Package 'distributional'

June 4, 2020

Title Vectorised Probability Distributions

Version 0.1.0

Description Vectorised distribution objects with tools for manipulating, visualising, and using probability distributions. Designed to allow model prediction outputs to return distributions rather than their parameters, allowing users to directly interact with predictive distributions in a data-oriented workflow. In addition to providing generic replacements for p/d/q/r functions, other useful statistics can be computed including means, variances, intervals, and highest density regions.

```
License GPL-3
Imports vctrs (>= 0.3.0),
     rlang (>= 0.4.5),
     generics,
     ellipsis,
     stats,
     numDeriv,
     ggplot2,
     scales,
     farver,
     digest,
     utils,
     lifecycle
Suggests testthat (>= 2.1.0),
     covr,
     mvtnorm,
     actuar
RdMacros lifecycle
URL https://pkg.mitchelloharawild.com/distributional/, https:
     //github.com/mitchelloharawild/distributional
BugReports https://github.com/mitchelloharawild/distributional/issues
Encoding UTF-8
Language en-GB
LazyData true
Roxygen list(markdown = TRUE, roclets=c('rd', 'collate', 'namespace'))
RoxygenNote 7.1.0
```

R topics documented:

autoplot.distribution	
cdf	
col2hex	
darken_fill	. 5
density.distribution	. 5
dist_bernoulli	. 6
dist_beta	. 6
dist_binomial	. 7
dist_burr	. 7
dist_cauchy	. 8
dist_chisq	. 8
dist_degenerate	. 9
dist_exponential	. 9
dist_f	
dist_geometric	
 dist_gumbel	
dist_hypergeometric	
dist_inflated	
dist_inverse_exponential	
dist_inverse_gamma	
dist_inverse_gaussian	
dist_logarithmic	
dist_logistic	
dist_mixture	
dist_multinomial	
dist_multivariate_normal	
dist_negative_binomial	
dist_normal	
dist_pareto	
dist_percentile	
dist_poisson	
dist_poisson_inverse_gaussian	
dist_sample	
•	
dist_studentized_range	
dist_student_t	
-	
dist_truncated	
dist_uniform	
dist_weibull	
generate.distribution	
geom_hilo_linerange	
geom_hilo_ribbon	
guide_level	
hdr	
hdr.distribution	
hilo	
hilo.distribution	
is_hdr	
is_hilo	29

autoplot.distribution 3

	mean.distribution	9
	median.distribution	0
	new_dist	0
	new_hdr	1
	new_hilo	1
	quantile.distribution	
	scale_hilo_continuous	
	scale_level	4
	variance	6
	variance.distribution	6
Index	3	7

autoplot.distribution Plot a distribution

Description

Experimental

Usage

```
## S3 method for class 'distribution'
autoplot(
    x,
    type = c("pdf", "cdf"),
    n = 100,
    quantile_range = c(0.001, 0.999),
    ...
)
```

Arguments

```
x The distribution(s) to plot.
type The type of plot to make (must be either "pdf" or "cdf").
n The resolution (number of points) used to display the distribution.
quantile_range The range of the distribution (specified as quantiles).
... Unused.
```

Details

Visualise distribution(s) by plotting its probability density function (density()) or cumulative distribution function (cdf()). Note: This function currently only works for continuous distributions.

```
library(ggplot2)
dist <- c(dist_normal(mu = 0, sigma = 1), dist_student_t(df = 3))
autoplot(dist, type = "pdf")
autoplot(dist, type = "cdf")</pre>
```

4 col2hex

 $\operatorname{\mathsf{cdf}}$

The cumulative distribution function

Description

Stable

Usage

```
cdf(x, q, ...) ## S3 method for class 'distribution' cdf(x, q, ...)
```

Arguments

x The distribution(s).

q The quantile at which the cdf is calculated.

... Additional arguments used by methods.

col2hex

col2hex

Description

converts colors to RGB

Usage

```
col2hex(col)
```

Arguments

col

colors

Value

RGB colors

darken_fill 5

darken_fill

darken_fill

Description

darken fill colors for probability ranges

Usage

```
darken_fill(col, prob)
```

Arguments

col colors

prob probability values

density.distribution The probability density/mass function

Description

Stable

Usage

```
## S3 method for class 'distribution' density(x, at, ...)
```

Arguments

x The distribution(s).

at The point at which to compute the density/mass.

... Additional arguments passed to methods.

Details

Computes the probability density function for a continuous distribution, or the probability mass function for a discrete distribution.

6 dist_beta

dist_bernoulli

The Bernoulli distribution

Description

Stable

Usage

```
dist_bernoulli(prob)
```

Arguments

prob

The probability of success on each trial.

Examples

```
dist_bernoulli(prob = c(0.05, 0.5, 0.3, 0.9, 0.1))
```

dist_beta

The Beta distribution

Description

Maturing

Usage

```
dist_beta(shape1, shape2)
```

Arguments

shape1, shape2 The non-negative shape parameters of the Beta distribution.

See Also

```
stats::Beta
```

```
dist_beta(shape1 = c(0.5, 5, 1, 2, 2), shape2 = c(0.5, 1, 3, 2, 5))
```

dist_binomial 7

dist_binomial

The Binomial distribution

Description

Stable

Usage

```
dist_binomial(size, prob)
```

Arguments

size The number of trials.

prob The probability of success on each trial.

Examples

```
dist_binomial(size = 1:5, prob = c(0.05, 0.5, 0.3, 0.9, 0.1))
```

dist_burr

The Burr distribution

Description

Stable

Usage

```
dist_burr(shape1, shape2, rate = 1)
```

Arguments

shape1 parameters. Must be strictly positive.
shape2 parameters. Must be strictly positive.
rate an alternative way to specify the scale.

See Also

```
actuar::Burr
```

```
dist\_burr(shape1 = c(1,1,1,2,3,0.5), shape2 = c(1,2,3,1,1,2))
```

8 dist_chisq

dist_cauchy

The Cauchy distribution

Description

Maturing

Usage

```
dist_cauchy(location, scale)
```

Arguments

location and scale parameters. scale location and scale parameters.

See Also

```
stats::Cauchy
```

Examples

```
dist_cauchy(location = c(0, 0, 0, -2), scale = c(0.5, 1, 2, 1))
```

dist_chisq

The (non-central) Chi-Squared Distribution

Description

Stable

Usage

```
dist_chisq(df, ncp = 0)
```

Arguments

df degrees of freedom (non-negative, but can be non-integer).

ncp non-centrality parameter (non-negative).

See Also

```
stats::Chisquare
```

```
dist_chisq(df = c(1,2,3,4,6,9))
```

dist_degenerate 9

 ${\sf dist_degenerate}$

The degenerate distribution

Description

Stable

Usage

```
dist_degenerate(x)
```

Arguments

Х

The value of the distribution.

Examples

```
dist_degenerate(x = 1:5)
```

dist_exponential

The Exponential Distribution

Description

Stable

Usage

```
dist_exponential(rate)
```

Arguments

rate

vector of rates.

See Also

```
stats::Exponential
```

```
dist_exponential(rate = c(2, 1, 2/3))
```

10 dist_gamma

dist_f

The (non-central) Chi-Squared Distribution

Description

Stable

Usage

```
dist_f(df1, df2, ncp = NULL)
```

Arguments

df1 degrees of freedom. Inf is allowed.df2 degrees of freedom. Inf is allowed.

ncp non-centrality parameter. If omitted the central F is assumed.

See Also

stats::FDist

Examples

```
dist_f(df1 = c(1,2,5,10,100), df2 = c(1,1,2,1,100))
```

dist_gamma

The Gamma distribution

Description

Stable

Usage

```
dist_gamma(shape, rate)
```

Arguments

shape and scale parameters. Must be positive, scale strictly.

rate an alternative way to specify the scale.

See Also

stats::GammaDist

```
dist_gamma(shape = c(1,2,3,5,9,7.5,0.5), rate = c(0.5,0.5,0.5,1,2,1,1))
```

dist_geometric 11

dist_geometric

The Geometric Distribution

Description

Stable

Usage

```
dist_geometric(prob)
```

Arguments

prob

probability of success in each trial. 0 < prob <= 1.

See Also

```
stats::Geometric
```

Examples

```
dist\_geometric(prob = c(0.2, 0.5, 0.8))
```

dist_gumbel

The Gumbel distribution

Description

Stable

Usage

```
dist_gumbel(alpha, scale)
```

Arguments

alpha

location parameter.

scale

parameter. Must be strictly positive.

See Also

actuar::Gumbel

```
dist_gumbel(alpha = c(0.5, 1, 1.5, 3), scale = c(2, 2, 3, 4))
```

12 dist_inflated

dist_hypergeometric The Hypergeometric distribution

Description

Stable

Usage

```
dist_hypergeometric(m, n, k)
```

Arguments

m The number of type I elements available.n The number of type II elements available

n The number of type II elements available.k The size of the sample taken.

See Also

```
stats::Hypergeometric
```

Examples

```
dist_hypergeometric(m = rep(500, 3), n = c(50, 60, 70), k = c(100, 200, 300))
```

dist_inflated

Inflate a value of a probability distribution

Description

Maturing

Usage

```
dist_inflated(dist, prob, x = 0)
```

Arguments

 $\label{eq:distribution} \mbox{ distribution}(s) \mbox{ to inflate}.$

prob The added probability of observing x.

x The value to inflate. The default of x = 0 is for zero-inflation.

```
{\tt dist\_inverse\_exponential}
```

The Inverse Exponential distribution

Description

Stable

Usage

```
dist_inverse_exponential(rate)
```

Arguments

rate

an alternative way to specify the scale.

See Also

```
actuar::InverseExponential
```

Examples

```
dist_inverse_exponential(rate = 1:5)
```

dist_inverse_gamma

The Inverse Gamma distribution

Description

Stable

Usage

```
dist_inverse_gamma(shape, rate = 1/scale, scale)
```

Arguments

shape parameters. Must be strictly positive.
rate an alternative way to specify the scale.
scale parameters. Must be strictly positive.

See Also

actuar::InverseGamma

```
dist_inverse_gamma(shape = c(1,2,3,3), rate = c(1,1,1,2))
```

14 dist_logarithmic

dist_inverse_gaussian The Inverse Gaussian distribution

Description

Stable

Usage

```
dist_inverse_gaussian(mean, shape)
```

Arguments

mean parameters. Must be strictly positive. Infinite values are supported. shape parameters. Must be strictly positive. Infinite values are supported.

See Also

actuar::InverseGaussian

Examples

```
dist_inverse_gaussian(mean = c(1,1,1,3,3), shape = c(0.2, 1, 3, 0.2, 1))
```

dist_logarithmic

The Logarithmic distribution

Description

Stable

Usage

```
dist_logarithmic(prob)
```

Arguments

```
prob
```

parameter. 0 <= prob < 1.

See Also

```
actuar::Logarithmic
```

```
dist_logarithmic(prob = c(0.33, 0.66, 0.99))
```

dist_logistic 15

 ${\tt dist_logistic}$

The Logistic distribution

Description

Stable

Usage

```
dist_logistic(location, scale)
```

Arguments

location and scale parameters.
scale location and scale parameters.

See Also

```
stats::Logistic
```

Examples

```
dist_logistic(location = c(5,9,9,6,2), scale = c(2,3,4,2,1))
```

dist_mixture

Create a mixture of distributions

Description

Experimental

Usage

```
dist_mixture(..., weights = numeric())
```

Arguments

... Distributions to be used in the mixture.

weights The weight of each distribution passed to

```
dist\_mixture(dist\_normal(0, 1), \ dist\_normal(5, 2), \ weights = c(0.3, \ 0.7))
```

dist_multinomial

The Multinomial distribution

Description

Maturing

Usage

```
dist_multinomial(size, prob)
```

Arguments

size integer, say N, specifying the total number of objects that are put into K boxes

in the typical multinomial experiment. For dmultinom, it defaults to sum(x).

prob numeric non-negative vector of length K, specifying the probability for the K

classes; is internally normalized to sum 1. Infinite and missing values are not

allowed.

See Also

stats::Multinom

Examples

```
dist_multinomial(size = c(4, 3), prob = list(c(0.3, 0.5, 0.2), c(0.1, 0.5, 0.4)))
```

dist_multivariate_normal

The multivariate normal distribution

Description

Maturing

Usage

```
dist_multivariate_normal(mu = 0, sigma = diag(1))
```

Arguments

mu A list of numeric vectors for the distribution's mean.

sigma A list of matrices for the distribution's variance-covariance matrix.

```
dist_multivariate_normal(mu = list(c(1,2)), sigma = list(matrix(c(4,2,2,3), ncol=2)))
```

dist_negative_binomial

dist_negative_binomial

The Negative Binomial distribution

Description

Stable

Usage

```
dist_negative_binomial(size, prob)
```

Arguments

size target for number of successful trials, or dispersion parameter (the shape param-

eter of the gamma mixing distribution). Must be strictly positive, need not be

integer.

prob probability of success in each trial. $0 < \text{prob} \le 1$.

See Also

```
stats::NegBinomial
```

Examples

```
dist_negative_binomial(size = 10, prob = 0.5)
```

dist_normal

The Normal distribution

Description

Stable

Usage

```
dist_normal(mu = 0, sigma = 1)
```

Arguments

mu The mean (location parameter) of the distribution.

sigma The standard deviation (scale parameter) of the distribution.

See Also

stats::Normal

```
dist_normal(mu = 1:5, sigma = 3)
```

18 dist_percentile

dist_pareto

The Pareto distribution

Description

Questioning

Usage

```
dist_pareto(shape, scale)
```

Arguments

shape parameters. Must be strictly positive. scale parameters. Must be strictly positive.

See Also

```
actuar::Pareto
```

Examples

```
dist_pareto(shape = c(10, 3, 2, 1), scale = rep(1, 4))
```

dist_percentile

Percentile distribution

Description

Maturing

Usage

```
dist_percentile(x, percentile)
```

Arguments

```
x A list of valuespercentile A list of percentiles
```

```
dist <- dist_normal()
percentiles <- seq(0.01, 0.99, by = 0.01)
x <- vapply(percentiles, quantile, double(1L), x = dist)
dist_percentile(list(x), list(percentiles*100))</pre>
```

dist_poisson 19

dist_poisson

The Poisson Distribution

Description

Stable

Usage

```
dist_poisson(lambda)
```

Arguments

lambda

vector of (non-negative) means.

See Also

stats::Poisson

Examples

```
dist_poisson(lambda = c(1, 4, 10))
```

```
dist_poisson_inverse_gaussian
```

The Poisson-Inverse Gaussian distribution

Description

Stable

Usage

```
dist_poisson_inverse_gaussian(mean, shape)
```

Arguments

mean parameters. Must be strictly positive. Infinite values are supported. shape parameters. Must be strictly positive. Infinite values are supported.

See Also

actuar::PoissonInverseGaussian

```
dist_poisson_inverse_gaussian(mean = rep(0.1, 3), shape = c(0.4, 0.8, 1))
```

dist_sample

Sampling distribution

Description

Stable

Usage

```
dist_sample(x)
```

Arguments

Х

A list of sampled values.

Examples

```
dist_sample(x = list(rnorm(100), rnorm(100, 10)))
```

```
dist_studentized_range
```

The Studentized Range distribution

Description

Stable

Usage

```
dist_studentized_range(nmeans, df, nranges)
```

Arguments

nmeans sample size for range (same for each group).

 $\mbox{ degrees of freedom for s (see below).} \\$

nranges number of *groups* whose **maximum** range is considered.

See Also

```
stats::Tukey
```

```
dist_studentized_range(nmeans = c(6, 2), df = c(5, 4), nranges = c(1, 1))
```

dist_student_t 21

dist_student_t

The (non-central) Student t Distribution

Description

Stable

Usage

```
dist_student_t(df, ncp = NULL)
```

Arguments

df degrees of freedom (> 0, maybe non-integer). df = Inf is allowed.

ncp non-centrality parameter δ ; currently except for rt(), only for abs(ncp) <=

37.62. If omitted, use the central t distribution.

See Also

```
stats::TDist
```

Examples

```
dist_student_t(df = c(1,2,5))
```

dist_transformed

Modify a distribution with a transformation

Description

Experimental

Usage

```
dist_transformed(dist, transform, inverse)
```

Arguments

dist A univariate distribution vector.

transform A function used to transform the distribution. This transformation should be

monotonic over appropriate domain.

inverse The inverse of the transform function.

Details

The density(), mean(), and variance() methods are approximate as they are based on numerical derivatives.

dist_uniform

Examples

```
# Create a log normal distribution
dist <- dist_transformed(dist_normal(0, 0.5), exp, log)
density(dist, 1) # dlnorm(1, 0, 0.5)
cdf(dist, 4) # plnorm(4, 0, 0.5)
quantile(dist, 0.1) # qlnorm(0.1, 0, 0.5)
generate(dist, 10) # rlnorm(10, 0, 0.5)</pre>
```

dist_truncated

Truncate a distribution

Description

Experimental

Usage

```
dist_truncated(dist, lower = -Inf, upper = Inf)
```

Arguments

dist The distribution(s) to truncate.

lower, upper The range of values to keep from a distribution.

Details

Note that the samples are generated using inverse transform sampling, and the means and variances are estimated from samples.

 ${\tt dist_uniform}$

The Uniform distribution

Description

Stable

Usage

```
dist_uniform(min, max)
```

Arguments

min lower and upper limits of the distribution. Must be finite.

max lower and upper limits of the distribution. Must be finite.

See Also

stats::Uniform

dist_weibull 23

Examples

```
dist\_uniform(min = c(3, -2), max = c(5, 4))
```

dist_weibull

The Weibull distribution

Description

Stable

Usage

```
dist_weibull(shape, scale)
```

Arguments

shape shape and scale parameters, the latter defaulting to 1. scale shape and scale parameters, the latter defaulting to 1.

See Also

stats::Weibull

Examples

```
dist_weibull(shape = c(0.5, 1, 1.5, 5), scale = rep(1, 4))
```

generate.distribution Randomly sample values from a distribution

Description

Stable

Usage

```
## S3 method for class 'distribution'
generate(x, times, ...)
```

Arguments

x The distribution(s).times The number of samples.

... Additional arguments used by methods.

Details

Generate random samples from probability distributions.

24 geom_hilo_linerange

geom_hilo_linerange Line ranges for hilo intervals

Description

Experimental

Usage

```
geom_hilo_linerange(
 mapping = NULL,
  data = NULL,
  stat = "identity",
  position = "identity",
 na.rm = FALSE,
  show.legend = NA,
  inherit.aes = TRUE,
)
```

Arguments

Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes mapping

= TRUE (the default), it is combined with the default mapping at the top level of

the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the

call to ggplot().

A data. frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be

created.

A function will be called with a single argument, the plot data. The return value must be a data. frame, and will be used as the layer data. A function

can be created from a formula (e.g. \sim head(.x,10)).

stat The statistical transformation to use on the data for this layer, as a string.

Position adjustment, either as a string, or the result of a call to a position adjustposition

ment function.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,

missing values are silently removed.

logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.

This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g. borders().

Other arguments passed on to layer(). These are often aesthetics, used to set an aesthetic to a fixed value, like colour = "red" or size = 3. They may also

be parameters to the paired geom/stat.

show.legend

geom_hilo_ribbon 25

Details

geom_hilo_linerange() displays the interval defined by a hilo object. The luminance of the shaded area indicates its confidence level. The shade colour can be controlled by the fill aesthetic, however the luminance will be overwritten to represent the confidence level.

See Also

```
geom_hilo_ribbon() for continuous hilo intervals (ribbons)
```

Examples

```
dist <- dist_normal(1:3, 1:3)
library(ggplot2)
ggplot(
  data.frame(x = rep(1:3, 2), interval = c(hilo(dist, 80), hilo(dist, 95)))
) +
  geom_hilo_linerange(aes(x = x, hilo = interval))</pre>
```

geom_hilo_ribbon

Ribbon plots for hilo intervals

Description

Maturing

Usage

```
geom_hilo_ribbon(
  mapping = NULL,
  data = NULL,
  stat = "identity",
  position = "identity",
  na.rm = FALSE,
  show.legend = NA,
  inherit.aes = TRUE,
  ...
)
```

Arguments

mapping

Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.

data

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created.

26 guide_level

	A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data. A function can be created from a formula (e.g. \sim head(.x,10)).
stat	The statistical transformation to use on the data for this layer, as a string.
position	Position adjustment, either as a string, or the result of a call to a position adjustment function.
na.rm	If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed.
show.legend	logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.
inherit.aes	If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g. borders().
•••	Other arguments passed on to layer(). These are often aesthetics, used to set an aesthetic to a fixed value, like colour = "red" or size = 3. They may also be parameters to the paired geom/stat.

Details

geom_hilo_ribbon() displays the interval defined by a hilo object. The luminance of the shaded area indicates its confidence level. The shade colour can be controlled by the fill aesthetic, however the luminance will be overwritten to represent the confidence level.

See Also

```
geom_hilo_linerange() for discrete hilo intervals (vertical lines)
```

Examples

```
dist <- dist_normal(1:3, 1:3)
library(ggplot2)
ggplot(
  data.frame(x = rep(1:3, 2), interval = c(hilo(dist, 80), hilo(dist, 95)))
) +
  geom_hilo_ribbon(aes(x = x, hilo = interval))</pre>
```

guide_level

Level shade bar guide

Description

The level guide shows the colour from the forecast intervals which is blended with the series colour.

Usage

```
guide_level(title = waiver(), max_discrete = 5, ...)
```

hdr 27

Arguments

title	A character string or expression indicating a title of guide. If NULL, the title is not shown. By default (waiver()), the name of the scale object or the name specified in labs() is used for the title.
max_discrete	The maximum number of levels to be shown using guide_legend. If the number of levels exceeds this value, level shades are shown with guide_colourbar.
	Further arguments passed onto either guide_colourbar or guide_legend

hdr

Compute highest density regions

Description

Used to extract a specified prediction interval at a particular confidence level from a distribution.

Usage

```
hdr(x, ...)
```

Arguments

x Object to create hilo from.

... Additional arguments used by methods.

hdr.distribution

Highest density regions of probability distributions

Description

Experimental

Usage

```
## S3 method for class 'distribution'
hdr(x, size = 95, n = 512, ...)
```

Arguments

x The distribution(s).

size The size of the interval (between 0 and 100).

n The resolution used to estimate the distribution's density.

... Additional arguments used by methods.

Details

This function is highly experimental and will change in the future. In particular, improved functionality for object classes and visualisation tools will be added in a future release.

Computes minimally sized probability intervals highest density regions.

28 hilo.distribution

hilo

Compute intervals

Description

Used to extract a specified prediction interval at a particular confidence level from a distribution.

Usage

```
hilo(x, ...)
```

Arguments

x Object to create hilo from.

... Additional arguments used by methods.

hilo.distribution

Probability intervals of a probability distribution

Description

Maturing

Usage

```
## S3 method for class 'distribution'
hilo(x, size = 95, ...)
```

Arguments

x The distribution(s).

size The size of the interval (between 0 and 100).

... Additional arguments used by methods.

Details

Returns a hilo central probability interval with probability coverage of size. By default, the distribution's quantile() will be used to compute the lower and upper bound for a centered interval

See Also

```
hdr.distribution()
```

is_hdr 29

is_hdr

Is the object a hdr

Description

Is the object a hdr

Usage

```
is_hdr(x)
```

Arguments

Х

An object.

is_hilo

Is the object a hilo

Description

Is the object a hilo

Usage

```
is_hilo(x)
```

Arguments

Х

An object.

mean.distribution

Mean of a probability distribution

Description

Stable

Usage

```
## S3 method for class 'distribution' mean(x, ...)
```

Arguments

x The distribution(s).

... Additional arguments used by methods.

Details

Returns the empirical mean of the probability distribution. If the method does not exist, the mean of a random sample will be returned.

new_dist

median.distribution Median of a probability distribution

Description

Stable

Usage

```
## S3 method for class 'distribution'
median(x, na.rm = FALSE, ...)
```

Arguments

x The distribution(s).

na.rm a logical value indicating whether NA values should be stripped before the com-

putation proceeds.

... Additional arguments used by methods.

Details

Returns the median (50th percentile) of a probability distribution. This is equivalent to quantile (x, p=0.5).

new_dist

Create a new distribution

Description

Create a new distribution

Usage

```
new_dist(..., class = NULL, dimnames = NULL)
```

Arguments

... Parameters of the distribution (named).

class The class of the distribution for S3 dispatch.

dimnames The names of the variables in the distribution (optional).

new_hdr 31

new_hdr

Construct hdr intervals

Description

Construct hdr intervals

Usage

```
new_hdr(x = list())
```

Arguments

Х

A list of hilo() objects.

Value

A "hdr" vector

Author(s)

Mitchell O'Hara-Wild

new_hilo

Construct hilo intervals

Description

Construct hilo intervals

Usage

```
new_hilo(lower = double(), upper = double(), size = double())
```

Arguments

lower, upper

A numeric vector of values for lower and upper limits.

size

Size of the interval between [0, 100].

Value

A "hilo" vector

Author(s)

Earo Wang & Mitchell O'Hara-Wild

```
new_hilo(lower = rnorm(10), upper = rnorm(10) + 5, size = 95)
```

32 scale_hilo_continuous

```
quantile.distribution Distribution Quantiles
```

Description

Stable

Usage

```
## S3 method for class 'distribution' quantile(x, p, \dots)
```

Arguments

```
x The distribution(s).
```

p The probability of the quantile.

... Additional arguments passed to methods.

Details

Computes the quantiles of a distribution.

```
scale_hilo_continuous Hilo interval scales
```

Description

Hilo interval scales

Usage

```
scale_hilo_continuous(
  name = waiver(),
  breaks = waiver(),
  minor_breaks = waiver(),
  n.breaks = NULL,
  labels = waiver(),
  limits = NULL,
  expand = waiver(),
  oob = identity,
  na.value = NA,
  trans = "identity",
  guide = waiver(),
  position = "left",
  sec.axis = waiver()
)
```

scale_hilo_continuous 33

Arguments

name

The name of the scale. Used as the axis or legend title. If waiver(), the default, the name of the scale is taken from the first mapping used for that aesthetic. If NULL, the legend title will be omitted.

breaks One of:

- NULL for no breaks
- waiver() for the default breaks computed by the transformation object
- A numeric vector of positions
- A function that takes the limits as input and returns breaks as output (e.g., a function returned by scales::extended_breaks())

minor_breaks

One of:

- · NULL for no minor breaks
- waiver() for the default breaks (one minor break between each major break)
- A numeric vector of positions
- A function that given the limits returns a vector of minor breaks.

n.breaks

An integer guiding the number of major breaks. The algorithm may choose a slightly different number to ensure nice break labels. Will only have an effect if breaks = waiver(). Use NULL to use the default number of breaks given by the transformation.

labels One of:

- NULL for no labels
- waiver() for the default labels computed by the transformation object
- A character vector giving labels (must be same length as breaks)
- A function that takes the breaks as input and returns labels as output

limits

One of:

• NULL to use the default scale range

- A numeric vector of length two providing limits of the scale. Use NA to refer to the existing minimum or maximum
- A function that accepts the existing (automatic) limits and returns new limits Note that setting limits on positional scales will **remove** data outside of the limits. If the purpose is to zoom, use the limit argument in the coordinate system (see coord_cartesian()).

expand

For position scales, a vector of range expansion constants used to add some padding around the data to ensure that they are placed some distance away from the axes. Use the convenience function expansion() to generate the values for the expand argument. The defaults are to expand the scale by 5% on each side for continuous variables, and by 0.6 units on each side for discrete variables.

oob One of:

- Function that handles limits outside of the scale limits (out of bounds).
- The default (scales::censor()) replaces out of bounds values with NA.
- scales::squish() for squishing out of bounds values into range.
- scales::squish_infinite() for squishing infitite values into range.

na.value

Missing values will be replaced with this value.

34 scale_level

trans	For continuous scales, the name of a transformation object or the object itself. Built-in transformations include "asn", "atanh", "boxcox", "date", "exp", "hms", "identity", "log", "log10", "log1p", "log2", "logit", "modulus", "probability", "probit", "pseudo_log", "reciprocal", "reverse", "sqrt" and "time".	
	A transformation object bundles together a transform, its inverse, and methods for generating breaks and labels. Transformation objects are defined in the scales package, and are called <name>_trans (e.g., scales::boxcox_trans()). You can create your own transformation with scales::trans_new().</name>	
guide	A function used to create a guide or its name. See guides() for more information.	
position	For position scales, The position of the axis. left or right for y axes, top bottom for x axes.	
sec.axis	sec_axis() is used to specify a secondary axis.	
scale_level	level luminance scales	

Description

This set of scales defines new scales for prob geoms equivalent to the ones already defined by ggplot2. This allows the shade of confidence intervals to work with the legend output.

Usage

```
scale_level_continuous(..., guide = "level")
```

Arguments

... Arguments passed on to continuous_scale

scale_name The name of the scale that should be used for error messages associated with this scale.

palette A palette function that when called with a numeric vector with values between 0 and 1 returns the corresponding output values (e.g., scales::area_pal()).

name The name of the scale. Used as the axis or legend title. If waiver(), the default, the name of the scale is taken from the first mapping used for that aesthetic. If NULL, the legend title will be omitted.

breaks One of:

- NULL for no breaks
- waiver() for the default breaks computed by the transformation object
- A numeric vector of positions
- A function that takes the limits as input and returns breaks as output (e.g., a function returned by scales::extended_breaks())

minor_breaks One of:

- NULL for no minor breaks
- waiver() for the default breaks (one minor break between each major break)
- A numeric vector of positions
- A function that given the limits returns a vector of minor breaks.

scale_level 35

n.breaks An integer guiding the number of major breaks. The algorithm may choose a slightly different number to ensure nice break labels. Will only have an effect if breaks = waiver(). Use NULL to use the default number of breaks given by the transformation.

labels One of:

- NULL for no labels
- waiver() for the default labels computed by the transformation object
- A character vector giving labels (must be same length as breaks)
- A function that takes the breaks as input and returns labels as output

limits One of:

- NULL to use the default scale range
- A numeric vector of length two providing limits of the scale. Use NA to refer to the existing minimum or maximum
- A function that accepts the existing (automatic) limits and returns new limits Note that setting limits on positional scales will **remove** data outside of the limits. If the purpose is to zoom, use the limit argument in the coordinate system (see coord_cartesian()).

rescaler A function used to scale the input values to the range [0, 1]. This is always scales::rescale(), except for diverging and n colour gradients (i.e., scale_colour_gradient2(), scale_colour_gradientn()). The rescaler is ignored by position scales, which always use scales::rescale().

oob One of:

- Function that handles limits outside of the scale limits (out of bounds).
- The default (scales::censor()) replaces out of bounds values with
- scales::squish() for squishing out of bounds values into range.
- scales::squish_infinite() for squishing infitite values into range.

trans For continuous scales, the name of a transformation object or the object itself. Built-in transformations include "asn", "atanh", "boxcox", "date", "exp", "hms", "identity", "log", "log10", "log1p", "log2", "logit", "modulus", "probability", "probit", "pseudo_log", "reciprocal", "reverse", "sqrt" and "time"

A transformation object bundles together a transform, its inverse, and methods for generating breaks and labels. Transformation objects are defined in the scales package, and are called <name>_trans (e.g., scales::boxcox_trans()). You can create your own transformation with scales::trans_new().

expand For position scales, a vector of range expansion constants used to add some padding around the data to ensure that they are placed some distance away from the axes. Use the convenience function expansion() to generate the values for the expand argument. The defaults are to expand the scale by 5% on each side for continuous variables, and by 0.6 units on each side for discrete variables.

position For position scales, The position of the axis. left or right for y axes, top or bottom for x axes.

super The super class to use for the constructed scale

Type of legend. Use "colourbar" for continuous colour bar, or "legend" for discrete colour legend.

guide

36 variance.distribution

Value

A ggproto object inheriting from Scale

variance

Variance

Description

A generic function for computing the variance of an object. The default method will use stats::var() to compute the variance.

Usage

```
variance(x, ...)
```

Arguments

x An object.

... Additional arguments used by methods.

See Also

```
variance.distribution()
```

variance.distribution Variance of a probability distribution

Description

Stable

Usage

```
## S3 method for class 'distribution'
variance(x, ...)
```

Arguments

x The distribution(s).

... Additional arguments used by methods.

Details

Returns the empirical mean of the probability distribution. If the method does not exist, the mean of a random sample will be returned.

Index

actuar::Burr, 7	dist_multivariate_normal, 16
actuar::Gumbel, 11	dist_negative_binomial, 17
actuar::InverseExponential, 13	dist_normal, 17
actuar::InverseGamma, 13	dist_pareto, 18
actuar::InverseGaussian, 14	dist_percentile, 18
actuar::Logarithmic, 14	dist_poisson, 19
actuar::Pareto, 18	dist_poisson_inverse_gaussian, 19
actuar::PoissonInverseGaussian, 19	dist_sample, 20
aes(), 24, 25	dist_student_t, 21
aes_(), 24, 25	dist_studentized_range, 20
autoplot.distribution, 3	dist_transformed, 21
, , , , , , , , , , , , , , , , , , , ,	dist_truncated, 22
borders(), 24, 26	dist_uniform, 22
•	dist_weibull, 23
cdf, 4	
cdf(), 3	expansion(), 33, 35
col2hex, 4	
continuous_scale, 34	fortify(), 24, 25
$coord_cartesian(), 33, 35$	generate.distribution, 23
	geom_hilo_linerange, 24
darken_fill, 5	geom_hilo_linerange(), 26
density(), 3, 21	geom_hilo_ribbon, 25
density.distribution, 5	geom_hilo_ribbon(), 25
dist_bernoulli,6	ggplot(), 24, 25
dist_beta, 6	guide_colourbar, 27
dist_binomial, 7	guide_legend, 27
dist_burr, 7	guide_level, 26
dist_cauchy, 8	guides(), 34
dist_chisq, 8	guiues(), 34
dist_degenerate, 9	hdr, 27
dist_exponential, 9	hdr.distribution, 27
dist_f, 10	hdr.distribution(), 28
dist_gamma, 10	hilo, 28
dist_geometric, 11	hilo(), <i>31</i>
dist_gumbel, 11	hilo.distribution, 28
dist_hypergeometric, 12	, , ,
dist_inflated, 12	is_hdr, 29
dist_inverse_exponential, 13	is_hilo,29
dist_inverse_gamma, 13	
dist_inverse_gaussian, 14	labs(), 27
dist_logarithmic, 14	layer(), 24, 26
dist_logistic, 15	
dist_mixture, 15	mean(), 21
dist_multinomial, 16	mean.distribution, 29

38 INDEX

```
median.distribution, 30
new_dist, 30
new_hdr, 31
new_hilo, 31
quantile(), 28
quantile.distribution, 32
scale_colour_gradient2(), 35
scale_colour_gradientn(), 35
scale_hilo_continuous, 32
scale_level, 34
scale_level_continuous (scale_level), 34
scales::area_pal(), 34
scales::boxcox_trans(), 34, 35
scales::censor(), 33, 35
scales::extended_breaks(), 33, 34
scales::rescale(), 35
scales::squish(), 33, 35
scales::squish_infinite(), 33, 35
scales::trans_new(), 34, 35
sec_axis(), 34
stats::Beta, 6
stats::Cauchy, 8
stats::Chisquare, 8
stats::Exponential, 9
stats::FDist, 10
stats::GammaDist, 10
stats::Geometric, 11
stats::Hypergeometric, 12
stats::Logistic, 15
stats::Multinom, 16
stats::NegBinomial, 17
stats::Normal, 17
stats::Poisson, 19
stats::TDist, 21
stats::Tukey, 20
stats::Uniform, 22
stats::var(), 36
stats::Weibull, 23
transformation object, 33, 34
variance, 36
variance(), 21
variance.distribution, 36
variance.distribution(), 36
waiver(), 27
```