DM9

à refaire avant le prochain DS

Exercice 1. Soit A la matrice

$$A = \left(\begin{array}{ccc} 0 & -1 & 1\\ 4 & 1 & -2\\ 2 & -2 & 1 \end{array}\right)$$

- 1. Résoudre le système $AX=\lambda X$ d'inconnue $X=\begin{pmatrix}x\\y\\z\end{pmatrix}$ où λ est un paramètre réel.
- 2. Soit $e_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$, $e_1 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$, et $e_1 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$. Calculer Ae_1, Ae_2 et Ae_3 .
- 3. Montrer par récurrence que $A^n e_1 =$.
- 4. Par analogie avec la question précédente, donner la valeur de $A^n e_2$ et $A^n e_3$.
- 5. Soit $P = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 2 & 2 & 1 \end{pmatrix}$

Montrer que P est inversible et calculer son inverse.

- 6. Soit $D = P^{-1}AP$. Calculerr D.
- 7. Montrer par récurrence que $D^n = P^{-1}A^nP$
- 8. En déduire la valeur de A^n .
- 9. Soit $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ et $(z_n)_{n\in\mathbb{N}}$ les suites définies par : $x_0=1,y_0=1$ et $z_0=1$ et pour tout $n\in\mathbb{N}$:

$$\begin{cases} x_{n+1} = -y_n + z_n \\ y_{n+1} = 4x_n + y_n - 2z_n \\ z_{n+1} = 2x_n - 2x_n + z_n \end{cases}$$

Soit
$$X_n = \begin{pmatrix} x_n \\ y_n \\ z_n \end{pmatrix}$$

Montrer que $X_{n+1} = AX_n$.

10. Montrer par récurrence que pour tout $n \in \mathbb{N}$,

$$X_n = A^n X_0$$

11. En déduire le terme général de $(x_n)_{n\in\mathbb{N}}$ en fonction de n.

Correction 1.

1.
$$AX = \lambda X \iff \begin{cases} -y + z = \lambda x \\ 4x + y - 2z = \lambda y \\ 2x - 2y + z = \lambda z \end{cases} \iff \begin{cases} -\lambda x - y + z = 0 \\ 4x + (1 - \lambda)y - 2z = 0 \\ 2x - 2y + (1 - \lambda)z = 0 \end{cases}$$
Experite an adole length is greating (A pring bourse up do fourtes do calcula) on obtains to

Ensuite on échelonne le système (Après beaucoup de fautes de calculs) on obtient :

$$\iff \begin{cases} 2x & -2y & +(1-\lambda)z = 0\\ 0 & +(5-\lambda)y & (-4+2\lambda)z = 0\\ 0 & (-\lambda-1)y & +\frac{1}{2}(2-\lambda-\lambda^2)z = 0 \end{cases}$$

$$\iff \begin{cases} 2x & -2y & +(1-\lambda)z = 0\\ 0 & +(5-\lambda)y & 2(\lambda-2)z = 0\\ 0 & -(\lambda+1)y & -\frac{1}{2}(\lambda+1)(\lambda-2)z = 0 \end{cases}$$

$$\iff \begin{cases} 2x & +(1-\lambda)z & -2y = 0\\ 0 & +2(\lambda-2)z & +(5-\lambda)y = 0\\ 0 & -\frac{1}{2}(\lambda+1)(\lambda-2)z & -(\lambda+1)y = 0 \end{cases}$$

et enfin $L_3 \leftarrow L_3 + \frac{1}{4}(\lambda + 1)L_2$ donne :

$$\iff \begin{cases} 2x & +(1-\lambda)z & -2y = 0\\ 0 & +2(\lambda-2)z & +(5-\lambda)y = 0\\ 0 & 0 & \frac{1}{4}(-\lambda^2+1)y = 0 \end{cases}$$

$$\iff \begin{cases} 2x & +(1-\lambda)z & -2y = 0\\ 0 & +2(\lambda-2)z & +(5-\lambda)y = 0\\ 0 & 0 & (-\lambda+1)(\lambda+1)y = 0 \end{cases}$$

Donc si $\lambda - 2 \neq 0$ et $(-\lambda + 1)(\lambda + 1) \neq 0$, le système est de rang 3. Il admet une unique solution à savoir $S = \{(0,0,0)\}$

Si $\lambda = 1$ Le système équivaut à

$$\begin{cases} 2x & -2y = 0 \\ 0 & -2z & 4y = 0 \\ 0 & 0 & 0 = 0 \end{cases}$$

Il est échelonné de rang 2. Les solutions sont de la forme :

$$\mathcal{S} = \{ (y, y, 2y) \, y \in \mathbb{R} \}$$

Si $\lambda=2$ Le système équivaut à

$$\begin{cases} 2x & -z & -2y = 0 \\ 0 & 3y = 0 \\ 0 & 0 & -3y = 0 \end{cases} \iff \begin{cases} 2x & -z & -2y = 0 \\ 0 & 3y = 0 \\ 0 & 0 & 0 = 0 \end{cases}$$

Il est échelonné de rang 2. Les solutions sont de la forme :

$$\mathcal{S} = \{(2x, 0, x) | x \in \mathbb{R}\}\$$

Si $\lambda = -1$ Le système équivaut à

$$\begin{cases} 2x & +2z & -2y = 0 \\ 0 & -6z & 6y = 0 \\ 0 & 0 & 0 = 0 \end{cases} \iff \begin{cases} 2x & +2z & -2y = 0 \\ 0 & z & = y \end{cases}$$

Il est échelonné de rang 2. Les solutions sont de la forme :

$$\mathcal{S} = \{(0, y, y) \, y \in \mathbb{R}\}$$

- 2. $Ae_1 = e_1$, $Ae_2 = 2e_2$ et $Ae_3 = -e_3$
- 3. C'est vrai pour n=1. On suppose que le résultat est vrai pour un certain entier $n\in\mathbb{N}$, on a alors $A^{n+1}e_1=AA^ne_1=Ae_1$ par HR. Puis $Ae_1=e_1$ d'après la question précédente. On a alors $A^{n+1}e_1=e_1$. Par récurrence le résultat est vrai pour tout $n\in\mathbb{N}$
- 4. $A^n = 2^n e_2$ et $A^n e_3 = (-1)^n e_3$
- 5. cf ex 8

$$P^{-1} = \left(\begin{array}{ccc} 2 & 1 & -1 \\ -1 & -1 & 1 \\ -2 & 0 & 1 \end{array}\right)$$

6. cf ex 8
$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

- 7. cf ex 6
- 8. $A^n = PD^nP^{-1}$ Or $D^n = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & (-1)^n \end{pmatrix}$ (ca ne marche QUE pour les matrices diagonales)

Donc

$$A^{n} = \begin{pmatrix} 2 - 2^{n} & 1 - 2^{n} & -1 + 2^{n} \\ 2 - 2(-1)^{n} & 1 & -1 + (-1)^{n} \\ 4 - 2^{n+1} - 2(-1)^{n} & 2 - 2^{n+1} & -2 + 2^{n+1} + (-1)^{n} \end{pmatrix}$$

9.
$$X_{n+1} = \begin{pmatrix} x_{n+1} \\ y_{n+1} \\ z_{n+1} \end{pmatrix}$$

et
$$AX_n = A = \begin{pmatrix} 0 & -1 & 1 \\ 4 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix} \begin{pmatrix} x_n \\ y_n \\ z_n \end{pmatrix} = \begin{pmatrix} -y_n + z_n \\ 4x_n + y_n - 2z_n \\ 2x_n - 2y_n + z_n \end{pmatrix}$$

Ce qui est bien le système vérifiée par les suites $(x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}}, (z_n)_{n\in\mathbb{N}}$.

10. C'est vrai pour n=0 ($A^0=\mathrm{Id}$) C'est aussi vrai pour n=1 (calcul) On suppose le résultat vrai pour UN $n\in\mathbb{N}$ On a alors : $X_n=A^nX_0$ et donc $AX_n=A^{n+1}X_0$. Or d'après la question précédente $AX_n=X_{n+1}$. La propriété est donc héréditaire et donc vraie pour tout $n\in\mathbb{N}$.

11. On fait le calcul de A^nX_0 grace au résultat trouvé à la question 8. On obtient
$x_n = 2 - 2^n + 1 - 2^n - 1 + 2^n = 2 - 2^n$