

Predicting Bike Share Availability

Team KaZAM

Woochan Lee Ziyan Xia Yueni Wang

Agenda

- Objectives and Assumptions ----- Page 3
- Overview of the Dataset ----- Page 4 6
- Clustering of Stations ----- Page 7
- Final Model ----- Page 8-10
- Reshuffling Strategy ----- Page 11-13
- Actionable Recommendation ----- Page 14-15
- Next Steps for Phase 2 Project ---- Page 16
- Technical Appendix ----- Page 19-24

Team KaZAM

Ziyan Xia

Woochan Lee

Yueni Wang

Objectives and Assumptions

Objectives:

- Build a predictive model to improve bike availability and reshuffling strategies across Washington DC
- Leverage existing bike share usage data through years to lower operational costs
- Improve user experience and sustain existing market share for client's core business

Assumptions:

- Model does not take into account unpredictabilities during COVID pandemic
- Reshuffling happens exactly halfway in time between a bike's start trip and end trip disparities
- Starting number of bikes in each station is total number of bikes that arrived at each station in previous month and did not leave
- Weather data for a subset of stations is used to represent the overall weather for Washington DC area

Overview of the Raw Dataset

Raw data:

- Dates: 2019 January 1st ~ 2019 December 31st
- Historical and real time
- Each observation is a trip history of Capital Bikeshare bikes - the data includes:
 - Duration
 - Start Date
 - End Date
 - Start Station
 - End Station
 - o Bike Number
 - Member Type
 - Having electric bikes or not, etc.

Additional effort:

- Retrieved weather data of Washington DC from NOAA website:
 - Precipitation
 - Temperature
 - Wind level
 - etc...

- Utilized Capital Bikeshare's API to retrieve
 - Longitude and latitude of each station
 - Total capacity of each station

Transformation of the Raw Dataset

Overview of the Transformed Data

Response Variable:

- o availability:
 - YES: station has at least 20% bikes available
 - NO: station has less than 20% bikes available

Explanatory Variables:

- **is_weekday**: the day is a weekday
- o **month**: month of the trip
- **PRCP**: precipitation rate during day of the trip
- **TAVG**: average temperature during day of the trip
- o **hour_minute**: during which 30 minutes of the day the bike ride happened
- station_id: station number

Clustering of Stations

- Clustering based on:
 - Longitude
 - Latitude
 - Variance of availability
- From the 5 resulting clusters, we focused on the central cluster with supposedly higher demand
- From this central cluster, we then chose the top
 20 stations with highest variance of bike availability
 - To ensure the 20 stations portrayed similar characteristics in availability trends
 - To ensure stations are not too far apart from each other (reshuffling efficiency)

Selected 20 Stations

Final Model and Results - Random Forest

- We sampled the data to ensure that it consist of 50% "Yes" and 50% "No" in availability so that the model can learn both cases equally
- We split the data into 95% training set and 5% test set
- Using the transformed data for the 20 selected stations, we chose to fit a **Random Forest** model to predict availability ("Yes" or "No") after comparing this model with Logistics Regression Model

Actual	Predicted	
	Yes	No
Yes	4,164	843
No	607	4,386

Overall Accuracy	85.5%
Accuracy for "Yes"	83.2%
Accuracy for "No"	87.8%

Model in Practice

To use the model for prediction, the inputs from a user-perspective should be:

- The model can predict the availability status of any stations within our chosen cluster at a user defined time interval for customers
- The further the date the user wants to predict, the less accurate the predictions will be because trends can change

Maintenance of the Model

To maintain the model, we should retrain the model every month to update the model based on recent trends

- Maintain a "window" of one year: delete the oldest month, and add recent corresponding month
 - o e.g. [August 2020-August 2021] → [Sep 2020 Sep 2021] → [Oct 2020 Oct 2021] ...
- Most importantly, we need to ensure that all relevant variables are tracked consistently (e.g. 2020 March stops tracking the bike_id per trip)

Understanding the Reshuffling Patterns

- Our cluster of stations are nearby busy districts and office buildings
- Bike rides reach peaks during two rush hours
 - → 7AM ~ 9AM (morning)
 - 5PM ~ 7PM (evening)
- Bike reshuffles peaks:
 - After morning rush hours
 - Before evening rush hours

Availability Trends and Reshuffling Strategy

Morning rush:

- Huge influx of bikes that shoots up bike availability to 60%
- After morning rush, reshuffling is done to prevent stations overloading with bikes

• Evening rush:

- Large decrease in bike availability to 40%
- Before evening rush, bike availability remains high
- Reshuffling is done to maintain bikes that people can ride back home

Availability Trends and Reshuffling Strategy

- Availability is high between the two rush hours, although not many bike riders
- This suggests idle bikes not being utilized efficiently
 - They should be re-allocated to other clusters / stations in need
- Use our model to predict which specific stations or clusters suffer from low availability at the time interval

Actionable Recommendation

- Much like our chosen cluster, different clusters would have differing needs at certain time of the day
 - Some clusters could be short of bikes at a certain time of the day
 - Some clusters could have more bikes than needed (underutilized)
- We could expand this concept to fit models for different clusters and capture their own characteristics by predicting availability patterns
 - Adjust our future reshuffling strategies

Optimization of Operational Cost

- Capture additional data on reshuffling field-workers
 - Price of gasoline
 - Wage for the driver
 - Capacity of bikes a truck can take
 - Distance between stations
- Create "optimal" route for field-workers to reshuffle bikes
- Our aim would be to minimize total operation costs while achieving balanced bike availabilities that meet the needs of different station clusters
 - Reduce unnecessary reshuffles
 - Increase necessary reshuffles

Next Steps for Phase 2

- Identify other distinct clusters of stations
 - Rural areas
 - Parks
 - o Schools
- Expand our model concept to be able to predict for these additional stations and clusters
- Create separate models for 2020 / 2021 that can account for COVID pandemic
 - Adds complexity, but more relevant to today's time

Thank You!

Any Questions?

Transformation of the Raw Dataset

- Each observation of trips in the raw data was split into 2 separate trips:
 - Bike picked up
 - Bike dropped off
- Reshuffling of bikes was not accounted for in the raw dataset, and needed to be treated as separate trips
 - We assumed that reshuffling occurred when bike last arrived at station A, but was recently picked up from station B
- We added starting number of bikes at each station in January 1st 2019, by using data from 2018
 December
 - Total number of bikes that arrived in 2018 December
- We defined availability to be the proportion of available bikes at a station in a given time
 - Availability = Number of bikes at a station in a given time / Total capacity of that station

Clustering of Stations

- We first performed hierarchical clustering based on:
 - Longitude
 - Latitude
- We ended up producing 5 different cluster groups
- We wanted to focus specifically on the central clusters where we hypothesized there will be higher demands
 - Urban area
 - Busier streets & office buildings

Clusters on WashingtonDC Map

Handling Data Imbalance

- Because of our 20% availability threshold, there was a high imbalance in our response variable
 ~80% "Yes", ~20% "No"
- The model failed to learn about the "No" cases
- We used stratified sampling to ensure that our training sample data had 50:50 ratio between y = "Yes" and y
 "No" observations
- Then, with the correctly trained model, we created a test set sampled from the true population to validate our model accuracies
- This significantly improved our model's performance on the negative y="No" cases

Summary of Methodology

Random Forest

Random Forest is a common learning method for classification using decision trees.

Logistics Regression

Logistic Regression uses a logistic function to model the dependent variable. The dependent variable is dichotomous in nature, i.e. there could only be two possible classes

Model Results

Random Forest

Confusion Matrix of the Actual and the Predicted

Actual	Predicted	
	Yes	No
Yes	4,164	843
No	607	4,386

Overall Accuracy: 85.5% Accuracy for "Yes": 83.2% Accuracy for "No": 87.8%

Logistics Regression

Confusion Matrix of the Actual and the Predicted

Actual	Predicted	
	Yes	No
Yes	3,436	1,571
No	1,925	3,068

Overall Accuracy: 58.2% Accuracy for "Yes": 54.8% Accuracy for "No": 61.7%

Availability Trends and Reshuffling Strategy

- We fit a Logistic regression model:
 - o 10% increase in availability(%) leads to 4% increase in odds of reshuffle

Reshuffle type	Average availability
Bring in bikes (+1)	37.8%
Take out bikes (-1)	48.5%

- We found that the trucks were more likely to take away the bikes as the availability reached higher levels.
- The majority of the reshuffling that happen at the peak availability, was the trucks taking away the bikes.