Vector Space Model: Improved Instantiation

Course Schedule

Two Problems of the Simplest VSM

Query = "news about presidential campaign"

... **presidential** candidate ...

```
d2 ... news about organic food campaign... f(q,d2)=3
d3 ... news of presidential campaign ... f(q,d3)=3
d4 ... news of presidential campaign ... f(q,d4)=3
```

- 1. Matching "presidential" more times deserves more credit
- 2. Matching "presidential" is more important than matching "about"

Improved Vector Placement: Term Frequency Vector

Improved VSM with Term Frequency Weighting

$$q=(x_1, ...x_N)$$
 $x_i = count of word W_i in query$

$$\mathbf{d} = (y_1, \dots, y_N)$$

 $\mathbf{d} = (y_1, \dots, y_N)$ $y_i = \text{count of word } W_i \text{ in doc}$

$$Sim(q,d)=q.d=x_1y_1+...+x_Ny_N=\sum_{i=1}^N x_i y_i$$

What does this ranking function intuitively capture?

Does it fix the problems of the simplest VSM?

Ranking Using Term Frequency (TF) Weighting

d2

... news about organic food campaign...

$$f(q,d2)=3$$

d3

... news of presidential campaign ...

$$f(q,d3)=3$$

d4

... news of presidential campaign ...

... presidential candidate ...

$$f(q,d4)=4!$$

How to Fix Problem 2 ("presidential" vs. "about")

d2... **news about** organic food **campaign**...

d3... news of presidential campaign ...

V= {news, about, presidential, campaign, food }

$$f(q,d2) < 3$$

Further Improvement of Vector Placement: Adding Inverse Document Frequency (IDF)

IDF Weighting: Penalizing Popular Terms

Solving Problem 2 ("Presidential" vs "About")

```
d2
       ... news about organic food campaign...
d3
       ... news of presidential campaign ...
   V= {news, about, presidential, campaign, food .... }
IDF(W) = 1.5
                   1.0
                             2.5
                                                  1.8
   q=(1,
                                        1*3.1, 0, ...)
  d2 = (1*1.5,
               1*1.0
   q = \{1,
  d3 = (1*1.5,
                            1*2.5
                                        1*3.1,
                   0,
           f(q,d2) = 5.6 < f(q,d3)=7.1
```

How Effective Is VSM with TF-IDF Weighting?

Query = "news about presidential campaign"

$$f(q,d1)=2.5$$

$$f(q,d2)=5.6$$

$$f(q,d3)=7.1$$

$$f(q,d4)=9.6$$

$$f(q,d5)=13.9!$$

Summary

- Improved VSM
 - Dimension = word
 - Vector = TF-IDF weight vector
 - Similarity = dot product
 - Working better than the simplest VSM
 - Still having problems

Vector Space Model: TF Transformation

Course Schedule

VSM with TF-IDF Weighting Still Has a Problem!

Query = "news about presidential campaign"

$$f(q,d1)=2.5$$

$$f(q,d2)=5.6$$

$$f(q,d3)=7.1$$

$$f(q,d4)=9.6$$

Ranking Function with TF-IDF Weighting

Total # of docs in collection

$$f(q,d) = \sum_{i=1}^{N} x_i y_i = \sum_{w \in q \cap d} c(w,q) c(w,d) \log \frac{M+1}{df(w)}$$
All matched query words in d

Doc Frequency

All matched query words in d

... news of organic food campaign... campaign...campaign...campaign...

TF Transformation: $c(w,d) \rightarrow TF(w,d)$

TF Transformation: BM25 Transformation

Summary

- Sublinear TF Transformation is needed to
 - capture the intuition of "diminishing return" from higher TF
 - avoid dominance by one single term over all others
- BM25 Transformation
 - has an upper bound
 - is robust and effective
- Ranking function with BM25 TF (k >=0)

$$f(q,d) = \mathop{\text{a}}\limits_{i=1}^{N} x_i y_i = \mathop{\text{a}}\limits_{w \mid q \subseteq d} c(w,q) \frac{(k+1)c(w,d)}{c(w,d)+k} \log \frac{M+1}{df(w)}$$

Vector Space Model: Doc Length Normalization

Course Schedule

What about Document Length?

Query = "news about presidential campaign"

d4	news of presidential campaign	d6 > d4?		
G I	presidential candidate 100 words			
	campaign campaign 500	00 words		
d6	news	•••••		
uo				
	••••••••••••			
	presidential presidential			

Document Length Normalization

- Penalize a long doc with a doc length normalizer
 - Long doc has a better chance to match any query
 - Need to avoid over-penalization
- A document is long because
 - it uses more words → more penalization
 - it has more contents → less penalization
- Pivoted length normalizer: average doc length as "pivot"
 - Normalizer = 1 if |d| =average doc length (avdl)

Pivoted Length Normalization

State of the Art VSM Ranking Functions

• Pivoted Length Normalization VSM [Singhal et al 96]

$$f(q,d) = \sum_{w \in q \cap d} c(w,q) \frac{\ln[1 + \ln[1 + c(w,d)]]}{1 - b + b \frac{|d|}{avdl}} \log \frac{M+1}{df(w)}$$

• BM25/Okapi [Robertson & Walker 94]

$$b \in [0,1]$$

 $k_1, k_3 \in [0,+\infty)$

$$f(q,d) = \sum_{w \in q \cap d} c(w,q) \frac{(k+1)c(w,d)}{c(w,d) + k(1-b+b\frac{|d|}{avdl})} \log \frac{M+1}{df(w)}$$

Further Improvement of VSM?

- Improved instantiation of dimension?
 - stemmed words, stop word removal, phrases, latent semantic indexing (word clusters), character n-grams, ...
 - bag-of-words with phrases is often sufficient in practice
 - Language-specific and domain-specific tokenization is important to ensure "normalization of terms"
- Improved instantiation of similarity function?
 - cosine of angle between two vectors?
 - Euclidean?
 - dot product seems still the best (sufficiently general especially with appropriate term weighting)

Further Improvement of BM25

- BM25F [Robertson & Zaragoza 09]
 - Use BM25 for documents with structures ("F"=fields)
 - Key idea: combine the frequency counts of terms in all fields and then apply BM25 (instead of the other way)
- BM25+ [Lv & Zhai 11]
 - Address the problem of over penalization of long documents by BM25 by adding a small constant to TF
 - Empirically and analytically shown to be better than BM25

Summary of Vector Space Model

- Relevance(q,d) = similarity(q,d)
- Query and documents are represented as vectors
- Heuristic design of ranking function
- Major term weighting heuristics
 - TF weighting and transformation
 - IDF weighting
 - Document length normalization
- BM25 and Pivoted normalization seem to be most effective

Additional Readings

- A. Singhal, C. Buckley, and M. Mitra. Pivoted document length normalization. In *Proceedings of ACM SIGIR 1996.*
- S. E. Robertson and S. Walker. Some simple effective approximations to the 2-Poisson model for probabilistic weighted retrieval, *Proceedings of ACM SIGIR 1994*.
- S. Robertson and H. Zaragoza. The Probabilistic Relevance Framework: BM25 and Beyond, *Found. Trends Inf. Retr.* 3, 4 (April 2009).
- Y. Lv, C. Zhai, Lower-bounding term frequency normalization. In *Proceedings of ACM CIKM 2011.*

Implementation of Text Retrieval Systems

Implementation of Text Retrieval Systems

Typical TR System Architecture

Tokenization

- Normalize lexical units: Words with similar meanings should be mapped to the same indexing term
- Stemming: Mapping all inflectional forms of words to the same root form, e.g.
 - computer -> compute
 - computation -> compute
 - computing -> compute
- Some languages (e.g., Chinese) pose challenges in word segmentation

Indexing

- Indexing = Convert documents to data structures that enable fast search (precomputing as much as we can)
- Inverted index is the dominating indexing method for supporting basic search algorithms
- Other indices (e.g., document index) may be needed for feedback

Inverted Index Example

doc 1

... news about

doc 2

... **news about** organic food **campaign**...

Dictionary (or lexicon)

Term	# docs	Total freq
news	3	3
campaign	2	2
presidential	1	2
food	1	1

Postings Doc Freq **Position** id **p1 p2** р3 p4 **p5** p6,p7 **p8**

...

doc 3

... news of presidential campaign ...

... **presidential** candidate ...

Inverted Index for Fast Search

- Single-term query?
- Multi-term Boolean query?
 - Must match term "A" AND term "B"
 - Must match term "A" OR term "B"
- Multi-term keyword query
 - Similar to disjunctive Boolean query ("A" OR "B")
 - Aggregate term weights
- More efficient than sequentially scanning docs (why?)

Empirical Distribution of Words

- There are stable language-independent patterns in how people use natural languages
- A few words occur very frequently; most occur rarely.
 E.g., in news articles,
 - Top 4 words: 10~15% word occurrences
 - Top 50 words: 35~40% word occurrences
- The most frequent word in one corpus may be rare in another

Zipf's Law

rank * frequency ≈ constant

$$F(w) = \frac{C}{r(w)^{\alpha}} \quad \alpha \approx 1, C \approx 0.1$$

Data Structures for Inverted Index

- Dictionary: modest size
 - Needs fast random access
 - Preferred to be in memory
 - Hash table, B-tree, trie, …
- Postings: huge
 - Sequential access is expected
 - Can stay on disk
 - May contain docID, term freq., term pos, etc
 - Compression is desirable

System Implementation: Inverted Index Construction

Constructing Inverted Index

- The main difficulty is to build a huge index with limited memory
- Memory-based methods: not usable for large collections
- Sort-based methods:
 - Step 1: Collect local (termID, docID, freq) tuples
 - Step 2: Sort local tuples (to make "runs")
 - Step 3: Pair-wise merge runs
 - Step 4: Output inverted file

Sort-based Inversion

Term Lexicon:

the 1 campaign 2 news 3 a 4

DocID Lexicon:

doc1 1 doc2 2 doc3 3

Inverted Index Compression

- In general, leverage skewed distribution of values and use variable-length encoding
- TF compression
 - Small numbers tend to occur far more frequently than large numbers (why?)
 - Fewer bits for small (high frequency) integers at the cost of more bits for large integers
- Doc ID compression
 - "d-gap" (store difference): d1, d2-d1, d3-d2,...
 - Feasible due to sequential access
- Methods: Binary code, unary code, γ -code, δ -code, ...

Integer Compression Methods

- Binary: equal-length coding
- Unary: x≥1 is coded as x-1 one bits followed by 0, e.g.,
 3=> 110; 5=>11110
- γ -code: x=> unary code for 1+ $\lfloor \log x \rfloor$ followed by uniform code for x-2 $\lfloor \log x \rfloor$ in $\lfloor \log x \rfloor$ bits, e.g., 3=>101, 5=>11001
- δ -code: same as γ -code ,but replace the unary prefix with γ -code. E.g., 3=>1001, 5=>10101

Uncompress Inverted Index

- Decoding of encoded integers
 - Unary decoding: count 1's until seeing a zero
 - $-\gamma$ -decoding
 - first decode the unary part; let value be k+1
 - read k more bits decode them as binary code; let value be r
 - the value of the encoded number is 2^k+r
- Decode doc IDs encoded using d-gap
 - Let the encoded ID list be x1, x2, x3,
 - Decode x1 to obtain doc ID1; then decode x2 and add the recovered value to the doc ID1 just obtained
 - Repeatedly decode x3, x4,, and the recovered value to the previous doc ID.

System Implementation: Fast Search

System Implementation: Fast Search

How to Score Documents Quickly

General Form of Scoring Function

A General Algorithm for Ranking Documents

$$f(q, d) = f_a(h(g(t_1, d, q), ..., g(t_k, d, q)), f_d(d), f_q(q))$$

- $f_d(d)$ and $f_q(q)$ are pre-computed
- Maintain a score accumulator for each d to compute h
- For each query term t_i
 - Fetch the inverted list $\{(d_1,f_1),...,(d_n,f_n)\}$
 - For each entry (d_j, f_j) , compute $g(t_i, d_j, q)$, and update score accumulator for doc d_i to incrementally compute h
- Adjust the score to compute f_a, and sort

An Example: Ranking Based on TF Sum

$$f(d,q)=g(t_1,d,q)+...+g(t_k,d,q)$$
 where $g(t_i,d,q)=c(t_i,d)$

Info: (d1, 3), (d2, 4), (d3, 1), (d4, 5) **Security**: (d2, 3), (d4,1), (d5, 3)

	Accumulators:	d1	d2	d3	d4	d5	
		0	0	0	0	0	
info	(d1,3) =>	3	0	0	0	0	
	(d2,4) => (d3,1) =>	3	4	0	0	0	
			4	1	0	0	
	(d4,5) =>	3	4	1	5	0	
security	(d2,3) =>	3	7	1	5	0	
	$\mathbf{y} \leq (d4,1) =>$	3	7	1	6	0	
	(d5,3) =>	3	7	1	6	3	

Further Improving Efficiency

Caching (e.g., query results, list of inverted index)

Keep only the most promising accumulators

Scaling up to the Web-scale? (need parallel processing)

Some Text Retrieval Toolkits

- Lucene: http://lucene.apache.org/
- Lemur/Indri: http://www.lemurproject.org/
- Terrier: http://terrier.org/
- MeTA: http://meta-toolkit.github.io/meta/
- More can be found at http://timan.cs.uiuc.edu/resources

Summary of System Implementation

- Inverted index and its construction
 - Preprocess data as much as we can
 - Compression when appropriate
- Fast search using inverted index
 - Exploit inverted index to accumulate scores for documents matching a query term
 - Exploit Zipf's law to avoid touching many documents not matching any query term
 - Can support a wide range of ranking algorithms
- Great potential for further scaling up using distributed file system, parallel processing, and caching

Additional Readings

- Ian H. Witten, Alistair Moffat, Timothy C. Bell: Managing Gigabytes: Compressing and Indexing Documents and Images, Second Edition. Morgan Kaufmann, 1999.
- Stefan Büttcher, Charles L. A. Clarke, Gordon V. Cormack: Information Retrieval Implementing and Evaluating Search Engines. MIT Press, 2010.