Documents, Calculatrices et Téléphones portables interdits.

Exercice1: (4 points)

Les questions sont indépendantes

- 1) Etudier la nature de la série numérique de terme général: $u_n = \log \left(1 + \frac{(-1)^n}{\sqrt{n(n+1)}}\right)$.
- 2) Calculer en tout point $(x,y) \in \mathbb{R}^2$ la matrice jacobienne de la fonction

$$f(x,y) = (x^2y^4, e^x + y, 2y).$$

3) Calculer $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2 - y^2}$

Exercice2: (4,5 points)

On considère la fonction définie par $f(x) = \log(x^2 - 3x + 2)$.

- 1) Trouver D_f .
- 2) Calculer f'(x) pour $x \in D_f$.
- 3) Déterminer le développement de $f^{'}$ en série entière autour de 0, en précisant son rayon de convergence.
- 4) Déterminer le développement de f en série entière autour de 0, en précisant son rayon de convergence.

Exercice3: (5,5 points)

1) Développer en série de Fourier la fonction f, 2π –périodique, définie par :

$$f(x) = \cos(\alpha x)$$
, $x \in [-\pi, \pi]$ avec $\alpha \in \mathbb{R} - \mathbb{Z}$.

2) Déduire la valeur des séries numériques :
$$S_1 = \sum_{n \ge 1} \frac{(-1)^n}{\alpha^2 - n^2}$$
 et $S_2 = \sum_{n \ge 1} \frac{1}{(\alpha^2 - n^2)^2}$.

On rappelle que:

$$\cos x. \cos y = \frac{1}{2} [\cos(x - y) + \cos(x + y)]$$

$$\sin x. \sin y = \frac{1}{2} [\cos(x - y) - \cos(x + y)]$$

$$\sin x. \cos y = \frac{1}{2} [\sin(x - y) + \sin(x + y)]$$

Exercice4: (6 points)

Soit
$$p \in \mathbb{N}$$
, posons $f(x,y) = \begin{cases} \frac{x^p y^p}{x^2 + y^2 - xy} & \text{si } (x,y) \neq (0,0). \\ 0 & \text{si } (x,y) = (0,0). \end{cases}$

- 1) Trouver D_f .
- 2) Vérifier que : $|xy| \le \frac{1}{2}(x^2 + y^2) \quad \forall (x,y) \in \mathbb{R}^2$.
- 3) Montrer que : $|f(x,y)| \le \frac{1}{2^{p-1}} \left(\sqrt{x^2 + y^2} \right)^{2(p-1)} \quad \forall (x,y) \in D_f$.
- 4) Discuter, selon les valeurs de p, la continuité de f en (0,0).
- 5) Discuter, selon les valeurs de p, la différentiabilité de f en (0,0) .