计时器状态图及使用说明

一、 状态转移图

模式 0:

模式 1:

二、计时器使用说明

1. 两种模式的说明:

模式 0:

当计数器倒计数为 0 后, 计数器停止计数, 此时控制寄存器中的使能 Enable 自动变为 0。当使能 Enable 被设置为 1 后, 初值寄存器值再次被加载至计数器, 计数器重新启动倒计数。模式 0 通常用于产生定时中断。例如, 为操作系统的时间片调度机制提供定 时。模式 0 下的中断信号将持续有效, 直至控制寄存器中的中断屏蔽位被设置为 0。模式 1:

当计数器倒计数为 0 后,初值寄存器值被自动加载至计数器,计数器继续倒计数。 模式 1 通常用于产生周期性脉冲。例如,可以用模式 1 产生步进电机所需的步进控制信号。不同于模式 0,模式 1 下计数器每次计数循环中只产生一周期的中断信号。

2. 各模块构造

3. 寄存器

TC 包括控制寄存器、初值寄存器和计数值寄存器。每个寄存器都为 32 位, 共计占用 12B 空间。

偏移 寄存器 寄存器描述 R/W 复位值 CTRL 控制寄存器 R/W 0h 4h PRESET 初值寄存器 R/W 0 8h COUNT 计数值寄存器 R 0

表 3-1 Timer/Counter 寄存器

3.1. 控制寄存器(CTRL)

当读取 CTRL 寄存器时,未定义位始终为 0;当写入 CTRL 寄存器时,未定义位被忽略。

表 3-2 控制寄存器格式

Bit mnemonic	Bit No.	Description	R/W	Value After Reset
Reserved	31:4	保留	_	0
IM	3	中断屏蔽 0: 禁止中断 1: 允许中断	R/W	0
Mode	2:1	模式选择 00: 方式 0 01: 方式 1 10: 未定义 11: 未定义	R/W	00
Enable	0	计数器使能 0: 停止计数 1: 允许计数	R/W	0

3.2. 初值寄存器(PRESET)

表 3-3 初值寄存器格式

Bit mnemonic	Bit No.	Description	R/W	Value After Reset
PRESET	31:0	32 位计数初值	R/W	0

3.3. 计数值寄存器(COUNT)

表 3-4 计数值寄存器格式

Bit mnemonic	Bit No.	Description	R/W	Value After Reset
COUNT	31:0	32 位计数值	R	0

4. 模块接口信号定义

表 4-1 Timer/Counter 接口信号定义

信号名	方向	描述
CLK_I	I	时钟
RST_I	I	复位信号
ADD_I[3:2]	I	地址输入
WE_I	I	写使能
DAT_I[31:0]	I	32 位数据输入
DAT_O[31:0]	О	32 位数据输出
IRQ	О	中断请求

3. 用户使用说明

- (1) 在任意时刻可以对 Ctrl, Preset, Count 进行读取, 注意地址偏移量需要为 4 的倍数。
- (2) 在时钟上升沿时刻 && 写使能有效时,可以对 Ctrl, Preset 进行写入,注意 Ctrl 的未定义位需要被忽略。