Finding a Nash Equilibrium is No Easier than Breaking Fiat-Shamir

Arka Rai Choudhuri Pavel Hubáček Chethan Kamath Krzysztof Pietrzak Alon Rosen Guy Rothblum What is the Cryptographic Hardness in PPAD?

Games

Games

Complexity

Games Complexity Crypto

Games Complexity Crypto

Games Complexity Crypto

	Left	Right
Left	1 \ -1	-1\1
Right	-1 \ 1	1 \ -1

	Left	Right
Left	1 \ -1	-1\ 1
Right	-1 \ 1	1 \ -1

[Nash'51]: A (mixed) equilibrium always exists

How hard is finding a Nash Equilibrium?

	Left	Right
Left	1 \ -1	-1\1
Right	-1 \ 1	1 \ -1

How hard is finding a Nash Equilibrium?

	Left	Right
Left	1 \ -1	-1\ 1
Right	-1 \ 1	1\-1

The Class PPAD [Papadimitriou'94]

The Class PPAD [Papadimitriou'94]

The Class PPAD [Papadimitriou'94]

PPAD

Defined through its complete problem: **END OF THE LINE (EOL)**

Directed graph

Directed graph

Every node has in and out degree ≤ 1

Directed graph

Every node has in and out degree ≤ 1

Directed graph

Every node has in and out degree ≤ 1

How easy is it to solve this?

PPAD and NASH [Papadimitriou'94]

	Left	Right
Left	1 \ -1	-1\ 1
Right	-1 \ 1	1 \ -1

PPAD and NASH [Papadimitriou'94]

	Left	Right
Left	1 \ -1	-1\1
Right	-1 \ 1	1 \ -1

PPAD and NASH [Papadimitriou'94]

Right

-1\1

1\-1

[Daskalakis-Goldberg-Papadimitriou 05], [Chen-Deng 05]

The Story Line

Games Complexity Crypto

EOL Hardness from Obfuscation

[Bitansky-Paneth Rosen'15]

EOL Hardness from Obfuscation

[Bitansky-Paneth Rosen'15]

PPAD/CLS hardness can be based on indistinguishability obfuscation (iO)

[Abbott-Kane-Valiant'04,Bitansky-Paneth Rosen'15]

[Abbott-Kane-Valiant'04,Bitansky-Paneth Rosen'15]

If the path is verifiable, then **Predecessor** is for free.

[Abbott-Kane-Valiant'04,Bitansky-Paneth Rosen'15]

If the path is verifiable, then **Predecessor** is for free.

[Abbott-Kane-Valiant'04,Bitansky-Paneth Rosen'15]

If the path is verifiable, then **Predecessor** is for free.

[Abbott-Kane-Valiant'04,Bitansky-Paneth Rosen'15]

If the path is verifiable, then **Predecessor** is for free.

[Abbott-Kane-Valiant'04,Bitansky-Paneth Rosen'15]

If the path is verifiable, then **Predecessor** is for free.

[Abbott-Kane-Valiant'04,Bitansky-Paneth Rosen'15]

If the path is verifiable, then **Predecessor** is for free.

[Abbott-Kane-Valiant'04,Bitansky-Paneth Rosen'15]

If the path is verifiable, then **Predecessor** is for free.

[Abbott-Kane-Valiant'04,Bitansky-Paneth Rosen'15]

If the path is verifiable, then **Predecessor** is for free.

[Abbott-Kane-Valiant'04,Bitansky-Paneth Rosen'15]

If the path is verifiable, then **Predecessor** is for free.

Our Result

Our Result

CLS is as hard as breaking soundness of Fiat-Shamir when applied to the sumcheck protocol

Our Construction

SVL Is No Easier Than Breaking Fiat-Shamir

Basic Idea

Basic Idea

Reduce to SVL from #SAT

Basic Idea

Reduce to SVL from #SAT

Reduce to SVL from #SAT

$$V(i, y_i, \overline{\pi_i}) = \text{ACCEPT} \iff y_i \text{ is the # of } \vec{z} \leq i \text{ such that } \varphi(\vec{z}) = 1$$

$$S\left(i, y_i, \boxed{\pi_i}\right) = i + 1, y_{i+1}, \boxed{\pi_{i+1}}$$

 $k, y_k, \widetilde{\pi}_k$

Should be hard to find ``off-path'' j, \overline{y}_j , $\left[\widetilde{\pi}_j\right]$ such that $V\left(j,y_j,\left|\widetilde{\pi}_j\right|\right)$ = ACCEPT

Solving an instance of rSVL

Solving an instance of rSVL solve #SAT instance φ

Solving an instance of rSVL solve #SAT instance φ break (computational) soundness of π

Challenges

Challenges

Several Challenges:

Challenges

Several Challenges:

Proof size has to be polynomial

Arithmetization

Number of $\vec{z} \in \{0,1\}^n$ such that $\varphi(\vec{z}) = 1$ is

$$y = \sum_{\vec{z} \in \{0,1\}} f(\vec{z})$$

Sumcheck Protocol

 $\tilde{g}_1(x)$

$$\tilde{g}_1(x) \coloneqq \sum_{z_2, \dots, z_n \in \{0,1\}} f(x, z_2, \dots, z_n)$$

 $\tilde{g}_1(x)$

$$\widetilde{g}_1(x) \coloneqq \sum_{z_2, \dots, z_n \in \{0,1\}} f(x, z_2, \dots, z_n)$$

$$\tilde{g}_1(0) + \tilde{g}_1(1) \stackrel{?}{=} y$$

The sum value y

The sum value y

$$\tilde{g}_1(0) + \tilde{g}_1(1) \stackrel{?}{=} y$$

$$\beta_1 \leftarrow_R \mathbb{F}$$

The sum value y

$$eta_1$$

$$\tilde{g}_1(0) + \tilde{g}_1(1) \stackrel{?}{=} y$$

$$\beta_1 \leftarrow_R \mathbb{F}$$

The sum value y

$$\tilde{g}_1(x) \coloneqq \sum_{z_2, \dots, z_n \in \{0,1\}} f(x, z_2, \dots, z_n)$$

$$\tilde{g}_1(x)$$
 $\{\tilde{g}_1(0), \cdots, \tilde{g}_1(d)\}$

$$\tilde{g}_1(0) + \tilde{g}_1(1) \stackrel{?}{=} y$$

$$y_1 \coloneqq \tilde{g}_1(\beta_1)$$

 eta_1

$$\beta_1 \leftarrow_R \mathbb{F}$$

$$y_1 \coloneqq \tilde{g}_1(\beta_1)$$

The sum value *y*

$$\tilde{g}_1(x) \coloneqq \sum_{z_2, \dots, z_n \in \{0,1\}} f(x, z_2, \dots, z_n)$$

$$\{\tilde{g}_1(0), \cdots, \tilde{g}_1(d)\}$$

$$\tilde{g}_1(0) + \tilde{g}_1(1) \stackrel{?}{=} y$$

$$\beta_1 \leftarrow_R \mathbb{F}$$

$$y_1 \coloneqq \tilde{g}_1(\beta_1)$$

$$y_1 \coloneqq \tilde{g}_1(\beta_1)$$

$$\tilde{g}_2(x) \coloneqq \int f(\beta_1, x, z_3, z_3) dz$$

$$\tilde{g}_2(x) \coloneqq \sum_{z_3, \dots, z_n \in \{0,1\}} f(\beta_1, x, z_3, \dots, z_n)$$

The sum value *y*

$$\tilde{g}_1(x) \coloneqq \sum_{z_2, \dots, z_n \in \{0,1\}} f(x, z_2, \dots, z_n)$$

The sum
$$\sum_{z \in \{0,1\}^n} f(z)$$
 is some value y

$\tilde{g}_1(x)$

$$\{\tilde{g}_1(0),\cdots,\tilde{g}_1(d)\}$$

Prove it!

$$\tilde{g}_1(0) + \tilde{g}_1(1) \stackrel{?}{=} y$$

$$y_1 \coloneqq \tilde{g}_1(\beta_1)$$

$$\tilde{g}_2(x) \coloneqq \sum_{z_3, \dots, z_n \in \{0,1\}} f(\beta_1, x, z_3, \dots, z_n)$$

 eta_1

$$\beta_1 \leftarrow_R \mathbb{F}$$

$$y_1 \coloneqq \tilde{g}_1(\beta_1)$$

$$\tilde{g}_2(x)$$

Prove it!

•

The sum value y

$$\widetilde{g}_j(x) \coloneqq \sum_{z_{j+1}, \dots, z_n \in \{0,1\}} f(\beta_1, \dots, \beta_{j-1}, x, z_{j+1}, \dots, z_n)$$

The sum value y

$$\widetilde{g}_j(x) \coloneqq \sum_{z_{j+1}, \dots, z_n \in \{0,1\}} f(\beta_1, \dots, \beta_{j-1}, x, z_{j+1}, \dots, z_n)$$

The sum value y

$$\tilde{g}_j(x) \coloneqq \sum_{z_{j+1}, \dots, z_n \in \{0,1\}} f(\beta_1, \dots, \beta_{j-1}, x, z_{j+1}, \dots, z_n)$$

$$\tilde{g}_j(0) + \tilde{g}_j(1) \stackrel{?}{=} \tilde{g}_{j-1}(\beta_{j-1})$$

The sum value y

$$\tilde{g}_j(x) \coloneqq \sum_{z_{j+1}, \dots, z_n \in \{0,1\}} f(\beta_1, \dots, \beta_{j-1}, x, z_{j+1}, \dots, z_n)$$

$$\tilde{g}_{j}(0) + \tilde{g}_{j}(1) \stackrel{?}{=} \tilde{g}_{j-1}(\beta_{j-1})$$
 $\beta_{j} \leftarrow_{R} \mathbb{F}$

The sum value y

$$\tilde{g}_j(x) \coloneqq \sum_{z_{j+1}, \dots, z_n \in \{0,1\}} f(\beta_1, \dots, \beta_{j-1}, x, z_{j+1}, \dots, z_n)$$

$$\tilde{g}_{j}(x)$$

$$\beta_{j}$$

$$\tilde{g}_{j}(0) + \tilde{g}_{j}(1) \stackrel{?}{=} \tilde{g}_{j-1}(\beta_{j-1})$$
 $\beta_{j} \leftarrow_{R} \mathbb{F}$

The sum value y

 β_j

$$\tilde{g}_j(x) \coloneqq \sum_{z_{j+1}, \dots, z_n \in \{0,1\}} f(\beta_1, \dots, \beta_{j-1}, x, z_{j+1}, \dots, z_n)$$

$$y_j \coloneqq \tilde{g}_j(\beta_j)$$

j-th claim

$$\tilde{g}_{j}(0) + \tilde{g}_{j}(1) \stackrel{?}{=} \tilde{g}_{j-1}(\beta_{j-1})$$

 $\beta_{j} \leftarrow_{R} \mathbb{F}$

The sum value y

$$\tilde{g}_j(x) \coloneqq \sum_{z_{j+1}, \dots, z_n \in \{0,1\}} f(\beta_1, \dots, \beta_{j-1}, x, z_{j+1}, \dots, z_n)$$

$$y_j \coloneqq \tilde{g}_j(\beta_j)$$

j-th claim

$$\tilde{g}_1(x)$$

$$\dot{\tilde{g}}_j(x)$$

$$eta_j$$

$$\tilde{g}_{j}(0) + \tilde{g}_{j}(1) \stackrel{?}{=} \tilde{g}_{j-1}(\beta_{j-1})$$
 $\beta_{j} \leftarrow_{R} \mathbb{F}$

The sum value y

$$\tilde{g}_j(x) \coloneqq \sum_{z_{j+1}, \dots, z_n \in \{0,1\}} f(\beta_1, \dots, \beta_{j-1}, x, z_{j+1}, \dots, z_n)$$

j-th claim

 $y_i \coloneqq \tilde{g}_i(\beta_i)$

$$\tilde{g}_{j}(0) + \tilde{g}_{j}(1) \stackrel{?}{=} \tilde{g}_{j-1}(\beta_{j-1})$$

 $\beta_{j} \leftarrow_{R} \mathbb{F}$

The sum value y

 $\dot{\tilde{g}}_{j}(x)$

$$\tilde{g}_j(x) \coloneqq \sum_{z_{j+1}, \dots, z_n \in \{0,1\}} f(\beta_1, \dots, \beta_{j-1}, x, z_{j+1}, \dots, z_n)$$

$$y_j \coloneqq \tilde{g}_j(\beta_j)$$

j-th claim

$$\tilde{g}_{j}(0) + \tilde{g}_{j}(1) \stackrel{?}{=} \tilde{g}_{j-1}(\beta_{j-1})$$

 $\beta_{j} \leftarrow_{R} \mathbb{F}$

$$\beta_n \leftarrow_R \mathbb{F}$$

The sum value y

 $g_j(x)$

$$\tilde{g}_j(x) \coloneqq \sum_{z_{j+1}, \dots, z_n \in \{0,1\}} f(\beta_1, \dots, \beta_{j-1}, x, z_{j+1}, \dots, z_n)$$

$$y_j \coloneqq \tilde{g}_j(\beta_j)$$

j-th claim

$$\tilde{g}_{j}(0) + \tilde{g}_{j}(1) \stackrel{?}{=} \tilde{g}_{j-1}(\beta_{j-1})$$
 $\beta_{j} \leftarrow_{R} \mathbb{F}$

$$\beta_n \leftarrow_R \mathbb{F}$$
 $f(\beta_1, \dots, \beta_n) \stackrel{?}{=} \tilde{g}_n(\beta_n)$

The sum value y

size $N = 2^n$ claim

$$y_j \coloneqq \tilde{g}_j(\beta_j)$$

j-th claim

Prove it!

$$\tilde{g}_{j}(x)$$
 β_{i}

 $\tilde{g}_1(x)$

 β_1

$$\beta_{j}$$

$$\vdots$$

$$\beta_{n-1}$$

$$\tilde{g}_{n}(x)$$

$$\tilde{g}_{j}(0) + \tilde{g}_{j}(1) \stackrel{?}{=} \tilde{g}_{j-1}(\beta_{j-1})$$
 $\beta_{j} \leftarrow_{R} \mathbb{F}$

$$\beta_n \leftarrow_R \mathbb{F}$$
 $f(\beta_1, \cdots, \beta_n) \stackrel{?}{=} \tilde{g}_n(\beta_n)$

The sum value y

size $N = 2^n$ claim

$$y_i \coloneqq \tilde{g}_i(\beta_i)$$

j-th claim

size $N/2^{j}$ claim

$$\tilde{g}_{j}(x)$$

 $\tilde{g}_1(x)$

 β_1

$$eta_j$$
 .

$$\hat{\beta}_{n-1}$$
 $\tilde{g}_n(x)$

$$\tilde{g}_{j}(0) + \tilde{g}_{j}(1) \stackrel{?}{=} \tilde{g}_{j-1}(\beta_{j-1})$$

 $\beta_{j} \leftarrow_{R} \mathbb{F}$

$$\beta_n \leftarrow_R \mathbb{F}$$

$$f(\beta_1, \cdots, \beta_n) \stackrel{?}{=} \tilde{g}_n(\beta_n)$$

$$y_j \coloneqq \tilde{g}_j(\beta_j)$$

$$y_j \coloneqq \tilde{g}_j(\beta_j)$$

$$\sum_{z_{j+1},\dots,z_n\in\{0,1\}} f(\beta_1,\dots,\beta_{j-1},\beta_j,z_{j+1},\dots,z_n) \stackrel{?}{=} y_j$$

$$y_j \coloneqq \tilde{g}_j(\beta_j)$$

size $N/2^j$ claim

$$\sum_{z_{j+1},\dots,z_n\in\{0,1\}} f(\beta_1,\dots,\beta_{j-1},\beta_j,z_{j+1},\dots,z_n) \stackrel{?}{=} y_j$$

$$y_j \coloneqq \tilde{g}_j(\beta_j)$$

size $N/2^j$ claim

$$\sum_{z_{j+1},\dots,z_n\in\{0,1\}} f(\beta_1,\dots,\beta_{j-1},\beta_j,z_{j+1},\dots,z_n) \stackrel{?}{=} y_j$$

Recall

$$\widetilde{g}_j(x) \coloneqq \sum_{\substack{z_{j+1}, \dots, z_n \in \{0,1\}}} f(\beta_1, \dots, \beta_{j-1}, x, z_{j+1}, \dots, z_n)$$

Soundness

Soundness: if the j-th claim is **false** then $\forall \tilde{g}_{j+1}(x)$ the (j+1)-th claim is **also false**

Soundness

Soundness: if the j-th claim is **false** then $\forall \tilde{g}_{j+1}(x)$ the (j+1)-th claim is **also false**

Unambiguous Soundness: if $\tilde{g}_{j+1}(x) \neq g_{j+1}(x)$, then the (j+1)-th claim is **false** even if **j**-th claim was true

Soundness

Soundness: if the j-th claim is **false** then $\forall \tilde{g}_{j+1}(x)$ the (j+1)-th claim is **also false**

Unambiguous Soundness: if $\tilde{g}_{j+1}(x) \neq g_{j+1}(x)$, then the (j+1)-th claim is **false** even if j-th claim was true

Both with high probability over β_{j+1} - Schwartz-Zippel.

Several Challenges:

Proof size has to be polynomial

Several Challenges:

Proof size has to be polynomial

Sumcheck protocol

Several Challenges:

Proof size has to be polynomial

Sumcheck protocol

Sumcheck Protocol is interactive

Replaced by a hash function h

$$=h($$

Assumption

Resulting non-interactive (determinstic) argument is (adaptively) unambiguously sound

Assumption

Resulting non-interactive (determinstic) argument is (adaptively) unambiguously sound

Given h, no poly-time prover can find accepting proof:

Assumption

Resulting non-interactive (determinstic) argument is (adaptively) unambiguously sound

Given h, no poly-time prover can find accepting proof:

1. π for a false statement y, or

Assumption

Resulting non-interactive (determinstic) argument is (adaptively) unambiguously sound

Given h, no poly-time prover can find accepting proof:

- 1. π for a false statement y, or
- 2. $\tilde{\pi} \neq \pi$ for true statement y

Assumption

Resulting non-interactive (determinstic) argument is (adaptively) unambiguously sound

Given h, no poly-time prover can find accepting proof:

- 1. π for a false statement y, or
- 2. $\tilde{\pi} \neq \pi$ for true statement y

True if h is a random oracle.

Several Challenges:

Proof size has to be polynomial

Sumcheck protocol

Sumcheck Protocol is interactive

Several Challenges:

Proof size has to be polynomial

Sumcheck protocol

Sumcheck Protocol is interactive

Fiat-Shamir Transform

Basic Idea

Several Challenges:

Proof size has to be polynomial

Sumcheck protocol

Sumcheck Protocol is interactive

Fiat-Shamir Transform

Computing $S(i, y_i, \overline{\pi_i})$

Basic Idea

Several Challenges:

Proof size has to be polynomial

Sumcheck protocol

Sumcheck Protocol is interactive

Fiat-Shamir Transform

Computing $S(i, y_i, \overline{\pi_i})$

Construction for $N/2 \rightarrow$ to construction for N

First N/2 assignments: Do recursively

Second N/2 assignments: Add second proof y_i , π_i

Construction for $N/2 \rightarrow$ to construction for N

First N/2 assignments: Do recursively

Second N/2 assignments: Add second proof y_i , π_i

Construction for $N/2 \rightarrow$ to construction for N

First N/2 assignments: Do recursively

Second N/2 assignments: Add second proof y_i , π_i

Proof size: P(N) = 2 P(N/2)

Steps: T(N) = 2 T(N/2)

Construction for $N/2 \rightarrow$ to construction for N

First N/2 assignments: Do recursively

Second N/2 assignments: Add second proof y_i , π_i

Proof size: P(N) = 2 P(N/2)

Steps: T(N) = 2 T(N/2)

Merge proofs for $y_{N/2}$, $\boxed{\pi_{N/2}}$ and $y_{N/2}'$, $\boxed{\pi_{N/2}'}$

Merge proofs for $y_{N/2}$, $\boxed{\pi_{N/2}}$ and $y_{N/2}'$, $\boxed{\pi_{N/2}'}$

Merge proofs for
$$y_{N/2}$$
, $\boxed{\pi_{N/2}}$ and $y_{N/2}'$, $\boxed{\pi_{N/2}'}$

Proof size: P(N) = P(N/2)

Steps: T(N) = 2 T (N/2) + 1

Merge proofs for
$$y_{N/2}$$
, $\boxed{\pi_{N/2}}$ and $y_{N/2}'$, $\boxed{\pi_{N/2}'}$

Proof size: P(N) = P(N/2)

Steps: T(N) = 2 T (N/2) + 1

Merge via (long) incrementally verifiable computation.

Merge via (long) incrementally verifiable computation.

How long?

Merge via (long) incrementally verifiable computation.

How long? O(T(N/2))

Merge via (long) incrementally verifiable computation.

How long? O(T(N/2))

Proof size: P(N) = P(N/2) + poly(n)

Steps: T(N) = dT(N/2) + poly(n)

How do you efficiently compute

$$S(i, y_i, \overline{\pi_i}) = i + 1, y_{i+1}, \overline{\pi_{i+1}}$$

$$\sum_{z_{j+1}, \dots, z_n \in \{0,1\}} f(\beta_1, \dots, \beta_{j-1}, \beta_j, z_{j+1}, \dots, z_n) = y_j$$

$$\sum_{z_{j+1}, \dots, z_n \in \{0,1\}} f(\beta_1, \dots, \beta_{j-1}, \beta_j, z_{j+1}, \dots, z_n) = y_j$$

$$\sum_{z_{j+1},\cdots,z_n\in\{0,1\}} f(\beta_1,\cdots,\beta_{j-1}\,,\beta_j,z_{j+1},\cdots,z_n) = y_j$$

$$\tilde{g}_{j+1}(x)$$

$$\beta_{j+1} = h(\alpha_1, \beta_1, \cdots, \alpha_{j+1})$$

$$\sum_{z_{j+1},\cdots,z_n\in\{0,1\}} f(\beta_1,\cdots,\beta_{j-1}\,,\beta_j,z_{j+1},\cdots,z_n) = y_j$$

$$\tilde{g}_{j+1}(x)$$

$$y_{j+1} \coloneqq \tilde{g}_{j+1}(\beta_{j+1})$$

 $j + 1$ -th claim

$$\beta_{j+1} = h(\alpha_1, \beta_1, \cdots, \alpha_{j+1})$$

$$\sum_{z_{j+1}, \cdots, z_n \in \{0,1\}} f(\beta_1, \cdots, \beta_{j-1}, \beta_j, z_{j+1}, \cdots, z_n) = y_j$$

$$\tilde{g}_{j+1}(x)$$

$$y_{j+1} \coloneqq \tilde{g}_{j+1}(\beta_{j+1})$$

 $j + 1$ -th claim

$$\beta_{j+1} = h(\alpha_1, \beta_1, \cdots, \alpha_{j+1})$$

size $N/2^{j+1}$ claim

$$\sum_{z_{j+1}, \cdots, z_n \in \{0,1\}} f(\beta_1, \cdots, \beta_{j-1}, \beta_j, z_{j+1}, \cdots, z_n) = y_j$$

$$\left\{ \widetilde{g}_{j+1}(0),\cdots,\widetilde{g}_{j+1}(d) \right\}$$

$$y_{j+1} \coloneqq \tilde{g}_{j+1}(\beta_{j+1})$$

 $j + 1$ -th claim

$$\beta_{j+1} = h(\alpha_1, \beta_1, \cdots, \alpha_{j+1})$$

size $N/2^{j+1}$ claim

$$\sum_{z_{j+1},\cdots,z_n\in\{0,1\}} f(\beta_1,\cdots,\beta_{j-1}\,,\beta_j,z_{j+1},\cdots,z_n) = y_j$$

size
$$N/2^{j+1}$$
 claims $\{\tilde{g}_{j+1}(0),\cdots,\tilde{g}_{j+1}(d)\}$

$$y_{j+1} \coloneqq \tilde{g}_{j+1}(\beta_{j+1})$$

 $j + 1$ -th claim

$$\beta_{j+1} = h(\alpha_1, \beta_1, \cdots, \alpha_{j+1})$$

size $N/2^{j+1}$ claim

$$\sum_{z_{j+1}, \dots, z_n \in \{0,1\}} f(\beta_1, \dots, \beta_{j-1}, \beta_j, z_{j+1}, \dots, z_n) = y_j$$

$$y_{j+1} \coloneqq \tilde{g}_{j+1}(\beta_{j+1})$$

 $j + 1$ -th claim

$$\beta_{j+1} = h(\alpha_1, \beta_1, \cdots, \alpha_{j+1})$$

size $N/2^{j+1}$ claim

(d+2) size $N/2^{j+1}$ claims

$$\begin{cases} \tilde{g}_{j+1}(0), \overline{\pi_0} \\ \tilde{g}_{j+1}(1), \overline{\pi_1} \\ \vdots \\ \tilde{g}_{j+1}(d), \overline{\pi_d} \end{cases}$$

size $N/2^{j+1}$ claims

$$\beta_{j+1} = h(\alpha_1, \beta_1, \cdots, \alpha_{j+1})$$

size $N/2^{j+1}$ claims

$$\beta_{j+1} = h(\alpha_1, \beta_1, \cdots, \alpha_{j+1})$$

$$\tilde{g}_{j+1}(\beta_{j+1}), \boxed{\pi_{d+1}}$$

size $N/2^{j+1}$ claims

$$\beta_{j+1} = h(\alpha_1, \beta_1, \cdots, \alpha_{j+1})$$

$$\tilde{g}_{j+1}(\beta_{j+1}), \boxed{\pi_{d+1}}$$

size $N/2^{j+1}$ claim

Parameters

Parameters

Proof size: $P(N) = P(N/2) + log|\mathbb{F}|$

Proof size: $P(N) = P(N/2) + log|\mathbb{F}|$

$$P(\mathbf{0}) = log|\mathbb{F}|$$

Proof size: $P(N) = P(N/2) + log|\mathbb{F}|$

$$P(\mathbf{0}) = log|\mathbb{F}|$$

$$P(n) = poly(n)$$

Proof size: $P(N) = P(N/2) + log|\mathbb{F}|$

$$P(\mathbf{0}) = log|\mathbb{F}|$$

$$P(n) = poly(n)$$

Steps: T(N) = (d + 2) T (N/2) + poly(n)

Proof size: $P(N) = P(N/2) + log|\mathbb{F}|$

$$P(\mathbf{0}) = log|\mathbb{F}|$$

$$P(n) = poly(n)$$

Steps: T(N) = (d + 2) T (N/2) + poly(n)

$$T(\mathbf{0}) = poly(log|\mathbb{F}|)$$

Proof size: $P(N) = P(N/2) + log|\mathbb{F}|$

$$P(\mathbf{0}) = log|\mathbb{F}|$$

$$P(n) = poly(n)$$

Steps: T(N) = (d + 2) T (N/2) + poly(n)

$$T(\mathbf{0}) = poly(log|\mathbb{F}|)$$

$$T(n)=2^{O(n)}$$

Open Problems

Instantiating Fiat-Shamir for sumcheck

Sampling small(ish) hard instances of NASH

Thank you. Questions?

Is Crypto hardness Necessary?

[Rosen-Segev-Shachaf'17]

Black box separations

SVL hardness not essential for PPAD hardness

Basing PPAD hardness on OWFs: cannot go through SVL, and must have exponential #sol