

# Mathematical Statistics Axioms of Probability

Samir Orujov



# Overview

Sample Space and Events



#### Definition # 1

In probability theory and statistics, the "Sample space" refers to the **set** of all **possible** outcomes or results of an experiment, random process, or observation. It is denoted by the symbol "S".



#### Definition # 1

In probability theory and statistics, the "Sample space" refers to the **set** of all **possible** outcomes or results of an experiment, random process, or observation. It is denoted by the symbol "S".

## Definition # 2 (Experiment)

Any activity for which the outcome or final state of affairs cannot be specified in advance, but for which a set containing all potential outcomes or final states of affairs can be identified.



#### Definition # 1

In probability theory and statistics, the "Sample space" refers to the **set** of all **possible** outcomes or results of an experiment, random process, or observation. It is denoted by the symbol "S".

## Definition # 2 (Experiment)

Any activity for which the outcome or final state of affairs cannot be specified in advance, but for which a set containing all potential outcomes or final states of affairs can be identified.

#### Definition # 3 (Outcome)

A final result, observation, or measurement occurring from an experiment.



#### Definition # 1

In probability theory and statistics, the "Sample space" refers to the **set** of all **possible** outcomes or results of an experiment, random process, or observation. It is denoted by the symbol "S".

## Definition # 2 (Experiment)

Any activity for which the outcome or final state of affairs cannot be specified in advance, but for which a set containing all potential outcomes or final states of affairs can be identified.

### Definition # 3 (Outcome)

A final result, observation, or measurement occurring from an experiment.

## Definition # 4 (Sample Space)

A set that contains all possible outcomes of a given experiment.

## Example 1

If the outcome of an experiment consists of the determination of the sex of a newborn child, then

$$S = \{g, b\}$$



#### Example 1

If the outcome of an experiment consists of the determination of the sex of a newborn child, then

$$S = \{g, b\}$$

#### Example 2 (Horses)

If the outcome of an experiment is the order of finish in a race among the 7 horses having names A, B, C, D, E, F, and G, then

$$S = \{\text{all 7! permutations of } (A, B, C, D, E, F, G)\}$$

The outcome (B, C, A, F, E, D, G) means, for instance, that the horse B comes in first, then the horse C, then the horse A, and so on.



## Example 3 (Coin)

If the experiment consists of flipping two coins, then the sample space consists of the following four points:

$$S = \{(h, h), (h, t), (t, h), (t, t)\}$$



## Example 3 (Coin)

If the experiment consists of flipping two coins, then the sample space consists of the following four points:

$$S = \{(h, h), (h, t), (t, h), (t, t)\}$$

#### Example 4

If the experiment consists of tossing two dice, then the sample space consists of the 36 points

$$S = \{(i,j): i, j = 1, 2, 3, 4, 5, 6\}$$

where the outcome (i,j) is said to occur if i appears on the leftmost die and j on the other die.

#### Example 5

If the experiment consists of measuring (in hours) the lifetime of a transistor, then the sample space consists of all nonnegative real numbers; that is,  $S = \{x \mid 0 \le x \le \infty\}$ 



#### **Event**

# Definition # 5 (Event)

A subset of the sample space.



#### **Event**

#### Definition # 5 (Event)

A subset of the sample space.

## Definition # 6 (Elementary Event)

An event that is a singleton set, consisting of one element of the sample space.



#### **Event**

#### Definition # 5 (Event)

A subset of the sample space.

## Definition # 6 (Elementary Event)

An event that is a singleton set, consisting of one element of the sample space.

## Definition # 7 (Occurrence of the Event)

An event is said to have occurred if the outcome of the experiment is an element of an event.



## Example 6 (Horses)

If  $E = \{$ all outcomes in S starting with a C $\}$  then E is the event that horse C wins the race.



## Example 6 (Horses)

If  $E = \{$ all outcomes in S starting with a C $\}$  then E is the event that horse C wins the race.

## Example 7 (Coin)

If  $E = \{(h, h), (h, t)\}$ , then E is the event that a head appears on the first coin.



## Example 6 (Horses)

If  $E = \{$ all outcomes in S starting with a C $\}$  then E is the event that horse C wins the race.

## Example 7 (Coin)

If  $E = \{(h, h), (h, t)\}$ , then E is the event that a head appears on the first coin.

#### Example 8

If  $E = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$ , then E is the event that the sum of the dice equals 7.



#### **New Events**

#### Definition # 8 (Union)

For any two events E and F of a sample space S. Define the new event

 $E \cup F$  to consist of all outcomes that are **either** in E or in F or in both E and F.

That is, the event  $E \cup F$  will occur if either E or F occurs.



#### **New Events**

#### Definition # 8 (Union)

For any two events E and F of a sample space S. Define the new event

 $E \cup F$  to consist of all outcomes that are **either** in E or in F or in both E and F.

That is, the event  $E \cup F$  will occur if either E or F occurs.

#### Definition # 9 (Intersection)

For any two events E and F. Define the new event

EF to consist of all outcomes that are **both** in E and in F.

 $E \cap F$  is another notation for intersection of events.



## Example 9 (Coin)

If  $E = \{(h, h), (h, t)\}$  is the event that the first coin lands heads, and  $F = \{(t, h), (h, h)\}$  is the event that the second coin lands heads, then

$$E \cup F = \{(h, h), (h, t), (t, h)\}$$

is the event that at least one of the coins lands heads and thus will occur provided that both coins do not land tails.



## Example 9 (Coin)

If  $E = \{(h, h), (h, t)\}$  is the event that the first coin lands heads, and  $F = \{(t, h), (h, h)\}$  is the event that the second coin lands heads, then

$$E \cup F = \{(h, h), (h, t), (t, h)\}$$

is the event that at least one of the coins lands heads and thus will occur provided that both coins do not land tails.

## Example 10 (Coin)

If  $E = \{(h, h), (h, t), (t, h)\}$  is the event that at least 1 head occurs and  $F = \{(h, t), (t, h), (t, t)\}$  is the event that at least 1 tail occurs, then

$$EF = E \cap F = \{(h, t), (t, h)\}$$

is the event that exactly 1 head and 1 tail occur.

# **Empty Space**

#### Definition # 10

If there is no element in the event then we denote it by  $\emptyset$ . That is,  $\emptyset$  refers to the event consisting of no outcomes.



# **Empty Space**

#### Definition # 10

If there is no element in the event then we denote it by  $\emptyset$ . That is,  $\emptyset$  refers to the event consisting of no outcomes.

## Definition # 11 (Disjoint Events)

Events that are mutually exclusive, having no outcomes in common. That is  $EF = \emptyset$ , then E and F are said to be mutually exclusive.



# Countable Operations and Complement

## Definition # 12 (Countable union & Intersection)

For events  $E_1, E_2, \ldots$  define new events

$$\bigcup_{i=1}^{n} E_{i}$$

$$\bigcap_{i=1}^{n} E_{i}$$

- The first one is the event that consists of all outcomes that are in  $E_i$  for at least one value of i = 1, 2, ...
- The second is the event consisting of those outcomes that are in all of the events  $E_i$ , i = 1, 2, ...



## Definition # 13 (Complement)

For any event E, we define the new event  $E^c$ , the complement of E, to consist of all outcomes in the sample space S that are not in E.



## Definition # 13 (Complement)

For any event E, we define the new event  $E^c$ , the complement of E, to consist of all outcomes in the sample space S that are not in E.

#### Definition # 14 (subset)

Notation:  $E \subset F$  {E is a subset of F}

Statement: All of the outcomes in E are also in F.

Thus, if  $E \subset F$ , then the occurrence of E implies the occurrence of F



## Definition # 13 (Complement)

For any event E, we define the new event  $E^c$ , the complement of E, to consist of all outcomes in the sample space S that are not in E.

#### Definition # 14 (subset)

Notation:  $E \subset F \ \{E \ is \ a \ subset \ of \ F\}$ 

Statement: All of the outcomes in E are also in F.

Thus, if  $E \subset F$ , then the occurrence of E implies the occurrence of F

#### Definition # 15 (superset)

If E is a subset of F then F is a superset of E.

Notation:  $F \supset E \{F \text{ is a superset of } E\}$ 



## Definition # 13 (Complement)

For any event E, we define the new event  $E^c$ , the complement of E, to consist of all outcomes in the sample space S that are not in E.

#### Definition # 14 (subset)

Notation:  $E \subset F \ \{E \ is \ a \ subset \ of \ F\}$ 

Statement: All of the outcomes in E are also in F.

Thus, if  $E \subset F$ , then the occurrence of E implies the occurrence of F

## Definition # 15 (superset)

If E is a subset of F then F is a superset of E.

Notation:  $F \supset E \{F \text{ is a superset of } E\}$ 

If  $E \subset F$  and  $E \supset F$  then we say that they are equal and write  $E \triangleq$ 





• Commutativity:  $E \cup F = F \cup E$  and EF = FE



- Commutativity:  $E \cup F = F \cup E$  and EF = FE
- Associativity:  $(E \cup F) \cup G = E \cup (F \cup G)$  and (EF)G = E(FG)



- Commutativity:  $E \cup F = F \cup E$  and EF = FE
- Associativity:  $(E \cup F) \cup G = E \cup (F \cup G)$  and (EF)G = E(FG)
- Distributivity:  $(E \cup F) \cap G = EG \cup FG$  and  $(E \cap F) \cup G = (E \cup G)(F \cup G)$



- Commutativity:  $E \cup F = F \cup E$  and EF = FE
- Associativity:  $(E \cup F) \cup G = E \cup (F \cup G)$  and (EF)G = E(FG)
- Distributivity:  $(E \cup F) \cap G = EG \cup FG$  and  $(E \cap F) \cup G = (E \cup G)(F \cup G)$

## Theorem 11 (DeMorgan's Law)

$$\left(\bigcup_{i=1}^{n} E_{i}\right)^{c} = \bigcap_{i=1}^{n} E_{i}^{c} \tag{1}$$

$$\left(\bigcap_{i=1}^{n} E_i\right)^c = \bigcup_{i=1}^{n} E_i^c \tag{2}$$

