

Data Analytics

Portfolio Project-2

Prepared By: Syed Ali Rehan

PHASES OF ANALYSIS

Data Pre processing and Cleaning

Exploratory
Data Analysis
(EDA)

Hypothesis Testing

Regression Analysis

BEHAVIORAL RISK FACTOR SURVEILLANCE SYSTEM

- BRFSS is a nationwide health telephone survey system.
- It gathers data on health behaviors, chronic conditions, and preventive services usage.
- Established in 1984 with 15 states, it now covers all 50 states, D.C., and three territories.
- BRFSS conducts over 400,000 adult interviews annually, making it the world's largest continuous health survey system.

Over view of BRFSS Dataset?

RangeIndex: 401958 entries, 0 to 401957

Columns: 279 entries, _STATE to _AIDTST4

dtypes: float64(274), int64(5)

memory usage: 855.6 MB

In [270]:	df.h	nead()													
Out[270]:		_STATE	FMONTH	IDATE	IMONTH	IDAY	IYEAR	DISPCODE	SEQNO	_P\$U	CTELENM1	PVTRESD1	COLGHOUS	STATERE1	CELPHONE
	0	1.0	1.0	1042020	1	4	2020	1100.0	2020000001	2.020000e+09	1.0	1.0	NaN	1.0	2.0
	1	1.0	1.0	2072020	2	7	2020	1200.0	2020000002	2.020000e+09	1.0	1.0	NaN	1.0	2.0
	2	1.0	1.0	1232020	1	23	2020	1100.0	2020000003	2.020000e+09	1.0	1.0	NaN	1.0	2.0
	3	1.0	1.0	1092020	1	9	2020	1100.0	2020000004	2.020000e+09	1.0	1.0	NaN	1.0	2.0
	4	1.0	1.0	1042020	1	4	2020	1100.0	2020000005	2.020000e+09	1.0	1.0	NaN	1.0	2.0
	4														

In [270]: df.head()

Out[270]:

ORV	_RFMAM22	_MAM5023	_RFPAP35	_RFP\$A23	_CLNSCPY	_SGMSCPY	_SGMS10Y	_RFBLD\$4	_STOLDNA	_VIRCOLN	_SBONTIM	_CRCREC1	_AIDT\$T4
9.0	2.0	2.0	NaN	NaN	1.0	3.0	3.0	3.0	3.0	3.0	3.0	1.0	1.0
9.0	9.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	2.0	NaN	NaN
9.0	1.0	1.0	1.0	NaN	1.0	3.0	3.0	3.0	3.0	3.0	3.0	1.0	2.0
9.0	2.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	2.0
9.0	1.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	9.0
4													- N

Analyzing Stroke Risk Factors in the U.S. Using BRFSS Data: Implications for Public Health and Prevention

Public Health Significance: Stroke is a major public health concern in the U.S., making this analysis highly relevant.

Preventive Measures: Identifying stroke risk factors aids in developing targeted prevention strategies.

Healthcare Resource Allocation: Informs resource allocation for effective stroke prevention efforts.

At-Risk Populations: Identifies high-risk demographic groups for tailored interventions.

Healthcare Planning: Assists in healthcare planning for stroke patient needs.

Research Contribution: Adds to existing stroke risk factor research.

Improved Health Outcomes: Aims to reduce strokes, improving overall health and reducing healthcare costs.

STROKE

- A stroke, or brain attack, is an emergency where blood flow to the brain is blocked.
- The brain relies on constant oxygen and nutrient supply for proper function.
- Brief interruptions can cause brain cell death.
- Brain cell loss leads to functional impairment.
- Stroke can affect:
 - 1. Movement
 - 2.Speech
 - 3. Eating
 - 4. Thinking and memory
 - 5. Bodily functions
 - 6. Emotional control

RISK FACTORS

Non-modifiable Risk Factors:

- Age
- Gender
- Race

Modifiable Risk Factors:

- High Blood Pressure (Hypertension)
- Smoking:
- High Cholesterol:
- Diabetes:
- Obesity
- Physical In-activity
- Excessive Alcohol Consumption
- Heart Disease

Risk factors columns available:

Non-modifiable Factors

- 1) _AGE80 (ages in numbers)
- 2) _AGEG5YR (age groups)
- 3) _SEX (gender)
- 4) _IMPRACE (race)

Modifiable Factors

- 1) _SMOKER3 (smoking)
- 2) DIABETE4 (diabetes)
- 3) _RFBMI5 (obesity)
- 4) _TOTINDA (physical activity)
- 5) _RFDRHV7 (heavy drinker)
- 6) CVDINFR4 (heart attack)
- 7) CVDCRHD4 (angina or other CHD)

FACTORS ON INDIVIDUALS WITH A HISTORY OF STROKE

Stroke Risk by Age Groups

gender Percentage_of_Stroke Count Female 54.595905 8559 Male 45.404095 7118

race	Percentage_of_Stroke	Count
Alaskan	2.659948	417
Asian	1.135421	178
Black	10.837533	1699
Hispanic	5.109396	801
Other	4.229125	663
White	76.028577	11919

EFFECT OF MODIFIABLE RISK FACTORS ON INDIVIDUALS WITH A HISTORY OF STROKE

smoking_status	Percentage_of_Stroke	Count
EveryDay	13.829177	2168
NonSmoker	41.634241	6527
Former	35.051349	5495
SomeDay	4.847866	760

Stroke Risk by Diabetes Status

Stroke Risk by BMI Groups

bmi_groups	Percentage_of_Stroke	Count
Normal	26.235887	4113
OverWeight	65.860815	10325

heavy_drinker Percentage_of_Stroke Count

No

Yes

89.653633

3.891051

14055

610

heart_atta	ack Pe	ercentage_	of_	Stroke	Count
	No		71.	901512	11272
٧	/es		26.	561204	4164

HYPOTHESIS TESTING

REASON

CHI SQUARE

A statistical test used to determine if there is a significant association or relationship between two categorical variables in a dataset. Since all are variables of analysis are categorical therefore we have used chi square test to test the significance relationship between two variables

S THERE A RELATIONSHIP BETWEEN SMOKING STATUS AND THE OCCURRENCE OF HEART ATTACKS?

NULL - HYPOTHESIS (Ho)

Null Hypothesis (H0): There is no relationship between Smoking and Occurance of Heart Attack.

ALTERNATE - HYPOTHESIS (Ha)

Alternate Hypothesis (Ha): There is a significant relationship between Smoking and Occurance of Heart Attack.

INTERPRETATION

P-VALUE

The very low p-value (p = 0.0) indicates that the association between smoking status and the occurrence of heart attacks is statistically significant.

GRAPHICAL REPRESENTATION

NULL - HYPOTHESIS (Ho)

Null Hypothesis (H0): There is no association between Higer BMI group and prevelence of Diabetes.

ALTERNATE - HYPOTHESIS (Ha)

Alternate Hypothesis (Ha): There is a significant association between Higer BMI group and prevelence of Diabetes.

INTERPRETATION

The very low p-value (p = 0.0) indicates that the association between BMI group (Obese/Overweight) and the prevalence of diabetes is statistically significant.

GRAPHICAL REPRESENTATION

BMI_Groups Percentage_of_Diabetes Count
Normal 14.658902 8131
OverWeight 76.283623 42313

Distribution of diabetes_positive people with bmi_groups

IS THERE ANY ASSOCIATION BETWEEN PHYSICAL ACTIVITY AND THE LIKELIHOOD OF ANGINA OR CORONARY HEART DISEASE?

NULL - HYPOTHESIS (Ho)

There is no association between physical activity and the likelihood of angina or coronary heart disease?

HYPOTHESIS 3

ALTERNATE - HYPOTHESIS (Ha)

There is some association between physical activity and the likelihood of angina or coronary heart disease?

INTERPRETATION

P-VALUE

The very low p-value (p = 0.0) indicates that the association between physical activity and the likelihood of angina or coronary heart disease is statistically significant.

GRAPHICAL REPRESENTATION

Physical_Activity Percentage_of_Angina_CHD Count
PhysicallyActive 62.417028 14105
PhysicallyInactive 37.339588 8438

Distribution of Angina/CHD Positive People with Physical Activity

4000 - physical_activity

CONCLUSION

The implications of these findings underscore the importance of identifying and addressing these risk factors, as they are crucial in the development of effective stroke prevention strategies. Addressing modifiable risk factors becomes a key focus for improving public health outcomes related to stroke.

REGRESSION ANALYSIS

LOGISTICS REGRESSION

- Statistical method for modeling binary outcomes (yes/no or 0/1).
- Utilizes predictor variables to estimate the probability of a specific event.
- Determines the relationship between independent variables and event probability.

- Logistic regression was selected due to the binary nature of "stroke_status" (0 for "no" and 1 for "yes").
- It is well-suited for modeling binary outcomes, making it appropriate for studying the relationship with predictor variables.

LOGISTIC REGRESSION RESULTS

	coef	std err	Z	P> z	[0.025	0.975]
Intercept	-6.2293	0.095	-65.641	0.000	-6.415	-6.043
smoking_status[T.EveryDay]	0.6499	0.029	22.698	0.000	0.594	0.706
smoking_status[T.Former]	0.2160	0.021	10.457	0.000	0.175	0.256
smoking_status[T.SomeDay]	0.6666	0.044	15.227	0.000	0.581	0.752
race[T.Alaskan]	0.6033	0.101	6.003	0.000	0.406	0.800
race[T.Black]	0.6591	0.086	7.623	0.000	0.490	0.829
race[T.Hispanic]	0.0143	0.091	0.157	0.875	-0.164	0.193
race[T.Other]	0.5391	0.094	5.762	0.000	0.356	0.723
race[T.White]	0.1432	0.082	1.736	0.083	-0.018	0.305
diabetes_status[T.Diabetic]	0.5444	0.021	26.174	0.000	0.504	0.585
diabetes_status[T.PrgDiabetic]	0.2964	0.112	2.639	0.008	0.076	0.516
_Age	0.0437	0.001	58.520	0.000	0.042	0.045
heavy_drinker	-0.2621	0.045	-5.824	0.000	-0.350	-0.174
heart_attack	1.3733	0.022	61.386	0.000	1.329	1.417
physical_activity	-0.4197	0.019	-21.850	0.000	-0.457	-0.382

SOME ITERATIONS

	coef	std err	Z	P> z	[0.025	0.975]
Intercept	-7.0280	0.095	-74.208	0.000	-7.214	-6.842
gender[T.Male]	-0.0003	0.018	-0.017	0.987	-0.036	0.036
smoking_status[T.EveryDay]	0.8598	0.028	30.797	0.000	0.805	0.915
smoking_status[T.Former]	0.3205	0.020	15.728	0.000	0.281	0.360
smoking_status[T.SomeDay]	0.8441	0.043	19.658	0.000	0.760	0.928
race[T.Alaskan]	0.7133	0.100	7.166	0.000	0.518	0.908
race[T.Black]	0.6874	0.086	7.975	0.000	0.518	0.856
race[T.Hispanic]	0.1017	0.091	1.120	0.263	-0.076	0.280
race[T.Other]	0.6137	0.093	6.600	0.000	0.431	0.796
race[T.White]	0.1990	0.082	2.422	0.015	0.038	0.360
diabetes_status[T.Diabetic]	0.7389	0.020	36.275	0.000	0.699	0.779
diabetes_status[T.PrgDiabetic]	0.3117	0.111	2.797	0.005	0.093	0.530
_Age	0.0511	0.001	68.682	0.000	0.050	0.053
bmi_groups	0.0946	0.020	4.613	0.000	0.054	0.135
heavy_drinker	-0.3236	0.045	-7.257	0.000	-0.411	-0.236

	coef	std err	Z	P> z	[0.025	0.975]
Intercept	-6.2583	0.096	-65.091	0.000	-6.447	-6.070
smoking_status[T.EveryDay]	0.6539	0.029	22.778	0.000	0.598	0.710
smoking_status[T.Former]	0.2148	0.021	10.396	0.000	0.174	0.255
smoking_status[T.SomeDay]	0.6704	0.044	15.297	0.000	0.584	0.756
race[T.Alaskan]	0.5937	0.101	5.900	0.000	0.396	0.791
race[T.Black]	0.6484	0.087	7.484	0.000	0.479	0.818
race[T.Hispanic]	0.0053	0.091	0.058	0.953	-0.174	0.184
race[T.Other]	0.5296	0.094	5.652	0.000	0.346	0.713
race[T.White]	0.1343	0.083	1.626	0.104	-0.028	0.296
diabetes_status[T.Diabetic]	0.5376	0.021	25.488	0.000	0.496	0.579
diabetes_status[T.PrgDiabetic]	0.2981	0.112	2.654	0.008	0.078	0.518
_Age	0.0439	0.001	58.325	0.000	0.042	0.045
bmi_groups	0.0398	0.021	1.923	0.055	-0.001	0.080
heavy_drinker	-0.2603	0.045	-5.785	0.000	-0.349	-0.172
heart_attack	1.3723	0.022	61.330	0.000	1.328	1.416
physical_activity	-0.4170	0.019	-21.662	0.000	-0.455	-0.379

Covariates	Log Odds		Interpretation				
	Odds	Ratio					
Intercept	-6.258	0.002	The baseline odds of having a stroke when all predictors are at their reference				
			levels is about 0.002				
smoking_status[T.EveryDay]	0.6539	1.92	Every day smokers have about 1.92 higher odds of having a stroke compared to the non smokers				
smoking_status[T.Former]	0.2148	1.24	Former smokers have about 1.24 higher odds of having a stroke compared to the non smokers				
smoking_status[T.SomeDay]	0.6704	1.96	Some day smokers have about 1.96 higher odds of having a stroke compared to the non smokers				
race[T.Alaskan]	0.5937	1.81	Alaskans have about 1.81 higher odds of having a stroke compared to Asians				
race[T.Black]	0.6484	1.91	Black people have about 1.91 higher odds of having a stroke compared to Asians				
race[T.Hispanic]	0.0053	1.01	Hispanic people have about 1.01 higher odds of having a stroke compared to Asians				
race[T.White]	0.5296	1.7	White people have about 1.7 higher odds of having a stroke compared to Asians				
race[T.Other]	0.1343	1.14	Races other than mentioned have about 1.343 higher odds of having a stroke compared to Asians				
diabetes_status[T.Diabetic]	0.5376	1.7	Diabetic individuals have about 1.7 higher odds of having a stroke compared to Non-diabetic individuals				
diabetes_status[T.PrgDiabetic]	0.2981	1.35	Diabetic Pregnant Women have about 1.35 higher odds of having a stroke compared to Non-diabetic individuals				
_Age	0.0439	1.04	For every one year age increase the odds of having a stroke increase by 1.04				
heavy_drinker	-0.2603	0.77	Heavy drinkers have about 1.04 lower odds of having a stroke compared to individuals that are not heavy drinkers				
heart_attack	1.3723	3.94	Individuals that had Heart attack have about 3.94 higher odds of having a stroke compared to individuals that didn't have Heart attack				
physical_activity	-0.417	0.66	Physically active Individuals have about 0.66 lower odds of having a stroke compared to physically inactive individuals				

THANKYOU FOR YOUR ATTENTION

