Stats 150, Fall 2019

Lecture 26, Thursday, 12/5/2019

In preparation for the Final exam, a compilation of about 50 problems will

1 Notes for Homework

We'll look at a few points relevant to the last homework.

1) How do we show that something is a Brownian Motion (BM) or Brownian Bridge (BB)?

This is relatively easy by looking at Gaussian Processess. To identify a Gaussian Process, we only need to:

- a) Show its joint distributions are multivariate normal (MVN)
- b) To see which Multivariate Normal distributions, check means and covariances.

Recall that if two Gaussian Processes have the same $\mu(s)$ and $\sigma^2(s,t)$, they are the same Gaussian Processes. For BB, we check

$$\mathbb{E}b_n = 0$$
, $\mathbb{E}b_t b_n = t(1-n)$, for $0 < t < u < 1$.

For Brownian motion, we check that:

$$\mathbb{E}B_t = 0, \quad \mathbb{E}(B_t B_n) = t \text{ for }$$

2 Lévy Processes

This unifies several discussions. We more or less know the definition for this:

Definition: Lévy Processes -

A Lévy process is a stochastic process with Stationary Independent Increments. $(X_t, t \ge 0)$ has Stationary Independent Increments (SII) if:

- increments of X over disjoint intervals are independent
- increments of X over (s, s + t) has distribution dependent on t only:

$$X_{s+t} - X_s \stackrel{d}{=} X_t.$$

Let's look at a few basic examples.

- 1) Poisson Process $X_t = N_t \sim \text{Poisson}(() \lambda t)$, for some $\lambda > 0$.
- 2) Compound Poisson process $X_t = \Delta_1 + \Delta_2 + \cdots + \Delta_{N(t)}$, where $(N(t), t \ge 0)$ is a PPP(λ) independent of $\Delta_1, \Delta_2, \ldots$ IID.

We know that if the Δ_i are discrete, we have a bag of Poisson tricks in that we can take:

$$X_t = v_1 N_1(t) + v_2 N_2(t) + \cdots,$$

where v_1, v_2, \ldots are the quantities of Δ_i and

 $N_i(t) := \#$ of Δ values equal to v_i up to time t

$$= \sum_{j=1}^{N(t)} \mathbb{1}(\Delta_j = v_i).$$

Then $N_1(t), N_2(t), \ldots$ are independent PPPs with $\lambda_i = \mathbb{P}(\Delta = v_i)\lambda$. Recall this is the Poissonization of the Multinomial. On the final exam, we should have this tool in our belts.

- 3) Brownian Motion $X_t = (B_t, t \ge 0)$.
- 4) Easy transforms of such Lévy Processes (assuming right-continuous paths). If X, Y are independent Lévy processes, not necessarily with the same law, then X + Y is also a Lévy process, by checking the definitions. Similarly, X Y and aX + bY are SIIs.

Notice that XY and X^2 and similar multiplicative operations do not preserve the SII property.

Let's build a bit of theory. To make sense of a Lévy Process, we nee da suitable family of 1-dimensional distributions. This will play the role of Poisson, Compound-Poisson, Normal, etc distributions.

Call this $F_t(\cdot) = \mathbb{P}(X_t \in \cdot)$. Then the key property is, in random-variable notation, that if we take X_s and X_t' an independent copy of X_s , then we have:

$$X_s + X_t' \stackrel{d}{=} X_{s+t},$$

by familiar properties of the Poisson Process and Brownian motion, and this works in the setting of Compound Poisson processes. Similarly, we have:

$$F_s * F_t = F_{s+t}$$

where * denotes **convolution**. Notice that $F_s * F_t$ is by definition the distribution of $X_s + X_t'$ independent with $X_s \sim F_s$ and $X_t \sim F_t$, and so in the discrete case, we have:

$$(F_s * F_t)(z) = \sum_x F_s(x) F_t(z - x).$$

Then in the continuous, density case, we have:

$$F_t(dx) = f_t(x)dx$$

$$(f_s * f_t)(z) = \int_{x = -\infty}^{\infty} f_s(x)f_t(z - s)dx.$$

We can convolve any two distributions. Let's look at an example of convolution of a Poisson Process and Brownian Motion:

3 Gamma Processes

We'll look at gamma processes $(\gamma_r, r \geq 0)$. Recall that Gamma (r, λ) is the distribution of γ_r/λ where

$$\begin{split} \mathbb{P}(\gamma_r \in dt) &= \frac{1}{\Gamma(r)} t^{r-1} e^{-t} dt, \quad t > 0 \\ \mathbb{P}\left(\frac{\gamma_r}{\lambda} \in ds\right) &= \frac{1}{\Gamma(r)} \lambda^r t^{r-1} e^{-\lambda t} dt, \quad t > 0. \end{split}$$

We know (or we can perform the integral using the fact that $\Gamma(r+1) = r\Gamma(r)$) that:

$$\mathbb{E}\left(\frac{\gamma r}{\lambda}\right) = \frac{\mathbb{E}\gamma r}{\lambda} = \frac{r}{\lambda}.$$

From probability, we know that

$$\gamma_r + \gamma_s' \stackrel{d}{=} \gamma_{r+s}$$
, and $\frac{\gamma_r}{\gamma_r + \gamma_s'} \stackrel{d}{=} \beta_{r,s}$.

Also, the function is independent of the sum:

Beta-Gamma Algebra:

$$\left(\frac{\gamma_r}{\gamma_r + \gamma_s'}, \gamma_r + \gamma_s'\right) \stackrel{d}{=} (\beta_{r,s}, \gamma_{r+s}).$$

Notice that the 2-dimensional equality in distribution is easier, and it turns out to be easier to prove at once than each part individually.

3.1 An Old Example

Recall a pet problem that Pitman has teased before. Take a Poisson Point Process and draw arcs, and draw darts into random directions, and project downwards.

Look at the combined Poisson Process with original "true" points x and the constructed "fake" points o. Let T_i be the true points and F_i be the fake points.

Then we have: $0 < F_1 < T_1 < F_2 < T_2 < \cdots$, and notice that $F_1, T_1 - F_1$ are iid $\gamma_{1/2}$ variables by $\beta - \gamma$ algebra. Look at the location on [0,1] of the single F with 0 < F < 1. Then we find that

$$F \stackrel{d}{=} \beta_{\frac{1}{2},\frac{1}{2}}$$
.

Pitman reminds us that if we take a point on a semicircle and project downwards, we have a distribution exactly $\beta_{\frac{1}{2},\frac{1}{2}}$. Recall:

$$\mathbb{P}(\beta_{r,s} \in du) = \frac{1}{B(r,s)} u^{r-1} (1-u)^{s-1} du \mathbb{1}(0 < u < 1).$$

Multiplying together the coordinates from the $\beta-\gamma$ algebra, we have a variation:

$$(\beta_{r,s}\gamma_{r+s}, (1-\beta_{r,s})\gamma_{r+s}) \stackrel{d}{=} (\gamma_r, \gamma_s'),$$

To conclude the present problem, the merge of true and fake points forms a **Renewal Process** with iid gamma($\frac{1}{2}$) spacings.

In a variant problem, we need to check that the sum of $\beta_{r,s}$ are γ_{r+s} . If we think in terms of firing a particle, we draw a different picture (not semi-circles). Consider our friendly old Poisson process.

4 Jumps in the Gamma (Γ) Distribution

We'll conclude the lecture series by proving that the Γ process must have jumps. Look at the discrete version of a γ -process:

$$\left(\gamma_{\frac{k}{2^n}}, 0 \le k \le 2^n\right)$$
.

Let's count the jumps of this process that are larger than some set level x. That is,

$$\sum_{k=1}^{2^n}\mathbb{1}(\underbrace{\gamma_{\frac{k}{2^n}}-\gamma_{\frac{k-1}{2^n}}}_{2^n\text{ iid }\gamma_{\frac{1}{2^n}}}>x)=\text{Binomial}\left(2^n,p=\mathbb{P}(\gamma_{\frac{1}{2^n}}>x)\right)$$

Notice that the expectation of this is simple to compute. The expected number of jumps that are larger than x is:

$$\begin{split} &=2^n\mathbb{P}(\gamma_{\frac{1}{2^n}}>x)\\ &=\frac{1}{r}\int_x^\infty\frac{1}{\Gamma(r)}t^{r-1}e^{-t}dt\text{ at }r=\frac{1}{2^n}\\ &=\frac{1}{r\Gamma(r)}\int_x^\infty t^{r-1}e^{-t}dt\\ &=\frac{1}{\Gamma(r+1)}\int_x^\infty t^{r-1}e^{-t}dt\to\int_x^\infty t^{-1}e^{-t}dt>0. \end{split}$$

This implies that the number of jumps of our γ process larger than x converges in distribution to a Poisson process. Put neatly, that is,

(# of jumps of
$$\gamma$$
 process $> x$) $\xrightarrow{d} \mathbb{P}(\lambda(x))$.

This implies that $(\gamma_r, r \ge 0)$ can be constructed with right-continuous paths and $\{(r, \Delta_r), \Delta_r > 0)\}$ is the set of points of a PPP $(dr\ t^{-t}e^{-t}\ dt)$. The Gamma process is full of jumps, and the jumps are simply one massive Poisson process.

Lecture ends here.

