MACS 207b

1 La loi gaussienne

1.1 La loi gaussienne scalaire

Def. Une v.a. X sur \mathbf{R} est dite **gaussienne standard** si sa loi de probabilité admet la densité $f(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$.

Def. Soit $\sigma \in \mathbb{R}_+$ et $m \in \mathbb{R}$. On dit que la v.a. réelle Y suit la loi gaussienne $\mathcal{N}(m, \sigma^2)$ si $Y = \sigma X + m$ où X suit la loi gaussienne standard.

Prop. Soit $X \sim \mathcal{N}(0,1)$. Sa transformée de Laplace est $\psi(z) = \mathbf{E} \exp(zX) = \exp\left(\frac{z^2}{2}\right)$.

Prop. $Y \sim \mathcal{N}(m, \sigma^2)$ si et seulement si sa fonction caractéristique est $\phi(\lambda) = \psi(i\lambda) = \exp\left(im\lambda - \lambda^2 \frac{s^2}{2}\right)$.

Prop. Supposons $\sigma > 0$. Alors $Y \sim \mathcal{N}(m, \sigma^2)$ si et seulement si Y admet pour densité $f(y) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right)$.

Prop. Soit $Y \sim \mathcal{N}(m, \sigma^2)$, alors $\mathbf{E}Y = m$ et $Var(Y) = \sigma^2$.

Prop. Soit $X_n \sim \mathcal{N}(m_n, \sigma_n^2)$ une suite de v.a, $X_n \xrightarrow{\mathcal{L}} X$. Alors $(m_n)_n$ et $(\sigma_n^2)_n$ convergent et en notant m et σ^2 leurs limite on a $X \sim \mathcal{N}(m, \sigma^2)$. Si par ailleurs $X_n \xrightarrow{\mathbf{P}} X$ alors la convergence a lieu dans \mathcal{L}^p pour tout p > 0.

Démonstration. Le premier point se démontre par l'utilisation de la fonction caractéristique. Pour le second on déduit du premier que tous les moments de $|X_n - X|$ sont bornés et on applique un argument d'intégrabilité uniforme.

1.2 La loi gaussienne vectorielle

Def. Un vecteur aléatoire X sur \mathbf{R}^d est dit **gaussien** si $\forall u \in \mathbf{R}^d$, $\langle u \mid X \rangle$ est une v.a gaussienne.

Ex. Le vecteur $X = (X_1, \dots, X_d)^T$ où les variables aléatoires X_i sont gaussiennes et indépendantes est gaussien. En effet, on sait que toute combinaison linéaire de v.a gaussienne indépendantes est gaussienne.

Soit $X = (X_1, ..., X_d)^T$ un vecteur aléatoire tel que $\mathbf{E}[\|X\|^2] < \infty$ et soit $m = \mathbf{E}X = (\mathbf{E}X_1, ..., \mathbf{E}X_d)^T$ et $\Gamma = (\text{Cov}(X_i, X_j))_{1 \le i,j \le d}$ sa moyennne et sa matrice de covariance respectivement. Il est alors clair que

$$\forall u \in \mathbf{R}^d, \mathbf{E} \langle u \mid X \rangle = \langle u \mid m \rangle$$
 et $\operatorname{Var}(\langle u \mid X \rangle) = u^{\mathsf{T}} \Gamma u$

(ce qui montre au passage que $\Gamma \in \mathcal{S}_d^+$, le cône des matrices $d \times d$ définies positives). Si le vecteur X est gaussien, la v.a $\langle u \mid X \rangle$ est gaussienne, et sa fonction caractéristique est $\mathbf{E} \left[e^{i\lambda\langle u \mid X \rangle} \right] = \exp \left(i\lambda\langle u \mid m \rangle - \lambda^2 \frac{u^\mathsf{T} \Gamma u}{2} \right)$. En particulier, en prenant $\lambda = 1$ nous obtenons la fonction caractéristique de $X: \phi(u) = \mathbf{E} \left[\exp(i\langle u \mid X \rangle) \right] = \exp \left(i\langle u \mid m \rangle - \frac{u^\mathsf{T} \Gamma u}{2} \right)$. La loi de X est ainsi entièrement déterminée par sa moyenne et par sa matrice de covariance. On note $X \sim \mathcal{N}(m,\Gamma)$.

Prop. Les composantes d'un vecteur gaussien sont indépendantes si et seulement si elles sont décorrelées, i.e la matrice de covariance est diagonale.

Prop. Soit $X \sim \mathcal{N}(m,\Gamma)$ sur \mathbf{R}^d et $H \in \mathfrak{M}_{n,m}$. Alors le vecteur aléatoire Y = HX suit la loi $\mathcal{N}(Hm,H\Gamma H^T)$.

Prop. On a $\forall d \in \mathbb{N}^*, \forall m \in \mathbb{R}^d, \forall \Gamma \in \mathcal{S}_d^+, \exists X \sim \mathcal{N}(m, \Gamma).$

Démonstration. Écrire $\Gamma = HH^{\mathsf{T}}$ et poser X = m + HZ où Z est un vecteur dont les éléments dont des gaussiennes standard indépendantes. □

Prop. Si Γ est définie positive, alors $X \sim \mathcal{N}(m, \Gamma)$ a pour densité $f(x) = \frac{1}{\sqrt{\det(2\pi\Gamma)}} \exp\left(-\frac{(x-m)^{\mathsf{T}}\Gamma^{-1}(x-m)}{2}\right)$.

2 Bases de la théorie des processus - Le mouvement brownien

2.1 Généralités

Soit $(\Omega, \mathcal{F}, \mathbf{P})$ un espace de probabilités. Soit $d \in \mathbf{N}^*$, $E = \mathbf{R}^d$ et $\mathcal{E} = \mathcal{B}(E)$.

On note $\mu: B \mapsto \mathbf{P}(X^{-1}(B))$ la loi de probabilité de X.

Soit T un "ensemble d'indices" qui représente le temps. En général $T = R_+$.

Def. Un processus à valeurs dans (E, \mathcal{E}) indexé par **T** est une famille de v.a $X = (X_t)_{t \in \mathbf{T}}$ à valeurs dans (E, \mathcal{E}) . Pour tout $\omega \in \Omega$, l'application $t \mapsto X_t(\omega)$ est appelé **trajectoire** de X.

1

La famille X peut-être vue comme une application $\Omega \to E^T$ de toutes les trajectoires possibles. Il faut donc définir une tribu sur E^T et caractériser la mesure.

Soit $t \in T$, on pose $\mathcal{G}_t := \sigma(\xi_t)$ la tribu sur E^T engendrée par la projection $\xi_t : \begin{cases} E^T \to E \\ x \mapsto x(t) \end{cases}$. Cette tribu est donc constituée des ensembles $\{x \in E^T \mid x(t) \in H\}$ où H parcourt \mathcal{E} .

Def. La **tribu de Kolmogorov** est la tribu \mathcal{G} engendrée par la famille $\{\mathcal{G}_t\}_{t\in \mathbf{T}}$.

D'une manière équivalente, \mathcal{G} est la plus petite tribu rendant mesurables toutes les applications ξ_t où t parcourt T. Avec cette construction $X: \Omega \to E^T$ est \mathcal{F}/\mathcal{G} -mesurable de loi μ l'image de P par X.

Étant donné une loi de probabilité μ sur (E^T, \mathcal{G}) , il est facile de construire un processus de loi μ : il suffit de prendre $(\Omega, \mathcal{F}, \mathbf{P}) = (E^T, \mathcal{G}, \mu)$ et de poser $X(\omega) = \omega$.

Ce processus est appelé processus canonique.

Def (Lois fini-dimensionnelles). Soit \mathcal{J} l'ensemble des parties finies de T et $I = \{t_1, \dots, t_n\} \in \mathcal{J}$ où $t_1 < t_2 < \dots < t_n$. Soit μ_I la loi du vecteur $(X_{t_1}, \dots, X_{t_n})$. En notant $\mathcal{G}_I := \sigma(\xi_I)$ la sous-tribu de \mathcal{G} engendrée par $\xi_I : E^T \xrightarrow{} E^I$, la loi μ_I peut être définie sur (E^I, \mathcal{G}_I) comme étant l'image de μ par ξ_I .

Rem. \mathcal{G}_I est la collection des ensembles $\{x \in E^{\mathbf{T}} \mid (x(t_1), \dots, x(t_n)) \in H\}$ où $H \in \xi^{\otimes I}$ est la tribu produit sur E^I . Donc \mathcal{G}_I peut être identifiée à $\mathcal{E}^{\otimes I}$ et on peut caractériser μ_I par $\forall H_1, \dots, H_n \in \mathcal{E}, \mu_I(H_1 \times \dots \times H_n) = \mathbf{P}(X_{t_1} \in H_1, \dots, X_{t_n} \in H_n)$.

Def. La famille des lois fini-dimensionnelles de X est la famille des μ_I où I parcourt \mathcal{J} .

Prop. Si deux lois μ et ν sur (E^T, \mathcal{G}) possèdent les mêmes lois fini-dimensionnelles alors elles sont égales.

Démonstration. \mathcal{G} est engendré par l'algèbre $\bigcup_{I \in \mathcal{J}} \mathcal{G}_I$. Comme μ et ν coïncident sur cette algèbre elles coïncident sur \mathcal{G} .

Prop. Les lois fini-dimensionnelles satisfont la **condition de compatibilité** suivante : pour tout $I = \{t_1, \dots, t_n\}$ avec $t_1 < \dots < t_n$, pour $p \in [[1;n]]$ et $J = \{t_1, \dots, t_{p-1}, t_{p+1}, \dots, t_n\} \subset I$, pour toutes les familles (H_i) de \mathcal{E} , on a $\mu_I(H_1 \times \dots H_{p-1} \times E \times H_{p+1} \times \dots \times H_n) = \mu_J(H_1 \times \dots H_n)$.

Th (**Kolmogorov**). Soit $(\mu_I)_{I \in \mathcal{J}}$ une famille de lois sur $(E^I, \mathcal{E}^{\otimes I})_{I \in \mathcal{J}}$. Si elle vérifie les conditions de compatibilité, $(\mu_I)_{I \in \mathcal{J}}$ est la famille de lois fini-dimensionnelles d'une unique mesure de probabilités μ sur (E^T, \mathcal{G}) .

 $\sqrt{1}$ Ici $E = \mathbb{R}^d$. Cela ne marche pas pour tous types de E.

Ex. Prenons $E = \mathbf{R}$. Soit ν une mesure sur \mathbf{R} . Supposons $\mu_I = \otimes^n \nu$, avec $n = \operatorname{Card}(I)$. Alors il existe un processus aléatoire tel que ...

Def. Soit *X* et *X'* deux processus définis sur le même espace de probabilités.

- On dit que X' est une **modification** de X si $\forall t \in T$, $P(X_t = X_t') = 1$.
- On dit que X et X' sont **indistinguables** si $P(\forall t \in T, X_t = X_t') = 1$ en admettant que $\{\forall t \in T, X_t = X_t'\} \in \mathcal{F}$.

Ex. Soit $\Omega = \mathbf{T} = [0;1]$, $\mathcal{F} = \mathcal{B}([0;1])$, \mathbf{P} la mesure de Lebesgue sur [0;1]] et $\forall t \in \mathbf{T}, X_t(\omega) = \delta_{t,\omega} = \mathbf{1}_{\{t\}}(\omega)$ et $\forall t, X_t'(\omega) = 0$. Alors $\forall t \in \mathbf{T}, \mathbf{P}(\omega \mid X_t(\omega) \neq X_t'(\omega)) = \mathbf{P}(\{t\}) = 0$ mais $\mathbf{P}(\omega \mid \exists t \in \mathbf{T}, X_t(\omega) \neq X_t'(\omega)) = \mathbf{P}([0;1]) = 1$.

Question : peut-on trouver une condition sur μ qui rende le processsus X continu, au moins avec la probabilité 1, i.e. "presque toutes les trajectoires sont continues", si cela a un sens ? Non, comme le montr l'exemple précédent. En effet les lois fini-dimensionnelles de X et X' sont identiques. Donc X et X' ont la même loi μ .

Cet exemple montre que l'ensemble des processus continus n'est pas mesurable par la tribu de Kolmogorov. En effet, si $\mathcal{C}([0;1])$ était mesurable, on aurait $\mu(\mathcal{C}([0;1]))=1$ car μ est la loi de $X'\in\mathcal{C}([0;1])$. En même temps $\mu(\mathcal{C}([0;1]))=0$ car μ est la loi de X.

2.2 Le mouvement brownien

Def. Un processus aléatoire est dit **gaussien** si toutes ses lois fini-dimensionnelles sont gaussiennes.

Def. Un **mouvement brownien au sens large (MBL)** est un processus scalaire gaussien X sur $\mathbf{T} = \mathbf{R}_+$ tel que $\forall t \in \mathbf{T}, \mathbf{E}X_t = 0$ et $\forall t, s \in \mathbf{T}, \mathbf{E}[X_tX_s] = \min(t, s)$.

Prop. Le MBL existe.

Démonstration. Il nous faudra prouver que les conditions de compatibilité sont satisfaites. Pour tout $I = \{t_1, \dots, t_n\}, t_1 < \dots < t_n$ il nous suffira de prouver que μ_I est une loi de probabilité. Ainsi μ_J pour tout $J \subset I$ sera la marginale correspondante de μ_I . Cela revient à prouver que $\Gamma := (t_i \wedge t_j)_{1 \le i,j \le n}$ est une matrice de

Régis - BDE Télécom ParisTech

covariance, i.e une matrice semi-définie positive. En effet, avec $t_0 := 0$, $\forall x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbf{R}^n$,

$$x^{\mathsf{T}}\Gamma_{l}x = \sum_{i,j=1}^{n} x_{i}x_{j}(t_{i} \wedge t_{j}) = \sum_{i,j=1}^{n} x_{i}x_{j} \sum_{l=1}^{i \wedge j} (t_{l} - t_{l-1}) = \sum_{l=1}^{n} (t_{l} - t_{l-1}) \left(\sum_{i=l}^{n} x_{i}\right)^{2} \geqslant 0$$

Def. Soit $\sigma(X_t)$ la sous-tribu de \mathcal{F} engendrée par la v.a $\xi_t \circ X$. La tribu engendrée par $\{\sigma(X_s)\}_{0 \leqslant s \leqslant t}$, noté $\sigma(X_s, 0 \le s \le t)$ représente le **passé** de X antérieur à t.

Prop. Un processus X est un MBL si et seulement si il satisfait les conditions suivantes :

- (i) Il est à accroissement indépendants, i.e $\forall s, t \ge 0, X_{t+s} X_t$ est indépendant de $\sigma(X_u, 0 \le u \le t)$.
- (ii) Il est gaussien centré et $\forall t \ge 0$, $\mathbf{E}[X_t^2] = t$.

Par ailleurs les accroissements d'un MBL satisfont $\forall s, t \ge 0, X_{t+s} - X_t \stackrel{\mathcal{L}}{=} X_s - X_0 \stackrel{\mathcal{L}}{=} X_s \sim \mathcal{N}(0, s)$.

Démonstration. Si X est un MBL, il suffit de prouver le premier point. Comme la loi de X est caractérisée par les lois fini-dimensionnelles, il suffit de prouver $\forall t_0, \dots, t_{n+1}$ tel que $0 = t_0 < t_1 < \dots < t_n = t < t_{n+1} = t+1$, la v.a

 $X_{t_{n+1}} - X_{t_n}$ et le vecteur $(X_{t_0}, \dots, X_{t_n})$ sont indépendants comme $(X_{t_0}, \dots, X_{t_{n+1}})$ est gaussien. Le vecteur $(X_{t_0}, \dots, X_{t_n}, X_{t_{n+1}} - X_{t_n})$ l'est par transformation linéaire, et il suffit de prouver la décorrélation

 $\forall i \in [[0;1]], \mathbf{E}\left[(X_{t_{n+1}} - X_{t_n})X_{t_i}\right] = 0. \text{ C'est imm\'ediat}: \mathbf{E}\left[X_{t_{n+1}}X_{t_i}\right] - \mathbf{E}\left[X_{t_n}X_{t_i}\right] = t_{n+1} \wedge t_i - t_n \wedge t_i = t_i - t_i = 0.$ Réciproquement, si les deux points sont satisfaits, il suffit de prouver que $\mathbf{E}\left[X_{t+s}X_{t}\right] = t$. En effet $\mathbf{E}\left[X_{t+s}X_{t}\right] = t$ $\mathbf{E}\left[(X_{t+s}-X_t)X_t\right]+\mathbf{E}\left[X_t^2\right]=\mathbf{E}\left[X_{t+s}-X_t\right]\mathbf{E}\left[X_t\right]+\mathbf{E}\left[X_t^2\right]=\mathbf{E}\left[X_t^2\right]=t.$ Enfin on sait que $X_{t+s}-X_t$ est gaussienne et il est facile de vérifier qu'elle est centrée et de variance s.

Th (Kolmogorov). Soit T un intervalle de R et $(X_t)_{t \in T}$ un processus à valeurs dans E^T . Supposons $\exists \alpha, \beta \in T$ $\mathbf{R}_{+}^{*}, \exists C > 0, \forall s, t \in \mathbf{T}, \mathbf{E}\left[\|X_{t} - X_{s}\|^{\beta}\right] \leqslant C|t - s|^{1 + \alpha}$. Alors X admet une modification $\tilde{X} = \left(\tilde{X}_{t}\right)_{t \in \mathbf{T}}$ dont toutes les trajectoires $t \mapsto \tilde{X}_t(\omega)$ sont continues.

Def. Un mouvement brownien (MB) ou processus de Wiener est un MBL dont toutes les trajectoires sont continues et nulles en t = 0.

Prop. Le MB existe.

Démonstration. Soit X un MBL. $\mathbf{E}\left[(X_s-X_t)^4\right]=(t-s)^2\mathbf{E}\left[U^2\right]$ où $U\sim\mathcal{N}(0,1)$ et on applique le théorème de Kolmogorov.