

Report No: CCISE180414504

FCC REPORT

Applicant: HUNG WAI HOLDINGS LIMITED

Address of Applicant: Unit 11, 12/F., New Commerce Centre, 19 On Sum Street, Shatin,

Hong Kong

Equipment Under Test (EUT)

Product Name: 18.5" LCD touch screen android quad core player

Model No.: DT185-AC4G1-720

FCC ID: 2AB6Z-DT185-AC4G1

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: 27 Apr., 2018

Date of Test: 28 Apr., to 22 May, 2018

Date of report issued: 24 May, 2018

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	24 May, 2018	Android player Main board with wireless module (FCC ID: 2AB6Z-A18RK31) and same antenna were used by the device, only AC Power Line Conducted Emission and Radiated emission were re-tested.

Tested by: Zora Lee Date: 24 May, 2018

Test Engineer

Reviewed by: Date: 24 May, 2018

Project Engineer

3 Contents

		Page
1	COVER PAGE	1
2	VERSION	2
3	CONTENTS	3
4	TEST SUMMARY	
5	GENERAL INFORMATION	
	5.1 CLIENT INFORMATION	_
_	5.2 GENERAL DESCRIPTION OF E.U.T	
_	5.3 TEST ENVIRONMENT AND TEST MODE	
_	5.4 DESCRIPTION OF SUPPORT UNITS	
5	5.5 MEASUREMENT UNCERTAINTY	
5	5.6 RELATED SUBMITTAL(S) / GRANT (S)	
5	5.7 LABORATORY FACILITY	8
5	5.8 LABORATORY LOCATION	
5	5.9 TEST INSTRUMENTS LIST	9
6	TEST RESULTS AND MEASUREMENT DATA	10
6	6.1 ANTENNA REQUIREMENT	10
6	6.2 CONDUCTED EMISSION	
6	6.3 CONDUCTED OUTPUT POWER	
_	6.4 OCCUPY BANDWIDTH	
_	6.5 POWER SPECTRAL DENSITY	
_	6.6 BAND EDGE	
6	6.7 Spurious Emission	
	6.7.1 Restricted Band	
6	6.8 Frequency stability	
7	TEST SETUP PHOTO	_
ጸ	FUT CONSTRUCTIONAL DETAILS	62

4 Test Summary

Test Item	Section in CFR 47	Test Result
Antenna requirement	15.203 & 15.407 (a)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.407 (a) (1) (iv) & (a) (3)	Pass*
26dB Occupied Bandwidth	15.407 (a) (5)	Pass*
6dB Emission Bandwidth	15.407(e)	Pass*
Power Spectral Density	15.407 (a) (1) (iv) & (a) (3)	Pass*
Band Edge	15.407(b)	Pass
Spurious Emission	15.407 (b) & 15.205 & 15.209	Pass
Frequency Stability	15.407(g)	Pass*

Pass: The EUT complies with the essential requirements in the standard.

N/A: Not Applicable.

Pass*: The test data refer to FCC ID: 2AB6Z-A18RK31.

5 General Information

5.1 Client Information

Applicant:	HUNG WAI HOLDINGS LIMITED
Address:	Unit 11, 12/F., New Commerce Centre, 19 On Sum Street, Shatin, Hong Kong
Manufacturer/ Factory:	HUNG WAI ELECTRONICS (HUIZHOU) LTD
Address:	3rd floor, NO.1, Minfeng Road, Huinan High and New Technology Industry Park, Huiao Avenue, Huizhou City, Guangdong

5.2 General Description of E.U.T.

Product Name:	19.5" LCD touch serson android guad core player
	18.5" LCD touch screen android quad core player
Model No.:	DT185-AC4G1-720
Operation Frequency:	Band 1: 5150MHz-5250MHz,
	Band 4: 5725MHz-5825MHz
Channel numbers:	Band 1: 802.11a/802.11n20: 4, 802.11n40: 2, 802.11ac: 1
	Band 4: 802.11a/802.11n20: 5, 802.11n40: 2, 802.11ac: 1
Channel separation:	802.11a/802.11n20: 20MHz, 802.11n40: 40MHz,
	802.11ac: 20/40/80MHz
Modulation technology	BPSK, QPSK, 16-QAM, 64-QAM
(IEEE 802.11a):	
Modulation technology	BPSK, QPSK, 16-QAM, 64-QAM
(IEEE 802.11n):	
Modulation technology	BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM
(IEEE 802.11ac):	
Data speed (IEEE 802.11a):	6Mbps, 9Mbps,12Mbps,18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps
Data speed	MCS0: 6.5Mbps, MCS1:13Mbps,MCS2:19.5Mbps, MCS3:26Mbps,
(IEEE 802.11n20):	MCS4:39Mbps, MCS5:52Mbps, MCS6:58.5Mbps, MCS7:65Mbps
Data speed	MCS0:15Mbps, MCS1:30Mbps, MCS2:45Mbps, MCS3:60Mbps,
(IEEE 802.11n40):	MCS4:90Mbps, MCS5:120Mbps, MCS6:135Mbps, MCS7:150Mbps
Data speed (IEEE 802.11ac):	Up to 433.3Mbps
Antenna Type:	External Antenna
Antenna gain:	2 dBi
Power supply:	AC 120V/60Hz
AC adapter:	Model No.:PS36A120Y3000S
	Input: AC100-240V, 50/60Hz, 1.0A
	Output: DC 12V,3000mA

Operation Frequency each of channel							
	Band 1						
802.11a/8	02.11n20	803	2.11n40	80	2.11ac		
Channel	Frequency	Channel	Frequency	Channel	Frequency		
36	5180MHz	38	5190MHz	42	5210MHz		
40	5200MHz	46	5230MHz				
44	5220MHz						
48	5240MHz						
		Ba	and 4				
802.11a/8	02.11n20	802.11n40		802.11ac			
Channel	Frequency	Channel	Frequency	Channel	Frequency		
149	5745MHz	151	5755MHz	155	5775MHz		
153	5765MHz	159	5795MHz				
157	5785MHz						
161	5805MHz						
165	5825MHz						

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Band 1					
802.11a/802.11n20		802.11n40		802.11ac	
Channel	Frequency	Channel	Frequency	Channel	Frequency
Lowest channel	5180MHz	Lowest channel	5190MHz	Middle channel	5210MHz
Middle channel	5200MHz	Highest channel	5230MHz		
Highest channel	5240MHz				
		Band	4		
802.11a/8	02.11n20	802.11n40		802.11ac	
Channel	Frequency	Channel	Frequency	Channel	Frequency
Lowest channel	5745MHz	Lowest channel	5755MHz	Middle channel	5775MHz
Middle channel	5785MHz	Highest channel	5795MHz		
Highest channel	5825MHz				

5.3 Test environment and test mode

Operating Environment:						
Temperature:	24.0 °C	24.0 °C				
Humidity:	54 % RH					
Atmospheric Pressure:	1010 mbar					
Test mode:						
Continuously transmitting mode	Keep the EUT in 100	0% duty cycle transmitting with modulation.				
We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:						
Per-scan all kind of data rate, an	d found the follow lis	st were the worst case.				
Mode		Data rate				
802.11a		6 Mbps				
802.11n20		6.5 Mbps				
802.11n40		13 Mbps				
802.11ac		29.3 Mbps				

Report No: CCISE180414504

5.4 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX745	N/A	DoC
DELL	MONITOR	E178FPC	N/A	DoC
DELL	KEYBOARD	SK-8115	N/A	DoC
DELL	MOUSE	MOC5UO	N/A	DoC
FLY POWER	Switching Adapter	PS24A120K2000UD	N/A	N/A

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±2.22 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±2.76 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.28 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.72 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±2.88 dB (k=2)

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.8 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.9 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020	
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-16-2018	03-15-2019	
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-16-2018	03-15-2019	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-16-2018	03-15-2019	
EMI Test Software	AUDIX	E3	6.110919b	N/A	N/A	
Pre-amplifier	HP	8447D	2944A09358	03-07-2018	03-06-2019	
Pre-amplifier	CD	PAP-1G18	11804	03-07-2018	03-06-2019	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-07-2018	03-06-2019	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2018	03-06-2019	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2018	03-06-2019	
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2018	03-06-2019	
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2018	03-06-2019	

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-07-2018	03-06-2019	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-07-2018	03-06-2019	
LISN	CHASE	MN2050D	1447	03-19-2018	03-18-2019	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2017	07-20-2018	
Cable	HP	10503A	N/A	03-07-2018	03-06-2019	
EMI Test Software	AUDIX	E3	6.110919b	N/A	N/A	

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part15 E Section 15.203 /407(a)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

E.U.T Antenna:

The WiFi antenna is an External antenna which cannot replace by end-user, the best case gain of the antenna is 2 dBi.

6.2 Conducted Emission

	· · ·						
Test Requirement:	FCC Part15 C Section 15	5.207					
Test Method:	ANSI C63.10: 2013	ANSI C63.10: 2013					
Test Frequency Range:	150kHz to 30MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9kHz, VBW=30kH	Z					
Limit:	Frequency range	Limit (dBuV)				
	(MHz)	Quasi-peak	,				
	0.15-0.5	66 to 56*	0.15-0.5				
	0.5-5	56	0.5-5				
	5-30	60	5-30				
Test procedure	* Decreases with the loga						
	line impedance s 500hm/50uH couplir 2. The peripheral device a LISN that provide termination. (Please photographs). 3. Both sides of A.C. lin interference. In orde positions of equipment	a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).					
Test setup:	Refe	rence Plane					
	AUX Equipment E Test table/Insulation p Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilizat Test table height=0.8m	.U.T EMI Receiver	— AC power				
Test Instruments:	Refer to section 5.9 for d	etails					
Test mode:	Refer to section 5.3 for d	etails.					
Test results:	Passed						

Measurement Data:

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (iv) & (a) (3)				
Test Method:	ANSI C63.10: 2013, KDB789033				
Limit:	Band 1: 24dBm Band 4: 30dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Refer to FCC ID: 2AB6Z-A18RK31				

6.4 Occupy Bandwidth

0.4 Occupy Bandwidth	
Test Requirement:	FCC Part15 E Section 15.407 (a) (5) and Section 15.407 (e)
Test Method:	ANSI C63.10:2013 and KDB 789033
Limit:	Band 1/2/3/4: N/A (26dB Emission Bandwidth and 99% Occupy Bandwidth) Band 4: >500kHz (6dB Bandwidth)
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Refer to FCC ID: 2AB6Z-A18RK31

6.5 Power Spectral Density

	,				
Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (iv) & (a)(3)				
Test Method:	ANSI C63.10:2013, KDB 789033				
Limit:	Band 1: 11 dBm/MHz Band 4: 30 dBm/500kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Refer to FCC ID: 2AB6Z-A18RK31				

6.6 Band Edge

Test Requirement:	FCC Part 15 E Section 15.407 (b)							
Test Method:	ANSI C63.10:2013 , KDB 789033							
Receiver setup:	Detector	RBW	VBW	Remark				
·	Quasi-peak	120kHz	300kHz	Quasi-peak Value				
	RMS	1MHz	3MHz	Average Value				
Limit:	Band	Limit (dBu	ıV/m @3m)	Remark				
	Band 1/2/3			Peak Value				
	Dana 17270							
	Band 4		RBW VBW Remark 120kHz 300kHz Quasi-peak Value 1MHz 3MHz Average Value Limit (dBuV/m @3m) Remark 68.20 Peak Value 54.00 Average Value 78.20 Peak Value 54.00 Average Value 1mited to a level of -27 dBm/MHz at 75 MHz or the band edge increasinglinearly to 10 dBm/MHz at the band edge, and from 25 MHz above or below using linearly to a level of 15.6 dBm/MHz at 5 MHz and edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band rly to a level of 27 dBm/MHz at the band edge. 1 dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]=-27dBm. 1 dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]=-27dBm. 2 dBm] + 95.2=105.2 dBuV/m, for EIPR[dBm]=10dBm. 3 dBm] + 95.2=105.2 dBuV/m, for EIPR[dBm]=27dBm. 4 dBm] + 95.2=122.2 dBuV/m, for EIPR[dBm]=27dBm. 5 dBm] + 95.2=105.2 dBuV/m, for EIPR[dBm]=27dBm. 6 dBm] + 95.2=105.2 dBuV/m, for EIPR[dBm]=27dBm. 7 dBm] + 95.2=105.2 dBuV/m, for EIPR[dBm]=10dBm. 8 dBm] + 95.2=105.2 dBuV/m, for EIPR[dBm]=10dBm. 9 dBm] + 95.2=105.2 dBuV/m, for EIPR[dBm]=10dBm. 10 dBm] + 95.2=105.2 dBuV/m, for EIPR[dBm]=10dBm. 11 dBm] + 95.2=105.2 dBuV/m, for EIPR[dBm]=10dBm. 12 dBm] + 95.2=105.2 dBuV/m, for EIPR[dBm]=10dBm. 13 dBm] + 95.2=105.2 dBuV/m, for EIPR[dBm]=10dBm. 14 dBm] + 95.2=105.2 dBuV/m, for EIPR[dBm]=10dBm. 15 dBm] + 95.2=105.2 dBuV/m, for EIPR[dBm]=10dBm. 16 dBm] + 95.2=105.2 dBuV/m, for EIPR[dBm]=10dBm. 17 dBm] + 95.2=105.2 dBuV/m, for EIPR[dBm]=10dBm. 18 dBm] + 95.2=105.					
	Band 4 limit:	54	1.00	Average Value				
	more above or belouge 25 MHz above or below the band edge increasing line above or below the edge increasing line Remark: 1. Band 1/2/3 limit: E[dBµV/m] = EIR E[dV/m] =	ow the band edge elow the band edge reasing linearly to band edge, and early to a level of RP[dBm] + 95.2=68 RP[dBm] + 95.2=10 RP[dBm] + 95.2=11	e increasinglinea lge, and from 25 o a level of 15.6 from 5 MHz abo 27 dBm/MHz at .2 dBuV/m, for Elf .2 dBuV/m, for Elf 5.2 dBuV/m, for E	arly to 10 dBm/MHz at 5 MHz above or below 6 dBm/MHz at 5 MHz ove or below the band the band edge. PR[dBm]=-27dBm. PR[dBm]=10dBm. IPR[dBm]=15.6dBm.				
Test Procedure:	the ground at a to determine the control of the EUT was antenna, which tower. 3. The antenna has the ground to a Both horizontal make the mea. 4. For each suspicase and then meters and the to find the max. 5. The test-received Specified Band. 6. If the emission the limit specified the EUT wo have 10dB max.	a 3 meter camber ne position of the set 3 meters aware was mounted or reight is varied from the mail and vertical polar surement. The antenna was a rotatable was to kimum reading. The ver system was so width with Maximal level of the EUT ied, then testing ould be reported. Our gin would be re-	r. The table was highest radiation y from the interform the top of a value of val	rotated 360 degrees n. erence-receiving riable-height antenna four meters above the field strength. antenna are set to anged to its worst is from 1 meter to 4 grees to 360 degrees of Function and and the peak values missions that did not ne using peak, quasi-				

Measurement Data (worst case):

Band 1:

	Band 1 – 802.11a								
	Test channel: Lowest channel								
			Dete	ctor: Peak Va	alue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	46.68	31.38	7.05	41.93	43.18	68.20	-25.02	Horizontal	
5150.00	46.76	31.38	7.05	41.93	43.26	68.20	-24.94	Vertical	
			Detect	tor: Average '	Value				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	37.25	31.38	7.05	41.93	33.75	54.00	-20.25	Horizontal	
5150.00	37.42	31.38	7.05	41.93	33.92	54.00	-20.08	Vertical	
				nnel: Highest					
			Dete	ctor: Peak Va	alue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	47.96	30.82	7.11	41.89	44.00	68.20	-24.20	Horizontal	
5350.00	47.58	30.82	7.11	41.89	43.62	68.20	-24.58	Vertical	
			Detect	tor: Average '	Value				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	37.65	30.82	7.11	41.89	33.69	54.00	-20.31	Horizontal	
5350.00	37.17	30.82	7.11	41.89	33.21	54.00	-20.79	Vertical	

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 1 – 802.11n(HT20)									
	Test channel: Lowest channel								
Detector: Peak									
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	46.53	31.38	7.05	41.93	43.03	68.20	-25.17	Horizontal	
5150.00	47.12	31.38	7.05	41.93	43.62	68.20	-24.58	Vertical	
			De	tector: Avera	ge				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	37.14	31.38	7.05	41.93	33.64	54.00	-20.36	Horizontal	
5150.00	37.52	31.38	7.05	41.93	34.02	54.00	-19.98	Vertical	
			Test char	nnel: Highest	channel				
			Dete	ctor: Peak Va	alue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	47.66	30.82	7.11	41.89	43.70	68.20	-24.50	Horizontal	
5350.00	47.82	30.82	7.11	41.89	43.86	68.20	-24.34	Vertical	
			Detect	tor: Average	Value				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	37.45	30.82	7.11	41.89	33.49	54.00	-20.51	Horizontal	
5350.00	37.16	30.82	7.11	41.89	33.20	54.00	-20.80	Vertical	

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 1 – 802.11n(HT40)									
Test channel: Lowest channel									
			Dete	ector: Peak Va	alue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	46.86	31.38	7.05	41.93	43.36	68.20	-24.84	Horizontal	
5150.00	46.75	31.38	7.05	41.93	43.25	68.20	-24.95	Vertical	
			Detec	tor: Average	Value				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	37.45	31.38	7.05	41.93	33.95	54.00	-20.05	Horizontal	
5150.00	37.52	31.38	7.05	41.93	34.02	54.00	-19.98	Vertical	
			Test cha	nnel: Highest	channel				
				ctor: Peak V					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	47.56	30.82	35.37	7.11	41.89	68.20	-26.31	Horizontal	
5350.00	47.89	30.82	35.37	7.11	41.89	68.20	-26.31	Vertical	
			Detec	tor: Average	Value				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	37.55	30.82	7.11	41.89	33.59	54.00	-20.41	Horizontal	
5350.00	37.96	30.82	7.11	41.89	34.00	54.00	-20.00	Vertical	

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 1 – 802.11ac(HT20)									
	Test channel: Lowest channel									
			Dete	ector: Peak Va	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	46.69	31.38	7.05	41.93	43.19	68.20	-25.01	Horizontal		
5150.00	46.38	31.38	7.05	41.93	42.88	68.20	-25.32	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	37.42	31.38	7.05	41.93	33.92	54.00	-20.08	Horizontal		
5150.00	37.15	31.38	7.05	41.93	33.65	54.00	-20.35	Vertical		
			Test char	nnel: Highest	channel					
			Dete	ctor: Peak Va	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	42.69	30.82	7.11	41.89	38.73	68.20	-29.47	Horizontal		
5350.00	43.23	30.82	7.11	41.89	39.27	68.20	-28.93	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	32.15	30.82	7.11	41.89	28.19	54.00	-25.81	Horizontal		
5350.00	33.42	30.82	7.11	41.89	29.46	54.00	-24.54	Vertical		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 1 – 802.11ac(HT40)								
	Test channel: Lowest channel								
			Dete	ctor: Peak Va	alue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	46.36	31.38	7.05	41.93	42.86	68.20	-25.34	Horizontal	
5150.00	46.52	31.38	7.05	41.93	43.02	68.20	-25.18	Vertical	
			Detect	tor: Average '	Value				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	37.45	31.38	7.05	41.93	33.95	54.00	-20.05	Horizontal	
5150.00	37.41	31.38	7.05	41.93	33.91	54.00	-20.09	Vertical	
			Test char	nnel: Highest	channel				
			Dete	ctor: Peak Va	alue			1	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	43.26	30.82	7.11	41.89	39.30	68.20	-28.90	Horizontal	
5350.00	42.89	30.82	7.11	41.89	38.93	68.20	-29.27	Vertical	
			Detect	tor: Average '	Value				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	33.42	30.82	7.11	41.89	29.46	54.00	-24.54	Horizontal	
5350.00	32.45	30.82	7.11	41.89	28.49	54.00	-25.51	Vertical	

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 1 – 802.11ac(HT80)										
	Test channel: Lowest channel									
			Dete	ctor: Peak Va	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	46.93	31.38	7.05	41.93	43.43	68.20	-24.77	Horizontal		
5150.00	46.58	31.38	7.05	41.93	43.08	68.20	-25.12	Vertical		
			Detect	tor: Average '	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	37.45	31.38	7.05	41.93	33.95	54.00	-20.05	Horizontal		
5150.00	37.01	31.38	7.05	41.93	33.51	54.00	-20.49	Vertical		
				nnel: Highest						
		-		ctor: Peak Va	alue		_	I		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	43.25	30.82	35.37	7.11	41.89	68.20	-26.31	Horizontal		
5350.00	43.62	30.82	35.37	7.11	41.89	68.20	-26.31	Vertical		
			Detect	tor: Average '	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	33.25	30.82	7.11	41.89	29.29	54.00	-24.71	Horizontal		
5350.00	33.41	30.82	7.11	41.89	29.45	54.00	-24.55	Vertical		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

	Band 4 - 802.11a								
Test channel: Lowest channel									
			Dete	ctor: Peak Va	alue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	46.58	31.03	7.69	41.94	43.36	78.20	-34.84	Horizontal	
5725.00	46.39	31.03	7.69	41.94	43.17	78.20	-35.03	Vertical	
			Detec	tor: Average '	Value				
Frequency Read Antenna Cable Preamp Level Limit Over							Polarization		
5725.00	36.53	31.03	7.69	41.94	33.31	54.00	-20.69	Horizontal	
5725.00	36.24	31.03	7.69	41.94	33.02	54.00	-20.98	Vertical	
			Test char	nnel: Highest	channel				
			Dete	ector: Peak Va	alue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	46.86	31.37	7.90	42.03	44.10	78.20	-34.10	Horizontal	
5850.00	46.57	31.37	7.90	42.03	43.81	78.20	-34.39	Vertical	
			Detec	tor: Average '	Value				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	36.48	31.37	7.90	42.03	33.72	54.00	-20.28	Horizontal	
5850.00	36.29	31.37	7.90	42.03	33.53	54.00	-20.47	Vertical	

Remark

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band	4 – 802.11n(l	HT20)					
			Test cha	nnel: Lowest	channel					
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	46.38	31.03	7.69	41.94	43.16	78.20	-35.04	Horizontal		
5725.00	46.53	31.03	7.69	41.94	43.31	78.20	-34.89	Vertical		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	36.56	31.03	7.69	41.94	33.34	54.00	-20.66	Horizontal		
5725.00	36.52	31.03	7.69	41.94	33.30	54.00	-20.70	Vertical		
				nnel: Highest						
	T			ector: Peak Va	alue	T	_	Ī		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	46.85	31.37	7.90	42.03	44.09	78.20	-34.11	Horizontal		
5850.00	46.26	31.37	7.90	42.03	43.50	78.20	-34.70	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	36.75	31.37	7.90	42.03	33.99	54.00	-20.01	Horizontal		
5850.00	36.52	31.37	7.90	42.03	33.76	54.00	-20.24	Vertical		
Pomork:										

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 4 – 802.11n(HT40)											
	Test channel: Lowest channel											
	Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5725.00	46.76	31.03	7.69	41.94	43.54	78.20	-34.66	Horizontal				
5725.00	46.59	31.03	7.69	41.94	43.37	78.20	-34.83	Vertical				
	Detector: Average Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5725.00	36.45	31.03	7.69	41.94	33.23	54.00	-20.77	Horizontal				
5725.00	36.35	31.03	7.69	41.94	33.13	54.00	-20.87	Vertical				
			Test cha	nnel: Highest	channel							
			Dete	ector: Peak V	alue							
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5850.00	46.77	31.37	7.90	42.03	44.01	78.20	-34.19	Horizontal				
5850.00	46.12	31.37	7.90	42.03	43.36	78.20	-34.84	Vertical				
			Detec	tor: Average	Value							
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5850.00	36.58	31.37	7.90	42.03	33.82	54.00	-20.18	Horizontal				
5850.00	35.97	31.37	7.90	42.03	33.21	54.00	-20.79	Vertical				
Domorla			•									

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 4 – 802.11ac(HT20)										
			Test cha	nnel: Lowest	channel						
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5725.00	46.35	31.03	7.69	41.94	43.13	78.20	-35.07	Horizontal			
5725.00	45.82	31.03	7.69	41.94	42.60	78.20	-35.60	Vertical			
	Detector: Average Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5725.00	36.57	31.03	7.69	41.94	33.35	54.00	-20.65	Horizontal			
5725.00	35.84	31.03	7.69	41.94	32.62	54.00	-21.38	Vertical			
			Test cha	nnel: Highest	channel						
			Dete	ector: Peak Va	alue						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5850.00	46.39	31.37	7.90	42.03	43.63	78.20	-34.57	Horizontal			
5850.00	45.75	31.37	7.90	42.03	42.99	78.20	-35.21	Vertical			
			Detec	tor: Average	Value						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5850.00	36.56	31.37	7.90	42.03	33.80	54.00	-20.20	Horizontal			
5850.00	35.92	31.37	7.90	42.03	33.16	54.00	-20.84	Vertical			
Domark:											

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 4 – 802.11ac(HT40)											
	Test channel: Lowest channel											
	Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5725.00	46.36	31.03	7.69	41.94	43.14	78.20	-35.06	Horizontal				
5725.00	45.57	31.03	7.69	41.94	42.35	78.20	-35.85	Vertical				
	Detector: Average Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5725.00	36.85	31.03	7.69	41.94	33.63	54.00	-20.37	Horizontal				
5725.00	35.45	31.03	7.69	41.94	32.23	54.00	-21.77	Vertical				
			Test cha	nnel: Highest	channel							
			Dete	ector: Peak V	alue							
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5850.00	46.86	31.37	7.90	42.03	44.10	78.20	-34.10	Horizontal				
5850.00	45.92	31.37	7.90	42.03	43.16	78.20	-35.04	Vertical				
			Detec	tor: Average	Value							
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5850.00	36.12	31.37	7.90	42.03	33.36	54.00	-20.64	Horizontal				
5850.00	36.26	31.37	7.90	42.03	33.50	54.00	-20.50	Vertical				
Domorla			•									

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 4 – 802.11ac(HT80)											
			Test cha	nnel: Middle	channel							
Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5725.00	46.69	31.03	7.69	41.94	43.47	78.20	-34.73	Horizontal				
5725.00	45.57	31.03	7.69	41.94	42.35	78.20	-35.85	Vertical				
	Detector: Average Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5725.00	36.52	31.03	7.69	41.94	33.30	54.00	-20.70	Horizontal				
5725.00	36.17	31.03	7.69	41.94	32.95	54.00	-21.05	Vertical				
			Test cha	nnel: Middle	channel							
			Dete	ctor: Peak Va	alue							
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5850.00	46.69	31.37	7.90	42.03	43.93	78.20	-34.27	Horizontal				
5850.00	45.25	31.37	7.90	42.03	42.49	78.20	-35.71	Vertical				
			Detec	tor: Average	Value							
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5850.00	36.57	31.37	7.90	42.03	33.81	54.00	-20.19	Horizontal				
5850.00	35.82	31.37	7.90	42.03	33.06	54.00	-20.94	Vertical				
Domorla												

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Restricted Band

<u>6.7.1</u>	Restricted Band										
	Test Requirement:	FCC Part15 E S	ection 1	5.407(b)						
	Test Method:	ANSI C63.10: 2013									
	Test Frequency Range:	4.5 GHz to 5.15	GHz an	d 5.35	GHz to 5.46G	iHz					
	Test site:	Measurement Di	stance:	3m							
	Receiver setup:	Frequency	Dete		RBW	VB		Remark			
		Above 1GHz	Pea		1MHz	3MI		Peak Value			
	Limit:	Frequency	RM ,		1MHz t (dBuV/m @:	3MI	HZ	Average Value Remark			
	LIIIIIL.			<u> </u>	74.00	5111)		Peak Value			
		Above 1GH			54.00			verage Value			
	Test Procedure:	the ground at to determine 2. The EUT was antenna, what tower. 3. The antennathe ground and Both horizon make the m 4. For each such case and the meters and to find the m 5. The test-reconspecified Base and the limit specified Base and the limit	at a 3 m e the po as set 3 nich was a height to deterr ntal and easuren espected en the a the rota naximum seiver sy and width ion level ecified, the would be margin v	eter casition of meters mount is varioned in the meters of the meters of the menters of the ment	amber. The taper the highest is away from the top the don't he top the don't he maximum is all polarization as turned from the was turned from the entire. Was set to Perior was set to Perior was turned from the entire to the e	ble was radiating the interpretation of a variation	es rota on. erferen variable o four of the fe e ante errange ect Fu le. was 1 ed an emiss one u	r meters above field strength. enna are set to ed to its worst m 1 meter to 4 s to 360 degrees			
	Test setup:	Horn Antenna Tower AE EUT Antenna Tower Ground Reference Plane Test Receiver Plane Antenna Tower Controller									
	Test Instruments:	Refer to section 5.9 for details									
	Test mode:	Refer to section	5.3 for c	letails							
	Test results:	Passed									

Measurement Data (worst case):

Band 1:

			Ва	nd 1 – 802.1	1a							
	Test channel: Lowest channel											
	Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4500.00	47.58	29.30	6.80	42.05	41.63	74.00	-32.37	Horizontal				
4500.00	46.86	29.30	6.80	42.05	40.91	74.00	-33.09	Vertical				
	Detector: Average Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4500.00	37.58	29.30	6.80	42.05	31.63	54.00	-22.37	Horizontal				
4500.00	37.25	29.30	6.80	42.05	31.30	54.00	-22.70	Vertical				
				nnel: Highest								
			Dete	ctor: Peak Va	alue							
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5460.00	46.86	30.54	7.18	41.85	42.73	74.00	-31.27	Horizontal				
5460.00	47.58	30.54	7.18	41.85	43.45	74.00	-30.55	Vertical				
			Detec	tor: Average	Value							
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5460.00	36.96	30.54	7.18	41.85	32.83	54.00	-21.17	Horizontal				
5460.00	35.86	30.54	7.18	41.85	31.73	54.00	-22.27	Vertical				

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 1 – 802.11n(HT20)										
			Test cha	nnel: Lowest	channel					
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4500.00	47.56	29.30	6.80	42.05	41.61	74.00	-32.39	Horizontal		
4500.00	46.36	29.30	6.80	42.05	40.41	74.00	-33.59	Vertical		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4500.00	37.42	29.30	6.80	42.05	31.47	54.00	-22.53	Horizontal		
4500.00	37.14	29.30	6.80	42.05	31.19	54.00	-22.81	Vertical		
			Test char	nnel: Highest	channel					
			Dete	ctor: Peak Va	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	46.69	30.54	7.18	41.85	42.56	74.00	-31.44	Horizontal		
5460.00	47.35	30.54	7.18	41.85	43.22	74.00	-30.78	Vertical		
			Detect	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	36.65	30.54	7.18	41.85	32.52	54.00	-21.48	Horizontal		
5460.00	37.15	30.54	7.18	41.85	33.02	54.00	-20.98	Vertical		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 1 – 802.11n(HT40)											
	Test channel: Lowest channel											
	Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4500.00	47.33	29.30	6.80	42.05	41.38	74.00	-32.62	Horizontal				
4500.00	46.58	29.30	6.80	42.05	40.63	74.00	-33.37	Vertical				
	Detector: Average Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4500.00	37.58	29.30	6.80	42.05	31.63	54.00	-22.37	Horizontal				
4500.00	37.15	29.30	6.80	42.05	31.20	54.00	-22.80	Vertical				
				nnel: Highest								
			Dete	ctor: Peak V	alue							
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5460.00	46.89	30.54	7.18	41.85	42.76	74.00	-31.24	Horizontal				
5460.00	47.52	30.54	7.18	41.85	43.39	74.00	-30.61	Vertical				
			Detec	tor: Average	Value							
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5460.00	36.26	30.54	7.18	41.85	32.13	54.00	-21.87	Horizontal				
5460.00	36.89	30.54	7.18	41.85	32.76	54.00	-21.24	Vertical				
Domorke					<u> </u>	<u> </u>						

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band 1	l - 802.11ac	(HT20)					
			Test cha	nnel: Lowest	channel					
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4500.00	47.56	29.30	6.80	42.05	41.61	74.00	-32.39	Horizontal		
4500.00	46.69	29.30	6.80	42.05	40.74	74.00	-33.26	Vertical		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4500.00	37.58	29.30	6.80	42.05	31.63	54.00	-22.37	Horizontal		
4500.00	36.69	29.30	6.80	42.05	30.74	54.00	-23.26	Vertical		
				nnel: Highest						
		T	1	ector: Peak V	alue	I		1		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	47.46	30.54	7.18	41.85	43.33	74.00	-30.67	Horizontal		
5460.00	46.37	30.54	7.18	41.85	42.24	74.00	-31.76	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	37.55	30.54	7.18	41.85	33.42	54.00	-20.58	Horizontal		
5460.00	36.56	30.54	7.18	41.85	32.43	54.00	-21.57	Vertical		
Pomork:	·		·	· · · · · · · · · · · · · · · · · · ·			·			

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 1 - 802.11ac(HT40)											
			Test cha	nnel: Lowest	channel							
Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4500.00	47.58	29.30	6.80	42.05	41.63	74.00	-32.37	Horizontal				
4500.00	46.36	29.30	6.80	42.05	40.41	74.00	-33.59	Vertical				
	Detector: Average Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4500.00	37.42	29.30	6.80	42.05	31.47	54.00	-22.53	Horizontal				
4500.00	36.59	29.30	6.80	42.05	30.64	54.00	-23.36	Vertical				
			Test cha	nnel: Highest	channel							
			Dete	ector: Peak V	alue							
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5460.00	47.85	34.90	7.18	41.85	48.08	74.00	-25.92	Horizontal				
5460.00	46.69	34.90	7.18	41.85	46.92	74.00	-27.08	Vertical				
			Detec	tor: Average	Value							
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5460.00	37.45	34.90	7.18	41.85	37.68	54.00	-16.32	Horizontal				
5460.00	36.56	34.90	7.18	41.85	36.79	54.00	-17.21	Vertical				
Domorla												

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band 1	l - 802.11ac	(HT80)			
			Test cha	nnel: Lowest	channel			
			Dete	ector: Peak V	alue			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	47.96	29.30	6.80	42.05	42.01	74.00	-31.99	Horizontal
4500.00	46.36	29.30	6.80	42.05	40.41	74.00	-33.59	Vertical
			Detec	tor: Average	Value			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	37.45	29.30	6.80	42.05	31.50	54.00	-22.50	Horizontal
4500.00	36.85	29.30	6.80	42.05	30.90	54.00	-23.10	Vertical
				nnel: Highest				
	T	T	1	ector: Peak V	alue	T		T.
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	47.69	30.54	7.18	41.85	43.56	74.00	-30.44	Horizontal
5460.00	46.56	30.54	7.18	41.85	42.43	74.00	-31.57	Vertical
			Detec	tor: Average	Value			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	37.59	30.54	7.18	41.85	33.46	54.00	-20.54	Horizontal
5460.00	36.75	30.54	7.18	41.85	32.62	54.00	-21.38	Vertical
Pomork:								

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

			Ва	nd 4 – 802.1	1a			
			Test cha	nnel: Lowest	channel			
			Dete	ector: Peak Va	alue			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	46.53	30.82	7.11	41.89	42.57	74.00	-31.43	Horizontal
5350.00	46.12	30.82	7.11	41.89	42.16	74.00	-31.84	Vertical
			Detec	tor: Average	Value			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	36.71	30.82	7.11	41.89	32.75	54.00	-21.25	Horizontal
5350.00	36.25	30.82	7.11	41.89	32.29	54.00	-21.71	Vertical
			Test cha	nnel: Lowest	channel			
			Dete	ector: Peak Va	alue			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	46.56	30.54	7.18	41.85	42.43	74.00	-31.57	Horizontal
5460.00	45.82	30.54	7.18	41.85	41.69	74.00	-32.31	Vertical
			Detec	tor: Average	Value			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	36.53	30.54	7.18	41.85	32.40	54.00	-21.60	Horizontal
5460.00	35.89	30.54	7.18	41.85	31.76	54.00	-22.24	Vertical

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band 4	4 – 802.11n(l	HT20)			
			Test cha	nnel: Lowest	channel			
			Dete	ctor: Peak Va	alue			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	46.69	30.82	7.11	41.89	42.73	74.00	-31.27	Horizontal
5350.00	45.96	30.82	7.11	41.89	42.00	74.00	-32.00	Vertical
			Detect	tor: Average '	Value			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	36.52	30.82	7.11	41.89	32.56	54.00	-21.44	Horizontal
5350.00	35.45	30.82	7.11	41.89	31.49	54.00	-22.51	Vertical
			Took ob o	nnel: Lowest	ah a a a a l			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preak Variable Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	46.25	30.54	7.18	41.85	42.12	74.00	-31.88	Horizontal
5460.00	45.75	30.54	7.18	41.85	41.62	74.00	-32.38	Vertical
			Detect	tor: Average '	Value			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	36.53	30.54	7.18	41.85	32.40	54.00	-21.60	Horizontal
5460.00	35.89	30.54	7.18	41.85	31.76	54.00	-22.24	Vertical

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band 4	4 – 802.11n(l	HT40)			
			Test cha	nnel: Lowest	channel			
			Dete	ctor: Peak Va	alue			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	46.53	30.82	7.11	41.89	42.57	74.00	-31.43	Horizontal
5350.00	45.85	30.82	7.11	41.89	41.89	74.00	-32.11	Vertical
			Detect	tor: Average '	Value			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	35.26	30.82	7.11	41.89	31.30	54.00	-22.70	Horizontal
5350.00	35.14	30.82	7.11	41.89	31.18	54.00	-22.82	Vertical
			Took ob o	anali I awasi	ah a a a a l			
				nnel: Lowest				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preak Variable Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	46.23	30.54	7.18	41.85	42.10	74.00	-31.90	Horizontal
5460.00	45.86	30.54	7.18	41.85	41.73	74.00	-32.27	Vertical
			Detect	tor: Average	Value			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	36.56	30.54	7.18	41.85	32.43	54.00	-21.57	Horizontal
5460.00	36.34	30.54	7.18	41.85	32.21	54.00	-21.79	Vertical

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band 4	l – 802.11ac((HT20)			
			Test cha	nnel: Lowest	channel			
			Dete	ector: Peak Va	alue			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	46.36	30.82	7.11	41.89	42.40	74.00	-31.60	Horizontal
5350.00	45.82	30.82	7.11	41.89	41.86	74.00	-32.14	Vertical
			Detec	tor: Average	Value			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	36.42	30.82	7.11	41.89	32.46	54.00	-21.54	Horizontal
5350.00	35.78	30.82	7.11	41.89	31.82	54.00	-22.18	Vertical
				nnel: Lowest				
				ector: Peak Va	alue			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	46.86	30.54	7.18	41.85	42.73	74.00	-31.27	Horizontal
5460.00	45.77	30.54	7.18	41.85	41.64	74.00	-32.36	Vertical
			Detec	tor: Average	Value			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	36.52	30.54	7.18	41.85	32.39	54.00	-21.61	Horizontal
5460.00	35.68	30.54	7.18	41.85	31.55	54.00	-22.45	Vertical

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band 4	1 - 802.11ac	(HT40)			
			Test cha	nnel: Lowest	channel			
			Dete	ector: Peak V	alue			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	46.69	30.82	7.11	41.89	42.73	74.00	-31.27	Horizontal
5350.00	45.25	30.82	7.11	41.89	41.29	74.00	-32.71	Vertical
			Detec	tor: Average	Value			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	36.24	30.82	7.11	41.89	32.28	54.00	-21.72	Horizontal
5350.00	35.47	30.82	7.11	41.89	31.51	54.00	-22.49	Vertical
				nnel: Lowest				
			1	ector: Peak V	alue	T		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	46.39	30.54	7.18	41.85	42.26	74.00	-31.74	Horizontal
5460.00	45.85	30.54	7.18	41.85	41.72	74.00	-32.28	Vertical
			Detec	tor: Average	Value			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	36.53	30.54	7.18	41.85	32.40	54.00	-21.60	Horizontal
5460.00	35.92	30.54	7.18	41.85	31.79	54.00	-22.21	Vertical
Damade	·		·	·			·	

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band 4	l – 802.11ac((HT80)			
			Test cha	nnel: Middle	channel			
			Dete	ctor: Peak V	alue			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	45.56	30.82	7.11	41.89	41.60	74.00	-32.40	Horizontal
5350.00	46.25	30.82	7.11	41.89	42.29	74.00	-31.71	Vertical
			Detec	tor: Average	Value			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	35.47	30.82	7.11	41.89	31.51	54.00	-22.49	Horizontal
5350.00	35.25	30.82	7.11	41.89	31.29	54.00	-22.71	Vertical
			Test cha	ınnel: Middle	channel			
			Dete	ctor: Peak V	alue			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	46.69	30.54	7.18	41.85	42.56	74.00	-31.44	Horizontal
5460.00	45.87	30.54	7.18	41.85	41.74	74.00	-32.26	Vertical
			Detec	tor: Average	Value			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	36.56	30.54	7.18	41.85	32.43	54.00	-21.57	Horizontal
5460.00	35.75	30.54	7.18	41.85	31.62	54.00	-22.38	Vertical
				·				

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7.2 Unwanted Emissions out of the Restricted Bands

6.7.2 Unwanted Emission						
Test Requirement:	FCC Part15 C S	ection 15.209	and 15.205			
Test Method:	ANSI C63.10: 20)13				
Test Frequency Range:	30MHz to 40GH	Z				
Test site:	Measurement Di	stance: 3m				
Receiver setup:	Frequency	Detector	RBW	VE	3W	Remark
	30MHz-1GHz	Quasi-peak)kHz	Quasi-peak Value
	Above 1GHz	Peak	1MHz	31/	1Hz	Peak Value
		RMS	1MHz	•	1Hz	Average Value
Limit:	Frequency		mit (dBuV/m @3	3m)		Remark
	30MHz-88M		40.0 43.5			luasi-peak Value
	88MHz-216M 216MHz-960M		46.0			luasi-peak Value luasi-peak Value
	960MHz-1GI		54.0			luasi-peak Value
			68.20			Peak Value
	Above 1GH	z	54.00			Average Value
	Remark:					-
	Above 1GHz limit:					
	$E[dB\mu V/m] = EIRF$					
Test Procedure:			he top of a rota			sm(below leter camber. The
						ion of the highest
	radiation.	naica ooo acg	rees to determ		o pooiti	ion or the highest
		as set 3 meter	s away from th	e inter	ferenc	e-receiving
		nich was mour	ited on the top	of a va	ariable [.]	-height antenna
	tower.	- 1		4 4 -		
			ied irom one m naximum value			neters above the
						e set to make the
	measureme	•		io arito	illia ai	o oot to make the
						to its worst case
						eter to 4 meters
			ned from 0 dec	grees t	0 360 (degrees to find the
	maximum re 5. The test-red	•	was set to Pea	k Dete	ct Fun	ction and
			Maximum Hol			otion and
	•					dB lower than the
						peak values of the
			Otherwise the e			
			ied and then re			ak, quasi-peak or lata sheet
Test setup:		ariou do opcon	Tod dild trioir is	ороно	<u> </u>	ata onoot.
1 301 3014	Below 1GHz					
		,	————	-	Antenna	Tower
					_ Amemia	Towa
					Search	
	EUT	→ 3m <÷			Antenn	
		4n			RF Test	
	_		T		Receiver —	\neg I
		Turn 0.8m	lm		\ _	
		Table 0.5m	^			
	7777	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	jum um	,,,,,,	<i></i>	
		Ground Plane	~			

Measurement Data (worst case):

Below 1GHz

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz: Band 1:

Test channel: Lowest channel	cal
Detector: Peak Value	cal
Frequency (MHz) Read Level (dBuV) Antenna Factor (dB/m) Cable Loss (dB) Preamp Factor (dB) Level (dBuV/m) Limit Line (dBuV/m) Over Limit (dB) polarization 10360.00 47.58 36.94 9.75 42.02 52.25 68.20 -15.95 Vertication 10360.00 47.62 36.94 9.75 42.02 52.29 68.20 -15.91 Horizon	cal
10360.00 47.62 36.94 9.75 42.02 52.29 68.20 -15.91 Horizo	ontal
Detector: Average Value	
Dottoto: / Wordgo Valdo	
Frequency (MHz) Read Level Factor (dBuV) Read Level Factor (dB/m) Cable Factor (dB) Frequency (MHz) Cable Factor (dB) Frequency (dB) Cable Factor (dBuV/m) Factor (dB) Cable Factor (dBuV/m) Factor (dBuV/m) Cable Factor (dBuV/m) Factor (dBuV/m) Factor (dBuV/m) Factor (dBuV/m) Factor (dBuV/m)	ation
10360.00 37.45 36.94 9.75 42.02 42.12 54.00 -11.88 Vertic	cal
10360.00 37.25 36.94 9.75 42.02 41.92 54.00 -12.08 Horizo	ontal
Test channel: Middle channel	
Detector: Peak Value	
Frequency (MHz) Read Level Factor (dBuV) Read Level Factor (dB/m) Cable Factor (dB) Cable Factor (dBuV/m)	ation
10400.00 46.69 36.96 9.85 41.95 51.55 68.20 -16.65 Vertic	cal
10400.00 46.58 36.96 9.85 41.95 51.44 68.20 -16.76 Horizo	ontal
Detector: Average Value	
Frequency (MHz) Read Level Factor (dBuV) Read Level Factor (dB/m) Cable Factor (dB) Preamp Factor (dB) Level (dBuV/m) Limit Lime Limit (dBuV/m) (dB) polarization	ation
10400.00 36.58 36.96 9.85 41.95 41.44 54.00 -12.56 Vertic	cal
10400.00 36.47 36.96 9.85 41.95 41.33 54.00 -12.67 Horizo	ontal
Test channel: Highest channel	
Detector: Peak Value	
Frequency (MHz) Read Level Factor (dBuV) (dB/m) Cable Factor (dBuV/m)	ation
10480.00 47.85 37.49 10.81 42.29 53.86 68.20 -14.34 Vertic	cal
10480.00 46.96 37.49 10.81 42.29 52.97 68.20 -15.23 Horizo	ontal
Detector: Average Value	
Frequency (MHz) Read Level Factor (dBuV) Read Level Factor (dB/m) Cable Factor (dB/m) Cable Factor (dB) Frequency (MHz) Cable Factor (dB) Frequency (dBuV/m) Cable Factor (dBuV/m) Factor (dBuV/m) Cable Factor (dBuV/m) Factor (dBuV/m) Cable Factor (dBuV/m) Factor (dBuV/m) Factor (dBuV/m) Cable Factor (dBuV/m) Factor (dBuV/m)	ation
10480.00 37.45 37.49 10.81 42.29 43.46 54.00 -10.54 Vertic	cal
10480.00 36.56 37.49 10.81 42.29 42.57 54.00 -11.43 Horizo	ntal

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

The emission levels of other frequencies are very lower than the limit and not show in test report.

			Test chann	- 802.11n(l				
				or: Peak V				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360.00	47.53	36.94	9.75	42.02	52.20	68.20	-16.00	Vertical
10360.00	47.15	36.94	9.75	42.02	51.82	68.20	-16.38	Horizonta
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio
10360.00	37.56	36.94	9.75	42.02	42.23	54.00	-11.77	Vertical
10360.00	37.10	36.94	9.75	42.02	41.77	54.00	-12.23	Horizonta
			Test chann	nel: Middle	channel			
			Detecto	or: Peak Va	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio
10400.00	46.86	36.96	9.85	41.95	51.72	68.20	-16.48	Vertical
10400.00	46.65	36.96	9.85	41.95	51.51	68.20	-16.69	Horizonta
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio
10400.00	36.69	36.96	9.85	41.95	41.55	54.00	-12.45	Vertical
10400.00	36.58	36.96	9.85	41.95	41.44	54.00	-12.56	Horizonta
			Test channe	el: Highest or: Peak Va				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio
10480.00	47.58	37.49	10.81	42.29	53.59	68.20	-14.61	Vertical
10480.00	47.26	37.49	10.81	42.29	53.27	68.20	-14.93	Horizonta
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio
10480.00	37.58	37.49	10.81	42.29	43.59	54.00	-10.41	Vertical
10480.00	37.46	37.49	10.81	42.29	43.47	54.00	-10.53	Horizonta

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

			Detecto	or: Peak Va	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10380.00	47.62	36.94	9.75	42.02	52.29	68.20	-15.91	Vertical
10380.00	47.28	36.94	9.75	42.02	51.95	68.20	-16.25	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10380.00	36.53	36.94	9.75	42.02	41.20	54.00	-12.80	Vertical
10380.00	36.23	36.94	9.75	42.02	40.90	54.00	-13.10	Horizontal
			Test channe	el: Highest	channel			
				el: Highest or: Peak Va				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)				Limit Line (dBuV/m)	Over Limit (dB)	polarization
	Level	Factor	Detecto Cable	or: Peak Va Preamp Factor	alue Level	Line	Limit	polarization Vertical
(MHz)	Level (dBuV)	Factor (dB/m)	Cable Loss (dB)	or: Peak Va Preamp Factor (dB)	Level (dBuV/m)	Line (dBuV/m)	Limit (dB)	
(MHz) 10460.00	Level (dBuV) 47.55	Factor (dB/m) 37.49	Cable Loss (dB) 10.81 10.81	Preamp Factor (dB) 42.29	Level (dBuV/m) 53.56 53.27	Line (dBuV/m) 68.20	Limit (dB) -14.64	Vertical
(MHz) 10460.00	Level (dBuV) 47.55	Factor (dB/m) 37.49	Cable Loss (dB) 10.81 10.81	Preamp Factor (dB) 42.29	Level (dBuV/m) 53.56 53.27	Line (dBuV/m) 68.20	Limit (dB) -14.64	Vertical
(MHz) 10460.00 10460.00 Frequency	Level (dBuV) 47.55 47.26 Read Level	Factor (dB/m) 37.49 37.49 Antenna Factor	Cable Loss (dB) 10.81 10.81 Detector Cable	Preamp Factor (dB) 42.29 42.29 : Average	Level (dBuV/m) 53.56 53.27 Value Level	Line (dBuV/m) 68.20 68.20 Limit Line	Limit (dB) -14.64 -14.93 Over Limit	Vertical Horizontal

Band 1 – 802.11n(HT40)
Test channel: Lowest channel

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band 1 -	802.11ac	(HT20)			
			Test chann	el: Lowest	channel			
			Detecto	or: Peak V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360.00	47.55	36.94	9.75	42.02	52.22	68.20	-15.98	Vertical
10360.00	47.26	36.94	9.75	42.02	51.93	68.20	-16.27	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360.00	37.23	36.94	9.75	42.02	41.90	54.00	-12.10	Vertical
10360.00	37.14	36.94	9.75	42.02	41.81	54.00	-12.19	Horizontal
			Test chann	nel: Middle	channel			
			Detect	or: Peak V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400.00	46.36	36.96	9.85	41.95	51.22	68.20	-16.98	Vertical
10400.00	46.59	36.96	9.85	41.95	51.45	68.20	-16.75	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400.00	36.52	36.96	9.85	41.95	41.38	54.00	-12.62	Vertical
10400.00	36.43	36.96	9.85	41.95	41.29	54.00	-12.71	Horizontal
			Test channe	el: Highest	channel			
				or: Peak V				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480.00	47.55	37.49	10.81	42.29	53.56	68.20	-14.64	Vertical
10480.00	47.62	37.49	10.81	42.29	53.63	68.20	-14.57	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480.00	37.52	37.49	10.81	42.29	43.53	54.00	-10.47	Vertical
10480.00	37.42	37.49	10.81	42.29	43.43	54.00	-10.57	Horizontal

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 1 – 802.11ac(HT40)								
Test channel: Lowest channel								
Detector: Peak Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10380.00	47.56	36.94	9.75	42.02	52.23	68.20	-15.97	Vertical
10380.00	47.23	36.94	9.75	42.02	51.90	68.20	-16.30	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10380.00	37.45	36.94	9.75	42.02	42.12	54.00	-11.88	Vertical
10380.00	37.26	36.94	9.75	42.02	41.93	54.00	-12.07	Horizontal
			Test chann	el: Highest	channel			
			Detecto	or: Peak V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10460.00	46.59	37.49	10.81	42.29	52.60	68.20	-15.60	Vertical
10460.00	46.73	37.49	10.81	42.29	52.74	68.20	-15.46	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10460.00	36.53	37.49	10.81	42.29	42.54	54.00	-11.46	Vertical
10460.00	36.25	37.49	10.81	42.29	42.26	54.00	-11.74	Horizontal
_								

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 1 – 802.11ac(HT80)										
	Test channel: Lowest channel									
			Detecto	or: Peak V	alue					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10420.00	47.52	36.96	9.85	41.95	52.38	68.20	-15.82	Vertical		
10420.00	47.26	36.96	9.85	41.95	52.12	68.20	-16.08	Horizontal		
			Detector	: Average	Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10420.00	37.15	36.96	9.85	41.95	42.01	54.00	-11.99	Vertical		
10420.00	37.02	36.96	9.85	41.95	41.88	54.00	-12.12	Horizontal		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

Frequency (MHz)				4 – 802.1	1a				
•			Toot chann						
•		Test channel: Lowest channel							
•			Detecto	or: Peak V	alue				
` ,	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
11490.00	47.58	37.49	10.81	42.29	53.59	74.00	-20.41	Vertical	
11490.00	46.68	37.49	10.81	42.29	52.69	74.00	-21.31	Horizontal	
			Detector	: Average	Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
11490.00	37.15	37.49	10.81	42.29	43.16	54.00	-10.84	Vertical	
11490.00	36.69	37.49	10.81	42.29	42.70	54.00	-11.30	Horizontal	
			Test chann	el: Middle	channel				
			Detecto	or: Peak V	alue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
11570.00	46.26	37.55	10.78	42.27	52.32	74.00	-21.68	Vertical	
11570.00	46.89	37.55	10.78	42.27	52.95	74.00	-21.05	Horizontal	
			Detector	: Average	Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
11570.00	36.26	37.55	10.78	42.27	42.32	54.00	-11.68	Vertical	
11570.00	36.58	37.55	10.78	42.27	42.64	54.00	-11.36	Horizontal	
			Test channe						
		1	Detecto	or: Peak V	alue		_		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
11650.00	46.58	37.60	10.76	42.26	52.68	74.00	-21.32	Vertical	
11650.00	46.72	37.60	10.76	42.26	52.82	74.00	-21.18	Horizontal	
			Detector	: Average	Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
11650.00	36.25	37.60	10.76	42.26	42.35	54.00	-11.65	Vertical	
11650.00	36.74	37.60	10.76	42.26	42.84	54.00	-11.16	Horizontal	

Remark

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band 4 -	- 802 11n(HT20)			
Band 4 – 802.11n(HT20) Test channel: Lowest channel								
	Detector: Peak Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	47.56	37.49	10.81	42.29	53.57	74.00	-20.43	Vertical
11490.00	47.25	37.49	10.81	42.29	53.26	74.00	-20.74	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	36.69	37.49	10.81	42.29	42.70	54.00	-11.30	Vertical
11490.00	37.41	37.49	10.81	42.29	43.42	54.00	-10.58	Horizontal
	Test channel: Middle channel							
				or: Peak V				
	Dood	Antonno	Detecti	1	alue	Limit	Over	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Limit (dB)	polarization
11570.00	46.36	37.55	10.78	42.27	52.42	74.00	-21.58	Vertical
11570.00	46.58	37.55	10.78	42.27	52.64	74.00	-21.36	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	36.12	37.55	10.78	42.27	42.18	54.00	-11.82	Vertical
11570.00	36.32	37.55	10.78	42.27	42.38	54.00	-11.62	Horizontal
			Test channe	al: Highast	channel			
				or: Peak V				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	46.62	37.60	10.76	42.26	52.72	74.00	-21.28	Vertical
11650.00	36.42	37.60	10.76	42.26	42.52	74.00	-31.48	Horizontal
			Detector	: Average				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	37.12	37.60	10.76	42.26	43.22	54.00	-10.78	Vertical
11650.00 Remark:	36.89	37.60	10.76	42.26	42.99	54.00	-11.01	Horizontal

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor. 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

	Band 4 - 802.11n(HT40)							
Test channel: Lowest channel								
Detector: Peak Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11510.00	46.58	37.50	10.81	42.29	52.60	74.00	-21.40	Vertical
11510.00	46.75	37.50	10.81	42.29	52.77	74.00	-21.23	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11510.00	36.25	37.50	10.81	42.29	42.27	54.00	-11.73	Vertical
11510.00	36.32	37.50	10.81	42.29	42.34	54.00	-11.66	Horizontal
			Test channe	el: Highest	channel			
			Detecto	or: Peak Va	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11590.00	46.69	37.56	10.77	42.27	52.75	74.00	-21.25	Vertical
11590.00	46.78	37.56	10.77	42.27	52.84	74.00	-21.16	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11590.00	36.23	37.56	10.77	42.27	42.29	54.00	-11.71	Vertical
11590.00	36.52	37.56	10.77	42.27	42.58	54.00	-11.42	Horizontal

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band 4 –	802.11ac	(HT20)			
	Test channel: Lowest channel							
	Detector: Peak Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	47.55	37.49	10.81	42.29	53.56	74.00	-20.44	Vertical
11490.00	46.69	37.49	10.81	42.29	52.70	74.00	-21.30	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	37.51	37.49	10.81	42.29	43.52	54.00	-10.48	Vertical
11490.00	36.56	37.49	10.81	42.29	42.57	54.00	-11.43	Horizontal
	Test channel: Middle channel							
				or: Peak V				
	Daad	A t	Detecti	l	alue I	1 !!4	Over	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Limit (dB)	polarization
11570.00	46.26	37.55	10.78	42.27	52.32	74.00	-21.68	Vertical
11570.00	46.77	37.55	10.78	42.27	52.83	74.00	-21.17	Horizontal
	Detector: Average Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	36.52	37.55	10.78	42.27	42.58	54.00	-11.42	Vertical
11570.00	36.45	37.55	10.78	42.27	42.51	54.00	-11.49	Horizontal
			-					
			Test channe					
			Detecto	or: Peak V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	46.36	37.60	10.76	42.26	52.46	74.00	-21.54	Vertical
11650.00	46.58	37.60	10.76	42.26	52.68	74.00	-21.32	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	36.55	37.60	10.76	42.26	42.65	54.00	-11.35	Vertical
11650.00 Remark:	36.42	37.60	10.76	42.26	42.52	54.00	-11.48	Horizontal

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4 – 802.11ac(HT40)								
	Test channel: Lowest channel							
			Detecto	or: Peak Va	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11510.00	45.92	37.50	10.81	42.29	51.94	74.00	-22.06	Vertical
11510.00	46.32	37.50	10.81	42.29	52.34	74.00	-21.66	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11510.00	36.12	37.50	10.81	42.29	42.14	54.00	-11.86	Vertical
11510.00	36.53	37.50	10.81	42.29	42.55	54.00	-11.45	Horizontal
			Test channe	el: Highest	channel			
			Detecto	or: Peak Va	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11590.00	46.58	37.56	10.77	42.27	52.64	74.00	-21.36	Vertical
11590.00	46.25	37.56	10.77	42.27	52.31	74.00	-21.69	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11590.00	36.22	37.56	10.77	42.27	42.28	54.00	-11.72	Vertical
11590.00	36.10	37.56	10.77	42.27	42.16	54.00	-11.84	Horizontal

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4 – 802.11ac(HT80)									
	Test channel: Middle channel								
			Detect	or: Peak V	alue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
11550.00	46.39	37.54	10.81	42.29	52.45	74.00	-21.55	Vertical	
11550.00	46.58	37.54	10.81	42.29	52.64	74.00	-21.36	Horizontal	
			Detector	: Average	Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
11550.00	36.12	37.54	10.81	42.29	42.18	54.00	-11.82	Vertical	
11550.00	36.53	37.54	10.81	42.29	42.59	54.00	-11.41	Horizontal	

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

6.8 Frequency stability

Test Requirement:	FCC Part15 E Section 15.407 (g)						
•	(0)						
Limit:	Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of						
	operation under all conditions of normal operation as specified in the						
	user's manual.						
Test setup:	Temperature Chamber						
	Spectrum analyzer EUT						
	Att.						
	Variable Power Supply						
	Note: Measurement setup for testing on Antenna connector						
Test procedure:	The EUT is installed in an environment test chamber with external power source.						
	Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT.						
	 3. A sufficient stabilization period at each temperature is used prior to each frequency measurement. 						
	4. When temperature is stabled, measure the frequency stability.						
	5. The test shall be performed under -30 to 50 centigrade and 85 to						
	115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions.						
Test Instruments:	Refer to section 5.9 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Refer to FCC ID: 2AB6Z-A18RK31						