

(Sudoku binaire)

- Introduction:

Pour ce projet, nous avons choisi de travailler sur le Takuzu qui est une variante du sudoku. Les règles sont donc assez similaires :

- 1. Chaque case contient un 0 ou un 1
- 2. On ne peut pas placer plus de deux chiffres identiques consécutifs horizontalement et verticalement
- 3. Chaque ligne et chaque colonne contiennent autant de 0 que de 1
- 4. Toutes les lignes et colonnes doivent être différentes les unes des autres.

Ainsi, la grille doit être remplie en respectant l'ensemble de ces conditions.

Voici ci-dessous, un exemple détaillé d'une partie sur une grille de taille 6x6 (avec la règle utilisée à chaque étape) :

source de cette version du jeu: https://www.kastete.fr/binero/les-grilles-de-binero

Modélisation en logique propositionnelle des règles du jeu

Grille de taille n (avec n pair)

P(i, j): La case à la ligne i et la colonne j vaut 1

1. Pas plus de deux chiffres identiques consécutifs horizontalement

On prend deux indices i et j tels que $1 \le i \le n$ et $2 \le j \le n-1$. Si, sur la ligne i, les cases d'indice j et j+1 ont la même valeur, alors les cases d'indice j-1 et j+2 ont la valeur opposée de la case d'indice j. On traduit cela en logique par :

$$(P(i,j) \Leftrightarrow P(i,j+1)) \Rightarrow (P(i,j) \Leftrightarrow \neg P(i,j-1)) \land (P(i,j) \Leftrightarrow \neg P(i,j+2))$$

2. Pas plus de deux chiffres identiques consécutifs verticalement

On prend deux indices i et j tels que $2 \le i \le n-1$ et $1 \le j \le n$.

Si, sur la colonne j, les cases d'indice i et i + 1 ont la même valeur, alors les cases d'indice i - 1 et i + 2 ont la valeur opposée de la case d'indice i. On traduit cela par :

$$(\mathsf{P}(\mathsf{i},\mathsf{j}) \Leftrightarrow \mathsf{P}(\mathsf{i+1},\mathsf{j})) \Rightarrow (\mathsf{P}(\mathsf{i},\mathsf{j}) \Leftrightarrow \neg \mathsf{P}(\mathsf{i-1},\mathsf{j})) \ \land \ (\mathsf{P}(\mathsf{i},\mathsf{j}) \Leftrightarrow \neg \mathsf{P}(\mathsf{i+2},\mathsf{j}))$$

3. Toutes les lignes sont différentes

On prend trois indices i1, i2 et k tels que $1 \le k \le n$, $1 \le i1 \le n$ et $1 \le i2 \le n$.

Si toutes les cases sur les lignes i1 et i2 sont identiques sauf pour les cases de la colonne k, alors les cases de la colonne k ont une valeur opposée. Cela se traduit par :

```
(P(i1, 1) \Leftrightarrow P(i2, 1)) \land (P(i1, 2) \Leftrightarrow P(i2, 2)) \land ... \land (P(i1, k-1) \Leftrightarrow P(i2, k-1)) \land (P(i1, k+1) \Leftrightarrow P(i2, k+1)) \land ... \land (P(i1, n) \Leftrightarrow P(i2, n)) \Rightarrow (P(i1, k) \Leftrightarrow \neg P(i2, k))
```

4. Toutes les colonnes sont différentes

On prend 3 indices j1, j2 et k tels que $1 \le k \le n$, $1 \le j1 \le n$ et $1 \le j2 \le n$.

Si toutes les cases des colonnes j1 et j2 sauf à la ligne k, alors les deux cases à la ligne k et aux colonnes j1 et j2 auront une valeur opposée. On traduit cela par :

$$(P(1, j1) \Leftrightarrow P(1, j2)) \land (P(2, j1) \Leftrightarrow P(2, j2)) \land ... \land (P(k-1, j1) \Leftrightarrow P(k-1, j2)) \land (P(k+1, j1) \Leftrightarrow P(k+1, j2)) \land ... \land (P(n, j1) \Leftrightarrow P(n, j2)) \Rightarrow (P(k, j1) \Leftrightarrow \neg P(k, j2))$$

5. Même nombre de 0 que de 1 sur une même ligne

Pour cette règle, il faut énumérer toutes les configurations de ligne ayant le même nombre de 0 que de 1. Pour trouver toutes ces configurations, on utilise l'algorithme suivant :

```
def enum(H, L):
if L == 0 or H > L:
    []
else:
    [1] + enum(H-1, L-1)
    [0] + enum(H, L-1)
```

Où L est la taille de la ligne et H le nombre de 1 que l'on veut sur cette ligne. On appellera toujours cet algorithme avec H = n/2 et L = n.

Chaque configuration est traduite en logique propositionnelle par une conjonction de n variables P(i, j). À titre d'exemple, la configuration [1, 0, 1, 0] se traduit par :

```
P(i, 1) \land \neg P(i, 2) \land P(i, 3) \land \neg P(i, 4)
```

On obtient avec cet algorithme k = n/2 parmi n configurations que l'on note $C_1, ..., C_k$. Avec ces configurations, la traduction en logique propositionnelle s'écrit :

```
\bigcup_{i=1}^{k} C_{i}
```

6. Même nombre de 0 que de 1 sur une même colonne

Cette règle se traduit de façon similaire à la règle précédente pour obtenir k = n/2 parmi n configurations C_1 jusqu'à C_k pour être de la forme :

- Modélisation en forme normale conjonctive

1. Pas plus de deux chiffres identiques consécutifs horizontalement

On transforme d'abord la règle en remplaçant les équivalences et les implications par des conjonctions, disjonctions. On obtient donc :

$$((\neg P(i, j) \lor \neg P(i, j+1)) \land (P(i, j) \lor P(i, j+1))) \lor ((\neg P(i, j) \lor \neg P(i, j-1)) \land (P(i, j-1) \lor P(i, j)) \land (\neg P(i, j) \lor \neg P(i, j+2)) \land (P(i, j+2) \lor P(i, j)))$$

Et en utilisant la distribution de la disjonction sur la conjonction, on obtient :

$$(\neg P(i, j) \lor \neg P(i, j+1) \lor \neg P(i, j-1)) \land (P(i, j) \lor P(i, j+1) \lor P(i, j-1)) \land (\neg P(i, j) \lor \neg P(i, j+1) \lor \neg P(i, j+2)) \land (P(i, j) \lor P(i, j+1) \lor P(i, j+2))$$

2. Pas plus de deux chiffres identiques consécutifs verticalement

On transforme d'abord la règle en remplaçant les équivalences et les implications par des conjonctions, disjonctions. On Obtient donc :

$$((\neg P(i, j) \land \neg P(i+1, j)) \land ((P(i, j) \land P(i+1, j))) \lor ((\neg P(i, j) \lor \neg P(i-1, j)) \land (P(i-1, j) \lor P(i, j)) \land (\neg P(i, j) \lor \neg P(i+2, j)) \land (P(i+2, j) \lor P(i, j)))$$

Et en utilisant la distribution de la disjonction sur la conjonction, on obtient :

$$(\neg P(i, j) \lor \neg P(i+1, j) \lor \neg P(i-1, j)) \land (P(i, j) \lor P(i+1, j) \lor P(i-1, j)) \land (\neg P(i, j) \lor \neg P(i+1, j) \lor \neg P(i+2, j)) \land (P(i, j) \lor P(i+1, j) \lor P(i+2, j))$$

3. Toutes les lignes sont différentes

L'egende:

```
A: P(i1, 1), B: P(i2, 1), C: P(i1, 2), D: P(i2, 2), E: P(i1, k), F: P(i2, k)
```

On raisonne par récurrence pour la construction de cette règle car on peut rajouter autant de cases égales qu'on veut respectivement sur les deux lignes à partir du cas de base (dans lequel les deux lignes sont déjà différentes), on aura toujours deux cases différentes. On commence donc avec n=2 et on construit petit à petit pour le n voulu (dans nos règles, un n pair).

```
n = 2 (cas de base):
```

4. Toutes les colonnes sont différentes

Légende:

A: P(1, j1), B: P(1, j2), C: P(2, j1), D: P(2, j2), E: P(k, j1), F: P(k, j2)On a exactement la même formule qu'au 3, mais pour une légende différente.

5. Même nombre de 0 que de 1 sur une même ligne et sur une même colonne

Pour traduire cette règle sous forme normale conjonctive, au lieu de prendre les k configurations ayant n/2 1 et n/2 0, on prend toutes les configurations ayant un nombre différent de 1 et de 0 et on fait la négation de la disjonction de toutes ces configurations. On a donc :

$$\neg \left(\bigcup_{h=1}^k \left(\bigcap_{i,j}^m P(i,j) \land \bigcap_{i',j'}^M \neg P(i',j')\right)\right) = \bigcap_{h=1}^k \left(\bigcup_{i,j}^m \neg P(i,j) \lor \bigcup_{i',j'}^M P(i',j')\right)$$

Qui est donc sous forme normale conjonctive.

On a $m \neq M$ et m + M = n.

Sachant que m représente le nombre de P(i,j), mais i,j ne vont pas forcément jusqu'à m : $1 \le i \le j \le m$.

De même pour M, i' et j' : $1 \le i' \le j' \le M$.