

Poisson Algebras II, Non-commutative Algebra

Maram Alossaimi (Supervisor: Prof. Vladimir Bavula)

School of Mathematics and Statistics, malossaimi1@sheffield.ac.uk\maram.alosaimi@gmail.com

1. Introduction

A commutative algebra D over a field K is called a *Poisson algebra* if there exists a bilinear product $\{\cdot,\cdot\}:D\times D\to D$, called a *Poisson bracket*, such that

1. $\{a,b\} = -\{b,a\}$ for all $a,b \in D$ (anti-commutative),

2. $\{a, \{b, c\}\} + \{b, \{c, a\}\} + \{c, \{a, b\}\} = 0$ for all $a, b, c \in D$ (Jacobi identity), and

3. $\{ab,c\}=a\{b,c\}+\{a,c\}b \quad \text{for all} \ \ a,b,c\in D \ \ \text{(Leibniz rule)}.$

Definition. Let D be a Poisson algebra. An ideal I of the algebra D is a *Poisson ideal* of D if $\{D,I\}\subseteq I$. Moreover, a Poisson ideal P of the algebra D is a *Poisson prime ideal* of D provided

$$IJ \subseteq P \Rightarrow I \subseteq P$$
 or $J \subseteq P$

where I and J are Poisson ideals of D. A set of all Poisson prime ideals of D is called the *Poisson spectrum* of D and is denoted by PSpec(D).

Definition. Let D be a Poisson algebra over a field K. A K-linear map $\alpha:D\to D$ is a Poisson derivation of D if α is a K-derivation of D and

$$\alpha(\{a,b\}) = \{\alpha(a),b\} + \{a,\alpha(b)\} \text{ for all } a,b \in D.$$

A set of all Poisson derivations of D is denoted by $PDer_K(D)$.

2. How do we get our Poisson algebra class A?

 $\textbf{Lemma. [Oh3]} \ \textit{Let D be a Poisson algebra over a field } K, c \in K, u \in D \ \textit{and} \ \alpha, \beta \in \mathrm{PDer}_K(D) \ \textit{such that} \ \text{where} \ \text{over a field } K, c \in K, u \in D \ \textit{and} \ \alpha, \beta \in \mathrm{PDer}_K(D) \ \textit{such that} \ \text{over a field } K, c \in K, u \in D \ \textit{and} \ \alpha, \beta \in \mathrm{PDer}_K(D) \ \textit{such that} \ \text{over a field } K, c \in K, u \in D \ \textit{and} \ \alpha, \beta \in \mathrm{PDer}_K(D) \ \textit{such that} \ \text{over a field } K, c \in K, u \in D \ \textit{and} \ \alpha, \beta \in \mathrm{PDer}_K(D) \ \textit{such that} \ \text{over a field } K, c \in K, u \in D \ \textit{and} \ \alpha, \beta \in \mathrm{PDer}_K(D) \ \textit{such that} \ \text{over a field } K, c \in K, u \in D \ \textit{and} \ \alpha, \beta \in \mathrm{PDer}_K(D) \ \textit{such that} \ \text{over a field } K, c \in K, u \in D \ \textit{and} \ \alpha, \beta \in \mathrm{PDer}_K(D) \ \textit{such that} \ \text{over a field } K, c \in K, u \in D \ \textit{and} \ \alpha, \beta \in \mathrm{PDer}_K(D) \ \textit{such that} \ \text{over a field } K, c \in K, u \in D \ \textit{and} \ \alpha, \beta \in \mathrm{PDer}_K(D) \ \textit{such that} \ \text{over a field } K, c \in K, u \in D \ \textit{and} \ \alpha, \beta \in \mathrm{PDer}_K(D) \ \textit{and} \ \text{over a field } K, c \in K, u \in D \ \textit{and} \ \alpha, \beta \in \mathrm{PDer}_K(D) \ \textit{and} \ \text{over a field } K, c \in K, u \in D \ \textit{and} \ \alpha, \beta \in \mathrm{PDer}_K(D) \ \textit{and} \ \text{over a field } K, c \in K, u \in D \ \textit{and} \ \alpha, \beta \in \mathrm{PDer}_K(D) \ \textit{and} \ \text{over a field } K, c \in K, u \in D \ \textit{and} \ \alpha, \beta \in \mathrm{PDer}_K(D) \ \textit{and} \ \text{over a field } K, c \in K, u \in D \ \textit{and} \ \alpha, \beta \in \mathrm{PDer}_K(D) \ \textit{and} \ \text{over a field } K, c \in K, u \in D \ \textit{and} \ \alpha, \beta \in \mathrm{PDer}_K(D) \ \textit{and} \ \text{over a field } K, c \in K, u \in D \ \textit{and} \ \alpha, \beta \in \mathrm{PDer}_K(D) \ \textit{and} \ \text{over a field } K, c \in K, u \in D \ \textit{and} \ \alpha, \beta \in \mathrm{PDer}_K(D) \ \textit{and} \ \text{over a field } K, c \in K, u \in D \ \textit{and} \ \alpha, \beta \in \mathrm{PDer}_K(D) \ \textit{and} \ \text{over a field } K, c \in K, u \in D \ \textit{and} \ \text{over a field } K, c \in K, u \in D \ \textit{and} \ \text{over a field } K, c \in K, u \in D \ \textit{and} \ \text{over a field } K, c \in K, u \in D \ \textit{and} \ \text{over a field } K, c \in K, u \in D \ \textit{and} \ \text{over a field } K, c \in K, u \in D \ \textit{and} \ \text{over a field } K, c \in K, u \in D \ \textit{and} \ \text{over a field } K, c \in D \ \textit{and} \ \text{over a field } K, c \in D \ \textit{and} \ \text{over a field } K, c \in D \ \textit{and} \ \text{over a$

$$\alpha\beta=\beta\alpha\quad \text{and}\quad \{d,u\}=(\alpha+\beta)(d)u \ \ \text{for all}\ \ d\in D. \tag{1}$$

Then the polynomial ring D[x,y] becomes a Poisson algebra with Poisson bracket

$$\{d,y\}=\alpha(d)y,\quad \{d,x\}=\beta(d)x\quad \textit{and}\quad \{y,x\}=cyx+u \;\;\textit{for all}\;\;d\in D. \tag{2}$$

The Poisson algebra D[x, y] with Poisson bracket (2) is denoted by $(D; \alpha, \beta, c, u)$.

3. How do we classify A?

We aim to classify all the Poisson algebra's $\mathcal{A}=(K[t];\alpha,\beta,c,u)$, where K is an algebraically closed field of characteristic zero and K[t] is the polynomial Poisson algebra (with necessarily trivial Poisson bracket, i.e. $\{a,b\}=0$ for all $a,b\in K[t]$). Notice that, it follows from the second part of equality (1) that

$$0 = \{d, u\} = (\alpha + \beta)(d)u$$
 for all $d \in K[t]$,

which implies that precisely one of the three cases holds:

(Case I:
$$\alpha + \beta = 0$$
 and $u = 0$), (Case II: $\alpha + \beta = 0$ and $u \neq 0$) or (Case III: $\alpha + \beta \neq 0$ and $u = 0$).

4. What have we done so far?

The next lemma states that in order to complete the classification of Poisson algebra class \mathcal{A} . This lemma describes all commuting pairs of derivations of the polynomial Poisson algebra K[t].

Lemma. Let K[t] be the polynomial Poisson algebra with trivial Poisson bracket and $\alpha, \beta \in \operatorname{PDer}_K = \operatorname{Der}_K(K[t]) = K[t] \setminus \{0\}$, $\partial_t = d/dt$ then

$$\alpha\beta = \beta\alpha$$
 if and only if $g = \frac{1}{\lambda}f$ for some $\lambda \in K^{\times} := K \setminus \{0\}.$ (3)

By using the previous lemma, we can assume that $\alpha=f\partial_t, \beta=\frac{1}{\lambda}f\partial_t, c\in K, u\in K[t]$, where $f\in K[t]$ and $\lambda\in K^\times$. Then we have the class of Poisson algebras $\mathcal{A}=K[t][x,y]=(K[t];\alpha=f\partial_t,\beta=\frac{1}{\lambda}f\partial_t,c,u)$ with Poisson bracket defined by the rule:

$$\{t, y\} = fy, \quad \{t, x\} = \frac{1}{\lambda} fx \text{ and } \{y, x\} = cyx + u.$$
 (4)

The first case of the classification

The first case (Case I) of the Poisson algebra class \mathcal{A} has two main subcases: Case I.1 and Case I.2. The results were indicated in these six subcases $\mathcal{A}_2, \mathcal{A}_3, \mathcal{A}_6, \mathcal{A}_7, \mathcal{A}_9$ and \mathcal{A}_{10} . Also, we presented some of their Poisson spectrum in diagrams in the poster called 'Poisson Algebras Γ ', see the diagram 1.

Diagram 1: The 'Poisson Algebras I' poster

The first part of second case (Case II) of the classification is presented in this poster and the next diagram shows the second case structure.

 $Diagram \ 2:$ Structure of the second case of Poisson algebra class $\mathcal A$

Case II:
$$\alpha + \beta = f\partial_t + \frac{1}{\lambda}f\partial_t = (1 + \frac{1}{\lambda})f\partial_t = 0$$
 and $u \neq 0$

Case II.1:

If f=0, i.e. $\alpha=\beta=0$ and $u\in K[t]\setminus\{0\}$ then we have the Poisson algebra $\mathcal{A}_{11}=(K[t];0,0,c,u)$ with Poisson bracket

$$\{t,y\} = 0, \quad \{t,x\} = 0 \quad \text{and} \quad \{y,x\} = cyx + u.$$
 (5)

There are two subcases: c=0 and $c\in K^{\times}$

Case II.1.1: If c=0 then we have the Poisson algebra $A_{12}=(K[t];0,0,0,u)$ with Poisson bracket

$$\{t, y\} = 0, \ \{t, x\} = 0 \text{ and } \{y, x\} = u.$$
 (6)

There are two subcases: $u \in K[t] \setminus K$ and $u \in K^{\times}$.

900 TT 1 1 1

If $u \in K[t] \setminus K$ and $R_u = \{\lambda_1, \dots, \lambda_s\}$ is the set of distinct roots of u then $\mathcal{A}_{13} = (K[t]; 0, 0, 0, u)$ is a Poisson algebra with Poisson bracket (6), we found $\mathsf{PSpec}(\mathcal{A}_{14})$, see diagram 3.

 ${f Diagram~3}$: The containment information between Poisson prime ideals of ${\cal A}_{13}$

Case II.1.1.2

If $u = a \in K^{\times}$, i.e. $R_a = \emptyset$ then we have the Poisson algebra $A_{14} = (K[t]; 0, 0, 0, a)$ with Poisson bracket

$$\{t, y\} = 0, \ \{t, x\} = 0 \text{ and } \{y, x\} = a.$$
 (7)

The $PSpec(A_{14}) = \{ \mathfrak{p} \otimes K[x, y] \mid \mathfrak{p} \in Spec(K[t]) \} \subseteq PSpec(A_{13}).$

Case II.1.2: If $c \in K^{\times}$ then we have the Poisson algebra $A_{15} = (K[t]; 0, 0, c, u)$ with Poisson bracket

$$\{t,y\} = 0, \ \{t,x\} = 0 \ \text{and} \ \{y,x\} = cyx + u := \rho.$$

There are two subcases: $u \in K[t] \backslash K$ and $u \in K^{\times}$.

Case II.1.2.1:

If $u \in K[t] \setminus K$ and $R_u = \{\lambda_1, \dots, \lambda_s\}$ is the set of distinct roots of u then $\mathcal{A}_{16} = (K[t]; 0, 0, c, u)$ is a Poisson algebra with Poisson bracket

$$\{t,y\} = 0, \ \ \{t,x\} = 0 \ \ \text{and} \ \ \{y,x\} = cyx + u.$$

It follows that the element $\rho=cyx+u$ is an irreducible polynomial in \mathcal{A}_{16} . Moreover, we found PSpec(\mathcal{A}_{16}), see diagram 4

 $\operatorname{Diagram} 4$: The containment information between Poisson prime ideals of \mathcal{A}_{16}

Case II.1.2.2:

If $u = a \in K^{\times}$, i.e. $R_a = \emptyset$ then we have the Poisson algebra $A_{17} = (K[t]; 0, 0, c, a)$ with Poisson bracket

$$\{t,y\} = 0, \ \{t,x\} = 0 \ \text{and} \ \{y,x\} = cyx + a.$$
 (1)

It follows that $A_{17} = K[t] \otimes K[x,y]$ is a tensor product of the trivial Poisson algebra K[t] and the Poisson algebra K[x,y] with $\{y,x\} = \rho$. The element $\rho = cyx + a$ is an irreducible polynomial in A_{17} . Moreover, we found $\mathsf{PSpec}(A_{17})$, see diagram 5.

Diagram 5: The containment information between Poisson prime ideals of \mathcal{A}_{17}

5. Conclusion / Future research

A classification of Poisson prime ideals of $\mathcal A$ was obtained in 10 cases out of 22. We will complete the classification of $\mathcal A$. Then we aim to classify some simple finite dimension modules over the class $\mathcal A$.

Acknowledgements

I would like to thank my supervisor Vlad for providing guidance and feedback throughout this research. Also, I would like to thank my sponsor the University of Imam Mohammad Ibn Saud Islamic.

References

[Bav6] V. V. Bavula, The Generalized Weyl Poisson algebras and their Poisson simplicity criterion. *Letters in Mathematical Physics*, 110 (2020), 105 – 110

[Bav7] V. V. Bavula, The PBW Theorem and simplicity criteria for the Poisson enveloping algebra and the algebra of Poisson differential operators, submitted, arxiv.2107.00321.

[GoWa] K. R. Goodearl and R. B. Warfield. An introduction to noncommutative noetherian rings. 2nd ed. New York: Cambridge University Press. (2004), pages 1 – 85, 105 – 122 and 166 – 186.

[Oh3] S.-Q. Oh, Poisson polynomial rings. *Communications in Algebra*, **34** (2006), 1265 – 1277.