

Politechnika Wrocławska

Wydział Matematyki

Kierunek studiów: Matematyka

Specjalność: Matematyka teoretyczna

Praca dyplomowa – licencjacka

TYTUŁ PRACY DYPLOMOWEJ

Imię i nazwisko dyplomanta

słowa kluczowe: tutaj podajemy najważniejsze słowa kluczowe (łącznie nie powinny być dłuższe niż 150 znaków).

krótkie streszczenie:

Tutaj piszemy krótkie streszczenie pracy (nie powinno być dłuższe niż 530 znaków).

Opiekun pracy	dr inż. Dawid Huczek		
dyplomowej	Tytuł/stopień naukowy/imię i nazwisko	ocena	podpis

Do celów archiwalnych pracę dyplomową zakwalifikowano do:*

- a) kategorii A (akta wieczyste)
- b) kategorii BE 50 (po 50 latach podlegające ekspertyzie)

pieczątka wydziałowa

Wrocław, rok 2019

^{*} niepotrzebne skreślić

Faculty of Pure and Applied Mathematics

Field of study: Mathematics

Specialty: Theoretical Mathematics

Bachelor's Thesis

TYTUŁ PRACY DYPLOMOWEJ W JĘZYKU ANGIELSKIM

Imię i nazwisko dyplomanta

keywords:

tutaj podajemy najważniejsze słowa kluczowe w języku angielskim (łącznie nie powinny być dłuższe niż 150 znaków)

short summary:

Tutaj piszemy krótkie streszczenie pracy w języku angielskim (nie powinno być dłuższe niż 530 znaków).

Supervisor	dr inż. Dawid Huczek		
	Title/degree/name and surname	grade	signature

For the purposes of archival thesis qualified to:*

- a) category A (perpetual files)
- b) category BE 50 (subject to expertise after 50 years)

stamp of the faculty

 $^{*\} delete\ as\ appropriate$

Spis treści

W	Vstęp	3
1	Definicje, lematy, twierdzenia, przykłady i wnioski	5
	1.1 Definicje	5
	1.1.1 Definicje ogólne	5
	1.1.2 Definicje utworzone na potrzeby dowodu twierdzenia o rozszerzaniu	6
	1.2 Lematy	7
2	Twierdzenie o rozszerzaniu odwzorowań chaotycznych w sensie Deva ney'a	ı- 9
Po	odsumowanie	13
D	Oodatek	15
$\mathbf{B}^{\mathbf{i}}$	bibliografia	16

Wstęp

We wstępie zapowiadamy, o czym będzie praca. Próbujemy zachęcić czytelnika do dalszej lektury, np. krótko informując, dlaczego wybraliśmy właśnie ten temat i co nas w nim zainteresowało.

Rozdział 1

Definicje, lematy, twierdzenia, przykłady i wnioski

1.1 Definicje

1.1.1 Definicje ogólne

- 1. wnetrze zbioru
- 2. topologia
- 3. baza topologii
- 4. przestrzeń topologiczna
- 5. metryka
- 6. przestrzeń metryczna
- 7. kula otwarta
- 8. gęstość w przestrzeni metrycznej
- 9. przestrzen metryczna zwarta,
- 10. punkt izolowany w przestrzeni metrycznej
- 11. Ciaglosc funkcji na przestrzeni metrycznej (zbior C(X))
- 12. uklad dynamiczny,
- 13. orbita,
- 14. orbita okresowa
- 15. punkt okresowy odwzorowania
- 16. niezmienniczosc zbioru ze wzgledu na odwzorowanie
- 17. topologiczna tranzytywnosc
- 18. entropia topologiczna

- 19. RODZAJE CHAOSU (Devaneya, Li Yorka)
- 20. napisac ze chaotycznosc odwzorowania rozumiem przez chaotycznosc odpowiedniego układu dynamicznego
- 21. zbiór rezydualny
- 22. separable, second category (czyli 1 i 2 kategoria bairea) TODO: separable znaczy chyba osrodkowa??
- 23. g-delta
- 24. odwzorowania trójkątne, zbior $C_{\triangle}(X \times I)$

Definicja 1.1 (Metryka). Metryką na zbiorze X nazywamy funkcję $\rho: X \times X \longrightarrow \mathbb{R}_+ \cup \{0\}$ spełniającą następujące warunki:

- 1. $\forall_{x,y\in X}: \rho(x,y)=0 \iff x=y,$
- 2. $\forall_{x,y \in X} : \rho(x,y) = \rho(y,x),$
- 3. $\forall_{x,y,z \in X} : \rho(x,y) \le \rho(x,z) + \rho(z,y)$.

Warunek 3 nazywany jest zwykle nierównością trójkąta.

Definicja 1.2 (Przestrzeń metryczna). Przestrzenią metryczną nazywamy parę (X, ρ) , gdzie X jest zbiorem a ρ zdefiniowaną na nim metryką.

Definicja 1.3 (Kula otwarta). Kulą otwartą w przestrzeni metrycznej (X, ρ) nazywamy zbiór: $K(s,r) = \{x \in X : \rho(s,x) < r\}$. Punkt s nazywamy wówczas środkiem kuli K, a $r \in \mathbb{R}_+ \cup \{0\}$ jej promieniem.

Definicja 1.4 (Zbiór gęsty). Dla danej przestrzeni metrycznej (X, ρ) . Zbiór $A \subset X$ nazwiemy gęstym, gdy $\forall_{x \in X} \forall_{\epsilon > 0} \exists_{a \in A} : \rho(x, a) < \epsilon$.

1.1.2 Definicje utworzone na potrzeby dowodu twierdzenia o rozszerzaniu

Na potrzeby dowodu wprowadźmy pojęcia odległości między odwzorowaniami oraz dwie funkcje: $\operatorname{pr}_1(x,y)$ i $\operatorname{pr}_2(x,y)$.

Definicja 1.5 (Metryka na przestrzeni funkcji ciągłych w przestrzeni metrycznej). Niech (M, σ) będzie zwartą przestrzenią metryczną, rozważmy odwzorowania $h, k \in C(M)$. Odległość między nimi zdefiniujmy jako $\max_{m \in M} \sigma(h(m), k(m))$ i oznaczmy ją jako $d_1(h, k)$.

Definicja 1.6 (Metryka na przestrzeni odwzorowań trójkątnych). Odległość między odwzorowaniami trójkątnymi definiujemy wówczas następująco: Niech (X, ρ) i (Y, τ) będą zwartymi przestrzeniami metrycznymi a $F(x, y) = (f(x), g_x(y))$ i $\Phi(x, y) = (\phi(x), \psi_x(y))$ trójkątnymi odwzorowaniami należącymi do $C_{\triangle}(X \times Y)$. Odległość definiujemy wówczas jako

$$d_2(F, \Phi) = \max_{(x,y \in X \times Y)} \max \{ \rho(f(x), \phi(x)), \tau(g_x(y), \psi_x(y)) \}$$
$$= \max \{ d_1(f, \phi), \max_{x \in X} d_1(g_x, \psi_x) \}$$

1.2. Lematy 7

Zauważmy, że jak wynika z lematu 1.8 przestrzenie metryczne $(C(X), d_1)$ oraz $(C_{\triangle}(X \times Y), d_2)$ są zupełne i odpowiednie topologie na nich są topologiami jednostajnej zbieżności. (TODO czy to jest właściwe tłumaczenie?)

Definicja 1.7 (pr₁(x, y), pr₂(x, y)). Dla $(x, y) \in X \times Y$ niech pr₁(x, y) = x i pr₂(x, y) = y. Odwzorowanie identycznościowe na Y będziemy oznaczać przez Id_Y lub krótko Id. W dalszej części pracy przestrzeń Y będzie odcinkiem rzeczywistym I = [0, 1].

1.2 Lematy

Lemat 1.8.

Lemat 1.9. Niech (X, ρ) będzie zwartą przestrzenią metryczną bez punktów izolowanych. Każda okresowa orbita P_0 odwzorowania $f \in C(X)$ jest nigdziegęstym domkniętym podzbiorem X.

Lemat 1.10.

Lemat 1.11. dla przestrzeni nieskonczonej i zwartej czyli referencja 25 z pracy glownej

Lemat 1.12.

Lemat 1.13.

Lemat 1.14.

Twierdzenie 1.15. [1] - dowod twierdzenia 1.5

Lemat 1.16.

Lemat 1.17.

Lemat 1.18. W glownej pracy to byl lemat 3

Lemat 1.19.

Lemat 1.20. [1] Niech (X, ρ) będzie zwartą przestrzenią metryczną i niech $F = (f, g_x)$ będzie odwzorowaniem należącym do $C_{\triangle}(X \times I)$ którego wszystkie włókna są niemalejące i pozostawiają krańce I nie zmienione. Niech $\{a_1, a_2, \ldots, a_n\}$ będzie podzbiorem X oraz dla $i = 1, 2, \ldots, n$ niech U_i będą parami rozłącznymi zbiorami otwartymi takimi, że $a_i \in U_i$. Załóżmy, że h_i są niemalejącymi odwzorowaniami z C(I) pozostawiającymi krańce I niezmienione i spełniającymi $d_1(h_i, g_{a_i}) < \epsilon$ dla pewnego dodatniego ϵ i każdego $i = 1, 2, \ldots, n$. Wówczas istnieje odwzorowanie $\tilde{F} = (f, \tilde{g}_x) \in C_{\triangle}(X \times I)$ spełniające cztery następujące warunki:

- 1. wszystkie włókna \widetilde{F} są niemalejące i pozostawiające krańce I niezmienione,
- 2. $d_2(F, \tilde{F}) < \epsilon$,
- 3. $\tilde{g}_{a_i} = h_i \ dla \ i = 1, 2, \dots, n,$
- 4. $\widetilde{g}_x = g_x \ dla \ x \in X \setminus \bigcup_{i=1}^n U_i$.

Dowód. [1] Dla każdego $i=1,2,\ldots,n$ niech $V_i\subset U_i$ będzie otwartym sąsiedztwem a_i takim, że dla pewnego dodatniego $\tilde{\epsilon}<\epsilon, d_1(h_i,g_x)<\tilde{\epsilon}$ zawsze wtedy gdy $x\in V_i$.

Oznaczmy $U = \bigcup_{i=1}^n U_i$, $V = \bigcup_{i=1}^n V_i$ i weźmy $u : X \longrightarrow [0,1]$, ciągłą funkcję, przyjmującą wartość 1 na zbiorze $\{a_1, a_2, \ldots, a_n\}$, natomiast 0 poza zbiorem V. Zastąpmy każde odwzorowanie włóknowe g_x przez \tilde{g}_x , gdzie

$$\widetilde{g}_{x}(y) = \begin{cases} g_{x}(y) & \text{if } x \in X \setminus V, \\ g_{x}(y)(1 - u(x)) + h_{i}(y)u(x) & \text{if } x \in \{1, 2, \dots, n\}. \end{cases}$$
(1.1)

dla każdego $y \in I$. Zauważmy ponadto, że dla $x \in V_i$ oraz $i \in \{1, 2, \dots, n\}$ możemy równoważnie napisać

$$\tilde{g}_x(y) = u(x)(h_i(y) - g_x(y)) + g_x(y).$$
 (1.2)

Rozważmy odwzorowanie $\widetilde{F}=(f,\widetilde{g}_x)$. Należy ono do $C_{\triangle}(X\times I)$. Z równości 1.1 widzimy, że wszystkie włókna \widetilde{g}_x są niemalejące i pozostawjając krańce przedziału I nie zmienione (TODO sprawdzie czy to dobre tluamczenie, mzoe krance ustalone? krance stale?). Ponadto $\widetilde{g}_{a_i}=h_i$ dla każdego i oraz $\widetilde{g}_x=g_x$ dla $x\in X\setminus V\supset X\setminus U$. Ponieważ dla $x\in V_i$, gdzie $i\in\{1,2,\ldots,n\}$ mamy $d_1(h_i,g_x)<\widetilde{\epsilon}$ oraz $u(x)\in[0,1]$, zatem z równości 1.2 otrzymujemy $d_1(g_x,\widetilde{g}_x)<\widetilde{\epsilon}$ dla każdego $x\in V$. Wynika z tego, że $d_2(F,\widetilde{(F)})\leq\widetilde{\epsilon}<\epsilon$ (TODO uzasadnic tutaj wewnatrz to ostatnie przejscie od d1 do d2 z definicji d1 i d2), co kończy dowód.

Lemat 1.21.

Lemat 1.22.

Lemat 1.23.

Lemat 1.24.

Lemat 1.25.

Lemat 1.26.

Lemat 1.27.

Lemat 1.28.

Rozdział 2

Twierdzenie o rozszerzaniu odwzorowań chaotycznych w sensie Devaney'a

Twierdzenie 2.1 (O rozszerzaniu). Niech (X, ρ) będzie zwartą przestrzenią metryczną bez punktów izolowanych oraz niech $f \in C(X)$ będzie odwzorowaniem chaotycznym w sensie Devaney'a. Wówczas odwzorowanie f można rozszerzyć do odwzorowania $F \in C_{\triangle}(X \times I)$ (to znaczy tak, że f jest odwzorowaniem bazowym dla F) w taki sposób, że:

- (i) F jest również chaotyczne w sensie Devaney'a,
- (ii) F ma taką samą entropię topologiczną jak f,
- (iii) zbiory $X \times \{0\}$ i $X \times \{1\}$ są niezmiennicze ze względu na F.

[2]

Dowód twierdzenia o rozszerzaniu. Odwzorowanie f jest chaotyczne w sensie Devaney'a, zatem spełnia warunek (2), czyli ma gęsty zbiór punktów okresowych, w szczególności istnieje orbita okresowa. Możemy zatem ustalić okresową orbitę P_0 odwzorowania f. Z lematu 1.9 mamy, że P_0 jest nigdziegęstym, domkniętym podzbiorem X.

Rozważmy zbiór \mathcal{F} wszystkich odwzorowań $F=(f,g_x)$ ze zbioru $C_{\triangle}(X\times I)$ spełniających następujące warunki:

- 1. Odwzorowanie bazowe f spełnia założenia twierdzenia 2.1.
- 2. $\forall_{x \in X}$ odwzorowanie g_x jest niemalejące i krańce przedziału I pozostawia niezmienione.
- 3. $\forall_{x \in P_0} g_x$ jest identycznością

Warunek ?? implikuje, że dla każdego odwzorowania z \mathcal{F} zbiory $X \times \{0\}$ i $X \times \{1\}$ są niezmiennicze, czyli $\forall_{F \in \mathcal{F}}$ zachodzi warunek (iii) twierdzenia 2.1. Zachodzenie warunku (ii) twierdzenia 2.1 dla każdego odwzorowania $F \in \mathcal{F}$ wynika z lematu 1.10. Pozostaje zatem wykazać prawdziwość warunku (i), czyli chaotyczność w sensie Devaney'a jakiegoś odwzorowania $F \in \mathcal{F}$. Takie odwzorowanie będzie bowiem łącznie spełniało wszystkie 3 warunki, czyli tezę twierdzenia.

Z lematu 1.11 wynika, że aby odwzorowanie F było chaotyczne w sense Devaneya potrzeba i wystarcza, żeby spełniało dwa poniższe warunki:

- 1. F jest topologicznie tranzytywne
- 2. zbiór punktów okresowych odwzorowania F jest gęsty w $(X \times I)$

Jest tak gdyż przestrzeń $(X \times I)$ spełnia założenia lematu, tj. jest przestrzenią nieskończoną i zwartą.

Chcemy wykazać, że $\exists_{F \in \mathcal{F}}$ będące jednocześnie topologicznie tranzytywne i posiadające gęsty w $(X \times I)$ zbiór punktów okresowych. Z lematu 1.12wiemy, że \mathcal{F} jest niepustym, domkniętym podzbiorem ptrzestrzeni $C_{\triangle}(X \times I)$, która jak wynika z lematu 1.13 jest przestrzenią metryczną zupełną.

Przekrój dwóch zbiorów rezydualnych jest rezydualny (patrz lemat 1.14) a więc niepusty. Wystarczy zatem pokazać, że oba zbiory:

- zbiór odwzorowań topologicznie tranzytywnych
- \bullet zbiór odwzorowań, których zbiór punktów okresowych jest gęsty w $(X \times I)$

są rezydualne w \mathcal{F} . Wówczas każde odwzorowanie należące do ich przekroju będzie spełniało wszystkie trzy warunki tezy twierdzenia 2.1

Zbiór odwzorowań tranzytywnych jest rezydualny w \mathcal{F} , zostało to udowodnione w twierdzeniu 1.15

Pozostało wykazać, że również zbiór odwzorowań posiadających gęsty zbiór punktów okresowych jest rezydualny w \mathcal{F} . Oznaczmy zbiór takich odwzorowań (jednocześnie należących do \mathcal{F}) przez \mathcal{F}_{DP} .

Niech $\{U_i^X\}_{i=1}^{\infty}$ będzie bazą topologii X i niech $\{U_i^I\}_{i=1}^{\infty}$ będzie zbiorem wszystkich odcinków otwartych o końcach wymiernych, należących do odcinka otwartego (0,1). Niech $\{U_i\}_{i=1}^{\infty}$ będzie ponumerowaniem zbioru $\{U_i^X \times U_j^I : i, j \in \mathbb{N}\}$. Wtedy każda kula otwarta w $X \times I$ zawiera jakiś spośród otwartych zbiorów U_i .

Dla każdego i=1,2,... niech zbiór \mathcal{F}_{SO}^i (Ś- stabilny, Ó- okresowy) będzie zdefiniowany następująco. Odwzorowanie G należy do \mathcal{F}_{SO}^i wtedy i tylko wtedy, gdy należy do \mathcal{F} , posiada punkt okresowy w U_i oraz wszystkie dostatecznie bliskie G odwzorowania z \mathcal{F} również posiadają punkt okresowy w U_i (być może różne od punktuów okresowych odwzorowania G). Zbiory \mathcal{F}_{SO}^i są otwartymi podzbiorami \mathcal{F} (patrz lemat 1.16). Ponieważ $\mathcal{F}_{DP} \supseteq \bigcap_{i=1}^{\infty} \mathcal{F}_{SO}^i$ aby pokazać, że \mathcal{F}_{DP} jest rezydualny w \mathcal{F} wystarczy pokazać, że $\forall_{i\in\mathbb{N}}\mathcal{F}_{SO}^i$ jest gęsty w \mathcal{F} . (Wynika to z faktów: 1.21 i 1.22).

Aby wykazać że każdy zbiór \mathcal{F}_{SO}^i jest gęsty w \mathcal{F} ustalmy dowolne: $i \in \mathbb{N}, F = (f, g_x) \in \mathcal{F}$ i $\epsilon > 0$. Pokażemy, że istnieje odwrorowanie $G \in \mathcal{F}_{SO}^i$, którego odległość od F nie przekracza ϵ . Dla uproszczenia sytuacji załóżmy, że $\rho(\operatorname{pr}_1(U_i), P_0) > 0$ (Jeżeli tak nie jest, zawsze możemy wziąć zamiast U_i mniejszy prostokąt $U_i^* \subset U_i$).

Weźmy dodatnią liczbę naturalną $N \geq \frac{4}{\epsilon}$. Następnie rozważmy otwarte sąsiedztwo V orbity P_0 w przestrzeni (X, ρ) takie, że $\rho(\operatorname{pr}_1(U_i), V) \geq 0$ oraz $d_1(g_x, \operatorname{Id}) < \frac{\epsilon}{4}$ dla każdego $x \in V$ (pamiętamy, że $g_x = \operatorname{Id} \operatorname{dla} x \in P_0$).

 P_0 jest zbiorem niezmienniczym ze względu na f, na mocy lematu 1.17 istnieje niepusty zbiór otwarty $W\subseteq V$ taki, że $W\cup f(W)\cup\ldots\cup f^N(W)\subseteq V$. Na mocy lematu 1.18 istnieje punkt okresowy x_0 odwzorowania f taki, że $x_0\in\operatorname{pr}_1(U_i)$ oraz orbita x_0 kroi się niepusto ze zbiorem W. Niech r>0 będzie pierwszą dodatnią liczbą całkowitą dla której $f^r(x_0)\in W$. Wtedy $f^r(x_0), f^{r+1}(x_0),\ldots, f^{r+N-1}(x_0)\in V$. Niech $s\geq 0$ będzie pierwszą nieujemną liczbą całkowitą dla której $f^{r+N+s}(x_0)=x_0$, tj. r+N+s jest okresem punktu x_0 . Weźmy y_0 takie, że $(x_0,y_0)\in U_i$. Ponieważ wszystkie odwzorowania włóknowe (g_x)

odwzorowania F są ńa", to istnieje punkt $y^* \in (0,1)$ taki, że $F^s(f^{r+N}(x_0), y^*) = (x_0, y_0)$ (patrz lemat 1.19).

Przypadek 1. $z = \text{pr}_2(F^r(x_0, y_0))$ jest różne od 0 i 1. Oznaczmy przez g odwzorowanie z C(I) posiadające następujące trzy własności:

- (g1) $d_1(g, \operatorname{Id}) < \frac{\epsilon}{4}$,
- (g2) g jest odwzorowaniem niemalejącym, pozostawiającym końce przedziału I niezmienione,
- (g3) $g^N(z) = y^*$.

Następnie, rozważmy odwzorowanie $h \in C(I)$ posiadające trzy następujące własności:

- (h1) $d_1(h, g_{x_0}) < \frac{\epsilon}{4}$,
- (h2) $h(y_0) = g_{x_0}(y_0),$
- (h3) h jest stałe na zwartym odcinku $[a,b] \subseteq \operatorname{pr}_2(U_i)$ zawierającym punkt y_0 w swoim wnętrzu.

Weźmy teraz odwzorowanie $G=(f,\widetilde{g}_x)\in\mathcal{F}$ takie, że $d_2(G,F)<\frac{\epsilon}{2}$ oraz

$$\widetilde{g}_x = \begin{cases}
h & \text{if } x = x_0, \\
g & \text{if } x \in \{f^k(x_0) : r \le k \le r + N - 1\}, \\
g_x & \text{if } x \in \{f^k(x_0) : 1 \le k \le r - 1 \text{ or } r + N \le k \le r + N + s - 1\}.
\end{cases}$$
(2.1)

Odwzorowanie takie istnieje na mocy lematu 1.20, ponieważ

$$d_1(\tilde{g}_{x_0}, g_{x_0}) = d_1(h, g_{x_0}) < \frac{\epsilon}{4}$$

oraz dla $x \in \{f^r(x_0), f^{r+1}(x_0), \dots, f^{r+N-1}(x_0)\},\$

$$d_1(\tilde{g}_x, g_x) = d_1(g, g_x) \le d_1(g, \text{Id}) + d_1(\text{Id}, g_x) < \frac{\epsilon}{4} + \frac{\epsilon}{4} = \frac{\epsilon}{2}$$

Punkt $(x_0,y_0)\in U_i$ jest punktem okresowym odwzorowania G,ponieważ

$$G^{r+N+s}(x_0, y_0) = G^{r+N+s-1}(G(x_0, y_0))$$

$$= G^{r+N+s-1}(F(x_0, y_0)) = G^{N+s}(F^r(x_0, y_0))$$

$$= G^{N+s}(f^r(x_0), z) = G^s(f^{r+N}(x_0), y^*)$$

$$= F^s(f^{r+N}(x_0), y^*) = (x_0, y_0).$$
(2.2)

Szczegółowe uzasadnienie powyższej równości znajduje się w 1.23

Ponadto, ze względu na (h3), na mocy 1.24 zachodzi

$$G^{r+N+s}(\{x_0\} \times [a,b]) = \{(x_0,y_0)\}.$$

Z faktu $y_0 \in (a,b)$ oraz 1.25 wynika, że każde odwzorowanie $\tilde{G} \in \mathcal{F}$ dostatecznie bliskie G posiada własność

$$\widetilde{G}^{r+N+s}(\{x_0\} \times [a,b]) \subseteq \{x_0\} \times [a,b].$$

Zatem \tilde{G} posiada punkt okresowy w $\{x_0\} \times [a,b] \subseteq U_i$. Zatem $G \in \mathcal{F}_{SO}^i$, co kończy dowód dla przypadku 1.

Przypadek 2. $\operatorname{pr}_2(R^r(x_0, y_0))$ jest równy 0 lub 1.

W takim przypadku użyjemy lematu 1.20 aby dostać odwzorowanie $H=(f,h_x)\in\mathcal{F}$ takie, że $d_2(H,F)<\frac{\epsilon}{2}$ i dla $x\in\{x_0,f(x_0),\ldots,f^{r-1}(x_0)\}$ odwzorowania włóknowe h_x są ściśle rosnące. (Odwzorowanie takie istnieje na mocy 1.26) Ponieważ y_0 jest różnie od 0 i 1 dostajemy, że $\operatorname{pr}_2(H^r(x_0,y_0))$ również jest różne od 0 i 1 (uzasadnienie w 1.27). Następnie korzystając z przypadku 1 i z lematu 1.28 dostajemy odwzorowanie $G\in\mathcal{F}_{SO}^i$, dla którego zachodzi nierówność $d_2(G,H)<\frac{\epsilon}{2}$. Wówczas $d_2(G,F)<\epsilon$. (TODO powolac sie na nierownośc trojkata)

Podsumowanie

Podsumowanie w pracach matematycznych nie jest obligatoryjne. Warto jednak na zakończenie krótko napisać, co udało nam się zrobić w pracy, a czasem także o tym, czego nie udało się zrobić.

Dodatek

Dodatek w pracach matematycznych również nie jest wymagany. Można w nim przedstawić np. jakiś dłuższy dowód, który z pewnych przyczyn pominęliśmy we właściwej części pracy lub (np. w przypadku prac statystycznych) umieścić dane, które analizowaliśmy.

Bibliografia

- [1] ALSEDA, L., KOLYADA, S., LLIBRE, J., SNOHA, L. Entropy and periodic points for transitive maps. *Transactions of the American Mathematical Society 351*, 4 (1999), 1551–1573.
- [2] Balibrea, F., Snoha, L. Topological entropy of devaney chaotic maps. *Topology* and its Applications 133, 3 (2003), 225–239.
- [3] Kuratowski, K. Wstęp do teorii mnogości i topologii. Biblioteka matematyczna. Panst. Wyd. Nauk., 1977.