

The Need for Cryptography

- Encryption
 - Transform a message so that only the intended recipient can read it
 - Privacy concerns
- · Digital signature
 - Relate a message to an individual
 - Publicly verifiable and (computationally) impossible to forge
 - · Non-repudiation

Secret-Key Cryptography

Cytale, Caesar, Vernam, DES, ...Symmetric encryption

∯ GEMPLUS

Secret-Key Cryptography

- Cytale, Caesar, Vernam, DES, ...Symmetric encryption

- Limitations
 - Number of keys: $n(n-1)/2 \approx n^2$
 - Key distribution

Public-Key Cryptography

- Inventors
 - Whitfield Diffie
 - Martin Hellman
 - Ralph Merkle

- Publications
 - W. Diffie & M. Hellman, New directions in cryptography, IEEE TIT, 22: 644-654, 1976
 - R. Merkle, Secure communications over insecure channels, CACM, 21: 294-299, 1978

Cryptographic Assumptions

- CDH problem
 - Given $(g^x \mod p, g^y \mod p, g, p)$, compute $g^{xy} \mod p$
- DL problem
 - Given $(g^x \mod p, g, p)$, compute x

Public-Key Cryptosystems

- Diffie-Hellman allows to exchange a secret over an insecure channel
- Limitations
 - Delays
 - "Man-in-the-middle" attack
- Public-key cryptography
 - Asymmetric encryption
 - Exchange of encrypted mails (2)

Rivest-Shamir-Adleman

- 3 M.I.T. researchers
 - Leonard Adleman
 - Ronald Rivest
 - Adi Shamir

- Publication
 - R. Rivest, A. Shamir & L. Adleman, A method for obtaining digital signatures and public-key cryptosystems, CACM, 21: 120-126, 1978

RSA Cryptosystem (1/3)

- $Dec_{SKB}(Enc_{PKB}(m)) = m$
- Group (Z/NZ)*
 - Modular exponentiation in (Z/NZ)*
 - Permutation iff $gcd(e, \phi(N)) = 1$
 - Euler theorem
- Security based on factoring N

∰ GEMPLUS

RSA Cryptosystem (2/3)

- Key generation (Bob)
 - ρ_{B} et q_{B} , $N_{B} = \rho_{B}q_{B}$, e_{B} s.t. $gcd(e_{B}, \phi(N_{B})) = 1$ $PK = \{e_{B}, N_{B}\}$ $SK = \{\rho_{B}, q_{B}, d_{B}\}$ with $d_{B} = e_{B}^{-1} \mod \phi(N_{B})$
- Encryption (Alice)
 - $C = m^{e_B} \mod N_B$
- Decryption (Bob)
 - $C^{\prime\prime}$ mod $N_{\rm R}$
- (Paddings)

Other Applications

- RSA signature (1978)
 - Based on factoring
 - Dual function of RSA encryption
- ElGamal encryption/signature (1985)
 - Based on DL
 - Other groups (e.g., elliptic curves)

Identity-Based Cryptography

- Inventor
 - Adi Shamir, 1984

- Key idea
 - Identity serves as public-key
 - Certificates become implicit (inside a domain)
- No known solution for encryption

Indentity-Based Encryption (1/2)

· Y. Desmedt and J.-J. Quisquater, 1986

- Security assumptions
 - Enc(Dec(m)) = m
 - Enc ≠ Dec
 - Tamper resistance

Boneh-Franklin

- · Stanford/UC Davis researchers
 - Dan Boneh
 - Matt Franklin

- Publication
 - D. Boneh & M. Franklin, Identity based encryption from the Weil pairing, SIAM J. on Computing 32:586-615, 2003

Boneh-Franklin IBE (1/3)

- $Dec_{SKR}(Enc_{IDR}(m)) = m$
- Admissible bilinear map $e: \mathbb{G}_1 \times \mathbb{G}_1 \to \mathbb{G}_2$, i.e.,
 - [bilinear] $e(aP, bQ) = e(P, Q)^{ab}$
 - [non-degenerate] $e(P, P) \neq 1$
 - [computable] efficient algorithm for e
- Security based on BDH problem
 - Given (P, aP, bP, cP), compute e(P, P)abc

∰ GEMPLUS

Boneh-Franklin IBE (2/3)

```
Set-up (TTP)
```

- $e: G_1 \times G_1 \to G_2$, h: $\{0,1\}^* \to G_1$, H: $G_2 \to \{0,1\}^{/m/}$ master SK: s
- PK = $\{P_{\text{pub}} = s P, P, e, h, H\}$
- Extract (TTP) e.g., for Bob $\mathcal{O}_{\text{IDB}} = s \ \mathcal{O}_{\text{IDB}}$ where $\mathcal{O}_{\text{IDB}} = \text{h}(\text{ID}_{\text{B}})$

- $Q_{\text{IDB}} = \text{h}(\text{ID}_{\text{B}})$ and $g_{\text{IDB}} = e(Q_{\text{IDB}}, P_{\text{pub}})$ $(C_1, C_2) = (rP, m \oplus \text{H}(g_{\text{IDB}}))$
- Decryption (Bob)
 - $m = C_2 \oplus H(e(d_{IDR}, C_1))$

Boneh-Franklin IBE (3/3)

Alice

Sytem parameters

$$Q_{\text{ID}_{\text{B}}} = h(\frac{\text{ID}_{\text{B}}}{})$$

$$g_{\text{ID}_{\text{B}}} = e(Q_{\text{ID}_{\text{B}}}, P_{\text{pub}})$$

$$(C_1, C_2) = (rP, m \oplus \text{H}(g_{\text{ID}_{\text{B}}}^r)) -$$

$$m = C_2 \oplus H(e(\mathbf{d_{ID_R}}, C_1))$$

Verification of certificates is *implicit* (inside the domain)

∅ GEMPLUS:

Smart IBE

- Boneh-Franklin protocol on smart cards
- Prototype library
 - allowing to perform encryption/decryption
- First solution with the entire pairing computation performed on the smart card

Summary & Perspectives

- State of the art

 - Symmetric encryption (3DES, AES)
 Asymmetric encryption (RSA, ECC)
 ID-based encryption (Boneh-Franklin IBE)
- · Smart card solutions for ID-based encryption
 - Desmedt-Quisquater IBE
 - Boneh-Franklin IBE (Smart IBE)
- Future research
 - More efficient implementations of pairings on constrained devices
 - Share the master key s amongst several TTPs
 - Design an IBE based on "standard" assumptions

∰ GEMPLUS

Comments/Questions?

More info:

http://www.geocities.com/MarcJoye/

