A Short Tutorial on Single-bit Error Correction using Hamming Code

1

Error Detection and Correction

- Basic concept:
 - Extra bits are added to the data bits that we want to represent, to get *codewords*.
 - Codewords are divided into two categories: *valid codewords* and *invalid codewords*.
 - A bit error changes a *valid codeword* to an *invalid codeword*.
- Definition:
 - The *distance* between two codewords C_i and C_j , denoted by *dist* (C_i, C_j) , denotes the number of bit positions in which the codewords differ.
 - Example: distance between codewords 01001 and 11100 is 3.

Invalid Codewords

- We can check whether a given codeword is *valid* or *invalid*.
- For detecting single bit error, the distance between any pair of valid codewords must be at least 2.
 - For detecting k errors, the distance must be at least (k+1).
- For single error correction, the distance must be at least 3.

3

3

Parity Code for Error Detection

- The parity of a given binary word is defined by whether the number of 1's is odd or even.
 - We can add an extra bit, called parity bit, to make the number if 1's in every valid codeword even (say).
 - An example for 3-bit words is shown.
 - Any odd number of bit errors can be detected.

3-bit	Binary	Parity Bit		
0	0	0	0	
0	0	1	1	
0	1	0	1	
0	1	1	0	
1	0	0	1	
1	0	1	0	
1	1	0	0	
1	1	1	1	

Hamming Code for Single Error Correction

- A code with minimum distance of 2k+1 can detect up to k bit errors.
- Basic principle of Hamming code:
 - To each group of m information bits, k parity bits are added to form a (m+k)bit code.
 - Each of the (m+k) bit locations in a codeword is assigned a *value*.
 - 1 to the MSB, 2 to the second MSB, ..., (m+k) to the LSB.
 - k must satisfy the inequality: $2^k \ge m + k + 1$ (e.g. for m=4, k will be 3)
 - The parity check bits are assigned position numbers that are powers of 2 (that is, 1, 2, 4, ...).
 - The parity check bits are computed based on some well-defined formula.

5

5

	b1	b2	b3	b4	b5	b6	b7
Digit	p1	p2	m1	р3	m2	m3	m4
0	0	0	0	0	0	0	0
1	1	1	0	1	0	0	1
2	0	1	0	1	0	1	0
3	1	0	0	0	0	1	1
4	1	0	0	1	1	0	0
5	0	1	0	0	1	0	1
6	1	1	0	0	1	1	0
7	0	0	0	1	1	1	1
8	1	1	1	0	0	0	0
9	0	0	1	1	0	0	1

Example: Hamming Code for BCD (m=4)

 $p1 = m1 \oplus m2 \oplus m4$ (1, 3, 5, 7) $p2 = m1 \oplus m3 \oplus m4$ (2, 3, 6, 7) $p3 = m2 \oplus m3 \oplus m4$ (4, 5, 6, 7)

	1	2	3	4	5	6	7
рЗ	0	0	0	1	1	1	1
p2	0	1	1	0	0	1	1
p1	1	0	1	0	1	0	1

Can be extended to 4-bit binary code as well.

6

How to correct errors?

• Calculate the three check bits:

```
c1 = b1 \oplus b3 \oplus b5 \oplus b7

c2 = b2 \oplus b3 \oplus b6 \oplus b7

c3 = b4 \oplus b5 \oplus b6 \oplus b7
```

- If $c_3c_2c_1 = 000$, there is *no error*.
- Else, the *bit position of the error* is given by c₃c₂c₁.

7

7

Important

• Try it out by hand on a couple of examples before starting with the assignment.