Análise dos dados das campanhas do Kickstarter

Aprendizado de Máquina - 2018.2 Prof. João Paulo Pordeus

Armando Soares Erick Barros Fabiano Gadelha Lucas Mapurunga

Sumário

- 1. Problema: Campanhas do Kickstarter
- 2. Analisar o dataset das campanhas de 2009 até 2018 do Kickstarter
- 3. Metodologia
- 4. Modelo proposto
- 5. K-Means
- 6. MLP
- 7. Conclusões

1. Problema: Campanhas do Kickstarter

Kickstarter (Product): a global crowdfunding platform where "creators" can run "campaigns" for people to fund and "back" their project.

\$1.9 billion in pledges from 9.4 million backers to fund 257,000 creative projects

Objetivo da análise: auxiliar os criadores de campanhas na escolha das características de suas propostas através de modelos de aprendizagem automática para então tentar aumentar sua chance de sucesso.

2. Análise do Dataset utilizado

Dados obtidos via Kaggle¹ e Webrobots²

Dataset com <u>372300</u> amostras sobre as campanhas de maio/2009 a março/2018 do Kickstarter.

15 features disponíveis.

<u>6</u> features escolhidas: main_category, category, backers, country, usd_pledged_real, usd_goal_real

<u>1</u> feature criada: running_days (A partir de deadline e launched)

1 Label: state

Tabela 1 - Atributos do Conjunto de Dados

Nome do Atributo	Descrição		
ID	Identificador do projeto		
name	Nome do projeto		
category	Sub-categoria da campanha		
main_category	Categoria da campanha		
currency	A moeda utilizada (ex: USD)		
deadline	Prazo final para o crowdfunding do projeto		
goal	Montante de dinheiro necessário para o projeto		
launched	Dia de lançamento da campanha		
pledged	Montante de dinheiro que os apoiadores colaboraram para a campanha		
backers	Quantidade de apoiadores do projeto		
country	País de origem		
usd_pledged	Montante de dinheiro que os apoiadores colaboraram para a campanha em USD		
state	Estado final do projeto		

2. Análise do Dataset utilizado

Correlação, usando método Spearman, entre as features do dataset:

	category	main_category	backers	country	usd_pledged_real	usd_goal_real	running_days	state
category	1.000	0.261	-0.100	0.023	-0.104	-0.081	-0.049	-0.034
main_category	0.261	1.000	0.006	0.052	-0.001	0.040	-0.023	-0.036
backers	-0.100	0.006	1.000	-0.045	0.959	0.106	-0.001	0.691
country	0.023	0.052	-0.045	1.000	-0.040	0.044	0.041	-0.058
usd_pledged_real	-0.104	-0.001	0.959	-0.040	1.000	0.181	0.018	0.672
usd_goal_real	-0.081	0.040	0.106	0.044	0.181	1.000	0.214	-0.228
running_days	-0.049	-0.023	-0.001	0.041	0.018	0.214	1.000	-0.101
state	-0.034	-0.036	0.691	-0.058	0.672	-0.228	-0.101	1.000

2. Análise do Dataset utilizado

Correlação, usando métodos Pearson e Spearman, entre as features e o status:

- 1. Analisar as <u>informações mais impactantes</u> nas campanhas
- 2. Fazer a <u>limpeza dos dados</u> do dataset
- 3. Definir um modelo de clusterização
- 4. Definir um modelo de classificação
- 5. Executar os <u>algoritmos de machine learning</u>
- 6. Analisar os dados obtidos

4. Modelo proposto

- 1. K-means para clusterização
 - a. Capacidade de identificar a existência de alguns agrupamentos relacionados às categorias dos projetos.
 - b. Uso do Elbow Method para escolha do K.
- 2. Multilayer Perceptron para classificação
 - a. Capacidade de lidar com a modelagem de problemas complexos de classificação e dados não linearmente separáveis.
 - b. Definição dos números de camadas e critérios de convergência.
- 3. Foi utilizada a biblioteca Scikit Learn do Python
 - a. sklearn.cluster.KMeans
 - b. sklearn.neural_network.MLPClassifier

- 1. Natureza dos dados e tratamento
- 2. Quantos clusters utilizar?
- 3. Agrupamento gerado

Erro médio por clusters


```
{'failed': 0, 'canceled': 1, 'successful': 2, 'live': 3, 'undefined': 4, 'suspended': 5}
                                                                                            Cluster 0
---- States in cluster 0 ----
     133956
       2799
Name: state, dtype: int64
                                                                                            Cluster 1
---- States in cluster 1 ----
     197719
Name: state, dtype: int64
---- States in cluster 2 ----
                                                                                            Cluster 2
                                                                                                      3562 1846
     3562
     1846
Name: state, dtype: int64
---- States in cluster 3 ----
                                                                                            Cluster 3
     38779
Name: state, dtype: int64
                                                                                                                                                      150000
                                                                                                                   50000
                                                                                                                                     100000
```


6. Multilayer Perceptron

Modelo Genérico:

Figure 1 : One hidden layer MLP.

Modelo proposto:

Input: 7 Features

x1, x2, x3, x4, x5, x6, x7 (1° camada)

main_category, category, backers, country, usd_pledged_real, usd_goal_real, running_days

Duas camadas ocultas com 5 neurônios cada:

Output

$$f(X) = a_1^4, a_2^4 (4^a camada)$$

successful, others

Modelagem dos dados:

- Conjuntos de treino (70%) e teste (30%)
- Normalização dos dados de entrada

Parâmetros utilizados:

- Camadas Ocultas: 2
- Neurônios Ocultos: 10 (5 na 1ª e 5 na 2ª)
- Alpha: 0.01 (taxa de regularização)
- Máximo de Iterações: 100
- Tolerância: 0.0001
- Solver: adam (Versão otimizada do Gradiente Estocástico)

6. Matriz de Confusão

	Positive	Negative
True	70707	1394
False	922	811

6. Métricas

	Acurácia	Precisão	Recall	F1 Score
0	0.98448	0.99	0.99	0.99
1		0.98	0.98	0.98
micro avg		0.98	0.98	0.98
macro avg		0.98	0.98	0.98
weighted avg		0.98	0.98	0.98

7. Conclusões

- Projetos com objetivos mais realistas tem mais chance de sucesso.
- O classificador MLP obteve uma acurácia bastante elevada, provavelmente indicando uma grande separação entre as classes de sucesso e "outros"

Dúvidas?

Referências

- 1. Repositório do Github com a implementação dos códigos
- 2. Scikit
- 3. <u>Dados no Kaggle</u>
- 4. <u>Dataset do Webrobots</u>

Parâmetros utilizados:

- C (parâmetro de regularização): 1.0

- Máximo de Iterações: 100

- Tolerância: 1e-4

- Solver: liblinear

Apêndice. Matriz de Confusão

	Positive	Negative
True	69888	11775
False	1741	28286

Apêndice. Métricas

	Acurácia	Precisão	Recall	F1 Score
0	0.87899	0.86	0.98	0.91
1		0.94	0.71	0.81
micro avg		0.88	0.88	0.88
macro avg		0.90	0.84	0.86
weighted avg		0.89	0.88	0.87