

# CSE 6140/ CX 4140 Computational Science and Engineering ALGORITHMS

# **NP Completeness 2**

Instructor: Xiuwei Zhang

**Assistant Professor** 

School of Computational Science and Engineering

Based on slides by Prof. Ümit V. Çatalyürek

# Summary of last lecture







#### Verifying a Candidate Solution vs. Solving a Problem

- Intuitively it seems much harder (more time consuming) in some cases to solve a problem from scratch than to verify that a candidate solution actually solves the problem.
  - If there are many candidate solutions to check, then even if each individual one is quick to check, overall it can take a long time

# Is P = NP?



Any problem in P is also in NP:

$$P \subseteq NP$$

- The big (and open question) is whether  $NP \subseteq P$  or P = NP
  - i.e., if it is always easy to check a solution, should it also be easy to find a solution?

## Is P = NP?



Any problem in P is also in NP:

$$P \subseteq NP$$

- The big (and **open question**) is whether  $NP \subseteq P$  or P = NP
  - i.e., if it is always easy to check a solution, should it also be easy to find a solution?
- Most computer scientists believe that this is false but we do not have a proof ...



# **NP-Complete Problems**



- NP-complete problems is class of "hardest" problems in NP.
- If you can solve an NP-complete problem, then you can solve all NP problems (show later).
- Hence, if any NP-complete problem can be solved in poly time, then all problems in NP can be, and thus P = NP.
- Precise definition coming later...

# Possible Worlds





NPC = NP-complete

## Reductions



- Reduction from A to B is showing that we can solve A using the algorithm that solves B
- We say that <u>problem A is easier than problem B</u>, (i.e., we write "A ≤ B")

#### Reductions



- "A ≤ B": Reduction from A to B is showing that we can solve A using the algorithm that solves B
- If we have an oracle for solving B, then we can solve A by making polynomial number of computations and polynomial number of calls to the oracle for B (Cook)
- Idea: transform the inputs of A to inputs of B (single call to oracle) (Karp)



# Have we already done reductions in class?



- All pairs shortest path: multiple calls to Dijkstra
- K-clustering: use of MST
- We can also do reductions on poly time algorithms



# Polynomial Reductions



Given two problems A, B, we say that A is polynomially

**reducible** to B (A 
$$\leq_p$$
 B) if:

- 1. There exists a function f that converts the input of A to inputs of B in polynomial time
- 2.  $A(i) = YES \Leftrightarrow B(f(i)) = YES$

# **Proving Polynomial Time**





- Use a **polynomial time** reduction algorithm to transform A into B
- 2. Run a known **polynomial time** algorithm for B
- 3. Use the answer for B as the answer for A

(e.g. k-Clustering problem was reduced to MST)

# Implications of Polynomial-Time Reductions



- Purpose. Classify problems according to relative difficulty.
- Design algorithms. If  $X \le_p Y$  and Y can be solved in polynomial-time, then X can also be solved in polynomial time.
- Establish intractability. If  $X \le_p Y$  and X cannot be solved in polynomial-time, then Y cannot be solved in polynomial time.
- Establish equivalence. If  $X \leq_p Y$  and  $Y \leq_p X$ , we use notation  $X \equiv_p Y$ .

  up to cost of reduction
- Transitivity: if  $X \leq_p Y$  and  $Y \leq_p Z$ , then  $X \leq_p Z$

# Reduction By Simple Equivalence



- Basic reduction strategies.
  - Reduction by simple equivalence.
  - Reduction from special case to general case.
  - Reduction by encoding with gadgets.

#### **Vertex Cover**



- MINIMUM VERTEX COVER: Given a graph G = (V, E), find the smallest subset of vertices  $S \subseteq V$  such that for each edge at least one of its endpoints is in S?
- VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a subset of vertices  $S \subseteq V$  such that  $|S| \le k$ , and for each edge, at least one of its endpoints is in S?
- Ex. Is there a vertex cover of size ≤ 4?
- Ex. Is there a vertex cover of size ≤ 3?



#### Set Cover



- SET COVER: Given a set U of elements, a collection S<sub>1</sub>, S<sub>2</sub>, . . . , S<sub>m</sub> of subsets of U, and an integer k, does there exist a collection of ≤ k of these sets whose union is equal to U?
- Sample application.
  - m available pieces of software.
  - Set U of n capabilities that we would like our system to have.
  - The *i*th piece of software provides the set  $S_i \subseteq U$  of capabilities.
  - Goal: achieve all n capabilities using fewest pieces of software.

#### Example

$$U = \{ 1, 2, 3, 4, 5, 6, 7 \}$$

$$k = 2$$

$$S_{1} = \{ 3, 7 \} \qquad S_{4} = \{ 2, 4 \}$$

$$S_{2} = \{ 3, 4, 5, 6 \} \qquad S_{5} = \{ 5 \}$$

$$S_{3} = \{ 1 \} \qquad S_{6} = \{ 1, 2, 6, 7 \}$$



**Theorem**. Vertex-Cover  $\leq P$  Set-Cover.



**Theorem.** Vertex-Cover  $\leq_{p}$  Set-Cover.

**Pf**. Given a Vertex-Cover instance G = (V, E) and k, we construct a Set-Cover instance (U, S, k) that has a set cover of size k iff G has a vertex cover of size k.

#### Construction.

• Universe U = E.



(k = 2)

vertex cover instance

 $U = \{ 1, 2, 3, 4, 5, 6, 7 \}$ 

set cover instance (k = 2)



**Theorem**. Vertex-Cover ≤ <sub>p</sub> Set-Cover.

**Pf.** Given a Vertex-Cover instance G = (V, E) and k, we construct a Set-Cover instance (U, S, k) that has a set cover of size k iff G has a vertex cover of size k.

#### Construction.

- Universe U = E.
- Create one subset for each node  $v \in V$ :  $S_v = \{e \in E : e \text{ incident to } v\}$ .

Show that the reduction algorithm is polynomial



$$U = \{ 1, 2, 3, 4, 5, 6, 7 \}$$

$$S_a = \{ 3, 7 \} \qquad S_b = \{ 2, 4 \}$$

$$S_c = \{ 3, 4, 5, 6 \} \qquad S_d = \{ 5 \}$$

$$S_e = \{ 1 \} \qquad S_f = \{ 1, 2, 6, 7 \}$$

vertex cover instance (k = 2) set cover instance (k = 2)



Next: show that VC(i)=yes iff SC(f(i))=yes



**Lemma**. G = (V, E) contains a vertex cover of size k iff (U, S, k) contains a set cover of size k.

That is,  $VC(i) = yes \Leftrightarrow SC(f(i)) = yes$ 

**Pf.**  $\Rightarrow$  Let  $X \subseteq V$  be a vertex cover of size k in G.

Then  $Y = \{ S_v : v \in X \}$  is a set cover of size k.



 $U = \{ 1, 2, 3, 4, 5, 6, 7 \}$   $S_a = \{ 3, 7 \} \qquad S_b = \{ 2, 4 \}$   $S_c = \{ 3, 4, 5, 6 \} \qquad S_d = \{ 5 \}$   $S_e = \{ 1 \} \qquad S_f = \{ 1, 2, 6, 7 \}$ 

vertex cover instance (k = 2)

set cover instance (k = 2)



$$VC(i) = yes \implies SC(f(i)) = yes$$

VC(i) is a yes instance  $\Longrightarrow$  it has a solution let  $V' \subseteq V$  be such a solution

 $|V'| \leq k$ , every edge has at least one end point in V'

$$V' = \{i_1, i_2, \dots, i_l\}, l \le k$$

Consider 
$$A = \{S_{i_1}, S_{i_2}, \dots, S_{i_l}\}$$

For the sake of contradiction assume A is not a solution to SC(f(i))

Number of sets in A is  $l \leq k \bigvee$ 

then it must be the case that  $S_{i_1} \cup S_{i_2} \cup \cdots \cup S_{i_l} \neq U$ 

 $\Rightarrow \exists e \in U$  that is not in  $S_{i_1} \cup S_{i_2} \cup \cdots \cup S_{i_l}$ 

e also corresponds to an edge in VC(i)

e=(u,v), so  $S_u$  and  $S_v$  are not in A, i.e.,  $S_u$ ,  $S_v \notin A$ 

 $\Rightarrow u, v \notin V'$  (by construction of A)

e = (u, v) would have been not covered by V'

 $\rightarrow \leftarrow$  contradicts V' be solution to VC



**Lemma**. G = (V, E) contains a vertex cover of size k iff (U, S, k) contains a set cover of size k.

**Pf.**  $\leftarrow$  Let  $Y \subseteq S$  be a set cover of size k in (U, S, k).

■ Then  $X = \{ v : S_v \subseteq Y \}$  is a vertex cover of size k in G.



(k = 2)

vertex cover instance

$$U = \{ 1, 2, 3, 4, 5, 6, 7 \}$$

$$S_a = \{ 3, 7 \} \qquad S_b = \{ 2, 4 \}$$

$$S_c = \{ 3, 4, 5, 6 \} \qquad S_d = \{ 5 \}$$

$$S_e = \{ 1 \} \qquad S_f = \{ 1, 2, 6, 7 \}$$

set cover instance (k = 2)



$$SC(f(i)) = yes \implies VC(i) = yes$$

SC(f(i)) is a yes instance

$$\implies$$
 It has a solution and let  $A = \{S_{i_1}, S_{i_2}, \cdots, S_{i_l}\}$  be such a solution

$$\implies l \leq k \text{ and } S_{i_1} \cup S_{i_2} \cup \cdots \cup S_{i_l} = U \text{ (by definition of SC)}$$

Consider the vertex set 
$$V' = \{i_1, i_2, \dots, i_l\}$$

for the sake of contradiction assume V' is **not** a solution to VC(i)

the number of vertices  $l \leq k$ 



$$\Rightarrow \exists e = (u, v) \in E \text{ such that } u \notin V', v \notin V'$$

$$\Longrightarrow S_u, S_v$$
 were not included in solution A

$$e = (u, v) \in U$$
 (by construction of f(i))

 $S_u$ ,  $S_v$  were the only sets that contain e (by construction)

$$\Rightarrow e \notin S_{i_1} \cup S_{i_2} \cup \cdots \cup S_{i_l}$$
, i.e.,  $e$  is not covered by the solution set A,

→ ← contradiction with A being solution

# Summary



#### Problems

- Decision problems (yes/no)
- Optimization problems (solution with best score)

#### P

- Decision problems (decision problems) that can be solved in polynomial time
- Can be solved "efficiently"

#### NP

 Decision problems whose "YES" answer can be verified in polynomial time, if we already have the proof (or witness)

# NP-Completeness (formally)



- A problem Y is NP-hard if X ≤<sub>p</sub> Y for <u>all</u> X ∈ NP
  - A problem is NP-hard iff an polynomial-time algorithm for it implies a polynomial-time algorithm for every problem in NP
  - NP-hard problems are at least as hard as any NP problem
- A problem Y is NP-complete if:

$$(1) Y \subseteq NP$$

(2) Y is NP-hard

NP-hard problems do not have to be in NP, and they do not have to be decision problems.

