Aula 12 – Limites de Funções

Metas da aula: Definir o conceito de ponto de acumulação de um subconjunto da reta. Definir limite de uma função num ponto de acumulação do seu domínio. Apresentar os resultados básicos sobre a existência e a inexistência do limite de uma função num ponto de acumulação do seu domínio.

Objetivos: Ao final desta aula, você deverá ser capaz de:

- Saber o significado dos conceitos de ponto de acumulação de um subconjunto da reta e de limite de uma função num ponto de acumulação do seu domínio.
- Entender e saber aplicar os critérios básicos para a existência e a inexistência do limite de uma função num ponto de acumulação do seu domínio.
- Saber demonstrar a partir da definição a validade ou falsidade de limites para funções simples.

Introdução

Nesta aula vamos iniciar o estudo do importante conceito de limite de uma função. Tal noção é o ponto de partida de todo o Cálculo Diferencial, já que o conceito de derivada nela se baseia. A idéia intuitiva de uma função f ter um limite L num ponto a é que os valores f(x) se tornam mais e mais próximos de L à medida que os valores de x se aproximam mais e mais (mas são diferentes) de \bar{x} . Em símbolos intuitivos costuma-se abreviar isso pondo-se " $f(x) \to L$ quando $x \to \bar{x}$ ". Para exprimir essa idéia da aproximação de f(x) vinculada à de x de modo matematicamente rigoroso é necessário recorrer à célebre 'dupla dinâmica' ε, δ , como faremos dentro de poucos instantes.

Pontos de Acumulação

Para que a idéia do limite de uma função f num ponto \bar{x} faça sentido é preciso que f esteja definida em pontos arbitrariamente próximos de \bar{x} . Porém, ela não tem necessariamente que estar definida no próprio ponto \bar{x} . Essa é a razão de introduzirmos a seguinte definição.

Definição 12.1

Seja $X \subset \mathbb{R}$. Um ponto $\bar{x} \in \mathbb{R}$ é um ponto de acumulação de X se para todo $\delta > 0$ existe ao menos um ponto $x \in X$, com $x \neq \bar{x}$, tal que $|x - \bar{x}| < \delta$.

Essa definição pode ser traduzida para a linguagem das vizinhanças do seguinte modo: Um ponto \bar{x} é um ponto de acumulação do conjunto X se toda δ -vizinhança $V_{\delta}(\bar{x}) = (\bar{x} - \delta, \bar{x} + \delta)$ de \bar{x} contém ao menos um ponto de X diferente de \bar{x} .

Note que \bar{x} pode ou não ser elemento de X, mas mesmo quando $\bar{x} \in X$, esse fato é totalmente irrelevante para que se julgue se ele é ou não um ponto de acumulação de X, já que explicitamente requeremos que existam pontos em $V_{\delta}(\bar{x}) \cap X$ distintos de \bar{x} para que \bar{x} seja ponto de acumulação de X.

Por exemplo, se $X = \{-1, 1\} \subset \mathbb{R}$, então nenhum dos elementos, -1ou 1, é ponto de acumulação de X já que se $\delta = 1$ então $V_1(-1) \cap X = \{-1\}$ e $V_1(1) \cap X = \{1\}$ e, portanto, essas vizinhanças não contêm nenhum ponto de X distinto do próprio ponto \bar{x} , com $\bar{x} = -1$ e $\bar{x} = 1$, respectivamente.

Teorema 12.1

Um número $\bar{x} \in \mathbb{R}$ é um ponto de acumulação de um subconjunto X de \mathbb{R} se, e somente se, existe uma sequência (x_n) em X tal que $\lim x_n = \bar{x}$ e $x_n \neq \bar{x}$ para todo $n \in \mathbb{N}$.

Prova: Se \bar{x} é um ponto de acumulação de X, então para qualquer $n \in \mathbb{N}$ a (1/n)-vizinhança $V_{1/n}(\bar{x})$ contém ao menos um ponto x_n em X distinto de \bar{x} . Então $x_n \in X$, $x_n \neq \bar{x}$, e $|x_n - \bar{x}| < 1/n$ o que implica $\lim x_n = \bar{x}$.

Reciprocamente, se existe uma sequência (x_n) em $X \setminus \{\bar{x}\}$ com $\lim x_n =$ \bar{x} , então para qualquer $\delta > 0$ existe $N_0 \in \mathbb{N}$ tal que se $n > N_0$, então $x_n \in V_{\delta}(\bar{x})$. Portanto, a δ -vizinhança de \bar{x} contém os pontos x_n , para $n > N_0$, que pertencem a X e são distintos de \bar{x} .

A seguir alguns exemplos onde enfatizamos o fato de um ponto de acumulação de um conjunto poder ou não pertencer a esse conjunto.

Exemplos 12.1

- (a) Se X := (0, 1), intervalo aberto de extremos 0 e 1, então todos os pontos do intervalo fechado [0,1] são pontos de acumulação de X. Note que 0e 1 são pontos de acumulação de X embora não pertençam a X. Aqui, todos os pontos de X são pontos de acumulação de X.
- (b) Para qualquer conjunto finito em \mathbb{R} o conjunto de seus pontos de acumulação é vazio (por quê?).

- (c) O conjunto infinito N não tem pontos de acumulação (por quê?).
- (d) O conjunto $X = \{1/n : n \in \mathbb{N}\}$ tem um único ponto de acumulação que é o 0 (por quê?). Nenhum dos pontos em X é ponto de acumulação de X.
- (e) Se $X := [0,1] \cap \mathbb{Q}$ então todo ponto do intervalo [0,1] é ponto de acumulação de X por causa da densidade de \mathbb{Q} em \mathbb{R} .

Limites de Funções

Vamos agora dar a definição rigorosa de limite de uma função f num ponto \bar{x} . É importante observar que nessa definição é irrevelante se f está ou não definida em \bar{x} .

Definição 12.2

Seja $X \subset \mathbb{R}$ e \bar{x} um ponto de acumulação de X. Para uma função $f: X \to \mathbb{R}$ um número real L é um limite de f em \bar{x} se, dado qualquer $\varepsilon > 0$ existe um $\delta > 0$ tal que se $x \in X$ e $0 < |x - \bar{x}| < \delta$, então $|f(x) - L| < \varepsilon$.

Observe que o δ depende em geral de ε e algumas vezes para enfatizar isso escrevemos $\delta(\varepsilon)$ ou $\delta = \delta(\varepsilon)$.

Observe também que a desigual dade $0 < |x - \bar{x}|$ equivale a dizer que x é diferente de \bar{x} .

Se L é um limite de f em \bar{x} , então também dizemos que f converge a L em \bar{x} ou que f tende a L quando x tende a \bar{x} . É comum usar-se o simbolismo

$$f(x) \to L$$
 quando $x \to \bar{x}$.

Se o limite de f em \bar{x} não existe dizemos que f diverge em \bar{x} .

Como primeiro uso da Definição 12.2, vamos provar que o limite quando existe é único. Assim, podemos dizer que L é o limite de f em \bar{x} em vez de dizer que L é um limite de f em \bar{x} .

Teorema 12.2

Se $f: X \to \mathbb{R}$ e se \bar{x} é um ponto de acumulação de X, então f pode ter no máximo um limite em \bar{x} .

Prova: Suponhamos, por contradição, que os números L e L' satisfaçam a Definição 12.2 e que $L \neq L'$. Tomemos $\varepsilon = |L - L'|/2 > 0$. Pela definição, existe $\delta(\varepsilon) > 0$ tal que se $x \in X$ e $|x - \bar{x}| < \delta(\varepsilon)$, então $|f(x) - L| < \varepsilon$. Da

mesma forma, existe $\delta'(\varepsilon)$ tal que se $|x-\bar{x}|<\delta'(\varepsilon)$, então $|f(x)-L'|<\varepsilon$. Assim, fazendo $\delta:=\min\{\delta(\varepsilon),\,\delta'(\varepsilon)\},$ temos que se $|x-\bar{x}|<\delta,$ então

$$|L - L'| < |L - f(x)| + |L' - f(x)| < \varepsilon + \varepsilon = \frac{|L - L'|}{2} + \frac{|L - L'|}{2} = |L - L'|,$$

o que é absurdo. Tal contradição foi originada com a nossa hipótese de que $L \neq L'$. Logo, o limite quando existe é único.

A definição de limite ganha uma forma bem interessante em termos de vizinhanças como representado pictoricamente na Figura 12.1.

Figura 12.1: O limite de f em \bar{x} é L. Observe que aqui $L \neq f(\bar{x})$.

Notemos que a desigualdade $0 < |x - \bar{x}| < \delta$ é equivalente a dizer que $x \neq \bar{x}$ e x pertence a δ -vizinhança $V_{\delta}(\bar{x})$ de \bar{x} . Similarmente, a desigualdade $|f(x)-L|<\varepsilon$ é equivalente a dizer que f(x) pertence a ε -vizinhança $V_{\varepsilon}(L)$ de L. Desse modo segue imediatamente o seguinte resultado cujos detalhes da prova deixamos para você como exercício.

Teorema 12.3

Seja $f:X\to\mathbb{R}$ e seja \bar{x} um ponto de acumulação de X. As seguintes afirmações são equivalentes.

- (i) $\lim_{x \to \bar{x}} f(x) = L$.
- (ii) Dada qualquer ε -vizinhança $V_{\varepsilon}(L)$ de L, existe uma δ -vizinhança $V_{\delta}(\bar{x})$ de \bar{x} tal que se $x \neq \bar{x}$ é qualquer ponto de $V_{\delta}(\bar{x}) \cap X$, então f(x) pertence a $V_{\varepsilon}(L)$.

Observe que pela Definição 12.2 o limite de uma função f num ponto \bar{x} depende apenas de como f é definida numa vizinhança qualquer de \bar{x} . Isso significa, em particular, que se f e g são duas funções quaisquer cujos domínios contêm uma vizinhança $V_r(\bar{x})$, para algum r>0, e são tais que $f|V_r(\bar{x})=g|V_r(\bar{x})$, então $\lim_{x\to\bar{x}}f(x)=L$ se, e somente se, $\lim_{x\to\bar{x}}g(x)=L$. Deixamos a você como exercício a simples verificação desse fato.

A seguir damos alguns exemplos que ilustram como a definição de limite é aplicada.

Exemplos 12.2

(a) Se $f: \mathbb{R} \to \mathbb{R}$ é a função constante $f(x) \equiv c$ para todo $x \in \mathbb{R}$, com $c \in \mathbb{R}$, então $\lim_{x \to \bar{x}} f(x) = c$.

De fato, dado qualquer $\varepsilon > 0$, tomamos qualquer $\delta > 0$, digamos $\delta := 1$. Então se $0 < |x - \bar{x}| < 1$, temos $|f(x) - c| = |c - c| = 0 < \varepsilon$. Como $\varepsilon > 0$ é arbitrário concluímos da Definição 12.2 que $\lim_{x \to \bar{x}} f(x) = c$.

(b) $\lim_{x \to \bar{x}} x = \bar{x}.$

Aqui f é a função dada por f(x) := x que podemos supor definida em todo \mathbb{R} . Seja dado $\varepsilon > 0$ qualquer. Tomemos $\delta := \varepsilon$. Então se $0 < |x - \bar{x}| < \delta = \varepsilon$, temos $|f(x) - \bar{x}| = |x - \bar{x}| < \varepsilon$. Logo, como $\varepsilon > 0$ é arbritrário, segue que $\lim_{x \to \bar{x}} f(x) = \bar{x}$.

(c) $\lim_{x \to \bar{x}} x^2 = \bar{x}^2$.

Nesse caso temos $f(x)=x^2$ e podemos supor f definida em \mathbb{R} . Dado $\varepsilon>0$ qualquer, devemos exibir $\delta>0$ tal que se $|x-\bar{x}|<\delta$, então $|x^2-\bar{x}^2|<\varepsilon$. Agora,

$$|x^2 - \bar{x}^2| = |(x + \bar{x})(x - \bar{x})| \le (|x| + |\bar{x}|)|x - \bar{x}|.$$

Se $|x - \bar{x}| < 1$, então $|x| < |\bar{x}| + 1$ e teremos

$$|x^2 - \bar{x}^2| < (2|\bar{x}| + 1)|x - \bar{x}| < \varepsilon$$
, se $|x - \bar{x}| < \frac{\varepsilon}{2|\bar{x}| + 1}$.

Assim, se fizermos $\delta := \min\{1, \, \varepsilon/(2|\bar{x}|+1)\}$, então $|x-\bar{x}| < \delta$ implica $|x^2 - \bar{x}^2| < \varepsilon$. Como $\varepsilon > 0$ é arbitrário, obtemos $\lim_{x \to \bar{x}} x^2 = \bar{x}^2$.

(d)
$$\lim_{x \to \bar{x}} \frac{1}{x} = \frac{1}{\bar{x}} \text{ se } \bar{x} \neq 0.$$

Podemos tomar $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ definida por $f(x) = \frac{1}{x}$. Para provar que $\lim_{x\to \bar x} f = 1/\bar x$ devemos mostrar que $|\frac{1}{x} - \frac{1}{\bar x}|$ é menor que um $\varepsilon > 0$ arbitrariamente dado, se $|x - \bar{x}|$ é suficientemente pequeno. De antemão, podemos supor $|x-\bar{x}| < \frac{|\bar{x}|}{2}$ o que implica $|x| > \frac{|\bar{x}|}{2}$ (por quê?). Assim,

$$\left| \frac{1}{x} - \frac{1}{\bar{x}} \right| = \frac{1}{(|x||\bar{x}|)} |x - \bar{x}| < \frac{2}{|\bar{x}|^2} |x - \bar{x}|.$$

Portanto, fazendo $\delta := \min\{\frac{|\bar{x}|}{2}, \frac{|\bar{x}|^2}{2}\varepsilon\}$, temos que se $|x - \bar{x}| < \delta$, então $\left|\frac{1}{x} - \frac{1}{\bar{x}}\right| < \varepsilon$. Como $\varepsilon > 0$ é arbitrário, isso prova que $\lim_{x \to \bar{x}} \frac{1}{x} = \frac{1}{\bar{x}}$.

(e)
$$\lim_{x \to 0} \frac{x^3 - 8}{x^2 - 3x + 2} = -4.$$

Fazendo $f(x) = \frac{x^3 - 8}{x^2 - 3x + 2}$, vemos que f está definida para todo $x \in \mathbb{R}$ com exceção de x = 1 e x = 2, já que esses valores são as raízes da equação $x^2 - 3x + 2 = 0$. Logo, podemos tomar essa função f definida em $X = \mathbb{R} \setminus \{1, 2\}$ ou X = (-1, 1), por exemplo; o valor do limite em $\bar{x} = 0$ não será afetado pela escolha que fizermos.

Observe que $x^3 - 8 = (x-2)(x^2 + 2x + 4)$ e $x^2 - 3x + 2 = (x-2)(x-1)$. Portanto, se $x \notin \{1, 2\}$, então temos

$$f(x) = \frac{(x-2)(x^2+2x+4)}{(x-2)(x-1)} = \frac{x^2+2x+4}{x-1}.$$

Assim, temos

$$|f(x) - (-4)| = \left| \frac{x^2 + 2x + 4}{x - 1} + 4 \right| = \left| \frac{x^2 + 6x}{x - 1} \right| = \frac{|x + 6|}{|x - 1|} |x|.$$

Se |x| < 1/2, então |x-1| > 1/2 e |x+6| < 13/2 (por quê?). Logo,

$$|f(x) - (-4)| < \frac{13/2}{1/2}|x| = 13|x|.$$

Portanto, dado $\varepsilon > 0$ qualquer, fazendo $\delta := \min\{1/2, \varepsilon/13\}$ temos que se $|x| < \delta$, então $|f(x) - (-4)| < \varepsilon$, o que prova a afirmação, já que $\varepsilon > 0$ é arbitrário.

CEDERJ

O Critério Sequencial para Limites

A seguir estabelecemos uma importante formulação para o limite de uma função em termos de limites de sequências. Com base nessa caracterização será possível aplicarmos a teoria vista nas Aulas 6–9 sobre limites de sequências para estudar limites de funções.

Teorema 12.4 (Critério Sequencial)

Seja $f: X \to \mathbb{R}$ e seja \bar{x} um ponto de acumulação de X. Então as seguintes afirmações são equivalentes.

- (i) $\lim_{x \to \bar{x}} f = L$.
- (ii) Para toda sequência (x_n) em X que converge a \bar{x} tal que $x_n \neq \bar{x}$ para todo $n \in \mathbb{N}$, a sequência $(f(x_n))$ converge a L.

Prova: (i) \Rightarrow (ii). Suponhamos que f tem limite L em \bar{x} e que (x_n) é uma sequência em X com $\lim x_n = \bar{x}$, tal que $x_n \neq \bar{x}$ para todo $n \in \mathbb{N}$. Vamos mostrar que $\lim f(x_n) = L$. Seja $\varepsilon > 0$ dado. Pela Definição 12.2 existe $\delta > 0$ tal que se $x \in X$ satisfaz $0 < |x - \bar{x}| < \delta$, então f(x) satisfaz $|f(x) - L| < \varepsilon$. Agora aplicamos a Definição 6.2 de sequência convergente com o δ dado fazendo o papel de ε naquela definição. Assim obtemos um número natural N_0 tal que se $n > N_0$, então $|x_n - \bar{x}| < \delta$. Mas então para um tal x_n temos $|f(x_n) - L| < \varepsilon$. Portanto, se $n > N_0$, então $|f(x_n) - L| < \varepsilon$, o que prova que a sequência $(f(x_n))$ converge a L.

(ii) \Rightarrow (i). Equivalentemente, vamos provar a contrapositiva \sim (i) \Rightarrow \sim (ii). Se (i) não é verdade, então existe um $\varepsilon_0 > 0$ tal que qualquer que seja $\delta > 0$, sempre existirá ao menos um número $x_{\delta} \in X$ satisfazendo $0 < |x_{\delta} - \bar{x}| < \delta$ e $|f(x_{\delta}) - L| \geq \varepsilon_0$. Portanto, para todo $n \in \mathbb{N}$ podemos tomar $\delta := 1/n$ e obter $x_n \in X$ satisfazendo

$$0<|x_n-\bar{x}|<\frac{1}{n},$$

tal que

$$|f(x_n) - L| \ge \varepsilon_0$$
 para todo $n \in \mathbb{N}$.

Concluímos então que a sequência (x_n) em $X \setminus \{\bar{x}\}$ converge para \bar{x} , porém a sequência $(f(x_n))$ não converge para L. Assim, mostramos que se (i) não é verdade, então (ii) também não é verdade, o que equivale a provar que (ii) implica (i).

O resultado anterior pode ser usado para se obter limites de funções usando-se as propriedades conhecidas sobre limites de sequências. Assim, do fato de que se $x_n \to \bar{x}$, então $x_n^2 \to \bar{x}^2$, concluímos facilmente que $\lim_{x \to \bar{x}} x^2 = \bar{x}^2$, como mostramos no Exemplo 12.2 (c) usando a Definição 12.2. Da mesma forma, se $x_n \neq 0$ para todo $n \in \mathbb{N}$ e $\bar{x} \neq 0$, então $x_n \to \bar{x}$ implica $1/x_n \to 1/\bar{x}$, donde concluímos pelo resultado anterior que $\lim_{x \to \bar{x}} \frac{1}{x} = \frac{1}{\bar{x}}$, confirmando o que foi provado no Exemplo 12.2 (d) usando a Definição 12.2.

Na próxima aula veremos que diversas propriedades básicas do limite de funções podem ser facilmente estabelecidas usando-se as propriedades correspondentes do limite de sequências.

Com o uso do Teorema 12.4 é possível também estabelecer facilmente critérios de divergência, isto é, formas simples de verificar ou que um número dado L não é o limite de uma dada função num certo ponto, ou que a função dada $não\ possui\ um\ limite$ no ponto em questão. Deixamos a você como importante exercício os detalhes da prova dos seguintes critérios de divergência.

Teorema 12.5 (Critérios de Divergência)

Sejam $X \subset \mathbb{R}$, $f: X \to \mathbb{R}$ e $\bar{x} \in \mathbb{R}$ um ponto de acumulação de X.

- (a) Se $L \in \mathbb{R}$, então f $n\tilde{a}o$ converge a L quando x tende a \bar{x} se existe uma sequência (x_n) em X com $x_n \neq \bar{x}$ para todo $n \in \mathbb{N}$ tal que (x_n) converge a \bar{x} mas a sequência $(f(x_n))$ $n\tilde{a}o$ converge a L.
- (b) A função f $n\tilde{a}o$ possui um limite em \bar{x} se existe uma sequência (x_n) em X com $x_n \neq \bar{x}$ tal que (x_n) converge a \bar{x} mas a sequência $(f(x_n))$ $n\tilde{a}o$ converge em \mathbb{R} .

A seguir damos algumas aplicações desse resultado que mostram como ele pode ser usado.

Exemplos 12.3

(a) Não existe $\lim_{x\to 0} \frac{1}{x}$.

De fato, a sequência (x_n) definida por $x_n := 1/n$ para todo $n \in \mathbb{N}$ satisfaz $x_n \neq 0$ para todo $n \in \mathbb{N}$ e $\lim x_n = 0$. Agora, se f(x) = 1/x para $x \in X = \mathbb{R} \setminus \{0\}$, então $f(x_n) = n$. Como a sequência $(f(x_n)) = (n)$ não converge em \mathbb{R} , concluímos pelo Teorema 12.5 que f(x) = 1/x não possui limite em $\bar{x} = 0$.

(b) Não existe $\lim_{x\to 0} {\rm sgn}(x)$, onde ${\rm sgn}:\mathbb{R}\to\mathbb{R}$ é a função definida por (veja Figura 12.2)

$$sgn(x) = \begin{cases} -1, & \text{se } x < 0, \\ 0, & \text{se } x = 0, \\ 1, & \text{se } x > 0. \end{cases}$$

O símbolo sgn é uma abreviatura para a palavra latina signum que quer dizer sinal e, por isso, lê-se a expressão sgn(x) como "sinal de x".

Figura 12.2: A função sinal.

De fato, seja (x_n) a sequência definida por $x_n:=(-1)^n/n$ para $n\in\mathbb{N}$ de modo que $\lim x_n=0$ e $x_n\neq 0$ para todo $n\in\mathbb{N}$. Como

$$\operatorname{sgn}(x_n) = (-1)^n$$
 para $n \in \mathbb{N}$,

segue que $(\operatorname{sgn}(x_n))$ não converge. Portanto, do Teorema 12.5, segue que não existe $\lim_{x\to 0}\operatorname{sgn}(x)$.

(c) Não existe $\lim_{x\to 0} \operatorname{sen}(1/x)$ (veja Figura 12.3).

Aqui usaremos algumas propriedades bem conhecidas da função sen u. A definição analítica rigorosa das funções trigonométricas e exponencial bem como o estudo de suas principais propriedades serão feitos em aula futura, quando tivermos de posse dos instrumentos teóricos necessários.

No entanto, a fim de dispor de aplicações interessantes, algumas vezes vamos fazer uso dessas funções e de suas principais propriedades apenas como exemplos, o que não afeta em nada o desenvolvimento lógico da teoria.

Provemos agora a afirmação. De fato, seja (x_n) a sequência definida por

$$x_n = \begin{cases} \frac{1}{n\pi}, & \text{se } n \in \mathbb{N} \text{ \'e impar} \\ \frac{1}{\frac{1}{2}\pi + n\pi}, & \text{se } n \in \mathbb{N} \text{ \'e par} \end{cases}.$$

Seja f(x) = sen(1/x) para $x \in X = \mathbb{R} \setminus \{0\}$. Temos que $\lim x_n = 0$ e $x_n \neq 0$ para todo $n \in \mathbb{N}$. Por outro lado, $f(x_{2k-1}) = \text{sen}(2k-1)\pi = 0$ para todo $k \in \mathbb{N}$, ao passo que $f(x_{2k}) = \operatorname{sen}(\frac{1}{2}\pi + 2k\pi) = 1$ para todo $k \in \mathbb{N}$. Assim, $(f(x_n))$ é a sequência $(0, 1, 0, 1, \dots)$, a qual sabemos que não converge. Logo, pelo Teorema 12.5, não existe $\lim_{x\to 0} \mathrm{sen}(1/x)$.

Figura 12.3: A função f(x) = sen(1/x).

Exercícios 12.1

1. Determine um $\delta > 0$ tal que se $0 < |x - \bar{x}| < \delta$, então $|f(x) - L| < \varepsilon$ para \bar{x}, f, L e ε dados como segue:

(a)
$$\bar{x} = 1$$
, $f(x) = x^2$, $L = 1$, $\varepsilon = 1/2$;

- (b) $\bar{x} = 1$, $f(x) = x^2$, L = 1, $\varepsilon = 1/n$ para um $n \in \mathbb{N}$ dado;
- (c) $\bar{x} = 2$, f(x) = 1/x, L = 1/2, $\varepsilon = 1/2$;
- (d) $\bar{x} = 2$, f(x) = 1/x, L = 1/2, $\varepsilon = 1/n$ para um $n \in \mathbb{N}$ dado;
- (e) $\bar{x} = 4$, $f(x) = \sqrt{x}$, L = 2, $\varepsilon = 1/2$;
- (f) $\bar{x} = 4$, $f(x) = \sqrt{x}$, L = 2, $\varepsilon = 1/100$.
- 2. Seja \bar{x} um ponto de acumulação de $X\subset\mathbb{R}$ e $f:X\to\mathbb{R}$. Prove que $\lim_{x\to\bar{x}}f(x)=L \text{ se, e somente se, } \lim_{x\to\bar{x}}|f(x)-L|=0.$
- 3. Seja $f: \mathbb{R} \to \mathbb{R}$ e $\bar{x} \in \mathbb{R}$. Mostre que $\lim_{x \to \bar{x}} f(x) = L$ se, e somente se, $\lim_{x \to 0} f(x + \bar{x}) = L$.
- 4. Mostre que $\lim_{x \to \bar{x}} x^3 = \bar{x}^3$ para qualquer $\bar{x} \in \mathbb{R}$.
- 5. Mostre que $\lim_{x \to \bar{x}} \sqrt{x} = \sqrt{\bar{x}}$ para qualquer $\bar{x} > 0$.
- 6. Mostre que $\lim_{x\to 0} x^{1/p} = 0 \ (x > 0)$.
- 7. Sejam I um intervalo em \mathbb{R} , $f:I\to\mathbb{R}$ e $\bar{x}\in I$. Suponha que existem K>0 e $L\in\mathbb{R}$ tais que $|f(x)-L|\leq K|x-\bar{x}|$ para todo $x\in I$. Mostre que $\lim_{x\to\bar{x}}f(x)=L$.
- 8. Use a definição ε , δ ou o critério sequencial para estabelecer os seguintes limites:
 - (a) $\lim_{x \to 2} \frac{1}{1-x} = -1;$
 - (b) $\lim_{x \to 1} \frac{x}{1+x} = \frac{1}{2};$
 - (c) $\lim_{x \to 1} \frac{x^2 1}{x^3 1} = \frac{2}{3}$;
 - (d) $\lim_{x \to 2} \frac{x-2}{x^2 3x + 2} = 1.$
- 9. Mostre que os seguintes limites $n\tilde{a}o$ existem:
 - (a) $\lim_{x \to 0} \frac{1}{x^2}$ (x > 0);
 - (b) $\lim_{x\to 0} \frac{1}{\sqrt{x}}$ (x>0);
 - (c) $\lim_{x\to 0} (x + \operatorname{sgn}(x));$
 - (d) $\lim_{x\to 0} \text{sen}(1/x^2)$.