Write your name:	
Write your student number:	

Mock exam

- **1.** Non strongly convex function. (3 points) One of the following functions $f: \mathbf{R}^2 \to \mathbf{R}$ is <u>not</u> strongly convex:
 - (A) $f(x_1, x_2) = |x_1 + x_2| + x_1^2 + (x_1 x_2)^2$
 - (B) $f(x_1, x_2) = 4x_1^2 + e^{x_1 + x_2} + 4x_1x_2 + x_2^2$
 - (C) $f(x_1, x_2) = (x_1 + x_2)^2 + |x_1| + (x_1 x_2)^2$
 - (D) $f(x_1, x_2) = e^{x_1 x_2} + 4x_1^2 + 3x_1 2x_2 2x_1x_2 + x_2^2$
 - (E) $f(x_1, x_2) = -3x_1x_2 + (x_1 + 2x_2)^2 + (x_1 x_2)_+$
 - (F) $f(x_1, x_2) = x_1 + x_1^2 x_2 + x_2^2 + \log(1 + e^{x_1 + x_2})$

Which one?

Write your answer (A, B, C, D, E, or F) here:

- 2. True statement about convexity. (2 points) One of the following statements is true:
 - (A) if $f: \mathbf{R}^n \to \mathbf{R}$ is convex, then f has at least one global minimizer
 - (B) if $f_1: \mathbf{R}^n \to \mathbf{R}$ and $f_2: \mathbf{R} \to \mathbf{R}$ are both convex functions, then $f_2 \circ f_1$ is convex
 - (C) if $f: \mathbf{R}^n \to \mathbf{R}$ is strictly convex, then f has exactly one global minimizer
 - (D) if $f_1: \mathbf{R} \to \mathbf{R}$ is strongly convex, $f_2: \mathbf{R}^n \to \mathbf{R}$ is convex, and $f_2(x) \ge f_1(x)$ for each $x \in \mathbf{R}^n$, then f_2 is strongly convex
 - (E) if $f: \mathbf{R}^n \to \mathbf{R}$ is strictly convex, then f has at most one global minimizer
 - (F) if $f: \mathbf{R}^n \to \mathbf{R}$ is convex, then f^2 is strongly convex

Which one?

Write your answer (A, B, C, D, E, or F) here:

3. Augmented Lagrangian method. (3 points) Consider the constrained problem

$$\begin{array}{ll}
\text{minimize} & f(x) \\
x \in \mathbf{R}^n & f(x) \\
\text{subject to} & h(x) = 0,
\end{array}$$
(1)

where $f: \mathbf{R}^n \to \mathbf{R}$ and $h: \mathbf{R}^n \to \mathbf{R}$ are differentiable functions.

The augmented Lagrangian method applied to (1) solves, at each iteration, an optimization problem of one of the following forms:

(A)
$$\min_{x \in \mathbf{R}^n} \quad f(x) + \lambda h(x) + ch(x)^2 \ ,$$
 subject to
$$h(x) = 0$$

where $\lambda \in \mathbf{R}$ and c > 0

(B) $\underset{x \in \mathbf{R}^n}{\text{minimize}} \quad f(x) + \lambda h(x) + ch(x)^2,$

where $\lambda \in \mathbf{R}$ and c > 0

where $\lambda \in \mathbf{R}$ and c > 0

where $\lambda \in \mathbf{R}$

where c > 0

(F) $\min_{x \in \mathbf{R}^n} |f(x) + \lambda |h(x)| + ch(x)^2 ,$ subject to h(x) = 0

where $\lambda \in \mathbf{R}$ and c > 0

Which one?

Write your answer (A, B, C, D, E, or F) here:

4. Existence of global minimizers. (4 points) Consider the optimization problem

minimize
$$\sum_{m=1}^{M} \omega_m \left(\left(\left\| c - x_m \right\|_2 - R \right)_+ \right)^2 + \rho R^2$$
 subject to $R \ge 0$,

where the variables to optimize are $c \in \mathbf{R}^n$ and $R \in \mathbf{R}$. The vectors x_m and the scalars ω_m are given for $1 \leq m \leq M$, with $\omega_m > 0$ for all m. The scalar ρ is also given and denotes a positive constant: $\rho > 0$.

Show that (2) has at least one global minimizer.

5. Smooth control of an uncertain system. (4 points) Consider the optimization problem

$$\underset{u_{1},\dots,u_{K}}{\text{minimize}} \quad \underbrace{\sum_{k=1}^{K} \max\{|a_{k}^{T}u_{k} - b_{k}|, |c_{k}^{T}u_{k} - d_{k}|\}}_{f(u_{1},\dots,u_{K})}$$
subject to $\|u_{k+1} - u_{k}\|_{2} \leq U, \quad k = 1,\dots,K-1,$

where the variable to optimize is u_1, \ldots, u_K , with $u_k \in \mathbf{R}^d$ for $1 \leq k \leq K$. The vectors $a_k \in \mathbf{R}^d$ and $c_k \in \mathbf{R}^d$ and the scalars $b_k \in \mathbf{R}$ and $d_k \in \mathbf{R}$ are given for $1 \leq k \leq K$. Also, the scalar U is given and denotes a positive constant: U > 0.

Show that (3) is a convex optimization problem.

6. Penalty method. (4 points) Consider the optimization problem

$$\begin{array}{ll}
\text{minimize} & f(x) \\
x \in \mathbf{R}^2 & \text{subject to} & s^T x = r,
\end{array}$$
(4)

where the vector $s \in \mathbf{R}^2$ ($s \neq 0$) and the scalar r are given. Assume that the function f is differentiable and strongly convex. Let $x^* \in \mathbf{R}^2$ be the global minimizer of (4). Consider now the penalized problem

$$\underset{x \in \mathbf{R}^2}{\text{minimize}} \quad f(x) + \frac{c_k}{2} (s^T x - r)^2, \tag{5}$$

where $c_k > 0$. Let $x_k^* \in \mathbf{R}^2$ be the global minimizer of (5).

Assume that $(c_k)_{k\geq 1}$ is an increasing sequence converging to $+\infty$; that is, $0 < c_1 < c_2 < c_3 < \cdots$ and $\lim_{k\to +\infty} c_k = +\infty$. Also, assume that the sequence $(x_k^*)_{k\geq 1}$ converges to some vector \overline{x} , that is, $\lim_{k\to +\infty} x_k^* = \overline{x}$.

Show that $\overline{x} = x^*$.

(You cannot invoke theorems about penalty methods; you must prove the equality above by yourself.)