Step-1

When the primal is expressed as above, we get the dual as follows:

Maximize yb, subject to $y \ge 0$, $yA \le c$.

Note that the solution of this should be unbounded.

Step-2

Consider the following problem:

Minimize 2x, subject to $x \ge 0$, $-2x \ge 1$.

This is unfeasible problem, because when $x \ge 0$, we cannot get $-2x \ge 1$.

Step-3

In the above problem, c = 2, b = 1, $A = \begin{bmatrix} -2 \end{bmatrix}$.

Therefore, the dual problem is as follows:

Maximize y, subject to $y \ge 0$, $-2y \le 2$.

This is undoubtedly an unbounded problem, because as we go on increasing the value of y, the quantity $\hat{a} \in 2y$ remains permanently below 2.

Step-4

Thus, a required problem is: Minimize 2x, subject to $x \ge 0$, $-2x \ge 1$.