Exercise 1:

a&b. 1. supervised learning alias Überwachtes Lernen:

Input von bewerteten Daten, Trainingsdaten von User Bewertung von darauf basiert automatischen Klassifizierung von Programm durch User

Maschinelles Lernen das Eingabedaten zu Ausgaben zuordnet anhand von bereitgestellten Beispielpaaren.

z.B. Handschrifterkennung

a&b. 2. Unsupervised learning alias Unüberwachtes Lernen:

Maschinelles Lernen das in den unklassifizierten Eingabedaten nach Mustern sucht.

z.B. Mustererkennung von Objekten

a&b. 3. Reinforcement learning alias bestärkendes Lernen:

Maschinelles Lernen bei der das Programm selbständig eine Strategie erarbeitet um Ergebnisse hinsichtlich einem oder mehreren Score/s zu optimieren.

z.B. AI das Tetris lernen spielt

Exercise 2:

functions - α

```
a)
(a1) a pile of Mushrooms - O
(a2) a table -X
(a3) A human - \gamma
(a4) A device - \alpha
(a5) The set - C
(a6) The machine - c \approx y
b)
our role - \gamma
```

Exercise 3:

n	x = age	y = bremsweg		
1	5	50		
2	7	79		
3	15	124		
4	28	300		
sum:	55	553	w0:	-7,31905126
avr:	13,75	138,25	w1:	10,5868401
i=1	772,1875	76,5625	y (x) =	10,5868*x-7,3190
i=2	399,9375	45,5625		
i=3	-17,8125	1,5625	für x=15	151,483550114767
i=4	2304,9375	203,0625		
sum:	3459,25	326,75		

$$w_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) \cdot (y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

$$w_0 = \frac{1}{n} \sum_{i=1}^n y_i - \frac{w_1}{n} \sum_{i=1}^n x_i = \bar{y} - w_1 \cdot \bar{x}$$

- c) kann ich nicht machen weil ich X^T nicht verstehe
- e) Man erhält einen Erwartungswert, keinen Wert der die Realität widerspiegelt.

Exercise 4:

a)
$$n(p) = m_p * A_p$$

b)
$$|H_p| = 3 * A_p$$

Unter der Annahme, dass Literals als eine Möglichkeit gelten. Alternativ, dass jeder Wert auch m_p annehmen kann:

$$|H_p| = (m_p + 2) * A_p$$

c) yay, rekursion!

Exercise 5:

a) Bei dem gegebenen Datenset kommt es nicht zu inkonsistenten Hypothesen.

Inkonsistent Hypothesen, alias alle werte sind "?", entstehen wenn:

- a) ein Beispiel aus dem Datensatz falsch ist
- b) die Attribute mehr als binär sind
- c) Kombinationen relevant sind (warm und sonnig oder kalt und windig sind ja beispiele)
- b) Nein die Reihenfolge ist irrelevant.

Alle gleichen Werte, werden beibehalten, während alle ungleichen zur Wildcard (?) werden. Ob zuerst in den positiv-Beispielen die Hummidity "high" ist und danach durch einen "normal" Eintrag zur Wildcard wird oder andersherum, spielt für die Output-Hypothese des Algorithmus' keine Rolle.