Mechanizm multilateracji w rozproszonej sieci sensorów audio

Gabriel Budziński

Praca napisana pod kierunkiem dra inż. Przemysława Błaśkiewicza

7 lipca 2024

Multiateracja

Weźmy punkt $(x,y) \in \mathbb{R}^2$ i oznaczmy go N, ponadto weźmy zbiór n punktów $\{(x_i,y_i): i \in [n]\} \subset \mathbb{R}^2$, który oznaczmy \mathcal{O} , a punkty należące do zbioru odpowiednio O_i . Niech d_i będzie odległością $d(N,O_i)$. Znając współrzędne punktów O_i oraz odległości d_i chcemy znaleźć (x,y).

Postać wyjściowa

$$\begin{cases} (x - x_1)^2 + (y - y_1)^2 = d_1^2 \\ (x - x_2)^2 + (y - y_2)^2 = d_2^2 \\ \vdots \\ (x - x_n)^2 + (y - y_n)^2 = d_n^2 \end{cases}$$

Obrane przekształcenie

$$\begin{bmatrix} 1 & -2x_1 & -2y_1 \\ 1 & -2x_2 & -2y_2 \\ & \vdots & \\ 1 & -2x_n & -2y_n \end{bmatrix} \begin{bmatrix} x^2 + y^2 \\ x \\ y \end{bmatrix} = \begin{bmatrix} d_1^2 - x_1^2 - y_1^2 \\ d_2^2 - x_2^2 - y_2^2 \\ & \vdots \\ d_n^2 - x_n^2 - y_n^2 \end{bmatrix}$$

$$A \cdot x = b$$

Rozwiązanie

Obrano rozwiązanie aproksymacyjne w sensie najmniejszych kwadratów:

$$\sum_{i=1}^{n} \left| \sum_{j=1}^{m} A_{ij} x_j - b_i \right|^2 = ||A\hat{x} - b||^2,$$

które otrzymujemy poprzez rozwiązanie równania normalnego

$$A^T A \hat{x} = A^T b$$

Synchronizacja czasu

W celu uzyskania odległości między nadajnikiem a odbiornikami

$$d = v_{sound} \cdot (time_{node} - time_{source})$$

Dokładność zaobserwowanej odległości jest skorelowana z dokładnością pomiaru różnicy czasu.

Metody synchronizacji

- Synchronizacja programowa
 - Synchronizacja NTP
 - Synchronizacja pomiaru przesunięć
- Synchronizacja sprzętowa
 - Synchronizacja mikrofonowa

Synchronizacja NTP

$$a = T_{i-2} - T_{i-3}, \ b = T_{i-1} - T_i, \ \delta_i = a - b, \ \theta_i = \frac{a+b}{2}$$

$$\theta_i - \frac{\delta_i}{2} \leqslant \theta \leqslant \theta_i + \frac{\delta_i}{2}.$$

Synchronizacja pomiaru przesunięć

Węzeł wysyła *n* wiadomości zawierających aktualną wartość zegara, która po odebraniu przez serwer jest porównywana z zegarem w nim dostępnym.

Synchronizacja mikrofonowa

Nadajnik umieszczany jest w odległości 0 od odbiornika. Nadajemy n sygnałów dźwiękowych i porównujemy czas nadania i odbioru.

Synchronizacja NTP

Pomiary wybranych odległości w przedziale [0,1]. Wykres po lewej - dane przed normalizacją do punktu 0, natomiast prawy po normalizacji, okrojony do interesującego przedziału. Prosta y=x wskazuje oczekiwane wyniki. Na prawym wykresie dodatkowa prosta przedstawia przybliżony współczynnik skalowania odległości.

Synchronizacja pomiaru przesunięć

Pomiary wybranych odległości w przedziale [0,1]. Wykres po lewej - dane przed normalizacją do punktu 0, natomiast prawy po normalizacji, okrojony do interesującego przedziału. Prosta y=x wskazuje oczekiwane wyniki. Na prawym wykresie dodatkowa prosta przedstawia przybliżony współczynnik skalowania odległości.

Synchronizacja mikrofonowa

Pomiary wybranych odległości w przedziale [0,1]. Wykres po lewej - dane przed normalizacją do punktu 0, natomiast prawy po normalizacji, okrojony do interesującego przedziału. Prosta y=x wskazuje oczekiwane wyniki. Na prawym wykresie dodatkowa prosta przedstawia przybliżony współczynnik skalowania odległości.

Rysunek: Punkt w pozycji (0,25), 2 mikrofony

Rysunek: 2 mikrofony

Rysunek: 4 mikrofony

1.00 [-0.3.0] [0, -0.3] 0.75 [0, 0.3][0, 0] [0.3, 0] 0.50 0.25 > 0.00 -0.25-0.50-0.75 -1.00 --0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 -1.00

Rysunek: rotacja 0°

Rysunek: rotacja 45°

Wpływ własności akustycznych środowiska

Rysunek: rotacja 90°

Wpływ liczby odbiorników

[-0.3, 0] [0, -0.3] 0.6 [0, 0.3] [0, 0] [0.3, 0] 0.4 0.2 > 0.0 -0.2 -0.4-0.6-0.6 -0.4-0.2 0.0 0.2 0.4 0.6

Rysunek: 3 mikrofony

Rysunek: 4 mikrofony

[-0.3, 0][0, -0.3]0.6 [0, 0.3] [0, 0] [0.3, 0] 0.4 0.2 > 0.0 -0.2 -0.4-0.6-0.6 -0.4-0.2 0.0 0.2 0.4 0.6

Rysunek: 5 mikrofonów

Rysunek: 6 mikrofonów

Wpływ własności akustycznych środowiska

[-0.3, 0][0, -0.3] 0.6 [0, 0.3] [0, 0] [0.3, 0] 0.4 0.2 > 0.0 -0.2 • . -0.4-0.6-0.6 -0.4-0.2 0.0 0.2 0.4 0.6

Rysunek: 7 mikrofonów

Rysunek: 8 mikrofonów

Wnioski

Czynniki wpływające na jakość pomiarów:

- zmienne własności akustyczne otoczenia,
- czułość wzmacniaczy operacyjnych mikrofonów,
- liczba odbiorników.

Dalsze kroki rozwoju systemu:

- poprawa tolerancji błędnych odczytów odległości,
- dokładniejsze przebadanie funkcji korekcyjnej.

Dziękuję za uwagę.