CSE 4/560

Fall 2024

Databases and Query Languages Homework -3 Bonus

Sahithya Arveti Nagaraju (Person number – 50559752 UBITName - sarvetin)

Problem 1

Consider the following two transactions

```
T_{13}: read(A):

read(B):

if A = 0 then B:= B + 1;

write(B).

T_{14}: read(B):

read(A):

if B = 0 then A:= A + 1;

write(A).
```

Let the consistency requirement be A = 0 V B = 0, with A = B = 0 as the initial values. Show that every serial execution involving these two transactions preserves the consistency of the database.

Ans: Each transaction modifies only one variable (either A or B) based on the other variable's value. Initially, A=0 and B=0, so both conditions (A=0 and B=0) are true.

 $T_{13} \rightarrow T_{14}$ (T_{13} followed by T_{14}):

T ₁₃	T ₁₄	Α	В
		0	0
read(A <u>);</u>			
read(<i>B</i>):			
if $A = 0$ then $B := B + 1$;			
write(B).			1
	read(<i>B</i>);		
	read(A):		
	if $B = 0$ then $A := A + 1$;		
	write(A).	0	

- \circ T₁₃: Reads A=0, updates B=B+1=1.
- \circ T₁₄: Reads B=1, does not update A (condition B=0 is false).
- o Final state: A=0, B=1. The consistency requirement A=0 V B=0 holds.

$T_{14} \rightarrow T_{13}$ (T_{14} followed by T_{13}):

T ₁₃	T ₁₄	Α	В
		0	0
	read(<i>B</i>);		
	read(A):		
	if $B = 0$ then $A := A + 1$;	1	
	write(A).	•	
read(A):			
read(<i>B</i>):			
if $A = 0$ then $B := B + 1$;			
write(B).			0

- \circ T₁₄: Reads B=0, updates A=A+1 =1.
- \circ T₁₃: Reads A=1, does not update B (condition A=0 is false).
- o Final state: A=1, B=0. The consistency requirement A=0 V B=0holds.

Every serial execution involving T_{13} and T_{14} preserves the consistency of the database (A=0VB=0).

Problem 2

For each of the following schedules draw a precedence graph for the schedules. Is the schedule conflict serializable? If so, what are all the equivalent serial schedules:

Ans:

a) r1(A); r2(A), r3(B),w1(A);r2(C),r2(B),w2(B),w1(C)

T1	T2	Т3
r(A)		
	r(A)	
		r(B)
w(A)		
	r(C)	
	r(B)	
	w(B)	
w(C)		

Conflicts:

- r2(A), w1(A): Read- write conflict. Edge from T2 to T1
- r3(B), w2(B): conflicting. Edge from T3 to T2
- r2(C), w1(C): conflicting. Edge from T2 to T1

Precedence graph:

Conflict Serializable: Since the precedence graph is acyclic, the schedule conflict serializable.

Equivalent serial schedule:

• T1 \rightarrow T2 \rightarrow T3: r1(A), w1(A), w1(C), r2(A), r2(C), r2(B), w2(B), r3(B)

b) w3(A),r1(A),w1(B),r2(B),w2(C),r3(C)

T1	T2	T3
		w(A)
r(A)		
w(B)		
	r(B)	
	w(C)	
		r(C)

Conflicts:

- w3(A), r1(A): Conflict. Edge from T3 to T1.
- w1(B), r2(B): Conflict. Edge from T1 to T2.
- W2(C), r(C): Conflict. Edge from T2 to T3.

Precedence graph:

Conflict Serializable: Since the precedence graph is not acyclic, the schedule is not conflict serializable.

Equivalent schedules: There are no equivalent serial schedules since it is not conflict serializable.