1

2023-Jan-25-S1

EE24BTECH11001 - ADITYA TRIPATHY

16. The statement $(p \land (\sim q)) \implies (p \implies (\sim q))$

(2023-Jan)

- a) equivalent to $(\sim p) \lor b$) a tautology c) equivalent $p \lor q$ $(\sim q)$
- d) a contradiction

17. Let $f:(0,1)\to\mathbb{R}$ a be a function defined by

$$f(x) = \frac{1}{1 - e^{-x}} \tag{1}$$

and,

$$g(x) = (f(-x) - f(x))$$
 (2)

- . Consider the two statements
- a) g is an increasing function (0,1)
- b) g is one-one in (0, 1)

Then, (2023-Jan)

- a) Only 1 is true
- b) Only 2 is true
- c) Neither 1 nor 2 is d) Both 1 and 2 are true true
- 18. The distance of the point P(4,6,-2) from the line passing through the point (-3,2,3) and parallel to a line with direction ratios 3, 3, -1 is equal to: (2023-Jan)
 - a) 3

b) $\sqrt{6}$

c) $2\sqrt{3}$

d) $\sqrt{14}$

19. Let x, y, z, > 1 and

$$A = \begin{vmatrix} 1 & \log_x y & \log_x z \\ \log_y x & 2 & \log_y z \\ \log_z x & \log_x y & 3 \end{vmatrix}$$
 (3)

Then $\left| \operatorname{adj} \left(\operatorname{adj} A^2 \right) \right|$ is equal to : (2023-Jan)

- a) 6^4 b) 2^8 c) 4^8 d) 2^4
- 20. If a_r is the coefficient of x^{10-r} in the Binomial expansion of $(1+x)^1$ 0, then $\sum_{r=1}^{10} r^3 \left(\frac{a_r}{a_{r-1}}^2\right)$ is equal to:
 - a) 4895 b) 1210 c) 5445 d) 3025
- 21. Let $S = \{1, 2, 3, 5, 7, 10, 11\}$. The number of non-empty subsets of S that have the sum of all elements of multiple of 3 is : (2023-Jan)
- 22. For some $a, b, c \in \mathbb{N}$, lat f(x) = ax 3 and $g(x) = x^b + c, x \in \mathbb{R}$. If $(f \circ g)^{-1}(x) = \left(\frac{x-7^{\frac{1}{3}}}{2}\right)$, then $(f \circ g)(ac) + (g \circ f)(b)$ is equal to : (2023-Jan)
- 23. The vertices of a hyperbola H are $(\pm 6,0)$ and its eccentricity is $\frac{\sqrt{5}}{2}$. Let \mathbb{N} be the normal to H at a point in the first quadrant and the parallel to the $\sqrt{2}x + y = 2\sqrt{2}$. If d is the length of the line segment of N between H and the y-axis then d^2 is equal to: (2023-Jan)
- 24. Let

$$S = \{\alpha : \log_2\left(9^{2\alpha - 4} + 14\right) - \log_2\left(\frac{5}{2}3^{2\alpha - 4} + 1\right) = 2\}$$
 (4)

Then the maximum value of β for which the equation

$$x^{2} - 2\left(\sum_{\alpha \in S} \alpha\right)^{2} x + \sum_{\alpha \in S} (\alpha + 1)^{2} \beta - 0 \tag{5}$$

has real roots, is: (2023-Jan)

- 25. The constant term in the expansion of $\left(2x + \frac{1}{x^7} + 3x^2\right)^5$ is : (2023-Jan)
- 26. Let A_1, A_2, A_3 be the tree A.P. with the same common difference d an having their first terms as A, A+1, A+2, respectively. Let a, b, c be the $7^{th}, 9^{th}, 17^{th}$ terms of A_1, A_2, A_3 , respectively such that

$$\begin{vmatrix} a & 7 & 1 \\ 2b & 17 & 1 \\ c & 17 & 1 \end{vmatrix} + 70 = 0 \tag{6}$$

If a = 29, then the sum of first 20 terms of an AP whose first term is c - a - b and common difference is $\frac{d}{12}$, is equal to: (2023-Jan)

27. If the sum of all solutions of

$$\tan^{-1}\left(\frac{2x}{1-x^2}\right) + \cot^{-1}\left(\frac{1-x^2}{2x}\right) = \frac{\pi}{3}$$
 (7)

(2023-Jan)

28. Let the equation of the plane passing through the line

$$x - 2y - z - 5 = 0 = x + y + 3z - 5 \tag{8}$$

and parallel to the line

$$x + y + 2z - 7 = 0 = 2x + 3y + z - 2 \tag{9}$$

be ax + by + cz = 65. Then the distance of the point (a, b, c) from the plane 2x + 2y - z + 16 = 0 is : (2023-Jan)

- 29. Let x and y be distinct integers where $1 \le x \le 25$ and $1 \le y \le 25$. Then, the number of ways of choosing x and y, such that x + y is divisible by 5, is : (2023-Jan)
- 30. If the area enclosed by the parabolas $P_1: 2y=5x^2$ and $P_2: x^2-y+6=0$ is equal to the area enclosed by P_1 and $y=\alpha x, \alpha>0$, the α^2 is equal to: (2023-Jan)

