「ACの相対的無矛盾性証明の Isabelle/ZFによる形式化

東北大学 大学院情報科学研究科 住井・松田研究室 舟根大喜

October 14, 2024

参考文献

- Kenneth Kunen 著, 藤田 博司 訳 (2008) 「集合論: 独立性証明への案内」
- Thomas Jech 著 (2002)「Set Theory」
- Thomas Jech 著 (2008) 「the Axiom of Choice」
- Asaf Karagila 著 (2023)
 Lecture Notes: Forcing & Symmetric Extensions」
 (https://karagila.org/files/Forcing-2023.pdf)

Isabelle/ZFについて

定理証明支援系

数学的証明の形式化や、 ソフトウェアの正しさの証明 などに用いられるシステム

プログラムを書くように 定義・証明を記述する

Isabelle

- 定理証明支援系の一つ
- 初版は1986年
 - * Lawrence Paulson らによる

■ 現在も開発・利用が続けられている

Isabelleの実績(1)

ケプラー予想の形式的証明

- 等しい大きさの球を空間に 詰めるとき、どれだけぎっしり 詰められるかについての予想
- Thomas Hales と他 21 人による 12 年の共同研究

Isabelleの実績(2)

seL4マイクロカーネルの形式検証

- マイクロカーネル...OS に必要な最低限の機能を 提供するプログラム
- 様々な安全性の検証
 - * カーネルの設計の正しさ
 - * C言語による実装の正しさ
 - * ...

Archive of Formal Proofs

- Isabelle での形式化された 定理などのアーカイブ
- 証明を Web 上で閲覧可能
- 様々な分野の形式化
 - * 数学
 - * アルゴリズム
 - * ...

Isabelle

- 論理体系「Pure」上で定理証明を行う
- 「Pure」上に他の論理体系が構築されている
 - * Higher-Order Logic
 - * First-Order Logic
 - * ...

Isabelle/ZF

■ Isabelle 上で一階述語論理と ZF(C) 公理系を 用いて証明を行うためのフレームワーク

集合論の形式化に関する

先行研究

先行研究 (Isabelle/ZF)

- 構成可能集合の形式化
 - * Lawrence C. Paulson(2002)
 - * ACがZF上相対的無矛盾であることの証明
- 強制法の形式化 & CHの ZFC 上の独立性証明
 - * Emmanuel Gunther 6 (2020,2022)
 - * Kunen の強制法の章を形式化
 - * c.t.m. の存在を仮定しその上の preorder を用いる

先行研究 (Lean)

- 強制法の形式化 & CHの ZFC 上の独立性証明
 - * Jesse Michael Han, Floris van Doorn(2020)
 - * flypitch プロジェクト
 - * ブール値モデルを用いた証明
- QuineのNFのZFC上の相対的無矛盾性証明
 - * Sky Wilshaw(2024)

本研究

本研究

やったこと

¬ACがZF上相対的無矛盾であることの証明を Isabelle/ZFで形式化

背景

- コーエンは CHと ACが ZFから独立であることを示した
- CHの独立性は形式化されている
- ACもやりたい

本研究の方針

Isabelle/ZF を用いる

- 強制法の形式化がすでにある
 - * Lean3 にもあるが、Lean3 は開発終了
 - * 最新版のLean4に移植できるかは不明
 - * 利用できそうな形式化は Isabelle/ZF にしかない

■ 集合論に関する定義・補題・糖衣構文が豊富

本研究の方針

証明の基本方針は Asaf Karagila の講義ノートに従う

Lecture Notes: Forcing & Symmetric Extensions (2023)

■ c.t.m. と preorder を用いた証明

■ すでにある強制法の形式化と相性が良い

ギャップ

- 既存の Isabelle/ZF での強制法の形式化は ZF の c.t.m. の存在を仮定したもの
- これを用いるため、 本研究でも ZF の c.t.m. を仮定する
- ZFのc.t.m. の存在は、Con(ZF) から証明できない
- 本当の意味での相対的無矛盾性 Con(ZF) → Con(ZF+¬AC)の証明とはギャップがある

ギャップ

c.t.m. を用いた議論の背景

|ギャップ|

■ Boolean-valued model など 別のアプローチをとれなかったのか?

強制法の形式化部分で 作業量が増えてしまうので断念

証明概略

証明概略

ZFのc.t.m.M から出発し、ZF+¬ACのモデルを構成

- ある poset \mathbb{P} による generic extensionM[G] について symmetric extension と呼ばれる \mathfrak{P} 部分モデル $N\subseteq M[G]$ を構成
- NはZFを満たすが、整列可能定理を満たさない

symmetric extensionの定義(1)

定義 (自己同型)

 $(\mathbb{P}, \leq_{\mathbb{P}})$ は半順序で、最大元 $1_{\mathbb{P}}$ をもつとする $\pi: \mathbb{P} \to \mathbb{P}$ が自己同型であるとは次を満たすこと

- πは全単射
- $p,q\in\mathbb{P}$ に対して、 $p\leq_{\mathbb{P}} q\Leftrightarrow \pi p\leq_{\mathbb{P}} \pi q$

 π は以下のように $M^{\mathbb{P}}$ 上の自己同型に拡張される

$$\pi \dot{x} = \{(\pi \dot{y}, \pi p) | (\dot{y}, p) \in \dot{x}\}$$

symmetric extensionの定義(2)

定義 (normal filter) -

 \mathcal{G} を \mathbb{P} の自己同型群とする \mathcal{G} の部分群の族 \mathcal{F} が normal filter であるとは次を満たすこと

- $H_1, H_2 \in \mathcal{F}$ に対して $H_1 \cap H_2 \in \mathcal{F}$
- super group をとる操作で閉じている
- $H \in \mathcal{F}, \pi \in \mathcal{G}$ に対して $\pi H \pi^{-1} \in \mathcal{F}$

symmetric extensionの定義(3)

定義 (hereditarily symmetric) -

アをGの normal filterとする

- ・ $\dot{x} \in M^{\mathbb{P}}$ が \mathcal{F} -symmetric $\Leftrightarrow \{\pi \in \mathcal{G} | \pi \dot{x} = \dot{x}\} \in \mathcal{F}$
- \dot{x} が hereditarily \mathcal{F} -symmetric とは以下を満たすこと
 - * \dot{x} は \mathcal{F} -symmetric
 - * $\mathbf{dom}(\dot{x})$ の全ての要素は hereditarily \mathcal{F} -symmetric
- hereditarily *F*-symmetric な \dot{x} の集合を $\mathbf{HS}_{\mathcal{F}}$ とかく

symmetric extensionの定義(4)

定義 (symmetric extension) $oxedsymbol{--}$ \mathbb{P} -generic filter G に対し、 $\{\dot{x}_G|\dot{x}\in\mathbf{HS}_{\mathcal{F}}\}$ を symmetric extension という

■ symmetric extension は、ZFのモデルとなる

Isabelle/ZFによる形式化

成果

本研究で証明した主定理

```
theorem ZF_notAC_main_theorem : fixes M assumes "nat \approx M" "M \models ZF" "Transset(M)" shows "\existsN. N \models ZF \land \neg(\forallA \in N. \existsR \in N. wellordered(##N, A, R))"
```

意味

M を ZF の c.t.m. とする。このとき、ある N があって、

N は ZF を満たすが、整列可能定理を満たさない

作業工程

以下の工程に分けられる

- symmetric extension の定義
- ZFのモデルであることの証明
- 特定の symmetric extension の構成
- それが ¬AC を満たすことの証明

作業量

約1万5千行のコード

補題など(3千行)

- symmetric extension の定義 (3 千行)
- ZFのモデルであることの証明 (5 千行)
- 特定の symmetric extension の構成 (2 千行)
- それが ¬AC を満たすことの証明 (2 千行)

苦労した点 1.自明なことの確認

「自明なこと」の確認が非常に大変な場合がある

■ 定義した関数が「本当に関数であること」

■ クラスに「本当にそれを表す論理式が存在すること」

苦労した点 1.自明なことの確認

特に、「帰納的に定義されたM内の関数」の場合

- そもそも「Mの元であること」の確認も必要
 - * 仮定と ZF の公理からちゃんと構成できるか?

■ このような関数を定義するための補題が2千行以上

苦労した点 2. 先行研究の定義

先行研究の強制関係の定義

■ よくある for all に対する強制関係の定義

$$p \Vdash \forall x \phi(x, \dot{x_1}, ..., \dot{x_n}) \Leftrightarrow \forall \dot{x} \in M^{\mathbb{P}}(p \Vdash \phi(\dot{x}, \dot{x_1}, ..., \dot{x_n}))$$

先行研究の定義

$$p \Vdash \forall x \phi(x, \dot{x_1}, ..., \dot{x_n}) \Leftrightarrow \forall x \in \mathbf{M}(p \Vdash \phi(x, \dot{x_1}, ..., \dot{x_n}))$$

※この定義でうまくいくように他の部分も修正されている

苦労した点 2. 先行研究の定義

帰納法にℙ-nameでないものが混入する...

■ val(G, ·) を M 上の関数として定義している

$$\operatorname{val}(G,x) := \left\{\operatorname{val}(G,y)|y\in\operatorname{dom}(x), \exists p\in G. (y,p)\in x\right\}$$

- ullet $x \in M$ に対しある $\dot{z} \in M^{\mathbb{P}}$ があって $\mathrm{val}(x,G) = \mathrm{val}(\dot{z},G)$
 - * この事実を形式化して一度は困難を解決
 - * 最終的には別手法で「苦労した点3.」と同時に解決

苦労した点 3.ZFのモデルであることの証明

symmetric extension が ZF のモデルであることの証明

命題

N が推移的かつ almost universal なクラスで、 Δ_0 -separation を満たすならば、N は ZF の内部モデルである

- 参考資料ではこの命題を証明に用いている
- 前提条件は証明できたが、「命題自体」が証明できなかった

苦労した点 3.ZFのモデルであることの証明

命題 (Collection Principle, Jech 「Set Theory」 6.5) — p をパラメータとして $\forall X \exists Y (\forall u \in X) [\exists v \phi(u,v,p) \to (\exists v \in Y) \phi(u,v,p)]$

- 具体的にはこの命題の証明で行き詰った
- symmetric extension が、generic extension で defineble なクラスであることが証明できなかった

苦労した点 3.ZFのモデルであることの証明

代替手段

- HS に相対化した強制関係 Hrs を形式化
 - * 参考資料に書かれている概念
 - * 強制関係の定義の量化の動く範囲を HS に制限
 - * ⊩_{HS} は、symmetric extension に対し、 generic extension に対する ⊩ のように振舞う
- ⊩_{HS} を用いて ZF のモデルであることを証明
 - * 強制関係の帰納法が不要になり「苦労した点2.」も解決

まとめ

まとめ

¬AC の相対的無矛盾性証明を Isabelle/ZF で形式化

- ZFのc.t.m. から出発し、 ZF+¬AC をみたす symmetric extension を構成
- 厳密な意味での相対的無矛盾性の証明とはギャップがある
- 参考資料の通りにいかず試行錯誤した部分も
- 先行研究の改善点を発見?