## Introduction to Project 8: Dopamine Receptor Mapping with PET

Quantitative and Functional Imaging
BME 4420/7450
Fall 2022

## Mapping dopamine receptor density in the brain

- Dopamine plays a critical role in
  - Motor control
  - Reward/pleasure
- Dopamine activity changes in
  - Parkinson's Disease produce less dopamine?
  - Addiction
     DAT gate is blocked pleasure all the time with dopamine binding to post-synaptic receptors
- Dopamine function depends on
  - Production in presynaptic neuron
  - Binding with receptor on postsynaptic neuron
- How can we measure dopamine function?



# Map the distribution volume ratio (DVR)

- Analyze time-activity curves
  - In a region of interest (basal ganglia)
  - Each voxel in the slice of interest
  - Reference tissue (cerebellum)
- Use time-activity curves to
  - Create a Logan Plot
  - Calculate DVR

### Tracer time-activity curve



#### Logan Plot Analysis

Form variables:

$$\int_{C_{BG}}^{t} C_{CB}(t')dt' \qquad \int_{0}^{t} C_{BG}(t')dt' 
x(t) \equiv \frac{\int_{0}^{t} C_{BG}(t')dt'}{C_{BG}(t)}, \qquad y(t) \equiv \frac{\int_{0}^{t} C_{BG}(t')dt'}{C_{BG}(t)}$$

Plot y as a function of x:

$$y(t) = DVR \cdot x(t) + b$$

"BG" = basal ganglia; "CB" = cerebellum (reference region)

#### Location of the basal ganglia and cerebellum



https://neupsykey.com/the-basal-ganglia-2/

#### **Project Goals**

Molecular specificity (cant measure without PET) is the advantage for measuring receptors

- Main goal: calculate a Distribution Volume Ratio (DVR) map in a slice that includes the basal ganglia
- How to accomplish this goal:
  - A. Analyze signal in cerebellum
    - a) Define a 'reference' region of interest (ROI) in the cerebellum
    - b) Get the time-activity curve for the cerebellum ROI
  - B. Analyze signal in the basal ganglia
    - a) Define an ROI for the basal ganglia
    - b) Get the time-activity curve for the basal ganglia
  - C. Calculate a Logan plot for the basal ganglia ROI
  - D. Calculate DVR from the Logan plot
    - a) Determine the time points to use in the DVR calculation
    - b) Loop over all pixels in the slice, calculating the DVR for each
    - c) Create a DVR map