Wykład pierwszy

Oznaczenia

 \mathbb{N} – zbiór liczb naturalnych

 \mathbb{Z} – zbiór liczb całkowitych

Q – zbiór liczb wymiernych

 \mathbb{R} – zbiór liczb rzeczywistych

∀ – kwantyfikator ogólny – "dla każdego"

∃ – kwantyfikator szczegółowy – "istnieje"

Podstawowe własności funkcji

X, Y - dowolne zbiory niepuste; $f: X \to Y$ - funkcja f określona na zbiorze X o wartościach w zbiorze Y. x - argument funkcji f (zmienna niezależna); y = f(x) wartość funkcji f (zmienna zależna).

 $X \stackrel{df}{=} D_f$ - dziedzina funkcji f;

 $R_f \stackrel{df}{=} \{y \in Y : y = f(x) \text{ dla pewnego } x \in D_f\}$ - przeciwdziedzina funkcji f. Jeśli $D_f \subset \mathbb{R}, R_f \subset \mathbb{R}$, to f - funkcja liczbowa.

Def. 1. Funkcje f_1 , f_2 są równe, jeśli 1) $D_{f_1}=D_{f_2}$; 2) $\forall x\in D_{f_1}[f_1(x)=f_2(x)]$.

Def. 2. Niech $f:X\to Y$ i $A\subset X$. Funkcja f jest różnowartościowa na zbiorze A, jeśli

$$\forall x_1, x_2 \in A [x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)] \equiv \forall x_1, x_2 \in A [f(x_1) = f(x_2) \Rightarrow x_1 = x_2]$$

Def. 3. Niech $f: X \to Y$, $g: Y \to Z$. Funkcja złożona (superpozycja) funkcji f(f). wewnętrzna) i g(f). Zewnętrzna) to funkcja $h: X \to Z$ określona wzorem $\forall x \in X [h(x) \stackrel{df}{=} g(f(x))]$. $h \stackrel{ozn}{=} g \circ f$.

Jeśli $f:X\to Y$ taka, że $R_f=Y$ i f - różnowartościowa, to można określić funkcję $g:Y\to X$ wzorem

$$\forall x \in X, y \in Y[g(y) = x \stackrel{df}{\Leftrightarrow} f(x) = y]$$

Funkcja $g \stackrel{ozn}{=} f^{-1}$ - funkcja odwrotna do funkcji f.

Uwaga 1. $f \circ f^{-1} = id_Y$, $f^{-1} \circ f = id_X$.

Def. 4. Funkcja $f: X \to Y$ jest parzysta, jeśli $\forall x \in X[-x \in X \land f(-x) = f(x)];$ Funkcja $f: X \to Y$ jest nieparzysta, jeśli $\forall x \in X[-x \in X \land f(-x) = -f(x)].$

Uwaga 2. Iloczyn dwóch funkcji parzystych (nieparzystych) jest funkcją parzystą. Iloczyn funkcji parzystej i funkcji nieparzystej jest funkcja nieparzystą.

Def. 5. Funkcja $f: X \to Y$ jest rosnąca (odp.niemalejąca) na zbiorze $A \subset X$, jeśli

$$\forall x_1, x_2 \in A [x_1 < x_2 \Rightarrow f(x_1) < f(x_2)]$$
(odp. $\forall x_1, x_2 \in A [x_1 < x_2 \Rightarrow f(x_1) \leqslant f(x_2)]$)

Def. 6. Funkcja $f: X \to Y$ jest malejąca (odp.nierosnąca) na zbiorze $A \subset X$, jeśli

$$\forall x_1, x_2 \in A [x_1 < x_2 \Rightarrow f(x_1) > f(x_2)]$$
(odp. $\forall x_1, x_2 \in A [x_1 < x_2 \Rightarrow f(x_1) \geqslant f(x_2)]$)

- **Def. 7.** Funkcja f jest monotoniczna (odp.ściśle monotoniczna) na zbiorze A, jeśli jest na tym zbiorze niemalejąca lub nierosnąca (odp. rosnąca lub malejąca).
 - Zał. Funkcja f jest określona w pewnym przedziale $O = (x_0 \delta; x_0 + \delta)$.
- **Def. 8.** Funkcja f ma w punkcie x_0 maksimum lokalne (odp. minimum lokalne), jeżeli

$$\forall x \in O_1 \subset O[f(x) \leqslant f(x_0)] \ (odp. \ \forall x \in O_1 \subset O[f(x) \geqslant f(x_0)])$$

Funkcja f ma w punkcie x_0 ekstremum lokalne, jeśli ma w tym punkcie minimum lub maksimum lokalne. Jeśli w definicji zamiast nierówności słabej jest nierówność mocna, to ekstremum jest właściwe.

Funkcje cyklometryczne (kołowe)

Funkcja $x = \sin y$ na przedziale $\langle -\frac{\pi}{2}; \frac{\pi}{2} \rangle$ ma przeciwdziedzinę $\langle -1; 1 \rangle$ i jest różnowartościowa. Na zbiorze $\langle -1; 1 \rangle$ określona jest funkcja odwrotna arkus sinus (arcsin):

$$y = \arcsin x \Leftrightarrow x = \sin y \ \mathrm{i} \ y \in \langle -\frac{\pi}{2} ; \frac{\pi}{2} \rangle$$

Funkcja $x = \cos y$ na przedziale $\langle 0; \pi \rangle$ ma przeciwdziedzinę $\langle -1; 1 \rangle$ i jest różnowartościowa. Na zbiorze $\langle -1; 1 \rangle$ określona jest funkcja odwrotna arkus kosinus (arccos):

$$y = \arccos x \Leftrightarrow x = \cos y \ \mathrm{i} \ y \in \langle 0 \ ; \pi \rangle$$

Funkcja $x=\operatorname{tg} y$ na przedziale $\left(-\frac{\pi}{2};\frac{\pi}{2}\right)$ ma przeciwdziedzinę $\mathbb R$ i jest różnowartościowa. Na zbiorze $\mathbb R$ określona jest funkcja odwrotna arkus tangens (arctg):

$$y = \operatorname{arctg} x \Leftrightarrow x = \operatorname{tg} y \ \mathrm{i} \ y \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$$

Funkcja $x = \operatorname{ctg} y$ na przedziale $(0; \pi)$ ma przeciwdziedzinę \mathbb{R} i jest różnowartościowa. Na zbiorze \mathbb{R} określona jest funkcja odwrotna arkus kotangens (arcctg):

$$y = \operatorname{arcctg} x \Leftrightarrow x = \operatorname{ctg} y \ \mathrm{i} \ y \in (0; \pi)$$

Uwaga 3. Dla każdego $x \in \langle -1; 1 \rangle$:

- 1. $\sin(\arcsin x) = x$, $\cos(\arccos x) = x$
- 2. $\sin(\arccos x) = \cos(\arcsin x) = \sqrt{1 x^2}$

Logarytmy

Funkcja wykładnicza $y=a^x$, $a>0, a\neq 1$, $x\in\mathbb{R}$ ma przeciwdziedzinę \mathbb{R}^+ i jest różnowartościowa. Na zbiorze \mathbb{R}^+ określona jest funkcja odwrotna – f.logarytmiczna

$$y = \log_a x \Leftrightarrow x = a^y \text{ i } y \in \mathbb{R}$$

Uwaga 4. Własności funkcji logarytmicznej:

1. dla każdego x > 0 i a > 0, $a \neq 1$: $x = a^{\log_a x}$;

2. dla każdych $x_1, x_2 > 0$ i a > 0, $a \neq 1$: $\log_a x_1 + \log_a x_2 = \log_a (x_1 \cdot x_2)$;

3. dla każdych $x_1, x_2 > 0$ i a > 0, $a \neq 1$: $\log_a x_1 - \log_a x_2 = \log_a \left(\frac{x_1}{x_2}\right)$;

4. dla każdego x>0
i $a>0\,,\,a\neq 1\,,\,\alpha\in\mathbb{R}\colon \log_a x^\alpha=\alpha\cdot \log_a x;$

5. dla każdego x>0 i a,b>0 , $a\neq 1, b\neq 1$: $\log_a x=\frac{\log_b x}{\log_b a}$

 $e=2,718\ldots$ - stała matematyczna; jeślia=e, to $\log_e x \stackrel{ozn}{=} \ln x$ - logarytm naturalny.

Funkcje hiperboliczne

Funkcje hiperboliczne: sinus hiperboliczny (sh, sinh), kosinus hiperboliczny (ch, cosh), tangens hiperboliczny (th, tgh), kotangens hiperboliczny (cth, ctgh) określone są następująco

1.
$$\operatorname{sh} x \stackrel{df}{=} \frac{e^x - e^{-x}}{2}$$
, $x \in \mathbb{R}$

2.
$$\operatorname{ch} x \stackrel{df}{=} \frac{e^x + e^{-x}}{2}$$
, $x \in \mathbb{R}$

3.
$$th x \stackrel{df}{=} \frac{\sinh x}{\cosh x}, x \in \mathbb{R}$$

4.
$$\operatorname{cth} x \stackrel{df}{=} \frac{\operatorname{ch} x}{\operatorname{sh} x}$$
, $x \in \mathbb{R} - \{0\}$

 ${\bf Uwaga~5.}$ Funkcja ch $\,$ jest funkcją parzystą, pozostałe f.hiperboliczne są nieparzyste.

