Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Basics of Neural Network Programming

Binary Classification

Binary Classification

Andrew Ng

Notation

un singolo set di addestramento è rappresentato da una coppia x,y dove: - x è un vettore di più dimensioni - y è uguale a 0 o a 1

x e RIX, y e { 0,13 m training examples: $\{(x^{(i)}, y^{(i)}), (x^{(i)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$ Mtest = #test examples. M = Mtrain colonne $X = \begin{cases} X^{(1)} & X^{(2)} & \dots & X^{(m)} \\ X^{(1)} & X^{(2)} & \dots & X^{(m)} \end{cases}$ $X = \begin{cases} X^{(1)} & X^{(2)} & \dots & X^{(m)} \\ X^{(m)} & X^{(m)} & \dots & X^{(m)} \end{cases}$ $X = \begin{cases} X^{(1)} & X^{(2)} & \dots & X^{(m)} \\ X^{(m)} & X^{(m)} & \dots & X^{(m)} \end{cases}$ $Y = \begin{cases} X^{(1)} & X^{(2)} & \dots & X^{(m)} \\ X^{(m)} & X^{(m)} & \dots & X^{(m)} \end{cases}$ Y. shape = (1, m) X. shape = (nx, m)

Basics of Neural Network Programming

Logistic Regression

Logistic Regression

vuoi capire che dato X come immagine, questa immagine sia un gatto

Output
$$y = 5(w^T \times + b)$$

Andrew Ng

a regressione logistica può essere vista come una rete neurale molto piccola. perché è equivalente a una rete neurale con un solo neurone (senza strati nascosti): con: Un solo neurone
Nessuno strato nascosto

deeplearning.ai

Basics of Neural Network Programming

Logistic Regression cost function

La cost function della logistic regression è la funzione che misura l'errore tra le predizioni del modello e i valori reali. Il suo obiettivo è minimizzare questo errore per migliorare la precisione del modello.

La funzione di perdita calcola l'errore per un singolo esempio di formazione;

Logistic Regression cost function

Given
$$\{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\}$$
, want $\hat{y}^{(i)} \approx y^{(i)}$.

Since $\{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\}$, want $\hat{y}^{(i)} \approx y^{(i)}$.

Loss (error) function: $\int_{\mathcal{C}} (\hat{y}, y) = \frac{1}{2} (\hat{y} - y)^2$

The entropy of the second of the

y^i è la probabilità predetta dal modello. è il valore reale. m è il numero di esempi nel dataset.

deeplearning.ai

Basics of Neural Network Programming

Gradient Descent

Il Gradient Descent è un algoritmo di ottimizzazione utilizzato per trovare i valori ottimali dei parametri di un modello minimizzando una funzione di costo.

Gradient Descent

Recap:
$$\hat{y} = \sigma(w^T x + b)$$
, $\sigma(z) = \frac{1}{1 + e^{-z}} \iff$ algorithm di reg logistica

$$\underline{J(w,b)} = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

Want to find w, b that minimize J(w, b)

Gradient Descent

$$J(\omega,b) \qquad \omega := \omega - d \underbrace{\partial J(\omega,b)}_{\partial \omega} \qquad \underbrace{\partial$$

Basics of Neural Network Programming

Derivatives

Intuition about derivatives

Andrew Ng

Basics of Neural Network Programming

More derivatives examples

Intuition about derivatives

More derivative examples

$$f(a) = a^2$$

$$f(\omega) = \alpha^3$$

$$\frac{\lambda}{\lambda a} (a) = 3a^{2}$$
 $3x2^{3} = 12$

$$\sigma = 5.001$$
 $t(r) = 8$

$$Q = 5.001 \quad \text{fm} \approx 0.64312$$

$$Q = 5.001 \quad \text{fm} \approx 0.64362$$

Basics of Neural Network Programming

Computation Graph

Computation Graph

$$J(a,b,c) = 3(a+bc) = 3(5+3\pi^2) = 33$$
 $U = bc$
 $V = atu$
 $J = 3v$
 $V = a+u$
 $J = 3v$
 $V = a+u$
 $J = 3v$

Basics of Neural Network Programming

Derivatives with a Computation Graph

Computing derivatives

Computing derivatives

Basics of Neural Network Programming

Logistic Regression Gradient descent

Logistic regression recap

$$\Rightarrow z = w^{T}x + b$$

$$\Rightarrow \hat{y} = a = \sigma(z)$$

$$\Rightarrow \mathcal{L}(a, y) = -(y \log(a) + (1 - y) \log(1 - a))$$

$$\begin{cases} \lambda_{1} \\ \lambda_{2} \\ \lambda_{3} \end{cases}$$

$$\begin{cases} \lambda_{1} \\ \lambda_{2} \\ \lambda_{3} \end{cases}$$

$$\begin{cases} \lambda_{2} \\ \lambda_{3} \end{cases}$$

$$\begin{cases} \lambda_{1} \\ \lambda_{2} \\ \lambda_{3} \end{cases}$$

Logistic regression derivatives

Basics of Neural Network Programming

Gradient descent on m examples

Logistic regression on m examples

$$\frac{J(u,b)}{J(u,b)} = \frac{1}{m} \sum_{i=1}^{m} f(a^{(i)}, y^{(i)}) \\
\Rightarrow a^{(i)} = f(x^{(i)}) = G(x^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial u_i} J(u,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial u_i} f(a^{(i)}, y^{(i)}) \\
\frac{\partial u_i}{\partial u_i} - (x^{(i)}, y^{(i)})$$

Logistic regression on m examples

$$J=0; dw_{1}=0; dw_{2}=0; db=0$$

$$For i=1 to m$$

$$Z^{(i)}=\omega^{T}x^{(i)}+b$$

$$Q^{(i)}=6(Z^{(i)})$$

$$J+=-[y^{(i)}(og Q^{(i)}+(1-y^{(i)})(og(1-q^{(i)})]$$

$$dz^{(i)}=Q^{(i)}-y^{(i)}$$

$$dw_{1}+=x^{(i)}dz^{(i)}$$

$$dw_{2}+=x^{(i)}dz^{(i)}$$

$$J=0; dw_{2}(1-q^{(i)})$$

$$dz^{(i)}=Q^{(i)}-y^{(i)}$$

$$dz^{(i)}=Q^{(i)}-y^{(i)}$$

$$dw_{1}+=x^{(i)}dz^{(i)}$$

$$dw_{2}+=x^{(i)}dz^{(i)}$$

$$J=0; dw_{2}(1-q^{(i)})$$

$$dz^{(i)}=Q^{(i)}$$

$$dw_{2}+=Q^{(i)}$$

$$dw_{3}+=Q^{(i)}$$

$$dw_{4}+=Q^{(i)}$$

$$dw_{4}+=Q^{(i)}$$

$$dw_{5}+=Q^{(i)}$$

$$dw_{6}+=Q^{(i)}$$

$$dw_{7}+=m; dw_{7}+=m; db/=m.$$

$$d\omega_1 = \frac{\partial J}{\partial \omega_1}$$
 $\omega_1 := \omega_1 - d d\omega_1$
 $\omega_2 := \omega_2 - \alpha d\omega_2$
 $b := b - d db$

We to right is a sum of the sum o

Basics of Neural Network Programming

Vectorization

What is vectorization?

for i in ray
$$(n-x)$$
:
 $2+=\omega [1] \times x[1]$

Basics of Neural Network Programming

More vectorization examples

Neural network programming guideline

Whenever possible, avoid explicit for-loops.

$$U = AV$$

$$U_{i} = \sum_{i} \sum_{j} A_{ij} V_{ij}$$

$$U = np. zevos((n, i))$$

$$for i \dots \subseteq ACIT_{i} \exists *vC_{i} \exists$$

$$uCi \exists t = ACIT_{i} \exists *vC_{i} \exists$$

Vectors and matrix valued functions

Say you need to apply the exponential operation on every element of a matrix/vector.

$$v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \rightarrow \mathbf{u} = \begin{bmatrix} \mathbf{e}^{\mathbf{v}_1} \\ \mathbf{e}^{\mathbf{v}_2} \end{bmatrix}$$

$$v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \rightarrow u = \begin{bmatrix} e^{v_1} \\ e^{v_n} \end{bmatrix}$$

$$u = \text{np. exp}(v) \leftarrow$$

$$\text{np. log}(v)$$

$$\text{np. abs}(v)$$

$$\text{np. havinum}(v, o)$$

Logistic regression derivatives

$$J = 0, \quad dw1 = 0, \quad dw2 = 0, \quad db = 0$$

$$\Rightarrow \text{ for } i = 1 \text{ to } n:$$

$$z^{(i)} = w^{T}x^{(i)} + b$$

$$a^{(i)} = \sigma(z^{(i)})$$

$$J + = -[y^{(i)}\log\hat{y}^{(i)} + (1 - y^{(i)})\log(1 - \hat{y}^{(i)})]$$

$$dz^{(i)} = a^{(i)}(1 - a^{(i)})$$

$$dw_{1} + x_{1}^{(i)}dz^{(i)}$$

$$dw_{2} + x_{2}^{(i)}dz^{(i)}$$

$$db + dz^{(i)}$$

$$J = J/m, \quad dw_{1} = dw_{1}/m, \quad dw_{2} = dw_{2}/m, \quad db = db/m$$

$$d\omega / = m$$

Basics of Neural Network Programming

Vectorizing Logistic Regression

deeplearning.ai

Vectorizing Logistic Regression

$$Z^{(1)} = w^{T}x^{(1)} + b$$

$$Z^{(2)} = w^{T}x^{(2)} + b$$

$$Z^{(3)} = w^{T}x^{(3)} + b$$

$$Z^{(3)} = \sigma(z^{(3)})$$

$$Z^$$

Basics of Neural Network Programming

Vectorizing Logistic Regression's Gradient Computation

Vectorizing Logistic Regression

$$\frac{dz^{(1)} = a^{(1)} - y^{(1)}}{dz^{(2)}} = \frac{dz^{(2)} - y^{(2)}}{dz^{(2)}} - \frac{dz^{(2)}}{dz^{(2)}} - \frac{dz^{(2)}}{dz^{(2)}} = \frac{dz^{(2)} - y^{(2)}}{dz^{(2)}} - \frac{dz^{(2)}}{dz^{(2)}} = \frac{dz^{(2)} - y^{(2)}}{dz^{(2)}} - \frac{dz^{(2)}}{dz^{(2)}} - \frac$$

$$db = \frac{1}{m} \sum_{i=1}^{m} dz^{(i)}$$

$$= \frac{1}{m} \left[x^{(i)} + \dots + x^{(n)} dz^{(m)} \right]$$

$$= \frac{1}{m} \left[x^{(i)} + \dots + x^{(n)} dz^{(m)} \right]$$

$$= \frac{1}{m} \left[x^{(i)} + \dots + x^{(n)} dz^{(m)} \right]$$

$$= \frac{1}{m} \left[x^{(i)} + \dots + x^{(n)} dz^{(m)} \right]$$

Implementing Logistic Regression

J = 0,
$$dw_1 = 0$$
, $dw_2 = 0$, $db = 0$

for i = 1 to m:

$$z^{(i)} = w^T x^{(i)} + b$$

$$a^{(i)} = \sigma(z^{(i)}) \checkmark$$

$$J += -[y^{(i)} \log a^{(i)} + (1 - y^{(i)}) \log(1 - a^{(i)})]$$

$$dz^{(i)} = a^{(i)} - y^{(i)} \checkmark$$

$$dw_1 += x_1^{(i)} dz^{(i)}$$

$$dw_2 += x_2^{(i)} dz^{(i)}$$

$$dw_2 += x_2^{(i)} dz^{(i)}$$

$$db += dz^{(i)}$$

$$J = J/m, dw_1 = dw_1/m, dw_2 = dw_2/m$$

$$db = db/m$$

iter in range (1000):
$$C$$

$$Z = \omega^{T} X + b$$

$$= n p \cdot dot (\omega \cdot T \cdot X) + b$$

$$A = \epsilon (Z)$$

$$A = \epsilon (Z)$$

$$A = \Delta - Y$$

$$A =$$

Basics of Neural Network Programming

Broadcasting in Python

Broadcasting example

Calories from Carbs, Proteins, Fats in 100g of different foods:

Apples Beef Eggs Potatoes

Carb
$$56.0$$
 0.0 4.4 68.0

Protein 1.2 104.0 52.0 8.0

Fat 1.8 135.0 99.0 0.9 (3,4)

Squal Section from Cab, Poten, Fort. Can you do the arphint for-loop?

Cal = A.sum(axis = 0)

percentage = $100*A/(cal Abstrace(1.6))$

Broadcasting example

$$\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} + \begin{bmatrix} 100 \\ 100 \\ 100 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} + \begin{bmatrix} 100 & 200 & 300 \\ 100 & 200 & 300 \end{bmatrix}$$

$$(m,n) \quad (2,3)$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} + \begin{bmatrix} 100 & 100 & 100 \\ 200 & 200 \end{bmatrix} = \begin{bmatrix} (m,n) & 2 & 100 \\ (m,n) & 2 & 100 \end{bmatrix}$$

General Principle

$$(m, n)$$
 $\frac{t}{x}$ (n, i) m (m, n) $($

Mathab/Octave: bsxfun

Basics of Neural Network Programming

Explanation of logistic regression cost function (Optional)

Logistic regression cost function

Logistic regression cost function

If
$$y = 1$$
: $p(y|x) = \hat{y}$

If $y = 0$: $p(y|x) = 1 - \hat{y}$

$$p(y|x) = \hat{y} \cdot (1 - \hat{y})$$

Andrew Ng

Cost on *m* examples

log
$$p(lolods)$$
 in troops set) = log $\prod_{i=1}^{m} p(y^{(i)}|\chi^{(i)})$

log $p(----) = \sum_{i=1}^{m} log p(y^{(i)}|\chi^{(i)})$

Movimum likelihood setiment

$$- \chi(y^{(i)}, y^{(i)})$$

$$= -\sum_{i=1}^{m} \chi(y^{(i)}, y^{(i)})$$

(ost: $J(w, b) = \frac{1}{m} \sum_{i=1}^{m} \chi(y^{(i)}, y^{(i)})$

(minimize)