## Question 1



Figure 1

Ignore the body effect.

- (i) Draw the small signal model for the circuit shown in Figure 1. Ignore all capacitances.
- (ii) Derive an expression for the output conductance g<sub>out</sub> in terms of the small signal parameters of M1 and M2.

Reduce the expression to its simplest form assuming

$$g_{m1} = g_{m2} = g_m, \ g_{ds1} = g_{ds2} = g_{ds}, \ g_m >> g_{ds}$$

(iii) The circuit is to be biased for optimal low-voltage operation. If

$$V_{T} = 0.8V$$

$$(W/L)_{M2} = (W/L)_{M1}$$

calculate the minimum value of the voltage at the output node (i.e. at the drain of M2) for both M1 and M2 to be in saturation and the value of  $V_{BIAS2}$  necessary to achieve this.

Neglect  $\lambda$  for this calculation.

(iv) Repeat the calculations in (iii) if the aspect ratio of M2 is four times that of M1 i.e  $(W/L)_{M2}$ =4\* $(W/L)_{M1}$ 

## Question 2



Assume M1 and M2 are operating in saturation and ignore the body effect.

- (i) Draw the small signal model for the circuit shown in Figure 2. Ignore all capacitances.
- (ii) What is the low-frequency small signal voltage gain  $(v_{out}/v_{in})$ ? Assume that  $g_{m1}>>g_{ds1},g_{ds2}$  and that  $g_{m2}>>g_{ds1},g_{ds2}$
- (iii) What is the input-referred thermal noise voltage in terms of the small signal parameters of M1 and M2, Boltzmann's constant k and temperature T?
- (iv) If a capacitor C<sub>L</sub> is connected between the output node and ground what is the total integrated thermal noise at the output node?

You may assume the following:



For the area underneath the curves to be the same then  $f_n = (\pi/2)^* f_p$ 

(v) Using the result of (iv) calculate the signal-to noise ratio at the output if the input signal  $v_{in}$  is a  $10\text{mV}_{rms}$  sine wave with a frequency much lower than the frequency of the pole at the output node.

For this calculation take  $V_{GS1}$ =1V,  $|V_{GS2}|$ =2.8V,  $|V_T|$  = 0.8V for M1,M2.  $C_L$ =10pF. The drain current of M1 is 100 $\mu$ A.

Assume Boltzmann's constant k=1.38X10<sup>-23</sup>J/oK, temperature T=300oK.

## Question 3



Assume all devices are operating in saturation. Ignore the body effect.

Use M1=M2,  $g_{m1}=g_{m2}=g_{mn}$ ,  $g_{ds1}=g_{ds2}=g_{dsn}$ 

Use M3=M4,  $g_{m3}=g_{m4}=g_{mp}$ ,  $g_{ds3}=g_{ds4}=g_{dsp}$ 

V<sub>C</sub> is the fixed common mode voltage.

A small differential voltage v<sub>id</sub> is applied to the amplifier.

- (i) Derive an expression for the small signal transfer function  $(V_{out}/v_{id})$  of the amplifier in Figure 3 in terms of  $g_m$ ,  $g_{ds}$  and  $C_L$ . Consider only capacitance  $C_L$ .
- (ii) Give expressions for the following: low frequency gain, pole frequency, unity gain frequency.
- (iii) Draw a Bode plot identifying the low-frequency gain, pole frequency, and unity gain frequency.
- (iv) What is the effect on each of the parameters in (ii) if the bias current is doubled? Assume all devices remain in saturation.
- (v) If the signal at the output node is a sine wave given by  $V_{out}$ =Asin $\omega$ t, calculate the maximum frequency such that no slewing occurs. Take A=0.5V, C<sub>I</sub> =10pF. The drain current through M5 is 100 $\mu$ A.