Conducting a Three-Way Independent Samples Factorial ANOVA With SAS

The program, ANOVA3.sas, is available at http://core.ecu.edu/psyc/wuenschk/SAS/SAS-Programs.htm. The data are from page 447 of the 8th edition of Howell's *Statistical Methods for Psychology*. The ANOVA factors are experience level of the driver who is being tested, type of road on which the test is given, and time of day the test is given. The outcome variable is the number of steering corrections made during the one mile test session. Selected parts of the program and most of the statistical output appear in this document.

Formatting the Values of the Factors

Since the values are numerically coded, I employed Proc Format to create formats for the ANOVA factors.

```
proc format; value EX 1='Inexperienced' 2='Experienced';
value R 1='First Class' 2='Second Class' 3='Dirt';
value T 1='Day' 2='Night';
```

Macro for Confidence Intervals (code in macros to be called later in the program)

```
%macro CIt;
d = t/sqrt(n1*n2/(n1+n2));
ncp_lower = TNONCT(t,df,.975);
ncp_upper = TNONCT(t,df,.025);
d_lower = ncp_lower*sqrt((n1+n2)/(n1*n2));
d_upper = ncp_upper*sqrt((n1+n2)/(n1*n2));
output; run; proc print; var g d_lower d_upper; run;
%mend CIt;
```

Unpacking the Data With Do Loops

To save space, I packed the data. On odd numbered data lines are values of experience, road, and time. After reading those values, SAS moves to the next line of data, on which there are the four scores for members of the group just defined. The DO loop instructs SAS to INPUT the corrections scores and output the record to the data set 'drive' four times The @@ prevents SAS from moving to the next data line before the DO loop has executed four times. Notice that I applied the FORMAT in the data step. CARDS is used to indicate that data lines follow.

```
DATA drive;
INPUT Experience Road Time;
DO I = 1 TO 4; INPUT Corrections @@; OUTPUT; END;
format Experience EX. Road R. Time T.;
CARDS;
1 1 1
4 18 8 10
```

The Omnibus Analysis

PROC GLM was employed, despite having equal cell sizes, because I wished to use LSMEANS. With equal cell sizes, Type I sums of squares and Type III sums of squares are identical. I specified Type I – this would not be appropriate if the design were nonorthogonal. I used the bar notation to specify a complete factorial model and to obtain all cell and marginal means. The output shows that all three main effects are significant, as is the interaction between experience and time.

```
PROC GLM; CLASS Experience Road Time;
MODEL Corrections = Experience|Road|Time / EFFECTSIZE alpha=0.1 ss1;
MEANS Experience | Road | Time;
LSMEANS Experience*Time / slice = Time;
Title 'Omnibus ANOVA and Simple Effects of Experience at Each Level of Time, Pooled
Error'; run;
```

I think that it is appropriate to interpret main effects of factors that are involved in a significant, monotonic interaction, so I have done so here. From the marginal means that are given, it is apparent that inexperienced drivers made significantly more steering corrections than did experienced drivers, and that steering corrections were significantly more frequent with nocturnal driving that with diurnal driving. Although I have not done so, one might wish to conduct pairwise comparisons (Fisher's procedure) among the marginal means for type of road. I think the pattern is pretty clear without additional analysis: Corrections are less frequent on better roads.

Level of		Corr	rections
Experience	N	Mean	Std Dev
Experienced	24	12.0833333	5.9191411
•			
Inexperienced	24	<mark>22.5000000</mark>	10.6730054
Level of		Corre	ections
Road	N	Mean	Std Dev
Dirt	16	<mark>23.1250000</mark>	11.4010233
First Class	16	<mark>11.8750000</mark>	6.6017674
Second Class	16	<mark>16.8750000</mark>	8.5936023
Level of		Correct	ions
Time	N	Mean	Std Dev
Day	24	12.9166667	6.8201534
•			
Night	24	<mark>21.6666667</mark>	10.9133610

The ratio of the largest cell variance to smallest cell variance is 2.44, so there is not any great problem with heterogeneity of variance.

Omnibus ANOVA and Simple Effects of Experience at Each Level of Time, Pooled Error

The GLM Procedure

Class Level Information Class Levels Values

01400	LCVCIO	Values
Experience	2	Experienced Inexperienced
Road	3	Dirt First Class Second Class
Time	2	Day Night

.....

Dependent Variable: Corrections

Source		DF	Sum of Squares	Mean Square	F Value	Pr > F
Model		11	3766.916667	342.446970	12.83	<.0001
Error		<mark>36</mark>	961.000000	26.694444		
Corrected Tot	al	47	4727.916667			
	R-Square	Coeff	Var Root MS	SE Correction	ıs Mean	
	0.796739	29.87	952 5.16666	57 17	.29167	
Source		DF	Type I SS	Mean Square	F Value	Pr > F
Experience		1	1302.083333	1302.083333	48.78	<.0001
<mark>Road</mark>		2	1016.666667	508.333333	19.04	<.0001
F.,						
Experience*Ro	ad	2	116.666667	58.333333	2.19	0.1271
Time	ad	2 1	116.666667 918.750000	58.333333 918.750000	2.19 34.42	0.1271 <mark><.0001</mark>
<mark>Time</mark>		1	918.750000	918.750000	34.42	<.0001

Total Variation Accounted For

		Semipartial		
	Semipartial	Omega-	Cons	servative
Source	Eta-Square	Square	90% Confi	dence Limits
Experience	0.2754	0.2682	0.1045	0.4248
Road	0.2150	0.2026	0.0455	0.3542
Experience*Road	0.0247	0.0133	0.0000	0.1058
Time	0.1943	0.1876	0.0490	0.3474
Experience*Time	0.0458	0.0400	0.0000	0.1707
Road*Time	0.0106	-0.0007	0.0000	0.0639
Experience*Road*Time	0.0309	0.0195	0.0000	0.1193

Notice that the Experience x Time effect has a significant F, but the confidence interval for η^2 includes zero. The confidence interval for partial η^2 excludes zero.

Partial Variation Accounted For

	Partial	Partial		
		Omega-		
Source	Eta-Square	Square	90% Conf	idence Limits
Experience	0.5754	0.4988	0.3261	0.6317
Road	0.5141	0.4292	0.2498	0.5776
Experience*Road	0.1083	0.0471	0.0000	0.2115
Time	0.4888	0.4104	0.2346	0.5609
Experience*Time	0.1840	0.1292	0.0244	0.3028
Road*Time	0.0495	-0.0027	0.0000	0.1370
Experience*Road*Time	0.1319	0.0674	0.0000	0.2372

The sum of the values of partial eta-square is more than 215%.

Diurnal and Nocturnal Simple Main Effects of Experience

Night

I elected to approach the significant Experience x Time interaction by testing the diurnal and nocturnal simple main effects of experience. "LSMEANS Experience*Time / slice = Time;" tests these simple effects with pooled error.

			Least Squ	ıares Mea	ns							
Corrections												
Corrections Experience Time LSMEAN												
		Experte	ince i	TIIIE	L	DIVIEAN						
		Experie	enced D	ay	9.83	33333						
		Inexper	`ienced D	ay	16.000	00000						
		Experie		light	14.333	33333						
		Inexper	rienced N	light	29.000	00000						
	<mark>Expe</mark>	rience*Time	Effect Sli	ced by T	ime for	Corrections						
			Sum of									
	Time	DF	Squares	Mean	Square	F Value	Pr > F					
	Dec.		200 100007	000	100007	0.55	0.000					
	Day		228.166667		166667	8.55	0.0060					
	<mark>Night</mark>	1 12	290.666667	1290.	666667	48.35	<.0001					
	Tota	ıl Variation	n Accounted	For								
	1000	ii variation	Accounted	1 01								
		Semipartia	al Conserv	ative								
	Semipartial	Omega-	90% Confi									
Time	Eta-Square	Square	Limi									
	,											
Day	0.0483	0.0424	0.0000 0	<mark>.1744</mark>								

The eta-squared for Experience during the day is $\frac{SS_{Exp|Day}}{SS_{Total}} = \frac{228.16666}{4727.91666} = 0.048$. Notice that the denominator is the total sum of squares from the factorial model.

The eta-squared for Experience during the night is $\frac{SS_{ExplNight}}{SS_{Total}} = \frac{1290.6666}{4727.91666} = 0.273$. Notice that the denominator is the total sum of squares from the factorial model.

Partial Variation Accounted For

Time	Partial Eta-Square	Partial Omega- Square	90% Conf	idence Limits
Day	0.1919	0.1359	0.0275	0.3100
<mark>Night</mark>	0.5732	0.4966	0.3237	0.6300

I also tested these simple effects with individual error terms, sorting by time and then doing an Experience x Road ANOVA by time. Please notice that I did include both type of road and the Experience x Road interaction in the model. I included these effects in order to exclude from the error term variance accounted by them, providing a more powerful test. The plot of these simple main effects makes the interaction quite clear (especially if you take the time to draw in the lines, which I have done with Word's drawing tool): The effect of experience is much greater (its line much steeper) with nocturnal driving than with diurnal driving.

```
PROC SORT; BY Time;
PROC GLM; CLASS Experience Road;
MODEL Corrections = Experience|Road / ss1 EFFECTSIZE alpha=0.1; BY Time;
title 'Simple effects at levels of Time, Individual Error.'; run;
proc means NWAY noprint; class Experience Time; var Corrections; output out=ExT mean=;
proc plot; plot Corrections*Experience=Time;run;
Proc gplot;
symbol1 interpol=join width=4 value=triangle height=2 color=red;
symbol2 interpol=join width=4 value=square height=2 color=gray;
plot Corrections*Experience=Time / haxis=1 to 2 by 1;
title 'Figure 1. Mean Corrections by Experience and Time'; run;
```

Simple Effects at Levels of Time, Individual Error.

	31	impre Ellec	15 a 1	FEAGT2 0	ı ııııc,	IIIUIVIUUAI	EIIOI.			
				<mark>Tim</mark>	<mark>e=Day</mark>					
Depend	dent Variable: Cor	rections								
	Coupos		DF	-	um of	Maan Caua	no F V	/o.lo	Dn > F	
	Source		DΓ	Sq	uares	Mean Squa	re r v	alue	Pr > F	
	Model		5	612.8	33333	122.5666	67	4.83	0.0057	
	Error		<mark>18</mark>	457.0	00000	25.3888	89			
	Corrected Total		23	<mark>1069.8</mark>	<mark>33333</mark>					
	R-S	Square	Coeff	Var	Root MS	E Correc	tions Mea	ın		
	0.5	72831	39.00	0959	5.03873	9	12.9166	7		
	Source		DF	۸۵۵	va SS	Mean Squa	no E V	alue	Pr > F	
	Sour Ce		DI	Allo	va 33	wean oqua	ie i v	aiue	F1 / 1	
	Experience		1	228.16	66667	228.16666	67	8.99	0.0077	
	Road		2	308.33	33333	154.16666	67	6.07	0.0097	
	Experience*Road		2	76.33	33333	38.16666	67	1.50	0.2490	
				Τo	tal Vari	ation Accou	nted For			
					Sem	ipartial				
				emipartia		Omega-	Con	servati	ve	
	Source		E	Eta-Squar	е	Square	90% Conf	idence	Limits	
	Experience			0.213	<mark>3</mark>	0.1851	0 0170	0.4199		
	Road			0.288		0.2352	0.0176			
	Experience	*Road		0.071		0.0233	0.0000			

The eta-squared for Experience during the day is $\frac{SS_{ExplDay}}{SS_{Total|Day}} = \frac{228.16666}{1069.8333} = 0.213$. Notice that

the denominator is the total sum of squares for the data gathered during the day, excluding those gathered at night.

Partial Variation Accounted For

So	urce	E	<mark>Partial</mark> ta-Square	Partial Omega- Square 90)% Confidence	Limits
Ex	perience		0.3330	0.2497 (0.0500 0.489	5
	ad		0.4029	0.2971	0.0640 0.532	8
	perience*Road		0.1431		0.0000 0.300	
			Time= <mark>Night</mark> -			
Dependent Varia	ble: Corrections					
			Sum of			
Source		DF	Squares	Mean Square	F Value	Pr > F
Model		5	2235.333333	447.066667	15.97	<.0001
Error		18	504.000000	28.000000		
Corrected	Total	23	2739.333333			
	R-Square	Coeff	Var Root MS	E Correctio	ons Mean	
	0.816014	24.42	232 5.29150	3 2	21.66667	
Source		DF	Anova SS	Mean Square	F Value	Pr > F
Jour Ce		DI	Απονά σσ	wean oquale	i varue	11 / 1
Experienc	e <mark>e</mark>	1	1290.666667	1290.666667	46.10	<.0001
Road		2	758.333333	379.166667	13.54	0.0003
Experienc	e*Road	2	186.333333	93.166667	3.33	0.0589

Total Variation Accounted For

Source	<mark>Semipartial</mark> Eta-Square	Semipartial Omega- Square	Conservative 90% Confidence Limits			
Experience	<mark>0.4712</mark>	0.4563	0.1951	0.6276		
Road	0.2768	0.2538	0.0136	0.4534		
Experience*Road	0.0680	0.0471	0.0000	0.2211		

The eta-squared for Experience during the night is $\frac{SS_{Exp|Night}}{SS_{Total|Night}} = \frac{1290.6666}{2739.3333} = 0.471$. Notice

that the denominator is the total sum of squares for the data gathered during the night, excluding those gathered at day.

Partial Variation Accounted For

Source	<mark>Partial</mark> Eta-Square	Partial Omega- Square	90% Conf	idence Limits
Experience Road	0.7192 0.6007	0.6527 0.5110	0.4298 0.2507	0.7791 0.6863
Experience*Road	0.2699	0.1624	0.0000	0.4223

Simple effects at levels of Time, Individual Error.

 ${\tt Plot\ of\ Corrections*Experience.}\quad {\tt Symbol\ is\ value\ of\ Time.}$

Experience

Figure 1. Mean Corrections by Experience and Time

If the Triple Interaction Were Significant

For pedagogical purposes, let us pretend that the triple interaction is significant. Pretending such, I elected to approach it by testing the diurnal and nocturnal simple interaction between experience and type of road. Since I had earlier included Experience x Road in the model tested by levels of time of day (individual error terms), we can just look back at that output to get the tests we need. The output provided by SAS indicates that neither simple interaction is significant, but one of them is close. Accordingly, I decided to go ahead and do the extra work to get tests done with the pooled error term from the omnibus analysis, substituting the *MSE* from the omnibus analysis for the individual error term reported by SAS. For diurnal driving, the interaction remains not significant,

 $F(2,36) = \frac{38.16}{26.69\overline{4}} = 1.42$. Note that I used the PROBF function in SAS to obtain the *p* for this *F*, .255.

The nocturnal interaction has $F(2, 36) = \frac{93.1\overline{6}}{26.69\overline{4}} = 3.49$, p = .041.

```
data p;
  F_Day = 1-PROBF(1.42, 2, 36); F_Night = 1-PROBF(3.49, 2, 36);
proc print; Title 'P values for Simple Interactions using pooled error'; run;
```

```
P values for Simple Interactions using pooled error

Obs F_Day F_Night
```

0.25493

Although I obtained the diurnal interaction plot, there is not much to be said about it. Since that interaction was not significant, the slopes of the three lines there do not differ from one another significantly, even though the slope with first class roads appears to be distinctly less than that with the poorer roads.

0.041177

The slopes in the nocturnal interaction plot (22.5, 11.5, 10) differ by more than do those in the diurnal plot (5, 11, 2.5) -- the variance of the slopes is about 47 in the nocturnal plot and about 19 in the diurnal plot. I included the VAXIS option to control where the tick marks would appear on the ordinate. If I had not done so, the two plots would have been scaled differently, and the result would be that the diurnal interaction would appear to be greater than the nocturnal interaction. The nocturnal plot makes it pretty clear that the interaction here is a matter of the effect of experience being much greater at night on dirt roads than it is on better roads.

```
title 'Simple interactions at levels of Time.'; run;
proc means data=drive NWAY noprint; class Experience Road; var Corrections;
output out=ExR mean= ; by Time;
proc plot; plot Corrections*Experience=Road / VAXIS=5 10 15 20 25 30 35 40;
by Time; run;
Proc gplot;
symbol1 interpol=join width=4 value=triangle height=2 color=red;
symbol2 interpol=join width=4 value=square height=2 color=green;
symbol3 interpol=join width=4 value=circle height=2 color=brown;
By Time;
plot Corrections*Experience=Road / haxis=1 to 2 by 1;
title 'Figure 2. Corrections by Experience, Road, & Time'; run;
```

Simple interactions at levels of Time.

Experience

----- Time=<mark>Night</mark> ------

 ${\bf Plot\ of\ Corrections*Experience.}\quad {\bf Symbol\ is\ value\ of\ Road.}$

Figure 2. Corrections by Experience, Road, & Time

I tested the simple, simple main effects of experience for the three types of road at night by first creating a new data set, containing only the nocturnal data, and then testing the effect of experience by type of road. As you can see, the effect is significant at each level of the road variable, but is much stronger with the dirt road. I would recommend estimating values of *d* for each of these simple, simple main effects, and obtaining confidence intervals for those estimates, but I have not done that here.

```
data night; set drive; if Time = 2; proc sort; by Road;
proc GLM; class Experience;
model Corrections = Experience / EFFECTSIZE alpha=0.1; by Road;
title 'Simple, simple main effects of Experience at Road for Time = night.'; run;
```

			Sum of			
Sou	urce	DF	Squares	Mean Square	F Value	Pr > F
Mod	del	1 :	200.000000	200.0000000	8.82	0.0249

Error		6 136.0000000		22.6666667		
Corrected To	Corrected Total		7 336.0000000			
	R-Square	Coeff Var	Root MSE	Correction	s Mean	
	0.595238	31.73968	4.760952	2 15	.00000	
		Roa	d=Second Class	3		
Saunaa		DF	Sum of	Moon Squano	E Volue	Dn > E
Source		DΓ	Squares	Mean Square	r value	PI > F
Model		1 2	64.5000000	264.5000000	9.07	0.0237
Error		6 1	75.0000000	29.1666667		
Corrected To	Corrected Total		39.5000000			
	D. 0	066 1/	D + 1105		- M	
	R-Square	Coeff Var	Root MSE	Correction	s Mean	
		Coeff Var 25.41467			s Mean .25000	
	<mark>0.601820</mark>	25.41467	5.400617	7 21	.25000	
	<mark>0.601820</mark>	25.41467	5.400617	7 21	.25000	
Source	<mark>0.601820</mark>	25.41467	5.400617 Road=Dirt	7 21	.25000	
	<mark>0.601820</mark>	25.41467	5.400617 Road=Dirt Sum of	7 21	.25000 F Value	
Source	<mark>0.601820</mark>	25.41467 DF 1 1	5.400617 Road=Dirt Sum of Squares	7 21 Mean Square	.25000 F Value	Pr > F
Source Model	<mark>0.601820</mark>	25.41467 DF 1 1 6	5.400617 Road=Dirt Sum of Squares 012.500000	7 21 Mean Square 1012.500000	.25000 F Value	Pr > F
Source Model Error	<mark>0.601820</mark>	25.41467 DF 1 1 6 7 1	5.400617 Road=Dirt Sum of Squares 012.500000 193.000000 205.500000	7 21 Mean Square 1012.500000	.25000 F Value 31.48	Pr > F

Strength of Effect Estimates: d

I prefer estimated d over η^2 as a strength of effect estimate, so I have obtained estimated d for each of the one-df effects that was significant in the omnibus analysis and have also obtained the corresponding confidence intervals. I also obtained these same statistics for the simple main effects of experience, day and night.

Get t values for estimating d with confidence interval.							
Evponionos	Mathad	Maan	OF9. Cl. Moon	C+d Dov	95% CL Std Dev		
Experience	Method	Mean	95% CL Mean	Std Dev	95% CL Stu Dev		
Inexperienced		22.5000	17.9932 27.0068	10.6730	8.2952 14.9717		
Experienced		12.0833	9.5839 14.5828	5.9191	4.6004 8.3031		
Diff (1-2)	Pooled	10.4167	5.4021 15.4312	8.6299	7.1712 10.8390		
	Method	Variances	DF t Value	Pr > t			
	Pooled	Equal	46 4.18	0.0001			
Get t values for estimating d with confidence interval.							
Time	Method	Mean	95% CL Mean	Std Dev	95% CL Std Dev		
_							
Day			10.0368 15.7966	6.8202	5.3007 9.5670		
Night	Doolod		17.0584 26.2750	10.9134	8.4820 15.3088		
Diff (1-2)	Pooled	-8.7500 -	14.0377 -3.4623	9.0999	7.5618 11.4293		
	Method	Variances	DF t Value	Pr > t			
	Pooled	Equal	46 -3.33	0.0017			
Simple Main	Effects Follow						
			<mark>ime=Day</mark>				
Experience	Method	Mean	95% CL Mean	Std Dev	95% CL Std Dev		
Exportanto	weenou	Mean	30 0 GE MEAN	ota bev	SOU OF OLD DEV		
Inexperienced		16.0000	11.6907 20.3093	6.7823	4.8046 11.5156		
Experienced		9.8333	6.3235 13.3431	5.5241	3.9132 9.3792		
Diff (1-2)	Pooled	6.1667	0.9299 11.4035	6.1853	4.7837 8.7543		
	Method	Variances	DF t Value	Pr > t			
	Pooled	Equal	22 2.44	0.0231			
Time=Night							
Experience	Method	Mean	95% CL Mean	Std Dev	95% CL Std Dev		
Inexperienced		29.0000	22.6463 35.3537	10.0000	7.0840 16.9788		
Experienced		14.3333	10.7562 17.9105	5.6300	3.9883 9.5591		
Diff (1-2)	Pooled	14.6667	7.7963 21.5370	8.1147	6.2759 11.4852		
	Method	Variances	DF t Value	Pr > t			

22 4.43

0.0002

Pooled

Equal

```
Estimated d for Experience.
  0bs
                     d lower
                                d upper
          1.20666
                     0.58421
                               1.81803
       Estimated d for Time of Day.
  0bs
                     d_lower
                                d_upper
                    0.35787
   1
          0.96129
                               1.55536
Estimated d for Experience during the Day.
  0bs
                     d lower
                                d upper
          0.99613
                    0.13419
                              1.83814
  Estimated d for Experience at Night.
  0bs
                     d_lower
                                d_upper
          1.80854
                    0.83379 2.75463
```

Plots

Notice that I used both Proc Plot and Proc Gplot to produce the plots. The plots produced by Gplot can be exported to image files, just select the plot and then click "File," "Export as Image." Those produced by Proc Gplot look a lot better than those produced by Proc Plot, but Gplot can be confusing to use. A good alternative is to use Excel.

Presentation of the Results

As shown in Table 1, all of the main effects were large and significant. Experienced drivers made significantly fewer errors (M = 12.1) than did inexperienced drivers (M = 22.5), d = 1.207, 95% CI [.584, 1.818]. Errors were most frequent on dirt roads (M = 23.12), intermediate on second class roads (M = 16.88), and least frequent on first class roads (M = 11.88). Errors were significantly more frequent at night (M = 21.7) than during the day (M = 12.9), d = .961, 95% CI [.358, 1.555].

Source	df	F	р	η²	Cl.90 for η^2
Experience	1	48.78	< .001	.275	.104, .425
Road	2	19.04	< .001	.215	.046, .354
Time	1	34.42	< .001	.194	.049, .347
Exp x Road	2	2.19	.12	.025	.000, .106
Exp x Time	1	8.12	.007	.046	.000, .171
Road x Time	2	0.94	.40	.011	.000 .064
ExRxT	2	2.73	.08	.031	.000, .119
Error ¹	36				

Table 1. ANOVA Source Table.

Among the interactions, only Experience x Time was statistically significant, and it was small in magnitude when compared to the main effects. Simple effects analysis showed that experienced drivers made significantly fewer errors than did inexperienced drivers both during the day (M = 9.83, 16.00), F(1, 36) = 8.55, p = .006, d = .996, 95% CI [.134, 1.838], and at night (M = 14.33, 29.00), F(1, 36) = 48.35, p < .001, d = 1.809, 95% CI [.834, 2.755], with the difference at night greater than during the day (see Figure 1).

Corrections

30
28
26
24
29
18
16
14
12
10
18
Experience

Experience

Time
Day
Right

Figure 1. Mean Corrections by Experience and Time

For Even More Fun, Try

Wow, three-way ANOVA certainly is a lot more fun than one- or two-way ANOVA. Now I want to do a six-way ANOVA. With how many *F* tests would I be blessed with six factors? The answer is here.nove.nd/.

<u>Karl L. Wuensch</u>, Dept. of Psychology, East Carolina Univ., Greenville, NC, USA February, 2018.

SAS Lessons

 $^{^{1}}MSE = 26.69$