Chapter 1: The Real And Complex Number Systems

Author: Meng-Gen Tsai Email: plover@gmail.com

Integers

Exercise 1.1. Prove that there is no largest prime. (A proof was known to Euclid.)

There are many proofs of this result. We provide some of them.

Proof (Due to Euclid). If $p_1, p_2, ..., p_t$ were all primes, then write

$$n = p_1 p_2 \cdots p_t + 1$$

and there were a prime number p dividing n. p can not be any of p_i for $1 \le i \le t$, otherwise p would divide the difference $n - p_1 p_2 \cdots p_t = 1$, that is, $p \ne p_i$ for $1 \le i \le t$, which is absurd. \square

Supplement (Due to Euclid). Show that k[x], with k a field, has infinitely many irreducible polynomials.

Proof (Due to Euclid). If $f_1, f_2, ..., f_t$ were all irreducible polynomials, then write

$$g = f_1 f_2 \cdots f_t + 1 \in k[x]$$

and there were a irreducible polynomial f dividing g (since $\deg g = \deg f_1 + \deg f_2 + \cdots + \deg f_t \geq 1$). f can not be any of $c_i f_i$ for $1 \leq i \leq t$ and $0 \neq c_i \in k$, otherwise f would divide the difference $g - f_1 f_2 \cdots f_t = 1$, that is, $f \neq c_i f_i$ for $1 \leq i \leq t$ and $0 \neq c_i \in k$, which is absurd. \square

Proof (Unique factorization theorem). Given N.

(1) Show that $\sum_{n \leq N} \frac{1}{n} \leq \prod_{p \leq N} \left(1 - \frac{1}{p}\right)^{-1}$. By the unique factorization theorem on $n \leq N$,

$$\sum_{n \le N} \frac{1}{n} \le \prod_{p \le N} \left(1 + \frac{1}{p} + \frac{1}{p^2} + \dots \right) = \prod_{p \le N} \left(1 - \frac{1}{p} \right)^{-1}.$$

(2) By (1) and the fact that $\sum \frac{1}{n}$ diverges, there are infinitely many primes.

Proof (Due to Eckford Cohen).

(1) $ord_p n! = \left[\frac{n}{p}\right] + \left[\frac{n}{p^2}\right] + \left[\frac{n}{p^3}\right] + \cdots$. For any k = 1, 2, ..., n, we can express k as $k = p^s t$ where $s = \operatorname{ord}_p k$ is a non-negative integer and (t, p) = 1. There are $\left[\frac{n}{p^a}\right]$ numbers such that $p^a \mid k$ for a = 1, 2, ... Therefore, there are

$$\left[\frac{n}{p^a}\right] - \left[\frac{n}{p^{a+1}}\right]$$

numbers such that $\operatorname{ord}_{p}k = a$ for $a = 1, 2, \dots$ Hence,

$$\operatorname{ord}_{p} n! = \left(\left[\frac{n}{p} \right] - \left[\frac{n}{p^{2}} \right] \right) + 2 \left(\left[\frac{n}{p^{2}} \right] - \left[\frac{n}{p^{3}} \right] \right) + 3 \left(\left[\frac{n}{p^{3}} \right] - \left[\frac{n}{p^{4}} \right] \right) + \cdots$$
$$= \left[\frac{n}{p} \right] + \left[\frac{n}{p^{2}} \right] + \left[\frac{n}{p^{3}} \right] + \cdots$$

(2) $ord_p n! \leq \frac{n}{p-1}$ and that $n!^{\frac{1}{n}} \leq \prod_{p|n!} p^{\frac{1}{p-1}}$.

$$\operatorname{ord}_{p} n! = \left[\frac{n}{p}\right] + \left[\frac{n}{p^{2}}\right] + \left[\frac{n}{p^{3}}\right] + \cdots$$

$$\leq \frac{n}{p} + \frac{n}{p^{2}} + \frac{n}{p^{3}} + \cdots$$

$$= \frac{\frac{n}{p}}{1 - \frac{1}{p}}$$

$$= \frac{n}{p - 1}.$$

Thus,

$$n! = \prod_{p|n!} p^{\operatorname{ord}_p n!} \le \prod_{p|n!} p^{\frac{n}{p-1}} = \left(\prod_{p|n!} p^{\frac{1}{p-1}}\right)^n,$$

or

$$n!^{\frac{1}{n}} \le \prod_{p|n!} p^{\frac{1}{p-1}}.$$

- (3) $(n!)^2 \ge n^n$. Write $(n!)^2 = \prod_{k=1}^n k \prod_{k=1}^n (n+1-k) = \prod_{k=1}^n k(n+1-k)$, and $n^n = \prod_{k=1}^n n$. It suffices to show that $k(n+1-k) \ge n$ for each $1 \le k \le n$. Notice that $k(n+1-k) n = (n-k)(k-1) \ge 0$ for $1 \le k \le n$. The inequality holds.
- (4) By (3)(4), $\prod_{p|n!} p^{\frac{1}{p-1}} \ge \sqrt{n}$. Assume that there are finitely many primes, the value $\prod_{p|n!} p^{\frac{1}{p-1}}$ is a finite number whenever the value of n. However, $\sqrt{n} \to \infty$ as $n \to \infty$, which leads to a contradiction. Hence there are infinitely many primes.

Proof (Formula for $\phi(n)$). If $p_1, p_2, ..., p_t$ were all primes, then let $n = p_1 p_2 \cdots p_t$ and all numbers between 2 and n are NOT relatively prime to n. Thus, $\phi(n) = 1$ by the definition of ϕ . By the formula for ϕ ,

$$\phi(n) = n\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\cdots\left(1 - \frac{1}{p_t}\right)$$

$$1 = (p_1p_2\cdots p_t)\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\cdots\left(1 - \frac{1}{p_t}\right)$$

$$= (p_1 - 1)(p_2 - 1)\cdots(p_t - 1) > 1,$$

which is a contradiction (since 3 is a prime). Hence there are infinitely many primes. \Box

Exercise 1.2. If n is a positive integer, prove the algebraic identity

$$a^{n} - b^{n} = (a - b) \sum_{k=0}^{n-1} a^{k} b^{n-1-k}.$$

Proof.

(1)

$$\begin{split} (a-b)\sum_{k=0}^{n-1}a^kb^{n-1-k} &= a\sum_{k=0}^{n-1}a^kb^{n-1-k} - b\sum_{k=0}^{n-1}a^kb^{n-1-k} \\ &= \sum_{k=0}^{n-1}a^{k+1}b^{n-1-k} - \sum_{k=0}^{n-1}a^kb^{n-k}. \end{split}$$

(2) Arrange summation index:

$$\begin{split} \sum_{k=0}^{n-1} a^{k+1} b^{n-1-k} &= \sum_{k=1}^n a^k b^{n-k} = a^n + \sum_{k=1}^{n-1} a^k b^{n-k}, \\ \sum_{k=0}^{n-1} a^k b^{n-k} &= b^n + \sum_{k=1}^{n-1} a^k b^{n-k}. \end{split}$$

(3) By (1)(2),

$$(a-b)\sum_{k=0}^{n-1} a^k b^{n-1-k} = \left(a^n + \sum_{k=1}^{n-1} a^k b^{n-k}\right) - \left(b^n + \sum_{k=1}^{n-1} a^k b^{n-k}\right)$$
$$= a^n - b^n.$$

Supplement. Some exercises without proof.

- (1) Let x be a nilpotent element of A. Show that 1+x is a unit of A. Deduce that the sum of a nilpotent element and a unit is a unit. (Exercise 1.1 in Atiyah and Macdonald, Introduction to Commutative Algebra.)
- (2) Prove that $1^k + 2^k + \cdots + (p-1)^k \equiv 0$ (p) if $p-1 \nmid k$ and -1(p) if $p-1 \mid k$. (Exercise 4.11 in Kenneth Ireland and Michael Rosen, A Classical Introduction to Modern Number Theory, Second Edition)
- (3) Use the existence of a primitive root to give another proof of Wilson's theorem $(p-1)! \equiv -1$ (p). (Exercise 4.12 in Kenneth Ireland and Michael Rosen, A Classical Introduction to Modern Number Theory, Second Edition)
- (4) Suppose n and F are integers and n, F > 0. Show that

$$B_n(Fx) = F^{n-1} \sum_{a=0}^{F-1} B_n \left(x + \frac{a}{F} \right).$$

where $B_n(x)$ are Bernoulli polynomials. (Exercise 15.19 in Kenneth Ireland and Michael Rosen, A Classical Introduction to Modern Number Theory, Second Edition)

- (5) Exercise 1.3.
- (6) Exercise 1.4.

Exercise 1.3. If $2^n - 1$ is a prime, prove that n is prime. A prime of the form $2^p - 1$, where p is prime, is called a Mersenne prime.

It suffices to prove that: If $a^n - 1$ is a prime, show that a = 2 and that n is a prime. Primes of the form $2^p - 1$ are called Mersenne primes. For example, $2^3 - 1 = 7$ and $2^5 - 1 = 31$. It is not known if there are infinitely many Mersenne primes.

Proof.

- (1) n is a prime. Assume n were not prime, say n = rs for some r, s > 1. By Exercise 1.2, $a^{rs} 1 = (a^s 1)(\sum_{k=0}^{r-1} a^{sk})$. $a^s 1 = 1$ since $a^s 1 < a^{rs} 1$ and $a^{rs} 1$ is a prime. Hence s = 1 and (a = 2), which is absurd.
- (2) a = 2. If a is odd, then $a^p 1 > 2$ is even, which is not a prime. If a > 2 is even, $a^p 1 = (a 1)(\sum_{k=0}^{p-1} a^k)$. Both a 1 > 1 and $\sum_{k=0}^{p-1} a^k > 1$, which is absurd.

By (1)(2), a=2 and that n is a prime if a^n-1 is a prime. \square

Exercise 1.6. Prove that every nonempty set of positive integers contains a smallest member. This is called the well-ordering principle.

Proof. Use mathematical induction to establish that the well-ordering principle.

- (1) Given a set S of positive integers, let P(n) be the proposition 'If $m \in S$ for some $m \leq n$, then S has a least element'. Want to show P(n) is true for all $n \in \mathbb{N}$.
 - (a) P(1) is true. For $m \in S$ with $m \le n = 1$, or m = 1 by the minimality of $1 \in \mathbb{N}$, S has a least element 1 (m itself) in \mathbb{N} .
 - (b) Suppose P(n) is true. If $n+1 \in S$, then there are only two possible cases.
 - (i) There is a positive integer $m \in S$ less than n+1. So $n \geq m \in S$. Since P(n) is true, S has a least element.
 - (ii) There is no positive integer $m \in S$ less than n+1. In this case n+1 is the least element in S.

In any cases (i)(ii), S has a least element, or P(n+1) is true.

By mathematical induction, P(n) is true for all $n \in \mathbb{N}$.

(2) Show that the well-ordering principle holds. Let T be a nonempty subset of \mathbb{N} , so there exists a positive integer $k \in T$. Notice that P(k) is true by (1), thus T has a least element since $k \leq k$.

Supplement. Show that the well-ordering principle implies the principle of mathematical induction.

Proof. Suppose that

- (1) P(n) be a proposition defined for each $n \in \mathbb{N}$,
- (2) P(1) is true,
- (3) $[P(n) \Rightarrow P(n+1)]$ is true.

Consider the set

$$S = \{n \in \mathbb{N} : P(n) \text{ false}\} \subseteq \mathbb{N}.$$

Want to show S is empty, or the principle of mathematical induction holds. If S were nonempty, by the well-ordering principle S has a smallest element m. m cannot be 1 by (2). Say m > 1. Therefore, $m - 1 \in \mathbb{N}$ and P(m - 1) is true by the minimality of m. By (3), P((m - 1) + 1) = P(m) is true, which is absurd.

Rational and irrational numbers

Exercise 1.11. Given any real x > 0, prove that there is an irrational number between 0 and x.

Proof. There are only two possible cases: x is rational, or x is irrational.

- (1) x is rational. Pick $y = \frac{x}{\sqrt{89}} \in (0, x) \subseteq \mathbb{R}$. y is irrational.
- (2) x is irrational. Pick $y = \frac{x}{\sqrt{64}} \in (0, x) \subseteq \mathbb{R}$. y is irrational.

Proof (Exercise 4.12). Pick

$$y = \lim_{m \to \infty} [\lim_{n \to \infty} \cos^{2n}(m!\pi x)] \cdot \frac{x}{\sqrt{89}} + (1 - \lim_{m \to \infty} [\lim_{n \to \infty} \cos^{2n}(m!\pi x)]) \cdot \frac{x}{\sqrt{64}}.$$

- (1) x is rational. $y = \frac{x}{\sqrt{89}} \in (0, x) \subseteq \mathbb{R}$ is irrational.
- (2) x is irrational. $y = \frac{x}{\sqrt{64}} \in (0, x) \subseteq \mathbb{R}$ is irrational.