LECTURE 9: DISTRIBUTIONAL APPROXIMATIONS

- MCMC is expensive, specially for hierarchical models, so a number of approximations have been developed
- Expectation-Maximization
- Variational Inference

Expectation-Maximization (EM) Algorithm

- We have data X, parameters θ and latent variables Z (which often are of the same size as X).
- In hierarchical models we know how to write conditionals $p(X|Z,\theta)$ and $p(Z|\theta)$ but it is hard to integrate out Z to write directly $p(X|\theta)$, and thus posterior $p(\theta|X)$ (we will assume flat prior), i,e. it is hard to compute

$$p(X|\theta) = \int p(X,Z|\theta)dZ = \int p(X|Z,\theta)p(Z|\theta)dZ$$

• Jensen inequality for convex Y:

$$\varphi(\mathrm{E}[X]) \leq \mathrm{E}[\varphi(X)] = \mathrm{E}[Y]$$

• Opposite for concave (log)

Credit: Dempster et al. 1977

Jensen Inequality applied to logP

• For any q(Z) we have

$$\log \int P\left(X,Z|\theta\right) dZ = \log \int P\left(X,Z|\theta\right) \frac{q\left(Z\right)}{q\left(Z\right)} dZ \geq \int q\left(Z\right) \log \frac{P\left(X,Z|\theta\right)}{q\left(Z\right)} dZ$$

Credit: Slide from R. Giordano

Jensen Equality

• This can be equality if $q(Z) = p(Z|X, \theta_0)$, but only at $\theta = \theta_0$

$$\int P\left(Z|X,\theta_{0}\right) \log \frac{P\left(X,Z|\theta_{0}\right)}{P\left(Z|X,\theta_{0}\right)} dZ = \int P\left(Z|X,\theta_{0}\right) \log \frac{P\left(X,Z|\theta_{0}\right) P\left(X|\theta_{0}\right)}{P\left(X,Z|\theta_{0}\right)} dZ$$

$$= \log P\left(X|\theta_{0}\right) \int P\left(Z|X,\theta_{0}\right) dZ = \log P\left(X|\theta_{0}\right)$$

$$\int_{Q\left(Z|X,\theta_{0}\right) \log \frac{P\left(X,Z|\theta\right)}{Q\left(Z|X,\theta_{0}\right)} dZ} \log_{Q\left(X|\theta\right)} \frac{\log_{Q\left(X|\theta\right)} P\left(Z|X,\theta_{0}\right) \log_{Q\left(X|\theta\right)} P\left(Z|X,\theta_{0}\right)}{\log_{Q\left(X|\theta\right)} P\left(Z|X,\theta_{0}\right) \log_{Q\left(X|\theta\right)} P\left(Z|X,\theta_{0}\right)} dZ$$

• Suppose we want to determine MLE/MAP of $p(X|\theta)$ or $p(\theta|X)$ over q: this suggests a strategy is to maximize over θ given previous solution

EM Algorithm

- 1. E-step: Starting at θ_t , calculate the expectation $E(\theta) = \int P(Z|X,\theta_t) \log P(X,Z|\theta) dZ$
- 2. M-step: Optimize $\theta_{t+1} = \operatorname{argsup} E(\theta)$

Generalized EM: if M is unsolvable then instead of maximization over θ make any move in the direction of increasing the value (similar to NL optimizations)

Guaranteed to work

This is guaranteed to increase the marginal likelihood $\log P(\theta|X)$ since

$$\sup_{\theta} \int P(Z|X, \theta_t) \log P(X, Z|\theta) dZ = \sup_{\theta} \int P(Z|X, \theta_t) \log \frac{P(X, Z|\theta)}{P(Z|X, \theta_t)} dZ$$

$$\geq \int P(Z|X, \theta_t) \log \frac{P(X, Z|\theta_t)}{P(Z|X, \theta_t)} dZ = \log P(\theta_t|X)$$

$$\log P(X|\theta)$$

$$\log P(X|\theta)$$

Often rapid convergence if good starting point Note however that it solves an optimization problem: finds the nearest local maximum

Why is it useful?

• Two reasons: performs marginalization over latent parameters and avoids evaluating the normalizations

- However, it only gives MLE/MAP
- Extension called supplemented EM evaluates curvature matrix at MLE/MAP (see Gelman etal)

Cluster Classification: K-means

- Before looking at EM let's look at a non-probabilistic approach called Kmeans clustering
- We have N observations x_n and each x_n is in D-dimensions
- We want to partition it into K clusters
- Let's assume they are given simply by K means μ_k representing cluster centers
- We can define loss or objective function $J = \sum_{n} \sum_{k} r_{nk} (x_n \mu_n)^2$ where $r_{nk} = 1$ for one k and $r_{nj} = 0$ for $j \neq k$, so that each data point is assigned to a single cluster k.
- Optimizing J for r_{nk} gives us $r_{nk} = 1$ for whichever k minimizes the distance $(x_n \mu_k)^2$, set $r_{nj} = 0$ for $j \neq k$. This is the expectation part in EM language.
- Optimizing J for μ_k at fixed r_{nk} we take a derivative of J wrt μ_k which gives $\mu_k = \sum_{n} r_{nk} x_n / (\sum_{n} r_{nk})$. This is M part. Repeat.

Example (Bishop Chap. 9)

• Random starting μk (crosses). Magenta line is the cluster divider

Gaussian Mixture with Latent Variables

- We have seen GM before: $p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$
- Now we also introduce a latent variable z_{nk} playing the role of r_{nk} , i.e. for each n one is 1 and the other K-1 are 0. The marginal distribution is $p(z_k=1) = \pi k$, where $\sum k \pi k = 1$ and $0 \le \pi k \le 1$. Conditional of x given $z_{k=1}$ is a gaussian

$$p(\mathbf{x}|z_k = 1) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

$$p(\mathbf{z}) = \prod_{k=1}^K \pi_k^{z_k} \qquad p(\mathbf{x}|\mathbf{z}) = \prod_{k=1}^K \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)^{z_k}$$

$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{z})p(\mathbf{x}|\mathbf{z}) = \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

More variables make it easier

- We have defined latent variables z we want to marginalize over. Advantage is that we can work with p(x,z) rather than p(x). Lesson: adding many parameters sometimes makes the problem easier.
- We also need responsibility $\gamma(zk) = p(zk=1|x)$, using Bayes
- Here π_k is prior for $p(z_k=1)$, $\gamma(z_k)$ is posterior given x

$$\gamma(z_k) \equiv p(z_k = 1|\mathbf{x}) = \frac{p(z_k = 1)p(\mathbf{x}|z_k = 1)}{\sum_{j=1}^{K} p(z_j = 1)p(\mathbf{x}|z_j = 1)}$$
$$= \frac{\pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}.$$

Mixture Models

We want to solve

$$\ln p(\mathbf{X}|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}$$

- This could have been solved with optimization.
- Instead we solve it with latent variables z
- Graphical model

Beware of pitfalls of GM models

• Collapse onto a point: 2nd Gaussian can simply decide to fit a single point with infinitely small error

• Identifiability: there are K! equivalent solutions since we can swap their identities. No big deal, EM will give us one of them.

EM Solution

$$\boldsymbol{\mu}_k = \frac{1}{N_k} \sum_{n=1}^{N} \gamma(z_{nk}) \mathbf{x}_n$$

$$\ln p(\mathbf{X}|\boldsymbol{\pi},\boldsymbol{\mu},\boldsymbol{\Sigma}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n|\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k) \right\} \qquad N_k = \sum_{n=1}^{N} \gamma(z_{nk}).$$

- Take derivative wrt μ_k : $0 = -\sum_{n=1}^N \underbrace{\frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_j \pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}}_{\boldsymbol{\gamma}(\boldsymbol{z}_{nk})} \boldsymbol{\Sigma}_k(\mathbf{x}_n \boldsymbol{\mu}_k)$
- Derivative wrt Σ_k : $\Sigma_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) (\mathbf{x}_n \boldsymbol{\mu}_k) (\mathbf{x}_n \boldsymbol{\mu}_k)^{\mathrm{T}}$
- Derivative wrt π_k subject to Lagrange multiplier due to $\sum_k \pi_k = 1$ constraint

$$\ln p(\mathbf{X}|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) + \lambda \left(\sum_{k=1}^K \pi_k - 1 \right)$$

• Gives
$$0 = \sum_{n=1}^{N} \frac{\mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j} \pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)} + \lambda$$
. So $\lambda = -N$ and $\pi_k = \frac{N_k}{N}$

Summarizing EM for Gaussian Mixtures

- Iterative, needs more iterations than K-means
- Note that K-means is EM in the limit of variance Σ constant and going to 0

- 1. Initialize the means μ_k , covariances Σ_k and mixing coefficients π_k , and evaluate the initial value of the log likelihood.
- 2. **E step**. Evaluate the responsibilities using the current parameter values

$$\gamma(z_{nk}) = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}.$$
 (9.23)

Summarizing EM for Gaussian Mixtures

3. M step. Re-estimate the parameters using the current responsibilities

$$\boldsymbol{\mu}_k^{\text{new}} = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}_n \tag{9.24}$$

$$\Sigma_k^{\text{new}} = \frac{1}{N_k} \sum_{n=1}^{N} \gamma(z_{nk}) \left(\mathbf{x}_n - \boldsymbol{\mu}_k^{\text{new}} \right) \left(\mathbf{x}_n - \boldsymbol{\mu}_k^{\text{new}} \right)^{\text{T}}$$
(9.25)

$$\pi_k^{\text{new}} = \frac{N_k}{N} \tag{9.26}$$

where

$$N_k = \sum_{n=1}^{N} \gamma(z_{nk}). {(9.27)}$$

4. Evaluate the log likelihood

$$\ln p(\mathbf{X}|\boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}$$
(9.28)

and check for convergence of either the parameters or the log likelihood. If the convergence criterion is not satisfied return to step 2.

Example (same as before)

Variational Inference/ Bayes

- We want to approximate the posterior $P(\theta|X)$ using simple distributions $q(\theta)$ that are analytically tractable
- We do this by minimizing KL divergence

Why is this useful?

• We do not know the normalizing integral constant of $P(\theta|X)$ but we know it for $q(\theta)$

We limit $q(\theta)$ to tractable distributions

- Entropies are hard to compute except for tractable distributions
- We find q*(q) that minimizes KL distance in this space
- Mean field approach:

$$Q = \left\{ q(\theta) = \prod_{k} q(\theta_{k}) \right\}$$

Bivariate Gaussian Example

- MFVB does a good job at finding the mean
- MFVB does not describe correlations and tends to underestimate the variance

$$Q = \left\{ q(\theta) = \mathcal{N}\left(\theta_1; \mu_1, \sigma_1^2\right) \mathcal{N}\left(\theta_2; \mu_2, \sigma_2^2\right) \right\}$$

$$\eta_1 = \left(\mu_1, \sigma_1^2\right)$$

$$\eta_2 = \left(\mu_2, \sigma_2^2\right)$$

$$\eta = \left(\mu_1, \sigma_1^2, \mu_2, \sigma_2^2\right)$$

VB and EM

- EM can be viewed as a special case of VB where $q(\theta, Z) = \delta(\theta \theta_0)q(Z)$
- E step: update q(Z) keeping θ_0 fixed
- M step: update θ_0 at fixed Z

Why use (or not) VB?

- Very fast compared to MCMC
- Typically gives good means
- Mean field often fails on variance
- Recent developments (ADVI, LRVB) improve on MFVB variance, but still no full posteriors

Example: MAP/Laplace vs. MFVB

• On a multivariate Gaussian

Example: bad banana

Suppose we instead had modeled

$$\begin{split} \tilde{\theta} &= \exp(\theta) \\ P_{\tilde{\theta},z} \left(\tilde{\theta}, z \right) &= P_{\theta,z} \left(\log \tilde{\theta}, z \right) \frac{d\theta}{d\tilde{\theta}} \\ &= P_{\theta,z} \left(\log \tilde{\theta}, z \right) \exp(-\theta) \end{split}$$

In $(\tilde{\theta}, Z)$ space the problem is not as easy.

Both MAP and MFVB get mean wrong

MFVB is better than MAP on the mean

Covariances for MAP can also be wrong, but so are for MFVB and LRVB

Neyman-Scott "Paradox"

• Setup: we have N experiments, each measures M = 2 data X_{1n} , X_{2n} . Experiments are trying to determine the variance θ . However, there is an unknown mean offset for each experiment z_n .

For
$$n = 1, ..., N$$

 $X_{1n} \sim \mathcal{N}(z_n, \theta)$
 $X_{2n} \sim \mathcal{N}(z_n, \theta)$

We will investigate the "joint maximum likelihood estimator".

Means are easy enough

For
$$n = 1, ..., N$$

 $X_{1n} \sim \mathcal{N}(z_n, \theta)$
 $X_{2n} \sim \mathcal{N}(z_n, \theta)$

Irrespective of θ ,

$$\hat{z}_n = \operatorname{argmax}_{z_n} P\left(X_{1n}, X_{2n} | z_n, \theta\right)$$
$$= \frac{X_{1n} + X_{2n}}{2}$$

How about variance θ ?

$$\hat{z}_n = \frac{X_{1n} + X_{2n}}{2}$$

$$\hat{\theta} = \operatorname{argmax}_{\theta} P(X_{1n}, X_{2n} | \hat{z}_n, \theta)$$

$$= \frac{1}{2} \left(\frac{1}{N} \sum_{n} (X_{1n} - \hat{z}_n)^2 + \frac{1}{N} \sum_{n} (X_{2n} - \hat{z}_n)^2 \right)$$

$$= \frac{1}{4N} \sum_{n} (X_{1n} - X_{2n})^2$$

• In intro labs/statistics courses we learn that the variance is computed from mean square distance of each point from mean divided by number of measurements *M* (here 2) if mean is known and divided by *M-1* (here 1) if unknown. Where did it come from?

Even for large N, MLE is biased for low M by M/(M-1) (=2 here)

$$\hat{z}_n = \frac{X_{1n} + X_{2n}}{2}$$

$$\hat{z}_n = \frac{X_{1n} + X_{2n}}{2} \qquad \hat{\theta} = \frac{1}{4N} \sum_n (X_{1n} - X_{2n})^2$$

What does our estimate converge to as we get more data?

$$\mathbb{E}\left[\left(X_{1n}-X_{2n}\right)^{2}\right]=\mathbb{E}\left[\mathbb{E}\left[\left(X_{1n}-X_{2n}\right)^{2}|z_{n}\right]\right]=2\theta$$

So

$$\hat{\theta} \xrightarrow[n \to \infty]{} \frac{1}{4} 2\theta = \frac{\theta}{2} \neq \theta$$

- We failed to account for uncertainty in mean z_n : we only measure it from 2 data points
- We need to marginalize over z_n

MAP/MLE vs. Bayes

- We see that MAP/MLE is strongly biased here even in large N limit: one has to be careful with asymptotics theorems
- Full Bayesian analysis (e.g. MCMC) gives posterior of θ marginalized over zn and automatically takes care of the problem. Bayesian analysis gives correct answer, i.e. it gives M/(M-1) correction without "thinking".
- EM also solves this problem correctly: it gives point estimator of θ averaging over zn. So frequentist analyses that perform marginals over latent variables can also be correct "without thinking" (or without simulations telling us there is a problem).
- VB solves it too, and converges to the correct answer
- Lesson: sometimes we need to account for uncertainty in latent variables by marginalizing over them, even if we just want point estimators

Summary

- MCMC is great, but slow
- EM is a point estimator (like MAP/MLE) which marginalizes over latent variables
- Its Bayesian generalization is VB
- Both of these are able to perform marginalization and solve Neyman-Scott paradox, while MLE/MAP fails
- VB is not perfect and can provide wrong means or variances, and is never used for full posteriors

Literature

- Bayesian Data Analysis, Gelman et al., Chapter 13
- D. Mackay, *Information Theory, Inference, and Learning Algorithms* (See course website), Chapter 33