

Art of Problem Solving 2004 USA Team Selection Test

USA Team Selection Test 2004

Day 1	
1	Suppose a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n are real numbers such that
	$(a_1^2 + a_2^2 + \dots + a_n^2 - 1)(b_1^2 + b_2^2 + \dots + b_n^2 - 1) > (a_1b_1 + a_2b_2 + \dots + a_nb_n - 1)^2.$
	Prove that $a_1^2 + a_2^2 + \dots + a_n^2 > 1$ and $b_1^2 + b_2^2 + \dots + b_n^2 > 1$.
2	Assume n is a positive integer. Considers sequences a_0, a_1, \ldots, a_n for which $a_i \in \{1, 2, \ldots, n\}$ for all i and $a_n = a_0$.
	(a) Suppose n is odd. Find the number of such sequences if $a_i - a_{i-1} \not\equiv i \pmod{n}$ for all $i = 1, 2, \ldots, n$.
	(b) Suppose n is an odd prime. Find the number of such sequences if $a_i - a_{i-1} \not\equiv i, 2i \pmod{n}$ for all $i = 1, 2,, n$.
3	Draw a 2004×2004 array of points. What is the largest integer n for which it is possible to draw a convex n -gon whose vertices are chosen from the points in the array?
Day 2	
4	Let ABC be a triangle. Choose a point D in its interior. Let ω_1 be a circle passing through B and D and ω_2 be a circle passing through C and D so that the other point of intersection of the two circles lies on AD . Let ω_1 and ω_2 intersect side BC at E and F , respectively. Denote by X the intersection of DF , AB and Y the intersection of DE , AC . Show that $XY \parallel BC$.
5	Let $A = (0,0,0)$ in 3D space. Define the weight of a point as the sum of the absolute values of the coordinates. Call a point a primitive lattice point if all of its coordinates are integers whose gcd is 1. Let square $ABCD$ be an unbalanced primitive integer square if it has integer side length and also, B and D are primitive lattice points with different weights. Prove that there are infinitely many unbalanced primitive integer squares such that the planes containing the squares are not parallel to each other.

Contributors: cauchyguy, rrusczyk

Art of Problem Solving

2004 USA Team Selection Test

6

Define the function $f: \mathbb{N} \cup \{0\} \to \mathbb{Q}$ as follows: f(0) = 0 and

$$f(3n + k) = -\frac{3f(n)}{2} + k,$$

for k = 0, 1, 2. Show that f is one-to-one and determine the range of f.

These problems are copyright © Mathematical Association of America (http://maa.org).

Contributors: cauchyguy, rrusczyk