中国矿业大学 06~07 学年第一学期

《工程数学 A》试卷(A)卷

考试时间: 100 分钟 考试方式: 闭卷

学院		班级		名	序号	
	题 号	_	=	三	总分	
	得 分					

一、选择题(每题3分,共24分)

阅卷人

- 1. $\[\] \mathcal{L}(z) = (x^2 y^2 x) + i(2xy y^2), \] \[\] \mathcal{L}(z)$ (1.).

 - (A) 在复平面上处处不可导 (B) 仅在直线 $y = \frac{1}{2}$ 上可导

 - (C) 在复平面上处处解析 (D) 仅在直线 $y = \frac{1}{2}$ 上解析
- 2. 积分 $\oint_{|z|=1} \overline{z}e^{z^2}dz = ($).

- (A) 0 (B) $2\pi i$ (C) $-2\pi i$ (D) πi

- 3. 级数 $\sum_{n=1}^{\infty} \frac{e^{in}}{(z+1)^n}$ 的收敛区域为(

 - **(A)** |z+1| > e **(B)** $|z+1| < \frac{1}{e}$
 - (C) 0 < |z+1| < 1
- **(D)** |z+1| > 1
- 4. 点 z = i 是函数 $f(z) = \frac{z}{(1+z^2)(1+e^{\pi z})}$ 的 ().
 - (A) 本性奇点 (B) 可去奇点 (C) 一级极点 (D) 二级极点

6. 己知**L**
$$[t^2] = \frac{2}{s^3}$$
,则**L** $[(t-1)^2] = ($).

(A)
$$\frac{2}{s^3}e^{-s}$$
 (B) $\frac{2}{s^3}e^{s}$

(B)
$$\frac{2}{s^3}e^s$$

(C)
$$\frac{1+(s-1)^2}{s^3}$$

(D)
$$\frac{2}{(s-1)^3}$$

二、填空题(每题3分,共18分)

1.
$$\operatorname{Im}[(1+i)^3 + (1-i)^3] = \underline{\hspace{1cm}}$$

2.
$$1^{\sqrt{2}} =$$
______.

3.
$$\operatorname{Res}\left[\frac{\cos z}{1 - e^z}, 0\right] = \underline{\hspace{1cm}}$$

三、计算题(共58分)

-1. $(8 \, \%)$ 求矢量场 $\vec{A} = xy^2 \, \vec{i} + x^2 y \, \vec{j} + zy^2 \, \vec{k}$ 在点M(1,2,1) 的矢量线方程.

- 2. (8分)设函数 f(z) = 2(x-1)y + iv(x,y) 是解析函数,且 f(2) = -i,求 f(z).
- 3. (8 分) 将函数 $f(z) = \frac{1}{(z-1)(z-2)}$ 在圆环域1 < |z| < 2内 展开成洛朗级数.
- 4. (8分) 求积分 $\oint_{|z|=3} \frac{z}{z^4-1} dz$.
- 6. (8分) 求方程 $y'' + 2y' 3y = e^{-t}$ 满足初始条件

$$y(0) = 0, \quad y'(0) = 1$$

的解.

中国矿业大学 06~07 学年第一学期

《工程数学 A》试卷 (A) 卷参考答案

考试时间: 100 分钟 考试方式: 闭卷

一、选择题(每题3分,共24分)

- 1. (B).
- 2. (B).
- 3. (D).
- 4. (D).
- 5. (C).
- 6. (C).
- 7. (B).
- 8. (B).

二、填空题(每题3分,共18分)

- 1. 0.
- $2. \cos 2\sqrt{2}k\pi + i\sin 2\sqrt{2}k\pi .$
- 3. -1.
- $4.-\frac{3+j\omega}{(3+j\omega)^2+4}.$
- $5. \ \underline{x^2 + y^2 = z}.$
- 6. $6x\vec{i} + 10y\vec{j} 2\vec{k}$.

三、计算题(共58分)

1. (8分) 求矢量场 $\vec{A} = xy^2 \ \vec{i} + x^2 y \ \vec{j} + zy^2 \ \vec{k}$ 在点 M (1,2,1) 的矢量线方程.

解: 矢量线所满足的微分方程为

$$\frac{dx}{xy^2} = \frac{dy}{x^2 y} = \frac{dz}{zy^2}$$

由
$$\frac{dx}{xy^2} = \frac{dy}{x^2y}$$
 得 , $x^2 - y^2 = c_1$,

由
$$\frac{dx}{xy^2} = \frac{dz}{zy^2}$$
 得 , $x = c_2 z$,

于是所求矢量线方程为 $\begin{cases} x^2 - y^2 = c_1 \\ x = c_2 z \end{cases}$

代入点
$$M(1,2,1)$$
 , 得
$$\begin{cases} x^2 - y^2 = -3 \\ x = z \end{cases}$$

2. (8分)设函数 f(z) = 2(x-1)y + iv(x,y) 是解析函数,且 f(2) = -i,求 f(z).

解: 因为 u(x,y) = 2(x-1)y, 所以

$$f'(z) = \frac{\partial u}{\partial x} - i\frac{\partial u}{\partial y} = 2y - i2(x - 1) = -2iz + 2i$$

$$f(z) = \int f'(z)dz = \int (-2iz + 2i)dz = -iz^2 + 2iz + C$$

又
$$f(2) = -i$$
, 故 $C = -i$, 所以

$$f(z) = -iz^2 + 2iz - i$$

3. (8分) 将函数
$$f(z) = \frac{1}{(z-1)(z-2)}$$
 在圆环域 $1 < |z| < 2$ 内 展开成洛朗级数.

$$\Re \colon f(z) = \frac{1}{(z-1)(z-2)} = \frac{1}{z-2} - \frac{1}{z-1}$$

$$= -\frac{1}{2} \frac{1}{1 - \frac{z}{2}} - \frac{1}{z} \frac{1}{1 - \frac{1}{z}}$$

$$= -\frac{1}{2} \sum_{n=0}^{\infty} (\frac{z}{2})^n - \frac{1}{z} \sum_{n=0}^{\infty} (\frac{1}{z})^n$$

$$= -\sum_{n=-\infty}^{-1} z^n - \sum_{n=0}^{\infty} (\frac{1}{2})^n z^n$$

4.
$$(8分)$$
 求积分 $\oint_{|z|=3} \frac{z}{z^4-1} dz$.

解:被积函数 $f(z) = \frac{z}{z^4 - 1}$ 有四个一级极点 $\pm 1, \pm i$ 都在圆周 |z| = 3 内,所以

$$\oint_{|z|=3} \frac{z}{z^4 - 1} dz = 2\pi i \{ \text{Res}[f(z), 1] + \text{Res}[f(z), -1] \}$$

$$+\operatorname{Res}[f(z),i]+\operatorname{Res}[f(z),-i]\}$$

$$=2\pi i\{\frac{1}{4}+\frac{1}{4}-\frac{1}{4}-\frac{1}{4}\}=0$$

6. (8分) 求方程 $y'' + 2y' - 3y = e^{-t}$ 满足初始条件

$$y(0) = 0$$
, $y'(0) = 1$

的解.

解:设L [y(t)] = Y(s),方程两边取 Laplace 变换,得

$$s^{2}Y(s) - sy(0) - y'(0) + 2[sY(s) - y(0)] - 3Y(s) = \frac{1}{s+1}$$

$$Y(s) = \frac{s+2}{(s+1)(s-1)(s+3)}$$

取 Laplace 逆变换,得

$$f(t) = L^{-1}[Y(s)]$$

$$= \text{Res}[Y(s)e^{st}, -1] + \text{Res}[Y(s)e^{st}, 1] + \text{Res}[Y(s)e^{st}, -3]$$

$$= -\frac{1}{4}e^{-t} + \frac{3}{8}e^{t} - \frac{1}{8}e^{-3t}$$

中国矿业大学 07~08 学年第一学期

《工程数学 A》 试卷(A)卷

考试时间: 100 分钟 考试方式: 闭卷

	题 号	_	=	三	总分
	得 分				
	阅卷人				
注	$[t^n] = \frac{n!}{s^{n+1}}$	$-(n \in N)$, L	$[e^{kt}] = \frac{1}{a - k} (k$	$x \in R$), L [sin	$\overline{kt} = \frac{k}{s^2 + k^2} (k \in \mathbf{R})$
	5	题 4 分,共	5 10		S + K
1.	设 $z = \frac{-3+i}{2+i}$,则其共轭复	数的辐角主值,	即 $\arg \overline{z} = \underline{\hspace{1cm}}$	
2.	函数 $f(z)$ =	$(x^2 - y^2 - x) +$	$i(2xy-y^2)$ 在_		可导.
3.	$\operatorname{Res}\left[\frac{1}{z^4 - 1}, \circ\right]$	∞] =	·		
4.	设 $f_1(t) = t^2 u$	$f(t), f_2(t) = t^3 u$	(t) ,则 $f_1(t)$ * f_2	$\underline{}(t) = \underline{}$	·
-5.	数量场 u=3	Bx ² y y ² 过点	M (2,3) 处沿 <i>ī</i>	=(1,4)的方向□	导数为
6.	矢量场 Ā= .	$xz^{2\overrightarrow{i}} + yx^{2\overrightarrow{j}} + z$	xy ² k 在点 <i>M</i> (1,	1,1) 处的散度为	J
=	、选择题(每	题 3 分,共	24 分)		
1.	在复数域内,	下列数中为纯	虚数的是().	
	(A) <i>i</i> 的主	值 (B)	ln <i>i</i> (C)	$\cos i$ (D	e^{i}
2.	积分 $\oint_{ z =1} \overline{z} dz$	z = ().			
	(A) 0	(B) –	$2\pi i$ (C)	$2\pi i$ (D	πi
3.	级数 $\sum_{n=1}^{\infty}e^{in^2}z'$	"的收敛半径为	1 ().		
	(A) 0			2 (D)) 1
		第	5 1 页 共 2 页		

- 4. $\operatorname{Res}\left[\frac{z(z^2+1)}{(z+i)^3}, -i\right] = ($).

- (A) 3i (B) 2 (C) 0 (D) 5. 欠量场 $\vec{A} = 2xyz^3\vec{i} + x^2z^3\vec{j} + 3x^2yz^2\vec{k}$,则 $\int_{(0,0,0)}^{(2,3,1)} \vec{A} \cdot d\vec{l} = ($).
- **(A)** 0 **(B)** −8 **(C)**
- 24
- 6. 己知 L $[u(t)] = \frac{1}{s}$,则 L $[t \cdot u(t-2)] = ($
 - (A) $\int_{s}^{\infty} \frac{e^{-2s}}{s} ds$
- $(\mathbf{B}) \quad \frac{e^{2s}}{s^2}$
- (C) $-\frac{2s+1}{s^2}e^{2s}$
- **(D)** $\frac{2s+1}{s^2}e^{-2s}$

三、计算题(共 52 分)

- 1. (8分) 求欠量场 $\vec{A} = x^2 \vec{i} + (x+z)y \vec{j} + z^2 \vec{k}$ 过点 M(2,1,1) 的欠量线方程.
- (8分)已知 $u(x, y) = y^3 3x^2y$ 为解析函数 f(z)的实部,求 f(z)的虚部v(x, y).
- (8分)将函数 $f(z) = \frac{z^2 2z + 5}{(z 2)(z^2 + 1)}$ 在圆环域1 < |z| < 2内 展开成洛朗级数.
- (8分) 求积分 $\oint \frac{\mathrm{d}z}{(z-1)^2(z^2+1)}$,其中 $C:|z-(1+i)|=\sqrt{2}$.
- (6分) 已知 $f(t) = t \int_0^t e^{-3t} \sin 2t dt$, 求L [f(t)].
- (8 分) 求常系数二阶线性微分方程 $y''(t) 2y'(t) + y(t) = 2e^{-t}$ 满足条件 y(0) = 0, y'(0) = 0 的解.
- 7. (6分)利用留数计算实积分 $\int_0^{+\infty} \frac{1}{(x^2+1)(x^2+4)} dx$.

《工程数学 A》试卷 (A)卷 参考答案

一、填空题(每题4分,共24分)

- 1. $\frac{3}{4}\pi$.
- $2. \qquad y = \frac{1}{2} \, .$
- 3. 0
- $4. \quad \frac{1}{60}t^6.$
- 5. $\frac{60}{\sqrt{17}}$.
- 6. 3.

二、选择题(每题3分,共24分)

- 1. **B**
- 2. **C**.
- 3. **D**.
- 4. **A**.
- 5. **C**.
- 6. **B**.
- 7. **A**.
- 0 **D**

o. **D**.

三、计算题(共 52 分)

- 1. (8分) 求矢量场 $\vec{A} = x^2 \vec{i} + (x+z)y \vec{j} + z^2 \vec{k}$ 在点 M(2,1,1) 的矢量线方程.
- 解: 矢量线所满足的微分方程为

$$\frac{dx}{x^2} = \frac{dy}{x+z} = \frac{dz}{z^2}$$

曲
$$\frac{dx}{x^2} = \frac{dz}{z^2}$$
 得 , $\frac{1}{x} - \frac{1}{z} = c_1$,

曲
$$\frac{dx-dz}{x^2-z^2} = \frac{dy}{x+z}$$
 得 , $\ln(x-z) = y+c_2$,

于是所求矢量线方程为
$$\begin{cases} \frac{1}{x} - \frac{1}{z} = c_1 \\ \ln(x - z) = y + c_2 \end{cases}$$

代入点
$$M(2,1,1)$$
,得
$$\begin{cases} \frac{1}{x} - \frac{1}{z} = -\frac{1}{2} \\ \ln(x-z) = y - 1 \end{cases}$$

2. (8 分)已知 $u(x,y) = y^3 - 3x^2y$ 为解析函数f(z)的实部,求f(z)的虚部v(x,y).

解:
$$\frac{\partial u}{\partial x} = -6xy$$
, $\frac{\partial u}{\partial y} = 3y^2 - 3x^2$.

因为
$$\frac{\partial v}{\partial y} = \frac{\partial u}{\partial x} = -6xy$$
,

所以
$$v = \int -6xy \, dy = -3xy^2 + \varphi(x)$$

上式对x求导,得

$$\frac{\partial v}{\partial x} = -3y^2 + \varphi'(x) .$$

$$\mathbb{X}\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} = -3y^2 + 3x^2,$$

故
$$\varphi'(x) = 3x^2$$
 , $\varphi(x) = x^3 + C$.

所以 f(z) 的虚部为

$$v(x, y) = -3xy^2 + x^3 + C$$
.

3. (8 分) 将函数 $f(z) = \frac{z^2 - 2z + 5}{(z - 2)(z^2 + 1)}$ 在圆环域1 < |z| < 2内 展开成洛朗级数.

解:
$$f(z) = \frac{1}{z-2} - \frac{2}{z^2+1} = -\frac{1}{2} \frac{1}{1-\frac{z}{2}} - \frac{2}{z^2} \frac{1}{1+\frac{1}{z^2}}$$

$$= -\frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n z^n - \frac{2}{z^2} \sum_{n=0}^{\infty} (-1)^n \left(\frac{1}{z^2}\right)^n$$

$$=-\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n+1}z^{n}-2\sum_{n=-\infty}^{-1}\left(-1\right)^{n}z^{2n}$$

4. (8分) 求积分
$$\oint_C \frac{\mathrm{d}z}{(z-1)^2(z^2+1)}$$
,其中 $C: |z-(1+i)| = \sqrt{2}$.

解: $f(z) = \frac{1}{(z-1)^2(z^2+1)}$ 在积分线内有两个奇点: z=1是二级极点, z=i是一二级

极点.所以

Res[
$$f(z)$$
,1] = $\left(\frac{1}{z^2+1}\right)'\Big|_{z=1} = -\frac{1}{2}$,

Res
$$[f(z), i] = \frac{1}{(z-1)^2(z+i)}\Big|_{z=i} = -\frac{1}{4}$$

那么

$$\oint_C \frac{\mathrm{d}z}{(z-1)^2(z^2+1)} = 2\pi i \left(-\frac{1}{2} + \frac{1}{4}\right) = -\frac{1}{2}\pi i.$$

5. (6分) 己知
$$f(t) = t \int_0^t e^{-3t} \sin 2t dt$$
, 求L [$f(t)$].

解:
$$\mathcal{L}[\sin 2t] = \frac{2}{s^2 + 4},$$

$$\mathcal{L}[e^{-3t}\sin 2t] = \frac{2}{(s+3)^2 + 4},$$

$$\mathcal{L}\left[\int_{0}^{t} e^{-3t} \sin 2t dt\right] = \frac{1}{s} \frac{2}{(s+3)^{2}+4}$$

所以
$$\mathcal{L}[f(t)] = \mathcal{L}[t\int_0^t e^{-3t} \sin 2t dt]$$

$$= \frac{d}{ds} \left[-\frac{2}{s[(s+3)^2 + 4]} \right] = \frac{2(3s^2 + 12s + 13)}{s^2[(s+3)^2 + 4]^2}$$

- 6. (8分) 求常系数二阶线性微分方程 $y''(t)-2y'(t)+y(t)=2e^{-t}$ 满足条件 y(0)=0,y'(0)=0 的解.
- 解: 令 L[y(t)] = Y(s), 方程两边取拉氏变换得,

$$s^{2}Y(s) - 2sY(s) + Y(s) = 2\frac{1}{s+1}$$

得
$$Y(s) = \frac{2}{(s-1)^2(s+1)}$$

所以
$$y(t) = L^{-1}[Y(s)]$$

= $te^t - \frac{1}{2}e^t + \frac{1}{2}e^{-t}$

7. (6分)利用留数计算实积分 $\int_0^{+\infty} \frac{1}{(x^2+1)(x^2+4)} dx$.

解: 原式 =
$$\frac{1}{2} \int_{-\infty}^{+\infty} \frac{dx}{(x^2+1)(x^2+4)}$$

= $\pi i \left(\text{Re } s \left[\frac{dz}{(z^2+1)(z^2+4)}, i \right] + \text{Re } s \left[\frac{dz}{(z^2+1)(z^2+4)}, 2i \right] \right)$
= $\pi i \left(-\frac{i}{6} + \frac{i}{12} \right)$
= $\frac{\pi}{12}$

中国矿业大学 08-09 学年第一学期 《工程数学》试卷(A)卷

考试时间: 100 分钟 考试方式: 闭卷

学院	<u></u>	班级		姓名_		学号					
题 号			=	四	五	六	七	总分			
得 分											
阅卷人											
一、填空题(每空 4 分,共 32 分) 1) $f(t) = \sin \omega_0 (t - t_0)$ 的傅氏变换为 2) 函数 $f(z) = x y^2 + i x^2 y$ 在 $z = 0$ 处的导数为 3) $\lim_{t \to 1} (t^2 \bar{i} + \sin t \ \bar{j} + e^t \bar{k}) =$											
	4) 欠量场 $\overrightarrow{A} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$ 从下向上通过有向曲面 $z = \sqrt{x^2 + y^2}$ (0 < z < 2) 的通量为										
5) 函数	f(t) = s	$\sin(2t -$	6) 的拉	氏变换的]象函数	为					
6) 矢量	$5 \frac{\vec{A} = x}{1}$	$\frac{3\vec{i}}{i}$ $2x^{i}$	$2y\vec{j}+2$	yz ⁴ k 在;	<i>∺ M</i> (1,-	-2,1) 处放	旋度为				
7) 设 $f(z) = z^2 e^{\frac{1}{z}}$ 则 Res $[f(z),0] =$ 8) 函数 $f(t) = \int_0^t t e^{-3t} \sin 2t dt$ 的拉氏变换为											
9) <i>C</i> 是国	直线 OA,	<i>O</i> 为原	点 <i>,A</i> 为	j2+i,	则 $\int_C \operatorname{Re}($	(z)d $z =$		•			
10) 复数	10) 复数 $\frac{1}{3-2i}$ 的辐角主值为										

三、(10 分)求矢量场 $\bar{A} = xz\bar{i} + yz\bar{j} - (x^2 + y^2)\bar{k}$ 通过点M(2,-1,1)的矢量线方程.

三、(10分)用拉氏变换的方法求微分方程

$$y'' + 4y' + 3y = e^{-t}$$

满足条件 y(0) = y'(0) = 1 的解.

四、(10 分) 计算积分 $\oint_{|z|=3} \frac{dz}{z^4(z^{10}-2)}$ (积分曲线为正向).

五、(10 分) 证明矢量场 $\vec{A} = 2xyz^2\vec{i} + (x^2z^2 + \cos y)\vec{j} + 2x^2yz\vec{k}$ 为保守场,

并求积分 $\int_A^B \vec{A} \cdot d\vec{l}$,其中A(1,0,2), B(2,1,1).

六、(10 分) 将函数 $f(z) = \frac{1}{z^2(z+1)}$ 分别在圆环域 0 < |z+1| < 1 展开成洛朗级数.

中国矿业大学 08-09 学年第一学期

《工程数学》试卷(A)卷参考答案

一、填空题

1)
$$j\pi e^{-j\omega t_0} [\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$$

- 2) 0.
- 3) $\vec{i} + \sin 1 \vec{j} + e\vec{k}$.
- 4) 0.

$$5) \frac{2\cos 6 - s\sin 6}{s^2 + 4}.$$

- 6) $2\vec{i} + 8\vec{k}$.
- 7) $\frac{1}{6}$.

8)
$$\frac{4(s+3)}{s[(s+3)^2+2^2]^2}.$$

- 9) 2+i.
- 10) $\arctan \frac{2}{3}$.

二、(10 分)求矢量场 $\bar{A} = xz\bar{i} + yz\bar{j} - (x^2 + y^2)\bar{k}$ 通过点M(2,-1,1)的矢量线方程.

解: 矢量线所满足的微分方程为

$$\frac{dx}{xz} = \frac{dy}{yz} = \frac{dz}{-(x^2 + y^2)}.$$

由
$$\frac{dx}{xz} = \frac{dy}{yz}$$
 得 , $x = c_1 y$

$$\frac{xdx + ydy}{(x^2 + y^2)z} = \frac{dz}{-(x^2 + y^2)},$$

即

$$xdx + ydy = -zdz,$$

解之得

$$x^2 + y^2 + z^2 = c_2$$

于是矢量线方程为

$$\begin{cases} x = c_1 y, \\ x^2 + y^2 + z^2 = c_2 \end{cases}$$

代入点
$$M(2,-1,1)$$
,得
$$\begin{cases} x = -2y, \\ x^2 + y^2 + z^2 = 6 \end{cases}$$

三、(10分)用拉氏变换的方法求微分方程

$$y'' + 4y' + 3y = e^{-t}$$

满足条件 y(0) = y'(0) = 1 的解.

解:设 $\mathcal{L}[y(t)] = Y(s)$,方程两边取拉氏变换,得

$$[s^{2}Y(s) - sy(0) - y'(0)] + 4[Y(s) - y(0)] + 3Y(s) = \frac{1}{s+1}$$

代入 y(0) = y'(0) = 1,整理得

$$Y(s) = \frac{s^2 + 6s + 6}{(s+1)^2(s+3)}.$$

所以

$$y(t) = \mathcal{L}^{-1}[Y(s)]$$

= $Res[Y(s)e^{st}, -3] + Res[Y(s)e^{st}, -1]$

$$= \lim_{s \to -3} \left\{ (s+3) \frac{s^2 + 6s + 6}{(s+3)(s+1)^2} e^{st} \right\} + \lim_{s \to -1} \frac{1}{(2-1)!} \frac{d}{ds} \left\{ (s+1)^2 \frac{s^2 + 6s + 6}{(s+3)(s+1)^2} e^{st} \right\}$$

$$= -\frac{3}{4} e^{-3t} + \frac{1}{2} t e^{-t} + \frac{7}{4} e^{-t}.$$

四、(10分) 计算积分 $\oint_{|z|=3} \frac{dz}{z^4(z^{10}-2)}$ (积分曲线为正向).

解:
$$\oint_{|z|=3} \frac{dz}{z^4 (z^{10} - 2)} = -2\pi i \operatorname{Res}[f(z), \infty]$$
$$= 2\pi i \operatorname{Res}[f(\frac{1}{z}) \frac{1}{z^2}, 0]$$
$$= 2\pi i \operatorname{Res}[\frac{1}{z(1 - 2z^{10})}, 0]$$
$$= 2\pi i.$$

五、(10 分) 证明矢量场 $\vec{A} = 2xyz^2\vec{i} + (x^2z^2 + \cos y)\vec{j} + 2x^2yz\vec{k}$ 为保守场, 并求积分 $\int_A^B \vec{A} \cdot d\vec{l}$,其中 A(1,0,2), B(2,1,1) .

$$\mathfrak{M}: \quad : \quad D\vec{A} = \begin{pmatrix} 2yz^2 & 2xz^2 & 4xyz \\ 2xz^2 & -\sin y & 2x^2z \\ 4xyz & 2x^2z & 2x^2y \end{pmatrix}$$

 $: rot \vec{A} = [2x^2z - 2x^2z]\vec{i} + [4xyz - 4xyz]\vec{j} + [2xz^2 - 2xz^2]\vec{k} = \vec{0}$. 也就是说矢量场 \vec{A} 为保守场.

场内积分与路径无关:

$$\int_{A}^{B} \vec{A} \cdot d\vec{l} = \int_{1}^{2} 0 dx + \int_{0}^{1} (2^{2} \cdot 2^{2} + \cos y) dy + \int_{2}^{1} 2 \cdot 2^{2} \cdot 1 \cdot z dz$$
$$= 16 + \sin 1 - 12 = 4 + \sin 1.$$

六、(10 分) 将函数 $f(z) = \frac{1}{z^2(z+1)}$ 分别在圆环域 0 < |z+1| < 1 展开成洛朗级数.

$$\widehat{\mathbb{H}}: \quad \frac{1}{z} = -\frac{1}{1 - (z + 1)} = -\sum_{n=0}^{\infty} (z + 1)^n$$

$$\frac{1}{z^2} = -\left(\frac{1}{z}\right)' = \left(\sum_{n=0}^{\infty} (z + 1)^n\right)' = \sum_{n=1}^{\infty} n(z + 1)^{n-1}$$

$$f(z) = \frac{1}{z^2(z+1)} = \frac{1}{z+1} \sum_{n=1}^{\infty} n(z+1)^{n-1} = \sum_{n=1}^{\infty} n(z+1)^{n-2}.$$

中国矿业大学

《工程数学》试卷(A)卷(48学时)

考试时间: 100 分钟 考试方式: 闭卷

		`		/ + - 1	3 17 4 . 1.				
学院		班级		姓名_		学号			
题 号			=						
越 亏		1	2	3	4	5	总分		
得 分									
阅卷人									
一、填空题 (每题 5 分,共 50 分)									
、 $-1+i$ 的辐角主值为。									

- **2、**在复平面上 sin z **是否**有界_____。(填"**是**"或"**否**")
- 3、函数 $f(t) = u(t)e^{-\beta t}$, $(\beta > 0)$ 的傅氏变换为_____。
- 4、函数 $f(z) = \frac{\sin z z}{z^4}$ 在极点 z = 0 处的留数为_____。
- 5、积分 $\oint_{C} \frac{z^2}{(z-2)^3} dz$ 的值为_____。(其中 C 为 |z|=3,正向曲线)
- 6 、设 $F(s) = \frac{1}{s^2(s^2+1)}$,则其拉氏逆变换为_____。
- 7、级数 $\sum_{n=1}^{\infty} \frac{z^n}{n^3}$ 的收敛半径为_____。
- 8、 $\int_C z^2 dz =$ _____。(其中C是z=0到z=3+4i的直线段)
- 9、若 $f(z) = x^2 y^2 + 2xyi$,则 f'(z) =______。
- 10、矢量场 $\vec{A} = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k}$ 在点M(I,I,I)的散度为_____。

- 二. 计算题 (共 50 分)
- 1、(10 分)) 求函数 $F(s) = \frac{1}{(s^2+1)^2}$ 的拉氏逆变换。

2、(10分) 求函数 $f(z) = \frac{1}{(z+i)^{10}(z-2)}$ 在无穷远点处的留数

3、(10 分) 证明矢量场 $\vec{A} = 2xyz\vec{i} + x^2z\vec{j} + x^2y\vec{k}$ 为保守场,并计算曲线积分 $\int_L \vec{A}d\vec{l}$,其中 起点为 A(1,0,2) ,终点为 B(2,1,-1) 。

4、(10分)利用拉氏变换求下面微分方程的解:

$$y'' + 2y' - 3y = e^{-t}$$
, $y(0) = 0$, $y'(0) = 1$

共4页 第3页

5、(10 分) 求函数 $f(z) = \frac{z}{z^2 - 2z - 3}$ 在点 $z_0 = 0$ 处的泰勒展开式,并指出它的收敛半径。

《工程数学》试卷(A)卷(48 学时) 答案

一、填空题(共50分)

1.
$$\frac{3\pi}{4}$$
 2. $\underline{\underline{\beta}}$ 3. $\frac{1}{\underline{\beta+jw}}$ 4. $\underline{\frac{1}{6}}$ 5. $\underline{2\pi i}$

6.
$$t - \sin t$$
 7. $1 - \sin t$ 8. $1 - \sin t$ 9. $1 - \sin t$ 10. $1 - \sin$

二. 计算题 (共50分)

1、(10 分)) 求函数
$$\frac{1}{(s^2+1)^2}$$
 的拉氏逆变换。

解:

$$f(t) = \sin t * \sin t = \int_0^t \sin \tau \sin(t - \tau) d\tau$$
$$= \frac{1}{2} \int_0^t (\cos(2\tau - t) - \cos t) d\tau$$
$$= \frac{1}{2} (\sin t - t \cos t)$$

2、(10 分) 求函数 $f(z) = \frac{1}{(z+i)^{10}(z-2)}$ 在无穷远点处的留数

解: Re
$$s[f,\infty] = (2 \%) - \text{Re } s \left[f\left(\frac{1}{z}\right) \frac{1}{z^2}, 0 \right]$$

$$(1 \%) = -\text{Re} s \left[\frac{1}{\left(\frac{1}{z} + i\right)^{10} \left(\frac{1}{z} - 2\right)} \frac{1}{z^{2}}, 0 \right] = -\text{Re} s \left[\frac{z^{9}}{(1 + zi)^{10} (1 - 2z)}, 0 \right] = 0 \quad (2 \%)$$

3、(10 分) 证明矢量场 $\vec{A} = 2xyz\vec{i} + x^2z\vec{j} + x^2y\vec{k}$ 为保守场,并计算曲线积分 $\int_L \vec{A}d\vec{l}$,其中起点为 A(1,0,2) ,终点为 B(2,1,-1) 。

解: 因为

$$rot \vec{A}(t) = \{x^2 - x^2, 2xy - (2xy), 2xz - (2xz)\}\$$

= $\vec{0}$

所以为保守场。

$$\int_{L} \vec{A} d\vec{l} = \int_{1}^{2} 0 dx + \int_{0}^{1} 8 dy + \int_{2}^{-1} 4 dz$$
$$= -4$$

4、(10分)利用拉氏变换求下面微分方程的解:

$$y'' + 2y' - 3y = e^{-t}$$
, $y(0) = 0$, $y'(0) = 1$.

解:

设L(y(t)) = Y(s),对方程两边取拉氏变换,得

$$s^{2}Y(s) - sy(0) - y'(0) + 2sY(s) - 2y(0) - 3Y(s) = \frac{1}{s+1}$$

$$\mathbb{R}^{3}S^{2}Y(s) - 1 + 2sY(s) - 3Y(s) = \frac{1}{s+1},$$

$$Y(s) = \frac{s+2}{(s+1)(s-1)(s+3)}$$
, 利用反演公式得

$$y(t) = -\frac{1}{4}e^{-t} + \frac{3}{8}e^{t} - \frac{1}{8}e^{-3t}$$

5、(10 分) 求函数 $f(z) = \frac{z}{z^2 - 2z - 3}$ 在点 $z_0 = 0$ 处的泰勒展开式,并指出它的收敛半径。

解:
$$f(z) = \frac{z}{(z-3)(z+1)} = \frac{z}{4} \left(\frac{1}{z-3} - \frac{1}{z+1} \right) = -\frac{z}{4} \left[\frac{1}{1-(-z)} + \frac{1}{3} \frac{1}{1-\frac{z}{3}} \right]$$

$$\frac{1}{1 - (-z)} = 1 - z + z^2 - z^3 + \dots + (-z)^n + \dots \qquad |z| < 1$$

$$\frac{1}{1-\frac{z}{3}} = 1 + \frac{z}{3} + (\frac{z}{3})^2 + \dots + (\frac{z}{3})^n + \dots$$
 $\left|\frac{z}{3}\right| < 1, \quad |z| < 3$

所以
$$f(z) = -\frac{z}{4} \{1 - z + z^2 - z^3 + \dots + (-z)^n + \dots + \frac{1}{3} [1 + \frac{z}{3} + (\frac{z}{3})^2 + \dots + (\frac{z}{3})^n + \dots] \}$$

$$= -\frac{z}{4} \{ \sum_{n=0}^{\infty} (-z)^n + \frac{1}{3} \sum_{n=0}^{\infty} (\frac{z}{3})^n \} = \frac{1}{4} [\sum_{n=0}^{\infty} (-z)^{n+1} - \sum_{n=0}^{\infty} (\frac{z}{3})^{n+1}], |z| < 1$$

$$f(z) = \frac{1}{4} \left[\sum_{n=0}^{\infty} (-z)^{n+1} - \sum_{n=0}^{\infty} \left(\frac{z}{3} \right)^{n+1} \right]$$
的收敛半径 R=1。

中国矿业大学

《工程数学》试卷(A)卷(64 学时)

考试时间: 100 分钟 考试方式: 闭卷

	学院		_班级		姓名	_	 学号_	
	题 号				=			总分
			1 2	2	3	4	5	10:71
	得 分							
	阅卷人		, .,					
_	1、填空是	৩ (每题	[5分,共	(50分)				
1.	-1-i	的辐角主	值为	o				
2	、解析函	数的导	函数是否定	丕解析?_	0	(填"	是"或'	'否")
3	、若 Z ₁ =	iz_2 ,则	向量 <i>oz</i> ₁	$\overrightarrow{oz_2}$ 的夹角	角为		o	
4	、函数 f	(z) = z	在点(0	,0)处的导	异数为	o		
5	、函数 f	$(z) = \frac{\sin z}{z}$	$\frac{\mathbf{n}z-z}{z^4}$ 在	E极点 <i>Z</i> =	= 0 处的旨	留数为 <u></u>		
6.	$\oint_{z=4} \left(\frac{1}{(z-z)^2} \right)^{-1} dz$	$\frac{1}{(z+1)^2} +$	$-\frac{2}{z-3}dz$	Z =	0	(积分沿	正向圆周	进行)
7.	、设 <i>F(s)</i>	$=\frac{s}{(s^2+1)^2}$) ² ,则其	拉氏逆变	换为		o	
8-	、幂级数	$\sum_{n=1}^{\infty} (cos$	in)z ⁿ 的印	女敛半径之	为	o		
9	、、函数、	f(t) =	$u(t)e^{-t}$	$^{eta t},(eta >$	· 0) 的傅	氏变换为		
1($\int_C z^2 d$	z =		_。(其中	^口 C是z=	0到z=1	+i 的直统	线段)

- 二、计算题 (每题 10 分, 共 50 分)
 - 1、((10 分) 求幂级数 $\sum_{n=1}^{\infty} (-1)^{n-1} n z^n$ 的收敛半径与和函数。

 $\frac{-2 \cdot (10 \, eta) \, 证明矢量场 \, \vec{A} = 2xyz^2 \vec{i} + \left(x^2 z^2 + \cos y\right) \vec{j} + 2x^2 yz\vec{k}$ 是保守场,并计算曲线 $\frac{-2xyz^2}{4}$ 表示的 $\frac{1}{4}$ 表示的 $\frac{1}{$

3、((10分)利用拉氏变换求下面微分方程的解:

$$y'' + 2y' - 3y = e^{-t}$$
, $y(0) = 0$, $y'(0) = 1$.

4、(10 分) 求函数
$$f(z) = \frac{1}{(z+i)^{10}(z-2)}$$
 在无穷远点处的留数

5、(10 分) 把函数 $f(z) = \frac{1}{(z-1)(z-2)}$ 在圆环域 0 < |z-1| < 1 内展开成洛朗级数。

《工程数学》试卷(A)卷(64 学时) 答案

一、填空题(共50分)

1.
$$-\frac{3\pi}{4}$$
 2. $\frac{\pi}{2}$ 4. 0 5. $-\frac{1}{6}$
6. $\frac{4\pi i}{2}$ 7. $-\frac{1}{2}t\sin t$ 8. e^{-1} 9. $\frac{1}{\beta + jw}$ 10. $\frac{1}{3}(1+i)^3$

- 二. 计算题 (共50分)
- **1、**((10 分) 求幂级数 $\sum_{n=1}^{\infty} (-1)^{n-1} n z^n$ 的收敛半径与和函数。

解: 收敛半径

$$R = \lim_{n \to \infty} \left| \frac{c_n}{c_{n+1}} \right| = 1 \dots 3 \text{ fb}$$

$$\sum_{n=1}^{\infty} (-1)^{n-1} n z^n = z \sum_{n=1}^{\infty} (-1)^{n-1} n z^{n-1} \dots 3 \text{ fb}$$

$$\Leftrightarrow f(z) = \sum_{n=1}^{\infty} (-1)^{n-1} n z^{n-1}$$

则

2、(10 分)证明矢量场 $\vec{A} = 2xyz^2\vec{i} + (x^2z^2 + \cos y)\vec{j} + 2x^2yz\vec{k}$ 是保守场,并计算曲线积分 $\int_{L} \vec{A}d\vec{l}$,其中起点为 A(1,0,2),终点为 B(2,1,1)。

解: 由 \vec{A} 的雅可比矩阵

$$D\vec{A} = \begin{pmatrix} 2yz^2 & 2xz^2 & 4xyz \\ 2xz^2 & -\sin y & 2x^2z \\ 4xyz & 2x^2z & 2x^2y \end{pmatrix} \dots 2$$

得

rot
$$\vec{A} = (2zx^2 - 2zx^2)\vec{i} + (4xyz - 4xyz)\vec{j} + (2xz^2 - 2xz^2)\vec{k} = 0$$
2 \dot{m}

故 \vec{A} 为有势场,那么存在函数u使得 $\vec{A} = \operatorname{grad} u$,

$$\mathbb{R}(x_0, y_0, z_0) = (0, 0, 0),$$

$$u = \int_0^x 0 dx + \int_0^y \cos y dy + \int_0^z 2x^2 y z dz = \sin y + x^2 y z^2 \quad \dots \quad 4 \text{ fr}$$
$$\int_L \overrightarrow{A} d\overrightarrow{l} = 4 + \sin 1 \quad \dots \quad 2 \text{ fr}$$

3、(10分)利用拉氏变换求下面微分方程的解:

$$y'' + 2y' - 3y = e^{-t}$$
, $y(0) = 0$, $y'(0) = 1$.

设L(y(t)) = Y(s),对方程两边取拉氏变换,得

$$s^{2}Y(s) - sy(0) - y'(0) + 2sY(s) - 2y(0) - 3Y(s) = \frac{1}{s+1} \dots 4$$

$$Y(s) = \frac{s+2}{(s+1)(s-1)(s+3)}$$
, 利用反演公式得

$$y(t) = -\frac{1}{4}e^{-t} + \frac{3}{8}e^{t} - \frac{1}{8}e^{-3t} - \cdots$$

4、(10 分) 求函数
$$f(z) = \frac{1}{(z+i)^{10}(z-2)}$$
 在无穷远点处的留数

解:
$$\operatorname{Re} s[f,\infty] = (3 \%) - \operatorname{Re} s \left[f \left(\frac{1}{z} \right) \frac{1}{z^2}, 0 \right]$$

$$(2 \%) = -\text{Re} s \left[\frac{1}{\left(\frac{1}{z} + i\right)^{10} \left(\frac{1}{z} - 2\right)} \frac{1}{z^{2}}, 0 \right] = -\text{Re} s \left[\frac{z^{9}}{(1 + zi)^{10} (1 - 2z)}, 0 \right] = 0 \quad (5 \%)$$

5、(10 分) 把函数
$$f(z) = \frac{1}{(z-1)(z-2)}$$
 在圆环域 $0 < |z-1| < 1$ 内展开成洛朗级数。

解:

$$= -\sum_{n=0}^{\infty} (z-1)^n - \frac{1}{z-1} = -\sum_{n=-1}^{\infty} (z-1)^n \qquad \cdots 5 \ \text{f}$$

中国矿业大学 2014~2015 学年第一学期

《工程数学 A》 试卷 (A) 卷 (48 学时)

考试时间: 100 分钟 考试方式: 闭卷

学院		班级			名	学号			
	题	号	_	=	:	三	总分		
	得	分							
	阅	卷人							
一、选择题(每题 4 分, 共 20 分)									
1. 设 <i>f</i>	f(z) =	$(x^2 - y^2)$	-x)+i(2xy-	- y²),则	$\int f(z)$	(D).			
	(A)	在复平	面上处处不同	可导	(B)	仅在直线 y =	$\frac{1}{2}$ 上解析		
	(C)	在复平	面上处处解机	F	(D)	仅在直线 y =	$\frac{1}{2}$ 上可导		
2. 下列复数中为正实数的是(B)									
	(A)	ln i,			(B)	i^i			
	(C)	$\int_0^i Z$	cos zdz		(D)	$(1+i)^4$			
3. 复数	女1-cc	$\cos \varphi + i \sin \varphi$	nφ,(其中0<	$(\varphi < \pi)$	的辐射	角主值为(A)		
	(A)	$\frac{\pi}{2} - \frac{\varphi}{2}$			(B)	$\frac{\pi}{2} + \frac{\varphi}{2}$			
	(C)	$\pi - \varphi$			(D)	$\frac{\pi}{2} - \frac{\varphi}{4}$			
4. 若 <i>z</i>	$z_1 = iz_2$	则向量	$\overrightarrow{oz_1} \ni \overrightarrow{oz_2}$	的关系是	₫ (C)			

A)同向 B)反向 C)垂直 D)以上都不对

- 5. 函数 $\frac{s}{(s^2+1)^2}$ 的拉氏逆变换是 (A).
 - (A) $\frac{1}{2}t\sin t$
- (B) $-\frac{1}{2}t\sin t$
- (C) $t \sin t$

(D) $\frac{1}{2}\sin t$

二、填空题(每题4分,共20分)

- 2. $\operatorname{Res}\left[\frac{\cos z}{1 e^z}, 0\right] = \underline{-1}$
- 3. 写出级数 $\sum_{n=2}^{+\infty} \frac{i^n}{\ln n}$ 的敛散性 <u>条件收敛或收敛</u>
- 4. 已知|z|=1,且在第一象限,则 $z=\frac{\sqrt{2}}{2}+i\frac{\sqrt{2}}{2}$ 时,使得

$$\left|z^2+i\right|=2\,\mathrm{sd}.$$

- 三、计算题(共60分)
- 1. (10 分) 求函数 $f(t) = \int_0^t t e^{-2t} \sin 3t \, dt$ 的拉氏变换.

解:
$$\mathcal{L}[\sin 3t] = \frac{3}{s^2 + 9}, \dots 2$$
分

2. (10 分) 将函数 $f(z) = \frac{z}{(z-1)(z-2)}$ 在圆环域1<|z-1|<+∞ 内展开成洛

朗级数.

$$= \frac{-1}{z-1} + \frac{1}{z-1} \frac{2}{1 - \frac{1}{z-1}}$$

$$= \frac{-1}{z-1} + 2\sum_{n=1}^{+\infty} \left(\frac{1}{z-1}\right)^n \dots 3 \, \text{f}$$

3. (10分) 已知数量场u=xy, 求场中与直线x+3y-6=0相切的等值线方程.

所以
$$x_0 = 3y_0$$
,代入方程 $x+3y-6=0$,得......2分

4. (10 分) 用积分变换的方法求方程 $y'' + 3y' + 2y = e^{-t}$ 满足初始条件 y(0) = 0, y'(0) = 0 的解.

解:

设L(v(t)) = Y(s),对方程两边取拉氏变换,得

$$s^{2}Y(s) - sy(0) - y'(0) + 3sY(s) - 3y(0) + 2Y(s) = \frac{1}{s+1} \dots (2 \%)$$

$$\exists y \in S^{2}Y(s) + 3sY(s) + 2Y(s) = \frac{1}{s+1}, \dots (2 \%)$$

$$Y(s) = \frac{1}{(s+1)^2(s+2)}$$
, 利用反演公式得

$$y(t) = te^{-t} - e^{-t} + e^{-2t}$$
(6 分,答案三项每个 2 分)

5. (10 分) 证明向量场 $\bar{A} = (x^2 - 2yz)\bar{i} + (y^2 - 2xz)\bar{j} + (z^2 - 2xy)\bar{k}$ 为保守场, 并计算曲线积分 $\int_L \bar{A}d\bar{l}$,其中积分曲线L的起点为A(3,-1,1) ,终点为B(2,1,-1) .

解:由 引的雅可比矩阵

$$D\vec{A} = \begin{pmatrix} 2x & -2z & -2y \\ -2z & 2y & -2x \\ -2y & -2x & 2z \end{pmatrix} \dots 3 \hat{J}$$

得

故 \vec{A} 为有势场,那么存在函数u使得 $\vec{A} = \operatorname{grad} u$,

$$\mathbb{R}(x_0, y_0, z_0) = (0, 0, 0),$$

$$u = \int_0^x x^2 dx + \int_0^y y^2 dy + \int_0^z (z^2 - 2xy) dz$$

$$= \frac{1}{3} (x^3 + y^3 + z^3) - 2xyz \qquad 3 \text{ f}$$

$$\int_L \vec{A} d\vec{l} = -\frac{25}{3} \qquad 2 \text{ ff}$$

6.
$$(10 \, \beta)$$
 求积分
$$\oint_{|z|=\frac{3}{2}} \frac{1}{(z-2)(z^3-1)^2} dz$$
 (积分曲线为正向圆周).

解:
$$\operatorname{Re} s[f,\infty] = \cdots (2 \%) - \operatorname{Re} s\left[f\left(\frac{1}{z}\right)\frac{1}{z^2},0\right]$$

$$=-\operatorname{Re} s \left[\frac{1}{\left(\frac{1}{z}-2\right)\left(\frac{1}{z^3}-1\right)^2} \frac{1}{z^2}, 0 \right] = -\operatorname{Re} s \left[\frac{z^5}{(1-2z)(1-z^3)^2}, 0 \right] = 0$$
 (3 \(\frac{\psi}{z}\))

所以
$$\oint_{|z|=\frac{3}{2}} \frac{1}{(z-2)(z^3-1)^2} dz$$
 (3分)

$$= -2\pi i \{\operatorname{Re} s[f,\infty] + \operatorname{Re} s[f,2]\}$$

$$=-\frac{2\pi i}{49}\dots(2\,\%)$$

中国矿业大学

《工程数学》试卷(A)卷(48学时)

考试时间: 100 分钟 考试方式: 闭卷

学院					性名	学号_		
题 号		二						
越 与		1	2	3	4	5	6	总分
得 分								
阅卷人								

一、填空题 (每题 4 分, 共 40 分)

1、
$$\frac{1}{-1+i}$$
的辐角主值为 $\frac{-3\pi}{4}$ 。

2、函数
$$f(z) = 2xy + i(x^2 + y^2)$$
 在点 $z = i$ 处的导数为 2 ____。

5、积分
$$\oint_C \frac{z}{(z-2)^3} dz$$
的值为0。(其中 C 为 $|z|=3$,正向曲线)

6 、函数
$$f(z) = \frac{z^2 - 1}{\sin z}$$
 在极点 $z = 0$ 处的留数为______。

8、点
$$z=i$$
是函数 $\frac{z}{(1+z^2)(1+e^{\pi z})}$ 的 2 阶极点。

共4页 第1页

9、 欠量场 $\vec{A} = x^2 y \vec{i} + x y^2 \vec{i} + y z^2 \vec{k}$ 在点 M(1,1,1) 的散度为 6

二. 计算题 (共60分)

1、(10 分)求向量场 $\vec{A} = x^2 \vec{i} + y^2 \vec{j} + (x + y)z\vec{k}$ 通过点M(1,2,1)的向量线方程。

解: 矢量线所满足的微分方程为

$$\frac{dx}{x^2} = \frac{dy}{y^2} = \frac{dz}{(x+y)z}.$$

曲
$$\frac{dx}{x^2} = \frac{dy}{y^2}$$
 得 , $-\frac{1}{x} = -\frac{1}{y} + c_1$.

又由合比定理有
$$\frac{dx-dy}{x^2-y^2} = \frac{dz}{(x+y)z},$$

即
$$\frac{dx - dy}{x - y} = \frac{dz}{z},$$

解之得
$$z = c_2(x - y)$$

于是矢量线方程为
$$\begin{cases} -\frac{1}{x} = -\frac{1}{y} + c_1 \\ z = c_2(x - y) \end{cases}$$

代入点
$$M(1,2,1)$$
,得
$$\begin{cases} -\frac{1}{x} = -\frac{1}{y} - \frac{1}{2} \\ z = y - x \end{cases}$$

2、(10 分) 求函数 $f(z) = \frac{1}{z(2-z)^2}$ 在圆环域 0 < |z| < 2 内的洛朗展开式。

解:
$$\frac{1}{(2-z)^2} = (\frac{1}{2-z})' = \frac{1}{2}(\frac{1}{1-\frac{z}{2}})' = \frac{1}{2}(\sum_{n=0}^{+\infty}(\frac{z}{2})^n)' = \sum_{n=1}^{+\infty}\frac{n}{2^{n+1}}z^{n-1}$$
, 从而

$$f(z) = \sum_{n=1}^{+\infty} \frac{n}{2^{n+1}} z^{n-2}$$

3、(10分) 证明矢量场 $\vec{A} = (2x\cos y - y^2\sin x + z^2)\vec{i} + (2y\cos x - x^2\sin y)\vec{j} + 2xz\vec{k}$ 是

保守场,并计算曲线积分 $\int_{L} \vec{A} d\vec{l}$, 其中起点为 A(1,0,2) , 终点为 B(2,2,1) 。

解: 因为

$$rot \vec{A}(t) = \{0 - 0, 2z - 2z, -2y \sin x - 2x \sin y - (-2x \sin y - 2y \sin x)\}$$

= $\vec{0}$

所以为保守场。

月解:

$$u = x^2 \cos y + y^2 \cos x + xz^2$$

$$\int_{l} \vec{A} d\vec{l} = 8\cos 2 - 3$$

4、(10 分) 求函数 $\frac{1}{(s^2+1)^2}$ 的拉氏逆变换。

解:

$$f(t) = \sin t * \sin t = \int_0^t \sin \tau \sin(t - \tau) d\tau$$
$$= \frac{1}{2} \int_0^t (\cos(2\tau - t) - \cos t) d\tau$$
$$= \frac{1}{2} (\sin t - t \cos t)$$

5、(10分)利用拉氏变换求下面微分方程的解:

$$y'' + 2y' - 3y = e^{-t}$$
, $y(0) = 1$, $y'(0) = 1$

解:

设
$$L(y(t)) = Y(s)$$
, 对方程两边取拉氏变换,得
共 4 页 第 3 页

$$s^{2}Y(s) - sy(0) - y'(0) + 2sY(s) - 2y(0) - 3Y(s) = \frac{1}{s+1}$$
即 $s^{2}Y(s) - s - 1 + 2sY(s) - 2 - 3Y(s) = \frac{1}{s+1}$,
$$Y(s) = \frac{1 + (s+1)(s+3)}{(s+1)(s-1)(s+3)}, \quad \text{利用反演公式得}$$

$$y(t) = -\frac{1}{4}e^{-t} + \frac{9}{8}e^{t} + \frac{1}{8}e^{-3t}$$

6、(10 分) 求积分
$$\oint_C \frac{z^6}{(z^2+1)(z^2+2)^2(z-2)} dz$$
, 其中 $C:|z|=\frac{3}{2}$, 正向圆周。

解:
$$\operatorname{Re} s[f,\infty] = \cdots (2 \%) - \operatorname{Re} s \left[f\left(\frac{1}{z}\right) \frac{1}{z^2}, 0 \right]$$

$$= -\operatorname{Re} s \left[\frac{\frac{1}{z^6}}{\left(\frac{1}{z^2} + 1\right) \left(\frac{1}{z^2} + 2\right)^2 \left(\frac{1}{z} - 2\right)^2} \frac{1}{z^2}, 0 \right]$$

$$= -\text{Re}\,s \left[\frac{1}{z(1+z^2)(1+2z^2)^2(1-2z)}, 0 \right] = -1$$
 (3 $\frac{4}{3}$)

所以
$$\oint_C \frac{z^6}{(z^2+1)(z^2+2)^2(z-2)} dz$$
.....(3分)

$$= -2\pi i \{ \operatorname{Re} s[f, \infty] + \operatorname{Re} s[f, 2] \}$$

$$=-\frac{58\pi i}{45}\dots(2\,\%)$$

中国矿业大学 2016~2017 学年第一学期

《 工程数学 A 》试卷(A)卷

考试时间: 100 分钟 考试方式: 闭卷

学	完									
	题号	_	11	三	四	五	六	七	八	总分
	得分									
	阅卷人									

一、填空题(每题4分,共20分)

5、积分
$$\oint_{|z|=8} \frac{\sin z}{e^z - 1} dz = 0$$
. (积分曲线为正向)

二、选择题(每题4分,共20分)

1、点
$$z = \frac{\pi}{2}$$
是函数 $\frac{\cos z}{\left(z - \frac{\pi}{2}\right)^4}$ 的 (C).

A. 一阶极点 B. 二阶极点 C. 三阶极点 D. 四阶极点

2、复数
$$\sin \varphi + i(1-\cos \varphi)$$
 (其中 0 < φ < π)的辐角主值为 (B).

A.
$$\frac{\pi}{2} - \frac{\varphi}{2}$$

B.
$$\frac{\varphi}{2}$$

C.
$$\pi - \varphi$$

D.
$$\pi - \frac{\varphi}{2}$$

3、设
$$f(z) = \frac{1}{(z-1)^2(z^2+1)}$$
,则 $Res[f(z),1] = (D)$.

A.
$$\frac{1}{4}$$

B.
$$-\frac{1}{4}$$

C.
$$\frac{1}{2}$$

A.
$$\frac{1}{4}$$
 B. $-\frac{1}{4}$ C. $\frac{1}{2}$ D. $-\frac{1}{2}$

4、判别级数 $\sum_{n=2}^{+\infty} \frac{i^n}{\ln n}$ 的敛散性(A).

A. 条件收敛

B. 绝对收敛 C. 发散 D. 无法确定

5、下面选项是正实数的为(C).

A.
$$\sqrt[3]{8}$$

$$_{\mathrm{B.}}$$
 $-i$

A.
$$\sqrt[3]{8}$$
 B. $-i^i$ C. $\int_0^1 \sin^2 z dz$ D. $i \cos i$

三、(10 分) 用留数计算实积分 $\int_0^{2\pi} \frac{d\theta}{2 + \cos \theta}$.

$$\cos\theta = \frac{e^{i\theta} + e^{-i\theta}}{2} = \frac{z^2 + 1}{2z} \dots 2$$

四、(10 分) 求数量场 $u = 3x^2z^2 - y^3 + z$ 在点M(1, 1, 1) 处沿方向 $l = 2\vec{i} + \vec{i} + 2\vec{k}$ 的方 向导数.

五、(10 分) 已知调和函数 $u(x,y) = x^2 - y^2 + 2x$, 求其共轭调和函数v(x,y) 及解析函数 f(z) = u(x,y) + iv(x,y).

$$\nabla \frac{\partial v}{\partial y} = \frac{\partial u}{\partial x} = 2x + 2. \dots 2 \text{ f}$$

$$v(x,y) = \int_{(0,0)}^{(x,y)} \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy + C$$

$$= \int_{(0,0)}^{(x,y)} -\frac{\partial u}{\partial y} dx + \frac{\partial u}{\partial x} dy + C,$$

$$= \int_{0}^{x} 0 dx + \int_{0}^{y} (2x+2) dy + C$$

$$= 2xy + 2y + C \qquad (C是任意实数) \qquad 4 分$$

六、(10分)利用拉氏变换的方法求下面微分方程的解:

$$y'' + y' - 6y = e^{-t}$$
, $y(0) = 0$, $y'(0) = 1$.

解:

设 $\mathcal{L}[y(t)] = Y(s)$,方程两边取拉氏变换,得

$$s^{2}Y(s) - 1 + sY(s) - 6Y(s) = \frac{1}{s+1} - 4$$

即

所以
$$y(t) = \mathcal{L}^{-1}[Y(s)] = \sum_{k} [Y(s)e^{st}, s_{k}]$$

$$= -\frac{1}{10}e^{-3t} - \frac{1}{6}e^{-t} + \frac{4}{15}e^{2t} \qquad 4 分$$

七、(10分) 求函数
$$\frac{1}{(s^2+2s+2)^2}$$
 的拉氏逆变换.

解:

$$f(t) = (e^{-t} \sin t) * (e^{-t} \sin t) \cdots 3$$

$$= \int_0^t e^{-\tau} \sin \tau e^{-(t-\tau)} \sin(t-\tau) d\tau \cdots 2$$

$$= \frac{1}{2} e^{-t} \int_0^t (\cos(2\tau - t) - \cos t) d\tau \cdots 2$$

$$= \frac{1}{2} e^{-t} (\sin t - t \cos t) \cdots 3$$

八、(10 分) 求函数 $f(z) = \frac{z}{z^2 - z - 2}$ 在圆环域1 < |z| < 2 内的洛朗展开式.

解:
$$f(z) = \frac{z}{(z-2)(z+1)} = \frac{z}{3} \left(\frac{1}{z-2} - \frac{1}{z+1}\right) \cdots 2$$
 分
$$= -\frac{z}{3} \left[\frac{\frac{1}{z}}{1+\frac{1}{z}} + \frac{1}{2} \frac{1}{1-\frac{z}{2}}\right] \cdots 2$$
 分

$$\frac{\frac{1}{z}}{1+\frac{1}{z}} = \frac{1}{z} - \frac{1}{z^2} + \dots + (-)^{n+1} \frac{1}{z^n} + \dots \qquad 2 \text{ f}$$

$$\frac{1}{1-\frac{z}{2}} = 1 + \frac{z}{2} + (\frac{z}{2})^2 + \dots + (\frac{z}{2})^n + \dots \qquad 2 \text{ }$$

中国矿业大学 18~19 学年第一学期

《工程数学》试卷(A)卷

考试时间: 100 分钟 考试方式: 闭卷

学院_		班级	姓名	序	_序号		
	题 号		<u>-</u>	三	总分		
	得 分						
	阅卷人						

一、填空题(每题4分,共20分)

2.
$$\operatorname{Res}[\sin \frac{z}{z+1}, -1] = \underline{-\operatorname{cos}}$$

5. 积分
$$\int_{C} \frac{\mathrm{d}z}{(z-1)^2(z^2+1)} = -\frac{\pi i}{2}$$
. (其中 $C:|z-(1+i)|=\sqrt{2}$) (积分曲线为正向)

二、选择题(每题4分,共20分)

1. 复数 $1-\cos\varphi+i\sin\varphi$, (其中 $4\pi<\varphi<5\pi$) 的辐角主值为 (B).

(A)
$$\frac{\pi}{2} - \frac{\varphi}{2}$$
 (B) $\frac{5\pi}{2} - \frac{\varphi}{2}$

(C)
$$4\pi - \varphi$$

(D)
$$\frac{7\pi}{2} - \frac{\varphi}{2}$$

$$z = i_{\text{EM}} \frac{z - i}{(e^{\pi z} + 1)^3}$$
 的 (B).

- (A) 一阶极点 (B) 二阶极点 (C) 三阶极点 (D) 四阶极点

3. 级数 $\sum_{i=1}^{\infty} nz^{n}$ 的和函数为 (A).

$$(A) \qquad \frac{z}{(1-z)^2}$$

(A)
$$\frac{z}{(1-z)^2}$$
 (B) $\frac{1}{(1-z)^2}$ (C) $\frac{z}{(1+z)^2}$ (D) $\frac{1}{(1+z)^2}$

(C)
$$\frac{z}{(1+z)^2}$$

(D)
$$\frac{1}{(1+z)^2}$$

4.
$$\operatorname{Res}\left[\frac{z\sin z}{(1-e^z)^3},0\right] = (D).$$

- (A) 1 (B) 2 (C) 0 (D) -1

5. 己知
$$\mathscr{L}[u(t)] = \frac{1}{s}$$
,则 $\mathscr{L}[t \cdot u(t-2)] = (D)$.

(A) $\int_{s}^{\infty} \frac{e^{-2s}}{s} ds$ (C) $-\frac{2s+1}{s^{2}} e^{2s}$

(B) $\frac{e^{2s}}{s^2}$ (D) $\frac{2s+1}{s^2}e^{-2s}$

三、计算题(共60分)

1. (10 分) 利用留数计算实积分
$$\int_0^{+\infty} \frac{1}{(x^2+1)(x^2+4)} dx$$
.

解:

原式= $\pi i \left[\text{Re } s[f(z),i] + \text{Re } s[f(z),2i] \right] \dots (3 分)$

$$=\pi i \left[\lim_{z \to i} (z - i) \frac{1}{(z^2 + 1)(z^2 + 4)} + \lim_{z \to 2i} (z - 2i) \frac{1}{(z^2 + 1)(z^2 + 4)} \right] \dots (3 \%)$$

$$=\pi i \left[\frac{1}{6i} - \frac{1}{12i} \right] = \frac{\pi}{12} \dots (2 \%)$$

2. (10 分) 求函数 $\frac{1}{(s^2+1)^2}$ 的拉氏逆变换.

解:

$$f(t) = \sin t * \sin t = \int_0^t \sin \tau \sin(t - \tau) d\tau$$

$$= \frac{1}{2} \int_0^t (\cos(2\tau - t) - \cos t) d\tau \cdots$$

$$= \frac{1}{2} (\sin t - t \cos t)$$

$$\cdots 4 / T$$

3. (10 分)已知 $u(x,y) = y^3 - 3x^2y + x$ 为解析函数 f(z)的实部,求 f(z)的虚部v(x,y).

解:
$$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} = -(3y^2 - 3x^2), \dots 2$$
 分

$$v(x, y) = \int_{(0,0)}^{(x,y)} \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy + C$$

$$= \int_{(0,0)}^{(x,y)} -\frac{\partial u}{\partial y} dx + \frac{\partial u}{\partial x} dy + C,$$

$$= \int_{0}^{x} 3x^{2} dx + \int_{0}^{y} (-6xy + 1) dy + C$$

$$= x^{3} - 3xy^{2} + y + C \qquad (C 是任意实数) \qquad 4 分$$

故得解析函数

$$f(z) = u(x, y) + iv(x, y) = iz^3 + z + iC \cdots 2$$

4. (10 分) 己知
$$f(t) = t \int_0^t e^{-t} \sin 2t dt$$
, 求 $\mathscr{L}[f(t)]$.

解:

$$L(f(t)) = -\frac{d}{ds} \frac{1}{s} \frac{2}{(s+1)^2 + 4} \dots 6 \text{ f}$$

$$= \frac{6s^2 + 8s + 10}{s^2 \{(s+1)^2 + 4\}^2} \dots 6 \text{ f}$$

$$\dots 4 \text{ f}$$

5. (10 分) 把函数 $f(z) = \frac{1}{(z+1)^2(z-1)}$ 在圆环域 0 < |z-1| < 2 内展开成关于 z-1 的洛朗级数.

解:
$$\frac{1}{(z+1)^2} = -(\frac{1}{z+1})' = -(\frac{1}{z-1+2})' = -\frac{1}{2} \left(\frac{1}{\frac{z-1}{2}+1}\right)' \cdots 4$$
 分

$$= -\frac{1}{2} \left(\sum_{n=0}^{+\infty} (-1)^n \left(\frac{z-1}{2} \right)^n \right)' = \sum_{n=1}^{+\infty} (-1)^{n+1} \frac{n}{2^{n+1}} (z-1)^{n-1} \cdots 4$$

从而

$$f(z) = \sum_{n=1}^{+\infty} (-1)^{n+1} \frac{n}{2^{n+1}} (z-1)^{n-2} \cdots 2$$

6. (10分) 利用拉氏变换求下面微分方程的解:

$$y'' - 3y' + 2y = 2e^{-t}$$
, $y(0) = 1$, $y'(0) = 2$.

解: 设L(y(t)) = Y(s),对方程两边取拉氏变换,得

$$s^{2}Y(s) - sy(0) - y'(0) - 3sY(s) + 3y(0) + 2Y(s) = \frac{2}{s+1} \cdot \dots \cdot 4 \text{ f}$$

$$\mathbb{P} s^2 Y(s) - s - 2 - 3sY(s) + 3 + 2Y(s) = \frac{2}{s+1},$$

$$s^{2}Y(s) - 3sY(s) + 2Y(s) = \frac{2}{s+1} + s - 1 \cdots 3$$

$$Y(s) = \frac{2}{(s+1)(s-1)(s-2)} + \frac{1}{s-2}$$
,利用反演公式得

$$y(t) = \frac{1}{3}e^{-t} - e^{t} + \frac{5}{3}e^{2t} \cdots 3 / 3$$