1 包除原理

数え上げのテクニックの一つ. 集合 A が与えられ,その要素を変数とする述語たち $\mathcal{P}=\{P_1,\ldots,P_k\}$ を考える. $1\leqslant i\leqslant k$ に対して A の部分集合 A_i を $A_i=\{a\in A\mid P_i(a)\}$ で定めるとき, $\bigcup_{i=1}^k A_i$ の要素数を求めるものである. $K=\{1,\ldots,k\}$ とする.

$$\left| \bigcup_{i=1}^{k} A_{i} \right| = \sum_{\emptyset \subset \Lambda \subset K} (-1)^{|\Lambda|-1} \cdot \left| \bigcap_{i \in \Lambda} A_{i} \right|. \tag{1}$$

 $|\Lambda|=|\Lambda'| \implies \left|\bigcap_{i\in\Lambda}A_i\right|=\left|\bigcap_{i\in\Lambda'}A_i\right|$ であるなら, $|\Lambda|=j$ であるような Λ の代表元を Λ^j と書くことにして次のように変形できる.

$$\left| \bigcup_{i=1}^{k} A_i \right| = \sum_{j=1}^{k} (-1)^{j-1} \cdot {}_k C_j \cdot \left| \bigcap_{i \in \Lambda^j} A_i \right|. \tag{2}$$

式 (1) においては \sum で足し合わされる項が 2^k-1 個だったのに対し,式 (2) では k に減っていてうれしい.

上の議論は、 $\left|\bigcap_{i\in\Lambda}A_i\right|$ を計算するのが容易であることを前提としているが、逆に $\left|\bigcap_{i\in\Lambda}(A\setminus A_i)\right|$ の計算が容易な状況 *1 で $\bigcap_{i=1}^kA_i$ の要素数を求めたいときには以下のようにするとよい.

$$\bigcap_{i=1}^{k} A_i = A \setminus \left(\bigcup_{i=1}^{k} (A \setminus A_i)\right).$$

すなわち,

$$\left| \bigcap_{i=1}^{k} A_{i} \right| = |A| - \left| \left(\bigcup_{i=1}^{k} (A \setminus A_{i}) \right) \right|.$$

これは, $A \setminus A_i$ を A_i と置き直すことで, 式 (1) の枠組みで求められる.

^{*1} 満たす条件を決め打ちするよりも、満たさない条件を決め打ちした方が楽な場合.