01076010 เครือข่ายคอมพิวเตอร์ : 2/2563 ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

กิจกรรมที่ 7 : TCP Retransmission

กิจกรรมครั้งนี้จะเป็นการทำความเข้าใจกับโปรโตคอล TCP (Transmission Control Protocol) ให้มากยิ่งขึ้น โดยเน้นเรื่องของ Retransmission

การ<u>รับ</u>ข้อมูลของ TCP จะมีแนวทางการทำงาน ดังนี้

- Delayed ACK กรณีที่ฝั่งรับได^{*} ACK ตอบรับ packet ที่ได^{*}รับไปทั้งหมดก่อนหน้านี้แล้ว เมื่อได^{*}รับข้อมูล ใหม^{*} อาจชะลอการส่ง ACK ไปก่อน เป็นระยะเวลาหนึ่งได^{*} หากไม่ได^{*}รับ packet เพิ่มเติมจึงส่ง ACK ไป
- หากผั่งรับ ยังไม่ได้ ACK ข้อมูลของ packet ล่าสุด เมื่อได้รับข้อมูลใหม่ ให้ ACK ข้อมูลล่าสุดทันที (Cumulative ACK)
- หากผั่งรับได้รับ segment ที่ไม่เป็นไปตามลำดับ จะส่ง ACK ของ segment ล่าสุดที่ยังเป็นไปตามลำดับ กลับไปทันที ซึ่งอาจทำให้เกิด duplicate ACK

- ในกรณีที่เกิดการ lost segment จะมีวิธีการแก้ไข 2 รูปแบบ คือ retransmission โดยจะส่งข้อมูลใหม่ เมื่อ ครบเวลาของ retransmission time out (RTO)

อีกรูปแบบหนึ่ง คือ fast retransmission ซึ่งจะใช้ได้เฉพาะ OS ที่สนับสนุน โดยเมื่อได้รับ duplicate ACK
ครบ 3 ครั้ง ก็จะส่งข้อมูลให้ใหม่

- 1. ให้เปิดไฟล์ http-browse101d.pcapng คลิกขวาที่ Sequence Number และเลือก Apply as Column และตั้งชื่อ ว่า SEQ# จากนั้นคลิกขวาที่ Next Sequence Number และเลือก Apply as Column และตั้งชื่อว่า NEXTSEQ# และคลิกขวาที่ Acknowledgment Number และเลือก Apply as Column และตั้งชื่อว่า ACK# จัดรูปแบบ คอลัมน์ให้เหมาะสม จะเห็นว่าเรามีข้อมูลของ SEQ#, NEXTSEQ# และ ACK# สำหรับช่วยในการวิเคราะห์
- 2. ใน wireshark จะมีข้อมูลที่ wireshark วิเคราะห์ขึ้น และสามารถนำมาเป็น display filter ได้ เช่น
 - tcp.analysis.duplicate_ack จะค้นหา packet ที่เกิด duplicate ACK
 - tcp.analysis.lost_segment จะค้นหา lost segment
 - tcp.analysis.retransmission จะค้นหา packet ที่เกิด retransmission
 - tcp.analysis.fast_retransmission จะค้นหา packet ที่เกิด fast retransmission
- 3. ให้เปิดไฟล์ tr-general101d.pcapng แล้วใช้ tcp.analysis.lost_segment กรอง จะพบว่ามี lost segment ทั้งหมด 5 แห่ง จาก Packet 10417 ให้ย้อนดู Packet 10416 แล้วตอบคำถามว่า มีข้อมูลหายไปเท่าไร มี Packet หายไปกี่ Packet บอกวิธีการหาแบบย่อๆ

ก่อนอื่นให้มองภาพรวมก่อน เหตุเริ่มแรก คือ ข้อมูลหายระหว่าง Packet 10416–10417 โดย 10416 มี SEQ# เป็น 9163441 และมี Next SEQ# เป็น 9164761 แต่ใน 10417 กลับมี SEQ# เป็น 9175321 ซึ่งเมื่อนำมาลบกัน (9175321 – 9164761) เท่ากับ 10560 ไบต์ และเมื่อดู Segment Len ซึ่งมีค่าเท่ากับ 1320 เมื่อนำ 10560/1320 = 8 ดังนั้นจำนวน Packet ที่หายไป คือ 8 Packet หรือ 8 Segment

Segment	SEQ#	NEXT SEQ#	ACK#	
10416	9163441	9164761		
10417	9175321	9176641		Previous segment not captured

4. จาก segment lost ใน packet 10417 หลังจากนั้นจะพบว[่]ามี Duplicate Ack เกิดขึ้นเป็นจำนวนมาก ให[้]อธิบาย สาเหตุของการเกิด Duplicate Ack และเกิด Duplicate Ack กี่ครั้งในกรณีนี้

ต่อมา เมื่อผังรับไม่ได้รับข้อมูลที่หายไป แต่ได้รับ Packet 10417 จนถึง Packet 12033 ซึ่งมี SEQ# ไม่ตรงกับ SEQ# ที่ผังรับคาดหวัง คือ 9164761 จึงส่ง Acknowledge Packet ที่มี ACK# = 9164761 กลับมา เพื่อแจ้งผัง ส่งว่า Packet ที่มี SEQ# = 9164761 ยังไม่ได้รับ ซึ่งเนื่องจากมีค่า ACK# ซ้ำกับที่เคยส่งมาก่อนหน้านี้ จึงถือ ว่าเป็น Duplicate Ack โดยมีจำนวน Duplicate Ack = ((12033-10417)/2) = 808 ครั้ง

อย่างไรก็ตามในระหว่าง Packet 10417 และ 12033 ยังมี Lost Segment เกิดขึ้นอีก 1 แห[่]งคือที่ Packet 11497 และ 11499 ซึ่งข้อมูลหายไป = 9901321 – 9889441 = <u>11880 ไบต์ เท่ากับ 9 Packet</u>

Packet	SEQ#	NEXT SEQ#	ACK#	
10416	9163441	9164761		
10417	9175321	9176641		Previous segment not captured 10560 ไบต์
10418	1	1	9164761	ACK# = 9164761 ครั้งที่ 1
10420-11497	9176641	9889441	9164761	Dup ACK [#1 – #540]
11499	9901321	9902641		Previous segment not captured 11880 ไบต์
11501–12034	9902641	10255081	9164761	Dup ACK [#541 – #808]

5. จากข้อ 3 ข้อมูลที่หายไป ผู้ส่งทราบเมื่อใด ได้มีการส่งใหม่หรือไม่ และส่งใหม่ใน packet ใด ใช้เวลาเท่าใดใน การส่งใหม่

ต่อมาใน Packet 12035 มีการส่งข้อมูลที่มี SEQ# = 9164761 ซึ่งเป็นข้อมูลที่ตรงกับลำดับที่ผั่งรับคาดหวัง จึงถือเป็นการส่งใหม่สำหรับ 9164761 จึงถือว่ามีการส่งใหม่สำหรับข้อมูลลำดับ 9164761 แล้ว สำหรับเวลา ที่ใช้เมื่อนำเวลาของ Packet 12035 – เวลาของ Packet 10417 จะได้เท่ากับ 0.465989 วินาที (ถ้านับจาก 10416 จะได้ 0.476811 วินาที) แต่ถ้านับจาก Duplicate ACK สุดท้ายจะได้เท่ากับ 0.000033 วินาที

ต่อมาใน Packet 12036 ก็มีการส่งข้อมูลลำดับ 10255081 ไป เนื่องจากฝั่งส่งไม่ทราบว่าฝั่งรับได้รับข้อมูล ใดบ้าง ทราบเพียงว่าข้อมูลลำดับ 9164761 ไม่ได้รับ จึงส่งใหม่เพียง Packet เดียว และส่งข้อมูลลำดับ 10255081 ต่อไปตามปกติ แต่ฝั่งรับตอบกลับมาด้วย Ack# = 9166081 ซึ่งเป็นข้อมูลลำดับถัดไปที่ฝั่งรับ ต้องการ ซึ่งเป็นการ Ack ด้วย Ack# = 9166081 เป็นครั้งแรก

จึงได้ส่ง Packet 12038 ที่มีลำดับถัดไป คือ 10256401 แต่ฝั่งรับตอบกลับมาด้วยลำดับข้อมูลน้อยที่สุดที่ยัง ไม่ได้รับ คือ Ack# = 9166081 จึงถือเป็นการ Duplicate Ack และเกิดขึ้นจนถึง Packet 12247 รวมทั้งหมด 105 ครั้ง จึงได้มีการส่งข้อมูลลำดับ 9166081 ไปใน Packet 12248 จึงเป็นการ Retransmission อีกครั้ง คำตอบ 1) ทราบเมื่อได้รับ Ack กลับมาที่มี ACK# ไม่ตรงตาม NEXT SEQ# คือตั้งแต่ 10418 หรือถ้านับจาก Duplicate ACK จำนวน 3 ครั้ง ก็จะเท[่]ากับ 10424

2) มีการส่งใหม่ โดยส่งใน Packet 12035 โดยใช้เวลา 0.465989 (นับจาก 10417) หรือ 0.476811 (นับจาก 10416) หรือ 0.000033 (นับจาก Dup ACK สุดท้าย)

Packet	SEQ#	NEXT SEQ#	ACK#	
10416	9163441	9164761		
10417	9175321	9176641		Previous segment not captured 10560 ไบต์
10418-11497	9176641	9889441	9164761	Dup ACK [#1 – #540]
11499	9901321	9902641		Previous segment not captured 11880 ไบต์
11501–12034	9902641	10255081	9164761	Dup ACK [#541 – #808]
12035	9164761	9166081		Fast Retransmission ของ 9164761
12036	10255081	10256401		
12037	1	1	9166081	Ack ของ 9166081 ครั้งแรก
12038	10256401	10257721	9166081	
12039-12247	1	1	9166081	Dup ACK [#1 - #105] ของ 9166081 #Time = 0
12248	9166081	9167401		Fast Retransmission ของ 9166081

6. ให้ใช้ display filter : tcp.analysis.out_of_order จะพบ out of order อยู่ 8 ครั้ง ให้หาว่า packet 12249 เป็น out of order ของ segment ใด อธิบายโดยย่อ

และในเวลาต่อมาที่ Packet 12249 มีการส่งข้อมูลลำดับที่ 9167401 ซึ่งต่อเนื่องจาก Packet 12248 (ซึ่งต่าง จาก Packet 12036 ที่กลับไปส่งตามลำดับปัจจุบัน) จากนั้นฝั่งรับส่ง ACK# 9168721 กลับมา ฝั่งส่งจึงได้ส่ง ข้อมูลที่หายไปจนครบ ใน Packet ที่ 12251, 12252, 12254, 12256 และ 12257 จนถึง Packet 12258 จึงได้ส่ง ACK# 9889441 ซึ่งเป็นข้อมูลที่ยังไม่ได้รับที่น้อยที่สุด

แต่สำหรับสาเหตุที่ Wireshark ตีความว่าเป็น out of order เนื่องจาก Packet ทั้ง 6 มี SEQ# < 10395001 ซึ่ง เป็นค่าที่น้อยกว่า ACK# สูงสุดที่เคยได้รับ (ลำดับ 10395001 ใน Packet 12246) และอยู่ในช่วงเวลา 3 ms จาก Packet 12246

เมื่อกำหนด Time Reference = 0 ให้กับ Packet 12246 จะเห็นว่า Packet ที่แสดงเป็น Out of Order ทั้งหมด อยู่ในช่วงเวลา 3 ms ทั้งสิ้น สรุปว่า Packet 12249 เป็น Out of Order ของ Segment 12246

Packet	SEQ#	NEXT SEQ#	ACK#	
10416	9163441	9164761		
10417	9175321	9176641		Previous segment not captured 10560 ไบต์
10418-11497	9176641	9889441	9164761	Dup ACK [#1 – #540]
11499	9901321	9902641		Previous segment not captured 11880 ไบต์
11501–12034	9902641	10255081	9164761	Dup ACK [#541 – #808]
12035	9164761	9166081		Fast Retransmission ของ 9164761
12036	10255081	10256401		
12037	1	1	9166081	Ack ของ 9166081 ครั้งแรก
12038	10256401	10257721	9166081	
12039-12247	1	1	9166081	Dup ACK [#1 – #105] ของ 9166081 #Time = 0
12248	9166081	9167401		Fast Retransmission ของ 9166081
12249-12257	9167401	9175321		Out-of-order #Time < 3 ms
12258	1	1	9889441	

No.		Time	Source	Destination	Protocol	SEQ#	N SEQ#	ACK#	Info		
	12244	0.537984	10.9.9.9	10.10.10.10	TCP	10392361	10393681	1	30000	→ 1479	[ACK] S
	12245	0.537994	10.10.10.10	10.9.9.9	TCP	1	1	9166081	[TCP	Dup ACK	12037#1
	12246	*REF*	10.9.9.9	10.10.10.10	TCP	10393681	10395001	1	30000	→ 1479	[PSH, A
П	12247	0.000011	10.10.10.10	10.9.9.9	TCP	1	1	9166081	[TCP	Dup ACK	12037#1
Ш	12248	0.000030	10.9.9.9	10.10.10.10	TCP	9166081	9167401	1	[TCP	Fast Re	transmis
	12249	0.000129	10.9.9.9	10.10.10.10	TCP	9167401	9168721	1	[TCP	out-of-	Order] 3
П	12250	0.000157	10.10.10.10	10.9.9.9	TCP	1	1	9168721	1479	→ 30000	[ACK] S
П	12251	0.000239	10.9.9.9	10.10.10.10	TCP	9168721	9170041	1	[TCP	Out-Of-	Order] 3
	12252	0.002030	10.9.9.9	10.10.10.10	TCP	9170041	9171361	1	[TCP	out-of-	Order] 3
	12253	0.002048	10.10.10.10	10.9.9.9	TCP	1	1	9171361	1479	→ 30000	[ACK] S
	12254	0.002070	10.9.9.9	10.10.10.10	TCP	9171361	9172681	1	[TCP	Out-Of-	Order] 3
	12255	0.002094	10.10.10.10	10.9.9.9	TCP	1	1	9172681	1479	→ 30000	[ACK] S
	12256	0.002275	10.9.9.9	10.10.10.10	TCP	9172681	9174001	1	[TCP	Out-Of-	Order] 3
	12257	0.002301	10.9.9.9	10.10.10.10	TCP	9174001	9175321	1	[TCP	out-of-	Order] 3
Т	12258	0.002813	10.10.10.10	10.9.9.9	TCP	1	1	9889441	1479	→ 30000	[ACK] S
Т	12259	0.004044	10.9.9.9	10.10.10.10	TCP	9889441	9890761	1	[TCP	Retransi	mission]
	12260	0.004256	10.9.9.9	10.10.10.10	TCP	9890761	9892081	1	ГТСР	Retransi	mission]

7. ไปที่ packet 12259 จะพบว่าเป็น retransmission ให้บอกว่าเป็น retransmission จาก RTO Timer หรือจาก การได้รับ 3 Duplicate Ack พร[้]อมเหตุผลประกอบโดยย[่]อ

ก่อนอื่นต้องเข้าใจว่า Retransmission Timer นั้นเป็นค่าที่เปลี่ยนแปลงระหว่างที่คอมพิวเตอร์ทำงาน แต่ เนื่องจากการ Capture ของ Packet Capture Software นั้น ไม่ทราบข้อมูลจริง ดังนั้น Wireshark จึงกำหนด อัลกอริทึมของตนเองขึ้นมา โดยกำหนดเงื่อนไขว่า หาก Retransmission เกิดขึ้นภายในเวลา 20 ms นับจากที่ ครบ 3 Duplicate ACK (ดูรูปประกอบ) จะถือว่าเป็น Fast Retransmission และหากเกินเวลาก็จะถือว่าเป็น Retransmission

ใน Packet 12259 เป็นการส่ง Retransmission ของ Packet ที่หายไประหว[่]าง 11497 และ 11499 ซึ่งมีจำนวน 9 Packet และหากกำหนด Time Reference = 0 ให้กับ Packet 12043 ซึ่งเป็น Duplicate ACK ที่ 3 พบว[่]าจะ อย่างไรก็ตามในความเป็นจริงแล้วเราไม่ทราบว่าการที่มีการส่งใหม่นั้นเป็นการส่งใหม่จากเงื่อนไขใด เพราะ เป็นโปรแกรมที่เขียนโดยผู้พัฒนา OS

