Seminarul 6 Electrotehnică, C2

Aplicații - Circuite el. de c.a.

Breviar teoretic

1. Mărimi sinusoidale

Forma normală "în sinus" a unei mărimi sinusoidale:

$$x = X\sqrt{2}\sin(\omega t + \gamma_x)$$

X - valoare efectivă

 $\omega t + \gamma_{_{X}}\,$ - faza mărimii sinusoidale (argumentul sinusului)

 ω - pulsația; t - timpul;

 γ_x - faza inițială

Observație. O mărime sinusoidală este complet determinată dacă i se cunosc:

- valoarea efectivă X;
- pulsatia ω;
- faza inițială γ_x .

Pentru simplificarea calculului, în rezolvarea problemelor, se adoptă *reprezentarea în complex simplificată:*

$$x = X\sqrt{2}\sin(\omega t + \gamma_x) \iff \underline{X} = X \cdot e^{j\gamma_x}$$

 \underline{X} - se numește valoarea efectivă complexă

Observație: Reprezentarea în complex simplificată este valabilă numai pentru mărimile sinusoidale care au aceeași pulsație.

$$C\{x(t)\} = \underline{X}$$

$$\underline{X} = X \cdot e^{j\gamma_x} = X(\cos \gamma_x + j \sin \gamma_x) = \text{Re} + j \text{Im}$$

2. Revenirea din complex în instantaneu, din reprezentarea simbolică în domeniul timp, se face cu relația:

$$x = \operatorname{Im} \{ \underline{X} \sqrt{2} e^{j\omega t} \} = X \sqrt{2} \sin(\omega t + \gamma_x)$$

Observație: Dacă
$$\underline{X} = Re + j Im \implies X = \sqrt{Re^2 + Im^2}$$
 și $\gamma_x = arctg \frac{Im}{Re}$, $x = X\sqrt{2} \sin(\omega t + \gamma_x)$

3. Reactanțe

$$X_L = \omega L$$

$$X_C = \frac{1}{\omega C}$$

Ex. Calculați reactanțele pentru următoarele elemente reactive, la frecvența industrială.

$$L = \frac{0.05}{\pi}H$$
, $C = \frac{2000}{\pi}\mu F$, $L = \frac{0.2}{\pi}H$, $C = \frac{500}{\pi}\mu F$

4. Impedanța complexă

$$\underline{Z} = R + jX$$

$$X = X_L - X_C$$

- caracter rezistiv: $R\neq 0$ (R>0), X=0; ex. $\underline{Z} = 10$
- caracter pur inductiv: R=0, X>0; ex. $\underline{Z} = j5$
- caracter inductiv: $R \neq 0$, X > 0; ex. Z = 3 + j7
- caracter pur capacitiv: R=0, X<0; ex. Z = -j15
- caracter capacitiv: $R \neq 0$, X < 0; ex. $\underline{Z} = 25 j40$

5. Aplicație c.a. (circuit ce conține doar o sursă de energie)

Apl.
$$c \cdot a = circ \cdot cu = surse + B.P.$$
 $i_s = lo\sqrt{2} \text{ Ach } (wt - \frac{\pi}{2})(4)$
 $i_s = lo\sqrt{2} \text{ Ach } (wt - \frac{\pi}{2})(4)$
 $k = lo\sqrt{2}$
 $k = lo\sqrt{2}$

b).
$$I_{1} = \frac{-j \times c}{R + j \times z j \times c} = \frac{-30j}{10 + 20j \div s j}$$
; $(-10j) = \frac{-30j}{10 - 10j}$; $(-10j) = -15 - 15j'$

$$I_{2} = I_{3} - I_{1} = -10j - (-15 + 15j) = 15 + 5j'$$

$$U_{5} = -j \times c$$
, $I_{2} = -30j$; $(15 + 5j) = 15 + 5j'$

$$U_{5} = -j \times c$$
, $I_{2} = -30j$; $(15 + 5j) = 1500 - 1500j$

$$U_{5} = -j \times c$$
, $I_{2} \times c$, $I_{3} \times c$; $I_{4} \times c$; $I_{5} \times c$; $I_$

4. Probleme propuse:

P1.
$$e = 100 \sin(\omega t - \frac{\pi}{2})(V)$$
, $R = 20\Omega$, $L = \frac{0.3}{\pi}H$, $C = \frac{250}{\pi}\mu F$, $f = 50 Hz$

- a). $\underline{Z} = ?$
- b). i = ?

P2.
$$i_s = 5\cos(\omega t - \frac{\pi}{3})$$
 (A), $R = 5\Omega$, $L = \frac{0.5}{\pi}H$, $C = \frac{500}{\pi}\mu F$, $f = 50 Hz$

- a). $\underline{Z} = ?$
- b). u = ?

P3.
$$e = 60 \sin(\omega t - \frac{\pi}{4}) (V)$$
, $R = 20\Omega$, $X_L = 15\Omega$, $X_C = 5\Omega$

- a). $\underline{Z} = ?$
- b). $i_1 = ?$ $i_2 = ?$