高等数值分析 Advanced Numerical Analysis

Dait

目 录

第一章	数学基础知识	L
1.1	线性空间	1
1.2	范数	2
1.3	内积	5
1.4	矩阵空间 7	7
第二章	函数插值和重构 12	2
2.1	一维多项式插值	2
	2.1.1 Lagrange 插值	2
	2.1.2 Newton 插值公式	3
2.2	分段插值 17	7
2.3	Fourier 插值	3
第三章	函数逼近 19)
3.1	最佳平方逼近	9

第一章 数学基础知识

1.1 线性空间

定义 1.1.1: 线性空间

给定一个数域 \mathbb{F} (本笔记只涉及实数域 \mathbb{R} 和复数域 \mathbb{C}) 和一个集合 V,

定义加法 $+: V \times V \to V$ 满足:

- 结合律: (a+b)+c=a+(b+c),
- $\overline{\phi}$: a+0=a,
- 逆元: a + (-a) = 0,
- 交換律: a+b=b+a;

数乘 $\cdot: \mathbb{F} \times V \to V$ 满足:

- 单位元: 1a = a,
- 结合律: $(\lambda \mu)a = \lambda(\mu a)$,
- 分配率 1: $(\lambda + \mu)a = \lambda a + \mu a$,
- 分配率 2: $\lambda(a+b) = \lambda a + \lambda b$.

则称 V 在 \mathbb{F} 上构成一个线性空间 (linear space).

例 1.1.1: 线性空间的例子

- $C^n[a,b]$: 全体在 [a,b] 上 n 次导数连续 (continuous) 的函数构成的集合.
- $\mathcal{D}^n[a,b]$: 全体在 [a,b] 上 n 次可导 (differentiable) 的函数构成的集合.
- \mathcal{P}_n : n 次多项式函数空间.
- 正实数 $\mathbb{R}_{>0}$ 构成一个线性空间,其加法为实数乘法,数乘为幂次.

定义 1.1.2: 线性无关

设 V 是线性空间, 其中 n 个元素 $x_1, \ldots, x_n \in V$, 若

$$a_1 x_1 + \dots + a_n x_n = 0, (1.1)$$

只有零解,则称 x_1, \ldots, x_n 线性无关 (linear independent). 反之,称为线性相关.

例 1.1.2: 线性无关的例子

- \mathcal{P}_n 中 $\{1, x, ..., x^n\}$ 是线性无关的;
- 所有 $[-\pi,\pi]$ 上的周期函数构成的函数空间是线性空间,其中

 $\{1, \cos x, \sin x, \dots, \cos nx, \sin nx\}$

线性无关.

定义 1.1.3: 维度和基

给定线性空间 V 中的一组元素 $\{x_1,\ldots,x_n\}$,若 $\forall x\in V$ 都可以被唯一表示为其线性 组合

$$x = a_1 x_1 + \dots + a_n x_n, \tag{1.2}$$

则称 $\{x_1,\ldots,x_n\}$ 构成一组基 (base),且 V 的维度 $\dim(V)=n$.

定理 1.1.1

线性空间的维度与基的选取没有关系.

例 1.1.3: 典型线性空间的维度

- $\dim(\mathcal{P}_n) = n$;
- $\dim(\mathcal{C}[a,b]) = +\infty$.

1.2 范数

定义 1.2.1: 度量空间

设 M 是一个集合, 设映射 $d: M \times M \to \mathbb{R}$ 满足:

- $d(x,y) \geqslant 0$, $\coprod d(x,y) = 0 \iff x = y$;
- d(x,y) = d(y,x);
- 三角不等式: $d(x,y) + d(y,z) \ge d(x,z)$.

则称 (M,d) 构成一个度量空间 (metric space) 或距离空间,d 为度量函数或距离函数.

定义 1.2.2: Cauchy 序列

对于序列 $\{x_n\}$, 若 $\forall \varepsilon > 0, \exists N \in \mathbb{N}$ 满足:

$$d(x_n, x_{n+p}) < \varepsilon, \quad \forall p \in \mathbb{N}, \forall n > N, \tag{1.3}$$

则称 $\{x_n\}$ 为 Cauchy 序列.

定义 1.2.3: 度量空间的完备性

若对任意 M 中的 Cauchy 序列 $\{x_n\}$, $\exists x \in M$ 满足:

$$\lim_{n \to \infty} d(x_n, x) = 0,$$

则称度量空间 M 是完备的.

例 1.2.1: 实数公理

实数集 \mathbb{R} 中的度量函数 d(a,b) = |a-b| 是完备的.

定理 1.2.1: 完备化定理

若 (M,d) 是一个度量空间,则存在唯一等距同构的完备化空间.

证明. 构造性证明,令 \tilde{M} 是 M 中所有 Cauchy 序列 $x=\{x_n\}$ 的集合. 在 \tilde{M} 中定义等价关系 \sim :

$$x \sim y \iff \lim_{n \to \infty} d(x_n, y_n) = 0.$$

令 $[x]=\{y\,|\,x\sim y\}$ 表示 x 的等价类, $\hat{M}=\{[x]\,|\,x\in \tilde{M}\}$ 是 \tilde{M} 中所有元素的等价类构成的集合. 定义 \hat{M} 上的度量为

$$\hat{d}([x],[y]) = \lim_{n \to \infty} d(x_n, y_n),$$

可证 (\hat{M}, \hat{d}) 是完备的度量空间. 且存在等距嵌入

$$i: M \to \hat{M}, \ x \mapsto [\{x, x, \ldots\}].$$

即映射到对应常数序列的等价类.

定义 1.2.4: 赋范空间

若映射 $\|\cdot\|: S \to \mathbb{R}$ 满足:

- $||f|| \ge 0$, $||f|| = 0 \iff f = 0$;
- $\|\lambda f\| = |\lambda| \|f\|$;
- $||f + g|| \le ||f|| + ||g||$.

则称 $(S, \|\cdot\|)$ 构成一个赋范空间 (normed space).

显然, 赋范空间也是度量空间, 只需定义

$$d(f,g) = \|f - g\|,$$

完备的赋范空间称为 Banach 空间.

例 1.2.2: \mathbb{R}^n 的范数

 $x = (x_1, \dots, x_n)^{\top} \in \mathbb{F}^n$ 的 p - 范数为

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}.$$

如

$$||x||_{\infty} = \max_{i} |x_i|, \qquad (1.4a)$$

$$||x||_1 = \sum_{i=1}^n |x_i|,$$
 (1.4b)

$$||x||_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{1/2},$$
 (1.4c)

证明. 下面给出 (1.4a) 的证明. 记 $k = \arg\max_i |x_i|$, $\forall p > 0$

$$|x_k|^p \leqslant \sum_{i=1}^n |x_i|^p \leqslant n |x_k|^p$$
,

两边开 p 次方, 并 $p \to \infty$, 即得 $||x||_{\infty} = |x_k|$.

例 1.2.3: C[a,b] 的范数

 $f(x) \in \mathcal{C}[a,b]$ 的 p - 范数为

$$||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{1/p}.$$

如

$$||f||_{\infty} = \max_{a \le x \le b} |f(x)|, \qquad (1.5a)$$

$$||f||_1 = \int_a^b |f(x)| \, \mathrm{d}x,$$
 (1.5b)

$$||f||_2 = \left(\int_a^b |f(x)|^2 dx\right)^{1/2},$$
 (1.5c)

C[a,b] 中, $\|\cdot\|_{\infty}$ 是完备的,而 $\|\cdot\|_{1}$ 不是.

定义 1.2.5: 范数的等价性

给定线性空间 S 上的两个范数 $\|\cdot\|_{\alpha}$, $\|\cdot\|_{\beta}$, 若 $\exists C_1, C_2 > 0$ 满足:

$$C_1 \|x\|_{\alpha} \leqslant \|x\|_{\beta} \leqslant C_2 \|x\|_{\alpha},$$

则称 $\|\cdot\|_{\alpha}$, $\|\cdot\|_{\beta}$ 等价.

定理 1.2.2

有限维线性空间中,任意两个范数都是等价的.

1.3 内积

定义 1.3.1: 内积

给定线性空间 S, 内积 (inner product) 是一个映射

$$\langle \cdot, \cdot \rangle : S \times S \to \mathbb{F},$$
 (1.6)

满足:

- $\langle x, x \rangle \geqslant 0$, $\mathbb{H} \langle x, x \rangle = 0 \iff x = 0$;
- $\langle x, y \rangle = \overline{\langle y, x \rangle};$
- $\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$.

若 $\langle x, y \rangle = 0$,则称 x, y 是正交的 (orthogonal).

内积诱导的范数:

$$||x|| := \sqrt{\langle x, x \rangle},\tag{1.7}$$

例 1.3.1: 内积实例

 \mathbb{R}^n 的内积为

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i,$$

C[a,b] 的内积为

$$\langle f, g \rangle = \int_a^b f(x) \overline{g}(x) \, \mathrm{d}x.$$

定理 1.3.1: 内积空间线性无关的判定

给定内积空间 S, $x_1, \ldots, x_n \in S$ 是线性无关的 \iff Gramm 矩阵满秩:

$$G_{n} = \begin{bmatrix} \langle x_{1}, x_{1} \rangle & \cdots & \langle x_{1}, x_{n} \rangle \\ \vdots & \ddots & \vdots \\ \langle x_{n}, x_{1} \rangle & \cdots & \langle x_{n}, x_{n} \rangle \end{bmatrix},$$

$$(1.8)$$

 $\mathbb{H} \det G_n \neq 0.$

证明. 设 $a = (a_1, ..., a_n)$ 满足 $aG_n = 0$, 则 $\forall k = 1, ..., n$

$$(aG_n)_k = a_1 \langle x_1, x_k \rangle + \dots + a_n \langle x_n, x_k \rangle = \langle a_1 x_1 + \dots, a_n x_n, x_k \rangle = 0,$$

特别的,

$$\langle a_1x_1+\cdots+a_nx_n,a_1x_1+\cdots+a_nx_n\rangle=0,\iff a_1x_1+\cdots,a_nx_n=0,$$

则 $\det G_n \neq 0 \iff \mathcal{N}(G_n^\top) = \{0\} \iff a$ 只有零解.

例 1.3.2

给定内积空间 S 的一组基 $\{x_1, \ldots, x_n\}$, 则 $\forall x \in S$ 均可以写成

$$x = a_1 x_1 + \dots + a_n x_n,$$

下面计算 a_1, \ldots, a_n . 两边分别与 x_i 做内积:

$$\langle x, x_i \rangle = a_1 \langle x_1, x_i \rangle + \dots + a_n \langle x_n, x_i \rangle,$$

即

$$(\langle x, x_1 \rangle, \dots, \langle x, x_n \rangle) = (a_1, \dots, a_n)G_n,$$

若基是正交的, 即 $\forall i \neq j$, $\langle x_i, x_j \rangle = 0$, 则

$$a_i = \frac{\langle x, x_i \rangle}{\langle x_i, x_i \rangle}.$$

定理 1.3.2: Schmidt 正交化

设 x_1, \ldots, x_n 是一组线性无关的基,为得到一组正交基,定义

$$y_i = x_i - \sum_{j=1}^{i-1} \frac{\langle x_i, y_j \rangle}{\langle y_j, y_j \rangle} y_j.$$
 (1.9)

则 y_1, \ldots, y_n 是正交的.

定义 1.3.2: 带权内积

设 $\rho \in \mathcal{C}(a,b)$ 是一个几乎处处为正^I的函数,且

$$\int_a^b \rho(x) \, \mathrm{d}x < +\infty,$$

定义内积

$$\langle f, g \rangle = \int_{a}^{b} f(x)g(x)\rho(x) dx.$$
 (1.10)

定义 1.3.3: 正交多项式

已知 $\{1, x, ..., x^n\}$ 是线性无关的. 考虑 $\mathcal{C}[a, b]$ 上的带权内积,Schmidt 正交化得到一组多项式函数

$$\psi_0(x), \psi_1(x), \dots, \psi_n(x),$$

显然, $\deg \psi_i = i$.

^I即 $\{x|\rho(x) \leq 0\}$ 的 Lebesgue 测度为 0.

第一章 数学基础知识

例 1.3.3: Legendre 多项式

权函数 $\rho = 1$,区间 [-1,1],得到 Legendre 多项式

$$P_n(x) = \frac{1}{2^n n!} \frac{\mathrm{d}^n}{\mathrm{d}x^n} (x^2 - 1)^n.$$
 (1.11)

• 内积

$$\langle P_n, P_m \rangle = \frac{2}{2n+1} \delta_{nm}. \tag{1.12}$$

7

• 递归关系

$$(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x).$$
(1.13)

• 奇偶性

$$P_n(-x) = (-1)^n P_n(x). (1.14)$$

例 1.3.4: Chebyshev 多项式

权函数 $\rho(x) = (1-x^2)^{-1/2}$,区间 [-1,1],得到 Chebyshev 多项式

$$T_n(x) = \cos(n\arccos x). \tag{1.15}$$

• 内积

$$\langle T_0, T_0 \rangle = \pi; \quad \langle T_n, T_n \rangle = \pi/2, \quad n \geqslant 1;$$
 (1.16)

• 递推关系

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x). (1.17)$$

• 奇偶性

$$T_n(-x) = (-1)^n T_n(x);$$
 (1.18)

- T_n 的 n 个实单根为 $\cos\left(\frac{2k-1}{2n}\pi\right)$, (n+1) 个极值点为 $\cos\left(\frac{k}{n}\pi\right)$
- 当 |x| ≥ 1 时,

$$T_n(x) = \frac{1}{2} \left[\left(x + \sqrt{x^2 - 1} \right)^k + \left(x - \sqrt{x^2 - 1} \right)^k \right].$$
 (1.19)

1.4 矩阵空间

定义 1.4.1: 矩阵范数

矩阵空间 $\mathbb{F}^{n\times n}$ 上的范数 $\|\cdot\|$ 若满足

$$||AB|| \le ||A|| \, ||B|| \,, \tag{1.20}$$

则称该范数为矩阵范数.

例 1.4.1: Frobenius 范数

定义 Frobenius 范数

$$||A||_{\mathcal{F}} := \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} |A_{ij}|^2}.$$
 (1.21)

是一个矩阵范数.

证明. 由 Cauchy-Schwarz 不等式

$$||AB||_{F} = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} \left| \sum_{k=1}^{n} A_{ik} B_{kj} \right|^{2}} \leq \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} \left(\sum_{k=1}^{n} |A_{ik}|^{2} \sum_{k=1}^{n} |B_{kj}|^{2} \right)}$$

$$= \sqrt{\sum_{i=1}^{n} \sum_{k=1}^{n} |A_{ik}|^{2} \sum_{j=1}^{n} \sum_{k=1}^{n} |B_{kj}|^{2}} = ||A||_{F} ||B||_{F}.$$

注意到

$$\operatorname{tr}(A^{\dagger}A) = \sum_{i=1}^{n} (A^{\dagger}A)_{ii} = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij}^{\dagger} A_{ji} = \sum_{i=1}^{n} \sum_{j=1}^{n} |A_{ji}|^{2}.$$

故

$$||A||_{\mathcal{F}} = \sqrt{\operatorname{tr}(A^{\dagger}A)} = \sqrt{\operatorname{tr}(AA^{\dagger})}.$$
 (1.22)

定义 1.4.2: 矩阵范数与向量范数的相容

给定矩阵范数 $\|\cdot\|_M$ 和向量范数 $\|\cdot\|_V$,若 $\forall A \in \mathbb{F}^{n \times n}, x \in \mathbb{F}^n$

$$||Ax||_{V} \le ||A||_{M} ||x||_{V}, \tag{1.23}$$

则称他们是相容的. 在不引起混淆的情况下, 可以略去下标.

例 1.4.2

Frobenius 范数与向量 2 - 范数相容.

证明.

$$||Ax||_2 = \sqrt{\sum_{i=1}^n \left|\sum_{j=1}^n A_{ij}x_j\right|^2} \leqslant \sqrt{\sum_{i=1}^n \left(\sum_{j=1}^n |A_{ij}|^2 \sum_{j=1}^n |x_j|^2\right)} = ||A||_F ||x||_2.$$

定义 1.4.3: 算子范数

定义矩阵的算子范数 (operate norm)

$$N: \mathbb{F}^{n \times n} \to \mathbb{R}, \quad A \mapsto \sup_{x \neq 0} \frac{\|Ax\|}{\|x\|}.$$
 (1.24)

称算子范数是该向量范数诱导出来的矩阵范数.

注意 N(I) = 1. 故 Frobenius 范数不是算子范数.

定理 1.4.1

 $N(\cdot)$ 是一个矩阵范数,并与向量范数相容.

证明. 易得 ∀x ≠ 0, ||Ax|| ≤ N(A) ||x||.

$$N(AB) = \sup_{x \neq 0} \frac{\|ABx\|}{\|x\|} \le \sup_{x \neq 0} \frac{N(A) \|Bx\|}{\|x\|} = N(A)N(B).$$

定义 1.4.4: 谱半径

矩阵 A 全体特征值的集合称为 A 的谱,记作 $\sigma(A)$,特征值模的最大值称为谱半径,记作 $\rho(A)$.

例 1.4.3

设 $A \in \mathbb{F}^{n \times n}$, 则 p - 向量范数诱导出来的矩阵范数为:

$$||A||_{\infty} = \max_{i} \sum_{j=1}^{n} |A_{ij}|,$$
 (1.25a)

$$||A||_1 = \max_j \sum_{i=1}^n |A_{ij}|,$$
 (1.25b)

$$||A||_2 = \sqrt{\rho(A^{\dagger}A)}, \tag{1.25c}$$

证明. 先证明 (1.25b),将 A 写作列向量的形式 (A_1,\ldots,A_n) ,令 $k=\arg\max_j\|A_j\|_1$,则 $\forall x\in\mathbb{F}^n$ 且 $\|x\|_1=\sum_{i=1}^n|x_j|=1$,有

$$||Ax||_1 = \left\| \sum_{j=1}^n A_j x_j \right\|_1 \leqslant \sum_{j=1}^n |x_j| ||A_j||_1 \leqslant ||A_k||_1 \sum_{j=1}^n |x_j| = ||A_k||_1 ||x||_1 = ||A_k||_1,$$

特别的, 取 $x = e_k$ 可使等号成立, 故

$$||A||_1 = \sup_{||x||_1=1} ||Ax||_1 = ||A_k||_1 = \max_j \sum_{i=1}^n |A_{ij}|;$$

然后证明 (1.25a),令 $k = \arg\max_{i} \sum_{j=1}^{n} |A_{ij}|$, $\forall x \in \mathbb{F}^{n}$ 且 $\|x\|_{\infty} = \max_{j} |x_{j}| = 1$,有

$$||Ax||_{\infty} = \max_{i} \left| \sum_{j=1}^{n} A_{ij} x_{j} \right| \le \max_{i} \sum_{j=1}^{n} |A_{ij}| |x_{j}| \le \max_{i} \sum_{j=1}^{n} |A_{ij}| \max_{j} |x_{j}| = \sum_{j=1}^{n} |A_{kj}|.$$

特别的,取 $x_j = \operatorname{sgn}(A_{kj})$ 可使等号成立,故

$$||A||_{\infty} = \sup_{||x||_{\infty}=1} ||Ax||_{\infty} = \max_{i} \sum_{j=1}^{n} |A_{ij}|;$$

第一章 数学基础知识 10

最后证明 (1.25c), 由 2 - 范数的性质:

$$||A||_2^2 = \sup_{\|x\|_2 = 1} \langle Ax, Ax \rangle = \sup_{\|x\|_2 = 1} \langle A^{\dagger}Ax, x \rangle = \rho(A^{\dagger}A). \qquad \Box$$

定理 1.4.2

谱半径 $\rho(A)$ 和矩阵范数的关系:

$$\rho(A) \leqslant \|A\| \,. \tag{1.26}$$

证明. 考虑 A 的一个特征值 λ 和特征向量 x,则

$$|\lambda| \|xx'\| = \|Axx'\| \leqslant \|A\| \|xx'\|.$$

于是
$$||A|| \geqslant |\lambda|$$
.

定理 1.4.3

 $\forall A \in \mathbb{F}^{n \times n}, \epsilon > 0$,存在算子范数 $\|\cdot\|$ 满足:

$$||A|| \leqslant \rho(A) + \epsilon. \tag{1.27}$$

引理. 若 $\|\cdot\|_{\alpha}$ 是 \mathbb{F}^n 中的向量范数, $P \in \mathbb{F}^{n \times n}$ 非奇异,则

$$\left\| \cdot \right\|_{P,\alpha} : x \mapsto \left\| Px \right\|_{\alpha},$$

构成另一个向量范数,诱导的算子范数为

$$||A||_{P\alpha} = ||PAP^{-1}||_{\alpha}.$$

证明. 令 P 将 A 相似变换为 Jordan 型,即

$$PAP^{-1} = J = \operatorname{diag}(J_1, \dots, J_r), \quad J_i = \begin{bmatrix} \lambda_i & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & \lambda_i \end{bmatrix}$$

 $\diamondsuit D_{\epsilon} = \operatorname{diag}(1, \epsilon, \dots, \epsilon^{n-1})$,则

$$\hat{J} = D_{\epsilon}^{-1} J D_{\epsilon} = \operatorname{diag}(\hat{J}_{1}, \dots, \hat{J}_{r}), \quad \hat{J}_{i} = \begin{bmatrix} \lambda_{i} & \epsilon & & \\ & \ddots & \ddots & \\ & & \ddots & \epsilon & \\ & & & \lambda_{i} \end{bmatrix}$$

则

$$||A||_{D_{\epsilon}^{-1}P,\infty} = ||D_{\epsilon}^{-1}PAP^{-1}D_{\epsilon}||_{\infty} = ||\hat{J}||_{\infty} \leqslant \rho(A) + \epsilon.$$

注. 对任意满足 $|\lambda|=
ho(A)$ 的特征值 λ ,对应 Jordan 块是对角的,则存在一个算子范数满足 $\|A\|=
ho(A).$

奇异性与扰动 一个矩阵不可逆的概率是很低的,^I那如何度量矩阵的奇异性?

定理 1.4.4: 扰动定理

给定扰动 B, 若 ||B|| < 1, 则 I + B 可逆且

$$||(I+B)^{-1}|| \le \frac{1}{1-||B||}.$$
 (1.28)

证明. 若 I + B 不可逆,则 $\rho(B) \ge 1 > ||B||$ 矛盾.

记
$$D:=(I+B)^{-1}$$
,则

$$(I+B)D = I, \iff D = I - BD, \implies ||D|| \leqslant 1 + ||B|| ||D||.$$

定理 1.4.5: 扰动定理·二

给定 A, C,若 A 非奇异且

$$||C - A|| \le ||A^{-1}||^{-1},$$

则 C 也非奇异,且

$$||C^{-1}|| \le \frac{1}{||A^{-1}||^{-1} - ||C - A||}.$$
 (1.29)

证明. 令 $B = I - A^{-1}C$ 即可.

^I因为多了一个 $\det(A) = 0$ 的限制条件.

第二章 函数插值和重构

基本问题 已知关于某函数 f 的一组信息,如何重构 f? 事实上,由于信息缺失,无法准确 重构.

定义 2.0.1: 重构

若 $\{\phi_{\alpha}\}_{\alpha\in I}$ 是函数空间 X 上的一组线性无关泛函,给定某 $f\in X$ 且 $\phi_{\alpha}(f)$ 已知,希望确定 $f^{*}\in Y\subset X$ 满足:

$$\phi_{\alpha}(f^*) = \phi_{\alpha}(f), \quad \forall \alpha \in I.$$
 (2.1)

Y 称为插值空间或重构空间, $\{\phi_{\alpha}\}_{\alpha\in I}$ 为信息泛函.

例 2.0.1: 采样空间的选择

• 多项式函数空间

$$\mathcal{P}_n = \{a_0 + a_1 x + \dots + a_n x^n\},\,$$

- 样条函数空间
- 三角多项式函数空间

$$\mathcal{Y}_n = \{ a_0 + a_1 \cos x + b_1 \sin x + \dots + a_n \cos nx + b_n \sin nx \}.$$

2.1 一维多项式插值

2.1.1 Lagrange 插值

定义 2.1.1: Lagrange 插值

插值空间 Y 由 n+1 个参数 a_0,\ldots,a_n 标定,即

$$y = y(x; a_0, \dots, a_n).$$

给定一组插值节点 (采样点) x_i 和采样值 $f_i = f(x_i)$, 希望确定参数满足

$$y(x_i) = f(x_i), \quad \forall i \in I. \tag{2.2}$$

定理 2.1.1: 多项式插值定理

给定 n+1 个插值点 x_0,\ldots,x_n , 存在唯一的多项式函数 $P_n\in\mathcal{P}_n$ 满足插值条件.

证明. 采取直接构造的方法. 定义插值基函数

$$\ell_i(x) := \prod_{j \neq i} \frac{x - x_j}{x_i - x_j}. \tag{2.3}$$

满足:

$$\ell_i(x_i) = \delta_{ii}. \tag{2.4}$$

则插值多项式为

$$P_n(x) = \sum_{i=0}^n f(x_i)\ell_i(x). \tag{2.5}$$

定义 2.1.2: 余项

定义插值函数 $P_n(x)$ 与原函数 f(x) 之间的差为余项

$$R_n(x) := f(x) - P_n(x).$$
 (2.6)

定理 2.1.2

若 $f \in \mathcal{C}^{n+1}[a,b]$,则 $\forall x \in [a,b], \exists \xi \in (a,b)$ 使得

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^n (x - x_i).$$
 (2.7)

推论. 若 $f \in \mathcal{C}^{n+1}[a,b]$,则

$$||R_n||_{\infty} \leqslant \frac{||f^{(n+1)}||_{\infty}}{4(n+1)} \max_{i,j} |x_i - x_j|.$$
 (2.8)

2.1.2 Newton 插值公式

定义 2.1.3: 均差

定义 f 在 x_i 上的零阶均差 $f[x_i] := f(x_i)$, 在节点集 i_0, i_1, \ldots, i_k 上的 k - 阶均差:

$$f[x_{i_0}, \dots, x_{i_k}] := \frac{f[x_{i_1}, \dots, x_{i_k}] - f[x_{i_0}, \dots, x_{i_{k-1}}]}{x_{i_k} - x_{i_0}}.$$
(2.9)

定理 2.1.3: Newton 插值公式

利用均差迭代得到

$$P_{i_0\cdots i_k}(x) = P_{i_0\cdots i_{k-1}}(x) + f[x_{i_0}, \dots, x_{i_k}](x - x_{i_0}) \cdots (x - x_{i_{k-1}})$$

$$= f[x_{i_0}] + f[x_{i_0}, x_{i_1}](x - x_{i_0}) + \cdots$$

$$+ f[x_{i_0}, \dots, x_{i_k}](x - x_{i_0}) \cdots (x - x_{i_{k-1}}).$$
(2.10)

定义 **2.1.4**: Hermite 插值问<u>题</u>

给定
$$(\xi_i, f_i^{(k)}), i = 0, 1, \dots, m, k = 0, 1, \dots, n_i - 1,$$
 且

$$\xi_0 < \xi_1 < \dots < \xi_m,$$

确定次数为 $n = \sum_{i=0}^{m} n_i - 1$ 的多项式函数 P 满足插值条件

$$P^{(k)}(\xi_i) = f_i^{(k)}, \quad i = 0, 1, \dots, m, \quad k = 0, 1, \dots, n_i - 1.$$
 (2.11)

定理 2.1.4

Hermite 插值问题的解存在且唯一.

证明. 定义拓展均差:

$$f[x_0, x_1, \dots, x_n] := \int_0^{t_0} \int_0^{t_1} \dots \int_0^{t_{n-1}} f^{(n)}(t_n(x_n - x_{n-1}) + \dots + t_1(x_1 - x_0) + t_0 x_0) dt_n \dots dt_2 dt_1.$$
(2.12)

有递推式:

$$f[x_0, \dots, x_n] = \frac{f[x_0, \dots, x_{n-2}, x_n] - f[x_0, \dots, x_{n-1}]}{x_n - x_{n-1}}.$$
(2.13)

即证.

定理 2.1.5: 性质

如果 f 足够光滑,则

$$\lim_{\epsilon \to 0} f[x_0^{\epsilon_0}, \dots, x_n^{\epsilon_n}] = f[x_0, \dots, x_n], \tag{2.14}$$

如果 $f \in \mathcal{C}[a,b], x_0,\ldots,x_n \in [a,b]$,则 $f[x_0,\ldots,x_n]$ 可以写成

$$f[x_0, \dots, x_n] = \frac{f^{(n)}(\xi)}{n!}, \quad \xi \in I(x_0, \dots, x_n),$$
 (2.15)

特别的, n - 阶均差:

$$f[\underbrace{x, \dots, x}_{n+1}] = \frac{f^{(n)}(x)}{n!}$$
 (2.16)

如果 $x \neq y_0$,则

$$f[x, y_0, \dots, y_n] = \frac{f[x, y_1, \dots, y_n] - f[y_0, \dots, y_n]}{x - y_0},$$
(2.17)

导数:

$$\frac{\mathrm{d}}{\mathrm{d}x}f[x_0, \dots, x_n, x] = f[x_0, \dots, x_n, x, x]. \tag{2.18}$$

例 2.1.1

计算 f[a,a,b,b]:

定理 2.1.6: Hermite 插值问题的 Newton 公式

插值多项式为

$$P(x) = f[x_0] + f[x_0, x_1](x - x_0) + \dots + f[x_0, \dots, x_n](x - x_0) \cdot \dots \cdot (x - x_{n-1}). \quad (2.19)$$

其中 x_0, \ldots, x_n 是以下序列的任意置换

$$\underbrace{\xi_0,\dots,\xi_0}_{n_0},\dots,\underbrace{\xi_m,\dots,\xi_m}_{n_m}.$$

定理 2.1.7: 误差函数

如果 $f \in \mathcal{D}^{n+1}$, 则对每个 \bar{x} , $\exists \xi \in I[x_0, \dots, x_n, \bar{x}]$ 使得

$$R(\bar{x}) = f(\bar{x}) - P_{0\cdots n}(\bar{x}) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0) \cdots (x - x_n).$$
 (2.20)

证明. 设 Q(t) 是 $x_0, \ldots, x_n, \bar{x}$ 的插值多项式,则

$$Q(t) - P_{0\cdots n}(t) = f[x_0, \dots, x_n, \bar{x}](t - x_0) \cdots (t - x_n),$$

 $\diamondsuit \ t = \bar{x}$ 即得.

当什么条件下, $n \to \infty$, 误差 $R \to 0$?

定理 2.1.8: 误差收敛性的一个充分条件

记 $\delta := |I(x_0, \dots, x_n)|$, \tilde{x} 为 I 的中心. 如果 f 在 $B(\tilde{x}, 2\delta)$ 上复解析,则插值法在 I 上是收敛的.

证明. 设 M 为 f 在 $\Omega = B(\tilde{x}, 1.9\delta)$ 上的上界,则

$$\frac{f^{n+1}(\xi)}{(n+1)!} = \frac{1}{2\pi i} \oint_{\partial \Omega} \frac{f(z)}{(z-\xi)^{n+2}} dz, \tag{2.21}$$

于是

$$|R(\bar{x})| \leqslant C\delta \frac{\delta^{n+1}}{(1.4\delta)^{n+2}} \to 0.$$

例 2.1.2: Runge 现象

2.2 分段插值

定义 2.2.1: 分段线性插值

设

$$a = x_0 < x_1 < \dots < x_n = b,$$

给定 $f(x_i)$, 找插值函数 φ 满足:

- $\varphi \in \mathcal{C}[a,b]$;
- φ 在 $[x_i, x_{i+1}]$ 上是线性函数.
- $\varphi(x_i) = f(x_i);$

满足前两个性质的函数组成插值空间 Φ ,且 $\dim(\Phi) = n + 1$.

定理 2.2.1

插值函数是存在且唯一的.

证明. 定义插值基函数

$$I_{i}(x) = \begin{cases} \frac{x - x_{i-1}}{x_{i} - x_{i-1}}, & x \in [x_{i-1}, x_{i}] \\ \frac{x_{i+1} - x}{x_{i+1} - x_{i}}, & x \in [x_{i}, x_{i+1}] \\ 0, & \text{otherwise} \end{cases}$$
 (2.22)

则

$$\varphi(x) = \sum_{i=0}^{n} f(x_i)I_i(x). \tag{2.23}$$

定理 2.2.2: 收敛性

定义 $h := \max_{i} (x_i - x_{i-1})$,

- 如果 $f \in \mathcal{C}[a,b]$, 则 $\lim_{h \to 0} \|f \varphi\|_{\infty} = 0$;
- 如果 $f \in \mathcal{C}^1[a,b]$, $\| \overset{\circ}{f} \varphi \|_{\infty} \leqslant 2 \|f'\|_{\infty} h$;
- 如果 $f \in \mathcal{C}^2[a,b]$, 则 $||f \varphi||_{\infty} \leqslant ||f''||_{\infty} h^2/8$;

定义 2.2.2: 分片三次 Hermite 插值

2.3 Fourier 插值

定义 2.3.1: Fourier 级数

周期函数展开成 Fourier 级数

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(nx) + b_n \sin(nx)].$$
 (2.24)

其中

$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(nx) dx,$$
 (2.25a)

$$b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin(nx) \, dx. \tag{2.25b}$$

如果
$$f \in \mathcal{C}^M$$
,则 $a_n = \mathcal{O}(n^{-M})$, $b_n = \mathcal{O}(n^{-M})$,且

$$\left\| f(x) - \left[\frac{a_0}{2} + \sum_{n=1}^{N} [a_n \cos(nx) + b_n \sin(nx)] \right] \right\|_{\infty} = \mathcal{O}(N^{-M}).$$

定义 2.3.2: 三角多项式插值

给定周期为 2π 的函数 f 在节点 $x_i=2\pi i/N$ 的值,希望重构函数 ψ 满足 $\psi(x_i)=f(x_i)$.

寻找相多项式

$$p(x) = \beta_0 + \beta_1 e^{ix} + \dots + \beta_{N-1} e^{i(N-1)x}.$$
 (2.26)

定理 2.3.1

存在唯一的相多项式满足 Lagrange 插值条件且

$$\beta_j = \frac{1}{N} \sum_{k=1}^{N-1} f(x_k) \omega^{-kj}, \quad \omega = e^{2\pi i/N}.$$
 (2.27)

对应三角多项式为

$$A_{j} = \frac{2}{N} \sum_{k=0}^{N-1} f(x_{k}) \cos\left(\frac{2\pi k j}{N}\right), \tag{2.28a}$$

$$B_{j} = \frac{2}{N} \sum_{k=0}^{N-1} f(x_{k}) \sin\left(\frac{2\pi k j}{N}\right), \tag{2.28b}$$

第三章 函数逼近

定义 3.0.1: 函数逼近

给定函数 $f \in \mathcal{C}[a,b]$ 和子集 $\Phi \subset \mathcal{C}[a,b]$ (如多项式函数),寻找最佳逼近:

$$\varphi^* = \arg\min_{\varphi \in \Phi} \|f - \varphi\|. \tag{3.1}$$

注.

- Φ一般是简单函数集合,如多项式函数.但Φ未必是线性空间.
- $f \notin \Phi$, 且关于 f 的信息可能有误差;
- 近似程度的度量: 平方逼近 $\|\cdot\|_2$ 和一致逼近 $\|\cdot\|_{\infty}$.

3.1 最佳平方逼近

最佳平方逼近中, $\|\cdot\|_2$ 是由 $\mathcal{C}[a,b]$ 的某个内积 $\langle\cdot,\cdot\rangle$ 诱导出的范数. 设 $\varphi_0,\dots,\varphi_n$ 构成 Φ 的一组基,则

$$\varphi = \sum_{i=0}^{n} a_i \varphi_i,$$

实函数情况,简单计算得到

$$\|f - \varphi\|_{2}^{2} = \sum_{i,j} \langle \varphi_{i}, \varphi_{j} \rangle a_{i} a_{j} - 2 \sum_{i=1}^{n} \langle \varphi_{i}, f \rangle a_{i} + \langle f, f \rangle.$$

是一个关于 a_0, \ldots, a_n 的二次函数, 故 Hess 矩阵

$$\nabla^{2} \| f - \varphi \|_{2}^{2} = 2 \begin{bmatrix} \langle \varphi_{0}, \varphi_{0} \rangle & \cdots & \langle \varphi_{0}, \varphi_{n} \rangle \\ \vdots & \ddots & \vdots \\ \langle \varphi_{n}, \varphi_{0} \rangle & \cdots & \langle \varphi_{n}, \varphi_{n} \rangle \end{bmatrix}$$
(3.2)

为对称正定矩阵,因而 $\|f-\varphi\|_2^2$ 有最小值. 由

$$\frac{\partial}{\partial a_i} \left\| f - \varphi \right\|_2^2 = 2 \left[\sum_{j=1}^n \left\langle \varphi_i, \varphi_j \right\rangle a_j - \left\langle \varphi_i, f \right\rangle \right] = 0,$$

得到

第三章 函数逼近 20

定理 3.1.1: 法方程

$$\sum_{j=1}^{n} \langle \varphi_i, \varphi_j \rangle \, a_j = \langle \varphi_i, f \rangle \,. \tag{3.3}$$

注. 最佳平方逼近 φ^* 满足 $f-\varphi^*\perp\Phi$,有

$$||f||_{2}^{2} = ||\varphi^{*}||_{2}^{2} + ||f - \varphi^{*}||_{2}^{2}.$$
 (3.4)