Análisis Avanzado - Primer parcial

07/10/2021

Leandro Carreira

669/18

1. Decidir si las siguientes afirmaciones son verdaderas o falsas. Para las verdaderas dar una demostración y para las falsas un contraejemplo.

Sean $A, B \subseteq \mathbb{R}$ no vacíos y acotados.

- a) Si para todo $a \in A$ existe $b \in B$ tal que $a \leq b$, entonces $\sup(A) \leq \sup(B)$.
- b) Si $\inf(A) < \sup(A)$ entones $A = (\inf(A), \sup(A))$.

 α) \sqrt{e}

Verda dero

Como A es no vecó y ecotado

⇒ ∃ SA ER / SA = SUP A

Por det de supremo

SA > a VaeA

Como VaeA, 3beB/asb

⇒ 3 bo ∈ B/ Sa ≤ bo

De la misma forma que arter:

Como B er no vecío y ecotado

⇒ ∃ S_B ∈ R / S_B = SUP B

Por det de supremo SB > b Y b \in A

en pationar

53 > bo

y cono bo ≥ SA

 \Rightarrow $S_A \leqslant b_o \leqslant S_B$ $S_A \leqslant S_B$

: Sup A & Sup B

W

Si A = [1, 2] in A = 1 < sup A = 2

Pero

 $[1,2] \neq (1,2)$

puer $1 \in A$ pero $1 \notin (1,2)$.

2. Sea $X = \{(x, y, z) \in \mathbb{R}^3 : x \in \mathbb{Q}, y \in \mathbb{R} \setminus \mathbb{Q}, y \in \mathbb{R} \in \mathbb{N} \text{ es par}\}.$ Probar que existe $g: X \to \mathbb{R}^2$ biyectiva.

Sé que

Idea:

L3 B x Q x N por ~ R (la otra dimensión)

Rester positivos con el cero. y que Q numerable: no cambia U [n-1, n) ~ R le cerdinalide d de R puer RIQ er L'inhinito Jes que RIQ~R $\mathbb{R}^{-} \sim \mathbb{R}$ y de la misma forma Rt, P~R $\mathbb{R}^+ \sim \mathbb{R}$ Consegui los A & B de la idea de arriba, Folto vo que RtQ × Q × Npr ~ R Por corolaio visto en la Rédica. 2: X \ S unuasplez => X x \ S es unuaspré => 0 × Mba er unuas ple O× Np ~ N Falts vo que Rt. P × N ~ R

 $\mathbb{R}^{+}(\mathbb{Q} \times \mathbb{N}) = \bigcup_{n \in \mathbb{N}} \{n\} \times \mathbb{R}^{+}(\mathbb{Q})$

Par ej 12 b, unión numerable de conjuntos de cardinalidad c, tiene cardinal c

U [n] x RtQ ~ R

ο 0 •

RtQ × N ~ R

Final mente

 $R^{\dagger}Q \times Q \times Mpr \sim R$ y adenass $R^{-}Q \sim R$

Por lo que g puede ser una función que to me:

- · los II rescionales negativos de la coordenada "y"

 del dominio y los mande à la primera coordenada

 del codominio.
- · los Irrzcionales positivos, Q, y N pares y los

mande a la segunda coordenada del codomimio.

Como mostré que son conjuntor coordinables

a) \exists una bijección entre ellos,

y .: existe una g bijectiva con $g: X \to \mathbb{R}^2$

3. Sea
$$E = \{ f \in C([0,1]) : f(x) > 0 \ \forall x \in [0,1] \}$$
, con la métrica d_{∞} . Consideremos la función $\mathcal{I} : E \to E$ dada por
$$\mathcal{I}(f)(x) = \frac{1}{f(x)}.$$

Probar que \mathcal{I} es continua, pero no uniformemente continua.

Def de Continuided

si
$$d_{\infty}(f,g) < \delta \Rightarrow d_{\infty}(I(f),I(g)) < \varepsilon$$

$$d_{\infty}\left(\mathbb{I}(f), \mathbb{I}(g)\right) = d_{\infty}\left(\frac{1}{f(x)}, \frac{1}{g(x)}\right)$$

$$= \sup \left\{ \left| \frac{1}{f(x)} - \frac{1}{g(x)} \right| : x \in [0,1] \right\}$$

$$= \sup \left\{ \frac{g(x) - f(x)}{f(x) \cdot g(x)} : x \in [0,1] \right\}$$

$$\leq \sup \left\{ \frac{d_{\infty}(f,g)}{f(x) \cdot g(x)} : x \in [0,1] \right\}$$

$$= do(f_{ig}) \cdot sup \left\{ \frac{1}{f(x).g(x)} : x \in [0,1] \right\}$$

=
$$d \Rightarrow (f,g) \cdot inf \left\{ f(x), g(x) : \chi \in [0,1] \right\}$$

Cono f, g estás delinidar en [0,1] y además

$$f(x) > 0$$
 $g(x) > 0$ $\forall x \in [0,1]$
 $\Rightarrow \text{ on } f\left\{f(x), g(x) : x \in [0,1]\right\} > 0$
 $\text{ on } f\left\{f(x), g(x) : x \in [0,1]\right\} \leq M \in \mathbb{R}$
 $\text{ pur } f_{1}g \in \mathcal{C}([0,1])$

6 ~ 0

Tomando $\delta = \frac{\varepsilon}{2M}$, tengo que para cada $\varepsilon > 0$, existe $\delta > 0$

 σ $d_{\infty}(f,g) < \delta \rightarrow d_{\infty}(T(f), T(g)) < \varepsilon$

io I er continua

Para mostrar que I no es unit. continua:

Sen

$$f_{n}(x) = \frac{1}{n}$$

$$\beta n(x) = \frac{1}{n+1}$$

succesioner de funcion es constantes

$$\frac{1}{2} \int_{-\infty}^{\infty} dx \left(\frac{1}{2} \int_{-\infty}^{\infty} dx \right) = \frac{1}{2} \int_{-\infty}^{\infty} dx \left(\frac{1}{2} \int_{-\infty}^{\infty} dx \right) = \frac{1}{2} \int_{-\infty}^{\infty} dx \left(\frac{1}{2} \int_{-\infty}^{\infty} dx \right) = \frac{1}{2} \int_{-\infty}^{\infty} dx \left(\frac{1}{2} \int_{-\infty}^{\infty} dx \right) = \frac{1}{2} \int_{-\infty}^{\infty} dx \left(\frac{1}{2} \int_{-\infty}^{\infty} dx \right) = \frac{1}{2} \int_{-\infty}^{\infty} dx \left(\frac{1}{2} \int_{-\infty}^{\infty} dx \right) = \frac{1}{2} \int_{-\infty}^{\infty} dx \left(\frac{1}{2} \int_{-\infty}^{\infty} dx \right) = \frac{1}{2} \int_{-\infty}^{\infty} dx \left(\frac{1}{2} \int_{-\infty}^{\infty} dx \right) = \frac{1}{2} \int_{-\infty}^{\infty} dx \left(\frac{1}{2} \int_{-\infty}^{\infty} dx \right) = \frac{1}{2} \int_{-\infty}^{\infty} dx \left(\frac{1}{2} \int_{-\infty}^{\infty} dx \right) = \frac{1}{2} \int_{-\infty}^{\infty} dx \left(\frac{1}{2} \int_{-\infty}^{\infty} dx \right) = \frac{1}{2} \int_{-\infty}^{\infty} dx \left(\frac{1}{2} \int_{-\infty}^{\infty} dx \right) = \frac{1}{2} \int_{-\infty}^{\infty} dx \left(\frac{1}{2} \int_{-\infty}^{\infty} dx \right) = \frac{1}{2} \int_{-\infty}^{\infty} dx \left(\frac{1}{2} \int_{-\infty}^{\infty} dx \right) = \frac{1}{2} \int_{-\infty}^{\infty} dx \left(\frac{1}{2} \int_{-\infty}^{\infty} dx \right) = \frac{1}{2} \int_{-\infty}^{\infty} dx \left(\frac{1}{2} \int_{-\infty}^{\infty} dx \right) = \frac{1}{2} \int_{-\infty}^{\infty} dx \left(\frac{1}{2} \int_{-\infty}^{\infty} dx \right) = \frac{1}{2} \int_{-\infty}^{\infty} dx \left(\frac{1}{2} \int_{-\infty}^{\infty} dx \right) = \frac{1}{2} \int_{-\infty}^{\infty} dx \left(\frac{1}{2} \int_{-\infty}^{\infty} dx \right) = \frac{1}{2} \int_{-\infty}^{\infty} dx \left(\frac{1}{2} \int_{-\infty}^{\infty} dx \right) = \frac{1}{2} \int_{-\infty}^{\infty} dx \left(\frac{1}{2} \int_{-\infty}^{\infty} dx \right) = \frac{1}{2} \int_{-\infty}^{\infty} dx \left(\frac{1}{2} \int_{-\infty}^{\infty} dx \right) = \frac{1}{2} \int_{-\infty}^{\infty} dx \left(\frac{1}{2} \int_{-\infty}^{\infty} dx \left(\frac{1}{2} \int_{-\infty}^{\infty} dx \right) dx \left(\frac{1}{2} \int_{-\infty}^{\infty} dx \left(\frac{1}{2} \int_{-\infty}^{\infty} dx \right) dx \left(\frac{1}{2} \int_{-\infty}^{\infty} dx \left(\frac{1}{2} \int_{-$$

pero

$$d_{\infty}\left(\mathbb{I}(f_{n}),\mathbb{I}(g_{n})\right) = \left| \Omega - (\Omega + 1) \right|$$

$$= 1 > 0$$

Por Proposición, como hallé un Eo>O y sucasiones

$$(f_n)_n y (g_n)_n / d_{\infty}(f_n, g_n) \rightarrow 0$$

$$d_{\infty} \left(I(f_n), I(g_n) \right) \geqslant \mathcal{E}_0$$

> I no es uniformamente continuz,

4. Sea $f:[a,b] \to \mathbb{R}$ una función. Supongamos que el conjunto

$$\mathcal{G} = \{(x, f(x)) : \text{div}\} \subseteq \mathbb{R}^2$$

es compacto. Probar que f es continua.

G er compecto en R2 (=> er corrado y acotado

XE[a,b]

See
$$(x_n, f(x_n))_{n \in \mathbb{N}} \subset G$$

$$\leq : (x_n, f(x_n))_{n \in \mathbb{N}} \longrightarrow (x, y)$$

$$\Rightarrow$$
 $(x_n, f(x_n))_{n \in \mathbb{N}} \longrightarrow (x_n, f(x))$

Como estemos en R2, la convergencia er coord. a coord.

$$x_n \rightarrow x$$

$$f(x_n) \rightarrow f(x)$$

O see que $\forall (x_n) \in [a_1b]$ convergente à $x \in [a_1b]$

se time que le succión $(f(x_n))_n \subset \mathbb{R}$ converge e f(x),

Lo cuzl er un teorons visto en les Teórices de continuidad

que szegurs que l'es continuz,