Quantum Error Correction

Particles, Fields, and Quanta Spring 2022

Nitesh Khatiwada

April 25, 2022

Jacobs University Bremen

Motivation

Scott E. Thompson. Moore's Law. 2006. Materials Today
Nelson J Gaspard III. Single-Event Upset Technology Scaling Trends.. 2017. Vanderbilt University PhD Thesis

Motivation

- → Current day microscale-devices error rates < 1%
- → Current day <u>nanonscale</u> devices error rates as high as 10%

Problem:

Energetic particles creating bit flip or voltage spike (Single Event Update)

D. Binder, E. C. Smith and A. B. Holman. Satellite Anomalies from Galactic Cosmic Rays. 1975. IEEE

Classical Solution

Repetition: make redundant copies of the original

Hamming: parity check, less redundant bits

Hamming (7,4) code¹

¹Hamming (7,4). *User: Churnett*, Wikipedia. CC-BY

Application in Quantum Information Theory

- → Quantum systems are sensitive: *Decoherence*
- → Today's Noisy Intermediate Scale Quantum (NISQ) era quantum computers, capable of only 50-100 qubits ¹, are not suitable to implement algorithms like Shor's to break RSA encryption.²

¹John Preskill. Quantum Computing in the NISQ Era and Beyond. 2018. *Quantum 2, 79*

²Frank Leymann and Johanna Barzen. 2020. *Quantum Sci. Technol.* 5 044007

Problems in Quantum Regime

Fundamental Problems

→ No Cloning

$$|\psi\rangle\otimes|0\rangle\not\rightarrow|\psi\rangle\otimes|\psi\rangle$$

→ Heisenberg Uncertainty Principle

Unknown quantum state cannot be completely measured, and if you measure the error, you disturb the state of the system.

Technical Problem

Requires 10-100 physical qubits to encode one fault tolerant qubit¹

¹Shalini Ghosh. Low Density Parity Check Codes for Error Correction in Nanoscale Memory. 2007. Computer Science

Quantum Error Correcting Codes

Error Correcting Codes

- → 3-qubit code
- → 9-qubit code
- → Quantum Hamming Code
- → Schrödinger Cat Code

Further

- → LDPC code (small parity check)
- → Topological quantum computation

Future in Quantum Error Correction

