TECNICATURA UNIVERSITARIA EN PROGRAMACIÓN

TRABAJO PRÁCTICO N°2: ALGEBRA BOOLEANA (PARTE 1)

INTEGRANTES:

Ahumada Brian , DNI 38.335.339 Alancay Abel Matias, DNI 32.104.501 Alsina Maximiliano, DNI: 35.618.005 Berrini Alejandro, DNI 34.658.942 Calle Porco Sonia Enes, DNI 18.804.659 Chávez, Rodrigo, DNI: 93899322 Costa Maria Eugenia , DNI 31.164.697 Navarro, Lucas, DNI:43160737

EJERCICIO 1

1- Simplifique o demuestre (según corresponda) las siguientes expresiones booleanas, indique en cada paso las propiedades que emplea.

1-A

$$(x + y + xy) (x + z)$$
 ABSORCIÓN
(X + Y). (X+Z) FACTOR COMÚN

$$X + (Y.Z)$$

1-B

$$x[y + z(xy + xz)']$$
 DISTRIBUTIVA

MORGAN

$$X.[Y+Z.(X^+ (Y+Z)^-)]$$

DISTRIBUTIVA

$$X.[(Y+Z).X^+ (Y+Z).(Y+Z)^-]$$
 COMPLEMENTO

$$X. [(Y+Z) . X^+ 0]$$

IDENTIDAD

X. [(Y+Z) . X`]

DISTRIBUTIVA

IDENTIDAD

0

1-C

$$(x+y)(x'+z) = xz + x'y + yz$$
 DISTRIBUTIVA

$$(X+Y).X' + (X+Y).Z = X.Z + X'Y + Y.Z$$
 DISTRIBUTIVA X 2

$$X.X$$
 + $Y.X$ + $X.Z$ + $Y.Z$ = $X.Z$ + X Y + $Y.Z$ COMPLEMENTO

$$X^{\cdot}.Y + X.Z + Y.Z = X.Z + X^{\cdot}Y + Y.Z$$

$$= X.Z + X`Y + Y.Z$$

CONMUTATIVA CON SUMA

$$X.Z + X^Y + Y.Z$$

$$= X.Z + X`Y + Y.Z$$

1-D

$$wx + \underline{x}\underline{z} + (y + \underline{z})$$
MORGAN Y DOBLE NEGACIÓN

$$\frac{W.X + X}{} + Z^ + (Y+Z^)$$

ABSORCIÓN

$$X + Z^ + (Y+Z^)$$

DISTRIBUTIVA

$$X + Z^ + Y + Z^$$

CONMUTATIVA

$$X + \overline{Z} + \overline{Z} + Y$$

IDEMPOTENCIA

$$X + Z^ + Y$$

1-E

AB+A(B+C)+B(B+C) Dibuje el circuito sin simplificar y simplificado

$$A.B + A.(B+C) + B$$
 DISTRIBUTIVA

ABSORCIÓN

B+(A.C)

1-F

(A+B)(A+C)=A+BC DISTRIBUTIVA

$$A + (B.C) = A + BC$$

EJERCICIO 2:

2- Aplicar los teoremas de Morgan a las siguientes expresiones

2-A

$$(A+B+C)D$$
 MORGAN

2-B

$$ABC + DEF$$
 MORGAN

2-C

$$AB + CD + EF$$

MORGAN

MORGAN Y DOBLE NEGACIÓN

$$(A` + B) . (C + D`) . (E` + F`)$$

2-D

$$\frac{(A+B)+\underline{C}}{}$$
 MORGAN

(A+B).C

2-E

$$(\underline{\underline{A}} + \underline{B}) + \underline{CD}$$
 MORGAN

$$((A^{\hat{}})^{\hat{}} . B^{\hat{}}) . (C^{\hat{}} + D^{\hat{}})$$
 DOBLE NEGACIÓN

$$(A . B') . (C' + D')$$

2-F

$$\frac{(A+B)\underline{CD} + E + \underline{F}}{\text{MORGAN}}$$

$$A$$
'. B ' + C . D . E ' . F

EJERCICIO 3:

3 - Encuentre las **formas normales disyuntivas (FND)** de las siguientes expresiones booleanas mediante el método algebraico y corrobore sus resultados a través de tabla de verdad. Una **FND** es una estandarización de una expresión lógica que es una disyunción de cláusulas conjuntivas, Por ejemplo: $(X_1 \lor Y_1) \land (X_2 \lor Y_2) \land \cdots \land (X_n \lor Y_n)$, donde $X_1, Y_1, X_2, Y_2, \cdots, X_n, Y_n$ son proposiciones lógicas.

3-A

$$f(x,y,z) = xy' + yz'$$

$$X.Y^{\cdot}.(Z+Z^{\cdot}) + (X+X^{\cdot}).Y.Z^{\cdot}$$

$$(X.Y'.Z) + (X.Y'.Z') + (X.Y.Z') + (X'.Y.Z')$$

	Х	Υ	Z	A.	Z`	X.Y`	Y.Z`	X.Y`+Y.Z`
	0	0	0	1	1	0	0	0
	0	0	1	1	0	0	0	0
X`YZ`	0	1	0	0	1	0	1	1
	0	1	1	0	0	0	0	0
X.Y`.Z`	1	0	0	1	1	1	0	1
X.Y`.Z	1	0	1	1	0	1	0	1
X.Y.Z`	1	1	0	0	1	0	1	1
	1	1	1	0	0	0	0	0

3-B

$$f(x,y,z) = y' + [z' + x + (yz)'](z + x'y)$$

$$y'+(z'+x+y'+z')(z+x'y)$$

MORGAN

y'+(z(z'+x+y'+z'))(x'y(z'+x+y'+z')) DOBLE DISTRIBUTIVA

y`+z.z`+zx+zy`+zz`+x`yz`+x`yx+x`yy`+x`yz`

y`(0)+zx+zy`+(0)+x`yz`+y.0+x`.0+x`yz`

y`.1+zx.1+zy`.1+x`yz`

y'.(x+x')+zx.(y+y')+zy'(x+x')+x'yz'

y`.x+y`x`+zxy +zxy`+zy`x+zy`x`+x`yz`

y`.x.1+y`x`1+zxy+zxy`+zy`x+zy`x`+x`yz`

y`x(z+z`)+y`x`(z+z`)+ zxy+zxy`+zy`x+zy`x`+x`yz`

(y`xz)+(y`xz`)+(y`x`z)+(y`x`z`)+(zxy)+(zxy`)+(zy`x)+(zy`x`)+(x`yz`)

 $(xy^2) + (xy^2) + (x^2) + (x$

$$(xy^2)+(xy^2)+(x^2)+(x^2)+(x^2)+(xy^2)+(xy^2)$$

+‡+														
		Χ	Υ	Z	X,	Y,	Z`	X,A	Z+X`Y	(Y.Z)`	X+(Y.Z)`	Z`+(X+(Y.Z)`)	$[Z^+X_+(Y.Z)^-].$	Y`+[Z`+X+(Y.Z)`].
													(Z+X`Y)	(Z+X`Y)
	<u>X`y`z</u> `	0	0	0	1	1	1	0	0	1	1	1	0	1
	X`y`z	0	0	1	1	1	0	0	1	1	1	1	1	1
	X`YZ`	0	1	0	1	0	1	1	1	1	1	1	1	1
		0	1	1	1	0	0	1	1	0	0	0	0	0
	XY`Z`	1	0	0	0	1	1	0	0	1	1	1	0	1
	XY`Z	1	0	1	0	1	0	0	1	0	1	1	1	1
		1	1	0	0	0	1	0	0	1	1	1	0	0
	XYZ	1	1	1	0	0	0	0	1	0	1	1	1	1

3-C

$$f(_{x,y,w,z})=xy+yzw'$$

x.y.1+y.z.w'.1

x.y(z+z')+y.z.w'(x.x')

x.y.z + x.y.z' + y.z.w'.x + y.z.w'.x'

x.y.z(w+w')+x.y.z'(w+w')+y.z.w'.x+y.z.w'.x'

x.y.z.w + x.y.z.w' + x.y.z'.w + x.y.z'.w' + y.z.w'.x + y.z.w'.x'

(x.y.z.w)+(x.y.z.w')+(x.y.z'.w)+(x.y.z'.w')+(y.z.w'.x')

	х	Υ	z	w	w`	ху	Yzw`	Xy+yzw`
	0	0	0	0	1	0	0	0
	0	0	0	1	0	0	0	0
	0	0	1	0	1	0	0	0
	0	0	1	1	0	0	0	0
	0	1	0	0	1	0	0	0
	0	1	0	1	0	0	0	0
X`yzw`	0	1	1	0	1	0	1	1
	0	1	1	1	0	0	0	0
	1	0	0	0	1	0	0	0
	1	0	0	1	0	0	0	0
	1	0	1	0	1	0	0	0
	1	0	1	1	0	0	0	0
Xyz`w`	1	1	0	0	1	1	0	1
Xwz`w	1	1	0	1	0	1	0	1
Xyzw`	1	1	1	0	1	1	1	1
xyzw	1	1	1	1	0	1	0	1

3-D

$$f(x,y,z) = xy' + z$$

$$= X.Y^{(1)} + (1).Z$$

$$= X.Y^{\cdot}.(Z+Z^{\cdot}) + (Y+Y^{\cdot}).Z$$
 DISTRIBUTIVA

$$= (X.Y^{\cdot}.Z) + (X.Y^{\cdot}.Z^{\cdot}) + (Y.Z.(1) + Y^{\cdot}.Z.(1)) DISTRIBUTIVA$$

$$= (X.Y.Z) + (X.Y.Z) + (Y.Z.(X+X)) + (Y.Z.(X+X))$$
 DISTRIBUTIVA Y CONMUTATIVA

$$= (X.Y.Z) + (X.Y.Z) + (X.Y.Z) + (X.Y.Z) + (X.Y.Z) + (X.Y.Z) + (X.Y.Z)$$

$$= (X.Y'.Z) + (X.Y'.Z') + (X.Y.Z) + (X'.Y.Z) + (X'.Y.Z)$$

	Х	Y	Z	Y.	X.Y`	X.Y`+Z
	0	0	0	1	0	0
X`.Y`.Z	0	0	1	1	0	1
	0	1	0	0	0	0
X`.Y.Z	0	1	1	0	0	1
X.Y`.Z`	1	0	0	1	1	1
X.Y`.Z	1	0	1	1	1	1
	1	1	0	0	0	0
X.Y.Z	1	1	1	0	0	1

3-E

$$f_{(x,y,w,z)} = w + x'y + y'z$$

(XW) + (X'W) + (X'YW) + (X'YW) + (X'YW) + (X'Y'Z) + (X'YWZ) + (

Х	Υ	W	Z	X'	Y'	ΧΎ	Y'Z	W+X'Y	W+X'Y+X'Z	
0	0	0	0	1	1	0	0	0	0	
0	0	0	1	1	1	0	1	0	1	(X'Y'W'Z)
0	0	1	0	1	1	0	0	1	1	(X'Y'WZ')
0	0	1	1	1	1	0	1	1	1	(X'Y'WZ)
0	1	0	0	1	0	1	0	1	1	(X'YW'Z')
0	1	0	1	1	0	1	0	1	1	(X'YW'Z)
0	1	1	0	1	0	1	0	1	1	(X'YWZ')
0	1	1	1	1	0	1	0	1	1	(X'YWZ)
1	0	0	0	0	1	0	0	0	0	
1	0	0	7	0	1	0	1	0	1	(XY'W'Z)
1	0	1	0	0	1	0	0	1	1	(XY'WZ')
1	0	1	1	0	1	0	1	1	1	(XY'WZ)
1	1	0	0	0	0	0	0	0	0	
1	1	0	1	0	0	0	0	0	0	

1	1	1	0	0	0	0	0	1	1	(XYWZ')
1	1	1	1	0	0	0	0	1	1	(XYWZ)

EJERCICIO 4:

4-A:

$$f(x,y,z) = (x+z)y$$

Х	Υ	Z	X	Υ´	Z´	(X+Z)	(X+Z)Y	RESULTADO
0	0	0	1	1	1	0	0	(X+Y+Z)
0	0	1	1	1	0	1	0	(X+Y+Z´)
0	1	0	1	0	1	0	0	(X+Y´+Z)
0	1	1	1	0	0	1	1	
1	0	0	0	1	1	1	0	(X´+Y+Z)
1	0	1	0	1	0	1	0	(X´+Y+Z´)
1	1	0	0	0	1	1	1	

1									
	1	1	l 1	0	ΙN	lΛ	1 1	1 1	
	' '	•	Ι'	ı	"	"	•	'	
			l					1	

4-B f(x,y,z) = x= X + 0= X + (Y+Y') DISTRIBUTIVA

= $(X+Y) \cdot (X+Y')$ = $(X+Y+0) \cdot (X+Y'+0)$ = $(X+Y+(Z+Z')) \cdot (X+Y'+(Z+Z'))$ = $(X+Y+Z) \cdot (X+Y+Z') \cdot (X+Y'+Z) \cdot (X+Y'+Z')$

	Х	Υ	Z	Х
(X+Y+Z)	0	0	0	0
(X+Y+Z´)	0	0	1	O
(X+Y'+Z)	0	1	0	0
(X+Y'+Z')	0	1	1	0
	1	0	0	1
	1	0	1	1
	1	1	0	1
	1	1	1	1

$$f(x,y,z) = (yz + xz')(xy' + z)'$$
 DISTRIBUTIVA Y MORGAN

```
 = ((yz)+x) \quad . \quad (((yz)+z') \cdot (xy')' \cdot z' \quad \mathsf{DISTRIBUTIVA} \times 2 \, Y \quad \mathsf{MORGAN} \\ = (x+z).(x+y) \quad . (\underline{z'+z}).(z'+y).(x'+y).(z'+(0)) \quad \mathsf{COMPLEMENTO} \\ = (x+z+0).(x+y+0).\mathbf{1}. \quad (z'+y+0).(x'+y+0).(z'+(x.x')) \\ = (x+z+(y.y')) \quad . \quad (x+y+(z.z')) \quad . (z'+y+(x.x')) \quad . (x'+y+(z.z')) \quad . \quad (z'+x+0).(z'+x'+0) \\ = (x+z+y).(x+z+y').(x+y+z).(x+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').(x'+y+z').
```

	Х	Υ	Z	Y`	Z`	Y.Z	X.Z`	(Y.Z)+(X.Z`)	x.y`	(x.y`)+z	((x.y`)+z)`	((Y.Z)+(X.Z`)).((x.y`)+z)`
(x+y+z)	0	0	0	1	1	0	0	0	0	0	1	0
(x+y+z')	0	0	1	1	0	0	0	0	0	1	0	0
(x+y'+z)	0	1	0	0	1	0	0	0	0	0	1	0
(x+y'+z')	0	1	1	0	0	1	0	1	0	1	0	0
(x'+y+z)	1	0	0	1	1	0	1	1	1	1	0	0
(x'+y+z')	1	0	1	1	0	0	0	0	1	1	0	0
	1	1	0	0	1	0	1	1	0	0	1	1
(x'+y'+z')	1	1	1	0	0	1	0	1	0	1	0	0

4-D

$$f(x,y,z) = (x+y)(x'+z)(y+z')$$

= (X+Y+0) . (X'+Z+0) . (Y+Z'+0)

= (X+Y+(Z.Z')) . (X'+Z+(Y+Y')) . (Y+Z'+(X+X'))

= (X+Y+Z).(X+Y+Z').(X'+Z+Y).(X'+Z+Y').(Y+Z'+X).(Y+Z'+X')

= (X+Y+Z).(X+Y+Z').(X'+Y+Z).(X'+Y'+Z).(X'+Y+Z').(X'+Y+Z')

 $= (X+Y+Z) \cdot (X+Y+Z') \cdot (X'+Y+Z) \cdot (X'+Y'+Z) \cdot (X'+Y+Z')$

	Х	Υ	Z	X	Y	Z′	(X+Y)	(X'+Z)	(Y+Z')	(X'+Z).(Y+Z')	(X+Y).(X'+Z).(Y++Z')
(X+Y+Z)	0	0	0	1	1	1	0	1	1	1	O
(<mark>X+Y+Z'</mark>)	0	0	1	1	1	0	0	1	1	1	0
	0	1	0	1	0	1	1	1	1	1	1
	0	1	1	1	0	0	1	1	1	1	1
(X'+Y+Z)	1	0	0	0	1	1	1	0	1	0	0
(X'+Y+Z')	1	0	1	0	1	0	1	1	0	0	0
(<mark>X'+Y'+Z)</mark>	1	1	0	0	0	1	1	0	1	0	0
	1	1	1	0	0	0	1	1	1	1	1

EJERCICIO 5:

A partir de la siguiente expresión booleana encuentre el circuito combinatorio

EJERCICIO 6:

Represente los siguientes circuitos

$$x_1 \lor (x_2 \land x_3)$$

 $(x_1 \lor x_2) \land (x_1 \lor x_3)$

$$x = \underline{A} + B$$

$$x = \underline{A + B}$$

$$6-E$$

$$x = \underline{ABC}(A+D)$$

6-F

$$x = \left[D + \underline{(A+B)C}\right]E$$

EJERCICIO 7

Exprese las funciones booleanas de los siguientes circuitos

SIMPLIFICANDO DOBLE NEGACIÓN \Rightarrow AB .(C`.A).(A`.D) 7-B

SIMPLIFICANDO DOBLE NEGACIÓN => (B`.C)`.A.(A`.D)

7-C

7-D

7-E

7-F

7-G

7-H

