Artificial Neural Networks

鮑興國 Ph.D.

National Taiwan University of Science and Technology

Outline

- Perceptrons
- Gradient descent
- Multilayer Feedforward networks
- Backpropagation
- Hidden layer representations
- Examples
- Advanced topics

What is an Artificial Neural Network?

- It is a formalism for representing functions inspired from biological learning systems
- The network is composed of parallel computing units which each computes a simple function
- Some useful computations taking place in Feedforward Multilayer Neural Networks are
 - Summation
 - Multiplication
 - Threshold (e.g., $1/(1 + e^{-x})$, the sigmoidal threshold function). Other functions are also possible

Pigeons as art experts

- Pigeons as art experts (Watanabe et al. 1995)
- Experiment:
- 1. Pigeon in Skinner box
- 3. Reward for pecking when presented a particular artist (e.g. Van Gogh)

Pigeons as art experts (cont.)

- Pigeons were able to discriminate between Van Gogh and Chagall with 95% accuracy (when presented with pictures they had been trained on)
- Discrimination still 85% successful for previously unseen paintings of the artists
- Pigeons do not simply memorise the pictures
- They generalize from the already seen to make predictions

Biological Motivation

- Biological Learning Systems are built of very complex webs of interconnected neurons
- Information-processing abilities of biological neural systems must follow from highly parallel processes operating on representations that are distributed over many neurons
- ANNs attempt to capture this mode of computation

Biological Neural Systems

- Neuron switching time : > 10⁻³ secs
 - Computer takes 10⁻¹⁰ secs
- Number of neurons in the human brain: ~10¹¹
- Connections (synapses) per neuron: ~10⁴-10⁵
- Face recognition : ~0.1 secs
 - 100 inference steps? Brain must be parallel!
- High degree of parallel computation
- Distributed representations

Properties of Artificial Neural Nets (ANNs)

- Many simple neuron-like threshold switching units
- Many weighted interconnections among units
- Highly parallel, distributed processing
- Learning by tuning the connection weights
- ANNs are motivated by biological neural systems; but not as complex as biological systems
 - For instance, individual units in ANN output a single constant value instead of a complex time series of spikes

A Brief History of Neural Networks (Pomerleau)

- 1943: McCulloch and Pitts proposed a model of a neuron → Perceptron (Mitchell, section 4.4)
- 1960s: Widrow and Hoff explored Perceptron networks (which they called "Adelines") and the delta rule.
- 1962: Rosenblatt proved the convergence of the perceptron training rule.
- 1969: Minsky and Papert showed that the Perceptron cannot deal with nonlinearly-separable data sets --- even those that represent simple function such as X-OR.
- 1975: Werbos' ph.D. thesis at Harvard (beyond regression) defines backpropagation.
- 1985: PDP book published that ushers in modern era of neural networks.
- 1990's: Neural networks enter mainstream applications.

Appropriate Problem Domains for Neural Network Learning

- Input is high-dimensional discrete or realvalued (e.g. raw sensor input)
- Output is discrete or real valued
- Output is a vector of values
- Form of target function is unknown
- Humans do not need to interpret the results (black box model)
- Training examples may contain errors (ANN are robust to errors)
- Long training times acceptable

Prototypical ANN Approach

- Mostly, network structure is fixed. Therefore, learning
 weight adjustment
 - deciding the structure is an art!
- Units interconnected in layers
 - directed, acyclic graph (DAG)
 - skip-layer connection is possible
 - the network can be sparse, with not all possible connections within a layer being present (convolutional networks)

input layer hidden layer output layer

Types of ANNs

- Feedforward: Links are unidirectional, and there are no cycles, i.e., the network is a directed acyclic graph (DAG). Units are arranged in layers, and each unit is linked only to units in the next layer. There is no internal state other than the weights
- Recurrent: Links can form arbitrary topologies. Cycles can implement memory. Behavior can become unstable, oscillatory, or chaotic

ALVINN: training and performance

Drives 70 mph on a public highway, by \sim 5 mins training

Camera image

The weights from a hidden unit to 30 output units

30 outputs for steering 4 hidden units

30x32 pixels as inputs

30x32 weights into one out of four hidden unit. A white box indicates a positive weight and a black box a negative weight

ALVINN: training and performance

- Trained with computer-generated road images
- Involved 1200 different combinations of scenes, curvatures, lighting conditions and distortion levels
- Entire driver implemented on an on-board computer and a modified Chevy van!
- Performed comparably to the best traditional visionbased navigation systems evaluated under similar conditions
- Training was done in half-an-hour!
 - Was training done on board?
- For comparison -- Algorithm-based drivers take months for algorithm development

Perceptrons

- Structure & function
 - inputs, weights, threshold
 - hypotheses in weight vector space
- Representational power
 - defines a hyperplane decision surface
 - linearly separable problems
 - most boolean functions
 - \blacksquare m of n functions
 - Output "1" if m of n inputs are "1"s

Perceptron

Linear threshold unit (LTU)

Purpose of the Activation Function *s*

- We want the unit to be "active" (near +1) when the "right" inputs are given
- We want the unit to be "inactive" (near -1) when the "wrong" inputs are given.
- It's preferable for s to be nonlinear.
 Otherwise, the entire neural network collapses into a simple linear function.

Possibilities for function s

Sign function

$$sign(x) = +1, if x > 0$$

-1, if $x \le 0$

$$step(x) = 1$$
, if $x > threshold$
0, if $x \le threshold$
(in picture above, threshold = 0)

Sigmoid (logistic) function

$$\mathbf{sigmoid}(x) = 1/(1+e^{-x})$$

Adding an extra input with activation $x_0 = 1$ and weight $w_0 = -T$ (called the *bias weight*) is equivalent to having a threshold at T. This way we can always assume a 0 threshold.

Using a Bias Weight to Standardize the Threshold

$$w_1 x_1 + w_2 x_2 < T$$
 $w_1 x_1 + w_2 x_2 - T < 0$

Decision Surface of a Perceptron

- Perceptron is able to represent some useful functions and (x_1, x_2) : choose weights $w_0 = -1.5$, $w_1 = 1$, $w_2 = 1$
- But functions that are not linearly separable (e.g. XOR) are not representable

Implementing AND

Assume Boolean (0/1) input values...

$$h(x_1, x_2) = 1$$
 if $-1.5 + x_1 + x_2 > 0$
= 0 otherwise

Implementing OR

Assume Boolean (0/1) input values...

$$h(x_1,x_2) = 1$$
 if $-0.5 + x_1 + x_2 > 0$
= 0 otherwise

Implementing NOT

$$h(x_1) = 1$$
 if $0.5 - x_1 > 0$
= 0 otherwise

Implementing more complex Boolean functions

 $(x_1 \text{ or } x_2) \text{ and } x_3$

Perceptron Learning Rule

```
w_j \leftarrow w_j + \Delta w_j

\Delta w_j = \eta \ (y - h(\mathbf{x})) \ x_j

y is the target output for the current training example h(\mathbf{x}) is the perceptron output \eta is a small constant (e.g. 0.1) called learning rate
```

- Start with some random weights (usually small values)
- If the output is correct (y = h(x)) the weights w_i are not changed
- If the output is incorrect $(y \neq h(\mathbf{x}))$ the weights w_j are changed such that the output of the perceptron for the new weights is *closer* to y.
- The algorithm converges to the correct classification
 - if the training data is linearly separable
 - and η is sufficiently small

Perceptron Learning Rule

Perceptron Convergence Theorem

- If the training data are linear separable, the perceptron learning algorithm is guaranteed to find an exact solution in a finite number of steps (by many Rosenblatt (1962), Block, Nilsson, Minsky and Pappert, Duda and Hart, etc.)
- Proof:
- Many different solutions can be found with the different initialization of the parameters or the order of presentation of data points

Gradient Descent Learning Rule

- Perceptron learning rule fails to converge if examples are not linearly separable
- Consider linear unit without threshold and continuous output h (not just -1, 1)

$$\blacksquare h = w_0 + w_1 x_1 + \ldots + w_n x_n$$

■ Train the w_j 's such that they minimize the squared error

$$E[w_1, ..., w_n] = \frac{1}{2} \sum_{i \in D} (y_i - h(x_i))^2$$

where D is the set of training examples

Gradient Descent

$$D = \{ \langle (1,1), 1 \rangle, \langle (-1,-1), 1 \rangle, \\ \langle (1,-1), -1 \rangle, \langle (-1,1), -1 \rangle \}$$

Gradient:

 $\nabla E[w] = [\partial E/\partial w_0, \dots \partial E/\partial w_n]$

$$\Delta w = -\eta \ \nabla E[w]$$

Gradient Descent

■ Train the w_j 's such that they minimize the squared error

$$E[w_1, ..., w_n] = \frac{1}{2} \sum_{i \in D} (y_i - h(x_i))^2$$

Gradient:

$$\nabla E[w] = [\partial E/\partial w_0, ..., \partial E/\partial w_n]$$

$$\Delta w = -\eta \ \nabla E[w]$$

$$\Delta w_j = -\eta \ \partial E/\partial w_j$$

$$= -\eta \ \partial/\partial w_j \frac{1}{2} \sum_i (y_i - h(x_i))^2$$

$$= -\eta \ \partial/\partial w_j \frac{1}{2} \sum_i (y_i - \sum_j w_j x_{ij})^2$$

$$= -\eta \ \sum_i (y_i - h(x_i)) (-x_{ij})$$

Gradient Descent

Gradient-Descent($training_examples$, η)

Each training example is a pair of the form $\langle (x_1, ..., x_n), y \rangle$ where $(x_1, ..., x_n)$ is the vector of input values, and y is the target output value, η is the learning rate (e.g. 0.1)

- Initialize each w_i to some small random value
- Until the termination condition is met, Do
 - Initialize each Δw_j to zero
 - For each $\langle (x_1, ..., x_n), y \rangle$ in *training_examples* Do
 - Input the instance $(x_1, ..., x_n)$ to the linear unit and compute the output h
 - For each linear unit weight w_i Do
 - $\Delta w_j = \Delta w_j + \eta (y h(\mathbf{x})) x_j$
 - For each linear unit weight w_i Do
 - $\mathbf{w}_j = w_j + \Delta w_j$
- Termination condition error falls under a given threshold

Perceptron Learning (Thresholded Version)

- 1. Initialize weights and threshold: Set weights w_j to small random values
- 2. Present Input and Desired Output: Set the inputs to the example values x_i and let the desired output be y
- 3. Calculate Actual Output

$$h = sgn(\vec{w} \cdot \vec{x})$$

4. Adapt Weights: If actual output is different from desired output, then

$$w_j \Leftarrow w_j + \eta(y - h(\mathbf{x}))x_j$$

where $0 < \eta < 1$ is the learning rate

5. Repeat from Step 2 until done

Gradient Descent Learning (Unthresholded Version)

- 1. Initialize weights and threshold: Set weights w_j to small random values
- 2. Present Input and Desired Output: Set the inputs to the example values x_i and let the desired output be y
- 3. Calculate Unthresholded Output

$$h = \vec{w} \cdot \vec{x}$$

4. Adapt Weights: If actual output is different from desired output, then

$$w_j \Leftarrow w_j + \eta \sum_{i \in D} (y_i - h(\mathbf{x}_i)) x_{ij}$$

where $0 < \eta < 1$ is the learning rate

5. Repeat from Step 2 until done

Incremental Stochastic Gradient Descent

■ Batch mode : gradient descent $w = w - \eta \nabla E_D[w]$ over the entire data D $E_D[w] = \frac{1}{2} \sum_i (y_i - h(\mathbf{x}_i))^2$

- Incremental mode: gradient descent $w=w-\eta \nabla E_i[w]$ over individual training examples i $E_i[w] = \frac{1}{2} (y_i h(\mathbf{x}_i))^2$
- Incremental Gradient Descent can approximate
 Batch Gradient Descent arbitrarily closely if η is small enough

Comparison Perceptron and Gradient Descent Rule

Perceptron learning rule guaranteed to succeed (converge in finite steps) if

- Training examples are linearly separable
- \blacksquare Sufficiently small learning rate η

Gradient descent learning rules uses gradient descent

- Guaranteed to converge to hypothesis with minimum squared error asymptotically
- Given sufficiently small learning rate η
- Even when training data contains noise
- Even when training data not linearly separable

XOR

$$h(\vec{x}) = \vec{w} \cdot \vec{x}$$

$$E(\vec{w}) = \frac{1}{2} \sum_{i \in D} (y_i - h(\mathbf{x}_i))^2$$

$$= \frac{1}{2} \left[(-1 - w_0 - w_1 - w_2)^2 + (1 - w_0 + w_1 - w_2)^2 + (-1 - w_0 + w_1 + x_2)^2 + (1 - w_0 - w_1 + w_2)^2 \right]$$

$$= 2(1 + w_0^2 + w_1^2 + w_2^2)$$

- The error will reach the minimum 2 when $w_0 = w_1 = w_2 = 0$
- For perceptron learning, the iteration will not stop!
- For gradient descent learning, process will converge to the minimum even the dataset is not linearlyseparable!

Limitations of Threshold and Perceptron Units

Limitations of Threshold and Perceptron Units

- Perceptrons can only learn linearly separable classes
- Perceptrons cycle if classes are not linearly separable
- Threshold units converge always to MSE hypothesis
- Network of perceptrons how to train?
- Network of threshold units not necessary! (why?)

Multilayer Networks

- Single perceptrons can only express linear decision surfaces
- On the other hand, multilayer networks are capable of expressing a rich variety of nonlinear decision surfaces

output layer

hidden layer

input layer

conventionally, it's called a two-layer network

A Speech Recognition Task

Sigmoid Threshold Unit

 $\sigma(x)$ is the sigmoid function: $1/(1+e^{-x})$

$$d\sigma(x)/dx = \sigma(x) (1 - \sigma(x))$$

Derive gradient decent rules to train:

one sigmoid function

$$\partial E/\partial w_j = -\sum_i (y_i - h(\mathbf{x}_i)) h(\mathbf{x}_i) (1 - h(\mathbf{x}_i)) x_{ij}$$

 Multilayer networks of sigmoid units backpropagation:

Designation of Output Units

- Regression: identity function
- Binary classification: e.g., sigmoid function
- Multiclass classfication: softmax function

$$h(\mathbf{x}, \mathbf{w}) = \frac{\exp(net_k)}{\sum_{\ell} \exp(net_{\ell})}$$

K binary classification problem: K sigmoid function for each problem

input layer hidden layer output layer

BACKPROPAGATION Algorithm

Initialize each w_i to some small random value

Until the termination condition is met, Do

For each training example $\langle (x_1, ..., x_n), y \rangle$ Do

Input the instance $(x_1, ..., x_n)$ to the network and compute the network outputs h_k for every output unit k

For each output unit *k*

$$\delta_k = h_k (1 - h_k)(y_k - h_k)$$

For each hidden unit *j*

$$\delta_j = h_j (1 - h_j) \; \Sigma_k \, w_{kj} \; \delta_k$$

For each network weight w_{kj} Do

$$w_{kj} = w_{kj} + \Delta w_{kj}$$
 where $\Delta w_{ki} = \eta \delta_k x_{ki}$

Derivation of the

BACKPROPAGATION Rule I

$$E_i(\vec{w}) \equiv \frac{1}{2} \sum_{k \in \text{outputs}} (y_k - h_k)^2$$
$$\Delta w_{kj} = -\eta \frac{\partial E_i}{\partial w_{kj}}$$

- \blacksquare x_{kj} : the *j*th input to unit k
- \blacksquare w_{kj} : the weight associated with the jth input to unit k
- \blacksquare net_k = $\Sigma_i w_{ki} x_{ki}$ (the weighted sum of inputs for unit k)
- \blacksquare h_k : the output computed by unit k
- y_k : the target output for unit k
- \blacksquare σ : the sigmoid function
- outputs: the set of units in the final layer of the network
- Downstream(k): the set of units whose immediate inputs include the output of unit k

Derivation of the

BACKPROPAGATION Rule II

$$\frac{\partial E_i}{\partial w_{kj}} = \frac{\partial E_i}{\partial \mathrm{net}_k} \frac{\partial \mathrm{net}_k}{\partial w_{kj}} \qquad \frac{\partial E_i}{\partial \mathrm{net}_k} = \frac{\partial E_i}{\partial h_k} \frac{\partial h_k}{\partial \mathrm{net}_k}$$

$$= \frac{\partial E_i}{\partial \mathrm{net}_k} x_{kj} \qquad \frac{\partial E_i}{\partial h_k} = \frac{\partial}{\partial h_k} \frac{1}{2} \sum_{\ell \in \mathrm{outputs}} (y_\ell - h_\ell)^2$$

$$\frac{\partial E_i}{\partial h_k} = \frac{\partial}{\partial h_k} \frac{1}{2} (y_k - h_k)^2$$
Training rule for output unit weights:
$$= \frac{1}{2} 2 (y_k - h_k) \frac{\partial (y_k - h_k)}{\partial h_k}$$

$$= -(y_k - h_k)$$

$$\frac{\partial h_k}{\partial \mathrm{net}_k} = \frac{\partial \sigma(\mathrm{net}_k)}{\partial \mathrm{net}_k}$$

$$= h_k (1 - h_k)$$

$$\frac{\partial E_i}{\partial \mathrm{net}_k} = -(y_k - h_k) h_k (1 - h_k)$$

$$\Delta w_{kj} = -\eta \frac{\partial E_i}{\partial w_{ki}} = \eta(y_k - h_k) h_k (1 - h_k) x_{kj}$$

Derivation of the

BACKPROPAGATION Rule III

Training rule for

hidden unit weights

$$\begin{array}{lll} \frac{\partial E_{i}}{\partial \mathrm{net}_{k}} & = & \displaystyle \sum_{\ell \in \mathrm{Downstream}(k)} \frac{\partial E_{i}}{\partial \mathrm{net}_{\ell}} \frac{\partial \mathrm{net}_{\ell}}{\partial \mathrm{net}_{k}} \\ & = & \displaystyle \sum_{\ell \in \mathrm{Downstream}(k)} -\delta_{\ell} \frac{\partial \mathrm{net}_{\ell}}{\partial \mathrm{net}_{k}} \\ & = & \displaystyle \sum_{\ell \in \mathrm{Downstream}(k)} -\delta_{\ell} \frac{\partial \mathrm{net}_{\ell}}{\partial h_{k}} \frac{\partial h_{k}}{\partial \mathrm{net}_{k}} \\ & = & \displaystyle \sum_{\ell \in \mathrm{Downstream}(k)} -\delta_{\ell} w_{\ell k} \frac{\partial h_{k}}{\partial \mathrm{net}_{k}} \\ & = & \displaystyle \sum_{\ell \in \mathrm{Downstream}(k)} -\delta_{\ell} w_{\ell k} h_{k} (1-h_{k}) \\ & \delta_{k} & = & h_{k} (1-h_{k}) \sum_{\ell \in \mathrm{Downstream}(k)} \delta_{\ell} w_{\ell k} \\ & \Delta w_{kj} & = & \eta \delta_{k} x_{kj} \end{array}$$

Backpropagation

- Gradient descent over entire network weight vector
- Easily generalized to arbitrary directed graphs
- Will find a local, not necessarily global error minimum
 - in practice often works well (can be invoked multiple times with different initial weights)
- Often include weight momentum term

$$\Delta w_{kj}(n) = \eta \, \delta_k \, x_{kj} + \alpha \, \Delta w_{kj}(n-1)$$

- Minimizes error training examples
 - Will it generalize well to unseen instances (over-fitting)?
- Training can be slow typical 1000-10000 iterations (use Levenberg-Marquardt instead of gradient descent)
- Using network after training is fast

Learning in Arbitrary Acyclic Networks

- For networks of more than two layers
 - The δ_r value for a unit r in layer m is computed from the d values at the next deeper layer m+1 according to

$$\delta_r = o_r (1 - o_r) \sum_{s \in \text{laver } m+1} w_{sr} \delta_s$$

- For networks where nodes are not arranged in uniform layers
 - The δ_r value for any internal unit

$$\delta_r = o_r (1 - o_r) \sum_{s \in \text{Downstream } m+1} w_{sr} \delta_s$$

Learning Hidden Layer Representations

A target function:

Input		Output
10000000	\rightarrow	10000000
01000000	\rightarrow	01000000
00100000	\rightarrow	00100000
00010000	\rightarrow	00010000
00001000	\rightarrow	00001000
00000100	\rightarrow	00000100
00000010	\rightarrow	0000010
00000001	\rightarrow	0000001

Can this be learned??

Learning Hidden Layer Representations

A network:

Learned hidden layer representation:

Input		Hidden Values		Output
10000000	\rightarrow	.89 .04 .08	\rightarrow	10000000
01000000	\rightarrow	.15 .99 .99	\rightarrow	01000000
00100000	\rightarrow	.01 .97 .27	\rightarrow	00100000
00010000	\rightarrow	.99 .97 .71	\rightarrow	00010000
00001000	\rightarrow	.03 .05 .02	\rightarrow	00001000
00000100	\rightarrow	.01 .11 .88	\rightarrow	00000100
00000010	\rightarrow	.80 .01 .98	\rightarrow	00000010
00000001	\rightarrow	.60 .94 .01	\rightarrow	00000001

Training

Training

Training

Overfitting: case I

Overfitting: case II

Convergence of Backprop

Gradient descent to some local minimum

Perhaps not global minimum (because the function is nonlinear!)

Nature of convergence

- Initialize weights near zero
- Therefore, initial networks near-linear
- Increasingly nonlinear functions possible as training progresses
- Close enough to the global min. if only a local minimum

Avoid the Local Minimum

- Add momentum (through smooth area)
- Stochastic gradient descent
- Train multiple nets with different initial weights
 - Choose the best one by validation
 - Using the result from "committee"

Avoid ANN Overfitting

- 1. Weight decay
- Decrease each weight by a small factor during each iteration
- Plays the role of a penalty term
- [Keep weight values small]
- 2. Use a different validation set
- Use the number of iterations that leads to the lowest error on the validation set

Expressive Capabilities of ANN

Boolean functions

- Every boolean function can be represented by network with single hidden layer
- But might require exponential (in number of inputs) hidden units

Continuous functions

- Every bounded continuous function can be approximated with arbitrarily small error, by network with one hidden layer [Cybenko 1989, Hornik 1989]
- Any function can be approximated to arbitrary accuracy by a network with two hidden layers [Cybenko 1988]

Literature & Resources

Textbook:

- "Neural Networks for Pattern Recognition", Ch. 5, C. M. Bishop, 1996
- "Machine Learning", Ch. 4, T. M. Mitchell, 1997
- Software:
 - Neural Networks for Face Recognition http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/ftp/faces.html
 - SNNS Stuttgart Neural Networks Simulator http://www-ra.informatik.uni-tuebingen.de/SNNS
 - Neural Networks at your fingertips
 http://www.stats.gla.ac.uk/~ernest/files/NeuralAppl.html