Lifestyle Importance Weighted Carbon Footprint Reduction

Karl Roush Georgia Institute of Technology, AE 2020

Wells Fargo Campus Analytics Challenge

SOLUTION

- Objective
- Initial analysis vs. Machine Learning

PROCESS

- Data extraction
- Analysis (Initial & ML selection)

COMPARISONS

- Initial analysis vs. Machine Learning
- Insights

CONCLUDING REMARKS

- Deployment
- Future recomendations
- * Additional Insights

Q & A

Objective

"to create a machine learning algorithm that minimizes carbon footprint for each customer while maintaining their total quality of life".

- ▶ Define Carbon Footprint (**CFP**) as non-dimensional parameter
 - ▶ Sum of [Activity duration * weight of activity] for all activities
 - ► Higher number is worse
- ▶ Quality of life (**QoLI**) is correlated to importance
 - ▶ Represented as a percentage of importance
 - ▶ Preserve this number as much as possible for each activity

Solution

- Initial analysis produced mathematical model
 - Weights each activity duration by importance
 - ► Allow for duration to be "in line" with importance
- ► Machine learning model: SVM
 - ► Tested 6 different models to subset
 - ► Compared based on accuracy & stdev
- Results
 - ► Average CFP reduction of 26.16%
 - ightharpoonup ML model = 98.55% accuracy
 - ► Underestimate by 0.0145

Data extraction

Missing Values

- ► Created index of QoLI and consumption
- ▶ Allows for easier ref. and measures of central tendancy
- ▶ Replaced missing values with median value from index
- ▶ Replacing with zero makes too many assumptions

QoLI

- ► Given as number with no context
- ► Assumed relative percentage
- ► Converted to decimal

```
93 def activity2num(activity):
94    return {
95         'Household heating => 70F': 1,
96         'Household heating < 70F': 2,
97         'Use of heat pump':3,
98         #...
99         'hazardous or electric items disposed':26,
100         'large items disposed':27,
101     }[activity]
```

Shortened index for referencing activities

Analysis

Initial Analysis

$$Total\ \mathit{CFP} = \sum_{activities} dur * \frac{importance}{100} * specific\ \mathit{CFP}$$

- ▶ Need bound since lowest CFP is zero
- ▶ Weights each activity duration by importance
- ▶ Allow for duration to be "in line" with importance

Machine Learning models

- ► To be compared based on accuracy & standard deviation on subset
- ► Tested:
 - ► Logistic regression
 - ► Linear discriminant analysis
 - ► K-nearest neighbors
 - Decision Tree
 - ► Gaussian Naive Bayes
 - **▶** Support vector machine

Model	Accuracy	Standard Dev.
LR	0.966667	0.040825
LDA	0.975000	0.038188
KNN	0.983333	0.033333
DT	0.975000	0.038188
GNB	0.975000	0.053359
SVM	0.991667	0.025000

Accuracy and Standard Deviation Results from initial 10-fold cross, by algorithm

Comparisons

ML vs initial model

- ▶ Difference (ML-model) between the two output datasets was -1.45%
- ► Accuracy= 98.55%
- ▶ ML often underestimated the minimum CFP for an individual by about 0.0145.

Insights

Activities

- ▶ Showering, heating, and transportation are the most valued
- ▶ "air travel- small plane" and "oven self-clean" have relatively low importance
 - ► High CFP impact → prime target for reducing individual's total CFP

Overall drastic change between initial CFP and minimized CFP, average of 26.16%

Median Importance by Activity

Individual Awareness

- Provide an online calculator
- Gives people an idea of what their CFP actually is

Comparison

- Demonstrate comparisons
- Household water usage example

Future recommendations

- More custom algorithm, tailored exclusively for this task
- More training data
- "What happened after" analysis

Figure 4: Per capita lifestyle consumption emissions in G20 countries for which data is available

Q & A

CFP by Model

Median Importance by Activity

