# Augmenting Low-Resource Text Classification with **Graph-Grounded Pre-training and Prompting**

Task (1)

**Task (2)** 

NLP v.s.

Software

CV v.s. DB

DM v.s. Recys



## School of **Computing and Information Systems**

**Zhihao Wen and Yuan Fang** 

**Singapore Management University** 

#### Introduction Low-resource Labels **Training texts** Recommender models are ..... The BERT Model... Stackoverflow

summarition . Computer Swin transformer e.g., for **each class**, we have only **one labeled** training

- Low-resource text classification, in which **no or few labeled** samples are available, is an important research
- problem. When there are lots of downstream tasks, developing parameter and time efficient tuning method holds significant practical implications.

### **Motivation**

**Novel Recommender** 

Systems using...

Deep Learning for

Image Captioning .

RecSys

Text data are frequently grounded on **network structures**, exposing valuable relationships, which can be used to augment low-resource text classification.

Many tasks and each task is a

different **text classification** task

While existing pre-trained language models and prompting do not exploit these relationships, graph neural networks (GNNs) are designed to learn from graph structures based on a message-passing architecture.



### Graph grounded contrastive pre-training



- During pre-training, we learn a dualmodal embedding space by jointly training a text encoder and graph encoder in a self-supervised fashion through 3 contrastive strategies.
- Strategy 1: text-node interaction. Predict the text of a document matches which node in the graph. We maximize the cosine similarity of n matching pairs, while minimizing that of the n^2 - n unmatching pairs.
- Strategy 2: text-summary interaction. Each document has a set of neighboring documents defined by graph topology. The neighboring documents are a summary of the target document. We align the text embedding and its corresponding summary text embedding.
- Strategy 3: node-summary interaction. Align the **node** embedding  $z_i$  and its neighborhood-based **summary** text embedding  $\mathbf{s}_i$ .

### **Prompt-assisted text classification**

Discrete prompt for zero-shot classification



#### **Graph-grounded prompt tuning for few-shot classification**

Label texts of *N* classes Trainable prompt emb.



- Predict the class whose label text embedding has the highest similarity to the node embedding
- Classification weights can be generated by the text encoder based on the class label texts

$$\mathbf{w}_y = \phi_T(\text{``prompt [CLASS]''}; heta_T^0)$$

e.g., "A paper of " label text, e.g., "NLP"

Class distribution is predicted as

$$p(y \mid \mathbf{z}_i) = \frac{\exp(\langle \mathbf{z}_i, \mathbf{w}_y \rangle)}{\sum_{y=1}^{N} \exp(\langle \mathbf{z}_i, \mathbf{w}_y \rangle)}$$

- Discrete prompts are difficult to optimize.
- Resort to **prompt tuning**, substituting discrete prompts with learnable continuous vectors, while keeping the parameters of PLM frozen
- Instead of a sequence of discrete tokens, we use a sequence of continuous embeddings

$$\mathbf{w}_y = \phi_T([\mathbf{h}_1, \cdots, \mathbf{h}_M, \mathbf{h}_{\mathtt{CLASS}}]; \theta_T^0)$$

- We initialize the prompt embeddings with graph contexts.
- A node  $v_i$  and its neighbor set  $\{v_i | j \in \mathcal{N}_i\}$  are collectively called the *graph contexts* of  $v_i$ .

### **Experiment & Conclusion**

Five-shot classification performance (percent) with 95% confidence intervals.

|               |               | Cora                |                     | Art                 |                  | Industrial          |                  | M.I.               |                  |
|---------------|---------------|---------------------|---------------------|---------------------|------------------|---------------------|------------------|--------------------|------------------|
|               |               | Accuracy            | Macro-F1            | Accuracy            | Macro-F1         | Accuracy            | Macro-F1         | Accuracy           | Macro-F1         |
| - A No.       | GCN           | 41.15±2.41          | 34.50±2.23          | 22.47±1.78          | 15.45±1.14       | 21.08±0.45          | 15.23±0.29       | 22.54±0.82         | 16.26±0.72       |
|               | $SAGE_{sup}$  | 41.42±2.90          | 35.14±2.14          | 22.60±0.56          | $16.01 \pm 0.28$ | 20.74±0.91          | 15.31±0.37       | 22.14±0.80         | $16.69 \pm 0.62$ |
|               | TextGCN       | 59.78±1.88          | 55.85±1.50          | 43.47±1.02          | $32.20 \pm 1.30$ | 53.60±0.70          | $45.97 \pm 0.49$ | 46.26±0.91         | $38.75 \pm 0.78$ |
|               | GPT-GNN       | 76.72±2.02          | 72.23±1.17          | 65.15±1.37          | 52.79±0.83       | 62.13±0.65          | 54.47±0.67       | 67.97±2.49         | 59.89±2.51       |
| 26            | DGI           | 78.42±1.39          | $74.58 \pm 1.24$    | 65.41±0.86          | 53.57±0.75       | 52.29±0.66          | $45.26 \pm 0.51$ | 68.06±0.73         | 60.64±0.61       |
|               | $SAGE_{self}$ | 77.59±1.71          | $73.47 \pm 1.53$    | 76.13±0.94          | $65.25 \pm 0.31$ | 71.87±0.61          | $65.09 \pm 0.47$ | $77.70 \pm 0.48$   | $70.87 \pm 0.59$ |
| 2,6           | BERT          | 37.86±5.31          | 32.78±5.01          | 46.39±1.05          | 37.07± 0.68      | 54.00±0.20          | 47.57±0.50       | 50.14±0.68         | 42.96±1.02       |
| (00)          | BERT*         | 27.22±1.22          | 23.34±1.11          | 45.31±0.96          | $36.28 \pm 0.71$ | 49.60±0.27          | $43.36 \pm 0.27$ | 40.19±0.74         | $33.69 \pm 0.72$ |
| 6             | RoBERTa       | 62.10±2.77          | 57.21±2.51          | 72.95±1.75          | 62.25±1.33       | 76.35±0.65          | $70.49 \pm 0.59$ | 70.67±0.87         | $63.50 \pm 1.11$ |
|               | RoBERTa*      | 67.42±4.35          | 62.72±3.02          | 74.47±1.00          | 63.35±1.09       | 77.08±1.02          | $71.44 \pm 0.87$ | 74.61±1.08         | 67.78±0.95       |
| Chinot of mod | P-Tuning v2   | 71.00±2.03          | 66.76±1.95          | 76.86±0.59          | 66.89±1.14       | 79.65±0.38          | 74.33±0.37       | 72.08±0.51         | 65.44±0.63       |
|               | G2P2-p        | 79.16±1.23          | 74.99±1.35          | 79.59±0.31          | 68.26±0.43       | 80.86±0.40          | 74.44±0.29       | 81.26±0.36         | 74.82±0.45       |
| 7             | G2P2          | <b>80.08</b> *±1.33 | <b>75.91</b> *±1.39 | <b>81.03</b> *±0.43 | $69.86*\pm0.67$  | <b>82.46</b> *±0.29 | $76.36*\pm0.25$  | $82.77^* \pm 0.32$ | $76.48*\pm0.5$   |
|               | (improv.)     | (+2.12%)            | (+1.78%)            | (+5.43%)            | (+4.44%)         | (+3.53%)            | (+2.7%)          | (+6.53%)           | (+7.92%)         |

- G2P2 outperforms the best baseline by around 3–7%.
- Pre-trained/self-supervised models tend to perform better than the endto-end models,
- PLMs are generally superior to GNNs
- Continuous prompt approach has the advantage of being much cheaper than fine-tuning.
- G2P2-p without prompt tuning is inferior to G2P2

#### Zero-shot classification performance

|            | Cora                | Art                | Industrial         | M.I.                |
|------------|---------------------|--------------------|--------------------|---------------------|
| RoBERTa    | 30.46±2.01          | 42.80±0.94         | 42.89±0.97         | 36.40±1.20          |
| RoBERTa*   | 39.58±1.26          | 34.77±0.65         | 37.78±0.32         | 32.17±0.68          |
| RoBERTa*+d | 45.53±1.33          | 36.11±0.66         | 39.40±1.22         | 37.65±0.33          |
| BERT       | 23.58±1.88          | 35.88±1.44         | 37.32±0.85         | 37.42±0.80          |
| BERT*      | 23.38±1.96          | 54.27±1.85         | <u>56.02</u> ±1.22 | 50.19±0.72          |
| BERT*+d    | 26.65±1.71          | <u>56.61</u> ±1.76 | 55.93±0.96         | <u>52.13</u> ±0.88  |
| G2P2       | 63.52±2.89          | 76.52±0.59         | 76.66±0.31         | 74.60±0.62          |
| G2P2+d     | <b>65.28</b> *±3.12 | $76.99^* \pm 0.60$ | $77.43*\pm0.27$    | <b>75.86</b> *±0.69 |
| (improv.)  | (+45.38%)           | (+36.00%)          | (+38.22%)          | (+45.52%)           |

- G2P2 and G2P2+d significantly outperforms the baselines.
- Handcrafted discrete prompts (i.e., BERT\*+d and G2P2+d) can be superior to no prompt (BERT\* and G2P2).

#### Conclusion

- Addressed the problem of **low-resource** multi-task text classification;
- Proposed G2P2, consisting of three graph interaction-based contrastive strategies in pre-training, and a prompting mechanism for the jointly pre-trained graphtext model in downstream classification.