${ m CS~374:Computational~and~Numerical~Methods}$ ${ m Assignment~1-Set~2}$

PURVIL MEHTA (201701073) BHARGEY MEHTA (201701074)

 $Dhirubhai\ Ambani\ Institute\ of\ Information\ and\ Communication\ Technology\\ Gandhinagar$

AUGUST 29, 2019

Contents

1	App	proximation of functions using Taylor Polynomials	2
	1.1	Approximation for e^x	2
		1.1.1 Plot	2
		1.1.2 Observations	2
	1.2	Approximation for $\ln x$	3
		1.2.1 Plot	3
		1.2.2 Observations	3
	1.3	Approximation for $\sin x$	4
		1.3.1 Plot	4
		1.3.2 Observations	4
	1.4	Approximation for $\cos x$	5
		1.4.1 Plot	
		1.4.2 Observations	5

1 Approximation of functions using Taylor Polynomials

Consider the following functions:

- $y = e^x$
- $y = \ln x$
- $y = \sin x$
- $y = \cos x$

Produce the first, the second and the third-degree Taylor polynomials for each of the foregoing functions, using a=1 as the point of approximation for $\ln x$ and a=0 for the rest.In a suitably chosen neighborhood of a, follow how the accuracy of a Taylor polynomial improves with its increasing degree. For this you will have to estimate the difference between f(x) and its Taylor polynomials in a code. Present your result for each function along with its Taylor polynomials of all 3 degrees.

1.1 Approximation for e^x

1.1.1 Plot

Figure 1: Behaviour of Different Order polynomial

1.1.2 Observations

• Using Taylor Series which is given by

$$f(x) = f(x_0) + \frac{f'(x_0)(x - x_0)}{1!} + \frac{f''(x_0)(x - x_0)^2}{2!} + \dots$$
 (1)

We approximate the function till the third order of the series around a = 0.

- As we observed that the even order polynomial rises up in the positive direction as $x \to -\infty$ and exactly this kind of graph we got in the figure 1. As $p_2(x)$ in the graph lies above the actual graph.
- In the case of odd order polynomial equation which goes to $-\infty$ as $x \to -\infty$ and that is why we got $p_1(x)$ and $p_3(x)$ which goes to $-\infty$ shown in the figure. **These polynomial lies under the actual function curve.**
- The positive side of the graph, sign will not affect the Taylor polynomial and all the Taylor polynomials lies below the actual function as we have approximated the function.

1.2 Approximation for $\ln x$

1.2.1 Plot

Figure 2: Behaviour of Different Order polynomial

1.2.2 Observations

- Using Taylor Series which is given by equation 1, we approximate the function till the third order of the series around a = 1 as it is given in the question.
- As we observed that the value of even order polynomial decreases or goes to → -∞ as the value of x increases in the positive direction. Thus for smaller value of x even order polynomial behaves like ln x. But for large value of x, the higher even order with negative sign brigs the function down in the negative direction. As p₂(x) in the graph lies below the actual graph.
- In the case of odd order polynomial equation which goes to ∞ as $x \to \infty$ and that is why we got $p_1(x)$ and $p_3(x)$ which goes to ∞ shown in the figure.**These polynomial lies above the actual function curve.**
- In between [0-1], value of x will not affect the Taylor polynomial and all the Taylor polynomials lies above the actual function as we have approximated the function.
- As we consider more and more degree in the Taylor Polynomial Series, we get closer and closer graph compared to the actual function.

1.3 Approximation for $\sin x$

1.3.1 Plot

Figure 3: Behaviour of Different Order polynomial

1.3.2 Observations

- Using Taylor Series which is given by equation 1, we approximate the function till the third order of the series around a = 0 as it is given in the question.
- For any value of x, the first order Taylor polynomial which is nothing but a straight line does not have any turning point and thus form small value of x it shows the correct output but shows incorrect output for large value of x.
- For small value of x eg.[0-1], the third order Taylor polynomial will behave like straight line as we neglect the x^3 part of the polynomial.But as the value for the x increases, the higher order term with the minus sign brings the function down toward $-\infty$. In the negative direction, since higher order of the function is three with minus sign takes the function up in the $+\infty$.

Since the first derivative of the $p_3(x)$ is $p_3'(x) = 1 - \frac{x^2}{2}$ which has two turning points at $x = \pm \sqrt{2}$. Also the second derivative of $p_3(x)$ is $p_3''(x) = -x$. Thus function has minima at $x = \sqrt{2}$ and maxima at $x = -\sqrt{2}$. And thus more and more degree of the Taylor polynomial takes us more closer to the actual function.

Since $p_3(x)$ has root at $x = \sqrt{6}$, the decreasing rate of the function is more than the actual function.

1.4 Approximation for $\cos x$

1.4.1 Plot

Figure 4: Behaviour of Different Order polynomial

1.4.2 Observations

- Using Taylor Series which is given by equation 1, we approximate the function till the third order of the series around a = 0 as it is given in the question.
- For any value of x, the first order Taylor polynomial which is nothing but a constant line does not have any turning point and thus form small value of x it shows the correct output but shows incorrect output for large value of x.
- For small value of x eg. $\left[-\frac{\pi}{2}, -\frac{\pi}{2}\right]$, the second order Taylor polynomial will behave like cosine function as we neglect the x^2 part of the polynomial. But as the value for the x increases, the higher order term with the minus sign brings the function down toward $-\infty$. In the negative direction, since higher order of the function is two with minus sign will not affect the function and takes down in the $-\infty$.

Since the first derivative of the $p_2(x)$ is $p_2'(x) = -x$ which has only one turning point at x = 0. Also the second derivative of $p_2(x)$ is $p_2''(x) = -1$. Thus function has maxima at x = 0. And thus for some values eg. $\left[-\frac{\pi}{2} - \frac{\pi}{2}\right]$ function behaves like cosine function but the function goes to $-\infty$ for increasing values of x in positive as well as negative direction.

Since $p_3(x)$ has root at $x = \pm \sqrt{2} \approx \pm 1.41$, the decreasing rate of the function is more than the actual function.