Bazy danych 2022

na podstawie slajdów Przemysławy Kanarek

2 marca 2022

BD i SZBD

- Baza danych (BD,DB) zbiór danych zawierających zarówno informacje rzeczowe, jak i strukturę tych informacji; zazwyczaj duży, długotrwały, dostępny dla wielu użytkowników na różne sposoby;
- System Zarządzania Bazami Danych (SZBD, DBMS) oprogramowanie pozwalające definiować strukturę bazy danych, gromadzić dane w bazie i je efektywnie udostępniać (Oracle, PostgreSQL, MySQL, SQL Server, ...);
 - ACID atomowość (Atomic), poprawność (Consistent), niezależność (Independent), trwałość (Durable).
 - Security —kontrola dostępu

Języki baz danych

```
Diagramy E-R, UML — projektowanie konceptualne (modelowanie);
```

Język definiowania danych (DDL) — polecenia tworzenia elementów struktury bazy danych;

Język zapytań (query language) — polecenia wyszukiwania danych;

Język modyfikacji danych (DML) — polecenia dodawania, usuwania i modyfikacji danych;

Język aplikacji — język służący do pisania aplikacji odwołujących się do bazy danych.

SQL (Structured Query Language) zawiera DDL, query language oraz DML i jest zaimplementowany praktycznie we wszystkich relacyjnych SZBD (*dialekty SQL*).

Języki aplikacji mogą to być języki programowania, dla których zaprogramowano biblioteki dostępu do bazy danych, własny język programowania SZBD stanowiący rozszerzenie SQL lub programistycznego SQL.

Object–relational mapping (ORM) — pozwala na serializację i deserializację obiektów do bazy danych z poziomu języka programowania, konwertuje niezgodne typy, pozwala abstrahować od SZBD. Zmniejsza ilość kodu. *Object–relational impedance mismatch.* — do omówienia na innych zajęciach (POO).

Po co nam bazy danych? Do czego?

- Pozwalają na abstrakcję (nieważne co w środku!),
- Uwalniają twórcę systemu od implementowania warstwy danych w każdym projekcie,
- Zapewniają integralność danych (ACID) i Security,
- Pozwalają na optymalizacje.
- OLTP (duża liczba małych transakcji, scale-independence),
- OLAP (analiza danych, zapytania przetwarzają duże dane, ML-in-database).

Plan wykładu

Będzie o:

- Model relacyjny teoretycznie: elementy składowe modelu, języki zapytań, zapytania koniunkcyjne, rekursja, postaci normalne (BCNF, 3NF, 4NF).
- Model relacyjny praktycznie: zapytania SQL, projektowanie baz danych oraz diagramy E-R i UML, język definicji danych SQL.
- Systemy zarządzania relacyjnymi bazami danych: przetwarzanie zapytań, transakcje i wielodostęp, bezpieczeństwo danych.

Na innych przedmiotach:

- Bazy grafowe
- MapReduce, NoSQL
- DataMining i hurtownie danych, bazy analityczne, kolumnowe
- Budowa DBMS (Bazy danych 2)
- Bazy geograficzne (PostGIS)
- Przetwarzanie strumieniowe, Bazy rozproszone

"n.id"	"n.screen_name"	"n.followers_count"	"n.friends_count"	"n.location"
2531159968	"traceyhappymom"	3696	3353	"Washington, DC"
100345056	"SCOTTGOHARD"	1053	1055	"still #Block%Corner#street"
247165706	"Beckster319"	650	896	"Chicago, IL"
249538861	"skatewake1994"	44	154	
449689677	"KadirovRussia"	94773	7	
471868887	"MargoSavazh"	23305	8021	"Санкт-Петербург, Россия"
1039581360	"darknally"	22	40	"Amerika"
1510488662	"lagonehoe"	3080	2369	"USA"
1513801268	"YouJustCtrlC"	2760	2700	"USA"
1517678892	"MrMoraan"	879	758	"Philadelphia, PA"
1518857420	"NoJonathonNo"	789	440	"USA"

"n.id"	"n.screen	name"	"n.follower	s_count"	"n.frien	ds_count"	*n.location	•
2531159968	"traceyhap	ppymom"	3696		3353		"Washington	, DC"
100345056	*SCOTTGOH	ARD"	1053		1055		still #Blo	ck∍Corner∣street'
247165786	"Beckster	10"	I 65A		806		=Chicano T	1.5
249538861	"skatewak	"n.twe	et_id"	"n.user_	key"	"n.create	d_str"	"text"
449689677	"KadirovF	836227	891897651201	"kathiem	rr"	"2017-02-	27 14:54:00"	"ThingsDoneByMist"
471868887	"MargoSav	765198	948239810561	"traceyh	appymom*	"2016-08-	15 14:50:20"	"T @mc_derpin: #T
1039581360	*darknall	616882	306572746752	"evewebs	ter373"	"2015-06-	30 21:56:09"	"T @dmataconis: F
1510488662	=1 agoneho	776693	302926147584	"blackto	live"	"2016-09-	16 08:04:48"	"men! #blacklives"
1513801268		777594	647875059712	"jacquel	inisbest"	"2016-09-	18 19:46:25"	"T @NahBabyNah: T-
		718848	061649031168	"judelam	bertusa"	"2016-04-	07 11:37:45"	"T @mcicerol0: #8-
1517678892		785586	729579196416	"carriet	hornthon"	"2016-10-	10 21:04:06"	"T @ItsJustJaynie-
1518857420	"NoJonath	664592	113775022084	"johnbra	nchh"	"2015-11-	11 23:54:42"	"TodayCleveland '
		782408	661389840384	"march_f	or_trump*	"2016-10-	02 02:35:35"	"NickTomaWBRE Hi,
		811580	868573691904	"puredav	ie"	"2016-12-	21 14:35:32"	"hat. Is. A. Resc
		800655	998335774720	"daileyj	adon"	"2016-11-	21 11:04:00"	"ifetime movie
		822266	545728585728	"evagree	n69"	"2017-01-	20 02:16:36"	"T @Conservatexia
		795661	161282891776	"cassiew	eltch"	"2016-11-	07 16:16:18"	"T @HillaryClinto
		777859	822679158784	"_nicklu	na_"	"2016-09-	19 13:20:08"	"T @leonpui_: Hil

"n.	id"	"n.screen	name"	"n.follower	s_count"	"n.frien	ds_count"	"n.location	-
253	1159968	"traceyha	ppymom"	3696		3353		"Washington	, DC"
108	345056	"SCOTTGOH	ARD"	1053		1055		"still ∣Blo	ck:Corner:street
247	165706	"Beckster	R10"	650		1806		"Chicago T	
249	538861	skatewak	"n.twee	t_id"	"n.user_	key"	"n.create	d_str"	"text"
449	689677	"KadirovF	8362278	91897651201	"kathiem	rr"	"2017-02-	27 14:54:00"	"ThingsDoneByMist
47			7651000	40239810561	"traceyh	аррутот"	"2016-08-	15 14:50:20"	"T @mc_derpin: #1
-	"n.name"		"coun	72746752	"evewebs	ter373"	"2015-06-	30 21:56:09"	"T @dmataconis: F
_	"Trump "		8029	26147584	 "blackto	live"	"2016-09-	16 08:04:48"	men! #blacklives
15	"CNN "		1263	75059712	 "jacquel	inisbest"	2016-09-	18 19:46:25"	"T @NahBabyNah: 1
15	"GOP "		914	49831168	"iudel an	hertusa"	2016-04-	87 11·37·45"	"T @mcicerol0: #E
15	"FBI "		762	1	-		-		-
15	"TRUMP "		675		-				"T @ItsJustJaynie
247 249 449 47 10 15	"Clinton	-	672	75022084	"johnbra	nchh"	"2015-11-	11 23:54:42"	"TodayCleveland '
	"ISIS "		541	89840384	"march_f	or_trump*	"2016-10-	02 02:35:35"	"NickTomaWBRE Hi,
	"MAGA "		479	73691904	"puredav	ie"	"2016-12-	21 14:35:32"	"hat. Is. A. Reso
	"YouTube	-	411	35774720	"daileyj	adon"	"2016-11-	21 11:04:00"	"ifetime movie
	"Twitter	-	403	28585728	"evagree	n69"	"2017-01-	20 02:16:36"	"T @Conservatexia
	"wikilea	ks "	377	82891776	"cassiew	eltch"	"2016-11-	07 16:16:18"	"T @HillaryClinto
	"Obama "		352	79158784	"_nicklu	na_"	"2016-09-	19 13:20:08"	"T @leonpui_: Hil
	"HRC "		340						
	"America	-	335	7					
	"Wikilea	ks "	321						

"n.	id"	"n.scre	name" "r	n.follower	s_count"	"n.frien	ds_count"	"n.location	
253	11599	"traceyhap	ррутот" 36	596		3353		"Washington	, DC"
100	345056	*SCOTTGOH	ARD" 16	953		1055		"still ∣Blo	ck∍Corner⊧street"
247	165706	"Beckster	11a" 11			806		*Chicano T	1.5
249	538861	-skatewak	"n.tweet	ib	"n.user_	key"	"n.create	d_str"	"text"
449	689677	"KadirovF	836227891	1897651131	"kathie	rr"	"2017-02-	27 14:54:00"	"ThingsDoneByMist
47			765100040	239810501	"traceyh	аррутоп"	"2016-08-	15 14:50:20"	"T @mc_derpin: #T
H	"n.name"		"count"	72746752	"evewebs	ter373"	"2015-06-	30 21:56:09"	"T @dmataconis: F
10	"Trump "		8029	26147584	"blackto	live"	"2016-09-	16 08:04:48"	"men! #blacklives
15	"CNN "		1263	75059712	"iacquel	inisbest"	2016-09-	18 19:46:25"	"T @NahBabyNah: T
15	"GOP "		914	40031160	"iudol an	hortura!	12016 04	07 11:27:45"	"T @mcicerol0: #8-
15	"FBI "		762		_				
15	"TRUMP "		675						"T @ItsJustJaynie-
	"Clinton	-	672	75022084	"johnbra	nchh"	"2015-11-	11 23:54:42"	"TodayCleveland '
	"ISIS "		541	89840384	"march_f	or_trump*	"2016-10-	02 02:35:35"	"NickTomaWBRE Hi,
	"MAGA "		479	73691904	"puredav	ie"	"2016-12-	21 14:35:32"	"hat. Is. A. Resc
	"YouTube	-	411	35774720	"daileyj	adon"	"2016-11-	21 11:04:00"	"ifetime movie
	"Twitter	-	403	28585728	"evagree	n69"	"2017-01-	20 02:16:36"	"T @Conservatexia
	"wikilea	ks "	377	82891776	"cassiew	eltch"	"2016-11-	07 16:16:18"	"T @HillaryClinto
	"Obana "		352	79158784	"_nicklu	na_"	"2016-09-	19 13:20:08"	"T @leonpui_: Hil
	"HRC "		340						
	"America	-	335						
	"Wikilea	ks "	321	1					

Schematy - encje, związki, normalizacja

Schematy - encje, związki, normalizacja

Szkolenie(id int, temat text, data date, trudnosc int)
Trener(id int, nazwisko text, mail text, opis text)
Słuchacz(id int, nazwisko text)

Schematy - encje, związki, normalizacja

Szkolenie(<u>id int</u>, temat text, <u>data date</u>, trudnosc int)
Trener(<u>id int</u>, nazwisko text, mail text, opis text)
Słuchacz(<u>id int</u>, nazwisko text)

Schematy - encje, związki, normalizacja

Szkolenie(<u>id int</u>, temat text, <u>data date</u>, trudnosc int)
Trener(<u>id int</u>, nazwisko text, mail text, opis text)
Słuchacz(<u>id int</u>, nazwisko text)

Szkolenie(<u>id int</u>, temat text, trudnosc int)
Edycja(<u>id int</u>, szkolenie int, data date)
Trener(<u>id int</u>, nazwisko text, mail text, opis text)
Słuchacz(<u>id int</u>, nazwisko text)

LDBC Benchmark

Dlaczego relacyjne bazy danych?

Jak do tego doszło?

- Lata 50-60-te: powstaje model hierarchiczny (IMS) i sieciowy (CODASYL).
- Lata 70-te: Codd proponuje model relacyjny i powstają pierwsze relacyjne SZBD: Ingres (Ingres Corp, PostgreSQL, Sybase, MS SQL Server, ...) oraz System R (DB2, Oracle,...).
- Lata 90-te: model relacyjny rządzi, ale... staje się za ciasny, bo nie zawsze dobrze sobie radzi ze skomplikowanymi danymi, specyficznym przetwarzaniem danych i funkcjonowaniem w nowych środowiskach (chmura, urządzenia mobilne, dyski SSD).
 Jack of all trades. master of none

XXI wiek

- NoSQL → NewSQL (ACID powraca!),
 Polyglot persistence
- Zasady ACID (czasem) nie są kluczowe: bazy sieci społecznościowych (mniejsza niezawodność), informacji (opóźniona spójność), brak powtarzalnej struktury, . . .
- Powstają nowe modele danych: obiektowy, XML, JSON, wide column stores (BigTable: row&column keys, timestamp→bytes),...
- Powstają specjalistyczne systemy baz danych: temporalne, probabilistyczne, geograficzne, tekstowe, grafowe,...
- Bazy są większe niż kiedykolwiek wcześniej: skalowalność, przetwarzanie analityczne (hurtownie danych), przetwarzanie strumieniowe,...
- Autonomiczne bazy danych (zarządzane przez AI), Bazy w chmurze,

NoSQL: key-values stores, document stores

- brak schematu / elastyczny schemat
- duża wydajność kosztem organizacji danych wg pojedynczego klucza
- brak łatwej możliwości modelowania związków pomiędzy danymi (dodawanie id jednego dokument jako wartość w drugim...)
- przegrupowanie danych, joiny -> obliczenia po stronie aplikacji
- typowe zastosowania: profile użytkownika (web, gry, ...), koszyk zakupowy, rekomendacje, ogłoszenia, cache

What's Really New with NewSQL?

https://db.cs.cmu.edu/papers/2016/pavlo-newsql-sigmodrec2016.pdf BTW https://sigmodrecord.org/sigmod-record-current-issue/

RECORD Web Edition

Current Issue

Previous Issues

Info for Authors

Record Editors

FAQ

Credits

About SIGMOD

Q

Home / SIGMOD Record - Current Issue December 2020 (Vol. 49, No.

SIGMOD Record – Current Issue December 2020 (Vol. 49, No. 4)

ENTIRE ISSUE - 32 pages (in: PDF)

31 Downloads

Back Of Front Cover (also in: PDF)

Table Of Contents (also in: PDF)

SIGMOD Officers, Committees and Awardees (also in: PDF)

Editor's Notes (in: PDF)

Vision Article

Agora: Bringing Together Datasets, Algorithms, Models and More in a Unified Ecosystem [Vision]

Jonas Traub, Zoi Kaoudi, Jorge-Arnulfo Quiané-Ruiz, Volker Markl

Available in: PDF 106 Downloads

Click here to like and comment this article

Announcements

Database Principles

Distinguished Profiles

Industry Perspectives

Messages

Open Forum

Reports

Research Articles

Popularność: https://db-engines.com/en/ranking

	Rank				Sc
Mar 2022	Feb 2022	Mar 2021	DBMS	Database Model	Mar 2022
1.	1.	1.	Oracle 😷	Relational, Multi-model 📵	1251.32
2.	2.	2.	MySQL #	Relational, Multi-model 🔞	1198.23 -
3.	3.	3.	Microsoft SQL Server [1	Relational, Multi-model 📵	933.78 -
4.	4.	4.	PostgreSQL 🚹 🗐	Relational, Multi-model 🔞	616.93
5.	5.	5.	MongoDB 🚹	Document, Multi-model 🚺	485.66
6.	6.	↑ 7.	Redis 😛	Key-value, Multi-model 🔞	176.76
7.	7.	4 6.	IBM Db2	Relational, Multi-model 🔞	162.15
8.	8.	8.	Elasticsearch	Search engine, Multi-model 👔	159.95
9.	9.	1 0.	Microsoft Access	Relational	135.43
10.	10.	4 9.	SQLite :	Relational	132.18
11.	11.	11.	Cassandra 🚹	Wide column	122.14
12.	12.	12.	MariaDB 🚹	Relational, Multi-model 🔞	108.31
13.	13.	13.	Splunk	Search engine	95.36
14.	1 5.	↑ 30.	Snowflake 😷	Relational	86.23
15.	4 14.	1 6.	Microsoft Azure SQL Database	Relational, Multi-model 🔞	84.68
16.	1 7.	1 7.	Amazon DynamoDB 🚹	Multi-model 👔	81.80
17.	4 16.	4 14.	Hive 🚹	Relational	81.22

Trendy: https://db-engines.com/en/ranking_trend

Ostrzeżenie:

http://avid.cs.umass.edu/courses/691LL/f2006/papers/SH05.pdf

What Goes Around Comes Around

Michael Stonebraker Joseph M. Hellerstein

Abstract

This paper provides a summary of 35 years of data model proposals, grouped into 9 different eras. We discuss the proposals of each era, and show that there are only a few basic data modeling ideas, and most have been around a long time. Later proposals inevitably bear a strong resemblance to certain earlier proposals. Hence, it is a worthwhile exercise to study previous proposals.

Ćwiczenia i pracownia

Będziemy się uczyć:

- Rozumieć model relacyjny (algebra relacji i rachunki relacyjne, postaci normalne);
- Korzystać z gotowej bazy danych wyszukiwać w niej informacje, odpowiedzi na interesujące nas pytania (język SQL);
- Monstruować poprawne bazy danych dla zagadnień rzeczywistych projektować bazy (modelować) i na podstawie projektów definiować elementy baz danych;
- 1 Tworzyć aplikacje korzystające z bazy danych.

Materiały i informacje: https://skos.ii.uni.wroc.pl/course/view.php?id=463 — kurs Bazy Danych 2022.

Literatura

- Jeffrey D. Ullman, Jennifer Widom, Podstawowy Kurs Systemów Baz Danych, WNT, Warszawa 1999;
- Garcia-Molina H., Ullman J.D., Widom J., Implementacja systemów baz danych, WNT, 2003 (seria: Klasyka Informatyki);
- Garcia-Molina H., Ullman J.D., Widom J., Database Systems: The Complete Book (suma dwóch powyższych pozycji);
- Thomas Connolly, Carolyn Begg, Database Systems, Addison Wesley 2002, także po polsku: ReadMe 2004;
- Date C. J., An Introduction to Database System, vol. II, Adison-Wesley Pub. Comp., również WNT W-wa, (seria: Klasyka Informatyki), 2000;
- R. Ramakrishnan, J. Gehrke, Database Management Systems, 2nd edition, WCB/McGraw-Hill, 2001. Jest też wydanie 3-cie.

Elementy modelu

- Relacja (tabela) jedyna struktura dla danych w modelu; ma ustaloną liczbę kolumn, w które można wpisywać wartości ustalonego typu i dowolną liczbę wierszy.
- Więzy (warunki poprawności, warunki spójności) dane wpisywane do tabel muszą spełniać zdefiniowane warunki: typ danych, zakres,...
 - Baza danych zbiór tabel z danymi spełniającymi nałożone na nie więzy.
- Język zapytań (*query language*) algebra relacji, relacyjny rachunek krotek i relacyjny rachunek dziedzin formalne języki pozwalające wyszukać w relacjach określoną informacje.

Relacja, czyli tabela

Osoba

Nazwisko	PESEL	dataUr
: varchar(20)	: char(11)	: date
Abacki 	80121304455	'20-02-1980'

Mieszkanie

PESEL	Adres	Metraż
: char(11)	: varchar(50)	:real
80121304455 80121304455 NULL	Ełk, Kwiatowa 100 Poznań, Szeroka 10/2 Ełk, Kwiatowa 102	60,2 30,2 64,2

Elementy relacji

- Atrybut nazwa kolumny;
- Dziedzina typ danych;
- Krotność (arność) liczba atrybutów;
- Krotka (wiersz) element relacji;
- Atrybuty krotki Osoba[3] lub Mieszkanie.Adres;
- Schemat relacji nazwa relacji, nazwy i typy kolumn;
- Stan relacji to zawarte w niej krotki.

Notacja matematyczna

Dla atrybutów A_1,\ldots,A_k i związanych z nimi dziedzin D_1,\ldots,D_k relacja R ma:

```
schemat R = A_1 \dots A_k lub R(A_1, \dots, A_k),
arność k,
stan r \subseteq D_1 \times \dots \times D_k,
krotki (v_1, v_2, \dots, v_k) \in r.
```

Relacyjna baza danych (schemat i stan) to zbiór relacji o różnych nazwach.

W przykładzie:

- Osoba(Nazwisko,PESEL,dataUr),
- Mieszkanie(PESEL,Adres,Metraż)

Wartość pusta (NULL)

PESEL : char(11)	Adres : varchar(50)	Metraż : real	
NULL NULL	Poznań, Szeroka 10/12 Ełk, Kwiatowa 102	64,2 64,2	

- t_1 .PESEL = t_2 .PESEL UNKNOWN!!!
- t_1 .PESEL = t_1 .Adres UNKNOWN!!!
- \bullet t_1 .Metra $\dot{z}=t_2$.Metra \dot{z} TRUE
- t_1 .Adres = t_2 .Adres FALSE
- t_1 .PESEL = *NULL* UNKNOWN!!!
- t_1 .PESEL = '' UNKNOWN!!!
- t1.PESEL IS NULL TRUE
- t₁.Adres IS NOT NULL TRUE

Klucze

Klucz relacji

Podzbiór atrybutów relacji, których wartości zawsze pozwalają jednoznacznie zidentyfikować krotkę relacji. Oznacza, to że nie dopuszczamy, by w danych znalazły się dwie różne krotki o jednakowych wartościach klucza. Relacja może mieć kilka kluczy:
Student (indeks, PESEL, Nazwisko,...)

Klucz główny

Jeden z kluczy relacji. Zazwyczaj wybieramy ten, według którego najczęściej będziemy wyszukiwać dane z relacji. Pozostałe klucze nazywamy *kandydującymi* lub *alternatywnymi*. Na przykład indeks może być kluczem głównym relacji Student, a PESEL — kluczem alternatywnym.

Klucz z wielu atrybutów

Stosujemy takie rozwiązanie, gdy jeden atrybut nie wystarcza do zidentyfikowania krotki. Na przykład w relacji Zaliczenie (<u>indeks</u>, kod_przedmiotu, ocena, data).

Klucz obcy

Dane w bazie muszą często zostać rozmieszczone w różnych relacjach, pomimo że się ze soba wiążą. Do połączenia danych z różnych relacji służą **klucze obce**.

Zaliczenie:

indeks	kod_przedm	ocena
123456	BD2011	5.0
123456	SK2011	4.5
654321	BD2011	3.5
999999	BD2012	2.0

Student:

PESEL	nazwisko
AB123456	Abacka
CD345678	Babacka
DE534343	Cabacka
	AB123456 CD345678

- Zamieszczony w relacji Zaliczenie atrybut indeks służy do zidentyfikowania osoby z relacji Student.
- W relacji Student atrybut indeks jest kluczem.
- W relacji Zaliczenie atrybut indeks może powtarzać się lub być pusty.
- Jeśli indeks jest użyty w relacji Zaliczenie, to w relacji Student powinna występować osoba o tym indeksie (integralność referencyjna).

Więzy — podsumowanie

Więzy kolumnowe — nakładanie ograniczeń na wartość atrybutu: dziedzina, wartość nie pusta (NOT NULL), zakres;

Więzy tabeli — własność klucza, unikalność w ramach tabeli;

Więzy między tabelami — własność klucza obcego;

Inne więzy ogólne — bardziej złożone warunki (np. maksymalnie dwa podejścia do przedmiotu w sesji, dostęp do wybranych przedmiotów dla studentów określonej sekcji, limit liczby osób zapisanych na zajęcia itp.)

Języki

Język definiowania danych

Musi pozwolić opisać schematy relacji oraz więzy (warunki poprawności) danych.

Język manipulacji danymi

Pozwala dodawać/usuwać krotki z relacji.

Języki zapytań

Mamy trzy propozycje:

algebra relacji — kilka operacji pozwalających działać na relacjach jako na zbiorach;

relacyjny rachunek dziedzin — język wykorzystujący formuły logiczne do opisu wartości, które należy znaleźć;

relacyjny rachunek krotek — język wykorzystujący formuły logiczne do opisu krotek, które należy znaleźć;

Standard: SQL

Różne podejścia do budowania zapytań

- SELECT indeks, adres FROM Student
- {(indeks, adres) | ∃nazwisko Student(indeks, nazwisko, adres)}
- π_{indeks,adres} (Student)
- for krotka in Student print (krotka.indeks, krotka.adres)

Algebra relacji

Argumentami są całe relacje (tabele), na których wykonujemy operacje.

Zestaw operacji jest nieliczny: rzutowanie, selekcja, iloczyn kartezjański, suma, różnica i przemianowanie

Zapytanie to poprawne wyrażenie algebry relacji, a odpowiedź, to wartość tego wyrażenia obliczona na podstawie aktualnego stanu bazy danych.

Operacje podstawowe - unarne

Rzut $-\pi_{\alpha}(R)$ zwraca relację o schemacie $\alpha\subseteq attr(R)$ powstałą z obcięcia relacji R do kolumn α . Na przykład $\pi_{nazwisko}(Student)$. Duplikaty są eliminowane.

Selekcja — $\sigma_F(R)$ zwraca krotki wybrane z relacji R spełniające warunek F. Na przykład $\sigma_{Adres='Koszalin'}(Student)$.

Przemianowanie — $\rho_{S(B_1,\ldots,B_k)}(R)$ zmienia nazwę relacji R na S i nazwy odpowiednich atrybutów R na $B_1,\ldots B_k$. Na przykład

 ρ Osoba(id,nazwisko,miasto)(π indeks,nazwisko,adres(Student)).

Student

Student		
Indeks	Nazwisko	Adres
123456	Abacka	Koszalin
654321	Babacka	Szczecin
765678	Cabacka	Koszalin
234565	Abacka	Legnica

Wynik rzutu na Nazwisko

y a.a	
Nazwisko	l
Abacka	ĺ
Babacka	ı
Cabacka	l
Abacka	ı

Wynik selekcji Adres='Koszalin'

	Indeks	Nazwisko	Adres				
ı	123456	Abacka	Koszalin				
	765678	Cabacka	Koszalin				
	Tobala na przemienawaniu o						

Tabela po przemianowaniu: Osoba

ld	Nazwisko	Miasto					
123456	Abacka	Koszalin					
654321	Babacka	Szczecin					
765678	Cabacka	Koszalin					
234565	Abacka	Legnica					

Operacje teoriomnogościowe — suma, różnica, przekrój

Suma (∪), różnica (\), przekrój (∩) — "zwykłe" operacje na zbiorach; R \ S i R ∪ S wymagają, by attr(R) = attr(S); w praktyce mogą być zastępowane operacjami na multizbiorach (dlaczego?).

Studentl

Studentii						
Indeks	Nazwisko	Adres				
123456	Abacka	Koszalin				
654321	Babacka	Szczecin				
234565	Abacka	Legnica				

Dodawane (odejmowane, krojone) relacje muszą mieć zgodne schematy. **StudentIM**

Ctaaciitiiii		
Indeks	Nazwisko	Adres
012345	Zetowski	Kielce
654321	Babacka	Szczecin

Relacja wynikowa:

Indeks	Nazwisko	Adres	lı	ndeks	N	azwisko		Adres	
			1:	23456	F	Abacka	K	oszalin	
			_	54321	. –	abacka	_	zczecin	
			_	34565		Abacka		.egnica	
			_	12345	_	etowski		Kielce	
			6	54321		abacka	S	zczecin	
Indeks	Nazwisko	Adres		Indek	S	Nazwisł	Ю	Adres	;
123456	Abacka	Koszali		65432	21	Baback	a	Szczec	in
234565	Abacka	Legnic	a						

Złączenia

lloczyn kartezjański (\times) — dla relacji o rozłącznych schematach $(attr(R) \cap attr(S) = \emptyset) \ R \times S$ jest relacją o atrybutach $attr(R) \cup attr(S)$ zawierająca krotki t = rs, gdzie $r \in R$ i $s \in S$ oraz t.attr(R) = r i t.attr(S) = s.

Student

Indek	s N	azwisko	Adres
12345	56 <i>F</i>	Abacka	Koszalin
65432	21 B	abacka	Szczecin
23456	65 <i>A</i>	Abacka	Legnica

Przedmiot

Kod	Nazwa	Тур
BD	Bazy danych	podst
AM	Analiza mat.	obow

Student × Przedmiot

Indeks	Nazwisko	Adres	Kod	Nazwa	Тур
123456	Abacka	Koszalin	BD	Bazy danych	podst
654321	Babacka	Szczecin	BD	Bazy danych	podst
234565	Abacka	Legnica	BD	Bazy danych	podst
123456	Abacka	Koszalin	AM	Analiza mat.	obow
654321	Babacka	Szczecin	AM	Analiza mat.	obow
234565	Abacka	Legnica	AM	Analiza mat.	obow

Złączenie naturalne

Złączenie naturalne (\bowtie) Dla relacji R i S złączeniem naturalnym $R \bowtie S$ jest relacja o schemacie $attr(R) \cup attr(S)$ zawierająca krotki t, dla których istnieją krotki $r \in R$ i $s \in S$, takie że $r.(attr(R) \cap attr(S)) = s.(attr(R) \cap attr(S))$ oraz t.attr(R) = r i t.attr(S) = s.

Student

Indeks	Nazwisko	Adres					
654321	Babacka	Szczecin					
234565	Abacka	Legnica					
123456	Abacka	Koszalin					

Ocena

Indeks	Kod	Stopien					
654321	BD	5.0					
234565	BD	4.5					
234565	AM	4.5					
012345	AM	3.5					
	654321 234565 234565	654321 BD 234565 BD 234565 AM					

Student M Ocena

Indeks	Nazwisko	Adres	Kod	Stopien
654321	Babacka	Szczecin	BD	5.0
234565	Abacka	Legnica	BD	4.5
234565	Abacka	Legnica	AM	3.5

Krotki, które nie mają pary, nie wchodzą do wyniku!

Wszystkie operacje algebry relacji

Złączenie θ_F to iloczyn kartezjański połączony z selekcją:

$$R \bowtie_F S = \sigma_F(R \times S)$$

Złączenia zewnętrzne to złączenie naturalne, do którego wyniku dorzuca się krotki, które nie znalazły pary. W polach, które są niewypełnione, wpisywana jest wartość NULL.

Półzłączenia to operacja wybierająca z relacji krotki, które połączyłyby się, gdyby wykonywano złączenie naturalne.

Inne operacje np. iloraz, złączenie lewostronne i prawostronne.

Zapytania budujemy poprawne wyrażenia używając operatorów algebry relacji, nawiasów i stałych.

Wszystkie operacje algebry relacji są wyrażalne za pomocą: $\pi, \sigma, \rho, \times, \cup, \setminus$

Wszystkie operacje algebry relacji

```
\pi,\sigma,\rho,\times,\cup,\backslash,\bowtie \pi, \sigma, \rho, \times, \cup, \setminus, \Join
```

Baza do przykładów

- Student=(indeks,nazwisko, rok), czyli indeks, nazwisko i rok studiów studenta;
- Przedmiot=(<u>nazwa</u>, typ), czyli nazwa i typ przedmiotu;
- Ocena=(<u>indeks,przed</u>,data,stop), czyli ocena uzyskana przez studenta za przedmiot wraz z datą wystawienia.

Klucze główne relacji są podkreślone. Dodatkowo w relacji O występują klucze obce:

- O.indeks odnoszący się do S.indeks,
- O.przed odnoszący się do P.nazwa,
- Czy pola data i stop w relacji Ocena mogą być puste?

Przykłady 1-3

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

- 1. $\pi_{S.indeks,nazwisko}(\sigma_{stop=5.0 \land przed='BD'}(S \bowtie O));$
- 2. $\pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop=5.0}(O));$
- 3. $\pi_{S.indeks,nazwisko}(S \bowtie \sigma_{i1=indeks,\rho1=przed \land przed='BD' \land data\neq d1}(\rho_{O1(i1,\rho1,d1,s1)}(O) \times O)).$

Znaczenie zapytań

- 1. Indeksy i nazwiska studentów, którzy dostali 5.0 z BD.
- 2. Pełne dane studentów, którzy dostali jakaś ocenę 5.0.
- 3. Studenci, którzy podchodzili do BD co najmniej dwa razy.

Przykład 4

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, \underline{przed}, \underline{data}, stop)$$

Studenci, którzy nie dostali 5.0.

- 4a. $\pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop \neq 5.0}(O));$
- 4b. $\pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop} \mid S \mid NULL(O));$
- 4c. $\pi_{S.indeks,nazwisko,rok}(S) \setminus \pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop=5.0}(O));$
- 4d. $\pi_{S.indeks,nazwisko,rok}(S) \setminus \pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop \neq 5.0}(O));$
- 4e. $\pi_{S.ind,naz,rok}(S \bowtie O) \setminus \pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop \neq 5.0}(O));$

Znaczenie zapytań

- 4a. Studenci, którzy dostali jakąś ocenę inną niż 5.0.
- 4b. Studenci, którzy nie dostali wpisu (niezgodne z więzami relacji)
- 4c. Studenci, którzy nie dostali żadnej piątki.
- 4d. Studenci, którzy mają tylko oceny 5.0 (być może nie mają żadnych).
- Studenci, którzy dostają tylko piątki, przy czym bierzemy pod uwagę tylko tych, którzy mają jakikolwiek wpis.

Przykład 5

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

Jak szukać czegoś, czego nie ma?

```
5a. \pi_{S,indeks,nazwisko}(S) \setminus \pi_{S,indeks,nazwisko}(S \bowtie O);
```

5b. $\pi_{S.indeks,nazwisko}(S \bowtie \sigma_{stop} \bowtie NULL(O));$

5c. $\pi_{S.indeks,nazwisko}(S \bowtie \sigma_{stop=NULL}(O));$

5d. $\pi_{S.indeks,nazwisko}(S \bowtie \sigma_{stop \neq NULL}(O));$

Krotka jest wybierana przez selekcję, gdy warunek ma dla niej wartość TRUE. Wartość UNKNOWN nie wystarcza.

Przykład 6

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

Można pytać o to samo na różne sposoby. Czy to ma jakieś znaczenie?

```
(6) \pi_{nazwisko,indeks}(
\sigma_{stop=5.0 \land typ=''zaaw''}(\sigma_{nazwa=przed}(P \times O)) \bowtie 
\sigma_{rok=4}(S))
\cup \pi_{nazwisko,indeks}(
\sigma_{stop=5.0 \land typ=''obow''}(\sigma_{nazwa=przed}(P \times O)) \bowtie 
\sigma_{rok=3}(S));
(6a) \pi_{nazwisko,indeks}(
\sigma_{((rok=3 \land typ='obow') \lor (rok=4 \land typ='zaaw'))}(\sigma_{rok=3 \lor rok=4}(S) \bowtie 
\pi_{indeks,typ}(\rho_{P(przed,typ)}(\sigma_{typ='zaaw' \lor typ='obow'}(P))) \bowtie 
\pi_{indeks,przed}(\sigma_{stop=5.0}(O)))))
```

Przykład 7 - poszukajmy najlepszych z BD

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, \underline{przed}, \underline{data}, stop)$$

- (7a) $\pi_{indeks}(\sigma_{stop>s1 \land przed="BD" \land p1=przed}(O \bowtie \rho_{O1(i1,p1,d1,s1)}(O)))$
- (7b) $\pi_{indeks}(\sigma_{stop < s1 \land przed = "BD" \land p1 = przed}(O \bowtie \rho_{O1(i1,p1,d1,s1)}(O)))$
- (7c) $\pi_{indeks}(S) \setminus \pi_{indeks}(\sigma_{stop < s1 \land przed = "BD" \land p1 = przed}(O \bowtie \rho_{O1(i1,p1,d1,s1)}(O)))$
- (7d) $\pi_{indeks}(\sigma_{przed="BD"}(O)) \setminus \pi_{indeks}(\sigma_{stop < s1 \land przed="BD" \land p1=przed}(O \bowtie \rho_{O1(i1,p1,d1,s1)}(O)))$

Znaczenie zapytań

- Indeksy studentów, którzy z BD mają ocenę lepszą niż ktoś inny, czyli nie są najgorsi.
- 7b. Indeksy studentów, którzy z BD mają ocenę gorszą niż ktoś inny, czyli nie są najlepsi (dopełnienie tego, czego szukamy).
- 7c. Indeksy studentów, którzy nie są od nikogo gorsi z BD.
- 7d. Indeksy studentów, którzy sa najlepsi z BD.

Wnioski i uwagi:

- Algebra relacji jest językiem imperatywnym (operacyjnym).
- Znaczenie zapytania (w języku naturalnym) nie zawsze jest oczywiste, gdyż algebra relacji nie przypomina języka naturalnego.
- To samo zapytanie może mieć wiele równoważnych postaci mogą one różnić się złożonością wykonania.
- Na podstawie samego opisu trudno określić moc tego języka.
- 6 Algebra relacji jest podstawą SQL.

Materiały na skosie:

- Trudne zapytania w algebrze relacji: https://skos.ii.uni.wroc.pl/mod/resource/view.php?id=28050
- Kalkulator algebry relacji: https://dbis-uibk.github.io/relax/landing