Estudio computacional de la fisión de singuletes en carotenoides mediante RAS-2SF

Andres E. Perez-Hernandez^{\alpha}, J. Oscar Jimenez-Halla ^{\alpha}, Joaquin Barroso Flores* 15

^α División de Ciencias Naturales y Exactas, Universidad de Guanajuato. ^βInstituto de Química, Universidad Nacional Autónoma de México – CCIQS UAMex-UNAM

Introducción

Los carotenoides son pigmentos que se encuentran abundantemente en la naturaleza y aportan características como el color y fotoprotección en distintos organismos fotosintéticos.

Fig. 1 Estructura base de los carotenos

La formación de dos estados tripletes a partir de un estado singulete excitado (fisión de singuletes) es bien conocida de manera experimental.

Fig. 2 Esquema de la FS en dímero de carotenoides.

A pesar de esto, la FS rara vez ha sido estudiada desde un punto de vista **dimérico** en carotenoides.

mecanismo de alta eficiencia, se obtiene doble excitación (TT), cada una, con la mitad de la energía de **excitación inicial (S)**.

La propósito de este estudio es investigar computacionalmente la transferencia de carga en sistemas de carotenoides por el mecanismo de fisión de singuletes

Metodología

☐ Software: Q-Chem 5.4, Gaussian 16/Gauss-View, ChemCraft.

Método semi empírico para pre-optimización □ PM6

Optimización de la geometría: PBE0//6-31G(d) □ DFT

Restricted Active Space – double spin flip // NTOs □ RAS-2SF

Espacio activo: 4 holes, 4 particles | No. estados = 10

Modelo de solvatación: PCM=n-hex, EtOH

Resultados

Geometrías de los sistemas estudiados

Fig. 3 Conjuntos: A. sistema AB-BA rotado (5 Å) B. sistema AA-BB desplazado C. sistema AB-BA rotado (3 Å) D. sistema AB-BA desplazado.

Zeaxantina-Zeaxantina (Zeax-Zeax)

Fig. 4 Izquierda a derecha: A) Distribuciones HONTO y LUNTO de los estados singulete y triplete. B) Diagrama de Jablonski en el sistema dimerico Zeax-Zeax.

Luteína-Violaxantina (Lut-Vio)

Fig. 5 Derecha a izquierda: A) Distribuciones HONTO y LUNTO de los estados singulete y triplete. B) Diagrama de Jablonski en el sistema dimerico Lut-Vio.

Fig. 6 Valores de Eb, $||\gamma||$, ΔE y V en los sistemas de carotenoides

Sistema	Eb (eV)	ΙΙγΙΙ	$\Delta E(eV)$	V
Zeax-Zeax	0	0.983	0.5282	1.861
Lut-Vio	-	0.982	-	-
6ET5 (B-Chl) ^{ref(1)}	0.13	0.357	2.26	0.16

Discusión

Observaciones

- sistema Luteína-Violaxantina no parece presentar FS.
- > Las energías de excitaciones son mayores en comparación a sistemas como B-Chl/B-Chl.
- > Experimentalmente la FS se lleva a cabo en agregados.

Trabajo a futuro

- Realizar el estudio en todas las **geometrías** y comparar descriptores de la FS.
- Agregar nuevos sistemas de carotenoides.
- Completar estudio de los Natural Transition Orbitals (NTOs)

Conclusiones

* Hay una alta probabilidad de que se dé la fisión de singuletes en el sistema Zeax-Zeax, ya que muestra un acoplamiento mayor a la referencia y el análisis de NTOs muestra la posible transición electrónica entre moléculas. En cuanto a Lut-Vio no hay mecanismo presente que pueda dar paso a la FS.

El entendimiento de este mecanismo de transferencia energético nos puede dar una mejor idea de la relación entre pigmentos en el contexto de la fisión de singuletes y de su estructura electrónica.

Agradecimientos

Este proyecto no hubiera sido posible sin el apoyo de DGTIC – UNAM por otorgar acceso a Miztli y al CCIQS por proveer el espacio para realizarlo.

Referencias:

- (1) J. Electronic Structure Effects Related to the Origin of the Remarkable Near-Infrared Absorption of Blastochloris Viridis' Light Harvesting 1-Reaction
- Center Complex. J. Chem. Theory Comput. 2022, 18 (7), 4555-4564. (2) Restricted Active Space Spin-Flip Configuration Interaction Approach: Theory, Implementation and Examples. Phys. Chem. Chem. Phys. 2009, 11
- (3) Mechanism of Singlet Fission in Carotenoids from a Polyene Model System. J. Phys. Chem. Lett. 2022, 13 (29), 6800–6805. (4) Ultrafast Dynamics of Carotenoid Excited States-from Solution to Natural and Artificial Systems. Chem. Rev. 2004, 104 (4), 2021–2071.

