Planejamento Dinâmico de Rotas para VANTs em Patrulha Naval

Luiz Henrique Souza Caldas¹, Daniel Ratton Figueiredo¹

¹Programa de Engenharia de Sistemas e Computação (PESC) Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia (COPPE) Universidade Federal do Rio de Janeiro (UFRJ)

lhscaldas@cos.ufrj.br, daniel@cos.ufrj.br

Resumo. Este trabalho apresenta uma abordagem de planejamento dinâmico de rotas para VANTs em patrulhas navais, considerando a detecção progressiva de alvos ao longo da missão. São comparadas três políticas de navegação: passiva, com rota fixa; greed, que prioriza alvos próximos; e Simulated Annealing, que utiliza amostragem estocástica para otimizar a ordem de visita. As simulações, conduzidas em ambiente modular com geração aleatória de navios, avaliam métricas como distância percorrida, taxa de detecção e tempo de execução. Os resultados mostram que, embora a política Simulated Annealing obtenha melhor desempenho com poucos navios, a greed é mais eficiente computacionalmente e mais adequada para replanejamentos em tempo real.

1. Introdução

O uso de Veículos Aéreos Não Tripulados (VANTs) em operações de vigilância marítima tem se expandido significativamente, impulsionado por desafios associados à extensão da costa brasileira e à importância estratégica de suas águas jurisdicionais, que concentram a maior parte do comércio exterior e das reservas nacionais de petróleo e gás natural [Andrade et al. 2021]. Esses cenários exigem métodos eficientes de planejamento de rotas, sobretudo quando os alvos são parcialmente conhecidos e os sensores têm capacidades limitadas.

A tarefa pode ser modelada como uma variação do Problema do Caixeiro Viajante (TSP), incorporando restrições operacionais como autonomia limitada, sensores de diferentes alcances e alvos móveis ou parcialmente observáveis [Marlow et al. 2007]. Técnicas como o *Simulated Annealing* têm mostrado bom desempenho em problemas de roteamento com múltiplos mínimos locais, sendo úteis para o replanejamento dinâmico [Kosmas and Vlachos 2012]. Abordagens mais recentes propõem replanejamento em tempo real com base em dados sensoriais para garantir cobertura progressiva de alvos não detectados [Penicka et al. 2017].

Este trabalho propõe uma abordagem baseada em TSP adaptado para patrulha marítima com inserção progressiva de novos alvos detectados durante a missão, respeitando as limitações operacionais do VANT e explorando estratégias de navegação dinâmicas.

Figura 1. Patrulha naval realizada por aeronave.

Fonte: [Marlow et al. 2007].

2. Objetivo

O objetivo deste trabalho é desenvolver uma metodologia para o planejamento dinâmico de rotas de VANTs em missões de vigilância marítima, considerando a detecção progressiva de alvos ao longo do percurso. A proposta visa adaptar o Problema do Caixeiro Viajante (TSP) a um contexto em que novos pontos de interesse são identificados durante a missão. A solução deve permitir o replanejamento eficiente da rota, de forma a maximizar a inspeção de alvos relevantes, respeitando os limites de autonomia da aeronave.

3. Metodologia

A abordagem proposta consiste em simular missões de vigilância marítima com Veículos Aéreos Não Tripulados (VANTs) que percorrem rotas pré-definidas compostas por linhas paralelas, geradas a partir de parâmetros como ponto inicial, largura da área, espaçamento entre linhas e número de passagens.

Durante o voo, o VANT utiliza dois sensores: um radar com alcance de 50 milhas náuticas (MN), que detecta navios, e uma câmera de inspeção visual com alcance de 20 MN, que confirma sua identificação. Um navio detectado pelo radar tem seu estado atualizado para "detectado", e se estiver ao alcance da câmera, passa a ser "inspecionado".

A cada passo da missão, o VANT atualiza sua rota com base em uma das seguintes políticas de decisão:

- **Política passiva**: mantém a rota original, inspecionando apenas os navios que entram no alcance da câmera sem alterar o trajeto.
- **Política** *greed*: reordena dinamicamente os waypoints restantes e os navios detectados, priorizando os mais próximos da posição atual do VANT.
- **Política** *simulated annealing*: aplica uma técnica estocástica baseada em *Markov Chain Monte Carlo (MCMC)* para buscar uma sequência de visita aos waypoints restantes e aos navios detectados mais eficiente em termos de distância.

O algoritmo de *Simulated Annealing* inicia com uma permutação aleatória dos navios detectados e waypoints remanescentes. Em cada iteração, uma nova rota é gerada invertendo a ordem de um subintervalo da rota atual, escolhendo dois pontos da rota atual de forma uniforme e invertendo a ordem dos pontos entre eles. O espaço de soluções é representado por um grafo conexo, onde vértices são permutações possíveis e arestas conectam soluções que diferem por uma inversão, formando uma cadeia de Markov irredutível, aperiódica e simétrica.

A nova rota s' é aceita se sua distância total f(s') for menor que a atual f(s); caso contrário, ainda pode ser aceita com probabilidade $e^{-\frac{f(s')-f(s)}{T}}$, onde T é a temperatura. Esse mecanismo permite explorar soluções subótimas no início do processo, ajudando a escapar de mínimos locais.

A temperatura T decresce exponencialmente segundo $T=T_0\cdot \beta^t$, com T_0 como temperatura inicial, β como fator de decaimento $(0<\beta<1)$ e t representando a iteração atual. A cada nível de temperatura, são realizadas N perturbações, salvando-se a melhor rota encontrada até então. O algoritmo retorna a melhor solução global observada, não necessariamente a última.

Assume-se que os navios estejam estáticos durante a simulação, dada a alta velocidade do VANT. A missão termina quando a autonomia é atingida ou não restam destinos a visitar. Dados como número de alvos detectados e inspecionados, distância percorrida e tempo de execução são registrados ao final da simulação.

4. Resultados

Nesta seção, comparam-se as políticas de navegação passiva, *greed* e *simulated annealing*, com base em simulações onde o VANT percorre uma trajetória sistemática sobre a área de interesse (AI), sendo redirecionado conforme a política adotada e os alvos detectados.

4.1. Valores de Entrada

As simulações consideram os seguintes parâmetros:

- Área de interesse: 300 × 300 MN
- Velocidade do VANT: 300 nós
- Alcance dos sensores: radar (50 MN), câmera (20 MN)
- Autonomia do VANT: 2400 MN
- Quantidade de navios: 10 a 200 (incrementos de 25)
- Distribuição dos navios: aleatória e estática

Parâmetros específicos do Simulated Annealing:

- $T_0 = 10.0, T_{\min} = 10^{-4}$
- Fator de resfriamento: $\beta = 0.90$
- Perturbações por temperatura: 50

Cada cenário é repetido 100 vezes para as 3 políticas e 9 níveis de densidade, totalizando 2700 simulações. Os resultados são apresentados como médias, em valores absolutos (ex: distância e tempo) ou percentuais (ex: taxa de detecção/inspeção), conforme o caso.

4.2. Ambiente de Simulação

A simulação foi implementada com dois módulos principais: AmbienteMaritimo, que gera o cenário e os navios aleatoriamente, e VANT, que modela a trajetória, sensores e política de navegação da aeronave. Essa separação facilita a manutenção e extensibilidade do sistema.

A cada passo, o VANT realiza duas ações: movimenta-se em direção ao próximo ponto definido pela política de navegação (respeitando sua velocidade e autonomia), e executa a varredura sensorial. Se o deslocamento previsto exceder a autonomia restante, a simulação é encerrada.

Em seguida, o VANT verifica a presença de navios nos raios do radar (50 MN) e da câmera (20 MN). O estado de um navio é atualizado de *nao_detectado* para *detectado* ao entrar no alcance do radar, e para *inspecionado* quando também estiver ao alcance da câmera.

A política de navegação define como os pontos (navios detectados e waypoints remanescentes) são ordenados. A política *passiva* segue a rota fixa; a *greed* prioriza os pontos mais próximos; e a *Simulated Annealing* aplica uma metaheurística para minimizar a distância total. A política é avaliada dinamicamente, permitindo que o VANT ajuste sua rota conforme novos alvos são descobertos

4.3. Distância Percorrida

A Figura 2 mostra a média da distância total percorrida pelo VANT conforme a política de navegação e a quantidade de navios. A política *passiva* mantém uma trajetória fixa, enquanto *greed* e *Simulated Annealing* aumentam a distância percorrida à medida que mais navios são introduzidos.

Figura 2. Média da distância percorrida por política e quantidade de navios.

A partir de 100 navios, ambas as políticas ativas atingem o limite de autonomia do VANT. Antes disso, *Simulated Annealing* apresenta menor distância média que *greed*, indicando trajetórias mais eficientes.

4.4. Detecção de Navios

A Figura 3 apresenta a média percentual de navios detectados ao longo da missão, considerando aqueles identificados pelo radar ao menos uma vez. A política *passiva* mantém uma taxa de detecção quase constante e, na maioria dos cenários, superior às demais, exceto entre 50 e 125 navios, onde há um cruzamento temporário de desempenho.

Figura 3. Média percentual de navios detectados por política e quantidade de navios.

Esse desempenho da política *passiva* se deve ao fato de ela cobrir toda a área de interesse, maximizando as chances de detecção por radar. Já *greed* e *Simulated Annealing* têm desempenho similar até 75 navios, mas em cenários mais densos a *greed* tende a detectar mais. A queda geral de desempenho dessas políticas a partir de 100 navios está ligada à limitação de autonomia do VANT, conforme indicado na Figura 2.

4.5. Inspeção de Navios

A Figura 4 mostra a média percentual de navios inspecionados em função da quantidade de navios no cenário. A política *passiva* apresenta taxas significativamente inferiores às de *greed* e *Simulated Annealing*, como esperado, por não desviar da rota para confirmar alvos detectados.

Figura 4. Média percentual de navios inspecionados por política e quantidade de navios.

As políticas ativas têm desempenho semelhante até 75 navios. Em cenários mais densos, *greed* tende a inspecionar mais. A queda nas taxas médias deve-se à limitação de autonomia do VANT, que encerra a missão antes de visitar todos os alvos.

4.6. Tempo de Execução

A Figura 5 mostra o tempo médio de execução das simulações para cada política, em função do número de navios no cenário. A política *Simulated Annealing* apresenta tempo crescente, enquanto *passiva* e *greed* mantêm tempos quase constantes e significativamente menores.

Figura 5. Tempo médio de execução da simulação por política e quantidade de navios.

O tempo da política *Simulated Annealing* cresce linearmente com o número de navios, pois a cada iteração (controlada por T_0 , T_{\min} , β e número de perturbações), calcula-se o custo da rota com complexidade O(n), onde n é o total de pontos a visitar.

A política *greed* também cresce linearmente, pois em cada passo calcula distâncias (O(n)) e ordena os candidatos $(O(n \log n))$. No entanto, os tempos absolutos são muito menores (entre 0,01 e 0,09 segundos), o que faz o gráfico aparentar comportamento constante.

4.7. Comparação Visual das Trajetórias

A Figura 6 mostra os resultados das simulações com 50 navios para as três políticas de navegação. Cada subfigura exibe os waypoints paralelos, a trajetória real do VANT e os navios inspecionados, ilustrando como cada política ajusta o percurso durante o voo.

Figura 6. Trajetória do VANT para as três políticas de navegação (50 navios).

Na política *passiva*, o VANT segue rigorosamente a rota de referência. Na *greed*, ele desvia para inspecionar os alvos mais próximos, resultando em uma trajetória mais adaptativa, porém com sobreposição de caminhos. Já na *Simulated Annealing*, a rota também é ajustada, mas de forma mais otimizada, minimizando a distância e evitando cruzamentos. Isso indica maior eficiência da política estocástica em termos de percurso.

5. Conclusão

Este trabalho apresentou uma abordagem de planejamento dinâmico de rotas para VANTs em patrulhas navais, com inserção progressiva de alvos detectados durante o voo. Foram comparadas três políticas de navegação: *passiva* (rota fixa), *greed* (priorização por proximidade) e *Simulated Annealing* (otimização estocástica da sequência de visita). As simulações avaliaram diferentes densidades de navios, considerando métricas como distância percorrida, cobertura e tempo de execução.

A política *greed* obteve melhor desempenho geral, especialmente em cenários com mais de 75 navios, combinando bons resultados com baixo custo computacional. Já o *Simulated Annealing* mostrou vantagens em cenários menos densos. Em ambientes mais carregados, a limitação de autonomia do VANT reduziu a eficácia das estratégias ativas.

Como trabalhos futuros, propõe-se: (i) incorporar dinâmica realista do VANT, com restrições de manobra e aceleração; (ii) permitir movimento dos navios; (iii) paralelizar simulação e otimização para replanejamento em tempo real; (iv) investigar funções de custo mais elaboradas, que penalizem cruzamentos de trajetória, priorizem alvos relevantes e equilibrem cobertura com eficiência de percurso. Tais avanços podem tornar a abordagem mais aplicável a cenários operacionais reais.

Referências

- Andrade, I. d. O., Rocha, A. J. R. d., and Franco, L. G. A. (2021). Blue amazon management system (sisgaaz): Sovereignty, surveillance and defense of the brazilian jurisdictional waters. Discussion Paper 261, Institute for Applied Economic Research (Ipea), Brasília.
- Kosmas, O. and Vlachos, D. (2012). Simulated annealing for optimal ship routing. *Computers & Operations Research*, 39(3):576–581.
- Marlow, D., Kilby, P., and Mercer, G. (2007). The travelling salesman problem in maritime surveillance: Techniques, algorithms and analysis. *Defence Science and Technology Organisation (DSTO), Australia*.
- Penicka, R., Saska, M., Reymann, C., and Lacroix, S. (2017). Reactive dubins traveling salesman problem for replanning of information gathering by uavs. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 1433–1440. IEEE.