高等代数与解析几何 2-1 期中考试题

2019年11月15日

一. 计算 (每小题 10 分, 共 20 分).

1. 求 f(x) 与 g(x) 的最大公因式:

$$f(x) = x^4 - 4x^3 + 1$$
, $g(x) = x^3 - 3x^2 + 1$.

2. 用 Cramer 法则解下面方程:

$$\begin{cases} x_1 + 2x_2 + x_3 = 4, \\ x_1 - x_2 + x_3 = 5, \\ 2x_1 + 3x_2 - x_3 = 1. \end{cases}$$

二. 计算下列行列式 (每小题 10 分, 共 20 分).

1.

$$\begin{vmatrix} t + a_1b_1 & a_1b_2 & \cdots & a_1b_n \\ a_2b_1 & t + a_2b_2 & \cdots & a_2b_n \\ \vdots & \vdots & \ddots & \vdots \\ a_nb_1 & a_nb_2 & \cdots & t + a_nb_n \end{vmatrix}$$

2.

$$\begin{vmatrix} 1 & 1 & 1 & 1 & 1 \\ x_1 & x_2 & x_3 & x_4 & x_5 \\ x_1^4 & x_2^4 & x_3^4 & x_4^4 & x_5^4 \\ x_1^5 & x_2^5 & x_3^5 & x_4^5 & x_5^5 \\ x_1^6 & x_2^6 & x_3^6 & x_4^6 & x_5^6 \end{vmatrix}$$

三. (10) 判断多项式 $x^4 + 4kx + 1$ (k) 为整数) 在 \mathbb{Q} 上是否可约.

四. (10 分) 证明: $f(x) = x^3 + ax^2 + bx + c$ (a, b, c 为实数) 的三个根的实部都是负数的充分必要条件是 a > 0, ab > c, c > 0.

五. (10 分) 设 n 为正整数, $f_i(x)$ $(1 \le i \le n-1)$ 是数域 P 上多项式. 试证: 若 $\sum_{i=0}^{n-1} x^i \Big| \sum_{i=1}^{n-1} x^i f_i(x^n)$, 则

$$x-1|(f_1(x),...,f_{n-1}(x)).$$

六. (10 分) 试证 $x^n + ax^{n-m} + b$ $(n \ge m)$ 的任何一个非 0 根 (如果存在) 的重数小于等于 2.

七. (7 分) 设复方阵 $A = (a_{ij})$ 满足 $a_{ij} = \bar{a}_{ji}$. 试证 det A 是实数.

八. (13 分) 称一个 n 阶实方阵 $A=(a_{ij})_{n\times n}$ 为严格对角占优,如果对于任意 $1\leq i\leq n$,成立 $a_{ii}>\sum_{j\neq i}|a_{ij}|$. 试证: 严格对角占优方阵的行列式为正.

答案

一. 1. (f(x), g(x)) = 1. 计算如下:

$$f(x) = g(x)(x-1) + (-3x^2 - x + 2),$$

$$g(x) = (-3x^2 - x + 2)\left(-\frac{1}{3}x + \frac{10}{9}\right) + \left(\frac{16}{9}x - \frac{11}{9}\right),$$

$$-3x^2 - x + 2 = \left(\frac{16}{9}x - \frac{11}{9}\right)\left(-\frac{27}{16}x - \frac{441}{256}\right) - \frac{27}{256}.$$

2. d = 9, $d_1 = 20$, $d_2 = -3$, $d_3 = 22$. 于是解为 $x_1 = 20/9$, $x_2 = -1/3$, $x_3 = 22/9$. 二. 1. $t^{n-1} (t + \sum_{i=1}^{n} a_i b_i)$.

2. 解: 镶两条边后得到

$$\begin{vmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ x_1 & x_2 & x_3 & x_4 & x_5 & y & z \\ x_1^2 & x_2^2 & x_3^2 & x_4^2 & x_5^2 & y^2 & z^2 \\ x_1^3 & x_2^3 & x_3^3 & x_3^3 & x_4^3 & x_5^3 & y^3 & z^3 \\ x_1^4 & x_2^4 & x_3^4 & x_4^4 & x_5^4 & y^4 & z^4 \\ x_1^5 & x_2^5 & x_3^5 & x_4^5 & x_5^5 & y^5 & z^5 \\ x_1^6 & x_2^6 & x_3^6 & x_4^6 & x_5^6 & y^6 & z^6 \end{vmatrix} = \left[\Pi_{1 \le i < j \le 5}(x_j - x_i) \right] \cdot \left[\Pi_{i=1}^5(y - x_i) \right] \cdot \left[\Pi_{i=1}^5(z - x_i) \right] \cdot (z - y).$$

原行列式值即为上行列式值中 $(-1)^{3+4+6+7}(y^2z^3-y^3z^2)=y^2z^2(z-y)$ 的系数. 用 σ_i 表示 (x_1,x_2,x_3,x_4,x_5) 的初等对称多项式. 则系数为 $\sigma_3^2\Pi_{1\leq i< j\leq 5}(x_j-x_i)$.

三. 解: 不可约. 令 x = y + 1, 于是

$$x^{4} + 4kx + 1 = (y+1)^{4} + 4k(y+1) + 1$$
$$= y^{4} + 4y^{3} + 6y^{2} + 4(k+1)y + (4k+2).$$

对于 p=2, 由 Eisenstein 判别法知不可约.

四. 证明: 以 x_1, x_2, x_3 为 f(x) 的三个根, 其中 x_1 是实数. 由根与系数的关系, 知

$$a = -(x_1 + x_2 + x_3),$$
 $b = x_1(x_2 + x_3) + x_2x_3,$ $c = -x_1x_2x_3,$

以及

$$ab - c = -(x_1 + x_2)(x_2 + x_3)(x_3 + x_1).$$

必要性: 若 x_1 , x_2 , x_3 都是实负数, 则显然 a > 0, c > 0, ab > c. 若 x_2 , x_3 不是实数, 则为共轭复数, 显然有 $x_2 + x_3 = 2 \operatorname{Re}(x_2) < 0$, $x_2 x_3 = |x_2|^2 > 0$, $(x_1 + x_2)(x_2 + x_3) = x_1^2 + x_1(x_2 + x_3) + x_2 x_3 > 0$, 所以 a > 0, c > 0, ab > c.

充分性: 若 x_2 , x_3 不是实数,则为共轭复数,所以 $x_2x_3 > 0$,又因为 c > 0,所以 $x_1 < 0$. 由 x_2 , x_3 是 共轭复数,有 $(x_1+x_2)(x_1+x_3) = |x_1+\operatorname{Re} x_2|^2 + |\operatorname{Im} x_2|^2 \geq 0$. 根据条件 $-(x_1+x_2)(x_2+x_3)(x_3+x_1) = ab-c > 0$,有 $2\operatorname{Re} x_2 = x_2+x_3 < 0$. 若 x_1 , x_2 , x_3 都是实数,由 $c = -x_1x_2x_3 > 0$ 知,三者至少有一为负,不妨设为 x_1 ,则剩下 x_2 与 x_3 同号. 若 x_2 , x_3 都是正数,由 $x_1+x_2+x_3=-a<0$ 知, $x_1+x_3<-x_2<0$, $x_1+x_2<-x_3<0$,这样 $(x_1+x_2)(x_2+x_3)(x_3+x_1)>0$,这与 ab>c 矛盾,所以 x_2 , x_3 只能同为负数.

五. 证明: $\sum_{i=0}^{n-1} x^i = \prod_{i=1}^{n-1} (x - \varepsilon_i)$, 其中 $\varepsilon_i^n = 1$, 且当 $i \neq j$ 时, $\varepsilon_i \neq \varepsilon_i$. 由假设有

$$\begin{cases} \varepsilon_1 f_1(1) + \dots + \varepsilon_1^{n-1} f_{n-1}(1) = 0, \\ \varepsilon_2 f_1(1) + \dots + \varepsilon_2^{n-1} f_{n-1}(1) = 0, \\ \dots \\ \varepsilon_{n-1} f_1(1) + \dots + \varepsilon_{n-1}^{n-1} f_{n-1}(1) = 0. \end{cases}$$

注意到系数矩阵的行列式不为 0, 所以 $f_1(1) = f_2(1) \cdots = f_{n-1}(1) = 0$, 结论成立. 六. 证明: 记 $f(x) = x^n + ax^{n-m} + b$, 于是 $f'(x) = x^{n-m-1} (nx^m + (n-m)a)$. 而 $(nx^m + (n-m)a)' = nmx^{m-1}$. 因此 $(nx^m + (n-m)a)$ 的非零根的重数不超过 1, 所以 f'(x) 的非零根的重数不超过 1. 故 $x^n + ax^{n-m} + b$ 的非零根的重数不超过 2. 七. 证明: 定义 \bar{A} 为把 A 的每个元素取复共轭. 根据题意, $\overline{A^T}=A$, 所以有 $\overline{\det A}=\overline{\det A^T}=\det \overline{A^T}=\det A$.

八. 证明: 对方阵的阶进行归纳. 当 n=1 时, 结论显然成立. 假设结论对于 n=k 成立, 现证结论在 n=k+1 时也成立. 对 $1\leq i\leq n-1$, 将方阵 A 的第 i 列减去第 n 列的 $\frac{a_{ni}}{a_{nn}}$ 倍. 这样得到的新的方阵 \tilde{A} 的最后一行只剩下第 n 个位置的元素 a_{nn} 非零. \tilde{A} 形式如下:

$$\tilde{A} = \begin{pmatrix} a_{11} - \frac{a_{n1}}{a_{nn}} a_{1n} & a_{12} - \frac{a_{n2}}{a_{nn}} a_{1n} & \cdots & a_{1n} \\ a_{21} - \frac{a_{n1}}{a_{nn}} a_{2n} & a_{22} - \frac{a_{n2}}{a_{nn}} a_{2n} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix}$$

将 \tilde{A} 前 n-1 行和前 n-1 列所构成的方阵记作 $B=(b_{ij})_{(n-1)\times(n-1)}$. 则有

$$b_{ij} = a_{ij} - \frac{a_{nj}}{a_{nn}} a_{in}.$$

对于任意 $1 \le i \le n-1$, 有

$$b_{ii} - \sum_{j \neq i} |b_{ij}| \ge \frac{1}{a_{nn}} \left(a_{nn} a_{ii} - |a_{in}| |a_{ni}| - a_{nn} \sum_{j \neq i, n} |a_{ij}| - |a_{in}| \sum_{j \neq i, n} |a_{nj}| \right)$$

$$= \frac{1}{a_{nn}} \left[a_{nn} \left(a_{ii} - \sum_{j \neq i, n} |a_{ij}| \right) - |a_{in}| \sum_{j \neq n} |a_{nj}| \right].$$

根据题目条件有

$$a_{ii} - \sum_{j \neq i, n} |a_{ij}| > |a_{in}|,$$

以及

$$a_{nn} - \sum_{i \neq n} |a_{nj}| > 0.$$

所以

$$b_{ii} - \sum_{j \neq i} |b_{ij}| > \frac{1}{a_{nn}} \left[a_{nn} |a_{in}| - |a_{in}| \sum_{j \neq n} |a_{nj}| \right] \ge 0.$$

根据归纳假设, $\det B > 0$. 显然有 $\det A = \det \tilde{A} = a_{nn} \det B$. 所以 $\det A > 0$. 这样我们对于 n = k + 1 也完成了证明. 所以结论对于所有 n 成立.