작성년월일 200	작성	녀월	일	200
-----------	----	----	---	-----

금속피막고정저항기 승 인 원

상기 품목에 대한 사양승인원을 첨부 제출 하오니 검토하시어 승인 바랍니다.

제 일 전 자 산 업 (주)

	작	성	검	토	쉬0	인
결						
재						

승 인

	피프그경	문서번호	JIE-QI-01-12	페이지
제일전자산업	│ 제 품 규 격 ├ │	제정일자	'99. 9. 1	
주 식 회 사	금속피막 고정저항기	개정번호	0	1 / 8
	(R N)	개정일자		

- 1. 범 위
- 2. 품명 구성
- 3. 정 격
- 4. 표준 시험조건
- 5. 외관구조 및 치수
- 6. 기계적, 전기적 성능
- 7. 포 장

관 련	결	작 성	검 토	승 인
원 년 규 격				
	재			

제일전자산업	피프그경	문서번호	JIE-QI-01-12	페이지
	│ 제 품 규 격 ├ │	제정일자	'99. 9. 1	
주 식 회 사	금속피막 고정저항기	개정번호	0	2 / 8
	(R N)	개정일자		

1. 적용 범위

본 규격은 당사에서 제조하는 금속피막 고정저항기(이하"저항기"라 한다)의 표시방법, 정격, 형상, 시험방법 등에 대하여 적용한다.

2. 품명 구성

RN	1/4W	$\underline{}$ T52	$\phantom{00000000000000000000000000000000000$	F
품 명	정격전력	가공형상	공칭저항치	저항치허용차

2.1 품 명

품명은 금속피막 고정저항기를 나타내는 기호로써 "RN"로 표시한다.

2.2 정격전력

저항기의 정격전력(WATTAGE)를 나타내는 기호로써 다음 표와 같다.

기 호	1/8W	1/4W	1/2W	1W
정격전력	0.125W	0.25W	0.5W	1W

2.3 가공형상

가공형상을 나타내는 기호로써 다음 표와 같다.

기 호	가 공 형 상
T	TAPING
R	"R" 형 포밍
M	"M"형 포밍
무표시	AXIAL LEAD형

- ※ 가공형상에 대한 세부 규격은 본 규격 5-1항 구조 및 치수를 참고할 것.
- ※ Axial Lead형은 가공형상기호를 사용하지 않음.

2.4 공칭 저항치

저항기의 공칭 저항치를 나타내는 기호이다.

2.5 저항치 허용차

저항치 허용오차를 나타내는 기호로써 다음 표와 같다.

	기	호	A	В	C	D	F	G	J
ſ	허용	오차	$\pm~0.05\%$	$\pm~0.1\%$	$\pm~0.25\%$	± 0.5%	± 1.0%	$\pm~2.0\%$	± 5.0%

제일전자산업 주 식 회 사	피프그경	문서번호	JIE-QI-01-12	페이지
	제 품 규 격	제정일자	'99. 9. 1	
	금속피막 고정저항기	개정번호	0	3 / 8
	(R N)	개정일자		

3. 정 격

3.1 정격전력

정격전력은 정격주위온도 $(+70^\circ\mathbb{C})$ 에서 연속부하 하여 사용할 수 있는 전력의 최대치를 말하며 각 규격에 대한 정격전력은 (± 1) 에 나타나 있다.

< 丑 1>

형	명	정격전력	최고사용전압	최고과부하전압	저항치범위	정격주위온도	사용온도범위	
RN	1/8W	0.125W	150 V	300 V	1~5.6M	+ 70℃	1	
RN	1/4W	0.25W	250 V	500 V	$0.47\!\sim\!10\mathrm{M}$		 -55°C ~ +155°C	
RN	1/2W	0.5W	350 V	700 V	$0.22\!\sim\!10\mathrm{M}$		-99 (14 + 199 (1	
RN	1W	1 W	350 V	700 V	$0.22\!\sim\!10\mathrm{M}$]		

3.2 정격전압

정격전압은 정격전력에 대응하는 직류 또는 교류(상용주파수 실효치) 전압으로 하고 다음식으로 구한다. 단, 구해진 정격전압이 $< \pi 1>$ 의 최고사용전압을 초과하는 경우는 이 최고사용전압을 정격전압으로 한다.

$$E = \sqrt{P \times R}$$

여기서 \mathbf{E} : 정격전압 (\mathbf{V})

P : 정격전력 (W) R : 공칭 저항치 (Ω)

3.3 최고 사용 전압

최고 사용 전압은 각 저항기의 규격(정격전력)별로 인가할 수 있는 직류 또는 교류 전압(상용주파수 실효치)의 최대치를 말하는 것으로 각 규격에 대한 최고 사용 전압은 <표1>에 나타나 있다.

3.4 최고 과부하 전압

최고 과부하 전압은 각 저항기의 규격(정격전력)별로 인가할 수 있는 직류 또는 교류(상용주파수 실효치)과부하 전압의 최대치를 말하는 것으로 각 규격에 대한 최고 과부하 전압은 <표1>에 나타나 있다.

3.5 정격 주위 온도

정격 주위온도는 저항기의 정격전력을 규정하는 최고의 주위온도를 말하는 것으로 당사는 +70%를 정격주위온도로 규정하고 있으며 주위온도가 +70%를 초과하는 경우는 그림 1의 경감곡선에 따라 정격전력을 경감하여 사용하여야 한다.

Rated Load(%)

AmbientTemperature($^{\circ}$ C)

F $\equiv -02(\text{REV}.00)$ A4(210×297)

	피프그경	문서번호	JIE-QI-01-12	페이지
제일전자산업 주 식 회 사	제 품 규 격	제정일자	'99. 9. 1	
	금속피막 고정저항기	개정번호	0	4 / 8
	(R N)	개정일자		

3.6 사용온도 범위

사용온도 범위는 저항기를 연속 동작하는 상태에서 사용가능한 주위 온도의 범위를 말하며 최고주위온도 $+155\,^\circ$, 최저사용온도 $-55\,^\circ$ 의 사이로 한다.

4. 표준 시험조건

시험 및 측정은 특별한 규정이 없는 한 표준상태, 상온 $(15\sim35\,^\circ)$, 상습 $(45\sim85\%)$, 상기압 $(860\sim1060\,^\circ)$ 에서 행한다. 단, 표준상태에서 시험 및 측정이 곤란한 경우는 판정에 이의가 없는 한도 내에서 표준상태이외의 상태에서 시험 및 측정을 행한다.

5. 외관 구조 및 치수

5.1 외관 구조 및 치수는 각 규격 및 가공형상별로 다음과 같다.

5.1.1 AXIAL BULK 罟

치수	치 수 (m/m)				
형명	L	ФD	Фф	Н	
RN 1/8	$3.2~\pm~0.2$	$1.7~\pm~0.2$	$0.45\ \pm0.03$		
RN 1/4	$6.5~\pm~0.5$	$2.3~\pm~0.2$	$0.6~\pm~0.03$	30.0	
RN 1/2	$9.5~\pm~0.5$	$3.5~\pm~0.5$	$0.7~\pm~0.03$	± 3.0	
RN 1	$11 \pm \ 1.0$	$4.0~\pm~0.5$	$0.8~\pm~0.03$		

5.1.2 TAPING TYPE

친수	치	수 (m/i	m)
형명	W	P	L ₁ .L ₂
T52	$52.0~\pm~1.0$	$5.0\ \pm0.3$	Max 1.0

5.2 표 시

저항기는 그림 **2**와 같이 칼라코드로써 공칭 저항치 및 저항치 허용차를 표시하며 어떠한 시험을 실시한 후에도 판독할 수 있어야 한다.

제일전자산업	피프그경	문서번호	JIE-QI-01-12	페이지
	제 품 규 격	제정일자	'99. 9. 1	
주 식 회 사	금속피막 고정저항기	개정번호	0	5 / 8
	(R N)	개정일자		

COLOR	1st Figure	2nd Figure	3nd Figure	Multiplier	Tolerance
Black	0	0	0	1	
Brown	1	1	1	10	F (±1%)
Red	2	2	2	100	$G~(\pm 2\%)$
Orange	3	3	3	1000	
Yellow	4	4	4	10000	
Green	5	5	5	100000	$D \ (\pm 0.5\%)$
Blue	6	6	6	1000000	$C~(\pm 0.25\%)$
Violet	7	7	7	10000000	B (±0.1%)
Gray	8	8	8		A $(\pm 0.05\%)$
White	9	9	9		
Gold				0.1	J (± 5%)
Silver				0.01	K (±10%)
Plain					$M~(\pm 20\%)$

5.3 외장

저항기는 내습성, 내열성이 우수한 청색 에폭시계 전기 절연도료로 도장되어 있어야 한다.

5.4 단자

저항기의 단자는 전극과 전기적 및 기계적으로 확실하게 접속되고 쉽게 납땜할 수 있어야 한다. (본 규격 6-7항 단자강도시험 및 6-9항 납땜성 시험에 합격해야 함.)

6. 기계적, 전기적 성능

6.1 DC 저항치

허용오차 0.1%이상 정밀도를 갖는 저항계 또는 브릿지로 측정하였을 때 저항치가 규정의 허용차 이내에 들것.

6.2 저항온도 특성(T.C.R)

실온(T1)에서 초기저항치를 측정하고 실온(T1)보다 100% 높은 온도(T2)에서 30분간 방치한 후 저항값을 측정한다. 이 때 각각의 저항값을 $R1,\ R2$ 라 하면 다음 식에 의해서 저항온도계수를 구한다.

저항온도계수 (T.C.R) =
$$\frac{(R_2 - R_1)}{R(T_2 - T_1)} \times 10^6$$

제일전자산업	 제 품 규 격	문서번호	JIE-QI-01-12	페이지
	제품ㅠ즉	제정일자	'99. 9. 1	
주 식 회 사	금속피막 고정저항기	개정번호	0	6 / 8
	(R N)	개정일자		

이 때, 저항온도계수는 다음 표의 규격을 만족하여야 한다.

구 분	저항치 범위	10 KΩ 미만	10K ~100KΩ	100K ~1MΩ	1 M Ω 이상
저항온도계수	1/8W	± 100	± 100	± 100	-± 200
(ppm/℃)	1/4W 이상	± 100	± 100	± 100	± 200

6.3 단시간 과부하

저항기에 정격전압의 2.5배에 해당하는 시험전압을 5초간 인가(이 때 시험전압이 최고 과부하 전압을 초과하는 경우에는 최고 과부하 전압을 시험 전압으로 한다)한 후 저항치 변화율을 측정한다. 이때, 저항치 변화율이 $\pm(1.0\% + 0.05\Omega)$ 을 초과하지 않고 저항기 소체에는 발화, 불꽃 등 이상이 없어야 한다.

6.4 부하수명

정격전압을 90분간 인가(이 때 시험전압이 최고사용전압을 초과하는 경우는 최고사용전압을 인가)하고 30분간 무부하 방치하는 사이클을 연속하여 100시간, 250시간, 500시간, 750시간, 1000시간이 경과하는 시점에서 각각 저항치변화율 및 외관의 손상을 검사한다.

이 때, 저항치 변화율이 100KΩ미만은 ±3.0% + 0.005Ω, 100KΩ 이상은 ±5.0% + 0.05Ω을 초과하지 않고 외관에 이상이 없어야 한다.

6.5 내습부하

온도 $40~\pm2^{\circ}$ C, 상대습도 $90~\sim95\%$ 의 시험조 내에서 정격전압을 90분간 인가(정격전압이 최고사용전압을 초과하는 경우는 최고사용전압을 인가)하고 30분간 무부하 방치하는 사이클을 연속하여 100시간, 250시간, 500시간, 750시간, 1000시간이 경과하는 시점에서 각각 저항치변화율 및 외관의 손상을 검사한다. 이 때, 저항치 변화율이 $\pm(1.0\%~+~0.05\Omega)$ 을 초과하지 않고 외관에 이상이 없어야 한다.

6.6 온도 사이클

저항기를 실험조 내에 설치하고 시험조 내부의 온도 변화 사이클을 다음 표와 같은 사이클로 연속 5회 실시한 후 저항치 변화율 및 외관의 손상을 검사한다.

STEP	1	2	3	4
온 도	-25 ±3℃	+20 ±3℃	+85 ±3℃	+20 ±3℃
시 간	30분	10분	30분	10분

이 때, 저항치 변화율이 $\pm (1.0\% + 0.05\Omega)$ 을 초과하지 않고 외관에 이상이 없어야 한다.

F $\equiv -02(\text{REV}.00)$ A4(210×297)

제일전자산업	피프그경	문서번호	JIE-QI-01-12	페이지
	제 품 규 격	제정일자	'99. 9. 1	
주 식 회 사	금속피막 고정저항기	개정번호	0	7 / 8
	(R N)	개정일자		

6.7 단자강도

6.7.1 인장강도

저항기의 단자인출 방향으로 다음 표의 인장력을 10초간 가한다.

구 분	1/8W, 1/4W	1/2W, 1W
인 장 력	2 Kg/cm²	$4\mathrm{Kg}/\mathrm{Cm}^2$

이 때, 저항치 변화율이 $(0.25\% + 0.05\Omega)$ 이내에 들어야 하고 전극 및 단자의 절위 등 손상이 없어야 한다.

6.7.2 굴곡강도

저항기 단자의 전극 용접 부위로부터 6mm의 위치를 곡률반경 0.75mm로 90° 구부려 360° 회전시킨 다음 반대 방향으로 360° 회전하며 이 동작을 3회 반복한다. 이 때 1회에 소요되는 시간을 약 5초간으로 한다. 시험 후 저항치 변화율이 \pm $(0.5\% + 0.05\Omega)$ 를 초과하지 않고 단자의 절취 등 손상이 없어야 한다.

6.8 납 내열성

 350 ± 10 ℃의 납조에 저항기의 단자를 전극용접부위로부터 $2.0 \sim 2.5 mm$ 위치까지 침적하여 3 ± 0.5 초간 유지한 다음 저항치 변화율을 측정한다.

이때, 저항치 변화율이 $\pm (0.5\% + 0.05\Omega)$ 을 넘지 않고 전극 및 단자의 단락 등 손상이 없어야 한다.

6.9 납땜성

저항기의 단자를 플럭스(25% 송진이 함유된 메타놀)에 넣고 $5\sim10$ 초간 침적한 다음 $+250~\pm5\%$ 의 납조에 5 ± 0.5 초간 침적시킨다. 납조 침적 후 저항기 단자의 표면을 깨끗한 유기용제(이소프로필알콜 91%이상의 것)로 세척하여 잔류 플럭스를 완전히 제거한다.

이 때, 저항기 단자의 표면이 새로운 납으로 95%이상 도포되어야 한다.

6.10 내전압

저항기의 소체부위를 알루미늄박으로 완전히 둘러싸고 90° 금속 V-블럭에 끼운다.

V-블럭과 저항기의 단자 간에 다음 표의 교류(상용주파수 실효치)전압을 1분간 인가한다.

이 때, 저항기의 단락, 소손, 절연파괴 등의 이상이 없어야 한다.

구 분	1/8W	1/4W	1/2W, 1W
시험전압	300 V	500 V	700 V

6.11 절연저항

저항기의 소체부위를 알루미늄박으로 완전히 둘러싸고 90° 금속 V-블럭에 끼운다.

이 때, V-블럭과 저항기의 단자 간에 직류 100V의 시험전압으로 절연 저항치를 측정한다.

이 때, 절연저항이 1000MΩ이상이어야 한다.

F $\equiv -02(\text{REV}.00)$ A4(210×297)

제일전자산업	제 품 규 격	문서번호	JIE-QI-01-12	페이지
	제 품 규 격	제정일자	'99. 9. 1	
주 식 회 사	금속피막 고정저항기	개정번호	0	8 / 8
	(R N)	개정일자		

6.12 내용제성

저항기를 이소프로필알콜(시약) 또는 트리클로로에틸렌(시약) 용제 중에 3분간 완전히 침적한 후 표면을 탈지면 또는 부드러운 칫솔을 이용하여 문지른다. 이 때 문지르는 힘은 $0.5\pm0.05 {\rm Kg/cm²}$ 으로 하고속도는 1초에 2회 총 회수는 10회(5왕복)로 한다.

이 때, 외관 및 표시에 이상이 없어야 한다.

7. 포 장

저항기는 수송 및 적재 중 손상을 받지 않도록 적절한 방법으로 포장되어야 하며 온. 습도가 조절되지 않는 환경 내에서 6개월 동안 저장했을 때 저항치의 변화가 있어서는 안된다. 포장 단위마다 다음의 내용들이 명기되어야 한다.

- (1) LOT NO.
- (2) 품명 및 규격
- (3) 포장 수량
- (4) 제조회사명 또는 마크