Modelltheorie II

Homework Sheet 1 Deadline: 02.05.2023, 14 Uhr

Exercise 1 (6 Points).

We work inside a sufficiently saturated ambient model \mathbb{U} of a complete first-order theory T in a fixed language \mathcal{L} . Whenever we use the word definable, it is meant with possible parameters.

Consider two definable subsets $X \subset \mathbb{U}^n$ and $Y \subset \mathbb{U}^m$ as well as a definable function $f: X \to Y$, that is, its graph

$$\operatorname{Graph}(f) = \{(\bar{x}, \bar{y}) \in \mathbb{U}^{n+m} \mid \bar{x} \in X, \bar{y} \in Y \ \& \ f(\bar{x}) = \bar{y}\}$$

is a definable subset.

- a) Show that RM(X) = RM(Y) if f is a definable bijection. Does the converse hold?
- b) Assume now that there is a fixed ordinal α such that for every \bar{y} in Y the fiber $f^{-1}(\bar{y})$ has Morley rank $RM(f^{-1}(y)) \geq \alpha$. Show that $RM(X) \geq \alpha + RM(Y)$

Hint: Show by transfinite induction on β that $RM(X) \ge \alpha + \beta$ whenever $RM(Y) \ge \beta$.

Exercise 2 (14 Points).

Given a compact topological space X, define its $Cantor-Bendixson\ derivative$ as follows:

$$\Gamma(X) = \{x \in X \mid x \text{ is not an isolated point of } X\}.$$

a) Show that $\Gamma(X)$ is a closed subset of X. In particular, the set $\Gamma(X)$ equipped with the subspace topology is again compact.

Define now
$$\Gamma^{\alpha}(X) = \begin{cases} X, & \text{if } \alpha = 0 \\ \Gamma(\Gamma^{\beta}(X)), & \text{if } \alpha = \beta + 1 \\ \bigcap_{\beta < \alpha} \Gamma^{\beta}(X), & \text{if } \alpha \text{ is a limit ordinal} \end{cases}$$
.

We say that a point x of X is ranked if $CB(x) = \max\{\beta \mid x \in \Gamma^{\beta}(X)\}\$ is an ordinal.

- b) Show that there must be some ordinal α_0 with $\Gamma^{\alpha_0}(X) = \Gamma^{\alpha_0+1}(X)$. Deduce that $\Gamma^{\alpha_0}(X) = \Gamma^{\gamma}(X)$ for all $\gamma \geq \alpha_0$.
- c) Suppose that $\Gamma^{\alpha}(X) \neq \emptyset = \Gamma^{\alpha+1}(X)$. Show that $\Gamma^{\alpha}(X)$ is finite.
- d) Show that if every point of X is ranked, then the smallest α with $\Gamma^{\alpha}(X) = \Gamma^{\alpha+1}(X)$ is either 0 or a successor ordinal.

Hint: Compactness.

- e) Let now \mathcal{M} be a a structure with $(x \doteq x)$ minimal in \mathcal{M} and consider the space of 1-types $X = S_1(A)$ over a subset $A \subset \mathcal{M}$. Compute $\Gamma^{\alpha}(X)$ for every ordinal α .
- f) Is every type in $S_1(A)$ ranked?

DIE ÜBUNGSBLÄTTER KÖNNEN ZU ZWEIT EINGEREICHT WERDEN. ABGABE DER ÜBUNGSBLÄTTER IM FACH 3.07 IM KELLER DES MATHEMATISCHEN INSTITUTS.