计算机组织结构

7 二进制编码的十进制数运算

任桐炜

2021年10月12日

回顾: 二进制编码的十进制数表示

- 使用原因
 - 精度限制
 - 转换成本高
- 编码方式: 自然BCD码 (NBCD, 8421 码)
 - 0 ~ 9: 0000 ~ 1001
 - 符号
 - 正: 1100 / 0
 - 负: 1101 / 1

回顾: 补码表示整数的加减法

- 加法
 - $[X+Y]C = [X]C + [Y]C (MOD 2^n)$
 - 溢出判定
- 减法
 - $[X-Y]c = [X]c + [-Y]c (MOD 2^n)$
 - 硬件实现

加法

加法 (续)

• 硬件实现: 当值在[10,19]范围内时, 需要对结果进行调整

减法

• 思路: 参照补码减法, 避免借位 "反转"每一个数字, 最后一位加1 $N_1 - N_2 = N_1 + (10^n - N_2) - 10^n$ $= N_1 + (99 ... 9 - N_2 + 1) - 10^n$

- "反转"数字
 - 按位反转, 并添加 "1010"
 - 添加 "0110", 并按位反转
- 结果调整
 - 如果有进位,舍弃进位
 - 如果没有进位,对结果按位反转后加1, 并将结果符号设为负

数字	反转	数字	反转
0000	1001	0001	1000
0010	0111	0011	0110
0100	0101	0101	0100
0110	0011	0111	0010
1000	0001	1001	0000

减法 (续)

```
309 - 125 = 184
125 - 309 = -184

0011 0000 1001
0001 0010 0101

+ 1000 0111 0101
+ 0110 1001 0001

1011 0111 1110
0111 1011 0110

+ 0110
+ 0110

1 0001 1000 0100
1000 0001 0110
```

- 0001 1000 0100

总结

- 加法
 - 结果调整: 进位引起加0110
 - 硬件实现
- 减法
 - 思路:参照补码进行数字反转,以避免借位
 - 反转数字
 - 结果调整

谢谢

rentw@nju.edu.cn

