from sklearn.model_selection import GridSearchCV
import numpy as np

def calculate_evaluation_metrics(y_test, y_pred):
    mse = mean_squared_error(y_test, y_pred)
    rmse = np.sqrt(mse)
    mae = mean_absolute_error(y_test, y_pred)
    return round(mse, 2), round(rmse, 2), round(mae, 2)
```

#### Linear regression

```
from sklearn.linear_model import LinearRegression
model_LR = LinearRegression()
model_LR.fit(X_train, y_train)
```

```
\overline{\Rightarrow}
```

LinearRegression (1) ?

```
y_pred1 = model_LR.predict(X_test)
calculate_evaluation_metrics(y_test, y_pred1)

(1049285.83, 1024.35, 808.15)
```

#### Decision tree regression

```
from sklearn.tree import DecisionTreeRegressor
dt regressor = DecisionTreeRegressor(random state = 49)
param_grid = {
    'max depth': range(1, 4),
    'min_samples_split': range(1, 4),
    'min samples leaf': range(1, 4),
    'criterion': ['squared error', 'friedman mse', 'absolute error', 'poisson']
}
# ใช้ GridSearchCV เพื่อค้นหาค่าที่ดีที่สด
grid_search = GridSearchCV(dt_regressor, param_grid, cv = 5, scoring = 'neg_mean_squared_err
grid search.fit(X train, y train)
# แสดงผลลัพธ์
print(f"Best Hyperparameters: {grid_search.best_params_}")
best_model_DTR = grid_search.best_estimator_
\rightarrow
      Show hidden output
Best Hyperparameters: {'criterion': 'absolute_error', 'max_depth': 2, 'min_samples_leaf': 1,
'min_samples_split': 2}
y_pred2 = best_model_DTR.predict(X_test)
calculate_evaluation_metrics(y_test, y_pred2)
    (941810.34, 970.47, 763.79)
```

## kNN regression

```
from sklearn.neighbors import KNeighborsRegressor
knn = KNeighborsRegressor()
```

Visualize the relationship between predicted and actual values (5.1)

```
import seaborn as sns
import matplotlib.pyplot as plt

#Linear regression
sns.set_palette('RdPu_r')
sns.regplot(x = y_pred1, y = y_test, scatter_kws={'alpha': 0.3})
plt.xlabel('predictions')
plt.title('Linear regression Model Evaluation')
plt.show()
```



```
/usr/local/lib/python3.10/dist-packages/IPython/core/pylabtools.py:151: UserWarning:
  fig.canvas.print figure(bytes io, **kw)
/usr/local/lib/python3.10/dist-packages/IPython/core/pylabtools.py:151: UserWarning:
  fig.canvas.print_figure(bytes_io, **kw)
/usr/local/lib/python3.10/dist-packages/IPython/core/pylabtools.py:151: UserWarning:
  fig.canvas.print_figure(bytes_io, **kw)
/usr/local/lib/python3.10/dist-packages/IPython/core/pylabtools.py:151: UserWarning:
  fig.canvas.print figure(bytes io, **kw)
/usr/local/lib/python3.10/dist-packages/IPython/core/pylabtools.py:151: UserWarning:
  fig.canvas.print_figure(bytes_io, **kw)
/usr/local/lib/python3.10/dist-packages/IPython/core/pylabtools.py:151: UserWarning:
  fig.canvas.print figure(bytes io, **kw)
/usr/local/lib/python3.10/dist-packages/IPython/core/pylabtools.py:151: UserWarning:
  fig.canvas.print figure(bytes io, **kw)
/usr/local/lib/python3.10/dist-packages/IPython/core/pylabtools.py:151: UserWarning:
  fig.canvas.print figure(bytes io, **kw)
/usr/local/lib/python3.10/dist-packages/IPython/core/pylabtools.py:151: UserWarning:
  fig.canvas.print_figure(bytes_io, **kw)
/usr/local/lib/python3.10/dist-packages/IPython/core/pylabtools.py:151: UserWarning:
  fig.canvas.print figure(bytes io, **kw)
/usr/local/lib/python3.10/dist-packages/IPython/core/pylabtools.py:151: UserWarning:
  fig.canvas.print figure(bytes io, **kw)
/usr/local/lib/python3.10/dist-packages/IPython/core/pylabtools.py:151: UserWarning:
  fig.canvas.print_figure(bytes_io, **kw)
/usr/local/lib/python3.10/dist-packages/IPython/core/pylabtools.py:151: UserWarning:
  fig.canvas.print_figure(bytes_io, **kw)
/usr/local/lib/python3.10/dist-packages/IPython/core/pylabtools.py:151: UserWarning:
  fig.canvas.print figure(bytes io, **kw)
/usr/local/lib/python3.10/dist-packages/IPython/core/pylabtools.py:151: UserWarning:
  fig.canvas.print figure(bytes io, **kw)
/usr/local/lib/python3.10/dist-packages/IPython/core/pylabtools.py:151: UserWarning:
  fig.canvas.print_figure(bytes_io, **kw)
/usr/local/lib/python3.10/dist-packages/IPython/core/pylabtools.py:151: UserWarning:
  fig.canvas.print figure(bytes io, **kw)
```

#### Linear regression Model Evaluation





```
#Decision tree regression
sns.set_palette('RdPu_r')
sns.regplot(x = y_pred2, y = y_test, scatter_kws={'alpha': 0.3})
plt.xlabel('predictions')
plt.title('Decision tree regression Model Evaluation')
plt.show()
```



# Decision tree regression Model Evaluation



```
#kNN regression
sns.set_palette('RdPu_r')
sns.regplot(x = y_pred3, y = y_test, scatter_kws={'alpha': 0.3})
plt.xlabel('predictions')
plt.title('kNN regression Model Evaluation')
plt.show()
```



### kNN regression Model Evaluation

