IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): KERBER

Atty. Dkt.: 20-010-DIV

Serial No.: Unknown

Group Art Unit:

Filed: Concurrently herewith

Examiner:

Title: SELF-ALIGNED JUNCTION

PASSIVATION FOR SUPERCONDUCTOR INTEGRATED CIRCUIT

Commissioner for Patents Arlington, VA 22202

Date: April 1, 2004

INFORMATION DISCLOSURE STATEMENT

Sir:

Pursuant to 37 C.F.R. §1.56, the reference(s) listed on the attached Form PTO-1449 is/are being submitted for consideration by the Examiner without any admission that it/they constitute(s) statutory prior art, or without any admission that it/they contain(s) subject matter that anticipates the invention or renders the invention obvious to a person of ordinary skill in the art.

The Examiner is requested to initial the attached PTO Form-1449 and to return a copy of same to the undersigned attorney as proof that the listed reference(s) has/have been considered and made of record.

Respectfully submitted,

David G. Posz Reg. No. 37,701

Posz & Bethards, PLC 11250 Roger Bacon Drive, Suite 10 Reston, VA 20190 (703)707-9110 (phone) Customer No. 23400

* PATENT APPLICATION

Page 1 of 1

FORM PTO-1449	ATTY. DKT NO.	10-010-DIV	SER. NO.	
	APPLICANT	KERBER		
	FILING DATE	April 1, 2004	GROUP	

REFERENCE DESIGNATION

U.S. PATENT DOCUMENTS

EXAMINER INITIAL	DOCUMENT NUMBER	DATE	NAME	CLASS	SUB CLASS

FOREIGN PATENT DOCUMENTS

TRANSLATION

	DOCUMENT NUMBER	DATE	COUNTRY	NAME	CLASS	SUB CLASS	YES	NO
<u> </u>								

OTHER REFERENCES (including Author, Title, Date, Pertinent Pages, etc.)

	H. Kroger et al., "Selective Niobium Anodization Process for Fabricating Josephson Tunnel Junctions," <u>Appl. Phys. Lett.</u> 39(3), 1 August 1981, pp.280-282.				
	S. Morohashi et al., "Self-aligned Contact Process for Nb/AlOx/Nb Josephson Junctions," Appl. Phys. Lett. 48(3), 20 January 1986, pp. 254-256.				
	Y. Tarutani et al., "Niobium-Based Integrated Circuit Technologies," <u>Proceedings of the IEEE</u> , Vol. 77, No. 8, August 1989, pp. 1164-1175.				
	L. Lee et al., "RHEA Process for Fine-Geometry Josephson Junction Fabrication," <u>IEEE Transactions on Magnetics</u> , Vol. 27, No. 2, March 1991, pp. 3133-3136.				
	T. Imamura et al., "A Submicrometer Nb/AlOx/Nb Josephson Junction," J. Appl. Phys. Lett. 64(3), 1 August 1988, pp.1586-1588.				
	S. Hasuo, "High-Speed Josephson Integrated Circuit Technology," <u>IEEE Trans. Magn.</u> , v. 25, no. 2, March 1989, pp. 740 – 749.				
	X. Meng et al., "Very Small Critical Current Spreads in Nb/Al-AlOx/Nb Integrated Circuits Using Low-Temperature and Low Stress ECR PECVD Silicon Oxide Films," IEEE Trans. Appl. Supercon., v. 9, no. 2, June 1999, pp. 3208 – 3211.				
	A. Bhat et al., "A 10 GHz Digital Amplifier in an Ultra-Small-Spread High-Jc Nb/AlOx/Nb Integrated Circuit Process," <u>IEEE Trans. Appl. Supercon.</u> , v. 9, no. 2, June 1999, pp. 3232 – 3236.				
EXAMINER	DATE CONSIDERED				

Rev. 10/94 (Form 3.05)