# 5 Introduction to Factorial Designs

#### 5.1 Basic Definitions and Principles

Many experiments involve the study of the effects of two or more factors. In general, factorial designs are most efficient for this type of experiment. By a factorial design, we mean that in each complete trial or replication of the experiment all possible combinations of the levels of the factors are investigated.

The effect of a factor is defined to be the change in response produced by a change in the level of the factor – main effect. Consider the example.



Figure 5-2 A two-factor factorial experiment with interaction.



**Figure 5-4** A factorial experiment with interaction.

D. Deng (MATH. & STAT.)

STAT 485/859

Nov. 4. 2009

There is another way to illustrate the concept of interaction. Suppose that both of design factors are quantitative. Then a regression model representation of the two-factor experiment could be written as

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \epsilon$$

where y is the response, the  $\beta$ 's are parameters whose values are to be determined,  $x_1$  is a variable that represents factor A,  $x_2$  is a variable that represents factor B.

The parameter estimates in this model turn to be related to the effects estimates. For example, from previous example, we have

$$A^{-}B^{-} = 20, A^{-}B^{+} = 30, A^{+}B^{-} = 40, A^{+}B^{+} = 52, A = 21, B = 11, AB = 1$$

and thus,

$$\beta_1 = A/2 = 10.5, \beta_2 = B/2 = 5.5, \beta_{12} = AB/2 = 0.5, \beta_0 + (20 + 30 + 40 + 52)/4 = 35.5$$

Now we have

$$\hat{y} = 35.5 + 19.5x_1 + 5.5x_2 + 0.5x_1x_2$$

Since  $\beta_{12}$  is small, by dropping it give the model:

$$\hat{y} = 35.5 + 19.5x_1 + 5.5x_2$$

4D + 4B + 4B + B + 900

Now suppose that the interaction was not negligible, Figure 5.6 presents the response surface and contour plot for model

$$\hat{y} = 35.5 + 10.5x_1 + 5.5x_2 + 8x_1x_2$$



Figure 5-5 Response surface and contour plot for the model  $\hat{y} = 35.5 + 10.5x_1 + 5.5x_2$ .



Figure 5-6 Response surface and contour plot for the model  $\hat{y} = 35.5 + 10.5x_1 + 5.5x_2 + 8x_1x_2$ .

- 4 ロ ト 4 部 ト 4 差 ト 4 差 ト 9 Q (^)

D. Deng (MATH. & STAT.)

## 5.2 The advantage of Factorials

Suppose that we have tow factors A and B, each at two levels. We denote the levels of the factors by  $A^-, A^+, B^-, B^+$ . The effect of changing factor A is given by  $A^+B^--A^-B^-$ , and the effect of changing factor B is given by  $A^-B^+-A^-B^-$ . It is desirable to take two observations. Thus, the total of six observation are required. If the factorial design has been performed, an additional treatment combination,  $A^+B^+$  would have been taken

## 5.3 The two-Factor Factorial Design

#### 5.3.1 An Example

An engineering is designing a battery for use in a device that will be subjected to some extreme variation in temperature. Another factor is the plate material for battery. The engineering decides to test all three materials at three temperature levels,  $15, 70, 125^{\circ}$ .

| Material |     |     | Temper | ature (°F) |    |     |
|----------|-----|-----|--------|------------|----|-----|
| Туре     | 1   | 5   | 7      | 0          | 1  | 25  |
| 1        | 130 | 155 | 34     | 40         | 20 | 70  |
|          | 74  | 180 | 80     | 75         | 82 | 58  |
| 2        | 150 | 188 | 136    | 122        | 25 | 70  |
|          | 159 | 126 | 106    | 115        | 58 | 45  |
| 3        | 138 | 110 | 174    | 120        | 96 | 104 |
|          | 168 | 160 | 150    | 139        | 82 | 60  |

Table 5-1 Life (in hours) Data for the Battery Design Example

## This is a 3<sup>2</sup> Factorial design.

- 1. What effects do material type & temperature have on life?
- 2. Is there a choice of material that would give uniformly long life regardless of temperature (a robust product)?

This design is a specific example of the general case of a two-factor factorial. There are several ways to write the model for a factorial design. The effects model is

$$\mathbf{y}_{ijk} = \mu + \tau_i + \beta_j + (\tau \beta)_{ij} + \epsilon_{ijk}, \begin{cases} j = 1, 2, ..., a \\ j = 1, 2, ..., b \\ k = 1, 2, ..., n \end{cases}$$

Both factor are fixed and the constraints are

$$\sum_{i=1}^{a} \tau_{i} = 0, \sum_{j=1}^{b} \beta_{j} = 0, \sum_{i=1}^{a} (\tau \beta)_{ij} = \sum_{j=1}^{b} (\tau \beta)_{ij} = 0$$

Another possible model is the means model:

$$y_{ijk} = \mu_{ij} + \epsilon_{ijk}, \begin{cases} j = 1, 2, ..., a \\ j = 1, 2, ..., b \\ k = 1, 2, ..., n \end{cases}$$

where the mean of the ijth cell is

$$\mu_{ij} = \mu + \tau_i + \beta_j + (\tau\beta)_{ij}$$

◆□ → ◆□ → ◆ = → ○ ● ・ ○ ○ ○

Table 5-2 General Arrangement for a Two-Factor Factorial Design

|          |   | Factor B                           |                                    |  |                                    |  |  |
|----------|---|------------------------------------|------------------------------------|--|------------------------------------|--|--|
|          |   | 1                                  | 2                                  |  | b                                  |  |  |
|          | 1 | $y_{111}, y_{112}, \dots, y_{11n}$ | $y_{121}, y_{122}, \dots, y_{12n}$ |  | $y_{1b1}, y_{1b2}, \dots, y_{1bn}$ |  |  |
| Factor A | 2 | $y_{211}, y_{212}, \dots, y_{21n}$ | $y_{221}, y_{222}, \dots, y_{22n}$ |  | $y_{2b1}, y_{2b2}, \dots, y_{2bn}$ |  |  |
|          | : |                                    |                                    |  |                                    |  |  |
|          | а | $y_{a11}, y_{a12},$                | $y_{a21}, y_{a22},$                |  | $y_{ab1}, y_{ab2},$                |  |  |
|          |   | $\dots, y_{a1n}$                   | $\dots, y_{a2n}$                   |  | $\dots, y_{abn}$                   |  |  |

In two-factor factorial, both row and column factors, A and B, are of equal interest. So the hypotheses tested are

$$H_0: \tau_1 = \tau_2 = \cdots = \tau_a = 0$$
, vs.  $H_1:$  at least one  $\tau_i \neq 0$ 

$$H_0: \beta_1 = \beta_2 = \cdots = \beta_b = 0$$
, vs.  $H_1:$  at least one  $\beta_j \neq 0$ 

and

$$H_0: (\tau\beta)_{ij} = 0$$
 for all  $i, j,$  vs  $H_1:$  at least one  $(\tau\beta)_{ij} \neq 0$ 

D. Deng (MATH. & STAT.)

STAT 485/859

Nov. 4, 2009

### 5.3.2 Statistical Analysis of the Fixed Effects Model

Notation:

$$y_{i..} = \sum_{j=1}^{b} \sum_{k=1}^{n} y_{ijk}, \quad \bar{y}_{i..} = \frac{y_{i..}}{bn}, \quad i = 1, 2, ..., a$$

$$y_{.j.} = \sum_{i=1}^{a} \sum_{k=1}^{n} y_{ijk}, \quad \bar{y}_{.j.} = \frac{y_{.j.}}{an}, \quad j = 1, 2, ..., b$$

$$y_{ij.} = \sum_{k=1}^{n} y_{ijk}, \quad \bar{y}_{ij.} = \frac{y_{ij.}}{n}, \quad \begin{cases} i = 1, 2, ..., a \\ j = 1, 2, ..., b \end{cases}$$

$$y_{...} = \sum_{i=1}^{a} \sum_{k=1}^{b} \sum_{k=1}^{n} y_{ijk}, \quad \bar{y}_{...} = \frac{y_{..}}{abn}$$

The total corrected sum of squares may be written as

$$\begin{split} &\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} (y_{ijk} - \bar{y}_{...})^{2} = bn \sum_{i=1}^{a} (\bar{y}_{i..} - \bar{y}_{...})^{2} \\ &+ an \sum_{j=1}^{b} (\bar{y}_{.j.} - \bar{y}_{...})^{2} + n \sum_{i=1}^{a} \sum_{j=1}^{b} (\bar{y}_{ij.} - \bar{y}_{i..} - \bar{y}_{.j.} + \bar{y}_{...})^{2} + \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} (y_{ijk} - \bar{y}_{ij.})^{2} \end{split}$$

Further we have

$$E(MS_A) = \sigma^2 + \frac{bn\sum_{i=1}^{a} \tau_i^2}{a-1}, \quad E(MS_B) = \sigma^2 + \frac{an\sum_{j=1}^{b} \beta_j^2}{b-1}$$

$$E(MS_{AB}) = \sigma^2 + \frac{n\sum_{i=1}^{a} \tau_i^2}{(a-1)(b-1)}, \quad E(MS_E) = \sigma^2$$

Table 5-3 The Analysis of Variance Table for the Two-Factor Factorial, Fixed Effects Model

| Source of<br>Variation | Sum of<br>Squares | Degrees of<br>Freedom | Mean Square                            | $F_0$                        |
|------------------------|-------------------|-----------------------|----------------------------------------|------------------------------|
| A treatments           | $SS_A$            | a – 1                 | $MS_A = \frac{SS_A}{a-1}$              | $F_0 = \frac{MS_A}{MS_E}$    |
| B treatments           | $SS_B$            | <i>b</i> – 1          | $MS_B = \frac{SS_B}{b-1}$              | $F_0 = \frac{MS_B}{MS_E}$    |
| Interaction            | $SS_{AB}$         | (a-1)(b-1)            | $MS_{AB} = \frac{SS_{AB}}{(a-1)(b-1)}$ | $F_0 = \frac{MS_{AB}}{MS_E}$ |
| Error                  | $SS_E$            | ab(n-1)               | $MS_E = \frac{SS_E}{ab(n-1)}$          |                              |
| Total                  | $SS_T$            | abn - 1               |                                        |                              |

- (ロ) (部) (E) (E) (9QC)

# Example (5.1 The Battery Design Experiment)

From Table 5.1, we have

$$y_{11.} = 539, y_{12.} = 229, y_{13.} = 230, y_{21.} = 623, y_{22.} = 479, y_{23.} = 198$$
  
 $y_{31.} = 576, y_{32.} = 583, y_{33.} = 342,$   
 $y_{1..} = 998, y_{2..} = 1300, y_{3..} = 1300, y_{.1.} = 1738, y_{.2.} = 1291, y_{.3.} = 770, y_{...} = 3799$ 

| Response: Life      | in hours                         |
|---------------------|----------------------------------|
| ANOVA for Sele      | ected Factorial Model            |
| Analysis of varianc | e table [Partial sum of squares] |

|             | Sum of   |    | Mean           | F     | Prob       |             |
|-------------|----------|----|----------------|-------|------------|-------------|
| Source      | Squares  | DF | Square         | Value | > <b>F</b> |             |
| Model       | 59416.22 | 8  | 7427.03        | 11.00 | < 0.0001   | significant |
| A           | 10683.72 | 2  | 5341.86        | 7.91  | 0.0020     | Ü           |
| В           | 39118.72 | 2  | 19559.36       | 28.97 | < 0.0001   |             |
| AB          | 9613.78  | 4  | 2403.44        | 3.56  | 0.0186     |             |
| Residual    | 18230.75 | 27 | 675.21         |       |            |             |
| Lack of Fit | 0.000    | 0  |                |       |            |             |
| Pure Error  | 18230.75 | 27 | 675.21         |       |            |             |
| Cor Total   | 77646.97 | 35 |                |       |            |             |
| Std. Dev.   | 25.98    |    | R-Squared      |       | 0.7652     |             |
| Mean        | 105.53   |    | Adj R-Squared  |       | 0.6956     |             |
| C.V.        | 24.62    |    | Pred R-Squared |       | 0.5826     |             |
| PRESS       | 32410.22 |    | Adeq Precision |       | 8.178      |             |

#### Multiple Comparison

Now we illustrate the use of Tukey's test on the battery. Note that for the three material type averages at  $70^{\circ}$ , we have that

$$\bar{y}_{12.} = 57.25, \bar{y}_{22.} = 119.75, \bar{y}_{32.} = 145.75$$

and

$$T_{0.05} = q_{0.05}(3, 27)\sqrt{\frac{MS_E}{n}} = 3.50\sqrt{\frac{675.21}{4}} = 45.47$$

The pairwise comparisons yield

3 vs 1: 
$$145.75 - 57.25 = 88.50 > T_{0.05} = 45.47$$

3 vs 2: 
$$145.75 - 119.75 = 26.00 < T_{0.05} = 45.47$$

3 vs 1: 
$$119.75 - 57.25 = 62.50 > T_{0.05} = 45.47$$

## 5.3.3 Model Adequacy Checking

As before, the primary diagnostic tool is residual analysis. The residuals for the two-factor factorial model are

$$e_{ijk} = y_{ijk} - \hat{y}_{ijk} = y_{ijk} - \bar{y}_{ij}$$



Figure 5-11 Normal probability plot of residuals for Example 5-1.



Figure 5-12 Plot of residuals versus  $\hat{y}_{iit}$  for Example 5-1.



Figure 5-13 Plot of residuals versus material type for Example 5-1.



Figure 5-14 Plot of residuals versus temperature for Example 5-1.

#### 5.3.4 Estimating the Model Parameters

The parameters in the effects model for the two-factor factorial

$$y_{ijk} = \mu + \tau_i + \beta_j + (\tau \beta)_{ij} + \epsilon_{ijk}$$

may be estimated by least squares. Under the constraints

$$\sum_{i=1}^{a} \tau_{i} = 0, \sum_{j=1}^{b} \beta_{j} = 0, \sum_{i=1}^{a} (\tau \beta)_{ij} = \sum_{j=1}^{b} (\tau \beta)_{ij} = 0$$

the estimates of parameters for the model are

$$\begin{split} \hat{\mu} &= \overline{y}_{...}, \\ \hat{\tau}_{i} &= \overline{y}_{i..} - \overline{y}_{...}, \quad i = 1, 2, ..., a, \\ \hat{\beta}_{j} &= \overline{y}_{j..} - \overline{y}_{...}, \quad j = 1, 2, ..., b \\ (\hat{\tau\beta})_{ij} &= \overline{y}_{ij.} - \overline{y}_{i...} - \overline{y}_{j...} + \overline{y}_{...}, \quad \begin{cases} i = 1, 2, ..., a \\ j = 1, 2, ..., b \end{cases} \end{split}$$

Further, we have

$$\hat{\mathbf{y}}_{ijk} = \hat{\mu} + \hat{\tau}_i + \hat{\beta}_j + (\hat{\tau\beta})_{ij} = \bar{\mathbf{y}}_{ij}$$

- (ロ) (部) (注) (注) 注 り(C

#### 5.3.5 Choice of Sample Size

|        | _                                                                                                                         | Numerator          | Denominator        |     |
|--------|---------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|-----|
| Factor | Φ <sup>2</sup>                                                                                                            | Degrees of Freedom | Degrees of Freedom | _   |
| A      | $\frac{bn\sum_{i=1}^{a}\tau_{i}^{2}}{a\sigma^{2}}\left(\frac{bnD^{2}}{2a\sigma^{2}}\right)$                               | a – 1              | ab(n-1)            | For |
| В      | $rac{an\sum_{j=1}^{b}eta_i^2}{b\sigma^2}\Big(rac{anD^2}{2b\sigma^2}\Big)$                                               | b-1                | ab(n-1)            |     |
| AB     | $\frac{n\sum_{i=1}^{a}\sum_{j=1}^{b}(\tau\beta)_{ij}^{2}}{\sigma^{2}[(a-1)(b-1)+1]}\left(\frac{nD^{2}}{2(\cdots)}\right)$ | (a-1)(b-1)         | ab(n-1)            |     |

Example,  $D=40, \sigma=25, a=b=3$  and  $\alpha=0.05$  we have

$$\Phi^2 = \frac{anD^2}{2b\sigma^2} = \frac{n(3)(40)^2}{2(3)(25)^2} = 1.28.$$

|   |          |      | $ u_1 = Numerator$ | $\nu_2 = Error$    |         |
|---|----------|------|--------------------|--------------------|---------|
| n | $\Phi^2$ | Φ    | Degrees of Freedom | Degrees of Freedom | $\beta$ |
| 2 | 2.56     | 1.60 | 2                  | 9                  | 0.45    |
| 3 | 3.84     | 1,96 | 2                  | 18                 | 0.18    |
| 4 | 5.12     | 2.26 | 2                  | 27                 | 0.06    |

- 4 ロ > 4 個 > 4 差 > 4 差 > 差 の 9 @

#### 5.3.6 The Assumption of No Interaction in a Two-Factor Model

The model has the following form:

$$y_{ijk} = \mu + au_i + eta_j + \epsilon_{ijk}, egin{cases} j = 1, 2, ..., a \ j = 1, 2, ..., b \ k = 1, 2, ..., n \end{cases}$$

| Source of      | Sum of   | Degrees of | Mean     |       |
|----------------|----------|------------|----------|-------|
| Variation      | Squares  | Freedom    | Squares  | $F_0$ |
| Material types | 10683.72 | 2          | 5341.86  | 5.95  |
| Temperature    | 39118.72 | 2          | 19559.36 | 21.76 |
| Error          | 27844.52 | 31         | 898.21   |       |
| Total          | 77646.96 | 35         |          |       |

#### 5.3.7 One Observation per Cell

This model has the following form

$$y_{ij} = \mu + au_i + eta_j + ( aueta)_{ij} + \epsilon_{ij}, egin{cases} j = 1, 2, ..., a \ j = 1, 2, ..., b \end{cases}$$

| Source of<br>Variation | Sum of<br>Squares                                           | Degrees of Freedom | Mean<br>Squares | Expected<br>Mean Squares                                           |
|------------------------|-------------------------------------------------------------|--------------------|-----------------|--------------------------------------------------------------------|
| Rows (A)               | $\sum_{i=1}^{a} \frac{y_{i.}^{2}}{b} - \frac{y_{}^{2}}{ab}$ | a – 1              | $MS_A$          | $\sigma^2 + \frac{b\sum_{i=1}^a \tau_i^2}{a-1}$                    |
| Column(B)              | $\sum_{j=1}^{b} \frac{y_{.j}^2}{a} - \frac{y_{}^2}{ab}$     | b-1                | $MS_B$          | $\sigma^2 + \frac{a\sum_{j=1}^b \beta_j^2}{b-1}$                   |
| Residual or AB         | Substraction                                                | (a-1)(b-1)         | $MS_{Residual}$ | $\sigma^2 + \frac{\sum_{i=1}^{a} (\tau \beta)_{ij}^2}{(a-1)(b-1)}$ |
| Total                  | $\sum_{i=1}^{a} \sum_{i=1}^{b} y_{ii}^2 - \frac{y_i^2}{2b}$ | ab-1               |                 |                                                                    |

If there is no interaction, we have the model:

$$y_{ij} = \mu + au_i + eta_j + \epsilon_{ij}, egin{cases} j = 1, 2, ..., a \ j = 1, 2, ..., b \end{cases}$$

ロ ト 4回 ト 4 直 ト 4 直 ・ り へ ()

Assume that

$$(\tau\beta)_{ij}=\gamma\tau_i\beta_j$$

the model has the form

$$y_{ij} = \mu + au_i + eta_j + \gamma au_i eta_j + \epsilon_{ij}, egin{cases} j = 1, 2, ..., a \ j = 1, 2, ..., b \end{cases}$$

In this case, the test partitions the residual sum of squares into a single-degree-of-freedom component due to nonadditivity and a component for error with (a-1)(b-1)-1 degrees of freedom. We have

$$SS_{N} = \frac{\left[\sum_{i=1}^{a} \sum_{j=1}^{b} y_{ij} y_{i.} y_{.j} - y_{..} \left(SS_{A} + SS_{B} + \frac{y_{.}^{2}}{ab}\right)\right]^{2}}{abSS_{B}SS_{B}}$$

with one degree of freedom, and

$$SS_{Error} = SS_{Residual} - SS_{N}$$

with (a-1)(b-1)-1 degrees of freedom. To test for the presence of interaction, we compute

$$F_0 = \frac{SS_N}{SS_{Error}/[(a-1)(b-1)-1]}$$

(**□** ▶ ∢ **=** ▶ ∢ **=** ♥ 9 0 0 0

# Example (5.2)

Table 5.10 Impurity Data

| Temperature   |    | Pressure |    |    |    |        |  |
|---------------|----|----------|----|----|----|--------|--|
| $(F^{\circ})$ | 25 | 30       | 35 | 40 | 45 | yi.    |  |
| 100           | 5  | 4        | 6  | 3  | 5  | 23     |  |
| 125           | 3  | 1        | 4  | 2  | 3  | 13     |  |
| 150           | 1  | 1        | 3  | 1  | 2  | 8      |  |
| <b>У</b> .j   | 9  | 6        | 13 | 6  | 10 | y = 44 |  |

Table 5.11 Analysis of Variance for Example 5.2

| Source of     | Sum of  | Degrees of | Mean    | ·     |                 |
|---------------|---------|------------|---------|-------|-----------------|
| Variation     | Squares | Freedom    | Squares | $F_0$ | <i>p</i> -value |
| Temperature   | 23.33   | 2          | 11.67   | 42.97 | 0.0001          |
| Pressure      | 11.60   | 4          | 2.90    | 10.68 | 0.0042          |
| Nonadditivity | 0.0985  | 1          | 0.0985  | 0.36  | 0.5674          |
| Error         | 1.9015  | 7          | 0.2716  |       |                 |
| Total         | 39.93   | 14         |         |       |                 |

## 5.4 The General Factorial Design

We may consider the factor factorial design model for more than two factors. The three-factor analysis of variance model:

$$y_{ijkl} = \mu + \tau_i + \beta_j + \gamma_k + (\tau\beta)_{ij} + (\tau\gamma)_{ik} + (\beta\gamma)_{jk} + (\tau\beta\gamma)_{ijk} + \epsilon_{ijkl}$$
 
$$\begin{cases} i = 1, 2, ..., a \\ j = 1, 2, ..., b \\ k = 1, 2, ..., c \\ l = 1, 2, ..., n \end{cases}$$

Assume that A, B, and C are fixed factors with a, b and c levels, respectively, we can decompose the total sum of squares into several sums of squares:

$$\underbrace{SS_T}_{abcn-1} = \underbrace{SS_A}_{a-1} + \underbrace{SS_B}_{b-1} + \underbrace{SS_C}_{c-1} + \underbrace{SS_{AB}}_{(a-1)(b-1)} + \underbrace{SS_{AC}}_{(a-1)(c-1)} + \underbrace{SS_{BC}}_{(a-1)(b-1)(c-1)} + \underbrace{SS_{ABC}}_{abc(n-1)} + \underbrace{SS_{ABC}}_{abc(n-$$

◆ロト ◆団ト ◆恵ト ◆恵ト ・恵 ・ からぐ

## Example (5.3 The soft Drink Bottling Problem)

A soft Drink bottler is interested in obtaining more uniform fill heights in the bottles.

There are three factors:

A: the pressure carbonation: 10, 12, 14 B: the operating pressure: 25, 30 psi

C: the line speed: 200, 250 Replicates: n = 2

| Source of             | Sum of  | Degrees of | Mean    |         |                 |
|-----------------------|---------|------------|---------|---------|-----------------|
| Variation             | Squares | Freedom    | Squares | $F_0$   | <i>p</i> -value |
| Carbonation(A)        | 252.750 | 2          | 126.375 | 178.412 | < 0.0001        |
| Operating Pressure(B) | 45.375  | 1          | 45.375  | 64.059  | < 0.0001        |
| Line Speed(C)         | 22.042  | 1          | 22.042  | 31.118  | 0.001           |
| AB                    | 5.250   | 2          | 2.625   | 3.706   | 0.0558          |
| AC                    | 0.583   | 2          | 0.292   | 0.412   | 0.6713          |
| BC                    | 1.042   | 1          | 1.042   | 1.471   | 0.2485          |
| ABC                   | 1.083   | 2          | 0.542   | 0.765   | 0.4867          |
| Error                 | 8.500   | 12         | 0.708   |         |                 |
| Total                 | 336.625 | 23         |         |         |                 |

## 5.5 Fitting Response Curves and Surfaces It can be useful to fit a response

curve to the levels of a quantitative factor, so that the experimenter has an equation that relates the response to the factor. this equation may be used for interpretation.

One quantitative: response

Tow quantitative: response surface

In general, linear regression methods are used to fit these models.

# Example (5.4)

Consider the experiment describe in Example 5.1. Temperature is quantitative, material type is qualitative. In this example, we use the following model:

$$\mathbf{y}_{ijk} = \beta_0 + \beta_{11} \mathbf{x}_{1i} + \beta_{12} \mathbf{x}_{1i}^2 + \beta_{2j} + \beta_{21j} \mathbf{x}_{1i} + \beta_{22j} \mathbf{x}_{1i}^2 + \epsilon_{ijk}$$

## Example

Table 5-15 Design-Expert Output for Example 5-4

Response: Life in hr
ANOVA for Response Surface Reduced Cubic Model
Analysis of variance table [Partial sum of squares]

| Source      | Sum of<br>Squares | DF | Mean<br>Square | <i>F</i><br>Value | Prov > F |             |
|-------------|-------------------|----|----------------|-------------------|----------|-------------|
| Model       | 59416.22          | 8  | 7427.03        | 11.00             | < 0.0001 | significant |
| A           | 39042.67          | 1  | 39042.67       | 57.82             | < 0.0001 |             |
| В           | 10683.72          | 2  | 5341.86        | 7.91              | 0.0020   |             |
| $A^2$       | 76.06             | 1  | 76.06          | 0.11              | 0.7398   |             |
| AB          | 2315.08           | 2  | 1157.54        | 1.71              | 0.1991   |             |
| $A^2B$      | 7298.69           | 2  | 3649.35        | 5.40              | 0.0106   |             |
| Residual    | 18230.75          | 27 | 675.21         |                   |          |             |
| Lack of Fit | 0.000             | 0  |                |                   |          |             |
| Pure Error  | 18230.75          | 27 | 675.21         |                   |          |             |
| Cor Total   | 77646.97          | 35 |                |                   |          |             |
| Std. Dev.   | 25.98             |    | R-Squared      | 0.7652            |          |             |
| Mean        | 105.53            |    | Adj R-Squared  | 0.0               | 6956     |             |
| C.V.        | 24.62             |    | Préd R-Squared | 0.9               | 5826     |             |
| PRESS       | 32410.22          |    | Adea Precision | 8                 | 1.178    |             |

# Example



Figure 5-18 Predicted life as a function of temperature for the three material types, Example 5-4.

## 5.6 Blocking in a Factorial Design

Consider the two-factor factorial model with n replicates:

$$y_{ijk} = \mu + au_i + eta_j + ( aueta)_{ij} + \epsilon_{ijk} egin{dcases} i = 1, 2, ..., b \ j = 1, 2, ..., b \ l = 1, 2, ..., n \end{cases}$$

Now a particular raw material is required in order to run this experiment and also, this raw material is available in batches that are not large enough to all abn treatment combinations to be run from same batch. The batches of raw materials request a

randomization restriction or a block:

$$y_{ijk} = \mu + \tau_i + \beta_j + (\tau \beta)_{ij} + \delta_k + \epsilon_{ijk}$$
 
$$\begin{cases} i = 1, 2, ..., a \\ j = 1, 2, ..., b \\ l = 1, 2, ..., n \end{cases}$$

 $\delta_k$  is the effect of the kth block. This model assume that there are no interaction between block and treatments. If these interaction do exist, they cannot be separated from the error component.

- 4 ロ ト 4 団 ト 4 豆 ト 4 豆 - り 4 @

# Example (5.6)

Table 5.21 Intensity Level at Target Detection

| Operators (Blocks) | ks) 1 |    | 2   |    | 3   |    | 4  |    |
|--------------------|-------|----|-----|----|-----|----|----|----|
| Filter Type        | 1     | 2  | 1   | 2  | 1   | 2  | 1  | 2  |
| Ground Clutter     |       |    |     |    |     |    |    |    |
| Low                | 90    | 86 | 96  | 84 | 100 | 92 | 92 | 81 |
| Medium             | 102   | 87 | 106 | 90 | 105 | 97 | 96 | 80 |
| High               | 114   | 93 | 112 | 91 | 108 | 95 | 98 | 83 |

| Source of         | Sum of  | Degrees of | Mean    |       |                 |
|-------------------|---------|------------|---------|-------|-----------------|
| Variation         | Squares | Freedom    | Squares | $F_0$ | <i>p</i> -value |
| Ground Clutter(G) | 335.58  | 2          | 167.79  | 15.13 | 0.0003          |
| Filter type(F)    | 1066.67 | 1          | 1066.67 | 96.19 | < 0.0001        |
| GF                | 77.08   | 2          | 38.54   | 3.48  | 0.0573          |
| Blocks            | 402.17  | 3          | 134.06  | 12.09 | 0.0003          |
| Error             | 166.33  | 15         | 11.00   |       |                 |
| Total             | 2047.83 | 23         |         |       |                 |
|                   |         |            |         |       |                 |

◆ロ → ◆団 → ◆ き → ◆ き → り へ ○