Applied Econometrics – Introduction to Time Series

Roman Horváth Lecture 2

Contents

- Stationarity
 - What it is and what it is for
- Some basic time series models
 - Autoregressive (AR)
 - Moving average (MA)
- Consequences of non-stationarity (spurious regression)
- Testing for (non)-stationarity
 - Dickey-Fuller test
 - Augmented Dickey-Fuller test

(Weak) Stationarity

• X_t is stationary if:

- the series fluctuates around a constant long run mean
- X_t has finite variance which is not dependent upon time
- Covariance between two values of X_t depends only on the difference apart in time (e.g. covariance between X_t and X_{t-1} is the same as for X_{t-8} and X_{t-9})

$$\mathbf{E}(X_t) = \mu$$
 (mean is constant in t)
 $\mathbf{Var}(X_t) = \sigma^2$ (variance is constant in t)
 $\mathbf{Cov}(X_t, X_{t+k}) = \chi(k)$ (covariance is constant in t)

• If data not stationary, spurious regression problem

Examples of Times Series Models

- AR autoregressive models
 - $X_t = \beta + \alpha * X_{t-1} + u_t$ is called AR(1) process
 - $X_t = \beta + \alpha_1 * X_{t-1} + \alpha_2 * X_{t-2} + \dots + \alpha_k * X_{t-k} + u_t \dots$ is AR(k) process
- MA moving average models
 - $X_t = \beta + u_t + \alpha_2 * u_{t-1}$ is called MA(1) process
 - $X_t = \beta + u_t + \alpha_2 u_{t-1} + \dots + \alpha_k u_{t-k} \dots$ is called MA(k) process
- If you combine AR and MA process, you get ARMA process
 - E.g. ARMA (1,1) is $X_t = \beta + \alpha * X_{t-1} + u_t + \alpha_2 u_{t-1}$

Is MA and AR process stationary?

- Compute mean, variance and covariance and check if it depends on time
- For AR process, you may easily derive that the process is stationary if $|\alpha| < 1$
- For MA(1) process, mean is β , variance is $u_t^2 * (1+\alpha_2^2)$ and covariance $cov(\boldsymbol{X_t}, \boldsymbol{X_{t-k}})$ is either 0 if k>1 or $u_t^2*\alpha_2$, so it does not depend on time (MA(k) is stationary process)

MA(1) process

•
$$X_t = \beta + u_t + \alpha_1 u_{t-1}$$

- $\mathbf{E}(\mathbf{X}_t) = \beta$
- $\mathbf{Var}(\mathbf{X}_t) = E(\beta + u_t + \alpha_1 u_{t-1} \beta)^2 =$ = $E(u_t^2 + 2\alpha_1 u_t u_{t-1} + \alpha_1^2 u_{t-1}^2) = u_t^2 (1 + \alpha_1^2)$
- $Cov(X_t, X_{t-k}) = E[(X_t E(X_t))(X_{t-k} E(X_{t-k}))] = u_t^{2*}\alpha_1$, if k = 1 and 0, if k > 1.
- $\operatorname{Corr}(\mathbf{X}_{t}, \mathbf{X}_{t-k}) = \operatorname{Cov}(\mathbf{X}_{t}, \mathbf{X}_{t-k}) / \operatorname{Var}(\mathbf{X}_{t})^{1/2} * \operatorname{Var}(\mathbf{X}_{t-k})^{1/2}$

Example of Stationary Time Series

• White noise process:

$$X_t = u_t \qquad u_t \sim IID(0, \sigma^2)$$

Another Example of Stationary Time Series

$$X_{t} = 0.5 * X_{t-1} + u_{t}$$
 $u_{t} \sim IID(0, \sigma^{2})$

Example of Non-stationary Time Series

• $Y_t = \alpha + \beta * t + u_t$, where t is time trend

• Take the expected value $E(Y_t) = \alpha + \beta *t$, clearly the mean depends on time and the series is non-stationary

Non-stationary time series

In contrast a non-stationary time series has at least one of the following characteristics:

- Does not have a long run mean which the series returns
- Variance is dependent upon time and goes to infinity as the sample period approaches infinity
- Correlogram does not die out long memory

Example of Non-stationary Time Series

• The level of GDP is not constant; the mean increases over time.

Non-stationary time series – correlogram

Series x

• For non-stationary series the Autocorrelation Function (ACF) declines towards zero at a very slow rate as *k* increases (or does not decline at all).

Lag

0.0

Possible solutions of non-stationarity

- Some transformation = first difference, logarithm, second difference ...
- •First difference of UK GDP ($\Delta Y_t = (Y_t Y_{t-1})/Y_{t-1}$) is stationary:
 - growth rate is reasonably constant through time
 - variance is also reasonably constant through time

Stationary time series - correlogram

UK GDP Growth (ΔY_t)

- ACF decline towards zero as k increases
- Decline of ACF is rapid for stationary series

Non-stationary Time Series Continued – Random Walk

- $X_t = X_{t-1} + u_t$, where $u_t \sim IID(0, \sigma^2)$
- Mean is constant in t: $E(X_t) = E(X_{t-1})$

$$X_1 = X_0 + u_1$$
 (take initial value X_0)
 $X_2 = X_1 + u_2 = (X_0 + u_1) + u_2$

$$X_t = X_0 + u_1 + u_2 + ... + u_t$$
 (take expectations)
 $E(X_t) = E(X_0 + u_1 + u_2 + ... + u_t) = E(X_0) = \text{constant}$

• Variance is not constant in t:

$$Var(X_t) = Var(X_0) + Var(u_1) + \dots + Var(u_t)$$
$$= 0 + \sigma^2 + \dots + \sigma^2 = t \sigma^2$$

Random walk

•
$$X_t = X_{t-1} + u_t$$
 $u_t \sim IID(0, \sigma^2)$

Relationship between stationary and nonstationary process

```
AR(1) process: X<sub>t</sub> = β + α X<sub>t-1</sub> + u<sub>t</sub> ;(u<sub>t</sub> ~ IID(0, σ²))
|α| < 1 stationary process - "process forgets its past"</li>
otherwise non-stationary process - "process does not forget its past"
β = 0 without drift (constant)
β ≠ 0 with drift
AR(k) analogous to AR(1), sum of α's instead of α
```

• MA process is always stationary

Summary on basic time series processes

- AR (k) process
- MA(k) process
- ARMA (p,l) process
- If you k-th difference the data, then you have ARIMA (p,k,l) estimation of ARIMA models is a subject of next lecture

Spurious Regression (≡ spurious correlation)

- Problem that time-series data usually includes trend
- Result:
 - Spurious correlation (variables with similar trends are correlated)
 - Spurious regression (independent variable with similar trend looks as dependent = strong statistical relationship)
 - ⇒ coefficient significant (high adjusted-R², large t-statistics) ... even if unrelated in economic terms

Spurious Correlation: Example

Divorce rate in Maine

correlates with

Per capita consumption of margarine

→ Margarine consumed → Divorce rate in Maine

tylervigen.com

How to avoid spurious regression: 3 approaches to non-stationarity

- 1. Include a **time trend** as an independent variable (old-fashioned) $y_t = c + \beta_1 x_t + \beta_2 t + u_t \dots (t = 1, 2, ..., T)$
- 2. 1st **difference** the data if variables I(1); 2nd difference if I(2)
 - = converts non-stationary variables into stationary variables

Problems:

- theory often about levels
- detrending \Rightarrow loss of information
- 3. Cointegration + ECM
 - = Long-run relationship + short-run adjustment

How do we identify non-stationary processes?

- (A) Informal methods:
 - Plot time series
 - Correlogram
- **(B)** Formal methods:
 - Statistical test for stationarity
 - Dickey-Fuller tests

Informal Procedures to identify non-stationary processes

(a) Constant mean?

(b) Constant variance?

Informal Procedures to identify non-stationary processes

• Diagnostic test – Correlogram for stationary process (dies out rapidly, series has no memory)

Informal Procedures to identify non-stationary processes

• Diagnostic test – Correlogram for a random walk (does not die out, high autocorrelation for large values of k)

Dickey-Fuller Test

- Test based on $Y_t = \alpha Y_{t-1} + u_t$
 - DF test to determine whether $\alpha=1$
 - Yes \Rightarrow unit root \Rightarrow non-stationary
 - No \Rightarrow no unit root

- Dynamic model:
 - Subtract $Y_{t-1} ... Y_t Y_{t-1} = (\alpha 1)Y_{t-1} + u_t$
 - Reparameterise: $\Delta Y_t = \beta Y_{t-1} + u_t$ where $\beta = (\alpha - 1)$
 - Test β =0 equivalent to test α =1

Augmented Dickey-Fuller Test

- Augment "dynamic model" $\Delta Y_t = \beta Y_{t-1} + u_t$:
 - 1) Constant or "drift" term (α_0)

$$\Delta Y_{t} = \alpha_{0} + \beta Y_{t-1} + u_{t}$$

2) Time trend (T)

$$\Delta Y_{t} = \alpha_{0} + \gamma T + \beta Y_{t-1} + u_{t}$$

3) Lagged values of the dependent variable

$$\Delta Y_{t} = \alpha_{0} + \gamma T + \beta Y_{t-1} + \delta_{1} \Delta Y_{t-1} + \delta_{2} \Delta Y_{t-2} + ... + u_{t}$$

• Find the right specification, trade-off parsimony vs. white noise in residual

Critical values

- DF/ADF use t-statistics but critical values are not standard
- Problems:
 - distributions of these statistics are non-standard
 - special tables of critical values (derived from numerical simulations)
 - Usual t- and F-tests not valid in presence of unit roots
- The null hypothesis and its alternative "reversed"