Étude de O(p,q)

Leçons: 106, 150, 156, 158, 170, 171

Prérequis: exp: $\mathcal{S}_n(\mathbb{R}) \to \mathcal{S}_n^{++}(\mathbb{R})$ est un homéomorphisme, et décomposition polaire.

Définition 1

Le groupe orthogonal de la forme quadratique sur \mathbb{R}^n représentée dans la base canonique par la matrice $I_{p,q} = \begin{pmatrix} I_p & 0 \\ 0 & -I_q \end{pmatrix}$, où p + q = n est noté O(p,q).

Théorème 2

On a un homéomorphisme $O(p,q) \simeq O_p(\mathbb{R}) \times O_q(\mathbb{R}) \times \mathbb{R}^{pq}$.

Démonstration. Étape 1 : obtention d'un homéomorphisme $O(p,q) \simeq (O_p(\mathbb{R}) \cap O(p,q)) \times$ $(S_n^{++}(R)\cap O(p,q)).$

D'abord, O(p,q) est stable par transposition :

$$\begin{split} M \in O(p,q) &\Longleftrightarrow MI_{p,q}{}^t M = I_{p,q} &\Longleftrightarrow M^{-1} = I_{p,q}{}^t MI_{p,q}^{-1} = I_{p,q}{}^t MI_{p,q} \\ &\Longleftrightarrow^t M^{-1} = I_{p,q} MI_{p,q} &\Longleftrightarrow^t M \in O(p,q). \end{split}$$

Soit $M \in O(p,q)$, de décomposition polaire $M = OS, O \in O_n(R), S \in \mathcal{S}_n^{++}(\mathbb{R})$. On a $S^2 = {}^t MM = T \in \mathscr{S}_n^{++}(\mathbb{R})$. Soit donc $U \in \mathscr{S}_n(\mathbb{R})$ tel que $T = \exp(U)$. Selon ce qui précède, on a de plus $T \in O(p,q)$. Or,

$$\begin{split} T &\in O(p,q) \Leftrightarrow \exp(U)I_{p,q} \exp({}^tU) = I_{p,q} \\ &\Leftrightarrow \exp({}^tU) = I_{p,q} \exp(-U)I_{p,q} = \exp(-I_{p,q}UI_{p,q}) \\ &\Leftrightarrow {}^tU = U = -I_{p,q}UI_{p,q} \Leftrightarrow \frac{U}{2}I_{p,q} + I_{p,q}\frac{U}{2} = 0 \\ &\Leftrightarrow {}^t \exp\left(\frac{U}{2}\right) = I_{p,q} \exp\left(\frac{U}{2}\right)^{-1}I_{p,q} \Leftrightarrow \exp\left(\frac{U}{2}\right) \in O(p,q). \end{split}$$

Mais $\exp\left(\frac{U}{2}\right)^2 = T$ donc par unicité de la décomposition polaire, $S = \exp\left(\frac{U}{2}\right)$, de sorte que $S \in O(p,q)$. Ainsi, cette décomposition fournit un homéomorphisme

$$O(p,q) \simeq (O_n(\mathbb{R}) \cap O(p,q)) \times (S_n^{++}(R) \cap O(p,q)).$$

Étape 2 : description de $O_n(\mathbb{R}) \cap O(p,q)$.

Soit
$$O = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in O_n(\mathbb{R}) \cap O(p,q)$$
, où $A \in \mathcal{M}_p(\mathbb{R})$, $D \in \mathcal{M}_q(\mathbb{R})$. On a
$${}^tOI_{p,q}O = \begin{pmatrix} {}^tA & {}^tC \\ {}^tB & {}^tD \end{pmatrix} \begin{pmatrix} I_p & 0 \\ 0 & -I_q \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} {}^tAA - {}^tCC & {}^tAB - {}^tCD \\ {}^tBA - {}^tDC & {}^tBB - {}^tDD \end{pmatrix} = I_{p,q}$$

donc en particulier
$$\begin{cases} {}^{t}AA - {}^{t}CC = I_{p} \\ {}^{t}BB - {}^{t}DD = -I_{0} \end{cases}$$

donc en particulier $\begin{cases} {}^t AA - {}^t CC = I_p \\ {}^t BB - {}^t DD = -I_q \end{cases}$ De plus, $I_n = {}^t OO = \begin{pmatrix} {}^t AA + {}^t CC & {}^t AB + {}^t CD \\ {}^t BA + {}^t DC & {}^t BB + {}^t DD \end{pmatrix}$ donc en combinant les deux résultats, on a ${}^t AA = I_p, {}^t CC = 0, {}^t BB = 0$ et ${}^t DD = I_q$ donc $A \in O_p(\mathbb{R}), D \in O_q(\mathbb{R})$ et comme $X \mapsto$

 $\operatorname{Tr}({}^t XX)$ est un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$, C=0 et B=0. Ainsi, on a un homéomorphisme $O_n(\mathbb{R}) \cap O(p,q) \simeq O_p(\mathbb{R}) \times O_q(\mathbb{R})$.

Étape 3 : description de $S_n^{++}(R) \cap O(p,q)$.

En réutilisant les calculs de la première partie, exp est un homéomorphisme entre $L \cap \mathscr{S}_n(\mathbb{R})$ et $S_n^{++}(R) \cap O(p,q)$ où $L = \{U \in \mathscr{S}_n(\mathbb{R}) : UI_{p,q} + I_{p,q}U = 0\}$.

Soit
$$U = \begin{pmatrix} A & B \\ {}^t B & C \end{pmatrix} \in L \cap \mathcal{S}_n(\mathbb{R})$$
, où $A \in S_p(\mathbb{R})$, $C \in S_q(\mathbb{R})$. On a

$$0 = \begin{pmatrix} A & -B \\ {}^{t}B & -C \end{pmatrix} + \begin{pmatrix} A & B \\ -{}^{t}B & -C \end{pmatrix} = \begin{pmatrix} 2A & 0 \\ 0 & -2C \end{pmatrix},$$

 $\operatorname{donc} A = C = 0 \text{ et } U = \begin{pmatrix} 0 & B \\ {}^t B & 0 \end{pmatrix}, \text{ ce qui fournit l'homéomorphisme } L \cap \mathcal{S}_n(\mathbb{R}) \simeq \mathbb{R}^{pq} \text{ voulu.}$

En se rappelant que $O_p(\mathbb{R})$ et $O_q(\mathbb{R})$ ont deux composantes connexes, on obtient le résultat suivant :

Corollaire 3

L'ensemble O(p,q) a quatre composantes connexes.

En guise de complément, voici la démonstration du prérequis :

Lemme 4

L'exponentielle induit un homéomorphisme de $\mathcal{S}_n(\mathbb{R})$ dans $\mathcal{S}_n^{++}(\mathbb{R})$.

Démonstration. • Si $A \in \mathcal{S}_n(\mathbb{R})$, par le théorème spectral, on peut écrire $A = PDP^{-1}$ où $D = \text{Diag}(\lambda_1, \dots, \lambda_n)$ et $P \in O_n(\mathbb{R})$ donc $\exp(A) = P \exp(D)P^{-1}$ est à valeurs propres strictement positives, donc appartient à $\mathcal{S}_n^{++}(\mathbb{R})$.

- *Injectivité*: soient $A, A' \in \mathcal{S}_n(\mathbb{R})$ telles que $\exp(A) = \exp(A')$. Écrivons $A = PDP^{-1}$ où $D = \operatorname{Diag}(\lambda_1, \dots, \lambda_n)$ et $P \in O_n(\mathbb{R})$. Soit $Q \in \mathbb{R}[X]$ tel que $Q(e^{\lambda_i}) = \lambda_i$: il vérifie donc $Q(\exp(A)) = A = Q(\exp(A'))$. Comme A' commute avec $\exp(A')$, il commute avec A donc A et A' sont simultanément diagonalisables ce qui donne immédiatement par injectivité de l'exponentielle réelle A = A'.
- Surjectivité: Soit $B = PDP^{-1} \in \mathcal{S}_n^{++}(\mathbb{R})$ où $D = \text{Diag}(\lambda_1, \dots, \lambda_n), \lambda_i > 0$ et $P \in O_n(\mathbb{R})$. Si $A = PD'P^{-1}$ où $D' = \text{Diag}(\ln \lambda_1, \dots, \ln \lambda_n)$, alors $\exp(A) = B$.
- *Bicontinuité*: La continuité de exp étant connue, il reste à montrer que c'est une application ouverte. Soit $(B_p)_p = (\exp(A_p))_p$ suite de $\mathscr{S}_n^{++}(\mathbb{R})$ convergeant vers $B = \exp A \in \mathscr{S}_n^{++}(\mathbb{R})$. Alors comme B est inversible, $(B_p^{-1})_p$ converge vers B^{-1} . Ainsi, pour la norme $\|\cdot\|_2$, $(B_p)_p$ et $(B_p^{-1})_p$ sont bornées.

Or, si $M \in \mathcal{S}_n^{++}(\mathbb{R})$, $||M||_2 = \rho(M)$ (car M est diagonalisable en base orthonormée à valeurs propres positives). Donc il existe C, C'' > 0 tel que $\forall p, \operatorname{sp}(B_p) \subset [0, C]$ et $\operatorname{sp}(B_p^{-1}) \subset [0, C'']$ de sorte que $\forall p, \operatorname{sp}(B_p) \subset [C', C]$ (où $C' = C''^{-1}$). Mais $\operatorname{sp}(A_p) = \ln \operatorname{sp}(B_p) \subset [\ln C', \ln C]$ donc $(A_p)_p$ est bornée.

Il reste à montrer que cette suite n'a qu'une seule valeur d'adhérence pour conclure à sa convergence. Si $A_{\varphi(p)} \xrightarrow[p \to +\infty]{} A' \in \mathscr{S}_n(\mathbb{R})$, alors $\exp(A_{\varphi(p)}) \xrightarrow[p \to +\infty]{} \exp(A')$ donc $\exp(A') = B = \exp(A)$, d'où par injectivité A = A'.

Référence : Philippe CALDERO et Jérome GERMONI (2013). <i>Histoires hédonistes de groupes et de géométrie</i> . T. 1. Calvage et Mounet, p. 210