Project Planning Phase

Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Date	23 October 2022
Team ID	PNT2022TMID50358
Project Name	Natural disasters intensity analysis and classification using artificial intelligence
Maximum Marks	8 Marks

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Collection of Dataset	USN-1	As a user, I can collect the dataset for monitoring and analysing.	5	Medium	Srinathanish,balasubramaniyan, sanjeevkumar,kalimuthu,ramkumar
Sprint-1	Home page	USN-2	As a user, I want to know to about the basics of frequently occurring Disasters.	5	High	Srinathanish,balasubramaniyan, sanjeevkumar,kalimuthu,ramkumar
Sprint-1	Intro page	USN-3	As a user, I want to about the introduction of Disaster in particular areas.	5	High	Srinathanish,balasubramaniyan, sanjeevkumar,kalimuthu,ramkumar
Sprint-1	Open webcam	USN-4	As a user, I adapt with the webcam to analyse and classify the Disaster from video capturing.	5	High	Srinathanish,balasubramaniyan, sanjeevkumar,kalimuthu,ramkumar
Sprint-2	Analysis of required phenomenon	USN-5	As a user, I can regulate certain factors influencing the action and report on past event analysis.	5	High	Srinathanish,balasubramaniyan, sanjeevkumar,kalimuthu,ramkumar
Sprint-2	Algorithm selection	USN-6	As a user, I can choose the required algorithm for specific analysis.	5	Medium	Srinathanish,balasubramaniyan, sanjeevkumar,kalimuthu,ramkumar
Sprint-2	Training and Testing	USN-7	As a user, I can train and test the model using the algorithm.	10	High	Srinathanish,balasubramaniyan, sanjeevkumar,kalimuthu,ramkumar
Sprint-3	Detection and analysis of data	USN-8	As a user, I can detect and visualise the data effectively.	10	High	Srinathanish,balasubramaniyan, sanjeevkumar,kalimuthu,ramkumar

Sprint-3	Model building	USN-9	As a user, I can build with the web application.	10	High	Srinathanish,balasubramaniyan, sanjeevkumar,kalimuthu,ramkumar
Sprint-4	Integrate the web app with the AI model	USN-11	As a user, I can use Flask app to use model easily through web app.	10	High	Srinathanish,balasubramaniyan, sanjeevkumar,kalimuthu,ramkumar
Sprint-4	Model deployment	USN-12	As an administrator, I can deploy the Al model in IBM Cloud.	10	High	Srinathanish,balasubramaniyan, sanjeevkumar,kalimuthu,ramkumar

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

Average velocity=Sprint duration / velocity=20/6=3

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

