

Ecological Specialisation of *Escherichia coli* within 1000 Generations

ZQ Aw, BZL Loo, SXZ Low, MHT Ling School of Chemical and Life Sciences, Singapore Polytechnic, Singapore

INTRODUCTION

- Adaptive mechanisms of *E. coli* in food preservatives/ additives not widely studied
- ➤ Food additives commonly used
- ➤Investigate relationship between such chemicals (Monosodium glutamate, Benzoic Acid, Common Salt) and *E. coli*
- ➤ Continuation of previous Final Year Project (Passage 1-70)

OBJECTIVES

- Further studies on changes in growth kinetics/ genetic changes of *E. coli* ATCC 8739
- •Further 83 passages 71st to 153rd passage
- ➤ To find out possible trends:
- Changes in Adaptation rates in various media
- Genetic similarities/ differences
 Contrast adaptation rates between earlier and later passages

MATERIALS AND METHOD

Experimental procedures

Inoculating into 8

different treatment supplementation

Subculturing (100x dilution) of cells from

previous culture
performed 3
times/week

OD₆₀₀ readings taken

before every

subculture (including

Generation Time
Readings taken every
3rd passage (Friday),

Swap experiment

fortnightly

PCR-RFLP Analysis done on every 12th passage

Composition of 8 media

[High] Media	[Low] Media
H MSG [0.025% (w/v)]	L MSG [0.0025% (w/v)]
H BA [0.025% (w/v)]	L BA [0.0025% (w/v)]
H Salt [1% (w/v)]	L Salt [Nutrient Broth]
H COMB	L COMB

Swap Experiments

- ➤ Swap A: [High] ↔[Low] treatments swaps
- ➤ Swap B: [Low] treatments → [Low] Combination swaps
- ➤ Swap C: [High] treatments → [High] Combination swaps
- ➤ Swap D: [High] → [Low] treatment swaps

HYPOTHESIS 1

➤ Decreased rate of adaptation in later passages (Passages 71-153)

Comparison of gradient of generation time between earlier and later passages Generation time of treatments are decreasing

Gradient Of	H MSG	L MSG	H BA	L BA	H SALT	L SALT	H COMB	L COMB
Passage 0 - 70	-0.91	-1.87	-1.15	-1.39	-1.12	-1.24	-2.02	-1.22
Passage 71 - 153	0.03	-0.058	0.042	0.109	-0.149	0.175	-0.564	0.223

Gradient of Passages 71-153 is significant (p-value <0.05) as compared to Passages 1-70 → Significant decrease in rate of adaptation

Results indicate

- Slower decline of generation time in later passages
- Decreasing rate of adaptation present
- Most adaptive mutation occurred in the first 500-700 generations
- Hypothesis 1 is ACCEPTED

ECOLOGICAL SPECIALISATION

Suggested from hypothesis 2 and 3:

- > Cells adapt specifically to their own growth environments
- ➤ Specific adaptation → Adaptive mutation → Genetic differences between cells of different treatments → <u>Diverged DI</u>
- Pair-wise comparison chart
 - Compare DI of each treatment set
 - To deduce if genomic differences in each pair are due to a consequent effect from the resulting effects
- ➤ Example of pair-wise comparison
- □ L MSG/ L SALT
- ■L MSG = NB + MSG
- L SALT = NB
 L MSG/L SALT = MSG (Resulting effect in comparison)

□ L BA/ L COMB

- •LBA = NB + BA
- -L COMB = NB + BA + MSG
- ■L BA/ L COMB = MSG (Resulting effect in comparison)
- ➤ Since MSG is similar in both sets, it can be used as e resulting effect in comparison
- ➤ Comparison of significance of p-value for Passage 1-70 and Passage 71-153
- DI value of two treatment sets plotted for correlation coefficient
 (CC) value
- p-value was calculated from the CC value

		Passage 1-70		Passage 71-153		
PCR/RFLP Comparison	Resulting Effect	p-value	Significant	p-value	Significant	
LMSG/LS, LBA/LC	MSG	0.173	No	2.26x10 ⁻⁰⁴	Yes	
LMSG/LC, LBA/LS	ВА	0.431	No	1.31x10 ⁻⁰⁴	Yes	
LMSG/LBA, LS/LC	BA + MSG	0.156	No	1.48x10 ⁻⁰⁴	Yes	
HMSG/HS, HBA/HC	10MSG + S	0.091	No	3.71x10 ⁻⁰⁴	Yes	
HMSG/HC, HBA/HS	10BA + S	0.019	Yes	1.57x10 ⁻⁰³	Yes	
HMSG/H BA, HS/HC	10MSG + 10BA	0.434	No	2.08x10 ⁻⁰⁴	Yes	

- > p-value significant = cells are NOT correlated and adapt to individual treatment
- > p-value not significant = cells are correlated and adapting based on the similar resulting factor

Since all results show significance in p-value, ecological specialisation may be present

HYPOTHESIS 2

- ➤ Different chemical concentration poses different type of stress
- Hypothetical Scenario: Different chemical concentrations should induce different <u>level</u> of stress
- High treatment media = Higher stress
- Low treatment media = Lower stress
- [High] (1%) ↔ [Low] (0%) swap treatment done

Based on previous FYP results, different chemical concentration shown to induce different type of stress instead → New swap experiment to confirm hypothesis

- [High] salt 1%)→ [Higher] salt(2%)
- [Low] salt(0%) → [Higher] salt(2%)
- ➢ Hypothesis 2 is ACCEPTED

HYPOTHESIS 3

> PCR-RFLP profiles within treatments of a passage are likely to show genetic similarity

Detect genetic changes across time

- RFLP done using Mspl, Taql and Hinfl after PCR
- Differences between the two samples
- Estimated by Nei-Li's Dissimilarity Index

Comparison with previous data shows genetic divergence as compared to genetic convergence shown previously

Divergence of upper and low class limits

- Suggests increase in genetic distances
- **➤ Hypothesis 3 is REJECTED**

CONCLUSION

- ➤ Slower rate of adaptation
- > Different chemical concentration causes different type of stress
- Presence of ecological specialisation

FUTURE WORKS

- > Conduct more swap experiments of other chemicals into a higher concentration
- More enzymes and primers to increase coverage of the genome
 Adaptive mutations may not occur on amplified fragments

REFERENCES

LEE, C. H., LEE, K. C., OON, J. S. H. 2010. Evolution characterization of Escherichia coli using RFLP DNA fingerprinting. Diploma in Biotechnology. School of Chemical and Life Sciences, Singapore Polytechnic.

COOPER, V.S & LENSKI, R.E. 2000. The population genetics of ecological specialization in evolving Esherichia coli populations. Nature 407, 736-39.

DE VISSER, J. & LENSKI, R. 2002. Long-term experimental evolution in *Escherichia coli*. XI. Rejection of non-transitive interactions as cause of declining rate of adaptation. *BMC Evolutionary Biology*, 2,1-8.