Homework 1

March 30, 2021

- 1. Let V be a vector space and let $\mathbf{x} \in V$. Show that
 - (a) $\beta \mathbf{0} = \mathbf{0}$ for each scalar β .
 - (b) if $\alpha \mathbf{x} = \mathbf{0}$, then either $\alpha = 0$ or $\mathbf{x} = \mathbf{0}$.
- 2. Let V be the set of all ordered pairs of real numbers with addition defined by

$$(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2)$$

and scalar multiplication defined by

$$\alpha \circ (x_1, x_2) = (\alpha x_1, x_2)$$

Scalar multipliacation for this system is defined in an unusual way, and consequently we use the symbol $\,$ o to avoid confusion with the ordinary scalar multiplication of row vectors. Is V a vector space with these operations? Justify your answer.

3. Let ${\cal R}^+$ denote the set of positive real numbers. Define the operation of scalar multiplication, denoted o, by

$$\alpha \circ x = x^{\alpha}$$

for each $x \in \mathbb{R}^+$ and for any real number α . Define the operation of addition, denoted \oplus , by

$$x \oplus y = x \cdot y$$
 for all $x, y \in R^+$

Thus, for this system, the scalar product of -3 times $\frac{1}{2}$ is given by

$$-3 \circ \frac{1}{2} = \left(\frac{1}{2}\right)^{-3} = 8$$

and the sum of 2 and 5 is given by

$$2 \oplus 5 = 2 \cdot 5 = 10$$

Is \mathbb{R}^+ a vector space with these operations? Prove your answer.

4. Let A be a fixed vector in $\mathbb{R}^{n\times n}$ and let S be the set of all matrices that commute with A, that is,

$$S = \{B \mid AB = BA\}$$

Show that S is a subspace of $\mathbb{R}^{n \times n}$.

- 5. Let $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\}$ be a spanning set for a vector space V.
 - (a) If we add another vector, \mathbf{x}_{k+1} , to the set, will we still have a spanning set? Explain.
 - (b) If we delete one of the vectors, say, \mathbf{x}_k , from the set, will we still have a spanning set? Explain.