共 5 页 第 B 1 页

2018~2019 学年第 1 学期期末考试试卷

《模拟电子技术基础 1》(备用 B 卷 共 5 页)

(考试时间: 2019年1月24日)

题号	1	1	111	四	五	六	七	八	成绩	核分人签字
得分										

- 一、(14 分)电路如图题一所示。已知: u_i 为正弦信号, U_{CC} =12V, R_L =4 Ω , U_{CES} 忽略不计,试回答下列问题:
- (1) 该电路的名称是什么?
- (2) 动态时,输出电压 u_o 会出现波形失真,试问该失真名称?该失真是线性失真还是非线性失真?
- (3) 理想情况下,最大输出电压幅值为多少?求此时输出功率、管耗、直流电源供给的功率和效率。

图题一

二、 $(20 \, \mathcal{G})$ 电路如图题二所示,三极管的 β =49, r_{bb} =300 Ω , U_{BE} =0.7V, R_{b1} = R_{b2} =150k Ω , R_{c} =5.1k Ω , R_{s} =300 Ω , R_{L} = ∞ ,各电容的容抗可忽略不计, U_{CC} =12V。

- (1) 画出直流通路, 估算静态工作点 (I_B 、 I_C 、 U_{CE});
- (2) 画出简化 h 参数等效电路;
- (3) 求电压放大倍数 $\dot{A}_{u} = \dot{U}_{o} / \dot{U}_{i}$ 、 $\dot{A}_{us} = \dot{U}_{o} / \dot{U}_{s}$ 、输入电阻 R_{i} 和输出电阻 R_{o} .

- 三、(10 分) 电路如图图题三所示,已知 R_c =30k Ω , R_b =100 Ω , R_L =30k Ω , R_e =27.5k Ω , U_{CC} = U_{EE} =15V,三极管的 U_{BE} =0.7V, β =50, r_{bb} =300 Ω 。求:
- (1) 静态时三极管 T_1 、 T_2 的集电极电流 I_C ;
- (2) 计算差模电压放大倍数、差模输入电阻和输出电阻;
- (3) 一般对公共射极电阻 Re有何要求? 试简要说明。

学院 专业

Ð

年级 学号

姓名

共5页 第B3页

四、(共 16 分)放大电路如图题四(a)、(b)所示,设电容器对交流信号均可视为短路。

- (1) 试分别指出图中的级间交流反馈支路,并判断交流反馈类型;
- (2) 试按深度负反馈估算出电压放大倍数 $\dot{A}_{\rm uf} = \frac{\dot{U}_{\rm o}}{\dot{U}_{\rm i}}$ 的表达式。

图题四(a)

- 五、(共 10 分)电路如图题五所示。设图示电路中的 A 具有理想特性,R=100k Ω ,C=0.01μF。
- (1) 为使该电路有可能产生正弦波振荡,试分别用"+"、"-"号标出 A 的同相输入端和反相输入端;
- (2) 写出振荡频率 f_0 的表达式;
- (3) 已知电路稳定振荡时,取 $R_2=1.5$ k Ω ,流过 R_1 的电流为 0.6mA,试求输出电压 u_0 。

共5页 第B4页

六、(共 12 分)电路如图题六所示,设图中 $A_1 \sim A_3$ 均为理想运算放大器,试推出 u_{o1} 、 七、(共 6 分)电路如图题七(a)、(b)所示。试用相位平衡条件判断它们是否可能 u_{o2} 、 u_{o} 与 u_{i1} 、 u_{i2} 、 u_{i3} 的关系。 产生正弦波振荡,图中电解电容的容量相对很大。若能够振荡,指出振荡类型。

图题七 (a)

图题七(b)

学院______专业___

____班

年级_____学号

姓名

共5页 第B5页

八、(共12分) 电路如图题八(a)、(b) 所示。

(1)(6分)如图题八(a)所示。E=10V, $e=30\sin\omega t$ V,试用波形图表示二极管上的电压 u_D 。设二极管是理想的。

(2)(6分)电路如图题八(b)所示,试求 u_0 的表达式。

