What do self-attentions learn

from reconstruction loss?

Attention categories

Attention maps

$$G(h) = \underset{u \sim U}{\mathbb{E}} \left[\frac{1}{T} \sum_{q=1}^{T} \mathbb{H}(A_u^h[q]) \right]$$
 (1)

$$V(h) = \underset{u \sim U}{\mathbb{E}} \left[-\mathbb{H} \left(\frac{1}{T} \sum_{q=1}^{T} A_u^h[q] \right) \right]$$
 (2)

$$D(h) = \mathbb{E}_{u \sim U} \left[-\frac{1}{T^2} \sum_{q=1}^{T} \sum_{k=1}^{T} |q - k| \cdot A_u^h[q, k] \right]$$
 (3)

Outline

- Diagonal
 - Focus
 - Block diagonal
- Vertical
- Global
 - Still working on

Phoneme segmentation

Similarity matrix on MFCC

$$K[i,j] = exp(-\frac{||v_i - v_j||}{\alpha})$$

Evaluation: Precision-recall

How to count a hit?

Block diagonal learned to neglect

 Further frames → more different? NO

Phoneme relation map

- Different input utterance → different attention map
- How to summarize the operation of a head (if exists)
 - Propose to align to phonemes

$$P_{h}'[m,n] = \mathbb{E}_{u \sim U} \left[\frac{1}{T} \sum_{q=1}^{T} \sum_{k=1}^{T} \mathbb{I}_{y_{q} = Y_{m}} \cdot \mathbb{I}_{y_{k} = Y_{n}} \cdot A_{u}^{h}[q,k] \right]$$

$$P_h[m, n] = \frac{P'_h[m, n] - P_U[m, n]}{P_U[m, n]}$$

• The positive represent preference

$$C_h[n] = \frac{1}{|Y|} \sum_{m=1}^{|Y|} P_h[m, n]$$

Importance ranking

- Diagonal > Vertical > Global
- Compare with weight

Take-away

- Reconstruction:
 - Phonetic information → Diagonal attentions
 - Aware of pretraining mask length
 - Phoneme interval
 - Speaker identity → Vertical attentions
 - Focus
 - Neglect