数据挖掘实验实验报告

实验一: 数据预处理

姓名: 柴博文 学号: 04194012 班号: 大数据 1901

数据挖掘与机器学习 (秋季, 2021)

西安邮电大学 计算机学院 数据科学与大数据专业 2021 年 10 月 25 日

摘要

本次实验使用 Julia 语言进行实现.

如果需要运行本项目代码, 请安装 python 以及 matplot

随后打开终端,运行 Julia

安装 XLSX,CSV,DataFrames,Plots,Dates,Statistics

实验报告采用 LaTeX, 在 overleaf 上进行编写.

通过 DataFrames, CSV, XLSX 读取数据, PyPlots, Plots, StatsPlot 绘制图案.

本次实验代码均可以在github 仓库下找到.

目 录

1	概述		4					
2	数据可视化							
	2.1	解析文件	5					
	2.2	分组	6					
	2.3	绘制折线图	7					
	2.4	分析数据	7					
3	数据	处理	8					
	3.1	求的统计数据	8					
	3.2	绘制箱型图和小提琴图	8					
4	数据	预处 理	9					
	4.1	去除丢失数据行	9					
	4.2	默认值替换	9					
5	数据合并 11							
	5.1	通过 join 进行合并	11					
6	PCA 12							
	6.1	绘制四维图像	12					
	6.2	实现 PCA	13					
\mathbf{A}	代码		14					

1 概述

- 1、掌握数据探索统计特征计算、数据可视化等基本方法
- 2、掌握数据集缺失值、含噪数据的平滑处理、数据变换、数据集成等 预处理方法。
 - 3、掌握 PCA 主成分分析等降维方法
 - 数据可视化对某县广电宽带用户的 5000 条数据 (或者自己感兴趣的其他领域的数据) 进行探索,通过统计特征可视化进行数据分析,探索发现你感兴趣的知识。
 - **数据处理**对北京西安的年薪数据(或者自己感兴趣的其他领域的数据) 计算均值,方差等统计特征,绘制据箱体图和小提琴图等图,分析北 京西安年薪的差异。
 - 数据清洗用'movie_metadata.csv'数据集(或者自己感兴趣的其他领域的数据)进行案例分析,这个数据集包含了包括演员、导演、预算、总输入,以及 IMDB 评分和上映时间等信息,进行处理缺失数据,可以是添加默认值,删除不完整的行,异常值处理,重复数据处理,规范化数据类型等等。
 - 数据集成合并两个给定数据集: ReaderRentRecode.csv 和 ReaderInformation.csv(或者自己感兴趣的其他领域的数据), 其中两个数据集的共同点是具有相同的 num 属性, 最终生成一个综合的数据集。
 - PCA 使用鸢尾花数据集 (或者自己感兴趣的其他领域的数据),这个数据集有 150 个样本,其中每个样本有五个变量,其中四个为特征变量,分别为萼片长度 (Sepal length),萼片宽度 (Sepal width),花瓣长度 (Petal length),花瓣宽度 (Petal width),还有一个变量是其所属的品种的类别变量 (Species),这个鸢尾花内别共有 3 种类别分别是山鸢尾 (Iris-setosa)、变色鸢尾 (Iris-versicolor) 和维吉尼亚鸢尾 (Iris-virginica),首先对 4 维的原始数据集实现可视化,可视化一组数据来观察数据分布,然后对数据集进行标准化 (归一化),接着利用 PCA 主成分分析将数据降到二维。

2 数据可视化

2.1 解析文件

首先使用 Excel 讲旧版 Excel 格式的 xls 文件转换为 CSV 文件github 随后使用 CSV 读取文件内容, 并通过 DataFrame 解析格式以及类型图1.

Row	计费对象	产品名称	产品到期时间	状态	停机类型 著	5户编号 用户	类型
	String15	String15	String15	Stri	ng15 Strin	g15 String15	Str
1	ys8015561	定带18M产品	6/25/2817	正使用	正常	c18882189695	新用户
2	ys8823214	宣带4M产品	7/24/2817	正使用	正常	c18882189697	新用户
3	ys8882381	宽带10M产品	6/25/2817	正使用	正常	c18882189781	新用户
4	ys8822748	宽带10M产品	2/26/2018	正使用	正常	c18882114185	新用户
5	ys8856489	宽带10M产品	1/3/2018	正使用	正常	c18882114884	新用户
6	ys8883681	宽带18M产品	5/8/2817	正使用	正常	c18882118933	新用户
7	ys8874844	宽带18M产品	18/29/2816	已停用	欠费停机	c10006305966	新用户
8	ys8088014	宽带10M产品	1/5/2018	正使用	正常	c18002120172	新用户
9	ys8078152	宽带4M产品	7/15/2015	已停用	客户报停	c10002120173	新用户
10	ys8848259	宽带10M产品	8/25/2017	正使用	正常	c18002128293	新用户
11	ys8074865	宽带18M产品	11/18/2017	正使用	正常	c18882123835	新用户
12	ys8041355	宽带18M产品	5/27/2017	正使用	正常	c18882125494	新用户
13	ys8057767	宽带18M产品	11/3/2016	已停用	欠费停机	c10807202177	新用户
14	ys8056459	宽带18M产品	3/6/2017	正使用	正常	c18882125848	新用户
15	ys8688635	宽带18M产品	2/5/2018	正使用	正常	c18882125988	新用户
16	ys8846632	宽带18M产品	9/14/2017	正使用	正常	c18882126686	新用户
17	ys8138153	宽带18M产品	1/16/2018	正使用	正常	c18882126687	新用户
18	ys8016491	宽带18M产品	11/29/2017	正使用	正常	c18882283661	新用户
19	ys8845168	发带18M产品	12/26/2017	正使用	正常	c18882284537	新用户
28	ys8896736	宽带18M产品	11/4/2016	已停用	欠费停机	c10008675505	新用户
21	ys8027721	宽带10M产品	1/22/2018	正使用	正常	c18882284542	新用户
22	ys8831693	宽带10M产品	3/13/2018	正使用	正常	c18882284543	新用户
23	ys8887187	宽带10M产品	5/23/2017	正使用	正常	c18882289922	新用户
24	ys8018042	宽带10M产品	4/16/2017	正使用	正常	c18882289924	新用户
25	ys8846621	宽带18M产品	10/21/2017	正使用	正常	c18882289927	新用户
26	ys8832342	宽带18M产品	8/28/2017	正使用	正常	c18882289929	新用户
27	ys8125438	究带28M产品	11/30/2017	正使用	正常	c18882289946	新用户
28	ys8012610	宽带18M产品	7/4/2017	正使用	正常	c18882217847	新用户
29	ys8687979	宽带18M产品	10/11/2017	正使用	正常	c18882236312	新用户
38	ys8865899	宽带18M产品	6/11/2017	正使用	正常	c18882236313	新用户
31	ys8843657	宽带10M产品	10/11/2017	正使用	正常	c18882236316	新用户
32	ys8876592	宽带10M产品	3/14/2017	正使用	正常	c18882236322	新用户
33	ys8837844	宽带4M产品	6/29/2817	正使用	正常	c18882236332	新用户
34	ys8885178	宽带10M产品	1/11/2018	正使用	正常	c18882236334	新用户
35	ys8682223	宽带18M产品	6/19/2017	正使用	正常	c18882236335	新用户
36	ys8075274	宽带10M产品	3/21/2018	正使用	正常	c18882236336	新用户
37	ys8844635	宽带4M产品	8/25/2017	正使用	正常	c18882236337	新用户
38	ys8685884	发带18M产品	10/5/2017	正使用	正常	c18882239189	新用户
39	ys8023467	宽带10M产品	11/30/2017	正使用	正常	c18882241687	新用户
48	ys8127487	宽带10M产品	12/23/2017	正使用	正常	c18882247482	新用户
41	ys8862865	宽带10M产品	1/19/2018	正使用	正常	c18882261387	新用户
42	ys8844883	宽带10M产品	8/25/2017	正使用	正常	c18882262665	新用户
43	ys8846875	宽带10M产品	10/6/2017	正使用	正常	c18882262678	新用户

图 1: 广电信息 CSV

```
quality =
   "lab1/julia/file/xian_guangdian.csv" |>
   CSV.File |>
   DataFrame |>
   data ->
        begin
        combine(nrow, groupby(select(data, :客户等级), :客户等级)) |>
        data -> rename(data, :nrow => "用户数量") |> println
        combine(nrow, groupby(select(data, [:客户等级, :网络类型]),
        [:客户等级, :网络类型]))
   end |>
   data ->
        rename(data,
        :nrow => :quantity,
        :网络类型 => :net_kind,
```

```
:客户等级 => :user_level)
data = combine(groupby(quality, :net_kind), [:user_level, :quantity])
dict = Dict(
    "5星ABD客户" => "star_5ABD",
    "离线" => "out_link",
    "3星AB客户" => "star_3AB",
    "1星D客户" => "star_1D",
    "1星A客户" => "star_1A",
    "VIP商业个人客户" => "vip",
    "3星AD客户" => "start_3AD",
1:(data|>nrow) .|>
i -> begin
    data[i, :net_kind] =
       Dict(
           "农网用户" => "village",
           "城网用户" => "city",
           " " => "unknown"
        )[data[
           i,
           :net_kind,
    data[i, :user_level] = dict[data[i, :user_level]]
end
gp = groupby(data, :net_kind)
gp |>
keys . |>
kind -> @df combine(gp[kind], [:user_level, :quantity]) plot(
    :user_level,
    :quantity,
   label = "$kind",
) |> fig -> savefig(fig, "lab1/julia/images/first_$kind")
```

2.2 分组

随后将数据根据客户等级进行分组, 总共有7组, 见图2.

图 2: 分组结果图

再将每组一网络类型进行分组,图3.

7×2 DataFrame						
Row	user_level					
	String31	Int64				
1	star_5ABD	2192				
2	out_link	313				
	star_3AB	88				
	star_1D	204				
5	start_3AD	40				
6	vip _	57				
7	star_1A	74				
7×2 Da	ataFrame					
Row	user_level	quantity				
	String31					
1	star_5ABD	1501				
2	out_link	185				
	star_3AB	62				
	star_1D	197				
5	start_3AD	36				
6	vip	6				
7	star_1A	39				
3×2 Da	ataFrame					
Row	user_level					
	String31	Int64				
1	star_5ABD	2				
1 2	star_5ABD star_3AB	2 1				

图 3: 分组结果图

2.3 绘制折线图

然后将每组画到折线图之上,图4

2.4 分析数据

通过该次结果可以看出, 在办理了广电业务的客户之中,5 星 ABD 客户数目远远多余其他客户, 而且明显城区用户多余农村用户

但是低级用户和高级用户的数量几乎差不多,而且最关键的是两个图的趋势是相似的,说明农村和城市对于网络的需求是很一致的

图 4: 城市居民, 农村, 未登记

3 数据处理

3.1 求的统计数据

使用 XLSX 将文件内容读入, 并使用 DataFrame 对数据进行类型判断并转换位 DataFrame 类型随后使用统计模块中的统计方法求数据的均值, 方差, 标准差, 协方差矩阵, 图5 在使用 Plots 进行绘图, 图6

图 5: 均值, 方差, 标准差, 协方差

3.2 绘制箱型图和小提琴图

图 6: 箱型图和小提琴图

4 数据预处理

4.1 去除丢失数据行

在读取完数据后, 通过 DataFrame 转换之后 可以通过 DataFrame 得知每一列都会有值是丢失的: 图7

图 7: 电影元数据

为了将来数据处理的正常话,这里将导演空的一栏都去掉

4.2 默认值替换

同时其他的值变为其默认值

名称	默认值
color	Color
num critic for reviews	0
duration	0
director facebook likes	0
actor 3 facebook likes	0
actor 2 name	
actor 1 facebook likes	0
gross	0
genres	
actor 1 name	
movie title	
num voted users	0
cast total facebook likes	0
actor 3 name	
facenumber in poster	0
plot keywords	
movie imdb link	

num user for reviews	0
language	
country	
content rating	PG-0
budget	0
title year	0
actor 2 facebook likes	0
imdb score	0
aspect ratio	0
movie facebook likes	0

于是就对每一列进行一次变化: 如果每一行的数据是 missing, 就将其替换为默认值, 见图4.2

图 8: 处理 missing

5 数据合并

5.1 通过 join 进行合并

读取数据表, 通过 join 表上的 num 列对两张表进行合并, 图9

10×4 I	DataFram	e						
Row	num	sex	institution					
	Int64	String1	String7	String7				
1	1		xupt	teacher				
2	2		xupt	teacher				
3	3		xupt	student				
4	4		xupt	student				
5	5		xupt	student				
6	6		xupt	student				
7	7		xupt	student				
8	8		xupt	teacher				
9	9		xupt	teacher				
10	10		xupt	teacher 10	×4 DataFr			
Row	num	name	book			date		
	Int64							
1	1	Tom	gone with th					
2	2		The scarlet	letter				
3	3	Jerry	The adventur		Sawyer	3.18		
4	4	Cyning	Tales of two cities 5.21					
5	5	Peter	Pride and Prejudice 5.3					
6	6	Kevien	Uncle Tom's			4.27		
7	7	June	The old man and the sea 3.3					
8	8	Angel	Le Comte de Monte-Cristo 5.8					
9	9		The Adventures of Alice in Wonde 5.9					
10	10 May Gulliver's Travels 5.19							
	DataFram		institution			book		date
Row	num Int64	sex String1	String7	category String7	name String7	book String63		Float64
1	1		xupt	teacher	Tom	gone with t		3.1
2	2		xupt	teacher	Anna	The scarlet		4.3
3	3		xupt	student	Jerry		res of Tom Sawyer	3.18
4	4		xupt	student	Cyning	Tales of tw		5.21
5	5		xupt	student	Peter	Pride and P		5.3
6	6		xupt	student	Kevien	Uncle Tom's		4.27
7	7		xupt	student	June		and the sea	3.3
8	8		xupt	teacher	Angel		Monte-Cristo	5.8
9 10	9 10		xupt	teacher teacher	Tony May	Gulliver's	res of Alice in Wonde	5.9 5.19
10	10	. W	xupt	teacher	мау	outtiver s	Travets	5.19

图 9: 数据合并

```
["lab1/julia/file/4ReaderInformation.csv",
        "lab1/julia/file/4ReaderRentRecode.csv"] .|>
CSV.File .|>
DataFrame |>
dates -> begin
    println(dates...)
    innerjoin(dates..., on = :num) |>
    file -> begin
        file |> println
        CSV.write("lab1/julia/file/join.csv", file)
    end
end
```

6 PCA

6.1 绘制四维图像

可视化四维数据, 我对数据依据种类进行了分组, 对每组进行了绘图 其中横轴, 数轴, 纵轴, 颜色分别代表: 萼片长度 (Sepal length), 萼片宽 度 (Sepalwidth), 花瓣长度 (Petallength), 花瓣宽度 (Petalwidth)

图 10: 山鸢尾花, 变色鸢尾花, 维吉尼亚鸢尾花

6.2 实现 PCA

PCA 实现步骤

首先是算法思路设有 n 条 d 维数据。

- 1. 将原始数据按列组成 n 行 d 列矩阵 X
- 2. 将 X 的每一列 (代表一个属性) 进行零均值化, 即减去这一列的均值
- 3. 求出协方差矩阵 $\frac{1}{m}XX^T$
- 4. 求出协方差矩阵的特征值及对应的特征向量
- 5. 将特征向量按对应特征值大小从上到下按行排列成矩阵,取前 k 行组 成矩阵 P
- 6. Y = PX 即为降维到 k 维后的数据

```
data = copy(mat)
data = select!(data, Not([:Species])) |> Matrix
(values, vectors) = data |> Statistics.cov |> eigen
p = last(sortperm(values), 2) |> x -> vectors[:, x]
data * p
```

```
150×2 Matrix{Float64}:
 5.64133
         -2.82714
 5.14517
         -2.79595
 5.17738 -2.62152
 5.0036
          -2.76491
 5.64865
         -2.78275
 6.06251
         -3.23145
 5.23262
         -2.69045
 5.48513
         -2.88486
 4.74393
         -2.62338
 4.7398
          -6.92542
 5.5907
          -8.07467
 5.61823
         -7.93073
 5.50214
         -7.45536
 4.9397
          -7.03701
 5.39324
         -7.27539
 5.4306
          -7.41297
 5.03184
         -6.90101
```

图 11: PCA 结果

结果: 图11

附录 A 代码

```
using XLSX;
using CSV;
using DataFrames;
using Plots;
using Dates;
using Statistics;
using StatsPlots
import PyPlot;
using LinearAlgebra
function free()
   quality =
       "lab1/julia/file/xian_guangdian.csv" |>
       CSV.File |>
       DataFrame |>
       data ->
           begin
               combine(nrow, groupby(select(data,:客户等级),:客户等级)) |>
               data -> rename(data, :nrow => "用户数量") |> println
               combine(nrow, groupby(select(data, [:客户等级,:网络类型]), [:客户等级,:网络类型]))
           end |>
           data ->
               rename(data, :nrow => :quantity, :网络类型 => :net_kind, :客户等级 => :user_level)
   data = combine(groupby(quality, :net_kind), [:user_level, :quantity])
   dict = Dict(
       "5星ABD客户" => "star_5ABD",
       "离线" => "out_link",
       "3星AB客户" => "star_3AB",
       "1星D客户" => "star_1D",
       "1星A客户" => "star_1A",
       "VIP商业个人客户" => "vip",
       "3星AD客户" => "start_3AD",
   )
   1:(data|>nrow) .|>
   i -> begin
       data[i, :net_kind] =
           Dict("农网用户" => "village", "城网用户" => "city", " " => "unknown")[data[
               i,
               :net_kind,
           11
       data[i, :user_level] = dict[data[i, :user_level]]
   end
   gp = groupby(data, :net_kind)
   gp |>
   keys .|>
   kind -> @df combine(gp[kind], [:user_level, :quantity]) plot(
       :user_level,
       :quantity,
```

```
label = "$kind",
    ) |> fig -> savefig(fig, "lab1/julia/images/first_$kind")
end
function draw_plot()
    file_path = "lab1/julia/file/xian_beijing_salary.xlsx"
    salarys = DataFrame(XLSX.readdata(file_path, "Sheet1!C3:D14"), :auto) .|> identity
    salary = [salarys.x1, salarys.x2]
    println("mean:$(salary .|> Statistics.mean)")
    println("var:$(salary .|> Statistics.var)")
    println("std:$(salary .|> Statistics.std)")
    println("cov:$(salary |> Statistics.cov)")
    println("cor:$(salary .|> Statistics.cor)")
    violin(["Xi'an"], salarys.x1, label = "Xi'an")
    violin!(["Beijing"], salarys.x2, label = "Beijing") |>
    fig -> savefig(fig, "lab1/julia/images/violin")
    boxplot(["Xi'an"], salarys.x1, label = "Xi'an")
    boxplot!(["Beijing"], salarys.x2, label = "Beijing") |>
    fig -> savefig(fig, "lab1/julia/images/box")
end
function map_transform()
    file_path = "lab1/julia/file/3movie_metadata.csv"
    movie_metadata = file_path |> CSV.File |> DataFrame
    dropmissing!(movie_metadata, :director_name)
    dict = Dict(
       :color => "Color",
        :num_critic_for_reviews => 0,
        :duration => 0,
        :director_facebook_likes => 0,
        :actor_3_facebook_likes => 0,
        :actor_2_name => "",
        :actor_1_facebook_likes => 0,
        :gross => 0,
        :genres => "",
        :actor_1_name => "",
        :movie_title => "",
        :num_voted_users => 0,
        :cast_total_facebook_likes => 0,
        :actor_3_name => "",
        :facenumber_in_poster => 0,
        :plot_keywords => "",
        :movie_imdb_link => "",
        :num_user_for_reviews => 0,
        :language => "",
        :country => "",
        :content_rating => 0,
        :budget => 0,
```

```
:title_year => 0,
        :actor_2_facebook_likes => 0,
        :imdb_score => 0,
        :aspect_ratio => 0,
        :movie_facebook_likes => 0,
    )
    dict |>
    keys . |>
    key -> transform!(
       movie_metadata,
        key => (col -> col .|> each -> if ismissing(each)
            Dict[key]
        else
            each
        end) => key,
    )
end
function join_compine()
    ["lab1/julia/file/4ReaderInformation.csv", "lab1/julia/file/4ReaderRentRecode.csv"] .|>
    CSV.File .|>
    DataFrame |>
    dates -> begin
        println(dates...)
        innerjoin(dates..., on = :num) |>
        file -> begin
            file |> println
            CSV.write("lab1/julia/file/join.csv", file)
        end
    end
end
function self_pca()
   mat = "lab1/julia/file/5iris.csv" |> CSV.File |> DataFrame
    gp = groupby(mat, :Species)
   names = [:Sepal_length, :Sepal_width, :Petal_length, :Petal_width, :Species]
    adf gp[1] plot(
        :Sepal_length,
        :Sepal_width,
        :Petal_length,
        zcolor = reverse(:Petal_width),
        m = (10, 0.8, :blues, Plots.stroke(0)),
        fontfamily = "Yahei",
        xlabel = "Sepal_length",
        ylabel = "Sepal_width",
        zlabel = "Petal_length",
        title = "山鸢尾",
       label = "山鸢尾",
        w = 0,
    )
```

```
adf gp[2] plot(
        :Sepal_length,
        :Sepal_width,
        :Petal_length,
        zcolor = reverse(:Petal_width),
        m = (10, 0.8, :blues, Plots.stroke(0)),
        fontfamily = "Yahei",
        xlabel = "Sepal_length",
        ylabel = "Sepal_width",
        zlabel = "Petal_length",
        title = "变色鸢尾",
        label = "变色鸢尾",
       W = 0,
    )
   adf gp[3] plot(
        :Sepal_length,
        :Sepal_width,
        :Petal_length,
        zcolor = reverse(:Petal_width),
        m = (10, 0.8, :blues, Plots.stroke(0)),
        fontfamily = "Yahei",
       xlabel = "Sepal_length",
        ylabel = "Sepal_width",
        zlabel = "Petal_length",
        title = "维吉尼亚鸢尾",
       label = "维吉尼亚鸢尾",
       w = 0,
    )
    data = copy(mat)
    data = select!(data, Not([:Species])) |> Matrix
    (values, vectors) = data |> Statistics.cov |> eigen
    p = last(sortperm(values), 2) |> x -> vectors[:, x]
    data * p
end
free();
draw_plot();
map_transform();
join_compine();
self_pca();
```