Solution for PS6-1. When $gcd(a, m) \neq 1$, the number a has no inverse modulo m, nor can any positive power of a be congruent to 1 modulo m.

I used the 'egcd' Python function from the lecture notes to compute GCDs and, as a result, inverses when they exist. For the powers, I used some trial and error.

number	inverse	power congruent to 1
1	1	$1^1 \equiv 1$
10	∄	∄
13	7	$13^4 \equiv 1$
19	19	$19^2 \equiv 1$
27	∄	∄
29	29	$29^2 \equiv 1$

Solution for PS6-2. Let n = q(p-1) + r, where $q, r \in \mathbb{Z}$ and $0 \le r < p-1$. By Fermat's Little Theorem, $a^{p-1} \equiv 1 \pmod{p}$. Therefore,

$$a^n = (a^{p-1})^q \cdot a^r \equiv 1^q a^r = a^{n \mod (p-1)} \pmod{p}$$
.

Solution for PS6-3. Suppose that $a, b \in \mathbb{Z}_m^*$ and $c = ab \mod m$. We must show that $c \in \mathbb{Z}_m^*$. By the Inverse Existence Theorem, a^{-1} and b^{-1} exist. Therefore,

$$c \cdot (b^{-1}a^{-1}) = abb^{-1}a^{-1} \equiv 1 \pmod{m}$$

so c^{-1} exists. By the Inverse Existence Theorem, gcd(c, m) = 1, so $c \in \mathbb{Z}_m^*$.

Solution for PS6-4.

a. First, check that f_a is indeed a function from \mathbb{Z}_m^* to \mathbb{Z}_m^* . Of course, for any $m \in \mathbb{Z}_m^*$, $ax \mod m$ is a unique defined value in \mathbb{Z}_m ; the only question is whether it lies in \mathbb{Z}_m^* . By the result of **PS6-3**, it does.

To prove that f_a is a *bijection*, we demonstrate that it has an inverse function. By the Inverse Existence Theorem, $\exists b \in \mathbb{Z}_m^*$ such that $ab \equiv 1 \pmod{m}$. Now, for all $x \in \mathbb{Z}_m^*$,

$$f_b(f_a(x)) = b(ax \mod m) \mod m = bax \mod m = x$$
,

so $f_b \circ f_a = \text{id}$. Similarly, $f_a \circ f_b = \text{id}$. This completes the proof.

b. Let $L = (b_1, b_2, \dots, b_{\phi(m)})$ be a list of all the elements of \mathbb{Z}_m^* . By the previous part, the list

$$L' = (ab_1 \bmod m, ab_2 \bmod m, \dots, ab_{\phi(m)} \bmod m)$$

consists of the same elements as L, but perhaps in a different order. Comparing the products of the elements in each list,

$$b_1b_2\cdots b_{\phi(m)} \equiv a^{\phi(m)}b_1b_2\cdots b_{\phi(m)} \pmod{m}$$
.

By the Inverse Existence Theorem, each b_i has an inverse b_i^{-1} . Multiplying both sides by $b_1^{-1}b_2^{-1}\cdots b_{\phi(m)}^{-1}$ gives $1\equiv a^{\phi(m)}\pmod{m}$.

c. When m is a prime, every nonzero number in \mathbb{Z}_m is coprime to m, so $\mathbb{Z}_m^* = \{1, 2, \dots, m-1\}$ and $\phi(m) = m-1$. The congruence now reads $a^{m-1} \equiv 1 \pmod{m}$, which is exactly Fermat's Little Theorem.

Solution for PS6-5.

a. By definition, $P_{m,a}$ is an infinite sequence, but all its elements lie in the finite set \mathbb{Z}_m^* . Therefore, there must be a repetition in the sequence. Let i < j be two positions such that $a^i \mod m = a^j \mod m$. By the Inverse Existence Theorem, a has an inverse b modulo m. So,

$$a^i \equiv a^j \pmod{m} \implies b^i a^i \equiv b^i a^j \pmod{m} \implies 1 \equiv a^{j-i} \pmod{m}$$
.

Thus, 1 reappears in the sequence at position j-i.

b. Let k be the smallest positive index at which 1 appears in $P_{m,a}$. Then $a^k \equiv 1 \pmod{m}$. For any index $\ell > k$, let $\ell = qk + r$ with $q, r \in \mathbb{N}$ and $0 \le r < k$. Then

$$a^{\ell} = (a^k)^q \cdot a^r \equiv 1^q a^r = a^r \pmod{m}$$
.

Therefore, $P_{m,a}$ consists of the block ($a^0 \mod m, \ldots, a^{k-1} \mod m$) repeated infinitely often.

c. Let's look more closely at the argument in Part a. If we consider the first m+1 elements in the sequence, there must already be a repetition because the elements come from a set of size $\leq m$. Therefore, we can enforce $0 \leq i < j \leq m$ in that argument.

Thus, 1 reappears at position $j-i \le m$. So the value of k in the previous part—which is the period—is $\le m$.

d. Look even more closely at the argument above. The elements in the sequence in fact come from the set \mathbb{Z}_m^* , whose cardinality is $\phi(m) \le m - 1$. Therefore, $k \le m - 1$. In particular, the period cannot be m.

Note: With a little more effort, you can in fact show that $k \mid \phi(m)$, so the period must be a divisor of $\phi(m)$.

Alternate Solution for PS6-5.

- **a.** Since $a \in \mathbb{Z}_m^*$, by Euler's Theorem, $a^{\phi}(m) \equiv 1 \pmod{m}$. Since $\phi(m) > 0$, we see that 1 reappears in the sequence at position $\phi(m)$.
- **b.** Same as above.
- c. The period is clearly at most $\phi(m)$. Since $\mathbb{Z}_m^* \subset \mathbb{Z}_m$, it follows that $\phi(m) < m$. So the period is $\leq m$.
- **d.** Of course, we've in fact shown that the period is < m. In particular, it can't be m.

Solution for PS6-6. Consider an arbitrary $a \in \mathbb{Z}_{pq}$. The positive divisors of pq are 1, p, q, and pq. So gcd(a, pq) must be one of these four numbers. Let's count how many numbers a lead to each of these GCDs.

Case 1. gcd(a, pq) = 1. Then $a \in \mathbb{Z}_{pq}^*$. By definition, there are $\phi(pq)$ such numbers a.

Case 2: gcd(a, pq) = pq. Since a < pq, this means a = pq, i.e., there is exactly one possibility for a.

Case 3: gcd(a,pq) = p. Then $p \mid a$ and a < pq, so $a \in \{p,2p,3p,\ldots,(q-1)p\}$, i.e., q-1 possibilities for a.

Case 4: gcd(a, pq) = q. Analogously, there are p-1 possibilities for a in this case.

Since there is no overlap between the cases and there are $|\mathbb{Z}_{pq}| = pq$ total possibilities for a, we obtain

$$pq = \phi(pq) + 1 + (q-1) + (p-1).$$

Solving for $\phi(pq)$ gives $\phi(pq) = pq - p - q + 1 = (p-1)(q-1)$.

Solution for PS6-7.

a. We work modulo p. Imagine drawing an arrow from each $a \in \mathbb{Z}_p^*$ to a^{-1} . Then the arrow from a^{-1} will point to $(a^{-1})^{-1} = a$. We can then pair off a and a^{-1} . If we consider any other element $b \notin \{a, a^{-1}\}$, then $\{b, b^{-1}\}$ will be another pair disjoint from $\{a, a^{-1}\}$.

There is a catch: a might equal a^{-1} sometimes! But by $PS5-9^{HW}$, this only happens for a=1 and a=p-1. So the argument above works for all $a \in S$.

b. Consider the modulo-p product Q of all numbers in S. We can rearrange the product to place each $a \in S$ adjacent to its partner $a^{-1} \in S$. The product within each pair is 1 modulo p. Therefore, so is the overall product, i.e., $Q \equiv 1 \pmod{p}$. Therefore,

$$(p-1)! = 1 \times Q \times (p-1) \equiv 1 \times 1 \times (-1) \equiv -1 \pmod{p}.$$

c. By the definition of congruence, the last statement above can be rewritten as $p \mid (p-1)! + 1$.

Solution for PS6-8. Since m is composite, we can write m=ab where $2 \le a \le m-1$ and $2 \le b \le m-1$. Consider the list of factors $L=(1,2,\ldots,m-1)$ whose product equals (m-1)!. Three cases arise.

Case 1: $a \neq b$. In this case both a and b appear in L. Therefore $m = ab \mid (m-1)!$, whence $m \nmid (m-1)! + 1$.

Case 2: a = b > 2. In this case, $m = a^2 > 2a$, so a and 2a both appear in L. Thus, $m = a^2 \mid (m-1)!$, as before.

Case 3: a = b = 2. Then m = 4 and we check directly that $4 \nmid 3! + 1 = 7$.

Solution for PS6-9.

a. By the GCD Linear Combination Theorem (LCT), $\exists k, \ell \in \mathbb{Z}$ such that $gcd(a, b) = ka + \ell b$. By **PS5-6** HW,

$$\frac{n}{\operatorname{lcm}(a,b)} = \frac{n \cdot \gcd(a,b)}{ab} = \frac{n(ka + \ell b)}{ab} = \frac{kn}{b} + \frac{\ell n}{a} \in \mathbb{Z},$$

since $b \mid n$ and $a \mid n$.

b. From the given info,

• $gcd(p_1, p_2) = 1$, so *n* is divisible by $lcm(p_1, p_2) = p_1p_2$;

• $gcd(p_1p_2, p_3) = 1$, so *n* is divisible by $lcm(p_1p_2, p_3) = p_1p_2p_3$;

and so on

Note: Once we study mathematical induction, we'll learn a better way to write this type of proof formally.

Solution for PS6-10. We first work out the factorization $2730 = 2 \times 3 \times 5 \times 7 \times 13$. By the previous result, it suffices to show that each of these prime factors divides $n^{13} - n$.

Consider each $p \in \{2, 3, 5, 7, 13\}$. If $p \mid n$ then $p \mid n^{13}$ as well, so $p \mid n^{13} - n$. Otherwise, if $p \nmid n$, we apply Fermat's Little Theorem:

• For p = 2, we have $n^{13} \equiv 1^{13} \equiv 1 \equiv n \pmod{2}$.

• For p = 3, we have $n^{13} = (n^2)^6 \cdot n \equiv 1^6 \cdot n \equiv n \pmod{3}$.

• For p = 5, we have $n^{13} = (n^4)^3 \cdot n \equiv 1^3 \cdot n \equiv n \pmod{5}$.

• For p = 7, we have $n^{13} = (n^6)^2 \cdot n \equiv 1^2 \cdot n \equiv n \pmod{7}$.

• For p = 13, we have $n^{13} \equiv n \pmod{13}$.