Indian Institute of Technology Kharagpur Department of Mathematics

MA11004 - Linear Algebra, Numerical and Complex Analysis Problem Sheet - 1 - Hints Spring 2021

- 1. Determine which of the following sets form vector spaces under the given operations:
 - (a) Check the properties of vector space from the definition.
 - (b) Check associative property.
 - (c) Check the properties of vector space from the definition.
 - (d) Check closure property.
 - (e) Check the usual properties of vector space for the two functions f_1, f_2 with period p_1, p_2 and check the linearity property for $f_1 + f_2$ taking period $p' = lcm(p_1, p_2)$.
- 2. Determine which of the following subsets are the subspaces of the given vector spaces:
 - (a) $\{(a, a + c, c) : a, c \in \mathbb{R}\}$ forms subspace in \mathbb{R}^3 .
 - (b) $(A+B)^T = A^T + B^T$ and $(\alpha A)^T = \alpha A^T$.
 - (c) $S = \begin{bmatrix} a & b \\ c & -a \end{bmatrix}$ forms a subspace in $M_{2\times 2}$.
 - (d) Give a counter example to show that $det(A_1 + A_2) \neq 0$.
 - (e) $(a_1, 0, c_1), (0, b_2, c_2) \in S$.
 - (f) $(a_1, a_1, c_1), (a_2, a_2, c_2) \in W.$
- 3. Every subspace contains null vector and for the converse use the linearity of integration.
- 4. Take $g(x) = \alpha f_1(x) + \beta f_2(x)$ and show that g'(-1) = 3g(2).
- 5. (a) for $E = \alpha A + \beta B + \gamma C$, find α, β and γ .
 - (b) Take $p = \alpha p_1 + \beta p_2 + \gamma p_3$ and find α, β, γ .
 - (c) Take each vectors as $\alpha u + \beta v$ and solve.
- 6. Solve the expression $u_3 = \alpha u_1 + \beta u_2$ for some $\alpha, \beta \in \mathbb{R}$.
- 7. (a) Find the scalars $\alpha, \beta, \gamma, \delta$ such that $\alpha(v_1 v_2) + \beta(v_2 v_3) + \gamma(v_3 v_4) + \delta v_4 = av_1 + bv_2 + cv_3 + dv_4$ holds.
 - (b) Find the scalars α, β, γ such that $\alpha u_1 + \beta(u_1 + u_2) + \gamma(u_1 + u_2 + u_3) = au_1 + bu_2 + cu_3$ holds.
- 8. (a) Take $c_1(4, -4, 8, 0) + c_2(2, 2, 4, 0) + c_3(6, 0, 0, 2) + c_4(6, 3, -3, 0) = (0, 0, 0, 0)$ and $c_1 = c_2 = c_3 = c_4 = 0$ is the only solution.
 - (b) Follow the same step as (a) and then differentiate it with respect to x two times and find the values of scalars from these three equations.
 - (c) Follow the same step as (a).
 - (d) In each of the intervals [-1,0], [0,1], $f_1 = kf_2$ but in the interval [-1,1] we can not say that.
 - (e) Show that $c_1 = c_2 = 0$ is the only solution of $c_1(1+i) + c_2(i-i) = 0$ when $c_1, c_2 \in \mathbb{R}$. Then give an example of $c_1, c_2 \neq 0$ is a solution of the above equation when $c_1, c_2 \in \mathbb{C}$.
 - (f) For x = 2 we can have non-zero scalars.