LPA Analyses Using Reduced Sample (N=1361)

Matt Blanchard

1 Number of participants from each country

 $\label{eq:Table 1} {\it Table 1}$ Number of participants from each country

	Australia	Canada	UK	US	total
n	370	307	370	314	1361
percent	27	23	27	23	100

2 Goodness of fit indices for 2 to 6 profile models

 ${\bf Table~2}$ Goodness of fit indices for 2-6 profile models

Model	Classes	LogLik	AIC	BIC	Entropy	$BLRT_val$	BLRT_p
1	2	-39553	79235	79568	0.94	1982	0.01
1	3	-38725	77623	78072	0.97	1656	0.01
1	4	-38329	76874	77437	0.87	793	0.01
1	5	-38091	76442	77120	0.86	476	0.01
1	6	-37943	76190	76983	0.82	296	0.01

3 2 profile model

3.1 Plot

3.2 Latent profile membership

3.2.1 Overall membership

 $\label{eq:Table 3} \mbox{Number and percent of participants in each profile}$

	1	2	total
n	152	1209	1361
percent	11	89	100

3.2.2 Country membership

 ${\bf Table}~4$ Number of participants from each country in each profile

CountryLive	1	2	total
Australia Canada UK	47 22 26	323 285 344	370 307 370
US	57	257	314

3.2.3 Gender membership

 ${\bf Table~5}$ Number of participants from each gender in each profile

Gender	1	2	total
female	75	776	851
male	75	420	495
NA	2	13	15

3.2.4 Differences on demographic variables

 ${\bf Table~6}$ Differences between latent profiles on demographic variables

var	mean_1	mean_2	t	p.value	$^{ m df}$	conf.low	conf.high
AnnualIncome_usd	52861.8	54210.5	-0.25	0.80	1196	-12063.67	9366.27
Education	4.6	4.9	-1.81	0.07	1359	-0.54	0.02

4 3 profile model

4.1 Latent profile membership

4.1.1 Overall membership

 $\begin{tabular}{ll} Table 7\\ Number and percent of participants in each profile \\ \end{tabular}$

	1	2	3	total
n	137	1069	155	1361
percent	10	79	11	100

4.1.2 Country membership

 ${\bf Table~8}$ Number of participants from each country in each profile

CountryLive	1	2	3	total
Australia	44	290	36	370
Canada	19	250	38	307
UK	22	310	38	370
US	52	219	43	314

4.1.3 Gender membership

 $\label{eq:Table 9} {\it Number of participants from each gender in each profile}$

Gender	1	2	3	total
female	68	675	108	851
male	67	384	44	495
NA	2	10	3	15

4.1.4 Differences on demographic variables

 ${\bf Table~10}$ Differences between latent profiles on demographic variables

var	term	df	sumsq	meansq	F	P
Education	.x\$Class	2	23	11.3	4.139	0.016
Education	Residuals	1358	3711	2.7		
$Annual Income_usd$.x\$Class	2	2407206405	1203603202.5	0.346	0.708
$AnnualIncome_usd$	Residuals	1195	4159942431502	3481123373.6		

5 4 profile model

5.1 Latent profile membership

5.1.1 Overall membership

 ${\bf Table~11}$ Number and percent of participants in each profile

	1	2	3	4	total
n	95	790	$\frac{322}{24}$	154	1361
percent	7	58		11	100

5.1.2 Country membership

 $\label{eq:table 12} {\it Number of participants from each country in each profile}$

CountryLive	1	2	3	4	total
Australia	33	218	84	35	370
Canada	12	190	67	38	307
UK	13	218	101	38	370
US	37	164	70	43	314

5.1.3 Gender membership

 $\label{eq:table 13} \mbox{Number of participants from each gender in each profile}$

Gender	1	2	3	4	total	
female	52	537	155	107	851	
male	41	244	166	44	495	
NA	2	9	1	3	15	

5.1.4 Differences on demographic variables

Table 14 Differences between latent profiles on demographic variables

var	term	df	sumsq	meansq	F	P
Education	.x\$Class	3	43	14.5	5.324	0.001
Education	Residuals	1357	3690	2.7		
AnnualIncome_usd AnnualIncome_usd	.x\$Class Residuals	$\frac{3}{1194}$	3278085696 4159071552210	1092695232.1 3483309507.7	0.314	0.815

6 List of goodness of fit indices

A list and description of the GFI that can be computed for LPA models.

- LogLik: Log-likelihood of the data, given the model.
- AIC: Aikake information criterion; based on -2 log-likelihood, and penalized by number of parameters.
- BIC: Bayesian information criterion; based on -2 log-likelihood, and penalized by number of parameters adjusted by sample size.
- Entropy: A measure of classification uncertainty, reverse-coded so that 1 reflects complete certainty of classification, and 0 complete uncertainty (see Celeux & Soromenho, 1996).
- BLRT: bootstrapped likelihood test.
- BLRT p-value: p-value for the bootstrapped likelihood ratio test.
- AWE: Approximate weight of evidence; combines information on model fit and on classification errors (Celeux et al., 1997).
- CAIC: Consistent Aikake information criterion; based on -2 log-likelihood, and penalized by number of parameters adjusted by sample size.
- CLC: Classification Likelihood Criterion; based on -2 log-likelihood, and penalized by the entropy (Biernacki, 1997).
- KIC: Kullback information criterion; based on -2 log-likelihood, and penalized by 3 times the number of parameters -1 (Cavanaugh, 1999).
- SABIC: Sample size-adjusted Bayesian information criterion (Sclove, 1987).
- ICL: Integrated completed likelihood (Biernacki, Celeux, & Govaert, 2000).
- Prob. Min.: Minimum of the diagonal of the average latent class probabilities for most likely class membership, by assigned class. The minimum should be as high as possible, reflecting greater classification certainty (cases are assigned to classes they have a high probability of belonging to; see Jung & Wickrama, 2008).
- Prob. Max.: Maximum of the diagonal of the average latent class probabilities for most likely class membership, by assigned class. The maximum should also be as high as possible, reflecting greater classification certainty (cases are assigned to classes they have a high probability of belonging to).
- N Min.: Proportion of the sample assigned to the smallest class (based on most likely class membership).
- N Max.: Proportion of the sample assigned to the largest class (based on most likely class membership).