Reconocimiento de patrones

Clase 10: K means

Para el día de hoy...

• K means

Antes de empezar

- Entregar en un documento pdf de una página los siguientes elementos para definir el proyecto final del curso:
 - Titulo
 - Miembros del equipo (máx. 3)
 - Descripción del problema ¿Qué no está sucediendo?
- ¿Quién está interesado?
- ¿Por qué es de interés para ustedes?
- ¿Qué previene que se haga?
- ¿Qué pasa si no se hace?
- ¿Qué se planea hacer? (en términos de lo existente y las operaciones básicas para transformar)
- ¿Cómo luce el éxito?

K means

¿Cuál es el algoritmo?

Un poco de explicación

- Dado un conjunto de datos $X = \{x_1, x_2, ..., x_m\}$, suponemos la existencia de k grupos
- Los centros son aproximados por $y_1^{(0)}$, ..., $y_k^{(0)}$
- Los grupos se encuentran de forma iterativa
- En cada paso todos los patrones se clasifican y cada centro se ajusta usando la media aritmética de las muestras del grupo hasta que entre dos iteraciones los grupos no cambien

El algoritmo

Output: $\{y_i\}$, $1 \le j \le c$ – the final cluster centers.

 $\{m_j\}$, $1 \le j \le c$ – the cluster sizes.

 $\{l_{ij}\}$, $1 \le i \le m_j$ — the indices of the original samples which belong to the j cluster, $1 \le j \le c$.

it - the number of iterations needed for convergence.

- **Step 1.** Initialization: set $y_{j0} = x_j$, $1 \le j \le c$ and it = 0.
- Step 2. Classify $\{x_i\}_{i=1}^m$ about the cluster centers $\{y_{j0}\}_{j=1}^c$ using the minimum distance classifier. For $1 \le j \le c$ denote by $\{x_{l_y}\}_{i=1}^{m_j}$ the samples which cluster around y_{i0} .
- **Step 3.** For $1 \le j \le c$ obtain y_j which minimizes the performance index

$$I_{j}(z) = \sum_{i=1}^{m_{j}} \left\| z - x_{l_{ij}} \right\|^{2}, \ z \in \mathbb{R}^{n}$$
 (3.3.12)

Basic calculus implies

$$\mathbf{y}_{j} = \left(\sum_{i=1}^{m_{j}} \mathbf{x}_{l_{ij}}\right) / m_{j} \tag{3.3.13}$$

i.e. y_j is the arithmetic mean of $\{x_{l_{ij}}\}_{i=1}^{m_j}$. Set $it \leftarrow it + 1$.

Step 4. If

$$\mathbf{y}_{j} = \mathbf{y}_{j0}, \ 1 \le j \le c$$
 (3.3.14)

output y_j , m_j , $\{x_{l_{ij}}\}_{i=1}^{m_j}$, $1 \le j \le c$; it and stop. Otherwise, if it > N output 'number of iterations exceeded'; else set $y_{j,0} = y_j$ and go to Step 2.

Las preguntas

Un detour a complejidad computacional

- La elección óptima para k y y_{j0} así como las condiciones de convergencia del algoritmo no son conocidas
- La función objetivo de k-means es

$$\arg\min_{C} \sum_{i=1}^{k} \sum_{x_j \in C_i} ||x_j - \mu_i||^2$$

• Este problema es NP-Hard

La clases de problemas

La clase P: contiene aquellos problemas que pueden resolverse en tiempo polinomial con una MT determinista.

- Buscar un número en un arreglo ordenado o desordenado
- Ordenar un arreglo
- Ruta más corta en un grafo
- Suma, multiplicación de polinomios

La clase NP: contiene aquellos problemas que pueden resolverse en tiempo polinomial con una MT no determinista

- Satisfacción de fórmulas boolean
- Problema de la mochila
- Problema del viajero

Problemas NP completos

- Se dice que un problema es NP completo si las siguientes afirmaciones sobre un lenguaje L son verdaderas:
- Pertenece a NP
- Para todo lenguaje L' perteneciente a NP existe una reducción en tiempo polinomial de L' a L

Problemas NP-difíciles

- Algunos problemas L son tan difíciles que aunque podamos demostrar la condición 2 de la definición, no se puede demostrar la condición 1.
- En esos casos decimos que L es NP-difícil.
- Una demostración de que L es NP-difícil basta para demostrar que L es muy probable que requiera un tiempo exponencial o aún peor.

Para la otra vez...

• ISO Data

