République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

UNIVERSITÉ MOHAMED KHIDER BISKRA

Faculté des Sciences Exactes et Sciences de la Nature et de la Vie Département de Mathématiques

Première Année Master

Notes de Cours

Analyse de Données

Chapitre 1 : Régression linéaire simple (Séance 2)

Auteur des notes:

Dr. Sana BENAMEUR

Année universitaire: 2021-2022

Remarque 1.1. Les estimateurs des paramètres du modèle invers : $X = b_0' + b_1'Y + \varepsilon$ sont données par :

$$\begin{cases} \hat{b}'_0 = \overline{x} - \hat{b}_1 \overline{y}, \\ \hat{b}'_1 = \frac{S_{xy}}{S_y}. \end{cases}$$

1.2.2 Propriétés des Estimateurs

Théorème 1.1 (Biais des estimateurs).

Sous les hypothèses (i) et (ii), \hat{b}_0 et \hat{b}_1 sont des estimateurs sans biais de b_0 et b_1 , c-à-d.

$$\mathbb{E}\left(\hat{b}_{0}\right) = b_{0} \ et \ \mathbb{E}\left(\hat{b}_{1}\right) = b_{1}.$$

Démonstration.

On a

$$\begin{cases} y_i = b_0 + b_1 x_i + \varepsilon_i \\ \bar{y} = b_0 + b_1 \bar{x} + \bar{\varepsilon} \end{cases}$$

L'écart entre y_i et la moyenne \bar{y} est donc

$$y_i - \bar{y} = b_1 (x_i - \bar{x}) + (\varepsilon_i - \bar{\varepsilon}).$$

Pour \hat{b}_1

$$\hat{b}_{1} = \frac{S_{xy}}{S_{x}} = \frac{\sum_{i=1}^{n} (x_{i-}\overline{x}) (y_{i-}\overline{y})}{\sum_{i=1}^{n} (x_{i-}\overline{x})^{2}} = b_{1} + \frac{\sum_{i=1}^{n} (x_{i-}\overline{x}) (\varepsilon_{i} - \overline{\varepsilon})}{\sum_{i=1}^{n} (x_{i-}\overline{x})^{2}}$$

$$= b_{1} + \frac{\sum_{i=1}^{n} (x_{i-}\overline{x}) \varepsilon_{i}}{\sum_{i=1}^{n} (x_{i-}\overline{x})^{2}}.$$

Dans cette expression seuls les bruits ε_i sont aléatoires, et puisqu'ils sont centrés, on en déduit que $\mathbb{E}\left(\hat{b}_1\right) = b_1$.

Pour \hat{b}_0 , on part de l'expression

$$\hat{b}_0 = \overline{y} - \hat{b}_1 \overline{x},$$

d'où l'on tire

$$\mathbb{E}\left(\hat{b}_{0}\right) = \mathbb{E}\left(\overline{y} - \hat{b}_{1}\overline{x}\right) = \mathbb{E}\left(\overline{y}\right) - \overline{x}\mathbb{E}\left(\hat{b}_{1}\right) = b_{0} + \overline{x}b_{1} - \overline{x}b_{1} = b_{0}.$$

Théorème 1.2 (Variances et covariance des estimateurs).

Sous les hypothèses (i) et (ii), les variances, et la covariance des estimateurs sont

$$Var\left(\hat{b}_{0}\right) = \frac{\sigma_{\varepsilon}^{2} \sum_{i=1}^{n} x_{i}^{2}}{nS_{x}}, Var\left(\hat{b}_{1}\right) = \frac{\sigma_{\varepsilon}^{2}}{S_{x}} \text{ et } Cov\left(\hat{b}_{0}, \hat{b}_{1}\right) = \frac{-\sigma_{\varepsilon}^{2} \bar{x}}{S_{x}}.$$

Démonstration. (Exercice 1)

Théorème 1.3 (Biais de l'estimateur de σ_{ε}^2).

L'estimateur sans biais de la variance résiduelle (variance des erreurs) σ_{ε}^2 est :

$$S^{2} = \hat{\sigma}_{\varepsilon}^{2} = \frac{1}{n-2} \sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2},$$

avec $\hat{\varepsilon}_i = y_i - \hat{y}_i = y_i - \hat{b}_0 - \hat{b}_1 x_i$ est le résidu du modèle (l'écart entre la valeur observée et la valeur ajustée (estimée))

Démonstration. (Exercice 2)

Remarque 1.2. \hat{b}_0 et \hat{b}_1 sont deux variables aléatoires (va's) de matrice de variancecovariance

$$\Gamma\left(\hat{b}_0, \hat{b}_1\right) = \frac{\sigma_{\varepsilon}^2}{S_x} \begin{bmatrix} \sum_{i=1}^n x_i^2 \\ -\bar{x} & 1 \end{bmatrix},$$

qui est estimée en remplaçant σ_{ε}^2 par son estimateur S^2 .

1.2.3 Lois des Estimateurs

Pour des raisons de simplicités, considérons les notations suivantes

$$\sigma_{\hat{b}_0}^2 = Var\left(\hat{b}_0\right), \quad \hat{\sigma}_{\hat{b}_0}^2 = \frac{\hat{\sigma}_{\varepsilon}^2 \sum_{i=1}^n x_i^2}{nS_x},$$

$$\sigma_{\hat{b}_1}^2 = Var\left(\hat{b}_1\right), \quad \hat{\sigma}_{\hat{b}_1}^2 = \frac{\hat{\sigma}_{\varepsilon}^2}{S_x}.$$

Théorème 1.4 (Lois des estimateurs avec variance résiduelle connue).

Sous l'hypothèse de normalité des résidus et si σ_{ε}^2 est connue, les estimateurs \hat{b}_0 , \hat{b}_1 et le vecteur $(\hat{b}_0, \hat{b}_1)^t$ suivants respectivement les lois :

- i) $\hat{b}_0 \sim \mathcal{N}\left(b_0, \sigma_{\hat{b}_0}^2\right)$,
- ii) $\hat{b}_1 \sim \mathcal{N}\left(b_1, \sigma_{\hat{b}_1}^2\right)$,
- iii) $\begin{pmatrix} \hat{b}_0 \\ \hat{b}_1 \end{pmatrix} \sim \mathcal{N}_2 \begin{pmatrix} \begin{pmatrix} b_0 \\ b_1 \end{pmatrix}, \Gamma \begin{pmatrix} \hat{b}_0, \hat{b}_1 \end{pmatrix} \end{pmatrix}$.