МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ «ХАРКІВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ»

Інститут Комп'ютерних	наук та інформаці	йних технологій
Кафедра <u>Програмної інжене</u>	ерії та інтелектуал	ьних технологій управління
Спеціальність <u>122 Комп</u>	'ютерні науки	
Освітня програма <u>Ком</u>	п'ютерні науки та	а інтелектуальні системи
ЛАБОРАТ	ОРНА РАБОТА Ј	№3 за курсом
«Інтелектуальний	і аналіз даних та	видобування знань»
Тема лабораторної роботи _	Класифікація за	а допомогою WEKA
	Виконав ступент	<u>5</u> курсу, групи <u>КН-М422</u>
	Виконав студент	курсу, групи <u>ктт-кт+22</u>
		Захар ПАРАХІН
	(підп	ис, прізвище та ініціали)
	Перевірила	Оксана ІВАЩЕНКО
	(підп	ис, прізвище та ініціали)

3MICT

Вступ	3
1 Xід виконання роботи	4
1.1 Класифікація	4
1.2 WEKA Classification	5
1.2.1 Classification with Decision Tree	6
1.2.2 Classification with Naive Bayers	10
Висновки	15
Список джерел інформації	16

Вступ

Інтелектуальний аналіз даних у загальних рисах означає пошук або глибоке копання в даних, які знаходяться в різних формах, щоб отримати шаблони та отримати знання про цей шаблон. У процесі інтелектуального аналізу даних великі набори даних спочатку сортуються, потім визначаються закономірності та встановлюються зв'язки для виконання аналізу даних і вирішення проблем.

Класифікація: це завдання аналізу даних, тобто процес пошуку моделі, яка описує та розрізняє класи та поняття даних. Класифікація — це проблема ідентифікації, до якої з набору категорій належить нове спостереження, на основі навчального набору даних, що містить спостереження та приналежність до категорій які відомі.

1 Хід виконання роботи

1.1 Класифікація

Рисунок 1 - розміщення Класифікації серед інших складових Data Mining

Розглянемо дерево рішень. Алгоритм дерева рішень відноситься до категорії навчання під наглядом. Вони можуть бути використані для розв'язання задач регресії та класифікації.

Дерево рішень використовує представлення дерева для вирішення проблеми, у якій кожен вузол відповідає мітці класу, а атрибути представлені у внутрішньому вузлі дерева. Можна представити будь-яку булеву функцію на дискретних атрибутах за допомогою дерева рішень.

С4.5: Цей алгоритм ϵ наступником алгоритму ID3. Цей алгоритм використову ϵ підсилення інформації або коефіцієнт підсилення для визначення атрибута класифікації. Це пряме вдосконалення алгоритму ID3, оскільки він може обробляти як безперервні, так і відсутні значення атрибутів.

Naive Bayes classifiers — це набір алгоритмів класифікації на основі теореми Байєса. Це не один алгоритм, а сімейство алгоритмів, де всі вони мають загальний принцип, тобто кожна пара ознак, що класифікуються, не залежить одна від одної.

1.2 WEKA Classification

Вгорі вкладки "Classify" (Класифікація) знаходиться область вибору класифікатора "Classifier". Вибір та налаштування параметрів класифікатора подібні до вибору фільтра попередньої обробки даних. Результат застосування вибраного класифікатора буде протестований згідно з параметрами, заданими в області Test Options.

На панелі «Test options» визначається метод тестування отриманого класифікатора: на навчальній вибірці (use training set), на тестовій вибірці з окремого файлу (supplied test set), по блоках (cross-validation), за допомогою розділення вихідної вибірки на навчання та контроль (Percentage split). При виборі деяких опцій доведеться вказати параметри тестування. Наприклад, при виборі "cross-validation" треба вказати, на скільки блоків (фолдів) розбивати вибірку.

Для обробки береться датасет bridges-version2.arff

	on: bridges-v										[[
No.	1: IDENTIF Nominal	2: RIVER Nominal	3: LOCATION Nominal	4: ERECTED Nominal	5: PURPOSE Nominal	6: LENGTH Nominal	7: LANES Nominal	8: CLEAR-G Nominal	9: T-OR-D Nominal	10: MATERIAL Nominal	11: SPAN Nominal	12: REL-L Nominal	13: TYPE Nominal
1	E1	M	3	CRAFTS	HIGHWAY		2	N	THROUGH	WOOD	SHORT	S	WOOD
2	E2	A	25	CRAFTS	HIGHWAY	MEDIUM	2	N	THROUGH	WOOD	SHORT	S	WOOD
3	E3	A	39	CRAFTS	AQUEDUCT		1	N	THROUGH	WOOD		S	WOOD
1	E5	Α	29	CRAFTS	HIGHWAY	MEDIUM	2	N	THROUGH	WOOD	SHORT	S	WOOD
5	E6	M	23	CRAFTS	HIGHWAY		2	N	THROUGH	WOOD		S	WOOD
5	E7	A	27	CRAFTS	HIGHWAY	SHORT	2	N	THROUGH	WOOD	MEDIUM	S	WOOD
7	E8	Α	28	CRAFTS	AQUEDUCT	MEDIUM	1	N	THROUGH	IRON	SHORT	S	SUSPEN
3	E9	М	3	CRAFTS	HIGHWAY	MEDIUM	2	N	THROUGH	IRON	SHORT	S	SUSPEN
9	E10	Α	39	CRAFTS	AQUEDUCT		1	N	DECK	WOOD		S	WOOD
10	E11	A	29	CRAFTS	HIGHWAY	MEDIUM	2	N	THROUGH	WOOD	MEDIUM	S	WOOD
11	E12	Α	39	CRAFTS	RR		2	N	DECK	WOOD		S	WOOD
12	E14	M	6	CRAFTS	HIGHWAY	MEDIUM	2	N	THROUGH	WOOD	MEDIUM	S	WOOD
13	E13	A	33	CRAFTS	HIGHWAY		2	N	THROUGH	WOOD		S	WOOD
14	E15	Α	28	CRAFTS	RR		2	N	THROUGH	WOOD		S	WOOD
15	E16	Α	25	CRAFTS	HIGHWAY	MEDIUM	2	N	THROUGH	IRON	MEDIUM	S-F	SUSPEN
16	E17	M	4	CRAFTS	RR	MEDIUM	2	N	THROUGH	IRON	MEDIUM		SIMPLE-T
17	E18	Α	28	CRAFTS	RR	MEDIUM	2	N	THROUGH	IRON	SHORT	S	SIMPLE-T
18	E19	Α	29	CRAFTS	HIGHWAY	MEDIUM	2	N	THROUGH	WOOD	MEDIUM	S	WOOD
19	E20	Α	32	EMERGING	HIGHWAY	MEDIUM	2	N	THROUGH	WOOD	MEDIUM	S	WOOD
20	E21	M	16	EMERGING	RR		2		THROUGH	IRON			SIMPLE-T
21	E23	M	1	EMERGING	HIGHWAY	MEDIUM			THROUGH	STEEL	LONG	F	SUSPEN
22	E22	A	24	EMERGING	HIGHWAY	MEDIUM	4	G	THROUGH	WOOD	SHORT	S	WOOD
23	E24	0	45	EMERGING	RR		2	G		STEEL			SIMPLE-T
24	E25	М	10	EMERGING	RR		2	G		STEEL			SIMPLE-T
25	E27	Α	39	EMERGING	RR		2	G	THROUGH	STEEL		F	SIMPLE-T
26	E26	М	12	EMERGING	RR	MEDIUM	2	G	THROUGH	STEEL	MEDIUM	S	SIMPLE-T
27	E30	A	31	EMERGING	RR		2	G	THROUGH	STEEL	MEDIUM	F	SIMPLE-T
28	E29	A	26	EMERGING	HIGHWAY	MEDIUM	2	G	THROUGH	STEEL	MEDIUM		SUSPEN
29	E28	M	3	EMERGING	HIGHWAY	MEDIUM	2	G	THROUGH	STEEL	MEDIUM	S	ARCH
30	E32	A	30	EMERGING	HIGHWAY		2	G	THROUGH	IRON	MEDIUM	F	SIMPLE-T

Рисунок 2 - bridges-version2.arff

Як видно із змісту даного датасету і його метаданих, то він вже має опис після фільтра Discretizion.

```
1. IDENTIF / -- / -- / identifier of the examples
2. RIVER / n / A, M, O / --
3. LOCATION / n / 1 to 52 / --
4. ERECTED / c,n / 1818-1986 ; CRAFTS, EMERGING, MATURE, MODERN / --
5. PURPOSE / n / WALK, AQUEDUCT, RR, HIGHWAY / --
6. LENGTH / c,n / 804-4558 ; SHORT, MEDIUM, LONG / --
7. LANES / c,n / 1, 2, 4, 6 ; 1, 2, 4, 6 / --
8. CLEAR-G / n / N, G / --
9. T-OR-D / n / THROUGH, DECK / --
10. MATERIAL / n / WOOD, IRON, STEEL / --
11. SPAN / n / SHORT, MEDUIM, LONG / --
12. REL-L / n / S, S-F, F / --
13. TYPE / n / WOOD, SUSPEN, SIMPLE-T, ARCH, CANTILEV, CONT-T / --
```

Рисунок 3 - інформація атрибутів

1.2.1 Classification with Decision Tree

Рисунок 4 - використання Ј48 на датасеті

За результатами цього алгоритму, отримуємо точність класифікакції близько 56%, і отримані наступні класи:

Wood Cantilev
Suspen Cont-T
Simple-T
Arch

Рисунок 5 - побудоване Decision Tree

Та використаємо по різним атрибутам і оберемо з найбільшою точністю:

Атрибут	Точність (%)	Дерево
IDENTIF	55,1	EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
RIVER	99	LOCATION LOCATI
LOCATION	48,1	PURPOSE 151 (2.01.0) PURPOSE 151 (2.01.0

ERECTED	75,7	CLEAR-G
		MATERIAL = WOODS USREMMP LE PROPERMINE TO SEEL = WOODS USREMMP LE PROPERMINE MATURE (10.25 MODERN (6.15) CRAFTS (15) CRAFTS (5.22 MATURE (6.25 MATURE (6.25 MODERN (6.15)) = 1 = 2 = 4 = 6 MATURE (1 MATURE (2.24 MATURE (6.22 MODERN (4.92/0.4))
PURPOSE	66,3	HIGHWAY (107.0/36.0)
LENGTH	59,2	MEDIUM (81.0/33.0)
LANES	89,1	PURPOSE = WALKOUEDUSTRI HIGHWAY 2(0.0) 1(4.0) 2(38.01.0) ERECTED = CRATESE FROMBATURE = MODERN 2(11.0) 2(5.01.0) CLEAR-0 = N = G = WOOGSUSREMMPLS PROCEANTILESONT-T 4(0.0) 1(5.01.0) 2(1.0) 4(6.01.0) 2(6.02.0) 2(0.0)
CLEAR-G	93,3	N(16 317 31) = WOOD = IRON = STEEL N(16 317 31) = CRAFTS = EMERGINO = MATURE = MODERN N(5.0) G (3.0) G (3.15)
T-OR-D	93,1	THROUGH (16.02.0) THROUGH (11.0) THROUGH (41.01.0) THROUGH (13.01.0) SPAN DECK (10.02.0) THROUGH (10.02.0) THROUGH (10.02.0) DECK (4.01.0) THROUGH (10.02.0) DECK (4.01.0) THROUGH (10.02.0) DECK (4.01.0) THROUGH (10.02.0)

MATERIAL	93,3	CLEAR-0 = N = 0 DVPE STEEL (78 5/6 75) = WOOD = SUSPEN = SIMPLE-T = ARCH = CANTILEY = CONT-T WOOD (15.0) IRON (3.25/0.25) IRON (2.25) STEEL (1.0) STEEL (1.0) STEEL (1.0)
SPAN	82,6	### SHORT (10.05.0) ### BHORT (3.30.3 MEDIUM (1.1 MEDIUM (5.591.0 CLEAR-6) ### BHORT (3.30.3 MEDIUM (1.1 MEDIUM (5.591.0 CLEAR-6) ### BHORT (3.30.3 MEDIUM (5.591.0 CLEAR-6) ### BHORT (3.30.3 MEDIUM (5.591.0 CLEAR-6) ### BHORT (3.30.3 MEDIUM (5.591.0 CLEAR-6) #### BHORT (3.30.3 MEDIUM (5.591.0 CLEAR-6) #### BHORT (3.30.3 MEDIUM (5.591.0 CLEAR-6) ###################################
REL-L	74,5	## WOOD ## STEEL ## STEEL ## F (76.5725.0) S (4.071.0) F (6.18)
TYPE	65,7	MATERIAL = WOOD (16.0) SIMPLE-T (10.0) PURPOSE = VVALK-2-ROUEDUCT = RR = HIGHWAY SUSPEN (1.0) SIMPLE-T (20.0) SIMPLE-T (20.07.0) TOR-D = THROUGH = DECK SIMPLE-T (39.78) 7.0) ERECTED = CRAFT'S EMERONIN MATURE = MODERN CONT-T (0.0) CANTILEY (5.20/2.22) CONT-T (6.0)

Таблиця 1 - результати Ј48 за атрибутами

Серед всіх отриманих за атрибутами моделей, найточніша RIVER, ϵ найбільш розбитою на класи, що робить її незручною, тому беремо наступну за точністю CLEAR-G.

Там отримали наступні класи: N і G, а також DECISION TREE:

Рисунок 6 - побудоване Decision Tree

1.2.2 Classification with Naive Bayers

Рисунок 7- використання NaiveBayers

По результатам цього алгоритму, маємо вищу точність ніж при J48, яка складає близько 87,6%. І отримані тіж самі класи:

Wood Cantilev

Suspen Cont-T Simple-T Arch

Рисунок 8 - візуалізація прогнозування від отриманої моделі Тепер використаємо по різним атрибутам і оберемо з найбільшою точністю:

Атрибут	Точність (%)	WEKA результати		
IDENTIF	99	=== Summary ===		
		Correctly Classified Instances Incorrectly Classified Instances Kappa statistic Mean absolute error Root mean squared error Relative absolute error Root relative squared error Total Number of Instances	106 1 0.9906 0.0133 0.0715 72.7103 % 74.626 %	99.0654 % 0.9346 %

RIVER	86,9	=== Summary ===		
		Correctly Classified Instances Incorrectly Classified Instances Kappa statistic Mean absolute error Root mean squared error Relative absolute error Root relative squared error Total Number of Instances	93 14 0.7933 0.1155 0.2211 36.3466 % 55.6399 %	86.9159 % 13.0841 %
LOCATION	78,3	=== Summary === Correctly Classified Instances Incorrectly Classified Instances Kappa statistic Mean absolute error Root mean squared error Relative absolute error Root relative squared error Total Number of Instances Ignored Class Unknown Instances	83 23 0.7778 0.0219 0.093 60.5256 % 69.127 %	78.3019 % 21.6981 %
ERECTED	87,8	=== Summary === Correctly Classified Instances Incorrectly Classified Instances Kappa statistic Mean absolute error Root mean squared error Relative absolute error Root relative squared error Total Number of Instances	94 13 0.8173 0.1052 0.2165 31.3393 % 52.9671 %	87.8505 % 12.1495 %
PURPOSE	81,3	=== Summary === Correctly Classified Instances Incorrectly Classified Instances Kappa statistic Mean absolute error Root mean squared error Relative absolute error Root relative squared error Total Number of Instances	87 20 0.6572 0.103 0.233 42.5381 % 67.6495 %	81.3084 % 18.6916 %
LENGTH	90,1	=== Summary === Correctly Classified Instances Incorrectly Classified Instances Kappa statistic Mean absolute error Root mean squared error Relative absolute error Root relative squared error Iotal Number of Instances Ignored Class Unknown Instances	73 8 0.8314 0.1429 0.2351 38.0471 % 54.4194 % 81	90.1235 % 9.8765 %
LANES	83,6	=== Summary === Correctly Classified Instances Incorrectly Classified Instances Kappa statistic Mean absolute error Root mean squared error Relative absolute error Root relative squared error Total Number of Instances Ignored Class Unknown Instances	77 15 0.7037 0.0946 0.2204 37.4639 % 62.6744 %	83.6957 % 16.3043 %

CLEAR-G	94,2	=== Summary ===		
CLLAR-U	74,2	Correctly Classified Instances Incorrectly Classified Instances Kappa statistic Mean absolute error Root mean squared error Relative absolute error Root relative squared error Total Number of Instances Ignored Class Unknown Instances	99 6 0.8383 0.061 0.2256 16.273 % 52.2577 %	94.2857 % 5.7143 %
T-OR-D	96	=== Summary ===		
		Correctly Classified Instances Incorrectly Classified Instances Kappa statistic Mean absolute error Root mean squared error Relative absolute error Root relative squared error Total Number of Instances Ignored Class Unknown Instances	98 4 0.8437 0.0635 0.1489 24.8341 % 42.0284 % 102	96.0784 % 3.9216 %
MATERIAL	96,1	=== Summary ===		
		Correctly Classified Instances Incorrectly Classified Instances Kappa statistic Mean absolute error Root mean squared error Relative absolute error Root relative squared error Total Number of Instances Ignored Class Unknown Instances	101 4 0.9036 0.0485 0.1439 17.2744 % 38.7161 % 105	96.1905 % 3.8095 %
SPAN	92,3	=== Summary ===		
		Correctly Classified Instances Incorrectly Classified Instances (appa statistic fean absolute error Root mean squared error Root relative squared error Iotal Number of Instances Ignored Class Unknown Instances	85 7 0.869 0.1031 0.2411 27.8134 % 56.1841 % 92	92.3913 % 7.6087 %
REL-L	88,2	=== Summary ===		
	,	Correctly Classified Instances Incorrectly Classified Instances Kappa statistic Mean absolute error Root mean squared error Relative absolute error Root relative squared error Total Number of Instances Ignored Class Unknown Instances	90 12 0.7842 0.1099 0.2475 28.3183 % 56.3014 %	88.2353 % 11.7647 %
TYPE	87,6	=== Summary ===		
		Correctly Classified Instances Incorrectly Classified Instances Kappa statistic Mean absolute error Root mean squared error Relative absolute error Root relative squared error Total Number of Instances Ignored Class Unknown Instances	92 13 0.8362 0.0661 0.1758 26.1066 % 49.5472 %	87.619 % 12.381 %

Таблиця 2 - результати NaiveBayers за атрибутами

Маємо знов схожий момент, коли найточнішаа модель IDENTIF занадто розбиває на класи, тому обираємо наступне за точністю MATERIAL з класами WOOD, IRON, STEAL.

Рисунок 9 - візуалізація прогнозування від отриманої моделі

Висновки

Закріплено зання з класифікації і її використання у WEKA.

Були виконані відповідні завдання, найточнішими моделями були за атрибутом IDENTIF, але при врахуванні доцільності таких моделей, були взяті другі за точністю, при J48 за атрибутом CLEAR-G з класами N і G, NaiveBayers за атрибутом MATERIAL з класами WOOD, IRON, STEAL.

У порівнянні J48 і NaiveBayers ці два алгоритми мають різні характеристики. У результаті два алгоритми демонструють добру точність (> 70%). Однак NaiveBayers має краще значення точності (на основі F-вимірювання, повторного виклику та точності) і правильно знаходить значення Classified Instances порівняно з іншими алгоритмами

Класифікація — це проблема ідентифікації, до якої з набору категорій належить нове спостереження, на основі навчального набору даних, що містить спостереження та приналежність до категорій які відомі. Інтелектуальний аналіз даних необхідний для виконання прогнозного аналізу наборів даних Знання, які можна отримати за допомогою методів аналізу даних, є прогнозом включання в певну категорію, який потім буде використовуватися для прийняття рішень.

Список джерел інформації

- 1 Data Mining: Practical Machine Learning Tools and Technique \ Ian Witten, Eibe Frank, Mark Hall
- 2 WEKA. Руководство по использованию \ Хабр online pecypc https://habr.com/ru/post/590565/
- 3 Інтелектуальний аналіз даних: Навчальний посібник \ А. О. Олійник, С. О. Субботін, О. О. Олійник