11) Numéro de publication:

0 236 163 A1

12)

DEMANDE DE BREVET EUROPEEN

(21) Numéro de dépôt: 87400149.8

22 Date de dépôt: 22.01.87

(a) Int. Cl.4: **C 07 C 121/78,** C 07 K 5/06, A 61 K 37/02

30 Priorité: 24.01.86 FR 8601398 24.01.86 FR 8601400 ① Demandeur: SANOFI, 40, Avenue George V, F-75008 Paris (FR)

Date de publication de la demande: 09.09.87
 Bulletin 87/37

Inventeur: Delabassee, Denis, 276 Chémin des Crêtes,
Goyrans F-31120 Portet/Garonne (FR)
Inventeur: Bernat, André, 14 Chemin Maurens,
F-31270 Cugnaux (FR)
Inventeur: Maffrand, Jean-Pierre, 5 rue du Corps Franc
Pommies, F-31120 Portet/Garonne (FR)
Inventeur: Vallee, Eric, 253 Chemin du Ramelet Moundi,
F-31170 Tournefeuille (FR)
Inventeur: Frehel, Daniel, Résidence l'Autan Appt. 206,
100 Allée de Barcelone§F-31000 Toulouse (FR)

Etats contractants désignés: AT BE CH DE ES FR GB GR IT LI LU NL SE Mandataire: Bressand, Georges et al, c/o CABINET LAVOIX 2 Place d'Estienne d'Orves, F-75441 Paris Cedex 09 (FR)

- Dérivés N alpha-substitués des N alpha-arylsulfonylaminoacyl p-amidinophénylalaninamides, leur préparation, leur application comme médicaments et intermédiaires pour leur synthèse.
- D La présente invention concerne les composés de formule

dans laquelle:

R₁ représente l'hydrogène, un groupe alcoyle inférieur, hydroxyalcoyle inférieur, benzyle, un groupe phényle ou un groupe hydroxy-4 phényle;

— R₂ représente un groupe alcoyle inférieur, alcényle inférieur, alcynyle inférieur, ou un groupe benzyle, ou un groupe alcoxycarbonylalcoyle inférieur, carboxyalcoyle inférieur, hydroxyalcoyle inférieur;

- R₃ et R₄, identiques ou différents, représentent cha-

cun un radical alcoyle ou hydroxyalcoyle inférieurs, alcényle inférieur, alcynyle inférieur ou forment ensemble, avec l'azote auquel ils sont attachés, un hétérocycle saturé tel que morpholino, thiomorpholino, pyrrolidino non substitué ou substitué par un groupe alcoxycarbonyle ou carboxy, pipérazino, (alcoyle inférieur)-4 pipérazino, (hydroxyalcoyle inférieur)-4 pipérazino, ou pipéridino non substitué ou substitué par un groupe alcoyle inférieur, benzyle, hydroxy, hydroxyalcoyle inférieur, amino, aminoalcoyle inférieur, hydroxyamino, alcoxycarbonyle ou carboxy.

— Ar représente un groupe phényle, alpha-naphthyle ou béta-naphthyle, éventuellement substitués, ou bien un groupe hétéroaryle choisi parmi les radicaux pyridyle, quinoléinyle, isoquinoléinyle, éventuellement substitués, ainsi que leurs isomères et leurs mélanges et leurs sels avec les acides minéraux ou organiques pharmaceutiquement acceptables.

L'invention concerne aussi un procédé de préparation des produits de formule (I), leur application comme médicament et les composés intermédiaires pour leur synthèse. La présente invention est relative à de nouveaux dérivés N<-substitués des N<-arylsulfonylaminoacyl p-amidino-phénylalaninamides, à leur procédé de préparation, et à leur utilisation en tant qu'agents inhibiteurs sélectifs de la thrombine et antithrombotiques.

Les composés de l'invention répondent à la formule générale (I) :

$$Ar-SO_{2} \xrightarrow{\text{I}} \begin{array}{c} H & O & CH_{2} \\ CH_{2} & CH & C-N \\ R_{1} & R_{2} & O \end{array}$$

$$(I)$$

dans laquelle :

5

10

15

20

25

30

35

- R₁ représente l'hydrogène, un groupe alcoyle inférieur, hydroxyalcoyle inférieur, benzyle, un groupe phényle ou un groupe hydroxy-4 phényle;
- R₂ représente un groupe alcoyle inférieur, alcényle inférieur, alcynyle inférieur, ou un groupe benzyle, ou un groupe alcoxycarbonylalcoyle inférieur, carboxyalcoyle inférieur ou hydroxyalcoyle inférieur;
- R₃ et R₄, identiques ou différents, représentent chacun un radical alcoyle ou hydroxyalcoyle inférieurs, alcényle inférieur, alcynyle inférieur ou forment ensemble, avec l'azote auquel ils sont attachés, un hétérocycle saturé tel que morpholino, thiomorpholino, pyrrolidino non substitué ou substitué par un groupe alcoxycarbonyle ou carboxy , pipérazino, (alcoyle inférieur)-4 pipérazino, (hydroxyalcoyle inférieur)-4 pipérazino, ou pipéridino non substitué ou substitué par un groupe alcoyle inférieur, benzyle, hydroxy, hydroxyalcoyle inférieur, amino, aminoalcoyle inférieur, hydroxyamino, alcoxycarbonyle ou carboxyle.
- Ar représente un groupe phényle, alpha-naphtyle ou béta-naphtyle, éventuellement substitués,ou bien un groupe hétéroaryle choisiparmi les radicaux pyridyle, quinoléinyle, isoquinoléinyle, éventuellement substitués.

Les composés de formule (I), ci-dessus préférés, sont ceux dans lesquels R_1 représente l'hydrogène ou un radical alcoyle ou hydrox alcoyle, ceux dans lesquels R_2 représente un radical alcoyle, ceux dans lesquels le groupe $N_{R_3}^{R_3}$ représente un r a d i c a l pipéridino substitué ou non substitué et ceux dans lesquels A_r représente un radical naphtyle.

Dans le cas où R_1 est autre que l'hydrogène, le carbone porteur du groupe R_1 , comme celui du groupe phénylalanine, peut avoir la configuration R ou S ou RS et pour ces derniers composés, la cristallisation peut entraîner un enrichissement de certains des diastéréoisomères. Tous les composés présentant les dites configurations sont compris dans la présente invention.

Les composés de formule (I) ci-dessus, comportant un ou plu sieurs centres asymétriques peuvent exister sous formes de plusieurs
isomères (diastéréoisomères, énantiomères) qui peuvent être préparés
par synthèse stéréospécifique ou séparés de leurs homologues par des
moyens classiques. L'invention concerne aussi des sels d'addition des
composés de formule (1) avec les acides minéraux ou organiques pharmaceutiquement acceptables.

Les termes "alcoyle inférieur", "alcényle inférieur", et "alcynyle inférieur" tels qu'utilisés ici, désignent les radicaux d'hydrocarbures aliphatiques ramifiés ou linéaires, contenant jusqu'à 6 atomes de carbone tels que méthyle, éthyle, isopropyle, isobutyle, tertiobutyle, n-hexyle, allyle, propargyle, crotyle, méthyl-2 crotyle, méthyl-2 allyle, butyryle-2.

Des inhibiteurs de trombine synthétiques, présentant un groupe amidinophénylalamine ont été décrits dans la littérature.

G. WAGNER et ses collaborateurs (DD Patent 142804 (16.7.80)) ont décrit des composés de formule générale (A) :

L'insertion d'un résidu aminoacide glycine entre le groupe sulfonyle et l'azote N-alpha de la p-amidinophénylalamine a conduit à des composés de formule générale (B), dont l'activité in vitro est potentialisée par rapport à ceux de formule générale (A) (G.WAGNER et Coll.DD Patent 155954 (3.2.81)).

$$Arso_2-NH-(CH_2)_n-C-N-R_1'$$

20

15

5

10

25

30

35

et parmi ceux-ci, le composé de formule (B) où n = 1, A'r= béta-naphtyle, $NR_1'R_2'$ = pipéridino, ci-après désigné composé (C) présente la meilleure activité inhibitrice de la thrombine in vitro (J. STURZEBECHER et al. Thrombosis Research, 1983, 29, 635) et ex vivo (J. HAUPTMANN et al. Thrombosis Research, 1985, 39, 771).

Les composés de formule générale (A) et (B) ci-dessus sont préparés selon les procédés décrits dans les brevets DD 142804 et DD 155954, les amides étant obtenues à partir des acides libres correspondants par activation et réaction avec l'amine correspondante. Ces procédés impliquent des conditions de réactions qui induisent des racémisations au niveau du centre asymétrique ; en outre, ils ne permettent pas d'obtenir des composés portant le substituant R_2 .

La demanderesse a trouvé que les composés de formule (I) ci-dessus peuvent être obtenus par un procédé qui permet, par l'utilisation de procédés de couplages et de groupements protecteurs judicieusement choisis, de respecter les centres d'asymétrie dans leur configuration originelle, et qui n'induit pas de racémisation.

Ce résultat est obtenu, contrairement aux procédés décrits par G.WAGNER et ses collaborateurs, en construisant d'abord la partie amide -CO-N $\stackrel{R}{\sim}_{R_A}$.

à partir de la fonction acide du synthon p-cyanophénylalanine, avant la partie arylsulfonylaminoacyle, afin de pouvoir introduire facilement le substituant R_2 .

L'invention a également pour objet un procédé de préparation des composés de formule (I) caractérisé en ce que l'on fait réagir sur la cyano-4 phénylalaninamide $N \sim -$ alcoylée de formule (II)

dans laquelle R_2 , R_3 et R_4 ont les mêmes significations que dans la formule (I), un acide de formule :

sous sa forme activée :

5

10

25

30

35

dans laquelle Ar et R₁ ont les mêmes significations que dans la formule (I) et R représente un bon groupement nucléofuge, tel que chloro, alcoxycarbonyloxy ou hétéroaryle, pour obtenir le composé de formule (V):

15
$$\begin{array}{c}
CN \\
CH_2 \\
CH_2
\end{array}$$
20
$$\begin{array}{c}
Ar-SO_2-NH-CH-CO-N \\
R_1 R_2
\end{array}$$

$$\begin{array}{c}
R_3 \\
R_4
\end{array}$$

dans laquelle Ar, R_1 , R_2 , R_3 et R_4 ont les mêmes significations que dans la formule (I), qu'on traite avec un excès d'une solution saturée de gaz chlorhydrique dans un alcool de formule X-OH dans laquelle X représente un radical alcoyle inférieur, pour obtenir le composé de formule (VI) sous forme de chlorhydrate.

$$Ar-SO_2-NH-CH-CO-N$$

$$R_1$$

$$R_2$$

$$R_3$$

$$R_4$$

dans lequel Ar, R₁, R₂, R₃, R₄ et X ont les mêmes significations précitées. L'imidoester de formule (VI) est alors traité par un excès d'une solution de gaz ammoniac dans un alcool inférieur à la température d'ébullition du mélange réactionnel pour obtenir le composé de formule (I) recherché.

Ce composé est isolé sous forme de sel, la base libre pouvant être obtenue par les procédés classiques et éventuellement transformée en un autre sel pharmaceutiquement acceptable tel que par exemple, outre le chlorhydrate, le bromhydrate, le sulfate, le méthanesulfonate, le naphtalènesulfonate-2, le maléate, le fumarate, le citrate, l'acétate, le gluconate, le dobésilate, le sultosilate.

La préparation du nouveau composé de formule (II) s'effectue à partir de la cyano-4 phénylalanine de formule:

10

5

15

L'acide de formule :

Ar-SO₂-NH-CH-COOH (III)

20

a été préparé selon le schéma réactionnel :

35

L'introduction d'un centre asymétrique dans l'aminoester (VII, A = alcoyle inférieur) dont la configuration "R" ou "S" initiale doit être conservée jusqu'à l'acide (III), nécessite l'emploi de méthodes non racémisantes; telles que par exemple :

- la sulfonylation de l'aminoester (VII) s'opère en milieu biphasique de préférence le mélange eau-dichlorométhane, eau-chloroforme, eau-tétrachlorure de carbone, en présence d'une base, de préférence un carbonate alcalin tel que le carbonate de potassium, le carbonate de sodium, à des températures comprises entre 10° C et 25° C.
- la saponification de l'ester (VIII) s'opère en milieu hydroalcoolique tel que eau-méthanol ou eau-éthanol, en présence d'un équivalent d'hydroxyde alcalin, de préférence l'hydroxyde de sodium, à des températures comprises entre 10° C et 25° C. La neutralisation du milieu réactionnel par addition d'un équivalent d'une solution aqueuse 1N d'acide minéral, de préférence l'acide chlorhydrique, conduit à l'acide (III). Cette saponification peut également être menée à bien dans un milieu hydro-organique, tel que eau-dioxanne dans les mêmes conditions.

Pour la transformation de l'acide de formule (III) en ester activé de formule (IV), 2 cas sont à envisager :

a) Cas où R_1 = H, et ceux dans lesquels le problème de racémisation de l'acide (III) n'existe pas (méthode non stéréospécifique)

On peut utiliser indifféremment l'activation de la fonction acide du synthom par exemple par :

- transformation de la fonction acide en halogénure d'acyle (IV) : R = Cl)

ArSO₂N-CH₂COOH
$$\xrightarrow{\text{halogénant}}$$
 ArSO₂N-CH₂COC1

(III : R₁ = H) (IV : R = C1; R₁ = H)

selon le procédé décrit dans le brevet DDR 155954.

5

10

15

20

25

30

-transformation de la fonction acide en anhydride carbonique mixte 0 (IV) : R = 0-C-OY₁) selon le schéma réactionnel :

La réaction utilise un chloroformate d'alcoyle C1-CO-Y_1 , où Y_1 est

un radical alcoyle inférieur ramifié ou non, en présence d'une amine tertiaire comme base. Le chloroformate d'alcoyle préférentiellement utilisé est le chloroformate d'éthyle $(Y_1 = C_2H_5)$ ou d'isobutyle $(Y_1 = CH_2-CH(CH_3)_2)$. L'amine tertiaire préférentielle est la triéthylamine. Cette condensation s'opère de préférence à des températures comprises entre -5° C et ♦ 10° C, dans un solvant inerte tel que le dichlorométhane, le chloroforme ou le tétrachlorure de carbone.

b) Cas où R, #H: Lorsqu'on vert éxiter une racémisation au niveau du carbone porteur du substituant R_1 (méthode stéréospécifique)

La transformation de la fonction acide des composés de formule (III) en esters activés, conduit à des composés de formule générale (IV ; R = 0-Z) selon le schéma réactionnel :

Les réactifs de couplage Y_2 - \overline{Z} , n'induisant pas de racémisation, utilisés de préférence, mais non limitatifs, sont les suivants :

25

30

5

10

15

20

en présence de N.N.-dicyclohexylcarbodiimide (DCC) selon le mode opératoire décrit par E.C. JORGENSEN et al. (J. Am. Chem. Soc. 1971, 93, 6318).

- Hexafluorophosphate de benzotriazolyl-1 oxytris (diméthylamino) phosphonium (BOP)
$$(Y_2 = [CH_3)_2N]_3 \stackrel{\textcircled{\tiny P}}{=} 0 \quad PF_6 : Z = -N \stackrel{N}{N})$$

४

selon le mode opératoire décrit par B.CASTRO et al. (Synthesis 1976,751).

- Chlorure de N,N-bis (oxo-2 oxazolidinyl-3) phosphorodiamidique

$$(Y_2 = C1; Z = -P_0)$$

selon le mode opératoire décrit par D.H. RICH et al. (J. Am. Chem. Soc. 1985, 107, 4342).

Les réactions d'activation et de couplage s'opèrent en présence d'amines tertiaires de préférence la triéthylamine, dans un solvant inerte tel que le dichlorométhare, le diméthylformamide ou l'acétonitrile, à des températures comprises entre 15° C et 40° C.

La formation de l'imidoester (VI) s'effectue en milieu alcoolique tel que le méthanol ou l'éthanol, à une température comprise entre -10° C et + 10° C, de préférence à 0° C pendant une durée de 16 H à 24 H.

L'amidine de formule (I) peut-être obtenue en traitant le composé (VI) précédemment obtenu, sans autre purification par une solution alcoolique de gaz ammoniac à une normalité de 3 N à 15 N, à la température ambiante, et on chauffe ensuite le mélange au reflux pendant 1 à 3 H.

Les composés de formule (II) ci-dessus, comportant un centre asymétrique, peuvent exister sous forme de deux isomères (énantiomères). L'invention concerne aussi bien chaque stéréoisomère que leurs mélanges. L'invention comprend aussi des sels d'addition avec les acides minéraux ou organiques.

La présente invention concerne également un procédé de préparation des composés de formule (II) caractérisé en ce que l'on fait réagir l'acide aminé de formule (IX) sous sa forme activée (X):

$$\begin{array}{c|c} CN & CN \\ \hline \\ CH_2 \\ \hline \\ CH_2 \\ \hline \\ C - OH \end{array}$$

dans lesquelles R' représente un groupement N-protecteur et A représente le reste d'un réactif de couplage, avec l'amine de formule (XI) :

$$_{H-N} < _{R_4}^{R_3}$$

dans laquelle R $_3$ et R $_4$ sont tels que décrits dans la formule (II), pour former le composé de formule (XII) :

$$\begin{array}{c|c}
CN \\
CH_2 \\
R' - N \\
R \\
0
\end{array}$$

$$\begin{array}{c|c}
R_3 \\
R_4
\end{array}$$

dans laquelle R', R_3 et R_4 ont les significations précitées, qui, par action du composé R_2X dans lequel X est un halogène tel que le chlore, le brome ou l'iode et R_2 est tel que défini dans la formule (III), conduit au composé de formule (XIII):

$$R - N$$
 CH_2
 CH_2
 $C - N$
 R_4
 $C - N$
 R_4

35

5

10

15

20

25

10

La formation du composé de formule (IX) est obtenue par fixation du groupement N-protecteur R sur la p-cyanophénylalanine de formule :

10

15

5

Le groupe N-protecteur, représenté par R; est un des groupements stables en milieu alcalin, utilisés pour la protection des groupes amino des acides aminés dans la chimie des peptides, par exemple le groupe terbutyloxy carbonyle, de préférence désigné ci-après Boc; le groupe (diméthoxy-3,5 phényl)-2 propyl-2 oxycarbonyle désigné comme Ddz; le groupe (biphényl-4yl)-2 propyl-2 oxycarbonyle désigné comme Bpoc; le groupe (nitro-2 phényl) sulfényle désigné comme Nps.

Pour obtenir l'acide activé de formule (X) dans lequel A représente le reste du réactif de couplage, deux cas sont à envisager.

20

a) Procédé de préparation avec conservation de la configuration "R" ou "S" (synthèse stéréospécifique)

Pour ne pas induire de racémisation au niveau du centre asymétrique du composé de formule (XII) et conserver la configuration initiale du centre asymétrique de l'acide de formule (IX), il est nécessaire d'employer une activation de l'acide (IX), utilisant la transformation de la fonction acide en ester activé (X) suivant le schéma réactionnel :

30

25

$$\begin{array}{c|c} CN & & CN \\ \hline \\ \hline \\ R'-N & \\ \hline \\ H & O \end{array} \begin{array}{c} CN \\ \hline \\ Dase \end{array} \begin{array}{c} CN \\ \hline \\ CH_2 \\ CH_2 \\ \hline \\ CH_2 \\ CH_2 \\ \hline \\ CH_2 \\ CH_2 \\ \hline \\ CH_2 \\ CH_2 \\ \hline \\ CH_2 \\ CH_2 \\ \hline \\ CH_2 \\ CH_2 \\ \hline \\ CH_2 \\ CH_2 \\ \hline \\ CH_2 \\ \hline \\ CH_2 \\ CH_2 \\ \hline \\ CH_2 \\ CH_$$

35

(X)

Les réactifs de couplage Y-Z, n'induisant pas de racémisation, utilisés de préférence, mais non limitatifs, sont les suivants :

. Hydroxy-1 benzotriazole (HOBT) (Y = OH; Z = -N)

sence de N,N-dicyclohexylcarbodiimide (DCC) selon le mode opératoire décrit par E.C.JORGENSEN et al. (J. Am. Chem. Soc. 1971, 93, 6318).

. Hexafluorophosphate de benzotriazolyl-1 oxytris (diméthylamino)

phosphonium (BOP)
$$\left(Y = \left(CH_3\right)_2 N \int_3^P = 0 PF_6^{\Theta} ; Z = -N_6^{N}\right)$$
 selon

le mode opératoire décrit par B. CASTRO et al. (Synthesis 1976, 751).

. Chlorure de N,N-bis (oxo-2 oxazolidinyl-3) phosphorodiamidique Y = C1; Z = P - (N - N) selon le mode opératoire décrit par

D.H. RICH et al. (J. Am. Chem. Soc. 1985, 107, 4342)

5

10

15

20

25

30

35

La réaction d'activation et de couplage s'opère en présence d'amines tertiaires, de préférence la triéthylamine, dans un solvant inerte tel que le dichlorométhane, le diméthylformamide ou l'acétonitrile, à des températures comprises entre 15°C et 40°C.

b) Procédé de préparation sans conservation de la configuration (synthèse non stéréospécifique)

On peut effectuer l'activation de la fonction acide du composé (IX) par transformation de la fonction acide en anhydride carbonique mixte (X: A =-0-C-0-B) selon le schéma réactionnel:

$$\begin{array}{c}
\ddot{O} \\
CN \\
C1 - C - O - B
\end{array}$$

$$\begin{array}{c}
CH_2 \\
CH_2 \\
C - OH
\end{array}$$

$$\begin{array}{c}
CH_2 \\
C - O - C - O - B
\end{array}$$

$$\begin{array}{c}
CH_2 \\
C - O - C - O - B
\end{array}$$

$$\begin{array}{c}
CH_2 \\
C - O - C - O - B
\end{array}$$

$$\begin{array}{c}
CH_2 \\
C - O - C - O - B
\end{array}$$

$$\begin{array}{c}
CH_2 \\
C - O - C - O - B
\end{array}$$

$$\begin{array}{c}
CH_2 \\
C - O - C - O - B
\end{array}$$

La réaction utilise un chloroformate d'alcoyle Cl-CO-B, où B est un O alcoyle inférieur ramifié ou non, en présence d'une amine tertiaire comme base. Le chloroformate d'alcoyle préférentiellement utilisé est le chloroformate d'éthyle $(B = C_2H_5)$ ou d'isobutyle $(B = CH_2-CH(CH_3)_2)$.

13

L'amine tertiaire préférentielle est la triéthylamine. Cette condensation s'opère de préférence à des températures comprises entre -5°C et +10°C, dans un solvant inerte tel que le dichlorométhane, le chloroforme ou le tétrachlorure de carbone.

La p-cyanophénylalanine de départ a été préparée selon une des méthodes utilisées dans la littérature (G. WAGNER et al. Pharmazie 1981, 36 (9), 597).

Le composé de formule (X) est mis à réagir avec l'amine de formule (XI) dans un solvant inerte et en présence d'une amine tertiaire.

L'alcoylation du composé XII utilise une des méthodes classiques employées en chimie organique, par action de l'halogénure d'alcoyle R₂-X, dans lequel R₂ est tel que désigné ci-dessus dans la formule II, et X est un halogène tel que le chlore, le brome ou l'iode de préférence.

Cette opération s'effectue en présence d'une base forte telle qu'un hydrure alcalin, de préférence l'hydrure de sodium dans un solvant inerte tel que le diméthylformamide ou le tétrahydrofuranne, ou bien un alkyllithium tel que le butyllithium ou un amidure de lithium tel que le diisopropylamidure de lithium dans un solvant inerte tel que l'hexane ou le tétrahydrofuranne, à des températures comprises entre 0° et 20°C.

20

25

30

35

15

5

10

Leclivage du

groupe N-protecteur R'du composé de formule (XIII) conduit aux p-cyanophénylalaninamides N \(\pi\)-substituées de formule (II). Ce clivage s'opère en milieu
acide, de préférence un mélange acide bromhydrique-acide acétique ou
bien dans l'acide trifluoroacétique (R' = Boc, Ddz, Bpoc, Nps), dans
l'acide acétique (R' = Boc, Nps), dans une solution saturée de gaz chlorhydrique dans l'acétate d'éthyle (R' = Boc), à des températures comprises entre
O° et 20°C.

EXEMPLE 1

N <- (terbutyloxycarbonyl) p-cyanophénylalanine (IX : R'=-C-OC(CH₃)₃)
0

On dissout 10 g (0,044 mole) de chlorhydrate de p-cyanophénylalanine dans 220 ml de dioxanne et 88,2 ml (0,088 mole) d'hydroxyde de sodium aqueux 1N. A température ambiante et sous atmosphère inerte, on ajoute par portions, au milieu réactionnel, 1,77 g (0,044 mole) d'oxyde de magnésium, puis 10,6 g (0,0484 mole) de dicarbonate de diterbutyle. On agite à température ambiante, pendant 20 h. On filtre les cristaux qui sont lavés avec de l'eau. On évapore le filtrat et dissout le résidu dans l'eau. La phase aqueuse obtenue est amenée à pH = 3 par addition d'une solution saturée d'hydrogénosulfate de potassium. On extrait la phase aqueuse avec 2 x 400 ml d'acétate d'éthyle, sèche les extraits organiques sur sulfate de sodium anhydre et évapore à sec. Les cristaux obtenus sont recristallisés dans l'acétate d'éthyle ou l'éther disopropyli-

Cristaux blancs, rendement : 88 % , F = 147°C.

EXEMPLE 2

5

10

15

20

25

30

35 .

 $ar{L}$ N lpha-(terbutyloxycarbonyl) p-cyanophénylalanyl J-1 pipéridine (XII: $R' = -C - OC(CH_3)_3$; NR_3R_4 = pipéridino). Activation de la fonction acide du composé (IX : $R' = -C - OC(CH_3)_3$) (exemple 1) en anhydride carbonique

On ajoute à 0°C, sous atmosphère inerte, 4,2 g (0,0416 mole) de triéthylamine à une suspension de 11 g (0,0378 mole) de N \approx -(terbutyloxycarbonyl) p-cyanophénylalanine (exemple 1) dans 125 ml de dichlorométhane. Au mélange devenu homogène, on ajoute, goutte à goutte, une solution de 4,3 g (0,0395 mole) de chloroformiate d'éthyle dans 10 ml de dichlorométhane. Après la fin de l'addition, on abandonne 45 minutes le mélange réactionnel, à 0°C, puis ajoute, goutte à goutte, 3,4 g (0,0397 mole) de pipéridine dissoute dans 10 ml de dichlorométhane. On laisse revenir le milieu réactionnel à température ambiante et abandonne pendant 15 h à cette température. On extrait le milieu réactionnel avec une solution aqueuse saturée de bicarbonate de sodium. La phase organique, après décantation, est séchée sur sulfate de sodium anhydre et évaporée à sec. Le résidu huileux donne des cristaux blancs, après trituration avec de l'éther diisopropylique. Ces cristaux sont recristallisés dans l'éther diisopropylique.

Cristaux blancs, rendement : 81 % , F = 132°C.

EXEMPLE 3

méthyl-4 /Nα-(terbutyloxycarbonyl) p-cyanophénylalanyl $\overline{/}$ -1 pipéridine (XII: R' = -C-OC(CH₃)₃; NR R = méthyl-4 pipéridino). Activation par

transformation de la fonction acide en une fontion ester activé, par utilisation du réactif de couplage non racémisant DCC/HOBT.

On dissout 2,78 g (0,01 mole) de N \(\alpha\)-(terbutyloxycarbonyl) p-cyanophénylalanine (exemple 1) dans 50 ml de dichlorométhane. Sous atmosphère inerte, à température ambiante, on ajoute successivement 1 g (0,01 mole) de méthyl-4 pipéridine, 1,35 g (0,01 mole) d'hydroxy-1 benzotriazole (HOBT), 1,1 g (0,01 mole) de triéthylamine. Au milieu réactionnel, on ajoute, à température ambiante, 2,06 g (0,01 mole) de N,N-dicyclohexylcarbodiimide (DDC) dissoute dans 80 ml de dichlorométhane et abandonne le milieu réactionnel pendant 15 h à température ambiante. On filtre le précipité de dicyclohexylurée que l'on élimine. Le filtrat organique est lavé avec une solution aqueuse saturée de bicarbonate de sodium, est séché sur sulfate de sodium anhydre. L'évaporation laisse un résidu qui est trituré avec de l'éther diisopropylique. Les cristaux blancs obtenus sont recristallisés dans l'acétate d'éthyle.

Cristaux blancs, rendement : 84 % , F = 142°C (acétate d'éthyle).

EXEMPLE 4

10

15

20

25

30

Benzyl-4 \int N \propto -(terbutyloxycarbonyl) p-cyanophénylalanyl J-1 pipéridine (XII: R' = -C-OC(CH₃)₃; NR₃R₄ = benzyl-4 pipéridino). Activation par transformation de la fonction acide en une fonction ester activé, par utilisation du réactif de couplage non racémisant BOP.

On dissout 2,78 g (0,01 mole) de N ~ -(terbutyloxycarbonyl) p-cyanophénylalanine (exemple 1) dans 100 ml d'acétonitrile et à température ambiante,
sous atmosphère d'argon, on ajoute successivement 4,43 g (0,01 mole)
d'hexafluorophosphate de benzotriazolyl-1 oxytris (diméthylamino) phosphonium
(BOP), 1,75 g (0,01 mole) de benzyl-4 pipéridine et 1,1 g (0,01 mole)
de triéthylamine. On abandonne, pendant 16 h, le milieu réactionnel
à température ambiante. On filtre l'insoluble qui est écarté. Le filtrat
est évaporé à sec et repris par du dichlorométhane. La phase organique
est lavée avec une solution aqueuse saturée de bicarbonate de sodium,
puis séchée sur sulfate de sodium anhydre. L'évaporation à sec, laisse
un résidu que l'on recristallise dans l'acétate d'éthyle.

Cristaux blancs, rendement : 78 % , F = 131°C (acétate d'éthyle).

EXEMPLE 5

(N \propto -méthyl p-cyanophénylalanyl)-1 pipéridine (II: R_2 = CH_3 ; NR_3R_4 = pipéridine) a) Alkylation de la $\sum N \propto -(\text{terbutyloxycarbonyl})$ p-cyanophénylalanyl/-1 pipéridine.

A une suspension de 1,84 g (0,038 mole) d'hydrure de sodium, dispersé à 50 % dans l'huile, dans 50 ml de diméthylformamide, on ajoute, goutte à goutte, à température ambiante, 13,1 g (0,0366 mole) de \angle N \propto -(terbutyloxycarbonyl) p-cyanophénylalanyl \mathcal{J} -1 pipéridine (exemple 2) dissoute dans 150 ml de diméthylformamide. On agite 45 minutes à température ambiante et ajoute, goutte à goutte, à cette température 6,24 g (0,044 mole) d'iodure de méthyle. A la fin de l'addition, on abandonne une nuit à température ambiante. On évapore à sec le diméthylformamide et reprend le résidu avec de l'eau. On extrait la phase aqueuse à l'éther. Les extraits éthérés, après séchage sur sulfate de sodium anhydre et évaporation du solvant, laissent un résidu huileux, constitué de \angle (N \propto -méthyl N \propto -(terbutyloxycarbonyl)) p-cyanophénylalanyl \mathcal{J} -1 pipéridine

(XIII: $R_1 = CH_3$; $R = -C-OC(CH_3)_3$; $NR_2R_3 = pipéridino$) qui est utilisé dans l'étape subséquente b) sans autre purification.

b) Déprotection

Le résidu huileux obtenu dans l'étape précédente est dissous dans 150 ml d'une solution saturée de gaz chlorhydrique dans l'acétate d'éthyle et abandonné pendant 2 h à température ambiante, puis à 0°C pendant une nuit. Les cristaux obtenus sont filtés, lavés à l'éther et recristallisés dans l'isopropanol.

Cristaux blancs, rendement : 70 % , F = 234 °C (isopropanol), chlorhydrate. (rendement global des étapes a) + b) = 70 %)

EXEMPLE 6

5

10

15

20

25

30

(N \propto -éthyl p -cyanophénylalanyl)-1 pipéridine ($_{\rm II}$: $_{\rm I}$ = $_{\rm C_2H_5}$; NR $_{\rm A_4}$ = pipéridino) Préparée selon le mode opératoire décrit dans l'exemple 5, par alkylation avec l'iodure d'éthyle de la $_{\rm II}$ N $_{\rm C_4}$ -(terbutyloxycarbonyl) p-cyanophénylalanyl $_{\rm II}$ -1 pipéridine (exemple 2), suivie de la déprotection par une solution saturée de gaz chlorhydrique dans l'acétate d'éthyle.

Cristaux blancs , rendement global : 69 % , F = 226 °C (isopropanol), chlorhydrate.

EXEMPLE 7

Méthyl-4 (N∝-méthyl p-cyanophénylalanyl)-1 pipéridine

(II: $R_2 = CH_3$; $NR_3R_4 = méthyl-4$ pipéridino).

Préparée selon le mode opératoire décrit dans l'exemple 5, par alkylation avec l'iodure de méthyle de la méthyl-4 \int N \propto -(terbutyloxycarbonyl) p-cyanophénylalanyl J-1 pipéridine (exemple 3) suivie de la déprotection par une solution saturée de gaz chlorhydrique dans l'acétate d'éthyle. Cristaux blancs, rendement global : 80 % , F = 214°C (isopropanol), chlorhydrate.

EXEMPLE 8

(N <-éthyl p-cyanophénylalanyl)-1 méthyl-4 pipéridine

(II: $R_2 = C_2H_5$; $NR_3R_4 = methyl-4 piperidino$).

Préparée selon le mode opératoire décrit dans l'exemple 5, par alkylation avec l'iodure d'éthyle de la méthyl-4 \int N \propto -(terbutyloxycarbonyl) p-cyanophénylalanyl \mathcal{J} -1 pipéridine (exemple 3), suivie de la déprotection par une solution saturée de gaz chlorhydrique dans l'acétate d'éthyle. Cristaux blancs, rendement global : 77 % , F = 220°C (isopropanol), chlorhydrate.

EXEMPLE 9

Benzyl-4 (N≪-méthyl p-cyanophénylalanyl)-1 pipéridine

(II: $R_2 = CH_3$; $NR_3R_4 = benzyl-4 pipéridino$).

EXEMPLE 10

5

10

15

20

25

30

 $\int N \propto (n-butyl)$ p-cyanophénylalanyl J-1 pipéridine

(I : $R_2 = n - C_4 H_9$; $NR_5 R_4 = pipéridino$).

a) alkylation

A 2,8 g (0,0587 mole) d'hydrure de sodium à 50 % dans l'huile, en suspension dans 100 ml de diméthylformamide, on ajoute, goutte à goutte, 20 g (0,0558 mole) de \int N \propto -(terbutyloxycarbonyl) p-cyanophénylalanyl \mathcal{J} -1 pipéridine (exemple 2) dissoute dans 100 ml de diméthylformamide. Après 45 minutes à température ambiante, sous atmosphère d'argon, on ajoute 9,2 g (0,067 mole) de bromure de n-butyle et 10 g (0,067 mole) d'iodure de sodium. On abandonne la nuit à température ambiante. On verse le milieu réactionnel dans l'eau et évapore à sec. Le résidu est repris par de l'eau et la solution aqueuse est extraite à l'éther. Les extraits éthérés, séchés sur sulfate de sodium anhydre, laissent, après évaporation un résidu huileux, constitué de \int N \propto (n-butyl) N \propto -(terbutyloxycarbonyl) p-cyanophénylalanyl \mathcal{J} -1

pipéridine (XIII: $R' = -C - OC(CH_3)_3$; $R_2 = n$ -butyle; $NR_3R_4 = pipéridino$) que l'on utilise ans autre purification dans l'étape de déprotection ultérieure.

b) Déprotection

On utilise le procédé décrit dans l'exemple 5b).

Cristaux blancs, rendement global : 78 %, F = 216°C (isopropanol), chlorhydrate.

EXEMPLE 11

(N∝-benzyl p-cyanophénylalanyl)-1 pipéridine

(IE R₂ = CH_2 - C_6H_5 ; NR_3R_4 = pipéridino)

Préparée selon le mode opératoire décrit dans l'exemple 13, par alkylation avec le bromure de benzyle de la /Nα-(terbutyloxycarbonyl) p-cyanophényl-alanyl_7-1 pipéridine (exemple 2) suivie de la déprotection par une solution saturée de gaz chlorhydrique dans l'acétate d'éthyle.

Cristaux blancs, rendement global: 64 %, F = 212°C (isopropanol), chlorhydrate.

Exemple 12: N-béta-naphtylsulfonyl-glycinate d'éthyle (VIII : A = C_2H_5 R₄ = H ; Ar = β -naphtyle).

A un mélange biphasique de 50 ml de solution aqueuse saturée de bicarbonate de sodium et de 50 ml de dichlorométhane, sous agitation mécanique rapide, à température ambiante, on ajoute par portions 10 g (0,072 mole) de glycinate d'éthyle (VII : $A = C_2H_5$; $R_1 = H$), puis 16,4 g (0,072 mole) de chlorure de β -naphtylsulfonyle. On abandonne le milieu réactionnel, sous bonne agitation, à température ambiante pendant 4 heures. On laisse décanter et écarte la phase aqueuse. La phase organique est récupérée et lavée avec une solution aqueuse d'acide chlorhydrique 2N. On sèche la phase organique sur du sulfate de sodium anhydre et évapore à sec. Par trituration du résidu huileux, obtenu après évaporation, avec de l'éther diisopropylique, on récupère des cristaux que l'on recristallise dans l'acétate d'éthyle.

Cristaux blancs, rendement : 91 %, F = 80° C (acétate d'éthyle).

Exemple 13: N-bétanaphtylsulfonyl-glycine (III: R₁ = H; Ar = B-naphtyle)

A une solution de 18,8 g (0,064 mole) de N-bétanaphtysulfonyl glycinate d'éthyle (exemple 12 dans 200 ml de méthanol, on ajoute 35 ml (0,07 mole) d'hydroxyde de sodium aqueux 2N et abandonne à température ambiante pendant 2 heures. On évapore le méthanol, reprend le résidu avec de l'eau. La phase aqueuse est extraite par de l'éther et les extraits éthérés écartés. Après neutralisation de la phase aqueuse avec 35 ml d'acide chlorhydrique 2N , on filtre les cristaux obtenus, les lave à l'eau et les sèche. Cristaux blancs, rendement : 73 %, $F = 157^{\circ}$ C.

Les exemples 14 à 20ont été réalisés selon le même mode opératoire que celui décrit dans l'exemple 12. Ils conduisent aux composés de formule générale (VIII : Ar = β -naphtyle ; A = CH_3) et résultent de la N-sulfonylation des esters méthyliques des amino-acides (VII : A = CH_3) de configuration "R" ou "S", par le chlorure de β -naphtylsulfonyle. Ils sont regroupés dans le tableau suivant :

(VIII : Ar = B-naphtyle

$$A = CH_3$$

25 .	Exemple .	R ₁	Configuration de l'aminoacide	Rendement	F°(isopropanol)
	14	снз	R	72 %	98° C
30	15	СНЗ	S	64 %	97 [°] C
	16	сн(сн _з) ₂	S	67 %	106° C
	17	СН ₂ ОН	s	40 %	150° C
35	18	CH ₂ -C ₆ H ₅	R	64 %	160° C
,	19	C ₆ H ₅	R	84 %	158° C
·	20	CH(CH ₃)O	s s	50 %	142°C

Les exemples 21 à 27 ont été réalisés selon le même mode opératoire que celui décrit dans l'exemple 13. Ils conduisent aux acides de formule générale (III : $Ar = \beta$ -naphtyle) et résultent de la saponification des esters de formule générale (VIII : $Ar = \beta$ -naphtyle, $A= CH_3$). Ils sont regroupés dans le tableau suivant :

(III : $Ar = \beta$ -napthyle)

Exe	emple	R ₁	Configuration de l'aminoacide	Rendement	F° C
	21.	снз	R	89 %	116° C
	22	снз	S	90 %	124° C
	23	. сн(сн _з) ₂	S	76 %	166° C
	24	сн ₂ он	S	76 %	210° C
	25	- ^{CH} 2 ^{-C} 6 ^H 5	R	90 %	60° C
	26	с ₆ н ₅	R	93 %	160° C
	27	сн(сн _з)он	R ·	66 %	194° C

Exemple 28 : N-(quinoléinyl-8 sulfonyl)-glycinate d'éthyle (VIII : Ar = quinoléinyle ; A = C_2H_5 ; R_1 = H)

Préparé selon le mode opératoire décrit dans l'exemple 12, par sulfonylation du glycinate d'éthyle (VII : $A = C_2H_5$; $R_1 = H$) par le chlorure de (quinoléinyl-8) sulfonyle.

Cristaux blancs, F = 112° C (acétate d'éthyle) ; rendement : 91 %.

Exemple 29 N-(quinoléinyl-8 sulfonyl)-glycine (III : Ar = quinoléinyle-8;

R, = H)

10

15

20

25

Préparé selon le mode opératoire décrit dans l'exemple 13 Cristaux blancs, rendement : 99 % ; F = 129° C.

Exemple 30: $\begin{bmatrix} N \propto -m \neq hyl & N \propto -(N'-b \neq h) + hyl & N \propto -(N'-b \neq h) + hyl & N' & N'-b \neq hyl & N' & N'-b \neq hyl & hyl & N'-b \neq hyl & N$

On porte au reflux, pendant une heure, sous atmosphère inerte, 2,1 g (0,078 mole) de N(bétanaphtylsulfonyl)-glycine(exemple 2) dans 20 ml de chlorure de thionyle. On évapore à sec le milieu réactionnel et dissout le résidu huileux dans 50 ml de dichlorométhane. Le chlorure d'acide que l'on a dissous dans le dichlorométhane est ajouté goutte à goutte sous atmosphère inerte, à une solution de 1 g (0,0031 mole) de chlorhydrate de (N \prec -méthylp-cyano-phénylalanyl)-1 pipéridine (II : R₂ = CH₃ ; NR₃R₄ = pipéridino) et de 1,14 g (0,0112 mole) de triéthylamine, dans 20 ml de dichlorométhane, qui a préalablement été refroidie entre 0° C et 5° C. On abandonne le milieu réactionnel à température ambiante pendant 20 heures. Les sels insolubles sont filtrés et le filtrat est évaporé à sec. On reprend le résidu par de l'acide chlorhydrique 1N et extrait la phase aqueuse acide obtenue par du dichlorométhane. Les extraits organiques sont séchés sur sulfate de sodium anhydre et évaporés à sec. Le résidu obtenu après évaporation est purifié par chromatographie sur une colonne de silice (élution toluène-acétate d'éthyle 1 : 1). On obtient des cristaux blancs.

Cristaux blancs, rendement : 3.69 %, F = 130° C (isopropanol)

Exemple	R ₂	^{NR} 3 ^R 4	Rendement	F°C solvant recristallisation
31	^{CH} 2 ^{-C} 6 ^H 5	$ \wedge $	44 %	huile
32	с ₂ н ₅	NCH3	49 %	74° C (éther diisopropylique)
33	n-C ₄ H _g	N N	40 %	142° C (isopropanol)

Exemple 34 : $[N \propto - \text{ \'ethyl} \quad N \propto - (N'-\text{ \'etanaphtylsulfonylglycyl}) \quad p-cyanophénylalanyl}$ -1 pipéridine (V : Ar = β -naphtyle ; R_1 = H ; R_2 = C_2H_5 ; NR_3R_4 = pipéridino)

A une suspension de 6,1 g (0,023 mole) de N (bétanaphtylsulfony)glycine (exemple 13) dans 80 ml de dichlorométhane, maintenue entre 0° C et 5° C, on ajoute 2,6 g (0,0253 mole) de triéthylamine, puis goutte à goutte 3,4 g (0,025 mole) de chloroformate d'isobutyle et on abandonne 1 heure à cette température. On ajoute alors 7,5 g (0,024 mole) de (N \checkmark - éthyl p-cyanophénylalanyl)-1 pipéridine (II : $R_2 = C_2H_5$; NR_3R_4 = pipéridino) , dissoute dans 50 ml de dichlorométhane et on abandonne à température ambiante, le milieu réactionnel pendant 20 heures. On évapore à sec, reprend le résidu par de 1'eau. La phase aqueuse est extraite par du dichlorométhane. Les extraits organiques sont séchés sur sulfate de sodium anhydre et évaporés à sec.

Le résidu huileux est purifié par chromatographie sur colonne de silice (élution toluène-acétate d'éthyle 1 : 1). Cristaux blancs, rendement :74,5%, $F = 82^{\circ}$ C (acétate d'éthyle)

5

10

15

20

25

30

Exemple 35 : $[N \times -m + hy] \times (N' -b + hy] = (N \times -m + hy) \times (N' -b + hy) = (N \times -m + hy) \times$

a) Couplage n'induisant pas de racémisation utilisant le réactif de couplage hydroxy-1 benzotriazole (HOBT) / N,N-dicyclohexylcarbodiimide (DCC).

A une suspension de 13 g (0,0425 mole) de chlorhydrate de (N α -méthyl p-cyanophénylalanyl)-1 pipéridine (II : R_2 = CH_3 ; NR_3R_4 = pipéridino) dans 200 m1 de dichlorométhane on ajoute successivement 15,1 g (0,0425 mole) de $N\alpha$ -(bétanaphtylsulfonyl)-(S)-alanine (III = exemple 22 `, 4,3 g (0,0425 mole) de triéthylamine, 6,5 g (0,0425 mole) d'hydroxy-1 benzotriazole (HOBT). On refroidit le milieu réactionnel entre 0° C et + 5° C et ajoute goutte à goutte 8,8 g (0,0425 mole) de N,N-dicyclohexylcarbodiimide (DCC) dissoute dans 50 ml de dichlorométhane. On abandonne le milieu réactionnel, sous bonne agitation, à température ambiante, pendant 17 heures. On filtre le précipité de dicyclohexylurée et le filtrat organique est lavé avec une solution aqueuse saturée de bicarbonate de sodium. La phase organique, séchée sur sulfate de sodium anhydre est évaporée à sec. L'évaporation du solvant laisse un résidu qui est trituré avec de l'acétate d'éthyle. Les cristaux blancs sont filtrés et lavés avec l'éther diisopropylique. Cristaux blancs, rendement : 62 %, F = 110° C (acétate d'éthyle).

b) Couplage n'induisant pas de racémisation, utilisant le réactif de couplage hexafluorophosphate de bénzotriazolyl-1 oxytris (diméthylamino) phosphonium (BOP).

A une solution de 7,5 g (0,027 mole) de N \propto -(bétanaphtylsulfonyl)-(S)-alanine (III : exemple 22) dans 300 ml d'acétonitrile, on ajoute successivement 11,9 g (0,027 mole) d'hexafluorophosphate de benzotriazolyl-1 oxytris (diméthylamino) phosphonium (BOP), 8,3 g (0,027 mole) de chlorhydrate de (N \propto -méthyl p-cyanophénylalanyl)-1 pipéridine (II : R₂ = CH₃ ; NR₃R₄ = pipéridino),5,5 g.

(0,054 mole) de triéthylamine. On abandonne le milieu réactionnel sous atmosphère inerte, sous bonne agitation, à température ambiante, pendant 20 heures. On dilue le milieu réactionnel avec de l'acétate d'éthyle et le lave successivement avec une solution aqueuse saturée de chlorure de sodium, une solution d'acide chlorhydrique 2N, de l'eau, une solution aqueuse saturée de bicarbonate de sodium, puis de l'eau. La phase organique est séchée sur sulfate de sodium anhydre et évaporée à sec. Le résidu est purifié par chromatographie sur une colonne de silice (élution : toluène-acétate d'éthyle 1 : 1). On récupère des cristaux blancs que l'on sèche.

Cristaux blancs, rendement : 42 %, $F = 110^{\circ}$ C.

Les exemples 36 à 41 sont effectués selon le même mode opératoire que celui décrit dans l'exemple 35 a. Ils conduisent aux nitriles de formule (V) et résultent du couplage des synthons de formule générale (II) avec les acides de formule générale (III) préalablement activés par la transformation de la fonction acide en fonction ester activé, utilisant le réactif de couplage non racémisant DCC/HOBT. Ils sont regroupés dans le tableau suivant :

Exemple	Ar	R ₁	R ₂	NR3R4	Rendement	F° C
36		Н	CH ₃	N CH3	92 %	143° C
37	H ₃ C	Н	снз	N →CH ₃	37 %	202° C
38		н	СНЗ	€ СН ₃	51 %	102° C
39		Н	снз	\sim	56 %	60° C
40		н	снз		35 %	212° C
41	Ссоосн	Н	снз		88 %	100° C (pāteux)

Les exemples 42 à 45 utilisent le même mode opératoire que celui décrit dans l'exemple 35 b. Ils conduisent aux nitriles (V : Ar = β -naphtyle) et résultent du courlage des synthons de formule générale (II) avec les acides de formule générale (III), préalablement activés par transformation de la fonction acide en fonction ester activé, utilisant le réactif de couplage non racémisant BOP.

Ils sont regroupés dans le tableau suivant :

- Exemple	R ₁ (configuration de l'aminoacide)	R ₂	NR R 3 4	Rendement	F° C
42	н	СНЗ	Ю-сн ₂ -Ф	40 %	82° C
43	сн(сн ₃) ₂ (s)	CH ₃	√	40 %	228° C
44	сн ₂ о́н(s)	СНЗ	√	67 %	102° C
45	сн(сн ₃)он(s)	снз	~ ○	66 %	98 ° C

Exemple 46 : $[N \propto -m \neq hy]$ $N \propto -(N - b \neq hy)$ betanaphtylsulfonylglycyl) p-amidinophénylalanyl]-1 pipéridine (I : Ar = β -naphtyle ; R_1 = H ; R_2 = CH_3 ; NR_3R_4 = pipéridino). dérivé n°1

a) Formation de l'imidoester

b) Formation de l'amidine

On sature à 0° C-5° C, sous atmosphère inerte, 80 ml de méthanol, avec de l'ammoniac gazeux, et ajoute à cette solution méthanolique ammoniacale, la résine blanche, obtenue dans l'étape précédente (exemple 46 a), après dissolution dans 20 ml de méthanol. On porte au reflux le mélange réactionnel, sous atmosphère inerte, pendant 3 heures. On évapore à sec et reprend le résidu par de l'acide chlorhydrique 1N, en excès. La phase aqueuse acide est extraite par du dichlorométhane. La phase organique est séchée sur du sulfate de sodium anhydre et évaporée à sec. Le résidu semi-cristallin obtenu est dissous dans l'eau. La solution aqueuse obtenue est extraite par l'acétate d'éthyle, et les extraits organiques sont isolés. La phase organique est lyophilisée et le résidu semi-cristallin est trituré par de l'éther éthylique. Les cristaux blancs sont filtrés, lavés à l'éther et séchés. Le produit final est sous forme de chlorhydrate hydraté.

Cristaux blancs, rendement : 70 %, $F = 170^{\circ}$ C (chlorhydrate, dihydrate).

Pour les dérivés 2 à 15, on utilise les mêmes modes opératoires que ceux décrits dans l'exemple 46. Ils conduisent aux N \(\pi\)-arylsulfonylaminoacyl p-amidinophénylalaninamides de formule générale (I) et résultent de la transformation des nitriles de formule générale (V) en amidines de formule générale (I) par l'intermédiaire des imidoesters de formule générale (VI). Ils sont regroupés dans le tableau suivant :

	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	,				
Dérivé	Ar	R ₁ (configuration de l'aminoacide)	R ₂	NR3R4	×	Rendement	F° C
2		н	.сн _з	NO-CH3	1,5	64 %	160°
3		н	C ₂ H ₅	Ом	1,5	56 %	168°
4		Н	сн ₂ -⟨	и	2	64 %	170°
5		н	с ₂ н ₅	мД-снз	1	50 %	164°
6		Н	n-C ₄ H _g	м	1,5	54 %	154°
7		CH ₃ (S)	снз	N .	1,5	71 %	162°
8		Н	снз	N CH ₂ C	1,5	57 %	160° (
9	H ₃ C	Н	снз	и∕усн _з	2	46 %	196°
10,		н	СНЗ	N⊃-CH3	3	76 %	185°
11		н.	СНЗ	ν <u>'</u>	4,5	51 %	160°
12		Сн(Сн ₃) ₂ (S)	СН _З	\bigcirc	3	48 %	175°
13		сн(сн _з)он (s)	CH ₃	2	2	76 %	169°
14		сн ₂ он (s)	СНЗ	~	1,5	72 %	170°
. 15	CCOOCH3	H	снз	Ó	1,5	28 %	158°
	•						

Les résultats des études toxicologique et pharmacologique qui sont rapportées ci-dessous ont mis en évidence les intéressantes propriétés des composés de l'invention.

Ces derniers sont doués d'une très bonne activité inhibitrice de la thrombine et possèdent en outre de remarquables propriétés antithrombotiques in vivo que ne manifestent pas les composés des formules (A) et (B) et le composé (C).

Comparés à l'héparine, ils ont une durée d'action bien supérieure sans induire d'augmentation du temps de saignement.

L'invention a donc encore pour objet un médicament présentant en particulier des propriétés antithrombotiques, caractérisé en ce qu'il contient, à titre de principe actif, un composé de formule (I) ou un sel d'addition avec un acide minéral ou organique thérapeutiquement acceptable.

Etude toxicologique :

0

5

<u>'O</u>

25

30

Les composés de l'invention bénéficient d'une bonne tolérance et d'une faible toxicité. Les essais effectués sur différentes espèces animales les toxicités aigue, subchronique, chronique n'ont pas mis en évidence une quelconque réaction locale ou générale, perturbation ou anomalie dans les examens biochimiques, macroscopiques et microscopiques effectués tout au long des essais.

Etude pharmacologique:

Dans cette étude, les composés de l'invention ont été comparés à l'héparine et à la $\left[N < -(N-b\text{\'etanaphtylsulfonylglycyl}) \text{ p-amidinophénylalanyl}\right]$ -1 pipéridine, composé de structure proche décrit comme un puissant inhibiteur de la thrombine (J.HAUPTMANN et al. Thromb, Res, 39; 771-775, 1983) et qui sera nommé dérivé C.

1) Détermination de la spécifité vis-à-vis de la thrombine.

De nombreuses sérine-protéases (facteurs XIIa, IXa, VIIa, Xa, plasmine thrombine) existent dans le plasma et interviennent dans le mécanisme de la coagulation. Afin de ne pas induire des perturbations trop importantes dans la "cascade de la coagulation" et entraîner des risques hémorragiques, il convient de s'assurer que les composés choisis possèdent une action spécifique sur la thrombine. D'autre part, afin d'obtenir une bonne activité par la voie

orale, il est nécessaire aussi d'avoir une bonne spécificité vis-à-vis de la trypsine, sérine-protéase du tractus digestif.

On a ainsi déterminé selon la méthode de Dixon (Biochem. J., 1953, <u>55</u>, 170-171) les constantes d'inhibition de la thrombine bovine (Sigma 2000 MH/mg) in vitro sur l'hydrolyse du substrat 2238 (Kabi Vitrum) à pH 8 et à 25° C et celles de la trypsine bovine (Sigma type III-S) dans les mêmes conditions.

Les résultats sont rassemblés dans le tableau suivant :

Dérivé	K ₁ Thrombine	K ₁ Trypsine
1	o,27 10 ⁻⁸ M	0,10 10 ⁻⁶ M
11	1,52 10 ⁻⁷ M	1,2 10 ⁻⁶ M
2	2,15 10 ⁻⁸ m	0,12 10 ⁻⁶ M
С	10 ⁻⁸ m	0,75 10 ⁻⁶ M
·		

2) Temps de thrombine.

)

5

3

Le temps de coagulation du plasma citraté en présence de thrombine est mesuré ex vivo chez le rat selon la technique de BIGGS R.M (Human blood coagulation, haemostasis and thrombosis ; Oxford, Blackwell Scientific Publications, 1972)

Les prèlèvements sont effectués une heure après administration souscutanée du composé à tester, par ponction à l'aorte abdominale. Le sang est recueilli sur citrate de sodium à 3,8 % (1 volume pour 9 volumes de sang). Le plasma est obtenu par centrifugation à 2600 g pendant 10 minutes. A du plasma, on ajoute 0,2 ml d'une solution de thrombine (20 U/ml). Le temps de coagulation est enregistré. Les résultats sont rassemblés dans le tableau suivant :

		Dose mg/kg	Voie	Résultats (Temps en	% allongement	p -
5	Témoin		s.c	secondes) 6 <u>+</u> 0		
10	Héparine	.10	s.c	20 <u>+</u> 4	233	0,001
	Témoin Dérivé C	10	s.c s.c	7 <u>+</u> 0 9 <u>+</u> 0	29	0,001
15	Témoin Dérivé n°1	10	s.c s.c	7 <u>+</u> 0 114 <u>+</u> 16	1529	0,001
20	Témoin Dérivé n°3	10	s.c s.c	6 <u>+</u> 0 18 <u>+</u> 2	200	0,001
25	Témoin Dérivé n°11	10	s.c s.c	8 <u>+</u> 0 68 <u>+</u> 6	750	0,001
30	Témoin Dérivé n°5	10	s.c s.c	9 <u>+</u> 0 12 <u>+</u> 1	33	0,001
35	Témoin Dérivé n°13	10	s.c s.c	8 <u>+</u> 0 28 <u>+</u> 5	255	0,05
	Témoin Dérivé n°14	10	s.c s.c	7 <u>+</u> 0 105 <u>+</u> 17	1370	0,01

)

õ

J

5

Les essais ont été effectués selon une adaptation de la méthode de T.KUMADA et al. (Thromb. Res. , 18, 189-203, 1980).

Une spirale métallique (bourre-pâte de dentiste recoupée) est insérée dans la veine cave inférieure du rat anesthésié. Une heure auparavant, les animaux ont reçu par la voie sous-cutanée, le composé à tester. Cinq heures après, la spirale est retirée avec le thrombus qu'elle retient puis séchée par tamponnements répétés sur papier filtre et pesée. La spirale est ensuite débarrassée du thrombus, séchée et pesée à nouveau. La différence pondérale donne le poids du thrombus.

Les résultats sont rassemblés dans le tableau suivant :

<u>_</u>				
Produit	Dose mg/kg	Poids du thrombus en mg	Variation	p
Témoin Héparine Héparine Héparine	5 10 20	4,47 <u>+</u> 0,51 2,91 <u>+</u> 0,53 1,62 <u>+</u> 0,34 0,26 <u>+</u> 0,04	-35 % -64 % -94 %	0,05 0,001 0,001
Témoin Dérivé C Dérivé C Dérivé C	20 50 100	4,77 <u>+</u> 0,47 3,99 <u>+</u> 0,45 3,63 <u>+</u> 0,37 3,08 <u>+</u> 0,28	-16 % -24 % -35 %	n.s. n.s. 0,01
Témoin Dérivé n°1 Dérivé n°1 Dérivé n°1 Dérivé n°1	5 10 20 50	3,51 ± 0,53 2,43 ± 0,17 2,01 ± 0,20 1,34 ± 0,12 0,87 ± 0,07	-31 % -43 % -62 % -75 %	n.s. 0,05 0,01 0,001
Témoin Dérivé n°3	10	4,53 <u>+</u> 0,55 2,46 <u>+</u> 0,16	-46 %	0,01
Témoin Dérivé n°13	10	3,85 <u>+</u> 0,21 1,36 <u>+</u> 0,14	-65 %	. 0,001

	Produit	Dose mg/kg	Poids du thrombus en mg	Variation	p
;	Témoin Dérivé n°11 Dérivé n°11 Dérivé n°11	5 10 20	4,10 <u>+</u> 0,43 3,13 <u>+</u> 0,38 2,02 <u>+</u> 0,19 1,85 <u>+</u> 0,13	-24 % -51 % -55 %	n.s. 0,001 0,001
10	Témoin Dérivé n°5	10	4,11 <u>+</u> 0,33 3,25 <u>+</u> 0,24	-21 %	0,05
1 5	Témoin Dérivé n°1 ['] 4	10	3,85 <u>+</u> 0,21 0,79 <u>+</u> 0,19	-80 %	0,001

Etude cinétique de la thrombose veineuse à la vrille.

L'étude comparative de la cinétique d'effet portant sur l'héparine et le dérivé n°1 a été effectuée.

Les dérivés à tester sont administrés par la voie sous-cutanée 15 mn, 1 H, 2 H, 4 H, 6 H, 16 H et 48 H avant la pose de la spirale qui est retirée 5 H après. On détermine le poids du thrombus.

Les résultats sont rassemblés dans le tableau ci-après.

20

	34							
	Produit	Dose mg/kg	Voie [.]	Temps	Poids du thrombus en mg	Variation	р	
	Témoin Héparine Héparine Héparine Héparine	10 10 10 10	s.C. s.C. s.C. s.C.	-15 mn - 1 H - 4 H - 6 H	4,21 ± 0,34 4,21 ± 0,34 0,82 ± 0,22 1,18 ± 0,12 2,67 ± 0,35	-58 % -80 % -72 % -36 %	0,001 0,001 0,001 0,001	
	Témoin Héparine	10 ·	s.C.	- 2 H	4,55 <u>+</u> 0,55 0,55 <u>+</u> 0,09	-88 %	0,001	
	Témoin Héparine Héparine Héparine Héparine	5 5 5 5	s.C. s.C. s.C. s.C.	-15 mn - 1 H - 4 H - 6 H	4,19 ± 0,37 3,70 ± 0,29 1,73 ± 0,26 3,10 ± 0,43 3,15 ± 0,28	-12 % -59 % -26 % -25 %	n.s. 0,001 n.s.	
-	Témoin Héparine	5	s.c. s.c.	- 2 H	4,35 <u>+</u> 0,43 3,04 <u>+</u> 0,25	-30 %	0,05	
5	Témoin Dérivé n°1 Dérivé n°1	20 20	S.C. S.C. S.C.	-15 mn - 1 H	3,37 ± 0,33 1,99 ± 0,24 1,67 ± 0,15	-41 % -50 %	0,01 0,001	
	Témoin Dérivé n°1	20	5.C. S.C.	- 2 H	3,91 + 0,42 1,82 + 0,10	-53 %	0,001	
o	Témoin Dérivé n°1 Dérivé n°1	20 20	s.C. s.C. s.C.	- 4 H - 6 H	3,95 <u>+</u> 0,32 1,40 + 0,13 1,40 + 0,13	-63 % -43 %	0,001 0,001	
	Témoin Dérivé n°1	20	5.C. 5.C.	-16 H	3,52 <u>+</u> 0,44 2,64 <u>+</u> 0,38	-25 %	n.s.	
25	Témoin Dérivé n°1 Dérivé n°1 Dérivé n°1 Dérivé n°1	50 50 50 50	s.C. s.C. s.C. s.C.	-15 mn - 1 H - 2 H - 4 H	3,20 <u>+</u> 0,23 1,31 <u>+</u> 0,08 0,92 <u>+</u> 0,08 1,01 <u>+</u> 0,08 0,82 <u>+</u> 0,07	-59 % -71 % -68 % -74 %	0,001 0,001 0,001 0,001	
	Témoin Dérivé n°1	50	s.c.	- 6 H	3,77 ± 0,36 1,21 ± 0,16	-68 %	0,001	
30	Témoin Dérivé n°1	50	s.c. s.c.	-16 H	3,70 + 0,24 1,69 + 0,26	-54 %	0,001	
	Témoin Dérivé n°1	50	s.c. s.c.	-48 H	2,98 <u>+</u> 0,39 2,49 <u>+</u> 0,30	-16 %	n.s.	
	1	T						

4) Temps de saignement.

3

5

30

35

Cette étude a été effectuée selon une daptation de la technique de L.STELLA et al. (Thromb. Res. ; 1975, 7, 709 - 716)

Après anesthésie du rat au pentobarbital, la queue est sectionnée à 5 mm de l'extrémité et le sang de la blessure soigneusement tamponné toutes les 15 secondes à l'aide d'un papier filtre jusqu'à hémostase. Celle-ci est atteinte lorsqu'aucune tâche n'apparait pendant 1 minute. Les produits à tester sont administrés par la voie sous-cutanée, une heure avant la section de la queue.

Les résultats sont rassemblés dans le tableau suivant :

Produit	Dose mg/kg	Durée en secondes	Extrêmes	P
Témoin Héparine Héparine Héparine	5 10 20	360 465 3600 3600	330-480 330-540 525-> 3600 690-> 3600	n.s. 0,01 0,01
Témoin Dérivé C Dérivé C Dérivé C	10 20 50	540 375 750 600	405-675 360-510 420-960 435-615	n.s. n.s. n.s.
Témoin Dérivé n°1 Dérivé n°1 Dérivé n°1	10 20 50	405 450 480 465	390-510 420-525 420-3600 360->3600	n.s. n.s. n.s.
Témoin Dérivé n°1 Dérivé n°1	100 100	480 795 960	405-840 600-1140 600-1020	n.s. 0,05
Témoin Dérivé n°11 Dérivé n°11 Dérivé n°11 Dérivé n°11	5 10 20 50	525 615 690 585 540	460-600 540-780 495-750 495-855 450-660	n.s. n.s. n.s.

Etude cinétique du temps de saignement.

L'étude comparative de la cinétique d'effet portant sur l'héparine et le dérivé n°1 a été effectuée.

Les dérivés à tester sont administrés par la voie sous cutanée 15 mn, 1 H, 2 H, 4 H et 6 H avant l'anesthésie et la section de la queue.

Les résultats sont rassemblés dans le tableau suivant.

Produit	Dose mg/kg	Temps	Durée en secondes	Extrêmes	Þ
Témoin Héparine Héparine Héparine Héparine	10 10 10 10	-15 mn - 1 H - 4 H - 6 H	.330 465 >3600 >3600 390	240-405 315-510 405->3600 600->3600 315-495	n.s. 0,05 0,01 n.s.
Témoin Dérivé n°1 Dérivé n°1 Dérivé n°1 Dérivé n°1	10 10 10 10	-15 mn - 1 H - 4 H - 6 H	412 465 555 480 450	360-540 300-690 390-570 465-540 390-870	n.s. n.s. n.s.
Témoin Dérivé n°1 Dérivé n°1 Dérivé n°1 Dérivé n°1 Dérivé n°1	20 20 20 20 20 20	-15 mn - 1 H - 2 H - 4 H - 6 H	465 ; 540 480 540 585 450	360-795 390-720 435-630 405-520 405-1800 300-840	n.s. n.s. n.s. n.s.

D

5

0

:5

10

35

Ces études qui viennent d'être réalisées ont mis en évidence les effets remarquables des dérivés de l'invention.

- pouvoir antithrombotique = la détermination du temps de thrombine et le test de la vrille ont montré que les composés de l'invention produisaient une activité bien supérieure au dérivé C et qu'ils possédaient sur l'héparine l'avantage d'une action beaucoup plus durable; en effet, si dans les premières heures, les effets de l'héparine et du dérivé n°1 sont superposables, après 6 H, l'héparine accuse une baisse sensible alors que le dérivé n°1 produit encore une diminution du poids du thrombus de 68 % et 48 H après de 16 %.

On peut en conclure que, à activité antithrombotique équivalente, les dérivés de l'invention apportent une couverture remarquable dans le temps supérieure à 16 H par rapport à 1 héparine (3-4 heures).

- temps de saignement = l'étude cinétique a nettement montré le risque hémorragique induit par l'héparine. Le dérivé de l'invention allongeant très peu le temps de saignement, permet une marge de sécurité très supérieure à celle de l'héparine .

L'invention a encore pour objet un médicament présentant en particulier des activités antithrombotiques caractérisé en ce qu'il contient à titre de principe actif un dérivé de formule (I) ou un sel d'addition avec un acide minéral ou organique pharmaceutiquement acceptable.

Le médicament de l'invention peut être présenté pour l'administration orale sous forme de comprimés, comprimés dragéifiés, capsules, gouttes, sirop ou granulé.

Il peut aussi être présenté pour l'administration rectale sous forme de suppositoires et pour l'administration parentérale sous forme de soluté injectable.

Chaque dose unitaire contient avantageusement de 0,005 g à 0,500 g de principe actif en fonction de l'âge du malade et de la gravité de l'affection traitée. On donnera ci-après, à titre d'exemples non limitatifs, quelques formulations pharmaceutiques du médicament de l'invention.

1) Comprimés dragéifiés

Dérivé n°1

0,050 g

Excipient

Lactose, polyvinylpyrrolidone, stéréate de magnésium, gomme laque, talc, carbonate de calcium, silice, oxyde de titane, gomme arabique, cire blanche,

cire de carnauba.

2) Comprimés

Dérivé n°2

0,025 g

Excipient

Lactose, cellulose microcristalline, talc, stéarate

de magnésium.

3) Capsules

j

٥

15

Dérivé n°3

0,100 g

Excipient

Talc, amidon de blé, stéarate de magnésium.

4) Suppositoires

Dérivé n°5

0,050 g

Excipient

Glycérides semi-synthétiques.

5) Soluté injectable

Dérivé n°11

0,025 g

Excipient

Solvant isotonique q.s.p. 3 ml

Pour ses propriétés anticoagulante et antithrombotique, dépourvu des effets secondaires dûs au risque hémorragique, le médicament de l'invention est utilement administré dans la prévention et le traitement de la maladie thrombo-embolique.

1) Composés de formule

dans laquelle :

5

10

15

20

25

30

- R₁ représente l'hydrogène, un groupe alcoyle inférieur, hydroxy-alcoyle inférieur , benzyle, un groupe phényle ou un groupe hydroxy-4 phényle ;
- R₂ représente un groupe alcoyle inférieur, alcényle inférieur, alcynyle inférieur, ou un groupe benzyle, ou un groupe alcoxycarbonylalcoyle inférieur, carboxyalcoyle inférieur, hydroxyalcoyle inférieur;
 - R₃ et R₄, identiques ou différents, représentent chacun un radical alcoyle ou hydroxyalcoyle inférieurs, alcényle inférieur, alcynyle inférieur ou forment ensemble, avec l'azote auquel ils sont rattachés, un hétérocycle saturé tel que morpholino, thiomorpholino, pyrrolidino non substitué ou substitué par un groupe alcoxycarbonyle ou carboxy, pipérazino, (alcoyle inférieur)-4 pipérazino, (hydroxyalcoyle inférieur)-4 pipérazino, ou pipéridino non substitué ou substitué par un groupe alcoyle inférieur, benzyle, hydroxy, hydroxyalcoyle inférieur, amino, aminoalcoyle inférieur, hydroxyamino, alcoxycarbonyle ou carboxy;
 - Ar représente un groupe phényle, alpha-naphtyle ou béta-naphtyle, éventuellement substitué, ou bien un groupe hétéroaryle choisi parmi les radicaux pyridyle, quinoléinyle, isoquinoléinyle, éventuellement substitués; et leurs sels d'addition avec les acides minéraux ou organiques pharmaceutiquement acceptables ainsi que les stéréoisomères ou leur mélange.
 - 2) Composés de formule (I) dans laquelle R_{i} représente l'hydrogène ou un radical alcoyle.
 - 3) Composés de formule (I) dans laquelle R2 représente un radical alcoyle.
 - 4) Composés de formule (I) dans laquelle le groupe N_{R4}^R 3 représente un radical pipéridino substitué ou non substitué.
 - 5) Composés de formule (I) dans laquelle Ar représente un radical naphtyle.

(II)

- 6) \sqrt{N} α -méthyl $N\alpha$ -(N-bétanaphtylsulfonylglycyl) p-amidinophénylalanyl $\sqrt{-1}$ pipéridine et ses sels pharmaceutiquement acceptables.
- 7) Méthyl-4 / N α -méthyl N α -(N-bétanaphtylsulfonylglycyl) p-amidinophényl-alanyl /-1 pipéridine et ses sels pharmaceutiquement acceptables.
- 8) $/N\alpha$ -éthyl $N\alpha$ -(N-bétanaphtylsulfonylglycyl) p-amidinophénylalanyl/-1 pipéridine et ses sels pharmaceutiquement acceptables.
- 9) / Nα-éthyl Nα-(N-bétanaphtylsulfonylglycyl) p-amidinophénylalanyl_/-1 méthyl-4 pipéridine et ses sels pharmaceutiquement acceptables.
- 10) / N α -méthyl N α -(N-quinoléinyl-8 sulfonylglycyl) p-amidinophénylalanyl/-1 pipéridine et ses sels pharmaceutiquement acceptables.
- 11) $\sqrt{N\alpha}$ -méthyl $N\alpha$ -(N-bétanaphtylsulfonyl-(S)-séryl) p-amidinophényl-alanyl $\sqrt{-1}$ pipéridine et ses sels pharmaceutiquement acceptables.
- 12) $\sqrt{-N\alpha}$ -méthyl $N\alpha$ -(N-bétanaphtylsulfonyl-(S)-thréonyl) p-amidinophényl-alanyl $\sqrt{-1}$ pipéridine et ses sels pharmaceutiquement acceptables.
- 13) Procédé de préparation des composés selon les revendications 1 à 12 caractérisé en ce que l'on fait réagir sur la cyano-4 phénylalaninamide $N\alpha$ -alcoylée de formule (II)

20

5

10

15

H-N C-N R3

25

dans laquelle \mathbf{R}_2 , \mathbf{R}_3 et \mathbf{R}_4 ont les mêmes significations que dans la formule (I), un acide de formule

30

sous sa forme activée

dans laquelle Ar et R_1 ont les mêmes significations que dans la formule (I) et R représente un bon groupement nucléofuge, tel que chlore alcoxycarbonyloxy ou hétéroaryle, pour obtenir le composé de formule (V)

$$Ar-so_2-NH-CH-CO-N$$

$$R_1$$

$$R_2$$

$$R_4$$

$$(V)$$

dans laquelle Ar, R₁, R₂, R₃ et R₄ ont les mêmes significations que dans la formule (I) qu'on traite avec un excès d'une solution saturée de gaz chlorhydrique dans un alcool de formule X-OH dans laquelle X représente un radical alcoyle inférieur, pour obtenir l'imidoester de formule (VI) sous forme de chlorhydrate

X-0. NH

$$Ar-SO_2-NH-CH-CO-N$$

$$R_1$$

$$R_2$$

$$R_4$$

$$R_4$$

25

5

10

15

20

dans laquelle Ar, R₁, R₂, R₃, R₄ et X ont les mêmes significations précitées qui est alors traité par un excès d'une solution de gaz ammoniac dans un alcool inférieur à la température d'ébullition du mélange réactionnel pour obtenir le composé de formule (I) recherché.

- 14) Procédé selon la revendication 13 caractérisé en ce que l'activation de l'acide de formule (III) est effectuée par action d'un chloroformate d'alcoyle.
- 15) Procédé selon la revendication 13 caractérisé en ce que l'activation de l'acide de formule (III) est effectuée par action de réactifs de couplage n'induisant pas la racémisation, tels que l'hydroxy-1 benzotriazole en présence de N,N dicyclohexylcarbodiimide, l'hexafluorophosphate de benzotriazolyl-1 oxytris (diméthylamino) phosphonium ou le chlorure de N,N-bis (oxo-2 oxazolidinyl-3) phosphorodiamidique.

- 16) Procédé selon l'une des revendications 13 à 15 caractérisé en ce que la préparation de l'imidoester de formule (VI) s'effectue en milieu alcoolique, en présence d'un acide fort.
- 17) Procédé selon l'une des revendications 13 à 16 caractérisé en ce que la formation de l'amidine de formule (I) s'effectue en milieu alcoolique, par action du gaz ammoniac.
 - 18) Médicament caractérisé en ce qu'il contient, à titre de principe actif un dérivé de formule (I) suivant l'une des revendications 1 à 12 ou l'un de ses sels pharmaceutiquement acceptables.
- 19) Médicament selon la revendication 18, caractérisé en ce qu'il est présenté sous forme de doses unitaires contenant chacun de 0,005 g à 0,500 g de principe actif.
 - 20) Composés de formule (II)

L5

- dans laquelle R₂, R₃ et R₄ ont la même signification que dans la revendication l, ainsi que les isomères ou leurs mélanges et leurs sels d'acides minéraux ou organiques.
 - 21) Composés de formule (I) dans laquelle R₂ représente un radical alcoyle.
 - 22) Composés de formule (I) dans laquelle le groupe NR₃R₄ représente un radical pipéridino substitué. ou non substitué.
- 30 23) Procédé de préparation des composés de formule (II), caractérisé en ce que l'on fait réagir l'acide de formule (IX) activée, par l'action de réactifs de couplage n'induisant pas la racémisation tels que l'hydroxy-l benzotriazole en présence de N,N-dicyclohéxylcarbodiimide, l'hexafluorophosphate de benzatriazolyl-l oxytris (diméthylamino) phosphonium ou le chlorure de N,N-bis (oxo-2 oxazolidinyl-3) phosphorodiamidique, en composé de formule (X)

5
$$R' - N$$
 CH_2 $C - OH$ $R' - N$ CH_2 $C - A$

dans lesquelles R' représente un groupement N-protecteur et A représente le reste du réactif de couplage, avec l'amine de formule

10 H-N $\stackrel{R_3}{\underset{R_4}{\nearrow}}$ (XI) dans laquelle R_3 et R_4 ont les mêmes significations que dans

la formule II, pour former le composé de formule :

15
$$R' - N \longrightarrow R_4$$

$$R' - N \longrightarrow R_4$$

$$R' = R_4$$

dans laquelle R', R₂ et R₄ ont les mêmes significations que dans les formules II et IX, que l'on fait réagir avec un composé R₂-X, dans lequel X est un halogène et R₂ est tel que dans la formule II, pour obtenir le composé de formule

25
$$R - N - CH_2 - N - R_3$$

$$R_2 - N - R_4$$

30 qui, par clivage du groupement protecteur R', conduit aux composés de formule (II). 24) Composés selon la revendication 1, de formule (I) dans laquelle R₁ représente l'hydrogène ou un radical alcoyle, R₂ représente un radical alcoyle, NR₃ P₄ représente un radical pipéridino substitué ou non substitué et Ar représente un radical naphtyle.

1) Procédé de préparation de composés de formule :

10

30

5

dans laquelle :

- R représente l'hydrogène, un groupe alcoyle inférieur, hydroxyalcoyle inférieur , benzyle, un groupe phényle ou un groupe hydroxy-4 phényle;
- R₂ représente un groupe alcoyle inférieur, alcényle inférieur, alcynyle inférieur, ou un groupe benzyle, ou un groupe alcoxycarbonylalcoyle inférieur, carboxyalcoyle inférieur, hydroxyalcoyle inférieur;
- R₃ et R₄, identiques ou différents, représentent chacun un radical alcoyle ou hydroxyalcoyle inférieurs, alcényle inférieur, alcynyle inférieur ou forment ensemble, avec l'azote auquel ils sont rattachés, un hétérocycle saturé tel que morpholino, thiomorpholino, pyrrolidino non substitué ou substitué par un groupe alcoxycarbonyle.oucarboxy, pipérazino, (alcoyle inférieur)-4 pipérazino, (hydroxyalcoyle inférieur)-4 pipérazino, ou pipéridino non substitué ou substitué par un groupe alcoyle inférieur, benzyle, hydroxy, hydroxyalcoyle inférieur, amino, aminoalcoyle inférieur, hydroxyamino, alcoxycarbonyle ou carboxy;
 - Ar représente un groupe phényle, alpha-naphtyle ou béta-naphtyle, éventuellement substitué, ou bien un groupe hétéroaryle choisi parmi les radicaux pyridyle, quinoléinyle, isoquinoléinyle, éventuellement substitués; et leurs sels d'addition avec les acides minéraux ou organiques pharmaceutiquement acceptables ainsi que les stéréoisomères ou leur mélange; caractérisé en ce que l'on fait réagir sur la cyano-4 phénylalaninamide Nα-alcoylée de formule (II),

10

dans laquelle R_2 , R_3 et R_4 ont les mêmes significations que dans la formule (I), un acide de formule

15

5

sous sa forme activée

20

dans laquelle Ar et R_1 ont les mêmes significations que dans la formule (I) et R représente un bon groupement nucléofuge, tel que chlore alcoxycarbonyloxy ou hétéroaryle, pour obtenir le composé de formule (V)

30
$$Ar-SO_2-NH-CH-CO-N$$

$$R_1$$

$$R_2$$

$$R_4$$

$$R_4$$

dans laquelle Ar, R_1 , R_2 , R_3 et R_4 ont les mêmes significations que dans la 35 formule (I) qu'on traite avec un excès d'une solution saturée de gaz chlorhydrique dans un alcool de formule X-OH dans laquelle X représente un radical alcoyle inférieur, pour obtenir l'imidoester de formule (VI) sous forme de chlorhydrate

5

$$X-0$$
 $X-0$
 NH
 CH_2
 $CO-N$
 R_3
 R_4

- dans laquelle Ar, R₁, R₂, R₃, R₄ et X ont les mêmes significations précitées qui est alors traité par un excès d'une solution de gaz ammoniac dans un alcool inférieur à la température d'ébullition du mélange réactionnel pour obtenir le composé de formule (I) recherché.
 - 2) Procédé selon la revendication 1 , caractérisé en ce que l'activation de l'acide de formule (III) est effectuée par action d'un chloroformate d'alcoyle.
- 3) Procédé selon la revendication 1 , caractérisé en ce que l'activation de 20 l'acide de formule (III) est effectuée par action de réactifs de couplage n'induisant pas la racémisation, tels que l'hydroxy-1 benzotriazole en présence de N,N dicyclohexylcarbodiimide, l'hexafluorophosphate de benzotriazolyl-1 oxytris (diméthylamino) phosphonium ou le chlorure de N,N-bis (oxo-2 oxazolidinyl-3) phosphorodiamidique.
- 4) Procédé selon l'une des revendications 1 à 3, caractérisé en ce que la préparation de l'imidoester de formule (VI) s'effectue en milieu alcoolique, en présence d'un acide fort.
- 5) Procédé selon l'une des revendications 1 à 4, caractérisé en ce que la 30 formation de l'amidine de formule (I) s'effectue en milieu alcoolique, par action du gaz ammoniac.
 - 6) Procédé de préparation d'un médicament, caractérisé en ce que l'on utilise, à titre de principe actif, un dérivé de formule (I) obtenu suivant l'une des revendications l à 5 ou l'un de ses sels pharmaceutiquement acceptables.
- 35 7) Procédé de préparation de composés de formule (II) :

10

5

dans laquelle R₂, R₃ et R₄ ont la même signification que dans la revendication l, ainsi que les isomères ou leurs mélanges et leurs sels d'acides minéraux ou organiques, caractérisé en ce que l'on fait réagir l'acide de formule (IX) activée, par l'action de réactifs de couplage n'induisant pas la racémisation tels que l'hydroxy-l benzotriazole en présence de N,N-dicyclohéxylcarbodiimide, l'héxafluorophosphate de benzotriazolyl-l oxytris (diméthylamino) phosphonium ou le chlorure de N,N-bis (oxo-2 oxazolidinyl-3) phosphorodiamidique, en composé de formule (X)

20

$$R'-N$$
 CH_2
 CH_2

25

dans lesquelles R' représente un groupement N-protecteur et A représente le reste du réactif de couplage, avec l'amine de formule

 $_{\rm H-N}$ $_{\rm R_4}^{\rm R_3}$ (XI) dans laquelle $_{\rm R_3}$ et $_{\rm R_4}$ ont les mêmes significations que dans

la formule II, pour former le composé de formule :

$$R' - N = \begin{pmatrix} CN \\ CH_2 \\ R \end{pmatrix} - N = \begin{pmatrix} R_3 \\ R_4 \end{pmatrix}$$

dans laquelle R', R_2 et R_4 ont les mêmes significations que dans les formules II et IX, que l'on fait réagir avec un composé R_2 -X, dans lequel X est un halogène et R_2 est tel que dans la formule II, pour obtenir le composé de formule

qui, par clivage du groupement protecteur R', conduit aux composés de formule (II).

RAPPORT DE RECHERCHE EUROPEENNE

87 40 0149

atégorie		e indication, en cas de besoin, es pertinentes	Revendication concernée	CLASSEMENT DE LA DEMANDE (Int. CI.4).	
Y,C	CHEMICAL ABSTRAC 1983, page 645, 107770b, Columbu DD-A-155 954 (G. 21-07-1982 * Résumé *	résumé no. us, Ohio, US; &	1,18	C 07 C C 07 K A 61 K	5/06
Y	CHEMICAL ABSTRAC 1985, page 735, 25017y, Columbus VOIGT et al.: "S Nalpha-(arylsulf -4-amidinophenyl as thrombin inhi PHARMAZIE 1984, * Résumé *	résumé no. s, Ohio, US; B. Synthesis of Sonylglycylglycyl) Lalanine amides Lbitors", &	1,18		
Y	CHEMICAL ABSTRACT 1982, page 232, 105943r, Columbu STUERZEBECHER et synthetic inhibitimprove factor peptide substrat RES. 1982, 26(3) * Résumé *	résumé no. us, Ohio, US; J. t al.: "Are itors able to Ka assays using tes", & THROMB.	1,18	DOMAINESTI RECHERCHE C 07 C C 07 K A 61 K	121/00 5/00
Le	présent rapport de recherche a été é	tabli pour toutes les revendications			
		Date d'achèvement de la recher		Examinateur	
Y: pa au	LA HAYE CATEGORIE DES DOCUMEN articulièrement pertinent à lui se triculièrement pertinent en com tre document de la même catég rière-plan technologique	E : docum date de binaison avec un D : cité da orie L : cité po	ou principe à la b ent de brevet anté dépôt ou après c ns la demande ur d'autres raison	rrieur, mais publ ette date s	on ié à la

RAPPORT DE RECHERCHE EUROPEENNE

Numero de la demande

EP 87 40 0149

	DOCUMENTS CONSID	Page 2			
tégorie		c indication, en cas de besoin, es pertinentes	Revendication concernée	CLASSEMENT DE LA DEMANDE (Int. CI.4)	
X	DIE PHARMAZIE, v mai 1985, pages Verlag Volk und Berlin, DE; B. V "Synthese vom	305-306, VEB Gesundheit,	1,20,		
		carbonyl-4-amidi den als eren"	n .		
				DOMAINES TECHNIQUES	
				RECHERCHES (Int. Cl.4)	
-		•			
	e présent rapport de recherche a été é	tabli pour toutes les revendications			
	Lieu de la recherche	Date d'achèvement de la reche	erche	Examinateur	
	LA HAYE	06-05-1987	i i	RAJIC M.	
Y:p a	CATEGORIE DES DOCUMEN' articulièrement pertinent à lui set articulièrement pertinent en com utre document de la même catégo rrière-plan technologique	E : docui date d binaison avec un D : cité d orie L : cité p	ie ou principe à la ment de brevet an de dépôt ou après ans la demande our d'autres raiso		