# Decision theory. Fisher's LDA, QDA. Mixtures. EM algorithm

V. Kitov



Imperial College London Department of Physics

January 2015

## Table of Contents

- Bayes Decision Rule for Minimum Error

## Bayes Decision Rule for Minimum Error

- C classes:  $\omega_1, \omega_2, ..., \omega_C$ .
- Need to predict class for target object.

#### Initial solution (features unknown)

$$\widehat{c} = \arg\max_{c} p(\omega_{c})$$

• Now features x of object are observed.

#### Solution after observing x

$$\widehat{c} = \arg\max_{c} p(\omega_{c}|x)$$

#### Reformulation

Rewrite class posterior probability:

$$p(\omega_c|x) = \frac{p(\omega_c,x)}{p(x)} = \frac{p(\omega_c)p(x|\omega_c)}{p(x)}$$

## Reformulated solution after observing x

$$\widehat{c} = \arg\max_{c} p(\omega_{c}) p(x|\omega_{c})$$

Two class case:

Assign to class 
$$\omega_1$$
 if  $\frac{p(x|\omega_1)}{p(x|\omega_2)} > \frac{p(\omega_2)}{p(\omega_1)}$ 

## Illustration of decision rule



Class  $\omega_1$  is selected in region A, class  $\omega_2$  selected outside of A

# Minimum error property

Let  $\Omega_1, \Omega_2, ...\Omega_C$  be decision regions for classes  $\omega_1, \omega_2, ...\omega_C$  and  $\Omega$  denotes the whole features space.

Then probability of correct classification equals:

$$p(correct) = \sum_{c=1}^{C} p(correct, \omega_c) = \sum_{c=1}^{C} p(x \in \Omega_c, \omega_c) =$$

$$= \sum_{c=1}^{C} \int_{x \in \Omega_c} p(x, \omega_c) dx = \sum_{c=1}^{C} \int_{x \in \Omega_c} p(x) p(\omega_c | x) dx$$

Probability of correct classification is maximized when for each c  $\Omega_c = \{x : c = \arg\max_i p(\omega_i|x)\}$  - Bayes rule!

$$p(error) = 1 - p(correct)$$

Probability of error is minimized for Bayes decision rule.

# Probabilities for Bayes minimum error decision rule

By definition of Bayes decision rule for each c:

$$p(correct, \omega_c) = \int_{\Omega_c} p(\omega_c) p(x|\omega_c) dx = \int_{\Omega_c} \max_i p(\omega_i) p(x|\omega_i) dx$$

Probability of correct classification equals (using property  $\bigcap_c \Omega_c = \emptyset$ ,  $\bigcup_c \Omega_c = \Omega$ ):

$$p(correct) = \sum_{c=1}^{C} p(correct, \omega_c) = \int \max_{i} p(\omega_i) p(x|\omega_i) dx$$

## Probability of erroneous classification:

$$p(error) = 1 - \int \max_{i} p(\omega_i) p(x|\omega_i) dx$$

## Reject option

 Most of the misclassification errors occurs when algorithm is unsure:

$$p(\omega_{\widehat{c}}|x)$$
 is small, where  $\widehat{c}=rg\max_{c}p(\omega_{c})$ 

- Introduce reject option: if  $\max_c p(\omega_c)$  is small, then reject classification and
  - leave as third class
  - classify is later
    - when new information about object becomes available
    - classify using different algorithm

## Rejection region

Rejection region

$$R = \{x : \max_{c} p(\omega_{c}|x) < \varepsilon\}$$

Acceptance region

$$A = \{x : \max_{c} p(\omega_{c}|x) \ge \varepsilon\}$$

Trade-off: larger reject region will decrease error-rate, but more otherwise correctly classified objects will be rejected.

# Illustration of rejection region



Acceptance and rejection regions.

## **Probabilities**

Correct classification with reject option implies:

- object was not rejected
- object was correctly classified

Probability of correct classification:

$$p(correct) = \int_{A} \max_{i} p(\omega_{i}) p(x|\omega_{i}) dx$$

Probability of rejection:

$$p(reject) = \int_{R} p(x) dx$$

Probability of error:

$$p(error) = \int_{A} (1 - \max_{i} p(\omega_{i}) p(x|\omega_{i})) dx = 1 - p(reject) - p(correct)$$

## Table of Contents

- Bayes Decision Rule for Minimum Error
- 2 Bayes Decision Rule for Minimum Risk
- Class prior independent decisions
- 4 Discriminant functions
- Gaussian classifiers
- 6 Mixture models

## Motivation

- In most practical situations loss from misclassifying different classes is different.
- Examples:
  - e-mail filtering: spam/not spam
  - medical diagnostics: ill/healthy
  - bank crediting: reliable borrower/unreliable borrower
  - network intrusion detection: intrusion/usual use
- Possible solution:

Assign different costs to different misclassifications.

#### Derivation

- Define  $C \times C$  loss matrix  $\Lambda$ , where  $\lambda_{i,j}$  equals cost when object belongs to class  $\omega_i$  but was assigned to class  $\omega_i$ .
- Average loss equals

$$\begin{aligned} \mathsf{E}[L] &= \sum_{i} \sum_{j} \lambda_{ij} p(\omega_{i}, \widehat{\omega}_{j}) = \\ &= \sum_{i} \sum_{j} \lambda_{ij} \int_{\Omega_{j}} p(x, \omega_{i}) dx = \sum_{j} \int_{\Omega_{j}} \sum_{i} \lambda_{ij} p(x, \omega_{i}) dx \end{aligned}$$

• It follows that minimum average solution satisfies:

$$\begin{split} &\Omega_c = \{x: \ c = \arg\min_j \sum_i \lambda_{ij} p(x, \omega_i) \\ &= \arg\min_j \sum_i \lambda_{ij} p(\omega_i | x) p(x) = \arg\min_j \sum_i \lambda_{ij} p(\omega_i | x) \} \end{split}$$

# Bayes minimum risk classification

#### Bayes minimum risk classification

$$\widehat{c} = \arg\min_{c} \sum_{i} \lambda_{ic} p(\omega_{i}|x)$$

Average risk attained by this decision rule equals:

$$\begin{aligned} \mathbf{E}[L] &= \sum_{i} \sum_{j} \lambda_{ij} p(\omega_{i}, \widehat{\omega}_{j}) = \\ &= \sum_{i} \sum_{j} \lambda_{ij} \int_{\Omega_{j}} p(x, \omega_{i}) dx = \sum_{j} \int_{\Omega_{j}} \sum_{i} \lambda_{ij} p(x, \omega_{i}) dx \\ &= \int \min_{j} \sum_{i} \lambda_{ij} p(x, \omega_{i}) dx \end{aligned}$$

# Bayes minimum risk classification

Two class case for  $\lambda_{11} = \lambda_{22} = 0$ :

Assign to class 
$$\omega_1$$
 if  $\frac{p(x|\omega_1)}{p(x|\omega_2)} > \frac{\lambda_{21}p(\omega_2)}{\lambda_{12}p(\omega_1)}$ 

For zero-one loss matrix

$$\lambda_{ij} = \begin{cases} 0, & i = j \\ 1, & i \neq j \end{cases}$$

Bayes minimum risk solution reduces to Bayes minimum error solution.

# Reject option

Define conditional risk of assigning object x to class  $\omega_i$ :

$$loss^{j}(x) = \sum_{i} \lambda_{ij} p(\omega_{i}|x)$$

For Bayes minimum risk decision rule expected loss for object x is

$$loss(x) = \min_{j} loss^{j}(x)$$

We can reject classification if expected cost of misclassification object is too high.

rejection region: 
$$R = \{x : loss(x) > \varepsilon\}$$
  
acceptance region:  $A = \{x : loss(x) \le \varepsilon\}$ 

# Reject option

Expected risk with rejection option equals:

$$\mathsf{E}[L|\mathsf{no}\ \mathsf{rejection}] = \int_{A} \min_{j} \sum_{i} \lambda_{ij} p(x,\omega_{i}) dx$$

Probability of rejection:

$$p(\text{reject}) = \int_{R} p(x) dx$$

# Bayes minimum risk for equal within class costs

Earlier we have obtained Bayes minimum risk decision rule:

$$\widehat{c} = \arg\min_{c} \sum_{i} \lambda_{ic} p(\omega_{i}|x)$$

Suppose the costs matrix  $\Lambda$  has simpler structure:

$$\lambda_{ic} = \begin{cases} 0, & i = c \\ \gamma_i, & i \neq c \end{cases}$$

Then Bayes minimum risk becomes:

$$\widehat{c} = \arg\min_{c} \sum_{i \neq c} \gamma_{i} p(\omega_{i}|x) = \arg\min_{c} \left\{ \sum_{i} \gamma_{i} p(\omega_{i}|x) - \gamma_{c} p(\omega_{c}|x) \right\}$$

$$= \arg\max_{c} \gamma_{c} p(\omega_{c}|x)$$

## Table of Contents

- Class prior independent decisions

# Neyman-Pearson rule

- ullet Applied for two class cases. Class  $\omega_1$  will be the target class
- Two types of errors incurred:
  - False alarm:  $p(\widehat{\omega}_1|\omega_2)$ • Missed detection:  $p(\widehat{\omega}_2|\omega_1)$
- Instead of maximizing general performance we minimize false alarm rate, given tolerable missed detection rate.

$$\begin{cases} \int_{\Omega_2} p(x|\omega_1) \to \min_{\Omega_1} \\ \int_{\Omega_1} p(x|\omega_2) = \varepsilon \end{cases}$$

Neyman-Pearson solution:

Assign to class 
$$\omega_1$$
 if  $\frac{p(x|\omega_1)}{p(x|\omega_2)} > \mu$ , where  $\mu$  is such that  $\int_{\Omega_1} p(x|\omega_2) = \varepsilon$ 

#### Minimax criterion

Bayes minimum error rule:

$$egin{aligned} & p(\textit{error}) = p(\omega_1) \int_{\Omega_2} p(x|\omega_1) dx + p(\omega_2) \int_{\Omega_1} p(x|\omega_2) dx \ & = p(\omega_1) \int_{\Omega_2} p(x|\omega_1) dx + (1-p(\omega_1)) \int_{\Omega_1} p(x|\omega_2) dx \end{aligned}$$

- Suppose, prior class probabilities may change in future.
- Optimize Bayes rule for worst case of prior probabilities:

$$\max_{p(\omega_1)} p(error) o \min_{\Omega_1}$$

# Minimax criterion

• p(error) is a linear function of  $p(\omega_1)$ , so maximum is achieved on the edge and is equal to

$$\max\left\{\int_{\Omega_2} p(x|\omega_1) dx, \, \int_{\Omega_1} p(x|\omega_2) dx\right\}$$

Solution:

$$\int_{\Omega_2} p(x|\omega_1) dx = \int_{\Omega_1} p(x|\omega_2) dx$$

## Table of Contents

- Discriminant functions

## Definition

## Discriminant functions approach

- have C discriminant functions  $g_i(x)$ , i = 1, 2...C.
- assign x to class having maximum discriminant function value:

$$\widehat{c} = \arg \max_{c} g_{c}(x)$$

Discriminant functions are not unique:

 $g_i(x)$  and g'(x) = f(g(x)) lead to equivalent classification for any monotonically increasing function f(x).

## Two class case

ullet For two class case we may define a single function g(x) such that

$$\widehat{c} = \begin{cases} 1, & g(x) > k, \\ 2 & g(x) \le k. \end{cases}$$

- Possible reductions from multiclass case:
  - $g(x) = g_1(x) g_2(x), k = 0$
  - $g(x) = g_1(x)/g_2(x)$ , k = 1 for positive  $g_1(x), g_2(x)$ .

## Linear discriminant function

Simplest case - linear discriminant function:

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$$



# Limitation of linear decision boundary

The objects below can't be separated with linear boundary.



However, objects may be linearly separated in transformed space:  $\phi_1(\mathbf{x}) = x_1^2$ ,  $\phi_2(\mathbf{x}) = x_2$ .

## Non-linear discriminant functions

Natural way to make non-linear decision boundaries is to apply standard linear discriminant functions with transformed features.

## Most well-known examples:

- linear:  $\phi_i(\mathbf{x}) = x_i$
- ullet polynomial:  $\phi_i(oldsymbol{x}) = x_{k_1}^{s_1} x_{k_2}^{s_2} ... x_{k_q}^{s_q}$
- radial basis functions:  $\phi_i(\mathbf{x}) = \phi(|\mathbf{x} \mathbf{\nu_i}|)$ , where  $\phi(\cdot)$  is non-increasing function, meaning proximity.
- multi-layer perceptron:  $\phi_i(\mathbf{x}) = f(\mathbf{x}^T \boldsymbol{\nu}_i + \nu_{i0})$ , where  $f(z) = 1/(1 + e^{-z})$  logistic or any other "step" function.

# Probability calibration

- Assume we have an arbitrary discrimination function g(x) and two classes.
- Classification is based on the sign: y = sign g(x)
- Need to estimate posterior class probabilities

$$p(\omega_1|x) = F(R_\theta(g(x)))$$

where  $R_{\theta}(z)$  is monotone transform and F maps  $\mathbb{R}$  to [0,1].

- Can assume  $F(z) = \sigma(z)$ ,  $R_{\theta}(z) = \theta_0 + \theta_1 z$  (Platt's calibration)
- Then, using the property  $1 \sigma(z) = \sigma(-z)$ :

$$p(y=1|x) = \sigma\left(\theta_0 + \theta_1 g(x)\right), \quad p(y=-1|x) = \sigma\left(-\theta_0 - \theta_1 g(x)\right)$$

Estimate using ML:

$$\prod_{i=1}^n \sigma\left(y_i( heta_0+ heta_1 g(x))
ight)
ightarrow \max_{ heta}$$

## Table of Contents

- Bayes Decision Rule for Minimum Error
- 2 Bayes Decision Rule for Minimum Risk
- Class prior independent decisions
- 4 Discriminant functions
- Gaussian classifiers
- 6 Mixture models

# Gaussian (normal) distribution

Univariate case:

$$p(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Multivariate case (*D*-dimensionality of data):

$$p(x|\mu, \Sigma) = \frac{1}{(2\pi)^{D/2} |\Sigma|^{1/2}} exp\left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\}$$



# Gaussian (normal) distribution - sample estimates

Univariate case:

$$\hat{\mu}_{ML} = \frac{1}{N} \sum_{n=1}^{N} x_n, \quad \hat{\sigma}_{ML}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \widehat{\mu})^2$$

Multivariate case (*D*-dimensionality of data):

$$\hat{\mu}_{ML} = \frac{1}{N} \sum_{n=1}^{N} x_n, \quad \widehat{\Sigma}_{ML} = \frac{1}{N} \sum_{n=1}^{N} (x_n - \widehat{\mu})(x_n - \widehat{\mu})^T$$

Since  $\widehat{\sigma}_{ML}^2$  and  $\widehat{\Sigma}_{ML}$  are biased estimates, it is common to use unbiased estimates:

$$\hat{\sigma}_{ML}^2 = \frac{1}{N-1} \sum_{n=1}^{N} (x_n - \widehat{\mu})^2, \quad \widehat{\Sigma}_{ML} = \frac{1}{N-1} \sum_{n=1}^{N} (x_n - \widehat{\mu})(x_n - \widehat{\mu})^T$$

## Gaussian classifier

In Gaussian classifier

$$p(x|\omega_j) = \frac{1}{(2\pi)^{D/2} |\Sigma_j|^{1/2}} exp\left\{ -\frac{1}{2} (x - \mu)^T \Sigma_j^{-1} (x - \mu) \right\}$$

It follows that

$$\log p(x|\omega_j) = \log p(x|\omega_j) + \log p(\omega_j) - \log p(x)$$

$$= -\frac{1}{2}(x - \mu_j^T)\Sigma_j^{-1}(x - \mu_j) - \frac{1}{2}\log|\Sigma_j|$$

$$-\frac{d}{2}\log(2\pi) + \log p(\omega_j) - \log p(x)$$

Removing common additive terms, we obtain discriminant functions:

$$g_j(x) = \log p(\omega_j) - \frac{1}{2} \log |\Sigma_j| - \frac{1}{2} (x - \mu_j)^T \Sigma_j^{-1} (x - \mu_j)$$
 (1)

# Practical application

- In practice we replace theoretical terms  $\mu_j$ ,  $\Sigma_j$  with their sample estimates  $\widehat{\mu}_j$ ,  $\widehat{\Sigma}_j$ .
- $p(\omega_j)$  may be estimated using sample frequency (assuming that experiment conditions don't change):  $p(\omega_j) = \frac{n_j}{n}$ .

$$g_j(x) = \log p(\omega_j) - \frac{1}{2} \log |\widehat{\Sigma}_j| - \frac{1}{2} (x - \widehat{\mu}_j)^T \widehat{\Sigma}_j^{-1} (x - \widehat{\mu}_j)$$

- Analysis:
  - depends on normality assumptions (in particular on unimodality)
  - needs to specify:
    - *CD* parameters to estimate  $\widehat{\mu}_i$ , j=1,2,...C.
    - CD(D+1)/2 parameters to estimate  $\widehat{\Sigma}_j$ , j=1,2,...C.

# Simplifying assumptions

- CD(D+3)/2 may be too large for multidimensional tasks with small training sets.
- Simplifying assumptions:
  - Naive Bayes: assume that  $\Sigma_1, \Sigma_2, ... \Sigma_C$  are diagonal.
  - Project onto a subspace: for example on first few principal components.
  - Proportional covariance matrices: assume that  $\Sigma_1 = \alpha_1 \Sigma$ ,  $\Sigma_2 = \alpha_2 \Sigma$ , ...  $\Sigma_C = \alpha_C \Sigma$ .
  - Fisher's linear discriminant analysis: assume that  $\Sigma_1 = \Sigma_2 = ... = \Sigma_C$ .

## Fisher's LDA

 Quadratic discriminant analysis classification was obtained above in (1):

$$g_j(x) = \log p(\omega_j) - \frac{1}{2} \log |\widehat{\Sigma}_j| - \frac{1}{2} (x - \widehat{\mu}_j)^T \widehat{\Sigma}_j^{-1} (x - \widehat{\mu}_j)$$

ullet Under assumption  $\Sigma_1=\Sigma_2=...=\Sigma_{\mathcal{C}}$  we obtain:

$$g_j(x) = \log p(\omega_j) - \frac{1}{2} \widehat{\mu}_j^T S_W^{-1} \widehat{\mu}_j + x^T S_W^{-1} \widehat{\mu}_j$$

 where estimator of common covariance matrix is given by pooled within class covariance matrix

$$S_W = \sum_{i=1}^C \frac{N_j}{N} \hat{\Sigma}_j$$

• Unbiased estimate of common covariance matrix is  $\frac{N}{N-C}S_W$ .

# LDA vs. QDA



#### Addition

- For LDA: if  $p(\omega_1) = p(\omega_2) = ... = p(\omega_C)$  and  $\Sigma_1 = \Sigma_2 = ... = \Sigma_C = I$ , then LDA reduces to nearest mean classifier.
- Regularized discriminant analysis intermediate case between different, common and identity covariance matrices:

$$\widetilde{\Sigma}_{j} = \alpha \Sigma_{j} + \beta \Sigma + (1 - \alpha - \beta)I, \quad \alpha \geq 0, \, \beta \geq 0, \, \alpha + \beta \leq 1.$$

ullet lpha and eta for RDA are selected using cross-validation.

## Table of Contents

- 6 Mixture models

## Mixture models

• Mixture models have the form:

$$p(x) = \sum_{j=1}^{g} \pi_j p(x; \theta_j)$$

- May be viewed as a two-step random process:
  - generate cluster number *j* from discrete distribution

$$j \sim \textit{Disc}(\pi_1, \pi_2, ... \pi_g)$$

2 generate observation x using density, representing given cluster  $p(x; \theta_j)$ 

$$x \sim p(x; \theta_j)$$

Normal mixtures:

$$p(x) = \sum_{i=1}^{g} \pi_{j} N(x; \mu_{j}, \Sigma_{j})$$

# Normal mixture example



## Likelihood maximization

• Direct optimization of likelihood is not possible:

$$L(\pi_1, ... \pi_g, \mu_1, ... \mu_g, \Sigma_1, ... \Sigma_g) = \prod_{i=1}^N \left\{ \sum_{j=1}^g \pi_j N(x; \mu_j, \Sigma_j) \right\}$$

 EM-algorithm is an iterative algorithm for likelihood maximization:

# EM algorithm

- while parameters not converged:
  - for each sample i = 1, 2, ...N; for each cluster j = 1, 2, ...g:
    - recalculate cluster correspondences:

$$w_{ij} = \frac{\pi_j N(x_i; \mu_j, \Sigma_j)}{\sum_k \pi_k N(x_i; \mu_k, \Sigma_j)}$$

• recalculate parameters of each cluster:

$$\hat{\pi}_j = \frac{1}{N} \sum_{i=1}^{N} w_{ij}, \quad \hat{\mu}_j = \frac{1}{\sum_{i=1}^{N} w_{ij}} \sum_{i=1}^{N} w_{ij} x_i$$

$$\hat{\Sigma}_{j} = \frac{1}{\sum_{i=1}^{N} w_{ij}} \sum_{i=1}^{N} w_{ij} \left( x_{i} - \hat{\mu}_{j} \right) \left( x_{i} - \hat{\mu}_{j} \right)^{\mathsf{T}}$$

## **Application**

- May converge to local optimum, depending on initial condition
  - starting EM from different initial conditions is advised
- Initial conditions may be obtained from k-means algorithm
- Initial covariance should be wide enough
- Degenerate optimums:  $\hat{\mu}_j = x_k$ ,  $\hat{\Sigma}_j \to \Theta \in \mathbb{R}^{D \! imes D}$  ( $\Theta$  is the zero matrix)
- $\hat{\Sigma}_j$  may become singular, so  $N(x_i; \mu_j, \Sigma_j)$  will not be computable
  - $\tilde{\Sigma}_i \leftarrow \Sigma_i + \alpha I$
  - ullet consider only diagonal  $\Sigma_j$
  - consider only spherical  $\Sigma_i = \alpha_i I$
  - ullet assume common covariance matrix  $\Sigma_1=\Sigma_2=...=\Sigma_g$

## Different distributions

- Other distributions may be taken instead of Gaussian:
  - Gamma distribution for non-negative random variables
  - Beta distribution for non-negative bounded random variables
  - Polynomial distribution for non-negative discrete random variables
  - etc.



Gamma, beta and binomial distributions