UGANDA MARTYRS UNIVERSITY

UNIVERSITY EXAMINATIONS

FACULTY OF SCIENCE

FINAL EXAMINATIONS FOR BACHELOR OF SCIENCE IT, BACHELOR OF SCIENCE GENERAL & BACHELOR OF NATURAL RESOURCE MANAGEMNET

YEARS I & III

SEMESTER I, 2023/2024

MTC 1102: ELEMENTS OF MATHEMATICS

DATE: THURSDAY; 14/12/2023

TIME: 9:30 am - 12:30 pm

DURATION: 3 hours

Instructions

- 1. Carefully read through ALL the questions before attempting
- 2. Attempt FOUR questions
- 3. Indicate the numbers you have done on the front page in their order
- 4. Ensure that ONLY your Registration number is indicated on the front page

Question 1

_ a) Using relevant examples, state two basic properties used to represent a set [3 marks]

In a class of Mathematics students, 15 take Agriculture and German, 17 take German and French, 13 take French and Agriculture, 6 take French only, 6 take Agriculture only and 3 German only. 3 take all the three subjects.

Determine: -

- (i) Summarize the above information using set language [6 marks]
- (ii) Represent the above information in Venn diagrams [6 marks]
- (iii) The total number of students in the mathematics class [2 marks]
- (iv) The percentage of students who take two subjects only [2 marks]
- (v) The number of students who take at most two subjects [3 marks]
- (vi) The number of students who take at least two subjects [3 marks]

Question 2

- (a) Given a set A = {1, 2, 3, 4}. Determine a binary relation R on A [7 marks]
- (b) Determine the following sub relations from R

(i)
$$R_1 = \{(x, y): x \le y\}$$
 [3 marks]

(ii)
$$R_2 = \{(x, y): x > y\}$$
 [3 marks]

(iii)
$$R_3 = \{(x, y): x = y - 1\}$$
 [3 marks]

(iv)
$$R_4 = \{(x, y): xy > 16\}$$
 [3 marks]

(c) Determine R₁
$$\Delta$$
 R₃ [3 marks]

(d) Determine
$$R_1 - R_3$$
 [3 marks]

Question 3

Given the following complex numbers $z_1 = 3 - 2i$ and $z_2 = -5 + 7i$. Determine: -

(i) $z_1 + z_2$

 $(ii) z_1 - z_2 [4 marks]$

[4 marks]

(iv) arg z_1 [4 marks]

(v) $(z_1)^{20}$ [5 marks]

(vi) Represent z₁ and z₂ on Argand diagram [4 marks]

Question 4

a) Define the following terms as used in propositional logic

(i) Simple sentence [2 Marks]

(ii) Compound sentence [2 Marks]

(iii) Logical equivalence [2 Marks]

b) Determine whether or not each of the following propositional logic functions is a tautology, contradiction or a contingency

(i) PL: $((P \land Q) \rightarrow \neg R)$ [7 marks]

(ii)PL: $\neg (P \rightarrow \neg Q) \lor (P \land Q)$ [7 marks]

c) Determine if $((P \land Q) \rightarrow \neg R) \equiv (P \rightarrow Q) \land (Q \rightarrow R)$ [5 marks]

[4 marks]

Question 5

- (a) Given the following circuit diagram. Determine: -
- (i) The output Q

[3 marks]

(ii) Simplified version of Q

[3 marks]

(iii) Equivalent circuit diagram of Q

[3 marks]

- (b) Given the following Boolean outputs R = XY(Y'Z + XZ) and $P = \overline{\overline{A + BC} + \overline{AB}}$. Draw a circuit diagram for the following outputs: -
- (i) R

[4 marks]

(ii) P

[4 marks]

(iii) Simplify outputs R and P and draw equivalent circuit diagrams

[4 marks]

(iv) Describe the applications of logic gates in real life

[4 marks]

END