10. Give an example of a family of intervals A_n , n=1,2,..., such that $A_{n+1} \subset A_n$ for all n and $\bigcap_{n=1 \text{ to}} A_n$ consists of a single real number. Prove that your example has the stated property.

Claim: Let $A_n = [0,1/n]$

 $\forall n \in \mathbb{N}[A_{n+1} \subset A_n] \land \bigcap_{n=1 \text{ to } \infty} [A_n] = \{0\}$

Proof: We will separate the claim in two and make two proofs.

First claim: $\forall n \in \mathbb{N}[A_{n+1} \subset A_n]$, i.e.,

 $\forall n \in \mathbb{N} [[0,1/(n+1)] \subset [0,1/n]], i.e.$

 $\forall n \in \mathbb{N} \forall x \in \mathbb{R} [(0 \le x \le 1/(n+1) \Rightarrow 0 \le x \le 1/n) \land \neg (0 \le x \le 1/(n+1) \Leftrightarrow 0 \le x \le 1/n)]$

First proof: Given and an $n \in \mathbb{N}$ and an $x \in \mathbb{R}$ suppose $0 \le x \le 1/(n+1)$. We know that 1/(n+1) < 1/n, so $0 \le x \le 1/(n+1) \le 1/n$, hence $0 \le x \le 1/n$. From this we deduce that $A_{n+1} \subseteq A$. Now, to prove the second term, suppose $0 \le x \le 1/n$. If x = 1/(n+0.5) then $0 \le x \le 1/n$, but 1/(n+1) < x, so it is not the case that $0 \le x \le 1/(n+1)$, hence, A_{n+1} and A_n are not equal, so $A_{n+1} \subset A_n$ proving the first claim.

Second claim: $\bigcap_{n=1 \text{ to } \infty} [A_n] = \{0\}$, i.e.,

 $\{x|(\forall n)(x\in A_n)\}=\{0\}, i.e.,$

 $\forall x \in \mathbb{R} [\forall n \in \mathbb{N} (0 \le x \le 1/n) \Leftrightarrow x = 0]$

Second proof: Take an arbitrary $x \in \mathbb{R}$.

 $[\Rightarrow]$ Suppose $\forall n \in \mathbb{N} (0 \le x \le 1/n)$. By way of contradiction suppose $x \ne 0$. By the assumptions, clearly x must be greater than 0. If x > 0, you can pick an $n \in \mathbb{N}$ so large that makes 1/n < x, contradicting the assumption, proving the left-to-right part.

[\Leftarrow] Suppose x=0. Given any n∈N, 1/n is always greater than 0, hence, 0 \le x \le 1/n, proving the right-to-left part.

With both claims proved the original claim gets proved. \Box