NP- Completeness

Yulan

9/30/2015

Clique: Does a have a clique of size > {?
Ind. Set: an Ind. Set
Vertex Cong: - a V.C. of size < K?
HAM: a Hamiltonian cycle?
$ILP: A, b: \exists x \in \mathbb{Z}^n \text{ s.t. } Ax \leq b$?
SAT: 7x: F(x) = 1 ?
all in NP
all m / 1 []
short proofs of membership ("articiates")
How hard are these problems?
Are some harder than others?
Which ones are the hardest?
REDUCTION from decision problem A
to decision problem B
is an algorith to solve A using
a procedure to solve B.
a procedure per se

	A B is a polytime reduction
	if the algorithm makes only a
	polynomial nutur of calls to B, lach
	on inputs of size poly (n), and uses
	polynomial additional time. N=1x1
	polynomial additional time. $N = X $ $X \in L_A \longrightarrow Y_1 \in L_B$ $Y_2 \in L_B$ $Y_3 \in L_B$ $Y_4 \in L_B$ $Y_5 \in L_B$ $Y_6 \in L_B$
	\sim .
	yn ELB
	This is a COOK reduction.
	A Karp reduction is a 1-1 map
11	between strings in the languages:
71	B: XELA > YELB
	y is constructed from X in prolytine.
	E.g
	Clique -> I'S.
	J K-digre in G €] K-Ind. set
	(6)
	$\overline{G} = (V, \overline{E})$ $\overline{G} = (V, \overline{E})$

	Clience - Ind. Set
	Ird-Set -> clique.
	V.C. Ind. Set
	1) 0 1 1 2 +
	1/3 is an ind. set.
	(13) G has a V.C. of size EK
	(=) G has an Ird. set of
	size > n-k.
	SAT -> I.L.P.
	CNFSAT: F= (x, V ×2. V ×3) \ (x2 Vx3 vx4) \.
	ANDS Of ORS.
	$X_1 + X_2 + (-X_3 + \cdots \ge 1)$
	$x_2 + x_3 + 1 - x_4 \geqslant 1$
	$0 < x < 1 $ $x \in \mathbb{Z}^n$ $x \in \mathbb{Z}^n$
	A larguage L is NP- complete if
	$\langle 1 \rangle + \langle 1 \rangle P$
	(2) X A ENP 3 polytic reduction A > L.
L	is the "hardest" language in NP.

If LEP => NPEP => P=NP.	
7 NP-Complete language? YES! Loto of them.	
The SAT is NP-Complete [Cook/Levin]	
Pf. Take a language L in NP. We need to decide L given a procedure	ر 1
to decide SAT. LENP. SO FIM M that accepts any XEL in < nk steps for some	
fixed K. I a segreace of $\leq n^{\kappa}$ configurations from a starting configuration to	
gracept if x EL. How can we check this using SAT? Can we write the existence of such	
an accepting path as a poly-sized SAT formula?	

YES. Variables Xi,j,s configurations it step has jth entry = sab/q/c Yis Xi, i, s = 1 for exactly one value of s.

(VXi, i, s, s) enounes at locast one s.

Hors to get exactly one? For 2 variables (X, VXz) \ (X, VXz)
atleast one atleast one is false

Thus XEL 'Aft $F = (1) \wedge (2) \wedge (3) \wedge (4)$ has a solution A.t. F & SATisfials. Size of formula & nt. nt. (|Q|+|T1). C $= ()(N^2).$ SAT. By our early obervations, if SAT → L and L ∈ NP, then Lie also NP- complete. Im Clique is NP-complete. SAT -> Clique.