SUBJECT INDEX

228	
228Ac, in sediments 357	Ar-Ar dating
accelerator mass spectrometry 136	adularia 73
acetic acid, thermal origin 605	hornblende 73
acid	Archean 37
acetic 605	As, in stream sediments 437
oxalic 605 propionic 605	asphalt 305 Atikokan, Ontario, Canada 55, 67
acid tailings fluid 231	atmosphere, input to Chalk aquifer 251
actinides, in Archean granite 37	Au 535
activation analysis 329	analysis 227
activity	Australia
alpha 55, 67	Mt. Brockman, Northern Territory 385
Adige River estuary, northern Italy 357	Northern Territory 133
adsorption 231	Northern Territory, Mt. Brockman 385
Cu 213	authigenic
Cu on 8-Mn0 ₂ 217	quartz 507
calinity acadient effects 212	
salinity gradient effects 213 adularia 103	
alteration mineral in layered complex 73	
Africa, Damara Orogen, Namibia 535	Ba 103
Ag, in geothermal waters 579	in groundwater 417
age dating, Canadian Shield groundwaters 136	Baiyun Ebo, Inner Mongolia Autonomous Region,
age determination 135, 621	People's Republic of China 181
A1 103, 193	barite 417
in coal leachates 427	in salt dome cap rocks 523
in oilfield waters 613	basalt, trace S 127
mobility 231	base metal deposits, origin 649
in stream sediments 437	basinal brines, East Tennessee 321 ββ-hopane 305
Alberta, Canada, Calgary 205 albite 103	Be
albitite 285	in coal leachates 427
aliphatic acid anions	hydrothermal transportation 193
in formation waters 543	
aliphatic acids 605	Be(OH) 3 193
αβ22R-homohopane 305	
alteration 649	benzothiophenes, in sediments 297
fracture-controlled 73	Berkshire, United Kingdom 251
history 37	beryl, solubility with kaolinite and quartz 193
isotopic 135	214Bi, in sediments 357
low temperature 137	biomarkers, crude oil 305
mineralogy 181 minerals 135	biosphere 139
multiple 73	biotite
post-magmatic 163	alteration mineral in layered complex 73
rock, low temperature 3	bitumen 305
amorphous ferric hydroxide 231	bone phosphate, O isotopes 367
amphibole, calcic	
alteration mineral in layered complex 73	BOOK REVIEW
analysis of fluid inclusions 321	Applied Geochemistry in the 1980s 247
analytical methods thin-layer chromatography 227	bottom sediments, marine 357
xrf 337	Br, in formation waters 373
analytical model 535	brine 134, 563
sedimentary basins 649	Ca-C1 373
andesite	chemistry 459
anhydrite-bearing 337	evolution 373
high-k 337	mixing 134
anhydrite 373, 495	origin 459
magmatic 337	sulfate, Canadian Shield 133
Sr isotopes 523	U mobility 285 butyric acid, thermal origin 605
anorthosite 73, 93, 103 anorthosite-gabbro 103	butyine acid, eleman origin out
apatite 205	
Applied Geochemistry 1	
aqueous 193	
aquifer, Chalk, UK 251	C 25, 134, 136, 137, 143
Ar, in formation fluids 621	conversion to aliphatic acids 605
40.	in dolomitization models 629
⁴⁰ Ar 621	in hematite carbonatites 163
	in kidney stones 205

13 _C	Chernobyl accident fallout 357
in groundwater 251	Chernobyl, USSR 25
in natural gas 621	Chiapas, Mexico 337
14	Chivor, Colombia 193
14 _C analysis 136	chlorite 103
Ca 93, 103, 285	alteration mineral in layered complex 73
in Archean granite 37	Cl 93, 285 in fluid inclusions 321
in coal leachates 427 in dolomitization models 629	in formation waters 373
during hydrothermal alteration 181	mobility 231
in fluid inclusions 321	soluble, in phosphorite 347
in formation waters 373, 543	clay
in hematite carbonatites 163	alteration mineral in layered complex 73
in lavas and pumice 337	Cu adsorption 213
mobility 231	clay minerals, illite 37
calcic amphibole 103	climatic changes 347
calcite 81, 93, 103, 136, 495, 523, 629	Climax, Colorado, USA 399
alteration mineral in layered complex 73	Co 103
in carbonatites 163	in fumarole gases 143
fracture filling in gneiss 81	in stream sediments 437
in fractures 33	CO ₂ from decarbonativation 535
Calgary, Alberta, Canada 205	110m decarbonatization 555
California, USA 135	in fumarole gases 143
Imperial Valley 563	during hydrothermal alteration 181
Salton Sea 285	coal, weathering 427 coal leachate 427
San Joaquin Basin 613	coffinite 417
Canada Alberta, Calgary 205	Colombia
Manitoba 37, 134	Chivor 193
Whiteshell 127	Muzo 193
NE Ontario, Massey 73	Colorado, USA 55, 135, 231
northern Saskatchewan 285	Climax 399
Northwest Territories	complexation, organometallic 613
Pine Point 127	complexes
Yellowknife 133, 134	chloride 543
Ontario 93, 495	of Pb and Zn 543
Atikokan 55, 67	computer code, MINTEQ 231
Chalk River 81	congruent reactions 251
East Bull Lake, Massey, Canada 103	contaminant plume 231
NW, Eye-Dashwa Lakes pluton,	contaminants, Np migration 275
Atikokan 55, 67	contamination 649
Sudbury 133 Precambrian Shield 136	convection 639 groundwater 11
western sedimentary basin 373	Cornwall, UK, Carnmenellis 11
Canadian Shield 133, 137	Cr 103
cap rock 523	in stream sediments 437
carbon dioxide 605	crude oil
carbonate 81, 347, 629	migration 585
complexation 275	noble gases 621
trace S 127	cryptomelane 217
carbonate rocks	crystalline rocks, Canadian Shield brines 133
experimental hydrothermal alteration 181	Cs 103
Illinois Basin 477	134
carbonatite, with hematite 163	134Cs, in sediments 357
carboxylic acid anions 613	¹³⁷ Cs
Carnmenellis, Cornwall, UK 11	
catastrophe theory 639	pollutants fate in sediments 357
Cd in coal leachates 427	recent sedimentary processes 357 in sediments 357
in stream sediments 437	Cu 535
celestite 523	adsorption on clay 213
Central Mississippi, USA 543	adsorption on 8-MnO ₂ 217
CH ₄ 133	220, 50,00, 00,000
in Canadian Shield 136	adsorption on Fe-Mn oxide 213
in fumarole gases 143	adsorption on organic matter 213
chalk 251	in coal leachates 427
Chalk River, Ontario, Canada 81	in geothermal brines 563
chelating agents 329	in stream sediments 437
chemical analysis 321	cyclic deformation 103
chemistry, solution 181	cystine stones, S isotopes 205

Fe 137, 143 Damara Orogen, Namibia, Africa 535 in Archean granite 37 dating in coal leachates 427 ¹⁴C in groundwater 134 Ar-Ar 73 K-Ar 73 Fe-Mn oxide 213 in formation waters 543 in geothermal brines 563 decrepitometry 535 in groundwater 251, 417 8-Mn02 in hematite carbonatites 163 during hydrothermal alteration 181 in lavas and pumice 337 aging 217 characterization of 217 mobility 231 in porphyry Mo deposits 399 in stream sediments 437 synthetic preparation 217 desert environment 347 diagenesis 373, 649 clastic 613 Fe-Mn oxide, Cu adsorption 213 Fe²⁺ 103 organic matter 305 petroleum reservoirs 585 sandstones 507 Fe³⁺ 103 feldspar 67, 373 Fen complex, Telemark, Norway 163 ferrimolybdite 399 dibenzothiophenes, in sediments 297 dissolution feldspar 613 dissolution 347, 507 dissolved gases 136 distribution coefficients 275 dolomite 373, 495 in carbonatites 163 fertilizers, use of fine crushed rocks 243
Finnsjon, Sweden 25
fluid flow 373
equilibria 629 in sedimentary basins 649
fluid inclusions 373, 535, 585
geothermal systems 563
in Mississippi Valley-type deposits 321 dolomitization models 629 experimental hydrothermal alteration 181 fluid inclusions 321 hydrothermal origin 535 fluid systems 535 drainage, acid mine 427 Dubai 585 formation water 563 metal-rich 543 organic geochemistry 613 origin 373 formic acid, thermal origin 605 Forsmark, Sweden 25 East Bull Lake, Massey, Ontario, Canada 103 Ecuador, Quito 205 Editorial 1, 457 fossils, geochemical 305 Four Corners area, Utah, USA 134 fractures 33, 134, 135, 137 control of groundwater circulation 11 France, Massif Central 417 **EDTA 329** effervescence 535 Eh 399 free energy, Be⁺, BeOH⁺, Be(OH)₂ 193 El Chichon Volcano, Chiapas, Mexico 337 emerald deposits, origin 193 England, Wealden Basin 585 fumaroles, gas analyses 143 environmental geochemistry 357 epidote alteration mineral in layered complex 73 equilibria 579 acid base 427 Ga 103 gabbro 73, 93, 103, 137 chemical 459 isotopic 135, 459 galena, control on metals 543 radioactive 135 gases Erratum 453 atmospheric 136 eruptive products, bulk composition 337 dissolved 136 noble 3, 136, 137, 621 geochemical exploration 385, 417 evaporites 285 dewatering 535 residual brines 373 GEOCHRONOLOGY 3, 135, 137 experiment, flow 181 age dating exploration Canadian Shield groundwaters 136 geochemical 385, 417 age determination 135, 621 gold 227 Mississippi Valley-type deposits 321 uranium 385 Ar-Ar dating adularia 73 extraction, Kiba 127 Eye-Dashwa Lakes pluton, Atikokan, NW Ontario, Canada 55, 67 hornblende 73 K-Ar dating 73 U-series 37 geosphere/biosphere project 139 geothermal 563, 649 groundwater 329

F, Na-F hydrothermal solutions 181 faulting 103

human body, isotope composition 205 geothermal systems thermo-diffusive mass transport model 639 humic 213 Gidea, Sweden 25 hydrocarbons 297 association with He 133 glass, Np-doped 275 global change 139 saturated 305 hydrodynamics, Palo Duro Basin 459 gneiss 81 hydrogeochemistry 136, 639, 523 carbonate 251 calc-silicate 285 semi-pelitic 285 goethite 399, 427 hydrodynamics 459 modelling 649 gossans 399 gradient, chemical potential 639 grain size, stream sediments 437 granite 37, 137 altered 127 trace S 127 hydrothermal brines 373 groundwater circulation 11 surface fluids 579 hydrothermal alteration, experimental 181 hydrothermal deposits 285 hydrothermal fluid tracing 329 weathered 55, 67 granophyre 93 groundwater 3, 5, 25, 33, 81, 93, 134, 137, 417 Chalk aquifer 251 hydrothermal system 143 hydrous pyrolysis 605 hydroxide, Fe-Mo 399 chalk aquiter 251
dating 133, 134
flow rates 134
geothermal 329
isotopes, Canadian Shield 136
mapping circulation 11
mixing 134
Oxidizing conditions 251 hydroxybenzoic acid anions 613 oxidizing conditions 251 Illinois Basin, USA 134 quality management 251 Illinois, USA 135 reducing conditions 251 Gulf Coast, USA 523 Gulf of Mexico 297 illite 213 in Archean granite 37 ilsemannite 399 Imperial Valley, California, USA 563 In, chelates 329 continental slope and shelf 297 gypsum 93, 427 alteration mineral in layered complex 73 incongruent reactions 251 inert gases, groundwater 251
inter-laboratory bias 337
inter-laboratory comparison, xrf analyses 337
intergranular pressure solution 507
interstitial waters 251
ion exchange 251 H 25, 134, 143 isotopes in brines 459, 495 isotopes in geothermal brines 563 ionic strength, correction 275 ³H, association with hydrocarbons 133 iron hydroxides alteration mineral in layered complex 73 ⁴H, association with hydrocarbons 133 isotope dilution mass spectrometry 133 H₂, in fumarole gases 143 ISOTOPES 3 H₂S in formation waters 543 in fumarole gases 143 brine 495 C 103, 251 in groundwater 134 hair, stable isotopes 205 halite 373 in calcite 81 in human kidney stones 205 Hawaii, USA, Honolulu 205 Canadian Shield brines 133 in groundwater 25

C, in groundwater 25

dating alteration events 135

disequilibria 55, 67 HC03 93 He 137 in soil gas 11 in formation waters 543 general 3, 5, 137 H 134, 251, 459, 495 in formation waters 134 in spring waters 11 ⁴He 621 heat flow 11 in sedimentary basins 649 ²H, in groundwater 25 heat flux, geothermal systems 639 hematite 399 ³H, in groundwater 25 in Archean granite 37 in carbonatites 163 ³He in groundwater, Canadian Shield 136 Hf 103 Hg, in stream sediments 437 high-S magma 337 Hollister, North Carolina, USA 399 Honolulu, Hawaii, USA 205 hopanes 305 in groundwater, Canadian Shield 136 in soil gas 11

ISOTOPES kinetics, sorption and dissociation 275 Klipperas, Sweden, Taavinumnanen 136 Kr, in formation fluids 621 21,22 Ne in groundwater, Canadian Shield 136 0 103, 134, 251, 459, 495 in calcite 81 in formation waters 134 in teeth and urinary stones 367 180 labile U 55 laumontite 81, 93, 103
alteration mineral in layered complex 73 Canadian Shield brines 133 in groundwater 25 Pa 134 layered complex 73 Pb 136 leaching 399 Ra 134, 385 limestone 373 radioactive 5 experimental hydrothermal alteration 181 radiogenic and stable 137 in control of acid leachates 427 S 127, 523 in formation waters 134 in human kidney stones 205 in pyrite 81 magmatic gases 143 34_S, Canadian Shield brines 133 Sr 81, 93, 459, 495, 477, 523 major elements in groundwater 251 stable 5 in hematite carbonatites 163 manganese oxides 399 Manitoba, Canada 37, 134 Whiteshell 127 H 563 0 563 \$ 563 marble 285 Th 134 Mascot-Jefferson City zinc district, U 134 in groundwater 417 Tennessee, USA 321 mass transfer 231 230Th in crystalline rocks 135 Massey, NE Ontario, Canada 73 Massif Central, France 417 in crystalline rocks 135 MEDICAL GEOCHEMISTRY teeth and urinary stones 367 in Archean granite 37 238_U melanterite 427 metal sulfides, in salt dome cap rocks 523 metallogenesis 563 in crystalline rocks 135 in Archean granite 37 metamorphism 285, 563 retrograde 73 water-rock interaction 136 metasomatism, hydrothermal 181 metasomes, U deposits 285 isotopic equilibrium 135 variation 81, 563 Mexico Israel, Negev Desert, Zin area 347 Chiapas 337 El Chichon Volcano 337 Italy north, Adige River estuary 357 Mg 103, 285 northern Adriatic Sea 357 in coal leachates 427 in dolomitization models 629 in formation waters 373 in hematite carbonatites 163 during hydrothermal alteration 181 jarosite 399, 427 in lavas and pumice 337 Mg/Ca ratio, in groundwater 251
Michigan, USA 495
migration, Np in clayey sand 275
mineralogical effects, xrf analysis 337
minerals, ferromagnesian 67
minor elements, in groundwater 251
MINTEG 231 jordisite 399 K 103, 285 availability 243 during hydrothermal alteration 181 MINTEQ 231 Mississippi Valley ore deposits source of metals 543 in Archean granite 37 mixing in coal leachates 427 in fluid inclusions 321 brine 134 groundwater 134 in lavas and pumice 337 in synthetic 8-MnO₂ 217 Mn 103 in coal leachates 427 40K, in sediments 357 K-Ar dating 73 Fe-Mn oxide 213 in formation waters 543 in geothermal brines 563 K/Na ratio, in fluid inclusions 321 kaolinite, solubility with beryl and quartz 193 in stream sediments 437 mobility 231 kidney stones 205 0 isotopes 367 preparation of 8-Mn0, 217

0 25, 134, 143 isotopes in brines 459, 495 isotopes in geothermal brines 563 in porphyry deposits 399 mobility isotopes in teeth and urinary stones 367 elemental 136 O2, in groundwater 251 U 285 model, thermo-diffusive mass transport 639 modelling 193, 231, 629 isotopic 81 crude 305 sedimentary basins 649 transport of Np 275 U-etching 55, 67 U-leaching 55, 67 water-rock interaction 523 diesel 305 seep 305 Ontario, Canada 93, 495 Chalk River 81 East Bull Lake, Massey 103 NE, Massey, Canada 73 NW, Eye-Dashwa Lakes pluton, models, dolomitization 629 molybdenite, in porphyry deposits 399
Mt. Brockman, Northern Territory, Australia 385 Atikokan 55, Sudbury, Canada 133 Muzo, Colombia 193 ore 563 Mississippi Valley-type 321 ore deposits origin, Mississippi Valley-type 543 volcanic-hosted 143 ore-forming processes N 143 n-alkanes 305 hematite carbonatites 163 Na 93, 103, 285 organic acids, synthesis 605 organic geochemistry 305 organic matter in Archean granite 37
in coal leachates 427
in fluid inclusions 321
during hydrothermal alteration 181 Cu adsorption 213 oxidized 347 Na-F, hydrothermal solutions 181 Na/Ca ratio, in fluid inclusions 321 organometallic complexes 613 outgassing 133 oxalate stones, C isotopes 205 oxalic acid 605 NaC1 649 Namibia, Damara Orogen, Africa 535 natural gas noble gases 621 oxidation 285, 399 sulfide 579 origin 621 oxides Fe/Mn 213 Nb 103 Ne, in formation fluids 621 major-element 337 Negev Desert, Zin area, Israel 347 neutrons 133 New Zealand Ngawha Springs 305
North Island 579
White Island 143
Ngawha Springs, New Zealand 305
NH₃, in fumarole gases 143 Pa 55 paleoclimatic interpretations, 0 isotopes 367 paleohydrogeology 347 paragenetic sequence in weathered Mo deposits 399 Ni 103 particle-size effects, xrf analysis 337 in stream sediments 437 Pb 55, 535 nitrate, Negev Desert, Israel 347 NO₃, soluble, in phosphorite 347 deposits, origin 649 in formation waters 543 in geothermal brines 563 noble gases 621 North America in stream sediments 437 Penrose Conference 457 USA, Illinois, Illinois Basin 477
Hollister 399
North Island, New Zealand 579
North Sea, offshore Norway 585
northern Adriatic Sea, Italy 357
Northern Torritory Australia 122 People's Republic of China, Beiyun Ebo Inner Mongolia Autonomous Region 181 permeability 11
petroleum 305, 477
migration 585 Northern Territory, Australia 133 pH 193, 399 in dolomitization models 629 Northwest Territories phosphorite ores, pollution 347
Pine Point, Northwest Territories, Canada 127
pitchblende 285 Pine Point 127 Yellowknife, Canada 133, 134 Norway offshore 585 plagioclase 93 Telemark, Fen complex 163 Np, migration in clayey sand 275 plutonic rocks 133 plutons 136 NTA 329 pollution 231 nuclear energy 139 phosphorite ores 347

thermal springs 305

nuclear waste 139

porosity	S 134, 143, 427
in dolomitization models 629	in fluid inclusions 321
enhanced 613	in formation waters 543
sandstones 507	in geothermal brines 563
porphyry molybdenite deposit 399	in geothermal waters 579
powellite 399 Procephaian Shield Canada 126	isotopes in brines 523 isotopes in geothermal brines 563
Precambrian Shield, Canada 136	in kidney stones 205
precious metal deposits, origin 143 prehnite	native 399
alteration mineral in layered complex 73	trace in granites 127
propionic acid, thermal origin 605	S compounds, in sediments 297
Pu 133	S/Cl ratio, in fluid inclusions 321
pumpellyite	salinity, hydrothermal brines 563
alteration mineral in layered complex 73	salt domes 523
pumping, seismic 103	Salton Sea
pyrite 81, 427	California, USA 285
in porphyry Mo deposits 399	geothermal system 563
	San Joaquin Basin, California, USA 613
	sand, clayey 275 sandstone
	calcite-bearing 231
quartz 67, 103	diagenesis 507
alteration mineral in layered complex 73	porosity 507
hydrothermal origin 535	quartzose 507
megacrystals 535	
solubility with beryl and kaolinite 193	source of Sr 477
Quito, Ecuador 205	U-bearing 385
	Saskatchewan, northern, Canada 285
	Sb, in stream sediments 437
	Sc 103
D. 22 127	scanning electron microscopy 321
Ra 33, 137	scapolite 285
226 in groundwater 385, 417	Se, in stream sediments 437 seawater 477
in sediments 357	sedimentary basins, Michigan Appalachian 495
in surface anomalies 385	sedimentary rocks 347
radioactive equilibrium 135	sediments
radioactive waste 136	benzothiophenes 297
fallout and natural 357	dibenzothiophenes 297
surface 385	Early Proterozoic evaporative 285
radioactivity 133	trace elements 437
radionuclides 133	seepage, use of dibenzothiophenes 297
distribution	shale
sediment property relations 357	New Albany 477
subsurface production of 133 rainwater 251	source of Sr 477
rare earth elements 137	Si 103, 193
in Archean granite 37	during hydrothermal alteration 181
in hematite carbonatites 163	in oilfield waters 613
Rb 103, 523	SO ₂ , in fumarole gases 143
reaction rates 143	
reconnaissance prospecting 227	S0 ₄
redox potential 143, 427	isotopes, in granite 127
redox processes 143, 251	mobility 231
redox systems, in groundwater 417	soluble, in phosphorite 347
retardation 275	solubility beryl 193
crystalline	kaolinite 193
U and Th isotopes 135	solution 193
gneissic	aqueous 285, 347, 399
Grenville 81	hydrothermal 373, 563, 579
Precambrian 81	Soret coefficient 639
granitic 25	sorption, Np in clayey sand 275
igneous 135	speciation, aqueous and solid 275
plutonic 137	sphalerite
Tertiary 305	control on metals 543
103-	in Mississippi Valley-type deposits 321
103Ru, in sediments 357	sphene 67
	spring waters, "He 11
106Ru, in sediments 357	

trace elements springs in hematite carbonatites 163 Ra isotopes 385 thermal 305 Sr 93, 103, 137, 477 in groundwater 251 in stream sediments 437 speciation studies 217 tracer 329 isotopes in brines 459, 495, 523 transport chemical 103 ⁸⁶Sr/⁸⁷Sr, in brines 477, 495 Sri Lanka 243 equation 275 triple layer sorption 231 stability theory formalism 639 steranes 305 triterpanes 305 tritium, groundwater 251 Stripa Project, Sweden 25, 33 struvite 205 Sudbury, Ontario, Canada 133 sulfate 427 sulfide oxidation, in geothermal waters 579 supergene enrichment 399 U 33, 55, 67, 103, 133, 137 in Archean granite 37 in groundwater 385, 417 surface area 437 in groundwater dating 133 surface water 133 surveys, soil gas He 11 suspended matter labile 67 leaching by groundwater 136 mobility 285 riverine, estuarine and marine 357 Sweden 234_U 136 Finnsjon 25 Forsmark 25 234_{U/}238_U ratio 33, 37 Gidea 25 **U-series** Klipperas disequilibrium 134, 136 Taavinumnanen 136 Stripa 25 geochronology 37 Stripa Project 33 Symposium Proceedings 1 Berkshire 251 Cornwall, Carnmenellis 11 uraninite 285, 417 uric acid, C isotopes 205 system, BeO-Al₂O₃-SiO₂-H₂O 193 urinary stones 0 isotopes 367 S, trace 205 stable isotopes 205 Ta 103 USA Taavinumnanen, Klipperas, Sweden 136 California 135 Tc 133 teeth, 0 isotopes 367 Salton Sea 285 Telemark, Norway, Fen complex 163 temperature oscillations 639 San Joaquin Basin 613 Central Mississippi 543 Colorado 55, 135, 231 Climax 399 temperature perturbations in sedimentary basins 649 Gulf Coast 585, 523 Gulf of Mexico 297 Hawaii, Honolulu 205 Tennessee, USA

Mascot-Jefferson City zinc district 321
Texas Panhandle, USA 459
Th 33, 55, 67, 103, 137
in Archean granite, 37 Illinois 135 Illinois Basin 134, 477 Imperial Valley, California 563 in Archean granite 37 in groundwater dating 133 Michigan 495 in hematite carbonatites 163 leaching by groundwater 136 North Carolina, Hollister 399 **Tennessee** 230_{Th} 136 Mascot-Jefferson City 321 in Archean granite 37
Th/U ratio, in Archean granite 37 zinc district 321 Texas Panhandle 459 Utah, Four Corners area 134 $230_{\text{Th}}/234_{\text{U}}$ ratio 33, 37 Wyoming 55, 135 radioactive waste disposal 136 thermal history, petroleum reservoirs 585 thermal stability, In chelates 329 thermo-diffusion 639 Chernobyl 25 Chernobyl accident fallout 357 Utah, Four Corners area, USA 134 thermodynamics approximate calculations 181 aqueous solutions, saturated 629 thiosulfate, in geothermal waters 579 Ti 103 V 103 in stream sediments 437

208Tl, in sediments 357

waste nuclear 3 nuclear fuel 93, 103 radioactive 25, 55, 67, 275 radioactive 55 waste disposal 5 radioactive 136 water connate 251 diagenesis 629, 649 formation 373, 477 Silurian and Devonian 477 geothermal 285, 563, 649 ground 385, 399, 649 marine 477 O isotopes 367 oilfield 613
water table 399
water-rock interaction
acidic tailings fluid-bedrock 231 fumaroles 143 Gulf Coast, USA 523 Illinois Basin 477 Michigan, Appalachian Basins 495 radioactive waste disposal 136 radiogenic and noble gases 136 weathering 135 chemical 37, 55, 67, 427 porphyry Mo deposits 399 weddellite 205 western Canada sedimentary basin 373 whewellite 205 White Island, New Zealand 143 Whiteshell, Manitoba, Canada 127 Wyoming, USA 55, 135

Xe, in formation fluids 621

Y, in hematite carbonatites 163
Yellowknife,
Northwest Territories, Canada 133, 134

Zin area Negev Desert, Israel 347
zircon 67
Zn
 in coal leachates 427
 deposits, origin 649
 in formation waters 543
 in geothermal brines 563
 in Mississippi Valley-type deposits 321
 mobility 231
 in stream sediments 437
Zr 103

AUTHOR INDEX (Book Review - BR, Erratum - E)

Adediran S.A. 213 Albertazzi S. 357 Andersen T. 163 Anderson G.M. 193 Andrews J.N. 251 Appleyard E.C. 285 Baldwin D.K. 103 Bath A.H. 251 Beaucaire C. 417 Behr H.-J. 535 Bidoglio G. 275 Bornhorst T.J. 337 Borre D. 103 Bosch A. 621 Bottomley D.J. 81 Brake S. 399 Brooks J.M. 297 Cappis J.H. 133 Carothers W.W. 543 Carothers W.W. 543
Cathles L.M. 649
Chrysikopoulos C.V. 329
Cook J.M. 251
Cramer J.J. 37
Curtis D.B. 133
Dai J.H. 427
Darling W.G. 251
Davis A. 231
Davis S.N. 133 Davis S.N. 133 Dickson B.L. 385 Dissanayake C.B. 243 Dollar P. 495
Durrance E.M. 11
Edmunds W.M. 251
Elders W.A. 563
Eldridge C.S. 563 Elrick K.A. 437 Farwell S.O. 227 Farwell S.O. 227
Fendinger N.J. 427
Fisher R.S. 459
Frape S.K. 133, 134, 495
Fries T.L. 543
Fritz P. 133, 134
Fyfe W.S. 139
Gascoyne M. 3, 37, 93, 137
Giblin A.M. 285, 385
Giggenbach W.F. 143
Gold T. 133 Gold T. 133 Gregory R.G. 11 Hathon L.A. 507 Haynes F.M. 321 Heimann R.B. 639 Helz G.R. 427

Hetherington E.A. 477 Hieke Merlin 0. 357 Hitchon B. 1, 457 Horowitz A.J. 437 Houseknecht D.W. 507 Hurst S.D. 523 Ivanovich M. 134 Jackson T.J. 523 Kaback D.S. 399 Kagel C.T. 227 Kamineni D.C. 73, 93, 103, 137 Karlsson F. 25 Keerthisinghe G. 243 Kennicutt II M.C. 297 Kerrich R. 103 Kesler S.E. 321 Kharaka Y.K. 543 Kijak P.J. 427 Kimball B.A. 134 Kimball B.A. 134
Kinniburgh D.G. 251
Kolodny Y. 367
Kramer J.R. 213, 217
Kreitler C.W. 459
Krouse H.R. 127, 205
Kruger P. 329
Kyle J.R. 523
Lacerda C.P. 297
Lamothe P.J. 543
Latham A.G. 55, 67 Latham A.G. 55, 67 Law L.M. 543 LeAnderson P.J. 399 Levinson A.A. 205, 367 Lundegard P.D. 605 Luz B. 367 MacDonald, I. 134 MacGowan D.B. 613 Maest A.S. 543 Magaritz M. 347 Mazor E. 621 McCrank G.F. 73 McGee J.J. 337 McKibben M.A. 563 McLarty E. 103 McLimans R.J. 585 McNutt R.H. 93, 495 Menegazzo Vitturi L. 357 Miles D.L. 251 Milton G.M. 33 Molinaroli E. 357 Morgan-Jones M. 251 Nesbitt H.W. 134

Offermann P. 275 Perrin R.E. 133 Peterman Z.E. 135 Piggott D. 205 Posey H.H. 523 Price P.E. 523 Pushkar P. 477 Radway J.C. 427 Renders P.J. 193 Roded R. 347
Rokop D.J. 133
Ronen D. 347
Rose W.I. 337
Rosenthal E. 347
Rosholt J.N. 135 Rosholt J.N. 135 Ross J.D. 136 Runnells D.D. 231 Saltelli A. 275 Schmidt-Mumm A. 535 Schrader E.L. 399 Schwarcz H.P. 55, 67, 136 Senftle J.T. 605 Smith R.E. 247 (BR) Snelling A.A. 385 Snodgrass W.J. 217 Spencer R.J. 373 Spencer R.J. 373 Stone D. 73 Stroes-Gascoyne S. 217 Stuckless J.S. 136 Stueber A.M. 477 Surdam R.C. 613
Taggart, Jr. J.E. 3:
Tassi Pelati L. 357
Thivierge R.H. 103 Tilling R.I. 337 Toulhoat P. 417 Tullborg E.-L. 136 Ueda A. 127, 205 Vandergraaf T.T. 5, 137 Webster J.G. 579 Wei J. 181 Weston R.J. 305 Wikberg P. 25 Williams A.E. 563 Wood J.R. 629 Woolhouse A.D. 305 Xiong D. 181 Zeng Y. 181

Niwas J.M. 243

