Introduction to Geometry (20222)

2010

COURSEWORK

This assignment counts for 20% of your marks.

Solutions are due by 26 April

Write solutions in the provided spaces.

STUDENTS'S NAME:

a) Let (x^1, x^2, x^3) be coordinates of the vector \mathbf{x} , and (y^1, y^2, y^3) be coordinates of the vector \mathbf{y} in \mathbf{R}^3 .

Does the formula $(\mathbf{x}, \mathbf{y}) = x^1 y^1 + x^2 y^2 + x^2 y^3 + x^3 y^2 + x^3 y^3$ define a scalar product on \mathbf{R}^3 ? Justify your answer.

b) Vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ in Euclidean space are orthogonal to each other and all of them have non-zero length.

Prove that these vectors are linearly independent.

c) Let \mathbf{x}, \mathbf{y} be two vectors in the Euclidean space \mathbf{E}^2 such that the length of the vector \mathbf{x} is equal to 1, the length of the vector \mathbf{y} is equal to 13 and scalar product of these vectors is equal to 12.

Find a vector \mathbf{e} in \mathbf{E}^2 (express it through the vectors \mathbf{x} and \mathbf{y}) such that the following conditions hold

- i) an ordered pair $\{e, x\}$ is an orthonormal basis in E^2 ,
- ii) the vector \mathbf{e} has an obtuse angle with the vector \mathbf{y} .

a) Consider the matrix

$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

Calculate the matrix A^2 in the case if $\theta = \frac{\pi}{4}$. Calculate the matrix A^{18} in the case if $\theta = \frac{\pi}{6}$.

b) Let $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ be an orthonormal basis in 3-dimensional Euclidean space \mathbf{E}^3 . Let P be a linear operator acting on 3-dimensional Euclidean space \mathbf{E}^3 , such that for arbitrary two vectors $\mathbf{x}, \mathbf{y} \in \mathbf{E}^3$

$$\langle \mathbf{x}, \mathbf{y} \rangle = \langle P\mathbf{x}, P\mathbf{y} \rangle$$

where $\langle \mathbf{x}, \mathbf{y} \rangle$ is a scalar product in \mathbf{E}^3 .

Given that $P\mathbf{e}_1 = \mathbf{e}_2$, $P\mathbf{e}_2 = \mathbf{e}_3$ and $\det P > 0$, calculate $P\mathbf{e}_3$.

Find a vector $\mathbf{f} \neq 0$ such that $P\mathbf{f} = \mathbf{f}$.

What is a geometrical meaning of this vector?

c) On the plane OXY find the horizontal line l: y = c and the point F = (0, f) on the OY axis such that for all the points M on the parabola $y = x^2$ the distance |MF| equals to the distance between the point M and the line l.

Throughout this question, $\{\mathbf{e}_x, \mathbf{e}_y, \mathbf{e}_z\}$ is an orthonormal basis for Euclidean space \mathbf{E}^3 .

a) Consider vector $\mathbf{a} = 2\mathbf{e}_x + 3\mathbf{e}_y + 6\mathbf{e}_z$ in \mathbf{E}^3 .

Show that the angle θ between vectors **a** and \mathbf{e}_z belongs to the interval $\left(\frac{\pi}{6}, \frac{\pi}{4}\right)$.

Find a unit vector **b** such that it is orthogonal to vectors **a** and \mathbf{e}_z , and the angle between vectors **b** and \mathbf{e}_x is acute.

b) Denote by $\Pi(\mathbf{a}, \mathbf{b}, \mathbf{c})$ a parallelepiped formed by the vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ in \mathbf{E}^3 attached at the fixed point. Denote by $V(\Pi(\mathbf{a}, \mathbf{b}, \mathbf{c}))$ a volume of this parallelepiped.

Fix in \mathbf{E}^3 the following two vectors

$$\mathbf{a} = \frac{1}{3}(\mathbf{e}_x + 2\mathbf{e}_y + 2\mathbf{e}_z) , \ \mathbf{b} = \frac{1}{3}(2\mathbf{e}_x - 2\mathbf{e}_y + \mathbf{e}_z).$$

Show that for an arbitrary vector \mathbf{c} , $V(\Pi(\mathbf{a}, \mathbf{b}, \mathbf{c})) \leq |\mathbf{c}|$.

Find a unit vector \mathbf{c} such that $V(\Pi(\mathbf{a}, \mathbf{b}, \mathbf{c})) = 1$ and the basis $\{\mathbf{c}, \mathbf{b}, \mathbf{a}\}$ has an orientation opposite to the orientation of the basis $\{\mathbf{e}_x, \mathbf{e}_y, \mathbf{e}_z\}$.

c) Consider a triangle $\triangle ABC$ in \mathbf{E}^3 , formed by the vectors $\mathbf{a} = (2, 10, 25)$ and $\mathbf{b} = (5, 4, -2)$ attached at the point A.

Calculate the area of the triangle $\triangle ABC$.

Calculate the length of the height AM of this triangle. $(AM \perp BC)$ and the point M belongs to the line BC.)

Consider the vector $\mathbf{h} = AM$ and the vector $\mathbf{d} = \mathbf{c} \times (\mathbf{a} \times \mathbf{b})$, where $\mathbf{c} = \mathbf{b} - \mathbf{a}$.

Are the vectors **h** and **d** linearly independent or not? Justify your answer.

- a) Given a vector field $\mathbf{G} = r \frac{\partial}{\partial r} + \frac{\partial}{\partial \varphi}$ in polar coordinates express it in Cartesian coordinates $(x = r \cos \varphi, y = r \sin \varphi)$.
- **b)** Consider the function $f = r^2 \sin 2\varphi$ and the vector fields $\mathbf{A} = x\partial_x + y\partial_y$, $\mathbf{B} = x\partial_y y\partial_x$.

Calculate $\partial_{\mathbf{A}} f$ and $\partial_{\mathbf{B}} f$.

Calculate the value of the 1-form $\omega = (x^2 + y^2)de^{-x^2-y^2}$ on the vector fields **A**, **B**.

(c) Show that the 1-form $\omega = 3x^2y^2dx + 2x^3ydy$ is an exact form.

Show that the 1-form $\omega = dx - xydy$ is not an exact form.

Find a function f(x,y) such that for an arbitrary closed curved C in \mathbf{E}^2

$$\int_{C} f(x,y) (dx - xydy) = 0.$$

(a) Consider in \mathbf{E}^2 the ellipse $\mathbf{r}(t)$: $x = a \cos t, y = b \sin t, \ 0 \le t < 2\pi, \ a > b > 0$. Find the velocity $\mathbf{v} = \frac{d\mathbf{r}(t)}{dt}$ and acceleration $\mathbf{a}(t) = \frac{d^2\mathbf{r}(t)}{dt^2}$ vectors.

Find the points of this curve where speed is increasing.

Find the points of this curve where speed takes maximum value.

(b) Consider in \mathbf{E}^2 the curve $\mathbf{r}(t)$: $x = t^2 - t$, y = 2t, 0 < t < 1. Sketch the image of this curve.

Calculate the integral of the differential form $\omega = xdy + y^2dx$ over this curve.

How does this integral change under the reparameterisation $t = \sin \tau$, $(0 < \tau < \frac{\pi}{2})$?

How does this integral change under the reparameterisation $t = \cos \tau$, $(0 < \tau < \frac{\pi}{2})$?

c) Let C be an ellipse in \mathbf{E}^2 such that the sum of the distances between an arbitrary point of C and its foci $F_1 = (0,0)$ and $F_2 = (1,0)$ equals to 3:

$$C = \{P: |P - F_1| + |P - F_2| = 3\}.$$

Write down the equation of this ellipse in polar coordinates.

Sketch this ellipse and write down its equation in Cartesian coordinates.

Find the integral of the 1-form $\omega = ydx$ over this ellipse.