Constraint Propagation: Inference in CSPs

School of Electronic and Computer Engineering Peking University

Wang Wenmin

Contents

- ☐ 6.2.1 Overview of Constraint Propagation
- ☐ 6.2.2 Node Consistency
- ☐ 6.2.3 Arc Consistency
- ☐ 6.2.4 Path Consistency
- ☐ 6.2.5 k-Consistency

Principles of Artificial Intelligence

Overview of Constraint Propagation 约束传播概述

- □ Regular state-space search: 常规的状态空间搜索
 - can do only one thing, search.只能做一件事,搜索。
- □ CSPs: 约束满足问题
 - can do search, choose a new variable assignment from several possibilities, 能做搜索,从若干可能性中选择一个新的变量赋值,
 - can also do a specific type of inference, called constraint propagation.
 还能做一种特殊类型的推理, 称为约束传播。
- □ Constraint Propagation: 约束传播
 - uses the constraints to reduce the number of legal values for a variable, which in turn can reduce the legal values for another variable, and so on.

采用约束来减少一个变量的合法值的数量,相应地可以减少其它变量的合法值,以此类推。

Overview of Constraint Propagation 约束传播概述

- □ Those techniques are used to modify a constraint satisfaction problem.
 这些技术被用于改变一个约束满足问题。
- ☐ More precisely, they enforce a form of local consistency, which are conditions related to the consistency of a group of variables and/or constraints.
 - 更精确地说,它们严格实施局部一致性,这种形式是一组变量和约束一致性相关的条件。
- □ Constraint propagation has various uses: 约束传播有各种用途:
 - 1) turns a problem into one that is equivalent but is usually simpler to solve, 将其转转化成等价但通常更易于求解的问题。
 - 2) may prove satisfiability/unsatisfiability of problems.
 可以证明问题的可满足性/不可满足性。

This always happens for some certain kinds of problems. 对于某些特定类型的问题,这种情况总是发生。

Overview of Constraint Propagation 约束传播概述

☐ There are different types of local consistency:

有不同类型的局部一致性:

- Node consistency 节点一致性
- Arc consistency 弧一致性
- Path consistency 路径一致性
- *k*-consistency k—致性
- Most popular method is AC-3 algorithm which enforces arc consistency. 最流行的约束传播方法是AC-3算法,它支持弧一致性。

The name "AC-3" was used because it's the 3rd version.

Node Consistency 节点一致性

□ Definition 定义

A single variable (node) is node-consistent, if all the values in the variable's domain satisfy the variable's unary constraints.

如果变量的范畴中所有值满足变量的一元约束,则单个变量(节点)是节点一致的。

Example:

in the variant of the Australia map-coloring, where South Australians (SA) dislike green, i.e.,

在简化的澳大利亚着色问题中,南澳大利亚人(SA)不喜欢绿色,即:

$$\langle (SA), SA \neq green \rangle$$

leaving SA with the reduced domain { red, blue }.

留给SA的为缩减范畴{red, b/ue}。

Arc Consistency 弧一致性

□ Definition 定义

A variable is arc-consistent, if every value in its domain satisfies the variable's binary constraints.

如果范畴中的每个值满足变量的二元约束,则该变量是弧一致的。

Example:

 \square in the variant of the Australia map-coloring, the constraint $SA \neq WA$, we can write this constraint explicitly as,

在简化的澳大利亚着色问题中,该约束 $SA \neq WA$,我们可将这个约束显式地写成:

\(\langle (SA, WA), \{(red, green), (red, blue), (green, red), \((green, blue), (blue, red), (blue, green) \}\rangle \)

Arc Consistency Algorithm AC-3 弧一致性算法AC-3

```
function AC-3(csp) returns false if an inconsistency is found and true otherwise
  inputs: csp, a binary CSP with components (X, D, C)
  local variables: queue, a queue of arcs, initially all the arcs in csp
   while queue is not empty do
     (X_i, X_i) \leftarrow \text{REMOVE-FIRST}(queue)
     if REVISE(csp, X_i, X_i) then
        if size of D_i = 0 then return false
        for each X_k in X_i. NEIGHBORS - \{X_i\} do
           add (X_k, X_i) to queue
   return true
function REVISE(csp, X_i, X_j) returns true iff we revise the domain of X_i
  revised \leftarrow false
  for each x in D_i do
     if no value y in D_i allows (x, y) to satisfy the constraint between X_i and X_i then
       delete x from \vec{D_i}
  revised \leftarrow true
  return revised
```

Path Consistency 路径一致性

□ Definition 定义

A two-variable set $\{X_i, X_j\}$ is path-consistent with respect to a third variable X_m if, for every assignment $\{X_i = a, X_j = b\}$ consistent with the constraints on $\{X_i, X_j\}$, there is an assignment to X_m that satisfies the constraints on $\{X_i, X_m\}$ and $\{X_m, X_j\}$.

对于与 $\{X_i, X_j\}$ 约束一致的每个赋值 $\{X_i = a, X_j = b\}$,如果存在一个满足对 $\{X_i, X_m\}$ 和 $\{X_m, X_j\}$ 约束的 X_m 赋值,则二元变量集 $\{X_i, X_i\}$ 对于第三个变量 X_m 是路径一致的。

- □ Why called path consistency 为什么称为路径一致
 - because it as looking at a path from X_i to X_j with X_m in the middle. 因为它看起来是一条从 X_i 到 X_j 、中间为 X_m 的路径。

k-Consistency k─致性

□ Definition 定义

A CSP is k-consistent if, for any set of k-1 variables and for any consistent assignment to those variables, a consistent value can always be assigned to any kth variable.

对于任意k-1个变量的集合以及对于这些变量的任意一致性赋值,如果某个一致性值总是能够被赋值于任意第k个变量,则该CSP是k一致性的。

- □ The notion of k-consistency is the stronger forms of propagation. k—致性的概念更强的传播形式。
- □ Features of k-consistency k—致性的特点
 - k=1: same as node consistency. k=1: 等同于节点一致性
 - k=2: same as arc consistency. k=2: 等同于弧一致性
 - k=3: same as path consistency. k=3: 等同于路径一致性

Example: Sudoku 数独

□ Sudoku is a logic based, combinatorial number placement puzzle. 数独是一种基于逻辑的组合数填空难题。_

The objective is to fill a 9×9 grid with digits, so that each column, each row, and each of the nine 3×3 sub-grids that compose the

grid contains all of the digits from 1 to 9.

其目的是用数字填满9x9个网格,使得每一行、每一列、以及9个3x3的子网格的每一个都包含从1到9的所有数字。

History

- Number puzzles appeared in French in late 19th century. 19世纪后叶,数字谜题出现在法国
- It was introduced by Japan in April 1984. 日本于1984年4月引入该数字谜题。
- London began featuring Sudoku in 2004. 伦敦于2004年开始关注数独。

Example: Sudoku 数独

□ Variables: 变量:

$$A_1, A_2, \ldots, A_9$$

 B_1, B_2, \ldots, B_9

 I_1, I_2, \ldots, I_9

□ Domains: 范畴:

$$\{1, 2, \dots, 9\}$$

□ Constraints: 约束:

row : 行: $Alldiff(A_1, A_2, ..., A_9), ..., Alldiff(I_1, I_2, ..., I_9)$

column: 列: $Alldiff(A_1, B_1, ..., I_1), ..., Alldiff(A_9, B_9, ..., I_9)$

region : 区域: $Alldiff(A_1, A_2, A_3, ..., C_3)$, ..., $Alldiff(G_7, G_8, G_9, ..., I_9)$

Example: Sudoku 数独

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	ന	4	8
1	9	8	ന	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	80	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

A Sudoku puzzle (9×9) and its solution

一个数独的谜题(9×9)和它的谜底

Example: Variants of Sudoku 数独的变体

1	3	4	5	2	6
2	5	6	1	4	3
5	1	2	6	3	4
6	4	3	2	5	1
3	6	5	4	1	2
4	2	1	3	6	5

$$6\times6$$

	12	2	1			3				11	13	9	14		10
6	3	7		1	12					9	10	4	16	15	11
	11			9			10			3	16	13	2	1	
8	15	9		16	13	14	11	6	1	4		3	12	7	5
13			11	14	6		5	12	4		7	2	1	8	3
4	1					15	3			14	9	16	11	12	7
	14		16			12	7	11	2			10	9	13	
7			15	11		10	9	8	13	16	3	6		4	14
2		13	9	10			1	5	3			15	4		16
5		11	6	3	8	9	4		14	10	15	12	7		
12	10		3	6			2	16		7	4	1	8	5	9
		15		12	11	5	16	2				14		3	6
	13		12	5	16	1						Г		14	4
10	5		4	2	9	8	13	3	7	6		11	15	16	12
	6		2		3	11		4	15	5	12	8			
11		3	14			4	12			8	1	5		9	2

16×16

 9×9

3	5	8	1	9	6	2	7	4
4	9	2	5	6	7	1	3	8
6	1	3	9	7	8	4	2	5
1	7	5	8	4	2	6	9	3
8	2	6	4	5	3	7	1	9
2	4	9	7	3	1	8	5	6
9	8	7	3	2	4	5	6	1
7	3	4	6	1	5	9	8	2
5	6	1	2	8	9	3	4	7

 9×9

	1	24	2	22	18			13		25			19	21	16	5			11	23			15	
3	4	18	8			20	9	12	22		7						15	19	23	Н		6	10	24
10000	- 500	16	2000		10	2000000	25	14	100000		6	1	23	3	24		2000		2	17	4		19	
12			-	17				15	-	24		2	9		21		10	7			3		8	11
	10	11	23	9	7		19	17	5	8		14	13		4		-	6	25		18			1
П	8		10		П	19			15	20	2			22	25	11				Н	5		21	
4	-	3			Н	12	16		11		23					24	13			14		22		
1	16					4	2	3		7	12			19		21	-	14	9			8	13	17
2	1		20		5	-02		18	9	16	13				15			8			1	3	6	23
	25	23		21	24	6	7	0.7750	13			17	3	5		20		18	16			10	4	9
10	15				П	П			8	5			1	11	Г		9	23	20	25				12
6		14				17	22	23	25	19		9		15	1		11			21			16	
18			7			14			19	4		3				16	25	13	12	15		2	23	
	17	22		16	4	5		21			24	6	20		10	14	18		8			11		3
П		12	13	24	П	2			1	14	8	18			Г	22		15				7	17	
			5		12				17				16	14	Г			3	6		22	13	2	18
11	19	13	3		23	15	14			12					22	8		5	1	4	24			
16				4	25	9	21		2	22			10					17	7	8		1		14
15	24		6	14	20	22	8	16	4		11		1			9	23			П		17	12	19
9			21	7			10	24		6		4	8	18		2	12			16		20		
20		1	16			13		2		15				17			4	12	3	22	25			
24		4	18		11	3	6		14		20		21	25		17	5			10	8			
	5	2		12	15	21				23		16			7				24	11		19		
			14	23		10	18	9	0			13	24		19	25				12	16			4
17		7		15	8	16				10		19	4		2		22				9	5	1	

 25×25

Thank you for your affeation!

