

Computers & Industrial Engineering 54 (2008) 648-665

computers & industrial engineering

www.elsevier.com/locate/dsw

# Ants can solve the team orienteering problem

Liangjun Ke a, Claudia Archetti b, Zuren Feng a,\*

State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, China
 Department of Quantitative Methods, University of Brescia, Brescia, Italy

Received 10 July 2007; received in revised form 1 October 2007; accepted 1 October 2007 Available online 6 October 2007

#### Abstract

The team orienteering problem (TOP) involves finding a set of paths from the starting point to the ending point such that the total collected reward received from visiting a subset of locations is maximized and the length of each path is restricted by a pre-specified limit. In this paper, an ant colony optimization (ACO) approach is proposed for the team orienteering problem. Four methods, i.e., the sequential, deterministic-concurrent and random-concurrent and simultaneous methods, are proposed to construct candidate solutions in the framework of ACO. We compare these methods according to the results obtained on well-known problems from the literature. Finally, we compare the algorithm with several existing algorithms. The results show that our algorithm is promising.

© 2007 Elsevier Ltd. All rights reserved.

Keywords: Team orienteering problem; Ant colony optimization; Ant system; Heuristics

## 1. Introduction

In the team orienteering problem (TOP), a team of vehicles try to visit a set of points which are assigned a reward. Each vehicle starts from the starting point and finishes at the ending point within a prescribed time limit. Once a vehicle visits a point and is awarded the associated reward, no other vehicles can be awarded a reward for visiting the same point. The aim of the TOP is to maximize the total reward. The TOP was firstly studied by Butt and Cavalier (1994) under the name *multiple path maximum collection problem* and its current name was introduced by Chao, Golden, and Wasil (1996a). The TOP has been recognized as a model of many different real applications, such as the multi-vehicle version of the home fuel delivery problem (Golden, Levy, & Vohra, 1987), the recruiting of college football players (Butt & Cavalier, 1994), the sport game of team orienteering (Chao et al., 1996a), some applications of pickup or delivery services involving the use of common carriers and private fleets (e.g., Ballou & Chowdhury, 1980; Diaby & Ramesh, 1995; Hall & Racer, 1995) and the service scheduling of routing technicians (Tang & Miller-Hooks, 2005).

The TOP is a variant of the traveling salesman problem (TSP). It is closely related to other combinatorial optimization problems, such as vehicle routing problem (Tang & Miller-Hooks, 2005). Since the TOP is an

E-mail addresses: Kelj163@163.com (L. Ke), archetti@eco.unibs.it (C. Archetti), fzr9910@xjtu.edu.cn (Z. Feng).

<sup>\*</sup> Corresponding author.

NP-hard problem (Chao et al., 1996a), the research efforts mainly focus on heuristics and metaheuristics. Butt and Cavalier (1994) presented a greedy procedure. Chao et al. (1996a) proposed a five-step method and a heuristic based on the stochastic algorithm of Tsiligirides (1984). A tabu search algorithm was proposed by Tang and Miller-Hooks (2005). Archetti, Hertz, and Speranza (2007) proposed two tabu search algorithms and a variable neighborhood search algorithm. Until now, only two exact algorithms have been proposed for the TOP: a column generation based algorithm (Butt & Ryan, 1999) and a branch and price based algorithm (Boussier, Feillet, & Gendreau, 2006). However, they can only solve problems of very limited size in a reasonable amount of time.

In this paper, an ant colony optimization (ACO) approach is proposed for the TOP. Although ACO has been successfully applied to a great variety of hard combinatorial optimization problems (Dorigo, Di Caro, & Gambardella, 1999; Dorigo & Stützle, 2004; Dorigo & Blum, 2005), this paper, as far as we know, proposes the first ACO-based algorithm for the TOP.

When solving a combinatorial optimization problem by ACO, a key point is to construct candidate solutions. In many problems, the construction procedures are natural. For example, in the TSP (Dorigo, Maniezzo, & Colorni, 1996), it is only necessary to choose one unselected city at each construction step. However, in the TOP, an ant must determine which vehicle to move and where to move. To deal with this problem, we proposes four methods, that is, the sequential, deterministic-concurrent and random-concurrent and simultaneous methods. A goal of this paper is to study these four methods in terms of computational time and solution quality. In addition, we compare the ACO-based algorithm with several existing algorithms.

The remainder of this paper is organized as follows: First, the TOP is introduced, and the background of ACO is presented. Then the proposed algorithm, which is called ACO-TOP, is presented in Section 3. Section 4 gives the experimental results. Finally, we conclude the main results.

#### 2. Preliminaries

#### 2.1. The formulation of the team orienteering problem

Given a complete graph G = (V, E), where  $V = \{1, ..., n\}$  is the set of vertices,  $E = \{(i, j) | i, j \in V\}$  is the set of edges. Each vertex i in V has a reward  $r_i$ . The starting point is vertex 1 and the ending point is vertex n, and  $r_1 = r_n = 0$ . For each edge (i, j) in E, a symmetric, nonnegative cost  $c_{ij}$  is associated with it, where  $c_{ij}$  is the distance between i and j. The corresponding TOP consists of finding m paths that start at vertex 1 and finish at vertex n such that the total reward of the visited vertices is maximized. Each vertex can be visited at most once. For each vehicle, the total time taken to visit the vertices cannot exceed a pre-specified limit  $T_{\text{max}}$ . In the following, we will assume that there is a direct proportionality between the distance traveled by a vehicle and the time consumed by the vehicle. Thus, there is no actual difference if we consider  $T_{\text{max}}$  as a distance or a time. To avoid any confusion on this point, the value will be used throughout this paper as the maximum distance value.

The formulation for the TOP of which the starting and ending points are the same has been presented by Tang and Miller-Hooks (2005). It can be extended to the case where the starting and ending points may be different. Let  $y_{ik} = 1$  (i = 1, ..., n; k = 1, ..., m) if vertex i is visited by vehicle k, otherwise  $y_{ik} = 0$ . Let  $x_{ijk} = 1$  (i, j = 1, ..., n; k = 1, ..., m) if edge (i, j) is visited by vehicle k, otherwise  $x_{ijk} = 0$ . Since  $c_{ij} = c_{ji}$ , only  $x_{ijk}$  (i < j) are defined. Let U be a subset of V. Then the TOP can be described as follows:

$$\max \sum_{i=2}^{n-1} \sum_{k=1}^{m} r_i y_{ik} \tag{1}$$

subject to 
$$\sum_{i=2}^{n} \sum_{k=1}^{m} x_{1jk} = \sum_{i=1}^{n-1} \sum_{k=1}^{m} x_{ink} = m$$
 (2)

$$\sum_{i < j} x_{ijk} + \sum_{i > j} x_{jik} = 2y_{jk} \quad (j = 2, \dots, n - 1; \ k = 1, \dots, m)$$
(3)

$$\sum_{k=1}^{m} y_{ik} \leqslant 1 \quad (i = 2, \dots, n-1)$$
 (4)

$$\sum_{i=1}^{n-1} \sum_{j>i} c_{ij} x_{ijk} \leqslant T_{\max} \quad (k = 1, \dots, m)$$
 (5)

$$\sum_{\substack{i,j \in U \\ i < i}}^{i=1} x_{ijk} \leqslant |U| - 1 \quad (U \subset V \setminus \{1, n\}; \ 2 \leqslant |U| \leqslant n - 2; \ k = 1, \dots, m)$$
(6)

$$x_{ijk} \in \{0,1\} \quad (1 \le i < j \le n; \ k = 1, \dots, m)$$
 (7)

$$y_{1k} = y_{nk} = 1, \quad y_{ik} \in \{0, 1\} \quad (i = 2, \dots, n - 1; \ k = 1, \dots, m)$$
 (8)

where constraint (2) ensures that each vehicle starts at vertex 1 and ends at vertex n. Constraints (3) ensure the connectivity of each path. Constraints (4) ensure that each vertex (except vertex 1 and n) should be visited at most once, and constraints (5) describe the time restriction. Constraints (6) ensure that sub-paths are forbidden. Constraints (7) and (8) set the integral requirement on each variable.

# 2.2. Ant colony optimization

ACO is a class of population-based metaheuristics. It uses a colony of ants, which are guided by pheromone trails and heuristic information, to construct solutions iteratively for a problem. To solve a static combinatorial optimization problem with ACO, the main procedure can be described as follows: after all pheromone trails and parameters are initialized, ants construct solutions iteratively until a stopping criterion is reached. The main iterative procedure consists of two steps. In the first step, every ant constructs a solution according to the transition rule. Then a local search procedure can be adopted to improve one or more solutions. In the second step, the pheromone values are updated according to a pheromone updating rule.

Let us consider a maximization problem  $(S, f, \Omega)$ , where S is the set of candidate solutions, f is the objective function which assigns to each candidate solution an objective function (cost) value, and  $\Omega$  is a set of constraints. The goal is to find a globally optimal feasible solution  $s^*$ , that is, a maximum cost feasible solution for the problem. In conclusion, a problem can be characterized by the following items (Blum & Dorigo, 2004)

- (i) A finite set  $C = \{c_1, c_2, \dots, c_{|C|}\}\$  of solution components.
- (ii) A finite set X of *states* of the problem, defined in terms of possible sequences  $x = \langle c_i, c_j, ..., c_h, ... \rangle$  of finite length over the elements of C. The length of a sequence, that is, the number of components in the sequence, is expressed by |x|. The maximum length of a sequence is bounded by a positive constant  $n < +\infty$ .
- (iii) The set of candidate solutions S, with  $S \subseteq X$ .

To solve the problem, one should represent it by a completely connected and weighted graph, called construction graph, G = (C, L, T), where the vertices are the components C, the set of edges L fully connects the components C, and T is a vector gathering pheromone trails. In ACO algorithms, ants deposit pheromone in order to attract other ants towards the corresponding area of the search space. Pheromone may be deposited on the edges or on the vertices. This paper mainly discusses the former case. As to the latter case, one can refer to the work by Blum and Dorigo (2004) for more details.

When constructing a solution, each ant is put on a starting point which is problem-dependent, and then wanders randomly from vertex to vertex in the graph. At each vertex, an ant probabilistically selects the next vertex on the basis of a decision policy or transition rule, which depends on the pheromone trails and the heuristic information on the edges. The widely used decision policy is

$$p(c_{k+1} = v | \tau, c_k = u) = \begin{cases} \sum_{w \in C_u}^{\tau(u,v)^{\alpha} \cdot \eta(u,v)^{\beta}} & \text{if} \quad v \in C_u \\ 0 & \text{otherwise} \end{cases}$$
(9)

where  $c_k$  denotes the vertex selected at the kth constructing step,  $C_u$  is the set of vertices that can be selected from vertex u,  $\tau(u, w)$  and  $\eta(u, w)$  are the pheromone value and heuristic information on edge (u, w), respectively.

 $\alpha(\alpha > 0)$  and  $\beta$  are two parameters which control the relative importance of pheromone trails and heuristic information.

In most applications, ants prevent from visiting infeasible vertices according to constraints  $\Omega$ . However, penalty strategy may be occasionally used to deal with the constraints (Blum & Dorigo, 2004).

Once the ants have constructed their solutions, pheromone trails are updated. The first pheromone updating rule was introduced in ant system (AS) by Dorigo et al. (1996). More precisely, the rule is given as follows:

$$\tau(i,j)^{l+1} = \rho \tau(i,j)^l + \sum_{k=1}^{n_a} \Delta \tau_k(i,j)$$
(10)

where

$$\Delta \tau_k(i,j) = \begin{cases} F(s_k) & \text{if } (i,j) \text{ is visted by ant } k \\ 0 & \text{otherwise} \end{cases}$$
 (11)

 $\tau(i,j)^l$  is the pheromone value of edge (i,j) at the lth cycle,  $\rho$  is a coefficient,  $1-\rho$  is called evaporation rate  $(0 \le \rho < 1)$ . Pheromone evaporation allows some past history to be forgotten, and helps diversify the search to new and hopefully more promising areas of the search space.  $s_k$  is the solution constructed by ant k, F is the quality function (Blum & Dorigo, 2004).  $n_a$  is the number of the ants. After pheromone trails are updated, those components which are visited by more ants and contained in higher-quality solutions will receive more pheromone and therefore will more likely be selected in future cycles.

Since AS was introduced, many improvements have been proposed to make ACO very effective. They differ from ant system mainly on the pheromone updating rule (Dorigo & Stützle, 2004; Dorigo & Blum, 2005). One of the most successful ACO variants is max—min ant system (MMAS) proposed by Stützle and Hoos (2000). The success of MMAS is mainly due to its sophisticated balance between the exploration and exploitation.

# 3. The proposed algorithm

ACO-TOP, the proposed algorithm for solving the TOP, is shown in Fig. 1. Although it follows the standard ACO algorithmic scheme for static combinatorial optimization problems, it has many new features which

```
Initialize the parameters, heuristic information \eta and the
pheromone trails \tau
s_{ib} \leftarrow Null
s_{gb} \leftarrow Null
N_{ni} \leftarrow 0
iteration \leftarrow 0
while iteration is less than N_C do
  for i = 1 to n_a do (n_a is the number of ants)
     s_i \leftarrow \textbf{ConstructSolution}(\tau, \eta) (see section 3.2)
     s_i \leftarrow \mathbf{LocalSearch}(s_i) (see section 3.4)
    end for
    s_{ib} \leftarrow \arg\max(F(s_1), F(s_2), \cdots, F(s_{n_n}))
   if F(s_{ib}) > F(s_{ob})
     S_{gb} \leftarrow S_{ib}
    N_{ni} \leftarrow 0
    N_{ni} \leftarrow N_{ni} + 1
   PheromoneUpdate(\tau, s_{ib}, s_{gb}, N_{ni}) (see section 3.3)
   iteration \leftarrow iteration + 1
end while
```

Fig. 1. The ACO-TOP.

will be explained in this section. The algorithm performs as follows: at each cycle, each ant constructs a feasible solution and a local search procedure is applied to improve the solution. Subsequently, the pheromone trails are updated. The algorithm stops iterating when a maximum number of cycles  $N_C$  has been performed. In the following, we first discuss the definition of pheromone trails and heuristic information. Then we describe how to construct a feasible solution and the pheromone updating steps. Finally, a local search procedure is presented.

# 3.1. Pheromone trails and heuristic information

According to its definition, the TOP can be represented by a construction graph whose vertices are the vertices of the original problem. Each edge (i,j) is associate with an amount of pheromone  $\tau(i,j)$  which represents the learned desirability of visiting a certain vertex i after another vertex i.

Suppose that the last vertex of the current (partial) path is i. For each vertex j that is not yet included in the path, the heuristic information  $\eta(i,j)$  characterizes the desirability of edge (i,j). Since the objective of the TOP is to maximize the total reward within a prescribed time limit (or maximum distance value), those vertices which have higher rewards and which are closer to vertex i and n are more desirable. This observation motivates us to consider the three following attributes of vertex j: (1) the associated reward  $r_i$ , (2) the distance between i and j  $c_{ij}$ , (3) the degree of  $\angle jin$ , that is,  $\arccos\theta_{ij}$  where  $\theta_{ij} = (c_{ij}^2 + c_{in}^2 - c_{jn}^2)/2c_{ij}c_{in}$ . Based on these attributes, the heuristic information we used is given as follows:

$$\eta(i,j) = \frac{r_j}{c_{ij}} \exp(\gamma \theta_{ij}) \tag{12}$$

where  $\gamma$  is a parameter which determines the influence of  $\theta_{ij}$ . When  $\gamma = 0$ ,  $\eta(i,j)$  is the measure given by Tsiligirides (1984).

Until now, many notable desirability measures have been developed (Chao, Golden, & Wasil, 1996b). Although our measure is simple, it can give very promising results.

## 3.2. Constructing a solution

In practice, it is only necessary to consider those candidate vertices which satisfy the following requirement (Chao et al., 1996a):

$$c_{i1} + c_{in} \leqslant T_{\text{max}} \quad (2 \leqslant i \leqslant n - 1) \tag{13}$$

This is because any path which contains one of other vertices will violate the time restriction. Without loss of generality, we assume that all vertices satisfy constraint (13).



Fig. 2. An illustration of the four construction methods. (a) The sequential method. (b) The deterministic-concurrent method. (c) The random-concurrent method. (d) The simultaneous method. The solid lines show the paths of vehicle 1, and the dotted lines show the paths of vehicle 2. The numbers above the edges show the orders of construction steps.

Table 1 Results of the four methods

| Group | Sequenti | al    |      | Determi | nistic-concu | rrent | Random-concurrent |       |      | Simultaneous |       |      |
|-------|----------|-------|------|---------|--------------|-------|-------------------|-------|------|--------------|-------|------|
|       | Best     | Aver  | Time | Best    | Aver         | Time  | Best              | Aver  | Time | Best         | Aver  | Time |
| 1.2   | 149.1    | 149.1 | 5.2  | 149.1   | 149.1        | 4.9   | 149.1             | 149.1 | 4.7  | 149.1        | 149.1 | 4.9  |
| 1.3   | 125.0    | 125.0 | 5.8  | 125.0   | 125.0        | 5.2   | 125.0             | 125.0 | 4.9  | 125.0        | 125.0 | 5.2  |
| 1.4   | 101.0    | 101.0 | 6.4  | 101.0   | 101.0        | 5.7   | 101.0             | 101.0 | 5.1  | 101.0        | 101.0 | 5.7  |
| 2.2   | 190.5    | 190.5 | 2.9  | 190.5   | 190.5        | 2.8   | 190.5             | 190.5 | 2.8  | 190.5        | 190.5 | 2.8  |
| 2.3   | 136.4    | 136.4 | 3.1  | 136.4   | 136.4        | 3.0   | 136.4             | 136.4 | 2.8  | 136.4        | 136.4 | 2.9  |
| 2.4   | 94.5     | 94.5  | 3.4  | 94.5    | 94.5         | 3.2   | 94.5              | 94.5  | 2.8  | 94.5         | 94.5  | 3.2  |
| 3.2   | 496.0    | 496.0 | 6.1  | 496.0   | 495.8        | 5.8   | 496.0             | 495.8 | 5.7  | 496.0        | 496.0 | 5.8  |
| 3.3   | 411.5    | 411.4 | 6.5  | 411.5   | 411.2        | 6.0   | 411.5             | 411.1 | 5.7  | 411.5        | 411.2 | 6.0  |
| 3.4   | 336.5    | 336.5 | 6.9  | 336.5   | 336.5        | 6.3   | 336.5             | 336.2 | 5.8  | 336.5        | 336.3 | 6.3  |
| 4.2   | 915.6    | 899.8 | 34.1 | 908.4   | 898.3        | 30.6  | 909.5             | 897.3 | 30.1 | 911.8        | 899.6 | 30.8 |
| 4.3   | 853.8    | 841.1 | 37.2 | 847.7   | 841.1        | 31.6  | 848.4             | 840.1 | 30.5 | 848.2        | 841.9 | 31.8 |
| 4.4   | 798.1    | 783.0 | 40.5 | 795.9   | 784.1        | 33.4  | 791.4             | 780.4 | 31.8 | 795.2        | 787.3 | 33.8 |
| 5.2   | 897.6    | 891.1 | 15.6 | 896.4   | 890.5        | 14.0  | 896.2             | 892.2 | 13.7 | 896.2        | 890.7 | 14.1 |
| 5.3   | 782.8    | 775.3 | 17.3 | 780.4   | 774.6        | 15.0  | 781.2             | 774.5 | 14.2 | 781.0        | 774.2 | 15.0 |
| 5.4   | 708.8    | 704.6 | 19.3 | 707.7   | 698.5        | 16.2  | 706.3             | 698.2 | 15.1 | 705.6        | 698.2 | 16.3 |
| 6.2   | 819.3    | 815.4 | 14.8 | 818.7   | 814.1        | 13.3  | 818.7             | 814.8 | 13.0 | 819.3        | 815.7 | 13.4 |
| 6.3   | 792.8    | 786.0 | 16.7 | 790.5   | 785.6        | 14.5  | 790.5             | 784.7 | 13.8 | 791.3        | 786.3 | 14.6 |
| 6.4   | 714.0    | 701.3 | 18.2 | 714.0   | 699.1        | 15.2  | 714.0             | 699.5 | 14.2 | 714.0        | 702.0 | 15.3 |
| 7.2   | 642.7    | 637.4 | 26.0 | 641.5   | 637.7        | 22.2  | 641.0             | 637.1 | 21.5 | 641.2        | 637.4 | 22.1 |
| 7.3   | 599.9    | 597.1 | 30.8 | 599.4   | 595.5        | 24.8  | 598.6             | 594.6 | 23.7 | 599.2        | 596.0 | 25.0 |
| 7.4   | 519.1    | 517.0 | 34.5 | 518.2   | 516.3        | 26.8  | 518.4             | 516.2 | 24.9 | 518.4        | 516.3 | 26.9 |

The best results are indicated in bold.

During the construction of a solution for the TOP, an ant aims at choosing a feasible path for each vehicle. In detail, an ant iteratively chooses a vehicle and selects a feasible vertex for it, until all vehicles have reached the ending point (procedure **ConstructSolution** in Fig. 1). At each construction step, an ant can decide a vehicle and a point by means of one of the following methods:

Table 2 The rewards obtained by the seven algorithms

| Group | ACO-TOP | CGW   | TMH   | GTP   | GTF   | FVF   | SVF   |
|-------|---------|-------|-------|-------|-------|-------|-------|
| 1.2   | 149.1   | 148.5 | 148.8 | 149.1 | 149.1 | 149.1 | 149.1 |
| 1.3   | 125.0   | 125.6 | 124.7 | 125.0 | 125.0 | 125.0 | 125.0 |
| 1.4   | 101.0   | 99.3  | 101.0 | 101.0 | 101.0 | 101.0 | 101.0 |
| 2.2   | 190.5   | 190.0 | 190.0 | 190.5 | 190.5 | 190.5 | 190.5 |
| 2.3   | 136.4   | 135.9 | 135.9 | 136.4 | 136.4 | 136.4 | 136.4 |
| 2.4   | 94.5    | 94.5  | 94.5  | 94.5  | 94.5  | 94.5  | 94.5  |
| 3.2   | 496.0   | 488.5 | 492.0 | 494.5 | 496.0 | 496.0 | 496.0 |
| 3.3   | 411.5   | 403.0 | 408.0 | 411.5 | 411.5 | 411.5 | 411.5 |
| 3.4   | 336.5   | 332.5 | 335.0 | 336.5 | 336.5 | 336.5 | 336.5 |
| 4.2   | 915.6   | 875.7 | 895.1 | 904.9 | 908.5 | 914.0 | 916.2 |
| 4.3   | 853.8   | 815.1 | 844.3 | 845.5 | 852.5 | 853.0 | 855.6 |
| 4.4   | 798.1   | 766.1 | 784.6 | 800.1 | 802.3 | 801.7 | 803.2 |
| 5.2   | 897.6   | 890.6 | 886.8 | 892.6 | 897.4 | 895.8 | 897.0 |
| 5.3   | 783.4   | 776.6 | 775.8 | 781.4 | 783.6 | 783.6 | 783.6 |
| 5.4   | 708.8   | 696.0 | 699.0 | 707.5 | 708.8 | 708.8 | 708.8 |
| 6.2   | 819.3   | 814.9 | 818.2 | 813.8 | 818.7 | 819.3 | 819.3 |
| 6.3   | 792.8   | 787.5 | 783.0 | 792.8 | 792.8 | 792.8 | 792.8 |
| 6.4   | 714.0   | 716.4 | 712.8 | 714.0 | 714.0 | 714.0 | 714.0 |
| 7.2   | 642.7   | 633.9 | 633.5 | 639.6 | 641.4 | 640.6 | 642.5 |
| 7.3   | 599.9   | 585.5 | 592.5 | 596.7 | 597.7 | 597.1 | 599.3 |
| 7.4   | 519.1   | 497.4 | 514.6 | 517.2 | 516.9 | 516.9 | 518.9 |

The best results are indicated in bold.

Table 3 New best rewards obtained by ACO-TOP

| Problem name | n   | m | $T_{ m max}$ | ACO-TOP | Previous best |
|--------------|-----|---|--------------|---------|---------------|
| p4.2.j       | 100 | 2 | 70.0         | 965     | 962           |
| p4.2.p       |     |   | 100.0        | 1242    | 1241          |
| p4.2.r       |     |   | 110.0        | 1288    | 1286          |
| p4.2.s       |     |   | 115.0        | 1304    | 1301          |
| p4.3.q       |     | 3 | 70.0         | 1252    | 1251          |
| p4.3.t       |     |   | 80.0         | 1305    | 1304          |
| p5.2.y       | 66  | 2 | 62.5         | 1645    | 1635          |
| p7.2.i       | 102 | 2 | 90.0         | 580     | 579           |
| p7.2.j       |     |   | 100.0        | 646     | 644           |
| p7.3.1       |     | 3 | 80.0         | 684     | 683           |
| p7.3.p       |     |   | 106.7        | 929     | 927           |
| p7.3.t       |     |   | 133.3        | 1118    | 1117          |

Table 4
The maximal computational times of the seven algorithms

|       | ACO-TOP | CGW   | ТМН   | GTP   | GTF   | FVF   | SVF    |
|-------|---------|-------|-------|-------|-------|-------|--------|
| Set 1 | 7.9     | 15.4  | NA    | 10.0  | 5.0   | 1.0   | 22.0   |
| Set 2 | 3.8     | 0.9   | NA    | 0.0   | 0.0   | 0.0   | 1.0    |
| Set 3 | 8.5     | 15.4  | NA    | 10.0  | 9.0   | 1.0   | 19.0   |
| Set 4 | 51.1    | 934.8 | 796.7 | 612.0 | 324.0 | 121.0 | 1118.0 |
| Set 5 | 25.2    | 193.7 | 71.3  | 147.0 | 105.0 | 30.0  | 394.0  |
| Set 6 | 20.3    | 150.1 | 45.7  | 96.0  | 48.0  | 20.0  | 310.0  |
| Set 7 | 44.7    | 841.4 | 432.6 | 582.0 | 514.0 | 90.0  | 911.0  |

Table 5 new best rewards obtained by ACO-TOP when the final length of a path is rounded to one decimal place

| Problem name | n   | m | $T_{ m max}$ | ACO-TOP |
|--------------|-----|---|--------------|---------|
| p1.2.e       | 32  | 2 | 12.5         | 50      |
| p4.2.b       | 100 | 2 | 30.0         | 344     |
| p4.2.k       |     |   | 75.0         | 1023    |
| p4.3.c       |     | 3 | 23.3         | 194     |
| p4.3.d       |     |   | 26.7         | 336     |
| p5.3.f       | 66  | 3 | 10.0         | 135     |
| p5.3.q       |     |   | 28.3         | 1080    |
| p5.3.r       |     |   | 30.0         | 1145    |
| p5.3.s       |     |   | 31.7         | 1225    |
| p5.3.y       |     |   | 41.7         | 1600    |
| p5.4.m       |     | 4 | 16.2         | 590     |
| p5.4.p       |     |   | 20.0         | 780     |
| p5.4.x       |     |   | 30.0         | 1500    |
| p6.2.e       | 64  | 2 | 17.5         | 384     |
| p6.2.j       |     |   | 30.0         | 972     |
| p6.3.h       |     | 3 | 16.7         | 462     |
| p6.4.k       |     | 4 | 16.2         | 558     |
| p7.2.g       | 102 | 2 | 70.0         | 467     |
| p7.4.q       |     | 4 | 85.0         | 912     |

- (i) The *sequential* method, which does not replace the current vehicle until this vehicle has no feasible point to be visited. After a vehicle is determined, a point is chosen for it.
- (ii) The *concurrent* method, which replaces the current vehicle by one of the other vehicles. After a vehicle is decided, a point is chosen for it. There are many ways to decide which vehicle have to replace the current vehicle. We consider two methods, called *deterministic-concurrent* and *random-concurrent* methods, which determinately and randomly schedule all vehicles respectively. In the former, the order of the vehicles is fixed, while the order is random in the latter.

(iii) The *simultaneous* method, which chooses one edge from those ones connecting the vehicles and the vertices. As a result, a vehicle and a point are simultaneously determined. The idea behind is to choose a promising edge at each step.

Table 6 Results for data set 1

| Problem name     | Sequer | ntial |          | Determ | inistic-conc | urrent   | Rando | m-concur | rent | Simult | aneous   |          |
|------------------|--------|-------|----------|--------|--------------|----------|-------|----------|------|--------|----------|----------|
|                  | Best   | Aver  | Time     | Best   | Aver         | Time     | Best  | Aver     | Time | Best   | Aver     | Time     |
| p1.2.b           | 15     | 15    | 2.8      | 15     | 15           | 2.4      | 15    | 15       | 2.1  | 15     | 15       | 2.5      |
| p1.2.c           | 20     | 20    | 2.9      | 20     | 20           | 2.5      | 20    | 20       | 2.3  | 20     | 20       | 2.6      |
| p1.2.d           | 30     | 30    | 3.2      | 30     | 30           | 2.8      | 30    | 30       | 2.5  | 30     | 30       | 2.8      |
| p1.2.e           | 45     | 45    | 3.5      | 45     | 45           | 3.1      | 45    | 45       | 2.9  | 45     | 45       | 3.2      |
| p1.2.f           | 80     | 80    | 4.1      | 80     | 80           | 3.8      | 80    | 80       | 3.5  | 80     | 80       | 3.8      |
| p1.2.g           | 90     | 90    | 4.4      | 90     | 90           | 4.1      | 90    | 90       | 3.8  | 90     | 90       | 4.1      |
| p1.2.h           | 110    | 110   | 4.8      | 110    | 110          | 4.4      | 110   | 110      | 4.2  | 110    | 110      | 4.5      |
| p1.2.i           | 135    | 135   | 5.2      | 135    | 135          | 4.8      | 135   | 135      | 4.6  | 135    | 135      | 4.8      |
| p1.2.j           | 155    | 155   | 5.4      | 155    | 155          | 5        | 155   | 155      | 4.8  | 155    | 155      | 5.1      |
| p1.2.k           | 175    | 175   | 5.8      | 175    | 175          | 5.5      | 175   | 175      | 5.2  | 175    | 175      | 5.5      |
| p1.2.1           | 195    | 195   | 6        | 195    | 195          | 5.7      | 195   | 195      | 5.5  | 195    | 195      | 5.7      |
| p1.2.m           | 215    | 215   | 6.3      | 215    | 215          | 5.9      | 215   | 215      | 5.8  | 215    | 215      | 5.9      |
| p1.2.n           | 235    | 235   | 6.5      | 235    | 235          | 6.2      | 235   | 235      | 6.1  | 235    | 235      | 6.2      |
| p1.2.o           | 240    | 240   | 6.7      | 240    | 240          | 6.4      | 240   | 240      | 6.2  | 240    | 240      | 6.4      |
| p1.2.p           | 250    | 250   | 6.8      | 250    | 250          | 6.5      | 250   | 250      | 6.3  | 250    | 250      | 6.5      |
| p1.2.q           | 265    | 265   | 7        | 265    | 265          | 6.7      | 265   | 265      | 6.6  | 265    | 265      | 6.7      |
| p1.2.r           | 280    | 280   | 7.2      | 280    | 280          | 6.9      | 280   | 280      | 6.8  | 280    | 280      | 7        |
| p1.3.c           | 15     | 15    | 3.8      | 15     | 15           | 3.3      | 15    | 15       | 2.8  | 15     | 15       | 3.3      |
| p1.3.d           | 15     | 15    | 3.8      | 15     | 15           | 3.3      | 15    | 15       | 2.8  | 15     | 15       | 3.3      |
| p1.3.e           | 30     | 30    | 4.2      | 30     | 30           | 3.6      | 30    | 30       | 3.2  | 30     | 30       | 3.6      |
| p1.3.f           | 40     | 40    | 4.4      | 40     | 40           | 3.8      | 40    | 40       | 3.4  | 40     | 40       | 3.8      |
| p1.3.g           | 50     | 50    | 4.8      | 50     | 50           | 4.2      | 50    | 50       | 3.8  | 50     | 50       | 4.2      |
| p1.3.h           | 70     | 70    | 5.1      | 70     | 70           | 4.5      | 70    | 70       | 4.2  | 70     | 70       | 4.5      |
| p1.3.i           | 105    | 105   | 5.6      | 105    | 105          | 5        | 105   | 105      | 4.7  | 105    | 105      | 5        |
| p1.3.j           | 115    | 115   | 5.8      | 115    | 115          | 5.2      | 115   | 115      | 4.9  | 115    | 115      | 5.2      |
| p1.3.k           | 135    | 135   | 6.1      | 135    | 135          | 5.5      | 135   | 135      | 5.2  | 135    | 135      | 5.5      |
| p1.3.k<br>p1.3.l | 155    | 155   | 6.4      | 155    | 155          | 5.8      | 155   | 155      | 5.6  | 155    | 155      | 5.8      |
| p1.3.m           | 175    | 175   | 6.6      | 175    | 175          | 5.8<br>6 | 175   | 175      | 5.8  | 175    | 175      | 5.8<br>6 |
| p1.3.m           | 190    | 190   | 6.9      | 173    | 190          | 6.3      | 190   | 190      | 6.1  | 190    | 190      | 6.3      |
| *                | 205    | 205   | 0.9<br>7 | 205    | 205          | 6.4      | 205   | 205      | 6.2  | 205    | 205      | 6.4      |
| p1.3.0           | 220    | 220   | 7.1      | 203    | 220          | 6.5      | 220   | 220      | 6.3  | 220    | 220      | 6.6      |
| p1.3.p           |        |       |          |        |              |          |       |          |      |        |          |          |
| p1.3.q           | 230    | 230   | 7.3      | 230    | 230          | 6.7      | 230   | 230      | 6.6  | 230    | 230      | 6.8      |
| p1.3.r           | 250    | 250   | 7.5      | 250    | 250          | 6.9      | 250   | 250      | 6.7  | 250    | 250      | 6.9      |
| p1.4.d           | 15     | 15    | 4.9      | 15     | 15           | 4.2      | 15    | 15       | 3.4  | 15     | 15       | 4.2      |
| p1.4.e           | 15     | 15    | 4.9      | 15     | 15           | 4.2      | 15    | 15       | 3.4  | 15     | 15       | 4.2      |
| p1.4.f           | 25     | 25    | 5.1      | 25     | 25           | 4.5      | 25    | 25       | 3.7  | 25     | 25<br>25 | 4.5      |
| p1.4.g           | 35     | 35    | 5.4      | 35     | 35           | 4.6      | 35    | 35       | 4    | 35     | 35       | 4.6      |
| p1.4.h           | 45     | 45    | 5.5      | 45     | 45           | 4.9      | 45    | 45       | 4.2  | 45     | 45       | 4.9      |
| p1.4.i           | 60     | 60    | 6        | 60     | 60           | 5.2      | 60    | 60       | 4.7  | 60     | 60       | 5.2      |
| p1.4.j           | 75     | 75    | 6.1      | 75     | 75           | 5.4      | 75    | 75       | 4.8  | 75     | 75       | 5.4      |
| p1.4.k           | 100    | 100   | 6.6      | 100    | 100          | 5.8      | 100   | 100      | 5.3  | 100    | 100      | 5.8      |
| p1.4.1           | 120    | 120   | 6.9      | 120    | 120          | 6.2      | 120   | 120      | 5.6  | 120    | 120      | 6.1      |
| p1.4.m           | 130    | 130   | 6.9      | 130    | 130          | 6.2      | 130   | 130      | 5.7  | 130    | 130      | 6.2      |
| p1.4.n           | 155    | 155   | 7.2      | 155    | 155          | 6.5      | 155   | 155      | 6    | 155    | 155      | 6.5      |
| p1.4.o           | 165    | 165   | 7.4      | 165    | 165          | 6.6      | 165   | 165      | 6.2  | 165    | 165      | 6.6      |
| p1.4.p           | 175    | 175   | 7.5      | 175    | 175          | 6.8      | 175   | 175      | 6.3  | 175    | 175      | 6.7      |
| p1.4.q           | 190    | 190   | 7.6      | 190    | 190          | 6.9      | 190   | 190      | 6.5  | 190    | 190      | 6.9      |
| p1.4.r           | 210    | 210   | 7.9      | 210    | 210          | 7.2      | 210   | 210      | 6.8  | 210    | 210      | 7.1      |

Table 7 Results for data set 2

| Problem name | Seque | ntial |      | Determ | inistic-conc | urrent | Rando | m-concur | rent | Simult | aneous |      |
|--------------|-------|-------|------|--------|--------------|--------|-------|----------|------|--------|--------|------|
|              | Best  | Aver  | Time | Best   | Aver         | Time   | Best  | Aver     | Time | Best   | Aver   | Time |
| p2.2.a       | 90    | 90    | 2.3  | 90     | 90           | 2.1    | 90    | 90       | 2    | 90     | 90     | 2.1  |
| p2.2.b       | 120   | 120   | 2.5  | 120    | 120          | 2.4    | 120   | 120      | 2.3  | 120    | 120    | 2.4  |
| p2.2.c       | 140   | 140   | 2.6  | 140    | 140          | 2.6    | 140   | 140      | 2.5  | 140    | 140    | 2.5  |
| p2.2.d       | 160   | 160   | 2.8  | 160    | 160          | 2.6    | 160   | 160      | 2.5  | 160    | 160    | 2.6  |
| p2.2.e       | 190   | 190   | 2.9  | 190    | 190          | 2.8    | 190   | 190      | 2.7  | 190    | 190    | 2.8  |
| p2.2.f       | 200   | 200   | 3    | 200    | 200          | 2.9    | 200   | 200      | 2.9  | 200    | 200    | 2.9  |
| p2.2.g       | 200   | 200   | 3.1  | 200    | 200          | 3      | 200   | 200      | 3    | 200    | 200    | 3    |
| p2.2.h       | 230   | 230   | 3.2  | 230    | 230          | 3.1    | 230   | 230      | 3    | 230    | 230    | 3.1  |
| p2.2.i       | 230   | 230   | 3.2  | 230    | 230          | 3.2    | 230   | 230      | 3.1  | 230    | 230    | 3.2  |
| p2.2.j       | 260   | 260   | 3.3  | 260    | 260          | 3.2    | 260   | 260      | 3.1  | 260    | 260    | 3.2  |
| p2.2.k       | 275   | 275   | 3.4  | 275    | 275          | 3.3    | 275   | 275      | 3.2  | 275    | 275    | 3.3  |
| p2.3.a       | 70    | 70    | 2.6  | 70     | 70           | 2.4    | 70    | 70       | 2.1  | 70     | 70     | 2.4  |
| p2.3.b       | 70    | 70    | 2.7  | 70     | 70           | 2.6    | 70    | 70       | 2.3  | 70     | 70     | 2.5  |
| p2.3.c       | 105   | 105   | 3    | 105    | 105          | 2.8    | 105   | 105      | 2.6  | 105    | 105    | 2.7  |
| p2.3.d       | 105   | 105   | 3    | 105    | 105          | 2.8    | 105   | 105      | 2.6  | 105    | 105    | 2.8  |
| p2.3.e       | 120   | 120   | 3.1  | 120    | 120          | 2.9    | 120   | 120      | 2.7  | 120    | 120    | 2.9  |
| p2.3.f       | 120   | 120   | 3.1  | 120    | 120          | 2.9    | 120   | 120      | 2.8  | 120    | 120    | 2.9  |
| p2.3.g       | 145   | 145   | 3.2  | 145    | 145          | 3      | 145   | 145      | 2.8  | 145    | 145    | 3    |
| p2.3.h       | 165   | 165   | 3.3  | 165    | 165          | 3.1    | 165   | 165      | 3    | 165    | 165    | 3.1  |
| p2.3.i       | 200   | 200   | 3.4  | 200    | 200          | 3.3    | 200   | 200      | 3.2  | 200    | 200    | 3.3  |
| p2.3.j       | 200   | 200   | 3.5  | 200    | 200          | 3.4    | 200   | 200      | 3.2  | 200    | 200    | 3.3  |
| p2.3.k       | 200   | 200   | 3.4  | 200    | 200          | 3.4    | 200   | 200      | 3.3  | 200    | 200    | 3.4  |
| p2.4.a       | 10    | 10    | 3    | 10     | 10           | 2.7    | 10    | 10       | 2.2  | 10     | 10     | 2.7  |
| p2.4.b       | 70    | 70    | 3.2  | 70     | 70           | 3      | 70    | 70       | 2.6  | 70     | 70     | 3    |
| p2.4.c       | 70    | 70    | 3.2  | 70     | 70           | 3.1    | 70    | 70       | 2.6  | 70     | 70     | 3.1  |
| p2.4.d       | 70    | 70    | 3.2  | 70     | 70           | 3.1    | 70    | 70       | 2.6  | 70     | 70     | 3.1  |
| p2.4.e       | 70    | 70    | 3.3  | 70     | 70           | 3.1    | 70    | 70       | 2.6  | 70     | 70     | 3.1  |
| p2.4.f       | 105   | 105   | 3.6  | 105    | 105          | 3.3    | 105   | 105      | 2.9  | 105    | 105    | 3.3  |
| p2.4.g       | 105   | 105   | 3.5  | 105    | 105          | 3.3    | 105   | 105      | 2.9  | 105    | 105    | 3.3  |
| p2.4.h       | 120   | 120   | 3.6  | 120    | 120          | 3.4    | 120   | 120      | 3    | 120    | 120    | 3.4  |
| p2.4.i       | 120   | 120   | 3.6  | 120    | 120          | 3.4    | 120   | 120      | 3    | 120    | 120    | 3.4  |
| p2.4.j       | 120   | 120   | 3.6  | 120    | 120          | 3.4    | 120   | 120      | 3    | 120    | 120    | 3.4  |
| p2.4.k       | 180   | 180   | 3.8  | 180    | 180          | 3.6    | 180   | 180      | 3.3  | 180    | 180    | 3.6  |

In order to describe these four methods, we use the following notations.

 $u_i$ : the vertex where the *i*th vehicle settles at the *k*th construction step  $(1 \le i \le m)$ ;

 $C_{u_i}$ : the set of the feasible vertices which are unvisited by any vehicle and satisfy the following restriction:

$$\forall v \in C_{u_i}, L(t_i) + c_{u_i v} + c_{vn} \leqslant T_{\text{max}} \tag{14}$$

where  $L(t_i)$  is the length of the (partial) path  $t_i$  which is traveled by the *i*th vehicle. If the set  $C_{u_i}$  is empty, that is, there is no feasible point, then the ending point is chosen and the *i*th path is completed.

 $v_k$ : the vertex selected at the kth construction step;

 $q_k$ : the vehicle selected at the kth construction step.

In the sequential, deterministic-concurrent and random-concurrent methods, an ant probabilistically chooses a point according to the decision policy as follows:

$$p(v_{k+1} = v, q_{k+1} = j | C_{u_i}, 1 \leqslant i \leqslant m, q_k, \tau) = \begin{cases} \frac{\tau(u_j, v)^{\alpha} \cdot \eta(u_j, v)^{\beta}}{\sum_{w \in C_{u_j}} \tau(u_j, w)^{\alpha} \cdot \eta(u_j, w)^{\beta}} & \text{if } v \in C_{u_j} \\ 0 & \text{otherwise} \end{cases}$$
(15)

Table 8 Results for data set 3

| Problem name     | Seque     | ntial     |            | Determ    | inistic-conc | urrent     | Rando     | m-concur  | rent       | Simult         | aneous   |            |
|------------------|-----------|-----------|------------|-----------|--------------|------------|-----------|-----------|------------|----------------|----------|------------|
|                  | Best      | Aver      | Time       | Best      | Aver         | Time       | Best      | Aver      | Time       | Best           | Aver     | Time       |
| p3.2.a           | 90        | 90        | 3.2        | 90        | 90           | 2.9        | 90        | 90        | 2.7        | 90             | 90       | 3          |
| p3.2.b           | 150       | 150       | 3.8        | 150       | 150          | 3.5        | 150       | 150       | 3.2        | 150            | 150      | 3.5        |
| p3.2.c           | 180       | 180       | 4.2        | 180       | 180          | 3.9        | 180       | 180       | 3.7        | 180            | 180      | 3.9        |
| p3.2.d           | 220       | 220       | 4.6        | 220       | 220          | 4.3        | 220       | 220       | 4.1        | 220            | 220      | 4.3        |
| p3.2.e           | 260       | 260       | 4.8        | 260       | 260          | 4.5        | 260       | 260       | 4.3        | 260            | 260      | 4.6        |
| p3.2.f           | 300       | 300       | 5.2        | 300       | 300          | 4.8        | 300       | 300       | 4.6        | 300            | 300      | 4.8        |
| p3.2.g           | 360       | 360       | 5.4        | 360       | 360          | 5.1        | 360       | 360       | 4.9        | 360            | 360      | 5.1        |
| p3.2.h           | 410       | 410       | 5.7        | 410       | 410          | 5.4        | 410       | 410       | 5.2        | 410            | 410      | 5.4        |
| p3.2.i           | 460       | 460       | 6          | 460       | 460          | 5.7        | 460       | 460       | 5.5        | 460            | 460      | 5.7        |
| p3.2.j           | 510       | 510       | 6.3        | 510       | 510          | 5.9        | 510       | 510       | 5.8        | 510            | 510      | 6          |
| p3.2.k           | 550       | 550       | 6.5        | 550       | 550          | 6.2        | 550       | 550       | 6.1        | 550            | 550      | 6.3        |
| p3.2.1           | 590       | 590       | 6.7        | 590       | 590          | 6.4        | 590       | 590       | 6.3        | 590            | 590      | 6.4        |
| p3.2.m           | 620       | 620       | 6.9        | 620       | 620          | 6.6        | 620       | 620       | 6.4        | 620            | 620      | 6.6        |
| p3.2.n           | 660       | 660       | 7.1        | 660       | 660          | 6.8        | 660       | 660       | 6.6        | 660            | 660      | 6.8        |
| p3.2.o           | 690       | 690       | 7.2        | 690       | 690          | 6.9        | 690       | 690       | 6.8        | 690            | 690      | 7          |
| p3.2.p           | 720       | 720       | 7.4        | 720       | 720          | 7.1        | 720       | 720       | 7          | 720            | 720      | 7.2        |
| p3.2.q           | 760       | 760       | 7.6        | 760       | 760          | 7.3        | 760       | 760       | 7.2        | 760            | 760      | 7.3        |
| p3.2.r           | 790       | 790       | 7.7        | 790       | 790          | 7.5        | 790       | 790       | 7.4        | 790            | 790      | 7.5        |
| p3.2.s           | 800       | 800       | 7.9        | 800       | 800          | 7.6        | 800       | 800       | 7.6        | 800            | 800      | 7.7        |
| p3.2.t           | 800<br>30 | 800<br>30 | 8.1        | 800<br>30 | 800          | 7.8        | 800<br>30 | 800<br>30 | 7.7        | 800<br>30      | 800      | 7.8        |
| p3.3.a           | 90        | 90        | 3.9        | 90        | 30<br>90     | 3.5        | 90        |           | 2.9        | 90             | 30<br>90 | 3.5        |
| p3.3.b           | 120       | 120       | 4.3<br>4.5 | 120       | 120          | 3.8<br>4.1 | 120       | 90<br>120 | 3.3<br>3.6 | 120            | 120      | 3.8<br>4.1 |
| p3.3.c<br>p3.3.d | 170       | 170       | 5.1        | 170       | 170          | 4.1        | 170       | 170       | 4.1        | 170            | 170      | 4.1        |
| p3.3.e           | 200       | 200       | 5.4        | 200       | 200          | 4.3<br>4.9 | 200       | 200       | 4.1        | 200            | 200      | 4.3        |
| p3.3.f           | 230       | 230       | 5.6        | 230       | 230          | 5.1        | 230       | 230       | 4.8        | 230            | 230      | 5.1        |
| p3.3.g           | 270       | 270       | 5.9        | 270       | 270          | 5.5        | 270       | 270       | 5.2        | 270            | 270      | 5.5        |
| p3.3.h           | 300       | 300       | 6.2        | 300       | 300          | 5.6        | 300       | 300       | 5.4        | 300            | 300      | 5.7        |
| p3.3.i           | 330       | 330       | 6.4        | 330       | 330          | 5.9        | 330       | 330       | 5.6        | 330            | 330      | 5.9        |
| p3.3.j           | 380       | 380       | 6.6        | 380       | 380          | 6.1        | 380       | 380       | 5.8        | 380            | 380      | 6.1        |
| p3.3.k           | 440       | 440       | 6.8        | 440       | 440          | 6.3        | 440       | 440       | 6.1        | 440            | 440      | 6.3        |
| p3.3.1           | 480       | 480       | 7          | 480       | 480          | 6.5        | 480       | 480       | 6.3        | 480            | 480      | 6.5        |
| p3.3.m           | 520       | 520       | 7.2        | 520       | 520          | 6.7        | 520       | 520       | 6.5        | 520            | 520      | 6.7        |
| p3.3.n           | 570       | 570       | 7.4        | 570       | 570          | 6.9        | 570       | 570       | 6.7        | 570            | 570      | 6.9        |
| p3.3.o           | 590       | 590       | 7.5        | 590       | 590          | 7.2        | 590       | 590       | 6.9        | 590            | 590      | 7.1        |
| p3.3.p           | 640       | 640       | 7.7        | 640       | 640          | 7.5        | 640       | 640       | 7.1        | 640            | 640      | 7.3        |
| p3.3.q           | 680       | 680       | 7.8        | 680       | 680          | 7.4        | 680       | 680       | 7.2        | 680            | 680      | 7.4        |
| p3.3.r           | 710       | 710       | 8          | 710       | 710          | 7.5        | 710       | 710       | 7.4        | 710            | 710      | 7.6        |
| p3.3.s           | 720       | 720       | 8          | 720       | 720          | 7.6        | 720       | 720       | 7.5        | 720            | 720      | 7.6        |
| p3.3.t           | 760       | 760       | 8.1        | 760       | 760          | 7.7        | 760       | 760       | 7.6        | 760            | 760      | 7.7        |
| p3.4.a           | 20        | 20        | 4.8        | 20        | 20           | 4.2        | 20        | 20        | 3.4        | 20             | 20       | 4.2        |
| p3.4.b           | 30        | 30        | 4.9        | 30        | 30           | 4.3        | 30        | 30        | 3.6        | 30             | 30       | 4.4        |
| p3.4.c           | 90        | 90        | 5.3        | 90        | 90           | 4.7        | 90        | 90        | 3.9        | 90             | 90       | 4.7        |
| p3.4.d           | 100       | 100       | 5.4        | 100       | 100          | 4.8        | 100       | 100       | 4.1        | 100            | 100      | 4.8        |
| p3.4.e           | 140       | 140       | 5.8        | 140       | 140          | 5.1        | 140       | 140       | 4.5        | 140            | 140      | 5.1        |
| p3.4.f           | 190       | 190       | 6.2        | 190       | 190          | 5.5        | 190       | 190       | 4.9        | 190            | 190      | 5.5        |
| p3.4.g           | 220       | 220       | 6.5        | 220       | 220          | 5.8        | 220       | 220       | 5.3        | 220            | 220      | 5.8        |
| p3.4.h           | 240       | 240       | 6.7        | 240       | 240          | 5.9        | 240       | 240       | 5.5        | 240            | 240      | 6          |
| p3.4.i           | 270       | 270       | 6.8        | 270       | 270          | 6.2        | 270       | 270       | 5.7        | 270            | 270      | 6.1        |
| p3.4.j           | 310       | 310       | 7.1        | 310       | 310          | 6.4        | 310       | 310       | 6          | 310            | 310      | 6.4        |
| p3.4.k           | 350       | 350       | 7.2        | 350       | 350          | 6.6        | 350       | 350       | 6.2        | 350            | 350      | 6.5        |
| p3.4.1           | 380       | 380       | 7.4        | 380       | 380          | 6.7        | 380       | 380       | 6.3        | 380            | 380      | 6.7        |
| p3.4.m           | 390       | 390       | 7.5        | 390       | 390          | 6.9        | 390       | 390       | 6.4        | 390            | 390      | 6.8        |
| p3.4.n           | 440       | 440       | 7.7        | 440       | 440          | 7          | 440       | 440       | 6.7        | 440            | 440      | 7.1        |
| p3.4.o           | 500       | 500       | 7.9        | 500       | 500          | 7.2        | 500       | 500       | 6.9        | 500            | 500      | 7.2        |
| p3.4.p           | 560       | 560       | 8          | 560       | 560          | 7.3        | 560       | 560       | 7          | 560            | 560      | 7.3        |
| p3.4.p           | 560       | 560       | 8          | 560       | 560          | 1.3        | 560       | 560       | /          | 560<br>(contin |          |            |

Table 8 (continued)

| Problem name | m name Sequential |      |      | Deterministic-concurrent |      |      | Random-concurrent |      |      | Simultaneous |      |      |  |
|--------------|-------------------|------|------|--------------------------|------|------|-------------------|------|------|--------------|------|------|--|
|              | Best              | Aver | Time | Best                     | Aver | Time | Best              | Aver | Time | Best         | Aver | Time |  |
| p3.4.q       | 560               | 560  | 8.1  | 560                      | 560  | 7.6  | 560               | 560  | 7.2  | 560          | 560  | 7.5  |  |
| p3.4.r       | 600               | 600  | 8.2  | 600                      | 600  | 7.6  | 600               | 600  | 7.3  | 600          | 600  | 7.7  |  |
| p3.4.s       | 670               | 670  | 8.4  | 670                      | 670  | 7.7  | 670               | 670  | 7.5  | 670          | 670  | 7.8  |  |
| p3.4.t       | 670               | 670  | 8.5  | 670                      | 670  | 7.9  | 670               | 670  | 7.6  | 670          | 670  | 7.9  |  |

Note that vehicle  $q_k$  and  $q_{k+1}$  are the same in the sequential method, while they are different in the concurrent method.

In the simultaneous method, an ant randomly chooses a vehicle and a point by the following probability:

$$p(v_{k+1} = v, q_{k+1} = j | C_{u_i}, 1 \leqslant i \leqslant m, q_k, \tau) = \begin{cases} \frac{\tau(u_j, v)^{\alpha} \cdot \eta(u_j, v)^{\beta}}{\sum_{i=1}^{m} \sum_{w \in C_{u_i}} \tau(u_i, w)^{\alpha} \cdot \eta(u_i, w)^{\beta}} & \text{if } v \in C_{u_j} \\ 0 & \text{otherwise} \end{cases}$$
(16)

Since only one vertex and one vehicle are selected in the simultaneous method, formula (16) can be computed relatively fast by calculating  $\sum_{w \in C_{u_i}} \tau(u_i, w)^{\alpha} \cdot \eta(u_i, w)^{\beta} (1 \le i \le m)$ . Suppose that vehicle j is chosen and vertex v is selected for it, for each vehicle  $i(i \ne j)$ , the set of its feasible vertices changes to  $C_{u_i} \setminus \{v\}$ .

In Fig. 2, we illustrate the four methods on a TOP with n=7 and m=2. The numbers on the edges represent the orders of construction steps. The sequential method is shown in Fig. 2a. From step 1 to step 3, three points are chosen for vehicle 1. Then four points are chosen for vehicle 2. As shown in Fig. 2b and c, two concurrent methods alternately choose a point for the two vehicles. Fig. 2d shows the simultaneous method where one vehicle is randomly chosen at each step.

#### 3.3. The Pheromone updating

After each ant has constructed a solution, the pheromone trails are updated mainly according to MMAS (procedure **PheromoneUpdate** in Fig. 1). More formally, at the end of each cycle, the pheromone trail of each edge (u, v) is updated as follows:

$$\tau(u,v)^{l+1} = \rho \tau(u,v)^l + \Delta \tau(u,v) \tag{17}$$

if 
$$\tau(u,v)^{l+1} < \tau_{\min}$$
, then  $\tau(u,v)^{l+1} = \tau_{\min}$  (18)

if 
$$\tau(u, v)^{l+1} > \tau_{\text{max}}$$
, then  $\tau(u, v)^{l+1} = \tau_{\text{max}}$  (19)

where  $\tau(u,v)^l$  is the pheromone value of edge (u,v) at the *l*th cycle. If (u,v) is visited by the best ant at the *l*th cycle, then  $\Delta \tau(u,v)$  is equal to  $F(s_{\text{best}})$ , otherwise  $\Delta \tau(u,v) = 0$ .  $s_{\text{best}}$  may be the iteration-best solution  $s_{\text{ib}}$  or global-best solution  $s_{\text{gb}}$ . F(x) is the quality function which is given as follows:

$$F(x) = \sum_{i=2}^{n-1} \sum_{k=1}^{m} r_i y_{ik} / \sum_{i=2}^{n-1} r_i$$
 (20)

 $\tau_{\min}$  and  $\tau_{\max}$  are the lower and upper trail limits, respectively. The upper and lower trail limits are imposed to avoid stagnation. They are chosen as follows (Stützle & Hoos, 2000):

$$\tau_{\text{max}} = \frac{F(s_{\text{gb}})}{(1 - \rho)} \tag{21}$$

$$\tau_{\min} = \left(1 - \sqrt[n]{P_{\text{best}}}\right) / \left((\text{avg} - 1)\sqrt[n]{P_{\text{best}}}\right) \tau_{\max} \tag{22}$$

where avg is equal to n/2.  $P_{\text{best}}$  is the probability of constructing the best solution found when all the pheromone values have converged to either  $\tau_{\min}$  or  $\tau_{\max}$  (Levine & Ducatelle, 2004).

As suggested by Stützle and Hoos (2000), the pheromone values are initialized to the upper trail limit. This gives the ants a higher exploration ability in the early cycles. Another way of enhancing exploration is to reini-

Table 9 Results for data set 4

| Results for data | set 4        |                  |              |              |                  |              |              |                  |              |              |                |              |
|------------------|--------------|------------------|--------------|--------------|------------------|--------------|--------------|------------------|--------------|--------------|----------------|--------------|
| Problem name     | Sequer       | ntial            |              | Determ       | inistic-concu    | ırrent       | Rando        | m-concurre       | ent          | Simult       | aneous         |              |
|                  | Best         | Aver             | Time         | Best         | Aver             | Time         | Best         | Aver             | Time         | Best         | Aver           | Time         |
| p4.2.a           | 206          | 206              | 16.2         | 206          | 206              | 12.5         | 206          | 206              | 11.6         | 206          | 206            | 12.5         |
| p4.2.b           | 341          | 338.7            | 20.3         | 341          | 338              | 16.5         | 341          | 338.7            | 15.8         | 341          | 340.2          | 16.7         |
| p4.2.c           | 452          | 447.9            | 21.9         | 452          | 448.8            | 18.3         | 452          | 449.4            | 17.6         | 452          | 448            | 18.3         |
| p4.2.d           | 531          | 527.5            | 23.5         | 531          | 528.7            | 19.8         | 530          | 528.4            | 19.1         | 531          | 528.2          | 19.9         |
| p4.2.e           | 618          | 596.9            | 25.5         | 600          | 595.6            | 21.6         | 600          | 597              | 21           | 613          | 599.5          | 22.1         |
| p4.2.f           | 687          | 672.6            | 27.5         | 672          | 667.6            | 23.8         | 672          | 663.8            | 23.3         | 672          | 664.9          | 24           |
| p4.2.g           | 757          | 736.8            | 29.7         | 756          | 743.2            | 26           | 756          | 746.1            | 25.6         | 756          | 749.4          | 25.9         |
| p4.2.h           | 827          | 818.2            | 31.6         | 819          | 812.8            | 27.4         | 819          | 812.4            | 26.8         | 820          | 815            | 27.3         |
| p4.2.i           | 918          | 894.1            | 31.9         | 900          | 888.5            | 29.2         | 918          | 873.8            | 29.1         | 918          | 895.3          | 28.5         |
| p4.2.j           | 965          | 953.2            | 34.6         | 962          | 949.6            | 30.4         | 962          | 945.2            | 30           | 962          | 960.2          | 30.7         |
| p4.2.k           | 1022         | 1001.1           | 36.1         | 1016         | 1001.3           | 32.1         | 1016         | 1004.2           | 31.8         | 1016         | 1001.8         | 32.9         |
| p4.2.1           | 1071         | 1063.5           | 37.5         | 1070         | 1062.2           | 33.7         | 1071         | 1058.9           | 33.6         | 1069         | 1060.8         | 34.4         |
| p4.2.m           | 1130         | 1110.6           | 39.9         | 1115         | 1106.9           | 36.3         | 1119         | 1108.3           | 35.3         | 1113         | 1094.2         | 34.8         |
| p4.2.n           | 1168         | 1146.9           | 41.3         | 1149         | 1133.6           | 36.1         | 1158         | 1148             | 37.9         | 1169         | 1146.6         | 38.3         |
| p4.2.o           | 1215         | 1175.8           | 40.4         | 1209         | 1188             | 40.2         | 1198         | 1184.3           | 38.9         | 1210         | 1184.1         | 39.5         |
| p4.2.p           | 1242         | 1215             | 43           | 1229         | 1211.7           | 39.9         | 1233         | 1206.9           | 38.3         | 1239         | 1206.3         | 39.2         |
| p4.2.q           | 1263         | 1234.3           | 43.6         | 1253         | 1232.6           | 39.4         | 1252         | 1225.7           | 39.6         | 1260         | 1227.2         | 39.5         |
| p4.2.r           | 1288         | 1263.4           | 45           | 1278         | 1257.5           | 42           | 1278         | 1261.6           | 41.4         | 1279         | 1264           | 42.3         |
| p4.2.s           | 1304         | 1288.4           | 46           | 1304         | 1288.4           | 43.6         | 1303         | 1284.9           | 41.8         | 1304         | 1294.5         | 44.7         |
| p4.2.t           | 1306         | 1304.4           | 47.1         | 1306         | 1305.1           | 42.7         | 1306         | 1303             | 42.9         | 1306         | 1306           | 44.2         |
| p4.3.b           | 38           | 38               | 17.4         | 38           | 38               | 11.7         | 38           | 38               | 9.9          | 38           | 38             | 11.8         |
| p4.3.c           | 193          | 193              | 22           | 193          | 193              | 16.3         | 193          | 193              | 14.8         | 193          | 193            | 16.4         |
| p4.3.d           | 335          | 333              | 24.9         | 333          | 332.5            | 19.4         | 333          | 333              | 18.1         | 335          | 332            | 19.5         |
| p4.3.e           | 468          | 463.2            | 28.3         | 468          | 465.6            | 22.3         | 468          | 466.4            | 21.1         | 468          | 465.6          | 22.6         |
| p4.3.f           | 579          | 569.2            | 30.5         | 579          | 575.6            | 24.7         | 579          | 573.8            | 23.3         | 579          | 569            | 24.9         |
| p4.3.g           | 653          | 651.6            | 31.6         | 652          | 652              | 26.1         | 653          | 647.2            | 25.2         | 652          | 649.4          | 26.3         |
| p4.3.h           | 720          | 712.6            | 34.4         | 713          | 709.8            | 28.8         | 713          | 709.4            | 27.6         | 713          | 710.4          | 28.7         |
| p4.3.i           | 796          | 779.2            | 36           | 793          | 778              | 30.2         | 793          | 781.9            | 29.7         | 786          | 775.6          | 30.4         |
| p4.3.j           | 861          | 839.4            | 38.3         | 857          | 845.6            | 32           | 855          | 841.4            | 30.7         | 858          | 850.5          | 32.2         |
| p4.3.k           | 918          | 895.7            | 38.5         | 913          | 900.7            | 33.6         | 910          | 899              | 32.6         | 910          | 896.6          | 33.4         |
| p4.3.1           | 979          | 954.2            | 39.3         | 958          | 952.4            | 34.4         | 976          | 961.1            | 33.2         | 966          | 953.4          | 34           |
| p4.3.m           | 1053         | 1023.1           | 41           | 1039         | 1019.8           | 35.8         | 1028         | 1003.4           | 35.1         | 1046         | 1028.8         | 36.7         |
| p4.3.n           | 1121         | 1100.3           | 43.2         | 1109         | 1093.9           | 37.7         | 1112         | 1099.7           | 36.7         | 1103         | 1094.7         | 37.5<br>37.9 |
| p4.3.0           | 1170         | 1158.1           | 44           | 1163         | 1154.2           | 37.6         | 1167         | 1155.6           | 37.2         | 1165         | 1157.6         |              |
| p4.3.p           | 1221         | 1201.7           | 45.5         | 1202         | 1189.4<br>1232.8 | 38.8         | 1207         | 1200.8<br>1221.8 | 38.8         | 1207         | 1202.2         | 39.8         |
| p4.3.q           | 1252<br>1267 | 1227.4<br>1255.7 | 46.8<br>47.1 | 1239<br>1263 | 1232.8           | 41.3<br>42.4 | 1239<br>1263 | 1260.4           | 39.4<br>41.6 | 1238<br>1263 | 1231<br>1260.2 | 41.6<br>42.9 |
| p4.3.r           | 1207         | 1233.7           | 48.3         | 1203         | 1284.9           | 43.3         | 1289         | 1280.4           | 42.4         | 1203         | 1286.2         | 42.9         |
| p4.3.s<br>p4.3.t | 1305         | 1302.3           | 48.8         | 1304         | 1302.8           | 44.3         | 1303         | 1293.6           | 42.4         | 1304         | 1301.8         | 43.8         |
| p4.4.d           | 38           | 38               | 22.4         | 38           | 38               | 14.9         | 38           | 38               | 12.2         | 38           | 38             | 15           |
| p4.4.d<br>p4.4.e | 183          | 183              | 27.5         | 183          | 183              | 19.9         | 183          | 183              | 17.6         | 183          | 183            | 20.1         |
| p4.4.f           | 324          | 324              | 30.2         | 324          | 323.5            | 22.9         | 324          | 322.2            | 20.7         | 324          | 323.5          | 23.1         |
| p4.4.g           | 461          | 460.1            | 33.5         | 461          | 459.8            | 26.1         | 461          | 458.3            | 24           | 460          | 460            | 26.2         |
| p4.4.g<br>p4.4.h | 571          | 552              | 35.5         | 556          | 556              | 28.1         | 556          | 555.2            | 26.9         | 556          | 554.2          | 28.6         |
| p4.4.i           | 657          | 641.6            | 37.5         | 653          | 642.6            | 30.3         | 652          | 643.6            | 28.4         | 653          | 649.1          | 30.8         |
| p4.4.j           | 732          | 726.7            | 39.5         | 731          | 721.2            | 32.3         | 711          | 707.3            | 30           | 731          | 726.8          | 32.8         |
| p4.4.k           | 821          | 814.2            | 40.9         | 820          | 815.3            | 34.1         | 818          | 813              | 32.2         | 818          | 814            | 33.7         |
| p4.4.l           | 880          | 868.4            | 42.8         | 877          | 871.5            | 35.6         | 875          | 870.2            | 33.8         | 875          | 870.3          | 35.7         |
| p4.4.m           | 918          | 904.7            | 43.4         | 911          | 909.1            | 36.5         | 906          | 903.1            | 34.9         | 911          | 906.9          | 36.9         |
| p4.4.n           | 961          | 946.3            | 44.4         | 956          | 948.9            | 37.4         | 956          | 948              | 36.3         | 956          | 952.3          | 37.7         |
| p4.4.0           | 1036         | 1001.1           | 45.9         | 1030         | 1012.3           | 39.2         | 1021         | 1002.7           | 37.7         | 1029         | 1015.5         | 39.6         |
| p4.4.0<br>p4.4.p | 1111         | 1001.1           | 43.9<br>47   | 1108         | 1073.5           | 41           | 1021         | 1064.4           | 39.7         | 1110         | 1013.3         | 42.2         |
| p4.4.p<br>p4.4.q | 1145         | 1106.2           | 47.5         | 1150         | 1117.2           | 41.1         | 1137         | 1107.7           | 39.7         | 1110         | 1122.5         | 41.5         |
| p4.4.r           | 1200         | 1168.7           | 49.2         | 1195         | 1117.2           | 41.7         | 1195         | 1163.2           | 40.9         | 1194         | 1161.2         | 42.9         |
| p4.4.s           | 1249         | 1233.9           | 50.2         | 1256         | 1229.2           | 42.8         | 1249         | 1213.7           | 41.9         | 1252         | 1238.1         | 43.8         |
| p4.4.t           | 1281         | 1268.4           | 51.1         | 1281         | 1276.2           | 44.2         | 1283         | 1273.5           | 43.2         | 1232         | 1268.6         | 44.3         |
| Y-1.1.1          | 1201         | 1200.4           | J1.1         | 1201         | 12/0.2           | 77.4         | 1203         | 1413.3           | 75.4         | 1201         | 1200.0         | -1-1.3       |

Table 10 Results for data set 5

| Problem name | Seque | ntial  |      | Determ | inistic-conci | ırrent | Rando | m-concurr | ent  | Simult | aneous |      |
|--------------|-------|--------|------|--------|---------------|--------|-------|-----------|------|--------|--------|------|
|              | Best  | Aver   | Time | Best   | Aver          | Time   | Best  | Aver      | Time | Best   | Aver   | Time |
| p5.2.b       | 20    | 20     | 7    | 20     | 20            | 5.3    | 20    | 20        | 4.7  | 20     | 20     | 5.3  |
| p5.2.c       | 50    | 50     | 7.9  | 50     | 50            | 6.2    | 50    | 50        | 5.7  | 50     | 50     | 6.2  |
| p5.2.d       | 80    | 80     | 9    | 80     | 80            | 7.3    | 80    | 80        | 6.8  | 80     | 80     | 7.4  |
| p5.2.e       | 180   | 180    | 9.6  | 180    | 180           | 7.9    | 180   | 180       | 7.4  | 180    | 180    | 8    |
| p5.2.f       | 240   | 240    | 10.1 | 240    | 240           | 8.4    | 240   | 240       | 7.9  | 240    | 240    | 8.5  |
| p5.2.g       | 320   | 320    | 10.8 | 320    | 320           | 9.2    | 320   | 320       | 8.7  | 320    | 320    | 9.2  |
| p5.2.h       | 410   | 404.5  | 11.6 | 410    | 402.5         | 10.1   | 410   | 403       | 9.6  | 410    | 403.5  | 10.1 |
| p5.2.i       | 480   | 480    | 12.3 | 480    | 480           | 10.7   | 480   | 480       | 10.3 | 480    | 480    | 10.8 |
| p5.2.j       | 580   | 580    | 12.9 | 580    | 580           | 11.3   | 580   | 580       | 10.9 | 580    | 580    | 11.4 |
| p5.2.k       | 670   | 670    | 13.7 | 670    | 669.5         | 12.2   | 670   | 669.5     | 11.8 | 670    | 670    | 12.2 |
| p5.2.1       | 800   | 778    | 14.5 | 800    | 773           | 12.8   | 800   | 773       | 12.4 | 800    | 774    | 13   |
| p5.2.m       | 860   | 859.5  | 15.1 | 860    | 859.5         | 13.5   | 860   | 859       | 13.1 | 860    | 860    | 13.6 |
| p5.2.n       | 925   | 921    | 15.7 | 920    | 919           | 14.1   | 920   | 920       | 13.7 | 925    | 920.5  | 14.2 |
| p5.2.o       | 1020  | 1011   | 16.3 | 1020   | 1012          | 14.7   | 1010  | 1010      | 14.3 | 1010   | 1010   | 14.8 |
| p5.2.p       | 1150  | 1143.5 | 16.9 | 1150   | 1150          | 15.4   | 1150  | 1150      | 15.1 | 1150   | 1150   | 15.5 |
| p5.2.q       | 1195  | 1194   | 17.7 | 1195   | 1192.5        | 16.1   | 1195  | 1193      | 15.8 | 1195   | 1195   | 16.3 |
| p5.2.r       | 1260  | 1258.5 | 18.3 | 1260   | 1257.5        | 16.9   | 1260  | 1259      | 16.5 | 1260   | 1256.5 | 16.9 |
| p5.2.s       | 1340  | 1324   | 19.1 | 1330   | 1325          | 17.5   | 1330  | 1323.5    | 17.3 | 1330   | 1324   | 17.7 |
| p5.2.t       | 1400  | 1382   | 19.7 | 1400   | 1377          | 18.2   | 1400  | 1379.5    | 18   | 1400   | 1382   | 18.6 |
| p5.2.u       | 1460  | 1452.5 | 20.5 | 1460   | 1447          | 19.1   | 1460  | 1457.5    | 18.7 | 1460   | 1448   | 19.1 |
| p5.2.v       | 1505  | 1491.5 | 21.1 | 1495   | 1487          | 19.5   | 1500  | 1496.5    | 19.4 | 1495   | 1486.5 | 19.7 |
| p5.2.w       | 1560  | 1537.5 | 21.7 | 1555   | 1541.5        | 20.4   | 1555  | 1549.5    | 20.2 | 1555   | 1536   | 20.1 |
| p5.2.x       | 1610  | 1595.5 | 22.3 | 1610   | 1586.5        | 20.8   | 1610  | 1607      | 20.9 | 1610   | 1593.5 | 21   |
| p5.2.y       | 1645  | 1631.5 | 22.6 | 1645   | 1633.5        | 21.4   | 1645  | 1631.5    | 21.3 | 1645   | 1632   | 21.4 |
| p5.2.z       | 1680  | 1672.5 | 23   | 1680   | 1680          | 21.8   | 1680  | 1673      | 21.6 | 1680   | 1677   | 21.8 |
| p5.3.b       | 15    | 15     | 9.7  | 15     | 15            | 7.1    | 15    | 15        | 6.1  | 15     | 15     | 7.2  |
| p5.3.c       | 20    | 20     | 9.6  | 20     | 20            | 7.4    | 20    | 20        | 6.2  | 20     | 20     | 7.4  |
| p5.3.d       | 60    | 60     | 10.9 | 60     | 60            | 8.3    | 60    | 60        | 7.3  | 60     | 60     | 8.3  |
| p5.3.e       | 95    | 95     | 11.7 | 95     | 95            | 9.2    | 95    | 95        | 8.3  | 95     | 95     | 9.3  |
| p5.3.f       | 110   | 110    | 12.5 | 110    | 110           | 10     | 110   | 110       | 9    | 110    | 110    | 10   |
| p5.3.g       | 185   | 185    | 12.8 | 185    | 185           | 10.3   | 185   | 185       | 9.3  | 185    | 185    | 10.3 |
| p5.3.h       | 260   | 260    | 13.9 | 260    | 260           | 11.4   | 260   | 260       | 10.5 | 260    | 260    | 11.5 |
| p5.3.i       | 335   | 335    | 14.3 | 335    | 335           | 11.8   | 335   | 335       | 10.9 | 335    | 335    | 11.9 |
| p5.3.j       | 470   | 470    | 15.1 | 470    | 470           | 12.6   | 470   | 470       | 11.8 | 470    | 470    | 12.7 |
| p5.3.k       | 495   | 495    | 15.6 | 495    | 495           | 13.2   | 495   | 495       | 12.4 | 495    | 495    | 13.3 |
| p5.3.1       | 595   | 590    | 16.3 | 595    | 586           | 13.9   | 595   | 584       | 13.1 | 595    | 584    | 14   |
| p5.3.m       | 650   | 649.5  | 17   | 650    | 649.5         | 14.6   | 650   | 649       | 13.8 | 650    | 649    | 14.7 |
| p5.3.n       | 755   | 755    | 17.6 | 755    | 755           | 15.3   | 755   | 755       | 14.6 | 755    | 755    | 15.4 |
| p5.3.o       | 870   | 865    | 18.3 | 870    | 864.5         | 15.9   | 870   | 867.5     | 15.2 | 870    | 864    | 16   |
| p5.3.p       | 990   | 990    | 18.8 | 990    | 990           | 16.5   | 990   | 989       | 15.8 | 990    | 990    | 16.6 |
| p5.3.q       | 1070  | 1061.5 | 19.5 | 1065   | 1056.5        | 17.2   | 1065  | 1057.5    | 16.5 | 1065   | 1056   | 17.2 |
| p5.3.r       | 1125  | 1114.5 | 20   | 1120   | 1113          | 17.7   | 1125  | 1114.5    | 17.1 | 1125   | 1114.5 | 17.8 |
| p5.3.s       | 1190  | 1187   | 20.7 | 1190   | 1180.5        | 18.4   | 1190  | 1178.5    | 17.8 | 1185   | 1179   | 18.5 |
| p5.3.t       | 1260  | 1251   | 21.2 | 1250   | 1246.5        | 18.9   | 1255  | 1246.5    | 18.3 | 1260   | 1250.5 | 19   |
| p5.3.u       | 1345  | 1336   | 21.6 | 1330   | 1319          | 19.8   | 1335  | 1320      | 18.9 | 1335   | 1326   | 19.6 |
| p5.3.v       | 1425  | 1402   | 22.1 | 1425   | 1412.5        | 20.2   | 1425  | 1414.5    | 19.8 | 1420   | 1398.5 | 20.1 |
| p5.3.w       | 1485  | 1458   | 22.7 | 1465   | 1455          | 20.5   | 1465  | 1452      | 20.1 | 1465   | 1452.5 | 20.6 |
| p5.3.x       | 1540  | 1513.5 | 23.1 | 1535   | 1523.5        | 21.3   | 1540  | 1518      | 20.7 | 1540   | 1522   | 21.2 |
| p5.3.y       | 1590  | 1555   | 23.5 | 1590   | 1552.5        | 21.4   | 1590  | 1547.5    | 20.8 | 1590   | 1552.5 | 21.4 |
| p5.3.z       | 1635  | 1610   | 23.8 | 1635   | 1616.5        | 21.7   | 1635  | 1623      | 21.4 | 1635   | 1615.5 | 21.8 |
| p5.4.c       | 20    | 20     | 12.6 | 20     | 20            | 9.2    | 20    | 20        | 7.7  | 20     | 20     | 9.3  |
| p5.4.d       | 20    | 20     | 12.2 | 20     | 20            | 9.3    | 20    | 20        | 7.7  | 20     | 20     | 9.4  |
| p5.4.e       | 20    | 20     | 12.4 | 20     | 20            | 9.4    | 20    | 20        | 7.7  | 20     | 20     | 9.4  |
| p5.4.f       | 80    | 80     | 14.4 | 80     | 80            | 11.1   | 80    | 80        | 9.6  | 80     | 80     | 11.1 |
| p5.4.g       | 140   | 140    | 15.3 | 140    | 140           | 11.9   | 140   | 140       | 10.5 | 140    | 140    | 12   |
| p5.4.h       | 140   | 140    | 15.7 | 140    | 140           | 12.5   | 140   | 140       | 11.1 | 140    | 140    | 12.5 |

Table 10 (continued)

| Problem name | Sequen | ıtial  |      | Detern | ninistic-cond | current | Rando | m-concurre | nt   | Simulta | aneous |      |
|--------------|--------|--------|------|--------|---------------|---------|-------|------------|------|---------|--------|------|
|              | Best   | Aver   | Time | Best   | Aver          | Time    | Best  | Aver       | Time | Best    | Aver   | Time |
| p5.4.i       | 240    | 240    | 16.3 | 240    | 240           | 13      | 240   | 240        | 11.7 | 240     | 240    | 13.1 |
| p5.4.j       | 340    | 340    | 17.1 | 340    | 340           | 13.8    | 340   | 340        | 12.6 | 340     | 340    | 13.9 |
| p5.4.k       | 340    | 340    | 17.8 | 340    | 340           | 14.5    | 340   | 340        | 13.3 | 340     | 340    | 14.6 |
| p5.4.1       | 430    | 429.5  | 18   | 430    | 428           | 14.9    | 430   | 428        | 13.7 | 430     | 428    | 15   |
| p5.4.m       | 555    | 554    | 18.9 | 555    | 552           | 15.7    | 555   | 551.5      | 14.5 | 555     | 553    | 15.8 |
| p5.4.n       | 620    | 620    | 19.2 | 620    | 620           | 16.1    | 620   | 620        | 15   | 620     | 620    | 16.2 |
| p5.4.o       | 690    | 690    | 19.9 | 690    | 689.5         | 16.9    | 690   | 690        | 15.8 | 690     | 689.5  | 16.9 |
| p5.4.p       | 765    | 758    | 20.4 | 760    | 755           | 17.4    | 760   | 752        | 16.3 | 760     | 753    | 17.4 |
| p5.4.q       | 860    | 851    | 21.2 | 860    | 837.5         | 18      | 860   | 847        | 17.2 | 860     | 839.5  | 18.2 |
| p5.4.r       | 960    | 960    | 21.7 | 960    | 960           | 18.8    | 960   | 958        | 17.8 | 960     | 954    | 18.8 |
| p5.4.s       | 1030   | 1020   | 22.3 | 1030   | 1017          | 19.2    | 1030  | 1019.5     | 18.3 | 1030    | 1011.5 | 19.3 |
| p5.4.t       | 1160   | 1152   | 22.7 | 1160   | 1134.5        | 19.7    | 1160  | 1139.5     | 18.8 | 1160    | 1131   | 19.8 |
| p5.4.u       | 1300   | 1300   | 23   | 1300   | 1274.5        | 20.2    | 1300  | 1260       | 19.3 | 1300    | 1282.5 | 20.3 |
| p5.4.v       | 1320   | 1320   | 23.5 | 1320   | 1292.5        | 20.7    | 1320  | 1297       | 19.9 | 1320    | 1300.5 | 20.8 |
| p5.4.w       | 1390   | 1373.5 | 24   | 1380   | 1374          | 21.1    | 1390  | 1374.5     | 20.3 | 1380    | 1374.5 | 21.2 |
| p5.4.x       | 1450   | 1443   | 24.4 | 1450   | 1440.5        | 21.5    | 1450  | 1439       | 20.8 | 1450    | 1441   | 21.6 |
| p5.4.y       | 1520   | 1513   | 24.8 | 1510   | 1483          | 21.9    | 1510  | 1492       | 21.4 | 1500    | 1485   | 22.1 |
| p5.4.z       | 1620   | 1585.5 | 25.2 | 1620   | 1567          | 22.5    | 1575  | 1549       | 21.7 | 1580    | 1553.5 | 22.5 |

tialize the pheromone trails to the upper trail limit. In our algorithm, we reinitialize the pheromone trails once no better solution can be found for  $N_{ni}$  cycles.

### 3.4. Local search

It is known that the coupling of ACO and local search is effective to improve the performance of the ACO (e.g., Levine & Ducatelle, 2004; Solnon, 2002; Solnon & Fenet, 2006). In fact, ACO performs a rather coarsegrained search, and the solutions constructed can then be locally optimized by an adequate local search procedure (Dorigo & Stützle, 2002).

The local search procedure we used is based on (Chao et al., 1996a). The main procedure (procedure **LocalSearch** in Fig. 1) is as follows: each path is shortened by using a 2-opt procedure and then inserted as many feasible points as possible. This local search procedure is iterated until no improvement can be obtained.

## 4. Experimental results

We now experimentally study the performance of ACO–TOP. The algorithm was coded in C++ and tested on a PC with 3.0 GHZ Intel CPU. The computational experiments have been made on a set of 387 benchmark instances taken from (Chao et al., 1996a). These instances are included in seven sets. The numbers of vertices are 32, 21, 33, 100, 66, 64 and 102, respectively. The coordinate and reward of each vertex is identical in all instances of the same set. In each set, there are three groups which have different numbers of vehicles. An instance in each group is characterized by a different value of  $T_{\rm max}$ .

## 4.1. Parameter settings

Before studying our algorithm, we have to identify a good parameter setting. We have studied the influence of these parameters on the basis of experimental results. For each instance, 10 independent tests were carried out. In all experiments, we used a mixed strategy to schedule  $s_{\rm gb}$  and  $s_{\rm ib}$  for pheromone updating: every 5 cycles,  $s_{\rm gb}$  is used for updating, while  $s_{\rm ib}$  is used in other cycles. Since this paper aims to propose a fast and effective algorithm, the maximal number of cycles  $N_C$  was set to 2000. The number of ants  $n_a$  was set to 20.  $N_{ni} = 250$ . As chosen in many other applications (Stützle & Hoos, 2000),  $\alpha = 1$ ,  $\rho = 0.98$ ,  $P_{\rm best} = 0.05$ . In the preliminary experiments, we observed that  $\beta$  and  $\gamma$  are crucial to the performance of ACO-TOP.

Table 11 Results for data set 6

| Problem name | Sequential |        |      | Deterministic-concurrent |        |      | Random-concurrent |        |      | Simultaneous |        |      |
|--------------|------------|--------|------|--------------------------|--------|------|-------------------|--------|------|--------------|--------|------|
|              | Best       | Aver   | Time | Best                     | Aver   | Time | Best              | Aver   | Time | Best         | Aver   | Time |
| p6.2.d       | 192        | 189    | 8.8  | 192                      | 186.6  | 7.2  | 192               | 188.4  | 6.8  | 192          | 188.4  | 7.3  |
| p6.2.e       | 360        | 359.4  | 10.3 | 360                      | 358.8  | 8.8  | 360               | 357    | 8.4  | 360          | 360    | 8.9  |
| p6.2.f       | 588        | 587.4  | 11.9 | 588                      | 585.6  | 10.5 | 588               | 585    | 9.9  | 588          | 586.8  | 10.5 |
| p6.2.g       | 660        | 660    | 12.9 | 660                      | 660    | 11.3 | 660               | 660    | 11   | 660          | 660    | 11.4 |
| p6.2.h       | 780        | 780    | 14   | 780                      | 780    | 12.5 | 780               | 780    | 12.1 | 780          | 780    | 12.6 |
| p6.2.i       | 888        | 888    | 15   | 888                      | 888    | 13.5 | 888               | 888    | 13.1 | 888          | 888    | 13.6 |
| p6.2.j       | 948        | 947.4  | 15.9 | 948                      | 948    | 14.5 | 948               | 948    | 14.1 | 948          | 948    | 14.5 |
| p6.2.k       | 1032       | 1032   | 16.9 | 1032                     | 1032   | 15.4 | 1032              | 1032   | 15.2 | 1032         | 1032   | 15.5 |
| p6.2.1       | 1116       | 1111.2 | 17.9 | 1110                     | 1106.4 | 16.5 | 1116              | 1111.2 | 16.5 | 1116         | 1110.6 | 16.6 |
| p6.2.m       | 1188       | 1184.4 | 19.1 | 1188                     | 1175.4 | 17.6 | 1188              | 1182.6 | 17.5 | 1188         | 1183.8 | 17.8 |
| p6.2.n       | 1260       | 1230.6 | 19.6 | 1260                     | 1234.8 | 18.4 | 1254              | 1230.6 | 18.1 | 1260         | 1235.4 | 18.3 |
| p6.3.g       | 282        | 278.4  | 12.6 | 282                      | 277.2  | 10.2 | 282               | 276.6  | 9.4  | 282          | 277.8  | 10.2 |
| p6.3.h       | 444        | 427.8  | 13.5 | 444                      | 427.8  | 11.2 | 438               | 428.4  | 10.7 | 438          | 430.2  | 11.4 |
| p6.3.i       | 642        | 640.8  | 15.3 | 642                      | 640.8  | 13.1 | 642               | 639.6  | 12.3 | 642          | 638.4  | 13.2 |
| p6.3.j       | 828        | 825.6  | 16.4 | 828                      | 825    | 14.2 | 828               | 825    | 13.5 | 828          | 825.6  | 14.2 |
| p6.3.k       | 894        | 888.6  | 17.5 | 888                      | 888    | 15.2 | 888               | 888    | 14.5 | 894          | 888.6  | 15.3 |
| p6.3.1       | 1002       | 996    | 18.5 | 1002                     | 996    | 16.4 | 1002              | 993    | 15.7 | 1002         | 996    | 16.4 |
| p6.3.m       | 1080       | 1071.6 | 19.4 | 1074                     | 1069.8 | 17.1 | 1080              | 1071.6 | 16.8 | 1080         | 1074   | 17.4 |
| p6.3.n       | 1170       | 1159.2 | 20.3 | 1164                     | 1160.4 | 18.2 | 1164              | 1155   | 17.7 | 1164         | 1159.8 | 18.3 |
| p6.4.j       | 366        | 363    | 16.1 | 366                      | 362.4  | 12.9 | 366               | 361.8  | 11.7 | 366          | 363    | 13.1 |
| p6.4.k       | 528        | 525    | 16.9 | 528                      | 522    | 14   | 528               | 517.8  | 12.8 | 528          | 520.2  | 14   |
| p6.4.1       | 696        | 671.4  | 18.1 | 696                      | 675.6  | 15.2 | 696               | 679.2  | 14.3 | 696          | 674.4  | 15.3 |
| p6.4.m       | 912        | 885.6  | 19.5 | 912                      | 873.6  | 16.6 | 912               | 876.6  | 15.8 | 912          | 886.2  | 16.7 |
| p6.4.n       | 1068       | 1061.4 | 20.3 | 1068                     | 1062   | 17.4 | 1068              | 1062   | 16.6 | 1068         | 1066.2 | 17.5 |

The values tested for  $\beta$  and  $\gamma$  were  $\{0, 0.25, 0.5, 1, 2, 4, 8\}$ . Experimental results show that 0.5 is a good choice for these two parameters.

#### 4.2. The comparative study on four construction methods

In Table 1, the experimental results on the 21 groups are shown. The best rewards, the average rewards and the computational times (average over all instances in each group) are given for each method. It can be noticed that the sequential method finds the largest rewards and the simultaneous method is better than the deterministic-concurrent and random-concurrent methods. In terms of the computational time, the random-concurrent method performs faster than the other three. However, the sequential method can solve each instance within 51.1 s (on average). Therefore, the sequential method is an excellent compromise between solution quality and computational time. In the following, we only discuss the sequential method.

#### 4.3. Experimental comparison with several existing algorithms

Our algorithm has been compared with several existing algorithms on the same instances:

CGW: the five-step heuristic proposed by Chao et al. (1996a);

TMH: the tabu search heuristic proposed by Tang and Miller-Hooks (2005);

GTP: the tabu search with the penalty strategy proposed by Archetti et al. (2007);

GTF: the tabu search with the feasible strategy proposed by Archetti et al. (2007);

FVF: the fast variable neighborhood search proposed by Archetti et al. (2007);

SVF: the slow variable neighborhood search proposed by Archetti et al. (2007). It differs from FVF on the parameter setting.

<sup>&</sup>lt;sup>1</sup> The results of GTP, GTF, FVF and SVF are available at www-c.eco.unibs.it/'archetti/TOP.zip.

Table 12 Results for data set 7

| Problem name | Sequential |              |            | Deterministic-concurrent |        |      | Random-concurrent |        |      | Simultaneous |              |            |
|--------------|------------|--------------|------------|--------------------------|--------|------|-------------------|--------|------|--------------|--------------|------------|
|              | Best       | Aver         | Time       | Best                     | Aver   | Time | Best              | Aver   | Time | Best         | Aver         | Time       |
| p7.2.a       | 30         | 30           | 12.6       | 30                       | 30     | 8.5  | 30                | 30     | 7.6  | 30           | 30           | 8.6        |
| p7.2.b       | 64         | 64           | 13.6       | 64                       | 64     | 9.5  | 64                | 64     | 8.6  | 64           | 64           | 9.5        |
| p7.2.c       | 101        | 101          | 14.9       | 101                      | 101    | 10.9 | 101               | 101    | 10   | 101          | 101          | 10.9       |
| p7.2.d       | 190        | 190          | 16.8       | 190                      | 190    | 12.8 | 190               | 190    | 12   | 190          | 190          | 12.9       |
| p7.2.e       | 290        | 290          | 18.7       | 290                      | 290    | 14.7 | 290               | 290    | 13.9 | 290          | 290          | 14.8       |
| p7.2.f       | 387        | 386.7        | 20.5       | 387                      | 386.7  | 16.5 | 387               | 387    | 15.7 | 387          | 386.4        | 16.6       |
| p7.2.g       | 459        | 459          | 21.8       | 459                      | 459    | 17.8 | 459               | 459    | 17   | 459          | 459          | 17.8       |
| p7.2.h       | 521        | 521          | 23.1       | 521                      | 520.6  | 19   | 521               | 521    | 18.6 | 521          | 521          | 19.3       |
| p7.2.i       | 580        | 578.6        | 24.5       | 579                      | 578.3  | 20.5 | 579               | 578.3  | 19.7 | 579          | 578.3        | 20.6       |
| p7.2.j       | 646        | 644          | 26.1       | 646                      | 644.6  | 22.3 | 646               | 645.7  | 21.4 | 646          | 644.3        | 22.1       |
| p7.2.k       | 705        | 701.2        | 26.9       | 704                      | 701.8  | 22.9 | 704               | 702.8  | 22.2 | 704          | 702.8        | 23         |
| p7.2.1       | 767        | 765.4        | 27.8       | 767                      | 765.5  | 23.9 | 767               | 766.5  | 23.1 | 767          | 764.3        | 24.1       |
| p7.2.m       | 827        | 827          | 29.5       | 827                      | 824.5  | 25.9 | 827               | 825.8  | 25.3 | 827          | 826.4        | 25.7       |
| p7.2.n       | 888        | 878          | 30.6       | 878                      | 878    | 27.2 | 878               | 878    | 26.6 | 878          | 877.4        | 27.1       |
| p7.2.o       | 945        | 940.1        | 32.7       | 945                      | 935.8  | 28.5 | 940               | 933.2  | 28.4 | 941          | 935.1        | 29.1       |
| p7.2.p       | 1002       | 991.3        | 33.9       | 991                      | 983.5  | 30.4 | 993               | 985.4  | 29.6 | 993          | 986.6        | 29.5       |
| p7.2.q       | 1043       | 1040         | 35.7       | 1042                     | 1038.6 | 31.6 | 1043              | 1036.5 | 31.1 | 1043         | 1033.4       | 30.9       |
| p7.2.r       | 1094       | 1078.9       | 36.5       | 1093                     | 1082.9 | 32.9 | 1088              | 1075.6 | 31.1 | 1094         | 1084.4       | 32.7       |
| p7.2.s       | 1136       | 1115.2       | 36.9       | 1136                     | 1118.3 | 33.7 | 1134              | 1119.2 | 32.9 | 1131         | 1115.7       | 32.8       |
| p7.2.t       | 1179       | 1146.6       | 36.4       | 1179                     | 1161.9 | 34.9 | 1179              | 1153.1 | 34.2 | 1179         | 1157.1       | 34.4       |
| p7.3.b       | 46         | 46           | 18.5       | 46                       | 46     | 12.2 | 46                | 46     | 10.6 | 46           | 46           | 12.3       |
| p7.3.c       | 79         | 79           | 19.3       | 79                       | 79     | 13.2 | 79                | 79     | 11.5 | 79           | 79           | 13.2       |
| p7.3.d       | 117        | 117          | 20.8       | 117                      | 117    | 14.5 | 117               | 117    | 13   | 117          | 117          | 14.6       |
| p7.3.e       | 175        | 175          | 22.4       | 175                      | 175    | 16.1 | 175               | 175    | 14.7 | 175          | 175          | 16.2       |
| p7.3.f       | 247        | 247          | 24.1       | 247                      | 247    | 17.9 | 247               | 247    | 16.5 | 247          | 247          | 18         |
| p7.3.g       | 344        | 344          | 25.6       | 344                      | 344    | 19.5 | 344               | 344    | 18.1 | 344          | 344          | 19.6       |
| p7.3.h       | 425        | 424.3        | 27.7       | 425                      | 423.9  | 21.6 | 425               | 423.1  | 20.3 | 425          | 424.5        | 21.7       |
| p7.3.i       | 487        | 485.3        | 29.3       | 487                      | 485.1  | 23.5 | 486               | 485.6  | 22.2 | 487          | 485          | 23.4       |
| p7.3.j       | 564        | 563.2        | 30.7       | 564                      | 562.8  | 24.8 | 564               | 563.4  | 24   | 564          | 563.3        | 25         |
| p7.3.k       | 633        | 629.5        | 31.5       | 632                      | 627.1  | 25.6 | 633               | 629.4  | 24.8 | 633          | 629.6        | 26         |
| p7.3.1       | 684        | 680.7        | 33.1       | 683                      | 680.5  | 27.4 | 684               | 679    | 26.1 | 684          | 681.2        | 27.4       |
| p7.3.m       | 762        | 759.1        | 33.8       | 762                      | 756.3  | 28.1 | 762               | 754.2  | 27.2 | 762          | 755.5        | 28.3       |
| p7.3.n       | 820        | 813.9        | 35.1       | 819                      | 811    | 29.2 | 819               | 811.2  | 28.2 | 820          | 813          | 29.6       |
| p7.3.o       | 874        | 874          | 35.7       | 874                      | 873.7  | 30.1 | 874               | 873    | 29.1 | 874          | 873.7        | 30.1       |
| p7.3.p       | 929        | 925.6        | 36.8       | 925                      | 922.3  | 31.1 | 926               | 924.1  | 30.2 | 925          | 923.6        | 31.3       |
| p7.3.q       | 987        | 984.5        | 38         | 987                      | 983.1  | 32.5 | 987               | 982.5  | 31.5 | 987          | 981          | 32.6       |
| p7.3.r       | 1026       | 1018.4       | 39.6       | 1024                     | 1017   | 34.2 | 1021              | 1015   | 33.2 | 1022         | 1016.4       | 34.3       |
| p7.3.s       | 1081       | 1070.3       | 41.3       | 1081                     | 1062.2 | 35.1 | 1081              | 1062.6 | 34.3 | 1077         | 1061.5       | 35.4       |
| p7.3.t       | 1118       | 1107.2       | 42.3       | 1117                     | 1101   | 35.5 | 1103              | 1086.5 | 34.1 | 1117         | 1108         | 36.7       |
| p7.4.b       | 30         | 30           | 23         | 30                       | 30     | 14.8 | 30                | 30     | 12.3 | 30           | 30           | 14.9       |
| p7.4.c       | 46         | 46           | 23.6       | 46                       | 46     | 15.4 | 46                | 46     | 12.9 | 46           | 46           | 15.5       |
| p7.4.d       | 79         | 79           | 24.5       | 79                       | 79     | 16.6 | 79                | 79     | 14.1 | 79           | 79           | 16.6       |
| p7.4.e       | 123        | 123          | 26.1       | 123                      | 123    | 18   | 123               | 123    | 15.7 | 123          | 123          | 18.1       |
| p7.4.f       | 164        | 164          | 27.9       | 164                      | 164    | 19.6 | 164               | 164    | 17.3 | 164          | 164          | 19.7       |
| p7.4.g       | 217        | 217          | 29.1       | 217                      | 217    | 20.9 | 217               | 217    | 18.8 | 217          | 217          | 21.1       |
| p7.4.h       | 285        | 285          | 30.7       | 285                      | 285    | 22.7 | 285               | 285    | 20.6 | 285          | 285          | 22.7       |
| p7.4.i       | 366        | 366          | 32.1       | 366                      | 366    | 24.2 | 366               | 366    | 22.1 | 366          | 366          | 24.3       |
| p7.4.j       | 462        | 462          | 33.9       | 462                      | 461.7  | 26.3 | 462               | 461.1  | 24.2 | 462          | 462          | 26.3       |
| p7.4.k       | 520        | 518<br>581.7 | 35.3       | 520<br>500               | 517.2  | 27.8 | 520<br>500        | 461.1  | 25.8 | 520<br>500   | 462<br>517.0 | 28         |
| p7.4.1       | 590<br>646 | 581.7        | 37<br>37 0 | 590                      | 580.5  | 29.2 | 590<br>646        | 517.8  | 27.5 | 590<br>646   | 517.9        | 29.5       |
| p7.4.m       | 646        | 643.9        | 37.9       | 644                      | 642.9  | 30.2 | 646               | 583.6  | 28.6 | 646<br>726   | 584.8        | 30.4       |
| p7.4.n       | 730        | 725.6        | 39.4       | 725                      | 724.4  | 31.6 | 725<br>781        | 643.4  | 29.9 | 726          | 642.2        | 31.7       |
| p7.4.o       | 781<br>846 | 777.5        | 40.2       | 778                      | 775.2  | 32.8 | 781               | 724.4  | 31.2 | 778          | 724.5        | 33.1       |
| p7.4.p       | 846        | 839.4        | 41.3       | 846                      | 838.7  | 34.8 | 838               | 776.2  | 32.7 | 842          | 776.5        | 34.4       |
| p7.4.q       | 909        | 905.1        | 42.1       | 909                      | 905.6  | 34.8 | 909               | 832.9  | 33.5 | 909          | 835.5        | 35<br>25 5 |
| p7.4.r       | 970        | 969.2        | 42.5       | 970                      | 968.8  | 36   | 970               | 904.1  | 34.3 | 970          | 904.2        | 35.5       |

Table 12 (continued)

| Problem name | Sequential |        |      | Deterministic-concurrent |        |      | Random-concurrent |        |      | Simultaneous |        |      |
|--------------|------------|--------|------|--------------------------|--------|------|-------------------|--------|------|--------------|--------|------|
|              | Best       | Aver   | Time | Best                     | Aver   | Time | Best              | Aver   | Time | Best         | Aver   | Time |
| p7.4.s       | 1022       | 1017.7 | 44   | 1019                     | 1014.8 | 36.6 | 1021              | 968.4  | 35.2 | 1019         | 966.5  | 36.8 |
| p7.4.t       | 1077       | 1072.8 | 44.7 | 1072                     | 1070.5 | 37.6 | 1077              | 1014.5 | 36.8 | 1077         | 1013.4 | 38.1 |

Since only the best rewards of these algorithms are available, we report the best rewards of all algorithms.<sup>2</sup> When comparing these algorithms, one problem is computational precision of the final path. It is clear that the final path of CGW is rounded to one decimal place (Chao et al., 1996a). However, the computational precision of other algorithm is implicit. In fact, we found that 19 instances have different best rewards when different kinds of precision are considered. In order to compare, we report the results of ACO–TOP without rounding here. In Appendix A, we give new best rewards obtained when the final path is rounded to one decimal place.

For each algorithm, the (average) best reward of each group is reported in Table 2. It can be seen that ACO–TOP and SVF obtain the most promising rewards. Each of them performs better than other algorithms in 15 groups. Moreover, ACO–TOP finds the best-so-far rewards for 347 problems and new best rewards for 12 problems. The new best rewards are shown in Table 3. The column "problem name" indicates the name of each problem. Each problem is denoted by the notation  $px \cdot y \cdot z$ , where x represents the set to which the problem belongs, y indicates the number of vehicles and z is a label that differentiates between problems from the same set and with the same number of vehicles. According to these tables, ACO–TOP has a promising ability to find good solutions.

Table 4 shows the average computational time required by each algorithm. The CGW algorithm was run on a SUN 4/730 Workstation 25 MHz, TMH was run on a DEC Alpha XP1000 computer 667 MHz, while the other four algorithms were run on a personal computer with 2.8 GHZ CPU. Since our algorithm requires less than one minute on each instance, ACO–TOP can find good solutions in a reasonable amount of time.

## 5. Conclusions

In this paper, an ACO approach, called ACO-TOP, is proposed for the team orienteering problem. We proposed the sequential, deterministic-concurrent and random-concurrent and simultaneous methods to construct solutions. Moreover, we tested them on classical benchmark problems. The experimental results show that the sequential method can obtain the best solution quality within less than one minute on each instance. Finally, ACO-TOP was compared to several promising algorithms. The experimental results on the benchmark problems show that ACO-TOP can compete efficiently and effectively with these algorithms.

#### Acknowledgements

The authors thank the anonymous reviewers for their helpful comments and suggestions. This work is supported by the National Natural Science Foundation of China, No. 60475023 and the Ph. D. Programs Foundation of Ministry of Education of China, No. 20050698032.

## Appendix A

Table 5 shows the new best rewards obtained when the final length is rounded to one decimal place. The detailed results for set 1–set 7 are given in Tables 6–12.

<sup>&</sup>lt;sup>2</sup> A detailed table of results for all the test instances, together with the instances themselves, can be obtained by email or see Appendix A.

#### References

- Archetti, C., Hertz, A., & Speranza, M. G. (2007). Metaheuristics for the team orienteering problem. *Journal of Heuristics*, 13, 49–76.
   Ballou, R., & Chowdhury, M. (1980). MSVS: An extended computer model for transport mode selection. *The Logistics and Transportation Review*, 16, 325–338.
- Diaby, M., & Ramesh, R. (1995). The distribution problem with carrier service: A dual based penalty approach. ORSA Journal on Computing, 7, 24–35.
- Blum, C., & Dorigo, M. (2004). The hyper-cube framework for ant colony optimization. *IEEE Transactions on System Man, and Cybernetics Part B, 34*, 1161–1172.
- Boussier, S., Feillet, D., Gendreau, M. (2006). An exact algorithm for team orienteering problems, 4OR.
- Butt, S. E., & Cavalier, T. M. (1994). A Heuristic for the multiple path maximum collection problem. *Computers and Operations Research*, 21, 101–111.
- Butt, S., & Ryan, D. (1999). An optimal solution procedure for the multiple path maximum collection problem using column generation. *Computer and Operations Research*, 26, 427–441.
- Chao, I-M., Golden, B., & Wasil, E. A. (1996a). The team orienteering problem. European Journal of Operational Research, 88, 464–474.
  Chao, I-M., Golden, B., & Wasil, E. A. (1996b). A fast and effective heuristic for the orienteering problem. European Journal of Operational Research, 88, 475–489.
- Dorigo, M., Maniezzo, V., & Colorni, A. (1996). The ant system: Optimization by a colony of cooperating agents. *IEEE Transactions on System Man, and Cybernetics-Part B, 26, 29-41.*
- Dorigo, M., Di Caro, G., & Gambardella, L. M. (1999). Ant algorithms for distributed discrete optimization. *Artificial Life*, 5, 137–172. Dorigo, M., & Stützle, T. (2002). The ant colony optimization metaheuristic: Algorithms, applications, and advances. In F. Glover & G. Kochenberger (Eds.), *Handbook of metaheuristics* (pp. 251–285). Norwell, MA, USA: Kluwer Academic Publishers..
- Dorigo, M., & Stützle, T. (2004). Ant colony optimization: MA. Cambridge: MIT Press.
- Dorigo, M., & Blum, C. (2005). Ant colony optimization theory: A survey. Theoretical Computer Science, 344, 243–278.
- Golden, B., Levy, L., & Vohra, R. (1987). The orienteering problem. Naval Research Logistics, 34, 307-318.
- Hall, R., & Racer, M. (1995). Transportation with common carrier and private fleets: System assignment and shipment frequency optimization. *IIE Transactions*, 27, 217–225.
- Levine, J., & Ducatelle, F. (2004). Ant colony optimization and local search for bin packing and cutting stock problems. *Journal of the Operational Research Society*, 55, 705–716.
- Solnon, C. (2002). Ants can solve constraint satisfaction problems. IEEE Transaction on Evolutionary Computation, 6, 347-357.
- Solnon, C., & Fenet, S. (2006). A study of ACO capabilities for solving the maximum clique problem. *Journal of Heuristics*, 12, 155–180. Stützle, T., & Hoos, H. H. (2000). Max-min ant system. *Future Generation Computer Systems*, 16, 889–914.
- Tang, H., & Miller-Hooks, E. (2005). A tabu search heuristic for the team orienteering problem. Computers and Operations Research, 32, 1379–1407.
- Tsiligirides, T. (1984). Heuristic methods applied to orienteering. Journal of the Operational Research Society, 35, 797-809.