Contents

0.1	Inferer	nce rules for first-order logic										1
	0.1.1	Existential instantiation .										1
	0.1.2	Existential generalisation										1
	0.1.3	Universal instantiation										1
	0.1.4	Universal generalisation .										1

0.1 Inference rules for first-order logic

0.1.1 Existential instantiation

If P is true for a specific input, then there exists an input for P where P is true. $P(r) \Rightarrow \exists x P(x)$

0.1.2 Existential generalisation

$$\exists x P(x) \Rightarrow P(r)$$

Where r is a new symbol.

0.1.3 Universal instantiation

If P is true for all values of x, then P is true for any input to P.

$$\forall x P(x) \Rightarrow P(a/x)$$

Where a/x represents substituting a for x within P.

0.1.4 Universal generalisation

If there is a derivation for P(x), then there is a derivation for $\forall x P(x)$.

$$\vdash P(x) \Rightarrow \vdash \forall x P(x)$$