Aprendizado de Máquina – IMD1101

Aula 08 – Aprendizado Supervisionado de Máquina 01

☐ Como treinar e testar os algoritmos?

Treinamento

O que se busca alcançar com treinamento?

Generalização: a habilidade de classificar padrões de teste que não foram utilizados durante o treinamento.

- Validação cruzada: é uma técnica para avaliar a capacidade de generalização de um modelo, a partir de um conjunto de dados.
- Empregada em problemas de predição.
- Busca-se então estimar o quão acurado é este modelo na prática, ou seja, o seu desempenho para um novo conjunto de dados.
- ☐ Particiona-se o conjunto de dados em subconjuntos mutualmente exclusivos. Formas: *holdout* e *k-fold*.

- Método holdout: consiste em dividir o conjunto total de dados em dois subconjuntos mutuamente exclusivos, um para treinamento e outro para teste (validação).
- O conjunto de dados pode ser **separado** em **quantidades** iguais ou não. É possível ter 2/3 dos dados para **treinamento** e o 1/3 restante para **teste**.
- Esta abordagem é indicada para grande quantidade de dados. Quando o conjunto é pequeno, o erro calculado na predição pode sofrer muita variação.

- ☐ **Método k-fold**: consiste em dividir o conjunto total de dados em *k* subconjuntos mutuamente exclusivos do mesmo tamanho.
- Um subconjunto é utilizado para teste e os *k* 1 restantes são utilizados para estimação dos parâmetros e calcula-se a acurácia do modelo.

Holdout

 \square Exemplo 2/3 - 1/3:

Training

N#	preg	plasma	pressure	skin	insulin	mass	pedigree	age	class		
2	3	126	88	41	235	39,3	0,704	27	tested_negative		
4	0	137	40	35	168	43,1	2,288	33	tested_positive		
5	3	78	50	32	88	31,0	0,248	26	tested_positive		
6	2	197	70	45	543	30,5	0,158	53	tested_positive		
7	11	143	94	33	146	36,6	0,254	51	tested_positive		
8	10	125	70	26	115	31,1	0,205	41	tested_positive		
9	13	145	82	19	110	22,2	0,245	57	tested_negative		
11	5	166	72	19	175	25,8	0,587	51	tested_positive		
13	1	103	30	38	83	43,3	0,183	33	tested_negative		
15	3	126	88	41	235	39,3	0,704	27	tested_negative		
				Modelo	output						
1	1	115	70	30	96	34,6	0,529	32	?		
3	1	89	66	23	94	28,1	0,167	21	?		
10	1	189			846		0,398	59			
12	0	118	84	47	230	45,8	0,551	31	?		
1/1	1	115	70	20	06	246	0.520	22)		

k-fold

☐ Exemplo (5-fold):

Training

N#	preg	plasma	pressure	skin	insulin	mass	pedigree	age	class	
1	1	115	70	30	96	34,6	0,529	32	tested_negative	
2	3	126	88	41	235	39,3	0,704	27	tested_negative	
4	0	137	40	35	168	43,1	2,288	33	tested_positive	
5	3	78	50	32	88	31,0	0,248	26	tested_positive	
6	2	197	70	45	543	30,5	0,158	53	tested_positive	
7	11	143	94	33	146	36,6	0,254	51	tested_positive	
8	10	125	70	26	115	31,1	0,205	41	tested_positive	
9	13	145	82	19	110	22,2	0,245	57	tested_negative	
11	5	166	72	19	175	25,8	0,587	51	tested_positive	
12	0	118	84	47	230	45,8	0,551	31	tested_positive	
13	1	103	30	38	83	43,3	0,183	33	tested_negative	
15	3	126	88	41	235	39,3	0,704	27	tested_negative	Modelo outpu
3	1	89	66	23	94	28,1	0,167	21	?] T
10	1	189	60	23	846	30,1	0,398	59	?	
14	1	115	70	30	96	34,6	0,529	32	?	

O que é Classificação?

http://www.ime.unicamp.br/~wanderson/Aulas/

Onde aplicar Classificação?

- Classificar tumores como benigno ou maligno.
- Classificar transações de cartão de crédito como legítima ou fraudulenta.
- Classificar estruturas secundárias de proteínas como *alpha-helix*, *beta-sheet* ou *random coil*.
- Avaliar riscos de empréstimos, previsão de tempo, etc.
- Sistema de alerta de geada.
- Qualquer sistema que tome decisão.

Boas Características - Classificador

- Precisão
- Velocidade
 - * Tempo para construir o modelo.
 - * Tempo para usar o modelo.
- Robustez
 - * Capacidade de lidar com ruídos e valores faltantes (missing).
- Escalabilidade
 - * Eficiência em banco de dados residentes em disco.
- Interpretabilidade
 - Clareza fornecida pelo modelo.

http://www.saedsayad.com/k nearest neighbors.htm

- Algoritmo de aprendizado mais simples.
- Algoritmo baseado em Instâncias.
- Este algoritmo supõe que todos os padrões (instâncias) são pontos no espaço n-dimensional Rⁿ.
- Os vizinhos mais próximos de um padrão são definidos em termos da distância Euclidiana.
- A regra dos vizinhos mais próximos: classificar um ponto x atribuindo a ele o rótulo mais frequente dentre as k amostras mais próximas (esquema de votação).

☐ Vamos considerar uma instância arbitrária *x* que é descrita pelo vetor de características:

$$x = \langle a_1(x), a_2(x), ..., a_n(x) \rangle$$

onde $a_r(x)$ representa o valor do r-ésimo atributo da instância x.

http://www.ppgia.pucpr.br/~alekoe/AM/2013/

Então a distância Euclidiana entre duas instâncias x_i e x_j é definida como $d(x_i, x_i)$, onde:

$$d(x_i, x_j) \equiv \sqrt{\sum_{r=1}^n \left(a_r(x_i) - a_r(x_j)\right)^2}$$

- ☐ Algoritmo de Treinamento:
 - Não há um treinamento explícito.
 - Classificam exemplos nunca vistos por meio de exemplos similares conhecidos.
 - Os próprios padrões são utilizados como base para a resposta do k-NN.
 - Método é denominado de *lazy*, pois necessitam manter os exemplos na memória para classificar novos exemplos.
- \square Para cada padrão de treinamento $\langle \mathbf{x}.f(\mathbf{x}) \rangle$, faça:
 - Adicione o exemplo a lista de exemplos_de_treinamento.

- Algoritmo de Classificação:
 - ullet Dado um padrão (instância) de consulta ${\it x_q}$ a ser classificado.
 - Seja x1, ..., x_k as k instâncias (padrões) do exemplos_de_treinamento que são mais próximos a x_q .
 - Retorne a classe mais comum entre os vizinhos.

☐ Um exemplo:

# Inst	Attr 1	Attr 2	Att 3	Class
1	0,50	0,80	0,90	A
2	0,40	0,50	0,40	В
3	0,20	0,50	0,15	С
4	0,50	0,40	0,60	В
5	0,80	0,75	0,87	A

- Dado um exemplo: (0.67;0.75;0.58), é fornecido que k=3.
- A qual classe este padrão pertence?

Para os cinco padrões ficaria:

$$1:\sqrt{(0.5-0.67)^2 + (0.8-0.75)^2 + (0.9-0.58)^2} = \sqrt{0.0289 + 0.025 + 0.1024} = \sqrt{0.1338 + 0.37}$$

$$2:\sqrt{(0.4-0.67)^2 + (0.5-0.75)^2 + (0.4-0.58)^2} = \sqrt{0.0729 + 0.0625 + 0.0324} = \sqrt{0.1678} = 0.41$$

$$3:\sqrt{(0.2-0.67)^2 + (0.5-0.75)^2 + (0.15-0.58)^2} = \sqrt{0.2209 + 0.2025 + 0.1849} = \sqrt{0.6083} = 0.68$$

$$4:\sqrt{(0.5-0.67)^2 + (0.4-0.75)^2 + (0.6-0.58)^2} = \sqrt{0.0289 + 0.1225 + 0.0004} = \sqrt{0.1518 + 0.39}$$

$$5:\sqrt{(0.8-0.67)^2 + (0.75-0.75)^2 + (0.87-0.58)^2} = \sqrt{0.0169 + 0 + 0.0841} = \sqrt{0.101} = 0.32$$

Os três vizinhos mais próximos

Para os cinco padrões ficaria:

$$1:\sqrt{(0.5-0.67)^2+(0.8-0.75)^2+(0.9-0.58)^2}=\sqrt{0.0289+0.025+0.1024}=\sqrt{0.1338}=0.37$$

$$2:\sqrt{(0.4-0.67)^2+(0.5-0.75)^2+(0.4-0.58)^2}=\sqrt{0.0729+0.0625+0.0324}=\sqrt{0.1678}=0.41$$

$$3:\sqrt{(0.2-0.67)^2+(0.5-0.75)^2+(0.15-0.58)^2}=\sqrt{0.2209+0.2025+0.1849}=\sqrt{0.6083}=0.68$$

$$4:\sqrt{(0.5-0.67)^2+(0.4-0.75)^2+(0.6-0.58)^2}=\sqrt{0.0289+0.1225+0.0004}=\sqrt{0.1518}=0.39$$

$$5:\sqrt{(0.8-0.67)^2+(0.75-0.75)^2+(0.87-0.58)^2}=\sqrt{0.0169+0+0.0841}=\sqrt{0.101}=0.32$$

- ☐ E se houvesse empate, o que fazer?
- \square No exemplo anterior, se k = 4, haveria um empate.
- ☐ Solução:
 - * Ponderar a contribuição de cada um dos k vizinhos de acordo com a distância do ponto x_q ;
 - * Maior peso para os vizinhos mais próximos;
 - * Como ficaria a resposta para o exemplo anterior?

$$1: \sqrt{(0.5-0.67)^2 + (0.8-0.75)^2 + (0.9-0.58)^2} = \sqrt{0.0289 + 0.025 + 0.1024} = \sqrt{0.1338} = 0.37$$

$$2: \sqrt{(0.4-0.67)^2 + (0.5-0.75)^2 + (0.4-0.58)^2} = \sqrt{0.0729 + 0.0625 + 0.0324} = \sqrt{0.1678} = 0.41$$

$$3: \sqrt{(0.2-0.67)^2 + (0.5-0.75)^2 + (0.15-0.58)^2} = \sqrt{0.2209 + 0.2025 + 0.1849} = \sqrt{0.6083} = 0.68$$

$$4: \sqrt{(0.5-0.67)^2 + (0.4-0.75)^2 + (0.6-0.58)^2} = \sqrt{0.0289 + 0.1225 + 0.0004} = \sqrt{0.1518} = 0.39$$

$$5: \sqrt{(0.8-0.67)^2 + (0.75-0.75)^2 + (0.87-0.58)^2} = \sqrt{0.0169 + 0 + 0.0841} = \sqrt{0.101} = 0.32$$

$$1: \sqrt{(0.5-0.67)^2 + (0.8-0.75)^2 + (0.9-0.58)^2} = \sqrt{0.0289 + 0.025 + 0.1024} = \sqrt{0.1338} = 0.37$$

$$2: \sqrt{(0.4-0.67)^2 + (0.5-0.75)^2 + (0.4-0.58)^2} = \sqrt{0.0729 + 0.0625 + 0.0324} = \sqrt{0.1678} = 0.41$$

$$3: \sqrt{(0.2-0.67)^2 + (0.5-0.75)^2 + (0.15-0.58)^2} = \sqrt{0.2209 + 0.2025 + 0.1849} = \sqrt{0.6083} = 0.68$$

$$4: \sqrt{(0.5-0.67)^2 + (0.4-0.75)^2 + (0.6-0.58)^2} = \sqrt{0.0289 + 0.1225 + 0.0004} = \sqrt{0.1518} = 0.39$$

$$5: \sqrt{(0.8-0.67)^2 + (0.75-0.75)^2 + (0.87-0.58)^2} = \sqrt{0.0169 + 0 + 0.0841} = \sqrt{0.101} = 0.32$$

Classe A Classe B

Overview

- Métodos de aprendizagem baseados em instâncias não necessitam formar uma hipótese explícita da função alvo sobre o espaço das instâncias.
- ☐ Eles formam uma aproximação local da função alvo para cada nova instância a "classificar".
- O k–NN é um algoritmo baseado em instâncias para aproximar funções alvo de valor real ou de valor discreto, assumindo que as instâncias correspondem a pontos em um espaço d–dimensional.

Overview

O valor da função alvo para um novo ponto é estimada a partir dos valores conhecidos dos *k* exemplos de treinamento mais próximos.

Vantagens:

- * Habilidade para modelar funções alvo complexas por uma coleção de aproximações locais menos complexas.
- * A informação presente nos exemplos de treinamento nunca é perdida.

☐ Dificuldades:

Tempo?

☐ Utilizando **IBK** (WEKA):

Configurando o IBK:

☐ Abrindo o dataset Diabetes:

https://www.dropbox.com/sh/fhkqy2wybxjl0n5/AAABevgbnnM4HSdPgeUU6tgPa?dl=0

Configurando treinamento e teste:

☐ Analisando os resultados 1-NN:

```
Classifier output
  === Run information ===
                weka.classifiers.lazy.IBk -K 1 -W 0 -A "weka.core.neighboursea
  Scheme:
  Relation:
                pima diabetes
  Instances:
                768
  Attributes:
                preg
                plas
                pres
                skin
                insu
                mass
                pedi
                age
                class
  Test mode:
                10-fold cross-validation
 === Classifier model (full training set) ===
  IB1 instance-based classifier
  using 1 nearest neighbour(s) for classification
```

☐ Analisando os resultados 1-NN:

```
Classifier output
  === Stratified cross-validation ===
  === Summary ===
  Correctly Classified Instances
                                            539
                                                                70.1823 %
                                                                29.8177 %
  Incorrectly Classified Instances
                                            229
                                              0.3304
  Kappa statistic
  Mean absolute error
                                              0.2988
                                              0.5453
  Root mean squared error
  Relative absolute error
                                             65.7327 %
  Root relative squared error
                                           114.3977 %
  Total Number of Instances
                                            768
=== Detailed Accuracy By Class ===
                                                                 === Confusion Matrix ===
               Precision Recall F-Measure Class
                                0,776
               0,759
                        0,794
                                          tested negative
                                                                      b <-- classified as</p>
              0,580
                                0,554
                        0,530
                                          tested_positive
                                                                  397 103 | a = tested negative
 Weighted Avg.
              0,696
                        0,702
                                0,698
                                                                  126 142 | b = tested positive
```

Analisando os resultados 3-NN:

```
Classifier output
  === Run information ===
  Scheme:
               weka.classifiers.lazy.IBk -K 3 -W 0 -A "weka.core.neighboursearch.LinearNNSearch -A \"weka.core.EuclideanD:
  Relation:
               pima diabetes
  Instances:
               768
  Correctly Classified Instances
                                         558
                                                          72.6563 %
  Incorrectly Classified Instances
                                                          27.3438 %
                                          0.3822
  Kappa statistic
  Mean absolute error
                                          0.3092
  Root mean squared error
                                          0.4525
  Relative absolute error
                                         68.0324 %
                                        94.9365 %
  Root relative squared error
  Total Number of Instances
                                      768
  === Detailed Accuracy By Class ===
                                                                             === Confusion Matrix ===
                Precision Recall F-Measure Class
                                                                                 b <-- classified as</p>
                0,774
                           0,820
                                    0,796
                                              tested negative
                0,622
                           0,552
                                                                             410 90 | a = tested negative
                                    0,585
                                              tested positive
  Weighted Avg. 0,721
                           0,727
                                    0.722
                                                                             120 148 | b = tested positive
```

☐ Analisando os resultados 1-NN:

```
Classifier output
  === Run information ===
  Scheme:
                weka.classifiers.lazy.IBk -K 1 -W 0 -A "weka.core.neighboursearch.LinearNNSearch -A \"weka.co
  Relation:
                pima diabetes
  Instances:
                768
  Test mode:
               split 70.0% train, remainder test
  === Summary ===
                                                            73.4783 %
  Correctly Classified Instances
                                         169
  Incorrectly Classified Instances
                                                            26.5217 %
  Kappa statistic
                                            0.3903
                                           0.2661
  Mean absolute error
  Root mean squared error
                                           0.514
  Relative absolute error
                                          59.2025 %
  Root relative squared error
                                         110.1644 %
  Total Number of Instances
                                         230
  === Detailed Accuracy By Class ===
                                                                           === Confusion Matrix ===
                Precision Recall F-Measure Class
                0.813
                            0,797
                                     0,805
                                               tested negative
                                                                                      <-- classified as
                0,573
                            0,597
                                     0,585
                                               tested positive
                                                                                        a = tested negative
  Weighted Avg. 0,738
                            0,735
                                     0,736
                                                                                        b = tested positive
```

☐ Analisando os resultados 3-NN:

```
Classifier output
  === Run information ===
  Scheme:
                weka.classifiers.lazy.IBk -K 3 -W 0 -A "weka.core.neighboursearch.LinearNNSearch -A \"weka.core.Euclic
  Relation:
                pima diabetes
  Instances:
  Test mode:
                split 70.0% train, remainder test
  === Summary ===
                                                           73.4783 %
  Correctly Classified Instances
                                         169
  Incorrectly Classified Instances
                                                           26.5217 %
  Kappa statistic
                                           0.3616
  Mean absolute error
                                           0.3104
                                           0.4417
  Root mean squared error
  Relative absolute error
                                          69.0573 %
  Root relative squared error
                                         94.6539 %
  Total Number of Instances
                                         230
  === Detailed Accuracy By Class ===
                                                                            === Confusion Matrix ===
                Precision Recall F-Measure Class
                                                                                 b <-- classified as
                           0,835
                                    0,812
                                              tested negative
                0,790
                                                                                        a = tested negative
                0,587
                           0,514
                                    0,548
                                              tested positive
                                                                              35 37 |
                                                                                        b = tested positive
  Weighted Avg. 0,727
                           0,735
                                    0,730
```

- ☐ Definição:
 - Um fluxograma com a estrutura de uma árvore.
 - Nó interno representa um testes sobre um atributo.
 - * Cada ramo representa um resultado do teste.
 - * Folhas representam as classes.
- A geração de uma árvore consiste de duas fases:
 - * Construção da árvore (particionamento de atributos).
 - * Fase da poda (identifica e remove ruídos ou outliers).
- Uso da árvore: classificação de amostras desconhecidas.
 - * Testa os valores dos atributos da amostra "contra" a árvore.

☐ Funcionamento:

- ❖ Lista de perguntas → respostas "sim" ou "não".
- * Hierarquicamente arranjadas.

☐ Geração de regras:

```
Se (paciente está bem = sim) então
        classe = saudável
Senão
    Se (paciente tem dor = sim) então
        classe = doente
Fimse
Fimse
```

☐ Treinamento:

Base de Dados "Tempo"

Instância	Outlook	Temperature	Humidity	Wind	Play
D1	sunny	hot	high	weak	no
D2	sunny	hot	high	strong	no
D3	overcast	hot	high	weak	yes
D4	rain	mild	high	weak	yes
D5	rain	cool	normal	weak	yes
D6	rain	cool	normal	strong	no
D7	overcast	cool	normal	strong	yes
D8	sunny	mild	high	weak	no
D9	sunny	cool	normal	weak	yes
D10	rain	mild	normal	weak	yes
D11	sunny	mild	normal	strong	yes
D12	overcast	mild	high	strong	yes
D13	overcast	hot	normal	weak	yes
D14	rain	mild	high	strong	no

Teste	Exemplo	Outlook	Temperature	Humidity	Wind	Play?
If outlook=sunny	D1	Sunny	Hot	High	Weak	No
	D2	Sunny	Hot	High	Strong	No
	D8	Sunny	Mild	High	Weak	No
	D9	Sunny	Cool	Normal	Weak	Yes
	D11	Sunny	Mild	Normal	Strong	Yes
If	D3	Overcast	Hot	High	Weak	Yes
outlook=overcast	D7	Overcast	Cold	Normal	Strong	Yes
	D12	Overcast	Mild	High	Strong	Yes
	D13	Overcast	Hot	Normal	Weak	Yes
If outlook=rain	D4	Rain	Mild	High	Weak	Yes
	D5	Rain	Cool	Normal	Weak	Yes
	D6	Rain	Cool	Normal	Strong	No
	D10	Rain	Mild	Normal	Weak	Yes
	D14	Rain	Mild	High	Strong	No

Teste	Exemplo	Outlook	Temperature	Humidity	Wind	Play?
If outlook=sunny	D1	Sunny	Hot	High	Weak	No
and	D2	Sunny	Hot	High	Strong	No
humidity=high	D8	Sunny	Mild	High	Weak	No
				-		
If outlook=sunny	D9	Sunny	Cool	Normal	Weak	Yes
and	D11	Sunny	Mild	Normal	Strong	Yes
humidity=nomal						
If	D3	Overcast	Hot	High	Weak	Yes
outlook=overcast	D7	Overcast	Cold	Normal	Strong	Yes
	D12	Overcast	Mild	High	Strong	Yes
	D13	Overcast	Hot	Normal	Weak	Yes
If outlook=rain	D6	Rain	Cool	Normal	Strong	No
and wind=strong	D14	Rain	Mild	High	Strong	No
If outlook=rain	D4	Rain	Mild	High	Weak	Yes
and wind=weak	D5	Rain	Cool	Normal	Weak	Yes
	D10	Rain	Mild	Normal	Weak	Yes

Teste	Exemplo	Outlook	Temperature	Humidity	Wind	Play?
If outlook=sunny	D1	Sunny	Hot	High	Weak	No
and	D2	Sunny	Hot	High	Strong	No
humidity=high	D8	Sunny	Mild	High	Weak	No
If outlook=sunny	D9	Sunny	Cool	Normal	Weak	Yes
and	D11	Sunny	Mild	Normal	Strong	Yes
humidity=nomal						
If	D3	Overcast	Hot	High	Weak	Yes
outlook=overcast	D7	Overcast	Cold	Normal	Strong	Yes
	D12	Overcast	Mild	High	Strong	Yes
	D13	Overcast	Hot	Normal	Weak	Yes
If outlook=rain	D6	Rain	Cool	Normal	Strong	No
and wind=strong	D14	Rain	Mild	High	Strong	No
If outlook=rain	D4	Rain	Mild	High	Weak	Yes
and wind=weak	D5	Rain	Cool	Normal	Weak	Yes
	D10	Rain	Mild	Normal	Weak	Yes

☐ Como classificar a seguinte instância:

@data

rainy, hot, normal, strong, ???

☐ Algoritmo Básico:

- A árvore é construída recursivamente no sentido top-down (divisão para conquista).
- Os atributos são nominais (se numéricos, eles são discretizados).
- Atributos "testes" são selecionados com base em heurísticas ou medidas estatísticas (ex., ganho de informação).
- Condições de parada do particionamento:
 - * Todas as amostras de um nó pertencem a mesma classe.
 - * Não existem mais atributos para particionamento.

- Poda:
 - * Técnica para lidar com ruído e "Overfitting".
 - * Pré-Poda: durante a geração da Hipótese.
 - * Pós-Poda: é gerado um Classificador que explique os exemplos.
 - Após isso, elimina-se algumas partes (cortes em ramos da árvore) generalizando a Hipótese.

Poda:

Poda:

Poda:

Overfitting:

Algoritmos mais conhecidos

- ☐ ID3 (Iterative Dichotomiser 3) (Quilan,1986):
 - Os atributos devem ser obrigatoriamente categóricos.
- ☐ C4.5 (J48 no Weka) (Quilan, 1993):
 - Um algoritmo para geração de árvores de decisão, sucessor do algoritmo ID3.
 - Considera atributos numéricos e categóricos.
- ☐ CART (Classification And Regression Trees) (Breiman et al., 1984):
 - Produz árvores de classificação ou regressão, dependendo se as variáveis são categóricas ou numéricas.

Overview

- Vantagens:
 - Estrutura de fácil manipulação;
 - Produzem modelos que podem ser facilmente interpretados por humanos;
 - Muito rápido para classificar amostras desconhecidas.
- Desvantagens:
 - Pouca robustez a dados de grande dimensão;
 - Acurácia afetada por atributos pouco relevantes;
 - Dificuldade em lidar com dados contínuos.

☐ Utilizando **J48** (WEKA):

Configurando o J48:


```
Classifier output
  === Run information ===
                 weka.classifiers.trees.J48 -C 0.25 -M 2
  Scheme:
  Relation:
                 pima diabetes
  Instances:
                 768
  Attributes:
                 preg
                 plas
                 pres
                 skin
                 insu
                 mass
                 pedi
                 age
                 class
                 10-fold cross-validation
  Test mode:
```

```
Classifier output
  === Stratified cross-validation ===
  === Summary ===
                                                           73.8281 %
  Correctly Classified Instances
                                         567
  Incorrectly Classified Instances
                                         201
                                                           26.1719 %
                                           0.4164
  Kappa statistic
                                         0.3158
  Mean absolute error
                                          0.4463
  Root mean squared error
  Relative absolute error
                                        69.4841 %
  Root relative squared error
                                         93.6293 %
  Total Number of Instances
  === Detailed Accuracy By Class ===
                Precision Recall F-Measure Class
                0,790
                           0,814
                                    0,802
                                              tested negative
                0.632
                           0.597
                                    0,614
                                              tested positive
  Weighted Avg. 0,735
                           0,738
                                    0,736
  === Confusion Matrix ===
             <-- classified as
               a = tested negative
               b = tested positive
```

```
Classifier output
 === Summary ===
                                                          76.5217 %
 Correctly Classified Instances
                                        176
 Incorrectly Classified Instances
                                                          23.4783 %
 Kappa statistic
                                         0.4889
                                        0.3206 🗲
 Mean absolute error
                                        0.4239
 Root mean squared error
 Relative absolute error
                                         71.3381 %
 Root relative squared error
                                        90.8521 %
 Total Number of Instances
                                        230
  === Detailed Accuracy By Class ===
               Precision Recall F-Measure Class
               0,871
                          0,772
                                  0,819
                                            tested negative
               0,600
                          0,750
                                  0,667
                                            tested positive
 Weighted Avg. 0,786
                          0.765
                                  0,771
  === Confusion Matrix ===
       b <-- classified as
   122 36 | a = tested negative
    18 54 | b = tested positive
```

☐ Visualizando a árvore....


```
mass <= 26.4: tested_negative (132.0/3.0)
mass > 26.4
    age <= 28: tested negative (180.0/22.0)
       plas <= 99: tested_negative (55.0/10.0)
        plas > 99
            pedi <= 0.561: tested negative (84.0/34.0)
            pedi > 0.561
                    age <= 30: tested positive (4.0)
                        age <= 34: tested_negative (7.0/1.0)
                        age > 34
                            mass <= 33.1: tested positive (6.0)
                            mass > 33.1: tested_negative (4.0/1.0)
                preq > 6: tested positive (13.0)
mass <= 29.9
    plas <= 145: tested negative (41.0/6.0)
        age <= 25: tested negative (4.0)
        age > 25
            age <= 61
                mass <= 27.1: tested_positive (12.0/1.0)
                mass > 27.1
                   pres <= 82
                        pedi <= 0.396: tested_positive (8.0/1.0)
                    | pedi > 0.396: tested negative (3.0)
                | pres > 82: tested_negative (4.0)
            age > 61: tested negative (4.0)
| plas <= 157
                                                                    Number of Leaves :
  | pres <= 61: tested positive (15.0/1.0)
                                                                   Size of the tree :
      pres > 61
```

☐ Visualizando a árvore....

Dúvidas ...

