Application 0 Triaxe - Sujet

On donne le plan d'un triaxe constitué des 3 axes A_1 , A_2 , A_3 et du moyeu central noté *M*. On note *T* l'ensemble.

B2-10

On note:

- ightharpoonup l'axe perpendiculaire au plan de la feuille. On se place ci-dessus dans le plan de symétrie $(O, \overrightarrow{x}, \overrightarrow{y})$;
- ▶ \Re_i le repère $(O_i; \overrightarrow{x_i}, \overrightarrow{y_i}, \overrightarrow{z_i})$ et \Re_i la base associée.

TOUS LES CALCULS SE FERONT DE MANIÈRE LITTEREALE!

- ► $D_1 = 18 \,\mathrm{mm} \,\mathrm{et} \, H_1 = 25 \,\mathrm{mm}.$
- ► D = 46 mm, D' = 30 mm et H = 48 mm. ► $\alpha_1 = (\overrightarrow{x}, \overrightarrow{x_1}) = 90^\circ$, $\alpha_2 = (\overrightarrow{x}, \overrightarrow{x_2}) = -150^\circ$ et $\alpha_3 = (\overrightarrow{x}, \overrightarrow{x_3}) = -30^\circ$.

On donne ci-dessous le paramétrage d'un axe A_i .

Question 1 Déterminer (sans calcul) la position du centre de gravité du triaxe.

Question 2 Déterminer analytiquement la position du centre de gravité G_i du solide A_1 dans le repère \Re_i .

Question 3 Déterminer (sans calcul) la forme de la matrice d'inertie du triaxe.

Question 4 Déterminer analytiquement la matrice d'inertie du solide A_i en G_i dans

 \mathcal{R}_i . On la note $I_{G_i}(A_i) = \begin{pmatrix} A_i & -F_i & -E_i \\ -F_i & B_i & -D_i \\ -E_i & -D_i & C_i \end{pmatrix}_{\mathcal{R}_i}$ où les constantes seront à déterminer

littéralement.

Question 5 Déterminer $I_{G_i}(A_i)$ dans la base $\Re\left(\overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z}\right)$ puis $I_O(A_i)$ dans la base \Re .

Question 6 Déterminer $I_O(B)$ dans la base \Re .

Question 7 Proposer une méthode pour déterminer le tenseur d'inertie du triaxe en O dans la base \mathcal{B} .

Question 8 Déterminer le tenseur d'inertie du triaxe en *O* dans la base *%*.

Question 9 Déterminer $I_O(M)$ la matrice d'inertie du moyeu M.

Question 10 Déterminer $I_O(T)$ la matrice d'inertie du triaxe T.