Medoid-based Data Clustering with Estimation of Distribution Algorithms

Henry E. L. Cagnini, Rodrigo C. Barros, Christian V. Quevedo

Faculdade de Informática - Pontifícia Universidade Católica do Rio Grande do Sul Porto Alegre, RS, Brazil

{henry.cagnini, christian.quevedo}@acad.pucrs.br, rodrigo.barros@pucrs.br

Márcio P. Basgalupp

ICT-UNIFESP - Instituto de Ciência e Tecnologia da Universidade Federal de SP

S. J. dos Campos, SP, Brazil

basgalupp@unifesp.br

Individuals

An individual is a partition produced by the sampling process: once the objects which will be medoids are chosen, non-medoid objects are assigned to the group of its closest medoid.

Fitness function

We use the Simplified Silhouette Width Criterion (SSWC) [1] as fitness function for assigning how good each individual (solution) is:

$$SSWC = \frac{1}{N} \sum_{i=1}^{N} \frac{b(i) - a(i)}{\max\{b(i), a(i)\}}$$

where b(i) is the distance to the closest different-cluster medoid and a(i) the distance to the closest same-cluster medoid.

Abstract

Data clustering is the machine learning task that aims at arranging data into groups (clusters) of objects according to a similarity criterion. From an optimisation perspective, it is a particular kind of NP-hard grouping problem, thus attracting much attention from the evolutionary computation community. In this paper, we propose a novel data clustering algorithm based on a univariate estimation of distribution algorithm, namely Clus-EDA. It employs a medoid-based representation in which the cluster prototypes necessarily coincide with objects from the dataset. We compare Clus-EDA with both traditional non-evolutionary clustering algorithms such as k-means and hierarchical agglomerative clustering, and also with an evolutionary algorithm for clustering, in artificial and synthetic datasets. Our results show that Clus-EDA often outperforms the baseline algorithms with regard to distinct cluster validity criteria.

Probabilistic Mass Function

The probability of an object becoming a medoid is initially uniform over all objects, and is set to k^*/N : k^* is the number of groups from the partition generated by k-means with best SSWC, and N the number of objects.

Baseline Algorithms

We compare our algorithm with another three: k-means [3], UPGMA [4], and F-EAC [5], which is a mutation-based EA (no crossover is performed whatsoever), with specialised mutation operators for the clustering task.

Evaluation Measures

We make use of three measures for validating the quality of produced partitions: Silhouette Width Criterion, [2] Davies-Bouldin Index [8] and Adjusted Rand Index [9].

Datasets

dataset	attributes	objects	groups	source		
s1, s2, s3, s4	2	5000	15	[6]		
sin1, sin2, sin3, sin4, sin5	20	400	6	[7]		

Experimental Results

		k-means			UPGMA			F-EAC			Clus-EDA						
Dataset	k	k*	SWC	DB	ARI	k*	SWC	DB	ARI	k*	SWC	DB	ARI	k*	SWC	DB	ARI
s1	15	16.00	0.63	0.61	0.90	19.00	0.51	0.63	0.85	15.00	0.71	0.46	0.87	15.07	0.71	0.42	0.99
s2	15	14.00	0.61	0.48	0.89	15.00	0.52	0.68	0.91	15.00	0.63	0.57	0.87	15.07	0.62	0.53	0.93
s3	15	14.00	0.41	0.69	0.62	15.00	0.19	0.91	0.69	15.00	0.49	0.76	0.86	14.73	0.49	0.70	0.73
s4	15	17.00	0.47	0.68	0.64	18.00	0.10	0.98	0.61	15.00	0.48	0.77	0.85	15.20	0.47	0.73	0.65
sin1	6	5.00	0.63	0.53	0.67	6.00	0.65	0.71	0.84	6.00	0.65	0.60	0.67	6.00	0.65	0.52	0.84
sin2	6	6.00	0.54	1.11	0.43	5.00	0.69	0.62	0.67	5.00	0.69	0.48	0.55	5.00	0.69	0.43	0.67
sin3	6	4.00	0.45	0.89	0.44	5.00	0.73	0.47	0.54	4.00	0.72	0.44	0.44	4.00	0.72	0.43	0.54
sin4	6	6.00	0.51	1.06	0.64	8.00	0.70	0.91	0.83	6.93	0.69	0.62	0.67	6.00	0.69	0.43	0.84
sin5	6	6.00	0.55	0.78	0.65	5.00	0.64	0.70	0.67	8.00	0.64	0.57	0.67	6.00	0.63	0.56	0.83

References

- [1] E. R. Hruschka, R. J. G. B. Campello, and L. N. de Castro. Evolving clusters in gene-expression data. Information Sciences, 176(13):1898 1927, 2006.
- [2] P. J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20(0):53 65, 1987.
- [3] J. MacQueen. Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, volume 1, pages 281-297. California, USA, 1967.
- [4] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster Analysis. John Willey & Sons, 1990.
- [5] M. C. Naldi, R. J. G. B. Campello, E. R. Hruschka, and A. C. P. L. F. de Carvalho. Efficiency issues of evolutionary k-means. Applied Soft Computing Journal, 11(2):1938{1952, Mar. 2011.
- [6] P. Fränti and O. Virmajoki. Iterative shrinking method for clustering problems. Pattern Recognition, 39(5):761 775, 2006.
- [7] K. Y. Yeung, M. Medvedovic, and R. E. Bumgarner. Clustering gene-expression data with repeated measurements. Genome Biology, 4(5):R34, Apr. 2003.
- [8] D. L. Davies and D. W. Bouldin. A Cluster Separation Measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-1(2):224 227, 1979.
 [9] Vendramin, L, Campelo and R.J, Hruschka, E.R. Relative clustering validity criteria: A comparative Overview. Statistical Analysis and Data Mining: The ASA Data Science Journal, vol.3-4, pp. 209-235, 2010.