

Overview of the talk

- Square Kilometre Array a brief overview
- SKA Telescope Control System
 - What do we need to monitor and control
 - Requirements, challenges
 - Design patterns

SKA Observatory

1-2-3

- one observatory,
- two radio-telescopes,
- on three continents.
- Inter-governmental organization

https://www.skatelescope.org/

Successfully completed the Critical Design Review.

Construction started on 1. July 2021.

- Contracts are being awarded.
- Team is growing.

SKA Science Goals

https://www.skatelescope.org/science/

- Galaxy evolution, cosmology and dark energy
- Strong-fields tests of gravity using pulsars and black holes
- The origin and evolution of cosmic magnetism
- Probing the cosmic down
- The cradle of life
- Flexible design to enable exploration of unknown...

SKA – Square Kilometre Array

- The goal is to (eventually) build a radio-telescope with collecting area of 1km².
- Instead of building a single gigantic dish, use a technique called interferometry.
- The waves are superimposed to cause the phenomenon called interference, which is used to extract information.

★Global HQ

Jodrell Bank Observatory, Manchester, UK

★Low Frequency Array Telescope

- Murchison region, Western Australia
- Observing range: 50 350 MHz
- 131,072 (512 x 256) log periodic antennas

★Mid Frequency Array Telescope

- Karoo region, South Africa
- Observing range 350MHz 15GHz
- ~200 x 15m diameter dishes

Radio-Telescope - an overview

Infrastructure: facilities, roads, lending strips, power, water, networks, masers, IT...

Data Archives: Observing Data, Scientific Data, Engineering Data, Project Data...

SKA Telescope - software overview

SKA Telescope Control System Requirements

Equipment:

- Monitoring (report status, including faults and errors).
- Archiving (periodic reporting).
- API to trigger state/mode changes (command).
- Support for hardware / software / firmware updates.
- Support for debugging, testing and maintenance.

These requirements apply for:

- Telescope
- Sub-systems
- Individual components

Observing:

- Each telescope supports multiple observing modes - configure a telescope for the desired observing mode.
- Point the receptors and beams; track sources.
- Start and stop data processing.
- Store data products (data sets).
- Subdivide the array (receivers and processing resources), operate each subarray independently (in terms of observing band & mode, start and stop).

SKA Telescope Control System Physical vs Functional View

- →In an interferometer, the functional view does not always directly map to the physical view.
- →Requirement to operate each sub-array as an independent telescope further complicates 'mapping' of the functionality to physical equipment.
- → Control System provides two views:
 - Physical (equipment and components).
 - Functional (subarrays, capabilities).

TANGO Controls Framework

 During the design phase a decision was made to use TANGO Controls as a base for implementation of the Telescope Control System.

https://www.tango-controls.org/

- TANGO Controls is an open-source device-oriented toolkit for controlling any kind of software and hardware.
- TANGO Controls can be used to build Distributed Control Systems and SCADA (Supervisory Control and Data Acquisition) Systems.
- From the design point of view the key concepts are:
 - TANGO Device a software component (instantiation of a TANGO Device Class). Each TANGO Device models device, software component, or sub-system.
 - o Tango Device Server an execution environment for one or more TANGO devices.

SKA Telescope Control System Architecture

- Key telescope sub-systems consist of hundreds, if not thousands, of components and are organized hierarchically.
- Each 'level' performs aggregation and reports overall status of all subordinate components.
- Each level provides TANGO API.
- Commands are used to pass the observing mode configuration from top to bottom.
- At each 'level' the higher-level parameters are translated into detailed configuration of the subordinate components.

Sub-systems that implement sub-arraying implement this design pattern:

- Master Controller
- Physical devices
- Subarray
- Capability

Standard set of state and mode

indicators

SKA Telescope Control System A simplified overview

Design pattern

SKA Telescope Control System - Design Pattern Decoupling TANGO from the "business logic"

- → Hierarchical organization
- → "Deep adoption of TANGO" TANGO API provided at all levels of hierarchy:
 - Top-level view (overall status of the telescope).
 - All low level components (equipment, software components).
 - And also for the 'middle' i.e. all the sub-systems
- →Unwanted consequences:
 - The framework (TANGO) becomes entangled into every aspect of the control system logic; overly dependent on TANGO.
 - Confusion regarding the TANGO Device (software model) and the device being modeld.
- → Solution: Decouple the TANGO API (layer) from the 'business logic'.
 - o TANGO Device provides API (attributes, commands, alarms, events).
 - Another class, so called Component Manager implements the logic required for monitoring, configuration and control.

SKA Telescope CS - Design Patterns Loose Coupling of Components

- Loose coupling of components achieved using the following techniques:
 - Asynchronous communications.
 - Components implement input queue (optional).
 - Use of JSON (hi-level messaging, weak typing).
 - Overview of the command implementation:
 - Before issuing a command a client registers to receive events.
 - When a command is received, the server adds the commands to the queue (FIFO).
 - Control is immediately returned to the caller.
 - A worker thread, when idle, removes the command form the queue and executes.

SKA Telescope Control System Design Patterns Summary

- Hierarchical organization
- Decouple physical and functional view
- Distributed control of process logic *
- > Set of SKA Base Classes (standard set of state/mode indicators, commands and more)
- > TANGO Control framework
 - ➤ Provides physical connection via a mediator (CORBA) *
- > TANGO API provided at all levels of hierarchy
- Decouple TANGO API from the "system logic"
- Use JSON to pass configuration messages
 - Data-centric and self-contained messages *
 - ➤ Simple common types in data model *
- Asynchronous communications *

* Promotes loose coupling of components

Thank you!

Sonja Vrcic Control System Architect SKA Observatory