Geometria elementare

Gli enti fondamentali sono il punto, la retta e il piano. Sono **concetti primitivi** (definibili tramite concetti più semplici)

La geometria relazionare è basata su 5 postulati o assiomi:

- si può tracciare una retta da un punto qualsiasi a ogni altro punto
- si può prolungare indefinitamente una linea retta
- si può descrivere un cerchio con centro e raggio qualsiasi
- tutti gli angoli retti sono uguali tra loro
- se una retta, che interseca altre due rette, forma della stessa parte angoli la cui somma è minore di due angoli retti, le due rette finiscono per incontrarsi

Ciascuna delle due parti di un piano individuate da due semirette uscenti da uno stesso punto è detta **angolo**

Angoli formati da du erette tagliate da una trasversale

- Angoli alterni: 4 e 6, 3 e 5 - Angoli esterni: 2 e 8, 1 e 7

Corrispondenti: 1 e 5, 4 e 8, 2 e 6, 3 e 7

Coniugati interni: 4 e 5, 3 e 6Coniugati esterni: 1 e 8, 2 e 7

Altezza relativa: segmento perpendicolare condotto al lato dal vertice opposto Mediana relativa: segmento che unisce il punto medio del lato con il vertice dell'angolo opposto

Asse relativo: perpendicolare al lato passante per il suo punto medio **Bisettrice:** semiretta uscente dal vertice che divide un'angolo in due parti congruenti

Punti potevi di un triangolo

- Ortocentro: punto di incontro delle altezze. E' interno se al triangolo se è acutangolo, esterno se è ottusangolo, coincide con l'angolo retto se è rettangolo
- **Baricentro:** punto di incontro delle mediane ed è sempre interno al triangolo
- Circocentro: punto di incontro degli assi dei lati di un triangolo. E' il centro della circonferenza circoscritta I triangolo ed è interno al triangolo se è acutangolo, esterno se è ottusangolo, coincide con il punto medio dell'ipotenusa se è rettangolo
- Incentro: punto di incontro delle bisettrici degli angolo di un triangolo. Sempre interno ed è il centro della circonferenza inscritta

In ogni triangolo la somma degli angolo interni è uguale a un angolo piatto (180°)

In ogni triangolo ciascun lato è **minore della somma** degli altri due e **maggiore** della loro differenza

Triangolo

Perimetro:

Area:

$$A = \frac{ah_a}{2} = \frac{bh_b}{2} = \frac{ch_c}{2}$$

Formula di Erone:

$$A = \sqrt{p(p-a)(p-b)(p-c)}$$

$$A = \sqrt{p(p-a)(p-b)(p-c)} \qquad A = r \cdot p = \frac{a \cdot b \cdot c}{4R}$$

Raggio della circonferenza inscritta:

$$r = \frac{A}{p} = \sqrt{\frac{(p-a)(p-b)(p-c)}{p}}$$

Raggio della circonferenza circoscritta:

$$R = \frac{abc}{4A}$$

Triangolo equilatero

Perimetro:

$$P = 3a$$

$$h = \sqrt{a^2 - \frac{a^2}{4}} = \frac{\sqrt{3}}{2}a = \frac{3}{2}R = 3r$$

$$A = \frac{ah}{2} = \frac{\sqrt{3}}{4}a^2 = \frac{\sqrt{3}}{3}h^2 = \frac{3\sqrt{3}}{4}R^2 = 3\sqrt{3}r^2$$

Raggio della circonferenza inscritta:

$$r = \frac{h}{3} = \frac{\sqrt{3}}{6}a = \frac{R}{2}$$

Raggio della circonferenza circoscritta:

$$R = \frac{2}{3}h = \frac{\sqrt{3}}{3}a = 2r$$

Triangolo isoscele

Perimetro:

$$P = a + 2b$$

Area:

$$A = \frac{ah}{2} = \frac{1}{2}a\sqrt{b^2 - \frac{a^2}{4}}$$

Triangolo rettangolo

Perimetro:
$$P = a + b + c$$

Altezza:
$$A = \frac{ab}{2}$$

Area:
$$h = \frac{ab}{c}$$

Raggio della circonferenza inscritta:
$$r = p - c = (a + b - c)/2$$

Raggio della circonferenza circoscritta:
$$R = c/2$$

Teorema di Pitagora: l'area del quadrato costruito sull'ipotenusa è uguale alla somma della due aree dei quadranti costruiti sui cateti.

$$c^{2} = a^{2} + b^{2} \rightarrow \begin{cases} a = \sqrt{c^{2} - b^{2}} \\ b = \sqrt{c^{2} - a^{2}} \\ c = \sqrt{a^{2} + b^{2}} \end{cases}$$

Primo teorema di Euclide: un cateto è medio proporzionale fra l'ipotenusa e la sua proiezione sull'ipotenusa

$$b^2 = c \cdot n$$

Secondo teorema di Euclide: l'altezza relativa all'ipotenusa è media proporzionale fra le proiezioni dei cateti sull'ipotenusa

$$h^2 = m \cdot n$$

$$P = 2 \cdot (a+b)$$
$$A = a \cdot b$$

$$d = \sqrt{a^2 + b^2}$$

$$P = 4 \cdot a$$

$$A = a^2$$

$$d = a\sqrt{2}$$

$P = 4 \cdot a$

$$A = \frac{d_1 \cdot d_2}{2}$$

$$A \xrightarrow{d_1} d_2 C$$

Parallelogramma:

$$P=2\cdot(a+b)$$

$$A = a \cdot h$$

$$P = a + b + c + d$$

$$A = (a+c) \cdot \frac{h}{2}$$

La somma degli angoli interni di un poligono cale (N - 2) * 180°

Un poligono si dice **regolare** quando ha tutti i lati e tutti gli angoli uguali. Ogni poligono regolare è **inscrivibile** e **circoscrivibile** a una circonferenza. Quando hanno lo stesso centro, viene chiamato **cento del poligono.**

Apotema è il segmento di parallelepipedo tradito dal centro di un poligono regolare a un lato, coincide con il raggio della circonferenza inscritta nel poligono

Angoli alla circonferenza e angoli al centro

1. In una circonferenza un angolo al centro è il doppio del corrispondente angolo alla circonferenza che insiste sullo stesso arco

$$\alpha = 2\beta$$

2. Angoli alla circonferenza che insistono sullo stesso arco o su archi congiunti, sono congruenti

$$\alpha = \alpha'$$

3. Angoli alla circonferenza che insistono su una semicirconferenza, sono retti

$$\alpha = \alpha' = 90^{\circ}$$

Settore circolare

arco AB =
$$I = \frac{\pi r}{180^{\circ}} \cdot \alpha^{\circ}$$

$$P = \frac{\pi r}{180^{\circ}} \cdot \alpha^{\circ} + 2r$$

$$A = \frac{I \cdot r}{2} = \frac{\pi \cdot r^2}{360^{\circ}} \cdot \alpha^{\circ}$$

Geometria solida

Cubo

Superficie laterale
$$S_I = 4a^2$$

Superficie totale
$$S_t = 6a^2$$

Volume
$$V = a^3$$

Diagonale
$$d = a\sqrt{3}$$

Parallelepipedo rettangolare

Superficie laterale
$$S_l = 2c(a+b)$$

Superficie totale $S_t = 2(ab+ac+bc)$

Volume
$$V = a \cdot b \cdot c$$

Diagonale
$$d = \sqrt{a^2 + b^2 + c^2}$$

Prisma retto

Piramide retta

Superficie laterale
$$S_{I} = P_{B} \cdot h$$

Superficie totale $S_{t} = S_{I} + 2S_{B}$
Volume $V = S_{B} \cdot h$

Superficie laterale $S_I = \frac{a}{2} \cdot P_B$

Superficie totale
$$S_t = S_l + S_B$$

Volume
$$V = \frac{S_B \cdot h}{3}$$

Superficie laterale
$$S_I = \frac{a}{2} \cdot (P_B + P_{B'})$$

Superficie totale
$$S_t = S_l + S_B + S_{B'}$$

Volume
$$V = \frac{h}{3} \cdot (S_B + S_{B'} + \sqrt{S_B \cdot S_{B'}})$$

Cilindro

Superficie laterale
$$S_1=2\pi\cdot r\cdot h$$

Superficie totale $S_t=2\pi\cdot r\cdot h+2\pi r^2=2\pi\cdot r\cdot (h+r)$
Volume $V=\pi\cdot r^2\cdot h$

Sfera

Superficie
$$A = 4\pi r^2$$

Volume $V = \frac{4}{3}\pi r^3$

Cono

Superficie laterale
$$S_l=\pi\cdot r\cdot a$$

Superficie totale $S_t=\pi\cdot r\cdot a+\pi\cdot r^2=\pi\cdot r\cdot (a+r)$
Volume $V=\frac{1}{3}\pi\cdot r^2\cdot h$

Tronco di cono

Superficie laterale
$$S_I = \pi \cdot (r+R) \cdot a$$

Superficie totale $S_t = \pi \cdot (r+R) \cdot a + \pi \cdot r^2 + \pi \cdot R^2$
Volume $V = \frac{1}{3}\pi \cdot (R^2 + r^2 + r \cdot R) \cdot h$

Un **poliedro** si dice **regolare** se le facce sono poligoni regolari uguali e gli angoloidi sono uguali. Esistono 5 poliedri regolari: **tetraedro, esaedro, ottaedro, dodecaedro e icosaedro.**

Poliedro regolare	Facce	Lati di ogni faccia	Vertici	Spigoli
Tetraedro	4	3	4	6
Esaedro	6	4	8	12
Ottaedro	8	3	6	12
Dodecaedro	12	5	20	30
Icosaedro	20	3	12	30

Per i poliedri regolari cale la **relazione di Eulero:**

F+V=S+2

dove F, V e S sono ripetitivamente il numero delle facce, dei vertici e degli spigoli

Poliedro regolare	Superficie	Volume	
Tetraedro	$\sqrt{3}a^2$	$\frac{\sqrt{2}}{12}a^3$	
Esaedro	6a ²	a ³	
Ottaedro	2√3a²	$\frac{\sqrt{2}}{3}a^3$	
Dodecaedro	$3\sqrt{25+10\sqrt{5}}a^2$	$\frac{15+7\sqrt{5}}{4}a^3$	
lcosaedro	5√3a²	$\frac{5}{12}(3+\sqrt{5})a^{\frac{1}{2}}$	