

Universidade Federal de São Carlos - UFSCar

Joao Vitor Azevedo Marciano 743554

Lorhan Sohaky de Oliveira Duda Kondo 740951

Experimento 01 - Aprendendo a utilizar o programa Quartus

São Carlos - SP

Universidade Federal de São Carlos - UFSCar

Joao Vitor Azevedo Marciano 743554 Lorhan Sohaky de Oliveira Duda Kondo 740951

Experimento 01 - Aprendendo a utilizar o programa Quartus

Orientador: Fredy João Valentes

Universidade Federal de São Carlos - UFSCar

Departamento de Computação

Ciência da Computação

Laboratório de Circuitos Digitais

São Carlos - SP 2017

Lista de ilustrações

Figura 1 –	Desenho do circuito	8
Figura 2 –	Imagem do circuinto no programa Quartus	8
Figura 3 –	Resultado da compilação do circuito	9
Figura 4 –	Resultado da simulação	10
Figura 5 –	Imagens do circuito na placa	11
Figura 6 –	Desenho do circuito	13

Lista de tabelas

Tabela	1 -	_	Tabela	verdade o	la exp	oressão	lógica	•	•	 •		 •	•	•	 •	•	•	•	7
Tabela	2	_	Tabela	verdade d	la exi	oressão	lógica												13

Lista de abreviaturas e siglas

Sumário

1	RESUMO
1.1	Cenario 1
1.2	Cenario 2
2	DESCRIÇÃO DA EXECUÇÃO DO EXPERIMENTO
2.1	Cenario 1
2.2	Cenario 2
3	AVALIAÇÃO DOS RESULTADOS DO EXPERIMENTO 10
3.1	Cenario 1
3.2	Cenario 2
4	ANÁLISE CRÍTICA E DISCUSSÃO
4.1	Cenario 1
4.2	Cenario 2
5	OUTRAS INFORMAÇÕES
	REFERÊNCIAS

1 Resumo

1.1 Cenario 1

1.2 Cenario 2

O experimento serviu para solidificar o conhecimento de desenvolver circuitos digitais utilizando o programa Quartus e o funcionamento deste circuito numa placa *Field Programmable Gate Array* - Arranjo de Portas Programáveis em Campo (FPGA). Para tal, tinha-se que solucionar o problema:

Considere um circuito lógico presente em uma geladeira que deve acionar um indicador de alerta (luz presente na alça de abertura da porta) na seguinte condição:

Se a porta estiver aberta ou o nível de gelo do congelador estiver acima do permitido ou o nível de gás do motor não estiver adequado, então acenda uma luz de advertência.

2 Descrição da execução do experimento

2.1 Cenario 1

2.2 Cenario 2

Para a realização deste experimento, foram utilizados o programa Quartus 13.0 SP 1 e a placa FPGA Cyclone II - EP2C20F484C7.

A partir do problema proposto, montou-se a seguinte expressão lógica

$$P + G + \sim V$$

com P representando se a porta estiver aberta, G se nível de gelo do congelador estiver acima do permitido e V se o nível de gás do motor estiver adequado, após a montagem da expressão, foi elaborada a Tabela 1. Com esta tabela e a expressão lógica, elaborou-se o circuito, conforme a Figura 1. Com tais informações, foi repassado o circuito para o Quartus, depois renomeou-se as entradas e saídas para que, por meio do arquivo tradutor, a placa FPGA reconhecesse os componentes. Para cobrir todos os casos de testes, foi realizada uma simulação, conforme a Figura 4.

Tabela 1 – Tabela verdade da expressão lógica

P	\mathbf{G}	${\sim}\mathbf{V}$	$P+G+(\sim V)$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

A porta SW[9] representa a P, a SW[8] representa a G, a SW[7] representa a \sim V e a LEDR[1] é um led vermelho que irá indicar o resultado provido da expressão lógica. Uma observação que não merece uma devida atenção é que na Figura 1 foram necessárias a utilização de duas portas OR, enquanto na Figura 2 foi necessária apenas a utilização de uma porta OR. Isso ocorreu pelo fato de que no Quartus existe a possibilidade de utilizar uma porta OR de três entradas.

Por fim, o circuito virtual foi compilado, conforme Figura 3.

Figura 1 – Desenho do circuito

Figura 2 – Imagem do circuinto no programa Quartus

© Control Table (Control Table (Con

Figura 3 – Resultado da compilação do circuito

3 Avaliação dos resultados do experimento

- 3.1 Cenario 1
- 3.2 Cenario 2

Figura 4 – Resultado da simulação

Figura 5 – Imagens do circuito na placa

4 Análise crítica e discussão

4.1 Cenario 1

4.2 Cenario 2

Com este experimento foi observado a importância de fazer simulações, já que ao testar o circuito na placa, um dos switchs não estava funcionando, então ao comparar o resultado da placa com o esperado, segundo a simulação, pode-se constatar a falha do equipamento.

Teve-se dificuldade com a utilização do arquivo tradutor, pois ele estav sendo salvo como um arquivo texto e não um arquivo qst. Além disso, sentiu-se dificuldade em gerar a simulação, já que os slides eram do Quartus de uma versão anterior a que estava sendo utilizada.

5 Outras informações

Considere um circuito lógico presente em um sistema de segurança de um cofre privado.

Se a senha primaria estiver correta E (a leitura de digitais apresentar valor válido OU a leitura de íris apresentar valor válido), deve ser acendido um led azul, liberando o acesso. Caso contrário, deve ser acendido um led laranja.

Expressão lógica: S.(D+I) em que S representa se a senha primaria estiver correta, D se a leitura de digitais apresentar valor válido e I se a leitura de íris apresentar valor válido.

Tabela 2 – Tabela verdade da expressão lógica

\mathbf{D}	I	S.(D+I)
0	0	0
0	1	0
1	0	0
1	1	0
0	0	0
0	1	1
1	0	1
1	1	1
	0 0 1 1 0	0 0 0 1 1 0 1 1 0 0 0 1 1 0

Figura 6 – Desenho do circuito

Referências