Exercise 6.1 Evaluate - without rhsonly = True

```
{\theta, \varphi}::Coordinate.
{a,b,c,d,e,f,g,h#}::Indices(values={\theta, \varphi}, position=independent).

\partial{#}::PartialDerivative.

V := { V_{\theta} = \varphi, V_{\varphi} = \sin(\theta) }. # cdb(ex-0601.100,V)
dV := dV_{a b} -> \partial_{b}{V_{a}} - \partial_{a}{V_{b}}. # cdb(ex-0601.101,dV)

evaluate (dV, V)

# cdb(ex-0601.102,dV)
```

Notice how evaluate has been applied to both the left and right hand sides of the rule.

$$V_a = [V_\theta = \varphi, \ V_\varphi = \sin \theta] \tag{ex-0601.100}$$

$$dV_{ab} \to \partial_b V_a - \partial_a V_b \tag{ex-0601.101}$$

$$\Box_{ab} \begin{cases} \Box_{\theta\theta} = dV_{\theta\theta} \\ \Box_{\varphi\theta} = dV_{\varphi\theta} \\ \Box_{\theta\varphi} = dV_{\theta\varphi} \end{cases} \to \Box_{ab} \begin{cases} \Box_{\varphi\theta} = \cos\theta - 1 \\ \Box_{\theta\varphi} = -\cos\theta + 1 \end{cases}$$

$$(ex-0601.102)$$

$$\Box_{\varphi\varphi} = dV_{\varphi\varphi}$$

Exercise 6.1 Evaluate — with rhsonly = True

```
{\theta, \varphi}::Coordinate.
{a,b,c,d,e,f,g,h#}::Indices(values={\theta, \varphi}, position=independent).

\partial{#}::PartialDerivative.

\tilde{V}: \text{V_{\theta}} = \varphi, \tilde{V_{\text{a}}} = \sin(\theta) \text{}. # cdb(ex-0601.200, V)

\tilde{V}: = dV_{\text{a}} = \varphi, \text{V_{\text{a}}} - \partial_{\text{a}} \text{V_{\text{b}}}. # cdb(ex-0601.201, dV)

\text{evaluate} (dV, V, rhsonly=True) # cdb(ex-0601.202, dV)
```

This is an improvement, only the right had side has been expanded into components.

$$V_a = [V_\theta = \varphi, \ V_\varphi = \sin \theta] \tag{ex-0601.200}$$

$$dV_{ab} \to \partial_b V_a - \partial_a V_b \tag{ex-0601.201}$$

$$dV_{ab} \to \Box_{ab} \begin{cases} \Box_{\varphi\theta} = \cos\theta - 1\\ \Box_{\theta\varphi} = -\cos\theta + 1 \end{cases}$$
 (ex-0601.202)