Languages and Algorithms for Artificial Intelligence (Third Module)

A Glimpse into Computational Learning Theory

Ugo Dal Lago

University of Bologna, Academic Year 2020/2021

► We have so far taken functions and languages as our notions of **computational tasks**:

We have so far taken functions and languages as our notions of computational tasks:

▶ Is it that **learning problems**, among the most crucial tasks in AI, can be seen as computational problems?

We have so far taken functions and languages as our notions of computational tasks:

- ▶ Is it that **learning problems**, among the most crucial tasks in AI, can be seen as computational problems?
- ▶ The answer is positive: any learning algorithm \mathcal{A} actually computes a function $f_{\mathcal{A}}$ whose input is a finite sequence of labelled data and whose output can be seen as a classifier:

We have so far taken functions and languages as our notions of computational tasks:

- ▶ Is it that **learning problems**, among the most crucial tasks in AI, can be seen as computational problems?
- ▶ The answer is positive: any learning algorithm \mathcal{A} actually computes a function $f_{\mathcal{A}}$ whose input is a finite sequence of labelled data and whose output can be seen as a classifier:

- ▶ Could data and classifiers be encoded as strings, thus turning f_A as a function of the kind we know?
- ▶ How could we formalize the fact that A correctly solves a given learning task?

- relationship exists between data and labels.
- ▶ The data C takes as input are **not labelled**, and the C's task is precisely the one of finding the appropriate label for any of them.
- ▶ Most often, C is drawn from a rather restricted set of classifiers, i.e. not all algorithms can be obtained in output from f_A .

Suppose that the data the algorithm \mathcal{A} takes in input are points $(x,y) \in \mathbb{R}_{[0,1]} \times \mathbb{R}_{[0,1]}$ (where $\mathbb{R}_{[0,1]}$ is the set of real numbers between 0 and 1). These are labelled as positive or negative depending on they being inside a rectangle

Suppose that the data the algorithm \mathcal{A} takes in input are points $(x,y) \in \mathbb{R}_{[0,1]} \times \mathbb{R}_{[0,1]}$ (where $\mathbb{R}_{[0,1]}$ is the set of real numbers between 0 and 1). These are labelled as positive or negative depending on they being inside a rectangle

▶ The algorithm \mathcal{A} should be able to guess a classifier, namely a *rectangle*, based on the labelled data it received in input.

Suppose that the data the algorithm \mathcal{A} takes in input are points $(x,y) \in \mathbb{R}_{[0,1]} \times \mathbb{R}_{[0,1]}$ (where $\mathbb{R}_{[0,1]}$ is the set of real numbers between 0 and 1). These are labelled as positive or negative depending on they being inside a rectangle

- ▶ The algorithm \mathcal{A} should be able to guess a classifier, namely a *rectangle*, based on the labelled data it received in input.
- ▶ It knows that the data are labelled according to a rectangle, R but it does not know which rectangle is being used.

Suppose that the data the algorithm \mathcal{A} takes in input are points $(x,y) \in \mathbb{R}_{[0,1]} \times \mathbb{R}_{[0,1]}$ (where $\mathbb{R}_{[0,1]}$ is the set of real numbers between 0 and 1). These are labelled as positive or negative depending on they being inside a rectangle

- ▶ The algorithm \mathcal{A} should be able to guess a classifier, namely a *rectangle*, based on the labelled data it received in input.
- ▶ It knows that the data are labelled according to a rectangle, R but it does not know which rectangle is being used.
- ▶ The algorithm \mathcal{A} cannot guess the rectangle R with perfect accuracy if the data it receives in input are too few. As the data in D grow in number, we would expect the rectangle $f_{\mathcal{A}}(D)$ to converge to R, wouldn't we?

The Rules of the Game

- ▶ Again, A knows that the the way input data are labelled is by way of a rectangle (whose sides are parallel to the axes).
 - ▶ But it *does not know* which one!

The Rules of the Game

- ightharpoonup Again, A knows that the the way input data are labelled is by way of a rectangle (whose sides are parallel to the axes).
 - ▶ But it *does not know* which one!
- ▶ \mathcal{A} does not know the distribution **D** from which the points (x,y) are drawn.
 - ▶ It is supposed to "do the job" for each possible distribution **D**.

The Rules of the Game

- Again, A knows that the the way input data are labelled is by way of a rectangle (whose sides are parallel to the axes).
 - ▶ But it *does not know* which one!
- ▶ \mathcal{A} does not know the distribution **D** from which the points (x, y) are drawn.
 - ▶ It is supposed to "do the job" for each possible distribution **D**.
- \triangleright \mathcal{A} is an ordinary algorithm.
 - ▶ Ultimately, it can be seen as a TM.
 - We thus assume that real numbers can be appropriately approximated as binary strings.
 - ▶ In some cases, it is useful to assume \mathcal{A} to have the possibility to "flip a coin", i.e., to be a randomized algorithm.

The Algorithm $\mathcal{A}_{\mathsf{BFP}}$

- ▶ We could define an Algorithm $\mathcal{A}_{\mathsf{BFP}}$ as follows:
 - 1. Given the data $((x_1, y_1), p_1), \ldots, ((x_n, y_n), p_n);$
 - 2. Determine the smallest rectangle R including all the positive instances;
 - 3. Return R.

The Algorithm $\mathcal{A}_{\mathsf{BFP}}$

- ▶ We could define an Algorithm $\mathcal{A}_{\mathsf{BFP}}$ as follows:
 - 1. Given the data $((x_1, y_1), p_1), \ldots, ((x_n, y_n), p_n);$
 - 2. Determine the smallest rectangle R including all the positive instances;
 - 3. Return R.
- ▶ In the probelm instance from the previous slides, one would get, when running A_{BFP}, the little bold rectangle. Of course, the result is always a sub-rectangle of the target rectangle.

The Algorithm $\mathcal{A}_{\mathsf{BFP}}$

- ▶ We could define an Algorithm $\mathcal{A}_{\mathsf{BFP}}$ as follows:
 - 1. Given the data $((x_1, y_1), p_1), \ldots, ((x_n, y_n), p_n);$
 - 2. Determine the smallest rectangle R including all the positive instances;
 - 3. Return R.
- ▶ In the probelm instance from the previous slides, one would get, when running A_{BFP}, the little bold rectangle. Of course, the result is always a sub-rectangle of the target rectangle.

► The output classifier is a rectangle, which can be easily represented as a pair of coordinates.

- ▶ The output of $\mathcal{A}_{\mathsf{BFP}}$ can be very different from the target rectangle.
 - ▶ Is the algorithm balantantly incorrect, then?

- ▶ The output of $\mathcal{A}_{\mathsf{BFP}}$ can be very different from the target rectangle.
 - ▶ Is the algorithm balantantly incorrect, then?
- ► The answer is **negative**.

- ▶ The output of $\mathcal{A}_{\mathsf{BFP}}$ can be very different from the target rectangle.
 - ▶ Is the algorithm balantantly incorrect, then?
- ► The answer is **negative**.
- For a given rectangle R and a target rectangle T, the probability of error in using R as a replacement of T (when the distribution is \mathbf{D}) is

$$error_{\mathbf{D},T}(R) = \Pr_{x \sim \mathbf{D}}[x \in (R-T) \cup (T-R)].$$

- ▶ The output of $\mathcal{A}_{\mathsf{BFP}}$ can be very different from the target rectangle.
 - ▶ Is the algorithm balantantly incorrect, then?
- ▶ The answer is **negative**.
- ▶ For a given rectangle R and a target rectangle T, the probability of error in using R as a replacement of T (when the distribution is \mathbf{D}) is $error_{\mathbf{D},T}(R) = \Pr_{x \sim \mathbf{D}}[x \in (R-T) \cup (T-R)].$
- error_{**D**,T}(R) = Pr_x, D[x ∈ (R − I) ∪ (I − R)]. Note As the number of samples in D grows, the result $\mathcal{A}_{\mathsf{BFP}}(D)$
 - does *not* necessarily approach the target rectangle, but its probability of error approaches zero.

Theorem

For every distribution **D**, for every $0 < \varepsilon < \frac{1}{2}$ and for every $0 < \delta < \frac{1}{2}$, if $m \ge \frac{4}{\varepsilon} \ln \left(\frac{4}{\delta} \right)$, then

$$\Pr_{D \sim \mathbf{D}^m}[error_{\mathbf{D},T}(\mathcal{A}_{\mathsf{BFP}}(T(D)) < \varepsilon] > 1 - \delta$$

The General Model — Terminology

- \blacktriangleright We assume to work within an **instance space** X.
 - ► X is the set of (encodings) of instances of objects the learner wants to classify.
 - ▶ Data from the instance spaces are generated through a distribution **D**, unknown to the learner.
 - In the example, $X = \mathbb{R}^2_{[0,1]}$.

The General Model — Terminology

- \blacktriangleright We assume to work within an **instance space** X.
 - ► X is the set of (encodings) of instances of objects the learner wants to classify.
 - ▶ Data from the instance spaces are generated through a distribution **D**, unknown to the learner.
 - In the example, $X = \mathbb{R}^2_{[0,1]}$.
- \triangleright Concepts are subsets of X, i.e. collections of objects. These should be thought of as properties of objects.
 - ▶ In the example, concepts are arbitrary subsets of $X = \mathbb{R}^2_{[0,1]}$, i.e. arbitrary regions within $\mathbb{R}^2_{[0,1]}$.

The General Model — Terminology

- \blacktriangleright We assume to work within an **instance space** X.
 - ► X is the set of (encodings) of instances of objects the learner wants to classify.
 - ▶ Data from the instance spaces are generated through a distribution **D**, unknown to the learner.
 - ▶ In the example, $X = \mathbb{R}^2_{[0,1]}$.
- \triangleright Concepts are subsets of X, i.e. collections of objects. These should be thought of as properties of objects.
 - ▶ In the example, concepts are arbitrary subsets of $X = \mathbb{R}^2_{[0,1]}$, i.e. arbitrary regions within $\mathbb{R}^2_{[0,1]}$.
- ▶ A concept class C is a collection of concepts, namely a subset of $\mathcal{P}(X)$. These are the concepts which are sufficiently simple to describe, and that algorithms can handle.
 - ▶ The concept class C we work with in the example is the one of rectangles whose sides are parallel to the axes.
 - ▶ The target concept $c \in C$ is the concept the learner wants to build a classifier for.

The General Model — The Learning Algorithm \mathcal{A}

▶ Every learning algorithm is designed to learn concepts from a concept class \mathcal{C} but it *does not know* the target concept $c \in \mathcal{C}$, nor the associated distribution \mathbf{D} .

The General Model — The Learning Algorithm \mathcal{A}

- ▶ Every learning algorithm is designed to learn concepts from a concept class \mathcal{C} but it *does not know* the target concept $c \in \mathcal{C}$, nor the associated distribution \mathbf{D} .
- ▶ The interface of any learning algorithm \mathcal{A} can be described as follows:

where:

- ε is error parameter, while δ is the confidence parameter;
- ▶ $EX(c, \mathbf{D})$ should be though as an *oracle*, a procedure that \mathcal{A} can call as many times she wants, and which returns an element $x \sim \mathbf{D}$ from X, labelled according to whether it is in c or not.

The General Model — The Learning Algorithm \mathcal{A}

- Every learning algorithm is designed to learn concepts from a concept class \mathcal{C} but it *does not know* the target concept $c \in \mathcal{C}$, nor the associated distribution \mathbf{D} .
- ▶ The interface of any learning algorithm \mathcal{A} can be described as follows:

where:

- ε is error parameter, while δ is the confidence parameter;
- ▶ $EX(c, \mathbf{D})$ should be though as an *oracle*, a procedure that \mathcal{A} can call as many times she wants, and which returns an element $x \sim \mathbf{D}$ from X, labelled according to whether it is in c or not.
- ► The **error** of any $h \in \mathcal{C}$ is defined as $error_{\mathbf{D},c} = \Pr_{x \sim \mathbf{D}}[h(x) \neq c(x)].$

The General Model — Two Kinds of Errors

The General Model — PAC Concept Classes

Let \mathcal{C} be a concept class over the instance space X. We say that \mathcal{C} is **PAC learnable** iff there is an algorithm \mathcal{A} such that for every $c \in \mathcal{C}$, for every distribution \mathbf{D} , for every $0 < \varepsilon < \frac{1}{2}$ and for every $0 < \delta < \frac{1}{2}$, then

$$\Pr[error_{\mathbf{D},c}(\mathcal{A}(EX(c,\mathbf{D}),\varepsilon,\delta))<\varepsilon]>1-\delta$$

where the probability is taken over the calls to $EX(c, \mathbf{D})$

The General Model — PAC Concept Classes

Let \mathcal{C} be a concept class over the instance space X. We say that \mathcal{C} is **PAC learnable** iff there is an algorithm \mathcal{A} such that for every $c \in \mathcal{C}$, for every distribution \mathbf{D} , for every $0 < \varepsilon < \frac{1}{2}$ and for every $0 < \delta < \frac{1}{2}$, then

$$\Pr[error_{\mathbf{D},c}(\mathcal{A}(EX(c,\mathbf{D}),\varepsilon,\delta))<\varepsilon]>1-\delta$$

where the probability is taken over the calls to $EX(c, \mathbf{D})$

- ▶ If the time complexity of \mathcal{A} is bounded by a polynomial in $\frac{1}{\varepsilon}$ and $\frac{1}{\delta}$, we say that \mathcal{C} is **efficiently PAC learnable**.
 - ▶ The complexity of \mathcal{A} is measured taking into account the number of calls to $EX(c, \mathbf{D})$.

The General Model — PAC Concept Classes

Let \mathcal{C} be a concept class over the instance space X. We say that \mathcal{C} is **PAC learnable** iff there is an algorithm \mathcal{A} such that for every $c \in \mathcal{C}$, for every distribution \mathbf{D} , for every $0 < \varepsilon < \frac{1}{2}$ and for every $0 < \delta < \frac{1}{2}$, then

$$\Pr[error_{\mathbf{D},c}(\mathcal{A}(EX(c,\mathbf{D}),\varepsilon,\delta))<\varepsilon]>1-\delta$$

where the probability is taken over the calls to $EX(c, \mathbf{D})$

- ▶ If the time complexity of \mathcal{A} is bounded by a polynomial in $\frac{1}{\varepsilon}$ and $\frac{1}{\delta}$, we say that \mathcal{C} is **efficiently PAC learnable**.
 - ▶ The complexity of \mathcal{A} is measured taking into account the number of calls to $EX(c, \mathbf{D})$.

Corollary

The concept-class of axis-aligned rectangles over $\mathbb{R}^2_{[0,1]}$ is efficiently PAC-learnable.

▶ In our definition of efficient PAC learning, the algorithm \mathcal{A} , having no access to the target concept $c \in \mathcal{C}$, must work in polynomial time **independently** on c.

- ▶ In our definition of efficient PAC learning, the algorithm \mathcal{A} , having no access to the target concept $c \in \mathcal{C}$, must work in polynomial time **independently** on c.
 - ▶ We assume concepts in \mathcal{C} can be represented by way of binary strings, and each concept $e \in \mathcal{C}$ requires size(e) bits. We talk of a **representation class**.

- ▶ In our definition of efficient PAC learning, the algorithm \mathcal{A} , having no access to the target concept $c \in \mathcal{C}$, must work in polynomial time **independently** on c.
 - ▶ We assume concepts in \mathcal{C} can be represented by way of binary strings, and each concept $e \in \mathcal{C}$ requires size(e) bits. We talk of a **representation class**.

Examples

- X_n could be $\{0,1\}^n$, the set of **boolean vectors** of of (fixed!) length n, and C_n is the set of all subsets of $\{0,1\}^n$ represented by CNFs.
- ▶ X_n could rather be \mathbb{R}^n , the set of **vectors of real numbers** of length n, while \mathcal{C}_n are say, the subsets of \mathbb{R}^n represented by some form of neural network with n inputs and 1 output.

- ▶ In our definition of efficient PAC learning, the algorithm \mathcal{A} , having no access to the target concept $c \in \mathcal{C}$, must work in polynomial time **independently** on c.
 - ▶ We assume concepts in \mathcal{C} can be represented by way of binary strings, and each concept $e \in \mathcal{C}$ requires size(e) bits. We talk of a **representation class**.

Examples

- ▶ X_n could be $\{0,1\}^n$, the set of **boolean vectors** of of (fixed!) length n, and C_n is the set of all subsets of $\{0,1\}^n$ represented by CNFs.
- ▶ X_n could rather be \mathbb{R}^n , the set of **vectors of real numbers** of length n, while \mathcal{C}_n are say, the subsets of \mathbb{R}^n represented by some form of neural network with n inputs and 1 output.
- ▶ In many cases (e.g. SGD), one has a *single* learning algorithm that work for every value of n. In that case, we allow (in the definition of efficient PAC learning) the algorithm \mathcal{A} to take time polynomial in n, size(c), $\frac{1}{\varepsilon}$ and $\frac{1}{\delta}$.

Boolean Functions as a Representation Class

▶ Suppose your instance class is $X = \bigcup_{n \in \mathbb{N}} X_n$ where $X_n = \{0, 1\}^n$.

Boolean Functions as a Representation Class

- ▶ Suppose your instance class is $X = \bigcup_{n \in \mathbb{N}} X_n$ where $X_n = \{0, 1\}^n$.
- ▶ One first example of a representation class for X_n is the class \mathbf{CL}_n of all *conjunctions of literals* on the variables x_1, \ldots, x_n .
 - ▶ As an example, the conjunction

$$x_1 \wedge \neg x_2 \wedge x_4,$$

- defines a subset of $\{0,1\}^4$.
- ▶ Not all subsets of $\{0,1\}^n$ can be captured this way.

Boolean Functions as a Representation Class

- ▶ Suppose your instance class is $X = \bigcup_{n \in \mathbb{N}} X_n$ where $X_n = \{0, 1\}^n$.
- ▶ One first example of a representation class for X_n is the class \mathbf{CL}_n of all *conjunctions of literals* on the variables x_1, \ldots, x_n .
 - ▶ As an example, the conjunction

$$x_1 \wedge \neg x_2 \wedge x_4,$$

defines a subset of $\{0,1\}^4$.

- Not all subsets of $\{0,1\}^n$ can be captured this way.
- ▶ A second example of a representation class for X_n is a class we know, namely the class \mathbf{CNF}_n of CNFs over x_1, \ldots, x_n , which are conjunction of disjunctions of literals.
 - ▶ CNFs are normal forms of any boolean functions.
 - ▶ All subsets of $\{0,1\}^n$ can be captured this way.
 - ▶ We could even consider $k\mathbf{CNF}_n$ rather than arbitrary one, but this way we would lose universality.

Learning Conjuctions of Literals

▶ Suppose your target concept is a conjunction of literals c on n variables x_1, \ldots, x_n . How could a learning algorithm proceed?

Learning Conjuctions of Literals

- Suppose your target concept is a conjunction of literals c on n variables x_1, \ldots, x_n . How could a learning algorithm proceed?
- ▶ Data are in the form (s, b) where $s \in \{0, 1\}^n$ and $b \in \{0, 1\}$. The latter is a label telling us whether $s \in c$ or $s \notin c$.
- ▶ A learning algorithm could proceed by keeping a conjunction of literals h as its state, initially set to

$$x_1 \wedge \neg x_1 \wedge x_2 \wedge \neg x_2 \wedge \cdots \wedge x_n \wedge \neg x_n$$
.

and updating it according to positive data (while negative data are discarded).

▶ If n = 3, the current state of h is $x_1 \wedge x_2 \wedge \neg x_2 \wedge \neg x_3$ and we receive (101, 1), the hypothesis h is updated as $x_1 \wedge \neg x_2$.

Learning Conjuctions of Literals

- Suppose your target concept is a conjunction of literals c on n variables x_1, \ldots, x_n . How could a learning algorithm proceed?
- ▶ Data are in the form (s, b) where $s \in \{0, 1\}^n$ and $b \in \{0, 1\}$. The latter is a label telling us whether $s \in c$ or $s \notin c$.
- ▶ A learning algorithm could proceed by keeping a conjunction of literals *h* as its state, initially set to

$$x_1 \wedge \neg x_1 \wedge x_2 \wedge \neg x_2 \wedge \cdots \wedge x_n \wedge \neg x_n$$
.

and updating it according to positive data (while negative data are discarded).

▶ If n = 3, the current state of h is $x_1 \wedge x_2 \wedge \neg x_2 \wedge \neg x_3$ and we receive (101, 1), the hypothesis h is updated as $x_1 \wedge \neg x_2$.

Theorem

The representation class of boolean conjuctions of literals is efficiently PAC-learnable.

Intractability of Learning DNFs

▶ We know that conjunctions of literals are efficiently learnable. But they are highly incomplete as a way to represent boolean functions.

Intractability of Learning DNFs

- ▶ We know that conjunctions of literals are efficiently learnable. But they are highly incomplete as a way to represent boolean functions.
- ▶ Let us take a look at a *slight generalization* of conjunctions of literals as a representation class.
 - ▶ A 3-term **DNF** formula over n bits is a propositional formula in the form $T_1 \vee T_2 \vee T_3$, where each T_i is a conjunction of literals over x_1, \ldots, x_n .
 - ▶ In a sense, this class is the *dual* to 3CNFs!
 - As such, it is more expressive than conjunctions of literals, but still not universal.

Intractability of Learning DNFs

- ▶ We know that conjunctions of literals are efficiently learnable. But they are highly incomplete as a way to represent boolean functions.
- ▶ Let us take a look at a *slight generalization* of conjunctions of literals as a representation class.
 - ▶ A 3-term **DNF** formula over n bits is a propositional formula in the form $T_1 \vee T_2 \vee T_3$, where each T_i is a conjunction of literals over x_1, \ldots, x_n .
 - ▶ In a sense, this class is the *dual* to 3CNFs!
 - As such, it is more expressive than conjunctions of literals, but still not universal.

Theorem

If $\mathbf{NP} \neq \mathbf{RP}$, then the representation class of 3-term DNF formulas is not efficiently PAC learnable.

Is This the End of the Story?

▶ **Definitely No!** Actually, we have just *scratched the surface* of computational learning theory.

Is This the End of the Story?

- ▶ **Definitely No!** Actually, we have just *scratched the surface* of computational learning theory.
- ▶ Models and results we did not have time to talk about include:
 - ▶ The VC Dimension.
 - ▶ The Fundamental Theorem of Learning.
 - ▶ The No-Free-Lunch Theorem.
 - ▶ Occam's Razor.
 - ▶ Positive and negative results about neural networks.
- ▶ More information can be found in of the many excellent books on CLT, e.g.
 - Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar Foundations of Machine Learning Second Edition. The MIT Press. 2018
 - ► Shai Shalev-Shwartz and Shai Ben-David. *Understanding Machine Learning: from Theory to Algorithms* Cambridge University Press. 2014.
 - Michael Kearns and Umesh Vazirani. An Introduction to Computational Learning Theory The MIT Press. 1994.

Example Results about Neural Networks (from Kearns and Vazirani's Book)

Theorem 3.7 Let G be any directed acyclic graph, and let C_G be the class of neural networks on an architecture G with indegree r and s internal nodes. Then the number of examples required to learn C_G is

$$O\left(\frac{1}{\epsilon}\log\frac{1}{\delta} + \frac{(rs+s)\log s}{\epsilon}\log\frac{1}{\epsilon}\right).$$

Example Results about Neural Networks (from Kearns and Vazirani's Book)

Theorem 3.7 Let G be any directed acyclic graph, and let C_G be the class of neural networks on an architecture G with indegree r and s internal nodes. Then the number of examples required to learn C_G is

$$O\left(\frac{1}{\epsilon}\log\frac{1}{\delta} + \frac{(rs+s)\log s}{\epsilon}\log\frac{1}{\epsilon}\right).$$

Theorem 6.6 Under the Discrete Cube Root Assumption, there is fixed polynomial $p(\cdot)$ and an infinite family of directed acyclic graphs (architectures) $G = \{G_{n^2}\}_{n\geq 1}$ such that each G_{n^2} has n^2 boolean inputs and at most p(n) nodes, the depth of G_{n^2} is a fixed constant independent of n, but the representation class $C_G = \bigcup_{n\geq 1} C_{G_{n^2}}$ (where $C_{G_{n^2}}$ is the class of all neural networks over \Re^n with underlying architecture G_{n^2}) is not efficiently PAC learnable (using any polynomially evaluatable hypothesis class). This holds even if we restrict the networks in $C_{G_{n^2}}$ to have only binary weights.

Thank You!

Questions?