Elliptic curves and their moduli spaces Exercise sheet 7

Solutions by: Esteban Castillo Vargas and David Čadež

5. Juni 2024

Problem 1.

1. Cover X with D(x) and D(y). On these the scheme is $\operatorname{Spec}(k[y,z]/z^2)$ and $\operatorname{Spec}(k[x,z]/z^2)$ respectively.

First we show that the ideal of nilpotent elements in both of them is the principal ideal generated by z. I think we've shown during algebra 1 that a polynomial is nilpotent if and only if all of its coefficients are nilpotent. It is clear that nilpotent elements in $k[z]/z^2$ are (z). Write $k[y,z]/z^2 = (k[z]/z^2)[y]$, we see that nilpotent elements of $(k[z]/z^2)[y]$ are polynomials where all coefficients are divisible by z. That shows $\mathcal N$ on $\mathrm{Spec}(k[y,z]/z^2)$ is given by (z). The situation on $\mathrm{Spec}(k[x,z]/z^2)$ is exactly the same.

Now \mathcal{N} clearly has a natural structure of $\mathcal{O}_{X_{red}}$ -module, because $\mathcal{N}^2 = 0$. So multiplication with \mathcal{O}_X "factors through" multiplication with $\mathcal{O}_{X_{red}}$.

2.

Problem 2.

1. For the start assume all schemes involved are affine.

Let
$$X = \operatorname{Spec} A, S = \operatorname{Spec} R, T = \operatorname{Spec} R', Z = \operatorname{Spec}(A/I).$$

Then we have a diagram

$$\begin{array}{ccc} \operatorname{Spec}(A/I \otimes_R R') & \longrightarrow & \operatorname{Spec}(A/I) \\ & & \downarrow & & \downarrow \\ \operatorname{Spec}(A \otimes_R R') & \longrightarrow & \operatorname{Spec}(A) \\ & \downarrow & & \downarrow \\ \operatorname{Spec}(R') & \longrightarrow & \operatorname{Spec}(R) \end{array}$$

In this case the pullback is

$$f^*\mathcal{I} = (I \otimes_R R')^{\widetilde{}}$$

and the base change is the kernel of surjection $A \otimes_R R' \to A/I \otimes_R R'$, i.e.

$$\mathcal{I}_{R'} = (\ker(A \otimes_R R' \to A/I \otimes_R R'))\tilde{.}$$

If $R \to R'$ is flat, then

$$0 \to I \otimes_R R' \to A \otimes_R R' \to A/I \otimes_R R' \to 0$$

is exact, which shows that in this case the map

$$I \otimes_R R' \to \ker(A \otimes_R R' \to A/I \otimes_R R')$$

is an isomorphism.

Because we already have a natural map $f^*\mathcal{I} \to \mathcal{I}_T$, it is enough to check that is is an isomorphism on an affine open cover, which reduces it to affine case

2. If a non zero-divisor $a \in A$, we have an isomorphism $A \cong (a) = I$ as A-modules.

Assume \mathcal{I} is line bundle, given by I on $\operatorname{Spec}(A) \subseteq X$. If there is an isomorphism $A \to I$, then I is a principal ideal generated by the image of 1 under isomorphism above.

3. Let Z be an effective Cartier divisor and flat over S.

Pick affine local covers as in part a).

Suppose \mathcal{I} is, locally on $\operatorname{Spec}(A) \subseteq X$, defined by $a \in A$. By flatness we have an isomorphism $f^*\mathcal{I} \to \mathcal{I}_T$, so \mathcal{I}_T is isomorphic to $(a) \otimes_R R'$, which is a principal ideal of $A \otimes_R R'$ defined by $(a) \otimes 1$.