Einführung in das Kalkül diskreter Differentialformen

Ingo Nitschke

IWR - TU Dresden

28. November 2013

Content

Primär- und Dualkomplexe

Ein p-Simplex ist die konvexe Hülle von p+1 geometrisch unabhängigen Punkten (Knoten, Vertices)

$$\sigma^p := \left\{ x \in \mathbb{R}^N \middle| x = \sum_{i=0}^p \mu^i v_i \text{ wobei } \mu^i \geq 0 \text{ und } \sum_{i=0}^p \mu^i = 1 \right\}$$

Geometrisch unabhängig heißt, dass die p Vektoren $v_1 - v_0, \ldots, v_p - v_0$ linear unabhängig sind.

Ein **Simplizialkomplex** K der **Dimension** n ist eine Menge von Simplizes $\{\sigma^p \in \mathbb{R}^N | 0 \le p \le n \le N\}$, so dass

- (i) $\forall \sigma^r \prec \sigma^p : \quad \sigma^r \in K \qquad (0 \le r \le p)$
- (ii) für alle $\sigma^r := \sigma^p \cap \sigma^q$ gilt $(0 \le r \le \min\{p, q\})$
 - (a) entweder $\sigma^r \prec \sigma^p$ und $\sigma^r \prec \sigma^q$
 - (b) oder $\sigma^r = \emptyset$

D.h. z.B. hängende Knoten sind nicht zulässig.

Das Polytop von K ist (der zu Grunde liegende Raum)

$$|K| := \bigcup_{\sigma \in K} \sigma$$

(Andersherum heißt K eine **Triangulation** von |K|) Achtung: |K| liegt nur für **flache** (**lineare**) K in einem affinen n-dim. Untervektoraum des \mathbb{R}^N .

Diskretisierung einer Mannigfaltigkeit M

- Wir wollen nicht die Kartengebiete auf der Mannigfaltigkeit diskretisieren.
- Die n-Mannigfaltigkeit wird in den \mathbb{R}^N eingebettet.
- ullet Wir setzen dann nur voraus, dass $\sigma_M^0=\sigma_K^0$

Beispiel

Orientierter mannigfaltigartiger Simplizialkomplex K (Primärgitter)

orientiert: $\operatorname{sgn}(\sigma_1^n,\sigma_2^n)=+1$ für $\sigma_1^n\cap\sigma_2^n\neq\emptyset$

mannigfaltigartig: |K| ist eine C^0 -Mannigfaltigkeit