





#### 1. CONCEPTOS PREVIOS



#### 2. INTRODUCCIÓN A GCN



3. CÓDIGO BÁSICO DE GCN





4. DETECCIÓN DE ANOMALÍAS: D.O.M.I.N.A.N.T



5. ALGORITMO D.O.M.I.N.A.N.T. IMPLEMENTACIÓN Y RESULTADOS



## CONCEPTOS PREVIOS: <u>GRAFOS</u>



Figura 1. Representación de un grafo.



Figura 2. Enlace dirigido / Enlace no dirigido.



Figura 3. Información incrustada en los elementos.



Figura 4. Grafo ponderado.



## CONCEPTOS PREVIOS: REDES NEURONALES

# Input layer i $h_1$ $h_2$ $h_n$ Output layer Input 1 Input 2 Output 1 Output 1

Figura 5. Esquema básico de una red neuronal.

#### **FUNCIONAMIENTO BÁSICO**

Paso hacia delante (Forward Pass)

$$x_j^{l+1} = f\left(\sum_i w_{ij}^l x_i^l
ight)$$

Loss function evaluation

$$C(y,\hat{y})$$

Paso hacia atrás (Backward Pass)





#### CONCEPTOS PREVIOS:

#### REDES NEURONALES



Figura 5. Esquema básico de una red neuronal.

#### **FUNCIONAMIENTO BÁSICO**

Paso hacia delante (Forward Pass)

$$x_j^{l+1} = f\left(\sum_i w_{ij}^l x_i^l
ight)$$

Loss function evaluation

$$C(y,\hat{y})$$

Paso hacia atrás (Backward Pass)



## TIPOS DE REDES NEURONALES

Muchísimos...



Figura 6. Perceptrón simple



Figura 7. Perceptrón multicapa.



Figura 8. Redes recurrentes.



#### CONCEPTOS PREVIOS: CNN



Figura 9. Arquitectura de una red convolucional simple.

Increíblemente buenas para extraer características de imágenes.



Los valores de los filtros van a ser autoaprendidos por la red.

Figura 10. Intuición de lo que sucede en una capa convolucional.



Figura 11. Intuición de lo que sucede en una capa de pooling.

## INTRODUCCIÓN A GCN

#### "Matrimonio" entre Grafos y redes convolucionales



Figura 12. Concepto de propagación de mensajes.

$$h_i = \sum_{j \in \mathcal{N}_i} \mathbf{W} x_j$$

Vector de representación de un nodo como combinación del de sus vecinos



#### INTRODUCCIÓN A GCN

#### "Matrimonio" entre Grafos y redes convolucionales



Figura 12. Concepto de propagación de mensajes.

$$h_i = \sum_{j \in \mathcal{N}_i} \mathbf{W} x_j$$

Vector de representación de un nodo como combinación del de sus vecinos

$$h_i^{l+1} = f\left(\sum_{j \in \mathcal{N}_i} rac{1}{c_{ij}} \mathbf{W} h_j^l
ight)$$

Expresión general para capas *l*-ésimas

$$H^{l+1} = f(\hat{D}^{-1/2}\hat{A}\hat{D}^{-1/2}H^l\mathbf{W}^l)$$





#### INTRODUCCIÓN A GCN

#### "Matrimonio" entre Grafos y redes convolucionales



Figura 12. Concepto de propagación de mensajes.

$$h_i = \sum_{j \in \mathcal{N}_i} \mathbf{W} x_j$$

Vector de representación de un nodo como combinación del de sus vecinos

$$h_i^{l+1} = f\left(\sum_{j \in \mathcal{N}_i} rac{1}{c_{ij}} \mathbf{W} h_j^l
ight)$$

Expresión general para capas *l*-ésimas

$$H^{l+1} = f(\hat{D}^{-1/2}\hat{A}\hat{D}^{-1/2}H^l\mathbf{W}^l)$$

Figura 13. Matriz de adyacencia.



Figura 14. Formato Coordinate list (COO).



#### CÓDIGO BÁSICO DE GCN







Dataset: KarateClub():

Número de grafos: 1

Número de características: 34

Número de clases: 4

directed = False
contains\_isolated\_nodes = False
contains\_self\_loops = False

X = Matriz Identidad (no hay info adicional incrustada)

Figura 15. Dataset utilizado: Club de Karate de Zachary

#### **OBJETIVO**

Asignar al grupo correcto a cada miembro (clasificación de nodo)



#### CÓDIGO BÁSICO DE GCN







Figura 15. Dataset utilizado: Club de Karate de Zachary

#### **OBJETIVO**

Asignar al grupo correcto a cada miembro (clasificación de nodo)

```
Dataset: KarateClub():
============
Número de grafos: 1
Número de características: 34
Número de clases: 4
```

```
directed = False
contains_isolated_nodes = False
contains_self_loops = False
```

X = Matriz Identidad (no hay info adicional incrustada)

```
class GCN(torch.nn.Module):

    def __init__(self):
        super().__init__()
        self.gcn = GCNConv(dataset.num_features, 3)
        self.out = Linear(3, dataset.num_classes)

    def forward(self, x, edge_index):
        h = self.gcn(x, edge_index).relu()
        z = self.out(h)
        return h, z

model = GCN()
```

Arquitectura de la red



#### CÓDIGO BÁSICO DE GCN







Figura 15. Dataset utilizado: Club de Karate de Zachary

#### **OBJETIVO**

Asignar al grupo correcto a cada miembro (clasificación de nodo)

```
Dataset: KarateClub():
-----
Número de grafos: 1
Número de características: 34
Número de clases: 4
```

```
directed = False
contains_isolated_nodes = False
contains_self_loops = False
```

X = Matriz Identidad (no hay info adicional incrustada)

```
class GCN(torch.nn.Module):

    def __init__(self):
        super().__init__()
        self.gcn = GCNConv(dataset.num_features, 3)
        self.out = Linear(3, dataset.num_classes)

    def forward(self, x, edge_index):
        h = self.gcn(x, edge_index).relu()
        z = self.out(h)
        return h, z

model = GCN()
```

Arquitectura de la red

```
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr = 0.01)
```

#### Función de pérdida y optimizador utilizados

```
for epoch in range(totalEpochs):
    # Reset gradientes
    optimizer.zero_grad()

    # Forward pass
    h, z = model(data.x, data.edge_index)

# Calcular la pérdida
    loss = criterion(z, data.y)

# Calcular la precisión
    acc = accuracy(z.argmax(dim=1), data.y)

# Backward pass
    loss.backward()

# Actualizar los pesos
    optimizer.step()
```

### ¿RESULTADOS?



Figura 16. Evolución en las predicciones del grafo





Figura 17. Evolución de los embeddings que llegan a la capa lineal



#### DETECCIÓN DE ANOMALÍAS



**Figura 18.** Esquema conceptual de un grafo con nodos con atributos



Figura 19. Matriz de enlaces



Figura 20. Matriz de atributos

#### **CLASIFICACIÓN BINARIA:**

- Dato común
- Anomalía





#### DETECCIÓN DE ANOMALÍAS

| Graph type    | Anomaly type     | Network architecture  | Method                       | Summary (key issue addressed → solution)                                           |
|---------------|------------------|-----------------------|------------------------------|------------------------------------------------------------------------------------|
|               |                  |                       | DOMINANT [7] (2019)          | Complex interactions, sparsity, non-linearity $\rightarrow$ GCN-based encoder      |
|               |                  |                       | Dual-SVDAE [21] (2021)       | Overfitting for normal & abnormal $\rightarrow$ hypersphere embedding space        |
|               |                  |                       | GUIDE [22] (2021)            | Complex interactions $\rightarrow$ higher-order structure decoder                  |
|               |                  | GCN-based GAE         | SpecAE [8] (2019)            | Over-smoothing issue → tailored embedding space                                    |
|               |                  |                       | ComGA [23] (2022)            | Over-smoothing issue $\rightarrow$ community-specific representation               |
|               |                  |                       | ALARM [24] (2020)            | Heterogeneous attributes → multiple GCN-based encoders                             |
|               |                  |                       | AnomMAN [25] (2022)          | Heterogeneous attributes → multiple GCN-based encoders                             |
|               |                  |                       | SL-GAD [26] (2021)           | Contextual information → subgraph sampling & contrastive learning                  |
|               |                  | GCN alone             | Semi-GCN [27] (2021)         | Label information $\rightarrow$ semi-supervised learning by GCN                    |
|               | Node anomaly     |                       | HCM [28] (2021)              | Label & contextual information $\rightarrow$ hop-count prediction model            |
|               | Node allomary    |                       | ResGCN [29] (2021)           | Over-smoothing issue → GCN with residual-based attention                           |
|               |                  |                       | CoLA [30] (2021)             | Targeting issue of GAE $\rightarrow$ contrastive self-supervised learning          |
|               |                  |                       | ANEMONE [31] (2021)          | Contextual information $\rightarrow$ multi-scale contrastive learning              |
| Static graph  |                  |                       | PAMFUL [32] (2021)           | Contextual information $\rightarrow$ pattern mining algorithm with GCN             |
|               |                  |                       | AnomalyDAE [33] (2020)       | Complex interactions $\rightarrow$ GAT-based encoder                               |
|               |                  | GAT-based GAE         | GATAE [34] (2020)            | Over-smoothing issue $\rightarrow$ GAT-based encoder                               |
|               |                  |                       | AEGIS [35] (2020)            | Handling unseen nodes → generative adversarial learning with GAE                   |
|               |                  | Other GNN-based model | OCGNN [36] (2021)            | Targeting issue of GAE $\rightarrow$ GNN with hypersphere embedding space          |
|               |                  |                       | AAGNN [37] (2021)            | Targeting issue of GAE $\rightarrow$ GNN with hypersphere embedding space          |
|               |                  |                       | Meta-GDN [38] (2021)         | Hard work to label anomalies $\rightarrow$ meta-learning with auxiliary graphs     |
|               |                  | GCN-based GAE         | AANE [39] (2020)             | Noise or adversarial links $\rightarrow$ GAE with a loss for anomalous links       |
|               | Edge anomaly     |                       | eFraudCom [40] (2022)        | Fraud detection $\rightarrow$ heterogeneous graph and representative data sampling |
|               |                  | GCN alone             | SubGNN [41] (2021)           | Fraud detection $\rightarrow$ GIN and extracting and relabeling subgraphs          |
|               | Subgraph anomaly | GAT-based GAE         | HO-GAT [42] (2021)           | Abnormal subgraphs $\rightarrow$ hybrid-order attention with motif instances       |
|               | Graph-level      | GCN alone             | OCGIN [43] (2021)            | Graph-level anomaly detection $\rightarrow$ graph classification with GIN          |
|               | anomaly          |                       | OCGTL [44] (2022)            | Hypersphere collapse $\rightarrow$ set of GNNs for embedding                       |
|               | unomary          |                       | GLocalKD [45] (2022)         | Graph-level anomalies $\rightarrow$ joint learning global & local normality        |
|               | Edge anomaly     | GCN and GRU           | AddGraph [10] (2019)         | Long-term patterns $\rightarrow$ temporal GCN with attention-based GRU             |
|               |                  |                       | DynAD [46] (2020)            | Long-term patterns $\rightarrow$ temporal GCN with attention-based GRU             |
|               |                  |                       | Hierarchical-GCN [47] (2020) | Dynamic data evaluation → temporal & hierarchical GCN                              |
| Dynamic graph |                  |                       | StrGNN [48] (2021)           | Structural change $\rightarrow$ mining unusual temporal subgraph structures        |
|               | Node anomaly     | GCN & DRNN-based GAE  | H-VGRAE [49] (2020)          | Anomalous nodes → modeling stochasticity and multi-scale ST dependency             |
|               |                  | GCN and GRU           | DEGCN [50] (2022)            | To capture node- and global-level patterns $\rightarrow$ DGCN and GGRU             |
|               |                  | GCN alone             | TDG with GCN [51] (2022)     | Malicious connections on traffic $\rightarrow$ extracting TDGs                     |

Figura 21. Tabla de algoritmos según tipo de grafo y de anomalía y arquitectura



#### D.O.M.I.N.A.N.T.



Figura 22. Esquema algoritmo DOMINANT



## **IMPLEMENTACIÓN**



**Nodos**: Representan los documentos (artículos científicos).

Aristas: Representan las relaciones de citación entre documentos (citaciones entre ellos).

**Etiquetas**: Cada documento está etiquetado con una categoría específica (temática del artículo).

**Atributos**: Cada documento está representado por un vector de características binarias, cada característica representa la presencia o ausencia de una palabra en el documento (de una lista de 1443 palabras de interés)

**Figura 23.** Dataset CORA: colección de artículos científicos divididos en categorías



#### 1) Cargamos el Dataset



#### 1) Cargamos el Dataset

#### 2) Generamos Anomalías de forma artificial

## [ IMPLEMENTACIÓN

- 1) Cargamos el Dataset
- 2) Generamos Anomalías de forma artificial
- 3) Inicializamos el detector y lo entrenamos

```
from pygod.detector import DOMINANT

detector = DOMINANT(hid_dim=256, num_layers=16, epoch=300, contamination=0.05)

✓ 0.0s

Python

detector.fit(data)

✓ 1m 38.7s

Python
```

## **IMPLEMENTACIÓN**

- 1) Cargamos el Dataset
- 2) Generamos Anomalías de forma artificial
- 3) Inicializamos el detector y lo entrenamos



- 1) Cargamos el Dataset
- 2) Generamos Anomalías de forma artificial
- 3) Inicializamos el detector y lo entrenamos

|      | pred | score    | prob     | conf |
|------|------|----------|----------|------|
| 0    | 0    | 0.988793 | 0.073405 | 1.0  |
| 1    | 0    | 0.966952 | 0.069531 | 1.0  |
| 2    | 0    | 1.284904 | 0.125929 | 1.0  |
| 3    | 0    | 0.607964 | 0.005853 | 1.0  |
| 4    | 0    | 1.229844 | 0.116163 | 1.0  |
|      |      |          |          |      |
| 2703 | 0    | 0.603081 | 0.004987 | 1.0  |
| 2704 | 0    | 0.667596 | 0.016431 | 1.0  |
| 2705 | 0    | 0.613789 | 0.006887 | 1.0  |
| 2706 | 0    | 1.132433 | 0.098884 | 1.0  |
| 2707 | 0    | 1.196528 | 0.110253 | 1.0  |

Figura 24. Predicciones



- 1) Cargamos el Dataset
- 2) Generamos Anomalías de forma artificial
- 3) Inicializamos el detector y lo entrenamos

|      | pred | score    | prob     | conf |
|------|------|----------|----------|------|
| 0    | 0    | 0.988793 | 0.073405 | 1.0  |
| 1    | 0    | 0.966952 | 0.069531 | 1.0  |
| 2    | 0    | 1.284904 | 0.125929 | 1.0  |
| 3    | 0    | 0.607964 | 0.005853 | 1.0  |
| 4    | 0    | 1.229844 | 0.116163 | 1.0  |
|      |      |          |          |      |
| 2703 | 0    | 0.603081 | 0.004987 | 1.0  |
| 2704 | 0    | 0.667596 | 0.016431 | 1.0  |
| 2705 | 0    | 0.613789 | 0.006887 | 1.0  |
| 2706 | 0    | 1.132433 | 0.098884 | 1.0  |
| 2707 | 0    | 1.196528 | 0.110253 | 1.0  |

Figura 24. Predicciones



Cuanto mayor sea el valor "score" de un nodo, más probabilidades tendrá de ser una anomalía

- 1) Cargamos el Dataset
- 2) Generamos Anomalías de forma artificial
- 3) Inicializamos el detector y lo entrenamos

|      | pred | score    | prob     | conf |
|------|------|----------|----------|------|
| 0    | 0    | 0.988793 | 0.073405 | 1.0  |
| 1    | 0    | 0.966952 | 0.069531 | 1.0  |
| 2    | 0    | 1.284904 | 0.125929 | 1.0  |
| 3    | 0    | 0.607964 | 0.005853 | 1.0  |
| 4    | 0    | 1.229844 | 0.116163 | 1.0  |
|      |      |          |          |      |
| 2703 | 0    | 0.603081 | 0.004987 | 1.0  |
| 2704 | 0    | 0.667596 | 0.016431 | 1.0  |
| 2705 | 0    | 0.613789 | 0.006887 | 1.0  |
| 2706 | 0    | 1.132433 | 0.098884 | 1.0  |
| 2707 | 0    | 1.196528 | 0.110253 | 1.0  |

Figura 24. Predicciones



#### **RESULTADOS**



Figura 25. Predicciones (visual)





Visualización de Aciertos y Fallos con Jitter Anomalía Categoría Aciertos (predicción correcta) Fallos (predicción incorrecta) No anomalía 500 1000 1500 2000 2500 Índice

Figura 26. Matriz de Confusión

Figura 25. Predicciones (visual)

#### **RESULTADOS**



Figura 26. Matriz de Confusión



Figura 26. Matriz de Confusión





2346 164 0 -(0.93)(0.07)0.6 true label - 0.5 0.4 86 112 0.3 1 (0.43)(0.57)0.2 0.1 0 predicted label

Figura 27. Curva ROC

Figura 26. Matriz de Confusión



#### Áreas de mejora

**Explicabilidad** 

**Desbalance de Clases** 

Ruido y Funciones de

Pérdida

Heterogeneidad

**Pocos Datos Etiquetados** 



- Graph Convolutional Networks: Introduction to GNNs (Towardsdatascience).
- Graph Anomaly Detection with GNN: Current Status and Challenges
- Basic Understanding of Neural Network Structure (Medium).
- A Gentle Introduction to Neural Network Series Part 1 (Towardsdatascience).
- PyTorch Geometric doc
- Graph Neural Network Message Passing (GCN)
- Semi-Supervised Classification With GCN

## GRAPH CONVOLUTIONAL NETWORKS

Jesús Martínez, Carlos Sánchez

Aprendizaje Máquina III

Junio 2024