Problem 1

(a) $a \rightarrow b$: **No**, b can be 2, 3, 4 when a is one.

(b) $a \rightarrow c$: **Yes**, for every two a, c has the same value.

(c) $b \rightarrow a$: **Yes**, all records have b in different value.

(d) b \rightarrow c: **Yes**, the same reason.

(e) c \rightarrow a: **No**, a can be 1 or 2 for the same value of c.

(f) $c \rightarrow b$: **No**, b can be 2, 3, 4, 5 for the same value of c.

(g) ab \rightarrow c: **Yes**. Each combination of ab is different, b can be different too.

(h) ac \rightarrow b: **No**. For a=1 and c=2, b can be 2, 3 or 4.

(i) bc \rightarrow a: **Yes**. Each combination of bc is different, a can be different too.

Problem 2

ac, bc, dc and ec are the candidate keys. Because each of them has an attribute closure that includes all the fields in R:

For ac:

$$a \rightarrow b \rightarrow d$$

 $d, c \rightarrow e$

For bc:

$$b \to d$$
$$d, c \to e \to a$$

For dc:

$$d, c \rightarrow e \rightarrow a \rightarrow b$$

For ec:

$$e \rightarrow a \rightarrow b \rightarrow d$$

And removing any attribute from each key will not get the same complete closure.

Problem 3

(a) **af** is the candidate key, this can be illustrated by calculating its attribute closure:

$$a \rightarrow bcd$$

 $ad \rightarrow e$
 $f \rightarrow gh$

We can see $\{af\} \cup \{bcd\} \cup \{e\} \cup \{gh\} = \{abcdefgh\}$. And removing any attribute from $\{af\}$ will not have a compete closure set.

(b) **efg** \rightarrow **h** can be removed. As we can see from above, FD: efg \rightarrow h is not used to calculate the attribute closure of $\{af\}$. And we can still get the complete set of fields of R.

Problem 4

(a) **abe** is the candidate key. Its attribute closure:

$$a \to c$$

$$b \to d$$

$$de \to f$$

So $\{abe\} \cup \{c\} \cup \{d\} \cup \{f\} = \{abcdef\}$ and we cannot get the same attribute closure after we remove any attribute from this super key.

(b) We need to add e.g. $\mathbf{a} \to \mathbf{e}$ as the new FD to let a be a candidate key. Now we have:

$$a \to bec$$

$$b \to d$$

$$de \to f$$

So $\{a\} \cup \{bec\} \cup \{d\} \cup \{f\} = \{abcdef\}$ and we cannot get the same attribute closure after we remove any attribute from this super key.

Problem 5

- (a) all nontrivial FDs:
 - a → b
 - c → b
 - ac → bc
 - ac \rightarrow b
 - ac → c

(b) First identify all the candidate keys, here we have ac as the only candidate key. Therefore, this instance of R is **not** in BCNF because of both $\mathbf{a} \to \mathbf{b}$ and $\mathbf{c} \to \mathbf{b}$ violate BCNF. (neither a nor c is not super key)

Use FD: $a \rightarrow b$ that violates BCNF of R(a, c, b), we now have:

$$R_0(a,c)$$

$$R_1(a,b)$$

Which is in BCNF. Therefore we have it as one valid decomposition.

Problem 6

- (a) Candidate keys: ba, bc and bde.
- (b) For R(a, b, c, d, e), we have two FDs from above that violate BCNF:
 - cd → e
 - de → a

Because left side of them are not super key.

(c) Use FD: $cd \rightarrow e$, we now have:

$$R_0(a,b,c,d)$$

$$R_1(c,d,e)$$

Use FD: bc \rightarrow d that violates BCNF in R_0 , we have R_0 decomposed:

$$R_2(a,b,c)$$

$$R_3(b,c,d)$$

So one possible decomposition would be:

$$R_1(c,d,e)$$

$$R_2(a,b,c)$$

$$R_3(b, c, d)$$

On the other hand, use FD: de → a, R is decomposed into:

$$R_0(\underline{b,c,d,e})$$

$$R_1(\underline{d,e,a})$$

Use FD: dc \rightarrow e that violates BCNF in R_0 , decompose R_0 into:

$$R_2(b, c, d)$$

$$R_3(d,c,e)$$

Thus another possible decomposition is:

$$R_1(d,e,a)$$

$$R_2(b,c,d)$$

$$R_3(\underline{d,c,e})$$

Problem 7

- (a) The nontrivial FDs that capture the assumptions above:
 - s_ID, course_id, sec_id, semester, year → grade
 - course_id, sec_id, semester, year → i_ID
 - course_id, sec_id, semester, year → building, room_no
 - course id, sec id, semester, year → time slot id
- (b) All candidate keys: s ID, course id, sec id, semester, year (the only one).
- (c) No, one instance of FD that violates BCNF is:

course_id, sec_id, semester, year → i_ID

Where course_id, sec_id, semester, year is not the super key in takesSecTaughtBy.

Given: course_id, sec_id, semester, year → i_ID

takesSecTaughtBy can be decomposed into:

- R0(s_ID, course_id, sec_id, semester, year, building, room_no, time_slot_id, grade)
 R1(<u>course_id, sec_id, semester</u>, i_ID)

Given: course_id, sec_id, semester, year → building, room_no

R0 can be decomposed into:

- R2(s_ID, course_id, sec_id, semester, year, time_slot_id, grade)
- R3(<u>course_id, sec_id, semester</u>, building, room_no)

Again, given: course_id, sec_id, semester, year → time_slot_id

R2 can be decomposed into:

- R4(<u>s_ID</u>, course_id, sec_id, semester, year, grade)
 R5(<u>course_id</u>, sec_id, semester, time_slot_id)

Thus one possible decomposition is:

- R1(<u>course_id</u>, <u>sec_id</u>, <u>semester</u>, i_ID)
- R3(<u>course_id</u>, <u>sec_id</u>, <u>semester</u>, building, room_no)
- R4(<u>s_ID</u>, <u>course_id</u>, <u>sec_id</u>, <u>semester</u>, <u>year</u>, grade)
- R5(<u>course_id</u>, <u>sec_id</u>, <u>semester</u>, time_slot_id)
- (d) Relations not in BCNF may suffer from data redundancy, which can also be reflected by:

Update anomalies:

For example, if you want to change instructor for a given course section, you will need to update every records that has that section, because of redundancy.

Deletion anomalies:

If we want delete all the student information from a given course section, we will lose all the information associated with that course too, including building, room no and time slot id etc.

Insertion anomalies:

When a course section needed to be inserted but no student has enrolled yet. In this case, there is no way to insert a record without knowing student ID.

- (e) Based on the requirement, the appended FDs are:
 - s ID, course id, sec id, semester, year → grade
 - course_id, sec_id, semester, year → i_ID (*)
 - course_id, sec_id, semester, year → building, room_no
 - course_id, sec_id, semester, year → time_slot_id
 - course_id, s_ID → i_ID (*)
 - i_ID, s_ID → course_id
 - course_id → i_ID

Simplify the FDs above (by deleting those marked by star), we get:

- s_ID, course_id, sec_id, semester, year → grade
- course id, sec id, semester, year → building, room no
- course_id, sec_id, semester, year → time_slot_id
- i ID, s ID → course id
- course_id → i_ID
- (f) Two candidate keys: {course_id, sec_id, semester, year, s_ID} and {i_ID, sec_id, semester, year, s_ID}.
- (g) Use FD: course_id \rightarrow i_ID, since course_id is not super key in: takesSecTaughtBy(i_ID, s_ID, course_id, sec_id, semester, year, building, room_no, time_slot_id, grade)

We know takesSecTaughtBy is **not in BCNF**.

Now decompose it, use course id \rightarrow i ID:

- R0(<u>s_ID, course_id, sec_id, semester, year, building, room_no, time_slot_id, grade</u>)
- R1(course_id, i_ID)

Similarly, we decompose R0 into:

- R2(<u>course_id</u>, <u>sec_id</u>, <u>semester</u>, <u>year</u>, time_slot_id)
- R3(<u>course id, sec id, semester, year</u>, building, room_no)
- R4(<u>s ID, course id, sec id, semester, year, grade</u>)

Yields the decomposition in BCNF:

- R1(<u>course_id</u>, i ID)
- R2(course id, sec id, semester, year, time slot id)
- R3(<u>course_id</u>, <u>sec_id</u>, <u>semester</u>, <u>year</u>, building, room_no)
- R4(<u>s ID, course id, sec id, semester, year, grade</u>)

Problem 8

(a) It is **neither BCNF nor 3NF**. Because b is not super key and c is not part of super key (the only candidate key is a in this case).

One good 3NF decomposition would be:

- R1(a, b)
- R2(<u>b</u>, c)

It is in BCNF thus in 3NF, it is lossless because $R_1 \cap R_2 = \{b\}$ which is the primary key of R2. And it is dependency preserving because the two FDs are all satisfied apparently.

(b) First the candidate keys are: ab, cb and db.

Thus it is **not in BCNF** since either c or d is not super key. But it is **in 3NF** because both c, d and a are part of key.

(c) The only candidate key is *ab* in this case, so R is **neither in 3NF nor BCNF**. Because b is not a super key and c or d is not part of key.

One good 3NF decomposition would be:

- R1(<u>a, b</u>)
- R2(b, c, d)

It is in BCNF thus in 3NF, it is lossless because $R_1 \cap R_2 = \{b\}$ which is the primary key of R2. And it is dependency preserving because the two FDs are all satisfied apparently.

(d) Here candidate keys are: *ab*, *ad*, *bc* and *cd*. For all these four FDs, their right sides are all candidate keys, therefore the relation is in BCNF thus also in 3NF.