Math Note ?

Jong Won

University of Seoul, Mathematics

Contents

1	Set Theory	2
2	Group Theory	3
3	Ring Theory 3.1 Ring of Fractions	4 5
4	Field Theory 4.1 Check;	6
5	Category	7
6	General Topology	8
7	Algebraic Topology	9
8	Real Analysis	10
9	Measure	11
10	Complex Analysis	12
11	Differential Geometry	13
12	Differential Equation	14

This paper contains independent topics in undergraduate mathematices.

Set Theory

Group Theory

Example. Dihedral Group

Ring Theory

3.1 Ring of Fractions

Theorem 1. Let R be a Commutative Ring, $D \subset R$ be a subset such that $\begin{cases} \text{no zero, no zero divisors} \\ \text{closed under multiplication} \end{cases}$ Then, there exists a Commutative Ring Q with identity satisfies:

- 1. R can embed in Q, and every element of D becomes unit in Q. More precisely, $Q = \{rd^{-1} \mid r \in R, d \in D\}$.
- 2. Q is the smallest Ring with identity such that every element of D becomes unit in Q.

Proof. Let $\mathcal{F} \stackrel{\mathsf{def}}{=} \{(r,d) \mid r \in R, \ d \in D\}$ and the relation \sim on \mathcal{F} by $(r_1,d_1) \sim (r_2,d_2) \iff r_1d_2 = r_2d_1$. Then, \sim is equivalent relation: reflexive and symmetric are clear, and Suppose that $(r_1,d_1) \sim (r_2,d_2)$ and $(r_2,d_2) \sim (r_3,d_3)$.

$$r_2d_3 = r_3d_2 \implies r_2d_1d_3 = r_3d_1d_2 \implies r_1d_2d_3 = r_3d_1d_2 \implies d_2(r_1d_3 - r_3d_1) \implies r_1d_3 = r_3d_1$$

Thus transitivity shown. Define

$$\frac{r}{d} \stackrel{\mathrm{def}}{=} [(r,d)] = \{(a,b) \mid (a,b) \sim (r,d)\}, \quad Q \stackrel{\mathrm{def}}{=} \left\{\frac{r}{d} \;\middle|\; r \in R, \;\; d \in D\right\}$$

And define operations $+, \times$ on Q:

$$\frac{r_1}{d_1} + \frac{r_2}{d_2} \stackrel{\text{def}}{=} \frac{r_1 d_2 + r_2 d_1}{d_1 d_2}, \quad \frac{r_1}{d_1} \times \frac{r_2}{d_2} \stackrel{\text{def}}{=} \frac{r_1 r_2}{d_1 d_2}$$

Well-Definedness: If $rac{r_1}{d_1}=rac{r_1'}{d_1'}$ and $rac{r_2}{d_2}=rac{r_2'}{d_2'}$,

$$\frac{r_1d_2+r_2d_1}{d_1d_2} = \frac{r_1d_2d_1'd_2'+r_2d_1d_1'd_2'}{d_1d_2d_1'd_2'} = \frac{(r_1d_1')d_2d_2'+(r_2d_2')d_1d_1'}{d_1d_2d_1'd_2'} = \frac{(r_1'd_1)d_2d_2'+(r_2'd_2)d_1d_1'}{d_1d_2d_1'd_2'} = \frac{(r_1'd_1)d_2d_2'+(r_2'd_2)d_1d_1'}{d_1d_2d_1'd_2'} = \frac{(r_1'd_1')d_2d_2'+(r_2'd_2')d_1d_1'}{d_1d_2d_1'd_2'} = \frac{(r_1'd_1)d_2d_2'+(r_2'd_2')d_1d_1'}{d_1d_2d_1'd_2'} = \frac{(r_1'd_1')d_2d_2'+(r_2'd_2')d_1d_1'}{d_1d_2d_1'd_2'} = \frac{(r_1'd_1')d_2d_2'+(r_2'd_2')d_1d_1'}{d_1'd_2'} = \frac{(r_1'd_1')d_2d_1'+(r_2'd_1')d_1'}{d_1'd_2'} = \frac{(r_1'd_1')d_2d_1'+(r_2'd_1')d_1'}{d_1'd_2'} = \frac{(r_1'd_1')d_1'+(r_2'd_1')d_1'}{d_1'd_2'} = \frac{(r_1'd_1')d_1'+(r_2'd_1')d_1'}{d_1'd_2'} = \frac{(r_1'd_1')d_1'+(r_2'd_1')d_1'}{d_1'd_1'} = \frac{(r_1'd_1')d_1'+(r_1'd_1')d_1'}{d_1'd_1'} = \frac{(r_1'd_1')d_1'+(r_1'd_1')d_1'}{d_1'd_1'} = \frac{(r_1'd_1')d_1'+(r_1'd_1')d_1'}{d_1'd_1'} = \frac{(r_1'd_1')d_1'+(r_1'd_1')d_1'}{d_1'd_1'} = \frac{(r_1'd_1')d_1'+(r_1'd_1')d_1'}{d_1'd_1'} = \frac{(r_1'd_1')d_1'+(r_1'd_1')d_1'}{d_1'd_1'} = \frac{(r_$$

$$\frac{r_1r_2}{d_1d_2} = \frac{r_1r_2d_1'd_2'}{d_1d_2d_1'd_2'} = \frac{(r_1d_1')(r_2d_2')}{d_1d_2d_1'd_2'} = \frac{(r_1'd_1)(r_2'd_2)}{d_1d_2d_1'd_2'} = \frac{r_1'r_2'd_1d_2}{d_1d_2d_1'd_2'} = \frac{r_1'r_2'}{d_1d_2}$$

Now, (Q,+, imes) constructs Commutative Ring with identity: for any $d\in D$, put $0_Q\stackrel{\mathsf{def}}{=} \frac{0}{d},\ 1_Q\stackrel{\mathsf{def}}{=} \frac{d}{d}.$ Then,

- 1. $(R,+,\times)$ closed under the operations since D is closed under the multiplication.
- $\textbf{2.} \ \, (R,+) \ \, \textbf{has a zero:} \ \, \frac{r_1}{d_1} + 0_Q = \frac{r_1}{d_1} + \frac{0}{d} = \frac{r_1d + 0d_1}{d_1d} = \frac{r_1d}{d_1d} = \frac{r_1}{d_1}.$
- $\textbf{3.} \ \ (R,+) \ \ \textbf{has an inverse:} \ \ \frac{r_1}{d_1} + \frac{-r_1}{d_1} = \frac{r_1d_1 + (-r_1)d_1}{d_1d_1} = \frac{[(r_1) + (-r_1)]d_1}{d_1d_1} = \frac{0d_1}{d_1d_1} = \frac{0}{d_1d_1} = 0_Q \, .$
- **4.** $(R,+,\times)$ satisfies distributive law:
 - 4-1. The left law:

$$\begin{split} \frac{r_1}{d_1} \times \left(\frac{r_2}{d_2} + \frac{r_3}{d_3}\right) = & \frac{r_1}{d_1} \times \frac{r_2d_3 + r_3d_2}{d_2d_3} = \frac{r_1r_2d_3 + r_1r_3d_2}{d_1d_2d_3} = \frac{r_1r_2d_1d_3 + r_1r_3d_1d_2}{d_1d_2d_1d_3} = \frac{r_1r_2}{d_1d_2} + \frac{r_2r_3}{d_2d_3} \\ = & \frac{r_1}{d_1} \times \frac{r_2}{d_2} + \frac{r_2}{d_2} \times \frac{r_3}{d_3} \end{split}$$

4-2. The right law:

- 5. (R,\times) has an identity: $\frac{r_1}{d_1}\times 1_Q=\frac{r_1}{d_1}\times \frac{d}{d}=\frac{r_1d}{d_1d}=\frac{r_1}{d_1}$.
- 6. Elements of D become unit in Q: Define $\iota:R\to Q:r\mapsto \frac{rd}{d}$ where $d\in D$ is any fixed element in D. Then, ι is Ring-Monomorphsim because:
 - 6-1. Well-Defined and Injective: $\iota(r_1)=\iota(r_2)\iff \frac{r_1d}{d}=\frac{r_2d}{d}\iff (r_1-r_2)dd=0\iff r_1=r_2$

Field Theory

4.1 Check;

Check to upload: Can? Good?

Category

General Topology

Algebraic Topology

Real Analysis

Measure

.

Complex Analysis

Differential Geometry

Differential Equation