1 Trace Processes

For a monad T on \mathbf{Set} , a submonad of T is a subset $SX \subseteq TX$ for each set X, such that

- $\eta_X x \in SX$ for all $x \in X$
- $f^*p \in SY$ for all $p \in SX$ and $X \xrightarrow{f} SY$

For any class K of cardinals, we write \mathbf{Set}_{K} for the class of sets with cardinality in K. For any set X, we write

$$\mathcal{P}^{\mathcal{K}}X \stackrel{\text{def}}{=} \mathcal{P}X \cap \mathbf{Set}_{\mathcal{K}} = \{U \subseteq X \mid |U| \in \mathcal{K}\}$$

Then the submonads of the powerset monad are $\mathcal{P}^{[o,\kappa)}$, where $o \in \{0,1\}$ and κ is either 2 or a regular infinite cardinal or ∞ . We call $[o,\kappa)$ a range of nondeterminism.

We recall a basic concept of universal algebra.

- **Definition 1** 1. A signature Σ consists of a set $|\Sigma|$ of function symbols k each equipped with a set A_k called its arity. Those k for which A_k is empty are the constants of Σ .
 - 2. The endofunctor H_{Σ} on **Set** maps X to $\sum_{k \in \Sigma} X^{A_k}$.
 - 3. A Σ -transition system is a set X together with a function $\zeta: X \longrightarrow \mathcal{P}H_{\Sigma}X$, i.e. a $\mathcal{P}H_{\Sigma}$ -coalgebra. It is K-branching, for a range of nondeterminism K, when $|\zeta(x)| \in K$ for all $x \in X$, i.e. when it is a $\mathcal{P}^K H_{\Sigma}$ -coalgebra. For $x \in X$ and $k \in |\Sigma|$ and $p \in X^{A_k}$ we write $x \stackrel{k}{\leadsto} p$ when $(k,p) \in \zeta(x)$.
 - 4. For $p \in X^A$ and $j \in A$ and $x \in X$ we write $p \mapsto^j x$ when x = pj (i.e. when application-to-j sends p to x).

We can understand a Σ -transition system (X, ζ) in computational terms. Each $x \in X$ is a state that nondeterministically outputs $k \in |\Sigma|$ and then stops and waits for input $j \in A_k$. If input is received, a new state is entered. For example $|\Sigma|$ might consist of four messages,

- "Please enter your name", whose arity is the set of strings
- "Please enter your age", whose arity is N
- "Successful transaction. Hit Return to continue", whose arity is singleton
- "The computer has crashed.", whose arity is the empty set.

When a state outputs the last message, no input is possible. We shall be concerned with traces that record the interaction between the system and the user.

- **Definition 2** 1. A Σ -trace is a finite or infinite sequence $k_0, p_0, k_1, p_1, \ldots$, where k_i is a function symbol and $p_i \in A_{k_i}$. A finite Σ -trace is said to be active or passive according as its length is even or odd.
 - 2. We write . for concatenation of traces and ε for the empty trace.
 - 3. A Σ -trace process is a set of passive Σ -traces such that $s.p.k \in \tau$ implies $s \in \tau$, or equivalently every passive prefix of $s \in \tau$ is in τ .
 - 4. For any Σ -trace process τ , we set

$$\tau_{\mathsf{active}} \stackrel{\text{def}}{=} \{ \varepsilon \} \cup \{ s.k.p \mid s.k \in \tau, p \in A_k \}$$

i.e. those active Σ -traces whose passive prefixes are all in τ .

5. We write PC for the set of all Σ -trace processes.

Definition 3 Let (X, ζ) be a Σ -transition system.

1. Let $x \in X$. A (finite or infinite) Σ -trace $k_0, j_0, k_1, j_1, \ldots$ is a trace of x when

$$x = x_0 \xrightarrow{k_0} p_0 \xrightarrow{j_0} x_1 \xrightarrow{k_1} p_1 \xrightarrow{j_1} \cdots$$

for some $x=x_0 \in X$, $p_0 \in X^{A_{k_0}}$, $x_1 \in X$, $p_1 \in X^{A_{k_1}}$,.... We write $\operatorname{traces}(x)$ for the set of passive traces of x. Clearly $\operatorname{traces}(x)$ is a Σ -trace process and $\operatorname{traces}(x)$ _{active} is the set of active traces of x.

- 2. Trace equivalence is the kernel of traces, i.e. the equivalence relation on X given by $\{(x,y) \mid \mathsf{traces}(x) = \mathsf{traces}(y)\}$.
- 3. Trace inclusion is the preorder on X given by $\{(x,y) \mid \mathsf{traces}(x) \subseteq \mathsf{traces}(y)\}$.

Definition 4 Let τ be a Σ -trace process.

- 1. For any $s \in \tau_{\mathsf{active}}$ we write $\tau(s)$ for the set of $k \in |\Sigma|$ such that $s.k \in \tau$, and τ/s for the Σ -trace process consisting of Σ -traces t such that $s.t \in \tau$.
- 2. For any range of nondeterminism K, we write PC_K for the set of prefixclosed sets τ of passive Σ -traces such that $|\tau(s)| \in K$ for all $s \in \tau_{\mathsf{active}}$. In particular, we call a $\tau \in \mathsf{PC}_{[0,2)}$ is a partial Σ -tree and we call a $\tau \in \mathsf{PC}_{[1,2)}$ a total Σ -tree.

Theorem 1 Let K be a range of nondeterminism. For any Σ -trace process τ , the following are equivalent:

- $\tau \in \mathsf{PC}_{\mathcal{K}}$
- there is a K-branching transition system (X, ζ) and $x \in X$ such that $\tau = \text{traces}(x)$.

Proof For (\Leftarrow) : for $x \in X$ and active trace $s = k_0, j_0, \dots, k_{n-1}, j_{n-1} \in \text{traces}(x)_{\text{active}}$, let $\text{end}_x(s)$ be the set of $y \in X$ such that

$$x = x_0 \stackrel{k_0}{\leadsto} p_0 \stackrel{j_0}{\longmapsto} x_1 \stackrel{k_1}{\leadsto} \cdots \stackrel{k_{n-1}}{\leadsto} p_{n-1} \stackrel{j_{n-1}}{\longmapsto} x_n = y$$

for some $x = x_0 \in X, p_0 \in X^{A_{k_0}}, \dots p_{n-1} \in A^{k_{n-1}}, x_n = y \in X$. We see that $|\operatorname{\mathsf{end}}_x(s)| \in \mathcal{K}$ by induction on s, since

$$\begin{array}{lll} \operatorname{end}_x(\varepsilon) & = & \{x\} \\ \operatorname{end}_x(s.k.j) & = & \bigcup_{y \in \operatorname{end}_x(s)} \{pj \mid (k,p) \in \zeta(y)\} \end{array}$$

Then $\mathsf{traces}(x)(s) = \bigcup_{y \in \mathsf{end}_x(s)} \{k \in |\Sigma| \mid \exists p \in A_k. (k, p) \in \zeta(y)\}$ which must have size in \mathcal{K} .

For (\Rightarrow) , we take $PC_{\mathcal{K}}$ to be a Σ -transition system, with behaviour

$$\tau \mapsto \{(k, (\tau/k.j \mid j \in A_k)) \mid k \in \tau(\varepsilon)\}$$

Clearly this is \mathcal{K} -bounded. For any $\tau \in \mathsf{PC}_{\mathcal{K}}$ and Σ -trace s, we see that s is a trace of τ iff $s \in \tau$. This is proved by induction on the length of s. Therefore $\mathsf{traces}(\tau) = \tau$.

- **Definition 5** 1. Let (X,ζ) be a Σ -transition system. A node $x \in X$ is well-founded when it has no infinite trace. A node of a Σ -transition system (X,ζ) is well-founded when no $x \in X$ has an infinite trace.
 - 2. A Σ -trace process τ is well-founded when there is no infinite Σ -trace whose passive prefixes are all in τ .

Clearly if traces(x) is well-founded then so is x, but not conversely.

Definition 6 For any range of nondeterminism $\mathcal{K} = [o, \kappa)$, we define $\mathsf{PC}_{\mathcal{K}}^{\mathsf{well}} \subseteq \mathsf{PC}_{\mathcal{K}}$ as follows:

- for $\kappa=2$ or $\kappa=\aleph_0$ we define $\mathsf{PC}^\mathsf{well}_\mathcal{K}$ to consist of all $\tau\in\mathsf{PC}_\mathcal{K}$ that are well-founded
- for o = 0 and $\kappa > \aleph_0$, we define $\mathsf{PC}_{\kappa}^{\mathsf{well}}$ to be PC_{κ}
- for o=1 and $\kappa > \aleph_0$ we define $\mathsf{PC}^\mathsf{well}_{\mathcal{K}}$ to consist of all $\tau \in \mathsf{PC}_{\mathcal{K}}$ such that, for every $t \in \tau_\mathsf{active}$, there exists a well-founded total Σ -tree $\sigma \subseteq \tau/t$.

Theorem 2 Let $K = [o, \kappa)$ be a range of nondeterminism. For any Σ -trace process τ , the following are equivalent:

- $\tau \in \mathsf{PC}^{\mathsf{well}}_{\mathcal{K}}$
- there is a transition system (X,ζ) and well-founded $x \in X$ such that $\tau = \operatorname{traces}(x)$.

Proof For (\Leftarrow) : Suppose $\kappa = 2$ or $\kappa = \aleph_0$. We know $\mathsf{traces}(x) \in \mathsf{PC}_{\mathcal{K}}$. To show $\mathsf{traces}(x)$ well-founded (a form of König's Lemma), let $s = k_0, j_0, \ldots$ be an infinite Σ -trace whose passive prefixes are in $\mathsf{traces}(x)$. For a contradiction, we shall construct a sequence

$$x = x_0 \stackrel{k_0}{\leadsto} p_0 \stackrel{j_0}{\longmapsto} x_1 \stackrel{k_1}{\leadsto} \cdots \tag{1}$$

so that s is a trace of x, contradicting well-foundedness of x. We shall inductively construct (1) up to x_n , with every passive prefix of $s_n \stackrel{\text{def}}{=} k_n, j_n, k_{n+1}, j_{n+1}, \ldots$ is a trace of x_n . For n=0 this is given by assumption. If we have done this for n, then ζx_n is finite, say $\{(k^0, p^0), \ldots, (k^{r-1}, p^{r-1})\}$. For each $b \in \mathbb{N}$, let $s_{n,b}$ be the prefix of s_{n+1} of length 2b, and let R_b be the set of i < r such that $k^i = k_n$ and $s_{n,b}$ is a trace of $p^i j_n$. Then R_0, R_1, R_2, \ldots is a decreasing sequence of finite sets, so eventually reaches its minimum R_N . Since $k_n.p_n.s_{n,N}$ is a prefix of s_n , it is a trace of x_n , so R_N is inhabited by some i, and we then set $p_n \stackrel{\text{def}}{=} p^{\hat{i}}$ and $x_{n+1} \stackrel{\text{def}}{=} p^{\hat{i}} j_n$.

Suppose $\kappa > \aleph_0$ and o = 1. (If o = 0 there is nothing to prove.) For each $y \in X$ pick an element (k_y, p_y) of $\zeta(x)$, and let $\zeta' : X \to \mathcal{P}H_\Sigma X$ map $y \mapsto \{(k_y, p_y)\}$. This is $\{1\}$ -bounded, i.e. deterministic, and well-founded because (X, ζ) is well-founded. Now for $t \in \mathsf{traces}(x)$, define the set $\mathsf{end}_x(t)$ as in the proof of Prop. $1(\Leftarrow)$. We showed it to be nonempty so pick an element y. Let σ be the set of traces of y in (X, ζ') , which must be a well-founded total Σ -tree. Finally, if $s \in \sigma$ then $t.s \in \mathsf{traces}(x)$ as required.

For (\Rightarrow) , suppose $\kappa = 2$ or $\kappa = \aleph_0$. Then take $\mathsf{PC}_{\mathcal{K}}^{\mathsf{well}}$ to be a Σ -transition system, with behaviour

$$\tau \mapsto \{(k, (\tau/k.j \mid j \in A_k)) \mid k \in \tau(\varepsilon)\}$$

Clearly this is \mathcal{K} -bounded. For any $\tau \in \mathsf{PC}_{\mathcal{K}}$ and Σ -trace s, we see that s is a trace of τ iff $s \in \tau$. This is proved by induction on the length of s. Therefore $\mathsf{traces}(\tau) = \tau$. It must be well-founded because if there is an infinite sequence of transitions (??) from τ then every passive prefix of k_0, p_0, \ldots is a trace of τ therefore in τ , a contradiction.

Suppose $\kappa > \aleph_0$ and o = 1. For each $\tau \in \mathsf{PC}_{\mathcal{K}}^{\mathsf{well}}$ pick a well-founded total Σ -tree $\tilde{\tau}$ contained in τ . Informally, we implement τ as follows:

- 1. choose $n \in \mathbb{N}$
- 2. implement τ for n pairs of output and input transitions, giving a trace s of length 2n
- 3. implement τ/s .

The states of our system are

$$\begin{array}{cccc} V & \stackrel{\mathrm{def}}{=} & \sum_{n \in \mathbb{N}} \left\{ \begin{array}{ll} \mathsf{PC}_1^\mathsf{well} & \text{ if } n = 0 \\ \mathsf{PC}_{\mathcal{K}}^\mathsf{well} & \text{ otherwise} \end{array} \right. \\ U & \stackrel{\mathrm{def}}{=} & \mathsf{PC}_{\mathcal{K}}^\mathsf{well} + V \end{array}$$

Informally, V is the set of states with a given quota, whereas U includes the initial states where a quota has not yet been chosen. We define

giving a \mathcal{K} -bounded Σ -transition system (U,ζ) . For any $\tau \in \mathsf{PC}^\mathsf{well}_\tau$, a passive Σ -trace s is a trace of inl $(0,\tau)$ iff $s \in \tau$, by induction on s. Hence $\mathsf{traces}(\mathsf{inr}\ (0,\tau)) = \tau$ and so $\mathsf{inr}\ (0,\tau)$ is well-founded. Next we show by induction on $n \in \mathbb{N}$ that $\mathsf{traces}(\mathsf{inr}\ (n,\tau))$ is contained in τ and contains all $s \in \tau$ of length $\leqslant 2n$, and $\mathsf{inr}\ (n,\tau)$ is well-founded. Finally we show that $\mathsf{traces}(\mathsf{inl}\ \tau) = \tau$, and $\mathsf{inl}\ \tau$ is well-founded.

For $\kappa > \aleph_0$ and o = 0, we use the same algorithm but step (3) is replaced by "do nothing". We accordingly define

$$V \stackrel{\text{def}}{=} \sum_{n \in \mathbb{N}} \left\{ \begin{array}{l} \{\emptyset\} & \text{if } n = 0 \\ \mathsf{PC}_{\mathcal{K}}^{\mathsf{well}} & \text{otherwise} \end{array} \right.$$

$$U \stackrel{\text{def}}{=} \mathsf{PC}_{\mathcal{K}}^{\mathsf{well}} + V$$

and we set

The rest of the proof is unchanged.

2 Algebras

A Σ -algebra is a set Y equipped with a function $\theta_k: Y^{A_k} \longrightarrow Y$ for all $k \in \Sigma$. Equivalently it is an algebra for the endofunctor H_{Σ} on **Set** mapping Y to $\sum_{k \in \Sigma} Y^{A_k}$.

It is well known that an initial Σ -algebra can be constructed as a set of abstract syntax trees. For example, suppose Σ has an operation + with arity $\{l,r\}$, an operation * with arity \mathbb{N} , and a constant 7. Then the following is an abstract syntax tree:

To put this in the terms of Sect. 1:

Theorem 3 1. the set of all well-founded total Σ -trees is an initial Σ -algebra

2. the set of all total Σ -trees is a terminal H_{Σ} -coalgebra In each case the Σ -algebra structure is given by

$$\theta_k : (\tau_i \mid i \in A_k) \mapsto \{k\} \cup \{k.i.s \mid s \in \tau_i\} \quad \text{for } k \in |\Sigma|$$
 (2)

and the (inverse, by Lambek's Lemma) H_{Σ} -coalgebra structure maps τ to $\tau \mapsto (k, (\tau/k.j \mid j \in A_{k(\tau)}))$ where $\tau(\varepsilon) = \{k\}$.

Definition 7 Let T be a monad on **Set** and Σ a signature.

- 1. A T, Σ -algebra is a Σ -algebra $(X, (\theta_k)_{k \in |\Sigma|})$ equipped with a T-algebra structure $TX \xrightarrow{\phi} X$.
- 2. For any set Y, a T, Σ -algebra on Y is a T, Σ -algebra (X, ϕ, θ) together with a function $Y \xrightarrow{f} X$.

In general, a T, Σ -algebra on Y corresponds to a T, $\Sigma + Y$ -algebra, where $\Sigma + Y$ is the signature Σ extended with Y constants, and therefore a free T, Σ -algebra on Y is the same thing as an initial T, $\Sigma + Y$ -algebra. This necessarily exists if T is accessible, by Sect. ??.

In particular, consider the monad Maybe : $X \mapsto X+1$, whose algebras are pointed sets. Then an initial Maybe, Σ -algebra is given by the set of well-founded partial Σ -trees, with Σ -structure given by (2) and point given by the empty set. Equivalently we could take the set of well-founded total $\Sigma+1$ -trees.

3 Nondeterminism and Traces

For any range of nondeterminism $\mathcal{K} = [o, \kappa)$ with $\kappa \geqslant \aleph_0$, an algebra for the monad $\mathcal{P}^{\mathcal{K}}$ is a complete lattice with *I*-indexed joins for all $I \in \mathbf{Set}_{\mathcal{K}}$.

Definition 8 Let $K = [o, \kappa)$ be a range of nondeterminism with $\kappa \geqslant \aleph_0$, and let $R = (X, \leqslant, \theta)$ be a \mathcal{P}^K , Σ -algebra. R is quasicommuting when

$$\theta_k(\bigvee_{i \in I} x_{i,j} \mid j \in A_k) = \bigvee_{i \in I} \theta_k(x_{i,j} \mid j \in A_k)$$
(3)

for every nonempty $I \in \mathbf{Set}_{\mathcal{K}}$ and every $k \in |\Sigma|$. Equivalently I is quasicommuting when $\theta_k : (X, \leqslant)^{A_k} \longrightarrow (X, \leqslant)$ is monotone for all $k \in |\Sigma|$, and

$$\theta_k(\bigvee_{i\in I} x_{i,j} \mid j \in A_k) \leqslant \bigvee_{i\in I} \theta_k(x_{i,j} \mid j \in A_k)$$
(4)

for every nonempty $I \in \mathbf{Set}_{\mathcal{K}}$ and every $k \in |\Sigma|$.

Lemma 1 The set PC of prefix-closed sets of passive Σ -traces is a quasicommuting \mathcal{P} , Σ -algebra, with order given by inclusion and Σ -operations by (2).

Proof Clearly it has arbitrary suprema given by union, and θ_k is monotone for all $k \in |\Sigma|$. For any nonempty set I and $k \in |\Sigma|$ we have

$$\begin{array}{lcl} \theta_k(\bigcup_{i\in I}\tau_{i,j}\mid j\in A_k) & = & \{k\}\cup\{k.j.s\mid j\in\bigcup_{i\in I}\tau_{i,j}\}\\ \\ & \subseteq & \bigcup_{i\in I}(\{k\}\cup\{k.j.s\mid j\in A_k, s\in\tau_{i,j}\}) \text{ since }I\neq\emptyset\\ \\ & = & \bigcup_{i\in I}\theta_k(\tau_{i,j}\mid j\in A_k) \end{array}$$

In the sequel, we want to construct quasicommuting algebras from arbitrary algebras by quotienting. We therefore require the following concept.

Definition 9 Let $R = (X, \leq, \theta)$ be a $\mathcal{P}^{\mathcal{K}}, \Sigma$ -algebra.

- 1. A quasicommuting congruence on R is an equivalence relation \equiv such that
 - $\bigvee_{i \in I} preserves \equiv, for every I \in \mathbf{Set}_{\mathcal{K}}$
 - θ_k preserves \equiv , for every $k \in |\Sigma|$

$$\theta_k(x_j \mid j \in A_k) \quad \leqslant \quad \theta_k(x_j \mid j \in A_k) \lor \theta_k(y_j \mid j \in A_k)$$

$$= \quad \theta_k(x_j \lor y_j \mid j \in A_k)$$

$$= \quad \theta_k(y_i \mid j \in A_k)$$

 (\Leftarrow) is immediate.

¹For (\Rightarrow) , to show monotonicity of $k \in |\Sigma|$, if $x_i \leq y_j$ for all $j \in A_k$, then

$$\theta_k(\bigvee_{i \in I} x_{i,j} \mid j \in A_k) \equiv \bigvee_{i \in I} \theta_k(x_{i,j} \mid j \in A_k)$$
 (5)

for every nonempty $|I| \in \mathbf{Set}_{\mathcal{K}}$ and every $k \in |\Sigma|$.

- 2. A quasicommuting precongruence on R is a preorder \sqsubseteq such that
 - $\bigvee_{i \in I} x_i \text{ is } a \sqsubseteq \text{-supremum of } \{x_i \mid i \in I\} \text{ for every } I \in \mathbf{Set}_{\mathcal{K}}, \text{ or equivalently}^2 \text{ when } \sqsubseteq \text{ contains} \leqslant \text{ and } \bigvee_{i \in I} \text{ preserves } \sqsubseteq \text{ for every } I \in \mathbf{Set}_{\mathcal{K}}$
 - θ_k preserves \sqsubseteq , for every $k \in |\Sigma|$

$$\theta_k(\bigvee_{i\in I} x_{i,j} \mid j \in A_k) \sqsubseteq \bigvee_{i\in I} \theta_k(x_{i,j} \mid j \in A_k)$$
 (6)

for every nonempty $|I| \in \mathbf{Set}_{\mathcal{K}}$ and every $k \in |\Sigma|$.

Lemma 2 Let $R = (X, \leq, \theta)$ be a $\mathcal{P}^{\mathcal{K}}, \Sigma$ -algebra. Then we have a complete lattice isomorphism α from the quasicommuting precongruences on R to the quasicommuting congruences on R mapping \sqsubseteq to its symmetrization. The precongruence corresponding to \equiv is given by

$$\sqsubseteq^{\equiv def} \{ (x, y) \in X \mid x \lor y \equiv y \}. \tag{7}$$

Proof Suppose \sqsubseteq is a quasicommuting precongruence on R. Then its symmetrization \equiv is clearly a quasicommuting congruence. To show \sqsubseteq^{\equiv} is the same as \sqsubseteq , suppose $x \sqsubseteq y$; then y is a \sqsubseteq -upper bound of $\{x,y\}$ so $x \lor y \sqsubseteq y$; and automatically $y \sqsubseteq x \lor y$, so $x \lor y \equiv y$. Conversely if $x \sqsubseteq^{\equiv} y$ then $x \sqsubseteq x \lor y \sqsubseteq y$.

Suppose \equiv is a quasicommuting congruence on R. Then the symmetrization of \sqsubseteq^{\equiv} is \equiv , because $x \equiv y$ implies $x \lor y \equiv y \lor y = y$ and likewise $y \lor x \equiv x$, and conversely if x and y are related by the symmetrization of \sqsubseteq^{\equiv} then $x \equiv x \lor y \equiv y$. To show \sqsubseteq^{\equiv} is a quasicommuting precongruence:

- if $x \leq y$ then $x \vee y = y \equiv y$ so $x \sqsubseteq^{\equiv} y$
- if $x_i \sqsubseteq^{\equiv} y_i$ for all $i \in I$ then

$$\bigvee_{i \in I} x_i \vee \bigvee_{i \in I} y_i = \bigvee_{i \in I} (x_i \vee y_i)$$

$$\equiv \bigvee_{i \in I} y_i$$

$$\bigvee_{i \in I} x_i \quad \leqslant \quad (\bigvee_{i \in I} x_i) \lor y$$

$$\sqsubseteq \quad (\bigvee_{i \in I} y) \lor y$$

$$= \quad y$$

To show (\Rightarrow), if $x \leqslant y$ then $x \sqsubseteq x \lor y = y$; and if $x_i \sqsubseteq y_i$ for all $i \in I$ then $\bigvee_{i \in I} y_i$ is a \sqsubseteq -upper bound for $\{x_i \mid i \in I\}$ so is $\supseteq \bigvee_{i \in I} x_i$. To show (\Leftarrow), the element $\bigvee_{i \in I} x_i$ is a \leqslant -upper bound and hence a \sqsubseteq -upper bound of $\{x_i \mid i \in I\}$, and for any \sqsubseteq -upper bound y we have

so
$$\bigvee_{i \in I} x_i \sqsubseteq^{\equiv} \bigvee_{i \in I} y_i$$
.

• if $k \in |\Sigma|$ and $x_j \sqsubseteq^{\equiv} y_j$ for all $j \in A_k$ then

$$\theta_k(x_j \mid j \in A_k) \vee \theta_k(y_j \mid j \in A_k) \quad \equiv \quad \theta_k(x_j \vee y_j \mid j \in A_k)$$

$$\equiv \quad \theta_k(y_j \mid j \in A_k)$$
so $\theta_k(x_j \mid j \in A_k)$ $\sqsubseteq^\equiv \quad \theta_k(y_j \mid j \in A_k)$

• for $k \in |\Sigma|$ and nonempty $I \in \mathbf{Set}_{\mathcal{K}}$ (6) follows from (5) since \sqsubseteq contains its symmetrization \equiv .

Finally it is clear that both symmetrization and $\equiv \mapsto \sqsubseteq^{\equiv}$ are monotone. \Box Let $\mathcal{K} = [o, \kappa)$ be a range of nondeterminism with $\aleph_0 \leqslant \kappa < \infty$. We shall first construct an initial $\mathcal{P}^{\mathcal{K}}$, Σ -algebra and then quotient by the least quasicommuting congruence to obtain an initial quasicommuting $\mathcal{P}^{\mathcal{K}}$, Σ -algebra.

Lemma 3 Let $K = [o, \kappa)$ be a range of nondeterminism with $\aleph_0 \leqslant \kappa < \infty$, and let (M, b) be an initial $\mathcal{P}^K H_{\Sigma}$ -algebra.

1. M is an initial $\mathcal{P}^{\mathcal{K}}$, Σ -algebra, with

$$\theta_k : (x_i \mid i \in A_k) \mapsto b\{(k, (x_i \mid i \in A_k))\}$$

$$x \leq y \stackrel{\text{def}}{\Leftrightarrow} b^{-1}x \subseteq b^{-1}y$$

$$\bigvee_{i \in I} x_i = b \bigcup_{i \in I} b^{-1}x_i$$

2. Each $x \in M$ is of the form $\bigvee_{i \in I} \theta_{k_i}(x_{i,j} \mid j \in A_k)$ with $I \in \mathbf{Set}_{\mathcal{K}}$.

Proof

- 1. This is an instance of Sect. ??.
- 2. Put $I = b^{-1}x$. Each $i \in I$ is of the form $(k_i, (x_{i,j} \mid j \in A_{k_i}))$, and we have

$$\bigvee_{i \in I} \theta_{k_i}(x_{i,j} \mid j \in A_{k_i}) = b \bigcup_{i \in I} b^{-1} \theta_{k_i}(x_{i,j} \mid j \in A_{k_i})$$

$$= b \bigcup_{i \in I} b^{-1} b \{ (k_i, (x_{i,j} \mid j \in A_{k_i})) \}$$

$$= b \bigcup_{i \in I} \{ (k_i, (x_{i,j} \mid j \in A_{k_i})) \}$$

$$= b \{ (k_i, (x_{i,j} \mid j \in A_{k_i})) \mid i \in I \}$$

$$= b \{ i \mid i \in I \}$$

$$= b I$$

$$= x$$

In fact the least quasicommuting precongruence can be described explicitly.

Lemma 4 Let $K = [o, \kappa)$ be a range of nondeterminism with $\aleph_0 \leqslant \kappa < \infty$. Let (M, b) be an initial $\mathcal{P}^K H_{\Sigma}$ -algebra, and so (M, b^{-1}) is a Σ -transition system.

- 1. The function traces: $M \longrightarrow PC$ is a homomorphism of $\mathcal{P}^{\mathcal{K}}$, Σ -algebras.
- 2. The least quasicommuting precongruence on M is trace inclusion.
- 3. The least quasicommuting congruence on M is trace equivalence.

Proof

1. Let $k \in |\Sigma|$, and for each $i \in A_k$ let $x_i \in M$. Then

$$\begin{array}{rcl} b^{-1}\theta_k(x_j|j\in A_k) &=& \{(k,(x_j\mid j\in A_k))\}\\ \text{so traces}(\theta_k(x_j|j\in A_k)) &=& \{k\}\cup\{k.j.s\mid j\in A_k,s\in \mathsf{traces}(x_i)\} \end{array}$$

Let $I \in \mathbf{Set}_{\mathcal{K}}$ and for each $i \in I$ let $x_i \in M$. Then

$$\begin{array}{rcl} b^{-1} \bigvee_{i \in I} x_i & = & \bigcup_{i \in I} b^{-1} x_i \\ \\ \text{so traces}(\bigvee_{i \in I} x_i) & = & \bigcup_{i \in I} \operatorname{traces}(x_i) \end{array}$$

2. By Lemma 1 and part(1), trace inclusion is a quasicommuting precongruence on M. Given any quasicommuting precongruence \sqsubseteq on M, we show that the set

$$F \stackrel{\text{\tiny def}}{=} \{x \in M \mid \forall y \in M. \; \mathsf{traces}(x) \subseteq \mathsf{traces}(y) \Rightarrow x \sqsubseteq y\}$$

is a sub- $\mathcal{P}^{\mathcal{K}}$, Σ -algebra of M, and therefore is M, showing that trace inclusion is contained in \sqsubseteq . Clearly F is closed under $\bigvee_{i \in I}$, where $I \in \mathbf{Set}_{\mathcal{K}}$. For $k \in |\Sigma|$ and $x_j \in F$ for all $j \in A_k$, we want to show $\theta_k(x_j \mid j \in A_k) \in F$. Suppose $\mathsf{traces}(x) \subseteq \mathsf{traces}(y)$. We have

$$\begin{array}{lll} \operatorname{traces}(x) & = & \operatorname{traces}(\theta_k(x_j \mid j \in A_k)) \\ & = & \theta_k(\operatorname{traces}(x_j) \mid j \in A_k) \\ & = & \{k\} \cup \{k.j.t \mid j \in A_k, t \in \operatorname{traces}(x_j)\} \end{array}$$

By Lemma 3(2) we have $y = \bigvee_{i \in I} \theta_{k_i}(y_{i,j} \mid j \in A_{k_i})$ with $I \in \mathbf{Set}_{\mathcal{K}}$, and then

$$\begin{split} \operatorname{traces}(y) &= \operatorname{traces}(\bigvee_{i \in I} \theta_{k_i}(y_{i,j} \mid j \in A_{k_i})) \\ &= \bigcup_{i \in I} \theta_{k_i}(\operatorname{traces}(y_{i,j}) \mid j \in A_{k_i}) \\ &= \bigcup_{i \in I} (\{k_i\} \cup \{k_i.j.t \mid j \in A_{k_i}, t \in \operatorname{traces}(y_{i,j})\}) \end{split}$$

Put $I' \stackrel{\text{def}}{=} \{i \in I | k_i = k\}$. The fact that $k \in \mathsf{traces}(y)$ implies I' is nonempty. For all $j \in A_k$, if $t \in \mathsf{traces}(x_j)$ then the fact $k.j.t \in \mathsf{traces}(y)$ implies there exists $i \in I'$ with $t \in \mathsf{traces}(y_{i,j})$. Therefore

$$\begin{array}{ll} \operatorname{traces}(x_j) & \subseteq & \bigcup_{i \in I'} \operatorname{traces}(y_{i,j}) \\ & = & \operatorname{traces}(\bigvee_{i \in I'} y_{i,j}) \end{array}$$

so $x_j \in F$ gives $x_j \sqsubseteq \bigvee_{i \in I'} y_{i,j}$. Now we reason

$$x = \theta_k(x_j|j \in A_k)$$

$$\sqsubseteq \theta_k\left(\bigvee_{i \in I'} y_{i,j} \middle| j \in A_k\right)$$

$$= \bigvee_{i \in I'} \theta_k(y_{i,j}|j \in A_k)$$

$$\leqslant \bigvee_{i \in I} \theta_{k_i}(y_{i,j}|j \in A_{k_i})$$

$$= y$$

3. Immediate from part (2) and Lemma 2.

Corollary 1 Let $K = [o, \kappa)$ be a range of nondeterminism with $\kappa \geqslant \aleph_0$. Then $\mathsf{PC}_K^{\mathsf{well}}$ is an initial quasicommuting \mathcal{P}^K, Σ -algebra.

Proof Suppose $\kappa < \infty$. Let (M,b) be an initial $\mathcal{P}^{\mathcal{K}}H_{\Sigma}$ -algebra. By the results of [Tay99], (M,b^{-1}) is a final well-founded $\mathcal{P}^{\mathcal{K}}H_{\Sigma}$ -coalgebra. So the range of traces : $M \longrightarrow \mathsf{PC}$ is precisely $\mathsf{PC}_{\mathcal{K}}^{\mathsf{well}}$.

Suppose $\mathcal{K} = [o, \infty)$, we can use the same argument where M is a class; alternatively, we can proceed as follows. Pick a regular uncountable cardinal κ such that $||\Sigma|| < \kappa$ and $> |\mathcal{PPC}| < \kappa$. Then every $\tau \in \mathsf{PC}$ is κ -bounded and so $\mathsf{PC}^{\mathsf{well}}_{[o,\kappa)} = \mathsf{PC}^{\mathsf{well}}_{[o,\infty)}$. For any quasicommuting $\mathcal{P}^{[o,\infty)}$, Σ -algebra N, there is a unique $\mathcal{P}^{[o,\kappa)}$, Σ -algebra homomorphism $f : \mathsf{PC}^{\mathsf{well}}_{[o,\infty)} \longrightarrow N$. Moreover f preserves the join of every subset $U \subseteq \mathsf{PC}^{\mathsf{well}}_{[o,\infty)}$ since $|U| < \kappa$, so f is a $\mathcal{P}^{[o,\infty)}$, Σ -algebra homomorphism.

References

[AMMS] J. Adámek, S. Milius, L. Moss, and L. Sousa. Well-pointed coalgebras. Manuscript.

[Tay99] Paul Taylor. Practical Foundations of Mathematics. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.