

Deep Learning

Deeper, Better, _____, Stronger than Machine Learning

Valentin Barriere
Universidad de Chile – DCC

CC6204. Primavera 2025

Perceptron Multi Capas y Backpropagacion

Perceptrón multicapa

Outline: Perceptrón multicapa

Perceptrón multicapa

Principio

Ecuaciones y Composicion

Backpropagacion

Principio

Outline: Principio

Perceptrón multicapa

Principio

Ecuaciones y Composicion

Backpropagacion

Principio

Figure 1: Propagación en un MLP

Figure 1: Propagación en un MLP: 1ra capa

Figure 1: Propagación en un MLP: Matriz de paso

Figure 1: Propagación en un MLP: Entrada 2da capa

Figure 1: Propagación en un MLP: Activación

Figure 1: Propagación en un MLP: Salida 2da capa

Figure 1: Propagación en un MLP: $\mathbf{a}^{(\ell+1)} = f(\mathbf{W}_{(\ell,\ell+1)}\mathbf{a}^{(\ell)})$

Л

Outline: Ecuaciones y Composicion

Perceptrón multicapa

Principio

Ecuaciones y Composicion

Backpropagacion

Principio

MLP: Principio de una capa

Calculo matricial de una capa, similar a LogReg!

Tenemos
$$\mathbf{a}^{(\ell+1)} = f(\mathbf{z}^{(\ell+1)}) = f(\mathbf{W}^{(\ell,\ell+1)}\mathbf{a}^{(\ell)})$$

MLP: Principio

Apilamos capas una sobre otra: la salida de la $\ell^{\text{ésima}}$ capa es la entrada de la $\ell+1^{\text{ésima}}$ capa. Si consideramos la función $h^{(1,2)}$ que representa el paso de la capa 1 a la capa 2.

- $\mathbf{a}^{(2)} = h^{(1,2)}(\mathbf{a}^{(1)})$
- $\mathbf{a}^{(3)} = h^{(2,3)}(\mathbf{a}^{(2)})$
- ...
- $\mathbf{a}^{(L)} = h^{(L-1,L)}(\mathbf{a}^{(L-1)})$
- $\mathbf{a}^{(L)} = h^{(L-1,L)} \circ h^{(L-2,L-1)} \circ \dots \circ h^{(1,2)}(\mathbf{a}^{(1)})$
- $\mathit{MLP} = \mathit{h}^{(L-1,L)} \circ \mathit{h}^{(L-2,L-1)} \circ ... \circ \mathit{h}^{(1,2)}$ tal que $\mathit{MLP}(\mathbf{a}^{(1)}) = \mathbf{a}^{(L)}$

Una función final como una composición de funciones

El MLP puede verse como una composición de funciones no lineales. Esto permite obtener una función que pasa de los datos de entrada a la salida deseada, que es lo más compleja posible.

Backpropagacion

Outline: Backpropagacion

Perceptrón multicapa

Principio

Ecuaciones y Composicion

Backpropagacion

Principio

Outline: Principio

Perceptrón multicapa

Principio

Ecuaciones y Composicion

Backpropagacion

Principio

Backpropagacion: Príncipe y regla del Delta

Figure 2: El error se propaga desde la salida hasta la entrada

$$\delta_i^l = f'(z_i^l) \sum w_{ij}^{l+1} \delta_j^{l+1}$$

Backpropagacion: En detalles

- 1. receive new observation $\mathbf{x} = [x_1...x_d]$ and target y^*
- **2. feed forward:** for each unit g_j in each layer 1...L compute g_j based on units f_k from previous layer: $g_j = \sigma \left(u_{j0} + \sum_k u_{jk} f_k \right)$
- 3. get prediction y and error $(y-y^*)$
- **4.** back-propagate error: for each unit g_i in each layer L...1

(a) compute error on
$$g_j$$

$$\frac{\partial E}{\partial g_j} = \sum_i \sigma'(h_i) v_{ij} \frac{\partial E}{\partial h_i}$$
should g_j how h_i will was h_i too be higher change as high or or lower? g_j changes too low?

- (b) for each u_{jk} that affects g_j
 - (i) compute error on u_{jk} (ii) update the weight

$$\frac{\partial E}{\partial u_{jk}} = \underbrace{\frac{\partial E}{\partial g_{jj}}}_{\text{do we want } g, \text{to}} \text{o'}(g_j) f_k \qquad u_{jk} \leftarrow u_{jk} - \eta \frac{\partial E}{\partial u_{jk}}$$

do we want g_j to how g_j will change be higher/lower if u_{jk} is higher/lower

Outline : Funciones de activación

Perceptrón multicapa

Principio

Ecuaciones y Composicion

Backpropagacion

Principio

Gradiente Evanescente

La función de activación f tiene un rol importante en la propagación inversa del gradiente:

$$\delta'_{i} = f'(z'_{i}) \sum_{j} w'_{ij}^{+1} \delta'_{j}^{+1}$$

Si $f'(z_i^l)$ es pequeño, δ_i^l sera pequeño, y el error va a disminuir de manera exponencial.

Figure 3: El máximo valor de la derivada ocurre en 0 con valor 0.25, asi que el error se divida per 4 en cada capa

Funciones de activación

Función de Heaviside

- En teoría f es la función de Heaviside: $f(z) = \mathbb{1}_{\mathbb{R}_+} = \begin{cases} 0 & \text{si} & z < 0 \\ 1 & \text{si} & z \geq 0 \end{cases}$
- Problema: esta función no es derivable.

En la práctica se utilizan funciones derivables como:

Nombre	Gráfico	Ecuación	Valores en $\pm \infty$	Valores derivada en $\pm \infty$
Sigmoide		$f(z) = \frac{1}{1 + e^{-z}}$	0; 1	0; 0
Tangente hiperbólica		$f(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$	-1; 1	0; 0
ReLU ¹		$f(z) = \begin{cases} 0 & si & z < 0 \\ z & si & z \ge 0 \end{cases}$	0; z	0; 1
ELU ²		$f(z) = \begin{cases} \alpha(e^z - 1) & \text{si} z < 0 \\ z & \text{si} z \ge 0 \end{cases}$	$-\alpha$; z	0; 1

¹Unidad de Rectificación Lineal

²Unidad Exponencial Lineal

References i