Анализ температуры городов России

Изучим зависимости между широтой, долготой и средней минимальной температуры января по крупым городам России

```
In [2]: 1    cities = pd.read_csv('./cities.csv', sep='\t')
2    cities.head()
```

Out[2]:

	Город	Широта	Долгота	Страна	Ср. мин. температура января
0	Абакан	53.720976	91.442423	Россия	-22.0
1	Анадырь	64.733330	177.516670	Россия	-26.2
2	Архангельск	64.539304	40.518735	Россия	-16.5
3	Астрахань	46.347869	48.033574	Россия	-6.5
4	Барнаул	53.356132	83.749620	Россия	-20.1

Корреляции Спирмена по всем парам переменных. Видим значимую корреляцию каждой координаты с температурой. Гипотеза о независимости широты и долготы не отклоняется.

```
SpearmanrResult(correlation=0.0007727386510812899, pvalue=0.9945026019473004)
SpearmanrResult(correlation=-0.7667207251734454, pvalue=4.5975259597067667e-17)
SpearmanrResult(correlation=-0.43280690529387955, pvalue=4.885540523522442e-05)
```

Только европейская часть

```
In [5]:
         1 ▼ euro cities = cities[cities['Долгота'] \
                                   <= float(cities['Долгота'][cities['Город'] == 'Екатеринбург'])]
         2
         3
              plt.figure(figsize=(18, 15))
         5 ▼ plt.scatter(euro_cities['Долгота'], euro_cities['Широта'],
                          c=euro cities['Cp. мин. температура января'], s=400)
         7 v for i in range(len(euro_cities)):
                  plt.annotate(euro_cities['Fopog'].iloc[i],
         8 ▼
                               (euro_cities['Долгота'].iloc[i] + 0.3,
         9 ▼
                               euro cities['Широта'].iloc[i] + 0.3),
        10
                               fontsize=14)
        11
```



```
SpearmanrResult(correlation=-0.0914570910033705, pvalue=0.49865433501815637)
SpearmanrResult(correlation=-0.5114975131228814, pvalue=4.776257220262623e-05)
SpearmanrResult(correlation=-0.6295029905833054, pvalue=1.5593423445891046e-07)
```

Свойства вина

https://archive.ics.uci.edu/ml/datasets/Wine+Quality (https://archive.ics.uci.edu/ml/datasets/Wine+Quality)

Загрузим данные о параметрах вин

```
In [7]: 1     wine = pd.read_csv('./wine.data')
2     wine.head()
```

Out[7]:

	Class	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenols	Flavanoids	Nonflavanoid phenols	Proanthocyanins	Color intensity	Hue	OD280/OD315 of diluted wines	Prolin
C	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	2.29	5.64	1.04	3.92	106
1	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	1.28	4.38	1.05	3.40	105
2	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	2.81	5.68	1.03	3.17	118
3	1	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	2.18	7.80	0.86	3.45	148
4	1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	1.82	4.32	1.04	2.93	73!

Удалим класс, поскольку это не вещественная переменная

In [8]: 1 del wine['Class']

Визуализируем все 2D срезы

In [9]: sns.pairplot(wine);

Матрица корреляций по pandas-таблице строится методом corr.

- 0.8

- 0.4

- 0.0

- -0.4

- -0.8

Отели

https://github.com/Yorko/mlcourse_open/blob/master/data/hostel_factors.csv (https://github.com/Yorko/mlcourse_open/blob/master/data/hostel_factors.csv)

Загрузим информацию о нескольких отелях -- рейтинг, цена, качество, услуги.

```
In [3]:
            1 ▼ hostel = pd.read csv('hostel factors.csv',
                                           skiprows=1,
            2
                                           names=['Отель', 'Персонал', 'Бронирование хостела',
            3 ▼
                                                   'Заезд в хостел и выезд из хостела', 'Состояние комнаты', 'Состояние общей кухни', 'Состояние общего пространства',
            4
            5
                                                    'Дополнительные услуги', 'Общие условия и удобства',
            6
                                                   'Цена/качество', 'ССЦ', 'Рейтинг'])
            7
            8
            9
                 hostel.head()
```

Out[3]:

	Отель	Персонал	Бронирование хостела	Заезд в хостел и выезд из хостела	Состояние комнаты	Состояние общей кухни	Состояние общего пространства	Дополнительные услуги	Общие условия и удобства	Цена/ качество	ссц	Рейтин
0	hostel1	0.675000	0.100000	0.300000	0.875000	0.250000	0.425000	0.350000	0.725000	0.400000	0.275000	9.
1	hostel2	0.500000	0.000000	0.058824	0.573529	0.117647	0.382353	0.000000	0.161765	0.308824	0.000000	8.
2	hostel3	0.520833	0.041667	0.020833	0.666667	0.229167	0.437500	0.270833	0.250000	0.395833	0.270833	8.
3	hostel4	0.692308	0.038462	0.038462	0.346154	0.076923	0.307692	0.500000	0.115385	0.153846	0.269231	7.
4	hostel5	0.620690	0.000000	0.000000	0.517241	0.172414	0.344828	0.172414	0.379310	0.103448	0.310345	8.

Количество отелей

In [4]: 1 len(hostel)

Out[4]: 18

Корреляции признаков с рейтингом. Получаем степень влияния на рейтинг.

```
correlations = hostel.corr(method='spearman')['Peйтинг'].iloc[:-1].sort_values()
In [5]:
         2
              correlations
Out[5]: Цена/качество
                                            -0.351298
        Состояние комнаты
                                            -0.235875
        Состояние общей кухни
                                             -0.176167
                                            -0.053646
        Заезд в хостел и выезд из хостела
                                              0.105761
        Бронирование хостела
                                              0.211458
        ССЦ
                                              0.336459
        Дополнительные услуги
        Состояние общего пространства
                                              0.349226
        Общие условия и удобства
                                              0.401765
        Персонал
                                              0.459308
        Name: Рейтинг, dtype: float64
        Визуализируем полученные корреляции
In [9]:
              sns.set(font scale=1.3, style='white', palette='Set2')
```

```
In [10]: 1 plt.figure(figsize=(10, 5))
2 sns.barplot(y=correlations.index, x=correlations)
3 plt.title('Влияние параметров на рейтинг отеля')
4 plt.xlabel('Корреляция Спирмена')
5 plt.savefig('hostel_corr.png', facecolor=(0,0,0,0))
```


Посмотрим, как влияют признаки на обучение модели Random Forest. Обучим 100 деревьев

verbose=0, warm start=False)

n jobs=None, oob score=False, random state=None,

Извлечем автоматически посчитаные важности признаков и отсортируем их по убыванию

Визуализируем

```
In [16]: 1 plt.figure(figsize=(10, 5))
2 sns.barplot(y=fi.index, x=fi)
3 plt.title('Влияние параметров на рейтинг отеля')
4 plt.xlabel('Важность признаков по Random Forest')
5 plt.savefig('hostel_spearman.png', facecolor=(0,0,0,0))
```


Еще пример на важность признаков: <a href="https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances_faces.html#sphx-glr-auto-examples-ensemble-plot-forest-importances-faces-py (https://scikit-examples-ensemble-plot-forest-importances-faces-py (https://scikit-examples-ensemble-plot-faces-py (https://scikit-examples-py (https://scikit-examples-ensemble-py (https://scikit-examples-py (https://scikit-examples-py (https://sc

 $\underline{learn.org/stable/auto_examples/ensemble/plot_forest_importances_faces.html \#sphx-glr-auto-examples-ensemble-plot-forest-importances-faces-html \#sphx-glr-auto-example-plot-forest-importances-faces-html \#sphx-glr-auto-example-plot-forest-importances-faces-html \#sphx-glr-auto-example-plot-forest-importances-faces-html \#sphx-glr-auto-example-plot-forest-importances-faces-html \#sphx-glr-auto-example-plot-forest-importances-faces-html \#sphx-glr-auto-example-plot-forest-importances-faces-html #sphx-glr-auto-example-plot-forest-importances-faces-faces-html #sphx-glr-auto-example-plot-forest-importances-face$

Важность признаков в CatBoost: https://tech.yandex.com/catboost/doc/dg/concepts/fstr-docpage/ (https://tech.yandex.com/catboost/doc/dg/concepts/fstr-docpage/)

Communities and Crime Data Set

http://archive.ics.uci.edu/ml/datasets/Communities+and+Crime (http://archive.ics.uci.edu/ml/datasets/Communities+and+Crime)

In [19]: 1 from scipy.cluster.hierarchy import dendrogram, linkage, fcluster
2 from scipy.spatial.distance import squareform

Посмотрим на данные. В них есть некоторое количество пропусков

In [20]: df = pd.read csv('./communities.data.txt', header=None, na values='?') df.head(10) 2 Out[20]: O 1 2 121 122 123 3 4 9 ... 118 119 120 124 125 126 127 Lakewoodcity 1 0.19 0.33 0.02 0.90 0.12 ... 0.12 0.26 0.20 0.06 8 NaN NaN 0.04 0.9 0.5 0.32 0.14 0.20 0.45 ... 0.02 0.12 0.45 NaN Tukwilacity 1 0.00 0.16 0.12 0.74 NaN NaN NaN NaN 0.00 NaN 0.67 **1** 53 NaN NaN NaN Aberdeentown 1 0.00 0.42 0.49 0.56 0.17 ... 0.01 0.21 0.02 NaN NaN NaN NaN 0.00 NaN 0.43 5.0 81440.0 Willingborotownship 1 0.04 0.77 1.00 0.08 0.12 ... 0.02 0.39 0.28 NaN NaN NaN NaN 0.00 NaN 0.12 **4** 42 95.0 6096.0 Bethlehemtownship 1 0.01 0.55 0.02 0.95 0.09 ... 0.04 0.09 0.02 NaN NaN NaN NaN 0.00 NaN 0.03 NaN SouthPasadenacity 1 0.02 0.28 0.06 0.54 1.00 ... 0.01 0.58 0.10 NaN NaN 0.00 NaN 0.14 6 NaN NaN NaN 7.0 41500.0 Lincolntown 1 0.01 0.39 0.00 0.98 0.06 ... 0.05 0.08 0.06 NaN NaN NaN NaN 0.00 NaN 0.03 NaN NaN Selmacity 1 0.01 0.74 0.03 0.46 0.20 ... 0.01 0.33 0.00 NaN NaN NaN NaN 0.00 NaN 0.55 **8** 21 NaN NaN Hendersoncity 1 0.03 0.34 0.20 0.84 0.02 ... 0.04 0.17 0.04 NaN NaN NaN NaN 0.00 NaN 0.53 **9** 29 NaN NaN Claytoncity 1 0.01 0.40 0.06 0.87 0.30 ... 0.00 0.47 0.11 NaN NaN NaN NaN 0.00 NaN 0.15

10 rows × 128 columns

Визуализируем матрицу корреляций Спирмена. Визуально кажется, что имеются кластеры признаков, то есть группы признаков, внутри

которых признаки сильно коррелирую друг с другом.

Для кластеризации признаков воспользуемся методом иерархической кластеризации. Сначала на основе корреляций определим матрицу расстояний между признаками по правилу

$$dist(i, j) = 1 - |\widehat{corr}(X_i, X_j)|.$$

На основе этих расстояний построим дендрограмму, которая по определенным расстояниям выделит кластеры параметров и упорядочит признаки в соответствии с этими кластерами. В этом порядке отобразим корреляционную матрицу.

```
In [22]:
          1 ▼ # матрица расстояний
               dist matrix = np.array(1 - correlation matrix.abs())
               # если какие-то корреляции не определены, заменим расстояния на 1
               # вне диагонали, и 0 на диагонале
               dist matrix[np.isnan(dist matrix)] = (1 - np.eye(len(dist matrix)))[np.isnan(dist matrix)]
          7
               # Определение вспомогательных объектов для кластеризации
               dists = squareform(dist matrix)
               linkage matrix = linkage(dists, "single")
         10
         11
               # Отрисовка дентрограммы
         12
               plt.figure(figsize=(18, 5))
         13 ▼
               dendrogram result = dendrogram(linkage matrix, orientation='top',
         14
                                              labels=correlation matrix.columns,
         15
                                              color threshold=0.2, distance sort='descending',
                                              show leaf counts=True)
         16
         17
               plt.xticks(fontsize=12)
         18
               plt.show()
         19
         20
               # создаем корреляционную матрицу с параметрами в нужном порядке
          21
               correlation matrix = df[dendrogram result['ivl']].corr(method='spearman')
          22
          23
               plt.figure(figsize=(50, 50))
          24
               sns.heatmap(correlation matrix, cmap='RdBu r')
          25
               plt.xticks(fontsize=32), plt.yticks(fontsize=32)
          26
               plt.tight layout();
          27
          28
               # Печать самих кластеров
          29
               clusters = fcluster(linkage matrix, 0.2, criterion='distance')
               elements, repeats = np.unique(clusters, return counts=True)
         30
          31 v for cl in elements[repeats > 1]:
                   print((clusters == cl).sum(), 'elements:', list(df.iloc[:, 4:].columns[clusters == cl]))
          32
```


Прикладная статистика и анализ данных, 2019

Никита Волков

https://mipt-stats.gitlab.io/ (https://mipt-stats.gitlab.io/)