

Vektor di R² dan R³

Dina Indarti

- Vektor dapat dinyatakan secara geometri sebagai suatu ruas garis berarah atau panah pada ruang dimensi 2 atau ruang dimensi 3.
- Panjang panah adalah besarnya vektor.
- Arah panah adalah arah dari vektor-vektor.
- Anak panah mempunyai pangkal dan ujung.
- Dua vektor dikatakan ekivalen jika memiliki panjang dan arah yang sama.
- Vektor biasa dinotasikan dengan huruf tebal, misalnya **u** dan **v**, atau dapat juga dengan \vec{u} dan \vec{v}

Penjumlahan Vektor Secara Geometris

Penjumlahan vektor bersifat komutatif dan asosiatif, yaitu:

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

c**u** adalah kelipatan skalar vektor **u**. panjang c**u** adalah |c| dikali panjang **u**. c**u** searah dengan **u** apabila c positif dan berlawanan arah bila c negatif.

Vektor di R²

Diberikan vektor $\vec{v} = (v_1, v_2)$, $\vec{w} = (w_1, w_2)$ dan sembarang bilangan k.

- ① $\vec{v} = \vec{w}$ jika dan hanya jika $v_1 = w_1$ dan $v_2 = w_2$.
- $\vec{v} + \vec{w} = (v_1 + w_1, v_2 + w_2).$
- $\vec{v} \vec{w} = (v_1 w_1, v_2 w_2).$
- $0 \ k \vec{v} = (k v_1, k v_2).$
- **5** Norm dari $\vec{v} = (v_1, v_2), ||\vec{v}|| = \sqrt{v_1^2 + v_2^2}.$

Catatan: hasil perhitungan dari norm vektor adalah suatu bilangan positif.

Vektor nol, $\vec{0} = (0,0)$.

Vektor di R²

Diberikan titik $P_1(x_1, y_1)$ dan $P_2(x_2, y_2)$.

②
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
 (perhatikan $d = ||\overrightarrow{P_1}\overrightarrow{P_2}||$).

Vektor di R³

Diberikan vektor $\vec{v} = (v_1, v_2, v_3)$, $\vec{w} = (w_1, w_2, w_3)$ dan sembarang bilangan k.

- ① $\vec{v} = \vec{w}$ jika dan hanya jika $v_1 = w_1$, $v_2 = w_2$ dan $v_3 = w_3$.
- $\vec{v} \vec{w} = (v_1 w_1, v_2 w_2, v_3 w_3).$
- $0 \ k \vec{v} = (k v_1, k v_2, k v_3).$
- Norm dari $\vec{v} = (v_1, v_2, v_3), ||\vec{v}|| = \sqrt{v_1^2 + v_2^2 + v_3^2}.$

Catatan: hasil perhitungan dari norm vektor adalah suatu bilangan positif.

Vektor nol, $\vec{0} = (0, 0, 0)$.

Vektor di R³

Diberikan titik $P_1(x_1, y_1, z_1)$ dan $P_2(x_2, y_2, z_2)$.

①
$$\overrightarrow{P_1P_2} = (x_2 - x_1, y_2 - y_1, z_2 - z_1).$$

② $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$ (perhatikan $d = ||\overrightarrow{P_1P_2}||).$

Hasil kali titik (dot product) antara vektor \vec{u} dan \vec{v} .

$$\vec{u} \cdot \vec{v} = \begin{cases} ||\vec{u}|| \, ||\vec{v}|| \cos \theta & \text{jika } \vec{u} \neq \vec{0} \text{ dan } \vec{v} \neq \vec{0}, \\ 0 & \text{jika } \vec{u} = \vec{0} \text{ atau } \vec{v} = \vec{0}, \end{cases}$$
(1)

dengan θ adalah sudut antara kedua vektor tersebut.

Catatan:

- Hasil perhitungan dari hasil kali titik adalah bilangan.
- $0 \le \theta \le \pi$.

Jika
$$\vec{v} = (v_1, v_2)$$
, $\vec{w} = (w_1, w_2)$, maka

$$\vec{v} \cdot \vec{w} = v_1 \, w_1 + v_2 \, w_2. \tag{2}$$

Jika
$$\vec{v} = (v_1, v_2, v_3), \ \vec{w} = (w_1, w_2, w_3), \ \text{maka}$$

$$\vec{v} \cdot \vec{w} = v_1 \, w_1 + v_2 \, w_2 + v_3 \, w_3. \tag{3}$$

Theorem

Diberikan vektor u dan v.

$$||\vec{u}|| = \sqrt{\vec{u} \cdot \vec{u}} \tag{4}$$

Theorem

Misalkan \vec{u} dan \vec{v} bukan vektor nol dan θ adalah sudut di antaranya.

- ① $\vec{u} \cdot \vec{v} > 0$ jika dan hanya jika θ adalah sudut lancip.
- ② $\vec{u} \cdot \vec{v} < 0$ jika dan hanya jika θ adalah sudut tumpul.
- $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = 0$ jika dan hanya jika $\theta = \pi/2$.

Tentukan b sehingga $\mathbf{u} = \langle 8,6 \rangle$ dan $\mathbf{v} = \langle 3,b \rangle$ tegaklurus Penyelesaian

$$\mathbf{u} \cdot \mathbf{v} = (8)(3) + (6)(b) = 24 + 6b = 0$$

 $b = -4$

Tentukan sudut antara $\mathbf{u} = \langle 8,6 \rangle$ dan $\mathbf{v} = \langle 5,12 \rangle$ Penyelesaian

$$\cos_{\text{"}} = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|} = \frac{(8)(5) + (6)(12)}{(10)(13)} = \frac{112}{130} \approx 0,862$$

$$_{"} = \arccos_{"} \approx 0,532 \text{ (atau } 30,5^{\circ}\text{)}$$

Theorem

Diberikan vektor ū, v dan w dan bilangan k, maka

$$\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$$

Theorem

Diberikan vektor \vec{u} dan \vec{a} . Jika $\vec{u} \neq \vec{0}$, maka

Komponen vektor ü pada ä

$$proy_{\vec{a}} \, \vec{u} = \frac{\vec{u} \cdot \vec{a}}{||\vec{a}||^2} \, \vec{a} \tag{5}$$

Komponen vektor
 ü yang tegak lurus dengan
 ä

$$\vec{u} - \operatorname{proy}_{\vec{a}} \vec{u} = \vec{u} - \frac{\vec{u} \cdot \vec{a}}{||\vec{a}||^2} \vec{a} \tag{6}$$

Diberikan $\mathbf{u} = (2,-1,3)$ dan $\mathbf{a} = (4,-1,2)$. Tentukan $\text{Proj}_{\mathbf{a}}\mathbf{u}$ dan $\|\text{Proj}_{\mathbf{a}}\mathbf{u}\|$!

u.a =
$$(2)(4)+(-1)(-1)+(3)(2) = 15$$

 $||\mathbf{a}||^2 = 16+1+4 = 21$

$$\mathbf{Proj_au} = \left(\frac{60}{21}, -\frac{15}{21}, \frac{30}{21}\right) = \left(\frac{20}{7}, -\frac{5}{7}, \frac{10}{7}\right)$$

$$\| \operatorname{Proj}_{\mathbf{a}} \mathbf{u} \| = \sqrt{\frac{400}{49} + \frac{25}{49} + \frac{100}{49}} = \sqrt{\frac{525}{49}} = \sqrt{\frac{75}{7}} = \frac{5\sqrt{3}}{\sqrt{7}} = \frac{5}{7}\sqrt{21}$$

Jarak titik $P(x_0, y_0)$ ke garis ax + by + c = 0

$$D = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}. (7)$$

Misalkan $\vec{u} = (u_1, u_2, u_3) = u_1 \vec{i} + u_2 \vec{j} + u_3 \vec{k}$ dan $\vec{v} = (v_1, v_2, v_3) = v_1 \vec{i} + v_2 \vec{j} + v_3 \vec{k}$.

$$\vec{i} = (1,0,0), \vec{j} = (0,1,0), \vec{k} = (0,0,1).$$

Hasil kali silang (cross product) antara \vec{u} dan \vec{v} :

$$\vec{u} \times \vec{v} = \det \left(\begin{bmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{bmatrix} \right)$$
(8)

- Hasil kali silang hanya untuk vektor di ruang dimensi 3.
- Hasil dari hasil kali silang adalah vektor.

- ① Vektor $\vec{u} \times \vec{v}$ tegak lurus dengan \vec{u} dan \vec{v} .
- ② Arah vektor $\vec{u} \times \vec{v}$ mengikuti Aturan Tangan Kanan.
- $\vec{i} \times \vec{j} = \vec{k}, \quad \vec{j} \times \vec{k} = \vec{i}, \quad \vec{k} \times \vec{i} = \vec{j}.$
- $||\vec{u} \times \vec{v}|| = ||\vec{u}|| ||\vec{v}|| \sin \theta$, yaitu luas jajar genjang yang dibentuk oleh vektor \vec{u} dan \vec{v} .

Theorem

Misalkan u, v dan w adalah vektor di ruang dimensi 3.

- $\vec{v} \cdot (\vec{u} \times \vec{v}) = 0$
- $||\vec{u} \times \vec{v}||^2 = ||\vec{u}||^2 ||\vec{v}||^2 (\vec{u} \cdot \vec{v})^2$

Theorem

Misalkan ū, v dan w adalah vektor di ruang dimensi 3, dan k adalah sembarang bilangan.

$$(\vec{u} + \vec{v}) \times \vec{w} = \vec{u} \times \vec{w} + \vec{v} \times \vec{w}$$

$$\vec{u} \times \vec{0} = \vec{0} \times \vec{u} = \vec{0}$$

$$\vec{u} \times \vec{u} = \vec{0}$$

Jika $\vec{u} = (u_1, u_2, u_3)$, $\vec{v} = (v_1, v_2, v_3)$ dan $\vec{w} = (w_1, w_2, w_3)$, maka

$$\vec{u} \cdot (\vec{v} \times \vec{w}) = \det \begin{pmatrix} \begin{bmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{bmatrix} \end{pmatrix}$$
(9)

disebut hasil kali tripel skalar (scalar triple product).
Catatan:

- Hasil $\vec{u} \cdot (\vec{v} \times \vec{w})$ adalah bilangan.
- $|\vec{u} \cdot (\vec{v} \times \vec{w})|$: volume paralelepipedum yang dibentuk $\vec{u}, \vec{v}, \vec{w}$.

Theorem

Misalkan $\vec{u} = (u_1, u_2, u_3)$, $\vec{v} = (v_1, v_2, v_3)$ dan $\vec{w} = (w_1, w_2, w_3)$ mempunyai titik awal yang sama.

Ketiga vektor tersebut terletak di <mark>bidang yang sama</mark> jika dan hanya jika

$$\vec{u} \cdot (\vec{v} \times \vec{w}) = \det \left(\begin{bmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{bmatrix} \right) = 0.$$

Vektor normal: vektor tak-nol yang tegak lurus suatu bidang.

Persamaan bidang yang melalui titik $P(x_0, y_0, z_0)$ dan mempunyai vektor normal $\vec{n} = (a, b, c)$:

$$a(x-x_0)+b(y-y_0)+c(z-z_0)=0. (10)$$

Titik P(x, y, z) pada bidang; vektor posisi $\vec{r} = \overrightarrow{OP} = (x, y, z)$. Titik $P_0(x_0, y_0, z_0)$ pada bidang; vektor posisi $\vec{r_0} = \overrightarrow{OP_0} = (x_0, y_0, z_0)$.

Persamaan bidang dalam bentuk vektor:

$$\vec{n} \cdot (\vec{r} - \vec{r_0}) = 0. \tag{11}$$

Persamaan parametrik garis yang melalui titik $P(x_0, y_0, z_0)$ dan mempunyai vektor arah $\vec{v} = (a, b, c)$:

$$x = x_0 + at$$

$$y = y_0 + bt,$$

$$z = z_0 + c t.$$

Titik P(x, y, z) pada garis I; vektor posisi $\vec{r} = \overrightarrow{OP} = (x, y, z)$. Titik $P_0(x_0, y_0, z_0)$ pada garis I; vektor posisi $\vec{r_0} = \overrightarrow{OP_0} = (x_0, y_0, z_0)$.

Persamaan garis dalam bentuk vektor:

$$\vec{r} = \vec{r_0} + t \, \vec{v} = 0, \tag{12}$$

dengan $-\infty < t < \infty$.

