

Prof. José Kenichi Mizukoshi

Aula 6 (versão 16/06/2015)
Potencial elétrico de distribuições contínuas de carga. Potencial elétrico de um condutor carregado.

Potencial Elétrico: Distribuições Contínuas de Carga, Condutor Carregado

Obtendo o campo elétrico a partir do

Potencial Elétrico: Distribuições Contínuas de Carga, Condutor Carregado Problemas Propostos Material Suplementar

Para uma força conservativa tem-se que a força é menos o gradiente da energia potencial U (Aula 5 – Material Suplementar, p. 27):

$$\Delta U = -\int \vec{F} \cdot d\vec{\ell} \quad \Leftrightarrow \quad \vec{F} = -\vec{\nabla}U$$

Em coordenadas cartesianas, o operador **nabla** é dado por

$$\vec{\nabla} = \frac{\partial}{\partial x} \,\hat{\imath} + \frac{\partial}{\partial y} \,\hat{\jmath} + \frac{\partial}{\partial z} \,\hat{k}$$

enquanto que em outros sistemas de coordenadas (e.g. coordenadas esféricas) as expressões são não-triviais.

Obtendo o campo elétrico a partir do

Podemos obter uma relação similar, envolvendo o potencial e o campo eletrostático. Como

$$\Delta V = -\int \vec{E} \cdot d\vec{\ell} \quad \Rightarrow \quad dV = -\vec{E} \cdot d\vec{\ell}$$

Em coordenadas cartesianas,

$$dV = -(E_x dx + E_y dy + E_z dz)$$

Por outro lado, como V = V(x, y, z), tem-se que

$$dV = \frac{\partial V}{\partial x}dx + \frac{\partial V}{\partial y}dy + \frac{\partial V}{\partial z}dz$$

Comparando as expressões de dV acima, tem-se que

$$E_x = -\frac{\partial V}{\partial x}; \quad E_y = -\frac{\partial V}{\partial y}; \quad E_z = -\frac{\partial V}{\partial z}$$

ou seja,
$$\vec{E} = -\vec{\nabla}V$$
.

Obtendo o campo elétrico a partir do

potencial eletrostático — exemplo Potencial Elétrico: Distribuições Contínuas de Carga, Condutor Carregado — Problemas Propostos Material Suplementar

Ex. 1 Obtenha o campo de um dipolo elétrico à partir do seu potencial, no ponto P distante dele, conforme mostra a figura ao lado.

Solução Conforme calculado na Aula 5, pág. 21, o potencial num ponto P distante do dipolo elétrico $(r \gg d)$ é dado por

$$V(r) = \frac{1}{4\pi\epsilon_0} \frac{qd}{r^2} \cos\theta$$

Em coordenadas cartesianas, $r = \sqrt{x^2 + y^2}$. Pela figura acima (observando que x < 0),

$$\cos\theta = \frac{-x}{r} = \frac{-x}{\sqrt{x^2 + y^2}}$$

e portanto

$$V(r) = V(x,y) = \frac{1}{4\pi\epsilon_0} q d \frac{-x}{(x^2 + y^2)^{3/2}}$$

Obtendo ó campo elétrico a partir do

O campo elétrico é dado por

$$\vec{E} = -\vec{\nabla}V = -\frac{\partial V}{\partial x}\,\hat{\imath} - \frac{\partial V}{\partial y}\,\hat{\jmath} = E_x\,\hat{\imath} + E_y\,\hat{\jmath}$$

Temos que

$$E_x = -\frac{\partial V}{\partial x} = \frac{1}{4\pi\epsilon_0} qd \left[\frac{1}{(x^2 + y^2)^{3/2}} + \frac{x(-3/2)(2x)}{(x^2 + y^2)^{5/2}} \right] = \frac{1}{4\pi\epsilon_0} qd \frac{-2x^2 + y^2}{(x^2 + y^2)^{5/2}}$$

$$E_y = -\frac{\partial V}{\partial y} = \frac{1}{4\pi\epsilon_0} q d \frac{-3xy}{(x^2 + y^2)^{5/2}}$$

$$\Rightarrow \vec{E} = \frac{1}{4\pi\epsilon_0} \frac{qd}{(x^2 + y^2)^{5/2}} [(-2x^2 + y^2) \hat{\imath} - 3xy \hat{\jmath}]$$

Obtendo o campo elétrico a partir do potencial eletrostático – exemplo Potencial Elétrico: Distribuições Contínuas de Carga, Condutor Carregado Problemas Propostos Material Suplementar

Para o caso particular em que $heta=\pi/2$ (que corresponde a x=0), temos que

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{qd}{y^3} \,\hat{\imath}$$

que está de acordo com o resultado da Aula 2, pág. 8, para $y \gg d$.

Considere um objeto carregado, de tamanho finito. Como o objeto não se estende até o infinito, podemos tomar V=0 em $r\to\infty$. Utilizando este referencial de nível zero, o elemento de carga dq produz o potencial elétrico no ponto P dado por

$$dV = \frac{1}{4\pi\epsilon_0} \frac{dq}{r}$$

onde r é a distância entre o ponto P e a posição da carga dq.

$$dq = \begin{cases} \rho \, d\mathcal{V} & \text{(distribuição volumétrica)} \\ \sigma \, dA & \text{(distribuição superficial)} \\ \lambda \, d\ell & \text{(distribuição linear)} \end{cases}$$

dependendo da distribuição das cargas e da geometria do objeto.

Contínua de Cargas
Potencial Elétrico: Distribuições Contínuas de Carga, Condutor Carregado Problemas Propostos Material Suplementar

Pode-se obter o potencial total no ponto P integrando sobre todas as cargas da distribuição, ou seja,

$$V(r_P) = \int dV = \frac{1}{4\pi\epsilon_0} \int \frac{dq}{r}$$

Observe que como o potencial elétrico é uma grandeza escalar, não há integração por componentes, como ocorre com o campo elétrico.

Ex. 2 Encontre o potencial elétrico de um anel uniformemente carregado de raio R e carga total Q em um ponto P/situado no eixo que passa pelo seu centro.

Solução /Como se trata de uma distribuição linear de cargas,

$$dV = \frac{1}{4\pi\epsilon_0} \frac{dq}{r}$$

onde
$$r = \sqrt{R^2 + z^2}$$
 e $dq = \lambda d\ell$, com $d\ell = Rd\theta$.

Temos que

$$V = \int dV = \frac{1}{4\pi\epsilon_0} \frac{\lambda R}{\sqrt{R^2 + z^2}} \underbrace{\int_0^{2\pi} d\theta}_{-2\pi}$$

Como a distribuição de cargas é uniforme,

$$\lambda = \frac{dq}{d\ell} = \frac{Q}{2\pi R}$$

Aula 6

Contínua de cargas — exemplo Potencial Elétrico: Distribuições Contínuas de Carga, Condutor Carregado Problemas Propostos Material Suplementar

Portanto,

$$V = \frac{1}{4\pi\epsilon_0} \frac{Q}{\sqrt{R^2 + z^2}}$$

Partindo-se da expressão encontrada acima para o potencial elétrico, obtenha o campo elétrico.

Solução Como V = V(z), o campo elétrico é dado por

$$\vec{E} = -\vec{\nabla}V = -\frac{dV}{dz}\,\hat{\imath}$$

Obtemos assim,

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{Qz}{(R^2 + z^2)^{3/2}} \,\hat{k}$$

O resultado acima é similar a aquele encontrado na Aula 2, pág. 16, à partir da integração direta do campo.

contínua de cargas — exemplos Potencial Elétrico: Distribuições Contínuas de Carga, Condutor Carregado Problemas Propostos Material Suplementar

Obtenha o potencial elétrico de uma esfera de raio R, uniformemente carregada com carga Q.

Solução O potencial elétrico pode ser obtido integrando-se $dV = \frac{1}{4\pi\epsilon_0} \frac{dq}{r}$.

Contudo, neste caso, devido à existência de simetria na distribuição de cargas, podemos encontrar primeiro o campo elétrico à partir da lei de Gauss e posteriormente obter o potencial elétrico através da expressão

$$V(r) = -\int \vec{E} \cdot d\vec{\ell}$$

Conforme visto na Aula 4, pág. 12, o campo elétrico em toda a região do espaço é dado por

$$\vec{E} = \begin{cases} \frac{1}{4\pi\epsilon_0} \frac{Qr}{R^3} \, \hat{r} & (\text{região } I, r < R) \\ \\ \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2} \, \hat{r} & (\text{região } II, r \geq R) \end{cases}$$

contínua de cargas — exemplos Potencial Elétrico: Distribuições Contínuas de Carga, Condutor Carregado Problemas Propostos Material Suplementar

- Podemos assumir que V=0 para $r\to\infty$, pois a distribuição de cargas é finita. Neste caso, devemos realizar a integração do campo a partir do infinito.
- Para r > R (fora da esfera)

$$V_{II}(r) = -\int_{\infty}^{r} \vec{E}_{II} \cdot \underbrace{d\vec{\ell}}_{=dr \, \hat{r}} = -\frac{1}{4\pi\epsilon_{0}} q \underbrace{\int_{\infty}^{r} \frac{dr}{r^{2}}}_{=-\frac{1}{r} \Big|_{r_{0}}^{r}} \Rightarrow V_{II}(r) = \frac{1}{4\pi\epsilon_{0}} \frac{Q}{r}$$

$$= -\frac{1}{r} \Big|_{r_{0}}^{r}$$

Para r < R (dentro da esfera)

$$\Delta V = V_I(r) - V_I(R) = -\int_R^r \vec{E}_I \cdot d\vec{\ell} = -\frac{1}{4\pi\epsilon_0} \frac{Q}{R^3} \int_R^r r dr$$

$$\Rightarrow V_I(r) = V_I(R) - \frac{1}{4\pi\epsilon_0} \frac{Q}{R^3} \frac{r^2 - R^2}{2}$$

$$V_I(r) = \frac{1}{4\pi\epsilon_0} \frac{Q}{R} - \frac{1}{4\pi\epsilon_0} \frac{Q}{R^3} \frac{r^2 - R^2}{2} \quad \Rightarrow \quad V_I(r) = \frac{1}{4\pi\epsilon_0} \frac{Q}{2R} \left(3 - \frac{r^2}{R^2} \right)$$

Em particular, no centro da esfera o potencial é máximo e possui o valor

$$V_I(0) \equiv V_0 = \frac{1}{4\pi\epsilon_0} \frac{3Q}{2R}.$$

Superfícies equipotencias

Potencial Elétrico: Distribuições Contínuas de Carga, Condutor Carregado Problemas Propostos Material Suplementar

- Uma superfície equipotencial é uma superfície na qual o potencial elétrico tem o mesmo valor em todos os pontos.
- A figura ao lado mostra partes de uma família de superfícies equipotenciais.
 - lack O trabalho realizado por forças elétricas para mover uma carga q_0 é nulo quando os pontos inicial e final se encontram numa mesma superfície equipotencial, como é o caso dos caminhos C_1 e C_2 .

lacklost Os trabalhos pelos caminhos C_3 e C_4 não são nulos e possuem os mesmos valores, pois ambos os caminhos começam num ponto com potencial V_A e terminam em um outro com potencial V_B . Neste caso, para ambos os caminhos, tem-se

$$W_{AB} = -q_0(V_B - V_A)$$

Superfícies equipotencias

Potencial Elétrico: Distribuições Contínuas de Carga, Condutor Carregado Problemas Propostos Material Suplementar

Temos que

$$\Delta V = \int dV = -\int \vec{E} \cdot d\vec{\ell}$$

Portanto,

$$dV = -\vec{E} \cdot d\vec{\ell}$$

Em uma superfície equipotencial, tem-se que dV=0 quando se desloca $d\vec{\ell}$ sobre ela. Portanto, $\vec{E}\cdot d\vec{\ell}=0$, ou seja, $\vec{E}\perp d\vec{\ell}$.

Como $d\vec{\ell}$ é paralela à superfície equipotencial, isto implica que próximo à essa superfície, o campo elétrico é perpendicular a ela.

Superfícies equipotenciais: exemplos

Potencial Elétrico: Distribuições Contínuas de Carga, Condutor Carregado Problemas Propostos Material Suplementar

Superfícies equipotenciais (linhas tracejadas) e linhas de campo elétrico (linhas cheias) para (a) uma placa infinita, (b) uma carga pontual q > 0 e (c) um dipolo elétrico.

O potencial elétrico de um condutor

Carregado
Potencial Elétrico: Distribuições Contínuas de Carga, Condutor Carregado Problemas Propostos Material Suplementar

- o campo elétrico é nulo em seu interior;
- (ii)a carga se distribui sobre a superfície do condutor (este arranjo possui a menor energia potencial).
- A terceira propriedade para um condutor carregado: no regime eletrostático, todo o condutor está a um mesmo potencial.

De fato, considere o condutor carregado e isolado da figura ao lado. Para quaisquer pontos A e B na superfície do condutor,

$$V_B - V_A = -\int_A^B \underbrace{\vec{E} \cdot d\vec{\ell}}_{=0, \text{ pois } \vec{E} \perp d\vec{\ell}} = 0 \ \Rightarrow \ V_A = V_B$$

O potencial elétrico de um condutor

Carregado
Potencial Elétrico: Distribuições Contínuas de Carga, Condutor Carregado Problemas Propostos Material Suplementar

Superfície de um condutor é uma superfície equipotencial.

Além disto, como $\vec{E}=0$ no interior de um condutor em regime eletrostático, o potencial elétrico V nessa região é constante e igual ao seu valor da superfície.

Quarta propriedade: para um condutor de formato arbitrário, a densidade superficial de carga é maior perto das pontas (superfícies convexas que tenham um pequeno raio de curvatura).

Para demonstrar esta propriedade, considere o objeto formado por duas esferas condutoras carregadas, conectadas por um fio condutor longo e fino. O condutor de raio r_1 está carregado com carga q_1 e o condutor de raio r_2 com carga q_2 . Vamos supor que $r_1 > r_2$.

Aula 6

O potencial elétrico de um condutor

Carregado
Potencial Elétrico: Distribuições Contínuas de Carga, Condutor Carregado Problemas Propostos Material Suplementar

Como na superfície esférica de raio r o potencial é dado por

$$V = \frac{1}{4\pi\epsilon_0} \frac{q}{r}$$

e no equilíbrio eletrostático ele é constante por todo o objeto, tem-se que

$$V_1 = V_2 \quad \Rightarrow \quad \frac{1}{4\pi\epsilon_0} \frac{q_1}{r_1} = \frac{1}{4\pi\epsilon_0} \frac{q_2}{r_2} \quad \Rightarrow \quad \frac{q_2}{q_1} = \frac{r_2}{r_1} \quad (*)$$

Portanto, fazendo uso da Eq. (*),

$$\frac{\sigma_2}{\sigma_1} = \frac{q_2/(4\pi r_2^2)}{q_1/(4\pi r_1^2)} = \underbrace{\frac{q_2}{q_1}}_{=\frac{r_2}{r_1}} \frac{r_1^2}{r_2^2} \quad \Rightarrow \quad \frac{\sigma_2}{\sigma_1} = \frac{r_1}{r_2} > 1$$

$$= \frac{r_2}{r_1}$$

Logo, $\sigma_2 > \sigma_1$.

Carregado
Potencial Elétrico: Distribuições Contínuas de Carga, Condutor Carregado Problemas Propostos Material Suplementar

Conforme visto na Aula 4, pág. 26, a intensidade do campo elétrico na vizinhança da superfície condutora é dada por

$$E = \frac{\sigma}{\varepsilon_0}$$

Portanto, temos que $E_2 > E_1$.

Consequência: perto de um condutor com ponta fina, o campo elétrico pode ser grande o suficiente para ionizar moléculas do ar na vizinhança. Isto ocorre para $E>E_{\rm max}$, onde $E_{\rm max}$ é conhecido como **rigidez dielétrica** do material (e.g. $E_{\rm max} \approx 3 \times 10^6 \ {
m V/m}$ para o ar). Tal efeito é conhecido como descarga corona.

Potencial Elétrico e Campo Elétrico

Potencial Elétrico: Distribuições Contínuas de Carga, Condutor Carregado Problemas Propostos Material Suplementar

P1 A Fig. abaixo mostra uma haste fina de plástico de comprimento L, carregada uniformemente com carga positiva Q, colocada sobre o eixo x a uma distância a da origem, onde está localizado o ponto P. Adotando-se que V=0 no infinito, (a) encontre o potencial elétrico em P. (b) Escreva a expressão do potencial elétrico para um ponto x qualquer e encontre, à partir dessa expressão, o campo elétrico em P e o compare com a expressão da Aula 2, pág. 13.

Resp. (a)
$$V(0) = \frac{1}{4\pi\epsilon_0} \frac{Q}{L} \ln\left(1 + \frac{L}{a}\right)$$
; (b) $\vec{E} = -\frac{1}{4\pi\epsilon_0} \frac{Q}{a(a+L)} \hat{\imath}$.

Potencial Elétrico e Campo Elétrico

Potencial Elétrico: Distribuições Contínuas de Carga, Condutor Carregado Problemas Propostos Material Suplementar

P2 Considere duas cascas esféricas finas condutoras, conforme mostradas na Fig. ao lado. A casca interna possui raio $r_1=15{,}0$ cm e carga $q_1=10{,}0$ nC, enquanto que a casca externa possui raio $r_2=30{,}0$ cm e carga $q_2=-15{,}0$ nC. Encontre o potencial elétrico V nas regiões A, B e C, com V=0 em $r\to\infty$.

Dica: encontre primeiro o campo elétrico em toda a região do espaço utilizando a lei de Gauss.

Resp.
$$V_C = \left(-\frac{45,0}{r}\right) \text{ V}; \ V_B = \left(-450 + \frac{89,9}{r}\right) \text{ V}; \ V_A = +150 \text{ V}.$$

Material Suplementar

Contínua de cargas — exemplo
Potencial Elétrico: Distribuições Contínuas de Carga, Condutor Carregado Problemas Propostos Material Suplementar

Ex. 4 Considere um disco de raio R, uniformemente carregado com densidade de carga σ . Obtenha o potencial elétrico dessa distribuição de cargas num ponto P, sobre o eixo que passa pelo centro do disco.

Solução

Tomando $V \neq 0$ para $r' \rightarrow \infty$, temos que

$$V = \frac{1}{4\pi\epsilon_0} \int \frac{dq}{r'}$$

Como $r' \neq \sqrt{z^2 + r^2}$ e $dq = \sigma dA = \sigma r dr d\theta$, temos que para z > 0,

$$V = \frac{1}{4\pi\epsilon_0} \sigma \underbrace{\int_0^R \frac{r \, dr}{\sqrt{z^2 + r^2}}}_{=\sqrt{z^2 + r^2} \Big|_0^R} \underbrace{\int_0^{2\pi} d\theta}_{=2\pi} \Rightarrow V = \frac{\sigma}{2\epsilon_0} \left(\sqrt{z^2 + R^2} - z\right)$$

$$V = \frac{\sigma}{2\varepsilon_0} \left(\sqrt{z^2 + R^2} - z \right)$$

Aula 6

Potencial elétrico de uma distribuição Contínua de cargas – exemplo Potencial Elétrico: Distribuições Contínuas de Carga, Condutor Carregado Problemas Propostos Material Suplementar

Obtenha o campo elétrico no ponto P à partir do potencial V obtido acima.

Solução

Temos que $\vec{E} = -\vec{\nabla}V$. Como o potencial V da pág. anterior só depende de z,

$$\vec{E} = -\frac{dV}{dz} \,\hat{k} = -\frac{d}{dz} \left[\frac{\sigma}{2\varepsilon_0} \left(\sqrt{z^2 + R^2} - z \right) \right] \hat{k}$$

$$\Rightarrow \vec{E} = -\frac{\sigma}{2\varepsilon_0} \left(\frac{z}{\sqrt{z^2 + R^2}} - 1 \right) \hat{k}$$

Fazendo $\sigma = \frac{q}{\pi R^2}$, obtemos

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{2q}{R^2} \left(1 - \frac{z}{\sqrt{z^2 + R^2}} \right) \hat{k}$$

que é a mesma expressão obtida através da integração direta do campo (Aula 2, p. 32)

Referências

Potencial Elétrico: Distribuições Contínuas de Carga, Condutor Carregado Problemas Propostos Material Suplementar

- R. A. Serway, e J. W. Jewett Jr., *Princípios de Física, Vol. 3*, Cengage Learning;
- D. Halliday, R. Resnick e K. S. Krane, *Física, Vol. 3*, LTC;