Isometrie, simbolo di Kronecker, matrici ortogonali, simmetria di endomorfismi #GAL

Definizione:

un'isometria lineare è un endomorfismo L : V->V t.c. <L (\underline{v}) ,L (\underline{w}) > = $<\underline{v},\underline{w}$ > $\forall \underline{v},\underline{w} \in$ V

Proprietà:

- 1. $||L(\underline{v})|| = ||\underline{v}||$
- 2. d(v,w) = d(L(v),L(w))
- 3. $L(\underline{v})^L(\underline{w}) = \underline{v}^\underline{w}$

Notazione:

Il simbolo di Kronecker è $\partial_{ii} = \{1 \text{ se } i=j; 0 \text{ se } i\neq j\}$

Osservazione:

- $-I_n = \partial_{ij}$
- $-\langle \underline{b}_{\underline{i}},\underline{b}_{\underline{j}}\rangle = \partial_{\underline{i}\underline{j}} <=>\{\underline{b}_{\underline{1}},...,\underline{b}_{\underline{n}}\}$ base ortonormale

Proposizione:

L: V->V B = $\{b_1, ..., b_n\}$ base ortonormale

L isometria lineare $<=> \{L(b_1), ..., L(b_n)\}$ base ortonormale di V

Dimostrazione:

=>
$$<$$
L($\underline{b_i}$),L($\underline{b_j}$)> =(isometria)= $<$ $\underline{b_i}$, $\underline{b_j}$ > = δ_{ij} = {L($\underline{b_1}$), ..., L($\underline{b_n}$)} base ortonormale di V

<= Supponiamo $\{b_1, ..., b_n\}$ e $\{L(b_1), ..., L(b_n)\}$ basi ortonormali di V

$$\langle \underline{\mathbf{v}}, \underline{\mathbf{w}} \rangle = \langle {}^{\mathbf{n}} \Sigma_{i=1} \, {}^{\mathbf{v}}_{i} \, {}^{\mathbf{n}} \Sigma_{j=1} \, {}^{\mathbf{w}}_{j} \, {}^{\mathbf{v}}_{j} \rangle = (\text{bilineare}) = {}^{\mathbf{n}} \Sigma_{i=1} \, {}^{\mathbf{v}}_{i} \, {}^{\mathbf{v}}_{i} \, {}^{\mathbf{v}}_{j=1} \, {}^{\mathbf{v}}_{j} \, {}^{\mathbf{v}}_{j} \rangle$$

=(bilineare)=
$${}^{n}\Sigma_{i=1} v_{i} * {}^{n}\Sigma_{j=1} w_{j} * <\underline{b}_{i},\underline{b}_{j}>=$$

$$= {^n\Sigma_{i=1}} {^n\Sigma_{j=1}} {^{v_i}}^* {^{w_j}}^* \partial_{ij} = (\partial_{ij}) = {^n\Sigma_{i=1}} {^{v_i}}^* {^{w_i}}$$

$$<$$
L (\underline{v}) ,L (\underline{w}) > = $<$ L $(^{n}\Sigma_{i=1}$ $v_{i}^{*}\underline{b_{i}})$,L $(^{n}\Sigma_{j=1}$ $v_{j}^{*}\underline{b_{j}})$ > =(lineare)= $<^{n}\Sigma_{i=1}$

$$v_i^*L(\underline{b}_i), n \Sigma_{i=1} v_i^*L(\underline{b}_j) > = (bilineare) = n \Sigma_{i=1} n \Sigma_{j=1} v_i^*w_j^* < L(\underline{v}), L(\underline{w}) > = (bilineare) = n \Sigma_{i=1} n \Sigma_{j=1} v_i^*w_j^* < L(\underline{v}), L(\underline{w}) > = (bilineare) = n \Sigma_{i=1} n \Sigma_{j=1} v_i^*w_j^* < L(\underline{v}), L(\underline{w}) > = (bilineare) = n \Sigma_{i=1} n \Sigma_{j=1} v_i^*w_j^* < L(\underline{v}), L(\underline{w}) > = (bilineare) = n \Sigma_{i=1} n \Sigma_{j=1} v_i^*w_j^* < L(\underline{v}), L(\underline{w}) > = (bilineare) = n \Sigma_{i=1} n \Sigma_{j=1} v_i^*w_j^* < L(\underline{v}), L(\underline{w}) > = (bilineare) = n \Sigma_{i=1} n \Sigma_{j=1} v_i^*w_j^* < L(\underline{v}), L(\underline{w}) > = (bilineare) = n \Sigma_{i=1} n \Sigma_{i=1} v_i^*w_j^* < L(\underline{v}), L(\underline{w}) > = (bilineare) = n \Sigma_{i=1} n \Sigma_{i=1} v_i^*w_j^* < L(\underline{v}), L(\underline{w}) > (bilineare) = n \Sigma_{i=1} n \Sigma_{i=1} v_i^*w_j^* < L(\underline{v}), L(\underline{w}) > (bilineare)$$

=(ortonormale)=
$${}^{n}\Sigma_{i=1}$$
 ${}^{n}\Sigma_{j=1}$ ${}^{v}{}_{i}^{*}w_{j}^{*}\partial_{ij}$ =(∂_{ij})= ${}^{n}\Sigma_{i=1}$ ${}^{v}{}_{i}^{*}w_{i}$

=> L isometria lineare

Corollario:

L isometria lineare => L isomorfismo

Dimostrazione:

L trasforma una base in una base

$$M_L^{B,C} = I_n \Rightarrow L \text{ isomorfismo}$$
 $C = \{L(b_1), ..., L(b_n)\}$

B =

$$\{b_1, ..., b_n\}$$

Osservazione(prodotto scalare qualsiasi vs prodotto scalare standard):

V spazio euclideo, B base ortonormale

$$\langle \underline{v}, \underline{w} \rangle = {}^{n}\Sigma_{i=1} v_{i} \times w_{i} = [\underline{v}]_{B} \cdot [\underline{w}]_{B} = [\underline{v}]_{B}^{t} \cdot [\underline{w}]_{B}$$

 $(prodotto\ scalare\ arbitrario)\ =\ (prodotto\ scalare\ standard\ in\ R^n)\ =\ (prodotto\ riga\ per\ colonna)$

Definizione:

 $A \in Mat(n,n)$ è una matrice ortogonale se $A^{t}A = I_{n}$

Proprietà:

- 1. A ortogonale $<=> A^{-1} = A^{t}$
- 2. A ortogonale <=> A^t ortogonale
- 3. A,B ortogonali => AB ortogonale

Dimostrazione:

- 1. -No dimostrazione-
- 2. A ortogonale $<=> A^t = A^{-1} => (A^t)^t A^t = AA^t = AA^{-1} = I_n => (A^t)^t = (A^t)^{-1} = (1)> A^t$ ortogonale
- 3. $(AB)^{t}(AB) = B^{t}A^{t}AB = B^{t}I_{n}B = B^{t}B = I_{n} \Rightarrow AB \text{ ortogonale}$

Proposizione:

le seguenti condizioni sono equivalenti per A \in Mat(n,n)

- 1. A ortogonale
- 2. Le righe di A formano una base ortonormale di Rⁿ
- 3. Le colonne di A formano una base ortonormale di ${\ensuremath{\mathsf{R}}}^{\ensuremath{\mathsf{n}}}$

Dimostrazione:

1)
$$<=>$$
 3) poniamo A = $(\underline{a_1}, ..., \underline{a_n})$ colonne di A $A^t = (\underline{a_1}, ..., \underline{a_n})$

a_n)^t righe di A

$$\mathsf{A}^\mathsf{t}\mathsf{A} = (\underline{\mathsf{a}}_{\underline{1}}, \, ..., \, \underline{\mathsf{a}}_{\underline{n}})^\mathsf{t} * (\underline{\mathsf{a}}_{\underline{1}}, \, ..., \, \underline{\mathsf{a}}_{\underline{n}}) = (\underline{\mathsf{a}}_{\underline{1}}^\mathsf{t} * \underline{\mathsf{a}}_{\underline{1}} \, ... \, \underline{\mathsf{a}}_{\underline{1}}^\mathsf{t} * \underline{\mathsf{a}}_{\underline{n}} \mid ... \mid \underline{\mathsf{a}}_{\underline{n}}^\mathsf{t} * \underline{\mathsf{a}}_{\underline{1}} \, ... \, \underline{\mathsf{a}}_{\underline{n}}^\mathsf{t} * \underline{\mathsf{a}}_{\underline{n}} \times = \underline{\mathsf{a}}_{\underline{n}}^\mathsf{t} * \underline{\mathsf{a}}_{\underline{n}}^\mathsf{t} + \underline{\mathsf{a}}_{\underline{n}}^\mathsf{t}$$

$$(a_1 \cdot a_1 \dots a_1 \cdot a_n \mid \dots \mid a_n \cdot a_1 \dots a_n \cdot a_n) = cioè (A^t A)_{ij} = a_i \cdot a_j$$

Deduciamo A ortogonale <=> $A^tA = I_n <=>$ $(A^tA)_{ij} = (I_n)_{ij} \ \forall i,j <=> \ \underline{a_i} \cdot \underline{a_j} = \partial_{ij} <=> \{\underline{a_1}, ..., \underline{a_n}\}$ base ortonormale di R^n

Proposizione:

V spazio euclideo L: V->V endomorfismo B,C basi ortonormali allora

L isometria linere \iff $M_I^{B,C}$ matrice ortogonale

Dimostrazione:

$$\mathsf{B} = \{\mathsf{b}_1, \, ..., \, \mathsf{b}_n\}, \qquad \mathsf{A} = \mathsf{M_L}^{\mathsf{B},\mathsf{C}}$$

L isometria lineare $<=> \{L(b_1), ..., L(b_n)\}$ base ortonormale <=>

elemento nella colonna j-esima di A^tA) <=>

$$<=> (A^tA)_{ij} = \partial_{ij} <=> A^tA = I_n <=> A = M_L^{B,C}$$
 ortogonale

Casi particolari:

- 1. $V = R^{n}$, B = C = E (base canonica) T_{A} isometria lineare <=> A ortogonale
- 2. V qualsiasi, $L = Id_V$ (isometria lineare) $M_{Id_V}^{B,C}$ matrice del cambio di base tra due basi ortonormali, è una matrice ortogonale

Esempio(matrici ortogonali/isometrie lineari in R²):

- (cos∂ -sin∂ | sin∂ cos∂) rotazione di angolo ∂
 - $||\cos\theta\sin\theta|| = \sqrt{(\cos^2\theta + \sin^2\theta)} = \sqrt{1} = 1$, $||-\sin\theta\cos\theta|| = 1$
 - $(\cos \theta \sin \theta)^{t} \cdot (-\sin \theta \cos \theta)^{t} = \cos \theta (-\sin \theta) + \sin \theta (\cos \theta) = 0$
 - Colonne = base ortonormale di R^2 => matrice ortogonale
- (1 0 | 0 -1) riflessione rispetto all'asse x
- (-1 0 | 0 1) riflessione rispetto all'asse y
- (-1 0 | 0 -1) riflessione rispetto all'origine
- Composizione di isometrie lineari / prodotto di matrici ortogonali Esempio: (1 0 | 0 -1)*(cos∂ -sin∂ | sin∂ cos∂) = (cos∂ -sin∂ | -sin∂

-cos₃)

Definizione:

V spazio euclideo un'isometria è una funzione f: V->V t.c. $d(\underline{v},\underline{w})=d(f(\underline{v}),f(\underline{w})) \ \forall \underline{v},\underline{w} \in V$

Esempio:

una traslazione è un'isometria (non lineare): fissato $\underline{v_0} \in V$, $f: V->V \qquad f(\underline{v}) = \underline{v} + \underline{v_0}$

Teorema:

sia f : V->V un'isometria

allora esistono un'isometria lineare L : V->V e un $\underline{v_0} \in V$ t.c. $f(\underline{v}) = L(\underline{v}) + L(\underline{v}) \in V$

v₀ cioè

isometria qualsiasi = isometria lineare + traslazione

Esempio:

$$(y-3) = 2(x+1)^2 - 3x + 1$$
 $y = x^2$

Definizione:

un endomorfismo L : V->V si dice simmetrico se <L(\underline{v}), \underline{w} > = < \underline{v} ,L(\underline{w})> $\forall \underline{v}$, \underline{w} \in V

Proposizione:

L : V->V endomorfismo, B base ortonormale di V allora L simmetrico \iff M_I B,B simmetrica

Dimostrazione:

poniamo $A = M_I^{B,B}$

 $\mathsf{Calcoliamo} < \mathsf{L}(\underline{\mathsf{v}}), \underline{\mathsf{w}} > = [\mathsf{L}(\underline{\mathsf{v}})]_{\mathsf{B}} \cdot [\underline{\mathsf{w}}]_{\mathsf{B}} = (\mathsf{M}_{\mathsf{L}}^{\mathsf{B},\mathsf{B}}[\underline{\mathsf{v}}]_{\mathsf{B}}) \cdot [\underline{\mathsf{w}}]_{\mathsf{B}} = (\mathsf{A}[\underline{\mathsf{v}}]_{\mathsf{B}}) \cdot [\underline{\mathsf{w}}]_{\mathsf{B}} = (\mathsf{A}[\underline{\mathsf{v}]_{\mathsf{B}}) \cdot [\underline{\mathsf{w}}]_{\mathsf{B}} = (\mathsf{A}[\underline{\mathsf{v}]_{\mathsf{B}}) \cdot [\underline{\mathsf{w}}]_{\mathsf{B}} = (\mathsf{A}[\underline{\mathsf{v}]_{\mathsf{B}}) \cdot [\underline{\mathsf{w}}]_{\mathsf{B}} = (\mathsf{A}[\underline{\mathsf{v}]_{\mathsf{B}}) \cdot [\underline{\mathsf{w}}]_{\mathsf{B}} = (\mathsf{A}[$

$$(\mathsf{A}[\underline{\mathsf{v}}]_\mathsf{B})^\mathsf{t}_*[\underline{\mathsf{w}}]_\mathsf{B} = [\underline{\mathsf{v}}]_\mathsf{B}^\mathsf{t} \mathsf{A}^\mathsf{t}[\underline{\mathsf{w}}]_\mathsf{B}$$

Calcoliamo $\langle \underline{v}, L(\underline{w}) \rangle = [\underline{v}]_{B}^{t} (A[\underline{w}]_{B}) = [\underline{v}]_{B}^{t} A[\underline{w}]_{B} = > L \text{ simmetrico}$

$$<=> < L(\underline{v}), \underline{w}> = < \underline{v}, L(\underline{w})> <=> [\underline{v}]_B^t A^t [\underline{w}]_B = [\underline{v}]_B^t A [\underline{w}]_B \quad \forall \underline{v}, \underline{w} \in V <=>$$

 $<=> \underline{x}^t A^t \underline{y} = \underline{x}^t A \underline{y}$ $\forall \underline{x}, \underline{y} \in \mathbb{R}^n <=> A^t = A <=> A matrice simmetrica$

Corollario:

 $A \in Mat(n,n)$ $T_A : R^n -> R^n$ endomorfismo simmetrico <=> A matrice simmetrica

Definizione:

un endomorfismo L : V->V si dice ortogonalmente diagonalizzabile se esiste una base ortonormale di V composta da autovettori di L

Teorema Spettrale:

V spazio euclideo L: V->V endomorfismo

L simmetrico <=> L ortogonalmente diagonalizzabile

- L : V->V è simmetrico se <L(v),w> = <v,L(w)> $\forall v,w \in V$
- L : V->V è ortogonalmente diagonalizzabile se ∃base ortonormale di V di autovettori di L

Dimostrazione:

Parte 1: ortogonalmente diagonalizzabile => simmetrica

Allo stesso modo $<\underline{v}, L(\underline{w})>=...={}^{n}\Sigma_{i=1}{}^{n}\Sigma_{j=1}{}^{v}{}_{i}(w_{j}\times_{j})\partial_{ij}=(\partial_{ij})={}^{n}\Sigma_{j=1}{}^{v}{}_{j}\times_{j}w_{j}$

=> L simmetrico

Lemma: L : V->V endomorfismo simmetrico => $X_L(x)$ ha almeno una radice in R

A meno di normalizzare, possiamo supporre $||b_1|| = 1$

 $\begin{aligned} &\text{Consideriamo H = Span}(\underline{b_1}) \subseteq V \ \ e \ \ W = H^{\perp} \ \ => \ \ dimW = dimV - dimH = n - 1 \\ &\text{Sia } \underline{w} \in W \ \ \text{Osserviamo} < L(\underline{w}), \underline{b_1} > = < \underline{w}, L(\underline{b_1}) > = < \underline{w}, \lambda_1 \underline{b_1} > = \lambda_1 < \underline{w}, \underline{b_1} > = 0 \\ &\text{perch\'e} \ \underline{w} \in W = (\text{Span}(b_1))^{\perp} \end{aligned}$

 $\text{Cio\`e: se \underline{w} \inW $=>$ $L(\underline{w})\bot b_1$ $=>$ $L(\underline{w})$ \inW $=$H$^\bot$ cio\`e $L(W)$ \subseteqW }$

Cioè la restrizione di L : V->V al sottospazio W è L : W->W è ancora un endomorfismo ed è ancora simmetrico

con dimW = n - 1, $W \perp Span(b_1)$

Ripetendo il ragionamento per W otteniamo $\underline{b_2}$, etc. => $\underline{b_1}$, ..., $\underline{b_n}$ base ortonormale di V di autovettori di L

Corollario:

L : V->V endomorfismo simmetrico $\lambda_i \neq \lambda_j$ autovalori di L => $E_{\lambda_i}^{\perp}E_{\lambda_j}$

Corollario (teorema spettrale per le matrici):

A ∈Mat(n,n) le seguenti condizioni sono equivalenti

- 1. A è una matrice simmetrica
- 2. $\exists B = \{\underline{b_1}, ..., \underline{b_n}\}$ base ortonormale di R^n composta da autovettori di A
- 3. \exists S,D \in Mat(n,n) t.c. D = S^tAS dove D è diagonale e S = ($\underline{b_1}$, ..., $\underline{b_n}$) è una matrice ortogonale