Kalman Observer for target guarding problem:

Assumptions:

- 1) Evader (E) moves with constant velocity (no process noise) and he knows the pursuer's initial position and velocity.
- 2) He plays optimally and moves toward the interception point (I).
- 3) The sensor has normally distributed measurement noise.
- 4) Pursuer (P) also moves with constant velocity.

Model:

Let the initial position of E be (x_{e0}, y_{e0}) and initial velocity be v_0 .

Evader's position and velocity are considered as states.

$$x(t+1) = x(t) + (\Delta T)v_x(t)$$

$$y(t+1) = y(t) + (\Delta T)v_y(t)$$

$$v_x = v\cos\theta \qquad \theta = \arctan\left(\frac{(y_{e0} - y_I)}{(x_{e0} - x_I)}\right)$$

$$v(t+1) = v(t)$$

$$v_y = v\sin\theta$$

Where v_x and v_y are velocities in x and y directions. (ΔT) is step size.

Output:

$$Y(t) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{bmatrix} x(t) \\ v(t) \\ y(t) \end{bmatrix} + R \begin{bmatrix} \mu_t \\ \xi_t \\ \zeta_t \end{bmatrix}, \text{ where } \boldsymbol{\mu}_t \text{ , } \boldsymbol{\xi}_t \text{ , } \boldsymbol{\zeta}_t \text{ are noises with normal distribution. } \boldsymbol{R}^2 \text{ is }$$

the covariance matrix of the noises.

State space model:

$$X(t+1) = AX(t) + Bu(t)$$

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, B = (\Delta T) \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$Y(t+1) = CX(t) + R \begin{bmatrix} \mu_t \\ \xi_t \\ \zeta \end{bmatrix}, \text{ Where } C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$(A, C) \text{ is observable.}$$

Kalman filter:

Where $\,\hat{X}_{_{t|t}}\,$ is the estimate at time $\,t\,$ based on outputs of the system till time $t\,$.

 $\hat{X}_{_{t+\mathbf{l}|t}}$ is the next state with $\hat{X}_{_{t|t}}$ as present state.

Input,
$$u_t = [\hat{v}_x \hat{v}_y]$$

$$\hat{v}_{x_t} = \hat{v} \cos \theta_{t|t}$$

$$\hat{v}_y = \hat{v} \sin \theta_{t|t}$$

$$\hat{\theta}_{t|t} = \arctan\left(\frac{(\hat{y}_{e_{t|t}} - \hat{y}_{I_{t|t}})}{(\hat{x}_{e_{i|t}} - \hat{x}_{I_{t|t}})}\right)$$

 $P_{\scriptscriptstyle t|t}$ is state error covariance matrix $E((X(t)-\hat{X}_{\scriptscriptstyle t|t})(X(t)-\hat{X}_{\scriptscriptstyle t|t})^T)$. Note that input error covariance matrix, $E((u(t)-\hat{u}_{\scriptscriptstyle t|})(u(t)-\hat{u}_{\scriptscriptstyle t|t})^T)$ is not considered in equation (1). So the Kalman gain calculated, will not be the best gain update and so will be the state estimates $\hat{X}_{\scriptscriptstyle t|t}$.

Let the initial measurement be (\hat{x}_{e0} , \hat{y}_{0} , \hat{y}_{e0}). R^2 be initial error covariance matrix $P_{0|0}$. These are considered as initial estimates.

Update Equations:

Kalman gain factor, $K = P_{t|t-1}C \left[CP_{t|t-1}C^T + R \right]^{-1}$

$$\hat{X}_{t|t} = \hat{X}_{t|t-1} + K(Y(t) - C\hat{X}_{t|t-1})$$
, $P_{(t)|t} = P_{t|t-1} - KCP_{t|t-1}$

Fig 2. The game

Fig 3. Velocity profile of the evader

Fig 4. Diagonal elements of P

Fig 5 Family of Apollonius circles and corresponding interception points as perceived by pursuer during the game

Things yet to be done:

- 1. Calculate input error covariance matrix and correct the update equations to improve convergence time.
- 2. Extend the solution to moving target and varying evader's velocity cases.