Muhammad Akram Rob J Hyndman J Keith Ord

Business & Economic Forecasting Unit MONASH University

Outline

- Exponential smoothing models
- Problems with some of the models
- A new model for positive data
- Conclusions

- Exponential smoothing models
- Problems with some of the models
- A new model for positive data
- Conclusions

 Most forecasting methods in business are based on exponential smoothing.

- Most forecasting methods in business are based on exponential smoothing.
- Most time series in business are inherently non-negative.

- Most forecasting methods in business are based on exponential smoothing.
- Most time series in business are inherently non-negative.
- But exponential smoothing models for non-negative data don't always work!

- Most forecasting methods in business are based on exponential smoothing.
- Most time series in business are inherently non-negative.
- But exponential smoothing models for non-negative data don't always work!
 - They can produce negative forecasts

- Most forecasting methods in business are based on exponential smoothing.
- Most time series in business are inherently non-negative.
- But exponential smoothing models for non-negative data don't always work!
 - They can produce negative forecasts
 - They can produce infinite forecast variance

- Most forecasting methods in business are based on exponential smoothing.
- Most time series in business are inherently non-negative.
- But exponential smoothing models for non-negative data don't always work!
 - They can produce negative forecasts
 - They can produce infinite forecast variance
 - They can converge almost surely to zero.

		Seasonal Component			
	Trend	N	Α	М	
	Component	(None)	(Additive)	(Multiplicative)	
N	(None)	N,N	N,A	N,M	
Α	(Additive)	A,N	A,A	A,M	
A_d	(Additive damped)	A _d ,N	A_d ,A	A_d ,M	
М	(Multiplicative)	M,N	M,A	M,M	
M _d	(Multiplicative damped)	M _d ,N	M_d ,A	M _d ,M	

		Seasonal Component		
	Trend	N	Α	М
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	N,N	N,A	N,M
Α	(Additive)	A,N	A,A	A,M
A_d	(Additive damped)	A _d ,N	A_d ,A	A_d ,M
М	(Multiplicative)	M,N	M,A	M,M
M _d	(Multiplicative damped)	M _d ,N	M _d ,A	M _d ,M

General notation ETS(*Error*,*Trend*,*Seasonal*)

		Seasonal Component		
	Trend	N	Α	М
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	N,N	N,A	N,M
Α	(Additive)	A,N	A,A	A,M
A_d	(Additive damped)	A _d ,N	A_d ,A	A_d ,M
М	(Multiplicative)	M,N	M,A	M,M
M _d	(Multiplicative damped)	M _d ,N	M _d ,A	м _d ,м

General notation ETS(*Error*, *Trend*, *Seasonal*) **Exponen Tial Smoothing**

◆ロト ◆個ト ◆夏ト ◆夏ト ■ 夕久○

		Seasonal Component			
	Trend		Α	M	
	Component	(None)	(Additive)	(Multiplicative)	
N	(None)	N,N	N,A	N,M	
Α	(Additive)	A,N	A,A	A,M	
A_{d}	(Additive damped)	A _d ,N	A_d ,A	A_d , M	
М	(Multiplicative)	M,N	M,A	M,M	
M _d	(Multiplicative damped)	M _d ,N	M _d ,A	M _d ,M	

General notation ETS(*Error*,*Trend*,*Seasonal*) **E**xponen**T**ial **S**moothing

ETS(A,N,N): Simple exponential smoothing with additive errors

		Seasonal Component			
	Trend		Α	М	
	Component	(None)	(Additive)	(Multiplicative)	
N	(None)	N,N	N,A	N,M	
Α	(Additive)	A,N	A,A	A,M	
A_d	(Additive damped)	A _d ,N	A_d ,A	A_d ,M	
М	(Multiplicative)	M,N	M,A	M,M	
M _d	(Multiplicative damped)	M _d ,N	M _d ,A	M _d ,M	

General notation ETS(*Error*,*Trend*,*Seasonal*) **E**xponen**T**ial **S**moothing

ETS(A,A,N): Holt's linear method with additive errors

		Seasonal Component			
Trend		N	Α	M	
	Component	(None)	(Additive)	(Multiplicative)	
N	(None)	N,N	N,A	N,M	
Α	(Additive)	A,N	A,A	A,M	
A_d	(Additive damped)	A _d ,N	A_d ,A	A_d , M	
М	(Multiplicative)	M,N	M,A	M,M	
M _d	(Multiplicative damped)	M _d ,N	M _d ,A	M _d ,M	

General notation ETS(*Error*,*Trend*,*Seasonal*) **E**xponen**T**ial **S**moothing

ETS(A,A,A): Additive Holt-Winters' method with additive errors

		Seasonal Component			
	Trend		Α	M	
	Component	(None)	(Additive)	(Multiplicative)	
N	(None)	N,N	N,A	N,M	
Α	(Additive)	A,N	A,A	A,M	
A_d	(Additive damped)	A _d ,N	A_d ,A	A_d , M	
М	(Multiplicative)	M,N	M,A	M,M	
M _d	(Multiplicative damped)	M _d ,N	M _d ,A	M _d ,M	

General notation ETS(*Error*,*Trend*,*Seasonal*) **E**xponen**T**ial **S**moothing

ETS(M,A,M): Multiplicative Holt-Winters' method with multiplicative errors

		Seasonal Component		
	Trend	N	Α	M
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	N,N	N,A	N,M
Α	(Additive)	A,N	A,A	A,M
A_d	(Additive damped)	A _d ,N	A_d ,A	A_d , M
М	(Multiplicative)	M,N	M,A	M,M
M _d	(Multiplicative damped)	M _d ,N	M _d ,A	M _d ,M

General notation ETS(*Error*,*Trend*,*Seasonal*) **E**xponen**T**ial **S**moothing

ETS(A,A_d,N): Damped trend method with additive errors

		Seasonal Component		
	Trend	N	Α	М
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	N,N	N,A	N,M
Α	(Additive)	A,N	A,A	A,M
A_d	(Additive damped)	A _d ,N	A_d ,A	A_d ,M
М	(Multiplicative)	M,N	M,A	M,M
M _d	(Multiplicative damped)	M _d ,N	M _d ,A	м _d ,м

General notation ETS(*Error*,*Trend*,*Seasonal*) **E**xponen**T**ial **S**moothing

There are 30 separate models in the ETS framework

Innovations state space model

No trend or seasonality and multiplicative errors

Example: ETS(M,N,N)

$$y_t = \ell_{t-1}(1 + \varepsilon_t)$$

$$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$$

$$0 \le \alpha \le 1$$

 ε_t is white noise with mean zero.

Innovations state space model

No trend or seasonality and multiplicative errors

Example: ETS(M,N,N)

$$y_t = \ell_{t-1}(1 + \varepsilon_t)$$
$$\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$$

$$0 \le \alpha \le 1$$

 ε_t is white noise with mean zero.

Innovations state space model

No trend or seasonality and multiplicative errors

Example: ETS(M,N,N)

$$\mathbf{y}_t = \ell_{t-1}(\mathbf{1} + \varepsilon_t)$$

 $\ell_t = \ell_{t-1}(\mathbf{1} + \alpha \varepsilon_t)$

$$0 \le \alpha \le 1$$

 ε_t is white noise with mean zero.

All exponential smoothing models can be written using analogous state space equations.

New book!

Springer Series in Statistics

Rob J. Hyndman · Anne B. Koehler J. Keith Ord · Ralph D. Snyder

Forecasting with Exponential Smoothing

The State Space Approach

2 Springer

- State space modeling framework
- Prediction intervals
- Model selection
- Maximum likelihood estimation
- All the important research results in one place with consistent notation
- Many new results
- 375 pages but only US\$39.95.

New book!

Rob J. Hyndman · Anne B. Koehler J. Keith Ord · Ralph D. Snyder

Forecasting with Exponential **Smoothing**

The State Space Approach

- State space modeling framework
- Prediction intervals
- Model selection
- Maximum likelihood estimation
- All the important research results in one place with consistent notation
- Many new results
- 375 pages but only US\$39.95.

<mark>..expon</mark>entialsmoothing.net

- Exponential smoothing models
- Problems with some of the models
- A new model for positive data
- Conclusions

Negative forecasts

 Could solve by taking logs or some other Box-Cox transformation. However, this limits models to be additive in the transformed space.

Negative forecasts

- Could solve by taking logs or some other Box-Cox transformation. However, this limits models to be additive in the transformed space.
- Could solve by only using multiplicative models. But these can have other problems.

ETS(A,M,N) model

$$y_{t} = \ell_{t-1}b_{t-1} + \varepsilon_{t}$$
$$\ell_{t} = \ell_{t-1}b_{t-1} + \alpha\varepsilon_{t}$$
$$b_{t} = b_{t-1} + \beta\varepsilon_{t}/\ell_{t-1}.$$

•
$$\ell_0 = 0.1$$

•
$$b_0 = 1$$

•
$$\alpha = 0.1$$

•
$$\beta = 0.05$$

$$\sigma = 1$$

ETS(A,M,N) model

$$y_{t} = \ell_{t-1}b_{t-1} + \varepsilon_{t}$$
$$\ell_{t} = \ell_{t-1}b_{t-1} + \alpha\varepsilon_{t}$$
$$b_{t} = b_{t-1} + \beta\varepsilon_{t}/\ell_{t-1}.$$

•
$$\ell_0 = 0.1$$

•
$$b_0 = 1$$

•
$$\alpha = 0.1$$

•
$$\beta = 0.05$$

$$\sigma = 1$$

Suppose ε_t has positive density at 0

For ETS models (A,M,N), (A,M,A), (A,M_d,N) , (A,M_d,A) , (A,M,M), (A,M_d,M) , (M,M,A) and (M,M_d,A) :

- $V(y_{n+h} | \mathbf{x}_n) = \infty \text{ for } h \geq 3;$
- $E(y_{n+h} \mid \mathbf{x}_n)$ is undefined for $h \geq 3$.

Suppose ε_t has positive density at 0

For ETS models (A,M,N), (A,M,A), (A,M_d,N) , (A,M_d,A) , (A,M,M), (A,M_d,M) , (M,M,A) and (M,M_d,A) :

- $V(y_{n+h} | \mathbf{x}_n) = \infty \text{ for } h \geq 3;$
- $E(y_{n+h} \mid \mathbf{x}_n)$ is undefined for $h \geq 3$.

For ETS models (A,N,M), (A,A,M) and (A,A_d,M) :

- $V(y_{n+h} | x_n) = \infty$ for $h \ge m + 2$;
- $E(y_{n+h} \mid \mathbf{x}_n)$ is undefined for $h \ge m+2$.

Suppose ε_t has positive density at 0

For ETS models (A,M,N), (A,M,A), (A,M_d,N) , (A,M_d,A) , (A,M,M), (A,M,M), (A,M,M), (M,M,A) and (M,M_d,A) :

- $V(y_{n+h} | x_n) = \infty \text{ for } h \ge 3;$
- $E(y_{n+h} \mid \mathbf{x}_n)$ is undefined for $h \geq 3$.

For ETS models (A,N,M), (A,A,M) and (A,A_d,M) :

- $V(y_{n+h} \mid \boldsymbol{x}_n) = \infty$ for $h \geq m+2$;
- $E(y_{n+h} \mid \mathbf{x}_n)$ is undefined for $h \ge m + 2$.
- **▶** These problems occur regardless of the sample space of $\{y_t\}$.

$$y_t = \ell_{t-1}(1 + \varepsilon_t)$$
$$\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$$

- $\ell_0 = 10$
- $\alpha = 0.3$
- $\sigma = 0.3$ with truncated Gaussian errors

$$y_t = \ell_{t-1}(1 + \varepsilon_t)$$

$$\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t),$$

•
$$0 < \alpha < 1$$

$$y_t = \ell_{t-1}(1 + \varepsilon_t)$$

$$\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t),$$

- $0 < \alpha \le 1$
- $\delta_t = 1 + \varepsilon_t$ has mean 1 and variance σ^2 .

$$y_t = \ell_{t-1}(1 + \varepsilon_t)$$

$$\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t),$$

- $0 < \alpha \le 1$
- $\delta_t = 1 + \varepsilon_t$ has mean 1 and variance σ^2 .
- δ_t are iid with positive distribution such as truncated normal, lognormal, gamma, etc.

$$y_t = \ell_{t-1}(1 + \varepsilon_t)$$

$$\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t),$$

- $0 < \alpha \le 1$
- $\delta_t = 1 + \varepsilon_t$ has mean 1 and variance σ^2 .
- δ_t are iid with positive distribution such as truncated normal, lognormal, gamma, etc.

ETS(M,N,N) model

$$y_t = \ell_{t-1}(1 + \varepsilon_t)$$

$$\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t),$$

- $0 < \alpha < 1$
- $\delta_t = 1 + \varepsilon_t$ has mean 1 and variance σ^2 .
- δ_t are iid with positive distribution such as truncated normal, lognormal, gamma, etc.

$$\ell_t = \ell_0 (1 + \alpha \varepsilon_1) (1 + \alpha \varepsilon_2) \cdots (1 + \alpha \varepsilon_t) = \ell_0 U_t$$

where $U_t = U_{t-1}(1 + \alpha \varepsilon_t)$ and $U_0 = 1$. Thus U_t is a non-negative product martingale.

• Kakutani's Theorem says that ℓ_t will converge to 0 almost surely if ε_t has mean zero and is non-degenerate.

- Kakutani's Theorem says that ℓ_t will converge to 0 almost surely if ε_t has mean zero and is non-degenerate.
- Consequently, all sample paths for y_t converge to 0 almost surely.

- Kakutani's Theorem says that ℓ_t will converge to 0 almost surely if ε_t has mean zero and is non-degenerate.
- Consequently, all sample paths for y_t converge to 0 almost surely.
- Similar results follow for all purely multiplicative models: (M,N,N), (M,N,M), (M,M,N), (M,M,M), (M,M_d,N) and (M,M_d,M).

- Class M: Purely multiplicative models: (M,N,N), (M,N,M), (M,M,M), (M,M,M), (M,M,M), (M,M,M), and (M,M,M).
- Class A: Purely additive models: (A,N,N), (A,N,A), (A,A,N), (A,A,A), (A,A_d,N) and (A,A_d,A).
- Class X: Mixed models: (A,M,*), (A,M_d,*), (A,*,M), (M,M,A), (M,M_d,A). (11 models)
- Class Y: Mixed models: (M,A,*), (M,A_d,*) or (M,N,A). (7 models)

- Class M: Purely multiplicative models: (M,N,N), (M,N,M), (M,M,N), (M,M,M), (M,M_d,N) and (M,M_d,M).
- Class A: Purely additive models: $(A,N,N), (A,N,A), (A,A,N), (A,A,A), (A,A_d,N) \\ and (A,A_d,A).$
- Class X: Mixed models: (A,M,*), (A,M_d,*), (A,*,M), (M,M,A), (M,M_d,A). (11 models)
- Class Y: Mixed models: (M,A,*), (M,A_d,*) or (M,N,A). (7 models)
- Only Class M can guarantee a sample space restricted to the positive half-line.

- Class M: Purely multiplicative models: (M,N,N), (M,N,M), (M,M,N), (M,M,M), (M,M_d,N) and (M,M_d,M) .
- Class A: Purely additive models: $(A,N,N), \, (A,N,A), \, (A,A,N), \, (A,A,A), \, (A,A_d,N) \\ \text{and} \, (A,A_d,A).$
- Class X: Mixed models: (A,M,*), (A,M_d,*), (A,*,M), (M,M,A), (M,M_d,A). (11 models)
- Class Y: Mixed models: (M,A,*), (M,A_d,*) or (M,N,A). (7 models)
- Only Class M can guarantee a sample space restricted to the positive half-line.
- All Class M models converge to 0 if $E(\varepsilon) = 0$

- Class M: Purely multiplicative models: (M,N,N), (M,N,M), (M,M,N), (M,M,M), (M,M_d,N) and (M,M_d,M).
- Class A: Purely additive models: (A,N,N), (A,N,A), (A,A,N), (A,A,A), (A,A_d,N) and (A,A_d,A) .
- Class X: Mixed models: (A,M,*), (A,M_d,*), (A,*,M), (M,M,A), (M,M_d,A). (11 models)
- Class Y: Mixed models: (M,A,*), (M,A_d,*) or (M,N,A). (7 models)
- Only Class M can guarantee a sample space restricted to the positive half-line.
- All Class M models converge to 0 if $E(\varepsilon) = 0$
- All Class X models have infinite forecast variance for $h \ge m + 2$ where m is the seasonal period.

Outline

- Exponential smoothing models
- Problems with some of the models
- A new model for positive data
- Conclusions

New models

Let $\delta_t = (1 + \varepsilon_t)$ be a positive random variable.

METS(M,N,N) model

$$y_t = \ell_{t-1} \delta_t$$
$$\ell_t = \ell_{t-1} \delta_t^{\alpha}$$

New models

Let $\delta_t = (1 + \varepsilon_t)$ be a positive random variable.

METS(M,N,N) model

$$y_t = \ell_{t-1} \delta_t$$
$$\ell_t = \ell_{t-1} \delta_t^{\alpha}$$

$$\log(y_t) = \log(\ell_{t-1}) + \log(\delta_t)$$

$$\log(\ell_t) = \log(\ell_{t-1}) + \alpha \log(\delta_t)$$

New models

Let $\delta_t = (1 + \varepsilon_t)$ be a positive random variable.

METS(M,N,N) model

$$y_t = \ell_{t-1} \delta_t$$
$$\ell_t = \ell_{t-1} \delta_t^{\alpha}$$

$$\log(y_t) = \log(\ell_{t-1}) + \log(\delta_t)$$

$$\log(\ell_t) = \log(\ell_{t-1}) + \alpha \log(\delta_t)$$

Thus the log-transformed model is identical to Gaussian ETS(A,N,N) model if δ_t is logNormal with median 1.

Long term forecast behaviour

METS(M,N,N; LN) model

$$y_t = \ell_{t-1} \delta_t$$
$$\ell_t = \ell_{t-1} \delta_t^{\alpha},$$

$$\delta_t \sim \mathsf{logN}(\mu, \omega)$$

Long term forecast behaviour

METS(M,N,N; LN) model

$$y_t = \ell_{t-1} \delta_t$$
$$\ell_t = \ell_{t-1} \delta_t^{\alpha},$$

$$\delta_t \sim \mathsf{logN}(\mu, \omega)$$

Range	$E(\delta^{lpha}_t)$	$E(\delta_t^{lpha/2})$	$E(y_h)$	$V(y_h)$
$\mu + \alpha \omega < 0$	< 1	< 1	Decreasing	Decreasing
$\mu + \alpha \omega = 0$	< 1	< 1	Decreasing	Finite
$-\alpha\omega < \mu < -\alpha\omega/2$	< 1	< 1	Decreasing	Increasing
$\mu + \alpha \omega / 2 = 0$	= 1	< 1	Finite	Increasing
$-\alpha\omega/2 < \mu < -\alpha\omega/4$	> 1	< 1	Increasing	Increasing
$\mu + \alpha \omega / 4 = 0$	> 1	= 1	Increasing	Increasing
$\mu + \alpha \omega / 4 > 0$	> 1	> 1	Increasing	Increasing

Long term forecast behaviour

METS(M,N,N;LN) $\delta_t \sim \log N(\mu, \omega)$:

(a)
$$\mu=lpha\omega/4$$

(b)
$$\mu = 0$$

(c)
$$\mu = -\alpha\omega/4$$

(d)
$$\mu = -3\alpha\omega/8$$

(e)
$$\mu = -\alpha\omega/2$$

(f)
$$\mu = -3\alpha\omega/4$$

Outline

- Exponential smoothing models
- Problems with some of the models
- A new model for positive data
- Conclusions

The standard exponential smoothing state space models all have theoretical problems when constrained to the positive half line.

- The standard exponential smoothing state space models all have theoretical problems when constrained to the positive half line.
- This is not a concern for most short-term forecasting.

- The standard exponential smoothing state space models all have theoretical problems when constrained to the positive half line.
- This is not a concern for most short-term forecasting.
- An alternative formulation has been proposed that avoids these problems.

- The standard exponential smoothing state space models all have theoretical problems when constrained to the positive half line.
- This is not a concern for most short-term forecasting.
- An alternative formulation has been proposed that avoids these problems.
- The ergodic behaviour of the alternative formulation requires careful parameter choice.

- The standard exponential smoothing state space models all have theoretical problems when constrained to the positive half line.
- This is not a concern for most short-term forecasting.
- An alternative formulation has been proposed that avoids these problems.
- The ergodic behaviour of the alternative formulation requires careful parameter choice.

- The standard exponential smoothing state space models all have theoretical problems when constrained to the positive half line.
- This is not a concern for most short-term forecasting.
- An alternative formulation has been proposed that avoids these problems.
- The ergodic behaviour of the alternative formulation requires careful parameter choice.

Paper: www.robhyndman.info

- The standard exponential smoothing state space models all have theoretical problems when constrained to the positive half line.
- This is not a concern for most short-term forecasting.
- An alternative formulation has been proposed that avoids these problems.
- The ergodic behaviour of the alternative formulation requires careful parameter choice.

Paper: www.robhyndman.info

Book: www.exponentialsmoothing.net

