

Pertemuan ke-2

NOTASI SIGMA DAN DASAR-DASAR STATISTIKA

2.1 Notasi Sigma

n

Rumus:
$$\sum X_i$$
 dibaca sigma X_i , i dari 1 s/d n i = 1

Aturan Penjumlahan:

n n n n
a.
$$\sum (X_i + Y_i + Z_i) = \sum X_i + \sum Y_i + \sum Z_i$$

 $i = 1$ $i = 1$ $i = 1$

c.
$$\sum_{i=1}^{n} k = k + k + ... + k = nk$$

n n
$$(X_i - k)^2 = \sum_{i=1}^{n} (X_i^2 - 2kX_i + k^2)$$

 $i = 1$ $i = 1$

e.
$$\sum_{i=1}^{n} (Y_i - a - bX_i) = \sum_{i=1}^{n} Y_i - na - b \sum_{i=1}^{n} X_i$$
$$i = 1$$

2.2 Pengertian Distribusi Frekuensi

- Distribusi frekuensi adalah yang merupakan penyusunan data ke dalam kelaskelas tertentu dimana setiap individu/item hanya termasuk kedalam salah satu kelas tertentu saja. (Pengelompokkan data berdasarkan kemiripan ciri).
- <u>Tujuannya</u>: untuk mengatur data mentah (belum dikelompokkan) ke dalam bentuk yang rapi tanpa mengurangi inti informasi yang ada.
- <u>Distribusi Frekuensi Numerikal</u> adalah Pengelompokkan data berdasarkan angkaangka tertentu, biasanya disajikan dengan grafik histogram.
- <u>Distribusi Frekuensi Katagorikal</u> adalah Pengelompokkan data berdasarkan kategori-kategori tertentu, biasanya disajikan dengan grafik batang, lingkaran dan gambar.

2.3 Istilah Dalam Distribusi Frekuensi

- 1. Class (Kelas) **adalah** penggolongan data yang dibatasi dengan nilai terendah dan nilai tertinggi yang masing-masing dinamakan batas kelas.
 - Batas Kelas (Class Limit) **adalah** nilai batas dari pada tiap kelas dalam sebuah distribusi, terbagi menjadi States class limit dan Class Bounderies (Tepi kelas).

- Stated Class Limit adalah batas-batas kelas yang tertulis dalam distribusi frekuensi, terdiri dari Lower Class Limit (Batas bawah kelas) dan Upper Class Limit (Batas atas kelas.
- b. Class Bounderies (Tepi kelas) adalah batas kelas yang sebenarnya, terdiri dari Lower class boundary (batas bawah kelas yang sebenarnya) dan upper class boundary (batas atas kelas yang sebenarnya).

- 2. Class Interval/Panjang Kelas/Lebar kelas **merupakan** lebar dari sebuah kelas dan dihitung dari perbedaan antara kedua tepi kelasnya.
- 3. Mid point / Class Mark / Titik tengah **merupakan** rata-rata hitung dari kedua batas kelasnya atau tepi kelasnya.

2.4 Penyusunan Distribusi Frekuensi

- 1. Mamba array data atau data terurut (bila diperlukan)
- 2. Menentukan range (jangkauan) : selisih antara nilai yang terbesar dengan nilai yang terkecil.

$$R = X_{max} - X_{min}$$
.

- Menentukan banyaknya kelas dengan mempergunakan rumus Sturges. K = 1 + 3,3 log N dimana K = banyaknya kelas dan N = jumlah data yang diobservasi.
- 4. Menentukan interval kelas : I = R/K

5. Menentukan batas-batas kelas:

 $tbk = bbk - 0,5(skala\ terkecil)$

tak = bak + 0,5(skala terkecil)

Panjang interval kelas = tak – tbk

Keterangan:

tbk = tepi bawah kelas

bbk = batas bawah kelas

tak = tepi atas kelas

bak = batas atas kelas

- 6. Menentukan titik tengahnya =½ (Batas atas kelas + batas bawah kelas)
- 7. Memasukkan data ke dalam kelas-kelas yang sesuai dengan memakai sistem Tally atau Turus.
- 8. Menyajikan distribusi frekuensi : isi kolom frekuensi sesuai dengan kolom Tally / Turus.

Contoh:

Diketahui data mentah (belum dikelompokkan) nilai ujian statistik 50 mahasiswa sebagai berikut :

Ditanyakan: Buatlah distribusi frekuensi untuk data di atas!

55	48	22	49	78	59	27	41	68	54
34	80	68	42	73	51	76	45	32	53
66	32	64	47	76	58	75	60	35	57
73	38	30	44	54	57	72	67	51	86
25	37	69	71	52	25	47	63	59	64

2.5 Jenis Distribusi Frekuensi

1. Distribusi Frekuensi Kumulatif

Adalah suatu daftar yang memuat frekuensi-frekuensi kumulatif, jika ingin mengetahui banyaknya observasi yang ada di atas atau di bawah suatu nilai tertentu.

2. Distribusi Frekuensi Relatif

Adalah perbandingan daripada frekuensi masingmasing kelas dan jumlah frekuensi seluruhnya dan dinyatakan dalam persen.

- Distribusi Frekuensi kumulatif kurang dari (dari atas) Adalah suatu total frekuensi dari semua nilai-nilai yang lebih kecil dari tepi bawah kelas pada masing-masing interval kelasnya.
- Distribusi Frekuensi kumulatif lebih dari (dari bawah) Adalah suatu total frekuensi dari semua nilai-nilai yang lebih besar dari tepi bawah kelas pada masing-masing interval kelasnya.
- Distribusi Frekuensi kumulatif relatif

 Adalah suatu total frekuensi dengan menggunakan persentasi.

Mengaktifkan Analisys ToolPack Pada Excel 2003

- **1.** Pada menu menu utama, pilih *Tools*
- 2. Pilih Add-Ins
- 3. Berikan tanda check pada Analysis Toolpak, kemudian klik OK

Mengaktifkan Analisys ToolPack Pada Excel 2007

- 1. Klik Office Button, pilih Excel Options
- 2. Pilih Add-Ins
- 3. Pada pilihan Manage, pilih Excel-Add-ins, lalu klik Go
- 3. Berikan tanda *check* pada *Analysis ToolPack*, Kemudian klik Ok

Mengaktifkan Analisys ToolPack Pada Excel 2010

- 1. Pada menu File pilih Options
- 2. Pada Excel Options, Pilih Add-Ins
- 3. Pada pilihan Manage, pilih Excel Add-ins, lalu klik Go
- 4. Berikan tanda check pada Analysis ToolPack, Kemudian klik OK

Pembuatan Distribusi Frekuensi dan Histogram dengan Excel 2003

Misalkan terhadap 20 observasi pada range (A1:A20)

Akan dibuat distribusi frekuensi dengan kelas yang terdiri dari 5 kelas: 10-14, 15-19, 20-24, 25-29, dan 30-34

Langkah-langkahnya sbb:

- 1. Masukkan data pada range (A1:A20)
- 2. Masukkan bin (batas atas) pada range (D4:D9)
- 3. Pilih menu Tools pada menu utama
- 4. Pilih Data Analysis
- 5. Pilih Histogram pada Analysis Tools
- 6. Ketika kotak dialog muncul,
 - Pada kotak *Input Range*, sorot A1 sampai A20
 - Pada kotak Bin Range, sorot D4 sampai D9
 - Pada kotak output range, ketik D12
 - Berikan tanda check pada Chart Output
 - Berikan tanda check pada *Cumulative*, kemudian klik *OK*

Pembuatan Distribusi Frekuensi dan Histogram dengan Excel 2007 / 2010

Misal terdapat 20 observasi yang berada pada range (A1:A20) akan dibuat distribusi frekuensi yang terdiri dari 5 kelas yaitu: 10-14, 15-19, 20-24, 25-29, dan 30-34

Langkah-langkahnya sbb:

- 1. Masukkan data pada range (A1: A20)
- 2. Masukkan bin (batas atas) pada range (D4: D9)
- 3. Pilih menu *Data* pada menu utama
- 4. Pilih Data Analysis
- 5. Pilih *Histogram* pada *Analysis Tools*
- 6. Ketika kotak dialog muncul,
 - Pada kotak *Input Range*, sorot A1 sampai A20
 - Pada kotak *Bin Range* , sorot D4 sampai D9
 - Pada kotak *output range*, ketik D12
 - Berikan tanda check pada Cumulative Percentage
 - Berikan tanda check pada Chart Output , kemudian klik OK

	Α	В	С	D	Е	F	G
1	12						
2	15						
3	31			Bin(batas	s atas)		
4	27			14			
5	28			19			
6	30			24			
7	25			25			
8	33			29			
9	21			34			
10	12						
11	10						
12	22			Bin	Frequency	Cumulative %	
13	20			14	3	15.00%	
14	15			19	5	40.00%	
15	19			24	4	60.00%	
16	18			25	1	65.00%	
17	23			29	2	75.00%	
18	30			34	5	100.00%	
19	31			More	0	100.00%	
20	19						
21							

Membuat Tabel distribusi frekuensi menggunakan SPSS

Terbagi menjadi dua tahap

- 1. Transformasi data (recode)
- 2. Statistik Deskripsi

Recode (tranformasi data)

- 1. Definisikan variabel data misal x
- 2. Ketik datanya
- 3. Klik menu *Transform*, pilih *Recode*, pilih *into diff. variable*
- 4. Masukkan variabel data pada *Input Variabel*
- 5. Ketik nama variabel baru (misal x1) dan klik *Change*
- 6. Klik old & new values
- 7. Isikan kelas-kelas sesuai yang diinginkan pada kotak *Range*
- 8. Masukkan ke kotak $old \rightarrow new$
- 9. Ketik nilai baru misal kelas 1 untuk 0 sampai 14 ,dst.
- 10. Klik Continue

Distribusi Frekuensi

- 1. Klik menu *Analyze*
- 2. Pilih Descriptive Statistics dan pilih Frequencies
- 3. Masukkan varibel baru (x1) kedalam kotak *Variable(s)*
- 4. Klik Statistics dan klik ukuran statistics yang diinginkan dan klik Continue
- 5. Klik Chart, pilih Histogram dan klik Continue
- 6. Klik *OK*

Hasilnya bisa dilihat pada output viewer

Data view

Recode dialog

Frequencies dialog

2.6 Ukuran Gejala Pusat Data Belum Dikelompokkan

1. Rata-rata hitung adalah nilai yang mewakili sekelompok data.

$$x = \mu = 1/N \sum x_i = 1/N \{ x_1 + x_2 + ... + x_n \}$$

 Rata-rata Ukur/Geometri dari sejumlah N nilai data adalah akar pangkat N dari hasil kali masing-masing nilai dari kelompok tersebut.

$$G = N\sqrt{X_1. X_2. ... X_N}$$
 atau

$$\log G = (\sum \log X_i) / N$$

3. Rata-rata Harmonis dari seperangkat data X_1 , X_2 , ..., X_N adalah kebalikan rata-rata hitung dari kebalikan nilai-nilai data.

$$R_{H} = N$$

$$\sum (1 / X_{i})$$

4. Rata-rata tertimbang, jika nilai data Xi mempunyai timbangan W_i, adalah

$$x = \sum X_{i} \cdot W_{i}$$

$$\sum W_{i}$$

 Median adalah suatu ukuran pemusatan yang menempati posisi tengah jika data diurutkan menurut besarnya.

Posisi tengah dari seperangkat data sebanyak N yang telah terurut terletak pada posisi yang

$$ke (N + 1)/2.$$

Jika N ganjil : N = 2k + 1 maka Med = X_{k+1}

Jika N genap : N = 2k maka

$$Med = \frac{1}{2} (X_k + X_{k+1})$$

6. Modus adalah nilai yang paling sering muncul dari serangkaian data atau yang mempunyai frekuensi paling tinggi.

- 7. Kuartil adalah Fraktil yang membagi seperangkat data menjadi empat bagian yang sama.
 - Kuartil: Q_i = nilai yang ke i(n+1)/4, i = 1, 2, 3
- 8. Desil adalah Fraktil yang membagi seperangkat data menjadi sepuluh bagian yang sama.
 - Desil: $D_i = nilai yang ke i(n+1) / 10, i = 1, 2, ..., 9$
- 9. Persentil adalah Fraktil yang membagi seperangkat data menjadi seratus bagian yang sama.
 - Persentil: $P_i = nilai yang ke i(n+1) / 100, i = 1, 2, ..., 99$

Menentukan Ukuran Statistika Dengan Excel

Langkah-langkahnya:

- 1. Masukkan data pada range (A1: A20)
 - 2. Pilih menu Data pada menu utama
 - 3. Pilih Data Analysis
- 4. Pilih *Deskriptive Statistics* pada kotak *Analysis Tools* lalu klik *OK*

Ketika Box Dialog muncul:

- Pada kotak *Input Range*, Sorot pada sel A1...A12
- Pada kotak Output Range , Klik pada sel C2
- Berikan tanda check pada Summary Statistics , kemudian klik OK

Aplikasi dengan Excel

	Α	В	С	D	E
1	45				
2	87		Colum		
3	56				
4	98		Mean	66.6	
5	87		Standard Error	4.176626692	
6	56		Median	65	
7	55		Mode	45	
8	81		Standard Deviation	18.6784424	
9	83		Sample Variance	348.8842105	
10	65		Kurtosis	-1.317730683	
11	94		Skewness	0.284220377	
12	92		Range	58	
13	45		Minimum	40	
14	56		Maximum	98	
15	65		Sum	1332	
16	69		Count	20	
17	48				
18	65				
19	40				
20	45				
21					

Dengan SPSS

- Definisikan variabel nilai pada variable view
- Ketik data pada data view
- Klik menu analyze, pilih descriptive statistics, pilih descriptive
- Masukkan variabel nilai pada kotak variabel
- Klik option dan aktifkan ukuran statistik yang diperlukan dan klik Continue dan OK.

