CSED211: Microprocessor & Assembly Programming Lecture 3: Floating Point

Jong Kim

Pohang Univ. of Sci. & Tech. Dept. of Comp. Sci. & Eng.

Quiz #1

• https://goo.gl/forms/hdlhGPwiiwJIemiA3

*Disclaimer:

Most slides are taken from author's lecture slides.

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Fractional binary numbers

• What is 1011.101₂?

Fractional Binary Numbers

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number: $\sum_{k=1}^{n} b_k \times 2^k$

Fractional Binary Numbers: Examples

■ Value

5 3/4 101.11₂
2 7/8 10.111₂
1 7/16 1.0111₂

Observations

- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 are just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$
 - Use notation 1.0 ε

Representable Numbers

- Limitation #1
 - Can only exactly represent numbers of the form $x/2^k$
 - Other rational numbers have repeating bit representations
 - Value Representation
 - 1/3 0.01010101[01]...₂
 - 1/5 0.001100110011[0011]...₂
 - 1/10 0.0001100110011[0011]...₂
- Limitation #2
 - Just one setting of decimal point within the w bits
 - Limited range of numbers (very small values? very large?)

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

IEEE Floating Point

- IEEE Standard 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs
- Driven by numerical concerns
 - Nice standards for rounding, overflow, underflow
 - Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

Numerical Form:

$$(-1)^{s} M 2^{E}$$

- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0).
- **Exponent** *E* weights value by power of two

Encoding

- MSB s is sign bit s
- exp field encodes *E* (but is not equal to E)
- frac field encodes *M* (but is not equal to M)

s exp frac

Precisions

• Single precision: 32 bits

• Double precision: 64 bits

S	exp	frac
1	11-bits	52-bits

• Extended precision: 80 bits (Intel only)

S	exp	frac
1	15-bits	63 or 64-bits

Normalized Values

$$v = (-1)^s M 2^E$$

- When: $\exp \neq 000...0$ and $\exp \neq 111...1$
- Exponent coded as **biased** value: E = Exp Bias
 - Exp: unsigned value exp
 - Bias = 2^{k-1} 1, where k is number of exponent bits
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: $\mathbf{M} = 1.xxx \cdots x_2$
 - xxx···x: bits of frac
 - Minimum when $000 \cdots 0 (M = 1.0)$
 - Maximum when $111 \cdots 1 (M = 2.0 \varepsilon)$
 - Get extra leading bit for "free"

Normalized Encoding Example

```
• Value: Float F = 15213.0;

-15213_{10} = 11101101101101_2

= 1.1101101101101_2 \times 2^{13}
```

```
v = (-1)^s M 2^E

E = Exp - Bias
```

• Significand

```
M = 1.1101101101_2
frac= 1101101101101_0000000000_2
```

• Exponent

$$E = 13$$
 $Bias = 127$
 $Exp = 140 = 10001100_{2}$

• Result:

S

0 10001100 1101101101101000000000

frac

exp

Denormalized Values

$$v = (-1)^s M 2^E$$

 $E = Exp - Bias$

- Condition: $exp = 000 \cdots 0$
- Exponent value: $\mathbf{E} = 1 \mathbf{Bias}$ (instead of $\mathbf{E} = 0 \mathbf{Bias}$)
- Significand coded with implied leading 0: $\mathbf{M} = 0.xxx...x_2$
 - xxx...x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - Represents zero value
 - Note distinct values: +0 and -0 (why?)
 - exp = 000...0, $frac \neq 000...0$
 - Numbers very close to 0.0
 - Lose precision as get smaller
 - Equispaced

Special Values

- Condition: $exp = 111 \cdots 1$
- Case: $exp = 111 \cdots 1$, $frac = 000 \cdots 0$
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- Case: exp = 111...1, $frac \neq 000...0$
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), $\infty \infty$, $\infty \times 0$

Visualization: Floating Point Encodings

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Tiny Floating Point Example

- 8-bit Floating Point Representation
 - the sign bit is in the most significant bit
 - the next four bits are the exponent, with a bias of 7
 - the last three bits are the frac
- Same general form as IEEE Format
 - normalized, denormalized
 - representation of 0, NaN, infinity

Dynamic Range (Positive Only)

	s	exp	frac	E	Value			
	0	0000	000	-6	0			
	0	0000	001	-6	1/8*1/64	=	1/512	1
Denormalized	0	0000	010	-6	2/8*1/64	=	2/512	closest to zero
numbers	•••							
	0	0000	110	-6	6/8*1/64	=	6/512	
	0	0000	111	-6	7/8*1/64	=	7/512	largest denorm
	0	0001	000	-6	8/8*1/64	=	8/512	
	0	0001	001	-6	9/8*1/64	=	9/512	smallest norm
	0	0110	110	-1	14/8*1/2	=	14/16	
Normalized	0	0110	111	-1	15/8*1/2	=	15/16	closest to 1 below
numbers	0	0111	000	0	8/8*1	=	1	
	0	0111	001	0	9/8*1	=	9/8	closest to 1 above
	0	0111	010	0	10/8*1	=	10/8	
	0	1110	110	7	14/8*128	=	224	
	0	1110	111	7	15/8*128	=	240	largest norm
	0	1111	000	n/a	inf			
								CSED211-2018 2

Distribution of Values

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is $2^{(3-1)}$ 1 = 3

• Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 3

Special Properties of Encoding

- FP Zero Same as Integer Zero
 - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider -0 = 0
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Creating Floating Point Number

Steps

- Normalize to have leading 1
- Round to fit within fraction

Postnormalize to deal with effects of rounding

Case Study

Convert 8-bit unsigned numbers to tiny floating point format

Example	Numbers
128	10000000
15	00001101
33	00010001
35	00010011
138	10001010
63	00111111

Normalize

S	exp	frac
1	4-hits	3-hits

- Requirement
 - Set binary point so that numbers of form 1.xxxxx
 - Adjust all to have leading one
 - Decrement exponent as shift left

Value	Binary	Fraction	Exponent
128	10000000	1.0000000	7
15	00001101	1.1010000	3
17	00010001	1.0001000	4
19	00010011	1.0011000	4
138	10001010	1.0001010	7
63	00111111	1.1111100	5

Rounding

1.BBGRXXX

Guard bit: LSB of result

Sticky bit: OR of remaining bits

Round bit: 1st bit removed

- Round up conditions
 - Round = 1, Sticky = $1 \rightarrow 0.5$
 - Guard = 1, Round = 1, Sticky = 0 → Round to even

Value	Fraction	GRS	Incr?	Rounded
128	1.0000000	000	Ν	1.000
15	1.1010000	100	Ν	1.101
17	1.0001000	010	Ν	1.000
19	1.0011000	110	Y	1.010
138	1.0001010	011	Y	1.001
63	1.1111100	111	Υ	10.000

Postnormalize

- Issue
 - Rounding may have caused overflow
 - Handle by shifting right once & incrementing exponent

Value	Rounded	Ехр	Adjusted	Result
128	1.000	7		128
15	1.101	3		15
17	1.000	4		16
19	1.010	4		20
138	1.001	7		142
63	10.000	5	1.000/6	64

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point Operations: Basic Idea

- $x +_f y = Round(x + y)$
- $x \times_f y = Round(x \times y)$
- Basic idea
 - First compute exact result
 - Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding

Rounding Modes (illustrate with \$ rounding)

```
$1.40
                                     $1.60
                                              $1.50
                                                        $2.50
                                                                 -\$1.50

    Towards zero

                           $1
                                     $1
                                              $1
                                                        $2
                                                                  -$1
                                                        $2
- Round down (-\infty)
                                              $1
                                                                 -$2
                           $1
                                     $1
- Round up (+\infty)
                                                                 -$1
                           $2
                                     $2
                                              $2
                                                        $3
                                     $2
                                              $2
                                                        $2
                                                                  -$2
Nearest Even (default)
                           $1
```

What are the advantages of the modes?

Closer Look at Round-To-Even

- Default Rounding Mode
 - Hard to get any other kind without dropping into assembly
 - All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or under- estimated
- Applying to Other Decimal Places / Bit Positions
 - When exactly halfway between two possible values
 - Round so that least significant digit is even
 - E.g., round to nearest hundredth

1.2349999	1.23	(Less than half way)
1.2350001	1.24	(Greater than half way)
1.2350000	1.24	(Half way—round up)
1.2450000	1.24	(Half way—round down)

Rounding Binary Numbers

Binary Fractional Numbers

- "Even" when least significant bit is 0
- "Half way" when bits to right of rounding position = $100 \dots 2$

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.00011_2	10.00_2	(<1/2—down)	2
2 3/16	10.00110_2	10.01_{2}	(>1/2—up)	2 1/4
2 7/8	10.11100_2	11.00_{2}	(1/2—up)	3
2 5/8	10.10100_2	10.10_2	(1/2—down)	2 1/2

FP Multiplication

- $(-1)^{s1}$ M1 2^{E1} x $(-1)^{s2}$ M2 2^{E2}
- Exact Result: $(-1)^s M 2^E$
 - Sign s: s1 ^ s2
 - Significand M: M1 x M2
 - Exponent E: E1 + E2
- Fixing
 - If $M \ge 2$, shift M right, increment E
 - If *E* out of range, overflow
 - Round M to fit frac precision
- Implementation
 - Biggest chore is multiplying significands

Floating Point Addition

- $(-1)^{s1} M1 2^{E1} + (-1)^{s2} M2 2^{E2}$
 - Assume E1 > E2

Get binary points lined up

- Exact Result: $(-1)^s M 2^E$
 - − Sign s, significand M:
 - Result of signed align & add
 - Exponent *E*: *E*1

- Fixing
 - If $M \ge 2$, shift M right, increment E
 - If M < 1, shift M left k positions, decrement E by k
 - Overflow if *E* out of range
 - Round *M* to fit **frac** precision

Mathematical Properties of FP Add

- Compare to those of Abelian Group
 - Closed under addition?
 - But may generate infinity or NaN
 - Commutative?
 - Associative?
 - Overflow and inexactness of rounding
 - 0 is additive identity?
 - Every element has additive inverse
 - Except for infinities & NaNs
- Monotonicity
 - $-a \ge b \Rightarrow a+c \ge b+c?$
 - Except for infinities & NaNs

Mathematical Properties of FP Mult

- Compare to Commutative Ring
 - Closed under multiplication?
 - But may generate infinity or NaN
 - Multiplication Commutative?
 - Multiplication is Associative?
 - Possibility of overflow, inexactness of rounding
 - 1 is multiplicative identity?
 - Multiplication distributes over addition?
 - Possibility of overflow, inexactness of rounding
- Monotonicity
 - $-a \ge b \& c \ge 0 \Rightarrow a * c \ge b * c?$
 - Except for infinities & NaNs

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point in C

- C Guarantees Two Levels
 - **-float** single precision
 - **-double** double precision
- Conversions/Casting
 - Casting between int, float, and double changes bit representation
 - double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
 - int \rightarrow double
 - Exact conversion, as long as **int** has ≤ 53 bit word size
 - $-int \rightarrow float$
 - Will round according to rounding mode

Floating Point Puzzles

- For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Explain why not true

```
int x = \cdots;
float f = \cdots;
double d = \cdots;
```

Assume neither **d** nor **f** is NaN

```
x == (int)(float) x
x == (int)(double) x
f == (float)(double) f
d == (float) d
f == -(-f);
2/3 == 2/3.0
d < 0.0 ⇒ ((d*2) < 0.0)</li>
d > f ⇒ -f > -d
d * d >= 0.0
```

• (d+f)-d == f

Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form M x 2^E
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers

Interesting Numbers

{single,double}

Description	exp	frac	Numeric Value
• Zero	0000	0000	0.0
• Smallest Pos. Denorm.	0000	0001	$2^{-\{23,52\}} \times 2^{-\{126,1022\}}$
- Single $\approx 1.4 \times 10^{-45}$			
- Double ≈ 4.9×10^{-324}			
 Largest Denormalized 	0000	1111	$(1.0 - \varepsilon) \times 2^{-\{126,1022\}}$
- Single ≈ 1.18×10^{-38}			
- Double ≈ 2.2×10^{-308}			
 Smallest Pos. Normalized 	0001	0000	$1.0 \times 2^{-\{126,1022\}}$
 Just larger than largest denorm 	nalized		
• One	0111	0000	1.0
 Largest Normalized 	1110	1111	$(2.0 - \varepsilon) \times 2^{\{127,1023\}}$
- Single $\approx 3.4 \times 10^{38}$			
- Double $\approx 1.8 \times 10^{308}$			