Case No.: 21419YP

Page 3

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims

1. (original) A compound represented by Formula A:

Α

or a pharmaceutically acceptable salt thereof, wherein:

R¹, R², R³ and R⁴ are each independently selected from the group consisting of: –H, -F, -Cl, -Br, -I, -CN, -OH, C₁-6alkyl, C₂-6alkenyl, C₂-6alkynyl and C₁-5alkoxy,

wherein said C₁-6alkyl, C₂-6alkenyl, C₂-6alkynyl and C₁-5alkoxy are each optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH, C₁-8alkoxy and -CO₂H,

and any two of R¹, R², R³ and R⁴ may be joined together with the atoms to which they are attached to form a saturated monocyclic ring of 3 to 8 atoms optionally containing 1 or 2 oxygen atoms;

R⁵ is selected from the group consisting of: -H, -F, -Cl, -Br, -I, -CN, -OH, C₁-4alkyl, C₂-4alkenyl, C₂-4alkynyl and C₁-4alkoxy,

wherein said C₁-4alkyl, C₂-4alkenyl, C₂-4alkynyl and C₁-4alkoxy are each optionally substituted with one to three substituents independently selected from the group consisting of: –F, -Cl, -Br, -I, -OH and C₁-8alkoxy;

R⁶ is selected from the group consisting of: phenyl, pyridinyl, pyrimidinyl, pyrazinyl, pyridizinyl and thienyl, each optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -CN, -OH, -NR⁷R⁸, -NO₂, phenyl, thienyl, C₁-4alkyl, C₃-6cycloalkyl, C₂-4alkenyl, C₂-4alkynyl, C₁-4alkoxy, C₃-6cycloalkoxy, C₁-4alkylthio and C₂-4acyloxy,

Page 4

wherein said phenyl, C₁-4alkyl, C₃-6cycloalkyl, C₂-4alkenyl, C₂-4alkynyl, C₁-4alkoxy, C₃-6cycloalkoxy, C₁-4alkylthio and C₁-4acyloxy are each optionally substituted from one up to the maximum number of substitutable positions with a substituent independently selected from the group consisting of: –F, -Cl, -Br, -I, -OH and C₁-8alkoxy, and

R⁶ may be substituted on two adjacent atoms to form a fused partially aromatic bicyclic ring of 9 to 12 atoms optionally containing one or two oxygen or sulfur groups, or both, and optionally substituted with one to three substituents independently selected from the group consisting of:

-F, -Cl, -Br, -I, -CN, -OH, and C₁-4alkyl;

R⁷ and R⁸ are independently selected from the group consisting of: -H, C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl, wherein said C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH and C₁₋₅alkoxy, and

R⁷ and R⁸ may be joined together with the nitrogen atom to which they are attached to form a saturated monocyclic ring of 3 to 8 atoms, optionally containing 1 or 2 oxygen atoms, said ring is optionally substituted with one to three substituents independently selected from the group consisting of: –F, -Cl, -Br, -I, -OH and C₁-5alkoxy;

U, V and W are independently selected from the group consisting of: -C(R⁹)- and -N-;

each R⁹ is independently selected from the group consisting of: -H, -F, -Cl, -Br, -I, -CN, -OH, C₁-4alkyl, C₂-4alkenyl, C₂-4alkynyl and C₁-4alkoxy,

wherein said C₁-4alkyl, C₂-4alkenyl, C₂-4alkynyl and C₁-4alkoxy are each optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH and C₁-8alkoxy;

For U or V, R⁹ and R¹ or R⁹ and R² may be joined together with the atoms to which they are attached to form a 4 to 8 membered ring, optionally containing 1 or 2 oxygen, sulfur or N(R¹⁰) atoms, thus forming a fused partially aromatic bicyclic ring system of 8 to 12 atoms with the 6-membered aromatic ring to which R⁹ is attached;

X, Y and Z are independently selected from $-C(R^{11})=$, -O-, -N=, $-N(R^{12})-$ and -S- such that the resulting ring together with Q and T form an aromatic heterocycle;

Case No.: 21419YP

Page 5

R¹⁰, R¹¹ and R¹² are each indepedently selected from the group consisting of: -H, C₁-6alkyl, C₂-6alkenyl and C₂-6alkynyl, wherein said C₁-6alkyl, C₂-6alkenyl and C₂-6alkynyl are each optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH and C₁-5alkoxy;

J is selected from the group consisting of: -CO₂H, -PO₃H₂, -PO₂H₂, -SO₃H, -CONHSO₂R¹³, -PO(R¹³)OH,

R¹³ is selected from the group consisting of: C₁-C₄ alkyl, phenyl, -CH₂OH and CH(OH)-phenyl; and

Case No.: 21419YP

Page 6

each R¹⁴ is independently selected from the group consisting of: -H and -CH₃.

2. (original) A compound in accordance with Claim 1 represented by

Ţ

or a pharmaceutically acceptable salt thereof, wherein:

Formula I

R¹, R², R³ and R⁴ are each independently selected from the group consisting of: –H, -F, -Cl, -Br, -I, -CN, -OH, C₁-6alkyl, C₂-6alkenyl, C₂-6alkynyl and C₁-5alkoxy,

wherein said C₁-6alkyl, C₂-6alkenyl, C₂-6alkynyl and C₁-5alkoxy are each optionally substituted with one to three substituents independently selected from the group consisting of: –F, -Cl, -Br, -I, -OH, C₁-8alkoxy and -CO₂H,

and any two of R¹, R², R³ and R⁴ may be joined together with the atoms to which they are attached to form a saturated monocyclic ring of 3 to 8 atoms optionally containing 1 or 2 oxygen atoms;

R⁵ is selected from the group consisting of: -F, -Cl, -Br, -I, -CN, -OH, C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl and C₁₋₄alkoxy,

wherein said C₁-4alkyl, C₂-4alkenyl, C₂-4alkynyl and C₁-4alkoxy are each optionally substituted with one to three substituents independently selected from the group consisting of: –F, -Cl, -Br, -I, -OH and C₁-8alkoxy;

R⁶ is selected from the group consisting of: phenyl, pyridinyl, pyrimidinyl, pyrazinyl, pyridizinyl and thienyl, each optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -CN, -OH, -NR⁷R⁸, -NO₂, phenyl, C₁-4alkyl, C₃-6cycloalkyl, C₂-4alkenyl, C₂-4alkynyl, C₁-4alkoxy, C₃-6cycloalkoxy, C₁-4alkylthio and C₂-4acyloxy,

wherein said phenyl, C₁₋₄alkyl, C₃₋₆cycloalkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, C₁₋₄alkoxy,

To be assigned Serial No.:

Case No.: 21419YP

Page

C₃-6cycloalkoxy, C₁-4alkylthio and C₁-4acyloxy are each optionally substituted from one up to the maximum number of substitutable positions with a substituent independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH and C₁-8alkoxy, and

R⁶ may be substituted on two adjacent atoms to form a fused partially aromatic bicyclic ring of 9 to 12 atoms optionally containing one or two oxygen or sulfur groups, or both, and optionally substituted with one to three substituents independently selected from the group consisting of:

-F, -Cl, -Br, -I, -CN, -OH, and C₁-4alkyl;

R⁷ and R⁸ are independently selected from the group consisting of: -H, C₁-6alkyl, C2-6alkenyl and C2-6alkynyl, wherein said C1-6alkyl, C2-6alkenyl and C2-6alkynyl are each optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH and C₁-5alkoxy, and

R⁷ and R⁸ may be joined together with the nitrogen atom to which they are attached to form a saturated monocyclic ring of 3 to 8 atoms, optionally containing 1 or 2 oxygen atoms, said ring is optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH and C₁-5alkoxy;

U, V and W are independently selected from the group consisting of: $-C(R^9)$ - and -N-;

each R⁹ is independently selected from the group consisting of: -H, -F, -Cl, -Br, -I, -CN, -OH, C₁-4alkyl, C₂-4alkenyl, C₂-4alkynyl and C₁-4alkoxy,

wherein said C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl and C₁₋₄alkoxy are each optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH and C₁-8alkoxy;

For U or V, R⁹ and R¹ or R⁹ and R² may be joined together with the atoms to which they are attached to form a 4 to 8 membered ring, optionally containing 1 or 2 oxygen, sulfur or N(R¹⁰) atoms, thus forming a fused partially aromatic bicyclic ring system of 8 to 12 atoms with the 6-membered aromatic ring to which R⁹ is attached;

X, Y and Z are independently selected from $-C(R^{11})=$, -O-, -N=, $-N(R^{12})-$ and -S- such that the resulting ring together with Q and T form an aromatic heterocycle;

Case No.: 21419YP

Page 8

R10, R11 and R12 are each indepedently selected from the group consisting of: -H, C₁-6alkyl, C₂-6alkenyl and C₂-6alkynyl, wherein said C₁-6alkyl, C₂-6alkenyl and C₂-6alkynyl are each optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH and C₁-5alkoxy.

3. (original) A compound according to Claim 2 wherein R⁵ is methyl.

4. (original) A compound according to Claim 2 wherein R⁶ is selected from the group consisting of: phenyl and pyridinyl, each optionally substituted with one to three substituents independently selected from the group consisting of: F, -Cl, -Br, -I, -CN, -OH, -NR⁷R⁸, -NO₂, C₁-4alkyl, C₃-6cycloalkyl, C₂-4alkenyl, C₂-4alkynyl, C₁-4alkoxy, C₁-4alkylthio,

C3-6cycloalkoxy and C1-4acyloxy,

wherein said C₁-4alkyl, C₃-6cycloalkyl, C₂-4alkenyl, C₂-4alkynyl, C₁-4alkoxy, C₁-4alkylthio,

C₃₋₆cycloalkoxy and C₁₋₄acyloxy are each optionally substituted from one up to the maximum number of substitutable positions with a substituent independently selected from the group consisting of: –F, -Cl, -Br, -I, -OH and C₁₋₈alkoxy; and

R⁷ and R⁸ are independently selected from the group consisting of: -H, C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl, wherein said C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH and C₁₋₅alkoxy, and

R⁷ and R⁸ may be joined together with the nitrogen atom to which they are attached to form a saturated monocyclic ring of 3 to 8 atoms, optionally containing 1 or 2 oxygen atoms, said ring is optionally substituted with one to three substituents independently selected from the group consisting of: –F, -Cl, -Br, -I, -OH and C₁₋₅alkoxy.

5. (original) A compound according to Claim 2 wherein V and W are -CH-.

6. (original) A compound according to Claim 2 of Formula Ia

Page 9

or a pharmaceutically acceptable salt thereof, wherein:

R¹ and R² are independently selected from the group consisting of: -H, -OH and methyl or R¹ and R² may be joined together with the atoms to which they are attached to form cyclopropyl;

U and V are each independently selected from the group consisting of: $-C(R^9)$ - and -N-;

each R⁹ is independently selected from the group consisting of: -H, -F, -Cl, -Br, -I, -CN, -OH, C₁-4alkyl, C₂-4alkynyl and C₁-4alkoxy, wherein said C₁-4alkyl, C₂-4alkynyl and C₁-4alkoxy are each optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH and C₁-8alkoxy, and

For U or V, R⁹ and R¹ or R⁹ and R² may be joined together with the atoms to which they are attached to form a 5 membered ring, thus forming a fused partially aromatic bicyclic ring system of 9 atoms with the 6-membered aromatic ring to which R⁹ is attached;

A is selected from the group consisting of: –N- and –C(R¹³)-, wherein R¹³ is selected from the group consisting of: -H, -F, -Cl, -Br, -I, -CN, -CH₃, -OCH₃, -CF₃, ethynyl, -NO₂ and -NH₂;

Ra is selected from the group consisting of: NR⁷R⁸, C₁-4alkyl, C₃-6cycloalkyl, C₁-4alkoxy, C₃-6cycloalkoxy, C₁-4alkylthio and C₁-4acyloxy, wherein said C₁-4alkyl, C₃-6cycloalkyl, C₁-4alkoxy, C₃-6cycloalkoxy, C₁-4alkylthio and C₁-4acyloxy are each optionally substituted from one up to the maximum number of substitutable positions with a substituent independently selected from the group consisting of: –F, -Cl, -Br, -I and -OH;

R⁷ and R⁸ are independently selected from the group consisting of: -H and C₁₋₆alkyl, optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH and C₁₋₅alkoxy, and

R⁷ and R⁸ may be joined together with the nitrogen atom to which they are attached to form a saturated monocyclic ring of 3 to 8 atoms, optionally containing 1 or 2 oxygen atoms, said ring is optionally substituted with one to three substituents independently selected from the group consisting of: –F, -Cl, -Br, -I, -OH and C₁-5alkoxy; and

Rb is selected from the group consisting of: -H, -F, -Cl, -Br, -I, -CN, -CH3, -OCH3, -CF3, ethynyl, -NO2 and -NH2.

7. (original) A compound according to Claim 2 of Formula Ib

Case No.: 21419YP

Page 10

$$R^{b}$$
 R^{a}
 A
 N
 R^{1}
 O
 HO
 Ib

or a pharmaceutically acceptable salt thereof, wherein:

R¹ is selected from the group consisting of: -H, -OH and methyl;

A is selected from the group consisting of: -N- and $-C(R^{13})$ -, wherein R^{13} is selected from the group consisting of: -H, -F, -CI, -Br, -I, -CN, $-CH_3$, $-OCH_3$, $-CF_3$, ethynyl, $-NO_2$ and $-NH_2$;

Ra is selected from the group consisting of: NR⁷R⁸, C₁-4alkyl, C₃-6cycloalkyl, C₁-4alkoxy, C₃-6cycloalkoxy, C₁-4alkylthio and C₁-4acyloxy, wherein said C₁-4alkyl, C₃-6cycloalkyl, C₁-4alkoxy, C₃-6cycloalkoxy, C₁-4alkylthio and C₁-4acyloxy are each optionally substituted from one up to the maximum number of substitutable positions with a substituent independently selected from the group consisting of: –F, -Cl, -Br, -I and -OH;

R⁷ and R⁸ are independently selected from the group consisting of: -H and C₁₋₆alkyl, optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH and C₁₋₅alkoxy, and

R⁷ and R⁸ may be joined together with the nitrogen atom to which they are attached to form a saturated monocyclic ring of 3 to 8 atoms, optionally containing 1 or 2 oxygen atoms, said ring is optionally substituted with one to three substituents independently selected from the group consisting of: –F, -Cl, -Br, -I, -OH and C₁-5alkoxy; and

R^b is selected from the group consisting of: -H, -F, -Cl, -Br, -I, -CN, -CH₃, -OCH₃, -CF₃, ethynyl, -NO₂ and -NH₂.

8. (original) A compound according to Claim 2 of Formula Ic

Case No.: 21419YP

Page 11

$$R^{b}$$
 R^{a}
 R^{a}
 R^{b}
 R^{a}
 R^{b}
 R^{a}
 R^{b}
 R^{a}
 R^{b}
 R^{a}
 R^{b}
 R^{a}
 R^{b}
 R^{a}
 R^{a}
 R^{b}
 R^{a}
 R^{b}
 R^{a}
 R^{b}
 R^{a}
 R^{b}
 R^{a}
 R^{b}
 R^{a}
 R^{b}
 R^{b

or a pharmaceutically acceptable salt thereof, wherein:

R¹ and R² are independently selected from the group consisting of: -H, -OH and methyl or R¹ and R² may be joined together with the atoms to which they are attached to form cyclopropyl;

U and V are each independently selected from the group consisting of: $-C(R^9)$ - and -N-;

each R⁹ is independently selected from the group consisting of: -H, -F, -Cl, -Br, -I, -CN, -OH, C₁-4alkyl, C₂-4alkynyl and C₁-4alkoxy, wherein said C₁-4alkyl, C₂-4alkynyl and C₁-4alkoxy are each optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH and C₁-8alkoxy, and

For U or V, R⁹ and R¹ or R⁹ and R² may be joined together with the atoms to which they are attached to form a 5 membered ring, thus forming a fused partially aromatic bicyclic ring system of 9 atoms with the 6-membered aromatic ring to which R⁹ is attached;

A is selected from the group consisting of: -N- and -C(R¹³)-, wherein R¹³ is selected from the group consisting of: -H, -F, -Cl, -Br, -I, -CN, -CH₃, -OCH₃, -CF₃, ethynyl, -NO₂ and -NH₂;

Ra is selected from the group consisting of: NR⁷R⁸, C₁-4alkyl, C₃-6cycloalkyl, C₁-4alkoxy, C₃-6cycloalkoxy, C₁-4alkylthio and C₁-4acyloxy, wherein said C₁-4alkyl, C₃-6cycloalkyl, C₁-4alkylthio and C₁-4acyloxy are each optionally substituted from one up to the maximum number of substitutable positions with a substituent independently selected from the group consisting of: –F, -Cl, -Br, -I and -OH;

R⁷ and R⁸ are independently selected from the group consisting of: -H and C₁₋₆alkyl, optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH and C₁₋₅alkoxy, and

R⁷ and R⁸ may be joined together with the nitrogen atom to which they are attached to form a saturated monocyclic ring of 3 to 8 atoms, optionally containing 1 or 2 oxygen atoms, said

Case No.: 21419YP

Page 12

ring is optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH and C₁₋₅alkoxy; and

Rb is selected from the group consisting of: -H, -F, -Cl, -Br, -I, -CN, -CH3, -OCH3, -CF3, ethynyl, -NO2 and -NH2.

9. (original) A compound according to Claim 2 of Formula Id

$$R^{b}$$
 R^{a}
 R^{a}
 R^{b}
 R^{a}
 R^{b}
 R^{a}
 R^{b}
 R^{a}
 R^{b}
 R^{a}
 R^{b}
 R^{b}
 R^{b}
 R^{b}
 R^{a}
 R^{b}
 R^{b

or a pharmaceutically acceptable salt thereof, wherein:

 R^1 and R^2 are independently selected from the group consisting of: -H, -OH and methyl or R^1 and R^2 may be joined together with the atoms to which they are attached to form cyclopropyl;

U and V are each independently selected from the group consisting of: $-C(R^9)$ - and -N-;

each R⁹ is independently selected from the group consisting of: -H, -F, -Cl, -Br, -I, -CN, -OH, C₁-4alkyl, C₂-4alkenyl, C₂-4alkynyl and C₁-4alkoxy, wherein said C₁-4alkyl, C₁-4alkenyl, C₁-4alkynyl and C₁-4alkoxy are each optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH and C₁-8alkoxy, and

R⁹ and R¹ or R⁹ and R² may be joined together with the atoms to which they are attached to form a 5 membered ring, thus forming a fused partially aromatic bicyclic ring system of 9 atoms with the 6-membered aromatic ring to which R⁹ is attached;

A is selected from the group consisting of: -N- and -C(R¹³)-, wherein R¹³ is selected from the group consisting of: -H, -F, -Cl, -Br, -I, -CN, -CH₃, -OCH₃, -CF₃, ethynyl, -NO₂ and -NH₂;

Ra is selected from the group consisting of: NR⁷R⁸, C₁-4alkyl, C₃-6cycloalkyl, C₁-4alkoxy, C₃-6cycloalkoxy, C₁-4alkylthio and C₁-4acyloxy, wherein said C₁-4alkyl, C₃-6cycloalkyl, C₁-4alkylthio and C₁-4acyloxy are each optionally substituted

Case No.: 21419YP

Page 13

from one up to the maximum number of substitutable positions with a substituent independently selected from the group consisting of: -F, -Cl, -Br, -I and -OH;

R⁷ and R⁸ are independently selected from the group consisting of: -H and C₁₋₆alkyl, optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH and C₁₋₅alkoxy, and

R⁷ and R⁸ may be joined together with the nitrogen atom to which they are attached to form a saturated monocyclic ring of 3 to 8 atoms, optionally containing 1 or 2 oxygen atoms, said ring is optionally substituted with one to three substituents independently selected from the group consisting of: –F, -Cl, -Br, -I, -OH and C₁-5alkoxy; and

Rb is selected from the group consisting of: -H, -F, -Cl, -Br, -I, -CN, -CH3, -OCH3, -CF3, ethynyl, -NO2 and -NH2.

10. (original) A compound according to Claim 2 selected from the following table:

$$R^{b}$$
 R^{a}
 R^{a}
 R^{b}
 R^{a}
 R^{b}
 R^{a}
 R^{b}
 R^{a}
 R^{b}
 R^{b

Ex.	Ra	Rb	A	U	R ²	R1
1	i-PrO-	-CN	-CH=	=CH-	Н	Н
2	i-PrO-	Cl-	-CH=	=CH-	Н	Н
3	i-PrO-	Br-	-CH=	=CH-	Н	Н
4	i-PrO-	MeO-	-CH=	=CH-	Н	Н
5	i-PrO-	Me-	-CH=	=CH-	Н	Н
6	i-PrO-	F-	-CH=	=CH-	Н	Н
8	i-PrO-	-CF3	-CH=	=CH-	R ² and R ²	3 joined to
					form cyc	clopropyl
9	i-PrO-	-CF3	-CH=	=CH-	Н	Me
10	i-PrO-	-CN	-CH=	=CH-	Н	Me
11	i-PrO-	-CH3	-CH=	=CH-	Н	Me
12	i-PrO-	-CF3	-CH=	=CH-	Me	Н

Serial No.: Case No.: To be assigned 21419YP

						
13	i-PrO-	-CN	-СН=	=CH-	Me	Н
14	<i>i</i> -PrO-	-CH3	-CH=	=CH-	Me	Н
15	i-PrO-	Cl-	-N=	=CH-	Н	Н
16	i-Pr-NH-	Cl-	-N=	=CH-	Н	Н
17	2,2,2-trifluoro-1-	Cl-	-N=	=CH-	Н	Н
	methylethoxy					
18	pyrrolidinyl	Cl-	-N=	=CH-	H	Н
19	morpholin-4-yl	Cl-	-N=	=CH-	Н	Н
20	i-Pr-N(Me)-	Cl-	-N=	=CH-	Н	Н
21	2,2,2-trifluoroethoxy	Cl-	-N=	=CH-	Me	Н
22	2,2,2-trifluoro-1-	Cl-	-N=	=CH-	Me	Н
	methylethoxy					
23	3,3-difluoro	Cl-	-N=	=СН-	Me	Н
	piperidinyl					
24	3,3,-difluoro	Cl-	-N=	=CH-	Me	Н
	pyrrolidinyl					
25	morpholin-4-yl	-CF3	-N=	=CH-	Me	Н
26	3,3,-difluoro	Cl-	-N=	=CH-	R ² and R ³ joined to	
	pyrrolidinyl				form cyclopropyl	
27	2,2,2-trifluoroethoxy	Cl-	-N=	=CH-	R ² and R ²	3 joined to
					form cyclopropyl	
28	2,2,2-trifluoro-1-	Cl-	-N=	=CH-	R ² and R ³ joined to	
	methylethoxy				form cyclopropyl	
29	1-Me- <i>n</i> -PrO-	Cl-	-N=	=CH-	R ² and R ³ joined to	
					form cyclopropyl	
30	i-PrO-	Cl-	-N=	=CH-	R ² and R ²	3 joined to
					form cyclopropyl	
31	i-Bu-	Cl-	-N=	=CH-	Н	Н
32	i-Pr-N(Me)-	<u>I</u> -	-N=	=CH-	Н	Н
33	i-Pr-N(Me)-	-CN	-N=	=CH-	Н	Н
34	3,3,-difluoro	I	-N=	=CH-	Н	Н
	pyrrolidinyl					
35	3,3,-difluoro	-CN	-N=	=CH-	Н	Н
	pyrrolidinyl					
36	i-PrO-	-CN	-CH=	=CH-	R ² and R ³	
					form cyclo	propyl

Serial No.:

To be assigned 21419YP

Case No.: Page

15

37	2,2,2-trifluoro-1- methylethoxy	-CN	-CH=	=CH-	R ² and R ³ joined to form cyclopropyl	
38	i-PrO-	MeO-	-CH=	=CH-	R ² and R ³ joined to form cyclopropyl	
39	2,2,2-trifluoroethoxy	-CN	-CH=	=CH-	R ² and R ³ joined to form cyclopropyl	
40	2,2,2-trifluoro- 1-trifluoromethyl ethoxy	-CN	-CH=	=CH-	R ² and R ³ form cyclo	•
43	1-Me- <i>n</i> -PrO-	-CN	-CH=	=CH-	R ² and R ³ form cyclo	_
44	2,2,2-trifluoro-1- methylethoxy	-CN	-N= .	=CH-	R ² and R ³ form cyclo	•
45	i-PrO-	I	-N=	=CH-	R ² and R ³ joined to form cyclopropyl	
48	Ethoxy	-CN	-N=	=CH-	H	Н
49	2,2,2-trifluoro-1- methylethoxy	-CN	-N=	=CH-	Н	Н
50	2-Me- <i>n</i> -Pr-	-CN	-N=	=CH-	Н	Н
51	2-methyl-1,1- difluoro- <i>n</i> -propyl	Н	-CH=	=CH-	Н	Н
52	2,2,2-trifluoro-1- methylethoxy	I-	-N=	=CH-	Н	Н
53	Cyclopentyloxy	Cl-	-CH=	=CH-	Н	Н
54	2-Me- <i>n</i> -PrO-	Cl-	-CH=	=CH-	Н	Н
55	2,2,2-trifluoro-1- methylethoxy	-CN	-CH=	=CH-	Н	Н
56	2,2,2-trifluoro-1- methylethoxy	Cl-	-CH=	=CH-	Н	Н
57	i-PrO-	Cl-	-C(Cl)=	=CH-	Н	Н
58	cyclopropylmethoxy	Cl-	-CH=	=CH-	Н	Н
60	2,2,2-trifluoro-1- methylethoxy	-NO ₂	-CH=	=CH-	Н	Н
61	2,2,2-trifluoroethoxy	-CN	-CH=	=CH-	Н	Н
62	2,2,2-trifluoro- 1-trifluoromethyl ethoxy	-CN	-CH=	=CH-	Н	Н

Serial No.: Case No.:

To be assigned 21419YP

Page

16

63	1-Me-n-PrO-	-CN	-CH=	=CH-	Н	Н
65	2,2,2-trifluoro-1- methylethoxy	-NH ₂	-CH=	=CH-	Н	Н
66	1-Me- <i>n</i> -PrO-	-CN	-CH=	=CH-	Me	Н
67	2,2,2-trifluoro- 1-trifluoromethyl ethoxy	-CN	-CH=	=CH-	Me	H
68	2,2,2-trifluoroethoxy	-CN	-CH=	=CH-	Me	Н
69	i-PrO-	-CN	-CH=	=N-	Н	Н
70	2,2,2-trifluoro-1- methylethoxy	-CN	-N=	=N-	Н	Н
71	2,2,2-trifluoroethoxy	-CN	-CH=	=N-	Н	Н
72	2,2,2-trifluoro- 1-trifluoromethyl ethoxy	-CN	-CH=	=N-	Н	Н
73	2,2,2-trifluoroethoxy	-CN	-CH=	=N-	Me	Н
74	2,2,2-trifluoro-1- methylethoxy	-CN	-N=	=N-	Me	Н
75	i-PrO-	-CF3	-CH=	=CH-	Н	Н
79	i-PrO-	-CN	-CH=	=CH-	ОН	ОН
80	i-PrO-	-CN	-CH=	=CH-	ОН	ОН

or a pharmaceutically acceptable salt of any of the compounds above.

11. (original) A compound according to Claim 2 selected from the following table:

Serial No.: Case No.: To be assigned 21419YP

0-N)- 0-
OH
Ni OH
$s \sim N$
O-N $O-N$ O
F
S
O-N $O-N$
N-N
N OH
CI S OH
$\frac{1}{2}$

N-N
SOH
F———F
<u> </u>
S
OH
<u>""</u>
SOH
N-N
N OH
S
Ö
N = N
SOH
Ö
N = N - N
SOH
N-N \
OH
Ö

N OH
N-N S OH
F OH
F F O OH
F F O S O O O O O
N-N S OH

Serial No.:

To be assigned 21419YP Case No.:

22

Page

.OH ÒН 0-N HO 0-N ЮH 0-N OН

Case No.: 21419YP

Page 23

or a pharmaceutically acceptable salt of any of the compounds above.

12. (original) A method of treating an immunoregulatory abnormality in a mammalian patient in need of such treatment comprising administering to said patient a compound in accordance with Claim 1 in an amount that is effective for treating said immunoregulatory abnormality.

Claims 13 -17 (Cancelled)

18. (original) A pharmaceutical composition comprised of a compound in accordance with Claim 1 in combination with a pharmaceutically acceptable carrier.

Claims 19 -23 (Cancelled)

Case No.: 21419YP

Page 24

24. (original) A compound according to Claim 1 of Formula If:

$$R^{b}$$
 R^{a}
 R^{a}
 R^{b}
 R^{a}
 R^{b}
 R^{a}
 R^{a}
 R^{b}
 R^{a}

or a pharmaceutically acceptable salt thereof, wherein:

R¹ and R² are -H, or R¹ and R² may be joined together with the atoms to which they are attached to form cyclopropyl;

U and V are $-C(R^9)$ -;

each R⁹ is -H, or

For U or V, R⁹ and R¹ or R⁹ and R² may be joined together with the atoms to which they are attached to form a 5 membered ring, thus forming a fused partially aromatic bicyclic ring system of 9 atoms with the phenyl ring to which R⁹ is attached;

Ra is selected from the group consisting of: C₁₋₄alkoxy and C₃₋₆cycloalkoxy, said C₁₋₄alkoxy and C₃₋₆cycloalkoxy groups optionally substituted from one up to the maximum number of substitutable positions with fluoro; and

Rb is selected from the group consisting of: C1-4alkyl and C2-4alkenyl.

25. (original) A compound according to Claim 24 selected from the group consisting of:

Case No.: 21419YP

Page 25

or a pharmaceutically acceptable salt of any of the above.

26. (original) A compound according to Claim 1 of Formula Ig:

Ig

or a pharmaceutically acceptable salt thereof, wherein:

A is selected from -N- or -CH-;

is selected from the group consisting of:

Serial No.:

To be assigned

Case No.: Page

21419YP 26

R¹ and R² are -H, or R¹ and R² may be joined together with the atoms to which they are attached to form cyclopropyl;

U and V are $-C(R^9)$ -;

each R⁹ is -H, or

For U or V, R⁹ and R¹ or R⁹ and R² may be joined together with the atoms to which they are attached to form a 5 membered ring, thus forming a fused partially aromatic bicyclic ring system of 9 atoms with the phenyl ring to which R⁹ is attached;

Ra is selected from the group consisting of: thienyl, NR⁷R⁸, C₁-4alkyl, C₃-6cycloalkyl, C₁-4alkoxy and C₃-6cycloalkoxy, wherein said C₁-4alkyl, C₃-6cycloalkyl, C₁-4alkoxy and C₃-6cycloalkoxy are each optionally substituted from one up to the maximum number of substitutable positions with fluoro;

R⁷ and R⁸ are independently selected from the group consisting of: -H and C₁₋₆alkyl, optionally substituted with one to three flouro groups, and

R⁷ and R⁸ may be joined together with the nitrogen atom to which they are attached to form a saturated monocyclic ring of 3 to 8 atoms, said ring is optionally substituted with one to three fluoro groups.

To be assigned 21419YP Serial No.:

Case No.:

27 Page

27. (original) A compound according to Claim 26 selected from the group consisting of:

Case No.: 21419YP

Page 30

or a pharmaceutically acceptable salt of any of the above.

28. (original) A compound according to Claim 1 of Formula lh:

$$R^{b}$$
 R^{b}
 R^{a}
 R^{b}
 R^{a}
 R^{b}
 R^{a}
 R^{b}
 R^{a}
 R^{b}
 R^{a}
 R^{b}
 R^{b}

or a pharmaceutically acceptable salt thereof, wherein:

A is selected from -N- or -CH-;

$$Q - Z$$

the group Z

is selected from the group consisting of:

Case No.: 21419YP

Page 31

R¹ and R² are -H, or R¹ and R² may be joined together with the atoms to which they are attached to form cyclopropyl;

 R^5 is -H or -CH3;

U and V are $-C(R^9)$ -;

each R⁹ is -H, or

For U or V, R⁹ and R¹ or R⁹ and R² may be joined together with the atoms to which they are attached to form a 5 membered ring, thus forming a fused partially aromatic bicyclic ring system of 9 atoms with the phenyl ring to which R⁹ is attached;

Ra is selected from the group consisting of: -F, NR⁷R⁸, C₁-4alkyl, C₃-6cycloalkyl, C₁-4alkoxy and C₃-6cycloalkoxy, wherein said C₁-4alkyl, C₃-6cycloalkyl, C₁-4alkoxy and C₃-6cycloalkoxy are each optionally substituted from one up to the maximum number of substitutable positions with fluoro;

 R^7 and R^8 are independently selected from the group consisting of: -H and $C_{1\text{-}6}$ alkyl, optionally substituted with one to three flouro groups, and

Page 32

R⁷ and R⁸ may be joined together with the nitrogen atom to which they are attached to form a saturated monocyclic ring of 3 to 8 atoms, said ring is optionally substituted with one to three fluoro groups;

Rb is Cl or I;

J is selected from the group consisting of: -CO₂H, -PO₃H₂, -PO₂H₂, -SO₃H, -CONHSO₂R¹³, -PO(R¹³)OH,

Case No.: 21419YP

Page 33

R¹³ is selected from the group consisting of: C₁-C₄ alkyl, phenyl, -CH₂OH and CH(OH)-phenyl; and

each R¹⁴ is independently selected from the group consisting of: -H and -CH₃.

29. (original) A compound according to Claim 28, wherein:

For U, R⁹ and R¹ are joined together with the atoms to which they are attached to form a 5 membered ring, thus forming a fused partially aromatic bicyclic ring system of 9 atoms with the phenyl ring to which R⁹ is attached;

R⁵ is CH₃;

Rb is Cl; and

J is selected from the group consisting of: -CO₂H,

$$NR^{14}$$
 NR^{14} NR^{14} NR^{14} NR^{14} NR^{14} NR^{14} NR^{14} , wherein each R^{14} is independently selected from the group consisting of: -H and -CH3.

30. (original) A compound according to Claim 28 selected from the group consisting of:

$$CI$$
 CO_2H
 CI
 CO_2H
 CO_2H

Serial No.:

To be assigned 21419YP Case No.:

$$\begin{array}{c} CI \\ N \\ CO_{2}H \\$$

To be assigned 21419YP Serial No.:

Case No.:

Serial No.:

To be assigned 21419YP Case No.:

To be assigned 21419YP Serial No.:

Case No.:

Page 38

or a pharmaceutically acceptable salt of any of the above.