Discrete Distributions

Distribution	Probability Function	Mean	Variance	Generating Function
Binomial	$p(y) = \binom{n}{y} p^{y} (1-p)^{n-y};$	np	np(1-p)	$[pe^t + (1-p)]^n$
	$y=0,1,\ldots,n$			
Geometric	$p(y) = p(1-p)^{y-1};$ y = 1, 2,	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pe^t}{1 - (1 - p)e^t}$
Hypergeometric	$p(y) = \frac{\binom{r}{y} \binom{N-r}{n-y}}{r}$	<u>nr</u>	$n\left(\frac{r}{N}\right)\left(\frac{N-r}{N}\right)\left(\frac{N-n}{N-1}\right)$	
1.) pergeoment	$y = 0, 1, \dots, n \text{ if } n \le r,$ $y = 0, 1, \dots, r \text{ if } n > r$	N	(N)(N)(N-1)	
Poisson	$p(y) = \frac{\lambda^{y} e^{-\lambda}}{y!};$ $y = 0, 1, 2, \dots$	λ	λ	$\exp[\lambda(e^t-1)]$
Negative binomial	$p(y) = {y-1 \choose r-1} p^{r} (1-p)^{y-r};$ $y = r, r+1$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$	$\left[\frac{pe^t}{1 - (1 - p)e^t}\right]^r$

Moment-

Continuous Distributions

	a Libba Fastan	Mean	Variance	Moment- Generating Function
Distribution	Probability Function	Monn		
Uniform	$f(y) = \frac{1}{\theta_2 - \theta_1}; \theta_1 \le y \le \theta_2$	$\frac{\theta_1+\theta_2}{2}$	$\frac{(\theta_2 - \theta_1)^2}{12}$	$\frac{e^{t\theta_2}-e^{t\theta_1}}{t(\theta_2-\theta_1)}$
Normal	$f(y) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\left(\frac{1}{2\sigma^2}\right)(y-\mu)^2\right]$ $-\infty < y < +\infty$	μ	σ^2	$\exp\left(\mu t + \frac{t^2\sigma^2}{2}\right)$
Exponential	$f(y) = \frac{1}{\beta} e^{-y/\beta}; \beta > 0$ $0 < y < \infty$	β	β^2	$(1-\beta t)^{-1}$
Gamma	$f(y) = \left[\frac{1}{\Gamma(\alpha)\beta^{\alpha}}\right] y^{\alpha-1} e^{-y/\beta};$ $0 < y < \infty$	αβ	$lphaeta^2$.	$(1-\beta t)^{-\alpha}$
Chi-square	$f(y) = \frac{(y)^{(\nu/2)-1}e^{-y/2}}{2^{\nu/2}\Gamma(\nu/2)};$ $y^2 > 0$	V s	· 2v	$(1-2t)^{-\nu/2}$
Beta	$f(y) = \left[\frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)}\right] y^{\alpha - 1} (1 - y)^{\beta - 1};$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	does not exist in closed form
	0 < y < 1			** ×