Class 6: Introductory Machine Learning Terminology and Bias-Variance Tradeoff

MGSC 310

Prof. Jonathan Hersh

Class 6: Announcements

- TA Office Hours:
 - Tuesdays: 5:30 7
 - Thursdays: 12:30-2
 - Mondays: 5-6:30
- Quiz 2 posted, due Thursday @ midnight
- 3. Be sure you are following along with the course reading (ISLR pp 15-36 covered today)

4. Data Analytics Accelerator Info Sesh

Oct 5 @ 11am

Class 6: Outline

- 1. Fun with R ggridges
- 2. Classification vs Regression
- Supervised vs Unsupervised Learning

- 4. Bias and Variance
- 5. Bias-Variance Tradeoff

Fun with R: Ridgeline plots (upload compiled HTML file when done)

```
ibrary('dplyr')
 librarv('tidvr')
 library('tidyverse')
 library('ggridges')
 library('gganimate')
library('forcats')
movies <- read.csv(here::here("datasets", "IMDB_movies.csv"))</pre>
movies_clean <-
  movies %>%
  distinct() %>%
  mutate(budgetM = budget/1000000,
         grossM = gross/1000000,
         profitM = grossM - budgetM) %>%
  rename(director = director_name,
         title = movie_title,
         year = title_year) %>%
  relocate(title, year, country, director, budgetM, grossM, imdb_score) %>%
  filter(budgetM < 400)
```

What is classification?

Regression: outcome predicting is **continuous**

$$y_i \in R$$

Classification: outcome is discrete

$$y_i \in \{0,1\}$$

 $y_i \in \{red, black, blue, blond, green\}$

Regression examples

Classification examples

cour criteria for acceptance.

More classification examples

Supervised vs Unsupervised Learning

Supervised Learning:

- For every x_i we observe some y_i
- Ex: random forests to predict loan default (y_i) based on applicant characteristics (x_i)

Supervised Learning

Unsupervised Learning:

- We only observe x_i
- Ex: clustering loan applicants based on characteristics (x_i)

Supervised learning: learning f(X) our predicted out given inputs

$$Y = f(X) + \epsilon$$

 ϵ = "epsilon" (unexplained portion)

Example: education and income

"Estimating" $\hat{f}(X)$

- $Y = f(X) + \epsilon$ is the true value
- We can only use data to "guess" at f(X)
- We call this guess $\hat{f}(X)$

How do we know when we've selected a "good" $\hat{f}(X)$?

 We reserve a portion of our data into a "test" set, estimate a model on the other part, and see how our model performs on this test set

Testing Training Data Subsets

Training set: (observation-wise) subset of data used to develop models

Training

Test

Testing/Training Split

Training set: (observation-wise) subset of data used to develop models

Test set: subset of data used to assess machine learning model performance at end of modeling process

Rule of thumb 75% training 25% test -ish

Γraining

Test

Randomly Selecting Rows for Test or Training Sets

 Observations are randomly selected into either testing or training splits of the data

Splitting Data for Machine Learning

Bias and Variance

Bias: Tendency of an in-sample statistic to over or under estimate the statistic in the population

<u>Variance</u>: **Tendency to noisily estimate a statistic**.

E.g., sensitivity to small fluctuations in the training dataset.

Bias-Variance Tradeoff

Bias-Variance Tradeoff

Error in <u>Training</u> sample
 (~bias) ↓ as we ↑ model
 complexity (e.g. number of
 variables)

Error in <u>Test</u> sample
 (~variance) ↑ as we ↑

Key: finding optimal model complexity

Key: Finding Optimal Model Complexity

Optimal Model Complexity: Neither Underfit Nor Overfit

Mean Squared Error in Practice

$$MSE = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \hat{f}(x_i) \right)^2$$

 \sum means we add up anything with i, starting at i = 1 to i = n

y_i	\widehat{y}_i	$y_i - \widehat{y}_i$	$(y_i - \widehat{y}_i)^2$
5	5	0	0
5	7	2	2 ² =4
9	8	1	1 ² =1
10	1	1	9 ² =81
13	13	0	0

Example: Overfitting (True Relationship Linear)

Black line: true relationship

Data points (true relationship observed with noise)

Example: Overfitting (True Relationship Slightly Complicated)

Example: Overfitting (True Relationship Very Complicated)

Class 6 Summary

- Regression predicts a continuous outcome
- Classification predicts a discrete outcome
- Supervised models contain a y_i (target/outcome variable) for every x_i (descriptor variables)
- Unsupervised models contain only x_i
- Training data is the data we will use to estimate our model parameters
- Testing data is the data used to evaluate our model performance
- **Bias:** tendency of an in-sample statistic to over or underestimate the true value

- Variance: tendency to noisily estimate that statistic
- Bias-Variance tradeoff is the idea that total error is composed of both bias and variance, and we care about minimizing both together