Housing in Luxembourg

AUTHOR Mehmet Ali Erkan - Ekinsu Çiçek

Introduction

We are going to collaborate on a very basic project in this chapter. We'll be working on this project through to the conclusion of the book. We tried rewrite that project using the strategies that was taught to us. We are going to have developed a repeatable analytical pipeline. We will start off simply by stating that only objective is to complete the analysis.

Also, We will carry out these studies using R Quarto. Some codes in the project is taken from Dr Bruno Rodrigues' book called "Creating Reproducible Analytical Pipelines with R".

Libraries

```
library(dplyr)
library(purrr)
library(readxl)
library(stringr)
library(janitor)
library(dplyr)
library(ggplot2)
library(purrr)
library(tidyr)
library(kableExtra)
```

##Saving and Cleaning Data

Next, the code below downloads the data, and puts it in a data frame:

New names:

- `*` -> `*...3`
- `*` **->** `*...4`

```
raw_data <- raw_data |>
  rename(
    locality = commune,
    n_offers = nombre_doffres,
    average_price_nominal_euros = prix_moyen_annonce_en_courant
    average_price_m2_nominal_euros = prix_moyen_annonce_au_m2_6
    average_price_m2_nominal_euros = prix_moyen_annonce_au_m2_6
) |>
    mutate(locality = str_trim(locality)) |>
    select(year, locality, n_offers, starts_with("average"))
```

Running this code results in a neat data set:

```
raw_data
# A tibble: 1,343 \times 5
   year locality n_offers average_price_nominal_euros
average_price_m2_nom...¹
  <chr> <chr>
                     <dbl> <chr>
<chr>
 1 2010 Bascharage 192 593698.31000000006
3603.57
2 2010 Beaufort
                       266 461160.29
2902.76
3 2010 Bech
                         65 621760.22
3280.51
4 2010 Beckerich
                         176 444498.68
2867.88
 5 2010
        Berdorf
                        111 504040.85
3055.99
```

```
6 2010 Bertrange 264 795338.87
4266.46
7 2010 Bettembourg 304 555628.29
3343.22
8 2010 Bettendorf 94 495074.38
3235.26
9 2010 Betzdorf 119 625914.47
3343.05
10 2010 Bissen 70 516465.57
3321.65
# i 1,333 more rows
# i abbreviated name: ¹average_price_m2_nominal_euros
```

The naming of the communes is not consistent. Let's look at and fix it.

We can see that the city of Luxembourg is spelled in two different ways. It's the same with another commune, Pétange:

```
raw_data |>
  filter(grepl("P.tange", locality)) |>
  count(locality)
```

So sometimes it is spelled correctly, with an "é", sometimes not. Let's write some code to correct both these issues:

```
) |>
mutate(across(starts_with("average"),
    as.numeric))
```

Now this is interesting – converting the average columns to numeric resulted in some NA values. Let's see what happened:

```
raw_data |>
  filter(is.na(average_price_nominal_euros))
```

```
# A tibble: 290 \times 5
   year locality
                           n_offers average_price_nomina...¹
average_price_m2_nom...²
   <chr> <chr>
                              <dbl>
                                                      <dbl>
<dbl>
 1 2010 Consthum
                                 29
                                                         NA
NA
 2 2010 Esch-sur-Sûre
                                  7
                                                         NA
NA
 3 2010 Heiderscheid
                                 29
                                                         NA
NA
 4 2010 Hoscheid
                                 26
                                                         NA
NA
 5 2010 Saeul
                                 14
                                                         NA
NA
 6 2010 <NA>
                                 NA
                                                         NA
NA
 7 2010 <NA>
                                 NA
                                                         NA
NA
 8 2010 Total d'offres
                             19278
                                                         NA
NA
 9 2010 <NA>
                                 NA
                                                         NA
NA
10 2010 Source: Minist...
                                 NA
                                                         NA
NA
# i 280 more rows
# i abbreviated names: 'average_price_nominal_euros,
    <sup>2</sup>average_price_m2_nominal_euros
```

It turns out that there are no prices for certain communes, but that we also have some rows with garbage in there. Let's go back to the raw data to see what this is about:

What we are going to do is create two datasets: one with data on communes, and the other on national prices. Let's first remove the rows stating the sources:

```
raw_data <- raw_data |>
  filter(!grepl("Source", locality))
```

Let's now only keep the communes in our data:

```
commune_level_data <- raw_data |>
   filter(!grepl("nationale|offres", locality),
    !is.na(locality))
```

And let's create a dataset with the national data as well:

```
country_level <- raw_data |>
  filter(grepl("nationale", locality)) |>
  select(-n_offers)

offers_country <- raw_data |>
  filter(grepl("Total d.offres", locality)) |>
  select(year, n_offers)

country_level_data <- full_join(country_level, offers_country)
  select(year, locality, n_offers, everything()) |>
  mutate(locality = "Grand-Duchy of Luxembourg")
```

So let's scrape and save this list:

```
current_communes <- "https://is.gd/lux_communes" |>
  rvest::read_html() |>
  rvest::html_table() |>
  purrr::pluck(2) |>
  janitor::clean_names() |>
  dplyr::filter(name_2 != "Name") |>
  dplyr::rename(commune = name_2) |>
  dplyr::mutate(commune = stringr::str_remove(commune, " .$"))
```

Let's see if we have all the communes in our data:

```
"Boevange-sur-Attert" "Burmerange"
 [1] "Bascharage"
                                                  "Ermsdorf"
 [4] "Clémency"
                           "Consthum"
 [7] "Erpeldange"
                           "Eschweiler"
"Heiderscheid"
[10] "Heinerscheid"
                           "Hobscheid"
                                                  "Hoscheid"
[13] "Hosingen"
                           "Luxemboura"
                                                  "Medernach"
[16] "Mompach"
                           "Munshausen"
                                                  "Neunhausen"
[19] "Rosport"
                           "Septfontaines"
                                                  "Tuntange"
[22] "Wellenstein"
                           "Kaerjeng"
```

We see many communes that are in our commune_level_data, but not in current_communes.

It's decided to re-host it on Github pages to avoid problems in the future:

```
former_communes <- "https://is.gd/lux_former_communes" |>
    rvest::read_html() |>
    rvest::html_table() |>
    purrr::pluck(3) |>
    janitor::clean_names() |>
    dplyr::filter(year_dissolved > 2009)
```

# A tibble: 20 × 3			
name	year_dissolved	reason	
<chr></chr>	<int></int>	<chr></chr>	
1 Bascharage	2011	merged	to form Käerjeng
2 Boevange-sur-Attert	2018	merged	to form
Helperknapp			
3 Burmerange	2011	merged	into Schengen
4 Clemency	2011	merged	to form Käerjeng
5 Consthum	2011	merged	to form Parc
Hosingen			
6 Ermsdorf	2011	merged	to form Vallée de
l'Ernz			
7 Eschweiler	2015	merged	into Wiltz
8 Heiderscheid	2011	merged	into Esch-sur-
Sûre			
9 Heinerscheid	2011	merged	into Clervaux
10 Hobscheid	2018	merged	to form Habscht
11 Hoscheid	2011	merged	to form Parc
Hosingen			
12 Hosingen	2011	merged	to form Parc
Hosingen			
13 Mompach	2018	merged	to form Rosport-
Mompach			
14 Medernach	2011	merged	to form Vallée de
l'Ernz			
15 Munshausen	2011	merged	into Clervaux
16 Neunhausen	2011	merged	into Esch-sur-
Sûre			
17 Rosport	2018	merged	to form Rosport-
Mompach			
18 Septfontaines	2018	merged	to form Habscht
19 Tuntange	2018	${\tt merged}$	to form
Helperknapp			
20 Wellenstein	2011	merged	into Schengen

As you can see, since 2010 many communes have merged to form new ones. We can now combine the list of current and former communes, as well as harmonise their names:

Let's run our test again:

character(0)

Save the Data

```
write.csv(commune_level_data, "commune_level_data.csv", row.nam
write.csv(country_level_data, "country_level_data.csv", row.nam
```

Analysis and Plots

Change of the offers over the years

```
#Let's load the datasets:
library(plotly)
```

```
Attaching package: 'plotly'

The following object is masked from 'package:ggplot2':
    last_plot

The following object is masked from 'package:stats':
    filter

The following object is masked from 'package:graphics':
    layout
```

Mean number of offers over the

Offers started from above in 2010, reached their peak in 2011 and decreased until 2016. Although they increased again after 2016, they remained lower than the first years.

Change of the nominal average prices over the years

```
years_of_interest <- c(2010, 2011, 2012,2013,2014, 2015, 2016,

q2 <- commune_level_data |>
   select(year, average_price_nominal_euros) |>
```

```
filter(year %in% years_of_interest) |>
group_by(year) |>
summarize_at(c("average_price_nominal_euros"), mean, na.rm =
q2
```

```
# A tibble: 11 \times 2
    year average_price_nominal_euros
   <int>
                                <dbl>
 1 2010
                              559721.
 2
   2011
                              593391.
 3 2012
                              606444.
 4 2013
                              642044.
 5
   2014
                              657443.
 6 2015
                              719049.
 7 2016
                              760318.
 8
   2017
                              811466.
 9
   2018
                              863948.
10 2019
                              967101.
   2020
                             1105294.
11
```

```
bar_plot <- plot_ly(data = q2, x = ~year, y = ~average_price_nc
bar_plot <- bar_plot %>%
  layout(yaxis = list(range = c(0, 1.2e6)))
bar_plot
```

1.2M

year

Average nominal prices, starting with approximately 560 thousand, increase every year and reach 1.1 million in 2020. It is clear that there is an inflationary effect.

Change of the nominal average prices(m^2) over the years

Square meter prices(m^2) increase significantly over the years.

Average Price change of the selected communes in each year

```
years_of_interest_2 <- c(2010, 2011, 2012, 2013, 2014, 2015, 2016
communes <- c("Luxembourg",</pre>
              "Esch-sur-Alzette",
              "Mamer",
              "Schengen",
              "Wincrange")
q3 <- commune_level_data |>
   select(year, locality, average_price_nominal_euros) |>
    filter(year %in% years_of_interest_2) |>
    filter(locality %in% communes) |>
    group_by(year,locality) |>
    summarize_at(c("average_price_nominal_euros"), mean, na.rm
q3$year <- as.character(q3$year)</pre>
# ggplot(q3, aes(fill=locality, x=year, y=average_price_nominate)
      geom_bar(position="dodge", stat="identity")
bar_plot_ly <- plot_ly(data = q3, x = ~year, y = ~average_price
bar_plot_ly <- bar_plot_ly %>%
  layout(title = 'Average Price by Year and Locality',
         xaxis = list(title = 'Year'),
         yaxis = list(title = 'Average Price Nominal Euros'),
         barmode = 'Communes')
bar_plot_ly
```

Average Price by Year and Lo

For the selected communes, although the Mamer region was dominant in the first few years, we see that the Luxembourg region was the leader in the following years. They are followed by Schengen, Esch-sur-Alzette and Wincrange, respectively.

The most expensive average price nominal euros in the last 4 years (over than 1.5million)

```
years_of_interest_3 <- c(2017,2018,2019,2020)

q4 <- commune_level_data |>
    select(year, locality, average_price_nominal_euros) |>
    filter(year %in% years_of_interest_3 & 1506490 < average_price_nominal_euros) |>
    #summarize_at(c("average_price_nominal_euros"), mean, na.rn
    arrange(desc(average_price_nominal_euros))
bar_plot_q4 <- plot_ly(data = q4, x = ~year, y = ~average_price_bar_plot_q4
```



```
q4 <- cbind(order = c(1:18), q4)

#table
  kbl(q4, booktabs = T) |>
    kable_styling(full_width = T) |>
    column_spec(1, width = "8cm")
```

order	year	locality	average_price_nominal_euros
1	2020	Schuttrange	2010937
2	2020	Kopstal	1978531
3	2020	Bertrange	1891532
4	2018	Niederanven	1837880
5	2020	Strassen	1814700
6	2019	Leudelange	1802527
7	2020	Niederanven	1749576
8	2020	Steinsel	1675188
9	2019	Strassen	1621751
10	2020	Luxembourg	1606490
11	2019	Bertrange	1606353
12	2017	Strassen	1593570
13	2019	Niederanven	1579153
14	2019	Luxembourg	1576214
15	2018	Luxembourg	1542371
16	2019	Steinsel	1540155
17	2020	Leudelange	1534376
18	2020	Walferdange	1520943

Considering inflation equality, house prices have increased significantly every year. Buying a house can be seen as a good investment tool. When we look at the first bar plot, we see that there are more than 1.5 million houses in 2020 and 2019. The other table gives us the list in order. Prices for 2020 stand out again.

Is there a correlation between the number of offers and the average house price per square meter in Luxembourg for the year 2020?

```
# Filter the data for the year 2020
data_2020 <- commune_level_data |>
  filter(year == 2020)

my_colors <- scales::brewer_pal(palette = "Set1")(1)</pre>
```

```
ggplot(data_2020, aes(x = n_offers, y = average_price_m2_nomina
geom_point(color = my_colors[1], size = 3) +
labs(title = "Correlation between Number of Offers and Averag
x = "Number of Offers",
y = "Average Price per Square Meter (Nominal Euros)") +
theme_minimal() +
theme(panel.grid.major = element_blank(), panel.grid.minor =
scale_color_manual(values = my_colors)
```

Warning: Removed 31 rows containing missing values (`geom_point()`).

Correlation between Number of Offers and Average Price per Square Meter (20

It seems there is no correlation between number of offers and average price(m^2)

What are the top 5 communes with the highest average house prices in the most recent year (2020)?

```
# Filter the data for the year 2020
data_2020 <- commune_level_data |>
    filter(year == 2020)

# Sort the data by average_price_nominal_euros in descending or
top_5_communes_2020 <- data_2020 |>
    arrange(desc(average_price_nominal_euros)) |>
    head(5)

# Create a bar plot
my_colors <- scales::brewer_pal(palette = "Set1")(5)</pre>
```

```
ggplot(top_5_communes_2020, aes(x = reorder(locality, -average_
    geom_bar(stat = "identity") +
    labs(title = "Top 5 Communes with Highest Average House Price
        x = "Locality",
        y = "Average Price (Nominal Euros)") +
    theme_minimal() +
    theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
    scale_fill_manual(values = my_colors)
```


As we examined a little in our previous questions, we only took the values in 2020 for the question. Accordingly, Schuttrange leads the top 5 communes in terms of expensive prices.

References

```
https://raps-with-r.dev/project_start.html
```

https://quarto.org/docs/computations/r.html