

Predicting gene expression using millions of random promoter sequences DREAM Challenge 2022

IBM Research

Google Research TPU Research Cloud

Proformer: a hybrid macaron transformer model predicts expression values from promoter sequences

Wuming Gong¹, Byeong-Chan Kim², Juhyun Lee², II-Youp Kwak²

- ¹ Lillehei Heart Institute, University of Minnesota, USA
- ² Department of Applied Statistics, Chung-Ang University, Seoul, Republic of Korea

https://github.com/gongx030/dream PGE

Proformer: an end-to-end Transformer encoder architecture to predict the expression values from DNA sequences

Large over-parameterized models with global average pooling layer failed to converge

Dimension of 256 and Macaron blocks of 8 on ~500k samples

Multiple expression heads with mask filling produce better performance on large over-parameterized models

Dim.	Attention heads	Macaron Blocks	Average Pooling	Expression heads (H)					
				1	8	16	32	64	
64	2	1	0.7026	0.7046	0.7011	0.6977	0.6977	0.6943	
64	2	2	0.7094	0.7086	0.7122	0.7119	0.7136	0.7088	
64	2	4	0.7140	0.7196	0.7162	0.7184	0.7190	0.7200	
64	2	8	0.7151	0.7198	0.7223	0.7138	0.7191	0.7214	
128	4	1	0.7033	0.7153	0.7137	0.7075	0.7069	0.7047	
128	4	2	0.7164	0.7209	0.7142	0.7197	0.7147	0.7175	
128	4	4	0.7189	0.7224	0.7207	0.7218	0.7139	0.7192	
128	4	8	0.0145	0.6627	0.7223	0.7200	0.7207	0.7226	
256	8	1	0.7109	0.7177	0.7104	0.7124	0.7058	0.7152	
256	8	2	0.7157	0.7219	0.7197	0.7185	0.7207	0.7177	
256	8	4	0.6406	0.6616	0.7210	0.7186	0.7213	0.7211	
256	8	8	0.0165	0.0603	0.7188	0.7194	0.7222	0.7173	

Pearson's R

- 10% of training sequences / expression pairs
- Adam optimizer with base learning rate of 0.001 and clipping
- Linear warmup (one epoch) with cosine decay

- Batch size of 512
- Best Pearson's R in the first 20 epochs
- Masking 5% of positions
- K-mer of 5 with stride of one

Predicting chromatin accessibility from DNA sequences

Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq)

- ATAC-seq data of GM12878 (human LCL)
- 100,000 genomic sub-regions were randomly sampled from the 1,000 bp region surrounding each of ~80,000 ATAC-seq summits.
- Each genomic sub-region includes 100 nucleotides.
- We built models to predict mean ATAC-seq signals of the central 20 bp from DNA sequences.

Multiple expression heads with mask filling have better performance on predicting chromatin accessibility from DNA sequences

Dim.	Attention heads	Macaron Blocks	Average Pooling	Expression heads (H)					
				1	8	16	32	64	
64	2	1	0.4726	0.4497	0.4450	0.4570	0.4467	0.4528	
64	2	2	0.4832	0.4353	0.4739	0.4677	0.4660	0.4626	
64	2	4	0.4434	0.4871	0.4823	0.4855	0.4834	0.4783	
64	2	8	0.4222	0.4888	0.4767	0.4828	0.4875	0.4848	
128	4	1	0.4434	0.4451	0.4660	0.4651	0.4627	0.4574	
128	4	2	0.4177	0.4711	0.4889	0.4802	0.4847	0.4850	
128	4	4	0.2346	0.3977	0.4964	0.4868	0.4880	0.4882	
128	4	8	0.0155	0.0858	0.0335	0.4946	0.4910	0.4915	

Pearson's R

- 80k training samples
- 20k testing samples
- Adam optimizer with base learning rate of 0.001 and clipping
- Linear warmup (one epoch) with cosine decay

- Batch size of 512
- Best Pearson's R in the first 20 epochs
- Masking 5% of positions
- K-mer of 5 with stride of one

Proformer: A hybrid Macaron transformer model predicts expression values from promoter sequences

Multiple expression heads with mask filling produce better performance on larger models

Multiple expression heads with mask filling are critical for improving the prediction performance on hold-out validation data

Ablation analysis

Global average pooling	Mask filling	Expr. heads	Score PearsonR	Score Spearman	PearsonR	Spearman
X			0.766	0.819	0.918	0.961
	X	1	0.765	0.817	0.921	0.964
	Х	32	0.781	0.827	0.926	0.965
	Х	32*	0.765	0.810	0.929	0.967

^{*} with GLU

Predicting gene expression using millions of random promoter sequences DREAM Challenge 2022

IBM Research

Challenge Organizers

- Carl de Boer
- Abdul Muntakim Rafi
- Jake Albrecht
- Pablo Meyer
- Paul Boutros

All participants

We thank

Minnesota Supercomputing Institute

University of Minnesota

Driven to Discover®

CAU ET lab

- Byeong-Chan Kim
- Juhyun Lee
- II-Youp Kwak

Lillehei Heart Institute

- Nikita Dsouza
- Xiao Ma
- Daniel J Garry

for providing computation resource.

for providing travel grant of \$2,000.