ŧ

IDS Filed 7/22/08 in 10/528,240

PATENT ABSTRACTS OF JAPAN

(11) Publication number:

2004-137208

(43) Date of publication of application: 13.05.2004

(51)Int.CI.

CO7F 9/6553 // A61K 31/661 A61K 31/662 A61P 37/06

(21)Application number : 2002-304196

(71)Applicant: SANKYO CO LTD

(22) Date of filing:

18.10.2002

(72)Inventor: NISHI TAKEHIDE

SHIMOZATO RYUICHI

NARA FUTOSHI

(54) PHOSPHORIC ACID OR PHOSPHONIC ACID DERIVATIVE

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a phosphoric acid or phosphonic acid derivative, pharmacologically acceptable salts or esters thereof, all having high immunosuppressive activity.

SOLUTION: The phosphoric acid or phosphonic acid derivative is represented by formula(I)(wherein, R1 and R2 are each H, or the like; R3 and Ra3 are each H or a phosphate group-protecting group; R4 is H, a lower alkyl, or the like; (n) is 1-6; X is ethylene group, or the like; Y is a single bond, a 1-10C alkylene group, or the like; Z is O or methylene group; R5 is H, a cycloalkyl, an aryl, or the like; R6 and R7 are each H, a halogen atom, or the like; wherein, when R5 is H, Y is a substituted 1-10C alkylene group, or the like). The pharmacologically acceptable salts or esters of the phosphoric acid or phosphonic acid derivative are also provided, respectively.

7/1/2008

(19) 日本国特許庁(JP)

(12) 公 開 特 許 公 報(A)

(11)特許出願公開番号

特開2004-137208 (P2004-137208A)

(43) 公開日 平成16年5月13日(2004.5.13)

(51) Int.C1.⁷ F1 テーマコード (参考)
CO7F 9/6553 CO7F 9/6553 4CO86
// A61K 31/661 A61K 31/661 4HO5O
A61K 31/662
A61P 37/06 A61P 37/06

審査請求 未請求 請求項の数 44 〇L (全 199 頁)

		THE TRIBITAL N	THE THE PERSON II OL (E 100 M)
(21) 出願番号 (22) 出願日	特願2002-304196 (P2002-304196) 平成14年10月18日 (2002,10,18)	(71) 出願人	000001856 三共株式会社 東京都中央区日本橋本町3丁目5番1号
		(74) 代理人	100081400
		(13)14-270	弁理士 大野 彰夫
		(74) 代理人	100092716
		. , , ,	弁理士 中田 ▲やす▼雄
		(74) 代理人	100115750
			弁理士 矢口 敏昭
		(74) 代理人	100119622
			弁理士 金原 玲子
		(72) 発明者	西 剛秀
			東京都品川区広町1丁目2番58号 三共
			株式会社内
			PRO CATA THE SAME A

(54) 【発明の名称】リン酸又はホスホン酸誘導体

(57)【要約】

【課題】本発明は、優れた免疫抑制作用を有するリン酸又はホスホン酸誘導体、その薬理 上許容される塩又はその薬理上許容されるエステルに関する。

【解決手段】一般式(Ip)

【化1】

[式中、 R^1 、 R^2 :H等; R^3 、 Ra^3 :H、リン酸基の保護基; R^4 :H、低級アルキル基等;n:1乃至6;X: エチレン基等;Y: 単結合、 C_1-C_{10} アルキレン基等;Z: 酸素原子、メチレン基; R^5 :H、シクロアルキル基、アリール基等; R^6 、 R^7 :H、ハロゲン原子等;但し、 R^5 が水素原子であるとき、Y は置換された C_1-C_{10} アルキレン基等を示す。]を有するリン酸又はホスホン酸誘導体、その薬理上許容される塩又はその薬理上許容されるエステル。

【特許請求の範囲】

【請求項1】

一般式(I)

【化1】

[式中,

 R^{-1} 及び R^{-2} は、同一又は異なって、水素原子、低級脂肪族アシル基又は低級アルコキシカルボニル基を示し、

R³及びRa³は、同一又は異なって、水素原子又はリン酸基の保護基を示し、

R⁴は、水素原子、低級アルキル基又はヒドロキシ低級アルキル基を示し、

nは、1乃至6の整数を示し、

X は、エチレン基、ビニレン基、エチニレン基、式 - D - C H_2 - を有する基(式中、 D は、カルボニル基、式 - C H (O H) - を有する基、酸素原子、硫黄原子又は式 - N H - 20 を有する基を示す。)、 C $_6$ - C $_1$ $_0$ アリーレン基又は置換基群 a から選択される基で 1 乃至 3 個置換された C $_6$ - C $_1$ $_0$ アリーレン基を示し、

Y は、単結合、 C_1 $-C_1$ $_0$ P $ルキレン基、 置換基群 a 及び b から選択される基で 1 乃至 3 個置換された <math>C_1$ $-C_1$ $_0$ P $ルキレン基、 炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する <math>C_1$ $-C_1$ $_0$ P $ルキレン基、 又は置換基群 a 及び b から選択される基で 1 乃至 3 個置換された、 炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する <math>C_1$ $-C_1$ $_0$ P ルキレン基を示し

乙は、酸素原子又はメチレン基を示し、

 R^5 は、水素原子、 C_3-C_{10} シクロアルキル基、 C_6-C_{10} アリール基、硫黄原子、酸素原子及び/又は窒素原子を 1 乃至 3 個含む 5 乃至 7 員複素環基、置換基群 a 及び b から選択される基で 1 乃至 3 個置換された C_3-C_{10} シクロアルキル基、置換基群 a 及び b から選択される基で 1 乃至 3 個置換された C_6-C_{10} アリール基、又は置換基群 a 及び b から選択される基で 1 乃至 3 個置換された、硫黄原子、酸素原子及び/又は窒素原子を 1 乃至 3 個含む 5 乃至 7 員複素環基を示し、

R⁶ 及び R⁷ は、同一又は異なって、水素原子又は置換基群 a から選択される基を示し、置換基群 a は、ハロゲン原子、低級アルキル基、ハロゲノ低級アルキル基、低級アルコキシ基、低級アルキルチオ基、カルボキシル基、低級アルコキシカルボニル基、ヒドロキシ基、低級脂肪族アシル基、アミノ基、モノー低級アルキルアミノ基、ジー低級アルキルアミノ基、 低級脂肪族アシルアミノ基、シアノ基及びニトロ基からなる群を示し、

置換基群 b は、 C_3 $-C_1$ o シクロアルキル基、 C_6 $-C_1$ o アリール基、硫黄原子、酸素原子及び/又は窒素原子を 1 乃至 3 個含む 5 乃至 7 員複素環基、置換基群 a から選択される基で 1 乃至 3 個置換された C_3 $-C_1$ o シクロアルキル基、置換基群 a から選択される基で 1 乃至 3 個置換された C_6 $-C_1$ o アリール基並びに置換基群 a から選択される基で 1 乃至 3 個置換された、硫黄原子、酸素原子及び/又は窒素原子を 1 乃至 3 個合む 5 乃至 7 員複素環基からなる群を示す。

但し、 R^5 が水素原子であるとき、Yは、置換基群 a 及び b から選択される基で 1 乃至 3 一個置換された C_1 $-C_1$ $_0$ アルキレン基、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C_1 $-C_1$ $_0$ アルキレン基、又は置換基群 a 及び b から選択される基で 1 乃至 3 個置換された、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C_1 $-C_1$ $_0$ アルキレン基を示す。]

を有する化合物、その薬理上許容される塩又はその薬理上許容されるエステル。

【請求項2】

請求項1において、式(I)を有する化合物が、式(I-a)

【化2】

を有する化合物、その薬理上許容される塩又はその薬理上許容されるエステル。

【請求項3】

請求項1において、式(I)を有する化合物が、式(I-b)

[化3]

を有する化合物、その薬理上許容される塩又はその薬理上許容されるエステル。

【請求項4】

請求項1乃至3から選択されるいずれか1項において、

 R^{-1} 及び R^{-2} が、同一又は異なって、水素原子、 C_1 $-C_4$ 脂肪族アシル基又は C_1 $-C_4$ アルコキシカルボニル基である化合物又はその薬理上許容される塩。

【請求項5】

請求項1乃至3から選択されるいずれか1項において、

 R^{-1} 及び R^{-2} が、同一又は異なって、水素原子又は C_1 $-C_2$ 脂肪族アシル基又は C_1 $-C_2$ に 形族アシル基又は C_1 $-C_2$ に の 薬理上許容される 塩。

【請求項6】

請求項1乃至3から選択されるいずれか1項において、

 R^{1} 及び R^{2} が、同一又は異なって、水素原子、アセチル基又はメトキシカルボニル基である化合物又はその薬理上許容される塩。

【請求項7】

請求項1乃至3から選択されるいずれか1項において、

R¹ 及びR² が、水素原子である化合物又はその薬理上許容される塩。

40

30

【請求項8】

請求項1乃至7から選択されるいずれか1項において、

 R^3 及び R^3 a が、同一又は異なって、水素原子、低級アルキル基、低級アルケニル基又はアラルキル基である化合物又はその薬理上許容される塩。

【請求項9】

請求項1乃至7から選択されるいずれか1項において、

R 3 及び R 3 a が、同一又は異なって、水素原子又は低級アルキル基である化合物又はその薬理上許容される塩。

【請求項10】

請求項1乃至7から選択されるいずれか1項において、

 R^3 及び R^3 a が、同一又は異なって、水素原子又は C_1 $-C_4$ アルキル基である化合物 又はその薬理上許容される塩。

【請求項11】

請求項1乃至7から選択されるいずれか1項において、

 R^3 及び R^3 a が、同一又は異なって、水素原子、メチル基又はエチル基である化合物又はその薬理上許容される塩。

【請求項12】

請求項1乃至7から選択されるいずれか1項において、

R³及びR³aが、水素原子である化合物又はその薬理上許容される塩。

【請求項13】

請求項1乃至12から選択されるいずれか1項において、

 R^4 が、 $C_1 - C_4$ アルキル基又はヒドロキシ $C_1 - C_4$ アルキル基である化合物又はその薬理上許容される塩。

【請求項14】

請求項1乃至12から選択されるいずれか1項において、

 R^4 が、 $C_1 - C_2$ アルキル基又はヒドロキシ $C_1 - C_2$ アルキル基である化合物又はその薬理上許容される塩。

【請求項15】

請求項1乃至12から選択されるいずれか1項において、

R⁴が、C₁-C₂アルキル基である化合物又はその薬理上許容される塩。

20

10

【請求項16】

請求項1乃至12から選択されるいずれか1項において、

R⁴が、メチル基である化合物又はその薬理上許容される塩。

【請求項17】

請求項1乃至16から選択されるいずれか1項において、

nが、2又は3である化合物又はその薬理上許容される塩。

【請求項18】

請求項1乃至16から選択されるいずれか1項において、

nが、2である化合物又はその薬理上許容される塩。

【請求項19】

請求項1乃至18から選択されるいずれか1項において、

Xが、エチレン基、エチニレン基、式-D-C H_2- を有する基 [式中、D は、カルボニル基又は式-C H (O H) -を有する基を示す。]、フェニレン基、ナフチレン基、又は置換基群 a から選択される基で 1 乃至 3 個置換されたフェニレン基若しくはナフチレン基である化合物又はその薬理上許容される塩。

【請求項20】

請求項1乃至18から選択されるいずれか1項において、

Xが、エチレン基、エチニレン基、式 $-CO-CH_2-$ を有する基、フェニレン基、又はハロゲン原子及び低級アルキル基からなる群より選択される基で 1 乃至 3 個置換されたフェニレン基である化合物又はその薬理上許容される塩。

40

30

【請求項21】

請求項1乃至18から選択されるいずれか1項において、

X が、エチレン基、エチニレン基又は式 $-CO-CH_2-$ を有する基である化合物又はその薬理上許容される塩。

【請求項22】

請求項1乃至21から選択されるいずれか1項において、

Yが、 $C_1 - C_1_0$ アルキレン基又は置換基群 a 及び b から選択される基で 1 乃至 3 個置換された $C_1 - C_1_0$ アルキレン基である化合物又はその薬理上許容される塩。

【請求項23】

請求項1乃至21から選択されるいずれか1項において、

40

Y が C_1 $-C_6$ アルキレン基又はヒドロキシ基で 1 乃至 3 個置換された C_1 $-C_6$ アルキレン基である化合物又はその薬理上許容される塩。

【請求項24】

請求項1乃至21から選択されるいずれか1項において、

Y が C_1 $-C_5$ アルキレン基又はヒドロキシ基で 1 乃至 3 個置換された C_1 $-C_5$ アルキレン基である化合物又はその薬理上許容される塩。

【請求項25】

請求項1乃至21から選択されるいずれか1項において、

Yが、エチレン基、トリメチレン基、テトラメチレン基、又は1個のヒドロキシ基で置換されたエチレン基、トリメチレン基若しくはテトラメチレン基である化合物又はその薬理 10上許容される塩。

【請求項26】

請求項1乃至21から選択されるいずれか1項において、

Yが、エチレン基、トリメチレン基若しくはテトラメチレン基である化合物又はその薬理 上許容される塩。

【請求項27】

請求項1乃至21から選択されるいずれか1項において、

Yが、エチレン若しくはトリメチレン基である化合物又はその薬理上許容される塩。

【請求項28】

請求項1乃至21から選択されるいずれか1項において、

Yが、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C_1-C_1 。 アルキレン基、又は 1 個のヒドロキシ基で置換された、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C_1-C_1 。 アルキレン基である化合物又はその薬理上許容される塩。【請求項 2 9】

請求項1乃至21から選択されるいずれか1項において、

Yが、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C₁ - C₁ o アルキレン基である化合物又はその薬理上許容される塩。

【請求項30】

請求項1乃至21から選択されるいずれか1項において、

Yが、炭素鎖中若しくは鎖端に酸素原子を有するC₁ - C₁ o アルキレン基である化合物 3 又はその薬理上許容される塩。

【請求項31】

請求項1乃至21から選択されるいずれか1項において、

Y が、炭素鎖中若しくは鎖端に酸素原子を有する C_1-C_6 アルキレン基である化合物又はその薬理上許容される塩。

【請求項32】

請求項1乃至21から選択されるいずれか1項において、

Yが、式 $-O-CH_2-$ 、 $-O-(CH_2)_2-$ 、 $-O-(CH_2)_3-$ 、 $-CH_2-O-$ 、 $-(CH_2)_2-O-$ 又は $-(CH_2)_3-O-$ を有する基である化合物又はその薬理上許容される塩。

【請求項33】

請求項1乃至21から選択されるいずれか1項において、

Yが、式一CH2 -O-又は一(CH2)2 -O-を有する基である化合物又はその薬理上許容される塩。

【請求項34】

請求項1乃至33から選択されるいずれか1項において、

R⁵ が、水素原子である化合物又はその薬理上許容される塩。

【請求項35】

請求項1乃至33から選択されるいずれか1項において、

 R^{5} が、 C_{3} $-C_{10}$ シクロアルキル基、 C_{6} $-C_{10}$ アリール基、硫黄原子、酸素原子 50

及び/又は窒素原子を1乃至3個含む5乃至7員複素環基、置換基群a及びbから選択される基で1乃至3個置換された C_3-C_{10} シクロアルキル基又は置換基群a及びbから選択される基で1乃至3個置換された C_6-C_{10} アリール基である化合物又はその薬理上許容される塩。

【請求項36】

請求項1乃至33から選択されるいずれか1項において、

【請求項37】

請求項1乃至33から選択されるいずれか1項において、

R⁵ が、C₃ - C₁₀ シクロアルキル基、C₆ - C₁₀ アリール基、又はハロゲン原子、低級アルキル基、ハロゲノ低級アルキル基、低級アルコキシ基及び低級脂肪族アシル基から成る群から選択される基で 1 乃至 3 個置換された C₃ - C₁₀ シクロアルキル基若しくは C₆ - C₁₀ アリール基である化合物又はその薬理上許容される塩。

【請求項38】

請求項1乃至33から選択されるいずれか1項において、

 R^5 が、 C_5 - C_6 シクロアルキル基、フェニル基又はナフチル基である化合物又はその 20 薬理上許容される塩。

【請求項39】

請求項1乃至33から選択されるいずれか1項において、

R⁵が、シクロヘキシル基又はフェニル基である化合物又はその薬理上許容される塩。

【請求項40】

請求項1乃至39から選択されるいずれか1項において、

R⁶ 及び R⁷ が、同一又は異なって、水素原子、ハロゲン原子、低級アルキル基、ハロゲノ低級アルキル基、低級アルコキシ基又は低級アルキルチオ基である化合物又はその薬理上許容される塩。

【請求項41】

請求項1乃至39から選択されるいずれか1項において、

R⁶及びR⁷が、水素原子である化合物又はその薬理上許容される塩。

【請求項42】

請求項1乃至41から選択されるいずれか1項において、

Zが、酸素原子である化合物又はその薬理上許容される塩。

【請求項43】

請求項1において、下記より選択されるいずれか1つの化合物又はその薬理上許容される 塩:

- リン酸 モノ 2-アミノ-2-メチル-4-[5-(4-シクロヘキシルプチル)チオフェン-2-イル] ブチル エステル、

リン酸 モノ 2-アミノー2-メチルー4-[5-(5-シクロヘキシルペンチル)チオフェン-2-イル] ブチル エステル、

リン酸 モノ 2-アミノー2-メチルー4-[5-(5-フェニルペンチル)チオフェン-2-イル] ブチル エステル、

リン酸 モノ 2-アミノ-2-メチル-4-[5-(4-シクロヘキシルオキシブチル) チオフェン-2-イル] ブチル エステル、

リン酸 モノ 2-アミノー2-メチルー4-[5-[4-(4-フルオロフェノキシ) プチル] チオフェンー2-イル] プチル エステル、

リン酸 モノ 2-アミノー2-メチルー4-[5-[4-(4-メトキシフェノキシ) プチル] チオフェンー2-イル] ブチル エステル、

30

50

```
リン酸 モノ 2-アミノ-2-メチル-4-[5-(4-ベンジルオキシブチル)チオ
フェン-2-イル] ブチル エステル、
リン酸 モノ 2-アミノー2-メチルー4-[5-(4-シクロヘキシルプトー1ーイ
ニル)チオフェン-2-イル] ブチル エステル、
リン酸 モノ 2-アミノー2-メチルー4-[5-(4-フェニルブト-1-イニル)
チオフェンー2ーイル] ブチル エステル、
リン酸 モノ 2-アミノー2-メチルー4-[5-(5-シクロヘキシルペントー1-
イニル)チオフェン-2-イル] ブチル エステル、
リン酸 モノ 2-アミノー2-メチルー4-[5-(5-フェニルペント-1-イニル
            ブチル エステル、
                                           10
) チオフェンー2-イル〕
リン酸 モノ 2-アミノー2-メチル-4-[5-[5-(4-フルオロフェニル)ペ
ント-1-イニル]チオフェン-2-イル] ブチル エステル、
リン酸 モノ 2-アミノ-2-メチル-4- [5- [5- (4-メトキシフェニル) ペ
ント-1-イニル]チオフェン-2-イル] ブチル エステル、
リン酸 モノ 2-アミノ-2-メチル-4-[5-[3-(4-メチルシクロヘキシル
オキシ)プロピニル]チオフェン-2-イル] ブチル エステル、
リン酸 モノ 2-アミノ-2-メチル-4-[5-[3-(4-メチルフェノキシ)プ
ロピニル] チオフェンー2ーイル] ブチル エステル、
リン酸 モノ 2-アミノ-2-メチル-4-[5-[3-(4-エチルフェノキシ)プ
                                           20
ロピニル]チオフェンー2ーイル] ブチル エステル、
リン酸 モノ 2-アミノ-2-メチル-4-[5-[3-(4-メチルチオフェノキシ
) プロピニル] チオフェン-2-イル] ブチル エステル、
リン酸 モノ 2-アミノ-2-メチル-4-[5-(4-シクロヘキシルオキシプトー
1-イニル) チオフェン-2-イル] ブチル エステル、
リン酸 モノ 2-アミノ-2-メチル-4- [5- [4-(4-フルオロフェノキシ)
プト-1-イニル]チオフェン-2-イル] プチル エステル、
リン酸 モノ 2-アミノー2-メチルー4- [5-[4-(4-メチルフェノキシ)ブ
トー1ーイニル] チオフェン-2-イル] ブチル エステル、
リン酸 モノ 2-アミノ-2-メチル-4-[5-(3-シクロヘキシルメトキシプロ
ピニル)チオフェン-2-イル] ブチル エステル、
                                           30
リン酸 モノ 2-アミノ-2-メチル-4-[5-(4-フェニルメトキシブト-1-
イニル)チオフェン-2-イル] ブチル エステル、
リン酸 モノ 2-アミノ-2-メチル-4-[5-(4-シクロヘキシルブタノイル)
チオフェン-2-イル] ブチル エステル、
リン酸 モノ 2-アミノ-2-メチル-4-[5-(4-フェニルブタノイル)チオフ
ェン-2-イル] ブチル エステル、
リン酸 モノ 2-アミノ-2-メチル-4-[5-(5-シクロヘキシルペンタノイル
) チオフェンー2ーイル] プチル エステル、
リン酸 モノ 2-アミノ-2-メチル-4-[5-(5-フェニルペンタノイル)チオ
                                           40
フェンー2ーイル] プチル エステル、
リン酸 モノ 2-アミノ-2-メチル-4-[5-[5-(4-フルオロフェニル)ペ
ンタノイル] チオフェンー2ーイル] ブチル エステル、
リン酸 モノ 2-アミノ-2-エチル-4-[5-(5-シクロヘキシルペンチル)チ
オフェン-2-イル] プチル エステル、
リン酸 モノ 2-アミノ-2-エチル-4-[5-(5-シクロヘキシルペント-1-
イニル)チオフェンー2ーイル] ブチル エステル、
リン酸 モノ 2-アミノ-2-エチル-4-[5-(5-シクロヘキシルペンタノイル
) チオフェンー2ーイル] ブチル エステル、
リン酸 モノ 2-アミノー2-メチルー4- [5-[3-(4-クロロフェノキシ)プ
                                           50
ロピニル]チオフェン-2-イル] ブチル エステル、
```

リン酸 モノ 2-アミノー2-メチルー4-[5-[3-(3, 4-ジメチルフェノキシ)プロピニル]チオフェンー2-イル] ブチル エステル、

リン酸 モノ 2-7ミノー2-メチルー4-[5-[3-(3-メトキシフェノキシ) プロピニル] チオフェンー2-イル] ブチル エステル、

リン酸 モノ 2-rミノー2-メチルー4-[5-[3-(3,4-ジメトキシフェノキシ)プロピニル]チオフェンー<math>2-イル] ブチル エステル、

リン酸 モノ 2-rミノー2-メチルー4-[5-[3-(3,5-i)]メトキシフェノキシ)プロピニル]チオフェンー2-イル] ブチル エステル、

リン酸 モノ 2-アミノ-2-メチル-4-[5-[3-(3-アセチルフェノキシ) プロピニル] チオフェン-2-イル] ブチル エステル及び

リン酸 モノ 2-アミノ-2-メチル-4-[5-[3-(4-アセチルフェノキシ) プロピニル] チオフェン-2-イル] ブチル エステル。

【請求項44】

請求項1において、下記より選択されるいずれか1つの化合物又はその薬理上許容される 塩:

3-アミノ-3-メチル-5-[5-(4-シクロヘキシルプチル)チオフェン-2-イル]ペンチルホスホン酸、

3-アミノ-3-メチル-5-[5-(5-シクロヘキシルペンチル)チオフェン-2- 20 イル]ペンチルホスホン酸、

3-アミノ-3-メチル-5-[5-(5-フェニルペンチル)チオフェン-2-イル]ペンチルホスホン酸、

3-アミノ-3-メチル-5-[5-(4-シクロヘキシルオキシブチル)チオフェン-2-イル]ペンチルホスホン酸、

3-アミノ-3-メチル-5-[5-[4-(4-フルオロフェノキシ)ブチル]チオフェン-2-イル]ペンチルホスホン酸、

3-アミノ-3-メチル-5-[5-[4-(4-メトキシフェノキシ)ブチル]チオフェン-2-イル]ペンチルホスホン酸、

3-アミノ-3-メチル-5-[5-(4-ベンジルオキシブチル)チオフェン-2-イ 30ル] ペンチルホスホン酸、

3-アミノ-3-メチル-5-[5-(4-シクロヘキシルプタノイル)チオフェン-2-イル] ペンチルホスホン酸、

3-アミノ-3-メチル-5-[5-(4-フェニルブタノイル)チオフェン-2-イル]ペンチルホスホン酸、

3-アミノ-3-メチル-5-[5-(5-シクロヘキシルペンタノイル)チオフェン-2-イル]ペンチルホスホン酸、

3-アミノ-3-メチル-5-[5-(5-フェニルペンタノイル)チオフェン-2-イル]ペンチルホスホン酸、

3-アミノ-3-メチル-5-[5-(4-フルオロフェニル)ペンタノイル]チ 40オフェン-2-イル]ペンチルホスホン酸、

3-アミノ-3-エチル-5-[5-(5-シクロヘキシルペンチル)チオフェン-2-イル] ペンチルホスホン酸及び

2-アミノー2-エチルー4-[5-(5-シクロヘキシルペンタノイル)チオフェンー2-イル]ペンチルホスホン酸。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、優れた免疫抑制作用を有するリン酸若しくはホスホン酸誘導体、リン酸若しく はホスホン酸誘導体の薬理上許容される塩又はリン酸若しくはホスホン酸誘導体のエステ 50 ル、或いはそれらを有効成分として含有する医薬組成物に関する。

[0002]

【従来の技術】

従来、リウマチやその他の自己免疫疾患等の免疫関連病の治療においては、異常な免疫反応によって生じる炎症反応に対してステロイドなどの抗炎症薬が使用されてきた。しかしながらこれらは対症療法であり根本的治療法ではない。

[0003]

また、糖尿病、腎炎の発症においても免疫系の異常が関与することは報告されているが(例えば、非特許文献 1 参照)、[Kidney International, 51,

94 (1997); Journal of Immunology, 157, 14691 (1996)]、その異常を改善するような薬剤の開発には至っていない。

[0004]

一方、免疫応答を抑制する方法の開発は、臓器及び細胞移植における拒絶反応を防いだり、種々の自己免疫疾患を治療及び予防する上でも極めて重要である。しかしながら、シクロスポリンA(CsA)やタクロリムス(TRL)等の従来知られている免疫抑制剤は、腎臓及び肝臓に対して毒性を示すことが知られており、そのような副作用を軽減するために、ステロイド類を併用するなどの治療が広く用いられてきたが、必ずしも副作用を示すことなく十分な免疫抑制効果を発揮するには至っていないのが現状である。

[0005]

このような背景から、毒性が低く、優れた免疫抑制作用を有する化合物を見出すことが試 20 みられている。

[0006]

免疫抑制剤として、例えば、WO94/08943号公報(EP627406号公報)、WO96/06068号公報、WO98/45249号公報に記載されるアミノアルコール誘導体や、WO02/18395号公報に記載されるリン酸エステル誘導体が知られている。しかしながら、いずれの公報にも、本発明の化合物は開示されていない。

[0007]

一方、上記一般式(I)において、Z=Oである本発明の化合物は、WOO2/O626 8号公報において、ヒドロキシ化合物の保護基がリン酸エステル塩残基である化合物として開示されている。

[0008]

【特許文献1】

WO94/08943号公報(EP627406号公報)(第371頁)

【特許文献2】

WO96/06068号公報(第271頁)

【特許文献3】

WO98/45249号公報(第81頁)

【特許文献4】

WO02/06268号公報(第345頁)

【非特許文献1】

Kidney International, vol. 51, 94 (1997); Journal of Immunology, vol. 157, 4691 (1996)

[0009]

【発明が解決しようとする課題】

上記一般式(I)を有する本発明の化合物が、毒性が低く優れた免疫抑制作用を有し、各種臓器移植又は皮膚移植での拒絶反応、全身性エリトマトーデス、慢性関節リウマチ、多発性筋炎、結合組織炎、骨格筋炎、骨関節炎、変形性関節症、皮膚筋炎、強皮症、ベーチェット病、Chron病、潰瘍性大腸炎、自己免疫性肝炎、再生不良性貧血、特発性血小板減少性紫斑病、自己免疫性溶血性貧血、多発性硬化症、自己免疫性水疱症、尋常性乾癬

50

30

、血管炎症群、Wegener肉芽腫、ぶどう膜炎、シェーグレン症候群、特発性間質性 肺炎、Goodpasture症候群、サルコイドーシス、アレルギー性肉芽腫性血管炎 、気管支喘息、心筋炎、心筋症、大動脈炎症候群、心筋梗塞後症候群、原発性肺高血圧症 、 微 小 変 化 型 ネ フ ロ ー ゼ 、 膜 性 腎 症 、 膜 性 増 殖 性 腎 炎 、 巣 状 糸 球 体 硬 化 症 、 半 月 体 形 成 性 腎炎、重症筋無力症、炎症性ニューロパチー、アトピー性皮膚炎、慢性光線性皮膚炎、日 光過敏症、蓐瘡、Sydenham舞踏病,全身性硬化症、成人発症糖尿病、インスリン 依存性糖尿病、若年性糖尿病、アテローム性動脈硬化症、糸球体腎炎、IgA腎症、尿細 管間質性腎炎、原発性胆汁性肝硬変、原発性硬化性胆管炎、劇症肝炎、ウイルス性肝炎、 GVHD、接触皮膚炎、敗血症等の自己免疫疾患又はその他免疫関連疾患、さらに、真菌 、マイコプラズマ、ウィルス、原虫等の感染症、心不全、心肥大、不整脈、狭心症、心虚 10 血、動脈塞栓、動脈瘤、静脈瘤、血行障害等の循環器系疾患、アルツハイマー病、痴呆、 パーキンソン病、脳卒中、脳梗塞、脳虚血、鬱病、躁鬱病、統合失調症、ハンチントン舞 踏病、癲癇、痙攣、多動症、脳炎、髄膜炎、食欲不振および過食等の中枢系疾患、リンパ 腫、白血病、多尿、頻尿、糖尿病性網膜症等の各種疾患(特に、各種臓器移植又は皮膚移 植での拒絶反応、全身性エリトマトーデス、慢性関節リウマチ、多発性硬化症、アトピー 性皮膚炎等の自己免疫疾患)に有用であることを見出し、本発明を完成した。

[0010]

従って、本発明は、毒性が低く優れた免疫抑制作用を有するリン酸若しくはホスホン酸誘導体、リン酸若しくはホスホン酸誘導体の薬理上許容される塩又はリン酸若しくはホスホン酸誘導体の薬理上許容されるエステル、或いはそれらを有効成分として含有する医薬組 20成物を提供することである。

[0011]

【課題を解決するための手段】

(1) 本発明のリン酸又はホスホン酸誘導体は、下記一般式(I)を有する。

[0012]

【化4】

[0013]

上記式中、

 R^{-1} 及び R^{-2} は、同一又は異なって、水素原子、低級脂肪族アシル基又は低級アルコキシカルボニル基を示し、

R³及びRa³は、同一又は異なって、水素原子又はリン酸基の保護基を示し、

R⁴は、水素原子、低級アルキル基又はヒドロキシ低級アルキル基を示し、

nは、1乃至6の整数を示し、

X は、エチレン基、ビニレン基、エチニレン基、式 - D - C H_2 - を有する基(式中、 D は、カルボニル基、式 - C H (O H) - を有する基、酸素原子、硫黄原子又は式 - N H - を有する基を示す。)、 C $_6$ - C $_1$ $_0$ アリーレン基又は置換基群 a から選択される基で 1 乃至 3 個置換された C $_6$ - C $_1$ $_0$ アリーレン基を示し、

Y は、単結合、 C_1 $-C_1$ $_0$ P ルキレン基、 置換基群 a 及び b から選択される基で 1 乃至 3 個置換された C_1 $-C_1$ $_0$ P ルキレン基、 炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C_1 $-C_1$ $_0$ P ルキレン基、 又は置換基群 a 及び b から選択される基で 1 乃至 3 個置換された、 炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C_1 $-C_1$ $_0$ P ルキレン基を示し

Zは、酸素原子又はメチレン基を示し、

50

 R^5 は、水素原子、 C_3 $-C_1$ $_0$ シクロアルキル基、 C_6 $-C_1$ $_0$ アリール基、硫黄原子、酸素原子及び/又は窒素原子を1乃至3個含む5乃至7員複素環基、置換基群 a 及び b から選択される基で1乃至3個置換された C_3 $-C_1$ $_0$ シクロアルキル基、置換基群 a 及び b から選択される基で1乃至3個置換された C_6 $-C_1$ $_0$ アリール基、又は置換基群 a 及び b から選択される基で1乃至3個置換された、硫黄原子、酸素原子及び/又は窒素原子を1乃至3個含む5乃至7員複素環基を示し、

R⁶ 及び R⁷ は、同一又は異なって、水素原子又は置換基群 a から選択される基を示し、置換基群 a は、ハロゲン原子、低級アルキル基、ハロゲノ低級アルキル基、低級アルコキシ基、低級アルキルチオ基、カルボキシル基、低級アルコキシカルボニル基、ヒドロキシ基、低級脂肪族アシル基、アミノ基、モノー低級アルキルアミノ基、ジー低級アルキルアミノ基、ジー低級アルキルアミノ基、ジー低級アルキルアミノ基、低級脂肪族アシルアミノ基、シアノ基及びニトロ基からなる群を示し、

置換基群 b は、 C_3 $-C_1$ o シクロアルキル基、 C_6 $-C_1$ o アリール基、硫黄原子、酸素原子及び/又は窒素原子を 1 乃至 3 個含む 5 乃至 7 員複素環基、置換基群 a から選択される基で 1 乃至 3 個置換された C_3 $-C_1$ o シクロアルキル基、置換基群 a から選択される基で 1 乃至 3 個置換された C_6 $-C_1$ o アリール基、及び置換基群 a から選択される基で 1 乃至 3 個置換された、硫黄原子、酸素原子及び/又は窒素原子を 1 乃至 3 個含む 5 乃至 5 侵複素環基からなる群を示す。

[0014]

但し、 R^5 が水素原子であるとき、Y は、置換基群 a 及び b から選択される基で 1 乃至 3 個置換された C_1 $-C_1$ $_0$ アルキレン基、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C_1 $-C_1$ $_0$ アルキレン基、又は置換基群 a 及び b から選択される基で 1 乃至 3 個置換された、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C_1 $-C_1$ $_0$ アルキレン基を示す。

[0015]

本発明は、式(I)を有する化合物、その薬理上許容される塩又はその薬理上許容される。 エステルである。

(2) (1)において、式(I)を有する化合物が、式(I-a)

[0016]

【化5】

[0017]

[式中、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 、 R^7 、X、Y、Z 及び n は、(1)におけるものと同意義を示す。]を有する化合物、その薬理上許容される塩又はその薬理上許 40容されるエステル、

(3) (1) において、式 (I) を有する化合物が、式 (I-b)

[0018]

【化6】

[0019]

(式中、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 、 R^7 、X、Y、Z 及び n は、請求項 1 に 10 おけるものと同意義を示す。)を有する化合物、その薬理上許容される塩又はその薬理上許容されるのエステル、

(4) (1)乃至(3)から選択されるいずれか1項において、

 R^{-1} 及び R^{-2} が、同一又は異なって、水素原子、 $C_1 - C_4$ 脂肪族アシル基又は $C_1 - C_4$ 低級アルコキシカルボニル基である化合物又はその薬理上許容される塩、(5) (1)乃至(3)から選択されるいずれか1項において、

 R^{-1} 及び R^{-2} が、同一又は異なって、水素原子又は C_1 一 C_2 脂肪族アシル基又は C_1 一 C_2 低級アルコキシカルボニル基である化合物又はその薬理上許容される塩、

(6) (1)乃至(3)から選択されるいずれか1項において、

 R^{-1} 及び R^{-2} が、同一又は異なって、水素原子、アセチル基又はメトキシカルボニル基で 20 ある化合物又はその薬理上許容される塩、

(7) (1)乃至(3)から選択されるいずれか1項において、

R¹ 及び R² が、水素原子である化合物又はその薬理上許容される塩、

(8) (1)乃至(7)から選択されるいずれか1項において、

 R^3 及び R^3 a が、同一又は異なって、水素原子、低級アルキル基、低級アルケニル基又はアラルキル基である化合物又はその薬理上許容される塩、

(9) (1) 乃至(7) から選択されるいずれか1項において、

 R^3 及び R^3 a が、同一又は異なって、水素原子又は低級アルキル基である化合物又はその薬理上許容される塩、

(10) (1)乃至(7)から選択されるいずれか1項において、

 R^3 及び R^3 a が、同一又は異なって、水素原子又は C_1 一 C_4 アルキル基である化合物 又はその薬理上許容される塩、

(11) (1)乃至(7)から選択されるいずれか1項において、

 R^3 及び R^3 a が、同一又は異なって、水素原子、メチル基又はエチル基である化合物又はその薬理上許容される塩、

(12) (1) 乃至(7) から選択されるいずれか1項において、

R³及びR³aが、水素原子である化合物又はその薬理上許容される塩、

(13) (1) 乃至(12) から選択されるいずれか1項において、

 R^4 が、 C_1 - C_4 アルキル基又はヒドロキシ C_1 - C_4 アルキル基である化合物又はその薬理上許容される塩、

(14) (1)乃至(12)から選択されるいずれか1項において、

R 4 が、 C_1 - C_2 アルキル基又はヒドロキシ C_1 - C_2 アルキル基である化合物又はその薬理上許容される塩、

(15) (1) 乃至(12) から選択されるいずれか1項において、

R⁴が、C, -C₂アルキル基である化合物又はその薬理上許容される塩、

(16) (1)乃至(12)から選択されるいずれか1項において、

R⁴が、メチル基である化合物又はその薬理上許容される塩、

(17) (1) 乃至(16) から選択されるいずれか1項において、

nが、2又は3である化合物又はその薬理上許容される塩、

(18) (1) 乃至(16) から選択されるいずれか1項において、

50

20

30

nが、2である化合物又はその薬理上許容される塩、

(19) (1)乃至(18)から選択されるいずれか1項において、

Xが、エチレン基、エチニレン基、式-D-C, H_2- を有する基[式中、Dは、カルボニル基又は式-CH (OH) -を有する基を示す。]、フェニレン基、ナフチレン基、又は置換基群 a から選択される基で 1 乃至 3 個置換されたフェニレン基若しくはナフチレン基である化合物又はその薬理上許容される塩、

(20) (1)乃至(18)から選択されるいずれか1項において、

Xが、エチレン基、エチニレン基、式-CO-CH₂-を有する基、フェニレン基、又は ハロゲン原子及び低級アルキル基からなる群より選択される基で1乃至3個置換されたフェニレン基である化合物又はその薬理上許容される塩、

(21) (1)乃至(18)から選択されるいずれか1項において、

(22) (1)乃至(21)から選択されるいずれか1項において、

Yが、 C_1-C_1 o アルキレン基又は置換基群 a 及び b から選択される基で 1 乃至 3 個置換された C_1-C_1 o アルキレン基である化合物又はその薬理上許容される塩、

(23) (1)乃至(21)から選択されるいずれか1項において、

YがC₁ - C₆ アルキレン基又はヒドロキシ基で1乃至3個置換されたC₁ - C₆ アルキレン基である化合物又はその薬理上許容される塩、

(24) (1)乃至(21)から選択されるいずれか1項において、

YがC₁ - C₅ アルキレン基又はヒドロキシ基で1乃至3個置換されたC₁ - C₅ アルキレン基である化合物又はその薬理上許容される塩、

(25) (1) 乃至(21) から選択されるいずれか1項において、

Yが、エチレン基、トリメチレン基、テトラメチレン基又は1個のヒドロキシ基で置換された、エチレン基、トリメチレン基若しくはテトラメチレン基である化合物又はその薬理上許容される塩、

(26) (1)乃至(21)から選択されるいずれか1項において、

Yが、エチレン基、トリメチレン基若しくはテトラメチレン基である化合物又はその薬理 上許容される塩、

(27) (1)乃至(21)から選択されるいずれか1項において、

Yが、エチレン若しくはトリメチレン基である化合物又はその薬理上許容される塩、

(28) (1)乃至(21)から選択されるいずれか1項において、

Yが、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する $C_1 - C_{10}$ アルキレン基、又は 1 個のヒドロキシ基で置換された、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する $C_1 - C_{10}$ アルキレン基である化合物又はその薬理上許容される塩、

(29) (1)乃至(21)から選択されるいずれか1項において、

Yが、炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C₁ - C₁ o アルキレン基である化合物又はその薬理上許容される塩、

(30) (1)乃至(21)から選択されるいずれか1項において、

Yが、炭素鎖中若しくは鎖端に酸素原子を有する $C_1 - C_{10}$ アルキレン基である化合物 Y 又はその薬理上許容される塩、

(31) (1)乃至(21)から選択されるいずれか1項において、

Y が、炭素鎖中若しくは鎖端に酸素原子を有する C_1 - C_6 アルキレン基である化合物又はその薬理上許容される塩、

(32) (1) 乃至(21) から選択されるいずれか1項において、

Yが、式-O-C H_2- 、-O-(C H_2) $_2-$ 、-O-(C H_2) $_3-$ 、-C H_2-O - 、- (C H_2) $_2-O-$ 又は- (C H_2) $_3$ - O - を有する基である化合物又はその薬理上許容される塩、

(33) (1)乃至(21)から選択されるいずれか1項において、

Yが、式-CH2-O-又は- (CH2)2-O-を有する基である化合物又はその薬理 50

20

30

上許容される塩、

(34) (1) 乃至(33) から選択されるいずれか1項において、

R⁵が、水素原子である化合物又はその薬理上許容される塩、

(35) (1)乃至(33)から選択されるいずれか1項において、

(36) (1)乃至(33)から選択されるいずれか1項において、

R 5 が、C $_3$ 3 3 4 5 で 5 が、C $_3$ 3 4 5 で 5 が、C $_3$ 3 4 5 5 で 5 5 で 5 で

(37) (1)乃至(33)から選択されるいずれか1項において、

R⁵ が、C₃ - C₁ 。シクロアルキル基、C₆ - C₁ 。アリール基、又はハロゲン原子、低級アルキル基、ハロゲノ低級アルキル基、低級アルコキシ基及び低級脂肪族アシル基から成る群から選択される基で 1 乃至 3 個の置換基で置換された C₃ - C₁ 。シクロアルキル基若しくは C₆ - C₁ 。アリール基である化合物又はその薬理上許容される塩、

(38) (1)乃至(33)から選択されるいずれか1項において、

 R^{5} が、 C_{5} $-C_{6}$ シクロアルキル基、フェニル基又はナフチル基である化合物又はその薬理上許容される塩、

(39) (1)乃至(33)から選択されるいずれか1項において、

R⁵が、シクロヘキシル基又はフェニル基である化合物又はその薬理上許容される塩、

(40) (1)乃至(39)から選択されるいずれか1項において、

 R^6 及び R^7 が、同一又は異なって、水素原子、ハロゲン原子、低級アルキル基、ハロゲノ低級アルキル基、低級アルコキシ基又は低級アルキルチオ基である化合物又はその薬理上許容される塩、

(41) (1)乃至(39)から選択されるいずれか1項において、

R⁶及びR⁷が、水素原子である化合物又はその薬理上許容される塩、

(42) (1) 乃至(41) から選択されるいずれか1項において、

2が、酸素原子である化合物又はその薬理上許容される塩、

(43) (1) において、下記より選択されるいずれか 1 つの化合物又はその薬理上許容される塩:

リン酸 モノ 2-アミノー2-メチルー4-[5-(4-シクロヘキシルブチル)チオフェン-2-イル] ブチル エステル、

リン酸 モノ 2-アミノー2-メチルー4-[5-(5-シクロヘキシルペンチル)チオフェン-2-イル] ブチル エステル、

リン酸 モノ 2-アミノ-2-メチル-4-[5-(5-フェニルペンチル)チオフェ 40ン-2-イル ブチル エステル、

リン酸 モノ 2-アミノー2-メチルー4-[5-(4-シクロヘキシルオキシブチル)チオフェンー2-イル] プチル エステル、

リン酸 モノ 2-rミノー2-メチルー4-[5-[4-(4-フルオロフェノキシ)プチル]チオフェンー2-イル] ブチル エステル、

リン酸 モノ 2-アミノー2-メチルー4-[5-[4-(4-メトキシフェノキシ)プチル]チオフェンー2-イル] ブチル エステル、

リン酸 モノ 2-アミノー2-メチルー4-[5-(4-ベンジルオキシブチル)チオフェン-2-イル] ブチル エステル、

リン酸 モノ 2-アミノ-2-メチル-4-[5-(4-シクロヘキシルブト-1-イ 50

ニル)チオフェン-2-イル] ブチル エステル、 リン酸 モノ 2-アミノ-2-メチル-4-[5-(4-フェニルブト-1-イニル) チオフェンー2ーイル] ブチル エステル、 リン酸 モノ 2-アミノ-2-メチル-4-[5-(5-シクロヘキシルペント-1-イニル)チオフェン-2-イル] ブチル エステル、 リン酸 モノ 2-アミノ-2-メチル-4-[5-(5-フェニルペント-1-イニル) チオフェンー2ーイル] ブチル エステル、 `リン酸 モノ 2-アミノ-2-メチル-4-[5-[5-(4-フルオロフェニル)ペ ント-1-イニル] チオフェン-2-イル] ブチル エステル、 リン酸 モノ 2-アミノ-2-メチル-4-[5-[5-(4-メトキシフェニル)ペ 10 ント-1-イニル] チオフェン-2-イル] プチル エステル、 リン酸 モノ 2-アミノー2-メチル-4-[5-[3-(4-メチルシクロヘキシル オキシ)プロピニル]チオフェン-2-イル] ブチル エステル、 リン酸 モノ 2-アミノ-2-メチル-4-[5-[3-(4-メチルフェノキシ)プ ロピニル] チオフェンー2ーイル] ブチル エステル、 リン酸 モノ 2-アミノ-2-メチル-4-[5-[3-(4-エチルフェノキシ)プ ロピニル]チオフェン-2-イル] ブチル エステル、 リン酸 モノ 2-アミノー2-メチルー4- [5- [3- (4-メチルチオフェノキシ) プロピニル] チオフェン-2-イル] ブチル エステル、 リン酸 モノ 2-アミノー2-メチルー4-[5-(4-シクロヘキシルオキシブトー 20 1-イニル)チオフェン-2-イル] ブチル エステル、 リン酸 モノ 2-アミノー2-メチルー4- [5-[4-(4-フルオロフェノキシ) プト-1-イニル]チオフェン-2-イル] ブチル エステル、 リン酸 モノ 2-アミノ-2-メチル-4-[5-[4-(4-メチルフェノキシ)ブ ト-1-イニル]チオフェン-2-イル] ブチル エステル、 リン酸 モノ 2-アミノ-2-メチル-4-[5-(3-シクロヘキシルメトキシプロ ピニル)チオフェン-2-イル] ブチル エステル、 リン酸 モノ 2-アミノー2-メチル-4-[5-(4-フェニルメトキシブト-1-イニル)チオフェン-2-イル] ブチル エステル、 リン酸 モノ 2-アミノー2-メチルー4-[5-(4-シクロヘキシルブタノイル): 30 チオフェンー2ーイル] ブチル エステル、 リン酸 モノ 2-アミノ-2-メチル-4-[5-(4-フェニルブタノイル)チオフ ェン-2-イル] ブチル エステル、 リン酸 モノ 2-アミノ-2-メチル-4-[5-(5-シクロヘキシルペンタノイル) チオフェン-2-イル] ブチル エステル、 リン酸 モノ 2-アミノー2-メチルー4-[5-(5-フェニルペンタノイル)チオ フェン-2-イル] ブチル エステル、 リン酸 モノ 2-アミノー2-メチル-4-[5-[5-(4-フルオロフェニル)ペ ンタノイル] チオフェン-2-イル] ブチル エステル、 リン酸 モノ 2-アミノ-2-エチル-4-[5-(5-シクロヘキシルペンチル)チ 40 オフェンー2ーイル] ブチル エステル、 リン酸 モノ 2-アミノー2-エチルー4-[5-(5-シクロヘキシルペント-1-イニル)チオフェン-2-イル] ブチル エステル、 リン酸 モノ 2-アミノー2-エチルー4-[5-(5-シクロヘキシルペンタノイル) チオフェン-2-イル] ブチル エステル、 リン酸 モノ 2-アミノー2-メチルー4-[5-[3-(4-クロロフェノキシ)プ ロピニル] チオフェン-2-イル] ブチル エステル、 リン酸 モノ 2-アミノー2-メチルー4- [5-[3-(3-メチルフェノキシ)プ

リン酸 モノ 2-アミノ-2-メチル-4-[5-[3-(3,4-ジメチルフェノキ 50

ロピニル] チオフェンー2ーイル] ブチル エステル、

シ) プロピニル] チオフェンー2-イル] ブチル エステル、

リン酸 モノ 2-アミノー2-メチルー4-[5-[3-(3-メトキシフェノキシ) プロピニル] チオフェンー2-イル] ブチル エステル、

リン酸 モノ 2-アミノー2-メチルー4-[5-[3-(3, 4-ジメトキシフェノキシ)プロピニル]チオフェンー2-イル] ブチル エステル、

リン酸 モノ 2-アミノー2-メチルー4-[5-[3-(3, 5-ジメトキシフェノキシ)プロピニル]チオフェンー2-イル] ブチル エステル、

リン酸 モノ 2-アミノー2-メチルー4-[5-[3-(3-アセチルフェノキシ)プロピニル]チオフェンー2-イル] ブチル エステル及び

リン酸 モノ 2-アミノー2-メチルー4-[5-[3-(4-アセチルフェノキシ) 10プロピニル]チオフェンー2-イル] ブチル エステル。

(44) (1) において、下記より選択されるいずれか1つの化合物又はその薬理上許容される塩:

3-アミノ-3-メチル-5-[5-(4-シクロヘキシルブチル)チオフェン-2-イル]ペンチルホスホン酸、

3-アミノ-3-メチル-5-[5-(5-シクロヘキシルペンチル)チオフェン-2- $\{-$ イル]ペンチルホスホン酸、

3-アミノ-3-メチル-5-[5-(5-フェニルペンチル)チオフェンー

2-イル] ペンチルホスホン酸、

3-アミノ-3-メチル-5-[5-(4-シクロヘキシルオキシブチル)チオフェン-202-イル]ペンチルホスホン酸、

3-アミノ-3-メチル-5-[5-[4-(4-フルオロフェノキシ)ブチル]チオフェン-2-イル]ペンチルホスホン酸、

3-アミノ-3-メチル-5-[5-[4-(4-メトキシフェノキシ)ブチル]チオフェン-2-イル] ペンチルホスホン酸、

3-アミノ-3-メチル-5-[5-(4-ベンジルオキシブチル)チオフェン-2-イル]ペンチルホスホン酸、

3-アミノ-3-メチル-5-[5-(4-シクロヘキシルブタノイル)チオフェン-2-イル] ペンチルホスホン酸、

3-アミノ-3-メチル-5-[5-(4-フェニルブタノ.イル)チオフェン-2-イル 30] ペンチルホスホン酸、

3-アミノ-3-メチル-5-[5-(5-シクロヘキシルペンタノイル)チオフェン-2-イル]ペンチルホスホン酸、

3-アミノ-3-メチル-5-[5-(5-フェニルペンタノイル)チオフェン-2-イル]ペンチルホスホン酸、

3-アミノ-3-メチル-5-[5-[5-(4-フルオロフェニル)ペンタノイル]チ₁なフェン-2-イル]ペンチルホスホン酸、

3-アミノ-3-エチル-5-[5-(5-シクロヘキシルペンチル)チオフェン-2-イル]ペンチルホスホン酸及び

2-アミノ-2-エチル-4-[5-(5-シクロヘキシルペンタノイル)チオフェン-40 2-イル]ペンチルホスホン酸。

[0020]

上記化合物 (I) において、(2) 乃至(3); (4) 乃至(7); (8) 乃至(12); (13) 乃至(16); (17) 乃至(18); (19) 乃至(21); (22) 乃至(33); (34) 乃至(39); (40) 乃至(41); 並びに(42) から成る群から選択されるいずれか一項を任意に組み合わせた化合物も好適である。

[0021]

ール部分は、例えば、フェニル、インデニル又はナフチルであり得、好適には、フェニル 又はナフチル基であり、最も好適には、フェニル基である。

[0022]

Xの定義における「 C_6-C_1 。 P リーレン基」、「置換基群 a から選択される基で 1 乃至 3 個置換された C_6-C_1 。 P リーレン基」及び「置換基群 a 及び b から選択される基で 1 乃至 3 個置換された C_6-C_1 。 P リーレン基」の P リーレン部分は、 例えば、 フェニレン、 インデニレン又は ナフチレンであり 得、 好適には、 フェニレン又は ナフチレン基であり、 最も 好適には、 フェニレン基である。

[0023]

Y の定義における「Cı - Cı o アルキレン基」及び「置換基群 a 及び b から選択される 基で1乃至3個置換されたC1-C10アルキレン基」のC1-C10アルキレン部分は 、例えば、メチレン、メチルメチレン、エチレン、プロピレン、トリメチレン、1-メチ ルエチレン、テトラメチレン、1-メチルトリメチレン、2-メチルトリメチレン、3-メチルトリメチレン、1-メチルプロピレン、1,1-ジメチルエチレン、ペンタメチレ ン、1-メチルテトラメチレン、2-メチルテトラメチレン、3-メチルテトラメチレン 、4-メチルテトラメチレン、1,1-ジメチルトリメチレン、2,2-ジメチルトリメ チレン、3,3-ジメチルトリメチレン、ヘキサメチレン、1-メチルペンタメチレン、 2-メチルペンタメチレン、3-メチルペンタメチレン、4-メチルペンタメチレン、5 -メチルペンタメチレン、1,1-ジメチルテトラメチレン、2,2-ジメチルテトラメ チレン、3,3-ジメチルテトラメチレン、4,4-ジメチルテトラメチレン、ヘプタメ チレン、1-メチルヘキサメチレン、2-メチルヘキサメチレン、5-メチルヘキサメチ レン、3-エチルペンタメチレン、オクタメチレン、2-メチルヘプタメチレン、5-メ チルヘプタメチレン、2-エチルヘキサメチレン、2-エチル-3-メチルペンタメチレ ン、3-エチル-2-メチルペンタメチレン、ノナメチレン、2-メチルオクタメチレン 、7-メチルオクタメチレン、4-エチルヘプタメチレン、3-エチル-2-メチルヘキ サメチレン、2-エチル-1-メチルヘキサメチレン、デカメチレン基のような炭素数1 乃至10個の直鎖又は分枝鎖アルキレン基であり得、好適には、C₁ - C₆ アルキレン基 であり、更に好適には、С1-С5アルキレン基であり、より更に好適には、エチレン、 トリメチレン又はテトラメチレン基であり、最も好適には、エチレン又はトリメチレン基 である。

[0024]

Yの定義における「炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C₁ - C 10アルキレン基」及び「置換基群 a 及び b から選択される基で 1 乃至 3 個置換された、 炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C₁ - C₁₀ アルキレン基」 の「炭素鎖中若しくは鎖端に酸素原子若しくは硫黄原子を有する C」 - C」 。アルキレン 」部分は、上記「C₁ - C₁ o アルキレン基」の鎖端若しくは鎖中に酸素原子若しくは硫 黄原子を有する基であり、例えば、式-O-CH2-、-O-(CH2)2-、-O-($C H_2$) $_3 -$, $_3 -$ 0 - ($C H_2$) $_4 -$ 1 - 0 - ($C H_2$) $_5 -$ 2 - 0 - ($C H_2$) $_6 -$ 3 -O-(CH₂)₇-,-O-(CH₂)₈-,-O-(CH₂)₉-,-O-(CH₂)) $_{1}$ 0 - $_{2}$ - $_{3}$ - $_{4}$ - $_{2}$ - $_{5}$ - $_{6}$ H $_{2}$ - $_{2}$ - $_{5}$ - $_{6}$ H $_{2}$ - $_{5}$ - $_{6}$ H $_{2}$ - $_{7}$ - $_{6}$ H $_{2}$ - $_{7}$ - $_{7}$ - $_{7}$ C H $_{2}$ - $_{7}$ - $_{7}$ - $_{7}$ C H $_{2}$ - $_{7}$ - $_{7}$ - $_{7}$ C H $_{2}$ - $_{7}$ - $_{7}$ - $_{7}$ C H $_{2}$ - $_{7}$ - $_{7}$ - $_{7}$ C H $_{2}$ - $_{7}$ - $_{7}$ - $_{7}$ C H $_{2}$ $C H_2$) 3 - \(- $C H_2$ - $O - (C H_2)$ 4 - \(- ($C H_2$) 2 - $O - C H_2$ - \(- ($C H_2$) 3 - $C H_2$ - \(- C H_2 - \(- $C H_2$) 3 - $C H_2$ - \(- C H_2 - \(- $C H_2$ - \(- C H_2) 3 - $C H_2$ - \(- C H_2 H_2 H_2 - \(- $C H_2$ + $C H_2$ - \(- C H_2 H_2 H_2 - \(- $C H_2$ + $C H_2$ + $C H_2$ - \(- C H_2 H_2 H_2 - \(- $C H_2$ + $C H_2$ - O - (C H $_2$) $_4$ - , - (C H $_2$) $_3$ - O - C H $_2$ - , - (C H $_2$) $_3$ - O - (C H $_2$ $)_{2} - . - (CH_{2})_{3} - O - (CH_{2})_{3} - . - (CH_{2})_{4} - O - CH_{2} - . - (CH_{2})_{4}$ C H $_2$) $_2$ - O - $_3$ - (C H $_2$) $_3$ - O - $_3$ - (C H $_2$) $_4$ - O - $_3$ - (C H $_2$) $_5$ - O) ₉ - O - \ - (C H₂) _{1 0} - O - \ - S - C H₂ - \ - S - (C H₂) ₂ - \ - S -(CH₂) $_3$ -, -S-(CH₂) $_4$ -, -S-(CH₂) $_5$ -, -S-(CH₂) $_6$ -

[0025]

 R^5 及び置換基群 b の定義における「 C_3 $-C_1$ $_0$ シクロアルキル基」、「置換基群 a から選択される基で 1 乃至 3 個置換された C_3 $-C_1$ $_0$ シクロアルキル基」及び「置換基群 a 及び b から選択される基で 1 乃至 3 個置換された C_3 $-C_1$ $_0$ シクロアルキル基」の C_3 $-C_1$ $_0$ シクロアルキル部分は、ベンゼン環のような他の環式基と縮環していてもよく、例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、ノルボルニル、アダマンチル又はインダニルであり得、好適には、 C_5 $-C_6$ シクロアルキル基であり、最も好適には、シクロヘキシル基である。

[0026]

R⁵及び置換基群 b の定義における「硫黄原子、酸素原子又は/及び窒素原子を 1 乃至 3 個含む5乃至7員複素環基」、「置換基群aから選択される基で1乃至3個置換された、 硫黄原子、酸素原子又は/及び窒素原子を1乃至3個含む5乃至7員複素環基」及び「置 換基群a及びbから選択される基で1乃至3個置換された、硫黄原子、酸素原子又は/及 び窒素原子を1乃至3個含む5乃至7員複素環基複素環基」の硫黄原子、酸素原子又は/ 及び窒素原子を1乃至3個含む5乃至7員複素環基部分は、硫黄原子、酸素原子又は/及 び窒素原子を1乃至3個含む5乃至7員の芳香族、又は部分若しくは完全還元型の飽和複 素環基を示し、例えば、フリル、チエニル、ピロリル、アゼピニル、ピラゾリル、イミダ ゾリル、オキサゾリル、イソキサゾリル、チアゾリル、イソチアゾリル、1,2,3-オ キサジアゾリル、トリアゾリル、テトラゾリル、チアジアゾリル、ピラニル、 ピリジル 、ピリダジニル、ピリミジニル、ピラジニル、テトラヒドロピラニル、モルホリニル、チ オモルホリニル、ピロリジニル、ピロリニル、イミダゾリジニル、ピラゾリジニル、ピペ リジニル、ピペラジニル、オキサゾリジニル、イソキサゾリジニル、チアゾリジニル又は ピラゾリジニルであり得、好適には、硫黄原子、酸素原子又は/及び窒素原子を1乃至3 個含む5万至6員芳香族複素環基であり、更に好適には、フリル、チエニル又はピロリル であり、より更に好適には、フリル又はチエニルであり、最も好適には、チエニルである

[0027]

尚、上記「芳香族複素環基」は、他の環式基と縮環していてもよく、それらは、例えば、ベンゾチエニル、イソベンゾフラニル、クロメニル、キサンテニル、フェノキサチイニル、インドリジニル、イソインドリル、インドリル、インダゾリル、プリニル、キノリジニル、イソキノリル、キノリル、フタラジニル、ナフチリジニル、キノキサリニル、キナゾリニル、カルバゾリル、カルボリニル、アクリジニル又はイソインドリニルであり得、好適には、ベンゾチエニル基である。

[0028]

置換基群 a の定義における「ハロゲン原子」は、フッ素、塩素、臭素又はヨウ素原子であり、好適には、フッ素原子又は塩素原子である。

[0029]

50

 R^4 及び置換基群 a の定義における「低級アルキル基」は、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、S-ブチル、t-ブチル、ペンチル、イソペンチル、2-メチルプチル、ネオペンチル、1-エチルプロピル、ヘキシル、イソヘキシル、4-メチルペンチル、3-メチルペンチル、2-メチルペンチル、1-メチルペンチル、1-メチルペンチル、1-メチルペンチル、1-メチルプチル、1, 1-ジメチルブチル、1, 1-ジメチルブチル、1, 1-ジメチルブチル、1, 1-エチルプチル、1, 1-エチルプチル、1, 1-エチルプチル、1, 1-エチルプチル、1, 1-エチルプチル、1, 1-エチルプチル、1, 1-エチルプチル、1, 1-1、1-1 、1-2 、1-2 、1-3 、1-4 、1-

[0030]

 R^4 の定義における「ヒドロキシ低級アルキル基」は、前記「低級アルキル基」にヒドロキシ基が置換した基を示し、例えば、ヒドロキシメチル、2-ヒドロキシエチル、3-ヒドロキシプロピル、4-ヒドロキシブチル、5-ヒドロキシペンチル、6-ヒドロキシヘキシル基のようなヒドロキシ C_1-C_6 アルキル基であり得、好適には、ヒドロキシ C_1- C4アルキル基であり、更に好適には、ヒドロキシメチル又は2-ヒドロキシエチル基であり、最も好適にはヒドロキシメチル基である。

[0031]

置換基群 a の定義における「ハロゲノ低級アルキル基」は、前記「低級アルキル基」にハロゲン原子が置換した基を示し、例えば、トリフルオロメチル、トリクロロメチル、ジフルオロメチル、ジクロロメチル、ジブロモメチル、フルオロメチル、2,2,2-トリフルオロエチル、2,2,2-トリクロロエチル、2ープロモエチル、2ークロロエチル、2ーフルオロエチル、6ーヨードへキシル、2,2ージブロモエチル基のようなハロゲノ C_1-C_6 アルキル基であり得、好適には、ハロゲノ C_1-C_4 アルキル基であり、更に好適には、トリフルオロメチル、トリクロロメチル、2,2,2ートリフルオロエチル又は2,2,2ートリクロロエチルであり、最も好適にはトリフルオロメチル基である。

[0032]

置換基群 a の定義における「低級アルコキシ基」は、前記「低級アルキル基」が酸素原子に結合した基を示し、例えば、メトキシ、エトキシ、プロポキシ、イソプロポキシ、プトキシ、イソプトキシ、sープトキシ、tープトキシ、ペントキシ、イソペントキシ、2ーメチルプトキシ、1ーエチルプロポキシ、2ーエチルプロポキシ、ネオペントキシ、ヘキシルオキシ、4ーメチルペントキシ、3ーメチルペントキシ、2ーメチルペントキシ、3・3ージメチルプトキシ、2・2ージメチルプトキシ、1・1ージメチルプトキシ、1・2ージメチルプトキシ、1・3ージメチルプトキシ、1・1ージメチルプトキシ基のような炭素数1乃至6個の直鎖又は分枝鎖アルコキシ基であり得、好適には、 C_1-C_4 アルコキシ基であり、更に好適には、 C_1-C_2 アルコキシ基であり、最も好適には、メトキシ基である。

[0033]

置換基群 a の定義における「低級アルキルチオ基」は、前記「低級アルキル基」が硫黄原子に結合した基を示し、例えば、メチルチオ、エチルチオ、プロピルチオ、イソプロピルチオ、ブチルチオ、イソブチルチオ、s ーブチルチオ、t ーブチルチオ、ペンチルチオ、イソペンチルチオ、2 ーメチルブチルチオ、ネオペンチルチオ、ヘキシルチオ、4 ーメチルペンチルチオ、3 ーメチルペンチルチオ、2 ーメチルプチルチオ、3 ージメチルブチルチオ、1 1 ージメチルブチルチオ、1 1 ージメチルブチルチオ、1 2 ージメチルブチルチオ、1 1 ージメチルブチルチオ、1 2 ージメチルブチルチオ、1 2 ージメチルブチルチオ基のような炭素数1乃至6個の直鎖又は分枝鎖アルキルチオ基であり得、好適には、 $C_1 - C_4$ アルキルチオ基であり、更に好適には、 $C_1 - C_2$ アルキルチオ基であり、最も好適には、メチルチオ基である。

[0034]

R¹、R²及び置換基群 a の定義における「低級アルコキシカルボニル基」は、前記「低 50

級アルコキシ基」がカルボニル基に結合した基を示し、例えば、メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、イソプトキシカルボニル、3 ープトキシカルボニル、1 ープトキシカルボニル、ペントキシカルボニル、イソペントキシカルボニル、1 ーズチルペントキシカルボニル、スオペントキシカルボニル、1 ーズチルペントキシカルボニル、1 ーズチルペントキシカルボニル、1 ージメチルプトキシカルボニル、1 ージメチルプトキシカルボニル、1 ージメチルプトキシカルボニル、1 ージメチルプトキシカルボニル、1 ージメチルプトキシカルボニル、1 ージメチルプトキシカルボニル、1 のような炭素数1乃至6個の直鎖又は分枝鎖アルコキシカルボニル基であり得、好適には、1 ー 1 ー 1 ー 1 ー 1 ー 1 ー 1 一 1

[0035]

R¹、R²及び置換基群 a の定義における「低級脂肪族アシル基」は、水素原子又は飽和若しくは不飽和の鎖状炭化水素基がカルボニル基に結合した基を示し、例えば、ホルミル、アセチル、プロピオニル、ブチリル、イソブチリル、バレリル、イソバレリル、ピバロイル、ヘキサノイル、ヘプタノイル、オクタノイル、アクリロイル、メタクリロイル、クロトノイル基のような炭素数 1 乃至 8 個の直鎖又は分枝鎖低級脂肪族アシル基であり得、好適には、C₁ - C₄低級脂肪族アシル基であり、更に好適には、アセチル又はプロピオニル基であり、最も好適には、アセチル基である。

[0036]

置換基群 a の定義における「モノー低級アルキルアミノ基」は、前記「低級アルキル基」 が 1 個アミノ基に結合した基を示し、例えば、メチルアミノ、エチルアミノ、プロピルアミノ、プロピルアミノ、イソプチルアミノ、s ープチルアミノ、 t ープチルアミノ、グチルアミノ、イソプチルアミノ、s ープチルアミノ、 t ープチルアミノ、ペンチルアミノ、イソペンチルアミノ、2 ーメチルプチルアミノ、ネオペンチルアミノ、1 ーエチルプロピルアミノ、ヘキシルアミノ、イソヘキシルアミノ、4 ーメチルペンチルアミノ、3 ーメチルペンチルアミノ、2 ーメチルプチルアミノ、1 ーメチルプチルアミノ、3 ージメチルプチルアミノ、2 ・ 2 ージメチルプチルアミノ、1 ・ 3 ージメチルプチルアミノ、1 ・ 3 ージメチルプチルアミノ、1 ・ 3 ージメチルプチルアミノ、2 ・ 4 アルキルアミノ基であり、更に好適には、モノー C C アルキルアミノ基であり、更に好適には、モノー C C アルキルアミノ基である。

[0037]

置換基群 a の定義における「ジー低級アルキルアミノ基」は、前記「低級アルキル基」が 2 個アミノ基に結合した基を示し、例えば、ジメチルアミノ、ジエチルアミノ、 N ーエチルー N ーメチルアミノ、ジプロピルアミノ、ジブチルアミノ、ジペンチルアミノ、ジへキシルアミノ基のようなジー C_1 ー C_6 アルキルアミノ基であり得、好適には、ジー C_1 ー C_4 アルキルアミノ基であり、更に好適には、ジー C_1 ー C_2 アルキルアミノ基であり、最も好適には、ジメチルアミノ基である。

[0038]

上記式中、置換基群 a の定義における「低級脂肪族アシルアミノ基」は、前記「低級脂肪族アシル基」がアミノ基に結合した基を示し、例えば、ホルミルアミノ、アセチルアミノ、プロピオニルアミノ、ブチリルアミノ、イソブチリルアミノ、バレリルアミノ、イソバレリルアミノ、パレリルアミノ、イソバレリルアミノ、ピバロイルアミノ、ヘキサノイルアミノ、アクリロイルアミノ、メタクリロイルアミノ、クロトノイルアミノ基のような炭素数 1 乃至 7 個の直鎖又は分枝鎖低級脂肪族アシルアミノ基であり得、好適には、 C_1-C_4 脂肪族アシルアミノ基であり、更に好適には、アセチルアミノ又はプロピオニルアミノ基であり、最も好適には、アセチルアミノ基である。

[0039]

40

 R^3 及び Ra^3 の定義における「リン酸基の保護基」は、例えば、

メチル、エチル、イソプロピル、ブチルのような低級アルキル基、

2-シアノエチル、 <math>2-シアノ-1, 1-ジメチルエチルのようなシアノ基で置換された低級アルキル基、

2 - (メチルジフェニルシリル) エチル、2 - トリメチルシリルエチルのような低級アルキル又は低級アルキルとアリールとでトリ置換されたシリル基で置換された低級アルキル基、

2-(2'-ピリジル)エチル、2-(4'-ピリジル)エチルのようなヘテロシクリルで置換された低級アルキル基、

2-フェニルチオエチル、2-(4'-ニトロフェニルチオ) エチル、2-(4'-トリ 10 フェニルメチルフェニルチオ) エチルのようなアリールチオで置換された低級アルキル基 <math>2-(t-ブチルスルホニル) エチル、2-(ブェニルスルホニル) エチル、2-(ベンジルスルホニル) エチルのようなアルキルスルホニル、アリールスルホニル又はアリールアルキルスルホニルで置換された低級アルキル基、

2, 2, 2-トリクロロエチル、2, 2, 2-トリクロロエチル-1, 1-ジメチルエチル、2, 2, 2-トリプロモエチル、2, 3-ジプロモプロピル、2, 2, 2-トリフルオロエチルのようなハロゲノ低級アルキル基;

ベンジル、フェネチル、3-フェニルプロピル、 $\alpha-$ ナフチルメチル、 $\beta-$ ナフチルメチル、ジフェニルメチル、トリフェニルメチル、 $\alpha-$ ナフチルジフェニルメチル、9-アンスリルメチルのような $1\sim 3$ 個のアリール基で置換された低級アルキル基、0-ニトロベンジル、4-カロロー2-ニトロベンジル、4-アシルオキシベンジルのようなニトロ、ハロまたは低級脂肪族アシルでアリール環が置換されたアリール基で置換された低級アルキル基、2-ニトロフェニルエチルのような置換基を有するアリール基で置換された低級アルキル基、9-フルオレニルメチルのようなフルオレニル基で置換された低級アルキル基などのアラルキル類;

アリル、プロペニルのような低級アルケニル基、

4-シアノ-2-プテニルのようなシアノで置換された低級アルケニル基;

フェニルのようなアリール基、

2-メチルフェニル、2,6-ジメチルフェニル、2-クロロフェニル、4-クロロフェニル、2,4-ジクロロフェニル、2,5-ジクロロフェニル、2,6-ジクロロフェニル、2-ブロモフェニル、4-ニトロフェニル、3,5-ジニトロフェニル、4-クロロー2-ニトロフェニル、2-メトキシー5-ニトロフェニルのような低級アルキル、アリール基でトリ置換された低級アルキル、低級アルコキシ、ニトロ又はハロで置換されたアリール基;

並びに

アニリデイト、 4-トリフェニルメチルアニリデイト、 [N-(2-トリチロキシ) エチル] アニリデイト、p-(N,N-ジメチルアミノ) アニリデイト、3-(N,N-ジエチルアミノメチル) アニリデイトのようなアミド類である。

[0040]

「リン酸基の保護基」は、好適には、低級アルキル基、低級アルケニル基または 1 - 3 個のフェニル若しくはナフチルで置換されたメチル基であり、更に好適には、メチル基、エチル基、アリル基またはベンジル基であり、最も好適には、メチル基又はエチル基である

[0041]

R⁵の定義における「置換基群 a 及び b から選択される基で 1 乃至 3 個置換された C₃ ー C₁₀シクロアルキル基」の具体例としては、例えば、 2 ー フルオロシクロプロピル、 2 ー クロロシクロプロピル、 2 ー 若 しくは 3 ー フルオロシクロペンチル、 2 ー 若 しくは 3 ー フルオロシクロペンチル、 2 ー , 3 ー 若 50

しくは4-クロロシクロヘキシル、2-、3-若しくは4-プロモシクロヘキシル、2-,3-若しくは4-ヨードシクロヘキシル、2-メチルシクロプロピル、2-エチルシク ロプロピル、2-若しくは3-メチルシクロペンチル、2-若しくは3-エチルシクロペ ンチル、2-,3-若しくは4-メチルシクロヘキシル、2-,3-若しくは4-エチル シクロヘキシル、2-トリフルオロメチルシクロプロピル、2-若しくは3-トリフルオ ロメチルシクロプチル、2-若しくは3-トリフルオロメチルシクロペンチル、2-,3 - 若しくは4~トリフルオロメチルシクロヘキシル、2-メトキシシクロプロピル、2-若しくは3-メトキシシクロプチル、2-若しくは3-メトキシシクロペンチル、2-, 3-若しくは4-メトキシシクロヘキシル、2-,3-若しくは4-エトキシシクロヘキ シル、2-、3-若しくは4-プロポキシシクロヘキシル、2-、3-若しくは4-イソ プロポキシシクロヘキシル、2-,3-若しくは4-(1-エチルプロポキシ)シクロヘ キシル、2-.3-若しくは4-(2-エチルプロポキシ)シクロヘキシル、2-カルボ キシシクロプロピル、2-若しくは3-カルボキシシクロペンチル、2-、3-若しくは 4-カルボキシシクロヘキシル、2-メトキシカルボニルシクロプロピル、2-若しくは 3 - メトキシカルボニルシクロペンチル、2 - . 3 - 若しくは4 - メトキシカルボニルシ クロヘキシル、2-ヒドロキシシクロプロピル、2-若しくは3-ヒドロキシシクロペン エ チル、2-.3-若しくは4-ヒドロキシシクロヘキシル、2-ホルミルシクロプロピル 、2-若しくは3-ホルミルシクロペンチル、2-,3-若しくは4-ホルミルシクロへ キシル、2-アセチルシクロプロピル、2-若しくは3-アセチルシクロペンチル、2-. 3 - 若しくは4 - アセチルシクロヘキシル、2 - アミノシクロプロピル、2 - 若しくは 3-アミノシクロペンチル、2-,3-若しくは4-アミノシクロヘキシル、2-メチル アミノシクロプロピル、2-若しくは3-メチルアミノシクロブチル、2-若しくは3-メチルアミノシクロペンチル、2-,3-若しくは4-メチルアミノシクロヘキシル、2 - ジメチルアミノシクロプロピル、2 - 若しくは3 - ジメチルアミノシクロブチル、2 -若しくは3-ジメチルアミノシクロペンチル、2-,3-若しくは4-ジメチルアミノシ クロヘキシル、2-シアノシクロプロピル、2-若しくは3-シアノシクロペンチル、2 -.3-若しくは4-シアノシクロヘキシル、2-若しくは3-シクロヘキシルシクロペ ンチル、2-、3-若しくは4-シクロヘキシルシクロヘキシル、2-フェニルシクロプ ロピル、2-若しくは3-フェニルシクロペンチル、2-、3-若しくは4-フェニルシ クロヘキシル、3, 4 - ジフルオロシクロヘキシル、3, 4 - ジクロロシクロヘキシル、 2.3-ジメトキシシクロヘキシル、3.4-ジメトキシシクロヘキシル、3.5-ジメ トキシシクロヘキシル、3,4,5-トリメトキシシクロヘキシル基であり得、好適には 、1乃至3個置換されたС3 - С10シクロアルキル基(該置換基は、ハロゲン原子、低 級アルキル基、ハロゲノ低級アルキル基、低級アルコキシ基、低級アルキルチオ基及び低 級脂肪族アシル基から成る群から選択される基である。)であり、更に好適には、1乃至 3個置換されたC3-C10シクロアルキル基(該置換基は、ハロゲン原子、低級アルキ ル基、ハロゲノ低級アルキル基、低級アルコキシ基及び低級脂肪族アシル基から成る群か ら選択される基である。)であり、より更に好適には、1個置換されたシクロヘキシル基 (該 置 換 基 は 、ハ ロ ゲ ン 原 子 、 低 級 ア ル キ ル 基 、 ハ ロ ゲ ノ 低 級 ア ル キ ル 基 、 低 級 ア ル コ キ シ基及び低級脂肪族アシル基から成る群から選択される基である。)であり、最も好適に は、1個置換されたシクロヘキシル基(該置換基は、フッ素原子、塩素原子、メチル、ト リフルオロメチル、メトキシ及びアセチル基から成る群から選択される基である。)であ る。

[0042]

 R^5 の定義における「置換基群 a 及び b から選択される基で 1 乃至 3 個置換された C_6 - C_{10} アリール基」の具体例は、例えば、 2- , 3- 若しくは 4- プロモフェニル、 2- , 3- 若しくは 4- プロピルフェニル、 2- , 3- 若しく 3- おしく 3- おして 3- の 3- おして 3- の 3- おして 3- の 3- から 3-

くは4-トリフルオロメチルフェニル、2-,3-若しくは4-メトキシフェニル、2-ィ , 3 - 若しくは4 - エトキシフェニル、2 - , 3 - 若しくは4 - プロポキシフェニル、2 -.3-若しくは4-イソプロポキシフェニル、2-.3-若しくは4-ブトキシフェニ ル、2-,3-若しくは4-(1-エチルプロポキシ)フェニル、2-,3-若しくは4 - (2-エチルプロポキシ)フェニル、2-、3-若しくは4-メチルチオフェニル、2 一,3一若しくは4-エチルチオフェニル、2-,3-若しくは4-カルボキシフェニル 、2-、3-若しくは4-メトキシカルボニルフェニル、2-、3-若しくは4-エトキ シカルボニルフェニル、2-,3-若しくは4-ヒドロキシフェニル、2-,3-若しく は4-ホルミルフェニル、2-、3-若しくは4-アセチルフェニル、2-、3-若しく は4-アミノフェニル、2-,3-若しくは4-メチルアミノフェニル、2-,3-若し くは4-ジメチルアミノフェニル、2-、3-若しくは4-シアノフェニル、2-、3-若しくは4-シクロペンチルフェニル、2-、3-若しくは4-シクロヘキシルフェニル 、 2 - , 3 - 若しくは 4 - ビフェニル、 2 , 4 - ジフルオロフェニル、 3 , 4 - ジフルオ ロフェニル、3,5-ジフルオロフェニル、2,4-ジクロロフェニル、3,4-ジクロ ロフェニル、3,5-ジクロロフェニル、3,4-ジブロモフェニル、2,3-ジメチル フェニル、3,4-ジメチルフェニル、3,5-ジメチルフェニル、2,3-ジメトキシ フェニル、3,4-ジメトキシフェニル、3,5-ジメトキシフェニル、3,4,5-ト リメトキシフェニル、3-フルオロ-4-メトキシフェニル、4-メチル-2-メトキシ フェニル、6-フルオロー4-メチル-2-メトキシフェニル、5-フルオロインデン-3-イル、5-フルオロインデン-3-イル、5-メチルインデン-3-イル、5-メト キシインデン-3-イル、5-フルオロインデン-2-イル、5-クロロインデン-2-イル、5-メチルインデン-2-イル、5-メトキシインデン-2-イル、5-ヒドロキ シインデン-3-イル、5-ニトロインデン-3-イル、5-シクロヘキシルインデン-3-イル、5-フェニルインデン-3-イル、5-フェノキシインデン-3-イル、5-ベンジルオキシインデンー3ーイル、5-フェニルチオインデン-3-イル、5-ヒドロ キシインデン-2-イル、5-ニトロインデン-2-イル、5-シクロヘキシルインデン -2-イル、5-フェニルインデン-2-イル、5-フルオロナフタレン-2-イル、5 ーフルオロナフタレンー2ーイル、5-メチルナフタレンー2ーイル、5-メトキシナフ タレン-2-イル、5-フルオロナフタレン-1-イル、5-フルオロナフタレン-1-イル、5-メチルナフタレン-1-イル、5-メトキシナフタレン-1-イル、5-ヒド ロキシナフタレン-2-イル、5-ニトロナフタレン-2-イル、5-シクロヘキシルナ フタレン-2-イル、5-フェニルナフタレン-2-イル、5-フェノキシナフタレン-2-イル、5-ベンジルオキシナフタレン-2-イル、5-フェニルチオナフタレン-2 ーイル、5-ヒドロキシナフタレン-1-イル、5-ニトロナフタレン-1-イル、5-シクロヘキシルナフタレンー1ーイル、5-フェニルナフタレンー1-イル基であり、好 適には、 1 乃至 3 個置換された C ₆ 一 C _{1 0} アリール基(該置換基は、ハロゲン原子、低 級アルキル基、ハロゲノ低級アルキル基、低級アルコキシ基、低級アルキルチオ基及び低 級脂肪族アシル基から成る群から選択される基である。)であり、更に好適には、1乃至 3 個 置 換 さ れ た C ₆ ー C ₁ o ア リ ー ル 基 (該 置 換 基 は 、 ハ ロ ゲ ン 原 子 、 低 級 ア ル キ ル 基 、 ハロゲノ低級アルキル基、低級アルコキシ基及び低級脂肪族アシル基から成る群から選択 40 される基である。)であり、より更に好適には、1乃至3個置換されたフェニル基(該置 換基は、ハロゲン原子、低級アルキル基、ハロゲノ低級アルキル基、低級アルコキシ基及 び低級脂肪族アシル基から成る群から選択される基である。)であり、更により好適には 、1乃至2個置換されたフェニル基(該置換基は、フッ索原子、塩素原子、メチル、トリ フルオロメチル、メトキシ及びアセチル基から成る群から選択される基である。但し、メ トキシ基については、1乃至3個置換されたフェニル基が好ましい。)であり、最も好適 には、3-フルオロフェニル、4-フルオロフェニル、3,4-ジフルオロフェニル、3 , 5 - ジフルオロフェニル、3 - クロロフェニル、4 - クロロフェニル、3, 4 - ジクロ ロフェニル、3,5ージクロロフェニル、3ーメチルフェニル、4ーメチルフェニル、3 , 4-ジメチルフェニル、3, 5-ジメチルフェニル、3-トリフルオロメチルフェニル

、4-トリフルオロメチルフェニル、3,4-ジトリフルオロメチルフェニル、3,5-ジトリフルオロメチルフェニル、3 - メトキシフェニル、4 - メトキシフェニル、3, 4 - ジメトキシフェニル、3,5-ジメトキシフェニル、3,4,5-トリメトキシフェニ ル、3-アセチルフェニル又は4-アセチルフェニル基である。

[0043]

R⁵の定義における「置換基群 a 及び b から選択される基で 1 乃至 3 個置換された、硫黄 原子、酸素原子及び/又は窒素原子を1乃至3個含む5乃至7員複素環基」の具体例は、 例えば、3-.4-若しくは5-メチルフラン-2-イル、2-,4-若しくは5-メチ ルフラン-3-イル、3-、4-若しくは5-フルオロチオフェン-2-イル、2-、4 - 若しくは5-フルオロフラン-3-イル、3-、4-若しくは5-ブロモチオフェン-10 2-イル、2-、4-若しくは5-プロモフラン-3-イル、3-、4-若しくは5-メ チルチオフェンー2ーイル、2ー、4ー若しくは5ーメチルチオフェンー3ーイル、3ー ,4-若しくは5-エチルチオフェン-2-イル、2-,4-若しくは5-エチルチオフ ェンー3ーイル、3一、4ー若しくは5-メトキシチオフェンー2ーイル、2ー、4ー若 しくは 5 -メトキシチオフェン- 3 -イル、 3 -若しくは 4 -メチルチアゾール- 5 -イ ル、3-,4-若しくは5-フルオロベンゾチオフェン-2-イル、3-,4-若しくは 5-プロモベンゾチオフェンー2-イル、3-、4-若しくは5-メチルベンゾチオフェ ン-2-イル、3-,4-若しくは5-メトキシベンゾチオフェン-2-イル、2-,4 - 若しくは5-フルオロベンゾチオフェン-3-イル、2-,4-若しくは5-ブロモベ ンゾチオフェン-3-イル、2-,4-若しくは5-メチルベンゾチオフェン-3-イル 、2-,4-若しくは5-メトキシベンゾチオフェン-3-イル、4-,5-,6-若し くは7-メチルベンゾチオフェン-2-イル、3-,4-若しくは5-ヒドロキシフラン -2-イル、2-,4-若しくは5-ヒドロキシフラン-3-イル、3-,4-若しくは 5-ヒドロキシチオフェンー2-イル、3-,4-若しくは5-ニトロチオフェンー2-イル、3-,4-若しくは5-フェニルチオフェン-2-イル、2-,4-若しくは5-ヒドロキシチオフェンー3ーイル、2-、4-若しくは5-シアノチオフェンー3ーイル 、1-、2-若しくは3-ヒドロキシピリジン-4-イル、1-,2-若しくは3-シア ノピリジン-4-イル、1-,2-若しくは3-フェニルピリジン-4-イル基であり、 好適には、3-,4-若しくは5-フルオロチオフェン-2-イル又は2-,4-若しく は5-フルオロフラン-3-イル基である。

[0044]

「その薬理上許容される塩」とは、本発明の一般式(I)を有する化合物は、アミノ基の ような塩基性の基を有する場合には酸と反応させることにより、又、リン酸基のような酸 性基を有する場合には塩基と反応させることにより、塩にすることができるので、その塩 を示す。

[0045]

塩基性の基に基づく塩は、例えば、フッ化水素酸塩、塩酸塩、臭化水素酸塩、ヨウ化水素 酸塩のようなハロゲン化水素酸塩、硝酸塩、過塩素酸塩、硫酸塩、リン酸塩等の無機酸塩 ;メタンスルホン酸塩、トリフルオロメタンスルホン酸塩、エタンスルホン酸塩のような 低級アルカンスルホン酸塩、ベンゼンスルホン酸塩、p-トルエンスルホン酸塩のような 40 アリールスルホン酸塩、酢酸塩、リンゴ酸塩、フマール酸塩、コハク酸塩、クエン酸塩、 アスコルビン酸塩、酒石酸塩、シュウ酸塩、マレイン酸塩等の有機酸塩;又はグリシン塩 、リジン塩、アルギニン塩、オルニチン塩、グルタミン酸塩、アスパラギン酸塩のような アミノ酸塩であり得、好適には、有機酸塩(特に、フマール酸塩、シュウ酸塩若しくはマ レイン酸塩)又はハロゲン化水素酸塩(特に、塩酸塩)である。

[0046]

一方、酸性の基に基づく塩は、例えば、ナトリウム塩、カリウム塩、リチウム塩のような アルカリ金属塩、カルシウム塩、マグネシウム塩のようなアルカリ土類金属塩、アルミニ ウム塩、鉄塩等の金属塩;アンモニウム塩のような無機塩、t-オクチルアミン塩、ジベ ンジルアミン塩、モルホリン塩、グルコサミン塩、フェニルグリシンアルキルエステル塩 50

50

、エチレンジアミン塩、Nーメチルグルカミン塩、グアニジン塩、ジエチルアミン塩、トリエチルアミン塩、ジシクロヘキシルアミン塩、N,N'ージベンジルエチレンジアミン塩、クロロプロカイン塩、プロカイン塩、ジエタノールアミン塩、Nーベンジルフェネチルアミン塩、ピペラジン塩、テトラメチルアンモニウム塩、トリス(ヒドロキシメチル)アミノメタン塩のような有機塩等のアミン塩;又はグリシン塩、リジン塩、アルギニン塩、オルニチン塩、グルタミン酸塩、アスパラギン酸塩のようなアミノ酸塩であり得、好適には、アルカリ金属塩(特に、ナトリウム塩)である。

[0047]

本発明の一般式(I)を有する化合物、その薬理上許容される塩又はその薬理上許容されるエステルは、大気中に放置したり、又は、再結晶をすることにより、水分を吸収し、吸 10 着水が付いたり、水和物となる場合があり、そのような水和物も本発明の塩に包含される

[0048]

本発明の一般式(I)を有する化合物、その薬理上許容される塩又はその薬理上許容されるエステルは、その分子内に不斉炭素原子を有するので、光学異性体が存在する。本発明の化合物においては、光学異性体および光学異性体の混合物がすべて単一の式、即ち一般式(I)で示されている。従って、本発明は光学異性体および光学異性体の任意の割合の混合物をもすべて含むものである。

[0049]

本発明の一般式(I)を有する化合物は、好適には、式 $-NR^1R^2$ を有する基が結合し 20 ている不斉炭素原子に関して、Rの絶対配位を有する化合物である。

[0050]

上記における「エステル」とは、前述の一般式(I)を有する化合物は、エステルにすることができるので、そのエステルをいい、そのようなエステルとしては、「ヒドロキシ基のエステル」及び「カルボキシル基のエステル」を挙げることができ、各々のエステル残基が「反応における一般的保護基」又は「生体内で加水分解のような生物学的方法により開裂し得る保護基」であるエステルをいう。

[0051]

「反応における一般的保護基」とは、加水素分解、加水分解、電気分解、光分解のような化学的方法により開裂し得る保護基をいう。

[0052]

「ヒドロキシ基のエステル」に斯かる「反応における一般的保護基」は、例えば、

前記「低級脂肪族アシル基」、クロロアセチル、ジクロロアセチル、トリクロロアセチル、トリフルオロアセチルのようなハロゲノ低級脂肪族アシル基、メトキシアセチルのような低級アルコキシで置換された低級脂肪族アシル基などの「脂肪族アシル類」;

ベンゾイル、1-インダンカルボニル、2-インダンカルボニル、1-若しくは2-ナフトイルのような芳香族アシル基、4-クロロベンゾイル、4-フルオロベンゾイル、2,

4,6-トリメチルベンゾイル、4-トルオイル、4-アニソイル4-ニトロベンゾイル、2-ニトロベンゾイル、2- (メトキシカルボニル)ベンゾイル、4-フェニルベンゾイルのような前記置換基群 a から選択される基で1乃至3個置換された芳香族アシル基な 40どの「芳香族アシル類」;

テトラヒドロピランー 2 ーイル、3 ープロモテトラヒドロピランー 2 ーイル、4 ーメトキシテトラヒドロピランー4 ーイル、テトラヒドロチオピランー2 ーイル、4 ーメトキシテトラヒドロチオピランー4 ーイルのような「テトラヒドロピラニル又はテトラヒドロチオピラニル類」;

テトラヒドロフラン-2-イル、テトラヒドロチオフラン-2-イルのような「テトラヒ ドロフラニル又はテトラヒドロチオフラニル類」;

トリメチルシリル、トリエチルシリル、イソプロピルジメチルシリル、 t ーブチルジメチルシリル、メチルジイソプロピルシリル、メチルジー t ーブチルシリル、トリイソプロピルシリルのようなトリ低級アルキルシリル基、ジフェニルメチルシリル、ジフェニルブチ

ルシリル、ジフェニルイソプロピルシリル、フェニルジイソプロピルシリルのようなアリールまたはアリールと低級アルキルとでトリ置換されたシリル基などの「シリル類」;メトキシメチル、1、1-ジメチル-1-メトキシメチル、エトキシメチル、プロポキシメチル、イソプロポキシメチル、ブトキシメチル、t-ブトキシメチルのような低級アルコキシメチル基、2-メトキシエトキシメチルのような低級アルコキシ化低級アルコキシメチル基、2,2,2-トリクロロエトキシメチル、ビス(2-クロロエトキシ)メチルのようなハロゲノ低級アルコキシメチル等の「アルコキシメチル基」;

1-エトキシエチル、1-(イソプロポキシ) エチルのような低級アルコキシ化エチル基、2,2,2-トリクロロエチルのようなハロゲン化エチル基等の「置換エチル類」;

ベンジル、フェネチル、3-フェニルプロピル、 $\alpha-$ ナフチルメチル、 $\beta-$ ナフチルメチル、ジフェニルメチル、トリフェニルメチル、 $\alpha-$ ナフチルジフェニルメチル、9-アンスリルメチルのような1 乃至3 個のアリール基で置換された低級アルキル基、4-メチルベンジル、2, 4, 6-トリメチルベンジル、3, 4, 5-トリメチルベンジル、4-メトキシベンジル、4-メトキシフェニルジフェニルメチル、2-ニトロベンジル、4-ノローベンジル、4-クロロベンジル、4-プロモベンジル、4-シアノベンジル、4-シアノベンジル、ビス(2-ニトロフェニル)メチル、ピペロニルのような低級アルキル、低級アルコキシ、ニトロ、ハロまたはシアノでアリール環が置換された $1\sim 3$ 個のアリール基で置換された低級アルキル基などの「アラルキル類」;

前記「低級アルコキシカルボニル基」、2,2,2ートリクロロエトキシカルボニル、2 ートリメチルシリルエトキシカルボニルのようなハロゲンまたはトリ低級アルキルシリル で置換された低級アルコキシカルボニル基などの「アルコキシカルボニル類」;

ビニルオキシカルボニル、アリルオキシカルボニルのような「アルケニルオキシカルボニル類」;又は

ベンジルオキシカルボニルのようなアラルキルオキシカルボニル基、4-メトキシベンジルオキシカルボニル、3,4-ジメトキシベンジルオキシカルボニル、2-ニトロベンジルオキシカルボニル、4-ニトロベンジルオキシカルボニルのような前記置換基群 a から選択される基で1乃至3個置換されたアラルキルオキシカルボニル基などの「アラルキルオキシカルボニル類」である。

[0053]

一方、「生体内で加水分解のような生物学的方法により開裂し得る保護基」とは、人体内で加水分解等の生物学的方法により開裂し、フリーの酸又はその塩を生成する保護基をいい、そのような誘導体か否かは、ラットやマウスのような実験動物に静脈注射により投与し、その後の動物の体液を調べ、元となる化合物又はその薬理学的に許容される塩を検出できることにより決定できる。「ヒドロキシ基のエステル」に斯かる、「生体内で加水分解のような生物学的方法により開裂し得る保護基」は、例えば、

エチルカルボニルオキシメチル、ピバロイルオキシメチル、ジメチルアミノアセチルキシメチル、1-アセトキシエチルのようなアシルオキシアルキル類;

1-(メトキシカルボニルオキシ) エチル、1-(エトキシカルボニルオキシ) エチル、エトキシカルボニルオキシメチル、1-(イソプロポキシカルボニルオキシ) エチル、1-(t-ブトキシカルボニルオキシ) エチル、1-(エトキシカルボニルオキシ) プロピル、1-(シクロヘキシルオキシカルボニルオキシ) エチルのような1-(アルコキシカルボニルオキシ) アルキル類;

フタリジル基;

4 - メチル - オキソジオキソレニルメチル、4 - フェニル - オキソジオキソレニルメチル 、オキソジオキソレニルメチルのようなオキソジオキソレニルメチル基等の「カルボニル オキシアルキル類」;

前記「脂肪族アシル類」;

前記「芳香族アシル類」;

「コハク酸のハーフエステル塩残基」;

30

10

「リン酸エステル塩残基」;

「アミノ酸等のエステル形成残基」;

カルバモイル基;

ベンジリデンのようなアラルキリデン基;メトキシエチリデン、エトキシエチリデンのようなアルコキシエチリデン基;オキソメチレン;チオキソメチレンのような「2つのヒドロキシ基の保護基」;又は

ピバロイルオキシメチルオキシカルボニルのような「カルボニルオキシアルキルオキシカルボニル基」であり、好適には、低級脂肪族アシル基、芳香族アシル基又は置換基群 a から選択される基で 1 乃至 3 個置換された芳香族アシル基である。

[0054]

上記「ヒドロキシ基の保護基」として、特に好適には、脂肪族アシル基又は芳香族アシル 基である。

[0055]

「カルボキシル基のエステル」に斯かる「反応における一般的保護基」は、好適には、前 記「低級アルキル基」;エテニル、1ープロペニル、2ープロペニル、1ーメチルー2ー プロペニル、1-メチル-1-プロペニル、2-メチル-1-プロペニル、2-メチル-2-プロペニル、2-エチル-2-プロペニル、1-ブテニル、2-ブテニル、1-メチ ルー2-ブテニル、1-メチル-1-ブテニル、3-メチル-2-ブテニル、1-エチル -2-ブテニル、3-ブテニル、1-メチル-3-ブテニル、2-メチル-3-ブテニル 、1-エチル-3-ブテニル、1-ペンテニル、2-ペンテニル、1-メチル-2-ペン テニル、2-メチル-2-ペンテニル、3-ペンテニル、1-メチル-3-ペンテニル、 2-メチル-3-ペンテニル、4-ペンテニル、1-メチル-4-ペンテニル、2-メチ ルー4-ペンテニル、1-ヘキセニル、2-ヘキセニル、3-ヘキセニル、4-ヘキセニ ル、5-ヘキセニルのような低級アルケニル基;エチニル、2-プロピニル、1-メチル -2-プロピニル、2-メチル-2-プロピニル、2-エチル-2-プロピニル、2ーブ チニル、1-メチル-2-ブチニル、2-メチル-2-ブチニル、1-エチル-2-ブチ ニル、3-ブチニル、1-メチル-3-ブチニル、2-メチル-3-ブチニル、1-エチ ルー3-ブチニル、2-ペンチニル、1-メチル-2-ペンチニル、2-メチル-2-ペ ンチニル、3-ペンチニル、1-メチル-3-ペンチニル、2-メチル-3-ペンチニル .4-ペンチニル、1-メチル-4-ペンチニル、2-メチル-4-ペンチニル、2-ヘ 30 キシニル、3-ヘキシニル、4-ヘキシニル、5-ヘキシニルのような低級アルキニル基 ;前記「ハロゲノ低級アルキル」;2-ヒドロキシエチル、2,3-ジヒドロキシプロピ ル、3-ヒドロキシプロピル、3,4-ジヒドロキシブチル、4-ヒドロキシブチルのよ うなヒドロキシ「低級アルキル基」;アセチルメチルのような「低級脂肪族アシル」-「 低級アルキル基」;前記「アラルキル基」;又は前記「シリル基」である。

[0056]

「カルボキシル基のエステル」に斯かる「生体内で加水分解のような生物学的方法により開裂し得る保護基」は、好適には、メトキシエチル、1ーエトキシエチル、2ーメトキシエチル、2ーエトキシエチル、2ーエトキシエチル、2ーエトキシエチル、1・1ージメチルー1ーメトキシエチル、エトキシメチル、nープロポキシメチル、nープロポキシメチル、nープトキシメチル、nープトキシメチル、nープトキシメチルのような低級アルコキシ低級アルキル基、2ーメトキシメチルのような「アリール」オキシ「低級アルコキシ低級アルコキシ低級アルコキン低級アルキル基」、フェノキシメチルのような「アリール」オキシ「低級アルカルのような「「低級アルキル基」」;メチルのような「「低級アルコキシ」カルボニル「低級アルキル基」」;シアノメチル、2ーシアノエチルのような「「低級アルキル基」」;メチルチオメチル、エチルチオメチルのような「「低級アルキル」;フェニルチオメチル、ナフチルチオメチルのような「「アリール」チオメチル基」;フェニルチオメチル、ナフチルチオメチルのような「「アリール」チオメチル基」;2ーメタンスルホニルエチルのような「ハロゲンで置換されていてもよ 50

い「低級アルキル」スルホニル「低級アルキル基」」;2-ベンゼンスルホニルエチル、2-トルエンスルホニルエチルのような「「アリール」スルホニル「低級アルキル基」」;前記「1-(アシルオキシ)「低級アルキル基」」;前記「フタリジル基」;前記「アリール基」;前記「低級アルキル基」;カルボキシメチルのような「カルボキシアルキル基」;又はフェニルアラニンのような「アミノ酸のアミド形成残基」である。

[0057]

上記「カルボキシ基のエステル」に斯かる「反応における一般的保護基」及び「生体内で加水分解のような生物学的方法により開裂し得る保護基」において、更に好適には、低級アルキル又はアラルキル基である。

[0058]

本発明の一般式(I)を有する化合物の具体例としては、例えば、下記表1及び表2に記載の化合物を挙げることができるが、本発明は、これらの化合物に限定されるものではない。なお、同一の化合物番号で表される化合物は、 Z が O 又は - C H₂ - の 2 つの化合物を示す。

[0059]

表中の略号は以下の通りである。

B u : ブチル基

i B u : イソブチル基

B z : ベンジル基 E t : エチル基

c H x シクロヘキシル基

M e : メチル基

Np(1) : ナフタレン-1-イル基

Np(2) : ナフタレン-2-イル基

Ph : フェニル基

c P n : シクロペンチル基

Pr : プロピル基

i Pr : イソプロピル基。

[0060]

表 1

【0061】 【化7】

$$Ra^{3}O \xrightarrow{P-O} R^{4} (CH_{2})_{n} \xrightarrow{R^{6}} X-Y-R^{5}$$
 (I-a-1)

又は 40

10

20

【表1】

Compd.	R1	R ²	R	3 R _a	3 R	4	n -x-y-R ⁵	9	R6 R7
 l-1	H	В	Н	H	Me	1	-(CH ₂) ₅ -сНх	В	—— Н
-2	H	H	H	H	Me	1	-(СН ₂) ₆ -сНх	H	H
-3	H	H	H	H	Me	1	-CH=CH-(CH ₂) ₃ -cHx	H	H
-4	H	H	H	H	Me	1	$-CH=CH-(CH_2)_4-cHx$	H	H
5	H	H	H	H	Me	1	-C≡C-(CH ₂) ₃ -cHx	H	H
-6	H	H	H	H	Me	1	$-C \equiv C - (CH_2)_4 - cHx$	H	H
-7	H	H	H	H	Me	1	-co-(ch ₂) ₄ -chx	H	H
-8	H	H	H	H	Me	1	-co-(ch ₂) ₅ -chx	H	H
-9	H	H	H	H	Me	1	-CH(OH)-(CH ₂) ₄ -cHx	H	H
-10	H	H	H	H	Me	1	$-CH(OH)-(CH_2)_5-cHx$	H	H
-11	H	H	H	H	Me	1	-4-(cHx-CH ₂ 0)Ph	H	H
-12	H	H	H	H	Me		-(4-BzO-Ph)	H	H
-13	H	H	H	H	Me	1	-C≡C-CH ₂ O-cPn	H	H
-14	H	H	H	H	Me	1	$-c \equiv c - (cH_2)_2 0 - cPn$	H	H
15	H	H	H	H	Me	1	$-C \equiv C - CH_2O - cHx$	H	H
-16	H	H	H	H	Me	1	$-C \equiv C - (CH_2)_2 O - cHx$	H	H
17	H	H	H	H	Me	1	-C≡C-CH ₂ O-Ph	H	H
18	H	H	H	H	Me	1	$-C \equiv C - (CH_2)_2 0 - Ph$	H	Н
-19	H	H	H	H	Me	2	-(CH ₂) ₂ -cHx	H	H
-20	H	H	H	H	Me	2	-(CH ₂) ₂ -cHx	H	H
21	CO ₂ Me	H	H	H	Me	2	-(CH ₂) ₂ -cHx	H	H
22	CO ₂ Et	H	H	H	Me	2	-(CH ₂) ₂ -cHx	H	H
23	H	H	H	H	Me	2	$-(CH_2)_2-(4-F-cHx)$	H	H
24	H	H	H	H	Me	2	$-(CH_2)_2-(4-Me-cHx)$	H	H
-25	H	H	H	H	Me	2	$-(CH_2)_2-(4-Et-cHx)$	H	H
26	H	H	H	H	Me	2	-(CH2)2-(4-CF3-cHx)	H	H

1-27	H	H	H	H	Me	2	$-(CH_2)_2-(4-Me0-cHx)$	H	H	
1-28	H	H	H	H	Me	2	$-(CH_2)_2-(4-Et0-cHx)$	H	H	
1-29	H	H	H	H	Me	2	-(CH2)2-(4-MeS-cHx)	H	H	
1-30	H	H	H	H	Me	2	$-(CH_2)_2-(4-cHx-cHx)$	H	H	
1-31	H	H	H	H	Me	2	$-(CH_2)_2-(4-Ph-cHx)$	H	H	
1-32	H	H	H	H	Me	2	-(CH ₂) ₂ -Ph	H	H	
1-33	H	H	H	H	Me	2	-(CH ₂) ₂ -Ph	H	H	10
1-34	CO ₂ Me	H	H	H	Me	2	-(CH ₂) ₂ -Ph	H	H	
1-35	${\rm CO}_2{\rm Et}$	H	H	H	Me	2	-(CH ₂) ₂ -Ph	H	H	
1-36	H	H	H	H	Me	2	-(CH ₂) ₂ -(4-F-Ph)	H	H	
1-37	H	H	H	H	Me	2	-(CH ₂) ₂ -(4-Me-Ph)	H	H	
1-38	H	H	H	H	Me	2	$-(CH_2)_2-(4-Et-Ph)$	H	H	
1-39	H	H	H	H	Me	2	-(CH ₂) ₂ -(4-CF ₃ -Ph)	H	H	
1-40	H	H	H	H	Me	2	$-(CH_2)_2-(4-MeO-Ph)$	H	H	20
1-41	H	H	H	H	Me	2		H	H	
1-42	H	H	H	H	Me	2	-(CH ₂) ₂ -(4-MeS-Ph)	H	H	
1-43	H	H	H	H	Me	2	-(CH2)2-(4-cHx-Ph)	H	H	
1-44	H	H	H	H	Me	2	-(CH ₂) ₂ -(4-Ph-Ph)	H	H	
1-45	H	H	H	H	Me	2	-(CH ₂) ₃ -cHx	H	H	
1-46	H	H	Me	Me	Me	2	-(CH ₂) ₃ -cHx	H	H	
1-47	CO ₂ Me	H	H	H	Me	2	-(CH ₂) ₃ -cHx	H	H	30
1-48	CO ₂ Et	H	H	H	Me	2	-(CH ₂) ₃ -cHx	H	H	
1-49	H	H	H	H	Me	2	$-(CH_2)_3-(4-F-cHx)$	H	H	
1-50	H	H	H	H		2	-(CH2)3-(4-Me-cHx)	H	H	
1-51	H	H	H	H	Me	2	$-(CH_2)_3-(4-Et-cHx)$	H	H	
1-52	H	H	H	H	Me	2	-(CH2)3-(4-CF3-cHx)	H	H	
1-53	H	H	H	H	Me	2	-(CH ₂) ₃ -(4-MeO-cHx)	H	H	40
1-54	H	H	H	H		2	-(CH2)3-(4-Et0-cHx)	H	H	40
1-55	H	H	H	H	Мe	2	-(CH2)3-(4-MeS-cHx)	H	H	

1-56	H	H	H	H	Me	2	$-(CH_2)_3-(4-cHx-cHx)$	H	H	
1-57	H	H	H	H	Me	2	-(CH ₂) ₃ -(4-Ph-cHx)	H	H	
1-58	H	H	H	H	Me	2	-(CH ₂) ₃ -Ph	H	H	
1-59	H	H	Me	Me	Me	2	-(CH ₂) ₃ -Ph	H	H	
1-60	${\rm CO_2Me}$	H	H	H	Me	2	-(CH ₂) ₃ -Ph	H	H	
1-61	${\rm CO}_2{\rm Et}$	H	H	H	Me	2	-(CH ₂) ₃ -Ph	H	H	
1-62	H	H	H	H	Me	2	-(CH ₂) ₃ -(4-F-Ph)	H	H	10
1-63	H	H	H	H	Me	2	-(CH ₂) ₃ -(4-Me-Ph)	H	H	
1-64	H	H	H	H	Мe	2	-(CH ₂) ₃ -(4-Et-Ph)	H	H	
1-65	H	H	H	H	Me	2	$-(CH_2)_3-(4-CF_3-Ph)$	H	H	
1-66	H	H	H	H	Мe	2	-(CH ₂) ₃ -(4-MeO-Ph)	H	H	
1-67	H	H	H	H	Мe	2	$-(CH_2)_3-(4-Et0-Ph)$	H	H	
1-68	H	H	H	H	Мe	2	$-(CH_2)_3-(4-MeS-Ph)$	H	H	
1-69	H	H	H	H	Мe	2	$-(CH_2)_3-(4-cHx-Ph)$	H	H	20
1-70	H	H	H	H	Me	2	-(CH ₂) ₃ -(4-Ph-Ph)	H	H	
1-71	H	H	H	H	Me	2	-(CH ₂) ₄ -cHx	H	H	
1-72	H	H	H	H	Me	2	-(CH ₂) ₄ -cH _x	H	H	
1-73	${\tt CO_2Me}$	H	H	H	Me	2	-(CH ₂) ₄ -cHx	H	H	
1-74	${\rm CO_2Et}$	H	H	H	Мe	2	-(CH ₂) ₄ -cHx	H	H	
1-75	H	H	H	H	Me	2	$-(CH_2)_4-(4-F-cHx)$	H	H	
1-76	H	H	H	H	Me	2	$-(CH_2)_4-(4-Me-cHx)$	H	H	30
1-77	H	H	H	H	Me	2	-(CH2)4-(4-Et-cHx)	H	H	
1-78	H	H	H	H	Me	2	$-(CH_2)_4-(4-CF_3-cHx)$	H	H	
1-79	H	H	H	H	Me	2	-(CH ₂) ₄ -(4-Me0-cHx)	H	H	
1-80	H	H	H	H	Me	2		H	H	
1-81	H	H	H	H	Me	2	-(CH2)4-(4-MeS-cHx)	H	H	
1-82	H	H	H	H	Me	2		H	H	40
1-83	H	H	H	H	Me	2	• •	H	H	40
1-84	H	H	H	H	Me	2	-(CH ₂) ₄ -Ph	H	H	

1-85	H	H	H	H	Me	2	-(CH ₂) ₄ -Ph	H	H	
1-86	${\rm CO_2Me}$	H	H	H	Me	2	-(CH ₂) ₄ -Ph	H	Н	
1-87	CO ₂ Et	H	H	H	Me	2	-(CH ₂) ₄ -Ph	H	H	
1-88	H	H	H	H	Me	2	-(CH ₂) ₄ -(4-F-Ph)	H	H	
1-89	H	H	H	H	Me	2	-(CH ₂) ₄ -(4-Me-Ph)	H	H	
1-90	H	H	H	H	Me	2	-(CH ₂) ₄ -(4-Et-Ph)	H	H	
1-91	H	H	H	H	Me	2	-(CH ₂) ₄ -(4-CF ₃ -Ph)	H	H	10
1-92	H	H	H	H	Me	2	$-(CH_2)_4-(4-Me0-Ph)$	H	H	
1-93	H	H	H	H	Me	2	-(CH ₂) ₄ -(4-Et0-Ph)	H	H	
1-94	H	H	H	H	Me	2	-(CH ₂) ₄ -(4-MeS-Ph)	H	H	
1-95	H	H	H	H	Me	2	-(CH ₂) ₄ -(4-cHx-Ph)	H	H	
1-96	H	H	H	H	Me	2	-(CH ₂) ₄ -(4-Ph-Ph)	H	H	
1-97	H	H	H	H	Me	2	-(CH ₂) ₅ -cPn	H	H	
1-98	H	H	H	H	Me	2	-(CH ₂) ₅ -cHx	H	H	20
1-99	H	H	H	H	Me	2	-(CH ₂) ₅ -cHx	Me	H	
1-100	H	H	H	H	Me	2	-(CH ₂) ₅ -cHx	H	Me	
1-101	H	H	H	H	Me	2	-(CH ₂) ₅ -cHx	F	Н	
1-102	H	H	H	H	Me	2	-(CH ₂) ₅ -cHx	H	F	
1-103	H	H	H	H	Me	2	-(CH ₂) ₅ -cHx	Ħ	Н	
1-104	${\rm CO_2Me}$	H	H	H	Me	2	-(CH ₂) ₅ -cHx	H	Н	
1-105	CO ₂ Et	H	H	H	Me	2	-(CH ₂) ₅ -cHx	H	Н	30
1-106	H	H	H	H	Me	2	-(CH2)5-(3-F-cHx)	H	H	
1-107	H	H	H	H	Me	2	$-(CH_2)_5-(4-F-cHx)$	H	Н	
1-108	H	H	H	H	Me	2	-(CH2)5-(4-C1-cHx)	A	Н	
1-109	H	H	H	H	Me	2	$-(CH_2)_5-(4-Br-cHx)$	B	Н	
1-110	H	H	H	H			$-(CH_2)_5-(3-Me-cHx)$	H	H	
1-111	H	H	H	H			$-(CH_2)_5-(4-Me-cHx)$	H	H	46
1-112	H	H	H	H			$-(CH_2)_5-(3-Et-cHx)$	H	H	40
1-113	H	H	H	H	Me	2	$-(CH_2)_5-(4-Et-cHx)$	H	H	
1 110		••				_	1-2/0			

1-114	H	H	H	H	Me	2	-(CH ₂) ₅ -(3-Pr-cHx)	H	H	
1-115	H	H	H	H	Me	2	$-(CH_2)_{5}-(4-Pr-cHx)$	H	H	
1-116	H	H	H	H	Me	2	-(CH2)5-(4-iPr-cHx)	H	H	
1-117	H	H	H	H	Me	2	-(CH ₂) ₅ -(3-Bu-cHx)	H	H	
1-118	H	H	H	H	Me	2	$-(CH_2)_5-(4-Bu-cHx)$	H	H	
1-119	H	H	H	H	Me	2	$-(CH_2)_5-(3-CF_3-cHx)$	H	H	
1-120	H	H	H	H	Мe	2	$-(CH_2)_{5}-(4-CF_3-cHx)$	H	H	10
1-121	H	H	H	H	Me	2	$-(CH_2)_5-(3-Me0-cHx)$	H	H	
1-122	H	H	H	H	Мe	2	$-(CH_2)_5-(4-Me0-cHx)$	H	H	
1-123	H	H	H	H	Me	2	$-(CH_2)_5-(3-Et0-cHx)$	H	H	
1-124	H	H	H	H	Me	2	$-(CH_2)_{5}-(4-Et0-cHx)$	H	H	
1-125	H	H	H	H	Me	2	$-(CH_2)_5-(3-Pr0-cHx)$	H	H	
1-126	H	H	H	H	Me	2	$-(CH_2)_5-(4-Pr0-cHx)$	H	H	
1-127	H	H	H	H	Me	2	$-(CH_2)_{5}-(3-iPr0-cHx)$	H	H	20
1-128	H	H	H	H	Me	2	$-(CH_2)_{5}-(4-iPr0-cHx)$	H	H	
1-129	H	H	H	H	Me	2	$-(CH_2)_{5}-[3-(2-Et-Pr0)-cHx]$	H	H	
1-130	H	H	H	H	Me	2	$-(CH_2)_{5}-[4-(2-Et-Pr0)-cHx]$	H	H	
1-131	H	H	H	H	Мe	2	$-(CH_2)_5-(3-iBu0-cHx)$	H	H	
1-132	H	H	H	H	Me	2	-(CH ₂) ₅ -(4-iBu0-cHx)	H	H	
1-133	H	H	H	H	Me	2	-(CH2)5-(3-MeS-cHx)	H	H	
1-134	H	H	H	H	Me	2	-(CH2)5-(4-MeS-cHx)	H	H	30
1-135	H	H	H	H	Me	2	-(CH2)5-(3-EtS-cHx)	H	H	
1-136	H	H	H	H	Me	2	-(CH2)5-(4-EtS-cHx)	H	H	
1-137	H	H	H	H	Me	2	-(CH2)5-(3-PrS-cHx)	H	H	
1-138	H	H	H	H	Me	2	-(CH2)5-(4-PrS-cHx)	H	H	
1-139	H	H	H	H	Me	2	-(CH2)5-(3-iPrS-cHx)	H	H	
1-140	H	H	H	H	Мe		-(CH2)5-(4-iPrS-cHx)	H	H	
1-141	H	H	H	H	Мe		$-(CH_2)_5-[3-(2-Et-PrS)-cHx]$	H	H	40
1-142	H	H	H	H	Me	2	-(CH2)5-[4-(2-Et-PrS)-cHx]	H	H	

1-143	H	H	H	H	Me	2	$-(CH_2)_5-(3-iBuS-cEx)$	H	H	
1-144	H	H	H	H	Me	2	-(CH2)5-(4-iBuS-cHx)	H	H	
1-145	H	H	H	H	Me	2	$-(CH_2)_5-(3-cHx-cHx)$	H	H	
1-146	H	H	H	H	Me	2	-(CH2)5-(4-cHx-cHx)	H	H	
1-147	H	H	H	H	Me	2	$-(CH_2)_5-(3-Ph-cHx)$	H	H	
1-148	H	H	H	H	Me	2	-(CH2)5-(4-Ph-cHx)	H	H	
1-149	H	H	H	H	Me	2	$-(CH_2)_5-(2,4-diMe-cHx)$	H	H	10
1-150	H	H	H	H	Me	2	$-(CH_2)_5-(3,4-diMe-cHx)$	H	H	
1-151	H	H	H	H	Me	2	$-(CH_2)_5-(3,5-diMe-cHx)$	H	H	
1-152	H	H	H	H	Me	2	-(CH ₂) ₅ -Ph	H	H	
1-153	H	H	H	H	Me	2	-(CH ₂) ₅ -Ph	Me	H	
1-154	H	H	H	H	Me	2	-(CH ₂) ₅ -Ph	H	Me	
1-155	H	H	H	H	Me	2	-(CH ₂) ₅ -Ph	F	H	
1-156	H	H	H	H	Me	2	-(CH ₂) ₅ -Ph	H	F	20
1-157	H	H	H	H	Me	2	-(CH ₂) ₅ -Ph	Ħ	H	
1-158	${\it CO}_2{\it Me}$	H	H	H	Me	2	-(CH ₂) ₅ -Ph	Ħ	H	
1-159	CO ₂ Et	H	H	H	Me	2	-(CH ₂) ₅ -Ph	H	H	
1-160	H	H	H	H	Me	2	-(CH ₂) ₅ -(3-F-Ph)	H	H	
1-161	H	H	H	H	Me	2	-(CH ₂) ₅ -(4-F-Ph)	H	H	
1-162	H	H	H	H	Me	2	$-(CH_2)_5-(4-C1-Ph)$	H	H	
1-163	H	H	H	H	Me	2	$-(CH_2)_5-(4-Br-Ph)$	H	H	30
1-164	H	H	H	H	Me	2	$-(CH_2)_5-(3-Me-Ph)$	H	H	
1-165	H	H	H	H	Me	2	-(CH ₂) ₅ -(4-Me-Ph)	H	H	
1-166	H	H	H	H			$-(CH_2)_5-(3-Et-Ph)$	H	H	
1-167	H	H	H	H			$-(CH_2)_5-(4-Bt-Ph)$	H	Н	
1-168	H	H	H	H	Me		-(CH ₂) ₅ -(3-Pr-Ph)	H	H	
1-169	H	H	H	H	Me		-(CH ₂) ₅ -(4-Pr-Ph)	H	H	40
1-170	H	H	H	H			-(CH ₂) ₅ -(3-1Pr-Ph)	Ħ	H	40
1-171	H	H	H	H	Me	2	-(CH ₂) ₅ -(4-iPr-Ph)	H	H	

1-172	H	H	H	H	Me	2	-(CH ₂) ₅ -(3- Ru -Ph)	H	Ħ	
1-173	H	H	H	H	Me	2	-(CH ₂) ₅ -(4-Ru-Ph)	H	H	
1-174	H	H	H	H	Me	2	-(CH ₂) ₅ -(3-CF ₃ -Ph)	H	H	
1-175	H	H	H	H	Me	2	-(CH ₂) ₅ -(4-CF ₃ -Ph)	H	Ħ	
1-176	H	H	H	H	Me	2	$-(CH_2)_5-(3-MeO-Ph)$	H	H	
1-177	H	H	H	Ħ	Me	2	-(CH ₂) ₅ -(4-MeO-Ph)	H	H	
1-178	H	H	H	H	Мe	2	-(CH ₂) ₅ -(3-EtO-Ph)	H	H	10
1-179	H	H	H	H	Жe	2	-(CH ₂) ₅ -(4-EtO-Ph)	H	H	
1-180	H	H	H	H	Me	2	-(CH ₂) ₅ -(3-Pr0-Ph)	H	H	
1-181	H	H	H	H	Me	2	-(CH ₂) ₅ -(4-Pr0-Ph)	H	H	
1-182	H	H	H	H	Me	2	$-(CH_2)_{5}-(3-iPr0-Ph)$	H	H	
1-183	H	H	H	H	Мe	2	-(CH ₂) ₅ -(4-iPr0-Ph)	H	H	
1-184	H	H	H	H	Me	2	$-(CH_2)_5-[3-(2-Et-Pr0)-Ph]$	H	H	
1-185	H	H	H	H	Мe	2	$-(CH_2)_{5}-[4-(2-Et-Pr0)-Ph]$	H	H	20
1-186	H	H	H	H	Me	2	-(CH ₂) ₅ -(3-1 B u0-Ph)	H	H	
1-187	H	H	H	H	Me	2	-(CH ₂) ₅ -(4-i B u0-Ph)	H	H	
1-188	H	H	H	H	Me	2	$-(CH_2)_5-(3-MeS-Ph)$	H	H	
1-189	H	H	H	Ħ	Мe	2	-(CH ₂) ₅ -(4-MeS-Ph)	H	H	
1-190	H	H	H	H	Me	2	$-(CH_2)_5-(3-EtS-Ph)$	H	H	
1-191	H	H	H	H	Me	2	-(CH ₂) ₅ -(4-BtS-Ph)	H	H	
1-192	H	H	H	H	Мe	2	-(CH ₂) ₅ -(3-PrS-Ph)	H	H	30
1-193	H	H	H	H	Me	2	-(CH ₂) ₅ -(4-PrS-Ph)	H	H	
1-194	H	H	H	H	Мe	2	-(CH2)5-(3-iPrS-Ph)	H	H	
1-195	H	H	H	H			-(CH2)5-(4-iPrS-Ph)	H	H	
1-196	H	H	H	H			$-(CH_2)_5-[3-(2-Et-PrS)-Ph]$	H	H	
1-197	H	H	H	H	Me		-(CH ₂) ₅ -[4-(2-Et-PrS)-Ph]	H	H	
1-198	H	H	H	H	Me		-(CH ₂) ₅ -(3-iBuS-Ph)	H	H	40
1-199	H	H	H	H			-(CH ₂) ₅ -(4-1 B uS-Ph)	H	H	40
1-200	H	H	H	H	Me	2	-(CH2)5-(3-cHx-Ph)	H	H	

1-201	Н	H	H	H	Me	2	-(CH ₂) ₅ -(4-cHx-Ph)	H	H	
1-202	H	H	H	H	Me	2	-(CH ₂) ₅ -(3-Ph-Ph)	H	Н	
1-203	H	H	H	Н	Me	2	-(CH ₂) ₅ -(4-Ph-Ph)	Ħ	Н	
1-204	H	H	Н	H	Me	2		H	Н	
1-205	H	Н	Н	Н	Me	2		H	Н	
1-206	H	H	Н	H			-(CH ₂) ₅ -(3, 5-diMe-Ph)	H	Н	
1-207	H	H	Н	H	Me	2	-(CH ₂) ₅ -Np(1)	Ħ	Н	10
1-208	H	Н	H	H	Me		-(CH ₂) ₅ -Np(2)	H	Н	
1-209	H	Н	Н	H	Me		-(CH ₂) ₆ -cPn	H	Н	
1-210	Н	Н	H	H	Me	2	-(CH ₂) ₆ -cHx	H	Н	
1-211	Н	Н	Н	H	Me	2	-(CH ₂) ₆ -cHx	Me	Н	
1-212	H	Н	Н	H	Me	2	-(CH ₂) ₆ -cHx	H	Me	
1-213	Н	Н	Н	H	Me	2	-(CH ₂) ₆ -cHx	F	Н	
1-214	H	H	H	H	Me	2	-(CH ₂) ₆ -cHx	H	F	20
1-215	H	H	H	H	Me	2	-(CH ₂) ₆ -cHx	Ħ	Н	
1-216	CO ₂ Me	H	H	H	Me	2	-(CH ₂) ₆ -cHx	H	H	
1-217	CO ₂ Et	H	Н	H	Me	2	-(CH ₂) ₆ -cHx	H	H	
1-218	H	H	H	H	Me	2	$-(CH_2)_{6}-(3-F-cHx)$	H	H	
1-219	H	H	H	H	Me	2	-(CH2)6-(4-F-cHx)	H	H	
1-220	H	H	H	H	Me	2	-(CH2)6-(4-C1-cHx)	H	H	
1-221	H	H	H	H	Me	2	-(CH2)6-(4-Br-cHx)	H	H	30
1-222	H	H	H	H	Me	2	-(CH ₂) ₆ -(3-Me-cHx)	H	H	
1-223	H	H	H	H	Me	2	-(CH2)6-(4-Me-cHx)	H	H	
1-224	H	H	H	H	Me	2	$-(CH_2)_6-(3-Et-cHx)$	H	H	
1-225	H	H	H	H	Me	2	-(CH2)6-(4-Et-cHx)	H	H	
1-226	H	H	H	H	Me	2	$-(CH_2)_6-(3-Pr-cHx)$	H	H	
1-227	H	H	H	H	Me	2	-(CH2)6-(4-Pr-cHx)	H	H	
1-228	H	H	H	H	Me	2	-(CH2)6-(4-iPr-cHx)	H	H	40
1-229	H	H	H	H	Me	2	$-(CH_2)_6-(3-Bu-cHx)$	H	H	

1-230	H	H	H	H	Me	2	-(CH2)6-(4-Bu-cHx)	H	H	
1-231	H	H	H	H	Me	2	$-(CH_2)_6-(3-CF_3-cHx)$	H	H	
1-232	H	H	H	H	Ne	2	$-(CH_2)_6-(4-CF_3-cHx)$	H	H	
1-233	H	H	H	H	Ne	2	$-(CH_2)_6-(3-Me0-cHx)$	H	H	
1-234	H	H	H	H	Ne	2	$-(CH_2)_6-(4-Me0-cHx)$	H	H	
1-235	H	H	H	H	Мe	2	$-(CH_2)_6-(3-Et0-cHx)$	H	H	
1-236	H	H	H	H	Ne	2	$-(CH_2)_6-(4-Et0-cHx)$	H	H	10
1-237	H	H	H	H	Me	2	-(CH2)6-(3-Pr0-cHx)	H	H	
1-238	H	H	H	H	Me	2	$-(CH_2)_6-(4-Pr0-cHx)$	H	H	
1-239	H	H	H	H	Me	2	-(CH2)6-(3-iPr0-cHx)	H	H	
1-240	H	H	H	H	Me	2	-(CH2)6-(4-iPrO-cHx)	H	H	
1-241	H	H	H	H	Мe	2	$-(CH_2)_6-[3-(2-Et-Pr0)-cHx]$	H	H	
1-242	H	H	H	H	Me	2	$-(CH_2)_6-[4-(2-Et-Pr0)-cHx]$	H	H	
1-243	H	H	H	H	Me	2	$-(CH_2)_6-(3-iRu0-cHx)$	H	H	20
1-244	H	H	H	H	Me	2	$-(CH_2)_6-(4-iRu0-cHx)$	H	H	
1-245	H	H	H	H	Me	2	-(CH2)6-(3-MeS-cHx)	H	H	
1-246	H	H	H	H	Me	2	-(CH2)6-(4-MeS-cHx)	H	H	
1-247	H	H	H	H	Me	2	-(CH2)6-(3-EtS-cHx)	H	H	
1-248	H	H	H	H	Me	2	-(CH2)6-(4-EtS-cHx)	H	H	
1-249	H	H	H	H	Me	2	-(CH2)6-(3-PrS-cHx)	H	H	
1-250	H	H	H	H	Me	2	-(CH2)6-(4-PrS-cHx)	H	H	30
1-251	H	H	H	H	Me	2	-(CH2)6-(3-iPrS-cHx)	H	H	
1-252	H	H	H	H	Me	2	-(CH2)6-(4-iPrS-cHx)	H	H	
1-253	H	H	H	H	Мe	2	$-(CH_2)_6-[3-(2-Et-PrS)-cHx]$	H	H	
1-254	H	H	H	H	Мe	2		H	H	
1-255	H	H	H	H	Me		-(CH2)6-(3-iBuS-cHx)	H	H	
1-256	H	H	H	H	Ne		-(CH2)6-(4-iBuS-cHx)	H	H	40
1-257	H	H	H	Ħ			-(CH2)6-(3-cHx-cHx)	H	H	40
1-258	H	H	H	H	Me	2	-(CH2)6-(4-cHx-cHx)	H	H	

1-259	H	H	H	H	Me	2	$-(CH_2)_6-(3-Ph-cHx)$	H	H	
1-260	H	H	H	H	Me	2	-(CH2)6-(4-Ph-cHx)	Ħ	H	
1-261	H	H	H	H	Me	2	-(CH ₂) ₆ -(2,4-diMe-cHx)	H	H	
1-262	H	H	H	H	Me	2	$-(CH_2)_6-(3,4-diMe-cHx)$	H	H	
1-263	H	H	H	H	Me	2	-(CH2)6-(3, 5-diMe-cHx)	H	H	
1-264	H	H	H	H	Me	2	-(CH ₂) ₆ -Ph	H	H	
1-265	H	H	H	H	Me	2	-(CH ₂) ₆ -Ph	Me	H	10
1-266	H	H	H	H	Me	2	-(CH ₂) ₆ -Ph	H	Me	
1-267	H	H	H	H	Me	2	-(CH ₂) ₆ -Ph	F	Н	
1-268	H	H	H	H	Me	2	-(CH ₂) ₆ -Ph	H	F	
1-269	H	H	Me	Me	Me	2	-(CH ₂) ₆ -Ph	H	H	
1-270	${\rm CO_2Me}$	H	H	H	Me	2	-(CH ₂) ₆ -Ph	H	H	
1-271	CO ₂ Et	H	H	H	Me	2	-(CH ₂) ₆ -Ph	H	Н	
1-272	H	H	H	H	Me	2	$-(CH_2)_6-(3-F-Ph)$	H	H	20
1-273	H	H	H	H	Me	2	-(CH ₂) ₆ -(4-F-Ph)	H	Н	
1-274	H	H	H	H	Me	2	-(CH ₂) ₆ -(4-Cl-Ph)	H	Н	
1-275	H	H	H	H	Me	2	$-(CH_2)_6-(4-Br-Ph)$	H	Н	
1-276	H	H	H	H	Me	2	-(CH ₂) ₆ -(3-Me-Ph)	H	Н	
1-277	H	H	H	H	Me	2	$-(CH_2)_6-(4-Me-Ph)$	H	Н	
1-278	H	H	H	H	Me	2	$-(CH_2)_6-(3-Et-Ph)$	H	Н	
1-279	H	H	H	H	Me	2	$-(CH_2)_6-(4-Et-Ph)$	H	Н	30
1-280	H	H	H	H	Me	2	$-(CH_2)_{6}-(3-Pr-Ph)$	H	Н	
1-281	H	H	H	H	Me	2	$-(CH_2)_{6}-(4-Pr-Ph)$	H	Н	
1-282	H	H	H	H	Me	2	$-(CH_2)_6-(3-iPr-Ph)$	H	Н	
1-283	H	H	H	H	Me	2	$-(CH_2)_{6}-(4-iPr-Ph)$	H	Н	
1-284	H	H	H	H	Me	2	-(CH ₂) ₆ -(3-Bu-Ph)	Ħ	Н	
1-285	H	H	H	H	Me	2	-(CH ₂) ₆ -(4-Bu-Ph)	H	H	
1-286	H	H	H	H	Me	2	$-(CH_2)_6-(3-CF_3-Ph)$	E	H	40
1-287	H	H	H	H	Me	2	$-(CH_2)_6-(4-CF_3-Ph)$	H	H	

	1_200	U	п	IJ	U	1/-	9	_ (CU_) (2_NaO_DL)	[T	п	
	1-288	H	H	H	H	Ne	2	-(CH ₂) ₆ -(3-MeO-Ph)	H	H	
	1-289	H	H	H 	H	Жe	2	-(CH ₂) ₆ -(4-MeO-Ph)	H 	H	
	1-290	H	H	H	H	Ne	2	$-(CH_2)_6-(3-Bt0-Ph)$	H	H	
	1-291	H	H	H	H	Жe	2	$-(CH_2)_6-(4-Bt0-Ph)$	H	Ħ	
	1-292	H	H	H	H	Ne	2	$-(CH_2)_6-(3-Pr0-Ph)$	H	H	
	1-293	H	H	H	H	Ne	2	-(CH ₂) ₆ -(4-Pr0-Ph)	H	H	
	1-294	H	H	H	H	Жe	2	$-(CH_2)_6-(3-iPr0-Ph)$	H	H	10
	1-295	H	H	H	H	Мe	2	-(CH ₂) ₆ -(4-1Pr0-Ph)	H	H	
	1-296	H	H	H	H	Мe	2	$-(CH_2)_{6}-[3-(2-Et-Pr0)-Ph]$	H	H	
	1-297	H	H	H	H	Мe	2	$-(CH_2)_{6}-[4-(2-Et-Pr0)-Ph]$	H	H	
	1-298	H	H	H	H	Me	2	$-(CH_2)_6-(3-iBuO-Ph)$	H	H	
	1-299	H	H	H	H	Мe	2	$-(CH_2)_6-(4-iBuO-Ph)$	H	H	
	1-300	H	H	H	H	Мe	2	-(CH2)6-(3-MeS-Ph)	H	H	
	1-301	H	H	H	H	Me	2	-(CH2)6-(4-MeS-Ph)	H	H	20
	1-302	H	Ħ	H	H	Мe	2	-(CH2)6-(3-EtS-Ph)	H	H	
	1-303	H	Ħ	H	H	Мe	2	-(CH2)6-(4-EtS-Ph)	H	H	
	1-304	H	H	H	H	Мe	2	-(CH2)6-(3-PrS-Ph)	H	H	
•	1-305	H	H	H	H	Мe	2	-(CH2)6-(4-PrS-Ph)	H	H	
	1-306	H	H	H	H	Me	2	-(CH ₂) ₆ -(3-iPrS-Ph)	H	H	
	1-307	H	H	H	H	Иe	2	-(CH ₂) ₆ -(4-1PrS-Ph)	H	H	
:	1-308	H	H	H	H	Мe	2	$-(CH_2)_{6}-[3-(2-Et-PrS)-Ph]$	H	H	30
:	1-309	H	H	H	H	Me	2	$-(CH_2)_{6}-[4-(2-Et-PrS)-Ph]$	H	H	
	1-310	H	H	H	H	Me	2	$-(CH_2)_6-(3-iBuS-Ph)$	H	H	
•	1-311	H	H	H	H	Иe	2	-(CH ₂) ₆ -(4-1BuS-Ph)	H	H	
:	1-312	H	H	H	H	Жe	2	$-(CH_2)_6-(3-cHx-Ph)$	H	H	
:	1-313	H	H	H	H	Иe	2	-(CH ₂) ₆ -(4-cHx-Ph)	H	H	
	1-314	H	H	H	H	Мe	2	-(CH ₂) ₆ -(3-Ph-Ph)	H	H	
-	1-315	H	H	H	H	Мe	2	-(CH ₂) ₆ -(4-Ph-Ph)	H	Ħ	40
	1-316	H	H	H	H	Me	2	-(CH ₂) ₆ -(2, 4-diMe-Ph)	H	H	

1-317	H	H	H	H	Мe	2	-(CH ₂) ₆ -(3, 4-diMe-Ph)	H	H	
1-318	H	H	H	H	Me	2	-(CH ₂) ₆ -(3, 5-diMe-Ph)	H	H	
1-319	H	H	H	H	Me	2	-(CH ₂) ₆ -Np(1)	H	H	
1-320	H	Ħ	H	H	Me	2	-(CH2)6-Np(2)	H	H	
1-321	H	Ħ	H	H	Me	2	-(CH ₂) ₇ -cHx	H	H	
1-322	H	H	Ne	Me	Me	2	-(CH ₂) ₇ -cHx	H	H	
1-323	${\tt CO_2Me}$	H	H	H	Мe	2	-(CH ₂) ₇ -cHx	H	H	10
1-324	${\rm CO}_2{\rm Et}$	H	H	H	Me	2	-(CH ₂) ₇ -cHx	H	H	
1-325	H	H	H	H	Me	2	$-(CH_2)_7-(4-F-cHx)$	H	H	
1-326	H	H	H	H	Мe	2	-(CH ₂) ₇ -(4-Me-cHx)	H	H	
1-327	H	H	H	H	Мe	2	$-(CH_2)_7-(4-Et-cHx)$	H	H	
1-328	H	H	H	H	Жe	2	$-(CH_2)_7-(4-CF_3-cHx)$	H	H	
1-329	H	H	H	H	Me	2	$-(CH_2)_7-(4-Me0-cHx)$	H	H	
1-330	H	H	H	H	Me	2	$-(CH_2)_7-(4-Bt0-cHx)$	H	H	20
1-331	H	Ħ	H	H	Me	2	-(CH ₂) ₇ -(4-MeS-cHx)	H	H	
1-332	H	Ħ	H	H	Me	2	$-(CH_2)_7-(4-cHx-cHx)$	H	H	
1-333	H	Ħ	H	H	Ne	2	-(CH ₂) ₇ -(4-Ph-cHx)	H	H	
1-334	H	Ħ	H	H	Me	2	-(CH ₂) ₇ -Ph	H	H	
1-335	H	Ħ	Ne	Me	Ne	2	-(CH ₂) ₇ -Ph	H	H	
1-336	CO ₂ Me	H	H	H	Me	2	-(CH ₂) ₇ -Ph	H	H	
1-337	CO ₂ Et	H	H	H	Me	2	-(CH ₂) ₇ -Ph	H	H	30
1-338	H	H	H	H	Ne	2	-(CH ₂) ₇ -(4-F-Ph)	H	H	
1-339	H	H	H	H	Me	2	-(CH ₂) ₇ -(4-Me-Ph)	H	H	
1-340	H	H	H	H	Me	2	$-(CH_2)_7-(4-Et-Ph)$	H	H	
1-341	H	H	H	H	Me	2	-(CH ₂) ₇ -(4-CF ₃ -Ph)	H	H	
1-342	H	Ħ	H	H	Me	2	-(CH ₂) ₇ -(4-MeO-Ph)	H	H	
1-343	H	H	H	H	Мe	2	-(CH ₂) ₇ -(4-Et0-Ph)	H	H	
1-344	H	H	H	H	Мe	2	-(CH ₂) ₇ -(4-MeS-Ph)	H	H	40
1-345	H	H	H	H	Me	2	-(CH2)7-(4-cHx-Ph)	H	H	

1-346	H	H	H	H	Иe	2	-(CH ₂) ₇ -(4-Ph-Ph)	H	H	
1-347	H	H	H	H	Me	2	-(CH ₂) ₈ -cHx	H	H	
1-348	H	H	Me	Me	Me	2	-(CH ₂) ₈ -cHx	H	H	
1-349	${\rm CO_2Me}$	H	H	H	Me	2	-(CH ₂) ₈ -cHx	H	H	
1-350	${\rm CO}_2{\rm Et}$	H	H	H	Me	2	-(CH ₂) ₈ -cHx	H	H	
1-351	H	H	H	H	Мe	2	-(CH2)8-(4-F-cHx)	H	H	
1-352	H	H	H	H	Иe	2	-(CH ₂) ₈ -(4-Me-cHx)	H	H	10
1-353	H	H	H	H	Жe	2	-(CH2)8-(4-Et-cHx)	H	H	
1-354	H	Ħ	H	H	Мe	2	-(CH2)8-(4-CF3-cHx)	H	H	
1-355	H	H	H	H	Иe	2	-(CH ₂) ₈ -(4-MeO-cHx)	H	H	
1-356	H	Ħ	H	H	Жe	2	$-(CH_2)_8-(4-Et0-cHx)$	H	H	
1-357	H	H	H	H	Ne	2	-(CH2)8-(4-MeS-cHx)	H	H	
1-358	H	H	H	H	Ne	2	$-(CH_2)_8-(4-cHx-cHx)$	H	H	
1-359	H	H	H	H	Иe	2	-(CH2)8-(4-Ph-cHx)	H	H	20
1-360	H	H	H	H	Me	2	-(CH ₂) ₈ -Ph	H	H	
1-361	H	H	Me	Me	Me	2	-(CH ₂) ₈ -Ph	H	H	
1-362	${\rm CO_{2}Me}$	H	H	H	Иe	2	-(CH ₂) ₈ -Ph	H	H	
1-363	${\rm CO}_2{\rm Et}$	H	H	H	Me	2	-(CH ₂) ₈ -Ph	H	H	
1-364	H	H	H	H	Мe	2	-(CH ₂) ₈ -(4-F-Ph)	H	H	
1-365	H	H	H	H	Мe	2	-(CH ₂) ₈ -(4-Me-Ph)	H	H	
1-366	H	H	H	H	Жe	2	-(CH ₂) ₈ -(4-Et-Ph)	H	H	30
1-367	H	H	H	H	Жe	2	-(CH ₂) ₈ -(4-CF ₃ -Ph)	H	H	
1-368	H	H	H	H	Ne	2	-(CH ₂) ₈ -(4-MeO-Ph)	H	H	
1-369	H	H	H	H	Жe	2	-(CH ₂) ₈ -(4-EtO-Ph)	H	H	
1-370	H	H	H	H		2	-(CH ₂) ₈ -(4-MeS-Ph)	H	H	
1-371	H	H	H	H	Me	2	-(CH ₂) ₈ -(4-cHx-Ph)	H	H	
1-372	H	H	H	H		2	-(CH ₂) ₈ -(4-Ph-Ph)	H	H	
1-373	H	H	H	H	Мe	2	-(CH ₂) ₃ -0-cHx	H	H	40
1-374	H	H	Me	Me	Me	2	-(CH ₂) ₃ -0-cHx	H	H	

1-375	CO ₂ Me	H	H	H	Me	2	-(CH ₂) ₃ -0-cHx	H	H	
1-376	CO ₂ E t	H	H	H	Me	2	-(CH ₂) ₃ -0-cHx	H	Н	
1-377	H	H	H	H	Me	2	$-(CH_2)_3-0-(4-F-cHx)$	H	H	
1-378	H	H	H	H	Me	2	$-(CH_2)_3-0-(4-Me-cHx)$	H	Н	
1-379	H	H	H	H	Me	2	$-(CH_2)_3-0-(4-Et-cHx)$	Ħ	Н	*;
1-380	H	H	H	H	Me	2	$-(CH_2)_3-0-(4-CF_3-cHx)$	H	Н	
1-381	H	H	H	H	Me	2	-(CH ₂) ₃ -0-(4-Me0-cHx)	H	Н	10
1-382	H	H	H	H	Me	2	$-(CH_2)_3-0-(4-Et0-cHx)$	H	Н	
1-383	H	H	H	H	Me	2	-(CH2)3-0-(4-MeS-cHx)	H	H	
1-384	H	H	H	H	Me	2	$-(CH_2)_3-0-(4-cHx-cHx)$	H	H	
1-385	H	H	H	H	Me	2	$-(CH_2)_3-0-(4-Ph-cHx)$	H	Н	
1-386	H	H	H	H	Me	2	-(CH ₂) ₃ -0-Ph	H	Н	
1-387	H	H	H	H	Me	2	-(CH ₂) ₃ -0-Ph	H	Н	
1-388	CO ₂ Me	H	H	H	Me	2	-(CH ₂) ₃ -0-Ph	H	H -	20
1-389	CO ₂ Et	H	H	H	Me	2	-(CH ₂) ₃ -0-Ph	H	Н	
1-390	H	H	H	H	Me	2	-(CH ₂) ₃ -0-(4-F-Ph)	Ħ	Н	
1-391	H	H	H	H	Me	2	-(CH ₂) ₃ -0-(4-Me-Ph)	H	Н	
1-392	H	H	H	H	Me	2	-(CH ₂) ₃ -0-(4-Et-Ph)	Ħ	H	4
1-393	H	H	H	H	Me	2	-(CH2)3-0-(4-CF3-Ph)	H	Н	•
1-394	H	H	H	H	Me	2	-(CH ₂) ₃ -0-(4-Me0-Ph)	H	Н	
1-395	H	H	H	H	Мe	2	-(CH ₂) ₃ -0-(4-Et0-Ph)	H	Н	30
1-396	H	H	H	H	Me	2	-(CH ₂) ₃ -0-(4-MeS-Ph)	H	Н	
1-397	H	H	H	H	Me	2	-(CH2)3-0-(4-cHx-Ph)	H	Н	
1-398	H	H	H	H	Me	2		H	Н	
1-399	H	H	H	H	Me	2	-(CH ₂) ₄ -0-cPn	H	Н	
1-400	H	H	H	H	Me	2	-(CH ₂) ₄ -0-cHx	H	Н	
1-401	H	H	H	H	Me	2	-(CH2)4-0-cHx	Me	Н	
1-402	H	H	H	H	Me	2	- •	H	Me	40
1-403	H	H	H	H	Me	2	-(CH ₂) ₄ -0-cHx	F	Н	

1-404	H	H	H	H	Me	2	-(CH ₂) ₄ -0-cHx	H	F	
1-405	H	H	H	H	Мe	2	-(CH ₂) ₄ -0-cHx	H	H	
1-406	${\tt CO_2Me}$	H	H	H	Мe	2	-(CH ₂) ₄ -0-cHx	H	H	
1-407	${\rm CO}_2{\rm Et}$	H	H	H	Me	2	-(CH ₂) ₄ -0-cHx	H	H	
1-408	H	H	H	H	Me	2	-(CH2)4-0-(3-F-cHx)	H	H	
1-409	H	H	H	H	Me	2	-(CH ₂) ₄ -0-(4-F-cHx)	H	H	
1-410	H	H	H	H	Me	2	-(CH ₂) ₄ -0-(4-C1-cHx)	H	H	10
1-411	H	H	H	H	Me	2	-(CH ₂) ₄ -0-(4-Br-cHx)	H	H	
1-412	H	H	H	H	Ne	2	-(CH ₂) ₄ -0-(3-Me-cHx)	H	H	
1-413	H	H	H	H	Мe	2	-(CH ₂) ₄ -0-(4-Me-cHx)	H	H	
1-414	H	H	H	H	Мe	2	-(CH2)4-0-(3-Et-cHx)	H	H	
1-415	H	H	H	H	Мe	2	-(CH2)4-0-(4-Et-cHx)	H	H	
1-416	H	H	H	H	Мe	2	$-(CH_2)_4-0-(3-Pr-cHx)$	H	H	
1-417	H	H	H	H	Мe	2	$-(CH_2)_4-0-(4-Pr-cHx)$	H	H	20
1-418	H	H	H	H	Ne	2	$-(CH_2)_4-0-(4-iPr-cHx)$	H	H	
1-419	H	H	H	H	Ne	2	-(CH2)4-0-(3-Bu-cHx)	H	H	
1-420	H	H	H	H	Мe	2	-(CH2)4-0-(4-Bu-cHx)	H	H	
1-421	H	H	H	H	Me	2	-(CH2)4-0-(3-CF3-cHx)	H	H	
1-422	H	H	H	H	Me	2	-(CH2)4-0-(4-CF3-cHx)	H	H	
1-423	H	H	H	H	Me	2	-(CH ₂) ₄ -0-(3-NeO-cHx)	H	H	
1-424	H	H	H	H	Me	2	-(CH ₂) ₄ -0-(4-MeO-cHx)	H	H	30
1-425	H	H	H	H	Мe	2	-(CH ₂) ₄ -0-(3-Et0-cHx)	H	H	
1-426	H	H	H	H	Мe	2	-(CH2)4-0-(4-Et0-cHx)	H	H	÷,
1-427	H	H	H	H	Мe	2	-(CH ₂) ₄ -0-(3-Pr0-cHx)	H	H	
1-428	H	H	H	H	Мe	2	-(CH2)4-0-(4-Pr0-cHx)	H	H	
1-429	H	H	H	H	Me	2	-(CH2)4-0-(3-iPr0-cHx)	H	H	
1-430	H	H	H	H	Ме	2	-(CH2)4-0-(4-iPr0-cHx)	H	H	
1-431	H	H	H	H	Me	2	-(CH2)4-0-[3-(2-Et-Pr0)-cHx]	H	H	40
1-432	H	H	H	H	Me	2	-(CH2)4-0-[4-(2-Et-Pr0)-cHx]	H	H	

1-433	H	H	H	H	Me	2	-(CH ₂) ₄ -0-(3-iBu0-cHx)	H	H		
1-434	H	H	H	H	Me	2	$-(CH_2)_4$ -0-(4-1Bu0-cHx)	H	H		
1-435	H	H	H	H	Me	2	$-(CH_2)_4$ -0-(3-MeS-cHx)	H	H		
1-436	H	H	H	H	Me	2	$-(CH_2)_4-0-(4-MeS-cHx)$	H	H		
1-437	H	H	H	H	Me	2	$-(CH_2)_4-0-(3-EtS-cHx)$	Ħ	H		
1-438	H	H	H	H	Me	2	$-(CH_2)_4$ -0-(4-EtS-cHx)	H	H		
1-439	H	H	H	H	Me	2	-(CH2)4-0-(3-PrS-cHx)	H	H		10
1-440	H	H	H	H	Мe	2	$-(CH_2)_4-0-(4-PrS-cHx)$	H	H		
1-441	H	H	H	H	Me	2	-(CH2)4-0-(3-iPrS-cHx)	H	H		
1-442	H	H	H	H	Me	2	-(CH2)4-0-(4-iPrS-cHx)	H	H		
1-443	H	H	H	H	Me	2	$-(CH_2)_4-0-[3-(2-Et-PrS)-cHx]$	H	H		
1-444	H	H	H	H	Мe	2	$-(CH_2)_4-0-[4-(2-Et-PrS)-cHx]$	H	H		
1-445	H	H	H	H	Me	2	$-(CH_2)_4$ -0-(3-iBuS-cHx)	H	H	4	3
1-446	H	H	H	H	Me	2	$-(CH_2)_4$ -0-(4-iBuS-cHx)	H	H	:	20
1-447	H	H	H	H	Me	2	-(CH2)4-0-(3-cHx-cHx)	H	H		
1-448	H	H	H	H	Me	2	-(CH2)4-0-(4-cHx-cHx)	H	H		
1-449	H	H	H	H	Me	2	$-(CH_2)_4-0-(3-Ph-cHx)$	H	H		
1-450	H	H	H	H	Me	2	$-(CH_2)_4-0-(4-Ph-cHx)$	H	H		
1-451	H	H	H	H	Me	2	-(CH2)4-0-(2, 4-diMe-cHx)	H	H		
1-452	H	H	H	H	Me	2	-(CH2)4-0-(3, 4-diMe-cHx)	H	H		
1-453	H	H	H	H	Me	2	-(CH2)4-0-(3,5-diMe-cHx)	H	H		30
1-454	H	H	H	H	Me	2	-(CH ₂) ₄ -0-Ph	H	H		
1-455	H	H	H	H	Me	2	-(CH ₂) ₄ -0-Ph	Me	H		
1-456	H	H	H	H	Me	2	-(CH ₂) ₄ -0-Ph	H	Me		
1-457	H	H	H	H	Me	2	-(CH ₂) ₄ -0-Ph	F	H		
1-458	H	H	H	H	Me	2	-(CH ₂) ₄ -0-Ph	H	F		
1-459	H	H	M	e	Me	2	$-(CH_2)_4$ - 0 - Ph	H	H		٠.
1-460	${\it CO}_2{\it Me}$	H	H		Me	2	-(CH ₂) ₄ -0-Ph	H	H		40
1-461	$co_2 Et$	H	H		Me	2	-(CH ₂) ₄ -0-Ph	H	H		

1-462	H	H	H	H	Me	2	-(CH ₂) ₄ -0-(3-F-Ph)	H	H	
1-463	H	H	H	H	Me	2	-(CH ₂) ₄ -0-(4-F-Ph)	H	H	
1-464	H	H	H	H	Ме	2	-(CH ₂) ₄ -0-(4-C1-Ph)	H	H	
1-465	H	H	H	H	Me	2	-(CH ₂) ₄ -0-(4-Br-Ph)	H	H	
1-466	H	H	H	H	Me	2	-(CH ₂) ₄ -0-(3-Me-Ph)	H	H	
1-467	H	H	H	H	Me	2	-(CH ₂) ₄ -0-(4-Me-Ph)	H	H	, ,
1-468	H	H	H	H	Мe	2	$-(CH_2)_4-0-(3-Et-Ph)$	H	H	10
1-469	H	H	H	H	Me	2	-(CH ₂) ₄ -0-(4-Et-Ph)	H	H	
1-470	H	H	H	H	Me	2	-(CH ₂) ₄ -0-(3-Pr-Ph)	H	H	
1-471	H	H	H	H	Me	2	-(CH ₂) ₄ -0-(4-Pr-Ph)	H	H	
1-472	H	H	H	H	Me	2	$-(CH_2)_4-0-(3-iPr-Ph)$	H	H	
1-473	H	H	H	H	Ne	2	-(CH ₂) ₄ -0-(4-iPr-Ph)	H	H	
1-474	H	H	H	H	Мe	2	-(CH ₂) ₄ -0-(3-Ru-Ph)	H	H	
1-475	H	H	H	H	Me	2	-(CH ₂) ₄ -0-(4-Ru-Ph)	H	H	20
1-476	H	H	H	H	Me	2	-(CH ₂) ₄ -0-(3-CF ₃ -Ph)	H	H	
1-477	H	H	H	H	Me	2	-(CH ₂) ₄ -0-(4-CF ₃ -Ph)	H	H	
1-478	Н	H	H	H	Ne	2	-(CH ₂) ₄ -0-(3-MeO-Ph)	H	H	
1-479	H	H	H	H	Me	2	-(CH ₂) ₄ -0-(4-NeO-Ph)	H	H	
1-480	H	H	H	H	Me	2	-(CH ₂) ₄ -0-(3-Et0-Ph)	H	H	5
1-481	H	H	H	H	Me	2	-(CH ₂) ₄ -0-(4-Et0-Ph)	H	H	•
1-482	H	H	H	H	Me	2	-(CH ₂) ₄ -0-(3-Pr0-Ph)	H	H	30
1-483	H	H	H	H	Ne	2	-(CH ₂) ₄ -0-(4-Pr0-Ph)	H	H	
1-484	H	H	H	H	Ne	2	$-(CH_2)_4-0-(3-iPr0-Ph)$	H	H	
1-485	H	H	H	H	Me	2	-(CH ₂) ₄ -0-(4-iPr0-Ph)	H	H	
1-486	H	H	H	H	Ne	2	-(CH ₂) ₄ -0-[3-(2-Et-Pr0)-Ph]	H	H	
1-487	H	H	H	H	Мe	2	-(CH ₂) ₄ -0-[4-(2-Et-Pr0)-Ph]	H	H	
1-488	H	H	H	H	Me	2	$-(CH_2)_4$ -0-(3-iBu0-Ph)	H	H	
1-489	H	H	H	H	Me	2	-(CH ₂) ₄ -0-(4-1 B u0-Ph)	H	H	40
1-490	H	H	H	H	Мe	2	-(CH ₂) ₄ -0-(3-MeS-Ph)	H	H	

1-491	H	H	H	H	Me	2	$-(CH_2)_4-0-(4-MeS-Ph)$	H	H		
1-492	H	H	H	H	Me	2	$-(CH_2)_4-0-(3-EtS-Ph)$	H	H		
1-493	H	H	H	H	Me	2	$-(CH_2)_4-0-(4-EtS-Ph)$	H	H		
1-494	H	H	H	H	Me	2	-(CH ₂) ₄ -0-(3-PrS-Ph)	H	H		
1-495	H	H	H	H	Me	2	-(CH ₂) ₄ -0-(4-PrS-Ph)	H	H		
1-496	H	H	H	H	Me	2	$-(CH_2)_4$ -0-(3-iPrS-Ph)	H	H		
1-497	H	H	H	H	Me	2	$-(CH_2)_4-0-(4-iPrS-Ph)$	H	H	10	0
1-498	H	H	H	H	Нe	2	$-(CH_2)_4-0-[3-(2-Et-PrS)-Ph]$	H	H		
1-499	H	H	H	H	Me	2	-(CH2)4-0-[4-(2-Et-PrS)-Ph]	H	H		
1-500	H	H	H	H	Мe	2	-(CH ₂) ₄ -0-(3-1BuS-Ph)	H	H		
1-501	H	H	H	H	Мe	2	$-(CH_2)_4-0-(4-iBuS-Ph)$	H	H		
1-502	H	H	H	H	Мe	2	$-(CH_2)_4$ -0-(3-cHx-Ph)	H	H		
1-503	H	H	H	H	Мe	2	-(CH2)4-0-(4-cHx-Ph)	H	H		
1-504	H	H	H	H	Мe	2	-(CH ₂) ₄ -0-(3-Ph-Ph)	H	H	2	0
1-505	H	H	H	H	Иe	2	-(CH ₂) ₄ -0-(4-Ph-Ph)	H	H		
1-506	H	H	H	H	Me	2	$-(CH_2)_4$ -0-(2, 4-diMe-Ph)	H	H		
1-507	H	H	H	H	Me	2	$-(CH_2)_4-0-(3,4-diMe-Ph)$	H	H		
1-508	H	H	H	H	Me	2	$-(CH_2)_4-0-(3, 5-diMe-Ph)$	H	H		
1-509	H	H	H	H	Мe	2	-(CH2)5-0-cHx	H	H		
1-510	H	H	H	H	Мe	2	-(CH ₂) ₅ -0-Ph	H	H		
1-511	H	H	H	H	Мe	2	-(CH2)6-0-cHx	H	H	3	0
1-512	H	H	H	H	Me	2	-(CH ₂) ₆ -0-Ph	H	H		
1-513	H	H	H	H	Мe	2	-(CH ₂) ₃ -0CH ₂ -cHx	H	H		
1-514	H	H	Me	Me	Мe	2	-(CH ₂) ₃ -0CH ₂ -cH _x	H	H	,	
1-515	${\tt CO_2Me}$	H	H	H	Мe	2	$-(CH_2)_3-OCH_2-cHx$	H	H		
1-516	${\rm CO_2Et}$	H	H	H	Me	2	-(CH ₂) ₃ -0CH ₂ -cHx	H	H		
1-517	H	H	H	H	Me	2	$-(CH_2)_3-OCH_2-(4-F-cHx)$	H	H		
1-518	H	H	H	H	Me	2	$-(CH_2)_3-OCH_2-(4-Me-cHx)$	H	H	4	0
1-519	H	H	H	H	Мe	2	$-(CH_2)_3-0CH_2-(4-Et-cHx)$	H	H		

1-520	H	H	H	H	Me	2	$-(CH_2)_3-OCH_2-(4-CF_3-cHx)$	H	H	
1-521	H	H	H	H	Me	2	$-(CH_2)_3-OCH_2-(4-MeO-cHx)$	H	H	
1-522	H	H	H	H	Me	2	-(CH2)3-0CH2-(4-Et0-cHx)	H	Н	
1-523	H	H	H	H	Me	2	-(CH2)3-0CH2-(4-MeS-cHx)	H	Н	
1-524	H	H	H	H	Me	2	-(CH2)3-0CH2-(4-cHx-cHx)	H	H	
1-525	H	H	H	H	Me	2	$-(CH_2)_3-OCH_2-(4-Ph-cHx)$	H	Н	
1-526	H	H	H	H	Me	2	-(CH ₂) ₃ -OCH ₂ -Ph	H	H	10
1-527	H	H	Мe	Me	Me	2	-(CH ₂) ₃ -OCH ₂ -Ph	H	Н	
1-528	${\rm CO_{2}Me}$	H	H	H	Me	2	-(CH ₂) ₃ -OCH ₂ -Ph	H	Н	
1-529	$\omega_2\!Et$	H	H I	H	Me	2	-(CH ₂) ₃ -OCH ₂ -Ph	H	Н	
1-530	H	H	H	H	Me	2	-(CH2)3-OCH2-(4-F-Ph)	H	Н	
1-531	H	H	H	H	Me	2	-(CH2)3-OCH2-(4-Me-Ph)	H	Н	
1-532	H	H	H	H	Me	2	-(CH2)3-OCH2-(4-Et-Ph)	H	H	
1-533	H	H	H	H	Me	2	$-(CH_2)_3-0CH_2-(4-CF_3-Ph)$	H	Н	20
1-534	H	H	H	H	Me	2	$-(CH_2)_3-OCH_2-(4-MeO-Ph)$	H	Н	
1-535	H	H	H	H	Me	2	$-(CH_2)_3-OCH_2-(4-EtO-Ph)$	H	Н	
1-536	H	H	H	H	Me	2	$-(CH_2)_3-OCH_2-(4-MeS-Ph)$	H	Н	
1-537	H	H	H	H	Me	2	$-(CH_2)_3-0CH_2-(4-cHx-Ph)$	H	H	
1-538	H	H	H	H	Me	2	$-(CH_2)_3-OCH_2-(4-Ph-Ph)$	H	Н	
1-539	H	H	H	H	Me	2	-(CH ₂) ₄ -OCH ₂ -cPn	H	Н	
1-540	H	H	H	H	Me	2	-(CH ₂) ₄ -0CH ₂ -cHx	H	Н	30
1-541	H	H	H	H	Me	2	-(CH ₂) ₄ -0CH ₂ -cHx	Me	Н	
1-542	H	H	H	H	Me	2	-(CH ₂) ₄ -0CH ₂ -cHx	H	Me	
1-543	H	H	H	H			-(CH ₂) ₄ -OCH ₂ -cHx	F	Н	
1-544	H	H	H	H	Me			B	F	
1-545	H	H	Me	Me	Me		J . J	B	H	
1-546	CO ₂ Me		H	H			-(CH2)4-0CH2-cHX	H	H	40
1-547	co ₂ Et		H	H			-(CH ₂) ₄ -0CH ₂ -cHx	H	H	40
1-548	H	H	H	H	Me	2	$-(CH_2)_4-0CH_2-(3-F-cHx)$	H	H	

1-549	H	H	H	H	Me	2	$-(CH_2)_4-OCH_2-(4-F-cHx)$	H	H		
1-550	H	H	H	H	Me	2	$-(CH_2)_4-OCH_2-(4-C1-cHx)$	H	H		
1-551	H	H	H	H	Me	2	$-(CH_2)_4-OCH_2-(4-Br-cHx)$	H	H		
1-552	H	H	H	H	Me	2	-(CH2)4-OCH2-(3-Me-cHx)	H	H		
1-553	H	H	H	H	Me	2	-(CH2)4-OCH2-(4-Me-cHx)	H	H		
1-554	H	H	H	H	Me	2	-(CH2)4-0CH2-(3-Et-cHx)	H	H		
1-555	H	H	H	H	Me	2	-(CH2)4-0CH2-(4-Et-cHx)	H	H	1	10
1-556	H	H	H	H	Me	2	$-(CH_2)_4-OCH_2-(3-Pr-cHx)$	H	H		
1-557	H	H	H	H	Me	2	-(CH2)4-0CH2-(4-Pr-cHx)	H	Ħ		
1-558	H	H	H	H	Me	2	-(CH2)4-OCH2-(4-iPr-cHx)	H	H		
1-559	H	H	H	H	Me	2	-(CH2)4-OCH2-(3-Bu-cHx)	H	H		
1-560	H	H	H	H	Me	2	-(CH2)4-OCH2-(4-Bu-cHx)	H	H		
1-561	H	H	H	H	Me	2	-(CH2)4-OCH2-(3-CF3-cHx)	H	H		
1-562	H	H	H	H	Me	2	-(CH2)4-0CH2-(4-CF3-cHx)	H	H	2	20
1-563	H	H	H	H	Мe	2	-(CH2)4-OCH2-(3-MeO-cHx)	H	H		
1-564	H	H	H	H	Me	2	-(CH ₂) ₄ -OCH ₂ -(4-MeO-cHx)	H	H		
1-565	H	H	H	H	Me	2	-(CH2)4-OCH2-(3-EtO-cHx)	H	H		
1-566	H	H	H	H	Me	2	-(CH2)4-OCH2-(4-EtO-cHx)	H	H		
1-567	H	H	H	H	Me	2	-(CH2)4-OCH2-(3-PrO-cHx)	H	H		
1-568	H	H	H	H	Me	2	-(CH2)4-OCH2-(4-PrO-cHx)	H	H		
1-569	H	H	H	H	Me	2	-(CH2)4-0CH2-(3-iPr0-cHx)	H	H	;	30
1-570	H	H	H	H	Ne	2	-(CH ₂) ₄ -OCH ₂ -(4-iPrO-cHx)	H	H		
1-571	H	H	H	H	Ne	2	-(CH ₂) ₄ -0CH ₂ -[3-(2-Et-Pr0)-cHx] H	H		
1-572	H	H	H	H	Ne	2	-(CH ₂) ₄ -0CH ₂ -[4-(2-Et-Pr0)-cHx] H	H		
1-573	H	H	H	H	Me	2	-(CH2)4-OCH2-(3-iBuO-cHx)	H	H		
1-574	Н	H	H	H	Me	2	-(CH ₂) ₄ -0CH ₂ -(4-iBu0-cHx)	H	H		
1-575	H	H	H	H	Me	2	-(CH2)4-OCH2-(3-MeS-cHx)	H	H		
1-576	H	H	H	H	Me	2	-(CH2)4-OCH2-(4-MeS-cHx)	H	H	•	40
1-577	H	H	H	H	Me	2	-(CH2)4-OCH2-(3-EtS-cHX)	H	H		

1-578	H	H	H	H	Me	2	$-(CH_2)_4$ $-0CH_2$ $-(4-EtS-cHx)$	H	H	
1-579	H	H	H	H	Me	2	$-(CH_2)_4$ -OCH ₂ -(3-PrS-cHx)	H	H	
1-580	H	H	H	H	Me	2	-(CH2)4-0CH2-(4-PrS-cHx)	H	H	
1-581	H	H	H	H	Me	2	$-(CH_2)_4$ -OCH ₂ -(3-iPrS-cHx)	H	H	
1-582	H	H	H	H	Me	2	$-(CH_2)_4-0CH_2-(4-iPrS-cHx)$	H	H	
1-583	H	H	H	H	Me	2	$-(CH_2)_4$ - $0CH_2$ - $[3-(2-Et-PrS)-cHx]$] H	Н	
1-584	H	H	H	H	Me	2	-(CH2)4-0CH2-[4-(2-Et-PrS)-cHx]] H	H	10
1-585	H	H	H	H	Me	2	$-(CH_2)_4$ -OCH ₂ -(3-iBuS-cHx)	H	H	
1-586	H	H	H	H	Me	2	$-(CH_2)_4$ -OCH ₂ -(4-iBuS-cHx)	H	Н	
1-587	H	H	H	H	Me	2	$-(CH_2)_4$ -0CH ₂ -(3-cHx-cHx)	H	H	
1-588	H	H	H	H	Me	2	$-(CH_2)_4-0CH_2-(4-cHx-cHx)$	H	H	
1-589	H	H	H	H	Me	2	$-(CH_2)_4$ -OCH ₂ -(3-Ph-cHx)	H	Н	
1-590	H	H	H	H	Me	2	-(CH2)4-OCH2-(4-Ph-cHx)	H	Н	
1-591	H	H	H	H	Me	2	$-(CH_2)_4$ -OCH ₂ -(2, 4-diMe-cHx)	H	Н	20
1-592	H	H	H	H	Me	2	-(CH2)4-OCH2-(3, 4-diMe-cHx)	H	H	
1-593	H	H	H	H	Me	2	$-(CH_2)_4$ -OCH ₂ -(3, 5-diMe-cHx)	H	Н	
1-594	H	H	H	H	Me	2	-(CH ₂) ₄ -OCH ₂ -Ph	H	Н	
1-595	H	H	H	H	Me	2	-(CH ₂) ₄ -0CH ₂ -Ph	Me	H	
1-596	H	H	H	H	Me	2	-(CH ₂) ₄ -OCH ₂ -Ph	A	Me	
1-597	H	H	H	H	Me	2	-(CH ₂) ₄ -0CH ₂ -Ph	F	H	
1-598	H	H	H	H	Me	2	-(CH ₂) ₄ -OCH ₂ -Ph	H	F	30
1-599	H	H	Мe	Me	Me	2	-(CH ₂) ₄ -OCH ₂ -Ph	H	Н	
1-600	CO ₂ Me	H	H	H	Me	2	-(CH ₂) ₄ -OCH ₂ -Ph	H	Н	
1-601	CO ₂ Et	H	H	H			-(CH ₂) ₄ -OCH ₂ -Ph	H	H	
1-602	H	H	H	H	Me	2	-(CH ₂) ₄ -OCH ₂ -(3-F-Ph)	H	Н	
1-603	H	H	H	H			-(CH ₂) ₄ -OCH ₂ -(4-F-Ph)	H	H	
1-604	H	H	H	H			-(CH2)4-0CH2-(4-C1-Ph)	H	Н	
1-605	H	H	H	H	Me	2	-(CH ₂) ₄ -0CH ₂ -(4-Br-Ph)	H	Н	40
1-606	H	H	H	H	Me	2	$-(CH_2)_4-OCH_2-(3-Me-Ph)$	H	H	

1-607	H	H	H	H	Me	2	$-(CH_2)_4$ -OCH ₂ -(4-Me-Ph)	H	H	
1-608	H	H	H	H	Me	2	$-(CH_2)_4$ -OCH ₂ -(3- Et - Ph)	H	H	
1-609	H	H	H	H	Me	2	$-(CH_2)_4-0CH_2-(4-Et-Ph)$	H	H	
1-610	H	H	H	H	Me	2	-(CH ₂) ₄ -0CH ₂ -(3-Pr-Ph)	H	H	
1-611	H	H	H	H	Ne	2	-(CH2)4-0CH2-(4-Pr-Ph)	H	H	
1-612	H	H	H	H	Ne	2	$-(CH_2)_4-OCH_2-(3-iPr-Ph)$	H	H	
1-613	H	H	H	H	Ne	2	$-(CH_2)_4-0CH_2-(4-iPr-Ph)$	H	H	10
1-614	H	H	H	H	Me	2	-(CH ₂) ₄ -0CH ₂ -(3- B u-Ph)	H	H	
1-615	H	H	H	H	Me	2	-(CH ₂) ₄ -0CH ₂ -(4- B u-Ph)	H	H	
1-616	H	H	H	H	Me	2	-(CH ₂) ₄ -0CH ₂ -(3-CF ₃ -Ph)	H	H	
1-617	H	H	H	H	Мe	2	-(CH2)4-0CH2-(4-CF3-Ph)	H	H	
1-618	H	H	H	H	Me	2	-(CH ₂) ₄ -OCH ₂ -(3-MeO-Ph)	H	H	
1-619	H	H	H	H	Ne	2	-(CH2)4-0CH2-(4-MeO-Ph)	H	H	
1-620	H	H	H	H	Ne	2	$-(CH_2)_4-0CH_2-(3-Et0-Ph)$	H	H	20
1-621	H	H	H	H	Ne	2	-(CH2)4-0CH2-(4-Et0-Ph)	H	H	
1-622	H	H	H	H	Мe	2	$-(CH_2)_4$ $-0CH_2$ $-(3-Pt0-Ph)$	H	H	
1-623	H	H	H	H	Ne	2	-(CH2)4-0CH2-(4-Pr0-Ph)	H	H	
1-624	H	H	H	H	Me	2	-(CH2)4-0CH2-(3-iPr0-Ph)	H	H	
1-625	H	H	H	H	Me	2	-(CH2)4-0CH2-(4-iPr0-Ph)	H	H	
1-626	H	H	H	H	Me	2	$-(\text{CH}_2)_4 - 0\text{CH}_2 - [3 - (2 - \text{Et-Pr0}) - \text{Ph}]$	H	H	
1-627	H	H	H	H	Me	2	$-(CH_2)_4-0CH_2-[4-(2-Et-Pr0)-Ph]$	H	H	30
1-628	H	H	H	H	Me	2	$-(CH_2)_4-0CH_2-(3-iBu0-Ph)$	H	H	
1-629	H	H	H	H	Ne	2	-(CH2)4-0CH2-(4-iBuO-Ph)	H	H	
1-630	H	H	H	H	Me	2	$-(CH_2)_4-OCH_2-(3-MeS-Ph)$	H	H	
1-631	H	H	H	H	Мe	2	-(CH2)4-0CH2-(4-MeS-Ph)	H	H	
1-632	H	H	H	H	Мe	2	-(CH2)4-OCH2-(3-EtS-Ph)	H	H	
1-633	H	H	H	H	Мe	2	-(CH2)4-0CH2-(4-EtS-Ph)	H	H	
1-634	H	H	H	H	Мe	2	-(CH ₂) ₄ -0CH ₂ -(3-PrS-Ph)	H	H	40
1-635	H	H	H	H	Me	2	-(CH2)4-0CH2-(4-PrS-Ph)	H	H	

1-636	H	H	H	H	Мe	2	-(CH ₂) ₄ -OCH ₂ -(3-iPrS-Ph)	H	H	
1-637	H	H	H	H	Мe	2	-(CH ₂) ₄ -OCH ₂ -(4-iPrS-Ph)	H	H	
1-638	H	H	H	H	Me	2	$-(CH_2)_4-OCH_2-[3-(2-Bt-PrS)-Ph]$	H	H	٠.
1-639	H	H	H	H	Мe	2	$-(CH_2)_4-OCH_2-[4-(2-Et-PrS)-Ph]$	H	H	
1-640	H	H	H	H	Me	2	-(CH ₂) ₄ -0CH ₂ -(3-iBuS-Ph)	H	H	
1-641	H	H	H	H	Me	2	-(CH ₂) ₄ -OCH ₂ -(4-iBuS-Ph)	H	H	
1-642	H	H	H	H	Me	2	-(CH ₂) ₄ -OCH ₂ -(3-cHx-Ph)	H	H	10
1-643	H	H	H	H	Me	2	-(CH ₂) ₄ -OCH ₂ -(4-cHx-Ph)	H	H	
1-644	H	H	H	H	Me	2	-(CH ₂) ₄ -0CH ₂ -(3-Ph-Ph)	H	H	
1-645	H	H	H	H	Me	2	-(CH ₂) ₄ -0CH ₂ -(4-Ph-Ph)	H	E	
1-646	H	H	H	H	Me	2	-(CH ₂) ₄ -OCH ₂ -(2,4-diMe-Ph)	H	E	
1-647	H	H	H	H	Мe	2	-(CH ₂) ₄ -OCH ₂ -(3, 4-diMe-Ph)	H	E	
1-648	H	H	H	H	Me	2	-(CH ₂) ₄ -OCH ₂ -(3, 5-diMe-Ph)	H	H	
1-649	H	H	H	H	Me	2	-(CH ₂) ₅ -0CH ₂ -cHx	H	E	20
1-650	H	H	H	H	Me	2	-(CH ₂) ₅ -OCH ₂ -Ph	H	E	
1-651	H	H	H	H	Me	2	-(CH2)6-OCH2-cHx	H	E	
1-652	H	H	H	H	Me	2	-(CH ₂) ₆ -OCH ₂ -Ph	H	H	·.
1-653	H	H	H	H	Me	2	-CH=CH-cHx	H	H	
1-654	H	H	H	H	Me	2	-CH=CH-Ph	H	H	
1-655	H	H	H	H	Me	2	-CH=CH-(CH ₂) ₂ -cHx	H	H	
1-656	H	H	H	H	Мe	2	-CH=CH-(CH ₂) ₂ -Ph	H	H	30
1-657	H	H	H	H	Me	2	-CH=CH-(CH ₂) ₃ -cHx	H	H	
1-658	H	H	Me	Me	Me	2	-CH=CH-(CH ₂) ₃ -cHx	H	H	
1-659	${\rm CO_2Me}$	H	H	H	Me	2	-CH=CH-(CH ₂) ₃ -cHx	H	H	
1-660	${\rm CO_2Et}$	Ħ	H	H	Me	2	-CH=CH-(CH ₂) ₃ -cHx	H	H	
1-661	H	H	H	H	Me	2	-CH=CH-(CH2)3-(4-F-cHx)	H .	H	
1-662	H	H	H	H	Me	2	-CH=CH-(CH2)3-(4-Me-cHx)	H	H	
1-663	H	H	H	H	Мe	2	-CH=CH-(CH2)3-(4-Et-cHx)	H	H	40
1-664	H	H	H	H	Мe	2	-CH=CH-(CH2)3-(4-CF3-cHx)	H	E	

1-665	H	H	H	H	Me	2	$-CH=CH-(CH_2)_3-(4-MeO-cHx)$	H	H	
1-666	H	H	H	H	Me	2	-CH=CH-(CH ₂) ₃ -(4-EtO-cHx)	H	H	
1-667	H	H	H	H	Ne	2	-CH=CH-(CH2)3-(4-MeS-cHx)	H	H	
1-668	H	H	H	H	Мe	2	$-CH=CH-(CH_2)_3-(4-cHx-cHx)$	H	H	
1-669	H	H	H	H	Ne	2	$-CH=CH-(CH_2)_3-(4-Ph-cHx)$	H	H	
1-670	H	H	H	H	Me	2	-CH=CH-(CH ₂) ₃ -Ph	H	H	
1-671	H	H	Me	Me		2	-CH=CH-(CH ₂) ₃ -Ph	H	H	10
1-672	${\rm CO_2Me}$	H	H	H	Me	2	-CH=CH-(CH ₂) ₃ -Ph	H	H	
1-673	${\rm CO}_2{\rm Et}$	H	H	H	Мe	2	-CH=CH-(CH ₂) ₃ -Ph	H	H	
1-674	H	H	H	H	Me	2	-CH=CH-(CH ₂) ₃ -(4-F-Ph)	H	H	
1-675	H	H	H	H	Me	2	-CH=CH-(CH2)3-(4-Me-Ph)	H	H	
1-676	H	H	H	H	Ne	2	-CH=CH-(CH ₂) ₃ -(4-Et-Ph)	H	H	
1-677	H	H	H	H	Me	2	-CH=CH-(CH2)3-(4-CF3-Ph)	H	H	
1-678	H	H	H	H	Me	2	$-CH=CH-(CH_2)_3-(4-MeO-Ph)$	H	H	20
1-679	H	H	H	H	Me	2	-CH=CH-(CH2)3-(4-EtO-Ph)	H	H	
1-680	H	H	H	H	Me	2	-CH=CH-(CH ₂) ₃ -(4-MeS-Ph)	H	H	
1-681	H	H	H	H	Me	2	-CH=CH-(CH2)3-(4-cHx-Ph)	H	H	
1-682	H	H	H	H	Me	2	-CH=CH-(CH ₂) ₃ -(4-Ph-Ph)	H	H	
1-683	H	H	H	H	Мe	2	-CH=CH-(CH ₂) ₄ -cHx	H	H	
1-684	H	H	Me	Me	Мe	2	-CH=CH-(CH ₂) ₄ -cHx	H	H	
1-685	${\tt CO_2Me}$	H	H	H	Me	2	-CH=CH-(CH ₂) ₄ -cHx	H	H	30
1-686	CO ₂ Et	H	H	H	Me	2	-CH=CH-(CH ₂) ₄ -cHx	H	H	
1-687	H	H	H	H	Me	2	-CH=CH-(CH2)4-(4-F-cHx)	H	H	,
1-688	H	H	H	H	Me	2	-CH=CH-(CH2)4-(4-Me-cHx)	H	H	
1-689	H	H	H	H	Me	2	-CH=CH-(CH2)4-(4-Et-cHx)	H	H	
1-690	H	H	H	H	Me	2	-CH=CH-(CH2)4-(4-CF3-cHX)	H	H	
1-691	H	H	H	H		2	-CH=CH-(CH2)4-(4-MeO-cHx)	H	H	40
1-692	H	H	H	H	Me	2	-CH=CH-(CH2)4-(4-Et0-cHx)	H	H	40
1-693	H	H	H	H	Me	2	-CH=CH-(CH $_2$) $_4$ -(4-MeS-cHx)	H	H	

1-694	H	H	H	H	Мe	2	$-CH=CH-(CH_2)_4-(4-cHx-cHx)$	H	E	
1-695	H	H	H	H	Мe	2	$-CH=CH-(CH_2)_4-(4-Ph-cHx)$	H	B	
1-696	H	H	H	H	Мe	2	-CH=CH-(CH ₂) ₄ -Ph	H	B	
1-697	H	H	Me	Me	Мe	2	-CH=CH-(CH ₂) ₄ -Ph	H	H	
1-698	CO ₂ Me	H	H	H	Me	2	-CH=CH-(CH ₂) ₄ -Ph	H	H	
1-699	co ₂ Et	H	H	H	Мe	2	-CH=CH-(CH ₂) ₄ -Ph	H	B	
1-700	H	H	H	H	Мe	2	-CH=CH-(CH ₂) ₄ -(4-F-Ph)	H	H	10
1-701	H	H	H	H	Мe	2	$-CH=CH-(CH_2)_4-(4-Me-Ph)$	H	H	
1-702	H	H	H	H	Мe	2	$-CH=CH-(CH_2)_4-(4-Et-Ph)$	H	H	
1-703	H	H	H	H	Мe	2	-CH=CH-(CH ₂) ₄ -(4-CF ₃ -Ph)	H	H	
1-704	H	H	H	H	Мe	2	$-CH=CH-(CH_2)_4-(4-MeO-Ph)$	H	H	
1-705	H	H	H	H	Мe	2	$-CH=CH-(CH_2)_4-(4-Et0-Ph)$	H	H	
1-706	H	H	H	H	Me	2	-CH=CH-(CH ₂) ₄ -(4-MeS-Ph)	H	H	
1-707	H	H	H	H	Me	2	$-CH=CH-(CH_2)_4-(4-cHx-Ph)$	H	H	20
1-708	H	H	H	H	Me	2	-CH=CH-(CH ₂) ₄ -(4-Ph-Ph)	H	B	
1-709	H	H	H	H	Me	2	-CH=CH-(CH ₂) ₅ -cH ₂	H	H	
1-710	H	Ħ	H	H	Me	2	-CH=CH-(CH ₂) ₅ -Ph	H	H	
1-711	H	H	H	H	Мe	2	-CH=CH-(CH ₂) ₆ -cHx	H	H	
1-712	H	Ħ	H	H	Мe	2	-CH=CH-(CH ₂) ₆ -Ph	H	H	
1-713	H	H	H	H	Мe	2	-C=C-CH ₂ 0-cHx	H	H	
1-714	H	H	H	H	Мe	2	-C=C-CH ₂ 0-Ph	H	H	30
1-715	H	H	H	H	Me	2	-C=C-(CH ₂) ₂ 0-cHx	H	H	
1-716	H	H	H	H	Me	2	-C=C-(CH ₂) ₂ 0-Ph	H	H	
1-717	H	H	H	H	Мe	2	-C≡C-cHx	H	H	
1-718	H	H	Жe	Me	Me	2	-C≡C-cHx	H	H	
1-719	CO ₂ Me	Ħ	H	H	Me	2	-C≡C-cHx	H	H	
1-720	${\rm CO}_2{\rm Et}$	H	H	H	Me	2	-C≡C-cHx	H	H	
1-721	H	H	H	H	Мe	2	$-C \equiv C - (4 - F - cHx)$	H	E	40
1-722	H	H	H	H	Me	2	$-C \equiv C - (4 - Me - cHx)$	H	H	

1-723	H	H	H	H	Ne	2	$-C \equiv C - (4 - E t - cHx)$	H	H	
1-724	H	H	H	H	Me	2	$-C \equiv C - (4 - CF_3 - cHx)$	H	H	
1-725	H	H	H	H	Me	2	$-C \equiv C - (4 - MeO - cHx)$	H	H	
1-726	H	H	H	H	Мe	2	$-C \equiv C - (4 - E t 0 - cHx)$	H	H	
1-727	H	H	H	H	Me	2	$-C \equiv C - (4 - \text{MeS} - cHx)$	H	H	
1-728	H	H	H	H	Me	2	$-C \equiv C - (4 - cHx - cHx)$	H	H	
1-729	H	H	H	H	Me	2	$-C \equiv C - (4 - Ph - cHx)$	H	H	10
1-730	H	H	H	H	Me	2	-C≡C-Ph	H	H	
1-731	H	H	Мe	Me	Me	2	-C≡C-Ph	H	H	
1-732	CO ₂ Me	H	H	H	Мe	2	-C≡C-Ph	H	H	
1-733	CO ₂ Et	H	H	H	Мe	2	-C≡C-Ph	H	H	
1-734	H	H	H	H	Me	2	-C≡C-(4-F-Ph)	H	H	
1-735	H	H	H	H	Мe	2	-C≡C-(4-Me-Ph)	H	H	
1-736	H	H	H	H	Мe	2	$-C \equiv C - (4 - Pr - Ph)$	H	H	20
1-737	H	H	H	H	Мe	2	-C≡C-(4-Bu-Ph)	H	H	
1-738	H	H	H	H	Мe	2	-C≡C-(4-MeO-Ph)	H	H	
1-739	H	H	H	H	Мe	2	$-C \equiv C - (4 - E t 0 - Ph)$	H	H	
1-740	H	H	H	H	Me	2	-C≡C-(4-PrO-Ph)	H	H	
1-741	H	H	H	H	Me	2	-C≡C-(4-cHx-Ph)	H	H	
1-742	H	H	H	H	Ne	2	-C≡C-(4-Ph-Ph)	H	H	
1-743	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - cHx$	H	H	30
1-744	H	H	Me	Me	Me	2	$-C \equiv C - (CH_2)_2 - cHx$	H	H	
1-745	CO ₂ Me	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - cHx$	H	H	
1-746	CO ₂ Et	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - cHx$	H	H	
1-747	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (4 - F - cHx)$	H	H	
1-748	H	H	H	H	Ne	2	$-C \equiv C - (CH2)_2 - (4 - Me - cHx)$	H	H	
1-749	H	H	H	H	Ne	2	$-C \equiv C - (CH_2)_2 - (4 - Et - cHx)$	H	H	
1-750	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (4 - CF_3 - cHx)$	H	H	40
1-751	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (4 - Me0 - cHx)$	H	H	

1-752	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (4 - Et0 - cHx)$	H	Н	
1-753	Н	Н	Н	H		2		H	Н	
1-754	Н	Н	H	H	Me	2	$-C \equiv C - (CH2)2 - (4 - cHx - cHx)$	B	H	
1-755	H	Н	H	H	Мe	2	$-C \equiv C - (CH2)2 - (4-Ph-cHx)$	H	H	
1-756	Н	H	H	H	Me	2		H	Н	
1-757	H	Н	Мe	Me	Me	2	_ _	Ħ	H	
1-758	CO ₂ Me	Н	H	H	Me	2	-C≡C-(CH ₂) ₂ -Ph	H	H	10
1-759	CO ₂ Et	H	H	H	Me	2	-C≡C-(CH ₂) ₂ -Ph	H	Н	
1-760	Н	H	H	H	Мe	2	-C≡C-(CH ₂) ₂ -(4-F-Ph)	H	H	
1-761	H	H	H	H	Мe	2	$-C \equiv C - (CH_2)_2 - (4-Me-Ph)$	H	H	
1-762	H	H	H	H	Me	2	-C≡C-(CH ₂) ₂ -(4-Et-Ph)	H	H	
1-763	H	H	H	H	Me	2	-C≡C-(CH ₂) ₂ -(4-CF ₃ -Ph)	H	H	
1-764	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (4-MeO-Ph)$	H	H	
1-765	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (4 - EtO - Ph)$	H	H	20
1-766	H	H	H	H	Мe	2	$-C \equiv C - (CH_2)_2 - (4-MeS-Ph)$	Ħ	H	
1-767	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (4 - cHx - Ph)$	H	H	
1-768	H	H	H	H	Me	2	-C≡C-(CH ₂) ₂ -(4-Ph-Ph)	H	H	
1-769	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - cPn$	H	H	
1-770	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	H	H	
1-771	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	Me	Н	
1-772	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	H	Ме	30
1-773	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	F	H	
1-774	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	Ħ	F	
1-775	H	H	Me	Me	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	Ħ	H	
1-776	${\tt CO_{2}Me}$	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	H	H	
1-777	${\rm CO}_2{\rm Et}$	H	H	H		2	5 0	Ħ	H	
1-778	H	H	H	H			$-C \equiv C - (CH_2)_3 - (3 - F - cHx)$	H	H	
1-779	H	H	H	H	Me	2	$-C \equiv C - (CH2)_3 - (4 - F - cHx)$	Ħ	H	40
1-780	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - C1 - cHx)$	H	H	

H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Br - cHx)$	H	H	
H	H	H	H	Ne	2	$-C \equiv C - (CH_2)_3 - (3 - Me - cHx)$	H	H	
H	H	H	H	Me	2	$-C \equiv C - (CH2)3 - (4-Me-cHx)$	H	H	
H	H	H	H	Ne	2	$-C \equiv C - (CH2)3 - (3-Et-cHx)$	H	H	
H	H	H	H	Ne	2	$-C \equiv C - (CH2)3 - (4-Et-cHx)$	H	H	
H	H	H	H	Me	2	$-C \equiv C - (CH2)_3 - (3-Pr-cHx)$	H	H	
H	H	H	H	Me	2	$-C \equiv C - (CH2)3 - (4-Pr-cHx)$	H	H	10
H	H	H	H	Me	2	$-C \equiv C - (CH2)_3 - (4 - iPr - cHx)$	H	H	
H	H	H	H	Me	2	$-C \equiv C - (CH2)3 - (3-Bu-cHx)$	H	H	
H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Bu - cHx)$	H	H	
H	H	H	H	Ne	2	$-C \equiv C - (CH_2)_3 - (3 - CF_3 - cHx)$	H	H	
H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - CF_3 - cHx)$	H	H	
H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - MeO - cHx)$	H	H	
H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - MeO - cHx)$	H	H	20
H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - Et 0 - cHx)$	H	H	
H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Et0 - cHx)$	H	H	
H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3-Pr0-cHx)$	H	H	
H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Pr0 - cHx)$	H	H	
H	Ħ	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - iPr0 - cHx)$	H	H	
H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - iPr0 - cHx)$	H	H	
H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - [3 - (2 - Et - Pr0) - cH$	K] H	H	30
H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - [4 - (2 - Et - Pr0) - cH$	IX] H	H	
H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - iBuO - cHx)$	H	H	
H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - iBuO - cHx)$	H	H	
H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - MeS - cHx)$	H	H	
H	H	H	H	Me	2	2 0	H	H	
H	H	H	H	Me			H	H	
H	H	H	H	Me			H	H	40
H	H	H	H	Мe	2	$-C \equiv C - (CH_2)_3 - (3 - PrS - cHx)$	H	H	
		H H H H H H H H H H H H H H H H H H H	H H H H H H H H H H H H H H H H H H H	H H	H H H H H Me H H H H Me Me H H H H Me Me H H H H	H H H H H L 2 H H H H Me 2 H H H	H H H H H Me 2 -C≡C-(CH ₂) 3-(4-Me-cHx) H H H H H Me 2 -C≡C-(CH ₂) 3-(3-Et-cHx) H H H H H Me 2 -C≡C-(CH ₂) 3-(4-Et-cHx) H H H H Me 2 -C≡C-(CH ₂) 3-(4-Et-cHx) H H H H Me 2 -C≡C-(CH ₂) 3-(4-Et-cHx) H H H H Me 2 -C≡C-(CH ₂) 3-(4-Et-cHx) H H H H Me 2 -C≡C-(CH ₂) 3-(4-Et-cHx) H H H H Me 2 -C≡C-(CH ₂) 3-(4-Et-cHx) H H H H Me 2 -C≡C-(CH ₂) 3-(3-Et-CHx) H H H H Me 2 -C≡C-(CH ₂) 3-(3-Et-CHx) H H H H Me 2 -C≡C-(CH ₂) 3-(3-Et-CHx) H H H H Me 2 -C≡C-(CH ₂) 3-(3-Et-CHx) H H H H Me 2 -C≡C-(CH ₂) 3-(3-Et-CHx) H H H H Me 2 -C≡C-(CH ₂) 3-(3-Et-CCHx) H H H H Me 2 -C≡C-(CH ₂) 3-(3-Et-CCHx) H H H H Me 2 -C≡C-(CH ₂) 3-(3-Et-CCHx) H H H H Me 2 -C≡C-(CH ₂) 3-(3-Et-CCHx) H H H H Me 2 -C≡C-(CH ₂) 3-(3-Et-CCHx) H H H H Me 2 -C≡C-(CH ₂) 3-(3-Et-CCHx) H H H H Me 2 -C≡C-(CH ₂) 3-(3-Et-CCHx) H H H H Me 2 -C≡C-(CH ₂) 3-(3-Et-CCHx) H H H H Me 2 -C≡C-(CH ₂) 3-(3-Et-CCHx) H H H H Me 2 -C≡C-(CH ₂) 3-(3-Et-CCHx) H H H H M Me 2 -C≡C-(CH ₂) 3-(3-Et-CCHx) H H H H M Me 2 -C≡C-(CH ₂) 3-(3-Et-CCHx) H H H H M Me 2 -C≡C-(CH ₂) 3-(3-Et-CCHx) H H H H M Me 2 -C≡C-(CH ₂) 3-(3-Et-CCHx) H H H H M Me 2 -C≡C-(CH ₂) 3-(3-Et-CCHx) H H H H M Me 2 -C≡C-(CH ₂) 3-(3-Et-CCHx) H H H H M Me 2 -C≡C-(CH ₂) 3-(3-Et-CCHx) H H H H M Me 2 -C≡C-(CH ₂) 3-(3-Et-CCHx) H H H H M Me 2 -C≡C-(CH ₂) 3-(4-Et-CCHx)	H H H H H Me 2 -C≡C-(CH2)3-(4-Me-CHx) H H H H H Me 2 -C≡C-(CH2)3-(3-Et-CHx) H H H H H Me 2 -C≡C-(CH2)3-(3-Et-CHx) H H H H H Me 2 -C≡C-(CH2)3-(4-Et-CHx) H H H H H M Me 2 -C≡C-(CH2)3-(3-Et-CHx) H H H H H M Me 2 -C≡C-(CH2)3-(3-Et-CHx) H H H H H M Me 2 -C≡C-(CH2)3-(3-Et-CHx) H H H H H M Me 2 -C≡C-(CH2)3-(3-Et-CHx) H H H H H M Me 2 -C≡C-(CH2)3-(3-MeO-CHx) H H H H H M Me 2 -C≡C-(CH2)3-(3-MeO-CHx) H H H H H M Me 2 -C≡C-(CH2)3-(3-EtO-CHx) H H H H H M Me 2 -C≡C-(CH2)3-(3-EtO-CHx) H H H H H M Me 2 -C≡C-(CH2)3-(3-EtO-CHx) H H H H H M Me 2 -C≡C-(CH2)3-(3-EtO-CHx) H H H H H M Me 2 -C≡C-(CH2)3-(3-EtO-CHx) H H H H H M Me 2 -C≡C-(CH2)3-(3-EtO-CHx) H H H H H M Me 2 -C≡C-(CH2)3-(3-EtO-CHx) H H H H H M Me 2 -C≡C-(CH2)3-(3-EtO-CHx) H H H H H M Me 2 -C≡C-(CH2)3-(3-EtO-CHx) H H H H H M Me 2 -C≡C-(CH2)3-(3-EtO-CHx) H H H H H M Me 2 -C≡C-(CH2)3-(3-EtO-CHx) H H H H H M Me 2 -C≡C-(CH2)3-(3-EtO-CHx) H H H H H M Me 2 -C≡C-(CH2)3-(3-EtO-CHx) H H H H H M Me 2 -C≡C-(CH2)3-(3-EtO-CHx) H H H H H M Me 2 -C≡C-(CH2)3-(3-EtO-CHx) H H H H H M Me 2 -C≡C-(CH2)3-(3-BuO-CHx) H H H H H M Me 2 -C≡C-(CH2)3-(3-BuO-CHx) H H H H H M Me 2 -C≡C-(CH2)3-(3-BuO-CHx) H H H H H M Me 2 -C≡C-(CH2)3-(3-BuO-CHx) H H H H H M Me 2 -C≡C-(CH2)3-(3-BuO-CHx) H H H H H M Me 2 -C≡C-(CH2)3-(3-BuO-CHx) H H H H H M Me 2 -C≡C-(CH2)3-(3-BuO-CHx) H H H H H M Me 2 -C≡C-(CH2)3-(3-BuO-CHx) H H H H H M Me 2 -C≡C-(CH2)3-(3-BuO-CHx) H H H H H M Me 2 -C≡C-(CH2)3-(3-BuO-CHx) H H H H H M Me 2 -C≡C-(CH2)3-(3-BuO-CHx) H H H H H H M Me 2 -C≡C-(CH2)3-(3-BuO-CHx) H H H H H H M Me 2 -C≡C-(CH2)3-(3-BuO-CHx) H H H H H H M Me 2 -C≡C-(CH2)3-(3-BuO-CHx) H H H H H H M Me 2 -C≡C-(CH2)3-(3-BuO-CHx) H H H H H H M Me 2 -C≡C-(CH2)3-(4-BuO-CHx) H H H H H H M Me 2 -C≡C-(CH2)3-(4-BuO-CHx) H H H H H H M Me 2 -C≡C-(CH2)3-(4-BuO-CHx) H	H H H H Me 2 -C≡C-(CH ₂)3-(4-Me-cHx) H H H H H H Me 2 -C≡C-(CH ₂)3-(4-Me-cHx) H H H H H H Me 2 -C≡C-(CH ₂)3-(4-Et-cHx) H H H H H H Me 2 -C≡C-(CH ₂)3-(4-Et-cHx) H H H H H H Me 2 -C≡C-(CH ₂)3-(4-Pt-cHx) H H H H H M Me 2 -C≡C-(CH ₂)3-(4-Pt-cHx) H H H H H H Me 2 -C≡C-(CH ₂)3-(4-Pt-cHx) H H H H H H Me 2 -C≡C-(CH ₂)3-(4-Pt-cHx) H H H H H H Me 2 -C≡C-(CH ₂)3-(4-Et-cHx) H H H H H H Me 2 -C≡C-(CH ₂)3-(4-Et-cHx) H H H H H H Me 2 -C≡C-(CH ₂)3-(4-Et-CHx) H H H H H H Me 2 -C≡C-(CH ₂)3-(4-Et-CHx) H H H H H H Me 2 -C≡C-(CH ₂)3-(4-Et-CHx) H H H H H H Me 2 -C≡C-(CH ₂)3-(4-Et-CHx) H H H H H H Me 2 -C≡C-(CH ₂)3-(4-Me0-CHx) H H H H H H Me 2 -C≡C-(CH ₂)3-(4-Et-CHx) H H H H H H Me 2 -C≡C-(CH ₂)3-(4-Et-CHx) H H H H H H Me 2 -C≡C-(CH ₂)3-(4-Et-CHx) H H H H H H Me 2 -C≡C-(CH ₂)3-(4-Pt-O-CHx) H H H H H H Me 2 -C≡C-(CH ₂)3-(4-Pt-O-CHx) H H H H H H Me 2 -C≡C-(CH ₂)3-(4-Pt-O-CHx) H H H H H H Me 2 -C≡C-(CH ₂)3-(4-Pt-O-CHx) H H H H H H Me 2 -C≡C-(CH ₂)3-(4-Pt-O-CHx) H H H H H H M Me 2 -C≡C-(CH ₂)3-(4-Pt-O-CHx) H H H H H H M Me 2 -C≡C-(CH ₂)3-(4-Pt-O-CHx) H H H H H H M Me 2 -C≡C-(CH ₂)3-(4-Pt-O-CHx) H H H H H H M Me 2 -C≡C-(CH ₂)3-(4-Pt-O-CHx) H H H H H H M Me 2 -C≡C-(CH ₂)3-(4-Pt-O-CHx) H H H H H H M Me 2 -C≡C-(CH ₂)3-(4-Pt-O-CHx) H H H H H H M Me 2 -C≡C-(CH ₂)3-(4-Pt-O-CHx) H H H H H H M Me 2 -C≡C-(CH ₂)3-(4-Pt-O-CHx) H H H H H H M Me 2 -C≡C-(CH ₂)3-(4-Pt-O-CHx) H H H H H H M Me 2 -C≡C-(CH ₂)3-(4-Pt-O-CHx) H H H H H H M Me 2 -C≡C-(CH ₂)3-(4-Pt-O-CHx) H H H H H H M Me 2 -C≡C-(CH ₂)3-(4-Pt-O-CHx) H H H H H H M Me 2 -C≡C-(CH ₂)3-(4-Pt-O-CHx) H H H H H H M Me 2 -C≡C-(CH ₂)3-(4-Pt-O-CHx) H H H H H H M Me 2 -C≡C-(CH ₂)3-(4-Pt-O-CHx) H H H H H H M Me 2 -C≡C-(CH ₂)3-(4-Pt-O-CHx) H H H H H H M Me 2 -C≡C-(CH ₂)3-(4-Pt-O-CHx) H H H H H H H M Me 2 -C≡C-(CH ₂)3-(4-Pt-O-CHx) H H H H H H H M Me 2 -C≡C-(CH ₂)3-(4-Pt-O-CHx) H H H H H H H M Me 2 -C≡C-(CH ₂)3-(4-Pt-O-CHx) H H H H H H H M Me 2 -C≡C-(CH ₂)3-(4-Pt-O-CHx) H H H H H H H M Me 2 -C≡C-(CH ₂)3-(4-Pt-O-CHx) H H H H H H H M Me 2 -C≡C-(CH ₂)3-(4-Pt-O-CHx) H

1-810	H	H	H	H	Me	2	$-C \equiv C - (CH2)3 - (4-PrS-cHx)$	H	H	
1-811	H	H	H	H	Me	2		Ħ	H	
1-812	H	H	H	H	Me	2	$-C \equiv C - (CH2)3 - (4 - i PrS - cHx)$	H	H	
1-813	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - [3 - (2 - Et - PrS) - cHx]$	H	Н	
1-814	Н	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - [4 - (2 - Et - PtS) - cHx]$	H	Н	
1-815	Н	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - i BuS - cHx)$	H	H	
1-816	H	H	H	H	Me	2	$-C \equiv C - (CH2)3 - (4 - i BuS - cHx)$	H	H	10
1-817	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - cHx - cHx)$	H	H	
1-818	H	H	H	H	Me	2	$-C \equiv C - (CH2)3 - (4 - cHx - cHx)$	Ħ	H	
1-819	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3-Ph-cHx)$	H	H	
1-820	H	H	H	H	Me	2	$-C \equiv C - (CH2)3 - (4-Ph-cHx)$	H	H	
1-821	H	H	H	H	Ne	2	$-C \equiv C - (CH_2)_3 - (2, 4 - diMe - cHx)$	H	H	
1-822	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3, 4 - diMe - cHx)$	H	H	
1-823	H	H	H	H	Me	2	$-C \equiv C - (CH2)3 - (3, 5 - diMe - cHx)$	H	H	20
1-824	H	H	H	H	Me	2	-C≡C-(CH ₂) ₃ -Ph	H	H	
1-825	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	Me	H	
1-826	H	H	H	H	Me	2	-C≡C-(CH ₂) ₃ -Ph	H	Me	
1-827	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	F	H	
1-828	H	H	H	H	Me	2	-C≡C-(CH ₂) ₃ -Ph	H	F	
1-829	H	H	Me	Me	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	H	H	
1-830	CO ₂ Me	H	H	H	Мe	2	$-C \equiv C - (CH_2)_3 - Ph$	H	H	30
1-831	co_2Et	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	H	H	
1-832	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - F - Ph)$	H	Н	
1-833	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - F - Ph)$	H	Н	
1-834	H	H	H	H	Мe	2	$-C \equiv C - (CH_2)_3 - (4 - C1 - Ph)$	H	Н	
1-835	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Br - Ph)$	H	H	
1-836	H	H	H	H	Me	2	$-C \equiv C - (CH2)3 - (3-Me-Ph)$	H	H	
1-837	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4-Me-Ph)$	H	H	40
1-838	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - Et - Ph)$	H	H	

1-	839	H	H	H	H	Мe	2	$-C \equiv C - (CH_2)_3 - (4 - Et - Ph)$	H	H	
1-	840	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3-Pr-Ph)$	H	H	
1-	841	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4-Pr-Ph)$	H	H	
1-	842	H	H	H	H	Мe	2	$-C \equiv C - (CH2)3 - (3-iPr-Ph)$	H	H	
1-	843	H	H	H	H	Me	2	$-C \equiv C - (CH2)3 - (4-iPr-Ph)$	H	H	
1-	844	H	H	H	H	Me	2	-C≡C-(CH ₂) ₃ -(3-Bu-Ph)	H	H	
1-	845	H	H	H	H	Мe	2	$-C \equiv C - (CH_2)_3 - (4-Bu-Ph)$	H	H	10
1-	846	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - CF_3 - Ph)$	H	H	
1-	847	H	H	H	H	Мe	2	$-C \equiv C - (CH_2)_3 - (4 - CF_3 - Ph)$	H	H	
1-	848	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3-MeO-Ph)$	H	H	
1-	849	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4-MeO-Ph)$	H	H	
1-	850	H	H	H	H	Мe	2	$-C \equiv C - (CH_2)_3 - (3-Et0-Ph)$	H	H	
1-	851	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Et0 - Ph)$	H	H	
1-	852	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - PrO - Ph)$	H	H	20
1-	853	H	H	H	H	Мe	2	$-C \equiv C - (CH_2)_3 - (4 - Pr0 - Ph)$	H	H	
1-	854	H	H	H	H	Ne	2	$-C \equiv C - (CH_2)_3 - (3 - iPr0 - Ph)$	H	H	
1-	855	H	H	H	H	Мe	2	$-C \equiv C - (CH_2)_3 - (4 - iPr0 - Ph)$	H	H	
1-	856	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - [3 - (2 - Et - Pr0) - Ph]$	H	H	
1-	857	H	H	H	H	Мe	2	$-C \equiv C - (CH_2)_3 - [4 - (2 - Et - Pr0) - Ph]$	H	H	
1-	858	H	H	H	H	Мe	2	$-C \equiv C - (CH_2)_3 - (3 - iRu0 - Ph)$	H	H	
1-	859	H	H	H,	H	Мe	2	$-C \equiv C - (CH_2)_3 - (4 - iRu0 - Ph)$	H	H	30
1-	860	H	H	H	H	Мe	2	$-C \equiv C - (CH_2)_3 - (3 - MeS - Ph)$	H	H	
1-	861	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - MeS - Ph)$	H	H	
1-	862	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - EtS - Ph)$	H	H	
1-	863	H	H	H	H	Мe	2	$-C \equiv C - (CH2)3 - (4-EtS-Ph)$	H	H	
1-	864	H	H	H	H	Мe	2	$-C \equiv C - (CH2)3 - (3-PrS-Ph)$	H	H	
1-	865	H	H	H	H	Me		$-C \equiv C - (CH_2)_3 - (4 - PrS - Ph)$	H	Н	
1-	866	H	H	H	H	Me		$-C \equiv C - (CH_2)_3 - (3 - iPrS - Ph)$	H	H	40
1-	867	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - iPrS - Ph)$	H	H	

1-868	H	H	H	H	Me	2	$-\texttt{C} \!\equiv\! \texttt{C} \!-\! (\texttt{CH}_2)_3 \!\!-\! [\texttt{3} \!\!-\! (\texttt{2} \!\!-\! \texttt{B} \! \texttt{t} \!\!-\! \texttt{PrS}) \!\!-\! \texttt{Ph}]$	H	H	
1-869	H	H	H	H	Me	2	$-\texttt{C}\!\equiv\!\texttt{C}\!-\!(\texttt{CH}_2)_3\!\!-\!\![4\!\!-\!(2\!-\!\texttt{E}t\!-\!\texttt{PrS})\!-\!\texttt{Ph}]$	H	H	
1-870	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - i BuS - Ph)$	H	H	
1-871	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - i BuS - Ph)$	H	Н	
1-872	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - cHx - Ph)$	H	H	
1-873	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - cHx - Ph)$	H	Н	
1-874	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3-Ph-Ph)$	H	Н	10
1-875	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4-Ph-Ph)$	H	H	
1-876	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (2, 4 - diMe - Ph)$	H	H	
1-877	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3, 4 - diMe-Ph)$	H	H	
1-878	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3, 5 - diMe - Ph)$	H	H	
1-879	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - Np(1)$	H	H	
1-880	H	H	H	H	Me	2	$-C \equiv C - (CH2)3 - Np(2)$	H	Н	
1-881	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - cPn$	H	H	20
1-882	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	
1-883	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	Me	H	
1-884	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	H	Ме	
1-885	H	H	H	H	Me	2	$-c \equiv c - (cH_2)_4 - cHx$	F	H	
1-886	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	H	F	
1-887	H	H	Me	Me	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	H	Н	
1-888	CO ₂ Me	H	H	H	Me		$-C \equiv C - (CH_2)_4 - cHx$	H	H	30
1-889	CO ₂ Et	H	H	H	Me		$-C \equiv C - (CH_2)_4 - cHx$	H	H	
1-890	H	H	H	H	Me		$-C \equiv C - (CH_2)_4 - (3 - F - cHx)$	H	H	
1-891	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - F - cHx)$	H	Н	
1-892	H	H	H	H	Me		$-C \equiv C - (CH_2)_4 - (4 - C1 - cHx)$	H	H	
1-893	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Br - cHx)$	H	Н	
1-894	H	H	H	H			$-C \equiv C - (CH_2)_4 - (3-Me-cHx)$	H	H	40
1-895	H	H	H	H	Me		$-C \equiv C - (CH2)4 - (4 - Me - cHx)$	H	H	40
1-896	H	H	H	H	Me	2	$-C \equiv C - (CH2)4 - (3-Et-cHx)$	H	H	

1-897	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Et - cHx)$	H	H	
1-898	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3-Pr-cHx)$	H	H	
1-899	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Pr - cHx)$	H	H	
1-900	H	H	H	H	Мe	2	$-C \equiv C - (CH_2)_4 - (4 - iPr - cHx)$	H	H	
1-901	H	H	H	H	Мe	2	$-C \equiv C - (CH_2)_4 - (3 - Bu - cHx)$	H	H	
1-902	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Bu - cHx)$	H	H	
1-903	H	H	H	H	Мe	2	$-C \equiv C - (CH_2)_4 - (3 - CF_3 - cHx)$	H	H	10
1-904	H	H	H	H	Мe	2	$-C \equiv C - (CH_2)_4 - (4 - CF_3 - cHx)$	H	H	
1-905	H	H	H	H	Мe	2	$-C \equiv C - (CH_2)_4 - (3-Me0-cHx)$	H	H	
1-906	H	H	H	H	Мe	2	$-C \equiv C - (CH2)_4 - (4 - MeO - cHx)$	H	H	
1-907	H	H	H	H	Мe	2	$-C \equiv C - (CH_2)_4 - (3 - Et0 - cHx)$	H	H	
1-908	H	H	H	H	Мe	2	$-C \equiv C - (CH_2)_4 - (4 - Et0 - cHx)$	H	Н	
1-909	H	H	H	H	Мe	2	$-C \equiv C - (CH_2)_4 - (3 - Pr0 - cHx)$	H	H	
1-910	H	H	H	H	Ne	2	$-C \equiv C - (CH_2)_4 - (4 - Pr0 - cHx)$	H	H	20
1-911	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - iPr0 - cHx)$	H	H	
1-912	H	H	H	H	Мe	2	$-C \equiv C - (CH_2)_4 - (4 - iPr0 - cHx)$	H	Н	
1-913	H	H	H	H	Мe	2	$-C \equiv C - (CH_2)_4 - [3 - (2 - Et - Pr0) - cHx]$] H	H	
1-914	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - [4 - (2 - Et - Pr0) - cHx]$] H	H	
1-915	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - iBuO - cHx)$	H	H	
1-916	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - i BuO - cHx)$	H	H	
1-917	H	H	H	H	Мe	2	$-C \equiv C - (CH2)4 - (3-MeS-cHx)$	H	H	30
1-918	H	H	H	H	Мe	2	$-C \equiv C - (CH2)_4 - (4 - MeS - cHx)$	H	H	
1-919	H	Ħ	H	H	Мe	2	$-C \equiv C - (CH2)4 - (3-EtS-cHx)$	H	H	
1-920	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - EtS - cHx)$	H	H	
1-921	H	Ħ	H	H	Мe	2	$-C \equiv C - (CH_2)_4 - (3-PrS-cHx)$	H	H	
1-922	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - PrS - cHx)$	H	H	
1-923	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - iPrS - cHx)$	H	H	
1-924	H	H	H	H	Me	2	$-C \equiv C - (CH2)_4 - (4 - i Pr S - cHx)$	H	H	40
1-925	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - [3 - (2 - Et - PrS) - cHx]$] H	H	

1-926	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - [4 - (2 - Et - PrS) - cHx]$] H	Н	
1-927	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - 1BuS - cHx)$	H	H	
1-928	H	H	H	H	Me	2	$-C \equiv C - (CH2)_4 - (4 - i BuS - cHx)$	H	H	
1-929	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - cHx - cHx)$	H	H	
1-930	H	H	H	H	Me	2	$-C \equiv C - (CH2)_4 - (4 - cHx - cHx)$	H	H	
1-931	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3-Ph-cHx)$	H	Н	
1-932	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Ph - cHx)$	Ħ	H	10
1-933	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (2, 4 - diMe - cHx)$	H	H	
1-934	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3, 4 - diMe - cHx)$	H	H	
1-935	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3, 5 - diMe - cHx)$	Ħ	H	
1-936	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	H	H	
1-937	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	Ne	H	
1-938	H	H	H	H	Me	2	-C≡C-(CH ₂) ₄ -Ph	H	Me	
1-939	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	F	H	20
1-940	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	H	F	
1-941	H	H	Ме	Me	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	H	H	
1-942	CO ₂ Me	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	H	H	
1-943	CO ₂ Et	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	H	Н	
1-944	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - F - Ph)$	H	H	
1-945	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - F - Ph)$	Ħ	H	
1-946	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - C1 - Ph)$	H	H	30
1-947	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Br - Ph)$	H	Н	
1-948	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3-Me-Ph)$	H	H	
1-949	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Me - Ph)$	H	Н	
1-950	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3-Et-Ph)$	H	Н	
1-951	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Et - Ph)$	H	Н	
1-952	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3-Pr-Ph)$	H	H	
1-953	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Pr - Ph)$	H	H	40
1-954	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3 - iPr - Ph)$	H	H	

```
-C \equiv C - (CH_2)_4 - (4 - iPr - Ph)
                                                                                         H
                                                                                               H
1-955
          H
                   H H
                             H
                                  Me 2
                                             -C \equiv C - (CH_2)_4 - (3-Bu-Ph)
                                                                                         H
                                                                                               H
1-956
                   H
                       H
                             H
                                  Мe
                                       2
                                             -C \equiv C - (CH_2)_4 - (4 - Bu - Ph)
                                        2
                                                                                         H
                                                                                                H
1-957
                   H
                       H
                             H
                                  Me
          H
                                        2
                                             -C \equiv C - (CH_2)_A - (3 - CF_3 - Ph)
                                                                                         H
                                                                                                H
1-958
                       H
                             H
                                  Ne
          H
                   H
                                             -C \equiv C - (CH_2)_4 - (4 - CF_3 - Ph)
                                                                                                H
                       H
                                        2
                                                                                         H
1-959
                             H
                                  Мe
          H
                   H
                                             -C \equiv C - (CH_2)_4 - (3 - MeO - Ph)
                                                                                         H
                                                                                                H
                       H
                                        2
1-960
                   H
                             H
                                  Ne
          H
                                             -C \equiv C - (CH_2)_4 - (4 - Me0 - Ph)
1-961
                                                                                         H
                                                                                                H
          H
                   H
                       H
                             H
                                  Ne
                                        2
                                                                                                                    10
                                             -C \equiv C - (CH_2)_4 - (3 - Bt 0 - Ph)
                                                                                         H
                                                                                                H
1-962
          H
                   H
                       H
                             H
                                  Me
                                        2
                                             -C \equiv C - (CH_2)_4 - (4 - Et 0 - Ph)
                                                                                         H
                                                                                                H
1-963
          H
                   H
                       H
                             H
                                  Ne
                                        2
                                             -C \equiv C - (CH_2)_{\Delta} - (3 - Pr 0 - Ph)
                                                                                                H
1-964
                       H
                             H
                                  Хe
                                        2
                                                                                         H
          H
                   H
                                             -C \equiv C - (CH_2)_4 - (4 - Pr0 - Ph)
                                                                                                H
                             H
                                        2
                                                                                         H
1-965
          H
                   H
                       H
                                  Мe
                                             -C \equiv C - (CH_2)_4 - (3-iPr0-Ph)
                                                                                         H
                                                                                                H
1-966
                       H
                             H
                                  Ne
                                        2
          H
                   H
                                             -C \equiv C - (CH_2)_4 - (4-iPr0-Ph)
                                                                                                H
1-967
          H
                   H
                       H
                             H
                                  Ne
                                        2
                                                                                         H
                                             -C \equiv C - (CH_2)_4 - [3 - (2 - Et - Pr0) - Ph] H
                                                                                                H
                       H
                             H
                                  Хe
                                        2
                                                                                                                    20
1-968
          H
                   H
                                  Me
                                        2
                                             -C \equiv C - (CH_2)_4 - [4 - (2 - Et - Pr0) - Ph] H
                                                                                                H
1-969
                       H
                             H
          H
                   H
                                             -C \equiv C - (CH_2)_4 - (3 - i Bu 0 - Ph)
                                                                                                H
                       H
                             H
                                  Мe
                                        2
                                                                                         H
1-970
                   H
           H
                                              -C \equiv C - (CH_2)_4 - (4 - iBu0 - Ph)
                                                                                         H
                                                                                                H
1-971
                       H
                             H
                                  Мe
                                        2
           H
                   H
                                              -C \equiv C - (CH_2)_4 - (3 - MeS - Ph)
                                                                                                H
                                                                                         H
1-972
                                        2
                       H
                             H
                                  Me
           H
                   H
                                             -C \equiv C - (CH_2)_4 - (4-MeS-Ph)
                                                                                                H
                       H
                             H
                                  Мe
                                        2
                                                                                         H
1 - 973
           H
                   H
                                             -C \equiv C - (CH_2)_4 - (3 - Et S - Ph)
                                                                                                H
                                        2
                                                                                         H
1-974
                       H
                             H
                                  Мe
           H
                   H
                                                                                                                    30
                                              -C \equiv C - (CH_2)_4 - (4 - Bt S - Ph)
1-975
                       H
                             H
                                  Мe
                                        2
                                                                                         H
                                                                                                H
                   H
           H
                                             -C \equiv C - (CH_2)_4 - (3-PrS-Ph)
                                        2
                                                                                         H
                                                                                                H
1-976
                       H
                             H
                                  Ne
                   H
           H
                                              -C \equiv C - (CH<sub>2</sub>)<sub>4</sub> - (4-PrS-Ph)
                       H
                             H
                                  Мe
                                        2
                                                                                         H
                                                                                                H
1-977
           H
                   H
                                              -C \equiv C - (CH_2)_4 - (3 - iPrS - Ph)
                                                                                         H
                                                                                                H
                       H
                             H
                                  Мe
                                        2
1-978
           H
                   H
                                             -C \equiv C - (CH_2)_4 - (4 - iPrS - Ph)
                                                                                                H
1-979
                       H
                             H
                                  Ne
                                        2
                                                                                         H
           H
                   H
                                             -C \equiv C - (CH_2)_4 - [3 - (2 - Et - PrS) - Ph] H
                                                                                                H
                       H
                                  Me
                                        2
1-980
           H
                   H
                             H
                                        2
                                              -C \equiv C - (CH_2)_4 - [4 - (2 - Bt - PrS) - Ph] H
                                                                                                H
1-981
                       H
                             H
                                  Ne
           H
                   H
                                                                                                                    40
                                                                                                H
                                             -C \equiv C - (CH_2)_4 - (3 - i BuS - Ph)
                       H
                             H
                                  Me
                                        2
                                                                                         H
1-982
           H
                   H
                   H H
                             H
                                        2
                                              -C \equiv C - (CH_2)_4 - (4 - iBuS - Ph)
                                                                                         H
                                                                                                H
1-983
                                  Me
           H
```

1-984	H	H	H	H	Мe	2	$-C \equiv C - (CH_2)_4 - (3 - cHx - Ph)$	H	H		
1-985	H	H	H	H	Мe	2	$-C \equiv C - (CH_2)_4 - (4 - cHx - Ph)$	H	H		
1-986	H	H	H	H	Me	2	-C≡C-(CH ₂) ₄ -(3-Ph-Ph)	H	H		
1-987	H	H	H	H	Ne	2	-C≡C-(CH ₂) ₄ -(4-Ph-Ph)	H	H		
1-988	H	H	H	H	Me	2	$-C \equiv C - (CH2)4 - (2, 4 - diMe-Ph)$	H	H		
1-989	H	H	H	H	Me	2	$-C \equiv C - (CH2)4 - (3, 4 - diMe-Ph)$	H	H		
1-990	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3, 5 - diMe-Ph)$	H	H	10	
1-991	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - Np(1)$	H	H		
1-992	H	H	H	H	Ne	2	$-C \equiv C - (CH_2)_4 - Np(2)$	H	H		
1-993	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_5 - cHx$	H	H		
1-994	H	H	Ne	Me	Мe	2	$-C \equiv C - (CH_2)_{5} - cHx$	H	H		
1-995	CO ₂ Me	H	H	H	Мe	2	$-C \equiv C - (CH_2)_5 - cHx$	H	H		
1-996	${\rm CO_2Et}$	H	H	H	Me	2	$-C \equiv C - (CH_2)_{5} - cHx$	H	H		
1-997	H	H	H	H	Ne	2	$-C \equiv C - (CH_2)_{5} - (4 - F - cHx)$	H	H	20	
1-998	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_5 - (4-Me-cHx)$	H	H		
1-999	H	H	H	H	Me	2	$-C \equiv C - (CH2)5 - (4-Et-cHx)$	H	H		
1-1000	H	H	H	H	Me	2	$-C \equiv C - (CH2)5 - (4 - CF3 - cHx)$	H	H		
1-1001	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_{5} - (4 - MeO - cHx)$	H	H		
1-1002	H	H	H	H	Мe	2	$-C \equiv C - (CH_2)_{5} - (4 - Et 0 - cHx)$	H	H		
1-1003	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_5 - (4 - MeS - cHx)$	H	H		
1-1004	H	H	H	H	Ne	2	$-C \equiv C - (CH_2)_5 - (4 - cHx - cHx)$	H	H	30	
1-1005	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_5 - (4 - Ph - cHx)$	H	H		
1-1006	H	H	H	H	Me	2	-C≡C-(CH ₂) ₅ -Ph	H	H		
1-1007	H	H	Me	Me			-C≡C-(CH ₂) ₅ -Ph	H	H		
1-1008	CO ₂ Me			H			-C≡C-(CH ₂) ₅ -Ph	H	H		
1-1009	CO ₂ Et	H	H	H			-C≡C-(CH ₂) ₅ -Ph	H	H		
1-1010	H	H	H	H			$-C \equiv C - (CH_2)_5 - (4 - F - Ph)$	H	H	40	
1-1011	H	H	H	H	Me		$-C \equiv C - (CH_2)_5 - (4 - Me - Ph)$	H	H	40	
1-1012	H	H	H	H	Мe	2	$-C \equiv C - (CH2)5 - (4-Et-Ph)$	H	H		

1-1013	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_{5} - (4 - CF_3 - Ph)$	H	H	
1-1014	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_{5} - (4 - Me0 - Ph)$	H	H	
1-1015	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_5 - (4 - Bt 0 - Ph)$	H	H	
1-1016	H	H	H	H	Ne	2	$-C \equiv C - (CH2)_{5} - (4 - MeS - Ph)$	H	H	
1-1017	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_{5} - (4 - cHx - Ph)$	H	H	
1-1018	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_{5} - (4-Ph-Ph)$	H	H	
1-1019	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_6 - cHx$	H	H	10
1-1020	H	H	Me	Me	Me	2	$-C \equiv C - (CH_2)_6 - cHx$	H	H	
1-1021	CO ₂ Me	H	H	H	Ne	2	$-C \equiv C - (CH_2)_6 - cHx$	H	H	
1-1022	CO ₂ Et	H	H	H	Me	2	$-C \equiv C - (CH_2)_6 - cHx$	H	H	
1-1023	H	H	H	H	Мe	2	$-C \equiv C - (CH_2)_6 - (4 - F - cHx)$	H	H	
1-1024	H	H	H	H	Ne	2	$-C \equiv C - (CH_2)_6 - (4 - Me - cHx)$	H	H	
1-1025	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_6 - (4 - Et - cHx)$	H	H	
1-1026	H	H	H	H	Me	2	$-C \equiv C - (CH2)_{6} - (4 - CF_{3} - cHx)$	H	H	20
1-1027	H	H	H	H	Ne	2	$-C \equiv C - (CH_2)_6 - (4 - Me0 - cHx)$	H	H	
1-1028	H	H	H	H	Ne	2	$-C \equiv C - (CH_2)_6 - (4 - Et0 - cHx)$	H	H	
1-1029	H	H	H	H	Ne	2	$-C \equiv C - (CH_2)_6 - (4 - MeS - cHx)$	H	H	
1-1030	H	H	H	H	Ne	2	$-C \equiv C - (CH_2)_6 - (4 - cHx - cHx)$	H	H	
1-1031	H	H	H	H	Ne	2	$-C \equiv C - (CH_2)_6 - (4-Ph-cHx)$	H	H	
1-1032	H	H	H	H	Ne	2	-C≡C-(CH ₂) ₆ -Ph	H	H	
1-1033	H	H	M	e	Me	2	$-c \equiv c - (cH_2)_6 - Ph$	H	H	30
1-1034	CO ₂ Me	H	H	Ī	Me	2	$-C \equiv C - (CH_2)_6 - Ph$	H	H	
1-1035	CO ₂ Et	H	H	I	Ne	2	$-C \equiv C - (CH_2)_6 - Ph$	H	H	
1-1036	H	H	H	H	Ne	2	$-C \equiv C - (CH_2)_6 - (4 - F - Ph)$	H	H	
1-1037	H	H	H	H	Ne	2	$-C \equiv C - (CH_2)_{6} - (4 - Me - Ph)$	H	H	
1-1038	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_6 - (4 - Et - Ph)$	H	H	
1-1039	H	H	H	H	Ne	2	$-C \equiv C - (CH_2)_6 - (4 - CF_3 - Ph)$	H	H	
1-1040	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_{6} - (4 - MeO - Ph)$	H	H	40
1-1041	H	H	H	H	Жe	2	$-C \equiv C - (CH_2)_6 - (4 - Et0 - Ph)$	H	H	

1-1042	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_{6} - (4 - MeS - Ph)$	H	H	
1-1043	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_6 - (4 - cHx - Ph)$	H	H	
1-1044	H	H	H	H	Мe	2	$-C \equiv C - (CH_2)_6 - (4-Ph-Ph)$	H	H	
1-1045	H	Ħ	H	H	Ne	2	$-C \equiv C - CH_2 - 0 - cHx$	H	H	
1-1046	H	H	Me	Me	Me	2	$-C \equiv C - CH_2 - 0 - cHx$	H	Ħ	
1-1047	CO ₂ Me	H	H	H	Me	2	$-C \equiv C - CH_2 - 0 - cHx$	H	H	
1-1048	CO ₂ Et	H	H	H	Me	2	$-C \equiv C - CH_2 - O - cHx$	H	H	10
1-1049	H	H	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (4 - F - cHx)$	H	H	
1-1050	H	H	H	H	Me	2	$-C \equiv C - CH_2 - O - (4 - Me - cHx)$	H	H	
1-1051	H	H	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (4 - Et - cHx)$	H	H	
1-1052	H	H	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (4 - CF_3 - cHx)$	H	H	
1-1053	H	H	H	H	Ne	2	$-C \equiv C - CH_2 - 0 - (4 - MeO - cHx)$	H	H	
1-1054	H	H	H	H	Ne	2	$-C \equiv C - CH_2 - 0 - (4 - Et0 - cHx)$	H	H	
1-1055	H	H	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (4 - MeS - cHx)$	H	H	20
1-1056	H	H	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (4 - cHx - cHx)$	H	H	
1-1057	H	H	H	H	Me	2	$-C \equiv C - CH_2 - O - (4 - Ph - cHx)$	H	H	
1-1058	H	H	H	H	Me	2	-C≡C-CH ₂ -O-Ph	H	H	
1-1059	H	H	Me	Me	Me	2	-C≡C-CH ₂ -O-Ph	H	H	
1-1060	C0 ₂ Me	H	H	H	Me	2	-C≡C-CH ₂ -O-Ph	H	H	
1-1061	CO ₂ Et	H	H	H	Me	2	$-c \equiv c - c_{H_2} - o - Ph$	H	H	
1-1062	H	H	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (4 - F - Ph)$	H	H	30
1-1063	H	H	H	H	Мe	2	$-C \equiv C - CH_2 - 0 - (4 - Me - Ph)$	H	H	
1-1064	H	H	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (4 - Et - Ph)$	H	Ħ	
1-1065	H	H	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (4 - CF_3 - Ph)$	H	H	
1-1066	H	H	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (4 - MeO - Ph)$	H	H	
1-1067	H	H	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (4 - Et0 - Ph)$	H	H	
1-1068	H	H	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (4 - MeS - Ph)$	H	H	
1-1069	H	H	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (4 - cHx - Ph)$	H	H	40
1-1070	H	H	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (4 - Ph - Ph)$	H	H	

1-1071	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - cPn$	H	H	
1-1072	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - cHx$	H	Н	
1-1073	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - cHx$	Me	Н	
1-1074	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - cHx$	H	Me	
1-1075	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - cHx$	F	H	
1-1076	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - cHx$	H	F	
1-1077	H	H	Me	Me	Me	2	$-C \equiv C - (CH_2)_2 0 - cHx$	H	Н	10
1-1078	${\rm CO_2Me}$	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - cHx$	H	Н	
1-1079	${\rm CO_2Et}$	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - cHx$	H	Н	
1-1080	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - F - cHx)$	H	Н	
1-1081	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - F - cHx)$	H	Н	
1-1082	H	H	H	H	Me	2	$-C \equiv C - (CH2)20 - (4-Cl-cHx)$	H	H	
1-1083	H	H	H	H	Me	2	$-C \equiv C - (CH2)20 - (4-Br-cHx)$	H	H	
1-1084	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - Me - cHx)$	H	Н	20
1-1085	H	H	H	H	Me	2	$-C \equiv C - (CH2)20 - (4-Me-cHx)$	H	Н	
1-1086	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (3 - Et - cHx)$	H	Н	
1-1087	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - Et - cHx)$	H	H	
1-1088	H	H	H	H	Me	2	$-C \equiv C - (CH2)20 - (3-Pr-cHx)$	H	H	
1-1089	H	H	H	H	Me	2	$-C \equiv C - (CH2)20 - (4-Pr-cHx)$	H	H	
1-1090	H	H	H	H	Me	2	$-C \equiv C - (CH2)20 - (4 - iPr - cHx)$	H	H	
1-1091	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (3 - Bu - cHx)$	H	H	30
1-1092	H	H	H	H	Me	2	$-C \equiv C - (CH2)20 - (4-Bu-cHx)$	H	H	
1-1093	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (3 - CF_3 - cHx)$	H	H	
1-1094	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - CF_3 - cHx)$	H	H	
1-1095	H	H	H	H	Me	2		H	H	
1-1096	H	H	H	H	Me	2	$-C \equiv C - (CH2)20 - (4 - MeO - cHx)$	H	Н	
1-1097	H	H	H	Н	Me	2		H	Н	
1-1098	H	H	H	H	Me	2	$-C \equiv C - (CH2)20 - (4 - Et 0 - cHx)$	H	Н	40
1-1099	H	H	H	H	Me	2	$-C \equiv C - (CH2)20 - (3-Pr0-cHx)$	H	H	

```
-C \equiv C - (CH_2)_2 O - (4 - PrO - cHx)
                                                                                            H
1-1100 H
                  Н Н
                           H
                                 Me 2
                                                                                     B
                  н н
                                 Me
                                      2
                                            -C \equiv C - (CH_2)_2 O - (3-iPrO-cHx)
                                                                                     B
                                                                                            H
1-1101 H
                            H
                                      2
                                            -C \equiv C - (CH_2)_2 0 - (4 - i Pr 0 - cHx)
                  H H
                                 Me
                                                                                     H
                                                                                            H
1-1102 H
                            H
                                            -C \equiv C - (CH_2)_2 O - [3 - (2 - Et - Pt O) - cHx] H
                  H H
                                 Me
                                       2
1-1103 H
                            H
                                            -C \equiv C - (CH_2)_2 O - [4 - (2 - Et - PrO) - cHx] H
                                                                                            H
1-1104 H
                  H H
                                 Me
                                      2
                                            -C \equiv C - (CH_2)_2 O - (3-1BuO - cHx)
                                      2
                                                                                     H
                                                                                            H
1-1105 H
                      H
                            H
                                 Ne
                  H
                                      2
                                            -C \equiv C - (CH_2)_2 O - (4-1BuO - cHx)
                                                                                            H
1-1106 H
                                                                                     H
                  Н Н
                            H
                                 Me
                                                                                                               10
                  н н
                           H
                                      2
                                            -C \equiv C - (CH_2)_2 O - (3-MeS-cHx)
1-1107 H
                                                                                     B
                                                                                            H
                                 Me
                                      2
                                            -C \equiv C - (CH_2)_2 O - (4 - MeS - cHx)
                                                                                     H
                                                                                            H
1-1108 H
                  H H
                            H
                                 Me
                  н н
                           H
                                            -C \equiv C - (CH_2)_2 O - (3 - Et S - cHx)
                                                                                     H
                                                                                            H
                                 Me 2
1-1109 H
                                            -C \equiv C - (CH_2)_2 O - (4 - EtS - cHx)
                  H H
                                      2
                                                                                            H
1-1110 H
                                                                                     H
                            H
                                 Me
                                            -C \equiv C - (CH_2)_2 O - (3 - PrS - cHx)
                                                                                     H
                                                                                            H
1-1111 H
                  н н
                                 Me 2
                            H
                                            -C \equiv C - (CH_2)_2 O - (4 - PrS - cHx)
                      H
                                 Me
                                                                                     H
                                                                                            H
1-1112 Н
                  H
                            H
                                      2
                                            -C \equiv C - (CH<sub>2</sub>)<sub>2</sub>0 - (3-iPrS-cHx)
                            Н
                                 Me
                                      2
                                                                                     H
                                                                                            H
1-1113 H
                  H
                      H
                                                                                                               20
                      H
                                 Me
                                      2
                                            -C \equiv C - (CH_2)_2 O - (4 - i Pr S - cHx)
                                                                                     H
                                                                                            H
1-1114 H
                            H
                  H
                                            -C \equiv C - (CH_2)_2 O - [3 - (2 - Et - PrS) - cHx] H
                      H
                            H
                                 Me
                                       2
1-1115 H
                  H
                                            -C \equiv C - (CH_2)_2 O - [4 - (2 - Et - PrS) - cHx] H
                      H
                                      2
                                                                                            H
1-1116 H
                            H
                                 Me
                                                                                            H
                      H
                                      2
                                            -C \equiv C - (CH_2)_2 O - (3-iBuS-cHx)
                                                                                     H
1-1117 Н
                            H
                                 Me
                                      2
                                            -C \equiv C - (CH_2)_2 O - (4 - i BuS - cHx)
                                                                                     H
                                                                                            H
                      H
                            H
                                 Me
1-1118 H
                  H
                                       2
                                            -C \equiv C - (CH_2)_2 O - (3 - cHx - cHx)
                      H
                            H
                                                                                     H
                                                                                            H
1-1119 H
                  H
                                 Me
                                            -C \equiv C - (CH_2)_2 O - (4 - cHx - cHx)
                                                                                                               30
                  Н Н
                            H
                                 Me
                                       2
                                                                                     H
                                                                                            H
1-1120 H
1-1121 H
                      H
                                      2
                                            -C \equiv C - (CH_2)_2 O - (3-Ph-cHx)
                                                                                      H
                                                                                            H
                            H
                                 Me
                  H
1-1122 H
                                            -C \equiv C - (CH_2)_2 O - (4 - Ph - cHx)
                  Н Н
                            H
                                 Me
                                       2
                                                                                      Ħ
                                                                                            H
                                            -C \equiv C - (CH_2)_2 O - (2, 4 - diMe - cHx)
                                                                                     H
                                                                                            H
                      H
                            H
                                 Me
                                       2
1-1123 H
                  H
                                            -C \equiv C - (CH_2)_2 0 - (3, 4 - diMe - cHx)
                                                                                            H
1-1124 H
                      H
                                 Me 2
                                                                                     H
                            H
                  H
                                            -C \equiv C - (CH_2)_2 O - (3, 5 - diMe - cHx)
                            H
                                                                                     H
                                                                                            H
1-1125 H
                  н н
                                 Me
                                       2
                                      2
                                            -C≡C-(CH<sub>2</sub>)<sub>2</sub>0-Ph
                                                                                      H
                                                                                            H
1-1126 H
                  H
                      H
                            H
                                 Me
                                                                                                               40
                                            -C≡C-(CH<sub>2</sub>)<sub>2</sub>0-Ph
                                                                                             H
                  Н Н
                                 Me 2
                                                                                      Me
1-1127 H
                            H
1-1128 H
                  Н Н
                            H
                                 Me
                                       2
                                            -C≡C-(CH<sub>2</sub>)<sub>2</sub>0-Ph
                                                                                      H
                                                                                            Me
```

1-1129	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - Ph$	F	H	
1-1130	H	H	H	H	Me	2	-C≡C-(CH ₂) ₂ 0-Ph	H	F	
1-1131	H	H	Мe	Me	Me	2	$-C \equiv C - (CH_2)_2 0 - Ph$	H	H	
1-1132	CO ₂ Me	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - Ph$	H	H	
1-1133	CO ₂ Et	H	H	H	Мe	2	$-C \equiv C - (CH_2)_2 0 - Ph$	H	H	
1-1134	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - F - Ph)$	H	H	
1-1135	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - F - Ph)$	H	H	10
1-1136	H	H	H	H	Мe	2	$-C \equiv C - (CH_2)_2 0 - (4 - C1 - Ph)$	H	H	
1-1137	H	H	H	H	Мe	2	$-C \equiv C - (CH_2)_2 0 - (4 - Br - Ph)$	H	Ħ	
1-1138	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (3-Me-Ph)$	H	H	
1-1139	H	H	H	H	Мe	2	$-C \equiv C - (CH_2)_2 0 - (4 - Me - Ph)$	H	H	
1-1140	H	H	H	H	Мe	2	$-C \equiv C - (CH_2)_2 0 - (3 - Et - Ph)$	H	H	
1-1141	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - Et - Ph)$	H	H	
1-1142	H	H	H	H	Мe	2	$-C \equiv C - (CH_2)_2 0 - (3 - Pr - Ph)$	H	H	20
1-1143	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - Pr - Ph)$	H	H	
1-1144	H	H	H	H	Мe	2	$-C \equiv C - (CH_2)_2 0 - (3 - iPr - Ph)$	H	H	
1-1145	H	H	H	H	Ne	2	$-C \equiv C - (CH_2)_2 0 - (4 - i Pr - Ph)$	H	H	
1-1146	H	H	H	H	Мe	2	$-C \equiv C - (CH_2)_2 O - (3 - Bu - Ph)$	H	H	
1-1147	H	H	H	H	Мe	2	$-C \equiv C - (CH_2)_2 0 - (4 - Bu - Ph)$	H	H	
1-1148	H	H	H	H	Мe	2	$-C \equiv C - (CH_2)_2 0 - (3 - CF_3 - Ph)$	H	H	
1-1149	H	H	H	H	Мe	2	$-C \equiv C - (CH_2)_2 0 - (4 - CF_3 - Ph)$	H	H	30
1-1150	H	H	H	H	Мe	2	$-C \equiv C - (CH_2)_2 O - (3 - MeO - Ph)$	H	H	
1-1151	H	H	H	H	Мe	2	$-C \equiv C - (CH_2)_2 O - (4 - MeO - Ph)$	H	H	
1-1152	H	H	H	H	Мe	2	$-C \equiv C - (CH_2)_2 O - (3 - E t O - Ph)$	H	H	
1-1153	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - E t 0 - Ph)$	H	H	
1-1154	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (3 - Pr0 - Ph)$	H	H	
1-1155	H	H	H	H	Me.	2	$-C \equiv C - (CH_2)_2 0 - (4 - Pr0 - Ph)$	H	H	
1-1156	H	Ħ	H	H	Мe	2	$-C \equiv C - (CH_2)_2 O - (3 - i PrO - Ph)$	H	H	40
1-1157	H	Ħ	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - i Pr 0 - Ph)$	H	H	

1-1158	H	B	Н	H	Иe	2	-C≡C-(CH ₂) ₂ 0-[3-(2-Et-Pr0)-Ph] H	H	
1-1159	H	B	Н	B	Ne	2	-C≡C-(CH ₂) ₂ 0-[4-(2-Et-Pr0)-Ph] H	H	
1-1160	H	В	Н	H	Ne	2	$-C \equiv C - (CH_2)_2 O - (3 - iBuO - Ph)$	H	H	
1-1161	H	В	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - iBuO - Ph)$	H	H	
1-1162	H	В	H	H	Me	2	$-C \equiv C - (CH2)20 - (3-MeS-Ph)$	H	H	
1-1163	H	В	H	H	Me	2	$-C \equiv C - (CH2)20 - (4 - MeS - Ph)$	H	H	
1-1164	H	B	H	H	Ne	2	$-C \equiv C - (CH2)20 - (3-EtS-Ph)$	H	H	10
1-1165	H	B	H	B	Ne	2	$-C \equiv C - (CH2)20 - (4-EtS-Ph)$	H	H	
1-1166	H	B	H	H	Ne	2	$-C \equiv C - (CH2)20 - (3-PrS-Ph)$	H	H	
1-1167	H	B	H	H	Me	2	$-C \equiv C - (CH2)20 - (4-PrS-Ph)$	H	H	
1-1168	H	B	H	H	Me	2	$-C \equiv C - (CH2)20 - (3 - i PrS - Ph)$	H	H	
1-1169	H	В	H	H	Me	2	$-C \equiv C - (CH2)20 - (4-iPrS-Ph)$	H	H	
1-1170	H	B	H	H	Ne	2	$-C \equiv C - (CH_2)_2 0 - [3 - (2 - Et - PrS) - Ph]$] H	H	
1-1171	H	B	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - [4 - (2 - Et - PrS) - Ph]$] H	H	20
1-1172	H	B	H	H	Me	2	$-C \equiv C - (CH2)20 - (3 - i BuS - Ph)$	H	H	
1-1173	H	В	H	H	Me	2	$-C \equiv C - (CH2)20 - (4 - iBuS - Ph)$	H	H	
1-1174	H	В	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3 - cHx - Ph)$	H	H	
1-1175	H	B	H	H	Me	2	$-C \equiv C - (CH2)20 - (4 - cHx - Ph)$	H	H	
1-1176	H	B	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3-Ph-Ph)$	H	H	
1-1177	H	B	H	H	Me	2	$-C \equiv C - (CH2)20 - (4-Ph-Ph)$	H	H	
1-1178	H	B	Н	H	Мe	2	$-C \equiv C - (CH_2)_2 O - (2, 4 - diMe-Ph)$	H	H	30
1-1179	H	B	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3, 4 - diMe-Ph)$	H	H	
1-1180	H	B	H	H	Мe	2	$-C \equiv C - (CH_2)_2 O - (3, 5 - diMe - Ph)$	H	H	
1-1181	H	B	H	H	Мe	2	$-C \equiv C - (CH_2)_3 0 - cHx$	H	H	
1-1182	H	B	H	H	Мe	2	-C≡C-(CH ₂) ₃ 0-Ph	H	H	
1-1183	H	В	H	H	Me	2	0 1	H	H	
1-1184	H	В	H	H		2	- 4	H	H	40
1-1185	H	B			Мe		5 5	H	H	40
1-1186	H	B	M	e M	e Ne	2	$-C \equiv C - CH_2 - 0CH_2 - cHx$	H	H	

1-1187	CO ₂ Me	H	H	H	Me	2	$-C \equiv C - CH_2 - 0CH_2 - cHx$	H	Н	
1-1188	CO ₂ Et	H	H	H	Me	2	$-C \equiv C - CH_2 - 0CH_2 - cHx$	H	H	
1~1189	H	H	H	H	Me	2	$-C \equiv C - CH_2 - 0CH_2 - (4 - F - cHx)$	H	H	
1-1190	H	H	H	H	Me	2	$-C \equiv C - CH_2 - 0CH_2 - (4 - Me - cHx)$	H	H	
1-1191	H	H	H	H	Me	2	$-C \equiv C - CH_2 - 0CH_2 - (4 - Et - cHx)$	H	H	
1-1192	H	H	H	H	Me	2	$-C \equiv C - CH_2 - 0CH_2 - (4 - CF_3 - cHx)$	H	H	
1-1193	H	H	H	H	Me	2	$-C \equiv C - CH_2 - 0CH_2 - (4 - MeO - cHx)$	H	H	10
1-1194	H	H	H	H	Me	2	$-C \equiv C - CH_2 - 0CH_2 - (4 - Et0 - cHx)$	H	H	
1-1195	H	H	H	H	Me	2	$-C \equiv C - CH_2 - 0CH_2 - (4 - MeS - cHx)$	H	H	
1-1196	H	H	H	H	Me	2	$-C \equiv C - CH_2 - 0CH_2 - (4 - cHx - cHx)$	H	H	
1-1197	H	H	H	H	Me	2	$-C \equiv C - CH_2 - 0CH_2 - (4 - Ph - cHx)$	H	H	
1-1198	H	H	H	H	Me	2	-C≡C-CH ₂ -OCH ₂ -Ph	H	H	
1-1199	H	H	Мe	Me	Me	2	-C≡C-CH ₂ -OCH ₂ -Ph	H	H	
1-1200	CO ₂ Me	H	H	H	Me	2	-C≡C-CH ₂ -OCH ₂ -Ph	H	H	20
1-1201	CO ₂ Et	H	H	Н	Me	2	-C≡C-CH ₂ -OCH ₂ -Ph	Ħ	H	
1-1202	H	H	H	H	Me	2	$-C \equiv C - CH_2 - 0CH_2 - (4 - F - Ph)$	H	H	
1-1203	H	H	H	H	Me	2	$-C \equiv C - CH_2 - OCH_2 - (4 - Me - Ph)$	H	H	
1-1204	H	H	H	H	Me	2	$-C \equiv C - CH_2 - 0CH_2 - (4 - Et - Ph)$	Ħ	H	
1-1205	H	H	H	H	Me	2	$-C \equiv C - CH_2 - OCH_2 - (4 - CF_3 - Ph)$	H	H	
1-1206	H	H	H	H	Me	2	$-C \equiv C - CH_2 - OCH_2 - (4 - MeO - Ph)$	H	H	
1-1207	H	H	H	H	Me	2	$-C \equiv C - CH_2 - 0CH_2 - (4 - Et 0 - Ph)$	H	H	30
1-1208	H	H	H	H	Me	2	$-C \equiv C - CH_2 - 0CH_2 - (4 - MeS - Ph)$	H	H	
1-1209	H	H	H	H	Me	2	$-C \equiv C - CH_2 - 0CH_2 - (4 - cHx - Ph)$	H	H	
1-1210	H	H	H	H	Me	2	$-C \equiv C - CH_2 - 0CH_2 - (4 - Ph - Ph)$	H	H	
1-1211	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - OCH_2 - cPn$	H	H	
1-1212	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - cHx$	H	H	
1-1213	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - cHx$	Me	H	
1-1214	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - cHx$	H	Me	40
1-1215	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - cHx$	F	H	

```
-C≡C-(CH<sub>2</sub>)<sub>2</sub>-OCH<sub>2</sub>-cH<sub>X</sub>
1-1216 Н
                                       2
                                                                                               F
                   H H
                             H
                                  Мe
                                                                                        H
                                             --c \equiv c - (cH_2)_2 - 0cH_2 - cH_2 - cH_2
                   H Me
                           Me
                                        2
                                                                                               H
1-1217
           H
                                  Me
                                                                                        H
          CO2Me H
                       H
                             H
                                        2
                                             -C \equiv C - (CH_2)_2 - 0CH_2 - cHx
                                                                                        H
                                                                                               H
1-1218
                                  Мe
1-1219
           CO<sub>2</sub>Et H
                       H
                            H
                                  Ne
                                        2
                                             -C≡C-(CH<sub>2</sub>)<sub>2</sub>-OCH<sub>2</sub>-cHx
                                                                                               H
                                                                                        H
                                             -C \equiv C - (CH_2)_2 - 0CH_2 - (3 - F - cHx)
                             H
1-1220
           H
                       H
                                                                                        H
                                                                                               H
                                  Мe
                                                                                               H
1-1221
          H
                       H
                             H
                                  Me
                                        2
                                             -C \equiv C - (CH_2)_2 - 0CH_2 - (4 - F - cHx)
                                                                                        H
                   H
                                             -C \equiv C - (CH_2)_2 - 0CH_2 - (4 - C1 - cHx)
                                                                                               H
1-1222
          H
                             H
                                  Ne
                                        2
                                                                                        H
                   HH
                                                                                                                   10
                                        2
                                                                                        H
1-1223
          H
                            H
                                  Мe
                                             -C \equiv C - (CH_2)_2 - 0CH_2 - (4 - Br - cHx)
                                                                                               H
                   H H
                                        2
                                             -C \equiv C - (CH_2)_2 - OCH_2 - (3-Me-cHx)
                                                                                               H
1-1224 Н
                   HH
                             H
                                  Me
                                                                                        H
1-1225
          H
                       H
                            H
                                  Me
                                        2
                                             -C \equiv C - (CH_2)_2 - OCH_2 - (4 - Me - cHx)
                                                                                        H
                                                                                               H
                   H
1-1226
          H
                                       2
                                             -C \equiv C - (CH_2)_2 - 0CH_2 - (3-Et-cHx)
                                                                                        H
                            H
                                                                                               H
                   H
                       H
                                  Мe
                                                                                        H
                                                                                               H
                                        2
                                             -C \equiv C - (CH_2)_2 - 0CH_2 - (4 - Et - cHx)
1-1227 Н
                       H
                             H
                                  Me
                   H
                                             -C \equiv C - (CH_2)_2 - 0CH_2 - (3-Pr-cHx)
                                                                                        H
1-1228
          H
                            H
                                  Me
                                        2
                                                                                               H
                   HH
                                        2
                                             -C \equiv C - (CH_2)_2 - 0CH_2 - (4 - Pr - cHx)
                                                                                        H
1-1229
          H
                       H
                            H
                                  Me
                                                                                               H
                   H
                                                                                                                   20
                                                                                               H
1-1230
          H
                       H
                            H
                                  Мe
                                        2
                                             -C \equiv C - (CH_2)_2 - 0CH_2 - (4 - iPr - cHx)
                                                                                        H
                   H
1-1231
                       H
                             H
                                  Me
                                        2
                                             -C \equiv C - (CH_2)_2 - OCH_2 - (3-Bu-cHx)
                                                                                        H
                                                                                               H
          H
                   H
                                             -C \equiv C - (CH_2)_2 - 0CH_2 - (4 - Bu - cHx)
                                                                                               H
1-1232
                             H
          H
                       H
                                  Me
                                                                                        H
                       H
                                        2
                             H
                                  Мe
                                             -C \equiv C - (CH_2)_2 - 0CH_2 - (3 - CF_3 - cHx)
                                                                                        H
                                                                                               H
1-1233
          H
                   H
                       H
                                        2
                                             -C \equiv C - (CH_2)_2 - 0CH_2 - (4 - CF_3 - cHx)
1-1234 Н
                             H
                                  Me
                                                                                        H
                                                                                               H
                   H
                                        2
                                             -C \equiv C - (CH_2)_2 - 0CH_2 - (3-Me0-cHx)
                                                                                        H
1-1235
          H
                            H
                                  Me
                                                                                               H
                   H
                       H
                                                                                                                  . 30
1-1236
          H
                       H
                             H
                                  Me
                                        2
                                             -C \equiv C - (CH_2)_2 - 0CH_2 - (4 - MeO - cHx)
                                                                                        H
                                                                                               H
                   H
1-1237
                            H
                                  Me
                                        2
                                             -C \equiv C - (CH_2)_2 - 0CH_2 - (3 - Et0 - cHx)
                                                                                        H
                                                                                               H
           H
                       H
                   H
                                             -C \equiv C - (CH_2)_2 - 0CH_2 - (4 - Bt0 - cHx)
1-1238
         H
                       H
                             H
                                  Me
                                                                                               H
                       H
                             H
                                        2
                                             -C \equiv C - (CH_2)_2 - 0CH_2 - (3 - Pr0 - cHx)
                                                                                               H
          H
                                  Мe
1-1239
                   H
                                  Me 2
                                             -C \equiv C - (CH_2)_2 - 0CH_2 - (4 - Pr0 - cHx)
          H
                   H H
                            H
                                                                                               H
1-1240
                                             -C \equiv C - (CH_2)_2 - 0CH_2 - (3-iPr0-cHx) H
                            H
                                                                                               H
                       H
                                        2
1-1241 Н
                   H
                                  Жe
                                             -C \equiv C - (CH_2)_2 - 0CH_2 - (4 - iPr0 - cHx) H
                       H
                            H
                                        2
                                                                                               H
1-1242
          H
                   H
                                  Мe
                                                                                                                   40
                                  Me 2 - C \equiv C - (CH_2)_2 - 0CH_2 - [3 - (2 - Bt - Pr0) cHx] H H
                       H
1-1243 Н
                             H
                   H
                                       2 -C≡C-(CH<sub>2</sub>)<sub>2</sub>-OCH<sub>2</sub>-[4-(2-Bt-PrO)cHx] H H
```

HH

1-1244 Н

```
1-1245 Н
                              H
                                               -C \equiv C - (CH_2)_2 - 0CH_2 - (3 - iBuO - cHx) H
                    H H
                                    Me 2
                                                                                                    H
1-1246 В
                        H
                              H
                                    Me
                                          2
                                               -C \equiv C - (CH_2)_2 - 0CH_2 - (4 - 1BuO - cHx) H
                                                                                                    H
                    H
                                                -C \equiv C - (CH_2)_2 - 0CH_2 - (3 - MeS - cHx)
                        H
                              H
                                    Me
                                          2
1-1247
           H
                    H
                                                                                            H
                                                                                                    H
1-1248 H
                        H
                              H
                                    Me
                                               -C \equiv C - (CH_2)_2 - 0CH_2 - (4 - MeS - cHx)
                                                                                            H
                                                                                                    H
                                               -C \equiv C - (CH<sub>2</sub>)<sub>2</sub> - 0CH<sub>2</sub> - (3 - EtS - cHx)
1-1249 Н
                        H
                                                                                            H
                                                                                                    H
                                    Me
                        H
                              H
1-1250 H
                                    Me
                                               -C \equiv C - (CH_2)_2 - 0CH_2 - (4 - BtS - cHx)
                                                                                            H
                                                                                                    H
                        H
                                               -C \equiv C - (CH_2)_2 - 0CH_2 - (3 - PrS - cHx)
1-1251 Н
                              H
                                    Me
                                                                                                    H
                                                                                            H
                    H
                                                                                                                        10
1-1252 Н
                        H
                              H
                                   Me
                                               -C \equiv C - (CH_2)_2 - 0CH_2 - (4 - PrS - cHx)
                                                                                           H
                                                                                                    H
                    H
                        H
                                          2
                                               -C \equiv C - (CH_2)_2 - 0CH_2 - (3-1)PrS - cHx) H
1-1253 Н
                              H
                                   Me
                                                                                                    H
                    H
                                               -C \equiv C - (CH_2)_2 - 0CH_2 - (4 - iPrS - cHx) H
1-1254 Н
                        H
                              H
                                                                                                    H
                        H
                                         2 - C \equiv C - (CH_2)_2 - 0CH_2 - [3 - (2 - Et - PrS)_{CHX}] H H
                              H
1-1255 Н
                        H
                              H
                                         2 -C≡C-(CH<sub>2</sub>)<sub>2</sub>-OCH<sub>2</sub>-[4-(2-Et-PrS)cHx] H H
1-1256 Н
                    H
                        H
                              H
                                              -C \equiv C - (CH_2)_2 - 0CH_2 - (3-1BuS - cHx) H
                                    Me 2
                                                                                                    H
1-1257 Н
                    H
                        H
                              H
                                               -C \equiv C - (CH_2)_2 - 0CH_2 - (4 - iBuS - cHx) H
                                   Me
                                                                                                    H
1-1258
          H
                                                                                                                        20
                                               -C \equiv C - (CH_2)_2 - 0CH_2 - (3 - cHx - cHx)
1-1259 Н
                        H
                              H
                                    Me
                                         2
                                                                                            H
                                                                                                    H
                    H
                                               -C \equiv C - (CH_2)_2 - 0CH_2 - (4 - cHx - cHx)
                        H
                              H
                                    Me
                                         2
                                                                                            H
                                                                                                    H
1-1260 Н
                        H
                                               -C \equiv C - (CH_2)_2 - 0CH_2 - (3-Ph-cHx)
                                                                                            H
                                                                                                    H
1-1261 Н
                                    Me
                        H
                              H
                                               -C \equiv C - (CH_2)_2 - 0CH_2 - (4 - Ph - cHx)
                                                                                                    H
1-1262 Н
                                    Me
                                                                                            H
                                               -C \equiv C - (CH_2)_2 - 0CH_2 - (2, 4 - diMe - cHx) H
1-1263 Н
                              H
                                   Me 2
                    H H
                                               -C \equiv C - (CH_2)_2 - 0CH_2 - (3, 4 - diMe - cHx) H
1-1264 Н
                        H
                                   Me
                                          2
                                                                                                    H
                    H
                        H
                                         2
                                               -C \equiv C - (CH_2)_2 - 0CH_2 - (3, 5 - diMe - cHx) H
                                                                                                    H
                                                                                                                        30
1-1265 Н
                    H
                              H
                                   Me
                                               -C≡C-(CH<sub>2</sub>)<sub>2</sub>-0CH<sub>2</sub>-Ph
                                                                                                    H
1-1266 Н
                    HH
                              H
                                   Me
                                         2
                                                                                             H
                                   Me
                                               -C \equiv C - (CH_2)_2 - 0CH_2 - Ph
                                                                                                    H
1-1267 Н
                        H
                              H
                                          2
                                                                                            Me
          H
                              H
                                   Me
                                         2
                                               -C≡C-(CH<sub>2</sub>)<sub>2</sub>-0CH<sub>2</sub>-Ph
                                                                                                    Ne
1-1268
                        H
                                                                                             H
                                               -C \equiv C - (CH_2)_2 - 0CH_2 - Ph
                   н н
                                                                                             F
1-1269 Н
                              H
                                   Me 2
                                                                                                    H
                                               -C≡C-(CH<sub>2</sub>)<sub>2</sub>-0CH<sub>2</sub>-Ph
1-1270 Н
                                                                                            H
                                                                                                    F
                        H
                              H
                                    Me
                                          2
                    H
                                               -C≡C-(CH<sub>2</sub>)<sub>2</sub>-0CH<sub>2</sub>-CH<sub>2</sub>-Ph
                    H Me
                              Me
                                   Me
                                         2
                                                                                            H
                                                                                                    H
1-1271
                                                                                                                        40
                                         2
                                               -C≡C-(CH<sub>2</sub>)<sub>2</sub>-0CH<sub>2</sub>-Ph
1-1272 CO<sub>2</sub>Me H
                                    Me
                                                                                                    H
                        H
                              H
                                                                                             H
1-1273 CO<sub>2</sub>Et H H
                                    Me
                                          2
                                               -C≡C-(CH<sub>2</sub>)<sub>2</sub>-OCH<sub>2</sub>-Ph
                                                                                             H
                                                                                                    H
```

```
1-1274 Н
                           H
                                      2
                                           -C \equiv C - (CH_2)_2 - 0CH_2 - (3-F-Ph)
                      H
                  H
                                 Me
                                                                                    H
                                                                                           H
                                      2
1-1275 Н
                      H
                           H
                                 Мe
                                           -C \equiv C - (CH_2)_2 - 0CH_2 - (4-F-Ph)
                                                                                    H
                                                                                           H
                  H
1-1276
          H
                      H
                           H
                                      2
                                           -C \equiv C - (CH_2)_2 - 0CH_2 - (4-C1-Ph)
                  H
                                 Me
                                                                                    H
                                                                                           H
1-1277 Н
                      H
                           H
                                 Ne
                                      2
                                           -C \equiv C - (CH_2)_2 - 0CH_2 - (4-Br-Ph)
                                                                                           H
                  H
                                                                                    H
1-1278 Н
                           H
                                           -C \equiv C - (CH_2)_2 - 0CH_2 - (3-Me-Ph)
                                                                                          H
                      H
                                      2
                  H
                                 Жe
                                                                                    H
1-1279
          H
                      H
                           H
                                      2
                  H
                                 Me
                                           -C \equiv C - (CH_2)_2 - 0CH_2 - (4-Me-Ph)
                                                                                    H
                                                                                           H
1-1280
                                 Me 2
                           H
                                           -C \equiv C - (CH_2)_2 - 0CH_2 - (3-Et-Ph)
                                                                                    H
                                                                                          H
          H
                      H
                  H
                                                                                                             10
                      H
                           H
                                 Me
                                      2
                                           -C \equiv C - (CH_2)_2 - 0CH_2 - (4 - Et - Ph)
                                                                                    H
1-1281 Н
                                                                                           H
                  H
1-1282
          H
                      H
                           H
                                      2
                                           -C \equiv C - (CH_2)_2 - 0CH_2 - (3-Pr-Ph)
                  H
                                 Me
                                                                                    H
                                                                                           H
1-1283 Н
                      H
                           H
                                 Me
                                      2
                                           -C \equiv C - (CH_2)_2 - 0CH_2 - (4-Pr-Ph)
                                                                                          H
                  H
                                                                                    H
1-1284 Н
                           H
                                      2
                                           -C \equiv C - (CH_2)_2 - 0CH_2 - (3 - iPr - Ph)
                                                                                          H
                      H
                                                                                    H
                                 Мe
1-1285
          H
                      H
                           H
                                Мe
                                      2
                                           -C \equiv C - (CH_2)_2 - 0CH_2 - (4 - iPr - Ph)
                                                                                    H
                                                                                          H
                  H
                                           -C \equiv C - (CH_2)_2 - 0CH_2 - (3-Bu-Ph)
1-1286 Н
                           H
                                Ne
                                      2
                                                                                    H
                  H H
                                                                                          H
1-1287 Н
                           H
                                Me
                                      2
                                           -C \equiv C - (CH_2)_2 - 0CH_2 - (4 - Bu - Ph)
                                                                                    H
                      H
                                                                                           H
                  H
                                                                                                             20
                      H
                                           -C \equiv C - (CH_2)_2 - 0CH_2 - (3 - CF_3 - Ph)
                                                                                          H
1-1288 Н
                  H
                           H
                                Me
                                      2
                                                                                    H
                      H
                                                                                          H
1-1289 Н
                           H
                                      2
                                           -C \equiv C - (CH_2)_2 - 0CH_2 - (4 - CF_3 - Ph)
                                                                                    H
                  H
                                 Мe
1-1290 H
                                      2
                                           -C \equiv C - (CH_2)_2 - 0CH_2 - (3-MeO-Ph)
                                                                                    H
                      H
                                                                                          H
                  H
                           H
                                 Me
                                           -C \equiv C - (CH_2)_2 - 0CH_2 - (4 - MeO - Ph)
1-1291
         H
                      H
                                      2
                                                                                    H
                                                                                          H
                            H
                  H
                                 Мe
                                                                                    H
1-1292 Н
                           H
                                Me
                                      2
                                           -C \equiv C - (CH_2)_2 - 0CH_2 - (3 - Et0 - Ph)
                                                                                           H
                  H H
1-1293
                           H
                                      2
                                           -C \equiv C - (CH_2)_2 - 0CH_2 - (4 - Et0 - Ph)
                                                                                    H
         H
                      H
                                 Me
                                                                                           H
                  H
1-1294 Н
                      H
                           H
                                      2
                                           -C \equiv C - (CH_2)_2 - 0CH_2 - (3-PrO-Ph)
                                                                                    H
                                                                                                             30
                  H
                                 Мe
                                                                                           H
                      H
                                      2
                                           -C \equiv C - (CH_2)_2 - 0CH_2 - (4-Pr0-Ph)
                                                                                          H
1-1295 Н
                           H
                                 Me
                                                                                    H
                  H
1-1296 Н
                           H
                                           -C \equiv C - (CH_2)_2 - 0CH_2 - (3 - iPrO - Ph)
                  H
                      H
                                 Me
                                      2
                                                                                    H
                                                                                           H
1-1297
                      H
                           H
                                           -C \equiv C - (CH_2)_2 - 0CH_2 - (4 - iPrO - Ph)
                                                                                           H
          H
                  H
                      H
                                      2 -C \equiv C - (CH_2)_2 - 0CH_2 - [3 - (2 - Et - Pr0)Ph] H
1-1298 Н
                           H
                  H
                                                                                          H
                                                                                          H
                      H
                           H
                                      2 -C \equiv C - (CH_2)_2 - 0CH_2 - [4 - (2 - Et - Pr0)Ph] H
1-1299 Н
                  H
1-1300 H
                      H
                           H
                                      2
                  H
                                Me
                                           -C \equiv C - (CH_2)_2 - 0CH_2 - (3 - iBuO - Ph)
                                                                                          H
                                                                                                             40
                      H
                           H
                                      2
                                           -C \equiv C - (CH_2)_2 - 0CH_2 - (4 - iBuO - Ph)
                                                                                          H
1-1301 Н
                  H
                                Мe
                                                                                   H
1-1302 Н
                  H H
                           H
                                Me 2
                                           -C \equiv C - (CH_2)_2 - 0CH_2 - (3-MeS-Ph)
                                                                                    H
                                                                                          H
```

<u>'</u>

```
1-1303 H
                       H
                                             -C \equiv C - (CH_2)_2 - 0CH_2 - (4 - MeS - Ph)
                   H
                            H
                                 Me
                                       2
                                                                                       H
                                                                                             H
1-1304
                            H
          H
                   H
                       H
                                  Мe
                                       2
                                             -C \equiv C - (CH_2)_2 - 0CH_2 - (3 - EtS - Ph)
                                                                                       H
                                                                                             H
1-1305
                       H
          H
                            H
                                 Мe
                                       2
                                             -C \equiv C - (CH_2)_2 - 0CH_2 - (4 - EtS - Ph)
                   H
                                                                                       H
                                                                                             H
1-1306 Н
                   H
                       H
                            H
                                  Ne
                                       2
                                             -C \equiv C - (CH_2)_2 - 0CH_2 - (3-PrS-Ph)
                                                                                       H
                                                                                             H
                       H
                                             -C \equiv C - (CH_2)_2 - OCH_2 - (4 - PrS - Ph)
1-1307 Н
                            H
                                       2
                                                                                             H
                   H
                                  Иe
                                                                                       H
                       H
                            H
1-1308
          H
                   H
                                  Жe
                                       2
                                             -C \equiv C - (CH_2)_2 - OCH_2 - (3 - iPrS - Ph)
                                                                                       H
                                                                                             H
1-1309
                            H
                                  Me
                                            -C \equiv C - (CH_2)_2 - 0CH_2 - (4 - iPrS - Ph)
          H
                   HH
                                                                                              H
                                                                                                                 10
1-1310 H
                            H
                                       2 - C \equiv C - (CH_2)_2 - OCH_2 - [3 - (2 - Et - PrS)Ph] H
                   H H
                                                                                             H
                                       2 -C \equiv C - (CH_2)_2 - OCH_2 - [4 - (2 - Et - PrS)Ph] H
1-1311 Н
                       H
                            H
                                                                                             H
                   H
1-1312 Н
                       H
                            H
                                       2
                                             -C \equiv C - (CH_2)_2 - 0CH_2 - (3 - iBuS - Ph)
                                                                                             H
                  H
                                  Ne
                                             -C \equiv C - (CH_2)_2 - 0CH_2 - (4 - iRuS - Ph)
                                                                                             H
1-1313 Н
                                 Me
                       H
                            H
                                       2
                                                                                      H
                  H
                       H
                                                                                             H
1-1314 Н
                                            -C \equiv C - (CH_2)_2 - OCH_2 - (3 - cHx - Ph)
                            H
                                 Me
                                       2
                                                                                       H
                   H
                       H
                            H
                                            -C \equiv C - (CH_2)_2 - 0CH_2 - (4 - cHx - Ph)
1-1315 Н
                                 Мe
                                                                                       H
                                                                                             H
                  H
                                       2
                            H
                                       2
                                            -C \equiv C - (CH_2)_2 - 0CH_2 - (3-Ph-Ph)
1-1316 Н
                       H
                                                                                      H
                                                                                             H
                  H
                                 Мe
                                                                                                                 20
                                             -C \equiv C - (CH_2)_2 - 0CH_2 - (4-Ph-Ph)
1-1317
          H
                       H
                            H
                                 Жe
                                       2
                                                                                       H
                                                                                              H
                  H
1-1318
                       H
                            H
                                       2
                                             -C \equiv C - (CH_2)_2 - 0CH_2 - (2, 4 - diMe - Ph) H
                                                                                             H
          H
                  H
                                  Мe
                                             -C \equiv C - (CH_2)_2 - 0CH_2 - (3, 4 - diMe - Ph) H
1-1319 Н
                                                                                             H
                       H
                            H
                                 Мe
                                       2
                       H
                            H
                                       2
                                            -C \equiv C - (CH_2)_2 - OCH_2 - (3, 5 - diMe-Ph) H
                                                                                             H
1-1320
          H
                                 Мe
                  H
                  H H
                            H
                                 Мe
                                       2
                                            -C \equiv C - (CH_2)_3 - 0CH_2 - cHx
                                                                                             H
1-1321 Н
                                                                                       H
                  н н
                            H
                                       2
                                            -C≡C-(CH<sub>2</sub>)<sub>3</sub>-0CH<sub>2</sub>-Ph
                                                                                       H
                                                                                             H
1-1322
         H
                                 Мe
                                            -C \equiv C - (CH_2)_4 - OCH_2 - cHx
                                                                                                                 30
1-1323 Н
                  H
                       H
                            H
                                 Жe
                                       2
                                                                                       H
                                                                                             H
1-1324 H
                  H H
                            H
                                       2
                                            -C≡C-(CH<sub>2</sub>)<sub>4</sub>-OCH<sub>2</sub>-Ph
                                                                                       H
                                                                                             H
                                 Me
                                            -CO-CH<sub>2</sub>-(4-cHx-Ph)
1-1325 Н
                  H
                       H
                            H
                                 Me
                                       2
                                                                                       H
                                                                                             H
                       H
                            H
                                 Me
                                       2
                                            -CO-CH<sub>2</sub>-(4-Ph-Ph)
                                                                                             H
1-1326
                                                                                       H
          H
                  H
1-1327 Н
                      H
                                            -CO-(CH<sub>2</sub>)<sub>2</sub>-cH<sub>2</sub>
                            H
                                 Me
                                       2
                                                                                       H
                                                                                             H
                  H
                                            -\text{CO-(CH}_2)_2-Ph
1-1328
                            H
          H
                       H
                                 Me
                                       2
                                                                                       H
                                                                                             H
                  H
                                            -C0-(CH_2)_3-cHx
          H
                      H
                            H
                                 Мe
                                       2
                                                                                       H
                                                                                             H
1-1329
                  H
                                                                                                                 40
                                            -CO-(CH<sub>2</sub>)<sub>3</sub>-Ph
                                                                                             H
1-1330 В
                      H
                            H
                                 Me
                                       2
                                                                                       H
                  H
                                            -CO-(CH_2)_4-cHx
1-1331 H
                  н н
                            H
                                 Me
                                       2
                                                                                       H
                                                                                             H
```

1-1332	H	H	Me	Me	Me	2	-C0-(CH ₂) ₄ -cHx	H	H	
1-1333	CO ₂ Me	H	H	H	Me	2	$-\text{CO-}(\text{CH}_2)_4$ -cHx	H	H	
1-1334	CO ₂ Et	H	H	H	Me	2	-C0-(CH ₂) ₄ -cHx	H	H	
1-1335	H	H	H	H	Мe	2	$-\text{CO-(CH}_2)_4$ -(4-F-cHx)	H	H	
1-1336	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_4$ -(4-Me-cHx)	H	H	
1-1337	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_4$ -(4- Et-cHx)	H	H	
1-1338	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_4$ -(4-CF ₃ -cHx)	H	H	10
1-1339	H	H	H	H	Ne	2	$-\text{CO-(CH}_2)_4$ -(4-MeO-cHx)	H	H	
1-1340	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_4$ -(4-Et0-cHx)	H	H	
1-1341	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_4$ -(4-MeS-cHx)	H	H	
1-1342	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_4$ -(4-cHx-cHx)	H	H	
1-1343	H	H	H	H	Мe	2	$-\text{CO-(CH}_2)_4$ -(4-Ph-cHx)	H	H	
1-1344	H	H	H	H	Me	2	-CO-(CH ₂) ₄ -Ph	H	H	
1-1345	H	H	Me	Мe	Me	2	-co-(cH ₂) ₄ -Ph	H	H	20
1-1346	CO ₂ Me	H	H	H	Me	2	-CO-(CH ₂) ₄ -Ph	H	H	
1-1347	CO ₂ Et	H	H	H	Me	2	-co-(cH ₂) ₄ -Ph	H	H	,
1-1348	H	H	H	H	Me	2	-CO-(CH ₂) ₄ -(4-F-Ph)	H	H	
1-1349	H	H	H	H	Me	2	-CO-(CH ₂) ₄ -(4-Me-Ph)	H	H	
1-1350	H	H	H	H	Me	2	-CO-(CH ₂) ₄ -(4-Et-Ph)	H	H	
1-1351	H	H	H	H	Me	2	-CO-(CH ₂) ₄ -(4-CF ₃ -Ph)	H	H	
1-1352	H	H	H	H	Me	2	-CO-(CH ₂) ₄ -(4-MeO-Ph)	H	H	30
1-1353	H	H	H	H	Me	2	-CO-(CH ₂) ₄ -(4-EtO-Ph)	H	H	
1-1354	H	H	H	H	Me	2	$-\text{CO-}(\text{CH}_2)_4$ -(4-MeS-Ph)	H	H	
1-1355	H	H	H	H	Me	2	-CO-(CH ₂) ₄ -(4-cHx-Ph)	H	H	
1-1356	H	H	H	H	Me	2	-co-(cH ₂) ₄ -(4-Ph-Ph)	H	H	
1-1357	H	H	H	H	Me	2	-CO-(CH ₂) ₅ -cHx	H	H	
1-1358	H	H	Me	Me	Me	2	-CO-(CH ₂) ₅ -cHx	H	H	
1-1359	${\tt CO_2Me}$	H	H	H	Me	2	-CO-(CH ₂) ₅ -cHx	H	H	40
1-1360	CO ₂ Et	H	H	H	Хe	2	-C0-(CH ₂) ₅ -cHx	H	H	

1-1361	H	H	H	H	Мe	2	$-\text{CO-(CH}_2)_{5}$ -(4-F-cHx)	H	H	
1-1362	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_{5}$ -(4-Me-cHx)	H	H	
1-1363	H	H	H	H	Me	2	$-C0-(CH_2)_{5}-(4-Et-cHx)$	H	H	
1-1364	H	H	H	H	Мe	2	$-\text{CO-(CH}_2)_{5}$ -(4-CF ₃ -cHx)	H	H	
1-1365	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_5$ -(4-MeO-cHx)	H	H	
1-1366	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_{5}$ -(4-Et0-cHx)	H	H	•
1-1367	H	H	H	H	Me	2	$-CO-(CH_2)_5-(4-MeS-cHx)$	H	H	10
1-1368	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_{5}$ -(4-cHx-cHx)	H	H	
1-1369	H	H	H	H	Me	2	$-C0-(CH_2)_5-(4-Ph-cHx)$	H	H	
1-1370	H	H	H	H	Me	2	-CO-(CH ₂) ₅ -Ph	H	H	
1-1371	H	H	Me	Me	Me	2	-CO-(CH ₂) ₅ -Ph	H	H	
1-1372	CO ₂ Me	H	H	H	Me	2	-co-(cH ₂) ₅ -Ph	H	H	
1-1373	CO ₂ Et	H	H	H	Me	2	-CO-(CH ₂) ₅ -Ph	H	H	
1-1374	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_{5}$ -(4-F-Ph)	H	H	20
1-1375	H	H	H	H	Me	2	-CO-(CH ₂) ₅ -(4-Me-Ph)	H	H	
1-1376	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_{5}$ -(4-Et-Ph)	H	H	
1-1377	H	H	H	H	Мe	2	-CO-(CH ₂) ₅ -(4-CF ₃ -Ph)	H	H	
1-1378	H	H	H	H	Me	2	-CO-(CH ₂) ₅ -(4-MeO-Ph)	H	H	
1-1379	H	H	H	H	Мe	2	-CO-(CH ₂) ₅ -(4-EtO-Ph)	H	H	
1-1380	H	H	H	H	Me	2	-CO-(CH ₂) ₅ -(4-MeS-Ph)	H	H	
1-1381	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_{5}$ -(4-cHx-Ph)	H	H	30
1-1382	H	H	H	H	Me	2	-co-(ch ₂) ₅ -(4-Ph-Ph)	H	H	
1-1383	H	H	H	H	Мe	2	-CO-(CH ₂) ₆ -cHx	H	H	
1-1384	H	H	H	H	Me	2	-co-(cH ₂) ₆ -Ph	H	H	
1-1385	H	H	H	H	Me	2	-CO-(CH ₂) ₇ -cHx	H	H	
1-1386	H	H	H	H	Me	2	-co-(ch ₂) ₇ -Ph	H	H	
1-1387	H	H	H	H	Me	2	-CO-(CH ₂) ₂ -O-cHx	H	H	
1-1388	H	H	Me	Me	Мe	2	$-\text{CO-}(\text{CH}_2)_2 - \text{O-}\text{cHx}$	H	H	40
1-1389	CO ₂ Me	H	H	H	Мe	2	-CO-(CH ₂) ₂ -O-cH _x	H	H	

1-1390	CO ₂ Et	H	H	H	Me	2	-CO-(CH ₂) ₂ -O-cHx	H	H	
1-1391	H	H	H	H	Me	2	$-CO-(CH_2)_2-O-(4-F-cHx)$	H	H	
1-1392	H	H	H	H	Me	2	$-CO-(CH_2)_2-O-(4-Me-cHx)$	H	H	
1-1393	H	H	H	H	Me	2	$-CO-(CH_2)_2-O-(4-Et-cHx)$	H	H	
1-1394	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_2$ -O-(4-CF ₃ -cHx)	H	H	
1-1395	H	H	H	H	Me	2	-co-(cH ₂) ₂ -o-(4-Meo-cHx)	H	H	
1-1396	H	H	H	H	Me	2	$-CO-(CH_2)_2-O-(4-EtO-cHx)$	H	B	10
1-1397	H	H	H	H	Me	2	$-CO-(CH_2)_2-O-(4-MeS-cHx)$	H	H	
1-1398	H	H	H	H	Me	2	$-CO-(CH_2)_2-O-(4-cHx-cHx)$	H	B	
1-1399	H	H	H	H	Me	2	-CO-(CH ₂) ₂ -O-(4-Ph-cHx)	H	B	
1-1400	H	H	H	H	Me	2	-CO-(CH ₂) ₂ -O-Ph	H	H	
1-1401	H	H	Me	Me	Me	2	-co-(cH ₂) ₂ -o-Ph	H	H	
1-1402	C0 ₂ Me	H	H	H	Me	2	-co-(ch ₂) ₂ -o-Ph	H	H	
1-1403	CO ₂ Et	H	H	H	Me	2	-co-(cH ₂) ₂ -o-Ph	H	H	20
1-1404	H	H	H	H	Me	2	-CO-(CH ₂) ₂ -O-(4-F-Ph)	H	H	•
1-1405	H	H	H	H	Me	2	-CO-(CH ₂) ₂ -O-(4-Me-Ph)	H	H	
1-1406	H	H	H	H	Me	2	$-CO-(CH_2)_2-O-(4-Et-Ph)$	H	H	
1-1407	H	H	H	H	Me	2	-co-(cH ₂) ₂ -o-(4-cF ₃ -Ph)	H	H	
1-1408	H	H	H	H	Me	2	-CO-(CH ₂) ₂ -O-(4-MeO-Ph)	H	H	
1-1409	H	H	H	H	Me	2	-CO-(CH ₂) ₂ -O-(4-EtO-Ph)	H	H	
1-1410	H	H	H	H	Me	2	-CO-(CH ₂) ₂ -O-(4-MeS-Ph)	H	H	30
1-1411	H	H	H	H	Me	2	$-CO-(CH_2)_2-O-(4-cHx-Ph)$	H	H	
1-1412	H	H	H	H	Me	2	-CO-(CH ₂) ₂ -O-(4-Ph-Ph)	H	H	
1-1413	H	H	H	H	Me	2	-co-(cH ₂) ₃ -o-cPn	H	H	
1-1414	H	H	H	H	Me	2	-CO-(CH ₂) ₃ -O-cHx	H	H	
1-1415	H	H	H	H	Me	2	-co-(cH ₂) ₃ -o-cHx	Me	H	
1-1416	H	H	H	H	Me	2	-CO-(CH ₂) ₃ -O-cHx	H	Me	
1-1417	H	H	H	H	Me	2	-CO-(CH ₂) ₃ -O-cH _x	F	H	40
1-1418	H	H	H	H	Me	2	-CO-(CH ₂) ₃ -0-cH _x	H	F	

1-1419	H	H	Me	Me	Me	2	$-C0-(CH_2)_3-0-cHx$	H	H	
1-1420	CO ₂ Me	H	H	H	Me	2	$-CO-(CH_2)_3-O-cHx$	H	H	
1-1421	CO ₂ Et	H	H	H	Me	2	$-C0-(CH_2)_3-0-cHx$	H	H	
1-1422	H	H	H	H	Me	2	$-C0-(CH_2)_3-0-(3-F-cHx)$	H	H	
1-1423	H	H	H	H	Me	2	$-C0-(CH_2)_3-0-(4-F-cHx)$	H	H	
1-1424	H	H	H	H	Me	2	$-C0-(CH_2)_3-0-(4-C1-cHx)$	H	H	
1-1425	H	H	H	H	Me	2	$-CO-(CH_2)_3-O-(4-Br-cHx)$	H	H	10
1-1426	H	H	H	H	Мe	2	$-CO-(CH_2)_3-O-(3-Me-cHx)$	H	H	
1-1427	H	H	H	H	Me	2	$-\text{CO-}(\text{CH}_2)_3 - \text{O-}(4 - \text{Me-cHx})$	H	H	
1-1428	H	H	H	H	Me	2	$-C0-(CH_2)_3-0-(3-Et-cHx)$	H	H	
1-1429	H	H	H	H	Мe	2	$-C0-(CH_2)_3-0-(4-Et-cHx)$	H	H	
1-1430	H	H	H	H	Me	2	$-CO-(CH_2)_3-O-(3-Pr-cHx)$	H	H	
1-1431	H	H	H	H	Me	2	$-CO-(CH_2)_3-O-(4-Pr-cHx)$	H	H	
1-1432	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_3$ $-\text{O-(4-iPr-cHx)}$	H	H	20
1-1433	H	H	H	H	Me	2	$-C0-(CH_2)_3-0-(3-Bu-cHx)$	H	H	
1-1434	H	H	H	H	Me	2	-CO-(CH ₂) ₃ -O-(4-Bu-cHx)	H	H	
1-1435	H	H	H	H	Me	2	$-C0-(CH_2)_3-0-(3-CF_3-cHx)$	H	H	
1-1436	H	H	H	H	Me	2	$-CO-(CH_2)_3-O-(4-CF_3-cHx)$	H	H	
1-1437	H	H	H	H	Me	2	$-C0-(CH_2)_3-0-(3-Me0-cHx)$	H	H	
1-1438	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_3$ -O-(4-MeO-cHx)	H	H	
1-1439	H	H	H	H	Me	2	$-C0-(CH_2)_3-0-(3-Et0-cHx)$	H	H	30
1-1440	H	H	H	H	Me	2	$-C0-(CH_2)_3-0-(4-Et0-cHx)$	H	H	
1-1441	H	H	H	H	Me	2	$-C0-(CH_2)_3-0-(3-Pr0-cHx)$	H	H	
1-1442	В	H	H	H	Me	2	$-C0-(CH_2)_3-0-(4-Pr0-cHx)$	H	H	
1-1443	H	H	H	H	Me	2	$-C0-(CH_2)_3-0-(3-iPr0-cHx)$	H	H	
1-1444	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_3$ -O-(4-iPrO-cHx)	H	H	
1-1445	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_3$ -O-[3-(2-Et-PrO)cHx]	H .	H	
1-1446	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_3$ -O-[4-(2-Et-PrO)cHx]	H	H	40
1-1447	H	H	H	H	Me	2	$-C0-(CH_2)_3-0-(3-iBu0-cHx)$	H	H	

1-1448	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_3$ -O-(4-iBuO-cHx)	H	H	
1-1449	H	H	H	H	Me	2	$-CO-(CH_2)_3-O-(3-MeS-cHx)$	H	H	
1-1450	H	H	H	H	Me	2	$-CO-(CH_2)_3-O-(4-MeS-cHx)$	H	H	
1-1451	H	H	H	H	Me	2	$-CO-(CH_2)_3-O-(3-EtS-cHx)$	H	H	
1-1452	H	H	H	H	Мe	2	$-CO-(CH_2)_3-O-(4-EtS-cHx)$	H	H	
1-1453	H	H	H	H	Me	2	-CO-(CH ₂) ₃ -O-(3-PrS-cHx)	H	H	
1-1454	H	H	H	H	Me	2	$-CO-(CH_2)_3-O-(4-PrS-cHx)$	H	B	10
1-1455	H	H	H	H	Me	2	$-\text{CO-}(\text{CH}_2)_3 - \text{O-}(3 - i \text{PrS-cHx})$	H	H	
1-1456	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_3-\text{O-(4-iPrS-cHx)}$	H	H	
1-1457	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_3 - \text{O-[3-(2-Bt-PrS)cHx]}$	H	H	
1-1458	H	H	H	H	Me	2	$\hbox{-CO-(CH$_2$)$_3$-O-[4$-(2$-Bt-PrS)$_cHx]}$	H	H	
1-1459	H	H	H	H	Me	2	$-\text{CO-}(\text{CH}_2)_3 - \text{O-}(3 - \text{1BuS-cHx})$	H	H	
1-1460	H	H	H	H	Me	2	$-CO-(CH_2)_3-O-(4-iBuS-cHx)$	H	H	
1-1461	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_3$ -O-(3-cHx-cHx)	H	H	20
1-1462	H	H	H	H	Me	2	$-CO-(CH_2)_3-O-(4-cHx-cHx)$	H	B	
1-1463	H	H	H	H	Me	2	$-CO-(CH_2)_3-O-(3-Ph-cHx)$	H	B	
1-1464	H	H	H	H	Me	2	$-CO-(CH_2)_3-O-(4-Ph-cHx)$	H	B	
1-1465	H	H	H	H	Me	2	$-\text{CO-}(\text{CH}_2)_3$ -O-(2, 4-diMe-cHx)	H	H	
1-1466	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_3-0-(3,4-\text{diMe-cHx})$	H	H	
1-1467	H	H	H	H	Me	2	$-\text{CO-}(\text{CH}_2)_3 - \text{O-}(3, 5 - \text{diMe-cHx})$	H	H	
1-1468	H	H	H	H	Me	2	-CO-(CH ₂) ₃ -O-Ph	H	H	30
1-1469	H	H	H	H	Me	2	-co-(ch ₂) ₃ -o-Ph	Me	H	
1-1470	H	H	H	H	Me	2	-co-(ch ₂) ₃ -o-Ph	H	Me	
1-1471	H	H	H	H	Me	2	-co-(ch ₂) ₃ -o-Ph	F	H	
1-1472	H	H	H	H	Me	2	-co-(ch ₂) ₃ -o-Ph	H	F	
1-1473	H	H	Жe	Me	Me	2	-co-(ch ₂) ₃ -o-Ph	H	H	
1-1474	CO ₂ Me	H	H	H	Me	2	-CO-(CH ₂) ₃ -O-Ph	H	H	
1-1475	CO ₂ Et	H	H	H	Me	2	-co-(ch ₂) ₃ -o-Ph	Ħ	B	40
1-1476	H	H	H	H	Me	2	-CO-(CH ₂) ₃ -O-(3-F-Ph)	H	Ħ	

1-1477	H	H	H	H	Me	2	$-CO-(CH_2)_3-O-(4-F-Ph)$	H	H	
1-1478	H	H	H	H	Ne	2	$-\text{CO-(CH}_2)_3-\text{O-(4-Cl-Ph)}$	H	H	
1-1479	H	H	H	H	Me	2	$-CO-(CH_2)_3-O-(4-Br-Ph)$	H	H	
1-1480	H	H	H	H	Me	2	-CO-(CH ₂) ₃ -O-(3-Me-Ph)	H	H	
1-1481	H	H	H	H	Me	2	-CO-(CH ₂) ₃ -O-(4-Me-Ph)	H	H	
1-1482	H	H	H	H	Me	2	$-CO-(CH_2)_3-O-(3-Et-Ph)$	H	H	
1-1483	H	H	H	H	Me	2	$-C0-(CH_2)_3-0-(4-Et-Ph)$	H	H	10
1-1484	H	H	H	H	Me	2	-CO-(CH ₂) ₃ -O-(3-Pr-Ph)	H	H	
1-1485	H	H	H	H	Me	2	$-CO-(CH_2)_3-O-(4-Pr-Ph)$	H	H	
1-1486	H	H	H	H	Мe	2	$-\text{CO-(CH}_2)_3-\text{O-(3-iPr-Ph)}$	H	H	
1-1487	H	H	H	H	Me	2	$-CO-(CH_2)_3-O-(4-iPr-Ph)$	H	H	
1-1488	H	H	H	H	Me	2	-CO-(CH ₂) ₃ -O-(3-Bu-Ph)	H	H	
1-1489	H	H	H	H	Me	2	-CO-(CH ₂) ₃ -O-(4-Bu-Ph)	H	H	
1-1490	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_3$ -O-(3-CF ₃ -Ph)	H	H	20
1-1491	H	H	H	H	Me	2	$-\text{CO-}(\text{CH}_2)_3-0-(4-\text{CF}_3-\text{Ph})$	H	H	
1-1492	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_3$ -O-(3-MeO-Ph)	H	H	
1-1493	H	H	H	H	Мe	2	$-CO-(CH_2)_3-O-(4-MeO-Ph)$	H	H	
1-1494	H	H	H	H	Me	2	$-\text{CO-}(\text{CH}_2)_3 - 0 - (3 - \text{EtO-Ph})$	H	H	
1-1495	H	H	H	H	Me	2	$-CO-(CH_2)_3-O-(4-EtO-Ph)$	H	H	
1-1496	H	H	H	H	Me	2	-CO-(CH ₂) ₃ -0-(3-Pr0-Ph)	H	H	
1-1497	H	H	H	H	Me	2	-CO-(CH ₂) ₃ -0-(4-Pr0-Ph)	H	H	30
1-1498	H	H	H	H	Me	2	$-\text{CO-}(\text{CH}_2)_3$ -O- $(3$ -iPrO-Ph)	H	H	
1-1499	H	H	H	H	Me	2	$-CO-(CH_2)_3-O-(4-iPrO-Ph)$	H	H	
1-1500	H	H	H	H	Me	2	$-CO-(CH_2)_3-O-[3-(2-Et-PrO)-Ph]$	H	H	
1-1501	H	H	H	H	Me	2	$-\text{CO-}(\text{CH}_2)_3-0-[4-(2-\text{Et-Pr0})-\text{Ph}]$	H	H	
1-1502	H	H	H	H	Me	2	-CO-(CH ₂) ₃ -O-(3-iBuO-Ph)	H	H	
1-1503	H	H	H	H	Me	2	-CO-(CH ₂) ₃ -0-(4-iBu0-Ph)	H	H	
1-1504	H	H	H	H	Me	2	-CO-(CH ₂) ₃ -0-(3-MeS-Ph)	H	H	40
1-1505	H	H	H	H	Me	2	-CO-(CH ₂) ₃ -0-(4-MeS-Ph)	H	H	

1-1506	H	H	H	H	Me	2	$-CO-(CH_2)_3-O-(3-EtS-Ph)$	H	H	
1-1507	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_3-0-(4-\text{EtS-Ph})$	H	H	
1-1508	H	H	H	H	Me	2	$-CO-(CH_2)_3-O-(3-PrS-Ph)$	H	H	
1-1509	H	H	H	H	Me	2	$-CO-(CH_2)_{3}-O-(4-PrS-Ph)$	H	H	
1-1510	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_3-\text{O-(3-iPrS-Ph)}$	H	H	
1-1511	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_3-0-(4-i\text{PrS-Ph})$	H	H	
1-1512	Н	H	H	H	Me	2	$-{\tt CO-(CH_2)_{3}-0-[3-(2-Bt-PrS)-Ph]}$	H	H	10
1-1513	В	H	H	H	Me	2	$-{\tt CO-(CH_2)_{3}-0-[4-(2-Et-PrS)-Ph]}$	H	H	
1-1514	H	H	H	H	Ne	2	$-\text{CO-(CH}_2)_3-0-(3-\text{iBuS-Ph})$	H	H	
1-1515	H	H	H	H	Me	2	-CO-(CH ₂) ₃ -O-(4-iBuS-Ph)	H	H	
1-1516	H	H	H	H	Me	2	$-C0-(CH_2)_3-0-(3-cHx-Ph)$	H	H	
1-1517	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_3 - 0 - (4 - \text{cHx-Ph})$	H	H	
1-1518	H	H	H	H	Ne	2	-CO-(CH ₂) ₃ -O-(3-Ph-Ph)	H	H	
1-1519	В	H	H	H	Me	2	-CO-(CH ₂) ₃ -O-(4-Ph-Ph)	H	H	20
1-1520	В	H	H	H	Me	2	-CO-(CH ₂) ₃ -O-(2, 4-d1Me-Ph)	H	H	
1-1521	H	H	H	H	Me	2	-co-(cH ₂) ₃ -o-(3, 4-diMe-Ph)	H	H	
1-1522	H	H	H	H	Me	2	-CO-(CH ₂) ₃ -O-(3, 5-diMe-Ph)	H	H	
1-1523	В	H	H	H	Me	2	$-\text{CO-(CH}_2)_4$ -0-cHx	H	H	
1-1524	H	H	H	H	Me	2	-co-(cH ₂) ₄ -o-Ph	H	H	
1-1525	Н	H	H	H	Me	2	$-\text{CO-(CH}_2)_5$ -0-cHx	H	H	
1-1526	В	H	H	H	Me	2	-co-(ch ₂) ₅ -o-Ph	H	H	30
1-1527	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_2$ -OCH $_2$ -cHx	H	H	
1-1528	H	H	Me	Me	Ne	2	-CO-(CH ₂) ₂ -OCH ₂ -cHx	H	H	
1-1529	${\rm CO_2Me}$	H	H	H	Мe	2	-co-(ch ₂) ₂ -och ₂ -chx	H	H	
1-1530	${\rm CO_2Et}$	H	H	H	Me	2	-CO-(CH ₂) ₂ -OCH ₂ -cHx	H	H	
1-1531	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_2$ $-\text{OCH}_2$ $-\text{(4-F-cHx)}$	H	H	
1-1532	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_2$ -OCH $_2$ -(4-Me-cHx)	H	H	
1-1533	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_2$ $-\text{OCH}_2$ $-\text{(4-Bt-cHx)}$	H	H	40
1-1534	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_2$ $-\text{OCH}_2$ $-\text{(4-CF}_3$ -cHx)	H	H	

1-1535	H	H	H	H	Me	2	$-CO-(CH_2)_2-OCH_2-(4-MeO-cHx)$	H	H	
1-1536	H	H	H	H	Me	2	$-CO-(CH_2)_2-OCH_2-(4-EtO-cHx)$	H	H	
1-1537	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_2$ $-\text{OCH}_2$ $-\text{(4-MeS-cHx)}$	H	H	
1-1538	H	H	H	H	Me	2	$-CO-(CH_2)_2-OCH_2-(4-cHx-cHx)$	H	H	
1-1539	H	H	H	H	Me	2	-CO-(CH ₂) ₂ -OCH ₂ -(4-Ph-cHx)	H	H	
1-1540	H	H	H	H	Me	2	-co-(cH ₂) ₂ -ocH ₂ -Ph	H	H	
1-1541	H	H	Me	Me	Me	2	-CO-(CH ₂) ₂ -OCH ₂ -Ph	H	H	10
1-1542	CO ₂ Me	H	H	H	Me	2	-co-(cH ₂) ₂ -ocH ₂ -Ph	H	H	
1-1543	CO ₂ Et	H	H	H	Me	2	-CO-(CH ₂) ₂ -OCH ₂ -Ph	H	H	
1-1544	H	H	H	H	Me	2	-CO-(CH ₂) ₂ -OCH ₂ -(4-F-Ph)	H	B	
1-1545	H	H	H	H	Me	2	$-CO-(CH_2)_2-OCH_2-(4-Me-Ph)$	H	H	
1-1546	H	H	H	H	Me	2	-CO-(CH ₂) ₂ -OCH ₂ -(4-Et-Ph)	H	H	
1-1547	H	H	H	H	Me	2	-CO-(CH ₂) ₂ -OCH ₂ -(4-CF ₃ -Ph)	H	H	
1-1548	H	H	H	H	Me	2	-CO-(CH ₂) ₂ -OCH ₂ -(4-MeO-Ph)	H	H	20
1-1549	H	H	H	H	Me	2	-CO-(CH ₂) ₂ -OCH ₂ -(4-BtO-Ph)	H	H	
1-1550	H	H	H	H	Me	2	$-CO-(CH_2)_2-OCH_2-(4-MeS-Ph)$	H	H	
1-1551	H	H	H	H	Me	2	-CO-(CH ₂) ₂ -OCH ₂ -(4-cHx-Ph)	H	H	
1-1552	H	H	H	H	Me	2	-CO-(CH ₂) ₂ -OCH ₂ -(4-Ph-Ph)	H	H	
1-1553	H	H	H	H	Me	2	-CO-(CH ₂) ₃ -OCH ₂ -CH ₂ -cPn	H	H	
1-1554	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_3$ $-\text{OCH}_2$ -cHx	H	H	
1-1555	H	H	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-cHx$	Me	H	30
1-1556	H	H	H	H	Me	2	-CO-(CH ₂) ₃ -OCH ₂ -cHx	H	Me	
1-1557	H	H	H	H	Ne	2	$-\text{CO-(CH}_2)_3 - \text{OCH}_2 - \text{cHx}$	F	H	
1-1558	H	H	H	H	Me	2	-CO-(CH ₂) ₃ -OCH ₂ -cHx	H	F	
1-1559	H	H	Ne	Me	Me	2	$-\text{CO-(CH}_2)_3 - \text{OCH}_2 - \text{cHx}$	H	H	
1-1560	COMe	H	H	H	Me	2	$-\text{CO-(CH}_2)_3$ $-\text{OCH}_2$ -cHx	H	Ħ	
1-1561	CO ₂ Et	H	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-cHx$	H	H	
1-1562	H	H	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(3-F-cHx)$	H	H	40
1-1563	H	H	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(4-F-cHx)$	H	H	

1-1564	H	H	H	H	Ne	2	$-\text{CO-(CH}_2)_{3}-\text{OCH}_2-(4-\text{C1-cHx})$	H	H		
1-1565	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_3$ $-\text{OCH}_2$ $-(4-\text{Br-cHx})$	H	H		
1-1566	H	H	H	H	Me	2	$-\text{CO-}(\text{CH}_2)_3 - \text{OCH}_2 - (3-\text{Me-cHx})$	H	H		
1-1567	H	H	H	H	Me	2	-co-(cH ₂) ₃ -ocH ₂ -(4-Me-cHx)	H	H		
1-1568	H	H	H	H	Ne	2	$-CO-(CH_2)_3-OCH_2-(3-Et-cHx)$	H	H		
1-1569	H	H	H	H	Ne	2	$-C0-(CH_2)_3-0CH_2-(4-Et-cHx)$	H	H		
1-1570	H	H	H	H	Ne	2	-C0-(CH2)3-0CH2-(3-Pr-cHx)	H	H	10	
1-1571	H	H	H	H	Me	2	$-\text{CO-}(\text{CH}_2)_3 - \text{OCH}_2 - (4-\text{Pr-cHx})$	H	H		
1-1572	H	H	H	H	Ne	2	$-\text{CO-(CH}_2)_3$ $-\text{OCH}_2$ $-\text{(4-iPr-cHx)}$	H	H		
1-1573	H	H	H	H	Me	2	-co-(ch ₂) ₃ -och ₂ -(3-bu-chx)	H	H		
1-1574	H	H	H	H	Ne	2	$-CO-(CH_2)_3-OCH_2-(4-Bu-cHx)$	H	H		
1-1575	H	H	H	H	Жe	2	$-\text{CO-(CH}_2)_3$ $-\text{OCH}_2$ $-(3-\text{CF}_3-\text{cHx})$	H	H		
1-1576	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_3$ $-\text{OCH}_2$ $-\text{(4-CF}_3$ $-\text{cHx)}$	H	H		
1-1577	H	H	H	H	Жe	2	$-\text{CO-(CH}_2)_3 - \text{OCH}_2 - (3 - \text{MeO-cHx})$	H	H	20	
1-1578	H	H	H	H	Мe	2	$-\text{CO-(CH}_2)_3$ $-\text{OCH}_2$ $-\text{(4-MeO-cHx)}$	H	H		
1-1579	H	H	H	H	Me	2	$-\text{CO-}(\text{CH}_2)_3 - \text{OCH}_2 - (3 - \text{EtO-cHx})$	H	H		
1-1580	H	H	H	H	Ne	2	-C0-(CH2)3-0CH2-(4-Et0-cHx)	H	H		
1-1581	H	H	H	H	Ne	2	-C0-(CH2)3-0CH2-(3-Pr0-cHx)	H	H		
1-1582	H	H	H	H	Ne	2	-C0-(CH2)3-0CH2-(4-Pr0-cHx)	H	H		
1-1583	H	H	H	H	Ne	2	$-\text{CO-(CH}_2)_3$ $-\text{OCH}_2$ $-\text{(3-iPrO-cHx)}$	H	H		
1-1584	H	H	H	H	Ne	2	$-\text{CO-(CH}_2)_3$ $-\text{OCH}_2$ $-\text{(4-iPrO-cHx)}$	H	H	30	
1-1585	H	H	H	H	Me	2	-CO-(CH2)3-OCH2-[3-(2-Bt-PrO)cH2	H [:	H		
1-1586	H	H	H	H	Ne	2	-CO-(CH2)3-OCH2-[4-(2-Et-PrO)cH2	H [:	H		
1-1587	H	H	H	H	Мe	2	$-\text{CO-(CH}_2)_3$ $-\text{OCH}_2$ $-\text{(3-iBuO-cHx)}$	H	H		
1-1588	H	H	H	H	Ne	2	$-\text{CO-(CH}_2)_3$ $-\text{OCH}_2$ $-\text{(4-iBuO-cHx)}$	H	H		
1-1589	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_3$ $-\text{OCH}_2$ $-\text{(3-MeS-cHx)}$	H	H		
1-1590	H	H	H	H	Мe	2		H	H		
1-1591	H	H	H	H	Me	2	20 2	H	H	40	
1-1592	H	H	H	H	Me	2	-CO-(CH2)3-OCH2-(4-BtS-cHx)	H	H		

H

```
-CO-(CH_2)_3-OCH_2-(3-PrS-cHx)
1-1593 Н
                                                                                                H
                                                                                                       H
                    H
                         H
                               H
                                     Me 2
                                                 -CO-(CH<sub>2</sub>)<sub>3</sub>-OCH<sub>2</sub>-(4-PrS-cH<sub>x</sub>)
1-1594 Н
                         H
                               H
                                     Me
                                                                                                H
                                                                                                       H
                     H
                                                 -CO-(CH<sub>2</sub>)<sub>3</sub>-OCH<sub>2</sub>-(3-iPrS-cHx)
1-1595
                         H
                               H
                                           2
           H
                                     Me
                                                                                                H
                                                                                                       H
                     H
1-1596 Н
                         H
                               H
                                     Me
                                                 -CO-(CH_2)_3-OCH_2-(4-iPrS-cHx)
                                                                                                H
                                                                                                       H
                     H
                                           2 -CO-(CH<sub>2</sub>)<sub>3</sub>-OCH<sub>2</sub>-[3-(2-Et-PrS)cHx] H
                         H
1-1597 Н
                                                                                                       H
                         H
1-1598
           H
                                           2 -CO-(CH<sub>2</sub>)<sub>3</sub>-OCH<sub>2</sub>-[4-(2-Et-PrS)cHx] H
                                                                                                       H
                                                 -CO-(CH_2)_3-OCH_2-(3-iRuS-cHx)
                         H
                               H
                                                                                                H
                                                                                                       H
1-1599
           H
                     H
                                     Me
                                                                                                                            10
                                                 -C0-(CH_2)_3-0CH_2-(4-iBuS-cHx)
1-1600
                               H
                                     Me
                                           2
                         H
                                                                                                H
                                                                                                       H
           H
                     H
                                                 -CO-(CH<sub>2</sub>)<sub>3</sub>-OCH<sub>2</sub>-(3-cHx-cHx)
                         H
                               H
                                     Me
                                           2
                                                                                                H
                                                                                                       H
1-1601
           H
                     H
                                                 -CO-(CH<sub>2</sub>)<sub>3</sub>-OCH<sub>2</sub>-(4-cHx-cHx)
                         H
                                           2
                                                                                                       H
1-1602
           H
                               H
                                     Me
                                                                                                H
                     H
                                                 -CO-(CH_2)_3-OCH_2-(3-Ph-cHx)
                                     Me
                                                                                                       H
1-1603 Н
                         H
                               H
                                           2
                                                                                                H
                                           2
                                                 -CO-(CH_2)_3-OCH_2-(4-Ph-cHx)
1-1604
                         H
                               H
                                                                                                H
                                                                                                       H
           H
                                     Me
                     H
                                                 -CO-(CH<sub>2</sub>)<sub>3</sub>-OCH<sub>2</sub>-(2, 4-diMe-cHx) H
                         H
                               H
                                     Me
                                           2
                                                                                                       H
1-1605
           H
                     H
                               H
                                     Me
                                                 -CO-(CH_2)_3-OCH_2-(3,4-diMe-cHx) H
                                                                                                       H
                         H
                                           2
1-1606
           H
                     H
                                                                                                                             20
                                                 -CO-(CH_2)_3-OCH_2-(3,5-diMe-cHx) H
                                                                                                       H
1-1607
           H
                         H
                               H
                                     Me
                                           2
                     H
                         H
                               H
                                     Me
                                           2
                                                 -CO-(CH<sub>2</sub>)<sub>3</sub>-OCH<sub>2</sub>-Ph
                                                                                                H
                                                                                                       H
1-1608
           H
                     H
                                                 -CO-(CH<sub>2</sub>)<sub>3</sub>-OCH<sub>2</sub>-Ph
1-1609
                         H
                                           2
                                                                                                Me
                                                                                                       H
           H
                                     Me
                               H
                                     Me
                                           2
                                                 -CO-(CH<sub>2</sub>)<sub>3</sub>-OCH<sub>2</sub>-Ph
                                                                                                H
                                                                                                       Me
1-1610
                         H
           H
                                           2
                                                 -CO-(CH<sub>2</sub>)<sub>3</sub>-OCH<sub>2</sub>-Ph
                                                                                                F
                               H
                                     Me
                                                                                                       H
1-1611 Н
                    H
                         H
                                                 -CO-(CH<sub>2</sub>)<sub>3</sub>-OCH<sub>2</sub>-Ph
                                                                                                H
                                                                                                       F
1-1612 Н
                         H
                               H
                                     Me
                                           2
                     H
                              Me
                                           2
                                                 -CO-(CH<sub>2</sub>)<sub>3</sub>-OCH<sub>2</sub>-Ph
                                                                                                                             30
1-1613
           H
                     H
                         Мe
                                     Me
                                                                                                H
                                                                                                       H
1-1614 CO<sub>2</sub>Me H
                                                 -CO-(CH<sub>2</sub>)<sub>3</sub>-OCH<sub>2</sub>-Ph
                         H
                               H
                                     Me
                                           2
                                                                                                H
                                                                                                       H
1-1615 CO<sub>2</sub>Me H
                                                 -CO-(CH<sub>2</sub>)<sub>3</sub>-OCH<sub>2</sub>-Ph
                         H
                               H
                                     Me
                                           2
                                                                                                H
                                                                                                       H
                                                 -\text{CO-(CH}_2)_3-\text{OCH}_2-(3-\text{F-Ph})
                                                                                                H
                                                                                                       H
                         H
                               H
                                     Me
                                           2
1-1616
            H
                     H
                                                 -CO-(CH<sub>2</sub>)<sub>3</sub>-OCH<sub>2</sub>-(4-F-Ph)
                               H
                                                                                                       H
           H
                         H
                                     Me
                                           2
                                                                                                H
1-1617
                     H
                                                 -CO-(CH<sub>2</sub>)<sub>3</sub>-OCH<sub>2</sub>-(4-Cl-Ph)
                                           2
                                                                                                       H
           H
                         H
                               H
                                     Me
                                                                                                H
1-1618
                     H
                         H
                                           2
                                                 -CO-(CH<sub>2</sub>)<sub>3</sub>-OCH<sub>2</sub>-(4-Br-Ph)
1-1619
           H
                               H
                                     Me
                                                                                                H
                                                                                                       H
                                                                                                                             40
                                                 -CO-(CH_2)_3-OCH_2-(3-Me-Ph)
                                                                                                       H
                         H
                                           2
                                                                                                H
1-1620
           H
                     H
                               H
                                     Me
                                                 -CO-(CH_2)_3-OCH_2-(4-Me-Ph)
                                                                                                        H
```

1-1621 Н

H H H

Me 2

1-1622	H	H	H	H	Me	2	$-\text{CO-}(\text{CH}_2)_{3}-\text{OCH}_2-(3-\text{Et-Ph})$	H	H	
1-1623	H	H	H	H	Мe	2	$-\text{CO-(CH}_2)_3$ $-\text{OCH}_2$ $-\text{(4-Et-Ph)}$	H	H	
1-1624	H	H	H	H	Мe	2	$-\text{CO-(CH}_2)_{3}$ $-\text{OCH}_2$ $-\text{(3-Pr-Ph)}$	H	H	
1-1625	H	H	H	H	Мe	2	$-\text{CO-(CH}_2)_{3}$ $-\text{OCH}_2$ $-\text{(4-Pr-Ph)}$	H	H	
1-1626	H	H	H	H	Мe	2	$-\text{CO-(CH}_2)_{3}-\text{OCH}_2-(3-\text{iPr-Ph})$	H	H	
1-1627	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_{3}$ $-\text{OCH}_2$ $-(4$ $-\text{iPr-Ph})$	H	H	
1-1628	H	H	H	H	Me	2	-co-(CH ₂) ₃ -ocH ₂ -(3-Bu-Ph)	H	H	10
1-1629	H	H	H	H	Мe	2	-co-(cH ₂) ₃ -ocH ₂ -(4-Bu-Ph)	H	H	
1-1630	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_3$ $-\text{OCH}_2$ $-(3-\text{CF}_3-\text{Ph})$	H	H	
1-1631	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_3$ $-\text{OCH}_2$ $-\text{(4-CF}_3$ $-\text{Ph)}$	H	H	
1-1632	H	H	H	H	Мe	2	-CO-(CH ₂) ₃ -OCH ₂ -(3-MeO-Ph)	H	H	
1-1633	H	H	H	H	Мe	2	$-\text{CO-(CH}_2)_3 - \text{OCH}_2 - (4 - \text{MeO-Ph})$	H	H	
1-1634	H	H	H	H	Мe	2	-CO-(CH ₂) ₃ -OCH ₂ -(3-EtO-Ph)	H	H	
1-1635	H	H	H	H	Мe	2	$-\text{CO-(CH}_2)_3$ $-\text{OCH}_2$ $-(4-\text{EtO-Ph})$	H	H	20
1-1636	H	H	H	H	Me	2	-CO-(CH ₂) ₃ -OCH ₂ -(3-PrO-Ph)	H	H	
1-1637	H	H	H	H	Me	2	-CO-(CH ₂) ₃ -OCH ₂ -(4-PrO-Ph)	H	H	
1-1638	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_3-\text{OCH}_2-(3-\text{iPrO-Ph})$	H	H	
1-1639	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_3$ $-\text{OCH}_2$ $-(4-\text{iPrO-Ph})$	H	H	
1-1640	H	H	H	H	Мe	2	$-CO-(CH_2)_3-OCH_2-[3-(2-Bt-PrO)Ph]$	H	H	
1-1641	H	H	H	H	Мe	2	$-CO-(CH_2)_3-OCH_2-[4-(2-Et-PrO)Ph]$	H	H	
1-1642	H	H	H	H	Мe	2	-CO-(CH ₂) ₃ -OCH ₂ -(3-iBuO-Ph)	H	H	30
1-1643	H	H	H	H	Me	2	-co-(cH ₂) ₃ -ocH ₂ -(4-iBuO-Ph)	H	H	
1-1644	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_3 - \text{OCH}_2 - (3 - \text{MeS-Ph})$	H	H	
1-1645	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_3$ -OCH $_2$ -(4-MeS-Ph)	H	H	
1-1646	H	H	H	H	Me	2		H	H	
1-1647	H	H	H	H	Мe	2		H	H	
1-1648	H		H	H	Me	2		H	H	40
1-1649	H	H	H	H	Мe	2	<i>D</i>	H	H	40
1-1650	H	H	H	H	Me	2	$-CO-(CH_2)_3-OCH_2-(3-iPrS-Ph)$	H	H	

1-1651	H	H	H	H	Me	2	-CO-(CH ₂) ₃ -OCH ₂ -(4-iPrS-Ph)	H	H	
1-1652	H	H	Н	E E	ne Ne		CO-(CH ₂) ₃ -OCH ₂ -[3-(2-Et-PrS)Ph]		H	
1-1653	H	Н	H	H	Me		CO-(CH ₂) ₃ -OCH ₂ -[4-(2-Bt-PrS)Ph]		H	•
1-1654	H	H	H	H	Me	2	-CO-(CH ₂) ₃ -OCH ₂ -(3-iBuS-Ph)	H	H	
1-1655	H	H	Н	H	Ne	2	-CO-(CH ₂) ₃ -OCH ₂ -(4-iBuS-Ph)	H	Н	
1-1656	H	H	H	H		2	-CO-(CH ₂) ₃ -OCH ₂ -(3-cHx-Ph)	H	H	
1-1657	H	H	H	H	Me	2	-CO-(CH ₂) ₃ -OCH ₂ -(4-cHx-Ph)	H	H	10
1-1658	H	H	H	H		2	-CO-(CH ₂) ₃ -OCH ₂ -(3-Ph-Ph)	H	H	10
1-1659	E E	H	H	H		2	-CO-(CH ₂) ₃ -OCH ₂ -(4-Ph-Ph)	H	H	
1-1660	H	H	Н	H	Me	2	-CO-(CH ₂) ₃ -OCH ₂ -(2, 4-diMe-Ph)	H	H	
1-1661	H	H	H	H		2	-CO-(CH ₂) ₃ -OCH ₂ -(3, 4-diMe-Ph)	H	H	
1-1662	H	H	H	H	Me	2	-CO-(CH ₂) ₃ -OCH ₂ -(3, 5-diMe-Ph)	H	H	
1-1663	H	H	Н	H		2	-CO-(CH ₂) ₄ -OCH ₂ -cHx	H	H	
1-1664	B	H	H	H	Me	2		H	H	20
1-1665	H	H	H	H	Me	2	-CO-(CH ₂) ₅ -OCH ₂ -cHx	H	<u>-</u> Н	
1-1666	B	H	H	H	Me	2	-CO-(CH ₂) ₅ -OCH ₂ -Ph	H	H	
1-1667	H	H	H	H	Me	2	-CH(OH)-CH ₂ -cHx	H	H	
1-1668	H	H	H	H	Me	2	-CH(OH)-CH ₂ -Ph	H	H	
1-1669	H	H	H	H	Ne	2	-CH(OH)-(CH ₂) ₂ -cHx	H	H	
1-1670	H	H	H	H	Ne	2	-CH(OH)-(CH ₂) ₂ -Ph	H	H	
1-1671	E E	H	H	H	Me	2	-CH(OH)-(CH ₂) ₃ -cHx	H	H	30
1-1672	E	H	H	H	Ne	2	-CH(OH)-(CH ₂) ₃ -Ph	H	H	
1-1673	H	H	H	H	Me	2	-CH(OH)-(CH ₂) ₄ -cHx	H	H	
1-1674	H	H	Me	Me	Me	2	-CH(OH)-(CH ₂) ₄ -cHx	H	H	
1-1675	CO ₂ Me		H	H		2	-CH(OH)-(CH ₂) ₄ -cHx	H	H	
1-1676	CO ₂ Et		H	H	Me	2	-CH(OH)-(CH ₂) ₄ -cHx	H	H	
1-1677	H		Н	H		2		H	H	
1-1678	H	H	Н	H		2	-CH(OH)-(CH ₂) ₄ -(4-Me-cHx)	H	H	40
1-1679	H		H	H	Ne		-CH(OH)-(CH ₂) ₄ -(4-Bt-cHx)	H	H	
							-			

1-1680	H	H	H	H	Мe	2	$-CH(OH)-(CH_2)_4-(4-CF_3-cHx)$	H	H	
1-1681	H	H	H	H	Me	2	$-CH(OH)-(CH_2)_4-(4-MeO-cHx)$	H	H	
1-1682	H	Ħ	H	H	Мe	2	$-CH(OH)-(CH_2)_4-(4-EtO-cHx)$	H	H	
1-1683	H	H	H	H	Me	2	-CH(OH)-(CH2)4-(4-MeS-cHx)	H	H	
1-1684	H	H	H	H	Me	2	$-CH(OH)-(CH_2)_4-(4-cHx-cHx)$	H	H	
1-1685	H	H	H	H	Мe	2	$-CH(OH)-(CH_2)_4-(4-Ph-cHx)$	H	H	
1-1686	H	H	H	H	Me	2	-CH(OH)-(CH ₂) ₄ -Ph	H	H	10
1-1687	H	H	Me	Me	Me	2	-CH(OH)-(CH ₂) ₄ -Ph	H	H	
1-1688	CO ₂ Me	H	H	H	Me	2	$-CH(OH)-(CH_2)_4-Ph$	H	H	
1-1689	${\rm CO_2Et}$	H	H	H	Me	2	-CH(OH)-(CH ₂) ₄ -Ph	H	H	
1-1690	H	H	H	H	Me	2	-CH(OH)-(CH ₂) ₄ -(4-F-Ph)	H	H	
1-1691	H	H	H	H	Me	2	$-CH(OH)-(CH_2)_4-(4-Me-Ph)$	H	H	
1-1692	H	H	H	H	Me	2	$-CH(OH)-(CH_2)_4-(4-Et-Ph)$	H	H	
1-1693	H	H	H	H	Me	2	$-CH(OH)-(CH_2)_4-(4-CF_3-Ph)$	H	H	20
1-1694	H	H	H	H	Me	2	-CH(OH)-(CH ₂) ₄ -(4-MeO-Ph)	H	H	
1-1695	H	H	H	H	Me	2	-CH(OH)-(CH ₂) ₄ -(4-EtO-Ph)	H	H	
1-1696	H	Ħ	H	H	Me	2	-CH(OH)-(CH ₂) ₄ -(4-MeS-Ph)	H	H	
1-1697	H	H	H	H	Мe	2	$-CH(OH)-(CH_2)_4-(4-cHx-Ph)$	H	H	
1-1698	H	H	H	H	Me	2	-CH(OH)-(CH ₂) ₄ -(4-Ph-Ph)	H	H	
1-1699	H	H	H	H	Me	2	-CH(OH)-(CH ₂) ₅ -cHx	H	H	
1-1700	H	H	Me	Me	Мe	2	-CH(OH)-(CH ₂) ₅ -cHx	H	H	30
1-1701	${\tt CO_2Me}$	H	H	H	Me	2	-CH(OH)-(CH ₂) ₅ -cHx	H	H	
1-1702	${\rm CO}_2{\rm Et}$	H	H	H	Мe	2	-CH(OH)-(CH ₂) ₅ -cHx	H	H	
1-1703	H	H	H	H	Me	2	$-CH(OH)-(CH_2)_{5}-(4-F-cHx)$	H	H	
1-1704	H	H	H	H	Me	2	-CH(OH)-(CH ₂) ₅ -(4-Me-cHx)	H	H	
1-1705	H	H	H	H	Me	2	$-CH(OH)-(CH_2)_5-(4-Et-cHx)$	H	H	
1-1706	H	H	H	H	Me	2	$-CH(OH)-(CH_2)_{5}-(4-CF_3-cHx)$	H	H	, =
1-1707	H	H	H	H	Me	2	-CH(OH)-(CH ₂) ₅ -(4-MeO-cHx)	H	H	40
1-1708	H	H	H	H	Me	2	$-CH(OH)-(CH_2)_{5}-(4-BtO-cHx)$	H	H	

1-1709	H	H	H	H	Me	2	-CH(OH)-(CH ₂) ₅ -(4-MeS-cHx)	H	H	
1-1710	H	H	H	H	Мe	2	-CH(OH)-(CH ₂) ₅ -(4-cHx-cHx)	H	H	
1-1711	H	H	H	H	Ne	2	-CH(OH)-(CH ₂) ₅ -(4-Ph-cHx)	H	H	
1-1712	H	H	H	H	Me	2	-CH(OH)-(CH ₂) ₅ -Ph	H	H	
1-1713	H	H	Me	Me	Мe	2	-CH(OH)-(CH ₂) ₅ -Ph	H	H	
1-1714	CO ₂ Me	H	H	H	Me	2	-CH(OH)-(CH ₂) ₅ -Ph	H	H	
1-1715	CO ₂ Et	H	H	H	Me	2	-CH(OH)-(CH ₂) ₅ -Ph	H	H	10
1-1716	B	H	H	H	Me	2	-CH(OH)-(CH ₂) ₅ -(4-F-Ph)	H	H	
1-1717	B	H	H	H	Мe	2	-CH(OH)-(CH ₂) ₅ -(4-Me-Ph)	H	H	
1-1718	H	H	H	H	Ne	2	-CH(OH)-(CH ₂) ₅ -(4-Et-Ph)	H	H	
1-1719	B	H	H	H	Жe	2	-CH(OH)-(CH ₂) ₅ -(4-CF ₃ -Ph)	H	H	
1-1720	H	H	H	H	Me	2	-CH(OH)-(CH ₂) ₅ -(4-NeO-Ph)	H	H	
1-1721	H	H	H	H	Мe	2	-CH(OH)-(CH ₂) ₅ -(4-BtO-Ph)	H	H	
1-1722	H	H	H	H	Мe	2	-CH(OH)-(CH ₂) ₅ -(4-MeS-Ph)	H	H	20
1-1723	H	H	H	H	Me	2	-CH(OH)-(CH ₂) ₅ -(4-cHx-Ph)	H	H	
1-1724	H	H	H	H	Me	2	-CH(OH)-(CH ₂) ₅ -(4-Ph-Ph)	H	H	
1-1725	H	H	H	H	Me	2	-CH(OH)-(CH ₂) ₆ -cHx	H	H	
1-1726	H	H	H	H	Me	2	-CH(OH)-(CH ₂) ₆ -Ph	H	H	
1-1727	H	H	H	H	Me	2	-CH(OH)-(CH ₂) ₇ -cHx	H	H	
1-1728	H	H	H	H	Me	2	-CH(OH)-(CH ₂) ₇ -Ph	H	H	
1-1729	H	H	H	H	Me	2	-4-(cHx-CH ₂ 0)Ph	H	H	30
1-1730	H	H	Мe	Me	Мe	2	-4-(cHx-CH ₂ 0)Ph	H	H	
1-1731	${\tt CO_2Me}$	H	H	H	Мe	2	-4-(cHx-CH ₂ 0)Ph	H	H	
1-1732	CO ₂ Et	H	H	H	Me	2	-4-(cHx-CH ₂ 0)Ph	H	H	
1-1733	H	H	H	H	Мe	2	-4-(cHx-CH ₂ 0)-2-F-Ph	H	H	
1-1734	H	H	H	H	Me	2	-4-(cHx-CH ₂ 0)-3-F-Ph	H	H	
1-1735	H	H	H	H	Me	2	-4-(cHx-CH ₂ 0)-2, 3-diF-Ph	H	H	
1-1736	H	H	H	H	Me	2	-4-(cHx-CH ₂ 0)-2-C1-Ph	H	H	40
1-1737	H	H	H	H	Me	2	-4-(cHx-CH ₂ 0)-3-C1-Ph	H	H	

1-1738	H	H	H	H	Me	2	-4-(cHx-CH ₂ 0)-2, 3-diC1-Ph	H	H	
1-1739	Н	H	H	H	Me	2	-4-(cHx-CH ₂ 0)-2-Me-Ph	H	H	
1-1740	H	H	H	H	Me	2	-4-(cHx-CH ₂ 0)-3-Me-Ph	H	H	
1-1741	H	H	H	H	Me	2	-4-(cHx-CH ₂ 0)-2, 3-diMe-Ph	H	H	
1-1742	H	H	H	H	Me	2	-4-[cHx-(CH ₂) ₂ 0]Ph	H	H	
1-1743	H	H	H	H	Me	2	-4-[cHx-(CH2)30]Ph	H	H	
1-1744	Н	H	H	H	Me	2	-(4-BzO-Ph)	H	H	10
1-1745	Н	H	Me	Ne	Me	2	-(4-BzO-Ph)	H	В	
1-1746	CO ₂ Me	H	H	H	Me	2	-(4-BzO-Ph)	H	H	
1-1747	CO ₂ Et	H	H	H	Me	2	-(4-BzO-Ph)	H	H	•
1-1748	H	H	H	H	Me	2	-(4-Bz0-2-F-Ph)	H	H	
1-1749	H	H	H	H	Me	2	-(4-Bz0-3-F-Ph)	H	H	
1-1750	H	H	H	H	Me	2	-(4-Bz0-2, 3-diF-Ph)	H	H	
1-1751	H	H	H	H	Me	2	-(4-Bz0-2-C1-Ph)	H	H	20
1-1752	H	H	H	H	Me	2	-(4-Bz0-3-C1-Ph)	H	H	
1-1753	H	H	H	H	Me	2	-(4-Bz0-2, 3-diCl-Ph)	H	H	
1-1754	H	H	H	H	Me	2	-(4-Bz0-2-Me-Ph)	H	H	
1-1755	H	H	H	H	Me	2	-(4-Bz0-3-Me-Ph)	H	H	
1-1756	H	H	H	H	Me	2	-(4-Bz0-2, 3-diMe-Ph)	H	H	
1-1757	H	H	H	H	Me	2	-4-[Ph-(CH ₂) ₂ 0]-Ph	H	H	
1-1758	H	H	H	H	Me	2	-4-[Ph-(CH ₂) ₃ 0]-Ph	H	H	30
1-1759	H	H	H	H	Et	2	-(CH ₂) ₃ -cHx	H	H	
1-1760	H	H	H	H	Et	2	-(CH ₂) ₃ -Ph	H	H	
1-1761	H	H	H	H	Et	2	-(CH ₂) ₄ -cHx	H	H	
1-1762	H	H	H	H	Et	2	-(CH ₂) ₄ -Ph	H	H	
1-1763	H	H	H	H	Et	2	-(CH ₂) ₅ -cPn	H	H	
1-1764	H	H	H	H	Et	2	-(CH ₂) ₅ -cHx	H	H	
1-1765	H	H	H	H	Et	2	-(CH ₂) ₅ -cHx	Me	H	40
1-1766	H	H	H	H	Et	2	-(CH ₂) ₅ -cHx	H	Me	
							•			

1-1767	H	H	H	H	Et	2	-(CH ₂) ₅ -cHx	F	B	
1-1768	H	H	H	H	Et	2	-(CH ₂) ₅ -cHx	H	F	
1-1769	H	H	Me	Me	Et	2	-(CH ₂) ₅ -cHx	H	H	
1-1770	${\rm CO_2Me}$	H	H	H	Et	2	-(CH ₂) ₅ -cHx	H	H	
1-1771	${\rm CO}_2{\rm Et}$	H	H	H	Et	2	-(CH ₂) ₅ -cHx	H	H	
1-1772	H	H	H	H	Et	2	$-(CH_2)_5-(4-F-cHx)$	H	H	
1-1773	H	H	H	H	Et	2	$-(CH_2)_{5}-(4-C1-cHx)$	H	H	10
1-1774	H	H	H	H	Et	2	-(CH ₂) ₅ -(4-Br-cHx)	H	H	
1-1775	H	H	H	H	Et	2	-(CH ₂) ₅ -(4-Me-cHx)	H	H	
1-1776	H	H	H	H	Et	2	-(CH2)5-(4-Et-cHx)	H	H	
1-1777	H	H	H	H	Et	2	$-(CH_2)_5-(4-Pr-cHx)$	H	H	
1-1778	H	H	H	H	Et	2	-(CH2)5-(4-iPr-cHx)	H	H	
1-1779	H	H	H	H	Et	2	$-(CH_2)_5-(4-CF_3-cHx)$	H	H	
1-1780	H	H	H	H	Et	2	-(CH ₂) ₅ -(4-MeO-cHx)	H	H	20
1-1781	H	H	H	H	Et	2	$-(CH_2)_5-(4-Et0-cHx)$	H	H	
1-1782	H	H	H	H	Et	2	$-(CH_2)_5-(4-Pr0-cHx)$	H	H	
1-1783	H	H	H	H	Et	2	-(CH2)5-(4-iPr0-cHx)	H	H	
1-1784	H	H	H	H	Et	2	-(CH2)5-(3-MeS-cHx)	H	H	
1-1785	H	H	H	H	Et	2	-(CH ₂) ₅ -(4-MeS-cHx)	H	H	
1-1786	H	H	H	H	Et	2	$-(CH_2)_{5}-(2,4-diMe-cHx)$	H	H	
1-1787	H	H	H	H	Et	2	$-(CH_2)_5-(3,4-diMe-cHx)$	H	H	30
1-1788	H	H	H	H	Et	2	$-(CH_2)_{5}-(3, 5-diMe-cHx)$	H	H	
1-1789	H	H	H	H	Et	2	-(CH ₂) ₅ -Ph	H	H	
1-1790	H	H	H	H	Et	2	-(CH ₂) ₅ -Ph	Me	H	
1-1791	H	H	H	H	Et	2	-(CH ₂) ₅ -Ph	H	Me	
1-1792	H	H	H	H	Et	2	-(CH ₂) ₅ -Ph	F	H	
1-1793	B	H	H	H	Et	2	-(CH ₂) ₅ -Ph	H	F	40
1-1794	B	H	Me	Me	Et	2	-(CH ₂) ₅ -Ph	H	H	40
1-1795	${\tt CO_2Me}$	H	H	H	Et	2	-(CH ₂) ₅ -Ph	H	H	

1-1796	CO ₂ Et	H	H	H	Et	2	-(CH ₂) ₅ -Ph	H	H	
1-1797	H	H	H	H	Et	2	-(CH ₂) ₅ -(4-F-Ph)	H	H	
1-1798	H	H	H	H	Et	2	-(CH ₂) ₅ -(4-Cl-Ph)	H	H	
1-1799	H	H	H	H	Et	2	-(CH ₂) ₅ -(4-Br-Ph)	H	H	
1-1800	H	H	H	H	Et	2	-(CH ₂) ₅ -(4-Me-Ph)	H	H	
1-1801	B	H	H	H	Et	2	-(CH ₂) ₅ -(4-Et-Ph)	H	H	
1-1802	H	H	H	H	Et	2	-(CH ₂) ₅ -(4-Pr-Ph)	H	H	10
1-1803	H	H	H	H	Et	2	$-(CH_2)_5-(4-iPr-Ph)$	H	H	
1-1804	Н	H	H	H	Et	2	-(CH ₂) ₅ -(4-Ru-Ph)	H	H	
1-1805	H	H	H	H	Et	2	-(CH ₂) ₅ -(4-CF ₃ -Ph)	H	H	
1-1806	H	H	H	H	Et	2	-(CH ₂) ₅ -(4-MeO-Ph)	H	H	
1-1807	H	H	H	H	Et	2	-(CH ₂) ₅ -(4-EtO-Ph)	H	H	
1-1808	H	H	H	H	Et	2	-(CH ₂) ₅ -(4-Pr0-Ph)	H	H	
1-1809	H	H	H	H	Et	2	-(CH ₂) ₅ -(4-iPrO-Ph)	H	H	20
1-1810	H	H	H	H	Et	2	-(CH ₂) ₅ -(3-MeS-Ph)	H	H	
1-1811	H	H	H	H	Et	2	-(CH ₂) ₅ -(4-MeS-Ph)	H	H	
1-1812	H	H	H	H	Et	2	-(CH ₂) ₅ -(2, 4-diMe-Ph)	H	H	
1-1813	H	H	H	H	Et	2	-(CH ₂) ₅ -(3, 4-diMe-Ph)	H	H	
1-1814	H	H	H	H	Et	2	-(CH ₂) ₅ -(3, 5-diMe-Ph)	H	H	٠.
1-1815	H	H	H	H	Et	2	-(CH ₂) ₆ -cPn	H	H	
1-1816	H	H	H	H	Et	2	-(CH ₂) ₆ -cHx	H	H	30
1-1817	H	H	H	H	Et	2	-(CH ₂) ₆ -cHx	Me	H	
1-1818	H	H	H	H	Et	2	-(CH ₂) ₆ -cHx	H	Ме	
1-1819	H	H	H	H	Et	2	-(CH ₂) ₆ -cHx	F	H	
1-1820	H	H	H	H	Et	2	-(CH ₂) ₆ -cHx	H	F	
1-1821	Н	H	Me	Me	Et	2	-(CH ₂) ₆ -cHx	H	H	
1-1822	${\tt CO_2Me}$	H	H	H	Et	2	-(CH ₂) ₆ -cHx	H	H	
1-1823	${\tt CO_2Et}$	H	H	H	Et	2	-(CH ₂) ₆ -cHx	H	H	40
1-1824	H	H	H	H	Et	2	-(CH2)6-(4-F-cHx)	H	H	

1-1825	H	H	H	H	Et	2	$-(CH_2)_6-(4-C1-cHx)$	H	H	
1-1826	H	H	H	H	Et	2	-(CH ₂) ₆ -(4-Br-cHx)	H	H	
1-1827	H	H	H	H	Et	2	$-(CH_2)_6-(4-Me-cHx)$	H	8	
1-1828	H	H	H	H	Et	2	-(CH2)6-(4-Et-cHx)	H	H	
1-1829	H	H	H	H	Et	2	-(CH2)6-(4-Pr-cHx)	H	H	
1-1830	H	H	H	H	Et	2	-(CH2)6-(4-iPr-cHx)	H	H	
1-1831	H	H	H	H	Et	2	-(CH2)6-(4-Bu-cHx)	H	H	10
1-1832	H	H	H	H	Et	2	$-(CH_2)_6-(4-CF_3-cHx)$	H	H	
1-1833	H	H	H	H	Et	2	$-(CH_2)_6-(4-Me0-cHx)$	H	H	
1-1834	H	H	H	H	Et	2	$-(CH_2)_6-(4-Et0-cHx)$	H	H	
1-1835	H	H	H	H	Et	2	-(CH2)6-(4-Pr0-cHx)	H	H	
1-1836	H	H	H	H	Et	2	-(CH2)6-(4-iPr0-cHx)	H	H	
1-1837	H	H	H	H	Et	2	-(CH2)6-(3-MeS-cHx)	H	H	
1-1838	H	H	H	H	Et	2	-(CH2)6-(4-MeS-cHx)	H	H	20
1-1839	H	H	H	H	Et	2	-(CH2)6-(2, 4-diMe-cHx)	H	H	
1-1840	H	H	H	H	Et	2	$-(CH_2)_6-(3,4-diMe-cHx)$	H	H	
1-1841	H	H	H	H	Et	2	$-(CH_2)_6-(3,5-diMe-cHx)$	H	H	
1-1842	H	H	H	H	Et	2	-(CH ₂) ₆ -Ph	H	H	
1-1843	H	H	H	H	Et	2	-(CH ₂) ₆ -Ph	Me	H	
1-1844	H	H	H	H	Et	2	-(CH ₂) ₆ -Ph	H	Me	
1-1845	H	H	H	H	Et	2	-(CH ₂) ₆ -Ph	F	H	30
1-1846	H	H	H	H	Et	2	-(CH ₂) ₆ -Ph	H	F	
1-1847	H	H	Me	Me	Et	2	-(CH ₂) ₆ -Ph	H	H	
1-1848	${\tt CO_2Me}$	H	H	H	Et	2	-(CH ₂) ₆ -Ph	H	H	
1-1849	CO ₂ Et	H	H	H	Et	2	-(CH ₂) ₆ -Ph	H	H	
1-1850	H	H	H	H	Et	2	-(CH ₂) ₆ -(4-F-Ph)	H	H	
1-1851	H	H	H	H			-(CH2)6-(4-Cl-Ph)	H	H	
1-1852	H	H	H	H	Et	2	-(CH ₂) ₆ -(4-Br-Ph)	H	H	40
1-1853	H	H	H	H	Et	2	-(CH ₂) ₆ -(4-Me-Ph)	H	H	

1-1854	B	H	H	H	Et	2	$-(CH_2)_{6}-(4-Et-Ph)$	H	H	
1-1855	H	H	H	H	Et	2	-(CH ₂) ₆ -(4-Pr-Ph)	H	H	
1-1856	H	H	H	H	Et	2	-(CH ₂) ₆ -(4-iPr-Ph)	H	H	
1-1857	H	H	H	H	Et	2	-(CH ₂) ₆ -(4-Bu-Ph)	H	H	
1-1858	H	H	H	H	Et	2	-(CH ₂) ₆ -(4-CF ₃ -Ph)	H	H	
1-1859	B	H	H	H	Et	2	-(CH ₂) ₆ -(4-MeO-Ph)	H	H	
1-1860	H	H	H	H	Et	2	$-(CH_2)_6-(4-Et0-Ph)$	H	H	10
1-1861	H	H	H	H	Et	2	-(CH ₂) ₆ -(4-Pr0-Ph)	H	H	
1-1862	H	H	H	H	Et	2	-(CH ₂) ₆ -(4-iPr0-Ph)	H	H	
1-1863	H	H	H	H	Et	2	-(CH2)6-(3-MeS-Ph)	H	H	
1-1864	H	H	H	H	Et	2	-(CH2)6-(4-MeS-Ph)	H	H	
1-1865	H	H	H	H	Et	2	-(CH ₂) ₆ -(2, 4-diMe-Ph)	H	H	
1-1866	H	H	H	H	Et	2	-(CH ₂) ₆ -(3, 4-diNe-Ph)	H	H	
1-1867	H	H	H	H	Et	2	-(CH ₂) ₆ -(3, 5-diMe-Ph)	H	H	20
1-1868	H	H	H	H	Et	2	-(CH ₂) ₇ -cHx	H	H	
1-1869	H	H	H	H	Et	2	-(CH ₂) ₇ -Ph	H	H	
1-1870	H	H	H	H	Et	2	-CH=CH-cHx	H	H	
1-1871	H	H	H	H	Et	2	-CH=CH-Ph	H	H	
1-1872	H	H	H	H	Et	2	-CH=CH-(CH ₂) ₃ -cHx	H	H	
1-1873	H	H	Me	Me	Et	2	-CH=CH-(CH ₂) ₃ -cHx	H	H	
1-1874	CO ₂ Me	H	H	H	Et	2	-CH=CH-(CH ₂) ₃ -cHx	H	H	30
1-1875	${\tt CO_2Et}$	H	H	H	Et	2	-CH=CH-(CH ₂) ₃ -cHx	H	H	
1-1876	H	H	H	H	Et	2	-CH=CH-(CH ₂) ₃ -Ph	H	H	
1-1877	H	H	Me	Me	Et	2	-CH=CH-(CH ₂) ₃ -Ph	H	H	
1-1878	CO ₂ Me	H	H	H	Et	2	-CH=CH-(CH ₂) ₃ -Ph	H	H	
1-1879	${\tt CO_2Et}$	H	H	H	Et	2	-CH=CH-(CH ₂) ₃ -Ph	H	H	
1-1880	B	H	H	H	Et	2	-CH=CH-(CH ₂) ₄ -cHx	H	H	
1-1881	H	H	Me	Me	Et	2	-CH=CH-(CH2)4-cHx	H	H	40
1-1882	${\tt CO_2Me}$	H	H	H	Et	2	-CH=CH-(CH2)4-cHx	H	H	

1-1883	CO ₂ Et	H	H	H	Et	2	-CH=CH-(CH ₂) ₄ -cHx	H	H	
1-1884	H	H	H	H	Et	2	-CH=CH-(CH ₂) ₄ -Ph	H	H	
1-1885	H	H	Me	Me	Et	2	$-CH=CH-(CH_2)_4-Ph$	H	H	
1-1886	CO ₂ Me	H	H	H	Et	2	-CH=CH-(CH ₂) ₄ -Ph	H	Н	
1-1887	CO ₂ Et	H	H	H	Et	2	-CH=CH-(CH ₂) ₄ -Ph	H	H	
1-1888	H	H	H	H	Et	2	-CH=CH-CH ₂ O-cHx	H	В	
1-1889	H	H	H	H	Et	2	-CH=CH-CH ₂ O-Ph	H	H	10
1-1890	H	H	H	H	Et	2	-CH=CH-(CH ₂) ₂ 0-cHx	H	H	
1-1891	H	H	H	H	Et	2	-CH=CH-(CH ₂) ₂ 0-Ph	H	H	
1-1892	H	H	H	H	Et	2	-C≡C-CH ₂ -cHx	H	H	
1-1893	H	H	Ne	Me	Et	2	-C≡C-CH ₂ -cHx	H	H	
1-1894	CO ₂ Me	H	H	H	Et	2	-C≡C-CH ₂ -cHx	H	H	
1-1895	CO ₂ Et	H	H	H	Et	2	$-C \equiv C - CH_2 - cHx$	H	H	
1-1896	H	H	H	H	Et	2	-C≡C-CH ₂ -Ph	H	H	20
1-1897	H	H	Ne	Me	Et	2	-C≡C-CH ₂ -Ph	H	Н	
1-1898	C0 ₂ Me	H	H	H	Et	2	-C≡C-CH ₂ -Ph	H	H	
1-1899	CO ₂ Et	H	H	H	Et	2	-C≡C-CH ₂ -Ph	H	H	
1-1900	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 - cHx$	H	H	
1-1901	H	H	Me	Me	Et	2	$-C \equiv C - (CH_2)_2 - cHx$	H	H	
1-1902	CO ₂ Me	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 - cHx$	H	H	
1-1903	${\rm CO}_2{\rm Et}$	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 - cHx$	H	H .	30
1-1904	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 - Ph$	H	H	
1-1905	H	H	Me	Me	Et	2	$-C \equiv C - (CH_2)_2 - Ph$	H	H	
1-1906	C0 ₂ Me	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 - Ph$	H	H	
1-1907	${\tt CO_2Et}$	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 - Ph$	H	H	
1-1908	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - cPn$	H	H	
1-1909	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - cHx$	H	H	
1-1910	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - cHx$	Me	H	40
1-1911	H	H	H	H	Вt	2	-C≡C-(CH ₂) ₃ -cHx	H	Me	

1-1912	Ħ	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - cHx$	F	H	
1-1913	B	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - cHx$	H	F	
1-1914	H	H	Мe	Me	Et	2	$-C \equiv C - (CH_2)_3 - cHx$	H	H	
1-1915	CO ₂ Me	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - cHx$	H	H	
1-1916	CO ₂ Et	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - cHx$	H	H	
1-1917	H .	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (4 - F - cHx)$	H	H	
1-1918	H	H	H	H	Et	2	$-C \equiv C - (CH2)3 - (4 - C1 - cHx)$	H	H	10
1-1919	Ħ	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (4 - Br - cHx)$	H	H	
1-1920	H	H	H	H	Et	2	$-C \equiv C - (CH2)3 - (4-Me-cHx)$	H	H	
1-1921	H	H	H	H	Et	2	$-C \equiv C - (CH2)3 - (4 - Et - cHx)$	H	H	
1-1922	H	H	H	H	Et	2	$-C \equiv C - (CH2)3 - (4-Pr-cHx)$	H	H	
1-1923	H	H	H	H	Et	2	$-C \equiv C - (CH2)3 - (4-1Pr-cHx)$	H	H	
1-1924	H	H	H	H	Et	2	$-C \equiv C - (CH2)3 - (4-Bu-cHx)$	H	H	
1-1925	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (4 - CF_3 - cHx)$	H	H	20
1-1926	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (4 - MeO - cHx)$	H	H	
1-1927	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (4 - Et0 - cHx)$	H	H	
1-1928	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (4 - Pr0 - cHx)$	H	H	
1-1929	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (4 - iPr0 - cHx)$	H	H	
1-1930	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (3 - MeS - cHx)$	H	H	
1-1931	H	H	H	H	Et	2	$-C \equiv C - (CH2)_3 - (4 - MeS - cHx)$	H	H	
1-1932	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (2, 4 - diMe - cHx)$	H	H	30
1-1933	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (3, 4 - diMe - cHx)$	H	H	
1-1934	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (3, 5 - diMe - cHx)$	H	H	
1-1935	H	H	H	H	Et	2	-C≡C-(CH ₂) ₃ -Ph	H	H	
1-1936	H	H	H	H	Et	2	-C≡C-(CH ₂) ₃ -Ph	Me	H	
1-1937	H	H	H	H	Et	2	-C≡C-(CH ₂) ₃ -Ph	H	Me	
1-1938	H	H	H	H	Et	2	-C≡C-(CH ₂) ₃ -Ph	F	H	
1-1939	H	H	H	H	Et	2	-C≡C-(CH ₂) ₃ -Ph	H	F	40
1-1940	H	H	Me	Me	Et	2	-C≡C-(CH ₂) ₃ -Ph	H	H	

1-1941	${\tt CO_2Me}$	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - Ph$	H	H	
1-1942	${\rm CO}_2{\rm Et}$	H	H	H	Et	2	-C≡C-(CH ₂) ₃ -Ph	H	H	
1-1943	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (4 - F - Ph)$	H	H	
1-1944	H	H	H	H	Et	2	$-C \equiv C - (CH2)3 - (4 - Cl - Ph)$	H	H	
1-1945	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (4-Br-Ph)$	H	H	
1-1946	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (4 - Me - Ph)$	H	H	
1-1947	H	H	H	H	Et	2	$-C \equiv C - (CH2)3 - (4-Bt-Ph)$	H	H	10
1-1948	H	H	H	H	Bt	2	$-C \equiv C - (CH_2)_3 - (4 - Pr - Ph)$	H	H	
1-1949	H	H	H	H	Et	2	$-C \equiv C - (CH2)3 - (4-iPr-Ph)$	H	H	
1-1950	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (4 - Bu - Ph)$	H	H	
1-1951	H	H	H	H	Bt	2	$-C \equiv C - (CH_2)_3 - (4 - CF_3 - Ph)$	H	H	
1-1952	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (4-\text{MeO-Ph})$	H	H	
1-1953	B	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (4 - BtO - Ph)$	H	H	
1-1954	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (4 - PrO - Ph)$	H	H	20
1-1955	H	H	H	H	Ėŧ	2	$-C \equiv C - (CH_2)_3 - (4 - iPrO - Ph)$	H	H	
1-1956	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (3 - MeS - Ph)$	H	H	
1-1957	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (4 - MeS - Ph)$	H	H	
1-1958	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (2, 4 - diMe - Ph)$	H	H	
1-1959	H	H	H	H	Et	2	$-C \equiv C - (CH2)3 - (3, 4 - diMe-Ph)$	H	Н	
1-1960	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_3 - (3, 5 - diMe - Ph)$	H	H	
1-1961	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - cPn$	H	H	30
1-1962	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	
1-1963	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - cHx$	Me	H	
1-1964	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - cHx$	H	Me	
1-1965	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - cHx$	F	H	
1-1966	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - cHx$	H	F	
1-1967	H	H	Me	Me	Et	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	
1-1968	C0 ₂ Me	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	40
1-1969	${\rm CO}_2{\rm Et}$	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	

1-1970	H	H	H	H	Et	2	$-C \equiv C - (CH2)4 - (4 - F - cHx)$	H	H	
1-1971	В	H	H	H	Et	2	$-C \equiv C - (CH2)4 - (4 - C1 - cHx)$	H	H	
1-1972	H	H	H	H	Et	2	$-C \equiv C - (CH2)4 - (4-Br-cHx)$	H	H	
1-1973	H	H	H	H	Et	2	$-C \equiv C - (CH2)4 - (4-Me-cHx)$	H	H	
1-1974	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - Et - cHx)$	H	Н	•
1-1975	H	H	H	H	Et	2	$-C \equiv C - (CH2)4 - (4 - Pr - cHx)$	H	H	
1-1976	H	H	H	H	Et	2	$-C \equiv C - (CH2)4 - (4-iPr-cHx)$	H	H	10
1-1977	H	H	H	H	Et	2	$-C \equiv C - (CH2)4 - (4 - Bu - cHx)$	H	H	
1-1978	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - CF_3 - cHx)$	H	В	
1-1979	H	H	H	H	Et	2	$-C \equiv C - (CH2)4 - (4 - MeO - cHx)$	H	В	
1-1980	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - Et0 - cHx)$	H	В	
1-1981	H	H	H	H	Et	2	$-C \equiv C - (CH2)4 - (4 - Pr0 - cHx)$	H	H	
1-1982	Н	H	H	H	Et	2	$-C \equiv C - (CH2)4 - (4-iPrO-cHx)$	H	H	
1-1983	H	H	H	H	Et	2	$-C \equiv C - (CH2)_4 - (4 - MeS - cHx)$	H	H	20
1-1984	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (2, 4 - diMe - cHx)$	H	H	
1-1985	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (3, 4 - diMe - cHx)$	H	H	
1-1986	Н	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (3, 5 - diMe - cHx)$	H	H	
1-1987	H	H	H	H	Et	2	-C≡C-(CH ₂) ₄ -Ph	H	H	
1-1988	H	H	H	H	Et	2	-C≡C-(CH ₂) ₄ -Ph	Me	H	
1-1989	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - Ph$	H	Me	
1-1990	H	H	H	H	Et	2	-C≡C-(CH ₂) ₄ -Ph	F	Н	30
1-1991	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - Ph$	H	F	
1-1992	H	H	Me	Me	Et	2	-C≡C-(CH ₂) ₄ -Ph	H	H	
1-1993	CO ₂ Me	H	H	H	Et	2	-C≡C-(CH ₂) ₄ -Ph	H	H	
1-1994	CO ₂ Et	H	H	H	Et	2	-C≡C-(CH ₂) ₄ -Ph	H	H	
1-1995	Н	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - F - Ph)$	H	H	
1-1996	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - C1 - Ph)$	H	H	
1-1997	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - Br - Ph)$	H	H	40
1-1998	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - Me - Ph)$	H	H	

1-1999	H	H	H	H	Вt	2	$-C \equiv C - (CH2)4 - (4 - Et - Ph)$	H	H	
1-2000	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - Pr - Ph)$	H	H	
1-2001	H	H	H	H	Bt	2	$-C \equiv C - (CH_2)_4 - (4 - iPr - Ph)$	H	H	
1-2002	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - Bu - Ph)$	H	H	
1-2003	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - CF_3 - Ph)$	H	H	
1-2004	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - MeO - Ph)$	H	H	
1-2005	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - Et0 - Ph)$	H	H	10
1-2006	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - PrO - Ph)$	H	H	
1-2007	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (4 - i Pr O - Ph)$	H	H	
1-2008	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (3 - MeS - Ph)$	H	H	
1-2009	H	H	H	H	Bt	2	$-C \equiv C - (CH_2)_4 - (4 - MeS - Ph)$	H	H	
1-2010	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (2, 4 - diMe-Ph)$	H	H	
1-2011	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (3, 4 - diMe-Ph)$	H	H	
1-2012	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_4 - (3, 5 - diMe - Ph)$	H	H	20
1-2013	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_5 - cHx$	H	H	
1-2014	H	H	Мe	Me	Et	2	$-C \equiv C - (CH_2)_5 - cHx$	H	H	
1-2015	C0 ₂ Me	H	H	H	Et	2	$-C \equiv C - (CH_2)_5 - cHx$	H	H	
1-2016	co ₂ Et	H	H	H	Et	2	$-C \equiv C - (CH_2)_{5} - cHx$	H	H	
1-2017	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_5 - Ph$	H	H	
1-2018	H	H	Me	Me	Et	2	$-C \equiv C - (CH_2)_5 - Ph$	H	H	
1-2019	CO ₂ Me	H	H	H	Et	2	$-C \equiv C - (CH_2)_5 - Ph$	H	H	30
1-2020	CO ₂ Et	H	H	H	Et	2	$-C \equiv C - (CH_2)_5 - Ph$	H	H	
1-2021	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_6 - cHx$	H	H	
1-2022	H	H	Me	Me	Et	2	$-C \equiv C - (CH_2)_6 - cHx$	H	H	
1-2023	CO ₂ Me	H	H	H	Et	2	$-C \equiv C - (CH_2)_6 - cHx$	H	H	
1-2024	CO ₂ Et	H	H	H	Et	2	$-C \equiv C - (CH_2)_6 - cHx$	H	H	
1-2025	H		H	H	Bt		$-C \equiv C - (CH_2)_6 - Ph$	H	H	
1-2026	H	H	Me	Me	Et	2	$-C \equiv C - (CH_2)_6 - Ph$	H	H	40
1-2027	CO ₂ Me	H	H	H	Et	2	$-C \equiv C - (CH_2)_6 - Ph$	H	Ħ	

1-2028	CO ₂ Et	H	H	H	Et	2	$-C \equiv C - (CH_2)_6 - Ph$	H	H	
1-2029	H	H	H	H	Et	2	$-C \equiv C - CH_2O - cHx$	H	H	
1-2030	H	H	Me	Me	Et	2	$-C \equiv C - CH_2 0 - cHx$	H	H	
1-2031	CO ₂ Me	H	H	H	Et	2	$-C \equiv C - CH_2O - cHx$	H	H	
1-2032	CO ₂ Et	H	H	H	Et	2	-C≡C-CH ₂ 0-cHx	H	H	
1-2033	H	H	H	H	Et	2	-C≡C-CH ₂ O-Ph	H	H	
1-2034	H	H	Ne	Me	Et	2	-C≡C-CH ₂ O-Ph	H	H	10
1-2035	CO ₂ Me	H	H	H	Et	2	-C≡C-CH ₂ O-Ph	H	H	
1-2036	CO ₂ Et	H	H	H	Et	2	-C≡C-CH ₂ O-Ph	H	H	
1-2037	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - cPn$	H	H	
1-2038	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 0 - cHx$	H	H	
1-2039	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - cHx$	Me	H	
1-2040	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	Me	
1-2041	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - cHx$	F	H	20
1-2042	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	F	
1-2043	H	H	Me	Me	Et	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	H	
1-2044	${\tt CO_2Me}$	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	H	
1-2045	${\rm co}_2{\rm Et}$	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	H	
1-2046	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - (4 - F - cHx)$	H	H	
1-2047	H	H	H	H	Et	2	$-C \equiv C - (CH2)20 - (4 - C1 - cHx)$	H	H	
1-2048	H	H	H	H	Et	2	$-C \equiv C - (CH2)20 - (4-Br-cHx)$	H	H	30
1-2049	H	H	H	H	Et	2	$-C \equiv C - (CH2)20 - (4-Me-cHx)$	H	H	
1-2050	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 0 - (4 - Et - cHx)$	H	H	
1-2051	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 0 - (4 - Pr - cHx)$	H	H	
1-2052	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - (4 - iPr - cHx)$	H	H	
1-2053	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - (4 - Bu - cHx)$	H	H	
1-2054	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - (4 - CF_3 - cHx)$	H	H :	
1-2055	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - (4 - MeO - cHx)$	H	H	40
1-2056	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - (4 - Bt O - cHx)$	H	H	

1-2057	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 0 - (4 - Pr0 - cHx)$	H	H	
1-2058	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 0 - (4 - i Pr 0 - cHx)$	H	H	
1-2059	H	H	H	H	Et	2	$-C \equiv C - (CH2)20 - (3-MeS-cHx)$	H	H	
1-2060	H	H	H	H	Et	2	$-C \equiv C - (CH2)20 - (4 - MeS - cHx)$	H	E .	
1-2061	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - (2, 4 - diMe - cHx)$	H	H	
1-2062	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - (3, 4 - diMe - cHx)$	H	H	
1-2063	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - (3, 5 - diMe - cHx)$	H	H	10
1-2064	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 0 - Ph$	H	H	
1-2065	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 0 - Ph$	Me	H	
1-2066	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 0 - Ph$	H	Me	
1-2067	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 0 - Ph$	F	H	
1-2068	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 0 - Ph$	H	F	
1-2069	H	H	Me	Me	Et	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - Ph$	H	Ħ	
1-2070	CO ₂ Me	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 0 - Ph$	H	E	20
1-2071	CO ₂ Et	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 0 - Ph$	H	H	
1-2072	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 0 - (4 - F - Ph)$	H	E	
1-2073	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 0 - (4 - C1 - Ph)$	H	H	
1-2074	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 0 - (4 - Br - Ph)$	H	H	
1-2075	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 0 - (4 - Me - Ph)$	H	H	
1-2076	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 0 - (4 - Et - Ph)$	H	H	
1-2077	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 0 - (4 - Pr - Ph)$	H	H	30
1-2078	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 0 - (4 - i Pr - Ph)$	H	H	
1-2079	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 0 - (4 - Bu - Ph)$	H	Ħ	
1-2080	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 0 - (4 - CF_3 - Ph)$	H	E	
1-2081	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 0 - (4 - Me0 - Ph)$	H	H	
1-2082	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 0 - (4 - Et 0 - Ph)$	H	H	
1-2083	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 0 - (4 - Pr0 - Ph)$	H	H	
1-2084	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 0 - (4 - i Pr 0 - Ph)$	H	H	40
1-2085	H	H	H	H	Et	2	$-C \equiv C - (CH2)20 - (4-MeS-Ph)$	H	E	

1-2086	H	H	H	H	Bt	2	$-C \equiv C - (CH_2)_2 O - (2, 4 - diMe - Ph)$	H	H	
1-2087	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 O - (3, 4 - diMe-Ph)$	H	H	
1-2088	H	H	H	H	Bt	2	$-C \equiv C - (CH_2)_2O - (3, 5 - diMe - Ph)$	H	H	
1-2089	H	H	H	H	Et	2	-CO-(CH ₂) ₃ -cHx	H	H	
1-2090	H	H	Me	Me	Et	2	-CO-(CH ₂) ₃ -cHx	H	H	
1-2091	CO ₂ Ne	H	H	H	Et	2	-CO-(CH ₂) ₃ -cHx	H	H	
1-2092	CO ₂ Et	H	H	H	Et	2	-CO-(CH ₂) ₃ -cHx	H	H	10
1-2093	H	H	H	H	Et	2	-co-(cH ₂) ₃ -Ph	H	H	
1-2094	H	H	Me	Me	Et	2	-CO-(CH ₂) ₃ -Ph	H	H	
1-2095	CO ₂ Me	H	H	H	Et	2	-co-(ch ₂) ₃ -Ph	H	H	
1-2096	CO ₂ Et	H	H	H	Et	2	-CO-(CH ₂) ₃ -Ph	H	H	
1-2097	H	H	H	H	Et	2	-c0-(cH ₂) ₄ -cHx	H	H	
1-2098	H	H	Ne	Me	Et	2	-CO-(CH ₂) ₄ -cHx	H	H	
1-2099	CO ₂ Me	H	H	H	Et	2	$-co-(cH_2)_4-cHx$	H	H	20
1-2100	CO ₂ Et	H	H	H	Et	2	-CO-(CH2)4-cH2	H	H	
1-2101	Н	H	H	H	Et	2	-CO-(CH ₂) ₄ -Ph	H	H	
1-2102	H	H	Ne	Me	Et	2	-CO-(CH ₂) ₄ -Ph	H	H	
1-2103	CO ₂ Me	H	H	H	Et	2	$-\text{CO-}(\text{CH}_2)_4$ -Ph	H	H	
1-2104	CO ₂ Et	H	H	H	Et	2	-CO-(CH ₂) ₄ -Ph	H	H	
1-2105	B	H	H	H	Et	2	-co-(ch ₂) ₅ -chx	H	H	
1-2106	H	H	Me	Me	Et	2	-CO-(CH ₂) ₅ -cHx	H	H	30
1-2107	CO ₂ Me	H	H	H	Et	2	-co-(ch ₂) ₅ -chx	H	H	
1-2108	${\rm CO}_2{\rm Et}$	H	H	H	Et	2	-CO-(CH ₂) ₅ -cHx	H	H	
1-2109	H	H	H	H	Et	2	-co-(cH ₂) ₅ -Ph	H	H	
1-2110	H	H	Me	Me	Et	2	-CO-(CH ₂) ₅ -Ph	H	H	
1-2111	CO ₂ Me	H	H	H	Et	2	-co-(ch ₂) ₅ -Ph	H	H	
1-2112	CO ₂ Et	H	H	H			-co-(cH ₂) ₅ -Ph	H	H	
1-2113	H		H	H			-CH(OH)-(CH ₂) ₄ -cHx	H	H	40
1-2114	H	H	Me	Me	Et	2	-CH(OH)-(CH2)4-cHx	H	H	
	•									

1-2115	CO ₂ Me	H	H	H	Et	2	-CH(OH)-(CH2)4-cHx	H	H	
1-2116	co ₂ Et	H	H	H	Et	2	-CH(OH)-(CH2)4-cHx	H	H	
1-2117	H	H	H	H	Et	2	-CH(OH)-(CH ₂) ₄ -Ph	H	H	
1-2118	H	H	Me	Me	Et	2	-CH(OH)-(CH ₂) ₄ -Ph	H	H	
1-2119	CO ₂ Me	H	H	H	Et	2	-CH(OH)-(CH ₂) ₄ -Ph	H	H	
1-2120	CO ₂ Et	H	H	H	Et	2	-CH(OH)-(CH ₂) ₄ -Ph	H	H	
1-2121	H	H	H	H	Et	2	-CH(OH)-(CH ₂) ₅ -cHx	H	H	10
1-2122	H	H	Me	Me	Et	2	-CH(OH)-(CH ₂) ₅ -cHx	H	H	
1-2123	CO ₂ Me	H	H	H	Et	2	-CH(OH)-(CH ₂) ₅ -cHx	H	H	
1-2124	CO ₂ Et	H	H	H	Et	2	-CH(OH)-(CH ₂) ₅ -cHx	H	H	
1-2125	H	H	H	H	Et	2	-CH(OH)-(CH ₂) ₅ -Ph	H	H .	
1-2126	H	H	Me	Me	Et	2	-CH(OH)-(CH ₂) ₅ -Ph	H	H	
1-2127	CO ₂ Me	H	H	H	Et	2	-CH(OH)-(CH ₂) ₅ -Ph	H	H	
1-2128	CO ₂ Et	H	H	H	Et	2	-CH(OH)-(CH ₂) ₅ -Рh	H	H	20
1-2129	H	H	H	H	Et	2	-4-(cHx-CH ₂ 0)Ph	H	H	
1-2130	H	H	Me	Me	Et	2	-4-(cHx-CH ₂ 0)Ph	H	H	
1-2131	CO ₂ Me	H	H	H	Et	2	-4-(cHx-CH ₂ 0)Ph	H	H	
1-2132	CO ₂ Et	H	H	H	Et	2	-4-(cHx-CH ₂ 0)Ph	H	H	
1-2133	H	H	H	H	Et	2	-4-[cHx-(CH ₂) ₂ 0]Ph	H	H	
1-2134	H	H	H	H	Et	2	$-4-[cHx-(CH_2)_30]Ph$	H	H	
1-2135	H	H	H	H	Et	2	-(4-BzO-Ph)	H	H	30
1-2136	H	H	Me	Me	Et	2	-(4-BzO-Ph)	H	H	
1-2137	CO ₂ Me	H	H	H	Et	2	-(4-BzO-Ph)	H	H	
1-2138	CO ₂ E t	H	H	H	Et	2	-(4-Bz0-Ph)	H	H	
1-2139	H	H	H	H	Et	2	-(4-Bz0-2-F-Ph)	H	H	
1-2140	H	H	H	H	Et	2	-(4-Bz0-3-F-Ph)	H	H	
1-2141	H	H	H	H	Et	2	-(4-Bz0-2, 3-diF-Ph)	H	H	
1-2142	H	H	H	H	Et	2	-(4-Bz0-2-C1-Ph)	H	H	40
1-2143	H	H	H	H	Et	2	-(4-Bz0-3-C1-Ph)	H	H	

1-2144	H	H	H	H	Et	2	-(4-Bz0-2, 3-diC1-Ph)	H	H	
1-2145	H	H	H	H	Et	2	-(4-BzO-2-Me-Ph)	H	H	
1-2146	H	H	H	H	Et	2	-(4-BzO-3-Me-Ph)	H	H	
1-2147	H	H	H	H	Et	2	-(4-Bz0-2, 3-diMe-Ph)	H	H	•
1-2148	H	H	H	H	Et	2	-4-[Ph-(CH ₂) ₂ 0]-Ph	H	H	
1-2149	H	H	H	H	Et	2	-4-[Ph-(CH ₂) ₃ 0]-Ph	H	H	
1-2150	H	H	H	H	Pr	2	-(CH ₂) ₅ -cHx	H	H	10
1-2151	H	H	H	H	Pr	2	-(CH ₂) ₅ -Ph	H	H	
1-2152	H	H	H	H	Pr	2	-(CH ₂) ₆ -cHx	H	H	
1-2153	H	H	H	H	Pr	2	-(CH ₂) ₆ -Ph	H	H	
1-2154	H	H	H	H	Pr	2	$-C \equiv C - CH_2 - cHx$	H	H	
1-2155	H	H	H	H	Pr	2	$-C \equiv C - (CH_2)_3 - cHx$	H	H	
1-2156	H	H	H	H	Pr	2	$-C \equiv C - (CH_2)_3 - Ph$	H	H	
1-2157	H	H	H	H	Pr	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	20
1-2158	H	H	H	H	Pr	2	-C≡C-(CH ₂) ₄ -Ph	H	H	
1-2159	CO ₂ Me	H	H	H	Pr	2	-C≡C-CH ₂ O-Ph	H	H	
1-2160	CO ₂ Bt	H	H	H	Pr	2	-C≡C-CH ₂ O-Ph	H	H ·	
1-2161	H	H	H	H	Pr	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	H	•
1-2162	H	H	H	H	Pr	2	$-C \equiv C - (CH_2)_2 O - Ph$	H	H	
1-2163	H	H	H	H	Pr	2	-4-(cHx-CH ₂ 0)Ph	H	H	
1-2164	H	H	H	H	Pr	2	-(4-BzO-Ph)	H	H	30
1-2165	H	H	H	H	Me	3	-(CH ₂) ₅ -cHx	H	H	
1-2166	H	H	H	H	Мe	3	-(CH ₂) ₆ -cHx	H	H	
1-2167	H	H	H	H	Мe	3	-CH=CH-(CH ₂) ₃ -cHx	H	H	
1-2168	H	H	H	H	Ne	3	-CH=CH-(CH $_2$) $_4$ -cHx	H	H	
1-2169	H	H	H	H	Me	3	$-C \equiv C - (CH_2)_3 - cHx$	H	H	
1-2170	H	H	H	H	Me	3	$-C \equiv C - (CH_2)_4 - cHx$	H	H	
1-2171	H	H	H	H	Ne	3	-CO-(CH ₂) ₄ -cHx	H	H	40
1-2172	H	H	H	H	Мe	3	-CO-(CH ₂) ₅ -cHx	H	H	

1-2173	H	H	H	H	Ne	3	-co-(ch ₂) ₄ -Ph	H	H	
1-2174	H	H	H	H	Ne	3	-co-(cH ₂) ₅ -Ph	H	H	
1-2175	B	H	H	H	Ne	3	-CH(OH)-(CH2)4-cHx	H	H	
1-2176	H	H	H	H	Ne	3	-CH(OH)-(CH ₂) ₅ -cHx	H	H	
1-2177	H	H	H	H	Ne	3	-4-(cHx-CH ₂ 0)Ph	H	H	
1-2178	H	H	H	H	Ne	3	-(4-RzO-Ph)	H	H	
1-2179	H	H	H	H	Ne	3	$-C \equiv C - CH_2O - cPn$	H	H	10
1-2180	H	H	H	H	Жe	3	$-C \equiv C - (CH_2)_2 O - cPn$	H	H	
1-2181	B	H	H	H	Me	3	$-C \equiv C - CH_2 O - cHx$	H	H	•
1-2182	H	H	H	H	Ne	3	$-C \equiv C - (CH_2)_2 O - cHx$	H	H	
1-2183	H	H	H	H	Me	3	-C≡C-CH ₂ O-Ph	H	H	
1-2184	H	H	H	H	Me	3	-C≡C-(CH ₂) ₂ O-Ph	H	H	
1-2185	H	H	H	H	Ne	2	-(CH ₂) ₄ -(3-F-Ph)	H	H	
1-2186	H	H	H	H	Ne	2	-(CH2)4-(3, 4-diF-Ph)	H	H	20
1-2187	H	H	H	H	Me	2	-(CH ₂) ₄ -(3, 5-diF-Ph)	H	H	
1-2188	H	H	H	H	Ne	2	-(CH2)4-(3-C1-Ph)	Ħ	H	
1-2189	H	H	H	H	Me	2	-(CH ₂) ₄ -(4-C1-Ph)	H	H	
1-2190	H	H	H	H	Me	2	-(CH2)4-(3, 4-d1Cl-Ph)	H	H	
1-2191	H	H	H	H	Me	2	-(CH ₂) ₄ -(3,5-diCl-Ph)	H	H	
1-2192	H	H	H	H	Ne	2	-(CH ₂) ₄ -(3-Me-Ph)	H	H	
1-2193	H	H	H	H	Me	2	-(CH ₂) ₄ -(3, 4-diMe-Ph)	H	H	30
1-2194	H	H	H	H	Ne	2	-(CH ₂) ₄ -(3, 5-diMe-Ph)	H	H	
1-2195	H	H	H	H	Me	2	-(CH ₂) ₄ -(3-CF ₃ -Ph)	H	H	•
1-2196	H	H	H	H	Me	2	-(CH ₂) ₄ -(3, 4-d1CF ₃ -Ph)	H	H	
1-2197	H	H	H	H	Me	2	-(CH ₂) ₄ -(3, 5-diCF ₃ -Ph)	H	H	
1-2198	H	H	H	H	Me		-(CH ₂) ₄ -(3-MeO-Ph)	H	H	
1-2199	H	H	H	H			-(CH ₂) ₄ -(3, 4-diNeO-Ph)	H	H	40
1-2200	H	H	H	H	Me	2	-(CH ₂) ₄ -(3, 5-diMeO-Ph)	H	H	40
1-2201	H	H	H	H	Me	2	-(CH ₂) ₄ -(3,4,5-triMeO-Ph)	H	H	

1-2202	H	H	H	H	Me	2	-(CH ₂) ₄ -(3-Ac-Ph)	H	H	
1-2203	H	H	H	H	Me	2	-(CH ₂) ₄ -(4-Ac-Ph)	H	H	
1-2204	H	H	H	H	Ne	2	-(CH ₂) ₅ -(3, 4-diF-Ph)	H	H	
1-2205	H	H	H	H	Ne	2	-(CH ₂) ₅ -(3, 5-diF-Ph)	H	H	
1-2206	H	H	H	H	Ne	2	-(CH ₂) ₅ -(3-C1-Ph)	H	H	
1-2207	H	H	H	H	Me	2	-(CH ₂) ₅ -(3, 4-diCl-Ph)	H	H	
1-2208	H	H	H	H	Me	2	-(CH ₂) ₅ -(3,5-diC1-Ph)	H	H	10
1-2209	H	H	H	H	Мe	2	-(CH ₂) ₅ -(3, 4-diCF ₃ -Ph)	H	H	
1-2210	H	H	H	H	Ne	2	-(CH ₂) ₅ -(3,5-diCF ₃ -Ph)	H	H	
1-2211	H	H	H	H	Ne	2	-(CH ₂) ₅ -(3, 4-diMeO-Ph)	H	H	
1-2212	H	H	H	H	Мe	2	-(CH ₂) ₅ -(3, 5-diMeO-Ph)	H	H	
1-2213	H	H	H	H	Me	2	-(CH2)5-(3, 4, 5-triMeO-Ph)	H	H	
1-2214	H	H	H	H	Ne	2	-(CH ₂) ₅ -(3-Ac-Ph)	H	H	,
1-2215	H	H	H	H	Me	2	-(CH ₂) ₅ -(4-Ac-Ph)	H	H	20
1-2216	H	H	H	H	Ne	2	-(CH ₂) ₃ -0-(3-F-Ph)	H	H	
1-2217	H	H	H	H	Ne	2	-(CH ₂) ₃ -0-(3, 4-diF-Ph)	H	H	
1-2218	H	H	H	H	Ne	2	-(CH ₂) ₃ -0-(3,5-diF-Ph)	H	H	
1-2219	H	H	H	H	Me	2	$-(CH_2)_3-0-(3-Me-Ph)$	H	H	
1-2220	H	H	H	H	Ne	2	-(CH ₂) ₃ -0-(3, 4-diMe-Ph)	H	H	
1-2221	H	H	H	H	Ne	2	-(CH ₂) ₃ -0-(3,5-diMe-Ph)	H	H	
1-2222	H	H	H	H	Ne	2	-(CH ₂) ₃ -0-(3-CF ₃ -Ph)	H	H	30
1-2223	H	H	H	H	Me	2	-(CH ₂) ₃ -0-(3, 4-d1CF ₃ -Ph)	H	H	
1-2224	H	H	H	H	Me	2	-(CH ₂) ₃ -0-(3,5-diCF ₃ -Ph)	H	H	
1-2225	H	H	H	H	Me	2	-(CH ₂) ₃ -0-(3-MeO-Ph)	H	H	
1-2226	H	H	H	H	Me	2	-(CH ₂) ₃ -0-(3,4-diMeO-Ph)	H	H	
1-2227	H	H	H	H	Me	2	-(CH ₂) ₃ -0-(3,5-diMeO-Ph)	H	H	
1-2228	H	H	H	H	Me	2	-(CH ₂) ₃ -0-(3, 4, 5-triMeO-Ph)	H	H	*
1-2229	H	H	H	H	Me	2	-(CH ₂) ₃ -0-(3-Ac-Ph)	H	H	40
1-2230	H	H	H	H	Мe	2	-(CH2)3-0-(4-Ac-Ph)	H	H	

1-2231	H	H	H	H	Ne	2	-(CH ₂) ₄ -0-(3, 4-diF-Ph)	H	H	
1-2232	H	H	H	H	Me	2	-(CH ₂) ₄ -0-(3, 5-d1F-Ph)	H	H	
1-2233	H	H	H	H	Me	2	-(CH ₂) ₄ -0-(3,4-diMeO-Ph)	H	H	
1-2234	H	H	H	H	Ne	2	-(CH ₂) ₄ -0-(3, 5-diMeO-Ph)	H	H	
1-2235	H	H	H	H	Ne	2	-(CH ₂) ₄ -0-(3, 4, 5-triMeO-Ph)	H	H	
1-2236	H	H	H	H	Ne	2	$-(CH_2)_4-0-(3-Ac-Ph)$	H	H	
1-2237	H	H	H	H	Me	2	-(CH ₂) ₄ -0-(4-Ac-Ph)	H	H	10
1-2238	H	H	H	H	Ne	2	$-C \equiv C - (CH_2)_2 - (3-F-Ph)$	H	H	
1-2239	H	H	H	H	Ne	2	$-C \equiv C - (CH_2)_2 - (3, 4 - diF - Ph)$	H	H	
1-2240	H	H	H	H	Ne	2	$-C \equiv C - (CH_2)_2 - (3, 5 - diF - Ph)$	H	H	
1-2241	H	H	H	H	Ne	2	$-C \equiv C - (CH_2)_2 - (3 - C1 - Ph)$	H	H	
1-2242	H	H	H	H	Ne	2	$-C \equiv C - (CH_2)_2 - (4 - C1 - Ph)$	H	H	
1-2243	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (3, 4 - diCl - Ph)$	H	H	
1-2244	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (3, 5 - diCl - Ph)$	H	H	20
1-2245	H	H	H	H	Ne	2	$-C \equiv C - (CH2)2 - (3-Me-Ph)$	H	H	
1-2246	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (3, 4 - diMe-Ph)$	H	H	
1-2247	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (3, 5 - diMe-Ph)$	H	H	
1-2248	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (3 - CF_3 - Ph)$	H	H	
1-2249	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (3, 4 - diCF_3 - Ph)$	H	H	
1-2250	H	H	H	H	Ne	2	$-C \equiv C - (CH_2)_2 - (3, 5 - diCF_3 - Ph)$	H	H	
1-2251	H	H	H	H	Ne	2	$-C \equiv C - (CH_2)_2 - (3-MeO-Ph)$	H	H	30
1-2252	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (3, 4 - diMeO - Ph)$	H	H	
1-2253	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - (3, 5 - diMeO - Ph)$	H	H	
1-2254	H	H	H	H	Мe	2	$-C \equiv C - (CH_2)_2 - (3, 4, 5 - triMeO - Ph)$	H	H	
1-2255	H	H	H	H	Me	2	$-C \equiv C - (CH2)2 - (3-Ac-Ph)$	H	H	
1-2256	H	H	H	H	Ne	2	$-C \equiv C - (CH_2)_2 - (4 - Ac - Ph)$	H	H	
1-2257	H	H	H	H	Ne		$-C \equiv C - (CH_2)_3 - (3, 4 - diF - Ph)$	H	H	10
1-2258	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3, 5 - diF - Ph)$	H	H	40
1-2259	H	H	H	H	Ne	2	$-C \equiv C - (CH_2)_3 - (3 - C1 - Ph)$	H	H	

1-2260	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_{3} - (3, 4 - diC1 - Ph)$	H	Ħ	
1-2261	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3, 5 - diCl - Ph)$	H	H	
1-2262	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3, 4 - diCF_3 - Ph)$	H	H	
1-2263	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3, 5 - diCF_3 - Ph)$	H	H	
1-2264	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3, 4 - diMeO - Ph)$	H	H	
1-2265	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3, 5 - diMeO - Ph)$	H	H	
1-2266	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3, 4, 5 - triMeO - Ph)$	H	H	10
1-2267	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3-Ac-Ph)$	H	H	
1-2268	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4-Ac-Ph)$	H	H	
1-2269	H	H	H	H	Ne	2	$-C \equiv C - CH_2 - O - (3 - F - Ph)$	H	H	
1-2270	H	H	H	H	Me	2	-C≡C-CH ₂ -O-(3, 4-diF-Ph)	H	H	
1-2271	H	H	H	H	Me	2	$-C \equiv C - CH_2 - O - (3, 5 - diF - Ph)$	H	Ħ	
1-2272	H	H	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (3 - C1 - Ph)$	H	H	
1-2273	H	H	H	H	Мe	2	$-C \equiv C - CH_2 - O - (4 - C1 - Ph)$	H	H	20
1-2274	H	H	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (3, 4 - diCl - Ph)$	H	H	
1-2275	H	H	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (3, 5 - diC1 - Ph)$	H	H	
1-2276	H	H	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (3 - Me - Ph)$	H	H	
1-2277	H	H	H	H	Me	2	-C≡C-CH ₂ -O-(2, 4-diMe-Ph)	H	H	
1-2278	H	H	H	H	Me	2	$-C \equiv C - CH_2 - O - (3, 4 - diMe - Ph)$	H	H	
1-2279	H	H	H	H	Ne	2	$-C \equiv C - CH_2 - O - (3, 5 - diMe - Ph)$	H	H	
1-2280	H	H	H	H	Мe	2	$-C \equiv C - CH_2 - O - (3 - CF_3 - Ph)$	H	H	30
1-2281	H	H	H	H	Ne	2	$-C \equiv C - CH_2 - 0 - (3, 4 - diCF_3 - Ph)$	H	H	
1-2282	H	H	H	H	Me	2	$-C \equiv C - CH_2 - O - (3, 5 - diCF_3 - Ph)$	H	H	
1-2283	H	H	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (3 - Me0 - Ph)$	H	H	
1-2284	H	H	H	H	Ne	2	-C≡C-CH ₂ -O-(3,4-diMeO-Ph)	H	H	
1-2285	H	H	H	H	Me	2	-C≡C-CH ₂ -O-(3,5-diMeO-Ph)	H	H	
1-2286	H	H	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (3, 4, 5 - triMe0 - Ph)$	H	H	
1-2287	H	H	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (3 - Ac - Ph)$	H	H	40
1-2288	H	H	H	H	Me	2	$-C \equiv C - CH_2 - 0 - (4 - Ac - Ph)$	H	H	

```
H
1-2289
          H
                 H H
                          H
                               Me 2
                                          -C \equiv C - CH_2 - 0 - (4 - CO_2H - Ph)
                                                                                 H
                                         -C \equiv C - (CH_2)_2 - 0 - (3, 4 - diF - Ph)
                                                                                 H
                                                                                       H
1-2290
          H
                 н н
                          H
                               Me
                                    2
                     H
                                    2
                                          -C \equiv C - (CH_2)_2 - 0 - (3, 5 - diF - Ph)
                                                                                 H
                                                                                       H
1-2291
          H
                          H
                               Жe
                 H
                     H
                          H
                                    2
                                         -C \equiv C - (CH_2)_2 - 0 - (3 - C1 - Ph)
                                                                                       H
1-2292
          H
                               Me
                                                                                 H
                 H
                                          -C \equiv C - (CH_2)_2 - 0 - (3, 4 - diC1 - Ph)
                                                                                       H
1-2293
          H
                     H
                          H
                               Me
                                    2
                                                                                 H
                 H
1-2294
                     H
                                          -C \equiv C - (CH_2)_2 - 0 - (3, 5 - diCl - Ph)
                                                                                 H
                                                                                       H
          H
                          H
                               Жe
                                    2
                 H
                                         -C \equiv C - (CH_2)_2 - 0 - (3, 4 - diCF_3 - Ph)
                                                                                       H
1-2295
          H
                 H
                     H
                          H
                               Me
                                    2
                                                                                 H
                                                                                                         10
                                    2
                                         -C \equiv C - (CH_2)_2 - 0 - (3, 5 - diCF_3 - Ph)
                                                                                       H
1-2296
          H
                     H
                          H
                               Me
                                                                                 H
                                         -C \equiv C - (CH_2)_2 - 0 - (3, 4 - diMeO - Ph)
                                                                                       H
1-2297
          H
                     H
                          H
                               Me 2
                 H
                                         -C \equiv C - (CH_2)_2 - 0 - (3, 5 - diMeO - Ph)
                                                                                       H
1-2298
                     H
                          H
                               Me 2
          H
                 H
1-2299 H
                                          -C \equiv C - (CH_2)_2 - 0 - (3, 4, 5 - triMeO - Ph)
                               Me 2
                                                                                    HH
                 H
                     H
                          Ħ
                                         -C \equiv C - (CH_2)_2 - 0 - (3 - Ac - Ph)
                                                                                       H
1-2300
                     H
                                                                                 H
          H
                          H
                               Me
                                    2
                 H
                                         -C \equiv C - (CH_2)_2 - 0 - (4 - Ac - Ph)
1-2301 H
                                                                                       H
                 H
                     H
                          H
                               Me
                                    2
                                                                                 H
                                         -CO-(CH<sub>2</sub>)<sub>3</sub>-(3-F-Ph)
                                    2
                                                                                 H
                                                                                       H
1-2302
         H
                 H
                     H
                          H
                               Me
                                                                                                         20
1-2303
          H
                     H
                          H
                               Me
                                    2
                                         -CO-(CH_2)_3-(4-F-Ph)
                                                                                 H
                                                                                       H
                 H
                                         -C0-(CH_2)_3-(3,4-diF-Ph)
                                                                                       H
1-2304
         H
                     H
                          H
                               Me
                                    2
                                                                                 H
                 H
                                          -C0-(CH_2)_3-(3,5-diF-Ph)
1-2305 H
                                                                                       H
                 H
                     H
                          H
                               Мe
                                    2
                                                                                 H
                                          -CO-(CH<sub>2</sub>)<sub>3</sub>-(3-C1-Ph)
                                                                                       H
1-2306
                                                                                 H
                     H
                          H
                               Ne
                                    2
          H
                 H
                                    2
                                         -C0-(CH<sub>2</sub>)<sub>3</sub>-(4-C1-Ph)
                                                                                       H
1-2307
         H
                     H
                          H
                               Me
                                                                                 H
                 H
                                         -C0-(CH_2)_3-(3,4-diCl-Ph)
                                                                                       H
                          H
                               Мe
                                    2
                                                                                 H
1-2308
          H
                 H
                     H
                                          -C0-(CH<sub>2</sub>)<sub>3</sub>-(3,5-diCl-Ph)
                                                                                                         30
1-2309
          H
                     H
                          H
                               Мe
                                    2
                                                                                 H
                                                                                       H
                 H
                          H
                               Me 2
                                         -C0-(CH_2)_3-(3-Me-Ph)
                                                                                 H
                                                                                       H
1-2310
         H
                     H
                 H
                                         -C0-(CH_2)_3-(4-Me-Ph)
1-2311 Н
                     H
                          H
                               Me
                                    2
                                                                                 H
                                                                                       H
                 H
                                         -CO-(CH_2)_3-(3,4-diMe-Ph)
                                                                                       H
1-2312
                                    2
                                                                                 H
                     H
                          H
                               Мe
         H
                 H
                                         -C0-(CH_2)_3-(3,5-diMe-Ph)
                                                                                       H
1-2313 Н
                     H
                          H
                               Me
                                    2
                                                                                 H
                 H
                                         -CO-(CH_2)_3-(3-Et-Ph)
                                                                                       H
1-2314 Н
                     H
                          H
                               Me 2
                                                                                 H
                 H
                                         -C0-(CH_2)_3-(4-Et-Ph)
1-2315 H
                     H
                          H
                               Me 2
                                                                                 H
                                                                                       H
                 H
                                                                                                         40
                                         -CO-(CH_2)_3-(3-CF_3-Ph)
                                                                                       H
1-2316 В
                     H
                          H
                               Me
                                    2
                                                                                 H
                 H
1-2317 Н
                 H H
                          H
                               Me 2
                                         -C0-(CH_2)_3-(4-CF_3-Ph)
                                                                                 H
                                                                                       H
```

1-2318	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_3$ -(3,4-diCF ₃ -Ph)	H	H	
1-2319	H	H	H	H	Me	2	$-\text{CO-}(\text{CH}_2)_3$ -(3,5-diCF ₃ -Ph)	H	H	
1-2320	H	H	H	H	Me	2	-CO-(CH ₂) ₃ -(3-MeO-Ph)	H	H	
1-2321	H	H	H	H	Me	2	-co-(cH ₂) ₃ -(4-MeO-Ph)	H	H	
1-2322	H	H	H	H	Ne	2	-CO-(CH ₂) ₃ -(3,4-diMeO-Ph)	H	H	
1-2323	H	H	H	H	Me	2	-co-(cH ₂) ₃ -(3,5-diMeo-Ph)	H	H	
1-2324	H	H	H	H	Me	2	-co-(CH ₂) ₃ -(3, 4, 5-triMeO-Ph)	H	H	10
1-2325	H	H	H	H	Ne	2	-co-(cH ₂) ₃ -(4-MeS-Ph)	H	H	
1-2326	H	H	H	H	Me	2	$-CO-(CH_2)_3-(3-Ac-Ph)$	H	H	
1-2327	H	H	H	H	Me	2	$-CO-(CH_2)_3-(4-Ac-Ph)$	H	H	
1-2328	H	H	H	H	Me	2	$-\text{CO-(CH}_2)_4$ -(3-F-Ph)	H	H	
1-2329	H	H	H	H	Жe	2	$-co-(cH_2)_4-(3,4-diF-Ph)$	H	H	
1-2330	H	H	H	H	Me	2	-co-(cH ₂) ₄ -(3,5-diF-Ph)	H	H	
1-2331	H	H	H	H	Ne	2	$-\text{CO-}(\text{CH}_2)_4$ -(3-C1-Ph)	H	H	20
1-2332	H	H	H	H	Ne	2	$-\text{CO-}(\text{CH}_2)_4 - (4-\text{Cl-Ph})$	H	H	
1-2333	H	H	H	H	Ne	2	$-\text{CO-}(\text{CH}_2)_4$ -(3, 4-diCl-Ph)	H	H	
1-2334	H	H	H	H	Мe	2	$-\text{CO-}(\text{CH}_2)_4$ -(3,5-diCl-Ph)	H	H	
1-2335	H	H	H	H	Me	2	$-co-(cH_2)_4-(3-Me-Ph)$	H	H	
1-2336	H	H	H	H	Me	2	-co-(cH ₂) ₄ -(3, 4-diMe-Ph)	H	H	
1-2337	H	H	H	H	Me	2	$-co-(cH_2)_4-(3,5-diMe-Ph)$	H	H	
1-2338	H	H	H	H	Me	2	$-\text{CO-}(\text{CH}_2)_4$ - $(3-\text{CF}_3-\text{Ph})$	H	H	30
1-2339	H	H	H	H	Me	2	-co-(cH ₂) ₄ -(3, 4-d1CF ₃ -Ph)	H	H	
1-2340	H	H	H	H	Мe	2	$-\text{CO-}(\text{CH}_2)_4$ -(3,5-diCF ₃ -Ph)	H	H	
1-2341	H	H	H	H	Me	2	-co-(cH ₂) ₄ -(3-MeO-Ph)	H	H	
1-2342	H	H	H	H	Me	2	-co-(CH ₂) ₄ -(3, 4-diMeO-Ph)	H	H	
1-2343	H	H	H	H	Ne	2	-co-(cH ₂) ₄ -(3, 5-d1MeO-Ph)	H	H	
1-2344	H	H	H	H	Me	2	-CO-(CH ₂) ₄ -(3, 4, 5-triMeO-Ph)	H	H	
1-2345	H	H	H	H	Мe	2	.	H	H	40
1-2346	H	H	H	H	Мe	2	-CO-(CH ₂) ₄ -(4-Ac-Ph)	H	H	

1-2347	H	H	H	H	Ne	2	-CH(OH)-(CH ₂) ₃ -(3-F-Ph)	H	H	
1-2348	H	H	H	H	Me	2	$-CH(OH)-(CH_2)_3-(4-F-Ph)$	H	H	
1-2349	H	H	H	H	Ne	2	-CH(OH)-(CH ₂) ₃ -(3,4-diF-Ph)	H	H	
1-2350	H	H	H	H	Ne	2	$-CH(OH)-(CH_2)_3-(3,5-diF-Ph)$	H	H	
1-2351	H	H	H	H	Ne	2	$-CH(OH)-(CH_2)_3-(3-C1-Ph)$	H	H	
1-2352	H	H	H	H	Ne	2	$-CH(OH)-(CH_2)_3-(4-C1-Ph)$	H	H	
1-2353	H	H	H	H	Ne	2	-CH(OH)-(CH ₂) ₃ -(3,4-diC1-Ph)	H	H	10
1-2354	H	H	H	H	Мe	2	$-CH(OH)-(CH_2)_3-(3,5-diCl-Ph)$	H	H	
1-2355	H	H	H	H	Ne	2	-CH(OH)-(CH ₂) ₃ -(3-Me-Ph)	H	H	
1-2356	H	H	H	H	Ne	2	-CH(OH)-(CH ₂) ₃ -(4-Me-Ph)	H	H	
1-2357	H	H	H	H	Me	2	-CH(OH)-(CH ₂) ₃ -(3,4-diMe-Ph)	H	H	
1-2358	H	H	H	H	Мe	2	$-CH(OH)-(CH_2)_3-(3,5-diMe-Ph)$	H	H	
1-2359	H	H	H	H	Ne	2	$-CH(OH)-(CH_2)_3-(3-Bt-Ph)$	H	H	
1-2360	H	H	H	H	Me	2	$-CH(OH)-(CH_2)_3-(4-Et-Ph)$	H	H	20
1-2361	H	H	H	H	Me	2	-CH(OH)-(CH ₂) ₃ -(3-CF ₃ -Ph)	H	H	
1-2362	H	H	H	H	Me	2	-CH(OH)-(CH ₂) ₃ -(4-CF ₃ -Ph)	H	H	
1-2363	H	H	H	H	Me	2	-CH(OH)-(CH ₂) ₃ -(3,4-diCF ₃ -Ph)	H	H	
1-2364	H	H	H	H	Me	2	$-CH(OH)-(CH_2)_3-(3,5-diCF_3-Ph)$	H	H	
1-2365	H	H	H	H	Me	2	-CH(OH)-(CH ₂) ₃ -(3-MeO-Ph)	H	H	
1-2366	H	H	H	H	Me	2	-CH(OH)-(CH ₂) ₃ -(4-MeO-Ph)	H	H	
1-2367	H	H	H	H	Me	2	-CH(OH)-(CH ₂) ₃ -(3,4-diMeO-Ph)	H	H	30
1-2368	H	H	H	H	Me	2	-CH(OH)-(CH ₂) ₃ -(3,5-diMeO-Ph)	H	H	
1-2369	H	H	H	H	Me	2	-CH(OH)-(CH ₂) ₃ -(3,4,5-triMeO-P	h) H	H	
1-2370	H	H	H	H	Me	2	$-CH(OH)-(CH_2)_3-(4-MeS-Ph)$	H	H	
1-2371	H	H	H	H	Me	2	-CH(OH)-(CH ₂) ₃ -(3-Ac-Ph)	H	H	
1-2372	H	H	H	H	Мe	2	-CH(OH)-(CH ₂) ₃ -(4-Ac-Ph)	H	H	
1-2373	H	H	H	H	Мe	2	$-CH(OH)-(CH_2)_4-(3-F-Ph)$	H	H	
1-2374	H	H	H	H	Мe	2	$-CH(OH)-(CH_2)_4-(3,4-diF-Ph)$	H	H	40
1-2375	H	H	H	H	Me	2	$-CH(OH)-(CH_2)_4-(3,5-diF-Ph)$	H	H	

```
1-2376 H
                    H
                       H
                              H
                                   Me
                                         2
                                               -CH(OH) - (CH<sub>2</sub>)<sub>4</sub> - (3-C1-Ph)
                                                                                           H
                                                                                                  H
1-2377 H
                                               -CH(OH)-(CH_2)_4-(4-C1-Ph)
                                                                                           H
                                                                                                  H
                    H
                        H
                              H
                                   Me
                                         2
                                                                                                  H
                                               -CH(OH) - (CH<sub>2</sub>)<sub>4</sub> - (3, 4-diCl-Ph)
1-2378
                        H
                              H
                                   Me
                                         2
                                                                                            H
           H
                    H
                                         2
                                               -CH(OH) - (CH<sub>2</sub>)_{A} - (3, 5 - diCl - Ph)
                                                                                                  H
1-2379
           H
                        H
                              H
                                   Me
                                                                                            H
                    H
1-2380
                                               -CH(OH) - (CH_2)_4 - (3-Me-Ph)
                                                                                                  H
                        H
                              H
                                         2
                                                                                           H
           H
                                   Me
                                               -CH(OH) - (CH<sub>2</sub>)<sub>4</sub> - (3, 4-diMe-Ph)
                                                                                                  H
1-2381
                        H
                                         2
                                                                                           H
           H
                              H
                                   Me
                    H
                                               -CH(OH) - (CH<sub>2</sub>)<sub>4</sub> - (3, 5-diMe-Ph)
1-2382
                                                                                                  H
           H
                    H
                        H
                              H
                                   Me
                                         2
                                                                                           H
                                                                                                                       10
                                               -CH(OH) - (CH_2)_4 - (3-CF_3-Ph)
                                                                                           H
                                                                                                  H
1-2383 H
                        H
                              H
                                   Me
                                         2
                    H
                                               -CH(OH)-(CH_2)_4-(3,4-diCF_3-Ph)
                                                                                                  H
1-2384 H
                        H
                              H
                                   Me
                                         2
                                                                                           H
                    H
                                               -CH(OH) - (CH<sub>2</sub>)<sub>4</sub> - (3, 5-diCF<sub>3</sub>-Ph)
                                         2
                                                                                                  H
1-2385
           H
                        H
                              H
                                   Me
                                                                                           H
                    H
                                               -CH(OH) - (CH_2)_A - (3-MeO-Ph)
                                                                                           H
                                                                                                  H
1-2386
                        H
                              H
                                   Me
                                         2
           H
                    H
                                                                                                   H
                                               -CH(OH) - (CH<sub>2</sub>)<sub>4</sub> - (3, 4-diMeO-Ph)
1-2387
           H
                    H
                        H
                              H
                                   Me
                                         2
                                               -CH(OH)-(CH<sub>2</sub>)<sub>4</sub>-(3, 5-diMeO-Ph)
1-2388
           H
                    H
                        H
                              H
                                   Me
                                         2
                                                                                                   H
                                               -CH(OH)-(CH_2)_4-(3,4,5-triMeO-Ph) H
                        H
                              H
                                   Me
                                         2
                                                                                                  H
                                                                                                                       20
1-2389
           H
                    H
                                         2
                                               -CH(OH)-(CH<sub>2</sub>)<sub>4</sub>-(3-Ac-Ph)
                                                                                            H
                                                                                                   H
1-2390
           H
                        H
                              H
                                   Me
                    H
                              H
                                               -CH(OH)-(CH_2)_4-(4-Ac-Ph)
                                                                                           H
                                                                                                   H
                        H
                                         2
1-2391
           H
                    H
                                   Me
                                               -0-(CH<sub>2</sub>)<sub>3</sub>-cHx
                                                                                          H
                                                                                                  H
1-2392
                        H
                              H
                                   Me
                                         2
           H
                    H
                                                                                                  H
                                               -0-(CH_2)_4-cHx
                                                                                          H
1-2393
                        H
                              H
                                   Me
                                         2
           H
                    H
                                               -0-(CH<sub>2</sub>)<sub>5</sub>-cH<sub>x</sub>
                                                                                                 H
1-2394
                        H
                              H
                                   Me
                                         2
                                                                                          H
           H
                    H
                                               -0-(CH<sub>2</sub>)<sub>3</sub>-Ph
                                                                                          H
                                                                                                 H
1-2395 H
                        H
                              H
                                   Me
                                         2
                    H
                                                                                                                       30
                                   Me
                                         2
                                               -0-(CH<sub>2</sub>)<sub>4</sub>-Ph
                                                                                          H
                                                                                                 H
1-2396
           H
                    H H
                              H
                                                                                                 H
                                               -0-(CH<sub>2</sub>)<sub>5</sub>-Ph
                                                                                          H
                    H H
                              H
                                   Me
                                         2
1-2397
           H
           COCH<sub>3</sub> H
                               H
                                     Me 2
                                                -(CH<sub>2</sub>)<sub>4</sub>-cHx
                                                                                            H
                                                                                                   H
1-2398
                        H
                                                -(CH_2)_4-cHx
                                                                                            H
                                                                                                   H
           COC<sub>2</sub>H<sub>5</sub> H H
                                          2
1-2399
                               H
                                     Me
                                                                                                   H
           COC3H7 H H
                                         2
                                                -(CH<sub>2</sub>)<sub>4</sub>-cHx
                                                                                            H
1-2400
                               H
                                     Me
                                                                                                   H
                                     Me 2
                                                -(CH<sub>2</sub>)<sub>4</sub>-cHx
                               H
                                                                                            H
1-2401
           COC₄H<sub>Q</sub> H H
                                                                                                     H
                                      Me 2
                                                 -(CH<sub>2</sub>)<sub>4</sub>-cHx
                                                                                               H
1-2402
           COC5H11 H H
                                H
                                                                                                                       40
                                                                                                     H
                                                 -(CH<sub>2</sub>)<sub>4</sub>-cHx
                                                                                               H
           COC6H13 H H
                                           2
1-2403
                                H
                                       Me
           COC7H15 H H
                                                  -(CH<sub>2</sub>)_{A}-cHx
                                                                                               H
                                                                                                      H
1-2404
                                       Me
                                            2
```

H

1-2405	СОС ₈ H ₁₇ Н Н	H	Me 2	-(CH2)4-cHx	H	H	
1-2406	COCH ₃ H H	H	Me 2	-(CH ₂) ₄ -Ph	H	H	
1-2407	COC_2H_5 H H	H	Me 2	-(CH ₂) ₄ -Ph	H	H	
1-2408	сосзну н н	H	Me 2	-(CH ₂) ₄ -Ph	H	H	
1-2409	СОС4Н9 Н Н	H	Me 2	-(CH ₂) ₄ -Ph	H	H	
1-2410	COC_5H_{11} H H	H	Me 2	-(CH ₂) ₄ -Ph	H	H	
1-2411	СОС ₆ H ₁₃ Н Н	H	Me 2	-(CH ₂) ₄ -Ph	H	H	10
1-2412	COC_7H_{15} H H	H	Me 2	-(CH ₂) ₄ -Ph	H	H	
1-2413	СОС ₈ H ₁₇ Н Н	H	Me 2	-(CH ₂) ₄ -Ph	H	H	
1-2414	COCH3 H H	H	Me 2	-(CH ₂) ₅ -cHx	H	H	
1-2415	COC_2H_5 H H	H	Me 2	-(CH ₂) ₅ -cHx	H	H	
1-2416	COC ₃ H ₇ H H	H	Me 2	-(CH ₂) ₅ -cHx	H	H	
1-2417	COC ₄ H ₉ H H	H	Me 2	-(CH ₂) ₅ -cHx	H	H	
1-2418	СОС ₅ H ₁₁ Н Н	H	Me 2	$-(CH_2)_{5}$ -cHx	H	H	20
1-2419	сос ₆ н ₁₃ н н	H	Me 2	-(CH ₂) ₅ -cHx	Н	H	
1-2420	${\rm COC}_7{\rm H}_{15}$ H H	H	Me 2	-(CH ₂) ₅ -cHx	H	H	
1-2421	СОС ₈ H ₁₇ Н Н	H	Me 2	-(CH ₂) ₅ -cHx	H	H	
1-2422	COCH ₃ H H	H	Me 2	-(CH ₂) ₅ -Ph	H	H	
1-2423	COC_2H_5 H H	H	Me 2	-(CH ₂) ₅ -Ph	H	H	
1-2424	сосзну н н	H	Me 2	-(CH ₂) ₅ -Ph	H	H	
1-2425	COC4H9 H H	H	Me 2	-(CH ₂) ₅ -Ph	H	H	30
1-2426	СОС ₅ H ₁₁ Н Н	H	Me 2	-(CH ₂) ₅ -Ph	H	H	
1-2427	${\tt COC_6H_{13}~H~H}$	H	Me 2	-(CH ₂) ₅ -Ph	H	H	
1-2428	$COC_7H_{15}HH$	H	Me 2	-(CH ₂) ₅ -Ph	H	H	
1-2429	СОС ₈ H ₁₇ Н Н	H	Me 2	-(CH ₂) ₅ -Ph	H	H	
1-2430	COCH ₃ H H	H	Me 2	$-C \equiv C - (CH_2)_2 - cHx$	H	H	
1-2431	сос ₂ н ₅ н н	H	Me 2	$-C \equiv C - (CH_2)_2 - cHx$	H	H	
1-2432	сос ₃ н ₇ н н	H	Me 2		H	H	40
1-2433	СОС ₄ Н ₉ Н Н	H	Me 2	$-C \equiv C - (CH_2)_2 - cHx$	H	H	

1-2434	сос ₅ н ₁₁ н н	H	Me	2	$-C \equiv C - (CH_2)_2 - cHx$	H	H	
1-2435	COC_6H_{13} H H	H	Me	2	$-C \equiv C - (CH_2)_2 - cHx$	H	H	
1-2436	СОС7H ₁₅ Н Н	H	Me	2	$-C \equiv C - (CH_2)_2 - cHx$	H	H	
1-2437	сос ₈ н ₁₇ н н	H	Me	2	$-C \equiv C - (CH_2)_2 - cHx$	H	H	
1-2438	соснз н н	H	Me	2	$-C \equiv C - (CH_2)_2 - Ph$	H	H	
1-2439	COC_2H_5 H H	Ħ	Me	2	$-C \equiv C - (CH_2)_2 - Ph$	H	H	
1-2440	СОСЗН7 Н Н	H	Me	2	$-C \equiv C - (CH_2)_2 - Ph$	H	H	10
1-2441	сос4н9 н н	H	Me	2	$-C \equiv C - (CH_2)_2 - Ph$	H	H	
1-2442	СОС ₅ H ₁₁ Н Н	H	Me	2	$-C \equiv C - (CH_2)_2 - Ph$	H	H	
1-2443	сос ₆ н ₁₃ н н	H	Me	2	$-C \equiv C - (CH_2)_2 - Ph$	H	H	
1-2444	сос ₇ н ₁₅ н н	H	Me	2	$-C \equiv C - (CH_2)_2 - Ph$	H	H	
1-2445	СОС ₈ H ₁₇ Н Н	H	Me	2	$-C \equiv C - (CH_2)_2 - Ph$	H	H	
1-2446	соснз н н	H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	H	H	
1-2447	сос ₂ н ₅ н н	H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	H	H	20
1-2448	сосзну н н	H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	H	H	
1-2449	СОС ₄ Н ₉ Н Н	H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	H	H	
1-2450	СОС ₅ Н ₁₁ Н Н	H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	H	H	
1-2451	сос6н13 н н	H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	H	H	
1-2452	СОС7H ₁₅ Н Н	H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	H	H	
1-2453	СОС ₈ H ₁₇ Н Н	H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	H	H	
1-2454	COCH3 H H	H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	H	H	30
1-2455	сос ₂ н ₅ н н	H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	H	H	•
1-2456	сосзну н н	H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	H	H	
1-2457	сос ₄ н ₉ н н	H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	H	H	
1-2458	СОС ₅ H ₁₁ Н Н	H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	H	H	
1-2459	сос ₆ н ₁₃ н н	. Н	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	H	H	
1-2460	сос ₇ н ₁₅ н н	H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	H	H	
1-2461	СОС8Н17 Н Н	H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	H	H	40
1-2462	COCH ₃ H H	H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	

1-2463	СОС ₂ Н ₅ Н Н	H	Me 2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	
1-2464	сосзну н н	H	Me 2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	
1-2465	сос4н9 н н	H	Me 2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	
1-2466	СОС ₅ H ₁₁ Н Н	H	Me 2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	
1-2467	сос ₆ н ₁₃ н н	H	Me 2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	
1-2468	COC_7H_{15} H H	H	Me 2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	
1-2469	COC ₈ H ₁₇ H H	H	Me 2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	10
1-2470	COCH ₃ H H	H	Me 2	$-c \equiv c - (cH_2)_4 - Ph$	H	H	
1-2471	COC_2H_5 H H	H	Me 2	$-C \equiv C - (CH_2)_4 - Ph$	H	H	
1-2472	COC ₃ H ₇ H H	H	Me 2	$-C \equiv C - (CH_2)_4 - Ph$	H	H	
1-2473	COC ₄ H ₉ H H	H	Me 2	$-C \equiv C - (CH_2)_4 - Ph$	Ħ	H	
1-2474	COC_5H_{11} H H	H	Me 2	$-C \equiv C - (CH_2)_4 - Ph$	H	H	
1-2475	COC_6H_{13} H H	H	Me 2	$-C \equiv C - (CH_2)_4 - Ph$	H	H	
1-2476	COC_7H_{15} H H	H	Me 2	$-C \equiv C - (CH_2)_4 - Ph$	H	H	20
1-2477	СОС ₈ H ₁₇ Н Н	H	Me 2	$-C \equiv C - (CH_2)_4 - Ph$	H	H	
1-2478	COCH3 H H	H	Me 2	$-C \equiv C - (CH_2)_2 O - cHx$	H	H	
1-2479	COC_2H_5 H H	H	Me 2	$-C \equiv C - (CH_2)_2 0 - cHx$	H	H	
1-2480	COC ₃ H ₇ H H	H	Me 2	$-C \equiv C - (CH_2)_2 0 - cHx$	H	H	
1-2481	COC ₄ H ₉ H H	H	Me 2	$-C \equiv C - (CH_2)_2 0 - cHx$	H	H	
1-2482	COC_5H_{11} H H	H	Me 2	$-C \equiv C - (CH_2)_2 0 - cHx$	H	H	
1-2483	COC_6H_{13} H H	H	Me 2	$-C \equiv C - (CH_2)_2 O - cHx$	H	H	30
1-2484	COC_7H_{15} H H	H	Me 2	$-C \equiv C - (CH_2)_2 0 - cHx$	H	H	
1-2485	COC_8H_{17} H H	H	Me 2	$-C \equiv C - (CH_2)_2 0 - cHx$	H	H	
1-2486	COCH ₃ H H	H	Me 2	$-C \equiv C - (CH_2)_2 O - Ph$	H	H	
1-2487	COC_2H_5 H H	H	Me 2	$-C \equiv C - (CH_2)_2 O - Ph$	H	H	
1-2488	COC ₃ H ₇ H H	H		$-C \equiv C - (CH_2)_2 O - Ph$	H	H	
1-2489	COC ₄ H ₉ H H	H		$-C \equiv C - (CH_2)_2 0 - Ph$	H	H	.2
1-2490	$COC_5H_{11} H H$	H		$-C \equiv C - (CH_2)_2 0 - Ph$	H	H	40
1-2491	СОС ₆ H ₁₃ Н Н	H	Me 2	$-C \equiv C - (CH_2)_2 0 - Ph$	H	H	

1-2492	СОС7Н15 Н Н	H	Me	2	$-c \equiv c - (cH_2)_2 0 - Ph$	Н	H	
1-2493	СОС8Н17 Н Н	H	Me	2	-C≡C-(CH ₂) ₂ 0-Ph	H	H	
1-2494	COCH ₃ H H	H	Me	2	-co-(cH ₂) ₃ -cHx	H	H	
1-2495	СОС ₂ Н ₅ Н Н	H	Me	2	-co-(cH ₂) ₃ -cHx	H	H	
1-2496	сосзну н н	H	Me	2	-co-(ch ₂) ₃ -chx	H	H	
1-2497	сос ₄ н ₉ н н	H	Me	2	-co-(cH ₂) ₃ -cHx	H	H	
1-2498	СОС ₅ H ₁₁ Н Н	H	Me	2	-CO-(CH ₂) ₃ -cHx	H	H	10
1-2499	сос ₆ H ₁₃ Н Н	H	Me	2	-co-(ch ₂) ₃ -chx	H	H	
1-2500	СОС7H ₁₅ Н Н	H	Me	2	-CO-(CH ₂) ₃ -cHx	H	H	
1-2501	СОС8Н17 Н Н	H	Me	2	-CO-(CH ₂) ₃ -cHx	H	H	
1-2502	COCH ₃ H H	H	Me	2	-co-(cH ₂) ₃ -Ph	H	H	
1-2503	сос ₂ н ₅ н н	H	Me	2	-co-(cH ₂) ₃ -Ph	H	H	
1-2504	СОС ₃ Н7 Н Н	H	Me	2	-CO-(CH ₂) ₃ -Ph	H	H	
1-2505	СОС ₄ Н ₉ Н Н	H	Me	2	-co-(cH ₂) ₃ -Ph	H	H	20
1-2506	СОС ₅ H ₁₁ Н Н	H	Me	2	-CO-(CH ₂) ₃ -Ph	H	H	
1-2507	СОС ₆ H ₁₃ Н Н	H	Me	2	-co-(cH ₂) ₃ -Ph	H	H	
1-2508	СОС7H ₁₅ Н Н	H	Me	2	-CO-(CH ₂) ₃ -Ph	H	H	
1-2509	СОС ₈ H ₁₇ Н Н	H	Me	2	-co-(cH ₂) ₃ -Ph	H	H	
1-2510	соснз н н	H	Me	2	-CO-(CH2)4-cHx	H	H	
1-2511	сос ₂ н ₅ н н	H	Me	2	-co-(ch ₂) ₄ -chx	H	H	
1-2512	сосзну н н	H	Me	2	-CO-(CH2)4-cHx	H	H	30
1-2513	сос ₄ н ₉ н н	H	Me	2	-co-(ch ₂) ₄ -chx	H	H	
1-2514	СОС ₅ H ₁₁ Н Н	H	Me	2	-CO-(CH ₂) ₄ -cHx	H	H	
1-2515	сос ₆ н ₁₃ н н	H	Me	2	$-\text{CO-}(\text{CH}_2)_4$ -cHx	H	H	
1-2516	СОС7H ₁₅ Н Н	H	Me	2	$-CO-(CH_2)_4-cHx$	H	H	
1-2517	СОС ₈ H ₁₇ Н Н	H	Me	2	-c0-(cH ₂) ₄ -cHx	H	H	
1-2518	COCH ₃ H H	H	Me	2	-co-(cH ₂) ₄ -Ph	H	H	
1-2519	COC_2H_5 H H	H	Me	2	-co-(cH2)4-Ph	H	H	40
1-2520	СОС ₃ Н ₇ Н Н	H	Me	2	-co-(ch ₂) ₄ -Ph	H	H	

1-2521	СОС4Н9 Н Н	H	Me 2	-co-(ch ₂) ₄ -Ph	H	H	
1-2522	СОС ₅ H ₁₁ Н Н	H	Me 2	$-co-(cH_2)_4-Ph$	H	H	
1-2523	сос ₆ н ₁₃ н н	H	Me 2	$-CO-(CH_2)_4-Ph$	H	H	
1-2524	сос ₇ н ₁₅ н н	H	Me 2	-co-(ch ₂) ₄ -Ph	Н	H	
1-2525	СОС8Н17 Н Н	H	Me 2	-co-(ch ₂) ₄ -Ph	H	H	
1-2526	COCH ₃ H H	H	Me 2	-co-(cH ₂) ₅ -cHx	H	H	
1-2527	СОС ₂ H ₅ Н Н	H	Me 2	-CO-(CH ₂) ₅ -cHx	H	H	10
1-2528	СОС3Н7 Н Н	H	Me 2	-co-(cH ₂) ₅ -cHx	H	H	
1-2529	COC ₄ H ₉ H H	H	Me 2	-CO-(CH ₂) ₅ -cHx	H	H	
1-2530	СОС ₅ H ₁₁ Н Н	H	Me 2	$-co-(cH_2)_5-cHx$	H	H	
1-2531	СОС ₆ H ₁₃ Н Н	H	Me 2	$-\text{CO-(CH}_2)_5$ -cHx	H	H	
1-2532	${\tt COC_7H_{15}~H~H}$	H	Me 2	-co-(ch ₂) ₅ -chx	H	H	
1-2533	СОС ₈ H ₁₇ Н Н	H	Me 2	-CO-(CH ₂) ₅ -cHx	Н	H	
1-2534	COCH ₃ H H	H	Me 2	-co-(cH ₂) ₅ -Ph	H	H	20
1-2535	COC_2H_5 H H	H	Me 2	-co-(ch ₂) ₅ -Ph	H	H	
1-2536	сосзну н н	H	Me 2	-co-(cH ₂) ₅ -Ph	H	H	
1-2537	сос4н9 н н	H	Me 2	-co-(cH ₂) ₅ -Ph	Ħ	H	
1-2538	COC_5H_{11} H H	H	Me 2	-co-(cH ₂) ₅ -Ph	H	H	
1-2539	СОС ₆ H ₁₃ Н Н	H	Me 2	-CO-(CH ₂) ₅ -Ph	H	H	
1-2540	сос ₇ H ₁₅ н н	H	Me 2	-co-(ch ₂) ₅ -Ph	H	H	
1-2541	СОС ₈ H ₁₇ Н Н	H	Me 2	-co-(ch ₂) ₅ -Ph	H	H	30
1-2542	COCH ₃ H H	H	Me 2	$-CH(OH)-(CH_2)_4-cHx$	H	H	
1-2543	COC_2H_5HH	H	Me 2	$-CH(OH)-(CH_2)_4-cHx$	H	H	
1-2544	сос ₃ н ₇ н н	H	Me 2	$-CH(OH)-(CH_2)_4-cHx$	H	H	
1-2545	СОС4Н9 Н Н	H	Me 2	$-CH(OH)-(CH_2)_4-cHx$	H	H	
1-2546	${\tt COC_5H_{11}~H~H}$	H	Me 2	$-CH(OH)-(CH_2)_4-cHx$	H	H	
1-2547	СОС ₆ H ₁₃ Н Н	H	Me 2	$-CH(OH)-(CH_2)_4-cHx$	H	H	
1-2548	COC_7H_{15} H H	H	Me 2	$-CH(OH)-(CH_2)_4-cHx$	H	H	40
1-2549	СОС ₈ H ₁₇ Н Н	H	Me 2	-CH(OH)-(CH ₂) ₄ -cHx	H	H	

1-2550	COCH ₃ H	H	H	Me	2	-CH(OH)-(CH ₂) ₄ -Ph	H	H	
1-2551	COC_2H_5 H	H	H	Me	2	-CH(OH)-(CH ₂) ₄ -Ph	H	H	
1-2552	COC ₃ H ₇ H	H	H	Me	2	$-CH(OH)-(CH_2)_4-Ph$	H	H	
1-2553	СОС ₄ Н ₉ Н	H	H	Me	2	-CH(OH)-(CH ₂) ₄ -Ph	H	H	
1-2554	COC5H11 H	H	H	Me	2	-CH(OH)-(CH ₂) ₄ -Ph	H	H	
1-2555	COC_6H_{13} H	H	H	Me	2	-CH(OH)-(CH ₂) ₄ -Ph	H	H	
1-2556	COC_7H_{15} H	H	H	Me	2	-CH(OH)-(CH ₂) ₄ -Ph	H	H	10
1-2557	сос ₈ H ₁₇ н	H	H	Me	2	-CH(OH)-(CH ₂) ₄ -Ph	H	H	

表 2 【 0 0 6 3 】

【化8】

$$Ra^{3}O - P - R^{4}$$
 R^{6}
 R^{6}
 R^{7}
 R^{7}
 R^{7}
 R^{7}
 R^{7}
 R^{7}
 R^{7}
 R^{7}
 R^{7}
 R^{7}

【0064】 【表2】

Compd.	R1	R ²	R ³	R _a	,3 R	4	n -X-Y-R ⁵		R6	R ⁷
2-1	H	H	H	H	Me	1	-(CH ₂) ₅ -сНх	Н	H	
2-2	H	H	H	H	Me	1	-(CH ₂) ₆ -cHx	H	H	
2-3	H	H	H	H	Me	1	$-C \equiv C - (CH_2)_3 - cHx$	H	H	
2-4	H	H	H	H	Me	1	$-C \equiv C - (CH_2)_4 - cHx$	H	H	
2-5	H	H	H	H	Me	1	-4-(cHx-CH ₂ 0)Ph	H	H	
2-6	H	H	H	H	Me	1	-(4-BzO-Ph)	H	H	
2-7	H	H	H	H	Me	1	$-C \equiv C - (CH_2)_2 O - cHx$	H	H	
:-8	H	H	H	H	Me	1	$-C \equiv C - (CH_2)_2 O - Ph$	H	H	
-9	H	H	H	H	Me	2	-(CH ₂) ₃ -cHx	H	H	
-10	H	H	H	H	Me	2	-(CH ₂) ₃ -Ph	H	H	
-11	H	H	H	H	Me	2	-(CH ₂) ₄ -cHx	H	H	
-12	H	H	H	H	Me	2	-(CH ₂) ₄ -Ph	H	H	
-13	H	H	H	H	Me	2	-(CH ₂) ₅ -cPn	H	H	
-14	H	H	H	H	Me	2	-(CH ₂) ₅ -cHx	H	H	
-15	H	H	H	H	Me	2	-(CH ₂) ₅ -cHx	Me	H	
-16	H	H	H	H	Me	2	-(CH ₂) ₅ -cHx	H	M	e
-17	H	H	H	H	Me	2	-(CH ₂) ₅ -cHx	F	H	
-18	H	H	H	H	Me	2	-(CH ₂) ₅ -cHx	H	F	
-19	H	H	Me	Me	Me	2	-(CH ₂) ₅ -cHx	H	H	
:-20	CO ₂ Me	H	H	H	Me	2	-(CH ₂) ₅ -cHx	H	H	
-21	CO ₂ Et	H	H	H	Me	2	-(CH ₂) ₅ -cHx	H	H	
-22	H		H	H	Me	2	$-(CH_2)_5-(4-F-cHx)$	H	H	
-23	H	H	H	H	Me	2	-(CH2)5-(4-C1-cHx)	H	H	
-24	H	H	H	H	Me	2	-(CH ₂) ₅ -(4-Br-cHx)	H	H	
25	H	H	H	H	Me	2	$-(CH_2)_5-(4-Me-cHx)$	H	H	
-26	H	H	H	H	Me	2	$-(CH_2)_5-(4-Et-cHx)$	H	H	

2-27	H	H	H	H	Me	2	-(CH2)5-(4-Pr-cHx)	H	H	
2-28	H	H	H	H	Me	2	-(CH2)5-(4-iPr-cHx)	H	H	
2-29	H	H	H	H	Me	2	-(CH2)5-(4-CF3-cHX)	H	H	
2-30	H	H	H	H	Me	2	$-(CH_2)_5-(4-Me0-cHx)$	H	H	
2-31	H	H	H	H	Me	2	$-(CH_2)_5-(4-Et0-cHx)$	H	H	
2-32	H	H	H	H	Me	2	$-(CH_2)_{5}-(4-Pr0-cHx)$	H	H	
2-33	H	H	H	H	Me	2	$-(CH_2)_5-(4-iPr0-cHx)$	H	Н	,10
2-34	H	H	H	H	Me	2	-(CH2)5-(3-MeS-cHx)	H	H	
2-35	H	H	H	H	Me	2	-(CH2)5-(4-MeS-cHx)	H	H	
2-36	H	H	H	H	Me	2	$-(CH_2)_5-(2, 4-diMe-cHx)$	H	H	
2-37	H	H	H	H	Me	2	-(CH2)5-(3, 4-diMe-cHx)	H	H	
2-38	H	H	H	H	Me	2	$-(CH_2)_5-(3,5-diMe-cHx)$	H	H	
2-39	H	H	H	H	Me	2	-(CH ₂) ₅ -Ph	H	H	
2-40	H	H	H	H	Me	2	-(CH ₂) ₅ -Ph	Me	Н	20
2-41	H	H	H	H	Мe	2	-(CH ₂) ₅ -Ph	H	Me	
2-42	H	H	H	H	Me	2	-(CH ₂) ₅ -Ph	F	H	
2-43	H	H	H	H	Me	2	-(CH ₂) ₅ -Ph	H	F	
2-44	H	H	Me	Me	Me	2	-(CH ₂) ₅ -Ph	H	H	
2-45	CO ₂ Me	H	H	H	Me	2	-(CH ₂) ₅ -Ph	H	H	
2-46	CO ₂ Et	H	H	H	Me	2	-(CH ₂) ₅ -Ph	H	H	
2-47	H	H	H	H	Me	2	-(CH ₂) ₅ -(4-F-Ph)	H	H	30
2-48	H	H	H	H	Me	2	-(CH ₂) ₅ -(4-C1-Ph)	H	H	
2-49	H	H	H	H	Me	2	-(CH ₂) ₅ -(4-Br-Ph)	H	H	
2-50	H	H	H	H	Me	2	-(CH ₂) ₅ -(4-Me-Ph)	H	H	
2-51	H	H	H	H	Me	2	-(CH ₂) ₅ -(4-Et-Ph)	H	H	
2-52	H	H	H	H	Me	2	-(CH ₂) ₅ -(4-Pr-Ph)	H	H	
2-53	H	H	H	H	Me		-(CH2)5-(4-iPr-Ph)	H	H	
2-54	H	H	H	H	Me	2	-(CH ₂) ₅ -(4-Bu-Ph)	H	Н	40
2-55	H	H	H	H	Me	2	$-(CH_2)_5-(4-CF_3-Ph)$	H	H	

2-56	H	H	H	H	Me	2	$-(CH_2)_5-(4-MeO-Ph)$	H	H	
2-57	H	H	H	H	Me	2	$-(CH_2)_5-(4-Et0-Ph)$	H	H	
2-58	H	H	H	H	Me	2	-(CH ₂) ₅ -(4-Pr0-Ph)	H	H	
2-59	H	H	H	H	Me	2	$-(CH_2)_5-(4-iPr0-Ph)$	H	H	
2-60	H	H	H	H	Me	2	-(CH ₂) ₅ -(3-MeS-Ph)	H	H	
2-61	H	H	H	H	Me	2	-(CH ₂) ₅ -(4-MeS-Ph)	H	H	
2-62	H	H	H	H	Me	2	-(CH ₂) ₅ -(2, 4-diMe-Ph)	H	H	10
2-63	H	H	H	H	Me	2	-(CH ₂) ₅ -(3, 4-d1Me-Ph)	H	H	
2-64	H	H	H	H	Me	2	-(CH ₂) ₅ -(3, 5-diMe-Ph)	H	H	
2-65	H	H	H	H	Me	2	-(CH ₂) ₆ -cPn	H	H	
2-66	H	H	H	H	Me	2	-(CH ₂) ₆ -cHx	H	H	
2-67	H	H	H	H	Me	2	-(CH ₂) ₆ -cHx	Me	H	
2-68	H	H	H	H	Me	2	-(CH ₂) ₆ -cHx	H	Ме	
2-69	H	H	H	H	Me	2	-(CH ₂) ₆ -cHx	F	H	20
2-70	H	H	H	H	Me	2	-(CH ₂) ₆ -cHx	H	F	
2-71	H	H	Me	Me	Me	2	-(CH ₂) ₆ -cHx	H	H	
2-72	CO ₂ Me	H	H	H	Me	2	-(CH ₂) ₆ -cHx	H	H	
2-73	${\rm CO}_2{\rm Et}$	H	H	H	Me	2	-(CH ₂) ₆ -cHx	H	H	
2-74	H	H	H	H	Me	2	$-(CH_2)_6-(4-F-cHx)$	H	H	
2-75	H	H	H	H	Me	2	$-(CH_2)_{6}-(4-C1-cHx)$	H	H	
2-76	H	H	H	H	Me	2	-(CH2)6-(4-Br-cHx)	H	H	30
2-77	H	H	H	H	Мe	2	-(CH2)6-(4-Me-cHx)	H	H	
2-78	H	H	H	H	Me	2	-(CH2)6-(4-Et-cHx)	H	Н	
2-79	H	H	H	H	Me	2	-(CH2)6-(4-Pr-cHx)	H	Н	
2-80	H	H	H	H	Me	2	-(CH2)6-(4-iPr-cHx)	H	H	
2-81	H	H	H	H	Me	2	$-(CH_2)_{6}-(4-Bu-cHx)$	H	H	
2-82	H	H	H	H	Me	2	$-(CH_2)_6-(4-CF_3-cHx)$	H	Н	
2-83	H	H	H	H	Me	2	$-(CH_2)_{6}-(4-Me0-cHx)$	H	H	40
2-84	H	H	H	H	Me	2	-(CH2)6-(4-Et0-cHx)	H	H	

2-85	H	H	H	B	Me	2	$-(CH_2)_6-(4-Pr0-cHx)$	H	H	
2-86	H	H	H	H	Me	2	-(CH ₂) ₆ -(4-iPr0-cHx)	H	H	
2-87	H	H	H	H	Me	2	-(CH2)6-(3-MeS-cHx)	H	H	
2-88	H	H	H	H	Me	2	-(CH2)6-(4-MeS-cHx)	H	H	
2-89	H	H	H	H	Me	2	$-(CH_2)_{6}-(2,4-diMe-cHx)$	H	H	
2-90	H	H	H	H	Me	2	$-(CH_2)_6-(3,4-diMe-cHx)$	H	H	
2-91	H	H	H	H	Me	2	$-(CH_2)_{6}-(3,5-diMe-cHx)$	H	H	10
2-92	H	H	H	H	Me	2	-(CH ₂) ₆ -Ph	H	Н	
2-93	H	H	H	H	Me	2	-(CH ₂) ₆ -Ph	Me	H	
2-94	H	H	H	H	Me	2	-(CH ₂) ₆ -Ph	H	Me	
2-95	H	H	H	H	Me	2	-(CH ₂) ₆ -Ph	F	H	
2-96	H	H	H	H	Me	2	-(CH ₂) ₆ -Ph	H	F	
2-97	H	H	Me	Me	Me	2	-(CH ₂) ₆ -Ph	H	H	
2-98	CO ₂ Me	H	H	H	Me	2	-(CH ₂) ₆ -Ph	H	H	20
2-99	CO ₂ Et	H	H	H	Me	2	-(CH ₂) ₆ -Ph	H	H	
2-100	H	H	H	H	Me	2	-(CH ₂) ₆ -(4-F-Ph)	H	H	
2-101	H	H	H	H	Me	2	$-(CH_2)_{6}-(4-C1-Ph)$	H	H	
2-102	H	H	H	H	Me	2	$-(CH_2)_6-(4-Br-Ph)$	H	H	
2-103	H	H	H	H	Me	2	$-(CH_2)_{6}-(4-Me-Ph)$	H	H	
2-104	H	H	H	H	Me	2	$-(CH_2)_{6}-(4-Et-Ph)$	H	Н	
2-105	H	H	H	H	Me	2	$-(CH_2)_{6}-(4-Pr-Ph)$	H	Н	30
2-106	H	H	H	H	Me	2	$-(CH_2)_{6}-(4-iPr-Ph)$	H	Н	
2-107	H	H	H	H	Me	2	-(CH ₂) ₆ -(4-Bu-Ph)	H	H	
2-108	H	H	H	H	Me	2	$-(CH_2)_6-(4-CF_3-Ph)$	H	H	
2-109	H	H	H	H	Me	2	-(CH ₂) ₆ -(4-MeO-Ph)	H	Н	
2-110	H	H	H	H	Me	2	$-(CH_2)_{6}-(4-Et0-Ph)$	H	H	
2-111	H	H	H	H	Me	2	$-(CH_2)_{6}-(4-Pr0-Ph)$	H	H	
2-112	H	H	H	H	Me	2	-(CH ₂) ₆ -(4-iPr0-Ph)	H	H	40
2-113	H	H	H	H	Me	2	-(CH2)6-(3-MeS-Ph)	H	H	

2-114	H	H	H	H	Me	2	-(CH2)6-(4-MeS-Ph)	H	H	
2-115	H	H	H	H	Me	2	$-(CH_2)_6-(2,4-diMe-Ph)$	H	H	
2-116	H	H	H	H	Me	2	-(CH ₂) ₆ -(3, 4-diMe-Ph)	H	Н	
2-117	H	H	H	H	Me	2	$-(CH_2)_6-(3,5-diMe-Ph)$	H	H	
2-118	H	H	H	H	Me	2	-(CH ₂) ₇ -cHx	H	H	
2-119	H	H	H	H	Me	2	-(CH ₂) ₇ -Ph	H	H	
2-120	H	H	H	H	Me	2	-(CH ₂) ₈ -cHx	H	H	10
2-121	H	H	H	H	Me	2	-(CH ₂) ₈ -Ph	H	Н	
2-122	H	H	H	H	Me	2	$-CH=CH-(CH_2)_3-cHx$	H	Н	
2-123	H	H	Me	Me	Me	2	$-CH=CH-(CH_2)_3-cHx$	H	Н	
2-124	CO ₂ Me	H	H	H	Me	2	$-CH=CH-(CH_2)_3-cHx$	H	H	
2-125	${\rm CO}_2{\rm Et}$	H	H	H	Me	2	$-CH=CH-(CH_2)_3-cHx$	H	H	
2-126	H	H	H	H	Me	2	-CH=CH-(CH ₂) ₃ -Ph	H	H	
2-127	H	H	Me	Me	Me	2	$-CH=CH-(CH_2)_3-Ph$	H	H	20
2-128	CO ₂ Me	H	H	H	Me	2	$-CH=CH-(CH_2)_3-Ph$	H	H	
2-129	CO ₂ Et	H	H	H	Me	2	-CH=CH-(CH $_2$) $_3$ -Ph	H	H	
2-130	H	H	H	H	Me	2	$-CH=CH-(CH_2)_4-cHx$	H	H	
2-131	H	H	H	H	Me	2	$-CH=CH-(CH_2)_4-cHx$	H	Н	
2-132	CO ₂ Me	H	H	H	Me	2	$-CH=CH-(CH_2)_4-cHx$	H	Н	
2-133	${\rm CO}_2{\rm Et}$	H	H	H	Me	2	$-CH=CH-(CH_2)_4-cHx$	H	Н	
2-134	H	H	H	H	Me	2	$-CH=CH-(CH_2)_4-Ph$	H	Н	30
2-135	H	H	H	H	Me	2	$-CH=CH-(CH_2)_4-Ph$	H	Н	
2-136	${\rm CO_{2}Me}$	H	H	H	Me	2	$-CH=CH-(CH_2)_4-Ph$	H	Н	
2-137	${\rm CO}_2{\rm Et}$	H	H	H	Me	2	$-CH=CH-(CH_2)_4-Ph$	H	Н	
2-138	H	H	H	H	Me	2	-C=C-CH ₂ O-cHx	H	Н	
2-139	H	H	H	H	Me	2	-C=C-CH ₂ O-Ph	H	Н	
2-140	H	H	H	H	Me	2	-C=C-(CH2)2O-cHx	H	Н	
2-141	H	H	H	H	Me	2	-C=C-(CH ₂) ₂ O-Ph	H	Н	40
2-142	H	H	H	H	Me	2	$-C \equiv C - CH_2 - cHx$	H	Н	

2-143	H	H	H	H	Me	2	-C≡C-CH ₂ -cHx	H	H	
2-144	${\rm CO_2Me}$	H	H	H	Me	2	$-C \equiv C - CH_2 - cHx$	H	H	
2-145	CO ₂ Et	H	H	H	Me	2	$-C \equiv C - CH_2 - cHx$	H	H	
2-146	H	H	H	H	Me	2	-C≡C-CH ₂ -Ph	H	H	
2-147	H	H	Me	Me	Me	2	-C≡C-CH ₂ -Ph	H	H	
2-148	CO ₂ Me	H	H	H	Me	2	-C≡C-CH ₂ -Ph	H	Н	
2-149	CO ₂ Et	H	H	H	Me	2	-C≡C-CH ₂ -Ph	H	H	10
2-150	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - cHx$	H	H	
2-151	H	H	Me	Me	Me	2	$-C \equiv C - (CH_2)_2 - cHx$	H	H	
2-152	CO ₂ Me	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - cHx$	H	H	
2-153	CO ₂ Et	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - cHx$	H	H	
2-154	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - Ph$	H	Н	
2-155	H	H	Me	Me	Me	2	$-C \equiv C - (CH_2)_2 - Ph$	H	H	•
2-156	CO ₂ Me	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - Ph$	H	H	20
2-157	CO ₂ Et	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 - Ph$	H	H	
2-158	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - cPn$	H	H	
2-159	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	H	H	
2-160	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	Me	H	
2-161	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	H	Me	
2-162	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	F	H	
2-163	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	H	F	30
2-164	H	H	Me	Me	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	H	H	
2-165	CO ₂ Me	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	H	H	
2-166	CO ₂ Et	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	H	H	
2-167	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - F - cHx)$	H	Н	
2-168	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - C1 - cHx)$	H	H	
2-169	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Br - cHx)$	H	H	
2-170	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Me - cHx)$	H	H	40
2-171	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Et - cHx)$	H	H	

2-172	H	H	H	H	Me	2	$-C \equiv C - (CH2)3 - (4-Pr-cHx)$	H	H	
2-173	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - iPr - cHx)$	H	H	
2-174	H	H	H	H	Me	2	$-C \equiv C - (CH2)3 - (4-Ru-cHx)$	H	H	
2-17 5	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - CF_3 - cHx)$	H	H	
2-176	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Me0 - cHx)$	H	H	
2-177	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Et0 - cHx)$	H	H	
2-178	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Pr0 - cHx)$	H	H	10
2-179	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - i Pr 0 - cHx)$	H	H	
2-180	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - MeS - cHx)$	H	H	
2-181	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - MeS - cHx)$	H	H	
2-182	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (2, 4 - diMe - cHx)$	H	H	
2-183	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3, 4 - diMe - cHx)$	H	H	
2-184	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3, 5 - diMe - cHx)$	H	H	
2-185	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	H	H	20
2-186	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	Me	H	
2-187	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	H	Me	
2-188	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	F	H	
2-189	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	H	F	
2-190	H	H	Me	Me	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	H	H	
2-191	${\rm CO_{2}Me}$	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	H	H	
2-192	${\rm CO}_2{\rm Et}$	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	H	H	30
2-193	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - F - Ph)$	H	H	
2-194	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - C1 - Ph)$	H	H	
2-19 5	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4-Br-Ph)$	H	H	
2-196	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Me - Ph)$	H	H	
2-197	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Et - Ph)$	H	H	
2-198	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Pr - Ph)$	H	H	
2-199	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - iPr - Ph)$	H	H	40
2-200	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_{3} - (4-Bu-Ph)$	H	H	

2-201	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - CF_3 - Ph)$	H	H	
2-202	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - MeO - Ph)$	H	H	
2-203	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - Et 0 - Ph)$	H	H	
2-204	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - PrO - Ph)$	H	H	
2-205	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (4 - i Pr 0 - Ph)$	H	H	
2-206	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3 - MeS - Ph)$	H	H	
2-207	H	H	H	H	Me	2	$-C \equiv C - (CH2)3 - (4 - MeS - Ph)$	H	H	,10
2-208	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_{3} - (2, 4 - diMe-Ph)$	H	H	
2-209	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_3 - (3, 4 - diMe-Ph)$	H	H	
2-210	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_{3} - (3, 5 - diMe-Ph)$	H	H	
2-211	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - cPn$	H	H	
2-212	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	
2-213	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	Me	H	
2-214	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	H	Me	20
2-215	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	F	H	
2-216	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	H	F	
2-217	H	H	Me	Me	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	
2-218	${\rm CO_2Me}$	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	
2-219	${\rm CO}_2{\rm Et}$	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	
2-220	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_{4} - (4 - F - cHx)$	H	H	
2-221	H	H	H	H	Me	2	$-C \equiv C - (CH2)4 - (4 - Cl - cHx)$	H	H	30
2-222	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Br - cHx)$	H	H	
2-223	H	H	H	H	Me	2	$-C \equiv C - (CH2)4 - (4 - Me - cHx)$	H	H	
2-224	H	H	H	H	Me	2	$-C \equiv C - (CH2)_{4} - (4 - Et - cHx)$	H	H	
2-225	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - Pr - cHx)$	H	H	
2-226	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - iPr - cHx)$	H	H	
2-227	H	H	H	H	Me	2	$-C \equiv C - (CH2)4 - (4-Bu-cHx)$	H	H	
2-228	H	H	H	H	Me	2	$-C \equiv C - (CH2)4 - (4 - CF3 - cHx)$	H	H	40
2-229	H	H	H	H	Me	2	$-C \equiv C - (CH2)4 - (4 - MeO - cHx)$	H	H	

```
2-230
                                               -C \equiv C - (CH_2)_4 - (4 - Et 0 - cHx)
           H
                    Н Н
                              H
                                                                                       H
                                    Me
                                         2
                                                                                              H
                                               -C \equiv C - (CH_2)_4 - (4 - Pr0 - cHx)
2-231
           H
                        H
                              H
                                    Me
                                         2
                                                                                              H
                    H
                                                                                       H
2-232
                              H
                                               -C \equiv C - (CH_2)_4 - (4 - i Pr O - cHx)
           H
                    H
                        H
                                    Me
                                         2
                                                                                       H
                                                                                              H
2-233
           H
                        H
                              H
                                         2
                                               -C \equiv C - (CH<sub>2</sub>)<sub>4</sub> - (4 - MeS - cHx)
                                                                                              H
                    H
                                    Me
                                                                                       H
2-234
                        H
                                               -C \equiv C - (CH_2)_4 - (2, 4 - diMe - cHx) H
           H
                              H
                                         2
                                                                                              H
                                    Me
                                               -C \equiv C - (CH_2)_4 - (3, 4 - diMe - cHx) H
2-235
           H
                        H
                              H
                                                                                              H
                                    Me
                                         2
                              H
                                               -C \equiv C - (CH_2)_4 - (3, 5 - diMe - cHx) H
                        H
                                    Me
                                         2
                                                                                              H
2-236
           H
                    H
                                                                                                                      10
2-237
                              H
                    н н
                                   Me
                                               -C \equiv C - (CH_2)_4 - Ph
                                                                                       H
                                                                                              H
           H
                                         2
2-238
                    н н
                              H
                                               -C \equiv C - (CH_2)_4 - Ph
                                                                                              H
           H
                                   Me
                                         2
                                                                                       Me
2-239
                   н н
                              H
                                   Me
                                               -C≡C-(CH<sub>2</sub>)<sub>4</sub>-Ph
           H
                                         2
                                                                                       H
                                                                                              Me
                              H
                                   Me
                                               -C \equiv C - (CH_2)_4 - Ph
2-240
                        H
                                         2
                                                                                       F
                                                                                              H
           H
                        H
                              H
2-241
                                   Me
                                               -C≡C-(CH<sub>2</sub>)<sub>4</sub>-Ph
                                                                                              F
                                         2
                                                                                       H
           H
                    H
                             Me
                                              -C \equiv C - (CH_2)_4 - Ph
                                                                                       H
                    H Me
                                   Me
                                                                                              H
2-242
           H
                                         2
                                               -C \equiv C - (CH_2)_4 - Ph
2-243
           CO<sub>2</sub>Me H
                       H
                              H
                                   Me 2
                                                                                       H
                                                                                              H
                                                                                                                      20
                                               -C \equiv C - (CH_2)_4 - Ph
                                                                                              H
2-244
           CO<sub>2</sub>Et H H
                              H
                                   Me
                                         2
                                                                                       H
                                                                                              H
2-245
                        H
                              H
                                   Me
                                         2
                                               -C \equiv C - (CH_2)_4 - (4 - F - Ph)
                                                                                       H
           H
                    H
                                               -C \equiv C - (CH_2)_4 - (4 - C1 - Ph)
                                   Me
                                                                                              H
2-246
                        H
                              H
                                         2
                                                                                       H
                        H
                              H
                                              -C \equiv C - (CH_2)_4 - (4 - Br - Ph)
                                                                                       H
                                   Me
                                                                                              H
2-247
                                         2
           H
                    H
                                              -C \equiv C - (CH_2)_4 - (4 - Me - Ph)
                              H
                                   Me
                                         2
                                                                                              H
2-248
           H
                   н н
                                                                                       H
2-249
                              H
                                         2
                                               -C \equiv C - (CH_2)_4 - (4 - Et - Ph)
                    н н
                                                                                       H
                                                                                              H
           H
                                    Me
                   н н
                                               -C \equiv C - (CH_2)_4 - (4 - Pr - Ph)
                                                                                       H
                                                                                                                      30
2-250
           H
                              H
                                   Me
                                         2
                                                                                              H
                                               -C \equiv C - (CH_2)_4 - (4 - iPr - Ph)
2-251
                    н н
                              H
                                         2
                                                                                       H
                                                                                              H
           H
                                    Me
                                               -C \equiv C - (CH_2)_4 - (4 - Bu - Ph)
2-252
           H
                       H
                              H
                                    Me
                                         2
                                                                                       H
                                                                                              H
2-253
                              H
                                   Me
                                         2
                                              -C \equiv C - (CH_2)_4 - (4 - CF_3 - Ph)
                                                                                       H
                        H
                                                                                              H
           H
                    H
                              H
                                              -C \equiv C - (CH_2)_4 - (4 - Me0 - Ph)
2-254
                       H
                                    Me
                                         2
                                                                                       H
                                                                                              H
           H
                    H
                                              -C \equiv C - (CH_2)_4 - (4 - Et 0 - Ph)
                       H
                                                                                              H
2-255
           H
                              H
                                   Me
                                         2
                                                                                       H
                    H
                       H
2-256
                              H
                                   Me
                                         2
                                              -C \equiv C - (CH_2)_4 - (4 - Pr0 - Ph)
                                                                                       H
                                                                                              H
           H
                                              -C \equiv C - (CH_2)_4 - (4 - iPrO - Ph)
                                                                                                                      40
                       H
                                                                                              H
                                                                                       H
2-257
           H
                              H
                                   Me
2-258
                    н н
                              H
                                         2
                                               -C \equiv C - (CH<sub>2</sub>)<sub>4</sub> - (3-MeS-Ph)
                                                                                       H
                                                                                              H
           H
                                   Me
```

2-259	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (4 - MeS - Ph)$	H	H	
2-260	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (2, 4 - diMe-Ph)$	H	H	
2-261	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3, 4 - diMe-Ph)$	Ħ	Н	
2-262	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_4 - (3, 5 - diMe-Ph)$	H	H	
2-263	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_5 - cHx$	H	H	
2-264	H	H	Me	Me	Me	2	$-C \equiv C - (CH_2)_{5} - cHx$	H	Н	
2-265	${\rm CO_2Me}$	H	H	H	Me	2	$-C \equiv C - (CH_2)_5 - cHx$	H	Н	10
2-266	${\rm CO}_2{\rm Et}$	H	H	H	Me	2	$-C \equiv C - (CH_2)_5 - cHx$	H	Н	
2-267	H	H	H	H	Me	2	-C≡C-(CH ₂) ₅ -Ph	H	Н	
2-268	H	H	Me	Me	Me	2	$-C \equiv C - (CH_2)_5 - Ph$	H	Н	
2-269	${\rm CO_{2}Me}$	H	H	H	Me	2	$-C \equiv C - (CH_2)_5 - Ph$	Ħ	H	
2-270	${\rm CO}_2{\rm Et}$	H	H	H	Me	2	$-C \equiv C - (CH_2)_5 - Ph$	B	H	
2-271	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_6 - cHx$	H	H	
2-272	H	H	Me	Me	Me	2	$-C \equiv C - (CH_2)_{6} - cHx$	H	Н	20
2-273	CO ₂ Me	H	H	H	Me	2	$-C \equiv C - (CH_2)_6 - cHx$	H	H	
2-274	${\rm CO}_2{\rm Et}$	H	H	H	Me	2	$-C \equiv C - (CH_2)_{6} - cHx$	H	H	
2-275	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_6 - Ph$	H	H	
2-276	H	H	Me	Me	Me	2	$-C \equiv C - (CH_2)_6 - Ph$	H	H	
2-277	CO ₂ Me	H	H	H	Me	2	<i>D</i> 0	H	H	
2-278	co_2 E t	H	H	H	Me	2	$-C \equiv C - (CH_2)_6 - Ph$	H	H	
2-279	H	H	H	H	Me	2	-C≡C-CH ₂ O-cHx	H	H	30
2-280	H	H	Me	Me	Me	2	$-C \equiv C - CH_2 O - cHx$	H	H	
2-281	CO ₂ Me	H	H	H	Me	2	-C≡C-CH ₂ 0-cHx	H	H	
2-282	CO ₂ Et	H	H	H	Me	2	-C≡C-CH ₂ O-cHx	B	H	
2-283	H	H	H	B	Me	2	-C≡C-CH ₂ O-Ph	B	H	
2-284	H	H	Me	Me	Me	2	-C≡C-CH ₂ O-Ph	H	H	
2-285	CO ₂ Me	H	H	H	Me	2	_	B	Н	40
2-286	CO ₂ Et	H	H	H	Me	2		H	Н	40
2-287	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - cPn$	H	Н	

2-288	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	Н	
2-289	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - cHx$	Me	Н	
2-290	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - cHx$	H	Me	
2-291	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - cHx$	F	H	
2-292	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - cHx$	H	F	
2-293	H	H	Me	Me	Me	2	$-C \equiv C - (CH_2)_2 - 0CH_2 - cHx$	H	H	
2-294	CO ₂ Me	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - cHx$	H	H	10
2-295	CO ₂ Et	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	H	
2-296	H	H	H	H	Me	2	$-\mathcal{C} \equiv \mathcal{C} - (\mathcal{C}\mathcal{H}_2)_2 \mathcal{O} - (4 - \mathcal{F} - \mathcal{C}\mathcal{H}\mathcal{X})$	H	H	
2-297	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - C1 - cHx)$	H	H	
2-298	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - Br - cHx)$	H	H	
2-299	H	H	H	H	Me	2	$-C \equiv C - (CH2)20 - (4 - Me - cHx)$	H	H	
2-300	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - Et - cHx)$	H	H	
2-301	H	H	H	H	Me	2	$-C \equiv C - (CH2)20 - (4-Pr-cHx)$	H	H	20
2-302	H	H	H	H	Me	2	$-C \equiv C - (CH2)20 - (4-iPr-cHx)$	H	H	
2-303	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (4 - Bu - cHx)$	H	H	
2-304	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - CF_3 - cHx)$	H	H	
2-305	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - Me0 - cHx)$	H	H	
2-306	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - Et0 - cHx)$	H	H	
2-307	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - Pr0 - cHx)$	H	H	
2-308	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - i Pr 0 - cHx)$	H	H	30
2-309	H	H	H	H	Me	2	$-C \equiv C - (CH2)20 - (3 - MeS - cHx)$	H	H	
2-310	H	H	H	H	Me	2	$-C \equiv C - (CH2)20 - (4 - MeS - cHx)$	H	H	
2-311	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (2, 4 - diMe - cHx)_2$	H	H	
2-312	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (3, 4 - dime - cHx)_2$	H (Н	
2-313	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (3, 5 - dime - cHx)_2$	H	Н	
2-314	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - Ph$	H	H	
2-315	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - Ph$	Me	H	40
2-316	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - Ph$	H	Me	

2-317	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - Ph$	F	Н	
2-318	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - Ph$	H	F	
2-319	H	H	Me	Me	Me	2	$-C \equiv C - (CH_2)_2 - OCH_2 - Ph$	H	Н	
2-320	${\rm CO_{2}Me}$	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - Ph$	H	Н	
2-321	${\rm CO}_2{\rm Et}$	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - Ph$	H	Н	
2-322	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - F - Ph)$	H	H	
2-323	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - C1 - Ph)$	H	Н	10
2-324	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4-Br-Ph)$	H	Н	
2-325	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - Me - Ph)$	H	H	
2-326	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - Et - Ph)$	H	Н	
2-327	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4-Pr-Ph)$	H	Н	
2-328	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - iPr - Ph)$	H	Н	
2-329	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4-Bu-Ph)$	H	Н	
2-330	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - CF_3 - Ph)$	H	Н	20
2-331	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - Me0 - Ph)$	H	Н	
2-332	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - Et 0 - Ph)$	H	Н	
2-333	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - Pr 0 - Ph)$	H	Н	
2-334	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - iPr0 - Ph)$	H	Н	
2-335	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (4 - MeS - Ph)$	H	Н	
2-336	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (2, 4 - diMe-Ph)$	H	Н	
2-337	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - (3, 4 - diMe-Ph)$	H	Н	30
2-338	H	H	H	H	Me	2	$-C \equiv C - (CH_2)_2 O - (3, 5 - diMe-Ph)$	H	Н	
2-339	H	H	H	H	Me	2	-c0-(CH ₂) ₄ -cHx	H	Н	
2-340	H	H	Me	Me	Me	2	-CO-(CH ₂) ₄ -cHx	H	Н	
2-341	${\rm CO_{2}Me}$	H	H	H	Me	2	-CO-(CH ₂) ₄ -cHx	B	Н	
2-342	co_2Et	H	H	H	Me	2	$-co-(cH_2)_4-cHx$	A	Н	
2-343	H	H	H	H	Me	2	-co-(ch ₂) ₄ -Ph	H	Н	
2-344	H	H	Me	Me	Me	2	-co-(cH ₂) ₄ -Ph	B	Н	40
2-345	${\rm CO_{2}Me}$	H	H	H	Me	2	-co-(cH ₂) ₄ -Ph	H	Н	

2-346	${\rm CO}_2{\rm Et}$	H	H	H	Me	2	-co-(ch ₂) ₄ -Ph	H	Н	
2-347	H	H	H	H	Me	2	-co-(ch ₂) ₅ -chx	H	Н	
2-348	H	H	Me	Me	Me	2	-co-(cH ₂) ₅ -cHx	H	Н	
2-349	${\rm CO_{2}Me}$	H	H	H	Me	2	-CO-(CH ₂) ₅ -cHx	H	Н	
2-350	${\rm CO}_2{\rm Et}$	H	H	H	Me	2	-CO-(CH ₂) ₅ -cHx	H	Н	
2-351	H	H	H	H	Me	2	-co-(ch ₂) ₅ -Ph	H	Н	
2-352	H	H	Me	Me	Me	2	-co-(cH ₂) ₅ -Ph	H	Н .	10
2-353	${\rm CO_2Me}$	H	H	H	Me	2	-co-(ch ₂) ₅ -Ph	H	H	
2-354	CO ₂ Et	H	H	H	Me	2	-co-(cH ₂) ₅ -Ph	H	Н	
2-355	H	H	H	H	Me	2	$-CH(OH)-(CH_2)_4-cHx$	H	H	
2-356	H	H	Me	Me	Me	2	$-CH(OH)-(CH_2)_4-cHx$	H	H	
2-357	${\rm CO_2Me}$	H	H	H	Me	2	$-CH(OH)-(CH_2)_4-cHx$	H	H	
2-358	CO ₂ Et	H	H	H	Me	2	$-CH(OH)-(CH_2)_4-cHx$	H	Н	
2-359	H	H	H	H	Me	2	-CH(OH)-(CH ₂) ₄ -Ph	H	Н	20
2-360	H	H	Me	Me	Me	2	-CH(OH)-(CH ₂) ₄ -Ph	H	Н	
2-361	${\rm CO_2Me}$	H	H	H	Me	2	-CH(OH)-(CH ₂) ₄ -Ph	H	Н	
2-362	CO ₂ Et	H	H	H	Me	2	-CH(OH)-(CH ₂) ₄ -Ph	H	Н	
2-363	H	H	H	H	Me	2	-CH(OH)-(CH ₂) ₅ -cHx	B	Н	
2-364	H	H	Me	Me	Me	2	-CH(OH)-(CH ₂) ₅ -cHx	B	Н	
2-365	${\rm CO_2Me}$	H	H	H	Me	2	-CH(OH)-(CH ₂) ₅ -cHx	H	Н	
2-366	CO ₂ Et	H	H	H	Me	2	-CH(OH)-(CH ₂) ₅ -cHx	H	Н	30
2-367	H	H	H	H	Me	2	-CH(OH)-(CH ₂) ₅ -Ph	H	Н	
2-368	H	H	Me	Me	Me	2	-CH(OH)-(CH ₂) ₅ -Ph	H	Н	
2-369	CO ₂ Me	H	H	H	Me	2	-CH(OH)-(CH ₂) ₅ -Ph	H	Н	
2-370	CO ₂ Et	H	H	H	Me	2	-CH(OH)-(CH ₂) ₅ -Ph	H	Н	
2-371	H	H	H	H	Me	2	-4-(cHx-CH ₂ 0)Ph	H	Н	
2-372	H	H	Me	Me	Me	2	-4-(cHx-CH ₂ 0)Ph	H	Н	
2-373	CO ₂ Me	H	H	H	Me	2	_	H	Н	40
2-374	CO ₂ Et	H	H	H	Me	2	-4-(cHx-CH ₂ 0)Ph	H	Н	

						_	. F (am) 0354		••	
2-375	H	H	H	Ħ	Me	2	-4-[cHx-(CH ₂) ₂ 0]Ph	H	H	
2-376	H	H	H	H	Me	2	-4-[cHx-(CH ₂) ₃ 0]Ph	B	H	
2-377	H	H	H	H	Me	2	-(4-BzO-Ph)	H	H	
2-378	H	H	Me	Me	Me	2	-(4-BzO-Ph)	B	H	
2-379	CO ₂ Me	H	H	H	Me	2	-(4-BzO-Ph)	H	H	
2-380	co_2Et	H	H	H	Me	2	-(4-Bz0-Ph)	H	H	
2-381	H	H	H	H	Me	2	-(4-Bz0-2-F-Ph)	B	H	10
2-382	H	H	H	H	Me	2	-(4-Bz0-3-F-Ph)	H	H	
2-383	H	H	H	H	Me	2	-(4-Bz0-2, 3-diF-Ph)	H	H	
2-384	H	H	H	H	Me	2	-(4-Bz0-2-C1-Ph)	H	H	
2-38 5	H	H	H	H	Me	2	-(4-Bz0-3-C1-Ph)	H	H	
2-386	H	H	H	H	Me	2	-(4-Bz0-2, 3-diCl-Ph)	H	H	
2-387	H	H	H	H	Me	2	-(4-Bz0-2-Me-Ph)	H	H	
2-388	H	H	H	H	Me	2	-(4-Bz0-3-Me-Ph)	H	H	20
2-389	H	H	H	H	Me	2	-(4-Bz0-2, 3-diMe-Ph)	H	Н	
2-390	H	H	H	H	Me	2	-4-[Ph-(CH ₂) ₂ 0]-Ph	H	Н	
2-391	H	H	H	H	Me	2	-4-[Ph-(CH ₂) ₃ 0]-Ph	H	Н	
2-392	H	H	H	H	Et	2	-(CH ₂) ₅ -cHx	H	Н	
2-393	H	H	H	H	Bt	2	-(CH ₂) ₆ -cHx	H	Н	
2-394	H	H	H	H	Et	2	-C≡C-(CH ₂) ₃ -cHx	H	Н	
2-395	H	H	H	H	Bt	2	$-C \equiv C - (CH_2)_4 - cHx$	H	Н	30
2-396	H	H	H	H	Et	2	-4-(cHx-CH ₂ 0)Ph	H	H	
2-397	H	H	H	H	Bt	2	-(4-BzO-Ph)	H	Н	
2-398	H	H	H	H	Et	2	$-C \equiv C - (CH_2)_2 0 - cHx$	H	Н	
2-399	H	H	H	H	Bt	2		H	Н	
2-400	H	H	H	H	Pr	2	-(CH ₂) ₅ -cHx	H	Н	
2-401	H	H	H	H	Pr	2		H	Н	
2-402	H	H	H	H		2		H	Н	40
2-403	H	H	H	H		2		H	Н	
							<i>D</i> .			

2-404	H	H	H	H	Pr	2	-4-(cHx-CH ₂ 0)Ph	H	H	
2-405	H	H	H	H	Pr	2	-(4-Bz0-Ph)	H	H	
2-406	H	H	H	H	Pr	2	$-C \equiv C - (CH_2)_2 0 - cHx$	H	Н	
2-407	H	H	H	H	Pr	2	$-C \equiv C - (CH_2)_2 0 - Ph$	H	Н	
2-408	H	H	H	H	Me	3	-(CH ₂) ₅ -cHx	H	Н	
2-409	H	H	H	H	Me	3	-(CH ₂) ₆ -cHx	H	Н	
2-410	H	H	H	H	Me	3	$-C \equiv C - (CH_2)_3 - cHx$	H	Н	10
2-411	H	H	H	H	Me	3	$-C \equiv C - (CH_2)_4 - cHx$	H	Н	
2-412	H	H	H	H	Me	3	-4-(cHx-CH ₂ 0)Ph	H	Н	
2-413	H	H	H	H	Me	3	-(4-BzO-Ph)	H	Н	
2-414	H	H	H	H	Me	3	$-C \equiv C - (CH_2)_2 0 - cHx$	H	Н	
2-415	H	H	H	H	Me	3	$-C \equiv C - (CH_2)_2 0 - Ph$	H	H	v
2-416	COCH3	H	H	H	Me	2	-(CH ₂) ₄ -cHx	H	H	
2-417	COC ₂ H	5 H	H	H	Me	2	-(CH ₂) ₄ -cHx	H	H	20
2-418	COC ₃ H	7 H	H	H	Me	2	-(CH ₂) ₄ -cHx	H	H	
2-419	COC ₄ H	9 H	H	H	Me	2	-(CH ₂) ₄ -cHx	H	Н	
2-420	COC ₅ H	11 F	н н	H	Me	2	-(CH ₂) ₄ -cHx	H	H	
2-421	COC ₆ H	13 I	H	H	Me	2	-(CH ₂) ₄ -cHx	H	H	
2-422	COC7H				Me	2	• •	H	Н	
2-423	COC ₈ H	17 E	H	H	Me	2	5 .	H	Н	
2-424	COCH3			H	Me	2	-(CH ₂) ₄ -Ph	H	H	30
2-425	COC ₂ H ₂	5 H	H	H	Me	2	-(CH ₂) ₄ -Ph	H	H	
2-426	COC3H	•		H		2	-(CH ₂) ₄ -Ph	H	H	
2-427							-(CH ₂) ₄ -Ph	H	H	
2-428							-(CH ₂) ₄ -Ph	H	H	
2-429	COC ₆ H ₂						-(CH ₂) ₄ -Ph	H	Н	
2-430							-(CH ₂) ₄ -Ph	H	H	40
2-431	υ.	•					-(CH ₂) ₄ -Ph	H	H	40
2-432	COCH3	H	H	H	Me	2	-(CH ₂) ₅ -cHx	H	H	

2-433	COC_2H_5 H H	H	Me	2	-(CH ₂) ₅ -cHx	H	H	
2-434	сосзну н н	H	Me	2	-(CH ₂) ₅ -cHx	H	H	
2-435	COC ₄ H ₉ H H	H	Me	2	-(CH ₂) ₅ -cHx	H	H	
2-436	COC ₅ H ₁₁ H H	H	Me	2	-(CH ₂) ₅ -cHx	H	H	
2-437	СОС ₆ H ₁₃ Н Н	H	Me	2	-(CH ₂) ₅ -cHx	H	H	
2-438	сос ₇ н ₁₅ н н	H	Me	2	$-(CH_2)_5$ -cHx	H	H	
2-439	СОС ₈ H ₁₇ Н Н	H	Me	2	-(CH ₂) ₅ -cHx	H	H	10
2-440	COCH ₃ H H	H	Me	2	-(CH ₂) ₅ -Ph	H	H	
2-441	${\tt COC_2H_5~H~H}$	H	Me	2	-(CH ₂) ₅ -Ph	H	H	
2-442	сос ₃ н ₇ н н	H	Me	2	-(CH ₂) ₅ -Ph	H	H	
2-443	сос4н9 н н	H	Me	2	-(CH ₂) ₅ -Ph	H	H	
2-444	COC_5H_{11} H H	H	Me	2	-(CH ₂) ₅ -Ph	H	H	
2-445	COC_6H_{13} H H	H	Me	2	-(CH ₂) ₅ -Ph	H	H	
2-446	СОС7H ₁₅ Н Н	H	Me	2	-(CH ₂) ₅ -Ph	H	H	20
2-447	СОС ₈ H ₁₇ Н Н	H	Me	2	-(CH ₂) ₅ -Ph	H	H	
2-448	COCH ₃ H H	H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	H	H	•
2-449	COC ₂ H ₅ H H	H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	H	H	
2-450	сос ₃ н ₇ н н	H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	H	H	
2-451	COC ₄ H ₉ H H	H	Me	2	$-C \equiv C - (CH_2)_3 - cHx$	H	H	
2-452	COC ₅ H ₁₁ H H	H	Me	2	$-C \equiv C - (CH_2)_{3} - cHx$	H	H	
2-453	COC_6H_{13} H H	H	Me		<i>D</i> 0	H	H	30
2-454	СОС ₇ Н ₁₅ Н Н	H	Me	2	$-C \equiv C - (CH_2)_{3} - cHx$	H	H	
2-455	COC ₈ H ₁₇ H H	H	Me	2	$-C \equiv C - (CH_2)_{3} - cHx$	H	H	
2-456	COCH ₃ H H	H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	H	H	
2-457	сос ₂ н ₅ н н	H	Me		-C≡C-(CH ₂) ₃ -Ph	H	H	
2-458	COC ₃ H ₇ H H	H	Me	2	-C≡C-(CH ₂) ₃ -Ph	H	H	
2-459	COC ₄ H ₉ H H	H		2	$-C \equiv C - (CH_2)_3 - Ph$	H	H	
2-460	COC ₅ H ₁₁ H H	H			$-C \equiv C - (CH_2)_3 - Ph$	H	Н	40
2-461	COC_6H_{13} H H	H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	H	Н	

2-462	СОС ₇ Н ₁₅ Н Н	H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	H	H	
2-463	СОС ₈ H ₁₇ Н Н	H	Me	2	$-C \equiv C - (CH_2)_3 - Ph$	H	H	
2-464	сосн3 н н	H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	
2-465	COC_2H_5 H H	H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	
2-466	сосзну н н	H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	
2-467	сос4н9 н н	H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	
2-468	COC5H ₁₁ H H	H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	10
2-469	сос ₆ н ₁₃ н н	H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	
2-470	COC7H ₁₅ H H	H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	
2-471	сос ₈ н ₁₇ н н	H	Me	2	$-C \equiv C - (CH_2)_4 - cHx$	H	H	
2-472	COCH ₃ H H	H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	H	H	
2-473	${\tt COC_2H_5}$ H H	H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	H	H	
2-474	сосзн7 н н	H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	H	H	
2-475	сос4н9 н н	H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	H	H	20
2-476	COC5H ₁₁ H H	H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	H	H	
2-477	сос ₆ н ₁₃ н н	H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	H	H	
2-478	СОС7H ₁₅ Н Н	H	Me	2	$-C \equiv C - (CH_2)_4 - Ph$	H	H	
2-479	СОС ₈ H ₁₇ Н Н	H	Me	2	$-c \equiv c - (cH_2)_4 - Ph$	H	H	
2-480	COCH3 H H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - cHx$	H	H	
2-481	сос ₂ н ₅ н н	H	Me	2	$-C \equiv C - (CH_2)_2 0 - cHx$	H	H	
2-482	COC ₃ H ₇ H H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - cHx$	H	H	30
2-483	COC ₄ H ₉ H H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - cHx$	H	H	
2-484	COC ₅ H ₁₁ H H	H	Me	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	H	
2-485	сос ₆ н ₁₃ н н	H	Me	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	H	
2-486	сос ₇ н ₁₅ н н	H	Me	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	H	
2-487	COC ₈ H ₁₇ H H	H	Me	2	$-C \equiv C - (CH_2)_2 O - cHx$	H	H	
2-488	сосн3 н н	H	Me	2	$-C \equiv C - (CH_2)_2 0 - Ph$	H	H	
2-489	COC_2H_5 H H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - Ph$	H	H	40
2-490	COC ₃ H ₇ H H	H	Me	2	$-C \equiv C - (CH_2)_2 0 - Ph$	H	H	

```
2-491
          COC4H9 H H
                                 Me 2 -C \equiv C - (CH_2)_2 O - Ph
                                                                               H
                                                                                      H
                          H
2-492
          COC5H11 H H
                                           -C \equiv C - (CH_2)_2 O - Ph
                                                                                H
                                                                                       H
                             H
                                  Me 2
                                            -C \equiv C - (CH_2)_2 O - Ph
2-493
          COC<sub>6</sub>H<sub>13</sub> H H
                                  Me 2
                                                                                H
                                                                                       H
                             H
2-494
          COC7H15 H H
                                            -C \equiv C - (CH_2)_2 O - Ph
                                                                                 H
                                                                                       H
                             H
                                  Me 2
                                          -C \equiv C - (CH_2)_2 O - Ph
                                                                                H
                                                                                       H
2-495
          COC<sub>8</sub>H<sub>17</sub> H H
                                  Me 2
                             H
                                                                               H
                                                                                      H
2-496
          COCH3 H H
                                     2
                                           -CO-(CH_2)_4-cHx
                            H
                                 Me
          COC<sub>2</sub>H<sub>5</sub> H H
                                           -C0-(CH_2)_4-cHx
                                                                               H
                                                                                      H
2-497
                            H
                                 Me
                                     2
                                                                                                           10
                                           -C0-(CH_2)_4-cHx
          COC<sub>3</sub>H<sub>7</sub> H H
                                                                               H
                                                                                      H
2-498
                            H
                                 Me
                                     2
                                           -C0-(CH_2)_4-cHx
                                                                               H
                                                                                      H
2-499
          COC4H9 H H
                            H
                                 Me 2
                                           -CO-(CH<sub>2</sub>)_{A}-cHx
                                                                                H
2-500
          COC5H11 H H
                                  Me 2
                                                                                       H
                            H
                                            -C0-(CH_2)_4-cHx
                                                                                H
                                                                                       H
2-501
          COC<sub>6</sub>H<sub>13</sub> H H
                             H
                                  Me 2
                                            -CO-(CH_2)_4-cHx
                                                                                H
                                                                                       H
2-502
          COC7H15 H H
                                  Me 2
                             H
                                  Me 2 -C0-(CH_2)_4-cHx
                                                                                       H
                                                                                H
2-503
          COC8H17 H H
                             H
                                           -CO-(CH<sub>2</sub>)<sub>4</sub>-Ph
                                                                               H
2-504
          COCH3 H H
                            H
                                 Me 2
                                                                                      H
                                                                                                           20
          COC<sub>2</sub>H<sub>5</sub> H H
                            H
                                     2
                                           -CO-(CH_2)_4-Ph
                                                                               H
                                                                                      H
2-505
                                 Me
                                           -C0-(CH_2)_4-Ph
                                                                               H
                                                                                      H
2-506
          COC<sub>3</sub>H<sub>7</sub> H H
                            H
                                     2
                                 Me
2-507
          COC4H9 H H
                            H
                                     2
                                           -CO-(CH<sub>2</sub>)_{\Delta}-Ph
                                                                               H
                                                                                      H
                                 Me
                                                                                H
                                                                                       H
                                           -CO-(CH<sub>2</sub>)<sub>4</sub>-Ph
2-508
          COC5H11 H H
                                  Me 2
                            H
         COC6H13 H H
                                  Me 2 -CO-(CH_2)_4-Ph
                                                                                 H
                                                                                       H
2-509
                             H
                                  Me 2 -CO-(CH_2)_4-Ph
                                                                                 H
                                                                                       H
          COC7H15 H H
                             H
2-510
                                                                                                           30
                                  Me 2
                                            -C0-(CH_2)_4-Ph
                                                                                 H
                                                                                       H
2-511
          COC8H17 H H
                             H
```

上記表 1 [式 (I a - 1) 及び (I a - 2)] 並びに表 2 [(I b - 1) 及び (I b - 2)] において、

本発明の化合物(I)として好適には、

```
例示化合物番号: 1-19, 1-23\sim1-32, 1-36\sim1-45,
          1-62\sim 1-71, 1-75\sim 1-84, 1-88\sim 1-102,
\sim 1 - 58,
  1-1\ 0\ 6\sim 1-1\ 5\ 6, 1-1\ 6\ 0\sim 1-2\ 1\ 4, 1-2\ 1\ 8\sim 1-2\ 6\ 8,
1-272\sim1-322, 1-325\sim1-334, 1-338\sim1-347,
-351 \sim 1-360, 1-364 \sim 1-373, 1-377 \sim 1-386,
                                                                        40
                 1-408\sim 1-458, 1-462\sim 1-513,
390 \sim 1 - 404
1 \ 7 \sim 1 - 5 \ 2 \ 6, 1 - 5 \ 3 \ 0 \sim 1 - 5 \ 4 \ 4, 1 - 5 \ 4 \ 8 \sim 1 - 5 \ 9 \ 8,
2 \sim 1 - 6 \ 5 \ 7, 1 - 6 \ 7 \ 0, 1 - 6 \ 7 \ 4 \sim 1 - 6 \ 8 \ 3,
                                                  1 - 696
0 \sim 1 - 7 \ 1 \ 7, 1 - 7 \ 2 \ 1 \sim 1 - 7 \ 3 \ 0, 1 - 7 \ 3 \ 4 \sim 1 - 7 \ 4 \ 3, 1 - 7 \ 4 \ 7 \sim
          1 - 7 6 0 \sim 1 - 7 7 4, 1 - 7 7 8 \sim 1 - 8 2 8,
1 - 7 5 6.
          1 - 890 \sim 1 - 940, 1 - 944 \sim 1 - 993, 1 - 997 \sim 1 -
          1-1010\sim 1-1019, 1-1045, 1-1049\sim 1-10
1006,
58, 1-1062\sim1-1076, 1-1080\sim1-1130, 1-1134
\sim 1 - 1 \ 1 \ 8 \ 5, 1 - 1 \ 1 \ 8 \ 9 \sim 1 - 1 \ 1 \ 9 \ 8, 1 - 1 \ 2 \ 0 \ 2 \sim 1 - 1 \ 2 \ 0 \ 8,
-1212\sim1-1216, 1-1220\sim1-1270, 1-1274\sim1-13
                                                                        50
```

```
31, 1-1335\sim1-1344, 1-1348\sim1-1357, 1-1361
\sim 1 - 1 \ 3 \ 7 \ 0, 1 - 1 \ 3 \ 7 \ 4 \sim 1 - 1 \ 3 \ 8 \ 7, 1 - 1 \ 3 \ 9 \ 1 \sim 1 - 1 \ 4 \ 0 \ 0, 1
-1404\sim1-1418, 1-1422\sim1-1472, 1-1476\sim1-15
27, 1-1531\sim 1-1540, 1-1544\sim 1-1558, 1-1562
\sim 1 - 1 \ 6 \ 1 \ 2, 1 - 1 \ 6 \ 1 \ 6 \sim 1 - 1 \ 6 \ 7 \ 3, 1 - 1 \ 6 \ 7 \ 7 \sim 1 - 1 \ 6 \ 8 \ 6, 1
-1690 \sim 1 - 1699, 1 - 1703 \sim 1 - 1712, 1 - 1716 \sim 1 - 17
29, 1-1733\sim1-1744, 1-1748\sim1-1767, 1-1772
\sim 1 - 1 793, 1 - 1797 \sim 1 - 1818, 1 - 1824 \sim 1 - 1846, 1
-1850 \sim 1-1869, 1-1872, 1-1876, 1-1880, 1-
1884, 1-1888 \sim 1-1892, 1-1896, 1-1900, 1-1
9\ 0\ 8\sim 1\ -1\ 9\ 1\ 3, 1\ -1\ 9\ 1\ 7\sim 1\ -1\ 9\ 3\ 9, 1\ -1\ 9\ 4\ 3\sim 1\ -1\ 9\ 6\ 6
, 1-1970\sim1-1991, 1-1995\sim1-2013, 1-2017,
1 - 2021, 1 - 2025, 1 - 2029, 1 - 2033, 1 - 2037
1-2042, 1-2045\sim 1-2068, 1-2072\sim 1-2089,
093, 1-2097, 1-2101, 1-2105, 1-2109, 1-2
1 1 3, 1 - 2 1 1 7, 1 - 2 1 2 1, 1 - 2 1 2 5, 1 - 2 1 2 9, 1 - 2 1
3\ 3, 1-2\ 1\ 3\ 5, 1-2\ 1\ 3\ 9\sim 1-2\ 1\ 5\ 8, 1-2\ 1\ 6\ 1\sim 1-2\ 1\ 6\ 4
, 1-2184~1-2346, 1-2398~1-2557,
2-9\sim2-18, 2-22\sim2-43, 2-47\sim2-70, 2-74\sim2-9
6, 2-100\sim2-119, 2-142, 2-146, 2-150, 2-1
     2-158\sim 2-163, 2-167\sim 2-183, 2-185\sim 2-18
9, 2-1 9 3 ~ 2 - 2 1 6, 2-2 2 0 ~ 2 - 2 4 1, 2-2 4 5 ~ 2 - 2 6 3,
 2-267, 2-271, 2-275, 2-279, 2-283, 2-28
7 \sim 2 - 292, 2 - 296 \sim 2 - 318, 2 - 322 \sim 2 - 338, 2 - 343
, 2-347, 2-351, 2-371, 2-375\sim 2-377, 2-38
1 \sim 2 - 4 \ 0 \ 7, 2 - 4 \ 1 \ 6 \sim 2 - 5 \ 1 \ 1,
であり、更に好適には、
1-19, 1-32, 1-36\sim 1-45, 1-57, 1-62\sim 1-71,
1-84, 1-88, 1-97\sim 1-100, 1-152\sim 1-154, 1-1
6 \ 0 \sim 1 - 2 \ 1 \ 4, 1 - 2 \ 1 \ 8 \sim 1 - 2 \ 2 \ 7, 1 - 2 \ 6 \ 4 \sim 1 - 2 \ 6 \ 8, 1 - 2 \ 7
2 \sim 1 - 3 \ 2 \ 2, 1 - 3 \ 3 \ 4, 1 - 3 \ 4 \ 7, 1 - 3 \ 6 \ 0, 1 - 3 \ 7 \ 3,
86, 1-390\sim1-402, 1-454\sim1-458, 1-462\sim1-51
3, 1-526, 1-530\sim1-542, 1-594\sim1-598, 1-60
2 \sim 1 - 653, 1 - 743, 1 - 756, 1 - 760 \sim 1 - 768,
0 \sim 1 - 7 \ 7 \ 4, 1 - 7 \ 7 \ 8 \sim 1 - 8 \ 2 \ 8, 1 - 8 \ 3 \ 2 \sim 1 - 8 \ 8 \ 6, 1 - 8 \ 9 \ 0
\sim 1 - 9 \ 4 \ 0. 1 - 9 \ 4 \ 4 \sim 1 - 9 \ 9 \ 3. 1 - 1 \ 0 \ 4 \ 5. 1 - 1 \ 0 \ 5 \ 8, 1 - 1 \ 0
62 \sim 1 - 1074, 1 - 1126 \sim 1 - 1130, 1 - 1134 \sim 1 - 1185,
 1-1198, 1-1202\sim1-1208, 1-1212, 1-1213, 1
-1214, 1-1266 \sim 1-1270, 1-1274 \sim 1-1331, 1-13
44, 1-1348\sim1-1357, 1-1370, 1-1374\sim1-1387
, 1-1400, 1-1404~1-1416, 1-1468~1-1472, 1
-1476 \sim 1-1527, 1-1540, 1-1544 \sim 1-1556, 1-1
608 \sim 1 - 1612, 1 - 1616 \sim 1 - 1666, 1 - 1729, 1 - 1742
  1-1744, 1-1759\sim 1-1767, 1-1789\sim 1-1793, 1
-1797 \sim 1 - 1818, 1 - 1842 \sim 1 - 1846, 1 - 1900, 1 - 1
9\ 0\ 8 \sim 1\ -1\ 9\ 1\ 3, 1\ -1\ 9\ 3\ 5 \sim 1\ -1\ 9\ 3\ 9, 1\ -1\ 9\ 4\ 3 \sim 1\ -1\ 9\ 6\ 6,
 1-1987\sim 1-1991, 1-2013, 1-2017, 1-2029,
1-2033, 1-2037\sim 1-2042, 1-2064\sim 1-2068, 1-
2 \ 0 \ 7 \ 2 \sim 1 \ - 2 \ 0 \ 8 \ 9, 1 \ - 2 \ 0 \ 9 \ 3, 1 \ - 2 \ 0 \ 9 \ 7, 1 \ - 2 \ 1 \ 0 \ 1, 1 \ - 2
105, 1-2109, 1-2129, 1-2133, 1-2135, 1-2
```

 $184 \sim 1-2346$, $1-2398 \sim 1-2557$, $2-11 \sim 2-18$, 2-3 $9 \sim 2 - 43$, $2 - 47 \sim 2 - 70$, $2 - 185 \sim 2 - 189$, $2 - 193 \sim 2 -$ 2 1 6, $2 - 2 8 7 \sim 2 - 2 9 2$, 2 - 3 3 8, 2 - 3 4 3, 2 - 3 4 7, 2- 3 5 1, $2 - 4 \cdot 1 \cdot 6 \sim 2 - 5 \cdot 1 \cdot 1$, であり、より好適には、 1-45, 1-71, 1-84, 1-88, $1-97\sim 1-100$, 1-15 $2 \sim 1 - 154$, $1 - 160 \sim 1 - 206$, $1 - 209 \sim 1 - 212$, 1 - 2641 - 3 8 6, $1 - 3 9 0 \sim 1 - 4 0 2$ $\sim 1 - 2 6 6$, 1 - 3 3 4, 1 - 3 7 3, $1-454\sim 1-458$, $1-462\sim 1-485$, 1-509, 1-5101-513, 1-526, $1-530\sim1-542$, $1-594\sim1-598$ 10 $1-602\sim1-613$, 1-649, 1-650, 1-743, 1-756, $1-760\sim1-768$, $1-770\sim1-772$, $1 - 8 2 4 \sim 1 - 8 2 8$ $1-832\sim1-884$, 1-936, 1-1045, 1-1058, 1- $1\ 0\ 6\ 2 \sim 1\ -\ 1\ 0\ 7\ 4$, $1\ -\ 1\ 1\ 2\ 6 \sim 1\ -\ 1\ 1\ 3\ 0$, $1\ -\ 1\ 1\ 3\ 4 \sim 1\ -\ 1\ 1\ 4$ 5, 1-1 1 4 $8 \sim 1-1$ 1 5 1, 1-1 1 6 2, 1-1 1 6 3, 1-1 1 7 9 $\sim 1 - 1 \ 1 \ 8 \ 2$, $1 - 1 \ 1 \ 8 \ 5$, $1 - 1 \ 1 \ 9 \ 8$, $1 - 1 \ 2 \ 0 \ 2 \sim 1 - 1 \ 2 \ 0 \ 8$, $1-1\ 2\ 1\ 2$, $1-1\ 2\ 1\ 3$, $1-1\ 2\ 1\ 4$, $1-1\ 2\ 6\ 6\sim 1-1\ 2\ 7\ 0$, 1 $-1274 \sim 1 - 1285$, $1 - 1288 \sim 1 - 1291$, $1 - 1319 \sim 1 - 13$ $1-1329\sim1-1331$, 1-1344, $1-1348\sim1-1357$ 1-1370, 1-1387, 1-1400, $1-1404\sim 1-1416$, $1-1\ 4\ 6\ 8\sim 1-1\ 4\ 7\ 2$, $1-1\ 4\ 7\ 6\sim 1-1\ 4\ 8\ 7$, $1-1\ 4\ 9\ 0\sim 1-1$ 1 4 9 3, 1 - 1 5 0 4, 1 - 1 5 0 5, 1 - 1 5 2 1 ~ 1 - 1 5 2 4, 1 - 1 5 2 7, 1 - 1 5 4 0, 1 - 1 5 4 4 ~ 1 - 1 5 5 6, 1 - 1 6 0 8 ~ 1 - 1 6 1 $2. \quad 1-1616\sim 1-1627, \quad 1-1663, \quad 1-1664, \quad 1-1729$ 1-1742, 1-1744, $1-1761\sim 1-1766$, $1-1789\sim$ 1-1791, $1-1815\sim1-1818$, 1-1900, 1-1909, 1-1962, $1-2064\sim1-2066$, 1-2089, 1-2093, 1-2097, 1-2105, 1-2133, $1-2216 \sim 1-2288$, 1-2 $290 \sim 1 - 2346$, $1 - 2398 \sim 1 - 2557$, 30 であり、更により好適な化合物は、 例示化合物番号 式 Ia-1における 1-71: リン酸 モノ 2-7 ミノー 2-3 チル -4-[5-(4-シクロヘキシルブチル)チオフェン-2-イル]ブチル エステル、 例示化合物番号 式 Ia-1における1-84:リン酸 モノ 2-アミノー2-メチル -4-「5-(4-フェニルブチル)チオフェンー2-イル]ブチル エステル、 例示化合物番号 式 I a - 1 における 1 - 9 8: リン酸 モノ 2 - アミノー2 - メチル - 4 - 「5 - (5 - シクロヘキシルペンチル)チオフェン-2 - イル] ブチル エステル 例示化合物番号 式 I a-1 における 1-152: リン酸 モノ 2-アミノー2-メチ ルー4-[5-(5-フェニルペンチル)チオフェン-2-イル]プチル エステル、 例示化合物番号 式 I a - 1 における 1 - 2 1 0:リン酸 モノ 2 - アミノー2 - メチ ルー4-[5-(6-シクロヘキシルヘキシル)チオフェン-2-イル]ブチル エステ ル、 例示化合物番号 式Ia-1における1-264:リン酸 モノ 2-アミノー2-メチ ルー4-[5-(6-フェニルヘキシル)チオフェン-2-イル] プチル エステル、 例示化合物番号 式 Iaー1における1-373:リン酸 モノ 2ーアミノー2ーメチ ルー4-[5-(3-シクロヘキシルオキシプロピル)チオフェン-2-イル]プチル エステル、 例示化合物番号 式 I a - 1 における 1 - 3 8 6 : リン酸 モノ 2 - アミノー2 - メチ ルー4-[5-(3-フェノキシプロピル)チオフェン-2-イル]ブチル エステル、 例示化合物番号 式Ia-1における1-400:リン酸 モノ 2-アミノー2-メチ

例示化合物番号 式 I a-1 における <math>1-5 1 0 : リン酸 モノ 2- アミノ-2- 3- 3-

例示化合物番号 式 I a-1 における 1-770: リン酸 モノ 2- アミノ-2- 2-

例示化合物番号 式 I a-1 における 1-1 0 4 5 : リン酸 モノ 2- アミノー 2- メチルー 4- [5- (3- シクロヘキシルオキシプロピニル)チオフェンー 2- イル] ブチル エステル、

20

40

チル エステル、

例示化合物番号 式 I a-1 における 1-1329: リン酸 モノ 2-アミノー2-メチルー4-[5-(4-シクロヘキシルプタノイル)チオフェンー2-イル] プチル エステル、

例示化合物番号 式 I a - 1 における 1 - 1 3 3 0 : リン酸 モノ 2 - 7 - 1 -

例示化合物番号 式 I a-1 における 1-1 3 3 1 : リン酸 モノ 2- P =

例示化合物番号 式 I a-1 における 1-1 3 4 4 : リン酸 モノ 2- アミノー 2- メチルー 4- [5- (5- フェニルペンタノイル) チオフェンー 2- イル] ブチル エステル、

例示化合物番号 式 I a-1 における 1-1 3 5 7 : リン酸 モノ 2- アミノー 2- メチルー 4- [5-(6-シクロヘキシルヘキサノイル)チオフェンー 2-イル]ブチルエステル、

例示化合物番号 式 I a-1 における 1-1 4 0 0 : リン酸 モノ 2- アミノー 2- メチルー 4- [5-(3-フェノキシプロパノイル)チオフェンー 2- イル] ブチル エステル、

例示化合物番号 式 I a-1 における 1-1 4 1 4 : リン酸 モノ 2- アミノー 2- メチルー 4- [5- (4- シクロヘキシルオキシブタノイル)チオフェンー 2- イル] ブチル エステル、

例示化合物番号 式 I a-1 における 1-1 4 6 8 : リン酸 モノ 2- アミノー 2- メ チルー 4- [5- (4- フェノキシブタノイル)チオフェンー 2- イル] ブチル エステ 30 ル、

例示化合物番号 式 I a-1 における 1-1 5 2 3 : リン酸 モノ 2- アミノー 2- メチルー 4- [5- (5-) クロヘキシルオキシペンタノイル)チオフェンー 2- イル] ブチル エステル、

例示化合物番号 式 I a-1 における 1-1 5 2 7 : リン酸 モノ 2- P = 2- P = 1 =

例示化合物番号 式 I a-1 における 1-1 7 4 2 : リン酸 モノ 2- アミノー 2- メチルー 4- [5- (4- シクロヘキシルエトキシフェニル)チオフェンー 2- イル] ブチル エステル、

例示化合物番号 式 I a - 1 における 1 - 1 7 6 1: リン酸 モノ 2 - アミノ - 2 - エ 50

チルー 4 - [5 - (4 - シクロヘキシルブチル) チオフェンー <math>2 - 4ル] ブチル エステル、

例示化合物番号 式 I a - 1 における 1 - 1 9 0 0 : リン酸 モノ 2 - アミノー2 - エステル、

例示化合物番号 式 [a-1 における 1-5 9 4 : リン酸 モノ 2- アミノー 2- メチルー 4- [5- (4- ベンジルオキシブチル)チオフェン- 2- イル] ブチル エステル

20

例示化合物番号 式 I a - 1 における 1 - 7 6 6 : リン酸 モノ 2 - アミノー2 - メチルー4 - [5 - [4 - (4 - メチルチオフェニル) ブトー1 - イニル] チオフェンー2 - イル] ブチル エステル、

例示化合物番号 式 [a-1 における 1-8 3 2 : リン酸 モノ 2- アミノー 2- メチルー 4- [5- [5- (3- フルオロフェニル) ペントー 1- イニル] チオフェンー 2- イル] ブチル エステル、

例示化合物番号 式 I a -1 における 1-837: リン酸 モノ 2-アミノー2-メチルー4-[5-[5-(4-メチルフェニル) ペントー1-イニル] チオフェンー2-イ 1ル] ブチル エステル、

例示化合物番号 式 I a -1 における 1 -8 4 6 : リン酸 モノ 2 - アミノー2 - メチル -4 - [5 - [5 - (3 - トリフルオロメチルフェニル)ペント -1 - 1 -

例示化合物番号 式 I a-1 における 1-8 6 0 : リン酸 モノ 2- アミノー2- メチルー 4- [5- [5- (3- メチルチオフェニル)ペントー1- イニル] チオフェンー 2- イル] ブチル エステル、

例示化合物番号 式 I a - 1 L a + 1 L a + 1 L a + 1

40

] ブチル エステル、

例示化合物番号 式 I a - 1 c a + 1 c a + 1 + 1 a + 1

例示化合物番号 式 I a - 1 L a +

例示化合物番号 式 I a - 1 L a + L A + L a + L a + L a + L a + L a + L a + L a + L a + L a + L a +

例示化合物番号 式 I a-1 における 1-1 1 4 8 : リン酸 モノ 2- アミノー 2- メチルー 4- [5- [4- (3- トリフルオロメチルフェノキシ)プトー 1- イニル] チオフェンー 2- イル] プチル エステル、

例示化合物番号 式 I a-1 における 1-1 1 4 9 : リン酸 モノ 2- アミノー 2- メチルー 4- [5- [4- (4- トリフルオロメチルフェノキシ) プトー 1- イニル] チオフェンー 2- イル] プチル エステル、

例示化合物番号 式 I a-1 における 1-1 1 5 0 : リン酸 モノ 2- アミノー 2- メチルー 4- [5- [4-(3-メトキシフェノキシ) ブトー 1- イニル] チオフェンー 2- イル] ブチル エステル、

例示化合物番号 式 I a - 1 における 1 - 1 1 6 2 : リン酸 モノ 2 - アミノー 2 - メチル- 4 - [5 - [4 - (3 - メチルチオフェノキシ)プト- 1 - イニル]チオフェンー2 - イル]ブチル エステル、

例示化合物番号 式 Ia-1における1-1163:リン酸 モノ 2-アミノー2-メ 50

50

チルー 4-[5-[4-(4-メチルチオフェノキシ) ブトー<math>1-4ニル] チオフェンー 2-4ル] ブチル エステル、

例示化合物番号 式 I a - 1 L a +

例示化合物番号 式 Ia-1における1-1279:リン酸 モノ 2-アミノー2-メ チルー4- [5 - [4 - (4 -メチルフェニル) メトキシブトー1 -イニル] チオフェン -2-イル] ブチルエステル、

例示化合物番号 式Ia-1における1-1288:リン酸 モノ 2-アミノー2-メ チルー4- [5- [4- (3-トリフルオロメチルフェニル) メトキシブトー1ーイニル] チオフェン-2-イル] ブチル エステル、

例示化合物番号 式 Ia-1における1-1289:リン酸 モノ 2-アミノー2-メ チルー4-[5-[4-(4-トリフルオロメチルフェニル)メトキシブトー1-イニル] チオフェンー2ーイル] プチル エステル、

例示化合物番号 式 Ia-1における 1-1290:リン酸 モノ 2-アミノー2-メ 10 チルー4-[5-[4-(3-メトキシフェニル)メトキシプト-1-イニル]チオフェ ン-2-イル] ブチル エステル、

例示化合物番号 式 Ia-1における1-1291:リン酸 モノ 2-アミノー2-メ チルー4ー[5-[4-(4-メトキシフェニル)メトキシプト-1-イニル]チオフェ ン-2-イル] ブチル エステル、

例示化合物番号 式Ia-1における1-1319:リン酸 モノ 2-アミノー2-メ チルー4- [5- [4- (3, 4-ジメチルフェニル) メトキシブトー1ーイニル] チオ フェンー2ーイル] ブチル エステル、

例示化合物番号 式 Ia-1における 1-1320:リン酸 モノ 2-アミノー2-メ チルー4- [5- [4-(3, 5-ジメチルフェニル) メトキシブトー1ーイニル] チオ 20 フェン-2-イル] プチル エステル、

例示化合物番号 式 Ia-1における1-1348:リン酸 モノ 2-アミノー2-メ チルー4- [5- [5- (4-フルオロフェニル) ペンタノイル] チオフェンー2-イル] ブチル エステル、

例示化合物番号 式 Ia-1における1-1349:リン酸 モノ 2-アミノー2-メ チルー4- [5- [5- (4-メチルフェニル) ペンタノイル] チオフェンー2-イル] ブチル エステル、

例示化合物番号 式Ia-1における1-1350:リン酸 モノ 2-アミノー2-メ チルー4- [5- [5- (4-エチルフェニル) ペンタノイル] チオフェンー2-イル] ブチル エステル、

例示化合物番号 式 Ia-1 における 1-1 3 5 1 : リン酸 モノ 2 - アミノー2 - メ チルー4-[5-[5-(4-トリフルオロメチルフェニル)ペンタノイル]チオフェン -2-イル] ブチル エステル、

例示化合物番号 式 Ia-1における1-1352:リン酸 モノ 2-アミノー2-メ チルー4-[5-[5-(4-メトキシフェニル)ペンタノイル]チオフェン-2-イル 〕ブチル エステル、

例示化合物番号 式 [a-1における1-1353:リン酸 モノ 2-アミノー2-メ チルー4- [5- [5- (4-エトキシフェニル) ペンタノイル] チオフェンー2ーイル 〕ブチル エステル、

例示化合物番号 式 I a - 1 における 1 - 1 3 5 4 : リン酸 モノ 2 - アミノー 2 - メ 40 チルー4-[5-[5-(4-メチルチオフェニル)ペンタノイル]チオフェン-2-イ ル] ブチル エステル、

例示化合物番号 式Ia-1における1-1476:リン酸 モノ 2-アミノ-2-メ チルー4-[5-[4-(3-フルオロフェノキシ)ブタノイル]チオフェン-2-イル] ブチル エステル、

例示化合物番号 式 Ia-1 における 1-1 4 7 7 : リン酸 モノ 2 - アミノー2 - メ チルー4-[5-[4-(4-フルオロフェノキシ)プタノイル]チオフェン-2-イル 〕ブチル エステル、

例示化合物番号 式Ia-1における1-1478:リン酸 モノ 2-アミノ-2-メ チルー4- [5 - [4 - (4 - クロロフェノキシ)ブタノイル]チオフェンー2ーイル] 50 ブチル エステル、

例示化合物番号 式 I a-1 における 1-1 4 8 0 : リン酸 モノ 2- P = 2- P = 1 =

例示化合物番号 式 I a-1 における 1-1 4 9 2 : リン酸 モノ 2- アミノー 2- メチルー 4- [5- [4-(3-メトキシフェノキシ) ブタノイル] チオフェンー 2- イル 1 ブチル エステル、

例示化合物番号 式 I a-1 における 1-1 4 9 3 : リン酸 モノ 2- アミノー 2- メチルー 4- [5- [4- (4- メトキシフェノキシ) プタノイル] チオフェンー 2- イル 1 ブチル エステル、

例示化合物番号 式 I a-1 における 1-2 0 9 3 : リン酸 モノ 2-アミノーエチル <math>-4-[5-(4-7x-1)7タノイル)チオフェン-2-イル] ブチル エステル、 例示化合物番号 式 I a-1 における 1-2 1 0 1 : リン酸 モノ 2-アミノーエチル <math>-4-[5-(5-7x-1)(2x-

エステル、

10

50

「例示化合物番号 式 I a - 1 における 1 - 2 2 6 1 : リン酸 モノ 2 - アミノー 2 - メ チル - 4 - [5 - [5 - (3, 5 - ジクロロフェニル) ペント - 1 - イニル] チオフェン - 2 - イル] ブチル エステル、

例示化合物番号 式 I a-1 における <math>I-2 2 6 6 : U ン酸 モノ 2-アミノ-2-メ チル-4-[5-[5-(3,4,5-トリメトキシフェニル) ペント-1-イニル] チオフェン-2-イル] ブチル エステル、

例示化合物番号 式 I a - 1 における 1 - 2 2 6 7 : リン酸 モノ 2 - P ミノー 2 - P ミノー 2 - 2 - 4 - 1 - 1

例示化合物番号 式 I a - 1 における 1 - 2 2 7 0:リン酸 モノ 2 - アミノー 2 - メチル - 4 - [5 - [3 - (3, 4 - ジフルオロフェノキシ)プロピニル]チオフェン - 2 - イル]ブチル エステル、

40

イル] ブチル エステル、

例示化合物番号 式 I a-1 における1-2284: リン酸 モノ 2-アミノ-2-メチル-4-[5-[3-(3,4-ジメトキシフェノキシ)プロピニル]チオフェン-2-イル]ブチル エステル、

例示化合物番号 式 I a-1 における <math>1-2 2 8 7 : リン酸 モノ 2- P = 2- P = 3- P

例示化合物番号 式 I a - 1 L a +

例示化合物番号 式 I a - 1 における 1 - 2 2 9 6 : リン酸 モノ 2 - アミノ - 2 - メ 50

チルー 4 - [5 - [4 - (3, 5 - ジトリフルオロメチルフェノキシ) プトー<math>1 - 1ーイニル] チオフェンー2 - 1ーイン エステル、

例示化合物番号 式 I a - 1 における 1 - 2 2 9 7 : リン酸 モノ 2 - アミノー 2 - メ チルー 4 - [5 - [4 - (3, 4 - ジメトキシフェノキシ)ブト - 1 - イニル]チオフェ ン - 2 - イル]ブチルエステル、

例示化合物番号 式 I a - 1 における 1 - 2 2 9 8 : リン酸 モノ 2 - アミノ - 2 - メ チル - 4 - [5 - [4 - (3, 5 - ジメトキシフェノキシ)プト - 1 - イニル]チオフェ ン - 2 - イル]ブチルエステル、

40

例示化合物番号 式 I a - 1 1 a - 1 a - 1 a - a

例示化合物番号 式 I a - 1 c a + 1 c a + 1 a

例示化合物番号 式 I a - 2 における 1 - 8 4 : 3 - 7 = 1 - 1 = 1

例示化合物番号 式 Ia-2 における 1-98:3- アミノ-3- メチル-5- [5-(5-) クロヘキシルペンチル) チオフェン-2- イル] ペンチルホスホン酸、

例示化合物番号 式 I a - 2 における 1 - 2 1 0 : 3 - 7 ミノ - 3 - 3 - 3 - 3 - 4 -

例示化合物番号 式 I a - 2 における 1 - 2 6 4 : 3 - 7 = 1 - 2 + 1 +

例示化合物番号 式 Ia-2 における 1-3 7 3 : 3-7 ミノー 3-3 チルー 5-[5-(3-5) クロヘキシルオキシプロピル)チオフェンー 2-7 ルランチルホスホン酸、

例示化合物番号 式 I a - 2 における 1 - 3 8 6 : 3 - アミノ - 3 - メチル - 5 - [5 -

(3-フェノキシプロピル) チオフェン-2-イル] ペンチルホスホン酸、 例示化合物番号 式 I a -2 における 1-4 0 0 : 3- アミノ-3- メチル-5- [5 - (4 - シクロヘキシルオキシブチル) チオフェン-2- イル] ペンチルホスホン酸、

例示化合物番号 式 I a - 2 における 1 - 4 5 4 : 3 - 7 = 1 = 3 - = 1 = 4 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 2 = 1 = 1 = 2 = 1 = 1 = 2 = 3 = 7 = 2 = 4 = 3 = 7 = 2 = 4 = 3 = 7 = 3 = 4 = 5 = 1 = 5 = 1 = 5 = 1 = 1 = 2 = 3 = 7 = 2 = 3 = 4 = 5 = 1 = 5 = 1 = 5 = 1 = 1 = 1 = 2 = 3 = 7 = 1 = 3 = 3 = 7 = 1 = 3 =

例示化合物番号 式 I a - 2 における 1 - 5 0 9 : 3 - 7 = 1 - 1 =

```
例示化合物番号 式 I a - 2 における 1 - 1 3 2 9 : 3 - アミノ - 3 - メチル - 5 - [5]
- (4-シクロヘキシルブタノイル)チオフェン-2-イル]ペンチルホスホン酸、
例示化合物番号 式Ia-2における1-1330:3-アミノ-3-メチル-5-[5
- (4-フェニルプタノイル)チオフェン-2-イル]ペンチルホスホン酸、
例示化合物番号 式 I a - 2 における 1 - 1 3 3 1 : 3 - アミノ - 3 - メチル - 5 - [5]
- (5-シクロヘキシルペンタノイル)チオフェン-2-イル]ペンチルホスホン酸、
例示化合物番号 式Ia-2における1-1344:3-アミノ-3-メチル-5-[5
- (5-フェニルペンタノイル)チオフェン-2-イル]ペンチルホスホン酸、
例示化合物番号 式Ia-2における1-1357:3-アミノー3-メチル-5- [5
- (6-シクロヘキシルヘキサノイル)チオフェン-2-イル]ペンチルホスホン酸、
                                                   10
例示化合物番号 式Ia-2における1-1370:3-アミノ-3-メチル-5-[5
- (6-フェニルヘキサノイル)チオフェン-2-イル]ペンチルホスホン酸、
例示化合物番号 式 I a - 2 における 1 - 1 3 8 7 : 3 - アミノ - 3 - メチル - 5 - [5
- (3-シクロヘキシルオキシプロパノイル)チオフェン-2-イル]ペンチルホスホン
酸、
例示化合物番号 式 I a - 2 における 1 - 1 4 0 0 : 3 - アミノ - 3 - メチル - 5 - [5
- (3-フェノキシプロパノイル)チオフェン-2-イル]ペンチルホスホン酸、
例示化合物番号 式Ia-2における1-1414:3-アミノ-3-メチル-5-[5
- (4-シクロヘキシルオキシブタノイル)チオフェン-2-イル]ペンチルホスホン酸
                                                   20
例示化合物番号 式 I a - 2 における 1 - 1 4 6 8 : 3 - アミノ - 3 - メチル - 5 - [5]
- (4-フェノキシブタノイル)チオフェン-2-イル]ペンチルホスホン酸、
例示化合物番号 式 I a - 2 における 1 - 1 5 2 3 : 3 - アミノ - 3 - メチル - 5 - [5
- (5-シクロヘキシルオキシペンタノイル)チオフェン-2-イル]ペンチルホスホン
酸、
例示化合物番号 式 I a - 2 における 1 - 1 5 2 4 : 3 - アミノ - 3 - メチル - 5 - [5
- (5-フェノキシペンタノイル)チオフェン-2-イル]ペンチルホスホン酸、
例示化合物番号 式 I a - 2 における 1 - 1 5 2 7 : 3 - アミノ - 3 - メチル - 5 - [5
- (4-シクロヘキシルメトキシプロパノイル)チオフェン-2-イル]ペンチルホスホ・
ン酸、
                                                   30
例示化合物番号 式 I a - 2 における 1 - 1 7 2 9 : 3 - アミノ - 3 - メチル - 5 - [5
- (4-シクロヘキシルメトキシフェニル)チオフェン-2-イル]ペンチルホスホン酸
例示化合物番号 式 I a - 2 における 1 - 1 7 4 2 : 3 - アミノ - 3 - メチル - 5 - [5
- (4-シクロヘキシルエトキシフェニル)チオフェン-2-イル]ペンチルホスホン酸
例示化合物番号 式 Ia-2における 1-1744:3-アミノー 3-メチルー 5-[5
- (4-ベンジルオキシフェニル)チオフェン-2-イル]ペンチルホスホン酸、
例示化合物番号 式 I a - 2 における 1 - 1 7 6 1 : 3 - アミノ - 3 - エチル - 5 - [5]
- (4-シクロヘキシルブチル)チオフェン-2-イル]ペンチルホスホン酸、
                                                   40
例示化合物番号 式 I a - 2 における 1 - 1 7 6 4 : 3 - アミノ - 3 - エチル - 5 - [5]
- (5-シクロヘキシルペンチル)チオフェン-2-イル]ペンチルホスホン酸、
例示化合物番号 式 I a - 2 における 1 - 1 8 1 6 : 3 - アミノ - 3 - エチル - 5 - [5
- (6-シクロヘキシルヘキシル)チオフェン-2-イル]ペンチルホスホン酸、
例示化合物番号 式 I a - 2 における 1 - 2 0 8 9 : 3 - アミノ - 3 - エチル - 5 - [5
- (4-シクロヘキシルプタノイル)チオフェン-2-イル] ペンチルホスホン酸、
例示化合物番号 式 I a - 2 における 1 - 2 0 9 7 : 3 - アミノ - 3 - エチル - 5 - [5]
- (5-シクロヘキシルペンタノイル)チオフェン-2-イル]ペンチルホスホン酸、及
例示化合物番号 式Ia-2における1-2105:3-アミノー3-エチルー5-[5
```

40

(6-シクロヘキシルヘキサノイル)チオフェン-2-イル]ペンチルホスホン酸、 並びに

例示化合物番号 式 I a - 2 における 1 - 4 6 3 : 3 - 7 = 1 - 2 + 1 +

例示化合物番号 式 [a-2 における 1-4 7 9 : 3- アミノー 3- メチルー 5- [5- [4-(4- メトキシフェノキシ) ブチル] チオフェンー 2- イル] ペンチルホスホン酸

例示化合物番号 式 I a - 2 における 1 - 5 9 4 : 3 - 7 ミノー 3 - メチルー 5 - [5 - (4 - ベンジルオキシブチル) チオフェンー 2 - イル] ペンチルホスホン酸、

例示化合物番号 式 I a - 2 における <math>1 - 1 3 4 8 : 3 - P = J - 3 - J +

例示化合物番号 式 I a - 2 における 1 - 1 3 5 0 : 3 - 7 = 2 - 4 - 1 +

例示化合物番号 式 I a - 2 における I - 1 3 5 1 : 3 - P = I - I =

例示化合物番号 式 I a - 2 における 1 - 1 3 5 2 : 3 - 7 = 1 - 1 =

例示化合物番号 式 I a - 2 における 1 - 1 3 5 4 : 3 - 7 = 1 =

例示化合物番号 式 I a - 2 における <math>1 - 1 4 7 6 : 3 - 7 = 2 - 4 + 1 +

例示化合物番号 式 I a - 2 における <math>1 - 1 4 7 7 : 3 - 7 = 2 - 2 - 4 + 0 +

例示化合物番号 式 I a - 2 における 1 - 1 4 8 0 : 3 - 7 = 1 - 1 =

例示化合物番号 式 I a - 2 における <math>1 - 1 4 8 1 : 3 - 7 = 1 - 1 =

例示化合物番号 式 I a - 2 における 1 - 1 4 9 0 : 3 - 7 = 1 - 1 =

例示化合物番号 式 I a - 2 における 1 - 1 4 9 1 : 3 - アミノ - 3 - メチル - 5 - [5 50]

50

- [4-(4-トリフルオロメチルフェノキシ)ブタノイル]チオフェン-2-イル]ペンチルホスホン酸、

例示化合物番号 式 Ia-2 における 1-1493:3- アミノー 3- メチルー 5- [5- [4-(4- メトキシフェノキシ) ブタノイル] チオフェンー 2- イル] ペンチルホスホン酸、

例示化合物番号 式 I a - 2 における 1 - 1 5 2 2 : 3 - P = 1 - 1 =

例示化合物番号 式 I a - 2 における 1 - 2 1 0 9 : 3 - 7 = 1 -

例示化合物番号 式 I a - 2 における 1 - 2 3 2 9 : 3 - \mathbb{Z} 2 \mathbb{Z} 3 - \mathbb{Z} 4 - \mathbb{Z} 7 - \mathbb{Z} 9 : 3 - \mathbb{Z} 7 - \mathbb{Z} 9 : 3 - \mathbb{Z} 7 - \mathbb{Z} 7 - \mathbb{Z} 9 : 3 - \mathbb{Z} 7 - \mathbb{Z} 7 - \mathbb{Z} 9 : 3 - \mathbb{Z} 7 - \mathbb{Z} 7 - \mathbb{Z} 9 : 3 - \mathbb{Z} 7 - \mathbb{Z} 9 : 3 - \mathbb{Z} 7 - \mathbb{Z} 9 : 3 - \mathbb{Z} 7 - \mathbb{Z} 9 : 3 -

例示化合物番号 式 I a - 2 における 1 - 2 3 3 3 : 3 - P = 1 - 2 - 4 - 2 + 2 + 2 + 2 + 1 - 1

50

例示化合物番号 式 I a - 2 ℓ 2 ℓ 2 ℓ 3 ℓ 2 ℓ 3 ℓ 2 ℓ 3 ℓ 7 ℓ 7 ℓ 7 ℓ 7 ℓ 8 ℓ 7 ℓ 7 ℓ 8 ℓ 7 ℓ 7 ℓ 8 ℓ 9 ℓ 7 ℓ 8 ℓ 9 ℓ 9 ℓ 7 ℓ 9 ℓ 9

例示化合物番号 式 I a - 2 における 1 - 2 3 4 3 : 3 - P = 1 = = 1

例示化合物番号 式 I a - 2 における 1 - 2 3 4 4 : 3 - P = 1 = = 1

であり、最も好適には、

例示化合物番号 式 I a-1 における 1-7 4 3 : リン酸 モノ 2- アミノー 2- メチルー 4- [5- (4- シクロヘキシルプト-1- イニル)チオフェンー 2- イル] ブチルエステル、

例示化合物番号 式 Ia-1 における 1-833: リン酸 モノ 2- アミノー 2- メチルー 4- [5- [5- (4- フルオロフェニル) ペントー 1- イニル] チオフェンー 2- イル] ブチル エステル、

例示化合物番号 式 I a - 1 における 1 - 8 4 9 : リン酸 モノ 2 - アミノー2 - メチャー4 - [5 - [5 - [6 - 4 - メトキシフェニル) ペントー1 - イニル] チオフェンー2 - 20 イル] ブチル エステル、

ステル、

£ 1

例示化合物番号 式 I a-1 における 1-1 3 4 4 : リン酸 モノ 2- アミノー 2- メチルー 4- [5- (5- フェニルペンタノイル)チオフェンー 2- イル] ブチル エステル、

例示化合物番号 式 I a - 1 L a +

例示化合物番号 式 I a - 1 L a + 1 L a + 1 L a + 1

例示化合物番号 式 Ia-2 における 1-98:3- アミノ-3- メチル-5- [5-(5-シクロヘキシルペンチル) チオフェン-2- イル] ペンチルホスホン酸、

10

40

20

1.

例示化合物番号 式 I a - 2 における I - I 5 2 : 3 - I = I 3 - I - I 5 - I 5 - I 6 - I 7 - I 7 - I 7 - I 7 - I 8 - I 7 - I 8 - I 8 - I 9 - I

例示化合物番号 式 I a - 2 における 1 - 4 0 0 : 3 - 7 = 1 = 2 = 1

例示化合物番号 式 I a - 2 における 1 - 5 9 4 : 3 - 7 = 1 - 2 + 1 + 2 + 1

例示化合物番号 式 I a - 2 における 1 - 1 3 2 9 : 3 - 7 = 1 =

例示化合物番号 式 I a - 2 における 1 - 1 3 3 0 : 3 - 7 = 2 - 3 - 3 + 4 + 4 + 5 - 1

例示化合物番号 式 I a - 2 における 1 - 1 3 4 8 : 3 - 7 = 2 - 2 - 4 + 1 +

例示化合物番号 式 I a - 2 における 1 - 1 7 6 4 : 3 - P = 2 - 1 +

及び

例示化合物番号 式 Ia-2 における 1-2 0 9 7 : 2- アミノー 2- エチルー 4- [a] 5 - (5 - シクロヘキシルペンタノイル)チオフェンー 2- イル]ペンチルホスホン酸である。

[0065]

【発明の実施の形態】

本発明の化合物(Ⅰ)は、以下に記載する方法に従って製造することができる。

[0066]

A 法は、化合物(I)において、 Z が酸素原子である化合物(I-1)を製造する方法である。

[0067]

[化9]

A法

[0068]

上記式中、 R^1 、 R^2 、 R^3 、 R^3 、 R^4 、 R^5 、 R^6 、 R^7 、X、Y及びnは、前述したものと同意義を示す。 $R^{1\ 0\ a}$ は、低級アルキル基(特に、 t ープチル基)又は低級 50

アルコキシ基(特に、 $t-プトキシ基)を示し、<math>R^4$ a、 R^5 a、 R^6 a、 R^7 a、X a 及び Y a は、各々、 R^4 a、 R^5 a、 R^6 a、 R^7 a、X a 及び Y a は、各々、 R^4 a、 R^5 a、 R^6 a、 R^7 a、X a 及び Y a に含まれるアミノ、ヒドロキシ及び/又はカルボキシル基が、保護されてもよいアミノ、ヒドロキシ及び/又はカルボキシル基である他、それぞれ、 R^4 、 R^5 、 R^6 、 R^7 、X 及び Y の基の定義におけるものと同意義を示し、 R^{1-1} 及び R^{1-2} は、同一又は異なって、低級アルキル基(特に、エチルまたはイソプロピル基)を示す。

[0069]

上記において、 R^{5} a、 R^{6} a、 R^{7} a、X a 及び Y a の定義における「保護されてもよいアミノ基」の「保護基」は、有機合成化学の分野で使用されるアミノ基の保護基であれば特に限定はされないが、例えば、

前記「低級脂肪族アシル基」、クロロアセチル、トリフルオロアセチルのようなハロゲノ低級脂肪族アシル基、メトキシアセチルのような低級アルコキシで置換された低級脂肪族アシル基などの「低級脂肪族アシル類」;

ベンゾイル、1-インダンカルボニル、1-若しくは2-ナフトイルのような芳香族アシル基、4-クロロベンゾイル、4-フルオロベンゾイル、2, 4,6-トリメチルベンゾイルのような前記置換基群 a から選択される基で1乃至3個置換された芳香族アシル基などの「芳香族アシル類」;

前記「低級アルコキシカルボニル基」、2,2,2ートリクロロエトキシカルボニル、2ートリメチルシリルエトキシカルボニルのようなハロゲンまたはトリ低級アルキルシリルで置換された低級アルコキシカルボニル基などの「低級アルコキシカルボニル基」; ビニルオキシカルボニル、アリルオキシカルボニルのような「低級アルケニルオキシカルボニルま」;

ベンジルオキシカルボニルのようなアラルキルオキシカルボニル基、4-メトキシベンジルオキシカルボニル、3,4-ジメトキシベンジルオキシカルボニル、2-ニトロベンジルオキシカルボニルのような前記置換基群aから選択される基で1乃至3個置換されたアラルキルオキシカルボニル基などの「アラルキルオキシカルボニル類」;

トリメチルシリル、トリエチルシリル、イソプロピルジメチルシリル、 t ーブチルジメチルシリルのようなトリ低級アルキルシリル基、ジフェニルメチルシリル、フェニルジイソプロピルシリルのようなアリールまたはアリールと低級アルキルとでトリ置換されたシリル基などの「シリル類」;

ベンジル、フェネチル、 $3-フェニルプロピル、α-ナフチルメチル、ジフェニルメチル、トリフェニルメチルのような <math>1\sim 3$ 個のアリール基で置換された低級アルキル基、4-メチルベンジル、2, 4, 6-トリメチルベンジル、4-メトキシベンジル、4-メトキシンフェニルジフェニルメチル、2-ニトロベンジル、4-クロロベンジル、4-プロモベンジル、4-シアノベンジル、4-シアノベンジル、4-シアノベンジル、ビス(2-ニトロフェニル)メチル、ピペロニルのような低級アルキル、低級アルコキシ、ニトロ、ハロまたはシアノでアリール環が置換された 1 乃至 3 個のアリール基で置換された低級アルキル基などの「アラルキル類」;又は

N, N-ジメチルアミノメチレン、ベンジリデン、4-メトキシベンジリデン、4-ニトロベンジリデン、サリシリデン、5-クロロサリシリデン、ジフェニルメチレン、(5-クロロ-2-ヒドロキシフェニル)フェニルメチレンのような「シッフ塩基を形成する置換されたメチレン基」であり得、好適には、低級アルコキシカルボニル基、アラルキルオキシカルボニル基又は置換基群 a から選択される基で1乃至3個置換されたアラルキルオキシカルボニル基であり、好適には、低級アルコキシカルボニル基又は低級アルケニルオキシカルボニル基であり、最も好適にはt-ブトキシカルボニル基又はアリルオキシカルボニル基である。

[0070]

上記において、 R^{4} 。、 R^{5} 。、 R^{6} 。、 R^{7} 。、 X^{8} 及び Y^{8} の定義における「保護されてもよいヒドロキシ基」の「保護基」は、有機合成化学の分野で使用されるヒドロキシ基の保護基であれば特に限定はされないが、例えば、

10

20

30

前記「低級脂肪族アシル類」;

前記「芳香族アシル類」;

テトラヒドロピラン-2-イル、3-ブロモテトラヒドロピラン-2-イル、4-メトキシテトラヒドロピラン-4-イル、テトラヒドロチオピラン-2-イル、4-メトキシテトラヒドロチオピラン-4-イルのような「テトラヒドロピラニル又はテトラヒドロチオピラニル類」;

テトラヒドロフラン-2-イル、テトラヒドロチオフラン-2-イルのような「テトラヒ ドロフラニル又はテトラヒドロチオフラニル類」;

前記「シリル類」;

メトキシメチル、1, 1-ジメチル-1-メトキシメチル、エトキシメチルのような低級 10 アルコキシメチル基、2-メトキシエトキシメチルのような低級アルコキシ化低級アルコキシメチル基、<math>2, 2, 2-トリクロロエトキシメチル、ビス(<math>2-クロロエトキシ)メチルのようなハロゲノ低級アルコキシメチル等の「低級アルコキシメチル類」; 1-エトキシエチル、1-(イソプロポキシ) エチルのような低級アルコキシ化エチル基、2, 2, 2-トリクロロエチルのようなハロゲン化エチル基等の「置換エチル類」・

前記「アラルキル類」;

前記「低級アルコキシカルボニル類」;

前記「低級アルケニルオキシカルボニル類」;又は

前記「アラルキルオキシカルボニル類」

であり得、好適には、低級脂肪族アシル基、芳香族アシル基、低級アルコキシカルボニル 基又は(低級アルコキシ)メチル基であり、更に好適には、低級脂肪族アシル基又は(低 級アルコキシ)メチル基であり、最も好適にはアセチル基又はメトキシメチル基である。 【0071】

上記において、R^{5 a}、R^{6 a}、R^{7 a}、X^a及びY^aの定義における「保護されてもよいカルボキシル基」の「保護基」は、有機合成化学の分野で使用されるカルボキシル基の保護基であれば特に限定はされないが、例えば、前記「低級アルキル基」;又は前記「アラルキル基」であり得、好適には低級アルキル基であり、最も好適には、メチル基である

[0072]

第A-1工程は、一般式(I-1)を有する化合物を製造する工程であり、アルコール体(I0)と化合物(II)とを反応させて亜リン酸エステル体とし、次いで、酸化剤と反応させ、所望により、式 C02 R10 aを有する基を含むアミノ基の保護基を除去し、ヒドロキシの保護基を除去し、カルボキシル基の保護基を除去し、リン酸基の保護基を除去し及び/又はアミノ基を低級脂肪族アシル化又は低級アルコキシカルボニル化(アシル化)することにより行われる。

[0073]

所望の反応は、適宜順序を変えて行うことでき、保護基の除去は、適宜反応条件を選択して、選択的に除去することができる。

[0074]

一級水酸基を有する化合物をリン酸エステル体に導くには、有機合成化学の分野で一般的に使用される方法に準じて行うことができる。例えば、実験化学講座 2 2 (第 4 版: 丸善) 「有機合成 I V 」 第 3 章「リン酸エステル」に記載の方法により、容易に導くことが可能である。実際には以下のような方法が好適である。

[0075]

すなわち、アルコール体(10)と化合物(II)とを、不活性溶媒中、活性化剤存在下、反応させ亜リン酸エステル体を製造し、次いで、不活性溶媒中、酸化剤と反応させる方法である。

[0076]

化合物 (10) と化合物 (II) との反応において使用される不活性溶媒は、例えば、へ 50

20ب

30

30

40

キサン、ヘプタンのような脂肪族炭化水素類;ベンゼン、トルエン、キシレンのような芳香族炭化水素類;塩化メチレン、クロロホルム、ジクロロメタン、1,2-ジクロロエタン、四塩化炭素のようなハロゲン化炭化水素類;ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフランのようなエーテル類或は上記溶媒の混合溶媒であり、好適には、ハロゲン化炭化水素類又はエーテル類(最も好適には、塩化メチレン又はテトラヒドロフラン)である。

[0077]

[0078]

[0079]

反応温度は、原料化合物、溶媒の種類等によって異なるが、通常、-10℃乃至60℃(好適には0℃乃至30℃)である。

[0080]

反応時間は、原料化合物、溶媒、反応温度等により異なるが、通常、10分間乃至24時間(好適に30分間乃至2時間)である。

[0081]

上記反応で得られる亜リン酸エステル体は、反応の後処理及び単離をせずに、酸化剤と反応することができる。

[0082]

酸化剤との反応において使用される不活性溶媒は、アルコール体(10)と化合物(II)との反応に使用されるものと同様のものである。

[0083]

使用される酸化剤は、例えば、 t ーブチルヒドロペルオキシド、クメンヒドロペルオキシド、m ークロロ過安息香酸、 3 , 5 ージニトロ過安息香酸、 0 ーカルボキシ過安息香酸、ジメチルオキソラン、過酢酸、過トリフルオロ酢酸、過フタル酸、過酸化水素水のような過酸化物であり、好適には、 t ーブチルヒドロペルオキシド又は m ークロロ過安息香酸である。

[0084]

反応温度は、得られた亜リン酸エステル体、酸化剤、溶媒の種類等によって異なるが、通常、-78℃乃至室温(好適には、-78℃乃至0℃)である。

[0085]

反応時間は、得られた亜リン酸エステル体、酸化剤、溶媒、反応温度等により異なるが、 通常、5分間乃至2時間(好適には、5分間乃至30分間)である。

[0086]

アミノ、ヒドロキシ及びカルボキシル基の保護基の除去はその種類によって異なるが、一般に有機合成化学の技術において周知の方法、例えば、T. W. Green, (Protective Groups in Organic Synthesis), John Wiley & Sons: J. F. W. McOmis, (Protective

Groups in Organic Chemistry), Plenum Pressに記載の方法により以下のように行うことができる。

[0087]

}

アミノ基の保護基が、シリル類である場合には、通常、弗化テトラブチルアンモニウム、 弗化水素酸、弗化水素酸ーピリジン、弗化カリウムのような弗素アニオンを生成する化合物で処理するか、又は、塩酸、臭化水素酸、硫酸、過塩素酸、リン酸のような無機酸又は 酢酸、蟻酸、蓚酸、メタンスルホン酸、pートルエンスルホン酸、カンファースルホン酸 、トリフルオロ酢酸、トリフルオロメタンスルホン酸のような有機酸(好適には、塩酸) で処理することにより除去できる。

[0088]

尚、弗素アニオンにより除去する場合に、蟻酸、酢酸、プロピオン酸のような有機酸を加えることによって、反応が促進することがある。

[0089]

上記反応に使用される溶媒は、好適には、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジエチレングリコールジメチルエーテルのようなエーテル類;アセトニトリル、イソブチロニトリルのようなニトリル類;酢酸のような有機酸;水;又は上記溶媒の混合溶媒であり、好適には、テトラヒドロフランである。

[0090]

反応温度及び反応時間は、原料化合物、触媒、溶媒等により異なるが、通常、反応温度は 20、0℃乃至100℃(好適には、10℃乃至50℃)であり、反応時間は、10分間乃至24時間(好適には、30分間乃至6時間)である。

[0091]

アミノ基の保護基が、アラルキル類又はアラルキルオキシカルボニル類である場合には、 通常、不活性溶媒中、還元剤と接触させること(好適には、触媒下、常温にて水素を用い る接触還元)により除去する方法又は酸化剤を用いて除去する方法が好適である。

[0092]

接触還元による除去に使用される溶媒は、本反応に不活性なものであれば特に限定はないが、例えば、ヘキサン、ヘプタン、リグロイン、石油エーテルのような脂肪族炭化水素類;トルエン、ベンゼン、キシレンのような芳香族炭化水素類;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、炭酸ジエチルのようなエステル類;ジエチルエーテル、イソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジエチレングリコールジメチルエーテルのようなエーテル類;メタノール、エタノール、ロープロパノール、イソプロパノール、ローブタノール、イソブタノール、tーブタノール、イソアミルアルコール、ジエチレングリコール、グリセリン、オクタノール、シクロヘキサノール、メチルセロソルブのようなアルコール類;酢酸のような有機酸類;水;又は上記溶媒と水との混合溶媒であり、好適には、アルコール類、エーテル類、有機酸類又は水(最も好適には、アルコール類又は有機酸類)である。

[0093]

接触還元による除去に使用される触媒は、通常、接触還元反応に使用されるものであれば 40、特に限定はないが、好適には、パラジウムー炭素、ラネーニッケル、酸化白金、白金黒、ロジウムー酸化アルミニウム、トリフェニルホスフィンー塩化ロジウム、パラジウムー硫酸バリウムである。

[0094]

水素の圧力は、特に限定はないが、通常1乃至10気圧である。

[0095]

反応温度及び反応時間は、原料化合物、触媒、溶媒等により異なるが、通常、反応温度は、0℃乃至100℃であり、反応時間は、5分間乃至24時間である。

[0096]

酸化剤を用いる除去において使用される溶媒は、本反応に関与しないものであれば特に限 50

20

定はないが、好適には、含水有機溶媒であり、このような有機溶媒は、例えば、クロロホルム、ジクロロメタン、1,2-ジクロロエタン、四塩化炭素のようなハロゲン化炭化水素類;アセトニトリルのようなニトリル類、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジエチレングリコールジメチルエーテルのようなエーテル類;アセトンのようなケトン類;ホルムアミド、ジメチルホルムアミド、ジメチルアセトアミド、ヘキサメチルリン酸トリアミドのようなアミド類;ジメチルスルホキシドのようなスルホキシド類;又はスルホランであり、好適には、ハロゲン化炭化水素類、エーテル類又はスルホキシド類(最も好適には、ハロゲン化炭化水素類又はスルホキシド類)である。

[0097]

使用される酸化剤は、酸化に使用される化合物であれば特に限定はないが、好適には、過硫酸カリウム、過硫酸ナトリウム、アンモニウムセリウムナイトレイト(CAN)、2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノン(DDQ)である。

[0098]

反応温度及び反応時間は、原料化合物、触媒、溶媒等により異なるが、通常、反応温度は 、0℃乃至150℃であり、反応時間は、10分間乃至24時間である。

[0099]

また、アミノ基の保護基が、アラルキル類である場合には、不活性溶媒中、酸を用いて保 護基を除去することもできる。

[0100]

上記反応に使用される酸は、通常の反応において酸触媒として使用されるものであれば特に限定はないが、例えば、塩酸、臭化水素酸、硫酸、過塩素酸、リン酸のような無機酸;酢酸、蟻酸、蓚酸、メタンスルホン酸、pートルエンスルホン酸、カンファースルホン酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸のような有機酸等のブレンステッド酸;塩化亜鉛、四塩化スズ、ボロントリクロリド、ボロントリフルオリド、ボロントリプロミドのようなルイス酸;又は酸性イオン交換樹脂であり、好適には、無機酸又は有機酸(最も好適には、塩酸、酢酸又はトリフルオロ酢酸)である。

[0101]

使用される不活性溶媒は、例えば、ヘキサン、ヘプタン、リグロイン、石油エーテルのような脂肪族炭化水素類;ベンゼン、トルエン、キシレンのような芳香族炭化水素類;クロコホルム、ジクロロメタン、1,2ージクロロエタン、四塩化炭素のようなハロゲン化炭化水素類;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、炭酸ジエチルのようなエステル類;ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジエチレングリコールジメチルエーテルのようなエーテル類;メタノール、エタノール、ロープロパノール、イソプロパノール、ローブタノール、イリプタノール、ガリセリン、オクタノール、シクロヘキサノール、メチルセロソルブのようなアルコール類;ホルムアミド、ジメチルアセトアミド、ヘキサメチルリン酸トリアミドのようなアミド類;水;或は水又は上記溶媒の混合溶媒であり、好適には、エーテル類、アルコール類又は水(最も好適には、ジオキサン、テトラヒドロフラン、エタノール又は水)である。

[0102]

反応温度は、原料化合物、使用される酸、溶媒等により異なるが、通常、-20℃乃至沸点温度(好適には、0℃乃至100℃)である。

[0103]

反応時間は、原料化合物、使用される酸、溶媒、反応温度等により異なるが、通常、15分間乃至48時間(好適には、30分間乃至20時間)である。

[0104]

アミノ基の保護基が、低級脂肪族アシル類、芳香族アシル類、低級アルコキシカルボニル 類又はシッフ塩基を形成する置換されたメチレン基である場合には、不活性溶媒及び水の 50 存在下に、酸又は塩基で加水分解することにより除去することができる。

[0105]

上記反応に使用される酸は、通常酸として使用されるもので反応を阻害しないものであれば特に限定はないが、例えば、臭化水素酸、塩酸、硫酸、過塩素酸、リン酸、硝酸のような無機酸であり、好適には塩酸である。

[0106]

上記反応に使用される塩基は、化合物の他の部分に影響を与えないものであれば特に限定はないが、好適には、炭酸リチウム、炭酸ナトリウム、炭酸カリウムのようなアルカリ金属炭酸塩類;水酸化リチウム、水酸化ナトリウム、水酸化カリウムのようなアルカリ金属水酸化物類;リチウムメトキシド、ナトリウムメトキシド、カリウムーtーブトキシドのような金属アルコキシド類;又はアンモニア水、濃アンモニアーメタノールのようなアンモニア類であり、好適には、アルカリ金属水酸物である。

[0107]

上記反応に使用される溶媒は、通常の加水分解反応に使用されるものであれば特に限定はないが、例えば、メタノール、エタノール、nープロパノール、イソプロパノール、nープタノール、イソアミルアルコール、ジエチレングリコール、グリセリン、オクタノール、シクロヘキサノール、メチルセロソルブのようなアルコール類;ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジエチレングリコールジメチルエーテルのようなエーテル類;水;又は水と上記有機溶媒との混合溶媒であり、好適にはエーテル類(最も好適にはジオキサン)である。

[0108]

反応温度及び反応時間は、原料化合物、溶媒及び使用される酸若しくは塩基等により異なり、特に限定はないが、副反応を抑制するために、通常、反応温度は、0℃乃至150℃であり、反応時間は、1時間乃至10時間である。

[0109]

アミノ基の保護基が低級アルケニルオキシカルボニル類である場合には、アミノの保護基が前記の脂肪族アシル類、芳香族アシル類、アルコキシカルボニル類又はシッフ塩基を形成する置換されたメチレン基である場合の除去反応における塩基処理と同様に行われる。

[0110]

尚、アリルオキシカルボニル基の場合は、特に、不活性溶媒中、パラジウム、及びトリフェニルホスフィン若しくはニッケルテトラカルボニルを使用して、保護基を除去する方法が簡便で、副反応が少なく実施することができる。

[0111]

使用される不活性溶媒は、反応を阻害せず、原料化合物をある程度溶解するものであれば、特に限定はないが、好適には、メタノール、エタノール、イソプロパノールのようなアルコール類;ジエチルエーテル、ジイソプロピルエーテル、tープチルメチルエーテル、テトラヒドロフラン、ジオキサンのようなエーテル類;ベンゼン、トルエン、キシレンのような芳香族炭化水素類;ヘキサン、シクロヘキサンのような脂肪族炭化水素類;アセトニトリル、プロピオニトリルのようなニトリル類;又は酢酸エチル、酢酸プロピルのようなエステル類であり、さらに好適には、エーテル類(特に好適には、テトラヒドロフラン)又はニトリル類(特に好適には、アセトニトリル)である。

[0112]

反応温度及び反応時間は、原料化合物、触媒、溶媒等により異なるが、通常、反応温度は、0℃乃至150℃(好適には0℃乃至100℃)であり、反応時間は、5分間乃至48時間(好適には30分間乃至24時間)である。

[0113]

ヒドロキシ基の保護基が、シリル類である場合には、前記アミノの保護基がシリル類である場合と同様に処理して除去される。

[0114]

ヒドロキシ基の保護基が、アラルキル類又はアラルキルオキシカルボニル類である場合には、前記アミノ基の保護基がアラルキル類又はアラルキルオキシカルボニル類である場合と同様に処理して除去される。

[0115]

ヒドロキシ基の保護基が、低級アルコキシメチル類、テトラヒドロピラニル又はテトラヒドロチオピラニル類、テトラヒドロフラニル又はテトラヒドロチオフラニル類、又は置換されたエチル類である場合には、通常、不活性溶媒中、酸で処理することにより除去される。

[0116]

使用される酸としては、通常、ブレンステッド酸又はルイス酸として使用されるものであ 10 れば特に限定はなく、好適には、塩化水素;塩酸、硫酸、硝酸のような無機酸;酢酸、トリフルオロ酢酸、メタンスルホン酸、pートルエンスルホン酸のような有機酸:又は三弗化ホウ素のようなルイス酸であり、好適には、塩酸又は酢酸であり、また、ダウエックス50Wのような強酸性の陽イオン交換樹脂も使用することができる。

[0117]

上記反応に使用される溶媒としては、本反応に不活性なものであれば特に限定はないが、何えば、ヘキサン、ヘプタン、リグロイン、石油エーテルのような脂肪族炭化水素類コポルクロリド、クロロベンゼン、トルエン、キシレンのような芳香族炭化水素類;メチレンクロリド、クロロゲンム、四塩化炭素、ジクロロエタン、クロロベンゼン、酢酸プチル、炭酸ジエチルのようなエチル、酢酸プロピル、酢酸プチル、炭酸ジエチルのようなエチル、酢酸プロピル、テトラヒドロフラン、カーカール、イソアミルアルコール、ローブタノール、カーフロパノール、イソアミルアルコール、ガリコールがガリン、オクタノール、シクロヘキサノール、メチルセロソルブのようなアルコール類には、メチルエチルケトン、メチルイソブチルケトン、イソホロン、カーカーのようなケトン類;水;又は上記溶媒の混合溶媒であり、好適には、メタノール)である

[0118]

反応温度及び反応時間は、原料化合物、使用される酸、溶媒等により異なるが、反応温度は、-10℃乃至200℃(好適には、0℃乃至150℃)であり、反応時間は、5分間乃至48時間(好適には、30分間乃至10時間)である。

[0119]

ヒドロキシ基の保護基が、低級脂肪族アシル類、芳香族アシル類、低級アルコキシカルボニル基類又は低級アルケニルオキシカルボニル類である場合には、前記アミノの保護基が脂肪族アシル類、芳香族アシル類、アルコキシカルボニル類又はシッフ塩基を形成する置換されたメチレン基である場合の除去反応における塩基処理と同様に行われる。

[0120]

尚、ヒドロキシ基の保護基が、アリルオキシカルボニル基の場合は、特にパラジウム、及 40 びトリフェニルホスフィン、又はビス(メチルジフェニルホスフィン)(1,5-シクロオクタジエン)イリジウム(I)・ヘキサフルオロホスフェートを使用して除去する方法が簡便で、副反応が少なく実施することができ、前記アミノ基の保護基がアリルオキシカルボニル基である場合と同様に処理して除去される。

[0121]

カルボキシル基の保護基が、低級アルキル基又はアラルキル基である場合は、ヒドロキシ 基の保護基が前記の脂肪族アシル類、芳香族アシル類又はアルコキシカルボニル類である 場合の除去反応の条件と同様にして、塩基と処理することにより達成される。

[0122]

カルボキシル基の保護基が、アラルキル基である場合には、前記アミノの保護基がアラル 50

キル類又はアラルキルオキシカルボニル基である場合と同様に、接触還元により除去する こともできる。

[0123]

リン酸基の保護基が、シアノ基、置換されてもよいシリル基、アリール基、ヘテロシクリル基、アリールチオ基、スルホニル基又はハロゲン原子により置換されても良い低級アルキル基である場合には、不活性溶媒中、水の存在下、酸で加水分解するか、あるいは、不活性溶媒中、ハロゲン化トリメチルシリル(例えば、ブロモトリメチルシリル又はヨードトリメチルシリル)と反応させることにより該保護基が除去される。

[0124]

上記加水分解に使用させる不活性溶媒は、例えば、メタノール、エタノールのようなアル 10 コール類;又はジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサンのようなエーテル類であり、好適にはエーテル類であり、最も好適にはジオキサンである。

[0125]

上記反応で使用される酸は、例えば、塩酸、硫酸、リン酸、硝酸のような無機酸であり、 好適には塩酸である。

[0126]

反応温度は、0℃乃至150℃(好適には20℃乃至100℃)であり、反応温度は、1時間乃至60時間(好適には1時間乃至48時間)である。

[0127]

上記のハロゲン化トリメチルシリルとの反応に使用される不活性溶媒は、例えば、ヘキサン、ヘプタンのような脂肪族炭化水素類;ベンゼン、トルエン、キシレンのような芳香族炭化水素類;塩化メチレン、クロロホルム、ジクロロメタン、1,2ージクロロエタン、四塩化炭素のようなハロゲン化炭化水素類;アセトニトリルのようなニトリル類;ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサンのようなエーテル類;メタノール、エタノール、nープロパノールのようなアルコール類;或いは上記溶媒の混合溶媒であり、好適には、ハロゲン化炭化水素類又はニトリル類(より好適には、クロロホルム、ジクロロメタン又はアセトニトリル)である。

[0128]

反応温度は、原料化合物、使用される溶媒の種類等によって異なるが、通常、-78℃乃 30至100℃ (好適には0℃乃至80℃)である。

[0129]

反応時間は、原料化合物、使用される溶媒、反応温度等により異なるが、通常、10分乃至24時間(好適に1時間乃至6時間)である。

[0130]

リン酸基の保護基が低級アルケニル基である場合には、不活性溶媒中、アミン、蟻酸、蟻酸塩類、トリアルキルスズ化合物又は活性メチレン化合物の存在下、パラジウム化合物と 反応させることにより、該保護基を除去することができる。

[0131]

上記反応に使用される不活性溶媒は、例えば、ヘキサン、ヘプタンのような脂肪族炭化水 40素類;トルエン、ベンゼン、キシレンのような芳香族炭化水素類;クロロホルム、ジクロロメタンのようなハロゲン化炭化水素類;アセトニトリルのようなニトリル類;酢酸メチル、酢酸エチル、酢酸プロピルのようなエステル類;ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサンのようなエーテル類;メタノール、エタノール、nープロパノール、イソプロパノールのようなアルコール類;酢酸のような有機酸類;水;又は上記溶媒と水との混合溶媒であり、好適には、ニトリル類又はエーテル類(特に好適には、アセトニトリル又はテトラヒドロフラン)である。

[0132]

上記反応で使用されるアミンは、例えば、トリエチルアミン、トリブチルアミン、ジイソ プロピルエチルアミン、N-メチルモルホリン、1,4-ジアザビシクロ[2.2.2] 50 オクタン(DABCO)のような第三級アミン類;ジエチルアミン、ジメチルアミン、ジ イソプロピルアミン、ピロリジンのような第二級アミン類;又はエチルアミン、プロピル アミン、プチルアミン、N, N-ジメチルアニリン、N, N-ジエチルアニリンのような 第一級アミン類であり、好適には、ピロリジンである。

[0133]

上記反応で使用される蟻酸塩類は、好適には、蟻酸アンモニウム、蟻酸トリエチルアミン 塩又は蟻酸 n ープチルアミン塩である。

[0134]

上記反応に使用されるトリアルキルスズ化合物は、好適には、トリメチルスズ、トリエチルスズ又はトリブチルスズであり、特に好適には、トリブチルスズである。

[0135]

上記反応で使用される活性メチレン化合物は、例えば、マロン酸メチル、マロン酸エチルのようなマロン酸エステル類;シアノ酢酸メチルのようなシアノ酢酸エステル類;アセト酢酸メチル、アセト酢酸エチル、ベンゾイル酢酸エチルのような β -ケト酢酸エステル類;アセチルアセトン、ベンゾイルアセトン、ジベンゾイルメタン、1、3-シクロペンタジオン、1、3-シクロペキサジオン、ジメドンのような1、3-ジケトン類;又は上記活性メチレン化合物のアルカリ金属塩であり、好適には、1、3-ジケトン類(特に、ジメドン)又はマロン酸エステル類のナトリウム塩(特に、ジエチルマロン酸ナトリウム塩)である。

[0136]

上記反応で使用されるパラジウム化合物は、例えば、テトラキス(トリフェニルホスフィン)パラジウム、ジクロロジ(トリフェニルホスフィン)パラジウムのような P d 「化合物であり、好適には、テトラキス(トリフェニルホスフィン)パラジウムである。

[0137]

反応温度は、原料化合物、使用される溶媒の種類等によって異なるが、通常、0℃乃至100℃(好適には20℃乃至80℃)である。

[0138]

反応時間は、原料化合物、使用される溶媒、反応温度等により異なるが、通常、10分乃 30 至48時間(好適に30分乃至24時間)である。

[0139]

リン酸基の保護基が、アリールメチル基である場合は、前記アミノの保護基がアラルキル 類又はアラルキルオキシカルボニル基である場合と同様に処理して除去される。

[0140]

リン酸基の保護基が、アリール基である場合は、前記アミノ基の保護基が、低級脂肪族アシル類、芳香族アシル類、低級アルコキシカルボニル類又はシッフ塩基を形成する置換されたメチレン基である場合と同様に処理して除去される。

[0141]

リン酸基の保護基が、アミド類である場合、前記アミノの保護基が脂肪族アシル類、芳香 40 族アシル類、アルコキシカルボニル類又はシッフ塩基を形成する置換されたメチレン基である場合の除去反応における酸処理と同様に行われる。

[0142]

アミノ基をアシル化する方法は、化合物 (10) を、不活性溶媒中、塩基の存在下又は非存在下、下記化合物

$R^{1 a} - Q \qquad (III)$

[式中、 R^{1} a は、低級脂肪族アシル基又は低級アルコキシカルボニル基を示し、Q はハロゲン原子(好適には、塩素原子、臭素原子又は沃素原子)を示す。] と反応させることにより行なわれる。

[0143]

10

使用される不活性溶媒は、好適には、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジエチレングリコールジメチルエーテルのようなエーテル類;メタノール、エタノール、nープロパノール、イソプロパノール、nープタノール、イソプタノール、ジエチレングリコール、グリセリン、オクタノール、シクロヘキサノール、メチルセロソルプのようなアルコール類;酢酸エチル、酢酸プロピルのようなエステル類;アセトン、2ープタノンのようなアルキルケトン類;ジクロロメタン、クロロホルム、四塩化炭素のようなハロゲン化炭化水素類;又は上記溶媒と水との混合溶媒(特に好適には、酢酸エチルと水との混合溶媒)である。

[0144]

使用される塩基は、例えば、炭酸カリウムのようなアルカリ金属炭酸塩類;炭酸水素ナトリウム、炭酸水素カリウムのようなアルカリ金属炭酸水素塩類;水酸化ナトリウム、水酸化カリウムのようなアルカリ金属水酸化物類;水酸化マグネシウム、水酸化カルシウムのようなアルカリ土類金属水酸化物;又はトリエチルアミン、トリブチルアミン、ジイソプロピルエチルアミン、Nーメチルモルホリン、ピリジン、ピロリジンのような有機アミン類であり、好適には、アルカリ金属炭酸水素塩類(特に好適には、炭酸水素カリウム)である。

[0145]

反応温度は、原料化合物、使用される塩基、使用される溶媒の種類等によって異なるが、 0℃乃至50℃(好適には室温付近)である。

[0146]

反応時間は、原料化合物、使用される塩基、使用される溶媒、反応温度等により異なるが 、30分間乃至10時間(好適には1時間乃至5時間)である。

[0147]

反応終了後、各反応の目的化合物(I - 1)は常法に従って、反応混合物から採取される。例えば、反応混合物を適宜中和し、酸化剤が存在する場合は、適宜、還元剤で分解し、 又は、不溶物が存在する場合には、適宜濾過により除去した後、水と酢酸エチルのような混和しない有機溶媒を加え、目的化合物を含む有機層を分離し、水等で洗浄後、無水硫酸マグネシウム、無水硫酸ナトリウム、無水炭酸水素ナトリウム等で乾燥後、溶剤を留去することによって得られる。得られた目的化合物は必要ならば、常法、例えば再結晶、再沈殿、クロマトグラフィー等の通常、有機化合物の分離精製に慣用されている方法を適宜組合せ、分離、精製することができる。

[0148]

B法は、化合物 (I) において、 Z がメチレンである化合物 (I-2) を製造する方法である。

[0149]

【化10】

10

30

40

B法

(VI)

[0150]

(I-2)

上記式中、R¹、R²、R³、Ra³、R⁴、R⁴a、R⁵、R⁵a、R⁶、R⁶a、R⁷。R^{7a}、R^{10a}、X、X^a、Y、Y^a及びnは、前述したものと同意義を示す。

[0151]

第B-1工程は、一般式(10)を有する化合物を酸化して、一般式(IV)を有するアルデヒド体を製造する工程である。

[0152]

酸化反応は、一級アルコールからアルデヒドを生成する酸化反応であれば、特に限定はないが、例えば、塩化メチレン中、ピリジン及びクロム酸を用いて行われるCollins酸化;塩化メチレン中、塩化クロム酸ピリジニウム(PCC)を用いて行われるPDC酸化;塩化メチレン中、二クロム酸ピリジニウム(PDC)を用いて行われるPDC酸化:塩化メチレン中、親電子剤(例えば無水酢酸、無水トリフルオロ酢酸、塩化チオニルケートリルイミン、N,Nージエチルアミノアセチレン、三酸化硫黄・ピリジン錯体などり及びジメチルスルホキシド(DMSO)を用いて行われる、Swern酸化のような、DMSO酸化;塩化メチレン若しくはベンゼン中、二酸化マンガンを用いて行われる二酸化マンガン酸化;又は塩化メチレン中、Dess-Martin酸化であり、好適には、塩化メチレン中で行われる、Dess-Martin酸化であり、好適には、塩化メチレン中で行われる、Dess-Martin酸化、PDC酸化又はSwern酸化である。

[0153]

反応温度は、原料化合物、溶剤、酸化剤の種類等によって異なるが、通常、-78℃乃至 100℃であり、好適には、-78℃乃至30℃である。

[0154]

反応時間は、原料化合物、溶媒、酸化剤の種類、反応温度等によって異なるが、通常 1 0 分間乃至 2 日間であり、好適には、 3 0 分間乃至 2 4 時間である。

[0155]

反応終了後、本反応の目的化合物であるアルデヒド体(IV)は常法に従って、反応混合 50

物から採取される。例えば、酸化剤を亜硫酸水素ナトリウム水等で中和し、不溶物が存在 する場合には濾過により除去後、そのまま濃縮すること或いは水と酢酸エチルのような混 和しない有機溶媒を加え、目的化合物を含む有機層を分離し、無水硫酸ナトリウム、無水 硫酸マグネシウム等で乾燥後、溶媒を留去することによって得られる。

[0156]

得られたアルデヒド体(IV)は、必要ならば、常法、例えば、再結晶、再沈殿、クロマ トグラフィー等を利用して分離、精製することができる。

[0157]

第B-2工程は、不活性溶媒中、塩基の存在下、アルデヒド体(IV)を一般式(V)を 有する化合物と反応させ、α.β-不飽和リン酸エステル体(VΙ)に導く工程である。

上記反応に使用される不活性溶媒は、出発物質をある程度溶解するものであれば、特に限 定はないが、好適には、ベンゼン、トルエン、キシレンのような芳香族炭化水素類;ジク ロロメタン、クロロホルム、四塩化炭素のようなハロゲン化炭化水素類;ジエチルエーテ ル、ジイソプロピルエーテル、t-ブチルメチルエーテル、テトラヒドロフランのような エーテル類;アセトニトリル、イソブチロニトリルのようなニトリル類;ホルムアミドの ようなアミド類;又はジメチルスルホキシドのようなスルホキシド類であり、さらに好適 には、芳香族炭化水素類又はエーテル類(特に好適には、ベンゼン又はテトラヒドロフラ ン) である。

[0159]

使用される塩基は、化合物(V)と反応させて、相当するカルバニオンを生成させるもの であれば、特に限定はないが、好適には、炭酸ナトリウム、炭酸カリウムのようなアルカ リ金属炭酸塩類;炭酸水素ナトリウム、炭酸水素カリウムのようなアルカリ金属炭酸水素 塩類;水素化ナトリウム、水素化カリウムのようなアルカリ金属水素化物類;水酸化ナト リウム、水酸化カリウムのようなアルカリ金属水酸化物類;ナトリウムメトキシド、ナト リウムエトキシド、カリウムメトキシド、カリウムエトキシドのようなアルカリ金属アル コキシド類;N-メチルモルホリン、トリエチルアミンのような有機アミン類;又はプチ ルリチウム、リチウムジイソプロピルアミドのような有機金属塩基類であり、さらに好適 には、アルカリ金属アルコキシド類、アルカリ金属水素化物類及び有機金属塩基類であり 、特に好適には、水素化ナトリウムである。

[0160]

反応温度は、原料化合物、溶剤、ホスホニウム塩の種類、塩基の種類等によって異なるが 、通常、−80℃乃至100℃であり、好適には、−20℃乃至50℃である。

[0161]

反応時間は、原料化合物、溶剤、ホスホニウム塩の種類、塩基の種類等によって異なるが 、通常10分間乃至2日間であり、好適には、10分間乃至12時間である。

[0162]

反応終了後、本反応の目的化合物である不飽和リン酸エステル化合物(VI)は常法に従 って、反応混合物から採取される。例えば、反応液を希塩酸等で中和し、不溶物が存在す る場合には濾過により除去後、そのまま濃縮すること或いは水と酢酸エチルのような混和 40 しない有機溶媒を加え、目的化合物を含む有機層を分離し、無水硫酸ナトリウム、無水硫 酸マグネシウム等で乾燥後、溶媒を留去することによって得られる。

[0163]

得られた不飽和リン酸エステル化合物(VI)は、必要ならば、常法、例えば、再結晶、 再沈殿、クロマトグラフィー等を用いて、分離、精製することができる。

[0164]

第B-3工程は、一般式 (I-2) を有する化合物を製造する工程であり、不飽和リン酸 エステル化合物(VI)を不活性溶媒中、接触還元触媒の存在下、水素と反応させ、所望 により、式CO。R^{10a}を有する基を含むアミノ基の保護基を除去し、ヒドロキシの保 護基を除去し、カルボキシル基の保護基を除去し、リン酸基の保護基を除去し及び/又は 50

20

アミノ基をアシル化することにより行われる。

[0165]

不飽和リン酸エステル化合物(VI)を水素と反応させる反応で使用される不活性溶媒は、反応を阻害せず、出発物質をある程度溶解するものであれば、特に限定はないが、好適には、メタノール、エタノール、イソプロパノールのようなアルコール類;ジエチルエーテル、ジイソプロピルエーテル、tーブチルメチルエーテル、テトラヒドロフラン、ジオキサンのようなエーテル類;ベンゼン、トルエン、キシレンのような芳香族炭化水素類;ヘキサン、シクロヘキサンのような脂肪族炭化水素類;又は酢酸エチル、酢酸プロピルのようなエステル類であり、さらに好適には、アルコール類(特に好適には、メタノール又はエタノール)である。

[0166]

使用される接触還元触媒は、好適には、パラジウムー炭素、水酸化パラジウムー炭素、パラジウム黒、酸化白金、白金黒、ロジウムー酸化アルミニウム、トリフェニルホスフィンー塩化ロジウム(Wilkinson錯体)、パラジウムー硫酸バリウム、ラネーニッケルであり、さらに好適には、パラジウムー炭素又はトリフェニルホスフィンー塩化ロジウム(Wilkinson錯体)である。

[0167]

水素の圧力は、特に限定はないが、通常1乃至10気圧で行われる。

[0168]

反応温度は、原料化合物、溶剤、塩基の種類等によって異なるが、通常、0℃乃至100 20 ℃(好適には、室温乃至60℃)である。

[0169]

反応時間は、原料化合物、反応温度、溶剤、塩基の種類によって異なるが、通常、5分間 乃至96時間(好適には、1時間乃至48時間)である。

[0170]

反応終了後、本反応の目的化合物(I — 2)は常法に従って、反応混合物から採取される。例えば、反応混合物を適宜中和し、又、不溶物が存在する場合には濾過により除去した後、水と酢酸エチルのような混和しない有機溶媒を加え、目的化合物を含む有機層を分離し、水等で洗浄後、無水硫酸マグネシウム、無水硫酸ナトリウム、無水炭酸水素ナトリウム等で乾燥後、溶剤を留去することによって得られる。得られた目的化合物は必要ならば、常法、例えば再結晶、再沈殿、クロマトグラフィーを用いて、分離、精製することができる。

[0171]

所望により行われる、アミノ基の保護基を除去する反応、ヒドロキシの保護基を除去する 反応、カルボキシル基の保護基を除去する反応、リン酸基の保護基を除去する反応及びア ミノ基をアシル化する反応は、前述の第A-1工程と同様に行うことができる。

[0172]

原料化合物(10)は、公知化合物であるか又は公知方法に従って容易に製造される(例えば、WO02/06268号公報参照)。また、以下の方法によっても製造することができる。

[0173]

C 法は、化合物(10)を製造する方法である。

[0174]

【化11】

10

40

C法

$$R^{6a}$$
 R^{7a} R^{6a} R^{7a} R^{7a} R^{6a} R^{7a} R^{7a}

第C-2工程
$$I-(CH_2)_n$$
 $X^a-Y^a-R^{5a}$ 第C-3工程 R^9O_2C CO_2R^{9a} (5)

$$R^{4a}$$
 $+ CO_2R^{9a}$ $+ R^{6a}$ $+ R^{7a}$ $+ R^{6a}$ $+ R^{6a}$ $+ R^{7a}$ $+ R^{6a}$ $+ R^{6$

第
$$C-5$$
 工程
 R^{10} —OH (8) R^{4a} ——(CH_2) $_n$ —(CH_2)—(CH_2) $_n$ —(CH_2)—(CH_2)—(

[0175]

上記式中、 R^4 a、 R^5 a、 R^6 a、 R^7 a、 R^{10} a、 X^4 、 Y^a 及びn は、前述したものと同意義を示し、 R^8 は、ホルミル基、カルボキシル基又は低級アルコキシカルボニル基を示し、 R^9 及び R^9 a は、同一又は異なって、低級アルキル基を示し、 R^{10} は、低級脂肪族アシル基を示す。

[0176]

第C-1工程は、一般式(3)を有する化合物を製造する工程であり、一般式(2)を有する化合物を、不活性溶媒中、塩基の存在下又は非存在下(好適には存在下)、還元剤と反応させることにより行われる。尚、化合物(2)は、公知化合物であるか、又は公知方法に従って容易に製造される(例えば、WOO2/06268号公報参照)。

[0177]

上記反応に使用される不活性溶媒は、例えば、ヘキサン、ヘプタン、リグロイン、石油エーテルのような脂肪族炭化水素類;ベンゼン、トルエン、キシレンのような芳香族炭化水素類;クロロホルム、ジクロロメタン、1,2ージクロロエタン、四塩化炭素のようなハロゲン化炭化水素類;酢酸、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、炭酸ジエチルのようなエステル類;ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジエチレングリコールジメチルエーテルのようなエーテル類;メタノール、エタノール、nープロパノール、イソプロパノール、nープタノール、イソブタノール、エクタノール、イソアミルアルコール、ジエチレングリコール、グリセリン、オクタノール、シクロヘキサノール、メチルセロソルブのようなア 50

ルコール類;ホルムアミド、ジメチルホルムアミド、ジメチルアセトアミド、ヘキサメチルリン酸トリアミドのようなアミド類;水;又は上記溶媒の混合溶媒であり、好適には、エーテル類(最も好適には、テトラヒドロフラン)である。

[0178]

上記反応に使用される塩基は、トリエチルアミン、トリブチルアミン、ジイソプロピルエチルアミン、N-メチルモルホリン、ピリジン、ピロリジンのような有機アミン類であり、好適には、トリエチルアミンである。

[0179]

上記反応に使用される還元剤は、例えば、水素化ホウ素ナトリウム、水素化ホウ素リチウム、水素化シアノホウ素ナトリウムのような水素化ホウ素アルカリ金属類;又は水素化ジ 10 イソブチルアルミニウム、水素化アルミニウムリチウム、水素化トリエトキシアルミニウムリチウムのような水素化アルミニウム化合物であり、好適には、水素化ホウ素アルカリ金属類(最も好適には、水素化ホウ素ナトリウム)である。

[0180]

反応温度は、原料化合物、使用される還元剤、溶媒の種類等によって異なるが、通常、-50℃乃至100℃(好適には0℃乃至50℃)である。

[0181]

反応時間は、原料化合物、使用される還元剤、溶媒、反応温度等により異なるが、通常、 15分乃至150時間(好適には、1時間乃至100時間)である。

[0182]

反応終了後、本反応の目的化合物(3)は常法に従って、反応混合物から採取される。例えば、反応混合物を適宜中和し、又、不溶物が存在する場合には濾過により除去した後、水と酢酸エチルのような混和しない有機溶媒を加え、目的化合物を含む有機層を分離し、水等で洗浄後、無水硫酸マグネシウム、無水硫酸ナトリウム、無水炭酸水素ナトリウム等で乾燥後、溶剤を留去することによって得られる。得られた目的化合物は必要ならば、常法、例えば再結晶、再沈殿、クロマトグラフィー等を用いて、分離、精製することができる。

[0183]

第C-2工程は、一般式(4)を有する化合物を製造する工程であり、不活性溶媒中、塩 基の存在下、化合物(3)のヒドロキシ基を脱離基に変換した後、沃素化剤と反応させる ことにより行われる。

[0184]

ヒドロキシ基を脱離基に変換する試薬は、例えば、メタンスルホニルクロリド、Pートルエンスルホニルクロリドのようなスルホニルハライド;チオニルクロリド、チオニルブロミド、チオニルアイオダイドのようなチオニルハライド類;スルフリルクロリド、スルフリルブロミド、スルフリルアイオダイドのようなスルフリルハライド類;三塩化燐、三臭化燐、三沃化燐のような三ハロゲン化燐類;五塩化燐、五臭化燐、五沃化燐のような五ハロゲン化燐類;オキシ塩化燐、オキシ臭化燐、オキシ沃化燐のようなオキシハロゲン化燐類;のようなハロゲン化剤;又はメチルトリオキソレニウム(VII)のようなレニウム試薬であり、好適には、スルホニルハライド(特にPートルエンスルホニルクロリド)で40ある。

[0185]

ヒドロキシ基を脱離基に変換させる際に使用される塩基は、例えば、炭酸リチウム、炭酸ナトリウム、炭酸カリウムのようなアルカリ金属炭酸塩類;炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウムのようなアルカリ金属重炭酸塩類;水素化リチウム、水素化ナトリウム、水素化カリウムのようなアルカリ金属水素化物類;水酸化リチウム、水酸化ナトリウム、水酸化カリウムのようなアルカリ金属水酸化物類;リチウムメトキシド、ナトリウムメトキシド、カリウム t-7トキシドのようなアルカリ金属アルコキシド類;又はトリエチルアミン、トリプチルアミン、ジイソプロピルエチルアミン、Nーメチルモルホリン、ピリジン、4-(N,N-5)メチルアミノ)ピリジン 50

、 N , N - ジメチルアニリン、 N , N - ジエチルアニリン、 1 , 5 - ジアザピシクロ [4 . 3 . 0] ノナー5 - エン、 1 , 4 - ジアザピシクロ [2 . 2 . 2] オクタン(DABCO)、 1 , 8 - ジアザピシクロ [5 . 4 . 0] - 7 - ウンデセン(DBU)のような有機アミン類であり、好適には、有機アミン類(最も好適には、トリエチルアミン)である。 【 0 1 8 6 】

ヒドロキシ基を脱離基に変換させる際に使用される不活性溶媒は、例えば、ヘキサン、ヘプタン、リグロイン、石油エーテルのような脂肪族炭化水素類:ベンゼン、トルエン、キシレンのような芳香族炭化水素類;クロロホルム、ジクロロメタン、1,2ージクロロエタン、四塩化炭素のようなハロゲン化炭化水素類;ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジエチレングリコールジ 10メチルエーテルのようなエーテル類;アセトン、2ープタノンのようなケトン類;ホルムアミド、ジメチルアセトアミド、ヘキサメチルリン酸トリアミドのようなアミド類;ジメチルスルホキシドのようなスルホキシド類;又はスルホランであり、好適には、ハロゲン化炭化水素類(最も好適には、ジクロロメタン)である。

[0187]

ヒドロキシ基を脱離基に変換させる際の反応温度は、原料化合物、使用される試薬、溶媒の種類等によって異なるが、通常、-50 ℃乃至 200 ℃(好適には、-10 ℃乃至 15 0 ℃)である。

[0188]

ヒドロキシ基を脱離基に変換させる際の反応時間は、原料化合物、使用される試薬、溶媒 20、反応温度等により異なるが、通常、15分間乃至24時間(好適には、30分間乃至1 2時間)である。

[0189]

上記反応に使用される沃素化剤は、例えば、五沃化燐、オキシ沃化燐、沃化ナトリウム、 沃化カリウムであり、好適には、沃化ナトリウムである。

[0190]

脱離基を沃素化する際の反応温度は、原料化合物、使用される試薬、溶媒の種類等によって異なるが、通常、0℃乃至200℃(好適には、10℃乃至150℃)である。

[0191]

脱離基を沃素化する際の反応時間は、原料化合物、使用される試薬、溶媒、反応温度等に 30より異なるが、通常、15分間乃至24時間(好適には30分間乃至12時間)である。

【 0 1 9 2 】 反応終了後、本反応の目的化合物(4)は常法に従って、反応混合物から採取される。例えば、反応混合物を適宜中和し、又、不溶物が存在する場合には濾過により除去した後、水と酢酸エチルのような混和しない有機溶媒を加え、目的化合物を含む有機層を分離し、水等で洗浄後、無水硫酸マグネシウム、無水硫酸ナトリウム、無水炭酸水素ナトリウム等で乾燥後、溶剤を留去することによって得られる。得られた目的化合物は必要ならば、常法、例えば再結晶、再沈殿、クロマトグラフィー等を用いて、分離、精製することができ

[0193]

る。

第 C - 3 工程は、一般式 (6) を有する化合物を製造する工程であり、不活性溶媒中、化合物 (4) を、塩基の存在下、一般式 (5) を有する化合物と反応させることにより行われる。

[0194]

上記反応に使用される不活性溶媒は、例えば、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジエチレングリコールジメチルエーテルのようなエーテル類;メタノール、エタノール、nープロパノール、イソプロパノール、nープタノール、イソプタノール、tーブタノール、イソアミルアルコール、ジエチレングリコール、グリセリン、オクタノール、シクロヘキサノール、メチルセロソルブのようなアルコール類;ホルムアミド、ジメチルホルムアミド、ジメチルアセトアミ 50

40

ド、ヘキサメチルリン酸トリアミドのようなアミド類;水;又は上記溶媒の混合溶媒であり、好適には、アルコール類又はアミド類(最も好適には、ジメチルホルムアミド)である。

[0195]

上記反応に使用される塩基は、例えば、前記第 C - 2 工程のヒドロキシ基を脱離基に変換させる際に使用されるものと同様なものであり、好適には、アルカリ金属水素化物類又はアルカリ金属アルコキシド類(最も好適には、水素化ナトリウム)である。

[0196]

反応温度は、原料化合物、塩基、溶媒の種類等によって異なるが、通常、-78℃乃至100℃(好適には、0℃乃至50℃)である。

[0197]

反応時間は、原料化合物、塩基、溶媒、反応温度等により異なるが、通常、15分間乃至48時間(好適には、30分間乃至12時間)である。

[0198]

反応終了後、本反応の目的化合物(6)は常法に従って、反応混合物から採取される。例 えば、反応混合物を適宜中和し、又、不溶物が存在する場合には濾過により除去した後、 水と酢酸エチルのような混和しない有機溶媒を加え、目的化合物を含む有機層を分離し、 水等で洗浄後、無水硫酸マグネシウム、無水硫酸ナトリウム、無水炭酸水素ナトリウム等 で乾燥後、溶剤を留去することによって得られる。得られた目的化合物は必要ならば、常 法、例えば再結晶、再沈殿、クロマトグラフィー等を用いて、分離、精製することができ 20 る。

[0199]

第C-4工程は、一般式(7)を有する化合物を製造する工程であり、不活性溶媒中、水の存在下、化合物(6)を塩基と反応させ、1個の低級アルコキシカルボニル基を加水分解することにより行われる。

[0200]

上記反応に使用される不活性溶媒は、本反応に不活性なものであれば特に限定はされないが、例えば、ヘキサン、ヘプタン、リグロイン、石油エーテルのような脂肪族炭化水素類;ベンゼン、トルエン、キシレンのような芳香族炭化水素類;ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジエチレングリコールジメチルエーテルのようなエーテル類;メタノール、エタノール、nープロパノール、イソプロパノール、nーブタノール、イソブタノール、tーブタノール、イソアミルアルコール、ジエチレングリコール、グリセリン、オクタノール、シクロヘキサノール、メチルセロソルブのようなアルコール類;又は上記溶媒の混合溶媒であり、好適には、アルコール類(最も好適には、エタノール)である。

[0201]

上記反応に使用される塩基は、例えば、前記 C - 2 工程のヒドロキシ基を脱離基に変換させる際に使用されるものと同様なものであり、好適には、アルカリ金属水酸化物類(最も好適には、水酸化カリウム)である。

[0202]

反応温度は、原料化合物、塩基、溶媒の種類等によって異なるが、通常、-20℃乃至200℃(好適には、0℃乃至50℃)である。

[0203]

反応時間は、原料化合物、塩基、溶媒、反応温度等により異なるが、通常、30分間乃至120時間(好適には、1時間乃至80時間)である。

[0204]

反応終了後、本反応の目的化合物(7)は常法に従って、反応混合物から採取される。例 えば、反応混合物を適宜中和し、又、不溶物が存在する場合には濾過により除去した後、 水と酢酸エチルのような混和しない有機溶媒を加え、目的化合物を含む有機層を分離し、 水等で洗浄後、無水硫酸マグネシウム、無水硫酸ナトリウム、無水炭酸水素ナトリウム等 50

30

50

で乾燥後、溶剤を留去することによって得られる。得られた目的化合物は必要ならば、常 法、例えば再結晶、再沈殿、クロマトグラフィーを用いて、分離、精製することができる

[0205]

第C-5工程は、一般式(9)を有する化合物を製造する工程であり、化合物(7)のカルボキシル基をクルチウス転位反応に付し、カルバメートに変換する方法であり、化合物(7)を、不活性溶媒中、塩基の存在下、ジフェニルリン酸アジドのようなジアリールリン酸アジド誘導体と反応させた後、一般式(8)を有する化合物と反応させることにより行われる。

[0206]

上記反応に使用される不活性溶媒は、本反応に不活性なものであれば特に限定はされないが、例えば、ヘキサン、ヘプタン、リグロイン、石油エーテルのような脂肪族炭化水素類;ベンゼン、トルエン、キシレンのような芳香族炭化水素類;クロロホルム、ジクロロメタン、1,2-ジクロロエタン、四塩化炭素のようなハロゲン化炭化水素類;ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジエチレングリコールジメチルエーテルのようなエーテル類;又は上記溶媒の混合溶媒であり、好適には芳香族炭化水素類(最も好適には、ベンゼン)である。

[0207]

上記反応に使用される塩基は、例えば、前記第C-2工程のヒドロキシ基を脱離基に変換させる際に使用されるものと同様なものであり、好適には、有機アミン類(最も好適には 20、トリエチルアミン)である。

[0208]

化合物 (7) をジアリールリン酸アジド誘導体と反応させる際の反応温度は、原料化合物、塩基、溶媒の種類等によって異なるが、通常、0℃乃至200℃(好適には、20℃乃至150℃)である。

[0209]

化合物 (7) をジアリールリン酸アジド誘導体と反応させる際の反応時間は、原料化合物、塩基、溶媒、反応温度等により異なるが、通常、15分間乃至24時間(好適には30分間乃至12時間)である。

[0210]

化合物 (7) をジアリールリン酸アジド誘導体と反応させた後、同一の反応溶液中で、化合物 (8) を加えて反応させる。

[0211]

反応温度は、原料化合物、塩基、溶媒の種類等によって異なるが、通常、0℃乃至200 ℃(好適には、20℃乃至150℃)である。

[0212]

反応時間は、原料化合物、塩基、溶媒、反応温度等により異なるが、通常、 1 5 分間乃至 2 4 時間(好適には 3 0 分間乃至 1 2 時間)である。

[0213]

また、化合物 (7) をジアリールリン酸アジド誘導体と反応させる際に、化合物 (8) の 40 うち、ジアリールリン酸アジド誘導体と直接反応しにくいものを一緒に反応させることにより、カルボキシル基を一気にカルバメートに変換することができる。

[0214]

反応終了後、本反応の目的化合物(9)は常法に従って、反応混合物から採取される。例えば、反応混合物を適宜中和し、又、不溶物が存在する場合には濾過により除去した後、水と酢酸エチルのような混和しない有機溶媒を加え、目的化合物を含む有機層を分離し、水等で洗浄後、無水硫酸マグネシウム、無水硫酸ナトリウム、無水炭酸水素ナトリウム等で乾燥後、溶剤を留去することによって得られる。得られた目的化合物は必要ならば、常法、例えば再結晶、再沈殿、クロマトグラフィー等を用いて、分離、精製することができる。

40

[0215]

第C-6工程は、一般式(10)を有する化合物を製造する工程であり、化合物(9)のエステル部分を還元し、所望により、式 CO^2R^{10} を有する基を除去し、低級脂肪族アシル化又は低級アルコキシカルボニル化(アシル化)することにより行なわれる。

[0216]

化合物(9)のエステル部分を還元する反応は、前記 C-1工程と同様に行われる。

[0217]

式 CO_2 R^{10} を有する基を除去する反応及びアシル化は、前記 A-1 工程と同様に行われる。

[0218]

本発明の一般式(Ⅰ)を有するリン酸又はホスホン酸誘導体、その薬理上許容される塩又 はその薬理上許容されるエステルは、毒性が低く優れた免疫抑制作用を有し、各種臓器移 植又は皮膚移植での拒絶反応、全身性エリトマトーデス、慢性関節リウマチ、多発性筋炎 、結合組織炎、骨格筋炎、骨関節炎、変形性関節症、皮膚筋炎、強皮症、ベーチェット病 Chron病、 潰瘍性 大 腸 炎、 自己 免 疫性 肝 炎、 再 生 不 良 性 貧 血 、 特 発 性 血 小 板 減 少 性 紫斑病、自己免疫性溶血性貧血、多発性硬化症、自己免疫性水疱症、尋常性乾癬、血管炎 症群、Wegener肉芽腫、ぶどう膜炎、シェーグレン症候群、特発性間質性肺炎、G oodpasture症候群、サルコイドーシス、アレルギー性肉芽腫性血管炎、気管支 喘息、心筋炎、心筋症、大動脈炎症候群、心筋梗塞後症候群、原発性肺高血圧症、微小変 化型ネフローゼ、膜性腎症、膜性増殖性腎炎、巣状糸球体硬化症、半月体形成性腎炎、重 症筋無力症、炎症性ニューロパチー、アトピー性皮膚炎、慢性光線性皮膚炎、日光過敏症 、酵瘡、Sydenham舞踏病、全身性硬化症、成人発症糖尿病、インスリン依存性糖 尿病、若年性糖尿病、アテローム性動脈硬化症、糸球体腎炎、ІgA腎症、尿細管間質性 腎炎、原発性胆汁性肝硬変、原発性硬化性胆管炎、劇症肝炎、ウイルス性肝炎、GVHD 、接触皮膚炎、敗血症等の自己免疫疾患又はその他免疫関連疾患、真菌、マイコプラズマ 、ウィルス、原虫等の感染症、心不全、心肥大、不整脈、狭心症、心虚血、動脈塞栓、動 脈瘤、静脈瘤、血行障害等の循環器系疾患、アルツハイマー病、痴呆、パーキンソン病、 脳卒中、脳梗塞、脳虚血、鬱病、躁鬱病、統合失調症、ハンチントン舞踏病、癲癇、痙攣 、多動症、脳炎、髄膜炎、食欲不振および過食等の中枢系疾患、リンパ腫、白血病、多尿 、頻尿、糖尿病性網膜症等の各種疾患(特に好適には、各種臓器移植又は皮膚移植での拒 絶反応、全身性エリトマトーデス、慢性関節リウマチ、多発性硬化症、アトピー性皮膚炎 等の自己免疫疾患)の、温血動物用(特に、ヒト用)の予防剤若しくは治療剤(特に、治 療薬)として有用である。

[0219]

本発明の一般式(I)を有する化合物、その薬理上許容される塩又はその薬理上許容されるエステルを、上記疾患の治療剤又は予防剤として使用する場合には、それ自体或は適宜の薬理学的に許容される、賦形剤、希釈剤等と混合し、例えば、錠剤、カプセル剤、顆粒剤、散剤若しくはシロップ剤等による経口的又は注射剤若しくは坐剤等による非経口的に投与することができる。

[0220]

これらの製剤は、賦形剤(例えば、乳糖、白糖、葡萄糖、マンニトール、ソルビトールのような糖誘導体;トウモロコシデンプン、バレイショデンプン、α 澱粉、デキストリンのような澱粉誘導体;結晶セルロースのようなセルロース誘導体;アラビアゴム;デキストラン;プルランのような有機系賦形剤:及び、軽質無水珪酸、合成珪酸アルミニウム、珪酸カルシウム、メタ珪酸アルミン酸マグネシウムのような珪酸塩誘導体;リン酸水素カルシウムのようなリン酸塩;炭酸カルシウムのような炭酸塩;又は硫酸カルシウムのような硫酸塩等の無機系賦形剤である。)、滑沢剤(例えば、ステアリン酸、ステアリン酸カルシウム、ステアリン酸マグネシウムのようなステアリン酸金属塩;タルク;コロイドシリカ;ビーガム、ゲイ蝋のようなワックス類;硼酸;アジピン酸;硫酸ナトリウムのような硫酸塩;グリコール;フマル酸;安息香酸ナトリウム; D L ロイシン;脂肪酸ナトリウム

30

40

[0221]

その使用量は症状、年齢等により異なるが、経口投与の場合には、1回当り1日下限0.05mg(好適には、5mg)、上限200mg(好適には、40mg)を、静脈内投与の場合には、1回当り1日下限0.01mg(好適には、1mg)、上限100mg(好適には、10mg)を成人に対して、1日当り1乃至6回症状に応じて投与することが望ましい。

[0222]

【実施例】

以下に、実施例および試験例を示し、本発明を更に詳細に説明するが、本発明の範囲はこれらに限定されるものではない。

[0223]

(実施例1)

リン酸 モノー (2R) - P = 2 - 3 + 4 - - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4

[0224]

【化12】

HO P-O NH₂

[0225]

(a)

酢酸 (2R) - アセチルアミノ- 2 - メチル- 4 - [5 - (5 - フェニルペント- 1 - イニル) チオフェン- 2 - イル] ブチル エステル

ム806mg (1.15mmol)を加え、窒素雰囲気下80℃で2時間撹拌した。反応 液を飽和塩化アンモニウム水溶液と混合し、酢酸エチルで抽出し、酢酸エチル層を水及び 50

飽和食塩水で洗浄した。酢酸エチル層を無水硫酸ナトリウムで乾燥後、溶媒を減圧下留去 した。残渣をシリカゲルクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル=1/1 ~1/2) で精製し、さらに分取HPLC(カラム: TSKgelODS-80Ts 5 5×300mm、溶出溶媒:アセトニトリル/水=1/1、流速50mL/min)で精 製して、標記化合物を無色油状態物として、3.27g(収率69%)得た。 核磁気共鳴スペクトル(400MHz, CDC l_3), δ : 1.36(3H,), 1.85-2.05(3H, m), 1.94(3H, s), 2.10(3H 2. 25-2. 35 (1H, m), 2. 43 (2H, t , J = 7 .s), 0 Hz), 3.70-3.80(4 H, m), 4.17(1 H, d, J=11. 2 Hz), 4. 31 (1 H, d, J = 11.2 Hz), 5. 38 (1 H 10 , bRs), 6.64(1H, d, J=3.6 Hz), 6.94 (1H, d, J = 3.6 Hz), 7.15-7.42(5H, m)マススペクトル (FAB), m/z: 412 ($(M + H)^+$)。 [0226] (b) (2R) -アミノ-2-メチル-4- [5-(5-フェニルペンタノイル) チオフェンー 2-イル] ブタン-1-オール 実施例 1 (a) で得られた酢酸 (2 R) - アセチルアミノ- 2 - メチル- 4 - [5 - (5-フェニルペント-1-イニル)チオフェン-2-イル]ブチル エステル3.27g (7.95mmol)をテトラヒドロフラン20mL、メタノール20mL及び水20m Lに溶解させ、水酸化リチウム一水和物 3. 3 3 g (7 9. 5 m m o 1) を加え、5 0 ℃ で6時間攪拌した。反応液を水に注ぎ、塩化メチレンで抽出し、塩化メチレン層を無水硫 酸ナトリウムで乾燥後、溶媒を減圧下留去した。得られた残渣をメタノール25mLに溶 解させ、6規定硫酸25mLを加え100℃で2時間攪拌した。反応液に氷冷下20%水 酸化ナトリウム水溶液を加えアルカリ性にした後、塩化メチレンで抽出し、塩化メチレン 層を無水硫酸ナトリウムで乾燥後、溶媒を減圧下留去した。残渣をシリカゲルクロマトグ ラフィー (シリカゲル: Chromatorex NH、100-200mesh、溶出 溶媒:塩化メチレン/メタノール=1/0~50/1)により精製して標記化合物を淡黄 色固体として 2. 13g (収率 76%) 得た。 核磁気共鳴スペクトル(400MHz, CD₃OD), δ : 1.09(3H, 30), 1.62-1.86 (6H, m), 2.64 (2H, t, J = 7.1 Hz), 2.84-2.98(4H, m), 3.34(1H, d, J=10.8 $H\ z$), 3.38(1H, d, $J=10.8\ H\ z$), 6.93(1H, J = 3.7 Hz), 7.10-7.28 (5 H, m), 7.68 (1 H, d) J = 3.7 Hz). マススペクトル (FAB), m/z: 346 ((M + H)⁺)。 [0227] (c) (2R) - t - ブトキシカルボニルアミノ-2-メチル-4-[5-(5-フェニルペン 40 タノイル)チオフェン-2-イル]ブタン-1-オール 実施例1 (b) で得られた (2R) -アミノ-2-メチル-4- [5-(5-フェニルペ ンタノイル) チオフェンー 2 ーイル] ブタンー 1 ーオール 7 2 4 mg(2. 0 9 mmo 1) を塩化メチレン8mlに溶解し、1規定水酸化ナトリウム水溶液8m及びジーtープチ ルジカルボネート 6 8 4 m g (3. 1 3 m m o 1) を加え、室温で 2 時間撹拌した。反応 液を塩化メチレンで希釈し、水を加えて分液した。塩化メチレン層を水及び飽和食塩水で 洗浄し、無水硫酸ナトリウムで乾燥後、減圧下溶媒を留去した。残渣をシリカゲルクロマ トグラフィー(展開溶媒:ヘキサン/酢酸エチル=3/2)により精製して標記化合物を 白色固体として890mg(収率95%)得た。 核磁気共鳴スペクトル(400MHz, CDC l_3), δ : 1.21(3H,), 1.43 (9H, s), 1.66-1.83 (4H, m), 1.97-2 50

30

. 06 (1 H, m), 2. 13-2. 21 (1 H, m), 2. 61-2. 68 (2 H, m), 2. 78-2. 98 (4 H, m), 3. 64-3. 72 (2 H, m), 3. 96 (1 H, brs), 4. 63 (1 H, brs), 6. 84 (1 H, d, J=3. 9 Hz), 7. 13-7. 30 (5 H, m), 7. 51 (1 H, d, J=3. 9 Hz).

 $\forall Z Z Z P + V (FAB), m / z : 446 ((M + H)^{+}).$

[0228]

(d)

[0229]

核磁気共鳴スペクトル(400MHz, CDCl3)、 δ : 1.32(3H, s), 1.44(9H, s), 1.66-1.82(4H, m), 1.88-1.98(1H, m), 2.21-2.33(1H, m), 2.63-2.68(2H, m), 2.82-2.87(4H, m), 3.98-4.04(1H, m), 4.15-4.21(1H, m), 4.53-4.59(4H, m), 4.64(1H, bRrs), 5.24-5.41(4H, m), 5.59-6.00(2H, m), 6.83(1H, d, J=3.7Hz), 7.14-7.30(5H, m), 7.51(1H, d, J=3.7Hz)。マススペクトル(FAB)、 m/z: 606 ((M + H) $^+$)。

[0230]

(e)

リン酸 モノー (2R) - P = 2 - 3 + 4 - - 4

核磁気共鳴スペクトル(400MHz, DMSO-d₆), δ : 1.22(3H, s), 1.52-1.65(4H, m), 1.83-2.05(2H, m), 2.52-2.63(2H, m), 2.81-2.97(4H, m), 3.71-3.88(2H, m), 6.98(1H, d, J=3.7Hz), 7.1

40

4-7.28(5H, m), 7.74(1H, d, J=3.7Hz)。 マススペクトル (FAB), $m/z:426((M+H)^+)$ 。

[0231]

(実施例2)

リン酸 モノー (2 R) -アミノー2-メチルー4- [5- (4-シクロヘキシルオキシ・プト-1-イニル) チオフェン-2-イル] プチル エステル

[0232]

【化13】

[0233]

(a)

(2 R) ーアリルオキシカルボニルアミノー2ーメチルー4ー [5 ー (4 ー シクロヘキシルオキシブトー1ーイニル) チオフェンー2ーイル] ブタンー1ーオール参考例6で合成した(2 R) ーアミノー2ーメチルー4ー [5 ー (4 ー シクロヘキシルオキシブトー1ーイニル) チオフェンー2ーイル] ブタンー1ーオール マレイン酸塩500mg(1.11mmol)に1規定水酸化ナトリウム水溶液10mLを加え、塩化メチレンで抽出した。塩化メチレン層を無水硫酸ナトリウムで乾燥後、減圧下溶媒を留去した。得られた残渣を酢酸エチル8mL及び水8mLに溶解し、炭酸水素カリウム141mg(1.33mmol)及びクロロギ酸 アリル133μL(1.33mmol)を加え、室温で30分撹拌した。反応液を水にあけ、酢酸エチルで抽出し、酢酸エチル層を飽和食塩水で洗浄した。酢酸エチル層を無水硫酸ナトリウムで乾燥後、減圧下溶媒を留去した。残渣をシリカゲルクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=2/1~3/2)により精製して標記化合物を無色油状物として465mg(100%)得た。

[0234]

核磁気共鳴スペクトル(400MHz, $CDCl_3$), δ : 1.15-1.35(8H, m), 1.50-1.60(1H, m), 1.70-1.80(2H, m), 1.88-2.03(3H, m), 2.08-2.18(1H, m), 2.67(2H, t, J=7.2Hz), 2.72-2.90(2H, m), 3.27-3.34(1H, m), 3.47(1H, brs), 3.62-3.75(4H, m), 4.53(2H, d, J=5.7Hz), 4.82(1H, brs), 5.22-5.35(2H, m), 5.86-5.97(1H, m), 6.63(1H, d, J=3.6Hz), 6.93(1H, d, J=3.6Hz)。

[0235]

(b)

- 6 M t-ブチルハイドロパーオキサイド-デカン溶液 0.66 m L (3.32 m m o 1)をゆっくり加えた。氷冷下5分撹拌後、10%チオ硫酸ナトリウム水溶液10mlを 加え、塩化メチレンで抽出した。塩化メチレン層を水及び飽和食塩水で洗浄し、無水硫酸 ナトリウムで乾燥後、減圧下溶媒を留去した。残渣をシリカゲルクロマトグラフィー(展 開溶媒:ヘキサン/酢酸エチル=3/1~3/2)により精製した。得られた精製物24 8 mg (0. 43 mm o 1) をアセトニトリル 5 m L に溶解し、テトラキス (トリフェニ ルホスフィン) パラジウム 2 5 mg (0.02 mm o l) を加え、さらに氷冷下ピロリジ ン 1 7 9 µ L (2. 1 4 m m o 1)を加え、室温で 2 時間撹拌した。析出した沈殿をろ取 し、アセトニトリル及び 0.1% 酢酸アンモニウム水溶液の混合物 (1:1) 10 m L を 加えて加熱し、放置した。得られた沈殿をろ取し、乾燥し、標記化合物を白色結晶として 10 35mg(8%)得た。

[0236]

核磁気共鳴スペクトル (400MHz, CD₃COOD), δ: 1.15-1.4 0 (5 H, m), 1.43 (3 H, s), 1.49-1.57 (1 H, m),1. 70-1. 80(2H, m), 1. 90-1. 98(2H, m), 2. 01-2.22(2H, m), 2.68(2H, t, J=6.6Hz), 3.00(2H, m), 3.37-3.46(1H, m), 3.71(2H, m)t, J = 6.6 Hz), 4.08 - 4.16(2 H, m), 6.73(1 H,J = 3 . 7 H z) ,6.96 (1 H, d, J = 3.7 Hz) o

マススペクトル (FAB), m/z: 414 ((M + H)⁻)。

[0237]

(実施例3)

(3R)-アミノ-3-メチル-5-[5-(5-フェニルペンチル)チオフェン-2-イル] ペンチルホスホン酸

[0238]

【化14】

[0239]

(a)

(2R) - t - ブトキシカルボニルアミノ-2-メチル-4- [5-(5-フェニルペン チル)チオフェン-2-イル]-1-ブタナール 参考例 8 で得られた (2 R) -アミノ-2-メチル-4- [5- (5-フェニルペンチル) チオフェン-2-イル] プタン-1-オール1.26g(3.97mmol)を塩化メ チレン25mLに溶解させ、氷冷攪拌下、ジーt-ブチルジカーボネート1.04g(4 . 7 6 m m o 1) 及びトリエチルアミン O . 5 5 m L (3 . 9 7 m m o 1) を加え、室温 にて16時間攪拌した。反応終了後、反応液に水を加え酢酸エチルで抽出した。有機層を 飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧下溶媒を留去した。残渣をシリ カゲルクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=1/1)により精製して 、N-t-ブトキシカルボニル体 (N-Boc体) を1.12g (収率70%) 得た。N - Boc体 150 mg (0.35 mmol) を塩化メチレン 7.5 m L に溶解させ、氷 冷攪拌下、1,1,1-トリアセトキシ-1,1-ジヒドロ-1,2-ベンズイオドキソ ール-3 (1H) -オン (Dess-Martin試薬) 222mg (0.52mmol) を加え、室温にて1.5時間攪拌した。反応終了後、反応液にチオ硫酸ナトリウム水溶 液を加え、室温にて30分攪拌し、水を加えて酢酸エチルで抽出した。有機層を飽和食塩 水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧下溶媒を留去した。残渣をシリカゲルク ロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=5/1)により精製して標記化合 物を無色シロップとして150mg(収率100%)得た。

[0240]

核磁気共鳴スペクトル (400MHz, CDCl₃), δ: 9.33 (s, 1 H), 7.42-7.23 (m, 2H), 7.22-7.17 (m, 3H) , 6.54 (d, 1H, J = 3.66 Hz), 6.53 (d, 1HJ = 3.66 Hz), 5.25-5.11 (brs, 1H), 2.7(t, 2H, J = 7.70Hz), 2.41-2.26 (m, 1H),2. 12-2. 00 (m, 1H), 2. 71-1. 58 (m, 4H), 1. 4 (s, 9H), 1.51-1.32 (m, 2H), 1.38 (s, 3

赤外吸収スペクトル, ν max cm⁻¹ (CHC13):3443, 3413, 2981, 2934, 2858, 1708, 1495, 1453, 1369 , 1253, 1164, 1074。

[0241]

(b)

チル)チオフェン-2-イル]-1-ペンテニルホスホン酸 ジエチルエステル テトラエチル メチレンジホスホネートO.56mL(2.26mmol)をベンゼン1 5 m L に溶解させ、氷冷攪拌下、60%水素化ナトリウム90 m g (2.17 m m o 1) を加えた。その後、室温にて30分攪拌した後、実施例3(a)で得られた(2R)ーt ブトキシカルボニルアミノー2ーメチルー4ー[5ー(5ーフェニルペンチル)チオフ ェン-2-イル] -1-ブタナール194mg(0.45mmol)を加え、室温にて2 時間攪拌した。反応終了後、反応液に塩化アンモニウム水溶液を加え、有機層を酢酸エチ ルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧下溶媒 を留去した。残渣をシリカゲルクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル= 1 / 1) により精製して標記化合物を無色シロップとして 2 2 7 mg (収率 8 9 %) 得た 30

[0242]

核磁気共鳴スペクトル (400MHz、CDC13), δ: 7.29-7.26 (m , 2 H), 7.19-7.16 (m, 3 H), 6.76 (dd, 1 H, J = 17.6, 22.7 Hz), 6.56-6.53 (m, 2H,), 5.70 (dd, 2H, J = 17.6, 17.8 Hz) 4.65-4.55 (br s, 1H), 4.18-4.02 (m, 4H), 2.80-2. 67 (m, 4H), 2.61 (t, 2H, J = 7.69 Hz), 2.23-2.21 (m, 1H), 2.08-1.90 (m, 1H), 1.73-1.55 (m, 4H), 1.43 (s, 9H), 1.34 (t, 6H, 40 J = 6.97 Hz), 1.26 (t, 3H, J = 6.97 Hz)

赤外吸収スペクトル, ν_{max} cm $^{-1}$ (CDC13): 3443, 2982 , 2933, 2858, 2244, 1718, 1495, 1454, 136 8, 1245, 1166, 1057, 1029. マススペクトル (FAB), m/z: 564 ((M + H)⁻)。

[0243]

(c)

(3 R) - t - ブトキシカルボニルアミノ-3-メチル-5- [5-(5-フェニルペン チル)チオフェン-2-イル]ペンチルホスホン酸 ジエチルエステル

40

核磁気共鳴スペクトル(400MHz、CDCl3)、 δ : 7.31-7.23 (m, 2H), 7.22-7.13 (m, 3H), 6.56 (d, 1H, J 10 = 2.93 Hz), 6.53 (d, 1H, J = 2.93 Hz), 4.42-4.23 (brs, 1H), 4.18-4.01 (m, 4H), 2.80-2.65 (m, 4H), 2.61 (t, 2H, J = 7.70 Hz), 2.22-2.08 (m, 2H), 1.91-1.53 (m, 10H), 1.43 (s, 9H), 1.33 (t, 6H, J = 7.33 Hz), 1.21 (s, 3H)。

赤外吸収スペクトル, ν_{max} cm⁻¹ (CHCl3): 3443, 2984, 2935, 1714, 1498, 1454, 1392, 1368, 1165, 1063, 1031, 967。

マススペクトル (FAB), m/z: 566 ((M + H)⁻)。

[0245]

(d)

[0246]

核磁気共鳴スペクトル(400MHz、CD3OD)、 δ : 7.25-7.18 (m, 2H), 7.18-7.19 (m, 3H), 6.64 (d, 1H, J=3.30 Hz), 6.56 (d, 1H, J=3.30 Hz), 2.83 (t, 2H, J=8.79Hz), 2.74 (t, 2H, J=7.33 Hz), 2.59 (t, 2H, J=7.33 Hz), 2.05-1.85 (m, 4H), 1.72-1.56 (m, 6H), 1.44-1.31 (m, 5H)。赤外吸収スペクトル、 ν_{max} cm⁻¹ (KBr): 2930, 1632, 1552, 1496, 1453, 1389, 1180, 1048, 946, 800, 746, 698。マスペクトル (FAB), m/z: 408 ((M+H)⁻)。

(実施例4)

(3R) - アミノ-3-メチル-5-[5-(5-フェニルペンタノイル)チオフェンー2-イル]ペンチルホスホン酸

[0247]

【化15】

[0248]

(a)

10

(2 R) - t - ブトキシカルボニルアミノ- 2 - メチル- 4 - [5 - (5 - フェニルペンタタノイル)チオフェン- 2 - イル] - 1 - ブタナール 参考例 1 0 で得られた(2 R) - アミノ- 2 - メチル- 4 - [5 - (5 - フェニルペンタノイル)チオフェン- 2 - イル] ブタン- 1 - オール 6 3 7 m g (1 . 8 4 m m o 1)を塩化メチレン(1 8 m L)に溶解し、ジー t - ブチルジカルボネート 4 9 2 m g (2 . 2 6 m m o 1)およびトリエチルアミン 5 . 6 1 m L (6 . 8 0 m m o 1)を加え、室温で 2 0 時間攪拌した。減圧下濃縮し、反応液に水を加え、酢酸エチルで抽出し、酢酸エチル層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。ろ過後、減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:- 2 2 3 4 5 6 7 8 m g(8 3 %)を得た。

[0249]

得られた N - B o c 体 6 7 3 m g (1.51 m m o 1)を塩化メチレン(15 m L)に溶解し、1,1,1-トリアセトキシー1,1-ジヒドロー1,2-ベンズイオドキソールー3 (1 H) - オン (D e s s - M a r t i n 試薬)965 m g (2.28 m m o 1)を加え、窒素雰囲気下、室温で1時間攪拌した。減圧下濃縮し、反応液に10%チオ硫酸ナトリウム水溶液を加え、過剰の試薬を分解した後、塩化メチレンで抽出し、塩化メチレン層を飽和重曹水および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。ろ過後、減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル=3/1)により精製して、標記化合物677 m g (100%)を得た。

[0250]

核磁気共鳴スペクトル(400MHz、CDC13)、 δ : 9.35 (s, 1H))、7.49 (d、1H、J = 4.4Hz)、7.29-7.25 (m, 3H)、7.18-7.15 (m, 2H)、6.80 (d、1H、J = 4.4Hz)、5.17 (brs、1H)、2.87-2.79 (m, 1H)、2.84 (t、2H、J = 6.8Hz)、2.75-2.68 (m, 1H)、2.65 (t、2H, J = 6.8Hz)、2.75-2.40 (m, 1H)、2.15 (ddd、1H, J = 5.9Hz、10.8 Hz、14.3 Hz)、1.82-1.66 (m, 4H)、1.4 40 5 (s、9H)、1.38 (s、3H)。マススペクトル (FAB+)、m/z:444 ((M+H)+)。

[0251]

(b)

40

ェニルペンタノイル)チオフェンー2ーイル]ー1ーブタナール508 mg(1.13 m mol)をテトラヒドロフラン(7 m L)に溶解した溶液を氷冷下、5分間要して加え、同温度にて10分間攪拌した。反応液に酢酸0.10 m L(1.75 m mol)を加えて中和した後、減圧下濃縮し、反応液に水を加え、酢酸エチルで抽出し、酢酸エチル層を水および飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。ろ過した後、減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィー(溶出溶媒:酢酸エチル)により精製して、標記化合物614 mg(94%)を得た。

[0252]

核磁気共鳴スペクトル(400MHz、CDC13)、 δ : 7.50 (d, 1H, J = 3.9 Hz), 7.29-7.25 (m, 3H), 7.19-7 10.16 (m, 2H), 6.81 (d, 1H, J = 3.9 Hz), 6.76 (dd, 1H, J = 17.8 Hz, 22.5 Hz), 5.72 (dd, 1H, J = 17.8 Hz, 17.8 Hz), 4.58 (brs, 1H), 4.15-4.02 (m, 4H), 2.86-2.77 (m, 4H), 2.65 (t, 2H, J = 7.1 Hz), 2.33-2 .24 (m, 1H), 2.06 (brs, 1H), 1.82-1.67 (m, 4H), 1.43 (s, 9H), 1.41 (s, 3H), 1.3 3 (t, 3H, J = 6.8 Hz)。

マススペクトル ($F A B^{+}$), m / z : 5 8 0 ((M + H) +)。

[0253]

(c)

(3R) - t - ブトキシカルボニルアミノ- 3 - メチル- 5 - [5 - (5 - フェニルペンタノイル) チオフェン- 2 - イル] ペンチルホスホン酸 ジエチルエステル 10%パラジウム- 炭素(50%含水)95.3 mgをメタノール(1 m L)に懸濁し、実施例4(b)で得られた(3R) - t - ブトキシカルボニルアミノ- 3 - メチル- 5 - [5 - (5 - フェニルペンタノイル)チオフェン- 2 - イル] - 1 - ペンテニルホスホン酸 ジエチルエステル508 mg (0.88 mmol)をメタノール(8 m L)に溶解した溶液を加え、水素雰囲気下、50℃で40時間攪拌した。反応液中のパラジウム- 炭素をセライトろ過した後、ろ液を減圧下留去した。残渣をシリカゲルクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル= 1 / 3 - 酢酸エチル)により精製して、標記化合物408 mg(収率80%)を得た。

[0254]

核磁気共鳴スペクトル(400MHz、CDCl3), δ : 7.51 (d, 1H, J = 3.6 Hz),7.29-7.25 (m, 3H),7.19-7.15 (m, 2H),6.81 (d, 1H, J = 3.6 Hz),4.37 (brs, 1H),4.15-4.05 (m, 4H),2.86-2.80 (m, 4H),2.65 (t, 2H, J = 7.1 Hz),2.30-2.12 (m, 2H),1.94-1.86 (m, 1H),1.82-1.66 (m, 7H),1.43 (s, 9H),1.33 (t, 3H, J = 6.8 Hz) 1.21 (s, 3H)。マススペクトル(FAB+),m/z:580 ((M+H)+)。

[0255]

(d)

(3R) - アミノ-3-メチル-5- [5-(5-フェニルペンタノイル) チオフェン-2-イル] ペンチルホスホン酸

アンモア水溶液および酢酸を加えてpH3として結晶を析出させた。析出結晶をろ取し、 水およびエタノールで洗浄後、乾燥して、標記化合物82.1mg(収率85%)を得た

[0256]

核磁気共鳴スペクトル (400 M H z 、C D₃ C O₂ D), δ : 7.67 $1 \text{ H}, \quad J = 3.7 \text{ Hz}, \quad 7.26-7.22 \quad (m, 2 \text{ H}), \quad 7.18$ -7.12 (m, 3H), 6.97 (d, 1H, J = 3.7 2 H, J = 8.8 Hz), 2.93 (t, 2 H, 2.98 (t, J = 7.3 Hz), 2.64 (t, 2H, J = 7.3 Hz), 2. 23-2.07 (m, 4H), 2.06-1.93 (m, 2H), 1.80 10 -1.65 (m, 4H), 1.46 (s, 3H). マススペクトル (FAB^{+}), m/z:424 ((M+H) +)。

[0257]

(参考例1)

(4R) -メチル-4-[2-(チオフェン-2-イル) エチル] オキサゾリジン-2-オン

(a)

(2R) - t - ブトキシカルボニルアミノ-3-ヘキサノイルオキシ-2-メチル-1-プロパノール

2-t-ブトキシカルボニルアミノ-2-メチル-1,3-プロパンジオール20.0 g (97.4mmol)をジイソプロピルエーテル200 ml中に懸濁し、ヘキサン 酸 ビニルエステル16.3 ml (0.10 mol)及びリパーゼ [Immobi lized lipase from Pseudomonas sp. (TOYOBO ; 0.67U/mg)] 0.8gを加え、室温で2時間激しく攪拌した。反応液を濾 過後、濾液を減圧下留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(溶 出溶媒:ヘキサン/酢酸エチル=10/1~2/1)により精製して、標記化合物25. 0 g (収率85%)を無色油状物として得た。

[0258]

得られた標記化合物の光学純度は、分析用光学活性HPLCカラム(ChiralCel OF(ダイセル)、(0.46 cm x 25 cm)、溶出溶媒:ヘキサン/2- 30 プロパノール=70/30、流速:0.5 ml/min) で決定した。

[0259]

先に溶出されるもの(保持時間: 8. 2分)が 2 S 体であり、後から溶出されるもの(保 持時間:10.5分)が2R体であり、この反応における光学純度は85 %eeである ことを確認した。

 $[\alpha]^{D}_{25} - 8.5$ (c 1.86, CHCl₃)

核磁気共鳴スペクトル(400MHz、CDCl $_3$), δ : 4.86 (s, 1H) , 4.25 (d, 1H, J = 11.2 Hz), 4.19 (d, 1HJ = 11.2 Hz), 3.86 (brs, 1H), 3.70-3.5 $5 \quad (m, 2H), 2.36 \quad (t, 2H, J = 7.4 Hz), 1.6$ 8-1.58 (m, 2H), 1.44 (s, 9H), 1.40-1.30(m, 4H), 1.25 (s, 3H), 0.90 (t, 3H, J =7.0 Hz).

赤外吸収スペクトル, ν_{max} cm⁻¹ (液状フィルム) : 3415, 338 0, 2961, 2935, 2874, 1721, 1505, 1458, 1 392, 1368, 1293, 1248, 1168, 1076. マススペクトル(FAB), $m/z:304((M+H)^+)$ 。

[0260]

(b)

(2R) - t - ブトキシカルボニルアミノ-3-ヘキサノイルオキシ-2-メチル-1- 50

プロパナール

参考例 1 (a)で得られた (2 R) - t - ブトキシカルボニルアミノ- 3 - ヘキサノイル オキシー2-メチル-1-プロパノール30.7 g (0.10 mol)を塩化メチ レン600 mlに溶解し、モレキュラーシーブ4Å 220 g及び塩化クロム酸ピリ ジニウム 4 3 . 6 g (0 . 2 0 mol) を氷冷下加え、その後、室温で 2 時間攪拌 した。反応液をエーテルで希釈後、濾過した。濾液を減圧下留去し、残渣をシリカゲルカ ラムクロマトグラフィー (溶出溶媒:ヘキサン/酢酸エチル=10/1~5/1) により 精製して、標記化合物 2 8 . 8 g (収率 9 5 %)を無色油状物として得た。 核磁気共鳴スペクトル (400 M H z 、CDCl₃), δ: 9.45 (s, 1 H) , 5.26 (brs, 1H), 4.44 (d, 1H, J = 11.2 H 10z), 4.32 (d, 1H, J = 11.2 Hz), 2.32 (t, 2 H, J = 7.6 Hz), 1.70-1.55 (m, 2H), 1.45(s, 9H), 1.38 (s, 3H), 1.40-1.25 (m, 4H)), 0.90 (t, 3H, J = 7.0 Hz). 赤外吸収スペクトル, ν_{max} cm $^{-1}$ (液状フィルム) : 3367, 296 1, 2935, 2874, 1742, 1707, 1509, 1458, 1 392, 1369, 1290, 1274, 1254, 1166, 1100,

[0261]

(c)

20

50

(2R) - t - プトキシカルボニルアミノ-1-ヘキサノイルオキシ-2-メチル-4-(チオフェン-2-イル) -3-ブテン

1078。マススペクトル(FAB), m/z:302 ((M+H) ⁺)。

臭化 2-チエニルメチルトリフェニルホスホニウム塩67.1 g (0.15 mo 1)をテトラヒドロフラン 7 5 0 mlに懸濁し、そこに t - ブトキシカリウム 1 7. 2 g (0.15 mol)を加え、室温で、窒素雰囲気下20分間撹拌した。反応液へ 、テトラヒドロフラン 2 5 0 mlに溶解した参考例 1 (b)で得られた(2 R)ーtー ブトキシカルボニルアミノー3-ヘキサノイルオキシ-2-メチル-1-プロパナール2 3.0 g (76.4 mmol)を氷冷下、滴下し、滴下終了後、氷冷下で30分攪 拌した。その後、反応液に水を加え、酢酸エチルで抽出し、酢酸エチル層を飽和食塩水で 洗浄した。酢酸エチル層を無水硫酸ナトリウムで乾燥後、減圧下溶媒を留去した。残渣を シリカゲルカラムクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル=20/1)に より精製して、標記化合物 2 7 . 8 g (収率 9 6 %)を無色油状物として得た。 核磁気共鳴スペクトル (400MHz、CDCl₃), δ: 7.32-7.26, 7

. 16-7.14 (m, 計1H), 7.04-7.01, 7.01-6.93(m, 計2H), 6.63 (d, 0.5 H, J = 16.0 Hz), 6.60 (d, 0.5 H, J = 13.6 Hz), 6.10 (d, 0.5 H, J = 16.0 Hz), 5.58 (d, 0.5 H, J = 13.6 Hz), 4.94, 4.93 (brs, 計1H), 4.40-4.1 $0 \quad (m, 2H), 2.34 \quad (t, 2H, J = 7.4 Hz), 1.7$ 0-1.55 (m, 2H), 1.57, 1.50, 1.44 (s, 計9H), 1.40-1.25 (m, 7H), 0.88 (t, 3H, J . 0 Hz).

赤外吸収スペクトル, ν_{max} cm $^{-1}$ (液状フィルム) : 3370, 296 1, 2933, 1725, 1495, 1456, 1391, 1367, 1 247, 1167, 1109, 1100, 1072, 697。 マススペクトル (FAB), m/z: 381 (M^{\dagger})。

[0262]

(d)

(4R) -メチル-4- [2-(チオフェン-2-イル) エテニル] オキサゾリジン-2 ーオン

50

参考例 1 (c) で得られた (2 R) - t - ブトキシカルボニルアミノ-1-ヘキサノイル $x^{2} + y^{2} - y^{2} + y^{2} - y^{2} - y^{2} + y^{2} - y^{2} - y^{2} + y^{2} - y^{2$ 11 mol)をテトラヒドロフラン150 ml及びメタノール150 mlに溶解し 、そこに1規定水酸化ナトリウム水溶液530 mlを氷冷下加え、氷冷下で30分及び 室温で1時間攪拌した。反応液を減圧下濃縮後、水を加え、塩化メチレンで抽出し、塩化 メチレン層を飽和食塩水で洗浄した。塩化メチレン層を無水硫酸ナトリウムで乾燥後、減 圧下溶媒を留去し、粗生成物 3 5. 0 gを得た。この粗生成物をテトラヒドロフラン 3 00 mlに溶解し、t-ブトキシカリウム17.8 g (0.16 mol)を氷冷 下加え、氷冷下で10分及び室温で40分攪拌した。反応液に水を加え、酢酸エチルで抽 出し、酢酸エチル層を飽和食塩水で洗浄した。酢酸エチル層を無水硫酸ナトリウムで乾燥 10 後、減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:へ キサン/酢酸エチル= $3/1\sim1/1$)により精製して、標記化合物 18.0 g (収 率81%)を白色固体として得た。

核磁気共鳴スペクトル (400 M H z 、C D C l 3) , δ: 7.34 (d, 0.5 H, J = 5.1 Hz), 7.19 (d, 0.5H, J=5.0Hz),7. 0.7-6.91 (m, 2H), 6. 7.4 (d, 0.5H, J=1.6. $0 \, Hz$), 6.59 (d, 0.5H, J = 12.5), 6.17 (brs, $1\ H$), $6.\ 0.6$ (d, $0.\ 5\ H$, $J=1.6.\ 0.0\ H$ z), $5.\ 6.5$ (d, 0.5H, J = 12.5Hz), 4.41 (d, 0.5H, J = 8.6Hz), 4.31-4.16 (m, 1.5H), 1.60 (s, 1.5H), 1.55 (s, 1.5H).

赤外吸収スペクトル, v_{max} cm⁻¹ (KBr) : 3275, 3110, 2974, 1752, 1391, 1376, 1281, 1169, 1039 960, 704。

マススペクトル(FAB), m/z: 209 (M^+)。

[0263]

(e)

(4R) -メチル-4- [2-(チオフェン-2-イル) エチル] オキサゾリジン-2-オン

参考例 1 (d) で得られた (4 R) -メチル-4-[2-(チオフェン-2-イル) エテ 30 [2] [[2] [[2]] [2] [[2] [[2]] [2] [[2] [[2]] [2] [[2] [[2]] [2] [[2] [[2]] [2] [[2] [[2]] [2] [[2] [[2]] [2] [[2] [[2]] [2] [[2] [[2]] [2] [[2] [[2]] [2] [[2] [[2]] [2] [[2] [[2]] [2] [[2] [[2]] [2] [[2] [[2] [[2]] [2] [[2] [[2] [[2]] [2] [[2] [[2] [[2]] [2] [[2] [[2] [[2]] [2] [[2]50 mlに溶解し、10%パラジウムー炭素4.5 gを加え、水素雰囲気下、10時 間室温で攪拌した。反応液中のパラジウムー炭素を、シリカゲルを薄く敷いた桐山ロート を用いて濾過し、濾液を減圧下留去した。得られた固体をジエチルエーテルで洗浄後、乾 燥して、標記化合物16.5 g (収率91 %)を白色固体として得た。

[0264]

得られた標記化合物の光学純度は、分析用光学活性HPLCカラム(ChiralCel OD-H(ダイセル)、(O. 46 cm x 25 cm)、溶出溶媒: ヘキサン/ 2 - プロパノール = 6 0 / 4 0、流速: 0.5 ml/min)を用いて決定した。

[0265]

先に溶出されるもの(保持時間:16.8分)が25体であり、後から溶出されるもの(保持時間:17.6分)が2尺体であり、この反応における光学純度は85 % e e であ ることを確認した。

 $[\alpha]^{D}_{2.5} + 5.1$ (c 2.4, CHCl₃) 核磁気共鳴スペクトル(400MHz、CDCl $_3$)、 δ : 7.15 (d, J = 5.2 Hz), 6.93 (dd, 1H, J = 5.2, Hz), 6.81 (d, 1H, J = 3.6 Hz), 5.39 (br s, 1H), 4.19 (d, 1H, J = 8.4 Hz), 4.08 (d, 1 H, J = 8.4 Hz), 3.00-2.84 (m, 2 H). 0.08-1.92 (m, 2.H), 1.42 (s, 3.H).

30

赤外吸収スペクトル, v_{max} cm⁻¹ (KBr) : 3283, 1770, 1399, 1244, 1043, 941, 846, 775, 706, 691。 マススペクトル (EI), m/z:211(M⁺)。

[0266]

この光学純度 8 5 % e e の (4 R) -メチルー4ー [2 - (チオフェンー2 - イル) エチル] オキサゾリジンー2 - オン 1 1 g に酢酸エチル 2 5 m l と $^{-}$ と $^{-}$ か 1 を加えて、加熱溶解した後、室温で 2 時間放置した。析出した白色結晶を濾取し、乾燥を行い、光学純度 9 9 % e e の標記化合物を 4 . 0 g 得た。

 $[\alpha]^{D}_{25} + 7.8 (c 2.0, CHCl_3)$.

+7.8 (C 2.0, CHC13).

[0267]

(参考例2)

(a)

(2R) - アミノ-2-メチル-4-チオフェン-2-イルブタン-1-オール 1/2 D-(-)-酒石酸塩

参考例 1 で得られた 8 5 % e e e の (4 R) ーメチルー 4 ー [2 ー (チオフェンー 2 ーイル) エチル] オキサゾリジンー 2 ーオン 7 . 3 0 g (3 4 . 6 m m o 1)をテトラヒドロフラン 3 5 m l 及びメタノール 7 0 m l に溶解し、氷冷下、 5 規定水酸化カリウム水溶液 7 0 m l を加え、 8 0 $^{\circ}$ で 2 日間攪拌した。反応液に塩化メチレンを加え、水で洗浄した。塩化メチレン層を無水硫酸マグネシウムで乾燥し、溶媒を減圧下留去した。得られた残渣 6 . 2 0 g をエタノール 6 0 m l に溶解し、 D ー (一) ー酒石酸 5 . 1 9 g (3 4 . 6 m m o 1)のエタノール 5 0 m l 溶液を加え、析出した沈殿を濾取して、粗製の標記化合物 7 . 5 6 g を得た。得られた粗製の目的化合物 7 . 5 4 g をエタノール 7 5 m l 及び水 5 0 m l を用いて再結晶を行い、標記化合物 5 . 8 9 g (9 8 % e e)を得た。再度、得られた目的化合物 5 . 8 8 g をエタノール 6 0 m l 及び水 5 4 m l を用いて再結晶を行い、標記化合物 5 . 1 1 g (収率 5 7 %、 9 9 . 7 % e e)を得た。

赤外吸収スペクトル, ν_{max} cm⁻¹ (KBr):3400, 3218, 3126, 2937, 2596, 1599,

1530, 1400, 1124, 1077, 715.

元素分析値; (C₉ H₁₅ NOS・0.5 C₄ H₄ O₆ として%)

計算值 : C, 50.95; H, 6.61; N, 5.40; S, 12.36

実測値: C, 50.68; H, 6.91; N, 5.38; S, 12.48

 $[\alpha]_{D}^{2} - 14$ (c 1.00, H₂O).

[0268]

(b)

酢酸 (2R) - アセチルアミノ-2-メチル-4-(チオフェン-2-イル) ブチルエステル

40

クロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル=3/1~1/2)により精製し 、標記化合物 2. 15g(収率 98%)を得た。

核磁気共鳴スペクトル(400MHz, CDCl $_3$)、 δ : 1.37 (3H, s), 1.93 (3H, s), 1.94-2.10 (1H, m), 2.10 (3H, s), 2.24-2.38 (1H, m), 2.85 (2H, t, J = 8.0 Hz), 4.18 (1H, d, J = 11.6 Hz), 4.3 2 (1 H, d, J = 1 1 . 6 Hz), 5.39 (1 H, brs), 81 (1H, dd, J=1.2, 3.6 Hz), 6.92 (1H, dd , J = 3.6, 5.2 Hz), 7.12 (1 H, dd, <math>J = 1.2, 5. 2 Hz).

赤外吸収スペクトル, v_{max} cm⁻¹ (KBr): 3265, 3079, 9 3 3, 2 8 6 2, 1 7 3 5, 1 6 3 8, 1 5 5 9, 1 4 7 2, 1 4 4 1, 1374, 1318, 1241, 1179, 1039, 701, 616. [0269]

(c)

酢酸 (2 R) -アセチルアミノ-2-メチル-4-(5-プロモチオフェン-2-イル) ブチル エステル

参考例 2 (b) で得られた酢酸 (2R) -アセチルアミノ-2-メチル-4-(チオフ ェン-2-イル) ブチル エステル 1. 8 1 g (6. 7 0 mm o 1) をジメチルホルム アミド20mlに溶解させ、氷冷下、N-ブロモスクシンイミド1.27g(7.11 mmol)を加え、窒素雰囲気下、氷冷下で10分間及び室温で一昼夜攪拌した。反応液 を水にあけ、酢酸エチルで抽出し、酢酸エチル層を飽和食塩水で洗浄した。酢酸エチル層 を無水硫酸ナトリウムで乾燥後、溶媒を減圧下留去した。残渣をシリカゲルクロマトグラ フィー(溶出溶媒:ヘキサン/酢酸エチル=3/1~1/2)により精製を行ない、標記 化合物 2. 3 2 g (収率 9 9 %) を得た。

核磁気共鳴スペクトル(400MHz, CDCl $_3$)、 δ : 1.35 (3H, s), 1.95 (3H, s), 1.95-2.08 (1H, m), 2.10 (3H, s), 2.24-2.37 (1H, m), 2.76 (2H, t, J = 8.4 Hz), 4.15 (1 H, d, J = 11.2 Hz), 4.3 0 (1 H, d, J = 11.2 Hz), 5.39 (1 H, brs), 6. 57 (1 H, d, J = 3.6 Hz), 6.84 (1 H, d, J = 3.6Hz)

赤外吸収スペクトル, ν_{max} cm $^{-1}$ (液状フィルム) : 3300, 307 6, 2980, 2937, 1740, 1657, 1544, 1466, 14 46, 1373, 1242, 1045, 794, 604.

[0270]

(参考例3)

5-(4-フルオロフェニル)ペント-1-イン

水素化ナトリウム 2. 11g (48.4 mm o 1) を無水テトラヒドロフラン 60 m l 中 に懸濁させ、氷冷下、ジエチルホスホノ酢酸 エチルエステル 1 0 . 8 4 g (4 8 . 4 mmol)を滴下し、10分間撹拌した。次いで4-フルオロベンズアルデヒド5.00 g(40.3 mmol)を無水テトラヒドロフラン60mlに溶解した溶液を同温にて 滴下した。反応液を同温度で3時間撹拌した後、氷水中150mlに注ぎ、酢酸エチルで 抽出した。有機層を無水硫酸マグネシウムで乾燥後、溶媒を減圧留去し、残渣をフラッシ ュシリカゲルカラムクロマトグラフィー (溶出溶媒:ヘキサン/酢酸エチル=10/1~ 3/1)にて精製を行い、4-フルオロ桂皮酸 エチルエステルを無色油状物として、6 . 69g(収率86%)得た。

[0271]

このエステル 6.52g(33.6 mmol)を酢酸エチル 100ml中に溶解し、5 %ロジウム/アルミナ1.30gを加え、水素雰囲気下、室温にて8時間撹拌した。反応 50 混合物をセライト濾過し、濾液を減圧濃縮し、残渣を無水テトラヒドロフラン 30m1 中に溶解した。この溶液を氷冷下、水素化アルミニウムリチウム 1. 26g(33.2mmol) を無水テトラヒドロフラン 60ml に懸濁させたものに滴下した。反応混合物を同温にて 30 分間撹拌後、飽和硫酸ナトリウム水溶液を加え、さらに室温で 10 分間撹拌した。混合物をセライト濾過し、濾液を酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去し、残渣をフラッシュシリカゲルカラムクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル= $5/1\sim1/1$)にて精製を行い、4-7ルオロフェニルプロパン-1-4ールを無色油状物として、4.86g(収率 95%) 得た。

[0272]

10

得られた 4 ーフルオロフェニルプロパンー1 ーオール4.83 g(31.3 mmol)を塩化メチレン50ml中に溶解し、氷冷下、トリエチルアミン6.55ml(47.0 mmol)及びメタンスルホニルクロリド2.91ml(37.6 mmol)を加え、窒素雰囲気下、同温度で30分間撹拌した。反応混合物を塩化メチレン50mlで希釈し、氷冷した10%塩酸及び飽和食塩水で順次洗浄後、硫酸マグネシウムで乾燥した。溶媒を減圧留去し、残渣をアセトン100ml中に溶解した。次いで沃化ナトリウム9.39g(62.6 mmol)を加え、窒素雰囲気下、50℃にて2時間撹拌した。反応混合物を酢酸エチル250mlで希釈後、10%チオ硫酸ナトリウム水溶液及び飽和食塩水で順次洗浄後、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去し、残渣をフラッシュシリカゲルカラムクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル=5/1~2/1)にて精製を行い、4ーフルオロフェニルー1ーヨードプロパンを淡黄色油状物として、7.12g(収率86%)得た。

[0273]

へキサメチルホスホラミド20m1中にナトリウムアセチリド(18%キシレン懸濁液)50m1を加え、氷冷下、先に得られた4ーフルオロフェニルー1ーヨードプロパン7.00g(26.5 mmo1)を無水ジメチルホルムアミド20m1に溶解した溶液を加えた。反応混合物を室温にて、2時間撹拌した。氷冷下に氷水を注意深く注ぎ、混合物を酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去し、残渣をフラッシュシリカゲルカラムクロマトグラフィー(溶出溶媒:ヘキサン)にて精製を行い、標記化合物を無色油状物として、2.67g(収率62%)得た。

核磁気共鳴スペクトル(400MHz, CDCl $_3$)、 δ : 1.82 (2H, m), 1.99 (1H, t, J=2.6 Hz), 2.19 (2H, m), 2.71 (2H, t, J=7.5 Hz), 6.97 (2H, m), 1.14 (2H, m)。

[0274]

(参考例4)

5-フェニルペント-1-イン

参考例3と同様に、3-フェニル-1-ヨードプロパン及びナトリウムアセチリドを用い 40 て、標記化合物を得た。

核磁気共鳴スペクトル(400 M H z , C D C l_3) , δ : 1.81-1.89 (2 H , m) , 1.99 (1 H , t , J=2.8 H z) , 2.21 (2 H , d t , J=2.8 , 7.6 H z) , 2.74 (2 H , t , J=7 . 6 H z) , 7.16-7.23 (3 H , m) , 7.26-7.32 (2 H , m) 。

[0275]

(参考例5)

チオフェンー2ーイル] ブタンー1ーオール (a) 2-メチル-2-(2-チエニル) エチルマロン酸 ジエチル エステル 水素化ナトリウム (55%) 18.8 g (0.43 mol) をジメチルホルムアミド (200 ml)中に懸濁させ、氷冷下、メチルマロン酸 ジエチル エステル50.0 g (0.29mol)を30分間かけてゆっくりと加え、さらに30分撹拌した。次 いで、2-(2-3-ドエチル) チオフェン75.2 g (0.32mol) をジメチ ルホルムアミド (200 ml) に溶かした溶液を窒素雰囲気下、15分かけて加え、さ らに室温にて4時間撹拌した。反応混合物を氷冷した10%塩酸(500 ml)中に注 ぎ、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥 10 した。溶媒を減圧濃縮し、残渣をフラッシュシリカゲルカラムクロマトグラフィー(溶出 溶媒:ヘキサン/酢酸エチル=10/1~5/1)にて精製を行い、標記化合物を無色油 状物として、53.1 g (収率65%) 得た。 赤外吸収スペクトル, v_{max} cm⁻¹ (CHCl₃):2986, 1726, 1 2 7 1 . 1 2 5 2 . [0276] (b) 2-メチル-2-(2-チエニル) エチルマロン酸 モノーエチル エステル 参考例 5 (a) で得られた 2 - メチル - 2 - (2 - チエニル) エチルマロン酸 ジエチル 20 エステル52.7 g (0.19 mol) をエタノール (240 ml) 及び水 (80 ml)中に溶解し、氷冷下、水酸化カリウム11.4 g (0.20mol)を加え、 同温度で2時間撹拌した。さらに1時間ごとに水酸化カリウム5.7 g(0.1 mol) を 3 回加え、計 6 時間撹拌した。水 (3 0 0 ml) 及び氷冷した 1 0 % 塩酸 (5 0 0 ml)を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、無水硫酸マグネ シウムで乾燥した。溶媒を減圧濃縮し、残渣をフラッシュシリカゲルカラムクロマトグラ フィー(溶出溶媒:ヘキサン/酢酸エチル=2/1~0/1)にて精製を行い、標記化合 物を淡黄色油状物として、28.6 g(収率60%)得た。 [0277] 赤外吸収スペクトル, v_{max} cm $^{-1}$ (CHCl $_3$): 2987, 1732, 30 1712, 1251, 1109。 [0278] (c) 2-メトキシカルボニルアミノ-2-メチル-4-(2-チエニル)ブタン酸 エチル 参考例 5 (b) で得られた 2 - メチル - 2 - (2 - チエニル) エチルマロン酸 モノーエ チル エステル19.0 g (74.3 m m o l)をベンゼン(450 m l)中に溶 解し、トリエチルアミン11.4 ml (81.7mmol)及びジフェニルリン酸ア ジド 1 7 . 6 m l (8 1 . 7 m m o l) を加え、室温にて 1 0 分間撹拌後、さらに 8 0℃にて1時間半撹拌した。次いでメタノール60.3 ml (1.49 mol)を同 温にて30分かけてゆっくりと滴下し、さらに同温度で8時間撹拌した。反応混合物を水 (500 ml)中に注ぎ、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、無水 硫酸マグネシウムで乾燥した。溶媒を減圧濃縮し、残渣をフラッシュシリカゲルカラムク ロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル=8/1~4/1)にて精製を行い

核磁気共鳴スペクトル (400MHz, CDCl $_3$), δ :7.11 (1H, d, J = 5.1 Hz), 6.90 (1H, dd, J = 5.1, 3.5 Hz), 6.77 (1H, d, J = 3.5 Hz), <math>5.691 H, brs), 4.19 (2 H, q. J = 7.3 Hz), 3.66

、標記化合物を無色油状物として、14.7 g (収率69%)得た。

(3 H, s), 2.84 (2 H, dd, J = 10.5, 10.5 H)z), 2.64 (2H, m), 2.20 (2H, dd, J = 10.5, $8.4 \, Hz$), $1.61 \, (3H, s)$, $1.28 \, (3H, t)$ 7.3 Hz). 赤外吸収スペクトル, v_{max} c m⁻¹ (CHCl₃):3417, 2987, 17 19, 1503, 1453, 1081. [0279] (d) 2 - メトキシカルボニルアミノー2 - メチルー4 - (2 - チエニル)ブタンー1 - オール 10 参考例 5 (c)で得られた 2 -メトキシカルボニルアミノー 2 -メチルー 4 -(2 -チエ ニル) ブタン酸 エチル エステル14.7 g (51.6 mmol) をエタノール(150 ml)及びテトラヒドロフラン(100 ml)中に溶解し、水素化ホウ素ナト リウム 5. 07 g (0.13 mol) 及び塩化リチウム 5.68 g (0.13 m o 1) を加え、窒素雰囲気下、室温で一晩撹拌した。翌朝、同様にして、水素化ホウ素ナ トリウム 5. 07 g (0.13 mol) 及び塩化リチウム 5.68 g (0.13 mol)を加え、窒素雰囲気下、室温でさらに一晩撹拌した。これと同様の操作をさらに 2日間行った。反応混合物を氷冷した10%塩酸(500 ml)中に注ぎ、酢酸エチル で抽出した。有機層を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。溶媒を減 圧濃縮し、残渣をフラッシュシリカゲルカラムクロマトグラフィー(溶出溶媒:ヘキサン /酢酸エチル=2/1~1/5)にて精製を行い、標記化合物を白色結晶として、11. g (収率93%)得た。 赤外吸収スペクトル, ν_{max} cm⁻¹ (KBr):3406, 3244, 16 87, 1562, 1264, 1089。 マススペクトル (FAB), m/z: 2 4 4 ((M+H) +)。 元素分析値; (C₁ H₁ 7 NO₃ Sとして%) 計算值: C : 54.30, H : 7.04, N : 5.76, S: 13 . 18 実測値:C : 54.18, H : 6.98, N : 5.78, S: 13 30 . 34. [0280] 2-メトキシカルボニルアミノ-2-メチル-4-(5-ブロモチオフェン-2-イル) プタンー1-オール 参考例 5 (d) で得られた 2 - メトキシカルボニルアミノ - 2 - メチル - 4 - (2 - チエ ニル) ブタン-1-オール11.7 g (48.0 m m o l) をジメチルホルムアミド (120 ml)中に溶解し、氷冷下、N-ブロモスクシンイミド10.8 g (60.8 mmol)を加え、窒素雰囲気下、室温にて4時間撹拌した。反応混合物を氷冷した10 %塩酸(300 ml)中に注ぎ、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後 、無水硫酸マグネシウムで乾燥した。溶媒を減圧濃縮し、残渣をフラッシュシリカゲルカ ラムクロマトグラフィー (溶出溶媒:ヘキサン/酢酸エチル=4/1~1/3) にて精製 を行い、標記化合物を淡黄色油状物として、12.4 g (収率80%)得た。 核磁気共鳴スペクトル (400MHz, CDC l_3), δ : 6.84 (1H, d, J = 3.7 Hz), 6.57 (1 H, d, J = 3.7 Hz3.64 (3), 4.80 (1H, brs), 3.68 (2H, m), H, s), 2.80(2H, m), 1.9-2.2(2H, m), 1.24 (3 H, s). 赤外吸収スペクトル, ν_{m a x} cm⁻¹ (CHCl₃):3627, 3436, 2956, 1722, 1711, 1513, 1259, 1087, 104

8。

(193) JP 2004-137208 A 2004.5.13 マススペクトル (FAB), m/z:322 ((M+H)⁺)。 [0281] (f) 4 - [2-(5-ブロモチオフェン-2-イル)] エチルー4-メチルオキサゾリジンー 2-オン参考例5(e)で得られた2-メトキシカルボニルアミノ-2-メチル-4-(5-プロモチオフェンー2-イル) プタンー1-オール12.4 g (38.6 mmo1) をジメチルホルムアミド (125 ml) 中に溶解し、氷冷下、窒素雰囲気下にカリ ウム tープトキシド 6.50 g (57.9 m m o l) を加え、さらに同温にて 3 時 間撹拌した。反応混合物を氷冷した10%塩酸(300 ml)中に注ぎ、酢酸エチルで 抽出した。有機層を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。溶媒を減圧 10 濃縮し、残渣をフラッシュシリカゲルカラムクロマトグラフィー(溶出溶媒:ヘキサン/ 酢酸エチル=4/1~1/2)にて精製を行い、標記化合物を白色結晶として、10.7 g (収率95%)得た。 [0282] 核磁気共鳴スペクトル (400MHz, CDC l_3), δ : 6.86 (1H, d, J = 3.7 Hz), 6.58 (1 H, d, J = 3.7 Hz), 5.73 (1H, brs), 4.18 (1H, d, J = 8.6 H z), 4.08 (1 H, d, J = 8.6 Hz), 2.84 (2 H, 1.94 (2H, m), 1.41 (3H, s). 赤外吸収スペクトル, v_{max} cm⁻¹ (KBr):3211, 1749, 1 399, 1037, 798。 マススペクトル (FAB), m/z: 290 ((M+H)⁺)。 元素分析値; (C₁₀ H₁₂ NO₂ SBrとして%) 計算值:C: 41.39, H: 4.17, N: 4.83, S: 11 . 05, Br : 27.54 実測値: C : 41.36, H : 4.04, N : 4.82, S: 11 . 08, Br : 27.29. [0283] (g) (4R) - [2 - (5 - 7 u + 7 + 7 u + 7ジン-2-オン及び(48)-[2-(5-ブロモチオフェン-2-イル)]エチル-4 ーメチルオキサゾリジン-2-オン 参考例 5 (f) で得られた 4 - [2 - (5 - ブロモチオフェン-2 - イル)] エチル-4 - メチルオキサゾリジン-2-オンを分取用光学活性HPLCカラム (ChiralCe 1 OD、ダイセル)を用いて光学分割を行った(カラム, ChiralCel OD $(2 cm\phi x 25 cm)$; 溶出溶媒: ヘキサン/2-プロパノール=70 /30、 流速: 5 ml/分)。先に溶出されるもの (保持時間:55 分)が4 S体であり、後から溶出されるもの (保持時間:77 分)が4R体であった。尚、絶 対配置についてはX線結晶構造解析により決定した。 (4S) 体; $[\alpha]_{D}^{2}$ - 4.2 (c 1.03, メタノール) 40 (4R) 体; $[\alpha]_{D}^{2}$ + 4.2 (c 1.00, メタノール)。 [0284] (h) (4R) - [2- [5- (5-シクロヘキシルペント-1-イニル) チオフェン-2-イ ル]]エチルー4ーメチルオキサゾリジンー2ーオン

ロピス (トリフェニルホスフィン) パラジウム 109 mg (0.16 mm o l) を加 え、窒素雰囲気下、80℃で2時間撹拌した。反応液を水にあけ、酢酸エチルで抽出し、 。酢酸エチル層を飽和食塩水で洗浄した。 酢酸エチル層を無水硫酸ナトリウムで乾燥後、溶 媒を減圧下留去した。残渣をシリカゲルクロマトグラフィー(溶出溶媒:ヘキサン/酢酸 エチル=4/1~3/2) により精製して、標記化合物 4 5 6 mg (収率 8 2 %) を得 核磁気共鳴スペクトル (400MHz, CDCl₃), δ: 6.92 (1H, d J = 3.6 Hz, 6.63 (1H, d, J = 3.6 Hz), 5.45 (1H, brs), 4.18 (1H, d, J = 8.6 Hz), 4.07 (1 H, d, J = 8.6 Hz), 2.78-2.90 (10 2 H, m), 2.38 (2 H, t, J = 7.2 Hz), 1.92-2.00 (2H, m), 1.55-1.75 (7H, m), 1.40 (3H , s), 1.10-1.35 (6H, m), 0.83-0.95 (2H, m 赤外吸収スペクトル, v_{max} cm⁻¹ (KBr) : 3450, 2926, 852, 1758, 1382, 1046. [0285] (i) (2R) - アミノ-2-メチル-4-[5-(5-シクロヘキシルペント-1-イニル). チオフェンー2ーイル]ブタンー1ーオール 20 参考例 5 (h)で得られた(4R)-[2-[5-(5-シクロヘキシルペント-1-イ ニル)チオフェン-2-イル]]エチル-4-メチルオキサゾリジン-2-オン456 mg (1.27mmol)をテトラヒドロフラン1 ml及びメタノール2 mlに溶 解させ、氷冷下、 5 規定水酸化カリウム水溶液 2 mlを加え、18時間加熱還流した。 反応液に水を加え、塩化メチレンで抽出した。塩化メチレン層を無水硫酸ナトリウムで乾 燥後、減圧下溶媒を留去した。残渣をシリカゲルクロマトグラフィー「溶出溶媒:(塩化 メチレン/メタノール=20/1)、(塩化メチレン/メタノール/アンモニア水=10 /1/0.1)]により精製して、標記化合物 3 5 3 mg (収率 8 3 %)を得た。 核磁気共鳴スペクトル (400MHz, CDCl₃), δ: 6.92 (1H, d , J = 3.5 Hz), 6.62 (1H, d, J = 3.5 Hz), J = 10.5 Hz), 3.32 (1H, d.3.37 (1H, d, J = 10.5 Hz), 2.75-2.90 (2H, m), 2.38 (t, J = 7.1 Hz), 1.52-1.79 (9H, m), 1 12-1.33 (6 H, m), 1.11 (3 H, s), 0.81-0.9(2H, m)。赤外吸収スペクトル, v_{max} cm⁻¹ (CHCl₃) : 2925, 2852, 1449, 1041. マススペクトル (FAB), m/z:334 ((M+H)⁺)。 元素分析値; (C₂₀ H₃₁ NOS・0.3H₂ Oとして%) 計算值: C : 70.87, H : 9.40, N : 4.13, 40 4 6 実測値:C : 70.83, H : 9.21, N : 4.22, s: 9. 6 4 $[\alpha]_{n}^{2}$ - 2. 0 (c 0.60, $\forall \beta / (-N)$). [0286] (参考例6) (2R) -アミノ-2-メチル-4- [5-(4-シクロヘキシルオキシブト-1-イニ ル) チオフェン-2-イル] ブタン-1-オール マレイン酸塩 4- [2-(5-ブロモチオフェン-2-イル)] エチル-4-メチルオキサゾリジン-2-オン及び4-シクロヘキシルオキシプト-1-インを出発原料として用い、参考例5

(h)及び参考例 5 (i)と同様に反応して、次いでマレイン酸塩にして標記化合物(収 50

率 4 3 %) を得た。

核磁気共鳴スペクトル (400 M H z , C D 3 O D) , δ: 6.93 (1 H , d , J = $3.6 \, \text{Hz}$), $6.73 \, (1\,\text{H}, \, d, \, J = <math>3.6 \, \text{Hz}$), 3.57-3.67 (3H, m), 3.51 (6.25 (2H, s), 1 H, d, $J = 1 \text{ 1} \cdot 6 \text{ Hz}$), $3 \cdot 3 \cdot 2 - 3 \cdot 4 \cdot 2 \cdot (1 \text{ H}, \text{ m})$, .78-2.95 (2H, m), 2.63 (2H, t, J = 6.7 H z), 1.50-2.10 (7H, m), 1.17-1.37 (8H, m)

赤外吸収スペクトル, v_{max} cm $^{-1}$ (KBr) : 3394, 2932, 2858, 1583, 1506, 1386, 1367, 1194, 110 10 4 。

[0287]

(参考例7)

酢酸 (2R)-アセチルアミノ-2-メチル-4-[5-(5-フェニルペント-1-イニル) チオフェンー2ーイル] ブチル エステル

参考例2で合成した酢酸 (2R)ーアセチルアミノー2ーメチルー4ー(5ープロモチ オフェン-2-イル) ブチル エステル1.60g(4.59mmol) をジメチルホル ムアミド16mlに溶解させ、5-フェニルペント-1-イン1.99g(13.8ミリ モル)、トリエチルアミン 6. 4 0 m l (45. 9 ミリモル)、ヨウ化銅(I) 1 7 5 m g(0.92ミリモル)及びジクロロビス(トリフェニルホスフィン)パラジウム322 mg(0.46ミリモル)を加え、窒素雰囲気下80℃で2時間撹拌した。反応液を水に あけ、酢酸エチルで抽出し、酢酸エチル層を無水硫酸マグネシウムで乾燥後、溶媒を減圧 下留去した。残渣をシリカゲルクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル= 2/1~2/3) により精製して、標記化合物 1. 4 1 g (収率 7 5 %) を得た。

核磁気共鳴スペクトル (400MHz, CDCl₃), δ:1.36 (3H, , 1.85-2.05 (3H, m), 1.94 (3H, s), 2.10 (3H, s), 2.25-2.35 (1H, m), 2.43 (2H, t, J = 7.0 Hz), 3.70-3.80 (4H, m), 4.17 (1H, d, J = 11.2 Hz), 4.31 (1H, d, J = 11.2 Hz),5.38 (1H, brs), 6.64 (1H, d, J=3.6 Hz),

6. 94 (1 H, d, $J = 3.6 \, Hz$), 7. 15 - 7.42 (5 H, m)。 赤外吸収スペクトル, ν_{m a x} c m⁻¹ (C H C l₃) : 3443, 2946

, 2862, 1737, 1681, 1511, 1374, 1251, 10 42.

[0288]

(参考例8)

(2R) -アミノ-2-メチル-4- [5-(5-フェニルペンチル) チオフェン-2-イル] ブタン-1-オール シュウ酸塩

参考例7で得られた酢酸 (2R)-アセチルアミノ-2-メチル-4-[5-(6-フ 40 ェニルペント-1-イニル) チオフェン-2-イル] ブチル337 mg(0.82 ミリモ ル)をメタノール17mlに溶解させ、10%パラジウム・炭素170mgを加え、水素 雰囲気下、室温で16時間撹拌した。セライトで触媒を濾去後、濾液を減圧下留去し、酢 酸 (2R)-アセチルアミノ-2-メチル-4-[5-(5-フェニルペンチル)チオ フェン-2-イル] ブチル318mg (収率93%) を得た。得られた酢酸 ブチル エ ステル 2 9 8 m g (0 . 7 2 ミリモル) をテトラヒドロフラン、メタノール及び水の混合 液 (1/1/1) 6 m l 中に溶解し、水酸化リチウム・一水和物 3 0 1 m g (7. 1 7 m mol)を加え、50℃で6時間撹拌した。反応液を水にあけ、塩化メチレンで抽出し、 塩化メチレン層を無水硫酸ナトリウムで乾燥後、溶媒を減圧下留去した。残渣243mg をメタノールに溶解し、シュウ酸 6.5 mg (0.72 mmol) を加え、析出した結晶 50

を濾取し、標記化合物を白色結晶として251mg(収率83%)得た。 核磁気共鳴スペクトル(400MHz, CD_3OD), δ :1.31 (3H, s), 1.32-1.42 (2H, m), 1.58-1.70 (4H, 1. 88-2.08 (2 H, m), 2. 59 (2 H, t, J=7.6 Hz), 2.74 (2H, t, J=7.4 Hz), 2.75-2.91 (2H , m), 3.52 (1H, d, J=11.6 Hz), 3.61 (1H, d, J = 11.6 Hz), 6.56 (1H, d, J = 3.3 Hz), <math>6. 63 (1 H, d, J = 3.3 Hz), 7. 09 – 7. 17 (3 H, , 7.19-7.27 (2H, m). 赤外吸収スペクトル, v_{max} cm⁻¹ (KBr):3458, 3134, 29 10 29, 2855, 2595, 1724, 1642, 1543, 1219, 7 1 0 c m ^{- 1} [0289] (参考例9) (2R)-アミノ-2-メチル-4- [5-(5-フェニルペント-1-イニル)チオフ ェン-2-イル] ブタン-1-オール シュウ酸塩 参考例 7 で得られた酢酸 (2R)-アセチルアミノ-2-メチル-4-[5-(5-フ ェニルペント-1-イニル) チオフェン-2-イル] ブチル エステル1. 40g(3. 40 m m o l) をテトラヒドロフラン、メタノール及び水の混合液 (1/1/1) 1 4 m 1 中に溶解し、水酸化リチウム・一水和物 1. 4 3 g (3 4. 0 m m o 1 ル) を加え、5 0℃で4時間撹拌した。反応液を水にあけ、塩化メチレンで抽出し、塩化メチレン層を無 水硫/1/0.1)により精製して、(2R) -アミノ-2-メチル-4-[5-(5-フェニルペント-1-イニル)チオフェン-2-イル]ブタン-1-オール1.11g(収率100%)を得た。得られたブタン-1-オール360mg(1.10mmol)を メタノールに溶解し、シュウ酸99mg(1.10mmol)を加え、析出した結晶をメ タノールより再結晶を行ない、標記化合物を白色結晶として394mg(収率86%)得 核磁気共鳴スペクトル(400MHz, CD₃OD), δ:1.31 (3H, s), 1.82-2.10 (4 H, m), 2.40 (2 H, t, J=7.0Hz), 2.75 (2H, t, J=7.5 Hz), 2.80-2.95 (30) 2 H, m), 3.52 (1 H, d, J = 11.5 Hz), 3.61 (1H, d, J = 11.5 Hz), 6.73 (1H, d, J = 3.6 Hz) , 6.94 (1 H, d, J = 3.6 Hz), 7.13-7.30 (5 H, m)。 赤外吸収スペクトル, v_{max} cm⁻¹ (KBr):3383, 3106, 26, 2980, 2942, 2622, 2514, 1721, 1609, 1539, 1198, 699. マススペクトル (FAB), m/z:328 ((M+H)⁺) (Free体)。 元素分析値; (C₂₀ H₂₅ NOS・C₂ H₂ O₄ ・ 0. 2 H₂ Oとして%) 計算值: C, 62. 75; H, 6. 55; N, 3. 32; S, 7. 61 40 実測値:C, 62.50; H, 6.29; N, 3.39; S, 7.70。 $[\alpha]_{D}^{2.5} - 0.9$ (c 1.00, $\forall \beta / (-1)$). [0290] (参考例10) (2R) -アミノ-2-メチル-4- [5-(5-フェニルペンタノイル) チオフェン-2-イル] ブタン-1-オール シュウ酸塩 参考例9の第一工程で得られた(2R)-アミノ-2-メチル-4-[5-(5-フェニ ルペントー1ーイニル)チオフェンー2ーイル]ブタンー1ーオール シュウ酸塩387 mg(1.18ミリモル)をメタノール4mlに溶解させ、6規定硫酸4mlを加え、4

時間加熱還流した。反応液を0℃に冷却後、1規定水酸化ナトリウム水溶液でアルカリ性 50

20

(pH14)にした後、塩化メチレンで抽出した。塩化メチレン層を無水硫酸ナトリウムで乾燥後、溶媒を減圧下留去し、残渣をシリカゲルクロマトグラフィー (Chromatorex NH(100-200 mesh)) (溶出溶媒:塩化メチレン/メタノール=1/0~50/1)により精製して、(2R)-アミノー2-メチルー4-[5-(5-フェニルペンタノイル)チオフェン-2-イル]ブタン-1-オール336mg(収率82%)得た。これをメタノールに溶解し、シュウ酸88mg(0.97mmol)を加え、得られた結晶をメタノールより再結晶を行ない、標記化合物を白色結晶として332mg(収率78%)得た。

核磁気共鳴スペクトル(400 M H z , CD $_3$ OD), $\delta:1.19$ (3 H , s) , 1.55-1.67 (4 H , m) , 1.80-1.98 (2 H , m) , 2.60 (2 H , t , J=6.7 H z) , 2.83-2.96 (4 H , m) , 3.40 (1 H , d , J=11.3 H z) , 3.47 (1 H , d , J=11.3 H z) , 3.47 (1 H , d , J=11.3 H z) , 3.47 (1 H , d , J=11.3 H z) , 3.47 (1 H , d , J=11.3 H z) , 3.47 (1 H , d , J=3.7 H z) , 3.47 (1 H , d , J=3.7 H z) 。

赤外吸収スペクトル、 v_{max} cm⁻¹ (KBr): 3126, 2942, 2657, 1915, 1718, 1649, 1609, 1547, 1445, 1205, 700

マススペクトル(FAB), m/z:346 ((M+H)⁺) (フリー体)。元素分析値;(C₂₀H₂₇NO₂S・C₂H₂O₄・0.5H₂Oとして%)計算値:C,59.44; H,6.80; N,3.15; S,7.21 実測値:C,59.62; H,6.53; N,3.31; S,7.43。

[0291]

(試験例1)

ラットHvGR(Host ve Rsus GRaft Reaction)に対する抑制活性の測定

- (1) 2系統のラット [Lewis (雄、6週齢、日本チャールス・リバー株式会社) とWKAH/Hkm (雄、7週齢、日本エスエルシー株式会社)]を使用した。1群5匹のラット(宿主)を用いた。
- (2) WKAH/HkmラットまたはLewisラットの脾臓から脾臓細胞を単離し、RPMI1640培地(ライフ テクノロジー社製)で1x10⁸個/ml濃度に浮遊した。Lewisラットの両後肢足蹠皮内に、WKAH/HkmラットまたはLewisラットの脾臓細胞浮遊液 0.1ml (脾臓細胞数として1x10⁷個)を注射した。
- (3) 試験化合物を $5\%SBE-\beta-CD$ 水溶液(SBE:SulfobutylEther)に溶解し、WKAH/Hkmラット脾臓細胞を注射された Lewisラットに、ラットの体重 1kg 当たり 5ml の割合で、1 日 1 回、脾臓細胞注射日から 4 日間連日で経口投与した。なお、同系群(Lewis ラット脾臓細胞を注射された Lewis ラット群)と対照群(WKAH/Hkm ラット脾臓細胞を注射され、検体を投与されない Lewis ラット)には、検体の代わりに $5\%SBE-\beta-CD$ 水溶液を経口投与した。
- (4) 各個体の膝窩(popliteal)リンパ節重量から同系群の平均膝窩リンパ 40 節重量を引き(「HvGRによる膝窩リンパ節重量」)、対照群の平均「HvGRによる膝窩リンパ節重量」に対する化合物投与群の各個体の「HvGRによる膝窩リンパ節重量」から抑制率を算出した。化合物の抑制活性は、化合物の投与量と抑制率から最小二乗法を用いて算出したID50値(mg/kg)で表示した。

[0292]

【表3】

本試験の結果、本発明の化合物は優れた抑制活性を示した。

[0293]

【発明の効果】

本発明の一般式(I)を有するリン酸又はホスホン酸誘導体、その薬理上許容される塩又 はその薬理上許容されるエステルは、毒性が低く優れた免疫抑制作用を有し、各種臓器移 植又は皮膚移植での拒絶反応、全身性エリトマトーデス、慢性関節リウマチ、多発性筋炎 、結合組織炎、骨格筋炎、骨関節炎、変形性関節症、皮膚筋炎、強皮症、ベーチェット病 、Сhron病、潰瘍性大腸炎、自己免疫性肝炎、再生不良性貧血、特発性血小板減少性 紫斑病、自己免疫性溶血性貧血、多発性硬化症、自己免疫性水疱症、尋常性乾癬、血管炎 症群、Wegener肉芽腫、ぶどう膜炎、シェーグレン症候群、特発性間質性肺炎、G oodpasture症候群、サルコイドーシス、アレルギー性肉芽腫性血管炎、気管支 喘息、心筋炎、心筋症、大動脈炎症候群、心筋梗塞後症候群、原発性肺高血圧症、微小変 化型ネフローゼ、膜性腎症、膜性増殖性腎炎、巣状糸球体硬化症、半月体形成性腎炎、重 症筋無力症、炎症性ニューロパチー、アトピー性皮膚炎、慢性光線性皮膚炎、日光過敏症 、 蓐瘡、 Sydenham舞踏病,全身性硬化症、成人発症糖尿病、インスリン依存性糖 尿病、若年性糖尿病、アテローム性動脈硬化症、糸球体腎炎、IgA腎症、尿細管間質性 腎炎、原発性胆汁性肝硬変、原発性硬化性胆管炎、劇症肝炎、ウイルス性肝炎、GVHD 、接触皮膚炎、敗血症等の自己免疫疾患又はその他免疫関連疾患、真菌、マイコプラズマ ウィルス、原虫等の感染症、心不全、心肥大、不整脈、狭心症、心虚血、動脈塞栓、動 脈瘤、静脈瘤、血行障害等の循環器系疾患、アルツハイマー病、痴呆、パーキンソン病、 脳卒中、脳梗寒、脳虚血、鬱病、躁鬱病、統合失調症、ハンチントン舞踏病、癲癇、痙攣 、多動症、脳炎、髄膜炎、食欲不振および過食等の中枢系疾患、リンパ腫、白血病、多尿 、頻尿、糖尿病性網膜症等の各種疾患(特に好適には、各種臓器移植又は皮膚移植での拒 絶反応、全身性エリトマトーデス、慢性関節リウマチ、多発性硬化症、アトピー性皮膚炎 等の自己免疫疾患)の、温血動物用(特に、ヒト用)の予防剤若しくは治療剤(特に、治 療薬)として有用である。

10

RO

フロントページの続き

(72)発明者 下里 隆一東京都品川区広町1丁目2番58号 三共株式会社内 (72)発明者 奈良 太東京都品川区広町1丁目2番58号 三共株式会社内 Fターム(参考) 4C086 AA02 AA03 DA34 NA14 ZB08 4H050 AA01 AB22 AB23 AB25 AB27 AB28

【要約の続き】 【選択図】 なし。