## Laboratorio di Dinamica dei Fluidi Esercitazione 06 – a.a. 2008-2009

Dott. Simone Zuccher

16 Giugno 2009

**Nota**. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all'autore (zuccher@sci.univr.it).

### 1 Sistemi iperbolici lineari

Come noto, un sistema di equazioni differenziali alle derivate parziali lineari e a coefficienti costanti del tipo

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{A} \frac{\partial \mathbf{u}}{\partial x} = 0, \tag{1.1}$$

dove  $\mathbf{u}: \mathbb{R} \times \mathbb{R} \to \mathbb{R}^m$  è il vettore delle incognite e  $\mathbf{A} \in \mathbb{R}^{m \times m}$  è costante, è detto iperbolico se la matrice  $\mathbf{A}$  ha m autovalori reali (strettamente iperbolico se gli autovalori sono tutti distinti), ovvero  $\mathbf{A}$  è diagonalizzabile e può essere decomposta come

$$A = R\Lambda R^{-1}$$
.

dove  $\Lambda = \operatorname{diag}(\lambda_1, \lambda_1, \dots, \lambda_m)$  è la matrice diagonale degli autovalori e  $\mathbf{R} = [\mathbf{r}_1 | \mathbf{r}_2 | \cdots | \mathbf{r}_m]$  è la matrice degli autovettori destri. In altre parole,  $\lambda_p$  e  $\mathbf{r}_p$  soddisfano il problema

$$\mathbf{A}\mathbf{r}_p = \lambda_p \mathbf{r}_p, \quad \text{per} \quad p = 1, 2, \dots, m,$$

ovvero,

$$AR = A\Lambda$$
.

Anziché risolvere il sistema (1.1), operiamo la sostituzione di variabile

$$\mathbf{v} = \mathbf{R}^{-1}\mathbf{u}$$

e moltiplichiamo (1.1) per  $\mathbb{R}^{-1}$  ottenendo

$$\mathbf{R}^{-1}\frac{\partial \mathbf{u}}{\partial t} + \mathbf{\Lambda} \mathbf{R}^{-1}\frac{\partial \mathbf{u}}{\partial x} = 0$$

ovvero, siccome  $\mathbf{R}^{-1}$  è costante,

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{\Lambda} \frac{\partial \mathbf{v}}{\partial x} = 0.$$

Il motivo di questa sostituzione sta nel fatto che la matrice  $\Lambda$  è diagonale, i.e. il problema iniziale si riduce a p equazioni lineari disaccoppiate del tipo

$$(v_p)_t + \lambda_p(v_p)_r = 0,$$
 per  $p = 1, 2, \dots, m,$ 

che abbiamo imparato a risolvere nell'esercitazione precedente. La soluzione della p-esima equazione è

$$v_p(x,t) = v_p(x - \lambda_p t, 0),$$

dove

$$\mathbf{v}(x,0) = \mathbf{R}^{-1}\mathbf{u}_0(x).$$

La soluzione  $\mathbf{u}(x,t)$  si ottiene facilmente da  $\mathbf{v}(x,t)$  tramite la sostituzione iniziale,

$$\mathbf{u}(x,t) = \mathbf{R}\mathbf{v}(x,t)$$
  $\Rightarrow$   $\mathbf{u}(x,t) = \sum_{p=1}^{m} v_p(x,t)\mathbf{r}_p,$ 

ovvero

$$\mathbf{u}(x,t) = \sum_{p=1}^{m} v_p(x - \lambda_p t, 0) \mathbf{r}_p.$$

Si noti che la soluzione finale è costituita dagli autovettori destri  $\mathbf{r}_p$ , costanti, linearmente combinati con un peso  $v_p(x-\lambda_p t,0)$  che dipende unicamente dal dato iniziale negli m punti  $x-\lambda_p t$ . Il dominio di dipendenza della soluzione è quindi

$$\mathcal{D}_{\text{dip}}(\bar{x}, \bar{t}) = \{x = \bar{x} - \lambda_p \bar{t}, \ p = 1, 2, \dots, m\}.$$

Come nel caso scalare, le curve  $x = x_0 + \lambda_p t$  che soddisfano l'equazione  $x'(t) = \lambda_p$  sono delle rette chiamate caratteristiche dalla p-esima famiglia e il coefficiente  $v_p(x,t) = v_p(x - \lambda_p t, 0)$  rimane costante sulla p-esima caratteristica. Si osservi che nel caso di sistema strettamente iperbolico, i.e. ad autovalori distinti, la soluzione finale dipende dai valori iniziali "trasportati" lungo m caratteristiche distinte che passano tutte per il punto (x,t).

### 2 Sistemi iperbolici non lineari

Nel caso non lineare si ha:

$$\frac{\partial \mathbf{u}}{\partial t} + \frac{\partial \mathbf{F}(\mathbf{u})}{\partial x} = 0, \tag{2.2}$$

dove  $\mathbf{u}: \mathbb{R} \times \mathbb{R} \to \mathbb{R}^m$  è il vettore delle incognite e  $\mathbf{F}: \mathbb{R}^m \to \mathbb{R}^m$  è il flusso del vettore delle incognite e dipende da esso. Il sistema conservativo non lineare (2.2) è riscrivibile nella forma quasi lineare

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{J}(\mathbf{u}) \frac{\partial \mathbf{u}}{\partial x} = 0,$$

dove

$$J(\mathbf{u}) = \frac{\partial \mathbf{F}(\mathbf{u})}{\partial \mathbf{u}} \qquad \Rightarrow \qquad (J)_{ij} = \frac{\partial f_i}{\partial u_j}.$$

Il sistema iniziale (2.2) è detto *iperbolico* se la matrice matrice Jacobiana  $J(\mathbf{u})$  ha m autovalori reali per ogni  $\mathbf{u}$ , o quantomeno nel range di interesse; si dice *strettamente iperbolico* se gli autovalori sono tutti distinti.

Anche nel caso non lineare, se  $\lambda_p(\mathbf{u}, t)$  è il p-esimo autovalore della matrice Jacobiana valutata in  $\mathbf{u}$ , si possono definire curve caratteristiche le soluzioni di p problemi del tipo

$$\begin{cases} x'(t) = \lambda_p(\mathbf{u}(x(t)), t) \\ x(0) = x_0 \end{cases} \qquad p = 1, 2, \dots, m, \tag{2.3}$$

per qualche  $x_0$ , ma si osservi che ora gli autovalori dipendono dalla soluzione stessa e variano al variare di essa. Pertanto, non è più possibile determinare dapprima le linee caratteristiche e poi risolvere lungo di esse un sistema di ODEs, ma si ottiene un sistema accoppiato più complesso per il quale questo approccio perde di efficacia. Tuttavia, localmente, le linee caratteristiche portano dell'informazione che può essere usata nell'intorno di una certa soluzione. Infatti, nell'ipotesi di linearizzare il sistema nell'intorno di una soluzione  $\bar{\bf u}$ , tutte le osservazioni fatte e le conclusioni ottenute nel caso lineare sono applicabili localmente al caso non lineare sostituendo la matrice  ${\bf A}$  con la matrice Jacobiana linearizzata  ${\bf J}(\bar{\bf u})$ . Così facendo il problema (2.3) diventa

$$\begin{cases} x'(t) = \lambda_p(\bar{\mathbf{u}}(x(t)), t) \\ x(0) = x_0 \end{cases} \qquad p = 1, 2, \dots, m,$$

che ha come soluzione le rette

$$x_n(t) = x_0 + \lambda_n(\bar{\mathbf{u}})t, \qquad p = 1, 2, \dots, m.$$

# 2.1 Genuina non linearità, degenerazione lineare e discontinuità di contatto

Il p-esimo campo caratteristico associato all'autovalore  $\lambda_p(\mathbf{u})$  è detto genuinamente non lineare se, per ogni  $\mathbf{u} \in \mathbb{R}^m$ , si ha

$$\nabla \lambda_p(\mathbf{u}) \cdot \mathbf{r}_p(\mathbf{u}) \neq 0,$$

dove il simbolo '·' indica il prodotto scalare tra vettori e  $\nabla \lambda_p(\mathbf{u})$  è il gradiente dell'autovalore valutato in  $\mathbf{u}$ ,

$$\nabla \lambda_p(\mathbf{u}) = \left[ \frac{\partial \lambda_p}{\partial u_1}(\mathbf{u}), \frac{\partial \lambda_p}{\partial u_2}(\mathbf{u}), \dots, \frac{\partial \lambda_p}{\partial u_m}(\mathbf{u}) \right]^T.$$

Si osservi che nel caso scalare si ha m=1,  $\lambda_1(u)=f'(u)$ ,  $\nabla \lambda_1(u)=f''(u)$  e  $r_1(u)=1$  per ogni  $u \in \mathbb{R}$ . Pertanto, la condizione di genuina non linearità richiede che sia  $f''(u) \neq 0$  per ogni u, ovvero che il flusso f sia una funzione convessa (i.e. con derivata seconda non nulla). In altre parole, questo assicura che  $f'(u)=\lambda_1(u)$ , che è la velocità delle linee caratteristiche nel piano x-t, sia sempre crescente o decrescente al variare di u.

Nel caso generale del sistema (2.2), la condizione di genuina non linearità implica che  $\lambda_p(\mathbf{u})$  sia monotonicamente crescente o decrescente al variare di  $\mathbf{u}$  lungo la curva integrale

del campo  $\mathbf{r}_p(\mathbf{u})$ , dove con *curva integrale per*  $\mathbf{r}_p(\mathbf{u})$  si intende una curva tangente in ogni suo punto  $\mathbf{u}$  al vettore  $\mathbf{r}_p(\mathbf{u})$ .

Il p-esimo campo di caratteristiche associato all'autovalore  $\lambda_p(\mathbf{u})$  è detto linearmente degenere se, per ogni  $\mathbf{u} \in \mathbb{R}^m$ , si ha

$$\nabla \lambda_p(\mathbf{u}) \cdot \mathbf{r}_p(\mathbf{u}) \equiv 0,$$

ovvero se l'autovalore  $\lambda_p(\mathbf{u})$  è costante lungo le linee integrali per  $\mathbf{r}_p(\mathbf{u})$ . Ovviamente, il valore di  $\lambda_p(\mathbf{u})$  può essere diverso su due linee integrali diverse. Si osservi che nel caso lineare tutti gli autovalori sono costanti per cui ciascun campo caratteristico associato all'autovalore  $\lambda_p$  è certamente linearmente degenere.

Una discontinuità che si propaghi all'interno di un campo linearmente degenere prende il nome di discontinuità di contatto. Se il p-esimo campo caratteristico è linearmente degenere e in esso si propaga una soluzione discontinua del tipo  $\mathbf{u}_l$  a sinistra e  $\mathbf{u}_r$  a destra, si può dimostrare che

$$\lambda_p(\mathbf{u}_l) = \lambda_p(\mathbf{u}_r) = S_p,$$

dove  $S_p$  è la velocità di propagazione della discontinuità associata all'autovalore linearmente degenere. Di conseguenza, le linee caratteristiche sono tutte rette parallele tra di loro da entrambi i lati della discontinuità e si propagano proprio a quella velocità, esattemente come nel caso lineare dell'equazione del trasporto.

### 2.2 Riassunto delle possibili soluzioni del problema di Riemann

Consideriamo il problema di Riemann per il sistema nonlineare iperbolico (2.2),

$$\begin{cases} \mathbf{u}_t + [\mathbf{f}(\mathbf{u})]_x = 0 \\ \mathbf{u}(x,0) = \mathbf{u}_0(x) = \begin{cases} \mathbf{u}_l & \text{se } x < 0 \\ \mathbf{u}_r & \text{se } x > 0. \end{cases} \end{cases}$$
 (2.4)

Nel caso lineare  $\mathbf{f}(\mathbf{u}) = A\mathbf{u}$ , gli autovalori  $\lambda_p$  sono costanti, ciascun campo caratteristico è linearmente degenere, e ciascuna soluzione elementare è una discontinuità che si propaga alla velocità  $S_p = \lambda_p$ .

Nel caso non lineare (2.4), le soluzioni elementari possono essere di tre tipi: onde d'urto, discontinuità di contatto (note anche come onde di contatto) e onde di rarefazione.

• Onde d'urto. Nel caso di onda d'urto il p-esimo campo caratteristico associato all'autovalore  $\lambda_p(\mathbf{u})$  è genuinamente non lineare e i due stati costanti  $\mathbf{u}_l$  e  $\mathbf{u}_r$  sono connessi da una discontinuità per la quale valgono le seguenti relazioni

$$\mathbf{f}(\mathbf{u}_r) - \mathbf{f}(\mathbf{u}_l) = S_p(\mathbf{u}_r - \mathbf{u}_l)$$

$$\lambda_n(\mathbf{u}_l) > S_n > \lambda_n(\mathbf{u}_r),$$

ovvero valgono le relazioni di Rankine-Hugoniot e nel piano x-t le linee caratteristiche "entrano" sia da destra che da sinistra nell'onda d'urto.

• Discontinuità di contatto. Nel caso di discontinuità di contatto il p-esimo campo caratteristico associato all'autovalore  $\lambda_p(\mathbf{u})$  è linearmente degenere e i due stati costanti  $\mathbf{u}_l$  e  $\mathbf{u}_r$  sono connessi da una discontinuità per la quale valgono le seguenti relazioni

$$\mathbf{f}(\mathbf{u}_r) - \mathbf{f}(\mathbf{u}_l) = S_p(\mathbf{u}_r - \mathbf{u}_l)$$

$$\lambda_p(\mathbf{u}_l) = \lambda_p(\mathbf{u}_r) = S_p$$

$$\frac{\mathrm{d}u_1}{r_p^{(1)}} = \frac{\mathrm{d}u_2}{r_p^{(2)}} = \frac{\mathrm{d}u_3}{r_p^{(3)}} = \dots = \frac{\mathrm{d}u_m}{r_p^{(m)}},$$

dove  $r_p^{(1)}$  è la prima componente dell'autovettore destro associato a  $\lambda_p$ ,  $r_p^{(2)}$  la seconda e così via, ovvero  $\mathbf{r}_p = [r_p^{(1)}, r_p^{(2)}, r_p^{(3)}, \dots, r_p^{(m)}]^T$ . La seconda relazione assicura che nel piano x-t le linee caratteristiche sono tutte parallele tra loro e parallele alla discontinuità di contatto, sia a destra che a sinistra di essa.

• Onde di rarefazione. Nel caso di onde di rarefazione il p-esimo campo caratteristico associato all'autovalore  $\lambda_p(\mathbf{u})$  è genuinamente non lineare e i due stati costanti  $\mathbf{u}_l$  e  $\mathbf{u}_r$  sono connessi da una discontinuità per la quale valgono le seguenti relazioni

$$\lambda_p(\mathbf{u}_l) < \lambda_p(\mathbf{u}_r)$$

$$\frac{\mathrm{d}u_1}{r_p^{(1)}} = \frac{\mathrm{d}u_2}{r_p^{(2)}} = \frac{\mathrm{d}u_3}{r_p^{(3)}} = \dots = \frac{\mathrm{d}u_m}{r_p^{(m)}},$$

ovvero si osserva un ventaglio di linee caratteristiche spiccate dall'origine che divergono.

## 3 Problema di Riemann per le equazioni di Eulero 1D

Un problema fondamentale della gas dinamica è il cosiddetto shock-tube problem e consiste nel mettere due gas separati da un diaframma all'interno di un tubo. A sinistra del diaframma ci sono una certa densità  $\rho_l \neq 0$ , una velocità  $u_l = 0$  (nulla perché il gas è in quiete) e una certa pressione  $p_l \neq 0$ , quindi  $\mathbf{u}_l = [\rho_l, u_l, p_l]^T$ . A destra lo stato del sistema è caratterizzato da una certa densità  $\rho_r \neq 0$ , una velocità  $u_r = 0$  (nulla perché il gas è in quiete) e una certa pressione  $p_r \neq 0$ , ovvero  $\mathbf{u}_r = [\rho_r, u_r, p_r]^T$ . Il diaframma viene rotto di schianto (idealmente viene tolto) e i due gas entrano in contatto: cosa succede? Per descrivere la dinamica di questo problema si può pensare che tutte le grandezze fisiche in gioco siano costanti su una sezione del tubo che si trova ad una certa distanza x dal punto in cui si trovava inizialmente il diaframma e quindi si possono utilizzare le equazioni di Eulero non stazionarie e monodimensionali

$$\frac{\partial}{\partial t} \begin{pmatrix} \rho \\ \rho u \\ E \end{pmatrix} + \frac{\partial}{\partial x} \begin{pmatrix} \rho u \\ \rho u^2 + p \\ u(E+p) \end{pmatrix} = 0 \qquad \Rightarrow \qquad \mathbf{u} = \begin{pmatrix} \rho \\ \rho u \\ E \end{pmatrix}, \mathbf{F}(\mathbf{u}) = \begin{pmatrix} \rho u \\ \rho u^2 + p \\ u(E+p) \end{pmatrix},$$

dove  $E = \frac{p}{\gamma - 1} + \frac{1}{2}\rho u^2$ , che implica  $u(E + p) = u\left(\frac{\gamma}{\gamma - 1}p + \frac{1}{2}\rho u^2\right)$ . Si osservi che per le equazioni così scritte lo stato del sistema non è descritto dalle variabili primitive  $\rho$ , u e p. Per riscrivere il sistema in termini di variabili primitive conviene utilizzare la forma quasi lineare (lo studente diligente lo dimostri)

$$\frac{\partial}{\partial t} \begin{pmatrix} \rho \\ u \\ p \end{pmatrix} + \begin{bmatrix} u & \rho & 0 \\ 0 & u & 1/\rho \\ 0 & \rho a^2 & u \end{bmatrix} \frac{\partial}{\partial x} \begin{pmatrix} \rho \\ u \\ p \end{pmatrix} = 0 \quad \Leftrightarrow \quad \mathbf{u}_t + [\mathbf{A}(\mathbf{u})]\mathbf{u}_x = 0,$$

essendo  $a=\sqrt{\frac{\gamma p}{\rho}}$  la velocità del suono. Risolvendo il problema agli autovalori per la matrice linearizzata

$$\mathbf{A}(\mathbf{u}) = \begin{bmatrix} u & \rho & 0 \\ 0 & u & 1/\rho \\ 0 & \rho a^2 & u \end{bmatrix},$$

si ottengono gli autovalori

$$\lambda_1(\mathbf{u}) = u - a, \quad \lambda_2(\mathbf{u}) = u, \quad \lambda_3(\mathbf{u}) = u + a,$$

e i corrispondenti autovettori destri

$$\mathbf{r}_1(\mathbf{u}) = \begin{bmatrix} 1 \\ -a/\rho \\ a^2 \end{bmatrix}, \quad \mathbf{r}_2(\mathbf{u}) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{r}_3(\mathbf{u}) = \begin{bmatrix} 1 \\ a/\rho \\ a^2 \end{bmatrix}.$$

Si osserva immediatamente che il campo di caratteristiche associate al secondo autovalore è linearmente degenere in quanto

$$\nabla \lambda_2(\mathbf{u}) = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \Rightarrow \nabla \lambda_2(\mathbf{u}) \cdot \mathbf{r}_2(\mathbf{u}) = 0,$$

mentre i campi di caratteristiche associati al primo ed al terzo autovalore sono genuinamente non lineari.

Siccome il secondo campo di caratteristiche è linearmente degenere, in esso non ci possono essere né onde d'urto né ventagli di rarefazione. Al contrario, vi saranno delle discontinuità di contatto che si propagano alla velocità  $\lambda_2$  da ciascuno dei lati della discontinuità. Inoltre, siccome  $\lambda_2$  è costante sulla curva integrale per  $\mathbf{r}_2(\mathbf{u})$  che è a sua volta costante, le linee caratteristiche associate al secondo autovalore sono delle rette. Infine, per il campo associato a queste caratteristiche valgono le relazioni di Rankine-Hugoniot tra gli stati  $\mathbf{u}$  e  $\hat{\mathbf{u}}$ , che è facile scrivere per le equazioni in forma conservativa:

$$\rho u - \hat{\rho} \hat{u} = \lambda_2 (\rho - \hat{\rho}) 
(\rho u^2 + p) - (\hat{\rho} \hat{u}^2 + \hat{p}) = \lambda_2 (\rho u - \hat{\rho} \hat{u}) 
u(E + p) - \hat{u}(\hat{E} + \hat{p}) = \lambda_2 (E - \hat{E}).$$

È immediato osservare che esse sono soddisfatte per  $u = \hat{u}$  e  $p = \hat{p}$ , indipendentemente dai valori di  $\rho$  e  $\hat{\rho}$ , ovvero la discontinuità di contatto è tale per cui attraverso di essa

sia la pressione che la velocità si mantengono costanti, ma la densità è discontinua come lo sono le variabili che dipendono da essa (energia interna, temperatura, velocità del suono, entropia, etc.) Inoltre, la velocità di propagazione di questa discontinuità della sola densità è la velocità del fluido essendo  $\lambda_2 = u$ , pertanto le particelle di fluido si muovono parallelamente alla discontinuità di contatto e non la attraversano. Questo implica che due gas inizialmente in contatto a pari velocità e pressione rimarranno distinti tra loro non mescolandosi e continueranno a rimanere in contatto esclusivamente lungo la discontinuità di contatto.

#### 3.1 Soluzione generale del problema di Riemann

Dato il problema di Riemann (2.4) in cui il sistema di equazioni è quello di Eulero, se le condizioni iniziali sono

$$\mathbf{u}_l = [\rho_l, u_l, p_l]^T$$
 e  $\mathbf{u}_r = [\rho_r, u_r, p_r]^T$ ,

nella soluzione generale appariranno altri due stati costanti

$$\mathbf{u}_{l}^{*} = [\rho_{l}^{*}, u^{*}, p^{*}]^{T}$$
 e  $\mathbf{u}_{r}^{*} = [\rho_{r}^{*}, u^{*}, p^{*}]^{T}$ 

a cavallo della discontinuità di contatto associata al secondo autovalore e caratterizzata da una discontinuità della densità ( $\rho_l^* \neq \rho_r^*$ ), mentre i valori di velocità e pressione a sinistra e a destra di essa si mantengono costanti e pari rispettivamente a  $u^*$  e  $p^*$ .



Figura 1: Shock tube: soluzione analitica (linea continua) e numerica (pallini vuoti). Velocità u, pressione p, densità  $\rho$  ed energia interna E. Soluzione del Problema di Riemann con  $(\rho, P, v)_1 = (1, 1, 0)$  e  $(\rho, P, v)_r = (1/8, 1/10, 0)$ . Si notino un'onda di rarefazione che viaggia verso sinistra, una discontinuità di contatto che viaggia a bassa velocità verso destra ed un'onda d'urto che viaggia velocemente verso destra.

Una volta noto il fatto che il secondo autovalore è sempre associato ad una discontinuità di contatto (onda intermedia), la soluzione generale può essere uno solo dei seguenti 4 casi:

- 1. ventaglio di rarefazione a sinistra, discontinuità di contatto al centro, onda d'urto a destra;
- 2. onda d'urto a sinistra, discontinuità di contatto al centro, ventaglio di rarefazione a destra;
- 3. ventaglio di rarefazione a sinistra, discontinuità di contatto al centro, ventaglio di rarefazione a destra;
- 4. onda d'urto a sinistra, discontinuità di contatto al centro, onda d'urto a destra.

Procedendo analiticamente è possibile determinare la soluzione generale del problema di Riemann per le equazioni di Eulero nelle diverse regioni.

Esercizio 3.5 [Difficile] Risolvere numericamente il problema di Riemann per le equazioni di Eulero 1D utilizzando come dati iniziali quelli della figura 1 e confrontando la soluzione numerica così trovata con quella riportata in figura.