Multiple Heterogeneous Vehicle Routing Problem allowing Simultaneous Delivery and Pick-up from Single Depot while minimizing the Distance travelled by all vehicles to complete the entire operation

March 3, 2022

Proof of the 3rd constraint

1. The transformation of the third formulation as illustrated by Mustafa Avci and Seyda Topaloglu is shown below:-

This has been done to remove a third variable being used by them Ensures that each customer is visited and left by the same vehicle [As per Mustafa Avci et. al.]

$$\sum_{i \in N_0} x_{ipk} - \sum_{j \in N_0} x_{pjk} = 0 \qquad \forall k \in VN \quad \& \quad \forall p \in N_0$$

$$\sum_{j \in N_0} x_{jpk} - \sum_{j \in N_0} x_{pjk} = 0 \qquad \forall k \in VN \quad \& \quad \forall p \in N_0$$

$$\sum_{j \in N_0} (x_{jpk} - x_{pjk}) = 0 \qquad \forall k \in VN \quad \& \quad \forall p \in N_0$$

$$\sum_{j \in N_0} (x_{jik} - x_{ijk}) = 0 \qquad \forall k \in VN \quad \& \quad \forall i \in N_0$$

Ensuring the same number of each type of vehicles entering any node also leaves it [As per present formulation being considered which is identical apart from the fact that the set of Vehicles is replaced by the set of Vehicle types]

$$\sum_{j \in N_0} (x_{ijk} - x_{jik}) = 0 \qquad \forall k \in VT \& \forall i \in N_0$$