Probability Theory

Daniele Zago

October 16, 2021

CONTENTS

Lecture 1: Convergence and limit theorems		1
1.1	Convergence of random variables	1
1.2	Limit theorems	11
References		12

LECTURE 1: CONVERGENCE AND LIMIT THEOREMS

2021-10-14

References Gut (2009), first portion of the course

Email: stefano.pagliarani9@unibo.it

The course will be focussed on the stochastic processes portion of probability theory, after a brief reminder of limit theorems, conditional probability, and measure theory.

1.1 Convergence of random variables

Convergence of random variables is a little bit trickier than just real numbers.

Notation: AC is the set of absolutely continuous probability measures wrt the Lebesgue measure.

 \rightarrow Absolute continuity: if $\mu \in AC$ is absolutely continuous, we write

$$\mu(dx) = f(x)dx$$

 \rightarrow Integration in measure spaces: Let $X \sim \mu$, then by a theorem we have

$$\mathbb{E}[f(X)] = \int_{\mathbb{R}^d} f(x)\mu(dx),\tag{1}$$

and we can differentiate between two types of distribution:

- a) μ discrete $\Longrightarrow \mathbb{E}[X] = \sum_{n} x p(x)$
- b) $\mu \in AC \implies \mathbb{E}[X] = \int_{\mathbb{R}^d} x \cdot f(x) dx$

Example (Intuition of convergence)

Consider $\mu_n = \operatorname{Unif}_{[0,\frac{1}{n}]}$ for $n \in \mathbb{N}$, and it is absolutely continuous w.r.t. Lebesgue measure. This means that it admits a probability density which is defined by

$$\mu_n(dx) = \left(\begin{cases} n & \text{if } x \in [0, \frac{1}{n}] \\ 0 & \text{if } x \notin [0, \frac{1}{n}] \end{cases} \right) dx$$

It is intuitive to think that the measure is converging to a spike in zero, i.e.

$$\mu_n \xrightarrow{n \to \infty} \delta_0,$$

where δ_x denotes the Dirac delta distribution centered in x, such that $\delta_x(\{x\}) = 1$. We need to mathematically characterize this type of convergence in a more formal way than by intuition.

Maybe it could be that for any Borel set $A \subseteq \mathscr{B}(\mathbb{R})$,

$$\mu_n(A) \xrightarrow{n \to \infty} \delta_0(A),$$

but unfortunately this is wrong since we can see that, for $A = \{0\}$ and for all $n \in \mathbb{N}$:

$$\mu_n(\{0\}) = 0 \neq 1 = \delta_0(\{0\}).$$

So we can either throw out the idea that the uniform converges to a Dirac delta, or change the definition of convergence to accommodate for the behaviour in Figure 1.

Moreover, assume now that $X_n \sim \mu_n$ such that $\mu_n \xrightarrow{n \to \infty} \delta_0$, what can we say about the properties of X_n ? In general (as we will see afterwards), this depends on the specific type of convergence that we assume.

Figure 1: Convergence of the sequence of uniform distributions to the Dirac measure in zero.

Def. (Convergence in distribution)

Let $(\mu_n)_{n\in\mathbb{N}}$ be a sequence of distributions on $(\mathbb{R}^d, \mathcal{B})$. We say that μ_n converges in distribution to another distribution μ ,

$$\mu_n \xrightarrow{d} \mu$$
,

if, for any possible choice of test function $f \in C_b(\mathbb{R}^d)$,

$$\int_{\mathbb{R}^d} f(x)\mu_n(dx) \xrightarrow{n\to\infty} \int_{\mathbb{R}^d} f(x)\mu(dx).$$

This convergence is in the sense of standard real analysis.

Notation: $C_b(\mathbb{R}^d)$ is the set of continuous bounded functions

Remark

All test functions f define a measure when integrated wrt to $\mu_n(dx)$, and when all said measures are equal to those obtained by integrating against another distribution μ , then we obtain the convergence in distribution.

Example (Uniform distribution)

Consider $\mu_n = \mathrm{Unif}_{[0,\frac{1}{n}]}$ and $\mu = \delta_0$, take any function $f \in C_b(\mathbb{R})$ and compute

$$\int_{\mathbb{R}} f(x)\mu_n(dx) = \int_0^{\frac{1}{n}} f(x) \cdot n \cdot dx$$

$$= n \cdot \underbrace{\int_{[0, \frac{1}{n}]} f(x) dx}_{\approx \frac{1}{n} \cdot f(0)}$$

$$\xrightarrow{n \to \infty} f(0).$$

The last equality holds since f is continuous, and by the mean value theorem we can approximate it by the left extrema. However, by definition of the abstract integral wrt the Dirac delta function we have that

$$f(0) = \int_{\mathbb{D}} f(x)\delta_0(dx),$$

which proves that $\mu_n \xrightarrow{d} \mu$.

Remark

If $A \in \mathscr{B}(\mathbb{R}^d)$ is an event and μ is a distribution, then

$$\mu(A) = \int_{\mathbb{R}^d} \mathbb{1}_A(x) dx,$$

where $\mathbb{1}_A$ is the indicator function such that

$$\mathbb{1}_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{otherwise} \end{cases}$$

Had we used $f \notin C_b(\mathbb{R}^d)$ instead, then we could have chosen $f = \mathbb{1}_{\{0\}}$ and convergence in distribution would not have been satisfied. The example below shows another case in which another type of convergence is useful in order to characterize a common-sense behaviour of random variables.

Example (Sequence of Dirac functions)

Consider $\mu_n = \delta_{1/n}$ and $\mu = \delta_0$, then it is clear that this is a discrete measure that in some intuitive sense converges to zero. If we choose $f(x) = \mathbb{1}_{\{0\}}$, then we find that

$$\int_{\mathbb{R}} f(x)\mu_n(dx) = \int_{\mathbb{R}} \mathbb{1}_{\{0\}}(x)\delta_{\frac{1}{n}}(dx) = \mathbb{1}_{\{0\}}(1/n) = 0 \quad \forall n,$$

and therefore does not converges to δ_0 .

Recall: A random variable is such that the event $(X_n \in A) \in \mathcal{F}_n$, which means that the function is measurable.

Def. (Weak convergence)

Let $(X_n)_{n\in\mathbb{N}}$ be a sequence of random variables, $X_n:(\Omega_n,\mathcal{F}_n,\mathbb{P}_n)\longrightarrow (\mathbb{R}^d,\mathscr{B})$. Let now X be a random variable on $(\Omega,\mathcal{F},\mathbb{P})$. Then, we say that X_n converges weakly/in distribution/in law, $X_n \stackrel{d}{\longrightarrow} X$, if

$$\mu_{X_n} \xrightarrow{d} \mu_X$$
.

Remark

By the definition of expected value in Equation (1), a family of random variables $(X_n)_{n\in\mathbb{N}}$ is such that, for any $f\in C_b(\mathbb{R}^d)$

$$X_n \xrightarrow{d} X \iff \mathbb{E}[f(X_n)] \xrightarrow{n \to \infty} \mathbb{E}[f(X)].$$

This is however the weakest type of convergence out of all those that we will consider, since the probability spaces might be different.

Def. (Stronger definitions of convergence)

 $(X_n)_{n\in\mathbb{N}}$ sequence of random variables and X a r.v., all defined on the same probability space

$$X_n, X: (\Omega, \mathcal{F}, \mathbb{P}) \longrightarrow (\mathbb{R}^d, \mathscr{B}).$$

Then we say that

a) If $X_n, X \in L^p(\Omega, \mathcal{F}, \mathbb{P})$ for $p \geq 1$, where

$$L^p = \left\{ \text{r.v. on } (\Omega, \mathcal{F}, \mathbb{P}) \text{ such that } \mathbb{E} \big[|X|^p \big] < \infty \right\}.$$

then $X_n \xrightarrow{L^p} X$ if $||X_n - X||_{L^p} \xrightarrow{n \to \infty} 0$ where

$$||X||_{L^p} = \mathbb{E}[|X|^p]^{\frac{1}{p}}.$$

b) X_n converges in probability to $X, X_n \xrightarrow{P} X$ if for all $\varepsilon > 0$,

$$\lim_{n \to \infty} \mathbb{P}(|X_n - X| \ge \varepsilon) = 0.$$

c) X_n converges almost surely to $X, X_n \xrightarrow{\text{a.s.}} X$ if

$$\mathbb{P}\big(\lim_{n\to\infty} X_n = X\big) = 1,$$

where the event inside \mathbb{P} is in the sense of real analysis,

$$\left\{ w \in \Omega : X_n(\omega) \xrightarrow{n \to \infty} X(\omega) \right\},\,$$

which can be proved to be a measurable set and therefore a valid event.

Remark

The L^p norm of the difference induces a distance between functions in the sense of functional analysis.

Example (Difference in interpretation)

Consider a Bernoulli game where we equally bet on an outcome ± 1 . The second type of convergence does not tell us that almost surely our gain will converge to zero, only that we can set a small tolerance and find some n such that our gain will be smaller than that.

Thm. 1 (Markov's inequality)

Let X be a r.v. and $\lambda > 0$, then

$$\mathbb{P}(|X| > \lambda) \le \frac{\mathbb{E}[|X|^p]}{\lambda^p}, \quad p \ge 0.$$

Proof.

If $\mathbb{E}[|X|^p] = \infty$, then there is nothing to prove.

If $\mathbb{E}[|X|^p] < \infty$, then since $\mathbb{1}_A$ is either 1 or 0 we have

$$\mathbb{E}[|X|^p] \ge \mathbb{E}[|X|^p \cdot \mathbb{1}_{|X| > \lambda}]$$

$$\ge \mathbb{E}[\lambda^p \mathbb{1}_{|X| > \lambda}] \qquad \text{(since } |X| \ge \lambda)$$

$$= \lambda^p \cdot \mathbb{P}(|X| > \lambda).$$

Corollary (Chebyshev's inequality)

Choosing p = 2 for the random variable $X - \mathbb{E}[X]$, we have that

$$\mathbb{P}\big[|X - \mathbb{E}[X]| > \lambda\big] \leq \frac{\mathbb{E}\big[|X - \mathbb{E}[X]\big]|^2}{\lambda^2} = \frac{\mathbb{V}\big[X\big]}{\lambda^2}.$$

Thm. 2

Under the according assumptions for X_n, X we have the following set of implications:

1.
$$X_n \xrightarrow{a.s.} X \implies X_n \xrightarrow{P} X \implies X_n \xrightarrow{d} X$$

2.
$$X_n \xrightarrow{P} X \implies X_{k_n} \xrightarrow{a.s.} X$$
 for some subsequence X_{k_n}

3.
$$X_n \xrightarrow{d} X \implies X_n \xrightarrow{P} X \text{ iff } \mu_X = \delta_{x_0}$$

4.
$$X_n \xrightarrow{L^1} X \implies X_n \xrightarrow{P} X$$

5.
$$X_n \xrightarrow{P} X \implies \xrightarrow{L^1} X \text{ iff } |X_n| \le Y \in L^p$$

Proof.

- 1. [a.s. \Longrightarrow p]: $\mathbb{P}(|X_n X| \ge \varepsilon) = \mathbb{E}[\mathbb{1}_{|X_n X| \ge \varepsilon}]$ and the indicator function converges to zero as $n \to \infty$ by assumption. Since $\mathbb{1}_A$ is bounded, by the dominated convergence theorem the integral (expectation) also converges to zero.
- 4. $L^p \implies p$: Follows as a consequence of Markov's property, since we can bound the probability by the expected value

$$\mathbb{P}(|X_n - X| \ge \varepsilon) \stackrel{\text{Thm.1}}{\le} \frac{\mathbb{E}[|X_n - X|^p]}{\varepsilon^p} = \frac{\|X_n - X\|_{L^p}^p}{\varepsilon^p} \xrightarrow{n \to \infty} 0.$$

where the last convergence stems from the L^p convergence assumption.

Example (A.s. does not imply L^p)

Let $m \in \mathbb{R}$ and $X_n = n^m \mathbb{1}_{[0,\frac{1}{n}]}$ on the probability space $([0,1], \mathcal{B}([0,1]), \lambda_{[0,1]}) \to \mathbb{R}$, and let's try to establish some convergence for the random variable X_n .

 \rightarrow If $\omega > 0$, then we can find some \bar{n} such that X_n is equal to zero:

$$X_n(\omega) = n^m \mathbb{1}_{[0,\frac{1}{2}]}(\omega) \xrightarrow{n \to \infty} 0.$$

 \rightarrow If $\omega = 0$, then

$$X_n(0) = n^m \xrightarrow{n \to \infty} +\infty$$
, for $m > 0$,

however the event $\{0\}$ has null probability since we have a uniform distribution at all steps of the limit

$$\mathbb{P}_{\mu_n}(\{0\}) = 0 \quad \text{for all } n,$$

therefore it is correct to say that

$$X_n \xrightarrow{\text{a.s.}} X \equiv 0 \qquad (\Longrightarrow X \xrightarrow{P} X).$$

As for L^p convergence, we have that

$$\mathbb{E}[|X_n - X|^p] = \mathbb{E}[|X_n|^p]$$

$$= \int_{[0,1]} n^{mp} \cdot \mathbb{1}_{[0,\frac{1}{n}]}(x) dx$$

$$= n^{mp} \cdot \frac{1}{n}$$

$$= n^{mp-1}.$$

We conclude that $X_n \xrightarrow{L^p} X \iff mp-1 < 0 \iff m < 1/p$, but we always have almost-sure convergence for m > 0.

Example (Gaussian distribution)

Consider $\mathcal{N}_{\mu,\sigma^2} = \varphi_{\mu,\sigma^2}(x)dx$, with

$$\varphi_{\mu,\sigma^2}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}.$$

Consider now a sequence of real numbers $\mu_n \to \mu$ and a sequence of real numbers $\sigma_n \to 0$.

Figure 2: Convergence of the normal distribution to the Dirac delta function

So we can expect that $\mathcal{N}_{\mu_n,\sigma_n} \stackrel{d}{\longrightarrow} \delta_{\mu}$. As an <u>exercise</u>, prove this convergence (simple change of variables).

However, we can prove something stronger: if $X_n \sim \mathcal{N}_{\mu_n,\sigma_n}$ and $X \equiv \mu$ we can prove convergence in L^2 :

$$\mathbb{E}[|X_n - \mu|^2] \le \mathbb{E}[|X_n - \mu_n|^2 + \underbrace{|\mu_n - \mu|^2}],$$

and since $\mathbb{E}[|X_n - \mu_n|^2] = \mathbb{V}[X_n] = \sigma_n^2 \to 0$, we also have convergence in L^2 .

Def. (C.d.f. of a distribution)

Given a distribution μ on \mathbb{R} , the cdf of μ is a function $F_{\mu}: \mathbb{R} \longrightarrow [0,1]$,

$$F_{\mu}(x) = \mu(]-\infty,x]$$
.

Remark

Among all properties such as monotonicity, boundedness, etc, the most important for what follows is the property of *right-continuity*.

Figure 3: Right-continuity of the cumulative distribution function.

Def. (Cumulative distribution function)

Let X be a real-valued random variable, then the *cumulative distribution function* (CDF) of X is

$$F_X(x) = F_{\mu_X}(x) = \mathbb{P}(X \le x)$$

We want to characterize the convergence in distribution in order to be able to prove this property more easily.

Example (Cdf of a uniform distribution)

Let $\mu_n = \operatorname{Unif}_{[0,\frac{1}{n}]}$, then the cdf is

$$F_n(x) = \begin{cases} 0 & \text{if } x < 0\\ nx & \text{if } 0 < x < \frac{1}{n}\\ 1 & \text{if } x \ge \frac{1}{n} \end{cases}$$

Figure 4: Convergence of the cdf of the uniform distribution to the unit step function.

The Dirac delta has a very simple cdf given by the Heaviside step function,

$$F(x) = \mathbb{1}_{[0,\infty)}(x)$$

We have convergence in all points except in x = 0, since $F_n(0) = 0$ for all n.

Thm. 3 (Characterization of convergence in distribution: CDF)

Let $(\mu_n)_{n\in\mathbb{N}}$ be a sequence of distributions and μ be a distribution, then we have that

$$\mu_n \xrightarrow{d} \mu \iff F_{\mu_n}(x) \xrightarrow{n \to \infty} F_{\mu}(x)$$

for all x points of continuity of F_{μ} .

Remark

There can also be convergence in points of discontinuity, but it is not guaranteed in general.

Example (Convergence in the points of discontinuity)

 $\mu_n = \delta_{-\frac{1}{n}}$, then it is clear that $\mu_n \to \delta_0$, and continuity is guaranteed for all points x > 0. However, the cdf is such that

$$F_{\mu_n}(0) = F_{\delta_{-\frac{1}{n}}}(0) = 1$$
 for all n ,

therefore $\lim_{n\to\infty} F_{\mu_n}(0) = 1$ and convergence is satisfied also in the point of discontinuity.

Def. (Characteristic function)

Let μ be a distribution, then we say that the *characteristic function* (CHF) of μ is the function $\varphi : \mathbb{R}^d \longrightarrow \mathbb{R}$ defined by

$$\varphi(\eta) = \int_{\mathbb{R}^d} e^{i\langle \eta, x \rangle} \mu(dx).$$

Def. (Characteristic function of a random variable)

Let X be a random variable with distribution μ on \mathbb{R}^d , then the *characteristic function of* X is

$$\varphi_X(\eta) = \varphi_{\mu_X}(\varepsilon) = \mathbb{E}\left[e^{i\langle X, \eta \rangle}\right].$$

Remark

If $\mu \in AC$ has density f, then we can write it exactly as a Lebesgue integral (rescaled Fourier transform)

$$\varphi(\eta) = \int_{\mathbb{R}^d} e^{i\langle \eta, x \rangle} f(x) dx.$$

Thm. 4 (Lévy)

Let $(\mu_n)_{n\in\mathbb{N}}$ be a sequence of distributions and μ be a distribution, then

- a) $\mu_n \xrightarrow{d} \mu \implies \varphi_n(\eta) \xrightarrow{n \to \infty} \varphi(\eta)$ for any $\eta \in \mathbb{R}^d$.
- b) $\varphi \xrightarrow{n \to \infty} \varphi$ everywhere, with φ continuous in $\eta = 0$, then φ is a CHF of a distribution μ and $\mu_n \xrightarrow{d} \mu$.

Remark

CHF's have some properties, most notably

- 1. $\varphi(0) = 1$ since $\mathbb{E}\left[e^{i\langle 0, x\rangle}\right] = \mathbb{E}\left[1\right] = 1$.
- 2. φ_X is continuous in $\nu = 0$, which we can check by the limiting procedure

$$\lim_{\eta \to 0} \varphi_X(\eta) \stackrel{?}{=} \varphi_X(0) = 1.$$

Since $e^{i\vartheta}=\cos\vartheta+i\sin\vartheta$ is always equal in norm to 1 (Euler's formula), we can apply the dominated convergence theorem

$$\lim_{\eta \to 0} \mathbb{E} \big[e^{i\langle X, \eta \rangle} \big] \stackrel{\mathrm{DCT}}{=} \mathbb{E} \big[\lim_{\eta \to 0} e^{i\langle X, \eta \rangle} \big] = \mathbb{E} \big[1 \big] = 1.$$

1.2 Limit theorems

Notation: If $(X_n)_{n\in\mathbb{N}}$ is a sequence of random variables, we define the partial sums and partial means by

$$S_n = X_1 + X_2 + \ldots + X_n,$$

$$M_n = S_n/n$$
.

Thm. 5 (Law of large numbers)

Let $(X_n)_{n\in\mathbb{N}}$ be a seq of rv in $L^1(\Omega,\mathbb{P})$ that are i.i.d with mean $\mathbb{E}[X_n] = \mu$, then

$$\rightarrow$$
 (Strong L.L.N.) $M_n \xrightarrow{a.s.} \mu$

$$\rightarrow$$
 (Weak L.L.N.) $M_n \xrightarrow{d} \mu$

Proof.

We only prove the weak form since the strong one is very difficult. However we would have to prove Lévy's theorem even for the weak one, which is also quite difficult.

Remark

If we also had assumed that $X_n \in L^2(\Omega, \mathbb{P})$ with $\mathbb{V}[X_n] = \sigma^2$, then this becomes a one-line proof since

$$\mathbb{P}(|M_n - \mu| > \varepsilon) \le \frac{\mathbb{E}\left[|M_n - \mu|^2\right]}{\varepsilon^2} = \frac{\sigma^2}{n\varepsilon^2} \xrightarrow{n \to \infty} 0.$$

Using this, we have convergence in L^2 which implies $\stackrel{P}{\longrightarrow}$ and $\stackrel{d}{\longrightarrow}$. These inequalities are useful as a coarse estimate of the speed of convergence, in order to determine an error bound for Monte Carlo simulations and confidence regions. However, proper estimates are more refined and will be discussed later.

REFERENCES

Gut, A. (2009). An Intermediate Course in Probability. 2° edizione. Dordrecht: New York, NY: Springer Nature. 303 pp.