

Standard Costs and Variances

Chapter 10

Learning Objectives

- Understand standard costing methods and variance analysis.
- Compute the direct materials price and quantity variances and explain their significance.
- Compute the direct labor rate and efficiency variances and explain their significance.
- Compute the variable manufacturing overhead rate and efficiency variances.
- Compute and evaluate fixed overhead variances
- Explain the advantages and disadvantages of using standard costs and variances

Standard Costs

- A budget for a <u>single unit</u> of product
- Benchmark for evaluating actual costs

Standards are benchmarks or "norms" for measuring performance. Two types of standards are commonly used.

Quantity standards
specify how much of an input should be used to make a product or provide a service.

Price (Cost)
standards specify
how much should be
paid for each unit
of the input.

A General Model for Variance Analysis

"VOH" = Variable MOH

Set the standards for Direct Materials

Set the standards for Direct Labor Costs

Set the standards for Variable Manufacturing Overhead

A General Model for Variance Analysis

 $(AQ \times AP) - (AQ \times SP)$ $(AQ \times SP) - (SQ \times SP)$

AQ = Actual Quantity SP = Standard Price

AP = Actual Price SQ = Standard Quantity

Learning Objective 1

Responsibility for DM Variances

Materials Price Variance

Materials Quantity Variance

The standard price is used to compute the quantity variance so that the production manager is not held responsible for the purchasing manager's performance.

One issue for Direct Materials

Purchased ≠ Used materials

The price variance is computed on the entire quantity purchased.

The quantity variance is computed only on the quantity used.

DM Price Variance

$$= AQP \times (AP - SP)$$

DM Quantity Variance

$$= SP \times (AQU - SQ)$$

"AQP" = actual quantity purchased;

"AQU" = actual quantity used.

Quick Check ✓

Hanson Inc. has the following material standard to manufacture one Zippy:

1.5 pounds per Zippy at \$4.00 per pound

Last week, 2,800 pounds of material were purchased at a total cost of \$10,920, and 1,700 pounds were used to make 1,000 Zippies.

Zippy case

Actual Quantity Purchased

X IOL D

Actual Price

2,800 lbs.

X

\$3.90 per lb.

= \$10,920

Actual Quantity Purchased

Standard Price

2,800 lbs.

×

\$4.00 per lb.

= \$11,200

Price variance \$280 favorable

Zippy case

Standard Quantity (SQ)= standard DM amount per unit X actual units = $1.5 \times 1,000 = 1,500$ lbs

Actual Quantity Used

Standard Price

1,700 lbs.

×

\$4.00 per lb.

= \$6,800

Standard Quantity × Standard Price

1,500 lbs.

X

\$4.00 per lb.

= \$6,000

Quantity variance \$800 unfavorable

Exercise

Dawson Toys, Ltd, produces a toy called the Maze. The company has recently established a standard cost system to help control costs and has established the following standards for the Maze toy:

Direct materials: 6 microns per toy at \$0.50 per micron.

During July, the company produced 3,000 Maze toys. Production data are:

25,000 microns were purchased at a cost of \$0.48 per micron. 5,000 of these microns were still in inventory at the end of the month. (Assume zero beginning inventory)

Required:

1. Compute Direct materials price and quantity variance.

Solutions:

F: Favorable variance; UF: Unfavorable variance;

1. Possible explanations for favorable price variance

(a) the purchase of a lower grade material at a discount; (b) buying in an unusually large quantity to take advantage of quantity discounts; (c) a change in the market price of the material; or (d) particularly sharp bargaining by the purchasing department.

Insight: the reason (a) suggests that Favorable price variance does not necessarily mean that purchasing managers did a good job.

Learning Objective 2

Labor Variances – An Example

Glacier Peak Outfitters has the following direct labor standard for its mountain parka.

1.2 standard hours per parka at \$10.00 per hour

Last month, employees actually worked 2,500 hours at a total labor cost of \$26,250 to make 2,000 parkas.

Labor Variances

Standard hours = standard DLH per unit X actual units = 1.2 hrs x 2,000 = 2,400 hrs

Actual Hours x Actual Rate

2,500 hours

\$10.50 per hour

= \$26,250

Actual Hours

Standard Rate

2,500 hours

\$10.00 per hour.

= \$25,000

Standard Hours ×

Standard Rate

2,400 hours

\$10.00 per hour

= \$24,000

Rate variance \$1,250 unfavorable

 $$26,250 \div 2,500 = 10.50

Efficiency variance \$1,000 unfavorable

Summary of DM and DL Variances

Variance	Formula	Inquire with
DM Price Variance	$= AQP \times (AP - SP)$	Purchasing Supervisor
DM Quantity Variance	$= SP \times (AQU - SQA)$	Production Supervisor
DL Rate Variance	$=AH \times (AR - SR)$	Human Resources and Production Supervisors
DL Efficiency Variance	$= SR \times (AH - SHA)$	Production Supervisor

Responsibility for Labor Variances

Production managers are usually held accountable for labor variances because they can influence the:

Mix of skill levels assigned to work tasks.

Level of employee motivation.

Quality of production supervision.

Quality of training provided to employees.

But sometimes production managers should not be held for responsibility: the purchase managers buy low-quality materials.

Variable Manufacturing Overhead Variances – An Example

Attention: VARIABLE manufacturing overheads.

Glacier Peak Outfitters has the following variable manufacturing overhead labor standard for its mountain parka.

1.2 standard hours per parka at \$4.00 per hour

Last month, employees actually worked 2,500 hours to make 2,000 parkas. Actual variable manufacturing overhead for the month was \$10,500.

Variable Manufacturing Overhead Variances Summary: The traditional method

Actual Hours x Actual Rate

2,500 hours

\$4.20 per hour

= \$10,500

Actual Hours

Standard Rate

2,500 hours

X

\$4.00 per hour

= \$10,000

Standard Hours
×

Standard Rate

2,400 hours

X

\$4.00 per hour

= \$9,600

Rate variance \$500 unfavorable

 $$10,500 \div 2,500 = 4.20

Efficiency variance \$400 unfavorable

Learning Objective 3

Fixed Overhead Budget Variance:

Actual Fixed Overhead

Budgeted Fixed Overhead Fixed
Overhead
Applied

Budget variance

Budget variance

Actual fixed overhead

- Fixed overhead

Fixed Overhead Volume Variance:

Actual Fixed Overhead Budgeted Fixed Overhead Fixed
Overhead
Applied

Volume variance

Volume variance

Budgeted fixed overhead

Fixed overhead applied to work in process

Fixed Overhead Volume Variance: The traditional method

Actual Fixed Overhead

Background:

The use of standard costing system implies that the standard costs are <u>applied</u> to product cost. So we call the third item "fixed overhead applied"

Volume variance

FPOHR = Fixed portion of the predetermined overhead rate

DH = Denominator hours; SH = Standard hours *allowed* for actual output;

Volume variance = <u>standard POHR per unit x difference between</u>

denominator units and the actual units.

Computing Fixed Overhead Variances

ColaCo			
Production and Machine-Hour Data			
Budgeted production	30,000	units	
Standard machine-hour per unit	3	hours	
Budgeted machine-hour	90,000	hours	
Actual production	28,000	units	
Standard machine-hour allowed for the actual production	84,000	hours	
Actual machine-hour	88,000	hours	

Q: how to get the allowed standard hours of 84,000 hours?

The *allowed* hours are also based on the predetermined productivity (denominator hours in calculating FMOHR) (i.e., each unit should allocate a budgeted fixed MOH).

Computing Fixed Overhead Variances

Cost Data Budgeted variable manufacturing overhead \$ 90,000 Budgeted fixed manufacturing overhead 270,000
Rudgeted fixed manufacturing overhead 270 000
Daugeted liked illalidiacturing overliedd270,000
Total budgeted manufacturing overhead \$ 360,000
Actual variable manufacturing overhead \$ 100,000
Actual fixed manufacturing overhead 280,000
Total actual manufacturing overhead \$ 380,000

Predetermined Overhead Rates

Variable component of the predetermined overhead rate

 $= \frac{\$90,000}{90,000 \text{ Machine-hour}}$

Variable component of the predetermined overhead rate

= \$1.00 per machine-hour

Fixed component of the predetermined overhead rate

= \$270,000 90,000 Machine-hour

Fixed component of the predetermined overhead rate

= \$3.00 per machine-hour

Computing the Budget Variance: (fixed overhead)

Budget variance

= |

Actual fixed overhead

Budgeted fixed overhead

Budget variance

= \$280,000 **-** \$270,000

Budget variance

= \$10,000 Unfavorable

Computing the Volume Variance:

Recall: FPOHR x DH = budgeted fixed MOH.

Volume variance

FPOHR × (DH – SH)

FPOHR = Fixed portion of the predetermined overhead rate

DH = Denominator hours

SH = Standard hours allowed for actual output

Volume variance

 $= \frac{\$3.00 \text{ per}}{\text{machine-hour}} \times \left(\frac{90,000 - 84,000}{\text{machine-hour machine-hour}} \right)$

Recall: FPOHR x DH = $$3 \times 90,000 = budgeted fixed MOH$.

Volume variance

= 18,000 Unfavorable

Note: use the "denominator hours" 90,000 hrs, NOT the actual hours of 88,000 hrs.

Essentially, it is 30,000 budgeted units vs. only 28,000 output units. That is, with the same fixed MOH, company produces too few units. That is why it is called "volume variance"

A Pictorial View of the Variances

Total variance, \$28,000 unfavorable

Exercise for MOHs

Norwall Company's variable MOH should be \$3.00 per standard machine-hour and its fixed MOH should be \$300,000 per year. The following information is available for a recent period:

- (a) The denominator activity of 60,000 machine-hours is used to compute the predetermined overhead rate (POHR);
- (b) At the 60,000 standard machine-hours level of activity, the company should produce 40,000 units of product.
- (c) The company's actual operating results are:

Number of units produced	42,000
Actual machine-hours	64,000
Actual variable overhead cost	\$185,600
Actual fixed overhead cost	\$302,400

Required:

Compute the variable overhead <u>rate and efficiency variances</u>; and the fixed overhead <u>budget and volume variances</u>.

Exercise for MOHs

Step 1: we should calculate the variable and fixed component of POHR.

Variable portion: \$3 per hour;

Fixed portion: \$300,000/60,000 = \$5 per hour

Step 2: the allowed standard hours for actual output.

 $(60,000 \text{ hours}/40,000 \text{ units}) \times 42,000 \text{ units} = 63,000 \text{ standard hours allowed.}$

Step 3: variable overhead

Variable overhead rate variance:

Variable overhead rate variance = $(AH \times AR) - (AH \times SR)$ (\$185,600) - $(64,000 \text{ hours} \times \$3 \text{ per hour}) = -\$6,400 \text{ F}$

Variable overhead efficiency variance:

Variable overhead efficiency variance = SR (AH – SH) \$3 per hour (64,000 hours – 63,000 hours) = \$3,000 U

Exercise for MOHs

Step 4: fixed MOH.

Q: \$15,000 is FAVORABLE variance. Why?

You apply more MOH than budgeted fixed MOH when using only standard hours allowed for actual production level.

Exercise (P10A-11) (To be included in the practice exercises)

Flandro Company uses a standard cost system and sets predetermined overhead rates on the basis of direct labor-hours. The following data are taken from the company's budget for the current year:

Denominator activity (direct labor-hours)	5,000
Variable MOH	\$25,000
Fixed MOH	\$59,000

The standard cost card for the company's only product is given below:

Direct materials, 3 yards at \$4.40 per yard	\$13.20
Direct labor, 1 hour at \$12 per hour	\$12.00
MOH, 140% of direct labor cost	<u>\$16.80</u>
Standard cost per unit	<u>\$42.00</u>

During the year, the company produced 6,000 units of product and incurred the following costs:

Materials purchased, 24,000 yards at \$4.80 per yard	\$115,200
Materials used in production (in yards)	18,500
Direct labor cost incurred, 5,800 hours at \$13 per hour	\$75,400
Variable manufacturing overhead cost incurred	\$29,580
Fixed manufacturing overhead cost incurred	\$60,400

End of Chapter 10