Sensors and Actuators used in Robotics

Dr. Ashish Dutta
Associate Professor
Dept. of Mechanical Engineering
IIT Kanpur, INDIA

Classification of sensors:

Internal sensors: required for the basic working of a robot. They are used to monitor the internal state of the robot e.g. position, velocity etc.

External sensors: for interaction with the environment.

Internal sensors:

- Position
- Velocity
- Acceleration

e.g. potentiometers, encoders, LVDT, Tachometers, Accelerometers

External sensors:

- Touch
- Force
- Pressure
- Slip
- Proximity

e.g. on/off switches, ultrasonic, force sensor, hall effect, inductive sensor, piezo sensor

Position Sensor: Potentiometer

Position sensor: Incremental Encoder

Position sensor: Absolute encoder

Velocity and acceleration sensors

Touch sensors

On /Off switches

Emitter / receiver pairs.

Thermal / pressure sensors

Proximity sensor: Inductive sensor

Proximity sensor: Hall effect sensor

(a)

(b)

Range sensor: Ultrasonic sensor

Position sensor: LVDT

Robot wrist force sensor -3 axes

Touch sensor

Pressure sensor

Actuators

Electrical: stepper motors, DC servo motors

Pneumatic : air pressure

Hydraulic: fluid pressure (oil pressure).

 Advanced actuators: ultrasonic motors, artificial muscles, molecular motors.

Stepper motors: Variable reluctance, permanent magnet

Working of a stepper motor

Sequence of rotation (CW): B - C - D - A'

Mega-torque motors

Linear stepper motor

DC Motors: basic working

Brushless DC motors

Fig. Brush type DC motor

Fig. Brushless DC motor

DC servo motors

 DC motors working in closed loop position control.

Closed loop figure

Pneumatic actuators

Hydraulic actuators: piston cylinder mechanism

Advanced actuators: small, low power consumption, micro motion

Ultrasonic motors : micro robots, cameras, micro motion devices ...

Artificial muscles : prosthetic, bio applications..

Molecular motors : bio applications

Ultrasonic motors

Fig. Motion due to dry friction and vibration.

Fig. Ring motors used in cameras.

Electro active Polymers

Movement of ions and creations of micro channels.

Artificial muscles

Fig. Hand.

Fig. Flying robot.

Molecular motors

Protein-based molecular motors harness the chemical free energy released by the hydrolysis of ATP in order to perform mechanical work.

END