Bhoris Dhanjal

Calculus IV

Contents

1	Fun	actions of several variables	1
	1.1	Examples of functions of several variables	1
	1.2	Non-existence of limit by 2 path test	1
	1.3	Existence of limit with ε, δ definition	2
	1.4	Continuity	3
	1.5	Polar Coordinates	4
		1.5.1 Limits in Polar coordinates	5
		1.5.2 Epsilon-delta with polar coordinates	5
	1.6	Algebra of limits	5
	1.7	General multivariate limit	6
	1.8	Iterated (Repeated) limits	6
	1.9	Limits in 3 variables	9
		1.9.1 Two path test for non-existence of limit	9
2	Diff	ferentiation	11
	2.1	Partial derivatives	11
	2.2	Gradient	11
	2.3	Level curves	12
	2.4	Total derivative	12
	2.5	How to show not differentiable, maximizing direcitonal derivative	13
	2.6	Lagrange mean value theorem in \mathbb{R}^n	14
3	Apı	olications	16

Chapter 1

Functions of several variables

1.1 Examples of functions of several variables

$$f(x,y) = x + y \log x$$
 $f: \mathbb{R}^2 \to \mathbb{R}$ Scalar valued function $f(x,y) = (x^2y,\cos x,e^x - 9)$ $f: \mathbb{R}^2 \to \mathbb{R}^3$ Vector valued function

Clearly, $f: \mathbb{R} \to \mathbb{R}$ is a particular case of scalar valued function.

1.2 Non-existence of limit by 2 path test

For a function $f: \mathbb{R} \to \mathbb{R}$ the limit exists if limit value is the same along all possible paths, i.e. left hand and right hand limit are equivalent.

For a multivariate function the 2 path test can be used to show non existence of a limit.

Example 1.1. Show that $\lim_{(x,y)\to(0,0)} \frac{2xy^2}{x^2+y^2}$ doesn't exist.

Proof. Consider $x = my^2$ and let $y \to 0$, then

$$\lim_{y \to 0} f(my^2, y) = \lim_{y \to 0} \frac{2my^4}{(m^2 + 1)y^2} = \frac{2m}{1 + m^2}$$

Therefore, the limit value varies for different values of m.

Example 1.2. Show that $\lim_{(x,y)\to(0,0)} \frac{x+y}{x-y}$ doesn't exist.

Proof. Consider first along x axis (i.e. y = 0)

$$\lim_{x \to 0} \frac{x}{x} = 1$$

Consider now along y axis (i.e. x = 0)

$$\lim_{y \to 0} \frac{y}{-y} = -1$$

Since the limit is not path independent we can say the limit does not exist. \Box

Example 1.3. Show that $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4+y^2}$ doesn't exist.

Proof. Along x and y axis the limits are both zero. Consider instead the path $y = x^2$

$$\lim_{x \to 0} \frac{x^4}{2x^4} = \frac{1}{2}$$

Since the limit is not path independent it does not exist.

Example 1.4. Show that the $\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2+y^2-2x}$ doesn't exist.

Proof. Along x, y axis the limit is 0. Consider the path $y = \sqrt{2x}$

$$\lim_{x \to 0} \frac{x^2}{x^2} = 1$$

Since the limit is not path independent it does not exist.

1.3 Existence of limit with ε, δ definition

Recall the single variable definition of a limit,

Definition 1.5 (Limit of a single valued function). For a function $f: \mathbb{R} \to \mathbb{R}$, $\lim_{x\to a} f(x) = L \iff \forall \varepsilon > 0, \exists \delta \text{ such that } 0 < |x-a| < \delta \implies |f(x)-L| < \varepsilon$

Definition 1.6 (Limit of a multivariate function). For a function $f: \mathbb{R}^2 \to \mathbb{R}$, $\lim_{(x,y)\to(a,b)} f(x) = L \iff \forall \varepsilon > 0, \exists \delta \text{ such that}$

$$0<||(x,y)-(a,b)||_2<\delta\implies|f(x,y)-L|<\varepsilon$$

, alternatively

$$\sqrt{(x-a)^2 + (x-b)^2} < \delta \implies |f(x,y) - L| < \varepsilon$$

Example 1.7. Show that $\lim_{(x,y)\to(0,0)} \frac{x-y}{1+x^2+y^2} = 0$

Proof. Let $\varepsilon > 0$, consider

$$|f(x,y) - L| = |f(x,y)| = \left| \frac{x - y}{1 + x^2 + y^2} \right|$$

= $\frac{|x - y|}{1 + x^2 + y^2}$

since $1 + x^2 + y^2 \ge 1$

$$\leq |x - y|$$

$$\leq |x| + |y|$$

$$\leq \sqrt{x^2 + y^2} + \sqrt{x^2 + y^2} = 2\sqrt{x^2 + y^2}$$

Therefore, if $2\sqrt{x^2+y^2}<\varepsilon \implies |f(x,y)-L|<\varepsilon$ so take $\delta=\varepsilon/2$.

Example 1.8 (H.W). Show that $\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^2} = 0$

Proof. Let $\varepsilon > 0$, consider

$$|f(x,y) - L| = \left| \frac{xy^2}{x^2 + y^2} - 0 \right| = \frac{|x|y^2}{x^2 + y^2}$$

$$= \frac{|x|}{\frac{x^2}{y^2} + 1}$$

$$\leq |x|$$

$$\leq \sqrt{x^2 + y^2} < \varepsilon \implies |f(x,y) - L| < \varepsilon$$

So we can just pick $\delta = \varepsilon$.

1.4 Continuity

Definition 1.9 (Continuity). A function $f : \mathbb{R}^2 \to \mathbb{R}$ is said to be continuous at a point (a,b) if $\forall \varepsilon > 0, \exists \delta > 0$ such that,

$$0 < ||(x,y) - (a,b)||_2 < \delta \implies |f(x,y) - f(a,b)| < \varepsilon$$

provided f(a,b) exists. Alternatively,

$$\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b)$$

Note that, we can show the function is discontinuous if

- 1. f(a,b) doesn't exist.
- 2. $\lim_{(x,y)\to(a,b)} f(x,y)$ doesn't exist.
- 3. Both exist but are not equal to each other.

Example 1.10. Show that the given function is continuous at (0,0) where,

$$f(x,y) = \begin{cases} xy\left(\frac{x^2 - y^2}{x^2 + y^2}\right) & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Proof. Here, f(0,0) = 0. Clearly we have that $|x^2 - y^2| \le |x^2 + y^2|$. Let $\varepsilon > 0$,

$$|f(x,y) - L| = \left| xy \frac{x^2 - y^2}{x^2 + y^2} - 0 \right|$$
$$= |x||y| \left| \frac{x^2 - y^2}{x^2 + y^2} \right|$$
$$\le |x||y|$$

$$\leq \sqrt{x^2 + y^2} \sqrt{x^2 + y^2} = x^2 + y^2$$

So when $x^2 + y^2 < \varepsilon \implies |f(x,y) = f(0,0)| < \varepsilon$ so we take $\delta = \sqrt{\varepsilon}$.

Example 1.11. Show that the given function is discontinuous at (0,0) where,

$$f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Proof. content...

1.5 Polar Coordinates

The polar coordinates r(the radial coordinate) and θ (the angular coordinate), are defined in terms of cartesian coordinates as below.

$$x = r\cos\theta, y = r\sin\theta$$
$$r = \sqrt{x^2 + y^2}, \theta = \arctan\left(\frac{y}{x}\right)$$

1.5.1 Limits in Polar coordinates

Use polar coordinates when you are over (0,0)

Example 1.12. Show that $\lim_{(x,y)\to(0,0)} \frac{2xy}{x^2+y^2}$ doesn't exist.

Proof. Put $x = r \cos \theta$ and $y = r \sin \theta$

$$f(x,y) = \frac{2xy}{x^2 + y^2} \iff f(r,\theta) = \frac{2r^2 \cos \theta \sin \theta}{r^2} = 2\cos \theta \sin \theta$$
$$\lim_{r \to 0} f(r,\theta) = \lim_{r \to 0} 2\cos \theta \sin \theta = 2\cos \theta \sin \theta$$

Which depends on θ .

1.5.2 Epsilon-delta with polar coordinates

Definition 1.13. $\lim_{r\to 0} f(r,\theta) = L \iff \forall \varepsilon > 0 \exists \delta > 0 s.t.$

$$0 < |r| < \delta \implies |f(r,\theta) - L| < \varepsilon$$

Example 1.14. Show that $\lim_{(x,y)\to(0,0)} \frac{x^3}{x^2+y^2}$

Proof.

$$f(r,\theta) = \frac{r^3 \cos^3 \theta}{r^2} = r(\cos \theta)^3 \tag{1.1}$$

Let $\varepsilon > 0$, consider $|f(r,\theta) - L| = |r| |\cos \theta|^3 \le |r|$. So we can set $\delta = \varepsilon$

Example 1.15. Find the domain and range of
$$g(x,y) = \sqrt{9-x^2-y^2}$$

Proof. The sqrt interior must be positive so take $x^2 + y^2 \le 9$, so its a circle of radius 3 centred at 0. So the domain is the circle. The range is $\{z \mid 0 \le z \le 3\} = [0,3]$

1.6 Algebra of limits

Let $f, g: \mathbb{R}^n \to \mathbb{R}, p \in \mathbb{R}^n$ and $k_1, k_2 \in \mathbb{R}$.

Theorem 1.16. If $\lim_{x\to p} f(x) = L_1$, $\lim_{x\to p} g(x) = L_2$, then

- $\lim_{x \to p} (k_1 f(x) + k_2 g(x)) = k_1 L_1 + k_2 L_2$
- $\bullet \lim_{x \to p} (f(x)g(x)) = L_1 L_2$
- For non-zero L_2 , $\lim_{x\to p}(f(x)/g(x))=L_1/L_2$

1.7 General multivariate limit

Theorem 1.17 (Limit of a function $f : \mathbb{R}^n \to \mathbb{R}$). For a function $f : \mathbb{R}^n \to \mathbb{R}$, $\lim_{x\to a} f(x) = L$ if and only if $\forall \varepsilon > 0$ there exists $\delta > 0$ such that

$$0 < ||x - a||_n < \delta \implies |f(x) - L| < \varepsilon$$

Definition 1.18 (ε - neighbourhood). $B(a, \varepsilon)$ open ball of radius ε around α .

$$0 \le ||x - a||_n < \varepsilon$$

Definition 1.19 (Deleted ε neighbourhood). $B(a, \varepsilon) - \{a\}$

Definition 1.20 (Alternate definition of a limit). For a function $f : \mathbb{R}^n \to \mathbb{R}$, $\lim_{x\to a} f(x) = L$ if and only if $\forall \varepsilon > 0$ there exists $\delta > 0$ such that

$$x \in B * (a, \delta) \implies |f(x) - L| < \varepsilon$$

Definition 1.21 (Bounded function). Let E be a non-empty subset of \mathbb{R}^n . The function $f: E \to \mathbb{R}$ is said to be bounded in some δ -neighbourhood of point $p \in \mathbb{R}^n$ if there exists M > 0 in \mathbb{R} such that

$$|f(x)| \le M \forall x \in B(p, \delta)$$

Definition 1.22 (Relation between bounded function and limit of a function in \mathbb{R}^n). Let $f: \mathbb{R}^n \to \mathbb{R}$ and $p \in \mathbb{R}^n$. Let f(p) be defined. If $\lim_{x\to p} f(x)$ exists then f is bounded in some neighbourhood of point p.

The converse of 1.22 isn't true.

Theorem 1.23 (Uniqueness of limit in \mathbb{R}^n). Let $f: \mathbb{R}^n \to \mathbb{R}$ and $p \in \mathbb{R}^n$. If $\lim_{x \to p} f(x)$ exists then it is unique.

1.8 Iterated (Repeated) limits

Let $(a,b) \in E$ and $f: E \to \mathbb{R}$ be a function where $E \subseteq \mathbb{R}^2$,

1. Suppose there exists $\delta > 0$ such that $\forall x$ with $0 < |x - a| < \delta$, we have $\lim_{y \to b} f(x, y)$ exists.

Define a new function $g : \mathbb{R} \to \mathbb{R}$ as $g(x) = \lim_{y \to b} f(x, y)$. If $\lim_{x \to a} g(x)$ exists then this limit is called **iterated limit** which is given by $\lim_{x \to a} g(x) = \lim_{x \to a} \lim_{y \to b} f(x, y)$.

2. Suppose there exists $\delta > 0$ such that $\forall y$ with $0 < |y - b| < \delta$, we have $\lim_{x \to a} f(x, y)$ exists

Theorem 1.24. Existence of double limit does not imply existence of iterated limit.

Proof. Consider $f: \mathbb{R}^2 \to \mathbb{R}$ defined as,

$$f(x,y) = \begin{cases} x \sin\left(\frac{1}{y}\right) & y \neq 0\\ 0 & y = 0 \end{cases}$$

We show that $\lim_{(x,y)\to(0,0)} f(x,y)=0$ i.e. double limit exists. Let $\varepsilon>0$. Consider then

$$|f(x,y) - L| = |x\sin(1/y) - 0| = |x| |\sin(1/y)| \le |x|$$

$$\le \sqrt{x^2}$$

$$\le \sqrt{x^2 + y^2}$$

so $\sqrt{x^2+y^2}<\varepsilon \implies |f(x,y)-L|<\varepsilon$. So choose $\delta=\varepsilon$. We will now check its iterated limit.

$$\lim_{x} \lim_{y} f(x, y) = \lim_{x \to 0} \left[\lim_{y \to 0} x \sin \frac{1}{y} \right]$$
$$= \lim_{x \to 0} x \left[\lim_{y \to 0} \sin \frac{1}{y} \right]$$

The limit inside doesn't exist.

Claim that $\lim_y \phi(y) = \lim_y \sin 1/y$ doesn't exist, Take $a_n = \frac{1}{(4n+1)\pi/2}, b_n = \frac{1}{(4n-1)\pi/2}$. The sequences converge to zero but their sequences $\phi a_n, \phi b_n$ dont converge to the same limit.

Example 1.25 (Both iterated limits exist but double limit doesn't exist). consider $f : \mathbb{R}^2 \to \mathbb{R}$, defined as

$$f(x,y) = \begin{cases} \frac{x^2}{x^2 + y^2 - x} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Proof. Begin with two part test to show that the double limit does not exist. Consider first the path x = y the limit is 0,

$$\lim_{(x,y)\to(0,0)} \frac{y^2}{y^2 + y^2 - y} = \lim_{(x,y)\to(0,0)} \frac{y}{2y - 1} = 0$$

Then consider the path $x = y^2$

$$\lim_{(x,y)\to(0,0)} \frac{y^4}{y^4 + y^2 - y^2} = \lim_{(x,y)\to(0,0)} \frac{y^4}{y^4} = 1$$

So double limit does not exist.

Now consider the iterated limits,

$$\lim_{x \to 0} \lim_{y \to 0} f(x, y) = \lim_{x \to 0} \left[\lim_{y \to 0} \frac{x^2}{x^2 + y^2 - x} \right]$$
$$= \lim_{x \to 0} \frac{x^2}{x^2 - x} = 0$$

Now consider

$$\lim_{y \to 0} \lim_{x \to 0} = \lim_{y \to 0} \frac{0}{y^2} = 0$$

Example 1.26 (Both iterated limits exist (not equal) but double limit doesn't exist). Consider $f: \mathbb{R}^2 \to \mathbb{R}$ definde as,

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Proof. First show that the double limit does not exist.

Consider the bath x=0 the limit is equal to 1. Consider the path x=y we will have the limit equal to 0.

Consider now the iterated limits,

$$\lim_{x \to 0} \lim_{y \to 0} \frac{x^2 - y^2}{x^2 + y^2} = \lim_{x \to 0} 1 = 1$$

And now the other direction,

$$\lim_{y \to 0} \lim_{x \to 0} \frac{x^2 - y^2}{x^2 + y^2} = \lim_{y \to 0} -1 = -1$$

Theorem 1.27. Suppose $\lim_{(x,y)\to(0,0)} f(x,y)$ exists and is equal to L. If both iterated limits exist then, the iterated limits are both equal to L.

Proof. Given that $\lim_{(x,y)\to(a,b)} f(x,y) = L$. Let $\lim_{y\to b} f(x,y) = g(x)$. Let $\varepsilon > 0$, then there exists $\delta_1 > 0$ s.t.

$$0 < ||(x,y) - (a,b)||_2 < \delta_1 \implies |f(x,y) - L| < \frac{\varepsilon}{2}$$

and there exists $\delta_2 > 0$ such that

$$0 < |y - b| < \delta_2 \implies |f(x, y) - g(x)| < \frac{\varepsilon}{2}$$

Define $\delta = \min\{\delta_1, \delta_2\}$. Then $\delta \leq \delta_1, \delta \leq \delta_2$ which gives

$$0 < |y - b| \le \sqrt{(x - a)^2 + (y - b)^2} < \delta \implies |f(x, y) - L| \frac{\varepsilon}{2}$$
$$0 < |y - b| < \delta \implies |f(x, y) - g(x)| < \varepsilon/2$$

With respect to $0 < |x - a| < \delta$ consider

$$|g(x) - L| = |g(x) + f(x,y) - f(x,y) - L| = |f(x,y) - L) - (f(x,y) - g(x))|$$

$$\leq |f(x,y) - L| + |f(x,y) - g(x)|$$

$$< \varepsilon/2 + \varepsilon/2 = \varepsilon$$

Thus $\forall \varepsilon > 0, \exists \delta > 0$ s.t. Complete this later...

Do the same thing for h(y).

1.9 Limits in 3 variables

1.9.1 Two path test for non-existence of limit

Two path can be used for non-existence of a limit in 3 variables. However a single equation is not enough to define a path in \mathbb{R}^3 two Cartesian equations are required for a path in \mathbb{R}^3 .

Example 1.28. Show that

$$\lim_{(x,y,z)\to(0,0,0)} \frac{x^2+y^2-z^2}{x^2+y^2+z^2}$$

Proof. Take y = x, z = x then

$$\lim_{x \to 0} \frac{x^2}{3x^2} = \frac{1}{3}$$

Take other path y = x, z = 0

$$\lim_{x \to 0} \frac{2x^2}{2x^2} = 1$$

Definition 1.29 (Limit of a function $\mathbb{R}^3 \to \mathbb{R}$). For a function $f: \mathbb{R}^3 \to \mathbb{R}$, $\lim_{(x,y,z)\to(a,b,c)} f(x,y,z) = L$ if and only if $\forall \varepsilon > 0, \exists \delta > 0$ such that

$$0<||(x,y,z)-(a,b,c)||_3<\delta\implies|f(x,y,z)-L|<\varepsilon$$

i.e.

$$0 < \sqrt{(x-a)^2 + (y-b)^2 (z-c)^2} < \delta \implies |f(x,y,z) - L| < \varepsilon$$

Definition 1.30 (Continuity of a function $\mathbb{R}^3 \to \mathbb{R}$). Replace L with f(a,b,c).

Example 1.31. Show that

$$\lim_{(x,y,z)\to(1,2,3)} 4x + 2y + z = 11$$

using epsilon delta

Proof. Let $\varepsilon > 0$ consider,

$$|f(x, y, z) - L| = |4x + 2y + z - 11|$$

$$= |(4x - 4) + (2y - 4) + (z - 3)|$$

$$\leq 4|x - 1| + 2|y - 2| + |z - 3|$$

$$\leq 4\sqrt{(x - 1)^2} + 2\sqrt{(y - 2)^2} + \sqrt{(z - 3)^2}$$

$$\leq 7\sqrt{(x - 1)^2 + (y - 2)^2 + (z - 3)^3}$$

So take $\delta = \varepsilon/7$

Example 1.32. Evaluate $\lim_{(x,y)\to(3,3)} \frac{x^2+xy-2y^2}{x^2-y^2}$

Proof. Factorize (x-y) on numerator and denominator then just plug and chug.

Chapter 2

Differentiation

2.1 Partial derivatives

Partial derivates are defined as derivatives of a function of multiple variables when all but the variable of interest are held fixed during the differentiation. For a function f in n variables x_1, x_2, \ldots, x_n we can define the m^{th} partial derivative as,

$$f_{x_m} = \frac{\partial f}{\partial x_m} = \lim_{h \to 0} \frac{f(x_1, \dots, x_m + h, \dots, x_n) - f(x_1, \dots, x_m, \dots, x_n)}{h}$$

Partial derivatives can be taken with respect to multiple variables and are denoted as follows,

$$\frac{\partial^2 f}{\partial x^2} = f_{xx}$$
$$\frac{\partial^2 f}{\partial x \partial y} = f_{xy}$$
$$\frac{\partial^3 f}{\partial x^2 \partial y} = f_{xxy}$$

Theorem 2.1. $E \subseteq \mathbb{R}^2$ Let f_x, f_y, f_{xy}, f_{yx} exist. If f_{xy}, f_{yx} are continuous at (a,b) then $f_{xy}(a,b) = f_{yx}(a,b)$

2.2 Gradient

Definition 2.2 (Gradient). For $f: \mathbb{R}^3 \to \mathbb{R}$

$$\nabla f = \frac{\partial f}{\partial x}i + \frac{\partial f}{\partial y}j + \frac{\partial f}{\partial z}k = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$

Example 2.3. If $f(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$ find ∇f_p where $p = (\sqrt{2}, \sqrt{2}, -3)$

Proof.

$$f_x = \frac{-x}{(x^2 + y^2 + z^2)^{3/2}}$$

Example 2.4. Find ∇f at $p = (0, \pi/2)$ if $f(x, y) = \sin(xy)$ and its norm at p.

Theorem 2.5 (Chain rule for two variables). If w = f(x, y) has continuous p.d. f_x, f_y and if x = x(t), y = y(t) are differentiable functions of t then the composite function $w \circ f(x(t), y(t))$ is a differentiable function of t and

$$\frac{df}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

Example 2.6. If $u = x^2 + y^2$ and $x = at^2$ and y = 2at find $\frac{du}{dt}$

Proof.

$$\frac{du}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

Consider the two partial derivatives first,

$$f_x = 2x, f_y = 2y$$

Now $\frac{dx}{dt}=2at, \frac{dy}{dt}=2a$ So we have $\frac{du}{dt}=2x(2at)+2y(2a)=4a^2(t^3+2t)$

2.3 Level curves

Definition 2.7. The level curves of a function f of two variables are curves with equations f(x,y) = k where k is a constant (in the range of f).

Theorem 2.8. The vector $\nabla f(x,y)$ is normal (perpendicular to tangent) to level curve of f.

2.4 Total derivative

If function is differentiable then $D_u f(a) = \langle \nabla f_a, u \rangle$

2.5 How to show not differentiable, maximizing directional derivative

Example 2.9. If $x = e^u \cos v$, $y = e^u \sin v$ then prove that

$$y\frac{\partial z}{\partial u} + x\frac{\partial z}{\partial v} = e^{2u}\frac{dz}{???}$$

Example 2.10. Find D.D. of $\phi = xy^2 + yz^3$ at (2, -1, 1) in direction of i + 2j + 2k. Also find direction and magnitude of greater D.D. at that point.

Proof. Find $(\nabla \phi)=i-3j-3k$.

Then
$$(D_u\phi)_p = (\nabla\phi)_p\hat{u} = (i-3j-3k)\cdot(i/3+2j/3+2k/3) = -\frac{11}{3}$$

Greatest D.D. is normal to the curve and its magnitude is norm of the gradient. $||(\nabla \phi)_p|| = \sqrt{19}$

Example 2.11. Find acute angle between surfaces at (2, -1, 2), $x^2+y^2+z^2=9$ and $z=x^2+y^2+3$

Proof. Acute angle between the surfaces is equal to the acute angles between its normals.

$$f = x^2 + y^2 + z^2, g = x^2 + y^2 - z$$

$$(\nabla f)_p = 4i - 2j + 4k = u$$
$$(\nabla q)_p = 4i - 2j - k = v$$

We require the angle between u, v so,

$$\cos \theta = \frac{u \cdot v}{||u||||v||} = \frac{(4i - 2j + 4k) \cdot (4i - 2j - k)}{\sqrt{16 + 4 + 16}\sqrt{16 + 4 + 1}}$$

$$= \frac{16 + 4 - 4}{\sqrt{36}\sqrt{21}}$$

$$= \frac{16}{6\sqrt{21}}$$

$$= \frac{8}{3\sqrt{21}}$$

So
$$\theta = \arccos\left(\frac{8}{3\sqrt{21}}\right)$$

To find the eq. of the line/tangent to the curve find its gradient and dot product with p and equate to zero. that gives you equation of tangent line/tangent.

Equation of line L through A parallel to \overline{V} . As $L||\overline{V}|$ we have $\overline{AB}||\overline{V}|$

$$(x-a_1)i + (y-a_2)j + (z-a_3)k||v_1i + v_2j + v_3j|$$

so we get

$$t = \frac{x - a_1}{v_1} = \frac{y - a_2}{v_2} = \frac{z - a_3}{v_3}$$

In view of this equation of normal at p is

$$\frac{x - x_0}{(f_x)p} = \frac{y - y_0}{(f_y)p} = \frac{z - z_0}{(f_z)_p}$$

Example 2.12. Find the equation of tangent plane and normal line to surface f(x, y, z) = f(p) at p = (1, 2, 3)???

Proof. Equation of tangent is

Equation of normal line at p is given by

$$\frac{x-1}{-24} = \frac{y-2}{-1} = \frac{z-3}{1}$$

2.6 Lagrange mean value theorem in \mathbb{R}^n

Theorem 2.13. Let E be an open set in \mathbb{R}^n . Let $f: E \to \mathbb{R}$ be differentiable. If $a, b \in E$ then $\exists \theta \in (0, 1)$ such that,

$$f(b) - f(a) = \langle \nabla f(a + \theta(b - a)), (b - a) \rangle$$

Proof. Consider a unit vector $u = \frac{b-a}{||b-a||}$ let $||b-a|| = r \in \mathbb{R}$.

Then we have $||b-a|| = r \in \mathbb{R}$.

Define a function $g:[0,r]\to\mathbb{R}$ as $g(t)=f(a+tu), \forall t\in[0,r]$.

Then g is continuous on [0, r] and differentiable on (0, r). Applying LMVT (in \mathbb{R}) to this function g.

Therefore, there exists $c \in (0, r)$ such that

$$g'(c) = \frac{g(r) - g(0)}{r - 0}$$

$$\lim_{h \to 0} \frac{content...}{den} =$$

$$\vdots$$

$$D_u f(a + cu) = \frac{1}{r} (f(b) - f(a))$$

$$\langle \nabla f(a + cu), u \rangle = \frac{1}{r} (f(b) - f(a))$$

Let $\theta = \frac{c}{r}$ so $\theta \in (0,1)$

$$\frac{1}{r}(f(b) - f(a)) = \langle \nabla f\left(a + c\left(\frac{b - a}{r}\right)\right), \frac{b - a}{r}\rangle$$

Since $\langle u, \alpha v \rangle = \overline{\alpha} \langle u, v \rangle$ So we get the 1/r out and cancel from both sides giving the desired result.

Example 2.14. Find $\theta \in (0,1)$ in MVT for the function $f: \mathbb{R}^3 \to \mathbb{R}$ defined as

$$f(x, y, z) = xy + yz + zx$$

take
$$a = (0,0,0), b = (2,1,1)$$

Proof.

$$f(b) - f(a) = \langle \nabla f(a + \theta(b - a)), (b - a) \rangle$$

$$f(2, 1, 1) - f(0, 0, 0) = \langle \nabla f(\theta(2, 1, 1)), (2, 1, 1) \rangle$$

$$5 = \langle \nabla f(2\theta, \theta, \theta), (2, 1, 1) \rangle$$

Gradient is given as $\nabla f = (y+z)i + (x+z)j + (x+y)k$

$$\begin{split} 5 &= \langle (2\theta, 3\theta, 3\theta), (2, 1, 1) \rangle \\ 5 &= 4\theta + 3\theta + 3\theta \\ \theta &= \frac{1}{2} \end{split}$$

Chapter 3

Applications