財務工程導論

HW1

How to Determine the Option Price (Arbitrage-Base Pricing Theorem)

• Assume that the exchange rate follows the following dynamics:

Arbitrage-Base Pricing Theorem

Replicate the Option

- Replication: Construct a portfolio that has the same payoff as the option at maturity.
- This call option can be replicated as follows:
 - We buy x TWDs and y USDs at time t
 - We hope that this portfolio generates the same payoff as the option at time T.
 - At case 1: 1x+34y=2
 - At case 2: 1x+30y=0
 - Solve the equations, we have $x=\frac{-15}{}$, $y=\frac{0.5}{}$

Arbitrage-Base Pricing Theorem

Replicate the Option and Determine the Option Price

 A foreign exchange option can be constructed as follows:

```
- Borrow 15 TWD
```

```
- Buy 0.5USD
```

```
- The total cost= -15+32*0.5=1
```

• At case 1:

```
- The value of portfolio= -15+34*0.5=2
```

• At case 2:

```
- The Value of portfolio= -15+30*0.5=0
```

The Value of the option is

Arbitrage-Based Pricing Theorem

Condition of Arbitrage Opportunity

- Arbitrage opportunity exists if the option value is not 1 TWDs.
- Let the option value P>_____
 - Sell a call option for P dollars.
 - Construct a replication portfolio
 - Borrow 15 TWD and buy 0.5 USD
 - Benefit at time t = P 1 > 0.
 - No loss will be introduced at either case.

		TWDs	USDs	Option	Total
USD = 34	Case 1	-15	0.5*34	2	0
USD = 30	Case 2	-15	0.5*30	0	0

Arbitrage-Based Pricing Theorem

Determine the Option Value by No Arbitrage Assumption

- Similar case is applied for the case option value P< 1
 - Buy a call option for P dollars.
 - Construct a replication portfolio
 - Borrow 0.5 USD and buy 15 TWD
 - Benefit at time t = 1 P > 0.
 - No loss will be introduced at either case.

· ·	TWDs	USDs	Option	Total
Case 1	15	-0.5*34	2	0
Case 2	15	-0.5*30	0	0