Expanding CertiGraph: Dijkstra, Prim, and Kruskal

Anshuman Mohan, Wei Xiang Leow, Aquinas Hobor

NUS Programming Language and Verification Seminar December 16, 2020

Saluting the Mothership

Certifying Graph-Manipulating C Programs via Localizations within Data Structures

SHENGYI WANG, National University of Singapore, Singapore QINXIANG CAO, Shanghai Jiao Tong University, China ANSHUMAN MOHAN, National University of Singapore, Singapore AQUINAS HOBOR, National University of Singapore, Singapore

 $VST + CompCert + \underline{CertiGraph}$

A Coq library to verify executable code against realistic specifications expressed with mathematical graphs

This Work

We verify Dijkstra, Prim, Kruskal

Certifying Graph-Manipulating C Programs via Localizations within Data Structures

SHENGYI WANG, National University of Singapore, Singapore QINXIANG CAO, Shanghai Jiao Tong University, China ANSHUMAN MOHAN, National University of Singapore, Singapore AQUINAS HOBOR, National University of Singapore, Singapore

This Work

Certifying Graph-Manipulating C Programs via Localizations within Data Structures

SHENGYI WANG, National University of Singapore, Singapore QINXIANG CAO, Shanghai Jiao Tong University, China ANSHUMAN MOHAN, National University of Singapore, Singapore AQUINAS HOBOR, National University of Singapore, Singapore

We verify Dijkstra, Prim, Kruskal

In doing so, we:

Test existing features [Dijk labels edges]

Expand into undirectedness [Prim, Krus]

Make nontrivial calls to verified methods [Krus calls UF]

Challenges

Using CompCert C, which is executable and realistic but has real-world complications

Aiming for full functional correctness

Maintaining modularity and reuse

Workflow

Math Graph Architecture

A PreGraph is a hextuple (VType, EType, vvalid, evalid, src, dst)

$$\begin{aligned} \mathbf{Dijk} _\mathbf{PG}(\gamma) &\stackrel{\mathrm{def}}{=} \mathtt{VType} := \mathtt{Z} \\ & \mathtt{EType} := \mathtt{VType} * \mathtt{VType} \\ & \mathtt{src} := \mathtt{fst} \\ & \mathtt{dst} := \mathtt{snd} \\ & \forall v. \ \mathtt{vvalid}(\gamma, v) \Leftrightarrow 0 \leqslant v < \mathtt{size} \\ & \forall s, d. \ \mathtt{evalid}(\gamma, (s, d)) \Leftrightarrow \mathtt{vvalid}(\gamma, s) \land \mathtt{vvalid}(\gamma, d) \end{aligned}$$

A LabeledGraph is a quadruple (PreGraph, VL, EL, GL)

$$Dijk_LG(\gamma) \stackrel{\text{def}}{=} Dijk_PG$$
 as shown
 $VL := list EL$
 $EL := Z$
 $GL := unit$

A GeneralGraph adds arbitrary soundness conditions

$$\begin{aligned} \mathbf{DijkGraph}(\gamma) &\stackrel{\text{def}}{=} \text{Dijk_LG as shown, and} \\ & FiniteGraph(\gamma) \wedge \\ & \forall i,j. \text{ } \text{vvalid}(\gamma,i) \wedge \text{ } \text{vvalid}(\gamma,j) \Rightarrow \\ & i = j \Rightarrow \text{elabel}(\gamma,(i,j)) = 0 \wedge \\ & i \neq j \Rightarrow 0 \leqslant \text{elabel}(\gamma,(i,j)) \leqslant \lfloor \text{MAX/size} \rfloor \wedge \\ & \dots \end{aligned}$$

A GeneralGraph adds arbitrary soundness conditions

$$\begin{aligned} \mathbf{DijkGraph}(\gamma) &\stackrel{\text{def}}{=} \text{Dijk_LG as shown, and} \\ & FiniteGraph(\gamma) \wedge \\ & \forall i,j. \text{ } \text{vvalid}(\gamma,i) \wedge \text{ } \text{vvalid}(\gamma,j) \Rightarrow \\ & i = j \Rightarrow \text{elabel}(\gamma,(i,j)) = 0 \wedge \\ & i \neq j \Rightarrow 0 \leqslant \text{elabel}(\gamma,(i,j)) \leqslant \left \lfloor \text{MAX/size} \right \rfloor \wedge \\ & \dots \end{aligned}$$

Representing DijkGraph in Memory

$$\begin{split} & \mathsf{list_rep}(\gamma, i) \overset{\mathrm{def}}{=} \mathsf{data_at} \ \mathsf{array} \ \mathsf{graph2mat}(\gamma)[i] \ \mathsf{list_addr}(\gamma, i) \\ & \mathsf{graph_rep}(\gamma) \overset{\mathrm{def}}{=} \ \bigstar v \mapsto \mathsf{list_rep}(\gamma, v) \end{split}$$

Representing DijkGraph in Memory

$$\begin{split} & \mathsf{list_rep}(\gamma, i) \stackrel{\mathrm{def}}{=} \mathsf{data_at} \ \, \mathsf{array} \ \, \mathsf{graph2mat}(\gamma)[i] \ \, \mathsf{list_addr}(\gamma, i) \\ & \mathsf{graph_rep}(\gamma) \stackrel{\mathrm{def}}{=} \ \, \bigstar v \mapsto \mathsf{list_rep}(\gamma, v) \end{split}$$

Relies on restrictions placed at the Math level

```
void dijkstra (int **graph, int src, int *dist, int *prev, int size, int inf {  \{ \mathsf{AdjMat}(\gamma) * \mathsf{array}(\mathsf{dist}, \_) * \mathsf{array}(\mathsf{prev}, \_) \}
```

```
void dijkstra (int **graph, int src, int *dist,
                           int *prev, int size, int inf {
\{AdjMat(\gamma) * array(dist, \_) * array(prev, \_)\}
 int pg = init(size); int i, j, u, cost;
 for (i = 0; i < size; i++)
 { dist[i] = inf; prev[i] = inf; push(i, inf, pq); }
 dist[src] = 0; prev[src] = src; dec key(src, 0, pq);
 \left\{ \exists \textit{dist}, \textit{prev}, \textit{popped}. \ \mathsf{AdjMat}(\gamma) * \mathsf{PQ}(\mathsf{pq}) * \mathsf{array}(\mathtt{dist}, \textit{dist}) * \right\} \\ \mathsf{array}(\mathsf{prev}, \textit{prev}) \land \textit{dijk\_correct}(\gamma, \mathtt{src}, \textit{popped}, \textit{prev}, \textit{dist}) \right\} 
 // big while loop
```

```
 \left\{ \exists \textit{dist}, \textit{prev}, \textit{popped}. \ \mathsf{AdjMat}(\gamma) * \mathsf{PQ}(\mathsf{pq}) * \mathsf{array}(\mathsf{dist}, \textit{dist}) * \right\} \\ \mathsf{array}(\mathsf{prev}, \textit{prev}) \land \textit{dijk\_correct}(\gamma, \mathsf{src}, \textit{popped}, \textit{prev}, \textit{dist}) \right\}
```

```
 \begin{cases} \exists \textit{dist}, \textit{prev}, \textit{popped}. \; \mathsf{AdjMat}(\gamma) * \mathsf{PQ}(\mathsf{pq}) * \mathsf{array}(\mathsf{dist}, \textit{dist}) * \\ \mathsf{array}(\mathsf{prev}, \textit{prev}) \land \textit{dijk\_correct}(\gamma, \mathsf{src}, \textit{popped}, \textit{prev}, \textit{dist}) \end{cases}  while (!pq_emp(pq)) {  \mathbf{u} = \mathsf{popMin}(\mathsf{pq}) ;
```

```
 \begin{cases} \exists \textit{dist}, \textit{prev}, \textit{popped}. \; \mathsf{AdjMat}(\gamma) * \mathsf{PQ}(\mathsf{pq}) * \mathsf{array}(\mathsf{dist}, \textit{dist}) * \\ \mathsf{array}(\mathsf{prev}, \textit{prev}) \land \textit{dijk\_correct}(\gamma, \mathsf{src}, \textit{popped}, \textit{prev}, \textit{dist}) \end{cases}   \text{while (!pq\_emp(pq)) } \{ \\ \mathsf{u} = \mathsf{popMin}(\mathsf{pq}); \\  \begin{cases} \exists \textit{dist'}, \textit{prev'}, \textit{popped'}, \textit{i.} \; \mathsf{AdjMat}(\gamma) * \mathsf{PQ}(\mathsf{pq}) * \\ \mathsf{array}(\mathsf{dist}, \textit{dist'}) * \mathsf{array}(\mathsf{prev}, \textit{prev'}) \land \\ \mathsf{dijk\_correct\_weak}(\gamma, \mathsf{src}, \textit{popped'}, \textit{prev'}, \textit{dist'}, \textit{i}, \mathsf{u}) \end{cases}
```

```
\exists \textit{dist}, \textit{prev}, \textit{popped}. \; \mathsf{AdjMat}(\gamma) * \mathsf{PQ}(\mathsf{pq}) * \mathsf{array}(\mathsf{dist}, \textit{dist}) *  \exists \textit{array}(\mathsf{prev}, \textit{prev}) \land \textit{dijk}\_\textit{correct}(\gamma, \mathsf{src}, \textit{popped}, \textit{prev}, \textit{dist}) 
   while (!pq_emp(pq)) {
      u = popMin(pq);
 // \left. \begin{cases} \exists \textit{dist'}, \textit{prev'}, \textit{popped'}, \textit{i.} \; \mathsf{AdjMat}(\gamma) * \mathsf{PQ}(\mathsf{pq}) * \\ \; \mathsf{array}(\mathsf{dist}, \textit{dist'}) * \mathsf{array}(\mathsf{prev}, \textit{prev'}) \; \land \\ \; \textit{dijk\_correct\_weak}(\gamma, \mathsf{src}, \textit{popped'}, \textit{prev'}, \textit{dist'}, \textit{i}, \mathsf{u}) \end{cases} \right\} 
      for (i = 0; i < size; i++) {
      cost = getCell(graph, u, i);
       if (cost < inf) {
         if (dist[i] > dist[u] + cost) {
            dist[i] = dist[u] + cost; prev[i] = u;
            dec key(i, dist[i], pq);
   }}} // for
```

```
\exists \textit{dist}, \textit{prev}, \textit{popped}. \; \mathsf{AdjMat}(\gamma) * \mathsf{PQ}(\mathsf{pq}) * \mathsf{array}(\mathsf{dist}, \textit{dist}) *  \exists \textit{array}(\mathsf{prev}, \textit{prev}) \land \textit{dijk}\_\textit{correct}(\gamma, \mathsf{src}, \textit{popped}, \textit{prev}, \textit{dist}) 
    while (!pq_emp(pq)) {
        u = popMin(pq);
// \ \left\{ \begin{aligned} &\exists \textit{dist'}, \textit{prev'}, \textit{popped'}, \textit{i.} \ \mathsf{AdjMat}(\gamma) * \mathsf{PQ}(\mathsf{pq}) * \\ &\texttt{array}(\mathsf{dist}, \textit{dist'}) * \mathsf{array}(\mathsf{prev}, \textit{prev'}) \land \\ &\textit{dijk\_correct\_weak}(\gamma, \mathsf{src}, \textit{popped'}, \textit{prev'}, \textit{dist'}, \textit{i}, \mathtt{u}) \end{aligned} \right\}
        for (i = 0; i < size; i++) {
        cost = getCell(graph, u, i);
        if (cost < inf) {
           if (dist[i] > dist[u] + cost) {
              dist[i] = dist[u] + cost; prev[i] = u;
              dec key(i, dist[i], pq);
    }}} // for
    \exists \textit{dist''}, \textit{prev''}. \ \mathsf{AdjMat}(\gamma) * \mathsf{PQ}(\mathsf{pq}) * \mathsf{array}(\mathsf{dist}, \textit{dist''}) * \\ \ \mathsf{array}(\mathsf{prev}, \textit{prev''}) \land \textit{dijk\_correct}(\gamma, \mathsf{src}, \textit{popped'}, \textit{prev''}, \textit{dist''})
```

```
\exists dist, prev, popped. \ \mathsf{AdjMat}(\gamma) * \mathsf{PQ}(\mathsf{pq}) * \mathsf{array}(\mathsf{dist}, dist) * 
\mathsf{array}(\mathsf{prev}, prev) \land dijk\_correct(\gamma, \mathsf{src}, popped, prev, dist) 
while (!pq emp(pq)) {
 u = popMin(pq);
 for (i = 0; i < size; i++) {
 cost = getCell(graph, u, i);
 if (cost < inf) {
   if (dist[i] > dist[u] + cost) {
     dist[i] = dist[u] + cost; prev[i] = u;
    dec_key(i, dist[i], pq);
 }}} // for
```

```
\exists dist, prev, popped. \ \mathsf{AdjMat}(\gamma) * \mathsf{PQ}(\mathsf{pq}) * \mathsf{array}(\mathsf{dist}, dist) * 
\mathsf{array}(\mathsf{prev}, prev) \land dijk\_correct(\gamma, \mathsf{src}, popped, prev, dist) 
while (!pq emp(pq)) {
 u = popMin(pq);
 for (i = 0; i < size; i++) {
 cost = getCell(graph, u, i);
 if (cost < inf) {
   if (dist[i] > dist[u] + cost) {
    dist[i] = dist[u] + cost; prev[i] = u;
    dec_key(i, dist[i], pq);
 }}} // for
} // while
```

```
\exists dist, prev, popped. \ \mathsf{AdjMat}(\gamma) * \mathsf{PQ}(\mathsf{pq}) * \mathsf{array}(\mathsf{dist}, dist) * 
\mathsf{array}(\mathsf{prev}, prev) \land dijk\_correct(\gamma, \mathsf{src}, popped, prev, dist) 
   while (!pq_emp(pq)) {
     u = popMin(pq);
      for (i = 0; i < size; i++) {
      cost = getCell(graph, u, i);
      if (cost < inf) {
         if (dist[i] > dist[u] + cost) {
           dist[i] = dist[u] + cost; prev[i] = u;
           dec_key(i, dist[i], pq);
     }}} // for
   } // while
 // \left. \begin{cases} \exists \textit{dist}^{\circ}, \textit{prev}^{\circ}, \textit{popped}^{\circ}. \ \mathsf{AdjMat}(\gamma) * \mathsf{PQ}(\mathsf{pq}) * \\ \mathsf{array}(\mathsf{dist}, \textit{dist}^{\circ}) * \mathsf{array}(\mathsf{prev}, \textit{prev}^{\circ}) \land \\ \mathit{all\_popped}(popped^{\circ}) \land \mathit{dijk\_correct}(\gamma, \mathsf{src}, popped^{\circ}, \textit{prev}^{\circ}, \textit{dist}^{\circ}) \end{cases} \right\}
```

```
\exists dist, prev, popped. \ \mathsf{AdjMat}(\gamma) * \mathsf{PQ}(\mathsf{pq}) * \mathsf{array}(\mathsf{dist}, dist) * 
\mathsf{array}(\mathsf{prev}, prev) \land dijk\_correct(\gamma, \mathsf{src}, popped, prev, dist) 
   while (!pq_emp(pq)) {
     u = popMin(pq);
     for (i = 0; i < size; i++) {
     cost = getCell(graph, u, i);
      if (cost < inf) {
        if (dist[i] > dist[u] + cost) {
          dist[i] = dist[u] + cost; prev[i] = u;
          dec_key(i, dist[i], pq);
     }}} // for
   } // while
 // \left\{ \begin{aligned} &\exists \textit{dist}^{\circ}, \textit{prev}^{\circ}, \textit{popped}^{\circ}. \ \mathsf{AdjMat}(\gamma) * \mathsf{PQ}(\mathsf{pq}) * \\ &\mathsf{array}(\mathsf{dist}, \textit{dist}^{\circ}) * \mathsf{array}(\mathsf{prev}, \textit{prev}^{\circ}) \land \\ &\mathit{all\_popped}(popped^{\circ}) \land \textit{dijk\_correct}(\gamma, \mathsf{src}, popped^{\circ}, \textit{prev}^{\circ}, \textit{dist}^{\circ}) \end{aligned} \right\} 
   freePQ (pq); return;
}
```

```
dijk\_correct(\gamma, src, popped, prev, dist) \stackrel{\text{def}}{=}
  \forall d. \ vvalid(\gamma, d) \Rightarrow
    (d \in popped \Rightarrow
           \exists path. \ path\_correct(\gamma, prev, path, src, d) \land
           path globally optimal(\gamma, dist, path)) \wedge
  (dist[d] < \inf \Rightarrow
           let m := prev[d] in m \in popped(priq) \land
          \forall m' \in popped(priq). \ cost(p2m+(m,d)) \leq cost(p2m'+(m',d))) \land
  (dist[d] = \inf \Rightarrow
          \forall m \in popped(priq). \ cost(p2m+(m,d)) = inf)
```

```
dijk\_correct(\gamma, src, popped, prev, dist) \stackrel{\text{def}}{=}
  \forall d. \ vvalid(\gamma, d) \Rightarrow
    (d \in popped \Rightarrow
           \exists path. \ path\_correct(\gamma, prev, path, src, d) \land
           path globally optimal(\gamma, dist, path) \land
  (dist[d] < \inf \Rightarrow
           let m := prev[d] in m \in popped(priq) \land
          \forall m' \in popped(priq). \ cost(p2m+(m,d)) \leq cost(p2m'+(m',d))) \land
  (dist[d] = \inf \Rightarrow
          \forall m \in popped(priq). \ cost(p2m+(m,d)) = inf)
```

```
dijk\_correct(\gamma, src, popped, prev, dist) \stackrel{\text{def}}{=}
  \forall d. \ vvalid(\gamma, d) \Rightarrow
    (d \in popped \Rightarrow
           \exists path. \ path\_correct(\gamma, prev, path, src, d) \land
           path globally optimal(\gamma, dist, path)) \wedge
  (dist[d] < \inf \Rightarrow
           let m := prev[d] in m \in popped(priq) \land
          \forall m' \in popped(priq). \ cost(p2m+(m,d)) \leq cost(p2m'+(m',d)) \land
  (dist[d] = \inf \Rightarrow
          \forall m \in popped(priq). \ cost(p2m+(m,d)) = inf)
```

```
dijk\_correct(\gamma, src, popped, prev, dist) \stackrel{\text{def}}{=}
  \forall d. \ vvalid(\gamma, d) \Rightarrow
    (d \in popped \Rightarrow
           \exists path. \ path\_correct(\gamma, prev, path, src, d) \land
           path globally optimal(\gamma, dist, path)) \wedge
  (dist[d] < \inf \Rightarrow
           let m := prev[d] in m \in popped(priq) \land
          \forall m' \in popped(priq). \ cost(p2m+(m,d)) \leq cost(p2m'+(m',d))) \land
  (dist[d] = \inf \Rightarrow
          \forall m \in popped(priq). \ cost(p2m+(m,d)) = inf
```

Key Transformation: Growing the Subgraph

Key Transformation: Growing the Subgraph

Key Transformation: Growing the Subgraph


```
\begin{aligned} & \textit{dijk\_correct\_weak}(\gamma, \textit{src}, \textit{popped}, \textit{prev}, \textit{dist}, i, u) \overset{\text{def}}{=} \forall \textit{d}. \\ & (\textit{vvalid}(\gamma, \textit{d}) \implies \textit{d} \in \textit{popped} \implies \dots) \land \\ & \left( 0 \leqslant \textit{dst} < i \implies \left( \textit{dist}[\textit{d}] < \inf \implies \dots \right) \land \left( \textit{dist}[\textit{d}] = \inf \implies \dots \right) \right) \land \\ & \left( i \leqslant \textit{dst} < \textit{size} \implies \\ & \left( \textit{dist}[\textit{d}] < \inf \implies \dots \land \textit{m} \neq \textit{u} \land \textit{m}' \neq \textit{u} \right) \land \\ & \left( \textit{dist}[\textit{d}] = \inf \implies \dots \land \textit{m} \neq \textit{u} \right) \end{aligned}
```

```
\begin{aligned} dijk\_correct\_weak(\gamma,src,popped,prev,dist,i,u) &\stackrel{\text{def}}{=} \forall d. \\ & (vvalid(\gamma,d) \Rightarrow d \in popped \Rightarrow \dots) \land \\ & \left(0 \leqslant dst < i \Rightarrow \left(dist[d] < \inf \Rightarrow \dots\right) \land \left(dist[d] = \inf \Rightarrow \dots\right)\right) \land \\ & \left(i \leqslant dst < size \Rightarrow \\ & \left(dist[d] < \inf \Rightarrow \dots \land m \neq u \land m' \neq u\right) \land \\ & \left(dist[d] = \inf \Rightarrow \dots \land m \neq u\right) \end{aligned}
```

```
\begin{aligned} & \textit{dijk\_correct\_weak}(\gamma, \textit{src}, \textit{popped}, \textit{prev}, \textit{dist}, i, u) \overset{\text{def}}{=} \forall \textit{d}. \\ & (\textit{vvalid}(\gamma, \textit{d}) \implies \textit{d} \in \textit{popped} \implies \dots) \land \\ & \left( 0 \leqslant \textit{dst} < i \implies \left( \textit{dist}[\textit{d}] < \inf \implies \dots \right) \land \left( \textit{dist}[\textit{d}] = \inf \implies \dots \right) \right) \land \\ & \left( i \leqslant \textit{dst} < \textit{size} \implies \\ & \left( \textit{dist}[\textit{d}] < \inf \implies \dots \land \textit{m} \neq \textit{u} \land \textit{m}' \neq \textit{u} \right) \land \\ & \left( \textit{dist}[\textit{d}] = \inf \implies \dots \land \textit{m} \neq \textit{u} \right) \end{aligned}
```

```
\begin{aligned} dijk\_correct\_weak(\gamma,src,popped,prev,dist,i,u) &\stackrel{\text{def}}{=} \forall d. \\ & (vvalid(\gamma,d) \Rightarrow d \in popped \Rightarrow \dots) \land \\ & \left(0 \leqslant dst < i \Rightarrow \left(dist[d] < \inf \Rightarrow \dots\right) \land \left(dist[d] = \inf \Rightarrow \dots\right)\right) \land \\ & \left(i \leqslant dst < size \Rightarrow \\ & \left(dist[d] < \inf \Rightarrow \dots \land m \neq u \land m' \neq u\right) \land \\ & \left(dist[d] = \inf \Rightarrow \dots \land m \neq u\right) \end{aligned}
```

Postcondition

Postcondition

The longest optimal path has ${\tt size-1}$ links

$$\mathtt{MAX} = 7, \, \mathtt{size} = 3, \, \mathtt{so} \,\, 0 \leqslant \mathtt{elabel}(\gamma, e) \leqslant 3.$$

$$\mathtt{MAX} = 7, \, \mathtt{size} = 3, \, \mathtt{so} \,\, 0 \leqslant \mathtt{elabel}(\gamma, e) \leqslant 3.$$

The longest optimal path has size-1 links so say we set elabel's upper bound to [MAX/(size-1)]

$$\mathtt{MAX} = 7, \, \mathtt{size} = 3, \, \mathtt{so} \,\, 0 \leqslant \mathtt{elabel}(\gamma, e) \leqslant 3.$$

$$\mathtt{MAX} = 7, \, \mathtt{size} = 3, \, \mathtt{so} \,\, 0 \leqslant \mathtt{elabel}(\gamma, e) \leqslant 3.$$

The longest optimal path has size-1 links so say we set elabel's upper bound to [MAX/(size-1)]

if 3 > 9 then relax $C \rightsquigarrow B$

The longest optimal path has size-1 links so say we set elabel's upper bound to [MAX/(size-1)]

if 3 > 1 then relax $C \rightsquigarrow B$

The longest optimal path has size-1 links so say we set elabel's upper bound to [MAX/(size-1)]

if 3 > 1 then relax $C \rightsquigarrow B$

The longest optimal path has size-1 links so say we set elabel's upper bound to [MAX/(size-1)]

 $\mathtt{MAX} = 7, \, \mathtt{size} = 3, \, \mathtt{so} \,\, 0 \leqslant \mathtt{elabel}(\gamma, e) \leqslant 3.$

if 3 > 1 then relax $C \rightsquigarrow B$

One solution: Conservatively set upper bound to [MAX/size]

The longest optimal path has size-1 links so say we set elabel's upper bound to [MAX/(size-1)]

$$\mathtt{MAX} = 7, \, \mathtt{size} = 3, \, \mathtt{so} \,\, 0 \leqslant \mathtt{elabel}(\gamma, e) \leqslant 3.$$

if 3 > 1 then relax $C \rightsquigarrow B$

One solution: Conservatively set upper bound to [MAX/size]

Max path cost is then [MAX/size] * (size-1) = MAX - [MAX/size]

There are other ways to fix this!

There are other ways to fix this!

Refactor troublesome addition as subtraction

There are other ways to fix this!

Refactor troublesome addition as subtraction
Never look back into optimized part

There are other ways to fix this!

Refactor troublesome addition as subtraction

Never look back into optimized part

Your suggestion here

There are other ways to fix this!

Refactor troublesome addition as subtraction

Never look back into optimized part

Your suggestion here

Your suggestion here

There are other ways to fix this!

Refactor troublesome addition as subtraction

Never look back into optimized part

Your suggestion here

Your suggestion here

Sadly, intuition supports inf = MAX

Consider the AdjMat representation of a directed graph:

	0	1	2	3
0	0	а	inf	b
1	inf	0	inf	inf
2	inf	inf	0	С
3	inf	d	inf	0

Versus the AdjMat representation of an undirected graph:

	0	1	2	3
0	0	а	inf	b
1	а	0	inf	d
1 2 3	inf	inf	0	С
3	b	d	С	0

Prevent double-counting:

```
Class SoundUAdjMat (g: UAdjMatLG) := {
  sadjmat: @SoundAdjMat size inf g;
  undirec: forall e, evalid g e -> src g e <= dst g e;
}.</pre>
```

```
Prevent double-counting:
Class SoundUAdjMat (g: UAdjMatLG) := {
  sadjmat: @SoundAdjMat size inf g;
  undirec: forall e, evalid g e -> src g e <= dst g e;
}.
Build undirected idioms:
Definition adj_edge g e u v :=
  ((src g e = u /\ dst g e = v) \/
   (src g e = v / dst g e = u)).
Plus upath, connected, etc.
```

Recall: Math Graph Architecture

Kruskal: EdgeList Representation

Extend spatial support to accommodate EdgeList representation

The double-counting restriction must be lifted: an EdgeList-represented graph can have bona fide multi-connections

But the undirected idioms carry over

Kruksal: Layering Undirectedness Atop Union-Find

Consider performing union u w

Note: reachable is directed, connected is undirected

Possible Next Steps

Verify PQ with decrease-key AdjList representation for Dijkstra, Prim Plug into verified malloc Floyd-Warshall using AdjMat Bellman-Ford using EdgeList

Possible Next Steps

Verify PQ with decrease-key AdjList representation for Dijkstra, Prim Plug into verified malloc Floyd-Warshall using AdjMat Bellman-Ford using EdgeList

