

PHYSICS

1st

ACELERACION

@ SACO OLIVEROS

¿Cuándo cambia la velocidad?

Recordemos la velocidad es constante cuando la trayectoria es rectilínea y realiza recorridos iguales en intervalos de tiempos iguales

La rapidez es constante La dirección es constante La VELOCIDAD ES CONSTANTE

MRU

La velocidad cambia cuando:

La VELOCIDAD no es CONSTANTE, HAY ACELERACIÓN

¿QUÉ ES LA ACELERACIÓN?

Es la Cantidad física vectorial que mide la rapidez del CAMBIO DE LA VELOCIDAD.

ACELERACIÓN CONSTANTE

- Las variaciones de velocidad son iguales en intervalos de tiempos iguales.
- Su módulo y dirección no cambian.

ACELERACIÓN: $\vec{a} = +4\hat{\imath} m/s^2$

módulo de la aceleración: $a = 4 m/s^2$

RECUERDA!!

 $4m/s^2$ significa que la rapidez cambia en 4 m/s por cada segundo

CÁLCULO DE LA ACELERACIÓN

$$\overrightarrow{a} = \frac{\overrightarrow{V_f} - \overrightarrow{V_o}}{t}$$

unidad en el SI m/s^2

Donde:

$$\overrightarrow{V_f} = velocidad final$$

 $\overrightarrow{V_o} = velocidad inicial$

$$\overrightarrow{V_o} = velocidad inicial$$

Recuerda:

Si la direcciones de velocidad y aceleración son...

Iguales, el movimiento es acelerado y su rapidez aumenta

$$V_f = V_o + a.t$$

opuestos, el movimiento es desacelerado y su rapidez disminuye

$$V_f = V_o - a.t$$

El deportista sigue la trayectoria que se muestra. ¿Presenta aceleración?. ¿Por qué?

RESOLUCIÓN

 La velocidad cambia debido al cambio de su dirección.

HAY ACELERACIÓN debido al cambio de la velocidad.

¿Presenta aceleración la esferita?, ¿por qué?

RESOLUCIÓN

 La velocidad cambia debido al cambio de su rapidez.

HAY ACELERACIÓN debido al cambio de la velocidad.

¿En qué caso la aceleración es constante?

A)

RESOLUCIÓN

$$a = \frac{V_f - V_o}{t}$$

$$\alpha = \frac{4\frac{m}{s} - 2\frac{m}{s}}{1s}$$

$$a=2\frac{m}{s^2}$$

$$\frac{\alpha}{1} = \frac{7\frac{m}{s} - 4\frac{m}{s}}{1s}$$

$$a=3\frac{m}{s^2}$$

Hay aceleración pero no es constante.

RESOLUCIÓN

$$\alpha = \frac{4\frac{m}{s} - 1\frac{m}{s}}{1s}$$

$$a=3\frac{m}{s^2}$$

$$a = \frac{7\frac{111}{s} - 4\frac{111}{s}}{1s}$$

$$\alpha = 3\frac{m}{s^2}$$

La aceleración es constante.

¿Qué significa que el auto presenta aceleración constante de módulo 2 m/s^2 ?

RESOLUCIÓN

Significa que el auto cambia su rapidez en 2 m/s por cada segundo. Ejemplo:

Si el auto viaja con aceleración constante tal como se muestra, determine su rapidez luego de 1 segundo.

RESOLUCIÓN

$$V_f = V_o \pm a t$$

$$V_f = V_o + a t$$

$$V_f = 5 \frac{m}{s} + 2 \frac{m}{s^2} \cdot 1s$$

$$V_f = 5\frac{m}{s} + 3\frac{m}{s}$$

Si el auto viaja con aceleración constante tal como se muestra, determine su rapidez luego de 1 segundo.

RESOLUCIÓN

$$V_f = V_o \pm a t$$

$$V_f = V_o - a t$$

$$V_f = 9 \frac{m}{s} - 3 \frac{m}{s^2} .1s$$

$$V_f = 9 \frac{m}{s} - 3 \frac{m}{s}$$

La esferita experimenta aceleración constante en línea recta. Determine su rapidez luego de 3 segundos del instante mostrado.

RESOLUCIÓN

$$|V_f = V_o \pm a t|$$

$$V_f = V_o + a t$$

$$V_f = 8 \frac{m}{s} + 4 \frac{m}{s^2} .3s$$

$$V_f = 8 \frac{m}{s} + 12 \frac{m}{s}$$

$$|V_f| = 20 \frac{m}{s}$$

Los conductores de los autos tienen que estar concentrados 100 % en esta función ya que en sus trayectorias podría cruzarse en cualquier instante una persona, otro auto, un animal, entre otros, la concentración es muy importante, para poder frenar de inmediato y evitar accidentes como también cuidar su propia integridad. Por ejemplo, un auto en una pista rectilínea que viaja a 20 m/s al pisar los frenos desacelera uniformemente a razón de 5 m/ s^2 . ¿En qué tiempo se detiene?

Se agradece su colaboración y participación durante el tiempo de la clase.

