# HLS Lab B: FFT

D10943004 林亮昕

Github: konosuba-lin/HLS

Baseline FFT Code

FFT 主要可以分成三個 loop 完成,由外而內分別是: stages loop、butterfly loop、跟 point loop。Baseline 的 c-code 如下:

```
stages:for(stage=1; stage<= M; stage++)</pre>
     DFTpts = 1 << stage;</pre>
     numBF = DFTpts/2;
     k=0;
     e = -6.283185307178/DFTpts;
    a = 0.0;
     butterfly:for(j=0; j<numBF; j++)</pre>
          c = cos(a);
          s = sin(a);
          a = a + e;
          DFTpts:for(i=j; i<SIZE; i += DFTpts)</pre>
               i_lower = i + numBF;
               temp_R = X_R[i_lower]*c- X_I[i_lower]*s;
               temp_I = X_I[i_lower]*c+ X_R[i_lower]*s;
               X_R[i_lower] = X_R[i] - temp_R;
X_I[i_lower] = X_I[i] - temp_I;
X_R[i] = X_R[i] + temp_R;
X_I[i] = X_I[i] + temp_I;
          k+=step;
     }
     step=step/2;
```

其流程圖(以 8-points FFT 為例)為下



其中橫軸的方向對應到的 stages loop,而不同顏色的 butterfly 結構代表使用不一樣的 twiddle factor。

### FFT Optimization

### 1. Create Perfect Loop

首先為了讓 butterfly loop、跟 point loop 能更有效率地進行,我們將 stages loop 展開,並將 butterfly loop 與 point loop 寫成 perfect loop 的形式

#### 2. Lookup Table

為了減少 cos 與 sin 的計算量,我們利用 python 生成 lookup table 對 sin 和 cos 進行查表

```
const DTYPE COS[] = {
    1.000000, 0.999981, 0.999925, 0.999831, 0.999699, 0.999529, 0.999322, 0.999078, 0.998795, 0.998476,
    0.998118, 0.997723, 0.997290, 0.996820, 0.996313, 0.995767, 0.995185, 0.994565, 0.993907, 0.993212,
    0.992480, 0.991710, 0.990903, 0.996058, 0.989177, 0.988258, 0.987301, 0.986308, 0.985278, 0.984210,
    0.992480, 0.991710, 0.990903, 0.9909058, 0.989177, 0.988258, 0.987301, 0.986308, 0.985278, 0.984210,
```

### 3. Dataflow Pragma 與 Pipeline Pragma

為了增加 FFT 的運算效率,我們首先利用 Pipeline Pragma 使得每個 stages 的運算時間差不多為 530 個 cycle,再利用 Dataflow Pragma 進一步增加運算效率。

此外我們發現如果 Pipeline Pragma 是放在 butterfly loops 而非 points loop 的話每個 stages 的運算時間會隨著 stages 增加而變長,這是因為放在 butterfly loops 的話會使得 points loop 被 unroll,這時反而會因為資源不夠而使得時間變長。

#### HLS Results

我們可以發現 HLS 後的結果與預期相同,總共產生十個 stages 的 function

| Instance        | <br>  Module | : 1. | (cycles)  <br>  max |           | (absolute) | Interval |      | Pipeline |
|-----------------|--------------|------|---------------------|-----------|------------|----------|------|----------|
|                 |              | min  |                     | min       | max        | min      | max  | Type     |
| bit_reverse_U0  | bit_reverse  | 1026 | 1026                | 10.260 us | 10.260 us  | 1026     | 1026 | no       |
| fft_first_U0    | fft_first    | 520  | 520                 | 5.200 us  | 5.200 us   | 520      | 520  | no       |
| fft_stages_1_U0 | fft_stages_1 | 530  | 530                 | 5.300 us  | 5.300 us   | 530      | 530  | no       |
| fft_stages_2_U0 | fft_stages_2 | 530  | 530                 | 5.300 us  | 5.300 us   | 530      | 530  | no       |
| fft_stages_3_U0 | fft_stages_3 | 530  | 530                 | 5.300 us  | 5.300 us   | 530      | 530  | no       |
| fft_stages_4_U0 | fft_stages_4 | 530  | 530                 | 5.300 us  | 5.300 us   | 530      | 530  | no       |
| fft_stages_5_U0 | fft_stages_5 | 530  | 530                 | 5.300 us  | 5.300 us   | 530      | 530  | no       |
| fft_stages_6_U0 | fft_stages_6 | 530  | 530                 | 5.300 us  | 5.300 us   | 530      | 530  | no       |
| fft_stages_7_U0 | fft_stages_7 | 530  | 530                 | 5.300 us  | 5.300 us   | 530      | 530  | no       |
| fft_stages_U0   | fft_stages   | 530  | 530                 | 5.300 us  | 5.300 us   | 530      | 530  | no       |
| fft_last_U0     | fft_last     | 1042 | 1042                | 10.420 us | 10.420 us  | 1042     | 1042 | no       |

而 Pragma Dataflow 對時間的幫助卻有限,

```
| Latency (cycles) | Latency (absolute) | Interval | Pipeline |
| min | max | min | max | min | max | Type |
| 8902 | 8902 | 89.020 us | 89.020 us | 2075 | 2075 | dataflow
```

因為每個 stages 之間的讀取順序並非規則,如果需要增加 Dataflow 的表現得化需要利用 complete array partition,但合成時間極長,目前仍無成功。同時我們發現在 input 與 output 相接的兩個階段時間最長,這是因為 AXI interface 的緣故導致。

| <br>  Instance  | <br>  Module | Latency<br>min | (cycles)  <br>max | Latency min | (absolute)  <br>  max | Inte | rval  <br>max | Pipeline<br>Type |
|-----------------|--------------|----------------|-------------------|-------------|-----------------------|------|---------------|------------------|
| +               | -+           |                |                   |             | ++                    | +    | +             |                  |
| entry_proc_U0   | entry_proc   | 0              | 0                 | 0 ns        | 0 ns                  | 0    | 0             | no               |
| bit_reverse_U0  | bit_reverse  | 2058           | 2058              | 20.580 us   | 20.580 us             | 2058 | 2058          | ne               |
| fft_first_U0    | fft_first    | 520            | 520               | 5.200 us    | 5.200 us              | 520  | 520           | n                |
| fft_stages_1_U0 | fft_stages_1 | 530            | 530               | 5.300 us    | 5.300 us              | 530  | 530           | n                |
| fft_stages_2_U0 | fft_stages_2 | 530            | 530               | 5.300 us    | 5.300 us              | 530  | 530           | n                |
| fft_stages_3_U0 | fft_stages_3 | 530            | 530               | 5.300 us    | 5.300 us              | 530  | 530           | ne               |
| fft_stages_4_U0 | fft_stages_4 | 530            | 530               | 5.300 us    | 5.300 us              | 530  | 530           | no               |
| fft_stages_5_U0 | fft_stages_5 | 530            | 530               | 5.300 us    | 5.300 us              | 530  | 530           | no               |
| fft_stages_6_U0 | fft_stages_6 | 530            | 530               | 5.300 us    | 5.300 us              | 530  | 530           | no               |
| fft_stages_7_U0 | fft_stages_7 | 530            | 530               | 5.300 us    | 5.300 us              | 530  | 530           | no               |
| fft_stages_U0   | fft_stages   | 530            | 530               | 5.300 us    | 5.300 us              | 530  | 530           | no               |
| fft last U0     | fft last     | 2074           | 2074              | 20.740 us   | 20.740 us             | 2074 | 2074          | no               |

## System Architecture

我們仿照 Lab2 的方式利用 AXI 介面將 HLS 的 IP 接上 ZYNQ7



## • PYNQ Verification:

我們將結果放到 PYNQ 上做測試,並得到正確結果

Real Part RMSE: 1.7840247029189356e-05 Imaginary Part RMSE: 1.3904950782005702e-05 PASS



