5

15

25

CLAIMS

- 1. A method of communicating datagrams between terminals of a communication system, wherein each datagram comprises redundancy check data used to verify datagram integrity, the method comprising the steps of:
 - generating (108) a first datagram comprising message data and first redundancy check data, which first redundancy check data is computed in dependence on the message data;
 - sending (110) the first datagram from a first terminal to a second terminal;
- verifying the integrity of the first datagram;
 - generating (126) a second datagram which comprises second redundancy check data, which second redundancy check data is computed in dependence on response data and first redundancy check data;
 - sending (128) the second datagram from the second terminal to the first terminal;
 - verifying the integrity of the second datagram;
 and, in the case where the integrity of the second datagram is confirmed,
 - identifying that the second datagram is the response to the first datagram.
- 2. A method according to Claim 1 wherein the step of verifying the integrity of the first datagram comprises the steps of :
 - calculating third redundancy check data in dependence on the message data;
 - comparing third redundancy check data with first redundancy check data; and
 - determining the integrity of the first datagram in dependence on the comparison.
- 3. A method according to Claim 2 wherein the step of verifying the integrity of the second datagram comprises the steps of :
 - calculating fourth redundancy check data in dependence on the response data and first redundancy check data;

WO 2004/045186 PCT/IB2003/004852

13

 comparing fourth redundancy check data with second redundancy check data; and

 determining the integrity of the second datagram in dependence on the comparison.

5

10

- 4. A method according to Claim 1 wherein computing second redundancy check data comprises the steps of :
 - initialising a first redundancy check data generator in dependence on the first redundancy check data;
 - applying response data to the redundancy check data generator;
 and
 - determining second redundancy check data in dependence on the value of the first redundancy check data generator.
- 15 5. A method according to Claim 1 or 4 wherein the step of verifying the integrity of the second datagram comprises the steps of :
 - initialising a second redundancy check data generator in dependence on the first redundancy check data;
 - applying response data of the second datagram and second redundancy check data to the generator, which response data was that used to compute the second redundancy check data; and
 - determining the integrity of the second datagram in dependence on the value of the second redundancy check data generator.
- 25 6. A method according to any of Claims 1 to 5 wherein the second datagram further comprises the response data.
 - 7. A communications system comprising a plurality of terminals, wherein each terminal employs the method of any of Claims 1 to 6.

20

WO 2004/045186 PCT/IB2003/004852

14

- 8. A communications system as claimed in Claim 7, wherein the terminals are operable to communicate using datagrams defined in standard IEEE802.15.4.
- 9. A terminal for use in the communications system of any of Claims 7 to 8, and operable according to the method of any of Claims 1 to 6, the terminal comprising:
 - a first port (202) operable to receive a datagram from another terminal;
 - a processor (204) operable to:
 - decode a received datagram;
 - compute redundancy check data;
 - compare redundancy check data; and
 - generate a datagram;
 - a first store (206) operable to store program code instructions;
 - a second store (216) operable to store redundancy check data;
 - a second port (212) operable to send datagrams to another terminal;
 and
 - a third port (218) operable to exchange data with a host application.
- 20 10. A terminal according to Claim 9, in which the first store is non-volatile.
 - 11. A terminal according to Claim 9, further comprising a redundancy check data generator.

10

15