

AUDIOVISUAL COMMUNICATIONS LCAV

Mathematical Foundations of Signal Processing

Mathematical Foundations of Signal Processing

Benjamín Béjar Haro Mihailo Kolundžija Reza Parhizkar Martin Vetterli

November 3, 2014

Where are we now?

- Geometrical Tools
 - Hilbert spaces, projections etc.
- Modeling and Analysis
 - Transforms, DT and CT systems, etc.
- Measuring and Processing
 - Sampling and Interpolation
 - Approximation and Compression
 - Localization and Uncertainty
 - Compressed Sensing
- Applications

Sampling and Interpolation

- Why Sampling?
- Sampling and Interpolation as operators in a Hilbert space
- Sampling and Interpolation of finite-dim vectors
- **4** Sampling and Interpolation of sequences in $\ell^2(\mathbb{Z})$
- Sampling and Interpolation of functions

Why Sampling?

- World is analog (ch 4). But storing and processing more convenient digitally (ch 3).
- Sampling is the bridge: Given a signal (function) we record its values only at certain instants of time. Trading continuous time description of signal (function) with description based on countable set of values (sequence).
- Convenient but often lossy

Example: Pollution concentration measurement

Example: Traffic density measurement

Example: Temperature distribution on campus

Classical sampling

• Given 1-D bandlimited signal

ullet Perfect recovery via uniform sampling provided $T \leq rac{\pi}{W}$

ullet Given: spatially bandlimited field $f:\mathbb{R}^d\mapsto\mathbb{C}$

$$\mathcal{F}(\omega) := \int f(r) e^{-j\langle \omega, r
angle} dr = 0 ext{ for } \omega
otin \Omega$$

Spectrum $|\mathcal{F}(\omega_x, \omega_y)|$

Support of spectrum $\boldsymbol{\Omega}$

Sampling on a lattice

Sampling lattice

• Sampling on a lattice

Sampling lattice

Original spectrum

Sampling on a lattice

Sampling lattice

No aliasing in sampled spectrum for $X = Y \le \frac{\pi}{B}$

Sampling on a lattice

Sampling lattice

Perfect recovery of original spectrum

Sampling on a lattice

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

Perfect recovery impossible

ullet Lattice should be fine enough \equiv Nyquist criterion in \mathbb{R}^d

Sampling and Interpolation as Operators

(b) Interpolation.

- Two questions arise:
 - 1) How much information about the signal is contained in the samples?
 - 2) To what extent can we *recover* the signal from the sequence of samples?
- Classical sampling theorem: If x is in $BL[-\frac{\pi}{T}, \frac{\pi}{T}]$ and $g(t) = sinc(\frac{\pi t}{T})$ then $\hat{x}(t) = x(t)$

Classical sampling theorem

Theorem (Sampling theorem)

If function x is in $BL[-\pi/T, \pi/T]$,

$$x(t) = \sum_{n \in \mathbb{Z}} x(nT) \operatorname{sinc}\left(\frac{\pi}{T}(t - nT)\right), \qquad t \in \mathbb{R}.$$

- We will see:
 - 1) Why is this true?
 - 2) What are the properties of Φ that make this true?
 - 3) What happens when x is not in BL[$-\frac{\pi}{T}, \frac{\pi}{T}$]?
 - 4) Can we use different filters in place of g^* and g?
 - 5) What properties do \hat{x} have in such a case?
- All answers provided via Hilbert space interpretation

Sampling and Interpolation as operators in a Hilbert space

If you think about it...

- Classical sampling is a *linear transform* from *Hilbert space* $\mathcal{L}^2(\mathbb{R})$ to *Hilbert space* $\ell^2(\mathbb{Z})$ that admits a more compact representation
 - Potentially lossy: Only bandlimited signals can be recovered from the samples
- Classical interpolation is a *linear transform* from *Hilbert space* $\ell^2(\mathbb{Z})$ to *Hilbert space* $\mathcal{L}^2(\mathbb{R})$
 - ullet Embeds information within the bandlimited subspace of $\mathcal{L}^2(\mathbb{R})$

Other kinds of Sampling and Interpolation

Typical definition of sampling and interpolation:

$$\begin{array}{ll} \text{discrete-time signal } (\ell^2(\mathbb{Z})) & \stackrel{\mathrm{interpolation}}{\underset{\mathrm{sampling}}{\rightleftarrows}} & \text{continuous-time signal } (\mathcal{L}^2(\mathbb{R})) \end{array}$$

It could also be

low-rate sequence
$$(\ell^2(\mathbb{Z}))$$
 $\stackrel{\mathrm{interpolation}}{\underset{\mathrm{sampling}}{\rightleftarrows}}$ high-rate sequence $(\ell^2(\mathbb{Z}))$

Can be extended to

$$\begin{array}{ll} \text{shorter finite-length vector } \mathbb{C}^N & \stackrel{\text{interpolation}}{\rightleftarrows} & \text{longer finite-length vector } \mathbb{C}^M \end{array}$$

 All the above can be interpreted as linear operators between two Hilbert spaces

Sampling and Interpolation Operators

We shall discuss sampling and interpolation in the following cases:

- Finite dimensional vectors
- Sequences in $\ell^2(\mathbb{Z})$
- ullet Functions in $\mathcal{L}^2(\mathbb{R})$

Sampling and Interpolation of finite-dim vectors

Sampling and Interpolating Finite dimensional vectors

- Sampling and interpolation are linear operators between finite dimensional subspaces, for example, , \mathbb{R}^N and \mathbb{R}^M (or \mathbb{C}^N and \mathbb{C}^M) with N < M.
 - Represented by matrix multiplication

- Sampling will take M values and produce N < M values
 - Sampling matrix is fat i.e., has more columns than rows

- Interpolation will take N values and produce M > N values
 - Interpolation matrix is tall i.e., has more rows than columns

Sampling and interpolation with orthonormal vectors

Sampling

$$y = \begin{bmatrix} & & \varphi_0^* & & & \\ & & \varphi_1^* & & & \\ & & \vdots & & \\ & & \varphi_{N-1}^* & & & \end{bmatrix}_{N \times M} \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_{N-1} \end{bmatrix}_{M \times 1} = \Phi^* x.$$

where φ_n^* is the *n*-th row of Φ^* .

Equivalently,
$$y_n = \langle x, \varphi_n \rangle$$
.

Here Φ^* is a $N \times M$ (fat) matrix, or equivalently an operator:

$$\Phi^*: \mathbb{C}^M \mapsto \mathbb{C}^N$$

We assume
$$\varphi_n$$
, $n = 0, ..., N - 1$ to be *orthonormal*

$$\langle \varphi_n, \varphi_k \rangle = \delta_{n-k} \quad \Leftrightarrow \quad \Phi^* \Phi = I \,, \text{ where } N < M \,.$$

Sampling and interpolation with orthonormal vectors

Sampling

$$y = \begin{bmatrix} & & \varphi_0^* & & & \\ & & \varphi_1^* & & & \\ & & \vdots & & \\ & & \varphi_{N-1}^* & & & \end{bmatrix}_{N \times M} \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_{N-1} \end{bmatrix}_{M \times 1} = \Phi^* x.$$

Since N < M sampling is a lossy operation

Sampling operator Φ^* has max rank N and M-N dimensional null space $\mathcal{N}(\Phi^*)$ with orthogonal complement $S=\mathcal{N}(\Phi^*)^\perp=\mathrm{span}(\{\varphi_n\}_{n=0,\dots,N-1}).$

When a vector $x \in \mathbb{R}^M$ is sampled information about the component of x in S is preserved and is captured by Φ^*x , while the component in the null space $\mathcal{N}(\Phi^*)$ is lost. I.e., $y = \Phi^*x_S$.

Sampling and interpolation with orthonormal vectors

Interpolation

$$\widehat{x} = \begin{bmatrix} & & & & & \\ & \varphi_0 & \varphi_1 & \cdots & \varphi_{N-1} \\ & & & & \end{bmatrix}_{\substack{M \times N \\ M \times N}} \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_{N-1} \end{bmatrix}_{\substack{N \times 1}} = \Phi y = \sum_{n=0}^{N-1} y_k \varphi_k,$$

where φ_n is the *n*-th column of Φ .

Since N < M, Φ is a tall matrix.

As was true for Φ^* , Φ has maximum rank N and the interpolation operator has an N dimensional range $S = \mathrm{span}(\{\varphi_n\}_{n=0,\dots,N-1})$. This subspace is the same as the orthogonal complement of the null space of the sampling operator,

$$\mathcal{R}(\Phi) = S = \mathcal{N}(\Phi^*)^{\perp}.$$

Sampling and Interpolation Operators

Finite dimensional vectors

Sampling and Interpolation in \mathbb{R}^4

Let us define sampling of $x \in \mathbb{R}^4$ to obtain three samples $y \in \mathbb{R}^3$, where solid lines have weight 1/2, while dashed lines have weight -1/2; for example,

$$y_1 = (x_0 - x_1 + x_2 - x_3)/2.$$

An example

Sampling and Interpolation in \mathbb{R}^4

Consider sampling matrix with orthonormal rows

with

$$\mathcal{N}(\Phi^*) = \left\{ \alpha \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \right\}, \text{ and } S = \left\{ \alpha_0 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + \alpha_1 \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} + \alpha_2 \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \right\}.$$

For instance

$$\Phi^* \begin{bmatrix} 2 \\ 0 \\ 0 \\ 2 \end{bmatrix} = \Phi^* \left(\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix} \right) = \Phi^* \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} + \Phi^* \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}.$$

An example

Sampling and Interpolation in \mathbb{R}^4

Now the interpolator operator can be written as

The range of Φ is given by

$$S = \left\{ \alpha_0 \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} + \alpha_1 \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix} + \alpha_2 \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix} \middle| \alpha_0, \alpha_1, \alpha_2 \in \mathbb{C} \right\}.$$

Can verify

$$\mathcal{R}(\Phi) = S = \mathcal{N}(\Phi^*)^{\perp}.$$

Interpolation followed by sampling

Since sampling vectors are orthonormal we have

$$\Phi^*\Phi=I$$
.

This means that

$$\Phi^*\Phi y=y$$
, for all $y\in\mathbb{C}^N$

i.e., any vector y in the smaller space can be recovered perfectly by interpolating followed by sampling

• In this case, we say sampling and interpolation operators are consistent

Sampling followed by interpolation

Sampling followed by interpolation

$$\Phi\Phi^*=P$$

Here P is an orthogonal projection operator because P is

idempotent:

$$P^2 = \Phi \Phi^* \Phi \Phi^* = \Phi(\Phi^* \Phi) \Phi^* = \Phi \Phi^* = P$$

and self-adjoint

$$P^* = (\Phi \Phi^*)^* = \Phi \Phi^* = P$$

• Therefore, $\hat{x} = Px$ is the *best least square approximation* of x in $S = (\mathcal{N}(\Phi^*))^{\perp} = \mathcal{R}(\Phi)$.

$$\hat{x} = \underset{x_S \in S}{\operatorname{arg \, min}} \|x - x_S\|, \qquad x - \hat{x} \perp S.$$

In particular, $\hat{x} = x$ when $x \in S$

3:

Aside: In general Hilbert spaces

• Same ideas extend to general Hilbert spaces, e.g., sequences $(\ell^2(\mathbb{Z}))$ or functions $(\mathcal{L}^2(\mathbb{R}))$

- Sampling using *orthonormal vectors* in finite-dimensional vector spaces is analogous to classical sampling in $\mathcal{L}^2(\mathbb{R})$ with *sinc-filter* for filtering and reconstructing
 - There subspace $S = \mathsf{BL}[\frac{-\pi}{T}, \frac{\pi}{T}]$
 - To be discussed later

Sampling and interpolation with non-orthonormal vectors

Sampling

$$y = \begin{bmatrix} \overline{} & \widetilde{\varphi}_{0}^{*} & \overline{} \\ \overline{} & \widetilde{\varphi}_{1}^{*} & \overline{} \\ \vdots & \overline{} \\ \overline{} & \widetilde{\varphi}_{N-1}^{*} & \overline{} \end{bmatrix}_{N \times M} \begin{bmatrix} x_{0} \\ x_{1} \\ \vdots \\ x_{N-1} \end{bmatrix}_{M \times 1} = \widetilde{\Phi}^{*} x.$$

where $\widetilde{\varphi}_n^*$ is the *n*-th row of $\widetilde{\Phi}^*$.

As before assume $\widetilde{\Phi}^*$ has full rank N and M-N dimensional null space $\mathcal{N}(\Phi^*)$ with orthogonal complement $\widetilde{S}=\mathcal{N}(\widetilde{\Phi}^*)^\perp=\mathrm{span}(\{\widetilde{\varphi}_n\}_{n=0,\dots,N-1}).$

When a vector $x \in \mathbb{R}^M$ is sampled information about the component of x in \widetilde{S} is preserved and is captured by $\widetilde{\Phi}^*x$, while the component in the null space $\mathcal{N}(\widetilde{\Phi}^*)$ is lost.

Sampling with non-orthonormal vectors: Example

Sampling and Interpolation in \mathbb{R}^4

Consider sampling matrix with non-orthonormal rows

$$\widetilde{\Phi}^* = \frac{1}{2} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{3 \times 4} ,$$

with

$$\mathcal{N}(\widetilde{\Phi}^*) = \left\{ \beta \begin{bmatrix} -1 \\ 1 \\ -1 \\ 1 \end{bmatrix} \right\}, \text{ and } \widetilde{S} = \left\{ \beta_0 \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + \beta_1 \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix} + \beta_2 \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} \right\}.$$

Sampling and interpolation with non-orthonormal vectors

Interpolation

Interpolation represented by $M \times N$ matrix Φ , but is not the adjoint of $\widetilde{\Phi}^*$ Interpolation output lies in

$$S = \mathcal{R}(\Phi) = \left\{ \sum_{k=0}^{N-1} \alpha_k \varphi_k \mid \alpha \in \mathbb{C}^N \right\}.$$

A possible choice of Φ is the *pseudoinverse of* $\widetilde{\Phi}^*$:

$$\Phi = \widetilde{\Phi}(\widetilde{\Phi}^*\widetilde{\Phi})^{-1}$$

In such a case $S = \widetilde{S}$

Sampling and interpolation with non-orthonormal vectors

Interpolation followed by sampling

Interpolation followed by sampling is defined by $\widetilde{\Phi}^*\Phi$

We say sampling and interpolation operators are *consistent* when Φ is a right inverse of $\widetilde{\Phi}^*$:

$$\widetilde{\Phi}^*\Phi = I \quad \Leftrightarrow \quad \langle \varphi_n, \widetilde{\varphi}_k \rangle = \delta_{n-k}.$$

In this case, the vectors are biorthogonal

They form a *biorthogonal pair* of bases for S when $S = \widetilde{S}$, e.g., when Φ is the pseudoinverse of $\widetilde{\Phi}^*$. In this case they are called *ideally matched*.

Sampling and interpolation with non-orthonormal vectors

Interpolation followed by sampling

Consider sampling operator

$$\widetilde{\Phi}^* = \frac{1}{2} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{3 \times 4}.$$

Two possible consistent interpolators (i.e., right-inverses):

$$\Phi_1 \ = \ \frac{1}{2} \begin{bmatrix} 3 & -2 & 1 \\ 1 & 2 & -1 \\ -1 & 2 & 1 \\ 1 & -2 & 3 \end{bmatrix}$$

Pseudoinverse. Ideally matched

$$\Phi_2 \ = \ \begin{bmatrix} 2 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 2 \end{bmatrix}$$

Not pseudoinverse. Not ideally matched

Sampling and interpolation with non-orthonormal vectors

Sampling followed by interpolation

Sampling followed by interpolation is defined by $P = \Phi \widetilde{\Phi}^*$

When sampling and interpolation operators are $consistent\ P$ is a $projection\ operator$

$$P^2 \; = \; \big(\Phi\widetilde{\Phi}^*\big)\big(\Phi\widetilde{\Phi}^*\big) \; = \; \Phi\,\big(\widetilde{\Phi}^*\Phi\big)\,\widetilde{\Phi}^* \; = \; \Phi\,I\,\widetilde{\Phi}^* \; = \; \Phi\widetilde{\Phi}^* \; = \; P$$

If Φ is the *pseudoinverse* of $\widetilde{\Phi}^*$, then P is self-adjoint and hence is an *orthogonal* projection operator

$$P^* = (\Phi \widetilde{\Phi}^*)^* = (\widetilde{\Phi}(\widetilde{\Phi}^*\widetilde{\Phi})^{-1}\widetilde{\Phi}^*)^* = \widetilde{\Phi}((\widetilde{\Phi}^*\widetilde{\Phi})^{-1})^*\widetilde{\Phi}^*$$
$$= \widetilde{\Phi}(\widetilde{\Phi}^*\widetilde{\Phi})^{-1}\widetilde{\Phi}^* = \Phi \widetilde{\Phi}^* = P$$

In this case $S = \widetilde{S}$ and sampling and interpolation operators are called *ideally matched*.

Sampling and interpolation with non-orthonormal vectors Sampling followed by interpolation

Theorem (Recovery for vectors, nonorthogonal)

Let sampling operator $\widetilde{\Phi}^*: \mathbb{C}^M \to \mathbb{C}^N$ and interpolation operator $\Phi: \mathbb{C}^N \to \mathbb{C}^M$ satisfy consistency condition $\widetilde{\Phi}^*\Phi = I$. Then, with $S = \mathcal{R}(\Phi)$, $\widetilde{S} = \mathcal{N}(\widetilde{\Phi}^*)^{\perp}$, $P = \Phi \widetilde{\Phi}^*$, and $\hat{x} = P x$:

- P is a projection operator with range S, and $x \hat{x} \perp \widetilde{S}$. In particular, $\hat{x} = x$ when $x \in S$.
- ② If Φ is the pseudoinverse of $\widetilde{\Phi}^*$, then $S = \widetilde{S}$ and P is an orthogonal projection operator onto S. Hence Px gives best approximation of x in S.

Sampling and interpolation with non-orthonormal vectors

Subspaces defined in sampling and interpolation

 \widetilde{S} represents what can be measured; it is the orthogonal complement of the null space of the sampling operator $\widetilde{\Phi}^*$. S represents what can be reproduced; it is the range of the interpolation operator Φ . When sampling and interpolation are consistent, $\Phi\widetilde{\Phi}^*$ is a projection and $x-\widehat{x}$ is orthogonal to \widetilde{S} . When furthermore $S=\widetilde{S}$, the projection becomes an orthogonal projection and the sampling and interpolation are ideally matched.

Recap

- Sampling and interpolation as linear operators between Hilbert spaces
 - Simplest example: Finite dimensional vector spaces
- Sampling matrix Φ^* is *fat* and interpolation matrix Φ is *tall*
- Case 1: Orthogonal sampling vectors (columns of Φ). Then:
 - $\Phi^*\Phi = I$ and $\Phi\Phi^*$ is an orthogonal projection operator
- Case 2: Non-orthogonal sampling vectors
 - \bullet Sampling $\widetilde{\Phi}^*$ and interpolation Φ are consistent when

$$\widetilde{\Phi}^*\Phi = I$$

- If Φ is pseudoinverse of $\widetilde{\Phi}^*$ then sampling and interpolation operators are ideally matched and $\Phi\widetilde{\Phi}^*$ forms an orthogonal projection
- Read: Chapter 5, sections 5.1-5.2

Sampling and Interpolation of sequences in $\ell^2(\mathbb{Z})$

A different Hilbert Space: Sequences in ℓ^2

We will study downsampling and upsampling of sequences in $\ell^2(\mathbb{Z})$ using Hilbert space framework

- Shift invariant subspaces of ℓ^2 A subspace $S \in \ell^2$ is a shift-invariant subspace with respect to shift $L \in \mathbb{Z}^+$ when $x_n \in S$ implies $x_{n-kL} \in S$ for every integer k.
- Subspace of bandlimited sequences A sequence $x_n \in \ell^2(\mathbb{Z})$ is said to have bandwidth $\omega_0 \in (0, 2\pi]$ if the discrete time Fourier transform $X(e^{j\omega})$ satisfies

$$X(e^{j\omega})=0$$
 for all $|\omega|>\frac{\omega_0}{2}$.

We define then the subspace of ω_0 bandlimited sequences as

$$BL[-\omega_0/2,\omega_0/2] = \{x_n \mid x_n \text{ has bandwidth at most } \omega_0\}$$
.

Remark: Subspace of bandlimited sequences is shift invariant (prove it!)

Sequences in ℓ^2

Bandlimited sequences

Sequences in ℓ^2 : Sampling

We define as sampling of a sequence $x_n \in \ell^2$ the operation of filtering by g_{-n}^* and downsampling by integer N > 1 and we denote it with the operator Φ^*

$$y_n = (\Phi^* x)_n$$

$$y_{k} = (\Phi^{*}x)_{k} = (g_{-n}^{*} *_{n} x_{n})\big|_{n=kN} = \left(\sum_{m \in \mathbb{Z}} x_{m} g_{m-n}^{*}\right)\bigg|_{n=kN}$$
$$= \sum_{m \in \mathbb{Z}} x_{m} g_{m-kN}^{*} = \langle x_{m}, g_{m-kN} \rangle_{m} = \langle x, \varphi_{k} \rangle,$$

where $\varphi_{k,n} = g_{n-kN}, \quad n \in \mathbb{Z}$.

Sequences in ℓ^2 : Sampling

The sampling operator Φ^* is now an infinite matrix with rows equal to φ^* and its shifts by integer multiples of N.

We assume these rows to be orthonormal,

$$\langle \varphi_k, \varphi_\ell \rangle = \delta_{k-\ell} \quad \Leftrightarrow \quad \langle g_{n-kN}, g_{n-\ell N} \rangle_n = \delta_{k-\ell}$$

or equivalently, $\Phi^*\Phi = I$.

The sampling operator Φ^* has a nontrivial null space $\mathcal{N}(\Phi^*)$ and $S = \mathcal{N}(\Phi^*)^{\perp} = \operatorname{span}(\{\varphi_n\}_{n \in \mathbb{Z}})$.

Sequences in ℓ^2 : Interpolation

We define as interpolation of a sequence $y_n \in \ell^2$ the operation of upsampling by integer N>1 and filtering by g_n , and we denote it with the operator Φ

$$\widehat{x}_n = (\Phi y)_n$$

$$\widehat{x}_n = (\Phi y)_n = \sum_{k \in \mathbb{Z}} y_k g_{n-kN} = (\sum_{k \in \mathbb{Z}} y_k \varphi_k)_n,$$

The interpolation operator Φ is now an infinite matrix with columns equal to φ and its shifts by integer multiples of N.

Sampling and Interpolation in ℓ^2

Set N=2 and choose

$$g_{-n} = \frac{1}{\sqrt{2}} \begin{bmatrix} \cdots & 0 & 1 & \boxed{1} & 0 & 0 & \cdots \end{bmatrix}.$$

Then the sampling reads

$$\begin{bmatrix} \vdots \\ y_0 \\ y_1 \\ \vdots \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} \ddots & \vdots & \vdots & \vdots & \vdots & \ddots \\ \cdots & \boxed{1} & 1 & 0 & 0 & \cdots \\ \cdots & 0 & 0 & 1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} \vdots \\ x_0 \\ x_1 \\ x_2 \\ x_3 \\ \vdots \end{bmatrix} = \Phi^* x .$$

For every two inputs samples x_{2k} and x_{2k+1} , we get one output sample $y_k = (x_{2k} + x_{2k+1})\sqrt(2)$, and we have

$$\mathcal{N}(\Phi^*) = \left\{ x \in \ell^2(\mathbb{Z}) \mid x_{2k} = -x_{2k+1}, k \in \mathbb{Z} \right\}.$$

Sampling and Interpolation in ℓ^2

Sampling and Interpolation in ℓ^2

We have
$$g = \frac{1}{\sqrt{2}} \left[... \ 0 \ 0 \ \boxed{1} \ 1 \ 0 \ ... \right]^T$$
.

The output of interpolation with N=2 and postfilter g is

$$\begin{bmatrix} \vdots \\ \widehat{x_0} \\ \widehat{x_1} \\ \widehat{x_2} \\ \widehat{x_3} \\ \vdots \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} \vdots & \vdots & \vdots \\ \cdots & \boxed{1} & 0 & \cdots \\ \cdots & 1 & 0 & \cdots \\ \cdots & 0 & 1 & \cdots \\ \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} \vdots \\ y_0 \\ y_1 \\ \vdots \\ \vdots \end{bmatrix} = \Phi y.$$

For every input sample y_k , we get two output samples $x_{2k} = x_{2k+1} = y_k/\sqrt{2}$.

Interpolation followed by sampling

Since $\Phi^*\Phi = I$ we have $\hat{v}_n = v_n$.

Sampling followed by interpolation

 $\Phi\Phi^*=P$.

As before P is an orthogonal projection operator. Therefore, Px is the best least square approximation of x in S.

Theorem (Recovery for sequences, orthogonal)

Assume filter g is such that,

$$\langle \varphi_k, \varphi_\ell \rangle = \delta_{k-\ell} \quad \Leftrightarrow \quad \langle g_{n-kN}, g_{n-\ell N} \rangle_n = \delta_{k-\ell}.$$

Then,

$$\widehat{x}_n = \sum_{k \in \mathbb{Z}} y_k \, g_{n-kN}, \qquad n \in \mathbb{Z},$$

where

$$y_k = \sum_{m \in \mathbb{Z}} x_m g_{m-kN}^*, \qquad k \in \mathbb{Z},$$

is the best approximation of x in $S = \mathcal{R}(\Phi)$:

$$\widehat{x} = \underset{x_S \in S}{\operatorname{arg \, min}} \|x - x_S\|, \qquad x - \widehat{x} \perp S.$$

In particular, $\hat{x} = x$ when $x \in S$.

Sequences in $BL[-\omega_0/2,\omega_0/2] \subset \ell^2(\mathbb{Z})$

$$g_n = \frac{1}{\sqrt{N}} \operatorname{sinc}\left(\frac{\pi n}{N}\right), \quad n \in \mathbb{Z}, \qquad \stackrel{\mathrm{DTFT}}{\Longleftrightarrow} \qquad G(e^{j\omega}) = \left\{ egin{array}{ll} \sqrt{N}, & |\omega| \leq \pi/N; \\ 0, & ext{otherwise}, \end{array}
ight.$$

Like in continuous time, we have that g is a generator with shift N of $\mathrm{BL}[-\pi/N,\,\pi/N]$ (Prove it!). Moreover, as before, shifted versions are orthonormal,

$$\begin{split} \langle g_{n-kN}, \, g_{n-\ell N} \rangle_n &= \frac{1}{2\pi} \langle e^{-j\omega kN} G(e^{j\omega}), \, e^{-j\omega \ell N} G(e^{j\omega}) \rangle_\omega \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-j\omega (k-\ell)N} |G(e^{j\omega})|^2 \, d\omega \\ &= \frac{N}{2\pi} \int_{-\pi/N}^{\pi/N} e^{-j\omega (k-\ell)N} \, d\omega \, = \, \delta_{k-\ell}. \end{split}$$

Sequences in $BL[-\omega_0/2,\omega_0/2] \subset \ell^2(\mathbb{Z})$

Theorem (Projection to bandlimited subspace)

Using sinc filter for g we have

$$\widehat{x}_n = \frac{1}{\sqrt{N}} \sum_{k \in \mathbb{Z}} y_k \operatorname{sinc} \left(\frac{\pi}{N} (n - kN) \right), \qquad n \in \mathbb{Z},$$

where

$$y_k = \frac{1}{\sqrt{N}} \sum_{n \in \mathbb{Z}} x_n \operatorname{sinc}\left(\frac{\pi}{N}(n - kN)\right), \qquad k \in \mathbb{Z},$$

is the best approximation of x in $BL[-\pi/N, \pi/N]$:

$$\widehat{x} = \underset{x_{\mathrm{BL}} \in \mathrm{BL}[-\pi/N, \, \pi/N]}{\operatorname{arg\,min}} \|x - x_{\mathrm{BL}}\|, \qquad x - \widehat{x} \perp \mathrm{BL}[-\pi/N, \, \pi/N].$$

In particular, $\hat{x} = x$ when $x \in BL[-\pi/N, \pi/N]$.

Sequences in
$$BL[-\omega_0/2,\omega_0/2] \subset \ell^2(\mathbb{Z})$$

Other results from sampling of functions can be generalized:

- Sampling without prefilter
- Sampling with non-orthogonal functions

Summary

- Sampling and Interpolation as linear operators between Hilbert spaces
 - Intuition from finite dimensional Euclidean spaces ($\mathbb{C}^M \rightleftarrows \mathbb{C}^N$)
 - Generalizes to sampling of sequences $(\ell^2(\mathbb{Z}) \rightleftarrows \ell^2(\mathbb{Z}))$
- Consistency: Interpolation followed by Sampling is identity
- *Ideally matched*: Sampling followed by Interpolation is orthogonal projection onto $S = \mathcal{R}(\Phi) = \mathcal{N}(\widetilde{\Phi}^*)^{\perp}$
 - Ideally matched interpolator: Pseudoinverse of Sampling operator
 - For orthonormal vectors, pseudoinverse is the adjoint!
- Reading: Sections 5.1, 5.2, 5.3.1 and parts of 5.3.2 up to Theorem 5.7.
 Shannon's original paper sections I and II.

Sampling and Interpolation of functions

Shift-Invariant Subspaces of Functions

Definition (Shift-invariant subspace of $\mathcal{L}^2(\mathbb{R})$)

A subspace $S \subset \mathcal{L}^2(\mathbb{R})$ is a *shift-invariant subspace* with respect to shift $T \in \mathbb{R}^+$ when $x(t) \in S$ implies $x(t-kT) \in S$ for every integer k. In addition, $s \in \mathcal{L}^2(\mathbb{R})$ is called a *generator* of S when $S = \overline{\operatorname{span}}(\{s(t-kT)\}_{k \in \mathbb{Z}})$.

Why should you care?

Because bandlimited functions with a given bandwidth form a shift invariant space for all shifts!

Later we will see splines which also form shift-invariant spaces

Sampling with Orthonormal Functions

Sampling operator $\Phi^*:\mathcal{L}^2(\mathbb{R})\mapsto \ell^2(\mathbb{Z})$

Figure : Sampling x(t) at time instants nT using prefilter $g^*(-t)$

$$y = \Phi^* x \in \ell^2(\mathbb{Z})$$

with
$$y_k = \int_{-\infty}^{\infty} x(\tau) g^*(\tau - kT) d\tau = \langle x(\tau), g(\tau - kT) \rangle_{\tau} = \langle x, \varphi_k \rangle$$

where
$$arphi_k(t) = g(t-kT)$$
 and $arphi_k \in \mathcal{L}^2(\mathbb{R})$

Sampling with Orthonormal Functions

First assume φ_k are orthonormal in $\mathcal{L}^2(\mathbb{R})$:

$$\langle \varphi_n, \varphi_k \rangle = \delta_{n-k} \Leftrightarrow \langle g(t-nT), g(t-kT) \rangle_t = \delta_{n-k}.$$

Sampling operator Φ^* gives inner products with all functions in $\{\varphi_k\}_{k\in\mathbb{Z}}$.

 $\mathcal{N}(\Phi^*)$ is null space of Φ^* ; the set $\{\varphi_k\}_{k\in\mathbb{Z}}$ spans its orthogonal complement, $S = \mathcal{N}(\Phi^*)^\perp = \overline{\operatorname{span}}(\{\varphi_k\}_{k\in\mathbb{Z}})$,a shift-invariant space

When a function $x \in \mathcal{L}^2(\mathbb{R})$ is sampled, its component in the null space S^\perp has no effect on the output y and is thus completely lost; its component in S is captured by Φ^*x .

Interpolation with Orthonormal Functions

Interpolation: $\hat{x} = \Phi y$

Figure : Interpolating using postfilter g(t)

$$\widehat{x}(t) = \sum_{k \in \mathbb{Z}} y_k g(t - kT) = (\sum_{k \in \mathbb{Z}} y_k \varphi_k)(t),$$

Choosing pre- and postfilters related through *time-reversed conjugation* makes the sampling and interpolation operators *adjoints* of each other: for any $x \in \mathcal{L}^2(\mathbb{R})$ and $y \in \ell^2(\mathbb{Z})$,

$$\langle \Phi^* x, y \rangle_{\ell^2} = \langle x, \Phi y \rangle_{\mathcal{L}^2}$$

Interpolation followed by Sampling

Interpolation followed by Sampling is represented by $\Phi^*\Phi$

Since functions $\{g(t - kT)\}_{k \in \mathbb{Z}}$ is an *orthonormal set* we have

$$\widehat{y}_{n} = \int_{-\infty}^{\infty} \widehat{x}(\tau) g^{*}(\tau - nT) d\tau = \int_{-\infty}^{\infty} \left(\sum_{k \in \mathbb{Z}} y_{k} g(\tau - kT) \right) g^{*}(\tau - nT) d\tau$$

$$= \sum_{k \in \mathbb{Z}} y_{k} \int_{-\infty}^{\infty} g(\tau - kT) g^{*}(\tau - nT) d\tau = \sum_{k \in \mathbb{Z}} y_{k} \delta_{n-k} = y_{n},$$

Or in other words

$$\Phi^*\Phi = I$$

Sampling followed by Interpolation

Sampling followed by Interpolation is represented by $P = \Phi \Phi^*$

Since orthonormality is satisfied P is an orthogonal projection operator

Theorem (Recovery for functions, orthogonal)

lf

$$y_k = \int_{-\infty}^{\infty} x(\tau) g^*(\tau - kT) d\tau, \qquad k \in \mathbb{Z},$$

then

$$\widehat{x}(t) = \sum_{k \in \mathbb{Z}} y_k g(t - kT), \qquad t \in \mathbb{R},$$

is the best approximation of x in $S = \mathcal{R}(\Phi)$:

$$\widehat{x} = \underset{x_S \in S}{\operatorname{arg min}} \|x - x_S\|, \qquad x - \widehat{x} \perp S.$$

In particular, $\hat{x} = x$ when $x \in S$.

Sampling Bandlimited Functions

Definition (Bandwidth of function)

A function x is called *bandlimited* when there exists $\omega_0 \in [0,\infty)$ such that

$$X(\omega) = 0$$
 for all ω with $|\omega| \in (\omega_0/2, \infty)$.

The smallest such ω_0 is called the *bandwidth* of x.

Note: BL functions are smooth!

Definition (Subspace of bandlimited functions)

The set of functions in $\mathcal{L}^2(\mathbb{R})$ with bandwidth at most ω_0 is a closed subspace denoted $\mathrm{BL}[-\omega_0/2,\,\omega_0/2]$.

$$x(t-kT) \stackrel{\mathrm{FT}}{\longleftrightarrow} e^{-j\omega kT} X(\omega).$$

Hence $\mathrm{BL}[-\omega_0/2,\,\omega_0/2]$ forms a *shift-invariant subspace*

Projection to Bandlimited Subspace

Suppose

$$g(t) \ = \ \frac{1}{\sqrt{T}} \, \operatorname{sinc} \left(\frac{\pi t}{T} \right), \quad t \in \mathbb{R}, \qquad \overset{\operatorname{FT}}{\longleftrightarrow} \qquad G(\omega) \ = \ \left\{ \begin{array}{cc} \sqrt{T}, & |\omega| \leq \pi/T \\ 0, & \text{otherwise} \end{array} \right.$$

Then g is a generator with shift T of $BL[-\pi/T, \pi/T]$

Moreover, shifted versions $\{g(t - kT)\}_k$ are orthonormal

$$\langle g(t - nT), g(t - kT) \rangle_t = \frac{1}{2\pi} \langle e^{-j\omega nT} G(\omega), e^{-j\omega kT} G(\omega) \rangle_{\omega}$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-j\omega(n-k)T} |G(\omega)|^2 d\omega$$

$$= \frac{T}{2\pi} \int_{-\pi/T}^{\pi/T} e^{-j\omega(n-k)T} d\omega = \delta_{n-k}$$

Projection to Bandlimited Subspace

Consider sampling and interpolating with sinc filter g(t)

In words, given any function $x(t) \in \mathcal{L}^2(\mathbb{R})$, we do the following:

- Filter using sinc filter $g(t) = \frac{1}{\sqrt{T}} \operatorname{sinc} \left(\frac{\pi t}{T} \right)$
- Sample at time instants nT
- Reconstruct $\hat{x}(t)$ using filter g(t)

then $\hat{x}(t)$ is the function in $\mathrm{BL}[-\pi/T,\,\pi/T]$ that is *closest* to x(t) in \mathcal{L}^2 norm

Equivalently \hat{x} is the orthogonal projection of x onto $BL[-\pi/T, \pi/T]$

Projection to Bandlimited Subspace

Theorem (Projection to bandlimited subspace)

$$\widehat{x}(t) = \frac{1}{\sqrt{T}} \sum_{k \in \mathbb{Z}} y_k \operatorname{sinc}\left(\frac{\pi}{T}(t - kT)\right), \qquad t \in \mathbb{R},$$

where

$$y_k = \frac{1}{\sqrt{T}} \int_{-\infty}^{\infty} x(\tau) \operatorname{sinc} \left(\frac{\pi}{T} (\tau - kT) \right) d\tau, \qquad k \in \mathbb{Z},$$

is the best approximation of x in $BL[-\pi/T, \pi/T]$:

$$\widehat{x} = \underset{x_{\mathrm{BL}} \in \mathrm{BL}[-\pi/T, \, \pi/T]}{\arg \min} \|x - x_{\mathrm{BL}}\|, \qquad x - \widehat{x} \perp \mathrm{BL}[-\pi/T, \, \pi/T].$$

In particular, $\hat{x} = x$ when $x \in BL[-\pi/T, \pi/T]$.

Sampling without a prefilter followed by interpolation

A simpler sampling setup: No prefilter

Caveat 1: For a general $x \in \mathcal{L}^2(\mathbb{R})$, we are not guaranteed to have $y \in \ell^2(\mathbb{Z})$. The exact conditions on x to ensure $y \in \ell^2(\mathbb{Z})$ are difficult to state exactly. A sufficient condition is that x is bandlimited with any bandwidth.

Caveat 2: We will use a Dirac comb function to obtain an intuitive understanding of the spectra of Y and V. But Dirac delta functions are not in $\mathcal{L}^2(\mathbb{R})$. An exact derivation can be performed using Poisson summation formula under strong assumptions on decay rates of x(t) and $X(\omega)$.

Sampling without a prefilter followed by interpolation

A more practical sampling setup: No prefilter

$$x(t) \longrightarrow \boxed{\sqrt{T}} \underbrace{w(t)}_{T} \underbrace{y_n}_{Y \longleftarrow T \longleftarrow} \underbrace{v(t)}_{Y} \underbrace{v(t)}_{g(t)} \longrightarrow \widehat{x}(t)$$

We have

$$v(t) = \sum_{n \in \mathbb{Z}} w(nT)\delta(t - nT) = s_T(t) w(t)$$

where $s_T(t)$ is the *Dirac comb*

$$s_T(t) = \sum_{n \in \mathbb{Z}} \delta(t - nT) \quad \stackrel{\text{FT}}{\longleftrightarrow} \quad S_T(\omega) = \frac{2\pi}{T} \sum_{k \in \mathbb{Z}} \delta\left(\omega - \frac{2\pi}{T}k\right)$$

$$\Rightarrow V(\omega) \; = \; \frac{1}{2\pi} \left(S_T * W \right) \left(\omega \right) \; = \; \frac{1}{T} \sum_{k \in \mathbb{Z}} W \left(\omega - \frac{2\pi}{T} k \right) \; = \; \frac{1}{\sqrt{T}} \sum_{k \in \mathbb{Z}} X \left(\omega - \frac{2\pi}{T} k \right)$$

Moreover,
$$Y(e^{j\omega T}) = \sum_{n \in \mathbb{Z}} y_n e^{-j\omega nT} = \mathcal{F}\left(\sum_{n \in \mathbb{Z}} y_n \delta(t - nT)\right) = V(\omega)$$

Sampling without a prefilter followed by interpolation

Now

$$\hat{X}(\omega) = G(\omega)V(\omega) = \frac{1}{\sqrt{T}}\sum_{k\in\mathbb{Z}}G(\omega)X\left(\omega - \frac{2\pi}{T}k\right)$$

No spectral overlaps if $x \in \mathrm{BL}[-\pi/T, \pi/T]$. Hence $\hat{x} = x$.

Theorem (Sampling theorem)

If function x is in $BL[-\pi/T, \pi/T]$,

$$x(t) = \sum_{n \in \mathbb{Z}} x(nT) \operatorname{sinc}\left(\frac{\pi}{T}(t - nT)\right), \qquad t \in \mathbb{R}.$$

If x has bandwidth ω_0 (i.e., $x \in \mathrm{BL}[-\omega_0/2,\,\omega_0/2]$) then we need $T < 2\pi/\omega_0$ (*Nyquist interval*). The frequency $\omega_0/2\pi$ is called the *Nyquist rate*.

Sampling without a prefilter followed by interpolation

Sampling the sinc-squared function

$$x(t) = \frac{1}{2}\operatorname{sinc}^2\left(\frac{1}{2}\pi t\right)$$

Since $x \in \mathrm{BL}[-\pi, \pi]$ Nyquist rate is $2\pi \mathrm{\ rad/s}$

Sampling without a prefilter followed by interpolation

Undersampling the sinc-squared function

Suppose we use a sampling rate $\omega_s < 2\pi \text{ rad/s}$ we get *aliasing*

When T=2 the samples are given by

$$x(2n) = \frac{1}{2}\operatorname{sinc}^{2}(\pi n) = \frac{1}{2}\delta_{n}$$

Hence spectrum is flat!

Aliasing

Undersampling a sinusoid

Suppose $x(t) = \cos(\omega_0 t) \leftrightarrow \pi \left(\delta(\omega - \omega_0) + \delta(\omega - \omega_0)\right)$. (Note: $x \notin \mathcal{L}^2(\mathbb{R})$) Nyquist rate: $\omega_s = 2\omega_0$. Suppose we sample at half the Nyquist rate. Then,

$$x(nT) = x\left(\frac{2\pi n}{\omega_s/2}\right) = \cos(2n\pi) = 1$$
 for all n

http://en.wikipedia.org/wiki/Stroboscopic_effect

Aliasing in images and audio

http://en.wikipedia.org/wiki/Aliasing

http://en.wikipedia.org/wiki/File:Sawtooth-aliasingdemo.ogg

Aliasing errors often lead to *more perceptible* distortions than errors due to noise even if the errors are of the same \mathcal{L}^2 norm (squared error)

CT processing via DSP

Theorem (CT convolution implemented using DT processing)

For $x \in \mathrm{BL}[-\pi/T, \pi/T]$, the continuous-time convolution y = h * x can be computed as shown where postfilter g is the ideal lowpass filter (sinc) and the discrete-time LSI filter h is given by

$$\widetilde{h}_n = \langle h(t), \operatorname{sinc}\left(\frac{\pi}{T}(t - nT)\right)\rangle_t, \quad n \in \mathbb{Z}.$$

The discrete-time filter input is

$$\widetilde{x}_n = \sqrt{T} x(nT), \quad n \in \mathbb{Z},$$

and the system output in terms of the discrete-time filter output is

$$y(t) = \sqrt{T} \sum_{n \in \mathbb{Z}} \widetilde{y}_n \operatorname{sinc}\left(\frac{\pi}{T}(t - nT)\right), \qquad t \in \mathbb{R}.$$

CT processing via DSP

Proof

We have
$$\widetilde{Y}(e^{j\omega}) = \widetilde{H}(e^{j\omega})\widetilde{X}(e^{j\omega}) = \widetilde{H}(e^{j\omega})\frac{1}{\sqrt{T}}\sum_{k\in\mathbb{Z}}X\left(\frac{\omega}{T}-\frac{2\pi}{T}k\right).$$

Hence
$$Y(\omega) = G(\omega)V(\omega) = G(\omega)\widetilde{Y}(e^{j\omega T}) = G(\omega)\widetilde{H}(e^{j\omega T})\frac{1}{\sqrt{T}}\sum_{k\in\mathbb{Z}}X\left(\omega - \frac{2\pi}{T}k\right).$$

Since $x \in \mathrm{BL}[-\pi/T,\,\pi/T]$ and $G(\omega)$ is ideal low pass

$$Y(\omega) = \frac{1}{\sqrt{T}}G(\omega)\widetilde{H}(e^{j\omega T})X(\omega).$$

From defn of \widetilde{h} we have

$$\widetilde{H}(e^{j\omega}) = \frac{1}{T} \sum_{k \in \mathbb{Z}} \sqrt{T} G\left(\frac{\omega}{T} - \frac{2\pi}{T}k\right) H\left(\frac{\omega}{T} - \frac{2\pi}{T}k\right).$$

$$Y(\omega) = \frac{1}{T}G^{2}(\omega)H(\omega)X(\omega) = H(\omega)X(\omega)$$

Approximations to Ideal Filter

Speech processing in mobile phones

- Humans can't hear about 20kHz. CDs use 44 kHz sampling frequency.
- But passband from 0.3 to 3.4 kHz is sufficient for good quality speech signals
- In mobile phones: $f_s=8$ kHz or T=0.125 ms with pre and postfilter passband up to 3.4 kHz and high attenuation above 4 kHz
 - Implemented via a combination of analog and digital filters
 - \bullet Continuous-time LPF with cutoff at 4 kHz or 8π krad/s; and a discrete filter

$$\widetilde{H}(e^{j\omega}) \; = \; \left\{ egin{array}{ll} 1, & \mbox{for } |\omega| \leq 3\pi/8; \ 10^{-1}, & \mbox{for } 5\pi/8 \leq |\omega| < \pi; \ \mbox{unspecified}, & \mbox{else}. \end{array}
ight.$$

Approximations to Ideal Filter

Speech processing in mobile phones

(a) Discrete-time filter.

(b) Continuous-time pre/postfilter.

(c) Equivalent continuoustime filter.

$$H(\omega) \ = \ \left\{ egin{array}{ll} \widetilde{H}(e^{j\omega T}) \ G^2(\omega), & ext{for } |\omega| \leq 8\pi \cdot 10^3; \\ 0, & ext{for } |\omega| > 8\pi \cdot 10^3. \end{array}
ight.$$

Approximations to Ideal Filter

Speech processing in mobile phones

(a) Input spectrum.

(b) Prefiltering.

(d) Discrete-time filtering.

(c) Sampling.

(e) Output spectrum.

- For $x \in \mathrm{BL}[-\pi/T,\,\pi/T]$ we need to sample at $\frac{1}{T}$ Hz
 - All DSP must work at $\frac{1}{7}$ Hz
 - May be difficult to implement practically
- Solution: Use multiple channels!
 - If $x_0(t) = x(t)$ and $x_1(t) = x(t T)$ then both can be sampled at $\frac{1}{2T}$ Hz!
 - Can be generalized

$$V_i(\omega) = \frac{1}{2T} \sum_{k \in \mathbb{Z}} \widetilde{G}_i\left(\omega + \frac{\pi}{T}k\right) X\left(\omega + \frac{\pi}{T}k\right), \qquad i = 0, 1$$

Since $X(\omega)$ is BL to $[-\pi/T,\pi/T]$, only two spectral components overlap on $[0,\pi/T]$:

$$V_0(\omega) = \frac{1}{2T} \left(\widetilde{G}_0(\omega) X(\omega) + \widetilde{G}_0(\omega - \pi/T) X(\omega - \pi/T) \right),$$

$$V_1(\omega) \quad = \quad \tfrac{1}{2T} \left(\widetilde{G}_1(\omega) X(\omega) + \widetilde{G}_1(\omega - \pi/T) X(\omega - \pi/T) \right).$$

In matrix notation, for $\omega \in [0, \pi/T]$,

$$\begin{bmatrix} V_0(\omega) \\ V_1(\omega) \end{bmatrix} = \frac{1}{2^T} \begin{bmatrix} \widetilde{G}_0(\omega) & \widetilde{G}_0(\omega - \pi/T) \\ \widetilde{G}_1(\omega) & \widetilde{G}_1(\omega - \pi/T) \end{bmatrix} \begin{bmatrix} X(\omega) \\ X(\omega - \pi/T) \end{bmatrix} = \widetilde{G}(\omega) \begin{bmatrix} X(\omega) \\ X(\omega - \pi/T) \end{bmatrix}$$

As long as $\widetilde{G}(\omega)$ is nonsingular on the interval $[0, \pi/T]$, we can recover $X(\omega)$ by choosing $G_0(\omega)$ and $G_1(\omega)$ appropriately.

Periodic nonuniform sampling

Suppose $x \in \mathrm{BL}[-\pi,\,\pi]$ and T=1. Choose $\widetilde{G}_0(\omega)$ and $\widetilde{G}_1(\omega)$ to be identity and delay filters:

 $\widetilde{G}_0(\omega) = 1, \qquad \widetilde{G}_1(\omega) = e^{-j\omega\tau}.$

Substituting we get,

$$\begin{bmatrix} V_0(\omega) \\ V_1(\omega) \end{bmatrix} \; = \; \tfrac{1}{2} \begin{bmatrix} 1 & 1 \\ e^{-j\omega\tau} & e^{-j(\omega-\pi)\tau} \end{bmatrix} \begin{bmatrix} X(\omega) \\ X(\omega-\pi) \end{bmatrix}.$$

For $\tau \in (0,2)$ we have $\det(\widetilde{G}(\omega)) = \frac{1}{4}e^{-j\omega\tau}(e^{j\pi\tau}-1) \neq 0$, $\widetilde{G}(\omega)$ is invertible. Inversion becomes arbitrarily ill-conditioned as τ approaches 0 or 2, as expected.

We have proved a non-uniform sampling theorem!

Note: au=1 leads to usual sampling of x(t) with even and odd samples in separate channels as we saw earlier

Sampling function and derivative

Again suppose $x \in \mathrm{BL}[-\pi,\,\pi]$ and T=1. Choose $\widetilde{G}_0(\omega)$ and $\widetilde{G}_1(\omega)$ to be identity and derivative filters:

$$\widetilde{G}_0(\omega) = 1, \qquad \widetilde{G}_1(\omega) = j\omega.$$

In this case

$$\begin{bmatrix} V_0(\omega) \\ V_1(\omega) \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ j\omega & j(\omega - \pi) \end{bmatrix} \begin{bmatrix} X(\omega) \\ X(\omega - \pi) \end{bmatrix}.$$

And $\det(\widetilde{G}(\omega)) = -\frac{1}{4}j\pi$, is a nonzero constant, making the system invertible

Hence a bandlimited function can be reconstructed from twice undersampled versions of the function and its derivative!!

Theorem (Multichannel sampling (a.k.a. Papoulis' generalized sampling))

Let x belong to $\mathrm{BL}[-\omega_0/2,\,\omega_0/2]$, and let T be a sampling period with $T<2\pi/\omega_0$. Consider an N-channel system with filters \widetilde{g}_i , $i=0,\,1,\,\ldots,\,N-1$, followed by uniform sampling with period NT. A necessary and sufficient condition for recovery of x is that the matrix

$$\widetilde{G}(\omega) = \begin{bmatrix} \widetilde{G}_0(\omega) & \widetilde{G}_0(\omega + \frac{2\pi}{NT}) & \cdots & \widetilde{G}_0(\omega + \frac{2\pi(N-1)}{NT}) \\ \widetilde{G}_1(\omega) & \widetilde{G}_1(\omega + \frac{2\pi}{NT}) & \cdots & \widetilde{G}_1(\omega + \frac{2\pi(N-1)}{NT}) \\ \vdots & \vdots & \ddots & \vdots \\ \widetilde{G}_{N-1}(\omega) & \widetilde{G}_{N-1}(\omega + \frac{2\pi}{NT}) & \cdots & \widetilde{G}_{N-1}(\omega + \frac{2\pi(N-1)}{NT}) \end{bmatrix}$$

be nonsingular for $\omega \in [0, \frac{2\pi}{NT}]$.

Sampling and Interpolating Bandlimited Stochastic Processes

Theorem (Sampling for continuous-time stochastic processes)

Let x be a WSS continuous-time stochastic process with autocorrelation function $a_x \in \mathrm{BL}[-\omega_0/2,\,\omega_0/2]$. For any $T \leq 2\pi/\omega_0$,

$$\mathbf{x}(t) = \sum_{k \in \mathbb{Z}} \mathbf{x}(nT) \operatorname{sinc}\left(\frac{\pi}{T}(t - nT)\right)$$
 for all $t \in \mathbb{R}$,

in the mean-square sense, meaning

$$\lim_{N\to\infty} \mathbb{E}\Big[\left|\mathbf{x}(t) - \sum_{k=-N}^{N} \mathbf{x}(nT) \operatorname{sinc}\left(\frac{\pi}{T}(t-nT)\right)^{2}\right|\Big] = 0 \quad \text{for all } t \in \mathbb{R}.$$

Convergence in mean-square implies convergence in probability.

Recap

- Sampling and interpolation as linear transforms between Hilbert spaces
- Sampling and interpolation of functions using orthonormal sampling functions

$$\langle \varphi_n, \varphi_k \rangle = \delta_{n-k} \Leftrightarrow \langle g(t-nT), g(t-kT) \rangle_t = \delta_{n-k}$$

- Sampling and interpolation are adjoints of each other
- Consistency: $\Phi^*\Phi = I$
- Ideally matched: ΦΦ* = P is orthogonal projection onto
 S = R(Φ) = span({φ_k}_{k∈Z})
- Sampling without prefilter; CT convolution via discrete processing;
 Multichannel sampling
- Coming up: Sampling with non-orthogonal functions, Sampling and Interpolation in $\ell^2(\mathbb{Z})$, Other topics

Sampling

$$y_k = \int_{-\infty}^{\infty} x(\tau) \widetilde{g}(kT - \tau) d\tau = \langle x, \widetilde{\varphi}_k \rangle$$

where
$$\widetilde{\varphi}_k(t) = \widetilde{g}^*(kT - t)$$
.

Suppose shifts of \tilde{g} are not orthogonal

Sampling operator $\widetilde{\Phi}^*$ and $\widetilde{S} = \mathcal{N}(\widetilde{\Phi}^*)^{\perp} = \overline{\operatorname{span}}(\{\widetilde{\varphi}_k\}_{k \in \mathbb{Z}})$

Interpolation

Interpolation

$$\widehat{x}(t) = \sum_{k \in \mathbb{Z}} y_k g(t - kT) = \left(\sum_{k \in \mathbb{Z}} y_k \varphi_k\right)(t)$$

Operator notation

$$\hat{x} = \Phi y$$

As before let $S = \mathcal{R}(\Phi)$

Interpolation followed by sampling

For *consistency* we need

$$\widetilde{\Phi}^*\Phi = I \quad \Leftrightarrow \quad \langle \varphi_k, \, \widetilde{\varphi}_n \rangle = \delta_{k-n}$$

or equivalently,

$$\langle g(t-kT), \widetilde{g}^*(nT-t) \rangle_t = \delta_{k-n},$$

i.e., the vectors are biorthogonal.

We require shifts of g to be orthogonal to time reversed and conjugated shifts of \tilde{g}

Sampling followed by interpolation

Operator

$$P = \Phi \widetilde{\Phi}^*$$

forms a projection whenever consistency condition holds, i.e., Φ is a right inverse of $\widetilde{\Phi}^*$

Forms an orthogonal projection when Φ is the "pseudoinverse" of $\widetilde{\Phi}^*$. In this case, $S = \widetilde{S}$, i.e., $\mathcal{R}(\Phi) = \mathcal{N}(\widetilde{\Phi}^*)^{\perp}$ and we say sampling and interpolation operators are ideally matched

• Note: Identifying pseudoinverses of an operator on an infinite-dimensional space is non-trivial. In practice we only verify the $S=\widetilde{S}$ condition, in which case $\{\varphi_n:n\in\mathbb{Z}\}$ and $\{\widetilde{\varphi}_n:n\in\mathbb{Z}\}$ form a biorthogonal pair of bases for S.

Theorem (Recovery for functions, nonorthogonal)

Suppose sampling prefilter \widetilde{g} and interpolation postfilter g satisfy consistency condition. Then,

$$\widehat{x}(t) = \sum_{k \in \mathbb{Z}} y_k g(t - kT), \qquad t \in \mathbb{R},$$

where

$$y_k = \int_{-\infty}^{\infty} x(\tau) \widetilde{g}(kT - \tau) d\tau, \qquad k \in \mathbb{Z},$$

satisfies $\hat{x} = Px$, with $P = \Phi \widetilde{\Phi}^*$. Furthermore:

- **9** P is a projection operator with range $S = \mathcal{R}(\Phi)$, and $x \widehat{x} \perp \widetilde{S} = \mathcal{N}(\widetilde{\Phi}^*)^{\perp}$. In particular, $\widehat{x} = x$ when $x \in S$.
- ② If Φ is the "pseudoinverse" of $\widetilde{\Phi}^*$, P is an orthogonal projection operator and $S = \widetilde{S}$.

Consistent sampling and interpolation filters

Suppose T=1 and the postfilter is

$$g(t) = \begin{cases} 1 - |t|, & \text{for } |t| < 1; \\ 0, & \text{otherwise.} \end{cases}$$

 $S = \overline{\operatorname{span}}(\{g(t-k)\}_{k \in \mathbb{Z}})$, is a shift-invariant subspace with respect to integer shifts. Qn: What is S?

Several choices for \widetilde{g} satisfy consistency condition:

$$\langle g(t-kT), \widetilde{g}^*(nT-t) \rangle_t = \delta_{k-n}$$

Suppose we choose \widetilde{g} of form

$$\widetilde{g}(t) = \begin{cases} a(b-|t|), & \text{for } |t| < 1/2; \\ 0, & \text{otherwise.} \end{cases}$$

Consistent sampling and interpolation filters

We need

$$1 = \langle g(t), \widetilde{g}^*(-t) \rangle_t = \int_{-1/2}^{1/2} (1-|t|) \, a(b-|t|) \, dt = \frac{1}{12} a(9b-2),$$

$$0 = \langle g(t), \widetilde{g}^*(1-t) \rangle_t = \int_{1/2}^1 (1-t) \, a(b-(1-t)) \, dt = \frac{1}{24} a(3b-1).$$

Other constraints are met automatically because \widetilde{g} and g have finite supports. Gives solution $a=12,\ b=1/3,$ or

$$\widetilde{g}(t) = \begin{cases} 4 - 12|t|, & \text{for } |t| < 1/2; \\ 0, & \text{otherwise.} \end{cases}$$

Note: Not ideally matched because $\widetilde{S} = \overline{\operatorname{span}}(\{\widetilde{g}(t-k)\}_{k\in\mathbb{Z}}) \neq S$ (e.g., \widetilde{g} is not continuous while all functions in S are continuous)

Ideally matched sampling and interpolation filters

To ensure $S = \widetilde{S}$ we just need to choose \widetilde{g} such that $\widetilde{\varphi}_0$ is in S, since S and \widetilde{S} are shift-invariant spaces with shift T. Let

$$\widetilde{g}(t) = \sum_{\ell \in \mathbb{Z}} \alpha_{\ell} g^*(-t - \ell T)$$

Consistency condition becomes

$$\begin{array}{lcl} \delta_k & = & \langle g(t-kT), \, \widetilde{g}^*(-t) \rangle_t \\ \\ & = & \sum_{\ell \in \mathbb{Z}} \alpha_\ell \, \langle g(t-kT), \, g(t-\ell T) \rangle_t \\ \\ & = & \sum_{\ell \in \mathbb{Z}} \alpha_\ell \, a_{\ell-k} \end{array}$$

where a_m denotes autocorrelation sequence

$$a_m = \langle g(t), g(t-m) \rangle, \quad m \in \mathbb{Z}.$$

Ideally matched sampling and interpolation filters

To solve for α rewrite as convolution:

$$\delta_k = (\alpha \cdot * a_-)_k$$

In z-transform domain, we get

$$\alpha(z)A(z^{-1}) = 1.$$

Substituting $A(z) = (z + 4 + z^{-1})/6$ we get

$$\alpha(z) = \frac{1}{A(z^{-1})} = \frac{6}{z^{-1} + 4 + z} = \frac{6c}{(1 + cz^{-1})(1 + cz)}$$
$$= \frac{6c}{1 - c^2} \left(\frac{1}{1 + cz^{-1}} - \frac{cz}{1 + cz} \right),$$

where $c = 2 - \sqrt{3}$. Inverting we get

$$\alpha_k = \frac{6c}{1-c^2}(-c)^{|k|}, \qquad k \in \mathbb{Z},$$

Ideally matched sampling and interpolation filters

Ideally matched sampling prefilter lies in shift invariant space generated by conjugated and time-reversed version of interpolation postfilter

In this case $P=\Phi\widetilde{\Phi}^*$ implements orthogonal projection onto S, the space of piecewise-linear and continuous functions that are smooth everywhere except at the integers.

Will be generalized to splines later.

Sampling and interpolation with non-orthonormal vectors

Subspaces defined in sampling and interpolation

 \widetilde{S} represents what can be measured; it is the orthogonal complement of the null space of the sampling operator $\widetilde{\Phi}^*$. S represents what can be reproduced; it is the range of the interpolation operator Φ . When sampling and interpolation are consistent, $\Phi\widetilde{\Phi}^*$ is a projection and $x-\widehat{x}$ is orthogonal to \widetilde{S} . When furthermore $S=\widetilde{S}$, the projection becomes an orthogonal projection and the sampling and interpolation are ideally matched.

Other examples of sampling

- Non-uniform sampling of bandlimited signals
 - Perfect reconstruction conditions and algorithms (e.g., POCS)
- Sampling non-bandlimited signals
 - Sparse discrete signals: Compressed sensing

$$y = \Phi^* x + w$$

where x is sparse. Key difference: non-convex constraint

- Sparse continuous signals: Finite rate of innovation
- Stochastic spatial fields: Kriging, an interpolation technique that uses specific assumptions on the correlation structure of the stochastic process
- Sampling for mobile sensing
 - Designing sensor trajectories that minimize sensor movement
 - Spatial anti-aliasing via time-domain filtering