Charge symmetry breaking in hypernuclei within RMF model

Ting-Ting Sun^{a,b,1}, Yusuke Tanimura^c, Hiroyuki Sagawa^{b,d,*}, Emiko Hiyama^{e,b,*}

^aSchool of Physics, Zhengzhou University, Zhengzhou 450001, China

^bRIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan

^cDepartment of Physics and Origin of Matter and Evolution of Galaxy (OMEG) Institute, Soongsil University, Seoul 06978, Korea

^dCenter for Mathematics and Physics, the University of Aizu, Aizu-Wakamatsu, Fukushima 965-8580, Japan

^eDepartment of Physics, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan

Abstract

We study the charge symmetry breaking (CSB) effect in the binding energy of mirror hypernuclei in the mass region $A=7\sim48$ in relativistic mean field (RMF) models introducing NN and ΛN interactions. The phenomenological ΛN CSB interaction is introduced and the strength parameter is fitted to reproduce the experimental binding energy difference between the mirror hypernuclei $^{12}_{\Lambda}B$ and $^{12}_{\Lambda}C$. This model is applied to calculate the CSB energy anomaly in mirror hypernuclei with the mass $A=7\sim48$. The model is further applied to predict the binding energy difference of mirror hypernuclei of A=40 with the isospin T=1/2, 3/2 and 5/2 nuclei together with various hyper Ca isotopes and their mirror hypernuclei. Finally the binding energy systematics of A=48 hypernuclei are predicted with/without the CSB effect by the PK1 and TM2 energy density functionals (EDFs).

Keywords: charge symmetry breaking, single-Λ hypernuclei, RMF model

1. Introduction

In hypernuclear physics, it is important to extract information on hyperon (Y)-nucleon(N) interaction. Historically, due to the difficulties of YN scattering experiments, we have been obtaining information on YN interaction by the studies of hypernuclear structures. For this purpose, in the case of the ΛN sector, high resolution γ -ray experiments have been performed in light Λ hypernuclei systematically [1].

Theoretically, several shell-model calculations for light Λ hypernuclei have been performed [2, 3]. Furthermore, microscopic calculations of three- and four-cluster system with sufficient numerical accuracy have been performed [4, 5, 6]. With these theoretical calculations and experimental data, we have obtained spin-dependent forces of ΛN interaction such as spin-spin term, spin-orbit term, and etc.

However, there is still an open important issue to be solved, i.e., charge symmetry breaking (CSB) component in the ΛN interaction. Historically, evidence for the CSB interaction has been observed in the single- Λ

Email addresses: hiroyuki.sagawa@gmail.com (Hiroyuki Sagawa), hiyama@riken.jp (Emiko Hiyama)

binding energies B_{Λ} of the A=4 mirror hypernuclei $^4_{\Lambda}$ H and $^4_{\Lambda}$ He. This evidence is attributed to the energy difference $\Delta B_{\Lambda} \equiv B_{\Lambda}(^4_{\Lambda} \mathrm{H}) - B_{\Lambda}(^4_{\Lambda} \mathrm{He})$, which was measured to be -0.35 ± 0.06 MeV for the ground (0^+) state and -0.24 ± 0.06 MeV for the excited (1^+) state, respectively [7]. To reproduce the observed data, many theoretical efforts have been done. To understand the CSB effect, Dalitz and Von Hippel [8] pointed out that the Λ - Σ^0 mixing mechanism, which is related to ΛN - ΣN coupling, is important. Thereafter, several calculations taking account of ΛN - ΣN coupling have been performed for the A=4 hypernuclei [9, 10, 11, 12]. However, it was difficult to reproduce the experimental data.

In 2015, the ground state of ${}^{4}_{\Lambda}$ H has been observed with high accuracy at MAMI-C [13], and the obtained single- Λ separation energy $B_{\Lambda} = 2.21 \pm 0.01$ (stat) ± 0.09 (syst) MeV, which is consistent with the emulsion value [7]. Moreover, the γ -ray transition from the 1⁺ excited state to the 0⁺ ground state in ${}^{4}_{\Lambda}$ He has been observed at J-PARC and the obtained excitation energy is 1.406 ± 0.002 (stat) ± 0.002 (syst) MeV [14], which was quite different with the old data. After these two observations, many works have discussed the CSB effect on the A=4 light systems [15, 16, 17]. Still, it is difficult to reproduce the new data.

More information on CSB effect are required. For

^{*}Corresponding author.

this purpose, one can also focus on the study of heavier Λ hypernuclei with mass number A=7,10 and larger. For the A=7 single- Λ hypernuclei, the binding energies of ${}^7_{\Lambda}$ He, ${}^7_{\Lambda}$ Li, and ${}^7_{\Lambda}$ Be with isospin T=1, have been observed experimentally. Among these data, the binding energy B_{Λ} in ${}^7_{\Lambda}$ He has been observed to be 5.68 ± 0.03 (stat) ± 0.25 (syst) MeV by the ${}^7\text{Li}(e,e'K^+)^7_{\Lambda}$ He reaction at JLab [18]. Later, the observed binding energy of ${}^7_{\Lambda}$ He has been updated to be 5.55 ± 0.10 (stat) ± 0.11 (syst) MeV with a better systematic error [19]. In the case of ${}^7_{\Lambda}$ Be, there were old emulsion data giving $B_{\Lambda}=5.16$ MeV [7]. As a result, the energy difference, $\Delta B_{\Lambda}\equiv B_{\Lambda}({}^7_{\Lambda}$ He) $-B_{\Lambda}({}^7_{\Lambda}$ Be), between ${}^7_{\Lambda}$ He and ${}^7_{\Lambda}$ Be is 0.39 MeV, which exhibits a larger energy difference compared to that of A=4 hypernuclei.

Regarding the A = 10 mirror hypernuclei, there was one old emulsion data for $^{10}_{\Lambda}$ Be which gives $B_{\Lambda} = 9.11 \pm$ 0.22 MeV [7, 20]. In 2016, high-resolution experiment has been done at JLab using the $(e, e'K^+)$ reaction and reported the observed binding energy B_{Λ} of $^{10}_{\Lambda}$ Be to be $8.60\pm0.07 \text{ (stat)}\pm0.11 \text{ (syst) MeV [21]}$. Meanwhile, the B_{Λ} for ${}^{10}_{\Lambda}$ B is 8.89 ± 0.12 (stat) ± 0.04 (syst) MeV measured in emulsion [22] while 8.1±0.1 MeV measured by the (π^+, K^+) reaction at KEK [23], which was corrected to be $B_{\Lambda} = 8.64 \pm 0.1$ MeV in Ref. [21]. Thus, based on those experimental data, there are two suggested possible binding energy differences $\Delta B_{\Lambda} \equiv B_{\Lambda}(^{10}_{\Lambda}\text{Be})$ – $B_{\Lambda}(^{10}_{\Lambda}\text{B})$ between the A=10 mirror hypernuclei. One value is $\Delta B_{\Lambda} = 9.11 - 8.89 = 0.22$ MeV, while the other is 8.60 - 8.64 = -0.04 MeV. For more heavier Λ hypernuclei, we have data for the A = 12 mirror hypernuclei $^{12}_{\Lambda}$ B and $^{12}_{\Lambda}$ C, and the observed B_{Λ} s are 11.529 \pm 0.025 MeV [24] and 11.30 ± 0.19 MeV [21, 22, 25], respectively¹. Therefore, the experimental value of $\Delta B_{\Lambda} \equiv$ $B_{\Lambda}(^{12}_{\Lambda}B) - B_{\Lambda}(^{12}_{\Lambda}C)$ is 0.229 MeV, although the error bar in ${}^{12}_{\Lambda}$ C is still large. A comprehensive summary of B_{Λ} values for Λ -hypernuclei with $A \leq 16$ has been provided in Ref. [27].

It is noted that in mirror hypernuclei, the binding energies B_{Λ} s on the neutron-rich side are larger compared to those on the proton-rich side for p-shell Λ hypernuclei. In contrast, the behavior of s-shell Λ hypernuclei is opposite to that of p-shell Λ hypernuclei. In order to reproduce both the s-shell and p-shell hypernuclear data, in Ref. [6], one of the present authors, E.H., introduced a phenomenological odd-state CSB interaction which has an opposite sign to the even-state CSB inter-

action to reproduce the observed data of ${}_{\Lambda}^{4}$ H and ${}_{\Lambda}^{4}$ He. The odd-state CSB interaction was adjusted so as to reproduce the observed B_{Λ} s of T=1 isotriplet hypernuclei ${}_{\Lambda}^{7}$ He, ${}_{\Lambda}^{7}$ Li, and ${}_{\Lambda}^{7}$ Be. The CSB interaction was also applied to calculate the binding energies of the A=10 mirror hypernuclei, ${}_{\Lambda}^{10}$ B and ${}_{\Lambda}^{10}$ Be, and the obtained ${}_{\Lambda}^{20}$ Be was consistent with the data, provided that the odd-state CSB interaction has an opposite sign to that of the even-state CSB interaction.

To further study CSB effect, we need information on heavier Λ hypernuclei. For this purpose, it is planned at JLab to produce ${}^{40}_{\Lambda}{\rm K}$ and ${}^{48}_{\Lambda}{\rm K}$ via $(e,e'K^+)$ reactions using ${}^{40}{\rm Ca}$ and ${}^{48}{\rm Ca}$ targets. In this paper, based on the relativistic mean field (RMF) model, we discuss the CSB effect on the single- Λ hypernuclei with mass numbers ranging from A=7 to 48 and also predict the possibility to observe the CSB effect at JLab and J-PARC. In Section 2, the theoretical framework is given. The calculated results and discussions are presented in Section 3 and the summary is drawn in Section 4.

2. Theoretical framework

2.1. RMF model for Λ hypernuclei

RMF models have achieved great successes in the descriptions of ordinary nuclei [28], hypernuclei [29, 30, 31, 32, 33] as well as baryon matter [34, 35]. The starting point of the meson-exchange RMF model for the Λ hypernuclei is the following covariant Lagrangian density,

$$\mathcal{L} = \mathcal{L}_N + \mathcal{L}_{\Lambda}. \tag{1}$$

Here \mathcal{L}_N is the standard RMF Lagrangian density for nucleons [28], in which the couplings with the scalar-isoscalar σ , vector-isoscalar ω_{μ} , and vector-isovector $\vec{\rho}_{\mu}$ mesons, and the photon A_{μ} are included, i.e.,

$$\mathcal{L}_{N} = \sum_{i=n,p} \bar{\psi}_{i} \left[i \gamma^{\mu} \partial_{\mu} - M_{i} - g_{\sigma i} \sigma - g_{\omega i} \gamma^{\mu} \omega_{\mu} \right.$$

$$\left. - g_{\rho i} \gamma^{\mu} \vec{\tau}_{i} \cdot \vec{\rho}_{\mu} - e \gamma^{\mu} A_{\mu} \frac{1 - \tau_{i,3}}{2} \right] \psi_{i}$$

$$\left. + \frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma - \frac{1}{2} m_{\sigma}^{2} \sigma^{2} - \frac{1}{3} g_{2} \sigma^{3} - \frac{1}{4} g_{3} \sigma^{4} \right.$$

$$\left. - \frac{1}{4} \Omega_{\mu \nu} \Omega^{\mu \nu} + \frac{1}{2} m_{\omega}^{2} \omega_{\mu} \omega^{\mu} + \frac{1}{4} c_{3} (\omega_{\mu} \omega^{\mu})^{2} \right.$$

$$\left. - \frac{1}{4} \vec{R}_{\mu \nu} \cdot \vec{R}^{\mu \nu} + \frac{1}{2} m_{\rho}^{2} \vec{\rho}_{\mu} \cdot \vec{\rho}^{\mu} - \frac{1}{4} F_{\mu \nu} F^{\mu \nu}, \quad (2) \right.$$

where M_i (i = n, p) denotes the nucleon mass, $\vec{\tau}_i$ is the isospin with the 3rd component $\tau_{i,3}$ (+1 for neutrons and -1 for protons), and m_{ϕ} ($\phi = \sigma, \omega, \rho$) and $g_{\phi i}$ are the masses and coupling constants for mesons, respectively.

¹According to Mainz compilation [26], the data is 11.335 ± 0.126 MeV, which is similar with Ref. [21]. It should be noted that Ref. [24] provides high statics. Thus, we cite Ref. [21].

 $\Omega_{\mu\nu}$, $\vec{R}_{\mu\nu}$, and $F_{\mu\nu}$ are the field tensors for the ω and $\vec{\rho}$ mesons and photons. g_2 , g_3 , and c_3 are the parameters introduced in the nonlinear self-coupling terms.

The Lagrangian density \mathcal{L}_{Λ} represents the contributions from Λ hyperons, in which only the couplings with the σ and ω_{μ} mesons are included because of Λ hyperons being charge neutral and zero isospin, i.e.,

$$\mathcal{L}_{\Lambda} = \bar{\psi}_{\Lambda} \left[i \gamma^{\mu} \partial_{\mu} - M_{\Lambda} - g_{\sigma \Lambda} \sigma - g_{\omega \Lambda} \gamma^{\mu} \omega_{\mu} - \frac{f_{\omega \Lambda \Lambda}}{2m_{\Lambda}} \sigma^{\mu \nu} \partial_{\nu} \omega_{\mu} \right] \psi_{\Lambda}, \tag{3}$$

where M_{Λ} is the mass of the Λ hyperon, $g_{\sigma\Lambda}$ and $g_{\omega\Lambda}$ are the coupling constants with the σ and ω meson, respectively. To reproduce the small Λ spin-orbit splitting, a term of $\omega\Lambda\Lambda$ tensor coupling is introduced with $f_{\omega\Lambda\Lambda}$ being the coupling constant.

For a system with time-reversal symmetry, the space-like components of the vector fields ω_{μ} and $\vec{\rho}_{\mu}$ vanish, leaving only the time components ω_0 and $\vec{\rho}_0$. Meanwhile, charge conservation guarantees that only the third component $\rho_{0,3}$ in the isospin space of $\vec{\rho}_0$ exists. With the mean-field and no-sea approximations, the single-particle Dirac equations for nucleons and hyperons and the Klein-Gordon equations for mesons and photons can be obtained by the variational procedure.

With spherical symmetry, the Dirac spinor for nucleons and hyperons can be expanded as

$$\psi_{n\kappa m}(\mathbf{r}) = \frac{1}{r} \begin{pmatrix} iG_{n\kappa}(\mathbf{r}) \\ -F_{n\kappa}(\mathbf{r})\boldsymbol{\sigma} \cdot \hat{\mathbf{r}} \end{pmatrix} Y_{jm}^{l}(\theta, \phi), \tag{4}$$

where $G_{n\kappa}(r)/r$ and $F_{n\kappa}(r)/r$ are the radial wave functions for the upper and lower components, $Y_{jm}^l(\theta,\phi)$ is the spinor spherical harmonic. The quantum number κ is defined as $\kappa = (-1)^{j+l+1/2}(j+1/2)$. With the radial wave functions, the radial Dirac equations for baryons $(i=n,p,\Lambda)$ can be obtained as,

$$\left(\begin{array}{ccc}
V_{i} + S_{i} & -\frac{d}{dr} + \frac{\kappa}{r} + T_{i} \\
\frac{d}{dr} + \frac{\kappa}{r} + T_{i} & V_{i} - S_{i} - 2M_{i}
\end{array}\right) \left(\begin{array}{c}G_{n\kappa} \\ F_{n\kappa}\end{array}\right) = \varepsilon_{n\kappa} \left(\begin{array}{c}G_{n\kappa} \\ F_{n\kappa}\end{array}\right),$$
(5)

where S_i , V_i , and T_i are respectively the mean-field scalar potential, vector potential, and the $\omega\Lambda\Lambda$ tensor potential,

$$S_i = g_{\sigma i}\sigma,\tag{6a}$$

$$V_i = g_{\omega i}\omega_0 + g_{\rho i}\tau_{i,3}\rho_{0,3} + \frac{1}{2}e(1 - \tau_{i,3})A_0,$$
 (6b)

$$T_i = -\frac{f_{\omega \Lambda \Lambda}}{2M_i} \partial_r \omega_0. \tag{6c}$$

Note that the terms related to $\rho_{0,3}$ and A_0 in Eq. (6b) are zero for Λ hyperons, while the tensor potential in Eq. (6c) is zero for nucleons. The $\omega\Lambda\Lambda$ tensor interaction was introduced to reproduce the experimentally observed small spin-orbit splitting for Λ hyperon [36, 37].

The Klein-Gordon equations for mesons and photons are

$$(\partial^{\mu}\partial_{\mu} + m_{\phi}^{2})\phi = S_{\phi},\tag{7}$$

with the source terms

$$S_{\phi} = \begin{cases} \sum_{i=n,p,\Lambda} -g_{\sigma i} \rho_{si} - g_2 \sigma^2 - g_3 \sigma^3, & \phi = \sigma; \\ \sum_{i=n,p,\Lambda} g_{\omega i} \rho_{vi} + \frac{f_{\omega \Lambda \Lambda}}{2M_{\Lambda}} \partial_k J_{T\Lambda}^{0k} - c_3 \omega_0^3, & \phi = \omega; \\ \sum_{i=n,p} g_{\rho i} \tau_{i,3} \rho_{vi}, & \phi = \rho; \\ e \rho_c, & \phi = A; \end{cases}$$
(8)

where ρ_{si} and ρ_{vi} are the scalar and vector densities for nucleons and hyperons, $j_{T\Lambda}^{0k}$ is the tensor density for Λ hyperons, and ρ_c is the charge density for protons.

With the radial wave functions, those densities in Eq. (8) can be obtained as

$$\rho_{si}(r) = \frac{1}{4\pi r^2} \sum_{k=1}^{A_i} \left[G_{ki}^2(r) - F_{ki}^2(r) \right], \tag{9a}$$

$$\rho_{vi}(r) = \frac{1}{4\pi r^2} \sum_{k=1}^{A_i} \left[G_{ki}^2(r) + F_{ki}^2(r) \right], \tag{9b}$$

$$\rho_c(r) = \frac{1}{4\pi r^2} \sum_{k=1}^{A_p} \left[G_{kp}^2(r) + F_{kp}^2(r) \right], \qquad (9c)$$

$$\boldsymbol{j}_{T\Lambda}^{0}(r) = \frac{1}{4\pi r^{2}} \sum_{k=1}^{A_{\Lambda}} \left[2G_{k\Lambda}(r) F_{k\Lambda}(r) \right] \boldsymbol{n}, \qquad (9d)$$

where n is the angular unit vector. The baryon number A_i ($i = n, p, \Lambda$) can be calculated by integrating the baryon density $\rho_{vi}(r)$ in coordinate space as

$$A_i = \int 4\pi r^2 dr \rho_{vi}(r). \tag{10}$$

2.2. AN CSB interaction

In analogy of non-relativistic CSB interaction [43], we introduce a simple ΛN charge symmetry breaking (CSB) interaction as

$$V_{CSB}^{\Lambda N} = \frac{1}{2} V_0^{\Lambda N} \sum_{k=1}^{A} \bar{\psi}_{\Lambda} \gamma_{\mu} \psi_{\Lambda} \bar{\psi}_{k} \gamma^{\mu} \tau_{3} \psi_{k}, \tag{11}$$

where $V_0^{\Lambda N}$ is the strength of CSB interaction, τ_3 is the 3rd component of isospin for neutrons or protons. The

energy density functional is obtained for the interaction (11) as,

$$\varepsilon_{\Lambda N} = \frac{1}{2} V_0^{\Lambda N} \rho_{\Lambda} (\rho_n - \rho_p), \tag{12}$$

where $\rho_n(r)$ and $\rho_p(r)$ are the baryon densities of neutron and proton, respectively. With this CSB interaction, the attractive Λn interaction is strengthen while Λp interaction is weaken for a negative $V_0^{\Lambda N}$ value.

With or without the ΛN CSB interaction, the Dirac equations for baryons (n, p, Λ) , the Klein-Gordon equations for mesons and photon, the mean-field potentials, and densities in the RMF model are solved by iteration procedure in the coordinate space. The single- Λ binding energy B_{Λ} is calculated by using a formula,

$$B_{\Lambda}(Z, N, 1) = B(_{\Lambda}^{A}Z) - B(_{\Lambda}^{A-1}Z),$$
 (13)

where $B(^{A}_{\Lambda}Z)$ and $B(^{A-1}Z)$ are the binding energies for the single- Λ hypernuclei and the corresponding core nuclei, respectively. The difference in single- Λ binding energies between mirror hypernuclei is then defined for $N \geq Z$ as

$$\Delta B_{\Lambda}(A = N + Z) = B_{\Lambda}(Z, N, 1) - B_{\Lambda}(N, Z, 1).$$
 (14)

Equations in the RMF model are solved in the coordinate space with a size of R = 20 fm and a step size of $\Delta r = 0.05$ fm. For the NN interaction, the PK1 [38] and TM2 [39] parameter sets are adopted. For the ΛN interactions, the parameters are listed in Table 1. With those NN and ΛN interactions, the single- Λ binding energy in $^{12}_{\Lambda}$ C [40] and the Λ 1p spin-orbit splitting in ${}^{13}_{\Lambda}$ C [41] are well reproduced as B_{Λ} =11.3 MeV and $E(1/2^{-}) - E(3/2^{-}) = 0.152$ MeV, respectively. The single-A binding energy in the heavier hypernucleus $^{40}_{\Lambda}$ Ca can also be well given, and it is predicted to be 19.24 and 18.45 MeV with PK1 and TM2 EDFs, respectively, while the experimental value is reported as 18.7 \pm 1.1 MeV [42]. The parameter $V_0^{\Lambda N}$ in the CSB interaction is determined to reproduce the Λ binding energy difference of the A = 12 mirror hypernuclei $^{12}_{\Lambda}$ B and $^{12}_{\Lambda}$ C, i.e., $\Delta B_{\Lambda} = 0.229$ MeV given by the experimental values of $B_{\Lambda} = 11.529 \pm 0.025$ MeV for $^{12}_{\Lambda} B$ [24] and 11.30 \pm 0.19 MeV for $^{12}_{\Lambda}$ C [22], both in their ground states. It is noted that the error bar of B_{Λ} for $_{\Lambda}^{12}$ C is much larger than that for $_{\Lambda}^{12}$ B. Here we focus on the centroid values of B_{Λ} s in these two hypernuclei with CSB effect. To reproduce this value, $V_0^{\Lambda N}$ is determined as given in Table 1. The upper and lower limits of the ΛN CSB strength are also evaluated by considering the experimental uncertainties of binding energies.

Table 1: Parameters of the ΛN interactions in the RMF model.

	PK1	TM2
$g_{\sigma\Lambda}/g_{\sigma N}$	0.6206	0.6233
$g_{\omega\Lambda}/g_{\omega N}$	0.6666	0.6666
$f_{\omega\Lambda\Lambda}/f_{\omega N}$	-1.1174	-1.1210
$V_0^{\Lambda N}$ (MeV fm ³)	-33.05	-38.00
upper limit	-63.15	-72.00
lower limit	-2.85	-3.70

Figure 1: The differences ΔB_{Λ} of the single- Λ binding energy between the mirror hypernuclei $({}^{7}_{\Lambda} He, {}^{7}_{\Lambda} Be), ({}^{10}_{\Lambda} Be, {}^{10}_{\Lambda} B), ({}^{12}_{\Lambda} B, {}^{12}_{\Lambda} C),$ $({}^{40}_{\Lambda} K, {}^{40}_{\Lambda} Ca),$ and $({}^{48}_{\Lambda} Ca, {}^{48}_{\Lambda} Co)$ obtained by the RMF models with and without the ΛN CSB interaction, in comparison with the experimental data. The upper (lower) panel shows results with PK1(TM2) EDF. In ${}^{10}_{\Lambda} Be - {}^{10}_{\Lambda} B$, we cite two experimental data specified in (a) and (b).

3. Results and discussions

Using CSB ΛN interaction, we first examine the lighter mirror Λ hypernuclei with A=7 and A=10, such as $\binom{7}{\Lambda}$ He, $\binom{7}{\Lambda}$ Be) and $\binom{10}{\Lambda}$ Be, $\binom{10}{\Lambda}$ B), as shown in Fig. 1. Among these, $\binom{7}{\Lambda}$ He and $\binom{7}{\Lambda}$ Be are the lightest p-shell Λ hypernuclei for the discussions on CSB effect. The $\binom{7}{\Lambda}$ Be was observed by emulsion and the binding energy in the ground state is 5.16 ± 0.08 MeV [7]. The binding energy B_{Λ} of $\binom{7}{\Lambda}$ He in the ground state has been measured

to be 5.55 ± 0.10 (stat) ± 0.11 (syst) MeV [19] at JLab. Thus, $\Delta B_{\Lambda} = B_{\Lambda}({}^{7}_{\Lambda}\text{He}) - B_{\Lambda}({}^{7}_{\Lambda}\text{Be}) = 0.39 \text{ MeV. As}$ shown in Fig. 1, our calculated ΔB_{Λ} is about 0.37 MeV by PK1 EDF, which is close to the data of 0.39 MeV when the ΛN interaction is fitted to reproduce the centroid data of the ΔB_{Λ} for A=12 mirror Λ hypernuclei. We also fit the ΛN interaction strengths to reproduce the binding energy differences across the range of observed values. These results are shown by the blue-colored bars. Our results for A = 7 hypernuclei are consistent with the data within one σ deviation. Especially, it is in good agreement with the data if we use PK1 EDF. For A = 10 mirror hypernuclei, our calculated ΔB_{Λ} is about 0.2 MeV by both PK1 and TM2 EDFs. As previously mentioned, there are two interpretations of the experimental data for $A = 10 \Lambda$ hypernuclei. One interpretation, based on Refs. [21, 22, 23], yields a value of 0.22 MeV, which is consistent with our results (see Fig. 1(a)). The other interpretation, corresponding to Fig. 1(b), gives a value of -0.04 MeV, which is inconsistent with our findings. Due to these conflicting interpretations, it is challenging to give definitive conclusions on the CSB effect in $A = 10 \Lambda$ hypernuclei. Therefore, further high-resolution experimental data are needed. In fact, it is already planned to measure the binding energy of ¹⁰_AB with improved accuracy in the J-PARC E94 experiment [44].

Next, based on these results, we discuss the ΔB_{Λ} values for mirror Λ hypernuclei with A=40 and 48. For the combination of ${}^{40}_{\Lambda}{\rm K}$ and ${}^{40}_{\Lambda}{\rm Ca}$, Fig. 1 shows that $\Delta B_{\Lambda} \sim 0$ without CSB. When CSB interaction is included, the calculated $\Delta B_{\Lambda} = 0.1$ MeV. For $^{40}_{\Lambda}$ K, at JLab, it is planned to produce this hypernucleus by the $(e, e'K^+)$ reaction using a ⁴⁰Ca target and measure the binding energy of the ground state with a resolution of 100 keV. Meanwhile, it is possible to produce $^{40}_{\Lambda}$ Ca by the (π^+, K^+) reaction at J-PARC using a ⁴⁰Ca target. Thus, it would be possible to see the CSB effect by these experiments.

Moreover, at JLab, they plan to use a ⁴⁸Ca target to produce ${}^{48}_{\Lambda}{\rm K}$ by $(e, e'K^+)$ reaction. The calculated binding energy of ${}^{48}_{\Lambda}$ K is 21.08 (20.68) MeV for PK1 EDF with (without) ΛN CSB interaction, from which we can also see the effect of CSB. We also calculate the binding energy difference between A = 48 mirror hypernuclei $^{48}_{\Lambda}$ Ca and $^{48}_{\Lambda}$ Co to be 0.378 (0.068) MeV with (without) CSB. We see a more pronounced CSB effect compared to the case of A = 40 hypernuclei. At J-PARC, by (π^+, K^+) reaction with a ⁴⁸Ca target, ⁴⁸Ca can be produced and the large CSB effect of 0.378 MeV shown in Fig. 1 might be proved in comparison with the energy of ${}^{48}_{\Lambda}$ Co. However, it would be difficult to produce ${}^{48}_{\Lambda}$ Co

Figure 2: The single- Λ binding energy differences ΔB_{Λ} between the mirror hypernuclei with A = 40 and those with different isospins, i.e., T = 1/2 multiplet ($^{40}_{\Lambda}$ K, $^{40}_{\Lambda}$ Ca), T = 3/2 multiplets ($^{40}_{\Lambda}$ Ar, $^{40}_{\Lambda}$ Sc) and $\binom{42}{\Lambda}$ K, $\binom{42}{\Lambda}$ Ti), and T = 5/2 multiplets $\binom{40}{\Lambda}$ Cl, $\binom{40}{\Lambda}$ Ti) and $\binom{44}{\Lambda}$ K, $\binom{44}{\Lambda}$ Cr), obtained by the PK1 EDF with and without ΛN CSB interaction.

due to the lack of an appropriate target. From this fact, it would be better to see ΔB_{Λ} in the mirror hypernuclei $^{40}_{\Lambda}$ K and $^{40}_{\Lambda}$ Ca, using the 40 Ca target by $(e, e'K^+)$ reaction at JLab and by (π^+, K^+) reaction at J-PARC.

Recently, the importance of the spin dependent hyperon-nucleon CSB interaction was suggested in light hypernuclear systems in Refs. [17, 45, 46]. For instances, Ref. [46] demonstrated that the effects of this spin dependence can vary significantly, even in sign, for A = 7 and A = 8 hypernuclei. In this work, we also examine the impact of spin-dependent CSB by introducing the following spin-spin interaction and spin-spin CSB interaction,

$$V_{\sigma\sigma}^{N\Lambda} = g_{N\Lambda} \vec{\sigma}_N \cdot \vec{\sigma}_\Lambda, \tag{15}$$

$$V_{\sigma\sigma}^{N\Lambda} = g_{N\Lambda} \vec{\sigma}_N \cdot \vec{\sigma}_{\Lambda}, \qquad (15)$$

$$V_{N\Lambda}^{CSB} = g_{N\Lambda}^{CSB} \vec{\sigma}_N \cdot \vec{\sigma}_{\Lambda} \frac{1}{2} (\tau_z^N + \tau_z^{\Lambda}), \qquad (16)$$

where the interaction strength parameters $g_{N\Lambda}$ and $g_{N\Lambda}^{\text{CSB}}$ are fixed to reproduce the spin-doublet states in A = 12mirror Λ hypernuclei [24]. The observed energy splitting between the 1⁻ and 2⁻ spin-doublet states is 0.162 MeV in ${}^{12}_{\Lambda}$ C and 0.179 MeV in ${}^{12}_{\Lambda}$ B, resulting in a small contribution from the spin-spin CSB interaction of only 0.017 MeV. Using the spin-spin and spin-spin CSB interactions, we further predict the energy splittings for

Figure 3: The single- Λ binding energy differences ΔB_{Λ} between the mirror hypernuclei with different mass number, i.e., $\binom{40}{4}K$, $\binom{40}{4}Ca$, $\binom{42}{4}Ca$, $\binom{42}{4}Ca$, $\binom{44}{4}Ca$, $\binom{44}{4}Ca$, $\binom{44}{4}Ca$, $\binom{46}{4}Ca$, $\binom{46}{4}Mn$), $\binom{48}{4}Ca$, $\binom{48}{4}Co$, obtained with the PK1 EDF with and without ΛN CSB interaction.

the ground state doublets in ${}^{40}_{\Lambda}\text{K}-{}^{40}_{\Lambda}\text{Ca}$, and ${}^{48}_{\Lambda}\text{Ca}-{}^{48}_{\Lambda}\text{Co}$, respectively. The calculated energy splitting for ${}^{40}_{\Lambda}\text{K}$ and ${}^{40}_{\Lambda}\text{Ca}$ are 0.1074MeV and 0.0972MeV, respectively, while those for ${}^{48}_{\Lambda}\text{Ca}$ and ${}^{48}_{\Lambda}\text{Co}$ are 0.1389 MeV and 0.1534 MeV, respectively. Then the contributions from the spin-spin CSB term are finally obtained to be 0.0102 for A=40 and -0.0145 MeV for A=48, which are negligibly small compared to the obtained ΔB_{Λ} values of 0.089 \pm 0.059 MeV and 0.378 \pm 0.205 MeV, respectively.

Second, let us explain the reason why CSB effect of ${}^{40}_{\Lambda}\text{Ca}$, ${}^{40}_{\Lambda}\text{K}$) is rather small, i.e., $\Delta B_{\Lambda} = 0.09$ MeV. It is noted that the isospin of ${}^{40}_{\Lambda}\text{Ca}$, ${}^{40}_{\Lambda}\text{K}$) is T=1/2. Generally speaking, it is better to see ΔB_{Λ} for study of CSB in systems with larger total isospins. In Fig. 2, we show the calculated ΔB_{Λ} for ${}^{40}_{\Lambda}\text{Ar}$, ${}^{40}_{\Lambda}\text{Sc}$) with T=3/2 and for ${}^{40}_{\Lambda}\text{Cl}$, ${}^{40}_{\Lambda}\text{Ti}$) with T=5/2. We find that the calculated ΔB_{Λ} becomes larger with increasing T, that is, $\Delta B_{\Lambda} \sim 0.25$ MeV for ${}^{40}_{\Lambda}\text{Ar}$, ${}^{40}_{\Lambda}\text{Sc}$) and $\Delta B_{\Lambda} \sim 0.4$ MeV for ${}^{40}_{\Lambda}\text{Cl}$, ${}^{40}_{\Lambda}\text{Ti}$) with T=5/2, as increasing total isospin T. To produce the mirror hypernuclei ${}^{40}_{\Lambda}\text{Ar}$, ${}^{40}_{\Lambda}\text{Sc}$) and ${}^{40}_{\Lambda}\text{Cl}$ and ${}^{40}_{\Lambda}\text{Ti}$), ${}^{40}_{\Lambda}\text{Ar}$, ${}^{40}_{\Lambda}\text{Sc}$, and for the production of ${}^{40}_{\Lambda}\text{Cl}$ and ${}^{40}_{\Lambda}\text{Sc}$, we also can use ${}^{40}_{\Lambda}\text{Ar}$ and ${}^{40}_{\Lambda}\text{Ti}$ targets by $(e,e'K^+)$ reaction at JLab.

As another way to see CSB effect, we propose to use Ca target. Because, several Ca targets such as 40 Ca, 42 Ca, 44 Ca, 46 Ca, and 48 Ca are available for experiments to produce hypernuclei. By (π^+, K^+) reaction, $^{40}_{\Lambda}$ Ca, $^{42}_{\Lambda}$ Ca, $^{44}_{\Lambda}$ Ca, $^{46}_{\Lambda}$ Ca, and $^{48}_{\Lambda}$ Ca can be produced.

In Fig. 3, we show the calculated ΔB_{Λ} between hyper Ca isotopes and the corresponding mirror hypernuclei.

Figure 4: The single- Λ binding energies B_{Λ} for the A=48 hypernuclei, i.e., ${}^{48}_{\Lambda}$ Ti, ${}^{48}_{\Lambda}$ Sc, ${}^{48}_{\Lambda}$ Ca, ${}^{48}_{\Lambda}$ K with isospin T=3/2,5/2,7/2,9/2, obtained by the RMF model with and without ΛN CSB interaction. The upper (lower) panel shows results with PK1(TM2) EDF.

The calculated ΔB_{Λ} becomes larger with larger neutron number. For A=48, the calculated ΔB_{Λ} is about 0.4 MeV with CSB effect, which is significantly large. If we could obtain the observed binding energies of $_{\Lambda}^{48}$ Ca and $_{\Lambda}^{48}$ Co, it is useful for the study of CSB effect in ΛN interaction. However, it is difficult to produce $_{\Lambda}^{48}$ Co due to the lack of an appropriate target.

In this way, we understand that the larger CSB effect is associated with nuclei with larger isospins, that is, it is better to see the binding energies of A=48 hypernuclei if there are some target. Along this line, let us examine nuclei with A=48 isobars. Using 48 Ti, 48 Sc, 48 Ca, and 48 K as targets, we could produce 48 Ti, 48 Sc, 48 Ca, and 48 K by (π^+ , K^+) reaction. Figure 4 shows the binding energies of the ground states of these Λ hypernuclei with/without CSB ΛN interaction. We see that calculated B_{Λ} without CSB interaction for these hypernuclei are about 20.8 MeV with PK1 EDF in Fig. 4(a), and the isospin dependence is small. This is also the case in the TM2 EDF shown in Fig. 4(b), having the

largest CSB effect in $^{48}_{\Lambda}$ K. When we include the CSB interaction, it is seen that the calculated B_{Λ} s increase with larger number of total isospin T. It is interesting to see that calculated B_{Λ} of $^{48}_{\Lambda}$ K is the largest among A=48 Λ hypernuclei. Using 48 Ca target, it is possible to produce $^{48}_{\Lambda}$ K by $(e,e'K^+)$ reaction at JLab.

Table 2: The single- Λ binding energies B_{Λ} as well as the difference ΔB_{Λ} in mirror hypernuclei with the same total isospin T and opposite the third components T_z calculated by PK1 EDF with or without $N\Lambda$ CSB interaction. The contributions from the Coulomb interaction for B_{Λ} and ΔB_{Λ} are also listed. For comparison, available experimental data are listed. All energies are in MeV. * The B_{Λ} value, 5.064 ± 0.332 MeV, for ${}^{7}_{\Lambda}$ He [26] is taken by Refs. [19, 47, 48]. It should be noted that the statics of data in Refs. [47, 48] are poor. Thus, we do not mention the data in the present paper.

				B_{Λ}				ΔB_{Λ}						
		T	T_z	Expt.	with CSB		w/o (w/o CSB		with CSB		w/o	w/o CSB	
				Елрі.	total	coul.	total	coul.	Expt.	total	coul.	total	coul.	
<i>A</i> = 7	⁷ _Λ He	1	1	$5.55 \pm 0.10 \pm 0.11$ [19] $5.064 \pm 0.332^*$ [26]	$5.260^{+0.179}_{-0.176}$	0.007	5.068	0.013	0.39	0.368±0.236	-0.229	0.003	-0.264	
	$^{7}_{\Lambda}{ m Be}$	1	-1	5.16 ± 0.08 [7]	$4.893^{+0.158}_{-0.155}$	0.236	5.065	0.277						
A = 10	$^{10}_{\Lambda}{ m Be}$	1/2	1/2	9.11±0.22 [7, 20] 8.60±0.07 ± 0.16 [21]	$9.019^{+0.105}_{-0.102}$	0.032	8.908	0.055	0.22/-0.04	0.217 ± 0.132	-0.029	0.015	-0.044	
	$^{10}_{\Lambda} \mathrm{B}$	1/2	-1/2	8.89±0.12 [22] 8.64±0.1 [23, 21]	$8.803^{+0.082}_{-0.080}$	0.061	8.893	0.099	0.22/ 0.04	0.217 ± 0.132	0.027	0.013	U.UTT	
<i>A</i> = 12	$^{12}_{\Lambda}{ m B}$	1/2	1/2	11.529±0.025 [24]	$11.439^{+0.111}_{-0.108}$	0.043	11.321	0.079						
	$^{12}_{\Lambda} \text{C}$	1/2	-1/2	11.30 ± 0.19 [21, 22] 11.335 ± 0.126 [26]	$11.209^{+0.082}_{-0.079}$	0.070	11.300	0.124	0.23±0.19	0.229 ± 0.136	-0.027	0.021	-0.045	
A = 40	⁴⁰ K ⁴⁰ Ca	1/2 1/2	1/2 -1/2	- 18.7 ± 1.1 [42]	$19.328^{+0.059}_{-0.058}$ $19.239^{+0.001}_{-0.001}$	0.012 -0.025	19.265 19.240	0.074 0.044	-	0.089 ± 0.059	0.037	0.024	0.030	
	40 Ar 40 Sc	3/2 3/2	$\frac{3}{2}$ $-\frac{3}{2}$	-	$19.232_{-0.135}^{+0.138}$ $18.984_{-0.78}^{+0.080}$	-0.008 0.007	19.084 19.072	0.045 0.081	-	0.248 ± 0.158	-0.015	0.012	-0.036	
	⁴⁰ Cl ⁴⁰ Ti	5/2 5/2	5/2 -5/2	- -	$\begin{array}{c} 19.328^{+0.059}_{-0.058} \\ 19.239^{+0.001}_{-0.001} \\ 19.232^{+0.138}_{-0.135} \\ 18.984^{+0.080}_{-0.078} \\ 19.544^{+0.192}_{-0.130} \\ 19.166^{+0.132}_{-0.130} \end{array}$	0.009 0.040	19.336 19.311	0.058 0.126	-	0.378 ± 0.232	-0.031	0.025	-0.068	
A = 42	⁴² Ca ⁴² Sc	1/2 1/2	1/2 -1/2	- -	$19.519_{-0.050}^{+0.051} \\ 19.466_{-0.008}^{+0.009} \\ 19.613_{-0.114}^{+0.115} \\ 19.408_{-0.055}^{+0.057}$	-0.003 -0.017	19.464 19.458	0.060 0.051	-	0.053 ± 0.051	0.014	0.007	-0.009	
	⁴² Κ ⁴² Κ ⁴² Τi	3/2 3/2	3/2 -3/2	- -	$19.613^{+0.115}_{-0.114} 19.408^{+0.057}_{-0.055}$	-0.014 0.008	19.489 19.470	0.041 0.084	-	0.205 ± 0.127	-0.022	0.019	-0.043	
A = 44	$^{44}_{\Lambda}$ Ca $^{44}_{\Lambda}$ V	3/2 3/2	$\frac{3}{2}$ $-3/2$	- -	$20.025^{+0.094}_{-0.092}$ $19.865^{+0.033}_{-0.031}$	-0.017 0.010	19.924 19.901	0.042 0.088	-	0.159 ± 0.098	-0.027	0.023	-0.046	
	Λ Λ Λ Λ Λ Λ	5/2 5/2	5/2 -5/2	- -	$\begin{array}{c} 20.025^{+0.094}_{-0.092} \\ 19.865^{+0.033}_{-0.031} \\ 20.114^{+0.158}_{-0.157} \\ 19.797^{+0.097}_{-0.095} \end{array}$	-0.004 0.043	19.943 19.903	0.048 0.129	-	0.318 ± 0.184	-0.047	0.040	-0.081	
<i>A</i> = 46	⁴⁶ Ca ⁴⁶ Μn	5/2 5/2	5/2 -5/2	-	$20.513^{+0.135}_{-0.134} \atop 20.246^{+0.071}_{-0.069}$	-0.008 0.043	20.367 20.324	0.047 0.130	-	0.268 ± 0.134	-0.051	0.043	-0.083	
A = 48	⁴⁸ Ca ⁴⁸ Co	7/2 7/2	7/2 -7/2	- -	$20.986^{+0.175}_{-0.174} \\ 20.608^{+0.109}_{-0.106}$	0.001 0.080	20.795 20.727	0.053 0.177	-	0.378 ± 0.205	-0.079	0.068	-0.124	

4. Summary

We studied the CSB effect in the binding energy of hyperon in the mass region of $A = 7 \sim 48$ in the RMF models introducing NN, and ΛN interactions. The phenomenological ΛN CSB interaction is introduced and the strength parameter is fitted to reproduce the experimental binding energy difference between the mirror hypernuclei ${}^{12}_{\Lambda}B$ and ${}^{12}_{\Lambda}C$. This model is applied to calculate the CSB energy anomaly in A=7 and 10 mirror hypernuclei. We found that our result for A = 7 mirror hypernuclei is consistent with the data. On the other hand, in A = 10 hypernuclei, due to uncertainties of the experimental data is large, it is difficult to conclude whether our results are consistent or not with experimental data. In the future at J-PARC, it is planned to measure the binding energy of $^{10}_{\Lambda}$ Be with better accuracy [44]. It might be possible to discuss on CSB effect of $A = 10 \text{ }\Lambda$ hypernuclei with future experimental data. The model is further applied to predict the binding energy difference of A=40 mirror hypernuclei with the isospin T=1/2, 3/2, and 5/2 nuclei together with various hyper Ca isotopes and the corresponding mirror hypernuclei. Finally the binding energy systematics of A = 48 isobars of hypernuclei are predicted with/without the CSB EDF. The future experimental observations in JLab and J-PARC are desperately wanted to confirm the CSB effect in hypernuclei especially in the medium-heavy hypernuclei, $A = 40 \sim 48$.

ACKNOWLEDGMENTS

We would like to thank Dr. T. Gogami, Prof. S. N. Nakamura and Prof. A. Gal for valuable discussions. This work was partially supported by the Natural Science Foundation of Henan Province (Grant No. 242300421156), the National Natural Science Foundation of China (No. U2032141), ERATO-JPMJER2304, Kakenhi-23K03378, and 20H00155. YT acknowledges support from the Basic Science Research Program of the National Research Foundation of Korea (NRF) under Grants No. RS-2024-00361003, No. RS-2021-NR060129.

References

- O. Hashimoto and H. Tamura, Phys. Part. Nucl. Phys. 57, 567 (2006)
- [2] D. J. Millener, Nucl. Phys. A 754, 48c (2005).
- [3] A. Umeya and T. Motoba, Nucl. Phys. A 954, 242 (2016).
- [4] S. Korennov and P. Descouvemont, Nucl. Phys. A 740, 249 (2004).

- [5] E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, and Y. Yamamoto, Phys. Rev. C 53, 2075 (1996).
- [6] E. Hiyama, Y. Yamamoto, T. Motoba, and M. Kamimura, Phys. Rev. C 80, 054321 (2009).
- [7] M. Jurič et al., Nucl. Phys. B 52, 1 (1973).
- [8] R. H. Dalitz and F. Von Hippel, Phys. Lett. 10, 153 (1964).
- [9] A. Nogga, H. Kamada, W. Glöeckle, Phys. Rev. Lett. 88, 172501 (2002).
- [10] J. Haidenbauer, U.-G. Meißner, A. Nogga, H. Polinder, Lect. Notes Phys. 724, 113 (2007).
- [11] A. Nogga, Nucl. Phys. A 914, 140 (2013).
- [12] E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, Y. Yamamoto, Phys. Rev. C 65, 011301(R) (2001).
- [13] A. Esser et al. (A1 Collaboration), Phys. Rev. Lett. 114, 232501 (2015).
- [14] T. O. Yamamoto *et al.* (J-PARC E13 Collaboration), Phys. Rev. Lett. **115**, 222501 (2015).
- [15] A. Gal, Phys. Lett. B 744, 352 (2015).
- [16] D. Gazda and A. Gal, Nucl. Phys. A 954, 161 (2016).
- [17] M. Schäfer, N. Barea and A. Gal, Phys. Rev. C 106, L031001 (2023).
- [18] S. N. Nakamura *et al.* (HKS (JLab E01-011) Collaboration), Phys. Rev. Lett. **110**, 012502 (2013).
- [19] T. Gogami et al. (HKS (JLab E05-115) Collaboration), Phys. Rev. C 94, 021302(R) (2016).
- [20] T. Cantwell et al., Nucl. Phys. A 236, 445 (1974).
- [21] T. Gogami et al., Phys. Rev. C 93, 034314 (2016).
- [22] D. H. Davis, Nucl. Phys. A 754, 3c (2005).
- [23] T. Hasegawa et al., Phys. Rev. C 53, 1210 (1996).
- [24] L. Tang et al. (HKS (JLab E05-115 and E01-011) Collaborations), Phys. Rev. C 90, 034320 (2014).
- [25] P. Dluzewski et al., Nucl. Phys. A 484, 520 (1988).
- [26] https://hypernuclei.kph.uni-mainz.de/
- [27] E. Botta, T. Bressani and A. Feliciello, Nucl. Phys. A 960, 165 (2017).
- [28] B. D. Serot and J. D. Walecka, Adv. Nucl. Phys. 16, 1 (1986);
 P.-G. Reinhard, Rep. Prog. Phys. 52, 439 (1989);
 P. Ring, Prog. Part. Nucl. Phys. 37, 193 (1996);
 D. Vretenar, A. V. Afanasjev,
 G. A. Lalazissis, and P. Ring, Phys. Rep. 409, 101 (2005);
 J. Meng, H. Toki, S.-G. Zhou, S. Q. Zhang, W. H. Long, and L. S. Geng, Prog. Part. Nucl. Phys. 57, 470 (2006);
 J. Meng and S.-G. Zhou, J. Phys. G: Nucl. Part. Phys. 42, 093101 (2015).
- [29] Relativistic Density Functional for Nuclear Structure, edited by J. Meng, International Review of Nuclear Physics Vol. 10 (World Scientific, Singapore, 2016).
- [30] J. Mareš and B. K. Jennings, Phys. Rev. C 49, 2472 (1994).
- [31] M. T. Win and K. Hagino, Phys. Rev. C 78, 054311 (2008).
- [32] B.-N. Lu, E.-G. Zhao, and S.-G. Zhou, Phys. Rev. C 84, 014328 (2011).
- [33] T. T. Sun, E. Hiyama, H. Sagawa, H.-J. Schulze, and J. Meng, Phys. Rev. C 94, 064319 (2016); S.-H. Ren, T.-T. Sun, and W. Zhang, Phys. Rev. C 95, 054318 (2017); Z.-X. Liu, C.-J. Xia, W.-L. Lu, Y.-X. Li, J. N. Hu, and T.-T. Sun, Phys. Rev. C 98, 024316 (2018).
- [34] T.-T. Sun, S.-S. Zhang, Q.-L. Zhang, and C.-J. Xia, Phys. Rev. D 99, 023004 (2019).
- [35] C.-J. Xia, H.-M. Jin, and T.-T. Sun, Phys. Rev. D 108, 054013 (2023).
- [36] B. Jennings, Phys. Lett. B 246, 325 (1990).
- [37] J. Cohen and H. J. Weber, Phys. Rev.C 44, 1181 (1991).
- [38] W. H. Long, J. Meng, N. Van Giai, and S.-G. Zhou, Phys. Rev.C 69, 034319 (2004).
- [39] Y. Sugahara and H. Toki, Nucl. Phys. A **579**, 557 (1994).
- [40] A. Gal, E. V. Hungerford, and D. J. Millener, Rev. Mod. Phys. 88, 035004 (2016).

- [41] S. Ajimura, et al., Phys. Rev. L 86, 4255 (2001).
 [42] P. H. Pile et al., Phys. Rev. Lett. 66, 2585 (1991).
- [43] T. Suzuki, H. Sagawa, and A. Arima, Nucl. Phys. A 536, 141 (1992).
- [44] T. Gogami et al., New generation Λ hypernuclear spectroscopy with the (π^+, K^+) reaction by S-2S, Proposal to J-PARC, E94 (2022).
- [45] J. Haidenbauer, U.-G. Meißner, and A. Nogga, Few-Body Syst. **62**, 105 (2021).
- [46] H. Le, J. Haidenbauer, U.-G. Meißner, and A. Nogga, Phys. Rev. C 107, 024002 (2023).
- [47] G. Bohm et al., Nucl. Phys. **B4**, 511 (1968).
 [48] Y. Prakash, P. H. Steinberg, D. A. Chandler, and R. J. Prem, Il Nuovo Cimento 21, 2803 (1968).