Следствие 3. (Свойства конъюнкции).

- 1) $A, B \vdash A \& B$
- 2) $A \& B \vdash A, B$
- 3) $A \& B \vdash B \& A$

Доказательство.

1 пункт.

- 1) A гипотеза
- В гипотеза
- 3) $\neg \neg B R4$, (2)
- 4) $\neg (A \to \neg B)$ R8, (1) и (3)

2 пункт

- 1) $\neg A$ гипотеза
- 2) $\neg A \rightarrow (A \rightarrow \neg B)$ секвенция 5
- 3) $A \rightarrow \neg B$ MP, (1) и (2)
- 4) $\neg \neg (A \rightarrow \neg B) R4$, (3)

3 пункт.

- 1) $B \to \neg A$ гипотеза
- 2) $\neg \neg A \rightarrow \neg B R7$, (1)
- $3) \ A \rightarrow \neg \neg A$ секвенция 4
- 4) $A \to \neg B$ R1, (3) и (2)

0.1 Непротиворечивость и полнота теории L

Теорема 0.1. Любая теорема теории L есть тавтология.

Доказательство. Легко проверить, что каждая формула, получаемая из схемы аксиомы, будет тавтологией. Φ - тавтология, $\Phi \to \Psi$ - тавтология.

Пусть Ψ - не есть тавтология.

 $(\forall \widetilde{\alpha})\Phi(\alpha) = T, \quad (\Phi \to \Psi)(\alpha) = \Phi(\widetilde{\alpha}) \to \Psi(\widetilde{\alpha}) = T$

То есть

 $\Phi(\widetilde{\alpha}) \to \Psi(\widetilde{\alpha}) = T \to F$

есть противоречие.

Следствие. В теории L нельзя доказать формулу и ее отрицание.

Теорема 0.2. Любая тавтология доказуема в теории L.

Доказательство. Будем считать, что

$$\Phi = \Phi(x_1, \dots, x_n); \quad \widetilde{lpha} = (lpha_1, \dots, lpha_n); \quad \Phi^{\widetilde{lpha}} \leftrightarrows \begin{cases} \Phi, \ \text{если } \Phi(\widetilde{lpha}) = T \\
eg \Phi, \ \text{если } \Phi(\widetilde{lpha}) = F \end{cases}$$

Лемма (Кальмара) $x_1^{\alpha_1}, \dots, x_n^{\alpha_n} \vdash \Phi^{\widetilde{\alpha}}$

Доказательство. (Док-во леммы). Индукция по числу $l(\Phi)$ логических связок в формуле Φ .

Базис: $l(\Phi)=0,$ значит формула Φ есть переменная. $\Phi=x_i$ - переменная.

Тогда очевидна такая секвенция $x_i^{\alpha_i} \vdash x_i^{\alpha_i}$, то есть $x_i \vdash x_i$ или $\neg x_i \vdash \neg x_i$ - очевидно В силу $\vdash (A \to A)$.

Предположение: Пусть утверждение леммы справедливо при любом значении $l(\Phi) \leq n-1, n \geq 1$

Переход: Полагаем, что $l(\Phi) = n$.

1 случай.

$$\begin{split} \Phi &= \neg \Psi, \ \mathrm{где} \ l(\Psi) = n-1 \\ 1.1 \ \Psi(\widetilde{\alpha}) &= F \\ \Phi(\widetilde{\alpha}) &= n, \Phi^{\widetilde{\alpha}} = \Phi, \Psi^{\widetilde{\alpha}} = \neg \Psi \\ \Pi \mathrm{o} \ \mathrm{предположению} \ \mathrm{индукциu} \ x_1^{\alpha_1}, \dots, x_n^{\alpha_n} \vdash \Psi^{\widetilde{\alpha}} = \neg \Psi = \Phi = \Phi^{\widetilde{\alpha}} \\ 1.2 \ \Psi(\widetilde{\alpha}) &= T \\ \Phi(\widetilde{\alpha}) &= F, \quad \Phi^{\widetilde{\alpha}} = \Phi, \quad \Psi^{\widetilde{\alpha}} = \Psi \\ x_1^{\alpha_1}, \dots, x_n^{\alpha_n} \vdash \Psi^{\widetilde{\alpha}} \vdash \neg \neg \Psi = \neg \Phi = \Phi^{\widetilde{\alpha}} \end{split}$$

2 случай.

$$\begin{split} &\Phi = q \to \psi, \text{ где } l(Q) + l(\Psi) = n-1, \quad l(Q), l(\Psi) < n. \\ &2.1 \ Q(\widetilde{\alpha}) = \Psi(\widetilde{\alpha}) = F \\ &Q^{\widetilde{\alpha}} = \neg Q, \Psi^{\widetilde{\alpha}} = \neg \Psi, \Phi(\widetilde{\alpha}) = F \to F = T \\ &\text{По предположению индукции:} \\ &x_1^{\alpha_1}, \ldots, x_n^{\alpha_n} \vdash \neg Q, \neg \Psi; \quad \neg Q \to (Q \to \Psi) \text{ - секвенция 5; } Q \to \Psi \text{ - MP} \\ &x_1^{\alpha_1}, \ldots, x_n^{\alpha_n} \vdash Q \to \Psi = \Phi = \Phi^{\widetilde{\alpha}} \\ &2.2 \ Q(\widetilde{\alpha}) = F \quad \Psi(\widetilde{\alpha}) = T \\ &Q^{\widetilde{\alpha}} = \neg Q, \Psi^{\widetilde{\alpha}} = \Psi, \Phi(\widetilde{\alpha}) = F \to T = T \\ &\text{По предположению индукции:} \\ &x_1^{\alpha_1}, \ldots, x_n^{\alpha_n} \vdash \neg Q, \Psi; \quad \neg Q \to (Q \to \Psi) \text{ - секвенция 5; } Q \to \Psi \text{ - MP} \\ &x_1^{\alpha_1}, \ldots, x_n^{\alpha_n} \vdash Q \to \Psi = \Phi = \Phi^{\widetilde{\alpha}} \\ &2.3 \ Q(\widetilde{\alpha}) = T \quad \Psi(\widetilde{\alpha}) = F \\ &Q^{\widetilde{\alpha}} = Q, \Psi^{\widetilde{\alpha}} = \neg \Psi, \Phi(\widetilde{\alpha}) = T \to F = F \\ &\text{По предположению индукции:} \\ &x_1^{\alpha_1}, \ldots, x_n^{\alpha_n} \vdash Q, \neg \Psi; \neg (Q \to \Psi) \text{ - no R8} \\ &x_1^{\alpha_1}, \ldots, x_n^{\alpha_n} \vdash \neg (Q \to \Psi) = \neg \Phi = \Phi^{\widetilde{\alpha}} \\ &2.4 \ Q(\widetilde{\alpha}) = T \quad \Psi(\widetilde{\alpha}) = T \\ &Q^{\widetilde{\alpha}} = Q, \Psi^{\widetilde{\alpha}} = \Psi, \Phi(\widetilde{\alpha}) = T \to T = T \\ &\text{По предположению индукции:} \\ &x_1^{\alpha_1}, \ldots, x_n^{\alpha_n} \vdash Q, \Psi; \Psi \to (\Phi \to \Psi), Q \to \Psi \text{ - MP} \\ &x_1^{\alpha_1}, \ldots, x_n^{\alpha_n} \vdash (Q \to \Psi) = \Phi = \Phi^{\widetilde{\alpha}} \\ \end{split}$$

Продолжаем доказательство теоремы.

Пусть Φ - тавтология, то есть $(\forall \widetilde{\alpha})(\Phi(\widetilde{\alpha}) = T)$.

В силу леммы: $x_1^{\alpha_1}, \dots, x_n^{\alpha_n} \vdash \Phi \left[(\forall \widetilde{\alpha}) Phi^{\widetilde{\alpha}} = \Phi \right]$

$$\widetilde{\alpha}_1 = (\alpha_1, \dots, \alpha_{n-1}, \neg \alpha_n) \quad x_1^{\alpha_1}, \dots, x_n^{\alpha_n - 1}, x_{n-1}^{\alpha_n} \vdash \Phi$$

То есть

$$x_1^{\alpha_1}, \dots, x_{n-1}^{\alpha_{n-1}} \vdash \Phi,$$

где стало на 1 меньше. Так отсчипываем, пока не получим:

$$x_1^{\alpha_1} \vdash \Phi_1, \neg x_1^{\alpha_1} \vdash \Phi$$
$$\vdash \Phi$$

Следствие. Формула является тавтологией тогда и только тогда, когда она доказуема в теории L.

0.2 Эквивалентные формулы

Определение 1. Две формулы называют эквивалентными, если они выводимы друг из друга

$$\Phi \equiv \Psi \leftrightharpoons \Phi \vdash \Psi \quad \Psi \vdash \Phi$$

$$\Phi \equiv \Psi \iff \vdash (\Phi \to \Psi) \& (\Psi \to \Phi)$$

Также $\Phi \equiv \Psi \Longleftrightarrow \neg \Phi \equiv \neg \Psi$

Утверждение. Если $\Phi \equiv \Psi$, то $(\forall \widetilde{\alpha})(\Phi(\widetilde{\alpha}) = \Psi(\widetilde{\alpha}))$

Примеры эквивалентности.

- 1) $\neg \neg A \equiv A$
- $2) (A \to B) \equiv (\neg B \to \neg A)$
- 3) $\neg (A \lor B) \equiv \neg A \& \neg B \quad \neg (A \& B) \equiv \neg A \lor \neg B$