

PREDICTION ON WALMART SALES DEMAND

Business Objective

 Efficiently allocate resources and accurately estimate costs and revenue based on the prediction of short-term and long-term sales performance

 Produce the 28 days ahead point forecasts for 30490 items in 42,840 time series that represent the hierarchical unit sales of Walmart, starting at the item level and aggregating to that of departments, product categories and stores in three geographical areas in US

Approaches

Machine Learning

LightGBM

Statistics

- SARIMAX
- Prophet

Deep Learning

- Seq2seq
- Transformer

LightGBM

- Type of ensemble modeling
- Uses tree-based learning algorithm
- Prefixed as 'light' because of its high speed

Leaf-wise tree growth

SARIMAX

- S: Seasonality
- AR: Autoregression
- I: Integrated
- MA: Moving Average
- X: Exogenous Variable

Prophet

- Trend component
- Seasonal component
- Holiday component

$$y_t = g(t) + s(t) + h(t)$$

Seq2seq

- Encoder
- Decoder

Temporal Fusion Transformer

- Gating mechanisms
- Variable selection networks
- Static covariate encoder
- Interpretability

Model Comparison

Appraoches	Model	Pros	Cons
Machine Learning	LightGBM	 Faster training speed and higher efficiency Lower memory usage Better accuracy than any other boosting algorithm Compatibility with Large Datasets 	OverfittingSensitive to noise data
Statistics	SARIMAX	 Brings seasonality as a parameter Supports exogenous variabls 	 Required stationary data Linear relationship only
	Prophet	 Accommodates seasonality with multiple periods Resilient to missing values Fitting the model is fast Enable hyperparameter tuning 	 Dependence on past realizations is completely ignored Variance is presumed to be constant
Deep Learning	Seq2seq	Much less human engineering effort	 less interpretable, hard to debug incapability of long sentences memory
	Transformer	 Attention allow decoder to focus on certain parts of the source Able to capture long-range dependencies and interactions 	High memory usageInability to process input sequentially

Performance Comparison

Features

CATEGORICAL

Store Id
Dept Id
Item Id

TEMPORAL

Weekday

week_month

month, day

Events

SNAP

Sell Price

LAG

Past item sales

- Item level
- Dept level
- Store level

Past Sell Price

4wks, 5wks, 6wks

Modeling Process

Model Outcome

Test Metrics: Mean Absolute Percentage Error = 4.97%

On average our predictions have less than 5% error from the actual sales

Findings/Conclusions

Sell price is the #1 factor that impacts sales

There exist distinct patterns that follow along the calendar which are easily predictable using the historical data

The demand for the same item can vary by state as states can have different customer bases

THANK YOU