Dynamic model of a DC motor with gear train

Paulo Loma Marconi — <u>2020-10-22</u> — <u>2 Comments</u>

Also available in: Español

Table of Contents

- Source code
- Introduction
- Free-body diagram analysis
- Dynamic system
- State-space equations
- Equilibrium point **x**₀
- References

Source code

Version PDF/HTML. LaTex source code on GitHub.

Introduction

The objective is to model the dynamics of a DC servo motor with gear train, Fig. 1, and to deduce two equilibrium points.

Fig.1 - DC servo motor with gear train.

Free-body diagram analysis

The system can be decomposed in two sections: a rotational mechanical, and an electro-mechanical. The rotational mechanical can be derived as follows,

Fig.2 - Rotational mechanical free-body diagram.

where θ is the angular displacement, ω is the angular speed, B is the rotational viscous-damping coefficient, K is the stiffness coefficient, J is the moment of inertia, f_c is the contact force between two gears, and r is the gear radius.

The electromechanical section (DC motor) is

 $\label{eq:Fig.3-Electro-mechanical free-body diagram.}$

where R_F is the field resistance, L_F is the field inductance, E_F is the applied constant field voltage, and i_F is the input field current. R_A is the stationary resistance, L_A is the stationary inductance, and e_m is the induced voltage, i_A is the input stationary current, and $e_i(t)$ is the applied armature voltage, and τ_e is the electro-mechanical driving torque exerted on the rotor.

If the flux density ${\cal B}$ is

$$\mathcal{B} = rac{\phi(i_F)}{A}$$
 (1)

the torque on the rotor is

S

$$au_e = \mathcal{B}la\ i_A \ au_e = rac{la}{A}\phi(i_F)i_A$$
 (2)

where $\phi(i_F)$ is the flux induced by i_F , A is the cross-sectional area of the flux path in the air gap between the rotor and stator, l is the total length of the armature conductors within the magnetic field, and a is the radius of the armature.

Also, the voltage induced in the armature e_m can be written as

$$e_m = rac{la}{A}\phi(i_F)\omega$$
 (3)

where both, au_e and e_m , depend on the geometry of the DC motor.

Dynamic system

We begin applying D'Alembert's law (restatement of Newton's law) to the rotational mechanical section.

$$\sum au_{all} = 0 \ J_1 \dot{\omega}_1 + B_1 \omega_1 + r_1 f_c = au_e(t) \ (4)$$

$$J_2\dot{\omega}_2+B_2\omega_2+K_2 heta-r_2f_c= au_L(t)$$

where τ_{all} are the torques acting on a body, $K\theta$ is the stiffness torque, $B\omega$ is the viscous-frictional torque, $J\dot{\omega}$ is the inertial torque, $\tau_e(t)$ is the driving torque, $\tau_L(t)$ is the load torque, and rf_c is the contact torque.

Due to the relation between gears,

$$egin{aligned} heta_1 &= N heta_2 \ \omega_1 &= N \omega_2 \ \dot{\omega}_1 &= N \dot{\omega}_2 \ N &= rac{r_2}{r_1} \end{aligned}$$

where N is the gear radius relation. We solve (4) and (5) in terms of ω_2 and θ_2 ,

$$(J_2 + N^2 J_1) \dot{\omega}_2 + (B_2 + N^2 B_1) \omega_1 + K_2 heta_2 - N au_e(t) - au_L(t) = 0$$

defining the relations

$$J_{eq} = J_2 + N^2 J_1 \ B_{eq} = B_2 + N^2 B_1$$

it becomes in

$$J_{eq}\dot{\omega}_{2} + B_{eq}\omega_{2} + K_{2}\theta_{2} - N\tau_{e}(t) - \tau_{L}(t) = 0$$
 (6)

Now, let us derive the equations of the electro-mechanical section using Kirchoff's law.

$$\sum_{l}V_{all}=0 \ e_m+V_{L_A}+V_{R_A}=e_i(t)$$
 (7)

where V_{all} are the induced voltages on the rotor and stator, V_{L_A} is the stationary resistance voltage, V_{R_A} is the stationary inductance voltage.

If i_F is defined as constant, then (2) is

$$\tau_e(t) = \left(\frac{la}{A}\phi(i_F)\right)i_A(t)$$

$$\tau_e(t) = \alpha i_A(t)$$
(8)

where α is the internal parameters of the DC motor.

Then, simplifying and using (6) and (7) the dynamic system is,

$$J_{eg}\dot{\omega}_2 + B_{eg}\omega_2 + K_2\theta_2 - N\tau_e - \tau_L = 0 \tag{9}$$

$$L_A\dot{i}_A+R_Ai_A+lpha\omega_1-e_i=0$$
 (10)

State-space equations

Let us define the state-space equations for $x = \begin{bmatrix} \theta_2 & \dot{\theta}_2 & i_A \end{bmatrix}^\mathsf{T}$. From the dynamic system,

$$J_{eq}\ddot{ heta}_2+B_{eq}\dot{ heta}_2+K_2 heta_2-Nlpha i_A- au_L=0 \ L_A\dot{i}_A+R_Ai_A+lpha\omega_1-e_i=0$$

reordering,

$$egin{aligned} \ddot{ heta}_2 &= -rac{B_{eq}}{J_{eq}}\dot{ heta}_2 - rac{K_2}{J_{eq}} heta_2 + rac{Nlpha}{J_{eq}}i_A - rac{1}{J_{eq}} au_L \ \dot{i}_A &= -rac{R_A}{L_A}i_A - rac{Nlpha}{L_A}\dot{ heta}_2 + rac{1}{L_A}e_i \end{aligned}$$

defining the states as

$$egin{cases} x_1 &= heta_2, \quad \dot{x}_1 = \dot{ heta}_2 = x_2 \ x_2 &= \dot{ heta}_2, \quad \dot{x}_2 = \ddot{ heta}_2 = -rac{B_{eq}}{J_{eq}}x_2 - rac{K_2}{J_{eq}}x_1 + rac{Nlpha}{J_{eq}}x_3 - rac{1}{J_{eq}} au_L \ x_3 &= i_A, \quad \dot{x}_3 = \dot{i}_A = -rac{R_A}{L_A}x_3 - rac{Nlpha}{L_A}x_2 + rac{1}{L_A}e_i \end{cases}$$

then

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & 1 & 0 \\ -\frac{K_2}{J_{eq}} & -\frac{B_{eq}}{J_{eq}} & \frac{N\alpha}{J_{eq}} \\ 0 & -\frac{N\alpha}{L_A} & -\frac{R_A}{L_A} \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}}_{\mathbf{x}} + \underbrace{\begin{bmatrix} 0 & 0 & 0 \\ 0 & -\frac{1}{J_eq} & 0 \\ 0 & 0 & \frac{1}{L_A} \end{bmatrix}}_{B} \underbrace{\begin{bmatrix} 0 \\ \tau_L \\ e_i \end{bmatrix}}_{\mathbf{u}}$$
(11)

$$\dot{\mathbf{x}} = A\mathbf{x} + B\mathbf{u} \tag{12}$$

The output $y=\dot{\omega}_2$ can be defined as

$$y = \underbrace{\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}}_{C} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \underbrace{\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}}_{D} e_i \tag{13}$$

$$y = C\dot{\mathbf{x}} \tag{14}$$

Equilibrium point **x**₀

Using $\dot{\mathbf{x}} = 0$ in (12), the equilibrium point $\mathbf{x_0}$ can be calculated as

$$0 = A\mathbf{x_0} + B\mathbf{u} \tag{15}$$

$$\mathbf{x_0} = -A^{-1}B\mathbf{u} \tag{16}$$

$$\begin{bmatrix} x_{1_0} \\ x_{2_0} \\ x_{3_0} \end{bmatrix} = - \begin{bmatrix} 0 & 1 & 0 \\ -\frac{K_2}{J_{eq}} & -\frac{B_{eq}}{J_{eq}} & \frac{N\alpha}{J_{eq}} \\ 0 & -\frac{N\alpha}{L_A} & -\frac{R_A}{L_A} \end{bmatrix}^{-1} \begin{bmatrix} 0 & 0 & 0 \\ 0 & -\frac{1}{J_eq} & 0 \\ 0 & 0 & \frac{1}{L_A} \end{bmatrix} \begin{bmatrix} 0 \\ \tau_L \\ e_i \end{bmatrix}$$
(17)

Solving for no external torque $au_L=0$, constant applied armature voltage $e_i=E_0$, and $K_2
eq 0$,

$$egin{align} 0 &= x_{2_0} \ 0 &= -rac{K_2}{J_{eq}} x_{1_0} - rac{B_{eq}}{J_{eq}} x_{2_0} + rac{Nlpha}{J_{eq}} x_{3_0} \ 0 &= -rac{Nlpha}{L_A} x_{2_0} - rac{R_A}{L_A} x_{3_0} + rac{1}{L_A} E_0 \ \end{align}$$

due to $x_{2_0}=0$, we have

$$egin{align} 0 &= -rac{K_2}{J_{eq}} x_{1_0} + rac{Nlpha}{J_{eq}} x_{3_0} \ 0 &= -rac{R_A}{L_A} x_{3_0} + rac{1}{L_A} E_0 \end{align}$$

then

$$x_{1_0} = rac{Nlpha}{K_2R_A}E_0 \ x_{3_0} = rac{1}{R_A}E_0$$

therefore the equilibrium point is

$$\mathbf{x_0} = \begin{bmatrix} x_{1_0} \\ x_{2_0} \\ x_{3_0} \end{bmatrix} = \begin{bmatrix} \frac{N\alpha}{K_2 R_A} \\ 0 \\ \frac{1}{R_A} \end{bmatrix} E_0 \tag{18}$$

This equilibrium point indicates that a constant angular displacement (twist) produced by $x_{1_0}=\theta_{2_0}$ is sufficient to balance the constant applied armature voltage $e_i=E_0$.

On the other hand, if we solve for no external torque $au_L=0$, constant applied armature voltage $e_i=E_0$, and no stiffness $K_2=0$. The problem is,

$$egin{bmatrix} x_{1_0} \ x_{2_0} \ x_{3_0} \end{bmatrix} = -egin{bmatrix} 0 & 1 & 0 \ 0 & -rac{B_{eq}}{J_{eq}} & rac{Nlpha}{J_{eq}} \ 0 & -rac{R_A}{L_A} \end{bmatrix}^{-1} egin{bmatrix} 0 & 0 & 0 \ 0 & -rac{1}{J_eq} & 0 \ 0 & 0 & rac{1}{L_A} \end{bmatrix} egin{bmatrix} 0 \ 0 \ E_0 \end{bmatrix}$$

if we eliminate x_{1_0} because the first column of A^{-1} has zeros, the problem reduces to

$$\begin{bmatrix} x_{2_0} \\ x_{3_0} \end{bmatrix} = - \begin{bmatrix} -\frac{B_{eq}}{J_{eq}} & \frac{N\alpha}{J_{eq}} \\ -\frac{N\alpha}{L_A} & -\frac{R_A}{L_A} \end{bmatrix}^{-1} \begin{bmatrix} -\frac{1}{J_eq} & 0 \\ 0 & \frac{1}{L_A} \end{bmatrix} \begin{bmatrix} 0 \\ E_0 \end{bmatrix}$$

$$(19)$$

solving, we have

$$egin{bmatrix} x_{2_0} \ x_{3_0} \end{bmatrix} = egin{bmatrix} rac{Nlpha}{B_{eq}R_A + (Nlpha)^2} \ rac{-B_{eq}}{B_{eq}R_A + (Nlpha)^2} \end{bmatrix} E_0 \tag{20}$$

which indicates that a ${f constant}$ ${f angular}$ ${f speed}$ produced by $x_{2_0}= heta_{2_0}$ is needed to balance the constant applied armature voltage $e_i=E_0$.

References

[1] Close, Charles M. and Frederick, Dean K. and Newell, Jonathan C., Modeling and Analysis of Dynamic Systems, 2001, ISBN 0471394424.

DC motor differential equations dynamics model equilibrium point state-space

Previous post

Next post

Comments

2 Comments 1 Login ▼ G Join the discussion... **LOG IN WITH** OR SIGN UP WITH DISQUS (?) Name Share **Newest Oldest**

Daniel Sun a year ago I think B_{eq} should be $B_2 + N^2 B_1$ 0 Reply • Share > paulomarconi Mod → Daniel Sun 9 months ago Solved! Thanks for spotting the typo. Reply • Share >

Contents © 2023 Paulo Loma Marcon

Subscribe

Privacy

Do Not Sell My Data