Limit sets of Anosov representations

 ${\rm Giorgos}$

June 17, 2024

Contents

1	Introduction	2
	1.1 Lie group preliminaries	2
	1.2 Limit set preliminaries	2
2	Upper bound	5
	2.1 Proof of bound	5
	2.2 Lemmata	6
3	Lower bound	12
	3.1 Proof strategy	12
	3.2 Existence of Patterson-Sullivan measure	13
A	Tangent space to the Grassmanian	17
В	Irreducible actions problem	20

Chapter 1

Introduction

1.1 Lie group preliminaries

We fix the Cartan subalgebra \mathfrak{a} of $SL(d, \mathbb{R})$:

$$\mathfrak{a} = \{ \operatorname{diag}(\alpha_1, \dots, \alpha_d) : \alpha_1 + \dots + \alpha_d = 0 \}$$

and the Weyl chamber \mathfrak{a}^+ of $SL(d,\mathbb{R})$

$$\mathfrak{a}^+ = \{ \operatorname{diag}(\alpha_1, \dots, \alpha_d) : \alpha_1 \ge \dots \ge \alpha_d \}.$$

Denoting with $K=\mathrm{SO}(d,\mathbb{R}), A^+=e^{\mathfrak{a}^+},$ we have the Cartan decomposition:

$$\mathfrak{sl}(d,\mathbb{R}) \to K \times A^+ \times K$$

 $g \mapsto (k_q, a_q, l_q)$

such that $g = k_g a_g l_g$. In particular $a_g = \operatorname{diag}(\sigma_1(g), \dots, \sigma_d(g))$ with $\sigma_1 \ge \dots \ge \sigma_d(g)$, where $\sigma_i(g)$ is the *i*-th singular value of g, i.e. eigenvalue of $g^t \cdot g$.

We will use the spaces

$$U_p(g) = \mathbb{R}u_1(g) \oplus \cdots \oplus \mathbb{R}u_p(g)$$

where $u_i(g) = k_g \cdot e_i$. One can easily show that the decomposition

$$g^{-1} \cdot U_p(g) \oplus U_{d-p}(g^{-1})$$

is orthogonal with respect to the standard inner product and that $u_p(g^{-1}) = l_g^{-1} e_{d-p+1}(g)$.

1.2 Limit set preliminaries

Definition 1.2.1. For $p \in \{2, ..., d\}$, $s \in \mathbb{R}$ and $g \in SL(d, \mathbb{R})$ we denote with $\tilde{\Psi}^p_s(g), \Psi^p_s(g) : SL(d, \mathbb{R}) \to \mathbb{R}$ the functional:

$$\Psi_{s}^{p}(g) = \alpha_{12}(a(g)) + \dots + \alpha_{1(p-1)}(a(g)) + (s - (p-2))\alpha_{1p}(a(g))$$

$$\tilde{\Psi}_{s}^{p}(g) = \left(\frac{\sigma_{2}}{\sigma_{1}} \cdots \frac{\sigma_{p-1}}{\sigma_{1}}(g)\right) \left(\frac{\sigma_{p-1}}{\sigma_{1}}(g)\right)^{s - (p-2)}$$

Remark 1.2.1. We have $\alpha_{ij}(a) = a_i - a_j, a_i(g) = \log(\sigma_i(g))$ and

$$\Psi_s^p(g) = \log \tilde{\Psi}_s^p(g)$$

and that

$$\min_{p \in [\![2,d]\!]} \left\{ \sum_{|\gamma| = T} \frac{\sigma_2}{\sigma_1} \cdots \frac{\sigma_{p-1}}{\sigma_1}(g) \left(\frac{\sigma_{p-1}}{\sigma_1}(g) \right)^{s - (p-2)} \right\} = \sum_{|\gamma| = T} e^{-\max_{p \in [\![2,d]\!]} \Psi^p_s(g)}$$

Remark 1.2.2. For any $g \in \mathrm{SL}(d,\mathbb{R})$ we have that:

$$\max_{p \in [2,d]} \Psi_s^p(g) = \Psi_s^{p_0}(g) \text{ for } s \in [p_0 - 2, p_0 - 1].$$

Indeed, a quick calculation shows that for $s \ge 0$ and $p \in [2, d]$:

$$\Psi_s^p(g) \leq \Psi_s^p(g)$$
 if and only if $s \geq p-1$.

and that equality holds in the case s = p - 1. Thus for $s \in [p - 2, p - 1]$ we have that

$$s \geq p-2, \ldots, 1$$
 implies that $\Psi_s^p(g) \geq \ldots \geq \Psi_s^2(g)$

$$s \leq p, \ldots, d-1$$
 implies that $\Psi_s^p(g) \leq \ldots \leq \Psi_s^d(g)$

Another way to see this (refer to Figure 1.1) is to note that $\Psi^2_s(g), \cdots, \Psi^d_s(g)$ is a sequence of functions that are affine in s, with slopes $\alpha_{12}(g) \leq \cdots \leq \alpha_{1d}(g)$ and that they satisfy $\Psi^2_1(g) = \Psi^2_2(g), \Psi^3_2(g) = \Psi^4_3(g), \cdots, \Psi^{d-1}_{d-2}(g) = \Psi^d_{d-2}(g)$.

Figure 1.1: Visual illustration that $\max_p \Psi_s^p(g) = \Psi_s^{p_0}(g)$ for $s \in [p_0 - 2, p_0 - 1]$.

The following definition comes from [LL23], in the special case of projective Anosov representations (P=1):

Definition 1.2.2. For $s \geq 0$ we consider the Falconer functional $F_s : \mathrm{SL}(d,\mathbb{R}) \to \mathbb{R}$ by:

$$F_s(g) = \min \left\{ \sum_{j=2}^d s_j \alpha_{1j}(a(g)) : s_j \in (0,1], \sum_{j=2}^d s_j = s \right\},$$

and define the Falconer dimension $\dim_F(\rho)$ of ρ to be its critical exponent:

$$\dim_F(\rho) = \inf \left\{ s > 0 : \sum_{\gamma \in \Gamma} e^{-F_s(\rho(\gamma))} < \infty \right\}.$$

Remark 1.2.3. Using elementary computations one may prove that for all $s \ge 0$:

$$F_s(g) = \max_{p \in [2,d]} \Psi_s^p(g)$$

Definition 1.2.3. Let $\rho: \Gamma \to \mathrm{SL}(d,\mathbb{R})$ be a linear representation and $p \in [1,d-1]$. We say that ρ is p-Anosov if there exist constants $\mu, C > 0$ such that for all $\gamma \in \Gamma$:

$$\frac{\sigma_{p+1}}{\sigma_p}(\rho(\gamma)) \le Ce^{-\mu|\gamma|}.$$

One can show that in that case there exist equivariant continuous maps $\xi^p: \hat{\Gamma} \to \mathcal{G}_p(\mathbb{R}^d), \xi^{d-p}: \hat{\Gamma} \to \mathcal{G}_{d-p}(\mathbb{R}^d)$ that are transverse and restrict to

$$\xi^p(\gamma) = U_p(\rho(\gamma)), \xi^{d-p}(\gamma) = U_{d-p}(\rho(\gamma))$$

for $\gamma \in \Gamma$, where $U_p(\gamma), U_{d-p}(\gamma)$ denote the flags corresponding to $\rho(\gamma)$.

Figure out what this exactly means

Chapter 2

Upper bound

2.1 Proof of bound

Lemma 2.1.1 (Upper bound for dimension). Let $\rho : \Gamma \to \mathrm{SL}(d,\mathbb{R})$ be a projective Anosov representation. Then:

$$\dim_H(\xi^1(\partial\Gamma)) \le \dim_F(\rho).$$

Remark 2.1.1. The idea of the proof of Lemma 2.1.1 is to find a covering whose Hausdorff content is dominated by the Dirichlet series of some functional Ψ^p_s , which will in turn imply that $\dim_H(\xi^1(\partial\Gamma)) \leq h_p(\Psi^p)$. Choosing then the most "effective" cover (i.e. the one which yields the smallest Hausdorff content up to a constant) we obtain that

$$\dim_H(\xi^1(\partial\Gamma)) \le h_\rho(\max_p \Psi^p)$$

To obtain this we first cover $\xi^1(\partial\Gamma)$ by the bassins of attraction $\rho(\gamma) \cdot B_{\alpha_1,\alpha}(\rho(\gamma))$ for $\gamma \in \Gamma$ satisfying $|\gamma| = T$. Then we cover each bassin by an ellipsoid of axes lengths

$$\frac{1}{\sin(\alpha)} \frac{\sigma_2}{\sigma_1}(\rho(\gamma)), \dots, \frac{1}{\sin(\alpha)} \frac{\sigma_d}{\sigma_1}(\rho(\gamma)).$$

Finally we cover each ellipsoid by balls of some fixed radius r > 0. It can be shown by comparing the series appearing in the Hausdorff content of each resulting cover that the most "effective" choice of r depends only on the Hausdorff exponent s > 0 and in any case will be to have r equal (up to a constant) to the the length of an axis of the ellipsoid, i.e.

$$r \in \left\{ \frac{1}{\sin(\alpha)} \frac{\sigma_2}{\sigma_1}(\rho(\gamma)), \dots, \frac{1}{\sin(\alpha)} \frac{\sigma_d}{\sigma_1}(\rho(\gamma)). \right\}$$

In particular, when $s \in [p-2, p-1]$, the most effective choice is $r = \sigma_p(\rho(\gamma))/\sigma_1(\rho(\gamma))$, whose Hausdorff content is dominated by the Dirichlet series of Ψ^p_s .

Proof of Lemma 2.1.1. Let $p \in [2, d]$. Then using Proposition 2.2.1, Lemma 2.2.2, and Lemma 2.2.3 we have that for T > 0 large enough, $\xi^1(\partial \Gamma)$ is covered by the family

$$\mathcal{U}_T = \{ \rho(\gamma) B_{\alpha_1,\alpha}(\rho(\gamma)) : |\gamma| = T \},$$

and that each basin $\rho(\gamma)B_{\alpha_1,\alpha}(\rho(\gamma))$ is in turn covered by

$$2^{p-2} \cdot \frac{\sigma_p(g)^{p-2}}{\sigma_2(g) \cdots \sigma_{p-1}(g)}$$

many balls of radius

$$\sqrt{d-1}\frac{1}{\sin\alpha}\frac{\sigma_p(g)}{\sigma_1(g)}$$
.

By the definition of the Hausdorff measure, for $s \geq 0$:

$$\mathcal{H}^{s}(\xi^{1}(\partial\Gamma)) \leq \sum_{|\gamma|=T} 2^{2p+1} \cdot \frac{\sigma_{2}(\rho(\gamma))}{\sigma_{1}(\rho(\gamma))} \cdots \frac{\sigma_{p-1}(\rho(\gamma))}{\sigma_{1}(\rho(\gamma))} \left(\frac{\sigma_{p}(\rho(\gamma))}{\sigma_{1}(\rho(\gamma))}\right)^{-(p-2)} \left(\sqrt{d-1} \frac{1}{\sin \alpha} \frac{\sigma_{p}(\rho(\gamma))}{\sigma_{1}(\rho(\gamma))}\right)^{s} =$$

$$= 2^{2p+1} \cdot \left(\frac{\sqrt{d-1}}{\sin \alpha}\right)^{s} \sum_{|\gamma|=T} \frac{\sigma_{2}(\rho(\gamma))}{\sigma_{1}(\rho(\gamma))} \cdots \frac{\sigma_{p-1}(\rho(\gamma))}{\sigma_{1}(\rho(\gamma))} \left(\frac{\sigma_{p}(\rho(\gamma))}{\sigma_{1}(\rho(\gamma))}\right)^{s-(p-2)} =$$

$$= 2^{2p+1} \cdot \left(\frac{\sqrt{d-1}}{\sin \alpha}\right)^{s} \sum_{|\gamma|=T} e^{-\left(\alpha_{12}+\ldots+\alpha_{1(p-1)}+(s-(p-2))\alpha_{1p}\right)\rho(\gamma)}$$

$$= 2^{2p+1} \cdot \left(\frac{\sqrt{d-1}}{\sin \alpha}\right)^{s} \sum_{|\gamma|=T} e^{-\Psi^{p}_{s}(\rho(\gamma))}$$

and thus

$$\mathcal{H}^s(\xi^1(\partial\Gamma)) \leq 2^{2p+1} \cdot \left(\frac{\sqrt{d-1}}{\sin\alpha}\right)^s \sum_{|\gamma|=T} e^{-\max_p \Psi^p_s(\rho(\gamma))} \lesssim \sum_{|\gamma|=T} e^{-F_s(\rho(\gamma))}.$$

To see that the above implies the upper bound, consider some $s > \dim_F(\rho)$. By the definition of the Falconer dimension, this implies that the Dirichlet series corresponding to the Falconer functional converges:

$$\sum_{\gamma \in \Gamma} e^{-F_s(\rho(\gamma))} < \infty$$

and in particular

$$\mathcal{H}^{s}(\xi^{1}(\partial\Gamma)) \leq \lim_{T \to \infty} e^{-F_{s}(\rho(\gamma))} = 0.$$

2.2 Lemmata

Definition 2.2.1. Let V be a finite-dimensional \mathbb{R} -vector space. We consider a decomposition

$$V = \mathbb{R}u_1 \bigoplus \cdots \bigoplus \mathbb{R}u_d$$

be a direct decomposition that is orthogonal with respect to a fixed inner-product over V. Given $\beta_2 \geq \ldots \beta_d > 0$, we define an ellipsoid with axes $u_1 \oplus u_p(g)$ and lengths β_p to be the image of

$$\left\{ v = \sum_{1}^{d} v_i u_i \in V : \sum_{2}^{d} \left(\frac{v_j}{\beta_j} \right)^2 \le 1 \right\}$$

through the projection $V \to \mathbb{P}(V)$.

The following aims to be something along the lines of [PSW23, Lemma 2.4]:

Figure 2.1: Depiction in \mathbb{R}^3 of an ellipsoid of $\mathbb{P}(\mathbb{R}^2)$

Lemma 2.2.1. Let $\rho: \Gamma \to \operatorname{SL}(d,\mathbb{R})$ be a projective Anosov representation. For $\alpha > 0$ small enough, there exists L > 0 such that for any geodesic ray $(a_j)_j$ through e we have:

$$\angle (U_1(\rho(a_i)), U_{d-1}(\rho(a_0))) > \alpha$$

when $|a_i|, |a_0| > T$.

Proof. Assume the contrary for the shake of contradiction. Then (see Figure 2.2) for each n > 0 there exists a geodesic ray a^n through e such that

$$|a_n^n|, |a_0^n| > n \text{ and } \angle(U_1(\rho(a_n^n)), U_1(\rho(a_0^n))) < \frac{1}{n}.$$

Due to compactness of $\partial\Gamma$ we may assume (up to a subsequence) that $a^n \to x$ in $\partial\Gamma$ for some $x \in \partial\Gamma$. Then $a_n^n, a_0^n \to x$ in $\hat{\Gamma}$ which implies

Not sure if this is true.

$$\angle(\xi^{1}(x), \xi^{d-1}(x)) = 0$$

using the fact that the limit maps ξ^1, ξ^{d-1} are continuous, which contradicts their tranversality.

The following is [PSW23, Proposition 3.5].

Lemma 2.2.2. Let $\rho: \Gamma \to SL(d,\mathbb{R})$ be projective Anosov. Then for $\alpha > 0$ small enough, there exists some $T_0 > 0$ such that for all $T \geq T_0$ the family

$$\mathcal{U}_T = \{ \rho(\gamma) B_{\alpha_1, \alpha}(\rho(\gamma)) : |\gamma| = T \}$$

is an open covering of $\xi^1(\partial\Gamma)$.

Proof. Let $\alpha, T > 0$ be as in the statement of Lemma 2.2.1 and $x \in \partial \Gamma$ be represented by a geodesic ray $(\gamma_j)_{j \geq 0}$ starting from e. Then $(\gamma_T^{-1}\gamma_j)_j$ is a geodesic ray starting from $(\gamma_T)^{-1}$ that passes through e, so

$$\angle(U_1(\rho(\gamma_T^{-1}\gamma_j)), U_{d-1}(\rho(\gamma_T^{-1}))) > \alpha$$

Figure 2.2: Situation in Lemma 2.2.1

as implied by Lemma 2.2.1. Taking the limit $j \to \infty$ and using the equivariance of the limit map, we obtain

$$\angle(\rho(\gamma_T^{-1})\xi^1(x), U_{d-1}(\rho(\gamma_T^{-1}))) > \alpha$$

and thus $\xi^1(x) \in \rho(\gamma_T) \cdot B_{\alpha_1,\alpha}(\rho(\gamma_T))$.

The following is [PSW23, Proposition 3.8].

Proposition 2.2.1. For each $g \in SL(d,\mathbb{R}), \alpha > 0$, the basin of attraction $g \cdot B_{\alpha_1,\alpha}(g)$ lies in the ellipsoid with axes $u_1(g) \oplus u_p(g)$ with lengths

$$\frac{1}{\sin\alpha} \cdot \frac{\sigma_p(g)}{\sigma_1(g)}$$

Proof. Using the definition of the basin of attraction (see Figure 2.3), we have that $w=w_1u_1(g^{-1})+\cdots+w_du_d(g^{-1})\in B_{\alpha_1,\alpha}(g)$ if and only if

$$w_d^2 \ge (\sin \alpha)^2 \sum_{i=1}^d w_i^2.$$

Considering now some $v = v_1 u_1(g) + \cdots + v_d u_d(g) \in g \cdot B_{\alpha_1,\alpha}(g)$ we have that

$$w = g^{-1}v = v_1\sigma_1(g)^{-1}l_g^{-1}e_1(g) + \cdots + v_d\sigma_d(g)^{-1}l_g^{-1}e_d(g)$$
$$= v_1\sigma_1(g)^{-1}u_d(g^{-1}) + \cdots + v_d\sigma_d(g)^{-1}u_1(g^{-1})$$

where we used that $u_p(g^{-1}) = l_g^{-1} e_{d+1-p}$. Hence

$$\sigma_1(g)^{-2} \cdot v_1^2 \ge (\sin a)^2 \sum_{i=1}^d \sigma_i(g)^{-2} v_i^2.$$

The following is [PSW23, Lemma 3.7]:

Lemma 2.2.3. For any $p \in [2,d]$, an ellipsoid in $\mathbb{P}(\mathbb{R}^d)$ of axes lengths β_2, \dots, β_d is covered by

$$2^{p-2} \frac{\beta_2 \cdots \beta_{p-1}}{\beta_p^{p-2}}$$

many (projected) balls of radius $\sqrt{d-1}\beta_p$.

Figure 2.3: Aid for Proposition 2.2.1

Proof. We assume that E is an ellipsoid about $\mathbb{R}e_1$, so it suffice to cover its intersection $E_1 = E \cap U_1 \subseteq \mathbb{R}^{d-1}$ with the affine chart $U_1 = \{[x_1 : \dots, x_d] \in \mathbb{P}(\mathbb{R}^d) : x_1 \neq 0\}$. Clearly $E_1 \subseteq [-\beta_2, \beta_2] \times \dots \times [-\beta_d, \beta_d]$, so we proceed by covering the rectangle with side-lengths $2\beta_2, \dots, 2\beta_d$. Clearly each interval $(-\beta_j, \beta_j)$ is contained in the union of $[\beta_j/\beta_p]$ intervals of length $2\beta_p$, thus E_1 is contained in the union of

$$\left[\frac{\beta_2}{\beta_p}\right] \cdots \left[\frac{\beta_{p-1}}{\beta_p}\right] = \left[\frac{\beta_2}{\beta_p}\right] \cdots \left[\frac{\beta_d}{\beta_p}\right]$$

many squares of side-length $2\beta_p$. Since each such product is contained in a (d-1)-ball of radius $\sqrt{d-1}\beta_p$ we may use at most

$$\left\lceil \frac{\beta_2}{\beta_p} \right\rceil \cdots \left\lceil \frac{\beta_{p-1}}{\beta_p} \right\rceil \le \sum_{i \in \{0,1\}^{p-2}} \prod_{j=2}^{p-1} \left(\frac{\beta_j}{\beta_p} \right)^{i_j} \le 2^{p-2} \frac{\beta_2}{\beta_p} \cdots \frac{\beta_{p-1}}{\beta_p}$$

many (d-1)-balls of radius $\sqrt{d-1}\beta_p$ to cover E_1 .

The following can be found in [PSW23, Proposition 3.3]:

Proposition 2.2.2. Let $\rho: \Gamma \to SL(d,\mathbb{R})$ be projective Anosov and $\alpha > 0$ Then there exist $c_0, c_1 > 0$ that depends only on α and ρ such that for all $\gamma \in \Gamma$:

$$(\xi^1)^{-1}(B_{\alpha_1,\alpha}(\rho(\gamma))) \subseteq C^{\infty}_{c_0,c_1}(\gamma)$$

Proof. We begin by noting that it suffices to show this for all but finitely many $\gamma \in \Gamma$, since then we may alter the constants to satisfy the wanted inclusion also for the finitely many remaining $\gamma \in \Gamma$. Given this, we shall assume that $|\gamma| \geq l_0$ where $l_0 > 0$ is such that $Ce^{-\mu l_0} < 1$ and $C, \mu > 0$ are the constants appearing in the definition of the Anosov property of ρ ..

Suppose $x \in \partial \Gamma$ such that $\xi^1(x) \in B_{\alpha_1,\alpha}(\rho(\gamma))$, and consider a geodesic ray $a_j \to x$ starting from $a_0 = e$. To prove the result, it suffices to find constants c_0, c_1 independent of γ and a (c_0, c_1) -quasi-geodesic from γ^{-1} to x that passes through e and stays at a bounded distance from $(a_j)_{j=0}^{\infty}$

Using [PSW23, Proposition 2.5] we have that $d(\xi^1(a_j), U_{d-1}(\rho(\gamma^{-1}))) \leq Ce^{-\mu j}$, so there exists some L > 0 that depends only on α such that for all $j \geq L : U_1(\rho(a_j)) \in B_{\alpha_1,\alpha}(\rho(\gamma))$ and in particular

$$d(\xi^1(a_j), \gamma^{-1}) = d(U_1(\rho(a_j)), U_1(\rho(\gamma^{-1}))) \ge d(U_1(\rho(a_j)), U_{d-1}(\rho(\gamma^{-1}))) > \sin \alpha.$$

Along with the uniform continuity of $\xi^1: \Gamma \cup \partial \Gamma \to \mathbb{P}(\mathbb{R}^d)$ this implies there exists some $\alpha' > 0$ and L > 0 such that for all $j \geq L$:

$$d(a_i, \gamma^{-1}) \ge \alpha'$$
.

Upon considering a large L, we may also assume that $|a_L| = L > l_0$. Note that both α' and L do not depend on each γ but only on ρ and α .

Using some geometric group theory, we can show that for all $j \geq L$

$$d(\gamma^{-1}, a_j) > \alpha' \Rightarrow d([\gamma^{-1}, a_j], e) < \alpha''$$

for some α'' that depends only on Γ and α' , where $[a_j, \gamma^{-1}]$ denotes the geodesic segment connecting γ^{-1} and a_j .

Consider the concatenation $(a'_j)_{j=L-K}^{\infty}$ of $[\gamma^{-1}, a_L]$ and $[a_L, x]$. To find quasi-geodesic-constants that are uniform in γ , we note that for any $c_0 \geq 1, c_1 \geq 0$:

$$c_0^{-1}|i-j|-c_1 \le d(a_i',a_i') = d(a_i,a_j) \le d(a_i)c_0^{\dagger}|i-j|+c_1 \text{ when } i,j \ge L \text{ or } i,j \le L$$

and that the upper bound follows trivially by the triangle inequality.

For the lower bound we proceed in two steps. First we bound the distance of $\gamma^- 1 = a'_{L-K}$ to a_{L+j} for $j \ge 0$:

$$d(a'_{L-K}, a'_{L+j}) \ge \nu(|a_{L+j}| - |\gamma^{-1}|) - c'_0 - c'_1 |\log(d(U_1(\rho(a_{L+j})), U_1(\rho(\gamma^{-1}))))| \ge$$

$$\ge \nu((L+j) + (K-L)) - c'_0 - c'_1 |\log(\sin a)| \ge$$

$$= c_0^{-1}(j+K) - c_1$$

for $c_0 = \nu^{-1}$, $c_1 = c_0' + c_1' |\log(\sin \alpha)|$. The first inequality comes from [PSW23, Lemma 3.9]. For the second inequality we estimate $|\gamma^{-1}|$ from below using the triangle inequality. We are now ready to show that the concatenation $(a_j')_j$ is indeed a (c_0, c_1) -geodesic:

$$d(a_{L+j}, a_{L-i}) \ge d(a_{L+j}, a_{LK}) - d(a_{LK}, a_{L-i}) \ge c_0^{-1}(j+K) - c_1 - (K-i) \ge c_0^{-1}(j+i) - c_1.$$

Note however that (a_j') does not necessarily lie in $C_{\infty}^{c_0,c_1}$ since it may not pass through e. For this reason we some $L-K \leq i_0 \leq L$ such that $|a_{i_0}| < \alpha''$, the existence of which is guaranteed by the fact that $d([\gamma^{-1}, a_L], \epsilon) < \alpha''$. We then consider alter (a_j') at i_0 so that it passes through e to obtain

$$a_j'' = \begin{cases} a_j & \text{for } j \neq i_0 \\ e & \text{for } j = i_0 \end{cases}$$

which is a $(c_0, c_1 + \alpha'')$ -quasigeodesic passing from e and converging to x.

Chapter 3

Lower bound

We denote with Π the set of simple positive roots, and for $\Theta \subseteq \Pi$ we consider the Levi-Anosov subspace of \mathfrak{a}

$$\mathfrak{a}_{\Theta} = \bigcap_{\alpha \notin \Theta} \ker \alpha,$$

which in particular admits $\{\omega_{\alpha_i} : \alpha_i \in \Theta\}$ as a basis. Finally, we shall consider the Busemann cocycle

$$b_{\Theta}: \mathrm{PSL}(d,\mathbb{R}) \times \mathcal{F}_{\Theta} \to \mathfrak{a}_{\Theta}$$

which might as well be defined as

$$\omega_{\alpha_i}(b_{\Theta}(g,x)) = \log \frac{\|gv_1 \wedge \cdots gv_i\|}{\|v_1 \wedge \cdots v_i\|} \text{ for all } \alpha_i \in \Theta$$

for any basis v_1, \ldots, v_i of $x^i \in \mathcal{G}_i(\mathbb{R}^d)$, where $\|\cdot\|$ denotes the norm on $\bigwedge^i \mathbb{R}^d$ induced by the euclidean inner product on \mathbb{R}^d , i.e. $\langle v_1 \wedge \cdots \wedge v_k, w_1 \wedge \cdots \wedge w_k \rangle := \det(\langle v_i, w_j \rangle)$.

Definition 3.0.1. For a discrete subgroup $\Gamma < \mathrm{PSL}(d,\mathbb{R}), \phi \in (\alpha_{\Theta})^*$, a (Γ,ϕ) -Patterson Sullivan measure on \mathcal{F}_{Θ} is a finite Radon measure μ such that for every $\gamma \in \Gamma$

$$\frac{\mathrm{d}\gamma_*\mu}{\mathrm{d}\mu}(x) = e^{-\phi(b_{\Theta}(g^{-1},x))}, \text{ for all } x \in \mathcal{F}_{\Theta}(\mathbb{R}^d).$$

Lemma 3.0.1. Let $\alpha > 0, \Theta \subseteq \Pi$. There exists $K = K(\alpha) > 0$ such that for each $g \in SL(d, \mathbb{R}), a_i \in \Theta, y \in B_{\Theta,\alpha}(g)$

$$|\omega_i(a(g) - b(g, y))| \le K.$$

How to prove this?

Recalling that $\{\omega_i\}_{a_i\in\Theta}$ is a basis for \mathfrak{a}_{Θ} , the above implies in particular that for each $\phi\in\mathfrak{a}_{\Theta}^*$ there exists $K=K(\alpha,\phi)>0$ such that for all $g\in\mathrm{SL}(d,\mathbb{R}),y\in B_{\Theta,\alpha}(g)$

$$|\phi(a(q) - b(q, y))| \le K.$$

3.1 Proof strategy

Denoting with $d_{\Gamma} = \dim_H \xi^1_{\rho}(\partial \Gamma)$ the Hausdorff dimension of the limit set, we shall outline how to obtain its lower bound by the Falconer dimension

$$d_{\Gamma} \geq h_{\rho}(F)$$
.

First we recall that $F_s(a) = \max\{\Psi_s^p(a) : p \in [2, d]\}$ and in particular $h_\rho(F) \leq h_\rho(\Psi^{d_\Gamma+1})$. Thus the lower bound will follow once we have shown that

$$d_{\Gamma} \geq h_{\rho}(\Psi^{d_{\Gamma}+1}).$$

Noting that $(s+1)J_{d_{\Gamma}^u} \leq \Psi^{d_{\Gamma}+1}_{s+d_{\Gamma}}$, the above bound will follow as soon as we have shown that

$$h_{\rho}(J_{d_{\Gamma}}) \ge 1.$$
 (LB)

To obtain Equation (LB), one uses the method of Patterson-Sullivan-Quint, which may be summed up in

There exists a (ϕ, ρ) -Patterson-Sullivan measure on $\mathcal{F}_{\Theta}(\mathbb{R}^d) \Rightarrow h_{\rho}(\phi) \leq 1$,

where $\phi \in \mathfrak{a}_{\Theta}$ and $\Theta \subseteq \Pi$. The property that we will need of our measure is that there exists a collection of open sets $U_{\gamma_{\gamma}} \in \Gamma$ such that

$$\mu(U_{\gamma}) \sim e^{-J_{d_{\Gamma}}^{u}(a(\rho(\gamma)))} \text{ and } M := \sup_{n \in \mathbb{N}} \max \left\{ \sharp A : A \subseteq \Gamma_{n}, \bigcap_{\gamma \in A} U_{\gamma} \neq \emptyset \right\} < \infty$$
 (MP)

where $\Gamma_n = \{ \gamma \in \Gamma : |\gamma| = n \}$. The existence of a $(J_{d_{\Gamma}}^u, \rho)$ -Patterson-Sullivan measure that satisfies the property (MP) will be proved in Section 3.2. Assuming that for the time being, below we outline the Patterson-Sullivan-Quint method of obtaining Equation (LB).

Indeed, we first obtain the uniform in n bound:

$$\sum_{\gamma \in \Gamma_n} e^{-J_{d_{\Gamma}}^u(a(\rho(\gamma)))} \lesssim \sum_{\gamma \in \Gamma_n} \mu(U_{\gamma}) \leq \frac{1}{M} \mu(\mathcal{F}_{\Theta}(\mathbb{R}^d)) < \infty$$

along with the bound implied by the Anosov property of ρ :

$$J_{d_{\Gamma}}(a(\rho(\gamma))) \geq \mathsf{a}_{12}(a(\rho(\gamma))) \geq C|\gamma| - b$$

to conclude that

$$\sum_{\gamma \in \Gamma} e^{-(s+1)J^u_{d_\Gamma}(a(\rho(\gamma)))} = \sum_{n \geq 0} \sum_{\gamma \in \Gamma_n} e^{-sJ^u_{d_\Gamma}(a(\rho(\gamma)))} e^{J^u_{d_\Gamma}(a(\rho(\gamma)))} \lesssim \sum_{n \geq 0} e^{-s(Cn-b)} < \infty$$

which holds for any s > 0, and thus Equation (LB) holds.

3.2 Existence of Patterson-Sullivan measure

Definition 3.2.1. For $p \in [2, d]$, we denote the p-th unstable Jacobian $J_p^u \in \mathfrak{a}^*$ by

$$J_p^u = (p+1)\omega_{a_1} - \omega_{a_{p+1}} = a_{12} + \cdots + a_{1(p+1)}.$$

Definition 3.2.2. Let $V \in \mathcal{G}_{p+1}\mathbb{R}^d$ and $l \in \mathbb{P}(V)$. Using the canonical identification $T_l\mathbb{P}(V) \simeq \text{hom}(l,V/l)$, we define the density $|\Omega_{l,V}|$ on $\bigwedge^p T_l\mathbb{P}(V)$ by

$$|\Omega_{l,V}|(\phi_1,\ldots,\phi_p) = \frac{\|v \wedge \tilde{\phi}_1(v) \wedge \cdots \wedge \tilde{\phi}_p(v)\|}{\|v\|^{p+1}}$$

for any $v \in l - \{0\}$, where $\tilde{\phi}_1, \dots \tilde{\phi}_p \in \text{hom}(l, V)$ are such that $\phi_i = \tilde{\phi}_i + \text{hom}(l, l)$ and $\|\cdot\|$ denotes the norm on $\bigwedge^{p+1} \mathbb{R}^d$ induced by the euclidean inner product.

The following is [PSW23, Proposition 6.4]:

Proposition 3.2.1. Assume that $\xi^1_{\rho}(\partial\Gamma)$ is a Lipschitz submanifold of dimension d_{Γ} . Then there exists a $(\rho(\Gamma), J^u_{d_{\Gamma}})$ -Patterson-Sullivan measure on $\mathcal{F}_{1,d_{\Gamma}+1}$.

Proof. By Rademacher's theorem, $\xi_{\rho}^{1}(\partial\Gamma)$ has a well-defined Lebesgue measure class, and Lebesgue-almost every $\xi_{\rho}^{1}(x) \in \xi_{\rho}^{1}(\partial\Gamma)$ admits a well-defined tangent space $T_{\xi_{\rho}^{1}(x)}\xi_{\rho}^{1}(\partial\Gamma)$. Considering such a $\xi_{\rho}^{1}(x)$ we let

$$\pi: \operatorname{hom}(\xi_{\rho}^{1}(x), \mathbb{R}^{d}) \to \operatorname{hom}(\xi_{\rho}^{1}(x), \mathbb{R}^{d}/\xi_{\rho}^{1}(x)) \simeq T_{\xi_{\rho}^{1}(x)}\xi_{\rho}^{1}(\partial\Gamma),$$

and

$$x^{d_{\Gamma}+1} = \pi^{-1}(T_{\xi_{\rho}^{1}(x)}\xi_{\rho}^{1}(\partial\Gamma))\xi_{\rho}^{1}(x) \in \mathcal{G}_{d_{\Gamma}+1}(\mathbb{R}^{d}),$$

for which one can show that

$$T_{\xi_{\rho}^1(x)}\xi_{\rho}^1(\partial\Gamma) \simeq \hom(\xi_{\rho}^1(x), \mathbb{R}^d/\xi_{\rho}^1(x)) \simeq \hom(\xi_{\rho}^1(x), x^{d_{\Gamma}+1}/\xi_{\rho}^1(x)).$$

In this notation, we shall define (Lebesgue-almost eeverywhere) the map

$$\zeta_{\rho}: \xi_{\rho}^{1}(\partial\Gamma) \to \mathcal{F}_{1,d_{\Gamma}+1}(\mathbb{R}^{d}), \quad \zeta_{\rho}(\xi_{\rho}^{1}(x)) = (\xi_{\rho}^{1}(x), x^{d_{\Gamma}+1}).$$

We now define the non-negative density on $\xi_{\rho}^{1}(\partial\Gamma)$

$$\mu_{\xi_{\rho}^{1}(x)} = |\Omega_{\zeta_{\rho}(\xi_{\rho}^{1}(x))}|$$

which satisfies

$$\frac{\mathrm{d}\gamma_*\mu}{\mathrm{d}\mu}(\xi) = \frac{\mathrm{d}(\rho(\gamma)^{-1})^*\mu}{\mathrm{d}\mu}(\xi) = e^{-J_{d_{\Gamma}+1}^u(b_{\Theta}(\rho(\gamma)^{-1},\zeta(x))))},$$

where the term on the left-hand side involves measures, the term between the two equalities involves densities, and $\Theta = \{1, d_{\Gamma} + 1\}$. Indeed, for $\phi_1, \dots, \phi_{d_{\Gamma}} \in T_{\xi_{\alpha}^1(x)} \xi_{\rho}^1(\partial \Gamma)$:

$$\begin{split} &(\rho(\gamma)^*\mu)_{\xi_{\rho}^1(x)}(\phi_1,\dots,\phi_{d_{\Gamma}}) \\ &= \mu_{\rho(\gamma)}\xi_{\rho}^1(x)(\rho(\gamma)\phi_1\rho(\gamma)^{-1},\dots,\rho(\gamma)\phi_{d_{\Gamma}}\rho(\gamma)^{-1}) = \\ &= \frac{\|\rho(\gamma)\xi_{\rho}^1(x)\wedge\rho(\gamma)\phi_1(\xi_{\rho}^1(x))\wedge\dots\wedge\rho(\gamma)\phi_{d_{\Gamma}}(\xi_{\rho}^1(x))\|}{\|\rho(\gamma)\xi_{\rho}^1(x)\|^{d_{\Gamma}+1}} = \\ &= \frac{\|\rho(\gamma)\xi_{\rho}^1(x)\wedge\rho(\gamma)\phi_1(\xi_{\rho}^1(x))\wedge\dots\wedge\rho(\gamma)\phi_{d_{\Gamma}}(\xi_{\rho}^1(x))\|}{\|\xi_{\rho}^1(x)\wedge\phi_1(\xi_{\rho}^1(x))\wedge\dots\wedge\phi_{d_{\Gamma}}(\xi_{\rho}^1(x))\|} \cdot \frac{\|\xi_{\rho}^1(x)\wedge\phi_1(\xi_{\rho}^1(x))\wedge\dots\wedge\phi_{d_{\Gamma}}(\xi_{\rho}^1(x))\|}{\|\rho(\gamma)\xi_{\rho}^1(x)\|^{d_{\Gamma}+1}} \cdot \frac{\|\rho(\gamma)\xi_{\rho}^1(x)\|^{d_{\Gamma}+1}}{\|\xi_{\rho}^1(x)\|^{d_{\Gamma}+1}} = \\ &= e^{\omega_{d_{\Gamma}}(b_{\Theta}(\rho(\gamma),\zeta_{\rho}(\xi_{\rho}^1(x))))} \cdot \mu_{\xi_{\rho}^1(x)}(\phi_1,\dots,\phi_{d_{\Gamma}}) \cdot e^{-(p+1)\omega_1(b_{\Theta}(\rho(\gamma),\zeta_{\rho}(\xi_{\rho}^1(x))))} = \\ &= e^{-J_{d_{\Gamma}}^u(b_{\Theta}(\rho(\gamma)^{-1},\zeta(\xi_{\rho}^1(x))))} \mu_{\xi_{\rho}^1(x)}(\phi_1,\dots,\phi_{d_{\Gamma}}). \end{split}$$

Finally, we let $\nu = \zeta_{\rho_*}\mu$, which is the wanted Patterson-Sullivan measure on $\mathcal{F}_{1,d_{\Gamma}+1}(\mathbb{R}^d)$, since for $f \in C_c(\mathcal{F}_{1,d_{\Gamma}+1}(\mathbb{R}^d))$:

$$\int_{\mathcal{F}_{1,d_{\Gamma}+1}(\mathbb{R}^d)} f \, \mathrm{d}(\gamma_* \zeta_{\rho_*} \mu) = \int_{\xi_{\rho}^1(\partial \Gamma)} f \circ \gamma \circ \zeta_{\rho} \, \mathrm{d}\mu = \int_{\xi_{\rho}^1(\partial \Gamma)} f \circ \zeta_{\rho} \circ \gamma \, \mathrm{d}\mu = \\
= \int_{\xi_{\rho}^1(\partial \Gamma)} f \circ \zeta_{\rho}(\xi) e^{-J_{d_{\Gamma}}^u(b_{\Theta}(\rho(\gamma)^{-1}, \zeta(\xi_{\rho}^1(x))))} \, \mathrm{d}\mu(\xi_{\rho}^1(x)) = \\
= \int_{\mathcal{F}_{1,d_{\Gamma}+1}(\mathbb{R}^d)} f(y) e^{-J_{d_{\Gamma}}^u(b_{\Theta}(\rho(\gamma)^{-1}, y))} \, \mathrm{d}(\zeta_{\rho_*} \mu)(y)$$

Before giving the next definition, we recall that the annihilator annihilator of an element $y \in \mathcal{F}_F i\Theta(\mathbb{R}^d)$ is the set of partial flags that are not transverse to y, that is:

$$\operatorname{Ann}(y) = \left\{ x \in \mathcal{F}_{\Theta}(\mathbb{R}^d) : x^{\theta} \cap y^{d-\theta} \neq 0 \text{ for some } \theta \in \Theta \right\}.$$

Definition 3.2.3. Let $\rho: \Gamma \to \mathrm{SL}(d,\mathbb{R})$ be a linear representation, $\Theta \subseteq \Pi$ and μ a measure over $\mathcal{F}_{\Theta}(\mathbb{R}^d)$. We say that ρ is μ -irreducible there is no element in $\mathcal{F}_{i\Theta}(\mathbb{R}^d)$, whose annihilator is of full measure, i.e. for all $y \in \mathcal{F}_{i\Theta}(\mathbb{R}^d)$:

$$\mu(\operatorname{Ann}(y)) < \mu(\mathcal{F}_{\Theta}(\mathbb{R}^d)).$$

Example 3.2.1. If $\rho(\Gamma)$ is Zariski-dense in $SL(d,\mathbb{R})$, then ρ is μ -irreducible for any ρ -quasi-equivariant measure μ , and in particular for any $(\rho(\Gamma), \phi)$ -Patterson-Sullivan measure.

Remark 3.2.1. The reason that we introduce the concept of μ -irreducibility is that for any μ -irreducible representation $\rho: \Gamma \to \mathrm{SL}(d,\mathbb{R})$, there exist $\alpha, \kappa > 0$ such that $\mu(B_{\Theta,\alpha}(\rho(\gamma))) \geq k$ for all $\gamma \in \Gamma$.

Indeed, if this were not the case, then there would exists a sequence $\alpha_n \searrow 0$ and $\gamma_n \in \Gamma$ such that

$$\mu(B_{\theta,\alpha}(\rho(\gamma))) \le \frac{1}{n}.$$

Due to the compactness of $\mathcal{F}_{\Theta}(\mathbb{R}^d)$, up to considering a subsequence, we may assume that the reppeling flags or $\rho(\gamma_n)$ converge to some $\xi \in \mathcal{F}_{\Theta}(\mathbb{R}^d)$:

$$(U_{d-i}(\rho(\gamma_n)^{-1}))_{a_i \in \Theta} \to \xi$$

In that case, the complements $B_{\Theta,\alpha_n}^c(\rho(\gamma_n))$ will converge to the annihilator of ξ , in the sense:

$$\lim\sup_{n} B_{\Theta,\alpha_n}^c(\rho(\gamma_n)) \subseteq \operatorname{Ann}(\xi).$$

Indeed, let $y \in \limsup_n B_{\Theta,\alpha_n}^c(\rho(\gamma_n))$ and consider a subsequence k_n such that $y \in B_{\Theta,\alpha_n}^c(\rho(\gamma_{k_n}))$. By the very definition of $B_{\Theta,\alpha_n}(\rho(\gamma_n))$, there exists some p such that up to considering a subsequence of k_n ,

$$\angle (y^p, U_{d-p}(\rho(\gamma_n)^{-1})) \le \alpha_n$$

holds. Taking the limit as $n \to \infty$, we have that $y^p \cap \xi^{d-p} \neq 0$ and hence $y \in \text{Ann}(\xi)$.

Using a measure-theoretic argument we conclude that $Ann(\xi)$ is of full measure, which contradicts the μ -irreducibility of ρ :

$$\mu(\operatorname{Ann}(\xi)) \ge \mu(\limsup_{n} B_{\Theta,\alpha_{n}}^{c}(\rho(\gamma_{k_{n}}))) \ge \limsup_{n} \mu(B_{\Theta,\alpha_{n}}^{c}(\rho(\gamma_{k_{n}}))) = \mu(\mathcal{F}_{\Theta}(\mathbb{R}^{d})).$$

Lemma 3.2.1. Let $\rho: \Gamma \to SL(d, \mathbb{R})$ be a representation and μ^{ϕ} be a $(\rho(\Gamma), \phi)$ -Patterson-Sullivan measure. If $\rho(\Gamma)$ is μ -irreducible, then there exists some $\alpha_0 > 0$, such that for any $\alpha \in (0, \alpha_0)$, there's some $k = k(\alpha) > 0$ for which

$$\frac{1}{k}e^{-\phi(a(\rho(\gamma)))} \le \mu^{\phi}(\rho(\gamma)B_{\Theta,\alpha}(\rho(\gamma))) \le ke^{-\phi(a(\rho(\gamma)))}$$

for all $\gamma \in \Gamma$.

Proof. Let $\alpha_0, k > 0$ be as in the remark preceding the statement of the lemma. As noted in Lemma 3.0.1, there exists some $K = K(\alpha_0, \phi) > 0$ such that for any $\alpha \in (0, \alpha_0)$ and $y \in B_{\Theta,\alpha}(\rho(\gamma))$:

$$|\phi(a(\rho(\gamma)) - b(\rho(\gamma), y))| \le K,$$

from which we obtain the upper bound

$$\mu^{\phi}(\rho(\gamma)B_{\Theta,\alpha}(\rho(\gamma))) = (\rho(\gamma^{-1})_*\mu^{\phi})(B_{\Theta,\alpha}(\rho(\gamma))) = \int_{\mathcal{F}_{\Theta}(\mathbb{R}^d)} e^{-\phi(b(\rho(\gamma),y))} d\mu^{\phi}(y) \le$$

$$\le e^{-K}\mu^{\phi}(\mathcal{F}_{\Theta}(\mathbb{R}^d))e^{-\phi(a(\rho(\gamma)))}.$$

Similarly we obtain the lower bound

Appendix A

Tangent space to the Grassmanian

Let V be a d-dimensional real vector space. We denote with $\mathcal{G}_k(V)$ the Grassmanian of k-dimensional subspaces of V. Our first objective is to find a convenient way to express its tangent space.

Proposition A.0.1. We have the following canonical identification:

$$hom(W, V/W) \simeq T_W \mathcal{G}_k(V)$$
$$\phi \mapsto \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \Gamma(t\phi)$$

where $\Gamma(\phi) = (Id + \phi)(W)$ is the graph of ϕ .

Proof. We will consider the map

$$F: \text{Injhom}(W, V) \to \mathcal{G}_k(V), \quad \phi \mapsto \phi(W).$$

whose derivative is given by:

$$d_I F(\phi) = F\left(\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} (I + t\phi)\right) = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} (I + t\phi(W)) = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \Gamma(t\phi).$$

The result will follow as soon as we have shown that $d_I F$ is surjective and that $\ker d_I F = \text{hom}(W, W)$.

To show that it is surjective, we consider a (d-k)-dimensional subspace $W' \in \mathcal{G}_{d-k}(V)$ that is complementary to W, i.e. $V = W \oplus W'$. Denoting with $U_{W'} = \{Z \in \mathcal{G}_k(V) : Z \cap W' = 0\}$, we recall the corresponding chart:

$$\Psi : \text{hom}(W, W') \to U_{W'}$$

 $\phi \mapsto \Gamma(\phi).$

Surjectivity of $d_I F$ now follows by the fact that

$$d_I F(\phi) = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \Gamma(t\phi) = d_0 \Psi(\phi).$$

To show that $\ker d_I F = \hom(W, W)$, we first note that clearly $\ker d_I F \supseteq \hom(W, W)$. Equality then follows by the fact that $\dim \hom(W, W) = \dim \ker d_I F$, which is a direct consequence of the surjectivity.

Note that another way to prove the above identification throught the fact that the Grassmanian is a homogeneous space of $GL(d, \mathbb{R})$, giving us the diffeomorphism

$$\operatorname{GL}(V)/\operatorname{St}_{GL(V)}W \to \mathcal{G}_k(V)$$

 $[g] \mapsto gW,$

where $\operatorname{St}_{GL(V)}W = \{g \in \operatorname{GL}(V) : gW = W\}$ is the stabilizer of W. Thus an expression for the tangent space at W may be obtained by differentiating the map above at the identity coset:

$$hom(W, V/W) \simeq hom(V, V) / hom(W, W) \simeq T_W \mathcal{G}_k(V).$$

In particular the above gives us a direct proof that the kernel of the map constructed in the previous proof is indeed hom(W, W).

Our second objective is to identify subspaces of $T_l\mathbb{P}(V)$ with subspaces of V, by considering the first as projectivisation of the second. More concretely, we shall consider the space

$$\mathcal{P} = \{(l, P) : l \in \mathbb{P}(V), P \in \mathcal{G}_k(T_l \mathbb{P}(V))\}\$$

as a homogenous space of SL(V), where the action is given by

$$g \cdot (l, P) = (gl, d_l g(P)) = g\pi^{-1}(P)g^{-1} + \text{hom}(gl, gl)).$$

where we use the identification of $T_l\mathbb{P}(V)$ with $\hom(l,V/l)$ as above and denote with $\pi: \hom(l,V) \to \hom(l,V/l)$ the canonical projection. For the sake of completeness, we outline the calculation of the differential:

$$\begin{aligned} \hom(l,V/l) \to T_l \mathbb{P}(V) & \to T_{gl} \mathbb{P}(V) & \to \hom(gl,V/gl) \\ \phi \mapsto \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} g(I+t\tilde{\phi})(l) & \mapsto \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} (I+tg\tilde{\phi}g^{-1})(gl) & \mapsto g\tilde{\phi}g^{-1} + \hom(gl,gl) \end{aligned}$$

where $\phi \in \text{hom}(l, V/l), \tilde{\phi} \in \text{hom}(l, V)$ such that $\tilde{\phi} + \text{hom}(l, l) = \phi$.

We are now ready to express the needed identification:

Proposition A.0.2. We have the following SL(V) equivariant identification:

$$\mathcal{P} \to \mathcal{F}_{1,k+1}(V)$$
$$(l,P) \mapsto (l,\pi^{-1}(P)l)$$
$$(l, \hom(l,Q/l)) \longleftrightarrow (l,Q).$$

where $\pi : \text{hom}(l, V) \to \text{hom}(l, V/l)$ is the canonical projection.

Proof. We begin by showing that the left-to-right direction of the map is well-defined. For this, we first need to check that for $(l, P) \in \mathcal{P}$, we have that $\dim \pi^{-1}(P)l = k + 1$. Indeed, we have that $\dim \pi^{-1}(P) = k + 1$ as implied by the rank-nullity theorem for $\pi : \pi^{-1}(P) \to P$. The result then follows by the fact that $\pi^{-1}(P)l = T_1(l) \oplus \cdots \oplus T_{k+1}(l)$ for any base T_1, \ldots, T_{k+1} of $\pi^{-1}(P)$. The second thing to check is that $l \leq \pi^{-1}(P)l$, which holds since $\ker \pi = \hom(l, l) \leq \pi^{-1}(P)$.

To see that the two directions above are inverse to each other, we begin by examining the right-to-left-to-right composition:

$$(l,Q) \mapsto (l,\pi(\text{hom}(l,Q))) \mapsto (l,\pi^{-1}\pi(\text{hom}(l,Q))) = (l,\text{hom}(l,Q)l) = (l,Q).$$

and for the left-to-right-to-left composition

$$(l, P) \mapsto (l, \pi^{-1}(P)l) \mapsto (l, \text{hom}(l, \pi^{-1}(P)l)),$$

so it suffices to show that $hom(l, \pi^{-1}(P)l/l) = P$. Indeed, for $\pi^{-1}(P) = \mathbb{R}T_1 \oplus \cdots \oplus \mathbb{R}T_k$, we have that

$$hom(l, \pi^{-1}(P)l/l) = hom(l, \pi^{-1}(P)l) / hom(l, l) = (\bigoplus_{i} hom(l, T_{i}(l)) / hom(l, l)) =$$
$$= (\bigoplus_{i} \mathbb{R}T_{i}) / hom(l, l) = \pi^{-1}(P) / hom(l, l) = P.$$

For the equivariance, the calculations has as follows:

$$(l,P) \longmapsto (l,\pi^{-1}(P)l)$$

$$\downarrow^g \qquad \qquad \downarrow^g \qquad \qquad \Box$$

$$(gl,g\pi^{-1}(P)g^{-1} + \hom(gl,gl)) \longmapsto (gl,(g\pi^{-1}(P)g^{-1})(gl)) = (gl,g\pi^{-1}(P)l)$$

Appendix B

Irreducible actions problem

The matter of this chapter has to do with an obstruction, found in the proof of this lemma:

Lemma B.0.1 (Lemma 6.8 in [PSW23]). Let Γ be a hyperbolic group and $\eta: \Gamma \to \operatorname{PGL}(d, \mathbb{R})$ be a strongly irreducible projective Anosov representation such that $\xi_{\eta}(\partial\Gamma)$ is homeomorphic to $S^{d_{\Gamma}}$, and which admits a measurable η -equivariant section $\zeta: \partial\Gamma \to \mathcal{F}_{\{a_1,a_{d_{\Gamma}+1}\}}(\mathbb{R}^d)$. Then η is μ -irreducible for any $(\eta(\Gamma), \phi)$ -Patterson-Sullivan measure μ on $\mathcal{F}_{\{a_1,a_{d_{\Gamma}+1}\}}(\mathbb{R}^d)$.

For convenience, we recall that a linear representation $\rho: \Gamma \to GL(d,\mathbb{R})$ is strongly irreducible if there is no proper $\rho(\Gamma)$ -invariant subspace of \mathbb{R}^d , and it is μ -irreducible if there is no element in $\mathcal{F}_{i\Theta}(\mathbb{R}^d)$, whose annihilator is of full measure.

In what follows, we will show that the above lemma is false, by providing a counterexample. Let Γ be a uniform lattice of SU(2,1) (i.e. acts convex cocompactly), and $\eta:\Gamma\to SL(\mathfrak{su}(2,1))$ be the restriction of the adjoint representation, i.e. $\eta(\gamma)=\mathrm{Ad}_{\gamma}$ for all $\gamma\in\Gamma$.

For convenience, we recall the definition of a uniform lattice:

Definition B.0.1. Let G be a locally compact group. A uniform lattice is a discrete subgroup $\Gamma \leq G$ that is co-compact, i.e. G/Γ is compact.

Remark B.0.1. When G = Isom(X) is the isometry group of a complete Riemannian manifold X, and Γ is a uniform lattice of G, then it acts properly discontinuously and cocompactly on X.

We begin by showing proving the Anosov property of η .

Proposition B.0.1. η is projective Anosov.

Proof. Let $\gamma \in \Gamma$. Since $\gamma \in SU(2,1)$, we have that

$$\gamma = k_1 \exp\left(r(\gamma)x_0\right) k_2$$

for x_0 a fixed non-zero in the Weyl-chamber $\mathbb{R}x_0$ of $\mathfrak{su}(2,1), r(\gamma) \in \mathbb{R}$ and $k_1, k_2 \in \mathrm{U}(2)$. Then by the definition of a uniform lattice, we have that Γ acts properly discontinuously and cocompactly, which means that the inclusion $\Gamma \hookrightarrow \mathrm{SU}(2,1)$ is projective Anosov (since $\mathrm{SU}(2,1)$ is of rank 1). Thus there exist constants $L \geq 1, b \geq 0$ such that for all $\gamma \in \Gamma$:

$$r(\gamma) \ge a_1(x_0)^{-1}(L|\gamma| - b) = L'|\gamma| - b'.$$

Note that $a_1(x_0) > 0$ since x_0 is in the interior of the Weyl-chamber $\mathbb{R}x_0$.

Letting $k'_1 = Ad_{k_1}, k'_2 = Ad_{k_2}$ and $K' \leq SL(\mathfrak{su}(2,1))$ be a maximal comapct subgroup containing them, we have that:

$$\eta(\gamma) = \operatorname{Ad}_{\gamma} = k_1' \operatorname{Ad}_{\exp(r(\gamma)x_0)} k_2' = k_1' \exp(r(\gamma) \operatorname{ad}_{x_0}) k_2'.$$

Thus

$$a_1(\mu(\eta(\gamma))) = r(\gamma)a_1(ad_{x_0}) \ge (L'|\gamma| - b')a_1(x_0)$$

which is Anosov because $a_1(ad_{x_0}) > 0$, as can be seen by concrete calculations.

Before giving an expression for the projective part of the limit map of η , we make a few observations regarding Gromov boundary of Γ . In particular, we claim that since Γ is a uniform lattice os SU(2,1), we have that $\partial\Gamma$ is homeomorphic to SU(2,1)/P, where P is a parabolic subgroup of SU(2,1), and it coincides with the stabilizer of some isotropic line $l \in \partial_{\infty} \mathbb{H}^{2}_{\Gamma}$.

Indeed, for a uniform lattice Γ of the isometry group G of a homogenous G-space X, the Milnor-Švarc lemma implies that for any $x_0 \in X$, the map $\Gamma \to X, \gamma \mapsto \gamma x_0$ is a quasi-isometry. In our case $G = \mathrm{SU}(2,1)$ and $X = \mathbb{H}^2_{\mathbb{C}}$ is a hyperbolic metric space, so it the quasi-isometry extends to a homeomorphism $\partial\Gamma \to \partial H^2_{\mathbb{C}}$ of the Gromov-boundaries. On the other hand, the action of $\mathrm{SU}(2,1)$ on $\partial_\infty \mathbb{H}^2_{\mathbb{C}}$ is transitive, so we have that $\partial \mathbb{H}^2_{\mathbb{C}} \simeq \mathrm{SU}(2,1)/P$ where P is the stabilizer of a point in $\partial \mathbb{H}^2_{\mathbb{C}}$. In fact, we have that P is a parabolic subgroup of SU(2,1). The combination of the above, along with the fact that the geometric and the Gromov boundaries agree in the case of $\mathbb{H}^2_{\mathbb{C}}$, we deduce that $\partial\Gamma \simeq \mathrm{SU}(2,1)/P$.

We now proceed to calculate the projective part of the limit map of η .

Add proofs of these.

Proposition B.0.2. The projective part of the limit map of η is given by

$$\xi_{\eta}: \partial\Gamma = \mathrm{SU}(2,1)/P_0 \to \mathbb{P}(\mathfrak{su}(2,1)), \quad \xi_{\eta}(gP_0) = \mathbb{R} \operatorname{Ad}_{\gamma} x_0.$$

where $P_0 = \text{St}_{SU(2,1)}[1:0:0]$ and

$$x_0 = i \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in \mathfrak{su}(2,1).$$

Its derivative satisfies:

$$d_x \xi(T_x SU(2,1)/P_0) = \pi(ad_{\xi^1(x)} \mathfrak{su}(2,1))$$

where $\pi: \text{hom}(\xi^1(x), \mathfrak{su}(2,1)) \to \text{hom}(\xi^1(x), \mathfrak{su}(2,1)/\xi^1(x))$ is the canonical projection.

Proof. Since the limit map of an Anosov representation is equivariant, it suffices to show that there exists a unique η -equivariant map $\xi^1 : SU(2,1)/P_0 \to \mathbb{P}(\mathfrak{su}(2,1))$.

We consider the parabolic subgroup $P_0 = \text{St}_{\text{SU}(2,1)}[1:0:0]$ of SU(2,1). Then its Lie algebra is given by:

$$\mathfrak{p}_0 = \mathrm{St}_{\mathfrak{su}(2,1)}[1:0:0] = \left\{ \begin{pmatrix} u - is & a & it \\ 0 & 2is & -\bar{a} \\ 0 & 0 & -u - is \end{pmatrix} : a \in \mathbb{C}, u, s, t \in \mathbb{R} \right\}.$$

Since for $\mathbb{R}x \in \mathbb{P}(\mathfrak{su}(2,1))$ we have that P_0 fixes $\mathbb{R}x$ if and only if \mathfrak{p}_0 fixes $\mathbb{R}x$. But a quick calculation shows that the only element of $\mathfrak{su}(2,1)$ fixed by \mathfrak{p}_0 is x_0 .

This means that it is equivariant with respect to the Adjoint action of Γ . However we are only proving uniqueness of an SU(2,1)-equivariant map.

For the calculation of the image of the differential at the identity coset P, we differentiate the commutative diagram:

In the general case we use the equivariance of the limit map

$$\begin{split} \mathrm{d}_{gP} \xi^1(T_{gP} \, \mathrm{SU}(2,1)/P_0) &= d_{gP} \xi^1 d_P g(T_P \, \mathrm{SU}(2,1)/P_0) = d_{\xi^1(P)} g d_P \xi^1(T_P \, \mathrm{SU}(2,1)/P_0) = \\ &= d_{\xi^1(P)} g \pi(\mathrm{ad}_{\xi^1(P)} \, \mathfrak{su}(2,1)) = \\ &= \pi(A d_g(\mathrm{ad}_{\xi^1(P)} \, \mathfrak{su}(2,1))) = \pi(\mathrm{ad}_{A d_g \xi^1(P)} \, \mathfrak{su}(2,1)) = \\ &= \pi(\mathrm{ad}_{\xi^1(gP)} \, \mathfrak{su}(2,1)). \end{split}$$

Recall that all parabolic subgroups of SU(2,1) are conjugate to each other, so we have the following identification:

$$\mathrm{SU}(2,1)/P_0 \leftrightarrow \{ \text{ Parabolic subgroups of } \mathrm{SU}(2,1) \} \quad \leftrightarrow \{ \text{ Parabolic subalgebras of } \mathfrak{su}(2,1) \}$$

$$gP_0 \leftrightarrow gP_0g^{-1} \quad \leftrightarrow \mathrm{Ad}_g(\mathfrak{p}_0)$$

Lemma B.0.2. Let $\mathfrak{p}, \mathfrak{p}' \leq \mathfrak{su}(2,1)$ be two distinct parabolic subalgebras. Then there exists some $g \in SU(2,1)$ such that $Ad_q(\mathfrak{p}) = \mathfrak{p}_0$ and $Ad_q \mathfrak{p}' = \mathfrak{p}_0^t$.

The following proposition implies that the falsehood of the lemma in the beginning of this chapter.

Proposition B.0.3. Let $\Gamma \leq SU(2,1)$ be a uniform lattice and $\eta : \Gamma \to SL(\mathfrak{su}(2,1))$ be the restriction of the adjoint representation. Then

- (i) η is strongly irreducible,
- (ii) η is projective Anosov
- (iii) η admits a measurable η -equivariant section:

$$\zeta: \partial\Gamma \to \mathcal{F}_{\{1,4\}}(\mathfrak{su}(2,1)) \simeq \mathcal{P}$$
$$x \mapsto (\xi^1(x), T_{\mathcal{E}^1(x)}\xi^1(\partial\Gamma)) \simeq (\xi^1(x), (d_{\mathcal{E}^1(x)}p)^{-1}(T_{\mathcal{E}^1(x)}\xi^1(\partial\Gamma))\xi^1(x)).$$

where $d_{\xi^1(x)}p: \hom(\xi^1(x), \mathfrak{su}(2,1)) \to \hom(\xi^1(x), \mathfrak{su}(2,1)/\xi^1(x))$ is the canonical projection.

- (iv) For all $x, y \in \partial \Gamma : \zeta(x)^4 \cap \zeta(y)^4 \neq 0$.
- (v) For any $y_0 \in SU(2,1)/P_0$ and $W_0 \in \mathcal{G}_7(\mathbb{R}^4)$ that contains $\zeta(y_0)^4$, we have that $Ann(\zeta(y_0)^4, W_0) \supseteq \zeta(SU(2,1)/P_0)$ and is in particular of full μ -measure, for any $(\eta(\Gamma), \phi)$ -Patterson-Sullivan measure μ supported over $\zeta(\partial\Gamma)$.

Proof. (i) Follows from the fact that SU(2,1) is a simple Lie group.

(ii) Shown in Proposition B.0.1.

- (iii) Follows from the fact that ξ^1 is SU(2,1)-equivariant and the equivariant identification of $\mathcal{F}_{\{1,4\}}(\mathfrak{su}(2,1)) \simeq \mathcal{P}$.
- (iv) Letting $g \in SU(2,1)$ be as in Lemma B.0.2, we have that $Ad_g(\mathfrak{p}_0) = \mathfrak{p}$ and $Ad_g(\mathfrak{p}_0^t) = \mathfrak{p}'$. Thus $\zeta(x)^4 \cap \zeta(y)^4 \neq \emptyset$ if and only if

$$\emptyset \neq Ad_g(\zeta(x)^4 \cap \zeta(y)^4) = \operatorname{Ad}_g \zeta(x)^4 \cap \operatorname{Ad}_g \zeta(y)^4 = \zeta(gx)^4 \cap \zeta(gy)^4 = \zeta(\mathfrak{p}_0)^4 \cap \zeta(\mathfrak{p}_0^t)^4 = \pi \left(\mathbb{R} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \right).$$

For the last equality, we use Proposition B.0.2 and the fact that $\mathfrak{p}_0^t = \operatorname{Ad}_g \mathfrak{p}_0$ for

$$g = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix},$$

to conclude that

$$\zeta(\mathfrak{p}_0) = \zeta(P_0) = \pi \left(\left\{ \begin{pmatrix} u & a & it \\ 0 & 0 & -\bar{a} \\ 0 & 0 & -u \end{pmatrix} : a \in \mathbb{C}, u, t \in \mathbb{R} \right\} \right),$$

and

$$\zeta(\mathfrak{p}_0^t) = \zeta(gP_0) = \operatorname{Ad}_g \zeta(P_0) = \pi \left(\left\{ \begin{pmatrix} u & 0 & 0 \\ a & 0 & 0 \\ it & -\bar{a} & 0 \end{pmatrix} : a \in \mathbb{C}, u, t \in \mathbb{R} \right\} \right).$$

Bibliography

- [LL23] François Ledrappier and Pablo Lessa. "Dimension gap and variational principle for Anosov representations". In: (Dec. 2023). arXiv:2310.13465 [math] version: 3 (cit. on p. 3).
- [PSW23] Beatrice Pozzetti, Andrés Sambarino, and Anna Wienhard. "Anosov representations with Lipschitz limit set". In: Geometry & Topology 27.8 (Nov. 2023). arXiv:1910.06627 [math], pp. 3303–3360. ISSN: 1364-0380, 1465-3060 (cit. on pp. 6–10, 14, 20).