DIVISER POUR RÉGNER

La méthode algorithmique « diviser pour régner » (« divide and conquer » en anglais) consiste à ramener la résolution d'un problème dépendant d'un entier n en un ou plusieurs problèmes identiques portant sur des entiers strictement inférieurs à n. Le fonctionnement d'un tel algorithme est le suivant :

- o on divise le problème en un ou plusieurs sous-problèmes;
- o on résout récursivement les sous-problèmes;
- o on utilise les résultats obtenus pour construire la solution du problème initial.

Nous allons dans ce chapitre étudier plusieurs algorithmes « diviser pour régner ».

1 Exponentiation rapide

La version récursive de l'exponentiation rapide est un exemple d'algorithme « diviser pour régner »

1.1 Terminaison

La fonction termine pour $n \in \{0,1\}$. Pour $n \ge 2$, $\left\lfloor \frac{n}{2} \right\rfloor < n$, donc la fonction termine pour tout $n \in \mathbb{N}$.

1.2 Correction

La correction de l'algorithme est assurée par les égalités $x^0=1, \ x^1=x,$ et pour tout $k\in\mathbb{N},$ $\left\{\begin{array}{l} x^{2k}=(x^2)^k\\ x^{2k+1}=x(x^2)^k \end{array}\right.$

1.3 Complexité

Notons c_n le nombre de multiplications effectuées lors de l'appel **puissance** x n. Alors $c_0 = 0$, $c_1 = 0$ et pour tout $n \ge 2$, $c_n = c_{\lfloor n/2 \rfloor} + f(n)$ où f(n) = 1 si n est pair, 2 sinon.

Considérons la suite u telle que $u_1 = 0$ et pour tout $n \ge 2$, $u_n = u_{\lfloor n/2 \rfloor} + 2$. Alors pour tout $n \in \mathbb{N}^*$, $c_n \le u_n$.

De plus, on peut montrer par récurrence forte que la suite u est croissante.

Pour tout $p \in \mathbb{N}$, posons $v_p = u_{2^p}$, alors pour tout $p \in \mathbb{N}$, $v_{p+1} = v_p + 2$, donc la suite v est arithmétique de raison 2: pour tout $p \in \mathbb{N}$, $u(2^p) = v_p = 2p$.

Soit maintenant $n \in \mathbb{N}^*$ quelconque et $p = \lfloor \log_2 n \rfloor$. Alors $2^p \leqslant n < 2^{p+1}$. Comme u est croissante, $v_p \leqslant u_n \leqslant v_{p+1}$, donc $2p \leqslant u_n < 2p + 1$.

Par encadrement, $u_n \sim \log_2 n$.

Finalement, $c_n = O(\log n)$.

Remarque : Dans ce cas particulier, on peut être plus précis en considérant l'écriture binaire de n : si $n = \underline{b_p...b_1b_0}_2$, alors $c_n = c_{\lfloor n/2 \rfloor} + 1 + b_0$ avec $\lfloor \frac{n}{2} \rfloor = \underline{b_p...b_1}_2$.

On montre donc aisément que $c_n = p + \sum_{k=0}^{p-1} b_k$, donc $p \leqslant c_n \leqslant 2p$, ce qui permet d'affirmer que $c_n = \Theta(\log n)$ (i.e que $c_n = O(\log n)$ et $\log n = O(c_n)$).

2 Tri fusion

Le tri fusion consiste à partager le tableau ou la liste à trier en deux parties de tailles respectives $\left\lfloor \frac{n}{2} \right\rfloor$ et $\left\lceil \frac{n}{2} \right\rceil$ qu'on trie par un appel récursif, puis à fusionner les deux parties triées.

Comme il n'est pas aisé d'implémenter correctement la fusion en place dans le cas d'un tableau, nous allons étudier cet algorithme de tri sur les listes.

2.1 Partage de la liste

2.1.1 Implémentation

```
let rec decoupe 1 =
  match 1 with
  | [] -> [], []
  | [x] -> [x], []
  | t1::t2::q -> let q1, q2 = decoupe q in
     t1::q1, t2::q2
;;
```

2.1.2 Terminaison et correction

On peut montrer par récurrence double sur n que pour toute liste 1 de longueur n, l'appel decoupe 1 termine en effectuant n appels récursifs, et que cet appel renvoie deux listes l_1 et l_2 de longueurs respectives $\left\lceil \frac{n}{2} \right\rceil$ et $\left\lceil \frac{n}{2} \right\rceil$.

2.1.3 Complexité

Chaque appel de la fonction decoupe effectue uniquement un nombre borné d'opérations, toutes en temps constant, sauf l'éventuel appel récursif.

Par conséquent, l'exécution de decoupe 1 prend un temps en O(n).

2.2 Fusion de listes triées

2.2.1 Implémentation

2.2.2 Correction

Montrons que pour toutes listes l_1 et l_2 triées par ordre croissant, l'appel **fusion** l_1 l_2 termine et retourne une liste l triée par ordre croissant dont les éléments sont les mêmes que ceux de $l_1@l_2$ (où @ est l'opérateur de concaténation).

Pour cela, notons pour $n \in \mathbb{N}$, P(n) l'assertion « pour toutes listes l_1 et l_2 triées par ordre croissant dont la somme des longueurs vaut n, la fonction fusion l_1 l_2 termine et retourne une liste l triée par ordre croissant dont les éléments sont les mêmes que ceux de l_1 @ l_2 ».

- o Montrons P(0). Soit l_1 et l_2 deux listes dont la somme des longueurs vaut 0, alors l_1 et l_2 sont vides. Or fusion [] [] retourne [] qui possède les mêmes éléments que []@[] et qui est triée. P(0) est donc vérifiée.
- o Soit $n \in \mathbb{N}$ quelconque. Supposons que P(n) est vérifiée et montrons P(n+1). Soient l_1 et l_2 deux listes triées par ordre croissant dont la somme des longueurs vaut n+1.
 - Si l_1 est vide, fusion l_1 l_2 retourne l_2 , qui est triée par ordre croissant et possède les mêmes éléments que $l_1 @ l_2$.
 - Si l_2 est vide, on a le même résultat.
 - Sinon, l_1 et l_2 sont toutes deux non vides.
 - Ou bien $t_1 \leq t_2$, alors fusion l_1 l_2 retourne le résultat de l'évaluation de t_1 :: fusion q_1 l_2 . Or q_1 et l_2 sont triées et la somme des longueurs de q_1 et l_2 vaut n. Par hypothèse de récurrence, fusion q_1 l_2 retourne une liste l triée ayant les mêmes éléments que $q_1@l_2$.
 - Par conséquent, t_1 :: fusion q_1 l_2 retourne une liste ayant les mêmes éléments que t_1 :: $q_1@l_2$, donc que $l_1@l_2$. De plus, l_1 et l_2 sont triées donc t_1 minore tous les éléments de q_1 et t_2 tous ceux de l_2 . Comme de plus $t_1 \leq t_2$, t_1 minore tous les éléments de $q_1@l_2$, donc de l, qui est triée. Donc t_1 ::l est triée. L'appel fusion l_1 l_2 termine et retourne une liste triée contenant les mêmes éléments que $l_1@l_2$.
 - Si $t_1 > t_2$, on montre de même que l'appel fusion l_1 l_2 termine et retourne une liste triée contenant les mêmes éléments que $l_1@l_2$.

P est donc héréditaire.

On en déduit que P(n) est vrai pour tout entier n.

2.2.3 Complexité

À chaque appel de fusion, on effectue uniquement un nombre borné d'opérations, qui sont toutes de temps constant, sauf l'appel récursif. On en déduit que la complexité

temporelle de l'exécution de fusion l_1 l_2 est un O(n) où n est la somme des longueurs de l_1 et l_2 .

2.3 Tri fusion

2.3.1 Implémentation

```
let rec tri_fusion l =
  match l with
  | [] -> []
  | [x] -> [x]
  | _ -> let l1, l2 = decoupe l in
  fusion (tri_fusion l1) (tri_fusion l2)
;;
```

2.3.2 Correction

Pour $n \in \mathbb{N}$, notons P(n) l'assertion « Pour une liste l de n éléments, tri_fusion l renvoie une liste triée par ordre croissant ayant les mêmes éléments que l », et raisonnons par récurrence forte sur n.

- $\circ P(0)$ et P(1) sont vraies.
- o Soit $n \ge 2$. Supposons P(k) vraie pour tout k < n. Soit l une liste de longueur n. Notons l_1 et l_2 les deux listes obtenues par l'appel decoupe l. Alors l_1 et l_2 sont respectivement de longueur $\left\lceil \frac{n}{2} \right\rceil$ et $\left\lceil \frac{n}{2} \right\rceil$.

Comme $n \ge 2$, $n > \left\lceil \frac{n}{2} \right\rceil \ge \left\lfloor \frac{n}{2} \right\rfloor$, donc pour $i \in \{1,2\}$, tri_fusion l_i renvoie une liste l_i' triée ayant les mêmes éléments que l_i . Par conséquent, la liste renvoyée par tri_fusion l est une liste triée qui possède exactement les mêmes éléments que l_1' 0 l_2' , donc que l.

2.3.3 Complexité

Notons, pour $n \in \mathbb{N}$, C(n) le temps de calcul mis dans le pire des cas par tri_fusion l pour une liste l de longueur n.

Les opérations effectuées par tri_fusion sur une liste l de longueur $n \geqslant 2$ sont un filtrage (en temps constant), un appel à split l en temps O(n), un appel à fusion sur deux listes l'_1 et l'_2 de longueurs respectives $\lceil n/2 \rceil$ et $\lfloor n/2 \rfloor$, ce qui demande un temps $O(\lceil n/2 \rceil + \lfloor n/2 \rfloor) = O(n)$, et deux appels récursifs à tri_fusion sur des listes

de longueurs $\lceil n/2 \rceil$ et $\lfloor n/2 \rfloor$, dont les temps de calcul sont donc au plus respectivement $C(\lceil n/2 \rceil)$ et $C(\lceil n/2 \rceil)$.

Le temps de calcul de tri_fusion l est donc au plus $O(n) + C(\lceil n/2 \rceil) + C(\lfloor n/2 \rfloor)$. Cette inégalité étant vérifiée pour toute liste de longueur n, le temps de calcul de tri_fusion sur une liste de longueur n dans le cas le pire vérifie :

$$C(n) \leqslant C\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + C\left(\left\lceil \frac{n}{2} \right\rceil\right) + O(n)$$

Ou bien on suppose que C est croissante, ou bien on introduit plutôt C'(n), le temps de calcul de tri_fusion dans le cas le pire pour une liste de longueur au plus n.

Pour tout $n \in \mathbb{N}$, $C(n) \leqslant C'(n) \leqslant C'(n+1)$, car pour toute liste de longueur n, tri_fusion met un temps au plus égal à C'(n) et pour toute liste de longueur au plus n, tri_fusion met un temps au plus C'(n+1).

Donc C' majore C et est croissante.

De plus, on a:

$$C'(n) \leqslant C'\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + C'\left(\left\lceil \frac{n}{2} \right\rceil\right) + O(n)$$

Pour $k \in \mathbb{N}$, posons $u_k = C'(2^k)$.

Alors, à partir d'un certain rang, $u_k \leq 2u_{k-1} + \alpha 2^k$ où α est une constante.

On pose alors pour tout $k \in \mathbb{N}$, $v_k = \frac{u_k}{2^k}$, de sorte qu'à partir d'un certain rang k_0 , $v_k \leq v_{k-1} + \alpha$, d'où $v_k - v_{k-1} \leq \alpha$.

Alors pour tout $k \ge k_0$, $v_k - v_{k_0} \le (k - k_0)\alpha$, donc $v_k \le (k - k_0)\alpha + v_{k_0}$. Par conséquent, $v_k = O(k)$, donc $u_k = O(k2^k)$.

Soit $n \in \mathbb{N}^*$ et $p = \lceil \log_2 n \rceil$, alors $C(n) \leqslant C'(n) \leqslant C'(2^p)$ avec $C'(2^p) = u_p = O(p2^p)$.

Or $O(\lceil \log_2 n \rceil 2^{\lceil \log_2 n \rceil}) = O(n \log n)$, donc

$$C(n) = O(n \log n)$$

3 Tri par pivot

Ce tri est aussi appelé *tri rapide* (ou *quicksort*), mais ce nom pourrait vous induire en erreur : le tri par pivot, s'il est rapide dans les meilleurs cas, se comporte mal dans le pire des cas.

Ce tri consiste, lorsque la liste l à trier est assez grande à effectuer les étapes suivantes :

- o On choisit dans l un élément quelconque p, appelé pivot, et on construit deux listes l_1 et l_2 des autres éléments de l contenant respectivement les éléments inférieurs ou égaux à p et ceux strictement supérieurs à p.
- o On trie récursivement les deux listes l_1 et l_2 , ce qui donne deux listes triées l'_1 et l'_2 .
- o On renvoie la liste $l'_1 @ (p::l'_2)$.

3.1 Partition

La fonction filter : ('a -> bool) -> 'a list -> 'a list du module List prend en argument une fonction f: 'a -> bool et une liste lst et renvoie la liste des éléments de lst pour lesquelles la fonction f renvoie true. Sa complexité (temporelle et spatiale) est un O(n).

On en déduit une fonction partition de complexité linéaire :

```
let partition p l =
  let l1 = List.filter (fun x -> x <= p) l in
  let l2 = List.filter (fun x -> x > p) l in
  (l1, l2)
;;
```

3.2 Tri par pivot

3.2.1 Implémentation

3.2.2 Complexité

La fonction partition est de complexité linéaire, donc il existe deux constantes α et β telles que pour tout p et pour toute liste l, le temps de calcul de partition p l est majoré par $\alpha|l|+\beta$ où |l| désigne la longueur de la liste l

Le temps de calcul de $\operatorname{\tt quicksort}\ l$ avec l non vide de longueur n est égal à la somme des coûts du partitionnement, des deux appels récursifs, puis de la concaténation, plus quelques coûts en temps constant.

Le coût en temps de la partition est majoré par $\alpha(n-1) + \beta$.

Le coût de la concaténation est linéaire par rapport à la taille de v_1 , qui est majorée par n-1 donc il existe deux constantes λ, μ telles que le coût de la concaténation est majorée par $\lambda(n-1) + \mu$.

Finalement, il existe des constantes a et b telles que le temps de calcul de quicksort l est majoré par an+b plus le temps de calcul des appels récursifs.

Notons N le nombre total d'appels à quicksort et S la somme des longueurs des listes sur lesquelles s'effectuent ces appels. Alors le temps de calcul de quicksort l est majoré par aS + bN, donc par m(S + N) où $m = \max\{a, b\}$.

Pour tout $n \in \mathbb{N}$, notons C(n) la valeur de S+N dans le pire des cas pour une liste de longueur n.

- \circ C(0) = 1, car si la liste est vide, on réalise un seul appel.
- Soit $n \in \mathbb{N}^*$. Alors il existe $k \in [\![0,n-1]\!]$ tel que $C(n) \leqslant C(k) + C(n-1-k) + n + 1$.

Montrons par récurrence forte que $C(n) \leq (n+1)^2$.

- $\circ C(0) \leqslant (0+1)^2.$
- ∘ Soit $n \in \mathbb{N}^*$. On suppose que pour tout $k \in [0, n-1]$, $C(k) \le (k+1)^2$. Comme il existe $k \in [0, n-1]$ tel que $C(n) \le C(k) + C(n-1-k) + n + 1$, avec $k \le n-1$ et $n-1-k \le n-1$, on en déduit que $C(n) \le (k+1)^2 + (n-k)^2 + n + 1$.

Or
$$(k+1)^2 + (n-k)^2 + n + 1 = k^2 + 2k + 1 + n^2 - 2nk + k^2 + n + 1$$

= $n^2 + 2n + 1 + 2k^2 + 2k - 2nk - n + 1$
= $(n+1)^2 - 2k(n-1-k) - (n-1)$

donc
$$C(n) \leq (n+1)^2$$

Par conséquent, la complexité temporelle de quicksort l est, dans le pire des cas, en $O(n^2)$.

En considérant le cas où la liste est déjà triée, on peut montrer que cette borne est atteinte.

4 Exercices

Exercice 1 (Multiplication de polynômes - Algorithme de Karastuba)

Soit $n \in \mathbb{N}^*$. On représente un polynôme $P = \sum_{k=0}^{n-1} a_k X^k$ de degré au plus n-1 par un

tableau de ses coefficients $[|a_0; \ldots; a_{n-1}|]$. On souhaite écrire un algorithme effectuant la multiplication de deux polynômes P et Q de degré au plus n-1.

- 1. Proposer un algorithme naïf et donner sa complexité.
- 2. Soit $m = \lceil \frac{n}{2} \rceil$. P et Q se décomposent de manière unique en :

$$P = P_0 + P_1 X^m$$
 ; $Q = Q_0 + Q_1 X^m$

avec P_0 , P_1 , Q_0 , Q_1 des polynômes de degrés strictement inférieurs à m. Exprimer le produit PQ en fonction de ces polynômes.

- 3. Transformer cette expression en une expression qui ne fasse intervenir que trois multiplications de polynômes de degré strictement inférieur à m (et des multiplications par des puissances de X).
- 4. En déduire un algorithme récursif efficace de produit de polynômes et analyser sa complexité.

Exercice 2 (Distance minimale entre les points d'un nuage de points)

On se donne un tableau de taille n contenant des couples de flottants représentant un nuage de points du plan. On souhaite déterminer les deux points les plus proches.

1. Quelle serait la complexité de l'algorithme consistant à considérer tous les couples de points ?

Si le nuage comporte peu de points, on utilisera l'algorithme naif. Dans le cas contraire, on va appliquer une stratégie « diviser pour régner ». On sépare le nuage de points P en deux parties P_G et P_D approximativement de mêmes tailles autour d'un axe vertical d'équation $x=\ell$.

La distance minimale entre deux points de P est donc atteinte :

- \circ soit entre deux points de P_G ;
- \circ soit entre deux points de P_D ;
- \circ soit entre un point de P_G et un point de P_D .

On calcule récursivement la distance minimale δ_G séparant les points du nuage P_G et la distance minimale δ_D séparant les points du nuage P_D .

On pose ensuite $\delta = \min\{\delta_G, \delta_D\}$.

- 2. Quelle serait la complexité de l'algorithme si on calcule les distances entre tous les couples de points constitués d'un point de P_G et d'un point de P_D ?
- Montrer que si la distance minimale est atteinte dans le troisième cas, alors elle l'est entre deux points dont les abscisses appartiennent à [ℓ – δ, ℓ + δ].
 Notons B l'ensemble des points de P dont les abscisses appartiennent à [ℓ – δ, ℓ + δ].
- 4. Soit $M(x_M, y_M)$ un point de B. Montrer qu'il existe au plus sept autres points N(x, y) de B tels que $y_M \leq y \leq y_M + \delta$.

Pour déterminer si deux points de B sont distants de moins de δ , il suffit donc de calculer la distance entre chaque point de B et les sept suivants par ordonnée croissante.

Pour séparer le nuage en deux, il est préférable que P soit trié par abscisse croissante, mais pour la dernière étape, il faudrait disposer des points triés par ordonnée croissante. On introduit donc de la redondance : les points de P seront représentés par deux tableaux X et Y, le premier trié par abscisse croissante, le second par ordonnée croissante.

5. Proposer un algorithme et évaluer sa complexité.