

Dokumentace k projektu

ISS/VSG Projekt 2021/22

Obsah

1	$\hat{ ext{U}} ext{vod}$	3
2	Otázky	3
	2.1 Otázka 1	3
	2.2 Otázka 2	3
	2.3 Otázka 3	4
	2.4 Otázka 4	5
	2.5 Otázka 5	6
	2.6 Otázka 6	6
	2.7 Otázka 7.3	7
	2.8 Otázka 8	8
	2.9 Otázka 9	8
	2.10 Otázka 10	10
3	Nestandardní zdroje	10

1 Úvod

Cílem projektu bylo analyzovat zadaný signál a nalézt čtyři harmonicky vztažené cosinusovky, které do něj byli přidány. Poté vytvořit filtr/y a ten/ty následně použít pro filtraci daného signálu. Tento projekt je řešen v jazyce Python. K výpočtům dopomohly funkce z knihoven numpy a scipy, pro tvorbu grafů byla využita knihovna matplotlib.

2 Otázky

2.1 Otázka 1

Délka signálu:

• ve vzorcích: 54170

• v sekundách: 3.385625 sekund

Minimální hodnota: -0.100738525390625 Maximální hodnota: 0.127197265625

Pro získání údajů byl využit modul wavfile s postumem dle Jupyter notebooku.

2.2 Otázka 2

Dle zadání byl signál ustředněn a normalizován. Do řádků matice byly postupně uloženy jednotlivé úseky pomocí jednoduchého while cyklu. Celá matice byla nakonec transponována. Pro zobrazení

byl vybrán 14. rámec.

2.3 Otázka 3

DFT funguje správně, o čemž se lze přesvědčit srovnáním s numpy FFT. Bohužel z důvodu implementace (implementováno vnořenými while cykly), trvá DFT dlouho. Při snaze o před počítání části výrazu před while cykly docházelo k transformaci z komplexního čísla s čistě imaginární složkou na komplexní číslo s reálnou a imaginární složkou. Po neschopnosti opravy tohoto problému byl proto zvolen tento jednodušší, byť značně pomalejší způsob.

2.4 Otázka 4

Pro postup při tvorbě spektrogramu byl využit postupem z Jupyter notebooku.

2.5 Otázka 5

Rušivé frekvence:

• frekvence 1: 650 Hz

• frekvence 2: 1300 Hz

• frekvence 3: 1950 Hz

• frekvence 4: 2600 Hz

Frekvence byly nalezeny ručně vytvořením spektrogramu s menšími kroky na frekvenční ose a přidáním dobře viditelné mřížky na oné ose.

2.6 Otázka 6

Po vygenerování cosinusovek s frekvencemi uvedenými v otázce 5, jejich poslechu a následné panice, bylo zjištěno, že při vygenerování cosinusovek o čtyřnásobné frekvenci vzniknou požadované cosinusovky. Tento signál zní a vypadá stejně, pouze je hlasitější. Pro vygenerování cosinusovek byla využita funkce cos z knihovny numpy. Pro jejich zápis byl opět využit modul wavfile.

2.7 Otázka 7.3

Impulzní odezvy filtrů:

Obrázek 1: Filtr 1

Obrázek 3: Filtr 3

Obrázek 4: Filtr 4

Po neúspěšných pokusech o vytvoření filtrů pomocí funkce butter z knihovny signal byla pro tvorbu filtrů využita funkce iirnotch z téže knihovny.

2.8 Otázka 8

U této otázky byl opět využit postup z Jupyter notebooku.

2.9 Otázka 9

Frekvenční charakteristiky byly vytvořeny s pomocí oficiální scipy stránky pro funkci iirnotch.

Obrázek 5: Filtr 1

Obrázek 6: Filtr 2

Obrázek 7: Filtr 3

Obrázek 8: Filtr 4

2.10 Otázka 10

Filtrace signálu byla provedena pomocí funkce *filtfilt* a filtru připraveného v předchozí části. Uloženy jsou znovu pomocí modulu *wavfile*. Filtr však nesplňuje očekávané chování.

3 Nestandardní zdroje

V projektu byly mimo standardních stránek využity také stránky pro knihovnu numpy, dále byly pro projekt využity oficiální scipy stránky, zejména pak stránky pro funkce iirnotch, freqz, filtfilt.