International Islamic University Chittagong

Department of Computer Science & Engineering

Course No.: CSE -2303 & 2304 Course Title: Data Structures (& Sessional) Session: Spring = 2014 Credit Hours 3+1

Instructor: Shayhan Ameen Chy, Lecturer, Department of CSE.

Syllabus: Internal data representation; Abstract data types; Elementary data structures; arrays, lists, stacks, queue, trees, graphs; Advanced data structures; heaps, B-frees; Recursion; Sorting; Searching; Hashing; Storage management.

Textbook: I will follow the following book as core textbook. Try to get a personal copy of this book.

1. Seymour Lipschutz: (Schaum's Outline Series) Theory and Problems of Data Structures, Adapted by: G A V Pai, Tata McGraw-Hill, Indian adapted edition - 2006.

Reference Books: There are also some other very standard texts on data structure in our library. We will consult these books from time to time. These are:

1. D. Samanta: Classic Data Structures, Prentice Hall of India, 2003

- 2. Edward M. Reingold, Wilfred J. Hansen: Data Structures, CBS Publishers and Distributors.
- 3. Mark Allen Weiss: Data Structures and Algorithm Analysis in C, 2/e, Addison Wesley Longman Inc, 2001.
- 4. Robert L. Kruse, Bruce P. Leung, Clovis L. Tondo: Data Structures and Program Design in C. Prentice-Hall of India.
- 5. Yedidyah Langsam, Moshe J. Augenstein, Aron M. Tenenbaum; Data Smuetures using C and C++, 2/e, Prentice Hall India.
- 6. Ellis horowitz, Sartaj Sahni, Dinesh Mehta: Fundamentals of Data Structures in C++, Galgotia PublicationsPvt. Ltd., 2000.
- 7. N. S. Kutti, P. Y. Padhye: Data Structures in C++, Prentice Hall of India, 2001.
- 8. Nell Dale, Susan C Lilly: Pascal plus Data Structures, Algorithms and Advanced Programming, 3/e, Galgotia Publications, India.
- Robert Sedgewick, Algorithms in C, 3/e, Pearson Education, Inc, 2001.

Prerequisites: CSE-1201 & 1202 Structured Programming (& Sessional), which was covered in your second semester.

Class Schedule: We will have three lectures each of one hour duration and one sessional of two hours duration in a week.

Grading Policy: CSE 2303: Class Attendance & Performance 10, Class Tests & Assignments 10, Mid Term Examination 30 and Final Examination 50,

CSE 2304: Class Attendance & Performance 10, Lab Assignments 30, ACM Programming 10, Mid Term Examination 20 and Final Examination 30,

Homework & Programming Assignments: You have to follow the deadline to submit your homework and assignments. No late submission will be accepted. Copying will be considered as an offence and will be penalized.

8-Stanza Syllabus

	Introduction: Elementary Data organization, Information; Data types; Data Structure, Data Structure operations; Algorithm; Time-Space tradeoff of Algorithms
	b) Mathematical notation & Functions; Algorithmic Notation; Control structures; Sub-algorithms
L	e) String; String operations; Pattern matching algorithms
	Linear Array: Linear Array & its representation in memory; Traversing LA, Insertion & Deletion in LA, Bubble Sort, Linear Search & binary Search
	b) 2D Array & its representation in memory; Matrices; Algebra of matrices; Sparse matrices
3.	Stack - its representation & applications; PUSH and POP operation on stack
	b) Polish Notation, reverse polish notation; Evaluation of a postfix expression Transforming infix expression into postfix expression
4.	Queue – its representation; Insertion & deletion in Queue; Deques; Priorit Queues.
	b) Recursion [Factorial function, Fibonacci sequence, Ackermann function Towers of Hanoi]
5.	Linked list - Linked list & its representation in memory; Traversing, Searchin Insertion & Deletion operation on Linked list; Header linked lists; Two way list
6.	Complexity of algorithms, Rate of growth: Big O notation; Complexity of Lin Search, Binary search & Bubble sort algorithm
	b) Sorting - Insertion sort, selection sort, quick sort, merge sort; Searching data modification; Hashing: Hash function, collision resolution
7.	Tree- Tree terminology; representation of binary trees in memory; Traver binary tree; Binary search tree; Insertion & deletion on binary search tree; Hapsort; B trees; General tree
8.	Graph – graph terminology; representation of graphs – adjacency matrix, matrix, adjacency list; Traversing a graph – BFS & DFS

Detailed Lab Course Outline:

	Course Outline:
	Lab 1 1. Write a program to create an array of n elements and then display all the elements of the list.
	2. Write a program to find the largest number from a given list of integers. 3. Write a program to calculate the roots of the quadratic equation $ax^2 + bx + c = 0$ where a, b and c are known.
	Lab 2 4. Write a program to create an array of n elements and then separately write the
	5. Write a program to create an array of n elements and then insert an element to the list.
	6. Write a program to create an array of n elements and then delete an element from the list.
1	7. Write a program to sort n numbers using Bubble Sort algorithm.
	Lab 3 8. Write a program to search an element from a list of n numbers using Linear Search algorithm.
	9. Write a program to search an element from a list of n numbers using Binary
	Search algorithm. 10. Write a program to determine whether a number n is prime or not where 1 < n <
	2 ¹⁵ by using sieve method. 11. Write a program to write 100 randomly generated integer to a file called
	RAND.DAT. And then read the contents of the life and display area.
-	screen. Process a sorted Array Your program
	Project: Write a menu driven program to Process a sorted Array. Your program should have the following menu: Insert, Delete, Search, Display, and Exit.
Lab	4 12. Write a program to insert a string S into a text T so that S begins in position K
	CT
	13. A text T and a pattern P are in memory. Write a program to delete first occurrence of P in T.
	14. Write a program that will read a string (S) and find the index of the first
	accurrance of a pattern (P) in the string S.
	15. Write a program which calculates the no. of occurrence of each letter of an
	input text.
	16. Write a program to implement the following string operation without using any
	built in functions related to string.
	a) Find the length of a string S
	b) Copy string S2 to S1. c) Concatenate string S2 to S1.
	C1 and C7
	e) Reverse a string S. [H] 17. Write a program to interchange the row and column of a matrix.
ab 5	17. Write a program to add two matrices
	18. Write a program to add two matrices.
	19. Write a program to calculate the multiplication of two matrices. 20. Write a program to calculate the row sum and column sum of a matrix.
	20. Write a program to calculate the low sum and column sum of a matrix.
	21. Write a program that will read a positive integer in base b (2<=b<=16) and b (2<=b<=16)
	convert it into base d (2<=d<=16).

	22. Write a program to implement the push and pop operation of a stack 23. Write a program to evaluate a Postfix expression.			
	44. Write a program to convey as he			
	CXPICSCING CXPICSCION into its conivalent Postfix			
	25. Write a program to implement the Euclidean Algorithm for finding the Greatest Common Divisor (GCD) of two given positive integers.			
Lab 7	to color two faren bositive integers			
Lab 8	26. Write a processing Mid Term Examination			
	26. Write a program to show the insert and delete operations of a circular queue. 27. Write a program to show the insert and delete operations of a priority queue. 28. Write a program to calculate the Factorial of a number using recursive and non-recursive method			
	29. Write a program to find the nth term F _n of the Fibonacci sequence using recursive and non-recursive method.			
	30. Write a program to move n disks for Tower of Hanoi problem.			
Lab 9	31. Write a program to create a Linked List of n elements and then display the list. 32. Write a program to create a Linked List of n elements and then search an			
	element from the list			
	33. Write a program to create a Linked List of n elements and then insert an			
	34. Write a program to create a Linked List of n elements and then delete an element from the list.			
	35. Write a program to create a Circular Header Linked List of n elements and then			
	display the list			
	36. Write a program to create a Two way Linked List of n elements and then			
	display the list			
Lab 10 3	7. Write a program to sort n numbers using Insertion Sort algorithm.			
1 31	8. Write a program to sort n numbers using Selection Sort algorithm.			
139	9. Write a program to sort n numbers using Quick Sort algorithm.			
140	Write a program to sort n numbers using Merge sort algorithm.			
ab 11 41.	Write a program to create a Binary Search Tree of n elements and then display			
	the elements (preorder, inorder and postorder) of the tree.			
42.	Write a program to create a Binary Search Tree of n elements and then search			
	an element from the tree.			
43. Write a program to create a Binary Search Tree of n elements and then delete				
1 2	an element from the tree.			
44.1	Write a program to create a Maxheap of n elements and then display the			
e	lements of the heap.			
45. W	Write a program to create a Maxheap of n elements and then delete an element			
	om the heap.			
46. W	rite a program to sort n numbers using Heap sort algorithm.			
2 47 W	rite a program to display the adjacency matrix of a graph.			
48 W	rite a program to display the adjacency list of a graph.			
40 11/2	rite a program to traverse a graph using Breadth First Search.			
50 W	ite a program to traverse a graph using Depth First Search.			
51. Write a program to find the 100!				
52. Write a program to determine the value of the nth Fibonacci number F _n wh				
	$= F_{n-1} + F_{n-2}$ and $F_1 = F_2 = 1$ and n<=500.			
Review	class			

Detailed Lecture Schedule

Lecture 1	Introduction Data types
Lecture 2 to 3	Chapter-1: Elementary Data organization, Information, Data types, Data Structure, Data Structure operations, Algorithm; Time-Space tradeoff of Algorithms
Lecture 4	Chapter-2 [except 2.5]: Mathematical notation & Functions:
Lecture 5 to 7	Chapter-4 [up to 4.8]: Linear Array & its representation in salmony. Traversing LA, Insertion & Deletion in LA, Bubble Sort, Linear Search & binary Search
Lecture 8 to 9	Chapter 3: String; String operations; Pattern matching algorithms
Lecture 10	Class text. I
Lecture-11	Chapter-2 [only 2.5]: Complexity of algorithms. Rate of growth: Big O notation; Complexity of Linear Search, Binary search & Bubble sort algorithm
Lecture 12 to 13	Chapter-4 [4.9 - 4.14]: 2D Array & its representation in memory; Matrices; Algebra of matrices; Sparse matrices
Lecture 14 to 15	Chapter-6 [6.1-6.3]: Stack - its representation & applications; PUSH and POP operation on stack
Lecture 16 to 17	Chapter-6 [6.4]: Polish Notation, reverse polish notation, Evaluation of a postfix expression; Transforming infix expression into postfix expression
Lecture 18	Class test-2 / Review Class
	Mid Term Examination
Lecture 19 to 21	Chapter 6 [6.9-6.11]: Queue – its representation; Insertion & deletion in Queue; Deques; Priority Queues.
Lecture 22 to 23	Chapter- 6 [6.6]: Recursion [Factorial function, Fibonacci sequence, Ackermann function, Towers of Hanoi]
Lecture 24 to 27	Chapter 5: Linked list & its representation in memory; Traversing, Searching, Insertion & Deletion operation on Linked list; Header linked lists; Two way lists
Lecture 28	Class test-3
Lecture 29 to 31	Chapter 9: Sorting- Insertion sort, selection sort, quick sort, merge sort; Searching & data modification; Hashing: Hash function, collision resolution
Lecture 32 to 36	Chapter 7: Tree- Tree terminology; representation of binary trees is memory; Traversing binary tree; Binary search tree; Insertion & deletion on binary search tree; Heap; Insertion & deletion on hea Heapsort; B trees; General tree
ecture 37 to 40	Chapter 8: Graph – graph terminology; representation of graphs adjacency matrix, path matrix, adjacency list; Traversing a graph BFS & DFS
ecture 41	Class Test-4
ecture 42	Review Class