Notas de Aula

Cálculo Diferencial e Integral II - CT Departamento de Matemática - UFPI

Estas notas de aula foram elaboradas para apoiar a disciplina Cálculo Diferencial e Integral II - CT da Universidade Federal do Piauí.

Trata-se de um material de apoio, e não de um livro didático.

Algumas definições, demonstrações e exemplos não estão aqui incluídos, pois serão discutidos diretamente em sala de aula. Este material encontra-se em constante desenvolvimento e poderá ser aprimorado em futuras edições.

A versão mais atualizada deste material pode ser encontrada em: https://vitalianoamaral.github.io No menu, clique em Ensino, depois em Graduação e, em seguida, em Disciplinas Ministradas. Localize a disciplina Cálculo diferencial e integral II-CT e clique no link Notas de Aula.

> Prof. Vitaliano de Sousa Amaral Departamento de Matemática – UFPI

Sumário

Sumário			3	
1	Inte	egral Imprópria	5	
	1.1	Revisão: Integral Definida	5	
		1.1.1 Principais propriedades	6	
	1.2	Integrais Impróprias	7	
		1.2.1 Integrais em Intervalos Infinitos	7	
		1.2.2 Integrais com Descontinuidade	9	
	1.3	Critérios de convergência	9	
2	Seq	uência e série de números reais	13	
	2.1	Sequências de Números Reais	13	
		2.1.1 Exercícios	14	
		2.1.2 Limite de Sequências	14	
	2.2	Séries de Números Reais	15	
		2.2.1 Testes de Convergência de Séries	18	
	2.3	Séries de Potências	23	
		2.3.1 Propriedades das Séries de Potências	26	
		2.3.2 Séries de Taylor	28	
	2.4	Exercícios	30	
	2.5	Séries de Taylor e de Maclaurin	32	
	2.6	Exercícios	32	

SUM'ARIO

Capítulo 1

Integral Imprópria

1.1 Revisão: Integral Definida

Consideramos um intervalo fechado e limitado [a,b]. Uma partição de [a,b] é um conjunto finito de pontos de [a,b], $P=\{a=x_0,x_1,\cdots,x_{n-1},x_n=b\}$ tais que $a=x_0< x_1<\cdots< x_{n-1}< x_n=b$. A partição P divide o intervalo [a,b] em n subintervalos $[x_0,x_1]$, $[x_1,x_2]$, \cdots , $[x_{n-2},x_{n-1}]$, $[x_{n-1},x_n]$, como podemos ver na Figura 1.1.

Figura 1.1

O i-ésimo subintervalo da partição P é $[x_{i-1}, x_i]$ e seu comprimento é representado por $\Delta x_i = x_i - x_{i-1}$ para $i = 1, 2, \dots, n$.

Exemplo 1.1.1. Uma partição do intervalo fechado [0, 10] é o conjunto $P = \{0, 2, 4, 6, 8, 10\}$. Observamos que a partição P divide o intervalo [0, 10] em 5 subintervalos [0, 2], [2, 4], [4, 6], [6, 8] e [8, 10]. Veja ilustração geométrica na Figura 1.2.

Seja uma função $f:[a,b]\to\mathbb{R}$ e em cada subintervalo $[x_{i-1},x_i]$ escolhamos $c_i,$ $i=1,\cdots,n.$ Denotamos por $\|P\|=\max_{1\leq i\leq n}\{x_i-x_{i-1}\}.$

Veja ilustração geométrica na Figura 1.3 a seguir.

Figura 1.3

Consideremos o retângulo de base medindo $\Delta x_i = x_i - x_{i-1}$ e altura $f(c_i)$ onde $c_i \in [x_{i-1}, x_i]$ (Veja Figura 1.3).

Na ilustração geométrica, consideramos uma função positiva no intervalo [a,b]. Observe que a soma das áreas dos retângulos aproxima a área compreendida entre o gráfico de f e o eixo x. Alguns retângulos possuem parte de sua área acima do gráfico e outros possuem parte abaixo, de forma que a aproximação pode não ser exata quando temos um número finito de partições. No entanto, quando fazemos o comprimento de todos os subintervalos da partição tender a zero, isto é, quando tomamos infinitas partições cada vez mais finas, a soma infinita das áreas desses retângulos coincide exatamente com a área entre o gráfico de f e o eixo x.

Essa é apenas uma noção intuitiva do que chamamos de **integral definida**; a seguir apresentamos sua definição formal.

Definição 1.1.1. Considere uma partição P e $c_i \in [x_{i-1}, x_i]$. Dizemos que f integrável em [a, b] se $\lim_{\|P\| \to 0} \sum_{i=1}^n f(c_i) \Delta x_i$ existe, e denotamos por

$$\int_{a}^{b} f(x)dx = \lim_{\|P\| \to 0} \sum_{i=1}^{n} f(c_i) \Delta x_i.$$

A seguir apresentamos as principais propriedades da integral definida.

1.1.1 Principais propriedades

Sejam f e g funções possuindo integral definida em [a,b] e $k \in \mathbb{R}$ um constante. As integrais definidas possuem as seguintes propriedades:

1.
$$\int_a^b [kf(x) + g(x)] dx = k \int_a^b f(x) dx + \int_a^b g(x) dx$$
.

2. Para
$$c \in [a, b]$$
, $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$.

3.
$$\int_a^b f(x) dx = -\int_b^a f(x) dx$$
.

4. Se
$$f(x) \ge 0$$
 para todo $x \in [a, b]$, então $\int_a^b f(x) dx \ge 0$.

5. Se
$$f(x) \leq g(x)$$
 para todo $x \in [a, b]$, então: $\int_a^b f(x) dx \leq \int_a^b g(x) dx$.

O **Teorema Fundamental do Cálculo** estabelece a conexão entre derivação e integração.

Theorem 1.1.1 (Teorema Fundamental do Cálculo). Se f é contínua em [a,b] e F é uma primitiva de f (isto é, F'(x) = f(x)), então:

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

Este teorema fornece um método prático para calcular integrais definidas, evitando o uso direto da Soma de Riemann.

Outras propriedades serão apresentadas na seção sobre Integrais Impróprias.

1.2 Integrais Impróprias

Na definição de integral definida, consideramos a função contínua em um intervalo fechado [a, b]. Agora, vamos estender essa definição para duas situações importantes:

1. Quando a função está definida em intervalos infinitos, como:

$$[a, +\infty), (-\infty, b]$$
 ou $(-\infty, +\infty).$

2. Quando a função apresenta descontinuidade em algum ponto do intervalo de integração.

Nesses casos especiais usamos as integrais impróprias.

1.2.1 Integrais em Intervalos Infinitos

Para motivar a definição, vamos considerar um exemplo.

Exemplo 1.2.1. Calcular a área da região R limitada pelo gráfico de $f(x) = \frac{1}{x^2}$, com $x \ge 1$, e o eixo x.

Primeiro, observamos que a região é ilimitada no sentido horizontal. Se definirmos R_b como a parte da região R entre x = 1 e x = b (b > 1), temos:

$$A(R_b) = \int_1^b \frac{1}{x^2} dx = -\frac{1}{x} \Big|_1^b = 1 - \frac{1}{b}.$$

Ver Figura 1.4.

Figura 1.4: Área R_b sob $y = \frac{1}{x^2}$ de x = 1 a x = b.

À medida que $b \to +\infty$, essa área se aproxima da área total da região R:

$$A(R) = \lim_{b \to +\infty} A(R_b) = \lim_{b \to +\infty} \left(1 - \frac{1}{b}\right) = 1.$$

Ver Figura 1.5.

Figura 1.5: Limite $b \to +\infty$ resultando em A(R) = 1.

Esse exemplo motiva a seguinte definição.

Definição 1.2.1. Seja f uma função integrável em $[a, +\infty)$. Definimos:

$$\int_{a}^{+\infty} f(x) dx := \lim_{b \to +\infty} \int_{a}^{b} f(x) dx.$$

Se f é uma função integrável em $(-\infty, b]$. Definimos:

$$\int_{-\infty}^{b} f(x) dx := \lim_{a \to -\infty} \int_{a}^{b} f(x) dx.$$

Se f é uma função integrável em \mathbb{R} . Definimos:

$$\int_{-\infty}^{+\infty} f(x) dx := \lim_{a \to -\infty} \int_{a}^{0} f(x) dx + \lim_{b \to +\infty} \int_{0}^{b} f(x) dx.$$

Se o limite existir, dizemos que a integral imprópria **converge**. Caso contrário, dizemos que ela **diverge**.

1.2.2 Integrais com Descontinuidade

Agora, consideremos o caso em que a função apresenta descontinuidade em um ponto do intervalo de integração.

Exemplo 1.2.2. Calcular a área sob o gráfico de $f(x) = \frac{1}{\sqrt{x}}$ no intervalo (0,9].

Como a função não está definida em x = 0, definimos:

$$A(R_{\varepsilon}) = \int_{\varepsilon}^{9} \frac{1}{\sqrt{x}} dx = 2\sqrt{x} \Big|_{\varepsilon}^{9} = 6 - 2\sqrt{\varepsilon}.$$

Quando $\varepsilon \to 0^+$, obtemos:

$$A(R) = \lim_{\varepsilon \to 0^+} A(R_{\varepsilon}) = 6.$$

De forma geral:

Definição 1.2.2. Se f for integrável em (a, b], definimos:

$$\int_{a}^{b} f(x) dx := \lim_{\varepsilon \to a^{+}} \int_{\varepsilon}^{b} f(x) dx.$$

Se f for integrável em [a,b):

$$\int_{a}^{b} f(x) dx := \lim_{\varepsilon \to b^{-}} \int_{a}^{\varepsilon} f(x) dx.$$

Se f tiver descontinuidade em $c \in (a, b)$:

$$\int_{a}^{b} f(x) dx := \lim_{\varepsilon \to c^{-}} \int_{a}^{\varepsilon} f(x) dx + \lim_{\varepsilon \to c^{+}} \int_{\varepsilon}^{b} f(x) dx.$$

1.3 Critérios de convergência

Teorema 1.3.1 (Critério de comparação). Sejam f e g funções integráveis em [a, t], para todo t > a, tais que

$$0 \le f(x) \le g(x), \quad \forall x \ge a.$$

Então, valem as seguintes propriedades:

a) Se
$$\int_a^{+\infty} g(x) dx$$
 converge, então $\int_a^{+\infty} f(x) dx$ também converge.

b) Se
$$\int_{a}^{+\infty} f(x) dx$$
 diverge, então $\int_{a}^{+\infty} g(x) dx$ também diverge.

Exemplo 1.3.1. Verifique que a integral imprópria

$$\int_0^{+\infty} e^{-x} \sin^2 x \, dx$$

é convergente.

Solução. Para $x \ge 0$ vale $0 \le \sin^2 x \le 1$, portanto

$$0 \le e^{-x} \sin^2 x \le e^{-x}.$$

Agora,

$$\int_0^{+\infty} e^{-x} \, dx := \lim_{t \to +\infty} \int_0^t e^{-x} \, dx = \lim_{t \to +\infty} \left[-e^{-x} \right]_0^t = \lim_{t \to +\infty} \left(1 - e^{-t} \right) = 1.$$

Assim, $\int_0^{+\infty} e^{-x} dx$ é convergente. Pelo critério de comparação, segue que

$$\int_0^{+\infty} e^{-x} \sin^2 x \, dx \text{ \'e convergente e } 0 \le \int_0^{+\infty} e^{-x} \sin^2 x \, dx \le 1.$$

Proposição 1.3.1. Seja f integrável em [a, t], para todo $t \ge a$. Se

$$\int_{a}^{+\infty} |f(x)| dx \quad \text{\'e convergente},$$

 $ent\~ao$

$$\int_{a}^{+\infty} f(x) dx \quad tamb\'em \'e convergente.$$

Demonstração. Para todo $x \ge a$ vale

$$0 \le |f(x)| + f(x) \le 2|f(x)|.$$

Como $\int_a^{+\infty} |f(x)| \, dx$ é convergente, pelo critério de comparação segue que

$$\int_{a}^{+\infty} \left(|f(x)| + f(x) \right) dx$$

também converge. Além disso, para todo t > a, temos

$$\int_{a}^{t} f(x) dx = \int_{a}^{t} (|f(x)| + f(x)) dx - \int_{a}^{t} |f(x)| dx.$$

Ora, como os dois integrais do lado direito convergem quando $t \to +\infty$, conclui-se que

$$\int_{a}^{+\infty} f(x) \, dx$$

também é convergente.

1.3. CRITÉRIOS DE CONVERGÊNCIA

11

Exemplo 1.3.2. Determine se a integral imprópria

$$\int_0^{+\infty} e^{-x} \sin^3 x \, dx$$

é convergente ou divergente. Justifique.

Solução. Para todo $x \ge 0$, tem-se

$$0 \le \left| e^{-x} \sin^3 x \right| \le e^{-x}.$$

Como $\int_0^{+\infty} e^{-x} dx$ é convergente, pelo critério de comparação segue que

$$\int_0^{+\infty} \left| e^{-x} \sin^3 x \right| dx$$

também converge. Aplicando a Proposição 1.3.1, conclui-se que

$$\int_0^{+\infty} e^{-x} \sin^3 x \, dx$$

é convergente.

Capítulo 2

Sequência e série de números reais

2.1 Sequências de Números Reais

Definição 2.1.1. Uma sequência de números reais é uma função $f : \mathbb{N} \to \mathbb{R}$, onde $f(n) = a_n$ para cada $n \in \mathbb{N}$.

Notação 2.1.1. A sequência $\{a_1, a_2, \dots, a_n, \dots\}$ é também denotada por $\{a_n\}_{n\in\mathbb{N}}$ ou $\{a_n\}_{n=1}^{+\infty}$.

Exemplo 2.1.1. A função $f(n) = (-1)^n$ determina a sequência $\{1, -1, 1, -1, \cdots, (-1)^n, \cdots\}$.

Definição 2.1.2. Uma subsequência de uma sequência $f : \mathbb{N} \to \mathbb{R}$ é uma restrição $f_{\mathbb{N}'}$ de f, $f_{\mathbb{N}'} : \mathbb{N} \to \mathbb{R}$, onde $\mathbb{N}' \subset \mathbb{N}$.

Definição 2.1.3. Dizemos que uma sequência de números reais $\{a_n\}$ é:

- a) decrescente se $a_n > a_{n+1}$ para todo $n \in \mathbb{N}$;
- b) crescente se $a_n < a_{n+1}$ para todo $n \in \mathbb{N}$;
- c) não-decrescente se $a_n \leq a_{n+1}$ para todo $n \in \mathbb{N}$;
- d) não-crescente se $a_n \ge a_{n+1}$ para todo $n \in \mathbb{N}$.

Definição 2.1.4. Uma sequência que satisfaz um dos itens da Definição 2.1.3 é dita **monótona**.

Exemplo 2.1.2. As sequências $\{\frac{1}{n}\}$, $\{n+1\}$ e $\{7-n\}$ são monótonas. Verifique.

Definição 2.1.5. Dizemos que uma sequência de números reais $\{a_n\}$ é:

- a) limitada superiormente se existe $M \in \mathbb{R}$ tal que $a_n \leq M$ para todo $n \in \mathbb{N}$;
- b) limitada inferiormente se existe $m \in \mathbb{R}$ tal que $a_n \geq m$ para todo $n \in \mathbb{N}$;
- c) limitada se for limitada superiormente e inferiormente.

2.1.1 Exercícios

Exercício 2.1.1. Mostre que as sequências abaixo são limitadas e monótonas. Descreva o tipo de monotonicidade de cada uma delas.

a)
$$x_n = \frac{2n-1}{n}$$
;

b)
$$x_n = 1 + \frac{1}{3n}$$
;

$$c) x_n = \frac{1}{n^2};$$

$$d) x_n = \frac{n}{n+1};$$

$$e) x_n = \frac{n^2 + 1}{3n^2}.$$

Exercício 2.1.2. Para cada uma das sequências do exercício anterior, exiba três subsequências.

2.1.2 Limite de Sequências

Definição 2.1.6. Dizemos que um número real L é limite de uma sequência $\{a_n\}$ se, dado $\epsilon > 0$ arbitrário, existe $N \in \mathbb{N}$ tal que

$$|a_n - L| < \epsilon, \quad \forall \, n \ge N. \tag{2.1}$$

Denotamos: $\lim_{n \to +\infty} a_n = L$.

Se a sequência $\{a_n\}$ possui limite, dizemos que a sequência é **convergente**. Caso contrário, dizemos que é **divergente**.

Definição 2.1.7. Dizemos que $\lim_{n\to+\infty} a_n = +\infty$ se, para cada M>0, existir $N\in\mathbb{N}$ tal que $a_n>M$ para todo $n\geq N$. Neste caso, dizemos que a sequência diverge para $+\infty$.

Teorema 2.1.1. Sejam $\{a_n\}$ e $\{b_n\}$ duas sequências convergentes. Então:

a)
$$\lim_{n \to +\infty} (a_n + b_n) = \lim_{n \to +\infty} a_n + \lim_{n \to +\infty} b_n;$$

b)
$$\lim_{n \to +\infty} c = c$$
, quando $a_n = c$ é constante;

c)
$$\lim_{n \to +\infty} (a_n \cdot b_n) = \lim_{n \to +\infty} a_n \cdot \lim_{n \to +\infty} b_n;$$

d)
$$\lim_{n \to +\infty} \frac{a_n}{b_n} = \frac{\lim_{n \to +\infty} a_n}{\lim_{n \to +\infty} b_n}$$
, se $\lim_{n \to +\infty} b_n \neq 0$.

Teorema 2.1.2 (Teorema do Confronto). Se as sequências $\{a_n\}$, $\{b_n\}$ e $\{c_n\}$ são tais que $a_n \leq b_n \leq c_n$ para todo $n > n_0$ e

$$\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} c_n = L,$$

 $ent\tilde{a}o\lim_{n\to+\infty}b_n=L.$

Exemplo 2.1.3. Prove que $\lim_{n\to+\infty} \frac{\cos(n)}{n^2+1} = 0$.

Uma das sequências mais importantes no mundo matemático é a sequência de Fibonacci, definida por

$$F_0 = 1$$
, $F_1 = 1$ e $F_n = F_{n-1} + F_{n-2}$, $\forall n \ge 2$.

Proposição 2.1.1. Uma sequência $\{a_n\}_{n\in\mathbb{N}}$ converge para $a\in\mathbb{R}$ se, e somente se, toda subsequência de $\{a_n\}_{n\in\mathbb{N}}$ converge para a.

Proposição 2.1.2. Toda sequência convergente é limitada.

Teorema 2.1.3. Toda sequência monótona e limitada é convergente.

Teorema 2.1.4 (Teorema de Bolzano-Weierstrass). Toda sequência limitada possui pelo menos uma subsequência convergente.

Exercício 2.1.3. Mostre que a recíproca do Teorema 2.1.3 não é verdadeira.

2.2 Séries de Números Reais

Uma série de números reais é uma soma infinita de termos reais, escrita da seguinte forma:

$$a_1 + a_2 + a_3 + \dots + a_n + \dots = \sum_{n=1}^{\infty} a_n.$$

Nesta expressão, cada a_n representa o n-ésimo termo da sequência associada à série.

Dada uma série $\sum_{n=1}^{\infty} a_n$, considera-se a sequência (S_n) definida por:

$$S_1 = a_1,$$
 $S_2 = a_1 + a_2,$ $S_3 = a_1 + a_2 + a_3,$ $S_n = a_1 + a_2 + a_3 + \dots + a_n = \sum_{k=1}^{n} a_k.$

A sequência (S_n) é chamada de **sequência das somas parciais** da série.

Se o limite $\lim_{n\to\infty} S_n$ existe e é um número real S, dizemos que a série $\sum_{n=1}^{\infty} a_n$ converge e sua soma é S.

$$\sum_{n=1}^{\infty} a_n = S \quad \text{se, e somente se,} \quad \lim_{n \to \infty} S_n = S.$$

Se o limite $\lim_{n\to\infty} S_n$ não existe, dizemos que a série **diverge**.

Exemplo 2.2.1. A série $\sum_{n=1}^{\infty} \frac{1}{2^n}$ converge.

Solução: Temos:

$$S_n = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n}.$$

Essa é uma série geométrica de razão $r=\frac{1}{2}$, cujo termo geral é $a_n=\frac{1}{2^n}$.

A soma parcial é:

$$S_n = a_1 \frac{1 - r^n}{1 - r} = \frac{\frac{1}{2}(1 - (\frac{1}{2})^n)}{1 - \frac{1}{2}} = 1 - \frac{1}{2^n}.$$

Assim,

$$\lim_{n \to \infty} S_n = 1.$$

Logo, a série converge e sua soma é S=1.

De modo geral, uma série geométrica

$$\sum_{n=0}^{\infty} a_1 r^n$$

converge se e somente se |r| < 1, e sua soma é dada por:

$$S = \frac{a_1}{1 - r}.$$

Fica como exercício para o leitor fazer a demonstração.

Exemplo 2.2.2. A série $\sum_{n=1}^{\infty} (-1)^n$ diverge.

Solução: Temos:

 $S_1 = -1$, $S_2 = -1 + 1 = 0$, $S_3 = -1 + 1 - 1 = -1$, $S_4 = -1 + 1 - 1 + 1 = 0$, e assim por dianted.

Portanto, a sequência das somas parciais (S_n) é:

$$S_n = \begin{cases} -1, & \text{se n for impar,} \\ 0, & \text{se n for par.} \end{cases}$$

Logo, (S_n) não converge (pois oscila entre -1 e 0), e a série

$$\sum_{n=1}^{\infty} (-1)^n$$

é divergente.

17

Operações com Séries Convergentes

1. Se $\sum_{n=1}^{\infty} a_n$ converge e $c \in \mathbb{R}$, então a série $\sum_{n=1}^{\infty} ca_n$ também converge, e

$$\sum_{n=1}^{\infty} c a_n = c \sum_{n=1}^{\infty} a_n.$$

Demonstração: Por hipótese, a sequência das somas parciais (S_n) converge, ou seja, $S_n = a_1 + a_2 + \cdots + a_n \to S$. Então,

$$cS_n = c(a_1 + a_2 + \dots + a_n) = ca_1 + ca_2 + \dots + ca_n,$$

e a sequência (cS_n) também converge. Assim,

$$\sum_{n=1}^{\infty} c a_n = c \sum_{n=1}^{\infty} a_n.$$

2. Se $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} b_n$ convergem, então

$$\sum_{n=1}^{\infty} (a_n + b_n)$$

também converge, e vale:

$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n.$$

Demonstração: Como $S_n = a_1 + a_2 + \cdots + a_n$ e $T_n = b_1 + b_2 + \cdots + b_n$, temos

$$S_n + T_n = (a_1 + b_1) + (a_2 + b_2) + \dots + (a_n + b_n).$$

Se $S_n \to S$ e $T_n \to T$, então $S_n + T_n \to S + T$, logo a série também converge.

Observação 2.2.1. Se $\sum a_n$ diverge $e \ c \in \mathbb{R}$, com $c \neq 0$, então $\sum ca_n$ também diverge.

Observação 2.2.2. Se $\sum a_n$ converge e $\sum b_n$ diverge, então $\sum (a_n + b_n)$ também diverge.

2.2.1 Testes de Convergência de Séries

A seguir, serão enunciados alguns testes e teoremas que são muito úteis para determinar se uma série converge ou não.

Teorema 2.2.1. Se $\sum_{n=1}^{\infty} a_n$ converge, então $\lim_{n\to\infty} a_n = 0$. O inverso, entretanto, não é verdadeiro: se $\lim_{n\to\infty} a_n \neq 0$, então a série diverge.

Demonstração: Seja $S_n = a_1 + a_2 + \cdots + a_n$ a sequência das somas parciais. Temos:

$$a_n = S_n - S_{n-1}.$$

Como S_n converge, existem $S = \lim_{n \to \infty} S_n$ e $\lim_{n \to \infty} S_{n-1} = S$. Logo,

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} (S_n - S_{n-1}) = S - S = 0.$$

Portanto, se a série converge, então $\lim_{n\to\infty}a_n=0$. Mas o contrário não é garantido: o fato de $\lim_{n\to\infty}a_n=0$ não assegura a convergência da série.

Exemplo 2.2.3. A série $\sum_{n=1}^{\infty} \frac{2n}{2n+1}$ diverge, pois

$$\lim_{n \to \infty} \frac{2n}{2n+1} = 1 \neq 0.$$

Teste da Comparação

Exemplo 2.2.4. Sejam as sequências (a_n) e (b_n) tais que $0 \le a_n \le b_n$, para todo $n \in \mathbb{N}$. Então:

(a) Se
$$\sum_{n=1}^{\infty} b_n$$
 converge, então $\sum_{n=1}^{\infty} a_n$ também converge.

(b) Se
$$\sum_{n=1}^{\infty} a_n$$
 diverge, então $\sum_{n=1}^{\infty} b_n$ também diverge.

Demonstração: (a) Por hipótese, a sequência

$$b_1$$
, $b_1 + b_2$, $b_1 + b_2 + b_3$, ...

é convergente, logo limitada. Por outro lado, como $a_n \ge 0$ e $a_n \le b_n$, temos:

$$a_1 \le b_1$$
, $a_1 + a_2 \le b_1 + b_2$, $a_1 + a_2 + \dots + a_n \le b_1 + b_2 + \dots + b_n$.

Portanto, a sequência $S_n = a_1 + a_2 + \cdots + a_n$ também é limitada e crescente. Como toda sequência crescente e limitada é convergente, concluímos que $\sum_{n=1}^{+\infty} a_n$ converge.

(b) O item (b) é a contrapositiva de (a).

19

Exemplo 2.2.5. A série $\sum_{n=1}^{\infty} \frac{1}{2^n + n}$ converge.

Solução: Como $2^n + n > 2^n$ para todo n, temos:

$$0 < \frac{1}{2^n + n} < \frac{1}{2^n}.$$

Sabemos que $\sum_{n=1}^{\infty} \frac{1}{2^n}$ é uma série convergente. Logo, pelo teste da comparação, a série $\sum_{n=1}^{\infty} \frac{1}{2^n+n}$ também converge.

Teste da Integral

Teorema 2.2.2. Seja f uma função contínua, positiva e decrescente para todo $x \ge 1$. Então, a série

$$\sum_{n=1}^{\infty} f(n)$$

converge se, e somente se, a integral imprópria

$$\int_{1}^{\infty} f(x) \, dx$$

converge.

Exemplo 2.2.6. Considere a série

$$\sum_{n=1}^{\infty} \frac{1}{n^p}, \qquad p \in \mathbb{R}.$$

Esta série é chamada de **série** p. Temos:

$$\sum_{n=1}^{\infty} \frac{1}{n^p} \text{ converge se, e somente se, } p > 1.$$

De fato, para $f(x) = \frac{1}{x^p}$, temos

$$\int_1^\infty \frac{1}{x^p} \, dx = \begin{cases} \frac{1}{p-1}, & se \ p > 1, \\ \infty, & se \ p \leq 1. \end{cases}$$

Conclusão: A série $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converge se p > 1 e diverge se $p \le 1$.

Séries Alternadas

Uma série alternada é uma série da forma:

$$\sum_{n=1}^{\infty} (-1)^n a_n \quad \text{ou} \quad \sum_{n=1}^{\infty} (-1)^{n+1} a_n,$$

onde $a_n > 0$ para todo $n \in \mathbb{N}$.

Exemplo 2.2.7. As séries

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n} \quad e \quad \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{\sqrt{n}}$$

são séries alternadas.

Teste de Leibniz.

Teorema 2.2.3. Se $a_1 \ge a_2 \ge a_3 \ge \cdots \ge a_n \ge \cdots$ e $\lim_{n\to\infty} a_n = 0$, então a série alternada

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n$$

converge.

Exemplo 2.2.8. A série

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$$

converge.

Solução: De fato, $\frac{1}{n}$ é decrescente e $\lim_{n\to\infty}\frac{1}{n}=0$. Assim, o Teste de Leibniz se aplica.

Exemplo 10.9.3. A série

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{\sqrt{n}}$$

também converge.

Solução: De fato, $\frac{1}{\sqrt{n}}$ é decrescente e $\lim_{n\to\infty}\frac{1}{\sqrt{n}}=0$. Logo, pelo Teste de Leibniz, a série converge.

Convergência Absoluta

Uma série $\sum_{n=1}^{\infty} a_n$ converge absolutamente se $\sum_{n=1}^{\infty} |a_n|$ converge.

Exemplo 2.2.9. A série

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^2}$$

converge absolutamente, pois a série

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

converge.

Teorema 2.2.4. Se $\sum_{n=1}^{\infty} |a_n|$ converge, então $\sum_{n=1}^{\infty} a_n$ também converge.

Demonstração: Como $-|a_n| \le a_n \le |a_n|$ para todo $n \in \mathbb{N}$, somando termo a termo, obtemos:

$$0 \le a_n + |a_n| \le 2|a_n|, \quad \forall n \in \mathbb{N}.$$

Portanto, a série $\sum_{n=1}^{\infty} (a_n + |a_n|)$ converge por comparação com $\sum_{n=1}^{\infty} 2|a_n|$. Mas:

$$\sum_{n=1}^{\infty} a_n = \frac{1}{2} \left[\sum_{n=1}^{\infty} (a_n + |a_n|) - \sum_{n=1}^{\infty} (|a_n| - a_n) \right],$$

e ambas as séries do lado direito convergem. Logo, $\sum_{n=1}^{\infty} a_n$ também converge.

A recíproca desse fato, entretanto, não é verdadeira: há séries que convergem, mas não convergem absolutamente.

Exemplo 2.2.10. A série

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$$

converge (série harmônica alternada), mas a série

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

diverge. Logo, a série $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$ é condicionalmente convergente.

Teste da Razão

Suponha que $a_n \neq 0$ para todo $n \in \mathbb{N}$ e que

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = q.$$

Então:

- (i) Se q < 1, a série $\sum_{n=1}^{\infty} a_n$ converge absolutamente.
- (ii) Se q > 1, a série $\sum_{n=1}^{\infty} a_n$ diverge.
- (iii) Se q = 1, nada podemos concluir.

Exemplo 2.2.11. A série

$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n!}$$

 $converge\ absolutamente.$

Solução: De fato,

$$q = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{1/(n+1)!}{1/n!} = \lim_{n \to \infty} \frac{n!}{(n+1)!} = \lim_{n \to \infty} \frac{1}{n+1} = 0 < 1.$$

Portanto, a série converge absolutamente.

Exemplo 2.2.12. A série

$$\sum_{n=1}^{\infty} (-1)^n \frac{n^2}{(n+1)^2}$$

diverge.

Solução: De fato,

$$q = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{(n+1)^2}{(n+2)^2} \cdot \frac{(n+1)^2}{n^2} = \lim_{n \to \infty} \left(\frac{n+1}{n} \right)^2 = 1.$$

Logo, como q=1, o teste é inconclusivo. Mas como $\lim_{n\to\infty}a_n=1\neq 0$, a série diverge.

Exemplo 2.2.13. Considere as séries

$$\sum_{n=1}^{\infty} \frac{1}{n} \quad e \quad \sum_{n=1}^{\infty} \frac{1}{n^2}.$$

Solução: Para ambas, temos q=1. Neste caso, o teste da razão não fornece conclusão: sabemos, no entanto, que $\sum_{n=1}^{\infty} \frac{1}{n}$ diverge e $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converge.

Exemplo 2.2.14. Calcule $\lim_{n\to\infty} a_n$, onde

$$a_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}.$$

Solução: Usando a decomposição em frações parciais:

$$a_n = \frac{1}{n} - \frac{1}{n+1},$$

temos:

$$S_n = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right).$$

Observando que há cancelamentos sucessivos, resta:

$$S_n = 1 - \frac{1}{n+1}.$$

Portanto,

$$\lim_{n\to\infty} S_n = 1.$$

Assim,
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$$
.

2.3 Séries de Potências

Uma série de potência é uma soma infinita da forma

$$\sum_{n=0}^{\infty} a_n (x-c)^n = a_0 + a_1 (x-c) + a_2 (x-c)^2 + \cdots$$

O número c é dito o centro da série. Se c=0, então

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \cdots$$

Vejamos alguns exemplos:

Exemplo 2.3.1.

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \cdots$$

Exemplo 2.3.2.

$$\sum_{n=1}^{\infty} \frac{x^n}{n} = x + \frac{x^2}{2} + \frac{x^3}{3} + \cdots$$

Exemplo 2.3.3.

$$\sum_{n=1}^{\infty} \frac{x^n}{n^2} = x + \frac{x^2}{2^2} + \frac{x^3}{3^2} + \cdots$$

Exemplo 2.3.4.

$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

Exemplo 2.3.5.

$$\sum_{n=1}^{\infty} \frac{(x-1)^n}{n \, 2^n} = \frac{x-1}{2} + \frac{(x-1)^2}{2 \cdot 2^2} + \frac{(x-1)^3}{3 \cdot 2^3} + \cdots$$

Exemplo 2.3.6.

$$\sum_{n=0}^{\infty} n! \, x^n = 1 + x + 2! \, x^2 + 3! \, x^3 + \cdots$$

O domínio de convergência de uma série de potências é o conjunto dos números x para os quais a série converge.

Exemplo 2.3.7. Para a série $\sum_{n=0}^{\infty} x^n$ domínio de convergência:

$$-1 < x < 1$$

Solução: De fato, usando o teste da Razão, temos que

$$\sum_{n=0}^{\infty} x^n$$

converge se |x|<1. Se x=1, temos $\sum_{n=0}^{\infty}1$, a qual diverge. Se x=-1, temos $\sum_{n=0}^{\infty}(-1)^n$, a qual também diverge.

Exemplo 2.3.8. A série $\sum_{n=1}^{\infty} \frac{x^n}{n}$ possui domínio de convergência:

$$-1 \le x < 1$$
.

Exemplo 2.3.9. A série $\sum_{n=1}^{\infty} \frac{x^n}{n^2}$ possui domínio de convergência:

$$-1 \le x \le 1$$
.

Exemplo 2.3.10. A série $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ possui domínio de convergência:

$$-\infty < x < \infty$$
.

Exemplo 2.3.11.

$$\sum_{n=1}^{\infty} \frac{(x-1)^n}{n \, 2^n}$$

possui domínio de convergência:

$$-1 < x < 3$$
.

Solução: De fato,

$$\lim_{n \to \infty} \left| \frac{(x-1)^{n+1}}{(n+1)2^{n+1}} \cdot \frac{n2^n}{(x-1)^n} \right| = \lim_{n \to \infty} \left| \frac{x-1}{2} \cdot \frac{n}{n+1} \right| = \frac{|x-1|}{2}.$$

Pelo teste da Razão, temos que a série dada converge se $\frac{|x-1|}{2} < 1$, isto é:

$$-1 < x < 3$$
.

Para x = -1, temos

$$\sum_{n=1}^{\infty} \frac{(-2)^n}{n2^n} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n},$$

que converge, pelo teste de Leibniz.

Para x = 3, temos

$$\sum_{n=1}^{\infty} \frac{2^n}{n2^n} = \sum_{n=1}^{\infty} \frac{1}{n},$$

a qual diverge. Portanto, o domínio de convergência da série

$$\sum_{n=1}^{\infty} \frac{(x-1)^n}{n2^n}$$

$$é -1 \le x < 3.$$

O intervalo de convergência de uma série de potência é o intervalo aberto que resulta do domínio de convergência ao suprimir-se os extremos. Desta forma, nos exemplos anteriores temos os seguintes intervalos de convergência.

Exemplo 2.3.12. $\sum_{n=0}^{\infty} x^n$ intervalo de convergência é:

$$-1 < x < 1$$

Exemplo 2.3.13. $\sum_{n=1}^{\infty} \frac{x^n}{n}$ intervalo de convergência é:

$$-1 < x < 1$$

Exemplo 2.3.14. $\sum_{n=1}^{\infty} \frac{x^n}{n^2}$ intervalo de convergência é:

$$-1 < x < 1$$
.

Exemplo 2.3.15. $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ intervalo de convergência é:

 \mathbb{R}

Exemplo 2.3.16. $\sum_{n=1}^{\infty} \frac{(x-1)^n}{n2^n}$ intervalo de convergência é:

$$-1 < x < 3$$
.

2.3.1 Propriedades das Séries de Potências

Uma função real f(x) é dita desenvolvível em série de potências no intervalo aberto (c-r, c+r) se existem constantes $a_0, a_1, a_2, \ldots, a_n, \ldots$ reais tais que

$$f(x) = \sum_{n=0}^{\infty} a_n (x - c)^n.$$

Exemplo 2.3.17. A função $f(x) = \frac{1}{1-x}$ é desenvolvível em série de potências no intervalo aberto -1 < x < 1, uma vez que

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, \quad se - 1 < x < 1.$$

De fato, como:

$$1 + x + x^{2} + \dots + x^{n-1} = \frac{1 - x^{n}}{1 - x},$$

tomando-se o limite em $n \to \infty$, resulta que

$$\frac{1}{1-x} = \sum_{n=1}^{\infty} x^{n-1} = \sum_{n=0}^{\infty} x^n.$$

Suponha que

$$g(x) = \sum_{n=0}^{\infty} a_n (x - c)^n$$

em c - r < x < c + r. Então:

1.
$$g'(x) = \sum_{n=1}^{\infty} na_n(x-c)^{n-1};$$

2.
$$\int_0^x g(t) dt = \sum_{n=0}^\infty a_n \frac{(x-c)^{n+1}}{n+1}$$
 no mesmo intervalo.

A partir destas propriedades podemos obter novos desenvolvimentos a partir de um desenvolvimento dado.

Exemplo 2.3.18.

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \cdots, \quad se \ |x| < 1.$$

Substituindo x por -t, obtém-se:

$$\frac{1}{1+t} = 1 - t + t^2 - t^3 + \cdots, \quad se \ |t| < 1.$$

E agora substituindo t por t^2 , tem-se:

$$\frac{1}{1+t^2} = 1 - t^2 + t^4 - t^6 + \cdots, \quad se |t| < 1.$$

Agora, integrando (a) de 0 até x, temos:

$$\ln(1+x) = \int_0^x \frac{1}{1+t} dt = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots, \quad se \ |x| < 1.$$

Ou seja,

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}, \qquad |x| < 1.$$

Além disso, foi provado que a série $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$ converge, pelo Teste de Leibniz. Donde se tem a iqualdade:

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}, \quad se -1 < x \le 1.$$

Portanto, temos:

$$\ln 2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}.$$

Agora, integrando (b) de 0 a x, temos:

$$\arctan x = \int_0^x \frac{1}{1+t^2} dt = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots, \quad se |x| < 1,$$

ou ainda,

$$\arctan x = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^{2n-1}}{2n-1}, \qquad |x| < 1.$$

Porém, usando o critério de Leibniz, pode-se provar que a série

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{2n-1}$$

converge. Logo, temos:

$$\arctan x = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^{2n-1}}{2n-1}, \quad -1 < x \le 1.$$

Assim tem sentido calcular-se:

$$\frac{\pi}{4} = \arctan 1 = 1 - \frac{1}{3} + \frac{1}{5} - \dots = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{2n-1}.$$

2.3.2 Séries de Taylor

Quando uma função real f(x) é desenvolvível em séries de potências, isto é, quando

$$f(x) = \sum_{n=0}^{\infty} a_n (x - c)^n, \quad c - r < x < c + r,$$

temos que

$$f'(x) = \sum_{n=1}^{\infty} na_n(x-c)^{n-1}, \quad c-r < x < c+r,$$

$$f''(x) = \sum_{n=2}^{\infty} n(n-1)a_n(x-c)^{n-2}, \quad c-r < x < c+r,$$

$$f^{(m)}(x) = \sum_{n=m}^{\infty} n(n-1)(n-2)\cdots(n-m+1)a_n(x-c)^{n-m}, \quad c-r < x < c+r.$$

E, assim sucessivamente. De tal modo que:

$$f(c) = a_0, \quad f'(c) = 1a_1, \quad f''(c) = 2 \cdot 1a_2, \quad f'''(c) = 3 \cdot 2 \cdot 1a_3, \dots$$

$$f^{(n)}(c) = n(n-1)(n-2) \cdots 2 \cdot 1a_n = n!a_n.$$

Logo,

$$a_n = \frac{f^{(n)}(c)}{n!}, \quad \forall n \in \mathbb{N}.$$

Concluímos que, quando f é desenvolvível em série de potência, então f é infinitamente derivável e

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x - c)^n.$$
 (2.2)

O desenvolvimento (1) é chamado desenvolvimento de Taylor de f, e a série

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n$$

é chamada **Série de Taylor** de f.

Em particular, se c = 0 em (1), temos

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n,$$

que é chamado **desenvolvimento de Maclaurin** de f.

29

2.4 Exercícios

Exercício 2.4.1. Mostre que a série $\sum_{n=1}^{+\infty} ln \left(1 + \frac{1}{a^{n-1}}\right)$ é convergente se a > 1.

Exercício 2.4.2. As seguintes séries diverge ou converge? Justifique.

$$a) \sum_{k=1}^{+\infty} k \, sen \frac{1}{k}; \qquad b) \sum_{k=1}^{+\infty} \frac{e^k}{k}; \qquad c) \sum_{k=1}^{+\infty} \frac{e^k}{12k^5 + k^3 - 176576k^2}; \quad d) \sum_{k=1}^{+\infty} \frac{e^{3k}}{k^3 + e^{2k}}.$$

Exercício 2.4.3. Mostre que a série dada é convergente:

a)
$$\sum_{k=1}^{+\infty} (-1)^{k+1} sen \frac{1}{k};$$
 b) $\sum_{n=2}^{+\infty} (-1)^n \frac{n^3}{n^4 + 3};$ c) $\sum_{k=3}^{+\infty} (-1)^{k+1} \frac{\ln k}{k};$ d) $\sum_{n=0}^{+\infty} (-1)^n 2^{-n};$ e) $\sum_{n=0}^{+\infty} \frac{1}{(n+3)(n+1)};$ e) $\sum_{n=0}^{+\infty} \frac{11}{(2n+3)(3n+5)}.$

Exercício 2.4.4. Estude a série dada com relação a convergência ou divergência.

$$a) \sum_{k=0}^{+\infty} \frac{1}{(k^2+1)}; \qquad b) \sum_{k=2}^{+\infty} \frac{1}{k^2 \ln k}; \qquad c) \sum_{k=2}^{+\infty} \frac{1}{k^\alpha \ln k}, \ \alpha > 0; \qquad d) \sum_{k=0}^{+\infty} \frac{k}{1+k^4}.$$

4. Mostre que $\sum_{n=1}^{\infty} aq^{n-1}$ converge e tem soma $\frac{a}{1-q}$ se |q| < 1 e diverge se $|q| \ge 1$.

Exercício 2.4.5. Mostre que $\sum_{n=1}^{\infty} \left(\frac{1}{n(n+1)} + \frac{1}{2^n} \right)$ converge e tem soma igual a 2.

6. A série $\sum_{k=1}^{+\infty} \frac{1}{k} sen \frac{1}{k}$ é convergente ou divergente? Justifique.

Exercício 2.4.6. Estude a série dada com relação a convergência ou divergência.

a)
$$\sum_{k=2}^{\infty} \frac{k}{2k^3 - k + 1}$$
; b) $\sum_{n=1}^{\infty} \frac{1}{k\sqrt{k}}$; c) $\sum_{k=1}^{\infty} \frac{k^2 + 2}{k^5 + 2k + 1}$;.

8. Diga se cada série a seguir converge ou diverge. Justifique.

a)
$$\sum_{k=0}^{+\infty} \frac{3^k}{(1+4^k)};$$
 b) $\sum_{k=1}^{+\infty} \frac{k!2^k}{k^k};$ c) $\sum_{k=1}^{+\infty} k\alpha^k \ com \ \alpha > 0;$
d) $\sum_{k=1}^{+\infty} [\sqrt{k+1} - \sqrt{k}];$ e) $\sum_{k=1}^{+\infty} \frac{k^3+4}{2^k}$ f) $\sum_{k=0}^{+\infty} \frac{a^k}{k!} \ com \ a > 0.$

Exercício 2.4.7. Determine x > 0 para que a série seja convergente.

a)
$$\sum_{k=1}^{+\infty} \frac{x^k}{k}$$
; b) $\sum_{k=1}^{+\infty} \frac{x^k}{k^2}$; c) $\sum_{k=1}^{+\infty} \frac{kx^k}{k^3 + 1}$; d) $\sum_{k=1}^{+\infty} \frac{x^k}{2^k}$; e) $\sum_{k=3}^{+\infty} \frac{x^k}{\ln k}$; f) $\sum_{k=1}^{+\infty} \frac{x^k}{1 \cdot 2 \cdot 3 \cdot \ldots \cdot (2k+1)}$; g) $\sum_{k=1}^{+\infty} \frac{(2k+1)x^k}{k!}$; h) $\sum_{k=1}^{+\infty} \frac{x^k}{k^k}$.

Exercício 2.4.8. Determine x > 0 para que a série seja convergente.

a)
$$\sum_{k=1}^{+\infty} x^k;$$
 b) $\sum_{k=1}^{+\infty} \frac{x^k}{k!};$ c) $\sum_{k=1}^{+\infty} \frac{x^k}{\ln k};$ d) $\sum_{k=1}^{+\infty} \frac{x^k}{k^2};$ e) $\sum_{k=1}^{+\infty} e^{kx};$ f) $\sum_{k=1}^{+\infty} \frac{1 \cdot 2 \cdot 3 \cdot \ldots \cdot (2k-1)}{2 \cdot 4 \cdot 6 \cdot \ldots \cdot 2k} x^{2k};$ g) $\sum_{k=1}^{+\infty} \frac{1 \cdot 2 \cdot 3 \cdot \ldots \cdot (2k-1)}{2 \cdot 4 \cdot 6 \cdot \ldots \cdot 2k} \cdot \frac{x^{2k+1}}{2k+1};$ h) $\sum_{k=1}^{+\infty} \frac{k! x^k}{k^k}.$

Exercício 2.4.9. Determine o domínio da função f dada por:

a)
$$f(x) = \sum_{k=1}^{+\infty} k! x^k;$$
 b) $f(x) = \sum_{k=1}^{+\infty} \frac{x^k}{k^3};$ c) $f(x) = \sum_{k=1}^{+\infty} \left(\operatorname{sen} \frac{1}{k} \right) x^k;$ d) $f(x) = \sum_{k=1}^{+\infty} 2^k x^k.$ (O domínio de uma função é o conjunto dos x onde a série é convergente.)

Exercício 2.4.10. Considere a série de números reais $\sum_{n=1}^{+\infty} a_n$. Suponha que existe uma sequência $\{b_n\}$ tal que $0 < b_n \le a_n$ e $\lim_{n \to +\infty} b_n = b > 0$. A série $\sum_{n=1}^{+\infty} a_n$ é convergente? Justifique sua resposta!

Exercício 2.4.11. Considere as séries de números reais $\sum_{n=1}^{+\infty} a_n$ e $\sum_{n=1}^{+\infty} b_n$ tais que $0 \le a_n \le b_n$. Além disso, suponha que existe uma função $f: \mathbb{R} \to \mathbb{R}$ contínua, positiva e decrescente tal que $f(n) = b_n$, $\lim_{n \to +\infty} f(n) = 0$ e $\int_1^{+\infty} f(x) dx$ é convergente. Prove que:

- a) a série $\sum_{n=1}^{+\infty} b_n$ é convergente.
- b) a série $\sum_{n=1}^{+\infty} a_n$ é convergente.

Exercício 2.4.12. As séries dadas a seguir converge ou diverge? Justifique sua resposta!

a)
$$\sum_{k=1}^{+\infty} \frac{\cos(1/k)}{k^2}$$
; b) $\sum_{k=3}^{+\infty} \frac{\sin(k)}{k^3 \ln k}$; c) $\sum_{k=1}^{+\infty} \frac{k+1}{k^2}$; d) $\sum_{k=1}^{+\infty} \frac{\cos(k\pi)}{k}$.

2.4. EXERCÍCIOS 31

Exercício 2.4.13. Se uma sequência de números reais positivos $\{a_n\}$ é tal que $a_{n+1}=a_n\left(1+rac{1}{n}
ight)^{-n}$, então a série $\sum_{n=1}^{\infty}a_n$ converge ou diverge? **Justifique sua** resposta!

Exercício 2.4.14. Determine a série de Maclaurin de:

a)
$$f(x) = sen x$$
.

a)
$$f(x) = sen x$$
. b) $f(x) = cos x$. c) $f(x) = e^{2x}$.

c)
$$f(x) = e^{2x}$$

$$d) f(x) = actg x.$$

d)
$$f(x) = actg x$$
. b) $f(x) = ln(x+1)$. c) $f(x) = e^{-x^2}$.

c)
$$f(x) = e^{-x^2}$$

Exercício 2.4.15. Encontre a série de Taylor da função $f(x) = \cos x$ em torno de

Exercício 2.4.16. Encontre a série de Taylor da função $f(x) = (x+1)^n$ em torno de 0.

Exercício 2.4.17. Prove que

$$(a+b)^n = \sum_{p=0}^n \frac{n!}{p!(n-p)!} a^{n-p} b^p$$

onde $a,b \in \mathbb{R}$ e $n \in \mathbb{N}$. A fórmula acima é conhecida binômio de Newton.