第二章 温度检测

概述

- 温度是表征物体冷热程度的物理量,温度单位是国际单位制中的七大基本单位之一,自然界中任何物理或化学过程都紧密地与温度相联系。
- 在许多生产过程中,温度测量和控制直接和安全生产、保证产品质量、提高生产效率、节约能源等重大技术经济指标联系在一起。

- 从宏观上看,温度的概念建立在热平衡基础上,即两个各自处于热平衡状态下的热力学系统相互接触,发生热交换(高温物体放热,低温物体吸热),最终达到热平衡。
- 从微观上说,物体或系统由于分子不停运动而具有内部能量。分子的平均动能越大,物体或系统的温度就越高。

温标用于表示温度的数值,它规定了温度的读数起点和测量温度的基本单位。

- 目前常用的温标有以下几种:
- 1. 摄氏温标 (°C)
- 2. 华氏温标 (°F)
- 3. 国际(协议性实用)温标 (K)

1. 摄氏温标 (°C)

- 1742年,瑞典人摄西阿斯建立。
- 规定在标准大气压下,冰的融点为零度,水的 沸点为100度。将之间划分100个等分,则每一 等分为摄氏一度。

2. 华氏温标 (°F)

- 1720年代前后,德国人华伦海特提出并建立。
- 规定在标准大气压下,冰的融点为 32°F 水的沸点为 212°F将 32° 2边间划分 18分等分,则每一等分为华氏一度。

华氏温度与摄氏温度的关系为:

$$n(^{\circ}C) = (1.8n + 32)(^{\circ}F)$$

n为摄氏温标的度数

3. 国际(协议性实用)温标

- 1927年制定了第一个国际协议性温标 (IPTS—27)
- 建立该温标的3个基本条件是:
 - 1. 尽量与理想的热力学温标靠近;
 - 2. 温度复现性要高;
 - 3. 用于复现温标的标准温度计应使用方便,性能稳定。

随着科学技术的发展,对测温精度的要求在不断提高,1927年制定的国际协议性温标已经过了多次修改(1948,1960,1968,1978)。目前使用1990年国际温标(ITS—90)。

ITS—1990规定: 热力学温度(符号为T)是基本温度,温度的单位为凯尔文(K),其大小为水的三相点热力学温度的 $\frac{1}{273.16}$ 。

固、液、气

K氏温度与摄氏温度的关系为:

t = T - 273.16

T为热力学温度 t为摄氏温度

2.1 温度检测方法

一. 测量方法的分类

- 温度不能直接加以测量,只能借助于冷热不同的物体之间的热交换,以及借助于物体的某些物理性质随冷热程度不同而变化的特性,来间接地加以测量。
- 物体的尺寸、体积、密度、粘度、电导率、光导率、热容、光辐射强度等都随温度的变化而变化,通过测量上述特性改变的大小就可以间接测量温度的高低。
- 测温方法分为:接触式测温和非接触式测温。。

1. 接触式测温

■ 测温原理:

让两个冷热程度不同的物体相接触,使得热量从高温物体传到低温物体上,直到两个物体的冷热程度完全一致(热平衡)。

测出测温物体的某一物理量(液体的体积或导体的电阻),就能得出被测物体的温度。

■ 对用于测温的物体的物理性质的要求是:

能连续、单值地随温度变化,且有较好的复现性。

优点:

- 直观、可靠;
- 测量精度高。

缺点:

- 因必须与被测介质接触,容易影响被测温度场的分布,带来测量误差;
- 在受到限制不能与被测介质充分接触时, 由于检测元件的温度与被测温度不一致 而带来误差;
- 若被测介质为高温或有腐蚀性,对测温 元件的寿命有很大影响。
- 存在滞后时间。

常用的接触式测温仪表:

1. 膨胀式温度计

(玻璃液体温度计、双金属温度计)

- 2. 压力式温度计
- 3. 热电偶温度计
- 4. 热电阻温度计

2. 非接触式测温

■ 热辐射原理:

凡温度高于绝对零度的物体,均会以热辐射的 形式发射或吸收一定的能量。

物体的热辐射能量随其温度的变化而变化。

■ 非接触式的测温方法利用热辐射原理进行测温, 测温元件不需与被测介质接触。

优点:

- 测温范围广(仪表的测温上限不受传感 器材料的熔点限制);
- 反应速度快(传感器不必和被测介质达到热平衡);
- 不会破坏被测物体的温度场,从而可以 测量运动物体的温度;
- 灵敏度较高,在一定的应用环境下,精度较好。

缺点:

在受到物体的发射率、对象到仪表之间的距离、烟尘和水蒸汽等介质的影响时,测量误差较大。

非接触式测温仪表:

- 1. 辐射式温度计
- 2. 亮度温度计
- 3. 比色温度计
- 4. 红外测温仪

测温方式	类别和仪表		测温范围 (℃)	作用原理	使用场合
	膨胀式	玻璃液体	-100~600	液体受热时产生热膨胀	轴承、定子等处的温度 作现场指示
		双金属	-80~600	两种金属的热膨胀差	
		气体	-20~350	封闭在固定体积中的气体、	用于测量易爆、易燃、
接触式	压力式	蒸汽	0~250	液体或某种液体的饱和蒸	振动处的温度,传送
		液体	-30~600	汽受热后产生体积膨胀或	离不很远
				压力变化	
	热电类	热电偶	0~1600	热电效应	液体、气体、蒸汽的中高温,能远距离传送
	热电阻	铂电阻	-200~850	导体或半导体材料受热后	液体、气体、蒸汽的中
		铜电阻	-50~150	电阻值变化	低温,能远距离传送
		热敏电阻	-50~300		
	其他电学	集成温度传感	-50~150	半导体器件的温度效应	
		器			
		石英晶体温度	-50~120	晶体的固有频率随温度变	
		।		化	
	光纤类	光纤温度传感	-50~400	光纤的温度特性或作为传	强烈电磁干扰、强辐
		器		光介质	的恶劣环境
		光纤辐射温度	200~4000		
		।			
	辐射式	辐射式	400~2000	物体辐射能随温度变化	用于测量火焰、钢水
非接触式		光学式	800~3200		不能接触测量的高温
		比色式	500~3200		合

2.2 热电偶温度计

- 热电偶温度计利用热电效应来测量温度,即由冷端温度固定的热电偶产生热电势,通过导线与测量仪表组成闭合回路,测出电流或电势的大小就可知温度的高低。
- 热电偶温度计的优点:
 - ※ 测量范围广(-200~2800°C);
 - 。便于远距离测量、自动记录等操作;
 - 热电偶可做成各种形式,以适应各种测量要求;
 - 。结构简单,可应用的材料广泛,制造容易。

热电效应(Seebeck效应):

将两种不同材料的导体 组成一个封闭回路,如果两端结点的温度不同,回路中就会产生一定大小的热电势。这种现象称为热电效应。

一. 热电偶温度计的组成及工作原理

热电偶由两根不同 材料的导体或半导体 组成,其中的一端焊 接在一起,插在被测 温的设备中, 故称作 为热电偶的热端(测 量端)。热电偶的另 一端称为冷端(参比 端),通过导线连接 到测量仪表上去。

最简单的热电偶测温系统

工作原理:

当热端温度(t)与冷端温度(t₀)不相等时,就会产生热电势,其大小是热电偶材料及冷热端温差的函数。只要保持冷端温度(t₀)不变,热电势就只与热端温度(t)有关。用仪表测出热电势的大小,便可知被测温度。

温差电势

接触电势

温差电势:

当同一导体两端的温度不同时,由于高温端的电子能量较大,因而有较多的电子跑向低温端,结果在高、低温端之间就形成一个静电场(方向为高温端指向低温端),使导体的两端有一个电位差,称为温差电势。

$$e_{A}(t,t_{0}) = \frac{K}{e} \int_{t_{0}}^{t} \frac{1}{N_{A}} \cdot \frac{d(N_{A} \cdot t)}{dt} dt = \int_{t_{0}}^{t} \sigma_{A} dt$$

$$e_B(t,t_0) = \frac{K}{e} \int_{t_0}^t \frac{1}{N_B} \cdot \frac{d(N_B \cdot t)}{dt} dt = \int_{t_0}^t \sigma_B dt$$

电场方向 ———→

e---单位电荷

N---电子密度

K---波尔茨曼常数

 σ ---导体的汤姆逊系数

 t_{0}

电子扩散方向

接触电势:

当两种不同的导体相接触时,由于电子的密度不同, 向对方扩散的速率就不同,从而在接触面上形成一个静 电场(方向为密度大的导体指向密度小的导体),使导 体之间有一个电位差,称为接触电势。

$$e_{AB}(t) = \frac{kt}{e} \cdot \ln \frac{N_{At}}{N_{Bt}}$$

$$e_{AB}(t_0) = \frac{kt_0}{e} \cdot \ln \frac{N_{At_0}}{N_{Bt_0}}$$

e---单位电荷

N---电子密度

k---波尔茨曼常数

电场方向

电子扩散方向

假定:

导体A的电子密度大于导体B的电子密度 $(N_A > N_B)$;

两个结点的温度为 t 和 t_0 , 且 $t > t_0$ 。

回路中的总电势:

$$\begin{aligned} E_{AB}(t,t_0) &= e_{AB}(t) + e_{B}(t,t_0) - e_{AB}(t_0) - e_{A}(t,t_0) \\ &= \frac{kt}{e} \ln \frac{N_{At}}{N_{Bt}} + \int_{t_0}^{t} \sigma_B \cdot dt - \frac{kt_0}{e} \ln \frac{N_{At_0}}{N_{Bt_0}} - \int_{t_0}^{t} \sigma_A dt \end{aligned}$$

注意:

- 1. 由于接触电势大于温 差电势,且 $t>t_0$,电势 方向由 $e_{AB}(t)$ 所决定。
- $e_{AB}(t)$ 的注脚 AB 的 顺序代表电位差的方向,如果顺序颠倒,则电位差的符号也要改变,即:

$$e_{AB}(t) = -e_{BA}(t)$$

$$E_{AB}(t,t_0) = \frac{kt}{e} \ln \frac{N_{At}}{N_{Bt}} + \int_{t_0}^t \sigma_B \cdot dt - \frac{kt_0}{e} \ln \frac{N_{At_0}}{N_{Bt_0}} - \int_{t_0}^t \sigma_A dt$$

不同材料制成的热电偶, 在相同的温度下产生的 热电势是不同的。

从公式中可知,在材料一定的情况下, 回路中的热电势就仅与两个结点的温度有关, 即:

$$E_{AB}(t,t_0) = f(t) - f(t_0)$$

如果将一端(冷端)的温度(t_0)固定,回路中的热电势就与另一端(热端)的温度成单值函数,即:

$$E_{AB}(t,t_0) = f(t) - c = \varphi(t)$$

若 $t_0 = 0$ °C ,则测出的热电势完全与被测温度相对应(查热电偶分度表)。

二. 热电偶的基本定律

1. 中间导体定律

- 在热电偶回路中接入第三种材料的导线C时,只要C的两个端点温度相同,回路中的总电势不变。
- 可以在回路中引入各种用以测量热电势的导线和仪表,而不会对测量产生影响。

证明:

$$\frac{E_{ABC}(t,t_o)}{E_{ABC}(t,t_o)} = e_{AB}(t) + e_{B}(t,t_0) + e_{BC}(t_0) + e_{C}(t_0,t_0) + e_{CA}(t_0) - e_{A}(t,t_0)$$

$$= e_{AB}(t) + e_{B}(t,t_0) + e_{BC}(t_0) + e_{CA}(t_0) - e_{A}(t,t_0)$$

$$e_{BC}(t_0) + e_{CA}(t_0) = e_{BA}(t_0) = -e_{AB}(t_0)$$

$$e_{BC}(t_0) = rac{kt_0}{e} \cdot \ln rac{N_{Bt_0}}{N_{Ct_0}}$$
 $e_{CA}(t_0) = rac{kt_0}{e} \cdot \ln rac{N_{Ct_0}}{N_{At_0}}$

$$E_{ABC}(t,t_0) = e_{AB}(t) + e_{B}(t,t_0) - e_{AB}(t_0) - e_{A}(t,t_0)$$

2. 均质导体定则

由一种均质导体组成的闭合回路,不论导体的截面和长度以及其温度分布如何,都不能产生热电势。

一种均质导体不能构成热电偶。

$t = t_0$ $t = t_0$ $1800^{\circ}C$ $t = t_0$

3. 中间温度定律

热电偶的热电势只与端点温度有关,而与A、B 材料的中间温度无关,即:

$$E_{AB}(t,t_{0}) = E_{AB}(t,t') + E_{AB}(t',t_{0})$$

该定律使热电偶与补偿导线的连接问题得以解决。

三. 热电偶冷端温度的处理办法

$$E_{AB}(t,t_0) = \frac{kt}{e} \ln \frac{N_{At}}{N_{Bt}} + \int_{t_0}^t \sigma_B \cdot dt - \frac{kt_0}{e} \ln \frac{N_{At_0}}{N_{Bt_0}} - \int_{t_0}^t \sigma_A dt$$

只有当冷端温度保持恒定时, $E_{AB}(t,t_0)$ 才是 t 的单值函数。

需要处理冷端温度的理由:

- 热电偶是用贵金属制成,不可能做得很长,因此其冷端就在热端的附近,无法不受热端温度的影响;
- 冷端暴露在空间,很容易受环境温度的影响。
- 各种热电偶的分度表均是在冷端温度为0°C的条件下,得到的热电势与温度之间的关系。而在工业上使用时,要使热电偶的冷端保持在0°C是比较困难的。

- 冷端温度处理要解决两个问题:
 - 。冷端温度不稳定;
 - 。冷端温度不为零。

冷端温度的处理措施:

- 计算修正法
- 冰点法
- 仪表零点校正法
- 补偿电桥法

补偿导线延伸

补偿 导线

热电偶 的冷端

对补偿导线的要求:

- 用廉价金属制成;
- 在一定的温度范围内($0 \sim 100^{\circ}C$)具有与所连接的热电偶有相同或十分相近的热电性能。

使用补偿导线时应注意:

- 1. 热电偶的冷端温度 t_0 必须小于 $100^{\circ}C$,否则会因热电特性不同而带来测量误差。
- 2. 新的冷端温度 t_0 必须恒定,否则将使补偿导线失去其应有的作用。
- 3. 与合适的热电偶相配合。

计算修正法

中间温度定律

$$E_{AB}(t,t_{0}) = E_{AB}(t,t') + E_{AB}(t',t_{0})$$

虽然采用补偿导线后,热电偶的冷端温度已经恒定,但只要不等于零,仪表测得的热电势就小于被测温度相对应的电势,故必须加以修正,以求得真实的温度。

根据中间温度定律,有:

$$E_{AB}(t,0) = E_{AB}(t,t_0) + E_{AB}(t_0,0)$$

$$E_{AB}(t,t_0) = E_{AB}(t,0) - E_{AB}(t_0,0)$$

$$E_{AB}(t,t_0) = E_{AB}(t,0) - E_{AB}(t_0,0)$$

仪表测到 的电势

与冷端温度对应的电势

与被测温度对应的电势:

$$E_{AB}(t,0) = E_{AB}(t,t_0) + E_{AB}(t_0,0)$$

"常用热电偶分度表"是根据冷端温度为 $0^{\circ}C$ 时的热电偶的温度—热电势的关系曲线加以分度后得出的。利用该表,查出 $E_{AB}(t_0,0)$,就可以进行修正了。

例题:

某镍铬-镍硅热电偶(分度为K)的冷端温度 $t_0 = 30^{\circ}C$,测得的热电势为 $E(t,t_0) = 39.168mV$,求被测的真实温度。

解:

在分度表中查得 $E(30^{\circ},0) = 1.203mV$ $E(t,0) = E(t,t_0) + E(t_0,0)$ = 39.17 + 1.20 = 40.37mV

再查热电偶分度表,得到实际温度为 $977^{\circ}C$ 。

附表 1-2 镍链-镍钴热电偶分度表

(多比暗器度为のし)

7 PM

SER	(40 s K		-							-
展展/化	- min/	L-SHIES	L inn	11111	. 热电动	W/aV	11 300	554		
10000	0.00	diam	Ass	1.811		1.2	1:50	120	1/8.13	(8)
55270	-1458	1,50001	136Kt1				0.60000		2000	186
-260	-660	-5444	75446	-99.60	77,6400	-6452	118423	=:6455	=6434	-6457
11,250	75834	-541E	-9413	-3417	-1433	- 6425°	2.6429	78487	-5435	-9438
										4341
7299	75266	-80II	715358	-6354	-6371	-16177	75367	-5388	-5394	-6399
=230	755562	~8271	6050	-5289	-6297	16306	=6314	-4322	-6329	-6337
- 220	-56138	-6170	-6181		-8202	-6313	-8223	-(11)	-6243	-6233
-210	-4000	-0168	6063	-9074	8097	-0099	*******	-9113	-6135	-6167
±200	-1881	1997	-3112	1994:	-9964	-1992	-3889	1989	-9001	-8021
SHEET.	79111	19501	FEELS	STREET.	7000	- 46500	24000	10000	12777	-985
1,190	-5730	-5747	-5763	-578)	-1239	73813	7,5829	-1,5845	-5860	-5876
1180	15555	-5569	~10087	-560A	-0624	-3440	-1860	4584	-5696	-3212
-110	~5354	-51114	-5384	-1414	-1434	7,5464	-1474	75499	5512	-3231
-160	-3140	-5143	-1185	-5207	-3226	-330	-1275	-5292	-5353	-5333
1180	-1993	-4534	71.655.5	-1147	7 5005	- 5029	11,2963	7887	-\$097	-7110
MAN THE REAL PROPERTY.	PM551	- 30000	-4719	50000	177424	1990	19900	20039	- P1622	20000
-140	7,8869	- 8694		-00	-4768	-4781	754817	-14841	-1945	-1000
= 130	-4430	-681T -8196	4443	-4480	-4515 -4248	-4541	~4147 ~4303	-4588 -4530	- A113	-4384
- 120	-14138		-14393	-4321		- 4274				
-110	-3833	-3881	-3910	-3939	-3568	-2997	-4025	-4053	-4082	-4110
- 100	~3555	-3584	~3614	-366	-3674	-3394	-3734	-3164	-3193	-1613
245	2000	-3214	- 19904	-3331	-1368	14401	25655	- 1999	-3492	-3533
C 10	3343	-2053	- 3305		- 3060	-3399	-3430	-3411		-1211
	-2930		-2385	-3018		-3062	-3111	71147	-1119	
进程(-2584	-2620	-2654	-2687	-2121	-2753	-2786	-333	-2934	-2687
-80	- 2243	-2077	-2312	-1347	-2381	-1414	- 1450	- 1444	-1511	-2552
250	~1559	-1925	-:1961	-1104	-2032	-,2067.	-2302	-1111	-2173	-3306
1000	19942			Table.	.74144	/112	F11170	79944	7000	-7000
77.00	-1537	-1163	-1601	-1536	-1573	-1105	-1745	-III	-1817	-1851
730	-1134	-1193	-1211	-1768	~1305	-1141	-11129	-1414	-1453	-1490
7520	=777	-305	-854	- 101	-930	-348	- 3005	-2043	-1061	-1118
THE	-392	- 01	-109	-108	-547	-180	-626	-117	-701	-738
.0	1200	0.28	-19	-111	-117	-101	-334	- MIN	-314	-353
100	190	1947	787	1444	138	Visit	20000	ment of	317	1000
	297	39	107	117		198	ZIK	277		357 758
10		437		107	207		- NAT	877	TIN:	
383	739	K28	323	MAX	360	1000	1041	1001	1122	1182
30	1,203	1244	1285	1325	1366	101	1415	1488	1529	1339
40	1611	1652	1693	1734	1175	mr.	1888	1899	1940	1981
10	2022	2061	2105	2144	2188	2229	2270	2002	2355	2394
100	2636	2477	2210	2560	2011	2511	2681	2726	2747	2609
70	2850	2862	2933	2615	3016	3008	3100	100	3310	3224
100	3266	330T	3349	3200	1612	3473	3575	3058	3796	1439
		3722	2764	2803		2888		3971	4012	4054
10	3681	1111	11000	2403	3847	1111	3930	1001	1357	Same.
100	4000	(11)7	4119	4219	4907	4302	00	(20)	6426	6467
1100	4508	6549	8590.	4632	4673	4714	4750	6796	4637	4379
120	4919	8960	5001	5047	5083	5124	5564	5205	5246	3297
130	5307	5363	5409	5430	5490	5551	357T	5612	5452	5693
140	5733	5774	5814	5855	5895	5836	5974	6014	6007	6097
140	7177			2000	2000	1000	251.5	100	9997	
2007	4137	4177	4218	4258	6258	6118	-6376	6419	6406	6499
160	6539	6579	6619	6639	6599	6739	6779	6819	6859	4305
170	6939	6979	7019	1059	7099	7139	7179	7719	72591	7299
180	7838	7378	7418	7458	7.610	7538	2378	2618	7658	7692
190	TEXT	7777	7617	7657	7897	7831	TALL.	BULT	8057	8097
The same	2000	20000	1910	1000	TOTAL CO.	Contract of	7000	LUNCON.	1000	300
200	8137	RITT	8216	8256	6294	6336	A376	8416	6456	8497
210	8537	ASTT	8617	8857	6697	9737	8777	SELT	8857	6856
210		8078		9018	9099		9579	9220	9090	1300
	89391		9018			9139				
230	9341	0381	9423	9443	9502	9543	9583	9404	1004	10105
240	9745	PALE	1926	9867	9907	3948	9989	10029	10070	10111
250	500531	10132	10233	SUZZA	36333	10352	10396	1007	10478	10579
5.00	PART	THE PARTY.	French	Just 4	Tells	1035	Total .	DIESE	10415	10010

			- 1	黑色和原	世世紀世	D 2-1 B	III.			续表
度/℃				16076	热电动	势/gV	41			4
	- 0	1	2	3	4	5	6	Total	8.	9
260	10560	10600	10541	10682	10723	10764	10805	10846	10887	10928
270	10969	11010	1105	11093	11134	11175	11216	11257	11298	11339
280	11381	11422	11463	11504	11546	11587	11628	11669	11711	11753
290	11793	11835	13876	11918	11959	12000	12042	12083	12125	12160
300	12207	12249	12290	12332	12373	12415	12456	12498	12539	12581
310	12523	12564	12706	12747	12789	12831	12872	12914	12955	12997
320	13039	13080	13122	13164	13205	13247	13289	13331		
330	13456	13497	13539	13581	13623	13665	13706	13748	13372	1341
340	13874								13790	13832
340	13874	13915	13957	13999	14041	14083	14125	14167	14208	14250
350	14292	14334	14376	14418	14460	14502	14544	14586	14628	14670
360	14712	14754	14795	14838	14880	14922	14964	15006	15048	15090
370	15132	15174	15216	15258	15300	15342	15384	15426	15468	15510
380	15552	15594	15636	15679	15721	15763	15805	15847	15889	15931
390	15974	16016	16058	16100	18142	16184	16227	16269	16311	16353
100	1 1000	11000	1	2000	1000	No.	200	20000	1700	133
400	16395	16438	16480	16522	16564	16607	16649	16691	16783	16776
410	16818	16860	16902	16945	16987	17029	17072	17114	17156	17199
420	17241	17283	17326	17368	17410	17453	17495	17537	17580	17622
430	17664	17707	17749	17792	17834	17876	17919	17961	18004	18046
440	18088	18131	18173	18216	18258	18301	18343	18385	18428	18470
450	18513	18555	18598	18640	18683	1725	18768	18810	38853	18895
450	18938	18980	19023	19065	19108	19150	19193	19235	19278	19320
470	19363	19405	19448	19490	19533	19576	19618	19661	19703	19746
480	19788	19831	19873	19910	19959	20001	20044	20086	20129	20172
490	20214	20257	20299	20342	20385	20427	20470	20512	20555	20598
		11111			TROP -	2000000	130000	70.000	002000	
500	20540	20683	20725	20768	20811	20853	20896	20938	20981	21024
510	21066	21109	21152	21194	21237	21280	21322	21365	21407	21450
520	21493	21535	21578	21621	21663	21706	21749	21791	21834	21876
530	21919	21962	22004	22047	22090	22132	22175	22218	22260	22303
540	22346	22388	22431	22473	22516	22559	22601	22644	22687	22729
550	22772	22815	22857	22900	22942	22985	23028	23070	23113	23156
560	23198	23241	23284	23326	23369	23411	21454	23497	23539	23582
570	23624	23667	23710	23752	23795	23837	23880	23923	23965	24008
580	24050	24093	24135	24178	24221	24263	24306	24348	24391	24434
590	24476	24519	24561	24604	24646	24689	24731	24774	24817	24859
7081			2000						720	1045
600	24902	24944	24987	25029	25072	25114	25157	25199	25242	25284
610	25327	25369	25412	25454	25497	25539	25582	25624	25666	25709
620	25751	25794	25836	25879	25921	25964	26006	26048	26091	26133
630	26176	26218	26260	26303	26345	26387	26430	26472	26515	26557
640	26599	26642	26684	26726	26769	26811	26853	26896	26938	26980
650	27022	27065	27107	27149	27192	27234	27276	27318	27361	27403
660	27445	27487	27529	27572	27614	27654	27598	27740	27783	27825
670	27867	27909	27951	27993	28035	28078	28120	28162	28204	28246
680	28288	28330	28372	28414	28456	28498	28540	28583	28625	28667
690	28709	28751	28793	28835	28877	28919	28961	29002	29044	29086
		- 0.00		100000		1000		16000		
700	29128	29170	29212	29254	29296	29338	29380	29422	29464	29505
710	29547	29589	29631	29673	29715	29756	29798	29840	29882	29924
720	29965	30007	30049	30091	30132	30174	30216	30257	30299	30341
730	30383	30424	30466	30508	30549	30591	30532	30674	30716	30757
740:	30799	30840	30582	30924	30965	31007	31049	31090	31131	31173
750	31214	31256	31297	31339	31380	31422	31463	31504	31546	91600
760	31629	31670	31712	31753	31794		31877			31587
770	32042	32084			32207	31836		31918	31960	32001
780	32455	32084	32125	32166 32578		32249	32290	32331	32372	32414
790	32866	32907	32537 32948	32978	32619 33031	32661 33072	32702 33113	32743 33154	32784 33195	32825 33236
1800	0.000	46.00	00,000	94599	99/31	SHIP IN	09110	99104	99190	33235
800	33277	33318	33359	33400	33441	33482	33523	33564	33604	33645
810	33686	33727	33768	33809	33850	33891	33931	33972	34013	34054

					热电流	90 / hV				
温度/30十	0.		10 321 6	HOADER	11 16 1	3	924 10	7	- 8 -	9
620	34095	34336	34176	34217	14238	34297	14339	34380	34421	34461
					34665	34705	34746	34787	34827	34868
830	34102	34543	34583	24424					35233	35273
840	34109	34949	34990	35000	35071	35111	35152	35192	30200	20014
721			1000000		THE STATE OF	102150		Table	Train	2000
850	35314	35354	35395	35435	35476	35516	35557	33197	35637	35678
860	35718	35758	35799	35839	35880	35920	35960	36000	36041	36081
870	36121	36162	36202	36242	36282	35323	36363	36403	36443	36483
880	36524	36564	36604	36644	36584	36734	36764	36804	36844	35885
890	34925	36965	37006	37045	37085	37125	37165	37205	37245	37285
470			Carnel		30.000					1000
900	37325	17365	37405	37445	37484	37524	37564	37604	37644	37684
				37843	37883	37523	37963	38002	38042	38082
910	37724	37764	17803				38360	38400	38439	38479
920	38122	38162	38201	38241	18281	38320				
930	38519	38558	38598	38638	38677	38717	38756	38796	38836	38875
940	38915	38954	38991	29033	10073	30332	39152	39191	39231	39270
			59100							DESCRIPTION
950	39310	39049	39388	139428	29462	39507	39546	39585	39625	39664
960	39703	20743	39782	25821	39861	39900	39939	39979	40018	40057
970	40096	40136	40175	40214	40253	40292	40332	40371	40410	40449
					40543	40684	40723	40762	40801	40840
980	40488	40527	40566	40605						41230
990	40879	4091X	40957	40995	41035	41074	41113	43152	41191	41.630
1000			NAME OF TAXABLE			No.	- 40000	1000000	100000	2000
3000	41269	41308	41347	11385	STATE	0.1603	41502	41541	41580	41619
1010	41657	41696	41735	41783	613135	43923	41800	41929	41968	42006
1020	42045	42084	42123	42161	42200	42239	42277	42316	42355	42393
3030	42432	42470	42509	42548:	42586	42629	42663	42702	42740	42777
			42894	42933	42971	43030	43048	43087	43125	43164
1010	42817	(2856.	42826	ALCOHO:	627/3/	- ANOND	49000	(According	- Section	40101
Total .					40000	42264	43433	47147	43509	43547
1050	43202	43240	43279	-4331T	63356	43394	43432	43471		
1060	43585	43624	43662	43700	43370	43777	43815	43853	(389)	43930
1070	43969	44006	66066	44082	40121	44159	-64197	44235	44273	44311
1080	44349	44387	44425	411655	64501	44539	64577	44615	44653	44691
1090	44729	44767	44805	448.02	64881	44919	64957	44995	45033	45070
Control	10000	13 Ba 27 b	- 150000	001035	1192010					100
1100	45109.	45146	45184	43222	45260	45297	45333	45373	45411	45448
						45675	45712	45710	45787	45625
1110	45486	45524	45561	45599	45637					46201
1120	45863	45900	41938	45975	46913	46051	46088	46126	46163	
1130	46238	46275	46313	45350	66388	46425	46463	46500	46537	46575
1140	46632	46649	4668T	46724	46763	46799	46836	46873	46910	46948
			10000						and the same	
1150	46985	47022	A7055	47096	67113	47170	47208	47245	47282	47319
1160	47356	47393	47430	47458	67505	47542	47579	47616	41653	47685
	67726	47763	1750e	17837	47874	47911	67948	47385	48001	48058
1170							48316	48352	48389	45426
1180	48093	48132	68168	48205	68242	48279				
1190	48462	48459	48534	48572	48609	48645	48682	48719	48755	48793
197417			NAME OF TAXABLE PARTY.		13.1033		MARKET	ACCURAGE S	775551	1,000
1200	48828	48865	48903	48937	88974	49010	45047	49083	49120	49156
1210	49192	49229	49265	49301	49338	49374	49410	49446	49483	49515
1220	49555	49591	49627	49663	49700	49736	49722	49808	49844	41884
1230	49916	49952	49688	50024	50060	50095	50132	50168	50204	50240
1240		50311	50347	50383	50419	58455	50491	50526	50562	50598
10.60	50276			24400	20412	1000	11220		100 700	
SEAN S	(Salary)	dance.	2222	Sec. 1	50776	50812	50847	50885	50919	50954
1250	50633	50669	38706	50741						
1260	50990	52025	33061	51096	51132	55167	51203	51238	SESTA	51300
1270	51344	51380	31415	31450	51486	51521	51556	51592	51627	51663
1280	51697	51733	81768	51803	51838	51873	51908	51963	51979	52014
1290	52049	52084	32119	52154	52189	52224	52259	52294	52329	52364
della .				1416.5	18600	00000	00.000	cooke	40000	2300
1300	52398	52433	32458	52503	52538	52573	52608	52642	52677	52711
					52886	52920	52955	52989	53024	53059
1310	52747	52781	13816	52851						53404
1320	53093	33128	53162	51197	53233	53266	53301	53335	53370	
1330	53439	53473	53507	53542	53576	53611	53645	53679	53714	53743
1340	53782	53817	13851	53885	53920	53954	53988	54022	54057	5409
97.000	10874	13231	13830	150900	1000	1 89.35	0635	17360331	20000	5-900
1350	54125	54159	54193	54228	54262	54296	54330	54364	54398	54433
2000		54501	14335	54569	54603	54637	54671	54705	54739	54727
1360	54466									

冰浴法

在实验室中常常采用冰浴法,即将热电偶的冷端放在盛有绝缘油的试管中,再把试管浸在装满冰水混合物的容器内,使冷端温度恒定在 $0^{\circ}C$,以免去每次要查表修正的麻烦。

补偿电桥法

在不能满足冷端温度恒定的情况下,采用补偿电桥法可以自动补偿冷端温度波动时带来的误差。

常的内补电

补偿原理:

$$E_o = U_{ab} + E = U_{ab} + E(t,0) - E(t_0,0)$$

当电桥处于平衡,即桥路输出电压 U_{ab} 为零时,电桥对仪表的读数不产生影响。

$$R_{C_u} = R_1 = R_2 = R_3 = 1\Omega$$

常的内补电用低阻偿桥

$$E_o = U_{ab} + E = U_{ab}^{\uparrow} + E(t,0) - E(t_0,0)$$

冷端温度发生变化时,铜电阻的阻值发生变化,在电桥的对角线上产生一个不平衡电压,叠加在热电偶的热电势上,一起送到测量仪表去。

如果设计得当,可以使电桥产生的不平衡电压正好补偿因冷端温度变化而引起的热电势的变化值。

$E_o = U_{ab} + E = U_{ab} + E(t,0) - E(t_0,0)$

注意:

- 补偿电桥仅补偿了由于冷端温度变化而引起的热电势的变化量,并没有抵消电势 $E(t_0,0)$,需采取其他的补偿措施。
- 只能在一个温度点上得到完全补偿,而在其余的温度点上则是近似得到补偿。
- 通常在 20° C时,电桥平衡; 50° C时,得到完全补偿。

$$E_o = U_{ab} + E = U_{ab} + E(t,0) - E(t_0,0)$$

仪表零点校正法

将仪表的零点校正在补偿电桥平衡时的设计温度。

若 $t_0 = 20^{\circ} C$ 时电桥平衡,则仪表的零点校正在 $20^{\circ} C$ 上。

以补偿由于冷端温度不是零所减少的热电势。

在材料一定的情况下,回路中的热电势就仅 与两个结点的温度有关。

只有当冷端温度保持恒定时,回路中的热电势 才是被测温度t的单值函数。

只有当冷端温度为0时,测出的热电势完全与 被测温度相对应。

$$E_{AB}(t,t_0) = E_{AB}(t,0) - E_{AB}(t_0,0)$$

 冰点恒温法 计算修正法 仪表零点校正法 **小程之的措施 小理冷端温度**

四. 热电偶材料和结构组成

- 组成热电偶的两根热电丝称为热电极。
- 对热电极的要求:

物理、化学稳定性要高;

电阻温度系数要小、导电率要高;

组成热电偶后产生的热电势要大;

热电势与温度要有线性关系或简单的函数关系;

复现性要好;

便于加工成丝。

国际电工委员会向世界各国推荐了8种标准化热电偶

常用的热电偶材料:

铂铑 $_{10}$ -铂热电偶(分度号为S)

镍铬-镍硅热电偶(分度号为K)

镍铬-康铜热电偶(分度号为E)

1.铂铑₁₀-铂热电偶 (S)

- 由 ϕ = 0.5mm的纯铂丝和铂铑丝(90%铂,10%铑)组成。其中铂铑丝为正极,纯铂丝为负极。分度号为S。
- 测温范围: $\frac{0}{0}$ $\frac{1300°C}{1300°C}$ 在良好的使用环境下可短期测量 $\frac{1600°C}{1600°C}$.
- 铂铑 铂热电偶主要用于精密温度测量和作 基准热电偶;
- 补偿导线: 铜 铜镍。

优点:

- 复制精度较高;
- 在氧化性和中性介质中具有较高的物理、化学 稳定性;
- 测量准确度较高(±1°C)。

缺点:

- 热电势较弱;
- ▶ 材料为贵金属,成本较高;
- 在高温下易受还原性气体发出的蒸气和金属蒸气的侵害而变质。

2. 镍铬-镍硅 热电偶 (K)

- 由 $\phi = 0.5mm$ 的镍铬丝和镍硅丝组成。其中镍铬丝为正极,镍硅丝为负极。分度号为K。
- 测温范围: $0 \sim 1000^{\circ}C$ 在良好的使用环境下可短期测量 $1300^{\circ}C$ 。
- 镍铬 镍硅热电偶是工业生产中最常用的一种热电偶;
 - 补偿导线:铜 康铜。

优点:

- 复制性好;
- ▶ 产生的热电势大;
- 在氧化性和中性介质中具有较高的物理、化学 稳定性;
- 线性好;
- 价格便宜。

缺点:

- 在还原性介质中使用时,只能测量 500°C 以下的温度,否则会很快受到腐蚀;
- 测量精度偏低(±(1.5~2.5)°C),但能满足一般工业测温的要求)。

3. 镍铬 - 康铜 热电偶 (E)

• 由 $\phi = 1.2 \sim 2m$ 的镍铬丝和康铜丝组成。其中镍铬丝为正极,康铜丝为负极。分度号为E。

■ 测温范围: $0 \sim 600^{\circ}C$ 在良好的使用环境下可短期测量 $800^{\circ}C$ 。

优点:

- 热电灵敏度高;
- 价格便宜。

缺点:

- 测温范围低而且窄;
- 康铜合金易受氧化而变质;
- 由于材料的质地坚硬而不易得到均匀的 线径;
- 测量误差为 ±(1.5 ~ 2.5)°C。

常用热电偶的热电势与温度的关系曲线

4. 其他热电偶

铂铑13-铂热电偶(R)

在日本使用较多

铜 - 康铜热电偶(T)

铁 - 康铜热电偶(J)

廉价金属 热电偶

钨铼系列热电偶

超高温热电偶(2800°C)

但极易氧化

- 各种热电偶具有不同的测温范围, 且具有不同的优缺点。
- 在使用中,应根据测温范围及介质情况,选用合适的热电偶。

五. 工业热电偶的结构

从热电偶的工业产品结构来看可分为:

- 1. 普通型热电偶;
- 2. 铠装热电偶;
- 3. 表面热电偶等。

1. 普通型热电偶

- 普通型热电偶用于测量液体、气体、蒸气等介质的温度。
- 热电极:长度视需要由几毫米到几米,电极结点用对焊连接或绞绕后再焊接。
- 绝缘套管:又称绝缘子,套在电极上,以防止电极短路或电极与保护套管短路。材料有陶瓷与非陶瓷两类,前者适应高温测量。
- 保护套管: 热电极经绝缘后再装进保护管内,以防止机械 损伤或化学腐蚀,保证工作可靠,提高使用寿命。
- 接线盒: 盒内有接线端座,以方便热电偶与补偿导线的连接。另外,兼有密封和保护接线端子的作用。

注意:

- 加了套管之后,测温的滞后时间增大, 一般热电偶的时间常数为 1.5~4min, 小惯性热电偶的时间常数约为几秒。
- $1000^{\circ}C$ 以下使用金属保护管, $1000^{\circ}C$ 以上使用陶瓷保护管。

2. 铠装热电偶(套管热电偶)

铠装热电偶:

- 由热电极、绝缘材料(氧化物粉末)和金属套管三者组合后拉伸而成为坚实的一个整体。是一种小型化、结构牢固、使用方便的特殊热电偶。
- 常用的热电偶材料均可制成铠装热电偶形式, 其套管直径为2-5mm, 长度为0.05m-15m。

优点:

- 热惯性小,时间常数可达0.01s;
- 套管材料退火,挠性好,适应复杂结构上的安装要求;
- 机械性能好,耐冲击和震动;
- 寿命长。

3. 表面热电偶

表面热电偶:

- 表面热电偶是专用于测量各种固体表面温度的热电偶, 薄膜热电偶是其中的一种,即用真空镀膜的方法,将 热电极材料(金属)蒸镀到绝缘基板上,形成薄膜电极。
- 特点: 热容量小,反应速度非常快,时间常数一般为几十毫秒至一秒。但限于粘接剂的耐热性,测量范围为 $\frac{-200}{+300}$

六. 热电偶的测温线路

- 在实际测温中,热电偶的连接方法可以有所不同,应根据不同的需求,选择准确、方便的测量线路。
 - · 典型测温线路;
 - 。正向串联线路;
 - 。反向串联线路;
 - 并联线路。

1. 典型测温线路

有冷端温度 自动补偿的 显示仪表

2. 正向串联线路

将n支同型号的热电偶依次按正、负极性连接,各热电偶的冷端采用补偿导线延伸到同一温度下。

正向串联线路测得的热电势为:

$$E = E_1 + E_2 + \dots + E_n = \sum_{i=1}^n E_i$$

优点: 热电势大;

测量精度比单支热电偶高。

缺点: 只要有一支热电偶断路,整个测量系统就不能工作。

3. 反向串联线路

将两支同型号热电偶的同极性端 串联在一起,各热电偶的冷端采用 补偿导线延伸到同一温度下。

反向串联线路通常用于测量两点的温度差,其测得的热电势为:

$$E = E_1 - E_2$$

注意:

采用反向串联线路测温时, 所用的 热电偶的热电特性应为线性或近似线 性, 否则会产生测量误差。

4. 并联线路

将n支<mark>同型号</mark>热电偶的正极 和负极分别连接在一起。

并联线路通常用于测量平均 温度。在各热电偶的内阻相同 的情况下,其测得的热电势为:

$$E = \frac{E_1 + E_2 + \dots + E_n}{n} = \frac{1}{n} \sum_{i=1}^{n} E_i$$

特点:

热电势虽然比串联线路小,但相对误差也小(仅为单支热电偶的 $\frac{1}{\sqrt{n}}$)。

当某支热电偶断路时,测温系统可以照常工作。

七. 热电偶测温误差的分析

1. 分度误差

- 指工作中具体使用的热电偶的热电特性与统一分度表不一致而出现的误差,即检验时的误差。
- 其值不得超过标准化热电偶的主要性能中规定的值。

2. 热电特性变化引起的误差

- 在使用过程中,由于热电极被腐蚀、污染等因素,会导致热电特性发生变化,从而产生较大的误差。
- ❖ 因此在使用中,要注意对热电偶进行定期的检查和校验。

3. 热交换引起的误差

- ❖ 根据热平衡原理,热电偶必须保持与被测对象的热平衡, 才能准确测量温度。
- ❖ 由于热电偶都带有保护套管,其热电极难以与被测对象直接接触,而是经过保护套管及其间介质进行热交换; 另外,热电偶及其保护套管向周围环境也有热损失,从 而使得热电偶温度达不到被测温度。
- ❖ 可见,该误差是由于热辐射损失及导热损失的存在所造成的。
- ❖ 减小误差的措施:
- > 尽量使管壁表面与被测介质温度相接近;
- > 尽可能减小保护套管的外径;
- 增加被测介质的流速;
- 增加热电偶的插入深度;等等。

4. 补偿导线引入的误差

❖ 该误差是由于补偿导线和热电偶内在的热电特性不同而产生的。

5. 显示仪表的误差

❖ 大多数显示仪表均带有冷端温度补偿作用,当环境温度变化较大时,不可能对冷端温度进行完全补偿,则会引入一定的误差。

6. 动态误差

- ◆ 由于热电偶的热惰性,使得被测温度变化后,不能立即反应出来,从而引起读数误差。
- ❖ 措施:测量快速变化的温度时,可采用小惯性的热电偶。

八. 热电偶的安装

- 正确选择测温点
 - 使感温元件与被测介质能进行充分的热交换。
- 应与被测介质充分接触
 - 。插入深度一般不小于温度计全长的2/3;
 - 。应迎着被测介质流向插入,至少要与被测介质流向成 正交安装。
- 避免热辐射、减少热损失
 - 。应尽量减小被测介质与设备或管壁表面之间的温差。
- 安装应确保正确、安全、可靠
- 热电偶连接导线的安装

2.3 热电阻温度计

对于 500°C 以下的中、低温度,不宜使用热电偶温度计。因为在该范围内,热电偶输出的热电势很小,这样一来对测温系统中的其他仪表的要求就很高,否则会带来较大的测量误差。

在中、低温范围一般使用热电阻温度计来测量温度。

热电阻温度计的特点:

- 性能稳定,测量精度高;
- 。 不需要冷端温度处理;
- 动态特性不如热电偶(热容量较大);
- ❖ 抗机械冲击与震动的性能较差。

一. 测温原理

- 热电阻温度计利用金属导体的电阻值随温度变化而变化的特性来测量温度。
- 金属导体电阻的阻值与温度的关系一般可表示为:

$$R_{t} = R_{t_0} \left[1 + \alpha \cdot (t - t_0) \right]$$

α---电阻温度系数

 $R_t = -- 温度为t°C时的电阻值$

 R_{t_0} ---温度为 t_0 °C时的电阻值

只要测出热电阻的阻值变化,就可以达到测温的目的。

热电阻测温系统

三线制连接:

- 通常,热电阻插在被测介质中,而显示仪表则放在仪表箱或仪表室里,两者的距离相隔较远,因此连接导线很长。
- 当环境温度变化时,连接导线的阻值会有明显的变化, 从而影响温度计的测量精度。
- 在实际使用中,通常显示仪表中带有不平衡电桥或平衡电桥。采用三线制的连接方法,使得连接导线的电阻可以分别加在电桥相邻的两个桥臂上,从而大大减小因连接导线的阻值随环境温度变化所带来的测量误差。

在电桥平衡的情况下,有:

$$R_2 \cdot (R_t + r) = R_1 \cdot (R_3 + r)$$

$$R_{t} = \frac{R_{1} \cdot (R_{3} + r)}{R_{2}} - r$$

$$= \frac{R_{1} \cdot R_{3}}{R_{2}} + \frac{R_{1} \cdot r}{R_{2}} - r$$

只要满足 $R_1 = R_2$, 导线电阻的变化就对热电阻没有影响。

在电桥不平衡的情况下,虽然不能完全消除连接导线电阻对测量的影响,但由于在电桥的两个相邻桥臂中都串入了导线电阻,可以大大减小其对测量的影响。

二. 工业上常用热电阻

接线盒

对电阻体的要求为:

- * 电阻的温度系数及电阻率要大,热容量要小;
- ❖ 在整个测温范围内,应具有稳定的物理和化学性质,有良好的复现性;
- * 电阻值随温度的变化关系呈线性;
- * 价格低廉,复制性强,加工方便。

常用热电阻 全铜电阻

1. 铂电阻

- \Rightarrow 由 $\phi = 0.03 \sim 0.07mm$ 的铂丝绕在云母、石英或陶瓷支架上制成。
- ❖ 测温范围: -200~500° C
- * 国际规定的铂电阻分度号为 $Pt10(R_0 = 10\Omega)$ 以及 $Pt100(R_0 = 100\Omega)$
- ❖ 其中 R₀代表铂电阻在冰点时的电阻值。
- * 测温范围: $-200 \sim +500$ °C; 特殊情况下,低温可测量 $1 \sim 3K$;

高温可测量 1000~1300°C。

电阻丝较粗,主要用于600°C以上的温度测量

电阻值与温度的关系式:

其中: $A = 3.90802 \times 10^{-3}$

 $B = -5.80195 \times 10^{-7}$

 $C = -4.27350 \times 10^{-12}$

$$R_t = R_0 \cdot (1 + A \cdot t + B \cdot t^2)$$

-200~0°C的范围内:

$$R_{t} = R_{0} \cdot [1 + A \cdot t + B \cdot t^{2} + C(t - 100) \cdot t^{3}]$$

平均温度系数为: $\alpha = 3.85 \times 10^{-3} \frac{1}{6}$

特点:

- ❖ 在氧化性介质中,即使高温下的物理、化学性质都很 稳定,因而精度高、稳定性好,性能可靠;
- ❖ 有较大的测量范围,特别是在低温方面;
- ❖ 易于使用在自动测量中,也便于远距离传送;
- ❖ 在高温下,易受还原性介质沾污,使铂丝变脆,并改变其电阻与温度之间的关系。工业用铂热电阻须采用外保护套。

2. 铜电阻

- ❖ 铜电阻体是一个铜丝绕组,由 ≠ = 0.1mm 的绝缘铜 丝双线无感地绕在圆柱形塑料支架上,用锰铜补偿绕 组来调整铜电阻体的电阻温度系数(<mark>锰铜的阻值不随</mark> 温度而变化)。
- ♦ 铜电阻分度号为 $Cu50(R_0 = 50\Omega)$ 和 $Cu100(R_0 = 100\Omega)$.

- ❖ 测温范围: $-50 \sim +150$ °C;
- ❖ 适用于测量精度要求不是很高且温度较低的场合。

电阻值与温度的关系式:

$$R_t \approx R_0 (1 + \alpha \cdot t)$$

$$\alpha = 4.25 \sim 4.28 \times 10^{-3} / {^{\circ}C}$$

(铂电阻在 $0 \sim 100$ °C的范围内, α 的平均值为 3.85×10^{-3} /°C)

特点:

- ❖铜电阻与温度的线性度好;
- ❖ 电阻的温度系数比铂电阻的大;
- ❖ 易于提纯,加工性能好,可拉成细丝,故价格便宜;
- ❖ 在测温范围内,稳定性好;
- ❖ 电阻率比铂电阻的要小,故电阻的体积较大;
- ❖ 易于氧化,不适合于在腐蚀性介质或高温下工作。

此外,还有半导体热电阻(亦称热敏电阻), 大多数半导体热电阻具有负的电阻温度系数 (NTC),主要用于较低温度范围的连续测量。

半导体热电阻也有正温度系数(PTC)型热敏电阻和临界型热敏电阻(CTR),适合位式作用的温度传感器。

半导体热电阻的优点:

电阻温度系数大,灵敏度高;

电阻率大,可忽略连接导线电阻的变化;

结构简单,可做成体积小巧的感温部件。

2.4 热电偶、热电阻的选用

选择:

- 一般热电偶用于较高温度的测量,在500°C以下(特别是300°C以下)中低温区采用热电阻进行测温。
- · 在中低温区,热电偶输出的热电势很小,对测量仪表 放大器和抗干扰要求很高。
- 由于参比端温度变化不易得到完全补偿,在较低温度区内引起的相对误差就很突出。

选用热电偶和热电阻时,应注意工作环境,如环境温度、介质性质(氧化性、还原性、腐蚀性)等,选择适当的保护套管、连接导线等

2.4 热电偶、热电阻的选用

安装:

- (1)选择有代表性的测温点位置,测温元件有足够的插入深度。 测量管道流体介质温度时,应迎着流动方向插入,至少与被测介 质正交。测温点应处在管道中心位置,且流速最大。
- (2) 热电偶或热电阻的接线盒的出线孔应朝下,以免积水及灰尘等造成接触不良,防止引入干扰信号。
- (3)检测元件应避开热辐射强烈影响处。要密封安装孔,避免被测介质逸出或冷空气吸入而引入误差。

2.5 非接触式测温方法及仪表

热辐射原理:

从一个热源体不经过任何媒介物,又不直接接触就把热能传递给另一个物体的现象称为热辐射。

产生热辐射现象的原因:

任何物体受热后都有一部分热能转变成辐射能,物体的温度越高,辐射到周围空间的能量就越多。

辐射能以波动形式表现出来,波长范围极广,包括X光、紫外光、可见光、红外光、无线电波等。一般工程测温中常用的是可见光和红外光,因为这些光被物体接收以后,又能转变成热能,使物体升温,以便测量。

测温原理:

如果接收物体是能够将热辐射能全部吸收的绝对黑体,则根据普朗克定律,辐射强度 E_{α} (辐射能力与波长之比)与绝对温度 T 的关系为:

$$E_{o\lambda} = C_1 \lambda^{-5} \left(e^{\frac{C_2}{\lambda T}} - 1 \right)^{-1} \quad \left[\lambda - - - 波长 \right]$$

测出辐射强度的大小,就可以测量被 测对象的温度。

- 绝大多数的被测对象都是非黑体,如果 把黑体辐射定律直接用于实际的测温将 出现困难,即确定物体的热辐射并不一 定能确定该物体的真实温度。
- 表观温度:包括亮度温度、辐射温度和颜色温度,它们能在物体的发射率未知的情况下把实际物体的温度测量同黑体辐射定律直接联系起来。
- 由这三种表观温度可以引伸出三种测温 方法及其仪器。

目前广泛应用的热辐射温度计:

亮度高温计——光学高温计(人工操作)、 光电高温计(连续测量)

辐射高温计

比色温度计

红外测温仪(非接触测量0~700℃中低温)

除了上述常用的测温方法之外,还可以应用一些新型的测温方法来测量温度:

光导纤维测温技术;

半导体硅PN结温度传感器测温技术;

基于半导体硅PN结集成电路测温技术;

石英振荡器温度传感器测温技术。

光纤测温技术

- 光导纤维是一种由透明度很高的材料制成的传输光信息的导光纤维。
- 光纤温度计的特点:
 - 。电、磁绝缘性好,适合一些特殊情况下的温 度测量;
 - 灵敏度高,传输损耗小;
 - 。体积小、重量轻、强度高、可挠性好。

接触式——荧光光纤温度传感器(光纤不作为感温元件,而仅起导光作用,且只适合于低温区的测量。)

光纤温度计

非接触式——辐射光纤温度传感器(工作原理与相对应的辐射温度计相似,不同之处在于:由光纤代替一般辐射温度计的空间传输光路,让耐高温光纤探头靠近被测物体。该温度计在高温下具有很高的灵敏度,但无法用于低温区域。)

END