Boring but important disclaimers:

If you are not getting this from the GitHub repository or the associated Canvas page (e.g. CourseHero, Chegg etc.), you are probably getting the substandard version of these slides Don't pay money for those, because you can get the most updated version for free at

https://github.com/julianmak/academic-notes

The repository principally contains the compiled products rather than the source for size reasons.

- Associated Python code (as Jupyter notebooks mostly) will be held on the same repository. The source data however might be big, so I am going to be naughty and possibly just refer you to where you might get the data if that is the case (e.g. JRA-55 data). I know I should make properly reproducible binders etc., but I didn't...
- ▶ I do not claim the compiled products and/or code are completely mistake free (e.g. I know I don't write Pythonic code). Use the material however you like, but use it at your own risk.
- As said on the repository, I have tried to honestly use content that is self made, open source or explicitly open for fair use, and citations should be there. If however you are the copyright holder and you want the material taken down, please flag up the issue accordingly and I will happily try and swap out the relevant material.

OCES 2003 : Descriptive Physical Oceanography

(a.k.a. physical oceanography by drawing pictures)

Lecture 13: Southern Ocean and ACC

Outline

- Southern Ocean and the Antarctic Circumpolar Current (ACC)
 - → largest/strongest current in the world
- beyond the homogeneous gyre example
 - → wind forcing and Ekman overturning cell (+ existence of counter overturning cell)
 - → thermal wind shear relation (cf. Lec. 7 + 8)
 - \rightarrow stratification + form stress
 - → baroclinic instability (see Lec. 17)
 - \rightarrow influence on MOC (see next Lec.)

Key terms: ACC, Ekman + eddy overturning cell, thermal wind, (interfacial/topographic) form stress, baroclinicity

Recap: Southern ocean (slide from Lec 2)

Oceans separated horizontally by continental land masses

- constraints on dynamics + circulation (contrast this to atmosphere)
 - → Southern ocean slightly different...

Recap: Southern ocean

Figure: Spillhaus projection with a focus on the oceans and, in particular, of the Southern Ocean. See diagram for origin of diagram.

- unblocked latitudes, no zonal landmass boundaries
 - \rightarrow dynamical implications? (see later)
 - \rightarrow paleoclimate consequences? (see OCES 4001)
- forced by SH mid-latitude prevailing Eastward wind (Westerlies)
- connected to all other major ocean basins

Recap: Southern ocean

Figure: Spillhaus projection with a focus on the oceans and, in particular, of the Southern Ocean, with a schematic of the MOC put on (red = warm surface waters, blue = cold deep/abyssal waters). From Mike Meredith (BAS), from his Challenger Medal ceremony talk in 2018.

- ► Antarctic Circumpolar Current (ACC)
 - \rightarrow world's largest current, transport of $\approx 130 \text{ Sy}$ (1 Sv = 10⁶ m³ s⁻¹)
 - → very turbulent/unstable region (see Lec. 17)
- subpolar gyres on Antarctic side
 - → cyclonic (clockwise in SH), e.g. Ross + Weddell
- central role in global MOC (see Lec. 14)

Recap: stratification

Figure: Meridional section in the Atlantic of σ_2 . See plot.eos.ipynb. Strongly tilting isopycnals present in the Southern Ocean, in contrast to relatively flat isopycnals in the basins.

- ▶ meridional section plot of σ_2 (see Lec. 6)
- strongly tilting isopycnals (see Lec. 6) in Southern Ocean
- wind coming out of page
- ightharpoonup but sign + profile of wind stress curl? (see Lec. 9)

buoyancy/thermodynamic forcing:

- $ightharpoonup T_{air}$ **cold** (high latitudes), heat **loss** from ocean
- → buoyancy loss (water getting denser)

buoyancy/thermodynamic forcing:

- $ightharpoonup T_{air}$ **cold** (high latitudes), heat **loss** from ocean
- → buoyancy loss (water getting denser)
- ▶ if ice **melting**, release freshwater
 - ⇒ buoyancy **gain** (water getting lighter)
 - → vice-versa if forming ice (brine rejection)

buoyancy/thermodynamic forcing:

- $ightharpoonup T_{air}$ **cold** (high latitudes), heat **loss** from ocean
- → buoyancy loss (water getting denser)
- ▶ if ice **melting**, release freshwater
 - ⇒ buoyancy **gain** (water getting lighter)
 - → vice-versa if forming ice (brine rejection)

mechanical forcing:

- mid-latitude prevailing Eastward winds (Westerlies)
 - \Rightarrow **E-ward** momentum injection

buoyancy/thermodynamic forcing:

- $ightharpoonup T_{air}$ **cold** (high latitudes), heat **loss** from ocean
- → buoyancy loss (water getting denser)
- ▶ if ice **melting**, release freshwater
 - ⇒ buoyancy **gain** (water getting lighter)
 - → vice-versa if forming ice (brine rejection)

mechanical forcing:

- mid-latitude prevailing Eastward winds (Westerlies)
 - ⇒ **E-ward** momentum injection
- bathymetric feautres
 - ⇒ **take out** momentum (see Lec 10) via topographic form stress (see later)

Figure: Bathymetry around the Drake passage. Figure modified from Civile et al. (2012), Tectonophysics (top half of their Fig. 1)

Some notable bathymetric features:

- Drake passage, a choke point for the ACC
- Kerguelen plateau, a wide ridge (not shown here)
 - \rightarrow water depth can vary from 4000 to 1000 m (recall PV conservation Lec. 12)

gyres vs. ACC

gyres	ACC
bounded latitudes	unblocked latitudes
	cf. atmosphere
WBC: intense narrow current	ACC: reasonably "fast", but broad
pprox 30 Sv transport	$pprox 130 \mathrm{Sv}$ transport
depth-independent theory ok?	depth-independent theory "fails"
	e.g. Gill (1968) J. Fluid Mech.
	but see Marshall et al. (2016) Ocean Modell.
Sverdrup balance OK	eddies important

 despite differences, dynamical concepts shared between the two

again, dynamics important!

Figure: Ekman overturning and its consequences.

Figure: Ekman overturning and its consequences.

SO stratification control, how is it related to ACC?

SO stratification control, how is it related to ACC? Recall hydrostatic balance (Lec 7) and geostrophic balance (Lec 8):

$$\frac{\partial p}{\partial z} = -\rho g, \qquad f \mathbf{e}_z \times \mathbf{u}_g = -\frac{1}{\rho_0} \nabla p$$

SO stratification control, how is it related to ACC? Recall hydrostatic balance (Lec 7) and geostrophic balance (Lec 8):

$$\frac{\partial p}{\partial z} = -\rho g, \qquad f \mathbf{e}_z \times \mathbf{u}_g = -\frac{1}{\rho_0} \nabla p$$

Combine the two?

SO stratification control, how is it related to ACC? Recall hydrostatic balance (Lec 7) and geostrophic balance (Lec 8):

$$\frac{\partial p}{\partial z} = -\rho g, \qquad f \mathbf{e}_z \times \mathbf{u}_g = -\frac{1}{\rho_0} \nabla p$$

Combine the two?

▶ eliminate p, so take ∇ or hydrostatic balance and $\partial/\partial z$ of geostrophic balance (shenanigans here!):

$$\frac{\partial \nabla p}{\partial z} = -g \nabla \rho, \qquad f e_z \times \frac{\partial u_g}{\partial z} \stackrel{!}{=} -\frac{1}{\rho_0} \frac{\partial}{\partial z} \nabla p$$

SO stratification control, how is it related to ACC? Recall hydrostatic balance (Lec 7) and geostrophic balance (Lec 8):

$$\frac{\partial p}{\partial z} = -\rho g, \qquad f \mathbf{e}_z \times \mathbf{u}_g = -\frac{1}{\rho_0} \nabla p$$

Combine the two?

▶ eliminate p, so take ∇ or hydrostatic balance and $\partial/\partial z$ of geostrophic balance (shenanigans here!):

$$\frac{\partial \nabla p}{\partial z} = -g \nabla \rho, \qquad f e_z \times \frac{\partial u_g}{\partial z} \stackrel{!}{=} -\frac{1}{\rho_0} \frac{\partial}{\partial z} \nabla p$$

eliminate pressure to get

$$f\mathbf{e}_z \times \frac{\partial \mathbf{u}_g}{\partial z} \stackrel{!}{=} \frac{g}{\rho_0} \nabla \rho$$

$$f\mathbf{e}_z \times \frac{\partial \mathbf{u}_g}{\partial z} \stackrel{!}{=} \frac{g}{\rho} \nabla \rho$$

► thermal wind relation (ignoring some shenanigans for now) says that

horizontal gradients in $ho\sim$ vertical gradients in u_g

- tilting isopycnals implies there a geostrophic flow
 - \rightarrow system needs to be rotating
 - \rightarrow more tilt = stronger flow
 - \rightarrow direction depends on tilt and hemisphere (because f changes sign)
 - ? combine with SSH to get vertical profile of geostrophic flow? (see Lec. 20. OCES 3203, maybe OCES 3301)

Figure: Meridional section in the Atlantic of (top) in-situ density and (bot) σ_0 . See plot_eos_ipynb, σ_0 implies there is a thermal wind coming out of the page in the Southern Ocean (because f < 0), consistent with what we know. On the other hand, in-situ density σ implies basically nothing is going on, which we know is not true.

2/3 way point

- wind puts momentum in + induces an overturning via Ekman suction/pumping (Lec. 9)
 - \rightarrow **steepens** isopycnals (Lec. 5 + 6)
 - → cannot continue indefinitely (otherwise convectively unstable), existence of counter overturning cell (see later)
- thermal wind shear relation
 - → hydrostatic + geostrophic balance (Lec. 7 + 8)
 - \rightarrow tilting isopycnals = geostrophic flow
 - \rightarrow consistent with E-ward wind momentum input

2/3 way point

- wind puts momentum in + induces an overturning via Ekman suction/pumping (Lec. 9)
 - \rightarrow **steepens** isopycnals (Lec. 5 + 6)
 - → cannot continue indefinitely (otherwise convectively unstable), existence of counter overturning cell (see later)
- thermal wind shear relation
 - → hydrostatic + geostrophic balance (Lec. 7 + 8)
 - \rightarrow tilting isopycnals = geostrophic flow
 - → consistent with E-ward wind momentum input
- baroclinic theory here, vertical structure + stratification involved
 - \rightarrow cf. homogeneous gyre theory, but ideas here also apply somewhat there

How is momentum removed?

- ► removal at bottom (momentum input by wind ~ momentum removal at ocean floor loss to land)
 - → but how? (topographic form stress)
 - \rightarrow role of PV conservation? (Lec. 12)
- how is it transferred vertically? (interfacial form stress)

How is momentum removed?

- ► removal at bottom (momentum input by wind ~ momentum removal at ocean floor loss to land)
 - → but how? (topographic form stress)
 - \rightarrow role of PV conservation? (Lec. 12)
- ▶ how is it **transferred** vertically? (interfacial form stress)

in essence pressure gradients (Lec. 7)

Figure: Schematic of (interfacial + topographic) form stress.

Figure: Schematic of (interfacial + topographic) form stress.

f/H contours (recall Lec. 12)

Figure: Conservation of $q = \omega/H$ (assuming $|\omega| \gg |f|$ for illustration). As H decreases, the spinning gets faster to compensate so that q is conserved.

Recall PV was loosely defined as (Lec 12) $q=(f+\omega)/H$

- ▶ planetary f + relative $\omega = e_z \cdot \nabla \times u$ vorticity, scaled by fluid depth H
 - \rightarrow on large-scales $|\omega| \ll |f|$ (homework exercise)
- ▶ geostrophic flow **wants** to travel along $q \approx f/H$ contours
 - → to conserve angular momentum
- Q. at given latitude, f is fixed by H might not be, so whats the consequences?

f/H contours

Figure: Some consequences of f/H contours.

- ▶ if bathymetric feature not that tall ($H \approx H_{\text{ref}}$), just go **over**
 - → not that much "pressing" onto bathymetry
 - \rightarrow weaker ∇p so smaller topographic form stress
 - → **weak** deceleration, weak topographic influence
- theories neglecting baroclinicity + topography results in ACC transport being ridiculously large

f/H contours

Figure: Some consequences of f/H contours.

- ▶ if bathymetric feature tall enough $(H < H_{ref})$, f/H contours can be blocked
 - → significant "pressing" onto bathymetry
 - \rightarrow strong ∇p so stronger topographic form stress
 - \rightarrow **strong** deceleration, topographic influence significant
 - \rightarrow e.g. Drake passage, Kerguelen plateau

- what is the source of the counter overturning cell?→ strength probably
 - needs to be related to isopycnal slopes

 what is the source of the counter overturning cell?
 → strength probably needs to be related to isopycnal slopes

baroclinic instability

- ▶ sloping isopycnals ~ vertically sheared flow (thermal wind)
- Sheared flow ⇒ instability (see Lec. 17)
 → reduce vertical shear ~ flatten isopycnals

eye candy

Figure: Idealised sector model from Munday, Johnson & Marshall (2013), J. Phys Oceanogr. and results on ACC transport (related to Southern Ocean overturning) sensitivity with changes of wind depending on mesoscale parameterisation, from Mak et al. (2018), J. Phys Oceanogr.

- residual of Ekman and eddy cell affects SO stratification
 - → affects ACC transport through thermal wind
 - \rightarrow can have **global** effect via isopycnal connectivity to all ocean basins (see Lec. 14)

Figure: Snapshots of surface relative vorticity of a double gyre model at different resolutions. From Lévy et al., (2010), Ocean Model. (modified from their Fig. 3).

- ▶ important in gyres too (see Lec. 12)
 - → shaping the WBC, bio-physical interaction, momentum transfer etc.

Summary

- ► Southern Ocean the "center" of the global ocean
 - → unblocked latitudes
 - \rightarrow stratification here can influence **global** stratification (and in turn global MOC, ocean heat content etc.) (see Lec. 14)
- ACC largest current in the world
 - \rightarrow tilting isopycnals, thermal wind relation (geostrophic + hydrostatic balance) (more in Lec. 20)
 - → Ekman vs. eddy overturning cell, residual affecting overall stratification
 - \rightarrow role of form stress and f/H contours
 - → baroclinic eddies a source of form stress + flattens isopycnals (more in Lec. 17)

Key role of dynamics, applicable to ACC + gyres!

