

(19) BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENTAMT

(12) Offenlegungsschrift
(11) DE 4020330 A1

(51) Int. Cl. 5:
D 02 J 7/00

(30) Unionspriorität: (32) (33) (31)
29.06.89 CH 02413/89

(71) Anmelder:
Zellweger Uster AG, Uster, CH

(74) Vertreter:
Manitz, G., Dipl.-Phys. Dr.rer.nat.; Finsterwald, M.,
Dipl.-Ing. Dipl.-Wirtsch.-Ing., 8000 München;
Rotermund, H., Dipl.-Phys., 7000 Stuttgart; Heyn, H.,
Dipl.-Chem. Dr.rer.nat., Pat.-Anwälte, 8000 München

(72) Erfinder:
Aeppli, Kurt, Uster, CH

(54) Verfahren zum Einstellen der Reinigungsgrenze elektronischer Garnreiniger

Die möglichen Garnfehler werden in einer Tabelle nach Art eines Koordinatensystems geordnet, wobei auf der einen Koordinate der Fehlerquerschnitt (Delta Q) und auf der anderen die Fehlerlänge (L) aufgetragen sind. Die Reinigungsgrenze wird mittels einer Kurve (RG*) eingestellt, welche die Bereiche der zu reinigenden und der nicht zu reinigenden Garnfehler trennt und welche dem Garnreiniger eingegeben wird. Die die Reinigungsgrenze darstellende Kurve (RG*) wird durch mindestens zwei Punkte (P1, P2) der Tabelle festgelegt und durch eine definierte Verbindungsline zwischen diesen Punkten gebildet. Außerhalb der beiden äußersten Punkte (P1, P2) der Kurve (RG*) wird ein definierter, vorzugsweise horizontaler Verlauf der Reinigungsgrenze gewählt.

Dadurch kann jede gewünschte Reinigungsgrenze eingestellt werden. Das Verfahren ist sehr flexibel und bedienungsfreundlich und ist außerdem mit den Charakteristiken bekannter Garnreiniger kompatibel.

FIG. 4

Beschreibung

Die Erfindung betrifft ein Verfahren zum Einstellen der Reinigungsgrenze elektronischer Garnreiniger durch Ordnung der möglichen Garnfehler in einer Tabelle nach Art eines Koordinatensystems, wobei auf der einen Koordinatenachse der Fehlerquerschnitt und auf der anderen die Fehlerlänge aufgetragen und die Reinigungsgrenze mittels einer Kurve, welche die Bereiche der zu reinigenden und der nicht zu reinigenden Garnfehler trennt, mit Hilfe der Tabelle eingestellt und dem Garnreiniger eingegeben wird.

Bei einem bekannten Verfahren dieser Art (USTER News Bulletin Nr. 29, 08. 1981, "Das USTER-System der Garnfehlerkontrolle"), wird mit einer Schablone, dem sogenannten USTER AUTOMATIC TRANSLATOR (USTER: eingetragenes Warenzeichen der Zellweger Uster AG), für ein gewähltes Wertepaar aus Fehlerquerschnitt und Fehlerlänge festgelegt, welche Fehler ausgereinigt werden. Die entsprechenden Werte für den Fehlerquerschnitt (= Empfindlichkeit) und für die sogenannte Referenzlänge, das ist die Länge, über die der Mittelwert des Garnquerschnitts gebildet wird, werden am Garnreiniger eingestellt.

Die Reinigungscharakteristik ist durch eine Kurve auf dem USTER AUTOMATIC TRANSLATOR bestimmt; sie ist fest und kann durch die Empfindlichkeitseinstellung in der Vertikalen und durch die Referenzlängeneinstellung in der Horizontalen verschoben werden. Da der Verlauf der Kurve jedoch durch die Auswertemethode gegeben ist und nicht verändert werden kann, werden bei der Entfernung bestimmter Fehlerarten zwangsläufig auch solche Fehler erfaßt, die unter Umständen im Garn verbleiben dürften.

Es ist bekannt, daß in der heutigen Spulerei zwar alle störenden Garnfehler entfernt werden sollen, daß aber andererseits die Anzahl der Knoten im gereinigten Garn möglichst gering sein soll, weil die Knoten sowohl in der Weberei als auch in der Strickerei eine potentielle Störstelle bilden.

Durch die Erfindung soll nun das bekannte Verfahren dahingehend verbessert werden, daß die Reinigungsgrenze möglichst frei gewählt werden kann.

Diese Aufgabe wird erfundengemäß dadurch gelöst, daß die die Reinigungsgrenze darstellende Kurve durch mindestens zwei Punkte der Tabelle festgelegt und durch eine definierte Verbindungslinie zwischen diesen Punkten gebildet, und daß außerhalb der beiden äußersten Punkte der Kurve ein vorgebbarer Verlauf der Reinigungsgrenze gewählt wird.

Beim erfundengemäß Verfahren ist also die die Reinigungsgrenze bildende Kurve nicht mehr in ihrem Verlauf festgelegt und nur in den beiden Koordinatenrichtungen verschiebbar, sondern sie kann durch Auswahl einer entsprechenden Anzahl von Punkten praktisch an jeden gewünschten Verlauf angepaßt werden. Dabei können selbstverständlich auch die Kurven bisheriger Garnreiniger vorprogrammiert und abgespeichert werden, wodurch die Kompatibilität beider Systeme gewährleistet ist.

Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen und der Zeichnungen näher erläutert; es zeigt:

Fig. 1, 2 ein Beispiel für ein bekanntes Verfahren zum Einstellen der Reinigungsgrenze,

Fig. 3 eine vereinfachte Darstellung eines anderen Verfahrens zur Einstellung der Reinigungsgrenze; und

Fig. 4, 5 je ein Diagramm zur Erläuterung des erfin-

dungsgemäß Verfahrens.

In Fig. 1 ist eine bekannte Tabelle zum Einstellen der Reinigungsgrenze, die USTER AUTOMATIC TRANSLATOR BASIS dargestellt, in welche auf der Ordinate die Querschnittszunahme Q in % und auf der Abszisse die Fehlerlänge L in cm aufgetragen sind. Q gleich 100% bedeutet, daß die Dicke eines Fehlers das Doppelte des mittleren Garnquerschnitts beträgt. Diese Zusammenhänge sind bekannt und werden hier nicht näher erläutert.

Es wird auf die CH-A-4 77 573 (= US-A-35 77 854) verwiesen.

Wenn nun ein bestimmter Fehler, beispielsweise ein Fehler F des Querschnitts 150% und der Länge 10 cm, 15 ausgereinigt werden soll, dann wird der in Fig. 2 dargestellte USTER AUTOMATIC TRANSLATOR, der im Prinzip eine eine Kurve aufweisende Schablone ist, so auf die TRANSLATOR BASIS gelegt, daß der Fehler F oberhalb der Reinigungskurve RG liegt. Alle oberhalb 20 der Kurve RG liegenden Fehler werden ausgereinigt und alle darunter liegenden nicht. Da der Verlauf der Kurve RG durch die Auswertemethode vorgegeben ist und nicht verändert werden kann, werden beim Entfernen des Fehlers F zwangsläufig auch die Fehler F1 und F2 erfaßt, die aber unter Umständen im Garn verbleiben könnten.

In Fig. 3 ist eine Möglichkeit einer flexibleren Einstellung der Reinigungsgrenze dargestellt. Darstellungsgemäß sind die möglichen Garnfehler in mehrere Klassen eingeteilt, wobei der Einfachheit halber eine Einteilung 30 analog den USTER CLASSIMAT Grades gewählt wurde, mit 4 Kolonnen A bis D für die Fehlerlängen 0,1 cm, 1 cm, 2 cm und 4 cm, und mit 4 Zeilen 1 bis 4 mit +100%, +150%, +250% und +400% für den Fehlerquerschnitt. Die Klasse C3 enthält also alle Fehler der Länge 2 cm bis 4 cm und des Querschnitts 250% bis 400%. Auch bezüglich dieser Tabelle wird auf die schon genannten Literaturstellen verwiesen.

Es ist leicht einzusehen, daß durch eine Bezeichnung 40 der zu entfernenden Klassen eine gegenüber dem Verfahren gemäß den Fig. 1 und 2 wesentlich flexiblere Einstellung der Reinigungsgrenze ermöglicht wird. Werden beispielsweise die Klassen A4, B3, C2 und D2 ausgewählt, dann ergibt sich die treppenförmige, strichpunktiert 45 eingezzeichnete Kurve RG'. Eine derartige Treppekurve ist aber unerwünscht und ergibt außerdem nur eine relativ grobe Einstellung. Diese Nachteile lassen sich zwar durch eine feinere Klasseneinteilung mit mehr als 16 Klassen reduzieren; dafür steigt aber mit 50 steigender Klassenzahl der Bedienungsaufwand stark an.

In den Fig. 4 und 5 ist ein Verfahren dargestellt, mit welchem praktisch jede gewünschte Reinigungsgrenze eingestellt werden kann. Beide Beispiele gehen wie die bisherigen Verfahren (Fig. 1) von einer Fehlertabelle aus, auf deren Ordinate der Fehlerquerschnitt Q in % und auf deren Abszisse die Fehlerlänge L in cm aufgetragen ist. Der Einfachheit halber reicht die Fehlerlänge L nur bis zum Wert 10 cm, sie kann aber selbstverständlich beliebig groß sein.

Das dargestellte Verfahren besteht nun darin, die Reinigungsgrenze dadurch einzustellen, daß in der Fehlertabelle mindestens zwei auszureinigenden Fehlern entsprechende Punkte ausgewählt werden und daß diese 65 durch eine an sich beliebige, aber definierte Verbindungsline verbunden werden, welche die Reinigungsgrenze RG* bildet. Im Anschluß an die ausgewählten Punkte wird ein ebenfalls definierter Verlauf der Reini-

gungsgrenze gewählt. Beim in Fig. 4 dargestellten Beispiel sind die Punkte P1(L=1 cm, Q=400%) und P2(L=5 cm, Q=150%) gewählt, die Verbindungslinie ist eine Gerade und der Verlauf der Reinigungsgrenze GR* im Anschluß an die Punkte P1 und P2 ist horizontal.

Beim Ausführungsbeispiel von Fig. 5 sind nicht 2 Punkte P1 und P2, sondern insgesamt 6 Punkte P1 bis P6 ausgewählt, welche jeweils durch eine Gerade verbunden sind. Vor dem Punkt P1 und nach dem Punkt P6 verläuft die Reinigungsgrenze RG* wiederum horizontal. Durch Angabe von mehr als zwei Punkten kann die Reinigungsgrenze RG* praktisch an jeden gewünschten Verlauf angepaßt werden. Darüber hinaus kann auch die die Reinigungsgrenze heutiger Garnreiniger repräsentierende Kurve RG (Fig. 1) vorprogrammiert und abgespeichert werden, wodurch die Kompatibilität des neuen Verfahrens mit dem bisherigen gewahrt ist.

Die Eingabe der Reinigungsgrenze in den Garnreiniger geht so vor sich, daß die Koordinaten der ausgewählten Punkte in einen Speicher der Auswertungsschaltung des Meßorgans eingegeben und daß ein Prozessor aus diesen Koordinaten und aus der gespeicherten Funktion der Verbindungslinie zwischen diesen die Reinigungsgrenze berechnet und entsprechende Prozesse steuert. Bei diesen letzteren Prozessen laufen im wesentlichen zwei Vorgänge ab: Einerseits wird überwacht, ob und wann das Signal des Meßorgans vorgegebene Schwellenwerte überschreitet und somit Abweichungen vom Sollwert des Querschnitts oder Durchmessers auftreten, und andererseits wird auch die längsmässige Ausdehnung dieser relativen Abweichungen festgestellt.

Diese Untersuchungs- und Bewertungsvorgänge, die heute selbstverständlich mit Mitteln der Digitaltechnik durchgeführt werden, sind an sich bekannt; es wird in diesem Zusammenhang auf die CH-A-6 41 422 (= US-A-44 30 720) verwiesen.

Zur Eingabe der Koordinaten der ausgewählten Punkte verwendet man vorzugsweise eine handelsübliche Tastatur; die Koordinaten können einer Tabelle oder einem Bildschirm entnommen werden. Letzterer wird bei zukünftigen Garnreinigungsanlagen ohnedies vorhanden sein, da diese über ein Bildschirmgerät zur Bedienung und Datenausgabe verfügen werden. Die Berechnung der die Reinigungsgrenze darstellenden Kurve RG* aus den eingegebenen Punkten erfolgt vorzugsweise im zentralen Steuergerät.

Patentansprüche

50

1. Verfahren zum Einstellen der Reinigungsgrenze elektronischer Garnreiniger durch Ordnung der möglichen Garnfehler in einer Tabelle nach Art eines Koordinatensystems, wobei auf der einen Koordinatenachse der Fehlerquerschnitt und auf der anderen die Fehlerlänge aufgetragen und die Reinigungsgrenze mittels einer Kurve, welche die Bereiche der zu reinigenden und der nicht zu reinigenden Garnfehler trennt, mit Hilfe der Tabelle eingesetzt und dem Garnreiniger eingegeben wird, dadurch gekennzeichnet, daß die die Reinigungsgrenze (RG*) darstellende Kurve durch mindestens zwei Punkte (P1 bis P6) der Tabelle festgelegt und durch eine definierte Verbindungslinie zwischen diesen Punkten gebildet, und daß außerhalb der beiden äußersten Punkte der Kurve ein vorgebbarer Verlauf der Reinigungsgrenze gewählt wird.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Verbindungslinie zwischen benachbarten Punkten (P1 bis P6) der die Reinigungsgrenze (RG*) bildenden Kurve die Verbindungsgerade dieser Punkte gewählt wird.

3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß für den Bereich der die Reinigungsgrenze (RG*) bildenden Kurve außerhalb der beiden äußersten Punkte (P1, P2; P1, P6) der Fehlerquerschnitt (Delta Q) gleichbleibend gewählt wird.

4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß für den genannten Bereich ein horizontaler Verlauf der Reinigungsgrenze (RG*) vorliegt.

5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Tabelle auf dem Bildschirm eines Bildschirmgeräts zur Bedienung und Datenausgabe einer Garnreinigungsanlage dargestellt wird.

6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Eingabe der die Reinigungsgrenze (RG*) festlegenden Punkte (P1 bis P6) in den Garnreiniger mittels der Tastatur des Bildschirmgeräts erfolgt.

7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die Koordinaten der gewünschten Punkte (P1 bis P6) in einen Speicher der Auswertungsschaltung der Garnreinigungsanlage eingegeben werden, und daß mittels eines Prozessors aus diesen Koordinaten und aus der gespeicherten Funktion der Verbindungslinie zwischen den Punkten die Reinigungsgrenze (RG*) berechnet wird und entsprechende Prozesse gesteuert werden.

8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Reinigungsgrenze (RG*) auf dem Bildschirm dargestellt wird.

9. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Berechnung der Reinigungsgrenze (RG*) im zentralen Steuergerät der Garnreinigungsanlage erfolgt.

Hierzu 3 Seite(n) Zeichnungen

FIG. 1FIG. 2

FIG. 3

FIG. 4

FIG. 5