Homomorphic MAC

Li Chen

lichen.xd at gmail.com

Xidian University

May 22, 2014

Homomorphic MAC

Outline

- 1 Communication Model
 - 1.1 MAC
 - 1.2 Homomorphic MAC
- 2 Algorithm Model
- 3 Homomorphic MAC Scheme I [1]
 - 3.1 Basic Construction

References

[1] Chi Cheng and Tao Jiang. An efficient homomorphic mac with small key size for authentication in network coding. *IEEE Trans. Computers*, 62(10):2096–2100, Oct 2013.

點 Li Chen ∥ Xidian University 3/10

1 Communication Model

1.1 MAC

1.2 Homomorphic MAC

2 Algorithm Model

A homomorphic MAC scheme includes the following PPT algorithm.

- MAC: takes as input a secret key k and a message vector v, outputs a tag t for v.
- ullet Verify: takes as input a 3-tuple (v,k,t), where k is the secret key, v is a message vector, and t is the corresponding tag, output 1 or 0 according to the tag is accepted or not.
- Combine: takes as input a sequence of 3-tuple $(v^{(1)},t^{(1)},c_1),(v^{(2)},t^{(2)},c_2),\cdots,(v^{(r)},t^{(r)},c_r)$, where $v^{(i)}$ is the message vector, $t^{(i)}$ is the corresponding tag, and $c_i \in \mathbb{F}_q$ is the combination coefficient. Output a tag t for the vector $v = \sum_{i=1}^r c_i v^{(i)}$, satisfying

$$\mathsf{Verify}\Big(\sum\nolimits_{i=1}^{r}c_{i}v^{(i)},k,\mathsf{Combine}((v^{(1)},t^{(1)},c_{1}),\cdots,(v^{(r)},t^{(r)},c_{r}))\Big)=1$$

3 Homomorphic MAC Scheme I [1]

3.1 Basic Construction

• MAC: for a n dimension vector $v=(v_1,\cdots,v_n)\in\mathbb{F}_q^n$, and a n+l dimension secret key $k=(k_1,\cdots,k_{n+l})\in\mathbb{F}_q^{n+l}$, compute

$$t_j = -\left(\sum_{i=1}^n v_i k_i\right) / k_{n+j}$$

for $j=1,\cdots,l$. Output the corresponding tag $t=(t_1,\cdots,t_l)\in\mathbb{F}_q^l$.

• Verify: for a input (v, k, t), check whether

$$t_j = -\left(\sum_{i=1}^n v_i k_i\right) / k_{n+j}$$

hold for every $j \in [1, l]$. If do, output 1, otherwise output 0.

• Combine: for the input sequence $(v^{(1)},t^{(1)},c_1),\cdots,(v^{(r)},t^{(r)},c_r)$, output a tag $t=\sum_{i=1}^r c_i t^{(i)}$.

Correctness: Let $x^{(i)}=(x_1^{(i)},\cdots,x_n^{(i)}), i=1,\cdots,m$ are message vectors, $t^{(i)}=(t_1^{(i)},\cdots,t_l^{(i)})$ is the tag corresponding to $x^{(i)}$. By the algorithm MAC, we have

$$t_j^{(i)} = -\left(\sum_{h=1}^n x_h^{(i)} k_i\right) / k_{n+j}$$

which is equivalent to

$$\sum_{h=1}^{n} x_h^{(i)} k_i + t_j^{(i)} k_{n+j} = 0$$

it follows that

$$\sum_{i=1}^{m} c_i \left(\sum_{h=1}^{n} x_h^{(i)} k_i \right) + \sum_{i=1}^{m} c_i \left(t_j^{(i)} k_{n+j} \right) = 0$$

Security: Suppose that an adversary can at most enquire m message vectors $y^{(1)}, \cdots, y^{(m)}$, and obtain their tags $t^{(1)}, \cdots, t^{(m)}$, let $y^{(i)} = (y_1^{(i)}, \cdots, y_n^{(i)})$, and $t^{(i)} = (t_1^{(i)}, \cdots, t_l^{(i)})$, and let $y^{(*)}, t^{(*)}$ are successful forged message vector and tags, then we have the following equations:

$$\begin{pmatrix} y^{(1)} & t_1^{(1)} & 0 & \cdots & 0 \\ y^{(2)} & t_1^{(2)} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ y^{(m)} & t_1^{(m)} & 0 & \cdots & 0 \end{pmatrix} \cdot k = 0 \qquad \begin{pmatrix} y^{(1)} & 0 & t_2^{(1)} & \cdots & 0 \\ y^{(2)} & 0 & t_2^{(2)} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ y^{(m)} & 0 & t_2^{(m)} & \cdots & 0 \end{pmatrix} \cdot k = 0$$

$$\begin{pmatrix} y^{(1)} & 0 & \cdots & 0 & t_l^{(1)} \\ y^{(2)} & 0 & \cdots & 0 & t_l^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ y^{(m)} & 0 & \cdots & 0 & t_l^{(m)} \end{pmatrix} \cdot k = 0 \qquad \begin{pmatrix} y^{(*)} & t_1^{(*)} & 0 & \cdots & 0 \\ y^{(*)} & 0 & t_2^{(*)} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ y^{(*)} & 0 & \cdots & 0 & t_l^{(*)} \end{pmatrix} \cdot k = 0$$

there are n+l variables k_1, \dots, k_{N+l} , let then rank of the system of the pervious ml equations is R, then the rank of the system of the total equations is R+l. Therefore, the probability of a successful forging is $\frac{1}{a^l}$.

Thanks! & Questions?

