Universidade Federal do Rio Grande do Norte Instituto Metrópole Digital

IMD0041 – Introdução a Organização e Arquitetura de Computadores

Paralelismo em Nível de Instruções (ILP)

Prof Gustavo Girão

Mais paralelismo? Onde e quando?

- ILP !!
 - Superpipelines
 - Superescalares
 - VLIW
- O objetivo é sempre diminuir o CPI abaixo de 1
- Conflitos de dados e de recursos são um problema
- Tudo tem limite!

Superpipelines

IF	D	EX	MEM	WB				
	IF	D	EX	MEM	WB			
		IF	ID	EX	MEM	WB		
	,		IF	ID	EX	MEM	WB	
				IF	ID	EX	MEM	WB

Superpipelines

_					_				_	_					
IF1	IF2	ID1	ID2	EX1	EX2	MEM 1	MEM 2	WB 1	WB 2						
	IF1	IF2	ID1	ID2	EX1	EX2	MEM 1	MEM 2	WB 1	WB 2					
		IF1	IF2	ID1	ID2	EX1	EX2	MEM 1	MEM 2	WB 1	WB 2			14	
			IF1	IF2	ID1	ID2	EX1	EX2	MEM 1	MEM 2	WB 1	WB 2		IMD0041	
				IF1	IF2	ID1	ID2	EX1	EX2	MEM 1	MEM 2	WB 1	WB 2		
					IF1	IF2	ID1	ID2	EX1	EX2	MEM 1	MEM 2	WB 1	WB 2	
					IF2	ID1	ID2	EX1	EX2	MEM 1	MEM 2	WB 1	W 2		
							IF1	IF2	ID1	ID2	EX1	EX2	MEM 1	MEM 2	W 1
							IF1	IF2	ID1	ID2	EX1	EX2	MEM 1	МЕ 2	
10 instruções ao mesmo tempo										IF2	ID1	ID2	EX1	EX2	ME.

	-											_ 1					-	г							
1	2	3	4	5	6	7	8	9	0	1	1 2	1 3	1 4	1 5	1 6	7	1 8	1 9	2 0						
	1	2	3	4	5	6	7	8	9	1 0	1	1 2	1 3	1 4	1 5	1 6	1 7	1 8	1 9	2 0					
		1	2	3	4	5	6	7	8	9	1 0	1	1 2	1 3	1 4	1 5	1 6	1 7	1 8	1 9	2 0				
			1	2	3	4	5	6	7	8	9	1 0]]	1 2	1 3	1 4	1 5	1	1 7	1 8	1 9	2 0			
				1	2	3	4	5	6	7	8	9	1 0	1	1 2	1 3	1 4	1 5	1	1 7	1 8	1 9	2		
					1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1 3	1 4	1 5	1 6	1 7	1 8	1 9	2 0	
1 2 3 4 5 6 7								7	8	9	1 0	1	1 2	3	1 4	1 5	1 6	1 7	1 8	1 9	2 0				
							1	2	3	4	5	6	7	8	9	1 0	1	1 2	1 3	1 4	1 5	1	1 7	1 8	1 9
								1	2	3	4	5	6	7	8	9	1 0	1	1 2	3	1 4	1 5	1 6	1 7	1 8
									1	2	3	4	5	6	7	8	9	1 0	1	1 2	1 3	1 4	1 5	1 6	1 7
1 2 3									3	4	5	6	7	8	9	1 0	1	1 2	1 3	1 4	1 5	1 6			
								2	3	4	5	6	7	8	9	1 0	1	1 2	1 3	1 4	1 5				
mesmo tempo									1	2	3	4	5	6	7	8	9	1 0	1	1 2	1 3	1 4			
										1	2	3	4	5	6	7	8	9	1	1	1	1			

Conceitos avançados

- Podemos obter CPI < 1?
 - Conceito de IPC Instruções por ciclo
 - Ocomo fazer isso?
 - ♦ Executando mais de uma instrução (despacho)
- Despacho de instruções
 - Estático
 - **♦**Superescalar
 - Dinâmico
 - **♦VLIW**
- Ações
 - Definir quais instruções serão despachadas
 - Garantir corretude

Especulação

- Para aumentar o IPC é preciso saber o grau de dependência das instruções
- As vezes também é preciso adivinhar o fluxo de instruções
 - Computação Esotérica!
- Pode ser feita pelo hardware ou Software
- O problema é quando erramos
 - Mecanismos de recuperação
 - Exceções disparadas
 - Flush do pipeline
 - o Perda de tempo!

Execução fora de ordem

- Uma das soluções para evitar (ou amenizar) stalls no pipeline é o reordenamento de instruções
- Entretanto, podemos tentar executar instruções fora de ordem a qualquer momento
 - Para amenizar atrasos em função de conflitos estruturais, por exemplo

Despacho Estático

Very Large Instruction Word

Tempo

Very Large Instruction Word (VLIV

Processadores VLIW

- Deu inicio à "programação horizontal"
 - Instruções muito "largas" utilizadas para gerar sinais de controle diretos
- Exemplos de processadores VLIW comerciais
 - Intel i860 RISC (dual mode: scalar and VLIW)
 - Intel I-64 (EPIC: Itanium and Itanium 2)
 - Transmeta Crusoe
 - Lucent/Motorola StarCore
 - ADI TigerSHARC
 - Infineon (Siemens) Carmel

Processadores VLIW

- São processadores de despacho múltiplo estático
 - O compilador decide quais instruções serão despachadas e executadas simultaneamente
 - Pacote de despacho
- VLIWs tem:
 - Múltiplas unidades funcionais
 - Banco de registradores com múltiplas portas
 - Barramento de instruções muito largo

Despacho Dinâmico

Princípios da super-escalaridade

- Várias unidades de execução
- Várias instruções completadas simultaneamente em cada ciclo de relógio
- Hardware é responsável pela extração de paralelismo

	IF	ID	EX	MEM	WB					
	IF	ID	EX	MEM	WB					
	, i	IF	ID	EX	MEM	WB				
•	t	IF	ID	EX	MEM	WB				
			IF	ID	EX	MEM	WB			
			IF	ID	EX	MEM	WB			
				IF	ID	EX	MEM	WB		
				IF	ID	EX	MEM	WB		
					IF	ID	EX	MEM	WB	
					IF	ID	EX	MEM	WB	

Princípios da super-escalaridade

- Processadores comuns conseguem IPC = 2
 - Técnicas avançadas podem chegar a IPC = 6
- Problemas com a execução simultânea de instruções
 - Dependências estruturais
 - ♦ memória
 - o dependências de **dados**
 - ♦ verdadeiras
 - ♦ falsas anti-dependências, dependências de saída
 - o dependências de **controle** (desvios)

Princípios da super-escalaridade

- Término das instruções pode não seguir a seqüência estabelecida no programa
- Processador com capacidade de "look-ahead"
 - se há conflito que impede execução da instrução atual processador
 - ♦ examina instruções além do ponto atual do programa
 - → procura instruções que sejam independentes
- Possibilidade de execução fora de ordem
 - cuidado para manter a corretude dos resultados do programa

Processador com 2 pipelines

exemplo: Pentium I

cache de instruções precisa fornecer dobro de instruções por ciclo!!

Unidades de execução especializadas

Outras técnicas mais refinadas

Janela de instruções centralizada

Janela de instruções distribuída

Renomeação de registradores

- Objetivo: resolver Antidependências e dependências de saída.
 - Poderia ser resolvido com mais registradores
- Exemplo

```
ADD R1, R2, R3 ; R1 = R2 + R3
ADD R2, R4, 1 ; R2 = R4 + 1 antidependência em R2
ADD R1, R5, R6 ; R1 = R5 + R6 dependência de saída em R1
```

 Utilizando 2 outros registradores R7 e R8 pode-se eliminar as dependências falsas

```
ADD R1, R2, R3 ; R1 = R2 + R3
ADD R7, R4, 1 ; R7 = R4 + 1
ADD R8, R5, R6 ; R8 = R5 + R6
```

Renomeação de registradores

- Não é possível criar número ilimitado de registradores
- Arquitetura deve manter compatibilidade quanto aos registradores visíveis para o programador
- Solução
 - utilizar banco de registradores interno, bem maior do que o banco visível
 - o renomear registradores temporariamente
 - cada registrador visível que é escrito numa instrução é renomeado para um registrador interno escolhido dinamicamente

Renomeação de registradores

- No exemplo anterior, supondo registradores internos Ra, Rb, Rc, Rd, Re, Rf, Rg
 - o ADD Ra, Rb, Rc
 - o ADD Rd, Ra, 1
 - o ADD Re, Rf, Rg
- Antidependência e dependência de saída foram eliminadas

Buffer de reordenamento

Microarchitecture of an ILP-based CPU (Power PC)

Figure 4: Pentium® 4 processor microarchitecture

VLIW vs Superescalar

- Complexidade do hardware
 - VLIW é mais simples e mais fácil de escalar (decodificação)
 - Superescalares precisam encontrar paralelismo em tempo de execução
- Programação e complexidade do compilador
 - VLIW é mais complexo
 - Compiladores precisam encontrar todo o paralelismo
 - Lock step: conflitos podem fazer com que outras instruções figuem paradas
 - Superescalares utilizam compilação comum

VLIW vs Superescalar

- Compatibilidade de software
 - VLIW precisa de recompilação
- Espaço em memória
 - VLIW precisa de maior largura de banda de instruções
 - Técnicas para evitar conflitos podem ser despendiosas
 - ♦ NOPs são um desperdício
 - Loop unrolling utiliza uma quantidade ainda maior de espaço em memória

Bibliografia

Patterson e Hennessy

Organização e projeto de computadores — A interface Hardware/Software

CAPÍTULO 6 – Melhorando o desempenho com Pipelining

William Stalling
Arquitetura e Organização de Computadores
CAPÍTULO 12 – Sessão 12.4

Próxima aula

Memórias Cache