

MT9D012: 1/4-Inch 2-Megapixel Image Sensor Die Features

# 1/4-Inch 2-Megapixel CMOS Digital Image Sensor Die

#### MT9D012

For the product data sheet, refer to Micron's Web site: www.micron.com

#### **Features**

- Micron<sup>®</sup> DigitalClarity<sup>®</sup> CMOS imaging technology
- · Low dark current
- · Simple two-wire serial interface
- · Auto black level calibration
- · Support for external mechanical shutter
- Support for external LED or xenon flash
- High frame rate preview mode with arbitrary downsize scaling from maximum resolution
- Programmable controls: Gain, frame size/rate, exposure, left-right and top-bottom image reversal, window size and panning
- SMIA compatible
- Data interfaces: Parallel and CCP2 compliant sub-low-voltage differential signaling (sub-LVDS)
- On-die phase-lock loop (PLL) oscillator
- · Bayer-pattern down-size scaler
- · Integrated color/lens shading correction
- · Superior low-light performance

### **General Physical Specifications**

- Die thickness: 200μm ±12μm (Consult factory for die thickness other than 200μm)
- · Backside die surface of bare silicon
- Typical metal 1 thickness: 3.1kÅ
- Typical metal 2 thickness: 3.1kÅ
- Typical metal 3 thickness: 6.1kÅ
- Metallization composition: 99.5 percent Al and 0.5 percent Cu over Ti
- Typical topside passivation:
   2.2kÅ nitride over 6.0kÅ of undoped oxide
- Passivation openings (MIN): 75μm x 90μm

#### **Order Information**

MT9D012D00STCC15AC1



#### Die Database C15A

- Die outline, see Figure 3 on page 10
- Singulated die size: 6,003μm ±25μm x 5,404μm ±25μm
- Bond Pad Location and Identification Tables, see pages 6–9

#### **Options**

- Form
  - Die D
- Testing
  - Standard (level 1) probe
    - Consult die distributor or factory before ordering to verify long-term availability of these die products.

C<sub>1</sub>

### **Key Performance Parameters**

- Optical format: 1/4-inch UXGA (4:3)
- Active imager size: 3.56mm(H) x 2.68mm(V), 4.45mm diagonal
- Active pixels: 1616H x 1216V
- Pixel size: 2.2µm x 2.2µm
- · Color filter array: RGB Bayer Pattern
- Shutter type: Electronic rolling shutter (ERS)
- Maximum data rate/master clock: 64 Mp/s at 64 MHz PIXCLK
- Frame rate:
  - UXGA (1600H x 1200V) programmable up to 22 fps VGA (640H x 480V) programmable up to 60 fps
- ADC resolution: 10-bit, on-die (61dB)
- Responsivity: 0.53 V/lux-sec
- Dynamic range: 59.5dB
- SNR<sub>MAX</sub>: 37.7dB
- Supply voltage

Analog: 2.4-3.1V (2.5V or 2.8V nominal)

**Digital: 1.7–1.9V (1.8V nominal)** 

I/O: 1.7-3.1V

- Power consumption: TBD
- Operating temperature: -30°C to +70°C



### MT9D012: 1/4-Inch 2-Megapixel Image Sensor Die General Description

#### **General Description**

The Micron Imaging MT9D012 die is an UXGA-format, 1/4-inch CMOS active-pixel digital image sensor with a pixel array of 1600H x 1200V (1616H x 1216V including border pixels). It incorporates sophisticated on-die camera functions such as windowing, column and row skip mode, and snapshot mode. It is programmable through a simple two-wire serial interface and has very low power consumption.

The MT9D012 digital image sensor features DigitalClarity technology—Micron's breakthrough, low-noise CMOS imaging technology that achieves CCD image quality (based on signal-to-noise ratio and low-light sensitivity) while maintaining the inherent size, cost, and integration advantages of CMOS.

When operated in its default mode, the sensor generates a UXGA image at 22 frames per second (fps). An on-die analog-to-digital converter (ADC) generates a 10-bit value for each pixel.

### **Die Testing Procedures**

Micron imager die products are tested with a standard probe (C1) test level. Wafer probe is performed at an elevated temperature to test product functionality in Micron's standard package. Since the package environment is not within Micron's control, the user must determine the necessary heat sinking requirements to ensure that the die junction temperature remains within specified limits.

Image quality is verified through various imaging tests. The probe functional test flow provides test coverage for the on-die ADC, logic, serial interface bus, and pixel array. Test conditions, margins, limits, and test sequence are determined by individual product yields and reliability data.

Micron retains a wafer map of each wafer as part of the probe records, along with a lot summary of wafer yields for each lot probed. Micron reserves the right to change the probe program at any time to improve the reliability, packaged device yield, or performance of the product.

Die users may experience differences in performance relative to Micron's data sheets. This is due to differences in package capacitance, inductance, resistance, and trace length.

### **Functional Specifications**

The specifications provided here are for reference only. For functional and parametric specifications, refer to the product data sheet found on Micron's Web site.

### **Bonding Instructions**

The MT9D012 imager die has 56 bond pads. Refer to Tables 1 and 2 on pages 6–9 for a complete list of bond pads and coordinates.

The MT9D012 imager die does not require the user to determine bond option features.

The die also has several pads defined as "do not use." These pads are used for engineering purposes and should not be used. Bonding these pads could result in a nonfunctional die.



### MT9D012: 1/4-Inch 2-Megapixel Image Sensor Die Storage Requirements

Figure 1 on page 4 and Figure 2 on page 5 show the MT9D012 typical die connections. For low-noise operation the MT9D012 die requires separate supplies for analog and digital power. Both power supply rails should be decoupled to ground using ceramic capacitors. Use of inductance filters is not recommended.

### **Storage Requirements**

Micron die products are packaged in a cleanroom environment for shipping. Upon receipt, the customer should transfer the die to a similar environment for storage. Micron recommends the die be maintained in a filtered nitrogen atmosphere until removed for assembly. The moisture content of the storage facility should be maintained at 30 percent relative humidity  $\pm 10$  percent. ESD damage precautions are necessary during handling. The die must be in an ESD-protected environment at all times for inspection and assembly.

### **Product Reliability Monitors**

Reliability of all packaged products is monitored by ongoing reliability evaluations. Micron's QRA department continually samples product families for reliability studies. These samples are subjected to a battery of tests known as the "Accelerated Life" and "Environmental Stress" tests. During these tests, devices are stressed for many hours under conditions designed to simulate years of normal field use. A summary of these product family evaluations is published on a regular basis.

### **Operating Modes**

By default, the MT9D012 powers up as a SMIA-compatible sensor with the serial pixel data interface enabled. A typical configuration in this mode is shown in Figure 1 on page 4. The MT9D012 can also be configured to operate with a parallel pixel data interface. A typical configuration in this mode is shown in Figure 2 on page 5. These two operating modes are described in the "Control of the Signal Interface" section of the product data sheet.



### MT9D012: 1/4-Inch 2-Megapixel Image Sensor Die Operating Modes

Figure 1: Typical Configuration: Serial Pixel Data Interface



- 1. All power supplies should be adequately decoupled.
- 2. A resistor value of  $1.5k\Omega$  is recommended, but may be greater for slower two-wire speed.
- 3. This pull-up resistor is not required if the controller drives a valid logic level on SCLK at all times.
- 4. VAA and VAAPIX must be tied together.



### MT9D012: 1/4-Inch 2-Megapixel Image Sensor Die Operating Modes

Figure 2: Typical Configuration: Parallel Pixel Data Interface



- 1. All power supplies should be adequately decoupled.
- 2. A resistor value of 1.5K $\Omega$  is recommended, but may be greater for slower two-wire speed.
- 3. This pull-up resistor is not required if the controller drives a valid logic level on SCLK at all times
- The GPI pins can either be statically pulled HIGH/LOW and used as module IDs, or they can be programmed to perform special functions (TRIGGER, OE#, STANDBY) and be dynamically controlled.
- 5. VAA and VAAPIX must be tied together.



### MT9D012: 1/4-Inch 2-Megapixel Image Sensor Die Bond Pad Location and Identification Tables

### **Bond Pad Location and Identification Tables**

Table 1: MT9D012 Bond Pad Location From Center of Pad 1

| Pad | MT9D012               | "X" <sup>1</sup><br>Microns | "γ" <sup>1</sup><br>Microns | "X" <sup>1</sup><br>Inches | "Y" <sup>1</sup><br>Inches |
|-----|-----------------------|-----------------------------|-----------------------------|----------------------------|----------------------------|
| 1   | V <sub>DD</sub> 2     | 0.00                        | 0.00                        | 0.0000000                  | 0.0000000                  |
| 2   | DGND2                 | 131.04                      | 0.00                        | 0.0051591                  | 0.0000000                  |
| 3   | VDDQ5                 | 491.04                      | 0.00                        | 0.0193323                  | 0.0000000                  |
| 4   | RESET#<br>(XSHUTDOWN) | 644.46                      | 0.00                        | 0.0253722                  | 0.0000000                  |
| 5   | SCL                   | 814.38                      | 0.00                        | 0.0320620                  | 0.0000000                  |
| 6   | SDA                   | 1002.40                     | 0.00                        | 0.0394646                  | 0.0000000                  |
| 7   | GPI0                  | 1217.58                     | 0.00                        | 0.0479360                  | 0.0000000                  |
| 8   | GPI1                  | 1381.63                     | 0.00                        | 0.0543947                  | 0.0000000                  |
| 9   | GPI2                  | 1557.42                     | 0.00                        | 0.0613156                  | 0.0000000                  |
| 10  | GPI3                  | 1721.47                     | 0.00                        | 0.0677742                  | 0.0000000                  |
| 11  | TEST <sup>2</sup>     | 1897.26                     | 0.00                        | 0.0746951                  | 0.0000000                  |
| 12  | Saddr                 | 2061.31                     | 0.00                        | 0.0811537                  | 0.0000000                  |
| 13  | PIXCLK                | 3154.16                     | 0.00                        | 0.1241795                  | 0.0000000                  |
| 14  | LINE_VALID            | 3366.16                     | 0.00                        | 0.1325260                  | 0.0000000                  |
| 15  | FRAME_VALID           | 3620.72                     | 0.00                        | 0.1425480                  | 0.0000000                  |
| 16  | Dout9                 | 3908.79                     | -468.79                     | 0.1538892                  | -0.0184561                 |
| 17  | Dоuт8                 | 3908.79                     | -723.35                     | 0.1538892                  | -0.0284781                 |
| 18  | VDDQ3                 | 3908.79                     | -905.67                     | 0.1538892                  | -0.0356561                 |
| 19  | DGND3                 | 3908.79                     | -1036.71                    | 0.1538892                  | -0.0408152                 |
| 20  | VDD3                  | 3908.79                     | -1178.55                    | 0.1538892                  | -0.0463994                 |
| 21  | Dout7                 | 3908.79                     | -1350.07                    | 0.1538892                  | -0.0531522                 |
| 22  | <b>D</b> оит6         | 3908.79                     | -1604.63                    | 0.1538892                  | -0.0631742                 |
| 23  | Dоит5                 | 3908.79                     | -1816.63                    | 0.1538892                  | -0.0715207                 |
| 24  | Dout4                 | 3908.79                     | -2071.19                    | 0.1538892                  | -0.0815427                 |
| 25  | <b>D</b> оит3         | 3908.79                     | -2283.19                    | 0.1538892                  | -0.0898892                 |
| 26  | VDD4                  | 3908.79                     | -2486.79                    | 0.1538892                  | -0.0979049                 |
| 27  | DGND4                 | 3908.79                     | -2617.83                    | 0.1538892                  | -0.1030640                 |
| 28  | VDDQ4                 | 3908.79                     | -2759.67                    | 0.1538892                  | -0.1086482                 |
| 29  | Dout2                 | 3908.79                     | -2952.47                    | 0.1538892                  | -0.1162388                 |
| 30  | Dour1                 | 3908.79                     | -3164.47                    | 0.1538892                  | -0.1245852                 |
| 31  | Dоит0                 | 3908.79                     | -3419.03                    | 0.1538892                  | -0.1346073                 |
| 32  | SHUTTER               | 3908.79                     | -3631.03                    | 0.1538892                  | -0.1429537                 |
| 33  | FLASH                 | 3908.79                     | -3885.59                    | 0.1538892                  | -0.1529758                 |
| 34  | DNU <sup>3</sup>      | 3908.79                     | -4588.47                    | 0.1538892                  | -0.1806482                 |
| 35  | DNU                   | 3908.79                     | -4719.51                    | 0.1538892                  | -0.1858073                 |
| 36  | DNU                   | 3908.79                     | -4850.55                    | 0.1538892                  | -0.1909663                 |
| 37  | VAAPIX1               | 3661.20                     | -5098.13                    | 0.1441417                  | -0.2007138                 |
| 38  | VAAPIX2               | 3530.16                     | -5098.13                    | 0.1389827                  | -0.2007138                 |



### MT9D012: 1/4-Inch 2-Megapixel Image Sensor Die Bond Pad Location and Identification Tables

Table 1: MT9D012 Bond Pad Location From Center of Pad 1 (continued)

| Pad | MT9D012 | "X" <sup>1</sup><br>Microns | "γ" <sup>1</sup><br>Microns | "X" <sup>1</sup><br>Inches | "Υ" <sup>1</sup><br>Inches |
|-----|---------|-----------------------------|-----------------------------|----------------------------|----------------------------|
| 39  | VAAPIX3 | 3399.12                     | -5098.13                    | 0.1338236                  | -0.2007138                 |
| 40  | VAA1    | 3257.28                     | -5098.13                    | 0.1282394                  | -0.2007138                 |
| 41  | VAA2    | 3115.44                     | -5098.13                    | 0.1226551                  | -0.2007138                 |
| 42  | VAA3    | 2973.60                     | -5098.13                    | 0.1170709                  | -0.2007138                 |
| 43  | AGND1   | 2842.56                     | -5098.13                    | 0.1119118                  | -0.2007138                 |
| 44  | AGND2   | 2711.52                     | -5098.13                    | 0.1067528                  | -0.2007138                 |
| 45  | AGND3   | 2580.48                     | -5098.13                    | 0.1015937                  | -0.2007138                 |
| 46  | VDDQ2   | 2125.44                     | -5098.13                    | 0.0836787                  | -0.2007138                 |
| 47  | DGND5   | 1994.40                     | -5098.13                    | 0.0785197                  | -0.2007138                 |
| 48  | CLKN    | 1776.16                     | -5098.13                    | 0.0699276                  | -0.2007138                 |
| 49  | CLKP    | 1486.16                     | -5098.13                    | 0.0585102                  | -0.2007138                 |
| 50  | DATAN   | 1119.52                     | -5098.13                    | 0.0440756                  | -0.2007138                 |
| 51  | DATAP   | 829.52                      | -5098.13                    | 0.0326583                  | -0.2007138                 |
| 52  | VDDPLL  | -204.48                     | -5098.13                    | -0.0080504                 | -0.2007138                 |
| 53  | EXTCLK  | -617.60                     | -5098.13                    | -0.0243150                 | -0.2007138                 |
| 54  | VDDQ1   | -799.92                     | -5098.13                    | -0.0314929                 | -0.2007138                 |
| 55  | VDD1    | -941.76                     | -5098.13                    | -0.0370772                 | -0.2007138                 |
| 56  | DGND1   | -1072.80                    | -5098.13                    | -0.0422362                 | -0.2007138                 |

- 1. Reference to center of each bond pad from center of bond pad number 1.
- 2. Must be connected to DGND for proper device functionality.
- 3. DNU = "do not use." See "Bonding Instructions" on page 2.



### MT9D012: 1/4-Inch 2-Megapixel Image Sensor Die Bond Pad Location and Identification Tables

Table 2: MT9D012 Bond Pad Location From Center of Die (0, 0)

| Pad | MITODO12              | "X" <sup>1</sup><br>Microns | "γ" <sup>1</sup><br>Microns | "X" <sup>1</sup><br>Inches | "γ" <sup>1</sup><br>Inches |
|-----|-----------------------|-----------------------------|-----------------------------|----------------------------|----------------------------|
|     | MT9D012               |                             |                             |                            |                            |
| 1   | VDD2                  | -1060.20                    | 2549.07                     | -0.0417402                 | 0.1003569                  |
| 2   | DGND2                 | -929.16                     | 2549.07                     | -0.0365811                 | 0.1003569                  |
| 3   | VDDQ5                 | -569.16                     | 2549.07                     | -0.0224079                 | 0.1003569                  |
| 4   | RESET#<br>(XSHUTDOWN) | -415.75                     | 2549.07                     | -0.0163679                 | 0.1003569                  |
| 5   | SCL                   | -245.83                     | 2549.07                     | -0.0096781                 | 0.1003569                  |
| 6   | SDA                   | -57.80                      | 2549.07                     | -0.0022756                 | 0.1003569                  |
| 7   | GPI0                  | 157.38                      | 2549.07                     | 0.0061959                  | 0.1003569                  |
| 8   | GPI1                  | 321.43                      | 2549.07                     | 0.0126545                  | 0.1003569                  |
| 9   | GPI2                  | 497.22                      | 2549.07                     | 0.0195754                  | 0.1003569                  |
| 10  | GPI3                  | 661.27                      | 2549.07                     | 0.0260341                  | 0.1003569                  |
| 11  | TEST <sup>2</sup>     | 837.06                      | 2549.07                     | 0.0329549                  | 0.1003569                  |
| 12  | SADDR                 | 1001.11                     | 2549.07                     | 0.0394136                  | 0.1003569                  |
| 13  | PIXCLK                | 2093.96                     | 2549.07                     | 0.0824394                  | 0.1003569                  |
| 14  | LINE_VALID            | 2305.96                     | 2549.07                     | 0.0907858                  | 0.1003569                  |
| 15  | FRAME_VALID           | 2560.52                     | 2549.07                     | 0.1008079                  | 0.1003569                  |
| 16  | Dout9                 | 2848.59                     | 2080.28                     | 0.1121490                  | 0.0819008                  |
| 17  | Dоит8                 | 2848.59                     | 1825.72                     | 0.1121490                  | 0.0718787                  |
| 18  | VDDQ3                 | 2848.59                     | 1643.40                     | 0.1121490                  | 0.0647008                  |
| 19  | DGND3                 | 2848.59                     | 1512.36                     | 0.1121490                  | 0.0595417                  |
| 20  | VDD3                  | 2848.59                     | 1370.52                     | 0.1121490                  | 0.0539575                  |
| 21  | Dout7                 | 2848.59                     | 1199.00                     | 0.1121490                  | 0.0472047                  |
| 22  | <b>D</b> оит6         | 2848.59                     | 944.44                      | 0.1121490                  | 0.0371827                  |
| 23  | Douт5                 | 2848.59                     | 732.44                      | 0.1121490                  | 0.0288362                  |
| 24  | Dout4                 | 2848.59                     | 477.88                      | 0.1121490                  | 0.0188142                  |
| 25  | <b>D</b> оит3         | 2848.59                     | 265.88                      | 0.1121490                  | 0.0104677                  |
| 26  | VDD4                  | 2848.59                     | 62.28                       | 0.1121490                  | 0.0024520                  |
| 27  | DGND4                 | 2848.59                     | -68.76                      | 0.1121490                  | -0.0027071                 |
| 28  | VDDQ4                 | 2848.59                     | -210.60                     | 0.1121490                  | -0.0082913                 |
| 29  | Dоит2                 | 2848.59                     | -403.40                     | 0.1121490                  | -0.0158819                 |
| 30  | Dour1                 | 2848.59                     | -615.40                     | 0.1121490                  | -0.0242283                 |
| 31  | Dоит0                 | 2848.59                     | -869.96                     | 0.1121490                  | -0.0342504                 |
| 32  | SHUTTER               | 2848.59                     | -1081.96                    | 0.1121490                  | -0.0425969                 |
| 33  | FLASH                 | 2848.59                     | -1336.52                    | 0.1121490                  | -0.0526189                 |
| 34  | DNU <sup>3</sup>      | 2848.59                     | -2039.40                    | 0.1121490                  | -0.0802913                 |
| 35  | DNU                   | 2848.59                     | -2170.44                    | 0.1121490                  | -0.0854504                 |
| 36  | DNU                   | 2848.59                     | -2301.48                    | 0.1121490                  | -0.0906094                 |
| 37  | VAAPIX1               | 2601.00                     | -2549.07                    | 0.1024016                  | -0.1003569                 |
| 38  | VAAPIX2               | 2469.96                     | -2549.07                    | 0.0972425                  | -0.1003569                 |



### MT9D012: 1/4-Inch 2-Megapixel Image Sensor Die Bond Pad Location and Identification Tables

Table 2: MT9D012 Bond Pad Location From Center of Die (0, 0) (continued)

| Pad | MT9D012 | "X" <sup>1</sup><br>Microns | "γ" <sup>1</sup><br>Microns | "X" <sup>1</sup><br>Inches | "γ" <sup>1</sup><br>Inches |
|-----|---------|-----------------------------|-----------------------------|----------------------------|----------------------------|
| 39  | VAAPIX3 | 2338.92                     | -2549.07                    | 0.0920835                  | -0.1003569                 |
| 40  | VAA1    | 2197.08                     | -2549.07                    | 0.0864992                  | -0.1003569                 |
| 41  | VAA2    | 2055.24                     | -2549.07                    | 0.0809150                  | -0.1003569                 |
| 42  | VAA3    | 1913.40                     | -2549.07                    | 0.0753307                  | -0.1003569                 |
| 43  | AGND1   | 1782.36                     | -2549.07                    | 0.0701717                  | -0.1003569                 |
| 44  | AGND2   | 1651.32                     | -2549.07                    | 0.0650126                  | -0.1003569                 |
| 45  | AGND3   | 1520.28                     | -2549.07                    | 0.0598535                  | -0.1003569                 |
| 46  | VDDQ2   | 1065.24                     | -2549.07                    | 0.0419386                  | -0.1003569                 |
| 47  | DGND5   | 934.20                      | -2549.07                    | 0.0367795                  | -0.1003569                 |
| 48  | CLKN    | 715.96                      | -2549.07                    | 0.0281874                  | -0.1003569                 |
| 49  | CLKP    | 425.96                      | -2549.07                    | 0.0167701                  | -0.1003569                 |
| 50  | DATAN   | 59.32                       | -2549.07                    | 0.0023354                  | -0.1003569                 |
| 51  | DATAP   | -230.68                     | -2549.07                    | -0.0090819                 | -0.1003569                 |
| 52  | VDDPLL  | -1264.68                    | -2549.07                    | -0.0497906                 | -0.1003569                 |
| 53  | EXTCLK  | -1677.80                    | -2549.07                    | -0.0660551                 | -0.1003569                 |
| 54  | VDDQ1   | -1860.12                    | -2549.07                    | -0.0732331                 | -0.1003569                 |
| 55  | VDD1    | -2001.96                    | -2549.07                    | -0.0788173                 | -0.1003569                 |
| 56  | DGND1   | -2133.00                    | -2549.07                    | -0.0839764                 | -0.1003569                 |

- 1. Reference to center of each bond pad from center of die (0, 0).
- 2. Must be connected to DGND for proper device functionality.
- 3. DNU = "do not use." See Bonding Instructions on page 2.



### MT9D012: 1/4-Inch 2-Megapixel Image Sensor Die Die Features

### **Die Features**

Figure 3: Die Outline (Top View)





## MT9D012: 1/4-Inch 2-Megapixel Image Sensor Die Physical Specifications

### **Physical Specifications**

#### Table 3: Die Dimensions

| Feature                                                                                                     | Dimensions                                                         |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Wafer diameter                                                                                              | 200mm (8in)                                                        |
| Die thickness                                                                                               | 200μm ±12μm                                                        |
| Singulated die size Width: Length:                                                                          | 6,003µm ±25µm<br>5,404µm ±25µm                                     |
| Bond pad size (MIN)                                                                                         | 85μm x 100μm<br>(3.35 mil x 3.94 mil)                              |
| Passivation openings (MIN)                                                                                  | 75μm x 90μm<br>(2.95 mil x 3.54 mil)                               |
| Minimum bond pad pitch                                                                                      | 131.04µm (5.159 mil)                                               |
| Optical array Optical center from die center: Optical center from center of pad 1:                          | X = 47.11μm, Y = –39.59μm<br>X = 1,207.30μm, Y = –2,588.65μm       |
| First clear pixel (col. 99, row 38) From die center: From center of pad 1:                                  | X = 1,825.81μm, Y = 1,299.12μm<br>X = 2,886.00μm, Y = –1,249.95μm  |
| Last clear pixel (col. 1,716, row 1,255) From die center: From center of pad 1:                             | X = -1,731.60μm, Y = -1,378.29μm<br>X = -671.40μm, Y = -3,927.35μm |
| Wafer saw offset<br>From die center (after 30µm wafer saw shift)<br>to the left edge:<br>to the right edge: | 2971.5µm<br>3031.5µm                                               |



### MT9D012: 1/4-Inch 2-Megapixel Image Sensor Die Physical Specifications

Figure 4: MT9D012 Die Orientation in Reconstructed Wafer





8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900 prodmktg@micron.com www.micron.com Customer Comment Line: 800-932-4992 Micron, the M logo, and the Micron logo are trademarks of Micron Technology, Inc. All other trademarks are the property of their respective owners.

Advance: This data sheet contains initial descriptions of products still under development.



# MT9D012: 1/4-Inch 2-Megapixel Image Sensor Die Revision History

### **Revision History**

| Rev. D. Advance | 4                                                                                          | /07 |
|-----------------|--------------------------------------------------------------------------------------------|-----|
|                 | Updated template                                                                           |     |
|                 | • Updated Figure 4 on page 12                                                              |     |
| Rev. C, Advance |                                                                                            | /07 |
| ·               | - Added $30\mu m$ wafer saw shift to the right from center of street, Table 3 on page $11$ |     |
| Rev. B, Advance |                                                                                            | /06 |
| ,               | • Updated Figures 1 and 2, pages 4 and 5                                                   |     |
| Rev. A, Advance |                                                                                            | /06 |
| ,               | Initial release                                                                            |     |