SHAM implementations

My SHAM model has 3 parameters:

- 1. σ , controls the Vpeak-M* scatter (**Vpeak scattering**)
- Vceil, prevent the most massive halos from having a galaxy (Vpeak_scat truncation)
- 3. Vsmear, smear the peculiar velocity for the z uncertainty

SHAM implementations

Vpeak scattering:

1. Gaussian scatter:

$$Vpeak_scat = Vpeak*(1+N(0,\sigma_2))$$

2. positive scatter:

if $N(0,\sigma_2)>0$:

 $Vpeak_scat = Vpeak*(1+N(0,\sigma_2))$

else:

 $Vpeak_scat = Vpeak*exp{N(0,\sigma_2)}$

Vpeak_scat truncation:

a. direct cut:

remove Vpeak_scat >Vceil

b. dsigma cut:

remove Vpeak_scat/σ >Vceil

SHAM posteriors for LRG in SGC

SHAM posteriors for LRG in SGC

Optimal Multipoles for LRG in SGC

Gaussian scatter & dsigma cut

Optimal Multipoles for LRG in SGC

positive scatter & dsigma cut

Optimal Multipoles for LRG in SGC

positive scatter & direct cut

SHAM for eBOSS LRG in SGC

positive scatter + dsigma still presents "L" shape;
the optimal parameters are far beyond the 68% confidence interval.

- 2. None of the prior can avoid the posterior hitting the boundary
- despite the large difference between optimal parameters, the best-fit 2PCF multipoles have no big difference (the close-chi2 test conclusion)

correlation function quadrupole: LRG in SGC

10.0 12.5 15.0 17.5 20.0 22.5

s (Mpc h-1)

5.0 7.5

bispectrum

void 2PCF multipoles: Rv = [0,15] Mpc/h

void 2PCF multipoles: Rv = [15,30] Mpc/h

void 2PCF multipoles: Rv = [30,1000] Mpc/h

