L. Sunil Chandran

Computer Science and Automation, Indian Institute of Science, Bangalore Email: sunil@csa.iisc.ernet.in x-y paths P and Q in G are internally disjoint if $V(P) \cap V(Q) = \{x,y\}$. The local connectivity p(x,y) between distinct vertices x and y is the maximum number of pairwise internally disjoint x-y paths.

 $\kappa(G) = \min\{p(x, y) : x, y \in V(G), x \neq y\}$

Let x and y be distinct non-adjacent vertices of G. An xy-vertex cut is a subset S of $V - \{x, y\}$ such that x and y belong to different components of G - S.

Local edge connectivity between distinct vertices x and y is the maximum number of pairwise edge disjoint x - y paths and is denoted by p'(x, y).

A non-trivial graph G is k-edge connected if $p'(u, v) \ge k$ for any two distinct vertices u, v in G.

The edge connectivity $\kappa'(G)$ of a graph G is the maximum value of k for which G is k-edge connected.

$$\kappa \leq \kappa' \leq \delta$$

A maximal connected subgraph without a cut vertex is called a block.

The block graph of a connected graph is a tree.

If G is 3-connected and |G| > 4 then G has an edge e such that G/e is again 3-connected.

A graph G is 3-connected if and only if there exists a sequence G_0, G_1, \ldots, G_n of graph such that the following properties hold.

- (1) $G_0 = K_4$ and $G_n = G$.
- (2) G_{i+1} has an edge (x, y) with $d(x), d(y) \ge 3$ and $G_i = G_{i+1}/(x, y)$, for every i < n.