SPRING 2016 HUNTER COLLEGE STAT 213 Section HC1 Introduction to Applied Statistics Final Exam

Last Name:	
First Name:	
Graduation Vear	••

- 1. Please do not leave blank for any question.
- 2. There are 10 questions, each question is 5 points.
- 3. You have 120 minutes for this exam (3:00 pm 5:00 pm).
- 4. Explain briefly = Explain in one sentence or several phrases.

Formulas

 $\Pr(E_1) + \cdots + \Pr(E_k)$

$$\begin{split} \sum_{i=1}^{n} x_i &= x_1 + x_2 + \dots + x_n \\ \overline{x} &= \frac{1}{n} \sum_{i=1}^{n} x_i \\ z &= \frac{x-\mu}{\sigma} \\ x &= \mu + \sigma z \\ s_x^2 &= \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1} \\ s_x &= \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}} \\ \Pr\left(|X - \mu| \leq k\sigma\right) \geq 1 - \frac{1}{k^2}, \text{ for any distribution} \\ \Pr\left(|X - \mu| \leq \sigma\right) \approx 0.68, \ \Pr\left(|X - \mu| \leq 2\sigma\right) \approx 0.95, \ \Pr\left(|X - \mu| \leq 3\sigma\right) \approx 0.997, \text{ for normal distribution} \\ r &= \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{s_x}\right) \left(\frac{y_i - \overline{y}}{s_y}\right) \\ r &= \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{(n-1)s_x s_y} \\ \widehat{y} &= a + bx \\ b &= r \frac{s_y}{s_x} \\ b &= \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2} \\ a &= \overline{y} - b\overline{x} \\ SSTo &= \sum_{i=1}^{n} (y_i - \overline{y})^2 \\ SSResid &= \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 \\ SSResid &= \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 \\ SSResid &= \sum_{i=1}^{n} y_i^2 - a \sum_{i=1}^{n} y_i - b \sum_{i=1}^{n} x_i y_i \\ r^2 &= 1 - \frac{SSResid}{SSTo} \\ s_e &= \sqrt{\frac{SSResid}{n-2}} \\ \text{If events } E_1, \cdots, E_k \text{ are all mutually exclusive, then } \Pr(E1 \cup \cdots \cup E_k) = \frac{1}{n} \\ \end{cases}$$

$$\Pr(E \mid F) = \frac{\Pr(E \cap F)}{P(F)}$$

The event E and F are independent if and only if $Pr(E \cap F) = Pr(E) Pr(F)$

$$Pr(E \cup F) = Pr(E) + Pr(F) - Pr(E \cap F)$$

$$Pr(E \cap F) = Pr(E|F) Pr(F) = Pr(F|E) Pr(E)$$

If events B_1, \dots, B_k are all mutually exclusive with $\Pr(B_1) + \dots + \Pr(B_k) = 1$, then for any event E, $\Pr(E) = \Pr(E \mid B_1) \Pr(B_1) + \dots + \Pr(E \mid B_k) \Pr(B_k)$

If events B_1, \dots, B_k are all mutually exclusive with $\Pr(B_1) + \dots + \Pr(B_k) = 1$, then for any event E, $\Pr(B_i \mid E) = \frac{\Pr(E|B_1)\Pr(B_i)\Pr(B_i)}{\Pr(E|B_1)\Pr(B_1)+\dots+\Pr(E|B_k)\Pr(B_k)}$

For continuous random variable X, $\Pr(a < X \le b) = \Pr(X \le b) - \Pr(X \le a)$

Mean value of a discrete random variable $\mu_X = \sum x \cdot p(x)$

Standard deviation of a discrete random variable $\sigma_X = \sqrt{\sum (x - \mu_X)^2 \cdot p(x)}$

$$Y = a + bX$$
. Mean $\mu_Y = a + b\mu_X$. Standard deviation $\sigma_Y = |b|\sigma_X$

 $Y=a_1X_1+\cdots+a_nX_n$. Mean $\mu_Y=a_1\mu_{X_1}+\cdots+a_n\mu_{X_n}$. Standard deviation (when X_i 's are independent) $\sigma_Y=\sqrt{a_1^2\sigma_{X_1}^2+\cdots+a_n^2\sigma_{X_n}^2}$

Binomial distribution
$$p(x) = \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x}, \mu_X = np, \sigma_X = \sqrt{np(1-p)}$$

Geometric distribution
$$p(x) = (1 - p)^{x-1}p$$
, $\mu_X = 1/p$

Continuity correction (X is a discrete variable (integer values), Y is the corresponding Normal random variable): If $\Pr(X \leq m)$ use $\Pr(Y < m + 0.5)$; If $\Pr(X < m)$ use $\Pr(Y < m - 0.5)$

Sampling distribution of \overline{X} : $\mu_{\overline{X}} = \mu$, $\sigma_{\overline{X}} = \sigma/\sqrt{n}$

Sampling distribution of \widehat{p} : $\mu_{\widehat{p}} = p$, $\sigma_{\widehat{p}} = \sqrt{p(1-p)/n}$

$$(1-\alpha) \times 100\%$$
 confidence interval for p : $\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$

$$n = p(1-p) \left(\frac{z_{\alpha/2}}{B}\right)^2$$

 $(1-\alpha) \times 100\%$ confidence interval for μ : $\overline{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$

$$n = \left(\frac{z_{\alpha/2}\sigma}{B}\right)^2$$

 $(1-\alpha) \times 100\%$ confidence interval for μ : $\overline{x} \pm t_{\alpha/2,n-1} \frac{s}{\sqrt{n}}$

Finite population correction factor: $\sqrt{\frac{N-n}{N-1}}$

 $z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$, where μ is the hypothesized value under H_0

 $t = \frac{\overline{x} - \mu}{s / \sqrt{n}}$, where μ is the hypothesized value under H_0

Power + Type II error = 1

Paired two-sample t-test: $t = \frac{\overline{x}_d - \text{hypothesized value}}{s_d/\sqrt{n}}, d.f. = n-1$

Independent two-sample t-test:
$$t = \frac{\overline{x}_1 - \overline{x}_2 - \text{hypothesized value}}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}, d.f. = \begin{bmatrix} \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\left(\frac{s_1^2}{n_1}\right)^2 + \left(\frac{s_2^2}{n_2}\right)^2} \\ \frac{\left(\frac{s_1^2}{n_1}\right)^2 + \left(\frac{s_2^2}{n_2}\right)^2}{\left(\frac{s_1^2}{n_1}\right)^2 + \left(\frac{s_2^2}{n_2}\right)^2} \end{bmatrix}.$$

Pearson's chi-squared test: $\chi^2 = \sum_{i=1}^n \frac{(O_i - E_i)}{E_i}^2$

Hypothesis Test concerning slope β : $t = \frac{b-\text{hypothesized value}}{s_{\beta}}$, where $s_{\beta} =$ $\frac{s_e}{\sqrt{\sum_{i=1}^n (x_i - \bar{x})^2}}$ and d.f. = n - 2.

Coefficient of multiple determination: $R^2 = 1 - \frac{SSResid}{SSTo}$ SSResid = $\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$ SSRegr = $\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$

F test for Multiple Regression: $F = \frac{\text{SSRegr}/k}{\text{SSResid}/(n-(k+1))}$ or $F = \frac{R^2/k}{(1-R^2)/(n-(k+1))}$

Total number of observations: $N = n_1 + \cdots + n_k$

Grand total: $T = \text{sum of all } N \text{ observations} = n_1 \overline{x}_1 + \dots + n_k \overline{x}_k$

Grand mean: $\overline{\overline{x}} = T/N = \frac{n_1 \overline{x}_1 + \dots + n_k \overline{x}_k}{n_1 + \dots + n_k}$

$$SSTr = n_1 \left(\overline{x}_1 - \overline{\overline{x}}\right)^2 + \dots + n_k \left(\overline{x}_k - \overline{\overline{x}}\right)^2, MSTr = \frac{SSTr}{k-1}$$

$$SSE = (n_1 - 1) s_1^2 + \dots + (n_k - 1) s_k^2$$
, $MSE = \frac{SSE}{N-k}$

$$F = \frac{\text{MSTr}}{\text{MSE}}$$

Tukey-Kramer MCP: For $\mu_i - \mu_j : (\overline{x}_i - \overline{x}_j) \pm q \sqrt{\frac{\text{MSE}}{2} \left(\frac{1}{n_i} + \frac{1}{n_j}\right)}$

Random Number Table

 $34234\ 27566\ 94454\ 20349\ 69224\ 69483\ 21821\ 38248\ 62410\ 16481\ 54270\ 14344$ $60679\ 95118\ 44916\ 95522\ 17144\ 05395\ 40643\ 08340\ 52134\ 20753\ 41452\ 52797$ $45320\ 67751\ 00459\ 28894\ 43588\ 46388\ 64547\ 10072\ 00054\ 56665\ 60274\ 22889$ $35043\ 72024\ 87641\ 67346\ 28230\ 19021\ 20090\ 16885\ 26498\ 97659\ 10735\ 24621$ $56406\ 07936\ 06463\ 37439\ 17953\ 23294\ 07272\ 55338\ 11140\ 70292\ 66278\ 31434$ $09408\ 48929\ 30366\ 12613\ 39316\ 59206\ 26094\ 25430\ 00863\ 01122\ 53461\ 69887$ $94050\ 48120\ 85909\ 45984\ 92318\ 26757\ 49997\ 27162\ 22226\ 10476\ 45725\ 39980$ $83773\ 52393\ 73092\ 84437\ 71657\ 66721\ 54971\ 90220\ 84475\ 28268\ 70330\ 17587$ $07148\ 56945\ 07552\ 29174\ 17424\ 52673\ 46928\ 90721\ 32783\ 80040\ 64827\ 57350$ $79781\ 12488\ 40923\ 82176\ 58418\ 76576\ 22101\ 12084\ 68695\ 72304\ 34919\ 73631$ $84053\ 99671\ 79376\ 40260\ 57609\ 58677\ 55473\ 65086\ 09688\ 22765\ 36651\ 94994$ $19965\ 18493\ 49468\ 56541\ 61881\ 45860\ 93925\ 23170\ 08879\ 78308\ 43464\ 47996$ $87517\ 42396\ 51200\ 77903\ 71236\ 38123\ 64018\ 12893\ 13152\ 65490\ 81917\ 06079$

NORMAL CUMULATIVE DISTRIBUTION FUNCTION

0.00 - 0.010.020.09 z0.030.040.050.060.070.08 0.0 $0.5000\ 0.5040\ 0.5080\ 0.5120\ 0.5160\ 0.5199\ 0.5239\ 0.5279\ 0.5319\ 0.5359$ $0.5398\ 0.5438\ 0.5478\ 0.5517\ 0.5557\ 0.5596\ 0.5636\ 0.5675\ 0.5714\ 0.5753$ 0.2 $0.5793\ 0.5832\ 0.5871\ 0.5910\ 0.5948\ 0.5987\ 0.6026\ 0.6064\ 0.6103\ 0.6141$ 0.3 $0.6179\ 0.6217\ 0.6255\ 0.6293\ 0.6331\ 0.6368\ 0.6406\ 0.6443\ 0.6480\ 0.6517$ 0.4 $0.6554\ 0.6591\ 0.6628\ 0.6664\ 0.6700\ 0.6736\ 0.6772\ 0.6808\ 0.6844\ 0.6879$ 0.5 $0.6915\ 0.6950\ 0.6985\ 0.7019\ 0.7054\ 0.7088\ 0.7123\ 0.7157\ 0.7190\ 0.7224$ 0.6 $0.7257\ 0.7291\ 0.7324\ 0.7357\ 0.7389\ 0.7422\ 0.7454\ 0.7486\ 0.7517\ 0.7549$ 0.7 $0.7580\ 0.7611\ 0.7642\ 0.7673\ 0.7703\ 0.7734\ 0.7764\ 0.7794\ 0.7823\ 0.7852$ 0.8 $0.7881\ 0.7910\ 0.7939\ 0.7967\ 0.7995\ 0.8023\ 0.8051\ 0.8078\ 0.8106\ 0.8133$ 0.9 $0.8159\ 0.8186\ 0.8212\ 0.8238\ 0.8264\ 0.8289\ 0.8315\ 0.8340\ 0.8365\ 0.8389$ 1.0 $0.8413\ 0.8438\ 0.8461\ 0.8485\ 0.8508\ 0.8531\ 0.8554\ 0.8577\ 0.8599\ 0.8621$ 1.1 $0.8643\ 0.8665\ 0.8686\ 0.8708\ 0.8729\ 0.8749\ 0.8770\ 0.8790\ 0.8810\ 0.8830$ 1.2 $0.8849 \ 0.8869 \ 0.8888 \ 0.8907 \ 0.8925 \ 0.8944 \ 0.8962 \ 0.8980 \ 0.8997 \ 0.9015$ 1.3 $0.9032\ 0.9049\ 0.9066\ 0.9082\ 0.9099\ 0.9115\ 0.9131\ 0.9147\ 0.9162\ 0.9177$ $0.9192\ 0.9207\ 0.9222\ 0.9236\ 0.9251\ 0.9265\ 0.9279\ 0.9292\ 0.9306\ 0.9319$ 1.5 $0.9332\ 0.9345\ 0.9357\ 0.9370\ 0.9382\ 0.9394\ 0.9406\ 0.9418\ 0.9429\ 0.9441$ 1.6 $0.9452\ 0.9463\ 0.9474\ 0.9484\ 0.9495\ 0.9505\ 0.9515\ 0.9525\ 0.9535\ 0.9545$ 1.7 $0.9554\ 0.9564\ 0.9573\ 0.9582\ 0.9591\ 0.9599\ 0.9608\ 0.9616\ 0.9625\ 0.9633$ 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.97061.9 $0.9713\ 0.9719\ 0.9726\ 0.9732\ 0.9738\ 0.9744\ 0.9750\ 0.9756\ 0.9761\ 0.9767$ 2.0 $0.9772\ 0.9778\ 0.9783\ 0.9788\ 0.9793\ 0.9798\ 0.9803\ 0.9808\ 0.9812\ 0.9817$ 2.1 $0.9821\ 0.9826\ 0.9830\ 0.9834\ 0.9838\ 0.9842\ 0.9846\ 0.9850\ 0.9854\ 0.9857$ $0.9861\ 0.9864\ 0.9868\ 0.9871\ 0.9875\ 0.9878\ 0.9881\ 0.9884\ 0.9887\ 0.9890$ 2.3 $0.9893 \ 0.9896 \ 0.9898 \ 0.9901 \ 0.9904 \ 0.9906 \ 0.9909 \ 0.9911 \ 0.9913 \ 0.9916$ 2.4 $0.9918\ 0.9920\ 0.9922\ 0.9925\ 0.9927\ 0.9929\ 0.9931\ 0.9932\ 0.9934\ 0.9936$ 2.5 $0.9938\ 0.9940\ 0.9941\ 0.9943\ 0.9945\ 0.9946\ 0.9948\ 0.9949\ 0.9951\ 0.9952$ 2.6 $0.9953\ 0.9955\ 0.9956\ 0.9957\ 0.9959\ 0.9960\ 0.9961\ 0.9962\ 0.9963\ 0.9964$ 2.7 $0.9965\ 0.9966\ 0.9967\ 0.9968\ 0.9969\ 0.9970\ 0.9971\ 0.9972\ 0.9973\ 0.9974$ $0.9974\ 0.9975\ 0.9976\ 0.9977\ 0.9977\ 0.9978\ 0.9979\ 0.9979\ 0.9980\ 0.9981$ 2.9 $0.9981 \ 0.9982 \ 0.9982 \ 0.9983 \ 0.9984 \ 0.9984 \ 0.9985 \ 0.9985 \ 0.9986 \ 0.9986$ 3.0 $0.9987\ 0.9987\ 0.9988\ 0.9988\ 0.9989\ 0.9989\ 0.9989\ 0.9990\ 0.9990$ 3.1 $0.9990\ 0.9991\ 0.9991\ 0.9991\ 0.9992\ 0.9992\ 0.9992\ 0.9992\ 0.9993$ 3.2 $0.9993\ 0.9993\ 0.9994\ 0.9994\ 0.9994\ 0.9994\ 0.9995\ 0.9995\ 0.9995$ $0.9995 \ 0.9995 \ 0.9995 \ 0.9996 \ 0.9996 \ 0.9996 \ 0.9996 \ 0.9996 \ 0.9996$ $0.9997\ 0.9997\ 0.9997\ 0.9997\ 0.9997\ 0.9997\ 0.9997\ 0.9997\ 0.9998$ 3.4 3.5 $0.9998 \ 0.9998 \ 0.9998 \ 0.9998 \ 0.9998 \ 0.9998 \ 0.9998 \ 0.9998 \ 0.9998$ 3.6 $0.9998 \ 0.9998 \ 0.9999 \ 0.9999 \ 0.9999 \ 0.9999 \ 0.9999 \ 0.9999 \ 0.9999 \ 0.9999$ 3.7 $0.9999 \ 0.9999 \ 0.9999 \ 0.9999 \ 0.9999 \ 0.9999 \ 0.9999 \ 0.9999 \ 0.9999$ 3.8 $0.9999 \ 0.9999 \ 0.9999 \ 0.9999 \ 0.9999 \ 0.9999 \ 0.9999 \ 0.9999 \ 0.9999$ $1.0000\ 1.0000\ 1.0000\ 1.0000\ 1.0000\ 1.0000\ 1.0000\ 1.0000\ 1.0000$

STUDENT'S t PERCENTAGE POINTS

```
40.0\%\ 33.3\%\ 25.0\%\ 20.0\%\ 12.5\%\ 10.0\%\quad 5.0\%\quad 2.5\%\quad 1.0\%\quad 0.5\%\quad 0.1\%
   one-tail
              80.0\% \, 66.7\% \, 50.0\% \, 40.0\% \, 25.0\% \, 20.0\% \, 10.0\% \quad 5.0\% \quad 2.0\% \quad 1.0\% \quad 0.2\%
   two-tail
              60.0\% \, 66.7\% \, 75.0\% \, 80.0\% \, 87.5\% \, 90.0\% \, 95.0\% \, 97.5\% \, 99.0\% \, 99.5\% \, 99.9\%
cum. prob
               0.325\ \ 0.577\ \ 1.000\ \ 1.376\ \ 2.414\ \ 3.078\ \ 6.31412.70631.82163.657318.31
               0.289 \ 0.500 \ 0.816 \ 1.061 \ 1.604 \ 1.886 \ 2.920 \ 4.303 \ 6.965 \ 9.925 \ 22.327
               0.277\ \ 0.476\ \ 0.765\ \ 0.978\ \ 1.423\ \ 1.638\ \ 2.353\ \ 3.182\ \ 4.541\ \ 5.841\ 10.215
          3
               0.271 \ 0.464 \ 0.741 \ 0.941 \ 1.344 \ 1.533 \ 2.132 \ 2.776 \ 3.747 \ 4.604 \ 7.173
               0.267 \ 0.457 \ 0.727 \ 0.920 \ 1.301 \ 1.476 \ 2.015 \ 2.571 \ 3.365 \ 4.032 \ 5.893
               0.265 \ 0.453 \ 0.718 \ 0.906 \ 1.273 \ 1.440 \ 1.943 \ 2.447 \ 3.143 \ 3.707 \ 5.208
               0.263\ 0.449\ 0.711\ 0.896\ 1.254\ 1.415\ 1.895\ 2.365\ 2.998\ 3.499\ 4.785
               0.262\ 0.447\ 0.706\ 0.889\ 1.240\ 1.397\ 1.860\ 2.306\ 2.896\ 3.355\ 4.501
               0.261\ 0.445\ 0.703\ 0.883\ 1.230\ 1.383\ 1.833\ 2.262\ 2.821\ 3.250\ 4.297
         10
               0.260\ 0.444\ 0.700\ 0.879\ 1.221\ 1.372\ 1.812\ 2.228\ 2.764\ 3.169\ 4.144
               0.260\ 0.443\ 0.697\ 0.876\ 1.214\ 1.363\ 1.796\ 2.201\ 2.718\ 3.106\ 4.025
         11
         12
               0.259 \ 0.442 \ 0.695 \ 0.873 \ 1.209 \ 1.356 \ 1.782 \ 2.179 \ 2.681 \ 3.055 \ 3.930
         13
               0.259 \ 0.441 \ 0.694 \ 0.870 \ 1.204 \ 1.350 \ 1.771 \ 2.160 \ 2.650 \ 3.012 \ 3.852
               0.258\ 0.440\ 0.692\ 0.868\ 1.200\ 1.345\ 1.761\ 2.145\ 2.624\ 2.977\ 3.787
         14
               0.258\ 0.439\ 0.691\ 0.866\ 1.197\ 1.341\ 1.753\ 2.131\ 2.602\ 2.947\ 3.733
         15
               0.258\ 0.439\ 0.690\ 0.865\ 1.194\ 1.337\ 1.746\ 2.120\ 2.583\ 2.921\ 3.686
               0.257 0.438 0.689 0.863 1.191 1.333 1.740 2.110 2.567 2.898 3.646
               0.257\ 0.438\ 0.688\ 0.862\ 1.189\ 1.330\ 1.734\ 2.101\ 2.552\ 2.878\ 3.610
         18
         19
               0.257 \ 0.438 \ 0.688 \ 0.861 \ 1.187 \ 1.328 \ 1.729 \ 2.093 \ 2.539 \ 2.861 \ 3.579
         20
               0.257\ 0.437\ 0.687\ 0.860\ 1.185\ 1.325\ 1.725\ 2.086\ 2.528\ 2.845\ 3.552
               0.257 \ 0.437 \ 0.686 \ 0.859 \ 1.183 \ 1.323 \ 1.721 \ 2.080 \ 2.518 \ 2.831 \ 3.527
               0.256\ 0.437\ 0.686\ 0.858\ 1.182\ 1.321\ 1.717\ 2.074\ 2.508\ 2.819\ 3.505
               0.256\ 0.436\ 0.685\ 0.858\ 1.180\ 1.319\ 1.714\ 2.069\ 2.500\ 2.807\ 3.485
         24
               0.256 \ 0.436 \ 0.685 \ 0.857 \ 1.179 \ 1.318 \ 1.711 \ 2.064 \ 2.492 \ 2.797 \ 3.467
         25
               0.256\ 0.436\ 0.684\ 0.856\ 1.178\ 1.316\ 1.708\ 2.060\ 2.485\ 2.787\ 3.450
               0.256\ 0.436\ 0.684\ 0.856\ 1.177\ 1.315\ 1.706\ 2.056\ 2.479\ 2.779\ 3.435
         26
         27
               0.256\ 0.435\ 0.684\ 0.855\ 1.176\ 1.314\ 1.703\ 2.052\ 2.473\ 2.771\ 3.421
               0.256 \ 0.435 \ 0.683 \ 0.855 \ 1.175 \ 1.313 \ 1.701 \ 2.048 \ 2.467 \ 2.763 \ 3.408
               0.256 \ 0.435 \ 0.683 \ 0.854 \ 1.174 \ 1.311 \ 1.699 \ 2.045 \ 2.462 \ 2.756 \ 3.396
         30
               0.256 \ 0.435 \ 0.683 \ 0.854 \ 1.173 \ 1.310 \ 1.697 \ 2.042 \ 2.457 \ 2.750 \ 3.385
         35
               0.255\ 0.434\ 0.682\ 0.852\ 1.170\ 1.306\ 1.690\ 2.030\ 2.438\ 2.724\ 3.340
         40
               0.255 \ 0.434 \ 0.681 \ 0.851 \ 1.167 \ 1.303 \ 1.684 \ 2.021 \ 2.423 \ 2.704 \ 3.307
               0.255\ 0.434\ 0.680\ 0.850\ 1.165\ 1.301\ 1.679\ 2.014\ 2.412\ 2.690\ 3.281
         45
               0.255 0.433 0.679 0.849 1.164 1.299 1.676 2.009 2.403 2.678 3.261
               0.255 \ 0.433 \ 0.679 \ 0.848 \ 1.163 \ 1.297 \ 1.673 \ 2.004 \ 2.396 \ 2.668 \ 3.245
         55
               0.254 \ 0.433 \ 0.679 \ 0.848 \ 1.162 \ 1.296 \ 1.671 \ 2.000 \ 2.390 \ 2.660 \ 3.232
               0.253\ 0.431\ 0.674\ 0.842\ 1.150\ 1.282\ 1.645\ 1.960\ 2.326\ 2.576\ 3.090
```

conf. level $20.0\% \, 33.3\% \, 50.0\% \, 60.0\% \, 75.0\% \, 80.0\% \, 90.0\% \, 95.0\% \, 98.0\% \, 99.0\% \, 99.8\%$

CHI-SQUARED TABLE (right-tail probability)

 $\nu \ 40.0\% \ 33.3\% \ 25.0\% \ 20.0\% \ 12.5\% \ 10.0\% \ 5.0\% \ 2.5\% \ 1.0\% \ 0.5\% \ 0.1\%$ $1 \quad 0.708 \quad 0.936 \quad 1.323 \quad 1.642 \quad 2.354 \quad 2.706 \quad 3.841 \quad 5.024 \quad 6.635 \quad 7.879 \quad 10.828$ 2.197 2.773 3.219 4.159 4.605 5.991 7.378 9.210 10.597 13.816 $2.946 \quad 3.405 \quad 4.108 \quad 4.642 \quad 5.739 \quad 6.251 \quad 7.815 \quad 9.348 \quad 11.345 \quad 12.838 \quad 16.266$ 4.045 4.579 5.385 5.989 7.214 7.779 9.488 11.143 13.277 14.860 18.467 $5 \quad 5.132 \quad 5.730 \quad 6.626 \quad 7.289 \quad 8.625 \quad 9.236 \ 11.070 \ 12.833 \ 15.086 \ 16.750 \ 20.515$ $6.211 \quad 6.867 \quad 7.841 \quad 8.558 \quad 9.992 \ 10.645 \ 12.592 \ 14.449 \ 16.812 \ 18.548 \ 22.458$ 7.283 7.992 9.037 9.803 11.326 12.017 14.067 16.013 18.475 20.278 24.322 $8.351 \quad 9.107 \quad 10.219 \quad 11.030 \quad 12.636 \quad 13.362 \quad 15.507 \quad 17.535 \quad 20.090 \quad 21.955 \quad 26.125$ $9.414\ 10.215\ 11.389\ 12.242\ 13.926\ 14.684\ 16.919\ 19.023\ 21.666\ 23.589\ 27.877$ $10\ 10.473\ 11.317\ 12.549\ 13.442\ 15.198\ 15.987\ 18.307\ 20.483\ 23.209\ 25.188\ 29.588$ $11\ 11.530\ 12.414\ 13.701\ 14.631\ 16.457\ 17.275\ 19.675\ 21.920\ 24.725\ 26.757\ 31.264$ $12\ 12.584\ 13.506\ 14.845\ 15.812\ 17.703\ 18.549\ 21.026\ 23.337\ 26.217\ 28.300\ 32.910$ $13\ 13.636\ 14.595\ 15.984\ 16.985\ 18.939\ 19.812\ 22.362\ 24.736\ 27.688\ 29.819\ 34.528$ $14\ 14.685\ 15.680\ 17.117\ 18.151\ 20.166\ 21.064\ 23.685\ 26.119\ 29.141\ 31.319\ 36.123$ $15\ 15.733\ 16.761\ 18.245\ 19.311\ 21.384\ 22.307\ 24.996\ 27.488\ 30.578\ 32.801\ 37.697$ $16\ 16.780\ 17.840\ 19.369\ 20.465\ 22.595\ 23.542\ 26.296\ 28.845\ 32.000\ 34.267\ 39.252$ $17\ 17.824\ 18.917\ 20.489\ 21.615\ 23.799\ 24.769\ 27.587\ 30.191\ 33.409\ 35.718\ 40.790$ $18\ 18.868\ 19.991\ 21.605\ 22.760\ 24.997\ 25.989\ 28.869\ 31.526\ 34.805\ 37.156\ 42.312$ $19\ 19.910\ 21.063\ 22.718\ 23.900\ 26.189\ 27.204\ 30.144\ 32.852\ 36.191\ 38.582\ 43.820$ $20\ 20.951\ 22.133\ 23.828\ 25.038\ 27.376\ 28.412\ 31.410\ 34.170\ 37.566\ 39.997\ 45.315$ $21\ 21.991\ 23.201\ 24.935\ 26.171\ 28.559\ 29.615\ 32.671\ 35.479\ 38.932\ 41.401\ 46.797$ $22\ 23.031\ 24.268\ 26.039\ 27.301\ 29.737\ 30.813\ 33.924\ 36.781\ 40.289\ 42.796\ 48.268$ $23\ 24.069\ 25.333\ 27.141\ 28.429\ 30.911\ 32.007\ 35.172\ 38.076\ 41.638\ 44.181\ 49.728$ $24\ 25.106\ 26.397\ 28.241\ 29.553\ 32.081\ 33.196\ 36.415\ 39.364\ 42.980\ 45.559\ 51.179$ $25\ 26.143\ 27.459\ 29.339\ 30.675\ 33.247\ 34.382\ 37.652\ 40.646\ 44.314\ 46.928\ 52.620$ $26\ 27.179\ 28.520\ 30.435\ 31.795\ 34.410\ 35.563\ 38.885\ 41.923\ 45.642\ 48.290\ 54.052$ $27\ 28.214\ 29.580\ 31.528\ 32.912\ 35.570\ 36.741\ 40.113\ 43.195\ 46.963\ 49.645\ 55.476$ $28\ 29.249\ 30.639\ 32.620\ 34.027\ 36.727\ 37.916\ 41.337\ 44.461\ 48.278\ 50.993\ 56.892$ $29\ 30.283\ 31.697\ 33.711\ 35.139\ 37.881\ 39.087\ 42.557\ 45.722\ 49.588\ 52.336\ 58.301$ $30\ 31.316\ 32.754\ 34.800\ 36.250\ 39.033\ 40.256\ 43.773\ 46.979\ 50.892\ 53.672\ 59.703$ $35\ 36.475\ 38.024\ 40.223\ 41.778\ 44.753\ 46.059\ 49.802\ 53.203\ 57.342\ 60.275\ 66.619$ $40\ 41.622\ 43.275\ 45.616\ 47.269\ 50.424\ 51.805\ 55.758\ 59.342\ 63.691\ 66.766\ 73.402$ $45\ 46.761\ 48.510\ 50.985\ 52.729\ 56.052\ 57.505\ 61.656\ 65.410\ 69.957\ 73.166\ 80.077$ $50\ 51.892\ 53.733\ 56.334\ 58.164\ 61.647\ 63.167\ 67.505\ 71.420\ 76.154\ 79.490\ 86.661$ $55\ 57.016\ 58.945\ 61.665\ 63.577\ 67.211\ 68.796\ 73.311\ 77.380\ 82.292\ 85.749\ 93.168$ $60\ 62.135\ 64.147\ 66.981\ 68.972\ 72.751\ 74.397\ 79.082\ 83.298\ 88.379\ 91.952\ 99.607$

F DISTRIBUTION TABLE (right-tail probability)

1 0.100	$\nu_2 \backslash \nu_1$	a	2	3	4	5	6	7	8	10	12	15	20	30	50	∞
$\begin{array}{c} 0.050 \\ 0.025 \\ 800.864.900.922.937.948.957.969.977.985.993. \\ 0.010 \\ 0.001 \\ 2 \\ 0.100 \\ 0.050 \\ 19.016.9.249.299.339.359.379.399.419.439.449.469.479.49 \\ 0.050 \\ 19.019.219.219.319.319.419.419.419.419.419.419.519.519.519.5 \\ 0.025 \\ 39.039.239.239.339.339.439.439.439.439.439.439.539.539.5 \\ 0.010 \\ 990.99.299.299.399.399.4100.100.100.100.100.100.100.99.5 \\ 0.001 \\ 999.999. \\ 3 \\ 0.100 \\ 5.465.395.345.315.285.275.255.235.225.205.185.175.155.13 \\ 0.050 \\ 9.559.289.129.018.948.898.858.879.87.887.88.668.668.628.858.853 \\ 0.025 \\ 16.015.415.114.914.714.614.514.41314.314.214.114.013.9 \\ 0.010 \\ 30.829.528.728.227.927.727.527.227.126.926.726.526.426.1 \\ 0.001 \\ 149.141.137.135.133.132.131.129.128.127.126.125.125.123. \\ 4 \\ 0.100 \\ 4.324.194.114.054.013.983.953.923.90.3873.843.823.793.76 \\ 0.050 \\ 10.69.98.96.93.69.290.907.898.848.875.8668.856.865.865.855.75.705.63 \\ 0.025 \\ 10.69.98.96.93.69.209.078.98.848.875.8668.856.865.8468.38.826 \\ 0.010 \\ 18.016.716.015.515.215.014.814.514.414.214.013.813.713.5 \\ 0.001 \\ 18.016.716.015.515.215.014.814.514.414.214.013.813.773.5 \\ 0.001 \\ 18.016.7.95.415.195.054.954.884.824.744.688.4624.564.545.4444.944.15 \\ 0.0025 \\ 8.437.767.397.156.986.856.766.6626.526.436.33.623.6146.02 \\ 0.010 \\ 13.312.111.411.010.710.510.310.19.899.729.55.9389.249.02 \\ 0.001 \\ 3.71.33.231.12.982.828.2227.626.926.425.925.424.924.423.8 \\ 6 \\ 0.100 \\ 3.463.293.183.113.053.012.982.942.990.2872.842.802.772.72 \\ 0.050 \\ 5.144.764.534.394.284.214.154.064.003.943.873.813.753.67 \\ 0.025 \\ 7.266.606.235.995.825.705.605.465.375.275.175.074.984.88 \\ 0.010 \\ 10.99.789.15.8758.478.268.107.877.727.567.407.237.096.88 \\ 0.010 \\ 10.99.789.15.8758.478.268.107.877.727.567.407.237.096.88 \\ 0.001 \\ 27.023.721.920.820.019.519.018.418.017.617.116.716.315.7 \\ 0.100 \\ 3.263.072.962.882.832.782.752.702.672.632.592.562.522.47 \\ 0.050 \\ 4.744.354.123.973.873.793.733.643.373.129.12.512.211.7 \\ 0.100 \\ 3.263.072.962.882.832.782.752.702.672.672.632.592.562.522.47 \\ 0.050 \\ 4.744.354.123.973.873.793.733.643.352.23153.083.2230.0256$	1	-	49.5	53.6	55.8	57.2	58.2	59.1	59 7	60.5	61.0	61.5	62 N	62 6	63 N	63.3
$\begin{array}{c} 0.025 \\ 0.010 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.0001 \\ 0.00001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.00001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.001 \\ 0.0001 \\ 0.0010 \\ $	1															
$\begin{array}{c} 0.010 \\ 0.001 \\ 0.001 \\ 2 \\ 0.100 \\ 0.050 \\ 19.019.219.219.319.319.419.4 \\ 19.4 \\ 19.4 \\ 19.4 \\ 19.4 \\ 19.4 \\ 19.5 \\ 10.025 \\ 19.019.219.219.319.319.419.4 \\ 19.4 \\ 19.4 \\ 19.4 \\ 19.4 \\ 19.4 \\ 19.5 \\ 19.5 \\ 19.5 \\ 19.5 \\ 19.5 \\ 19.5 \\ 19.5 \\ 19.5 \\ 19.5 \\ 19.5 \\ 19.5 \\ 10.010 \\ 199.999.99. \\ 3 \\ 0.100 \\ 5.465.395.345.315.285.275.25 \\ 5.23 \\ 5.22 \\ 5.20 \\ 5.18 \\ 5.17 \\ 5.15 \\ 5.13 \\ 0.050 \\ 9.559.289.129.018.948.898.85 \\ 8.79 \\ 8.74 \\ 8.70 \\ 8.66 \\ 8.62 \\ 8.58 \\ 8.53 \\ 0.025 \\ 16.015.415.114.914.714.614.5 \\ 14.4 \\ 14.3 \\ 14.3 \\ 14.2 \\ 14.1 \\ 14.0 \\ 13.9 \\ 0.010 \\ 30.829.528.728.227.927.727.5 \\ 27.2 \\ 27.1 \\ 26.9 \\ 26.7 \\ 26.7 \\ 26.7 \\ 26.7 \\ 26.7 \\ 26.5 \\ 26.4 \\ 26.1 $														200.	202.	201.
$\begin{array}{c} 0.001 \\ 2 & 0.100 \\ 0.050 & 19.0169.2449.299.339.359.379.399.419.439.449.469.479.49 \\ 0.050 & 19.019.219.219.319.319.319.419.419.419.419.419.519.519.519.519.519.519.519.519.519.5$				001.	000.	·		0 10.			0					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																
$\begin{array}{c} 0.050 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.010 \\ 0.029.29.29.29.39.39.39.439.439.439.439.439.439.539.539.5 \\ 0.010 \\ 0.001 \\ 0.010 \\ 0.0$	2		9.00	9.16	9.24	9.29	9.33	9.35	9.37	9.39	9.41	9.43	9.44	9.46	9.47	9.49
$\begin{array}{c} 0.010 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.005 \\ 0.0050 \\ 0.0050 \\ 0.0050 \\ 0.0050 \\ 0.0050 \\ 0.0050 \\ 0.0050 \\ 0.0050 \\ 0.0050 \\ 0.0050 \\ 0.001$			19.0	19.2	19.2	19.3	19.3	19.4	19.4	19.4	19.4	19.4	19.4	19.5	19.5	19.5
$\begin{array}{c} 0.001 \\ 30.100 \\ 5.465.395.345.315.285.275.25 \\ 5.23 \\ 5.22 \\ 5.20 \\ 5.18 \\ 5.17 \\ 5.15 \\ 5.13 \\ 0.050 \\ 9.559.289.129.018.948.898.85 \\ 8.79 \\ 8.74 \\ 8.70 \\ 8.66 \\ 8.62 \\ 8.58 \\ 8.53 \\ 0.025 \\ 16.015.415.114.914.714.614.5 \\ 14.4 \\ 14.3 \\ 14.3 \\ 14.2 \\ 14.1 \\ 14.0 \\ 13.9 \\ 0.010 \\ 30.829.528.728.227.927.727.5 \\ 27.2 \\ 27.1 \\ 26.9 \\ 26.7 \\ 26.5 \\ 26.4 \\ 26.1 \\ 0.001 \\ 149.141.137.135.133.132.131. \\ 129.128. \\ 127.126.125.125. \\ 125.125. \\ 123. \\ 40.100 \\ 4.324.194.114.054.013.983.95 \\ 3.92 \\ 3.90 \\ 3.87 \\ 3.84 \\ 3.82 \\ 3.79 \\ 3.76 \\ 0.050 \\ 6.946.596.396.266.166.096.04 \\ 5.96 \\ 5.91 \\ 5.86 \\ 5.80 \\ 5.75 \\ 5.70 \\ 5.63 \\ 0.025 \\ 10.69.989.609.369.209.078.98 \\ 8.84 \\ 8.75 \\ 8.66 \\ 8.56 \\ 8.46 \\ 8.38 \\ 8.26 \\ 0.010 \\ 18.016.716.015.515.215.014.8 \\ 14.5 \\ 14.4 \\ 14.2 \\ 14.0 \\ 13.8 \\ 13.7 \\ 13.5 \\ 0.001 \\ 61.256.253.451.750.549.749.0 \\ 48.0 \\ 47.4 \\ 46.8 \\ 46.1 \\ 45.4 \\ 44.9 \\ 44.15 \\ 0.100 \\ 3.783.623.523.453.403.373.34 \\ 3.30 \\ 3.27 \\ 3.24 \\ 3.21 \\ 3.17 \\ 3.15 \\ 3.15 \\ 0.001 \\ 61.256.253.451.750.549.749.0 \\ 48.0 \\ 47.4 \\ 4.68 \\ 46.6 \\ 4.56 \\ 4.50 \\ 4.44 \\ 4.36 \\ 0.025 \\ 8.43 \\ 7.67 \\ 3.97 \\ 1.5 \\ 9.84 \\ 8.28 \\ 2.27.6 \\ 26.9 \\ 26.4 \\ 25.9 \\ 25.4 \\ 24.9 \\ 24.4 \\ 23.8 \\ 60.100 \\ 3.463.293.183.113.053.012.98 \\ 2.94 \\ 2.90 \\ 2.87 \\ 2.84 \\ 2.80 \\ 2.77 \\ 2.72 \\ 0.050 \\ 5.144.764.534.394.284.214.15 \\ 4.06 \\ 4.00 \\ 3.94 \\ 3.87 \\ 3.81 \\ 3.75 \\ 3.67 \\ 0.025 \\ 7.266.606.235.995.825.705.60 \\ 5.46 \\ 5.37 \\ 5.27 \\ 5.70 \\ 5.67 \\ 40.723 \\ 7.09 \\ 6.88 \\ 0.001 \\ 27.023.721.920.820.019.519.0 \\ 18.4 \\ 18.0 \\ 17.6 \\ 17.1 \\ 16.7 \\ 16.3 \\ 15.7 \\ 70.100 \\ 3.263.072.962.882.832.782.75 \\ 2.70 \\ 2.67 \\ 2.63 \\ 2.59 \\ 2.54 \\ 2.44 \\ 3.8 \\ 3.32 \\ 3.23 \\ 0.025 \\ 6.545.895.525.295.124.994.90 \\ 4.76 \\ 4.67 \\ 4.57 \\ 4.47 \\ 4.36 \\ 4.28 \\ 4.14 \\ 0.010 \\ 9.558.457.857.467.196.996.84 \\ 6.62 \\ 6.47 \\ 6.31 \\ 6.16 \\ 5.99 \\ 5.86 \\ 5.65 \\ 0.001 \\ 21.718.817.216.215.515.014.6 \\ 14.1 \\ 13.7 \\ 13.3 \\ 12.9 \\ 12.5 \\ 12.5 \\ 12.7 \\ 11.7 \\ 8.0100 \\ 3.112.922.812.732.672.622.59 \\ 2.54 \\ 2.59 \\ 2.54 \\ 2.50 \\ 2.46 \\ 2.38 \\ 2.35 \\ 2.29 \\ 0.050 \\ 4.464.073.843.693.58$		0.025	39.0	39.2	39.2	39.3	39.3	39.4	39.4	39.4	39.4	39.4	39.4	39.5	39.5	39.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.010	99.0	99.2	99.2	99.3	99.3	99.4	100.	100.	100.	100.	100.	100.	100.	99.5
$\begin{array}{c} 0.050 \\ 0.055 \\ 0.28 \\ 9.12 \\ 9.01 \\ 9.55 \\ 9.28 \\ 9.12 \\ 9.01 \\ 9.55 \\ 9.28 \\ 9.12 \\ 9.01 \\ 9.010 \\ 0.010 \\ 0.025 \\ 0.010 \\ 0.025 \\ 0.001 \\ 0.010 \\ 0.025 \\ 0.001 \\ 0.0001 \\ 0.001 \\ 0.001 \\ 0.0001 \\ 0.001 \\ 0.0001 \\ 0.00000 \\ 0.0000 \\ 0.00000 \\ 0.00000 \\ 0.0000000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.000000 \\ 0.000000 \\ 0.000000 \\ 0.00000000$		0.001	999.	999.												
$\begin{array}{c} 0.025 \\ 0.010 \\ 0.025 \\ 0.010 \\ 0.025 \\ 0.010 \\ 0.025 \\ 0.025 \\ 0.010 \\ 0.025 \\ 0.001 \\ 0.0025 \\ 0.0025 \\ 0.0025 \\ 0.0025 \\ 0.0025 \\ 0.001 \\ 0.$	3	0.100	5.46	5.39	5.34	5.31	5.28	5.27	5.25	5.23	5.22	5.20	5.18	5.17	5.15	5.13
$\begin{array}{c} 0.010 & 30.829.528.728.227.927.727.527.227.126.926.726.526.426.1\\ 0.001 & 149.141.137.135.133.132.131.129.128.127.126.125.125.123.\\ 4 & 0.100 & 4.324.194.114.054.013.983.953.923.903.873.843.823.793.76\\ 0.050 & 6.946.596.396.266.166.096.045.965.915.865.805.755.705.63\\ 0.025 & 10.69.989.609.369.209.078.988.848.758.668.568.468.388.26\\ 0.010 & 18.016.716.015.515.215.014.814.514.414.214.013.813.713.5\\ 0.001 & 61.256.253.451.750.549.749.048.047.446.846.145.444.944.1\\ 5 & 0.100 & 3.783.623.523.453.403.373.343.303.273.243.213.173.153.10\\ 0.050 & 5.795.415.195.054.954.884.824.744.684.624.564.504.444.36\\ 0.025 & 8.437.767.397.156.986.856.766.626.526.436.336.236.146.02\\ 0.010 & 13.312.111.411.010.710.510.310.19.899.729.559.389.249.02\\ 0.001 & 37.133.231.129.828.828.227.626.926.425.925.424.924.423.8\\ 6 & 0.100 & 3.463.293.183.113.053.012.982.942.902.872.842.802.772.72\\ 0.050 & 5.144.764.534.394.284.214.154.064.003.943.873.813.753.67\\ 0.025 & 7.266.606.235.995.825.705.605.465.375.275.175.074.984.85\\ 0.010 & 10.99.789.158.758.478.268.107.877.727.567.407.237.096.88\\ 0.001 & 27.023.721.920.820.019.519.018.418.017.617.116.716.315.7\\ 7 & 0.100 & 3.263.072.962.882.832.782.752.702.672.632.592.562.522.47\\ 0.050 & 4.744.354.123.973.873.793.7333.643.573.513.443.383.323.23\\ 0.025 & 6.545.895.525.295.124.994.904.764.674.574.474.364.284.14\\ 0.010 & 9.558.457.857.467.196.996.846.626.476.316.165.995.865.65\\ 0.001 & 21.718.817.216.215.515.014.614.113.713.312.912.512.211.7\\ 8 & 0.100 & 3.112.922.812.732.672.622.592.542.502.462.422.382.352.29\\ 0.050 & 4.464.073.843.693.583.503.443.353.283.22$		0.050														
$\begin{array}{c} 0.001 & 149.141.137.135.133.132.131.129.128.127.126.125.125.123. \\ 4 & 0.100 & 4.324.194.114.054.013.983.953.923.903.873.843.823.793.76\\ 0.050 & 6.946.596.396.266.616.6096.045.965.915.865.805.755.705.63\\ 0.025 & 10.69.989.609.369.209.078.988.8448.758.668.568.468.388.26\\ 0.010 & 18.016.716.015.515.215.014.814.514.414.214.013.813.713.5\\ 0.001 & 61.256.253.451.750.549.749.048.047.446.846.145.444.944.1 \\ 5 & 0.100 & 3.783.623.523.453.403.373.343.303.273.243.213.173.153.10\\ 0.050 & 5.795.415.195.054.954.884.824.7446.846.245.64504.4443.6\\ 0.025 & 8.437.767.397.156.986.856.7666.626.526.4363.36236.146.02\\ 0.010 & 13.312.111.411.010.710.510.310.19.899.729.559.389.249.02\\ 0.001 & 37.133.231.129.828.828.227.626.926.425.925.424.924.423.8 \\ 6 & 0.100 & 3.463.293.183.113.053.012.982.942.902.872.842.802.772.72\\ 0.050 & 5.144.764.534.394.284.214.154.064.003.943.873.813.753.67\\ 0.025 & 7.266.606.235.995.825.705.605.4653.75.275.775.074.984.85\\ 0.010 & 10.99.789.158.758.478.268.107.877.7275.674.07237.096.88\\ 0.001 & 27.023.721.920.820.019.519.018.418.017.617.116.716.315.7\\ 7 & 0.100 & 3.263.072.962.882.832.782.752.702.672.632.592.562.522.47\\ 0.050 & 4.744.354.123.973.873.793.733.643.573.513.443.3833.323.23\\ 0.025 & 6.545.895.525.295.124.994.904.764.674.574.743.642.844.14\\ 0.010 & 9.558.457.857.467.196.996.846.6266.476.316.165.995.865.655\\ 0.001 & 21.718.817.216.215.515.014.614.113.713.312.912.512.211.7\\ 8 & 0.100 & 3.112.922.812.732.672.622.592.542.502.462.422.382.352.29\\ 0.050 & 4.464.073.843.693.583.503.443.3533.283.223.153.083.022.93\\ 0.025 & 6.065.425.054.824.654.534.434.294.204.104.003.893.813.67\\ 0.010 & 8.657.597.016.636.376.186.035.815.675.525.365.205.074.86\\ \end{array}$																
$ \begin{array}{c} 4 & 0.100 & 4.324.194.114.054.013.983.953.923.903.873.843.823.793.76\\ 0.050 & 6.946.596.396.266.166.096.045.965.915.865.805.755.705.63\\ 0.025 & 10.69.989.609.369.209.078.988.848.758.668.568.468.388.26\\ 0.010 & 18.016.716.015.515.215.014.814.514.414.214.013.813.713.5\\ 0.001 & 61.256.253.451.750.549.749.048.047.446.846.145.444.944.1\\ 5 & 0.100 & 3.783.623.523.453.403.373.343.303.273.243.213.173.153.10\\ 0.050 & 5.795.415.195.054.954.884.824.744.684.624.564.504.444.36\\ 0.025 & 8.437.767.397.156.986.856.766.626.526.436.336.236.146.02\\ 0.010 & 13.312.111.411.010.710.510.310.19.899.729.559.389.249.02\\ 0.001 & 37.133.231.129.828.828.227.626.926.425.925.424.924.423.8\\ 6 & 0.100 & 3.463.293.183.113.053.012.982.942.902.872.842.802.772.72\\ 0.050 & 5.144.764.534.394.284.214.154.064.003.943.873.813.753.67\\ 0.025 & 7.266.606.235.995.825.705.605.465.375.275.175.074.984.85\\ 0.010 & 10.99.789.158.758.478.268.107.877.727.567.407.237.096.88\\ 0.001 & 27.023.721.920.820.019.519.018.418.017.617.116.716.315.7\\ 7 & 0.100 & 3.263.072.962.882.832.782.752.702.672.632.592.562.522.47\\ 0.050 & 4.744.354.123.973.873.793.733.643.573.513.443.383.323.23\\ 0.025 & 6.545.895.525.295.124.994.904.764.674.574.474.364.284.14\\ 0.010 & 9.558.457.857.467.196.996.846.626.476.316.165.995.865.65\\ 0.001 & 21.718.817.216.215.515.014.614.113.713.312.912.512.211.7\\ 8 & 0.100 & 3.112.922.812.732.672.622.592.542.502.462.422.382.352.29\\ 0.050 & 4.464.073.843.693.583.503.443.353.283.223.153.083.022.93\\ 0.025 & 6.065.425.054.824.654.534.434.294.204.104.003.893.813.67\\ 0.010 & 8.657.597.016.636.376.186.035.815.675.525.365.205.074.86\\ \end{array}$																
$\begin{array}{c} 0.050 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.010 \\ 0.025 \\ 0.010 \\ 0.025 \\ 0.010 \\ 0.025 \\ 0.001 \\ 0.025 \\ 0.001 \\ 0.025 \\ 0.001 \\ 0.025 \\ 0.001 \\ 0.025 \\ 0.001 \\ 0.025 \\ 0.001 \\ 0.025 \\ 0.001 \\ 0.025 \\ 0.001 \\ 0.025 \\ 0.001 \\ 0.025 \\ 0.001 \\ 0.025 \\ 0.001 \\ 0.025 \\ 0.002 \\ 0.0025 \\ 0.001 \\ 0.025 \\ 0.001 \\ 0.025 \\ 0.001 \\ 0.025 \\ 0.001 \\ 0.025 \\ 0.001 \\ 0.025 \\ 0.001 \\ 0.025 \\ 0.001 \\ 0.025 \\ 0.001 \\ 0.025 \\ 0.001 \\ 0.025 \\ 0.001 $		0.001														
$\begin{array}{c} 0.025 \\ 0.010 \\ 18.0 & 16.7 & 16.0 & 15.5 & 15.2 & 15.0 & 14.8 \\ 14.5 & 14.4 \\ 14.2 & 14.0 \\ 13.8 & 13.7 \\ 13.5 \\ 0.001 \\ 61.2 & 56.2 & 53.4 & 51.7 & 50.5 & 49.7 & 49.0 \\ 48.0 & 47.4 & 46.8 & 46.1 \\ 45.4 & 44.9 & 44.1 \\ 5 \\ 0.100 \\ 3.78 & 3.62 & 3.52 & 3.45 & 3.40 & 3.37 & 3.34 \\ 3.30 & 3.27 & 3.24 & 3.21 & 3.17 & 3.15 & 3.10 \\ 0.050 \\ 5.79 & 5.41 & 5.19 & 5.05 & 4.95 & 4.88 & 4.82 & 4.74 & 4.68 & 4.62 & 4.56 & 4.50 & 4.44 & 4.36 \\ 0.025 \\ 8.43 & 7.76 & 7.39 & 7.15 & 6.98 & 6.85 & 6.76 & 6.62 & 6.52 & 6.43 & 6.33 & 6.23 & 6.14 & 6.02 \\ 0.010 \\ 13.3 & 12.1 & 11.4 & 11.0 & 10.7 & 10.5 & 10.3 & 10.1 & 9.89 & 9.72 & 9.55 & 9.38 & 9.24 & 9.02 \\ 0.001 \\ 37.1 & 33.2 & 31.1 & 29.8 & 28.8 & 28.2 & 27.6 & 26.9 & 26.4 & 25.9 & 25.4 & 24.9 & 24.4 & 23.8 \\ 6 & 0.100 \\ 3.46 & 3.29 & 3.18 & 3.11 & 3.05 & 3.01 & 2.98 & 2.94 & 2.90 & 2.87 & 2.84 & 2.80 & 2.77 & 2.72 \\ 0.050 \\ 5.14 & 4.76 & 4.53 & 4.39 & 4.28 & 4.21 & 4.15 & 4.06 & 4.00 & 3.94 & 3.87 & 3.81 & 3.75 & 3.67 \\ 0.025 \\ 7.26 & 6.60 & 6.23 & 5.99 & 5.82 & 5.70 & 5.60 & 5.46 & 5.37 & 5.27 & 5.17 & 5.07 & 4.98 & 4.85 \\ 0.010 \\ 10.9 & 9.78 & 9.15 & 8.75 & 8.47 & 8.26 & 8.10 & 7.87 & 7.72 & 7.56 & 7.40 & 7.23 & 7.09 & 6.88 \\ 0.001 \\ 27.0 & 23.7 & 21.9 & 20.8 & 20.0 & 19.5 & 19.0 & 18.4 & 18.0 & 17.6 & 17.1 & 16.7 & 16.3 & 15.7 \\ 7 & 0.100 \\ 3.26 & 3.07 & 2.96 & 2.88 & 2.83 & 2.78 & 2.75 & 2.70 & 2.67 & 2.63 & 2.59 & 2.56 & 2.52 & 2.47 \\ 0.050 \\ 4.74 & 4.35 & 4.12 & 3.97 & 3.87 & 3.79 & 3.73 & 3.64 & 3.57 & 3.51 & 3.44 & 3.38 & 3.32 & 3.23 \\ 0.025 \\ 6.54 & 5.89 & 5.52 & 5.29 & 5.12 & 4.99 & 4.90 & 4.76 & 4.67 & 4.57 & 4.47 & 4.36 & 4.28 & 4.14 \\ 0.010 \\ 9.55 & 8.45 & 7.85 & 7.46 & 7.19 & 6.99 & 6.84 & 6.62 & 6.47 & 6.31 & 6.16 & 5.99 & 5.86 & 5.65 \\ 0.001 & 21.7 & 18.8 & 17.2 & 16.2 & 15.5 & 15.0 & 14.6 & 14.1 & 13.7 & 13.3 & 12.9 & 12.5 & 12.2 & 11.7 \\ 8 & 0.100 & 3.11 & 2.92 & 2.81 & 2.73 & 2.67 & 2.62 & 2.59 & 2.54 & 2.50 & 2.46 & 2.42 & 2.38 & 2.35 & 2.29 \\ 0.050 & 4.46 & 4.07 & 3.84 & 3.69 & 3.58 & 3.50 & 3.44 & 3.35 & 3.28 & 3.22 & 3.15 & 3.08 & 3.02 & 2.93 \\ 0$	4															
$\begin{array}{c} 0.010 & 18.016.716.015.515.215.014.814.514.414.214.013.813.713.5\\ 0.001 & 61.256.253.451.750.549.749.048.047.446.846.145.444.944.1\\ 5 & 0.100 & 3.783.623.523.453.403.373.343.303.273.243.213.173.153.10\\ 0.050 & 5.795.415.195.054.954.884.824.744.684.624.564.504.444.36\\ 0.025 & 8.437.767.397.156.986.856.766.626.526.436.336.236.146.02\\ 0.010 & 13.312.111.411.010.710.510.310.19.899.729.559.389.249.02\\ 0.001 & 37.133.231.129.828.828.227.626.926.425.925.424.924.423.8\\ 6 & 0.100 & 3.463.293.183.113.053.012.982.942.902.872.842.802.772.72\\ 0.050 & 5.144.764.534.394.284.214.154.064.003.943.873.813.753.67\\ 0.025 & 7.266.606.235.995.825.705.605.465.375.275.175.074.984.85\\ 0.010 & 10.99.789.158.758.478.268.107.877.727.567.407.237.096.88\\ 0.001 & 27.023.721.920.820.019.519.018.418.017.617.116.716.315.7\\ 7 & 0.100 & 3.263.072.962.882.832.782.752.702.672.632.592.562.522.47\\ 0.050 & 4.744.354.123.973.873.793.733.643.573.513.443.383.323.23\\ 0.025 & 6.545.895.525.295.124.994.904.764.674.574.474.364.284.14\\ 0.010 & 9.558.457.857.467.196.996.846.626.476.316.165.995.865.65\\ 0.001 & 21.718.817.216.215.515.014.614.113.713.312.912.512.211.7\\ 8 & 0.100 & 3.112.922.812.732.672.622.592.542.502.462.422.382.352.29\\ 0.050 & 4.464.073.843.693.583.503.443.353.283.223.153.083.022.93\\ 0.025 & 6.065.425.054.824.654.534.434.294.204.104.003.893.813.67\\ 0.010 & 8.657.597.016.636.376.186.035.815.675.525.365.205.074.86\\ \end{array}$																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_															
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5															
$\begin{array}{c} 0.010 & 13.312.111.411.010.710.510.310.19.899.729.559.389.249.02\\ 0.001 & 37.133.231.129.828.828.227.626.926.425.925.424.924.423.8\\ 6 & 0.100 & 3.463.293.183.113.053.012.982.942.902.872.842.802.772.72\\ 0.050 & 5.144.764.534.394.284.214.154.064.003.943.873.813.753.67\\ 0.025 & 7.266.606.235.995.825.705.605.465.375.275.175.074.984.85\\ 0.010 & 10.99.789.158.758.478.268.107.877.727.567.407.237.096.88\\ 0.001 & 27.023.721.920.820.019.519.018.418.017.617.116.716.315.7\\ 7 & 0.100 & 3.263.072.962.882.832.782.752.702.672.632.592.562.522.47\\ 0.050 & 4.744.354.123.973.873.793.733.643.573.513.443.383.323.23\\ 0.025 & 6.545.895.525.295.124.994.904.764.674.574.474.364.284.14\\ 0.010 & 9.558.457.857.467.196.996.846.626.476.316.165.995.865.65\\ 0.001 & 21.718.817.216.215.515.014.614.113.713.312.912.512.211.7\\ 8 & 0.100 & 3.112.922.812.732.672.622.592.542.502.462.422.382.352.29\\ 0.050 & 4.464.073.843.693.583.503.443.353.283.223.153.083.022.93\\ 0.025 & 6.065.425.054.824.654.534.434.294.204.104.003.893.813.67\\ 0.010 & 8.657.597.016.636.376.186.035.815.675.525.365.205.074.86\\ \end{array}$																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	c															
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O															
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																
$\begin{array}{c} 0.001 & 27.023.721.920.820.019.519.018.418.017.617.116.716.315.7\\ 7 & 0.100 & 3.263.072.962.882.832.782.752.702.672.632.592.562.522.47\\ 0.050 & 4.744.354.123.973.873.793.733.643.573.513.443.383.323.23\\ 0.025 & 6.545.895.525.295.124.994.904.764.674.574.474.364.284.14\\ 0.010 & 9.558.457.857.467.196.996.846.626.476.316.165.995.865.65\\ 0.001 & 21.718.817.216.215.515.014.614.113.713.312.912.512.211.7\\ 8 & 0.100 & 3.112.922.812.732.672.622.592.542.502.462.422.382.352.29\\ 0.050 & 4.464.073.843.693.583.503.443.353.283.223.153.083.022.93\\ 0.025 & 6.065.425.054.824.654.534.434.294.204.104.003.893.813.67\\ 0.010 & 8.657.597.016.636.376.186.035.815.675.525.365.205.074.86\\ \end{array}$																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7															
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	'															
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																
8 0.100 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.54 2.50 2.46 2.42 2.38 2.35 2.29 0.050 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.35 3.28 3.22 3.15 3.08 3.02 2.93 0.025 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.29 4.20 4.10 4.00 3.89 3.81 3.67 0.010 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.81 5.67 5.52 5.36 5.20 5.07 4.86																
0.050 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.35 3.28 3.22 3.15 3.08 3.02 2.93 0.025 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.29 4.20 4.10 4.00 3.89 3.81 3.67 0.010 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.81 5.67 5.52 5.36 5.20 5.07 4.86	8															
0.025 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.29 4.20 4.10 4.00 3.89 3.81 3.67 0.010 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.81 5.67 5.52 5.36 5.20 5.07 4.86																
0.010 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.81 5.67 5.52 5.36 5.20 5.07 4.86																
0.001 18.5 15.8 14.4 13.5 12.9 12.4 12.0 11.5 11.2 10.8 10.5 10.1 9.80 9.33		0.010	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.81	5.67	5.52	5.36	5.20	5.07	4.86
		0.001	18.5	15.8	14.4	13.5	12.9	12.4	12.0	11.5	11.2	10.8	10.5	10.1	9.80	9.33

1. Sampling (Chapter 2)

Please randomly draw two students from a group of eighteen by using Simple Random Sampling without Replacement (SRS):

- 1 Alan
- 2 Lucy
- 3 Tom
- 4 Azar
- 5 Jayne
- 6 Nadima
- 7 Matthew
- 8 Sushi
- 9 Mohammed
- 10 Rachel
- 11 Ben
- 12 Emma
- 13 Grace
- 14 Anna
- 15 Sophie
- 16 Karen
- 17 Joshua
- 18 James

Briefly describe the sampling procedure you use.

2. Plots for Quantitative Variables (Chapter 1,3,4)

The stem-and-leaf display shows the numbers of goals by Lionel A. Messi at FC Barcelona during 12 seasons of La Liga (the top professional association soccer division of the Spanish soccer league system) games from season 2004-05 to season 2015-16.

Table 1: Number of Goals (5|0 means 50)

stem	leaf
0	16
1	04
2	368
3	14
4	36
5	0

Find (a) the minimum

- (b) the maximum
- (c) the median
- (d) the mean
- (e) the interquartile range and $\,$
- (f) draw the boxplot
- (g) report whether outliers are observed.

3. Correlations and Simple Linear Regression (Chapter 5,13,14)
Total Fat versus Calories for 5 items on the Subway menu are shown in Table 2. (data source: https://www.subway.com/nutrition/nutritionlist.aspx)

Table 2: Nutrition Facts

	Fat (g)	Calories
6" Black Forest Ham	4.5	290
6" Roast Beef	5.0	320
6" Turkey Breast	3.5	280
6" Veggie Delite	2.5	230
6" Chicken Teriyaki	4.5	370

Table 3: Product of the deviations

	$ X_i $	Y_i	$X_i - \bar{X}$	$Y_i - \bar{Y}$	$(X_i - \bar{X})(Y_i - \bar{Y})$
Black Forest Ham	4.5	290	0.5	-8	-4.0
Roast Beef	5.0	320	1.0	22	22.0
Turkey Breast	3.5	280	-0.5	-18	9.0
Veggie Delite	2.5	230	-1.5	-68	102.0
Chicken Teriyaki	4.5	370	0.5	72	36.0
Sum	20	1490	0.0	0	165.0

In Table 3, the sum of product of the deviations is given, where X_i 's denote total fat and Y_i 's denote calories.

We know that the standard deviation of Total Fat content is 1.000 ($s_X = 1.000$), and the standard deviation of Calories is 51.672 ($s_Y = 51.672$).

- (a) Find the correlation between Total Fat content and Calories.
- (b) Find the ratio of the residual sum of squares SSResid to the total sum of squares SSTo.
- (c) Find the linear regression equation for predicting calories from total fat.
- (d) Test if the slope $\beta = 0$. Use the significance level $\alpha = 0.05$.

4. Bayes' Rule (Chapter 6)

At a certain gas station 50% of the customers request regular gas, 30% request plus gas, and 20% request premium gas. Of those customers requesting regular gas, 25% fill up their tanks. Of those customers requesting plus gas, 45% fill up their tanks, while of those requesting premium, 40% fill up their tanks. If the next customer fills up the tank, what is the probability that premium gas is requested?

5. Discrete Random Variables (Chapter 7)

Suppose an individual plays a gambling game where it is possible to lose \$1.00, break even, win \$3.00, or win \$5.00 each time she plays. The probability distribution for each outcome is provided by the following table:

Outcome	-\$1.00	\$0.00	\$3.00	\$5.00
Probability	0.60	0.25	0.10	0.05

- (1) Verify that the discrete probability distribution above is well-defined.
- (2) Find the mean and standard deviation of this discrete random variable.
- (3) Suppose that the casino decides that the game does not have an impressive enough top prize with the lower payouts, and decides to change the outcomes, as shown below

$$\begin{array}{cccccc} \text{Outcome} & -\$3.00 & -\$0.50 & \$7.00 & \$12.00 \\ \text{Probability} & 0.60 & 0.25 & 0.10 & 0.05 \\ \end{array}$$

Find the linear relation between new outcome and previous outcomes. Based on the relation, find the mean and standard deviation of the new random variable.

6. Sample Size (Chapter 8,9)

A Company claims its program will allow your computer to download movies quickly. We'll test the free evaluation copy by downloading a movie several times, hoping to estimate the mean download time with a margin of error of only 30 seconds. We think the standard deviation of download times is about 2.5 minutes. How many trial download must we run if we want 95% confidence in our estimate with a margin of error of 30 seconds?

7. Hypothesis Test (Chapter 10,11)

Our bodies have a natural electrical field that is known to help wounds heal. Does changing the field strength slow healing? A series of experiments with newts investigated this question. the data below are the healing rates of cuts (micrometers per hour) in a matched pairs experiment. The pairs are the two hind limbs of the same newt, with the body's natural field in one limb (control) and half the natural value in the other limb (experimental). Is there good evidence that changing the electrical field from its natural level slows healing? Choose the appropriate two-sample t-test, and use significance level 5% to answer this question.

Newt	1	2	3	4	5
Control	25	36	31	45	57
Experimental	24	33	27	42	26

8. Hypothesis Test (Chapter 10,11)

Do college students who have volunteered for community service work differ from those who have not? A study obtained data from 57 students who had done service work and 17 student who had not. One of the response variables was a measure of attachment to friends (roughly, secure relationships), measured by the the Inventory of Parent and Peer Attachment. Here are the results:

Group	Condition	n	\overline{x}	s
1	Service	57	105.32	10.68
2	No service	17	96.82	14.26

By using significance level 5%, choose the appropriate two-sample t-test to show whether college students who have volunteered for community service work differ from those who have not.

9. Categorical Data Analysis (Chapter 12)

A poker-dealing machine is supposed to deal cards at random, as if from an infinite deck. In a test, you counted 200 cards, and observed the following:

Spades: 63 Hearts: 39 Diamonds: 43 Clubs: 55

Could it be that the suits are equally likely? Use significance level $\alpha=0.05.$

10. Analysis of Variance (ANOVA) (Chapter 15)

What conditions help overweight people exercise regularly? Subjects were randomly assigned to three treatments: a single two-hour long exercise 1 day per week, two one-hour medium excise 2 days per week, and 20-minute short exercise 6 days per week. The study report contains the weight loss (in lb) after six months of treatment

Group	Number of Subjects	Weight loss
Single long exercise	3	1,2,3
Two medium exercises	2	4,6
Six short exercises	2	5, 7

Calculate (a) the overall mean response $\overline{\overline{x}}$, (b) the Mean square for treatment MSTr, (c) the Mean square for error MSE, (d) the F-statistic, (e) test if there is no difference among three exercise plans by using significance level $\alpha=5\%$, and (f) summarize your calculation by using an ANOVA table.

LIFESTYLE OPTIONS

More space

More space

End of the final exam of Stat 213 Sec HC1 (Instructor: Jiangtao Gou)