1 \bar{g} Equilibrium

Recall that we showed that, in the co-rotating frame with frequency $\bar{g} = (g_1 + g_2)/2$:

$$\left(\frac{\mathrm{d}\hat{\mathbf{s}}}{\mathrm{d}t}\right)_{\mathrm{rot}} = \alpha \left(\hat{\mathbf{s}} \cdot \hat{\mathbf{l}}\right) \left(\hat{\mathbf{s}} \times \hat{\mathbf{l}}\right) - \bar{g}\left(\hat{\mathbf{s}} \times \hat{\mathbf{z}}\right), \tag{1}$$

$$\hat{\mathbf{I}}(t) = \begin{bmatrix} (I_1 + I_2)\cos\left(\frac{\Delta gt - \phi_0}{2}\right) \\ (I_1 - I_2)\sin\left(\frac{\Delta gt - \phi_0}{2}\right) \\ 1 \end{bmatrix} + \mathcal{O}\left[(I_1 + I_2)^2\right]. \tag{2}$$

We will try to seek a set of conditions for an **s** to be exactly stationary under these equations. We will find a leading-order prediction of the location of an equilibrium, though an exact equilibrium is impossible.

We first examine the $\hat{\mathbf{z}}$ component of the equation of motion for $\hat{\mathbf{s}}$, suppressing the "rot" subscript. Denote \mathbf{s}_{\perp} and \mathbf{l}_{\perp} to be the $\hat{\mathbf{x}}$ - $\hat{\mathbf{y}}$ plane components of the two vectors, then we obtain

$$\frac{\mathrm{d}s_z}{\mathrm{d}t} = \alpha \left(\hat{\mathbf{s}} \cdot \hat{\mathbf{l}} \right) \left(\hat{\mathbf{s}}_\perp \times \hat{\mathbf{l}}_\perp \right). \tag{3}$$

An easy way for this to vanish is if

$$\hat{\mathbf{s}}_{\perp} \parallel \hat{\mathbf{l}}_{\perp}.$$
 (4)

We next examine the in-plane component of the equation of motion:

$$\frac{\mathrm{d}\mathbf{s}_{\perp}}{\mathrm{d}t} = \alpha \left(\hat{\mathbf{s}} \cdot \hat{\mathbf{l}}\right) \left(\mathbf{s}_{\perp} \times \hat{\mathbf{z}} + s_z \hat{\mathbf{z}} \times \mathbf{l}_{\perp}\right) - \bar{g} \left(\mathbf{s}_{\perp} \times \hat{\mathbf{z}}\right). \tag{5}$$

Since $\mathbf{s}_{\perp} \parallel \mathbf{l}_{\perp}$, we can express everything in terms of \mathbf{l}_{\perp} and the two magnitudes s_{\perp} and l_{\perp} . This gives the following manipulation:

$$\frac{\mathrm{d}\mathbf{s}_{\perp}}{\mathrm{d}t} = \alpha \left(\hat{\mathbf{s}} \cdot \hat{\mathbf{l}}\right) \left(\mathbf{s}_{\perp} \times \hat{\mathbf{z}} - s_z \frac{l_{\perp}}{s_{\perp}} \mathbf{s}_{\perp} \times \hat{\mathbf{z}}\right) - \bar{g} \left(\mathbf{s}_{\perp} \times \hat{\mathbf{z}}\right), \tag{6}$$

$$= \left[\alpha \left(\hat{\mathbf{s}} \cdot \hat{\mathbf{l}} \right) \left(1 - s_z \frac{l_\perp}{s_\perp} \right) - \bar{g} \right] (\mathbf{s}_\perp \times \hat{\mathbf{z}}), \tag{7}$$

$$= \left\{ \left[\alpha s_z - \bar{g} \right] + \alpha \left[s_\perp l_\perp - s_z^2 \frac{l_\perp}{s_\perp} \right] - s_z l_\perp^2 \right\} (\mathbf{s}_\perp \times \hat{\mathbf{z}}). \tag{8}$$

I've grouped the terms in order of $\mathcal{O}(l_{\perp})$, since $l_{\perp} \ll 1$. If an exact equilibrium exists, the expression in the curly brackets must vanish, as well as Eq. (4) be satisfied exactly. In particular, if $l_{\perp} \ll 1$, we recover the relation I claimed in the writeup earlier:

$$s_z \approx \frac{\bar{g}}{\alpha} + \mathcal{O}(l_\perp).$$
 (9)

However, since l_{\perp} is in general *not* constant in time (ranging from $I_1 + I_2$ to $I_1 - I_2$), an exact equilibrium does not exist: $l_{\perp}(t)$ has a $\Delta g/2$ harmonic, which means $s_{\perp}(t)$ will also have a $\Delta g/2$ harmonic.

1.1 Perturbation Theory

We try to do perturbation theory in I_2 , since nonzero I_2 gives rise to the harmonic terms.