Discrete Structures :: CS 207 :: Autumn 2021

Problem Set 8

Released: November 2, 2021

- 1. Define a function $g: \mathbb{N} \to \mathbb{R}$ recursively as follows:
 - g(1) = 1
 - $g(n+1) = 1 + \frac{1}{g(n)}$ for all integers $n \ge 1$

Use induction to prove that g(n) = f(n+1)/f(n) for all $n \in \mathbb{Z}^+$, where f(n) is the n^{th} Fibonacci number.

Note: As n tends to infinity, g(n) tends to the positive solution of the quadratic equation given by $x = 1 + \frac{1}{x}$. This number, $\frac{1+\sqrt{5}}{2} \approx 1.618$ is sometimes called the "golden ratio."

- 2. Let f(n) denote the n^{th} Fibonacci number. Then show (without using the closed form expression for f(n)) that
 - (i) $f(0) f(1) + f(2) \dots f(2n-1) + f(2n) = f(2n-1) 1$ where n is a positive integer.
 - (ii) $f(0)f(1) + f(1)f(2) + ... + f(2n-1)f(2n) = f(2n)^2$ where n is a positive integer.
- 3. A partition of a positive integer n is a way to write n as a sum of positive integers where the order of terms in the sum does not matter. For instance, 7 = 3 + 2 + 1 + 1 is a partition of 7. Let P(m) equal the number of different partitions of m, and let Q(m, n) be the number of different ways to express m as the sum of positive integers not exceeding n.
 - (i) What are the values of j such that P(m) = Q(m, j) holds?
 - (ii) Show that the following recursive definition for Q(m,n) is correct:

$$Q(m,n) = \begin{cases} 1 & \text{if } m = 1\\ 1 & \text{if } n = 1\\ Q(m,m) & \text{if } m < n\\ 1 + Q(m,m-1) & \text{if } m = n > 1\\ Q(m,n-1) + Q(m-n,n) & \text{if } m > n > 1 \end{cases}$$

- (iii) Find the number of partitions of 4 and of 5 using this recursive definition.
- 4. Let us define a permutation π of the set $\{1,...,n\}$ to be fragmented if there is a number k with $1 \le k < n$ such that π maps the subset $\{1,2,...,k\}$ into itself. Let c(n) be the number of permutations over $\{1,...,n\}$ that are not fragmented. Prove that

$$\sum_{i=1}^{n} c(i)(n-i)! = n!$$

Suppose $G_f(X) = \sum_{n \geq 1} n! X^n$ and $G_c(X) = \sum_{n \geq 1} c(n) X^n$ are the generating functions of the functions f(n) = n! and c(n) respectively (defined without a constant term). Then $G_c(X) = G_f(X)/(1 + G_f(X))$.

Hint: You can rewrite the recurrence relation as $n!-c(n) = \sum_{i=1}^{n-1} (n-i)!c(i)$ and the relation to prove as $G_f(X)-G_c(X) = G_f(X)G_c(X)$.

5. Let s(n) be the number of sequences $(x_1, ..., x_k)$ of integers satisfying $1 \le x_i \le n$ for all i and $x_{i+1} \ge 2x_i$ for i = 1, ..., k-1. (The length of the sequence is not specified; in particular, the empty sequence is included.) Prove the recurrence

$$s(n) = s(n-1) + s(|n/2|)$$

for $n \ge 1$, with s(0) = 1. Show that the generating function $G_s(X)$ satisfies $(1 - X)G_s(X) = (1 + X)G_s(X^2)$.

- 6. Find the generating function $G_f(X)$ for each f below.
 - (a) $\forall n \geq 0, f(n) = n$.
 - (b) $\forall n \ge 0, f(n) = n^2$.

- (c) f(0) = a, and $\forall n > 0$, f(n) = f(n-1) + b.
- (d) f(0) = f(1) = 0, f(2) = 1, and $\forall n > 2$, f(n) = f(n-1) + f(n-2) + f(n-3).
- (e) f(0) = 0, and $\forall n > 0$, $f(n) = 2f(n-1) + 3^n$.
- 7. If the generating functions of two functions f and g satisfy the identity $G_g(X) = G_f(X)(1-X)$, define g in terms of f.
- 8. Prove that for $n \in \mathbb{Z}^+$, $\binom{-n}{k} = (-1)^k \binom{n+k-1}{k}$.
- 9. Use the extended binomial theorem to find the coefficient of X^{10} in the power series of each of the following expressions. (Express your answers without using $\binom{n}{k}$ for any $n \notin \mathbb{Z}^+$.)
 - (a) $X^4/(1-3X)^3$
 - (b) $X^4/(1-X^3)$
 - (c) $1/(1-X^3)$
 - (d) $1/\sqrt{1-4X}$
- 10. For the function f recursively defined in Problem 6(c), find a closed form for it using its generating function G_f .
- 11. Find the closed form expression for the n^{th} Fibonacci number.