EXAMEN ECRIT MATHÉMATIQUE APPLIQUEE 1 B. LE BAILLY

Bachelier en Informatique, Bloc 1 Bachelier en Electronique, Bloc 1 Bachelier en Biotechnique, Bloc 1

12/01/2018, Durée: 3h00, tous appareils électroniques interdits

Q1 /30	Q2 /20	Q3 /80	Q4 /35	Q5 /35	Total /200	Total /20

Question 1 : Soit $f: [-7,7] \to \mathbb{R}$; $x \sim y = f(x)$ représentée par le graphe cartésien ci-dessous :

A partir de ce graphe, préciser, en justifiant,

- a) f(-2)
- b) le(s) valeur(s) de x envoyée(s) sur y = -2

- c) le(s) zéro(s) de f
- d) le domaine de définition de f
- e) l'image de f
- f) si f a une parité

- g) $\sin f$ est une application
- h) si f est surjective
- i) si *f* admet une fonction réciproque. Si oui, la représenter graphiquement en expliquant la(les) manipulation(s) graphique(s) effectuée(s). Si non, expliquer pourquoi.
- j) le graphique de la fonction $g(x) = \frac{1}{2} f(x+1) 3$ en expliquant les manipulations graphiques effectuées pour construire ce graphe à partir du graphe de la fonction f.

Question 2:

- a) Quelle est l'équation de la droite d passant par les points (1,2) et (-1,-4) ?
- b) Quelle est la pente de la droite $d_1 \equiv 4x + 2y 4 = 0$?
- c) La droite d_1 est-elle parallèle à la droite $d_2 \equiv y = 2x$? Justifier. En cas de parallélisme, préciser si les deux droites sont parallèles distinctes ou confondues. En cas de non-parallélisme, calculer le point de concours de ces deux droites. Vérifier graphiquement en représentant d_1 et d_2 ci-dessous.

d) La droite d_1 est-elle perpendiculaire à la droite $d_3 \equiv 2y = x$? Justifier. Vérifier graphiquement en représentant d_1 et d_3 ci-dessous.

Question 3: Vrai ou Faux? Justifier.

a)
$$\sqrt[6]{a}$$
 $\sqrt[12]{a^5}$ $\sqrt[8]{a^6}$ = $\frac{a}{\sqrt[4]{a}}$ où $a \in \mathbb{R}^+$

b)
$$\frac{1-2\sqrt{10}+\sqrt{20}}{\sqrt{5}} = \frac{1-10\sqrt{2}+\sqrt{5}}{5}$$

c)
$$\frac{(3^{n-1})^{n+1}}{9^{n+1}}$$
 : $\frac{(3^n)^{n-1}}{3^{n+1}}$ = $\frac{1}{9}$

d) La relation binaire ci-jointe est fonctionnelle et bijective.

e) Le graphe ci-dessous est celui de la fonction $f(x) = 4 \sin(x)$.

Nom:

Prénom:

Section:

f) Le graphe ci-dessous est celui de la fonction $f(x) = |(x+1)^2 - 2|$.

g) La fonction $f: \mathbb{R}^+ \to [1, \to [; x \leadsto y = f(x) = x^2 + 1 \text{ représentée ci-dessous admet une fonction réciproque } f^{-1}: [1, \to [\to \mathbb{R}^+; x \leadsto y = f^{-1}(x) = \sqrt{x+1} \text{ représentée également ci-dessous.}]$

- h) La fonction $f: \mathbb{R} \to \mathbb{R}$; $x \sim y = f(x) = 4x^3 4x^2 + x$ est injective.
- i) La fonction $f: \mathbb{R} \to \mathbb{R}$; $x \sim y = f(x) = 3^{\frac{x^2 4x + 3}{1 2x}}$ n'est pas surjective.

- j) La fonction $f: \mathbb{R} \to \mathbb{R}$; $x \sim y = f(x) = \log(x^2 + x + 1)$ est une application.
- k) Un triangle quelconque dont deux côtés mesurent respectivement 4cm et 8cm en formant entre eux un angle de 60° a une surface de $8\sqrt{3}$ cm² et son troisième côté mesure $4\sqrt{3}$ cm.

- 1) $d \equiv y = 2$ est une droite horizontale.
- m) L'axe de symétrie de la parabole $P_1 \equiv y = x^2 2x + 1$ est la droite verticale $d \equiv x = 1$.
- n) La parabole $P_2 \equiv y = -x^2 + 2x + 3$ est convexe.
- o) Le sommet de la parabole $P_3 \equiv y = 2x^2 4x + 4$ est (-1,10).
- p) La parabole $P_4 \equiv y = x^2 + x + 2$ coupe l'axe Oy au point (0,2) et ne coupe pas l'axe Ox.
- q) Les solutions réelles de l'équation $\sqrt{x^4 + 2} = \sqrt{3} \ x \ \text{sont} \left\{ -\sqrt{2} \ , -1 \ , 1 \ , \ \sqrt{2} \right\}$.

r) L'ensemble des solutions réelles de l'inéquation $(-x^2 + 5x - 4)(3x - 6) > 0$ est] 2, 4 [.

- s) Un angle au centre d'un cercle de rayon 8cm et qui intercepte sur ce cercle un arc de longueur égale à 2cm mesure $\frac{1}{4}$ radian.
- t) Si $f : \mathbb{R} \to \mathbb{R}$, $x \sim y = f(x) = \sin x$ et si $g : \mathbb{R} \to \mathbb{R}$, $x \sim y = g(x) = 2x$, alors $(f \circ g)(x)$ est impaire.
- u) L'équation $\ln x + \ln (2 + 2x) = \ln (-4x + 8)$ n'admet pas de solution réelle.

v) L'ensemble des solutions réelles de l'équation $-2.10^x + 10^{-x+1} = 1$ est $S = \{ log 2 \}$.

Nom:

Prénom:

Section:

Question 4:

a) Représenter sur le cercle trigonométrique ci-dessous un angle α orienté positivement du troisième quadrant dont la cotangente vaut $\frac{3}{4}$. Représenter et calculer les valeurs exactes des autres nombres trigonométriques de cet angle α .

b) Evaluer les expressions suivantes :

cotg(150°) =	$arctg(\sqrt{3}) =$
$\arccos\left(\frac{-\sqrt{3}}{2}\right) =$	sin(-765°) =
$tg\left(\frac{-3\pi}{4}\right) =$	$\cos\left(\frac{5\pi}{3}\right) =$
sin (270°) =	$tg\left(\frac{13\pi}{6}\right) =$

c) Résoudre en radians, dans $\mathbb R$ et avec des angles orientés positivement les équations suivantes :

$tg^2 2x = 3$	$2\sin^2 x = -5\cos x -$

d) Un arpenteur géomètre a tracé le plan suivant d'un terrain de forme triangulaire :

• Quelles sont les coordonnées du sommet C?

• Quel est le périmètre du triangle ?

Question 5:

a) Calculer les domaines de définition des fonctions suivantes :

$$f(x) = \log_2\left(\frac{1-2^x}{2^x}\right)$$

$$g(x) = \sqrt{4 - e^{2x}}$$

b) Calculer les valeurs exactes des expressions suivantes :

•
$$log_82 =$$

•
$$log_{10}1,25 + log_{10}80 =$$

•
$$2^{\log_2 3 + \log_2 5} =$$

•
$$log_6 \frac{1}{36} =$$

$$\bullet \quad e^{3 \ln 2} =$$

c) Déterminer, en justifiant, les expressions analytiques des fonctions f_1 et f_2 représentées ci-dessous.

- d) Une population de bactéries triple toutes les quatre heures. Supposons qu'il y ait initialement 100 bactéries
 - A combien se monte la population après 16 heures?

- Après t heures?
- Dessiner le graphique qui rend compte de l'évolution de cette population en fonction du temps et estimer le temps nécessaire pour que cette population atteigne un effectif de 10 000.

• Vérifier analytiquement sachant que $log_3(10) \cong 2,096$.

Nom: Prénom: Section: