Math 325K - Lecture 19 Section 7.3 Composition of functions

Bo Lin

November 8th, 2018

Outline

- Definition.
- Properties.

The composition of functions

Definition

Let $f: X \to Y'$ and $g: Y \to Z$ be two functions with the property that the range of f is a subset of the domain Y of g. The **composition** of f and g is another function $g \circ f: X \to Z$ such that for every $x \in X$, $(g \circ f)(x) = g(f(x))$. The symbol $g \circ f$ is read "g circle f" and g(f(x)) is read "g of f of x".

The composition of functions

Definition

Let $f: X \to Y'$ and $g: Y \to Z$ be two functions with the property that the range of f is a subset of the domain Y of g. The composition of f and g is another function $g \circ f: X \to Z$ such that for every $x \in X$, $(g \circ f)(x) = g(f(x))$. The symbol $g \circ f$ is read "g circle f" and g(f(x)) is read "g of f of x".

Remark

To make sure that $g \circ f$ is well-defined, g should be able to map each f(x), and one sufficient condition could be that the range of f is a subset of the domain of g. Note that Y' is not necessarily equal to Y.

Example

For $f: \mathbb{N} \to \mathbb{N}$ with f(n) = n+1 and $g: \mathbb{N} \to \mathbb{N}$ with $g(n) = n^2$, what would be the formula for $g \circ f$? We just need to figure out what is the value of $(g \circ f)(n)$ for every $n \in \mathbb{N}$.

Example

For $f:\mathbb{N}\to\mathbb{N}$ with f(n)=n+1 and $g:\mathbb{N}\to\mathbb{N}$ with $g(n)=n^2$, what would be the formula for $g\circ f$? We just need to figure out what is the value of $(g\circ f)(n)$ for every $n\in\mathbb{N}$. By definition, $(g\circ f)(n)=g(f(n))$. Note that f(n)=n+1, so this value is g(n+1), which is $(n+1)^2$. Then the formula of $g\circ f$ is

$$(g \circ f)(n) = (n+1)^2 \quad \forall n \in \mathbb{N}.$$

Exercise

Let $f: \mathbb{N} \to \mathbb{N}$ with f(n) = n+1 and $g: \mathbb{N} \to \mathbb{N}$ with $g(n) = n^2$. Find the formula of $f \circ g$. Is it one-to-one? Is it onto?

Exercise

Let $f: \mathbb{N} \to \mathbb{N}$ with f(n) = n+1 and $g: \mathbb{N} \to \mathbb{N}$ with $g(n) = n^2$. Find the formula of $f \circ g$. Is it one-to-one? Is it onto?

Solution

For every $n \in \mathbb{N}$, $(f \circ g)(n) = f(g(n)) = f(n^2) = n^2 + 1$.

Exercise

Let $f: \mathbb{N} \to \mathbb{N}$ with f(n) = n+1 and $g: \mathbb{N} \to \mathbb{N}$ with $g(n) = n^2$. Find the formula of $f \circ g$. Is it one-to-one? Is it onto?

Solution

For every $n \in \mathbb{N}$, $(f \circ g)(n) = f(g(n)) = f(n^2) = n^2 + 1$. To check the one-to-one property, suppose n_1, n_2 are positive integers such that $(f \circ g)(n_1) = (f \circ g)(n_2)$. Then $n_1^2 + 1 = n_2^2 + 1$. So $0 = n_1^2 - n_2^2 = (n_1 + n_2)(n_1 - n_2)$. Since n_1, n_2 are positive integers, $n_1 + n_2 > 0$, hence $n_1 = n_2$ and $f \circ g$ is one-to-one.

Exercise

Let $f: \mathbb{N} \to \mathbb{N}$ with f(n) = n+1 and $g: \mathbb{N} \to \mathbb{N}$ with $g(n) = n^2$. Find the formula of $f \circ g$. Is it one-to-one? Is it onto?

Solution

For every $n \in \mathbb{N}$, $(f \circ g)(n) = f(g(n)) = f(n^2) = n^2 + 1$. To check the one-to-one property, suppose n_1, n_2 are positive integers such that $(f \circ g)(n_1) = (f \circ g)(n_2)$. Then $n_1^2 + 1 = n_2^2 + 1$. So $0 = n_1^2 - n_2^2 = (n_1 + n_2)(n_1 - n_2)$. Since n_1, n_2 are positive integers, $n_1 + n_2 > 0$, hence $n_1 = n_2$ and $f \circ g$ is one-to-one. To check the onto property, note that not many integers are of the form $n^2 + 1$ with $n \in \mathbb{Z}$. So it is easy to find an example not in the range. Suppose $n^2 + 1 = 3$, then $n^2 = 2$, $n = \pm \sqrt{2}$, which is not an integer. So 3 is in the co-domain but not in the range of $f \circ g$ and $f \circ g$ is not onto.

Identity functions

Definition

For any set X, the **identity function** on X is denoted I_X , which is defined by

$$I_X(x) = x \quad \forall x \in X.$$

Identity functions

Definition

For any set X, the **identity function** on X is denoted I_X , which is defined by

$$I_X(x) = x \quad \forall x \in X.$$

Remark

Identity functions have equal domain and co-domain, and they map every element in the domain to itself. So they are one of the simplest functions.

Composition with identity functions

Proposition

Let $f: X \to Y$ be a function and $I_X: X \to X$, $I_Y: Y \to Y$ be the identity functions. Then

$$f \circ I_X = I_Y \circ f = f.$$

Composition with identity functions

Proposition

Let $f: X \to Y$ be a function and $I_X: X \to X$, $I_Y: Y \to Y$ be the identity functions. Then

$$f \circ I_X = I_Y \circ f = f.$$

Proof.

For any $x \in X$, we have

$$(f \circ I_X)(x) = f(I_X(x)) = f(x), (I_Y \circ f) = I_Y(f(x)) = f(x).$$

Composition of inverse functions

Theorem

If $f: X \to Y$ is a bijection with inverse function f^{-1} , then

$$f \circ f^{-1} = I_Y, f^{-1} \circ f = I_X.$$

Composition of inverse functions

Theorem

If $f: X \to Y$ is a bijection with inverse function f^{-1} , then

$$f \circ f^{-1} = I_Y, f^{-1} \circ f = I_X.$$

Proof.

Just note that $f(f^{-1}(y))=y$ for all $y\in Y$ and $f^{-1}(f(x))=x$ for all $x\in X$. \square

Composition of one-to-one functions

Theorem

Let $f:X\to Y$ and $g:Y\to Z$ be one-to-one functions. Then $g\circ f:X\to Z$ is also one-to-one.

Composition of one-to-one functions

Theorem

Let $f:X \to Y$ and $g:Y \to Z$ be one-to-one functions. Then $g \circ f:X \to Z$ is also one-to-one.

Proof.

By definition, it suffices to show that for any two elements $x_1,x_2\in X$, if $(g\circ f)(x_1)=(g\circ f)(x_2)$, then $x_1=x_2$. Since $g(f(x_1))=g(f(x_2))$ and g is one-to-one, we deduce that $f(x_1)=f(x_2)$. Now since f is one-to-one, we deduce that $x_1=x_2$.

Composition of onto functions

Theorem

Let $f: X \to Y$ and $g: Y \to Z$ be onto functions. Then $g \circ f: X \to Z$ is also onto.

Composition of onto functions

Theorem

Let $f: X \to Y$ and $g: Y \to Z$ be onto functions. Then $g \circ f: X \to Z$ is also onto.

Proof.

By definition, it suffices to show that for every element $z \in Z$, there exists an element $x \in X$ such that $(g \circ f)(x) = z$, which is g(f(x)) = z. Since g is onto, there exists an element $y \in Y$ such that g(y) = z. Next since f is onto, there exists an element $x \in X$ such that f(x) = y. Then g(f(x)) = g(y) = z.

Similar statements

Exercise

Let $f: X \to Y$ and $g: Y \to Z$ be functions. If $g \circ f$ and f are both one-to-one, what about g?

Similar statements

Exercise

Let $f: X \to Y$ and $g: Y \to Z$ be functions. If $g \circ f$ and f are both one-to-one, what about g?

Solution

g is not necessarily one-to-one, because Y may contain many elements that are not in the range of f, so they won't destroy the one-to-one property of $g \circ f$ while they could do for g.

Similar statements

Exercise

Let $f: X \to Y$ and $g: Y \to Z$ be functions. If $g \circ f$ and f are both one-to-one, what about g?

Solution

g is not necessarily one-to-one, because Y may contain many elements that are not in the range of f, so they won't destroy the one-to-one property of $g \circ f$ while they could do for g. A explicit counterexample: $f: \mathbb{N} \to \mathbb{Z}$ with f(n) = n; $g: \mathbb{Z} \to \mathbb{Z}$ with $g(n) = n^2$. Then $(g \circ f)(n) = n^2$ for all $n \in \mathbb{N}$ so it's

one-to-one, while g is not.

Exercise: computing inverse functions

Exercise

Let $H: \mathbb{R} - \{1\} \to \mathbb{R} - \{1\}$ be the function with $H(x) = \frac{x+1}{x-1}$ for all $x \in \mathbb{R} - \{1\}$. Find its inverse function H^{-1} , and verify that the composition $H \circ H^{-1}$ is indeed an identity function.

Exercise: computing inverse functions

Exercise

Let $H: \mathbb{R} - \{1\} \to \mathbb{R} - \{1\}$ be the function with $H(x) = \frac{x+1}{x-1}$ for all $x \in \mathbb{R} - \{1\}$. Find its inverse function H^{-1} , and verify that the composition $H \circ H^{-1}$ is indeed an identity function.

Solution

For each y in $\mathbb{R}-\{1\}$, we would like to find the unique $x\in\mathbb{R}-\{1\}$ such that H(x)=y. Then $\frac{x+1}{x-1}=y$. So x+1=(x-1)y=xy-y. Then y+1=xy-x. Note that $y\neq 1$, so $x=\frac{y+1}{y-1}$. So $H^{-1}(y)=\frac{y+1}{y-1}$, and it turns out that $H^{-1}=H$.

Exercise: computing inverse functions

Exercise

Let $H: \mathbb{R} - \{1\} \to \mathbb{R} - \{1\}$ be the function with $H(x) = \frac{x+1}{x-1}$ for all $x \in \mathbb{R} - \{1\}$. Find its inverse function H^{-1} , and verify that the composition $H \circ H^{-1}$ is indeed an identity function.

Solution

For each y in $\mathbb{R}-\{1\}$, we would like to find the unique $x\in\mathbb{R}-\{1\}$ such that H(x)=y. Then $\frac{x+1}{x-1}=y$. So x+1=(x-1)y=xy-y. Then y+1=xy-x. Note that $y\neq 1$, so $x=\frac{y+1}{y-1}$. So $H^{-1}(y)=\frac{y+1}{y-1}$, and it turns out that $H^{-1}=H$. For the second question, it suffices to show that H(H(x))=x for all $x\neq 1$. In fact

$$H(H(x)) = H\left(\frac{x+1}{x-1}\right) = \frac{\frac{x+1}{x-1}+1}{\frac{x+1}{x-1}-1} = \frac{(x+1)+(x-1)}{(x+1)-(x-1)} = \frac{2x}{2} = x.$$

HW# 10 of this section

Exercise 5, 8(b), 17, 22.