파이썬데이터분석3종세트 statsmodels, scikit-learn, theano

•••

김도형 @drjoelkim https://datascienceschool.net

@drjoelkim Trade Informatix https://datascienceschool.net

- 증권 분석 및 최적 집행 시스템 개발
- 금융 공학 / 데이터 분석 / 머신 러닝
- 컨설팅 및 교육

People Asks ...

[이러이러한] 데이터가 있습니다.

머신러닝으로 [저러저러한] 것을 알(할) 수 있나요?

대부분의 문제는...

• 다른 사람들이 이미 풀었거나 하지만 당신이 원하는 답은 아닐 수 있습니다.

• 다른 사람들이 포기했습니다. 또는 계속 연구하고 있습니다.

R과 Python은 분석 도구의 바다 sea of tools

- 하지만 너무 넓습니다. 지도guidemap가 필요합니다.
- 내가 어디로 가고 싶은지를 알아야 합니다.
 문제 유형을 파악하세요.
- 머신 러닝은 데이터 분석의 일부일 뿐입니다. 가장 적절한 도구를 선택하세요.

발표 내용의 간략한 소개

- 데이터 분석 문제의 5가지 기본적인 유형을 소개합니다.
 - ㅇ 클러스터링
 - 0 차원축소
 - 이 시계열 예측
 - o 회귀 분석
 - 분류
- 문제 유형에 따라 어떤 파이썬 패키지를 사용할 수 있는지를 제시합니다.
 - o 패키지 선택 가이드맵
- 널리 사용되는 3가지 데이터 분석용 패키지를 소개합니다.
 - Scikit-learn
 - Statsmodels
 - Theano/Tensorflow
- 알고리즘 또는 패키지 코딩 방법을 자세히 소개하지는 않습니다.

데이터 분석 패키지 맵

데이터 분석에는 목적이 있다

데이터 분석 가이드맵 1

클러스터링 Clustering

- 데이터는 벡터 공간상에서 하나의 점 또는 벡터로 표시할 수 있습니다.
- 데이터 혹은 데이터 묶음(cluster) 사이의 거리를 계산할 수 있습니다.
- 거리가 가까운 데이터는 유사한 데이터라고 볼 수 있습니다.

클러스터링의 예: 일중 가격의 움직임이 유사한 주식 찾기

- http://scikit-learn.org/stable/auto_examples/applications/plot_stock_market.html
- 미국 대형주 60 종목 중 2003~2008까지 시가와 종가의 차이 움직임이 닮아 있는 종목들을 찾습니다.

코드

```
# 전처리 - 데이터 준비

X # standardized open - close

import sklearn

edge_model = sklearn.covariance.GraphLassoCV().fit(X)
_, labels = sklearn.cluster.affinity_propagation(edge_model.covariance_)

# 후처리 - 시각화
```

결과

주성분 분석 PCA(Principal Component Analysis)

- 다차원 데이터는 좌표를 변환 할 수 있습니다.
- 데이터가 특정한 움직임만 보이는 경우에는 주된 움직임을 포착하는
 좌표 변환을 할 수 있습니다.
- 좌표 변환 후에는 작은 움직임을 나타내는 좌표는 생략할 수도 있습니다.

주성분 분석의 예: 주식 시장의 지수 성분 찾기

- <u>파이썬을 활용한 금융 분석(한빛 미디어), 11장, pp.403~410</u>
- 독일 대형주 30 종목의 움직임을 분석하여 가장 주된 주가 움직임을 찾는다.

```
# 전처리 : 데이터 준비
data # 30종목의 주가 데이터 (pandas DataFrame)

import sklearn

pca = sklearn.decomposition.KernelPCA(n_components=1).fit(data)

PCA_1 = pca.transform(data)

# 후처리 : 시각화
```


데이터 간에는 순서가 있을 수 있다.

시계열데이터는 순서가 있는 데이터

주의:

시간 정보를 이용하면 시계열 분석이 이 나 다

데이터 분석 가이드맵 2

statsmodels.tsa 에서 지원하는 시계열 모형

- ARMA (Auto-Regressive Moving Average)
 - 단일 정상(stationary) 시계열
- ARIMA (Auto-Regressive Integrated Moving Average)
 - 단일 비정상(non-stationary) 시계열
- SARIMA (Seasonal Auto-Regressive Integrated Moving Average)
 - o 계절성을 가지는 시계열
- VARMA (Vector Auto-Regressive Moving Average)
 - o 함께 움직이는 복수개의 정상(stationary) 시계열
- Kalman filter, State space model
 - 보이지 않는 상태 변수(states)에 의해 움직이는 시계열
- Structural unobserved components model
 - 특정한 모형을 따르는 상태 변수의 합으로 이루어진 시계열
- Dynamic factor model
 - 보이지 않는 요인 시계열의 합으로 이루어진 시계열

ARMA 모형 시계열 예측의 예

- 화학 공정 Quality 예측. Cryer & Chan (2008)
- https://www.datascienceschool.net/view-notebook/4cdb363d9cac4a1381ed0ac7498e3e1c/

```
# 전처리 - 데이터 준비

df # 시계열 데이터 (panda DataFrame)

import statsmodels.api as sm

m = sm.tsa.ARMA(df, (1, 0))
r = m.fit()
fred, se, confint = r.forecast(10)

# 후처리 - 시각화
```


SARIMA 모형 시계열 예측의 예

- 대기중 CO2 수준 예측. Cryer & Chan (2008)
- https://www.datascienceschool.net/view-notebook/8c4f6ad9487149ca872374bbbf098e5f

구조화 모형 시계열 분리의 예

- 미국 실업률 주기 분석. Harvey and Jaeger (1993)
- http://www.statsmodels.org/dev/examples/notebooks/generated/statespace_cycles.html

데이터의 속성 에 따라 분석 방법이 달라진다.

어떤 그룹에 속하는가? 값의 크기가 있는가?

회귀 분석 Regression Analysis

vs 분류 Classification

실수 값

크기를 알 수 있고 크기의 비교가 가능한 값 이산(서로 떨어진) 여부는 관계 없습니다!

- 부동산 가격
- 주가
- 매출
- 평가(별점, 학점)

카테고리 값

서로 떨어진 값이면서 크기의 비교가 불가능한 값

- 사람의 이름
- 사물의 명칭
- 장르
- 감성 (Sentiment)

회귀 분석의 예: Boston House Price

- https://archive.ics.uci.edu/ml/datasets/Housing
- 보스턴 주택 가격 예측
- Feature
 - o CRIM: 범죄율
 - INDUS: 비소매상업지역 면적 비율
 - o NOX: 일산화질소 농도
 - o RM: 주택당 방수
 - LSTAT: 인구 중 하위 계층 비율
 - B: 인구 중 흑인 비율
 - o PTRATIO: 학생/교사 비율
 - ZN: 25,000 평방피트를 초과 거주지역 비율
 - CHAS: 찰스강의 경계에 위치한 경우는 1, 아니면 0
 - o AGE: 1940년 이전에 건축된 소유주택의 비율
 - o RAD: 방사형 고속도로까지의 거리
 - o DIS: 직업센터의 거리
 - o TAX: 재산세율

분석 코드

- OLS (Ordinary Least Square) 방법 사용
- https://www.datascienceschool.net/view-notebook/58269d7f52bd49879965cdc4721da42d/

```
# 전처리 - 데이터 X, y 준비

import statsmodels.api as sm
m = sm.OLS(y, X)
r = m.fit()

# 후처리 - 리포트
print(r.summary())
```


_					-		
D.	$\overline{}$	_	п	п	н	+	c

Dep. Variab Model: Method: Date: Time: No. Observa Df Residual Df Model: Covariance	Fr tions: s:	Least Squa i, 03 Jun 2 11:46	res F-stat 016 Prob (red: -squared: istic: F-statistic kelihood:):	0.741 0.734 108.1 6.95e-135 -1498.8 3026. 3085.
nonrobust	========		========		=======	
0.975]	coef	std err	t	P> t	[0.025	
const	36.4911	5.104	7.149	0.000	26.462	46.520
CRIM	-0.1072	0.033	-3.276	0.001	-0.171	-0.043
ZN	0.0464	0.014	3.380	0.001	0.019	0.073
INDUS	0.0209	0.061	0.339	0.735	-0.100	0.142
CHAS	2.6886	0.862	3.120	0.002	0.996	4.381
NOX	-17.7958	3.821	-4.658	0.000	-25.302	-10.289
RM	3.8048	0.418	9.102	0.000	2.983	4.626
AGE	0.0008	0.013	0.057	0.955	-0.025	0.027
DIS	-1.4758	0.199	-7.398	0.000	-1.868	-1.084
RAD	0.3057	0.066	4.608	0.000	0.175	0.436
TAX	-0.0123	0.004	-3.278	0.001	-0.020	-0.005
PTRATIO	-0.9535	0.131	-7.287	0.000	-1.211	-0.696
В	0.0094	0.003	3.500	0.001	0.004	0.015
LSTAT	-0.5255	0.051	-10.366	0.000	-0.625	
-0.426						
		======================================	 029 Durbin	-Watson:		
Prob(Omnibu	s):	0.	000 Jarque	-Bera (JB):		782.015
Skew:	,		521 Prob(J	•		1.54e-170
Kurtosis:			276 Cond.	•		

1.51e+04

분류의 예: 20 Newsgroups

- http://qwone.com/~jason/20Newsgroups/
- 문서가 속하는 뉴스 그룹 예측
 - o Comp.graphics
 - o Comp.os.ms-windows.misc
 - Comp.sys.ibm.pc.hardware
 - Comp.sys.mac.hardware
 - Comp.windows.x
 - Rec.autos
 - Rec.motorcycles
 - Rec.sport.baseball
 - Rec.sport.hockey
 - Sci.crypt
 - Sci.electronics
 - Sci.med
 - Sci.space
 - Misc.forsale
 - Talk.politics.misc
 - Talk.politics.guns
 - Talk.politics.mideast
 - o Talk.religion.misc
 - o Alt.atheism
 - Soc.religion.christian

From: Mamatha Devineni Ratnam

<mr47+@andrew.cmu.edu>

Subject: Pens fans reactions

Organization: Post Office, Carnegie Mellon,

Pittsburgh, PA Lines: 12

NNTP-Posting-Host: po4.andrew.cmu.edu

I am sure some bashers of Pens fans are pretty confused about the lack of any kind of posts about the recent Pens massacre of the Devils. Actually, I am bit puzzled too and a bit relieved. However, I am going to put an end to non-PIttsburghers' relief with a bit of praise for the Pens. Man, they are killing those Devils worse than I thought. Jagr just showed you why he is much better than his regular season stats. He is also a lot fo fun to watch in the playoffs. Bowman should let JAgr have a lot of fun in the next couple of games since the Pens are going to beat the pulp out of Jersey anyway. I was very disappointed not to see the Islanders lose the final regular season game.

PENS RULE!!!

분석 코드

- Naive Bayesian 방법 사용
- https://www.datascienceschool.net/view-notebook/58269d7f52bd49879965cdc4721da42d/

```
# 전처리 - 데이터 feature, target 준비
from sklearn.feature extraction.text \
    import TfidfVectorizer
from sklearn.naive bayes import MultinomialNB
from sklearn.pipeline import Pipeline
model = Pipeline([
    ('vect', TfidfVectorizer(stop words="english")),
    ('nb', MultinomialNB()),
1)
model.fit(feature, target)
# 후처리 - 시각화
```


분류 모형을 선택한다.

분류 어떤 모형(알고리즘)을 사용하는가? **Neural Network Logistic Regression Naive Bayesian Convolutional Neural Network Support Vector Machine Recurrent Neural Network Decision Tree Long Short-Term Memory Restricted Boltzmann Machine Random Forest Deep Belief Network AdaBoost Shallow learning Deep learning** 단순한 목적함수 형상 복잡한 목적함수 형상 적은 수의 파라미터 많은 수의 파라미터 적은 계산량 많은 계산량 Theano / TensorFlow Scikit-Learn 데이터 분석 가이드맵 4 **Blocks** Keras Lasagne

딥러닝 Deep Learning

- 모형의 자유도와 파라미터의 수를 극대화한 데이터 분석 모형입니다.
- 현실 시계의 복잡한 데이터 관계를 모형화하는데 뛰어난 성능을 보입니다.
- 그러나 계산량이 많고 파라미터 값의 계산 시간이 오래 걸립니다.

http://neuralnetworksanddeeplearning.com/chap1.html#a_simple_network_to_classify_handwritten_digits

Theano: Math Expression Compiler

- Theano는 대량/고속의 수학 연산용 파이썬 라이브러리입니다.
- GPU 용 코드를 자동으로 생성합니다.
- 수식의 심볼릭 그래프(Symbolic Graph)를 이용하여 수식 계산을 최적화합니다.
- 함수의 편미분을 심볼릭 방식으로 계산합니다.
- 그러나 프로그래밍이 복잡하고 확장이 어렵습니다.
- 그래서 일반적으로 Theano 를 기반으로 한 고수준 패키지를 많이 사용합니다.

Theano 코드의 예

https://github.com/mnielsen/neural-networks-and-deep-learning/blob/master/src/network3.py

```
class ConvPoolLayer(object):
    def init (self, filter shape, image shape, poolsize=(2, 2), activation fn=sigmoid):
        self.filter shape = filter shape
        self.image shape = image shape
        self.poolsize = poolsize
        self.activation fn=activation fn
        n_out = (filter_shape[0]*np.prod(filter_shape[2:])/np.prod(poolsize))
        self.w = theano.shared(np.asarray(np.random.normal(loc=0, scale=np.sqrt(1.0/n out), size=filter shape),
                               dtype=theano.config.floatX), borrow=True)
        self.b = theano.shared(np.asarray(np.random.normal(loc=0, scale=1.0, size=(filter shape[0],)),
                               dtype=theano.config.floatX), borrow=True)
        self.params = [self.w, self.b]
    def set inpt(self, inpt, inpt dropout, mini batch size):
        self.inpt = inpt.reshape(self.image shape)
        conv out = conv.conv2d(input=self.inpt, filters=self.w, filter shape=self.filter shape,
                               image shape=self.image shape)
        pooled out = downsample.max pool 2d(input=conv out, ds=self.poolsize, ignore border=True)
        self.output = self.activation fn(pooled out + self.b.dimshuffle('x', 0, 'x', 'x'))
        self.output dropout = self.output
```

고수준 딥러닝 패키지의 예: Keras

- 신경망에 필요한 요소를 빌딩 블럭(building block)으로 구현하고 있습니다.
- 사용자는 레고 조립처럼 블럭을 연결하기만 하면 됩니다.

```
from keras.models import Sequential
from keras.layers.core import Dense, Dropout
from keras.optimizers import SGD

model = Sequential()
model.add(Dense(30, input_dim=784, activation="relu"))
model.add(Dropout(0.2))
model.add(Dense(10, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adadelta', metrics=["accuracy"])
```

감사합니다.

Open Space Time @210