🖈 1. Pumping Lemma nedir? (Regular Diller için)

Pumping Lemma, bir dilin regular (düzenli) olup olmadığını kanıtlamak ya da çürütmek için kullanılan bir yöntemdir. Amaç şudur:

Eğer bir dil regular ise, o zaman o dildeki yeterince uzun bir kelime mutlaka belirli bir şekilde "pompalanabilir" olmalıdır.

Pumping Lemma'nın tanımı (Formal hali)

Eğer bir dil L regular ise, o zaman bir pumping length (pompalama uzunluğu) p vardır. Ve eğer $w \in L$ ve $|w| \ge p$ ise, o zaman w üç parçaya ayrılabilir:

$$w = xyz$$

şöyle ki:

- 1. $|xy| \leq p$
- 2. |y| > 0 (y boş olamaz!)
- 3. $\forall i \geq 0, xy^i z \in L$

Yani v kısmı istendiği kadar tekrar edilebilir ve kelime yine o dilde olur.

🗹 Regular dil örneği

Diyelim ki dilimiz şu:

$$L = \{a^n b^n \mid n \ge 0\}$$

Bu dil **non-regular**'dır! Ama diyelim ki regular olduğunu **varsayalım** ve çelişki çıkaralım (Pumping Lemma'nın temel stratejisi budur).

Adımlar:

- 1. L regular varsayalım.
- 2. Pumping Lemma geçerli olmalı \rightarrow bir p vardır.
- 3. $w = a^p b^p$ seçelim. (Uzunluğu en az p olan bir kelime)
- 4. w = xyz, ve $|xy| \le p \to o$ zaman x ve y sadece a'lardan oluşur.
- 5. y boş değil \rightarrow içinde en az bir **a** var.

- 6. Şimdi i = 0 için bakalım: $xy^0z = xz$
- ightarrow Bu durumda a'ların sayısı **azaldı**, b'ler aynı kaldı ightarrow yani artık a^kb^p , k < p Bu yeni kelime artık L'de **değil** çünkü a ve b sayıları eşit değil.

Sonuç:

Varsayımımız çelişki doğurdu \rightarrow O zaman L regular değildir.

Ö Özet Strateji (Non-Regular olduğunu göstermek için)

- 1. Dilin regular olduğunu varsay.
- 2. Pumping Lemma şartlarının geçerli olduğunu kabul et.
- 3. Uygun bir w seç.
- 4. Her olası xyz ayrımı için y'nin tekrarlandığı (i = 0, 2, ...) yeni kelimeleri düşün.
- 5. Yeni kelimelerden biri dilde değilse → çelişki → dil **non-regular**