Computer Vision

DATA.ML.300, 5 study credits

Esa Rahtu Unit of Computing Sciences, Tampere University

Model estimation (fitting)

- Least-squares
- Robust fitting
- RANSAC
- Hough transform
- These topics are covered in Szeliski's book briefly, but more thoroughly in Chapter 17 of Forsyth & Ponce:
 - http://courses.cs.washington.edu/courses/cse455/02wi/readings/book-7-revised-a-indx.pdf

Acknowledgement: many slides from Svetlana Lazebnik, Derek Hoiem, Kristen Grauman, David Forsyth, Marc Pollefeys, and others (detailed credits on individual slides)

Relevant reading

- These topics are covered in Szeliski's book briefly, but more thoroughly in the following books:
 - Chapter 17 of Forsyth & Ponce:
 - http://cmuems.com/excap/readings/forsyth-ponce-computer-vision-a-modern-approach.pdf
 - Chapter 4 of Hartley & Zisserman:
 - http://cvrs.whu.edu.cn/downloads/ebooks/Multiple%20View%20Geometry%20in%20Computer%20Vision%20(Second %20Edition).pdf

Fitting

- We've learned how to detect edges, corners, blobs. Now what?
- We would like to form a higher-level, more compact representation of the features in the image by grouping multiple features according to a simple model

Source: S. Lazebnik

Fitting

• Choose a parametric model to represent a set of features

simple model: lines

simple model: circles

complicated model: car

Source: K. Grauman

Fitting: Issues

- Noise in the measured feature locations
- Extraneous data: clutter (outliers), multiple lines
- Missing data: occlusions

Case study: Line detection

Source: S. Lazebnik

Fitting: Overview

- If we know which points belong to the line, how do we find the "optimal" line parameters?
 - Least squares
- What if there are outliers?
 - Robust fitting, RANSAC
- What if there are many lines?
 - Voting methods: RANSAC, Hough transform
- What if we're not even sure it's a line?
 - Model selection (not covered)

Source: S. Lazebnik

Least squares line fitting

- Data: (x1, y1), ..., (xn, yn)
- Line equation: yi = m xi + b
- Find (m, b) to minimize

$$E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$

Least squares line fitting

- Data: (x1, y1), ..., (xn, yn)
- Line equation: yi = m xi + b
- Find (m, b) to minimize

$$E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$

$$E = \|Y - XB\|^2 \quad \text{where} \quad Y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \qquad X = \begin{bmatrix} x_1 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix} \qquad B = \begin{bmatrix} m \\ b \end{bmatrix}$$

$$E = ||Y - XB||^{2} = (Y - XB)^{T} (Y - XB) = Y^{T} Y - 2(XB)^{T} Y + (XB)^{T} (XB)$$

$$\frac{dE}{dR} = 2X^T XB - 2X^T Y = 0$$

$$X^T X B = X^T Y$$

Normal equations: least squares solution to XB=Y

Problem with "vertical" least squares

- Not rotation-invariant
- Fails completely for vertical lines

Total least squares

• Distance between point (xi, yi) and line ax+by=d (a2+b2=1): |axi + byi - d|

$$\left| E = \sum_{i=1}^{n} (ax_i + by_i - d)^2 \right|$$

Total least squares

- Distance between point (xi, yi) and line ax+by=d (a2+b2=1): |axi + byi d|
- Find (a, b, d) to minimize the sum of squared perpendicular distances

$$E = \sum_{i=1}^{n} (ax_i + by_i - d)^2$$

Total least squares

- Distance between point (xi, yi) and line ax+by=d (a2+b2=1): |axi + byi d|
- Find (a, b, d) to minimize the sum of squared perpendicular distances

$$E = \sum_{i=1}^{n} (ax_i + by_i - d)^2$$

$$\frac{\partial E}{\partial d} = \sum_{i=1}^{n} -2(ax_i + by_i - d) = 0 \qquad d = \frac{a}{n} \sum_{i=1}^{n} x_i + \frac{b}{n} \sum_{i=1}^{n} y_i = a\bar{x} + b\bar{y}$$

$$E = \sum_{i=1}^{n} (a(x_i - \bar{x}) + b(y_i - \bar{y}))^2 = \begin{bmatrix} x_1 - \bar{x} & y_1 - \bar{y} \\ \vdots & \vdots \\ x_n - \bar{x} & y_n - \bar{y} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}^2 = (UN)^T (UN)$$

$$\frac{dE}{dN} = 2(U^T U)N = 0$$

Solution to $(U^TU)N = 0$, subject to $||N||^2 = 1$: eigenvector of U^TU associated with the smallest eigenvalue

Least squares: Robustness to noise

• Least squares fit to the red points:

Least squares: Robustness to noise

• Least squares fit with an outlier:

Problem: squared error heavily penalizes outliers

Robust estimators

• General approach: find model parameters θ that minimize

$$\sum_{i} \rho(r_{i}(x_{i},\theta);\sigma)$$

ri (xi, θ) – residual of ith point w.r.t. model parameters θ ρ – robust function with scale parameter σ

The robust function ρ behaves like squared distance for small values of the residual u but saturates for larger values of u

Choosing the scale: Just right

The effect of the outlier is minimized

Choosing the scale: Too small

The error value is almost the same for every point and the fit is very poor

Source: S. Lazebnik

Choosing the scale: Too large

Behaves much the same as least squares

Robust estimation: Details

- Robust fitting is a nonlinear optimization problem that must be solved iteratively
- Least squares solution can be used for initialization
- Scale of robust function should be chosen adaptively based on median residual

RANSAC

- Robust fitting can deal with a few outliers what if we have very many?
- Random sample consensus (RANSAC):
 Very general framework for model fitting in the presence of outliers
- Outline
 - Choose a small subset of points uniformly at random
 - Fit a model to that subset
 - Find all remaining points that are "close" to the model and reject the rest as outliers
 - Do this many times and choose the best model

M. A. Fischler, R. C. Bolles. <u>Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography</u>. Comm. of the ACM, Vol 24, pp 381-395, 1981.

Source: S. Lazebnik

Least-squares fit

 Randomly select minimal subset of points

- Randomly select minimal subset of points
- 2. Hypothesize a model

- Randomly select minimal subset of points
- 2. Hypothesize a model
- 3. Compute error function

- Randomly select minimal subset of points
- 2. Hypothesize a model
- 3. Compute error function
- 4. Select points consistent with model

- Randomly select minimal subset of points
- 2. Hypothesize a model
- 3. Compute error function
- 4. Select points consistent with model
- 5. Repeat hypothesize-and-verify loop

- Randomly select minimal subset of points
- 2. Hypothesize a model
- 3. Compute error function
- 4. Select points consistent with model
- 5. Repeat hypothesize-andverify loop

Uncontaminated sample

- Randomly select minimal subset of points
- 2. Hypothesize a model
- 3. Compute error function
- 4. Select points consistent with model
- 5. Repeat hypothesize-andverify loop

- Randomly select minimal subset of points
- 2. Hypothesize a model
- 3. Compute error function
- 4. Select points consistent with model
- 5. Repeat hypothesize-and-verify loop

Source: R. Raguram Source: S. Lazebnik

RANSAC for line fitting

- Repeat N times:
- Draw s points uniformly at random
- Fit line to these s points
- Find inliers to this line among the remaining points (i.e., points whose distance from the line is less than t)
- If there are d or more inliers, accept the line and refit using all inliers

- Initial number of points s
 - Typically minimum number needed to fit the model
- Distance threshold t
 - Choose t so probability for inlier is p (e.g. 0.95)
 - Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2
- Number of samples N
 - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

Source: M. Pollefeys

- Initial number of points s
 - Typically minimum number needed to fit the model
- Distance threshold t
 - Choose t so probability for inlier is p (e.g. 0.95)
 - Zero-mean Gaussian noise with std. dev. σ: t²=3.84σ²
- Number of samples N
 - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

$$\left[\left(1-\left(1-e\right)^{s}\right)^{N}=1-p\right]$$

$$N = \log(1-p)/\log(1-(1-e)^{s})$$

	proportion of outliers e						
S	5%	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

Source: M. Pollefeys

- Initial number of points s
 - Typically minimum number needed to fit the model
- Distance threshold t
 - Choose t so probability for inlier is p (e.g. 0.95)
 - Zero-mean Gaussian noise with std. dev. σ : $t^2=3.84\sigma^2$
- Number of samples N
 - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

$$\left[\left(1-\left(1-e\right)^{s}\right)^{N}=1-p\right]$$

$$N = \log(1-p)/\log(1-(1-e)^{s})$$

Source: M. Pollefeys

- Initial number of points s
 - Typically minimum number needed to fit the model
- Distance threshold t
 - Choose t so probability for inlier is p (e.g. 0.95)
 - Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2
- Number of samples N
 - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. p=0.99) (outlier ratio: e)
- Consensus set size d
 - Should match expected inlier ratio

Source: M. Pollefeys

Adaptively determining the number of samples

- Outlier ratio e is often unknown a priori, so pick worst case, e.g. 50%, and adapt if more inliers are found, e.g. 80% would yield e=0.2
- Adaptive procedure:
 - N=∞, sample_count =0
 - While N >sample_count
 - Choose a sample and count the number of inliers
 - If inlier ratio is highest of any found so far, set
 e = 1 (number of inliers)/(total number of points)
 - Recompute N from e:

$$N = \log(1 - p) / \log(1 - (1 - e)^{s})$$

Increment the sample_count by 1

Source: M. Pollefeys

RANSAC pros and cons

Pros

- Simple and general
- Applicable to many different problems
- Often works well in practice

• Cons

- Lots of parameters to tune
- Doesn't work well for low inlier ratios (too many iterations, or can fail completely)
- Can't always get a good initialization of the model based on the minimum number of samples

Fitting: Review

- Least squares
- Robust fitting
- RANSAC

Fitting: Review

- If we know which points belong to the line, how do we find the "optimal" line parameters?
 - Least squares
- What if there are outliers?
 - Robust fitting, RANSAC
- What if there are many lines?
 - Voting methods: RANSAC, Hough transform

Fitting: The Hough transform

Voting schemes

- Let each feature vote for all the models that are compatible with it
- Hopefully the noise features will not vote consistently for any single model
- Missing data doesn't matter as long as there are enough features remaining to agree on a good model

Hough transform

- An early type of voting scheme
- General outline:
 - Discretize parameter space into bins
 - For each feature point in the image, put a vote in every bin in the parameter space that could have generated this point
 - Find bins that have the most votes

P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures,* Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Source: S. Lazebnik

• A line in the image corresponds to a point in Hough space

• What does a point (x0, y0) in the image space map to in the Hough space?

Source: S. Lazebnik

- What does a point (x0, y0) in the image space map to in the Hough space?
 - Answer: the solutions of b = -x0m + y0
 - This is a line in Hough space

• Where is the line that contains both (x0, y0) and (x1, y1)?

Source: S. Lazebnik

- Where is the line that contains both (x0, y0) and (x1, y1)?
 - It is the intersection of the lines b = -x0m + y0 and b = -x1m + y1

Source: S. Lazebnik

- Problems with the (m,b) space:
 - Unbounded parameter domains
 - Vertical lines require infinite m

- Problems with the (m,b) space:
 - Unbounded parameter domains
 - Vertical lines require infinite m
- Alternative: polar representation

Each point (x,y) will add a sinusoid in the (θ,ρ) parameter space

Algorithm outline

- Initialize accumulator H to all zeros
- For each feature point (x,y) in the image For $\theta = 0$ to 180 $\rho = x \cos \theta + y \sin \theta$ $H(\theta, \rho) = H(\theta, \rho) + 1$ end end
- Find the value(s) of (θ, ρ) where H(θ, ρ) is a local maximum
 - The detected line in the image is given by $\rho = x \cos \theta + y \sin \theta$

Basic illustration

Hough transform demo

Other shapes

Square

Several lines

A more complicated image

Effect of noise

Effect of noise

Effect of noise

• Number of votes for a line of 20 points with increasing noise:

Source: S. Lazebnik

Random points

• Uniform noise can lead to spurious peaks in the array

Source: S. Lazebnik

Random points

• As the level of uniform noise increases, the maximum number of votes increases too:

Source: S. Lazebnik

Dealing with noise

- Choose a good grid / discretization
 - Too coarse: large votes obtained when too many different lines correspond to a single bucket
 - Too fine: miss lines because some points that are not exactly collinear cast votes for different buckets
- Increment neighboring bins (smoothing in accumulator array)
- Try to get rid of irrelevant features
 - E.g., take only edge points with significant gradient magnitude

Incorporating image gradients

- Recall: when we detect an edge point, we also know its gradient direction
- But this means that the line is uniquely determined!
- Modified Hough transform:
 For each edge point (x,y)
 θ = gradient orientation at (x,y)
 ρ = x cos θ + y sin θ
 H(θ, ρ) = H(θ, ρ) + 1
 end

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

Hough transform: Pros and cons

Pros

- Can deal with non-locality and occlusion
- Can detect multiple instances of a model
- Some robustness to noise: noise points unlikely to contribute consistently to any single bin

Cons

- Complexity of search time increases exponentially with the number of model parameters
- Non-target shapes can produce spurious peaks in parameter space
- It's hard to pick a good grid size

Source: S. Lazebnik