

91258 / B0385 Natural Language Processing

Lesson 17. Bidirectional RNN \rightarrow Long Short-Term Memory Networks

Alberto Barrón-Cedeño a.barron@unibo.it

27/11/2024

Left and right context

Not only the previous context is important to understand the *current* token

They wanted to pet the dog whose fur was brown.

- Descriptions and relevant information often come later
- A standard RNN neglects information from the future

Table of Contents

End of Chapter 8, Chapter 9 of Lane et al. (2019)

A. Barrón-Cedeño

DIT, LM SpecTra

2024 2 / 2

Bidirectional recurrent neural network

- We arrange 2 RNNs:
 - one takes the input as usual
 - the other takes the backward input
 - means concatenation

A. Barrón-Cedeño

DIT, LM SpecTra 2024 4 /

Implementation difference

```
# Adding one bidirectional recurrent layer

model.add(Bidirectional(SimpleRNN(
    num_neurons,
    return_sequences=True),
    input_shape=(maxlen, embedding_dims))
)
```

Let us see

A. Barrón-Cedeño

DIT, LM SpecTra

2024 5 / 3

LSTMs

BiRNN zoom into results

Accuracies after 2 epochs

units	Acc	Acc_{val}
50	0.8156	0.7662
40	0.8244	0.7540
30	0.8259	0.7874
20	0.8072	0.8076
10	0.8007	0.8016
5	0.7973	0.8006
1	0.7070	0.7822

^{*} remember we had used 50 units last time for the RNN

A. Barrón-Cedeño

DII, LM SpecTra

2024 6 / 20

Short effect from the past

The effect of token x_t dilutes significantly as soon as in t+2

Consider the following —fairly plausible— texts...

The young woman went to the movies with her friends.

The young woman, having found a free ticket on the ground, went to the movies.

- In both cases, went is the main verb
- A (Bi)RNN would hardly reflect that in the second case
- We need an architecture able to "remember" the entire input

DIT I M SpecTra

24 8/2

A. Barrón-Cedeño

DIT, LM SpecTra

A. Barrón-Cedeño

State: the memory of an LSTM

- The memory state contains attributes
- The attributes are updated with every instance
- The rules of the state are trained NNs.

Now we have two learning objectives:

- Learn to predict the target labels
- Learn to identify what has to be remembered

(Lane et al., 2019, p. 276)

The LSTM cell (layer)

Input: output $_{t-1} \oplus input_t$

Gates: a FF layer + an activation function each

DIT, LM SpecTra

Unrolled LSTM

- Activation from t-1 plus memory state
- The memory state sends a vector with the state of each LSTM cell, of cardinality number_of_units

LSTM Forget Gate

Input: $[x_{[t,0]}, x_{[t,1]}, \dots, x_{[t,299]}, h_{[t-1,0]}, h_{[t-1,1]}, \dots h_{[t-1,49]}, 1]$

Forget: How much of the memory should be erased —forgetting long-term dependencies as new ones arise

351 * 50 = 17,550 parameters

Feed-forward NN with sigmoid activation function: [0,1]

(Lane et al., 2019, p. 280)

LSTM Output Gate tinput + t-1 output Update gate n neurons with sigmoid activations Output values Layer's output to between 0 and 1 n-dimensional + 2 vectors added n-dimensional itself at time step t+1 output output n-dimensional output tanh applied elementwise to memory vector Layer's output at time step t * The figure says "added". It is a product

(Lane et al., 2019, p. 284)

LSTM: Result

arch	units	Acc	Acc _{val}
BiRNN	50	0.8156	0.7662
BiRNN	40	0.8244	0.7540
BiRNN	30	0.8259	0.7874
BiRNN	20	0.8072	0.8076
BiRNN	10	0.8007	0.8016
BiRNN	5	0.7973	0.8006
BiRNN	1	0.7070	0.7822
LSTM	50	0.8692	0.8678

LSTM: Wrapping Up

- The *main* network uses the output of the memory in the same fashion as in a RNN
- The memory *decides* what to keep/feed to the network
- The weights of the memory are also learned by back-propagation
- Let us see

A. Barrón-Cedeño

A. Barrón-Cedeño

DIT, LM SpecTra

2024 18 / 2

References

Lane, H., C. Howard, and H. Hapkem 2019. *Natural Language Processing in Action*. Shelter Island, NY: Manning Publication Co.

DIT, LM SpecTra

2024 20 / 20

2024 17 / 20