3 Dinostra teor 2.7.1

Sia n71

a) $\pi_n(X,x)$ groppo rispetto [f]:=[f:g]

b) $f: \overline{I} \longrightarrow X$, f(o) = x, f(1) = y, $\pi_n(X, x) \stackrel{iso}{=} \pi_n(X, y)$, $u_f: \pi_n(X, x) \longrightarrow \pi_n(X, y)$ $[g] \longmapsto [i(f_1) \cdot_1 g \cdot_1 f_1]$

Jove $f_1: \underline{\mathbb{Z}}^n \longrightarrow X$, $f_1(t_1, ..., t_n) = f(t_n)$

c) $\forall \varphi \in C(X,Y)$, $\exists \varphi_* : \pi_n(X,x) \longrightarrow \pi_n(Y,\varphi(x))$ omomorfismo $\exists \varphi \in C(X,Y)$ gruppi $[g] \longmapsto [\varphi \circ g]$

J) $\pi_n(X,x)$ invariante onotopico (=> inv topologico)

a) Dinostrazione del teor 2.1.2 con [f], [g]:= [fig] e considerando sodo lacci

b) Dinostrazione della prop 2.2.2

c)
$$\varphi_*([f]:_1[g]) := \varphi_*([f:_1g])$$

$$:= [\varphi \circ (f:_1g)]$$

$$= [(\varphi \circ f):_1(\varphi \circ g)]$$

$$= [\varphi \circ f]:_1[\varphi \circ g]$$

$$= \varphi_*([f]):_1\varphi_*([g]), \quad \forall [f], [g] \in \pi_n(X, x)$$

d) Dinostrazione del teor 2.4.2