Математическое моделирование теплопроводности и горения: Этап 1 — Теоретическая модель

Алёна Горяйнова

Содержание

1	Цель работы	3
2	Задание	4
3	Теоретическое введение 3.1 Математическая модель	5
4	Выполнение лабораторной работы	6
5	Выводы	7
Сг	исок литературы	8

1 Цель работы

Целью данного этапа проекта является формулировка математической модели теплопроводности с экзотермической химической реакцией, а также анализ основных параметров и уравнений системы.

2 Задание

В рамках первого этапа проекта необходимо было:

- Разработать теоретическую модель теплопроводности с учётом химической реакции.
- Определить основные параметры системы, такие как коэффициент теплопроводности (κ), энергия активации (E), характерное время реакции (τ) и другие.
- Построить математическую модель горения на основе дифференциальных уравнений.

3 Теоретическое введение

Горение — это сложный физико-химический процесс, включающий в себя теплопроводность и экзотермическую реакцию. Математическая модель горения основана на дифференциальных уравнениях, включающих теплопроводность и закон Аррениуса.

Основные параметры: - κ — коэффициент теплопроводности - E — энергия активации - τ — характерное время химической реакции - ρ , c — плотность и удельная теплоёмкость вещества - Q — удельное энерговыделение

3.1 Математическая модель

Уравнение теплопроводности с учётом энерговыделения:

$$\rho c \frac{\partial T}{\partial t} = \kappa \frac{\partial^2 T}{\partial x^2} - \rho Q \frac{\partial N}{\partial t}$$

Уравнение химической реакции (закон Аррениуса):

$$\frac{\partial N}{\partial t} = -\frac{N}{\tau} e^{-E/RT}$$

4 Выполнение лабораторной работы

На первом этапе проекта была разработана математическая модель горения. В результате были получены дифференциальные уравнения, описывающие процесс теплопроводности и химической реакции. В дальнейшем эти уравнения будут использоваться для численного моделирования

5 Выводы

Завершен первый этап проекта. Математическая модель теплопроводности и химической реакции построена, что является основой для дальнейших численных экспериментов.

Список литературы