Билет 2, часть 5

Теоремы о продолжении решения для нормальной системы дифференциальных уравнений

Теоремы Коши носят существенно локальный характер. Решение и единственность задачи Коши будет существовать на отрезке Пеано. Теперь сделаем отход от единственности и докажем, что $\vec{\varphi}(t)$ и $\psi(t)$ есть решение задачи Коши, то они будут совпадать на промежутке, где они оба определены (отход от локальности).

Теорема 0.1. Пусть $\vec{\varphi}(t)$ решение $(1) \wedge (2)$ определенно на [a,b], а $\vec{\psi}(t)$ решение $(1) \wedge (2)$ определенно на [c,d]. Тогда $\vec{\varphi}(t) \equiv \vec{\psi}(t)$ на $[r_1,r_2] = [a,b] \cap [c,d]$.

Доказательство. От противного: $\exists t^* \in [r_1, r_2]$, где $\vec{\varphi}(t^*) \neq \vec{\psi}(t^*)$, тогда $t^* \neq t_0$ и предположим, что $t^* > t_0$. Рассмотрим множество N точек такое, что $t \in [r_1, r_2]$ и $\vec{\varphi}(t) = \vec{\psi}(t)$. Покажем, что множество замкнуто:

Рассмотрим сходящуюся послед-сть $t_1 \dots t_n \in \mathbb{N}$, $\lim_{n \to \infty} t_n = \overline{t}$. Нужно показать, что $\overline{t} \in \mathbb{N}$:

Рассмотрим $\lim_{n\to\infty} \vec{\varphi}(t_n) = \lim_{n\to\infty} \vec{\psi}(t_n)$ (равны по выбору множества N). И из непрерывности выбранных функций получаем, что $\lim_{n\to\infty} \vec{\varphi}(t_n) = \lim_{n\to\infty} \vec{\psi}(t_n) = \vec{\varphi}(\bar{t}) = \vec{\psi}(\bar{t}) \Rightarrow$ замкнутость. Из замкнутости и ограниченности мн-ва $N \Rightarrow \exists \tilde{t} = \sup N, \, \tilde{t} \in N$. Мы пришли к противоре-

чию, а именно t^* по начальному предположению должна быть точной верхней гранью.

Определение 0.1. $\vec{\varphi}(t)$ определена на $\langle a,b \rangle$ и решение $(1) \wedge (2)$, если $\exists \vec{\psi}(t)$ на $\langle a,b_1 \rangle \supset$ $\langle a,b \rangle$, и решение $(1) \wedge (2)$ и $\vec{\varphi}(t) \equiv \vec{\psi}(t)$ на $\langle a,b \rangle$, тогда $\vec{\varphi}(t)$ называется продолжаемым вправо, а $\vec{\psi}(t)$ продолжением решения $\vec{\varphi}(t)$ задачи Коши

Определение 0.2. Решение, которое нельзя продолжить ни вправо, ни влево называется непродолжаемым решением

Примечание. По сути данная теорема является усилением задачи Коши. Вместо отрезка Пеано мы получили, что решение задачи Коши может быть продолжено на промежуток, где они оба определены.

Теорема 0.2. Пусть имеется задача Коши $(1) \wedge (2)$ и $\vec{f}(t, \vec{x}), \frac{\partial f^i}{\partial x_i}, i, j = \overline{1, n}$ непрерывны в Ω с \mathbb{R}^{n+1} . Тогда $\forall (t_0, \vec{x_0}) \in \Omega$ $\exists !$ непродолжаемое решение задач \vec{u} $(1) \wedge (2)$.

Доказательство. Рассмотрим множество решений задач Коши $(1) \land (2)$. Каждое решение задачи определенно на промежутке $\langle R_1, R_2 \rangle$, тогда пусть $T_1 = inf \ R_1, T_2 = sup \ R_2$. Построим решение задачи (1) \wedge (2) на (T_1, T_2) :

Выберем $t^* > t_0$, тогда $\exists \ \psi(t)$, чей промежуток содержит t^* (в силу выбора промкежутка (T_1,T_2)). Положим $\vec{\varphi}(t^*) \stackrel{def}{=} \vec{\psi}(t^*)$. Покажем, что так можем сделать, что значение $\vec{\varphi}(t^*)$ не зависит от выбора $\vec{\psi}(t)$:

Пусть $\hat{\psi}(t)$ решение задачи Коши (1) \wedge (2) содержащее t^* , тогда $\hat{\psi}(t^*) = \vec{\psi}(t^*)$ из теоремы сущ. и единст. решения задачи Коши (будут совпадать на промежутке, где они определены и при этом t^* принадлежит этому промежутку).

Построение вниз проводится аналогично. И так, $\vec{\varphi}(t)$ решение (1) \wedge (2) на $T_1 < t < T_2$. Это решение является продолжением любого из множества решений задачи Коши. Допустим, $\vec{\widetilde{\varphi}}(t)$ решение $(1) \land (2)$ на $r_1 \le t \le r_2$ и $T_1 \le r_1 \le r_2 \le T_2 \Rightarrow \vec{\widetilde{\varphi}}(t) = \vec{\varphi}(t)$ (продолжение решения по доказанной выше теоремы).

Покажем, что $\vec{\psi}(t)$ является непродолжаемым решением (1) \wedge (2): Допустим, что имеется ещё одно решение $\vec{\chi}(t)$, определённое на $(\gamma_1; \gamma_2)$ и оно является продолжением $\vec{\varphi}(t)$. Тогда, либо $\gamma_1 < T_1$, либо $\gamma_2 > T_2$, что невозможно, т.к. $T_1 = inf \ R_1, T_2 = sup \ R_2$ по построению. Покажем, что непродолжаемое решение $\vec{\varphi}(t)$ является единственным:

От противного, пусть $\exists \vec{\varphi}(t)$ непродолжаемое решение на (T_1, T_2) и $\vec{\psi}(t)$ на (T_1, T_2) . Для определённости $\widetilde{T}_1 < T_1$, тогда рассмотрим такое решение $\vec{\chi}(t) = \begin{bmatrix} \vec{\psi}(t) \text{ на } (\widetilde{T}_1, T_1), \\ \vec{\varphi}(t) \text{ на } (T_1, T_2); \end{bmatrix} \Rightarrow \vec{\varphi}(t)$

– продолжение $\vec{\psi}(t)$, противоречие. Аналогично строя остальные решения получаем, что $\vec{\varphi}(t) = \vec{\psi}(t)$

Примечание. В теореме не сказано, как определить T_1 и T_2 . Если усилить условия теоремы, а именно Ω есть ограниченная область, то любое непродолжаемое решение выходит на границу этой области.

Из этих утверждений следует, что если под интегральной кривой понимать график непродолжаемого решения, то через каждую точку $(x_0, y_0) \in \Omega$ проходит только одна кривая.

Непрерывная зависимость от параметров решения задачи Коши для нормальной системы ДУ

Рассматриваем уравнение

$$y = f(x, y, \mu) \tag{1}$$

с задачей Коши $y(x_0,\mu)=y_0,$ где μ – параметр.

Теорема 0.3. Пусть \mathcal{G} – область в пр-ве (z,y,μ) . Если ф-ции $f(x,y,\mu)$, $\frac{\partial f(x,y,\mu)}{\partial u}$ непрерывны в области по совокупности переменных и точка $(x_0, y_0, \mu_0) \in \mathcal{G}$, то решение задачи Коши (1 $y(x,\mu)$) непрерывно по совокупности переменных $(x;\mu)$ в некоторой области $|x-x_0| \leq h, |\mu-\mu_0| \leq \delta$

Доказательство. Аналогично доказательство основной теоремы (!!!!!Здесь можно вставить ссылку на основную теорему!!!!!!) сведем задачу Коши к эквивалентной её интегральному уравнению

$$y(x,\mu) = y_0 + \int_{x_0}^x f(\tau, y(\tau, \mu)) d\tau,$$
 (2)

или в операторной форме:

$$y(x,\mu) = A(y(x,\mu)),\tag{3}$$

где $A(y(x,\mu))=y_0+\int_{x_0}^x f(\tau,y(\tau,\mu))d\tau.$ Выберем параллеленинед $\prod=\{|x-x_0|\leq a,\, |\mu-\mu_0|\leq \delta, |y-y_0|\leq b\},$ целиком лежащей в области \mathcal{G} . В силу условий теоремы $\exists \ K = \max_{\Pi} |f(x,y,\mu)|, \ C = \max_{\Pi} \left| \frac{\partial f(x,y,\mu)}{\partial y} \right|.$ Применим к (3) принцим сжатых отображений. В качестве B возьмём пр-во ф-ций $y(x,\mu)$

непрерывных в прямоугольнике $\{|x-x_0| \le h, |\mu-\mu_0| \le \delta\}$, где h>0 будет выбрано с нормой $||y(x,\mu)||=\max_{|x-x_0|\leq h}\;|y(\mu,x)|.$ В качестве $M\subset B$ возьмём множество функций из Bтаких, что $||y(x,\mu) - y_0||_C < b$.

1) Нужно, чтобы
$$A(y(x,\mu)) \in M$$
, если $y(x,\mu) \in M$. $||A(y) - y_0|| = \left| \left| \int_{x_0}^x f(\tau,y(\tau,\mu)) d\tau \right| \right| \le$

$$\left|\int_{x_0}^x f(\tau,y(\tau,\mu))d\tau\right| \leq K \cdot h \ \Rightarrow \text{ Heoбxодимо, чтобы } K \cdot h < b \ \Rightarrow h = \min \ \{a,\frac{b}{K}\}.$$
 2) Нужно, чтобы A_x было сжатием, т. е. $||A\varphi - A\psi|| \leq k \cdot ||\varphi - \psi||, \ 0 < k < 1.$
$$||A\varphi - A\psi|| = \left|\left|\int_{x_0}^x \left(f(\tau,\varphi(\tau,\mu)) - f(\tau,\psi(\tau,\mu))\right) \cdot d\tau\right|\right| \leq \left|\int_{x_0}^x ||f(\tau,\varphi(\tau,\mu)) - f(\tau,\psi(\tau,\mu))|| \cdot d\tau\right| \leq \left|\int$$

решением операторного уравнения $y(x,\mu) = A(y(x,\mu))$, а значит и задача Коши (1). Причём решение $y(x,\mu)$ непрерывно по совокупности переменных.

Дифференцируемость решения по параметру.

Пусть $y(x,\mu)$ является решением задачи Коши (1). Введем ф-цию $z(x,\mu)$: $z(x,\mu) = \frac{\partial y(x,\mu)}{\partial \mu}$

Теорема 0.4. Если $f(x, y, \mu)$ как функция трёх переменных в области \mathcal{G} пр-ва (x, y, μ) р раз непрерывно дифференцируема по (y, μ) и p-1 раз непрерывно дифференцируема по x, тогда решение задачи Коши (1) $y(x, \mu)$ является p раз непрерывно дифференцируема по совокупности (x, μ) .

Доказательство. В 15 лекции от 10.12.20 года лектор сказал, что доказывать не будет . Запись текущего года на ютубе отсутствует. В Федорюке проводится доказательство для p=1 (см следствие).

Следствие 0.4.1.
$$\frac{\partial}{\partial \mu} \left(\frac{dy}{dx} \right) = \frac{\partial}{\partial \mu} \left(f(x, y(x, \mu), \mu) \right) = \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial \mu} + \frac{\partial f}{\partial \mu}$$
$$c \ \textit{задачей Коши:} \ \frac{\partial z}{\partial \mu} (x_0) = \frac{\partial y_0}{\partial \mu}. \Rightarrow \frac{d}{dx} \left(\frac{\partial y}{\partial \mu} \right) = \boxed{z_x' = \frac{\partial f}{\partial y} \cdot z + \frac{\partial f}{\partial \mu}} - \textit{уравнение в вариациях для (1)}.$$

Примечание. Уравнение в вариациях всегда линейное.

Задача Коши для уравнения первого порядка, не разрешенного относительно производной. Особое решение

Рассматриваем уравнение

$$F(x, y, y') = 0, (4)$$

где F(x,y,y') как функция трёх переменных является непрерывно дифференцируемой функцией в области $\mathcal{D} \subset \mathbb{R}^3$.

Теорема 0.5. Пусть $F \in C^1$ в $\mathcal{D} \subset \mathbb{R}^3$ в точке $M(x_0, y_0, y_0') \in \mathcal{D}$ выполнено $F(x_0, y_0, y_0') = 0$ и $\frac{\partial F(x_0, y_0, y_0')}{\partial y'} \neq 0$. Тогда $\exists h > 0$: $\forall x \in [x_0 - h; x_0 + h]$ существует и единственно решение (4), удовлетворяющая условиям

$$y(x_0) = y_0, y'(x_0) = y'_0.$$
 (5)

Доказательство. Из условий теоремы о неявной функции существует окрестность U точки (x_0, y_0) , в которой существует $f(x, y) \in C_U^1$ такая, что

$$y' = f(x, y). (6)$$

При этом

$$F(x, y, f(x, y)) \equiv 0, f(x_0, y_0) = y_0'. \tag{7}$$

Согласно основной теореме, существует отрезок Пеано, принадлжащий проекции U на ось абсцисс, на котором существует и единственно решение (6), удовлетворяющее условию $y(x_0) = y_0$.

Пусть это решение есть $y = \varphi(x)$, $y_0 = \varphi(x_0)$. Тогда $y' = \varphi'(x) \equiv f(x, \varphi(x))$, и из (7) следует, что $F(x, \varphi(x), \varphi'(x)) \equiv 0$, $\varphi'(x_0) = f(x_0, \varphi(x_0)) = y'_0 \Rightarrow y = \varphi(x)$ – решение задачи (4) \wedge (5)

Примечание. Второе условие в (5) возникает из-за неоднозначности разрешения F(x,y,y')=0, относительно y' в точке $\frac{\partial F}{\partial y'}=0$. Так, в $\mathcal{J} Y \ (y')^2=4x^2 \ \forall (x,y): y'=\pm 2x$. Второе условие (5) определяет одно из условий (фактически выбор $\mathcal{J} Y$).

На плоскости (x;y) рассмотрим кривую γ , определяемую системой уравнений, каждое из которых определяет поверхность.

$$\begin{cases} F(x, y, y') = 0, \\ \frac{\partial F(x, y, y')}{\partial y'} = 0. \end{cases}$$
(8)

Определение 0.3. Кривая (8) называется дискриминантной кривой.

Примечание. По опредлению дискриминантной кривой, в каждой точке нарушается единственность решения (4). В приведённом выше примере дискриминантная кривая есть x = 0 и решение задачи y(0) = C, y' = 0 будет иметь четыре решения:

$$y = x^2 + C$$
, $y = -x^2 + C$, $y = \begin{bmatrix} x^2 + C, & x \le 0 \\ -x^2 + C, & x > 0 \end{bmatrix}$ $y = \begin{bmatrix} -x^2 + C, & x \le 0, \\ x^2 + C, & x > 0. \end{bmatrix}$

Определение 0.4. Решение $\mathcal{A}\mathcal{Y}$ называется особым, если в каждой ему принадлежащей точке его касается другое решение $\mathcal{A}\mathcal{Y}$, отличное от него в любой достаточно малой окрестности этой точки.

Примечание. Т. е. особым решением являются ветви дискриминантной кривой, которые являются решением этого уравнения.