EA772U CIRCUITOS LÓGICOS 22/05/2012

Prova 2.1 Sem Consulta Duração: 100 minutos

Nome: RA:

Questão 1 (2,0) Dada a função lógica a seguir:

$$F(w, x, y, z) = \Sigma (0, 2, 4, 5, 7, 8, 9, 10, 13, 15)$$

- a) Minimize a função na forma de Soma de Produtos usando o Mapa de Karnaugh;
- b) Minimize a função na forma de Produto de Somas usando o Mapa de Karnaugh;
- c) Qual é a expressão mínima das obtidas acima? Quantas portas lógicas e quantas entradas são necessárias para implementá-la? Considere que as variáveis complementadas estão disponíveis.

Questão 2 (2,0) Obter a expressão mínima para a função a seguir, utilizando o método de Quine-McCluskey (determinar todos os implicantes primos e aplicar o algoritmo de seleção de implicantes primos):

$$F(w, x, y, z) = conjunto-um (1, 3, 4, 7, 8, 9, 11, 12, 15)$$

Questão 3 (2,0) Determinar a **tabela de estados mínima** equivalente à tabela de estados abaixo. Mostrar todos os passos de sua solução.

EA	Entrada			
	$\mathbf{x} = \mathbf{a}$	$\mathbf{x} = \mathbf{b}$	$\mathbf{x} = \mathbf{c}$	
A	D,0	C,1	E,0	
В	B,1	A,0	C,0	
C	G,1	D,0	F,0	
D	A,1	C,0	F,0	
Е	A,1	D,0	C,1	
F	G,1	C,0	D,1	
G	C,0	D,1	F,0	
	PE, saída			

Questão 4 (2,0) Projetar um contador síncrono cíclico que, dependendo do valor de uma variável de controle **C**, conte de acordo com as seqüências:

$$C = 1: 3, 1, 6, 2, 4, 3$$
 $C = 0: 2, 3, 7, 4, 0, 2$

Usar flip-flop do tipo JK para o bit mais significativo e flip-flops do tipo D para os demais bits do contador. Montar a **Tabela da Verdade** (coloque C como a entrada binária mais significativa) e mostrar os mapas de Karnaugh.

Tabelas de excitação dos flip-flops JK, D, SR e T

Q	Q+	J	K	D	S	R	T
0	0	0	X	0	0	X	0
0	1	1	X	1	1	0	1
1	0	X	1	0	0	1	1
1	1	X	0	1	X	0	0

Questão 5 (2,0) a) Obter os diagramas de estados reduzidos para os detectores do padrão 01010 **com** sobreposição e **sem** sobreposição. Mostrar todos os passos para a obtenção dos diagramas.

b) Projetar um detector com sobreposição dos padrões 1101 ou 0110 usando UM registrador de deslocamento (mostrar o esquema do circuito com os flip-flops do tipo D).

Questão 6 (2,0) Determinar as expressões lógicas para as entradas Da, Db, Dc, e Dd dos flipflops do tipo **D** usados no projeto "um flip-flop por estado" para o circuito següencial com a especificação a seguir. Lembrete: as entradas dos flip-flops são funções dos estados atuais (Qa, Qb, Qc, e Qd) e das entradas x_1 e x_0 .

Entradas binárias: x_1, x_0 Saída binária: Estados:

a, b, c, d

Funções de transição de estado e de saída

EA	$\mathbf{x}_1 \mathbf{x}_0$	$\mathbf{x}_1 \mathbf{x}_0$	$x_1 x_0$	
	01	10	11	
a	b,0	d,1	d,0	
b	a,0	c,1	c,0	
С	b,0	a,0	c,1	
d	b,0	d,0	a,1	
	PE, z	PE, z	PE, z	