Cálculo Diferencial e Integral I

Mestrado em Eng. Civil, Licenciaturas em Eng. Território e Eng. Geológica e Mineira 1º Semestre de 2006/2007

4^a Aula Prática

Soluções e algumas resoluções abreviadas

- a) Limitada.
 b) Limitada.
 c) Não majorada, não minorada.
 d) Minorada, não majorada.
 e) Limitada.
 f) Não majorada, não minorada.
 g) Limitada.
- 2. a) Decrescente. b) Não monótona. c) Não monótona. d) Não monótona. e) Crescente (estritamente). f) Não monótona. g) Crescente (estritamente).
- 3. b) Seja $\varepsilon > 0$. Como, para $\varepsilon < 1$,

$$\left|\frac{n^2}{n^2+1}-1\right|<\varepsilon\quad\Leftrightarrow\quad\frac{1}{n^2+1}<\varepsilon\quad\Leftrightarrow\quad n>\sqrt{\frac{1}{\varepsilon}-1}$$

escolhendo um $p\in\mathbb{N}_1$ tal que $p\geq\sqrt{\frac{1}{\varepsilon}-1}$, tem-se, para qualquer $n\in\mathbb{N}_1$:

$$n > p \quad \Rightarrow \quad \left| \frac{n^2}{n^2 + 1} - 1 \right| < \varepsilon \,.$$

Se $\varepsilon \ge 1$, então necessariamente, $\frac{1}{n^2+1} < 1 < \varepsilon$ e, portanto esta implicação é sempre válida. Demonstrou-se assim que

$$\forall_{\varepsilon>0}\exists_{p\in\mathbb{N}_1}\forall_{n\in\mathbb{N}_1}\quad n>p\quad\Rightarrow\quad \left|\frac{n^2}{n^2+1}-1\right|<\varepsilon.$$

c) Para qualquer $a \in \mathbb{R}$, mostra-se que (u_n) não converge para a. Tome-se $\epsilon > 0$ com $a + \epsilon > 0$, então

$$n^2 > a + \epsilon \Leftrightarrow n > \sqrt{a + \epsilon}$$
.

Para qualquer ordem $p \in \mathbb{N}$, existe $n \in \mathbb{N}$ com n > p e $n > \sqrt{a + \epsilon}$, e neste caso, temos

$$n > p \wedge n^2 > a + \epsilon \Rightarrow n > p \wedge n^2 \notin]a - \epsilon, a + \epsilon[.$$

Logo, existe $\epsilon > 0$ tal que para qualquer ordem $p \in \mathbb{N}$, podemos tomar n > p com $n^2 \notin V_{\epsilon}(a)$, ou seja, u_n não converge para a.

- 4. a) Dado ϵ , tome-se $p \in \mathbb{N}$ tal que $p > \frac{3}{\epsilon} 1$. Para n > p, tem-se $\left|\frac{2n-1}{n+1} - 2\right| < \epsilon.$
 - b) Dado ϵ , tome-se $p \in \mathbb{N}$ tal que $p > \frac{1}{\sqrt{1-(1-\epsilon)^2}}$. Para n > p, tem-se $\left|\frac{\sqrt{n^2-1}}{n}-1\right|<\epsilon.$
- 5. a) 8, b) 8, c) 2, d) 1, e) 0, f) 2, g) 0, h) $\frac{1}{\sqrt{2}}$, i) 1, j) 0, k) 0, l) 3, m) 0, n) 1, o) 0, p) 0, i) $\frac{(a^n)^2}{a^{n^2}} = a^{-n^2+2n} \to 0$.
- 6. a) -4 < a < 4;
 - b) a = -4.
- 7. (É óbvio que os exemplos dados abaixo não são únicos ...)
 - a) $(u_n) = -\frac{1}{n}$;
 - b) $(u_n) = \frac{(-1)^n}{n};$
 - c) $(u_n) = (-1)^n$;
 - d) $(u_n) = 1 + (-1)^n$;
 - e) $(u_n) = \frac{1}{(-1)^n + 2}$;
 - f) $(u_n) = \frac{\sqrt{2}}{n}$.
- (i) A sucessão de termo geral $u_n = n + 1$.
 - (ii) Não existe, porque qualquer sucessão de termo geral $u_n \in B$ satisfaz $0 < u_n < 1$, para $n = 1, 2, \ldots$, sendo portanto limitada, e toda a sucessão monótona e limitada é convergente.
 - (iii) A sucessão de termo geral $u_n = \frac{1}{n}$: para cada $n \in \mathbb{N}_1, u_n \in B$ e, no entanto, $u_n \to 0 \notin B$.
 - (iv) Não existe. Para cada $a \in B$ existe uma vizinhança $V_{\varepsilon}(a) \subset B$. Ora, em tal vizinhança não existem termos u_n e, portanto, não pode ocorrer $u_n \to a$.
 - (v) Não existe. Se existisse, essa sucessão seria um exemplo de uma sucessão satisfazendo as condições de (iv), o que contradiria a conclusão anterior.
 - (vi) A sucessão constante de termo geral $u_n=\sqrt{2}-1$. De facto, para $n=1,2,\ldots,\,u_n\in C$ e $\lim u_n=\sqrt{2}-1<\sqrt{2}$.
- 9. Sejam $a, r \in \mathbb{R}$, e (u_n) , (v_n) sucessões tais que $u_1 = a$, $u_{n+1} = r + u_n$ e $v_1 = a, v_{n+1} = rv_n.$

- a) Mostrar que $u_n = a + (n-1)r$ e $v_n = ar^{n-1}$, $n \in \mathbb{N}_1$: Vamos considerar só a progressão aritmética (u_n) :
 - -n = 1: $u_1 = a = a + (1-1)r$.
 - Hipótese de indução: $u_n = a + (n-1)r$, para certo $n \in \mathbb{N}_1$. Queremos ver que $u_{n+1} = a + nr$. Então, por hipótese,

$$u_{n+1} = r + u_n = r + a + (n-1)r = a + nr.$$

- b) (i) (u_n) monótona crescente: em geral, $u_{n+1} u_n = r$, logo (u_n) será monótona crescente sse $r \ge 0$, com a qualquer (se r = 0, (u_n) é a sucessão constante igual a a). Por exemplo, $u_1 = 1$, $u_{n+1} = 3 + u_n$.
 - (ii) (u_n) monótona decrescente: $r \leq 0$, a qualquer. Por exemplo, $u_1=1,\ u_{n+1}=-3+u_n.$
 - (iii) (v_n) monótona crescente: em geral, $v_{n+1} v_n = ar^n ar^{n-1} = ar^{n-1}(r-1)$. Logo, (v_n) será monótona crescente sse $a \ge 0 \land r \ge 1$ ou $a \le 0 \land 0 \le r \le 1$ (se r < 0, r^{n-1} muda de sinal, e (v_n) não é monótona). Por exemplo, $v_1 = 2$, $v_{n+1} = 3v_n$, $v_1 = -2$, $v_{n+1} = \frac{1}{3}v_n$,
 - (iv) (v_n) não seja monótona: de (iii), (v_n) não é monótona sse r < 0 (a qualquer). Por exemplo, $v_1 = 2$, $v_{n+1} = -3v_n$.
- c) (u_n) não é limitada: temos, por a), $u_n = a + (n-1)r$, logo dado $b \in \mathbb{R}$ qualquer, para r > 0,

$$u_n > b \Leftrightarrow n > \frac{b-a}{r} + 1$$

e portanto (u_n) não é majorada. Se r < 0, (u_n) não será minorada. Quanto a (v_n) , de a), $v_n = ar^{n-1}$, logo (v_n) será limitada/convergente sse r^{n-1} for limitada/convergente, ou seja, será limitada para $-1 \le r \le 1$, convergente para $-1 < r \le 1$, a qualquer.

10. a) $u_n \leq 2$ para qualquer $n \in \mathbb{N}$:

Para n = 0 temos $u_0 = 1 \le 2$. Supondo $u_n \le 2$ para um certo $n \in \mathbb{N}$, consideremos u_{n+1} :

$$u_{n+1} = 1 + \frac{u_n}{2} \le 1 + \frac{2}{2} = 2.$$

Por indução conclui-se que $u_n \leq 2$ para todo o $n \in \mathbb{N}$.

b) (u_n) é uma sucessão crescente:

Com $n \ge 0$ e tendo em conta a alínea (a):

$$u_{n+1} - u_n = 1 + \frac{u_n}{2} - u_n = 1 - \frac{u_n}{2} \ge 1 - \frac{2}{2} = 0$$

e portanto (u_n) é uma sucessão crescente.

c) De (a) e (b) decorre que (u_n) é crescente e majorada, pelo que é convergente. Da definição de (u_n) , e uma vez que sendo (u_{n+1}) uma subsucessão de (u_n) , teremos (u_{n+1}) convergente com $\lim u_{n+1} = \lim u_n$, segue que

$$\lim u_n = 1 + \frac{\lim u_n}{2}.$$

Resolvendo a equação em ordem a $\lim u_n$, obtém-se

$$\lim u_n - \frac{\lim u_n}{2} = 1 \Leftrightarrow \lim u_n = 2.$$

12. Notemos que, se x>1, então $0<\frac{1}{x}<1$ e, portanto $1<2-\frac{1}{x}<2$. Como $u_1>1$, concluímos que $1< u_2<2$. Por outro lado, se, como hipótese de indução, considerarmos $1< u_n<2$, então, usando o mesmo argumento concluímos que $1< u_{n+1}<2$. Provamos assim que $\forall_{n\in\mathbb{N}_2}$, $1< u_n<2$, e que, portanto, a sucessão é limitada.

Como $u_{n+1} - u_n = 2 - \frac{1}{u_n} - u_n = -\frac{u_n^2 - 2u_n + 1}{u_n} = -\frac{(u_n - 1)^2}{u_n} < 0$, dado que, como vimos $u_n > 1$, concluímos que u_n é decrescente. Logo a sucessão é monótona e limitada e, portanto, convergente.

Seja $l = \lim u_n$. Então, dado que $\lim u_{n+1} = \lim u_n$, temos

$$\lim u_{n+1} = \lim \left(2 - \frac{1}{u_n}\right) \quad \Leftrightarrow \quad l = 2 - \frac{1}{l} \quad \Leftrightarrow \quad l = 1.$$

- 13. Seja (u_n) a sucessão definida por recorrência por $u_1 = 1, u_{n+1} = \sqrt{2 + u_n}$.
 - a) $1 \le u_n < 2$, para $n \in \mathbb{N}_1$:
 - -n=1: $u_1=1$, logo $1 \le u_1 < 2$ é uma proposição verdadeira.
 - Hipótese de indução: $1 \le u_n < 2$, para certo $n \in \mathbb{N}_1$. Queremos ver que também $1 \le u_{n+1} < 2$. Como $u_{n+1} = \sqrt{2 + u_n}$, usando a hipótese de indução temos

$$\sqrt{2+1} \le u_{n+1} < \sqrt{2+2} \Leftrightarrow \sqrt{3} \le u_{n+1} < 2 \Rightarrow 1 \le u_{n+1} < 2.$$

- b) (u_n) é crescente: vamos usar indução matemática para mostrar que $u_{n+1} \ge u_n$ para qualquer $n \in \mathbb{N}_1$.
 - -n=1: $u_1=1,\,u_2=\sqrt{2+1}=\sqrt{3},$ logo $u_2>u_1$ é uma proposição verdadeira.
 - Hipótese de indução: $u_{n+1} \geq u_n$, para certo $n \in \mathbb{N}_1$. Queremos ver que também $u_{n+2} \geq u_{n+1}$. Temos $u_{n+2} = \sqrt{2 + u_{n+1}}$, e, de $u_{n+1} \geq u_n$, vem que $\sqrt{2 + u_{n+1}} \geq \sqrt{2 + u_n}$, ou seja, que $u_{n+2} \geq u_{n+1}$, como queríamos mostrar.
- c) (u_n) é monótona crescente e limitada, logo convergente.
- d) Seja $l = \lim u_n$. Então, dado que $\lim u_{n+1} = \lim u_n$, temos

$$\lim u_{n+1} = \lim \sqrt{2 + u_n} \Leftrightarrow l = \sqrt{2 + l} \Leftrightarrow l^2 = 2 + l \land l \ge 0 \Leftrightarrow l = 2.$$

- 14. Como $u_n > 0$, para qualquer $n \in \mathbb{N}$, tem-se $\frac{u_{n+1}}{u_n} < 1 \Leftrightarrow u_{n+1} < u_n$, para qualquer n, ou seja, (u_n) é (estritamente) decrescente. Por outro lado, (u_n) é minorada (uma vez que $u_n > 0$ para qualquer n). Logo é convergente.
- 15. De $|x_n y_n| < \frac{1}{n}$, para qualquer $n \in \mathbb{N}_1$, temos que $y_n \frac{1}{n} < x_n < y_n + \frac{1}{n} \Rightarrow y_n 1 < x_n < y_n + 1 \Rightarrow a 1 < x_n < b + 1$, em que $a, b \in \mathbb{R}$ são tais que $a < y_n < b$, para qualquer $n \in \mathbb{N}_1$. Logo (x_n) é limitada. Como é monótona, será convergente.

De $x_n - \frac{1}{n} < y_n < x_n + \frac{1}{n}$, e $\lim x_n + \frac{1}{n} = \lim x_n - \frac{1}{n} = \lim x_n$, concluise do critério das sucessões enquadradas, que (y_n) é convergente e $\lim y_n = \lim x_n$.