物理学 A 演習問題 #4

2025 年 5 月 8 日配布・5 月 22 日提出締切

連絡事項:5月15日は休講です。補講については決まりしだい連絡します。

1 二物体の衝突(運動量保存則)

水平な x 軸(直線)上を質点 m_1 が速度 $v_1 > 0$ で、質点 m_2 が速度 $v_2 > 0$ で運動している。以下の問に答えよ。

- (1) 両者が衝突して一体となり運動を続けた。衝突後の速度を求めよ。
- (2) 衝突の前後で系の運動エネルギーはどれだけ変化したか? [注:衝突の前後で運動量は保存するが,運動エネルギーは一般に保存しない]

同じ問題設定で衝突後に一体化しなかった場合に、質点間の反発係数を $0 < e \le 1$ として以下の問に答えよ。

- (3) 衝突前後における運動量保存の式と跳ね返りの式を立て、衝突後のそれぞれの質点の速度 v_1', v_2' を求めよ。
- (4) 衝突前後での系の運動エネルギーの変化を求めよ。運動エネルギーが変化しないのはどのような場合か?

2 衝突と跳ね返り

時刻 t=0 において、地表から高さ z_0 の地点から質点 m を自由落下させた。重力加速度を g、質点と地表の反発係数を 0 < e < 1 として、以下の間に答えよ。図は衝突の様子をずらして書いたものであり、水平方向に意味は無い。

- (1) 一回目の衝突直前および直後の質点の速度 v_1, v_1' をそれぞれ求めよ。
- (2) その後,質点は時刻 $t=t_1$ に最高点に達し,地表と二回目の衝突を経験する。 t_1 と,このときの最高点の高さ z_1 を求めよ。 $[t_1$ は跳ね返ってから z_1 までの時間ではないことに注意せよ]
- (3) 図において、二回目の衝突直前(直後)の速度 v_2 (v_2') 、および次回の衝突までの量 t_2, z_2, v_3, v_3' を求めよ。
- (4) これまでの結果から、 t_n と z_n は自然数 n を用いて各々どのように表されると予想されるか?
- (5) 衝突を十分な回数繰り返すと、運動は停止すると思われる。そのときまでに要した時間 $T \equiv \sum_{n=1}^{\infty} t_n$ と質点の

総移動距離 $Z\equiv z_0+2\sum_{n=0}^{\infty}z_n$ を求めよ。必要ならば、次の無限級数の公式を用いてよい。

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots = \frac{1}{1-x} \qquad (|x| < 1) .$$

3 雨滴の落下運動

単位時間当たりに質量が μ だけ増加しながら落下する雨滴を考える ($\Delta m/\Delta t=\mu>0$, 微分で書くと $\mathrm{d}m/\mathrm{d}t=\mu$, ということ)。雨滴の位置および速度について、初期条件は $z(0)=z_0,\,v(0)=0$ とする。以下の問に答えよ。

(1) 運動方程式を展開した形

$$(m_0 + \mu t)\frac{d^2 z}{dt^2} + \mu \frac{dz}{dt} = -(m_0 + \mu t)g$$
 (1)

を導け。指示や誘導がなくても自力で導けるようになっておくこと。

- (2) (1) 式は複雑な形をしており,展開前の表式に立ち戻るか,あるいは変形:(左辺) = $\frac{\mathrm{d}}{\mathrm{d}t} \left\{ (m_0 + \mu t) \frac{\mathrm{d}z}{\mathrm{d}t} \right\}$ に気がつかないと解くのが難しそうに思える。しかし,(1) 式の形を良く見ると,演習 #2-1 の方法が使えそうである。解を $z(t) = at^2 + bt + c$ と置いて (1) 式に代入し,両辺の係数を比較することで定数を決めることができる。こうして得られる z(t) を講義で導いたものと比べて結果を議論せよ(「講義と同じ」とか「講義と違う」とただ書いて終わるのではなく,なぜそうなのかを議論せよ。方法が違うのに同じ結果に至ったならばその理由を,異なる結果に至ったならばその原因を考えて自由に書いてみよ)。
- (3) 設問 (2) は忘れて、講義で導いた z(t) と v(t) の式を再現せよ(運動方程式を解くことで再導出せよ)。
- (4) 極限 $\mu \to 0$ はどのような状況か。また設問 (3) の式で $\mu \to 0$ の極限を取り、得られる表式を説明せよ。