Elementi di Bioinformatica

Gianluca Della Vedova

Univ. Milano-Bicocca http://gianluca.dellavedova.org

26 novembre 2018

Grafi di assemblaggio

Gianluca Della Vedova Elementi di Bioinformatica

Assemblaggio di genomi

Tecnologie

- Porzioni di genoma chiamate read
- 50–10000bp (base pairs)
- spesso in coppie (mate pairs)
- o posizione originaria ignota

Obiettivo

1/1

Ricostruire il genoma: circa 3 miliardi bp

Gianluca Della Vedova Elementi di Bioinformatica 2/1

Evoluzione tecnologica

Gianluca Della Vedova

Elementi di Bioinformatica

Mate pairs

Gianluca Della Vedova

Elementi di Bioinformatica

Regola 1

Suffisso di una read può essere prefisso di un'altra read: overlap

Overlap — sovrapposizione

Probabile motivo

Errore oppure organismi diploidi

Gianluca Della Vedova Elementi di Bioinformatica

Grafo di overlap

Read

ACGTGTG

CGTGTGC GTGCCA CCACG

Arco fra tutte le coppie di read con overlap abbastanza lungo

Grafo

Gianluca Della Vedova Elementi di Bioinformatica

String Graph

Read

CGTGTGC GTGCCA CCACG

Si rimuovono gli archi transitivi dal grafo di overlap

Grafo

Shortest superstring

Istanza

Insieme $S = \{s_1, \ldots, s_n\}$ di stringhe

Soluzioni ammissibili

Superstring T di S. Ogni s_i è sottostringa di T

Funzione obiettivo

T è il genoma assemblato, \mathcal{S} le read

Problema

Regioni ripetute

Gianluca Della Vedova Elementi di Bioinformatica Gianluca Della Vedova Elementi di Bioinformatica

Algoritmo ingordo

Algoritmo

- Fondere le due stringhe con massimo overlap
- ② Finchè non rimane una stringa sola

Gianluca Della Vedova Elementi di Bioinformatica

Esempio: a_long_long_long_time

- ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long g_time ng_tim
- a ng_time ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long
- a ng_time g_long_ng_lon a_long long_l ong_ti ong_lo long_t
- ng_time long_ti g_long_ng_lon a_long long_long_lo
- ng_time ong_lon long_ti g_long_ a_long long_l
- ong_lon long_time g_long_ a_long long_l
- long_lon long_time g_long_ a_long
- long_lon g_long_time a_long
- ② long_long_time a_long a_long_long_time

Gianluca Della Vedova Elementi di Bioinformatica

10/1

Problema del commesso viaggiatore (TSP)

Istanza

Grafo orientato $G = \langle V, A \rangle$, con archi pesati $w : A \mapsto \mathbb{Q}^+$

Soluzioni ammissibili

Permutazione $\Pi = \langle \pi_1, \dots, \pi_n \rangle$ of V

Funzione obiettivo

 $w(\pi_n, \pi_1) + \sum_{i=1}^n w(\pi_i, \pi_{i+1})$

- Una soluzione è un percorso che tocca ogni città esattamente una volta e torna al punto di partenza
- Il costo è il peso totale di tutti gli archi attraversati
- NP-completo, ma risolvibile in pratica

Gianluca Della Vedova Elementi di Bioinformatica

Superstringa più corta e TSP

Similarità

1 read = 1 città

Differenze

- assemblaggio ≠ ciclo
- lunghezza stringa ≠ costo percorso TSP

Proprietà

 $|S|=\sum_{i=1}^n|s_i|-\sum_{i=1}^{n-1}|ov(s_i,s_{i+1})|,$ dove $ov(\cdot,\cdot)$ è la lunghezza della sovrapposizione fra le stringhe

Gianluca Della Vedova Elementi di Bioinformatica

Grafo di overlap — TSP

Grafo

Gianluca Della Vedova Elementi di Bioinformatica

13/1

11/1

9/1

Overlay — Layout — Consensus

Passi

- Overlap: calcolare le sovrapposizioni e costruire il grafo. Usare suffix array (esatto) o programmazione dinamica
- 2 Layout: Fondere i cammini per ottenere i contigs. Le ripetizioni (branching nodes) vengono rimosse.
- 3 Consensus: calcola i nucleotidi

Gianluca Della Vedova Elementi di Bioinformatica

14/1

Reverse and complement

- Non si conosce lo strand
- Versione canonica (minima fra x e revcomp(x)
- o complica il calcolo degli overlap

SBH

DNA array

- Tecnologia vecchia
- Per ogni k-mero, si conosce se appare nel genoma
- $k \approx 8$

Procedura

- Ogni k-mero viene diviso in (k − 1)-meri
- ② Un vertice per ogni (k − 1)-mero
- Un arco per ogni k-mero

Adesso

Stessa procedura, a partire dai read

Gianluca Della Vedova Elementi di Bioinformatica 15/1 Gianluca Della Vedova Elementi di Bioinformatica 16/1

Grafo di de Bruijn

Grafi Euleriani

Definizione

Sia $G = \langle V, A \rangle$ un grafo orientato. G è semi-euleriano se esistono due vertici s, t tali che $N_G^-(s) = N_G^+(s) + 1$, $N_G^-(t) = N_G^+(v) - 1$, mentre per ogni altro vertice w, $N_G^-(w) = N_G^+(w)$.

Definizione

Sia $G = \langle V, A \rangle$ un grafo orientato. G è euleriano se $N_G^-(w) = N_G^+(w)$. per ogni vertice.

Teorema

Un grafo connesso $G = \langle V, A \rangle$ ha un cammino euleriano se e solo se *G* è semi-euleriano. *G* ha un ciclo euleriano se e solo se *G* è euleriano.

Gianluca Della Vedova Elementi di Bioinformatica

Altre fasi

- bubble popping
- tip removal

Gianluca Della Vedova Elementi di Bioinformatica

21/1

Licenza d'uso

Quest'opera è soggetta alla licenza Creative Commons: Attribuzione-Condividi allo stesso modo 3.0. https://creativecommons.org/licenses/by-sa/4.0/ Sei libero di riprodurre, distribuire, comunicare al pubblico, esporre in pubblico, rappresentare, eseguire, recitare e modificare quest'opera alle seguenti condizioni:

- Attribuzione Devi attribuire la paternità dell'opera nei modi indicati dall'autore o da chi ti ha dato l'opera in licenza e in modo tale da non suggerire che essi avallino te o il modo in cui tu usi l'opera.
- Condividi allo stesso modo Se alteri o trasformi quest'opera, o se la usi per crearne un'altra, puoi distribuire l'opera risultante solo con una licenza identica o equivalente a questa.

Problemi su grafi

Ciclo Euleriano

- 1 Un assemblaggio valido è un cammino che attraversa ogni arco esattamente una volta
- 2 Cammino Euleriano

Ciclo Hamiltoniano

- É un cammino che attraversa ogni vertice esattamente una
- ② Caso particolare di TSP

Confronto

Qual è più difficile da risolvere?

Gianluca Della Vedova Elementi di Bioinformatica

18/1

22/1

Grafi Euleriani 2

Teorema

Sia $G = \langle V, A \rangle$ un grafo semi-euleriano e sia P un cammino da s a t. Sia G₁ il grafo ottenuto da G togliendo tutti gli archi di P. Allora G_1 è euleriano.

Teorema

Sia $G = \langle V, A \rangle$ un grafo euleriano e sia C un ciclo di G. Sia G_1 il grafo ottenuto da G togliendo tutti gli archi di C. Allora G₁ è euleriano.

Gianluca Della Vedova Elementi di Bioinformatica

Scaffolding

- Fondere contigs in scaffolds
- usando mate pairs
- anche con revcomp

Gianluca Della Vedova Elementi di Bioinformatica

Gianluca Della Vedova Elementi di Bioinformatica