UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

9702 PHYSICS

9702/42

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2010	9702	42

Section A

1	(a) for	ce per unit mass	(ratio idea e	essential)	B1	[1]

(b) graph: correct curvature M1 from
$$(R, 1.0 g_s)$$
 & at least one other correct point A1 [2]

(c) (i) fields of Earth and Moon are in opposite directions

either resultant field found by subtraction of the field strength

or any other sensible comment

so there is a point where it is zero

(allow
$$F_E = -F_M$$
 for 2 marks)

(ii)
$$GM_E/x^2 = GM_M/(D-x)^2$$
 C1
 $(6.0 \times 10^{24})/(7.4 \times 10^{22}) = x^2/(60R_E-x)^2$ C1
 $x = 54R_E$ A1 [3]

(iii) graph:
$$g = 0$$
 at least $\frac{2}{3}$ distance to Moon B1
 $g_{\rm E}$ and $g_{\rm M}$ in opposite directions M1
correct curvature (by eye) and $g_{\rm E} > g_{\rm M}$ at surface A1 [3]

- 2 (a) (i) no forces (of attraction or repulsion) between atoms / molecules / particles B1 [1]
 - (ii) sum of kinetic and potential energy of atoms / molecules M1 due to random motion A1 [2]
 - (iii) (random) kinetic energy increases with temperature no potential energy (so increase in temperature increases internal energy)

 A1 [2]
 - (b) (i) zero A1 [1]

(ii) work done =
$$p\Delta V$$
 C1
= $4.0 \times 10^5 \times 6 \times 10^{-4}$
= 240 J (ignore any sign) A1 [2]

(iii)

change	work done / J	heating / J	increase in internal energy / J
$\begin{array}{c} P \rightarrow Q \\ Q \rightarrow R \\ R \rightarrow P \end{array}$	+240 0 -840	-600 +720 +480	-360 +720 -360

(correct signs essential)
(each horizontal line correct, 1 mark – max 3)

B3 [3]

				GCE AS/A LEVEL – October/November 2010	9702	42	
3	(a) ((i) ı	reson	ance		B1	[1]
	(i	ii) a	amplit	tude 16 mm and frequency 4.6 Hz		A1	[1]
	(b) ((i) a	a = 4	$-)\omega^2 x$ and $\omega = 2\pi f$ $4\pi^2 \times 4.6^2 \times 16 \times 10^{-3}$ $3.4 \mathrm{m s^{-2}}$		C1 C1 A1	[3]
	(i	ii) <i>l</i>	F = n	<i>ma</i> ∣50 × 10 ^{−3} × 13.4		C1	
				2.0 N		A1	[2]
			•	s 'below' given line and never zero 4.6 Hz (or slightly less) and flatter		M1 A1	[2]
4	(a) c	char	ge / p	otential (difference) (ratio must be clear)		B1	[1]
	(b) ((i)	V = Q	$0/4\pi\varepsilon_0 r$		B1	[1]
	(i	-	C = Q so C	$0/V = 4\pi \varepsilon_0 r$ and $4\pi \varepsilon_0$ is constant ∞r		M1 A0	[1]
	(c) (r = (6.	/ $4\pi\varepsilon_0 r$.8 × 10^{-12}) / $(4\pi \times 8.85 \times 10^{-12})$ × 10^{-2} m		C1 C1 A1	[3]
	(i	ii) ($V = 6.8 \times 10^{-12} \times 220$ 1.5×10^{-9} C		A1	[1]
	(d) (V = Q = 83 \	$V/C = (1.5 \times 10^{-9}) / (18 \times 10^{-12})$		A1	[1]
	(i	ii) (either	energy = $\frac{1}{2}CV^2$ $\Delta E = \frac{1}{2} \times 6.8 \times 10^{-12} \times 220^2 - \frac{1}{2} \times 18 \times 10^{-12} \times 83^2$		C1 C1	
		Ó	or	= $1.65 \times 10^{-7} - 6.2 \times 10^{-8}$ = 1.03×10^{-7} J energy = $\frac{1}{2}$ QV $\Delta E = \frac{1}{2} \times 1.5 \times 10^{-9} \times 220 - \frac{1}{2} \times 1.5 \times 10^{-9} \times 83$ = 1.03×10^{-7} J		A1 (C1) (C1) (A1)	[3]

Mark Scheme: Teachers' version

Syllabus

Paper

Page 3

	Page 4			Mark Scheme: Teachers' version	Syllabus	Paper	,
				GCE AS/A LEVEL – October/November 2010	9702	42	
5	(a)	field	d into	(the plane of) the paper		B1	[1]
	(b)		? / r = = (20	e to magnetic field <u>provides</u> the centripetal force Bqv 0 × 1.66 × 10 ⁻²⁷ × 1.40 × 10 ⁵) / (1.6 × 10 ⁻¹⁹ × 6.4 × 10 ⁻¹⁹	²)	B1 C1 B1 A0	[3]
	(c)	(i)	<u>sem</u>	icircle with diameter greater than 12.8 cm		B1	[1]
		(ii)	new	flux density = $\frac{22}{20}$ × 0.454		C1	
				B = 0.499 T		A1	[2]
6	(a)	(i)	e.g.	prevent flux losses / improve flux linkage		B1	[1]
		(ii)	e.m.	in core is changing f. / current (induced) <u>in core</u> ced current in core causes heating		B1 B1 B1	[3]
	(b)	(i)		value of the direct current producing same (mean) pov resistor	wer / heating	M1 A1	[2]
		(ii)	•	er in primary = power in secondary $_{\rm p}$ = $V_{\rm S}I_{\rm S}$		M1 A1	[2]
7	(a)	(i)	e.g.	electron / particle diffraction		B1	[1]
		(ii)	e.g.	photoelectric effect		B1	[1]
	(b)	(i)				A1	[1]
		(ii)	$\lambda = I$	nge in energy = 4.57×10^{-19} J hc / E $63 \times 10^{-34} \times 3.0 \times 10^{8}$ / (4.57×10^{-19})		C1	
			= 4.4	$4 \times 10^{-7} \mathrm{m}$		A1	[2]
8	(a)	-	_	of a heavy nucleus (not atom/nuclide) (lighter) nuclei of approximately same mass		M1 A1	[2]
	(b)	¹ ₀ n ⁴ ₂ He ⁷ ₃ Li	Э	(allow 4_2lpha)		M2 A1	[3]
	(c)			particles have kinetic energy particles in the control rods is short / particles stopped	l in rode /	В1	
		lose	kine	tic energy in rods nergy of particles converted to thermal energy	1 11 1043 /	B1 B1	[3]

	Syllabus	Mark Scheme: Teachers' version	Page 5
42	9702	GCE AS/A LEVEL – October/November 2010	
	9702	GCE AS/A LEVEL – October/November 2010	

B1 [1]

(ii) $(G =) 1 + R_2 / R_1$

(a) (i) non-inverting (amplifier)

B1 [1]

(b) (i) gain = 1 + 100 / 820 output = 17 mV

C1 A1 [2]

(ii) 9V

9

A1 [1]

 $(R_2 / R_1 \text{ scores 0 in (a)(ii)})$ but possible 1 mark in each of (b)(i) and (b)(ii) $(1 + R_1 / R_2)$ scores 0 in (a)(ii), no mark in (b)(i), possible 1 mark in (b)(ii) $(1 - R_2 / R_1)$ or R_1 / R_2 scores 0 in (a)(ii), (b)(i) and (b)(ii))

10 (a) (i) density × speed of wave (in the medium)

B1 [1]

(ii)
$$\rho = (7.0 \times 10^6) / 4100$$

= 1700 kg m⁻³

A1 [1]

(b) (i) $I = I_T + I_R$

B1 [1]

(ii) 1.
$$\alpha = (0.1 \times 10^6)^2 / (3.1 \times 10^6)^2$$

= 0.001

C1 A1

2.
$$\alpha \approx 1$$

A1 [1]

[2]

(c) eithervery little transmission at an air-skin boundary
(almost) complete transmission at a gel-skin boundary
when wave travels in or out of the bodyM1
A1
(3]orno gel, majority reflection
with gel, little reflection
when wave travels in or out of the body(M1)
(M1)

11 (a) (i) unwanted random power / signal / energy

B1 [1]

(ii) loss of (signal) power / energy

B1

[1]

(b) (i) either signal-to-noise ratio at mic. = $10 \lg (P_2 / P_1)$ C1 = $10 \lg (\{2.9 \times 10^{-6}\} / \{3.4 \times 10^{-9}\})$ A1 maximum length = (29 - 24) / 12 C1 = 0.42 km = 420 m A1 [4]

or signal-to-noise ratio at receiver = $10 \lg (P_2 / P_1)$ (C1)

at receiver, $24 = 10 \lg(P / \{3.4 \times 10^{-9}\})$

 $P = 8.54 \times 10^{-7} \,\mathrm{W}$ (A1)

power loss in cables = $10 \lg(\{2.9 \times 10^{-6}\} / \{8.54 \times 10^{-7}\})$ (C1) = 5.3 dB

length = 5.3 / 12 km= 440 m (A1)

F	Page 6	Ma	ark Scheme: Teachers' version	Syllabus	Paper	•
		GCE AS	S/A LEVEL – October/November 2010	9702	42	
	coup	an amplifier pled to the n eater amplif			M1 A1	[2]
12 (á	satellite i signal ar at a diffe different e.g. of fro	(carrier wave) transmitted from Earth to satellite (1) satellite receives greatly attenuated signal (1) signal amplified and transmitted back to Earth at a different (carrier) frequency different frequencies prevent swamping of uplink signal e.g. of frequencies used (6/4 GHz, 14/11 GHz, 30/20 GHz) (1) (two B1 marks plus any two other for additional physics)				[4]
(k	advantaç	e.g.	because orbits are much lower whole Earth may be covered in several orbits / with network		M1 A1 (M1) (A1)	
	disadvar	naye. e.y.	either must be trackedor limited use in any one orbitmore satellites required for continuous or	peration	M1 A1	[4]