Visualization in R using ggplot2

Angela Zoss 3/20/19

https://github.com/amzoss/ggplot2-DF19

Set up environment

- R
- RStudio
- tidyverse package

Try right now:
Open RStudio
Try running "library(tidyverse)"
Tell me about any errors

Don't have it installed?

https://vm-manage.oit.duke.edu/containers

ggplot2

What is ggplot2?

an R package designed to create plots based on a theory of the grammar of graphics.

http://r4ds.had.co.nz/data-visualisation.html

Grammar of graphics

- 1. DATA: a set of data operations that create variables from datasets
- 2. TRANS: variable transformations (e.g., rank)
- 3. SCALE: scale transformations (e.g., log)
- 4. COORD: a coordinate system (e.g., polar)
- 5. ELEMENT: graphs (e.g., points) and their aesthetic attributes (e.g., color)
- 6. GUIDE: one or more guides (axes, legends, etc.).

Wilkinson, Leland. (2005). The grammar of graphics (2nd ed). New York: Springer.

Why ggplot2 instead of base R?

- nice defaults
- easy faceting
- (arguably) more natural syntax
- can switch chart types more easily

"Why I use ggplot2", David Robinson http://varianceexplained.org/r/why-I-use-ggplot2/

ggplot2: Elements

Basic elements in any ggplot2 visualization

- data
- aesthetics (variable mappings)
- geom (chart type or shape)
- coordinate system
 (the arrangement of the marks;
 most geoms use default, cartesian)

http://bit.ly/ggplot2-cheatsheet

Types of geoms

- geom_bar()
- geom_point()
- geom_histogram()
- geom_map()
- etc.

http://bit.ly/ggplot2-cheatsheet

Note: some geoms also include data summary functions. e.g., the "bar" geom will count data points in each category.

ggplot2: Basic syntax

Required elements:

Required functions:

Main function ggplot()

Shape layer

e.g., geom_bar(),
geom_point()

Data frame

name of df

Aesthetics mapping aes()

Extra settings

anything not attached to data

Template for a simple plot

```
ggplot( data = data frame ) +
```

Template for a simple plot

```
Main ggplot( data = data frame ) +
```

```
Shape geom_...( mapping = aes(variable mappings), non-variable adjustments )
```

Step-by-step

- 1. Set the data
- 2. Choose a shape layer
- 3. Map variables to aesthetics
- 4. Add non-variable adjustments

1. Set the data

"employees"

Name	Age	Salary	Highest Degree
Jane Smith	33	\$65,000	B.A.
Abby Jones	28	\$43,000	M.A.
Bridget Carden	41	\$38,000	B.A.

ggplot(employees)

2. Choose a shape layer

Name	Age	Salary	Highest Degree
Jane Smith	33	\$65,000	B.A.
Abby Jones	28	\$43,000	M.A.
Bridget Carden	41	\$38,000	B.A.

ggplot(employees) +
 geom_point()

3. Map variables to aesthetics

Name	Age	Salary	Highest Degree
Jane Smith	33	\$65,000	B.A.
Abby Jones	28	\$43,000	M.A.
Bridget Carden	41	\$38,000	B.A.

ggplot(employees) +
geom_point(
aes(x=age,
y=salary,
color=degree))

4. Add non-variable adjustments

Name	Age	Salary	Highest Degree
Jane Smith	33	\$65,000	B.A.
Abby Jones	28	\$43,000	M.A.
Bridget Carden	41	\$38,000	B.A.

```
ggplot(employees) +
geom_point(
aes(x=age,
y=salary,
color=degree),
size=10)
```


Template for a simple plot

```
Main ggplot( data = data frame ) +
```

```
Shape geom_...( mapping = aes(variable mappings), non-variable adjustments )
```


Shape layer

e.g., geom_bar(),
geom_point()

Data frame name of df

Aesthetics mapping aes()

Extra settings anything not attached to data

Inheritance

data and aesthetics will carry through from top to bottom

```
ggplot ( data = data frame,
        mapping = aes(variable mappings) )
 geom ... ( aes (add'l variable mappings),
           non-variable adjustments )
 geom ... ( aes (add'l variable mappings),
           non-variable adjustments )
```

Inheritance

data and aesthetics will carry through from top to bottom

```
ggplot ( data = data frame,
                mapping = aes(variable mappings) )
function
   Shape geom ... ( aes (add'l variable mappings),
                    non-variable adjustments )
    layer
   Shape geom ... ( aes (add'l variable mappings),
                    non-variable adjustments )
    layer
```

General inheritance strategy

```
Main
        ggplot ( main data frame,
function
                aes(x, y)
   Shape
         geom ... ( aes (add'l variable mappings),
                    non-variable adjustments )
    layer
   Shape
         geom ... ( aes (add'l variable mappings),
                    non-variable adjustments )
    layer
```

Working in RStudio

Set up environment

- R
- RStudio
- tidyverse package

Try right now:
Open RStudio
Try running "library(tidyverse)"
Tell me about any errors

Don't have it installed?

https://vm-manage.oit.duke.edu/containers

Get workshop files

URL: https://github.com/amzoss/ggplot2-DF19

With Git installed

In RStudio:

- Project → New project
- Version Control
- Git
 - Paste in GitHub URL
 - Project directory name: ggplot2-DF19
 - Subdirectory: you choose
- Create Project

Without Git installed

- Click green button to download ZIP
- Unzip files on your laptop

In RStudio:

- Project → New project...
- Existing directory
- Select unzipped folder
- Create Project

Using RStudio

- Projects
- Rmarkdown
- Cheat sheets

Why Rmarkdown?

- Plots show up inline
- Easier to incorporate explanatory text and materials
- Like to be able to easily run one chunk at a time

Caution: Running things out of order can mean your code won't work again later. Clear your environment often and run code chunks in order to be safe.

Game of Thrones character ratings

https://www.nytimes.com/interactive/2017/08/09/upshot/game-of-thrones-chart.html

Creating repeated charts

Facet_wrap

+ facet_wrap(~variable)

Facet_grid

Another categorical variable


```
+ facet_grid(yvar~xvar)
```

- + facet grid(.~xvar)
- + facet_grid(yvar~.)

Helpful data manipulation

About %>%

- Loads automatically with tidyverse
- Used throughout tidyverse (except for ggplot2)
- Pushes data from the left into the function on the right

filter

Select a subset of rows

```
data %>% dplyr::filter(name == "John")
```

select

Select a subset of columns

```
data %>% dplyr::select(id, name, age)

data %>% dplyr::select(-count)
```

https://www.rstudio.com/resources/cheatsheets/#dplyr

drop_na

Remove rows with NA values, either in any column or in specified columns

```
data %>% drop_na()
```

https://www.rstudio.com/resources/cheatsheets/#import

Star Wars character data

https://dplyr.tidyverse.org/reference/starwars.html

Working with text variables

Text variables

In R, "character" variables

Gender	Age	Household Income	Education
Response	Response	Response	Response
Male	18-29		High school degree
Male	18-29	\$0 - \$24,999	Bachelor degree
Male	18-29	\$0 - \$24,999	High school degree
Male	18-29	\$100,000 - \$149,999	Some college or Associate degree
Male	18-29	\$100,000 - \$149,999	Some college or Associate degree
Male	18-29	\$25,000 - \$49,999	Bachelor degree
Male	18-29		High school degree
Male	18-29		High school degree
Male	18-29	\$0 - \$24,999	Some college or Associate degree
Male	18-29	\$25,000 - \$49,999	Some college or Associate degree
Male	18-29	\$25,000 - \$49,999	Bachelor degree
Male	30-44	\$50,000 - \$99,999	Graduate degree
Male	18-29		High school degree
Male	18-29	\$0 - \$24,999	Some college or Associate degree
Male	18-29	\$50,000 - \$99,999	Bachelor degree

Factors

- Specify "levels" for a categorical variable
- Specify the order of those levels
- Specify whether the factor is "ordered"

forcats package: helpful functions

- as_factor(char_var): convert a character variable to a factor
- fct_infreq(factor): sort a factor by frequency, descending
- fct_reorder(factor, num_var): sort a factor by a second, numerical variable

Principles for Effective Visualizations

Principle 1: Order matters

How much experience do you have as a producer (e.g., reader, follower) of network science research?

Order by meaning

```
1. Treat variable
                                  as factor
data$answer <- fct relevel(as factor(data$answer),
                                 c("None", "A little",
                                   "Some", "A lot"))
                   2. Reorder
                                           3. Specify levels
                   levels manually
                                           in order
```

How much experience do you have as a producer (e.g., reader, follower) of network science research?

Order by value (using forcats)

```
data$academic field <-
      fct infreq(as factor(data$academic field))
                     1. Treat variable
                     as factor
                          2. Order factor by
                          inverse frequency
```


Principle 2: Put long categories on y-axis

Flip the axes

```
+ coord_flip()
```

Primary academic field Political science Medicine-Mathematics -Information science Geography-Engineering-Primary academic field Public administration-Psychology-Other-History-Skipped-Physics-Economics-Anthropology-Computer sciences-Communication studies Business Sociology-7.5 2.5 Number of participants 0.0 10.0

Oops!

```
data$academic_field <-
    fct_rev(fct_infreq(
        as_factor(data$academic_field)))</pre>
```

Have to reverse the order of the levels

Primary academic field

Principle 3: Select meaningful colors

Select colors manually, or use alternate palette

```
scale fill manual (
    values=c("snow4", "snow3",
             "tan3", "tan1",
             "turquoise2", "turquoise4"))
scale fill manual (
    values=c("#fee391","#fe9929", "#cc4c02"))
# Also see package RColorBrewer
scale fill brewer (palette="BrBG")
```


Star Wars opinion survey

https://fivethirtyeight.com/features/americas-favorite-star-wars-movies-and-least-favorite-characters/

Gapminder Data

http://www.gapminder.org/

Averages across all years of the traditional Gapminder dataset

Average total population

- 7.5 million
- 75 million
- 750 million

Region

- America
- East Asia & Pacific
- Europe & Central Asia
- Middle East & North Africa
- South Asia
- Sub-Saharan Africa

Saving charts out

ggplot2 Cheat Sheet

https://www.rstudio.com/resources/cheatsheets/#ggplot2

ggplot2 Resources

- General ggplot2 information <u>http://ggplot2.tidyverse.org/</u>
- R Graphics Cookbook (recipes for plots)
 <u>http://www.cookbook-r.com/Graphs/index.html</u>
- R for Data Science (online book that includes ggplot2)
 http://r4ds.had.co.nz/
- ggplot2: Elegant Graphs for Data Analysis (book by Hadley Wickham) <u>http://ggplot2.org/book/</u>
- ggplot2 cheatsheet (also in RStudio) <u>http://bit.ly/ggplot2-cheatsheet</u>

Videos of past workshops

http://bit.ly/DVSvideos

Questions?

angela.zoss@duke.edu