Mesure et intégration

Quizz 3

1)	Soit (X, \mathcal{A}) un espace mesurable, et f une application de X dans un ensemble X' .
	Vrai \square Faux \square La famille $f(A)$ est une tribu sur X' .
	DRRECTION. ux en général, par exemple si f est constante, alors $f(A) = \{\emptyset, \{y\}\}$
2)	Soit (X) un ensemble, \mathcal{A} et \mathcal{A}' deux tribus sur X .
	Vrai \square Faux \square la famille $\mathcal{A} \cup \mathcal{A}'$ est une tribu sur X .
CORRECTION. Faux en général, contre exemple : $X = \{1, 2, 3\}$, $\mathcal{A} = \sigma(\{1\}, \{2, 3\})$, $\mathcal{A}' = \sigma(\{1, 2\}, \{3\})$. L'union ne contient pas $\{2\} = \{1, 2\} \cap \{2, 3\}$.	
3)	Les familles suivantes engendrent la tribu des boréliens sur $\mathbb R$:
	Vrai \square Faux \square La famille des parties fermées
CORRECTION. Vrai, il s'agit d'une famille dans la tribu des boréliens, et elle contient notamment les $]-\infty$	
	Vrai \square Faux \square La famille $\{[a,b[,\;a,b\in\mathbb{R}\}$
CORRECTION. Vrai, il s'agit de boréliens comme intersection des $]a-1/n,b[$ et on peut retrouver les intervalles ouverts en considérant l'union des $[a+1/n,b[$.	
	Vrai \square Faux \square La famille des compacts
Vr	DRRECTION. $ai,\ il\ s$ 'agit de fermés, donc de boréliens, et elle contient notamment les $[a,b],\ donc\ les\]a,b[$ r union dénombrable, comme précédemment.
4)	Soient μ_1 et μ_2 deux mesures définies sur le même espace mesurable (X, \mathcal{A}) . On a alors
	Vrai \square Faux \square $\lambda \mu_1$ est une mesure pour tout λ réel.
	DRRECTION. $ux \ \'evidemment \ en \ g\'en\'eral, \ mais \ vrai \ si \ \lambda \geq 0.$
	Vrai \square Faux \square La somme $\mu_1 + \mu_2$ est une mesure
	DRRECTION. ai .
	Vrai \square Faux \square Le produit $\mu_1 \times \mu_2$ est une mesure
Fa	DRRECTION. ux en général, on perd l'additivité. Prendre par exemple $\mu_1 = \mu_2$, deux ensembles A et B sjoints de masse 1 , on a
	$\mu_1 \times \mu_2(A \cup B) = 4 \neq 2 = \mu_1 \times \mu_2(A) + \mu_1 \times \mu_2(B).$

Noter que la question n'est pas très bien posée en général (si les mesures ne sont pas finies),

car il faudrait s'entendre sur ce que vaut le produit $0 \times +\infty$.

Vrai \square Faux \square La différence $\mu_1 - \mu_2$ est une mesure
Toute mesure est une mesure extérieure.
Vrai □ Faux □
CORRECTION. Faux en général : les conditions exigées pour une mesure extérieure sont certes plus faibles que les conditions pour une mesure, mais une mesure peut n'être définie que sur une tribu strictement incluse dans la tribu discrète, auquel cas il ne s'agit pas d'une mesure extérieure qui elle est toujours définie sur $\mathcal{P}(X)$.
5) Soit (X, \mathcal{A}) un espace métrique mesurable. L'application μ qui à $A \in \mathcal{A}$ associe son diamètre
diamètre $\mu(A) = \dim(A) = \sup_{x,y \in A} d(x,y) , \ \mu(\emptyset) = 0,$
est une
mesure \square mesure extérieure \square ni l'une ni l'autre \square
CORRECTION. Ni l'une ni l'autre en général : dès que X contient 2 points, le diamètre des singletons est 0 et le diamètre de la réunion des singletons est strictement positif.
6) On considère l'ensemble X des personnes habitant sur terre, muni de la tribu discrète Préciser si les μ définis ci-dessous sont des mesures, mesures extérieures, ou ni l'un ni l'autre. On définit μ par la valeur qu'elle affecte à une sous-population $A \in \mathcal{P}(X)$ (en affectant toujours 0 à \emptyset).
Mesure \square Mesure extérieure \square nombre total d'années vécues par les éléments de A
Mesure \square Mesure extérieure \square âge moyen des individus dans A
Mesure \square Mesure extérieure \square âge maximal parmi les individus dans A (avec $\mu(\emptyset)=0$)
Mesure \square Mesure extérieure \square âge minimal parmi les individus dans A
Mesure \square Mesure extérieure \square nombre de "connections" entre individus de A (on compte 1 pour tout couple (x,y) tel que x et y se sont déjà rencontrés au moins une fois).
7) On se place sur $\mathbb R$ muni de la mesure de Lebesgue λ . Les assertions suivantes sont elles vraies / fausses?
Vrai \square Faux \square $\lambda(A) = \lambda(\mathring{A}) = \lambda(\bar{A})$ pour tout intervalle A
Correction. $Vrai, \ \lambda([a,b]) = b - a = \lambda([a,b[) = etc$
Vrai \square Faux \square $\lambda(A) = \lambda(\mathring{A})$ pour tout borélien A
CORRECTION. Faux, $\lambda(\mathbb{R} \setminus \mathbb{Q}) = +\infty$, alors que $\mathbb{R} \setminus \mathbb{Q}$ est d'intérieur vide.
Vrai \square Faux \square $\lambda(\partial A) \leq \lambda(A)$ pour tout borélien A
CORRECTION. Faux, $\mathbb Q$ est de mesure nulle, mais sa frontière est $\mathbb R$ de mesure pleine.
Vrai □ Faux □ Tout borélien borné est de mesure finie

Correction. Vrai, si $A \subset [-M, M]$, alors $\lambda(A) \leq 2M$.
Vrai \square Faux \square Tout borélien de mesure finie est borné
CORRECTION. Faux, \mathbb{Z} est de mesure nulle, et non bornés.
Vrai \square Faux \square Tout ouvert de mesure finie est borné
CORRECTION. Cela reste faux, même pour les ouverts, l'union des $]n, n+1/n^2[$ est un ouvert de mesure finie, non borné.