Devoir à la maison n° 18

À rendre le 7 avril

Première partie

Soit la fonction φ définie par :

$$\varphi(x) = \frac{\ln(1+x)}{r}$$

- 1) Déterminer l'ensemble de définition de φ .
- 2) Montrer que φ est dérivable sur son ensemble de définition et déterminer sa dérivée.
- 3) Etudier le signe de $\varphi'(x)$.
- 4) Déterminer les limites de φ aux bornes de son ensemble de définition.
- 5) Montrer que φ peut être prolongée par continuité en 0 en une fonction que l'on notera également φ . Montrer que cette fonction ainsi prolongée est de classe \mathcal{C}^1 sur son ensemble de définition.
- 6) Déterminer le tableau de variation de φ et tracer sa courbe représentative.

Deuxième partie

Soit f une fonction définie continue et **positive** sur $\left[0,\frac{\pi}{2}\right]$. Soit la fonction g définie par :

$$g(x) = \int_0^{\pi/2} \frac{f(t)}{1 + x \sin t} dt.$$

- 7) Montrer que g est définie sur $]-1, +\infty[$.
- 8) On suppose dans cette question que : $\forall t \in \left[0, \frac{\pi}{2}\right], \ f(t) = \cos t$. Calculer g(x).
- 9) On suppose dans cette question que : $\forall t \in \left[0, \frac{\pi}{2}\right], \ f(t) = \sin(2t)$. Calculer g(x).
- 10) Soit a un réel supérieur strictement à -1. Montrer que l'on peut trouver un réel K tel que :

$$\forall (x, y) \in]a, +\infty[^2, |g(x) - g(y)| \le K|x - y|.$$

En déduire que la fonction g est continue sur $]-1,+\infty[$.

- 11) Montrer, sans utiliser la dérivabilité, que g est décroissante sur $]-1,+\infty[$.
- **12)** Montrer que la fonction f est majorée sur $\left[0, \frac{\pi}{2}\right]$.

- 13) Soit M un majorant de f sur $\left[0, \frac{\pi}{2}\right]$ et $b \in \left]0, \frac{\pi}{2}\right]$. En écrivant $\int_0^{\frac{\pi}{2}} = \int_0^b + \int_b^{\frac{\pi}{2}}$, montrer que : $\forall \ x > 0, \ g(x) \leq Mb + \frac{M\pi}{2(1+x\sin b)}.$
- 14) En déduire la limite de la fonction g en $+\infty$.
- 15) Montrer que g admet une limite L finie ou infinie en -1. On illustrera chacun des deux cas avec un exemple.

— FIN —