LP03 : Notion de viscosité d'un fluide. Écoulement visqueux.

Introduction

Coefficient de viscosité

	Viscosité dynamique	Viscosité cinématique
	$\eta \; (Pa.s)$	$ u = rac{\eta}{ ho} (m^2/s)$
Eau (20°C)	10^{-3}	$1,006\ 10^{-6}$
Air (20°C)	$18,2\ 10^{-6}$	$15,1\ 10^{-6}$
Glycérine (20°C)	1,49	$1180\ 10^{-6}$
Mercure (20°C)	$1,55\ 10^{-3}$	$0,116\ 10^{-6}$
CO ₂ (20°C, 1 atm.)	$14,7 \ 10^{-6}$	$8,03\ 10^{-6}$
H ₂ (20°C, 1 atm.)	$8,83\ 10^{-6}$	$105 \ 10^{-6}$

Source : Cours d'hydrodynamique de Marc Rabaud pour la préparation de l'agrégation

Nombre de Reynolds

Exemples	Grandeurs caractéristiques	Nombre de Reynolds
Personne qui marche	L = 1,70 m U = 1 m/s $v = 15.10^{-6}$ m ² /s	Re ~ 10 ⁵
Personne qui nage	L = 1,70 m U = 0,8 m/s $v = 1.10^{-6}$ m ² /s	Re ~ 10 ⁶
Avion en vol	L = 50 m U = 230 m/s $v = 15.10^{-6}$ m ² /s	Re ~ 8.10 ⁸
Bactérie dans l'eau	L = 1.10^{-6} m U = 10.10^{-6} m/s $v = 1.10^{-6}$ m ² /s	Re ~ 10 ⁻⁶
Puce qui saute	L = 3.10^{-3} m U = 1.9 m/s $v = 15.10^{-6}$ m ² /s	Re ~ 400

Nombre de Reynolds

Source: Ce que disent les fluides, Guyon, Hulin, Petit (édition Belin - 2005)

Réversibilité à faible nombre de Reynolds

https://youtu.be/51-6QCJTAjU?t=961

Écoulement de Poiseuille

Coordonnées cylindriques (r, θ, x)

Champ de vitesse $\vec{v} = v_x(r)\vec{e}_x$

Condition aux bords : $\vec{v}(R) = \vec{0}$

$$\Rightarrow \frac{1}{r}\frac{d}{dr}\left(r\frac{dv_x}{dr}\right) = \frac{1}{\eta}\frac{dP}{dx} = cste$$

Profil de vitesse : $v_x(r) = \frac{-1}{4\eta} \frac{dP}{dx} (R^2 - r^2)$

Débit volumique : $Q = \int_0^R v_x(r) 2\pi r dr$

$$Q = \frac{\pi}{8\eta} \left(\frac{-dP}{dx} \right) R^4$$

Conclusion

- Introduction notion de viscosité
- Description écoulement visqueux :
 - Équation de Navier-Stokes
 - Nombre de Reynolds
- Écoulement de Poiseuille
 - Observation écoulement visqueux
 - Mesure viscosité de l'eau

Ouverture - Cas des écoulements réels

