不确定性知识的表示与推理

第十二章 不确定性的量化

Materials are available at http://ai.berkeley.edu.

提纲

- 第十二章 不确定性的量化
 - 不确定性的概述
 - 基本概率符号,使用完全联合分布进行推理
 - 贝叶斯规则及其应用
 - 独立性与条件独立性

不确定性

一个不确定性的例子: 自动驾驶出租车智能体

目标: 将乘客按时送到机场

规划: A_t = 提前t分钟出发,并以合理的速度驶向机场。

问题: A, 规划能使乘客准时到达机场吗?

环境:

- 1. 部分可观测的 (路况, 其它驾驶员规划, etc.)
- 2. 不确定性(车辆爆胎,引擎失灵, etc.)

不确定性

一个逻辑智能体可能给出的结论:

1. 有风险的断言: "规划A₉₀ 将使我们及时到达机场"

2. 得出如下的弱一些的结论:

"规划A₉₀将使我们及时到达机场,只要车不抛锚,汽油不耗尽,不遇到任何交通事故,桥上也

没有交通事故,飞机不会提前起飞,....."

试图使用逻辑描述不确定性会失败的原因: 无法列举出前提和结论的完整集合

处理不确定性的方法

■ 不确定环境下,智能体的知识提供相关语句的信念度(degree of belief),

处理信念度的主要工具是概率理论(probability theory)

- 概率提供了一种方法以概括现实中的不确定性
 - 没有关于世界的断言, 概率将命题与智能体自身的知识状态联系起来:

规划 A_{25} 将使我们及时到达机场的概率(可能性) $P(A_{25}) = 0.04$

 $P(A_{25} \mid \text{no reported accidents}) = 0.06$

 $P(A_{25} \mid \text{no reported accidents, 5 a.m.}) = 0.15$

命题的概率随新证据而变化

不确定性与理性决策

■ 再次考虑去机场的规划 A₊

```
P(A<sub>25</sub> gets me there on time | ...) = 0.04

P(A<sub>90</sub> gets me there on time | ...) = 0.70

P(A<sub>120</sub> gets me there on time | ...) = 0.95

P(A<sub>1440</sub> gets me there on time | ...) = 0.9999
```

我们该如何做选择?

- 效用理论(Utility theory) 对偏好进行表示和推理,每个状态具有"效用"度量值
 - 偏好: 及时到达机场、避免在机场长时间等待、避免路上超速罚单等
- 决策理论 = 概率理论 + 效用理论
 - 基本思想:一个智能体是理性的,当且仅当它选择能产生最高期望效用的行动。

提纲

- 第十二章 不确定性的量化
 - 不确定性的概述
 - 基本概率符号,使用完全联合分布进行推理
 - 贝叶斯规则及其应用
 - 独立性与条件独立性

基本概率符号

■ 概率理论

- 随机变量
- 无条件概率 (先验概率)、条件概率 (后验概率)
- 完全联合概率分布
- 乘法法则、链式法则
- 使用完全联合分布进行枚举推理
 - 归一化方法

概率逻辑

- 基本要素: 随机变量, 表示可能世界中的不确定性, 可能世界是由对随机变量的赋值进行定义
- 布尔随机变量
 - e.g., R: Is it raining? 定义域:<true, false>
- 离散随机变量
 - e.g., Weather is one of <sunny, rainy, cloudy, snow>
- 基本命题通过单个随机变量的赋值进行构造:
 - Weather = sunny (abbreviated as sunny)
- 复合命题由基本命题的逻辑连接构造
 - e.g., Weather = sunny \vee R = false

随机变量以大写字母开头,变量的值用小写

概率逻辑

考虑随机变量Weather, 其定义域为 <sunny, rainy, cloudy, snow>

P定义了随机变量Weather的一个概率分布

P(Weather)

每个可能取值的概率,可以写成:

Weather	Р
sunny	0.6
rainy	0.1
cloudy	0.2
snow	0.1

P(Weather = sunny) = 0.6

P(Weather = rainy) = 0.1

P(Weather = cloudy) = 0.2

P(Weather = snow) = 0.1

也可以简写为:

P(Weather) =<0.6, 0.1, 0.2, 0.1>

(normalized, i.e., sums to 1)

先验概率与联合概率分布

• 先验概率 或 无条件概率 e.g., P(Cavity = true) = 0.164; P(Weather = sunny) = 0.72

■ 联合概率分布: 多个变量取值的所有组合的概率 P(Weather, Cavity) 是一个4*2的概率表:

		Weather =			
ı	sunny	rainy	cloudy	snow	
Cavity = true	0.144	0.02	0.016	0.02	
Cavity = false	0.576	0.08	0.064	0.08	

- e.g., P(sunny, cavity)也可以记作P(sunny ^ cavity)
- 完全联合概率分布:可能世界中所有随机变量的联合分布
 - e.g., **P**(*Toothache*, *Weather*, *Cavity*)
 - 一个完全联合分布基本满足计算任何命题的概率的需求

条件概率

- 条件概率 或 后验概率
 - e.g., $P(A_{100} \text{ on time } | \text{ no reported accidents}) = 0.90$
- 额外条件很重要,观察新的证据,更新信念度
 - $P(A_{100} \text{ on time} \mid \text{ no accidents, } 5 \text{ a.m.}) = 0.95$
 - $P(A_{100} \text{ on time } | \text{ no accidents, 5 a.m., raining}) = 0.80$
- 条件概率是由无条件概率定义的:

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

要求: *P*(*b*)>0

乘法法则和链式法则

乘法法则:

$$P(a, b) = P(a \mid b) P(b) = P(b \mid a) P(a)$$

- e.g., **P**(Weather, Cavity) = **P**(Weather | Cavity) **P**(Cavity)
- 考虑有n个变量的联合分布:

$$P(X_1, ..., X_n) = P(X_1, ..., X_{n-1}) P(X_n \mid X_1, ..., X_{n-1})$$
 (乘法法则)
= $P(X_1, ..., X_{n-2}) P(X_{n-1} \mid X_1, ..., X_{n-2}) P(X_n \mid X_1, ..., X_{n-1})$ (乘法法则)
= ...
= $\prod_{i=1}^n P(X_i \mid X_1, ..., X_{i-1})$ (乘法法则)

■ 链式法则: $P(X_1, ..., X_n) = \prod_{i=1}^n P(X_i \mid X_1, ..., X_{i-1})$

概率推理

- 使用完全联合概率分布作为"知识库",从中可以导出所有问题的答案。
- 概率推理: 根据已观察到的证据, 计算查询命题的先验概率和后验概率。
- 一个简单的例子: 诊断牙病患者的牙痛
 - 问题域:由三个布尔变量Toothache, Cavity和Catch组成, Catch表示探针不洁而导致的牙龈感染
 - 给定完全联合分布,一个2*2*2的表格

	toothache		$\neg toothache$	
	catch	$\neg catch$	catch	$\neg catch$
cavity	0.108	0.012	0.072	0.008
$\neg cavity$	0.016	0.064	0.144	0.576

Figure 13.3 A full joint distribution for the *Toothache*, *Cavity*, *Catch* world.

枚举推理

■ 给定完全联合分布:

	toothache		$\neg toothache$	
	catch	$\neg catch$	catch	$\neg catch$
cavity	0.108	0.012	0.072	0.008
$\neg cavity$	0.016	0.064	0.144	0.576
Figure 13.3	Figure 13.3 A full joint distribution for the <i>Toothache</i> , <i>Cavity</i> , <i>Catch</i> world.			

- 对于任意命题 ϕ , 其概率是使得该命题成立的可能世界的概率之和: $P(\phi) = \Sigma_{\omega:\omega} P(\omega)$
- 一种计算任何命题概率的方法:
 - 识别命题为真的可能世界,然后把它们的概率加起来
 - 例如: P(cavity ∨ toothache) = 0.108 + 0.012 + 0.072 + 0.008+ 0.016 + 0.064 = 0.28

枚举推理

■ 给定完全联合分布:

	toothache		$\neg toothache$	
	catch	$\neg catch$	catch	$\neg catch$
cavity	0.108	0.012	0.072	0.008
$\neg cavity$	0.016	0.064	0.144	0.576
Figure 13.3 A full joint distribution for the <i>Toothache</i> , <i>Cavity</i> , <i>Catch</i> world.				

- 一个特别常见的任务: 提取某个变量的概率分布 (无条件概率/边缘概率)
- 边缘化规则,或者称为求和消元: $P(Y) = \sum_{z} P(Y, z)$
 - \blacksquare P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

枚举推理

■ 给定完全联合分布:

	toothache		$\neg toothache$	
	catch	$\neg catch$	catch	$\neg catch$
cavity	0.108	0.012	0.072	0.008
$\neg cavity$	0.016	0.064	0.144	0.576
Figure 13.3 A full joint distribution for the <i>Toothache</i> , <i>Cavity</i> , <i>Catch</i> world.				

■ 条件概率是由无条件概率定义的,可以计算条件概率:

$$P(\neg cavity \mid toothache) = P(\neg cavity \land toothache)$$

$$P(toothache)$$

$$= 0.016+0.064$$

$$0.108 + 0.012 + 0.016 + 0.064$$

P(cavity | toothache)

$$= \frac{P(cavity \land toothache)}{P(toothache)}$$

$$= \frac{0.108 + 0.012}{0.108 + 0.012 + 0.016 + 0.064}$$

$$= 0.6$$

= 0.4

归一化推理

归一化方法

基本思想: 计算查询变量的概率分布,可以固定证据变量 (evidence

variables), 然后在<mark>隐变量</mark> (hidden variables) 上求和并归一化

假设<u>查询变量</u>为X; 证据变量集合为 E, e表示其观察值;其余未观测变量为 <u>隐藏变量</u>Y。

计算查询变量:

$$P(X \mid e) = \alpha P(X, e) = \alpha \Sigma_y P(X, e, y)$$

其中, α是归一化常数。

归一化推理

- 例如: P(Cavity | toothache)
 - $= \alpha P(Cavity, toothache)$
 - = α [P(Cavity, toothache, catch) + P(Cavity, toothache, \neg catch)]
 - $= \alpha [<0.108,0.016> + <0.012,0.064>]$
 - $= \alpha < 0.12, 0.08 >$
 - = <0.6,0.4>

查询变量Cavity;

证据变量Toothache, 取值为true;

<u>隐藏变量</u>Catch

归一化方法:

 $P(X \mid e) = \alpha P(X, e) = \alpha \Sigma_y P(X, e, y)$

问题: 规模扩展性不好

对于一个由n个布尔变量所描述的问题域,最坏情况下的时间复杂性 $O(2^n)$,空间复杂性 $O(2^n)$

提纲

■ 第十二章 不确定性的量化

- 不确定性的概述
- 基本概率符号,使用完全联合分布进行推理
- 贝叶斯规则及其应用
- 独立性与条件独立性

贝叶斯规则

■ 根据乘法法则,联合分布可以表示为:

$$P(a,b) = P(b|a)P(a) = P(a|b)P(b)$$

■ 同时除以P(a),得到贝叶斯规则:

$$P(b|a) = \frac{P(a|b)P(b)}{P(a)}$$

- 是大多数进行概率推理的人工智能系统的基础
- 贝叶斯规则在实践中很有用:
 - 很多情况下,前三项有很好的估计,而需要计算第4项

应用贝叶斯规则

■ 医疗诊断:

■ 结果effect看作是证据,确定造成这一结果的未知因素cause, 贝叶斯规则:

$$P(\text{cause}|\text{effect}) = \frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect})}$$

- 条件概率P(cause | effect) 描述诊断方向上的关系
- 条件概率P(effect|cause) 量化了因果方向上的关系
- 实际中,经常有因果关系的条件概率,而想得出诊断关系。

应用贝叶斯规则

■ 示例: 明天要举行户外运动会。近年来,每年仅下雨5天(5/365=0.014)。不幸的是,天气预报员预测明天会下雨。当真的下雨时,天气预报员准确地预测了90%的降雨。当不下雨时,他错误地预测了10%的降雨。明天下雨和不下雨的可能性分别有多大?

- 令rain表示明天下雨, predict表示预测明天下雨
- 则有:
 - P(rain) = 0.014; $P(\neg rain) = 0.986$; P(predict|rain) = 0.9; $P(predict|\neg rain) = 0.1$
- 问题: 计算**P**(Rain|predict)?

应用贝叶斯规则

示例:明天要举行户外运动会。近年来,每年仅下雨5天(5/365=0.014)。不幸的是,天气预报员预测明天会下雨。当真的下雨时,天气预报员准确地预测了90%的降雨。当不下雨时,他错误地预测了10%的降雨。明天下雨和不下雨的可能性分别有多大?

```
已知P(rain) = 0.014; P(\neg rain) = 0.986 ; P(predict|rain) = 0.9; P(predict|\neg rain) = 0.1
```

$$\begin{aligned} \textbf{P}(Rain|predict) &= \langle P(rain|predict), P(\neg rain|predict) \rangle \\ &= \alpha \langle P(predict|rain) * P(rain), \quad P(predict|\neg rain) * P(\neg rain) \rangle \\ &= \alpha \langle 0.9 * 0.014, \quad 0.1 * 0.986 \rangle \\ &= \langle 0.111, \quad 0.889 \rangle \end{aligned}$$

提纲

- 第十二章 不确定性的量化
 - 不确定性的概述
 - 基本概率符号,使用完全联合分布进行推理
 - 贝叶斯规则及其应用
 - 独立性与条件独立性

独立性

- 一个简单的例子: 诊断牙病患者的牙痛
- 问题域:由三个布尔变量Toothache, Cavity和Catch组成

	toothache		$\neg toothache$	
	catch	$\neg catch$	catch	$\neg catch$
cavity	0.108	0.012	0.072	0.008
$\neg cavity$	0.016	0.064	0.144	0.576

Figure 13.3 A full joint distribution for the *Toothache*, *Cavity*, *Catch* world.

引入第四个变量 Weather, 有四个取值<sunny, rainy, cloudy, snow>

完全联合分布: P(Toothache, Catch, Cavity, Weather), 有2 × 2 × 2 × 4 = 32个条目.

独立性

■ 完全联合分布:

P(Toothache, Catch, Cavity, Weather)

= P(Weather | Toothache, Catch, Cavity) P(Toothache, Catch, Cavity)

= **P**(Weather) **P**(Toothache, Catch, Cavity)

■ Weather与其它三个变量之间相互独立

Cavity ToothacheCatch Weather decomposes into Cavity Weather *Toothache* Catch

■ 完全联合分布表中的32 (8 x 4) 个条目可以降低为12(8+4)个

独立性

■ 两个随机变量 A 和B之间独立, 当且仅当:

$$P(A, B) = P(A) P(B)$$
 或 $P(A \mid B) = P(A)$ 或 $P(B \mid A) = P(B)$

- 独立性断言有助于减小问题域表示, 并降低推理复杂度
- e.g., 可以假定 Toothache 和 Weather之间相互独立

条件独立性

绝对独立性是强大的,但现实应用中很少。领域知识通常具有成百个变量,它们 之间并不完全独立

■ 条件独立性:

■ 给定随机变量C,两个随机变量A 和B是条件独立的,当且仅当:

$$P(A, B \mid C) = P(A \mid C) P(B \mid C)$$

或
$$P(A \mid B, C) = P(A \mid C)$$

或
$$P(B \mid A, C) = P(B \mid C)$$

条件独立性

■ 问题域:

- Traffic
- Umbrella
- Raining

条件独立性

- 链式法则: $P(X_1, X_2, ... X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...$
- 计算完全联合概率分布

P(Rain, Traffic, Umbrella)

- = P(Rain) P(Traffic | Rain) <u>P(Umbrella | Rain, Traffic)</u> (链式法则)
- = P(Rain) P(Traffic | Rain) P(Umbrella | Rain) (条件独立的假设)

■ 条件独立假设表示的方法: 贝叶斯网络

思考题

■ **P**(W)?

■ P(W | winter)?

■ P(W | winter, hot)?

P(S, T, W)

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

小结

- 由于环境可能是部分可观察的或不确定的,智能体需要处理不确定性。
- 概率是描述不确定知识的一种严格形式。通过条件概率,将命题与智能体自身的知识联系起来。
- 给定一个完全联合分布可以计算该问题域中任何命题的概率,但对复杂领域,需要找到一种方法来降低联合概率的数目
- 独立性和条件独立性提供了重要工具

谢谢!