Flerdimensjonal analyse (MA1103)

Øving 10

Oppgave 1 (5.10: 1)

Finn maksimums-og minimumspunktene (hvis de finnes) til funksjonen f under bibetingelsen.

- a) f(x,y) = 4x 3y når $x^2 + y^2 = 1$.
- b) f(x,y) = xy når $9x^2 + y^2 = 18$.

Oppgave 2 (5.10: 3)

Finn punktene på skjæringkurven mellom flatene $x^2 + y^2 = 1$ og $x^2 - xy + y^2 - z^2 = 1$ som ligger nærmest origo.

Oppgave 3 (6.1: 1)

Regn ut dobbeltintegralene

- i) $\iint_R xy \, d(x,y) \, \det R = [1,2] \times [2,4]$
- ii) $\iint_R x \cos(xy) d(x,y) \operatorname{der} R = [1,2] \times [\pi, 2\pi]$

Oppgave 4 (6.1: 7)

Anta at $f: R \to \mathbb{R}$ er en kontinuerlig funksjon på et rektangel $R = [a, b] \times [c, d]$. Vis at det finnes et punkt (\bar{x}, \bar{y}) i R slik at

$$\frac{\iint_R f(x,y) d(x,y)}{|R|} = f(\bar{x}, \bar{y})$$

der |R| er arealet til R. Dettes kalles ofte middelverdisetningen for dobbeltintegraler.

Oppgave 5 (6.2: 1)

Regn ut dobbeltintegralene

- i) $\iint_R y \, d(x, y) \, \det R = \{(x, y) \in \mathbb{R}^2 \mid 1 \le y \le 2 \text{ og } y \le x \le y^2 \}$
- ii) $\iint_R x^2 y \, d(x,y)$ der Rer området avgrenset av kurvene $y=x^2$ og $y=\sqrt{x}$

Oppgave 6 (6.2: 3)

Noen integraler er enklere å regne ut hvis vi bytter integrasjonsrekkefølgen. Løs disse integralene ved å utføre integrasjonene i motsatt rekkefølge. (*Hint:* Lag en skisse over integrasjonsområdet før du prøver å bytte integrasjonsrekkefølgen.)

i)
$$\int_0^1 \left[\int_y^1 e^{x^2} dx \right] dy$$

ii)
$$\int_0^1 \left[\int_{\sqrt{x}}^1 e^{\frac{x}{y^2}} \, dy \right] \, dx$$

Oppgave 7 (6.2: 4)

Vis at verdien til $\iint_A f(x,y) d(x,y)$ ikke avhenger av hvilket rektangel R vi bruker i definisjonen.

Oppgave 8 (6.7: 3 a))

Regn ut $\iint_R xy \, d(x,y)$ der R er området avgrenset av linjene $x+2y=-1, \, x+2y=3, \, x=y+1, \, x=y+4.$ Bruk substitusjonen $u=x+2y, \, v=x-y.$

Oppgave 9 (*A* 5.10: 20)

I denne oppgaven er A en symmetrisk $n \times n$ -matrise med koeffisienter $(a_{ij})_{1 \leq i,j \leq n}$ og $f : \mathbb{R}^n \to \mathbb{R}$ er funksjonen $f(\mathbf{x}) = (A\mathbf{x}) \cdot \mathbf{x}$.

- a) Vis at dersom \mathbf{x} er en egenvektor for A med egenverdi λ , så er $f(\mathbf{x}) = \lambda ||\mathbf{x}||^2$.
- b) Vis at for alle vektorer $\mathbf{x} = (x_1, \dots, x_n)$ er

$$f(x_1,...,x_n) = \sum_{i=1}^n a_{ii}x_i^2 + \sum_{i\neq j} a_{ij}x_ix_j,$$

der den siste summen er over alle par av ulike indekser $1 \leq i, j \leq n$.

- c) La $S := \{ \mathbf{x} \in \mathbb{R}^n \mid ||x|| = 1 \}$ være det n-diemnsjonale kuleskallet om origo med radius 1. Forklar at når vi innskrenker f til S, så har funksjonen maksimums- og minimumspunkter. Bruk Lagranges multiplikatormetode til å vise at disse maksimums-og minimumspunktene er egenvektorer til A. Vis til slutt at maksimumsverdien til f på S er den største egenverdien til A, mens minimumsverdien er den minste egenverdien til A. Denne observasjonen brukes ofte til å finne egenvektorer numerisk.
- *A*: Denne oppgave er en ekstra oppgave (frivillig), som er litt mer teoretisk eller omfangsrik.

 $Oppgavene \ finnes \ i \ boka \ \textit{Flervariabel analyse} \ \textit{med line} \textit{exr algebra} \ \text{av} \ \text{T.Lindstrøm og} \ \text{K.Hveberg.} \ \text{Se henvisningen} \ i \ \text{parentes}.$