#3.6 Lab: Linear Regression

#3.6.1

```
In [1]:
                library(MASS)
                library(ISLR)
                attach(Boston)
 In [4]:
                #To access the Boston data from the MASS package
 In [5]:
                head(Boston)
               crim
                       indus chas
                                                         dis rad
                                                                  tax ptratio
                                                                               black Istat medv
                    zn
                                      nox
                                                 age
                                             rm
            0.00632
                    18
                         2.31
                                    0.538 6.575
                                                 65.2
                                                      4.0900
                                                               1
                                                                  296
                                                                         15.3
                                                                              396.90
                                                                                      4.98
                                                                                             24.0
                                                                  242
            0.02731
                     0
                         7.07
                                  0 0.469 6.421 78.9
                                                      4.9671
                                                                         17.8 396.90
                                                                                      9.14
                                                                                            21.6
            0.02729
                                  0 0.469 7.185 61.1 4.9671
                                                                         17.8 392.83
                     0
                         7.07
                                                                  242
                                                                                      4.03
                                                                                            34.7
            0.03237
                                  0 0.458 6.998 45.8 6.0622
                                                                  222
                                                                         18.7 394.63
                                                                                      2.94
                     0
                         2.18
                                                               3
                                                                                            33.4
            0.06905
                         2.18
                                  0 0.458 7.147 54.2 6.0622
                                                                  222
                                                                         18.7
                                                                              396.90
                                                                                      5.33
                                                                                             36.2
            0.02985
                         2.18
                                  0 0.458 6.430 58.7 6.0622
                                                                  222
                                                                         18.7 394.12 5.21
                                                                                            28.7
 In [7]:
                names (Boston)
            'crim'
                   'zn'
                        'indus'
                                'chas'
                                        'nox'
                                               'rm'
                                                     'age'
                                                           'dis'
                                                                 'rad'
                                                                        'tax'
                                                                              'ptratio'
                                                                                       'black'
           'Istat'
                   'medv'
                #simple linear fit
In [12]:
                lm.fit = lm(medv\sim lstat)
                lm.fit = lm(medv~lstat, data = Boston)
In [13]:
```

```
In [11]:
              lm.fit
         Call:
         lm(formula = medv ~ lstat, data = Boston)
         Coefficients:
          (Intercept)
                             lstat
                34.55
                             -0.95
             names(lm.fit)
In [14]:
          'coefficients' 'residuals' 'effects'
                                      'rank' 'fitted.values'
                                                        'assign' 'qr'
                                                                    'df.residual'
          'xlevels' 'call' 'terms' 'model'
              summary(lm.fit)
In [15]:
         Call:
         lm(formula = medv ~ lstat, data = Boston)
         Residuals:
             Min
                       10
                           Median
                                        30
                                               Max
         -15.168 -3.990 -1.318
                                    2.034
                                           24.500
         Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
          (Intercept) 34.55384
                                             61.41
                                  0.56263
                                                     <2e-16 ***
                                  0.03873 -24.53
          lstat
                      -0.95005
                                                     <2e-16 ***
         Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
         Residual standard error: 6.216 on 504 degrees of freedom
         Multiple R-squared: 0.5441, Adjusted R-squared: 0.5432
         F-statistic: 601.6 on 1 and 504 DF, p-value: < 2.2e-16
              coef(lm.fit)
In [16]:
```

34.5538408793831

-0.950049353757991

(Intercept)

Istat

http://localhost:8889/notebooks/DataAnalytics/M2_Lab.ipynb

In [17]: 1 confint(lm.fit)

2.5 % 97.5 % (Intercept) 33.448457 35.6592247 lstat -1.026148 -0.8739505

In [19]:

predict(lm.fit,data.frame(lstat=c(5,10,15)), interval = "confidence"

#predict()used to produce confidence intervals and prediction inte #for the prediction of medv for a given value of lstat.

fit	lwr	upr
29.80359	29.00741	30.59978
25.05335	24.47413	25.63256
20.30310	19.73159	20.87461

In [20]:

predict(lm.fit,data.frame(lstat=c(5,10,15)), interval = "predictic

fit	lwr	upr
29.80359	17.565675	42.04151
25.05335	12.827626	37.27907
20.30310	8.077742	32.52846

In [28]: 1 plot(1:20,1:20,pch=1:20)

In [30]: 1 plot(predict(lm.fit), residuals(lm.fit))

In [32]: 1 plot(hatvalues(lm.fit))

In [33]: 1 which.max(hatvalues (lm.fit))
2 #identifies the index of the largest element of a vector. it tells
3 #which observation has the largest leverage statistic.

375: 375

#3.6.3 Multiple Regression

```
In [37]:
```

```
1  lm.fit=lm(medv~lstat+age,data=Boston)
2  summary(lm.fit)
```

Call:

lm(formula = medv ~ lstat + age, data = Boston)

Residuals:

```
Min 10 Median 30 Max -15.981 -3.978 -1.283 1.968 23.158
```

Coefficients:

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.173 on 503 degrees of freedom Multiple R-squared: 0.5513, Adjusted R-squared: 0.5495 F-statistic: 309 on 2 and 503 DF, p-value: < 2.2e-16

```
In [38]:
             lm.fit <- lm(medv ~ ., data = Boston)</pre>
             summary(lm.fit)
             # . can be add all variables as predictors
         Call:
         lm(formula = medv \sim ., data = Boston)
         Residuals:
             Min
                      10 Median
                                      30
                                             Max
         -15.595 -2.730 -0.518
                                   1.777
                                          26.199
         Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
                      3.646e+01 5.103e+00
                                            7.144 3.28e-12 ***
         (Intercept)
                     -1.080e-01 3.286e-02 -3.287 0.001087 **
         crim
                      4.642e-02 1.373e-02 3.382 0.000778 ***
         zn
                      2.056e-02 6.150e-02
         indus
                                             0.334 0.738288
         chas
                      2.687e+00 8.616e-01
                                            3.118 0.001925 **
         nox
                     -1.777e+01
                                3.820e+00 -4.651 4.25e-06 ***
                      3.810e+00 4.179e-01
                                            9.116 < 2e-16 ***
         rm
         age
                      6.922e-04 1.321e-02
                                             0.052 0.958229
                                1.995e-01 -7.398 6.01e-13 ***
                     -1.476e+00
         dis
                                            4.613 5.07e-06 ***
         rad
                      3.060e-01 6.635e-02
                     -1.233e-02 3.760e-03 -3.280 0.001112 **
         tax
                     -9.527e-01 1.308e-01 -7.283 1.31e-12 ***
         ptratio
         black
                      9.312e-03 2.686e-03
                                             3.467 0.000573 ***
                     -5.248e-01 5.072e-02 -10.347 < 2e-16 ***
         lstat
         Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
         Residual standard error: 4.745 on 492 degrees of freedom
         Multiple R-squared: 0.7406, Adjusted R-squared: 0.7338
         F-statistic: 108.1 on 13 and 492 DF, p-value: < 2.2e-16
In [39]:
             ?summary.lm
In [62]:
             summary(lm.fit)$r.sq
             #R^2
         0.740642664109409
In [63]:
             summary(lm.fit)$sigma
             #RSE
```

4.74529818169963

```
In [121]:
              #library(ISLR)
              install.packages("ISLR")
          Updating HTML index of packages in '.Library'
          Making 'packages.html' ... done
              #install.packages("car")
In [123]:
In [104]:
              #library(car)
              #vif(lm.fit)
 In [68]:
              lm.fit1=lm(medv~.-age,data=Boston)
              summary(lm.fit1)
          Call:
          lm(formula = medv \sim . - age, data = Boston)
          Residuals:
               Min
                         10
                              Median
                                            30
                                                    Max
          -15.6054 - 2.7313
                            -0.5188
                                               26.2243
                                        1.7601
          Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
                       36.436927
                                   5.080119
                                               7.172 2.72e-12 ***
          (Intercept)
                       -0.108006
                                   0.032832 -3.290 0.001075 **
          crim
                        0.046334
                                   0.013613
                                               3.404 0.000719 ***
          zn
                                               0.335 0.737989
          indus
                        0.020562
                                   0.061433
                        2.689026
                                   0.859598
                                               3.128 0.001863 **
          chas
                      -17.713540
                                   3.679308 -4.814 1.97e-06 ***
          nox
                        3.814394
                                   0.408480
                                               9.338 < 2e-16 ***
          rm
          dis
                       -1.478612
                                   0.190611 -7.757 5.03e-14 ***
                                   0.066089
                                              4.627 4.75e-06 ***
          rad
                        0.305786
          tax
                       -0.012329
                                   0.003755 -3.283 0.001099 **
          ptratio
                       -0.952211
                                   0.130294 -7.308 1.10e-12 ***
          black
                        0.009321
                                   0.002678
                                               3.481 0.000544 ***
                       -0.523852
                                   0.047625 - 10.999 < 2e - 16 ***
          lstat
          Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
          Residual standard error: 4.74 on 493 degrees of freedom
          Multiple R-squared: 0.7406, Adjusted R-squared:
          F-statistic: 117.3 on 12 and 493 DF, p-value: < 2.2e-16
 In [69]:
              lm.fit1=update(lm.fit, ~.-age)
```

```
In [77]:
            #Interactions
             summary(lm(medv~lstat*age,data=Boston))
         Call:
         lm(formula = medv \sim lstat * age, data = Boston)
         Residuals:
            Min
                     10 Median
                                     30
                                            Max
         -15.806 -4.045 -1.333
                                  2.085
                                         27.552
         Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
         (Intercept) 36.0885359 1.4698355 24.553 < 2e-16 ***
         lstat
                    -1.3921168 0.1674555 -8.313 8.78e-16 ***
                    -0.0007209 0.0198792 -0.036
                                                    0.9711
         age
                    0.0041560 0.0018518
                                          2.244
                                                    0.0252 *
         lstat:age
         Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
         Residual standard error: 6.149 on 502 degrees of freedom
         Multiple R-squared: 0.5557, Adjusted R-squared: 0.5531
         F-statistic: 209.3 on 3 and 502 DF, p-value: < 2.2e-16
In [79]:
            #Non-linear Transformations of the Predictors
            lm.fit2=lm(medv~lstat+I(lstat^2))
             summary(lm.fit2)
         Call:
         lm(formula = medv \sim lstat + I(lstat^2))
         Residuals:
                       10
             Min
                            Median
                                         30
                                                 Max
         -15.2834 -3.8313 -0.5295 2.3095 25.4148
         Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
         (Intercept) 42.862007
                                0.872084
                                         49.15 <2e-16 ***
         lstat
                    -2.332821
                                0.123803 -18.84
                                                   <2e-16 ***
         I(lstat^2)
                     0.043547
                                0.003745
                                           11.63
                                                   <2e-16 ***
         Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
         Residual standard error: 5.524 on 503 degrees of freedom
         Multiple R-squared: 0.6407, Adjusted R-squared: 0.6393
         F-statistic: 448.5 on 2 and 503 DF, p-value: < 2.2e-16
```

In []:

#The near-zero p-value associated with the quadratic term #suggests that it leads to an improved model.

In [80]:

- #We use the anova() function to further quantify the extent
- 2 #to which the quadratic fit is superior to the linear fit
- 3 lm.fit=lm(medv~lstat)
- 4 anova(lm.fit ,lm.fit2)

Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)
504	19472.38	NA	NA	NA	NA
503	15347.24	1	4125.138	135.1998	7.630116e-28

In []:

- 1 #Model 1 containing only one predictor—lstat
- 2 | #Model 2 is larger quadratic model that has two 2 predictors:lstat
- 3 #The anova() performs a hypothesis test comparing the two models.
- 4 #both the models fit the data equally well,
- 5 #in model 2, F is 135, and p-value is near to zero, so model 2
- 6 #is superior than Model 1

```
In [81]:
```

```
par(mfrow=c(2,2)) > plot(lm.fit2)

# with lstat2 included in the model, there is
#little noticible pattern in the residuals.
```



```
In [92]: 1 #cubic fit
2 lm.fit5=lm(medv~poly(lstat,5))
3 summary(lm.fit5)
```

Call:

 $lm(formula = medv \sim poly(lstat, 5))$

Residuals:

```
Min 1Q Median 3Q Max -13.5433 -3.1039 -0.7052 2.0844 27.1153
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 22.5328 0.2318 97.197 < 2e-16 ***

poly(lstat, 5)1 -152.4595 5.2148 -29.236 < 2e-16 ***

poly(lstat, 5)2 64.2272 5.2148 12.316 < 2e-16 ***

poly(lstat, 5)3 -27.0511 5.2148 -5.187 3.10e-07 ***

poly(lstat, 5)4 25.4517 5.2148 4.881 1.42e-06 ***

poly(lstat, 5)5 -19.2524 5.2148 -3.692 0.000247 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 5.215 on 500 degrees of freedom Multiple R-squared: 0.6817, Adjusted R-squared: 0.6785

F-statistic: 214.2 on 5 and 500 DF, p-value: < 2.2e-16

```
In [94]:
             lm.fit5=lm(medv~poly(lstat,7))
             summary(lm.fit5)
         Call:
         lm(formula = medv \sim poly(lstat, 7))
         Residuals:
              Min
                        10
                             Median
                                          30
                                                  Max
                  -3.1382
                            -0.7072
         -14.3746
                                              26.9642
                                      2.0646
         Coefficients:
                          Estimate Std. Error t value Pr(>|t|)
                                              97.168 < 2e-16 ***
         (Intercept)
                           22.5328
                                       0.2319
         poly(lstat, 7)1 -152.4595
                                       5.2164 -29.227 < 2e-16 ***
         poly(lstat, 7)2
                           64.2272
                                       5.2164
                                               12.313 < 2e-16 ***
         poly(lstat, 7)3
                         -27.0511
                                       5.2164 -5.186 3.13e-07 ***
         poly(lstat, 7)4
                                       5.2164
                                               4.879 1.44e-06 ***
                         25.4517
         poly(lstat, 7)5
                         -19,2524
                                       5.2164 -3.691 0.000248 ***
         poly(lstat, 7)6
                            6.5088
                                       5.2164 1.248 0.212708
         poly(lstat, 7)7
                            1.9416
                                       5.2164
                                                0.372 0.709888
                         0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
         Signif. codes:
         Residual standard error: 5.216 on 498 degrees of freedom
         Multiple R-squared: 0.6828,
                                      Adjusted R-squared:
         F-statistic: 153.1 on 7 and 498 DF, p-value: < 2.2e-16
In [87]:
             ?lm.fit
 In [ ]:
             #including additional polynomial terms, up to fifth order,
             #leads to an improvement in the model fit!
             #no polynomial terms beyond fifth order have
             #significant p-values in a regression fit.
```

#3.6.6 Qualitative predictors

```
In [101]:    1 library(ISLR)
In [102]:    1 attach(Carseats)
```

In [106]: 1 head(Carseats)

Sales	CompPrice	Income	Advertising	Population	Price	ShelveLoc	Age	Education	Urban
9.50	138	73	11	276	120	Bad	42	17	Yes
11.22	111	48	16	260	83	Good	65	10	Yes
10.06	113	35	10	269	80	Medium	59	12	Yes
7.40	117	100	4	466	97	Medium	55	14	Yes
4.15	141	64	3	340	128	Bad	38	13	Yes
10.81	124	113	13	501	72	Bad	78	16	No

In [107]: 1 names(Carseats)

'Sales' 'CompPrice' 'Income' 'Advertising' 'Population' 'Price' 'ShelveLoc' 'Age' 'Education' 'Urban' 'US'

In [108]:

```
lm.fit=lm(Sales~.+Income:Advertising+Price:Age,data=Carseats)
summary(lm.fit)
```

Call:

lm(formula = Sales ~ . + Income:Advertising + Price:Age, data = Carse
ats)

Residuals:

Min 10 Median 30 Max -2.9208 -0.7503 0.0177 0.6754 3.3413

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	6.5755654	1.0087470	6.519	2.22e-10	***
CompPrice	0.0929371	0.0041183	22.567	< 2e-16	***
Income	0.0108940	0.0026044	4.183	3.57e-05	***
Advertising	0.0702462	0.0226091	3.107	0.002030	**
Population	0.0001592	0.0003679	0.433	0.665330	
Price	-0.1008064	0.0074399	-13.549	< 2e-16	***
ShelveLocGood	4.8486762	0.1528378	31.724	< 2e-16	***
ShelveLocMedium	1.9532620	0.1257682	15.531	< 2e-16	***
Age	-0.0579466	0.0159506	-3.633	0.000318	***
Education	-0.0208525	0.0196131	-1.063	0.288361	
UrbanYes	0.1401597	0.1124019	1.247	0.213171	
USYes	-0.1575571	0.1489234	-1.058	0.290729	
<pre>Income:Advertising</pre>	0.0007510	0.0002784	2.698	0.007290	**
Price:Age	0.0001068	0.0001333	0.801	0.423812	

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.011 on 386 degrees of freedom Multiple R-squared: 0.8761, Adjusted R-squared: 0.8719 F-statistic: 210 on 13 and 386 DF, p-value: < 2.2e-16

```
In [109]: 1 attach(Carseats)
    contrasts (ShelveLoc )
```

The following objects are masked from Carseats (pos = 3):

Advertising, Age, CompPrice, Education, Income, Population, Price, Sales, ShelveLoc, US, Urban

	Good	Medium
Bad	0	0
Good	1	0
Medium	0	1

3.6.7 Writing functions

```
In [118]: 1 LoadLibraries = function() {
    library(ISLR)
    library(MASS)
    print("The libraries have been loaded.")
5 }
```

```
In [120]: 1 LoadLibraries()
```

[1] "The libraries have been loaded."