

DK1.1_RF_mmW

Please use the bookmark to navigate

General information on PDC vs MC Noise report for RVT models

- Maximum supply voltage is V.
- Validity domain is defined as follows:
 - ✓ Drawn gate length varies from 30nm to 10um.
 - ✓ Drawn transistor width varies from 80nm to 10um.
 - ✓ Device temperature varies from -40 °C to 125 °C.

Output parameters definitions

Model(s): nfet_acc, pfet_acc

nfet_acc Electrical characteristics per geometry

nfet_acc@ w=20e-6, l=2.0e-6, pre_layout_local=1, nf=4, sa=8.500e-08, sb=8.500e-08, sd=1.140e-07, pcpastrx_top=1.050e-07, pcpastrx_bot=1.050e-07, devtype=PCELLwoWPE, as=4.25e-13, ad=4.25e-13, ps=1.017e-05, pd=1.017e-05, vbs=0, vdd=1, temp=25

	TT_Noisedev=4	TT_Noisedev=0	TT_Noisedev=2	PRO_MC_PARAM_	PRO_MC_PARAM_	PRO_MC_PARAM_
			TT_1_MC_AVG-3S	TT_1_MC_AVG	TT_1_MC_AVG+3S	
logSi2@1Hz	-18.15	-17.99	-17.82	-18.15	-17.99	-17.82
[log10(A ² /Hz)]						
logSi2ovId2@1Hz	-9.55	-9.39	-9.22	-9.55	-9.39	-9.22
[log10(1/Hz)]						
logSv2@1Hz	-11.71	-11.55	-11.38	-11.71	-11.55	-11.38
$[\log 10(V^2/Hz)]$						

pfet_acc Electrical characteristics per geometry

pfet_acc @ w=0.30e-6, l=0.030e-6, pre_layout_local=1, nf=1, sa=8.500e-08, sb=8.500e-08, sd=1.140e-07, pcpastrx_top=5.700e-08, pcpastrx_bot=8.000e-08, devtype=PCELLwoWPE, as=2.55e-14, ad=2.55e-14, ps=7.7e-07, pd=7.7e-07, vbs=0, vdd=1, temp=25

	TT_Noisedev=4	TT_Noisedev=0	TT_Noisedev=2	PRO_MC_PARAM_	PRO_MC_PARAM_	PRO_MC_PARAM_
				TT_1_MC_AVG-3S	TT_1_MC_AVG	TT_1_MC_AVG+3S
logSi2@1Hz	-16.51	-15.5	-14.48	-16.51	-15.5	-14.48
[log10(A ² /Hz)]						
logSi2ovId2@1Hz	-7.11	-6.1	-5.09	-7.11	-6.1	-5.09
[log10(1/Hz)]						
logSv2@1Hz	-8.71	-7.7	-6.69	-8.71	-7.7	-6.69
$[\log 10(V^2/Hz)]$						

pfet_acc @ w=20e-6, l=2.0e-6, pre_layout_local=1, nf=4, sa=8.500e-08, sb=8.500e-08, sd=1.140e-07, pcpastrx_top=1.050e-07, pcpastrx_bot=1.050e-07, devtype=PCELLwoWPE, as=4.25e-13, ad=4.25e-13, ps=1.017e-05, pd=1.017e-05, vbs=0, vdd=1, temp=25

	TT_Noisedev=4	TT_Noisedev=0	TT_Noisedev=2	PRO_MC_PARAM_	PRO_MC_PARAM_	PRO_MC_PARAM_
				TT_1_MC_AVG-3S	TT_1_MC_AVG	TT_1_MC_AVG+3S
logSi2@1Hz	-18.95	-18.71	-18.48	-18.95	-18.71	-18.48
[log10(A ² /Hz)]						
logSi2ovId2@1Hz	-9.56	-9.32	-9.08	-9.56	-9.32	-9.08
[log10(1/Hz)]						
logSv2@1Hz	-11.6	-11.36	-11.12	-11.6	-11.36	-11.12
$[\log 10(V^2/Hz)]$						

nfet_acc Electrical characteristics scaling

Scaling versus Length @ W/L=10 and W/NF<5e-6

nfet_acc, logSi2@1Hz+log10(nf) vs "L=W/10 [m]"

nfet_acc, logSi2ovId2@1Hz+log10(nf) vs "L=W/10 [m]"

W/L==10 and Temp==25

- --- DK1.1_RF_mmW_TT_Noisedev=0
- --- DK1.1_RF_mmW_TT_Noisedev=2
- **DK1.1_RF_mmW_PRO_MC_PARAM_TT_1_MC_AVG-3S**
- --- DK1.1_RF_mmW_PRO_MC_PARAM_TT_1_MC_AVG
- DK1.1_RF_mmW_PRO_MC_PARAM_TT_1_MC_AVG+3S

ST Confidential

nfet_acc, logSv2@1Hz+log10(nf) vs "L=W/10 [m]"

pfet_acc Electrical characteristics scaling

Scaling versus Length @ W/L=10 and W/NF<5e-6

pfet_acc, logSi2@1Hz+log10(nf) vs "L=W/10 [m]"

pfet_acc, logSi2ovId2@1Hz+log10(nf) vs "L=W/10 [m]"

pfet_acc, logSv2@1Hz+log10(nf) vs "L=W/10 [m]"

Annex

Conditions of simulations

The simulations were done with SBenchLSF Alpha using Eldo simulator 2018.3.

- Model nfet_acc (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - **x** ams_release = 2018.3
 - \times mc_runs = 500
 - \mathbf{X} iana = 5e-6 A
 - \times temp = 25 °C
 - \mathbf{x} mc_sens = 0
 - \star f_ext = 100k Hz
 - **✗** sbenchlsf_release = Alpha
 - \mathbf{x} vbs = 0 V
 - **x** model_version = 1.2.c
 - X vds_ana = Vdd/4 V
 - **x** mc_nsigma = 3
 - \mathbf{x} vdd = 1 V
 - ✓ Sweep Parameters
 - ✓ Extra parameters

Sep 21, 2018

ST Confidential

$$\mathbf{x}$$
 rvt_dev = 0

- Model pfet_acc (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - **x** ams_release = 2018.3
 - **x** mc_runs = 500
 - \mathbf{X} iana = 2e-6 A
 - \times temp = 25 °C
 - \mathbf{x} mc_sens = 0
 - \star f_ext = 100k Hz
 - **✗** sbenchlsf_release = Alpha
 - \mathbf{x} vbs = 0 V
 - **✗** model_version = 1.2.c
 - \mathbf{X} vds_ana = Vdd/4 V
 - **x** mc_nsigma = 3
 - \times vdd = 1 V
 - ✓ Sweep Parameters
 - ✓ Extra parameters
 - \mathbf{x} rvt_dev = 0

Sep 21, 2018

ST Confidential