EPITA

Mathématiques

Partiel S3

Décembre 2022

Durée : 3 heures

Nom:
Prénom:
Classe:
NOTE:
Le barème est sur 40 points. La note se ramenée à une note sur 20 par une simple division par 2.
$\overline{ ext{Consignes}}$:
 — Documents et calculatrices interdits. — Répondre directement sur les feuilles jointes, dans les espaces prévus. Aucune autre feuille ne sera corrigée.

— Ne pas écrire au crayon de papier.

Exercice 1 (6 points)

Un fournisseur d'accès internet a mis en place un service d'assistance pour aider ses clients, dans le cas où ils ont des problèmes de connexion. Pour tout intervalle de temps d'une heure, on définit la variable aléatoire

X = «Nombre d'appels réçus par le service assistance pendant cet intervalle de temps»

On suppose que les nombres d'appels, dans deux intervalles de temps ne se recouvrant pas, sont des variables aléatoires indépendantes. Enfin, on admet que sous cette hypothèse, il existe $\lambda > 0$ tel que $X \leadsto \text{Poisson}(\lambda)$, c'est à dire que

$$X(\Omega) = \mathbb{N}$$
 et $\forall n \in \mathbb{N}, P(X=n) = e^{-\lambda} \frac{\lambda^n}{n!}$

Le service d'assistance est ouvert 10 heures par jour (de 9h à 19h), et la valeur de λ est la même pour tout intervalle de temps d'une heure inclus dans les heures d'ouverture.

1.	Déterminer la fonction génératrice $G_X(t)$ de la variable X . Exprimer $G_X(t)$ d'abord comme une série entière, puis à l'aide des fonctions usuelles.
2.	Calculer l'espérance et la variance de X .
3.	On considère une journée j et on définit la variable aléatoire
	Y= «Nombre d'appels réçu par le service assistance pendant toute cette journée»
	(a) Déterminer la fonction génératrice de Y . Justifier soigneusement.
	(b) En déduire la loi de Y .

Exercice 2 (6.5 points)

Considérons l'application linéaire $f: \left\{ \begin{array}{ccc} \mathbb{R}_2[X] & \longrightarrow & \mathbb{R}^2 \\ P & \longmapsto & \left(P(1), P(2)\right) \end{array} \right.$

	(- (-/)- (-/)
1.	Soit $P = aX^2 + bX + c \in \mathbb{R}_2[X]$. Écrire les conditions sur (a, b, c) pour que $P \in \text{Ker}(f)$. En déduire une base de $\text{Ker}(f)$.
2.	Déterminer le rang de f , puis $\text{Im}(f)$.
3.	Soient dans $\mathbb{R}_2[X]$ les polynômes $P_1 = -X + 2$ et $P_2 = X - 1$. Calculer $P_i(1)$ et $P_i(2)$ pour $i \in \{1, 2\}$.
4.	Proposer une base \mathcal{B} de $\mathbb{R}_2[X]$ telle que la matrice de f dans cette base \mathcal{B} au départ et la base canonique à l'arrivée soit $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.
5.	Trouver l'ensemble S de tous les polynômes $P \in \mathbb{R}_2[X]$ tels que $f(P) = (42, 1)$.

Exercice 3 (8 points)

Soient les matrices $A = \begin{pmatrix} -1 & -1 & -2 \\ 2 & 2 & 2 \\ 2 & 1 & 3 \end{pmatrix}$ et $B = \begin{pmatrix} -4 & -2 & 4 \\ -6 & -5 & 8 \\ -6 & -4 & 7 \end{pmatrix}$.

1.	Calculer sous forme factorisée les polynômes caractéristiques de A et de B . Vérifier que les valeurs propres de A sont 1 et 2, puis que celles de B sont 0 et -1 .
2.	Les matrices A et B sont-elles diagonalisables dans $\mathcal{M}_3(\mathbb{R})$? Si oui, donner P et D . Vous prendrez soin de votre rédaction.

Exercice 4 : une démonstration de cours (6.5 points)

Soient	E	un	espace	vectoriel	sur	$\mathbb{R} \mathrm{d} \epsilon$	dimension	finie,	F	et (G deux	sous-espaces	vectoriels de	$E \mathrm{de}$	dimensions	n et	p non
nulles																	

Donnons-nous $\mathcal{B}_1=(e_1,\cdots,e_n)$ une base de F et $\mathcal{B}_2=(\varepsilon_1,\cdots,\varepsilon_p)$ une base de G. On suppose que la famille $\mathcal{B}=(e_1,\cdots,e_n,\varepsilon_1,\cdots,\varepsilon_p)$ obtenue par concaténation de \mathcal{B}_1 et \mathcal{B}_2 est une base de E.

1.	Que peut-on dire de F et G dans ce cas?
2.	Démontrer cette propriété.

Exercice 5 : construction d'une symétrie (8 points)

On se place dans l'espace vectoriel $E = \mathbb{R}^3$ muni de sa base canonique \mathcal{B} . On considère les sous-espaces vectoriels

 $F = \{(x, y, z) \in E, \ x - y + 2z = 0\} \qquad \text{et} \qquad G = \left\{ (x, y, z) \in E, \ \middle| \begin{array}{ccc} x + y + z & = & 0 \\ x - y + z & = & 0 \end{array} \right\}$

1.	Trouver une base de F et une base de G .
2.	Montrer que $E = F \oplus G$.
3.	D'après la question précédente, on sait que pour tout $u \in E$, il existe un unique $(v, w) \in F \times G$ tel que $u = v + w$.
	Considérons l'endomorphisme $s: u \longmapsto v - w$.
	(a) Supposons que $u \in F$. Que vaut $s(u)$?
	(b) Supposons que $u \in G$. Que vaut $s(u)$?

* *	oit \mathcal{B}' la base de E obtenue par concaténation des bases de F et de G trouvées à la question 1. Déterminer la natrice de s dans cette base \mathcal{B}' au départ et à l'arrivée. Notons A' cette matrice.
	oit A la matrice de s dans la base canonique au départ et à l'arrivée. Donner la relation matricielle qui permet de alculer A . On ne demande pas de faire le calcul.
Exercic	e 6 : Probabilités (5 points)
Soit $p \in]0,$	1[. On considère une variable aléatoire X qui suit une loi géométrique de paramètre p .
1. Rapp	peler la loi de X .
(a) M I:	$(k,n) \in (\mathbb{N}^*)^2$. Montrer que $P(X>n) = q^n$ où $q = 1-p$. Indication : on pourra démarrer en écrivant $P(X>n) = \sum_{k=n+1}^{+\infty} P(X=k)$, ou encore $P(X>n) = 1 - \sum_{k=1}^{n} P(X=k)$.
(b) E	Expliquer pourquoi $P(X=n+k \cap X>n) = P(X=n+k)$.
•	
(c) (Calculer la probabilité conditionnelle $P(X=n+k\mid X>n)$. Comparer votre résultat à la valeur $P(X=k)$.
,	

(d) Expliquer pour quoi on dit que la loi de X est «sans mémoire».	
3. (n considère une variable aléatoire Y telle que	
	$Y(\Omega) = \mathbb{N}^*$ et $\forall (k, n) \in (\mathbb{N}^*)^2$, $P(Y = n + k \mid Y > n) = P(Y = k)$	
	poit (p_n) la suite définie pour tout $n \in \mathbb{N}^*$ par : $p_n = P(Y=n)$. () Écrire $P(Y>1)$ en fonction de p_1 .	
(b) En considérant les évènements « $Y>1$ », « $Y=1$ » et « $Y=2$ », exprimer $\frac{p_2}{p_1}$ en fonction de p_1 .	
(0) De même, pour tout $n \in \mathbb{N}^*$, en considérant les évènements « $Y>1$ », « $Y=n$ » et « $Y=n+1$ », trouver une express simple de $\frac{p_{n+1}}{p_n}$.	ior
(d) En déduire p_n en fonction de n . Comment appelle-t-on la loi de Y ?	