NATIONAL UNIVERSITY OF SINGAPORE

MA2101 - Linear Algebra II

(Semester 2 : AY2013/2014)

Time allowed: 2 hours

INSTRUCTIONS TO STUDENTS

- 1. Please write your matriculation number only. Do not write your name.
- 2. This examination paper contains **SEVEN** questions and comprises **FOUR** printed pages.
- 3. Students are required to answer **ALL** questions.
- 4. Students should write the answers for each question on a **NEW** page.
- 5. This is a CLOSED BOOK (with helpsheet) examination.
- 6. You may use scientific calculators. However, you should lay out systematically the various steps in the calculations.

PAGE 2 MA2101

Question 1 [14 marks]

Let $f: V \to W$ be a linear transformation between two vector spaces over a field F, which are not necessarily finite-dimensional. Let

$$T = \{ \mathbf{t}_{\alpha} \mid \alpha \in I \} \subseteq W$$

be a subset (of W) which is not necessarily finite. Take $\mathbf{s}_{\alpha} \in V$ such that

$$f(\mathbf{s}_{\alpha}) = \mathbf{t}_{\alpha} \quad (\alpha \in I).$$

Set $S := \{ \mathbf{s}_{\alpha} \mid \alpha \in I \}.$

- (a) If T is a linearly independent subset of W, show that $\dim \text{Span}(S) = \dim \text{Span}(T)$.
- (b) If T is linearly dependent, is it true that $\dim \text{Span}(S) = \dim \text{Span}(T)$? Justify your answer by either proving it or disproving it by a *concrete* counterexample.

Question 2 [14 marks]

Let $T: V_1 \to V_2$ be a linear transformation between two finite-dimensional vector spaces over a field F. Let B_i be a basis of V_i for i = 1, 2. Let

$$A := [T]_{B_1, B_2}$$

be the representation matrix of T relative to the bases B_i of V_i . Prove that T is an isomorphism if and only if A is an invertible (square) matrix over F.

Question 3 [14 marks]

Let $A_i \in M_n(F)$ be two similar matrices over a field $F: A_1 \sim A_2$. Prove the following:

- (i) The characteristic polynomials are identical: $p_{A_1}(x) = p_{A_2}(x)$.
- (ii) The traces are the same: $Tr(A_1) = Tr(A_2)$.
- (iii) The determinants are the same: $|A_1| = |A_2|$.
- (iv) The minimal polynomials are identical: $m_{A_1}(x) = m_{A_2}(x)$.
- (v) A_1 is diagonalizable over F if and only if so is A_2 .
- (vi) A_1 has a Jordan canonical form over F if and only if so does A_2 .

PAGE 3 MA2101

Question 4 [14 marks]

Let $A \in M_n(\mathbf{R})$ be an $n \times n$ real matrix.

(i) Prove that there is an orthogonal matrix P such that $P^{-1}(AA^t)P$ is equal to a diagonal matrix D.

(ii) If
$$A = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$$
, find P and D in (i).

Question 5 [14 marks]

Let $A \in M_5(\mathbf{R})$ be a 5×5 real matrix such that $(A^2 - I)(A^2 - 4I) = 0$.

- (i) Prove that A is diagonalizable over \mathbf{R} .
- (ii) Prove that the determinant |A| is a real number satisfying $-32 \le |A| \le 32$.
- (iii) Prove that A is invertible and find a polynomial g(x) such that $A^{-1} = g(A)$.

Question 6 [14 marks]

Let V be a finite-dimensional vector space over a field F where $1+1+1\neq 0_F$. Let $T_i:V\to V$ (i=1,2) be two linear operators. Assume that

$$T_1 \circ T_1 = T_1$$
, $T_2 \circ T_2 = 3 T_2$, $T_1 \circ T_2 = 0 I_V = T_2 \circ T_1$

where $0 I_V$ is the zero map. It is known that

$$T := T_1 + T_2$$

is a linear operator on V.

- (i) If $\mathbf{v} \in R(T_1)$ (the range of T_1), show that $T(\mathbf{v}) = \mathbf{v}$.
- (ii) If $\mathbf{v} \in R(T_2)$ (the range of T_2), show that $T(\mathbf{v}) = 3\mathbf{v}$.
- (iii) Show that $\dim V = \dim \operatorname{Ker}(T) + \dim R(T)$.
- (iv) Show that $T \circ T = T + 2T_2$.
- (v) Show that the sum Ker(T) + R(T) is a direct sum of subspaces Ker(T) and R(T).
- (vi) Show that $V = Ker(T) \oplus R(T)$.

... - 4 -

PAGE 4 MA2101

Question 7 [16 marks]

For each of the 8 statements below, if it is true write T (or True) as the answer; if it is false write F (or False) as the answer. Answer them **in order.** No proof is required.

- (i) If $f: V \to W$ is a surjective linear transformation, then the cardinality $|f^{-1}(\mathbf{w}_1)| = |f^{-1}(\mathbf{w}_2)|$ for all $\mathbf{w}_i \in W$. Here $f^{-1}(\mathbf{w}) := {\mathbf{v} \in V \mid f(\mathbf{v}) = \mathbf{w}}$.
- (ii) If T is an orthogonal linear operator on a real inner product space V then its representation matrix $[T]_B$ relative to any basis B of V is an orthogonal matrix.
- (iii) If U_i (i = 1, 2) are both unitary complex matrices then so is $U_1 U_2^{-1}$.
- (iv) If a square matrix is diagonalizable over a field F then its eigenvalues are all distinct.
- (v) If matrix A is invertible and diagonalizable over field F then so is A^n for all integers n.
- (vi) Every real matrix in $M_n(\mathbf{R})$ has a Jordan canonical form.
- (vii) If A is a self-adjoint complex matrix then so is its transpose A^t .
- (viii) If C is a complex square matrix then C^*C is a positive definite matrix.