

卷积神经网络 Convolutional Neural Network

陈昱夫

全连接神经网络的缺点

• 权重矩阵的参数非常多

全连接神经网络的缺点

- 无法提取局部不变性特征
 - 物体的大小、平移、旋转等

实验六: 卷积神经网络

卷积神经网络(CNN)

- 基于生物学上感受野 (Receptive Field) 的机制
 - 在视觉神经系统中,一个神经元的感受野是指视网膜上的特定区域,只有这个区域内的刺激才能够激活该神经元。

- 卷积神经网络有三个结构上的特性
 - 局部连接
 - 权重共享
 - 空间上的下采样

卷积

- 一维卷积经常用在信号处理中,用于计算信号的延迟累积。
- 假设一个信号发生器每个时刻t产生一个信号 x^t , k个时间后的信息衰减率为 w^k ,则当前信号输出 y_t 为:

$$y_t = \sum_{k=1}^m w_k \times x_{t-k+1}$$

Filter: [-1,0,1]

卷积

• 二维卷积经常用在图像处理中。因为图像通常为一个两维结构,所以需要将一维卷积进行扩展。

$$y_{i,j} = \sum_{u=1}^{m} \sum_{v=1}^{n} w_{u,v} \times x_{i-u+1,j-v+1}$$

1	1	1 ×-1	1 ×0	1 ×0
-1	0	-3 ×0	0 ×0	1 ×0
2	1	1 ×0	-1 _{×0}	0 ×1
0	-1	1	2	1
1	2	1	1	1

	1	0	0		0	-2	-1
\otimes	0	0	0	=	2	2	4
	0	0	-1		-1	0	0

实验六: 卷积神经网络

6

实际上二维卷积已 经广泛地被用在图 像处理中,可以起 到特征提取的作用。

能不能不通过先验 经验构建滤波器, 而是让模型自动学 习如何提取特征?

卷积

高斯平滑

$\frac{1}{16}$	1/8	$\frac{1}{16}$
$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{8}$
$\frac{1}{16}$	$\frac{1}{8}$	$\frac{1}{16}$

原始图像

Robinson算子

0	1	1
-1	0	1
-1	-1	0

滤波器

输出图像

- 用卷积层代替原来的全连接层。
 - 局部连接
 - 权重共享

大小M×N,D为深度,输入层 的D可以理解为图像的通道 (比如RGB),卷积层到卷积

层之间的深度可以理解为上一

层提取的特征数量

卷积层的结构。

- 输入: D个特征输入 M×N×D

- 输出: P个特征映射 M'×N'×P

- 卷积核: D×P个二维卷积核D×P×m×n

• Y^p 的计算流程: 先用卷积核 $W^{p,1}, W^{p,2}, W^{p,3}, ..., W^{p,D}$ 分别对输入特征 $X^1, X^2, X^3, ..., X^D$ 卷积, 然后将卷积的结果相加, 并加上一个标量偏置 b^p 得到 Z^p ,最后通过某个激活函数得到输出 Y^p

$$Y^p = f(Z^p) = f(\sum_{d=1}^D W^{p,d} \otimes X^d + b^p)$$

• Y^{p} 的计算流程: 先用卷积核 $W^{p,1}, W^{p,2}, W^{p,3}, ..., W^{p,D}$ 分别对输入特征 $X^{1}, X^{2}, X^{3}, ..., X^{D}$ 卷积, 然后将卷积的结果相加,并加上一个标量偏置 b^{p} 得到 Z^{p} ,最后通过某个激活函数得到输出 Y^{p}

池化层

- 卷积层虽然可以显著减少网络中参数的数量,但特征映射输出的维度仍然很高。
- 池化层对输入特征映射组进 行下采样,进一步的筛选特 征。

• 最常用到的池化类型是最大池化 (max pooling) , 大小与步长均设置为2, 效果相当于原来的特征高度和宽度缩减一半。

卷积神经网络结构

- 由卷积层、池化层、全连接层交叉堆叠而成。
- 典型结构

- 定义一个卷积块为连续M个卷积层和b个池化层(M通常设置为2~5, b为0或1)。
- 一个卷积网络中首先堆叠N个连续的卷积块(N的取值区间比较大,比如1~100或者更大)
- 最后再连接K个全连接层(K一般为0~2,相当于最后接一个分类器)

卷积神经网络结构

- 由卷积层、池化层、全连接层交叉堆叠而成。
- 典型结构

实验六: 卷积神经网络

卷积神经网络应用

• LeNet-5

 基于 LeNet-5 的手写数字识别系统在 90 年代被美国很多银行使用,用 来识别支票上面的手写数字。

卷积神经网络应用

AlphaGo

କ入是19x19分辨率的棋局"图像",输出是361维概率分布向量。其中,概率最大的那个位置就是最佳落子位置。

The input to the policy network is a $19 \times 19 \times 48$ image stack consisting of 48 feature planes. The first hidden layer zero pads the input into a 23×23 image, then convolves k filters of kernel size 5×5 with stride 1 with the input image and applies a rectifier nonlinearity. Each of the subsequent hidden layers 2 to 12 zero pads the respective previous hidden layer into a 21×21 image, then convolves k filters of kernel size 3×3 with stride 1, again followed by a rectifier nonlinearity. The final layer convolves 1 filter of kernel size 1×1 with stride 1, with a different bias for each position, and applies a softmax function. The match version of AlphaGo used k = 192 filters; Fig. 2b and Extended Data Table 3 additionally show the results of training with k = 128, 256 and 384 filters.

policy network:

[19x19x48] Input

CONV1: 192 5x5 filters, stride 1, pad 2 => [19x19x192]

CONV2..12: 192 3x3 filters, stride 1, pad $1 \Rightarrow [19x19x192]$

CONV: 1 1x1 filter, stride 1, pad 0 => [19x19] (probability map of promising moves)

卷积神经网络应用

- Sentence Classification
 - 输入是某个句子所有单词的词嵌入向量组成的矩阵。

期中project

- 包含两个任务
 - 实现CNN模型
 - 实现RNN模型

• 两份数据集

- 图像识别数据集: CIFAR-10

- 自然语言数据集: STS Benchmark

• 该Project分组完成,每组2人

期中project

报告评分:

- 每组同学共同完成一份报告
- 参考论文要有参考文献,参考的代码要标记来源
- RNN模型和CNN模型的实现各占50分
- 报告提交DDL: 11月7日晚11:00

评分项	说明	分值
实验原理	总结两种模型的原理	20
网络结构	画出自己模型的网络结构示意图	10
结果分析	展示并分析不同结构下的实验结果	40
创新	可以借鉴现有方法, 但需总结原理	20
排版	整体美观性	10
组员分工	总结组员各自做了什么工作	0

期中project

• PPT展示:

- 小组成员共同完成验收,时间为5~10分钟,超时扣分
- 通过PPT来展示期中project小组成员完成的工作
- PPT展示会占据一定的期中project分数
- 验收时间: 11月8日实验课

评分项	说明
实现思路	总结这段时间内实现进度
网络结构	介绍自己模型的网络结构
结果分析	展示并分析实验结果
创新	介绍有哪些创新与尝试