

Подання даних у пам'яті комп'ютера

к.т.н., доцент кафедри прикладної математики Рижа Ірина Андріївна

Про що ця лекція???

- ▶ Опишемо форми подання чисел у пам'яті комп'ютера.
- ▶ Викладемо особливості подання додатніх та від'ємних чисел.
- ▶ Розглянемо кодування текстових даних.

Форми подання чисел у пам'яті комп'ютера

Форма подання числа

 сукупність правил, що дають змогу встановити взаємну відповідність між записом числа у пам'яті комп'ютера та його кількісним еквівалентом.

Розрядна сітка

 фіксована кількість двійкових розрядів, які використовуються комп'ютером для записування даних (зазвичай дорівнює 32, 64).

Машинне зображення числа

– це подання числа у розрядній сітці комп'ютера:

$$A = [A] K_A, \tag{1}$$

A – число;

[A] – машинне зображення числа;

Ка - коефіцієнт, який залежить від форми подання числа.

Природна форма подання чисел

Природна форма подання (із природною комою)

 форма подання чисел у вигляді послідовності цифр, що розділені комою на цілу та дробову частини.

Наприклад:

- 12560 ціле число;
- 0,003572 правильний дріб;
- 4,89760 неправильний дріб.

Для кожного числа у природній формі:

- необхідно вказати положення його коми в розрядної сітці, виділеній для представлення числа в машині;
- виникають додаткові апаратні витрати досить великого обсягу.

Форма подання чисел з фіксованою комою

Форма подання чисел з фіксованою комою (крапкою)

 форма подання, при якій положення крапки в розрядній сітці машини фіксується апаратними засобами раз і назавжди.

Положення крапки в розрядній сітці строго фіксується:

- перед старшим (лівим) розрядом числа правильний дріб;
- після молодшого (правого) розряд ціле число;

У знакову частину записується інформація про знак числа:

- знак позитивного числа "+" символ 0;
- ▶ знак від'ємного числа "-" символ 1.

Приклад 1.

Записати двійковий код числа $(+7)_{10}$ у формі з фіксованою крапкою, використовуючи 6-розрядну сітку.

$$(+7)_{10} = (111)_2 \\$$

5	4	3	2	1	0
біт знаку	16	8	4	2	1
0	0	0	1	1	1

Приклад 2.

Записати двійковий код числа $(+23)_{10}$ у формі з фіксованою крапкою, використовуючи 8-розрядну сітку.

$$(+23)_{10} = (10111)_2 \\$$

7	6	5	4	3	2	1	0
біт знаку	64	32	16	8	4	2	1
0	0	0	1	0	1	1	1

Кількість розрядів у розрядній сітці, відведених для зображення числа, визначає:

- 1. діапазон
 - ightharpoonup цілі числа: $1 \leqslant |A| \leqslant 2^{n-1} 1$
- 2. точність представлення числа.

Машинний нуль

- число, абсолютне значення якого менше одиниці молодшого розряду розрядної сітки.
 - записується в розрядну сітку комп'ютера у вигляді 0, тому що для його подання не вистачає довжини розрядної сітки;
 - насправді не дорівнює 0.

Переповнення розрядної сітки комп'ютера

відбувається, коли число, отримане в результаті обчислень, перевищує за абсолютним значенням максимальне машинне число.

Съогодні в комп'ютерах у переважній більшості у форматі з фіксованою комою подаються \mathbf{u} ілі \mathbf{u} исла.

У комп'ютерах для спрощення виконання арифметичних операцій, числа подаються спеціальними двійковими кодами:

- прямим;
- 2. оберненим;
- 3. додатковим.

- ▶ Лівий (старший) розряд зберігає знак числа.
- Цифрова частина (решта розрядів) використовується для представлення абсолютної величини числа.

Додатні числа у прямому, оберненому та додатковому кодах записуються однаково – двійковим кодом числа з цифрою 0 у знаковому розряді.

 $\mathit{Hanpu\kappa nad},$ при розмірі розрядної сітки n=8

Від'ємні числа в прямому, оберненому і додатковому кодах мають різне представлення.

Прямий код від'ємного числа

відрізняється від прямого коду додатного числа тим, що значення його знакового розряду дорівнює не 0, а 1.

 $Hanpu \kappa n a \partial$, прямий код чисел –1 і –127 у 8-розрядній сітці:

Обернений код від'ємного числа

отримується із прямого коду шляхом заміни його цифр на їх доповнення до 1:

- ▶ у всіх розрядах нулі заміняються на 1, а одиниці на 0;
- код знака зберігається без змін.

 $Hanpu\kappa na\partial$, обернений код чисел -1 і -127 у 8-розрядній сітці:

Додатковий код від'ємного числа

отримується із оберненого коду збільшенням на 1 його молодшого розряду:

перенос із знакового розряду ігнорується.

Наприклад, додатковий код чисел −1 і −127 у 8-розрядній сітці:

Додатковий код ε математичним доповненням основи p:

$$|X| + X_{\mathcal{I}} = p^n,$$

|X| - абсолютне значення числа;

п – кількість розрядів у представленні числа.

Hanpuклад, при n=8:

$$\begin{split} (+1)_{\mathcal{A}} &= (1)_{10} = (00000001)_2 \,; \\ (-1)_{\mathcal{A}} &= 2^8 - |-1| = 256 - 1 = (255)_{10} = (111111111)_2 \,; \\ (-127)_{\mathcal{A}} &= 2^8 - |-127| = 256 - 127 = (129)_{10} = (10000001)_2 \,. \end{split}$$

- Для подання від'ємних чисел у форматі з фіксованою комою зазвичай використовується додатковий код.
- Операція віднімання замінюється на операцію додавання числа, що має знак, протилежний до знака від'ємника.
 Наприклад

$$A - B = A + (-B).$$

Форма подання чисел з плаваючою комою

Форма подання чисел з плаваючою комою (крапкою)

 представлення числа у вигляді добутку цифрової частини та деякого степеня основи системи числення:

$$A = M_A p^s, (2)$$

 M_A – мантиса числа A;

р – основа системи числення:

- s порядок числа.
 - у мантисі M_A зберігаються значущі цифри числа;
 - порядок s визначає величину числа;
 - знак мантиси збігається зі знаком числа A.

Ця форма представлення – неоднозначна.

 $Hanpu \kappa л a \partial$

$$73,28 = 73,28 \cdot 10^{0} = 7,328 \cdot 10^{1} = 0,7328 \cdot 10^{2} = 732,8 \cdot 10^{-1} = \dots$$

Форма подання чисел з плаваючою комою

Для однозначності представлення та підвищення точності запису використовують нормальну форму подання.

Нормальна форма подання чисел з плаваючою крапкою

- форма подання чисел, для якої виконується умова

$$\frac{1}{p} \leqslant |M_A| < 1. \tag{3}$$

Для запису числа у формі з плаваючою крапкою фіксують 4 поля:

Найчастіше цей формат використовують для представлення дуже великих або дуже малих дійсних чисел.

Приклад 3.

У розрядну сітку, зображену на рисунку, записати двійкове число $A=-10110{,}1111_2.$

Нормальна форма: $A = -0.1011011111 \cdot 2^5; \quad \frac{1}{2} \leqslant |M_A| \leqslant 1.$

знак	1	2	3	4	5	6	7	8	9	знак	4	3	2	1	0
мантиси										порядку					
1	1	0	1	1	0	1	1	1	1	0	0	0	1	0	1

Приклад 4.

У розрядну сітку, зображену на рисунку, записати двійкове число $A=+0{,}000110010111_2$.

Нормальна форма: $A = +0,110010111 \cdot 2^{-3}; \quad \frac{1}{2} \leqslant |M_A| \leqslant 1.$

знак мантиси	1	2	3	4	5	6	7	8	9	знак порядку	4	3	2	1	0
0	1	1	0	0	1	0	1	1	1	1	0	0	0	1	1

Якщо кожному символу алфавіту поставити у відповідність певне ціле число – його **код**, то за допомогою двійкового коду можна кодувати і текстову інформацію.

Вісьмох двійкових розрядів достатньо для кодування 256 різних символів:

- усі символи англійської та української мов (великі і малі);
- розділові знаки;
- символи основних арифметичних операцій;
- деякі загальноприйняті спеціальні символи.

Для того, щоб увесь світ однаково кодував текстові дані, потрібні єдині **таблиці** кодування.

8-розрядна система кодування ASCII

(American Standard Code for Information Interchange – стандартний код інформаційного обміну США)

ввів у дію інститут стандартизації США (ANSI — American National Standard Institute) для англійської мови:

- ▶ підтримує кодування 256 (2⁸) незалежних значень;
- базова таблиця закріплює значення кодів від 0 до 127;
- ▶ розширена таблиця від 128 до 255.

Базова таблиця ASCII:

- Коди від 0 до 31 управляючі коди, яким не відповідають жодні символи мов і, відповідно, ці коди не виводяться ні на екран, ні на пристрої друку, але ними можна управляти виведенням інших даних;
- Коди від 32 до 127 призначені для кодування символів англійського алфавіту, розділових знаків, цифр, арифметичних операцій і деяких допоміжних символів.

ASCII TABLE

Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	*
1	1	[START OF HEADING]	33	21	1	65	41	Α	97	61	a
2	2	[START OF TEXT]	34	22		66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	C	99	63	c
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	H	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i
10	Α	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	C	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D		77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Υ	121	79	У
26	1A	[SUBSTITUTE]	58	3A		90	5A	Z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	\	124	7C	Ť
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F	_	127	7F	[DEL]

Розширена таблиця ASCII

 використовується національними системами шляхом завантаження потрібної кодової сторінки.

Windows-1251

- кодування, яке є стандартним 8-бітним кодуванням для всіх локалізованих українських і російських версій Microsoft Windows:
 - містить практично усі символи слов'янської кириличної писемності для звичайного тексту;
 - містить всі символи для російської, української, білоруської, сербської і болгарської мов.

128 Ђ	144 ħ	160	176 .	192 A	208 P	224 a	240 p
129 f	145	161 Ў	177 ±	193 Б	209 C	225 6	241 c
130 .	146 '	162 ÿ	178 I	194 B	210 T	226 в	242 т
131 f	147 "	163 J	179 i	195 Г	211 Y	227 г	243 y
132	148 "	164 ¤	180 г	196 Д	212 Ф	228 д	244 ф
133	149 •	165 ľ	181 µ	197 E	213 X	229 e	245 x
134 †	150 -	166 !	182 ¶	198 X	214 Ц	230 ж	246 ц
135 ‡	151 —	167 §	183 -	199 3	215 4	231 3	247 4
136	152	168 Ë	184 ë	200 И	216 Ш	232 и	248 ш
137 %	153 TM	169 ©	185 Nº	201 Й	217 Щ	233 й	249 ш
138 Љ	154 љ	170 €	186 €	202 K	218 Ъ	234 K	250 ъ
139 (155 >	171 «	187 »	203 Л	219 Ы	235 л	251 ы
140 Њ	156 њ	172 ¬	188 j	204 M	220 Ь	236 м	252 ь
141 K	157 K	173 -	189 S	205 H	221 9	237 н	253 э
142 Ћ	158 ħ	174 ®	190 s	206 O	222 IO	238 o	254 K
143 U	159 ų	175 Ï	191 ï	207 П	223 Я	239 п	255 я

Універсальна система кодування UNICODE

- розроблена для уніфікації кодування текстових даних:
 - ightharpoonup підтримує кодування **65 536** (2^{16}) різних символів;
 - містить символи більшості мов планети;
 - завдяки уніфікованості впроваджена у багатьох останніх технологіях, включаючи сучасні операційні системи, XML, Java (та інші мови програмування) та .NET Framework.

Дякую за увагу!

Далі буде...