10

CLAIMS

- 1. Method for estimating the seismic illumination fold $|(\bar{x},\bar{p})|$ in the migrated 3D domain at at least one image point \bar{x} , for at least one dip of vector \bar{p} ,
- wherein the illumination fold $I(\bar{x},\bar{p};\bar{s},\bar{r})$ for each (source \bar{s} , 5 receiver \bar{r}) pair in the seismic survey is estimated, by applying the following steps:
 - determination of the reflection travel time $t_r(\vec{x}_r(\vec{p}); \vec{s}, \vec{r})$ from the source \vec{s} to the specular reflection point \vec{x}_r on the plane reflector passing through the image point \vec{x} and perpendicular to the dip vector \vec{p} and then returning to the reflector \vec{r} ;

starting from the diffraction travel time $t_d(\bar{x};\bar{s},\bar{r})$ from the source \bar{s} to the said image point \bar{x} and then returning to the reflector \bar{r} ;

- 15 incrementing the said illumination fold $I(\bar{x},\bar{p};\bar{s},\bar{r})$ related to the said (source \bar{s} , receiver \bar{r}) pair as a function of the difference between the diffraction travel time $t_d(\bar{x};\bar{s},\bar{r})$ and the reflection travel time $t_r(\bar{x}_r(\bar{p});\bar{s},\bar{r})$.
- 2. Method according to claim 1, comprising the step of summating each of the said illumination folds $I(\bar{x},\bar{p};\bar{s},\bar{r})$ related to a (source \bar{s} , receiver \bar{r}) pair so as to determine the total illumination fold $I(\bar{x},\bar{p}) = \sum_{\bar{s},\bar{r}} I(\bar{x},\bar{p};\bar{s},\bar{r})$.
- 3. Method according to one of the preceding claims, wherein, during the incrementing step, the illumination fold $I(\bar{x},\bar{p},\bar{s},\bar{r})$ is incremented using an increment function $i(t_d,t_r;\ \bar{s},\bar{r})$ according to $I(\bar{x},\bar{p})=I(\bar{x},\bar{p})+i(t_d,t_r;\ \bar{s},\bar{r})$, the said increment function taking account of the difference

5

between the diffraction travel time $t_d(\bar{x}; \bar{s}, \bar{r})$ and the reflection travel time $t_r(\bar{x}_r(\bar{p}); \bar{s}, \bar{r})$.

- 4. Method according to claim 3, wherein the increment function i is a function of the seismic wavelet $s\left(t\right)$.
- 5. Method according to claim 4, wherein the increment function i is expressed as a function of the derivative of the seismic wavelet s(t) according to: $i(t_d, t_r; \bar{s}, \bar{r}) = s(t_d(\bar{x}; \bar{s}, \bar{r}) t_r(\bar{x}_r(\bar{p}); \bar{s}, \bar{r})$
- 6. Method according to claim 4, wherein the increment function i is expressed as a function of the derivative $\bar{s}(t)$ of the seismic wavelet s(t) with respect to time according to:

$$i(t_d, t_r; \overline{s}, \overline{r}) = t_d(\overline{x}; \overline{s}, \overline{r}) - t_r(\overline{x}_r(\overline{p}); \overline{s}, \overline{r})$$

- 7. Method according to any one of claims 3 to 6, in which an a priori correction $w(\bar{x},\bar{s},\bar{r})$ of the illumination fold is taken into account by migration, comprising the step of incrementing the illumination fold $I(\bar{x},\bar{p};\bar{s},\bar{r})$ related to a (source \bar{s} , receiver \bar{r}) pair by $i(t_d,t_r;\bar{s},\bar{r}).w(\bar{x};\bar{s},\bar{r})$.
 - 8. Method according to any one of the preceding claims, wherein the determination step includes the second order Taylor series development of the diffraction travel time $t_d(\bar{x};\bar{s},\bar{r})$ around the image point \bar{x} :
- 25 $t_{d}(\overline{x}; \overline{s}, \overline{r}) = t_{d}(\overline{x}; \overline{s}, \overline{r}) + (\overline{\nabla}_{x}t_{d}(\overline{x}; \overline{s}, \overline{r}))^{T} \cdot (\overline{x}_{r} \overline{x}) + \frac{1}{2}(\overline{x}_{r} \overline{x}) + \frac{1}{2}(\overline{x}_{r} \overline{x})$ $\overline{x})^{T} \cdot \Delta_{x,x}t_{d}(\overline{x}; \overline{s}, \overline{r}) \cdot (\overline{x}_{r} \overline{x})$
 - 9. Method according to claim 8, wherein the specular reflection point \vec{x}_r (\bar{p}) is determined along the length of the said reflector such that the diffraction travel time
- 30 at the said specular reflection point \vec{x}_r (\bar{p}) is

stationary, according to the equation: $\overline{p}^T \Lambda(\overline{\nabla}_x t_d(\overline{x}; \overline{s}, \overline{r}) + \Delta_{x,x} t_d(\overline{x}; \overline{s}, \overline{r}) . (\overline{x}_r(\overline{P}) - \overline{x})) = \overline{0}.$

10. Method according to any one of claims 8 or 9, wherein the specular reflection point \bar{x}_r and the reflection travel time $t_r(\bar{x}_r(\bar{p});\bar{s},\bar{r})$ (are determined according to the following expressions:

$$\bar{x}_{r}(\bar{p}) = \bar{x}-M.F^{-1}.\bar{b}$$

$$t_{r}(\bar{x}_{r}(\bar{p}); \bar{s}, \bar{r}) = t_{d}(\bar{x}; \bar{s}, \bar{r}) - \frac{1}{2}.\bar{b}^{r}.F^{-1}.\bar{b}$$

10

25

30

where:

- M is a (3 x 2) matrix described by two vectors extending along the length of the reflector, and therefore perpendicular to the dip vector \bar{p} ;
- 15 - \bar{b} is a (2 x 1) vector of first order derivatives of the diffraction travel time along the reflection plane: $\bar{b} = M^{T} \cdot (\bar{\nabla}_{x} t_{d})$;
- - F is a (2 x 2) matrix of second order derivatives of the diffraction travel time along the reflection 20 plane: $F = M^T \cdot (\Delta_{x,x} t_d) \cdot M$.
 - 11. Method according to any one of the preceding claims, wherein the determination step uses isochronic migration maps $t_d(\bar{x};\bar{s},\bar{r})$ specified for each (source \bar{s} , receiver \bar{r}) pair involved in the migration at each image point \bar{x} in the migrated 3D domain.
 - 12. Method according to any one of the preceding claims, wherein the seismic illumination fold $I(\bar{x}, \bar{p})$ in the migrated 3D domain is estimated during the Kirchhoff summation migration of seismic data recorded during the 3D seismic prospecting.

- 13. Method for correction of seismic data amplitudes recorded during 3D seismic prospecting in order to compensate for the effect of non-uniform illumination of sub-soil reflectors, comprising the steps of:
- estimating the illumination fold $I(\bar{x}, \bar{p})$ using the method according to any one of claims 1 to 12,
 - using the inverse $I^{-1}(\bar{x},\bar{p})$ of the said ratio as a weighting factor to be applied to each of the said seismic data amplitudes.
- 14. Method for selection of an acquisition geometry among a plurality of acquisition geometries as a function of the target of 3D seismic prospecting, comprising the steps of:
- determining the illumination fold $I(\bar{x},\bar{p})$ by the 15 method according to any one of claims 1 to 12, for each of the acquisition geometries considered,
 - selecting the acquisition geometry providing the optimum illumination fold as a function of the target.