Real Analysis I

Jake Thakur

Section 1.1: The Completeness Axiom

Definition

 $S \subseteq \mathbb{R}$ is inductive if

- (i) $1 \in S$
- (ii) $x \in S \Rightarrow x + 1 \in S$

Definition

 $\mathbb N$ is the intersection of all inductive subsets of $\mathbb R$

Principle of Mathematical Induction

For each $n \in N$ let S(n) be some mathematical assertion. Suppose also that

- (i) S(1) is true
- (ii) Whenever S(n) is true, then S(n+1) is true

Then S(n) is true $\forall n \in N$

Definition

$$\mathbb{Z} = \mathbb{N} \cup \{0\} \cup \{-n | n \in \mathbb{N}\}\$$

Fact

 $m, n \in \mathbb{Z} \Rightarrow$

- (i) $m + n \in \mathbb{Z}$
- (ii) $m n \in \mathbb{Z}$
- (iii) $mn \in \mathbb{Z}$

 $\mathbb{Q} = \{ \frac{m}{n} | m, n \in \mathbb{Z}, n \neq 0 \}$

Fact

- (i) Each $x \in \mathbb{Q} \Rightarrow x = \frac{m}{n}, m$ or n is odd
- (ii) n^2 is even $\Rightarrow n$ is even

Proposition 1.2

 $\exists \ \mathrm{No} \ x \in \mathbb{Q} \ \text{\ni} \ x^2 = 2$

Definition

 $S\subset\mathbb{R},S\neq\emptyset$ is Bounded Above if $\exists c\in\mathbb{R}\ \ni x\leq c\ \forall x\in S\Rightarrow c$ is an Upper Bound for S

Completeness Axiom

If $S \subset \mathbb{R}, S \neq \emptyset$, and S is Bounded Above, set $U_S = \{c \in \mathbb{R} | c \text{ is an upper bound for } S\}$

Then $\exists a \in U_S \ni a \leq c \ \forall c \in U_S$ $a = \sup S = \text{supremum of S (least upper bound)}$

("Given a bounded, nonempty set S, and the set of all upper bounds of S, U_S , then there exists a least element in U_S that is the least upper bound for S (its supremum)")

Proposition 1.3

If c > 0, then $\exists ! \ x > 0 \ \ni x^2 = c$

Theorem 1.4

 $S \subset \mathbb{R}, S \neq \emptyset$, and S is Bounded Below, set $L_S = \{b \in \mathbb{R} | b \text{ is an lower bound for } S\}$

Then $\exists d \in L_S \ni d \geq b \ \forall b \in U_S$ d = infS = infimum of S (greatest lower bound)

("Given a bounded, nonempty set S, and the set of all lower bounds of S, L_S , then there exists a greatest element in L_S that is the greatest lower bound for S (its infimum)")

Section 1.2: The Distribution of $\mathbb{Z} \ \& \ \mathbb{Q}$

Theorem 1.5 (Archimedian Property)

 $\begin{array}{l} \text{(i) } c>0 \Rightarrow \exists n \in \mathbb{N} \text{ } \ni n>c \\ \text{(ii) } \epsilon>0 \Rightarrow \exists n \in \mathbb{N} \text{ } \ni \frac{1}{n}<\epsilon \end{array}$

Proposition 1.6

Let $n \in \mathbb{Z}$, then \exists No $k \in \mathbb{Z} \ni k \in (n, n+1)$

Proposition 1.7

Suppose $S \neq \emptyset, S \subset \mathbb{Z}$, and S is Bounded Above, then S has a Maximum $m \in S$ Note: $m \in S \Rightarrow m = \sup S$

Theorem 1.8

For any $c \in \mathbb{R} \exists ! \ k \in \mathbb{Z} \ni k \in [c, c+1)$

Definition

 $S \subset \mathbb{R}$ is Dense in \mathbb{R} if for any $I = (a, b), a < b, S \cap I \neq \emptyset$

Theorem 1.9

 $\mathbb Q$ is Dense in $\mathbb R$

Corollary 1.10

 $\mathbb{R}\setminus\mathbb{Q}$ is Dense in \mathbb{R}

Section 1.3: Inequalities and Identities

$$x \in \mathbb{R}, |x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

Fact 1

$$d > 0, |c| \le d \Leftrightarrow -d \le c \le d$$

Fact 2

$$x \in \mathbb{R}, -|x| \le x \le |x|$$

Theorem 1.11 (Triangle Inequality)

If $a, b \in \mathbb{R}$, Then $|a + b| \le |a| + |b|$

Proposition 1.12

 $a, r \in \mathbb{R}, r > 0$, TFAE:

- (i) |x a| < r
- (ii) a r < x < a + r
- (iii) $x \in (a-r, a+r)$

Difference of Powers Formula

$$n\in\mathbb{N}$$
 and $a,b\in\mathbb{R},$ $a^n-b^n=(a-b)\sum_{k=0}^{n-1}a^{n-1-k}b^k$

Geometric Series Formula

$$r \in \mathbb{R}, r \neq 1,$$
 then $\frac{1-r^{n+1}}{1-r} = 1 + r + \cdots + r^n = \sum_{k=0}^n r^k$

Definition

$$n! = \begin{cases} 1, & n = 0, 1\\ n * (n-1) * \cdots * 2 * 1, & n > 1 \end{cases}$$

Definition

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Binomial Formula

$$n \in \mathbb{N}$$
 and $a, b \in \mathbb{R}$,
 $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$

Section 2.1: Convergence of Sequences

Definition

A sequence of real numbers is a function $f: \mathbb{N} \to \mathbb{R}$ set $a_n = f(n)$, then characterize f by $\{a_1, a_2, \dots\} = \{a_n\}_{n=1}^{\infty} = \{a_n\}$

Definition

 $\{a_n\}$ Converges to $a \in \mathbb{R}$ provided that for each $\epsilon > 0$ $\exists N \in \mathbb{N}$ $\ni |a_n - a| < \epsilon \ \forall n \ge N$

Proposition 2.6

 $\left\{\frac{1}{n}\right\}$ converges to 0

Fact

 $\left\{1 + \frac{1}{2} + \dots + \frac{1}{2^n}\right\}$ converges to 2

Fact

 $a_n \to a, a_n \to b \Rightarrow a = b$ (limits are unique)

Fact

 $\{(-1)^n\}$ does not converge

Lemma 2.9 (Comparison Lemma)

Suppose we have $\{a_n\}, \{b_n\}$ with $a_n \to a$. Then $b_n \to b$ if $\exists c \geq 0$ and $N_1 \in \mathbb{N} \ni |b_n - b| \leq c|a_n - a| \ \forall n \geq N_1$

Theorem 2.10 (Sum Property)

 $a_n \to a, \ b_n \to b \Rightarrow a_n + b_n \to a + b$

Lemma 2.11

 $a_n \to a, \ \alpha \in \mathbb{R} \Rightarrow (\alpha)a_n \to (\alpha)a$

Theorem 2.13 (Product property)

 $a_n \to a, \ b_n \to b \Rightarrow a_n b_n \to ab$

Fact 1

 $a_n \to a \Rightarrow |a_n| \to |a|$

Proposition 2.14

 $b_n \to b \neq 0 \Rightarrow \frac{1}{b_n} \to \frac{1}{b}$

Theorem 2.15 (Quotient property)

 $a_n \to a, \ b_n \to b \neq 0 \Rightarrow \frac{a_n}{b_n} \to \frac{a}{b}$

Proposition 2.16 (Linear property)

 $a_n \to a, \ b_n \to b, \ \alpha, \beta \in \mathbb{R} \Rightarrow (\alpha)a_n + (\beta)b_n \to (\alpha)a + (\beta)b$

Fact 2

 $a_n = c \ \forall n \Rightarrow a_n \to c$

Proposition 2.17

 $P: \mathbb{R} \to \mathbb{R}, \ a_n \to a \Rightarrow P(a_n) \to P(a)$

Section 2.2: Sequences & Sets

Theorem 2.18

 $\{a_n\}$ converges $\Rightarrow \{a_n\}$ is bounded

Proposition 2.19

S is dense in $\mathbb{R} \Leftrightarrow \text{each } x \in \mathbb{R}$ is a limit of a sequence in S

Theorem 2.20 (Sequential Density of \mathbb{Q})

Every $x \in \mathbb{R}$ is the limit of a sequence of rational numbers

Lemma 2.21

 $d_n \to d, \ d_n \ge 0 \Rightarrow d \ge 0$

Theorem 2.22

 $\{c_n\} \subset [a,b], \ c_n \to c \Rightarrow c \in [a,b]$

Definition

 $S \subset \mathbb{R}$ is closed if whenever $\{a_n\} \subset S$ and $a_n \to a$ then $a \in S$

Fact

[a, b] is closed

Section 2.3: The Monotone Convergence Theorem

Definition

 $\{a_n\}$ is monotonically increasing if $a_{n+1} \geq a_n$ for each n

 $\{a_n\}$ is monotonically decreasing if $a_{n+1} \leq a_n$ for each n

Definition

 $\{a_n\}$ is monotone if it is either monotonically increasing or decreasing

Theorem 2.25 (Monotone Convergence Theorem)

```
If \{a_n\} is monotone, then \{a_n\} converges \Leftrightarrow \{a_n\} is bounded

Note: if \{a_n\} is monotonically increasing, a_n \to \sup\{a_n\}

Note: if \{a_n\} is monotonically decreasing, a_n \to \inf\{a_n\}
```

Proposition 2.28

```
Let c \in \mathbb{R}, |c| < 1 \Rightarrow \lim_{n \to \infty} c^n = 0
```

Theorem 2.29 (Nested Interval Theorem)

```
Let \{a_n\} and \{b_n\} be such that a_n < b_n and set I_n = [a_n, b_n].
Assume that I_{n+1} \subset I_n and that \lim_{n \to \infty} [b_n - a_n] = 0. Then \exists ! \ x \in \bigcap_{n=1}^{\infty} I_n
```

Section 2.4: The Sequential Compactness Theorem

Definition

For a given $\{a_n\}$ let $\{n_k\}$ be a sequence of natural numbers that is strictly increasing. Then the sequence $\{b_k\}$ defined by $b_k = a_{n_k}$, with $k = 1, 2, \cdots$ is called a subsequence of $\{a_n\}$, denoted $\{b_k\} = \{a_{n_k}\}_{k=1}^{\infty} = \{a_{n_k}\}$

Fact

Given a sequence $\{n_k\}_{k=1}^{\infty}$ of natural numbers that is strictly increasing, we have that $n_k \geq k$ for every $k \in \mathbb{N}$

Proposition 2.30

Let $\{a_n\}$ converge to a, i.e., $a_n \to a$ Then $\lim_{n\to\infty} a_{n_k} = a$ for every subsequence $\{a_{n_k}\}$ of $\{a_n\}$

Theorem 2.32

For every $\{a_n\} \exists \{n_k\} \ni \{a_{n_k}\}$ is monotone

Theorem 2.33

Every bounded sequence has a convergent subsequence

Definition

 $S \subseteq \mathbb{R}$ is sequentially compact if every sequence $\{a_n\} \subset S$ has a convergent subsequence whose limit is in S

Theorem 2.36 (Sequential Compactness Theorem)

 $a, b \in \mathbb{R}$ with $a < b \Rightarrow [a, b]$ is sequentially compact

Section 3.1: Continuity

Definition

For $D \subseteq \mathbb{R}$, $f: D \to \mathbb{R}$ is continuous at $x_0 \in D$ if whenever $\{x_n\} \subset D$ and $x_n \to x_0$ then $f(x_n) \to f(x_0)$

 $(f: D \to \mathbb{R} \text{ is continuous if it is continuous } \forall x_0 \in D)$

Fact

 $P: \mathbb{R} \to \mathbb{R} \Rightarrow x_0 \in \mathbb{R}, \{x_n\} \subset \mathbb{R}, x_n \to x_0 \Rightarrow P(x_n) \to P(x_0) \Rightarrow P$ is continuous

Theorem 3.4

Suppose $f: D \to \mathbb{R}, g: D \to \mathbb{R}$ are continuous at $x_0 \in D$, then $f+g: D \to \mathbb{R}$ and $fg: D \to \mathbb{R}$ are continuous at $x_0 \in D$ and if $g(x) \neq 0 \ \forall \ x \in D$ then $\frac{f}{g}: D \to \mathbb{R}$ is continuous at $x_0 \in D$

Corollary 3.5

Let P and Q be polynomials, then $\frac{P}{Q}: D \to \mathbb{R}$ is continuous where $D = \{x \in \mathbb{R} \mid Q(x_0) \neq 0\}$

Theorem 3.6

 $f: D \to \mathbb{R}, g: U \to \mathbb{R}, f(D) \subseteq U$ and suppose that f is continuous at $x_0 \in D$ and g is continuous at $f(x_0) \in U$ then $g \circ f$ is continuous at x_0 ; namely, $g \circ f: D \to \mathbb{R}$

Fact

 $f(x) = \sqrt{x}$ is continuous on $D = [0, +\infty)$

Section 3.1 (Sup): Trigonometric Continuity

Fact 1

if $\theta_n \to 0$, then $\sin \theta_n \to 0$

Fact 2

if $\theta_n \to 0$, then $\cos \theta_n \to 1$

Fact

 $\begin{array}{l} \sin\theta \text{ is continuous,} \\ \cos\theta \text{ is continuous,} \\ \tan\theta \text{ is continuous at } \cos\theta \neq 0 \ (\theta \neq (2n+1)*\frac{\pi}{2}), \\ \csc\theta \text{ is continuous at } \sin\theta \neq 0 \ (\theta \neq n\pi), \\ \sec\theta \text{ is continuous at } \cos\theta \neq 0 \ (\theta \neq ((2n+1)*\frac{\pi}{2}), \\ \cot\theta \text{ is continuous at } \sin\theta \neq 0 \ (\theta \neq n\pi) \end{array}$

Section 3.2: Extreme Value Theorem

For $f: D \to \mathbb{R}$ we define $f(D) = \{y \in \mathbb{R} \mid y = f(x) \text{ for some } x \in D\}$ f(D) is the image of f

Definition

 $f:D\to\mathbb{R}$ attains a maximum (max value) if $\exists x_0\in D$ $\ni f(x)\leq f(x_0)$ $\forall x\in D$ Such a point x_0 is a maximizer of f

 $f:D\to\mathbb{R}$ attains a minimum (min value) if $\exists \ x_0'\in D\ \ni f(x_0')\le f(x)\ \forall x\in D$ Such a point x_0' is a minimizer of f

Lemma 3.10

If $f:[a,b]\to\mathbb{R}$ is continuous, then f([a,b]) is bounded above $(\exists m\ni f(x)\le m\;\forall x\in[a,b])$

Theorem 3.9 (Extreme Value Theorem)

If $f:[a,b]\to\mathbb{R}$ is continuous, then f attains both a max and a min

$$\exists x_0, x_0' \in [a, b] \ni f(x_0) \le f(x) \le f(x_0') \forall x \in [a, b]$$

Fact

Let $S \subset [a, b]$, then $infS \in [a, b]$, and $supS \in [a, b]$

Section 3.3: Intermediate Value Theorem

Theorem 3.11 (Intermediate Value Theorem)

Suppose $f : [a, b] \to \mathbb{R}$ is continuous and let $c \in \mathbb{R}$ be any number strictly between f(a) and f(b); i.e., f(a) < c < f(b) or f(b) < c < f(a), then $\exists x_0 \in (a, b) \ni f(x_0) = c$

Fact

Suppose $f: D \to \mathbb{R}$ is continuous. If $\exists [a, b] \subset D \ni f(a) < 0$ and f(b) > 0 (or vice-versa), then $\exists x_0 \in (a, b) \ni f(x_0) = 0$

"A real, continuous function that is positive on one side and negative on the other contains a root"

Definition

 $D \subseteq \mathbb{R}$ is convex if $u, v \in D$, $(u < v) \Rightarrow [u, v] \subset D$

Fact

If $D \subset \mathbb{R}$ is convex then D is an interval

Theorem 3.14

If I is an interval and $f: I \to \mathbb{R}$ is continuous then f(I) is an interval

Section 3.4: Uniform Continuity

Definition

 $f:D\to\mathbb{R}$ is uniformly continuous on D if whenever $\{u_n\},\{v_n\}\subset D\ni u_n-v_n\to 0$, then $f(u_n)-f(v_n)\to 0$

Note: if $v_n = x_0 \ \forall n$, then $u_n - v_n \to 0 \Rightarrow u_n \to x_0$, so uniform continuity \Rightarrow continuity at each $x_0 \in D$

Fact

f(x) = x is uniformly continuous but $f(x) = x^2$ is not

Theorem 3.17

 $f:[a,b]\to\mathbb{R}$ is continuous $\Rightarrow f$ is uniformly continuous on [a,b]

Fact

If $f: D \to \mathbb{R}$ satisfies Lipschitz Continuity: $|f(u) - f(v)| \le c|u - v|, \forall u, v \in D$ and for some $c \ge 0$, then f is uniformly continuous.

Fact

Let P be a polynomial. Then on each [a,b], $P:[a,b]\to\mathbb{R}$ is lipschitz continous

Section 3.5: The $\epsilon - \delta$ Criteria for Continuity

Definition

"The $\epsilon - \delta$ Criterion At a Point" - $f: D \to \mathbb{R}$ satisfies the $\epsilon - \delta$ criterion at a point $x_0 \in D$, if for each $\epsilon > 0 \; \exists \delta > 0 \; \ni \; \text{for } x \in D, \; |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \epsilon$

Theorem 3.20

For $f: D \to \mathbb{R}$ and $x_0 \in D$, TFAE:

- (i) f is continuous at x_0
- (ii) The $\epsilon \delta$ criterion at x_0 holds

Definition

"The $\epsilon - \delta$ Criterion On the Domain of a Function" - $f: D \to \mathbb{R}$ satisfies the $\epsilon - \delta$ criterion on D, if for each $\epsilon > 0 \; \exists \delta > 0 \; \ni \; u,v \in D, \; |u-v| < \delta \Rightarrow |f(u) - f(v)| < \epsilon$

Theorem 3.22

For $f: D \to \mathbb{R}$, TFAE:

- (i) $f: D \to \mathbb{R}$ is uniformly continuous
- (ii) $f: D \to \mathbb{R}$ satisfies the $\epsilon \delta$ criterion on D

Fact

 $I = (a, b), f : I \to \mathbb{R}$ is continuous, then if $x_0 \in (a, b)$ with $f(x_0) > 0$, then $\exists I_1 = (a_1, b_1) \subset I \ni f(x) > 0 \ \forall \ x \in I_1$

Section 3.6: Images and Inverses; Monotone Functions

Definition

- (i) $f: D \to \mathbb{R}$ is monotonically increasing if $u, v \in D$ and $u < v \Rightarrow f(u) \leq f(v)$
- (ii) $f: D \to \mathbb{R}$ is monotonically decreasing if $u, v \in D$ and $u < v \Rightarrow f(u) \ge f(v)$
- (iii) $f: D \to \mathbb{R}$ is monotone if it is monotonically increasing or decreasing

Theorem 3.23

Suppose $f:D\to\mathbb{R}$ is monotone. If f(D) is an interval, then f is continuous

Corollary 3.25

Suppose $f: I \to \mathbb{R}$ is monotone, then f is continuous $\Leftrightarrow f(I)$ is an interval

Definition

- (i) $f: D \to \mathbb{R}$ is strictly increasing if $u, v \in D$ and $u < v \Rightarrow f(u) < f(v)$
- (ii) $f: D \to \mathbb{R}$ is strictly decreasing if $u, v \in D$ and $u < v \Rightarrow f(u) > f(v)$

Definition

 $f: D \to \mathbb{R}$ is one-to-one (injective) if for each $y \in f(D) \exists ! \ x \in D \ni f(x) = y$

"No element in the image may have more than one element in the domain mapping to it"

Fact

If f is strictly increasing or decreasing, then f is one-to-one

Fact

If $f: I \to \mathbb{R}$ is continuous and f is one-to-one, then f is strictly monotone

Suppose $f: D \to \mathbb{R}$ is one-to-one. If $y \in f(D)$, let $x \in D \ni f(x) = y$ Define $f^{-1}: f(D) \to D$ by $f^{-1}(y) = x$, so f^{-1} is well-defined since x is unique

Note:

(i) $f^{-1}(f(x)) = x$, where $x \in D$ (ii) $f(f^{-1}(y)) = y$, where $y \in f(D)$

Theorem 3.29

 $f:I\to\mathbb{R}$ is continuous and strictly increasing or decreasing \Rightarrow $f^{-1}:f(I)\to\mathbb{R}$ is continuous

Section 3.7: Limits

Definition

 $h(x)=\frac{f(x)-f(x_0)}{x-x_0}$ gives the slope of the line at point x_0 and h(x) is continuous on $[a,b]\setminus\{x_0\}$

Definition

 $D \subset \mathbb{R}, x_0 \in \mathbb{R}$ is a limit point of D if $\exists \{x_n\} \subset D \setminus \{x_0\} \ni x_n \to x_0$

Definition

If $f: D \to \mathbb{R}$ and x_0 is a limit point of D, then we denote $\lim_{x \to x_0} f(x) = l$ If whenever $\{x_n\} \subset D \setminus \{x_0\}$ and $x_n \to x_0$ we have that $\lim_{n \to \infty} f(x_n) = l$ $(x_0 \text{ may or may not be in } D)$

Example

$$D = \mathbb{R} \setminus \{x_0\}, \ f(x) = x^2 \Rightarrow h(x) = \frac{x^2 - (x_0)^2}{x - x_0} \text{ and suppose}$$

$$\{x_n\} \subset D, x_n \to x_0 \Rightarrow h(x_n) = \frac{(x_n)^2 - (x_0)^2}{x_n - x_0} = \frac{(x_n + x_0)(x_n - x_0)}{x_n - x_0} = x_n + x_0$$
So $\lim_{n \to \infty} h(x_n) = \lim_{n \to \infty} (x_n + x_0) = x_0 + x_0 = 2x_0$

Theorem 3.36

Suppose $f: D \to \mathbb{R}, g: D \to \mathbb{R}$, and x_0 is a limit point of D, so that

$$\lim_{x \to x_0} f(x) = A, \ \lim_{x \to x_0} g(x) = B \Rightarrow$$

- (i) $\lim_{x \to x_0} [f(x) + g(x)] = A + B$
- (ii) $\lim_{x \to x_0} [f(x)g(x)] = AB$
- (ii)(a) $\alpha \in \mathbb{R}$, $\lim_{x \to x_0} [\alpha f(x)] = \alpha A$
- (iii) $B \neq 0$, $g(x) \neq 0 \ \forall x \in D$, $\lim_{x \to x_0} \left[\frac{f(x)}{g(x)} \right] = \frac{A}{B}$

Theorem 3.37

 $f: D \to \mathbb{R}, \ g: U \to \mathbb{R}$ and x_0 is a limit point of $D \ni \lim_{x \to x_0} f(x) = y_0$, y_0 is a limit point of $U \ni \lim_{y \to y_0} g(y) = e$, and suppose that $f(D \setminus \{x_0\}) \subset U \setminus \{y_0\}$, then $\lim_{x \to x_0} (g \circ f)(x) = e$

Definition

 $x_0 \in D$ is an isolated point if $\exists r > 0 \ni (x_0 - r, x_0 + r) \cap D = \{x_0\}$

Fact

 $x_0 \in D \Rightarrow x_0$ is either a limit point or an isolated point of D

Limits and Continuity Theorem

For $f: D \to \mathbb{R}$, $x_0 \in D$, then f is continuous at $x_0 \Leftrightarrow x_0$ is an isolated point of D or $\lim_{x \to x_0} f(x) = f(x_0)$

So f is continuous at $x_0 \Leftrightarrow \lim_{x \to x_0} f(x) = f(x_0)$

Fact in Review

If h(x) = g(x) on $D \setminus \{x_0\}$ where $g: D \to \mathbb{R}$ is continuous on D, then $\lim_{x \to x_0} h(x) = \lim_{x \to x_0} g(x) = g(x_0)$

Section 4.1: The Algebra of Derivatives

 $x_0 \in \mathbb{R}, I \subset \mathbb{R} \ni I = (a, b)$ and $x_0 \in I \Rightarrow I$ is a neighborhood of x_0

Definition

 $x_0 \in \mathbb{R}$ and I is a neighborhood of $x_0 \Rightarrow f: I \to \mathbb{R}$ is differentiable at x_0 IF $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ exists. We say $f'(x_0) := \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ and is called the derivative of f at x_0

Definition

If $f: I \to \mathbb{R}$ is differentiable at each $x_0 \in I$ then f is differentiable and $f': I \to \mathbb{R}$ is the derivative of f

Definition

The line determined by $y = f(x_0) + f'(x_0)(x - x_0)$ is the tangent line to the graph of f at $(x_0, f(x_0))$

For
$$y_0 = f(x_0)$$
, $y - y_0 = f'(x_0)(x - x_0)$

Proposition 4.4

 $n \in \mathbb{N}, f(x) = x^n \ \forall x \in I = \mathbb{R} \Rightarrow f : \mathbb{R} \to \mathbb{R}$ is differentiable and $f'(x) = nx^{n-1}$

Proposition 4.5

 $x_0 \in \mathbb{R}, I$ is a neighborhood of $x_0, I = (a, b)$ and $f: I \to \mathbb{R}$ is differentiable at $x_0 \Rightarrow f$ is continuous at x_0

Theorem 4.6

 $x_0 \in \mathbb{R}, I$ is a neighborhood of $x_0, f: I \to \mathbb{R}$ and $f: I \to \mathbb{R}$ is differentiable at x_0 , then

- (i) $f + g : I \to \mathbb{R}$ is differentiable at x_0 and $(f + g)'(x_0) = f'(x_0) + g'(x_0)$
- (ii) $fg: I \to \mathbb{R}$ is differentiable at x_0 and $(fg)'(x_0) = f(x_0)g'(x_0) + f'(x_0)g(x_0)$
- (iii) If $g(x) \neq 0 \ \forall x \in I$ then $\frac{1}{g}: I \to \mathbb{R}$ is differentiable at x_0 and

$$(\frac{1}{g})'(x_0) = \frac{-g'(x_0)}{[g(x_0)]^2}$$

(iv) If $g(x) \neq 0 \ \forall x \in I$ then $\frac{f}{g}: I \to \mathbb{R}$ is differentiable at x_0 and $(\frac{f}{g})'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{[g(x_0)]^2}$

Fact

For $x_0, \alpha \in \mathbb{R}$, $(\alpha f)'(x_0) = \alpha f'(x_0)$

Fact

$$f(x) = c \Rightarrow f'(x) = 0 \ \forall x \in D$$

Proposition 4.7

 $n \in \mathbb{Z}, D = \mathbb{R}$ if $n \ge 0$ and $D = \mathbb{R} \setminus \{0\}$ if n < 0, then for $f : D \to \mathbb{R}$ defined by $f(x) = x^n$, f is differentiable and $f'(x) = nx^{n-1}$

Corollary 4.8

 $p, q : \mathbb{R} \to \mathbb{R}$ are polynomials, $D = \mathbb{R} \setminus \{x \mid q(x) = 0\}$, then $\frac{p}{q} : D \to \mathbb{R}$ is differentiable

Section 4.2: Differentiating Inverses & Compositions

Theorem 4.11

Suppose $x_0 \in I$, and $f: I \to \mathbb{R}$ is strictly monotone, continuous, differentiable at x_0 , and $f'(x_0) \neq 0$. Let J = f(I) then $f^{-1}: J \to \mathbb{R}$ is differentiable at $y_0 = f(x_0)$ and $(f^{-1})'(y_0) = \frac{1}{f'(x_0)} = \frac{1}{f'(f^{-1}(y_0))}$

Corollary 4.12

Suppose $f: I \to \mathbb{R}$ is strictly monotone, differentiable, and f' is nonzero on I. Let J = f(I), then $(f^{-1}): J \to \mathbb{R}$ is differentiable and $\forall x \in J$ $(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$

Proposition 4.13

Let $g(g) = x^{\frac{1}{n}}$ where $n \in \mathbb{N}$ and x > 0, then $g: (0, \infty) \to \mathbb{R}$ is differentiable and $g'(x) = \frac{1}{n} x^{\frac{1}{n} - 1} \ \forall x > 0$

Theorem 4.14 (Chain Rule)

Suppose $x_0 \in I$ with $f: I \to \mathbb{R}$ is differentiable. Say $f(I) \subseteq J$ and suppose $g: J \to \mathbb{R}$ is differentiable at $f(x_0)$, then $g \circ f: I \to \mathbb{R}$ is differentiable at x_0 and $(g \circ f)'(x_0) = g'(f(x_0)) \cdot f'(x_0)$

Proposition 4.15

For $r = \frac{m}{n}$ where $n \neq 0, m \in \mathbb{Z}, n \in \mathbb{N}$, set $h(x) = x^r$, where x > 0, then h is differentiable and $h'(x) = rx^{r-1} \ \forall x > 0$

Section 4.3: The Mean Value Theorem

Lemma 4.16

Suppose I is a neighborhood of x_0 and $f: I \to \mathbb{R}$ is differentiable at x_0 . If x_0 is a maximizer or a minimizer, then $f'(x_0) = 0$

Theorem 4.17 (Rolle's Theorem)

Suppose $f:[a,b]\to\mathbb{R}$ is continuous and $f:(a,b)\to\mathbb{R}$ is differentiable. Assume that f(a)=f(b), then $\exists x_0\in(a,b)\ni f'(x_0)=0$

Theorem 4.18 (Mean Value Theorem)

If $f:[a,b]\to\mathbb{R}$ is continuous and $f:(a,b)\to\mathbb{R}$ is differentiable, then $\exists\ x_0\in(a,b)\ \ni f'(x_0)=\frac{f(b)-f(a)}{b-a}$

Lemma 4.19

Suppose I = (a, b) and $f : I \to \mathbb{R}$ is differentiable. Then f is constant $\Leftrightarrow f'(x) = 0 \ \forall \ x \in I$

Proposition 4.20

Suppose $g,\ h:I\to\mathbb{R}$ are differentiable. Then $g=h+c\Leftrightarrow g'(x)=h'(x)\ \forall\ x\in I$

Corollary 4.21

- (i) $f: I \to \mathbb{R}$ is differentiable $\ni f'(x) > 0 \ \forall \ x \in I \Rightarrow f$ is strictly increasing
- (ii) $f:I\to\mathbb{R}$ is differentiable $\ni f'(x)<0\ \forall\ x\in I\Rightarrow f$ is strictly decreasing

Definition

Suppose $f: D \to \mathbb{R}$, then $x_0 \in D$ is a

- (i) local maximizer if $\exists \delta > 0 \ni x_0$ is a maximizer for f on $D \cap (x_0 \delta, x_0 + \delta)$
- (ii) local minimizer if $\exists \delta > 0 \ni x_0$ is a minimizer for f on $D \cap (x_0 \delta, x_0 + \delta)$

Definition

Suppose $f: I \to \mathbb{R}$ is differentiable on I. If $f': I \to \mathbb{R}$ is differentiable on I, then define $f'': I \to \mathbb{R}$ by $f''(x) = (f')'(x) = f^{(2)}(x)$ for each $x \in I$ Inductively define $f^{(k)}: I \to \mathbb{R}$, $k \in \mathbb{N}$

Theorem 4.22 (2nd Derivative Test)

Suppose $f, f': I \to \mathbb{R}$ are differentiable and $x_0 \in I \ni f'(x_0) = 0$. Then

- (i) $f''(x_0) > 0 \Rightarrow x_0$ is a local minimizer for f (concave up)
- (ii) $f''(x_0) < 0 \Rightarrow x_0$ is a local maximizer for f (concave down)

Fact

If f is continuous on [a, b] and f is differentiable on (a, b), then f attains its max and min at either

- (i) The endpoints a or b
- (ii) $x_0 \in (a, b) \ni f'(x_0) = 0$

Section 4.4: Cauchy Mean Value Theorem

Theorem 4.23 (Cauchy Mean Value Theorem)

If $f:[a,b]\to\mathbb{R}$ and $g:[a,b]\to\mathbb{R}$ are continuous on [a,b] and differentiable on (a,b) with $g'(x)\neq 0 \ \forall \ x\in (a,b)$, then $\exists \ x_0\in (a,b) \ \ni \frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(x_0)}{g'(x_0)}$

Lemma 1

If
$$h_1(x) = (x - x_0)^n$$
, then $h_1^{(k)}(x) = \begin{cases} \frac{n!}{(n-k)!} \cdot (x - x_0)^{n-k}, & 0 \le k \le n \\ 0, & k > n \end{cases}$

Theorem 4.24

Suppose $f: I \to \mathbb{R}$ has n derivatives on I and suppose at $x_0 \in I$ that $f^{(k)}(x_0) = 0$ for $0 \le k \le n-1$, then for each $x \in I$ with $x \ne x_0 \exists z$ strictly between x and $x_0 \ni f(x) = \frac{f^{(n)}(z)}{n!} \cdot (x - x_0)^n$

Application

Let $g: I \to \mathbb{R}$ have n+1 derivatives and set for $x_0 \in I$ $h(x) = \sum_{j=0}^{n} \frac{g^{(j)}(x_0)}{j!} \cdot (x-x_0)^j$ Then $g(x) = h(x) + \frac{g^{(n+1)}(z)}{(n+1)!} \cdot (x-x_0)^{n+1}$ (Taylor's Formula with Remainder)

Section 4.4 (sup): Trigonometric Differentiability

Fact 1

 $\begin{array}{l} \text{(i)} \ \lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1 \\ \text{(ii)} \ \sin \theta \to 0 \ \text{as} \ \theta \to 0 \\ \text{(iii)} \ \cos \theta \to 1 \ \text{as} \ \theta \to 0 \\ \text{(iv)} \ \sin(x+y) = \sin x \cos y + \cos x \sin y \\ \text{(v)} \ \cos(x+y) = \cos x \cos y - \sin x \sin y \\ \text{(vi)} \ \frac{d}{dx} \sin x = \cos x \\ \text{(vii)} \ \frac{d}{dx} \cos x = -\sin x \end{array}$