

Assessment Blueprint - Spring Semester STAAR Review

Form A

Item	TEKS
1	A3(B) calculate the rate of change of a linear function represented tabularly, graphically, or algebraically in context of mathematical and real-world problems
2	A3(B) calculate the rate of change of a linear function represented tabularly, graphically, or algebraically in context of mathematical and real-world problems
3	A6(A) determine the domain and range of quadratic functions and represent the domain and range using inequalities
4	A6(A) determine the domain and range of quadratic functions and represent the domain and range using inequalities
5	A7(A) graph quadratic functions on the coordinate plane and use the graph to identify key attributes, if possible, including x -intercept, y -intercept, zeros, maximum value, minimum values, vertex, and the equation of the axis of symmetry
6	A7(A) graph quadratic functions on the coordinate plane and use the graph to identify key attributes, if possible, including x -intercept, y -intercept, zeros, maximum value, minimum values, vertex, and the equation of the axis of symmetry
7	A7(A) graph quadratic functions on the coordinate plane and use the graph to identify key attributes, if possible, including x -intercept, y -intercept, zeros, maximum value, minimum values, vertex, and the equation of the axis of symmetry
8	A7(C) determine the effects on the graph of the parent function $f(x)=x^2$ when $f(x)$ is replaced by $af(x)$, $f(x)+d_xf(x-c)$, $f(bx)$ for specific values of a , b , c , and d
9	A7(C) determine the effects on the graph of the parent function $f(x)=x^2$ when $f(x)$ is replaced by $af(x)$, $f(x)+d_xf(x-c)$, $f(bx)$ for specific values of a , b , c , and d
10	A8(A) solve quadratic equations having real solutions by factoring, taking square roots, completing the square, and applying the quadratic formula

11	A8(A) solve quadratic equations having real solutions by factoring, taking square roots, completing the square, and applying the quadratic formula
12	A8(A) solve quadratic equations having real solutions by factoring, taking square roots, completing the square, and applying the quadratic formula
13	A9(C) write exponential functions in the form $f(x)=ab^x$ (where b is a rational number) to describe problems arising from mathematical and real-world situations, including growth and decay
14	A9(C) write exponential functions in the form $f(x)=ab^x$ (where b is a rational number) to describe problems arising from mathematical and real-world situations, including growth and decay
15	A9(D) graph exponential functions that model growth and decay and identify key features, including y -intercept and asymptote, in mathematical and real-world problems
16	A9(D) graph exponential functions that model growth and decay and identify key features, including y -intercept and asymptote, in mathematical and real-world problems
17	A10(E) factor, if possible, trinomials with real factors in the form ax^2+bx+c , including perfect square trinomials of degree two
18	A10(E) factor, if possible, trinomials with real factors in the form ax^2+bx+c , including perfect square trinomials of degree two
19	A11(B) simplify numeric and algebraic expressions using the laws of exponents, including integral and rational exponents
20	A11(B) simplify numeric and algebraic expressions using the laws of exponents, including integral and rational exponents

Form B

Item	TEKS
1	A3(B) calculate the rate of change of a linear function represented tabularly, graphically, or algebraically in context of mathematical and real-world problems

2	A3(B) calculate the rate of change of a linear function represented tabularly, graphically, or algebraically in context of mathematical and real-world problems
3	A6(A) determine the domain and range of quadratic functions and represent the domain and range using inequalities
4	A6(A) determine the domain and range of quadratic functions and represent the domain and range using inequalities
5	A7(A) graph quadratic functions on the coordinate plane and use the graph to identify key attributes, if possible, including x -intercept, y -intercept, zeros, maximum value, minimum values, vertex, and the equation of the axis of symmetry
6	A7(A) graph quadratic functions on the coordinate plane and use the graph to identify key attributes, if possible, including x -intercept, y -intercept, zeros, maximum value, minimum values, vertex, and the equation of the axis of symmetry
7	A7(A) graph quadratic functions on the coordinate plane and use the graph to identify key attributes, if possible, including x -intercept, y -intercept, zeros, maximum value, minimum values, vertex, and the equation of the axis of symmetry
8	A7(C) determine the effects on the graph of the parent function $f(x)=x^2$ when $f(x)$ is replaced by $af(x)$, $f(x)+d_xf(x-c)$, $f(bx)$ for specific values of a , b , c , and d
9	A7(C) determine the effects on the graph of the parent function $f(x)=x^2$ when $f(x)$ is replaced by $af(x)$, $f(x)+d_xf(x-c)$, $f(bx)$ for specific values of a , b , c , and d
10	A8(A) solve quadratic equations having real solutions by factoring, taking square roots, completing the square, and applying the quadratic formula
11	A8(A) solve quadratic equations having real solutions by factoring, taking square roots, completing the square, and applying the quadratic formula
12	A8(A) solve quadratic equations having real solutions by factoring, taking square roots, completing the square, and applying the quadratic formula
13	A9(C) write exponential functions in the form $f(x)=ab^x$ (where b is a rational number) to describe problems arising from mathematical and real-world situations, including growth and decay

14	A9(C) write exponential functions in the form $f(x)=ab^x$ (where b is a rational number) to describe problems arising from mathematical and real-world situations, including growth and decay
15	A9(D) graph exponential functions that model growth and decay and identify key features, including y -intercept and asymptote, in mathematical and real-world problems
16	A9(D) graph exponential functions that model growth and decay and identify key features, including y -intercept and asymptote, in mathematical and real-world problems
17	A10(E) factor, if possible, trinomials with real factors in the form ax^2+bx+c , including perfect square trinomials of degree two
18	A10(E) factor, if possible, trinomials with real factors in the form ax^2+bx+c , including perfect square trinomials of degree two
19	A11(B) simplify numeric and algebraic expressions using the laws of exponents, including integral and rational exponents
20	A11(B) simplify numeric and algebraic expressions using the laws of exponents, including integral and rational exponents