

NALOT

Wstęp

Flota inwazyjna cywilizacji żukoskoczków przygotowuje się do zajęcia planety ABC-123. Ostatnim problemem, który oficerowie armii żukoskoczków muszą rozwiązać przed rozpoczęciem inwazji jest neutralizacja baterii nadajników wysokiej mocy znajdujących się na planecie. Żukoskoczki planują zastosować swoją ulubioną metodę rozwiązywania problemów - nalot dywanowy i bombardowanie.

Bateria nadajników ma postać regularnej prostokątnej siatki, w której nadajniki rozmieszczone są w W wierszach i K kolumnach (co daje łącznie $K \times W$ nadajników). Każdy nadajnik ma określoną moc wyrażoną liczbą naturalną $m_{i,j}$. Ze względu na położenie baterii nadajników na zboczu góry, moc nadajników w każdym z wierszy jest nierosnąca (licząc od pierwszej kolumny do ostaniej - por. przykład).

Pojedyncza bomba zrzucona na nadajnik obniża jego moc i moc 8 jego bezpośrednich sąsiadów o 1. Nadajnik uznajemy za zneutralizowany, kiedy jego moc spadnie do 0. Żukoskoczki zastanawiają się ilu bomb będą musieli użyć aby zneutralizować wszystkie nadajniki.

Zadanie

Znając moc poszczególnych nadajników oblicz minimalną liczbę bomb potrzebnych do neutralizacji całej baterii.

Dane wejściowe

Zestawy testowe znajdują się w plikach nalot*.in.

Pierwsza linia zestawu testowego zawiera parę oddzielonych pojedynczą spacją liczb naturalnych W i K oznaczających kolejno: liczbę wierszy i liczbę kolumn siatki nadajników. W W kolejnych liniach opisywane są kolejne wiersze siatki nadajników.

Opis i-tego wiersza siatki nadajników składa się z K oddzielonych pojedynczymi spacjami liczb naturalnych $m_{i,j}$ (dla ustalonego i oraz j przebiegającego wartości od 1 do K) oznaczających moc nadajników w kolejnych kolumnach wiersza.

$$1 \leqslant W, K \leqslant 10^3$$
$$1 \leqslant m_{i,j} \leqslant 10^3$$

Dane wyjściowe

W jedynej linii pliku wyjściowego powinna znajdować się liczba naturalna równa minimalnej liczbie bomb potrzebnych do zneutralizowania baterii nadajników.

Przykład

Dla danych wejściowych

1 2

Poprawny plik wynikowy to

5

Dla danych wejściowych

3 4

4 3 2 1

4 4 2 2

1 1 1 1

Poprawny plik wynikowy to

6

Ocena

Jeśli rozwiązanie danego zestawu danych jest poprawne, ocena za zestaw wynosi 1; w przeciwnym wypadku ocena wynosi 0.