Matematiktävling för elever i SJUNDE ÅRSKURSEN I ULEÅBORG 13.2.2013

 Tid: 50 minuter. Det är inte tillåtet att använda miniräknare, dator, tabellböcker, osv. Rätt svar: 1 poäng, fel svar/inget svar: 0 poäng Problemen är inte i någon speciell ordningm men de första är troligen lättare än de sista
1. Golvet i ett rum är 5×4 meter, och rummets höjd är $2,5$ meter. En burk färg räcker för evägg av storleken $4 \times 2,5$ -meter. Hur många burkar färg behövs för hela rummet (golv, vägga och tak)?
a) 8 b) $8\frac{1}{2}$ c) 9 d) $9\frac{1}{2}$ e) 10
2. En matteklubb har 27,67€, och medlemmarna beslutar att de vill köpa så många räknes tickor som möjligt. En lokal räknesticksfabrik säljer räknestickor för 2,5€ styck men ger 5 rabatt för varje sats på åtta stickor. Hur många räknestickor kan matteklubben köpa?
a) 10 b) 11 c) 12 d) 13 e) 14
3. Summan av tre efter varandra följande jämna tal är 144. Vad är det mellersta talet?
 a) 24 b) 46 c) 48 d) 50 e) Det finns inga sådana tal.
4. På kökets vägg finns det en 2×5 -rektangel som borde täckas med 2×1 -formiga platto Hur många olika möjligheter finns det?
a) fem b) sex c) sju d) åtta e) nio
5. Vad är den 5. sista siffran i talet $1 \cdot 2 \cdot 3 \cdot 4 \cdot \dots \cdot 100$?
a) 0 b) 1 c) 2 d) 3 e) 4
6. Bottnen på en färgburk är en cirkel med diameter $20\mathrm{cm}$. Burken är $20\mathrm{cm}$ hög. En låd är $21\mathrm{cm}\times 100\mathrm{cm}\times 39\mathrm{cm}$. Hur många färgburkar kan placeras in i lådan?
a) inte mer än 5 b) 6 c) 7 d) 8 e) minst 9

7. Hur många sådana hela tal finns det att talet är delbar med summan av sina siffror?

a) inga **b**) 9 **c)** 10 **d**) 42 e) oändligt många

8. Mittpunkterna på sidorna i en rektangel förbinds med sträckor så att det bildas en mindre fyrhörning, och sedan förbinds mittpunkterna på sidorna i denna mindre fyrhörning så att det bildas en ännu mindre rektangel:

Hur många procent är den minsta rektangelns area av den största rektangelns area?

b) 25% **a)** 20% **d)** 35% **c)** 30% **e)** 40% **9.** Vi vill nu använda ett helt nytt tal som kallas i, och vi beslutar att $i^2 = -1$. Vad är (1+i)(1+2i)(1+3i)? **a)** 8i **b)** 10 **c)** -10 **d)** 8 **e)** -8 $10.\,$ I nästa figur finns det en kvadrat och en regelbunden femhörning med en gemensam sida

Hur stor är den utmärkta vinkeln?

- **a)** 5° **b)** 6° **c)** 7° **d)** 8° **e)** 9°

11. Talen

$$0^2$$
, 1^2 , 2^2 , 3^2 , 4^2 , ..., dvs 0 , 1 , 4 , 9 , 16 ,

kallas kvadrater. Vad kan resten vara när en kvadrat divideras med åtta?

12. En parallellogram är en fyrhörning vars motsatta sidor är parallella. Till exempel:

Vilket av följande påståenden är sant för några men inte alla parallellogram:

- Diagonalerna halverar varandra.
- b) Varje sida är lika lång som den motsatta parallella sidan.
- Den fyrhörning som bildas av mittpunkterna på sidorna har en area som är hälften av arean av den ursprungliga parallellogrammen.
- Summan av vinklarna är 360° . d)
- Diagonalerna skär varandra i en rät vinkel.

13. Hur många sådana heltalspar x och y finns det att $x^2 + y^2 \le 25$?

a) inga

- d) mer än 200, men mindre än tusen
- b) ett eller mer men inte mer än tio
- e) mer än tusen
- c) mer än tio men inte mer än 200