Devoir surveillé n°01

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1

1 La fonction g: $x \mapsto x + \ln(1-x)$ est définie sur $]-\infty, 1[$. De plus

$$g(x) = -\frac{x^2}{2} + o(x^2)$$

2 Par concavité de ln,

$$\forall x \in]-\infty, 1[, \ g(x) = x + \ln(1-x) \le 0$$

Ainsi pour tout $n \ge 2$, $u_n = g(1/n) \le 0$.

3 D'après la question 1, $u_n = \mathcal{O}\left(\frac{1}{n^2}\right)$. Comme $\sum \frac{1}{n^2}$ est une série à termes positifs convergente, $\sum u_n$ converge.

 $|\mathbf{4}|$ f est dérivable sur [0,1] et

$$\forall x \in [0,1], \ f'(x) = 1 - \frac{1}{1+x} = \frac{x}{1+x} \ge 0$$

Ainsi f est croissante sur [0,1].

5 A l'aide de la question 1, $v_n = -g(-1/n) = \mathcal{O}\left(\frac{1}{n^2}\right)$ donc $\sum v_n$ converge.

6 On remarque que $v_1 - u_1 = -\ln 2$ et

$$\forall n \in \geq 2, \ v_n - u_n = (\ln(n) - \ln(n-1)) + (\ln(n) - \ln(n+1))$$

On en déduit que

$$\forall \mathbf{N} \geq 3, \ \sum_{n=1}^{\mathbf{N}} v_n - u_n = v_1 - u_1 + \sum_{n=2}^{\mathbf{N}} (\ln(n) - \ln(n-1)) + \sum_{n=2}^{\mathbf{N}} (\ln(n) - \ln(n+1)) = -\ln 2 + \ln(\mathbf{N}) + \ln(2) - \ln(n+1) = \ln(\mathbf{N}) - \ln(\mathbf{N}+1) = -\ln \left(-\ln(2) - \ln(2) - \ln$$

Tomme les séries $\sum v_n$ et $\sum u_n$ convergent, les suites $(\sum_{n=1}^N v_n)_{N\in\mathbb{N}^*}$ et $(\sum_{n=1}^N u_n)_{N\in\mathbb{N}^*}$ convergent également vers les sommes respectives de ces deux séries. D'après la question précédente, la différence de ces deux suites converge vers 0. On en déduit que $\sum_{n=1}^{+\infty} u_n = \sum_{n=1}^{+\infty} v_n$.

8 Comme $u_n \le 0$ pour $n \ge 2$,

$$\gamma = \sum_{n=1}^{+\infty} u_n \le u_1 + u_2 < 1$$

Par concavité de ln, $v_n \ge 0$ pour tout $n \in \mathbb{N}^*$,

$$\gamma = \sum_{n=1}^{+\infty} v_n \ge v_1 = 1 - \ln 2 > 0$$

1

Finalement, $\gamma \in]0,1[$.

9 On a vu que (v_n) était positive donc

$$\sum_{k=1}^{n} v_k \ge 0$$

ou encore

$$\sum_{k=1}^n \ln(k+1) - \ln(k) = \sum_{k=1}^n \ln\left(1 + \frac{1}{k}\right) \le \sum_{k=1}^n \frac{1}{k}$$

et finalement $ln(n+1) \le h_n$.

De la même manière, (u_n) est positive à partir du rang 2 donc

$$\sum_{k=2}^{n} u_k \le 0$$

ou encore

$$\sum_{k=2}^n \ln(k) - \ln(k-1) = -\sum_{k=2}^n \ln\left(1 - \frac{1}{k}\right) \le \sum_{k=2}^n \frac{1}{k}$$

et finalement $h_n \leq 1 + \ln(n)$.

10 Remarquons que pour tout $n \ge 2$,

$$f_n - f_{n-1} = \frac{1}{n} - \ln(n) + \ln(n-1) = u_n \le 0$$

donc (f_n) est décroissante.

11 D'après la question précédente,

$$f_n - f_1 = \sum_{k=2}^n f_k - f_{k-1} = \sum_{k=2}^n u_k$$

De plus, $f_1 = u_1 = 1$ donc

$$f_n = \sum_{k=1}^n u_k \xrightarrow[n \to +\infty]{} \gamma$$

12 12.a On veut surtout voir que la fonction $x \mapsto \frac{1}{x^r}$ est décroissante sur \mathbb{R}_+^* .

12.b Comme r > 1, $\lim_{t \to +\infty} \frac{1}{t^{r-1}} = 0$ de sorte que

$$I(a) = \left[\frac{1}{1 - r} \frac{1}{t^{r-1}}\right]_a^{+\infty} = \frac{1}{(r - 1)a^{r-1}}$$

12.c Soit un entier $k \ge N$. Par décroissance de $t \mapsto 1/t^r$,

$$\forall t \in [k, k+1], \ \frac{1}{tr} \le \frac{1}{kr} \text{ et } \forall t \in [k-1, k], \ \frac{1}{nr} \le \frac{1}{kr}$$

puis, par croissance de l'intégrale,

$$\int_{k}^{k+1} \frac{\mathrm{d}t}{t^r} \le \frac{1}{k^r} \le \int_{k-1}^{k} \frac{\mathrm{d}t}{t^r}$$

12.d Ainsi, pour $n \ge 2$,

$$\sum_{k=n}^{+\infty} \int_k^{k+1} \frac{\mathrm{d}t}{t^r} \leq \sum_{k=n}^{+\infty} \frac{1}{k^r} \leq \sum_{k=n}^{\mathrm{N}} \int_{k-1}^k \frac{\mathrm{d}t}{t^r}$$

ou encore

$$I(n) \le \sum_{k=1}^{+\infty} \frac{1}{k^r} \le I(n-1)$$

Comme $I(n-1) = \frac{1}{(r-1)(n-1)^{r-1}} \sim \frac{1}{(r-1)n^{r-1}} = I(n),$

$$\sum_{k=n}^{+\infty} \frac{1}{k^r} \sim \frac{1}{(r-1)n^{r-1}}$$

12.e On sait que

$$w_{n+1} - w_n \sim_{n \to +\infty} \frac{\ell}{n^r}$$

Comme $\sum \frac{1}{n^r}$ est une série à termes positifs convergente convergente,

$$-w_n = \sum_{k=n}^{+\infty} w_{k+1} - w_k \underset{n \to +\infty}{\sim} \ell \sum_{k=n}^{+\infty} \frac{1}{n^r} \underset{n \to +\infty}{\sim} \frac{\ell}{(r-1)n^{r-1}}$$

On en déduit que $w_n \sim -\frac{\ell}{(r-1)n^{r-1}}$ i.e.

$$\lim_{n \to +\infty} n^{r-1} w_n = -\frac{\ell}{r-1}$$

13 On pose $w_n = \gamma - f_n$. D'après la question 11, (w_n) converge vers 0. De plus, $w_{n+1} - f_n = -u_{n+1} \underset{n \to +\infty}{\sim} \frac{1}{2n^2}$. D'apprès la question précédente avec r = 2 et $\ell = \frac{1}{2}$, $w_n \underset{n \to +\infty}{\sim} -\frac{1}{2n}$. Ceci peut s'écrire

$$\gamma - h_n + \ln(n) = \frac{1}{n \to +\infty} - \frac{1}{2n} + o\left(\frac{1}{n}\right)$$

ou encore

$$h_n = \ln(n) + \gamma + \frac{1}{2n} + o\left(\frac{1}{n}\right)$$

Solution 1

1. En convenant que $A_{n_0-1} = 0$:

$$\begin{split} \sum_{k=n_0}^n a_k \mathbf{B}_k &= \sum_{k=n_0}^n (\mathbf{A}_k - \mathbf{A}_{k-1}) \mathbf{B}_k \\ &= \sum_{k=n_0}^n \mathbf{A}_k \mathbf{B}_k - \sum_{k=n_0}^n \mathbf{A}_{k-1} \mathbf{B}_k \\ &= \sum_{k=n_0}^n \mathbf{A}_k \mathbf{B}_k - \sum_{k=n_0-1}^{n-1} \mathbf{A}_k \mathbf{B}_{k+1} \\ &= \mathbf{A}_n \mathbf{B}_n + \sum_{k=n_0}^{n-1} \mathbf{A}_k (\mathbf{B}_k - \mathbf{B}_{k+1}) \\ &= \mathbf{A}_n \mathbf{B}_n - \sum_{k=n_0}^{n-1} \mathbf{A}_k b_k \end{split}$$

- 2. a. La série $\sum b_n$, autrement dit la série $\sum B_{n+1} B_n$, est une série télescopique. Elle est donc de même nature que la suite (B_n) , c'est-à-dire convergente.
 - **b.** Tout d'abord, (A_n) est bornée donc $A_nB_n = \mathcal{O}(B_n)$. Puisque (B_n) converge vers 0, il en est de même de la suite (A_nB_n) .

Ensuite, la suite (B_n) étant décroissante, la série $\sum b_n$ est une série à termes de signe constant. Or $A_n b_n = \mathcal{O}(b_n)$ et la série $\sum b_n$ converge donc la série $\sum A_n b_n$ converge. On en déduit que la suite de ses sommes partielles converge. La suite de terme général $\sum_{k=n_0}^{n-1} A_k b_k$ converge donc.

D'après la question 1, la suite de terme général $\sum_{k=n_0}^{n} a_k B_k$ converge donc en tant que somme de deux suites convergentes. Puisque $\sum_{k=n_0}^{n} a_k B_k$ est la somme de partielle de rang n de la série $\sum a_n B_n$, la série $\sum a_n B_n$ converge également.

© Laurent Garcin MP Dumont d'Urville

c. Posons $a_n = (-1)^n$ pour $n \ge n_0$. Alors A_n vaut 0, -1 ou 1 suivant la parité de n ou n_0 . En particulier, la suite (A_n) est bornée et on peut donc appliquer le résultat de la question précédente. La série $\sum (-1)^n B_n$ converge donc.

3. a. Il s'agit de la somme des termes d'une suite géométrique.

$$\sum_{k=1}^{n} e^{ki\theta} = e^{i\theta} \frac{e^{in\theta} - 1}{e^{i\theta} - 1} = e^{\frac{i(n+1)\theta}{2}} \frac{\sin \frac{n\theta}{2}}{\sin \frac{\theta}{2}}$$

b. Cas $\alpha \leq 0$. La suite de terme général $\frac{e^{ni\theta}}{n^{\alpha}}$ ne tend pas vers 0. En effet, $\left|\frac{e^{ni\theta}}{n^{\alpha}}\right| = n^{-\alpha} \geq 1$ pour tout $n \in \mathbb{N}^*$.

Cas $\alpha > 1$. La série $\sum \frac{e^{ni\theta}}{n^{\alpha}}$ converge absolument. En effet, pour tout $n \in \mathbb{N}^*$, $\left| \frac{e^{ni\theta}}{n^{\alpha}} \right| = \frac{1}{n^{\alpha}}$ et la série de Riemann $\sum \frac{1}{n^{\alpha}}$ converge puisque $\alpha > 1$.

Cas $0 < \alpha \le 1$. On utilise les résultats précédents avec $n_0 = 1$, $a_n = e^{in\theta}$ et $B_n = \frac{1}{n}$. D'après la question 3.a, pour tout $n \in \mathbb{N}^*$,

$$|A_n| = \left| e^{\frac{i(n+1)\theta}{2}} \frac{\sin \frac{n\theta}{2}}{\sin \frac{\theta}{2}} \right| \le \frac{1}{\left| \sin \frac{\theta}{2} \right|}$$

La suite (A_n) est donc bornée. La suite (B_n) est clairement décroissante de limite nulle. La question **2.b** permet alors d'affirmer que la série $\sum a_n B_n$ i.e. la série $\sum \frac{e^{in\theta}}{n^{\alpha}}$, converge. Cette série ne converge pas absolument puisque $\left|\frac{e^{in\theta}}{n^{\alpha}}\right| = \frac{1}{n^{\alpha}}$ et que la série $\sum \frac{1}{n^{\alpha}}$ ne converge pas $(\alpha \le 1)$.

4. Rappelons que pour tout $n \ge n_0$

$$\sum_{k=n_0}^{n} a_k B_k = A_n B_n - \sum_{k=n_0}^{n-1} A_k b_k$$

La suite (B_n) converge vers 0 et (A_n) est bornée donc $\lim_{n\to +\infty} A_n B_n = 0$. Puisque (A_n) est bornée, $A_n b_n = \mathcal{O}(|b_n|)$. Or la série $\sum |b_n|$ converge car $\sum_{n\geq n_0} b_n$ est absolument convergente. De plus, la série $\sum |b_n|$ est à termes positifs donc la série $\sum A_n b_n$ converge (absolument). Ainsi la suite de terme général $\sum_{n\geq 1} |b_n|$

 $\sum_{k=n_0}^{n} A_k b_k \text{ converge.}$

Il s'ensuit que la suite de terme général $\sum_{k=n_0}^n a_k B_k$ converge également i.e. que la série $\sum_{n>n_0} a_n B_n$ converge.