

At the core of the user experience.™

Digital Signal Processing on the Industry-Standard MIPS® Architecture

Radhika Thekkath
Fall Processor Forum, 2004

Introducing the MIPS® DSP ASE

- → DSP extension to the MIPS32[®] and MIPS64[®] architectures in the integer pipeline
 - Integrates functionality
- → New Instructions and architectural state
 - Performance improvement for many applications
 - → < 6% additional die area</p>
- → Full development support

Enhancing the MIPS® Architecture with a DSP Extension for Lower System Costs

Agenda

- → MIPS® Markets
 - DSP Application Example
- → Market Drivers for Signal Processing
- → DSP ASE Details
 - → Performance Benefits
 - → Tools and Infrastructure Support
- → Summary

MIPS® Market Leadership

- → Internet Backbone 40%
- → DVD Recorders 75%
- → IDTVs 40%
- → DSL Modems 40%
- → Digital STBs 40%
 - → Cable STBs 76%
- → Office Automation 48%

Sources: IDC, Semico, In-Stat, Iconocast and MIPS Technologies. Values are percentage of W.W. box shipments.

Advanced Set-Top Box SOC

Graphics

- •2D
- •TV out

MPEG Video

•MPEG 2 decoder

Audio

- •AC-3
- Pro Logic

Res. Gateway

Demux/MPEG sys.

Transport

Periph. I/O

MIPS32[®] 24K[™] Host CPU

- **.**0S
- ·Elec. Prog. Guide
- •PVR

Still JPEG

MIPS-Based[™]

Proprietary HW

Proprietary HW/SW

Security/CA

Advanced Set-Top Box SOC

STB SOC Benefits with MIPS® DSP ASE

DSP Algorithms Need Less MHz and Area

Market Drivers For Signal Processing

Consumer Market Drivers

→ Lower system costs

- → Integrated DSP functions in the host yield smaller SOCs and cost-effective systems
- Single tool chain for signal processing and host
- → MIPS ecosystem
- Feature creep and evolving standards
- → Programmability allows easy adaptation to changing standards
- → Synthesizable performance leader
- → Increase product lifespan

Enhancing the MIPS® Architecture with a DSP Extension for Lower System Costs

Applicability of the MIPS® DSP ASE

8-Bit Data

16-Bit Data

AC-3, MPEG-2 AAC ... Communication

32-Bit Data

MIPS® DSP ASE Details

What is the MIPS® DSP ASE?

Typical DSP-Like Instructions

- •SIMD (8/16/32)
- Saturating fractional math
- MAC/dot-product
- Expand/reduce
- Absolute
- Bit-reverse
- •Etc

Key Features

- Complex multiply support
- Variable bit insert
- Variable bit extract
- Virtual circular buffers
- •Etc

New State

- Accumulators
- DSP Control

DSP Algorithm Speedup

Speedup Compared to Hand-Optimized MIPS32[®] Assembly Implementation on a 24K[™] Core

MIPS® DSP ASE Key Feature Example

Example – Efficient Bit Extraction

- → Many embedded applications use streaming input data
 - → Video, audio, communication packets, etc.
- → The issue with formatted streaming data
 - → Variability in the field widths of packet headers
 - → Extract operation needs a different shift and mask value per width – inherently inefficient

MIPS® DSP ASE Makes the Variable Bit Extraction Process Very Efficient

Efficiency of Variable Bit Extraction

LW r10, 0(r9)

LW r11, 4(r9)

MTHI r10,ac0

MTLO r11,ac0

LI r5, size

r5, size

Respond to underflow

CLTHIP ac0

LW r10, 8(9)

MTLO r10,ac0

MIPS® DSP ASE Software Support

MIPS Linux

Support new context

Application Layer

Audio, VolP

MIPS DSP Library

Common DSP routines tuned for DSP ASE

MIPS Toolkit

•Compiler, Assembler, Debuggers, etc
•Simulator
•Performance analysis

MIPS DSP ASE

Summary

- → DSP extension to the MIPS32® and MIPS64® architectures in the integer pipeline
 - Integrates functionality
- → New Instructions and architectural state
 - Performance improvement for many applications
 - → < 6% additional die area</p>
- → Full development support

Enhancing the MIPS® Architecture with a DSP Extension for Lower System Costs