Amigos de Yuki - ICPC Library

Contents

1	Data	Structures					
-	1.1						
		BIT 2D Comprimida					
	1.2	Seg Tree					
	1.3	Seg Tree Lazy					
	1.4	Persistent Segment Tree					
	1.5	Treap					
		*					
	1.6	KD-Tree					
	1.7	Sparse Table					
	1.8	Max Queue					
	1.9	Policy Based Structures					
	1.10	Color Updates Structure					
2	Graph Algorithms 4						
-	-	9					
	2.1	Simple Disjoint Set					
	2.2	Blossom					
	2.3	Dinic Max Flow					
	2.4	Min Cost Max Flow					
	2.5						
	2.6	Articulation Points/Bridges/Biconnected Components					
	2.7	SCC - Strongly Connected Components / 2SAT					
	2.8	LCA O(1)					
	2.9						
	2.10	Centroid Decomposition					
	2.11	Hungarian Algorithm - Maximum Cost Matching					
	2.12	Minimum Arborescence					
	2.13	Dominator Tree					
	2.14	Kuhn					
3	Dyna	amic Programming					
•	3.1						
	3.2	Li Chao Tree					
	3.3	Divide and Conquer Optimization					
	3.4	Knuth Optimization					
		•					
4	3 /F / 1						
4	Matl	h 1					
	4.1	Chinese Remainder Theorem					
	4.2	Diophantine Equations					
	4.3	Discrete Logarithm					
	4.4	Discrete Root					
	4.5	Division Trick					
	4.6	Modular Sum					
	4.7	Primitive Root					
	4.8						
	4.9	Extended Euclides					
	4.10	Matrix					
	4.11	FFT - Fast Fourier Transform					
	4.12	NTT - Number Theoretic Transform					
	4.13	Fast Walsh Hadamard Transform					
	4.14	Miller and Rho					
	4.15	Determinant using Mod					
	4.16	Gauss					
	4.17	Lagrange Interpolation					
	4.18	Lagrange extracting polynomial					
	4.19	Count integer points inside triangle					
	4.20	Prime Counting					
		Berlekamp Massey					
		Deriekamp wassev					
	4.21						
	4.21 4.22	Polynomial exp					
5	4.22	Polynomial exp					
5	4.22 Geor	Polynomial exp					
5	4.22 Geor 5.1	Polynomial exp 1 metry 1 Geometry 1					
5	4.22 Geor	Polynomial exp					
5	4.22 Geor 5.1	Polynomial exp 1 metry 1 Geometry 1					
5	4.22 Geor 5.1 5.2	Polynomial exp 1 metry 1 Geometry 1 Convex Hull 1					

	5.5	Minkowski		2		
	5.6	Half Plane Intersection		2		
	5.7	Closest Pair		2		
	5.8	Voronoi	•	2		
6	String Algorithms					
	6.1	KMP		2		
	6.2	Aho-Corasick		2		
	6.3	Algoritmo de Z		2		
	6.4	Suffix Array		2		
	6.5	Suffix Automaton		2		
	6.6	Manacher		2		
	6.7	Polish Notation		2		
	6.8	String Hash	•	2		
7	Miscellaneous					
	7.1	Random Number Generator		2		
	7.2	Safe Hash		2		
	7.3	Unordered Map Tricks		2		
	7.4	Iterate masks in bitcount order		2		
	7.5	Submask Enumeration		2		
	7.6	Sum over Subsets DP		2		
	7.7	Subset Sum		2		
	7.8	Dates		2		
	7.9	Stable Marriage		2		
	7.10	Mo	•	2		
8	Teoremas e formulas uteis					
	8.1	Grafos		2		
	8.2	Math		2		
	8.3	Geometry		2		
	8.4	Dynamic Programming	•	2		
1	Da	ata Structures				
1.1	. B	IT 2D Comprimida				
		•				

```
template<class T = int>
struct Bit2D {
public:
 // send updated points
  Bit2D(vector<pair<T, T>> pts) {
   sort(pts.begin(), pts.end());
   for(auto a : pts) {
     if(ord.empty() || a.first != ord.back()) {
       ord push_back(a.first);
    fw.resize(ord.size() + 1);
   coord.resize(fw.size());
   for(auto &a : pts) {
     swap(a.first, a.second);
   sort(pts.begin(), pts.end());
    for(auto &a : pts) {
     swap(a.first, a.second);
     for(int on = upper_bound(ord.begin(), ord.end(), a.first) - ord.begin(); on < fw.size(); on += on</pre>
       if(coord[on].empty() || coord[on].back() != a.second) {
         coord[on].push_back(a.second);
   for(int i = 0; i < fw.size(); i++) {
    fw[i].assign(coord[i].size() + 1, 0);</pre>
  void upd(T x, T y, T v) {
   for(int xx = upper_bound(ord.begin(), ord.end(), x) - ord.begin(); xx < fw.size(); xx += xx & -xx) {</pre>
     fw[xx][yy] += v;
  T qry(T x, T y) {
```

```
T ans = 0;
    for(int xx = upper_bound(ord.begin(), ord.end(), x) - ord.begin(); xx > 0; xx -= xx & -xx) {
      for(int yy = upper_bound(coord[xx].begin(), coord[xx].end(), y) - coord[xx].begin(); yy > 0; yy -=
            yy & -yy) {
        ans += fw[xx][yy];
    return ans:
  T qry(T x1, T y1, T x2, T y2) {
    return qry(x2, y2) - qry(x2, y1 - 1) - qry(x1 - 1, y2) + qry(x1 - 1, y1 - 1);
  void upd(T x1, T y1, T x2, T y2, T v) \{
    upd(x1, y1, v);
    upd(x1, y2 + 1, -v);
    upd(x2 + 1, y1, -v);
    upd(x2 + 1, y2 + 1, v);
private:
  vector<T> ord;
  vector<vector<T>> fw, coord;
};
```

1.2 Seg Tree

```
int n, t[2 * ms];
void build() {
  for(int i = n - 1; i > 0; --i) t[i] = t[i << 1] + t[i << 1|1]; // Merge
void update(int p, int value) { // set value at position p
  for(t[p += n] = value; p > 1; p >>= 1) t[p>>1] = t[p] + t[p^1]; // Merge
int query(int l, int r) {
  int res = 0;
  for(l += n, r += n+1; l < r; l >>= 1, r >>= 1) {
   if(l&1) res += t[l++]; // Merge
    if(r&1) res += t[--r]; // Merge
  return res;
S query(int l, int r) {
  // initialize with null value
  for (l += n, r += n+1; l < r; l >>= 1, r >>= 1) {
 if (l&1) resl = combine(resl, t[l++]);
  if (r&1) resr = combine(t[--r], resr);
  return combine(resl, resr);
```

1.3 Seg Tree Lazy

```
int arr[ms], seg[4 * ms], lazy[4 * ms], n;
struct LazyContext {
 LazyContext() { }
  void reset() { }
  void operator += (LazyContext o) { }
3 .
struct Node {
  Node() { }
  Node() { }
  Node(Node 1, Node r) { }
  bool canBreak(LazyContext lazy) { } // false if non beats
  bool canApply(LazyContext lazy) { } // true if non beats
  void apply(LazyContext &lazy) { }
void build(int idx = 0, int l = 0, int r = n-1) {
 int mid = (l+r)/2;
  lazy[idx] = 0;
  if(l == r) {
   seg[idx] = arr[l];
  build(2*idx+1, l, mid); build(2*idx+2, mid+1, r);
  seg[idx] = seg[2*idx+1] + seg[2*idx+2]; // Merge
```

```
void apply(int idx, int l, int r) {
  if(lazy[idx] && !canBreak) { // if not beats canBreak = false
    if(1 < r) {
      lazy[2*idx+1] += lazy[idx]; // Merge de lazy
      lazy[2*idx+2] += lazy[idx]; // Merge de lazy
    if(canApply) { // if not beats canApply = true
      seg[idx] += lazy[idx] * (r - l + 1); // Aplicar lazy no seg
    } else {
      apply(2*idx+1, l, mid); apply(2*idx+2, mid+1, r);
      seg[idx] = seg[2*idx+1] + seg[2*idx+2]; // Merge
  lazy[idx] = 0; // Limpar a lazy
int query(int L, int R, int idx = 0, int l = 0, int r = n-1) {
  int mid = (l+r)/2;
  apply(idx, l, r);
  if(l > R || r < L) return 0; // Valor que nao atrapalhe</pre>
 if(L <= l && r <= R) return seg[idx];</pre>
  return query(L, R, 2*idx+1, l, mid) + query(L, R, 2*idx+2, mid+1, r); // Merge
void update(int L, int R, int V, int idx = 0, int l = 0, int r = n-1) {
 int mid = (1+r)/2:
  apply(idx, l, r);
  if(l > R \mid | r < L) return;
  if(L <= 1 && r <= R) {
    lazy[idx] = V;
    apply(idx, l, r);
    return;
  update(L, R, V, 2*idx+1, l, mid); update(L, R, V, 2*idx+2, mid+1, r);
  seg[idx] = seg[2*idx+1] + seg[2*idx+2]; // Merge
```

1.4 Persistent Segment Tree

```
struct Node{
        int v = 0;
        Node *l = this, *r = this;
};
int CNT = 1;
Node buffer[ms * 20];
Node* update(Node *root, int l, int r, int idx, int val){
        Node *node = &buffer[CNT++];
        *node = *root;
        int mid = (l + r) / 2;
        node->v += val:
        if(l+1 != r){
                if(idx < mid) node->l = update(root->l, l, mid, idx, val);
                else node->r = update(root->r, mid, r, idx, val);
        return node;
int query(Node *node, int tl, int tr, int l, int r){
        if(l <= tl && tr <= r) return node->v;
        if(tr \ll l \mid \mid tl \gg r) return 0;
        int mid = (tl+tr) / 2;
        return query(node->l, tl, mid, l, r) + query(node->r, mid, tr, l, r);
}
```

1.5 Treap

```
mt19937 rng ((int) chrono::steady_clock::now().time_since_epoch().count());
typedef int Value;
typedef struct item * pitem;
struct item {
   item () {}
   item (Value v) { // add key if not implicit
      value = v;
   prio = uniform_int_distribution<int>() (rng);
   cnt = 1;
   rev = 0;
   l = r = 0;
}
pitem l, r;
Value value;
```

```
int prio, cnt;
  bool rev:
int cnt (pitem it) {
  return it ? it->cnt : 0;
void fix (pitem it) {
 if (it)
    it->cnt = cnt(it->l) + cnt(it->r) + 1;
void pushLazy (pitem it) {
  if (it && it->rev) {
    it->rev = false;
    swap(it->l, it->r);
    if (it->l) it->l->rev ^= true;
    if (it->r) it->r->rev ^= true;
void insert (pitem & t, pitem it) {
 if (!t)
    t = it:
  else if (it->prio > t->prio)
    split (t, it->key, it->l, it->r), t = it;
    insert (t->key <= it->key ? t->r : t->l, it);
void merge (pitem & t, pitem l, pitem r) {
 pushLazy (l); pushLazy (r);
  if (!l || !r) t = l ? l : r;
  else if (l->prio > r->prio)
   merge (l->r, l->r, r), t=l;
  else
    merge (r->l, l, r->l), t = r;
  fix (t);
void erase (pitem & t, int key) {
 if (t->key == key) {
   pitem th = t:
    merge (t, t->l, t->r);
    delete th;
  else
    erase (key < t->key ? t->l : t->r, key);
void split (pitem t, pitem & l, pitem & r, int key) {
  if (!t) return void( l = r = 0 );
  pushLazy (t);
  int cur_key = cnt(t->l); // t->key if not implicit
  if (key <= cur_key)</pre>
   split (t->l, l, t->l, key), r = t;
  else
    split (t->r, t->r, r, key - (1 + cnt(t->l))), l = t;
  fix (t);
void reverse (pitem t, int l, int r) {
 pitem t1, t2, t3;
  split (t, t1, t2, l);
  split (t2, t2, t3, r-l+1);
  t2->rev ^= true;
  merge (t, t1, t2);
 merge (t, t, t3);
void unite (pitem & t, pitem l, pitem r) {
 if (!l || !r) return void ( t = l ? l : r );
  if (l->prio < r->prio) swap (l, r);
  pitem lt, rt;
  split (r, lt, rt, l->key);
  unite (l->l, l->l, lt);
  unite (l-> r, l->r, rt);
  t = 1;
pitem kth_element(pitem t, int k) {
       if(!t) return NULL;
        if(t->l) -
                if(t->l->size >= k) return kth_element(t->l, k);
                else k -= t->l->cnt;
        return (k == 1) ? t : kth_element(t->r, k - 1);
int countLeft(pitem t, int key) {
        if(!t) {
```

```
return 0;
} else if(t->key < key) {
    return 1 + (t->l ? t->l->size : θ) + countLeft(t->r, key);
} else {
    return countLeft(t->l, key);
}
```

1.6 KD-Tree

```
int d;
long long getValue(const PT &a) {return (d & 1) == 0 ? a.x : a.y; }
bool comp(const PT &a, const PT &b) {
 if((d & 1) == 0) { return a.x < b.x; }</pre>
  else { return a.y < b.y; }</pre>
long long sqrDist(PT a, PT b) { return (a - b) * (a - b); }
class KD_Tree {
public:
 struct Node {
    PT point:
    Node *left, *right;
  void init(std::vector<PT> pts) {
    if(pts.size() == 0) {
      return;
    int n = 0;
    tree.resize(2 * pts.size());
    build(pts.begin(), pts.end(), n);
  long long nearestNeighbor(PT point) {
    long long ans = (long long) 1e18;
    nearestNeighbor(&tree[0], point, 0, ans);
    return ans;
private:
  std::vector<Node> tree:
  Node* build(std::vector<PT>::iterator l, std::vector<PT>::iterator r, int &n, int h = 0) {
    int id = n++;
    if(r - l == 1) {
      tree[id].left = tree[id].right = NULL;
      tree[id].point = *l;
    } else if(r - l > 1) {
      std::vector<PT>::iterator mid = l + ((r - l) / 2);
      d = h;
      std::nth_element(l, mid - 1, r, comp);
     tree[id].point = *(mid - 1);
      // BE CAREFUL!
      // DO EVERYTHING BEFORE BUILDING THE LOWER PART!
      tree[id].left = build(l, mid, n, h^1);
      tree[id].right = build(mid, r, n, h^1);
    return &tree[id];
  void nearestNeighbor(Node* node, PT point, int h, long long &ans) {
    if(!node) {
      return;
    if(point != node->point) {
      // THIS WAS FOR A PROBLEM
      // THAT YOU DON'T CONSIDER THE DISTANCE TO ITSELF!
      ans = std::min(ans, sqrDist(point, node->point));
    d = h:
    long long delta = getValue(point) - getValue(node->point);
    if(delta <= 0) {</pre>
      nearestNeighbor(node->left, point, h^1, ans);
      if(ans > delta * delta) {
        nearestNeighbor(node->right, point, h^1, ans);
    } else {
      nearestNeighbor(node->right, point, h^1, ans);
      if(ans > delta * delta) {
        nearestNeighbor(node->left, point, h^1, ans);
};
```

1.7 Sparse Table

```
vector<vector<int>> table;
vector<int> lg2;
void build(int n, vector<int> v) {
  lg2.resize(n + 1);
  lg2[1] = 0;
  for (int i = 2; i \le n; i++) {
    lg2[i] = lg2[i >> 1] + 1;
  table.resize(lg2[n] + 1);
  for (int i = 0; i < lg2[n] + 1; i++) {
    table[i].resize(n + 1);
  for (int i = 0; i < n; i++) {
   table[0][i] = v[i];
 for (int i = 0; i < lg2[n]; i++) {
    for (int j = 0; j < n; j++) {
     if (j + (1 << i) >= n) break;
      table[i + 1][j] = min(table[i][j], table[i][j + (1 << i)]);
int get(int l, int r) {
 int k = lq2[r - l + 1];
   return \ min(table[k][l], \ table[k][r \ - \ (1 << k) \ + \ 1]); \\
```

1.8 Max Queue

```
template <class T, class C = less<T>>
struct MaxQueue {
  MaxQueue() { clear(); }
  void clear() {
    id = 0;
   q.clear();
  void push(T x) {
    pair<int, T> nxt(1, x);
    while(q.size() > id && cmp(q.back().second, x)) {
     nxt.first += q.back().first;
     q.pop_back();
    q.push_back(nxt);
  T qry() { return q[id].second;}
  void pop() {
   q[id].first--;
   if(q[id].first == 0) { id++; }
private:
  vector<std::pair<int, T>> q;
  int id;
 C cmp;
};
```

1.9 Policy Based Structures

```
#include <ext/pb_ds/assoc_container.hpp> // Common file
#include <ext/pb_ds/tree_policy.hpp> // Including tree_order_statistics_node_update
using namespace __gnu_pbds;
typedef tree<int, null_type, less<int>, rb_tree_tag,
tree_order_statistics_node_update> ordered_set;
ordered_set X;
X.insert(1); X.find_by_order(0);
X.order_of_key(-5); end(X), begin(X);
```

1.10 Color Updates Structure

```
struct range {
   int l, r;
   int v;
   range(int l = 0, int r = 0, int v = 0) : l(l), r(r), v(v) {}
   bool operator < (const range &a) const {
      return l < a.l;
   }
};
set<range> ranges;
vector<range> update(int l, int r, int v) { // [l, r)
```

```
vector<range> ans;
  if(l >= r) return ans;
  auto it = ranges.lower_bound(l);
  if(it != ranges.begin()) {
   itees
    if(it->r > l) {
     auto cur = *it;
     ranges.erase(it);
      ranges.insert(range(cur.l, l, cur.v));
      ranges.insert(range(l, cur.r, cur.v));
  it = ranges.lower_bound(r);
  if(it != ranges.begin()) {
   it--:
    if(it->r>r) {
     auto cur = *it;
      ranges.erase(it);
      ranges.insert(range(cur.l, r, cur.v));
      ranges.insert(range(r, cur.r, cur.v));
  for(it = ranges.lower_bound(l); it != ranges.end() && it->l < r; it++) {</pre>
   ans.push_back(*it);
  ranges.erase(ranges.lower_bound(l), ranges.lower_bound(r));
  ranges.insert(range(l, r, v));
  return ans:
int query(int v) { // Substituir -1 por flag para quando nao houver resposta
  auto it = ranges.upper_bound(v);
  if(it == ranges.begin()) {
   return -1;
  it--:
  return it->r >= v ? it->v : -1;
```

2 Graph Algorithms

2.1 Simple Disjoint Set

```
struct dsu {
  vector<int> hist, par, sz;
  vector<ii> changes;
  int n;
  dsu (int n) : n(n) {
   hist.assign(n, 1e9);
   par.resize(n);
   iota(par.begin(), par.end(), 0);
   sz.assign(n, 1);
  int root (int x, int t) {
   if(hist[x] > t) return x:
   return root(par[x], t);
  void join (int a, int b, int t) {
   a = root(a, t);
   b = root(b, t);
   if (a == b) { changes.emplace_back(-1, -1); return; }
   if (sz[a] > sz[b]) swap(a, b);
   par[a] = b;
   sz[b] += sz[a];
   hist[a] = t;
   changes.emplace_back(a, b);
  bool same (int a, int b, int t) {
   return root(a, t) == root(b, t);
  void undo () {
   int a, b;
   tie(a, b) = changes.back();
   changes.pop_back();
   if (a == -1) return;
   sz[b] -= sz[a];
   par[a] = a;
```

```
hist[a] = le9;
n++;
}
int when (int a, int b) {
  while (1) {
    if (hist[a] > hist[b]) swap(a, b);
    if (par[a] == b) return hist[a];
    if (hist[a] == le9) return le9;
    a = par[a];
  }
};
```

2.2 Blossom

```
#define MAXN 110
#define MAXM MAXN*MAXN
int mate[MAXN], first[MAXN], label[MAXN];
int adj[MAXN][MAXN], nadj[MAXN], from[MAXM], to[MAXM];
queue<int> q;
#define OUTER(x) (label[x] >= 0)
void L(int x, int y, int nxy) {
 int join, v, r = first[x], s = first[y];
  if (r == s) { return; }
  nxy += n + 1;
  label[r] = label[s] = -nxy;
  while (1) {
   if (s != 0) { swap(r, s); }
    r = first[label[mate[r]]];
   if (label[r] != -nxy) { label[r] = -nxy; }
    else {
     ioin = r:
     break:
  v = first[x];
  while (v != join) {
   if (!OUTER(v)) { q.push(v); }
   label[v] = nxy;
    first[v] = join;
    v = first[label[mate[v]]];
  v = first[y];
  while (v != join) {
   if (!OUTER(v)) { q.push(v); }
    label[v] = nxy;
    first[v] = join;
   v = first[label[mate[v]]];
  for (int i = 0; i <= n; i++) {
   if (OUTER(i) && OUTER(first[i])) { first[i] = join; }
void R(int v, int w) {
 int t = mate[v]:
  mate[v] = w;
  if (mate[t] != v) { return; }
  if (label[v] >= 1 && label[v] <= n) {</pre>
    mate[t] = label[v];
    R(label[v], t);
    return:
  int x = from[label[v] - n - 1], y = to[label[v] - n - 1];
 R(x, y);
 R(y, x);
int E() {
  memset(mate, 0, sizeof(mate));
  int r = 0;
  bool e7:
  for (int u = 1; u <= n; u++) {
   memset(label, -1, sizeof(label));
    while (!q.empty()) { q.pop(); }
    if (mate[u]) { continue; }
    label[u] = first[u] = 0;
    q.push(u);
    e7 = false;
```

```
while (!q.empty() && !e7) {
     int x = q.front();
      q.pop();
      for (int i = 0; i < nadj[x]; i++) {
        int y = from[adj[x][i]];
        if (y == x) { y = to[adj[x][i]]; }
        if (!mate[y] && y != u) {
         mate[y] = x;
         R(x, y);
         e7 = true;
         break:
        } else if (OUTER(y)) { L(x, y, adj[x][i]); }
        else {
         int v = mate[v];
         if (!OUTER(v)) {
           label[v] = x;
            first[v] = y;
            q.push(v);
    label[0] = -1;
  return r;
/*Exemplo simples de uso*/
memset(nadj, 0, sizeof nadj);
for (int i = 0; i < m; ++i) { // arestas
 scanf("%d%d", &a, &b);
  a++, b++; // nao utilizar o vertice 0
  adj[a][nadj[a]++] = i;
  adj[b][nadj[b]++] = i;
  from[i] = a;
  to[i] = b;
printf("O emparelhamento tem tamanho %d\n", E());
for (int i = 1; i <= n; i++) {
 if (mate[i] > i) { printf("%d com %d\n", i - 1, mate[i] - 1); }
```

2.3 Dinic Max Flow

```
const int ms = 1e3: // vertices
const int me = 1e5; // arestas
int adj[ms], to[me], ant[me], wt[me], z, n;
int copy_adj[ms], fila[ms], level[ms];
void clear() { // Lembrar de chamar no main
 memset(adj, -1, sizeof adj);
 z = 0;
void add(int u, int v, int k) {
 to[z] = v;
  ant[z] = adj[u];
  wt[z] = k;
  adj[u] = z++:
  swap(u, v);
  to[z] = v;
  ant[z] = adj[u];
  wt[z] = 0; // Lembrar de colocar = 0
  adj[u] = z++;
int bfs(int source, int sink) {
  memset(level, -1, sizeof level);
  level[source] = 0;
  int front = 0, size = 0, v;
  fila[size++] = source;
  while(front < size) {</pre>
    v = fila[front++];
    for(int i = adj[v]; i != -1; i = ant[i]) {
     if(wt[i] && level[to[i]] == -1) {
        level[to[i]] = level[v] + 1;
        fila[size++] = to[i];
    }
  return level[sink] != -1;
int dfs(int v, int sink, int flow) {
  if(v == sink) return flow;
```

```
int f;
for(int &i = copy_adj[v]; i != -1; i = ant[i]) {
    if(wt[i] && level[to[i]] == level[v] + 1 &&
        (f = dfs(to[i], sink, min(flow, wt[i])))) {
        wt[i] -= f;
        wt[i ^ 1] += f;
        return f;
    }
    return 0;
}
int maxflow(int source, int sink) {
    int ret = 0, flow;
    while(bfs(source, sink)) {
        memcpy(copy_adj, adj, sizeof adj);
        while(flow = dfs(source, sink, 1 << 30))) {
            ret += flow;
    }
    return ret;
}</pre>
```

2.4 Min Cost Max Flow

```
template <class T = int>
class MCMF {
public:
  struct Edge {
   Edge(int a, T b, T c) : to(a), cap(b), cost(c) {}
    T cap, cost;
  MCMF(int size) {
   n = size;
    edges.resize(n);
    pot.assign(n, 0);
   dist.resize(n);
    visit.assign(n, false);
  pair<T, T> mcmf(int src, int sink) {
    pair<T, T> ans(0, 0);
    if(!SPFA(src, sink)) return ans;
    // can use dijkstra to speed up depending on the graph
   while(SPFA(src, sink)) {
     auto flow = augment(src, sink);
      ans.first += flow.first;
      ans.second += flow.first * flow.second;
      fixPot();
    return ans:
  void addEdge(int from, int to, T cap, T cost) {
    edges[from].push_back(list.size());
    list.push_back(Edge(to, cap, cost));
    edges[to].push_back(list.size());
    list.push_back(Edge(from, 0, -cost));
private:
  int n:
  vector<vector<int>> edges;
  vector<Edge> list;
  vector<int> from;
  vector<T> dist, pot;
  vector<bool> visit;
  /*bool dij(int src, int sink) {
   T INF = std::numeric_limits<T>::max();
    dist.assign(n, INF);
    from.assign(n, -1);
    visit.assign(n, false);
    dist[src] = 0;
    for(int i = 0; i < n; i++) {
     int best = -1;
      for(int j = 0; j < n; j++) {
       if(visit[j]) continue;
       if(best == -1 || dist[best] > dist[j]) best = j;
      if(dist[best] >= INF) break;
      visit[best] = true;
      for(auto e : edges[best]) {
       auto ed = list[e];
```

```
if(ed.cap == 0) continue;
        T toDist = dist[best] + ed.cost + pot[best] - pot[ed.to];
        assert(toDist >= dist[best]);
        if(toDist < dist[ed.to]) {</pre>
          dist[ed.to] = toDist;
          from[ed.to] = e;
    return dist[sink] < INF;</pre>
  pair<T, T> augment(int src, int sink) {
    pair<T, T> flow = {list[from[sink]].cap, 0};
    for(int v = sink; v != src; v = list[from[v]^1].to) {
      flow.first = min(flow.first, list[from[v]].cap);
      flow.second += list[from[v]].cost;
    for(int v = sink; v != src; v = list[from[v]^1].to) {
      list[from[v]].cap -= flow.first;
      list[from[v]^1].cap += flow.first;
    return flow;
  queue<int> q;
  bool SPFA(int src, int sink) {
    T INF = numeric_limits<T>::max();
    dist.assign(n, INF);
    from.assign(n, -1);
    q.push(src);
    dist[src] = 0;
    while(!q.empty()) {
     int on = q.front();
      q.pop();
      visit[on] = false;
      for(auto e : edges[on]) {
        auto ed = list[e];
        if(ed.cap == 0) continue;
        T toDist = dist[on] + ed.cost + pot[on] - pot[ed.to];
        if(toDist < dist[ed.to]) {</pre>
          dist[ed.to] = toDist;
          from[ed.to] = e;
          if(!visit[ed.to]) {
           visit[ed.to] = true;
            q.push(ed.to);
    return dist[sink] < INF;</pre>
  void fixPot() {
    T INF = numeric_limits<T>::max();
    for(int i = 0; i < n; i++) {
      if(dist[i] < INF) pot[i] += dist[i];</pre>
};
```

2.5 Euler Path and Circuit

```
int del[me],adj[ms], to[me], ant[me], wt[me], z, n;
vector<int> pathE, pathV;
// Funcao de add e clear no dinic
void eulerPath(int u) {
  for(int &i = adj[u]; ~i; i = ant[i]) if(!del[i]) {
    del[i] = del[i^1] = 1;
    eulerPath(to[i]);
    pathE.emplace_back(i);
  }
  puthV.emplace_back(u);
}
```

2.6 Articulation Points/Bridges/Biconnected Components

```
int adj[ms], to[me], ant[me], z;
int num[ms], low[ms], timer;
bool art[ms], bridge[me], f[me];
int bc[ms], nbc;
stack<int> st, stk;
vector<vector<int>> comps;
```

```
void clear() { // Lembrar de chamar no main
     memset(adj, -1, sizeof adj);
     z = 0;
 \begin{tabular}{ll} \be
     to[z] = v;
     ant[z] = adj[u];
     adj[u] = z++;
void generateBc (int v) {
     while (!st.empty()) {
          int u = st.top();
          st.pop();
          bc[u] = nbc;
          if (v == u) break;
     ++nbc;
void dfs (int v, int p) {
     st.push(v), stk.push(v);
     low[v] = num[v] = ++timer;
      for (int i = adj[v]; i != -1; i = ant[i]) {
          if (f[i] || f[i^1]) continue;
          f[i] = 1;
          int u = to[i];
          if (num[u] == -1) {
              dfs(u, v);
low[v] = min(low[v], low[u]);
                if (low[u] > num[v]) bridge[i] = bridge[i^1] = 1;
               if (low[u] >= num[v]) {
                    art[v] = (num[v] > 1 || num[u] > 2);
                    comps.push_back({v});
                    while (comps.back().back() != u)
                         comps.back().push_back(stk.top()), stk.pop();
          } else {
               low[v] = min(low[v], num[u]);
     if (low[v] == num[v]) generateBc(v);
void biCon (int n) {
    nbc = 0, timer = 0;
     memset(num, -1, sizeof num);
     memset(bc, -1, sizeof bc);
     memset(bridge, 0, sizeof bridge);
     memset(art, 0, sizeof art);
     memset(f, 0, sizeof f);
     for (int i = 0; i < n; i++) {
          if (num[i] == -1) {
              timer = 0;
              dfs(i, 0);
vector<int> g[ms];
int id[ms];
void buildBlockCut (int n) {
    int 7 = 0:
     for (int u = 0; u < n; ++u) {
          if (art[u]) id[u] = z++;
      for (auto &comp : comps) {
          int node = 7++:
          for (int u : comp) {
              if (!art[u]) id[u] = node;
               else {
                    g[node].push_back(id[u]);
                    g[id[u]].push_back(node);
```

```
const int ms = 212345;
vector<int> g[ms];
int idx[ms], low[ms], z, comp[ms], ncomp;
stack<int> st;
int dfs(int u) {
 if(~idx[u]) return idx[u] ? idx[u] : z;
  low[u] = idx[u] = z++;
  st.push(u);
  for(int v : g[u]) {
    low[u] = min(low[u], dfs(v));
  if(low[u] == idx[u]) {
    while(st.top() != u) {
     int v = st.top();
      idx[v] = 0:
     low[v] = low[u];
      comp[v] = ncomp;
      st.pop();
    idx[st.top()] = 0;
    st.pop();
    comp[u] = ncomp++;
  return low[u];
bool solveSat(int n) {
  memset(idx, -1, sizeof idx);
  z = 1; ncomp = 0;
  for(int i = 0; i < 2*n; i++) dfs(i);
  for(int i = 0; i < 2*n; i++) if(comp[i] == comp[i^1]) return false;
  return true:
int trad(int v) { return v < 0 ?(~v)*2^1 : v * 2; }</pre>
void add(int a, int b) { g[trad(a)].push_back(trad(b)); }
void addOr(int a, int b) { add(~a, b); add(~b, a); }
void addImp(int a, int b) { addOr(~a, b); }
void addEqual(int a, int b) { addOr(a, ~b); addOr(~a, b); }
void addDiff(int a, int b) { addEqual(a, ~b); }
// value[i] = comp[trad(i)] < comp[trad(~id)];</pre>
```

2.8 LCA O(1)

```
template<class T>
struct RMQ {
  vector<vector<T>> jmp;
  RMQ(\textbf{const vector} < T > \& \ V) \ : \ jmp(1, \ V) \ \{
    for (int pw = 1, k = 1; pw * 2 <= (int)size(V); pw *= 2, ++k) {
      jmp.emplace_back(size(V) - pw * 2 + 1);
      for (int j = 0; j < (int)size(jmp[k]); ++j)</pre>
        jmp[k][j] = min(jmp[k - 1][j], jmp[k - 1][j + pw]);
  T query(int a, int b) {
    assert(a < b); // or return inf if a == b
    int dep = 31 - __builtin_clz(b - a);
    return min(jmp[dep][a], jmp[dep][b - (1 << dep)]);</pre>
};
struct LCA {
 int T = 0:
  vector<int> time, path, ret;
  RMQ<int> rmq;
  LCA(vector<vector<int>>& C) : time(size(C)), rmq((dfs(C,0,-1), ret)) {}
  void dfs(vector<vector<int>>& C, int v, int par) {
    time[v] = T++;
    for (int y : C[v]) if (y != par) {
      path.push_back(v), ret.push_back(time[v]);
      dfs(C, y, v);
  int lca(int a, int b) {
    if (a == b) return a;
    tie(a, b) = minmax(time[a], time[b]);
    return path[rmq.query(a, b)];
};
```

2.9 Heavy Light Decomposition

```
class HLD {
public:
  void init(int n) { /* resize everything */ }
  void addEdge(int u, int v) {
    edges[u].push_back(v);
    edges[v].push_back(u);
  void setRoot(int r) {
    t = 0;
    p[r] = r;
    h[r] = 0;
    prep(r, r);
    nxt[r] = r;
    hld(r);
  int getLCA(int u, int v) {
    while(!inSubtree(nxt[u], v)) u = p[nxt[u]];
    while(!inSubtree(nxt[v], u)) v = p[nxt[v]];
    return in[u] < in[v] ? u : v;</pre>
  // is v in the subtree of u?
  bool inSubtree(int u, int v) {
    return in[u] <= in[v] && in[v] < out[u];</pre>
  // returns ranges [l, r) that the path has
  vector<pair<int, int>> getPath(int u, int anc) {
    vector<std::pair<int, int>> ans;
    //assert(inSubtree(anc, u));
    while(nxt[u] != nxt[anc]) {
     ans.emplace_back(in[nxt[u]], in[u] + 1);
     u = p[nxt[u]];
    // this includes the ancestor! care
    ans.emplace_back(in[anc], in[u] + 1);
private:
  vector<int> in, out, p, rin, sz, nxt, h;
  vector<vector<int>> edges;
  int t;
  void prep(int on, int par) {
    sz[on] = 1;
    p[on] = par;
    for(int i = 0; i < (int) edges[on].size(); i++) {</pre>
     int &u = edges[on][i];
      if(u == par) {
        swap(u, edges[on].back());
        edges[on].pop_back();
      } else {
        h[u] = 1 + h[on];
        prep(u, on);
        sz[on] += sz[u];
        if(sz[u] > sz[edges[on][0]]) {
          swap(edges[on][0], u);
  void hld(int on) {
    in[on] = t++;
    rin[in[on]] = on;
    for(auto u : edges[on]) {
     nxt[u] = (u == edges[on][0] ? nxt[on] : u);
     hld(u);
    out[on] = t;
```

2.10 Centroid Decomposition

```
vector<int> g[ms];
int dis[ms][30];
int par[ms], sz[ms], rem[ms], h[ms];
void dfsSubtree(int u, int p) {
    sz[u] = 1;
    for(auto v : g[u]) {
```

```
if(v != p && !rem[v]) {
      dfsSubtree(v, u);
      sz[u] += sz[v];
int getCentroid(int u, int p, int size) {
  for(auto v : g[u]) {
    if(v != p && !rem[v] && sz[v] * 2 >= size)
      return getCentroid(v, u, size);
  return u:
void setDis(int u, int p, int nv){
  for (auto v : g[u]) {
    if (v == p || rem[v]) continue;
    dis[v][nv] = dis[u][nv]+1;
    setDis(v, u, nv);
void decompose(int u, int p = -1, int nv = 0) {
  dfsSubtree(u, -1);
  int ctr = getCentroid(u, -1, sz[u]);
  par[ctr] = p;
  h[ctr] = nv;
  rem[ctrl = 1:
  setDis(ctr, p, nv);
  for(auto v : g[ctr]) {
   if(v != p && !rem[v]) {
      decompose(v, ctr, nv+1);
 }
}
```

2.11 Hungarian Algorithm - Maximum Cost Matching

```
int u[ms], v[ms], p[ms], way[ms], minv[ms];
bool used[ms];
pair<vector<int>, int> solve(const vector<vector<int>> &matrix) {
  int n = matrix.size();
  if(n == 0) return {vector<int>(), 0};
  int m = matrix[0].size();
  assert(n <= m);</pre>
  memset(u, 0, (n+1)*sizeof(int));
  memset(v, 0, (m+1)*sizeof(int));
  memset(p, 0, (m+1)*sizeof(int));
  for(int i = 1; i \le n; i++) {
    memset(minv, 0x3f, (m+1)*sizeof(int));
    memset(way, 0, (m+1)*sizeof(int));
    for(int j = 0; j \le m; j++) used[j] = 0;
    p[0] = i;
    int k0 = 0;
    do {
     used[k0] = 1;
      int i0 = p[k0], delta = inf, k1;
      for(int j = 1; j <= m; j++) {
        if(!used[j]) {
          int cur = matrix[i0-1][j-1] - u[i0] - v[j];
          if (cur < minv[j]) {</pre>
           minv[j] = cur;
            way[j] = k0;
          if(minv[j] < delta) {</pre>
            delta = minv[j];
            k1 = j;
        }
      for(int j = 0; j \ll m; j++) {
        if(used[j]) {
          u[p[j]] += delta;
          v[i] -= delta;
        } else {
          minv[j] -= delta;
      k0 = k1;
    } while(p[k0]);
```

```
do {
    int k1 = way[k0];
    p[k0] = p[k1];
    k0 = k1;
} while(k0);
}
vector<int> ans(n, -1);
for(int j = 1; j <= m; j++) {
    if(!p[j]) continue;
    ans[p[j] - 1] = j - 1;
}
return {ans, -v[0]};
}</pre>
```

2.12 Minimum Arborescence

```
// uncommented O(V^2) arborescence
struct Edges {
  //set<pair<long long, int>> cost; O(Elog^2)
  long long cost[ms];
  // possible optimization, use vector of size n
  // instead of ms
  long long sum = 0;
  Edges() {
    memset(cost, 0x3f, sizeof cost);
  void addEdge(int u, long long c) {
    // cost.insert({c - sum, u}); O(Elog^2)
    cost[u] = min(cost[u], c - sum);
  pair<long long, int> getMin() {
    //return *cost.begin(); 0(E*log^2)
    pair<long long, int> ans(cost[0], 0);
    // in this loop can change ms to n to make it faster for many cases
    for(int i = 1; i < ms; i++) {
     if(cost[i] < ans.first) {</pre>
        ans = pair<long long, int>(cost[i], i);
    return ans:
  void unite(Edges &e) {
    0(E*log^2E)
    if(e.cost.size() > cost.size()) {
     cost.swap(e.cost);
      swap(sum, e.sum);
    for(auto i : e.cost) {
     addEdge(i.second, i.first + e.sum);
    e.cost.clear();
    // O(V^2)
    // can change ms to n
    for(int i = 0; i < ms; i++) {
     cost[i] = min(cost[i], e.cost[i] + e.sum - sum);
};
typedef vector<vector<pair<long long, int>>> Graph;
Edges ed[ms];
int par[ms];
long long best[ms];
int col[ms];
int getPar(int x) { return par[x] < 0 ? x : par[x] = getPar(par[x]); }</pre>
void makeUnion(int a, int b) {
  a = getPar(a);
  b = getPar(b);
  if(a == b) return;
  ed[a].unite(ed[b]);
  par[b] = a;
long long arborescence(Graph edges) {
 // root is 0
  // edges has transposed adjacency list (cost, from)
  // edge from i to j cost c is
  // edge[j].emplace_back(c, i)
  int n = (int) edges.size();
  long long ans = 0;
  for(int i = 0; i < n; i++) {
```

```
ed[i] = Edges();
 par[i] = -1;
 for(auto j : edges[i]) {
   ed[i].addEdge(j.second, j.first);
 col[i] = 0;
// to change the root you can simply change this next line to
// col[root] = 2;
col[0] = 2;
for(int i = 0; i < n; i++) {
 if(col[getPar(i)] == 2) {
   continue;
 int on = getPar(i);
 vector<int> st;
 while(col[on] != 2) {
    assert(getPar(on) == on);
    if(col[on] == 1) {
     int v = on:
     vector<int> cycle;
     //cout << "found cycle\n";</pre>
     while(st.back() != v) {
       //cout << st.back() << endl;</pre>
       cycle.push_back(st.back());
       st.pop_back();
     for(auto u : cycle) { // compress cycle
       makeUnion(v, u);
     v = getPar(v);
     col[v] = 0;
   } else {
     // still no cycle
     // while best is in compressed cycle, remove
     // THIS IS TO MAKE O(E*log^2) ALGORITHM!!
     // while(!ed[on].cost.empty() && getPar(on) == getPar(ed[on].getMin().second)) {
     // ed[on].cost.erase(ed[on].cost.begin());
     // }
     // O(V^2)
     for(int x = 0; x < n; x++) {
       if(on == getPar(x)) {
         ed[on].cost[x] = 0x3f3f3f3f3f3f3f3f1,
     // best edge
     auto e = ed[on].getMin();
     // O(E*log^2) assert(!ed[on].cost.empty()) if every vertex appears in the arborescence
     assert(e.first < 0x3f3f3f3f3f3f3f3f3f1LL);</pre>
     int v = getPar(e.second):
     //cout << "found not cycle to " << v << " of cost " << e.first + ed[on].sum << '\n';
     assert(v != on);
     best[on] = e.first + ed[on].sum;
     ans += best[on];
     // compress edges
     ed[on].sum = -(e.first);
     st.push_back(on);
     col[on] = 1;
on = v;
 // make everything 2
 for(auto u : st) {
   assert(getPar(u) == u);
   col[u] = 2;
return ans;
```

2.13 Dominator Tree

```
struct dominator_tree {
  vector<br/>
  vector<int> arr, par, rev, sdom, dom, dsu, label;
  int n, t;
  dominator_tree(int n) : g(n), rg(n), bucket(n), arr(n, -1),
    par(n), rev(n), sdom(n), dom(n), dsu(n), label(n), n(n), t(0) {}
  void add_edge(int u, int v) { g[u] += v; }
  void dfs(int u) {
```

```
arr[u] = t;
    rev[t] = u;
    label[t] = sdom[t] = dsu[t] = t;
    for (int w : g[u]) {
     if (arr[w] == -1) {
       dfs(w):
       par[arr[w]] = arr[u];
      rg[arr[w]] += arr[u];
  int find(int u, int x=0) {
   if (u == dsu[u])
     return x ? -1 : u;
    int v = find(dsu[u], x+1);
    if (v < 0)
     return u:
    if (sdom[label[dsu[u]]] < sdom[label[u]])</pre>
     label[u] = label[dsu[u]];
   dsu[u] = v;
   return x ? v : label[u];
  vector<int> run(int root) {
   dfs(root);
    iota(dom.begin(), dom.end(), 0);
    for (int i=t-1; i>=0; i--) {
     for (int w : rg[i])
        sdom[i] = min(sdom[i], sdom[find(w)]);
       bucket[sdom[i]] += i;
      for (int w : bucket[i]) {
       int v = find(w);
        if (sdom[v] == sdom[w])
          dom[w] = sdom[w];
        else
          dom[w] = v;
      if (i > 1)
        dsu[i] = par[i];
    for (int i=1; i<t; i++) {
     if (dom[i] != sdom[i])
        dom[i] = dom[dom[i]];
    vector<int> outside_dom(n);
    iota(begin(outside_dom), end(outside_dom), 0);
    for (int i=0: i<n: i++)
     outside_dom[rev[i]] = rev[dom[i]];
    return outside_dom;
};
```

2.14 Kuhn

```
int n, m;
vector<vector<int>> g;
vector<int> mt;
vector<bool> used;
bool try_kuhn(int v) {
 if (used[v]) return false;
  used[v] = true;
  for (int to : g[v]) {
    if (mt[to] == -1 || try_kuhn(mt[to])) {
      mt[to] = v;
return true;
  return false;
int main () {
  mt.assign(m, -1);
  vector<bool> used1(n, false);
  for (int i = 0; i < n; i++) {
    for (int to : g[i]) {
      if (mt[to] == -1) {
        mt[to] = i;
        used1[i] = true;
        break;
```

```
}
}
for (int i = 0; i < n; i++) {
    if (used1[i]) continue;
    used.assign(n, false);
    try_kuhn(i);
}
</pre>
```

3 Dynamic Programming

3.1 Line Container

```
struct Line {
  mutable ll k, m, p;
  bool operator<(const Line& o) const { return k < o.k; }</pre>
  bool operator<(ll x) const { return p < x; }</pre>
struct LineContainer : multiset<Line, less<>>> {
  // (for doubles, use inf = 1/.0, div(a,b) = a/b)
  static const ll inf = LLONG_MAX:
  ll div(ll a, ll b) { // floored division
    return a / b - ((a ^ b) < 0 \& a % b); }
  bool isect(iterator x, iterator y) {
    if (y == end()) return x -> p = inf, 0;
    if (x->k == y->k) x->p = x->m > y->m ? inf : -inf;
    else x->p = div(y->m - x->m, x->k - y->k);
return x->p >= y->p;
  void add(ll k, ll m) {
    auto z = insert(\{k, m, 0\}), y = z++, x = y;
    while (isect(y, z)) z = erase(z);
    if (x != begin() \&\& isect(--x, y)) isect(x, y = erase(y));
    while ((y = x) != begin() \&\& (--x)->p >= y->p)
      isect(x, erase(y));
  ll query(ll x) {
    assert(!empty());
    auto l = *lower_bound(x);
    return l.k * x + l.m;
};
```

3.2 Li Chao Tree

```
typedef long long T;
const T INF = 2e18. EPS = 1:
struct Line {
 T m, b;
  Line(T m = 0, T b = INF): m(m), b(b){}
 T apply(T x) { return x * m + b; }
struct Node {
 Node *l = this, *r = this;
 Line line;
};
Node buffer[mx * 31];
const T MIN_VALUE = 0, MAX_VALUE = 1e9;
int CNT = 1:
Node* update(Node *root, Line line, T l = MIN_VALUE, T r = MAX_VALUE+1) {
 Node *node = &buffer[CNT++];
  *node = *root;
  T m = l + (r - l) / 2;
  bool left = line.apply(l) < node->line.apply(l);
  bool mid = line.apply(m) < node->line.apply(m);
  bool right = line.apply(r) < node->line.apply(r);
  if (mid) swap(node->line, line);
 if (r - l <= EPS) return node;</pre>
  if (left == right) return node;
  if (mid != left) node->l = update(root->l, line, l, m);
  else node->r = update(root->r, line, m, r);
  return node;
```

```
T query(Node *root, T x, T l = MIN_VALUE, T r = MAX_VALUE+1) {
    if (!root) return INF;
    if (r - l <= EPS) return root->line.apply(x);
    T m = l + (r - l) / 2;
    T ans;
    if (x < m) ans = query(root->l, x, l, m);
    else ans = query(root->r, x, m, r);
    return min(ans, root->line.apply(x));
}
```

3.3 Divide and Conquer Optimization

```
ll dpold[ms], dp[ms], c[ms][ms]; // c(i, j) pode ser funcao
void compute(int l, int r, int optl, int optr) {
    if(l>r) return;
    int mid = (l+r)/2;
    pair<ll, int> best = {inf, -1}; // long long inf
    for(int k = optl; k <= min(mid, optr); k++) {</pre>
        best = min(best, \{dpold[k-1] + c[k][mid], k\});
    dp[mid] = best.first;
    int opt = best.second:
    compute(l, mid-1, optl, opt);
    compute(mid+1, r, opt, optr);
il solve() {
    for(int i = 1; i <= n; i++) dp[i] = inf; // initialize row 0 of the dp</pre>
    for(int i = 1; i <= k; i++) {
        swap(dpold, dp);
        compute(0, n, 0, n); // solve row i of the dp
    return dp[n]; // return dp[k][n]
```

3.4 Knuth Optimization

4 Math

4.1 Chinese Remainder Theorem

```
long long modinverse(long long a, long long b, long long s0 = 1, long long s1 = 0){
   if(!b) return s0;
   else return modinverse(b, a % b, s1, s0 - s1 * (a / b));
}
long long gcd(long long a, long long b){
   if(!b) return a;
   else return gcd(b, a % b);
}
ll mul(ll a, ll b, ll m) {
   ll q = (long double) a * (long double) b / (long double) m;
   ll r = a * b - q * m;
   return (r + 5 * m) % m;
}
long long safemod(long long a, long long m){
   return (a % m + m) % m;
}
```

```
struct equation{
  equation(long long a, long long m)\{mod = m, ans = a, valid = true;\}
  equation(){valid = false;}
  equation(equation a, equation b) {
    if(!a.valid || !b.valid) {
      valid = false;
      return:
    long long g = gcd(a.mod, b.mod);
    if((a.ans - b.ans) % g != 0) {
      valid = false;
      return;
    valid = true:
    mod = a.mod * (b.mod / g);
ans = a.ans +
    mul(
      mul(a.mod, modinverse(a.mod, b.mod), mod),
      (b.ans - a.ans) / q
      , mod);
    ans = safemod(ans, mod);
  long long mod, ans;
  bool valid:
  void print()
    if(!valid)
      std::cout << "equation is not valid\n";</pre>
      std::cout << "equation is " << ans << " mod " << mod << '\n';</pre>
};
```

4.2 Diophantine Equations

```
int gcd_ext(int a, int b, int& x, int &y) {
  if (b == 0) {
    x = 1, y = 0;
    return a;
  int nx, ny;
  int gc = gcd_ext(b, a % b, nx, ny);
  x = ny;
  y = nx - (a / b) * ny;
  return gc;
vector<int> diophantine(int D, vector<int> l) {
 int n = l.size();
  vector<int> gc(n), ans(n);
  gc[n - 1] = l[n - 1];
  for (int i = n - 2; i >= 0; i --) {
   int x, y;
    gc[i] = gcd_ext(l[i], gc[i + 1], x, y);
  if (D % gc[0] != 0) {
    return vector<int>();
  for (int i = 0; i < n; i++) {
    if (i == n - 1) {
      ans[i] = D / l[i];
      D -= l[i] * ans[i];
      continue;
    gcd_{ext}(l[i] / gc[i], gc[i + 1] / gc[i], x, y);
    ans[i] = (long long int) D / gc[i] * x % (gc[i + 1] / gc[i]);
    if (D < 0 && ans[i] > 0) {
      ans[i] -= (gc[i + 1] / gc[i]);
    if (D > 0 \&\& ans[i] < 0) {
      ans[i] += (gc[i + 1] / gc[i]);
    D -= l[i] * ans[i];
  return ans;
```

4.3 Discrete Logarithm

```
ll discreteLog (ll a, ll b, ll m) {
    a %= m; b %= m;
    ll n = (ll) sqrt (m + .0) + 1, an = 1;
    for (ll i = 0; i < n; i++) {
        an = (an * a) % m;
    }
    map<ll, ll> vals;
    for (ll i = 1, cur = an; i <= n; i++) {
        if (!vals.count(cur)) vals[cur] = i;
        cur = (cur * an) % m;
    }
    ll ans = le18; //inf
    for (ll i = 0, cur = b; i <= n; i++) {
        if (vals.count(cur)) {
            ans = min(ans, vals[cur] * n - i);
        }
        cur = (cur * a) % m;
    }
    return ans;</pre>
```

4.4 Discrete Root

```
//x^k = a % mod
ll discreteRoot(ll k, ll a, ll mod) {
    ll g = primitiveRoot(mod);
    ll y = discreteLog(fexp(g, k, mod), a, mod);
    if (y == -1) {
        return y;
    }
    return fexp(g, y, mod);
}
```

4.5 Division Trick

```
for(int l = 1, r; l <= n; l = r + 1) {
    r = n / (n / l);
    // n / i has the same value for l <= i <= r
}</pre>
```

4.6 Modular Sum

```
//calcula (sum(0 \ll i \ll n) P(i)) % mod,
//onde P(i) eh uma PA modular (com outro modulo)
namespace sum_pa_mod{
  ll calc(ll a, ll b, ll n, ll mod){
    assert(a&&b);
    if(a >= b){
      ll ret = ((n*(n+1)/2)*mod)*(a/b);
      if(a%b) ret = (ret + calc(a%b,b,n,mod))%mod;
      else ret = (ret+n+1)%mod;
      return ret;
    \textbf{return} \ ((n+1)*(((n*a)/b+1)\%mod) \ - \ calc(b,a,(n*a)/b,mod) \ + \ mod \ + \ n/b \ + \ 1)\%mod;
//P(i) = a*i \mod m
  ll solve(ll a, ll n, ll m, ll mod){
    a = (a\%m + m)\%m;
    if(!a) return 0;
    ll ret = (n*(n+1)/2)%mod;
    ret = (ret*a)%mod;
    ll g = \__gcd(a,m);
    ret -= m*(calc(a/g,m/g,n,mod)-n-1);
    return (ret%mod + mod)%mod;
//P(i) = a + r*i \mod m
  ll solve(ll a, ll r, ll n, ll m, ll mod){
    a = (a\%m + m)\%m:
    r = (r%m + m)%m;
    if(!r) return (a*(n+1))%mod;
    if(!a) return solve(r, n, m, mod);
    ll g, x, y;
    g = gcdExtended(r, m, x, y);
    x = (x%m + m)%m:
    ll d = a - (a/g)*g;
    a -= d;
    x = (x*(a/g))%m;
    return (solve(r, n+x, m, mod) - solve(r, x-1, m, mod) + mod + d*(n+1))%mod;
};
```

4.7 Primitive Root

```
//is n primitive root of p ?
bool test(long long x, long long p) {
    long long m = p - 1;
    for(int i = 2; i * i <= m; ++i) if(!(m % i)) {
        if(fexp(x, i, p) == 1) return false;
        if(fexp(x, m / i, p) == 1) return false;
    }
    return true;
}
//find the smallest primitive root for p
int search(int p) {
    for(int i = 2; i < p; i++) if(test(i, p)) return i;
    return -1;
}</pre>
```

4.8 Linear Sieve

```
//check long long
vector <int> prime;
bool is_composite[MAXN];
int cnt[MAXN];
long long primePow[MAXN];
long long func[MAXN];
long long getFunction(int i, int p) {
 return cnt[i] + 1;
void sieve (int n) {
 fill(is_composite, is_composite + n, false);
  func[1] = 1:
  for (int i = 2; i < n; ++i) {
    if (!is_composite[i]) {
      prime.push_back (i);
      func[i] = 1; // base case
      cnt[i] = 1; primePow[i] = i;
    for (int j = 0; j < prime.size () && i * prime[j] < n; ++j) {
      is_composite[i * prime[j]] = true;
      if (i % prime[j] == 0) {
        func[i * prime[j]] = func[i / primePow[i]] * getFunction(i, prime[j]); // <math>f(ip) = f(i / primePow[i])
             [i]) * f(primePow[i] * prime[j])
        cnt[i * prime[j]] = cnt[i] + 1;
        primePow[i * prime[j]] = primePow[i] * prime[j];
        break;
      } else {
        func[i * prime[j]] = func[i] * func[prime[j]]; // f(ip) = f(i) * f(p)
        cnt[i * prime[j]] = 1;
        primePow[i * prime[j]] = prime[j];
```

4.9 Extended Euclides

```
// euclides estendido: acha u e v da equacao:
// u * x + v * y = gcd(x, y);
// u eh inverso modular de x no modulo y
// v eh inverso modular de y no modulo x

pair<ll, ll> euclides(ll a, ll b) {
    ll u = 0, oldu = 1, v = 1, oldv = 0;
    while(b) {
        ll q = a / b;
        oldv = oldv - v * q;
        oldu = oldu - u * q;
        a = a - b * q;
        swap(a, b);
        swap(u, oldu);
        swap(v, oldv);
    }
    return make_pair(oldu, oldv);
}
```

4.10 Matrix

4.11 FFT - Fast Fourier Transform

```
typedef double ld:
const ld PI = acos(-1);
struct Complex {
  ld real, imag;
  Complex conj() { return Complex(real, -imag); }
  Complex(ld \ a = 0, ld \ b = 0) : real(a), imag(b) {}
  Complex operator + (const Complex &o) const { return Complex(real + o.real, imag + o.imag); }
  Complex operator - (const Complex &o) const { return Complex(real - o.real, imag - o.imag); }
  Complex operator * (const Complex &o) const { return Complex(real * o.real - imag * o.imag, real * o.
        imag + imag * o.real); }
  Complex operator / (ld o) const { return Complex(real / o, imag / o); }
  void operator *= (Complex o) { *this = *this * o; }
  void operator /= (ld o) { real /= o, imag /= o; }
typedef std::vector<Complex> CVector;
const int ms = 1 << 22;</pre>
int bits[ms];
Complex root[ms];
void initFFT() {
  root[1] = Complex(1);
  for(int len = 2; len < ms; len += len) {</pre>
    Complex z(cos(PI / len), sin(PI / len));
    for(int i = len / 2; i < len; i++) {</pre>
     root[2 * i] = root[i];
     root[2 * i + 1] = root[i] * z;
 }
void pre(int n) {
 int LOG = 0:
  while(1 << (LOG + 1) < n) {
    L0G++:
  for(int i = 1; i < n; i++) {
    bits[i] = (bits[i >> 1] >> 1) | ((i & 1) << LOG);
 }
CVector fft(CVector a, bool inv = false) {
 int n = a.size();
  if(inv) {
    std::reverse(a.begin() + 1, a.end());
  for(int i = 0; i < n; i++) {
    int to = bits[i];
    if(to > i) {
     std::swap(a[tol. a[i]):
    }
  for(int len = 1; len < n; len *= 2) {
    for(int i = 0; i < n; i += 2 * len) {
      for(int j = 0; j < len; j++) {
       Complex u = a[i + j], v = a[i + j + len] * root[len + j];
        a[i + j] = u + v;
        a[i + j + len] = u - v;
  if(inv) {
    for(int i = 0; i < n; i++)
     a[i] /= n;
  return a;
```

```
void fft2in1(CVector &a, CVector &b) {
  int n = (int) a.size();
  for(int i = 0; i < n; i++) {
    a[i] = Complex(a[i].real, b[i].real);
  auto c = fft(a);
  for(int i = 0; i < n; i++) {
   a[i] = (c[i] + c[(n-i) \% n].conj()) * Complex(0.5, 0);
    b[i] = (c[i] - c[(n-i) % n].conj()) * Complex(0, -0.5);
}
void ifft2in1(CVector &a, CVector &b) {
  int n = (int) a.size();
  for(int i = 0; i < n; i++) a[i] = a[i] + b[i] * Complex(0, 1);
  a = fft(a, true);
  for(int i = 0; i < n; i++) {
    b[i] = Complex(a[i].imag, 0);
    a[i] = Complex(a[i].real, 0);
std::vector<long long> mod_mul(const std::vector<long long> &a, const std::vector<long long> &b, long
      long cut = 1 << 15) {
  int n = (int) a.size();
  CVector C[4];
  for(int i = 0; i < 4; i++) C[i].resize(n);</pre>
  for(int i = 0: i < n: i++) {
    C[0][i] = a[i] % cut;
    C[1][i] = a[i] / cut;
    C[2][i] = b[i] % cut;
    C[3][i] = b[i] / cut;
  fft2in1(C[0], C[1]);
fft2in1(C[2], C[3]);
  for(int i = 0; i < n; i++) {
    // 00, 01, 10, 11
    Complex cur[4];
    for(int j = 0; j < 4; j++) cur[j] = C[j/2+2][i] * C[j % 2][i];
    for(int j = 0; j < 4; j++) C[j][i] = cur[j];
  ifft2in1(C[0], C[1]);
  ifft2in1(C[2], C[3]);
  std::vector<long long> ans(n, 0);
  for(int i = 0; i < n; i++) {
   // if there are negative values, care with rounding
    ans[i] += (long long) (C[0][i].real + 0.5);
    ans[i] += (long long) (C[1][i].real + C[2][i].real + 0.5) * cut;
    ans[i] += (long long) (C[3][i].real + 0.5) * cut * cut;
  return ans:
std::vector<int> mul(const std::vector<int> &a, const std::vector<int> &b) {
  while (n - 1 < (int) a.size() + (int) b.size() - 2) n += n:
  CVector poly(n);
  for(int i = 0; i < n; i++) {
   if(i < (int) a.size()) {
     poly[i].real = a[i];
    if(i < (int) b.size()) {
     poly[i].imag = b[i];
  poly = fft(poly);
  for(int i = 0; i < n; i++) {
    poly[i] *= poly[i];
  poly = fft(poly, true);
  std::vector<int> c(n, 0);
  for(int i = 0; i < n; i++) {
    c[i] = (int) (poly[i].imag / 2 + 0.5);
  while (c.size() > 0 \&\& c.back() == 0) c.pop_back();
  return c;
```

4.12 NTT - Number Theoretic Transform

```
const int MOD = 998244353;
const int me = 15;
const int ms = 1 << me;</pre>
```

```
#define add(x, y) x+y>=MOD?x+y-MOD:x+y
const int gen = 3; // use search() from PrimitiveRoot.cpp if MOD isn't 998244353
int bits[ms]. root[ms]:
void initFFT() {
  root[1] = 1;
  for(int len = 2; len < ms; len += len) {</pre>
    int z = fexp(gen, (MOD - 1) / len / 2);
    for(int i = len / 2; i < len; i++) {</pre>
     root[2 * i] = root[i];
      root[2 * i + 1] = (long long) root[i] * z % MOD;
 }
void pre(int n) {
 int LOG = 0:
  while(1 << (LOG + 1) < n) {
   L0G++:
  for(int i = 1; i < n; i++) {
    bits[i] = (bits[i >> 1] >> 1) | ((i & 1) << LOG);
vector<int> fft(vector<int> a, bool inv = false) {
 int n = (int) a.size();
  pre(n);
  if(inv) {
    reverse(a.begin() + 1, a.end());
  for(int i = 0; i < n; i++) {
    int to = bits[i];
    if(i < to)
     swap(a[i], a[to]);
  for(int len = 1; len < n; len *= 2) {</pre>
    for(int i = 0; i < n; i += len * 2) {
      for(int j = 0; j < len; j++) {
        int u = a[i + j], v = (ll) a[i + j + len] * root[len + j] % mod;
        a[i + j] = add(u, v);
        a[i + j + len] = add(u, mod - v);
    }
  if(inv) {
    int rev = fexp(n, mod-2, mod);
    for(int i = 0; i < n; i++)
     a[i] = (ll) a[i] * rev % mod;
  return a:
std::vector<int> operator *(std::vector<int> a, std::vector<int> b) {
  while(!a.empty() && a.back() == 0) a.pop_back();
  while(!b.empty() && b.back() == 0) b.pop_back();
  if(a.empty() || b.empty()) return std::vector<int>(0, 0);
  int n = 1;
  while(n-1 < (int) a.size() + (int) b.size() - 2) n += n;
  a.resize(n, 0);
 b.resize(n, 0);
  a = fft(a, false);
  b = fft(b, false);
  for(int i = 0; i < n; i++) {
    a[i] = (int) ((long long) a[i] * b[i] % MOD);
  return fft(a, true);
```

4.13 Fast Walsh Hadamard Transform

```
a[i + j + len] = (u + v) % mod;
          } else {
            a[i + j + len] = (v - u + mod) % mod;
        if(oper == '&') {
          if(!inv) {
            a[i + j] = (u + v) \% mod;
          } else {
            a[i + j] = (u - v + mod) % mod;
        }
    }
  if(oper == '^' && inv) {
    ll rev = fexp(n, mod - 2);
    for(int i = 0; i < n; i++) {
      a[i] = a[i] * rev % mod;
  return a;
vector<ll> multiply(char oper, vector<ll> a, vector<ll> b) {
 int n = 1:
  while (n < (int) max(a.size(), b.size())) {
    n <<= 1;
  vector<ll> ans(n);
  while (a.size() < ans.size()) a.push_back(0);</pre>
  while (b.size() < ans.size()) b.push_back(0);</pre>
  a = FWHT(oper, a);
  b = FWHT(oper, b);
  for (int i = 0; i < n; i++) {
    ans[i] = a[i] * b[i] % mod;
  ans = FWHT(oper, ans, true);
  return ans;
const int mxlog = 17;
vector<ll> subset_multiply(vector<ll> a, vector<ll> b) {
  int n = 1;
  while (n < (int) max(a.size(), b.size())) {</pre>
    n <<= 1;
  vector<ll> ans(n);
  while (a.size() < ans.size()) a.push_back(0);</pre>
  while (b.size() < ans.size()) b.push_back(0);</pre>
  vector<vector<ll>> A(mxlog + 1, vector<ll>(a.size())), B(mxlog + 1, vector<ll>(b.size()));
  for (int i = 0; i < n; i++) {
    A[__builtin_popcount(i)][i] = a[i];
    B[__builtin_popcount(i)][i] = b[i];
  for (int i = 0; i <= mxlog; i++) {
    A[i] = FWHT('|', A[i]);
    B[i] = FWHT('|', B[i]);</pre>
  for (int i = 0; i \le mxlog; i++) {
    vector<ll> C(n);
    for (int x = 0; x \le i; x++) {
      int y = i - x;
      for (int j = 0; j < n; j++) {
        C[j] = (C[j] + A[x][j] * B[y][j] % mod) % mod;
    C = FWHT('|', C, true);
    for (int j = 0; j < n; j++) {
      if (__builtin_popcount(i) == i) {
        ans[j] = (ans[j] + C[j]) % mod;
    }
  return ans;
```

4.14 Miller and Rho

//miller_rabin
typedef unsigned long long ull;

```
typedef long double ld;
ull fmul(ull a, ull b, ull m) {
 ull q = (ld) a * (ld) b / (ld) m;
  ull r = a * b - q * m;
  return (r + m) % m;
bool miller(ull p, ull a) {
 ull s = p - 1;
  while(s % 2 == 0) s >>= 1;
  while(a >= p) a >>= 1;
  ull mod = fexp(a, s, p);
  while(s != p - 1 && mod != 1 && mod != p - 1) {
    mod = fmul(mod, mod, p);
    s <<= 1;
  if(mod != p - 1 && s % 2 == 0)return false;
  else return true:
bool prime(ull p) {
 if(p <= 3)
  return true;</pre>
  if(p % 2 == 0)
   return false;
  return miller(p, 2) && miller(p, 3)
   && miller(p, 5) && miller(p, 7)
    && miller(p, 11) && miller(p, 13)
    && miller(p, 17) && miller(p, 19)
    && miller(p, 23) && miller(p, 29)
    && miller(p, 31) && miller(p, 37);
//pollard_rho
ull func(ull x, ull c, ull n) {
  return (fmul(x, x, n) + c) % n;
ull gcd(ull a, ull b) {
 if(!b) return a;
  else return gcd(b, a % b);
ull rho(ull n) {
  if(n % 2 == 0) return 2;
  if(prime(n)) return n;
  while(1) {
    ull c;
    do {
      c = rand() % n;
    ull x = 2, y = 2, d = 1;
    ull pot = 1, lam = 1;
    do {
      if(pot == lam) {
        x = y;
        not <<= 1:
        lam = 0;
      y = func(y, c, n);
      lam++:
      d = gcd(x >= y ? x - y : y - x, n);
    } while(d == 1);
    if(d != n) return d;
vector<ull> factors(ull n) {
  vector<ull> ans, rest, times;
  if(n == 1) return ans;
  rest.push_back(n);
  times.push_back(1);
  while(!rest.empty()) {
    ull x = rho(rest.back());
    if(x == rest.back()) {
      int freq = 0;
      for(int i = 0; i < rest.size(); i++) {</pre>
        int cur_freq = 0;
        while(rest[i] % x == 0) {
          rest[i] /= x;
          cur_freq++;
        freq += cur_freq * times[i];
        if(rest[i] == 1) {
          swap(rest[i], rest.back());
swap(times[i], times.back());
          rest.pop_back();
```

```
times.pop_back();
       i--;
     }
    while(freq--) {
     ans.push_back(x);
    continue;
 ull e = 0;
 while(rest.back() % x == 0) {
   rest.back() /= x;
   e++:
 e *= times.back();
 if(rest.back() == 1) {
   rest.pop_back();
   times.pop_back();
 rest.push_back(x);
 times.push_back(e);
return ans:
```

4.15 Determinant using Mod

```
// by zchao1995
// Determinante com coordenadas inteiras usando Mod
ll mat[ms][ms];
ll det (int n) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++) {
      mat[i][j] %= mod;
  il res = 1;
  for (int i = 0; i < n; i++) {
   if (!mat[i][i]) {
      bool flag = false;
      for (int j = i + 1; j < n; j++) {
        if (mat[j][i]) {
          flag = true;
         for (int k = i: k < n: k++) {
           swap (mat[i][k], mat[j][k]);
          res = -res;
         break;
      if (!flag) {
        return 0;
    for (int j = i + 1; j < n; j++) {
      while (mat[j][i]) {
       ll t = mat[i][i] / mat[j][i];
        for (int k = i; k < n; k++) {
         mat[i][k] = (mat[i][k] - t * mat[j][k]) % mod;
          swap (mat[i][k], mat[j][k]);
        res = -res;
    res = (res * mat[i][i]) % mod;
  return (res + mod) % mod;
```

4.16 Gauss

```
const double eps = 1e-9;
int gauss (vector<vector<double>> a, vector<double> & ans) {
   int n = (int) a.size();
   int m = (int) a[0].size() - 1;

   vector<int> where (m, -1);
   for (int col=0, row=0; col<m && row<n; ++col) {
      int sel = row;</pre>
```

```
for (int i=row; i<n; ++i){</pre>
            if (abs (a[i][col]) > abs (a[sel][col]))
                 sel = i;
        if (abs (a[sel][col]) < eps) continue;</pre>
        for (int i=col; i<=m; ++i)</pre>
            swap (a[sel][i], a[row][i]);
        where[col] = row;
        for (int i=0; i<n; ++i){</pre>
            if (i != row) {
                double c = a[i][col] / a[row][col];
                 for (int j=col; j<=m; ++j)</pre>
                     a[i][j] -= a[row][j] * c;
        ++row:
    ans.assign (m, 0);
    for (int i=0; i<m; ++i){</pre>
        if (where[i] != -1)
            ans[i] = a[where[i]][m] / a[where[i]][i];
    for (int i=0; i<n; ++i) {
        double sum = 0;
        for (int j=0; j < m; ++j)
            sum += ans[j] * a[i][j];
        if (abs (sum - a[i][m]) > eps)
            return 0:
    for (int i=0; i<m; ++i){</pre>
        if (where[i] == -1)
            return INF;
    return 1;
// mod 2 (xor);
int gauss (vector <bitset<ms>>> a, int m, bitset<ms> &ans) {
    int n = (int) a.size();
    vector<int> where (m, -1);
    for (int col=0, row=0; col<m && row<n; ++col) {</pre>
        for (int i=row; i<n; ++i){</pre>
            if (a[i][col]) {
                 swap (a[i], a[row]);
                break;
            }
        if (!a[row][col]) continue;
        where[col] = row;
        for (int i=0; i<n; ++i){
            if (i != row && a[i][col])
                a[i] ^= a[row];
        ++row;
    for(int i = 0; i < m; ++i)
        if(where[i] != -1) {
          ans[i] = a[where[i]][m];
    for(int i = 0; i < n; ++i) {
        int sum = 0;
        for(int j = 0; j < m; ++j) {
          sum ^= (ans[j] & a[i][j]);
        if(sum != a[i][m]) {
          return 0;
    for(int i = 0; i < m; ++i)
        if(where[i] == -1)
          return 1e9;
    return 1:
```

4.17 Lagrange Interpolation

```
class LagrangePoly {
public:
   LagrangePoly(vector<long long> _a) {
```

```
//f(i) = _a[i]
    //interpola o vetor em um polinomio de grau y.size() - 1
    v = _a:
    den.resize(y.size());
    int n = (int) y.size();
    for(int i = 0; i < n; i++) {
     y[i] = (y[i] % MOD + MOD) % MOD;
      den[i] = ifat[n - i - 1] * ifat[i] % MOD;
      if((n - i - 1) % 2 == 1) {
        den[i] = (MOD - den[i]) % MOD;
  long long getVal(long long x) {
    int n = (int) y.size();
    x %= MOD;
    if(x < n) {
     //return y[(int) x];
    vector<long long> l, r;
    l.resize(n);
    l[0] = 1;
    for(int i = 1; i < n; i++) {
     l[i] = l[i - 1] * (x - (i - 1) + MOD) % MOD;
    r.resize(n);
    r[n - 1] = 1;
    for(int i = n - 2; i >= 0; i--) {
      r[i] = r[i + 1] * (x - (i + 1) + MOD) % MOD;
    long long ans = 0;
    for(int i = 0; i < n; i++) {
      long long coef = l[i] * r[i] % MOD;
      ans = (ans + coef * y[i] % MOD * den[i]) % MOD;
    return ans;
private:
 vector<long long> y, den;
};
int main(){
  fat[0] = ifat[0] = 1;
  for(int i = 1; i < ms; i++) {</pre>
    fat[i] = fat[i - 1] * i % MOD;
    ifat[i] = fexp(fat[i], MOD - 2);
  // Codeforces 622F
  int x, k;
  cin >> x >> k;
  vector<long long> a;
  a.push_back(0);
  for(long long i = 1; i \le k + 1; i++) {
    a.push_back((a.back() + fexp(i, k)) % MOD);
  LagrangePoly f(a);
  cout << f.getVal(x) << '\n';</pre>
```

4.18 Lagrange extracting polynomial

```
// O(n^2), receve v \{x, y\} e retorna o polinomio em fracao
vector<pair<int, int>> interpolate(vector<ii> v) {
 int n = v.size():
  vector<int> prod(n+1);
  prod[0] = 1;
  for(auto p : v) {
    for(int i = n; i > 0; i--) {
     prod[i] = prod[i-1] - p.first * prod[i];
    prod[0] = -p.first * prod[0];
  vector<pair<int, int>> ans(n+1);
  for(int i = 0; i <= n; i++) ans[i].second = 1;</pre>
  for(int i = 0; i < n; i++) {
    vector<int> pol(n+1); // (x - v[i].first)
    for(int j = n; j > 0; j--) {
     pol[j-1] = prod[j] + pol[j] * v[i].first;
    for(int j = 0; j < n; j++) {
```

```
pol[j] *= v[i].second;
 int k = 1;
 for(int j = 0; j < n; j++) {
   if(i==j) continue;
   k *= v[i].first - v[j].first;
 if(k < 0) {
   k = -k;
   for(auto &p : pol) p = -p;
 for(int i = 0; i < n; i++) {
   ans[i] = {ans[i].first*k + pol[i]*ans[i].second, k*ans[i].second};
   if(ans[i].first == 0) ans[i].second = 1;
     int gc = __gcd(abs(ans[i].first), ans[i].second);
     ans[i].first /= gc;
     ans[i].second /= gc;
 }
return ans:
```

4.19 Count integer points inside triangle

```
//gcd(p, q) == 1
ll get(ll p, ll q, ll n, bool floor = true) {
    if (n == 0) {
        return 0;
    }
    if (p % q == 0) {
        return n * (n + 1) / 2 * (p / q);
    }
    if (p > q) {
        return n * (n + 1) / 2 * (p / q) + get(p % q, q, n, floor);
    }
    ll new_n = p * n / q;
    ll ans = (n + 1) * new_n - get(q, p, new_n, false);
    if (!floor) {
        ans += n - n / q;
    }
    return ans;
}
```

4.20 Prime Counting

```
const int ms = 5001000, lim_n = 3e5, lim_p = 1e2;
std::vector<int> primes;
int id[ms];
int memo[lim_n][lim_p];
void pre() {
  std::vector<bool> isPrime(ms, true);
  for(int i = 2; i < ms; i++) {
    id[i] = (int) primes.size();
    if(!isPrime[i]) continue;
    id[i]++:
    primes.push_back(i);
    for(int j = i+i; j < ms; j += i) isPrime[j] = false;</pre>
  for(int i = 1; i < lim_n; i++) {</pre>
    memo[i][0] = i;
    for(int j = 1; j < lim_p; j++) memo[i][j] = memo[i][j-1] - memo[i/primes[j-1]][j-1];
int cbc(long long n) {
 int ans = std::max(0, (int) pow((double) n, 1.0 / 3) - 2);
  while((ll) ans * ans * ans < n) ans++;</pre>
long long dp(long long n, int i) {
  if(n == 0) return 0; if(i == 0) return n;
  if(primes[i-1] >= n) return 1;
  if((ll) \ primes[i-1] \ * \ primes[i-1] \ > \ n \ \&\& \ n \ < \ ms) \ return \ id[n] \ - \ (i-1);
  else if(n < lim_n && i < lim_p) return memo[n][i];</pre>
  else return dp(n, i-1) - dp(n / primes[i-1], i-1);
long long primeFunction(long long n) {
  if(n < ms) return id[(int)n];</pre>
  int i = id[cbc(n)];
```

```
long long ans = dp(n, i) + i - 1;
while((long long) primes[i] * primes[i] <= n) {
   ans -= primeFunction(n / primes[i]) - i;
   i++;
} return ans;
}</pre>
```

4.21 Berlekamp Massey

```
vector<int> berlekampMassey(const vector<int> &s) {
    int n = (int) s.size(), l = 0, m = 1;
    vector<int> b(n). c(n):
    int ld = b[\theta] = c[\theta] = 1;
    for (int i=0; i<n; i++, m++) {
        int d = s[i];
        for (int j=1; j<=l; j++)
           d = (d + c[j] * s[i-j]) % mod;
        if (d == 0)
            continue:
        vector<int> temp = c;
        int coef = d * fexp(ld, mod-2) % mod;
        for (int j=m; j<n; j++)</pre>
            c[j] = ((c[j] - coef * b[j-m]) % mod + mod) % mod;
        if (2 * l <= i) {
            l = i + 1 - l;
            b = temp;
            ld = d;
            m = 0;
        }
    c.resize(l + 1);
    c.erase(c.begin());
    for (int &x : c)
    x = mod-x;
return c;
// p = p*q % h
void mull(vector<int> &p,vector<int> &q, vector<int> &h, int m) {
        vector<int> t_(m+m);
        for(int i=0:i<m:++i) if(p[i])</pre>
                 for(int j=0; j<m;++j)
                         t_{[i+j]=(t_{[i+j]+p[i]*q[j])}mod;
        for(int i=m+m-1;i>=m;--i) if(t_[i])
                 //miuns t_{i}x^{i-m}(x^m-\sum_{j=0}^{m-1} x^{m-j-1}h_{j})
                 for(int j=m-1;~j;--j)
                        t_{i-j-1}=(t_{i-j-1}+t_{i})*h[j])*mod;
        for(int i=0;i<m;++i) p[i]=t_[i];</pre>
// a = caso base, h = recorrencia, m = tamanho da recorrencia
inline int calc(vector<int> &a, vector<int> &h, int K, int m) {
        vector<int> s(m), t(m);
        s[0]=1; if(m!=1) t[1]=1; else t[0]=h[0];
        while(K) {
                 if(K&1) mull(s,t,h,m);
                 mull(t,t,h,m); K>>=1;
        int su=0:
        for(int i=0;i<m;++i) su=(su+s[i]*a[i])%mod;</pre>
        return (su%mod+mod)%mod;
```

4.22 Polynomial exp

```
// by ijmg
vector<int> power(vector<int> &a, int k, int limit = -1) {
    while(a.back() == 0) a.pop_back();
    if(a.size() == 0 || limit == 0) return {};
    if(limit == -1) {
        limit = (a.size() - 1) * k;
    }
    vector<int> ans(limit + 1, 0);
    ans[0] = fexp(a[0], k);
    for(int i = 1; i <= limit; ++i) {
        for(int j = 1; j <= min(i, (int) a.size() - 1); ++j) {
            ans[i] += a[j] * ans[i - j] * (k * j - (i - j));
        }
        ans[i] /= i * a[0];
    }
    return ans;</pre>
```

5 Geometry

5.1 Geometry

```
const double inf = 1e100, eps = 1e-9;
const double PI = acos(-1.0L);
int cmp (double a, double b = 0)
  if (abs(a-b) < eps) return 0:
  return (a < b) ? -1 : +1;
struct PT {
  double x, y;
  PT(double x = 0, double y = 0) : x(x), y(y) {}
  PT operator + (const PT &p) const { return PT(x+p.x, y+p.y); }
  PT operator - (const PT &p) const { return PT(x-p.x, y-p.y); }
  PT operator * (double c) const { return PT(x*c, y*c); }
  PT operator / (double c) const { return PT(x/c, y/c); }
  bool operator <(const PT &p) const {
   if(cmp(x, p.x) != 0) return x < p.x;
    return cmp(y, p.y) < 0;
  bool operator ==(const PT &p) const {return !cmp(x, p.x) && !cmp(y, p.y);}
  bool operator != (const PT &p) const {return !(p == *this);}
}:
ostream &operator<<(ostream &os, const PT &p) {
  return os << "(" << p.x << "," << p.y << ")";
double dot (PT p, PT q) { return p.x * q.x + p.y*q.y; }
double cross (PT p, PT q) { return p.x * q.y - p.y*q.x; }
double dist2 (PT p, PT q = PT(0, 0)) { return dot(p-q, p-q); }
double dist (PT p, PT q) { return hypot(p.x-q.x, p.y-q.y); }
double norm (PT p) { return hypot(p.x, p.y); }
PT normalize (PT p) { return p/hypot(p.x, p.y); }
double angle (PT p, PT q) { return atan2(cross(p, q), dot(p, q)); }
double angle (PT p) { return atan2(p.y, p.x); }
double polarAngle (PT p) {
  double a = atan2(p.y,p.x);
  return a < 0 ? a + 2*PI : a;
PT rotateCCW90 (PT p) { return PT(-p.y, p.x); }
PT rotateCW90 (PT p) { return PT(p.y, -p.x); }
PT rotateCCW (PT p, double t) {
  return PT(p.x*cos(t)-p.y*sin(t), p.x*sin(t)+p.y*cos(t));
typedef pair<PT. int> Line:
PT getDir (PT a, PT b) {
  if (a.x == b.x) return PT(0, 1);
  if (a.y == b.y) return PT(1, 0);
  int dx = b.x-a.x;
  int dy = b.y-a.y;
  int g = \_\_gcd(abs(dx), abs(dy));
  if (dx < 0) g = -g;
  return PT(dx/g, dy/g);
Line getLine (PT a, PT b) {
  PT dir = getDir(a, b);
  return {dir, cross(dir, a)};
PT projPtLine (PT a, PT b, PT c) { // ponto c na linha a - b, a.b = |a| cost * |b|
  return a + (b-a) * dot(b-a, c-a)/dot(b-a, b-a);
PT reflectPointLine (PT a, PT b, PT c) {
  PT p = projPtLine(a, b, c);
  return p*2 - c;
PT projPtSeg (PT a, PT b, PT c) { // c no segmento a - b
  double r = dot(b-a, b-a);
  if (cmp(r) == 0) return a;
  r = dot(b-a, c-a)/r;
  if (cmp(r, 0) < 0) return a;
  if (cmp(r, 1) > 0) return b;
  return a + (b - a) * r;
double distancePointSegment (PT a, PT b, PT c) { // ponto c e o segmento a - b
  return dist(c, projPtSeg(a, b, c));
bool ptInSegment (PT a, PT b, PT c) { // ponto c esta em um segmento a - b
 if (a == b) return a == c;
  a = a-c, b = b-c;
```

```
return cmp(cross(a, b)) == 0 \&\& cmp(dot(a, b)) <= 0;
bool parallel (PT a, PT b, PT c, PT d) {
 return cmp(cross(b - a, c - d)) == 0;
bool collinear (PT a, PT b, PT c, PT d) {
  return parallel(a, b, c, d) && cmp(cross(a - b, a - c)) == 0 && cmp(cross(c - d, c - a)) == 0;
// Calcula distancia entre o ponto (x, y, z) e o plano ax + by + cz = d
double distPtPlane(double x, double y, double z, double a, double b, double c, double d) {
    return abs(a * x + b * y + c * z - d) / sqrt(a * a + b * b + c * c);
bool segInter (PT a, PT b, PT c, PT d) {
  if (collinear(a, b, c, d)) {
    if (a == c \mid \mid a == d \mid \mid b == c \mid \mid b == d) return true;
    if (cmp(dot(c - a, c - b)) > 0 \&\& cmp(dot(d - a, d - b)) > 0 \&\& cmp(dot(c - b, d - b)) > 0) return
    return true:
  if (cmp(cross(d - a, b - a) * cross(c - a, b - a)) > 0) return false;
  if (cmp(cross(a - c, d - c) * cross(b - c, d - c)) > 0) return false;
// Calcula a intersecao entre as retas a - b e c - d assumindo que uma unica intersecao existe
// Para intersecao de segmentos, cheque primeiro se os segmentos se intersectam e que nao sao paralelos
PT lineLine (PT a, PT b, PT c, PT d) {
 b = b - a; d = c - d; c = c - a;
  // assert(cmp(cross(b, d)) != 0);
  return a + b * cross(c, d) / cross(b, d);
PT circleCenter (PT a, PT b, PT c) {
 b = (a + b) / 2; // bissector
  c = (a + c) / 2; // bissector
  return lineLine(b, b + rotateCW90(a - b), c, c + rotateCW90(a - c));
vector<PT> circle2PtsRad (PT p1, PT p2, double r) {
  vector<PT> ret;
  double d2 = dist2(p1, p2);
  double det = r * r / d2 - 0.25;
  if (det < 0.0) return ret;
  double h = sqrt(det);
  for (int i = 0; i < 2; i++) {
    double x = (p1.x + p2.x) * 0.5 + (p1.y - p2.y) * h;
    double y = (p1.y + p2.y) * 0.5 + (p2.x - p1.x) * h;
    ret.push_back(PT(x, y));
    swap(p1, p2);
  return ret:
bool circleLineIntersection(PT a, PT b, PT c, double r) {
    return cmp(dist(c, projPtLine(a, b, c)), r) <= 0;</pre>
vector<PT> circleLine (PT a, PT b, PT c, double r) {
  vector<PT> ret;
  PT p = projPtLine(a, b, c), p1;
  double h = norm(c-p);
  if (cmp(h,r) == 0) {
    ret.push_back(p);
  } else if (cmp(h,r) < 0) {
    double k = sqrt(r*r - h*h);
    p1 = p + (b-a)/(norm(b-a))*k;
    ret.push_back(p1);
    p1 = p - (b-a)/(norm(b-a))*k;
    ret.push_back(p1);
  return ret:
bool ptInsideTriangle(PT p, PT a, PT b, PT c) {
  if(cross(b-a, c-b) < 0) swap(a, b):
  if(ptInSegment(a,b,p)) return 1;
  if(ptInSegment(b,c,p)) return 1;
  if(ptInSegment(c,a,p)) return 1;
  bool x = cross(b-a, p-b) < 0;
  bool y = cross(c-b, p-c) < 0;
  bool z = cross(a-c, p-a) < 0;
  return x == y \&\& y == z;
bool pointInConvexPolygon(const vector<PT> &p, PT q) {
  if (p.size() == 1) return p.front() == q;
  int l = 1, r = p.size()-1;
  while(abs(r-l) > 1) {
```

int m = (r+1)/2:

```
if(cross(p[m]-p[0], q-p[0]) < 0) r = m;
    else l = m:
  return ptInsideTriangle(q, p[0], p[l], p[r]);
// Determina se o ponto esta num poligono possivelmente nao-convexo
// Retorna 1 para pontos estritamente dentro, O para pontos estritamente fora do poligno
// e 0 ou 1 para os pontos restantes
bool pointInPolygon(const vector<PT> &p. PT g) {
 bool c = 0
  for(int i = 0; i < p.size(); i++){</pre>
    int j = (i + 1) % p.size();
    if((p[i].y \le q.y \&\& q.y < p[j].y || p[j].y \le q.y \&\& q.y < p[i].y) \&\&
     q.x < p[i].x + (p[j].x - p[i].x) * (q.y - p[i].y) / (p[j].y - p[i].y))
     c = !c:
  return c:
// area / semiperimeter
double rIncircle (PT a, PT b, PT c) {
  double ab = norm(a-b), bc = norm(b-c), ca = norm(c-a);
  return abs(cross(b-a, c-a)/(ab+bc+ca));
vector<PT> circleCircle (PT a, double r, PT b, double R) {
  vector<PT> ret:
  double d = norm(a-b);
  if (d > r + R \mid\mid d + min(r, R) < max(r, R)) return ret;
  double x = (d*d - R*R + r*r) / (2*d); // x = r*cos(R opposite angle)
  double y = sqrt(r*r - x*x);
  PT v = (b - a)/d;
  ret.push_back(a + v*x + rotateCCW90(v)*y);
  if (cmp(y) > 0)
    ret.push_back(a + v*x - rotateCCW90(v)*y);
double circularSegArea (double r, double R, double d) {
  double ang = 2 * acos((d*d - R*R + r*r) / (2*d*r)); // cos(R opposite angle) = x/r
  double tri = sin(ang) * r * r;
  double sector = ang * r * r;
  return (sector - tri) / 2;
double computeSignedArea (const vector<PT> &p) {
  double area = 0:
  for (int i = 0; i < p.size(); i++) {</pre>
    int j = (i+1) % p.size();
    area += p[i].x*p[j].y - p[j].x*p[i].y;
  return area/2.0:
double computeArea(const vector<PT> &p) { return abs(computeSignedArea(p)); }
PT computeCentroid(const vector<PT> &p) {
  PT c(0,0);
  double scale = 6.0 * computeSignedArea(p);
  for(int i = 0; i < p.size(); i++){</pre>
    int j = (i + 1) % p.size();
    c = c + (p[i] + p[j]) * (p[i].x * p[j].y - p[j].x * p[i].y);
  return c / scale;
// Testa se o poligno listada em ordem CW ou CCW eh simples (nenhuma linha se intersecta)
bool isSimple(const vector<PT> &p) {
  for(int i = 0; i < p.size(); i++) {</pre>
    for(int k = i + 1: k < p.size(): k++) {
     int j = (i + 1) % p.size();
     int l = (k + 1) % p.size();
     if (i == l \mid | j == k) continue;
     if (segInter(p[i], p[j], p[k], p[l]))
        return false;
  return true:
vector< pair<PT, PT> > getTangentSegs (PT c1, double r1, PT c2, double r2) {
  if (r1 < r2) swap(c1, c2), swap(r1, r2);</pre>
  vector<pair<PT, PT> > ans;
  double d = dist(c1, c2);
  if (cmp(d) <= 0) return ans;</pre>
  double dr = abs(r1 - r2), sr = r1 + r2;
  if (cmp(dr, d) >= 0) return ans;
  double u = acos(dr / d);
  PT dc1 = normalize(c2 - c1)*r1;
```

```
PT dc2 = normalize(c2 · c1)*r2;
ans.push_back(make_pair(c1 + rotateCCW(dc1, +u), c2 + rotateCCW(dc2, +u)));
ans.push_back(make_pair(c1 + rotateCCW(dc1, -u), c2 + rotateCCW(dc2, -u)));
if (cmp(sr, d) >= 0) return ans;
double v = acos(sr / d);
dc2 = normalize(c1 · c2)*r2;
ans.push_back({c1 + rotateCCW(dc1, +v), c2 + rotateCCW(dc2, +v)});
ans.push_back({c1 + rotateCCW(dc1, -v), c2 + rotateCCW(dc2, -v)});
return ans;
}
```

5.2 Convex Hull

```
vector<PT> convexHull(vector<PT> p, bool needs = 1) {
  if(needs) sort(p.begin(), p.end());
  p.erase(unique(p.begin(), p.end()), p.end());
  int n = p.size(), k = 0;
  if(n <= 1) return p;</pre>
  vector<PT> h(2*n + 5);
  for(int i = 0; i < n; i++) {
    while(k \ge 2 \&\& cross(h[k - 1] - h[k - 2], p[i] - h[k - 2]) \le 0) k--;
    h[k++] = p[i];
  for(int i = n - 2, t = k + 1; i >= 0; i --) {
    while(k >= t \&\& cross(h[k - 1] - h[k - 2], p[i] - h[k - 2]) <= 0) k--;
    h[k++] = p[i];
  h.resize(k); // n+1 points where the first is equal to the last
  return h;
vector<PT> splitHull(const vector<PT> &hull) {
  vector<PT> ans(hull.size());
  for(int i = 0, j = (int) hull.size()-1, k = 0; k < (int) hull.size(); k++) {
   if(hull[i] < hull[j]) {</pre>
      ans[k] = hull[i++];
    } else {
      ans[k] = hull[j--];
  return ans;
// uniao de convex hulls
vector<PT> ConvexHull(const vector<PT> &a, const vector<PT> &b) {
  auto A = splitHull(a);
  auto B = splitHull(b);
  vector<PT> C(A.size() + B.size());
  merge(A.begin(), A.end(), B.begin(), B.end(), C.begin());
  return ConvexHull(C, false);
int maximizeScalarProduct(const vector<PT> &hull, PT vec) {
  // this code assumes that there are no 3 colinear points
  int ans = \theta;
  int n = hull.size();
  if(n < 20) {
    for(int i = 0; i < n; i++) {
      if(dot(hull[i], vec) > dot(hull[ans], vec)) {
        ans = i;
  } else {
    if(dot(hull[1], vec) > dot(hull[ans], vec)) {
      ans = 1;
    for(int rep = 0; rep < 2; rep++) {</pre>
      int l = 2, r = n - 1;
      while(l != r) {
        int \ mid = (l + r + 1) / 2;
        bool flag = dot(hull[mid], vec) >= dot(hull[mid-1], vec);
        if(rep == 0) \{ flag = flag \&\& dot(hull[mid], vec) >= dot(hull[0], vec); \}
        else { flag = flag || dot(hull[mid-1], vec) < dot(hull[0], vec); }</pre>
        if(flag) {
          l = mid:
        } else {
          r = mid - 1:
      if(dot(hull[ans], vec) < dot(hull[l], vec)) {</pre>
        ans = 1:
```

```
return ans;
}
```

5.3 Cut Polygon

```
struct Segment {
  typedef long double T;
  PT p1, p2;
  T a, b, c;
  Segment() {}
  Segment(PT st, PT en) {
    p1 = st, p2 = en;
   a = -(st.y - en.y);
    b = st.x - en.x;
   c = a * en.x + b * en.y;
  T plug(T x, T y) {
    // plug >= 0 is to the right
    return a * x + b * y - c;
  T plug(PT p) {
   return plug(p.x, p.y);
  bool inLine(PT p) { return cross((p - p1), (p2 - p1)) == 0; }
  bool inSegment(PT p) {
   return inLine(p) && dot((p1 - p2), (p - p2)) >= 0 && dot((p2 - p1), (p - p1)) >= 0;
  PT lineIntersection(Segment s) {
    long double A = a, B = b, C = c;
    long double D = s.a, E = s.b, F = s.c;
    long double x = (long double) C * E - (long double) B * F;
    long double y = (long double) A * F - (long double) C * D;
    long double tmp = (long double) A * E - (long double) B * D;
    x /= tmp;
   y /= tmp;
    return PT(x, y);
  bool polygonIntersection(const vector<PT> &poly) {
   long double l = -1e18, r = 1e18;
    for(auto p : poly) {
      long double z = plug(p);
     l = max(l, z);
     r = min(r, z);
    return l - r > eps;
};
vector<PT> cutPolygon(vector<PT> poly, Segment seg) {
  int n = (int) poly.size();
  vector<PT> ans;
  for(int i = 0; i < n; i++) {
    double z = seg.plug(poly[i]);
    if(z > -eps) {
     ans.push_back(poly[i]);
    double z2 = seq.pluq(poly[(i + 1) % n]);
    if((z > eps \&\& z2 < -eps) || (z < -eps \&\& z2 > eps)) {
      ans.push_back(seg.lineIntersection(Segment(poly[i], poly[(i + 1) % n])));
  return ans;
```

5.4 Smallest Enclosing Circle

```
typedef pair<PT, double> circle;
bool inCircle (circle c, PT p){
    return cmp(dist(c.first, p), c.second) <= 0;
}

PT circumcenter (PT p, PT q, PT r){
    PT a = p-r, b = q-r;
    PT c = PT(dot(a, p+r)/2, dot(b, q+r)/2);
    return PT(cross(c, PT(a.y,b.y)), cross(PT(a.x,b.x), c)) / cross(a, b);</pre>
```

```
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
circle spanningCircle (vector<PT> &v) {
    int n = v.size();
    shuffle(v.begin(), v.end(), rng);
    circle C(PT(), -1);
    for (int i = 0; i < n; i++) if (!inCircle(C, v[i])) {
        C = circle(v[i], 0);
        for (int j = 0; j < i; j++) if (!inCircle(C, v[j])) {
            C = circle((v[i]+v[j])/2, dist(v[i], v[j])/2);
            for(int k = 0; k < j; k++) if (!inCircle(C, v[k])) {
            PT o = circumcenter(v[i], v[j], v[k]);
            C = circle(o,dist(o,v[k]));
        }
    }
}
return C;
}</pre>
```

5.5 Minkowski

```
bool comp(PT a, PT b){
  int hp1 = (a.x < 0 | | (a.x==0 \&\& a.y<0));
  int hp2 = (b.x < 0 | | (b.x==0 \&\& b.y<0));
  if(hp1 != hp2) return hp1 < hp2;</pre>
  long long R = cross(a, b);
  if(R) return R > 0;
  return dot(a, a) < dot(b, b);</pre>
 // This code assumes points are ordered in ccw and the first points in both vectors is the min
       lexicographically
vector<PT> minkowskiSum(const vector<PT> &a. const vector<PT> &b){
 if(a.empty() || b.empty()) return vector<PT>(0);
  vector<PT> ret;
  int n1 = a.size(), n2 = b.size();
  if(min(n1, n2) < 2){
    for(int i = 0; i < n1; i++) {
      for(int j = 0; j < n2; j++) {
        ret.push_back(a[i]+b[j]);
    return ret;
  PT v1, v2, p = a[0]+b[0];
  ret.push_back(p);
  for (int i = 0, j = 0; i + j + 1 < n1+n2; ){
    v1 = a[(i+1)%n1]-a[i]:
    v2 = b[(j+1)%n2]-b[j];
    if(j == n2 \mid | (i < n1 \&\& comp(v1, v2))) p = p + v1, i++;
    else p = p + v2, j++;
    while(ret.size() >= 2 \&\& cmp(cross(p-ret.back(), p-ret[(int)ret.size()-2])) == 0) {
     // removing colinear points
      // needs the scalar product stuff it the result is a line
      ret.pop_back();
    ret.push_back(p);
  return ret;
```

5.6 Half Plane Intersection

```
struct L { // salvar (p[i], p[i + 1]) poligono CCW, (p[i + 1], p[i]) poligono CW
    PT a, b, dir;
    L(){}
    L(PT a, PT b) : a(a), b(b) {
     dir = b - a;
    int quadrant() const {
     if (dir.y > 0 && dir.x >= 0) return 0;
     if (dir.x < 0 && dir.y >= 0) return 1;
      if (dir.y < 0 && dir.x <= 0) return 2;</pre>
     return 3:
    bool operator < (const L &l) const {
     int q1 = quadrant(), q2 = l.quadrant();
     if (q1 != q2) return q1 < q2;</pre>
      double c = cross(dir, l.dir);
     if(cmp(c) == 0) {
        return cmp(cross((l.b - l.a), (b - l.a))) > 0;
```

```
return cmp(c) > 0;
   computeLineIntersection (L la, L lb) {
    return lineLine(la.a, la.b, lb.a, lb.b);
bool check (L la, L lb, L lc) {
    PT p = computeLineIntersection(lb, lc);
    double det = cross((la.b - la.a), (p - la.a));
    return cmp(det) < 0;
vector<PT> hpi (vector<L> line) {
    vector<PT> box = {PT(inf, inf), PT(-inf, inf), PT(-inf, -inf), PT(inf, -inf)};
    for(int i = 0; i < 4; i++) {
        line.emplace_back(box[i], box[(i + 1) % 4]);
    sort(line.begin(), line.end());
    vector<L> pl(1, line[0]);
    for (int i = 0; i < (int)line.size(); ++i) if (cmp(cross(line[i].dir, pl.back().dir)) != 0) pl.
          push_back(line[i]);
    vector<int> dq;
    int start = 0:
    for (int i = 0; i < (int)pl.size(); ++i) {</pre>
        while ((int)dq.size() - start > 1 \& check(pl[i], pl[dq.back()], pl[dq[dq.size() - 2]])) dq.
              pop_back();
        while ((int)dq.size() - start > 1 && check(pl[i], pl[dq[start]], pl[dq[start + 1]])) start++;
        if((int)dq.size() - start > 0 && cmp(cross(pl[i].dir, pl[dq.back()].dir)) == 0) {
          if(cmp(dot(pl[i].dir, pl[dq.back()].dir)) < 0) return vector<PT>();
          if(cmp(cross(pl[i].dir, pl[dq.back()].a - pl[i].a)) < 0) dq.pop_back();</pre>
          else continue:
        dq.push_back(i);
    while ((int)dq.size() - start > 1 && check(pl[dq[start]], pl[dq.back()], pl[dq[dq.size() - 2]])) dq.
          pop_back();
    while ((int)dq.size() - start > 1 && check(pl[dq.back()], pl[dq[start]], pl[dq[start + 1]])) start
    vector<PT> res:
    if((int)dq.size() - start < 3) return vector<PT>(); // remove this if res can be point/line
    for (int i = start: i < (int)dq.size(): ++i){</pre>
      res.emplace\_back(computeLineIntersection(pl[dq[i]], pl[dq[i+1 == dq.size() ? start: i+1]]));
    return res:
```

5.7 Closest Pair

```
double closestPair(vector<PT> p) {
    int n = p.size(), k = 0;
    sort(p.begin(), p.end());
    double d = inf;
    set<PT> ptsInv;
    for(int i = 0; i < n; i++) {
        while(k < i && p[k].x < p[i].x - d) {
            ptsInv.erase(swapCoord(p[k++]));
        }
        for(auto it = ptsInv.lower_bound(PT(p[i].y - d, p[i].x - d));
        it != ptsInv.end() && it->x <= p[i].y + d; it++) {
            d = min(d, dist(p[i] - swapCoord(*it), PT(0, 0)));
        }
        ptsInv.insert(swapCoord(p[i]));
    }
}</pre>
```

5.8 Voronoi

```
Segment getBisector(PT a, PT b) {
    Segment ans(a, b);
    swap(ans.a, ans.b);
    ans.b *= -1;
    ans.c = ans.a * (a.x + b.x) * 0.5 + ans.b * (a.y + b.y) * 0.5;
    return ans;
}

// BE CAREFUL!
// the first point may be any point
// O(N*3)
vector<PT> getCell(vector<PT> pts, int i) {
    vector<PT> ans;
    ans.emplace_back(0, 0);
```

```
ans.emplace_back(1e6, 0);
  ans.emplace_back(1e6, 1e6);
  ans.emplace_back(0, 1e6);
  for(int j = 0; j < (int) pts.size(); j++) {</pre>
   if(j != i) {
      ans = cutPolygon(ans, getBisector(pts[i], pts[j]));
  return ans;
// O(N^2) expected time
vector<vector<PT>>> getVoronoi(vector<PT> pts) {
  // assert(pts.size() > 0);
  int n = (int) pts.size();
  vector<int> p(n, 0);
  for(int i = 0; i < n; i++) {
    p[i] = i;
  shuffle(p.begin(), p.end(), rng);
  vector<vector<PT>> ans(n);
  ans[0].emplace_back(0, 0):
  ans[0].emplace_back(w, 0);
  ans[0].emplace_back(w, h);
  ans[0].emplace_back(0, h);
  for(int i = 1; i < n; i++) {
    ans[i] = ans[0];
  for(auto i : p) {
    for(auto j : p) {
      if(j == i) break;
      auto bi = getBisector(pts[j], pts[i]);
      if(!bi.polygonIntersection(ans[j])) continue;
      ans[j] = cutPolygon(ans[j], getBisector(pts[j], pts[i]));
      ans[i] = cutPolygon(ans[i], getBisector(pts[i], pts[j]));
  return ans:
```

6 String Algorithms

6.1 KMP

```
vector<int> getBorder(string str) {
  int n = str.size();
  vector<int> border(n, -1);
  for(int i = 1, j = -1; i < n; i++) {
    while(j \ge 0 \&\& str[i] != str[j + 1]) {
      j = border[j];
    if(str[i] == str[j + 1]) {
      j++;
    border[i] = j;
  return border:
int matchPattern(const string &txt, const string &pat, const vector<int> &border) {
  int freq = 0:
  for(int i = 0, j = -1; i < txt.size(); i++) {
    while(j \ge 0 && txt[i] != pat[j + 1]) {
      j = border[j];
    if(pat[j + 1] == txt[i]) {
     j++;
    if(j + 1 == (int) pat.size()) {
     //found occurence
      freq++;
      j = border[j];
  return freq;
```

6.2 Aho-Corasick

```
const int ms = 1e6;  // quantidade de caracteres
const int sigma = 26;  // tamanho do alfabeto
```

```
int trie[ms][sigma], fail[ms], superfail[ms], terminal[ms], z = 1;
void add(string &s) {
 int node = 0;
  for (char ch : s) {
    int pos = val(ch); // no caso de alfabeto a-z: val(ch) = ch - 'a'
    if (!trie[node][pos]) {
     terminal[z] = 0;
     trie[node][pos] = z++;
    node = trie[node][pos];
  ++terminal[node]; // trocar pela info que quiser
void buildFailure() {
 memset(fail, 0, sizeof(int) * z), memset(superfail, 0, sizeof(int) * z);
  queue<int> Q;
  Q.push(0);
  while (Q.size()) {
    int node = Q.front();
    Q.pop();
    for (int pos = 0; pos < sigma; ++pos) {</pre>
     int &v = trie[node][pos];
     int f = node == 0 ? 0 : trie[fail[node]][pos];
      // int sf = present[f] ? f : superfail[f];
      // present marks if that vertex is a terminal node or not
      // if summing up on terminal, doesn't work
      if (!v) {
       v = f;
     } else {
        fail[v] = f;
      // superfail[v] = sf;
       Q.push(v);
        // dar merge nas infos (por ex: terminal[v] += terminal[f])
void search(string &s) {
 int node = 0:
  for (char ch : s) {
    int pos = val(ch);
    node = trie[node][pos];
    // processar infos no no atual (por ex: ocorrencias += terminal[node])
// se tiver usando super fail, cuidado com o estado que voce ta, antes de subir pro sf, porque pode ser
      que o estado que ta nao seja no terminal
```

6.3 Algoritmo de Z

```
template <class T>
vector<int> ZFunc(const vector<T> &v) {
    vector<int> z(v.size(), 0);
    int n = (int) v.size(), a = 0, b = 0;
    if (!z.empty()) z[0] = n;
    for (int i = 1; i < n; i++) {
        int end = i; if (i < b) end = min(i + z[i - a], b);
        while(end < n && v[end] == v[end - i]) ++end;
    z[i] = end - i; if(end > b) a = i, b = end;
    }
    return z;
}
```

6.4 Suffix Array

```
vector<int> buildSa(const string& in) {
   int n = in.size(), c = 0;
   vector<int> temp(n), posBucket(n), bucket(n), bpos(n), out(n);
   for (int i = 0; i < n; i++) out[i] = i;
   sort(out.begin(), out.end(), [&](int a, int b) { return in[a] < in[b]; });
   for (int i = 0; i < n; i++) {
      bucket[i] = c;
      if (i + 1 == n || in[out[i]] != in[out[i + 1]]) c++;
   }
   for (int h = 1; h < n && c < n; h <<= 1) {
      for (int i = 0; i < n; i++) posBucket[out[i]] = bucket[i];
      for (int i = 0; i < n; i++) }
      for (int i = 0; i < n; i++) }
      if (out[i] >= n - h) temp[bpos[bucket[i]]++] = out[i];
}
```

```
for (int i = 0: i < n: i++) {
      if (out[i] >= h) temp[bpos[posBucket[out[i] - h]]++] = out[i] - h;
    for (int i = 0; i + 1 < n; i++) {
        int a = (bucket[i] != bucket[i + 1]) || (temp[i] >= n - h)
           || (posBucket[temp[i + 1] + h] != posBucket[temp[i] + h]);
    bucket[n - 1] = c++;
    temp.swap(out);
  return out:
vector<int> buildLcp(string s, vector<int> sa) {
  int n = (int) s.size();
  vector<int> pos(n), lcp(n, 0);
  for(int i = 0; i < n; i++) {
   pos[sa[i]] = i;
  int k = 0;
  for(int i = 0; i < n; i++) {
   if (pos[i] + 1 == n) {
      continue;
    int j = sa[pos[i] + 1];
    while(i + k < n \& j + k < n \& s[i + k] == s[j + k]) k++;
    lcp[pos[i]] = k;
    k = \max(k - 1, 0);
  return lcp;
}
```

6.5 Suffix Automaton

```
int len[ms*2], link[ms*2], nxt[ms*2][sigma];
int sz, last;
void build(string &s) {
  len[0] = 0; link[0] = -1;
  sz = 1; last = 0;
  memset(nxt[0], -1, sizeof nxt[0]);
  for(char ch : s) {
   int c = ch-'a', cur = sz++;
    len[cur] = len[last]+1;
    memset(nxt[cur], -1, sizeof nxt[cur]);
    int p = last;
    while(p != -1 \&\& nxt[p][c] == -1) {
     nxt[p][c] = cur; p = link[p];
    if(p == -1) {
     link[cur] = 0;
    } else {
      int q = nxt[p][c];
      if(len[p] + 1 == len[q]) {
        link[cur] = q;
     } else {
        len[sz] = len[p]+1; link[sz] = link[q];
        memcpy(nxt[sz], nxt[q], sizeof nxt[q]);
        while (p != -1 \&\& nxt[p][c] == q) {
         nxt[p][c] = sz; p = link[p];
        link[q] = link[cur] = sz++;
    last = cur:
```

6.6 Manacher

```
std::array<std::vector<int>, 2> manacher(const std::string& s) {
    int n = (int) s.size();
    std::array<std::vector<int>, 2> p = {std::vector<int>(n+1), std::vector<int>(n)};
    for(int z = 0; z < 2; z++) for (int i = 0, l = 0, r = 0; i < n; i++) {
        int t = r-i+!z;
        if (i<r) p[z][i] = std::min(t, p[z][l+t]);
        int L = i-p[z][i], R = i+p[z][i]-!z;
        while (L>=1 && R+1<n && s[L-1] == s[R+1])</pre>
```

```
p[z][i]++, L--, R++;
    if (R>r) l=L, r=R;
} return p;
} // pra cada centro o tamanho max do palindromo centrado ali, qualquer coisa printa a saida pra abacabaab
```

6.7 Polish Notation

```
inline bool isOp(char c) {
        return C=='+' || C=='-' || C=='*' || C=='/' || C=='^';
inline bool isCarac(char c) {
        return (c>='a' && c<='z') || (c>='A' && c<='Z') || (c>='0' && c<='9');
int paren2polish(char* paren, char* polish) {
        map<char, int> prec;
        prec['('] = 0;
        prec['+'] = prec['-'] = 1;
        prec['*'] = prec['/'] = 2;
        prec['^'] = 3;
        int len = 0:
        stack<char> op;
        for (int i = 0; paren[i]; i++) {
                if (isOp(paren[i])) {
                        while (!op.empty() && prec[op.top()] >= prec[paren[i]]) {
                               polish[len++] = op.top(); op.pop();
                        op.push(paren[i]);
                else if (paren[i]=='(') op.push('(');
                else if (paren[i]==')') {
                        for (; op.top()!='('; op.pop())
                               polish[len++] = op.top();
                        op.pop();
                else if (isCarac(paren[i]))
                        polish[len++] = paren[i];
        for(; !op.empty(); op.pop())
                polish[len++] = op.top();
        polish[len] = 0;
        return len;
```

6.8 String Hash

```
struct StringHashing {
  const uint64 t MOD = (1LL << 61) - 1:</pre>
  const int base = 31;
  vector<uint64_t> h, p;
  uint64_t modMul(uint64_t a, uint64_t b) {
   uint64_t l1 = (uint32_t)a, h1 = a >> 32, l2 = (uint32_t)b, h2 = b >> 32;
   uint64_t l = l1 * l2, m = l1 * h2 + l2 * h1, h = h1 * h2;
   uint64_t ret = (1 & MOD) + (1 >> 61) + (h << 3) + (m >> 29) + ((m << 35) >> 3) + 1;
   ret = (ret & MOD) + (ret >> 61):
   ret = (ret & MOD) + (ret >> 61);
   return ret - 1;
  uint64_t getKey(int l, int r) { // [l, r]
   uint64_t res = h[r];
   if(l > 0) res = (res + MOD - modMul(p[r - l + 1], h[l - 1])) % MOD;
   return res;
  uint64_t getInt(char c) {
   return c - 'a' + 1;
 StringHashing(string &s) {
   int n = s.size();
   h.resize(n);
   p.resize(n):
   p[0] = 1:
   h[0] = getInt(s[0]);
   for(int i = 1; i < n; ++i) {
     p[i] = modMul(p[i - 1], base);
     h[i] = (modMul(h[i - 1], base) + getInt(s[i])) % MOD;
```

};

7 Miscellaneous

7.1 Random Number Generator

```
// mt19937_64 se LL
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
// Random_Shuffle
shuffle(v.begin(), v.end(), rng);
// Random number in interval
int randomInt = uniform_int_distribution(0, i)(rng);
double randomDouble = uniform_real_distribution(0, 1)(rng);
// bernoulli_distribution, binomial_distribution, geometric_distribution
// normal_distribution, poisson_distribution, exponential_distribution
```

7.2 Safe Hash

7.3 Unordered Map Tricks

```
// pair<int, int> hash function
struct HASH{
    size_t operator()(const pair<int,int>&x)const{
        return (size_t) x.first * 37U + (size_t) x.second;
    }
};

unordered_map<int,int>mp;
mp.reserve(1024);
mp.max_load_factor(0.25);
```

7.4 Iterate masks in bitcount order

```
for(int k = n-1; k >= 0; k--) {
  unsigned int i = (1 << k) -1;
  while(i < (1 << n)) {
    // do what you want
    unsigned int t = (i | (i - 1)) + 1;
    if(i == 0) break;
    i = t | ((((t & -t) / (i & -i)) >> 1) - 1);
    }
}
```

7.5 Submask Enumeration

```
for (int s=m; ; s=(s-1)&m) {
    ... you can use s ...
    if (s==0) break;
}
```

7.6 Sum over Subsets DP

```
// F[i] = Sum of all A[j] where j is a submask of i
for(int i = 0; i<(1<<N); ++i)
   F[i] = A[i];
for(int i = 0; i < N; ++i) for(int mask = 0; mask < (1<<N); ++mask){
   if(mask & (1<<i))
        F[mask] += F[mask^(1<<i)];
}</pre>
```

7.7 Subset Sum

```
/**
* Given N non-negative integer weights w and a non-negative target t,
* computes the maximum S \le t such that S is the sum of some subset of the weights.
* Time: O(N \max(w_i))
int knapsack(vector<int> w, int t) {
 int a = 0, b = 0;
  while (b < w.size() \&\& a + w[b] <= t) a += w[b++];
  if (b == w.size()) return a;
  int m = *max_element(w.begin(), w.end());
  vector<int> u, v(2*m, -1);
  v[a+m-t] = b:
  for(int i = b; i < w.size(); i++) {</pre>
    for(int x = 0; x < m; x++) v[x+w[i]] = max(v[x+w[i]], u[x]);
    for (int x = 2*m; --x > m;)
     for(int j = max(Oll, u[x]); j < v[x]; j++)
        v[x-w[j]] = max(v[x-w[j]], j);
  for (a = t; v[a+m-t] < 0; a--);
  return a;
```

7.8 Dates

```
string dayOfWeek[] = {"Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"};
// converts Gregorian date to integer (Julian day number)
int dateToInt (int m, int d, int y){
    1461 * (y + 4800 + (m - 14) / 12) / 4 +
    367 * (m - 2 - (m - 14) / 12 * 12) / 12 -
   3 * ((y + 4900 + (m - 14) / 12) / 100) / 4 +
    d - 32075:
// converts integer (Julian day number) to Gregorian date: month/day/year
void intToDate (int jd, int &m, int &d, int &y){
 int x, n, i, j;
  x = jd + 68569;
 n = 4 * x / 146097;
  x = (146097 * n + 3) / 4;
  i = (4000 * (x + 1)) / 1461001;
  x = 1461 * i / 4 - 31;
  j = 80 * x / 2447;
  d = x - 2447 * j / 80;
  x = j / 11;
  m = j + 2 - 12 * x;
  y = 100 * (n - 49) + i + x;
// converts integer (Julian day number) to day of week
string intToDay (int jd){ return dayOfWeek[jd % 7]; }
```

7.9 Stable Marriage

```
std::vector<std::vector<int>> stableMarriage(std::vector<std::vector<int>> first, std::vector<std::</pre>
      vector<int>> second, std::vector<int> cap) {
        assert(cap.size() == second.size());
        int n = (int) first.size(), m = (int) second.size();
        // if O(N * M) first in memory, use table
        std::map<std::pair<int, int>, int> prio;
        std::vector<std::set<std::pair<int, int>>> current(m);
        for(int i = 0; i < n; i++) {
                std::reverse(first[i].begin(), first[i].end());
        for(int i = 0; i < m; i++) {
                for(int j = 0; j < (int) second[i].size(); <math>j++) {
                        prio[{second[i][j], i}] = j;
        for(int i = 0; i < n; i++) {
                int on = i:
                while(!first[on].empty()) {
                        int to = first[on].back();
                        first[on].pop_back();
                        if(cap[to]) {
                                cap[to]--:
                                assert(prio.count({on, to}));
                                current[to].insert({prio[{on, to}], on});
```

7.10 Mo

```
const int blk_sz = 170;
struct Query {
  int l, r, idx;
  bool operator < (Query a) {</pre>
    if (l / blk_sz == a.l / blk_sz) {
      return r < a.r;
    return (l / blk_sz) < (a.l / blk_sz);</pre>
};
vector<Query> queries;
int a[MAXN], ans[MAXN], qnt[1000010];
int diff = 0;
void add(int x) {
  x = a[x];
  if (qnt[x] == 0) {
    diff++;
  qnt[x]++;
void remove(int x) {
 x = a[x];
  qnt[x]--;
  if (qnt[x] == 0) {
    diff--:
void mos() {
  int curr_l = 0, curr_r = -1;
  sort(queries.begin(), queries.end());
  for (Query q : queries) {
    while (curr_l > q.l) {
      curr_l--:
      add(curr_l);
    while (curr_r < q.r) {</pre>
      curr_r++:
      add(curr_r);
    while (curr_l < q.l) {</pre>
      remove(curr_l);
      curr_l++;
    while (curr_r > q.r) {
      remove(curr_r);
      curr_r--:
    ans[q.idx] = diff;
```

Teoremas e formulas uteis

```
C0 = 1, Cn = somatorio de i=0 -> n-1 de <math>Ci*C(n-1+1)
                                                                                                                          outra forma: Cn = (2n \text{ escolhe } n)/(n+1)
8.1 Grafos
                                                                                                                          Bertrand's ballot theorem: p votos tipo A e q votos tipo B com p>q, prob de em todo ponto ter mais As do
                                                                                                                                  que Bs antes dele = (p-q)/(p+q)
    Formula de Euler: V - E + F = 2 (para grafo planar)
                                                                                                                          Se puder empates entao prob = (p+1-q)/(p+1), para achar quantidade de possibilidades nos dois casos
    Handshaking: Numero par de vertices tem grau impar
                                                                                                                                 basta multiplicar por (p + q escolhe q)
    Kirchhoff's Theorem: Monta matriz onde Mi,i = Grau[i] e Mi,j = -1 se houver aresta i-j ou 0 caso
           contrario, remove uma linha e uma coluna qualquer e o numero de spanning trees nesse grafo eh o
                                                                                                                          Propriedades de Coeficientes Binomiais:
                                                                                                                          Somatorio de k = 0 -> m de (-1)^k * (n \text{ escolhe } k) = (-1)^m * (n -1 \text{ escolhe } m)
                                                                                                                          (N \text{ escolhe } K) = (N \text{ escolhe } N-K)
    Grafo contem caminho hamiltoniano se:
                                                                                                                          (N \text{ escolhe } K) = N/K * (n-1 \text{ escolhe } k-1)
    Dirac's theorem: Se o grau de cada vertice for pelo menos n/2
                                                                                                                          Somatorio de k = 0 \rightarrow n de (n \text{ escolhe } k) = 2^n
    Ore's theorem: Se a soma dos graus que cada par nao-adjacente de vertices for pelo menos n
                                                                                                                          Somatorio de m = \theta -> n de (m escolhe k) = (n+1 escolhe k + 1)
    Boruvka's: enquanto grafo nao conexo, para cada componente conexa use a aresta que sai de menor custo.
                                                                                                                          Somatorio de k = 0 \rightarrow m de (n+k) escolhe k) = (n+m+1) escolhe m)
                                                                                                                          Somatorio de k = 0 \rightarrow n de (n \text{ escolhe } k)^2 = (2n \text{ escolhe } n)
                                                                                                                          Somatorio de k = 0 ou 1 \rightarrow n de k*(n escolhe k) = n * 2^(n-1)
    Tem Catalan(N) Binary trees de N vertices
                                                                                                                          Somatorio de k = 0 \rightarrow n de (n-k \text{ escolhe } k) = \text{Fib}(n+1)
    Tem Catalan(N-1) Arvores enraizadas com N vertices
    Caley Formula: n^(n-2) arvores em N vertices com label
                                                                                                                          Hockey-stick: Somatorio de i = r \rightarrow n de (i \text{ escolhe } r) = (n + 1 \text{ escolhe } r + 1)
    Prufer code: Cada etapa voce remove a folha com menor label e o label do vizinho eh adicionado ao codigo
                                                                                                                          Vandermonde: (m+n \text{ escolhe } r) = \text{somatorio de } k = 0 -> r \text{ de } (m \text{ escolhe } k) * (n \text{ escolhe } r - k)
            ate ter 2 vertices
                                                                                                                          Burnside lemma: colares diferentes nao contando rotacoes quando m = cores e n = comprimento
    Flow:
                                                                                                                          (m^n + somatorio i = 1 - > n-1 de m^qcd(i, n))/n
    Recuperar min cut eh ver se level[u] != -1 ai eh do lado do source
    Max Edge-disjoint paths: Max flow com arestas com peso 1
                                                                                                                          Distribuicao uniforme a,a+1, ..., b Expected[X] = (a+b)/2
                                                                                                                          Distribuicao binomial com n tentativas de probabilidade p, X = sucessos:
    Max Node-disjoint paths: Faz a mesma coisa mas separa cada vertice em um com as arestas de chegadas e um
                                                                                                                              P(X = x) = p^x * (1-p)^(n-x) * (n escolhe x) e E[X] = p*n
            com as arestas de saida e uma aresta de peso 1 conectando o vertice com aresta de chegada com ele
            mesmo com arestas de saida
                                                                                                                          Distribuicao geometrica onde continuamos ate ter sucesso, X = tentativas:
                                                                                                                              P(X = x) = (1-p)^(x-1) * p e E[X] = 1/p
    Koniq's Theorem: minimum node cover = maximum matching se o grafo for bipartido, complemento eh o
           maximum independent set
                                                                                                                          Linearity of expectation: Tendo duas variaveis X \in Y e constantes a \in b, o valor esperado de aX + bY = a
    Min vertex cover sao os vertices da particao do source que nao tao do lado do source do cut e os do sink
                                                                                                                                 *E[X] + b*E[X]
            que tao do lado do source, independent set o contrario
                                                                                                                          V(X) = E((X-u)^2)
    Min edge cover eh N - match, pega as arestas do match mais qualquer aresta dos outros vertices
                                                                                                                          V(X) = E(X^2) - E(X^2)
    Min Node disjoint path cover: formar grafo bipartido de vertices duplicados, onde aresta sai do vertice
                                                                                                                          PG: a1 * (q^n - 1)/(q - 1)
           tipo A e chega em tipo B, entao o path cover eh N - matching
    Min General path cover: Mesma coisa mas colocando arestas de A pra B sempre que houver caminho de A pra
                                                                                                                          Mobius Inverse: Sum(d|n): mobius(d) = [n = 1] (expressao booleana)
    Dilworth's Theorem: Min General Path cover = Max Antichain (set de vertices tal que nao existe caminho
                                                                                                                          Soma dos cubos de 1 a N = a^2 onde a = somatorio de 1 a N
           no grafo entre vertices desse set)
                                                                                                                          Lindstrom-Gessel-Viennot: quantidade de caminhos disjuntos nas linhas do grid eh o determinante da
    Hall's marriage: um grafo tem um matching completo do lado X se para cada subconjunto W de X,
                                                                                                                                 matriz de unts caminhos
         |W| <= |vizinhosW| onde |W| eh quantos vertices tem em W
    feasible flow in a network with both upper and lower capacity constraints, no source or sink: capacities
            are changed to upper bound - lower bound. Add a new source and a sink. Let M[v] = (sum \ of \ lower
                                                                                                                     8.3 Geometry
           bounds of ingoing edges to v) - (sum of lower bounds of outgoing edges from v). For all v, if M[v]
```

8.2 Math

```
Goldbach's: todo numero par n > 2 pode ser representado com n = a + b onde a \in b sao primos
Twin prime: existem infinitos pares p, p + 2 onde ambos sao primos
Legendre's: sempre tem um primo entre n^2 e (n+1)^2
Lagrange's: todo numero inteiro pode ser inscrito como a soma de 4 quadrados
Zeckendorf's: todo numero pode ser representado pela soma de dois numeros de fibonnacis diferentes e nao
       consecutivos
Euclid's: toda tripla de pitagoras primitiva pode ser gerada com
    (n^2 - m^2, 2nm, n^2+m^2) onde n, m sao coprimos e um deles eh par
Wilson's: n eh primo quando (n-1)! mod n = n - 1
Mcnugget: Para dois coprimos x, y a quantidade de inteiros que nao pode ser escrito como ax + by eh (x)
      -1)(y-1)/2,
    o maior inteiro que nao conseque eh x*v-x-v
Fermat: Se p eh primo entao a^(p-1) % p = 1
Se x e m tambem forem coprimos entao x^k % m = x^(k \mod(m-1)) % m
Euler's theorem: x^{(phi(m))} mod m = 1 onde phi(m) eh o totiente de euler
Chinese remainder theorem:
Para equacoes no formato x = a1 \mod m1, ..., x = an \mod mn onde todos os pares m1, ..., mn sao
      coprimos
Deixe Xk = m1*m2*..*mn/mk e Xk^-1 mod mk = inverso de Xk mod mk, entao
x = somatorio com k de 1 ate n de ak*Xk*(Xk,mk^-1 mod mk)
Para achar outra solucao so somar m1*m2*..*mn a solucao existente
Catalan number: exemplo expressoes de parenteses bem formadas
```

> 0 then add edge (S,v) with capcity M, otherwise add (v,T) with capacity -M. If all outgoing

edges from S are full, then a feasible flow exists, it is the flow plus the original lower_bounds

```
Formula de Euler: V - E + F = 2
Pick Theorem: Para achar pontos em coords inteiras num poligono Area = i + b/2 - 1 onde i eh o o numero
      de pontos dentro do poligono e b de pontos no perimetro do poligono
Two ears theorem: Todo poligono simples com mais de 3 vertices tem pelo menos 2 orelhas, vertices que
      podem ser removidos sem criar um crossing, remover orelhas repetidamente triangula o poligono
Incentro triangulo: (a(Xa, Ya) + b(Xb, Yb) + c(Xc, Yc))/(a+b+c) onde a = lado oposto ao vertice a.
      incentro eh onde cruzam as bissetrizes, eh o centro da circunferencia inscrita e eh equidistante
Delaunay Triangulation: Triangulacao onde nenhum ponto esta dentro de nenhum circulo circunscrito nos
     triangulos
Eh uma triangulacao que maximiza o menor angulo e a MST euclidiana de um conjunto de pontos eh um
      subconjunto da triangulacao
Brahmagupta's formula: Area cyclic quadrilateral
s = (a+b+c+d)/2
```

8.4 Dynamic Programming

area = sqrt((s-a)*(s-b)*(s-c)*(s-d))

 $d = 0 \Rightarrow area = sqrt((s-a)*(s-b)*(s-c)*s)$

```
Divide and conquer - dp[i][j] = mink < j\{dp[i - 1][k] + C[k][j]\}
dividir o subsegmento ate j em i segmentos com custo, valido se A[i][j] \ll A[i][j+1]
Knuth - p[i][j] = mini < k < j\{dp[i][k] + dp[k][j]\} + C[i][j], valido se A[i, j - 1] <= A[i][j] <= A[i]
      +1, j]
onde A[i][j] eh o menor k que da a resposta otima
slope trick - funcao piecewise linear convexa, descrita pelos pontos de mudanca de slope (multiset/heap)
lembre que existe fft, cht, aliens trick e bitset
```