SoCal: supervised genotype calling via ellipsoidal separation for Affymetrix SNP microarray

Huwenbo Shi (603-778-363) shihuwenbo@ucla.edu

1 Introduction

SNP microarray is a cost–effective approach to genotype samples for specific association studies. In Affymetrix SNP microarrays, oligonucleotide probes are first used to bind DNA fragments containing SNPs. Then, for each SNP, a fluorescence scanner quantifies perfect match (PM) and mismatch (MM) for each of the two alleles, denoted by A and B, on each strand of the DNA fragment. The genotype calling procedure for SNP microarray consists of two steps. In the first step, information from microarray is summarized to obtain the intensities, θ_A and θ_B , of the two alleles of each SNP. In the second step, SNPs are classified into genotype AA, AB, or BB based on the allele intensities they generate. The focus of this article is on the second step of the genotype calling procedure—genotype classification using summarized allele intensities.

For a specific SNP, if a sample has genotype AA or BB, the intensity, θ_A or θ_B , will be higher respectively. If a sample has genotype AB, the intensities, θ_A and θ_B , will be similar. If one plots $log(\theta_A)$ versus $log(\theta_B)$ of a SNP for a number of samples, normally 3 ellipsoidal clusters are observed, one for each genotype, as shown in Figure 1. Many genotype calling algorithms use model—based unsupervised clustering methods to identify clusters and then assign genotypes to each cluster. To estimate model parameters, these methods use the EM algorithm, which is sensitive to starting parameters and slow to converge. Rabbee et al. proposed the RLMM algorithm, a supervised genotype calling method that uses reference genotype calls to form Gaussian decision boundaries for each genotype. This method involves fitting a linear mixed model, which can be computationally intensive.

As the number of probes on SNP microarrays and the number of individuals involved in association studies continue to increase, both fast and accurate genotype calling algorithms are needed.

Figure 1: Genotype clusters obtained from Affymetrix SNP array allele intensity values

2 Method

2.1 Overview of SoCal's genotype calling procedure

SNP allele intensities are first summarized from raw microarray data using SNPRMA, which removes non-biological effect from the data. After this step, SoCal calls genotypes in two steps. In the first step, SoCal finds ellipsoidal regions containing each of the genotype of a SNP using reference genotype calls. In the second step, SoCal classifies samples with unknown genotypes using minimum distance classification.

2.2 Pattern separation by ellipsoid

An ellipsoid $\mathcal{E} \subseteq \mathbb{R}^n$ can be expressed as $\mathcal{E} = \{x \in \mathbb{R}^n | (x-c)^T E(x-c) \leq 1\}$, where c is the center of the ellipsoid, and E a positive definite matrix denoting the shape and orientation of the ellipsoid. Let $\{a_i\}$ be the points to be included in an ellipsoid, and $\{b_j\}$ be the points to be excluded, the problem of ellipsoidal separation is to find c and E such that $(a_i - c)^T E(a_i - c) \leq 1 \,\forall i$ and $(b_j - c)^T E(b_j - c) > 1 \,\forall j$.

2.3 Forming ellipsoidal decision regions for each genotype

Let $G = \{AA, AB, BB\}$ be the set of genotypes of a SNP, and J_{AA}, J_{AB}, J_{BB} the index set of samples with the corresponding genotype. Let $X = \{(log(\theta_A), log(\theta_B))_i | i = 1, \dots, |J_{AA}| + |J_{AB}| + |J_{BB}|\}$ be the set of log transformed allele intensities of all the samples, and $X_{AA} = \{x_j | x_j \in X, j \in J_{AA}\}, X_{AB} = \{x_j | x_j \in X, j \in J_{AB}\}, X_{BB} = \{x_j | x_j \in X, j \in J_{AB}\}, X_{BB} = \{x_j | x_j \in X, j \in J_{AB}\}, X_{BB} = \{x_j | x_j \in X, j \in J_{AB}\}, X_{BB} = \{x_j | x_j \in X, j \in J_{AB}\}, X_{BB} = \{x_j | x_j \in X, j \in J_{AB}\}, X_{BB} = \{x_j | x_j \in X, j \in J_{AB}\}, X_{BB} = \{x_j | x_j \in X, j \in J_{AB}\}, X_{BB} = \{x_j | x_j \in X, j \in J_{AB}\}, X_{BB} = \{x_j | x_j \in X, j \in J_{AB}\}, X_{BB} = \{x_j | x_j \in X, j \in J_{AB}\}, X_{BB} = \{x_j | x_j \in X, j \in J_{AB}\}, X_{BB} = \{x_j | x_j \in X, j \in J_{AB}\}, X_{AB} = \{x_j | x_j \in X, j \in J_{AB}\}, X$

 $\{x_j|x_j \in X, j \in J_{BB}\}$ the set of log transformed allele intensities from samples having the corresponding genotype.

To find the ellipsoid that includes X_{AA} and excludes $X_{AB} \cup X_{BB}$, one sets $\{a_i\} = X_{AA}$ and $\{b_j\} = X_{AB} \cup X_{BB}$, and solves the following conic programming problem. For the sake of space, detailed derivation of the problem formulation is not presented here.

$$\begin{split} & \text{minimize} & -\beta_1 k + \beta_2 trace(T) + \beta_3 \|u - \mathbbm{1}\|_1 \\ & \text{subject to} & (1, a_i)^T \tilde{E}(1, a_i) \leqslant u_i \ \forall i \\ & (1, b_j)^T \tilde{E}(1, b_j) \geqslant k \ \forall j \\ & \tilde{E} = \left[\begin{array}{cc} s & v^T \\ v & F \end{array} \right] \geq 0 \\ & \left[\begin{array}{cc} F & I \\ I & T \end{array} \right] \geq 0 \end{split}$$

In the problem formulation above $\beta_i > 0$ are the weights assigned to each subobjectives of finding the ellipsoid—maximizing separation ratio, minimizing ellipsoid volume, and controlling outliers.

Let $\tilde{E}^* = \begin{bmatrix} s & v^T \\ v & F \end{bmatrix}$ be the optimal solution to the problem above. The separating ellipsoid \mathcal{E}^* is defined as $\mathcal{E}^* = \{x \in \mathbb{R}^n | (x - c^*)^T E^*(x - c^*) \leq \beta_4 (1 + k)\}$, where $c^* = -F^{-1}v$, $E^* = \frac{F}{(1-s+c^{*T}Fc^*)}$. Here, β_4 is a positive constant controlling the size of the ellipsoid. In SoCal, β_1 , β_2 , β_3 , β_4 are empirically set to 1, 10, 100, and 30 respectively.

Similarly, to find the ellipsoid that includes X_{AB} and excludes $X_{AA} \cup X_{BB}$, one sets $\{a_i\} = X_{AB}$ and $\{b_j\} = X_{AA} \cup X_{BB}$, and solves the above conic programming problem. The same procedure also applies to finding the ellipsoid that includes X_{BB} and excludes $X_{AA} \cup X_{AB}$.

2.4 Rescuing missing genotype clusters

If a SNP has moderate minor allele frequency (MAF), the genotype clusters of that SNP are well defined, and SoCal obtains three ellipsoidal decision regions for that SNP, one for each genotype (Figure 1). However, if a SNP has low MAF, some genotype cluster may not be well defined (Figure 1). For these SNPs, SoCal estimates the missing ellipsoid using the ellipsoids for the other two genotypes through simple geometric transformations. For SNPs that have only one genotype cluster present, SoCal assigns all future genotype calls to that cluster.

2.4.1 Missing genotype AA or BB cluster

If the genotype AA cluster of a SNP has less than 5 reference calls, SoCal first finds the ellipsoids for genotype AB and BB clusters, and then estimates that for genotype AA cluster through simple geometric transformations.

Let $\mathcal{E}_{AB} = \{x \in \mathbb{R}^n | (x - c_{AB})^T E_{AB}(x - c_{AB}) \leq 1\}$ and $\mathcal{E}_{BB} = \{x \in \mathbb{R}^n | (x - c_{BB})^T E_{BB}(x - c_{BB}) \leq 1\}$ be the ellipsoids obtained for genotype AB and BB clusters,

and n_{AB} , n_{BB} the unit vectors pointing in the direction of the major axis of the corresponding ellipsoid. SoCal estimates the center of \mathcal{E}_{AA} , the ellipsoid for genotype AA cluster, by reflecting c_{BB} , the center of \mathcal{E}_{BB} , across the major axis of \mathcal{E}_{AB} . To estimate the orientation of \mathcal{E}_{AA} , SoCal first determines the angle between n_{AB} and n_{BB} , and then applies a rotation matrix of that angle on E_{AB} .

Formally, let $\mathcal{E}_{AA} = \{x \in \mathbb{R}^n | (x - c_{AA})^T E_{AA}(x - c_{AA}) \leq 1\}$ be the estimated ellipsoid for genotype AA cluster, and α the angle between n_{AB} and n_{BB} , then $c_{AA} = -c_{BB} + 2c_{AB} + 2n_{AB}((c_{BB} - c_{AB})^T n_{AB})$, and $E_{AA} = R^T E_{AB}R$, where R is a rotation matrix of angle α .

If genotype BB cluster is missing, the center and orientation of the ellipsoid for that cluster is estimated in a similar way. Formally, let $\mathcal{E}_{BB} = \{x \in \mathbb{R}^n | (x - c_{BB})^T E_{BB} (x - c_{BB}) \leq 1\}$ be the estimated ellipsoid for genotype BB cluster, and α the angle between n_{AB} and n_{AA} , then $c_{BB} = -c_{AA} + 2c_{AB} + 2n_{AB}((c_{AA} - c_{AB})^T n_{AB})$, and $E_{BB} = R^T E_{AB} R$, where R is a rotation matrix of angle $-\alpha$.

2.4.2 Missing genotype AB cluster

Mid point

2.5 Genotype calling and outlier detection

Talk about how classification and outlier detection is done