TH zürich

An Analysis Of Individual And Community Solar PV Adoption Levels Under Current Regulations Using Agent-based Modelling

Master Thesis Mid-term Presentation

Prakhar Mehta, MEST

Supervisors: Danielle Griego, Alejandro Nuñez-Jimenez

Professor: Dr. Arno Schlüter

Agenda

- **Introduction and Motivation**
- Methodology Overview
- Communities "Plots" in Alt-Wiedikon
- Agent-based Modelling and Decision Making
- CEA v SFOE data
- Next steps
- Discussion: inputs and feedback

Introduction

2017: 1.4 TWh

2020: 4.4 TWh

2035: 11.4 TWh

Zurich

Great case for community solar Complementary building types closely packed together Alt-Wiedikon: high resolution CEA data

Community Scale PV systems

- Larger = reduced price/kW
- complementary load profiles
- Financial benefits/products

Alt-Wiedikon Buildings Distribution

FIGURE 1.1: Building types of the whole district as in the statistics of the City of Zurich

Regulations

- Energy Act (EnG 2018):
 - Mandatory for EWZ: FiT = 7.91Rp./kWh in Zurich
 - Only one-time subsidy from government: up to 30% of PV system costs
- Zusammenschulss für Eigenverbrauch (ZEV) Formation
 - Article 17, EnG 2018: Incentivizes self consumption communities
 - multiple consumers → single customer
 - Building owner/Tenants → form ZEV, share system costs and electricity in premises

Need for Solar Adoption + Policy Incentives = Ingredients for a Research Question!

- Switzerland needs to increase renewable energy generation by 10 TWh by 2035. Community Solar PV Systems have important advantages over Individual PV systems.
- Problem Statement:
 - Newly introduced regulations incentivize self-consumption and favour Community Solar PV, but their effectiveness remains unknown and un-researched.
- Research Questions
 - Will the adoption of community scale solar PV outpace individually owned solar in the Swiss urban context, given current regulations?
 - What elements of the current regulation have greater impact on adoption levels?
 - Level of subsidies
 - Size of allowed communities

State-of-the-Art

- Agent-based models have been used to model solar PV adoption
 - Individual, heterogenous agents making decisions
 - Account for irrational human behaviour and how peers/society drive decision making
 - Rai, Douglas (2016): "Interaction of heterogeneous agents at the micro-level produces macro outcomes"
 i.e. Emergent behaviour
- Icek Ajzen's Theory of Planned Behaviour (1991) commonly used as the base for decision making
- Existing research focuses on individual level PV adoption
 - <u>Ex-Post:</u> Palm (2017): Surveys of PV adopters
 - Active peer effects as a final confirmation from trustworthy sources → Passive peers unimportant
 - <u>Ex-Ante:</u> Rai, Robinson (2015): Empirical approach to ABM with Relative Agreement algorithms and Small World Networks –
 - Effect of change in rebate levels on adoption scales with installed base → greater adoption later in the model
- No existing research on adoption of community PV systems! ②

Methodology Overview

Building Data, Geometry, etc.

CEA Model Alt-Wiedikon, Zurich (Sabine Python)

CEA Output Data Processing

Other Inputs

- Peer effects, environmental attitudes, agent locations
- Prices PV and Electricity

ABM for **Building Owners** [Individual/Community Adoption]

Parameters

- Agent Categories based on building type and ownership
- Time: Yearly time steps until 2035
- Small-world Network: Which agents interact

 Adoption levels Individual v Community

Communities based on Strict ZEV regulations

- "Plots"

- Make "Plots" very strictly according to regulations
- Plots aren't perfect
- Different types of plots formed:
 - Single/Multiple buildings
 - Small/Large areas
 - Different Building types

Zooming into a Plot

- All could potentially form a SINGLE community
- Or can form multiple SUB-communities
- 100 MWh Demand self-imposed limit threshold for wholesale electricity market participation – discussion later
- → Buildings which can actually form a ZEV are further classified into sub-plots

What does our ABM do?

- Building owners of different types •
- **DECISIONS:**
 - Solar NO
 - Solar YES
 - Individual
 - Community
 - What size of community? With who?
- Individual PV on building no problems
 - Size of system known prices known
 - 2 choices only "Ja" oder "Nein"

- Community PV in a plot lots of problems! 📡
- PV System Size ←→ Costs ←→ Members of ZEV
- Keep Community PV Size varying
 - Avoids Bias
- Hence use combinatorics each subplot (100 MWh) will decide out of many options after buildings get an idea to adopt/not adopt solar

Use of Theory of Planned Behaviour for decision making Stage I – Idea Generation

Environmental attitudes/beliefs Range = [0,1]

w/ MINERGIE = high EA ~1

w/o MINERGIE = low EA ~0

Small-world Network (Closest people – Friends, Family): in-plot/out-plot

Range = [0,1]

Ratio: #people in SWN with Solar
Total #people in SWN

Economic Attractiveness:

Range = [0,1]

Payback Period Ratio =

PP_bldgtype-PP_bldgtype_PV

PP_bldgtype

Use of Theory of Planned Behaviour for decision making **Stage II – Choice**

Environmental attitudes/beliefs Range = [0,1]

w/ MINERGIE = high EA ~1 w/o MINERGIE = low EA ~0

Small-world Network (Closest people – Friends, Family): in-plot/out-plot Range = [0,1]

Ratio: #people in SWN with Solar Total #people in SWN

Economic Attractiveness:

Range = [0,1]Payback Period Ratio = PP_bldgtype-PP_bldgtype_PV *PP_bldgtype*

Choice based on NPV Ranking

- After clearing Stage I: Only subplot considered
- A, B, C, D
- 11 possible communities
 - ABCD
 - ABC
 - BCD

 - Which community is formed?

Who prefers what? Let's rank preferences:

- Lower the sum of NPV rankings, more preferred the community
- Other criteria, like self-sufficiency of communities formed, can also be ranked and weighted together

Combinations	Ranking A	Ranking B	Ranking C	Ranking D	SUM	Overall Rank	Comments
ABCD	1	1	2	1	5	1	C compromises
ABC	2	3	3	-	8	3	
CDA	3	-	4	4	11	4	
ABD	4	4	-	3	11	4	
BCD	-	2	1	2	5	2	
AB	5	5	-	-	10	6	3 member ZEV prioritized over 2 member
ВС	-	6	5	-	11	7	

Base Case ABM

- Base Case: Adoption under current regulations until 2035 To what degree do current regulations lead to the Energy Strategy 2050 goals?
- Assumptions:
 - PV size = Max. roof area available
 - Community formation = strict ZEV + max.
 100 MWh demand/year
 - Policy = Current regulations
- Variables changing with time:
 - Falling PV prices (projections), peer effects

- Expected Results
 - Community > Individual adoption
 - Adoption increases towards the end of simulation period as peer effects increase and PV prices decrease

Interesting Scenarios – change Base Case Assumptions

a) Reduced PV sizes

- Maybe demands are not high enough for larger PV systems
- Can show us optimum size levels in terms of technical and economic aspects

b) Relaxed ZEV regulations

- Bigger Plots/Subplots
- No 100 MWh demand criteria
- Can show if better and larger communities can be formed at possibly lower costs

c) Changing Subsidies and FiTs

- Prolong availability after 2030, Increase/Decrease/Special ZEV credit
- Gives an idea of the importance of the level and type of subsidies

SFOE v CEA Data Fits well but magnitude of difference is high!

Bundesamt für Energie BFE

Median difference = 10 MWh = approx. 3 households' yearly demand! CEA underestimates.

Still use CE Hourly data important fo and SS cald

Next Steps

- March: ABM model architecture
- April: ABM Runs
- May: ABM results analysis
- June: Final Presentation
- September: CISBAT Conference Poster Presentation!

Thank You! Time for questions and discussion! ©

Discussion: inputs and feedback

- 100 MWh self-imposed limit
 - ~25-30 households ~ 4-5 typical residential buildings
 - Dsregard this limit and consider PV comparison with wholesale prices? NPV changes!
- NPV not considered in Stage I
 - TPB becomes complex with various options (else had to fix community size, unrealistic)
 - But, any other way than PP ratios to develop economic attractiveness?
- Does considering NPV ranking in Stage II make sense?
 - Conflict resolution:
 - Based on technical criteria, like greater self-sufficiency?
 - Based on best NPV situation for all buildings concerned?
 - Based on inclusion include as many buildings in community system?
 - Include feedback to Stage I to model it as persuasion from peers?
- Any thoughts on the decision making process?
- What scenarios do you like? reduced PV, relaxed regulations, changing subsidies, Others?

Back-up Slides

My case: So. Many. Variables!

Environmental attitudes/beliefs Technical aspects **Economics** Past opinions

Cost effectiveness

No. of installations in neighbourhood Feedback based on peer decisions What Peers Say

- General Social Image of PV
- Small-world Network (Closest people - Friends, Family)

Does agent feel confident enough to do it? Money/Economic Attractiveness Time Skills Support and Persuasion

