Ivan Rezo 0036466940 Grupa P01	FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA SVEUČILIŠTA U ZAGREBU Zavod za automatiku i računalno inženjerstvo	28.
	Osnove robotike	10.
	Direktna kinematika manipulatora Zadaća broj 1	.2015.

Uvod

U ovoj domaćoj zadaći obradit će se ruka humanoidnog robota *Nao* s 5 stupnjeva slobode, prikazana Slikom 1. Na slici je prikazana stvarna ruka robota te tlocrt i nacrt izvedbe ruke robota, s označenim zglobovima, osima rotacije zglobova i karakterističnim dužinama. Ruka *Nao* robota spada u skupinu rotacijskih robota s 3 zgloba, pri čemu su dva zgloba (rame i lakat) izvedena kao dvoosni zglobovi, dok šaka ima jednu os rotacije. Vrh alata ruke *Nao* robota sadrži dodatan stupanj slobode (otvaranje i zatvaranje prstiju) koji se ne razmatra u ovoj zadaći.

Slika 1. Zglobovi ruke Nao robota

Zadatak 1.

Prema pravilima *Denavit-Hartenbergovog* postupka postavite koordinatne osi zglobova robota. Na slici rješenja obavezno označite i pomoćne točke korištene u postupku.

Slika 2. Koordinatne osi zglobova robota

Zadatak 2.

Odredite parametre *DH* tablice robota.

θ d α a $q_1(0^{\circ})$ 90° 0 1 0 2 $q_2(90^{\circ})$ 90° l_2 0 $q_3(0^\circ)$ l_1 3 -90° 0 $q_4(0^{\circ}) = 0^{\circ}$ 0 4 90° 0

 l_3+l_4

 $l_{\scriptscriptstyle 5}$

Tablica 1. Parametri *DH* tablice robota

 $q_6(0^\circ)$

Zadatak 3.

5

6

Odredite i izračunajte matricu transformacije alata robota, T_0^5 te izdvojite vektore položaja i orijentacije alata.

$$T_0^6 = \begin{bmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ A_{21} & A_{22} & A_{23} & A_{24} \\ A_{31} & A_{32} & A_{33} & A_{34} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(3-1)

90°

 0°

0

0

$$R_0^6 = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix}$$
 (3-2)

$$P_0^6 = \begin{bmatrix} A_{14} \\ A_{24} \\ A_{34} \end{bmatrix} \tag{3-3}$$

^{*}zglob broj 5 označava virtualni zglob

 $\mathbf{A11} = \cos(q5)*(\cos(q4)*(\sin(q1)*\sin(q3) + \cos(q1)*\cos(q2)*\cos(q3)) - \cos(q1)*\sin(q2)*\sin(q4) + \sin(q5)*(\sin(q4)*(\sin(q1)*\sin(q3) + \cos(q1)*\cos(q2)*\cos(q3)) + \cos(q1)*\cos(q2)*\cos(q3)) + \cos(q1)*\cos(q2)*\cos(q3)) + \cos(q1)*\cos(q2)*\cos(q3)) + \cos(q1)*\cos(q2)*\cos(q3)) + \cos(q1)*\cos(q2)*\cos(q3)) + \cos(q1)*\cos(q3) + \cos(q1)*\cos(q3) + \cos(q1)*\cos(q3) + \cos(q1)*\cos(q3)) + \cos(q1)*\cos(q3) + \cos(q1)*\cos(q3) + \cos(q1)*\cos(q3)) + \cos(q1)*\cos(q3) + \cos(q1)*\cos(q3) + \cos(q1)*\cos(q3)) + \cos(q1)*\cos(q3) + \cos(q1)*\cos(q1) + \cos(q1)*\cos($

 $\mathbf{A12} = \cos(q5) * (\sin(q4) * (\sin(q1) * \sin(q3) + \cos(q1) * \cos(q2) * \cos(q3)) + \cos(q1) * \cos(q4) * \sin(q2)) - \sin(q5) * (\cos(q4) * (\sin(q1) * \sin(q3) + \cos(q1) * \cos(q2) * \cos(q3)) - \cos(q1) * \sin(q2) * \sin(q2) * \sin(q4))$

 $A_{13} = \cos(q_1) * \cos(q_2) * \sin(q_3) - \cos(q_3) * \sin(q_1)$

 $\mathbf{A14} = 15 * \cos(q1) * \cos(q2) + 105 * \cos(q1) * \sin(q2) - (1231 * \cos(q3) * \sin(q1)) / 100 + (2269 * \sin(q4) * (\sin(q1) * \sin(q3) + \cos(q1) * \cos(q2) * \cos(q3)) / (20 + (1231 * \cos(q1) * \cos(q2) * \sin(q3)) / 100 + (2269 * \cos(q1) * \cos(q4) * \sin(q2)) / 20$

 $\mathbf{A21} = -\cos(q5)*(\cos(q4)*(\cos(q1)*\sin(q3) - \cos(q2)*\cos(q3)*\sin(q1)) + \sin(q1)*\sin(q2)*\sin(q4)) - \sin(q5)*(\sin(q4)*(\cos(q1)*\sin(q3) - \cos(q2)*\cos(q3)*\sin(q1)) - \cos(q4)*\sin(q1)*\sin(q2))$

 $\mathbf{A}_{22} = \sin(q5) * (\cos(q4) * (\cos(q1) * \sin(q3) - \cos(q2) * \cos(q3) * \sin(q1)) + \sin(q1) * \sin(q2) * \sin(q4)) - \cos(q5) * (\sin(q4) * (\cos(q1) * \sin(q3) - \cos(q2) * \cos(q3) * \sin(q1)) - \cos(q4) * \sin(q1)) + \sin(q1) * \sin(q2) * \sin(q3) + \cos(q3) * \cos(q3) *$

 $A_{23} = \cos(q_1) \cos(q_3) + \cos(q_2) \sin(q_1) \sin(q_3)$

 $\mathbf{A24} = (1231 * \cos(q1) * \cos(q3))/100 + 15 * \cos(q2) * \sin(q1) + 105 * \sin(q1) * \sin(q2) - (2269 * \sin(q4) * (\cos(q1) * \sin(q3) - \cos(q2) * \cos(q3) * \sin(q1)))/20 + (1231 * \cos(q2) * \sin(q1) * \sin(q3))/100 + (2269 * \cos(q4) * \sin(q1) * \sin(q2))/20$

 $A_{31} = \cos(q_5) * (\cos(q_2) * \sin(q_4) + \cos(q_3) * \cos(q_4) * \sin(q_2)) - \sin(q_5) * (\cos(q_2) * \cos(q_4) - \cos(q_3) * \sin(q_4))$

 $\mathbf{A32} = -\cos(q5)*(\cos(q2)*\cos(q4) - \cos(q3)*\sin(q2)*\sin(q4)) - \sin(q5)*(\cos(q2)*\sin(q4) + \cos(q3)*\cos(q4)*\sin(q2))$

 $\mathbf{A}_{33} = \sin(q2) \cdot \sin(q3)$

 $\mathbf{A}_{34}=15*\sin(q2)-105*\cos(q2)-(2269*\cos(q2)*\cos(q4))/20+(1231*\sin(q2)*\sin(q3))/100+(2269*\cos(q3)*\sin(q2)*\sin(q4))/20$

Zadatak 4.

Skicirajte radni prostor robota, koristeći podatke iz Tablice 2 i Tablice 3.

Tablica 2. Zadane vrijednosti karakterističnih duljina robota

Veličina	Duljina [mm]
$\overline{l_1}$	105.00
l_2	15.00
l_3	55.95
l_4	57.50
l_5	12.31

Tablica 3. Ograničenje rotacije zglobova

Os zgloba	Ograničenje [°]
Os 1	(-119.5, 119.5)
Os 2	(-18, 76)
Os 3	(-119.5, 119.5)
Os 4	(-88.5, -2)
Os 5	(-104.5, 104.5)

Slika 3. Radni prostor robota

Zadatak 5.

Vodeći računa o vrijednostima karakterističnih dužina iz tablice 2, za zadani položaj zglobova q, odredite položaj i orijentaciju koordinatnog sustava pridruženog trećem zglobu u koordinatnom sustavu baze i koordinatnom sustavu vrha alata.

$$q = \begin{bmatrix} 0 & \frac{\pi}{4} & 0 & -\frac{\pi}{4} & \frac{\pi}{2} \end{bmatrix} \tag{5-1}$$

$$R_0^4 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \tag{5-2}$$

$$P_0^4 = \begin{bmatrix} 63.64 \\ 0 \\ 84.85 \end{bmatrix} \tag{5-3}$$

$$R_6^4 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \tag{5-4}$$

$$P_6^4 = \begin{bmatrix} 0 \\ -113.45 \\ -12.31 \end{bmatrix} \tag{5-5}$$

Zadatak 6.

Skicirajte robota u zadanom položaju q, u nacrtu i bokocrtu.

$$q = \begin{bmatrix} 45^{\circ} & ^{\circ}-18^{\circ} & 0^{\circ} & -88.5^{\circ} & 0^{\circ} \end{bmatrix}$$
 (6-1)

Slika 4. Skica robota u zadanom položaju q, u nacrtu i bokocrtu