DUALITÉ

Dans tout le problème, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

Si E est un \mathbb{K} -espace vectoriel, on rappelle que l'ensemble des formes linéaires sur E forme un \mathbb{K} -espace vectoriel pour les lois usuelles, appelé espace dual de E, et noté E^* .

On admettra que, même si E n'est pas de dimension finie, tout sous-espace vectoriel de E admet un supplémentaire dans E.

PARTIE A

Soit A une partie non vide de E. On notera A° l'ensemble des formes linéaires $\varphi \in E^{*}$ telles que : $\varphi(x) = 0$ pour tout $x \in A$ (A° s'appelle <u>l'orthogonal</u> de A dans E^{*}). Vérifier les propriétés suivantes :

- 1. Pour toute partie A non vide de E, A° est un sous-espace vectoriel de E^{*} .
- **2.** Pour toutes parties A et B non vides de E, on a : $A \subset B \Rightarrow B^{\circ} \subset A^{\circ}$.
- **3.** Pour toutes parties A et B non vides de E, on a : $(A \cup B)^{\circ} = A^{\circ} \cap B^{\circ}$.
- **4.** Pour toute partie A non vide de E, $A^{\circ} = (\text{Vect}(A))^{\circ}$.
- **5.** Si A est un hyperplan de E, A° est une droite vectorielle de E^{*} .
- **6.** Si A est un sous-espace vectoriel de E, on a l'équivalence : $A^{\circ} = \{0\} \iff A = E$ (pour démontrer l'implication \Rightarrow , on pourra raisonner par l'absurde, et utiliser le fait que si A est strictement inclus dans E, il existe un hyperplan de E contenant A).
- 7. Si A est un sous-espace vectoriel de E, on a l'équivalence : $A^{\circ} = E^{*} \iff A = \{0\}$

PARTIE B

Soit A' une partie non vide de E^* . On notera A'° l'ensemble des vecteurs $x \in E$ tels que : $\varphi(x) = 0$ pour tout $\varphi \in A'$ (A'° s'appelle <u>l'orthogonal</u> de A' dans E). Vérifier les propriétés suivantes :

- 1. Pour toute partie A' non vide de E^* , A'° est un sous-espace vectoriel de E.
- **2.** Pour toutes parties A' et B' non vides de E^* , on a : $A' \subset B' \Rightarrow B'^{\circ} \subset A'^{\circ}$.
- **3.** Pour toutes parties A' et B' non vides de E^* , on a : $(A' \cup B')^{\circ} = A'^{\circ} \cap B'^{\circ}$.
- **4.** Pour toute partie A' non vide de E^* , $A'^{\circ} = (\operatorname{Vect}(A'))^{\circ}$.
- **5.** Pour toute partie non vide A de E, on a : $A \subset (A^{\circ})^{\circ}$.
- **6.** Si A' est un sous-espace vectoriel de E^* , on a l'implication : $A' = E^* \Rightarrow A'^{\circ} = \{0\}$. Montrer, à l'aide d'un contre-exemple, que l'implication réciproque est fausse (on pourra se placer dans $E = \mathbb{R}[X]$).

PARTIE C

Soient E et F deux \mathbb{K} -espaces vectoriels, et $u \in \mathcal{L}(E,F)$. On appelle <u>transposée</u> de u l'application : $\left\{ \begin{array}{c} {}^t u: F^* \to E^* \\ \varphi \mapsto \varphi \circ u \end{array} \right.$

- 1. Montrer que tu est une application linéaire de F^* dans E^* .
- **2.** Montrer que l'application : $u \mapsto {}^t u$ est une application linéaire de $\mathcal{L}(E,F)$ dans $\mathcal{L}(F^*,E^*)$.
- **3.** Soient F, G, H trois \mathbb{K} -espaces vectoriels, $u \in \mathcal{L}(E, F)$ et $v \in \mathcal{L}(F, G)$. Montrer que : ${}^t(v \circ u) = {}^t u \circ {}^t v$.

Dualité PSI* 16-17

- **4.** Montrer que : ${}^t(\mathrm{Id}_E) = \mathrm{Id}_{E^*}$.
- **5.** Soit $u \in \mathcal{L}(E)$, et A un sous-espace vectoriel de E stable par u. Montrer que A° est stable par ${}^{t}u$.
- **6.** Montrer que, si $u \in \mathcal{L}(E, F)$ est bijective, alors ${}^tu \in \mathcal{L}(F^*, E^*)$ est bijective et : $({}^tu)^{-1} = {}^t(u^{-1})$.
- **7.** a) Soit $u \in \mathcal{L}(E, F)$. Montrer que : Ker $({}^tu) = (\operatorname{Im} u)^{\circ}$.
 - **b)** En déduire : u surjective $\iff {}^t u$ injective.
- **8.** a) Soit $u \in \mathcal{L}(E, F)$. Montrer que : Im $({}^tu) = (\operatorname{Ker} u)^{\circ}$.
 - **b)** En déduire : u injective $\iff {}^t u$ surjective.
- 9. On note $E^{**},$ appelé <u>bidual</u> de E, le dual de $E^*.$
 - a) Soit $x \in E$. Démontrer que, pour $\varphi \in E^*$, l'application $\begin{cases} \hat{x}: E^* \to \mathbb{K} \\ \varphi \mapsto \varphi(x) \end{cases}$ est linéaire (ainsi, \hat{x} appartient à E^{**}).
 - **b)** Démontrer que l'application $\left\{ \begin{array}{ccc} \psi: & E \to E^{**} \\ & x \mapsto \hat{x} \end{array} \right.$ est linéaire.
 - c) Démontrer que ψ est injective (ψ est appelée l'injection canonique entre E et son bidual).

PARTIE D

On suppose dans toute cette partie que E est un \mathbb{K} -espace vectoriel de dimension finie, et on note n la dimension sion de E.

1. Soit $\mathscr{B}=(e_1,e_2,\ldots,e_n)$ une base de E. Pour tout $i\in [1,n]$, on note e_i^* la i-ème forme linéaire coordonnée, c'est-à-dire l'application qui à tout vecteur x de E associe sa i-ème coordonnée dans $\mathscr B$:

si
$$x = \sum_{i=1}^{n} x_i e_i$$
 avec $x_i \in \mathbb{K}$, $e_i^*(x) = x_i$.

Montrer que la famille $\mathscr{B}^* = (e_1^*, e_2^*, \dots, e_n^*)$ est une base de E^* (cette base est appelée <u>base duale</u> de la base \mathcal{B}), et que l'on a :

$$\forall (i,j) \in [1;n]^2, \ e_i^*(e_j) = \delta_{ij}.$$

- **2.** Démontrer que ψ est un isomorphisme de E sur E^{**} . En déduire que, pour toute base $(\varphi_1, \varphi_2, \dots \varphi_n)$ de E^* , il existe une base (e_1, e_2, \dots, e_n) de E (appelée base <u>ante-duale</u>) telle que $\varphi_i = e_i^*$ pour tout i.
- 3. Démontrer que, si F est un sous-espace vectoriel de E, alors : $\dim(F) + \dim(F^{\circ}) = \dim(E)$ (si p = dim(F), on pourra utiliser une base (e_1, e_2, \ldots, e_n) de E telle que (e_1, e_2, \ldots, e_p) soit une base de F).
- **4.** Démontrer que, si F' est un sous-espace vectoriel de E^* , alors : $\dim(F') + \dim(F'^{\circ}) = \dim(E)$.
- **5.** En déduire que, si F est un sous-espace vectoriel de E, $(F^{\circ})^{\circ} = F$.
- **6.** a) Montrer que, si A et B sont deux sous-espaces vectoriels de E, on a : $(A \cap B)^{\circ} = A^{\circ} + B^{\circ}$.
 - b) En déduire que, si $(\varphi_1, \varphi_2, \dots \varphi_p)$ et φ sont des formes linéaires sur E, les propriétés suivantes sont équivalentes :

(i)
$$\varphi$$
 est combinaison linéaire de $\varphi_1, \varphi_2, \dots \varphi_p$.
(ii) $\bigcap_{i=1}^p \operatorname{Ker} (\varphi_i) \subset \operatorname{Ker} (\varphi)$.

- 7. Soient E et F deux \mathbb{K} -espaces vectoriels de dimensions finies, et $u \in \mathcal{L}(E,F)$.
 - a) Montrer que u et tu ont même rang.
 - b) Si \mathcal{B}_E et \mathcal{B}_F sont deux bases de E et F respectivement, et si \mathcal{B}^*_E et \mathcal{B}^*_F sont leurs bases duales, et si M est la matrice de u dans les bases \mathcal{B}_E et \mathcal{B}_F , quelle est la matrice de t dans les bases \mathcal{B}^*_F et \mathcal{B}^*_E ?
 - c) En déduire que, si M est une matrice à coefficients dans \mathbb{K} , M et tM ont même rang.

