

日本国特許庁

PATENT OFFICE
JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日
Date of Application:

2000年 9月12日

出願番号
Application Number:

特願2000-276205

出願人
Applicant(s):

三洋電機株式会社

RECEIVED
NOV 26 2000
TC 2000 MAIL ROOM

2000年 9月29日

特許庁長官
Commissioner,
Patent Office

及川耕造

出証番号 出証特2000-3080435

【書類名】 特許願
【整理番号】 NBA1001017
【提出日】 平成12年 9月12日
【あて先】 特許庁長官殿
【国際特許分類】 H01S 3/025
【発明者】
【住所又は居所】 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内
【氏名】 野村 康彦
【発明者】
【住所又は居所】 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内
【氏名】 林 伸彦
【発明者】
【住所又は居所】 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内
【氏名】 畑 雅幸
【発明者】
【住所又は居所】 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内
【氏名】 庄野 昌幸
【特許出願人】
【識別番号】 000001889
【氏名又は名称】 三洋電機株式会社
【代理人】
【識別番号】 100098305
【弁理士】
【氏名又は名称】 福島 祥人
【電話番号】 06-6330-5625

【選任した代理人】

【識別番号】 100109438

【弁理士】

【氏名又は名称】 大月 伸介

【先の出願に基づく優先権主張】

【出願番号】 平成11年特許願第271128号

【出願日】 平成11年 9月24日

【手数料の表示】

【予納台帳番号】 032920

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 0006012

【ブルーフの要否】 要

【書類名】 明細書

【発明の名称】 半導体発光素子

【特許請求の範囲】

【請求項1】 発光層を含む窒化物系半導体層の表面に誘電体膜が形成された半導体発光素子において、前記誘電体膜は、前記窒化物系半導体層との界面側に窒化物を含みかつ前記窒化物系半導体層と反対側に酸化物を含むことを特徴とする半導体発光素子。

【請求項2】 前記誘電体膜は、窒化膜および酸化膜を順に含むことを特徴とする請求項1記載の半導体発光素子。

【請求項3】 前記誘電体膜は、前記窒化膜と前記酸化膜との間に窒素および酸素を含有する化合物膜をさらに含むことを特徴とする請求項2記載の半導体発光素子。

【請求項4】 前記化合物膜は、前記窒化膜との界面側から前記酸化膜との界面側へ向かって窒素の含有量が漸次減少しつつ酸素の含有量が漸次増加する傾斜組成を有することを特徴とする請求項3記載の半導体発光素子。

【請求項5】 前記窒化膜は窒化珪素膜または窒化チタン膜であり、前記酸化膜は酸化珪素膜または酸化チタン膜であることを特徴とする請求項2～4のいずれかに記載の半導体発光素子。

【請求項6】 前記誘電体膜は、窒素および酸素を含有する化合物膜を含み前記化合物膜は、前記窒化物系半導体層との界面側から反対側へ向かって窒素の含有量が漸次減少しつつ酸素の含有量が漸次増加する傾斜組成を有することを特徴とする請求項1記載の半導体発光素子。

【請求項7】 前記化合物膜は珪素またはチタンと窒素と酸素との化合物膜であることを特徴とする請求項6記載の半導体発光素子。

【請求項8】 発光層を含む窒化物系半導体層の表面に誘電体膜が形成された半導体発光素子において、前記誘電体膜は、前記窒化物系半導体層との界面側に窒素および酸素を含有する化合物を含みかつ前記窒化物系半導体層と反対側に酸化物を含むことを特徴とする半導体発光素子。

【請求項9】 前記誘電体膜は、化合物膜および酸化膜を含み、前記化合物

膜は、前記窒化物系半導体層との界面側から反対側へ向かって窒素の含有量が漸次減少しつつ酸素の含有量が漸次増加する傾斜組成を有することを特徴とする請求項8記載の半導体発光素子。

【請求項10】 前記化合物膜は珪素またはチタンと窒素と酸素との化合物膜であり、前記酸化膜は酸化珪素膜または酸化チタン膜であることを特徴とする請求項9記載の半導体発光素子。

【請求項11】 発光層を含む窒化物系半導体層の表面に誘電体膜が形成された半導体発光素子において、前記誘電体膜は、前記窒化物系半導体層との界面側に窒化物を含みかつ前記窒化物系半導体層と反対側に窒素および酸素を含有する化合物を含むことを特徴とする半導体発光素子。

【請求項12】 前記誘電体膜は、窒化膜および化合物膜を含み、前記化合物膜は、前記窒化物系半導体層との界面側から反対側へ向かって窒素の含有量が漸次減少しつつ酸素の含有量が漸次増加する傾斜組成を有することを特徴とする請求項11記載の半導体発光素子。

【請求項13】 前記窒化膜は窒化珪素膜または窒化チタン膜であり、前記化合物膜は珪素またはチタンと窒素と酸素との化合物膜であることを特徴とする請求項12記載の半導体発光素子。

【請求項14】 前記窒化物系半導体層は、前記発光層上に形成されたクラッド層をさらに含み、前記クラッド層は、平坦部およびその平坦部上のリッジ部を有し、前記誘電体膜は、前記クラッド層の前記平坦部上および前記リッジ部の側面に形成されたことを特徴とする請求項1～13のいずれかに記載の半導体発光素子。

【請求項15】 前記リッジ部の側面に凹凸が形成され、前記クラッド層の平坦部上および前記リッジ部の側面に前記誘電体膜が形成されたことを特徴とする請求項14記載の半導体発光素子。

【請求項16】 前記窒化物系半導体層は、前記発光層下に設けられた第1導電型半導体層と、前記発光層上に設けられた第2導電型半導体層とをさらに含み、前記窒化物系半導体層の一部領域が除去されて前記第1導電型半導体層の一部が露出し、前記第1導電型半導体層の露出した領域に第1の電極が形成され、

前記第2導電型半導体層上に第2の電極が形成され、前記誘電体膜は前記第1の電極と前記第2の電極との間における前記窒化物系半導体層の表面に形成されたことを特徴とする請求項1～15のいずれかに記載の半導体発光素子。

【請求項17】 窒化物系半導体からなる発光層上に、窒化物系半導体からなりかつ平坦部およびその平坦部上のリッジ部を有するクラッド層が形成され、前記クラッド層の前記リッジ部の側面に凹凸が形成され、前記クラッド層の平坦部上および前記リッジ部の側面に誘電体膜が形成されたことを特徴とする半導体発光素子。

【請求項18】 前記誘電体膜は、前記窒化物系半導体層との界面側に窒化物を含みかつ前記窒化物系半導体層と反対側に酸化物を含むことを特徴とする請求項17記載の半導体発光素子。

【請求項19】 前記誘電体膜は、前記窒化物系半導体層との界面側に窒素および酸素を含有する化合物を含みかつ前記窒化物系半導体層と反対側に酸化物を含むことを特徴とする請求項17記載の半導体発光素子。

【請求項20】 前記誘電体膜は、前記窒化物系半導体層との界面側に窒化物を含みかつ前記窒化物系半導体層と反対側に窒素および酸素を含有する化合物を含むことを特徴とする請求項17記載の半導体発光素子。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、GaN（窒化ガリウム）、AlN（窒化アルミニウム）、InN（窒化インジウム）、BN（窒化ホウ素）もしくはTiN（窒化タリウム）またはこれらの混晶等のIII-V族窒化物系半導体（以下、窒化物系半導体と呼ぶ）からなる化合物半導体層を有する半導体発光素子に関する。

【0002】

【従来の技術】

近年、高密度・大容量の光ディスクシステムに用いられる記録あるいは再生用の光源として、青色または紫色の光を発する窒化物系半導体レーザ素子の研究開発が活発化している。

【0003】

図8は、従来の窒化物系半導体レーザ素子の構成を示す模式的断面図である。

図8の半導体レーザ素子は、サファイア基板1のC面上に、MOCVD（有機金属化学的気相堆積法）によりアンドープのAlGaNからなるバッファ層2、アンドープのGaN層3、n-GaNからなる第1コンタクト層4、n-InGaNからなるクラック防止層5、n-AlGaNからなる第1クラッド層6、InGaN多層膜からなる発光層7、p-AlGaNからなる第2クラッド層8、p-GaNからなる第2コンタクト層9が順に積層されてなる。

【0004】

第2コンタクト層9の上面から第2クラッド層8の所定の深さまで一部の領域が除去されてリッジ部10が形成される。また、第2クラッド層8から第1コンタクト層4の所定の深さまで一部の領域が除去されて電極形成面11が形成される。

【0005】

また、第2コンタクト層9の上面にはp側電極131が形成される。第1コンタクト層4の電極形成面11にはn側電極132が形成されている。

【0006】

電流が流れる領域を制限し、レーザ発振に十分な光密度を得るためにSiO₂あるいはSiNからなる誘電体膜12が設けられている。誘電体膜12は、リッジ部10の両側面、第2クラッド層8の平坦面、第2クラッド層8から第1コンタクト層4に至る側面ならびに第1コンタクト層4の上面に形成される。

【0007】

この誘電体膜12は、p側電極131とn側電極132との間の電気的短絡を防止する機能を兼ねている。

【0008】

【発明が解決しようとする課題】

誘電体膜12としてSiO₂膜を用いると、窒化物系半導体とSiO₂膜との密着性が不十分なため、誘電体膜の割れや剥離といった問題が発生する。そのため歩留りが低くなる。

【0009】

一方、誘電体膜12としてSiN膜を用いる場合には、N(窒素)含有量が成膜条件に強く依存するので、数百nm程度の厚みを有するSiN膜を再現性よく形成することが困難である。そのため、SiN膜のN含有量により開口部を形成する際のエッチング速度が変化し、素子特性の再現性が低くなる。

【0010】

なお、SiN膜の膜厚を薄くすると、エッチング速度のばらつきの影響が低減されるが、段差部を完全に覆うことが困難になる。また、SiN膜の膜厚が30nm以下と薄くなると、ピンホールが存在するため、耐圧が低くなり、リーク電流が発生する。

【0011】

本発明の目的は、素子特性の再現性が高くかつ歩留りが向上した半導体発光素子を提供することである。

【0012】

【課題を解決するための手段および発明の効果】

第1の発明に係る半導体発光素子は、発光層を含む窒化物系半導体層の表面に誘電体膜が形成された半導体発光素子において、誘電体膜は、窒化物系半導体層との界面側に窒化物を含みかつ窒化物系半導体層と反対側に酸化物を含むものである。

【0013】

本発明に係る半導体発光素子においては、窒化物系半導体層の表面に窒化物が接する。また、窒化物系半導体層の反対側の表面には酸化物が含まれている。そのため、窒化物により誘電体膜と窒化物系半導体層との密着性が良好となり、誘電体膜の割れおよび剥離が防止される。また、酸化物により誘電体膜のエッチング速度が均一となり、誘電体膜の加工精度が高くなる。その結果、素子特性の再現性が高くなり、かつ歩留りが向上する。

【0014】

誘電体膜は、窒化膜および酸化膜を順に含んでもよい。この場合、窒化膜により誘電体膜と窒化物系半導体層との密着性が向上し、酸化膜により誘電体膜のエ

ッチング速度の均一性が確保される。

【0015】

誘電体膜は、窒化膜と酸化膜との間に窒素および酸素を含有する化合物膜をさらに含んでもよい。この場合、化合物膜により窒化膜と酸化膜との密着性が良好となる。

【0016】

化合物膜は、窒化膜との界面側から酸化膜との界面側に向かって窒素の含有量が漸次減少しつつ酸素の含有量が漸次増加する傾斜組成を有してもよい。それにより、窒化膜と酸化膜との密着性がさらに向上する。

【0017】

窒化膜は窒化珪素膜または窒化チタン膜であり、酸化膜は酸化珪素膜または酸化チタン膜であってもよい。この場合、上記の誘電体膜を容易に形成することができる。

【0018】

誘電体膜は、窒素および酸素を含有する化合物膜を含み、化合物膜は窒化物系半導体層との界面側から反対側へ向かって窒素の含有量が漸次減少しつつ酸素の含有量が漸次増加する傾斜組成を有してもよい。

【0019】

この場合、化合物膜中の窒素の含有量の多い領域により窒化物系半導体層と誘電体膜との密着性が向上し、化合物膜中の酸素の含有量の多い領域により誘電体膜のエッチング速度の均一性が確保される。

【0020】

化合物膜は珪素またはチタンと窒素と酸素との化合物膜であってもよい。この場合、化合物膜を容易に形成することができる。

【0021】

第2の発明に係る半導体発光素子は、発光層を含む窒化物系半導体層の表面に誘電体膜が形成された半導体発光素子において、誘電体膜は、窒化物系半導体層との界面側に窒素および酸素を含有する化合物を含みかつ窒化物系半導体層と反対側に酸化物を含むものである。

【0022】

本発明に係る半導体発光素子においては、窒化物系半導体層の表面に窒素および酸素を含有する化合物が接する。また、窒化物系半導体層と反対側の表面には酸化物が含まれている。そのため、化合物により誘電体膜と窒化物系半導体層との密着性が良好となり、誘電体膜の割れおよび剥離が防止される。また、酸化物により誘電体膜のエッチング速度が均一となり、誘電体膜の加工精度が高くなる。その結果、素子特性の再現性が高くなり、かつ歩留りが向上する。

【0023】

誘電体膜は、化合物膜および酸化膜を含み、化合物膜は、窒化物系半導体層との界面側から反対側へ向かって窒素の含有量が漸次減少しつつ酸素の含有量が漸次増加する傾斜組成を有してもよい。

【0024】

この場合、化合物膜中の窒素の含有量の多い領域により窒化物系半導体層と誘電体膜との密着性が向上し、酸化膜により誘電体膜のエッチング速度の均一性が確保される。

【0025】

化合物膜は珪素またはチタンと窒素と酸素との化合物膜であり、酸化膜は酸化珪素膜または酸化チタン膜であってもよい。この場合、化合物膜および酸化膜を容易に形成することができる。

【0026】

第3の発明に係る半導体発光素子は、発光層を含む窒化物系半導体層の表面に誘電体膜が形成された半導体発光素子において、誘電体膜は、窒化物系半導体層との界面側に窒化物を含みかつ窒化物系半導体層と反対側に窒素および酸素を含有する化合物を含むものである。

【0027】

本発明に係る半導体発光素子においては、窒化物系半導体層の表面に窒化物が接する。また、窒化物系半導体層と反対側の表面には窒素および酸素を含有する化合物が含まれている。そのため、窒化物により誘電体膜と窒化物系半導体層との密着性が良好となり、誘電体膜の割れおよび剥離が防止される。また、化合物

により誘電体膜のエッティング速度が均一となり、誘電体膜の加工精度が高くなる。その結果、素子特性の再現性が高くなり、かつ歩留りが向上する。

【0028】

誘電体膜は、窒化膜および化合物膜を含み、化合物膜は、窒化物系半導体層との界面側から反対側へ向かって窒素の含有量が漸次減少しつつ酸素の含有量が漸次増大する傾斜組成を有してもよい。

【0029】

この場合、窒化膜により誘電体膜と窒化物系半導体層との密着性が向上し、化合物膜中の酸素の含有量の多い領域により誘電体膜のエッティング速度の均一性が確保される。

【0030】

窒化膜は窒化珪素膜または窒化チタン膜であり、化合物膜は珪素またはチタンと窒素と酸素との化合物膜であってもよい。この場合、窒化膜および化合物膜を容易に形成することができる。

【0031】

窒化物系半導体層は、発光層上に形成されたクラッド層をさらに含み、クラッド層は、平坦部およびその平坦部上のリッジ部を有し、誘電体膜は、クラッド層の平坦部上およびリッジ部の側面に形成されてもよい。

【0032】

この場合、半導体発光素子としての半導体レーザ素子の動作電流を低減するとともに歩留りを向上させることができる。

【0033】

リッジ部の側面に凹凸が形成され、クラッド層の平坦部上およびリッジ部の側面に誘電体膜が形成されてもよい。

【0034】

この場合、リッジ部の側面に形成された凹凸により誘電体膜と窒化物系半導体層との密着性がさらに向上する。そのため、誘電体膜の割れまたは剥離が十分に防止され、無効電流がより低減される。

【0035】

窒化物系半導体層は、発光層下に設けられた第1導電型半導体層と、発光層上に設けられた第2導電型半導体層とをさらに含み、窒化物系半導体層の一部領域が除去されて第1導電型半導体層の一部が露出し、第1導電型半導体層の露出した領域に第1の電極が形成され、第2導電型半導体層上に第2の電極が形成され、誘電体膜は第1の電極と第2の電極との間における窒化物系半導体層の表面に形成されてもよい。

【0036】

この場合、半導体発光素子の第1および第2の電極間の絶縁性を確実にすることができるとともに歩留りを向上させることができる。

【0037】

第4の発明に係る半導体発光素子は、窒化物系半導体からなる発光層上に、窒化物系半導体からなりかつ平坦部およびその平坦部上のリッジ部を有するクラッド層が形成され、クラッド層のリッジ部の側面に凹凸が形成され、クラッド層の平坦部上およびリッジ部の側面に誘電体膜が形成されたものである。

【0038】

本発明に係る半導体発光素子においては、リッジ部の側面に形成された凹凸により誘電体膜と窒化物系半導体との密着性が向上する。そのため、誘電体膜の割れまたは剥離が防止され、無効電流が低減される。

【0039】

誘電体膜は、窒化物系半導体層との界面側に窒化物を含みかつ窒化物系半導体層と反対側に酸化物を含んでもよい。この場合、窒化物により誘電体膜と窒化物系半導体層との密着性がさらに向上するとともに、酸化膜により誘電体膜のエッチング速度の均一性が確保される。その結果、素子特性の再現性が高くなるとともに、歩留りがさらに向上する。

【0040】

誘電体膜は、窒化物系半導体層との界面側に窒素および酸素を含有する化合物を含みかつ窒化物系半導体層と反対側に酸化物を含んでもよい。この場合、化合物により誘電体膜と窒化物系半導体層との密着性がさらに向上するとともに、酸化物により誘電体膜のエッチング速度の均一性が確保される。その結果、素子特

性の再現性が高くなるとともに、歩留りがさらに向上する。

【0041】

誘電体膜は、窒化物系半導体層との界面側に窒化物を含みかつ窒化物系半導体層と反対側に窒素および酸素を含有する化合物を含んでもよい。この場合、窒化物により誘電体膜と窒化物系半導体層との密着性がさらに向上するとともに、化合物により誘電体膜のエッティング速度の均一性が確保される。その結果、素子特性の再現性が高くなるとともに、歩留りがさらに向上する。

【0042】

【発明の実施の形態】

(第1の実施の形態)

図1は、本発明の第1の実施の形態における窒化物系半導体レーザ素子の構成を示す模式的断面図である。

【0043】

図1の半導体レーザ素子は、リッジ導波型半導体レーザ素子である。図1の半導体レーザ素子は、サファイア基板1上のC面上に、MOCVD法により、アンドープの $\text{Al}_{0.5}\text{Ga}_{0.5}\text{N}$ からなるバッファ層2、アンドープの GaN からなる GaN 層3、n-GaNからなる第1コンタクト層4、n-In_{0.1}Ga_{0.9}Nからなるクラック防止層5、n-Al_{0.07}Ga_{0.93}Nからなる第1クラッド層6、後述する多重量子井戸構造の発光層7、p-Al_{0.07}Ga_{0.93}Nからなる第2クラッド層8、およびp-GaNからなる第2コンタクト層9が順に積層されてなる。

【0044】

導電型をn型にするためにSiがドープされている。また、導電型をp型にするためにMgがドープされている。

【0045】

第2コンタクト層9の上面から第2クラッド層8の所定の深さまで反応性イオンエッティングまたは反応性イオンビームエッティングにより一部の領域が除去されてストライプ状のリッジ部10が形成される。第2クラッド層8の上面から第1コンタクト層4の所定の深さまで反応性イオンエッティングまたは反応性イオンビ

ームエッチングにより一部の領域が除去され、第1コンタクト層4の電極形成面11が形成される。

【0046】

リッジ部10の両側面、第2クラッド層8の平坦面および側面、発光層7の側面、第1クラッド層6の側面、クラック防止層5の側面、第1コンタクト層4の一部側面ならびにn側電極132が形成されている領域を除く電極形成面11にSiN_x膜12a(xはほぼ1)が形成されている。また、SiN_x膜12aの上に、SiO_y膜12b(yはほぼ2)が形成されている。誘電体膜12AはSiN_x膜12aおよびSiO_y膜12bからなる。

【0047】

また、第2コンタクト層9の上面にはp側電極131が形成され、第1コンタクト層4の電極形成面11にはn側電極132が形成されている。

【0048】

図2は、多重量子井戸構造の発光層の構造を示す模式的断面図である。発光層7は、第1クラッド層6上に形成されたn-GaNからなる第1光ガイド層71、第1光ガイド層71上に形成された活性層72、および活性層72上に形成されたp-GaNからなる第2光ガイド層73からなる。活性層72は、n-In_{0.02}Ga_{0.98}Nからなるバリア層721、723、725、727と、n-In_{0.10}Ga_{0.90}Nからなる井戸層722、724、726とが交互に積層されてなる。

【0049】

図1の半導体レーザ素子においては、SiO_y膜12bによりエッチング速度の再現性が確保され、それにより誘電体膜12Aの加工精度が高くなる。また、SiN_x膜12aにより誘電体膜12Aと各層4~9との密着性が良くなる。それにより、誘電体膜12Aに亀裂が発生しにくくなり、リーク電流が減少する。その結果、図1の半導体発光素子は、動作電流が低減され、製造歩留りが高くなっている。

【0050】

(第2の実施の形態)

図3は本発明の第2の実施の形態における窒化物系半導体レーザ素子の構成を示す模式的断面図である。図3に示す第2の実施の形態の窒化物系半導体レーザ素子の構成は、誘電体膜を除き図1に示す第1の実施の形態の窒化物系半導体レーザ素子の構成と同様である。

【0051】

図3に示す窒化物系半導体レーザ素子は、図1の窒化物系半導体レーザ素子の誘電体膜12Aの代わりに誘電体膜12Bを備える。

【0052】

誘電体膜12Bは、 SiN_x 膜112a (x はほぼ1)、 $\text{SiN}_{x1}\text{O}_{y1}$ 膜112b (x_1 はほぼ0.5、 y_1 はほぼ1) および SiO_y 膜112c (y はほぼ2) からなる。

【0053】

リッジ部10の両側面、第2クラッド層8の平坦面および側面、発光層7の側面、第1クラッド層6の側面、クラック防止層5の側面、第1コンタクト層4の一部側面ならびにn側電極132が形成されている領域を除く電極形成面11に SiN_x 膜112aが形成される。また、 SiN_x 膜112a上に $\text{SiN}_{x1}\text{O}_{y1}$ 膜112b (x_1 はほぼ0.5、 y_1 はほぼ1) が形成され、 $\text{SiN}_{x1}\text{O}_{y1}$ 膜112b上に SiO_y 膜112c (y はほぼ2) が形成される。

【0054】

このように、 SiN_x 膜112aと SiO_y 膜112cとの間に窒素および酸素を含む $\text{SiN}_{x1}\text{O}_{y1}$ 膜112bを形成することにより、 SiN_x 膜112aと SiO_y 膜112cとの密着性がさらに高まり、誘電体膜12Bの剥離がさらに抑制され、歩留りが向上する。また、誘電体膜12Bに亀裂がほとんど発生しなくなるため、リーク電流が減少し、動作電流が低減される。さらに、誘電体膜12Bのエッチング速度の再現性が良くなり、ロット間のばらつきが少ない窒化物系半導体レーザ素子の製造が可能になる。

【0055】

(第3の実施の形態)

図4は本発明の第3の実施の形態における窒化物系半導体レーザ素子の誘電体

膜の構成を説明するための図である。

【0056】

第3の実施の形態の窒化物系半導体レーザ素子は誘電体膜を除き図1に示した窒化物系半導体レーザ素子と同様の構成を有する。

【0057】

第3の実施の形態の窒化物系半導体レーザ素子は、図1の窒化物系半導体レーザ素子の誘電体膜12Aの代わりに図4に示す誘電体膜12Cを備える。

【0058】

誘電体膜12Cは、 SiN_x 膜112a、 $\text{SiN}_{x2}\text{O}_{y2}$ 膜112dおよび SiO_y 膜112cを順に備えてなる。

【0059】

図1のリッジ部10の両側面、第2クラッド層8の平坦面および側面、発光層7の側面、第1クラッド層6の側面、クラック防止層5の側面、第1コンタクト層4の一部側面ならびにn側電極132が形成されている領域を除く電極形成面11に SiN_x 膜112aが形成される。

【0060】

$\text{SiN}_{x2}\text{O}_{y2}$ 膜112dでは、図4に示すように、 SiN_x 膜112aとの界面からN(窒素)含有量x2が1から0まで徐々に減少し、O(酸素)含有量y2が0から2まで徐々に増加している。

【0061】

このように、窒化物系半導体上に形成する SiN_x 膜112aと SiO_y 膜112cとの間にNおよびOの含有量が徐々に変化する $\text{SiN}_{x2}\text{O}_{y2}$ 膜112dを形成することにより、 SiN_x 膜112aと SiO_y 膜112cとの密着性がさらに高まり、誘電体膜12Cの剥離がさらに抑制され、歩留りが向上する。また同時に誘電体膜12Cに亀裂がほとんど発生しなくなるため、リーク電流が減少し、動作電流が低減される。さらに、誘電体膜12Cのエッチング速度の再現性が良くなり、ロット間のばらつきが少ない窒化物系半導体レーザ素子の製造が可能になる。

【0062】

(第4の実施の形態)

図5は本発明の第4の実施の形態における窒化物系半導体レーザ素子の構成を示す模式的断面図である。

【0063】

図5に示す窒化物系半導体レーザ素子は誘電体膜を除き、図1に示す窒化物系半導体レーザ素子と同様の構成を有する。

【0064】

図5に示す窒化物系半導体レーザ素子は、図1の窒化物系半導体レーザ素子の誘電体膜12Aの代わりに誘電体膜12Dを備える。

【0065】

誘電体膜12Dは、 $\text{SiN}_{x2}\text{O}_{y2}$ 膜112dおよび SiO_y 膜112cからなる。

【0066】

このように、窒化物系半導体と SiO_y 膜112cとの間にNおよびOの含有量が徐々に変化する $\text{SiN}_{x2}\text{O}_{y2}$ 膜112dを形成することにより、窒化物系半導体と誘電体膜12Dとの密着性がさらに高まり、誘電体膜12Dの剥離がさらに抑制され、歩留りが向上する。また同時に、誘電体膜12Dに亀裂がほとんど発生しなくなるため、リーク電流が減少し、動作電流が低減する。さらに、誘電体膜12Dのエッチング速度の再現性が良好であるため、ロット間のばらつきが少ない窒化物系半導体レーザ素子の製造が可能になる。

【0067】

(第5の実施の形態)

次に、本発明の第5の実施の形態における窒化物系半導体レーザ素子について説明する。

【0068】

第5の実施の形態における窒化物系半導体レーザ素子の構成は、図1の窒化物系半導体レーザ素子の構成において、 SiN_x 膜12aの代わりに TiN_x 膜(x はほぼ1)を、 SiO_y 膜12bの代わりに TiO_y 膜(y はほぼ2)を用いる。

【0069】

このように、窒化膜として TiN_x 、酸化膜としてして TiO_y を用いることによっても窒化物系半導体と誘電体膜との密着性が高まり、誘電体膜の剥離が抑制され、歩留りが向上する。また、誘電体膜に亀裂がほとんど発生しなくなるため、リーク電流が減少し、動作電流が低減される。さらに、誘電体膜のエッチング速度の再現性が良くなり、ロット間のばらつきが少ない窒化物系半導体レーザ素子の製造が可能になる。

【0070】

なお、第5の実施の形態では、図1の半導体レーザ素子の珪素化合物からなる誘電体膜12Aをチタン化合物からなる誘電体膜に置き換えたが、図3～図5に示す第2～第4の実施の形態の半導体レーザ素子の珪素化合物からなる誘電体膜12B～12Dを、チタン化合物からなる誘電体膜に置き換えてよい。

【0071】

それらの場合、誘電体膜12BのSiをTiに置き換えた TiN_x 膜、 $TiN_{x1}O_{y1}$ 膜および TiO_y 膜からなる誘電体膜においては、 TiN_x 膜と TiO_y 膜との密着性がさらに向上する。誘電体膜12CのSiをTiに置き換えた TiN_x 膜、 $TiN_{x2}O_{y2}$ 膜および TiO_y 膜からなる誘電体膜においては、 TiN_x 膜と TiO_y 膜との密着性がさらに向上する。また、誘電体膜12DのSiをTiに置き換えた $TiN_{x2}O_{y2}$ 膜および TiO_y 膜からなる誘電体膜においては $TiN_{x2}O_{y2}$ 膜の下に形成される窒化物系半導体と TiO_y 膜との密着性がさらに向上する。

【0072】

(第6の実施の形態)

図6は、本発明の第6の実施の形態における窒化物系半導体レーザ素子の構成を示す模式的断面図である。

【0073】

図6の窒化物系半導体レーザ素子は、リッジ部110の側面に2～10nmの凹凸を有する。図6の窒化物系半導体レーザ素子は、リッジ部110の側面に凹凸を有する以外は、図3に示す第2の実施の形態による窒化物系半導体レーザ素

子と同様の構成を有する。

【0074】

リッジ部110を形成するために、まず、Niをマスクとして反応性イオンエッチング(RIE)または反応性イオンビームエッチング(RIBE)などのドライエッチング法により第2コンタクト層9の上面から第2クラッド層8の途中までエッチングを行って凸部を形成する。その後、凸部側壁の損傷層を除去することができるよう例えればRIEの高周波出力を小さくして化学的エッチング性を高める。それにより、GaN(第2コンタクト層9)とAlGaN(第2クラッド層8)の結晶性が異なるため、側壁の横方向のエッチング速度が異なり、段差が形成される。それにより、側面に凹凸を有するリッジ部110が形成される。または、RIEの高周波出力を小さくする代わりに、アルカリ系のウェットエッチングによってリッジ側壁の損傷層を除去しても同じ結果になる。

【0075】

リッジ部110の側面に凹凸を有することにより、誘電体膜12Bと第2クラッド層8および第2コンタクト層9との密着性がさらに向上する。そのため、誘電体膜12Bの割れまたは剥離が防止され、リーク電流が減少する。

【0076】

なお、図6の窒化物系半導体レーザ素子では、誘電体膜として図3の半導体レーザ素子の誘電体膜12Bを用いたが、図1に示す誘電体膜12A、図4に示す誘電体膜12Cまたは図5に示す誘電体膜12Dを用いてもよい。リッジ部110の側面の凹凸により誘電体膜の構造にかかわらず密着性が向上するが、誘電体膜12A～12Dによる密着性の向上と合わせて密着性がさらに向上する。

【0077】

(第7の実施の形態)

図7は、本発明の第7の実施の形態における発光ダイオードの構成を示す模式的断面図である。

【0078】

図7に示す発光ダイオードにおいては、サファイア基板202上にアンドープのAlGaNからなる膜厚20nmのAlGaN低温バッファ層203、膜厚4

00 nmのアンドープGaN高温バッファ層204、膜厚1.5 μmのn-GaNコンタクト層205、MQW(多重量子井戸)活性層(発光層)206、膜厚10 nmのアンドープGaN保護層207、膜厚150 nmのp-Al_{0.05}Ga_{0.95}Nクラッド層208および膜厚300 nmのp-GaNコンタクト層209が順に形成されている。なお、この場合のn型ドーパントとしてはSiが用いられており、p型ドーパントとしてはMgが用いられている。

【0079】

MQW活性層206は、膜厚5 nmのアンドープGaNからなる6つの障壁層206aと、膜厚5 nmのアンドープIn_{0.35}Ga_{0.65}Nからなる5つの井戸層206bとが交互に積層されてなる多重量子井戸構造を有する。MQW活性層206の結晶劣化を防止するため、MQW活性層206上にアンドープGaN保護層207が形成されている。

【0080】

p-GaNコンタクト層209からn-GaNコンタクト層205までの一部領域がエッチングにより除去され、露出したn-GaNコンタクト層205の所定領域上面に膜厚500 nmのAl膜からなるn側電極212が形成されている。また、p-GaNコンタクト層209の所定領域上面には、膜厚2 nmのNi膜210aおよび膜厚4 nmのAu膜210bを積層してなるp側透光性電極210が形成され、さらにその上に、膜厚30 nmのTi膜211aおよび膜厚500 nmのAu膜211bを積層してなるp側パッド電極211が形成されている。

【0081】

図7に示す発光ダイオードは、以下のようにして製造される。

発光ダイオードの製造の際には、まず、MOCVD装置内にC面を基板表面とするサファイア基板202を配置し、MOCVD法により、サファイア基板202のC面上にAlGaN低温バッファ層203、アンドープGaN高温バッファ層204、n-GaNコンタクト層205、MQW活性層206、アンドープGaN保護層207、p-Al_{0.05}Ga_{0.95}Nクラッド層208およびp-GaNコンタクト層209を順に成長させる。なお、各層203～209の膜厚および

成長時の条件に関しては表1に示すとおりである。

【0082】

【表1】

	膜厚 (nm)	成長時の 基板温度 (°C)	原料ガス	キャリアガス
AlGaN低温バッファ層	20	600	NH ₃ , TMAl, TMGa	H ₂ , N ₂
アンドープGaN 高温バッファ層	400	1150	NH ₃ , TMGa	H ₂ , N ₂
n-GaNコンタクト層	1500	1150	NH ₃ , TMGa, SiH ₄	H ₂ , N ₂
MQW活性層				
アンドープGaN 障壁層(6層)	5 (1層)	850	NH ₃ , TEGa	
アンドープIn _{0.35} Ga _{0.65} N 井戸層(5層)	5 (1層)		NH ₃ , TEGa, TMIn	H ₂ , N ₂
アンドープGaN保護層	10	850	NH ₃ , TEGa	H ₂ , N ₂
p-Al _{0.05} Ga _{0.95} N クラット層	150	1150	NH ₃ , TMGa, TMAl, Cp ₂ Mg	H ₂ , N ₂
p-GaNコンタクト層	300	1150	NH ₃ , TMGa, Cp ₂ Mg	H ₂ , N ₂

【0083】

表1中のTMAlはトリメチルアルミニウムを表しており、TMGaはトリメチルガリウムを表しており、TMInはトリメチルインジウムを表しており、TEGaはトリエチルガリウムを表わしている。また、反応ガスにおけるNH₃は窒素源であり、TMAlはアルミニウム源であり、TMGaおよびTEGaはガリウム源であり、TMInはインジウム源である。また、SiH₄（シランガス

) はn型のドーピング原料であり、 $C_{P_2}Mg$ (ビスシクロペンタジエニルマグネシウム) はp型のドーピング原料である。

【0084】

なお、各層203～209の成長時の基板温度は、表1中に記載の基板温度に限定されるものではない。AlGaN低温バッファ層203の成長時には、基板温度を非単結晶成長温度に設定すればよく、各層204～209の成長時には、基板温度を単結晶成長温度に設定すればよい。特に、各層204, 205, 208, 209の成長時には基板温度1000～1200℃に設定することが好ましく、また、各層206, 207の成長時には基板温度を700～1000℃に設定することが好ましい。

【0085】

また、各層203～209の成長時に供給される H_2 および N_2 混合のキャリアガスにおいて、 H_2 の含有率は、各層203～205の成長時には50%であり、各層206, 207の成長時には1～5%であり、各層207～209の成長時には1～3%である。

【0086】

【実施例】

【実施例1】

実施例1においては図1の半導体レーザ素子を用いた。

【0087】

図1の半導体レーザ素子は以下のようにして作製した。サファイア基板1のC面上に、MOCVD法(有機金属化学的気相堆積法)により、 $Al_{0.5}Ga_{0.5}N$ からなる厚さ250Åのバッファ層2、アンドープのGaNからなる厚さ2μmのGaN層3、n-GaNからなる厚さ3μmの第1コンタクト層4、n-I $n_{0.1}Ga_{0.9}N$ からなる厚さ0.1μmのクラック防止層5、n-Al $_{0.07}Ga_{0.93}N$ からなる厚さ1μmの第1クラッド層6、発光層7、p-Al $_{0.07}Ga_{0.93}N$ からなる厚さ0.3μmの第2クラッド層8およびp-GaNからなる厚さ0.05μmの第2コンタクト層9を順に成長させた。なお、多重量子井戸構造の発光層7は、第1クラッド層6上に形成されたn-GaNからなる厚さ0.

1 μmの第1光ガイド層71、後述する活性層72およびp-GaNからなる厚さ0.1 μmの第2光ガイド層73を順に積層させた。活性層72として、n-In_{0.02}Ga_{0.98}Nからなる6nmの4つのバリア層721, 723, 725, 727層とn-In_{0.10}Ga_{0.90}Nからなる3nmの3つの井戸層722, 724, 726とを交互に積層させた。

【0088】

誘電体膜12Aは、プラズマCVD法により、原料ガスとしてSiH₄ (100%)、NH₃ (100%) およびN₂O (100%) を用いて成膜した。膜厚50nmのSiN_x膜12aの成膜は、SiH₄ 流量15SCCM (Standard Cubic Centimeter Per Minute)、NH₃ 流量200SCCM、高周波出力200W、基板温度300°Cの条件の下で行った。また、膜厚500nmのSiO_y膜12bの成膜は、SiH₄ 流量10SCCM、N₂O流量100SCCM、高周波出力200W、基板温度300°Cの状況の下で行った。SiN_x膜12aおよびSiO_y膜12bの成膜は、同一装置内で連続して行った。

【0089】

実施例1の半導体レーザ素子においては、5mW出力時の10ロットの動作電流の平均値が72mAであり、歩留りが85%であった。

【0090】

【実施例2】

実施例2においては、図3の半導体レーザ素子を用いた。

【0091】

図3の半導体レーザ素子は、誘電体膜12Bを除いて実施例1の半導体レーザ素子と同様に形成した。

【0092】

SiN_x膜112aの層厚は50nm、SiN_{x1}O_{y1}膜112bの層厚は50nm、SiO_y膜112cの層厚は500nmである。

【0093】

SiN_x膜112aはSiN_x膜12aと同一の条件で形成し、SiO_y膜112cはSiO_y膜12bと同一の条件で形成した。SiN_{x1}O_{y1}膜112bの

成膜条件は、 SiH_4 流量30SCCM、 NH_3 流量200SCCM、 N_2O 流量150SCCM、高周波出力200W、基板温度300°Cとした。 SiN_x 膜112a、 $\text{SiN}_{x1}\text{O}_{y1}$ 膜112bおよび SiO_y 膜112cは、同一装置内で連続して形成した。

【0094】

実施例2の半導体レーザ素子においては、5mW出力時の10ロットの動作電流の平均値が72mA、歩留りが87%であった。

【0095】

【実施例3】

実施例3においては、図4に示す構造を有する誘電体膜12Cを含む半導体レーザ素子を用いた。

【0096】

図4の半導体レーザ素子は、誘電体膜12Cの $\text{SiN}_{x2}\text{O}_{y2}$ 膜112dを除いて、実施例2の半導体レーザ素子と同様に形成した。

【0097】

図4に示す $\text{SiN}_{x2}\text{O}_{y2}$ 膜112dの層厚は50nmである。 $\text{SiN}_{x2}\text{O}_{y2}$ 膜112dは、プラズマCVD法を用いて、高周波出力を200W、基板温度を300°Cとし、 SiH_4 流量を30SCCMで一定とし、 NH_3 流量を200SCCMから0SCCMまで徐々に減少させると同時に、 N_2O 流量を0SCCMから150SCCMまで徐々に増加させることにより形成した。

【0098】

実施例3の半導体レーザ素子においては、5mW出力時の10ロットの動作電流の平均値が69mA、歩留りが90%であった。

【0099】

【実施例4】

実施例4においては、図5に示す半導体レーザ素子を用いた。

【0100】

図5の半導体レーザ素子は、 SiN_x 膜112aを形成しないことを除き図4の半導体レーザ素子と同様に形成した。

【0101】

ここで、 $\text{SiN}_{x2}\text{O}_{y2}$ 膜112dは、プラズマCVD法を用いて、高周波出力を200Wとし、基板温度を300°Cとし、 SiH_4 流量を30SCCMで一定とし、 NH_3 流量を200SCCMから0SCCMまで徐々に減少させると同時に、 N_2O 流量を0SCCMから150SCCMまで徐々に増加させることにより形成した。

【0102】

実施例4の半導体レーザ素子においては、5mW出力時の10ロットの動作電流の平均値が70mA、歩留りが88%であった。

【0103】

[実施例5]

実施例5においては、図5に示す半導体レーザ素子を用いた。

【0104】

窒化物系半導体層上に層厚500nmの SiO_y 膜112c(yはほぼ2)を実施例2の条件で形成した。その後、試料を N_2 雰囲気中で1000°Cに保って30分間熱処理を施すことにより、窒化物系半導体と SiO_y との界面に、層厚10nmの $\text{SiN}_{x2}\text{O}_{y2}$ 膜112dを形成した。

【0105】

実施例5の半導体レーザ素子においては、5mW出力時の10ロットの動作電流の平均値が70mAであり、歩留りが87%であった。

【0106】

[実施例6]

実施例6においては、反応性イオンエッティングまたは反応性イオンビームエッティングにより第2クラッド層8の所定の深さまで除去されたストライプ状のリッジ部10を形成する。その際に2~10nmの凹凸をリッジ部10の側面に形成した。その後、実施例1~5と同様として、半導体レーザ素子を作製した。

【0107】

この場合、動作電流の平均値が約5%低減され、歩留りが2~3%向上した。

[実施例7]

実施例7においては、実施例1の半導体レーザ素子のSiN_x膜12aの代わりに、TiN_x膜(xはほぼ1)を、SiO_y膜12bの代わりにTiO_y膜(yはほぼ2)を用いること以外は実施例1の半導体レーザ素子と同様の構成を用いた。

【0108】

TiN_x膜およびTiO_y膜は、原料としてTiCl₄、NH₃、N₂Oを用いたプラズマCVD法により形成した。TiN_x膜は、基板温度450℃、高周波出力100Wとし、TiCl₄の流量30SCCM、NH₃流量300SCCMとして成膜した。また、TiO_y膜は、TiCl₄流量30SCCM、N₂O流量400SCCM、高周波出力100W、基板温度450℃として成膜した。TiN_x膜およびTiO_y膜は、同一装置内にて連続して成膜を行った。

【0109】

実施例7の半導体レーザ素子においては、5mW出力時の10ロットの動作電流の平均値が75mA、歩留りが83%であった。

【0110】

【実施例8】

実施例8においては、図3の半導体レーザ素子において、誘電体膜12BのSiN_x膜112a、SiN_{x1}O_{y1}膜112bおよびSiO_y膜112cの代わりに、TiN_x膜(xはほぼ1)、TiN_{x1}O_{y1}膜(x1はほぼ0.5、y1はほぼ1)、TiO_y膜(yはほぼ2)からなる3層の誘電体膜を用いた。

【0111】

実施例8の半導体レーザ素子においては、5mW出力時の10ロットの動作電流の平均値が73mAであり、歩留りが88%であった。

【0112】

【実施例9】

実施例9においては、図4の半導体レーザ素子において、誘電体膜12CのSiN_x膜112a、SiN_{x2}O_{y2}膜112dおよびSiO_y膜112cの代わりに、TiN_x膜(xはほぼ1)、TiN_{x2}O_{y2}膜で傾斜組成の酸化窒化膜およびTiO_y膜(yはほぼ2)の3つの層を用いた。

【0113】

$TiN_{x2}O_{y2}$ 膜は、 TiN_x 膜との界面からN（窒素）含有量x 2を1から0まで徐々に減少させ、O（酸素）含有量y 2を0から2まで徐々に増加させて形成した。

【0114】

実施例9の半導体レーザ素子においては、5mW出力時の10ロットの動作電流の平均値が70mAであり、歩留りが89%であった。

【0115】

〔実施例10〕

実施例10においては、実施例9の TiN_x 膜からなる膜を除いた構成とした。

【0116】

実施例10の半導体レーザ素子においては、5mW出力時の10ロットの動作電流の平均値が71mAであり、歩留りが88%であった。

【0117】

〔比較例1〕

比較例1においては、図1の半導体レーザ素子の構造において、誘電体膜12Aの代わりに層厚500nmの SiO_y （yがほぼ2）からなる誘電体膜を用いた。

【0118】

比較例1の半導体レーザ素子においては、5mW出力時の10ロットの動作電流の平均値が82mAであり、歩留りが57%であった。

【0119】

〔比較例2〕

比較例2においては、図1の半導体レーザ素子の構造において、誘電体膜12Aの代わりに SiN_x （xはほぼ1）からなる誘電体膜を用いた。この誘電体膜の層厚は500nmである。

【0120】

比較例2の半導体レーザ素子においては、5mW出力時の10ロットの動作電

流の平均値は80mAであり、歩留りが60%であった。

【0121】

上記の結果を表2にまとめて示す。

【0122】

【表2】

	誘電体膜	動作電流 (平均値)	歩留り
実施例1	SiN _x 膜12a/SiO _y 膜12b	72mA	85%
実施例2	SiN _x 膜112a/SiN _{x1} O _{y1} 膜112b/ SiO _y 膜112c	72mA	87%
実施例3	SiN _x 膜112a/SiN _{x2} O _{y2} 膜112d/ SiO _y 膜112c	69mA	90%
実施例4	SiN _{x2} O _{y2} 膜112d/SiO _y 膜112c	70mA	88%
実施例5	SiN _{x2} O _{y2} 膜112d/SiO _y 膜112c	70mA	87%
実施例6	実施例1~5(リッジ部に凹凸)	約5%低減	2~3%向上
実施例7	TiN _x 膜/TiO _y 膜	75mA	83%
実施例8	TiN _x 膜/TiN _{x1} O _{y1} 膜/TiO _y 膜	73mA	88%
実施例9	TiN _x 膜/TiN _{x2} O _{y2} 膜/TiO _y 膜	70mA	89%
実施例10	TiN _{x2} O _{y2} 膜/TiO _y 膜	71mA	88%
比較例1	SiO _y	82mA	57%
比較例2	SiN _x	80mA	60%

【0123】

表2に示すように、動作電流の平均値は比較例1, 2で82mAおよび80mA

Aであったものが実施例1～5、7～10では69～75mAと低減された。比較例においては、誘電体膜の剥離および亀裂が多くなり、不良素子発生数が増加した。特に、比較例1では、このような不良が顕著であった。また、比較例の良品においても、誘電体膜の微細な亀裂が観察された素子の数が多かった。比較例において動作電流が高い原因はこのような亀裂を通して無効電流が流れたためと考えられる。歩留りは、比較例1、2で57%および60%であったものが実施例1～5、7～10では83～90%に向上した。

【0124】

なお、実施例3においては、プラズマCVD法を用いて、基板温度300℃で $\text{SiN}_{x2}\text{O}_{y2}$ 膜112dを形成したが、 SiN_x 膜112a上に直接 SiO_y 膜112cを形成した後、例えば500～1000℃で熱処理を施すことにより、 SiN_x 膜112a中の窒素(N)と SiO_y 膜112c中の酸素(O)とを相互拡散させ、 SiN_x 膜112aと SiO_y 膜112cとの界面に窒素と酸素の傾斜組成を有する $\text{SiN}_{x2}\text{O}_{y2}$ 膜112dを形成してもよい。

【0125】

あるいは、 SiN_x 膜112a上に直接 SiO_y 膜112cを形成する場合において、例えば熱CVD法を用いて、 SiO_y 膜112cの成膜温度(基板温度)を500～1000℃に設定することにより、 SiO_y 膜112cの成膜中に、 SiN_x 膜112a中の窒素(N)と SiO_y 膜112c中の酸素(O)とを相互拡散させ、 SiN_x 膜112aと SiO_y 膜112cとの界面に窒素と酸素の傾斜組成を有する $\text{SiN}_{x2}\text{O}_{y2}$ 膜112dを形成してもよい。

【0126】

このように、拡散により $\text{SiN}_{x2}\text{O}_{y2}$ 膜112dを形成する場合、その膜厚は、アニール温度および時間の条件により5nm～50nmに制御できる。

【0127】

また、実施例4においては、プラズマCVD法を用いて、基板温度300℃で $\text{SiN}_{x2}\text{O}_{y2}$ 膜112dを形成したが、上記と同様に、窒化物系半導体層4～9上に直接 SiO_y 膜112cを形成した後、例えば500～1000℃で熱処理を施すことにより、窒化物系半導体層4～9中の窒素(N)と SiO_y 膜112cとの界面に窒素と酸素の傾斜組成を有する $\text{SiN}_{x2}\text{O}_{y2}$ 膜112dを形成してもよい。

c中の酸素(O)とを相互拡散させ、窒化物系半導体層4～9とSiO_y膜112cとの界面に窒素と酸素の傾斜組成を有するSiN_{x2}O_{y2}膜112dを形成してもよい。なお、1000℃で30分間の熱処理を施した場合が実施例5に相当する。

【0128】

あるいは、窒化物系半導体層4～9上に直接SiO_y膜112cを形成する場合において、例えば熱CVD法を用いて、SiO_y膜112cの成膜温度(基板温度)を500～1000℃に設定することにより、SiO_y膜112cの成膜中に、窒化物系半導体層4～9中の窒素(N)とSiO_y膜112c中の酸素(O)とを相互拡散させ、窒化物系半導体層4～9とSiO_y膜112cとの界面に窒素と酸素の傾斜組成を有するSiN_{x2}O_{y2}膜112dを形成してもよい。

【0129】

このように、拡散によりSiN_{x2}O_{y2}膜112dを形成する場合、その膜厚は、アニール温度および時間の条件により5nm～50nmに制御できる。

【0130】

なお、上記各実施の形態では、基板としてC面を有するサファイア基板を用いたが、サファイア基板のr面やm面など他の面方位を用いてもよい。また、SiCやGaNなどの基板を用いてもよい。

【図面の簡単な説明】

【図1】

本発明の第1の実施の形態に係る半導体レーザ素子の構成を示す模式的断面図である。

【図2】

図1の半導体レーザ素子の活性層の構成を示す模式的断面図である。

【図3】

本発明の第2の実施の形態に係る半導体レーザ素子の構成を示す模式的断面図である。

【図4】

本発明の第3の実施の形態に係る半導体レーザ素子の誘電体膜の構成を説明す

るための図である。

【図5】

本発明の第4の実施の形態に係る半導体レーザ素子の構成を示す模式的断面図である。

【図6】

本発明の第6の実施の形態に係る半導体レーザ素子の構成を示す模式的断面図である。

【図7】

本発明の第7の実施の形態に係る発光ダイオードの構成を示す模式的断面図である。

【図8】

従来の半導体レーザ素子の構成を示す模式的断面図である。

【符号の説明】

- 4 第1コンタクト層
- 5 クラック防止層
- 6 第1クラッド層
- 7 発光層
- 8 第2クラッド層
- 9 第2コンタクト層
- 10 リッジ部
- 12a, 112a SiN_x膜
- 12b, 112c SiO_y膜
- 112b SiN_{x1}O_{y1}膜
- 112d SiN_{x2}O_{y2}膜

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【書類名】 要約書

【要約】

【課題】 素子特性の再現性が高くかつ歩留りが向上した半導体発光素子を提供することである。

【解決手段】 第1コンタクト層4の一部側面およびn側電極132を除く電極形成面11、各層5~8の側面、第2クラッド層8の上面ならびにリッジ部10の側面にSiN_x膜12aが形成される。SiN_x膜12a上にSiO_y膜12bが形成される。SiN_x膜12aおよびSiO_y膜12bにより誘電体膜12Aが構成される。

【選択図】 図1

出願人履歴情報

識別番号 [000001889]

1. 変更年月日 1993年10月20日

[変更理由] 住所変更

住 所 大阪府守口市京阪本通2丁目5番5号
氏 名 三洋電機株式会社