Homework 4

Kyle Hadley

import warnings
warnings.simplefilter('ignore')

1. Constraint Reformulations

Given $f(x) = \frac{1}{2}x^TQx + c^Tx$ and minimizing f(x) such that $x \in \mathcal{X}$ where \mathcal{X} is expressed in two forms.

(a)

Given our optimality conditions $rac{\partial f}{\partial x} = v^T A$ and Ax = b.

To solve for v^* and x^* , we first start by multiplying our 1st optimality condition by the value of AQ^{-1} such that

$$AQ^{-1}(Qx+c) = AQ^{-1}(-A^Tv)$$
 $AQ^{-1}Qx + AQ^{-1}c = -AQ^{-1}A^Tv$ $Ax + AQ^{-1}c = -AQ^{-1}A^Tv$

Substituting our second optimality condition Ax = b,

$$b + AQ^{-1}c = -AQ^{-1}A^{T}v$$

$$v^{*} = (-AQ^{-1}A^{T})^{-1}(b + AQ^{-1}c)$$

To solve for x^* in terms of b, we can substitute our relationship for v^* into our first optimality condition such that

$$Qx^* + c = -A^Tv^*$$
 $x^* = -A^T(-AQ^{-1}A^T)^{-1}(b + AQ^{-1}c) - c$

Given our optimality conditions $\left[egin{array}{cc} rac{\partial f}{\partial x} & rac{\partial f}{\partial z} \end{array}
ight] = au^T \left[egin{array}{cc} I & -N \end{array}
ight]$ and $x = Nz + x^0.$

To solve for x^* , z^* , and τ , we can solve for the partial derivatives to generate two equations as follows

$$\left[egin{array}{cc} rac{\partial f}{\partial x} & rac{\partial f}{\partial z} \end{array}
ight] = au^T \left[egin{array}{cc} I & -N \end{array}
ight]$$

$$\left[\, x^T Q + c^T \quad 0 \, \right] = \tau^T \left[\, I \quad -N \, \right]$$

From this, we find two equations

$$x^T Q + c^T = \tau^T$$
$$0 = -\tau^T N$$

We can use the second equation to find our value for τ . With the second equation, we can see that τ must be orthogonal to the columns of N and we know that AN=0 given that N forms a basis for \mathcal{A} . Thus, we determine that $\tau=A^Tv$ for a given v.

We can solve for z^* from our first equation and the relationship that $x^T = x^{0^T} + z^T N^T$.

$$x^TQ + c^T = au^T$$
 $(x^{0^T} + z^TN^T)Q + c^T = au^T$

We can now right-hand multiply both sides of our equation by N such that

$$[(x^{0^T}+z^TN^T)Q+c^T]N= au^TN$$
 $x^{0^T}N+z^TN^TQN+c^TN= au^TN$

We know from our second equation that right-hand side of our equation is equal to zero ($0=-\tau^T N$), thus we can now simplify the left-hand side and solve for z^* .

$$x^{0^T}N + z^TN^TQN + c^TN = 0$$

 $z^T = (-x^{0^T}QN - c^TN)(N^TQN)^{-1}$

We know that x is a function of z given that $x=Nz+x^0$, thus we can see that

$$x = N[(-x^{0}{}^{T}QN - c^{T}N)(N^{T}QN)^{-1}]^{T} + x^{0}$$
 $x = -N(N^{T}QN)^{-1}(NQx^{0} + N^{T}c) + x^{0}$

(c)

If we turn our optimization problem into an unconstrained optimization problem using Form 2 of \mathcal{X} , we can solve for z. We are given that $f(x)=\frac{1}{2}x^TQx+c^Tx$ and x=Nz+d, thus we can substitue our relationship for x into our f(x) such that,

$$f(z) = rac{1}{2}(x^{0^T} + z^T N^T)Q(Nz + x^0) + c^T(Nz + x^0) \ f(z) = rac{1}{2}x^{0^T}Qx^0 + x^{0^T}QNz + rac{1}{2}z^T N^TQNz + c^TNz + c^Tx^0$$

We can now take the partial derivative of f(z) with respect to z and equate the resulting derivative to zero such that

$$rac{\partial f}{\partial z} = z^T N^T Q N + x^{0T} Q N + c^T N = 0$$

Solving for z given this relationship we find that

$$z^T = (-x^0{}^TQN - c^TN)(N^TQN)^{-1}$$

(d)

2. Inequality Constraint Reformulations

Given Ax=b and $Cx\geq d$ where $A=[\,1\quad 1\quad 0\,]$, b=1 , $C=egin{bmatrix} -1&0&0\\1&0&0\\0&0&1\\1&0&-1 \end{bmatrix}$, and

$$d = \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$
.

(a)

Plotting the set of x's that satisfy the equations as defined above.

Two plots are given due to constraints of plotting multiple surfaces on a single plot. The first plot represents Ax=b; the second plot includes $Cx\geq d$ and the resulting space with combining both equations.

```
In [32]: fig = plt.figure(figsize=(8, 8))
    ax = plt.axes(projection='3d')

# Make data and plot Ax = b
    x_1 = np.arange(-5, 5, 1)
    x_3 = np.arange(-5, 5, 1)
    x_1, x_3 = np.meshgrid(x_1, x_3)
    x_2 = 1 - x_1
    col1_patch = mpatches.Patch(color='green', label='$Ax=b$') # Info for legend

ax.plot_surface(x_1, x_2, x_3, color='green')

# Plot details
    ax.set_xlabel('$x_1$')
    ax.set_ylabel('$x_2$')
```

```
ax.set_zlabel('$x_3$')
ax.legend(handles=[col1_patch])
ax.set_title('$Ax=b$')
ax.view_init(30, 30)
fig.show()
```



```
In [31]:
    fig = plt.figure(figsize=(8, 8))
        ax = plt.axes(projection='3d')

# Make data and plot Cx >= d
        blue_line = mlines.Line2D([], [], color='blue', markersize=15, label='$Cx>=d$') # Info

        ax.plot(xs=[2, 2], ys=[-1, -1], zs=[-5, 5], color='blue', linewidth='2')

        ax.plot(xs=[1, 1], ys=[0, 0], zs=[-5, 5], color='blue', linewidth='2')

        ax.plot(xs=[5, -5], ys=[-4, 6], zs=[0, 0], color='blue', linewidth='2')

        ax.plot(xs=[5, -5], ys=[-4, 6], zs=[5, -5], color='blue', linewidth='2')
```

```
# Plot combination of Ax=b and Cx >= d
x_1 = [1, 1, 2, 2]
x_2 = [0, 0, -1, -1]
x_3 = [0, 1, 2, 0]
verts = [list(zip(x_1,x_2,x_3))]

col1_patch = mpatches.Patch(color='black', label='$Ax=b$ and $Cx \geq d$') # Info for L
ax.add_collection3d(Poly3DCollection(verts, edgecolor='black', facecolor='black'))

# Plot details
ax.set_xlabel('$x_1$')
ax.set_ylabel('$x_2$')
ax.set_ylabel('$x_2$')
ax.set_zlabel('$x_3$')
ax.legend(handles=[col1_patch, blue_line])
ax.set_title('$Cx \geq d$, $Ax=b$ and $Cx \geq d$')
ax.view_init(30, 30)
fig.show()
```

 $Cx \ge d$, Ax = b and $Cx \ge d$

Given A and b, we can represent this set in the form $x=Nz+x^0$ such that the columns of N form a basis for the nullspace of A.

We can define an N such that it spans the nullspace of A as

$$N = \left[egin{array}{ccc} -1 & 0 \ 1 & 0 \ 0 & 1 \end{array}
ight]$$

We can solve for x^0 by substituing $x=Nz+x^0$ into Ax=b such that

$$A(Nz+x^0)=b$$

We know that the first term (ANz) is equal to zero, thus the equation is $Ax^0=b$.

$$egin{bmatrix} \left[egin{array}{ccc} 1 & 1 & 0 \end{array}
ight] x^0 = 1 \ x^0_1 + x^0_2 = 1 \ \end{split}$$

We select $x_3^0=0$ and $x_2^0=2$; thus we can solve for $x_1^0=-1$.

Thus, we find an
$$N=\begin{bmatrix} -1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 and $x^0=\begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}$ for our given A and b .

Given this N and x^0 , we can find our inequality constraints on z by substituing $x=Nz+x^0$ into $Cx\geq d$ such that

$$C(Nz+x^0) \geq d$$

$$CNz+Cx^0\geq d$$

Solving this equation such that it relates to $Ez \geq h$ we find that

$$CNz \ge d - Cx^0$$

which implies that E=CN and $d-Cx^0=h$. Thus, we find that E is equal to

$$E=CN=egin{bmatrix} -1 & 0 & 0 \ 1 & 0 & 0 \ 0 & 0 & 1 \ 1 & 0 & -1 \end{bmatrix} egin{bmatrix} -1 & 0 \ 1 & 0 \ 0 & 1 \end{bmatrix}$$

$$E = egin{bmatrix} 1 & 0 \ -1 & 0 \ 0 & 1 \ -1 & -1 \end{bmatrix}$$

And solving for h

$$h = d - Cx^{0} = \begin{bmatrix} -2\\1\\0\\0 \end{bmatrix} - \begin{bmatrix} -1&0&0\\1&0&0\\0&0&1\\1&0&-1 \end{bmatrix} \begin{bmatrix} -1\\2\\0 \end{bmatrix}$$
$$h = \begin{bmatrix} -2\\1\\0\\0 \end{bmatrix} - \begin{bmatrix} 1\\-1\\0\\-1 \end{bmatrix}$$
$$h = \begin{bmatrix} -3\\2\\0\\1 \end{bmatrix}$$

If we chose a different N or x^0 , E and h would be equivalent (or at least scaled factors of the same values we derived above).

(c)

Given
$$E=egin{bmatrix}1&0\\-1&0\\0&1\\-1&-1\end{bmatrix}$$
 and $h=egin{bmatrix}-3\\2\\0\\1\end{bmatrix}$ as calculated in part (b), we can plot $z\in\mathbb{R}^2$ such that $Ez>h$.

In [30]: # Plot the various constraints of Ez >= h fig, ax = plt.subplots(figsize=(5, 5)) x = np.linspace(-5, 5, num=100)# 1st row ax.axvline(-3, linewidth=2, color='blue') ax.axvline(-2, linewidth=2, color='blue') # 3rd row y = 0 * xax.plot(x, y, linewidth=2, color='blue') # 4th row y = -1 - xax.plot(x, y, linewidth=2, color='blue') # Plot the inequality as a patch xy = [[-2, 0], [-3, 0], [-3, 2], [-2, 1]]ax.add_patch(mpatches.Polygon(xy, color='green', label='\$Ez \geq h\$')) ax.legend() ax.set_xlim([-5, 5]) ax.set ylim([-5, 5])ax.set_xlabel('\$z_1\$')

```
ax.set_ylabel('$z_2$')
ax.set_title('$Ez \geq h$')
ax.legend()
ax.grid()
fig.show()
```


3. Inequality Constraints and Positive Matrices

4. Complementary Slackness

5. Lagrangians

(a)

Given $f(x) = \frac{1}{2}x^Tx$ and Ax = b, we can write the Lagrangian for the optimization problem with a dual variable v as given below,

$$\mathcal{L}(x,v) = f(x) + v^T g(x)$$

We are given f(x) and know that g(x) can be derived from our Ax=b relationship such that g(x)=Ax-b=0. From this, we can now write our Lagrangian as

$$\mathcal{L}(x,v) = rac{1}{2}x^Tx + v^T(Ax - b)$$

Given
$$A = \begin{bmatrix} - & \bar{A}_1^T & - \\ - & \bar{A}_2^T & - \end{bmatrix} = \begin{bmatrix} 0.9 & 0.1 \\ 0.1 & 0.9 \end{bmatrix}$$
 and $b = \begin{bmatrix} 0.9 \\ 0.9 \end{bmatrix}$, we can generate a plot for the following $h(x)$ in the $\begin{bmatrix} x_1 & x_2 & h(x) \end{bmatrix}^T$ space.

$$egin{aligned} h_1(x) &= f(x) \ h_2(x) &= v_1(ar{A}_1^Tx - b_1) \ h_3(x) &= v_2(ar{A}_2^Tx - b_2) \ h_4(x) &= \mathcal{L}(x,v) \end{aligned}$$

Note: By inspection, we can see that $h_4(x) = h_1(x) + h_2(x) + h_3(x)$.

```
In [45]:
          fig = plt.figure(figsize=(8, 8))
          #3D
          ax = fig.add subplot(1, 1, 1, projection='3d')
          # Plot h_1(x)
          x_1 = np.arange(-3, 3, 0.1)
          x = np.arange(-3, 3, 0.1)
          x_1, x_2 = np.meshgrid(x_1, x_2)
          h 1 = 1/2 * (x 1**2 + x 2**2)
          ax.plot_surface(x_1, x_2, h_1, color='blue')
          h1_label = mpatches.Patch(color='blue', label='$h(x) = f(x)$') # Info for Legend
          # Plot h 2(x)
          v 1 = 1 \# Assume \ a \ fixed \ v \ 1 \ for \ now
          h 2 = v 1 * (0.9*x 1 + 0.1*x 2 - 0.9)
          ax.plot_surface(x_1, x_2, h_2, color='green')
          h2 label = mpatches.Patch(color='green', label='$h(x) = v 1(A 1^T-b 1)$') # Info for Le
          # Plot h 3(x)
          v_2 = 1 \# Assume \ a \ fixed \ v_2 \ for \ now
          h 3 = v 2 * (0.1*x 1 + 0.9*x 2 - 0.9)
          ax.plot_surface(x_1, x_2, h_3, color='black')
          h3 label = mpatches.Patch(color='black', label='$h(x) = v 2(A 2^T-b 2)$') # Info for Le
          # Plot h 4(x)
          h 4 = h 1 + h 2 + h 3
          ax.plot_surface(x_1, x_2, h_4, color='red')
          h4 label = mpatches.Patch(color='red', label='h(x) = \mathcal{L}(x,v)') # Info for Le
          ax.set xlim3d([-3, 3])
          ax.set ylim3d([-3, 3])
          ax.set_zlim3d([-3, 10])
          ax.set xlabel('$x 1$')
          ax.set_ylabel('$x_2$')
          ax.set zlabel('$h(x)$')
          ax.set title('h(x)$ with v 1 = 1$ and v 2 = 1$')
          ax.legend(handles=[h1 label, h2 label, h3 label, h4 label], loc='upper left')
          ax.view init(30, 30)
```

```
#ax.view_init(0, 90) # view of h(x), x_1 (x_2 into page) --> good for varying v_1
#ax.view_init(0, 0) # view of h(x), x_2 (x_1 into page) --> good for varying v_2
fig.show()

# Save figure (if desired)
#plt.savefig('v1_neg2.png')
```


We can see the effect of varying v_1 and v_2 in the plots as shown below. When we oscillate v_1 between [-2,2] causes "see-sawing" about the x_2 axis (as shown by the 1st and 2nd image in which we see the rotation of the green plane about the x_2 axis). When we oscillate v_2 between [-2,2] causes "see-sawing" about the x_1 axis (as shown by the 3rd and 4th image in which we see the rotation of the black plane about the x_1 axis).

h(x) with $v_1 = 2$ and $v_2 = 0$

 $x_1^{2} \overline{y_1^{2}}$ 2 1 0 -1 -2 -3

h(x) with $v_1 = 0$ and $v_2 = 2$

(c)

When we replace Ax=b with $Ax\geq b$, the Lagrangian does change to the function below,

$$\mathcal{L}(x,v) = f(x) - v^T g(x)$$

$$\mathcal{L}(x,v) = rac{1}{2} x^T x - v^T (Ax - b)$$

With the new form of Lagrangian, we also must impose the the following constraints on v_1 and v_2 : $v_1 \geq 0$ and $v_2 \geq 0$.

In []: