First-Principles Computational Materials Physics

Part I: Fundamentals of First-principles Calculations

台灣大學物理系郭光宇

Guang-Yu Guo

Physics Dept., National Taiwan University

(Fall Semester, 2017)

Chapter 1 Introduction to First-Principles Calculations

1.1 What is first-principles calculation

This course is about calculating the properties of materials (solid phase) from <u>first-principles</u> (*ab initio*), by directly or indirectly solving the Schrödinger equation that describes the motion of the electrons in the Coulomb potentials of the nuclei and of each other. By first-principles (*ab initio*), we meant empirical parameter-free calculations; that is, calculations in which the only input is the atomic numbers of the atoms and the macroscopic constraints (pressure, temperature, etc).

[from Internet]

		there				p.	2. 011	ictures	labe	neu c	ompie.	a arc	descri	bed							5.83
Li 78K bcc 3.491	Be hcp 2.27 3.59	Name of the last o												· 1888	B rhomb.	diamon		5	O complex (O ₂)	F	Ne fcc 4.46
Na 5K bcc 4.225	Mg hcp 3.21 5.21	*	Al Si P S ← Crystal structure → fcc diamond complex complex									CI complex (CI ₂)	Ar fcc 5.3								
K 5K bcc 5.225	Ca fcc 5.58	Sc hcp 3.31 5.27	Ti hcp 2.9 4.6	5 3.	DESCRIPTION OF STREET	cc .88	Mn cubic complex	Fe bcc 2.87	2.	ср	Ni fcc 3.52	Cu fcc 3.6	ho 1 2.		Ga complex	Ge diamon 5.658	A STATE OF THE STA	b.	Se hex. chains	Br complex (Br ₂)	Kr fcc 5.64
Rb 5K bcc 5.585	Sr fcc 6.08	Y hcp 3.65 5.73	cp hcp .65 3.23		c bo	lo cc .15	Tc hcp 2.74 4.40	Ru hcp 2.71 4.28	fo 3.	С	Pd fcc 3.89	Ag fcc 4.09	hcp		In tetr. 3.25 4.95	Sn (diamond 6.49	x) Sb I rhomb). I	Te hex. chains	complex (I ₂)	Xe fcc 6.13
Cs 5K bcc 6.045	Ba bcc 5.02	La hex. 3.77 ABAC	Hf hcp 3.19 5.09	9 3.	c bo		Re hcp 2.76 4.46	Os hcp 2.74 4.32	fc.	c	Pt fcc 3.92	Au fcc 4.08	H ₁	_	TI hcp 3.46 5.52	Pb fcc 4.95	Bi	o. :	Po sc 3.34	At —	Rn —
Fr	Ra —	Ac fcc 5.31		Ce fcc 5.16	Pr hex. 3.67 ABAC	No hex 3.6	(.	and the own	Sm omplex	Eu bcc 4.58	Go ho 3 5	р 63	Tb hcp 3.60 5.70	Dy hcp 3.5	hc 9 3.5	p h	ср .56	Tm hcp 3.54 5.56		hc	р 50
V:44	-12a 1	oook		Th fcc 5.08	Pa tetr. 3.92 3.24	U	plex con		omplex	Am hex. 3.64 ABA	Cı	-	Bk	Cf			-	Md	No.		

Phase diagram of carbon

Carbon allotropes: diamond and graphite

[from Martin's book, p. 28] [from Internet]

Diamond

Diamond anvil cell

H [d] 0.002 500		Table 3 Isothermal bulk modulii and compressibilities at room temperature After K. Gschneidner, Jr., Solid state physics 16, 275–426 (1964); several data are from F. Birch, in <i>Handbook of physical constants</i> , Geological Society of America Memoir 97, 107–173 (1966). Original references should be													-							He 0.0 116	
Li 0.116 8.62	Be 1.003 0.997	consulted when values are needed for research purposes. Values in parentheses are estimates. Letters in parentheses refer to the crystal form. Letters in brackets refer to the temperature: [a] = 77 K; [b] = 273 K; [c] = 1 K; [d] = 4 K; [e] = 81 K.														. [3 1.78 0.562	C [d] 4.43 0.226	0.	[e] 012)	0	F	Ne 0.0 100
Na 0.068 14.7	Mg 0.354 2.82		Bulk modulus in units 10 ¹² dyn/cm ² or 10 ¹¹ N/m ² Compressibility in units 10 ⁻¹² cm ² /dyn or 10 ⁻¹¹ m ² /N												(AI 0.722 1.385	Si 0.988 1.013	3 0.	(ы) 304 29	S (r) 0.178 5.62	CI	Ar 0.0 79	
K 0.032 31.	Ca 0.152 6.58	Sc 0.435 2.30	Ti 1.0		619	Cr 1.90 0.52			Fe 1.683 0.594	Co 1.91 0.52	14	Ni 1.86 0.538	1.3	Cu 1.37 0.73		8 (Ga (ы) 0.569 1.76	Ge 0.772 1.29		394 54	Se 0.091 11.0	Br	Kr 0.0 56
Rb 0.031 32.	Sr 0.116 8.62	Y 0.366 2.73	Zr 0.83	1740	702	Mo 2.72 0.36		97)	Ru 3.208 0.311		04	Pd 1.808 0.553	1.007 53 0.993 Au 83 1.732		007 0.467 2.14 Hg [c] 0.382		In 0.411 2.43	Sn (g 1.11 0.90	0.	383 61	Te 0.230 4.35	I	Xe
Cs 0.020 50.	Ba 0.103 9.97	La 0.243 4.12	Hf 1.09 0.99		00	W 3.23 0.30		2	Os (4.18) (0.24)		5 2	Pt 2.783 0.359					[] 0.359 2.79	Pb 0.430 2.33		315 17	Po (0.26) (3.8)	At	Rn
Fr (0.020) (50.)	And the control with the second control of the	Ac (0.25) (4.)		Ce (y) 0.239 4.18	Pr 0.3	06	Nd 0.327 3.06	7. A. A. C. CO. V.	35) 0.:	294	Eu 0.14 6.80	100	d 383 61	Tb 0.3	399	Dy 0.38 2.60		397 0	r .411 .43	Tn 0.3 2.5	397 0	b 133 52	Lu 0.411 2.43
m Kit	ttel's	book	1	Th 0.543 1.84	Pa (0.7)	76)	U 0.987 1.01	Np (0. (1.	68) 0.	54	Am	C	m	Bk		Cf	Es	F	m	Mo	d N	0	Lr

A metal becomes superconducting below T_c and floats in a magnetic field.

Cartoon of first-principles (ab initio) calculations

The calculation is really a "computer experiment", as we can make intricate changes in the "experimental conditions" and measure our "observables" in arbitrarily minute details. It can make materials-specific predictions and also provide first-principles parameters for otherwise empiral models.

1.2 Significances of first-principles calculation

Today, due to fast computers, efficient algorithms, advanced quantum theory, first-principles calculations have become essential to understand the intricate phenomena in condensed mater systems, to search for and/or design for new materials with desired properties.

Si (111) surface reconstruction

Understanding of complex phenomena

Si (111) surface

Materials characterization

Another example, the structure of Au₂₀⁻ *determined jointly* by photoelectron spectroscopy and *ab initio* calculations

Fig. 3. Selected optimized Au_{20} structures. **(A)** Tetrahedral structure (T_d) . **(B)** Amorphous structure (C_1) . **(C)** Capped decahedron (C_{2v}) . **(D)** Planar structure (C_{2h}) . **(E)** Octahedral structure (O_h) . **(F)** Dodecahedral structure (I_h) .

[Science 299, 864 (2003) 1355]

Materials prediction/design

Carbon nanotubes (Iijima, 1991)

armchair (5,5) nanotube

chiral (7,3) nanotube

BN nanotubes

zigzag (10,0) nanotube

chiral (6,2) nanotube

[predicted and subsequently synthesized by Berkeley groups in the mid-90's]

[Rubio et al., PRB 1994; Chopra, et al., Science, 1994] New materials prediction

Prediction of mellalization and superconductivity of dense hydrogen sulfide (2014)

[Li, Hao, Liu, Li, Ma, JCP 140 (2014) 174712]

Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system

A. P. Drozdov¹*, M. I. Eremets¹*, I. A. Troyan¹, V. Ksenofontov² & S. I. Shylin²

[Nature 525 (2015) 73]

Through "computer experiments", theoreticians can now investigate some important systems where human being cannot conduct experiments yet, such as the physical and chemical processes happening in the interior of our planet.

[Ab initio melting curve of iron compared with experiments.]

[Nature 401 (1999) 462]

1.3 Outline of this course

This lecture consists of two parts.

Part one is on the fundamentals of first-principles materials calculations. This part will cover basic concepts of crystals, theories of electrons in periodic potentials, fundamentals of density functional theory and computational (numerical) techniques.

Part two is about determination of materials properties. This part consists of several units made up of lectures and hands-on excises, given by senior researchers in field. Each unit focus on one major physical property of materials or one topic of current interest in materials physics.

Course Materials

- 1. Main Information Source:
 - The course will be largely based on lecture notes and hand-outs.
- 2. Principal Reference Book
 - [1] Electronic Structure: Basic Theory and Practical Methods by Richard M. Martin (Cambridge U. P., 2004).
- 3. Other References:
 - [2] *Introduction to Solid State Physics* by Charles Kittel (John Wiley & Sons).
 - [3] Solid State Physics by Neil W. Ashcroft and N. David Mermin.
 - [4] Planewaves, Pseudopotentials and the LAPW Method
 - by David J. Singh and Lars Nordstrom (2nd edition) (Springer, 2006)
 - [5] Theory of Itinerant Electron Magnetism, J. Kübler (Oxford, 2000).