

HIGH PERFORMANCE LOW-NOISE OPERATIONAL AMPLIFIER

■ GENERAL DESCRIPTION

The NJM5534 is a high performance low noise operational amplifier. This amplifier features popular pin-out, superior noise performance, and high output drive capability. And also, features guaranteed noise performance with substantially higher gain-bandwidth product, power bandwidth, and slew rate which far exceeds that of the NJM741 type amplifiers.

The specially designed low noise input transistors allow the NJM5534 to be used in very low noise signal processing applications such as audio pre-amplifiers and servo error amplifiers.

The NJM5534 is internally compensated for a gain of three or higher. Externally compensation for optimizing specific performance can be obtained by use of an external compensation capacitor between COMPENSATION(5PIN) and BALANCE/COMPENSATION(8PIN).

If very low noise characteristic is of prime importance, it is recommended D-Rank type products(NJM5534DD/MD). These have specified maximum limits for equivalent input noise voltage.

■ PACKAGE OUTLINE

NJM5534D (DIP8)

NJM5534M (DMP8)

■ FEATURES

Operating Voltage ±3V~±22V

• Single Circuit

• With BALANCE Terminal

Low Input Noise Voltage 3.3nV/√Hz typ.@1kHz

Power Bandwidth
 Slew Rate
 Package Outline
 200kHz typ.
 13V/µs typ.
 DIP8, DMP8

Bipolar Technology

■ PIN CONFIGURATION

PIN FUNCTION
1.BALANCE
2.-INPUT
3.+INPUT
4.V
5.COMPENSATION

5.COMPENSATION 6.OUTPUT

DIP8, DMP8 Package 8

8.BALANCE/COMPENSATION

■ EQUIVALENT CIRCUIT

■ ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

PARAMETER	SYMBOL	RATING	UNIT
Supply Voltage	V ⁺ M ⁻	V⁺ <i>N</i> ⁻ ±22	
Differential Input Voltage	V _{ID}	±0.5	V
Common Mode Input Voltage	V _{IC}	$V^{\dagger}N^{-}$	V
Power Dissipation	P _D DIP8: 500 DMP8: 300		mW
Operating Temperature Range	Topr	-20~+75	°C
Storage Temperature Range	T _{stg}	-40~+125	°C

■ RECOMMENDED OPERATING VOLTAGE (Ta=25°C)

PARAMETER	SYMBOL	RATING	UNIT
Supply Voltage	V ⁺ /V ⁻	±3~±22	V

■ ELECTRICAL CHARACTERISTICS (Ta=25°C,V⁺/V⁻=±15V, unless otherwise noted.)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	V _{IO}	R _S ≤10kΩ	-	0.5	4	mV
Input Offset Current	I _{IO}		-	20	300	nA
Input Bias Current	l _Β		-	500	1500	nA
Input Resistance	R _{IN}		30	100	-	kΩ
Large Signal Voltage Gain	A _V	R _L ≥2kΩ, V _O =±10V	88	100	-	dB
Maximum Output Voltage	V_{OM}	R _L ≥600Ω	±12	±13	ı	V
Common Mode Input Voltage Range	V _{ICM}		±12	±13	•	V
Common Mode Rejection Ratio	CMR	R _S ≤10kΩ	70	100	•	dB
Supply Voltage Rejection Ratio	SVR	R _S ≤10kΩ	80	100	ı	dB
Supply Current	Icc	R _L =∞	ı	4	8	mA
Trainsient Response Rise Time	t _R	V_{IN} =50mV, R _L =600 Ω , C _L =100pF, Cc=22pF	ı	35	•	ns
Overshoot		V_{IN} =50mV, R _L =600 Ω , C _L =100pF, Cc=22pF	-	17	-	%
Slew Rate	SR	Cc=0	-	13	-	V/µs
Gain Bandwidth Product	GB	Cc=22pF, C _L =100pF	-	10	-	MHz
Power Bandwidth	W_{PG}	Vo=20V _{PP} , Cc=0	ı	200	-	kHz
Equivalent Input Noise Voltage	V_{NI}	f=20Hz~20kHz	ı	1	•	μVrms
Equivalent Input Noise Current	I _{NI}	f=20Hz~20kHz	-	25	-	pArms
Equivalent Input Noise Voltage	e _n	f _O =30Hz	ı	5.5	-	nV/√Hz
		f _O =1kHz	1	3.3	1	nV/√Hz
Equivalent Input Noise Current	i _n	f _O =30Hz	ı	1.5	ı	pA/√Hz
		f _O =1kHz	-	0.4	•	pA/√Hz
Broadband Noise Figure	NF	f=10Hz~20kHz, R _S =5k Ω	-	0.9	-	dB

■ ELECTRICAL CHARACTERISTICS (D-rank type(Note1), V⁺/V⁻=±15V, Ta=25°C, unless otherwise noted.)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Equivalent Input Noise Voltage	V _{NI}	RIAA, R _S =2.2k Ω	-	1	1.4	μVrms

(Note1)D-rank type is a Equivalent Input Noise Voltage selected product.

■ TYPICAL CHARACTERISTICS

■ TYPICAL CHARACTERISTICS

■ TEST CIRCUIT

■ ADJUSTMENT METHOD

Fig.1-1, Fig.1-2 shows the input offset voltage adjustment circuit, and frequency compensation circuit. Without these features, the adjustment pins are open.

Fig.1-1 Input Offset Voltage Adjustment

Fig.1-2 Frequency Compensation

■ NOTICE

When used in voltage follower circuit, put a current limit resistor into non-inverting input terminal in order to avoid inside input diode destruction when the power supply is turned on. (ref.Fig.2)

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

NJR:

NJM5534DD NJM5534D NJM5534M NJM5534M-TE2 NJM5534M-TE1 NJM5534MD-T1