Conservation implications of limited genetic diversity and population structure in Tasmanian devils (*Sarcophilus harrisii*)

Conservation Genetics

Sarah Hendricks¹, Brendan Epstein², Barbara Schönfeld³, Cody Wiench¹, Rodrigo Hamede³, Menna Jones³, Andrew Storfer² and Paul Hohenlohe^{1*}

¹Institute for Bioinformatics and Evolutionary Studies, Department of Biological Sciences, University of Idaho, 875 Perimeter Dr., Moscow, Idaho 83844-3051, USA

²School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA

³School of Zoology, University of Tasmania, Private Bag 5, Hobart 7001, AUSTRALIA

*Author for correspondence: hohenlohe@uidaho.edu

Electronic Supplementary Material

Table S1 Data per site including the latitude and longitude of each location, the number of samples collected per site, the year samples were collected, and the year of first detection of disease (or absence of disease)

disease (or	absence of disease)	Т	Т	Т	T	T
				# OF	YEARS THE	APPROXIMATE
				SAMPLES	SAMPLES WERE	DATE OF
LOCATION				PER	COLLECTED	DISEASE
ID	LOCATION	LATITUDE	LONGITUDE	LOCATION	•	OUTBREAK
1	Mt William	-40.886	148.190	2	2008	<1996
2	St Helens	-41.340	148.170	1	2006	<1996
3	St Marys	-41.544	148.117	2	2006	<1996
4	Blessington	-41.473	147.457	2	2005	2003
5	Freycinet	-42.220	148.310	2	1999	2001
6	Little Swanport	-42.290	147.910	1	1999	1999
7	Buckland	-42.430	147.772	2	2006	1999
8	Pawleena	-42.690	147.610	2	1999	2003
9	Kellevie	-42.740	147.800	2	1998	2003
10	Forestier	-42.897	147.906	2	2004	2006
11	Bothwell	-42.330	147.000	2	2008	2004
12	Elderslie	-42.526	147.042	2	2008	2004
13	Fentonbury	-42.621	146.790	2	2004	2004
14	Lonnavale	-42.928	146.792	1	2004	2004
15	Glen Huon	-42.988	146.802	2	2008	2004
16	Hastings Caves	-43.479	146.905	1	2005	2006
17	Reedy Marsh	-42.750	146.287	2	2007	2004
18	Bronte Park	-42.096	146.441	2	2004	2004
19	Lake Rowallan	-41.766	146.166	2	2004	2004
20	Wisedale	-41.294	146.671	2	2006	2004
21	Harford	-41.260	146.590	1	2006	2003
22	Narawntapu	-41.220	146.640	2	1999	2007
23	Mt Housetop	-41.268	145.874	2	2007	2005
24	West Pencil Pine	-41.517	145.767	2	2006 & 2007	2006
25	Takone	-41.195	145.592	2	2007	2010
26	Mt Hicks	-41.019	145.658	1	2007	2011
27	Flowerdale	-41.107	145.499	2	2009	2012
28	Peegra Dip Falls	-41.030	145.460	2	2009	2013
29	Milkshake Hills	-41.109	145.188	2	2004	2013
30	Woolnorth	-40.693	144.710	2	2006	No disease
31	Arthur River	-40.992	144.672	2	2007	No disease
32	Savage River	-41.651	145.079	2	2007	No disease
33	Granville Harbour	-41.794	145.066	2	2004	2015
34	Queenstown North	-41.941	145.459	2	2007	2014
35	Mt Arrowsmith	-42.165	145.927	2	2004 & 2005	2005
36	Queenstown South	-42.166	145.547	2	2007	No disease
37	Strahan	-41.170	145.450	2	2008	No disease
38	Macquarie Heads	-42.393	145.232	2	2006	No disease
20	iviacquarie neaus	-42.393	143.232		2000	Tho disease

Table S2 The number of SNPs discovered per chromosome

Chromosome	# of SNPs
1	1419
2	1485
3	1228
4	924
5	636
6	666
Unknown	4

Table S3 The harvested results of STRUCTURE analyses. Using the Evanno method, K=2 (in bold) was the optimal number of clusters

K	Reps	Mean LnP(K)	Stdev	Ln'(K)	Ln"(K)	Delta K
			LnP(K)			
1	20	-234254.8500	13.6578	NA	NA	NA
2	20	-220483.4000	4.6169	13771.450000	8820.500000	1910.479989
3	20	-215532.4500	3.0266	4950.950000	2853.470000	942.785941
4	20	-213434.9700	235.0678	2097.480000	15949.040000	67.848677
5	20	-227286.5300	26674.4181	-13851.560000	20719.135000	0.776742
6	20	-220418.9550	23029.3639	6867.575000	3436.580000	0.149226
7	20	-210114.8000	166.3816	10304.155000	9570.520000	57.521497
8	20	-209381.1650	154.7725	733.635000	304.065000	1.964594
9	20	-208951.5950	296.2365	429.570000	864.250000	2.917433
10	20	-209386.2750	940.3062	-434.680000	NA	NA

Figure S1 Genetic distance (Rousett's) across all SNPs vs. log10-transformed geographic distance, showing the Mantel test best-fit line. There was no significant relationship between geographic and genetic distance (Mantel r = 0.002179; p = 0.48)

