Fondamenti di Algebra e Geometria

Cognome.......MatricolaMatricola

Griglia i	Ξ						
Esercizio	1	2	3	4	5	6	TOTALE
Punteggio							

 \bigcirc TEMPO A DISPOSIZIONE: 2,5 ore

- 1. Dimostra che i polinomi $p_1(x) = x^2 + 1$, $p_2(x) = x + 1$, $p_3(x) = x^2 + 2x$ costituiscono una base di $\mathbb{R}_2[x]$ e calcola le coordinate, rispetto a tale base, dei polinomi $q_1(x) = 2x 3$ e $q_2(x) = 2x^2 1$
- 2. Determina per quali valori di $k \in \mathbb{R}$ la matrice

$$\mathcal{A} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & k & -1 \\ 1 & 1 & -1 & 1 \\ 0 & 2 & 0 & -1 \end{pmatrix}$$

- è invertibile. Calcola il rango della matrice al variare di k.
- 3. Stabilisci se il seguente sistema lineare è compatibile e, in caso affermativo, determina le soluzioni

$$\begin{cases} x_1 + 2x_2 - x_3 - x_4 = -10 \\ 2x_1 - 2x_2 - x_3 = 3 \\ x_2 + x_4 = 6 \end{cases}$$

4. Sia ϕ l'endomorfismo di \mathbb{R}^3 che nella base canonica è rappresentato dalla matrice

$$\mathcal{A} = \left(\begin{array}{ccc} k & 1 & 2\\ 1 & k & k\\ 0 & 0 & 1 \end{array}\right)$$

Stabilire per quali valori di k l'endomorfismo ϕ è diagonalizzabile e fornire una base di autovettori in cui ϕ è rappresentato da una matrice diagonale D e la corrispondente matrice diagonalizzante $P \in GL_3(\mathbb{R})$. Verificare, inoltre, che $P^{-1}AP = D$.

5. Determinare, a meno di permutazione dei blocchi, la forma canonica di Jordan della matrice seguente:

$$\mathcal{A} = \begin{pmatrix} 2 & 0 & -1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -3 & 2 & 1 \\ 0 & 3 & -2 & -1 \end{pmatrix}$$

 $\pmb{6}$. Prodotto scalare, prodotto vettoriale, prodotto misto tra vettori geometrici di \mathbb{R}^3 : definizioni, proprietà, applicazioni.