Plan Analyse des boucles Pour Analyse des boucles Tant Que Analyse de schémas récursifs

Complexité des algorithmes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Licence ST-A, USTL - API2

5 octobre 2009

Complexité des algorithmes (2)

Licence ST-A, USTL - API2

Plan

Analyse des boucles Pour

Analyse des boucles Tant Que

Analyse de schémas récursifs O O

Coût d'une boucle pour

Dans la boucle

pour i variant de a à b faire
 ACTION(i)
fin pour

si f(i) désigne le coût de l'exécution de ACTION(i), alors le coût de la boucle est

$$c = \sum_{i=a}^{b} f(i)$$

Complexité des algorithmes (2) Licence ST-A, USTL - API2

Plan Analyse des boucles Pour Analyse des boucles Tant Que Analyse de schémas récursifs

Analyse des boucles Pour

Exemple

Formules

Analyse des boucles Tant Que

Exemple

Analyse de schémas récursifs

Exemple 1 : factorielle

Exemple 2 : Tours de Hanoï

Principe général

Complexité des algorithmes (2)

Licence ST-A, USTL - API2

Plan

Analyse des boucles Pour

Analyse des boucles Tant Que

Analyse de schémas récursifs

Exemple

Tri par insertion (algo)

Algo

Données : un tableau A[1..n] d'entiers **But :** trier le tableau A par ordre croissant

Var. locales : i

pour i variant de 2 à n faire
 inserer(A,i)
fin pour

Complexité des algorithmes (2) Licence ST-A, USTL - API2

Exemple

Tri par insertion (coût)

Le coût de l'algorithme dépend

- 1. de la taille *n* du tableau
- 2. du contenu du tableau
- 3. du coût des opérations élémentaires (échanges, comparaisons, accès)

Nous nous intéressons

- 1. au nombre d'échanges d'éléments du tableau e(A, n),
- 2. et au nombre de comparaisons d'éléments du tableau c(A, n)

Complexité des algorithmes (2)

Licence ST-A, USTL - API2

Plan Analyse des boucles Pour

Analyse des boucles Tant Que

Analyse de schémas récursifs o o

Exemple

Tri par insertion (coût)

Comme on a vu que

$$0 < e'(A, i) < i - 1$$

et

$$1 \le c'(A,i) \le i-1$$

on a

$$0 = \sum_{i=2}^{n} 0 \le e(A, n) \le \sum_{i=2}^{n} i - 1 = \sum_{i=1}^{n-1} i = \frac{n(n-1)}{2}$$

et

$$n-1=\sum_{i=2}^n 1 \le c(A,n) \le \sum_{i=2}^n i-1=\sum_{i=1}^{n-1} i=\frac{n(n-1)}{2}$$

Exemple

Tri par insertion (coût)

En désignant par e'(A, i) et c'(A, i) les nombres d'échanges et de comparaisons dans l'action inserer(A, i), on a

$$e(A, n) = \sum_{i=2}^{n} e'(A, i)$$

$$c(A, n) = \sum_{i=2}^{n} c'(A, i)$$

Complexité des algorithmes (2)

Licence ST-A, USTL - API2

Plan

Analyse des boucles Pour

Analyse des boucles Tant Que

Analyse de schémas récursifs o o

Exemple

Tri par insertion (conclusion)

Encadrements obtenus:

 $0 \le e(A, n) \le \frac{n(n-1)}{2} = \Theta(n^2)$

et

$$\Theta(n) = n - 1 \le c(A, n) \le \frac{n(n-1)}{2} = \Theta(n^2)$$

Bornes des encadrements atteintes

- borne inférieure atteinte pour un tableau déjà trié
- borne supérieure atteinte pour un tableau trié dans l'ordre inverse

Formules

Exemples de sommes

•

$$\sum_{i=1}^{n} 1 = n$$

 \blacktriangleright

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} = \Theta(n^2)$$

•

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} = \Theta(n^3)$$

▶ Plus généralement pour $k \in \mathbb{N}$,

$$\sum_{i=1}^{n} i^{k} = \Theta(n^{k+1})$$

▶ Si $q \neq 1$

$$\sum_{i=0}^{n} q^{i} = \frac{q^{n+1}-1}{q-1} = \Theta(q^{n})$$

Complexité des algorithmes (2)

Licence ST-A, USTL - API2

Plan

Analyse des boucles Pour

Analyse des boucles Tant Que

Analyse de schémas récursifs o o

Coût d'une boucle tant que

Dans la boucle

tant que
$$C(x)$$
 faire ACTION(x) fin tant que

en notant

- ▶ x_0 la valeur initiale de la donnée x, et x_1 , x_2 , ..., x_k les valeurs qu'elle prend successivement à chaque étape, x_{k+1} la première valeur de la donnée pour laquelle $C(x_{k+1})$ n'est pas satisfaite,
- ▶ $g(x_i)$ le coût de la condition $C(x_i)$,
- et $f(x_i)$ le coût de l'action ACTION (x_i) ,

le coût de la boucle est

$$c = \sum_{i=0}^{k} f(x_i) + \sum_{i=0}^{k+1} g(x_i)$$

Analyse des boucles Pour

OOOOO

Analyse des boucles Tant Que
OOOOO

Analyse des boucles Tant Que
OOOOO

OOOOO

Analyse de schémas récursifs

Formules

Lien entre sommes et intégrales

Soient $a \le b$ deux entiers. Soit $f: [a,b] \to \mathbb{R}$ une fonction croissante (resp. décroissante) et continue sur [a,b]. Alors

$$\sum_{i=a}^{b-1} f(i) \leqslant \int_a^b f(x) dx \leqslant \sum_{i=a+1}^b f(i)$$
 (1)

$$\left(\text{resp.} \quad \sum_{i=a+1}^{b} f(i) \leqslant \int_{a}^{b} f(x) dx \leqslant \sum_{i=a}^{b-1} f(i) \right)$$
 (2)

Complexité des algorithmes (2)

Licence ST-A, USTL - API2

Plan

Analyse des boucles Pour

Analyse des boucles Tant Que

Analyse de schémas récursifs

emple

Multiplication de deux entiers

Le problème

Données : a et b deux entiers naturels

But: calculer $a \times b$

Plusieurs algorithmes variant selon les opérations élémentaires disponibles :

- 1. multiplication disponible : solution triviale
- 2. seule l'addition des entiers est disponible : solution avec boucle pour (exercice)
- 3. addition et division par deux des entiers disponibles.

Plan	Analyse des boucles Pour	Analyse des boucles Tant Que	Analyse de schémas récursifs
	00000	00000	0
	00		0
			0

Exemple

Méthode égyptienne

Calcul du produit de a = 67 par b = 21.

t	и	V
67	21	0
134	10	67
268	5	67
536	2	335
1072	1	335
1407		1407

opération en cours

Les nombres à multiplier $u \neq 1 \Rightarrow t := t+t$, u := u/2 $u = 1 \Rightarrow$ terminé suppression des lignes où u est pair somme des valeurs restantes dans la colonne t utilisation d'une variable v pour le calcul de la somme u impair $\Rightarrow v := v+t$

Conclusion

Complexité des algorithmes (2)	$67 \times 21 = 140$ icence ST-A, USTL - API2
	Seules opérations utilisées :+ et ÷2

Plan	Analyse des boucles P	our
	00000	
	00	

Analyse des boucles Tant Que 000●00

Analyse de schémas récursifs

Exemple

Multiplication égyptienne : analyse

- on s'intéresse au nombre d'additions effectuées
- ▶ ce coût ne dépend que de b

c(b) =nombre d'additions pour multiplier par b

Complexité des algorithmes (2) Licence ST-A, USTL - API2

Exemple

Multiplication égyptienne : algo

```
Algo
Données : a et
```

Données : a et b deux entiers naturels, b > 0**But :** calculer $a \times b$

Variables locales : t, u, v

```
mult(a,b):
    t := a; u := b; v := 0;
    {t × u + v = a × b}
    tant que u > 1 faire
    si u impair alors
        v := v + t;
    fin si;
    t := t + t;
    u := u ÷ 2;
    {t × u + v = a × b}
    fin tant que
    {t × u + v = a × b, u = 1}
    retouner t + v;
```

Complexité des algorithmes (2)

Licence ST-A, USTL - API2

Plan Analyse des boucles Pour

Analyse des boucles Tant Que

Analyse de schémas récursifs o o

Exemple

Multiplication égyptienne : analyse

- À chaque étape du tant que une ou deux additions selon la parité de u
- ▶ meilleur des cas : 1 addition à chaque étape. C'est le cas si b est une puissance de 2 : $b = 2^p$. Dans ce cas

$$c(b) = p + 1$$

▶ pire des cas : 2 additions à chaque étape. C'est le cas si b est une puissance de 2 moins un : $b = 2^p - 1$. Dans ce cas

$$c(b) = 2(p-1) + 1 = 2p - 1$$

Complexité des algorithmes (2) Licence ST-A, USTL - API2

Plan

Analyse des boucles Pour

Analyse des boucles Tant Que

Analyse de schémas récursifs

Exemple

Multiplication égyptienne : analyse

Dans tous les cas, si $2^{p-1} \le b \le 2^p - 1$ on a

$$p \leq c(b) \leq 2p-1$$

En tenant compte du fait que $p = \Theta(\log_2(b))$, on a

$$c(b) = \Theta(p) = \Theta(\log_2(b))$$

Conclusion

- ▶ cet algorithme est logarithmique en fonction de la valeur de *b*
- ▶ ou bien linéaire en fonction de la taille p de b

Complexité des algorithmes (2)

Licence ST-A, USTL - API2

Plan

Analyse des boucles Pour

Analyse des boucles Tant Que

Analyse de schémas récursifs

Exemple 2 : Tours de Hanoï

Algo

$$\begin{split} & \text{H}(n,D,A,I):\\ & \text{si} \quad n=1 \text{ alors}\\ & \text{deplacer de } D \text{ vers } A \\ & \text{sinon}\\ & \text{H}(n-1,D,I,A);\\ & \text{deplacer de } D \text{ vers } A;\\ & \text{H}(n-1,I,A,D);\\ & \text{fin si} \end{split}$$

- ▶ coût recherché = nbre de déplacements
- ► dépend de *n*

c(n) = nbre de déplacements

Cas de base

$$c(1) = 1$$

Cas récursif

$$\forall n \geq 1 \quad c(n) = 1 + 2c(n-1)$$

=

$$c(n) = 2^n - 1$$

Conclusion

► Algorithme exponentiel en la valeur de *n*

Plan Analyse des boucles Pour Analyse des boucles Tant Que OOOOO Analyse de schémas récursifs

Exemple 1 : factorielle

Algo

```
fact(n) :
    si n = 0 alors
    fact := 1
    sinon
    fact := n×fact(n-1)
    fin si
```

- coût recherché = nbre de multiplications
- ▶ dépend de *n*
- c(n) =nbre de mult pour calculer n!

► Cas de base

$$c(0) = 0$$

► Cas récursif

$$\forall n \geq 1 \ c(n) = 1 + c(n-1)$$

ightharpoons

$$c(n) = n$$

Conclusion

- ▶ Algorithme linéaire en la valeur de *n*
- ► Algorithme exponentiel en la <u>taille</u> de *n*

Complexité des algorithmes (2)

Licence ST-A, USTL - API2

Plan

Analyse des boucles Pour

Analyse des boucles Tant Que

Analyse de schémas récursifs \circ

Principe général

Schéma d'analyse récursive

Le coût d'un algorithme récursif peut toujours s'exprimer sous forme d'une équation de récurrence.

- ▶ la résolution des équations de récurrence peut s'avérer parfois délicate
- ▶ mais peut toujours être programmée