01_Rielaborazione

Questo file è la rielaborazione delle slide 01 Parte1.pdf

La **logica** è un linguaggio formale usato per rappresentare informazioni. Ogni linguaggio è formato da:

- Sintassi: che definisce le frasi del linguaggio
- Semantica: che definisce il significato delle frasi
 La logica più semplice di tutti è la logica proporzionale oggi basata sulla matematica booleana, quest'ultima viene detta proporzionale perché si occupa di proposizioni, più precisamente di variabili proposizionali, quest'ultime possono assumere solo 2 valori:
- 1 = VERO
- 0 = FALSO
 - Ogni variabile proposizionale è già da se una "formula" proposizionale, ovviamente questa è una formula molto basilare. Per creare delle formule più complesse usiamo dei connettivi logici che sono i seguenti:
- racione): si legge "non", e inverte il valore di verità di una proposizione. Se una proposizione è vera, la sua negazione è falsa, e viceversa. Questo connettivo logico rappresenta la porta logica NOT
- V (disgiunzione logica): si legge "o", ed è vera se almeno una delle due proposizioni è vera. Questo connettivo logico rappresenta la porta logica OR
- ⇒ (implicazione): si legge "se... allora..." o semplicemente "implica". È falsa solo se il primo termine è vero e il secondo è falso.
- (doppia implicazione o coimplicazione): si legge "se ... e solo se ...". È vera
 quando entrambi i termini sono veri o entrambi falsi.

Esempi di formule (usando le variabili P e Q che sono scelte casualmente):

- ¬P = "Non P"
- Q
- P v Q = "P o Q"
- P \wedge Q = "P e Q"
- P ⇒ Q = "se P allora Q"
- P ⇔ Q = P se e solo se Q
 Come per le operazioni normali (somma, moltiplicazione, ecc...) anche queste

hanno delle precedenze, la negazione (\neg) ha la precedenza su tutto mentre congiunzione (\lor) e disgiunzione (\land) hanno la stessa priorità infatti:

- ¬p ∨ q è la formula dove la negazione si applica solo a p
- $\neg(p \lor q)$ è la formula dove la negazione si applica alla disgiunzione $p \lor q$

Date 2 formule P_1 e P_2 che ovviamente posso assumere solo una valore (questa cosa la impone una funzione chiamata **interpretazione** che appunto assegna a P_1 e P_2 i valori 1 o 0) Di seguito si calcola il valore di verità delle seguenti formule:

- $I(\neg P_1)$ è vera solo se P_1 è vera
- $I(P_1 \lor P_2)$ è vera se almeno una tra P_1 o P_2 è vera
- $I(P_1 \land P_2)$ è vera se entrambe sono vere
- $I(P_1 \Rightarrow P_2)$ è falsa solo quando P_1 è vera e P_2 è falsa, nei restanti casi è vera
- I(P₁ ⇔ P₂) è vera se e solo se P₁ == P₂
 Questa è la tabella della verità di tutte queste formule:

P_1	P_2	$\neg P_1$	$P_1 \vee P_2$	$P_1 \wedge P_2$	$P_1 \Rightarrow P_2$	$P_1 \Leftrightarrow P_2$
1	1	0	1	1	1	1
1	0	0	1	0	0	0
0	1	1	1	0	1	0
0	0	1	0	0	1	1

Nomenclature varie:

- Data una formula diremo che è ==soddisfacibile== se esiste almeno un caso in cui sia vera, qualunque siano i valori delle variabili.
- Data una formula diremo che è insoddisfacibile se non esiste almeno una caso in cui sia vera, qualunque siano i valori delle variabili.
- Data una formula si dice tautologia se è sempre vera qualunque siano i valori delle variabili.

Di seguito degli esempi (usando le variabili della tabella di verità):

- $P_1 \wedge P_2$ è soddisfacibile
- $P_2 \lor \neg P_2$ è tautologia (Questo viene chiamato **Principio del terzo escluso**)
- $P_2 \land \neg P_2$ è insoddisfacibile (Questo viene chiamato **Principio di non contraddizione**)

Due formule P_1 e P_2 si dicono equivalenti se hanno lo stesso valore è si scrivono in questo modo: $P_1 \equiv P_2$

Per la disgiunzione e la congiunzione vale la proprietà commutativa e associativa

- $p \lor q \equiv q \lor p$ (commutativa della disgiunzione)
- p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r (associatività della disgiunzione)

Giustificazione o conseguenza logica:

Sia P un insieme di proporzioni e p una proporzione generica, ci chiediamo quando P giustifica p questa domanda la denotiamo con: $P \models p$

Di seguito un esempio:

$$P = \{ p, p => q \}$$

$$P \models q$$

Questa è la tavola di verità dell'esempio

Esempio Giustificazione Logica

p	q	$p \rightarrow q$	q	
F	F	T	F	p falsa
F	T	T	T	p falsa
T	F	F	F	$p \Rightarrow q$ falsa
T	T	T	T	✓

N.B: Per essere vero che P giustifica q tutte le formule di P devono essere vere e anche q deve essere vera. Questa cosa si capisce ancora meglio in questo esempio

$$P = \{ p \lor r, q \lor \neg r \}$$

 $P \models p \lor q$

p	q	r	$p \lor r$	$q \vee \neg r$	$p \lor q$
F	F	F	F	T	F
F	F	T	T	F	F
F	T	F	F	T	T_
F	T	T	T	T	7
T	F	F	T	T	T
T	F	T	T	F	T
T	T	F	T	T	T 🗸
T	T	T	T	T	T

Come possiamo facilmente notare P giustifica quella disgiunzione (ovvero p \lor q) solo quando tutte le formule di P e la disgiunzione tra p e q sono vere (attenzione ai vari casi nella tabella)

Molte volte formule complesse vengono standardizzate in 2 forme chiamate "normali":

- CNF (Forma Normale Congiuntiva) che si basa sul fare un AND di vari OR:
 - (p ∨ q) ∧ (¬p ∨ ¬r ∨ s)
- DNF (Forma Normale Disgiuntiva) che si basa sul fare un OR di vari AND:
 - (p ∧ q) ∨ (¬p ∧ ¬r ∧ s)