

Module E: Motion Planning

Part 1. Introduction to Motion Planning

Part 2: Dijkstra and A* algorithm

Part 3. RRT and RRT*

References:

https://f1tenth.org and UPenn ESE 680 Slides http://www.willowgarage.com/pages/research/motion-planning

R.O.B.O.T. Comics

"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

The Motion Planning Problem

From Upenn ESE 680 Slides

Path planning:

- Find a path to go from a starting point to a destination and avoid obstacles;
- May need to set a goal dynamically in race if multiple cars are on the race track;
- * If possible, minimize the cost of the path
- * Can be divided into local or global path planning

☐ Performance metrics:

- Completeness: the algo terminates in finite time; returns a solution when one exists and failure otherwise;
- Optimality: returns the minimum cost solution when a solution exists.
- Complexity: time and memory space

Occupancy Grid or Graph

4-Connected

8-Connected

- Blind Search algorithm:
 - Breadth First Search (BFS)
 - Depth First Search (DFS)
- Informed Search algorithm:
 - ❖ Heuristic Search: Dijkstra, D*, A*;
 - Sampling based search: PRM, RRT, RRT*

A* Search Algorithms

0	1	2	3	4	5	6	GOAL
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39
START	41	42	43	44	45	46	47

The cost of a node v:

$$f(v) = g(v) + h(v)$$

h(v) is a heuristic that underestimates to cost to reach the goal from v

g(v) is the sum cost of operation from start to v

A* algorithm is proven to be complete.

Reference: lots of YouTube videos, e.g.: https://www.youtube.com/wat ch?v=-L-WgKMFuhE

Random Graph, RRT and RRT*

- Aaron Becker of Houston
 University: RRT, RRT* &
 Random Trees:
 <a href="https://demonstrations.wolfram.com/RapidlyExploringRanm.com/Ra
- Multi-robot RRT: <u>https://github.com/hasauino/r</u> <u>rt_exploration</u>
- Python Robotics Library by Dr. Atsushi Sakai of UC Berkeley https://github.com/AtsushiSa kai/PythonRobotics#pathplanning

https://www.youtube.com/watch?v=Ob3BIJkQJEw