Міністерство освіти і науки України Національний технічний університет України «Київський Політехнічний Інститут імені Ігоря Сікорського» Кафедра конструювання електронно-обчислювальної апаратури

Звіт З виконання лабораторної роботи №1 з дисципліни "Схемотехніка аналогової та цифрової радіоелектронної апаратури - 1"

Виконав:

студент групи ДК-62

Острянко О.В.

Перевірив:

доц. Короткий \in В.

1. Дослідження суматора напруги на резисторі

а. Під час лабораторного заняття було складено суматор напруги за наступною схемою:

У якості джерел напруги було використано керовані джерела, включенні в плату Analog Discovery 2. Опір було вибрано R1 74,4 кОм та R2 76,2 кОм які значно більші за внутрішній опор джерел.

Напруги джерел було налаштовано наступним чином:

Щуп вольтметру Analog Discovery було підключено до точки Vout.

■ Voltmeter ■	Scope 1	Wavegen 1		
)48 kHz				
Channel 1			Channel 2	^
		2.874 V		
		2.874 V		
		1 mV		

Результати вимірювань склали -2,874 B, що з урахуванням похибок, відповідає теоретичним передбаченням

Симуляція суматора в LTspice для постійного сигналу

 $V_1 = 4V$

 $V_2 = 2V$

 $V_{out} = 3V \\$

Результати симуляції відповідають формулі Uвих = (U1 + U2)/2 з теоретичного опису суматора.

На суматор було подано два сигналу — імпульсний, амплітудою 1В, частотою 1 к Γ ц, та синусоїдальний, амплітудою 1В та частотою 5 к Γ ц:

₩ WaveForms (new workspace)

Workspace Settings Window Help

На виході суматора спостерігали комбінацію двох вхідних сигналів, що відповідає теоретичним очікуванням.

Симуляція суматора в LTspice для змінного сигналу:

Джерела налаштовано аналогічно до налаштувань генератору під час лабораторного дослідження. Отриманий вихідний сигнал відповідає за формою сигналу з лабораторних досліджень:

2. Дослідження RC-ланцюжка.

а. Під час лабораторної роботи було складено інтегруючий RC-ланцюжок с наступними параметрами:

 $C = 101,6 \text{ н}\Phi$

R = 0.997 кОм

b. Тривалість заряду/розряду до 99% складає:

$$t = 5\tau = 5 \times R \times C = 5 \times 101,6 \times 10^{-9} \times 0,997 \times 10^{3} = 0,506 \text{ MC}$$

с. На вхід RC-ланцюжка подали імпульсний сигнал з частотою $0,395~\mathrm{k\Gamma}$ ц, амплітудою 1В та коефіцієнтом заповнення 50%.

Два щупи осцилографа було підключено відповідно до входу та виходу RC-ланцюжка:

Було проведено симуляцію схеми в LTspice, результати якої також відповідають теоретичним очікуванням:

3. Дослідження RC-фільтру низької частоти

а. Під час лабораторної роботи будо складено RC-ФНЧ з наступними параметрами:

 $C = 101,6 \text{ н}\Phi$

R = 0.997 кОм

Частота зрізу такого фільтру:

$$f_3 = \frac{1}{2\pi \times R \times C} = \frac{1}{2 \times 3,14 \times 0,997 \times 10^3 \times 101,6 \times 10^{-9}} \approx 1,571 \text{ к}$$
Гц

b. Для визначення АЧХ фільтру, що було складено, використали Network Analyzer у складі плати Analog Discovery. Було отримано наступні результати:

Загальна форма АЧХ відповідає формі з теоретичної бази.

Точка частоти зрізу (-3 дБ) знаходиться на частоті 1,574 к Γ ц, що, з урахуванням похибки, відповідає очікуванням.

с. Було розраховано ряд значень K_u теоретичного фільтру та порівняно з даними, отриманими експериментально. Результати наведено у таблиці:

Nº	<i>f</i> , Гц	K _u теоретичне	K _u експеримент.	Похибка, %
1	0	1,000	1	0
2	0,3	0,982	0,983	0,07
3	0,6	0,934	0,935	0,08
4	0,9	0,869	0,88	1,27
5	1,2	0,795	0,801	0,72
6	1,574	0,708	0,709	0,15
7	1,8	0,656	0,662	0,89
8	2,1	0,599	0,601	0,32
9	2,4	0,548	0,55	0,43
10	2,7	0,502	0,505	0,53

Виділено K_u на частоті зрізу. Аналіз похибки вимірювань свідчить про правильність отриманих даних.

d. Було проведено моделювання RC-ФНЧ в LTspice, під час якого було отримано AЧX:

Форма АЧХ відповідає теоретичній та загалом співпадає з виміряною з урахуванням масштабу.

Висновки

Було проведено дослідження роботи суматору на резисторах та RC-ланцюжка. Під час роботи зняли вихідну осцилограму суматора при постійних та змінних сигналах на вході, частотну та перехідну характеристики RC-фільтру. Експерименти повторили у LTspice XVII та порівняли результати. Збіжність даних симуляції та експерименту підтверджують правильність експериментів з урахуванням деякої похибки вимірювань та розрахунків.