Machine Learning I The bootstrap

Souhaib Ben Taieb

University of Mons

Table of contents

What is the bootstrap?

Bootstrap for uncertainty quantification: an example

The (non-parametric) bootstrap procedure

Bootstrap for prediction error estimation

Table of contents

What is the bootstrap?

Bootstrap for uncertainty quantification: an example

The (non-parametric) bootstrap procedure

Bootstrap for prediction error estimation

Resampling methods

Resampling methods are used in

- **1. validating models** by using (random) subsets of the data (e.g cross-validation and the bootstrap),
- 2. estimating uncertainty in sample statistics by drawing randomly with replacement from the data set (e.g. the bootstrap),
- **3.** performing **(non-parametric) significance tests** (permutation tests).
- 4. ...

The bootstrap

- ► The **bootstrap** is a flexible and powerful resampling method that can be used to *quantify the uncertainty* associated with almost any statistic or to estimate the prediction error of any learning model.
- ▶ By estimation the sampling distribution of any statistic, the bootstrap can provide for example an estimate of the **standard error** of a coefficient or its **confidence interval**. It can also be used to compute the **validation error** of any learning model.
- ► The main idea is to obtain distinct data sets by **repeatedly sampling** observations from the original data set **with replacement**.

Where does the name come from?

- ► Pull yourself up by your bootstraps
- ▶ It is not the same as the term "bootstrap" used in computer science meaning to "boot" a computer from a set of core instructions, though the derivation is similar.

Table of contents

What is the bootstrap?

Bootstrap for uncertainty quantification: an example

The (non-parametric) bootstrap procedure

Bootstrap for prediction error estimation

Example

- ightharpoonup Suppose that we wish to invest a fixed sum of money in two financial assets that yield returns of X and Y, respectively, where X and Y are random quantities.
- ▶ We will invest a fraction $\alpha \in [0,1]$ of our money in X, and will invest the remaining $1-\alpha$ in Y.
- We wish to choose α to minimize the total risk, or variance, of our investment. In other words, we want to compute:

$$\alpha^* = \underset{\alpha \in [0,1]}{\operatorname{argmin}} \operatorname{Var}(\alpha X + (1 - \alpha)Y),$$

where $Var(X) = \sigma_X^2$, $Var(Y) = \sigma_Y^2$, and $Cov(X, Y) = \sigma_{X,Y}$.

► We can show that the solution is given by

$$\alpha^* = \frac{\sigma_Y^2 - \sigma_{X,Y}}{\sigma_X^2 + \sigma_Y^2 - \sigma_{X,Y}}.$$

Example

- ▶ In practice, the values of σ_X^2 , σ_Y^2 , and $\sigma_{X,Y}$ are unknown.
- ▶ Given a dataset $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$, we can compute estimates of these quantities $\hat{\sigma}_X^2$, $\hat{\sigma}_Y^2$, and $\hat{\sigma}_{X,Y}$.
- ▶ We can plug in these estimates in the previous formula and compute

$$\hat{\alpha} = \frac{\hat{\sigma}_Y^2 - \hat{\sigma}_{X,Y}}{\hat{\sigma}_X^2 + \hat{\sigma}_Y^2 - \hat{\sigma}_{X,Y}}.$$

Consider $\sigma_X^2 = 1$, $\sigma_Y^2 = 1.25$, and $\sigma_{X,Y} = 0.5$ ($\alpha^* = 0.6$). Each panel displays 100 simulated returns for investments X and Y.

From left to right, the resulting values for $\hat{\alpha}$ are 0.576, 0.532, 0.657, and 0.651.

Sampling distribution

- ▶ To estimate the **sampling distribution**,, we repeated the process of simulating 100 paired observations of X and Y, and computing $\hat{\alpha}$ 1,000 times.
- ▶ We thereby obtained 1,000 estimates, which we call $\hat{\alpha}_1, \hat{\alpha}_2, \dots, \hat{\alpha}_{1000}$.
- ► We can compute
 - ► The mean $\frac{1}{1000} \sum_{r=1}^{1000} \hat{\alpha}_r = 0.5996$
 - ► The standard deviation $\sqrt{\frac{1}{1000-1}\sum_{r=1}^{1000}(\hat{\alpha}_r-\bar{\alpha})^2}=0.083$, also called the **standard errors**.

Back to the real world

- ► The procedure outlined above cannot be applied, because for real data we **cannot** generate new samples from the original population
- ► However, the **bootstrap** allows us to use a computer to mimic the process of obtaining new data sets, so that we can estimate the variability of our estimate.
- ▶ Rather than repeatedly obtaining independent data sets from the population, we instead obtain distinct data sets by repeatedly sampling observations from the original data set with replacement.
- ► Each of these "bootstrap data sets" is created by sampling with replacement, and is **the same size as our original dataset**. As a result some observations may appear **more than once** in a given bootstrap data set and some not at all.

Comparison of results

Table of contents

What is the bootstrap?

Bootstrap for uncertainty quantification: an example

The (non-parametric) bootstrap procedure

Bootstrap for prediction error estimation

The (non-parametric) bootstrap procedure

Let $\mathcal{D} = \{z_i\}_{i=1}^n$, be a dataset with n observations, and $s(\cdot)$ a statistic of interest (e.g. mean, median, correlation coefficient, etc) for which we want to estimate the sampling distribution.

▶ Draw B independent bootstrap samples/datasets from D:

$$\mathcal{D}^{*(b)} = \{z_1^{*(b)}, z_2^{*(b)}, \dots, z_n^{*(b)}\}, \quad b = 1, \dots, B,$$

where $z_i^{*(b)}$ is **sampled** from \mathcal{D} with **replacement**.

► Evaluate the bootstrap replications:

$$\hat{\theta}^{*(b)} = s(\mathcal{D}^{*(b)}) \quad b = 1, \dots, B,$$

▶ Compute the sampling distribution of s() or any associated statistic of interest (standard deviation, confidence intervals, etc) using $\{\hat{\theta}^{*(1)}, \ldots, \hat{\theta}^{*(B)}\}.$

An equivalent description

- ▶ Let \hat{P} be the empirical distribution function of the observed data, i.e. an **estimate** of P, the population distribution.
- ▶ Draw *B* independent bootstrap samples/datasets from \hat{P} :

$$\mathcal{D}^{*(b)} = \{z_1^{*(b)}, z_2^{*(b)}, \dots, z_n^{*(b)}\}, \quad b = 1, \dots, B,$$

where $z_i^{*(b)}$ is **sampled** from \hat{P} .

Bootstrapping: Ideal world

Bootstrapping: Bootstrap world

Sources of random variation - n = 50, $B = 10^3$ or 10^4

Sources of random variation - n = 9, $B = 10^3$ or 10^4


```
P(observation i \in bootstrap sample)
= 1 - P(observation i \notin bootstrap sample)
```

```
P(observation i \in bootstrap sample)
= 1 - P(observation i \notin bootstrap sample)
=1-\prod_{i=1}^{n} P(\text{observation } i \text{ not in the } j\text{-th position in bootstrap sample})
```

```
P(observation i \in bootstrap sample)
= 1 - P(observation i \notin bootstrap sample)
=1-\prod_{i=1}^{n} P(\text{observation } i \text{ not in the } j\text{-th position in bootstrap sample})
= 1 - P(\text{observation } i \text{ not in the } j\text{-th position in bootstrap sample})^n
```

```
P(observation i \in bootstrap sample)
= 1 - P(observation i \notin bootstrap sample)
=1-\prod_{i=1}^{n} P(\text{observation } i \text{ not in the } j\text{-th position in bootstrap sample})
= 1 - P(\text{observation } i \text{ not in the } j\text{-th position in bootstrap sample})^n
= 1 - (1 - P(\text{observation } i \text{ in the } j\text{-th position in bootstrap sample}))^n
```

```
P(observation i \in bootstrap sample)
= 1 - P(observation i \notin bootstrap sample)
=1-\prod_{i=1}^{n} P(\text{observation } i \text{ not in the } j\text{-th position in bootstrap sample})
= 1 - P(\text{observation } i \text{ not in the } i\text{-th position in bootstrap sample})^n
= 1 - (1 - P(\text{observation } i \text{ in the } i\text{-th position in bootstrap sample}))^n
=1-\left(1-\frac{1}{n}\right)^n
```

```
P(observation i \in bootstrap sample)
= 1 - P(observation i \notin bootstrap sample)
=1-\Pi_{i=1}^{n}P(\text{observation }i\text{ not in the j-th position in bootstrap sample})
= 1 - P(\text{observation } i \text{ not in the } i\text{-th position in bootstrap sample})^n
= 1 - (1 - P(\text{observation } i \text{ in the } i\text{-th position in bootstrap sample}))^n
=1-\left(1-\frac{1}{n}\right)^n
\approx 1 - \frac{1}{e}   \left(e^{x} = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^{n}\right)
= 0.632
```

Table of contents

What is the bootstrap?

Bootstrap for uncertainty quantification: an example

The (non-parametric) bootstrap procedure

Bootstrap for prediction error estimation

Prediction error estimation

- ▶ In cross-validation, each of the K validation folds is **distinct** from the other K-1 folds used for training: there is **no overlap**. This is crucial for its success.
- ► To estimate prediction error using the bootstrap, we could think about using each bootstrap dataset as our training sample, and the original sample as our validation sample.
- ► In other words, we fit the model on a set of bootstrap samples, and then keep track of how well it predicts the original dataset

$$\mathsf{Err}_{\mathsf{boot}} = \frac{1}{B} \frac{1}{n} \sum_{b=1}^{B} \sum_{i=1}^{n} L(y_i, h^{*b}(x_i)),$$

where h^{*b} is fitted on the b-th bootstrap sample. Does that work?

Prediction error estimation

- ▶ No. Each bootstrap sample has significant overlap with the original data. About **two-thirds** of the original data points appear in each bootstrap sample.
- ► In fact, each of these bootstrap data sets is created by sampling with replacement, and is the same size as our original dataset.
- As a result some observations may appear more than once in a given bootstrap data set and some not at all.
- ► Training and validation sets have observations in common! Overfit predictions will look very good.
- ► The other way around— with original sample = training sample, bootstrap dataset = validation sample— is worse!

Prediction error estimation

Better bootstrap version: we only keep track of predictions from bootstrap samples not containing that observation. The leave-one-out bootstrap estimate of prediction error can be defined as

$$\mathsf{Err}_{\mathsf{loo-boot}} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{|S^{-i}|} \sum_{b \in S^{-i}} L(y_i, h^{*b}(x_i))$$

where S^{-i} is the set of indices of the bootstrap samples that do not contain observation i.

Problem of overfitting with Err_{boot} solved but **training-set-size bias as with cross-validation**.

Many applications

- ► Computing standard errors and confidence intervals for complex statistics
- ► Prediction error estimation
- ► Bagging (Bootstrap aggregating)
- ▶ ...

We presented the **non-parametric bootstrap**. There are other types of bootstrap methods based on different assumptions:

- ► parametric bootstrap
- ▶ block bootstrap
- smooth bootstrap
- ► residual bootstrap
- **.**..