Devoir surveillé n°10 Version 1

Durée : 3 heures, calculatrices et documents interdits

I. Trigonalisation d'un endomorphisme.

Soit le \mathbb{R} -espace vectoriel $E = \mathbb{R}^3$, que l'on identifiera à l'espace des vecteurs colonne $\mathcal{M}_{3,1}(\mathbb{R})$, et $\mathscr{C} = (e_1, e_2, e_3)$, sa base canonique.

On considère l'endomorphisme suivant de E

$$f: \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x & + & 2y & + & 2z \\ & & 2y & + & z \\ -x & + & 2y & + & 2z \end{pmatrix}.$$

On note Id l'application identité de \mathbb{R}^3 , et I_3 la matrice unité de $\mathcal{M}_3(\mathbb{R})$.

- 1) On appelle M la matrice canoniquement associée à l'endomorphisme $f: M = \text{Mat}_{\mathscr{C}}(f)$.
 - a) Expliciter cette matrice M.
 - b) Vérifier que M est une matrice de rang trois. Que peut-on en déduire concernant l'endomorphisme f?
- 2) On définit le polynôme caractéristique P associé à la matrice M par :

$$\forall x \in \mathbb{R}, P(x) = \det(xI_3 - M).$$

- a) Calculer ce polynôme P.
- b) Prouver alors qu'il existe exactement deux réels λ tels que la matrice $\lambda I_3 M$ n'est pas inversible. On notera ces deux valeurs λ_1 et λ_2 avec la condition $\lambda_1 < \lambda_2$.
- c) Déterminer les rangs des matrices $\lambda_1 I_3 M$ et $\lambda_2 I_3 M$.
- d) En déduire que les noyaux $Ker(\lambda_1 Id f)$ et $Ker(\lambda_2 Id f)$ sont des droites vectorielles de E. Justifier qu'elles sont en somme directe. Sont-elles supplémentaires dans E?
- e) Chercher, si c'est possible, un vecteur de $Ker(\lambda_1 Id f)$ sous la forme

$$b_1 = \begin{pmatrix} 1 \\ \star \\ \star \end{pmatrix}.$$

f) Chercher, si c'est possible, un vecteur de $Ker(\lambda_2 Id - f)$ sous la forme

$$b_2 = \begin{pmatrix} \star \\ 1 \\ \star \end{pmatrix}.$$

- 3) a) Montrer qu'il existe une infinité de vecteurs b_3 vérifiant $f(b_3) = b_2 + 2b_3$: donner une description paramétrique de ces vecteurs.
 - b) Montrer que, parmi ces vecteurs, il y en a un, et un seul, de la forme

$$b_3 = \begin{pmatrix} 2 \\ \star \\ \star \end{pmatrix}.$$

Dorénavant, b_3 désigne ce vecteur particulier.

- c) Vérifier que la famille $\mathscr{B} = (b_1, b_2, b_3)$ est une base de E.
- 4) On appelle T la matrice de l'endomorphisme f relativement à la base $\mathscr{B}: T = \operatorname{Mat}_{\mathscr{B}}(f)$.
 - a) Montrer que T est une matrice triangulaire supérieure.
 - b) On note Q la matrice de passage de la base $\mathscr C$ vers la base $\mathscr B$. Exhiber Q.
 - c) Q est-elle une matrice inversible? Le cas échéant, calculer son inverse Q^{-1} (on précisera, sur la copie, la méthode employée et le détail des calculs).
 - d) Quelle relation y-a-t'il entre les matrices M, T et Q?
- 5) a) Montrer que, pour tout entier $n \in \mathbb{N}$ il existe un réel α_n tel que

$$T^n = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^n & \alpha_n \\ 0 & 0 & 2^n \end{pmatrix},$$

et exprimer α_n en fonction de n.

- b) Donner la relation de récurrence satisfaite par la suite $(\alpha_n)_{n\geqslant 0}$.
- 6) Déduire, de ce qui précède l'expression de M^n pour tout $n \in \mathbb{N}$.

II. Les restes des restes.

Soit $(u_n)_{n\geq 0}$ une suite de réels. Si la série numérique de terme général u_n converge, on dit qu'elle converge à l'ordre 1 et l'on note alors $(R_{1,n})_{n\geq 0}$ la suite des restes de cette série, autrement dit :

$$\forall n \in \mathbb{N}, \quad R_{1,n} = \sum_{k=n+1}^{+\infty} u_k.$$

Si à nouveau la série de terme général $R_{1,n}$ converge, on dit que la série $\sum_{n\gg 0} u_n$ converge à l'ordre 2, et l'on note $(R_{2,n})_{n\geqslant 0}$ la suite des restes de cette série, autrement dit :

$$\forall n \in \mathbb{N}, \quad R_{2,n} = \sum_{k=n+1}^{+\infty} R_{1,k}.$$

Plus généralement, pour tout entier $p \ge 2$, si la série de terme général $R_{p-1,n}$ converge, on dit que la série $\sum_{n\ge 0} u_n$ converge à l'ordre p et l'on note alors $(R_{p,n})_{n\ge 0}$ la suite des restes de cette série :

$$R_{p,n} = \sum_{k=n+1}^{+\infty} R_{p-1,k}.$$

On peut noter : pour tout $n \in \mathbb{N}$, $R_{0,n} = u_n$.

Le but de cet exercice est d'étudier, sur certains exemples, l'ordre de la convergence de la série de terme général u_n .

- 1) Soit $\alpha \in \mathbb{R}$. On considère, dans cette question uniquement, que pour tout $n \in \mathbb{N}^*$: $u_n = \frac{1}{n^{\alpha}}$.
 - a) Rappeler la condition nécessaire est suffisante sous laquelle $\sum_{n\geqslant 1}u_n$ converge. On se place désormais sous cette condition.
 - **b)** Pour tout entier $k \ge 2$, justifier que :

$$\int_{k}^{k+1} \frac{\mathrm{d}t}{t^{\alpha}} \leqslant \frac{1}{k^{\alpha}} \leqslant \int_{k-1}^{k} \frac{\mathrm{d}t}{t^{\alpha}}.$$

c) En déduire que pour tout $n \ge 1$:

$$\frac{1}{\alpha - 1} \cdot \frac{1}{(n+1)^{\alpha - 1}} \leqslant R_{1,n} \leqslant \frac{1}{\alpha - 1} \cdot \frac{1}{n^{\alpha - 1}}.$$

d) En déduire que :

$$R_{1,n} \underset{n \to +\infty}{\sim} \frac{1}{(\alpha - 1)n^{\alpha - 1}}.$$

- e) Sous quelle condition nécessaire et suffisante sur α , la série $\sum_{n\geq 1} u_n$ converge-t-elle à l'ordre 2?
- 2) On considère, dans cette question uniquement, que pour tout $n \in \mathbb{N}^*$: $u_n = \frac{1}{n^n}$.
 - a) Montrer que la série $\sum_{n\geq 1} u_n$ converge.
 - **b)** Montrer que, pour tout $k \ge 3$, $u_k \le \frac{1}{3^k}$, puis en déduire que, pour tout $n \ge 2$:

$$0 \leqslant R_{1,n} \leqslant \frac{1}{2 \cdot 3^n}.$$

c) En déduire que la série $\sum_{n\geqslant 1}u_n$ converge à l'ordre 2, et que, pour tout $n\geqslant 1$:

$$0 \leqslant R_{2,n} \leqslant \frac{1}{4.3^n}$$

d) Montrer que, pour tout $p \ge 1$, la série $\sum_{n \ge 1} u_n$ converge à l'ordre p et que pour tout $n \ge 1$:

$$0 \leqslant R_{p,n} \leqslant \frac{1}{2^p \cdot 3^n}$$

- e) La série $\sum_{n\geqslant 1} R_{n,n}$ converge-t-elle?
- 3) On considère, dans cette question uniquement, que pour tout $n \in \mathbb{N}$: $u_n = \frac{(-1)^n}{n+1}$.

a) Montrer que:

$$\lim_{n \to +\infty} \int_0^1 \frac{t^n}{1+t} \, \mathrm{d}t = 0.$$

b) Soit $N \in \mathbb{N}$. En remarquant que pour tout $k \in \mathbb{N}$, $\frac{1}{k+1} = \int_0^1 t^k dt$, montrer que :

$$\sum_{n=0}^{N} u_n = \int_0^1 \frac{\mathrm{d}t}{1+t} - \int_0^1 \frac{(-t)^{N+1}}{1+t} \, \mathrm{d}t.$$

c) En déduire que la série $\sum_{n\geqslant 0}u_n$ converge et que, pour tout $n\geqslant 0$:

$$R_{1,n} = \int_0^1 \frac{(-t)^{n+1}}{1+t} \, \mathrm{d}t$$

d) Montrer par récurrence que, pour tout entier $p \ge 1$, la série $\sum_{n \ge 0} u_n$ converge à l'ordre p et que pour tout $n \ge 0$:

$$R_{p,n} = \int_0^1 \frac{(-t)^{n+p}}{(1+t)^p} dt.$$