(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 27. Juni 2002 (27.06.2002)

PCT

(10) Internationale Veröffentlichungsnummer WO 02/50077 A2

(51) Internationale Patentklassifikation?: C A01N 43/90, C07C 211/24

C07D 487/04,

(21) Internationales Aktenzeichen:

PCT/EP01/14415

(22) Internationales Anmeldedatum:

7. Dezember 2001 (07.12.2001)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität: 100 63 115.0 18. Dezember 2000 (18.12.2000) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BAYER AKTIENGESELLSCHAFT [DE/DE]; 51368 Leverkusen (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): GEBAUER, Olaf [DE/DE]; Jesuitengasse 111, 50737 Köln (DE). ELBE, Hans-Ludwig [DE/DE]; Dasnöckel 59, 42329 Wuppertal (DE). HENRICH, Marielouise [DE/DE]; Heymannstr. 38, 51373 Leverkusen (DE). MARHOLD, Albrecht [DE/DE]; Carl-Duisberg-Str. 329, 51373 Leverkusen (DE). WACHENDORFF-NEUMANN, Ulrike [DE/DE]; Oberer Markenweg 85, 56566 Neuwied (DE). MAULER-MACHNIK, Astrid [DE/DE]; Neuenkamper Weg 48, 42799 Leichlingen (DE). KUCK, Karl-Heinz [DE/DE]; Pastor-Loeh-Str. 30a, 40764 Langenfeld (DE). VOERSTE, Arnd [DE/DE]; Sahlierring 33, 50677 Köln (DE). KITAGAWA, Yoshinori [JP/JP]; P.O. Box

157, Tokyo, Tokyo 103-91 (JP). HEINEMANN, Ulrich [DE/DE]; Am Sonnenhang 1, 42799 Leichlingen (DE). HILGERS, Petra [DE/DE]; Sandweg 10, 51503 Rösrath (DE). PLESCHKE, Axel [DE/DE]; Im Thurner Feld 41, 51069 Köln (DE).

- (74) Gemeinsamer Vertreter: BAYER AKTIENGE-SELLSCHAFT; 51368 Leverkusen (DE).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

 ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: TRIAZOLOPYRIMIDINES

(54) Bezeichnung: TRIAZOLOPYRIMIDINE

(57) Abstract: The invention relates to novel triazolopyrimidines of formula (I) in which R1, R2, R3 and X have the meaning given in the description, a method for the production of said novel materials and the use thereof for combating undesired micro-organisms and animal pests. The invention further relates to novel amines of formula (IIIa) in which R4 has the meanings given in the description and method for production thereof.

(57) Zusammenfassung: Neue Triazolopyrimidine der Formel (I) in welcher R1, R2, R3 und X die in der Beschreibung angegebenen Bedeutungen haben, ein Verfahren zur Herstellung dieser neuen Stoffe und deren Verwendung zur Bekämpfung von unerwünschten Mikroorganismen und tierischen Schädlingen. Neue Amine der Formel (IIIa) in welcher R4 die in der Bescheibung angegebenen Bedeutungen hat, sowie Verfahren zu deren Herstellung.

Triazolopyrimidine

Die vorliegende Erfindung betrifft neue Triazolopyrimidine, ein Verfahren zu ihrer Herstellung und ihre Verwendung zur Bekämpfung von unerwünschten Mikroorganismen und tierischen Schädlingen.

Es ist bereits bekannt geworden, dass bestimmte Triazolopyrimidine fungizide Eigenschaften besitzen (vgl. EP-A 0 550 113, WO 94-20 501, EP-A 0 613 900, US 5 612 345, EP-A 0 834 513, WO 98-46 607 und WO 98-46 608). Die Wirksamkeit dieser Stoffe ist gut, lässt aber bei niedrigen Aufwandmengen in manchen Fällen zu wünschen übrig.

Es wurden nun neue Triazolopyrimidine der Formel

15

5

. 10

in welcher

20

25

R¹ und R² unabhängig voneinander für Alkyl stehen, das einfach oder mehrfach, gleichartig oder verschieden substituiert ist durch Halogen, Cyano, Nitro, Amino, Hydroxy, Formyl, Carboxy, Carbamoyl, Thiocarbamoyl, Alkoxy, Alkylthio, Alkylsulfinyl, Alkylsulfonyl, Alkenyloxy, Alkinyloxy, Halogenalkoxy, Halogenalkylsulfinyl, Halogenalkylsulfinyl, Halogenalkylsulfonyl, Halogenalkenyloxy, Halogenalkenylsulfinyl, Halogenalkinyloxy, Halogenalkinylthio, Halogenalkinylsulfinyl, Halogenalkinylsulfonyl, Alkylamino, Dialkylamino, Alkylcarbonyl, Alkylaminocarbonyl, Dialkylaminocarbonyl, Dialkylaminothiocarbonyl, Di

10

15

20

25

alkylaminothiocarbonyl, Alkylcarbonyloxy, Alkoxycarbonyl, Hydroximinoalkyl, Alkoximinoalkyl, Cycloalkyl, Aryl und/oder Heterocyclyl, oder

für gegebenenfalls substituiertes Alkenyl, gegebenenfalls substituiertes Alkinyl oder gegebenenfalls substituiertes Cycloalkyl stehen,

R³ für gegebenenfalls substituiertes Heterocyclyl steht oder für substituiertes Aryl steht, wobei aber mindestens ein Sustituent aus der folgenden Gruppe von Resten vorhanden ist

Formyl, Alkinyl, Halogenalkyl, Halogenalkoxy, Halogenalkylthio, Halogenalkylsulfinyl, Halogenalkylsulfonyl, Halogenalkenyl, Halogenalkinyl, Halogenalkenyloxy, Halogenalkinyloxy, Alkylamino, Dialkylamino, Alkylcarbonyl, Alkoxycarbonyl, Hydroximinoalkyl oder Alkoximinoalkyl,

zweifach verknüpftes Alkylen mit 3 bis 6 Kohlenstoffatomen, das einfach oder mehrfach, gleichartig oder verschieden substituiert sein kann durch Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen und/oder Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen,

zweifach verknüpftes Oxyalkylen mit 2 bis 5 Kohlenstoffatomen, das einfach oder mehrfach, gleichartig oder verschieden substituiert sein kann durch Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen und/oder Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen,

zweifach verknüpftes Dioxyalkylen mit 1 bis 4 Kohlenstoffatomen, wobei die Sauerstoffatome jedoch nicht benachbart stehen und wobei die Alkylenkette einfach oder mehrfach, gleichartig oder verschieden substituiert sein kann durch Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen und/oder Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen,

30

X für Halogen steht,

gefunden.

5

Weiterhin wurde gefunden, dass sich Triazolopyrimidine der Formel (I) herstellen lassen, indem man Dihalogen-triazolopyrimidine der Formel

$$\mathbb{R}^3$$
 (II)

10

in welcher

R³ und X die oben angegebenen Bedeutungen haben und

15 Y für Halogen steht,

mit Aminen der Formel

$$R^{1}$$
 N
 R^{2}
 H
(III)

20

in welcher

 ${\mathbb R}^1$ und ${\mathbb R}^2$ die oben angegebenen Bedeutungen haben,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säureakzeptors umsetzt.

WO 02/50077 PCT/EP01/14415

-4-

Schließlich wurde gefunden, dass sich die neuen Triazolopyrimidine der Formel (I) sehr gut zur Bekämpfung von unerwünschten Mikroorganismen und tierischen Schädlingen eignen. Sie zeigen vor allem eine starke fungizide und insektizide Wirkung.

5

15

20

25

30

Überraschenderweise besitzen die erfindungsgemäßen Triazolopyrimidine der Formel (I) eine wesentlich bessere fungizide und insektizide Wirksamkeit als die konstitutionell ähnlichsten, vorbekannten Stoffe gleicher Wirkungsrichtung.

Die erfindungsgemäßen Triazolopyrimidine sind durch die Formel (I) allgemein definiert. Bevorzugt sind diejenigen Stoffe der Formel (I), in denen

R¹ und R² unabhängig voneinander für Alkyl mit 1 bis 6 Kohlenstoffatomen stehen, wobei die Alkylreste einfach bis dreifach, gleichartig oder verschieden substituiert sein können durch Fluor, Chlor, Brom, Cyano, Nitro, Amino, Hydroxy, Formyl, Carboxy, Carbamoyl, Thiocarbamoyl, Alkoxy mit 1 bis 6 Kohlenstoffatomen, Alkylsulfinyl mit 1 bis 6 Kohlenstoffatomen, Alkylsulfonyl mit 1 bis 6 Kohlenstoffatomen, Alkenyloxy mit 2 bis 6 Kohlenstoffatomen, Alkinyloxy mit 2 bis 6 Kohlenstoffatomen, Halogenalkoxy mit 1 bis 6 Kohlenstoffatomen und 1 bis 9 Halogenatomen, Halogenalkylthio mit 1 bis 6 Kohlenstoffatomen und 1 bis 9 Halogenatomen, Halogenalkylsulfinyl mit 1 bis 6 Kohlenstoffatomen und 1 bis 9 Halogenatomen, Halogenalkylsulfonyl mit 1 bis 6 Kohlenstoffatomen und 1 bis 9 Halogenatomen, Halogenalkenyloxy mit 2 bis 6 Kohlenstoffatomen und 1 bis 9 Halogenatomen, Halogenalkenylthio mit 2 bis 6 Kohlenstoffatomen und 1 bis 9 Halogenatomen, Halogenalkenylsulfinyl mit 2 bis 6 Kohlenstoffatomen und 1 bis 9 Halogenatomen, Halogenalkenylsulfonyl mit 2 bis 6 Kohlenstoffatomen und 1 bis 9 Halogenatomen, Halogenalkinyloxy mit 2 bis 6 Kohlenstoffatomen und 1 bis 9 Halogenatomen, Halogenalkinylthio mit 2 bis 6 Kohlenstoffatomen und 1 bis 9 Halogenatomen, Halogenalkinylsulfinyl mit 2 bis 6 Kohlenstoffatomen und i bis 9 Halogenatomen, Halogenalkinylsulfonyl mit 2 bis 6 Kohlen-

10

20

25

30

stoffatomen und 1 bis 9 Halogenatomen, Alkylamino mit 1 bis 6 Kohlenstoffatomen in jedem Alkylteil, Alkylamino mit 1 bis 6 Kohlenstoffatomen im Alkylteil, Alkylamino-carbonyl mit 1 bis 6 Kohlenstoffatomen im Alkylteil, Dialkylaminocarbonyl mit 1 bis 6 Kohlenstoffatomen im Jedem Alkylteil, Alkylaminothiocarbonyl mit 1 bis 6 Kohlenstoffatomen im Alkylteil, Dialkylaminothiocarbonyl mit 1 bis 6 Kohlenstoffatomen im Alkylteil, Dialkylaminothiocarbonyl mit 1 bis 6 Kohlenstoffatomen in jedem Alkylteil, Alkylcarbonyloxy mit 1 bis 6 Kohlenstoffatomen im Alkylteil, Alkoxycarbonyl mit 1 bis 6 Kohlenstoffatomen im Alkoxyteil, Hydroximinoalkyl mit 1 bis 6 Kohlenstoffatomen, Alkoximinoalkyl mit 1 bis 6 Kohlenstoffatomen im Alkoxyteil und 1 bis 6 Kohlenstoffatomen im Alkylteil, Cycloalkyl mit 3 bis 6 Kohlenstoffatomen, Aryl mit 6 bis 10 Kohlenstoffatomen und/oder Heterocyclyl mit 3 bis 8 Ringgliedern und 1 bis 3 Heteroatomen, wie Stickstoff, Sauerstoff und/oder Schwefel,

15 oder

für Alkenyl mit 2 bis 6 Kohlenstoffatomen, Alkinyl mit 2 bis 6 Kohlenstoffatomen oder Cycloalkyl mit 3 bis 6 Kohlenstoffatomen stehen, wobei die drei zuvor genannten Reste einfach bis dreifach, gleichartig oder verschieden substituiert sein können durch Fluor, Chlor, Brom, Cyano, Nitro, Amino, Hydroxy, Formyl, Carboxy, Carbamoyl, Thiocarbamoyl, Alkoxy mit 1 bis 6 Kohlenstoffatomen, Alkylthio mit 1 bis 6 Kohlenstoffatomen, Alkylsulfinyl mit 1 bis 6 Kohlenstoffatomen, Alkylsulfonyl mit 1 bis 6 Kohlenstoffatomen, Alkenyloxy mit 2 bis 6 Kohlenstoffatomen, Alkinyloxy mit 2 bis 6 Kohlenstoffatomen, Halogenalkoxy mit 1 bis 6 Kohlenstoffatomen und 1 bis 9 Halogenatomen, Halogenalkylthio mit 1 bis 6 Kohlenstoffatomen und 1 bis 9 Halogenatomen, Halogenalkylsulfinyl mit 1 bis 6 Kohlenstoffatomen und 1 bis 9 Halogenatomen, Halogenalkylsulfonyl mit 1 bis 6 Kohlenstoffatomen und 1 bis 9 Halogenatomen, Halogenalkenyloxy mit 2 bis 6 Kohlenstoffatomen und 1 bis 9 Halogenatomen, Halogenalkenylthio mit 2 bis 6 Kohlenstoffatomen und 1 bis 9 Halogenatomen, Halogenalkenylsulfinyl mit 2 bis 6 Kohlenstoffatomen und 1 bis 9 Halogenatomen, Halogenalkenylsulfonyl mit

10

15

2 bis 6 Kohlenstoffatomen und 1 bis 9 Halogenatomen, Halogenalkinyloxy mit 2 bis 6 Kohlenstoffatomen und 1 bis 9 Halogenatomen, Halogenalkinylthio mit 2 bis 6 Kohlenstoffatomen und 1 bis 9 Halogenatomen, Halogenalkinylsulfinyl mit 2 bis 6 Kohlenstoffatomen und 1 bis 9 Halogenatomen, Halogenalkinylsulfonyl mit 2 bis 6 Kohlenstoffatomen und 1 bis 9 Halogenatomen, Alkylamino mit 1 bis 6 Kohlenstoffatomen, Dialkylamino mit 1 bis 6 Kohlenstoffatomen in jedem Alkylteil, Alkylcarbonyl mit 1 bis 6 Kohlenstoffatomen im Alkylteil, Alkylcarbonyloxy mit 1 bis 6 Kohlenstoffatomen im Alkylteil, Alkoxycarbonyl mit 1 bis 6 Kohlenstoffatomen im Alkoxyteil, Alkylaminocarbonyl mit 1 bis 6 Kohlenstoffatomen im Alkylteil, Dialkylaminocarbonyl mit 1 bis 6 Kohlenstoffatomen in jedem Alkylteil, Alkylaminothiocarbonyl mit 1 bis 6 Kohlenstoffatomen im Alkylteil, Dialkylaminothiocarbonyl mit 1 bis 6 Kohlenstoffatomen in jedem Alkylteil, Hydroximinoalkyl mit 1 bis 6 Kohlenstoffatomen, Alkoximinoalkyl mit 1 bis 6 Kohlenstoffatomen im Alkoxyteil und 1 bis 6 Kohlenstoffatomen im Alkylteil, Cycloalkyl mit 3 bis 6 Kohlenstoffatomen, Aryl mit 6 bis 10 Kohlenstoffatomen und/oder Heterocyclyl mit 3 bis 8 Ringgliedern und 1 bis 3. Heteroatomen, wie Stickstoff, Sauerstoff und/oder Schwefel,

20 R³ für fünf- oder sechsgliedriges Heterocyclyl mit 1 bis 4 Heteroatomen, wie Stickstoff, Sauerstoff und/oder Schwefel, steht, wobei diese Reste einfach bis dreifach, gleichartig oder verschieden substituiert sein können durch

Halogen, Cyano, Nitro, Formyl;

25

30

jeweils geradkettiges oder verzweigtes Alkyl, Alkoxy, Alkylthio, Alkylsulfinyl oder Alkylsulfonyl mit jeweils 1 bis 6 Kohlenstoffatomen;

jeweils geradkettiges oder verzweigtes Alkenyl, Alkinyl, Alkenyloxy oder Alkinyloxy mit jeweils 2 bis 6 Kohlenstoffatomen;

jeweils geradkettiges oder verzweigtes Halogenalkyl, Halogenalkoxy, Halogenalkylthio, Halogenalkylsulfinyl oder Halogenalkylsulfonyl mit jeweils 1 bis 6 Kohlenstoffatomen und 1 bis 13 gleichen oder verschiedenen Halogenatomen;

5

jeweils geradkettiges oder verzweigtes Halogenalkenyl, Halogenalkinyl, Halogenalkenyloxy oder Halogenalkinyloxy mit jeweils 2 bis 6 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen;

10

jeweils geradkettiges oder verzweigtes Alkylamino, Dialkylamino, Alkylcarbonyl, Alkylcarbonyloxy, Alkoxycarbonyl, Hydroximinoalkyl oder Alkoximinoalkyl mit jeweils 1 bis 6 Kohlenstoffatomen in den einzelnen Alkylteilen;

15

und/oder

Cycloalkyl mit 3 bis 6 Kohlenstoffatomen,

oder

 \mathbb{R}^3

20

für Aryl mit 6 bis 10 Kohlenstoffatomen steht, das einfach bis fünffach, gleichartig oder verschieden substituiert ist durch

Halogen, Cyano, Nitro, Formyl;

25

jeweils geradkettiges oder verzweigtes Alkyl, Alkoxy, Alkylthio, Alkylsulfinyl oder Alkylsulfonyl mit jeweils 1 bis 6 Kohlenstoffatomen;

jeweils geradkettiges oder verzweigtes Alkenyl, Alkinyl, Alkenyloxy oder

Alkinyloxy mit jeweils 2 bis 6 Kohlenstoffatomen;

jeweils geradkettiges oder verzweigtes Halogenalkyl, Halogenalkoxy, Halogenalkylthio, Halogenalkylsulfinyl oder Halogenalkylsulfonyl mit jeweils 1 bis 6 Kohlenstoffatomen und 1 bis 13 gleichen oder verschiedenen Halogenatomen;

5

jeweils geradkettiges oder verzweigtes Halogenalkenyl, Halogenalkinyl, Halogenalkenyloxy oder Halogenalkinyloxy mit jeweils 2 bis 6 Kohlenstoffatomen und 1 bis 13 gleichen oder verschiedenen Halogenatomen;

10

jeweils geradkettiges oder verzweigtes Alkylamino, Dialkylamino, Alkylcarbonyl, Alkylcarbonyloxy, Alkoxycarbonyl, Hydroximinoalkyl oder Alkoximinoalkyl mit jeweils 1 bis 6 Kohlenstoffatomen in den einzelnen Alkylteilen;

15

Cycloalkyl mit 3 bis 6 Kohlenstoffatomen,

20

zweifach verknüpftes Alkylen mit 3 oder 4 Kohlenstoffatomen, das einfach bis vierfach, gleichartig oder verschieden substituiert sein kann durch Fluor, Chlor, Brom, Methyl, Ethyl und/oder Halogenalkyl mit 1 oder 2 Kohlenstoffatomen und 1 bis 3 Fluor-, Chlor- und/oder Bromatomen,

zweifach verknüpftes Oxyalkylen mit 2 oder 3 Kohlenstoffatomen, das einfach bis vierfach, gleichartig oder verschieden substituiert sein kann durch Fluor, Chlor, Brom, Methyl, Ethyl und/oder Halogenalkyl mit 1 oder 2 Kohlenstoffatomen und 1 bis 3 Fluor-, Chlor- und/oder Bromatomen,

25

und/oder

30

zweifach verknüpftes Dioxyalkylen mit 1 oder 2 Kohlenstoffatomen, wobei die Sauerstoffatome jedoch nicht benachbart stehen und wobei die Alkylenkette einfach bis vierfach, gleichartig oder verschieden substituiert sein kann

10

15

20

25

30

durch Fluor, Chlor, Brom, Methyl, Ethyl und/oder Halogenalkyl mit 1 oder 2 Kohlenstoffatomen und 1 bis 3 Fluor-, Chlor- und/oder Bromatomen,

wobei aber mindestens ein Substituent aus der folgenden Gruppe von Resten vorhanden ist

Formyl,

jeweils geradkettiges oder verzweigtes Halogenalkyl, Halogenalkoxy, Halogenalkylthio, Halogenalkylsulfinyl oder Halogenalkylsulfonyl mit jeweils 1. bis 6 Kohlenstoffatomen und 1 bis 13 gleichen oder verschiedenen Halogenatomen;

jeweils geradkettiges oder verzweigtes Halogenalkenyl, Halogenalkinyl, Halogenalkenyloxy oder Halogenalkinyloxy mit jeweils 2 bis 6 Kohlenstoffatomen und 1 bis 13 gleichen oder verschiedenen Halogenatomen;

jeweils geradkettiges oder verzweigtes Alkylamino, Dialkylamino, Alkylcarbonyl, Alkoxycarbonyl, Hydroximinoalkyl oder Alkoximinoalkyl mit jeweils 1 bis 6 Kohlenstoffatomen in den einzelnen Alkylteilen,

zweifach verknüpftes Alkylen mit 3 oder 4 Kohlenstoffatomen, das einfach bis vierfach, gleichartig oder verschieden substituiert sein kann durch Fluor, Chlor, Brom, Methyl, Ethyl und/oder Halogenalkyl mit 1 oder 2 Kohlenstoffatomen und 1 bis 3 Fluor-, Chlor- und/oder Bromatomen,

zweifach verknüpftes Oxyalkylen mit 2 oder 3 Kohlenstoffatomen, das einfach bis vierfach, gleichartig oder verschieden substituiert sein kann durch Fluor, Chlor, Brom, Methyl, Ethyl und/oder Halogenalkyl mit 1 oder 2 Kohlenstoffatomen und 1 bis 3 Fluor-, Chlor- und/oder Bromatomen;

zweifach verknüpftes Dioxyalkylen mit 1 oder 2 Kohlenstoffatomen, wobei die Sauerstoffatome jedoch nicht benachbart stehen und wobei die Alkylenkette einfach bis vierfach, gleichartig oder verschieden substituiert sein kann durch Fluor, Chlor, Brom, Methyl, Ethyl und/oder Halogenalkyl mit 1 oder 2 Kohlenstoffatomen und 1 bis 3 Fluor-, Chlor- und/oder Bromatomen,

und

5

10 X für Fluor, Chlor oder Brom steht.

Besonders bevorzugt sind diejenigen Stoffe der Formel (I), in denen

R¹ und R² unabhängig voneinander für Methyl, Ethyl, n-Propyl, Isopropyl, n-, i-, sek.- oder tert.-Butyl, Pentyl oder Hexyl stehen, wobei diese Reste einfach bis 15 dreifach, gleichartig oder verschieden substituiert sind durch Fluor, Chlor, Brom, Cyano, Nitro, Amino, Hydroxy, Formyl, Carboxy, Carbamoyl, Thiocarbamoyl, Methoxy, Ethoxy, n- oder i-Propoxy, Methylthio, Ethylthio, noder i-Propylthio, Methylsulfinyl, Ethylsulfinyl, Methylsulfonyl oder Ethylsulfonyl, Allyloxy, Propargyloxy, Difluormethoxy, Trifluormethoxy, Difluor-20 chlormethoxy, Trifluorethoxy, Difluormethylthio, Difluorchlormethylthio, Trifluormethylthio, Trifluormethylsulfinyl oder Trifluormethylsulfonyl, Trichlorethinyloxy, Trifluorethinyloxy, Chlorallyloxy, Iodpropargyloxy, Trichlorethinylthio, Trifluorethinylthio, Chlorallylthio, Iodpropargylthio, Trichlorethinylsulfinyl, Trifluorethinylsulfinyl, Chlorallylsulfinyl, Iodpropargyl-25 sulfinyl, Trichlorethinylsulfonyl, Trifluorethinylsulfonyl, Chlorallylsulfonyl, Iodpropargylsulfonyl, Methylamino, Ethylamino, n- oder i-Propylamino, Dimethylamino, Diethylamino, Acetyl, Propionyl, Methylaminocarbonyl, Ethylaminocarbonyl, n- oder i-Propylaminocarbonyl, Dimethylaminocarbonyl, Diethylaminocarbonyl, Methylaminothiocarbonyl, Ethylaminothiocarbonyl, 30 n- oder i-Propylaminothiocarbonyl, Dimethylaminothiocarbonyl, Diethyl-

10

15

20

25

30

aminothiocarbonyl, Acetyloxy, Methoxycarbonyl, Ethoxycarbonyl, Hydroximinomethyl, Hydroximinoethyl, Methoximinomethyl, Ethoximinomethyl, Methoximinoethyl oder Ethoximinoethyl, Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl, Phenyl, Pyridyl, Furyl, Thienyl, Dioxolanyl, Oxazolidinyl, Dithiolanyl, Methyl-dioxolanyl, Methyl-oxazolidinyl oder Methyl-dithiolanyl

oder

R¹ und R² unabhängig voneinander für Ethenyl, Propenyl, Butenyl, Pentenyl, Hexenyl, Ethinyl, Propinyl, Butinyl, Hexinyl, Cyclopropyl, Cyclobutyl, Cyclopentyl stehen, wobei diese Reste einfach bis dreifach, gleichartig oder verschieden substituiert sein können durch Fluor, Chlor, Brom, Cyano, Nitro, Amino, Hydroxy, Formyl, Carboxy, Carbamoyl, Thiocarbamoyl, Methoxy, Ethoxy, n- oder i-Propoxy, Methylthio, Ethylthio, n- oder i-Propylthio, Methylsulfinyl, Ethylsulfinyl, Methylsulfonyl, Ethylsulfonyl, Allyloxy, Propargyloxy, Difluormethoxy, Trifluormethoxy, Difluorchlormethoxy, Trifluorethoxy, Difluormethylthio, Difluorchlormethylthio, Trifluormethylthio, Trifluormethylsulfinyl, Trifluormethylsulfonyl, Trichlorethinyloxy, Trifluorethinyloxy, Chlorallyloxy, Iodpropargyloxy, Trichlorethinylthio, Trifluorethinylthio, Chlorallylthio, Iodpropargylthio, Trichlorethinylsulfinyl, Trifluorethinylsulfinyl, Chlorallylsulfinyl, Iodpropargylsulfinyl, Trichlorethinylsulfonyl, Trifluorethinylsulfonyl, Chlorallylsulfonyl, Iodpropargylsulfonyl, Methylamino, Ethylamino, n- oder i-Propylamino, Dimethylamino, Diethylamino, Acetyl, Propionyl, Methylaminocarbonyl, Ethylaminocarbonyl, n- oder i-Propylaminocarbonyl, Dimethylaminocarbonyl, Diethylaminocarbonyl, Methylaminothiocarbonyl, Ethylaminothiocarbonyl, n- oder i-Propylaminothiocarbonyl, Dimethylaminothiocarbonyl, Diethylaminothiocarbonyl, Acetyloxy, Methoxycarbonyl, Ethoxycarbonyl, Hydroximino-Ethoximinomethyl, Hydroximinoethyl, Methoximinomethyl, methyl, Methoximinoethyl, Ethoximinoethyl, Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl, Phenyl, Pyridyl, Furyl Thienyl, Dioxolanyl, Oxazolidinyl,

PCT/EP01/14415

Dithiolanyl, Methyl-dioxolanyl, Methyl-oxazolidinyl oder Methyl-dithiolanyl,

für Furyl, Thienyl, Pyridyl oder Pyrimidyl steht, wobei diese Reste einfach \mathbb{R}^3 bis dreifach, gleichartig oder verschieden substituiert sein können durch 5 Fluor, Chlor, Brom, Cyano, Nitro, Formyl, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Allyl, Propargyl, Methoxy, Ethoxy, n- oder i-Propoxy, Methylthio, Ethylthio, n- oder i-Propylthio, Methylsulfinyl, Ethylsulfinyl, Methylsulfonyl, Ethylsulfonyl, Allyloxy, Propargyloxy, Trifluormethyl, Difluorchlormethoxy, Difluormethoxy, Trifluormethoxy, Trifluorethyl, 10 Trifluorethoxy, Difluormethylthio, Difluorchlormethylthio, Trifluormethylthio, Trifluormethylsulfinyl, Trifluormethylsulfonyl, Trichlorethinyloxy, Trifluorethinyloxy, Chlorallyloxy, Iodpropargyloxy, Methylamino, Ethylamino, n- oder i-Propylamino, Dimethylamino, Diethylamino, Acetyl, Propionyl, Acetyloxy, Methoxycarbonyl, Ethoxycarbonyl, Hydroximino-15 Ethoximinomethyl, Methoximinomethyl, Hydroximinoethyl, methyl, Methoximinoethyl oder Ethoximinoethyl, Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl,

20 oder

25

30

R³ für Phenyl steht, das einfach bis fünffach, gleichartig oder verschieden substituiert ist durch Fluor, Chlor, Brom, Cyano, Nitro, Formyl, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Allyl, Propargyl, Methoxy, Ethoxy, n- oder i-Propoxy, Methylthio, Ethylthio, n- oder i-Propylthio, Methylsulfinyl, Ethylsulfinyl, Methylsulfonyl oder Ethylsulfonyl, Allyloxy, Propargyloxy, Trifluormethyl, Trifluorethyl, Difluormethoxy, Trifluormethoxy, Trifluormethylthio, Difluormethylthio, Trifluormethylthio, Trifluormethylsulfinyl, Trifluormethylsulfonyl, Trifluormethylsulfonyl, Trifluormethylsulfonyl, Trifluormethylsulfonyl, Trifluormethylsulfonyl, Trifluormethylsulfonyl, Trifluormethylsulfonyl, Iod-propargyloxy, Methylamino, Ethylamino, n- oder i-Propylamino, Dimethyl-

10

15

amino, Diethylamino, Acetyl, Propionyl, Acetyloxy, Methoxycarbonyl, Ethoxycarbonyl, Hydroximinomethyl, Hydroximinoethyl, Methoximinoethyl, Methoximinoethyl, der Ethoximinoethyl,

jeweils zweifach verknüpftes Propan-1,3-diyl, Methylendioxy oder Ethylendioxy, wobei diese Reste einfach bis vierfach, gleichartig oder verschieden sustituiert sein können durch Fluor, Chlor, Methyl, Ethyl, n-Propyl, i-Propyl und/oder Trifluormethyl,

Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl, wobei aber mindestens ein Substituent aus der folgenden Gruppe von Resten vorhanden ist,

Formyl,

Trifluormethyl, Trifluorethyl, Difluormethoxy, Trifluormethoxy, Difluor-chlormethoxy, Trifluorethoxy, Difluormethylthio, Difluorchlormethylthio, Trifluormethylthio, Methylamino, Ethylamino, n- oder i-Propylamino, Dimethylamino, Diethylamino, Methoxycarbonyl, Ethoxycarbonyl, Hydroximinomethyl, Hydroximinoethyl, Methoximinomethyl, Ethoximinomethyl, Methoximinoethyl, Methoximinoethyl,

jeweils zweifach verknüpftes Propan-1,3-diyl, Methylendioxy oder Ethylendioxy, wobei diese Reste einfach bis vierfach, gleichartig oder verschieden substituiert sein können durch Fluor, Chlor, Methyl, Ethyl, n-Propyl, i-Propyl und/oder Trifluormethyl,

und

X für Fluor oder Chlor steht.

25

20

Die zuvor genannten Reste-Definitionen können untereinander in beliebiger Weise kombiniert werden. Außerdem können auch einzelne Bedeutungen entfallen.

Eine ganz besonders bevorzugte Gruppe erfindungsgemäßer Verbindungen sind diejenigen Triazolopyrimidine der Formel (I), in denen

für Methyl, Ethyl, n-Propyl, Isopropyl, n-, i-, sek- oder tert-Butyl steht, wobei diese Reste einfach bis dreifach, gleichartig oder verschieden substituiert sind durch Fluor, Chlor, Brom, Methoxy, Ethoxy, Acetyl, Dimethylaminocarbonyl, Methoxycarbonyl, Ethoxycarbonyl oder Phenyl,

5 oder

R¹ für Propenyl, Butenyl, Pentenyl oder Hexenyl steht, wobei diese Reste einfach bis dreifach, gleichartig oder verschieden substituiert sein können durch Fluor, Chlor und/oder Brom,

10

- R² für Methyl, Ethyl, n-Propyl, Isopropyl, n-, i-, sek- oder tert.-Butyl steht, wobei diese Reste einfach bis dreifach, gleichartig oder verschieden substituiert sind durch Fluor, Chlor und/oder Brom,
- 15 R³ für Phenyl steht, das einfach bis vierfach, gleichartig oder verschieden substituiert ist durch Fluor, Chlor, Trifluormethyl oder Trifluormethylthio,
 - wobei aber mindestens ein Substituent eine Trifluormethyl- oder Trifluormethylthio-Gruppe ist, oder

20

R³ für den Rest der Formel

steht, und

25

X für Fluor oder Chlor steht.

Verwendet man 5,7-Dichlor-6-(2,6-dichlor-4-trifluormethyl-phenyl)-[1,2,4]triazolo-[1,5-a]-pyrimidin und 2,2,2-Trifluorethyl-3-fluor-propyl-amin als Ausgangsstoffe, so kann der Verlauf des erfindungsgemäßen Verfahrens durch das folgende Formelschema veranschaulicht werden.

5

Die bei der Durchführung des erfindungsgemäßen Verfahrens als Ausgangsstoffe benötigten Dihalogen-triazolopyrimidine sind durch die Formel (II) allgemein definiert. In dieser Formel haben R³ und X vorzugsweise diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel (I) für diese Reste als bevorzugt genannt wurden. Y steht vorzugsweise für Fluor, Chlor oder Brom, besonders bevorzugt für Fluor oder Chlor.

Als Beispiele für Dihalogen-triazolopyrimidine der Formel (II) seien die Stoffe der folgenden Formeln genannt.

15

10

Die Dihalogen-triazolopyrimidine der Formel (II) sind bekannt oder lassen sich nach bekanten Methoden herstellen (vgl. US 5 808 066, US 5 612 345 und WO 94-20 501).

Die bei der Durchführung des erfindungsgemäßen Verfahrens weiterhin als Ausgangsstoffe benötigten Amine sind durch die Formel (III) allgemein definiert. In dieser Formel haben R¹ und R² vorzugsweise diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel (I) für diese Reste als bevorzugt genannt wurden.

Amine der Formel

$$\begin{array}{c} \text{CH}_{2}\text{-CH}_{2}\text{--CH}_{2}\text{F} \\ \text{HN} \\ \text{R}^{4} \end{array} \tag{IIIa}$$

10

5

in welcher

R4 für die Reste der Formeln

15

sind neu.

Amine der Formel (IIIa) lassen sich herstellen, indem man entweder

5 a) 1-Fluor-3-brom-propan der Formel

 FCH_2 - CH_2 - CH_2 -Br

(IV)

mit Aminen der Formel

10

 H_2N-R^4

(V)

in welcher

15 R⁴ die oben angegebenen Bedeutungen hat,

oder mit Säureadditions-Salzen von Aminen der Formel (V)

in Gegenwart eines inerten organischen Verdünnungsmittels, wie zum Beispiel Acetonitril, und in Gegenwart eines Säurebindemittels, wie zum Beispiel Kaliumcarbonat, bei Temperaturen zwischen 10°C und 80°C umsetzt,

oder

25

b) 3-Fluor-propyl-amin der Formel

FCH₂-CH₂-CH₂-NH₂

(VI)

30 gegebenenfalls in Form eines Säureadditions-Salzes

PCT/EP01/14415

- 19 -

mit Halogenverbindungen der Formel

R⁴-Hal

(IIV)

5 in welcher

R4 die oben angegebenen Bedeutungen hat und

Hal für Chlor oder Brom steht,

10

25

30

in Gegenwart eines inerten Verdünnungsmittels, wie zum Beispiel Acetonitril, und in Gegenwart eines Säurebindemittels, wie zum Beispiel Kaliumcarbonat, bei Temperaturen zwischen 10°C und 80°C umsetzt.

Das bei der Durchführung des Verfahrens (a) als Ausgangsstoff benötigte 1-Fluor-3brom-propan der Formel (IV) ist bisher noch nicht bekannt. Es lässt sich herstellen, indem man zunächst 3-Chlor-1-proponol mit Kaliumfluorid in Gegenwart eines Verdünnungsmittels, wie zum Beispiel Triethylenglykol, bei Temperaturen zwischen 50°C und 180°C umsetzt und dann in einem zweiten Schritt das entstandene 3-Fluor-1-propanol mit Thionylbromid in Gegenwart eines Verdünnungsmittels, wie zum Beispiel Dimethylformamid, bei Temperaturen zwischen 0°C und 30°C umsetzt.

Die bei der Durchführung des Verfahrens (a) als Reaktionskomponenten benötigten Amine der Formel (V) werden entweder als solche oder in Form von Säureaddditions-Salzen eingesetzt. Bevorzugt sind dabei Ammonium-Salze, die durch Addition von Chlorwasserstoff oder Tosylchlorid an Amine der Formel (V) entstehen.

Die Amine der Formel (V) und deren Säureadditions-Salze sind bekannt oder lassen sich nach bekannten Methoden herstellen.

Das bei der Durchführung des Verfahrens (b) als Ausgangsstoff benötigte 3-Fluorpropyl-amin der Formel (VI) und dessen Säureadditions-Salze lassen sich herstellen, indem man zunächst 3-Fluor-1-propanol mit Tosylchlorid in Gegenwart eines Säurebindemittels, wie zum Beispiel Pyridin, bei Temperaturen zwischen -10°C und +10°C umsetzt und dann in einem zweiten Schritt das entstandene 3-Fluorpropyl-tosylat in Gegenwart eines Verdünnungsmittels, wie zum Beispiel Ethanol, bei Temperaturen zwischen 10°C und 30°C mit Ammoniak behandelt. Aus dem anfallenden 3-Fluorpropyl-ammonium-tosylat kann durch Behandeln mit wässrigem Alkalimetallhydroxid das Amin in Freiheit gesetzt werden. Letzteres lässt sich durch Umsetzung mit Säuren in die entsprechenden Säureadditions-Salze überführen.

Bevorzugt sind die Ammonium-Salze, die durch Addition von Chlorwasserstoff oder Tosylchlorid an das 3-Fluorpropyl-amin der Formel (VI) entstehen.

15

25

30

5

10

Die bei der Durchführung des Verfahrens (b) als Reaktionskomponenten benötigten Halogenverbindungen der Formel (VII) sind bekannt oder lassen sich nach bekannten Methoden herstellen.

In analoger Weise wie die Amine der Formel (IIIa) lassen sich auch die übrigen Amine der Formel (III) herstellen.

Als Verdünnungsmittel kommen bei der Durchführung des erfindungsgemäßen Verfahrens alle üblichen inerten, organischen Solventien in Betracht. Vorzugsweise verwendbar sind aliphatische, alicyclische oder aromatische Kohlenwasserstoffe, wie Petrolether, Hexan, Heptan, Cyclohexan, Methylcyclohexan, Benzol, Toluol, Xylol oder Decalin; halogenierte Kohlenwasserstoffe, wie Chlorbenzol, Dichlorbenzol, Dichlormethan, Chloroform, Tetrachlormethan, Dichlorethan oder Trichlorethan; Ether, wie Diethylether, Diisopropylether, Methyl-t-butylether, Methyl-t-amylether, Dioxan, Tetrahydrofuran, 1,2- Dimethoxyethan, 1,2-Diethoxyethan oder Anisol; Amide, wie N,N-Dimethylformamid, N,N-Dimethylacetamid, N-Methylformanilid,

20

25

N-Methylpyrrolidon oder Hexamethylphosphorsäuretriamid; Ester wie Essigsäuremethylester oder Essigsäureethylester; Sulfoxide, wie Dimethylsulfoxid; Sulfone, wie Sulfolan.

Als Säureakzeptoren kommen bei der Durchführung des erfindungsgemäßen Verfahrens alle für derartige Umsetzungen tiblichen Säurebindemittel in Frage. Vorzugsweise verwendbar sind tertiäre Amine, wie Trimethylamin, Triethylamin, Tributylamin, N,N-Dimethylanilin, N,N-Dimethyl-benzylamin, Pyridin, N-Methylpiperidin, N-Methylmorpholin, N,N-Dimethylaminopyridin, Diazabicyclooctan (DABCO), Diazabicyclononen (DBN) oder Diazabicycloundecen (DBU).

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen 0°C und 150°C, vorzugsweise bei Temperaturen zwischen 0°C und 80°C.

Bei der Durchführung des erfindungsgemäßen Verfahrens setzt man auf 1 Mol an Dihalogen-triazolopyrimidin der Formel (II) im allgemeinen 1 bis 15 Mol, vorzugsweise 2 bis 8 Mol an Amin der Formel (III) ein. Die Aufarbeitung erfolgt nach üblichen Methoden.

Bei der Durchführung des erfindungsgemäßen Verfahrens arbeitet man im allgemeinen unter Atmosphärendruck. Es ist aber auch möglich, unter erhöhtem oder vermindertem Druck, im allgemeinen zwischen 0,1 bar und 10 bar, zu arbeiten.

Die erfindungsgemäßen Stoffe weisen eine starke mikrobizide Wirkung auf und können zur Bekämpfung von unerwünschten Mikroorganismen, wie Fungi und Bakterien, im Pflanzenschutz und im Materialschutz eingesetzt werden.

Fungizide lassen sich Pflanzenschutz zur Bekämpfung von Plasmodiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes und Deuteromycetes einsetzen.

- Bakterizide lassen sich im Pflanzenschutz zur Bekämpfung von Pseudomonadaceae, 5 Rhizobiaceae, Enterobacteriaceae, Corynebacteriaceae und Streptomycetaceae einsetzen.
- Beispielhaft aber nicht begrenzend seien einige Erreger von pilzlichen und bakteriellen Erkrankungen, die unter die oben aufgezählten Oberbegriffe fallen, genannt: 10
 - Xanthomonas-Arten, wie beispielsweise Xanthomonas campestris pv. oryzae; Pseudomonas-Arten, wie beispielsweise Pseudomonas syringae pv. lachrymans; Erwinia-Arten, wie beispielsweise Erwinia amylovora;
- Pythium-Arten, wie beispielsweise Pythium ultimum; 15 Phytophthora-Arten, wie beispielsweise Phytophthora infestans; Pseudoperonospora-Arten, wie beispielsweise Pseudoperonospora humuli oder Pseudoperonospora cubensis; Plasmopara-Arten, wie beispielsweise Plasmopara viticola;
- Bremia-Arten, wie beispielsweise Bremia lactucae; 20 Peronospora-Arten, wie beispielsweise Peronospora pisi oder P. brassicae; Erysiphe-Arten, wie beispielsweise Erysiphe graminis; Sphaerotheca-Arten, wie beispielsweise Sphaerotheca fuliginea; Podosphaera-Arten, wie beispielsweise Podosphaera leucotricha;
- Venturia-Arten, wie beispielsweise Venturia inaequalis; 25 Pyrenophora-Arten, wie beispielsweise Pyrenophora teres oder P. graminea (Konidienform: Drechslera, Syn: Helminthosporium); Cochliobolus-Arten, wie beispielsweise Cochliobolus sativus (Konidienform: Drechslera, Syn: Helminthosporium);
- Uromyces-Arten, wie beispielsweise Uromyces appendiculatus; 30 Puccinia-Arten, wie beispielsweise Puccinia recondita;

30

Sclerotinia-Arten, wie beispielsweise Sclerotinia sclerotiorum;

Tilletia-Arten, wie beispielsweise Tilletia caries;

Ustilago-Arten, wie beispielsweise Ustilago nuda oder Ustilago avenae;

Pellicularia-Arten, wie beispielsweise Pellicularia sasakii;

5 Pyricularia-Arten, wie beispielsweise Pyricularia oryzae;

Fusarium-Arten, wie beispielsweise Fusarium culmorum;

Botrytis-Arten, wie beispielsweise Botrytis cinerea;

Septoria-Arten, wie beispielsweise Septoria nodorum;

Leptosphaeria-Arten, wie beispielsweise Leptosphaeria nodorum;

10 Cercospora-Arten, wie beispielsweise Cercospora canescens;

Alternaria-Arten, wie beispielsweise Alternaria brassicae;

Pseudocercosporella-Arten, wie beispielsweise Pseudocercosporella herpotrichoides.

Die gute Pflanzenverträglichkeit der erfindungsgemäßen Wirkstoffe in den zur Bekämpfung von Pflanzenkrankheiten notwendigen Konzentrationen erlaubt eine Behandlung von oberirdischen Pflanzenteilen, von Pflanz- und Saatgut, und des Bodens.

Dabei lassen sich die erfindungsgemäßen Wirkstoffe mit besonders gutem Erfolg zur Bekämpfung von Getreidekrankheiten, wie beispielsweise gegen Erysiphe- oder Puccinia-Arten, von Krankheiten im Wein-, Obst- und Gemüseanbau, wie beispielsweise gegen Venturia-, Uncinula- und Podosphaera-Arten, oder von Reiskrankheiten, wie beispielsweise gegen Pyricularia-Arten, einsetzen.

Die erfindungsgemäßen Wirkstoffe eignen sich auch zur Steigerung des Ernteertrages. Sie sind außerdem mindertoxisch und weisen eine gute Pflanzenverträglichkeit auf.

Im Materialschutz lassen sich die erfindungsgemäßen Stoffe zum Schutz von technischen Materialien gegen Befall und Zerstörung durch unerwünschte Mikroorganismen einsetzen.

10

20

Unter technischen Materialien sind im vorliegenden Zusammenhang nichtlebende Materialien zu verstehen, die für die Verwendung in der Technik zubereitet worden sind. Beispielsweise können technische Materialien, die durch erfindungsgemäße Wirkstoffe vor mikrobieller Veränderung oder Zerstörung geschützt werden sollen, Klebstoffe, Leime, Papier und Karton, Textilien, Leder, Holz, Anstrichmittel und Kunststoffartikel, Kühlschmierstoffe und andere Materialien sein, die von Mikroorganismen befallen oder zersetzt werden können. Im Rahmen der zu schützenden Materialien seien auch Teile von Produktionsanlagen, beispielsweise Kühlwasserkreisläufe, genannt, die durch Vermehrung von Mikroorganismen beeinträchtigt werden können. Im Rahmen der vorliegenden Erfindung seien als technische Materialien vorzugsweise Klebstoffe, Leime, Papiere und Kartone, Leder, Holz, Anstrichmittel, Kühlschmiermittel und Wärmeübertragungsflüssigkeiten genannt, besonders bevorzugt Holz.

15 Es seien beispielsweise Mikroorganismen der folgenden Gattungen genannt:

Alternaria, wie Alternaria tenuis,
Aspergillus, wie Aspergillus niger,
Chaetomium, wie Chaetomium globosum,
Coniophora, wie Coniophora puetana,
Lentinus, wie Lentinus tigrinus,
Penicillium, wie Penicillium versicolor,

Aureobasidium, wie Aureobasidium pullulans,

Sclerophoma, wie Sclerophoma pityophila,

25 Trichoderma, wie Trichoderma viride,

Escherichia, wie Escherichia coli,

Pseudomonas, wie Pseudomonas aeruginosa,

Staphylococcus, wie Staphylococcus aureus.

Die erfindungsgemäßen Wirkstoffe eignen sich bei guter Pflanzenverträglichkeit und günstiger Warmblütertoxizität auch zur Bekämpfung von tierischen Schädlingen, ins-

besondere von Insekten, Spinnentieren und Nematoden, die in der Landwirtschaft, in Forsten, im Gartenbau, im Vorrats- und Materialschutz sowie auf dem Hygienesektor bzw. im veterinärmedizinischen Bereich vorkommen. Die Stoffe sind gegen normal sensible und resistente Arten sowie gegen Schädlinge in allen oder einzelnen Entwicklungsstadien wirksam. Zu den oben erwähnten tierischen Schädlingen gehören:

Aus der Ordnung der Isopoda z.B. Oniscus asellus, Armadillidium vulgare, Porcellio scaber.

10 Aus der Ordnung der Diplopoda z.B. Blaniulus guttulatus.

Aus der Ordnung der Chilopoda z.B. Geophilus carpophagus, Scutigera spec.

Aus der Ordnung der Symphyla z.B. Scutigerella immaculata.

15

5

Aus der Ordnung der Thysanura z.B. Lepisma saccharina.

Aus der Ordnung der Collembola z.B. Onychiurus armatus.

Aus der Ordnung der Orthoptera z.B. Blatta orientalis, Periplaneta americana, Leucophaea maderae, Blattella germanica, Acheta domesticus, Gryllotalpa spp., Locusta migratoria migratorioides, Melanoplus differentialis, Schistocerca gregaria.

Aus der Ordnung der Dermaptera z.B. Forficula auricularia.

25

Aus der Ordnung der Isoptera z.B. Reticulitermes spp..

Aus der Ordnung der Anoplura z.B. Pediculus humanus corporis, Haematopinus spp., Linognathus spp.

30

Aus der Ordnung der Mallophaga z.B. Trichodectes spp., Damalinea spp.

PCT/EP01/14415

WO 02/50077

5

10

15

Aus der Ordnung der Thysanoptera z.B. Hercinothrips femoralis, Thrips tabaci.

Aus der Ordnung der Heteroptera z.B. Eurygaster spp., Dysdercus intermedius, Piesma quadrata, Cimex lectularius, Rhodnius prolixus, Triatoma spp.

Aus der Ordnung der Homoptera z.B. Aleurodes brassicae, Bemisia tabaci, Trialeurodes vaporariorum, Aphis gossypii, Brevicoryne brassicae, Cryptomyzus ribis, Aphis fabae, Aphis pomi, Eriosoma lanigerum, Hyalopterus arundinis, Phylloxera vastatrix, Pemphigus spp., Macrosiphum avenae, Myzus spp., Phorodon humuli, Rhopalosiphum padi, Empoasca spp., Euscelis bilobatus, Nephotettix cincticeps, Lecanium corni, Saissetia oleae, Laodelphax striatellus, Nilaparvata lugens, Aonidiella aurantii, Aspidiotus hederae, Pseudococcus spp., Psylla spp.

Aus der Ordnung der Lepidoptera z.B. Pectinophora gossypiella, Bupalus piniarius, Cheimatobia brumata, Lithocolletis blancardella, Hyponomeuta padella, Plutella maculipennis, Malacosoma neustria, Euproctis chrysorrhoea, Lymantria spp., Bucculatrix thurberiella, Phyllocnistis citrella, Agrotis spp., Euxoa spp., Feltia spp., Earias insulana, Heliothis spp., Spodoptera exigua, Mamestra brassicae, Panolis flammea, Spodoptera litura, Spodoptera spp., Trichoplusia ni, Carpocapsa 20 pomonella, Pieris spp., Chilo spp., Pyrausta nubilalis, Ephestia kuehniella, Galleria mellonella, Tineola bisselliella, Tinea pellionella, Hofmannophila pseudospretella, Cacoecia podana, Capua reticulana, Choristoneura fumiferana, Clysia ambiguella, Homona magnanima, Tortrix viridana.

25

30

Aus der Ordnung der Coleoptera z.B. Anobium punctatum, Rhizopertha dominica, Bruchidius obtectus, Acanthoscelides obtectus, Hylotrupes bajulus, Agelastica alni, Leptinotarsa decemlineata, Phaedon cochleariae, Diabrotica spp., Psylliodes chrysocephala, Epilachna varivestis, Atomaria spp., Oryzaephilus surinamensis, Anthonomus spp., Sitophilus spp., Otiorrhynchus sulcatus, Cosmopolites sordidus, Ceuthorrhynchus assimilis, Hypera postica, Dermestes spp., Trogoderma spp., WO 02/50077 PCT/EP01/14415

Anthrenus spp., Attagenus spp., Lyctus spp., Meligethes aeneus, Ptinus spp., Niptus hololeucus, Gibbium psylloides, Tribolium spp., Tenebrio molitor, Agriotes spp., Conoderus spp., Melolontha melolontha, Amphimallon solstitialis, Costelytra zealandica.

5

Aus der Ordnung der Hymenoptera z.B. Diprion spp., Hoplocampa spp., Lasius spp., Monomorium pharaonis, Vespa spp.

Aus der Ordnung der Diptera z.B. Aedes spp., Anopheles spp., Culex spp.,

Drosophila melanogaster, Musca spp., Fannia spp., Calliphora erythrocephala,
Lucilia spp., Chrysomyia spp., Cuterebra spp., Gastrophilus spp., Hyppobosca spp.,
Stomoxys spp., Oestrus spp., Hypoderma spp., Tabanus spp., Tannia spp., Bibio hortulanus, Oscinella frit, Phorbia spp., Pegomyia hyoscyami, Ceratitis capitata,
Dacus oleae, Tipula paludosa.

15

Aus der Ordnung der Siphonaptera z.B. Xenopsylla cheopis, Ceratophyllus spp.

Aus der Ordnung der Arachnida z.B. Scorpio maurus, Latrodectus mactans.

Aus der Ordnung der Acarina z.B. Acarus siro, Argas spp., Ornithodoros spp., Dermanyssus gallinae, Eriophyes ribis, Phyllocoptruta oleivora, Boophilus spp., Rhipicephalus spp., Amblyomma spp., Hyalomma spp., Ixodes spp., Psoroptes spp., Chorioptes spp., Sarcoptes spp., Tarsonemus spp., Bryobia praetiosa, Panonychus spp., Tetranychus spp.

25

Zu den pflanzenparasitären Nematoden gehören z.B. Pratylenchus spp., Radopholus similis, Ditylenchus dipsaci, Tylenchulus semipenetrans, Heterodera spp., Globodera spp., Meloidogyne spp., Aphelenchoides spp., Longidorus spp., Xiphinema spp., Trichodorus spp.

WO 02/50077 PCT/EP01/14415

Die erfindungsgemäß verwendbaren Stoffe lassen sich mit besonders gutem Erfolg zur Bekämpfung von pflanzenschädigenden Milben, wie gegen die Bohnenspinnmilbe (Tetranychus urticae), oder zur Bekämpfung von pflanzenschädigenden Insekten, wie gegen die Larven des Meerrettichblattkäfers (Phaedon cochleariae), sowie der grünen Pfirsichblattlaus (Mycus persicae) einsetzen.

5

10

15

20

25

30

Darüber hinaus weisen die erfindungsgemäßen Verbindungen der Formel (I) auch sehr gute antimykotische Wirkungen auf. Sie besitzen ein sehr breites antimykotisches Wirkungsspektrum, insbesondere gegen Dermatophyten und Sprosspilze, Schimmel und diphasische Pilze (z.B. gegen Candida-Spezies wie Candida albicans, Candida glabrata) wie Epidermophyton floccosum, Aspergillus-Spezies wie Aspergillus niger und Aspergillus fumigatus, Trichophyton-Spezies wie Trichophyton mentagrophytes, Microsporon-Spezies wie Microsporon canis und audouinii. Die Aufzählung dieser Pilze stellt keinesfalls eine Beschränkung des erfassbaren mykotischen Spektrums dar, sondern hat nur erläuternden Charakter.

Die Wirkstoffe können in Abhängigkeit von ihren jeweiligen physikalischen und/oder chemischen Eigenschaften in die üblichen Formulierungen überführt werden, wie Lösungen, Emulsionen, Suspensionen, Pulver, Schäume, Pasten, Granulate, Aerosole, Feinstverkapselungen in polymeren Stoffen und in Hüllmassen für Saatgut, sowie ULV-Kalt- und Warmnebel-Formulierungen.

Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln, unter Druck stehenden verflüssigten Gasen und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln. Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im wesentlichen in Frage: Aromaten, wie Xylol, Toluol oder Alkylnaphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, alipha-

PCT/EP01/14415

tische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, Alkohole, wie Butanol oder Glycol sowie deren Ether und Ester, Ketone, wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser. Mit verflüssigten gasförmigen Streckmitteln oder Trägerstoffen sind solche Flüssigkeiten gemeint, welche bei normaler Temperatur und unter Normaldruck gasförmig sind, z.B. Aerosol-Treibgase, wie Halogenkohlenwasserstoffe sowie Butan, Propan, Stickstoff und Kohlendioxid. Als feste Trägerstoffe kommen in Frage: z.B. natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate. Als feste Trägerstoffe für Granulate kommen in Frage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnussschalen, Maiskolben und Tabakstengel. Als Emulgier und/oder schaumerzeugende Mittel kommen in Frage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäureester, Polyoxyethylen-Fettalkoholether, z.B. Alkylarylpolyglycolether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Eiweißhydrolysate. Als Dispergiermittel kommen in Frage: z.B. Lignin-Sulfitablaugen und Methylcellulose.

20

25

30

5

10

15

Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulverige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine, und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.

Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyanin-farbstoffe und Spurennährstoffe, wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.

Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gewichtsprozent Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.

Die erfindungsgemäßen Wirkstoffe können als solche oder in ihren Formulierungen auch in Mischung mit bekannten Fungiziden, Bakteriziden, Akariziden, Nematiziden oder Insektiziden verwendet werden, um so z.B. das Wirkungsspektrum zu verbreitern oder Resistenzentwicklungen vorzubeugen. In vielen Fällen erhält man dabei synergistische Effekte, d.h. die Wirksamkeit der Mischung ist größer als die Wirksamkeit der Einzelkomponenten.

10

5

Als Mischpartner kommen zum Beispiel folgende Stoffe in Frage:

Fungizide:

15 Aldimorph, Ampropylfos, Ampropylfos-Kalium, Andoprim, Anilazin, Azaconazol, Azoxystrobin,

Benalaxyl, Benodanil, Benomyl, Benzamacril, Benzamacryl-isobutyl, Bialaphos, Binapacryl, Biphenyl, Bitertanol, Blasticidin-S, Bromuconazol, Bupirimat, Buthiobat,

20

Calciumpolysulfid, Capsimycin, Captafol, Captan, Carbendazim, Carboxin, Carvon, Chinomethionat (Quinomethionat), Chlobenthiazon, Chlorfenazol, Chloroneb, Chloropicrin, Chlorothalonil, Chlozolinat, Clozylacon, Cufraneb, Cymoxanil, Cyproconazol, Cyprodinil, Cyprofuram, Carpropamid,

25

Debacarb, Dichlorophen, Diclobutrazol, Diclofluanid, Diclomezin, Dicloran, Diethofencarb, Difenoconazol, Dimethirimol, Dimethomorph, Diniconazol, Diniconazol-M, Dinocap, Diphenylamin, Dipyrithione, Ditalimfos, Dithianon, Dodemorph, Dodine, Drazoxolon,

30

Ediphenphos, Epoxiconazol, Etaconazol, Ethirimol, Etridiazol,

Famoxadon, Fenapanil, Fenarimol, Fenbuconazol, Fenfuram, Fenitropan, Fenpiclonil, Fenpropidin, Fenpropimorph, Fentinacetat, Fentinhydroxyd, Ferbam, Ferimzon, Fluazinam, Flumetover, Fluoromid, Fluquinconazol, Flurprimidol, Flusilazol, Flusulfamid, Flutolanil, Flutriafol, Folpet, Fosetyl-Alminium, Fosetyl-Natrium, Fthalid, Fuberidazol, Furalaxyl, Furametpyr, Furcarbonil, Furconazol, Furconazol-cis, Furmecyclox, Fenhexamid,

Guazatin,

10

5

Hexachlorobenzol, Hexaconazol, Hymexazol,

Imazalil, Imibenconazol, Iminoctadin, Iminoctadinealbesilat, Iminoctadinetriacetat, Iodocarb, Ipconazol, Iprobenfos (IBP), Iprodione, Irumamycin, Isoprothiolan, Isovaledione, Iprovalicarb,

Kasugamycin, Kresoxim-methyl, Kupfer-Zubereitungen, wie: Kupferhydroxid, Kupfernaphthenat, Kupferoxychlorid, Kupfersulfat, Kupferoxid, Oxin-Kupfer und Bordeaux-Mischung,

20

30

15

Mancopper, Mancozeb, Maneb, Meferimzone, Mepanipyrim, Mepronil, Metalaxyl, Metconazol, Methasulfocarb, Methfuroxam, Metiram, Metomeclam, Metsulfovax, Mildiomycin, Myclobutanil, Myclozolin,

25 Nickel-dimethyldithiocarbamat, Nitrothal-isopropyl, Nuarimol,

Ofurace, Oxadixyl, Oxamocarb, Oxolinicacid, Oxycarboxim, Oxyfenthiin,

Paclobutrazol, Pefurazoat, Penconazol, Pencycuron, Phosdiphen, Pimaricin, Piperalin, Polyoxin, Polyoxorim, Probenazol, Prochloraz, Procymidon, Propamocarb,

Propanosine-Natrium, Propiconazol, Propineb, Pyrazophos, Pyrifenox, Pyrimethanil, Pyroquilon, Pyroxyfur,

Quinconazol, Quintozen (PCNB), Quinoxyfen,

5

Schwefel und Schwefel-Zubereitungen, Spiroxamine,

Tebuconazol, Tecloftalam, Tecnazen, Tetcyclacis, Tetraconazol, Thiabendazol, Thicyofen, Thifluzamide, Thiophanate-methyl, Thiram, Tioxymid, Tolclofos-methyl, Tolylfluanid, Triadimefon, Triadimenol, Triazbutil, Triazoxid, Trichlamid, Tricyclazol, Tridemorph, Triflumizol, Triforin, Triticonazol, Trifloxystrobin,

- Uniconazol,

15 Validamycin A, Vinclozolin, Viniconazol,

Zarilamid, Zineb, Ziram sowie

Dagger G,

OK-8705,

20 OK-8801,

 α -(1,1-Dimethylethyl)- β -(2-phenoxyethyl)-1H-1,2,4-triazol-1-ethanol,

 α -(2,4-Dichlorphenyl)- β -fluor-b-propyl-1H-1,2,4-triazol-1-ethanol,

 α -(2,4-Dichlorphenyl)- β -methoxy-a-methyl-1H-1,2,4-triazol-1-ethanol,

 $\alpha\text{-(5-Methyl-1,3-dioxan-5-yl)-}B\text{-[[4-(trifluormethyl)-phenyl]-methylen]-1}H\text{-1,2,4-}$

25 triazol-1-ethanol,

(5RS,6RS)-6-Hydroxy-2,2,7,7-tetramethyl-5-(1H-1,2,4-triazol-1-yl)-3-octanon,

(E)-a-(Methoxyimino)-N-methyl-2-phenoxy-phenylacetamid,

1-(2,4-Dichlorphenyl)-2-(1H-1,2,4-triazol-1-yl)-ethanon-O-(phenylmethyl)-oxim,

1-(2-Methyl-1-naphthalenyl)-1H-pyrrol-2,5-dion,

30 1-(3,5-Dichlorphenyl)-3-(2-propenyl)-2,5-pyrrolidindion,

1-[(Diiodmethyl)-sulfonyl]-4-methyl-benzol,

- 1-[[2-(2,4-Dichlorphenyl)-1,3-dioxolan-2-yl]-methyl]-1H-imidazol,
- 1-[[2-(4-Chlorphenyl)-3-phenyloxiranyl]-methyl]-1H-1,2,4-triazol,
- 1-[1-[2-[(2,4-Dichlorphenyl)-methoxy]-phenyl]-ethenyl]-1H-imidazol,
- 1-Methyl-5-nonyl-2-(phenylmethyl)-3-pyrrolidinol,
- 5 2',6'-Dibrom-2-methyl-4'-trifluormethoxy-4-trifluor-methyl-1,3-thiazol-5-carboxanilid,
 - 2,6-Dichlor-5-(methylthio)-4-pyrimidinyl-thiocyanat,
 - 2,6-Dichlor-N-(4-trifluormethylbenzyl)-benzamid,
 - 2,6-Dichlor-N-[[4-(trifluormethyl)-phenyl]-methyl]-benzamid,
 - 2-(2,3,3-Triiod-2-propenyl)-2H-tetrazol,
- 2-[(1-Methylethyl)-sulfonyl]-5-(trichlormethyl)-1,3,4-thiadiazol,
 - 2-[[6-Deoxy-4-O-(4-O-methyl-ß-D-glycopyranosyl)-a-D-glucopyranosyl]-amino]-4-methoxy-1H-pyrrolo[2,3-d]pyrimidin-5-carbonitril,
 - 2-Aminobutan,
 - 2-Brom-2-(brommethyl)-pentandinitril,
- 2-Chlor-N-(2,3-dihydro-1,1,3-trimethyl-1H-inden-4-yl)-3-pyridincarboxamid,
 - 2-Chlor-N-(2,6-dimethylphenyl)-N-(isothiocyanatomethyl)-acetamid,
 - 2-Phenylphenol(OPP),
 - 3,4-Dichlor-1-[4-(difluormethoxy)-phenyl]-1H-pyrrol-2,5-dion,
 - 3,5-Dichlor-N-[cyan[(1-methyl-2-propynyl)-oxy]-methyl]-benzamid,
- 20 3-(1,1-Dimethylpropyl-1-oxo-1H-inden-2-carbonitril,
 - 3-[2-(4-Chlorphenyl)-5-ethoxy-3-isoxazolidinyl]-pyridin,
 - 4-Chlor-2-cyan-N,N-dimethyl-5-(4-methylphenyl)-1H-imidazol-1-sulfonamid,
 - 4-Methyl-tetrazolo[1,5-a]quinazolin-5(4H)-on,
 - 8-Hydroxychinolinsulfat,
- 9H-Xanthen-9-carbonsäure-2-[(phenylamino)-carbonyl]-hydrazid, bis-(1-Methylethyl)-3-methyl-4-[(3-methylbenzoyl)-oxy]-2,5-thiophendicarboxylat,
 - cis-1-(4-Chlorphenyl)-2-(1H-1,2,4-triazol-1-yl)-cycloheptanol,
 - cis-4-[3-[4-(1,1-Dimethylpropyl)-phenyl-2-methylpropyl]-2,6-dimethyl-morpholinhydrochlorid,
- 30 Ethyl-[(4-chlorphenyl)-azo]-cyanoacetat, Kaliumhydrogencarbonat,

Methantetrathiol-Natriumsalz,

Methyl-1-(2,3-dihydro-2,2-dimethyl-1H-inden-1-yl)-1H-imidazol-5-carboxylat,

Methyl-N-(2,6-dimethylphenyl)-N-(5-isoxazolylcarbonyl)-DL-alaninat,

Methyl-N-(chloracetyl)-N-(2,6-dimethylphenyl)-DL-alaninat,

- 5 N-(2,6-Dimethylphenyl)-2-methoxy-N-(tetrahydro-2-oxo-3-furanyl)-acetamid,
 - N-(2,6-Dimethylphenyl)-2-methoxy-N-(tetrahydro-2-oxo-3-thienyl)-acetamid,
 - N-(2-Chlor-4-nitrophenyl)-4-methyl-3-nitro-benzolsulfonamid,
 - N-(4-Cyclohexylphenyl)-1,4,5,6-tetrahydro-2-pyrimidinamin,
 - N-(4-Hexylphenyl)-1,4,5,6-tetrahydro-2-pyrimidinamin,
- N-(5-Chlor-2-methylphenyl)-2-methoxy-N-(2-oxo-3-oxazolidinyl)-acetamid,
 - N-(6-Methoxy)-3-pyridinyl)-cyclopropancarboxamid,
 - N-[2,2,2-Trichlor-1-[(chloracetyl)-amino]-ethyl]-benzamid,
 - N-[3-Chlor-4,5-bis-(2-propinyloxy)-phenyl]-N'-methoxy-methanimidamid,
 - N-Formyl-N-hydroxy-DL-alanin -Natriumsalz,
- O,O-Diethyl-[2-(dipropylamino)-2-oxoethyl]-ethylphosphoramidothioat,
 - O-Methyl-S-phenyl-phenylpropylphosphoramidothioate,
 - S-Methyl-1,2,3-benzothiadiazol-7-carbothioat,
 - spiro[2H]-1-Benzopyran-2,1'(3'H)-isobenzofuran]-3'-on,

20 Bakterizide:

Bronopol, Dichlorophen, Nitrapyrin, Nickel-Dimethyldithiocarbamat, Kasugamycin, Octhilinon, Furancarbonsäure, Oxytetracyclin, Probenazol, Streptomycin, Tecloftalam, Kupfersulfat und andere Kupfer-Zubereitungen.

25

Insektizide / Akarizide / Nematizide:

Abamectin, Acephate, Acetamiprid, Acrinathrin, Alanycarb, Aldicarb, Aldoxycarb, Alpha-cypermethrin, Alphamethrin, Amitraz, Avermectin, AZ 60541, Azadirachtin,

30 Azamethiphos, Azinphos A, Azinphos M, Azocyclotin,

10

15

25

Bacillus popilliae, Bacillus sphaericus, Bacillus subtilis, Bacillus thuringiensis, Baculoviren, Beauveria bassiana, Beauveria tenella, Bendiocarb, Benfuracarb, Bensultap, Benzoximate, Betacyfluthrin, Bifenazate, Bifenthrin, Bioethanomethrin, Biopermethrin, BPMC, Bromophos A, Bufencarb, Buprofezin, Butathiofos, Butocarboxim, Butylpyridaben,

Cadusafos, Carbaryl, Carbofuran, Carbophenothion, Carbosulfan, Cartap, Chloethocarb, Chlorethoxyfos, Chlorfenapyr, Chlorfenvinphos, Chlorpyrifos, Chlorpyrifos M, Chlovaporthrin, Cis-Resmethrin, Cispermethrin, Clocythrin, Cloethocarb, Clofentezine, Cyanophos, Cycloprene, Cycloprothrin, Cyfluthrin, Cyhalothrin, Cyhexatin, Cypermethrin, Cyromazine,

Deltamethrin, Demeton M, Demeton S, Demeton-S-methyl, Diafenthiuron, Diazinon, Dichlorvos, Diflubenzuron, Dimethoat, Dimethylvinphos, Diofenolan, Disulfoton, Docusat-sodium, Dofenapyn,

Eflusilanate, Emamectin, Empenthrin, Endosulfan, Entomopfthora spp., Esfenvalerate, Ethiofencarb, Ethion, Ethoprophos, Etofenprox, Etoxazole, Etrimfos,

Fenamiphos, Fenazaquin, Fenbutatin oxide, Fenitrothion, Fenothiocarb, Fenoxacrim, Fenoxycarb, Fenpropathrin, Fenpyrad, Fenpyrithrin, Fenpyroximate, Fenvalerate, Fipronil, Fluazuron, Flubrocythrinate, Flucycloxuron, Flucythrinate, Flufenoxuron, Flutenzine, Fluvalinate, Fonophos, Fosmethilan, Fosthiazate, Fubfenprox, Furathiocarb,

Granuloseviren

Halofenozide, HCH, Heptenophos, Hexaflumuron, Hexythiazox, Hydroprene,

30 Imidacloprid, Isazofos, Isofenphos, Isoxathion, Ivermectin,

Kernpolyederviren

Lambda-cyhalothrin, Lufenuron

Malathion, Mecarbam, Metaldehyd, Methamidophos, Metharhizium anisopliae, Metharhizium flavoviride, Methidathion, Methiocarb, Methomyl, Methoxyfenozide, Metolcarb, Metoxadiazone, Mevinphos, Milbemectin, Monocrotophos,

Naled, Nitenpyram, Nithiazine, Novaluron

10

Omethoat, Oxamyl, Oxydemethon M

Paecilomyces fumosoroseus, Parathion A, Parathion M, Permethrin, Phenthoat, Phorat, Phosalone, Phosmet, Phosphamidon, Phoxim, Pirimicarb, Pirimiphos A, Pirimiphos M, Profenofos, Promecarb, Propoxur, Prothiofos, Prothoat, Pymetrozine, Pyraclofos, Pyresmethrin, Pyrethrum, Pyridaben, Pyridathion, Pyrimidifen, Pyriproxyfen,

Quinalphos,

20

15

Ribavirin

Salithion, Sebufos, Silafluofen, Spinosad, Sulfotep, Sulprofos,

Tau-fluvalinate, Tebufenozide, Tebufenpyrad, Tebupirimiphos, Teflubenzuron, Tefluthrin, Temephos, Temivinphos, Terbufos, Tetrachlorvinphos, Thetacypermethrin, Thiacloprid, Thiamethoxam, Thiapronil, Thiatriphos, Thiocyclam hydrogen oxalate, Thiodicarb, Thiofanox, Thuringiensin, Tralocythrin, Tralomethrin, Triarathene, Triazamate, Triazophos, Triazuron, Trichlophenidine, Trichlorfon, Triflumuron, Trimethacarb,

Vamidothion, Vaniliprole, Verticillium lecanii

YI 5302 ·

5 Zeta-cypermethrin, Zolaprofos

- (1R-cis)-[5-(Phenylmethyl)-3-furanyl]-methyl-3-[(dihydro-2-oxo-3(2H)-furanyliden)-methyl]-2,2-dimethylcyclopropancarboxylat
 (3-Phenoxyphenyl)-methyl-2,2,3,3-tetramethylcyclopropanecarboxylat
- 10 1-[(2-Chlor-5-thiazolyl)methyl]tetrahydro-3,5-dimethyl-N-nitro-1,3,5-triazin-2(1H)-imin
 - 2-(2-Chlor-6-fluorphenyi)-4-[4-(1,1-dimethylethyl)phenyl]-4,5-dihydro-oxazol
 - 2-(Acetlyoxy)-3-dodecyl-1,4-naphthalindion
 - 2-Chlor-N-[[[4-(1-phenylethoxy)-phenyl]-amino]-carbonyl]-benzamid
- 2-Chlor-N-[[[4-(2,2-dichlor-1,1-difluorethoxy)-phenyl]-amino]-carbonyl]-benzamid
 3-Methylphenyl-propylcarbamat
 - 4-[4-(4-Ethoxyphenyl)-4-methylpentyl]-1-fluor-2-phenoxy-benzol
 - 4-Chlor-2-(1,1-dimethylethyl)-5-[[2-(2,6-dimethyl-4-phenoxyphenoxy)ethyl]thio]-3(2H)-pyridazinon
- 4-Chlor-2-(2-chlor-2-methylpropyl)-5-[(6-iod-3-pyridinyl)methoxy]-3(2H)-pyridazinon
 - 4-Chlor-5-[(6-chlor-3-pyridinyl)methoxy]-2-(3,4-dichlorphenyl)-3(2H)-pyridazinon Bacillus thuringiensis strain EG-2348
 - Benzoesäure [2-benzoyl-1-(1,1-dimethylethyl)-hydrazid
- Butansäure 2,2-dimethyl-3-(2,4-dichlorphenyl)-2-oxo-1-oxaspiro[4.5]dec-3-en-4-yl-ester
 - [3-[(6-Chlor-3-pyridinyl)methyl]-2-thiazolidinyliden]-cyanamid
 - Dihydro-2-(nitromethylen)-2H-1,3-thiazine-3(4H)-carboxaldehyd
 - Ethyl-[2-[[1,6-dihydro-6-oxo-1-(phenylmethyl)-4-pyridazinyl]oxy]ethyl]-carbamat
- 30 N-(3,4,4-Trifluor-1-oxo-3-butenyl)-glycin

N-(4-Chlorphenyl)-3-[4-(difluormethoxy)phenyl]-4,5-dihydro-4-phenyl-1H-pyrazol-1-carboxamid

N-[(2-Chlor-5-thiazolyl)methyl]-N'-methyl-N"-nitro-guanidin

N-Methyl-N'-(1-methyl-2-propenyl)-1,2-hydrazindicarbothioamid

N-Methyl-N'-2-propenyl-1,2-hydrazindicarbothioamid

O,O-Diethyl-[2-(dipropylamino)-2-oxoethyl]-ethylphosphoramidothioat

Auch eine Mischung mit anderen bekannten Wirkstoffen, wie Herbiziden oder mit Düngemitteln und Wachstumsregulatoren ist möglich.

10

15

20

5

Mit den erfindungsgemäßen Stoffen lassen sich alle Pflanzen und Pflanzenteile behandeln. Unter Pflanzen werden hierbei alle Pflanzen und Pflanzenpopulationen verstanden, wie erwünschte und unerwünschte Wildpflanzen oder Kulturpflanzen (einschließlich natürlich vorkommender Kulturpflanzen). Kulturpflanzen können Pflanzen sein, die durch konventionelle Züchtungs- und Optimierungsmethoden oder durch biotechnologische und gentechnologische Methoden oder Kombinationen dieser Methoden erhalten werden können, einschließlich der transgenen Pflanzen und einschließlich der durch Sortenschutzrechte schützbaren oder nicht schützbaren Pflanzensorten. Unter Pflanzenteilen sollen alle oberirdischen und unterirdischen Teile und Organe der Pflanzen, wie Spross, Blatt, Blüte und Wurzel verstanden werden, wobei beispielhaft Blätter, Nadeln, Stengel, Stämme, Blüten, Fruchtkörper, Früchte und Samen sowie Wurzeln, Knollen und Rhizome aufgeführt werden. Zu den Pflanzenteilen gehört auch Erntegut sowie vegetatives und generatives Vermehrungsmaterial, beispielsweise Stecklinge, Knollen, Rhizome, Ableger und Samen.

25

30

Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, wie gebrauchsfertige Lösungen, Suspensionen, Spritzpulver, Pasten, lösliche Pulver, Stäubemittel und Granulate angewendet werden. Die Anwendung geschieht in üblicher Weise, z.B. durch Gießen, Verspritzen, Versprühen, Verstreuen, Verstäuben, Verschäumen, Bestreichen usw. Es ist ferner möglich, die Wirkstoffe nach dem Ultra-Low-Volume-Verfahren auszubringen oder die Wirkstoff-

5

10

15

20

25

30

zubereitung oder den Wirkstoff selbst in den Boden zu injizieren. Es kann auch das Saatgut der Pflanzen behandelt werden.

Beim Einsatz der erfindungsgemäßen Wirkstoffe als Fungizide können die Aufwandmengen je nach Applikationsart innerhalb eines größeren Bereiches variiert werden. Bei der Behandlung von Pflanzenteilen liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,1 und 10.000 g/ha, vorzugsweise zwischen 10 und 1.000 g/ha. Bei der Saatgutbehandlung liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,001 und 50 g pro Kilogramm Saatgut, vorzugsweise zwischen 0,01 und 10 g pro Kilogramm Saatgut. Bei der Behandlung des Bodens liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,1 und 10.000 g/ha, vorzugsweise zwischen 1 und 5.000 g/ha.

Wie bereits oben erwähnt, können erfindungsgemäß alle Pflanzen und deren Teile behandelt werden. In einer bevorzugten Ausführungsform werden wild vorkommende oder durch konventionelle biologische Zuchtmethoden, wie Kreuzung oder Protoplastenfusion erhaltenen Pflanzenarten und Pflanzensorten sowie deren Teile behandelt. In einer weiteren bevorzugten Ausführungsform werden transgene Pflanzen und Pflanzensorten, die durch gentechnologische Methoden gegebenenfalls in Kombination mit konventionellen Methoden erhalten wurden (Genetic Modified Organisms) und deren Teile behandelt. Der Begriff "Teile" bzw. "Teile von Pflanzen" oder "Pflanzenteile" wurde oben erläutert.

Besonders bevorzugt werden erfindungsgemäß Pflanzen der jeweils handelsüblichen oder in Gebrauch befindlichen Pflanzensorten behandelt.

Je nach Pflanzenarten bzw. Pflanzensorten, deren Standort und Wachstumsbedingungen (Böden, Klima, Vegetationsperiode, Ernährung) können durch die erfindungsgemäße Behandlung auch überadditive ("synergistische") Effekte auftreten. So sind beispielsweise erniedrigte Aufwandmengen und/oder Erweiterungen des Wirkungsspektrums und/oder eine Verstärkung der Wirkung der erfindungs-

5

10

15

20

25

30

- 40 -

gemäß verwendbaren Stoffe und Mittel, besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und/oder höhere Ernährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte möglich, die über die eigentlich zu erwartenden Effekte hinausgehen.

Zu den bevorzugten erfindungsgemäß zu behandelnden transgenen (gentechnologisch erhaltenen) Pflanzen bzw. Pflanzensorten gehören alle Pflanzen, die durch die gentechnologische Modifikation genetisches Material enthalten, welches diesen Pflanzen besondere vorteilhafte wertvolle Eigenschaften ("Traits") verleiht. Beispiele für solche Eigenschaften sind besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und/oder höherer Ernährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte. Weitere und besonders hervorgehobene Beispiele für solche Eigenschaften sind eine erhöhte Abwehr der Pflanzen gegen tierische und mikrobielle Schädlinge, wie gegenüber Insekten, Milben, pflanzenpathogenen Pilzen, Bakterien und/oder Viren sowie eine erhöhte Toleranz der Pflanzen gegen bestimmte herbizide Wirkstoffe. Als Beispiele transgener Pflanzen werden die wichtigen Kulturpflanzen, wie Getreide (Weizen, Reis), Mais, Soja, Kartoffel, Baumwolle, Raps sowie Obstpflanzen (mit den Früchten Äpfel, Birnen, Zitrusfrüchten und Weintrauben) erwähnt, wobei Mais, Soja, Kartoffel, Baumwolle und Raps besonders hervorgehoben werden. Als Eigenschaften ("Traits") werden besonders hervorgehoben die erhöhte Abwehr der Pflanzen gegen Insekten durch in den Pflanzen entstehende Toxine, insbesondere solche, die durch das genetische Material aus Bacillus Thuringiensis (z.B. durch die Gene CryIA(a), CryIA(b), CryIA(c), CryIIA, CryIIIA, CryIIIB2, Cry9c Cry2Ab, Cry3Bb und CryIF sowie deren Kombinationen) in den Pflanzen erzeugt werden (im folgenden "Bt Pflanzen"). Als Eigenschaften

("Traits") werden weiterhin besonders hervorgehoben die erhöhte Toleranz der beispielsweise Wirkstoffen, herbiziden bestimmten Pflanzen gegenüber Imidazolinonen, Sulfonylharnstoffen, Glyphosate oder Phosphinotricin (z.B. "PAT"-Gen). Die jeweils die gewünschten Eigenschaften ("Traits") verleihenden Gene können auch in Kombinationen miteinander in den transgenen Pflanzen vorkommen. Als Beispiele für "Bt Pflanzen" seien Maissorten, Baumwollsorten, Sojasorten und Kartoffelsorten genannt, die unter den Handelsbezeichnungen YIELD GARD® (z.B. Mais, Baumwolle, Soja), KnockOut® (z.B. Mais), StarLink® (z.B. Mais), Bollgard® (Baumwolle), Nucoton® (Baumwolle) und NewLeaf® (Kartoffel) vertrieben werden. Als Beispiele für Herbizid tolerante Pflanzen seien Maissorten, Baumwollsorten und Sojasorten genannt, die unter den Handelsbezeichnungen Roundup Ready® (Toleranz gegen Glyphosate z.B. Mais, Baumwolle, Soja), Liberty Link® (Toleranz gegen Phosphinotricin, z.B. Raps), IMI® (Toleranz gegen Imidazolinone) und STS® (Toleranz gegen Sulfonylharnstoffe z.B. Mais) vertrieben werden. Als herbizidresistente (konventionell auf Herbizid-Toleranz gezüchtete) Pflanzen seien auch die unter der Bezeichnung Clearfield® vertriebenen Sorten (z.B. Mais) erwähnt. Selbstverständlich gelten diese Aussagen auch für in der Zukunft entwickelte bzw. zukünftig auf den Markt kommende Pflanzensorten mit diesen oder zukünftig entwickelten genetischen Eigenschaften ("Traits").

20

15

5

10

Die aufgeführten Pflanzen können besonders vorteilhaft erfindungsgemäß mit den Verbindungen der allgemeinen Formel (I) bzw. den erfindungsgemäßen Wirkstoffmischungen behandelt werden. Die bei den Wirkstoffen bzw. Mischungen oben angegebenen Vorzugsbereiche gelten auch für die Behandlung dieser Pflanzen. Besonders hervorgehoben sei die Pflanzenbehandlung mit den im vorliegenden Text speziell aufgeführten Verbindungen bzw. Mischungen.

Die zum Schutz technischer Materialien verwendeten Mittel enthalten die Wirkstoffe im allgemeinen in einer Menge von 1 bis 95 %, bevorzugt von 10 bis 75 %.

PCT/EP01/14415

Die Anwendungskonzentrationen der erfindungsgemäßen Wirkstoffe richten sich nach der Art und dem Vorkommen der zu bekämpfenden Mikroorganismen sowie nach der Zusammensetzung des zu schützenden Materials. Die optimale Einsatzmenge kann durch Testreihen ermittelt werden. Im allgemeinen liegen die Anwendungskonzentrationen im Bereich von 0,001 bis 5 Gew.-%, vorzugsweise von 0,05 bis 1,0 Gew.-%, bezogen auf das zu schützende Material.

Die Wirksamkeit und das Wirkungsspektrum der erfindungsgemäß im Materialschutz zu verwendenden Wirkstoffe bzw. der daraus herstellbaren Mittel, Konzentrate oder ganz allgemein Formulierungen kann erhöht werden, wenn gegebenenfalls
weitere antimikrobiell wirksame Verbindungen, Fungizide, Bakterizide, Herbizide,
Insektizide oder andere Wirkstoffe zur Vergrößerung des Wirkungsspektrums oder
Erzielung besonderer Effekte wie z.B. dem zusätzlichen Schutz vor Insekten zugesetzt werden. Diese Mischungen können ein breiteres Wirkungsspektrum besitzen als
die erfindungsgemäßen Verbindungen.

Auch beim Einsatz gegen tierische Schädlinge können die erfindungsgemäßen Stoffe in handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit Synergisten vorliegen. Synergisten sind Verbindungen, durch die die Wirkung der Wirkstoffe gesteigert wird, ohne dass der zugesetzte Synergist selbst aktiv wirksam sein muss.

Der Wirkstoffgehalt der aus den handelsüblichen Formulierungen bereiteten Anwendungsformen kann in weiten Bereichen variieren. Die Wirkstoffkonzentration der Anwendungsformen kann von 0,0000001 bis zu 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,0001 und 1 Gew.-% liegen.

Die Anwendung geschieht in einer den Anwendungsformen angepassten üblichen Weise.

25

WO 02/50077

5

10

15

- 43 -

Bei der Anwendung gegen Hygiene- und Vorratsschädlinge zeichnet sich der Wirkstoff durch eine hervorragende Residualwirkung auf Holz und Ton sowie durch eine gute Alkalistabilität auf gekälkten Unterlagen aus.

5 Die Erfindung wird durch die folgenden Beispiele veranschaulicht.

Herstellungsbeispiele

Beispiel 1

5

10

15

20

Ein Gemisch aus 0,1 g (0,29 mmol) 5,7-Dichlor-6-(2,2-difluor-1,3-benzodioxol-4-yl)-[1,2,4]-triazolo[1,5a]-pyrimidin und 0,04 g (0,29 mmol) (3-Fluorpropyl)-(methoxycarbonyl-methyl)-amin in 6,6 g Acetonitril wird mit 0,04 g (0,29 mmol) Kaliumcarbonat versetzt und 16 Stunden bei Raumtemperatur gerührt. Danach wird das Reaktionsgemisch filtriert und unter vermindertem Druck eingeengt. Der verbleibende Rückstand wird mit n-Hexan:Ethylacetat = 3:1 als Laufmittel an Kieselgel chromatographiert. Nach dem Einengen des Eluates erhält man 0,1 g (64,8 % der Theorie) an der Substanz der oben angegebenen Formel mit einem

In anologer Weise werden die in der folgenden Tabelle 1 aufgeführten Triazolopyrimidine der Formel

erhalten.

log P-Wert (S) von 2,93.

Tabelle 1

Bsp. Nr.	\mathbb{R}^1	R ²	R ³	X	logP
2	-CH ₂ -CO-N(CH ₃) ₂	1 J	2-Chlor-5-trifluor- methylphenyl	-Cl	2,77
3	-CH ₂ -CO-N(CH ₃) ₂	3-Fluorpropyl	2,5-Bis-(trifluor- methyl)-phenyl	-C1	2,89
4	-CH ₂ -CO-N(CH ₃) ₂	3-Fluorpropyl	2,6-Dichlor-3-fluor-5- trifluormethylphenyl	-Cl	3,01
5	-CH ₂ -CO-N(CH ₃) ₂	3-Fluorpropyl	2-Fluor-4-trifluor- methylphenyl	-C1.	2,71
6 .	-CH ₂ -CO-N(CH ₃) ₂	3-Fluorpropyl	2-Chlor-5-trifluor- methylthio-phenyl	-Cl	3,14
7	-CH ₂ -CO-N(CH ₃) ₂	3-Fluorpropyl	2-Chlor-3-trifluor- methylphenyl	-C1	2,71
8	-CH ₂ -CO-N(CH ₃) ₂	3-Fluorpropyl	2,2-Difluor-1,3-benzo- dioxol-4-yl	-CI	2,52
9	-CH ₂ -CO-N(CH ₃) ₂	3-Fluorpropyl	2,3-Difluor-4-trifluor- methyl-phenyl	-C1	2,86
10	-CH ₂ -COOCH ₃	3-Fluorpropyl	2-Chlor-5-trifluor- methylphenyl	-Cl	3,23
11	-CH ₂ -COOCH ₃	3-Fluorpropyl	2,5-Bis-(trifluor- methyl)-phenyl	-Cl	
12	-CH ₂ -COOCH ₃	3-Fluorpropyl	2,6-Dichlor-3-fluor-5- trifluormethylphenyl	-C1	3,58
13	-CH ₂ -COOCH ₃	3-Fluorpropyl	2-Fluor-4-trifluor- methylphenyl	-C1	3,17
14	-CH ₂ -COOCH ₃	3-Fluorpropyl	2-Chlor-5-trifluor- methylthio-phenyl	-C1	3,57
15	-CH ₂ -COOCH ₃	3-Fluorpropyl	2-Chlor-3-trifluor- methylphenyl	-Cl	3,17
16	-CH ₂ -COOCH ₃	3-Fluorpropyl		-Cl	3,29
17	-CH ₂ -CH(OCH ₃) ₂	3-Fluorpropyl	2-Chlor-5-trifluor- methylphenyl	-Cl	3,54
18	-CH ₂ -CH(OCH ₃) ₂	3-Fluorpropyl		-Cl	

Tabelle 1 (Fortsetzung)

WO 02/50077

Bsp. Nr.	\mathbb{R}^1	\mathbb{R}^2	R ³	x	logP
19		3-Fluorpropyl	2,6-Dichlor-3-fluor-5- trifluormethylphenyl	-Cl	3,82
20	-CH ₂ -CH(OCH ₃) ₂	3-Fluorpropyl	2-Fluor-4-trifluor- methylphenyl	-Cl	3,41
21	-CH ₂ -CH(OCH ₃) ₂	3-Fluorpropyl	2-Chlor-5-trifluor- methylthio-phenyl	-Cl	3,90
22	-CH ₂ -CH(OCH ₃) ₂	3-Fluorpropyl	2-Chlor-3-trifluor- methylphenyl	-Cl	3,42
23	-CH ₂ -CH(OCH ₃) ₂	3-Fluorpropyl	2,2-Difluor-1,3- benzodioxol-4-yl	-Cl	3,24
24	-CH ₂ -CH(OCH ₃) ₂	3-Fluorpropyl	2,3-Difluor-4-trifluor- methyl-phenyl	-C1	3,55
25	2,2-Diethoxy-ethyl	3-Fluorpropyl	2-Chlor-5-trifluor- methylphenyl	-Cl	4,10
26	2,2-Diethoxy-ethyl	3-Fluorpropyl	2,5-Bis-(trifluor- methyl)-phenyl	-Cl	
27	2,2-Diethoxy-ethyl	3-Fluorpropyl	2,6-Dichlor-3-fluor-5- trifluormethylphenyl	-Cl	4,45
28	2,2-Diethoxy-ethyl	3-Fluorpropyl	2-Fluor-4-trifluor- methylphenyl	-Cl	4,04
29	2,2-Diethoxy-ethyl	3-Fluorpropyl	2-Chlor-5-trifluor- methylthio-phenyl	-Cl	4,47
30	2,2-Diethoxy-ethyl	3-Fluorpropyl	2-Chlor-3-trifluor- methylphenyl	-Cl	4,00
31	2,2-Diethoxy-ethyl	3-Fluorpropyl	2,2-Difluor-1,3- benzodioxol-4-yl	-Cl	3,81
32	2,2-Diethoxy-ethyl	3-Fluorpropyl	2,3-Difluor-4-trifluor- methyl-phenyl	-Cl	4,16
33	-CH ₂ COCH ₃	3-Fluorpropyl	2-Chlor-5-trifluor- methylphenyl	-C1	3,07
34	2,2-Dimethoxypropyl	3-Fluorpropyl	2,5-Bis-(trifluor- methyl)-phenyl	-Cl	
35	2,2-Dimethoxypropyl	3-Fluorpropyl	2,6-Dichlor-3-fluor-5- trifluormethylphenyl	-C1	

Tabelle 1 (Fortsetzung)

3sp. Nr.	R1	\mathbb{R}^2	R ³	X	logP
36	-CH ₂ COCH ₃	3-Fluorpropyl	2-Fluor-4-trifluor- methylphenyl	-Cl	3,01
37	-CH ₂ COCH ₃	3-Fluorpropyl	2-Chlor-5-trifluor- methylthio-phenyl	-Cl	3,42
38	-CH ₂ COCH ₃	3-Fluorpropyl	2-Chlor-3-trifluor- methylphenyl	-Cl	3,01
39	-CH ₂ COCH ₃	3-Fluorpropyl	2,2-Difluor-1,3-benzo- dioxol-4-yl	-Cl	2,80
40.	-CH ₂ COCH ₃	3-Fluorpropyl	2,3-Difluor-4-trifluor- methyl-phenyl	-Cl	3,14
41	2-Bromallyl	3-Fluorpropyl	2-Chlor-5- trifluormethylphenyl	-Cl	3,92
42	2-Bromallyl	3-Fluorpropyl	2,5-Bis-(trifluor- methyl)-phenyl	-F	3,84
43	2-Bromallyl	3-Fluorpropyl	2,6-Dichlor-3-fluor-5- trifluormethylphenyl	-C1	4,27
44	2-Bromallyl	3-Fluorpropyl	2-Fluor-4-trifluor- methylphenyl	-Cl	3,85
45	2-Bromallyl	3-Fluorpropyl	2-Chlor-5-trifluor- methylthio-phenyl	-Cl	4,36
46	2-Bromallyl	3-Fluorpropyl	2-Chlor-3-trifluor- methylphenyl	-F	3,73
47	2-Bromallyi	3-Fluorpropyl	2,2-Difluor-1,3- benzodioxol-4-yl	-Cl	3,69
48	2-Bromallyl	3-Fluorpropyl	2,3-Difluor-4-trifluor- methyl-phenyl	-C1	3,94
49	2-Chlorallyl	3-Fluorpropyl	2-Chlor-5-trifluor- methylphenyl	-Cl	3,84
50	2-Chlorallyl	3-Fluorpropyl	2,5-Bis-(trifluor- methyl)-phenyl	-F	3,77
51	2-Chlorallyl	3-Fluorpropyl	2,6-Dichlor-3-fluor-5- trifluormethylphenyl	-Cl	4,19
52	2-Chlorallyl	3-Fluorpropyl	2-Fluor-4-trifluor- methylphenyl	-C1	3,77

- 48 -

Tabelle 1 (Fortsetzung)

Bsp. Nr.	R ¹	R ²	\mathbb{R}^3	X	logP
53	2-Chlorallyl	3-Fluorpropyl	2-Chlor-5-trifluor- methylthio-phenyl	-Cl	4,27
54	2-Chlorallyl	3-Fluorpropyl	2-Chlor-3-trifluor- methylphenyl	-F	3,66
55	2-Chlorallyl	3-Fluorpropyl	2,2-Difluor-1,3-benzo- dioxol-4-yl	-Cl	3,61
56	2-Chlorallyl	3-Fluorpropyl	2,3-Difluor-4-trifluor- methyl-phenyl	-Cl	3,86
57	-CH ₂ -CF ₃	3-Fluorpropyl	2-Chlor-5-trifluor- methylphenyl	-Cl	
58	-CH ₂ -CF ₃	3-Fluorpropyl	2,5-Bis-(trifluor- methyl)-phenyl	-Cl	
59	-CH ₂ -CF ₃	3-Fluorpropyl	2,6-Dichlor-3-fluor-5- trifluormethylphenyl	-Cl	
60	-CH ₂ -CF ₃	3-Fluorpropyl	2-Fluor-4-trifluor- methylphenyl	-Cl	
61	-CH ₂ -CF ₃	3-Fluorpropyl	2-Chlor-5-trifluor- methylthio-phenyl	-Cl	
62	-CH ₂ -CF ₃	3-Fluorpropyl	2-Chlor-3-trifluor- methylphenyl	-Cl	
63	-CH ₂ -CF ₃	3-Fluorpropyl	2,2-Difluor-1,3-benzo- dioxol-4-yl	-Cl	
64	-CH ₂ -CF ₃	3-Fluorpropyl	2,3-Difluor-4-trifluor- methyl-phenyl	-Cl	
65	2,2,2-Trifluor-1- methylethyl	3-Fluorpropyl	2-Chlor-5-trifluor- methylphenyl	-Cl	
66	2,2,2-Trifluor-1- methylethyl	3-Fluorpropyl	2,5-Bis-(trifluor- methyl)-phenyl	-Cl	
67	2,2,2-Trifluor-1- methylethyl	3-Fluorpropyl	2,6-Dichlor-3-fluor-5- trifluormethylphenyl	-Cl	
68	2,2,2-Trifluor-1- methylethyl	3-Fluorpropyl	2-Fluor-4-trifluor- methylphenyl	-C1	
69	2,2,2-Trifluor-1- methylethyl	3-Fluorpropyl	2-Chlor-5-trifluor- methylthio-phenyl	-CI	

Tabelle 1 (Fortsetzung)

Bsp. Nr.	R^1	R ²	R ³	X	logP
	2,2,2-Trifluor-1- methylethyl	3-Fluorpropyl	2-Chlor-3-trifluor- methylphenyl	-Cl	
71	2,2,2-Trifluor-1- methylethyl	3-Fluorpropyl	2,2-Difluor-1,3-benzo- dioxol-4-yl	-Cl	
72	2,2,2-Trifluor-1- methylethyl	3-Fluorpropyl	2,3-Difluor-4-trifluor- methyl-phenyl	-Cl	
73	-CH ₂ -CH(OCH ₃) ₂	3-Fluorpropyl	2,4-Difluor-6-trifluor- methyl-phenyl	-CI	3,22
74 .	-CH ₂ -COOCH ₃	3-Fluorpropyl	2,4-Difluor-6- trifluormethyl-phenyl	-C1	2,92

Herstellung von Ausgangssubstanzen

5 Beispiel 75

Ein Gemisch aus 10,0 g (88,43 mmol) 2,2,2-Trifluor-1-methyl-ethylamin und 6,11 g (44,22 mmol) Kaliumcarbonat in 78,00 g Acetonitril wird bei Raumtemperatur unter Rühren innerhalb von 30 Minuten mit 12,47 g (88,43 mmol) 1-Fluor-3-brom-propan versetzt. Nach beendeter Zugabe wird das Reaktionsgemisch 16 Stunden bei Raumtemperatur gerührt und dann filtriert. Das Filtrat wird zunächst unter vermindertem Druck eingeengt und dann unter Atmosphärendruck destilliert. Man erhält auf diese Weise 2,1 g (12,34 % der Theorie) an (3-Fluorpropyl)-(2,2,2-trifluor1-methyl-ethyl)-amin in Form einer Flüssigkeit.

- 50 -

Beispiel 76

Ein Gemisch aus 10,0 g (40,11 mmol) 3-Fluor-propyl-ammonium-tosylat und 156,0 g Acetonitril wird mit 8,32 g (60,17 mmol) Kaliumcarbonat versetzt und 1 Stunde bei Raumtemperatur gerührt. Danach fügt man 4,88 g (40,11 mmol) 2-Chlor-N,N-dimethylacetamid hinzu und rührt 24 Stunden bei Raumtemperatur. Anschließend wird das Reaktionsgemisch filtriert. Das Filtrat wird unter vermindertem Druck eingeengt. Der verbleibende Rückstand wird unter stark vermindertem Druck destilliert. Man erhält auf diese Weise 1,3 g (17,98 % der Theorie) an (3-Fluorpropyl)-(N,N-dimethylcarbonyl-methyl)-amin in Form einer Flüssigkeit.

Nach den zuvor angegebenen Methoden werden auch die in der folgenden Tabelle 2 aufgeführten Amine der Formel

$$CH_2$$
 CH_2 CH_2

erhalten.

20

5

10

Tabelle 2

Bsp. Nr.	R ⁴	Siedepunkt (°C)
77	—CH₂—C—OCH₃ O	97-103 / 19 mbar
78	-CH ₂ -CF ₃	90-103 70 / 15 mbar
79	CH ₂ C=CH ₂ CI	70 / 15 mbar
80	CH ₂ C=-CH ₂ Br	90 / 16 mbar
81		62-66 / 1,3 mbar
82	—CH₂-CH ₂ OCH ₃	52-55 / 2 mbar
83	OCH ₃ —CH ₂ —C—CH ₃ OCH ₃	48-49 / 2 mbar

Beispiel 84

5

10

FCH₂-CH₂-CH₂-OH

Man rührt ein Gemisch aus 235,5 g (4,0 Mol) Kaliumfluorid und 787,5 g Triethylenglykol 1 Stunde bei 100°C, destilliert dann 200 ml Triethylenglykol ab, lässt auf Raumtemperatur abkühlen und fügt 128,0 g (1,353 Mol) 3-Chlor-1-propanol hinzu. Das Reaktionsgemisch wird 2 Stunden auf 180°C erhitzt und dann unter vermindertem Druck destilliert. Man erhält 67,6 g (63,95 % der Theorie) an 3-Fluor-1-propanol in Form einer Flüssigkeit.

- 52 -

Beispiel 85

$$FCH_2-CH_2-CH_2-Br$$
 (IV)

Ein Gemisch aus 67,6 g (0,865 mol) 3-Fluor-1-propanol in 190 g Dimethylformamid wird bei Raumtemperatur unter Kühlung und unter Rühren innerhalb von 2 Stunden mit 200 g (0,962 mol) Thionylbromid versetzt. Nach beendeter Zugabe wird noch 2 Stunden bei Raumtemperatur nachgerührt und dann unter vermindertem Druck destilliert. Man erhält 47,2 g (37,5 % der Theorie) an 1-Fluor-3-brom-propan in Form einer Flüssigkeit vom Siedepunkt 100-103°C.

Beispiel 86

15

20

5

10

Ein Gemisch aus 2,81 g (36 mmol) 3-Fluor-1-propanol und 30 ml Pyridin wird bei 0°C innerhalb von 5 Minuten unter Rühren mit 13,73 g (72 mmol) 4-Tosylchlorid versetzt. Man rührt das Reaktionsgemisch nach beendeter Zugabe noch 1 Stunde bei 0°C, fügt dann bei -10°C innerhalb von 5 Minuten 2,7 ml Wasser hinzu und versetzt anschließend mit 30 ml Wasser. Zur Aufarbeitung gießt man das Reaktionsgemisch in 1 Liter Wasser und extrahiert das entstehende Gemisch dreimal mit Ether. Die vereinigten organischen Phasen werden zweimal mit Wasser gewaschen und dann unter vermindertem Druck eingeengt. Man erhält auf diese Weise 7,1 g (84,9 % der Theorie) an 3-Fluor-propyl-tosylat.

Beispiel 87

$$\mathsf{FCH}_{2}\mathsf{--CH}_{2}\mathsf{--CH}_{2}\mathsf{--DH}_{3} \qquad \mathsf{CH}_{3} \mathsf{---D}\mathsf{--SO}_{3}^{\Theta}$$

In eine Lösung von 96,0 g (415 mmol) 3-Fluor-propyl-tosylat in 500 ml Ethanol werden bei Raumtemperatur innerhalb von 2,5 Stunden 84,0 g (4,932 mol) Ammoniak eingeleitet. Danach rührt man das Reaktionsgemisch zunächst 16 Stunden bei Raumtemperatur und dann noch 1 Stunde unter Rückfluß. Zur Aufarbeitung wird das Reaktionsgemisch unter vermindertem Druck eingeengt. Der verbleibende Rückstand wird nacheinander mit Ethylacetat und mit Ether gewaschen.

Man erhält auf diese Weise 43,2 g (41,67 % der Theorie) an 3-Fluor-propylammonium-tosylat.

Patentansprüche

1. Triazolopyrimidine der Formel

in welcher

5

10

15

20

R¹ und R² unabhängig voneinander für Alkyl stehen, das einfach oder mehrfach, gleichartig oder verschieden substituiert ist durch Halogen, Cyano, Nitro, Amino, Hydroxy, Formyl, Carboxy, Carbamoyl, Thiocarbamoyl, Alkoxy, Alkylthio, Alkylsulfinyl, Alkylsulfonyl, Alkenyloxy, Alkinyloxy, Halogenalkoxy, Halogenalkylsulfinyl, Halogenalkylsulfonyl, Halogenalkenyloxy, Halogenalkenylsulfonyl, Halogenalkenylsulfonyl, Halogenalkinyloxy, Halogenalkinylsulfinyl, Halogenalkinylsulfonyl, Alkylamino, Dialkylamino, Alkylcarbonyl, Alkylaminothiocarbonyl, Dialkylaminocarbonyl, Alkylaminothiocarbonyl, Dialkylaminothiocarbonyl, Alkylaminothiocarbonyl, Hydroximinoalkyl, Alkoximinoalkyl, Cycloalkyl, Aryl und/oder Heterocyclyl,

oder

für gegebenenfalls substituiertes Alkenyl, gegebenenfalls substituiertes Alkinyl oder gegebenenfalls substituiertes Cycloalkyl stehen,

25 R³ für gegebenenfalls substituiertes Heterocyclyl steht oder für substituiertes Aryl steht, wobei aber mindestens ein Sustituent aus der folgenden Gruppe von Resten vorhanden ist

5

10

15

20

25

Formyl, Alkinyl, Halogenalkyl, Halogenalkoxy, Halogenalkylthio, Halogenalkylsulfinyl, Halogenalkylsulfonyl, Halogenalkenyl, Halogenalkinyl, Halogenalkenyloxy, Halogenalkinyloxy, Alkylamino, Dialkylamino, Alkylcarbonyl, Alkoxycarbonyl, Hydroximinoalkyl oder Alkoximinoalkyl,

zweifach verknüpftes Alkylen mit 3 bis 6 Kohlenstoffatomen, das einfach oder mehrfach, gleichartig oder verschieden substituiert sein kann durch Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen und/oder Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen,

zweifach verknüpftes Oxyalkylen mit 2 bis 5 Kohlenstoffatomen, das einfach oder mehrfach, gleichartig oder verschieden substituiert sein kann durch Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen und/oder Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen,

zweifach verknüpftes Dioxyalkylen mit 1 bis 4 Kohlenstoffatomen, wobei die Sauerstoffatome jedoch nicht benachbart stehen und wobei die Alkylenkette einfach oder mehrfach, gleichartig oder verschieden substituiert sein kann durch Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen und/oder Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen,

und

X für Halogen steht.

- Triazolopyrimidine der Formel (I) gemäß Anspruch 1, in denen
- R1 für Methyl, Ethyl, n-Propyl, Isopropyl, n-, i-, sek- oder tert-Butyl steht, wobei diese Reste einfach bis dreifach, gleichartig oder verschieden substituiert sind durch Fluor, Chlor, Brom, Methoxy,

Ethoxy, Acetyl, Dimethylaminocarbonyl, Methoxycarbonyl, Ethoxycarbonyl oder Phenyl,

oder

5

R¹ für Propenyl, Butenyl, Pentenyl oder Hexenyl steht, wobei diese Reste einfach bis dreifach, gleichartig oder verschieden substituiert sein können durch Fluor, Chlor und/oder Brom,

10

R² für Methyl, Ethyl, n-Propyl, Isopropyl, n-, i-, sek- oder tert.-Butyl steht, wobei diese Reste einfach bis dreifach, gleichartig oder verschieden substituiert sind durch Fluor, Chlor und/oder Brom,

15

R³ für Phenyl steht, das einfach bis vierfach, gleichartig oder verschieden substituiert ist durch Fluor, Chlor, Trifluormethyl oder Trifluormethylthio,

wobei aber mindestens ein Substituent eine Trifluormethyl- oder Trifluormethylthio-Gruppe ist, oder

20

R³ für den Rest der Formel

steht, und

- X für Fluor oder Chlor steht.
- 3. Verfahren zur Herstellung von Triazolopyrimidinen der Formel (I) gemäß Anspruch 1, dadurch gekennzeichnet, dass man Dihalogen-triazolopyrimidine der Formel

$$\mathbb{R}^3$$
 (II)

in welcher

5

 \mathbb{R}^3 und X die oben angegebenen Bedeutungen haben und

Y für Halogen steht,

10 mit Aminen der Formel

$$R^{1}$$
 R^{2}
 R^{2

in welcher

15

R¹ und R² die oben angegebenen Bedeutungen haben,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säureakzeptors umsetzt.

20

4. Mittel zur Bekämpfung von unerwünschten Mikroorganismen und tierischen Schädlingen, gekennzeichnet durch einen Gehalt an mindestens einem Triazolopyrimidin der Formel (I) gemäß Anspruch 1 neben Streckmitteln und/oder oberflächenaktiven Stoffen.

- Verwendung von Triazolopyrimidinen der Formel (I) gemäß Anspruch 1 zur Bekämpfung von unerwünschten Mikroorganismen und tierischen Schädlingen.
- 5 6. Verfahren zur Bekämpfung von unerwünschten Mikroorganismen und tierischen Schädlingen, dadurch gekennzeichnet, dass man Triazolopyrimidine der Formel (I) gemäß Anspruch 1 auf die unerwünschten Mikroorganismen bzw. tierischen Schädlinge und/oder deren Lebensraum ausbringt.
- 7. Verfahren zur Herstellung von Mitteln zur Bekämpfung von unerwünschten Mikroorganismen und tierischen Schädlingen, dadurch gekennzeichnet, dass man Triazolopyrimidine der Formel (I) gemäß Anspruch 1 mit Streckmitteln und/oder oberflächenaktiven Stoffen vermischt.

15 8. Amine der Formel

$$HN = \frac{CH_2 - CH_2 - CH_2F}{R^4}$$
 (Illia)

in welcher

20

R⁴ für die Reste der Formeln

-CH₂-COOCH₃, —CH₂—C—N(CH₃)₂
-CH₂-CF₃, —CH—CF₃,
$$-CH_{2}$$
-CH₂-CH $_{3}$
-CH₂—CH $_{3}$
-CH₂—CH $_{4}$
OC₂H₅
OC₂H₅

oder

- Verfahren zur Herstellung von Aminen der Formel (IIIa) gemäß Anspruch 8, dadurch gekennzeichnet, dass man
 - a) 1-Fluor-3-brom-propan der Formel

 FCH_2 - CH_2 -Br (IV)

mit Aminen der Formel

 H_2N-R^4 (V)

in welcher

5

10

R⁴ die oben angegebenen Bedeutungen hat,

oder mit Säureadditions-Salzen von Aminen der Formel (V)

in Gegenwart eines inerten organischen Verdünnungsmittels, und in Gegenwart eines Säurebindemittels, umsetzt,

20 oder

b) 3-Fluor-propyl-amin der Formel

WO 02/50077

15

- 60 -

(VI) FCH₂-CH₂-CH₂-NH₂ gegebenenfalls in Form eines Säureadditions-Salzes mit Halogenverbindungen der Formel 5 (VII) R^4 -Hal in welcher 10 die oben angegebenen Bedeutungen hat und \mathbb{R}^4 für Chlor oder Brom steht, Hal in Gegenwart eines inerten Verdünnungsmittels, und in Gegenwart

eines Säurebindemittels, umsetzt.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☑ LINES OR MARKS ON ORIGINAL DOCUMENT
\square REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
•

IMAGES ARE BEST AVAILABLE COPY.

□ OTHER: _____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.