高等数学 I 总结

易鹏 中山大学

内部版本号: V5.08.48 (内测版)

2020年8月25日

目录

第1章	函数与极限·····	1
1.1	利用定义证明极限·····	1
	1.1.1 自变量趋于有限值时函数的极限 · · · · · · · · · · · · · · · · · · ·	1
	1.1.2 自变量趋于无穷大时函数的极限 · · · · · · · · · · · · · · · · · · ·	1
	1.1.3 无穷小与无穷大·····	2
	1.1.4 单侧极限 · · · · · · · · · · · · · · · · · · ·	2
	1.1.5 利用定义求函数的极限的解题方法·····	2
	1.1.6 证明函数的极限不存在的方法·····	4
1.2	利用极限运算法则和两个准则求极限 · · · · · · · · · · · · · · · · · · ·	4
	1.2.1 极限运算法则 · · · · · · · · · · · · · · · · · · ·	4
	1.2.2 极限运算准则 · · · · · · · · · · · · · · · · · · ·	5
	1.2.3 例题 · · · · · · · · · · · · · · · · · ·	5
1.3	利用等价无穷小求极限 · · · · · · · · · · · · · · · · · · ·	6
	1.3.1 无穷小的分类 · · · · · · · · · · · · · · · · · · ·	6
	1.3.2 常见的等价无穷小·····	7
	1.3.3 等价无穷小求极限的本质·····	7
	1.3.4 例题 · · · · · · · · · · · · · · · · · ·	8
1.4	函数连续性	.0
	1.4.1 函数连续性的定义 · · · · · · · · · · · · · · · · · · ·	11
	1.4.2 函数的间断点 · · · · · · · · · · · · · · · · · · ·	11
第2章	重积分······1	3
2.1	二重积分 · · · · · · · · · · · · · · · · · · ·	.3
	2.1.1 二重积分的定义·····	13
	2.1.2 二重积分的性质 · · · · · · · · · · · · · · · · · · ·	13
	2.1.3 二重积分的计算·····	14
	2.1.4 二重积分的几何应用·····	15
2.2	三重积分 · · · · · · · · · · · · · · · · · · ·	15
	2.2.1 三重积分的定义······	15

	2	.2.2 三重积分的性质······	15
	2	2.3 三重积分的计算	16
	2	.2.4 三重积分的几何应用·····	17
第 3 :	章	曲线积分和曲面积分·····	19
3	.1	第一型曲线积分 · · · · · · · · · · · · · · · · · · ·	19
	3	.1.1 第一型曲线积分的基本概念 · · · · · · · · · · · · · · · · · · ·	19
	3	.1.2 第一型曲线积分的基本性质 · · · · · · · · · · · · · · · · · · ·	19
	3	.1.3 第一型曲线积分的计算 · · · · · · · · · · · · · · · · · · ·	19
3	.2	第二型曲线积分 · · · · · · · · · · · · · · · · · · ·	20
	3	.2.1 第二型曲线积分的基本概念 · · · · · · · · · · · · · · · · · · ·	20
	3	.2.2 第二型曲线积分的基本性质 · · · · · · · · · · · · · · · · · · ·	20
	3	.2.3 第二型曲线积分的计算 · · · · · · · · · · · · · · · · · · ·	21
	3	.2.4 第二型曲面积分与路径无关的判定····································	22
3	.3	第一型曲面积分 · · · · · · · · · · · · · · · · · · ·	22
	3	3.1 第一型曲面的基本概念 · · · · · · · · · · · · · · · · · · ·	22
	3	.3.2 第一型曲面积分的基本性质 · · · · · · · · · · · · · · · · · · ·	22
	3	.3.3 第一型曲面积分的计算 · · · · · · · · · · · · · · · · · · ·	23
3	.4	第二型曲面积分 · · · · · · · · · · · · · · · · · · ·	23
	3	.4.1 第二型曲面积分的基本概念 · · · · · · · · · · · · · · · · · · ·	23
	3	.4.2 第二型曲面积分的基本性质 · · · · · · · · · · · · · · · · · · ·	24
	3	.4.3 第二型曲面积分与第一型曲面积分的关系 · · · · · · · · · · · · · · · · · · ·	24
	3	.4.4 第二型曲面积分的计算 · · · · · · · · · · · · · · · · · · ·	25
3	.5	斯托克斯公式 · · · · · · · · · · · · · · · · · · ·	2 6
3	.6	积分的特点	26
	3	6.1 积分区域的可代入性·····	26
	3	.6.2 多元函数的奇偶性 · · · · · · · · · · · · · · · · · · ·	26
3	.7	积分的轮换对称性	27
3	.8	积分的奇偶对称性	27
第 4 i	章	常微分方程・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	31
4	.1	一阶微分方程·····	31
		1.1 可分离变量的方程 · · · · · · · · · · · · · · · · · · ·	
4	.2	一阶线性微分方程· · · · · · · · · · · · · · · · · · ·	32
		.2.1 一阶线性齐次微分方程····································	

	4.3	全微	分方程与积分因子 · · · · · · · · · · · · · · · · · · ·	· · 33
		4.3.1	全微分方程・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· · 33
		4.3.2	积分因子 · · · · · · · · · · · · · · · · · · ·	· · 34
	4.4	可降	阶的二阶微分方程 · · · · · · · · · · · · · · · · · · ·	· · 34
	4.5	高阶	线性微分方程・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· · 35
		4.5.1	二阶线性齐次微分方程 · · · · · · · · · · · · · · · · · · ·	· · 35
		4.5.2	二阶线性非齐次微分方程	• • 36
	4.6	二阶	线性常系数微分方程·····	· 37
		4.6.1	二阶线性常系数齐次微分方程·····	· · 37
		4.6.2	二阶线性常系数非齐次微分方程 · · · · · · · · · · · · · · · · · · ·	38
附录				• 41
	a.	索引		. 41

第 1 章 函数与极限

1.1 利用定义证明极限

1.1.1 自变量趋于有限值时函数的极限

定义 1.1.1 函数极限 1

设函数 f(x) 在点 x_0 的某一去心邻域¹内有定义. 如果存在常数 A, 对于任意给定的正数 ε (不论它多么小),总存在正数 δ 使得当 x 满足不等式 $0<|x-x_0|<\delta$ 时, 对应的函数值 f(x) 都满足不等式

$$|f(x) - A| < \varepsilon \tag{1.1}$$

那么常数 A 就叫做函数 f(x) 当 $x \to x_0$ 的极限, 记作

图 1.1: 极限的定义图解

1.1.2 自变量趋于无穷大时函数的极限

定义 1.1.2 函数极限 2

设函数 f(x) 在当 |x| 大于某一正数时恒有定义. 如果存在常数 A, 对于任意给定的正数 ε (不论它多么小), 总存在正数 X 使得当 x 满足不等式 |x|>X 时, 对应的函数值 f(x) 都满足不等式

$$|f(x) - A| < \varepsilon \tag{1.3}$$

那么常数 A 就叫做函数 f(x) 当 $x \to x_0$ 的极限, 记作

$$\lim_{x \to \infty} f(x) = A \quad \mathbf{g} \quad f(x) \to A(x \to \infty) \tag{1.4}$$

 $^{^1}$ 去心邻域指的是以 x_0 为中心的连续区间 $U(x_0)$ 去掉中心 x_0 后的新区间, 记为 $U^\circ(x_0)$. 特别注意的是, 去心邻域仅在中心 x_0 处没有定义, 其它点都有定义.

2 第1章 函数与极限

1.1.3 无穷小与无穷大

定义 1.1.3 无穷小

如果函数 f(x) 当 $x \to x_0$ (或 $x \to \infty$) 时的极限为 0, 那么称函数 f(x) 为当 $x \to x_0$ (或 $x \to \infty$) 时的无穷小. 记为

$$\lim_{x \to x_0} f(x) = 0, \lim_{x \to \infty} f(x) = 0.$$
 (1.5)

特别地, 以 0 为极限的数列 x_n 称为 $n \to \infty$ 时的无穷小.

定义 1.1.4 无穷大

设函数 f(x) 在 x_0 的某一去心邻域内有定义(或 |x| 趋于某一正数时有定义)。如果对于任意给定的正数 M(不论它多么大),总存在正数 $\delta($ 或正数 X),只要 x 适合不等式 $0<|x-x_0|<\delta($ 或 |x|>X),对应函数值 f(x) 总满足不等式

那么称函数 f(x) 为当 $x \to x_0$ (或 $x \to \infty$) 时的无穷大. 记为

$$\lim_{x \to x_0} f(x) = \infty, \lim_{x \to \infty} f(x) = \infty.$$
 (1.6)

1.1.4 单侧极限

定义 1.1.5 左极限

在 $\lim_{x \to x_0} f(x) = A$ 的定义中, 把 $0 < |x - x_0| < \delta$ 改为 $x_0 - \delta < x < x_0$, 那么 A 就叫做函数 f(x) 当 $x \to x_0$ 时的左极限. 记作

$$\lim_{x \to x_0^-} f(x) = A \quad \vec{\mathbf{x}} \quad f(x_0^-) = A \quad \vec{\mathbf{x}} \quad \lim_{x \to x_0^-} f(x) = A \tag{1.7}$$

定义 1.1.6 右极限

在 $\lim_{x \to x_0} f(x) = A$ 的定义中, 把 $0 < |x - x_0| < \delta$ 改为 $x_0 < x < x_0 + \delta$, 那么 A 就叫做函数 f(x) 当 $x \to x_0$ 时的右极限. 记作

$$\lim_{x \to x_0^+} f(x) = A \quad \mathbf{g} \quad f(x_0^+) = A \quad \mathbf{g} \quad \lim_{x \to x_0 + 0} f(x) = A \tag{1.8}$$

1.1.5 利用定义求函数的极限的解题方法

题型 1.1 可以直接求得 δ 与 ϵ 的关系

任意一个 ε 满足 $|f(x)-A|<\varepsilon$, 都能找到一个正数 δ 使 $0<|x-x_0|<\delta$ 或 $|x|>\delta$, 这就说明了 ε 与 δ 有个对应关系, 即

$$\delta = \varphi(\varepsilon) \tag{1.9}$$

 $\delta=\varphi(\varepsilon)$ 这个关于 ε 的函数可以是任意的. 所以我们利用极限的定义来证明某个函数的极限时, 只需找到 ε 和 δ 之间的对应关系. 这时, 我们可以先利用 $|f(x)-A|<\varepsilon$ 这个条件, 然后构造出 $|x-x_0|<\varphi(\varepsilon)$ 的形式即可.(对于求数列的极限时 δ 换成 N 即可.)

例 1.1 证明下列极限

1.1 利用定义证明极限 3

1.
$$\lim_{x \to 3} 2x - 1 = 5$$

证 设
$$\exists \delta, \forall \varepsilon$$
,当 $0 < |x-3| < \delta$ 时, $|2x-1-5| = |2x-6| = 2|x-3| < \varepsilon$ 【构造 $|x-x_0| < \varphi(\varepsilon)$ 】 即 $|x-3| < \frac{\varepsilon}{2}$,故取 $\delta = \frac{\varepsilon}{2}$ 时成立,证毕.

2.
$$\lim_{x \to \infty} \frac{1}{x} = 0$$

证 设
$$\exists N, \forall \varepsilon$$
,当 $|x| > N$ 时, $\left| \frac{1}{x} - 0 \right| = \left| \frac{1}{x} \right| < \varepsilon$ 【构造 $|x - x_0| < \varphi(\varepsilon)$ 】

即 $|x|>rac{1}{arepsilon},$ 故取 $N=rac{1}{arepsilon}$ 时成立,证毕.

题型 1.2 不能直接求得 δ 与 ϵ 的关系

【方法一】放缩法

这个时候我们可以将 |f(x) - A| 进行适当的放大, 使得 δ 与 ε 的关系容易求得, 一般的放缩方法有:

- (1) 将分母恒大于零的部分 (可以含 x) 删去;
- (2) 将分子恒小于零的部分删去 (可以含 x);
- (3) 将幂函数的底数部分进行放缩.

例 1.2 证明
$$\lim_{x\to 1} \sqrt{3x+1} = 2$$
.

证 设
$$\exists \delta, \forall \varepsilon$$
,当 $0 < |x-1| < \delta$ 时, $|\sqrt{3x+1}-2| = \frac{3(x-1)}{\sqrt{3x+1}+2} \le \frac{3}{2}|x-1| < \varepsilon$ 【放缩构造】 即 $|x-1| < \frac{2}{3}\varepsilon$,又 $\sqrt{3x+1}$ 定义域为 $x > -\frac{1}{3}$,那么 $x-1 > -\frac{4}{3}$,在一定范围内有 $|x-1| < \frac{4}{3}$ 【判断定义域】 故取 $\delta = \min\left\{\frac{2}{3}\varepsilon, \frac{4}{3}\right\}$ 时成立,证毕.

【方法二】先设后求再取值法

放缩不是唯一的方法, 我们还可以先设后求再取 δ 最小值.

- (1) 先化简式子, 且含 |x-a| 项, 这个时候可以用该方法;
- (2) 设 δ 的值为 f(a) (可以含 a, x, 也可以是常数);
- (3) 解出 x 的范围, 对非 |x-a| 的项进行放缩, 将式子放大, 同时使得非 |x-a| 的项转换为常量;
- (4) 反解出 $\delta = \varphi(\varepsilon)$;
- (5) \mathbf{R} $\delta = \min\{f(a), \varphi(\varepsilon)\}.$

当然通常放缩法和先设后求再取值法会结合用,这样就可以解决大部分题目.

但是在后面的证明过程中, 一般简单的函数极限可以直接用, 所以一般情况下不会用定义证明极限.

例 1.3 证明
$$\lim_{x \to a} x^2 = a^2$$

[证] 由于
$$|x^2 - a^2| = |(x - a)(x + a)| = |x - a| \cdot |x + a|$$
, 【找到 $|x - a|$ 项】

4 第 1 章 函数与极限

设 $|x-a|<\frac{1}{2},$ 则 $|x+a|=|x-a+2a|\leq |x-a|+|2a|<\frac{1}{2}+|2a|.$ 【赋值 |x-a| 项, 并放缩得出未知项的范围】 所以,设 $\exists \delta, \forall \varepsilon$,当 $0<|x-1|<\delta$ 时, $|x^2-a^2|=|x-a|\cdot |x+a|<\left(\frac{1}{2}+|2a|\right)|x-a|<\varepsilon$, 即 $|x-a|<\frac{\varepsilon}{\frac{1}{2}+2|a|}$. 【反解出 |x-a| 的范围】 故取 $\delta=\min\left\{\frac{\varepsilon}{\frac{1}{2}+2|a|},\frac{1}{2}\right\}$ 时成立,证毕.

1.1.6 证明函数的极限不存在的方法

定理 1.1.1 序列极限

设函数 f(x) 在 a 点的一个空心邻域内有定义,并且 $\lim_{x\to a}f(x)=l$. 假若是一串在该空心邻域内取值的序列,且

$$\lim_{n\to\infty} x_n = a$$

则有

$$\lim_{n \to \infty} f(x_n) = l \tag{1.10}$$

这个定理为我们提供了一种证明函数极限不存在的办法: 对于一个定义在 a 点的某空心邻域内的函数 f(x),如果能找到两串序列 $\{x_n'\}$ 与 $\{x_n''\}$ 它们都在 a 的该空心邻域内取值, 且当 $n\to\infty$ 时都以 a 为极限, 而极限 $\lim_{n\to\infty}x_n'$ 与 $\lim_{n\to\infty}x_n''$ 都存在但不相等, 则 f(x) 在 $x\to a$ 时不可能有极限.

题型 1.3 证明函数的极限不存在

例 1.4 证明: 函数 $\sin \frac{1}{x}$ 在 $x \to 0$ 时没有极限.

取
$$x_n' = \frac{1}{2n\pi}$$
,则 $\sin \frac{1}{x_n'} = 0$; 而取 $x_n'' = \frac{1}{2n\pi + \frac{\pi}{2}}$,则 $\sin \frac{1}{x_n'} = 1$.

这时由于 $n \to \infty \Rightarrow x'_n \to 0, x''_n \to 0$, 且

$$\lim_{n \to \infty} \sin \frac{1}{x'_n} \neq \lim_{n \to \infty} \sin \frac{1}{x''_n}$$

因此, 函数 $\sin \frac{1}{x}$ 在 $x \to 0$ 时没有极限.

1.2 利用极限运算法则和两个准则求极限

1.2.1 极限运算法则

定理 1.2.1 极限运算法则 1

两个无穷小的和是无穷小.

推论 1.1 有限个无穷小的和是无穷小.

定理 1.2.2 极限运算法则 2

有界函数与无穷小的乘积是无穷小.

推论 1.2 常数与无穷小的乘积是无穷小.

推论 1.3 有限个无穷小的乘积是无穷小.

定理 1.2.3 极限运算法则 3

如果 $\lim f(x) = A, \lim g(x) = B$ (这些函数都必须存在极限), 那么

$$\lim[f(x) \pm g(x)] = \lim f(x) \pm \lim g(x) = A \pm B \tag{1.11}$$

$$\lim[f(x) \cdot g(x)] = \lim f(x) \cdot \lim g(x) = A \cdot B \tag{1.12}$$

若 $B \neq 0$, 那么

$$\lim \left[\frac{f(x)}{g(x)} \right] = \frac{\lim f(x)}{\lim g(x)} = \frac{A}{B}$$
 (1.13)

推论 1.4 如果 $\lim f(x)$ 存在, 而 c 为常数, 那么

$$\lim[cf(x)] = c\lim f(x) \tag{1.14}$$

推论 1.5 如果 $\lim f(x)$ 存在而 n 为正整数, 那么

$$\lim[f(x)]^n = [\lim f(x)]^n \tag{1.15}$$

定理 1.2.4 极限运算法则 4

如果 $\varphi(x) \ge \psi(x)$, 而 $\lim \varphi(x) = A$, $\lim \psi(x) = B$, 则 $A \ge B$.

1.2.2 极限运算准则

定理 1.2.5 单调有界数列极限一定存在

- (1) 若 $x_{n+1} \le x_n(n$ 为正整数), 且 $x_n \ge m$, 则 $\lim_{n \to \infty} x_n = A$ 存在, 且 $A \ge m$;
- (2) 若 $x_{n+1} \geq x_n(n$ 为正整数), 且 $x_n \leq M$, 则 $\lim_{n \to \infty} x_n = A$ 存在, 且 $A \leq M$.

定理 1.2.6 夹逼定理

设
$$g(x) \leq f(x) \leq h(x)$$
, 若 $\lim_{x \to m} g(x) = A$, $\lim_{x \to m} = A$, $(-\infty \leq m \leq +\infty)$ 则 $\lim_{x \to m} f(x) = A$.

1.2.3 例题

题型 1.4 利用极限运算法则和两个准则求极限

例 1.5 证明: $\lim_{n \to \infty} q^n = 0.(|q| < 1)$

6 第 1 章 函数与极限

又 $\lim_{n\to\infty}\frac{1}{na}=0$, $\lim_{n\to\infty}0=0$, 由夹逼定理可得

$$\lim_{n \to \infty} 0 \le \lim_{n \to \infty} q^n \le \lim_{n \to \infty} \frac{1}{na}$$

故 $\lim_{n\to\infty} q^n = 0.$

例 1.6 证明: $a_n = \frac{a^n}{n!} (a$ 是大于 1 的任意常数) 存在极限.

$$0 \le a_n = \frac{a^{[a]}}{[a]!} \cdot \frac{a}{[a]+1} \cdot \frac{a}{[a]+2} \cdot \dots \cdot \frac{a}{n} < \frac{a^{[a]}}{[a]!} \cdot \frac{a}{n}$$

注意到 $\frac{a^{[a]}}{[a]!}$ 是一个常数,所以 $\lim_{n \to \infty} \frac{a^{[a]}}{[a]!} \cdot \frac{a}{n} = 0$,由夹逼定理可得

$$\lim_{n\to\infty} a_n = 0.$$

例 1.7 设常数 a > 1, 对于任意自然数 k, 证明:

$$\lim_{n \to \infty} \frac{n^k}{a^n} = 0.$$

证 令 t = a - 1, 则 t > 0, 那么

$$a_n = (1+t)^n = 1 + nt + \frac{n(n-1)}{2!}t^2 + \dots + \frac{n(n-1)\cdot(n-k)}{(k+1)!}t^{k+1} + \dots + t^n,$$

因此, 当 n>1 时, $a^n>\frac{n(n-1)\cdots(n-k)}{(k+1)!}t^{k+1}$, 于是

$$0 \le \frac{n^k}{a^n} \le \frac{n^k}{\underbrace{n(n-1)\cdots(n-k)}_{(k+1)!}t^{k+1}} = \frac{(k+1)!}{t^{k+1}} \cdot \frac{n^k}{n(n-1)\cdots(n-k)} = \frac{(k+1)!}{t^{k+1}} \cdot \frac{n^k}{\lambda_{k+1}n^{k+1} + \lambda_k n^k + \cdots + \lambda_1 n + \lambda_0}$$

其中 $\lambda_0, \lambda_1, \cdots, \lambda_{k+1}$ 均为非零常数. 注意到 $\frac{(k+1)!}{t^{k+1}}$ 为常数, 则

$$\lim_{n \to \infty} \frac{(k+1)!}{t^{k+1}} \cdot \frac{n^k}{\lambda_{k+1} n^{k+1} + \lambda_k n^k + \dots + \lambda_1 n + \lambda_0}$$

$$= \lim_{n \to \infty} \frac{(k+1)!}{t^{k+1}} \cdot \frac{1}{n} \cdot \frac{n^k}{\lambda_{k+1} + \lambda_k n^{-1} + \dots + \lambda_1 n^{-k} + \lambda_0 n^{-k-1}} = 0$$

因此, 由夹逼定理可得

$$\lim_{n\to\infty}\frac{n^k}{a^n}=0.$$

1.3 利用等价无穷小求极限

1.3.1 无穷小的分类

定义 1.3.1 无穷小的分类

设 α, β 是同一变化过程中的无穷小, $\lim \frac{\beta}{\alpha}$ 是这一过程的极限,c 为常数,那么

1.3 利用等价无穷小求极限 7

(1) $\lim \frac{\beta}{\alpha} = 0$, 则称 β 是 α 的高阶无穷小, 记作 $\beta = o(\alpha)$.

- (2) $\lim \frac{\beta}{\alpha} = \infty$, 则称 $\beta \neq \alpha$ 的低阶无穷小.
- (3) $\lim \frac{\beta}{\alpha} = c \neq 0$, 则称 β 是 α 的同阶无穷小.
- (4) $\lim \frac{\beta}{\alpha} = 1$, 则称 β 是 α 的等价无穷小, 记作 $\beta \sim \alpha$.
- (3) $\lim \frac{\beta}{\alpha^k} = c \neq 0$, 则称 β 是 α 的k 阶无穷小.

注意 0与"0"的区别

- (i) "0" 指的是无穷小, 设 α 是某一变化过程中的无穷小, 也就是说 x 趋于某一值时, 极限为 0.
- (ii) 当 0 指的是实数 0 时, $\lim 0 \cdot f(x) = 0$, 这与 f(x) 无关,即使 $\lim f(x) = \infty$,其结果仍然是 0,因为 0 在这里时实数,而不是无穷小.

1.3.2 常见的等价无穷小

定理 1.3.1 常见的等价无穷小

以下等价无穷小均为 $x \to 0$ 这一变化过程, 其中 x 也可替换为一个函数, 即 $f(x) \to 0$ 的情况也适用.

$$\tan x \sim \sin x \sim x \sim \arcsin x \sim \arctan x$$
 (1.16)

$$ln(1+x) \sim x \tag{1.17}$$

$$x \sim e^x - 1 \tag{1.18}$$

$$1 - \cos x \sim \frac{x^2}{2} \tag{1.19}$$

$$\sec x - 1 = \frac{1}{\cos x} - 1 \sim \frac{x^2}{2} \tag{1.20}$$

$$(1+x)^a - 1 \sim 1 - ax \tag{1.21}$$

$$a^{x} - 1 \sim \ln a \cdot x \, (a > 0, a \neq 1)$$
 (1.22)

1.3.3 等价无穷小求极限的本质

等价无穷小求极限本质上是极限与 1 的相乘,而有等价无穷小的定义,1 可以换成极限 $1=\lim_{x\to x_0}\frac{\alpha}{\beta}$,再运用极限乘法运算法则计算即可.

题型 1.5 等价无穷小的误用

例 1.8 求极限
$$\lim_{x\to 0} \frac{\tan x - \sin x}{\sin^3 x}$$
.

错解 由于
$$\tan \sim \sin x \sim x$$
 得 $\lim_{x \to 0} \frac{\tan x - \sin x}{\sin^3 x} = \lim_{x \to 0} \frac{x - x}{\sin^3 x} = \lim_{x \to 0} 0 = 0.$

错因 在运用等价无穷小的时候没有考虑极限运算法则成立的条件.

解析
$$\lim_{x\to 0}\frac{\tan x - \sin x}{\sin^3 x} = \lim_{x\to 0}\frac{\tan x}{\sin^3 x} - \lim_{x\to 0}\frac{\sin x}{\sin^3 x}$$
实际上运用了法则 $\lim[f(x) - g(x)] = \lim f(x) - \lim g(x)$,

8 第1章 函数与极限

即完整的错解解题步骤应为

$$\lim_{x \to 0} \frac{\tan x - \sin x}{\sin^3 x} = \lim_{x \to 0} \frac{\tan x}{\sin^3 x} - \lim_{x \to 0} \frac{\sin x}{\sin^3 x} = \lim_{x \to 0} \frac{\tan x}{\sin^3 x} \cdot \lim_{x \to 0} \frac{x}{\tan x} - \lim_{x \to 0} \frac{x}{\sin^3 x}$$

而极限运算法则成立的条件是 $\lim f(x)$, $\lim g(x)$ 存在, 而 $\lim_{x\to 0} \frac{\tan x}{\sin^3 x}$ 不存在, 因此解题错误.

$$\lim_{x \to 0} \frac{\tan x - \sin x}{\sin^3 x} = \lim_{x \to 0} \frac{\sin x (\sec x - 1)}{\sin^3 x} = \lim_{x \to 0} \frac{\sec x - 1}{\sin^2 x} \cdot \lim_{x \to 0} \frac{\frac{x^2}{2}}{\sec x - 1} \cdot \lim_{x \to 0} \frac{\sin x^2}{x^2} = \frac{\frac{x^2}{2}}{x^2} = \frac{1}{2}.$$

例 1.9 求极限
$$\lim_{x\to 0} \frac{\sin\left(x^2\sin\frac{1}{x}\right)}{x}$$
.

错因 对极限概念的理解不清晰,不仔细,没有严格判断等价无穷小的定义式是否满足极限的定义.

解析 实际上,该错误解答的完整版本应该为:

$$\lim_{x \to 0} \frac{\sin\left(x^2 \sin\frac{1}{x}\right)}{x} = \lim_{x \to 0} \frac{\sin\left(x^2 \sin\frac{1}{x}\right)}{x} \cdot \frac{x^2 \sin\frac{1}{x}}{\sin\left(x^2 \sin\frac{1}{x}\right)} = \lim_{x \to 0} \frac{x^2 \sin\frac{1}{x}}{x} = \lim_{x \to 0} x \sin\frac{1}{x} = 0.$$

但是极限

$$\lim_{x \to 0} \frac{x^2 \sin \frac{1}{x}}{\sin \left(x^2 \sin \frac{1}{x}\right)}$$

中,若 $\sin\frac{1}{x}$ 取 0,则这个极限式无意义 (分母为 0). 故 $x\neq\frac{1}{k\pi}(k\in Z)$.

判断定义域】

这样的话, 在点 x=0 的任何一个去心邻域中都有无穷多个点没有定义, 所以不存在一个去心邻域满足该极限式, 故极限不存在. 【判断是否能找到满足的去心邻域】

这里再次强调一下 0 与 "0" 的区别: 分母为 0 的时候并不是指无穷小量, 而是真正意义上的 0.

解 设
$$\exists \delta, \forall \varepsilon,$$
 使得当 $|x-0| < \delta$ 时, $\left| \frac{\sin\left(x^2 \sin\frac{1}{x}\right)}{x} - 0 \right| < \varepsilon,$

由不等式 $|\sin x| \le |x|$, 得

$$\left| \frac{\sin\left(x^2 \sin\frac{1}{x}\right)}{x} \right| \le \left| \frac{\left(x^2 \sin\frac{1}{x}\right)}{x} \right| = \left| x \sin\frac{1}{x} \right|.$$

由
$$\left|\sin\frac{1}{x}\right| \le 1$$
, 得

$$\left| \frac{\sin\left(x^2 \sin\frac{1}{x}\right)}{x} \right| \le \left| \frac{\left(x^2 \sin\frac{1}{x}\right)}{x} \right| = \left| x \sin\frac{1}{x} \right| \cdot \le |x| < \varepsilon$$

1.3.4 例题

题型 1.6 等价无穷小的运用

在下面的例题中,为了方便,省略了含有等价无穷小本质的式子. 但是建议读者在实际做题的过程中还是要写完整,方便利用定义检查式子的合理性.

例 1.10 求极限
$$\lim_{x \to \infty} \left(\cos \frac{3}{x}\right)^{x^2}$$

$$\lim_{x \to \infty} \left(\cos \frac{3}{x}\right)^{x^2} = \lim_{t \to 0} (\cos 3t)^{\frac{1}{t^2}} = \lim_{t \to 0} \left[\left(1 - 2\sin^2 \frac{3t}{2}\right)^{\frac{1}{2\sin^2 \frac{3t}{2}}} \right]^{\frac{2\sin^2 \frac{3t}{2}}{t^2}} = \mathrm{e}^{-\lim_{t \to 0}} \frac{2\sin^2 \frac{3t}{2}}{t^2}$$

1.3 利用等价无穷小求极限

因为
$$\lim_{t\to 0} \frac{2\left(\frac{3t}{2}\right)^2}{t^2} = \frac{9}{2}$$
, $\lim_{x\to \infty} \left(\cos\frac{3}{x}\right)^{x^2} = \mathrm{e}^{-\lim_{t\to 0} \frac{2\sin^2\frac{3t}{2}}{t^2}} = \mathrm{e}^{-\frac{9}{2}}$

另解 令
$$t = \frac{1}{x}$$
, 则 $x = \frac{1}{t}$, $x \to \infty$, $t \to 0$.

$$\lim_{x \to \infty} \left(\cos \frac{3}{x}\right)^{x^2} = \lim_{t \to 0} (\cos 3t)^{\frac{1}{t^2}} = e^{\lim_{t \to 0} \ln(\cos 3t)^{\frac{1}{t^2}}}$$

方法 1.3.1 等价无穷小类型 I

以上是利用两种等价无穷小的解法,下面对这两种等价无穷小的用法归类.(这两个极限选一个用即可). 若一个极限表达式有下列的形式(或者经过换元、取对数等方法变成这种形式),则很有可能用到这两种极限.

$$\lim f(x)^{g(x)} \tag{1.23}$$

其中 $\lim f(x) = 1, \lim g(x)$ 存在.

解法一 变形为:

$$\lim \left[1 + \left(f(x) - 1\right)\right]^{g(x)} = \lim \left[1 + \left(f(x) - 1\right)\right]^{\frac{g(x)[f(x) - 1]}{f(x) - 1}} = e^{\lim g(x) \cdot [f(x) - 1]}$$
(1.24)

而此时 $\lim g(x) \cdot [f(x) - 1]$ 是容易求得的.

解法二 变形为:

$$\lim \left[1 + \left(f(x) - 1\right)\right]^{g(x)} = e^{\lim \ln[1 + (f(x) - 1)]} = e^{\lim g(x) \cdot [f(x) - 1]}$$
(1.25)

而此时 $\lim g(x) \cdot [f(x) - 1]$ 也是容易求得的.

例 1.11 已知函数
$$f(x)$$
 满足 $\lim_{x\to 0} \frac{\sqrt{1+f(x)\sin 2x}-1}{e^{3x}-1}=2$, 求 $\lim_{x\to 0} f(x)$.

$$\lim_{x \to 0} \frac{\sqrt{1 + f(x)\sin 2x} - 1}{e^{3x} - 1} = \lim_{x \to 0} \frac{1/2f(x)\sin 2x}{3x} = \lim_{x \to 0} \frac{1/2f(x)2x}{3x} = \frac{1}{3}\lim_{x \to 0} f(x) = 2.$$

$$\therefore \lim_{x \to 0} f(x) = 6.$$

下面给出一个较难看出错误的例题.

例 1.12 求极限
$$\lim_{x\to 0} \left[\frac{(1+x)^{\frac{1}{x}}}{e} \right]^{\frac{1}{x}}$$
.

 错解
$$\lim_{x\to 0} \left[\frac{(1+x)^{\frac{1}{x}}}{e} \right]^{\frac{1}{x}} = \lim_{x\to 0} \left[\frac{e}{e} \right]^{\frac{1}{x}} = 1.$$

错因 在运用等价无穷小的时候没有考虑极限运算法则成立的条件.

解析
$$\lim_{x \to 0} \left[\frac{(1+x)^{\frac{1}{x}}}{e} \right]^{\frac{1}{x}} = e^{\lim_{x \to 0} \frac{1}{x} \ln \frac{(1+x)^{\frac{1}{x}}}{e}},$$

$$\lim_{x \to 0} \frac{1}{x} \ln \frac{(1+x)^{\frac{1}{x}}}{e} = \lim_{x \to 0} \frac{1}{x} \left[\ln(1+x)^{\frac{1}{x}} - \ln e \right] = \lim_{x \to 0} \frac{1}{x} \cdot \lim_{x \to 0} \left[\ln(1+x)^{\frac{1}{x}} - \ln e \right] = \lim_{x \to 0} \frac{1}{x} \cdot \lim_{x \to 0} \left[\ln e - \ln e \right] = 0.$$

10 第 1 章 函数与极限

实际上,在 $\lim_{x\to 0} \frac{1}{x} \left[\ln(1+x)^{\frac{1}{x}} - \ln \mathrm{e}\right] = \lim_{x\to 0} \frac{1}{x} \cdot \lim_{x\to 0} \left[\ln(1+x)^{\frac{1}{x}} - \ln \mathrm{e}\right]$ 中用到了 $\lim \left[f(x)\cdot g(x)\right] = \lim f(x)\cdot \lim_{x\to 0} g(x)$,即用到了极限运算法则,而 $\lim_{x\to 0} \frac{1}{x}$ 不存在,因此这种运算错误.

$$\lim_{x \to 0} \left[\frac{(1+x)^{\frac{1}{x}}}{e} \right]^{\frac{1}{x}} = \lim_{x \to 0} \left\{ 1 + \left[\frac{(1+x)^{\frac{1}{x}}}{e} - 1 \right] \right\}^{\frac{1}{x}} = \lim_{x \to 0} \left\{ 1 + \left[\frac{(1+x)^{\frac{1}{x}}}{e} - 1 \right] \right\}^{\frac{1}{(1+x)^{\frac{1}{x}} - 1}} \cdot \frac{(1+x)^{\frac{1}{x}} - 1}{e}}{x},$$

$$\therefore \lim_{x \to 0} \left[\frac{(1+x)^{\frac{1}{x}}}{e} - 1 \right] = 0, \therefore \lim_{x \to 0} \left\{ 1 + \left[\frac{(1+x)^{\frac{1}{x}}}{e} - 1 \right] \right\}^{\frac{1}{(1+x)^{\frac{1}{x}} - 1}} \cdot \frac{(1+x)^{\frac{1}{x}} - 1}{x}}{e} = \lim_{x \to 0} \frac{(1+x)^{\frac{1}{x}} - 1}{x}}{e},$$

$$\therefore \lim_{x \to 0} \frac{(1+x)^{\frac{1}{x}}}{e} - 1}{e} = \lim_{x \to 0} \frac{(1+x)^{\frac{1}{x}} - e}{ex} = \lim_{x \to 0} \frac{e^{\frac{1}{x}\ln(1+x)} - e}{ex}}{ex} = \frac{e^{x-1 - x}}{e} \lim_{x \to 0} \frac{\frac{1}{x}\ln(1+x) - 1}{x}}{e} = \lim_{x \to 0} \frac{\ln(1+x) - x}{x^2}$$

$$= \lim_{x \to 0} \left[\frac{(1+x)^{\frac{1}{x}}}{e} \right]^{\frac{1}{x}} = e^{\lim_{x \to 0} \frac{(1+x)^{\frac{1}{x}} - 1}{x}} = e^{-\frac{1}{2}} = \frac{\sqrt{e}}{e}.$$

$$\therefore \lim_{x \to 0} \left[\frac{(1+x)^{\frac{1}{x}}}{e} \right]^{\frac{1}{x}} = e^{\lim_{x \to 0} \frac{(1+x)^{\frac{1}{x}} - 1}{x}} = e^{-\frac{1}{2}} = \frac{\sqrt{e}}{e}.$$

方法 1.3.2 等价无穷小求极限

- 1. 判断并构造等价无穷小的类型 (7 种);
- 2. 利用等价无穷小求极限的本质列出计算式;
- 3. 判断等价无穷小的极限式中能否找到满足定义域的去心邻域使得极限存在:
 - (i) 若存在,则利用等价无穷小解题;
 - (ii) 若不存在,则用其它方法求解(如利用函数定义、夹逼准则等).
- 4. 检验计算的每一步是否都符合极限运算法则的前提条件.

注意

- 1. 以上等价无穷小都只在 $x \to 0$ 的情况下才成立,x 趋于其它值时不成立.
- 2. 只有等价无穷小的定义式存在极限的前提下,即在函数 f(x) 的定义域内能找到一个完整的去心邻域,x 才可以用任意函数 f(x) 替换. 若等价无穷小的定义式都不存在极限,又谈何等价无穷小. 下面给出常见的一些不可以用等价无穷小替换的函数.

[7] 1.13
$$x \to 0$$
, $\sin\left(x\sin\frac{1}{x}\right) \not\sim x\sin\frac{1}{x}$, $\sin\left(x\cos\frac{1}{x}\right) \not\sim x\cos\frac{1}{x}$

3. 在运用等价无穷小计算极限的时候要特别要注意在替换的过程中只有符合极限的运算法则, 才可以进行替换 (通常极限的运算法则不明显, 需要仔细计算), 前面已经给出了两个详细的例子.

1.4 函数连续性

1.4 函数连续性 11

1.4.1 函数连续性的定义

定义 1.4.1 函数在某点的连续性 I

设函数 y = f(x) 在点 x_0 的某一邻域内有定义, 如果

$$\lim_{\Delta x \to 0} \Delta y = \lim_{\Delta x \to 0} \left[f(x_0 + \Delta x) - f(x_0) \right] = 0.$$
 (1.26)

那么就称函数 y = f(x) 在点 x_0 处连续.

定义 1.4.2 函数在某点的连续性 II

设函数 y = f(x) 在点 x_0 的某一邻域内有定义, 如果

$$\lim_{x \to x_0} f(x) = f(x_0). \tag{1.27}$$

那么就称函数 y = f(x) 在点 x_0 处连续.

即 f(x) 在点 x_0 处连续 $\iff \forall \varepsilon > 0, \exists \delta > 0,$ 当 $|x - x_0| < \delta$ 时, 都有 $|f(x) - f(x_0)| < \varepsilon$

定义 1.4.3 左连续

如果 $\lim_{x \to x_0^-} f(x) = f(x_0^-)$ 存在且等于 $f(x_0)$, 即 $f(x_0^-) = f(x_0)$, 那么就称函数 y = f(x) 在点 x_0 处<u>左连续</u>.

定义 1.4.4 右连续

如果 $\lim_{x \to x_0^+} f(x) = f(x_0^+)$ 存在且等于 $f(x_0)$, 即 $f(x_0^+) = f(x_0)$, 那么就称函数 y = f(x) 在点 x_0 处<mark>右连续</mark>.

注意

函数在某点连续的充要条件是在该点的左极限和右极限都存在且都等于函数该点处的函数值. 或者 说函数在该点既左连续又右连续.(证明函数在某点处是否连续的方法)

定义 1.4.5 函数在某个区间的连续性

在区间上每一点都连续的函数,叫做在该区间上的连续函数,或者说函数在该区间上连续.如果区间包括端点,那么函数在右端点是指右端点的左连续,在左端点是指左端点的右连续.

连续函数的图形是一条连续而不间断的线 (可能是直线, 也可能是曲线).

1.4.2 函数的间断点

定义 1.4.6 函数的间断点

设函数 y = f(x) 在点 x_0 的某一邻域内有定义. 在此前提条件下, 如果函数有下列三种情况之一:

(1) 在 $x = x_0$ 处没有定义;

(2) 虽在 $x = x_0$ 处有定义, 但是 $\lim_{x \to x_0} f(x)$ 不存在;

(3) 虽在 $x = x_0$ 处有定义, $\lim_{x \to x_0} f(x)$ 存在, 但 $\lim_{x \to x_0} f(x) \neq f(x_0)$.

那么就称函数 f(x) 在点 x_0 处不连续, 而点 x_0 称为函数 f(x) 的不连续点或间断点.

12 第 1 章 函数与极限

如果 x_0 是函数 f(x) 的间断点, 但左极限 $f(x_0^-)$ 和右极限 $f(x_0^+)$ 都存在, 那么点 x_0 就称为函数 f(x) 的第一类间断点, 不是第一类间断点的任何间断点都是第二类间断点. 常见的具体分类间下表1.1.

第一类间断点	第二类间断点
可去间断点	无穷间断点
跳跃间断点	震荡间断点

表 1.1: 函数间断点的分类

定义 1.4.7 无穷间断点

若 x_0 是函数 f(x) 的间断点,且 $\lim_{x \to x_0} f(x) = \infty$,那么我们称点 x_0 是函数的无穷间断点.

例 $x = \frac{\pi}{2}$ 是函数 $y = \tan x$ 的无穷间断点.

定义 1.4.8 振荡间断点

若 x_0 是函数 f(x) 的间断点, 且当 $x \to x_0$ 时, 函数值在多个值之间变动无穷多次, 那么我们称点 x_0 是函数 f(x) 的振荡间断点.

例 x=0 是函数 $y=\sin\frac{1}{x}$ 的振荡间断点.

第2章 重积分

2.1 二重积分

2.1.1 二重积分的定义

定义 2.1.1 二重积分的定义

设 z=f(x,y) 是定义在平面上的有界闭区域 D 上的函数,若对 D 的任意分割 $\{D_1,D_2,\cdots,D_n\}$ 及任意选择的 $(x_i,y_i)\in D_i (i=1,2,\cdots,n)$,当 $\lambda\to 0$ 时,极限

$$\lim_{\lambda \to 0} \sum_{i=1}^{n} f(x_i, y_i) \, \Delta \sigma_i^{\,1} \tag{2.1}$$

总存在,则这个极限称为 f(x,y) 在 D 上的二重积分,记做

$$\iint\limits_{D} f(x,y) \, d\sigma \quad \mathbf{g} \quad \iint\limits_{D} f(x,y) \, dx dy \tag{2.2}$$

其中, D 称作积分区域, 而 f(x,y) 称作被积函数, $d\sigma$ 称为面积元素.

2.1.2 二重积分的性质

定理 2.1.1 二重积分的三个基本性质

1. 常数因子可以提取: (k 为常数)

$$\iint\limits_{D} kf(x,y) \, d\sigma = k \iint\limits_{D} f(x,y) \, d\sigma \tag{2.3}$$

2. 被积函数的可拆可合性:

$$\iint\limits_{\mathcal{D}} \left[f(x,y) \pm g(x,y) \right] d\sigma = \iint\limits_{\mathcal{D}} f(x,y) d\sigma \pm \iint\limits_{\mathcal{D}} g(x,y) d\sigma \tag{2.4}$$

3. 积分区域的可拆可合性: (设 $D \rightarrow D_1 + D_2$)

$$\iint\limits_{D} f(x,y) d\sigma = \iint\limits_{D_1} f(x,y) d\sigma + \iint\limits_{D_2} f(x,y) d\sigma$$
 (2.5)

定理 2.1.2 积分的保号性

若函数 f 及 g 在 D 上满足不等式

$$f(x,y) \le g(x,y), \quad \forall (x,y) \in D$$

 $^{^{1}\}lambda$ 表示 n 个区域 D_{i} 其中的最大直径, $\Delta\sigma_{i}$ 表示 D_{i} 的最大面积.

14 第 2 章 重积分

则

$$\iint\limits_{D} f(x,y) \, d\sigma \le \iint\limits_{D} g(x,y) \, d\sigma \tag{2.6}$$

特别地,由于 $-|f(x,y)| \le f(x,y) \le |f(x,y)|$,带入式(2.6),得到

$$\left| \iint\limits_{D} f(x,y) \, d\sigma \right| \le \iint\limits_{D} |f(x,y)| \, d\sigma \tag{2.7}$$

定理 2.1.3 积分中值定理

若函数 f(x,y) 在有界闭区域 D 上连续,则在 D 上至少存在一点 (x_0,y_0) ,使

$$\iint_{D} f(x,y) d\sigma = f(x_0, y_0) \cdot S$$
(2.8)

其中 S 为区域 D 的面积.

2.1.3 二重积分的计算

定理 2.1.4 X 型积分与 Y 型积分

对于不同的积分区域主要可以划分为两种: X 型积分与 Y 型积分

$$\iint_{D} f(x,y) \, dxdy = \int_{a}^{b} \left[\int_{\varphi_{1}(x)}^{\varphi_{2}(x)} f(x,y) \, dx \right] dy$$

$$= \int_{a}^{b} \left[\int_{\varphi_{1}(y)}^{\varphi_{2}(y)} f(x,y) \, dy \right] dx$$
(2.9)

定理 2.1.5 极坐标变换

设
$$x,y$$
 的极坐标方程为
$$\begin{cases} x = r\cos\theta, \\ y = r\sin\theta. \end{cases}$$
 则
$$\iint\limits_{\mathbb{R}} f(x,y) \; \mathrm{d}x\mathrm{d}y = \int_{\alpha}^{\beta} \mathrm{d}\theta \int_{r_1(\theta)}^{r_2(\theta)} f(r\cos\theta,r\sin\theta)r \; \mathrm{d}r \end{cases} \tag{2.10}$$

定理 2.1.6 广义极坐标变换

设
$$x,y$$
 的极坐标方程为
$$\begin{cases} x = ar\cos\theta, \\ y = br\sin\theta. \end{cases}$$
 则
$$\iint\limits_{D} f(x,y) \, \mathrm{d}x\mathrm{d}y = \int_{\alpha}^{\beta} \mathrm{d}\theta \int_{r_{1}(\theta)}^{r_{2}(\theta)} f(ar\cos\theta, br\sin\theta) abr \, \mathrm{d}r \end{cases} \tag{2.11}$$

定理 2.1.7 一般变换

设
$$x, y$$
 满足
$$\begin{cases} x = x(\xi, \eta), \\ y = y(\xi, \eta). \end{cases}$$
 则
$$\iint\limits_D f(x, y) \, \mathrm{d}x \mathrm{d}y = \iint\limits_D f[x(\xi, \eta), y(\xi, \eta)] \, |J| \, \mathrm{d}\xi \mathrm{d}\eta \tag{2.12}$$

2.2 三重积分 15

其中 J 是变换的雅克比行列式,即

$$|J| = \frac{D(x,y)}{D(\xi,\eta)} = \begin{vmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\ \frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta} \end{vmatrix}$$

2.1.4 二重积分的几何应用

题型 2.1 求隐函数的平面面积

由二重积分的定义,记隐函数所围成的封闭曲面的面积为 S_D ,那么可以得到

$$\iint\limits_{D} d\sigma = \iint\limits_{D} dx dy = S_{D} \tag{2.13}$$

题型 2.2 求空间曲面的面积

若
$$S$$
 由参数方程
$$\begin{cases} x = x(u,v), \\ y = y(u,v), \\ z = z(u,v). \end{cases}$$
 确定,记
$$\begin{cases} E = x_u^2 + y_u^2 + z_u^2, \\ F = x_u x_v + y_u y_v + z_u z_v, \\ G = x_v^2 + y_v^2 + z_v^2. \end{cases}$$

$$S = \iint_{D'} \sqrt{EG - F^2} \, d\sigma \tag{2.14}$$

2.2 三重积分

2.2.1 三重积分的定义

定义 2.2.1 三重积分的定义

设三元函数 f(x,y,z) 是定义在光滑曲面所围成的空间区域 Ω 上,若对 Ω 的任意分割 $\{\Omega_1,\Omega_2,\cdots,\Omega_n\}$ 及任意选择的 $(x_i,y_i,z_i)\in\Omega_i (i=1,2,\cdots,n)$,当 $\lambda\to 0$ 时,极限

$$\lim_{\lambda \to 0} \sum_{i=1}^{n} f(x_i, y_i, z_i) \, \Delta V_i^{\,1} \tag{2.15}$$

总存在,则这个极限称为 f(x,y) 在 D 上的三重积分,记做

$$\iiint_{\Omega} f(x, y, z) \, dV \quad \mathbf{g} \quad \iiint_{\Omega} f(x, y, z) \, dx dy dz$$
 (2.16)

其中, Ω 称作积分区域, 而 f(x,y,z) 称作被积函数, dV 称为体积元素.

2.2.2 三重积分的性质

三重积分的基本性质和二重积分完全类似。具体请参见2.1.2.

 $^{^{1}\}lambda$ 表示 n 个区域 Ω_{i} 其中的最大直径, ΔV_{i} 表示 Ω_{i} 的最大体积.

16 第 2 章 重积分

2.2.3 三重积分的计算

定理 2.2.1 投影法

投影法可以认为是平行于 z 轴的线在投影区域内运动,连续地切割立体得到得到一条条立体内的线段 $z_1(x,y) \rightarrow z_2(x,y)$, 然后再把所有在投影区域内的所有线段进行积分,即

$$\iiint_{\Omega} \mathrm{d}x \mathrm{d}y \mathrm{d}z = \iint_{D_{xOy}} \mathrm{d}x \mathrm{d}y \int_{z_1(x,y)}^{z_2(x,y)} f(x,y,z) \,\mathrm{d}z \tag{2.17}$$

定理 2.2.2 切片法

切片法可以认为是用平行于 xOy 的平面 $z=z_0\in[a,b]$ 去截立体得到的截面 D_{z_0} ,求出 D_{z_0} 后再把一片片截面积分拼成一个立体,即

$$\iiint_{\Omega} dx dy dz = \int_{a}^{b} dz \iint_{D_{z}} f(x, y, z) dx dy$$
(2.18)

定理 2.2.3 柱坐标变换

柱坐标变换
$$\begin{cases} x = r\cos\theta,\\ y = r\sin\theta, \quad \text{下的三重积分计算公式为}\\ z = z. \end{cases}$$

$$\iiint_{\Omega} dx dy dz = \iiint_{\Omega'} f(r\cos\theta, r\sin\theta, z) r dr d\theta dz$$
 (2.19)

定理 2.2.4 球坐标变换

球坐标变换
$$\begin{cases} x = \rho \sin \varphi \cos \theta, \\ y = \rho \sin \varphi \sin \theta, \end{cases}$$
 下的三重积分计算公式为
$$z = \rho \cos \varphi.$$

$$\iiint_{\Omega} dx dy dz = \iiint_{\Omega'} f(\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi) \rho^2 \sin \varphi d\rho d\varphi d\theta$$
 (2.20)

定理 2.2.5 一般变换

设
$$x, y, z$$
 满足
$$\begin{cases} x = x(u, v, w), \\ y = y(u, v, w), \\ z = z(u, v, w). \end{cases}$$

$$\iiint_{\Omega} f(x, y, z) \, \mathrm{d}x \mathrm{d}y = \iiint_{\Omega} f[x(u, v, w), y(u, v, w), z(u, v, w)] \, |J| \, \mathrm{d}u \mathrm{d}v \mathrm{d}w$$
 (2.21)

2.2 三重积分 17

其中 J 是变换的雅克比行列式,即

$$|J| = \frac{D(x, y, z)}{D(u, v, w)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v} \\ \frac{\partial x}{\partial w} & \frac{\partial y}{\partial w} & \frac{\partial z}{\partial w} \end{vmatrix}$$

2.2.4 三重积分的几何应用

题型 2.3 求立体的体积

由三重积分的定义,记隐函数围成的封闭立体的体积为V,那么可以得到

$$\iiint_{\Omega} dV = \iiint_{\Omega} dx dy dz = V$$
 (2.22)

第3章 曲线积分和曲面积分

3.1 第一型曲线积分

3.1.1 第一型曲线积分的基本概念

定义 3.1.1 第一型曲线积分的定义

设 f(x,y,z) 在分段光滑的曲线 L 上有定义,对 L 任意分割成 n 段,第 i 段的弧长为 Δs_i 及在第 i 段任意选择的 (ξ_i,η_i,ζ_i) ,当 $\lambda=\max_{1\leq i\leq n}\Delta s_i\to 0$ 时,极限

$$\lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i, \eta_i, \zeta_i) \, \Delta s_i \tag{3.1}$$

总存在,则这个极限称为函数 f(x,y,z) 沿曲线 L 的第一型曲线积分或弧长的曲线积分,记做

$$\int_{L} f(x, y, z) \, \mathrm{d}s \tag{3.2}$$

其中,L 称作积分曲线,而 f(x,y,z) 称作被积函数,ds 称为弧积分.

3.1.2 第一型曲线积分的基本性质

定理 3.1.1 第一型曲线积分的三个基本性质

1. 可拆可和性

$$\int_{L} \left[C_1 f(x, y, z) + C_2 g(x, y, z) \right] ds = \int_{L} C_1 f(x, y, z) ds + \int_{L} C_2 g(x, y, z) ds$$
(3.3)

2. 分段累加性 $(L \rightarrow L_1, L_2, \cdots, L_m)$

$$\int_{L} f(x, y, z) \, ds = \int_{L_{1}} f(x, y, z) \, ds + \int_{L_{2}} f(x, y, z) \, ds + \dots + \int_{L_{m}} f(x, y, z) \, ds$$
 (3.4)

3. 恒正性 (无向性)

$$\int_{\widehat{AB}} f(x, y, z) \, \mathrm{d}s = \int_{\widehat{BA}} f(x, y, z) \, \mathrm{d}s \tag{3.5}$$

3.1.3 第一型曲线积分的计算

定理 3.1.2 直角坐标下平面曲线的积分

若曲线 L 由 y=y(x) 确定, 且 y=y(x) 在 [a,b] 上有连续导数, f(x,y) 在 L 上连续, 则

$$\int_{L} f(x,y) \, ds = \int_{a}^{b} f[x,y(x)] \sqrt{1 + [y'(x)]^{2}} \, dx$$
(3.6)

定理 3.1.3 参数方程下平面曲线的积分

若曲线 L 由 $\begin{cases} x=x(t), \\ y=y(t) \end{cases}$ 确定,且 x(t),y(t) 在 $t\in [a,b]$ 上有连续导数, f(x,y) 在 L 上连续,则

$$\int_{L} f(x,y) \, ds = \int_{a}^{b} f[x(t), y(t)] \sqrt{[x'(t)]^{2} + [y'(t)]^{2}} \, dt$$
(3.7)

定理 3.1.4 参数方程下空间曲线的积分

若曲线 L 由 $\begin{cases} x=x(t),\\ y=y(t), & \text{确定, } L \ x(t), y(t), z(t) \ \text{在} \ t \in [a,b] \ \text{上有连续导数, } f(x,y,z) \ \text{在} \ L \ \text{上连续, } 则 \\ z=z(t). \end{cases}$

$$\int_{L} f(x, y, z) \, ds = \int_{a}^{b} f[x(t), y(t), z(t)] \sqrt{[x'(t)]^{2} + [y'(t)]^{2} + [z'(t)]^{2}} \, dt$$
(3.8)

3.2 第二型曲线积分

3.2.1 第二型曲线积分的基本概念

定义 3.2.1 第一型曲线积分的定义

L 是从点 A 到点 B 的分段光滑有向曲线,向量函数 ${m F}(x,y)=P(x,y){m i}+Q(x,y){m j}$ 在 L 上有定义,按照 L 的方向,对 L 的任意分割成 n 个有向的小线段 $\overrightarrow{A_{i-1}A_i}$,记 $\widehat{A_{i-1}A_i}$ 的弧长为 Δs_i 及在第 i 段任意选择的 (ξ_i,η_i,ζ_i) ,当 $\lambda=\max_{1\leq i\leq n}\Delta s_i\to 0$ 时,极限

$$\lim_{\lambda \to 0} \sum_{i=1}^{n} \boldsymbol{F}(\xi_i, \eta_i, \zeta_i) \cdot \overrightarrow{A_{i-1} A_i} \, \Delta s_i = \lim_{\lambda \to 0} \sum_{i=1}^{n} [P(\xi_i, \eta_i) \Delta x_i + Q(\xi_i, \eta_i) \Delta y_i]$$
(3.9)

总存在,则这个极限称为向量函数 $\mathbf{F}(x,y)$ 沿曲线 L 从点 A 到点 B 的第二型曲线积分或对坐标的曲线积分,记 做

$$\int_{\widehat{AB}} P \, \mathrm{d}x + Q \, \mathrm{d}y \quad \mathbf{g} \quad \int_{\widehat{AB}} \mathbf{F}(x, y) \, \mathrm{d}\mathbf{r}$$
(3.10)

其中, $d\mathbf{r} = (dx, dy)$, 有向曲线 \widehat{AB} 称为积分路径.

类似地,对于空间向量函数 F(x,y,z)=P(x,y,z)i+Q(x,y,z)j+R(x,y,z)k,沿空间有向曲线 L 的第二型曲线积分为

$$\int_{L} P \, \mathrm{d}x + Q \, \mathrm{d}y + R \, \mathrm{d}z \quad \mathbf{g} \quad \int_{L} \mathbf{F}(x, y, z) \, \mathrm{d}\mathbf{r}$$
(3.11)

3.2.2 第二型曲线积分的基本性质

定理 3.2.1 第二型曲线积分的三个基本性质

1. 可拆可和性

$$\int_{\widehat{AB}} [k_1 \mathbf{F}(M) + k_2 \mathbf{G}(M)] \cdot d\mathbf{r} = k_1 \int_{\widehat{AB}} \mathbf{F}(M) \cdot d\mathbf{r} + k_2 \int_{\widehat{AB}} \mathbf{G}(M) \cdot d\mathbf{r}$$
(3.12)

3.2 第二型曲线积分 21

2. 分段累加性 $(\widehat{AB} \to \widehat{AC} + \widehat{CB})$

$$\int_{\widehat{AB}} \mathbf{F}(M) \cdot d\mathbf{r} = \int_{\widehat{AC}} \mathbf{F}(M) \cdot d\mathbf{r} + \int_{\widehat{CB}} \mathbf{F}(M) \cdot d\mathbf{r}$$
(3.13)

3. 有向性

$$\int_{\widehat{AB}} \mathbf{F}(M) \cdot d\mathbf{r} = -\int_{\widehat{BA}} \mathbf{F}(M) \cdot d\mathbf{r}$$
(3.14)

3.2.3 第二型曲线积分的计算

定理 3.2.2 平面曲线下第二型曲线积分的计算

设曲线 L 的参数方程为 $\begin{cases} x=x(t), & \text{其中 } x(t), y(t) \text{ 有连续的一阶导数. 当 } t \text{ 单调地从 } a \text{ 变化到 } b \text{ 时,且} \\ y=y(t). & \\ P(x,y), Q(x,y) \text{ 在 } L \text{ 上连续,则} \end{cases}$

$$\int_{\widehat{AB}} P(x,y) \, \mathrm{d}x + Q(x,y) \, \mathrm{d}y = \int_{a}^{b} \left[P(x(t), y(t)) \, x'(t) + Q(x(t), y(t)) \, y'(t) \right] \, \mathrm{d}t \tag{3.15}$$

特别地, 当 y = g(x) 时, 可以变为

$$\int_{\widehat{AB}} P(x,y) \, \mathrm{d}x + Q(x,y) \, \mathrm{d}y = \int_{a}^{b} \left[P(x,g(x)) + Q(x,g(x)) \, g'(x) \right] \, \mathrm{d}x \tag{3.16}$$

定理 3.2.3 空间曲线下第二型曲线积分的计算

设曲线 L 的参数方程为 $\begin{cases} x=x(t),\\ y=y(t), & \hbox{其中 } x(t),y(t),z(t) \text{ 有连续的一阶导数 ,} \text{且 } P(x,y,z),Q(x,y,z),R(x,y,z)\\ z=z(t). \end{cases}$

在 L 上连续,则

$$\int_{\widehat{AB}} P(x,y,z) \, dx + Q(x,y,z) \, dy + R(x,y,z) \, dz$$

$$= \int_{a}^{b} \left[P(x(t), y(t), z(t)) \, x'(t) + Q(x(t), y(t), z(t)) \, y'(t) + R(x(t), y(t), z(t)) \, z'(t) \right] dt \tag{3.17}$$

定理 3.2.4 格林公式

对于闭区域的边界 L 规定其正方向 L^+ 为使得沿这个方向前进时区域总在左侧,那么有

$$\oint_{L^{+}} P \, \mathrm{d}x + Q \, \mathrm{d}y = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, \mathrm{d}x \mathrm{d}y \tag{3.18}$$

特别地,当 $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$ 或 $\oint_{L^+} P \, \mathrm{d}x + Q \, \mathrm{d}y = 0$ 时,第二型曲面积分与积分路径无关。

此时可以找到一个函数 u(x,y) = P(x,y) dx + Q(x,y) dy, 即

$$\int_{\widehat{AB}} P \, \mathrm{d}x + Q \, \mathrm{d}y = \int_a^b \mathrm{d}u = u(B) - u(A) \tag{3.19}$$

3.2.4 第二型曲面积分与路径无关的判定

方法 3.2.1 第二型曲面积分与路径无关的判定

- 1. 用于判定路径有关的方法 (也适用于判断 P dx + Q dy 在 D 上不存在原函数)
 - (1) 存在一条分段光滑曲线 $C \subset D$, $\oint_C P \, \mathrm{d}x + Q \, \mathrm{d}y \neq 0$.
 - (2) 存在 $(x,y) \in D$, $\frac{\partial Q(x,y)}{\partial x} \neq \frac{\partial P(x,y)}{\partial y}$.
- 2. 用于判定路径无关的方法 (方法 (2),(3) 可以用于判断 P dx + Q dy 在 D 上存在原函数)
 - (1) 求得 u(x,y) 使得 du = P(x,y) dx + Q(x,y) dy 任意 $(x,y) \in D$.
 - (2) 若 D 是单连通的,又对于任意的 $(x,y) \in D$ 都有 $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$.
- (3) 若 $D = D_0 \setminus \{M_0\}$, D_0 是单连通的, $M_0 \in D_0$. 若对于任意的 $(x,y) \in D$ 都有 $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$, 且存在一条包围点 M_0 的分段光滑闭曲线 C_0 , 使得 $\oint_{C_0} P \, \mathrm{d}x + Q \, \mathrm{d}y = 0$.

3.3 第一型曲面积分

3.3.1 第一型曲面的基本概念

定义 3.3.1 第一型曲面积分的定义

设 f(x,y,z) 在分片光滑的曲面 S 上有定义,对 S 任意分割成互补重叠的 n 片,第 i 段的面积为 ΔS_i 及在第 i 段任意选择的 (ξ_i,η_i,ζ_i) ,当 $\lambda=\max_{1\leq i\leq n}\{\Delta S_i$ 的直径 $\}\to 0$ 时,极限

$$\lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i, \eta_i, \zeta_i) \Delta S_i$$
(3.20)

总存在,则这个极限称为函数 f(x,y,z) 在曲面 S 上的第一型曲面积分,记做

$$\iint_{S} f(x, y, z) \, \mathrm{d}S \tag{3.21}$$

其中,S 称作积分曲面,而 f(x,y,z) 称作被积函数. 特别地,如果积分曲面封闭,则记做

$$\oint_{S} f(x, y, z) \, \mathrm{d}S \tag{3.22}$$

3.3.2 第一型曲面积分的基本性质

定理 3.3.1 第一型曲面积分的三个基本性质

1. 可拆可和性

$$\iint_{S} [C_{1}f(x,y,z) + C_{2}g(x,y,z)] dS = \iint_{S} C_{1}f(x,y,z) dS + \iint_{S} C_{2}g(x,y,z) dS$$
 (3.23)

2. 分片累加性 $(S \rightarrow S_1, S_2, \cdots, S_i)$

$$\iint_{S} f(x, y, z) \, dS = \sum_{i=1}^{m} \iint_{S_{i}} f(x, y, z) \, dS$$
 (3.24)

3.4 第二型曲面积分 23

3. 恒正性 (无向性)

$$\iint\limits_{S} f(x, y, z) \, \mathrm{d}S \ge 0 \tag{3.25}$$

3.3.3 第一型曲面积分的计算

定理 3.3.2 二元函数下第一型曲面积分的计算

对于二元函数 z = z(x, y), y = y(x, z), x = x(y, z),

$$\iint_{\Sigma} f(x, y, z) \, dS = \begin{cases}
\iint_{D_{xy}} f(x, y, z(x, y)) \sqrt{1 + z_x^2 + z_y^2} \, dx dy & \Sigma : z = z(x, y) \\
\iint_{D_{xz}} f(x, y(x, z), z) \sqrt{1 + y_x^2 + y_z^2} \, dx dz & \Sigma : y = y(x, z) \\
\iint_{D_{yz}} f(x(y, z), y, z) \sqrt{1 + x_y^2 + x_z^2} \, dy dz & \Sigma : x = x(y, z)
\end{cases}$$
(3.26)

提示:根据曲面方程的特点选择恰当的积分形式,D 代表投影到某个坐标平面的平面区域.

定理 3.3.3 参数方程下第一型曲面积分的计算

若
$$S$$
 由参数方程
$$\begin{cases} x = x(u,v), \\ y = y(u,v), \\ z = z(u,v). \end{cases}$$
 确定,记
$$\begin{cases} E = x_u^2 + y_u^2 + z_u^2, \\ F = x_u x_v + y_u y_v + z_u z_v, \\ G = x_v^2 + y_v^2 + z_v^2. \end{cases}$$
 则
$$\int_{\Sigma} f(x,y,z) \, \mathrm{d}S = \iint_{\Sigma} f(x(u,v), y(u,v), z(u,v)) \sqrt{EG - F^2} \, \mathrm{d}u \mathrm{d}v$$
 (3.27)

特别地, 当参数方程是柱坐标变换方程时,

$$dS = R \, d\theta dz \tag{3.28}$$

当参数方程是球坐标变换方程时,

$$dS = R^2 |\sin \varphi| d\theta d\varphi \tag{3.29}$$

3.4 第二型曲面积分

3.4.1 第二型曲面积分的基本概念

定义 3.4.1 第二型曲面积分

设 S 是一个分片光滑的双侧曲面,在曲面 S 上选定了一侧,记选定一侧的单位法向量为 n(P). 假设在 S 上给定了一个向量函数 F(x,y,z). 我们将 S 分割成 n 个不相重叠的小曲面片 $\Delta S_i (i=1,2,\cdots,n)$, 其面积也用 ΔS_i 表示. 在 ΔS_i 上任意取一点 $M_i(\xi_i,\eta_i,\zeta_i)$, 如果 $\lambda = \max_{1 \leq i \leq n} \{\Delta S_i$ 的直径 $\} \to 0$ 时,极限

$$\lim_{\lambda \to 0} \sum_{i=1}^{n} \mathbf{F}(\xi_i, \eta_i, \zeta_i) \cdot \mathbf{n}(\xi_i, \eta_i, \zeta_i) \, \Delta S_i$$
(3.30)

总存在,则这个极限称为向量函数 F(x,y,z) 在曲面 S 上的第二型曲面积分,记做

$$\iint_{S} \mathbf{F}(x, y, z) \cdot \mathbf{n}(x, y, z) \, \Delta S \tag{3.31}$$

定义 3.4.2 曲面的方向

对于不同曲面的方程形式, 曲面方向判定见下表3.1.

曲面方程形式	法向量	方向的规定
z = z(x, y)	$egin{aligned} m{n_1} = (-z_x, -z_y, 1) \ & m{n_2} = (z_x, z_y, -1) \end{aligned}$	上侧 下侧
y = y(x, z)	$egin{aligned} m{n}_1 = (-y_x, 1, -y_z) \ & m{n}_2 = (y_x, -1, y_z) \end{aligned}$	右侧左侧
x = x(y, z)	$n_1 = (1, -x_y, -x_z)$ $n_2 = (-1, x_y, x_z)$	前侧后侧

表 3.1: 曲面方向的判定

对于曲面而言, 法向量指向曲面的内部为曲面内侧; 法向量指向曲面的外部为曲面外侧.

3.4.2 第二型曲面积分的基本性质

定理 3.4.1 第二型曲面积分的三个基本性质

1. 可拆可和性

$$\iint_{S} \left[C_{1} \mathbf{F}_{1} + C_{2} \mathbf{F}_{2} \right] d\mathbf{S} = \iint_{S} C_{1} \mathbf{F}_{1} d\mathbf{S} + \iint_{S} C_{2} \mathbf{F}_{2} d\mathbf{S}$$
(3.32)

2. 分片累加性 $(S \rightarrow S_1 + S_2)$

$$\iint_{S} \mathbf{F} \, d\mathbf{S} = \iint_{S_1} \mathbf{F} \, d\mathbf{S} + \iint_{S_2} \mathbf{F} \, d\mathbf{S}$$
(3.33)

3. 有向性

$$\iint_{S^+} \mathbf{F} \, d\mathbf{S} = -\iint_{S^-} \mathbf{F} \, d\mathbf{S} \tag{3.34}$$

3.4.3 第二型曲面积分与第一型曲面积分的关系

定理 3.4.2 第二型曲面积分与第一型曲面积分的关系

设向量函数 F(P(x, y, z), Q(x, y, z), R(x, y, z)) 的单位法向量为 n = (x, y, z), 其方向余弦为

$$\cos \alpha(x, y, z), \cos \beta(x, y, z), \cos \gamma(x, y, z)$$

则二重积分可写成

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \, dS = \iint_{S} (P \cos \alpha + Q \cos \beta + R \cos \gamma) \, dS$$

$$= \iint_{S} P \, dy dz + Q \, dz dx + R \, dx dy$$
(3.35)

3.4 第二型曲面积分 25

3.4.4 第二型曲面积分的计算

曲面方程形式	方向余弦
z=z(x,y)	$\frac{\pm 1}{\sqrt{1 + z_x^2 + z_y^2}} \left(-z_x, -z_y, 1 \right)$
y = y(x, z)	$\frac{\pm 1}{\sqrt{1+y_x^2+y_z^2}} \left(-y_x, 1, -y_z\right)$
x = x(y, z)	$\frac{\pm 1}{\sqrt{1 + x_y^2 + x_z^2}} \left(1, -x_y, -x_z \right)$

表 3.2: 不同的曲面方程的方向余弦

定理 3.4.3 直接转换为二重积分计算

由上表3.2并利用公式 $\iint\limits_S {\pmb F} \cdot {\pmb n} \ \mathrm{d}S = \iint\limits_S (P\cos\alpha + Q\cos\beta + R\cos\gamma) \ \mathrm{d}S$ 可以得到转换公式如下表.

曲面方程形式	结果
z = z(x, y)	$\pm \iint_{D_{xy}} [P(x, y, z(x, y))(-z_x) + Q(x, y, z(x, y))(-z_y) + R(x, y, z(x, y))] d\sigma$
y = y(x, z)	$\pm \iint_{D_{xz}} [P(x, y, z(x, y))(-y_x) + Q(x, y, z(x, y)) + R(x, y, z(x, y))(-y_z)] d\sigma$
x = x(y, z)	$\pm \iint_{D_{xy}} [P(x, y, z(x, y)) + Q(x, y, z(x, y))(-x_y) + R(x, y, z(x, y))(-x_z)] d\sigma$

表 3.3: 转换为二重积分计算的计算公式

注: 上表3.3中正负号的选取与方向余弦的"1"的符号相同.D 表示投影到相应坐标平面的平面区域.

方法 3.4.1 转换为二重积分计算第二型曲面积分

总结 "一投、二代、三定号"

- 1. 将曲面 Σ 的方程写成上述三种形式的其中一种.
- 2. 将曲面 Σ 投影到相应的坐标平面, 得到投影区域 D.
- 3. 将 x=x(y,z) 或 y=y(x,z) 或 z=z(x,y) 代入被积函数, 将 Σ 换成 D.
- 4. 根据方向余弦确定侧向进而确定二重积分的符号.

提示: 若投影区域面积为 0, 则相应的二重积分为 0.

定理 3.4.4 高斯公式

表达了空间闭区域上的三重积分与其边界曲面上的曲面积分之间的关系,这个关系可陈述如下:

设空间闭区域 Ω 是由分片光滑的闭曲面 Σ 所围成, 若函数 P(x,y,z), Q(x,y,z), R(x,y,z) 在 Ω 上具有一阶连续偏导数. 则有

$$\iint_{S^{+}} P \, \mathrm{d}y \, \mathrm{d}z + Q \, \mathrm{d}z \, \mathrm{d}x + R \, \mathrm{d}x \, \mathrm{d}y = \iiint_{S^{+}} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) \, \mathrm{d}V \tag{3.36}$$

其中 S^+ 是曲面 S 的外侧.

注: 若 S 不是封闭曲面, 可利用补片法, 常用平行于坐标面的平面来补片.

若 S 不是外侧,则在积分前面加负号,所求的结果和外侧的结果互为相反数.

题型 3.1 曲面积分求体积

若 Σ 封闭且方向取外侧,则

$$\iint_{\Sigma^{+}} x \, \mathrm{d}y \, \mathrm{d}z + y \, \mathrm{d}z \, \mathrm{d}x + z \, \mathrm{d}x \, \mathrm{d}y = \iiint_{\Omega} (1 + 1 + 1) \, \mathrm{d}V = 3 \iiint_{\Omega} \mathrm{d}V = 3V$$
(3.37)

3.5 斯托克斯公式

定理 3.5.1 斯托克斯公式

设 Γ 为分段光滑的空间有向闭曲线, Σ 是以 Γ 为边界的分片光滑的有向曲面, Γ 的正向与 Σ 的侧符合右手法则, 若函数 P(x,y,z), Q(x,y,z), R(x,y,z) 在曲面 Σ (连同边界 Γ) 上具有一阶连续偏导数, 则有

$$\oint_{L^{+}} P \, \mathrm{d}x + Q \, \mathrm{d}y + R \, \mathrm{d}z = \iint_{C_{+}} \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) \, \mathrm{d}y \, \mathrm{d}z + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) \, \mathrm{d}z \, \mathrm{d}x + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, \mathrm{d}x \, \mathrm{d}y. \tag{3.38}$$

斯托克斯公式是格林公式的推广. 格林公式表达了平面闭区域上的二重积分与其边界曲线上的曲线积分间的关系; 而斯托克斯公式则把曲面 Σ 上的曲面积分与沿着 Σ 的边界曲线 Γ 的曲线积分联系起来.

为了便于记忆, 也可写成行列式的形式

$$\iint_{S^{+}} \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} \qquad \mathbf{E} \iint_{S^{+}} \begin{vmatrix} \cos \alpha & \cos \beta & \cos \gamma \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} dS \tag{3.39}$$

3.6 积分的特点

3.6.1 积分区域的可代入性

当 积分区域是确定方程(等式),而不是非确定方程(含有不等号)的时候可以将积分区域的函数代入被积函数,或者被积函数构造成积分区域的方程.通常 曲线积分和曲面积分都可以直接代入积分区域,因为这些积分的积分区域通常都是由确定的方程来决定的。

3.6.2 多元函数的奇偶性

设三元函数 f(x,y,z), 则定义函数的奇偶性如下表3.4.

3.7 积分的轮换对称性 27

满足等式	函数奇偶性	图像特点
f(x, y, z) = -f(-x, y, z)	f(x,y,z) 是关于 x 的奇函数	无
f(x, y, z) = f(-x, y, z)	f(x,y,z) 是关于 x 的偶函数	f(x,y,z) 的图形关于 Ozy 平面对称
f(x, y, z) = -f(x, -y, z)	f(x,y,z) 是关于 y 的奇函数	无
f(x, y, z) = f(x, -y, z)	f(x,y,z) 是关于 y 的偶函数	f(x,y,z) 的图形关于 Ozx 平面对称
f(x, y, z) = -f(x, y, -z)	f(x,y,z) 是关于 z 的奇函数	无
f(x, y, z) = f(x, y, -z)	f(x,y,z) 是关于 z 的偶函数	f(x,y,z) 的图形关于 Oxy 平面对称

表 3.4: 多元函数的奇偶性

3.7 积分的轮换对称性

二元函数的轮换对称性

$$f(x,y) = f(y,x) \tag{3.40}$$

其几何意义是 f(x,y) 的图形关于 y=x 对称.

三元函数的轮换对称性

$$f(x, y, z) = f(y, x, z) = f(x, z, y)$$
(3.41)

积分类型	轮换表达式
二重积分	$\iint\limits_D f(x,y) d\sigma = \iint\limits_D f(y,x) d\sigma = \frac{1}{2} \iint\limits_D \left[f(y,x) + f(x,y) \right] d\sigma$
三重积分	$\iiint\limits_{S} f(x,y,z) \ dV = \iiint\limits_{S} f(y,x,z) \ dV = \iiint\limits_{S} f(z,x,y) \ dV$
第一型曲线积分	$\int_{L} f(x, y) d\sigma = \int_{L} f(y, x) d\sigma = \frac{1}{2} \int_{L} [f(y, x) + f(x, y)] d\sigma$
第二型曲线积分	$\int_{L} f(x, y) \mathrm{d}x + \int_{L} f(y, x) \mathrm{d}y = 0$
第一型曲面积分	$\iint\limits_{S} f(x, y, z) dS = \iint\limits_{S} f(y, x, z) dS = \iint\limits_{S} f(z, x, y) dS$
第二型曲面积分	$\iint\limits_{S} f(x, y, z) dydz = \iint\limits_{S} f(y, x, z) dxdz = \iint\limits_{S} f(z, x, y) dxdy$

表 3.5: 积分的轮换对称性

3.8 积分的奇偶对称性

设被积函数为 f(x,y) 或 f(x,y,z),根据函数的奇偶性,可以得到积分的对称性

积分类型	积分区域	被积函数	化简结果
	关于 y 轴对称	关于 x 的偶函数	$I = 2 \iint_{D_1} f(x, y) d\sigma$
二重积分		关于 x 的奇函数	I = 0
	关于 x 轴对称	关于 y 的偶函数	$I = 2 \iint_{D_1} f(x, y) d\sigma$
		关于 y 的奇函数	I = 0
	关于 Oxy 对称	关于 z 的偶函数	$I = 2 \iiint_{\Omega_1} f(x, y) \mathrm{d}V$
		关于 z 的奇函数	I = 0
三重积分	关于 Oxz 对称	关于 y 的偶函数	$I = 2 \iiint_{\Omega_1} f(x, y) \mathrm{d}V$
		关于 y 的奇函数	I = 0
	关于 Oyz 对称	关于 x 的偶函数	$I = 2 \iiint_{\Omega_1} f(x, y) \mathrm{d}V$
		关于 x 的奇函数	I = 0
	关于 y 轴对称	关于 x 的偶函数	$I = 2 \int_{L_1} f(x, y) \mathrm{d}s$
第一型 曲线积分		关于 x 的奇函数	I = 0
(平面)	关于 x 轴对称	关于 y 的偶函数	$I = 2 \int_{L_1} f(x, y) \mathrm{d}s$
	人 1 2 1四八寸45	关于 y 的奇函数	I = 0
	关于 Oxy 对称	关于 z 的偶函数	$I = 2 \int_{L_1} f(x, y, z) \mathrm{d}s$
	> + 4 9 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	关于 z 的奇函数	I = 0
第一型 曲线积分	关于 Oxz 对称	关于 y 的偶函数	$I = 2 \int_{L_1} f(x, y, z) \mathrm{d}s$
(空间)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	关于 y 的奇函数	I = 0
	关于 Oyz 对称	关于 x 的偶函数	$I = 2 \int_{L_1} f(x, y, z) \mathrm{d}s$
	2 4 ~ 9 \(\d \) \(\d \)	关于 x 的奇函数	I = 0

表 3.6: 积分的奇偶对称性 I

3.8 积分的奇偶对称性 29

续表

积分类型	积分区域	被积函数	化简结果
	关于 <i>Oxy</i> 对称	关于 z 的偶函数	$I = 2 \iint_{S_1} f(x, y, z) \mathrm{d}S$
		关于 z 的奇函数	I = 0
第一型 曲面积分	关于 Oxz 对称	关于 y 的偶函数	$I = 2 \iint_{S_1} f(x, y, z) \mathrm{d}S$
		关于 y 的奇函数	I = 0
	关于 Oyz 对称	关于 x 的偶函数	$I = 2 \iint_{S_1} f(x, y, z) \mathrm{d}S$
		关于 x 的奇函数	I = 0
	关于 Oxy 对称	关于 z 的偶函数	I = 0
		关于 z 的奇函数	$I = 2 \int_{L_1} f(x, y, z) \mathrm{d}z$
第二型	关于 Oxz 对称 -	关于 y 的偶函数	I = 0
曲线积分		关于 y 的奇函数	$I = 2 \int_{L_1} f(x, y, z) \mathrm{d}y$
	关于 <i>Oyz</i> 对称	关于 x 的偶函数	I = 0
	X1 0 9~ /11/4	关于 x 的奇函数	$I = 2 \int_{L_1} f(x, y, z) \mathrm{d}y$
	关于 Oxy 对称	关于 z 的偶函数	I = 0
	X1 Oug Min	关于 z 的奇函数	$I = 2 \iint_{S_1} f(x, y, z) \mathrm{d}x \mathrm{d}y$
第二型		关于 y 的偶函数	I = 0
曲面积分	关于 Oxz 对称	关于 y 的奇函数	$I = 2 \iint_{S_1} f(x, y, z) \mathrm{d}z \mathrm{d}x$
	光工	关于 x 的偶函数	I = 0
	关于 Oyz 对称 —	关于 x 的奇函数	$I = 2 \iint f(x, y, z) \mathrm{d}y \mathrm{d}z$

表 3.7: 积分的奇偶对称性 II

第 4 章 常微分方程

4.1 一阶微分方程

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x,y) \tag{4.1}$$

4.1.1 可分离变量的方程

一般地,如果一个一阶微分方程能写成

$$P(x,y)dx = Q(x,y)dy (4.2)$$

那么原方程称为可分离变量的微分方程.

题型 4.1 可分离变量的方程 1

形如

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(ax + by + c) \tag{4.3}$$

解法: 作变量替换 z = ax + by + c 即可.

$$\frac{\mathrm{d}z}{\mathrm{d}x} = a + b\frac{\mathrm{d}y}{\mathrm{d}x} = a + bf(z) \tag{4.4}$$

题型 4.2 可分离变量的方程 2

形如

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x,y) \tag{4.5}$$

其中, f(x,y) 是齐次函数.

解法:将 f(x,y) 写成 $\frac{y}{x}$ 或 $h\left(\frac{y}{x}\right)$ 的形式

$$y' = h(\frac{y}{x}) \tag{4.6}$$

作变量替换 $u = \frac{y}{x}$,

$$y' = u + xu' = h(u) \tag{4.7}$$

即

$$\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{h(u) - u}{x} \tag{4.8}$$

这是一个可分离变量的方程.

32 第 4 章 常微分方程

题型 4.3 可分离变量的方程 3

形如

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f\left(\frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}\right) \tag{4.9}$$

分两种情况讨论:

1. $\frac{a_1}{a_2} = \frac{b_1}{b_2}$. 则存在常数 k,使得 $(a_2,b_2) = k(a_1,b_1)$,作变量替换 $z = a_1x + b_1y$,则

$$\frac{\mathrm{d}z}{\mathrm{d}x} = a_1 + b_1 \frac{\mathrm{d}y}{\mathrm{d}x} = a_1 + b_1 f\left(\frac{z + c_1}{kz + c_2}\right)$$

这是一个可分离变量的方程.

- 2. $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$.
 - (1) 当 $c_1 = c_2$ 时, f(x, y) 是齐次方程.
 - (2) 当 $c_1 \neq c_2$ 时, 将式子改写为:(可以用待定系数法求出 x_0, y_0)

$$f\left(\frac{a_1x + b_1y + c_1}{z_2x + b_2y + c_2}\right) = f\left(\frac{a_1(x - x_0) + b_1(y - y_0)}{a_2(x - x_0) + b_2(y - y_0)}\right)$$

作变量替换 $u = x - x_0, v = y - y_0$.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f\left(\frac{a_1u + b_1v}{a_2u + b_2v}\right)$$

这是一个齐次方程.

4.2 一阶线性微分方程

形如

$$\frac{\mathrm{d}y}{\mathrm{d}x} + P(x)y = Q(x) \tag{4.10}$$

的方程称为一阶线性微分方程.

4.2.1 一阶线性齐次微分方程

$$\frac{\mathrm{d}y}{\mathrm{d}x} + P(x)y = 0\tag{4.11}$$

解法:可分离变量的微分方程.

通解:

$$y^*(x) = C_0 e^{-\int_{x_0}^x P(t) dt}$$
(4.12)

定理 4.2.1 线性齐次微分方程通解定理

一阶线性齐次微分方程的通解包含了它的一切解.

4.3 全微分方程与积分因子 33

4.2.2 一阶线性非齐次微分方程

$$\frac{\mathrm{d}y}{\mathrm{d}x} + P(x)y = Q(x) \tag{4.13}$$

是对应齐次方程 $\frac{dy}{dx} + P(x)y = 0$ 的线性非齐次方程.

解法: 常数变易法. 作变量替换

$$y(x) = u(x)e^{-\int_{x_0}^x P(t) dt}$$
(4.14)

求出一阶导数 y' 然后将 y,y' 反代回 y'+P(x)y=Q(x) 求出 u(x) 再反代回 y(x) 即可求出一阶线性非齐次微分方程的通解.

定理 4.2.2 线性非齐次微分方程通解定理

线性非齐次方程的一个特解与相应的齐次方程的通解之和,构成非齐次方程的通解.

线性非齐次方程的两个特解之差构成齐次方程的通解.

线性非齐次方程的两个特解之和仍为线性非齐次方程的特解.

题型 4.4 伯努利方程

$$\frac{\mathrm{d}y}{\mathrm{d}x} + P(x)y = Q(x)y^{\alpha} \tag{4.15}$$

其中 $\alpha \neq 0,1$ 且为常数.

解法: 两端同时除以 y^{α}

$$y^{-\alpha} \frac{\mathrm{d}y}{\mathrm{d}x} + P(x) \cdot y^{1-\alpha} = Q(x) \iff \frac{1}{1-\alpha} \cdot \frac{\mathrm{d}y^{1-\alpha}}{\mathrm{d}x} + P(x) \cdot y^{1-\alpha} = Q(x)$$

作变量替换 $z = y^{1-\alpha}$

$$\frac{1}{1-\alpha} \cdot \frac{\mathrm{d}z}{\mathrm{d}x} + P(x) \cdot z = Q(x) \tag{4.16}$$

这是一个一阶线性非齐次方程.

4.3 全微分方程与积分因子

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-P(x,y)}{Q(x,y)}\tag{4.17}$$

它可以写成 P(x,y)dx + Q(x,y)dy = 0 的形式.

4.3.1 全微分方程

如果 P(x,y)dx + Q(x,y)dy = 0 满足

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \tag{4.18}$$

则可以表示成全微分方程的形式. 求全微分方程的方法有:

1. 路径无关的曲线积分

$$\int_{(x_0, y_0)}^{(x, y)} P \, \mathrm{d}x + Q \, \mathrm{d}y \tag{4.19}$$

34 第4章 常微分方程

2. 现将 P(x,y) 看作是 x 的函数,由 $\frac{\partial u}{\partial x}=P$ 求出 P(x,y) 关于 x 的原函数 $u_1(x,y)$, 令

$$u(x,y) = u_1(x,y) + \varphi(y)$$

然后将 u(x,y) 代入 $\frac{\partial u}{\partial y}=Q$ 求出 $\varphi(y)$ 后代入 u(x,y) 即可.

4.3.2 积分因子

定义 4.3.1 积分因子

设方程

$$M(x,y)dx + N(x,y)dy = 0$$

不是全微分方程. 若存在函数 $\mu(x,y) \neq 0$, 使

$$\mu M dx + \mu N dy = 0$$

是全微分方程. 则称 μ 是积分因子.

定理 4.3.1 特殊积分因子的求法 1

如果

$$\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}$$

$$\frac{1}{N(x,y)}$$
(4.20)

仅是 x 的函数, 记为 F(x), 则

$$\mu(x) = e^{\int_{x_0}^x F(t) dt}$$
 (4.21)

定理 4.3.2 特殊积分因子的求法 2

如果

$$\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}$$

$$\frac{M(x,y)}{M(x,y)} \tag{4.22}$$

仅是 y 的函数, 记为 G(y), 则

$$\mu(y) = e^{\int_{y_0}^y G(t) dt}$$
 (4.23)

4.4 可降阶的二阶微分方程

题型 4.5 不显含未知函数 y 的方程

不显含未知函数 y 的方程

$$F(x, y', y'') = 0 (4.24)$$

解法: 作变量替换 z = y', 得到关于新未知函数 z 的一阶方程

$$F(x, z, z') = 0 (4.25)$$

求出 z 后再求积分 $y = \int z dx$ 即可.

4.5 高阶线性微分方程 35

题型 4.6 不显含未知函数 x 的方程

不显含未知函数 x 的方程

$$F(yy', y'') = 0 (4.26)$$

解法: 作变量替换 p = y', 并将 y 看作是自变量

$$y'' = \frac{\mathrm{d}p}{\mathrm{d}x} = \frac{\mathrm{d}p}{\mathrm{d}y} \cdot \frac{\mathrm{d}y}{\mathrm{d}x} = p\frac{\mathrm{d}p}{\mathrm{d}y} \tag{4.27}$$

反代回原方程,

$$F(x, p, p\frac{\mathrm{d}p}{\mathrm{d}y}) = 0 \tag{4.28}$$

求出 p 后再求积分 $y = \int p dx$ 即可.

4.5 高阶线性微分方程

高阶线性微分方程的形式如下:

$$y^{(n)}(x) + p_1(x)y^{n-1}(x) + \dots + p_{n_1}y'(x) + p_n(x)y(x) = f(x)$$
(4.29)

4.5.1 二阶线性齐次微分方程

二阶线性微分方程的形式为

$$y''(x) + p(x)y'(x) + q(x)y(x) = f(x)$$
(4.30)

其中 $f(x) \equiv 0$, 则为二阶线性齐次微分方程,若 $f(x) \not\equiv 0$, 则为二阶线性非齐次微分方程.

定理 4.5.1 二阶线性微分方程解的唯一性定理

设函数 p(x), q(x), f(x) 在 [a,b] 上连续, 则初值问题

$$\begin{cases} y'' + p(x) + q(x)y = f(x), \\ y(x_0) = y_0, \ y'(x_0) = y_1 \end{cases}$$
(4.31)

在区间 [a,b] 内存在唯一解 y(x). 可以推广到一般 n 阶线性微分方程解的唯一性.

定义 4.5.1 线性相关性

设 m 个函数 $\varphi_1(x), \varphi_2(x), \cdots, \varphi_m(x)$ 在区间 [a,b] 上有定义,若存在 m 个不全为 0 的常数 k_1, k_2, \cdots, k_m ,使

$$k_1\varphi_1(x) + k_2\varphi_2(x) + \dots + k_m\varphi_m(x) \equiv 0, \quad x \in [a, b]$$

$$(4.32)$$

则称函数组 $\varphi_1(x), \varphi_2(x), \cdots, \varphi_m(x)$ 在区间 [a,b] 上线性相关,否则称函数组 $\varphi_1(x), \varphi_2(x), \cdots, \varphi_m(x)$ 在区间 [a,b] 上线性无关.

第4章 常微分方程

定理 4.5.2 二阶线性齐次方程解的性质

若 $y_1(x), y_2(x)$ 是二阶线性齐次方程的两个通解, 则它们的任意一个线性组合 (C_1, C_2) 为任意常数)

$$C_1 y_1(x) \pm C_2 y_2(x) \tag{4.33}$$

也是这个二阶线性齐次方程的解.

定理 4.5.3 二阶线性齐次方程通解的线性相关性

设 $\varphi_1(x), \varphi_2(x), \ x \in (a,b)$ 是二阶线性齐次方程的两个解. 则 $\varphi_1(x), \varphi_2(x)$ 在 (a,b) 上线性相关的充要条件是: 它们确定的朗斯基行列式

$$W(x) = \begin{vmatrix} \varphi_1(x) & \varphi_2(x) \\ \varphi'_1(x) & \varphi'_2(x) \end{vmatrix} \equiv 0 \quad x \in (a, b)$$

$$(4.34)$$

当 $W(x) \not\equiv 0$ 时, $\varphi_1(x)$, $\varphi_2(x)$ 在 (a,b) 上线性无关

定理 4.5.4 二阶线性齐次方程通解的结构

若 $\varphi_1(x), \varphi_2(x)$ 是二阶线性齐次方程的两个线性无关解, 则它们的任意一个线性组合 (C_1, C_2) 为任意常数)

$$C_1\varphi_1(x) + C_2\varphi_2(x) \tag{4.35}$$

也是这个二阶线性齐次方程的通解.

定理 4.5.5 n 阶线性齐次方程通解的结构

若 $\varphi_1(x), \varphi_2(x), \cdots, \varphi_n(x)$ 是 n 阶线性齐次方程

$$y^{(n)}(x) + p_1(x)y^{n-1}(x) + \dots + p_{n_1}y'(x) + p_n(x)y(x) = f(x)$$

的 n 个线性无关解,则它们的任意一个线性组合

$$C_1\varphi_1(x) + C_2\varphi_2(x) + \dots + C_n\varphi_n(x) \tag{4.36}$$

是这个 n 阶线性齐次方程的通解, 其中 C_1, C_2, \dots, C_n 为任意常数.

4.5.2 二阶线性非齐次微分方程

定理 4.5.6 二阶线性非齐次方程通解的结构

若 $y^*(x)$ 是二阶线性非齐次方程的一个特解,又 $C_1\varphi_1(x) + C_2\varphi_2(x)$ 是对应的二阶线性齐次方程的通解 (C_1, C_2) 为任意常数),则

$$y(x) = C_1 \varphi_1(x) + C_2 \varphi_2(x) + y^*(x)$$
(4.37)

是这个二阶线性非齐次方程的通解.

定理 4.5.7 二阶线性非齐次方程解的性质 1

若 $y_1(x), y_2(x)$ 是二阶线性非齐次方程的两个特解,则

$$y_1(x) + y_2(x)$$

是这个二阶线性非齐次方程的解, 而

$$y_1(x) - y_2(x)$$

是这个二阶线性非齐次方程对应的二阶线性齐次方程的解.

定理 4.5.8 二阶线性非齐次方程解的性质 2

若 y1(x), y2(x) 分别是二阶线性非齐次方程

$$y'' + py' + q = f_1(x)$$

$$y'' + py' + q = f_2(x)$$

的解, 则函数 $y(x) = y_1(x) + y_2(x)$ 是二阶线性非齐次方程

$$y'' + py' + q = f_1(x) + f_2(x)$$
(4.38)

的解.

也就是说求方程 $y'' + py' + q = f_1(x) + f_2(x)$ 的特解可以先分别求出

$$y'' + py' + q = f_1(x)$$

$$y'' + py' + q = f_2(x)$$

的特解 $y_1(x), y_2(x)$ 再相加.

4.6 二阶线性常系数微分方程

4.6.1 二阶线性常系数齐次微分方程

定义 4.6.1 特征根与与特征方程

考虑方程

$$y'' + py' + qy = 0 (4.39)$$

其中,p,q 是常数. 考虑这个方程解的形式为

$$y = e^{\lambda x}$$

代入原方程,消去 $e^{\lambda x}$ 则得到特征方程

$$\lambda^2 + p\lambda + q = 0 \tag{4.40}$$

特征方程的根

$$\lambda = \frac{1}{2}(-p \pm \sqrt{p^2 - 4q}) \tag{4.41}$$

称为特征根.

38 第 4 章 常微分方程

定理 4.6.1 二阶线性常系数齐次微分方程的通解

特征根	通解形式
两相异实根 λ_1,λ_2	$C_1 \mathrm{e}^{\lambda_1 x} + C_2 \mathrm{e}^{\lambda_2 x}$
二重根 λ_1	$(C_1 + C_2 x) e^{\lambda_1 x}$
共轭复根 $\lambda_{1,2} = \alpha \pm \beta i$	$e^{\alpha x}(C_1\cos\beta x + C_2\sin\beta x)$

表 4.1: 二阶线性常系数齐次微分方程的通解

定理 4.6.2 n 阶线性常系数齐次微分方程的通解

对于 n 阶线性齐次常系数微分方程

$$y^{(n)} + a_1 y^{(n-1)} + a_2 y^{(n-2)} + \dots + a_{n-1} y' + a_n y = 0$$

$$(4.42)$$

对应的特征方程为

$$\lambda^{n} + a_{1}\lambda^{n-1} + a_{2}\lambda^{n-2} + \dots + a_{n-1}\lambda + a_{n} = 0$$
(4.43)

每个特征根所对应的线性无关的特解如下表4.2.

特征根	对应的线性无关的特解	
单实根 λ	$e^{\lambda x}$	
k 重实根 $\lambda(k>1)$	$e^{\lambda x}, xe^{\lambda x}, \cdot, x^{k-1}e^{\lambda x}$	
单共轭复根 $\lambda_{1,2}=\alpha\pm eta$ i	$e^{\alpha x}\cos\beta x, e^{\alpha x}\sin\beta x$	
m 重共轭复根 $(m > 1)$	$e^{\alpha x}\cos \beta x, e^{\alpha x}\sin \beta x, xe^{\alpha x}\cos \beta x, xe^{\alpha x}\sin \beta x, \cdots,$	
$\lambda_{1,2} = \alpha \pm \beta \mathrm{i}$	$x^m e^{\alpha x} \cos \beta x, x^m e^{\alpha x} \sin \beta x$	

表 4.2: n 阶线性常系数齐次微分方程的通解

由下表4.2可得到相应的 n 个线性无关的特解. 然后作它们的线性组合, 即可得到 n 阶线性齐次常系数微分方程的通解.

4.6.2 二阶线性常系数非齐次微分方程

定义 4.6.2 二阶线性常系数非齐次微分方程

方程

$$y'' + py' + qy = f(x) (4.44)$$

其中,p,q 为常数, $f(x) \not\equiv 0$.

定理 4.6.3 多种特殊线性常系数非齐次微分方程的特解

f(x) 满足一定特殊条件的情况下,可以求得特解如上页表4.3. 其中 P_n,Q_n,R_n 是 n 次多项式. 可以用待定系数法代定系数然后反代回原线性常系数非齐次微分方程通过比对系数可以求出所有参数.

f(x) 的 形式	条件	特解的形式
$P_n(x)$	0 不是特征根	$Q_n(x)$
	0 是单特征根	$xQ_n(x)$
	0 是重特征根	$x^2Q_n(x)$
$ae^{\alpha x}$	α 不是特征根	$A\mathrm{e}^{lpha x}$
	α 是单特征根	$Ax\mathrm{e}^{lpha x}$
	α 是重特征根	$Ax^2e^{\alpha x}$
$a\cos\beta x + b\sin\beta x$	±βi 不是特征根	$A\cos\beta x + B\sin\beta x$
	$\pm eta$ i 是特征根	$x(A\cos\beta x + B\sin\beta x)$
$P_n(x)e^{\alpha x}$	α 不是特征根	$Q_n(x)e^{\alpha x}$
	α 是单特征根	$xQ_n(x)e^{\alpha x}$
	α 是重特征根	$x^2Q_n(x)e^{\alpha x}$
$P_n(x)e^{\alpha x}(a\cos\beta x + b\sin\beta x)$	$\alpha \pm \beta$ i 不是特征根	$e^{\alpha x}[Q_n\cos\beta x + R_n\sin\beta x]$
eta eq 0	$\alpha \pm \beta$ i 是特征根	$xe^{\alpha x}[Q_n\cos\beta x + R_n\sin\beta x]$

表 4.3: 多种特殊线性常系数非齐次微分方程的特解

常系数非齐次微分方程的通解就等于其对应的常系数齐次微分方程的通解加上常系数非齐次微分方程的一个特解.

方法 4.6.1 常数变易法求二阶线性常系数非齐次微分方程的通解

1. 求出相应二阶线性常系数齐次微分方程 y''+p(x)y'+q(x)y=f(x) 的两个线性无关的解 $\varphi_1(x),\varphi_1(x),$ 即齐次方程的通解为 (C_1,C_2) 为任意常数)

$$y^*(x) = C_1 \varphi_1(x) + C_2 \varphi_2(x) \tag{4.45}$$

2. 将上述的任意常数 C_1, C_2 替换为待定的函数 $C_1(x), C_2(x)$, 即

$$y(x) = C_1(x)\varphi_1(x) + C_2(x)\varphi_2(x)$$
(4.46)

3. 解下列方程, 求出待定的函数 $C_1(x)$, $C_2(x)$

$$\begin{cases}
C'_1(x)\varphi_1(x) + C'_2(x)\varphi_2(x) = 0 \\
C'_1(x)\varphi'_1(x) + C'_2(x)\varphi'_2(x) = f(x)
\end{cases}$$
(4.47)

4. C₁(x), C₂(x) 代入原式(4.46)即求出通解

$$y(x) = C_1(x)\varphi_1(x) + C_2(x)\varphi_2(x)$$
(4.48)

40 第4章 常微分方程

题型 4.7 欧拉方程

形如

$$a_0 x^n y^{(n)} + a_1 x^{n-1} y^{(n-1)} + \dots + a_{n-1} x y' + a_n = 9$$

$$(4.49)$$

的方程称为欧拉方程.

解法: 当 x>0 时, 令 $x=\mathrm{e}^t$, 当 x<0 时, 令 $x=-\mathrm{e}^t$ 即可化为线性常系数微分方程.

$$b_0 \frac{\mathrm{d}^n y}{\mathrm{d}t^n} + b_1 \frac{\mathrm{d}^{n-1} y}{\mathrm{d}t^{n-1}} + \dots + b_{n-1} \frac{\mathrm{d}y}{\mathrm{d}t} + b_n = 0$$
 (4.50)

注:由 $x = e^t$ 可得

$$\frac{\mathrm{d}^k y}{\mathrm{d}x^k} = \left(C_1 \frac{\mathrm{d}y}{\mathrm{d}t} + C_2 \frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + \dots + C_k \frac{\mathrm{d}^k y}{\mathrm{d}x^k} \right) \mathrm{e}^{-kt}, \quad k = 1, 2, \dots, n$$
(4.51)

其中, $C_i(i=1,2,\cdots,k)$ 为常数.

索引

低阶无穷小,7 等价无穷小,7

高阶无穷小,7

 \mathbf{D}

 \mathbf{G}

J

极限,1
K k 阶无穷小, 7
L
连续, 11
Q 去心领域, 1
${f T}$
同阶无穷小,7
\mathbf{W}
无穷大,2
无穷小,2
\mathbf{Y}
右极限,2
右连续,11
${f Z}$
左极限,2
左连续, 11