STATE AND SECOND	Roll No.		
OS TOUR SOURCE OF THE SOURCE O	Sig. of Candi	idate	

Answer Sheet No	27
Sig. of Invigilator	

MATHEMATICS SSC-I SECTION - A (Marks 15)

Time	allow	ed: 20	Minutes
	WII O II		141111111111111111111111111111111111111

(Science Group)

NOTE: Section-A is compulsory. All parts of this section are to be answered on the guestion paper itself. It should be completed in the first 20 minutes and handed over to the Centre Superintendent. Deleting/overwriting is not allowed. Do not use lead pencil.

Q. 1	Circle the correct option i.e. A / B / C / D	. Each part carries one mark.
------	--	-------------------------------

C.

D. -9

 $(4)^{\frac{1}{3}}$ with radical sign is: (ii)

 $\sqrt{4^3}$

(iii) If $\log_a y = x$ then:

 $a^x = v$

B.

C.

(iv) The degree of the polynomial $x^2y^2 + 3xy + y^3$ is:

B.

C.

Find 'm' so that $x^2 + 4x + m$ is a complete square: (v)

B.

H.C.F of $x^2 - 5x + 6$ and $x^2 - x - 6$ is: (vi)

x-3

x+2

C. x-2

x + 3

L.C.M of $a^2 + b^2$ and $a^4 - b^4$ is: (vii)

 $a^2 + b^2$

 $a^2 - b^2$

 $a^4 - b^4$ C.

a-b

(viii) If x is no larger than 10 then:

 $x \le 10$

C. x > 10 x < 10

(ix) Point (-3, -3) lies in quadrant: II

C.

Ш

41

D. IV

(x) Mid point of the points (2,-2) and (-2,2) is:

B. (-2, -2) C. (0,0) D. (1,1)

The __ __ Altitudes of an isosceles triangle are congruent. (xi)

B. Three

 $-\sqrt{41}$

None of these

-41

Singular

Distance between the points (-1,3) and (3,-2) is: (xii)

A.

B.

C.

D.

D.

is called _____ matrix. (xiii)

 $\sqrt{41}$

Unit

A.

B. Scalar

C. Zero

If $i^2 = -1$ then i = ?(xiv)

B. -1

 $\sqrt{-1}$

(xv)

If two medians of a triangle are congruent. Then triangle will be:

isosceles

B. right angled C. equilateral

D. acute angled

For Examiner's use only:

Total Marks:

Marks Obtained:

Roll No.				
		<u>L.</u>		

Answer	Shoot	Mo		
VII2MGI	SHEEL	INO.		

Sig. of Candidate:

Sig. of Invigilator:

ریاضی ایس ایس سی-۱

(Science Group)

ھتەاوّل (گُل نمبر:15)

وقت: 20منط

(ociciice Group)			(10./.	خصه اون ر		20 مث	ولات.
	نمبر ہے۔	الكائيس-هرجزوكاايك	کے گرو وائرہ	و بین سے در ست جواب	را بان ا	_ ويه محيَّ الفاظ لعني الف	سوال نمبرا.
						$e = x \vec{y} A \begin{vmatrix} 2 & 6 \\ 3 & x \end{vmatrix} = 0 \mathcal{J}_1$	(i)
-9	٠,	9	-3-	-6	ب-	الف_ 6 3 (4) كوريثر يكل فارم ميں لكھيے _	(ii)
$\sqrt[3]{4}$	_3	$\sqrt[3]{4^3}$	-2	$\sqrt[3]{4^2}$		$\sqrt{4^3}$ l	
$y^{a} = x$	-)	$x^a = y$	-&	$a^{v} = x$	ب-	$\log_a y = x$ آگر $a^x = y$	(iii)
4	و	1	3-	•	ردبـ ب-	$x^{2}y^{2} + 3xy + y^{3}$ کار کار الف ـ	(iv)
-4	ر۔	4	ئ۔		-ب الإلا x² +	m کی کس قیمت کے لیے 4x + m الف _ 8	(v)
. 2				:-	کا عاواعظم ۔	$x^2 - x - 6$ $x^2 - 5x + 6$	(vi)
<i>x</i> + 3	_)	x-2	-ق		•	اور $a^4 - b^4$ كاذراضعا $a^2 + b^2$	(vii)
a - h	٠,	$a^4 - b^4$	ع۔	a^2-b^2	ب۔	$a^2 + b^2 \qquad الف اگر x کی قیمت 10 سے بڑی نہ ہوتو:$	(viii)
x < 10	_)	<i>x</i> > 10	-2	<i>x</i> ≤ 10	ب. بر:	الف_ x ≥ 10 نقطه (3, -3,) مستوی کے رابع میں	(ix)
IV	٠.,	III	ئ۔	II	٠.	الف ـ ا	
(1,1)	٠- ٢	(0,0)	3-		٠ -ب	نقاط (2,-2) اور (2,2-) كادرم. الف _ (2,2)	(x)
درج شدہ میں ہے کوئی نییں	٠-)	وپار	-2	امتماثل ہوتے ہیں۔ تین		میادی انساقین مثلث کے الف _ دو	(xi)
-41	9	41	ئ ۔	<i>-</i> € -√41		نقاط (1,3) اور (3,-2) كاورميا الف	(xii)
				• • •	-	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ کہلاتا ہے:	(xiii)
ناور	_,	صفری	-ئ	سكيلر	س است	الف_ وحدائی $i^2 = -1$ الف $i^2 = -1$	(xiv)
$\sqrt{-1}$	_,	±1				الف_ ا	, ,
حاد ه الزاوس	و	مساوى الاصلاع	-&			اگرایک مثلث کے دو وسطاینے متماثل ہ الف۔ مساوی الساقین	(xv)
	حاصل کرده نمبر:			15 :/	فكل نمبه	نتحن :	م برائے

MATHEMATICS SSC-I (Science Group)

Time allowed: 2:40 Hours

Total Marks Sections B and C: 60

NOTE: Attempt any twelve parts from Section 'B' and any three questions from Section 'C' on the separately provided answer book. Use supplementary answer sheet i.e. Sheet-B if required. Write your answers neatly and legibly. Log table and graph paper will be provided on demand.

SECTION - B (Marks 36)

Q. 2 Attempt any TWELVE parts. All parts carry equal marks.

 $(12 \times 3 = 36)$

(i) Let
$$A = \begin{bmatrix} 3 & 2 \\ 1 & -1 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 4 \\ 3 & -5 \end{bmatrix}$ then verify that $(AB)' = B'A'$

(ii) Solve by using Cramer's rule
$$3x - 2y = -6$$
$$5x - 2y = -10$$

(iii) Simplify
$$\sqrt{\frac{(216)^{\frac{2}{3}} \times (25)^{\frac{1}{2}}}{(0.04)^{\frac{-1}{2}}}}$$

(iv) If
$$Z = 2 + 3i$$
 and $W = 5 - 4i$ show that $\overline{ZW} = \overline{Z} \overline{W}$

(v) Find the value of 'x'if
$$\log_{64} x = \frac{-2}{3}$$

(vi) Use log table to find the value of
$$\frac{(438)^3 \sqrt{0.056}}{(388)^4}$$

(vii) If
$$5x - 6y = 13$$
 and $xy = 6$ then find the value of $125x^3 - 216y^3$

(viii) Simplify
$$\frac{\sqrt{a^2+2}+\sqrt{a^2-2}}{\sqrt{a^2+2}-\sqrt{a^2-2}}$$

(ix) Factorize
$$25x^2 - 10x + 1 - 36z^2$$

(x) For what value of 'm' is the polynomial
$$p(x) = 4x^3 - 7x^2 + 6x - 3m$$
 exactly divisible by $x + 2$

(xi) Express the decimal
$$0.\overline{23}$$
 in the form of $\frac{p}{q}$, where $p,q\in z$ and $q\neq 0$

(xii) Find the L.C.M of
$$4(x^4-1)$$
, $6(x^3-x^2-x+1)$ by factorization.

(xiii) Simplify
$$\left[\frac{x^2 + y^2}{x^2 - y^2} - \frac{x^2 - y^2}{x^2 + y^2} \right] \div \left[\frac{x + y}{x - y} - \frac{x - y}{x + y} \right]$$

(xiv) Using division method find the square root of
$$9x^4 - 6x^3 + 7x^2 - 2x + 1$$

(xv) Solve each equation and check for extraneous solution, if any
$$\sqrt[3]{2-t} = \sqrt[3]{2t-28}$$

(xvi) Solve for
$$x |3+2x| = |6x-7|$$

(xvii) Solve
$$3(2x+1)-2(2x+5)<5(3x-2)$$

(xviii) Solve the equations graphically
$$x = 3y$$
 and $2x - 3y = -6$

SECTION - C (Marks 24)

Note: Attempt any THREE questions. All questions carry equal marks.

 $(3 \times 8 = 24)$

- Q. 3 Show that the points A(-6,-5), B(5,-5), C(5,-8) and D(-6,-8) are vertices of a rectangle. Find the lengths of its diagonals. Are they equal?
- Q. 4 If two angles of triangle are unequal in measure, the side opposite to the greater angle is longer than the side opposite to the smaller angle.
- Q. 5 If two angles of a triangle are congruent, then the sides opposite to them are also congruent.
- Q. 6 The bisectors of the angles of a triangle are concurrent.
- **Q. 7** Construct ΔPQR , Draw their altitudes and show that they are concurrent.

$$\overline{mPQ} = 4.5cm$$
 , $\overline{mQR} = 3.9cm$, $m\angle R = 45^{\circ}$

ریاضی ایس ایس سی-۱ (Science Group)

محل نمبر حشه دوم اورسوم 60

ن 2:40 <u>كفت</u>

وٹ: حقد ''دوم'' اور''سوم'' کے سوالات کے جوابات علیحدہ سے مہیا گائی جوابی کا بی پردیں۔ حقد ددم کے بارہ (12) اجزاء اور حضہ سوم میں سے کوئی سے تین (3) سوال حل کریں۔ ایک شراشیٹ (Sheet-B) طلب کرنے پرمہیا کی جائے گا۔ آپ کے جوابات صاف اور واضح ہونے چاہئیں ۔ لاگٹیبل اور گراف پیپرمہیا کیے جا کیں گے۔

حته دوم (گل نمبر 36)

(12x3=36)

سوال نمبرا ۔ مندرجہ ذیل میں سے کوئی سے بارہ (12) اجزاء ال مجھے:

$$(AB)' = B'A' \quad \text{if } B = \begin{bmatrix} 2 & 4 \\ 3 & -5 \end{bmatrix} \quad A = \begin{bmatrix} 3 & 2 \\ 1 & -1 \end{bmatrix} \quad \text{(i)}$$

$$3x - 2y = -6$$

$$5x - 2y = -10$$

$$5x - 2y = -10$$
(ii)

$$\sqrt{\frac{(216)^{3} \times (25)^{\frac{1}{2}}}{(0.04)^{\frac{-1}{2}}}} \stackrel{\text{disj}}{=} (iii)$$

$$\overline{ZW} = \overline{Z} \overline{W}$$
 اور $W = 5 - 4i$ اور $W = 2 + 3i$ (iv)

$$\log_{64} x = \frac{-2}{3}$$
کی قیمت بتا کمیں جبکہ x (v)

$$\frac{(438)^3 \sqrt{0.056}}{(388)^4}$$
 لوگارگھم جدول کی مدد سے قیمت معلوم کریں (Vi)

ریں۔
$$3x - 6y = 13$$
 کی تیمت معلوم کریں۔ $5x - 6y = 13$ کی تیمت معلوم کریں۔

$$\frac{\sqrt{a^2+2}+\sqrt{a^2-2}}{\sqrt{a^2+2}-\sqrt{a^2-2}} \sqrt{2}$$
 (viii)

$$25x^2 - 10x + 1 - 36z^2$$
 (ix)

$$p(x) = 4x^3 - 7x^2 + 6x - 3m$$
 کی کس قیت کے لیے $x + 2$ کیٹر وقت $x + 2$ کی کورایور انقیم کر کا

$$q \neq 0$$
 اور $p,q \in \mathbb{Z}$ اور $p,q \in \mathbb{Z}$ کی شکل میں ظاہر کریں جبکہ $p,q \in \mathbb{Z}$ اور (xi)

$$4(x^4-1),6(x^3-x^2-x+1)$$
 بذریعه تجزی ذواضعاف اقل معلوم کرین (xii)

$$\left[\frac{x^{2}+y^{2}}{x^{2}-y^{2}} - \frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right] \div \left[\frac{x+y}{x-y} - \frac{x-y}{x+y}\right] \underbrace{(xiii)}$$

_ بزریقتیم
$$1 + 7x^2 - 2x + 1$$
 کاج رالمربع معلوم کریں (xiv)

$$\sqrt[3]{2-t} = \sqrt[3]{2t-28}$$
 $\sqrt[3]{2}$ $\sqrt[3]{2}$

$$|3+2x| = |6x-7|$$
 (xvi)

$$3(2x+1)-2(2x+5) < 5(3x-2)$$
 (xvii)

$$x = 3y$$
 اور $2x - 3y = -6$ اور $2x - 3y = -6$ اور (xviii)

حتدسوم (گلنبر24)

(3x8=24)

(کوئی سے تین سوال حل سیجے مام سوالوں کے نمبر برابر ہیں۔)

سوال نمبرس: تقعدیق بیجیے کہ نقاط (5, -5), A(-6, -5), B(5, -5), ور D(-6, -8) ایک منتظیل بناتے ہیں اگراہیا ہے توستطیل کے ور وں کی لمبائی جانیے ، کیا ہیر ابر ہیں؟ سوال نمبر ۲۰: اگر کسی مثلث کے دوز او بے مقدار میں برابر نہ ہوں تو مقدار میں بڑے زاویے کے سامنے والاضلع چھوٹے زاویے کے سامنے والاضلع ہے وی اور کے سامنے والاضلع ہے وی اور کے سامنے والاضلام ہوگا۔

سوال فمبر 2: اگر کسی مثلث کے دوزاویے متماثل ہوں تو ان کے خالف اضلاع بھی متماثل ہوتے ہیں۔

سوال فمبر لا: مسمى مثلث كے نتيوں زاويوں كے ناصف ہم نقط ہوتے ہيں۔

GMEDIATE AND		
	Roll No.	
N EBUCATO	Sig. of Can	didate
STAMABADAM		

Answer Sheet No	29
Sig. of Invigilator	

MATHEMATICS SSC-I SECTION - A (Marks 15)

Time			Minutes			(111011			(Science Group)
NOTE:	lt sl	hould b	s compulsory. e completed in erwriting is not	n the f	irst 20 minute	es and	handed over to	on the	e question paper itself. Centre Superintendent.
Q. 1	Circle	the cor	rect option i.e.	A/B/C	/ D. Each part	carries	one mark.		
	(i)	If $Z = -$	$-1-i$ then $\overline{Z}=?$						
			1-i			C.	1+i	D.	0+i
	(ii)	$\log_b a$	$ imes \log_c b$ can be v	vritten a	s:				
		A.	$\log_a c$	B.	$\log_b c$	C.	$\log_c a$	D.	$\log_a b$
	(iii)	(a+b)	$(a^2 - ab + b^2) = $?					
		A.	$a^3 + b^3$	B.	a^3-b^3	C.	$(a+b)^{3}$	D.	$(a-b)^3$
	(iv)	Factors	s of $5x^2 - 17xy -$	$-12y^{2}$ a	re:				
		A.	(x + 4y), (5x +	3 <i>y</i>)		B.	(x-4y), (5x-	-3y)	
		C.	(x-4y), (5x +	3 <i>y</i>)		D.	(5x-4y)(x+	3 <i>y</i>),	
	(v)	An irra	tional radical wit	h ration	al radicand is ca	alled a/a	n:		
		A.	Rational numb			B.	Irrational num	ber	
		C.	Surd			D.	Both A and B		
	(vi)		of $p^3q - pq^3$ and		1 1				- •
		A.	$pq(p^2-q^2)$	B.	pq(p-q)	C.	$p^2q^2(p-q)$	D.	$pq(p^3-q^3)$
	(vii)	The so	$\frac{1}{2}$ uare root of x^4	$+\frac{1}{x^4}+2$! is:				
		A.	$\pm \left(x + \frac{1}{x}\right)$	B.	$\pm \left(x^2 + \frac{1}{x^2}\right)$	C.	$\pm \left(x - \frac{1}{x}\right)$	D.	$\pm\left(x^2-\frac{1}{x^2}\right)$
	(viii)	L.C.M	× H.C.F =?		, ,				
		A.	$p(x) \times q(x)$	B.	$\frac{p(x)}{q(x)}$	C.	p(x) + q(x)	D.	p(x)-q(x)
	(ix)	<i>x</i> =	is a so	lution o	f inequality -2 <	$< x < \frac{3}{2}$			
		A.	-5	B.	3	C.	0	D.	$\frac{3}{2}$
	(x)		order pair satisf	•	•			_	(1.2)
		Α.	(2,1)	B.	(1,1)	C.	(2,2)	D.	(1,2)
	(xi)	A trian A.	igle having all sid Isosceles	des equ B.	al in length is ca Scalene	alled: C.	Equilateral	D.	None of these
	(xii)	The m	edian of triangle 4:1	cut ead B.	ch other in the ra 3:1	atio: C.	2:1	D.	1:1
	(xiii)	Distar	ice between the	points	(0,2) and $(-3,0)$) is:			
		A.	5	В.	$\sqrt{13}$	C.	13	D.	10
				$\begin{bmatrix} 2 & 1 \end{bmatrix}$		-			
	(xiv)	Order	of transpose of	$\begin{bmatrix} 0 & 1 \\ 3 & 2 \end{bmatrix}$	is?				
		A.	3-by-2	В.	2-by-3	C.	1 - by - 3	D.	3-by-1
	(xv)	Chara	cteristics of 166					_	2
		A.	1,	B.	2	C.	4	D.	3

For Examiner's use only:

Total Marks:

15

Marks Obtained:

	 		r		
Roll No.		į			
				ĺ	

Answer :	Sheet	No.		

Sig. of Candidate: __

Sig. of Invigilator: _

ریاضی ایس ایس سی-۱

(Science Group)

ھسّەاوّل (گل نمبر:15)

	- ج	لگائیں۔ہرجزوکاایک نمبر	کے گرد دائرہ	. د عن سے درست جواب	ف ا بان ا	ديے محتے الفاظ لعنی ال	سوال نمبرا ـ
						$?=\overline{Z}\ \overline{Z}=-1-$	-i ∫l (i)
0+i	ر_	1+ <i>i</i>	-ئ	-1 + i	-ب	1-i	الف_
					اہ:	ا کولکھاجا سکز log $_b$ $a imes log$	$g_c b$ (ii)
$\log_a b$	و_	$\log_e a$	ئ-	$\log_b c$		$\log_a c$	الف_
					?:	$=(a+b)(a^2-ab+$	b^2) (iii)
$(a-b)^3$	ر۔	$(a+b)^3$	3-	a^3-b^3		a^3+b^3	الف _
			•	- <i>نایا</i>	زائے ضربی_	$5x^2 - 17xy - 1$	$2y^2$ (iv)
	(x -	4y), (5x - 3y)	-ب		$+\chi$)	4y),(5x+3y)	الف
	(5x -	-4y)(x+3y),	رب		(x	4y),(5x+3y)	-2
		کہتے ہیں۔		. ينچے ناطق مقدار درج ہوا <u>۔</u>	مت √ کے	برناطق مقدارجس ميں جزريعا	(۷) اليي غي
'الف' اور 'ب' دونوں	ر_	مقاديراصم	ئ-			. ناطق اعداد	
					کاعاداعظم p^{s}	$p^2 - p^2 q^5$ (e. $p^3 q - p^3 q$	pq^3 (vi)
$pq(p^3-q^3)$	_,	$p^2q^2(p-q)$	-3-	pq(p-q)		$pq(p^2-q^2)$	الف_
				- ب		_ کاجر دالربع $x^4 + \frac{1}{x^4}$	+ 2 (vii)
$\pm \left(x^2 - \frac{1}{x}\right)$	•	$\pm \left(x - \frac{1}{x}\right)$	2.	$\pm \left(x^2 + \frac{1}{x^2}\right)$		$+\left(x+\frac{1}{x}\right)^{x}$	الف _
(x^2)	-)	-(x)	-0	$-(x^2)$	ب	* . * * *	
				p(x)		م × زواضعاف اقل=؟	(viii) عادالحظم
p(x)-q(x)	وب	p(x) + q(x)	3-	$\frac{p(x)}{q(x)}$	ب-	$p(x) \times q(x)$	الف_
			ا س ن ے۔	2- <u>ك</u> ىلسىپەكالىكەركن	$x < \frac{3}{2}$	= x غيرمسادات	(ix)
$\frac{3}{2}$	و_	0	، ع۔	3	<u> </u>	_	الق
2	_,	C	-0			بانقظه مساوات $y=2x$ <u>ک</u>	
(1,2)	ر.	(2,2)	ج-	•	•	ما نفطه مساوات ۲۸ – تر نے پہر (2,1)	
(-, -)	ر ـ	(2,2)	_		•	۔ نلث جس کے تیوں اصلاع کی <i>ا</i>	
درج شدہ میں ہے کوئی نہیں	9	مساوى الاصلاع	•			مکت؛ ن کے سیون اصلات ف ۔	
	٠,					۔ کے وسطامیے ایک دوسرے کو_	
1:1		2:1				ے وسطایے ایک دو سرے و_ ۔ 1:1	
• • •	•	,	-0			(0,2 اور (3,0) کادرم	
10	-1	13	ئ-			5	
			-0				
						$\begin{bmatrix} 2 & 1 \\ 0 & 1 \\ 3 & 2 \end{bmatrix}$ ڪڙانيوز قالر	Im Andreas
	•				ب 8 درجہ ہے.	3 2	(xiv) قالب
3-by-1	ر۔	1 - by - 3	ئ-	2-by-3	- -	3-by-2	الف_
					- - -	166 كاخاصه	62.4 (xv)
3	٠.,	4	-ت	2	-ب	1 .	الف_
-							
				15			~~~~~
	ىل كرده نمبر:	مام		:,	مگل نمه		برائے متحن :
				9	. •		J

MATHEMATICS SSC-I (Science Group)

Time allowed: 2:40 Hours

Total Marks Sections B and C: 60

NOTE: Attempt any twelve parts from Section 'B' and any three questions from Section 'C' on the separately provided answer book. Use supplementary answer sheet i.e. Sheet-B if required. Write your answers neatly and legibly. Log table and graph paper will be provided on demand.

SECTION - B (Marks 36)

Q. 2 Attempt any TWELVE parts. All parts carry equal marks.

 $(12 \times 3 = 36)$

(i) If
$$A = \begin{bmatrix} 3 & -1 \\ 2 & -2 \end{bmatrix}$$
 then prove $AA^{-1} = I$

(ii) Solve by using matrix inverse method
$$3x - 4y = 4$$
$$x + 2y = 8$$

(iii) Simplify
$$\left(\frac{a^{2l}}{a^{l+m}}\right) \left(\frac{a^{2m}}{a^{m+n}}\right) \left(\frac{a^{2n}}{a^{n+l}}\right)$$

(iv) Simplify and write your answer in the form of
$$a+bi$$
, $\frac{1}{(2+3i)(1-i)}$

(v) Simplify
$$\log_2 3 \times \log_3 8$$

(vi) If
$$\log 2 = 0.3010$$
, $\log 3 = 0.4771$, $\log 5 = 0.6990$ then find the value of $\log 30$

(vii) Find the product using formula
$$(2x^2 - 1)(2x^2 + 1)(4x^4 + 2x^2 + 1)(4x^4 - 2x^2 + 1)$$

(viii) If
$$x = 2 + \sqrt{3}$$
 then find the value of $x - \frac{1}{x}$ and $\left(x - \frac{1}{x}\right)^2$

(ix) Factorize
$$x^3 + 48x - 12x^2 - 64$$

(x) If
$$x-1$$
 is a factor of polynomial $x^3 - kx^2 + 11x - 6$ then find the value of k.

(xi) Factorize the cubic polynomial
$$3x^3 - x^2 - 12x + 4$$
 by Factor Theorem.

(xii) Find H.C.F of
$$6x^3 - 7x^2 - 27x + 8$$
 and $6x^3 + 17x^2 + 9x - 4$ by division method.

(xiii) Simplify
$$\frac{x^2 - x - 6}{x^2 - 9} + \frac{x^2 + 2x - 24}{x^2 - x - 12}$$

(xiv) Using division method Find the square root of
$$4x^4 + 12x^3 + x^2 - 12x + 4$$

(xv) Solve each equation and check for extraneous solution if any
$$\sqrt[3]{2x-4}-2=0$$

(xvi) Solve for
$$x |x+2|-3=5-|x+2|$$

(xvii) Solve
$$-3 < \frac{1-2x}{5} < 1$$

(xviii) Solve the equations graphically 2x + y - 1 = 0 and x = -y

SECTION - C (Marks 24)

Note: Attempt any THREE questions. All questions carry equal marks.

 $(3 \times 8 = 24)$

- Q. 3 Let O(0,0), A(3,0) and B(3,5) be three points in the plane. If M_1 is the midpoint of AB and M_2 of OB. Then show that $\left|M_1M_2\right| = \frac{1}{2}|OA|$
- Q. 4 The right bisectors of the sides of triangle are concurrent.
- Q. 5 The sum of the length of any two sides of triangle is greater than the length of the third side.
- Q. 6 In the correspondence of two triangles if three sides of a triangle are congruent to the corresponding three sides of the other, then the two triangles are congruent.
- Q. 7 Construct ΔXYZ $m\overline{YZ} = 4.1cm$, $m\angle Y = 60^{\circ}$, $m\angle X = 75^{\circ}$ Draw their medians and show that they are concurrent.

ریاضی ایس ایس سی-ا

(Science Group)

فحل نمبر حقه دوم اورسوم 60

2:40 کھنے

و ف: حقد ''دوم'' اور''سوم'' کے سوالات کے جوابات علیحدہ سے مہیا کی ٹی جوابی کا پی پردیں۔ حقد دوم کے بارہ (12) اجزاء اور حقد سوم میں سے کوئی سے تین (3) سوال حل کریں۔ ایکسٹراشیٹ (Sheet-B) طلب کرنے پرمہیا کی جائے گی۔آپ کے جوابات صاف اور واضح ہونے چاہئیں۔لاگٹیمیل اور گراف پیپرمہیا کیے جائیں گے۔

حته دوم (گل نمبر 36)

(12x3=36)

سوال نمبرا- مندرجه ذيل ميس كوئى سے باره (12) اجزاء ال يجيد:

$$AA^{-1} = I \quad \text{if } A = \begin{bmatrix} 3 & -1 \\ 2 & -2 \end{bmatrix}$$
 (i)

$$3x - 4y = 4$$
 $x + 2y = 8$ قالبول کے معکوس کی مدو سے صل کریں (ii)

$$\left(\frac{a^{2l}}{a^{l+m}}\right)\left(\frac{a^{2m}}{a^{m+n}}\right)\left(\frac{a^{2n}}{a^{n+l}}\right) \underset{\longrightarrow}{\text{2.5}} \qquad \text{(iii)}$$

ين مين
$$a+bi$$
 شکل مين کومين $a+bi$ ين اورا پنا جواب $a+bi$ شکل مين کومين (iv)

$$\log_2 3 \times \log_3 8$$
 سرکریں (v)

$$(2x^2-1)(2x^2+1)(4x^4+2x^2+1)(4x^4-2x^2+1)$$
 (vii)

$$-1$$
 اگر آگر $x = 2 + \sqrt{3}$ اور $\left(x - \frac{1}{x}\right)^2$ اور $\left(x - \frac{1}{x}\right)^2$ کی قیمت معلوم کریں۔

$$x^3 + 48x - 12x^2 - 64$$
 (ix)

یں۔ اگر
$$x - 1$$
 کثیررقتی $x^3 - kx^2 + 11x - 6$ کا جز ضربی ہوتو' $x + 1$ کی قیمت معلوم کریں۔

$$3x^3 - x^2 - 12x + 4$$
 $= \frac{3}{2}$

اور
$$4 - 4x^2 + 9x - 4$$
 کاعاداً عظم بذریقیتیم معلوم کریں۔ $6x^3 + 17x^2 + 9x - 4$ اور $6x^3 - 7x^2 - 27x + 8$ (xii)

$$\frac{x^2 + x - 6}{x^2 - 9} + \frac{x^2 + 2x - 24}{x^2 - x - 12}$$
 (xiii)

يزرية تقتيم
$$4x^4 + 12x^3 + x^2 - 12x + 4$$
 کاج زرالمربع معلوم کریں (xiv)

يري (xvi)
$$|x+2|-3=5-|x+2|$$

$$-3 < \frac{1-2x}{5} < 1 \quad \text{(xvii)}$$

$$x = -y$$
 _{log} $2x + y - 1 = 0$ $2x + y - 1 = 0$ (xviii)

حته سوم (گل نمبر 24)

(3x8=24)

(کوئی سے تین سوال حل کیجے۔ تمام سوالوں کے نمبر برابر ہیں۔)

سوال فبرس: اگر مستوی میں دیے ہوئے تین نقاط O(0,0) , A(3,0) اور B(3,5) کی مناسبت سے M قطعہ خط AB کا درمیانی نقطہ اور M قطعہ خط M کا درمیانی نقطہ اوتو

$$\left| M_1 M_2 \right| = \frac{1}{2} \left| OA \right|$$
 نابت کیجے کہ

🗖 سوال فمبرم: کسی مثلث کے اصلاع کے عمودی ناصف ہم نقطہ وتے ہیں۔

موال: ره: محميمي شلث كے دواضلاع كى لمبائيوں كا مجور تيسر فيلع كى لمبائى سے برا اوتا ہے۔

سوال نمبر ۲: اگر دوشلتوں کی سی مطابقت میں ایک مثلث کے تینوں اضلاع دوسری مثلث کے متناظر ہ اصلاع کے متماثل ہوں تو وہ مثلثیں متماثل ہوتی ہیں۔

 $m\overline{YZ} = 4.1cm$, $m\angle Y = 60^{\circ}$, $m\angle X = 75^{\circ}$ سوال نمبر 2: مثلث 2YZ بنائي بارن کے وسطانیے کینجیں ادر تصدیق کریں کہ وہ ہم نقط ہیں

THE WAS THE STATE OF THE STATE				
	Roll No.			
	Sig. of Candi	oate		

Answer Sheet No	31
Sig. of Invigilator	

MATHEMATICS SSC-I SECTION - A (Marks 15)

(Old Syllabus)

TE:	Secti It sh	ion–A is	Minutes compulsory. completed in rwriting is not	n the fit	rst 20 minute:	and I	handed over to	on the	e question paper itsel Centre Superintenden		
1	Circle the correct option i.e. A / B / C / D. Each part carries one mark.										
	(i)	If the no	umber of eleme	nts in set	t A and B are 'n	, then h	ow many binary	relation	s are possible in $(A \times B)$		
	(ii)	A. If A and	2 ⁿ d B are subsets	B. of each o	2^{n^2} other then A and	C. d B are o	n ² called	D. s e	2^{2n} ets.		
		Α.	Equal	В.	Proper	C.	Overlapping	D.	Disjoint		
	(iii)	If $x + \frac{1}{x}$	$\frac{1}{x} = 8$ then $(x + 60)$	$\left(\frac{1}{x}\right)^2 = ?$	64	C.	66	D.	62		
	(iv)	Which	one is a pair of		e binomial surds						
			$(\sqrt{2}-\sqrt{3})(\sqrt{2})$			B.	` ' ' ' '		•		
			$(\sqrt{2}+3)(2-$. ,		D.	$(\sqrt{2}+\sqrt{3})(\sqrt{2})$	$\sqrt{2} + \sqrt{3}$	5)		
	(v)	If \log_x	32 = 5 then x	=							
		A.	-2	B.	3	C.	$\frac{1}{2}$	D.	2		
	(vi)	If x = A	Antilog (2.5321)	_			_				
	(vii)	A. Produc	340.5 t 103x97 is obta	B. ained by	0.5321 using:	C.	2.5321	D.	2.3405		
		A.	$(a+b)^2$	В.	(a+b)(a-b)	C.	$(a-b)^2$	D.	None of these		
	(viii)	H.C.F	of $5x^2y^2$, 202	x^3y^3 and	$25x^4y^2$ is:						
		A.	5xy	B.	$5x^2y^2$	C.	$5x^2y$	D.	$5xy^2$		
	(ix)	Factori	zation of $(1+4a)$	$ab-4a^2$	$-b^2$) is:						
			(1-2a+b)(1		,	В.	, , ,		<i>b</i>)		
			(1-2a+b)(1		•	D.	None of these	;			
	(x)	Determ	ninant of $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$	$\begin{bmatrix} -1 \\ -3/2 \end{bmatrix}$ is:							
		A.	-6 「27	B.	0	C.	9	D.	None of these		
	(xi)		et of $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$ & $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$								
		A.	[3 2]	B.	$\begin{bmatrix} 3 \\ 2 \end{bmatrix}$	C.	$\begin{bmatrix} 3 & 6 \\ 1 & 2 \end{bmatrix}$	D.	[5]		
	(xii)	If a trai	nsversal cuts tw 4	o paralle B.	I lines then how	many p C.	pairs of correspo	nding ai D.	ngles are formed? 6		
	(xiii)	Throug A.	gh one point Infinite	B.	_ lines can pas One		Two	D.	Three		
	(xiv)	Matrix	$\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$ is called	d	matrix.						
	(xv)	A. The all	Diagonal titudes of an obt		Scalar led triangle inter	C.	Row ch other	D.	Both A and B he triangle.		
	(^*)	A.	Inside	B.	On	C.	Outside	——- ' D.	None of these		

Total Marks:

Marks Obtained:

Roll No. Sig. of Candidate: _		Answer Sheet NoSig. of Invigilator:					STREET AND STREET STREE		
		ی-ا	یس سر	باضی ایس ا	ر!				
(Old Syllabus)		حصّه اوّل (گُل نمبر:15)					20 منٹ	وقت:	
زت نہیں ہے۔لیڈ پنسل کا استعال ممنوع ہے۔	دوباره لكصنے كي اجا	کے حوالے کر دیا جائے۔ کاٹ کر	رکرے ناظم مرکز	، مے ۔ اس کو پہنے ہیں منٹ بیں کما	ہے پرہی ویے جا کمیر	ازمی ہے۔اس کے جوابات پر	ح ن ه اوّل ا	ثوث:	_
	-=	لگائیں۔ہرجزوکاایکےنمبر	کے گرد دائرہ	ا د می <i>ن سے درست جوا</i> ب	الف1 باج ا	دیے گئے الفاظ کینی	-!	سوال نمبر	
			-	A> B) میں ثنائی روابط کی تع -				(i)	
2^{2n}	_,			2^{n^2}	· · · · · · · · · · · · · · · · · · ·				
غيرمشترك		اگے۔ متراکب		پتووه مش _ن		- * · · · ·		(ii)	
ير ترن	ر.	منزا بب	-0	ستر ل		برابر $(x+\frac{1}{v})^2$ برتو $x+\frac{1}{v}$		(iii)	
62	_)	66	-2	64		60		(111)	
			-0			وں جوڑ وں میں ہے کا نجو گیسا		(iv)	
$(\sqrt{2} + \sqrt{3})(\sqrt{2} + \sqrt{3})$	_,	$(\sqrt{2}+3)(2-\sqrt{3})$	-& ¹	$(\sqrt{2}+\sqrt{3})(\sqrt{2}-\sqrt{3})$	ر√:	$(2-\sqrt{3})(\sqrt{2}-\sqrt{3})$	الف		
					بت کیا ہوگی؟	بوتو (\mathbf{x}') کی تی \log_X	اگر 5=32	(v)	
2	٠,	$\frac{1}{2}$	ئ-	3	- -	-2	الف		
				. وگا ؟	ءوتو logx کیاہ	x=A.ntilog(2.53	اگر (21	(vi)	
2.3405	و	2.5321	-2		•	340.5		. W	
درج شدہ میں ہے کوئی نہیں	ر	$(a+b)^2$	_7.	-		1 كا حاصل ضرب معلوم ً 2 رايد بن		(vii)	
			-0			$y^2 - 1ec = 5x^2y^2$		(viii)	
5xy.2	ر	$5x^2y$	3-	$5x^2y^2$				V)	
						1+4 <i>ab</i> 4 <i>a</i>		(ix)	

 $-2^{-(1+2a+b)(1-2a+b)}$ ەرخ شدە مىل سەكۈنى ئىيى $-5^{-(1-2a+b)(1+2a+b)}$ (1-2a+b)(1+2a-b)2 كالمقطع كيا موكا؟ 3 درج شدہ میں ہے کوئی نہیں 9 -6 0 $\begin{bmatrix} 3 \\ 1 \end{bmatrix} [1 \ 2] =$ ___ (xi) $\begin{bmatrix} 3 & 6 \\ 1 & 2 \end{bmatrix}$ $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$ [5] ئ. $\begin{bmatrix} 3 & 2 \end{bmatrix}$ اگرایک خط دومتوازی خطوط کوقطع کری تو متناظرہ زاویوں کے کتنے جوڑے بنیں گے؟ (xii) تنين aj. ج-,, ایک نقط میں سے کتے خطوط گزر کتے ہیں؟ (xiii) تلين ئ- $\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$ کیا قالب ہے؟ (xiv) الف اور ب دونوں قطاري قالب ئ. منفرجہزاو بیمثلث کے ارتفاع کہاں ایک دوسرے وقطع کرتے ہیں؟ (xv) ورج شدہ میں ہے کوئی ہیں مثلث کے باہر -¿

15

برائے متحن :

حاصل كرده نمبر:

MATHEMATICS SSC-I

(Old Syllabus)

Time allowed: 2:40 Hours

Total Marks Sections B and C: 60

NOTE: Attempt any twelve parts from Section 'B' and any three questions from Section 'C' on the separately provided answer book. Use supplementary answer sheet i.e. Sheet–B if required. Write your answers neatly and legibly. Log Table will be provided on demand.

SECTION - B (Marks 36)

Q. 2 Attempt any TWELVE parts. All parts carry equal marks.

 $(12 \times 3 = 36)$

- (i) If $A = \{1, 2, 3\}$ and $B = \{2, 3, 4\}$ then find the binary relation in $(A \times B)$ when
 - $R = \{(x, y) | x \in A \land y \in B \land y > x\}$

(ii) Write the following sets in tabular form:
$$A = \{x \mid x \in p \land x < 23\}$$

$$B = \{x \mid x \in z \land x^2 = 16\}$$

$$C = \{3x | x \in w\}$$

- (iii) If U=N , $A=\varnothing$, B=P then verify $(A\cup B)^c=A^c\cap B^c$
- (iv) Simplify: $\frac{\sqrt{a+2} \sqrt{a-2}}{\sqrt{a+2} + \sqrt{a-2}}$
- (v) Simplify: $\left(\frac{x^p}{x^q}\right)^{p+q} \cdot \left(\frac{x^q}{x^r}\right)^{q+r} \div 3(x^r.x^p)^{p-r}$
- (vi) Find the number of digits in 2^5 .
- (vii) Evaluate with the help of logarithm. $\frac{(8.97)^2 \times (1.059)^3}{(57.7)}$
- (viii) What should be added or subtracted to $(9a^2b^2-12abc)$ to make it a perfect square?
- (ix) Find the value of $(1005)^2$ by using the suitable formula.
- (x) Find the remainder (by using remainder theorem) when $(x^4 2x^2 + 3x + 3)$ is divided by (x 3)
- (xi) Factorize: $1 + 2ab (a^2 + b^2)$
- (xii) Factorize: $4x^3 21x 10$
- (xiii) Simplify: $\left(\frac{2x+y}{x+y} 1 \right) \div \left(1 \frac{x}{x+y} \right)$
- (xiv) Find the square root: x(x+2)(x+4)(x+6)+16
- Product of two expressions is $(x^4 + 3x^3 12x^2 20x + 48)$ and their L.C.M is $(x^3 + 5x^2 2x 24)$. Find H.C.F.
- (xvi) Write the equations 2x + ky = 7 and 3x 9y = 9 in matrix form. Also find the value of 'k' if the matrix of the co-efficient is singular.
- (xvii) Solve: (with the help of matrices) 5x = 13 2y; 5y = 17 2x
- (xviii) Simplify: $\sqrt{\frac{(216)^{\frac{2}{3}}(25)^{\frac{1}{2}}}{(0.04)^{-\frac{3}{2}}}}$

SECTION - C (Marks 24)

Note: Attempt any THREE questions. All questions carry equal marks.

 $(3 \times 8 = 24)$

- Q. 3 Prove that if transversal intersects two coplanar lines such that the pair of alternate angles are congruent, then the lines are parallel.
- Q. 4 Prove that in a parallelogram:
 - a. Opposite sides are congruent
 - **b.** Opposite angles are congruent
 - Both of the diagonals bisect each other
- Q. 5 Prove that if in any correspondence of two triangles, two angles and one side of one triangle are congruent to the corresponding two angles and one side of the other triangle, then the triangles are congruent.
- **Q. 6** Construct a triangle ABC when $\overline{mAB} = 5cm$, $\overline{mCA} = 5.6cm$, $m\angle B = 105^{\circ}$

ریاضی ایس ایس سی-۱

كل نمبر حصة دوم اورسوم 60

(Old Syllabus)

وت: 2:40 كفظ

نوٹ: حقہ ''دوم'' اور''سوم'' کے سوالات کے جوابات علیحدہ سے مہیا گی تی جوابی کا پی پرویں۔ حقہ دوم کے بارہ (12) اجزاء اور حقہ سوم میں سے کوئی سے تین (3) سوال حل کریں۔ ایکٹراشیٹ (Sheet-B)طلب کرنے پرمہیا کی جائے گی۔ آپ کے جوابات صاف اور واضح ہونے چاہئیں۔

حقه دوم (مكل نمبر 36)

(12x3=36)

سوال نمرا- مندرجه ذیل میں سے کوئی سے بارہ (12) اجزاء طل کیجے:

 $R = \{(x,y) | x \in A \land y \in B \land y > x\}$ ين شائي ربط $R = \{(x,y) | x \in A \land y \in B \land y > x\}$ ين شائي ربط $R = \{(x,y) | x \in A \land y \in B \land y > x\}$ ين شائي ربط $R = \{(x,y) | x \in A \land y \in B \land y > x\}$

(ii) مندرجه ذیل کواندراجی طریقه می^{ن لک}صین:

 $A = \{x \mid x \in p \land x < 23\} ; B = \{x \mid x \in z \land x^2 = 16\} ; C = \{3x \mid x \in w\}$

 $(A \cup B)^c = A^c \cap B^c$ يوټو بايت کړي کU = N , $A = \emptyset$, B = P (iii)

 $\frac{\sqrt{a+2} - \sqrt{a-2}}{\sqrt{a+2} + \sqrt{a-2}} : \underbrace{z^2}_{a} \xrightarrow{i}$ (iv)

 $\left(\frac{x^p}{x^q}\right)^{p+q} \cdot \left(\frac{x^q}{x^r}\right)^{q+r} \div 3(x^r.x^p)^{p-r} \longrightarrow (v)$

(Vi) 2⁵ میں ہندسول کی تعداد معلوم سیمیے۔

 $\frac{(8.97)^2 \times (1.059)^3}{(57.7)} = \frac{(8.97)^2 \times (1.059)^3}{(57.7)}$ (Vii)

ا کام بع کمل کرنے کے لیے کیا جمع یا تفریق کیا جائے گا؟ ($9a^2b^2 - 12abc$) کام بع کمل کرنے کے لیے کیا جمع یا تفریق کیا جائے گا؟

مناسب کلیدنگاکر $(1005)^2$ کی قیمت معلوم کریں۔

(x) مئلہ باتی کی مدد سے باتی معلوم سیجھاگر $(x^4 - 2x^2 + 3x + 3)$ کو (x - 3) پرتشیم کیا جائے؟

 $1 + 2ab - (a^2 + b^2)$ (xi)

 $4x^3 - 21x - 10$ = 250 (xii)

 $\left(\frac{2x+y}{x+y}-1\right) \div \left(1-\frac{x}{x+y}\right) \tag{xiii}$

اگردو جملول کا حاصل ضرب $(x^4 + 3x^3 - 12x^2 - 20x + 48)$ اور ذواضعاف آقل $(x^2 - 2x - 2x - 24)$ جوتوان کا عاداً ظلم معلوم کیجید (xv)

ماوات 2x + ky = 7 اور 3x - 9 کوقالب کی شکل میں آلھیے _اگریددی سرول کا قالب ناورقالب بوتو 'k' کی قیمت معلوم کیجی (xvi)

5x = 13 - 2y; 5y = 17 - 2x توالیوں کی مدوسے طسیت معلوم سیجھے (xvii)

 $\sqrt{\frac{(216)^{\frac{2}{3}}(25)^{\frac{1}{2}}}{(0.04)^{-\frac{3}{2}}}} \approx \frac{\sqrt{25}}{\sqrt{25}} (xviii)$

حتّه سوم (گُل نمبر 24)

(3x8=24)

(کوئی سے تین سوال مل سیجے۔ تمام سوالوں کے نمبر برابر جیں۔)

سوال نمبر الله الله على المرایک خط دو ہم مستوی خطوط کو قطع کرے اور اس طرح بننے والے دو متبادلہ زادیے باہم متماثل ہوں تو وہ خطوط تو ازی ہوں گے۔

سوال نمبر ، ثابت كري كدايك متوازى الاصلاع مين:

الف. تخالف اصلاع باہم متماثل ہوتے ہیں۔ ب. خالف زادیے باہم متماثل ہوتے ہیں۔ ج۔ دونوں وتر ایک دوسرے کی تنصیف کرتے ہیں۔ سوال منبرہ: خابت کریں کداگر وو مثلثوں کی کسی مطابقت میں ایک مثلث کے دو زادیے اور ایک ضلع دوسری مثلث کے متناظرہ دونوں زادیوں اور ایک ضلع کے متماثل ہوں تو وہ مثلثیں متماثل ہوتی ہیں۔ سوال منبر ۲: مثلث ABC بنائیے جبکہ 105° میں ایک مثلث کے دو زادیے اور ایک ضلع دوسری مثلث متماثل ہوں تو وہ مثلثیں متماثل ہوتی ہیں۔