Pedro Gigeck Freire

nUSP 10737136

20/09/2021

Relatório Exp.02 Tipos de Reações Químicas - Parte02

I. REAÇÕES DE DECOMPOSIÇÃO/TRANSFORMAÇÃO TÉRMICA

1) Explique por que ao se aquecer um sólido ou solução em tubo de ensaio não deve ser feito aquecimento com a chama do bico de Bunsen no fundo do tubo, mas sim ao longo da lateral do tubo com movimento constante.

Se o aquecimento fosse realizado com o tubo na posição vertical, o calor se concentraria no fundo do tubo e a substância (sólida ou solução) não se aqueceria uniformemente.

Com o tubo inclinado, o calor se distribui no interior do tubo, evitando regiões de concetração de calor.

2) A figura abaixo mostra a organização das moléculas de água no $CuSO_4.5H_2O(s)$.

Ao se aquecer o sólido estas moléculas de água são retiradas, sendo o número e as temperaturas de saída destas moléculas de água: $-2H_2O$ (63 $^{\circ}C$); $-2H_2O$ (108 $^{\circ}C$); $-H_2O$ (200 $^{\circ}C$). Explique por que a desidratação ocorre em diferentes temperaturas.

Essa desitração ocorre em diferentes temperaturas por causa da estruturação das moléculas de água. A força da ligação das moléculas de "águas de coordenação" é diferente dependendo da estrutura. As quatro moléculas ligadas ao Cobre são liberadas em forma de gás em

temperaturas um pouco menores, enquanto a ligação da ponte de hidrogênio é liberada com mais calor.

- **3)** A decomposição térmica do $\stackrel{.}{e}$ um processo redox intramolecular que gera Cr_2O_3 , N_2 e H_2O .
- i) Identifique as espécies oxidante e redutora no (NH₄)₂Cr₂O₇.

Oxidante: N (Nox -3 \Rightarrow 0) Redutora: Cr (Nox +6 \Rightarrow +3)

ii) Escreva a equação balanceada deste processo.

$$(NH_4)_2Cr_2O_{7(s)} \rightarrow Cr_2O_{3(s)} + N_{2(q)} + 4H_2O_{(q)}$$

iii) Calcule qual a massa de Cr_2O_3 que se forma na decomposição de 25,2 g de $(NH_4)_2Cr_2O_7$.

Vamos calcular a massa molar do $(NH_4)_2Cr_2O_7$: $2*(14+4*1)+2*52+7*16=252 \ g/mol$ Então, em 25,2 gramas, há 0,1 mol.

Logo, como a relação entre a substância original e Cr_2O_3 é de um para um, então foram gerados 0,1 mol de Cr_2O_3 .

E como a massa molar é de 2*52+3*16=156 g/mol temos que 0,1 mol equivale a 15,6 gramas de Cr_2O_3 .

II. REAÇÃO COM LIBERAÇÃO DE GÁS - SISTEMA DE GERAÇÃO E IDENTIFICAÇÃO DE GÁS

- **4)** Explique por que no sistema de coleta e identificação de gases em U invertido:
- i) A rolha que conecta o tubo que contém a solução teste possui uma rachuraabertura.

Para gerar sobrepressão no sistema, uma vez que esse tubo receberá gases do tubo que está sendo aquecido.

ii) O capilar do tubo em U deve ficar preferencialmente cerca de 3 mm da superfície da solução teste.

Se o tubo estivesse em contato direto com a solução teste (mergulhado), poderia haver geração de precipitado, bloqueando a passagem de mais gás (entupimento) e gerando sobrepressão.

Além disso, a diferença de temperatura entre o gás coletado e a solução teste poderia ocasionar refluxo devido à reação da solução que entraria no tubo em U em "sentido contrário".

5) Escreva a reação balanceada do borbulhamento de CO₂ na solução de água de barita e indique qual produto é indicativo da presença de CO₂.

$$Ba(OH)_{2(aq)} + CO_{2(q)} \rightarrow BaCO_{3(s)} + H_2O_{(l)}$$

O produto indicativo é o precitado sólido de BaCO₃

- 6) Escreva a equação balanceada da:
- i) Decomposição térmica do NaHCO₃(s).

NaHCO_{3 (s)}
$$\rightarrow$$
 2Na₂CO_{3 (s)} + H₂O (g) + CO_{2 (g)}

ii) Reação de Na₂CO₃(s) com ácidos.

$$Na_2CO_{3(s)} + H_2SO_{4(aq)} \rightarrow Na_2SO_{4(s)} + H_2O_{(l)} + CO_{2(q)}$$

III. TESTES DE CHAMA

7) O teste de chama é baseado nas cores de emissão características de cada elementos, consequentemente cada elemento químico apresenta seu espectro de emissão específico que atua como uma "impressão digital". Esta técnica é utilizada na química para detectar ou identificar a presença de alguns íons metálicos. Qual é a principal diferença entre um espectro atômico de absorção e de emissão? (vide aula Prof. Hermi)

O espectro de emissão é aquele que foi emitido pelo elemento (como a chama que observamos no experimento). Já o espectro de absorção é aquele obtido ao incidir uma luz (branca) de uma outra fonte sobre aquela espécie.

8) i) Quais são as cores de emissão observados nos testes de chama dos seguintes íons: Li⁺, Ba²⁺, Na⁺, K⁺, Ca²⁺, Sr²⁺ e Cu²⁺.

Li – Vermelho Carmesim Ca – Vermelho alaranjado

Ba – Amarelo esverdeado Sr – Vermelho Carmesin

Na – Amarelo (intenso) Cu – Verde azulado

K – Lilás

ii) A queima de Mg⁰ na chama origina uma luz branca extremamente intensa. Esta luz branca corresponde mais propriamente à emissão atômica ou incandescência? Justifique e compare com a cor do fio de níquel-cromo nas diferentes regiões da chama.

A luminosidade branca corresponde mais propriamente à **incandescência**. Podemos comparar que o espectro de luz observado (luz branca) é muito semelhante à luz branca emitida pelo fio de níquel-cromo quando exposta ao ponto mais quente da chama do Bico de Bunsen.

Conforme explicado nos vídeos, a reação entre o magnésio metálico e oxigênio é muito exotérmica, gerando muito calor que resulta na intensa incandescência observada (tanto do magnésio metálico reagindo, quanto do ar ao redor do metal, que também emite muita luz.

9) Você observou no vídeo desta aula que a emissão de amostras de Li⁺ e Sr²⁺ são muito semelhantes, apresentando o Li⁺ uma cor vermelha mais pura e o Sr⁺² uma cor vermelha um pouco mais alaranjada. Você aprendeu também que utilizando um espectrômetro é possível identificar as linhas de emissão de uma amostra.

Consulte a referência 6 do roteiro desta aula e/ou pesquise quais são as linhas de emissão na região do vermelho e do laranja do espectro eletromagnético de cada uma desta amostras e explique por que o Sr²⁺ emite com tonalidade laranja mais acentuada.

Faixas de emissão do Sr:

Faixas de emissão do Li:

fonte: http://www.deboni.he.com.br/dic/quim1_003.htm#espectros

Conforme observamos acima, o estrôncio possui uma intensidade maior de emissão nas faixas da região alanjada, enquanto o lítio possui emissão mais concentrada nas faixas que correspondem ao vermelho do espectro.

10) Existem três soluções desconhecidas que podem ser:

Cloreto de sódio - NaCl(aq)

Sulfato de sódio - Na₂SO₄(aq)

Nitrato de bário - Ba(NO₃)₂(aq)

Estas soluções foram rotuladas A, B e C de forma aleatória e foram feitas as seguintes misturas de alíquotas destas soluções com os seguintes resultados:

Mistura	Resultado
A + B	Precipitado Branco
A + C	Nada
B + C	Nada

Teste de chama da **solução A** resultou em emissão amarela intensa.

- i) Usando as informações acima identifique as soluções A, B e C. Justifique.
- A Sulfato de Sódio Na₂SO₄
- B Nitrato de Bário Ba(NO₃)₂
- C Cloreto de Sódio NaCl

Conseguimos identificar as soluções A e B por conta da formação do precipitado de Sulfato de Bário, que é o único dentre os possíveis produtos de reação que não é solúvel (dentre os cloretos, sulfatos e nitratos). Logo, a solução C é o cloreto de Sódio.

Além disso, distinguimos que a solução A é o Sulfato de Sódio por conta da emissão de luz amarela intensa característica do sódio.

ii) Quais são as cores de emissão das soluções B e C nos respectivos testes de chama?

Solução B – Amarelo intenso (por conta do sódio)

Solução C – Amarelo alaranjado (devido ao bário)