COMP 3711H: Mathematical Facts for Final – Version of November 29, 2016

Graphs: A graph G is often denoted as G = (V, E) where E is the set of its vertices and $E \subseteq V \times V$ is the set of its edges. In a directed graph, edges have direction, i.e, (v_1, v_2) denotes an edge pointing from vertex v_1 to vertex v_2 and $(v_1, v_2) \neq (v_2, v_1)$. In an undirected graph, edge (v_1, v_2) denotes the same edge as (v_2, v_1) .

A graph G = (V, E) is complete if, for all vertices $u, v \in V$, $u \neq v$, the edge (u, v) is in E. Thus, a complete undirected graph has |V|(|V|-1)/2 edges while a complete directed graph has |V|(|V|-1) edges.

$$P = \{(v_1, v_2), (v_2, v_3), (v_3, v_4), \dots, (v_{k-1}, v_k)\}$$

is a path connecting vertices u and v if $v_1 = u$, and $v_k = v$.

A tree is a directed acyclic graph. A tree with |V| vertices has |V|-1 edges.

A binary tree of height h has at most 2^h leaves.

Asymptotic Forms: The following gives both the formal "c and n_0 " definitions and an equivalent limit definition for the standard asymptotic forms. Assume that f and g are nonnegative functions. Usually f takes the role of the running time of an algorithm that we wish to analyze, and g takes the form of the asymptotic function to which we wish to compare f.

Asymptotic Form	Limit Form	Formal Definition
f(n) = O(g(n))	$ \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty $	$\exists c, n_0, \forall n \ge n_0, \ f(n) \le cg(n)$
$ f(n) = \Omega(g(n)) $	$\lim_{n \to \infty} \frac{f(n)}{g(n)} > 0$	$\exists c, n_0, \forall n \ge n_0, \ cg(n) \le f(n)$
$ f(n) = \Theta(g(n)) $	$0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$	$f = O(g(n))$ and $f \in \Omega(g(n))$

Common Log Identities: The following are useful in simplifying asymptotic expressions involving logs. Let a, b, and c be positive constants. We use lg to denote log_2 and ln to denote the natural log. When the base does not matter (as in asymptotic expressions) we just use log.

$$\log(a \cdot b) = \log a + \log b$$

$$\log(a^b) = b \log a$$

$$a^{\log_a b} = b$$

$$a^{\log_b c} = c^{\log_b a}$$

$$\log_a n = \frac{\log_b n}{\log_b a} = \Theta(\log n)$$

$$\log(n!) = \Theta(n \log n)$$

Common Summations: Let $c \neq 1$ be any positive constant and assume $n \geq 0$. The following are the most common summations that arise when analyzing algorithms and data structures. You should memorize their asymptotic values.

Name of Series	Formula	Closed-Form Solution	Asymptotic Form
Constant	$\sum_{i=1}^{n} 1$	= n	$\Theta(n)$
Arithmetic	$\sum_{i=1}^{i=1} i = 1 + 2 + \dots + n$	$=\frac{n(n+1)}{2}$	$\Theta(n^2)$
Polynomial	$\sum_{i=1}^{n} i^{c} = 1^{c} + 2^{c} + \dots + n^{c}$	(none for general c)	$\Theta(n^{c+1})$
Geometric	$\sum_{i=0}^{n-1} c^{i} = 1 + c + c^{2} + \dots + c^{n-1}$	$=\frac{c^n-1}{c-1}$	$\Theta(c^n) \ (c > 1)$ $\Theta(1) \ (c < 1)$
Harmonic	$\sum_{i=1}^{n} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$	$= \ln n + O(1)$	$\Theta(\log n)$

(Simplified) Master Theorem for Recurrences: This is very useful when dealing with recurrences arising from divide-and-conquer algorithms. Let $a \ge 1$, b > 1, $c \ge 0$ be constants. If T(n) is the recurrence $T(n) = aT(n/b) + \Theta(n^c)$, defined for $n \ge 1$.

Case 1: $c < \log_b a$ then T(n) is $\Theta(n^{\log_b a})$.

Case 2: $c = \log_b a$ then T(n) is $\Theta(n^c \log n)$.

Case 3: $c > \log_b a$ then T(n) is $\Theta(n^c)$.

If instead T(n) is the recurrence inequality defined by $T(n) \leq aT(n/b) + O(n^c)$, for $n \geq 1$ then

Case 1: $c < \log_b a$ then T(n) is $O(n^{\log_b a})$.

Case 2: $c = \log_b a$ then T(n) is $O(n^c \log n)$.

Case 3: $c > \log_b a$ then T(n) is $O(n^c)$.

Other common recurrences: Let b > 1, c be any constants.

$$T(n) = T(n/b) + \Theta(c) \implies T(n) = \Theta(\log n).$$

$$T(n) = bT(n/b) + \Theta(c) \Rightarrow T(n) = \Theta(n).$$

and

$$T(n) \le T(n/b) + O(c) \implies T(n) = O(\log n).$$

$$T(n) \le bT(n/b) + O(c) \implies T(n) = O(n).$$

Note: $\Theta(c) = \Theta(1)$ and O(c) = O(1) for all constants c > 0. Recall that $\Theta(1)$ means a term that's bounded from both above and below by some constants greater than 0. In particular, it can't be a term that's decreasing to zero. O(n) means a term that is bounded from above by a constant. It can (but doesn't have to be) a term that is decreasing to zero.