CNNs on Multi-Core 2-D Systolic Array with Pruning and Huffman Coding

UC San Diego

284 little group

Zhen Bian, Hanyi Chen, Mingyu Liu, Cheng Qian, Xin Zhao

VGGnet with quantization-aware training

	VGG16
Accuracy(CIFAR 10)	92.140%
Quantization error	0.0006

Mapping on FPGA (Cyclone IV GX)

OPs	128	
Frequency	132.82 MHz	
Dynamic Power	35.72mW	
GOPs/s	17	
GOPs/w	0.00358	
Logic Elements	22126	

Fig. 1) IP Hierarchy

Alpha 1. Pruning on Hardware

Alpha 2. Huffman Coding

	Huffman coding		
Before compression	1152 bits		
After compression	422 bits		
Compression rate	0.3663		
Counter (sorted) Val:, Freq: highest Val:, Freq: lowest Sort by freq Higher Counter Val: 0, Freq: Val: 1, Freq: Val: 15, Freq: Activation Data (4bit)	Root Only leaf nodes contain values Val: None Incoded activation data Only leaf nodes Contain values Val: None Incoded activation data		
Fig. 3) Procedure of Huffman Coding			

Alpha 3. Resnet with quantization-aware training

	Resnet20	VGG16
Accuracy	89.080%	92.140%
Quantization error	0.0398	0.0006

- Modified Resnet has less accuracy
- Modified Resnet has larger psum recover loss

Alpha 4. Pruning on VGG16

	Accuracy
80% sparsity, unstructured, only mapped layer	89%
80% sparsity, unstructured, all layers	88%
40% sparsity, structured, only mapped layer	73%

- Unstructured pruning can achieve higher sparsity
- Sparsity has a significant impact on the layer we mapped

Alpha 5. Multi-Core Processor

Fig. 4) Modified Resnet Model

Fig. 5) Multi-Core 2D Systolic Array Structure

Alpha 6. Accumulation while Execution

- Be re-designing the PE, SFP structure can be **Saved**
- Reducing the chance to access MEM, Less Latency, Higher Freq