#flo #hw

1 | Linear Maps

```
no one get's excited about vector spaces -axler

the interesting part: linear maps!

title: learning objectives
- fundementals theorem of linear maps
- matrix of linear map w.r.t. given bases
- isomorphic vec spaces
- product spaces
- quotient spaces
- duals spaces
- vector space
- linear map
```

2 | The vector space of linear maps

key definition!

```
title: linear map
aka *linear transformation.*

a *linear map* from $V$ to $W$ is a function $T:V \to W$ with the following properties:
**additivity**
$T(u+v) = Tu+Tv$ for all $u, v \in V$;
**homogeneity**
$T(\lambda v) = \lambda(Tv)$ for all $\lambda \in F$ and $v \in V$.
```

the functional notation T(V) is the same as the notation Tv when talking about linear maps.