Real-time analysis of WebGL rendering

University of Trento — Master's degree in Computer Science

30 October 2017

Student: Gianluca Bortoli

Advisor: Luigi Palopoli

Co-advisor: Nicola Manica

Outline

- System architecture
- Goals
- Background & tools
- Analysis
- Experiments
- Mathematical model
- Results & future work

System architecture

Goals

- Embed 3D navigator into FriWalk ¹
- Analyze layers of graphics pipeline (in Linux)
- Measure timings
- Apply real-time model to web technologies

¹ www.ict-acanto.eu

What is real-time?

- System subject to time constraints
- Correctness depends also on temporal aspects
- Predictable behaviour
- Hard vs. soft

Examples:

- Drive by wire
- Streaming video player

What is WebGL?

- 3D graphics library for the web
- Based on OpenGL ES
- Hardware-accelerated
- Cross-platform
- Supported by all major browsers

Examples:

- Google Maps
- Unity 3D

Tools

- Google Chrome browser
- Web Tracing Framework (WTF)
- Chrome's internal Trace Event Profiler

Analysis

- Macro-to-micro approach
- Increase focus on data
- Different scenarios
 - Complete
 - Camera only
 - Redraw
 - No map

Experiments First measurements — WTF

- Code instrumentation
- Measure only response time

```
response_time = computation_time + interference
```

- Graphics primitives groups
- Always start with bindBuffer

Experiments First measurements cont'd

- High-level view
- Identify 3 main groups of functions
 - Initialization/load data
 - Modify data
 - Display/draw

Response time grouped by scope

Experiments Fine-grained model — Trace Event Profiler

- Focus on "display/draw" group
 - Trace Chrome's GPU process from server side
- Exact computation time
 - tdur: thread clock duration of complete events (in μs)
- Higher resolution
 - o WTF: ± 0.5 ms
 - Trace Event Profiler: ±1 μs

Mathematical model

• Markov Computation Time Model ²

- When i.i.d. assumption does not hold
- No unique computation time distribution
- The system
 - N modes
 - Each state represented by its own distribution function
 - Transition matrix between states

² Frías, B. Villalba, et al. "Probabilistic real–time guarantees: There is life beyond the iid assumption." Real-Time and Embedded Technology and Applications Symposium (RTAS), 2017 IEEE. 2017

Why exactly 2 states?

Deadline hit probability

Results

- Model successfully applied to test application
- MCTM with 2 states
- Uncorrelated computation time between states
- Always conservative w.r.t. simulation

Future work:

- Run analysis on FriWalk's specific hardware
- Per-frame study

Thank you for your attention

Google Chrome GPU process

Model's workflow

Deadline hit comparison

