ZX Evolution. Руководство пользователя (ZX Evolution revision B)

(версия от 12.03.2012) www.nedopc.com

ZX Evolution. Руководство пользователя

Оглавление

1 Введение	3
2 Описание платы	4
3 Описание разъемов	5
3.1 X1. Floppy disk	5
3.2 X2. IDE	
3.3 X3. Порт ввода/вывода и аудио выход	
3.4 X4. JTAG для программируемой матрицы EP1K50Q208	7
3.5 X5. AVR ISP для периферийного контроллера ATMEGA128	7
3.6 X6. RS232 коммуникационный порт	7
3.7 X7. VGA видеовыход	8
3.8 X8. S-Video видеовыход	8
3.9 X9. Композитный видеовыход	8
3.10 X10. 3.5 Аудиовыход	8
3.11 X11. PS/2 клавиатура и мышь	9
3.12 X12. Механическая клавиатура и джойстик	9
3.13 X13. RGB видеовыход	
3.14 X14. AVR JTAG для периферийного контроллера ATMEGA128	10
3.15 X15. Таре (магнитофонный) вход/выход	
3.16 X16. Аудивыход (дублирующий X10)	11
3.17 X17. Аудиовход	11
3.18 X18. Неиспользуемые контакты	11
3.19 X19. RS232 коммуникационный порт (дублирует X6)	11
3.20 X20. Композитный видеовыход (дублирует X9)	12
3.21 X21. S-Video видеовыход (дублирует X8)	
3.22 PWR1. Разъем АТ питания	12
3.23 PWR2. Разъем ATX питания	
3.24 PWR3. Разъем питания	13
3.25 GB1. Держатель батарейки питания часов	
4 Назначение джамперов (контактных перемычек) и кнопок	
5 Слоты ZXBUS	
6 Установка платы в корпус ATX/miniATX	
7 Установка платы в корпус АТ	
8 Примечание 1. Подсоединение Floppy приводов	20

1 Введение

ZX Evolution представляет собой Спектрум совместимый компьютер. Компьютер основан на программируемой логической матрице Altera EP1K50Q208 и обладает гибкой архитектурой, что позволяет проводить обновление и исправление ошибок схемы без применения паяльника и прочих радикальных подходов. Тем не менее, при проектировании заложено сохранение оригинальных основных блоков (т.е. используются оригинальные микросхемы, а не их эмуляция в программируемой логической матрице).

Материнская плата ZX Evolution спроектирована для легкой установки в современный корпус (miniATX), и к ней можно подсоединить современную периферию и носители информации.

Характеристики компьютера:

- Процессор Z80 на частоте 3.5/7 мгц (turbo режим без wait на процессоре);
- 4 МБайт оперативной памяти, 512КБайт постоянной памяти с возможностью перезаписи (flash ROM);
- Форм фактор miniATX, с возможностью работы с БП ATX, AT или нестандартного с +5B и +12B:
- 2 слота ZXBUS;
- Периферийный контроллер ATMEGA128;
- Контроллер PS/2 клавиатуры/мыши;
- Контроллер IDE (один канал, поддержка до двух устройств в режиме master/slave);
- Контроллер SD(HC) карт памяти;
- Контроллер floppy disk на основе КР1818ВГ93 с поддержкой до 4-ех дисководов;
- Контроллер RS232 интерфейса;
- Энергонезависимые часы-календарь (RTC);
- Звуковой интерфейс на основе AY38910/YM2149F, beeper, аппаратный шим;
- Поддержка механической клавиатуры и джойстиков;
- Поддержка tape интерфейса (магнитофонный вход/выход);
- RGB видеовыход (для подключения через SCART);
- Встроенный PAL кодер на основе CXA1645M/CXA2075M, композитный и S-Video выход;

ZX Evolution. Руководство пользователя

• VGA выход с аппаратным скандабблером.

2 Описание платы

На рисунке показаны основные компоненты компьютера и разъемы:

Плата оснащена отверстиями для крепления в корпус miniATX согласно спецификации. Также основные рабочие разъемы для подсоединения периферии расположены в «окне» ATX корпуса, что облегчает установку платы и доступ к разъемам.

Слоты спроектированы так, чтобы платы, установленные в них, попадали точно в предназначенное для выходов окно на задней стенке корпуса (на текущий момент поддерживается плата NeoGS). Сторонним производителям, проектирующим платы следует придерживаться форм фактора платы NeoGS.

Плата оснащена стандартными разъемами питания, позволяющими подключить серийные блоки питания.

3 Описание разъемов

3.1 X1. Floppy disk

Разъем предназначен для подключения носителя(ей) гибкого диска (3.5' или 5.25'). Поддерживается до четырех устройств.

Нумерация разъема идет от квадратной площадки.

No	Название	Комментарий	Nº	Название	Комментарий
1	GND	Земля	2		Не используется
3	GND	Земля	4		Не используется
5	KEY	Ключ (контакта нет)	6	DS3	Выбор 3 носителя
7	GND	Земля	8	IDX	Сигнал индексной метки
9	GND	Земля	10	DS0	Выбор 0 носителя
11	GND	Земля	12	DS1	Выбор 1 носителя
13	GND	Земля	14	DS2	Выбор 2 носителя
15	GND	Земля	16	MOTON	Включение мотора
17	GND	Земля	18	DIRC	Выбор направления шага
19	GND	Земля	20	STEP	Шаг головки на след. дорожку
21	GND	Земля	22	WD	Записываемые данные
23	GND	Земля	24	WG	Разрешение записи
25	GND	Земля	26	TR00	Головка на 00 дорожке
27	GND	Земля	28	WP	Состояние «защиты записи» диска
29	GND	Земля	30	RDDATA	Считываемые данные
31	GND	Земля	32	SIDE1	Выбор стороны дискеты
33	GND	Земля	34		Не используется

3.2 X2. IDE

Разьем предназначен для подключение IDE накопителей. Возможно подключение до двух устройств в режиме master/slave. Нумерация разъема идет от квадратной площадки.

N₂	Название	Комментарий	№	Название	Комментарий
1	RESET	Аппаратный сброс	2	GND	Земля
3	D07	7 разряд шины данных	4	D08	8 разряд шины данных
5	D06	6 разряд шины данных	6	D09	9 разряд шины данных
7	D05	5 разряд шины данных	8	D10	10 разряд шины данных
9	D04	4 разряд шины данных	10	D11	11 разряд шины данных
11	D03	3 разряд шины данных	12	D12	12 разряд шины данных
13	D02	2 разряд шины данных	14	D13	13 разряд шины данных
15	D01	1 разряд шины данных	16	D14	14 разряд шины данных
17	D00	0 разряд шины данных	18	D15	15 разряд шины данных
19	GND	Земля	20	KEY	Ключ (контакта нет)
21		Не используется	22	GND	Земля
23	DIOW		24	GND	Земля
25	DIOR		26	GND	Земля
27	IORDY		28		Не используется
29		Не используется	30	GND	Земля
31		Не используется	32		Не используется
33	DA1	1 разряд адреса регистра	34		Не используется

35	DA0	0 разряд адреса регистра	36	DA2	1 разряд адреса регистра
37	CS0	Сигнал выбора набора регистров	38	CS1	Сигнал выбора набора регистров
39	DASP	Индикатор обмена данными	40	GND	Земля

3.3 Х3. Порт ввода/вывода и аудио выход

Разъем предназначен для подключения внешних устройств к портам ввода/вывода музыкального сопроцессора. Также на разъем выведен выход звука с сопроцессора.

Нумерация разъема идет от квадратной площадки.

Описание контактов:

№	Название	Комментарий	№	Название	Комментарий
1	LOUT	Выход звука левый канал	2	ROUT	Выход звука правый канал
3	GND	Земля	4	GND	Земля
5	AYA0	0 разряд порта А сопроцессора	6	AYB0	0 разряд порта В сопроцессора
7	AYA1	1 разряд порта А сопроцессора	8	AYB1	1 разряд порта В сопроцессора
9	AYA2	2 разряд порта А сопроцессора	10	AYB2	2 разряд порта В сопроцессора
11	AYA3	3 разряд порта А сопроцессора	12	AYB3	3 разряд порта В сопроцессора
13	AYA4	4 разряд порта А сопроцессора	14	AYB4	4 разряд порта В сопроцессора
15	AYA5	5 разряд порта А сопроцессора	16	AYB5	5 разряд порта В сопроцессора
17	AYA6	6 разряд порта А сопроцессора	18	AYB6	6 разряд порта В сопроцессора
19	AYA7	7 разряд порта А сопроцессора	20	AYB7	7 разряд порта В сопроцессора
21	+5V	Напряжение питания +5B	22	+5V	Напряжение питания +5В
23	RESZ	Сигнал сброса	24	AY_CLK	Тактовая частота (1.75МГц)
25	GND	Земля	26	GND	Земля
27	GND	Земля	28	GND	Земля

3.4 X4. JTAG для программируемой матрицы EP1K50Q208

Разьем предназначен для программирования FPGA EP1K50Q208 по интерфейсу JTAG с помощью программатора ByteBlasterMV или любого другого, поддерживающего указанный интерфейс. Нумерация разъема идет от квадратной площадки.

№	Название	Комментарий	№	Название	Комментарий
1	TCK	Тактовый сигнал (clock)	2	GND	Земля

3	TDO	Выходные данные (data output)	4	3V3	Напряжение питания +3.3В
5	TMS	Управляющий сигнал (mode select)	6		Не используется
7		Не используется	8		Не используется
9	TDI	Входные данные (data input)	10	GND	Земля

3.5 X5. AVR ISP для периферийного контроллера ATMEGA128

Разьем предназначен для программирования периферийного контроллера ATMEGA128 по интерфейсу ISP с помощью программатора ByteBlasterMV или любого другого, поддерживающего указанный интерфейс.

Нумерация разъема идет от квадратной площадки.

Описание контактов:

№	Название	Комментарий	№	Название	Комментарий
1	CK	Тактовый сигнал (clock)	2	GND	Земля
3	DO	Выходные данные (data output)	4	VCC5	Напряжение питания +5В
5	RST	Сброс (reset)	6		Не используется
7		Не используется	8	EXCLOCK	Внешний тактовый сигнал
9	DI	Входные данные (data input)	10	GND	Земля

3.6 X6. RS232 коммуникационный порт

Коммуникационный порт предназначен для соединения с другим компьютером либо с коммуникационным оборудованием (например, с модемом). Поддерживает скорость до 115200бод.

№	Название	Комментарий	№	Название	Комментарий
1		Не используется	6		Не используется

2	RXD		7	RTS	
3	TXD		8	CTS	
4		Не используется	9		Не используется
5	GND	Земля	Корпус		Корпус разъема соединен с землей

3.7 X7. VGA видеовыход

Разъем предназначен для подключения монитора или телевизора, оснащенного VGA разъемов.

Внимание: Наличие VGA разьема не гарантирует соместимость с компьютером. Для полной совместимости монитор должен поддерживать развертку 50ГЦ, 31КГц.

Описание контактов:

№	Название	Комментарий	№	Название	Комментарий
1	R	Красная компонента видеосигнала	9		Не используется
2	G	Зеленая компонента видеосигнала	10	GND	Земля
3	В	Синяя компонента видеосигнала	11	GND	Земля
4		Не используется	12		Не используется
5		Не используется	13	HS	Строчная синхронизация
6	GND	Земля	14	VS	Кадровая синхронизация
7	GND	Земля	15		Не используется
8	GND	Земля	Корпус		Корпус разъема соединен с землей

3.8 X8. S-Video видеовыход

Разъем предназначен для подключения телевизора, монитора или проектора по S-Video стандарту. При использовании этого стандарта подключения цветовая и яркостная составляющие видеосигнала передаются раздельно, поэтому качество выше чем у композитного видеосигнала.

Описание контактов:

№	Название	Комментарий	№	Название	Комментарий
1	GND	Земля	2	GND	Земля
3	С	Цветовая компонента видеосигнала	4	Y	Яркостная компонента видеосигнала

3.9 Х9. Композитный видеовыход

Разъем предназначен для подключения телевизора, монитора или проектора по композитному видеостандарту (в народе такой разъем называют «тюльпан»). Корпус разъема соединен с землей.

3.10 X10. 3.5 Аудиовыход

Разъем предназначен для подключения колонок, наушников и других воспроизводящих или записывающих устройств.

Корпус разъема соединен с землей.

3.11 X11. PS/2 клавиатура и мышь

Разьем предназначен для подсоединения PS/2 клавиатуры и мыши. Клавиатура подключается в ближнее к плате гнездо разъема, мышь подключается в дальнее от платы гнездо. Корпус разъема соединен с землей.

Описание контактов:

№	Название	Комментарий	№	Название	Комментарий
1	DATA	Данные клавиатуры	7	DATA	Данные мыши
2		Не используется	8		Не используется
3	GND	Земля	9	GND	Земля
4	+5V	Напряжение питания +5B	10	+5V	Напряжение питания +5В
5	CLK	Тактовый сигнал клавиатуры	11	CLK	Тактовый сигнал мыши
6		Не используется	12		Не используется

3.12 Х12. Механическая клавиатура и джойстик

Разъем предназначен для подключение механической (оригинальной) ZX клавиатуры и джойстика. Нумерация разъема идет от квадратной площадки.

Описание контактов:

N₂	Название	Комментарий	№	Название	Комментарий
1	ZXROW0	0 ряд механической клавиатуры	2	ZXROW1	1 ряд механической клавиатуры
3	ZXROW2	2 ряд механической клавиатуры	4	ZXROW3	3 ряд механической клавиатуры
5	ZXROW4	4 ряд механической клавиатуры	6	ZXROW5	5 ряд механической клавиатуры
7	ZXROW6	6 ряд механической клавиатуры	8	ZXROW7	7 ряд механической клавиатуры
9	RST	Сигнал сброса	10	ZXCOL4	4 столбец механической клавиатуры
11	ZXCOL3	3 столбец механической клавиатуры	12	ZXCOL2	2 столбец механической клавиатуры
13	ZXCOL1	1 столбец механической клавиатуры	14	ZXCOL0	0 столбец механической клавиатуры
15	GND	Земля	16	JOYL	Вывод «влево» джойстика
17	JOYR	Вывод «вправо» джойстика	18	JOYU	Вывод «вверх» джойстика
19	JOYD	Вывод «вниз» джойстика	20	JOYF	Вывод «огонь» джойстика

3.13 X13. RGB видеовыход

Разъем предназначен для подсоединения телевизора или монитора по SCART или RGB видео стандарту. Корпус разъема соединен с землей.

Внимание: Наличие SCART разъема у телевизора не означает, что на нем выведены RGB входы. Уточняйте наличие RGB входов в документации производителя телевизора.

№	Название	Комментарий	№	Название	Комментарий
1	GND	Земля	9	R	Красная компонента видеосигнала
2	GND	Земля	10	G	Зеленая компонента видеосигнала
3	GND	Земля	11	В	Синяя компонента видеосигнала

4	CPAL	Композитный видеосигнал	12	VS	Кадровая синхронизация видео
5	GND	Земля	13	CS	Смешанная синхронизация видео
6	LOUT	Левый канал звука	14	GND	Земля
7	ROUT	Правый канал звука	15	VCC	Напряжение питания +5В
8	HS	Строчная синхронизация видео	Корпус		Корпус разъема соединен с землей

3.14 X14. AVR JTAG для периферийного контроллера ATMEGA128

Разьем предназначен для программирования периферийного контроллера ATMEGA128 по интерфейсу JTAG ICT с помощью программатора, поддерживающего указанный интерфейс.

Нумерация разъема идет от квадратной площадки.

Описание контактов:

N₂	Название	Комментарий	№	Название	Комментарий
1	TCK	Тактовый сигнал (clock)	2	GND	Земля
3	TDO	Выходные данные (data output)	4	VCC	Напряжение питания +5В
5	TMS	Управляющий сигнал (mode select)	6	PRGRST	Сброс
7	VCC	Напряжение питания +5В	8		Не используется
9	TDI	Входные данные (data input)	10	GND	Земля

3.15 Х15. Таре (магнитофонный) вход/выход

Описание контактов:

№	Название	Комментарий	№	Название	Комментарий
1	IN	Вход для магнитофонного сигнала	2	GND	Земля
3	OUT	Выход для магнитофонного сигнала	4	GND	Земля

3.16 Х16. Аудивыход (дублирующий Х10)

Аудиовыход дублирует разъем X10. Предназначен для подключения колонок, наушников и других воспроизводящих или записывающих устройств. Нумерация разъема идет от квадратной площадки.

№	Название	Комментарий	№	Название	Комментарий
1	LOUT	Выход левого канала	2	GND	Земля
3	GND	Земля	4	ROUT	Выход правого канала

3.17 X17. Аудиовход

X17

Аудиовход предназначен для подключения внешних источников звука (например, CDROM или NeoGS).

Нумерация разъема идет от квадратной площадки.

Описание контактов:

№	Название	Комментарий	№	Название	Комментарий
1	LIN	Вход левого канала	2	GND	Земля
3	GND	Земля	4	RIN	Вход правого канала

3.18 X18. Неиспользуемые контакты

На разъем выведены неиспользуемые контакты ATMEGA128. На текущий момент разъем не имеет назначения.

Нумерация разъема идет от квадратной площадки.

Описание контактов:

№	Название	Комментарий	№	Название	Комментарий
1	PE2	PE2 pin on ATMEGA128	2	GND	Земля
3	GND	Земля	4	PE3	PE3 pin on ATMEGA128

3.19 X19. RS232 коммуникационный порт (дублирует X6)

Коммуникационный порт предназначен для соединения с другим компьютером либо с коммуникационным оборудованием (например, с модемом). Поддерживает скорость до 115200бод.

Нумерация разъема идет от квадратной площадки.

№	Название	Комментарий	№	Название	Комментарий
1		Не используется	2	RXD	
3	TXD		4		Не используется
5	GND	Земля	6		Не используется
7	RTS		8	CTS	
9		Не используется	10		Не используется

3.20 Х20. Композитный видеовыход (дублирует Х9)

V20

Разъем предназначен для подключения телевизора, монитора или проектора по композитному видеостандарту.

Нумерация разъема идет от квадратной площадки.

Описание контактов:

Nº	Название	Комментарий	№	Название	Комментарий
1	CPAL	Композитный видеовыход	2	GND	Земля

3.21 X21. S-Video видеовыход (дублирует X8)

Разъем предназначен для подключения телевизора, монитора или проектора по S-Video стандарту. При использовании этого стандарта подключения цветовая и яркостная составляющие видеосигнала передаются раздельно, поэтому качество выше чем у композитного видеосигнала.

Нумерация разъема идет от квадратной площадки.

Описание контактов:

№	Название	Комментарий	№	Название	Комментарий
1	Y	Яркостная компонента видеосигнала	2	GND	Земля
3	GND	Земля	4	С	Цветовая компонента видеосигнала

3.22 PWR1. Разъем АТ питания

Разъем предназначен для подачи питания на плату ZX Evolution при использовании стандартного AT блока питания.

Внимание: При подключении питания следите, чтобы черные провода были в центре разъема. Т.е. ответные части разъема должны вставляться черными проводами друг к другу.

№	Название	Комментарий	№	Название	Комментарий
1	PWRGOOD	Напряжение установлено	7	GND	Земля
2	VCC5	Напряжение питания +5В	8	GND	Земля
3	VCC12	Напряжение питания +12В	9		Не используется
4		Не используется	10	VCC5	Напряжение питания +5В

5	GND	Земля	11	VCC5	Напряжение питания +5В
6	GND	Земля	12	VCC5	Напряжение питания +5В

3.23 PWR2. Разъем ATX питания

Разъем предназначен для подачи питания на плату ZX Evolution при использовании стандартного ATX блока питания.

№	Название	Комментарий	№	Название	Комментарий
1		Не используется	11		Не используется
2		Не используется	12		Не используется
3	GND	Земля	13	GND	Земля
4	VCC5	Напряжение питания +5В	14	PS_ON	Включить питание
5	GND	Земля	15	GND	Земля
6	VCC5	Напряжение питания +5В	16	GND	Земля
7	GND	Земля	17	GND	Земля
8	PWRGOOD	Напряжение установлено	18		Не используется
9	VCC5STBY	Напряжение питания +5B standby	19	VCC5	Напряжение питания +5В
10	VCC12	Напряжение питания +12B	20	VCC5	Напряжение питания +5B

3.24 PWR3. Разъем питания

Разъем для подключения нестандартного источника питания.

Описание контактов:

№	Название	Комментарий	№	Название	Комментарий
1	VCC5	Напряжение питания +5В	3	GND	Земля
2	GND	Земля	4	VCC12	Напряжение питания +12В

3.25 GB1. Держатель батарейки питания часов

Предназначен для установки батарейки для питания энергонезависимой памяти и часов (PCF8583).

Рекомендуется устанавливать батарейки в CR2032 корпусе, напряжением 3 вольта.

Назначение джамперов (контактных перемычек) и кнопок

№	Название	По умолчанию	Описание			
J1	enable IDERES	разомкнуто	В замкнутом положении разрешает прохождение сигнала RESET на IDE разъем, что позволяет сбрасывать IDE устройства через сигнал интерфейса. Необходимо некоторым устаревшим моделям винчестеров (например, марки Samsung).			
J2,J3	set frequency	разомкнуто 1 3 2 0 0 0 J3	Настраивает коэфициент умножения PLL ICS501M (базовая частота 14MHz).			
		■●● J∠	Состояние	Значение частоты		
		1 3 2 1 - GND 2 - VCC5	J3:1-3 2 (S1=0) J2:1-3 2 (S0=0)	56MHz (4X input)		
		J2:3 - S0 J3:3 - S1	J3:1-3 2 (S1=0) J2:1 3 2 (S0=M)	74.375MHz (5.3125X input)		
			J3:1-3 2 (S1=0) J2:1 3-2 (S0=1)	70MHz (5X input)		
		J3:1 3 2 (S1=M) J2:1-3 2 (S0=0)		91MHz (6.25X input)		
			J3:1 3 2 (S1=M) J2:1 3 2 (S0=M)	28MHz (2X input)		
			J3:1 3 2 (S1=M) J2:1 3-2 (S0=1)	43.75MHz (3.125X input)		
			J3:1 3-2 (S1=1) J2:1-3 2 (S0=0)	84MHz (6X input)		
	J3:1 3-2 (S1=1) J2:1 3 2 (S0=M)			42MHz (3X input)		
		J3:1 3-2 (S1=1) J2:1 3-2 (S0=1)		112MHz (8X input)		
J4	12v enable	разомкнуто	В замкнутом положении на слоты подается напряжение питания +12В.			
J5	external clock	разомкнуто	В замкнутом положении повзоляет тактировать ATMEGA128 с внешнего источника, подключенного через AVR ISP разъем (X5)			
J6	soft reset key	разомкнуто	Группа контактов с двойным занчением: - для подключения кнопки «PWR SW» при использловании корпуса ATX; - мягкий сброс компьютера (без рестарта ATMEGA128).			

ZX Evolution. Руководство пользователя

J7	HRDY->IP	разомкнуто	В замкнутом состоянии сигнал HRDY притягивает к GND сигнал IP
Ј8	turbo key	разомкнуто	В замкнутом состоянии включает режим turbo. Предназначена для подключения кнопки «Turbo» AT корпуса.
J9	hard reset key	разомкнуто	В замкнутом положении сбрасывает компьютер включая сброс ATMEGA128. Предназначена для подключения кнопки «Reset» АТ или ATX корпуса.
VD3 ¹	HDD Led		Предназначено для подключения светодиода «HDD LED» корпуса AT или ATX
VD6 ²	PWR Led		Предназначено для подключения светодиода «PWR LED» корпуса АТ или АТХ
S1 ³	hard reset button		В замкнутом положении сбрасывает компьютер включая сброс ATMEGA128.

¹ Если вместо светодиода VD3 впаяна контактная пара (например, в собранных платах от NedoPC).

² Если вместо светодиода VD6 впаяна контактная пара (например, в собранных платах от NedoPC).

³ Не устанавливается на платах собранных от NedoPC.

5 Слоты ZXBUS

Компьютер ZX Evolution имеет два слота совместимые с ZXBUS.

Шаг контактов ZXBUS — 2.54мм. Будьте осторожны при установке плат производства 90-ых годов и ранее, у них шаг 2.5мм.

Первые контакты рядов слота отмечены квадратной площадкой. При установке в ATX корпус первый контакт будет ближним к задней стенке корпуса компьютера.

Внимание: При установке плат расширения следите, чтобы направляющий выступ платы расширения был со стороны первого контакта. Если плата расширения не оснащена направляющим выступом, то обязательно сверьтесь с руководством, поставляемым с платой. Помните, неправильная установка платы может привести к уничтожению элементов как платы, так и компьютера.

Внимание: Производитель ZX Evolution не несет отвественности за неработоспособность и возможные повреждения в случае использования плат расширения сторонних производителей. Также производитель ZX Evolution не берет на себя обязанности тестировать работоспосбность плат расширения от сторонних производителей. Вопросы совместимости решайте с производителями плат расширения.

Замечание: Если плата расширения требует питания +12B, то нужно установить перемычку (джампер) на контактную пару J4.

Описание контактов слота:

№	Название	Комментарий	№	Название	Комментарий
A1	A14	14 разряд шины адреса процессора	В1	A15	15 разряд шины адреса процессора
A2	A12	12 разряд шины адреса процессора	B2	A13	13 разряд шины адреса процессора
A3	+5V	Напряжение питания +5В	В3	D7	7 разряд шины данных процессора
A4	DCDOS	Сигнал работы в окне TRDOS	B4		Не используется
A5		Не используется	В5		Не используется
A6	GND	Земля	В6	D0	0 разряд шины данных процессора
A7	GND	Земля	В7	D1	1 разряд шины данных процессора
A8		Не используется	В8	D2	2 разряд шины данных процессора
A9	A0	0 разряд шины адреса процессора	В9	D6	6 разряд шины данных процессора
A10	A1	1 разряд шины адреса процессора	B10	D5	5 разряд шины данных процессора
A11	A2	2 разряд шины адреса процессора	B11	D3	3 разряд шины данных процессора
A12	A3	3 разряд шины адреса процессора	B12	D4	4 разряд шины данных процессора
A13	IORQGE	Сигнал подавления других блоков	B13	INT	Прерывание
A14	GND	Земля	B14	NMI	Немаскируемое прерывание
A15	CSROMCE	Разрешение выборки ROM	B15	HALT	Сигнал останова процессора
A16	RS	Сигнал переключения окна ROM	B16	MREQ	Запрос памяти процессором

ZX Evolution. Руководство пользователя

A17		Не используется	B17	IORQ	Запрос вывода в порт процессором
A18		Не используется	B18	RD	Чтение данных процессором
A19	BUSRQ	Запрос на DMA	B19	WR	Запись данных процессором
A20	RES	Сигнал сброса	B20		Не используется
A21	A7	7 разряд шины адреса процессора	B21	WAIT	Ожидание
A22	A6	6 разряд шины адреса процессора	B22		Не используется
A23	A5	5 разряд шины адреса процессора	B23		Не используется
A24	A4	4 разряд шины адреса процессора	B24	M1	Начало цикла обработки команды
A25	CSROM	Выбран ROM	B25	RFSH	Регенерация памяти
A26	BUSAK	Разрешение DMA	B26	A8	8 разряд шины адреса процессора
A27	A9	9 разряд шины адреса процессора	B27	A10	10 разряд шины адреса процессора
A28	A11	11 разряд шины адреса процессора	B28	+5V	Напряжение питания +5В
A29	+5V	Напряжение питания +5В	B29	+12V	Напряжение питания +12В
A30	GND	Земля	B30	GND	Земля
A31		Не используется	B31		Не используется

6 Установка платы в корпус ATX/miniATX

Формфактор платы ZX Evolution спроектирован с учетом простоты установки в стандартный корпус ATX или miniATX.

Внимание: В комплект поставки платы ZX Evolution не включены крепежная фурнитура и заглушки.

Этапы установки в подобный корпус:

- 1. Установите батарейку CR2032 или подобную в держатель GB1 на плате.
- 2. Установите плату на крепежи установочной пластины корпуса и закрепите винтами. Крепежную пластину установите в корпус. Разъемы платы (X10, X8, X13, X7, XSD1, X11) должны выходить в «окно» корпуса.
- 3. Подсоедините шлейф от блока питания к разъему PWR2.
- 4. Подсоедините шлейф RES SW от кнопки «Reset» на корпусе к контактной паре J9 «hard reset» на плате.
- 5. Подсоедините шлейф PWR SW от кнопки «Power» на корпусе к контактной паре J6 «soft reset» на плате.
- 6. Подсоедините шлейф IDE LED от светодиода «Ide» на корпусе к контактной паре VD3⁴ платы (положительный контакт имеет квадратную площадку).
- 7. Подсоедините шлейф PWR LED от светодиода «Power» на корпусе к контактной паре VD6⁵ платы (положительный контакт имеет квадратную площадку).
- 8. Установите Floppy привод(ы) 6 в корпус, подсоедините к ним питание и подсоедините шлейфом к разъему X1 платы.
 - **Внимание:** Шлейф для floppy привода отличается от стандартного PC шлейфа, пример шлейфа смотрите в приложении.
- 9. Установите IDE устройство(а) 7 в корпус, подсоедините к ним питание и подсоедините шлейфом к разъему X2 платы.
 - Внимание: Установить два IDE устройства можно только в режиме master/slave.

⁴ Если вместо светодиода VD3 впаяна контактная пара (например, в собранных платах от NedoPC).

⁵ Если вместо светодиода VD6 впаяна контактная пара (например, в собранных платах от NedoPC).

⁶ Floppy привод не является обязательным, плата работоспособна и без него.

⁷ IDE устройство не является обязательным, плата работоспособна и без него.

7 Установка платы в корпус АТ

Для установки платы в стандартный корпус АТ, необходимо доработать его следующим образом:

- сделать «окно» для разъемов платы на задней стенке корпуса;
- на крепежной пластине корпуса сделать отверстия и установочные фиксаторы согласно монтажным отверстиям на плате.

Внимание: В комплект поставки платы ZX Evolution не включены крепежная фурнитура и заглушки.

Этапы установки в подобный корпус:

- 1. Установите батарейку CR2032 или подобную в держатель GB1 на плате.
- 2. Установите плату на крепежи установочной пластины корпуса и закрепите винтами. Крепежную пластину установите в корпус. Разъемы платы (X10, X8, X13, X7, XSD1, X11) должны выходить в «окно» корпуса.
- 3. Подсоедините шлейф от блока питания к разъему PWR1.
- 4. Подсоедините шлейф RES SW от кнопки «Reset» на корпусе к контактной паре J9 «hard reset» на плате.
- 5. Подсоедините шлейф TURBO SW от кнопки «Turbo» на корпусе к контактной паре J8 «turbo key» на плате.
- 6. Подсоедините шлейф IDE LED от светодиода «Ide» на корпусе к контактной паре VD3⁸ платы (положительный контакт имеет квадратную площадку).
- 7. Подсоедините шлейф PWR LED от светодиода «Power» на корпусе к контактной паре VD6⁹ платы (положительный контакт имеет квадратную площадку).
- 8. Установите Floppy привод(ы) 10 в корпус, подсоедините к ним питание и подсоедините шлейфом к разъему X1 платы.
 - **Внимание:** Шлейф для floppy привода отличается от стандартного PC шлейфа, пример шлейфа смотрите в приложении.
- 9. Установите IDE устройство(а)¹¹ в корпус, подсоедините к ним питание и подсоедините шлейфом к разъему X2 платы.
 - Внимание: Установить два IDE устройства можно только в режиме master/slave.

⁸ Если вместо светодиода VD3 впаяна контактная пара (например, в собранных платах от NedoPC).

⁹ Если вместо светодиода VD6 впаяна контактная пара (например, в собранных платах от NedoPC).

¹¹ IDE устройство не является обязательным, плата работоспособна и без него.

8 Примечание 1. Подсоединение Floppy приводов

Контроллер floppy приводов для PC отличается в способе выбора текущего привода, что позволяет PC работать только с двумя приводами на шлейфе. Контроллер построенный на базе микросхемы KP1818BГ93 (WDC1793), разрешает работать одновременно с четырьмя приводами.

На floppy приводах для PC установлена (или впаяна) перемычка выбора диска так, что он определяется как «В» (второй) носитель, если подсоединить его к ZX Evolution. Чтобы подсоединить два привода от PC без их переделки нужно подготовить специальный шлейф:

Необходимо учитывать, что в TRDOS используется стандарт DD дискет и привода. Некоторые современные 3.5 дисковые приводы не поддерживают работу в режиме DD. В этом случае необходимо либо доработать привод, либо использовать те которые поддерживают режим DD.

Если вы желаете использовать HD 3.5 дискеты, то их необходимо доработать. Надо заклеить окно на дискете, чтобы она определялась как DD дискета.

