Nome, Cognome	Matricola

Scritto di esercizi di Istituzioni di Matematica del 19/01/2022 Corso di Laurea Triennale in Informatica – a.a. 2021/2022

Svolgere solo ed esclusivamente il compito associato alla propria matricola, come indicato nel file che si trova nello stream di Classroom. Scrivere in maniera leggibile nome, cognome e matricola. Riportare le soluzioni degli esercizi dietro questa pagina. NON si devono includere gli svolgimenti. Il punteggio massimo è 25.

Esercizio 1 (5 punti) Data la funzione

$$f(x) = \frac{-11 + 20x}{-3 + 5x},$$

si determinino:

a l'insieme di definizione D di f;

d l'immagine I = f(D) di f;

b la derivata f'(x);

c l'insieme dei punti $x \in D$ in cui f'(x) > 0;

e il grafico di f, le coordinate dei punti di intersezione con gli assi ed eventuali asintoti.

Esercizio 2 (2 punti) Calcolare i seguenti limiti.

a)
$$\lim_{n \to +\infty} \left(-3n - \frac{1}{n} \right) \ln \left(1 + \frac{9}{n} \right)$$

b)
$$\lim_{x \to +\infty} \left(\sqrt[3]{x^4 - x^2} - \sqrt[3]{3x^4 - 2} \right)$$

Esercizio 3 (1 punto) Calcolare il valore della seguente somma finita.

$$\sum_{n=0}^{5} 3^n$$

Esercizio 4 (2 punti) Data la serie numerica

$$\sum_{n\geqslant 1} n^2 \sin\left(\frac{1}{n}\right),\,$$

quale delle seguenti asserzioni è vera? Motivare la risposta.

a La serie converge.

b La serie diverge.

c La serie è irregolare.

Esercizio 5 (3 punti) Calcolare le soluzioni complesse della seguente equazione e scriverle in forma trigonometrica.

$$z^3 = -\frac{1}{2}\sqrt{2} + \frac{1}{2}\sqrt{2}i$$

Esercizio 6 (4 punti) Riscrivere come unione di intervalli i seguenti insiemi, calcolarne l'inf, il sup, e, se esistono, min e max.

$$A = \left\{ x \in \mathbb{R} : \frac{3x^2 + 21x + 30}{x^2 - 2x - 3} \le 0 \right\}$$
$$C = \left\{ x \in \mathbb{R} : \sqrt{x^2 - 2x - 8} < \sqrt{3x^2 - 8x - 4} \right\}$$

Esercizio 7 (6 punti) Calcolare i seguenti integrali.

a)
$$\int \sin\left(3x - \frac{\pi}{3}\right) dx$$

b)
$$\int_0^1 \frac{x+2}{x^2+1} dx$$

c)
$$\int_0^1 x^{\frac{2}{9}} \ln(x) dx$$

$$\begin{cases} y''(x) - 4y'(x) + 85y(x) = 0\\ y(0) = -4\\ y'(0) = -2 \end{cases}$$

Nome, Cognome	Matricola
Compito 82	

Scritto di esercizi di Istituzioni di Matematica del 19/01/2022 Corso di Laurea Triennale in Informatica – a.a. 2021/2022

Svolgere solo ed esclusivamente il compito associato alla propria matricola, come indicato nel file che si trova nello stream di Classroom. Scrivere in maniera leggibile nome, cognome e matricola. Riportare le soluzioni degli esercizi dietro questa pagina. NON si devono includere gli svolgimenti. Il punteggio massimo è 25.

Esercizio 1 (5 punti) Data la funzione

$$f(x) = \frac{-4 - 4x}{5 + 4x}$$

si determinino:

- a l'insieme di definizione D di f;
- d l'immagine I = f(D) di f;

- b la derivata f'(x);
- c l'insieme dei punti $x \in D$ in cui f'(x) > 0;
- e il grafico di f, le coordinate dei punti di intersezione con gli assi ed eventuali asintoti.

Esercizio 2 (2 punti) Calcolare i seguenti limiti.

a)
$$\lim_{n \to +\infty} (5n^2 + 4)^2 \left(1 - \cos\left(\frac{4}{n^2}\right) \right)$$

b) $\lim_{x \to 0^+} \left(\frac{1}{2x} - \frac{1}{\sin(3x)} \right)$

Esercizio 3 (1 punto) Calcolare il valore della seguente somma finita.

$$\sum_{n=1}^{4} 3^n$$

Esercizio 4 (2 punti) Data la serie numerica

$$\sum_{n\geqslant 1} n^4 \sin\left(\frac{1}{n^4}\right),\,$$

quale delle seguenti asserzioni è vera? Motivare la risposta.

- a La serie converge.
- b La serie diverge.
- c La serie è irregolare.

Esercizio 5 (3 punti) Calcolare le soluzioni complesse della seguente equazione e scriverle in forma trigonometrica.

$$z^3 = \frac{27}{2} + \frac{27}{2}\sqrt{3}i$$

Esercizio 6 (4 punti) Riscrivere come unione di intervalli i seguenti insiemi, calcolarne l'inf, il sup, e, se esistono, min e max.

$$A = \left\{ x \in \mathbb{R} : \frac{3x^2 - 15x + 18}{3x^2 - 21x + 30} \ge 0 \right\}$$

$$C = \left\{ x \in \mathbb{R} : \sqrt{6x^2 + 15x - 3} > \sqrt{3x^2 + 18x + 15} \right\}$$

Esercizio 7 (6 punti) Calcolare i seguenti integrali.

$$\mathbf{a}) \int e^x \sin(x) \, \mathrm{d}x$$

b)
$$\int_{1}^{2} \frac{e^{t}(e^{t}-1)}{e^{2t}-1} dt$$

c)
$$\int_0^1 x^{\frac{1}{2}} \ln(x) dx$$

$$\begin{cases} y''(x) + 5y'(x) - 6 = 0\\ y(0) = -3\\ y'(0) = 3 \end{cases}$$

Indicare nella griglia finale quali enunciati sono veri e quali falsi.

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

- Enunciato 1. L'insieme dei numeri complessi $\mathbb C$ è totalmente ordinato.
- Enunciato 2. $f: A \to B$ è decrescente se per ogni $x_1, x_2 \in A$ si ha
- $x_1 < x_2 \Longrightarrow f(x_1) \geqslant f(x_2).$ Enunciato 3. $\{x \in \mathbb{R} : |x| < a\} = (-\infty, -a) \cup (a, +\infty)$
- Enunciato 4. $\cot(-x) = \cot(x)$
- Enunciato 5. $\tan(-x) = -\tan(x)$
- Enunciato 6. $e^{i\pi} + 1 = 0$
- Enunciato 7. $\lim_{x\to 0} \frac{a^x-1}{x} = \ln(a) \ \forall a>0$
- **Enunciato 8.** Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to +\infty} f(x) = L$ se $\forall \varepsilon > 0 \ \exists X = X(\varepsilon) > 0 \ t.c. \ |f(x) L| < \varepsilon \ \forall x \in D \ con \ x > X.$
- Enunciato 9. Se $a_n > 0$ per ogni $n \in \mathbb{N}$ e $\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = L > 1$ allora $a_n \downarrow 0$.
- **Enunciato 10.** $\sum_{p\geqslant 1} a_p$ converge se e solo se $\forall \varepsilon > 0 \; \exists N = N(\varepsilon) \in \mathbb{N} \; t.c. \; \left| \sum_{p=m+1}^n a_p \right| < \varepsilon \; \forall n > m > N.$ V
- **Enunciato 11.** Se $f:(a,b) \to \mathbb{R}$ è continua, $\lim_{x \to a} f(x) = +\infty$ e $\lim_{x \to b} f(x) = -\infty$, allora esiste $x_0 \in (a,b)$ V tale che $f(x_0) = 0$.
- Enunciato 12. $\frac{d}{dx}\arctan(x) = \frac{1}{1+x^2}$
- Enunciato 13. La differenza di funzioni concave è una funzione concava.
- **Enunciato 14.** Se $f: [a,b] \to \mathbb{R}$ è continua, allora $f(x) = \frac{d}{dx} \int_x^b f(x) dx$.

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V			2.27		10					100			400	
F														

Indicare nella griglia finale quali enunciati sono veri e quali falsi.

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

- Enunciato 1. L'insieme dei numeri complessi \mathbb{C} è un campo.
- Enunciato 2. Se $f: A \to B$ è una funzione periodica, allora è una funzione trigonometrica.
- Enunciato 3. Siano $a,b,c \in \mathbb{R}$ con a > 0. Se $\Delta = b^2 4ac > 0$, allora

Enunciato 3. Siano
$$a, b, c \in \mathbb{R}$$
 con $a > 0$. Se $\Delta = b^2 - 4ac > 0$, allora $\{x \in \mathbb{R} : ax^2 + bx + c > 0\} = (x_1, x_2),$ dove $x_1 = \frac{-b - \sqrt{\Delta}}{2a} e x_2 = \frac{-b + \sqrt{\Delta}}{2a}.$

Enunciato 4. Quello riportato di seguito è il grafico di $f(x) = \cot(x)$.

Enunciato 5. $\overline{OA} = \overline{AP} \cdot \cot(x),$

$$\overline{AP} = \overline{OA} \cdot \tan(x).$$

V

V

- Enunciato 6. Se $z \in \mathbb{C}$, allora $\overline{z^n} = -(\overline{z})^n$.
- Enunciato 7. $\lim_{x \to x_0} f(x) = +\infty$ se $\exists M > 0 \text{ t.c. } \forall \delta = \delta(M) > 0 \ \exists x \in D \text{ con } 0 < |x x_0| < \delta \text{ t.c. } f(x) < M.$
- Enunciato 8. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to x_0^+} f(x) = L \in \mathbb{R}$ se $\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 \ t.c. \ |f(x) L| < \varepsilon \ \forall x \in (x_0, x_0 + \delta).$
- Enunciato 9. Se $a_n > 0$ per ogni $n \in \mathbb{N}$ e $\lim_{n \to +\infty} \sqrt[n]{a_n} = L < 1$ allora $a_n \downarrow 0$.
- Enunciato 10. Se $\sum_{n\geq 1} (-1)^n a_n$ converge, allora $a_n \downarrow 0$.
- Enunciato 11. Se $f: \mathbb{R} \to \mathbb{R}$ è monotona ed f([a,b]) è un intervallo, allora f è continua in [a,b].
- Enunciato 12. $\frac{d}{dx}\sin(x) = \cos(x)$
- Enunciato 13. Se $f: \mathbb{R} \to \mathbb{R}$ è derivabile n volte in x_0 e $P: \mathbb{R} \to \mathbb{R}$ è il suo polinomio di Taylor di ordine V n in x_0 , allora $P(x_0) = f(x_0)$.
- Enunciato 14: $\int f(x)g'(x) dx = f(x)g(x) \int f'(x)g(x) dx$

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Nome, Cognome	Matricola
Compito 83	
Scritto di esercizi di Istituzioni di Mate Corso di Laurea Triennale in Informa	

Svolgere solo ed esclusivamente il compito associato alla propria matricola, come indicato nel file che si trova nello stream di Classroom. Scrivere in maniera leggibile nome, cognome e matricola. Riportare le soluzioni degli esercizi dietro questa pagina. NON si devono includere gli svolgimenti. Il punteggio massimo è 25.

Esercizio 1 (5 punti) Data la funzione

$$f(x) = \frac{5x^2 + 20x - 225}{8x^2 + 32x + 88},$$

si determinino:

a l'insieme di definizione D di f;

d l'immagine I = f(D) di f;

b la derivata f'(x);

c l'insieme dei punti $x \in D$ in cui f'(x) > 0;

e il grafico di f, le coordinate dei punti di intersezione con gli assi ed eventuali asintoti.

Esercizio 2 (2 punti) Calcolare i seguenti limiti.

a)
$$\lim_{n \to +\infty} (-2n^2 - 6)^2 \left(1 - \cos\left(\frac{5}{n^2}\right) \right)$$
b)
$$\lim_{x \to +\infty} \frac{2x + \sqrt{3x + 2}}{3x - \sqrt{x - 1}}$$

Esercizio 3 (1 punto) Calcolare il valore della seguente somma finita.

$$\sum_{n=1}^{5} 2^n$$

Esercizio 4 (2 punti) Data la serie numerica

$$\sum_{n\geqslant 1}\arctan\left(\frac{1}{n}\right),$$

quale delle seguenti asserzioni è vera? Motivare la risposta.

a La serie converge.

b La serie diverge.

c La serie è irregolare.

Esercizio 5 (3 punti) Calcolare le soluzioni complesse della seguente equazione e scriverle in forma trigonometrica.

$$z^3 = -\frac{1}{2}\sqrt{3} + \frac{1}{2}i$$

Esercizio 6 (4 punti) Riscrivere come unione di intervalli i seguenti insiemi, calcolarne l'inf, il sup, e, se esistono, min e max.

$$A = \left\{ x \in \mathbb{R} : \frac{2x^2 - 14x + 24}{3x^2 - 9x - 30} \le 0 \right\}$$

$$C = \left\{ x \in \mathbb{R} : \sqrt{2x^2 - 16x + 30} \le \sqrt{3x^2 - 16x + 5} \right\}$$

Esercizio 7 (6 punti) Calcolare i seguenti integrali.

$$\mathbf{a}) \int e^x \sin(x) \, \mathrm{d}x$$

b)
$$\int_0^1 \frac{x+2}{x^2+1} \, \mathrm{d}x$$

$$c) \int_0^{+\infty} x^3 e^{-x} \, \mathrm{d}x$$

$$\begin{cases} y'(x) = (-7x+1)y(x) + e^{-\frac{7}{2}x^2 + 6x} \\ y(0) = -4 \end{cases}$$

Nome, Cognome	Matricola
---------------	-----------

Scritto di esercizi di Istituzioni di Matematica del 19/01/2022 Corso di Laurea Triennale in Informatica – a.a. 2021/2022

Svolgere <u>solo ed esclusivamente</u> il compito associato alla propria matricola, come indicato nel file che si trova nello stream di Classroom. Scrivere in maniera leggibile nome, cognome e matricola. Riportare le soluzioni degli esercizi dietro questa pagina. <u>NON</u> si devono includere gli svolgimenti. Il punteggio massimo è 25.

Esercizio 1 (5 punti) Data la funzione

$$f(x) = -\frac{4x^2 - 8x - 140}{2x^2 - 4x + 20},$$

si determinino:

a l'insieme di definizione D di f;

d l'immagine I = f(D) di f;

b la derivata f'(x);

c l'insieme dei punti $x \in D$ in cui f'(x) > 0;

e il grafico di f, le coordinate dei punti di intersezione con gli assi ed eventuali asintoti.

Esercizio 2 (2 punti) Calcolare i seguenti limiti.

a)
$$\lim_{n \to +\infty} \left(-4n - \frac{4}{n} \right) \ln \left(1 + \frac{7}{n} \right)$$

b) $\lim_{x \to +\infty} \left(3 - \sqrt{9 - \frac{2}{x^3}} \right) x^3$

Esercizio 3 (1 punto) Calcolare il valore della serie numerica $\sum_{n\geqslant 0}(a_n-a_{n+1})$ con

$$a_n = \frac{(3n-5)^2}{(7n-1)(-8n-4)}.$$

Esercizio 4 (2 punti) Data la serie numerica

$$\sum_{n\geqslant 1} n^8 \sin\left(\frac{1}{n^2}\right),\,$$

quale delle seguenti asserzioni è vera? Motivare la risposta.

a La serie converge.

b La serie diverge.

c La serie è irregolare.

Esercizio 5 (3 punti) Calcolare le soluzioni complesse della seguente equazione e scriverle in forma trigonometrica.

$$z^3 = -125i$$

Esercizio 6 (4 punti) Riscrivere come unione di intervalli i seguenti insiemi, calcolarne l'inf, il sup, e, se esistono, min e max.

$$A = \left\{ x \in \mathbb{R} : \frac{x-8}{x-8} \geqslant \frac{x+4}{x+8} \right\}$$
$$C = \left\{ x \in \mathbb{R} : \sqrt{x^2 + x - 6} \leqslant \sqrt{4x^2 - 5x - 3} \right\}$$

Esercizio 7 (6 punti) Calcolare i seguenti integrali.

a)
$$\int \cos(x)^5 dx$$

b) $\int_1^e \frac{\ln(x)^2}{x} dx$

c)
$$\int_0^1 \ln\left(1+\frac{1}{x}\right) dx$$

$$\begin{cases} y''(x) + 10y'(x) + 106y(x) = 0\\ y(0) = 7\\ y'(0) = 1 \end{cases}$$

Indicare nella griglia finale quali enunciati sono veri e quali falsi.

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. Se
$$a \in \mathbb{R}$$
 è tale che $a \cdot 0 = 0$, allora $a \neq 0$.

Enunciato 2.
$$f: A \to B$$
 è decrescente se per ogni $x_1, x_2 \in A$ si ha $x_1 < x_2 \Longrightarrow f(x_1) \geqslant f(x_2)$.

Enunciato 3.
$$\{x \in \mathbb{R} : |x| > a\} = (-\infty, -a) \cup (a, +\infty)$$

Enunciato 4.
$$\sin\left(\frac{\pi}{4}\right) = \frac{1}{2}$$

Enunciato 5.
$$\tan\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{3}$$

Enunciato 6.
$$\sqrt{2} \in \mathbb{C}$$

Enunciato 7. Se quello riportato di seguito è il grafico della funzione
$$f$$
 allora $\lim_{x \to x_0^-} f(x) = f(x_0)$.

Enunciato 8. Data
$$f: \mathbb{R} \to \mathbb{R}$$
, si ha che $\lim_{x \to x_0^+} f(x) = L \in \mathbb{R}$ se $\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 \ t.c. \ |f(x) - L| < \varepsilon \ \forall x \in (x_0, x_0 + \delta).$

Enunciato 9. Se
$$a_n = f(n)$$
 $e \not\exists \lim_{x \to +\infty} f(x)$, allora $\not\exists \lim_{n \to +\infty} a_n$.

Enunciato 10. La serie telescopica
$$\sum_{n\geqslant 1} (a_{n+1}-a_n)$$
 converge se e solo se $\lim_{n\to +\infty} a_n = L \in \mathbb{R}$.

Enunciato 11. Se
$$f: \mathbb{R} \to \mathbb{R}$$
 è continua, allora l'immagine di un intervallo aperto è un intervallo aperto.

Enunciato 12.
$$\frac{d}{dx}\arccos(x) = \frac{1}{\sqrt{1-x^2}}$$

Enunciato 13. Se
$$f:[a,b] \to \mathbb{R}$$
 è derivabile ed ha in $x_0 \in (a,b)$ un punto di massimo, allora $f'(x_0) = 0$.

Enunciato 14.
$$\int f(x)g'(x) dx = f(x)g(x) - \int f'(x)g(x) dx$$

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V								ill in						
F						T								

Indicare nella griglia finale quali enunciati sono veri e quali falsi.

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri razionali \mathbb{Q} è totalmente ordinato.

Enunciato 2. Quello riportato di seguito è il grafico di $f(x) = x^n$ con $n \in \mathbb{N}$ dispari.

Enunciato 3. L'estremo inferiore di un insieme è il più piccolo dei minoranti.

Enunciato 4. $\tan\left(\frac{\pi}{4}\right) = 1$

Enunciato 5.

$$\overline{OA} = \overline{AP} \cdot \cot(x),$$

$$\overline{AP} = \overline{OA} \cdot \tan(x).$$

Enunciato 6. $\frac{-\overline{z}}{\Re e}$ $\Im m$

Enunciato 7.
$$\lim_{x\to 0} \frac{\sqrt[a]{1+x-1}}{x} = 1 \ \forall a > 0$$

Enunciato 8. Se quello riportato di seguito è il grafico della funzione f allora $\lim_{x \to x_0^+} f(x) = f(x_0)$.

Enunciato 9. Se $a_n > 0$ per ogni $n \in \mathbb{N}$ e $\lim_{n \to +\infty} \sqrt[n]{a_n} = L < 1$ allora $a_n \downarrow 0$.

Enunciato 10. Se $a_n, b_n > 0$, $\sum_{n \ge 1} a_n$ converge $e \lim_{n \to +\infty} \frac{a_n}{b_n} = 0$, allora anche $\sum_{n \ge 1} b_n$ converge.

Enunciato 11. Se $f: \mathbb{R} \to \mathbb{R}$ è continua, allora l'immagine di un intervallo chiuso è un intervallo chiuso. V

Enunciato 12.
$$\frac{d}{dx}\arcsin(x) = \frac{1}{\sqrt{1-x^2}}$$

Enunciato 13. La differenza di funzioni concave è una funzione concava.

Enunciato 14.
$$\int \frac{\mathrm{d}x}{\sin(x)^2} = \tan(x) + c$$

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														