Computer Science & IT

Discrete Mathematics

Set Theory & Algebra

Lecture No. 19

Recap of Previous Lecture

Topic

Identical Functions

Topic

Function composition <

Topics to be Covered

Group
Theory

Topic: Special Sets

Topic: Algebraic Structure

A non-empty set S w.r.t. binary opn 'x'

Called an algebraic structure if

Closure property a *b Es, \forall a, b \in \square \{ie. Set S is closed} \\ \text{W:7:1. binary oph }

Algebraic Structure Semi-Group Group Abelian Group Monoid (N,+)Multipli-Cation (N,) 2-3=-1#N (N, -) (N, +)(Z,+) (Z, \cdot) (Z,-) (Z,+) (Q,+) (Q, .) (Q,-) number 9 (Q, +)(Q*, +) (Q*,) $(Q^*, -)$ (Q*,--)

Slide

Topic: Semi-group

$$(a*b)*C = a*(b*c), \forall a,b,c \in S$$

Lie. Binary oph 'x' is?
associative

(Note: - Associativity depends only on the Operation, it has nothing to do with the type of elements) on which opn is performed

Algebraic Structure Semi-Group Monoid Group Abelian Group (N,+)Multipli-Cation (N,) 2-3=-1#N (N, -) (N, +)(Z,+) (Z, \cdot) (Z,-) (Z,+) (Q,+) (Q, .) (Q,-) number 9 (Q, +)(Q*, +) (Q*,) $(Q^*, -)$ (Q*,--)

Slide

Topic: Monoid

A semi-group (S, *) is called a monoid if and only if these exists an element $e \in S$, such that

Sidentity W. r.t. addition = 0 } identity W. r.t. multiplication = 1 Where 'e' is called identity element.

Algebraic Structure Semi-Group Group Abelian Group Monoid identity=0 &N X (N,+)Multipliidentity=1EN V (N, .) Cation 2-3=-1#N (N, -) (N, +)OEZ (Z,+) (Z, \cdot) (Z,-) (Z,+) D ÷ Q (Q,+) 1EQ (Q, .) (Q,-) number 9 (Q, +)(Q*, +) 160x : V (Q*,) (1)-(1)=0¢0 $(Q^{*}, -)$ (Q*,--)

Slide

Topic: Group

Monoid (S, *) is called a group if and only if for each element $a \in S$ there exists an element $b \in S$ such that a * b = e (identity)

		Algebraic Structure	Semi-Group	Monoid	Group	Abelian Group
Multipli- Cation	(N,+)			identify=0 &N X	in a day wat on	e at Com
	(N,)			identity=1EN	any element except	for 1'
	(N, -)	2-3=-1∉N	X	X	X	
	(N, *)	X 2÷5 ∉ N	X	X	X	
	(Z,+)			OEZ		
	(Z, ·)			167 .: V	I·X	
numbert 9	(Z, -)		X	Y		
	(Z ,+)	X	X	X .	X	
	(Q,+)			0 £ Q :.		
	(Q, .)			169:	CEQ and invo	loes not exist tiplication
	(Q,-)		X	X	X	riplication
	(Q, +)	$0 \in 0$ \times	X	X	X	
	(Q*, +)	# +(=P)= 0 # g*	X	X	X	
	(Q*, ,)			160° V		
	(Q±,-)	(1)-(1)=0¢0	X	X		
	(Q*,+-)		X	X	×	
Slide			/			

Silae

Topic: Abelian group / Commutative group

$$a*b=b*a$$
, $\forall a,b \in S$

if a * b = b * a, $\forall a, b \in S$ { i.e. oph * must be Commulative and the elements at the set

Note:- Commutative property depends on the Operation as well as on the type of elements at the set.

Algebraic Structure Semi-Group Group **Abelian Group** Monoid identity=0 & N (N,+)any element except for 1' Mwļtipliidentity=1EN (N,) Cation 2-3=-1#N (N, -) (N, +)OEZ (Z,+) (Z, \cdot) (Z,-) (Z,+) O F Q (Q,+) (CEQ and inv(0) does not exist 1EQ (Q, .) · multiplication (Q,-) Number (Q,+)(Q*, +) 160x (Q*,) $(Q^{*}, -)$ (Q*,-)

Slide

A.S.	Semi	Monoid	Group	Abelian group
(1) Closed	1) closed	1) closed	1) closed	0
			2) Associative	
		3) identity element E Set	3 identity element ES	(5)
		•	4) Inverse af Every element	(4)
			of the set must be present in the set	5 Commutative

Topic: Note

- For a group (G1, *) following properties holds true
 - 1 Identity element w. rt. binary oph 'x' is unique
 - (2) If inv(a)=b, then inv(b)=a { i.e. $(a^{-1})^{-1}=a$ }
 - (3) (a*b) = b'*a'
 - (4) inverse al identity element always exists, and it is identity element itself
 (e)=e (Always true)

Closed

Associative

#Q. Let
$$A = \{0, \pm 2, \pm 4, \pm 6,\}$$

B =
$$\{0 \pm 1, \pm 3, \pm 5 \dots\}$$

Which of the following is not a semi- group

Semi

Joons

#Q. Consider the set Σ^* of all strings over the alphabet $\Sigma = \{0, 1\}$. Σ^* with the concatenation operator for strings

 $01011 \oplus 101 = 01011 101$

A Not a semigroup

Semi group but not a monoid

(i. A.S.) Strings at 041 is also a binary soid

String at 041 and it will belong

Monoid but not a group.

Associative. String Concatenation is associative

(S. t. (binesse String) NULL String & ZX

(S. t. (binesse String) A NULL String & ZX

(S. t. (binesse String) A NULL String)

A group inverse does not exist for any binary string, except

(S.t. (binary string) (+) Nucl string = binary string

H.W

#Q. Let A be the set of all non-singular matrices over real number and let * be the matrix multiple operation. Then

order MXM

A is closed under * but (A,*) is not a semigroup

B (A,*) is a semigroup but not a monoid.

(A,*) is a monoid but not a group.

(A,*) is a group but not an abelian group.

#Q. Let S be any finite set, and F(s) is defined as set of all function on set S. Then F(s) with respect to function composition operation (ie., o) is.

A Not a semigroup

B Semi group but not a monoid

Monoid but not a group.

D A group

#Q. Let Z is the set of all integers. The binary operation * is defined as a*b = max
(a, b) then the structure (Z,*) is

A Not a semigroup

B Semi group but not a monoid

Monoid but not a group.

D A group

- #Q. Let Q* be the set of all positive rational numbers. The binary operation * is defined as a * b = $\frac{ab}{3} \forall a, b, \in Q^*$ If $(Q^*, *)$ is a group then find
 - (i) identity element of the group
 - (ii) inverse of any element a, ∀, ∈ Group

#Q. Which of the following statement is/are not true.

(0, ± 2k, ± 4k,, ±6k,) is a group with respect to addition where any fixed positive integer

 $\{x \mid x \text{ is real number and } 0 < x \le 1\} \text{ is a group with respect to multiplication}$

(2ⁿ | n is an integer} is a group with respect to multiplication

D None of these

2 mins Summary

THANK - YOU