FZU ID: 831903230

MU ID: 19104294 CS220 Computer Architecture

NAME : MENGYU RAO Digital Logic Design
Practical 3

Part A

(a) Plot the function $f(A,B,C,D) = \Sigma m$ (0,4,5,8,9,10,12) on a k-map. You may need to draw a truth table first.

Truth table:

A	В	С	D	f
0	0	0	0	1
0	0	1	0	0
0	0	0	1	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

k-map:

CD AB	00	01	11	10
00	1	1	1	1
01	0	1	0	1
11	0	0	0	0
10	0	0	0	1

(b) Using the minimisation procedure on the k-map, write a minimal Sum-of-Products expression for the function f using AND, OR and NOT operators.

$$f = \overline{CD} + \overline{ABC} + A\overline{BC} + A\overline{BD}$$
$$= \overline{CD} + \overline{C}(\overline{AB} + A\overline{B}) + A\overline{BD}$$

(c) Implement the function on the simulator and verify its behaviour against the K-map (or truth table) for the function.

$$A=0 \quad B=0 \quad C=0 \quad D=0 \quad f=1$$

 $A=0 \quad B=0 \quad C=0 \quad D=1 \quad f=0$

$$A = 0$$
 $B = 0$ $C = 1$ $D = 0$ $f = 0$

$$A = 0$$
 $B = 0$ $C = 1$ $D = 1$ $f = 0$

$$A=0 \quad B=1 \quad C=0 \quad D=0 \quad f=1$$

$$A = 0$$
 $B = 1$ $C = 0$ $D = 1$ $f = 1$

$$A = 0$$
 $B = 1$ $C = 1$ $D = 0$ $f = 0$

A = 0 B = 1 C = 1 D = 1 f = 0

$$A=1 \quad B=0 \quad C=0 \quad D=0 \quad f=1$$

 $A=1 \quad B=0 \quad C=0 \quad D=1 \quad f=1$

A = 1 B = 0 C = 1 D = 0 f = 1

A = 1 B = 0 C = 1 D = 1 f = 0

A = 1 B = 1 C = 0 D = 1 f = 0

 $A=1\quad B=1\quad C=1\quad D=0\quad f=0$

A = 1 B = 1 C = 1 D = 1 f = 0

Part B

(a) Draw a truth table for a 1-bit full adder circuit.

A	В	C_i	S	C_o
0	0	0	0	0
0	1	0	1	0
1	0	0	1	0
1	1	0	0	1
0	0	1	1	0
0	1	1	0	1
1	0	1	0	1
1	1	1	1	1

(b) Plot the sum and carry functions on separate k-maps.

Sum function on k-map:

C AB	00	01	11	10
0	0	1	0	1
1	1	0	1	0

$$S = A \oplus B \oplus C_{\mathbf{i}}$$

Carry function on k-map:

$$C_0 = AB + (A \oplus B)C_i$$

(c) Design and construct a 1-bit full adder using only tive two-input logic gates (either EXOR, OR, AND, NOT)

$$A = 0$$
 $B = 0$ $Ci = 0$ $S = 0$ $Co = 0$

$$A = 0$$
 $B = 0$ $Ci = 1$ $S = 1$ $Co = 0$

