Sheaves on Manifolds

大柴寿浩

1 ホモロジー代数

1.3 複体の圏

℃を加法圏とする.

注意. 加法圏とは次の3つの条件(1)–(3)をみたす圏のことである.

- (1) どの対象 $X,Y \in \mathcal{C}$ に対しても $\operatorname{Hom}_{\mathscr{C}}(X,Y)$ が加法群になり、どの対象 $X,Y,Z \in \mathcal{C}$ に対しても合成 \circ : $\operatorname{Hom}_{\mathscr{C}}(Y,Z) \times \operatorname{Hom}_{\mathscr{C}}(X,Y) \to \operatorname{Hom}_{\mathscr{C}}(X,Z)$ が双線型である.
- (2) 零対象 $0 \in \mathcal{C}$ が存在する. さらに $\operatorname{Hom}_{\mathcal{C}}(0,0) = 0$ が成り立つ.
- (3) 任意の対象 $X,Y \in \mathcal{C}$ に対して積と余積が存在し、さらにそれらは同型になる. (それらを $X \oplus Y$ とかく.)

圏 $\mathscr C$ から、 $\mathscr C$ の対象の複体の圏 $\mathrm C(\mathscr C)$ を作ることができる.まず複体の定義をする.圏 $\mathscr C$ の対象のと射の列

$$\cdots \longrightarrow X^{n-1} \xrightarrow{d_X^{n-1}} X^n \xrightarrow{d_X^n} X^{n+1} \longrightarrow \cdots$$
 (1.1)

を考える. この列 $X=((X^n)_{n\in \mathbf{Z}},(d_X^n)_{n\in \mathbf{Z}})$ が複体 (complex) であるとは、任意の $n\in \mathbf{Z}$ に対し

$$d_X^{n+1} \circ d_X^n = 0 \tag{1.2}$$

が成り立つことをいう.

圏 $\mathscr C$ の対象の複体 $X=((X^n),(d_X^n)),\,Y=((Y^n),(d_Y^n))$ の間の射を, $\mathscr C$ の射の族 $(f^n\colon X^n\to Y^n)_{n\in\mathbf Z}$ で,図式

$$\cdots \longrightarrow X^{n} \xrightarrow{d_{X}^{n}} X^{n+1} \longrightarrow \cdots$$

$$\downarrow^{f^{n}} \qquad \downarrow^{f^{n+1}}$$

$$\cdots \longrightarrow Y^{n} \xrightarrow{d_{Y}^{n}} Y^{n+1} \longrightarrow \cdots$$

を可換にする, すなわちどの番号 $n \in \mathbb{Z}$ に対しても

$$d_Y^n \circ f^n = f^{n+1} \circ d_X^n \tag{1.3}$$

が成り立つものとして定める.

2 層

層については、[Sh16, KS90] にまとまった解説がある.

2.1 簡単な例から

層を考える雛形として、ガウス平面上の関数環を考える。 ${f C}$ をガウス平面とする。 ${f C}$ の開集合 U に対し、

$$\mathcal{O}_{\mathbf{C}}(U) \coloneqq \{U \perp \mathcal{O}_{\mathbf{C}} \downarrow \mathbb{D}_{\mathbf{C}} \}$$
 (2.1)

とおく. $\mathcal{O}_{\mathbf{C}}(U)$ の加法と乗法を (f+g)(z)=f(z)+g(z), (fg)(z)=f(z)g(z) で定めることで, $\mathcal{O}_{\mathbf{C}}(U)$ は環になる. 複素数倍 (cf)(z)=cf(z) も考えれば線型空間, もっというと \mathbf{C} 代数にもなっている.

U と V を V \subset U をみたす $\mathbf C$ の開集合とする. $f \in \mathcal O_{\mathbf C}(U)$ に対し $f|_V \in \mathcal O_{\mathbf C}(V)$ を対応させることで環の射

$$\rho_{VU} : \mathcal{O}_{\mathbf{C}}(U) \to \mathcal{O}_{\mathbf{C}}(V); \quad \rho_{VU}(f) = f|_{V}$$
(2.2)

が定まる. この射を包含写像のひきおこす制限射 (restriction morphism) とよぶ.

今度は U と V を $U\cap V\neq\varnothing$ をみたす ${\bf C}$ の開集合とする。複素関数論では、次の事実を学ぶ。 $f\in {\mathcal O}_{\bf C}(U),\,g\in {\mathcal O}_{\bf C}(V)$ に対し、 $U\cap V$ で f=g となるとき、 $U\cup V$ で定義された正則関数 $h\in {\mathcal O}_{\bf C}(U\cup V)$ で

$$h|_U = f, \quad h|_V = g$$

となるものがただ一つ(!)存在する.

以上の現象を眺めるために、ここで線形代数の眼鏡をかける. U と V を $U \cap V \neq \emptyset$ をみたす ${\bf C}$ の開集合とする. 次の列を考える.

$$0 \to \mathcal{O}_{\mathbf{C}}(U \cup V) \xrightarrow{\rho_{U(U \cup V)} \oplus \rho_{V(U \cup V)}} \mathcal{O}_{\mathbf{C}}(U) \oplus \mathcal{O}_{\mathbf{C}}(V) \xrightarrow{\rho_{(U \cap V)U} - \rho_{(U \cap V)V}} \mathcal{O}_{\mathbf{C}}(U \cap V). \quad (2.3)$$

ここで, $\rho_{U(U\cup V)}\oplus \rho_{V(U\cup V)}\colon \mathcal{O}_{\mathbf{C}}(U\cup V)\to \mathcal{O}_{\mathbf{C}}(U)\oplus \mathcal{O}_{\mathbf{C}}(V)$ は $U\cup V$ 上の関数 f に対し $f|_U$ と $f|_V$ の組 $(f|_U,f|_V)$ を対応させる射である.ただし環 A と B に対し, $A\oplus B$ は単位元を持つ 環と単位元を保つ射の圏 Ring における有限積である.*1

上の列の $\mathcal{O}_{\mathbf{C}}(U \cup V)$ の部分空間(部分環) $\mathrm{Ker}\left(\rho_{U(U \cup V)} \oplus \rho_{V(U \cup V)}\right)$ は $U \cup V$ 上の関数 h で $h|_U$ と $h|_V$ がどちらも 0 となるもの全体である.そのような h は 0 しかないので

^{*1}環の圏についてのコメント.環の圏における積は一般には直積 $A\times B$ であり,有限の積が直和 $A\oplus B$ である.積の添字圏として有限圏を取れば $A\oplus B$ と $A\times B$ は一致する.(直和は Ring の余積ではない!)Ring における余積はテンソル積 $A\otimes_{\mathbf{Z}}B$ である.一般に $A\times B$ と $A\otimes B$ は同形ではないため,Ring はアーベル圏ではないことにも注意.(始対象は \mathbf{Z} で終対象は 0. したがって Ring には零対象が存在しないのでアーベル圏ではないという議論もできる.)

 $\operatorname{Ker}\left(\rho_{U(U\cup V)}\oplus\rho_{V(U\cup V)}\right)=0$ となる. つまり $0\to\mathcal{O}_{\mathbf{C}}(U\cup V)\to\mathcal{O}_{\mathbf{C}}(U)\oplus\mathcal{O}_{\mathbf{C}}(V)$ は完全である.

今度は $\mathcal{O}_{\mathbf{C}}(U)\oplus\mathcal{O}_{\mathbf{C}}(V)$ の部分に注目する. $\operatorname{Ker}\left(\rho_{(U\cap V)U}-\rho_{(U\cap V)V}\right)$ は U 上の関数 f と V 上の関数 g の組 (f,g) のうち $U\cap V$ 上での値が一致するもの全体である. 他方, $\operatorname{Im}\left(\rho_{U(U\cup V)}\oplus\rho_{V(U\cup V)}\right)$ は U 上の関数 f と V 上の関数 g の組 (f,g) のうち, $U\cup V$ 上の関数 h を用いて $f=h|_{U}, g=h|_{V}$ とかけるもの全体である. (f,g) を $\operatorname{Im}\left(\rho_{U(U\cup V)}\oplus\rho_{V(U\cup V)}\right)$ の元とする. このとき $U\cup V$ 上の関数 h を用いて $(f,g)=(h|_{U},h|_{V})$ とかける. この h に対し $f|_{U\cap V}=h|_{U\cap V}=g_{U\cap V}$ が成り立つので (f,g) は $\operatorname{Ker}\left(\rho_{(U\cap V)U}-\rho_{(U\cap V)V}\right)$ に属する. したがって, $\operatorname{Im}\left(\rho_{U(U\cup V)}\oplus\rho_{V(U\cup V)}\right)$ \subset $\operatorname{Ker}\left(\rho_{(U\cap V)U}-\rho_{(U\cap V)V}\right)$ が成り立つ.

(f,g) を $\operatorname{Ker}\left(
ho_{(U\cap V)U}ho_{(U\cap V)V}
ight)$ の元とする.このとき, $f|_{U\cap V}-g|_{U\cap V}=0$ すなわち $f|_{U\cap V}=g|_{U\cap V}$ が成り立つ.上で説明した通り,このとき $U\cup V$ 上の関数 h を用いて $(f,g)=(h|_U,h|_V)$ とかける.したがって,(f,g) は $\operatorname{Im}\left(
ho_{U(U\cup V)}\oplus
ho_{V(U\cup V)}\right)$ に属する.よって, $\operatorname{Ker}\left(
ho_{(U\cap V)U}ho_{(U\cap V)V}\right)$ \subset $\operatorname{Im}\left(
ho_{U(U\cup V)}\oplus
ho_{V(U\cup V)}\right)$ も成り立つ.以上より, $\operatorname{Ker}\left(
ho_{(U\cap V)U}ho_{(U\cap V)V}\right)$ = $\operatorname{Im}\left(
ho_{U(U\cup V)}\oplus
ho_{V(U\cup V)}\right)$,すなわち, $\mathcal{O}_{\mathbf{C}}(U\cup V)$ $\to \mathcal{O}_{\mathbf{C}}(U)\oplus \mathcal{O}_{\mathbf{C}}(V)$ $\to \mathcal{O}_{\mathbf{C}}(U\cap V)$ も完全である.つまり,正則関数の制限と解析接続に関する以上の現象は,(2.3) が完全列であると言い換えることができる.

2.2 層

X を位相空間とし、Open(X) で X の開集合全体のなす集合を表す。Open(X) は開集合を対象とし包含写像を射とする圏になる。

定義 2.1. X を位相空間とする. X から圏 $\mathscr C$ への前層 (presheaf) とは, $\mathsf{Open}(X)$ から $\mathscr C$ への反変関手で始対象 \varnothing を終対象 $\mathsf{pt}_\mathscr C$ にうつすものである.すなわち,X から圏 $\mathscr C$ への前層 $\mathcal F$ は次のデータからなる.

- -X の各開部分集合 U に対する圏 $\mathscr C$ の対象 $\mathcal F(U)$,
- 部分開集合の各組 $V \subset U$ に対する $\mathscr C$ の射 $\rho_{UV} \colon \mathcal F(U) \to \mathcal F(V)$ で、次の条件 (1)–(3) を満たすもの.
 - $(1) \mathcal{F}(\varnothing) = 0,$
 - (2) $\rho_{UU} = id$,
 - (3) $W \subset V \subset U$ $\Leftrightarrow \mathsf{it}, \rho_{UW} = \rho_{VW} \circ \rho_{UV}.$

元 $s \in \mathcal{F}(U)$ を \mathcal{F} の U 上の切断 (section) という. $s|_V$ で $\rho_{UV}(s) \in \mathcal{F}(V)$ を表し, s の V への制限 (restriction) とよぶ.

3 超関数

実解析多様体 M 上の超関数の層 \mathcal{B}_M は自然に分布の層 \mathcal{D}_M を含む、また、 \mathcal{B}_M は脆弱層(すなわち、制限射が全射)であるという著しい性質がある.

はじめに M が実数直線 ${\bf R}$ の開区間である場合を考える. X を複素直線 ${\bf C}$ における M の開近傍で $X\cap {\bf R}=M$ をみたすものとする. $\mathcal{O}(U)$ で開集合 $U\subset X$ 上の正則関数の空間を表す. M 上の超関数の空間 \mathcal{B}_M は次で与えられる.

$$\mathscr{B}_M := \mathcal{O}(U - M) / \mathcal{O}(U). \tag{3.1}$$

 \mathscr{B}_M はここで取った近傍 U に依らない。したがって、次のように余極限を用いて定義するのがよい。

$$\mathscr{B}_M := \underset{U \supset M}{\operatorname{colim}} \mathcal{O}(U - M) / \mathcal{O}(U). \tag{3.2}$$

ここでの余極限をF

参考文献

[Sh16] 志甫淳, 層とホモロジー代数, 共立出版, 2016.

[KS90] Masaki Kashiwara, Pierre Schapira, *Sheaves on Manifolds*, Grundlehren der Mathematischen Wissenschaften, 292, Springer, 1990.

[Og02] 小木曽啓示, 代数曲線論, 朝倉書店, 2022.