MON SHIP

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Институт информационных и вычислительных технологий Кафедра управления и интеллектуальных технологий

Отчет по лабораторной работе 3 По курсу «Элементы и системы гидроавтоматики» «Испытание гидропривода с дроссельным регулирование скорости при параллельном расположении дросселя»

Выполнили студенты: Михайловский М., Ковалёв Е., Рехалов А.

Группа: А-03-21

Бригада: 3

Проверил: Шилин Денис Викторович

Цель и содержание работы

Целью работы является экспериментальное получение статических характеристик гидропривода дроссельного регулирования с параллельно расположенным дросселем. В работе определяются зависимости скорости выдвижения штока, затраченной, полезной мощностей и КПД гидропривода от нагрузки, преодолеваемой штоком, при различных параметрах регулирования и зависимость скорости выдвижения штока от параметра регулирования при различных значениях нагрузки.

Рис. 1. Схема испытаний гидропривода с дросселем, расположенным параллельно гидроцилиндру

Обработка и анализ результатов

Регулировочные характеристики скорости гидропривода

В качестве первого опыта произведены измерения времени выдвижения штока гидроцилиндра при фиксированном давлении p_3 и изменяющемся проходном сечении дросселя (табл. 1, 2). Напорный клапан КН2 открыт.

Таблица 1. Данные для регулировочных характеристик скорости, $p_3=5.4~\mathrm{M\Pi a}$

Давление	$arphi_{ extsf{дp}}$, рад	t, c	v, m/c		
	0	0.96	0.21		
	2π	1.18	0.17		
	4π	1.05	0.19		
	6π	1.5	0.13		
р ₃ = 5.4 МПа	8π	1.55	0.13		
	10π	1.45	0.14		
	12π	1.63	0.12		
	14π	1.45	0.14		
	16π	1.55	0.13		

Таблица 2. Данные для регулировочных характеристик скорости, $p_3=2.5~\mathrm{M\Pi a}$

Давление	$arphi_{ extsf{dp}}$, рад	t, c	υ, м/c	
	0	0.98	0.20	
	2π	1.1	0.18	
	4π	1.18	0.17	
	6π	1.42	0.14	
$p_3 = 2.5 \mathrm{M}\Pi \mathrm{a}$	8π	1.5	0.13	
	10π	1.73	0.12	
	12π	1.73	0.12	
	14π	1.6	0.13	
	16π	1.74	0.11	

Затем по полученным значениям, с учётом длины хода штока гидроцилиндра l=200 мм, рассчитаны скорости: $v=\frac{l}{t}$

По этим значениям построены регулировочные характеристики скорости $v = f(\phi_{\rm дp})$ (рис. 2). Теоретическая зависимость имеет вид:

$$v = \frac{Q_{\rm H}}{F} - \frac{\mu f_{\rm дp}}{F} \sqrt{\frac{2R}{\rho F}}$$

При фиксированном давлении p_3 внешняя нагрузка R также остаётся постоянной и зависимость $v(f_{\rm дp})$ получается линейной.

Рис. 2. Регулировочные характеристики гидропривода с параллельным дроссельным регулированием

Характеристики гидропривода при фиксированном проходном сечении дросселя

Второй опыт проводился в следующих условиях: фиксируется проходное сечение дросселя и изменяется настройка напорного клапана КН2, затем измеряются показатели всех манометров во время выдвижения штока и время его выдвижения (табл. 3, 4, 5).

			, ,		1	т /др				
	$\phi_{ extsf{dp}} = 2\pi$									
p_1 , МПа	p_2 , МПа	p_3 , МПа	t, c	<i>v</i> , м/с	$Q_{\scriptscriptstyle m BЫД}$, л/мин	<i>R,</i> H	$N_{ m пол}$, Вт	$N_{\rm зат}$, Вт	η, %	
0.5	0.6	0.2	1.05	0.190	2.30	24.50	4.67	19.15	24.38	
1	1.1	1	1.97	0.102	1.22	122.52	12.44	20.41	60.94	
1.2	1.3	1.2	2.32	0.086	1.04	147.03	12.67	20.80	60.94	
1.4	1.6	1.6	3.01	0.066	0.80	196.04	13.03	18.70	69.64	
1.6	1.9	2	5.59	0.036	0.43	245.04	8.77	11.51	76.17	
1.9	2	2.2	7.27	0.028	0.33	269.55	7.42	10.51	70.56	

Таблица 3. Данные второго опыта при $\phi_{\text{др}} = 2\pi$

По измеренным значениям далее рассчитаны подача насоса, нагрузка, полезная и затраченная мощности и КПД гидропривода.

Таблица 4. Данные второго опыта при $\phi_{\rm дp}=8\pi$

						- /11-			
$arphi_{ extsf{dp}} = 8\pi$									
p_1 , МПа	p_2 , МПа	p_3 , МПа	t, c	v, м/с	$Q_{\scriptscriptstyle \mathrm{BЫД}}$, л/мин	<i>R,</i> H	$N_{ m no\pi}$, Вт	$N_{\rm зат}$, Вт	η, %
0.5	0.6	0.2	1.45	0.138	1.66	24.50	3.38	13.87	24.38
0.4	0.6	0.23	1.57	0.127	1.54	28.18	3.59	10.25	35.04
0.45	0.7	0.24	1.55	0.129	1.56	29.41	3.79	11.67	32.50
0.5	0.6	0.24	1.68	0.119	1.44	29.41	3.50	11.97	29.25
0.5	0.65	0.24	1.75	0.114	1.38	29.41	3.36	11.49	29.25
0.5	0.65	0.24	1.68	0.119	1.44	29.41	3.50	11.97	29.25
0.5	0.65	0.25	1.8	0.111	1.34	30.63	3.40	11.17	30.47
0.5	0.65	0.25	1.83	0.109	1.32	30.63	3.35	10.99	30.47
0.5	0.75	0.28	2.77	0.072	0.87	34.31	2.48	7.26	34.13
0.55	0.78	0.5	3.96	0.051	0.61	61.26	3.09	5.59	55.40

Таблица 5. Данные второго опыта при $\phi_{\rm дp}=16\pi$

$arphi_{ extsf{qp}}=16\pi$									
p_1 , МПа	p_2 , МПа	p_3 , МПа	t, c	<i>v</i> , м/с	$Q_{\scriptscriptstyle \mathrm{BЫД}}$, л/мин	<i>R,</i> H	$N_{ m пол}$, Вт	$N_{\rm зат}$, Вт	η,%
0.49	0.73	0.24	1.5	0.133	1.61	29.41	3.92	13.14	29.85
0.49	0.73	0.23	1.68	0.119	1.44	28.18	3.35	11.73	28.60
0.48	0.73	0.24	1.73	0.116	1.39	29.41	3.40	11.16	30.47
0.48	0.73	0.24	1.65	0.121	1.46	29.41	3.56	11.70	30.47
0.5	0.74	0.24	1.9	0.105	1.27	29.41	3.10	10.58	29.25
0.5	0.74	0.25	2.29	0.087	1.05	30.63	2.68	8.78	30.47
0.5	0.75	0.25	2.33	0.086	1.04	30.63	2.63	8.63	30.47
0.5	0.75	0.26	2.42	0.083	1.00	31.86	2.63	8.31	31.69
0.5	0.78	0.45	4.16	0.048	0.58	55.13	2.65	4.83	54.84

По полученным данным рассчитаны скорости. Теоретическая зависимость:

$$v = \frac{Q_{\rm H}}{F} - \frac{\mu f_{\rm AP}}{F} \sqrt{\frac{2R}{\rho F}}.$$

То есть скорость зависит нелинейно от нагрузки, построенные зависимости отображены на рис. 3. Как видим, теоретически при нулевой нагрузке скорость гидроцилиндра может достигать значения до 0,28 м/с. Но в реальных системах всегда имеется некоторая нагрузка, и с учётом большого угла наклона для малых нагрузок, реально наибольшая скорость будет заметно ниже.

$$N_{\text{пол}} = \frac{Q_{\text{H}}}{F} R - \frac{\mu f_{\text{др}}}{F} \sqrt{\frac{2}{\rho} \frac{R^3}{F}}.$$

Рис. 4. Зависимость полезной мощности от нагрузки на гидропривод Как видим по графикам, полезная мощность значительно падает при открытии дросселя. За счёт этого меньше энергии идёт на передвижение гидроцилиндра и его ход замедляется.

Построим зависимость для затраченной мощности (рис. 5) $N_{\text{зат}} = p_1 Q_{\text{выд}}$.

Рис. 5 Зависимость затраченной мощности от нагрузки на гидропривод Как видим с увеличением нагрузки общая затраченная мощность падает. Это связано с тем, что нагрузка при поступлении жидкости из насоса даёт обратный эффект в насос затрудняя циркулирование жидкости в насосе. При малых и средних нагрузках насос поддерживает номинальный расход, но при больших нагрузках насос становится все ближе к тому, чтобы остановиться.

Построим зависимость для КПД (рис. 6) $\eta = \frac{N_{\text{пол}}}{N_{\text{зат}}}$.

Рис. 6. Зависимость КПД от нагрузки на гидропривод