VNU-HUS MAT3500: Toán rời rạc

Lý thuyết số cơ bản

Hoàng Anh Đức

Bộ môn Tin học, Khoa Toán-Cơ-Tin học Đại học KHTN, ĐHQG Hà Nội hoanganhduc@hus.edu.vn

Nội dung

Giới thiệu

Tính chia hết và phép toán môđun Định nghĩa và tính chất cơ bản Đồng dư theo môđun m

Biểu diễn số nguyên

Biểu diễn theo hệ b-phân Cộng và nhân các số nhị phân Biểu diễn các số nguyên âm theo hệ nhị phân Tính lũy thừa môđun

Số nguyên tố và Ước chung lớn nhất

Số nguyên tố Ước chung lớn nhất

Phương trình đồng dư

Giới thiệu Định lý phần dư Trung Hoa Định lý Fermat nhỏ

Thuật toán mã hóa RSA

Lý thuyết số cơ bản Hoàng Anh Đức

Giới thiêu

Tính chia hết và phép toán môđun

Định nghĩa và tính chất cơ bản

Đồng dư theo môđun m

Biểu diễn số nguy

Biểu diễn theo hệ b-phân Cộng và nhân các số nhị

phân Biểu diễn các số nguyên âm theo hệ nhi phân

âm theo hệ nhị phân Tính lũy thừa môđun

Số nguyên tố và Ước thung lớn nhất

Số nguyên tố Ước chung lớn

Discours and all and

Giới thiệu

Định lý phần dư Trung Hoa Định lý Fermat nhỏ

Thuật toán mã hơ RSA

References

Giới thiệu

Lý thuyết số cơ bản Hoàng Anh Đức

Giới thiệu

Tính chia hết và phép toán môđun

> Định nghĩa và tính chất cơ bản

Đồng dư theo môđun \boldsymbol{m}

Biểu diễn số nguyên Biểu diễn theo hệ b-phân Công và nhân các số nhi

Biểu diễn các số nguyên âm theo hệ nhị phân

ăm theo hệ nhị phân Tính lũy thừa môđun

Số nguyên tố và Ước chung lớn nhất

Số nguyên tố Ước chung lớn nhất

Phương trình đồng d Giới thiêu

Định lý phần dư Trung Hoa Định lý Fermat nhỏ

Thuật toán mã hóa RSA

Reference

Lý thuyết số (number theory) nghiên cứu các tính chất và mối liên hệ giữa các loại số

- quan trọng nhất là các số nguyên dương (positive integers)
- đặc biệt là *các số nguyên tố (prime numbers)*

Đinh nghĩa và tính chất cơ bản

- Lý thuyết số cơ bản Hoàng Anh Đức

Đinh nghĩa và tính chất cơ

Đồng dư theo môđun m

Biểu diễn theo hệ b-phân Công và nhân các số nhi

Biểu diễn các số nguyên âm theo hệ nhi phân

Tính lũv thừa môđun

Số nguyên tố

Ước chung lớn nhất

Giới thiêu

Định lý phần dư Trung Hoa Đinh lý Fermat nhỏ

- Cho các số nguyên a và b với $a \neq 0$. Ta nói b chia hết cho a, ký hiệu b: a, nếu tồn tại một số nguyên c sao cho b = ac.
- **Trong trường hợp này, ta cũng nói** a là **ước (factor)** của bhay b là bôi (multiple) của a và ký hiệu $a \mid b$.
- Ta lần lươt sủ dung các ký hiệu b ½ a và a ∤ b để chỉ b không chia hết cho a và a không là ước của b

Đinh lý 1

- (1) Nếu $a \mid b \ và \ a \mid c, \ thì \ a \mid (b+c)$
- (2) Nếu a | b, thì a | bc
- (3) Nếu $a \mid b$ và $b \mid c$, thì $a \mid c$

Bài tấp 1

Chứng minh Đinh lý 1

Đinh nghĩa và tính chất cơ bản

Lý thuyết số cơ bản Hoàng Anh Đức

Đinh nghĩa và tính chất cơ

Đồng dư theo môđun m

Biểu diễn theo hệ b-phân Công và nhân các số nhi

Biểu diễn các số nguyên âm theo hệ nhi phân

Tính lũv thừa môđun

Số nguyên tố Ước chung lớn nhất

Giới thiêu

Định lý phần dư Trung Hoa Đinh lý Fermat nhỏ

Bài tấp 2

Chứng minh hoặc tìm phản ví dụ cho mệnh đề: "Với mọi số nguyên r, t, s, u, nếu r chia hết cho s và t chia hết cho u thì r+s chia hết cho t+u"

Đinh nghĩa và tính chất cơ bản

Với $a \in \mathbb{Z}$ và $d \in \mathbb{Z}^+$, tồn tại duy nhất các số nguyên q và r, với $0 \le r < d$, thỏa mãn a = dq + r

Chứng minh.

- Tồn tại các số nguyên q và r với 0 < r < d thỏa mãn a = dq + r
 - Chọn q là số nguyên lớn nhất thỏa mãn $dq \leq a$ ■ Chon r = a - dq. Ta có 0 < r < d (Tai sao?)
- Giả sử tồn tại các cặp số nguyên q_1, r_1 và q_2, r_2 thỏa mãn $a = dq_1 + r_1$ và $a = dq_2 + r_2$, với $0 < r_1 < r_2 < d$ và $(q_1, r_1) \neq (q_2, r_2)$
 - Nếu $q_1 = q_2$ thì $r_1 = a dq_1 = a dq_2 = r_2$
 - Do đó, $q_1 \neq q_2$. Theo giả thiết $a = dq_1 + r_1 = dq_2 + r_2$ và do đó $d = (r_2 - r_1)/(q_1 - q_2)$. Do $0 < r_1 < r_2 < d$, ta có $0 < r_2 - r_1 < d = (r_2 - r_1)/(q_1 - q_2)$. Do đó, $0 < q_1 - q_2 < 1$. Đây là một mâu thuẫn (Tai sao?)

Lý thuyết số cơ bản Hoàng Anh Đức

Đinh nghĩa và tính chất cơ

Đồng dư theo môđun m

Biểu diễn theo hệ b-phân Công và nhân các số nhi

Biểu diễn các số nguyên âm theo hệ nhi phân

Tính lũv thừa môđun

Số nguyên tố

Giới thiêu

Định lý phần dư Trung Hoa Đinh lý Fermat nhỏ

Đinh nghĩa và tính chất cơ bản

Lý thuyết số cơ bản Hoàng Anh Đức

Giới thiệu

Tính chia hết và phép toán môđun

Định nghĩa và tính chất cơ

bản

Đồng dư theo môđun m

Biểu diễn số nguyên

Cộng và nhân các số nhị phân Biểu diễn các số nguyên âm theo hệ nhị phân

âm theo hệ nhị phân Tính lũy thừa môđun

Số nguyên tố và Ước chung lớn nhất Số nguyên tố

Phương trình đồng dư Giới thiệu

Định lý phần dư Trung Hoa Định lý Fermat nhỏ

Γhuật toán mã hóa RSA

References

- Trong Định lý 2, a là số bị chia (dividend), d là số chia (divisor), q là thương (quotient), và r là số dư (remainder)
- Ta cũng viết $q = a \operatorname{div} d \operatorname{và} r = a \operatorname{mod} d$. Chú ý rằng với d cố định, $a \operatorname{div} d \operatorname{và} a \operatorname{mod} d$ là các hàm từ $\mathbb Z$ đến $\mathbb Z$
- lacksquare Ta có $q=\lfloor a/d \rfloor$ và $r=a-dq=a-d\lfloor a/d \rfloor$

Ví du 1

- 101 div 11 = 9 và 101 mod 11 = 2
- $-11 \text{ div } 3 = -4 \text{ và} -11 \mod 3 = 1$ (Chú ý rằng mặc dù -11 = 3(-3) 2 nhưng số dư của phép chia a = -11 cho d = 3 không bằng -2 do r = -2 không thỏa mãn $0 \le r < d$)

Đinh nghĩa và tính chất cơ bản

Lý thuyết số cơ bản

Hoàng Anh Đức

Thuật toán 1: Tìm thương và số dư

Input: $a \in \mathbb{Z}, d \in \mathbb{Z}^+$

Output: Thương q và số dư r của phép chia a cho dprocedure div-mod(a, d):

```
q := 0
r := |a|
while r \geq d do // Tiếp tục trừ d từ r và tăng q
```

10

cho đến khi r < dr := r - d

q := q + 1if a < 0 và r > 0 then

r := d - rq := -(q+1)

return (q, r)

// $q = a \operatorname{div} d$ là thương, $r = a \mod d$ là số dư

// Trường hợp a âm

Giới thiêu

Định lý Fermat nhỏ

Định nghĩa và tính chất cơ

Đồng dư theo môđun m

Biểu diễn theo hệ b-phân

Công và nhân các số nhi Biểu diễn các số nguyên âm theo hệ nhi phân Tính lũv thừa môđun

Số nguyên tố

Ước chung lớn nhất

Định lý phần dư Trung Hoa

Đồng dư theo môđun m

Đinh lý 3

Với $a,b\in\mathbb{Z}$ và $m\in\mathbb{Z}^+$, $a\equiv b\pmod m$ khi và chỉ khi $a \mod m=b \mod m$

Chứng minh.

- (\Rightarrow) Giả sử $a\equiv b\pmod m$. Giả sử $a=q_1m+r_1$ và $b=q_2m+r_2$ với $q_1,q_2\in\mathbb{Z},\,0\le r_1< m,$ và $0\le r_2< m.$ Ta chứng minh $a\bmod m=r_1=r_2=b\bmod m$
 - Do $a \equiv b \pmod{m}$, ta có $m \mid (a b)$
 - Suy ra $m\mid ((q_1-q_2)m+(r_1-r_2))$. Do đó $m\mid (r_1-r_2),$ nghĩa là $r_1-r_2=mp$ với $p\in\mathbb{Z}$
 - lacksquare Do $0 \leq r_1, r_2 < m$ nên $-m < r_1 r_2 < m$
 - \blacksquare Suy ra -m < mp < m và do đó p=0, nghĩa là $r_1=r_2$

(\Leftarrow) Giả sử $a \mod m = b \mod m = r$. Suy ra $a = q_1 m + r$ và $b = q_2 m + r$ với $q_1, q_2 \in \mathbb{Z}$. Do đó, $a - b = (q_1 - q_2)m$, nghĩa là $m \mid (a - b)$

Lý thuyết số cơ bản Hoàng Anh Đức

aiới thiêu

Tính chia hết và phép toán môđun Đình nghĩa và tính chất cơ

Đồng dự theo môđun m

Biểu diễn số nguyên

Biểu diễn theo hệ b-phân Cộng và nhân các số nhị phân Biểu diễn các số nguyên âm theo hệ nhị phân

> Tính lũy thừa môđun Số nguyên tố và Ước chung lớn nhất

Số nguyên tố

Phương trình đồng dư Giới thiêu

Định lý phần dư Trung Hoa Định lý Fermat nhỏ

Thuật toán mã hóa RSA

References

Đồng dư theo môđun m

Bài tập 3

Chứng minh rằng quan hệ đồng dư theo môđun m " $\equiv \pmod{m}$ " là một quan hệ tương đương trên tập các số nguyên

Định lý 4

Với $a,b\in\mathbb{Z}$ và $m\in\mathbb{Z}^+$, $a\equiv b\pmod m$ khi và chỉ khi tồn tại $k\in\mathbb{Z}$ sao cho a=b+km

Chứng minh.

- (\Rightarrow) Giả sử $a \equiv b \pmod{m}$. Theo định nghĩa, $m \mid (a-b)$, nghĩa là tồn tại $k \in \mathbb{Z}$ sao cho a-b=km hay a=b+km
- (\Leftarrow) Giả sử tồn tại $k \in \mathbb{Z}$ sao cho a = b + km. Suy ra a b = km và do đó $m \mid (a b)$. Theo định nghĩa, $a \equiv b \pmod m$

Lý thuyết số cơ bản Hoàng Anh Đức

Biời thiệu

Tính chia hết và phép toán môđun Đinh nghĩa và tính chất cơ

9 Đồng dự theo môđun m

Biểu diễn theo hệ b-phân Cộng và nhân các số nhị phân Biểu diễn các số nguyên âm theo hệ nhị phân

Tính lũy thừa môdun Số nguyên tố và Ước chung lớn nhất

Ước chung lớn nhất Phương trình đồng d

Số nguyên tố

Phương trình đồng dư Giới thiệu

Định lý phần dư Trung Hoa Đinh lý Fermat nhỏ

RSA

References

75

П

Đồng dư theo môđun m

Đinh lý 5

 $V \acute{o}i \ a,b,c,d \in \mathbb{Z} \ \emph{và} \ m \in \mathbb{Z}^+$, $\emph{n\'eu} \ a \equiv b \pmod{m} \ \emph{và} \ c \equiv d$ \pmod{m} thì $a + c \equiv b + d \pmod{m}$ và $ac \equiv bd \pmod{m}$

Chứng minh.

Giả sử $a \equiv b \pmod{m}$ và $c \equiv d \pmod{m}$. Theo Định lý 4, tồn tai $s, t \in \mathbb{Z}$ thỏa mãn a = b + sm và c = d + tm. Do đó, a + c = (b + d) + (s + t)m và ac = (b+sm)(d+tm) = bd + (bt+sd+stm)m. Theo Đinh lý 4, $a + c \equiv b + d \pmod{m}$ và $ac \equiv bd \pmod{m}$

Hệ quả 6

- $(a+b) \bmod m = ((a \bmod m) + (b \bmod m)) \bmod m$
- $\blacksquare ab \mod m = ((a \mod m)(b \mod m)) \mod m$

Lý thuyết số cơ bản Hoàng Anh Đức

Đinh nghĩa và tính chất cơ

Đồng dư theo mộđun m

Biểu diễn theo hệ b-phân Công và nhân các số nhi

Biểu diễn các số nguyên âm theo hệ nhi phân Tính lũv thừa môđun

Số nguyên tố

Giới thiêu

Định lý phần dư Trung Hoa Định lý Fermat nhỏ

Đồng dư theo môđun m

Bài tấp 4

Chứng minh rằng nếu $a \equiv b \pmod{m}$ và $c \equiv d \pmod{m}$, trong đó $a,b,c,d\in\mathbb{Z}$ và $m\in\mathbb{Z}$ thỏa mãn $m\geq 2$, thì $a-c\equiv b-d$ \pmod{m}

Bài tấp 5

Tính các biểu thức sau

- (a) $(-133 \mod 23 + 261 \mod 23) \mod 23$
- (b) ((457 mod 23) · (182 mod 23)) mod 23
- (c) $(99^2 \mod 32)^3 \mod 15$
- (d) $(3^4 \mod 17)^2 \mod 11$

Bài tấp 6

Chứng minh rằng tích của ba số nguyên liên tiếp bất kỳ chia hết cho 6

Lý thuyết số cơ bản Hoàng Anh Đức

Đinh nghĩa và tính chất cơ

Đồng dư theo môđun m

Biểu diễn theo hệ b-phân Công và nhân các số nhi

Biểu diễn các số nguyên âm theo hệ nhi phân Tính lũv thừa môđun

Số nguyên tố

Ước chung lớn nhất

Giới thiêu

Định lý phần dư Trung Hoa Đinh lý Fermat nhỏ

Biểu diễn theo hê b-phân

- Thông thường, chúng ta biểu diễn các số theo hệ cơ số (base) 10, sử dụng các chữ số (digit) từ 0 đến 9
- Trên thực tế, ta có thể biểu diễn các số theo hệ cơ số b>1 bất kỳ
- Với mọi $n,b\in\mathbb{Z}^+$ (b>1), tồn tại duy nhất một dãy $a_ka_{k-1}\dots a_1a_0$ gồm các $\mbox{\it chữ số}\ a_i < b\ (0 \le i \le k)$ thỏa mãn

$$n = a_k b^k + a_{k-1} b^{k-1} + a_{k-2} b^{k-2} + \dots + a_1 b^1 + a_0 = \sum_{i=0}^k a_i b^i$$
 Ta cũng ký hiệu $n = (a_k a_{k-1} \dots a_2 a_1 a_0)_b$

- Một số hệ cơ số phổ biến
 - Hệ cơ số 10 (hệ thập phân (decimal)): sử dụng 10 chữ số 0,1,2,3,4,5,6,7,8,9 (do chúng ta có 10 ngón tay)
 - Hệ cơ số 2 (nhị phân (binary)): sử dụng 2 chữ số 0,1 (dùng trong tất cả các hệ thống máy tính hiện đại)
 - Hệ cơ số 8 (hệ bát phân (octal)): sử dụng 8 chữ số 0, 1, 2, 3, 4, 5, 6, 7 (tương ứng với các nhóm 3 bit)
 - Hệ cơ số 16 (hệ thập lục phân (hexadecimal)): sử dụng 16 chữ số 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F (tương

Lý thuyết số cơ bản Hoàng Anh Đức

Biới thiêu

Tính chia hết và phép toán môđun

Định nghĩa và tính chất cơ bản

Đồng dư theo môđun \boldsymbol{m}

Biểu diễn số ng

Biểu diễn theo hệ b-phân Công và nhân các số nhi

Cộng và nhân các số nhị phân Biểu diễn các số nguyên âm theo hệ nhị phân Tính lũy thừa môđun

Số nguyên tố và Ước chung lớn nhất Số nguyên tố

Phương trình đồng dư Giới thiêu

Định lý phần dư Trung Hoa Định lý Fermat nhỏ

Thuật toán mà RSA

References

Biểu diễn theo hê b-phân

Ký hiệu số tương ứng của các quyền r (read, đọc), w (write, ghi), x (execute, thực thi)							
Phân quyền owner	Phân quyền group	Phân quyền public					
r w x	r w x	r w x					
400 200 100	40 20 10	4 2 1					

Lý thuyết số cơ bản Hoàng Anh Đức

Giới thiêu

Tính chia hết và phép toán mộđun

> Định nghĩa và tính chất cơ bản

Đồng dư theo môđun m

Biểu diễn số n

Biểu diễn theo hệ b-phân Công và nhân các số nhi

phân Biểu diễn các số nguyên âm theo hệ nhị phân

Tính lũy thừa môđun Số nguyên tố và Ưới

chung lớn nhất Số nguyên tố

Phương trình đồng dư Giới thiêu

Định lý phần dư Trung Hoa Định lý Fermat nhỏ

RSA

References

Biểu diễn theo hệ b-phân

Các số trong hệ thập lục phân được sử dụng để biểu diễn *mã màu (color code)* (nhằm đẩm bảo các màu sắc được sử dụng một cách chính xác)

Hình: Một số mã màu từ trang https://htmlcolorcodes.com/

Lý thuyết số cơ bản Hoàng Anh Đức

Giới thiêu

Tính chia hết và phép toán môđun

Định nghĩa và tính chất cơ bản

Đồng dư theo môđun $\,m\,$

Biểu diễn số ng

Biểu diễn theo hệ b-phân Công và nhân các số nhi

phân Biểu diễn các số nguyên âm theo hệ nhị phân Tính lũy thừa môdun

Số nguyên tố và Ước chung lớn nhất Số nguyên tổ

Ước chung lớn nhất

- nương trình đóng Giới thiệu

Định lý phần dư Trung Hoa Định lý Fermat nhỏ

NOM

References

Biểu diễn theo hệ b-phân

Chuyển số từ hệ b-phân sang hệ thập phân (b>1)

$$(a_k a_{k-1} \dots a_1 a_0)_b = \sum_{i=0}^k a_i b^i$$

- $(101011111)_2 = 1 \cdot 2^8 + 0 \cdot 2^7 + 1 \cdot 2^6 + 0 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 351$
- $(2AE0B)_{16} =$ $2 \cdot 16^4 + 10 \cdot 16^3 + 14 \cdot 16^2 + 0 \cdot 16^1 + 11 \cdot 16^0 = 175627$

Lý thuyết số cơ bản Hoàng Anh Đức

Giới thiệu

Tính chia hết và phép toán môđun

Định nghĩa và tính chất cơ bản

Đồng dư theo môđun \boldsymbol{m}

Biểu diễn số n

15 Biểu diễn theo hệ b-phân Cộng và nhân các số nhị phân Biểu diễn các số nguyên âm theo hệ nhị phân

> Tính lũy thừa môđun Số nguyên tố và Ước chung lớp nhất

Số nguyên tố Ước chung lớn nhất

Phương trình đ Giới thiệu

Định lý phần dư Trung Hoa Định lý Fermat nhỏ

SA

References

Biểu diễn theo hệ b-phân

Chuyển số từ hệ thập phân sang hệ b-phân (b>1)

- (1) Tìm giá trị của chữ số ngoài cùng bên phải bằng cách tính $n \mod b$
- (2) Gán $n := n \operatorname{div} b$
- (3) Lặp lại các bước (1) và (2) cho đến khi n=0

$$n = bq_0 + a_0 \qquad n := q_0$$

$$= b(bq_1 + a_1) + a_0 \qquad n := q_1$$

$$= b^2q_1 + ba_1 + a_0 \qquad n := q_1$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$= b^k(0 + a_k) + b^{k-1}a_{k-1} + \dots b^3a_3 + b^2a_2 + ba_1 + a_0 \qquad n := 0$$

$$= b^ka_k + b^{k-1}a_{k-1} + \dots b^3a_3 + b^2a_2 + ba_1 + a_0$$

Bài tập 7

Mô tả thuật toán trên bằng giả mã

Lý thuyết số cơ bản Hoàng Anh Đức

Siới thiệu

Tính chia hết và phép toán môđun

Định nghĩa và tính chất cơ bản

Đồng dư theo môđun \boldsymbol{m}

Biểu diễn số ngư

Biểu diễn theo hệ b-phân Công và nhân các số nhi

phân Biểu diễn các số nguyên âm theo hệ nhị phân Tính lũy thừa môđun

Số nguyên tố và Ước chung lớn nhất Số nguyên tố

Ước chung lớn nhất

Phương trình đồng du

Giới thiệu

Định lý phần dư Trung Hoa Định lý Fermat nhỏ

> Γhuật toán mã RSA

References

Biểu diễn theo hê b-phân

Ví dụ 4

$$(12345)_{10} = (?)_8$$

 $12345 = 8 \cdot 1543 + 1$
 $1543 = 8 \cdot 192 + 7$

$$192 = 8 \cdot 24 + 0$$
$$24 = 8 \cdot 3 + 0$$

$$3 = 8 \cdot 0 + 3$$

Do đó, $(12345)_{10} = (30071)_8$

Bài tập 8

- (a) $(177130)_{10} = (?)_2$
- **(b)** $(177130)_{10} = (?)_8$
- (c) $(177130)_{10} = (?)_{16}$

Lý thuyết số cơ bản Hoàng Anh Đức

Siái thiâu

Tính chia hết và phép

Định nghĩa và tính chắt cơ bản

Đồng dư theo môđun \boldsymbol{m}

Riểu diễn số nguyên

Biểu diễn theo hệ b-phân Cộng và nhân các số nhị

phân Biểu diễn các số nguyên âm theo hệ nhị phân Tính lũv thừa môđun

ố nguyên tố và Ước nung lớn nhất

Số nguyên tố Ước chung lớn nhất

Jớc chung lớn nhật hương trình đồng dư

Giới thiệu Định lý phần dư Trung Hoa Định lý Fermat nhỏ

Thuật toán mã hóa RSA

References

Chuyển đổi giữa các hệ nhị phân, bát phân, và thập lục phân

Lý thuyết số cơ bản Hoàng Anh Đức

Giới thiêu

Tính chia hết và phép toán môđun

Định nghĩa và tính chất cơ bản

Đồng dư theo môđun \boldsymbol{m}

Biểu diễn số ng

Biểu diễn theo hệ b-phân Cộng và nhân các số nhị

phân Biểu diễn các số nguyên âm theo hệ nhị phân

Tính lũy thừa môđun Số nguyên tố và Ư

Số nguyên tổ Ước chung lớn nhất

Phương trình đồng dư Giới thiêu

Định lý phần dư Trung Hoa Định lý Fermat nhỏ

Thuật toán mã h

References

Chuyển đổi giữa hệ nhị phân và bát/thập lục phân

- Mỗi chữ số trong hệ bát phân tương ứng với một khối 3 bit trong biểu diễn nhị phân
- Mỗi chữ số trong hệ thập lục phân tương ứng với một khối 4 bit trong biểu diễn nhị phân

Thập phân	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Thập lục phân	0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
Bát phân	0	1	2	3	4	5	6	7	10	11	12	13	14	15	16	17
Nhị phân	0	1	10	11	100	101	110	111	1000	1001	1010	1011	1100	1101	1110	1111

Chuyển đổi giữa các hệ nhị phân, bát phân, và thập lục phân

Lý thuyết số cơ bản Hoàng Anh Đức

Giới thiệu

Tính chia hết và phép toán môđun Đinh nghĩa và tính chất cơ

bån

Đồng dư theo môđun $\,m\,$

Biểu diễn số n

Biểu diễn theo hệ b-phân Công và nhân các số nhi

phân
Biểu diễn các số nguyên âm theo hệ nhị phân
Tính lũv thừa môdun

Số nguyên tố và Ước chung lớn nhất

Số nguyên tố Ước chung lớn nhất

Phương trình đồng Giới thiêu

Định lý phần dư Trung Hoa Đinh lý Fermat nhỏ

Thuật toán mã hóa RSA

Reference

Bài tập 9

- (a) $(111110101111100)_2 = (?)_8$
- (b) $(111110101111100)_2 = (?)_{16}$
- (c) $(765)_8 = (?)_2$
- (d) $(A8D)_{16} = (?)_2$

Cộng và nhân các số nhị phân

- Cộng hai chữ số nhị phân ngoài cùng bên phải $a_0 + b_0 = c_0 \cdot 2 + s_0$, trong đó s_0 là chữ số ngoài cùng bên phải trong biểu diễn nhị phân của tổng a + b và *nhớ* (carry) c_0
- Cộng hai chữ số nhị phân tiếp theo và nhớ $a_1+b_1+c_0=c_1\cdot 2+s_1,$ trong đó s_1 là chữ số tiếp theo (tính từ bên phải) trong biểu diễn nhị phân của tổng a+b và nhớ c_1
- Tiếp tục cộng hai chữ số nhị phân tiếp theo và nhớ để xác định chữ số tiếp theo (tính từ bên phải) trong biểu diễn nhị phân của tổng a+b và nhớ
- Ở bước cuối cùng, tính

$$a_{n-1} + b_{n-1} + c_{n-2} = c_{n-1} \cdot 2 + s_{n-1}$$

và chữ số đầu tiên trong biểu diễn nhị phân của tổng a+b là $s_n=c_{n-1}$

Thuật toán trên cho ta $a + b = (s_n s_{n-1} \dots s_1 s_0)_2$

Lý thuyết số cơ bản Hoàng Anh Đức

Giới thiêu

Tính chia hết và phép toán môđun Đinh nghĩa và tính chất cơ

bán

Đồng dư theo môđun \boldsymbol{m}

Biểu diễn theo hệ b-phân Cộng và nhân các số nhị

phân Biểu diễn các số nguyên âm theo hệ nhị phân Tính lũy thừa môđun

Số nguyên tố và Ước chung lớn nhất Số nguyên tố

Phương trình đồng dư Giới thiêu

Định lý phần dư Trung Hoa Định lý Fermat nhỏ

Thuật toán mã hó RSA

References

Công và nhân các số nhi phân

Thuật toán 2: Công hai số nhi phân

Input: $a = (a_{n-1} \dots a_0)_2, b = (b_{n-1} \dots b_0)_2$: biểu diễn nhi phân của các số nguyên dương a, b

Output: $s = (s_n s_{n-1} \dots s_0)$: biểu diễn nhi phân của s = a + b

procedure add(a, b):

c := 0for i := 0 to n-1 do $d := |(a_i + b_i + c)/2|$ $s_i = a_i + b_i + c - 2d$ c := d

> $s_n := c$ return (s_0, s_1, \ldots, s_n)

Lý thuyết số cơ bản Hoàng Anh Đức

Đinh nghĩa và tính chất cơ

Đồng dư theo môđun m

Biểu diễn theo hệ b-phân

Công và nhân các số nhi phân

Biểu diễn các số nguyên âm theo hệ nhi phân Tính lũv thừa môđun

Số nguyên tố

Giới thiêu Định lý phần dư Trung Hoa

Đinh lý Fermat nhỏ

Cộng và nhân các số nhị phân

Lý thuyết số cơ bản Hoàng Anh Đức

Siới thiậu

Tính chia hết và phép

Định nghĩa và tính chất cơ

Đồng dư theo môđun m

Biểu diễn số nguyên Biểu diễn theo hệ b-phân Công và nhân các số nhi

phân

Biểu diễn các số nguyên
âm theo hệ nhị phân

Tính lĩu thừa môdun

Tính lũy thừa môđun Số nguyên tố và Ước

Số nguyên tố và Ước chung lớn nhất Số nguyên tố Ước chung lớn nhất

Phương trình đồng dư Giới thiêu

Định lý phần dư Trung Hoa Định lý Fermat nhỏ

Thuật toán RSA

References

Cộng và nhân các số nhị phân

Lý thuyết số cơ bản Hoàng Anh Đức

Biới thiêu

Tính chia hết và phép toán môđun

Định nghĩa và tính chất cơ bản

Đồng dư theo môđun \boldsymbol{m}

Biểu diễn số nguyên Biểu diễn theo hệ b-phân Công và nhân các số nhi

phân Biểu diễn các số nguyên âm theo hệ nhị phân

am theo hệ nhị phân Tính lũy thừa môđun Số nguyên tố và Ước

chung lớn nhật Số nguyên tố Ước chung lớn nhất

Phương trình đồng dư Giới thiêu

Định lý phần dư Trung Hoa Định lý Fermat nhỏ

Thuật toán mã hóa

. . . .

Để nhân hai số nhị phân $a=(a_{n-1}a_{n-2}\dots a_1a_0)_2$ và $b=(b_{n-1}b_{n-2}\dots b_1b_0)_2$, chú ý rằng $ab=a(b_02^0+b_12^1+\dots+b_{n-1}2^{n-1})\\=a(b_02^0)+a(b_12^1)+\dots+a(b_{n-1}2^{n-1})$

Phương trình này cho ta cách tính ab:

- Chú ý rằng $ab_i = a$ nếu $b_i = 1$ và $ab_i = 0$ nếu $b_i = 0$
- Mỗi lần nhân một số hạng với 2, ta dịch chuyển biểu diễn nhị phân của số đó sang trái một đơn vị và thêm 0 vào đuôi của biểu diễn. Nói cách khác, ta có thể thu được biểu diễn nhị phân của $(ab_j)2^j$ bằng cách dịch chuyển biểu diễn nhị phân của ab_j sang trái j đơn vị và thêm j số 0 vào đuôi của biểu diễn
- Cuối cùng, ta nhận được ab bằng cách cộng biểu diễn nhị phân của n số $(ab_j)2^j$ với $j\in\{0,\dots,n-1\}$

Cộng và nhân các số nhị phân

Thuật toán 3: Nhân hai số nhi phân

Input: $a = (a_{n-1} \dots a_0)_2, b = (b_{n-1} \dots b_0)_2$: biểu diễn nhi phân của các số nguyên dương a, b

Output: biểu diễn nhi phân của p = ab

procedure multiply (a, b): for j := 0 to n - 1 do

if $b_i = 1$ then

 $c_i := a$ sau khi di chuyển j đơn vị sang trái

else $c_i := 0$

 $// c_0, \ldots, c_{n-1}$ là các tích thành phần

p := 0for j := 0 to n - 1 do

 $p := add(p, c_i)$

return p

10

Lý thuyết số cơ bản Hoàng Anh Đức

Đinh nghĩa và tính chất cơ

Đồng dư theo môđun m

Biểu diễn theo hê b-phân

Công và nhân các số nhi Biểu diễn các số nguyên âm theo hệ nhi phân Tính lũv thừa môđun

Số nguyên tố

Giới thiêu

Định lý phần dư Trung Hoa Đinh lý Fermat nhỏ

Cộng và nhân các số nhị phân

Lý thuyết số cơ bản

11/		-
- V/ i	an	-
V I	uu	·

Nhân hai số $a = (110)_2$ và $b = (101)_2$

110 101 110

0000

Hoàng Anh Đức

110

101

110

0000

11000

11110

Đinh nghĩa và tính chất cơ

Đồng dư theo môđun m

Biểu diễn theo hê b-phân Công và nhân các số nhi phân

Biểu diễn các số nguyên âm theo hệ nhi phân Tính lũv thừa môđun

Số nguyên tố

Ước chung lớn nhất Giới thiêu

Định lý phần dư Trung Hoa Đinh lý Fermat nhỏ

Cộng và nhân các số nhị phân

Lý thuyết số cơ bản Hoàng Anh Đức

Đinh nghĩa và tính chất cơ

Đồng dư theo môđun m

Biểu diễn theo hê b-phân Công và nhân các số nhi

phân Biểu diễn các số nguyên âm theo hệ nhi phân

Tính lũv thừa môđun

Số nguyên tố Ước chung lớn nhất

Giới thiêu Định lý phần dư Trung Hoa

Đinh lý Fermat nhỏ

Bài tấp 10

Tính tổng và tích các số nhi phân sau

(a) $(1000111)_2$ và $(1110111)_2$

■ Kết quả: Tổng = $(101111110)_2$, Tích = $(10000100000001)_2$

(b) (11101111)₂ và (10111101)₂

■ Kết quả: Tổng = $(110101100)_2$, Tích = $(1011000001110011)_2$

Biểu diễn các số nguyên âm theo hệ nhị phân

Lý thuyết số cơ bản Hoàng Anh Đức

Giới thiêu

Tính chia hết và phép toán môđun

Định nghĩa và tính chất cơ bản

Đồng dư theo môđun \boldsymbol{m}

Biểu diễn số nguyên Biểu diễn theo hệ b-phân Công và nhân các số nhi

phân Biểu diễn các số nguyên

Biểu diễn các số nguyê âm theo hệ nhị phân

Tính lũy thừa môđun

Số nguyên tố và Ướ chung lớn nhất

Số nguyên tố Ước chung lớn nhất

Phương trình đồng dư Giới thiệu

Định lý phần dư Trung Hoa Định lý Fermat nhỏ

Thuật toán mã hơ

Reference

- Trong thực hành, chúng ta cần biểu diễn không chỉ các số dương (positive integers) mà cả các số âm (negative integers)
- Khi sử dụng "giấy và bút", các số âm được thể hiện bằng cách thêm dấu "—" đằng trước
- Khi sử dụng máy tính, tất cả các loại dữ liệu đều được biểu diễn trong hệ nhị phân

Biểu diễn các số nguyên âm theo hệ nhị phân

Lý thuyết số cơ bản Hoàng Anh Đức

Giới thiệu

Tính chia hết và phép toán môđun Đinh nghĩa và tính chất cơ

ban

Đồng dư theo môđun \boldsymbol{m}

Biểu diễn số nguyên Biểu diễn theo hệ b-phân Công và nhân các số nhi

Biểu diễn các số nguyên âm theo hệ nhị phân

Tính lũy thừa môđun

Số nguyên tố và I

chung lớn nhất Số nguyên tố Ước chung lớn nhất

Phương trình đồng di Giới thiệu

Định lý phần dư Trung Hoa Định lý Fermat nhỏ

'huật toán mã hóa RSA

References

Biểu diễn thông qua định dạng dấu-lượng (sign-magnitude format)

- Bit ngoài cùng bên trái dùng để biểu diễn dấu (0 là dương, 1 là âm)
- Phần còn lại biểu diễn độ lớn (hay trị tuyệt đối) của số
- Một chuỗi nhị phân n bit có thể biểu diễn bất kỳ số nguyên i nào thỏa mãn $-(2^{n-1}-1) \le i \le 2^{n-1}-1$
- Ví dụ: biểu diễn nhị phân của 93 là 01011101 và biểu diễn nhị phân của -93 là 11011101
- Hạn chế: Số 0 có hai biểu diễn nhị phân: $000\dots00$ (biểu diễn +0) và $100\dots00$ (biểu diễn -0)

Biểu diễn các số nguyên âm theo hệ nhị phân

Biểu diễn thông qua ký hiệu phần bù một (one's complement notation)

- Bit ngoài cùng bên trái dùng để biểu diễn dấu (0 là dương, 1 là âm)
- Khi biểu diễn bằng ký hiệu phần bù một, nếu $+a=(a_{n-1}\ldots a_0)_2$ thì $-a=(\overline{a_{n-1}\ldots a_0})_2$, trong đó $\overline{a_{n-1} \dots a_0}$ là phần bù của $a_{n-1} \dots a_0$ thu được thông qua tính toán bằng toán tử lôgic (phủ định) theo từng bit
- Môt chuỗi nhi phân n bit có thể biểu diễn bất kỳ số nguyên i nào thỏa mãn $-(2^{n-1}-1) \le i \le 2^{n-1}-1$
- Ví du: biểu diễn nhi phân của 93 là 01011101 và biểu diễn nhi phân của -93 là 10100010
- Han chế: Số 0 có hai biểu diễn nhi phân: 00...00 (biểu $di\tilde{e}n + 0$) và $11 \dots 11$ (biểu $di\tilde{e}n - 0$)

Lý thuyết số cơ bản Hoàng Anh Đức

Đinh nghĩa và tính chất cơ

Đồng dư theo môđun m

Biểu diễn theo hê b-phân Công và nhân các số nhi

Biểu diễn các số nguyên âm theo hệ nhi phân Tính lũv thừa môđun

Số nguyên tố

Giới thiêu

Định lý phần dư Trung Hoa Đinh lý Fermat nhỏ

Biểu diễn các số nguyên âm theo hệ nhị phân

Biểu diễn thông qua ký hiệu phần bù hai (two's complement notation)

- Bit ngoài cùng bên trái dùng để biểu diễn dấu (0 là dương. 1 là âm)
- Khi biểu diễn bằng ký hiệu phần bù hai, nếu $a=(a_{n-1}\ldots a_0)_2$ thì $-a=(\overline{a_{n-1}\ldots a_0})_2+1$, trong đó $\overline{a_{n-1} \dots a_0}$ là phần bù của $a_{n-1} \dots a_0$ thu được thông qua tính toán bằng toán tử lôgic (phủ định) theo từng bit
- Trong trường hợp này, một chuỗi nhị phân n bit có thể biểu diễn bất kỳ số nguyên i nào thỏa mãn $-2^{n-1} \le i < 2^{n-1}$

Ví du 7 (Với n=3)

Giá trị	Chuỗi 3-bit	Giá trị	Chuỗi 3-bit
3	011	-3	101
2	010	-2	110
1	001	-1	111
0	000	-4	100

Lý thuyết số cơ bản Hoàng Anh Đức

Đinh nghĩa và tính chất cơ Đồng dư theo môđun m

Biểu diễn theo hệ b-phân Công và nhân các số nhi

Biểu diễn các số nguyên âm theo hệ nhi phân

Tính lũv thừa môđun

Số nguyên tố Ước chung lớn nhất

Giới thiêu

Định lý phần dư Trung Hoa Đinh lý Fermat nhỏ

Tính lũy thừa môđun

- Trong các thuật toán mã hóa hiện đại, một bài toán quan trong là tinh $b^n \mod m$ một cách hiệu quả mà không cần sử dụng quá nhiều bô nhớ, đặc biệt là khi b, n, m là các số nguyên lớn
- Việc tính b^n rồi tìm số dư khi chia nó cho m là không thực tế, do b^n có thể cực lớn và ta sẽ cần một lương lớn bộ nhớ chỉ để lưu giá tri của b^n
- Ta có thể tính $b^n \mod m$ bằng cách lần lượt tính b^k $\mod m$ cho $k = 1, 2, \dots, n$, sử dụng tính chất $b^{k+1} \mod m = b(b^k \mod m) \mod m$. Tuy nhiên, hướng tiếp cận này cũng không thực tế, do ta cần thực hiện n-1phép nhân các số nguyên và n có thể rất lớn
- Ta trình bày một hướng tiếp cân hiệu quả dưa trên biểu diễn nhi phân của n

Lý thuyết số cơ bản Hoàng Anh Đức

Đinh nghĩa và tính chất cơ

Đồng dư theo môđun m

Biểu diễn theo hê b-phân Công và nhân các số nhi

Biểu diễn các số nguyên âm theo hệ nhi phân

Tính lũv thừa môđun

Số nguyên tố

Giới thiêu

Định lý phần dư Trung Hoa Định lý Fermat nhỏ

Tính lũy thừa môđun

■ Chú ý rằng

Biểu diễn nhị phân của n $12^{k-1} + a_{k-2}2^{k-2} + \dots + a_12^1 + a_02^0$

$$b^{n} = b^{a_{k-1}2^{k-1} + a_{k-2}2^{k-2} + \dots + a_{1}2^{1} + a_{0}2^{0}}$$

$$= (b^{2^{k-1}})^{a_{k-1}} \times (b^{2^{k-2}})^{a_{k-2}} \times \dots \times (b^{2^{1}})^{a_{1}} \times (b^{2^{0}})^{a_{0}}$$

- Chúng ta có thể tính các giá trị b^{2^j} bằng cách liên tục bình phương
- \blacksquare Sau đó ta chỉ cần nhân các giá trị này với nhau để tạo thành một tích thành phần, tùy thuộc vào a_j có bằng 1 hay không
- Quan trọng là, sau mỗi bước nhân, để tăng tính hiệu quả và tiết kiệm bộ nhớ, ta có thể lấy mod m của kết quả để tiếp tục thực hiện tính toán

Lý thuyết số cơ bản Hoàng Anh Đức

Giới thiệu

Tính chia hết và phép toán môđun

Định nghĩa và tính chất cơ bản

Đồng dư theo môđun \boldsymbol{m}

Biểu diễn số nguyê

Biểu diễn theo hệ b-phân Cộng và nhân các số nhị

Biểu diễn các số nguyên âm theo hệ nhị phân

2) Tính lũy thừa môđun

Số nguyên tố và Ước chung lớn nhất Số nguyên tổ

Phương trình đồng dư Giới thiêu

Định lý phần dư Trung Hoa Đinh lý Fermat nhỏ

Thuật toán mã hó

References

Tính chia hết và phép toán môđun Tính lũy thừa môđun

Ví du 8

Ta tính $3^{644} \mod 645$

$$644 = 1 \times 2^{9} + 0 \times 2^{8} + 1 \times 2^{7} + 0 \times 2^{6} + 0 \times 2^{5} + 0 \times 2^{4}$$

$$+ 0 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 0 \times 2^{0}$$

$$3^{644} = (3^{2^{9}})^{1} \times (3^{2^{8}})^{0} \times (3^{2^{7}})^{1} \times (3^{2^{6}})^{0} \times (3^{2^{5}})^{0} \times (3^{2^{4}})^{0}$$

$$\times (3^{2^{3}})^{0} \times (3^{2^{2}})^{1} \times (3^{2^{1}})^{0}$$

Lý thuyết số cơ bản Hoàng Anh Đức

Đinh nghĩa và tính chất cơ

Đồng dư theo môđun m

Biểu diễn theo hệ b-phân Công và nhân các số nhi

Biểu diễn các số nguyên âm theo hệ nhi phân

Tính lũv thừa môđun

Số nguyên tố

Giới thiêu Định lý phần dư Trung Hoa Đinh lý Fermat nhỏ

Ta tính các giá trị $3^{2^j} \mod 645$ $(1 \le j \le 9)$ bằng cách liên tục bình phương và lấy $\mod 645$

```
3^{2^1} \mod 645 = 9
3^{2^2} \mod 645 = (3^{2^1})^2 \mod 645 = (3^{2^1} \mod 645)^2 \mod 645 = 81
3^{2^3} \mod 645 = (3^{2^2})^2 \mod 645 = (3^{2^2} \mod 645)^2 \mod 645 = 111
3^{2^4} \mod 645 = (3^{2^3})^2 \mod 645 = (3^{2^3} \mod 645)^2 \mod 645 = 66
3^{2^5} \mod 645 = (3^{2^4})^2 \mod 645 = (3^{2^4} \mod 645)^2 \mod 645 = 486
3^{2^6} \mod 645 = (3^{2^5})^2 \mod 645 = (3^{2^5} \mod 645)^2 \mod 645 = 126
3^{2^7} \mod 645 = (3^{2^6})^2 \mod 645 = (3^{2^6} \mod 645)^2 \mod 645 = 396
3^{2^8} \mod 645 = (3^{2^7})^2 \mod 645 = (3^{2^7} \mod 645)^2 \mod 645 = 81
3^{2^9} \mod 645 = (3^{2^8})^2 \mod 645 = (3^{2^8} \mod 645)^2 \mod 645 = 111
```

Lý thuyết số cơ bản Hoàng Anh Đức

liới thiệu

Tính chia hết và phép toán môđun Đinh nghĩa và tính chất cơ

ban

Đồng dư theo môđun \boldsymbol{m}

Biểu diễn theo hệ b-phân Cộng và nhân các số nhị phân Biểu diễn các số nguyên

âm theo hệ nhị phân

Tính lũy thừa môđun

Số nguyên tố và Ước chung lớn nhất Số nguyên tố

Phương trình đồng dư Giới thiệu

Định lý phần dư Trung Hoa Định lý Fermat nhỏ

> "huật toán mã hơ RSA

1101010110

Tính chia hết và phép toán môđun Tính lũy thừa môđun

Do đó.

$$3^{644} \mod 645 = (3^{2^2} \times 3^{2^7} \times 3^{2^9}) \mod 645$$

$$= ((((3^{2^2} \mod 645) \times (3^{2^7} \mod 645)) \mod 645)) \times (3^{2^9} \mod 645)) \mod 645$$

$$= (((81 \times 396) \mod 45) \times 111) \mod 645$$

$$= (471 \times 111) \mod 645$$

$$= 36$$

Lý thuyết số cơ bản Hoàng Anh Đức

Giới thiêu

Tính chia hết và phép

Định nghĩa và tính chất cơ bản

Đồng dư theo môđun \boldsymbol{m}

Biểu diễn theo hệ b-phân

Cộng và nhân các số nhị phân Biểu diễn các số nguyên

âm theo hệ nhị phân Tính lũv thừa môđun

Số nguyên tố và Ước chung lớn nhất Số nguyên tố

Ước chung lớn nhất

Phương trình đồng dư

Giới thiệu Định lý phần dư Trung Hoa Định lý Fermat nhỏ

RSA

References

Tính chia hết và phép toán môđun Tính lũy thừa môđun

Thuật toán 4: Tính lũy thừa môđun nhanh

Input: b: số nguyên, $n=(a_{k-1}a_{k-2}\dots a_1a_0)_2$: biểu diễn nhị phân của số nguyên dương n,m: số nguyên dương

```
Output: b^n \mod m
1 x := 1 // \mathbf{d}\hat{\mathbf{e}}
```

x:=1 // để lưu trữ kết quả $b2i:=b \bmod m$ // b^{2^i} , đầu tiên i=0

4 if $a_i=1$ then

 $b2i := (b2i \cdot b2i) \bmod m$

7 return x

Bài tấp 11

Sử dụng thuật toán tính $b^n \mod m$ thông qua biểu diễn nhị phân của n đã mô tả ở trên để tính $7^{644} \mod 645$

Lý thuyết số cơ bản Hoàng Anh Đức

Siới thiệu

Tính chia hết và phép toán môđun

Định nghĩa và tính chất cơ bản

Đồng dư theo môđun $\,m\,$

Biểu diễn số nguyên Biểu diễn theo hê b-phân

Cộng và nhân các số nhị phân Biểu diễn các số nguyên

Biểu diễn các số nguyên âm theo hệ nhị phân Tính lũy thừa môđun

Số nguyên tố và Ước chung lớn nhất Số nguyên tố

Phương trình đồng dư Giới thiệu

Định lý phần dư Trung Hoa Định lý Fermat nhỏ

Thuật toán mã hóa RSA

ricicion

75

 $// b^{2^{i+1}} = (b^{2^i}) \cdot (b^{2^i})$

Số nguyên tố và Ước chung lớn nhất Số nguyên tố

- Môt số nguyên p > 1 là một số nguyên tố (prime number) nếu các ước số dương duy nhất của p là 1 và chính nó
 - Ví du: 2, 3, 5, 11, . . .
- Các số nguyên lớn hơn 1 và không phải là số nguyên tố được gọi là các hợp số (composite number)

Bài tấp 12

Chứng minh rằng nếu p là một số nguyên tố và $p \mid ab$ với $a,b \in \mathbb{Z}^+$ thì $p \mid a$ hoặc $p \mid b$. (**Gơi ý:** Giả sử $p \nmid a$, chứng minh $p \mid b$. Sử dụng Định lý Bézout (Định lý 12)) sẽ đề cập ở phần sau.) Phát biểu trên có đúng với p là hợp số hay không? Tai sao?

Bài tấp 13

Sử dụng quy nạp, hãy chứng minh phát biểu tổng quát: nếu plà một số nguyên tố và $p \mid a_1 a_2 \dots a_n$, trong đó $a_i \in \mathbb{Z}$ với 1 < i < n, thì $p \mid a_i$ với j nào đó (1 < j < n)

Lý thuyết số cơ bản Hoàng Anh Đức

Đinh nghĩa và tính chất cơ

Đồng dư theo môđun m

Biểu diễn theo hê b-phân

Công và nhân các số nhi Biểu diễn các số nguyên

âm theo hệ nhi phân Tính lũv thừa môđun

Số nguyên tố

Giới thiêu

Định lý phần dư Trung Hoa Định lý Fermat nhỏ

Số nguyên tố và Ước chung lớn nhất số nguyên tố

Đinh lý 7: Đinh lý cơ bản của số học

Mọi số nguyên dương lớn hơn 1 có thể được viết một cách duy nhất dưới dạng một số nguyên tố hoặc một tích của các ước nguyên tố của nó theo thứ tự tăng dần

Gợi ý.

- Ta đã chứng minh bằng phương pháp quy nạp: nếu n>1 là một số nguyên thì n có thể được biểu diễn dưới dạng tích của các số nguyên tố
- Để chỉ ra tính "duy nhất", ta chứng minh bằng phản chứng: giả sử số nguyên dương n>1 có thể được biểu diễn dưới dạng tích các số nguyên tố theo hai cách, ví dụ như $n=p_1p_2\dots p_s$ và $n=q_1q_2\dots q_t$, trong đó mỗi p_i $(1\leq i\leq s)$ và q_j $(1\leq j\leq t)$ là một số nguyên tố thỏa mãn $p_1\leq p_2\leq \dots \leq p_s$ và $q_1\leq q_2\leq \dots \leq q_t$. Sử dụng Bài tập 13 để chỉ ra mâu thuẫn

Lý thuyết số cơ bản Hoàng Anh Đức

Giới thiêu

Tính chia hết và phép toán môđun Đình nghĩa và tính chất cơ

ban

Đồng dư theo môđun $\,m\,$

Biểu diễn số nguyên Biểu diễn theo hệ b-phân

Cộng và nhân các số nhị phân Biểu diễn các số nguyên âm theo hệ nhị phân

Tính lũy thừa môđun Số nguyên tố và Ước

Số nguyên tố

Phương trình đồng dư Giới thiêu

Định lý phần dư Trung Hoa Định lý Fermat nhỏ

Thuật toán mã h

References

Số nguyên tố và Ước chung lớn nhất Số nguyên tố

Đinh lý 8

Nếu $n \in \mathbb{Z}^+$ là một hợp số, thì n có một ước nguyên tố nhỏ hơn hoặc bằng \sqrt{n}

Chứng minh.

- Theo giả thiết, $n \in \mathbb{Z}^+$ là hợp số, do đó n có một ước số athỏa mãn 1 < a < n. Do đó, tồn tại số nguyên b > 1 sao cho n=ab.
- Ta chứng minh $a \leq \sqrt{n}$ hoặc $b \leq \sqrt{n}$. Thật vậy, giả sử $a>\sqrt{n}$ và $b>\sqrt{n}$. Suy ra, $ab>\sqrt{n}\cdot\sqrt{n}=n$, mâu thuẫn với đinh nghĩa của a, b. Do đó $a < \sqrt{n}$ hoặc $b < \sqrt{n}$, nghĩa là, n có một ước số lớn hơn 1 và không vượt quá \sqrt{n} (ahoặc b)
- Theo Đinh lý cơ bản của số học, ước số này là một số nguyên tố hoặc có một ước nguyên tố nhỏ hơn nó. Trong cả hai trường hợp, n có một ước nguyên tố nhỏ hơn hoặc bằng \sqrt{n}

Lý thuyết số cơ bản Hoàng Anh Đức

Đinh nghĩa và tính chất cơ

Đồng dư theo môđun m

Biểu diễn theo hệ b-phân Công và nhân các số nhi

Biểu diễn các số nguyên âm theo hệ nhi phân Tính lũv thừa môđun

Số nguyên tố Ước chung lớn nhất

Giới thiêu

Định lý phần dư Trung Hoa Định lý Fermat nhỏ

Số nguyên tố và Ước chung lớn nhất Số nguyên tố

- Mệnh đề phản đảo của Định lý 8: Một số nguyên n>1 là số nguyên tố nếu nó không chia hết cho bất kỳ số nguyên tố nào nhỏ hơn hoặc bằng \sqrt{n}
- Tìm các số nguyên tố giữa 2 và n bằng Sàng Eratosthenes (The Sieve of Eratosthenes)
 - (1) Viết các số $2, \ldots, n$ vào một danh sách. Gán i := 2
 - (2) Bỏ đi tất cả các bội của i trừ chính nó khỏi danh sách
 - (3) Gọi k là số nhỏ nhất hiện có trong danh sách thỏa mãn k > i. Gán i := k
 - (4) Nếu $i > \sqrt{n}$ thì dừng lại, ngược lại thì quay lại bước (2)
- Việc kiểm tra xem một số có phải là số nguyên tố hay không có thể được thực hiện trong thời gian đa thức [Agrawal, Kayal, and Saxena 2004] (đa thức của số bit sử dụng để mô tả số đầu vào)

Lý thuyết số cơ bản Hoàng Anh Đức

Giới thiệu

Tính chia hết và phép toán môđun Đinh nghĩa và tính chất cơ

Dan

Đồng dư theo môđun \boldsymbol{m}

Biểu diễn số nguyên Biểu diễn theo hệ b-phân Cộng và nhân các số nhị

Biểu diễn các số nguyên âm theo hệ nhị phân Tính lũv thừa môđun

Số nguyên tố và Ước chung lớn nhất

Số nguyên tố Ước chung lớn nh

Phương trình đồng dư Giới thiệu

Định lý phần dư Trung Hoa Định lý Fermat nhỏ

RSA

Số nguyên tố và Ước chung lớn nhất số nguyên tố

Định lý 9

Có vô hạn số nguyên tố

Chứng minh (theo Euclid).

- Giả sử chỉ có hữu hạn các số nguyên tố p_1, p_2, \dots, p_n . Đặt $Q = p_1 p_2 \dots p_n + 1$
- Theo Định lý cơ bản của số học, (a) Q là một số nguyên tố hoặc (b) Q có thể được viết thành tích của ít nhất hai số nguyên tố
- (a) đúng: Do đó, Q là số nguyên tố. Theo định nghĩa, $Q \notin \{p_1, \dots, p_n\}$, mâu thuẫn với giả thiết toàn bộ các số nguyên tố là p_1, \dots, p_n
- **(b) đúng:** Do đó, tồn tại j thỏa mãn $p_j \mid Q$ với $1 \leq j \leq n$. Chú ý rằng $p_j \mid (p_1 p_2 \dots p_n)$, và do đó $p_j \mid (Q p_1 p_2 \dots p_n)$, suy ra $p_j \mid 1$, mâu thuẫn với giả thiết p_j là số nguyên tố

Lý thuyết số cơ bản Hoàng Anh Đức

Giới thiêu

Tính chia hết và phép toán môđun

Định nghĩa và tính chất cơ bản

Đồng dư theo môđun $\,m\,$

Biểu diễn theo hệ b-phân Cộng và nhân các số nhị

phân Biểu diễn các số nguyên âm theo hệ nhị phân Tính lũv thừa môđun

Số nguyên tố và Ước

Số nguyên tố

Phương trình đồng dư

Giới thiệu Định lý phần dư Trung Hoa Định lý Fermat nhỏ

Thuật toán mã

Deferences

Ước chung lớn nhất

- Các số nguyên a và b được gọi là nguyên tố cùng nhau (relatively prime hoặc coprime) khi và chỉ khi $\gcd(a,b)=1$
- Một tập các số nguyên $\{a_1,a_2,a_3,\ldots,a_n\}$ được gọi là *đôi một nguyên tố cùng nhau (pairwise relatively prime)* nếu mọi cặp a_i,a_j với $1 \leq i < j \leq n$ là nguyên tố cùng nhau
- \blacksquare Nếu các số nguyên dương a và b được phân tích thành tích các số nguyên tố

$$a = p_1^{a_1} p_2^{a_2} \dots p_n^{a_n}$$
 $b = p_1^{b_1} p_2^{b_2} \dots p_n^{b_n}$

trong đó các số mũ là các số nguyên không âm (có thể bằng 0), thì

$$\gcd(a,b) = p_1^{\min(a_1,b_1)} p_2^{\min(a_2,b_2)} \dots p_n^{\min(a_n,b_n)}$$

Lý thuyết số cơ bản Hoàng Anh Đức

3iởi thiệu

Tính chia hết và phép toán môđun Đinh nghĩa và tính chất cơ

Đồng dự theo môđun m

Đồng dư theo môđun m

Biểu diễn theo hệ b-phân Cộng và nhân các số nhị phân Biểu diễn các số nguyên âm theo hệ nhị phân

Tính lũy thừa môđun Số nguyên tố và Ước

chung lớn nhất Số nguyên tố

42) Ước chung lớn nhất

Giới thiệu Định lý phần dư Trung Hoa

Định lý Fermat nhỏ Thuật toán mã h RSA

References

Bội chung nhỏ nhất và liên hệ với Ước chung lớn nhất

- \blacksquare Tập các bội chung của a và b có ít nhất một phần tử ab
- Tính sắp thứ tự tốt: Mọi tập con khác rỗng của Z⁺ có phần tử nhỏ nhất
- lacktriangle Nếu a và b được phân tích thành tích các số nguyên tố

$$a = p_1^{a_1} p_2^{a_2} \dots p_n^{a_n} \qquad b = p_1^{b_1} p_2^{b_2} \dots p_n^{b_n}$$

trong đó các số mũ là các số nguyên không âm (có thể bằng 0), thì

$$\operatorname{lcm}(a,b) = p_1^{\max(a_1,b_1)} p_2^{\max(a_2,b_2)} \dots p_n^{\max(a_n,b_n)}$$

Định lý 10

$$extstyle{ extstyle V\'oi}(a,b) \in \mathbb{Z}^+$$
 , $ab = \gcd(a,b) \cdot \operatorname{lcm}(a,b)$

Bài tập 15

Chứng minh Đinh lý 10

Lý thuyết số cơ bản Hoàng Anh Đức

Giới thiệu

Tính chia hết và phép toán môđun Đinh nghĩa và tính chất cơ

Citi

Đồng dư theo môđun \boldsymbol{m}

Biểu diễn số nguyên Biểu diễn theo hệ b-phân

Cộng và nhân các số nhị phân Biểu diễn các số nguyên âm theo hệ nhị nhận

âm theo hệ nhị phân Tính lũy thừa môđun

Số nguyên tố và Ước chung lớn nhất Số nguyên tố

43) Ước chung lớn nhất

Phương trình đồng Giới thiêu

Định lý phần dư Trung Hoa Định lý Fermat nhỏ

RSA

References

Bổ đề 11

Cho a = bq + r với a, b, q, r là các số nguyên. Ta có gcd(a, b) =gcd(b,r). Do đó, ta cũng có $gcd(a,b) = gcd(b,(a \mod b))$

Chứng minh.

- Goi D_{ab} là tâp các ước số chung của a và b, với các số nguyên a, b bất kỳ. Ta chứng minh $D_{ab} = D_{br}$
- $D_{ab} \subseteq D_{br}$: Giả sử $x \in D_{ab}$. Theo định nghĩa, $x \mid a$ và $x \mid b$. Theo Định lý 1, $x \mid (a - bq)$ và do đó $x \mid r$, suy ra $x \in D_{br}$
- $D_{br} \subseteq D_{ab}$: Giả sử $x \in D_{br}$. Theo định nghĩa, $x \mid b$ và $x \mid r$. Theo Định lý 1, $x \mid (bq + r)$ và do đó $x \mid a$, suy ra $x \in D_{ab}$
- Từ $D_{ab} = D_{br}$, ta có gcd(a, b) = gcd(b, r)

Lý thuyết số cơ bản Hoàng Anh Đức

Đinh nghĩa và tính chất cơ

Đồng dư theo môđun m

Biểu diễn theo hê b-phân

Công và nhân các số nhi Biểu diễn các số nguyên

âm theo hệ nhi phân Tính lũv thừa môđun

Số nguyên tố

Ước chung lớn nhất

Giới thiêu Định lý phần dư Trung Hoa Định lý Fermat nhỏ

П

Thuật toán Euclid

Ý tưởng: Sử dụng đẳng thức $gcd(a, b) = gcd(b, (a \mod b))$

Ví du 9 (Thuật toán Euclid)

Tim gcd(372, 164)

$$\gcd(372, 164) = \gcd(164, 372 \mod 164) = \gcd(164, 44)$$

$$= \gcd(44, 164 \mod 44) = \gcd(44, 32)$$

$$= \gcd(32, 44 \mod 32) = \gcd(32, 12)$$

$$= \gcd(12, 32 \mod 12) = \gcd(12, 8)$$

$$= \gcd(8, 12 \mod 8) = \gcd(8, 4)$$

$$= \gcd(4, 8 \mod 4) = \gcd(4, 0)$$

$$= 4$$

Lý thuyết số cơ bản Hoàng Anh Đức

Đinh nghĩa và tính chất cơ

Đồng dư theo môđun m

Biểu diễn theo hệ b-phân Công và nhân các số nhi

Biểu diễn các số nguyên âm theo hệ nhi phân Tính lũv thừa môđun

Số nguyên tố

Ước chung lớn nhất

Giới thiêu Định lý phần dư Trung Hoa Đinh lý Fermat nhỏ

Lý thuyết số cơ bản Hoàng Anh Đức

Đinh nghĩa và tính chất cơ

Đồng dư theo môđun m

Biểu diễn theo hệ b-phân Công và nhân các số nhi

Biểu diễn các số nguyên âm theo hệ nhi phân

Tính lũv thừa môđun

Số nguyên tố

Ước chung lớn nhất

Giới thiêu Định lý phần dư Trung Hoa

Đinh lý Fermat nhỏ

Thuât toán 5: Thuât toán Euclid

Input: a, b: các số nguyên dương Output: gcd(a, b)

x := a

y := bwhile $y \neq 0$ do

 $r := x \mod y$

x := y

return x

 $// x = \gcd(a, b)$

Lý thuyết số cơ bản Hoàng Anh Đức

Đinh nghĩa và tính chất cơ

Đồng dư theo môđun m

Biểu diễn theo hệ b-phân Công và nhân các số nhi

Biểu diễn các số nguyên âm theo hệ nhi phân Tính lũv thừa môđun

Số nguyên tố Ước chung lớn nhất

Giới thiêu

Định lý phần dư Trung Hoa Đinh lý Fermat nhỏ

Bài tấp 16

Sử dụng thuật toán Euclid để tìm

- (a) gcd(12, 18)
- (b) gcd(111, 201)
- (c) gcd(1001, 1331)

Bài tấp 17

Chứng minh rằng nếu a, b, m là các số nguyên với m > 2 và $a \equiv b \pmod{m}$ thì $\gcd(a, m) = \gcd(b, m)$. (Gợi ý: Chứng minh tập các ước chung của a và m bằng với tập các ước chung của *b* và *m*.)

Ước chung lớn nhất và tổ hợp tuyến tính

Định lý 12: Định lý Bézout

Cho các số nguyên dương a,b. Tồn tại các số nguyên s,t sao cho $\gcd(a,b)=sa+tb$

- Các số nguyên s,t thỏa mãn Định lý Bézout được gọi là các hê số Bézout (Bézout's coefficients) của a và b
- Phương trình gcd(a,b) = sa + tb được gọi là đẳng thức Bézout (Bézout's identity)

Chú ý:

- Chúng ta không trình bày chứng minh của Định lý Bézout
- Chúng ta sẽ đề cập hai phương pháp để tìm một tổ hợp tuyến tính của hai số nguyên bằng với ước chung lớn nhất của chúng (Trong phần này, ta luôn giả thiết các tổ hợp tuyến tính chỉ có hệ số nguyên)
 - (1) Đi ngược lại theo các phép chia của thuật toán Euclid
 - (2) Thuật toán Euclid mở rộng (The extended Euclidean algorithm)

Lý thuyết số cơ bản Hoàng Anh Đức

Giới thiệu

Tính chia hết và phép toán môđun Đinh nghĩa và tính chất cơ

bån

Đồng dư theo môđun \boldsymbol{m}

Biểu diễn theo hệ b-phân Cộng và nhân các số nhị nhân

phân Biểu diễn các số nguyên âm theo hệ nhị phân Tính lũy thừa môdun

Số nguyên tố và Ước chung lớn nhất Số nguyên tố

Uớc chung lớn nhất

Giới thiệu Định lý phần dư Trung Hoa Định lý Fermat nhỏ

Γhuật toán mã h

Ước chung lớn nhất và tổ hợp tuyến tính

Ví du 10

Biểu diễn gcd(252, 198) = 18 dưới dạng tổ hợp tuyến tính của 252 và 198

- Thuật toán Euclid sử dụng các phép chia như sau
 - $252 = 1 \cdot 198 + 54$
 - $\blacksquare 198 = 3 \cdot 54 + 36$
 - $54 = 1 \cdot 36 + 18$
 - $36 = 2 \cdot 18 + 0$
- Ta có

$$18 = 54 - 1 \cdot 36$$

$$= 54 - 1 \cdot (198 - 3 \cdot 54)$$

$$= 4 \cdot 54 - 1 \cdot 198$$

$$= 4 \cdot (252 - 1 \cdot 198) - 1 \cdot 198$$

$$= 4 \cdot 252 - 5 \cdot 198$$

Lý thuyết số cơ bản Hoàng Anh Đức

Đinh nghĩa và tính chất cơ

Đồng dư theo môđun m

Biểu diễn theo hệ b-phân Công và nhân các số nhi

Biểu diễn các số nguyên âm theo hệ nhi phân Tính lũv thừa môđun

Số nguyên tố Ước chung lớn nhất

Giới thiêu

Định lý phần dư Trung Hoa Đinh lý Fermat nhỏ

Ước chung lớn nhất và tổ hợp tuyến tính

Lý thuyết số cơ bản Hoàng Anh Đức

Đinh nghĩa và tính chất cơ

Đồng dư theo môđun m

Biểu diễn theo hệ b-phân Công và nhân các số nhi

Biểu diễn các số nguyên âm theo hệ nhi phân Tính lũv thừa môđun

Số nguyên tố Ước chung lớn nhất

Giới thiêu Định lý phần dư Trung Hoa

Đinh lý Fermat nhỏ

Thuật toán 6: Thuật toán Euclid mở rộng

Input: a, b: các số nguyên dương

Output: (d, s, t): $d = \gcd(a, b)$ và s, t thỏa mãn d = sa + tb

procedure ExtEuclid(a, b): if b = 0 then

2

return (a, 1, 0)

 $(d_1, s_1, t_1) := \text{ExtEuclid}(b, a \mod b)$

 $d := d_1$

 $s := t_1$

 $t := s_1 - (a \operatorname{div} b) \cdot t_1$

return (d, s, t)

Ước chung lớn nhất và tổ hợp tuyến tính

ExtEuclid(252, 198) = (18, 4, -5)

Gọi ExtEuclid(·,·)	a	b	d	s	t
1	252	198	18	4 <	-5
2	198	54	18	-1_{κ}	4
3	54	36	18	1 <	-1
4	36	18	18	0	1
5	18	0	18	1	0

Bài tấp 18

Biểu diễn ước chung lớn nhất của các cặp số sau dưới dạng tổ hợp tuyến tính của chúng

(a) 10, 11

(d) 34,55

(b) 21, 44

(e) 117, 213

36,48

1023, 36

Lý thuyết số cơ bản Hoàng Anh Đức

Đinh nghĩa và tính chất cơ

Đồng dư theo môđun m

Biểu diễn theo hê b-phân Công và nhân các số nhi Biểu diễn các số nguyên

âm theo hệ nhi phân Tính lũv thừa môđun

Số nguyên tố Ước chung lớn nhất

Giới thiêu

Định lý phần dư Trung Hoa Đinh lý Fermat nhỏ

Ước chung lớn nhất và tổ hợp tuyến tính

Đinh lý 13

Cho các số nguyên dương a,b,c thỏa mãn $\gcd(a,b)=1$ và $a\mid bc$. Ta có $a\mid c$

Chứng minh.

- \blacksquare Theo Định lý Bézout, tồn tại các số nguyên s,t thỏa mãn $\gcd(a,b)=1=sa+tb$
- lacksquare Do $a\mid bc$, ta cũng có $a\mid tbc$
- Mặt khác, a | sac
- Suy ra, $a \mid (tb + sa)c$, hay $a \mid c$

Lý thuyết số cơ bản Hoàng Anh Đức

Giới thiêu

Tính chia hết và phép toán môđun

Định nghĩa và tính chất cơ bản

Đồng dư theo môđun \boldsymbol{m}

Biểu diễn số ng

Biểu diễn theo hệ b-phân Cộng và nhân các số nhị

Biểu diễn các số nguyên âm theo hệ nhị phân

Tính lũy thừa môđun Số nguyên tố và Ước

Số nguyên tố

Úớc chung lớn nhất

Phương trình đồng di Giới thiêu

Định lý phần dư Trung Hoa Định lý Fermat nhỏ

Thuật toán mã l RSA

Ước chung lớn nhất và tổ hợp tuyến tính

Lý thuyết số cơ bản Hoàng Anh Đức

Giới thiệu

Tính chia hết và phép toán môđun

Định nghĩa và tính chất cơ bản

Đồng dư theo môđun \boldsymbol{m}

Biểu diễn số nguyên Biểu diễn theo hê b-phân

Cộng và nhân các số nhị phân

Biểu diễn các số nguyên âm theo hệ nhị phân Tính lũv thừa môđun

Số nguyên tố và Ước chung lớn nhất

Số nguyên tố 3 Ước chung lớn nhất

Phương trình đồng dư

Giới thiệu Định lý phần dư Trung Hoa Định lý Fermat nhỏ

Thuật toán mã hóa RSA

References

Định lý 14

Cho số nguyên dương m và các số nguyên a,b,c. Nếu $ac \equiv bc \pmod m$ và $\gcd(c,m)=1$, thì $a \equiv b \pmod m$

Chứng minh.

- Theo định nghĩa, do $ac \equiv bc \pmod{m}$, ta có $m \mid (a b)c$
- Kết hợp với $\gcd(c,m)=1$ và Định lý 13, ta có $m\mid (a-b)$, nghĩa là $a\equiv b\pmod m$

П

■ Một *phương trình đồng dư (congruence)* có dạng

$$ax \equiv b \pmod{m}$$

với $a,b\in\mathbb{Z},\,m\in\mathbb{Z}^+$, và x là một biến, được gọi là một phương trình đồng dư tuyến tính (linear congruence)

- Việc giải phương trình đồng dư nghĩa là tìm giá trị của x thỏa mãn phương trình đó
- Một $nghịch \, d\stackrel{\ \ do}{ao} \, (inverse) \, {\it của} \, a \, {\it theo} \, {\it môdun} \, m \, {\it là} \, {\it bất} \, {\it kỳ} \, {\it số} \, nguyên \, s \, {\it nào} \, {\it thổa} \, {\it mãn} \, sa \equiv 1 \, \, ({\it mod} \, \, m)$
 - Ví dụ, 5 là một nghịch đảo của 3 theo môđun 7, vì $5 \cdot 3 \equiv 1 \pmod{7}$
 - \blacksquare Đôi khi ta cũng dùng ký hiệu \overline{a} hoặc a^{-1} để chỉ một nghịch đảo của a
 - Chú ý rằng nếu ta có thể tìm được s thỏa mãn điều kiện trên, ta có thể giải $ax \equiv b \pmod m$ bằng cách nhân cả hai vế với s, nghĩa là, $sax \equiv sb \pmod m$, suy ra $x \equiv sb \pmod m$

Lý thuyết số cơ bản Hoàng Anh Đức

Giới thiêu

Tính chia hết và phép toán môđun Đinh nghĩa và tính chất cơ

Đản Đồng dự theo môđun m

Đống dà theo modali *m*

Biểu diễn theo hệ b-phân Cộng và nhân các số nhị phân

Biểu diễn các số nguyên âm theo hệ nhị phân Tính lũv thừa môđun

Số nguyên tố và Ước chung lớn nhất Số nguyên tố

Phương trình đồng dư 54) Giới thiêu

Định lý phần dư Trung Hoa Định lý Fermat nhỏ

Thuật toán mã hóa RSA

References

Đinh lý 15

Nếu gcd(a, m) = 1 và m > 1 thì tồn tại nghịch đảo s của a. Thêm vào đó, nghịch đảo này là duy nhất theo môđun m

Chứng minh.

- Tồn tai số nguyên s thỏa mãn $sa \equiv 1 \pmod{m}$
 - Theo đinh lý Bézout, tồn tại các số nguyên s, t thỏa mãn sa + tm = 1. Do đó $sa + tm \equiv 1 \pmod{m}$
 - Do $tm \equiv 0 \pmod{m}$, ta có $sa \equiv 1 \pmod{m}$, và do đó s là một nghich đảo của a theo mộđun m
- Nếu tồn tại hai số nguyên s, r thỏa mãn $sa \equiv 1 \pmod{m}$ $\operatorname{va} ra \equiv 1 \pmod{m} \operatorname{thi} s \equiv r \pmod{m}$
 - Nhắc lại: Với các số nguyên a, b, c và số nguyên dương m, nếu $ac \equiv bc \pmod{m}$ và gcd(c, m) = 1 thì $a \equiv b \pmod{m}$

Bài tấp 19

Chứng minh rằng nếu gcd(a, m) > 1 với $a \in \mathbb{Z}$ bất kỳ và m > 2thì không tồn tại một nghịch đảo của a theo mộđun m

Lý thuyết số cơ bản Hoàng Anh Đức

Đinh nghĩa và tính chất cơ

Đồng dư theo môđun m

Biểu diễn theo hệ b-phân Công và nhân các số nhi Biểu diễn các số nguyên

âm theo hệ nhi phân Tính lũv thừa môđun

Số nguyên tố

Giới thiêu

Định lý phần dư Trung Hoa Đinh lý Fermat nhỏ

Định lý 15 cho ta một phương pháp tìm một nghịch đảo của $a\in\mathbb{Z}$ theo môđun $m\in\mathbb{Z}^+$ khi $\gcd(a,m)=1$ và m>1

Ví dụ 12

Tìm một nghịch đảo của $3\ {\rm theo}\ {\rm môđun}\ 7$

- (1) Tìm các số nguyên s,t thỏa mãn $1=s\cdot 3+t\cdot 7$
 - Thuật toán Euclid tìm ước chung lớn nhất của 3 và 7 bằng cách sử dụng phương trình

$$7 = 2 \cdot 3 + 1$$

Từ phương trình trên, ta có

$$1 = -2 \cdot 3 + 1 \cdot 7$$

nghĩa là s=-2 và t=1

(2) Theo Định lý 15, s=-2 là một nghịch đảo của 3 theo môđun 7. Chú ý rằng mọi số nguyên t thỏa mãn $t\equiv -2\pmod 7$ (ví dụ như $5,-9,12,\ldots$) đều là nghịch đảo của 3 theo môđun 7

Lý thuyết số cơ bản Hoàng Anh Đức

Siới thiậu

Tính chia hết và phép toán môđun Đinh nghĩa và tính chất cơ

bán

Đồng dư theo môđun m

Biểu diễn số nguyên

Cộng và nhân các số nhị phân Biểu diễn các số nguyên

Biểu diễn các số nguyên âm theo hệ nhị phân Tính lũy thừa môđun

Số nguyên tố và Ước chung lớn nhất Số nguyên tố

Phương trình đồng dư

Giới thiệu Định lý phần dư Trung Hoa

Định lý Fermat nhỏ

RSA

110101011

Ví du 13

Giải phương trình $3x \equiv 4 \pmod{7}$

■ Từ ví dụ trước, ta biết rằng -2 là một nghịch đảo của 3 theo môđun 7. Nhân cả hai vế của phương trình với -2, ta có

$$-2 \cdot 3x \equiv -2 \cdot 4 \pmod{7}$$

- Do $-6 \equiv 1 \pmod{7}$ và $-8 \equiv 6 \pmod{7}$, nếu x là nghiệm của phương trình thì $x \equiv 6 \pmod{7}$
- Thật vậy, với mọi x thỏa mãn $x \equiv 6 \pmod{7}$

$$3x \equiv 3 \cdot 6 = 18 \equiv 4 \pmod{7}$$

Lý thuyết số cơ bản Hoàng Anh Đức

Giới thiêu

Tính chia hết và phép toán môđun

Định nghĩa và tính chất cơ bản

Đồng dư theo môđun m

Biểu diễn số nguyên

Cộng và nhân các số nhị phân

Biểu diễn các số nguyên âm theo hệ nhị phân Tính lũy thừa môdun

Số nguyên tố và Ước chung lớn nhất Số nguyên tố

Ước chung lớn nhất

Phương trình đồng dư 57) Giới thiệu

Định lý phần dư Trung Hoa Định lý Fermat nhỏ

Thuật toán m RSA

Bài tập 20

Tìm nghịch đảo của a theo môđun m với

(1)
$$a = 4, m = 9$$

(2)
$$a = 19, m = 141$$

(3)
$$a = 55, m = 89$$

(4)
$$a = 89, m = 232$$

Bài tập 21

Giải các phương trình đồng dư

- $(1) \ 4x \equiv 5 \pmod{9}$
- (2) $19x \equiv 4 \pmod{141}$
- (3) $55x \equiv 34 \pmod{89}$
- **(4)** $89x \equiv 2 \pmod{232}$

Lý thuyết số cơ bản Hoàng Anh Đức

Siới thiêu

Tính chia hết và phér toán môđun

Định nghĩa và tính chất cơ bản

Đồng dư theo môđun m

Biểu diễn số nguyên

Cộng và nhân các số nhị phân

Biểu diễn các số nguyên âm theo hệ nhị phân Tính lũy thừa môđun

Số nguyên tố và Ước chung lớn nhất Số nguyên tố

Ước chung lớn nhất

Phương trình đồng dư
58) Giới thiệu

Định lý phần dư Trung Hoa Định lý Fermat nhỏ

RSA

Bài tấp 22

Cho các số nguyên dương m_1,m_2,\ldots,m_n thỏa mãn $m_i\geq 2$ và $\gcd(m_i,m_j)=1$ với mọi $i\neq j$ và $1\leq i,j\leq n$. Chứng minh rằng nếu $a\equiv b\pmod{m_i}$ với mọi $1\leq i\leq n$, thì $a\equiv b\pmod{m}$ với $m=m_1m_2\ldots m_n$. (**Gợi ý:** Chứng minh với n=2)

Lý thuyết số cơ bản Hoàng Anh Đức

Giới thiêu

Tính chia hết và phép toán môđun

Định nghĩa và tính chất cơ bản

Đồng dư theo môđun m

Biểu diễn số ng

Biểu diễn theo hệ b-phân Cộng và nhân các số nhị phân Biểu diễn các số nguyên

Biểu diện các số nguyên âm theo hệ nhị phân Tính lũy thừa môđun

Số nguyên tố và Ước chung lớn nhất Số nguyên tố

Ước chung lớn nhất

Phương trình đồng dư 59) Giới thiệu

Định lý phần dư Trung Hoa Định lý Fermat nhỏ

Thuật toán m RSA

References

Định lý phần dư Trung Hoa

Định lý phần dư Trung Hoa (The Chinese Remainder Theorem) nói rằng nếu các môđun của một hệ các phương trình đồng dư tuyến tính là đôi một nguyên tố cùng nhau thì hệ phương trình có nghiệm duy nhất theo môđun tích của các môđun của từng phương trình

Định lý 16: Định lý phần dư Trung Hoa

Cho các số nguyên dương m_1,m_2,\ldots,m_n thỏa mãn $m_i\geq 2$ và $\gcd(m_i,m_j)=1$ với mọi $i\neq j$ và $1\leq i,j\leq n$. Cho các số nguyên bất kỳ a_1,a_2,\ldots,a_n . Hệ phương trình

$$x \equiv a_1 \pmod{m_1}$$

$$x \equiv a_2 \pmod{m_2}$$

$$\vdots$$

$$x \equiv a_n \pmod{m_n}$$

có nghiệm duy nhất theo môđun $m=m_1m_2\dots m_n$. (Nghĩa là, tồn tại một nghiệm x với $0\leq x< m$, và tất cả các nghiệm khác đồng dư với x theo môđun m)

Lý thuyết số cơ bản Hoàng Anh Đức

Giới thiệu

Tính chia hết và phép toán môđun Đinh nghĩa và tính chất cơ

bán

Đồng dư theo môđun \boldsymbol{m}

Biểu diễn số nguyên

Cộng và nhân các số nhị phân

Biểu diễn các số nguyên âm theo hệ nhị phân Tính lũy thừa môđun

Số nguyên tố và Ước chung lớn nhất Số nguyên tố

Phương trình đồng du

rhương trình đóng dụ Giới thiệu

Dịnh lý phần dư Trung Hoa Định lý Fermat nhỏ

Thuật toán mã hóa RSA

Định lý phần dư Trung Hoa

Chứng minh (tồn tại).

- lacksquare Đặt $M_i=m/m_i$ ($1\leq i\leq n$). Do đó $\gcd(M_i,m_i)=1$
- Theo Định lý 15, tồn tại số nguyên y_i sao cho $y_iM_i \equiv 1 \pmod{m_i}$
- Đặt $x=\sum_{i=1}^n a_iy_iM_i=a_1y_1M_1+a_2y_2M_2+\cdots+a_ny_nM_n$
- Do $m_i \mid M_k$ với mọi $k \neq i$, $M_k \equiv 0 \pmod{m_i}$, do đó $x \equiv a_i y_i M_i \equiv a_i \pmod{m_i}$ với mọi i. Do đó x là nghiệm của hệ phương trình đã cho

Bài tập 23

Hoàn thành Chứng minh của Định lý phần dư Trung Hoa bằng cách chỉ ra nghiệm x của hệ phương trình đã cho là duy nhất theo môđun $m=m_1m_2\dots m_n$ (**Gợi ý:** Giả sử x và y là hai nghiệm phân biệt của hệ phương trình đã cho. Chứng minh rằng $m_i \mid (x-y)$ với mọi $1 \leq i \leq n$. Sử dụng Bài tập 22 để kết luận rằng $m \mid (x-y)$)

Lý thuyết số cơ bản Hoàng Anh Đức

aiới thiêu

Tính chia hết và phép toán môđun Đình nghĩa và tính chất cơ

Đồng dự theo môđun m

Biểu diễn số nguyên
Biểu diễn theo hệ b-phân
Cộng và nhân các số nhị
phân
Biểu diễn các số nguyên
âm theo hệ nhị phân

Tính lũv thừa môđun

Số nguyên tố và Ước chung lớn nhất Số nguyên tố

Phương trình đồng dư Giới thiêu

Dịnh lý phần dư Trung Hoa Định lý Fermat nhỏ

Thuật toán mã hóa

Định lý phần dư Trung Hoa

Ví dụ 14 (Sử dụng Chứng minh của Định lý Phần dư Trung Hoa)

Giải hệ phương trình

$$x \equiv 2 \pmod{3}$$

$$x \equiv 3 \pmod{5}$$

$$x \equiv 5 \pmod 7$$

Chú ý: 3,5,7 là dãy các số nguyên ≥ 2 và đôi một nguyên tố cùng nhau

- $m = m_1 m_2 m_3 = 3 \cdot 5 \cdot 7 = 105$
- $M_2=m/m_2=21$ và $y_2=1$ là một nghịch đảo của M_2 theo môđun $m_2=5$
- $M_3=m/m_3=15$ và $y_3=1$ là một nghịch đảo của M_3 theo môđun $m_2=7$
- $x = \sum_{i=1}^{3} a_i y_i M_i = 2 \cdot 2 \cdot 35 + 3 \cdot 1 \cdot 21 + 5 \cdot 1 \cdot 15 = 278 \equiv 68 \pmod{105}$

Lý thuyết số cơ bản Hoàng Anh Đức

Giới thiệu

Tính chia hết và phép toán môđun

Định nghĩa và tính chất cơ bản

Đồng dư theo môđun m

Biểu diễn theo hệ *b*-phân Cộng và nhân các số nhị

phân Biểu diễn các số nguyên âm theo hệ nhị phân Tính lūv thừa môđun

Số nguyên tố và Ước chung lớn nhất

Số nguyên tố Ước chung lớn n

Phương trình đồng dư Giới thiêu

Giới thiệu Định lý phần dự Trung Hoa

Định lý phân dư Trung Hoa Định lý Fermat nhỏ

Thuật toán mã hóa RSA

Reference

Định lý phần dư Trung Hoa

$$x \equiv 2 \pmod{3} \tag{1}$$

$$x \equiv 3 \pmod{5} \tag{2}$$

$$x \equiv 5 \pmod{7} \tag{3}$$

- Từ (1), tồn tại $t \in \mathbb{Z}$ sao cho x = 3t + 2
- Thay vào (2), ta có $3t + 2 \equiv 3 \pmod{5}$, suy ra $3t \equiv 1 \pmod{5}$, do đó $t \equiv 2 \pmod{5}$. Do đó, tồn tại $u \in \mathbb{Z}$ sao cho t = 5u + 2. Suy ra, x = 3t + 2 = 3(5u + 2) + 2 = 15u + 8
- Thay vào (3), ta có $15u+8\equiv 5\pmod{7}$, suy ra $15u\equiv -3\pmod{7}$, do đó $u\equiv 4\pmod{7}$. Do đó, tồn tại $v\in\mathbb{Z}$ sao cho u=7v+4
- Suy ra x = 15u + 8 = 15(7v + 4) + 8 = 105v + 68. Do đó, $x \equiv 68 \pmod{105}$

Lý thuyết số cơ bản Hoàng Anh Đức

Giới thiêu

Tính chia hết và phép toán môđun

Định nghĩa và tính chất cơ bản

Đồng dư theo môđun \boldsymbol{m}

Biểu diễn số nguyên Biểu diễn theo hệ b-phân Công và nhân các số nhi

phân Biểu diễn các số nguyên âm theo hệ nhị phân Tính lũv thừa môđun

Số nguyên tố và Ước chung lớn nhất Số nguyên tố

Phương trình đồng dư Giới thiêu

Dinh lý phần dư Trung Hoa Đinh lý Fermat nhỏ

Thuật toán mã hóa RSA

1101010110

Định lý phần dư Trung Hoa

Bài tâp 24

Giải hệ phương trình sau bằng các phương pháp đã đề cập

$$x \equiv 1 \pmod{5} \tag{4}$$

$$x \equiv 2 \pmod{6} \tag{5}$$

$$x \equiv 3 \pmod{7} \tag{6}$$

Bài tập 25

Giải hệ phương trình sau bằng các phương pháp đã đề cập

$x \equiv 2 \pmod{3}$	(7)
-----------------------	-----

$$x \equiv 1 \pmod{4} \tag{8}$$

$$x \equiv 3 \pmod{5} \tag{9}$$

Hoàng Anh Đức

Lý thuyết số cơ bản

aidi thiệu

Tính chia hết và phép toán môđun

Định nghĩa và tính chất cơ bản

Đồng dư theo môđun m

Biểu diễn theo hệ b-phân Cộng và nhân các số nhị nhân

Biểu diễn các số nguyên âm theo hệ nhị phân Tính lũy thừa môđun

Số nguyên tố và Ước chung lớn nhất Số nguyên tố

Phương trình đồng dư

Giới thiệu 4) Định lý phần dự Trung Họa

Dịnh lý phần dư Trung Hoa Định lý Fermat nhỏ

Thuật toán mã hóa RSA

References

Định lý phần dư Trung Hoa

Bài tâp 26

Giải hệ phương trình sau bằng các phương pháp đã đề cập

$x \equiv 1$ ($\pmod{2}$) ((10))

$$x \equiv 2 \pmod{3} \tag{11}$$

$$x \equiv 3 \pmod{5} \tag{12}$$

$$x \equiv 4 \pmod{11} \tag{13}$$

Bài tập 27

Những số nguyên nào chia 2 dư 1 và chia 3 cũng dư 1?

Lý thuyết số cơ bản Hoàng Anh Đức

Siới thiêu

Tính chia hết và phép toán mộđun

Định nghĩa và tính chất cơ bản

Đồng dư theo môđun m

Biểu diễn theo hệ b-phân Công và nhân các số nhi

phân Biểu diễn các số nguyên âm theo hệ nhị phân

Tính lũy thừa môđun Số nguyên tố và Ước

Jớc chung lớn nhất hương trình đồng dư

Giới thiệu

Dịnh lý phần dư Trung Hoa Đinh lý Fermat nhỏ

Thuật toán mã hó: RSA

References

Số nguyên tố

Đinh lý phần dư Trung Hoa

Bài tập 28 (⋆)

Giải hệ phương trình

$$x \equiv 5 \pmod{6} \tag{14}$$

$$x \equiv 3 \pmod{10} \tag{15}$$

$$x \equiv 8 \pmod{15}$$

Chú ý: 6, 10, và 15 không đôi một nguyên tố cùng nhau

Bài tập 29 (⋆)

Giải hệ phương trình

$$y \equiv 5x - 3 \pmod{7}$$

$$y \equiv 3x + 2 \pmod{7}$$

(16)

(19)

Lý thuyết số cơ bản Hoàng Anh Đức

iới thiậu

ính chia hết và phép

Định nghĩa và tính chất cơ bản

Đồng dư theo môđun \boldsymbol{m}

Biểu diễn theo hệ b-phân Cộng và nhân các số nhị phân Biểu diễn các số nguyên âm theo hệ nhị phân

Tính lũy thừa môđun Số nguyên tố và Ước chung lớn nhất

Ước chung lớn nhất

Số nguyên tố

Phương trình đồng dư Giới thiệu

Giới thiệu

Dịnh lý phần dư Trung Hoa
Định lý Fermat nhỏ

huật toán mã hóa

eferences

Định lý phần dư Trung Hoa

Lý thuyết số cơ bản Hoàng Anh Đức

Đinh nghĩa và tính chất cơ

Đồng dư theo môđun m

Biểu diễn theo hệ b-phân

Công và nhân các số nhi

Biểu diễn các số nguyên âm theo hệ nhi phân

Tính lũv thừa môđun

Số nguyên tố

Giới thiêu

Định lý phần dự Trung Hoa Đinh lý Fermat nhỏ

Định lý phần dư Trung Hoa cho ta một cách thực hiện các tính toán số học với các số nguyên lớn

- Theo Đinh lý, môt số nguyên a với $0 \le a < m = m_1 m_2 \dots m_n$ trong đó $\gcd(m_i, m_j) = 1$ với mọi $i \neq j, 1 \leq i, j \leq n$, có thể được biểu diễn thông qua bộ $(a \bmod m_1, a \bmod m_2, \ldots, a \bmod m_n)$
- Để thực hiện tính toán với các số nguyên lớn được biểu diễn theo cách này
 - Thực hiện tính toán riêng biệt cho từng bộ
 - Mỗi tính toán có thể được thực hiện trong cùng một máy tính hoặc thực hiện song song
 - Xuất kết quả đầu ra bằng cách giải hệ phương trình đồng dư
 - Có thể thực hiện khi m luôn lớn hơn kết quả đầu ra mong muốn

Định lý Fermat nhỏ

Định lý 17: Định lý Fermat nhỏ

Nếu p là một số nguyên tố và a là một số nguyên không chia hết cho p, thì $a^{p-1} \equiv 1 \pmod p$. Thêm vào đó, với mọi số nguyên a, ta có $a^p \equiv a \pmod p$

Bài tập 30 (Chứng minh Định lý Fermat nhỏ)

Nhắc lại: Với các số nguyên a,b,c và số nguyên dương m, nếu $ac \equiv bc \pmod m$ và $\gcd(c,m) = 1$ thì $a \equiv b \pmod m$.

- (a) Giả sử a không chia hết cho p. Chứng minh rằng không có hai số nguyên nào trong số các số $1 \cdot a, 2 \cdot a, \ldots, (p-1) \cdot a$ là đồng dư theo môđun p
- (b) Từ phần (a), kết luận rằng tích các số $1,2,\ldots,p-1$ đồng dư với tích các số $a,2a,\ldots,(p-1)a$ theo môđun p. Sử dụng điều này để chứng minh rằng $(p-1)!\equiv a^{p-1}(p-1)!\pmod p$
- (c) Chỉ ra từ phần (b) rằng $a^{p-1}\equiv 1\pmod p$ nếu a không chia hết cho p. (**Gợi ý:** Xem lại phần chứng minh Định lý cơ bản của số học. Chứng minh $p \nmid (p-1)!$ và áp dụng mệnh đề trên)

Lý thuyết số cơ bản Hoàng Anh Đức

Giới thiêu

Tính chia hết và phép toán môđun

Định nghĩa và tính chất cơ bản

Đồng dư theo môđun \boldsymbol{m}

Biểu diễn số nguyên Biểu diễn theo hệ b-phân

Cộng và nhân các số nhị phân Biểu diễn các số nguyên âm theo hệ nhị phân

Tính lũy thừa môđun Số nguyên tố và Ướ

chung lớn nhất Số nguyên tố Ước chung lớn nhất

Phương trình đồng dư Giới thiêu

Định lý phần dư Trung Hoa Định lý Fermat nhỏ

Thuật toán mã hóa RSA

Định lý Fermat nhỏ

Ví dụ 16 (Tìm số dư của phép chia cho số nguyên tố)

Tìm $7^{222} \mod 11$

- Theo Định lý Fermat nhỏ, ta có $7^{10} \equiv 1 \pmod{11}$
- Do đó, $(7^{10})^k \equiv 1 \pmod{11}$ với mọi $k \in \mathbb{Z}$
- \blacksquare Mặt khác, $7^{222} = 7^{10 \cdot 22 + 2} = (7^{10})^{22} \cdot 7^2 \equiv 49 \equiv 5 \pmod{11}$

Bài tập 31

Sử dụng Định lý Fermat nhỏ để tính

- (a) $7^{121} \mod 13$
- (b) 23¹⁰⁰² mod 41
- (c) nghịch đảo của 5^{39} theo môđun 41

Lý thuyết số cơ bản Hoàng Anh Đức

aiới thiêu

Tính chia hết và phép toán môđun

Định nghĩa và tính chất cơ bản

Đồng dư theo môđun $\,m\,$

Biểu diễn số nguyên

Cộng và nhân các số nhị phân Biểu diễn các số nguyên âm theo hệ nhị phân

am theo ne nni phan Tính lũy thừa môđun

chung lớn nhất Số nguyên tố

Phương trình đồng dư Giới thiêu

Định lý phần dư Trung Hoa Đình lý Fermat nhỏ

Thuật toán mã hóa RSA

Định lý Fermat nhỏ

Lý thuyết số cơ bản Hoàng Anh Đức

Giới thiêu

Tính chia hết và phép toán môđun

Định nghĩa và tính chất cơ bản

Đồng dư theo môđun m

Biểu diễn số ngư

Biểu diễn theo hệ *b*-phân Cộng và nhân các số nhị phân

Biểu diễn các số nguyên âm theo hệ nhị phân

Tính lũy thừa môđun Số nguyên tố và Ước

Số nguyên tố Ước chung lớn nhất

Phương trình đồng dự

Giới thiệu Định lý phần dư Trung Hoa

Dinh lý Fermat nhỏ

Thuật toán mã hó

RSA D-f-----

Bài tấp 32

- (a) Sử dụng Định lý Fermat nhỏ để tính $5^{2003} \mod 7$, $5^{2003} \mod 11$, và $5^{2003} \mod 13$
- (b) Sử dụng kết quả từ phần (a) và Định lý phần dư Trung Hoa để tính $5^{2003} \mod 1001$ (Chú ý rằng $1001 = 7 \cdot 11 \cdot 13$)

Bài tập 33

Sử dụng sự trợ giúp từ Định lý Fermat nhỏ, hãy chứng minh rằng 42 là ước của n^7-n

Mật mã khóa công khai

- Trong mật mã khóa bí mật (private key cryptography), một khóa bí mật được sử dụng cả trong việc mã hóa lẫn giải mã các thông điệp
 - Một vấn đề đặt ra là làm sao để chia sẻ khóa bí mật một cách an toàn
- Trong mật mã khóa công khai (public key cryptography), hai khóa được sử dụng: một để mã hóa và một để giải mã
 - Thông tin gửi đến có thể được mã hóa bởi bất kỳ ai có khóa công khai, nhưng chỉ có thể được giải mã bởi người sở hữu khóa bí mật
 - Người sở hữu khóa bí mật có thể mã hóa thông tin với khóa bí mật của mình, và bất kỳ ai cũng có thể giải mã thông tin này bằng khóa công khai, và biết rằng chỉ có duy nhất người sở hữu khóa bí mật có thể mã hóa thông tin đó. (Đây là cơ sở của chữ ký điện tử)
- Hệ mã khóa công khai được biết đến nhiều nhất là RSA

Lý thuyết số cơ bản Hoàng Anh Đức

Giới thiêu

Tính chia hết và phép toán môđun

Định nghĩa và tính chất cơ bản

Đồng dư theo môđun \boldsymbol{m}

Biểu diễn số nguyên Biểu diễn theo hệ *b*-phân

Cộng và nhân các số nhị phân Biểu diễn các số nguyên

Biểu diễn các số nguyêr âm theo hệ nhị phân Tính lũy thừa môđun

Số nguyên tố và Ước chung lớn nhất Số nguyên tố

Phương trình đồng dư Giới thiêu

Định lý phần dư Trung Hoa Định lý Fermat nhỏ

71) Thuật toán mã hóa RSA

RSA - Rivest-Shamir-Adleman

- \blacksquare Chọn hai số nguyên tố lớn phân biệt p,q
- \blacksquare Đặt n=pq và k=(p-1)(q-1)
- Chọn số nguyên e thỏa mãn 1 < e < k và $\gcd(e, k) = 1$
- Tính nghịch đảo d của e theo môđun k, nghĩa là $de \equiv 1 \pmod{k}$
- lacktriangle Khóa công khai: (n,e)
- lacktriangle Khóa bí mật: (n,d)
- Mã hóa:

 - Thông điệp mã hóa c được tính bằng $c=m^e \mod n$ (Việc này có thể được thực hiện một cách hiệu quả. Xem bài giảng trước)
- Giải mã:
 - $\blacksquare \mathsf{Tinh} \ m = c^d \bmod n$
 - lacktriangle Chuyển m từ số nguyên sang thông điệp M ban đầu

Lý thuyết số cơ bản Hoàng Anh Đức

àiới thiệu

Tính chia hết và phép toán môđun

Định nghĩa và tính chất cơ bản

Đồng dư theo môđun m

ểu diễn số nguyê

Biểu diễn theo hệ b-phân Công và nhân các số nhi

phân Biểu diễn các số nguyên âm theo hệ nhị phân Tính lũv thừa môđun

Số nguyên tố và Ước chung lớn nhất Số nguyên tố

Ước chung lớn nhất

Phương trình đồng dư Giới thiệu

Định lý phần dư Trung Hoa Định lý Fermat nhỏ

Thuật toán mã hóa RSA

Reference

RSA - Rivest-Shamir-Adleman

Ví dụ 17

- $n = pq = 43 \cdot 59 = 2537, k = 42 \cdot 58 = 2436$
- Chọn e = 13: 1 < e < k và gcd(13, 2436) = 1
- $\blacksquare d = 937$ là nghịch đảo của 13 theo môđun 2436
- Khóa công khai: (2537, 13)
- Khóa bí mật: (2537, 937)

Mã hóa và Giải mã

- Chuyển thông điệp $M={\sf STOP}$ gồm các chữ cái thành số nguyên bằng cách gán mỗi chữ cái bằng thứ tự trong bảng chữ cái tiếng Anh trừ đi 1: ${\sf ST} \Rightarrow 1819$ và ${\sf OP} \Rightarrow 1415$
- $1819^{13} \mod 2537 = 2081$ và $1415^{13} \mod 2537 = 2182$
- Thông điệp mã hóa là 2081 2182
- Ví dụ nếu nhận được thông điệp 0981 0461
- $0981^{937} \mod 2537 = 0704$ và $0461^{937} \mod 2537 = 1115$
- Thông điệp giải mã là HELP

Lý thuyết số cơ bản Hoàng Anh Đức

Giới thiêu

Tính chia hết và phép toán môđun Đinh nghĩa và tính chất cơ

bản

Đồng dư theo môđun $\,m\,$

Biểu diễn số ngư

Biểu diễn theo hệ b-phân Cộng và nhân các số nhị phân

Biểu diễn các số nguyên âm theo hệ nhị phân Tính lũy thừa môđun

Tính lũy thừa môđun Số nguyên tố và Ướ

Số nguyên tố Ước chung lớn nhấ

Phương trình đồng dư Giới thiệu

Định lý phần dư Trung Hoa Định lý Fermat nhỏ Thuật toán mã hóa

RSA

RSA - Rivest-Shamir-Adleman

Tính đúng đắn của quá trình giải mã.

Ta chứng minh nếu $c = m^e \mod n$ thì $m = c^d \mod n$.

- lacksquare Ta có $c^d=(m^e)^d\equiv m^{ed}\pmod n$
- Theo cách xây dựng, $ed\equiv 1\pmod k$ với k=(p-1)(q-1). Do đó tồn tại số nguyên h thỏa mãn ed-1=h(p-1)(q-1)
- Ta xét $m^{ed} \bmod p$. Nếu $p \nmid m$ thì theo Định lý Fermat nhỏ, ta có

$$m^{ed} = m^{h(p-1)(q-1)}m = (m^{p-1})^{h(q-1)}m$$

 $\equiv 1^{h(q-1)}m \equiv m \pmod{p}$

Nếu $p\mid m$, ta có $m^{ed}\equiv 0\equiv m\pmod p$. Tóm lại, $m^{ed}\equiv m\pmod p$. Tương tự, ta có $m^{ed}\equiv m\pmod q$

- Do $\gcd(p,q)=1$, sử dụng Định lý phần dư Trung Hoa, ta có $m^{ed}\equiv m\pmod{pq}$
 - Do $\gcd(p,q)=1$, theo Định lý Bézout, tồn tại $s,t\in\mathbb{Z}$ thỏa mãn sp+tq=1. Đặt $x=m\cdot sp+m\cdot tq$ thì $x\bmod p=(m\cdot sp+m\cdot (1-sp))\bmod p=m\bmod p$. Suy ra $x\equiv m\pmod p$. Tương tự, $x\equiv m\pmod q$
 - Theo Định lý phần dư Trung Hoa, $x\equiv m^{ed}\pmod{pq}$, hay $m^{ed}\equiv m\pmod{pq}\equiv m\pmod{n}$

Lý thuyết số cơ bản Hoàng Anh Đức

Giới thiệu

Tính chia hết và phép toán môđun

Định nghĩa và tính chất cơ bản

Đồng dư theo môđun \boldsymbol{m}

Biểu diễn số ngư

Biểu diễn theo hệ b-phân Cộng và nhân các số nhị phân

Biểu diễn các số nguyên âm theo hệ nhị phân Tính lũy thừa môđun

Số nguyên tố và Ước chung lớn nhất

Số nguyên tố Ước chung lớn

Phương trình đồng dư Giới thiệu

Định lý phần dư Trung Hoa Định lý Fermat nhỏ

)Thuật toán mã hóa RSA

Tài liêu tham khảo

Lý thuyết số cơ bản Hoàng Anh Đức

Giới thiệu

Tính chia hết và phép toán môđun Đinh nghĩa và tính chất cơ

Đồng dự theo môđun m

Biểu diễn số nguyên

Cộng và nhân các số nhị phân Biểu diễn các số nguyên

Biểu diễn các số nguyên âm theo hệ nhị phân Tính lũv thừa môđun

Số nguyên tố và Ước chung lớn nhất

Số nguyên tố Ước chung lớn nhất

Phương trình đồng Giới thiêu

Định lý phần dư Trung Hoa Định lý Fermat nhỏ

Thuật toán mã hóa

75 References

Agrawal, Manindra, Neeraj Kayal, and Nitin Saxena (2004). "PRIMES is in P". In: *Annals of Mathematics* 160.2, pp. 781–793. DOI:

10.4007/annals.2004.160.781.