Koneoppimisesta lyhyesti

Kai Hakala & Filip Ginter Turun yliopisto, Informaatioteknologian laitos Syksy 2015

Koneoppimisesta lyhyesti

- Koneoppiminen: algoritmeja, jotka mukauttavat toimintaansa (koulutus)datasta oppimansa perusteella
- vrt. perinteiset algoritmit, jotka ovat joukko ennalta määriteltyjä sääntöjä
- Tavoitteena, että koneoppimisalgoritmi toimii paremmin opittuaan datasta jotakin
- Menetelmät on siis koulutettava ennen kuin niitä voidaan käyttää
- Koneoppimismenetelmiä useita, soveltuvat vain tietyn tyyppisiin ongelmiin.

Motivaatio

- Vaikka luonnollisilla kielillä on yleinen rakenne, ne sisältät usein poikkeuksia ja poikkeuksen poikkeuksia
- Kielen kuvaaminen manuaalisesti luoduilla säännöillä äärimmäisen työlästä, eikä kaikkia sääntöjä edes tunneta
- Lähes kaikki modernit NLP-menetelmät perustuvat koneoppimiseen

Koneoppimisesta lyhyesti

- Koneoppimisen tavoitteena usein löytää hypoteesi (käytännössä jokin matemaattinen funktio), joka kuvaa koulutusdatan säännönmukaisuuksia
- Toivottavaa on toki, että koulutusdata edustaa sen taustalla olevaa ilmiötä hyvin
- Valittu koneoppimismenetelmä asettaa hypoteesille tiettyjä reunaehtoja
- Tuotetun hypoteesin avulla voidaan joko analysoida koulutusdatan taustalla olevaa ilmiötä tai ennustaa sen käyttäytymistä uusissa tapauksissa
- Tällä kurssilla ollaan kiinnostuneita nimenomaan ennustamisesta

Ohjattu ja ohjaamaton oppiminen

- Kaksi yleisintä koneoppimissuuntausta ovat ohjattu ja ohjaamaton oppiminen (engl. supervised/unsupervised learning).
- Ohjatussa oppimisessa jokaisella koulutusdatan esimerkillä on jokin entuudestaan tunnettu leima (luokka/lukuarvo tms.)
- Koulutusdata on siis muotoa $[(x_1, y_1), (x_2, y_2), ...]$
- Koneoppimismenetelmän tavoitteena on oppia ennustamaan jokaiselle esimerkille kuuluva leima
- ts. jokainen syötearvo on sovitettava tunnettuun tulosteeseen.
- Yleisimpiä ohjattuja ongelmia ovat luokittelu ja regressio

Ohjattu ja ohjaamaton oppiminen

- Ohjaamattomassa oppimisessa koulutusdata ei sisällä entuudestaan tunnettuja leimoja
- Data: $[x_1, x_2, x_3, ...]$
- Tällöin koneoppimismenetelmien tavoitteena on löytää datasta jonkinlainen rakenne tai säännönmukaisuus
- Yleisin ohjaamaton oppimisongelma on klusterointi, jossa tehtävänä on jakaa koulutusdata alijoukkoihin
- Klusterointi on siis kuten luokittelu, mutta luokkia ei tunneta entuudestaan ja koneoppimismenetelmälle annetaan "vapaat kädet" ryhmien muodostamiseen

Regressio ja luokittelu

- Regressio ja luokittelu yleisimpiä ohjattuja ongelmia
- Regressiossa jokaiselle esimerkille pyritään ennustamaan jokin reaalilukuarvo
- Luokittelussa ennustetut arvot ovat puolestaan diskreettejä luokkia
- Yksinkertaisimmillaan luokkia on vain kaksi (binääriluokittelu)
- Koska koulutusdatan leimat ovat entuudestaan tunnettuja, voidaan koneoppimismenetelmän löytämän hypoteesin hyvyyttä arvioida laskemalla ennustettujen leimojen ja tunnettujen leimojen eroavuus (kustannusfunktio, cost function) ja täten valita hypoteesi, joka sopii parhaiten dataan

Moniluokkaluokittelu

- Multiclass classification: luokkia enemmän kuin kaksi, mutta valitaan vain yksi per esimerkki
- Multilabel classification: yksi esimerkki voi kuulua useaan luokkaan
- Molemmat ongelmat voidaan ratkaista kouluttamalla useita luokittelijoita, yksi jokaiselle luokalle (1-vs-rest, binary relevance)
- Jos halutaan vain yksi luokka, valitaan luokittelija, jolla suurin "varmuus" (confidence)
- Jos halutaan useita luokkia, hyväksytään jokaisen luokittelijan ennuste
- Parempiakin menetelmiä toki olemassa (ottavat huomioon luokkien väliset riippuvuudet jne.)

Sekvenssiluokittelu

- Sekvenssiluokittelussa koneoppimismenetelmä ei tarkastele yksittäisiä esimerkkejä, vaan esimerkkien oletetaan olevan riippuvaisia toisistaan
- Tällöin menetelmien on tarkasteltava useiden esimerkkien muodostamaa kokonaisuutta, tehdäkseen jokaista esimerkkiä koskevat päätökset
- Koska sanat ovat kirjainsekvenssejä ja virkkeet sanasekvenssejä, ovat tällaiset menetelmät hyvin yleisiä luonnollisen kielen käsittelyssä
- Tällä kurssilla ei tarkastella näiden menetelmien toteutuksia syvällisesti, mutta menetelmiin törmätään myöhemmillä luennoilla
- Esim. viittako sana "Washington" henkilöön vaiko osavaltioon? Entä jos edellinen sana oli "George"?

Esimerkkejä

- Regressio: Arvioi asunnon hinta, kun sen koko ja etäisyys Turun keskustasta tunnetaan
- Luokittelu: Päättele, mihin sanaluokkaan annettu sana kuuluu (sanaluokat entuudestaan määritelty)
- Klusterointi: Jaa joukko sanoja neljään alijoukkoon niiden samankaltaisuuteen perustuen (entuudestaan ei tietoa, mitkä nämä neljä joukkoa ovat)

Piirteet

- Tähän saakka ollaan puhuttu koulutusdatan esimerkeistä määrittelemättä niitä sen tarkemmin
- Käytännössä jokainen esimerkki esitetään sen ominaisuuksia kuvaavilla numeerisilla arvoilla, joita kutsutaan piirteiksi (engl. feature)
- Tilastotieteessä näitä kutsutaan riippumattomiksi tai selittäviksi muuttujiksi (engl. predictor)
- Jokainen esimerkki on siis joukko piirteitä, jotka esitetään piirrevektorina x
- Tällöin jokainen esimerkki voidaan esittää jonakin piirreavaruuden pisteenä $x = [x_1, x_2, x_3, ...]$
- (Älä sekoita aiempien kalvojen annotaatioon, jossa x_1 ja x_2 olivat erilliset esimerkit)
- Joukko esimerkkejä on luonnollista esittää matriisina

Piirteet

- Joskus käyttämämme data on valmiiksi piirre-esityksenä
- NLP:ssä piirteet on yleensä muodostettava itse
- Tärkein osa toimivaa ratkaisua onkin usein hyvin valitut piirteet, valitulla koneoppimismenetelmällä on pienempi vaikutus
- Koodarin tehtävänä siis rakentaa järjestelmä, joka tuottaa järkeviä piirteitä
- Nykyisin trendikäs "Deep learning" pyrkii pääsemään eroon manuaalisesti luoduista piirteistä

Piirteet

- Piirteet on esitettävä numeerisesti, mutta tämä ei estä kategoristen ominaisuuksien kuvaamista
- Totuusarvot voidaan esittää numeerisesti 0/1
- Kategoriset ominaisuudet useana totuusarvona
- Esim. auton tyyppi: pakettiauto, farmari, *urheiluauto* ⇒ pakettiauto=0, farmari=0, urheiluauto=1
- Huom: jos tuotettua hypoteesia halutaan tulkita, yhden tyypin tulisi olla referenssinä ([0,0,0] \Rightarrow ei mikään auto?)

Lineaarinen regressio

- Yksinkertainen regressiomalli, joka sovittaa koulutusdataan hypertason
- Hypoteesi on tällöin muotoa $h(x) = \theta_0 + \theta_1 * x_1 + \theta_2 * x_2...$
- x on esimerkkimme piirre-vektori
- θ sisältää hypoteesin parametrit, jotka on valittava oikein oppimisvaiheessa, jotta $h(x) \approx y$ kaikilla koulutusdatan (x,y)-pareilla

Lineaarinen regressio

Kuva: By Sewaqu (Own work) [Public domain], via Wikimedia Commons

Lineaarinen regressio

- Kun jokin koulutusdatan esimerkki x on valittu, voidaan hypoteesin oikeellisuutta verrata todelliseen arvoon y
- Usein käytetään ennustetun ja todellisen arvon erotuksen neliötä
- Kustannusfunktio arvioi hypoteesin hyvyyttä koko koulutusdatalle, esim. erotusten neliöiden keskiarvolla (engl. mean squared errors, MSE)
- Täten kustannusfunktioksi saadaan $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} (y_i h_{\theta}(x_i))^2$
- Nyt varsinaisen oppimisalgoritmin tehtävänä on minimoida tämä kustannus, ts. löytää parametrin θ arvot, jotka minimoivat sen

Gradient descent

- Gradient descent on yleinen tapa etsiä funktion minimi (tarkemmin sanottuna muuttujien arvot, jotka tuottavat funktion minimin)
- Menetelmässä lasketaan funktion gradientti (osittaisderivaatat) jossakin aloituspisteessä ja "astutaan" pieni askel gradientin vastaiseen suuntaan (tästä nimitys "descent")
- (Edellytyksenä siis on, että kyseinen funktio on differentoituva)
- Tätä jatketaan iteratiivisesti, kunnes päädytään lokaaliin minimiin (tai jokin muu lopetuskriteeri täyttyy)
- Mikäli minimoitava funktio on konveksi, löydetty lokaali minimi on myös globaali minimi
- Menetelmä ei takaa globaalin minimin löytämistä, mikäli tarkasteltu funktio ei ole konveksi

Gradient descent

- Matemaattisempi määritelmä kustannusfunktion tapauksessa:
- $\bullet_i := \theta_i \alpha \frac{\partial}{\partial \theta_i} J(\theta)$
- Tämä päivitys tehdään jokaiselle θ_i samanaikaisesti, iteroidaan kunnes minimi löydetty!
- lacktriangleq lpha säätelee askeleen suuruutta (engl. learning rate tai step size)
- Liian pieni α tekee menetelmästä hitaan ja liian suuri estää minimin löytämisen (algoritmi loikkaa minimin yli puolelta toiselle)
- Lineaarisen regression kustannusfunktio on konveksi ja sen osittaisderivaatat ovat melko yksinkertaisia, mutta jätetään niiden laskeminen kuitenkin tämän kurssin ulkopuolelle

- Logistisen regression hypoteesi on muotoa $h(x) = \frac{1}{1 + e^{-h_{linear}(x)}}$
- Kuuluu yleistettyjen lineaaristen mallien joukkoon
- Nimestään huolimatta käytetään yleensä luokitteluun
- Logistinen funktio rajoittaa hypoteesin arvot välille (0,1), miksi?
- Hypoteesi tulkitaan todennäköisyytenä, että y=1

- Esim. $h(x) = 0.7 \Rightarrow 70\%$ todennäköisyys että y = 1 (30% että y=0)
- Jos h(x) > 0.5, ennustetaan luokka 1
- Miksei lineaarinen regressio toimi luokittelussa, jos asetetaan samanlainen raja-arvo?

Kuva: By Michaelg2015 (Own work) [CC BY-SA 4.0 (http://creativecommons.org/licenses/by-sa/4.0)]

- Logistisen regression kanssa ei ole järkevää käyttää samaa kustannusfunktiota kuin lineaarisssa regressiossa, miksi?
- Sen sijaan $J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} (y_i * log(h_{\theta}(x_i)) + (1 y_i) * log(1 h_{\theta}(x_i)))$
- Muistetaan, että kyseessä on luokittelu, joten y on aina joko 1 tai 0
- lacktriangle Täten funktion alkuosa käsittelee tapauksia, jossa y = 1, ja loppuosa tapauksia, jossa y = 0
- Kustannus on konveksi ja voidaan minimoida Gradient Descent -menetelmällä

Ylisovittaminen

- Kuvitellaan, että meillä on lineaarisen mallin sijaan monimutkainen polynomiaalinen malli, ts. sovitamme koulutusdataan korkeamman asteen polynomin
- Arvioidaan lineaarisen regression tavoin hypoteesin virhettä kustannusfunktiolla ja minimoidaan se
- On mahdollista, että oppimisalgoritmimme tuottaa täysin virheettömän hypoteesin, mutta sillä tehdyt ennusteet ovat käyttökelvottomia. Miksi?

Ylisovittaminen

Kuva: By Tomaso Poggio [Attribution], via Wikimedia Commons

Ylisovittaminen

- On aina mahdollista tuottaa niin monimutkaisia hypoteeseja, että ne selittävät minkä tahansa datan
- Mikäli tällainen malli ei kuitenkaan pysty tuottamaan järkeviä ennustuksia koulutusdatan ulkopuolella, se on ylisovitettu (engl. overfitting) koulutusdataan
- Toisin sanoen oppimisalgoritmi "oppii ulkoa" koulutusesimerkit, muttei osaa yleistää tätä tietoa muuhun dataan
- Jotta tältä vältyttäisiin on syytä valita yksinkertaisin hypoteesi, joka selittää koulutusdatan halutulla tasolla.

Regularisointi

- Yksi tapa välttää ylisovittamista on lisätä kustannusfunktioon termi, joka mittaa hypoteesin kompleksisuutta.
- Tätä kutsutaan regularisoinniksi (engl. regularization)
- Esim. lineaarisessa regressiossa $J(\theta) = \frac{1}{m} \left(\sum_{i=1}^{m} (y_i h_{\theta}(x_i))^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right)$
- Tässä λ on regularisointiparametri, joka sääteree regularisoinnin määrää
- Liian voimakas regularisointi yksinkertaistaa hypoteesia liikaa, jolloin malli alisovittuu (engl. underfitting)

Regularisointi

- Miten siis valita sopiva λ ?
- Mikäli dataa on riittävästi tarjolla, on se tapana jakaa kolmeen osaan:
 - Ensimmäinen osa käytetään kouluttamiseen (train)
 - Toinen osa regularisointiparametrin validointiin (devel)
 - Kolmas osa varsinaiseen ennusteiden arviointiin (test)

- lacktriangle Tarkoituksena on kouluttaa useita hypoteeseja eri λ :n arvoilla koulutusdataa käyttäen
- Jokaisen hypoteesin suorituskyky evaluoidaan devel-datalla ja valitaan hypoteesi, joka suoriutuu ennustuksista parhaiten
- Tehdään varsinaiset test-datan ennusteet tällä mallilla ja evaluoidaan ne
- devel- ja test-datajoukot ovat erilliset, sillä hypoteesi voi ylisovittua myös devel-dataan

Ristiinvalidointi

- Joskus dataa ei ole riittävästi, jotta voisimme jakaa sen erillisiin train- ja devel-joukkoihin
- Tällöin regularisointiparametri voidaan valita ristiinvalidointimenetelmällä (engl. cross-validation)
- Ideana on jakaa koulutusdata n:ään osaan, joista n-1:tä käytetään kouluttamiseen ja jäljelle jäänyttä validointiin
- Tämä toistetaan n kertaa, aina eri validointiosalla ja lasketaan näistä esim. keskiarvo
- Yleisimpiä 10-fold CV (n=10), leave-one-out CV (LOOCV, n=esimerkkien määrä)
- Ongelma: koneoppimismenetelmä koulutettava n kertaa, mikä voi olla laskennallisesti kallista

- Kustannusfunktiot yleensä valittu siten, että ne voidaan optimoida nopeasti
- Eivät kuitenkaan aina parhaita menetelmän evaluointiin todellisessa tehtävässä
- devel- ja test-datan kanssa käytetään yleensä jotakin muuta metriikkaa, joka soveltuu paremmin kyseiseen sovellukseen

- Accuracy: Oikeellisten päätösten suhteellinen määrä luokittelussa
- Ongelma: mikäli luokkien jakauma ei ole tasainen, on accuracy vaikeasti tulkittavissa
- Esimerkki: Ennustetaan onko henkilö miljonääri
 - Suomessa 5M asukasta ja 25K miljonääriä
 - Ennustamalla aina "Henkilö ei ole miljonääri" luokittelija vastaa oikein 99,5% tapauksista

- Parempi metriikka luokittelulle on F-score, jonka määrittelyyn tarvitaan käsitteet precision ja recall
- Ajatellaan jälleen binääriluokittelua, jossa olemme kiinnostuneet positiivisesta luokasta (esim. "henkilö on miljonääri")
- Nyt:
- Precision = True Positives / (True Positives + False Positives)
- **Recall** = True Positives / (True Positives + False Negatives)
- Precision: Miten suuri osuus luokittelijan positiivisista ennustuksista on tosia
- **Recall**: Miten suuren osuuden testijoukossa olleista positiivisista esimerkeistä luokittelija tunnisti
- On helppo luoda menetelmä, jonka joko precision- tai recall-arvo on korkea (muttei molemmat)

- F-score: precision- ja recall-arvojen harmoninen keskiarvo
- F-score = 2*precision*recall/(precision+recall)
- Harmoninen keskiarvo painottaa aina pienempää arvoa
- ⇒ Korkean F-scoren saavutetaan ainoastaan, kun sekä precision että recall ovat korkeita

- Palataan takaisin miljonääri-esimerkkiin
- Kuvitellaan, että luokittelijamme on tehnyt ennusteet koko Suomen väestölle
- Luokittelija on tunnistanut 20000 miljonääriä, 5000 on jäänyt havaitsematta, ja 30000 ei-miljonääriä on virheellisesti luokiteltu miljonääreiksi
- ⇒ TP=20000, FP=30000, FN=5000
- Precision = 20000/(20000 + 30000) = 0.4
- Arr Recall = 20000/(20000 + 5000) = 0.8
- F-score = $2 * 0.4 * 0.8/(0.4 + 0.8) \approx 0.53$

- Kun luokkia on enemmän kuin kaksi, F-scoresta voidaan laskea keskiarvo (usealla eri tavalla)
- Macro-averaged F-score: Lasketaan Precision ja Recall jokaiselle luokalle erikseen ja otetaan näiden aritmeettiset keskiarvot. Sen jälkeen näistä harmoninen keskiarvo.
- Jokainen luokka on tällöin keskiarvossa yhtä tärkeä, riippumatta niiden todellisesta jakaumasta
- Micro-averaged F-score: Lasketaan F-score kuten binääriluokittelussa, mutta kaikki positiiviset esimerkit luokasta riippumatta samalla kertaa
- Tällöin luokat, joilla on enemmän esiintymiä testijoukossa painottuvat enemmän
- Jälkimmäinen tapa yleisempi

Piirteiden arvoasteikoista

- Jotkin koneoppimismenetelmät ovat herkkiä piirteiden arvoasteikoiden vaihtelulle (esim. SVM)
- Eri piirteiden arvot kannattaa tästä syystä pakottaa samalle arvoasteikolle
- Yksinkertaisinta lienee piirteiden skaalaaminen välille [0, 1]
- Vaihtoehtoisesti piirre voidaan standardoida keskiarvoon 0 ja keskihajontaan 1
- Tällä kurssilla näitä saattaa tarvita, mikäli käyttää esim. totuusarvopiirteitä ja lukumääräpiirteitä samassa luokittelijassa

Tukivektorikoneet

- Yleensä luokitteluun käytetty menetelmä, jonka tarkempi kuvaus jätetään tämän kurssin ulkopuolelle
- Lineaarisen tukivektorikoneen (engl. support vector machine, SVM) kustannusfunktio ei poikkea suuresti logistisesta regressiosta (hieman yksinkertaisempi)
- Yrittää jakaa koulutusdatan hypertasolla, jonka marginaali koulutusdatan pisteisiin on mahdollisimman suuri

Lineaarinen tukivektorikone

Kuva: By User:ZackWeinberg, based on PNG version by User:Cyc [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons

Tukivektorikoneet

- Usein formalisoitu siten, että regularisointiparametri (C) onkin varsinaisen virhetermin kerroin, ei regularisointitermin kerroin
- ⇒ pieni C:n arvo vastaa voimakasta regularisointia
- Käytetään tällä kurssilla mustina laatikkoina
- Vaikka SVM on lineaarinen malli, voidaan sillä tuottaa epälineaarisia hypoteeseja "ytimien" (engl. kernel) avulla
- Huom: kerneleillä on yleensä omia hyperparametreja, jotka on asetettava sopiviksi regularisointiparametrin lisäksi, jotta yli/alisovittamiselta vältytään.

Kernelimenetelmä

Kuva: By Kkddkkdd (Own work) [CC BY-SA 4.0 (http://creativecommons.org/licenses/by-sa/4.0)]

- Koneoppimiseen on tarjolla useita työkaluja ja ohjelmointikirjastoja
- Kattavin Pythonille lienee Scikit-learn: http://scikit-learn.org/stable/
- Sisältää useita koneoppimisalgoritmeja, joita voidaan käyttää mustina laatikkoina
- Sisältää paljon työkaluja evaluointiin, datan esikäsittelyyn jne.
- Myös valmiita aineistoja menetelmien kokeiluun: http://scikit-learn.org/stable/datasets/
- Dokumentoitu kattavasti ja oppikirjamaisesti

Luokittelijan kouluttaminen:

```
from sklearn import svm
```

Scikit tarjoaa myös kattavan valikoiman evaluointimetriikoita: http://scikit-learn.org/stable/modules/model_ evaluation.html

```
from sklearn.metrics import f1_score

validation_y_pred = clf.predict(validation_X)
f1_score(validation_y_true, validation_y_pred)
```

Datan pilkkominen ja ristiinvalidointi: http://scikit-learn.org/stable/modules/cross_validation.html

Jos vaikuttaa siltä, että tuottamanne piirteet vaativat skaalausta: http://scikit-learn.org/stable/modules/ preprocessing.html

- Esitetyissä esimerkeissä on piirteitä ollut vain pari
- NLP:ssä käytetään usein esim. dokumentissa esiintyvien uniikkien sanojen lukumääriä jne.
- Tällöin piirteiden lukumäärä voi kasvaa satoihin tuhansiin, mutta suurin osa niistä on nollia
- Nollien tallentaminen listaan/vektoriin/matriisiin syö tuhottomasti muistia
- Kannattaa siis yleensä käyttää "harvoja" (engl. sparse) tietorakenteita

- Esim harvat matriisit scipy-kirjastosta: http://docs.scipy.org/doc/scipy/reference/sparse.html
- Olettaa, että jokainen matriisin lukuarvo, jota ei eksplisiittisesti mainittu on 0
- Scikit-learnin kanssa on myös helppo käyttää Pythonin dict-olioita, jotka voidaan konvertoida matriiseiksi valmiilla apufunktiolla:

http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.DictVectorizer.html

- Mikäli mustat laatikot eivät riitä, kannattaa tutustua Theano-kirjastoon: http://deeplearning.net/software/theano/
- Theano mahdollistaa matemaattisten lausekkeiden esittämisen symbolisesti
- Sisältää funktiot esim. gradientin laskemiseen
- Täten on "helppo" määritellä esim. logistisen regression tai neuroverkkojen hypoteesi- ja kustannusfunktiot ja kouluttaa ne.
- Kääntää matemaattiset lausekkeet taustalla C-koodiksi, joten suoritus on nopeaa
- Tukee myös GPU-laskentaa

Bonus: Neuroverkot

- Neuroverkot jäljittelevät hermosolujen toimintaa
- Yksi solmu/solu (engl. node) koostuu painotetuista syötteistä, jotka summataan, sekä aktivointifunktiosta, joka tuottaa solmun output-arvon syötteiden summasta
- Mikäli aktivointifunktiona käytetään logistista funktiota, yksi solmu vastaa logistista regressiota
- Kokonainen verkko rakennetaan pinoamalla solmuja päällekkäin, ts. yhden solmun tuloste on seuraavassa tasossa olevien solmujen syöte

Bonus: Neuroverkot

- Verkko oppii päivittämällä jokaisen solmun syötearvojen painokertoimia (kuten θ regressioesimerkeissä)
- Kouluttaminen on kuitenkin regressiota hankalampaa, sillä painoarvojen muutokset tulee "vyöryttää" läpi koko verkon, kaikille tasoille
- Gradient descent -menetelmän sijaan verkko koulutetaan usein stochastic (mini-batch) gradient descent sekä backpropagation -menetelmillä

Bonus: Neuroverkot

