HDDA Tutorial: Matrices and Factor Analysis

Department of Econometrics and Business Statistics, Monash University

Tutorial 9

Consider the factor model

$$\mathbf{y} = \mathbf{\Lambda}\mathbf{f} + \mathbf{\xi}$$

where \mathbf{y} is a $p \times 1$ vector of observed variables, \mathbf{f} is an $r \times 1$ vector of latent factors with r < p, $\mathbf{\Lambda}$ is a matrix of loadings and $\boldsymbol{\xi}$ is a $p \times 1$ vector of idiosyncratic errors variables. Also assume that $\mathbf{f} \sim N(\mathbf{0}, \mathbf{I})$ and $\boldsymbol{\xi} \sim N(\mathbf{0}, \boldsymbol{\Psi})$.

- 1. What are the dimensions of Λ ?
- 2. What is the expected value of y?
- 3. Derive the expected variance covariance matrix of \mathbf{y} . Hint, you can use a rule of matrices that $(\mathbf{A}\mathbf{B})' = \mathbf{B}'\mathbf{A}$