2021-2022 结构力学 I

一、(6分)对图示体系进行几何组成分析。(写出分析过程)

DF 杆件为刚片 I, BCE 铰接三角形为刚片 II, 地基为 刚片 III, 三刚片用 C、O13、O12 三个铰相连接构成三角形,满足三刚片规则,该体系为无多余约束的几何不变体系。体系是静定桁架结构。

刚片选择和分析过程 4 分,结论 2 分。

二、(10分)作图示结构的弯矩图。

支座反力2分。

附属部分弯矩图 3 分。

基本部分弯矩图 5 分。

三、(10分)作图示结构的弯矩图,并求二力杆轴力。

(结构力学 72 学时-A 卷) 共 5 页/第1 页

等代结构

$\sum_{i} M_{iD} = 0$

支反力2分,弯矩图6分,二力杆轴力2分。

四、 $(10 \, f)$ 图示结构,求 C 点竖向位移 Δ_{C} 和 B 点转角位移 φ_{B} 。

弯矩图各2分共6分,每个位移2分共4分。

五、(8分)作出图示对称结构的最简半结构。

三次取半结构,分别为4、3、1分。

(结构力学 72 学时-A 卷) 共 5 页/第 2 页

六、(14分)用力法计算图示结构,并作出弯矩图。各杆 EI 为常数。

等代结构、基本体系各1分,荷载、2个单位弯矩图各2分共6分 方程1分,所有系数2分,多余未知力1分。半结构弯矩图1分,最终弯矩图1分。 七、(12分)用位移法计算图示结构,并作出弯矩图。设各杆 *EI*=常数。

(结构力学 72 学时-A 卷) 共 5 页/第 3 页

令线刚度: i = EI/l $k_{11}Z_1 + F_{1P} = 0$ $k_{11} = \frac{12i}{l^2}$ $F_{1P} = \frac{-3ql}{8}$ $Z_1 = \frac{ql^3}{32i}$ 由 $M = \overline{M}_1 Z_1 + M_P$ 作最终弯矩图。

基本体系 2 分,荷载、单位弯矩图各 2 分共 4 分。

方程、2个系数和结点位移各1分共4分,最终弯矩图2分。

八、(10 分)用位移法作图示结构的弯矩图。采用右图作为位移法基本体系。 i=EI/l

由 $M = \overline{M}_1 Z_1 + \overline{M}_2 Z_2 + M_P$ 作最终弯矩图。

荷载弯矩图、2个单位弯矩图各两分,叠加公式和最终弯矩图各 2 分,共 10 分。 九(10 分)用力矩分配法作图示结构弯矩图。

	_						_
结点	A	C		В		D	
杆端	AC	CA	СВ	BC	BD	DВ	_
分配系数		2/5	3/5				_
固端弯矩	0	0	1/4	1/2	-1/2	0	$\times ql^2$
分配传递	-1/ /20	-2/ /20	-3/ ₂₀ -	- 0			$\times ql^2$
杆端弯矩	-1/ ₂₀	- <u>1/</u> /10	1/10	1/2	- <u>1/</u> 2	0	$\times ql^2$

转动刚度:
$$S_{CA} = 4 \times \frac{EI}{l}$$
 $S_{CB} = 3 \times \frac{2EI}{l}$ 分配系数: $\mu_{CA} = \frac{2}{5}$ $\mu_{CB} = \frac{3}{5}$ 固端弯矩: $M_{CB}^{F} = \frac{ql^2}{4}$ $M_{BC}^{F} = \frac{ql^2}{2}$ $M_{DB}^{F} = 0$ $M_{BD}^{F} = \frac{-ql^2}{2}$

分配系数、固端弯矩各2分,分配传递、杆端弯矩、最终弯矩图各2分。

十、(10 分)作出图示结构 F_{Ay} 、 F_{Cy} 、 M_A 、 F_{Dy} 的影响线(弯矩下侧受拉为正)。

每个影响线 2.5 分 (每图正负号或数值 0.5 分)。