Chapter 2: Fundamentals of the Analysis of Algorithm Efficiency

The first rule of any technology used in a business is that automation applied to an efficient operation will magnify the efficiency. The second is that automation applied to an inefficient operation will magnify the inefficiency. (Bill Gates)

٠,	marysis Framework		_
	Analysis of Algorithms		2
	Efficiency as a Function of Input Size		
	Measuring Running Time		4
	worst/best/average		5
4	symptotic Notation		6
	Order of Growth		6
	Asymptotic Order of Growth		7
	Illustration of Asymptotic Order		8
	Examples of Asymptotic Order		
	Properties of Order of Growth	1	10
	Basic Asymptotic Efficiency Classes		
V	Nathematical Analysis of Nonrecursive Algorithms	1	2
	Plan for Analyzing Nonrecursive Algorithms	1	12
	Useful Summation Formulas and Rules	1	13
	Finding the Maximum	1	14
	Element Uniqueness	1	15

1

Matrix Multiplication	 1
Number of Bits in an Integer	 1
Mathematical Analysis of Recursive Algorithms	18
Plan for Analyzing Recursive Algorithms	 1
Factorial Function	
Recurrence for Factorial Function	 2
Solving the Factorial Recurrence	 2
Towers of Hanoi Algorithm	 2
Recurrence for Towers of Hanoi	 2
Solving the Towers of Hanoi Recurrence	 2
Number of Bits in an Integer	 2
Recurrence for BitCount Function	 2
Solving the BitCount Recurrence	
Fibonacci Function	
Recurrence for Fibonacci Function	
Approximating the Fibonacci Recurrence	 3
Empirical Analysis of Algorithms	3
Plan for Empirical Analysis of Algorithms	 3
Empirical Analysis of UniqueElements	
Results of Empirical Analysis: Comparisons	 3
Results of Empirical Analysis: Timings	
Algorithm Visualization	3!
Visualization of Sorting Algorithms	3

2

Analysis Framework

Analysis of Algorithms

- □ Issues:
 - Correctness. Is the algorithm correct?
 - Time Efficiency. How much time does the algorithm use?
 - Space Efficiency. How much extra space (in addition to the space needed for the input and output) does the algorithm use?
- □ Approaches:
 - Theoretical Analysis. Proof of correctness and big-Oh and related notations.
 - Empirical Analysis. Testing and measurement over a range of instances.

CS 3343 Analysis of Algorithms

Chapter 2: Slide - 2

Efficiency as a Function of Input Size

Typically, more time and space are needed to run an algorithm on bigger inputs (e.g., more numbers, longer strings, larger graphs).

Analyze efficiency as a function of n=size of input.

- \square Searching/sorting. n=number of items in list.
- \Box String processing. n = length of string(s).
- \square Matrix operations, n = dimension of matrix. $n \times n$ matrix has n^2 elements.
- \square Graph processing. $n_V =$ number of vertices and $n_E =$ number of edges.

CS 3343 Analysis of Algorithms

Chapter 2: S

Measuring Running Time

Analyze time efficiency by:

- □ identifying the *basic operation(s)*, the operation(s) contributing the most to running time,
- □ characterizing the number of times it is performed as a function of input size.

We can crudely estimate running time by $T(n) \approx c_{op} * C(n)$

- \Box T(n): running time as a function of n.
- \Box C(n): number of basic operations as a function of n.

CS 3343 Analysis of Algorithms

Chapter 2: Slide - 4

Worst-Case, Best-Case, and Average-Case

```
 \begin{tabular}{ll} \textbf{algorithm} & Sequential Search (A[0..n-1],K) \\ // & Searches for a value in an array \\ // & Input: & An array $A$ and a search key $K$ \\ // & Output: & The index where $K$ is found or $-1$ \\ & \textbf{for } i \leftarrow 0 \textbf{ to } n-1 \textbf{ do} \\ & \textbf{if } A[i] = K \textbf{ then return i} \\ & \textbf{return } -1 \\ \end{tabular}
```

- ☐ Basic Operation: The comparison in the loop
- \square Worst-Case: n comparisons
- ☐ Best-Case: 1 comparison
- $\hfill\Box$ Average-Case: (n+1)/2 comparisons assuming each element equally likely to be searched.

CS 3343 Analysis of Algorithms

Asymptotic Notation

Order of Growth

Typically, the basic operation count can be approximated as $c\,g(n)$, where g(n) is the *order of growth*, often some "simple" function such as:

TABLE 2.1 Values (some approximate) of several functions important for analysis of algorithms

n	log ₂ n	n	$n\log_2 n$	n^2	n^3	2^n	n!
10	3.3	10^{1}	3.3.101	10 ²	10 ³	10 ³	3.6·106
10^{2}	6.6	10^{2}	$6.6 \cdot 10^{2}$	10^{4}	10^{6}	$1.3 \cdot 10^{30}$	$9.3 \cdot 10^{157}$
10^{3}	10	10^{3}	$1.0 \cdot 10^4$	10^{6}	10^{9}		
10^{4}	13	10^{4}	$1.3 \cdot 10^5$	10^{8}	10^{12}		
10^{5}	17	105	$1.7 \cdot 10^{6}$	10^{10}	10^{15}		
10^{6}	20	10^{6}	$2.0 \cdot 10^{7}$	10^{12}	10^{18}		

CS 3343 Analysis of Algorithms

Chapter 2: Slide - 6

Asymptotic Order of Growth

A way of comparing functions that ignores constant factors and small input sizes.

- \Box Big-Oh O(g(n)): functions $\leq c g(n)$.
 - $t(n) \in O(g(n))$ if there are positive constants c and n_0 such that $t(n) < c\, q(n)$ for all $n > n_0$
- \square Big-Omega $\Omega(g(n))$: functions $\geq c g(n)$.
 - $t(n) \in \Omega(g(n))$ if there are positive constants c and n_0 such that
 - $t(n) \ge c g(n)$ for all $n \ge n_0$
- $\quad \ \ \, \Box \quad \text{Big-Theta} \,\, \Theta(g(n)) \colon \text{functions} \approx c \, g(n).$
 - Both $t(n) \in O(g(n))$ and $t(n) \in \Omega(g(n))$.

CS 3343 Analysis of Algorithms

Chapter 2: Slide – 7

Illustration of Asymptotic Order

Graph suggests (and we can prove) $n + 3 \sin n$ is:

O(n): $n+3\sin n \le 2n$ when $n \ge 3$.

 $\Omega(n)$: $n+3\sin n \ge n/2$ when $n \ge 6$.

CS 3343 Analysis of Algorithms

Chapter 2: Slide - 8

Examples of Asymptotic Order

t(n)	O(n)	$O(n^2)$	$O(n^3)$	$\Omega(n)$	$\Omega(n^2)$	$\Omega(n^3)$
$\log_2 n$	T	T	T	F	F	F
10n + 5	T	T	T	T	F	F
n(n-1)/2	F	T	T	T	T	F
$(n+1)^3$	F	F	T	T	T	T
2^n	F	F	F	T	T	T

For example, 10n + 5 is $\Theta(n)$. Assuming $n \geq 5$:

 $10n+5 \in O(n)$ because $10n+5 \le 10n+n = 11n$.

 $10n + 5 \in \Omega(n)$ because $10n + 5 \ge 10n$.

CS 3343 Analysis of Algorithms

Properties of Order of Growth

- \Box If $f_1(n)$ is order $g_1(n)$, and $f_2(n)$ is order $g_2(n)$, then $f_1(n)+f_2(n)$ is order $\max(g_1(n),g_2(n))$.
- \Box If b > 1, then $\log_b n \in \Theta(\log n)$.
- \square Polynomials of degree $k \in \Theta(n^k)$, that is, $a_k n^k + a_{k-1} n^{k-1} + \cdots + a_0 \in \Theta(n^k)$.
- \Box Exponential functions a^n have different orders of growth for different a's.
- $\hfill\Box$ order $\log n <$ order n^k where k>0 < order a^n where a>1 < order n! < order n^n

CS 3343 Analysis of Algorithms

Chapter 2: Slide - 10

Basic Asymptotic Efficiency Classes

Class	Name	Example
1	constant	access array element
$\log n$	logarithmic	binary search
n	linear	find median
$n \log n$	"n-log-n"	mergesort
n^2	quadratic	insertion sort
n^3	cubic	matrix multiplication
a^n	exponential	generating all subsets
n!	factorial	generating all permutations

CS 3343 Analysis of Algorithms

Chapter 2: Slide – 11

Mathematical Analysis of Nonrecursive Algorithms 12

Plan for Analyzing Nonrecursive Algorithms

- $\hfill\Box$ Decide on parameter n indicating input size.
- □ Identify algorithm's basic operation(s).
- \Box Determine worst, average, and best cases for input of size n.
- $\hfill \Box$ Set up a sum for the number of times the basic operation is executed.
- □ Simplify the sum using standard formulas and rules (see Appendix A).

CS 3343 Analysis of Algorithms

Chapter 2: Slide - 12

Useful Summation Formulas and Rules

$$\square$$
 $\sum_{i=1}^{n} 1 = 1 + 1 + \dots + 1 = n \in \Theta(n)$

$$\Box \sum_{i=1}^{n} i^{k} = 1 + 2^{k} + \dots + n^{k} \approx \frac{n^{k+1}}{k+1} \in \Theta(n^{k+1})$$

$$\Box \sum_{i=1}^{n} a^{i} = 1 + a + \dots + a^{n} = \frac{a^{n+1} - 1}{a - 1} \in \Theta(a^{n})$$

$$\Box \sum_{i=1}^{n} (a_i \pm b_i) = \sum_{i=1}^{n} a_i \pm \sum_{i=1}^{n} b_i \qquad \sum_{i=1}^{n} c \, a_i = c \sum_{i=1}^{n} a_i$$

CS 3343 Analysis of Algorithms

```
Finding the Maximum  \begin{aligned} & \textbf{algorithm } \textit{MaxElement}(A[0..n-1]) \\ & // \text{ Returns the maximum value in an array} \\ & // \text{ Input: A nonempty array } \textit{A} \text{ of real numbers} \\ & // \text{ Output: The maximum value in } \textit{A} \\ & \textit{maxval} \leftarrow A[0] \\ & \textbf{for } i \leftarrow 1 \textbf{ to } n-1 \textbf{ do} \\ & \textbf{ if } A[i] > \textit{maxval then} \\ & \textit{maxval} \leftarrow A[i] \\ & \textbf{return } \textit{maxval} \end{aligned}  Basic Operation: comparison in loop  \begin{aligned} \text{Performs } \sum_{i=1}^{n-1} 1 = n-1 \text{ comparisons} \\ \text{CS 3343 Analysis of Algorithms} \end{aligned}
```


Mathematical Analysis of Recursive Algorithms

Plan for Analyzing Recursive Algorithms

- \Box Decide on parameter n indicating input size.
- ☐ Identify algorithm's basic operation(s).
- \square Determine worst, average, and best cases for input of size n.
- ☐ Set up a recurrence relation expressing the basic operation count.
- □ Solve the recurrence (at least determine it's order of growth).

CS 3343 Analysis of Algorithms

Chapter 2: Slide - 18

Factorial Function

```
algorithm Factorial(n)
  // Computes n! recursively
   // Input: A nonnegative integer n
   // Output: The value of n!
  if n = 0 then return 1
  else return Factorial(n-1)*n
```

Input Size: Use number n (actually n has about $\log_2 n$ bits)

Basic Operation: multiplication

CS 3343 Analysis of Algorithms

Chapter 2: Slide - 19

Recurrence for Factorial Function

- \Box Let M(n) = multiplication count to compute Factorial(n).
- \square M(0) = 0 because no multiplications are performed to compute Factorial(0).
- \Box If n > 0, then Factorial(n) performs recursive call plus one multiplication.

$$\begin{split} M(n) &= M(n-1) + 1 \\ & \text{to compute} & \text{to multiply} \\ & \textit{Factorial}(n-1) & \textit{Factorial}(n-1) \text{ by } n \end{split}$$

CS 3343 Analysis of Algorithms

Chapter 2: Slide - 20

Solving the Factorial Recurrence

Make a reasonable guess.

```
\square Forward substitution. M(1) = M(0) + 1 = 1
   M(2) = M(1) + 1 = 2
   M(3) = M(2) + 1 = 3
\square Backward substitution. M(n) = M(n-1) + 1
   = [M(n-2)+1]+1 = M(n-2)+2
```

= [M(n-3)+1]+2 = M(n-3)+3

Prove M(n) = n by mathematical induction.

- \square Basis: if n=0, then M(n)=M(0)=0=n
- \square Induction: if M(n-1)=n-1, then M(n) = M(n-1) + 1 = (n-1) + 1 = n

CS 3343 Analysis of Algorithms

Chapter 2: Slide - 21

Towers of Hanoi Algorithm

```
algorithm Towers(n, i, j)
  // Moves n disks from peg i to peg j
  // Input: Integers n > 0, 1 < i, j < 3, i \neq j
  // Output: Specifies disk moves in correct order
  if n=1 then
      move disk 1 from peg i to peg j
  else
      Towers(n-1, i, 6-i-j)
     move disk n from peg i to peg j
      Towers(n-1, 6-i-j, j)
Input Size: Use number n
Basic Operation: moving a disk
```

CS 3343 Analysis of Algorithms

Recurrence for Towers of Hanoi

- \Box Let $M(n) = \text{move count to compute } Towers(n, \cdot, \cdot).$
- \square M(1) = 1 because 1 move is needed for $Towers(1, \cdot, \cdot)$.
- \Box If n > 1, then $Towers(n, \cdot, \cdot)$ performs 2 recursive calls plus one move.

$$\begin{split} M(n) &= 2M(n-1) + 1 \\ &\quad \text{to compute} \quad \text{to move} \\ Towers(n-1, \, \cdot, \, \cdot) \quad & \text{disk } n \\ &\quad \text{twice} \end{split}$$

CS 3343 Analysis of Algorithms

Chapter 2: Slide - 23

Solving the Towers of Hanoi Recurrence

Make a reasonable guess.

- \Box Forward substitution. M(2) = 2M(1) + 1 = 3
 - M(3) = 2M(2) + 1 = 7M(4) = 2M(3) + 1 = 15
- $\hfill\Box$ Backward substitution. M(n)=2M(n-1)+1

$$= 2[2M(n-2) + 1] + 1 = 4M(n-2) + 3$$

= 4[2M(n-3) + 1] + 2 = 8M(n-3) + 7

Prove $M(n) = 2^n - 1$ by mathematical induction.

- \square Basis: if n=1, then $M(n)=1=2^n-1$
- \Box Induction: if $M(n-1)=2^{n-1}-1$, then

$$M(n) = 2M(n-1) + 1 = 2 * (2^{n-1} - 1) + 1 = (2^n - 2) + 1 = 2^n - 1$$

CS 3343 Analysis of Algorithms

Chapter 2: Slide - 24

Number of Bits in an Integer

$$\label{eq:algorithm} \begin{array}{l} \textit{algorithm} \ BitCount(n) \\ \textit{//} \ Input: \ A \ positive \ integer \ n \\ \textit{//} \ Output: \ The \ number \ of \ bits \ to \ encode \ n \\ \textbf{if} \ m=1 \ \textbf{then} \ \textbf{return} \ 1 \\ \textbf{else} \ \textbf{return} \ BitCount(\lfloor n/2 \rfloor) + 1 \end{array}$$

Input Size: Use number n (actually n has about $\log_2 n$ bits)

Basic Operation: division by 2

CS 3343 Analysis of Algorithms

Chapter 2: Slide - 25

Recurrence for BitCount Function

- \Box Let D(n) = division count to compute BitCount(n).
- \square D(1) = 0 because no divisions are performed to compute BitCount(1).
- \Box If n > 1, then BitCount(n) performs recursive call on $\lfloor n/2 \rfloor$ plus one division.

$$D(n) = D(\lfloor n/2 \rfloor) + 1$$
to compute to compute
$$BitCount(\lfloor n/2 \rfloor) = \lfloor n/2 \rfloor$$

CS 3343 Analysis of Algorithms

Solving the BitCount Recurrence

Make a reasonable guess using powers of 2.

```
  \begin{tabular}{ll} $\square$ & Forward substitution. $D(2) = D(1) + 1 = 1$\\ $D(4) = D(2) + 1 = 2$\\ $D(8) = D(4) + 1 = 3$\\  \end{tabular}
```

Backward substitution.
$$D(n) = D(n/2) + 1$$

= $[D(n/4) + 1] + 1 = D(n/4) + 2$
= $[D(n/8) + 1] + 2 = D(n/8) + 3$

Prove $D(2^k) = k$ by mathematical induction.

```
\square Basis: if k=0, then D(2^k)=D(1)=0=k
```

$$\square$$
 Induction: if $D(2^{k-1}) = k - 1$, then $D(2^k) = D(2^{k-1}) + 1 = (k-1) + 1 = k$

CS 3343 Analysis of Algorithms

Chapter 2: Slide - 27

Fibonacci Function

Input Size: Use number n (actually n has about $\log_2 n$ bits)

Basic Operation: addition in else statement

CS 3343 Analysis of Algorithms

Chapter 2: Slide - 28

Recurrence for Fibonacci Function

- \Box Let A(n) = addition count to compute F(n).
- $\ \square \ A(1) = A(0) = 0$ because no additions are performed to compute F(0) or F(1).
- $\ \square$ If n > 1, then F(n) performs two recursive calls plus one addition.

$$A(n) = A(n-1) \, + \, A(n-2) \, + \, 1$$
 to compute to compute to add $F(n-1)$
$$F(n-1) \qquad F(n-2) \qquad \text{and} \ F(n-2)$$

CS 3343 Analysis of Algorithms

Chapter 2: Slide - 29

Approximating the Fibonacci Recurrence

Make a reasonable guess at a lower bound.

- \Box Forward substitution. A(2) = 1, A(3) = 2, A(4) = 4, A(5) = 7, A(6) = 12.
- □ Backward substitution.

$$A(n) = A(n-1) + A(n-2) + 1$$

= $[A(n-2) + A(n-3) + 1] + A(n-2) + 1$
= $2A(n-2) + A(n-3) + 2$

Prove $A(n) \ge 2^{n/2}$ when $n \ge 4$.

- \square Basis: True for A(4) and A(5).
- $\begin{array}{ll} \square & \text{Induction: } A(n) = 2A(n-2) + A(n-3) + 2 \\ & \geq 2A(n-2) \geq 2 * 2^{(n-2)/2} = 2^{n/2} \end{array}$

CS 3343 Analysis of Algorithms

Empirical Analysis of Algorithms

Plan for Empirical Analysis of Algorithms

- □ Understand the experiment's purpose.
- \Box Decide on the metric M and the measurement unit.
- Decide on characteristics of input.
- □ Prepare program implementing algorithm(s) and generating a sample of inputs.
- □ Run the algorithm(s) on the sample and record the data.
- □ Analyze the data.

CS 3343 Analysis of Algorithms

Chapter 2: Slide - 31

31

Empirical Analysis of UniqueElements

- $\hfill\Box$ Analyze ${\it Unique Elements},$ comparing arrays with unique elements vs. one duplicate.
- $\hfill\Box$ Measure number of comparisons on different input sizes, from 50 to 1000 by 50
- □ For arrays with a duplicate, randomly choose a pair of positions that will have the same value. Also, run 10 times for each input size.
- □ Prepare UniqueElementsExperiment.java.
- □ Run program, record data, and create graph.
- □ Analyze the data.

CS 3343 Analysis of Algorithms

Chapter 2: Slide - 32

Results of Empirical Analysis: Comparisons

- \square No duplicates line is n(n-1)/2.
- One duplicate line is least squares fit, resulting in $0.24*n^2+17*n-2042\approx n^2/4$.
- □ Predict: Half the time with one duplicate.

CS 3343 Analysis of Algorithms

Chapter 2: Slide – 33

Results of Empirical Analysis: Timings

- □ No duplicates and one duplicate lines are:
 - $-0.037 + 0.0016 * n + 8.4 \times 10^{-6} * n^2$.
 - $-0.073 + 0.00047 * n + 5.2 \times 10^{-6} * n^2$

CS 3343 Analysis of Algorithms

Algorithm Visualization

35

Visualization of Sorting Algorithms

http://homepages.dcc.ufmg.br/~dorgival/applets/SortingPoints/SortingPoints