

"In the name of God"

Design and implementation of a digital vending machine controller using Verilog

By Zahra Azizi

This project aims to design a digital vending machine with 4 different products at different prices.

```
module vending_machine(
   output reg [8*30-1:0] LCD,
   output reg [8*30-1:0] money,
   output reg motor,
   input clk,
   input reset,
   input [1:0] select,
   input [1:0] coin,
   input dispense
);
```

Fig. 1 - module

Module definition

Outputs

LCD = Displaying current states, an array of 30 * 8 bits.

money = The amount to be returned or the amount that the user has entered.

motor = When the product is being dispensed, will become 1.

Inputs

clk = Clock signal.

reset = When it becomes 1, the machine goes to idle state.

select = For choosing the product by the user.

coin = The amount of money that the user has entered.

dispense = When the product is being dispensed, the machine will go to the next state only if this becomes 1.

Variables

- 1) current_state
- next_state :This is defined based on the current state
- product_price: An array of 4 *
 bits.
- 4) product_count
- 5) balance
- 6) change

Fig. 2 - Variables

Assumptions

Assumptions for the products are as follows:

Name	Initial count	Price
Product 1	4	10c
Product 2	2	20c
Product 3	2	30c
Product 4	0	40c

Fig. 3 – Assumptions

States

This machine includes 10 states:

idle: The machine doesn't do anything and is waiting for the user to choose a
product. If the user chooses an out-of-stock product, it will go to the out_of_stock
state.

- 2. **wait_10c:** The user has picked the first product and the machine is waiting for coins to be inserted.
- 3. wait_20c: The user has picked the second product and the machine is waiting for coins to be inserted.
- 4. wait_30c: The user has picked the third product and the machine is waiting for coins to be inserted.
- 5. **wait_40c:** The user has picked the fourth product and the machine is waiting for coins to be inserted.
- dispensing: The machine is dispensing the product. This state will end when dispense becomes 1. After this state, the number of the selected product is decreased by one.
- 7. **return_money:** If there isn't enough money, the whole money will be returned.
- 8. **insufficient:** It means the money is not enough and it will go to the **return_money** state.
- 9. return_change
- 10. out_of_stock

```
parameter idle = 4'b0000;
parameter wait_10c = 4'b0001;
parameter wait_20c = 4'b0010;
parameter wait_30c = 4'b0011;
parameter wait_40c = 4'b0100;
parameter dispensing = 4'b0101;
parameter return_money = 4'b0110;
parameter insufficient = 4'b0111;
parameter return_change = 4'b1000;
parameter out_of_stock = 4'b1001;
```

Fig. 4 - states


```
always @(posedge clk or posedge reset) begin
    if (reset) current_state <= idle;</pre>
    else begin
        case (current_state)
             default: current_state <= idle;</pre>
             idle: begin
                 if (product_count[select] > 0)
                     current_state <= next_state;</pre>
                 else
                     current_state <= out_of_stock;</pre>
             end
            wait_10c, wait_20c, wait_30c, wait_40c, return_money, out_of_stock,
                 insufficient, return_change: current_state <= next_state;</pre>
            dispensing: begin
                 if (dispense == 1) begin
                     product_count[select] = product_count[select] - 1;
                     current_state <= next_state;</pre>
                 end
                 else
                     current_state <= dispensing;</pre>
             end
        endcase
    end
end
```

Fig. 5 – general state transition

State transitions

State transitions are shown in the below diagram:

Fig. 6 –State diagram


```
always @(current_state or select or coin or dispense) begin
       case(current_state)
           default: next_state = idle;
           idle: begin
                   next_state = (select == 2'b00) ? wait_10c :
                       (select == 2'b01) ? wait_20c :
                       (select == 2'b10) ? wait_30c :
                       (select == 2'b11) ? wait_40c : idle;
                   end
           wait_10c: case(coin)
               2'b00: next_state = dispensing;
               2'b01: next_state = return_change;
               2'b10, 2'b11: next_state = return_change;
           endcase
           wait_20c: case(coin)
               2'b00: next_state = insufficient;
               2'b01: next_state = dispensing;
               2'b10, 2'b11: next_state = return_change;
           endcase
           wait_30c, wait_40c: case(coin)
               2'b00: next_state = insufficient;
               2'b01: next_state = insufficient;
               2'b10, 2'b11: next_state = return_change;
           endcase
           return_change: next_state = dispensing;
           dispensing: next_state = ((dispense == 1) ? idle : dispensing);
           insufficient: next_state = return_money;
           return_money: next_state = idle;
           out_of_stock: next_state = idle;
       endcase
   end
```

Fig. 7 – state transitions

The machine starts at an idle state and according to the user's choice, it will go to one of the wait_xxc states. For instance, if the user chooses 01, it will go to wait_20c. If there wasn't any product left, it would go to an out-of-stock state without waiting for money, then it would go to an idle state.

After entering wait xxc, according to the money inserted, the next state is defined:

- If the money is sufficient, the next state is dispensing.
- if not, the next state is insufficient then return money.

• If the amount that the user has inserted is more than the price, the machine will return the change, and then it will dispense the product.

Testbench

To verify the machine, we need to test it. We will create an instance of it according to the inputs and the outputs. In 5 time units, the clock signal will change. There are 7 test scenarios. After each test, there is a delay of 10 time units so the changes are visible in the terminal output. Before the start of the tests, the machine is reset. Time unit is 1 second and precision is 1 millie second.

```
`timescale 1s/1ms
module vending_machine_tb();
    reg clk = 0;
    reg reset;
    reg [1:0] select;
    reg [1:0] coin;
    reg dispense;
    wire [8*30-1:0] LCD;
    wire [8*30-1:0] money;
    wire motor;
    vending_machine vm (
        .clk(clk),
        .reset(reset),
        .select(select),
        .coin(coin),
        .dispense(dispense),
        .LCD(LCD),
        .money(money),
        .motor(motor)
    );
    always begin
        #5 clk = \simclk;
    end
```

Fig. 10 – instanciation and clock signal


```
$dumpfile("test_vm.vcd");
$dumpvars(0, vending_machine_tb);

dispense = 0;
reset = 1;
#10;
$display("before tests\t Time: %0d | LCD: %s | money: %s | Motor: %b",
$time, LCD, money, motor);
reset = 0;
```

Fig. 11-13 – Initializing and test 1 & 2

Fig. 14-16 – test 3-5

Fig. 17-18 - test 6 & 7

before tests Test 1	Time: 10 LCD	idle	money:	0c	Motor: 0
select p1	Time: 20 LCD	: waiting for 10c	money:	0c	Motor: 0
insert 10c	Time: 30 LCD		money:	inserted amount: 10c	Motor: 1
dispense cont.	Time: 40 LCD		money:	inserted amount: 10c	Motor: 1
finished	Time: 50 LCD	: ˈidle	money:		Motor: 0
Test 2					
select p2	Time: 60 LCD	: waiting for 20c	money:	0c	Motor: 0
insert 20c	Time: 70 LCD	: dispensing	money:	inserted amount: 20c	Motor: 1
finished	Time: 80 LC	: idle	money:	0c	Motor: 0
Test 3					
select p3	Time: 90 LCD	: waiting for 30c	money:	0c	Motor: 6
insert 20c	Time: 100 LO): insufficient	money:	needs: 10c	Motor:
return money	Time: 110 LO): returning money	money:	return amount: 20c	Motor:
finished	Time: 120 LO): idle	money:	0с	Motor:
Test 4					
select p3	Time: 130 LO): waiting for 30c	money:	0с	Motor:
insert 50c	Time: 140 LO): returning change	money:	change: 20c	
change returned	Time: 150 LO): dispensing	money:	inserted amount: 30c	Motor:
finished	Time: 160 LO): idle	money:		Motor:
Test 5					
select p4	Time: 170 LO): out of stock	money:	ERROR	Motor:
finished	Time: 180 LO): idle	money:	0с	Motor:
Test 6					
select p3.	Time: 190 LO): waiting for 30c	money:	0с	Motor:
after reset	Time: 200 LO):	money:	0с	Motor:
Test 7					
select p2	Time: 210 LO): waiting for 20c	money:	0с	Motor:
insert 20c	Time: 220 LO): dispensing	money:	inserted amount: 20c	Motor:
dispense fin.	Time: 230 LO): idle	money:		Motor:
select p2	Time: 240 LO	O: out of stock	I monove	EDDOD	Motor:

Fig. 19 – terminal output

Fig. 20 -24 - waves

Compiled by Icarus Verilog and waves by gtkwave.

These files are attached to this report:

- 1. vending machine.v
- 2. vending_machine_tb.v
- 3. test vm.vcd
- 4. vending_machine_wave
