Solutions to MATH3411 Problems 41–47

41.
$$H(S) = -\frac{2}{3}\log_2\frac{1}{3} - \frac{3}{9}\log_2\frac{1}{9} = \frac{2}{3}\log_23 + \frac{6}{9}\log_23 = \frac{4}{3}\log_23 \approx 2.113$$

42.

- Q29: **a)** $H(S) = -\frac{1}{2}\log_2\frac{1}{2} \frac{1}{3}\log_2\frac{1}{3} \frac{1}{6}\log_2\frac{1}{6} \approx 1.459$ The average length L = 1.5 > H(S) - but pretty close.
 - **b)** $H(S) = -\frac{1}{3}\log_2\frac{1}{3} \frac{1}{4}\log_2\frac{1}{4} \frac{1}{5}\log_2\frac{1}{5} \frac{1}{6}\log_2\frac{1}{6} \frac{1}{20}\log_2\frac{1}{20} \approx 2.140$ The average length L = 2.217 > H(S) - but not far off.
 - c) $H(S) = -\frac{1}{2}\log_2\frac{1}{2} \frac{1}{4}\log_2\frac{1}{4} \frac{1}{8}\log_2\frac{1}{8} \frac{1}{16}\log_2\frac{1}{16} \frac{1}{16}\log_2\frac{1}{16} \approx 1.875$ The average length L = 1.875 = H(S) - exactly the same!
 - **d)** $H(S) = -\frac{27}{40} \log_2 \frac{27}{40} \frac{9}{40} \log_2 \frac{9}{40} \frac{3}{40} \log_2 \frac{3}{40} \frac{1}{40} \log_2 \frac{1}{40} \approx 1.280$ The average length L = 1.425 > H(S) - not too far off.

Q33:
$$H(S) = -0.22 \log_4 0.22 - 0.2 \log_4 0.2 - 0.18 \log_4 0.18 - 0.15 \log_4 0.15 - 0.10 \log_4 0.10 - 0.08 \log_4 0.08 - 0.05 \log_4 0.05 - 0.02 \log_2 0.02 \approx 1.377$$

The average length L=1.47 is greater than $H(S)\approx 1.377$ - but it's pretty close.

Q35:
$$H(S^1) = -\frac{2}{3}\log_2\frac{2}{3} - \frac{1}{3}\log_2\frac{1}{3} \approx 0.918$$

 $H(S^2) = 2H(S^1) \approx 1.837$
 $H(S^3) = 3H(S^1) \approx 2.755$

The corresponding average lengths are 1, 1.889 and 2.815, respectively.

These are all greater than the corresponding entropies - but not by a lot.

- Q39: $H(S) = -0.4 \log_{10} 0.4 0.3 \log_{10} 0.3 0.2 \log_{10} 0.2 0.1 \log_{10} 0.1 \approx 0.5558$ digits/symbol. The 5-symbol message $s_2 s_1 s_3 s_1 \bullet$ was encoded as 0.493, so $\frac{3}{5} = 0.6$ digits per symbol were used, which is more than 0.5558 but not by a lot.
- **43.** Measured in information per bits, the entropy of the experiment is

$$H(S) = H_2(S) = -\frac{2}{3}\log_2\frac{1}{3} - \frac{2}{9}\log_2\frac{1}{9} - \frac{3}{27}\log_2\frac{1}{27} \approx 2.2894$$

According to p.78 of the course notes, the average codeword length per symbol of the extension S^n for increasing n converges to H(S), so the price for encoded long messages per bit will approximately be $2.2894 \times \$2.00 \approx \4.56 .

Now, measured in information per ternary units, the entropy of the experiment is

$$H_3(S) = -\frac{2}{3}\log_3\frac{1}{3} - \frac{2}{9}\log_3\frac{1}{9} - \frac{3}{27}\log_3\frac{1}{27} = \frac{13}{9}$$

The price for encoded long messages per ternary unit will approximately be $\frac{13}{9} \times \$3.25 \approx \4.69 . We see that for sufficiently long messages, the binary encoding is (slightly) cheaper.

44.

Q29:

$$p_i \quad \frac{1}{p_i} \quad \begin{array}{cccc} & & & & & & \\ & & & & & & \\ & \frac{1}{2} & \frac{1}{2} & 2 & 1 & 0 \\ & \frac{1}{3} & 3 & 2 & 10 \\ & \frac{1}{6} & 6 & 3 & 110 \\ \end{array}$$

$$\mathbf{d)} \begin{array}{c|ccccc} & & & \mathrm{SF} & \mathrm{SF} \\ p_i & \frac{1}{p_i} & \ell_i & \mathrm{code} \\ \hline \mathbf{d)} & \frac{27}{40} & \frac{40}{27} & 1 & 0 \\ \frac{9}{40} & \frac{40}{9} & 3 & 100 \\ \frac{3}{40} & \frac{40}{3} & 4 & 1010 \\ \frac{1}{40} & 40 & 6 & 101100 \\ \hline \end{array}$$

Q33: NB: Here, we use radix 4:

		SF	SF
p_i	$\frac{1}{p_i}$	ℓ_i	code
0.22	4.5	2	00
0.20	5	2	01
0.18	5.6	2	02
0.15	6.7	2	03
0.10	10	2	10
0.08	12.5	2	11
0.05	20	3	100
0.02	50	3	101

Q35:

$S^{(3)}_{p_i}$	1	$\operatorname*{SF}_{\ell_{i}}$	$_{ m code}^{ m SF}$
$\frac{-\frac{8}{27}}{4}$	$\frac{p_i}{27}$	2	00
$\frac{4}{27}$	$\frac{27}{4}$	3	010
$\frac{\overline{27}}{\frac{4}{27}}$	$\frac{27}{4}$	3	011
$ \begin{array}{r} \hline{27} \\ \hline{4} \\ \hline{27} \\ \hline{2} \\ \hline{27} \\ \hline{2} \\ \hline{27} \\$	$\frac{27}{4}$	3	100
$\frac{\overline{2}}{27}$	$\frac{2\overline{7}}{2}$ $\underline{27}$	4	1010
$\frac{2}{27}$		4	1011
$\frac{\overline{2}}{27}$	$\frac{27}{2}$	4	1100
$\frac{1}{27}$	$2\overline{7}$	5	11010

45a)
$$H_2(S) = -\frac{1}{3}\log_2\frac{1}{3} - \frac{1}{4}\log_2\frac{1}{4} - \frac{1}{6}\log_2\frac{1}{6} - \frac{3}{20}\log_2\frac{3}{20} - \frac{1}{10}\log_2\frac{1}{10} \approx 2.20$$

b) NB: Here, we use radix 3:
$$\frac{p_i \quad \frac{1}{p_i} \quad \ell_i \quad \text{code}}{\frac{1}{3} \quad 3 \quad 1 \quad 0} \\
\frac{\frac{1}{6} \quad 6 \quad 2 \quad 10}{\frac{1}{6} \quad 6 \quad 2 \quad 11} \\
\frac{\frac{3}{20} \quad \frac{20}{3} \quad 2 \quad 12}{\frac{1}{10} \quad 10 \quad 3 \quad 200}$$
The average length $L = \frac{1}{3} \times 2 + \frac{1}{4} \times 2 + \frac{1}{6} \times 2 + \frac{3}{20} \times 2 + \frac{1}{10} \times 3 = \frac{53}{30} \approx 1.77$. (This is bigger than the entropy found in part a) - but that was the **binary** entropy, not the **ternary** entropy, so there is no central diction here.)

entropy, so there is no contradiction here.)

c) The smallest two probabilities for $S^{(4)}$ are $p_{624} = \frac{3}{20 \cdot 10^3}$ and $p_{625} = \frac{1}{10^4}$; their inverses are $\frac{1}{p_{624}} = \frac{2}{3} \times 10^4 \approx 6667$ and $\frac{1}{p_{625}} = 10^4 = 10000$, so $\ell_{624} = 13$ and $\ell_{625} = 14$ (2¹³ = 8192 and 2¹⁴ = 16384)

46. $H(p) = -p \log_2 p - (1-p) \log_2 (1-p)$.

Note that $H(0) = -0 - 1 \log_2 1 = 0$ and that $H(1) = -1 \log_2 1 - 0 = 0$.

Also, for $p \in (0, 1)$, $-\log_2 p \ge 0$ and $-\log_2(1 - p) \ge 0$, so $H(p) \ge 0$.

Hence, H(p) is non-negative on the interval [0, 1].

Now note that $H'(p) = -\log_2 p + \log_2 (1 - p)$.

For $p < \frac{1}{2}$, we see that $-\log_2 p > 1$ whereas $\log_2(1-p) > -1$, so H'(p) > 0;

similarly for $p > \frac{1}{2}$, we see that $-\log_2 p < 1$ whereas $\log_2(1-p) < -1$, H'(p) < 0.

Therefore, H(p) is concave down.

We also see that the maximum of H(p) is at $p = \frac{1}{2}$ and equals $H(\frac{1}{2}) = 1$.

47.

Q36: Here, the equilibrium vector is $\frac{1}{11} \begin{pmatrix} 3\\4\\4 \end{pmatrix}$.

$$\begin{split} H(S|s_1) &= -\frac{1}{3}\log_2\frac{1}{3} - \frac{1}{3}\log_2\frac{1}{3} - \frac{1}{3}\log_2\frac{1}{3} = \log_23 \approx 1.58 \\ H(S|s_2) &= -\frac{1}{4}\log_2\frac{1}{4} - \frac{1}{2}\log_2\frac{1}{2} - \frac{1}{4}\log_2\frac{1}{4} = \frac{3}{2} = 1.5 \\ H(S|s_3) &= H(S|s_2) = 1.5 \\ H_M &= \frac{3}{11}H(S|s_1) + \frac{4}{11}H(S|s_2) + \frac{4}{11}H(S|s_3) \approx 1.52 \\ H_E &= -\frac{3}{11}\log_2\frac{3}{11} - \frac{4}{11}\log_2\frac{4}{11} - \frac{4}{11}\log_2\frac{4}{11} \approx 1.57 \end{split}$$

Q37: Here, the equilibrium vector is $\frac{1}{17} \begin{pmatrix} 6 \\ 7 \\ 4 \end{pmatrix}$.

$$H(S|s_1) = -0.7 \log_2 0.7 - 0.2 \log_2 0.2 - 0.1 \log_2 0.1 \approx 1.16$$

$$H(S|s_2) = -0.2 \log_2 0.2 - 0.6 \log_2 0.6 - 0.2 \log_2 0.2 \approx 1.37$$

$$H(S|s_2) = -0.1 \log_2 0.1 - 0.4 \log_2 0.4 - 0.5 \log_2 0.5 \approx 1.36$$

$$H_M = \frac{6}{17} H(S|s_1) + \frac{7}{17} H(S|s_2) + \frac{4}{17} H(S|s_3) \approx 1.29$$

$$H_E = -\frac{6}{17} \log_2 \frac{6}{17} - \frac{7}{17} \log_2 \frac{7}{17} - \frac{4}{17} \log_2 \frac{4}{17} \approx 1.55$$