AULA 5 - ANÁLISE DA COMPLEXIDADE DE ALGORITMOS RECURSIVOS

*** Entregue, num ficheiro ZIP, este guião preenchido e o código desenvolvido ***

Implemente os seguintes algoritmos recursivos – sem recorrer a funções de arredondamento (floor e ceil) – e analise o número de chamadas recursivas executadas por cada algoritmo.

$$T_{1}(n) = \begin{cases} 0, \text{se } n = 0 \\ T_{1}\left(\left\lfloor\frac{n}{3}\right\rfloor\right) + n, \text{se } n > 0 \end{cases}$$

$$T_{2}(n) = \begin{cases} n, \text{se } n = 0, 1, 2 \\ T_{2}\left(\left\lfloor\frac{n}{3}\right\rfloor\right) + T_{2}\left(\left\lceil\frac{n}{3}\right\rceil\right) + n, \text{se } n > 1 \end{cases}$$

$$T_{3}(n) = \begin{cases} n, \text{se } n = 0, 1, 2 \\ 2 \times T_{3}\left(\frac{n}{3}\right) + n, \text{se } n \text{ é múltiplo de 3} \end{cases}$$

$$T_{3}\left(\left\lfloor\frac{n}{3}\right\rfloor\right) + T_{3}\left(\left\lceil\frac{n}{3}\right\rceil\right) + n, \text{caso contrário}$$

Deve utilizar **aritmética inteira**: n/3 é igual a $\left\lfloor \frac{n}{3} \right\rfloor$ e (n+2)/3 é igual a $\left\lceil \frac{n}{3} \right\rceil$.

Nome:

- Preencha a tabela da página seguinte com o resultado de cada função e o número de chamadas recursivas para os sucessivos valores de n.
- Analisando os dados da tabela, estabeleça uma ordem de complexidade para cada algoritmo?

•	Escreva uma expressão recorrente para o número de chamadas recursivas efetuadas pela função
	T ₁ (n). Obtenha, depois, uma expressão exata e simplificada; determine a sua ordem de
	complexidade. Compare a expressão obtida com a os dados da tabela. Sugestão: use o
	desenvolvimento telescónico

 - F		

Nº MEC:

n	T ₁ (n)	Nº de Chamadas	T ₂ (n)	Nº de Chamadas	T ₃ (n)	Nº de Chamadas
	, ,	Recursivas		Recursivas	, ,	Recursivas
0						
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						
21						
22						
23						
24						
25						
26						
27						
28						

•	Escreva uma expressão recorrente para o número de chamadas recursivas efetuadas pela função $T_2(n)$. Considere o caso particular $n=3^k$ e obtenha uma expressão exata e simplificada determine a ordem de complexidade para esse caso particular. Compare a expressão obtida com a os dados da tabela. Sugestão: use o desenvolvimento telescópico e confirme o resultado obtido usando o Teorema Mestre.

Nome:	Nº MEC:

Pode generalizar a ordem de complexidade	que acabou de obter para todo o n? Justifique.
• Ol (1)	
• Obtenna uma expressao recorrente para o nu $T_3(n)$.	mero de chamadas recursivas efetuadas pela função
-3().	
a	
	ha uma expressão exata e simplificada; determine a icular. Compare a expressão obtida com a os dados da
tabela. Sugestão: use o desenvolvimento to	elescópico e confirme o resultado obtido usando o
Teorema Mestre.	
Pode generalizar a ordem de complexidade	que acabou de obter para todo o n? Justifique.
	<u> </u>
	(n) estabeleça uma ordem de complexidade para
$T_3(n)$. Justifique.	
V	
Nome:	Nº MEC: