

Entwicklung eines Systems zur Sprungerkennung mittels ESP32-WROOM und ADXL345

Warum dieses Projekt?

- Herausforderung:
 - Automatische Sprungerkennung für interaktive Anwendungen
 - Realisierung einer einfachen Verbindung zwischen Hardware und Software
- Ziel:
 - Erkennung eines Sprungereignisses mittels ESP32-WROOM und ADXL345 und Simulation eines Tastendrucks der Leertaste zur Steuerung eines einfachen Spiels

Systemarchitektur

- Powerbank: Liefert Stromversorgung f
 ür ESP32-WROOM und ADXL345.
- Sensor (ADXL345): Misst die Beschleunigung.
- ESP32-WROOM: Analysiert die Daten und erkennt Sprünge mithilfe eines Schwellenwertes.
- Lautsprecher (Piezo-Speaker 16R): Gibt auditives Feedback bei Kalibrierung und Sprünge.
- Bluetooth-Kommunikation: Sendet "Sprung"-Signale an den Laptop.
- Laptop: Simuliert das Drücken der Leertaste mittels Python-Bibliothek.
- Spiel: Reagiert auf (simulierten) Tastendruck der Leertaste und lässt den Dino springen.

Systemarchitektur

Komponentendiagramm

Herausforderungen

- Herausforderungen:
 - Zuverlässige Schwellenwertbestimmung
 - Verzögerung
- Lösungen:
 - Schwellenwertbestimmung mittels fünf Kalibriersprüngen
 - Testungen mit verschiedenen Softwarestrukturen

Fazit & Ausblick

- Fazit:
 - Erfolgreiche Integration von Hardware und Software
 - Effiziente Sprungerkennung für interaktive Anwendungen
- Ausblick:
 - Verbesserung der Sensorgenauigkeit
 - Minimierung der Verzögerung
 - Integration von Doppelsprüngen ("Leertaste gedrückt halten")
 - Ducken (Vögel im Spiel)
 - Optimierung Gehäuse
 - Auf Anwendung des Steckbretts verzichten (Gehäuse verkleinern) & direkte Verbindungen löten

VIELEN DANK FÜR IHRE AUFMERKSAMKEIT!

