Segunda Avaliação

COMP0412 - 2024.2 - T02

- As funções da Questão 1 precisam ser implementadas, não basta o pseudo-código.
- Assuma que estão disponíveis as funções mergeSort, quickSort, insertionSort, quickSelect, binarySearch e convexHull.

(caso não seja pseudo-código, pode usar qualquer implementação destas funções)

1. Dado um conjunto de pontos bi-dimensionais, apresentados em um arquivo de texto no seguinte formato: a linha 1 contém o total N de pontos, as linhas 2 a N+1 cotêm as coordenadas separadas por vírgulas de cada ponto. O separador da parte fracionária será o ponto.

Exemplo: Os conjunto de pontos {(1, 2), (0.5, 3), (2, 0.7), (3, 5)} seria apresentado no arquivo como

4 1, 2 0.5, 3 2, 0.7 3, 5

- a) Implemente uma função para ler o conjunto de pontos e armazenar em dois vetores, um vetor X com as primeiras coordenadas e um vetor Y com as segundas coordenadas. (não vale ponto)
- b) Implemente uma função poly(X, k) que retorna uma matriz A_k com (k+1) colunas de modo que os valores da coluna i são os valores de X elevados a (k + 1 i). (não vale ponto)

Para os dados do exemplo anterior teríamos:

	1	1		1	1	1	1	1	1	1	
	0.5	1		0.25	0.5	1	0.125	0.25	0.5	1	
	2	1		4	2	1	16	4	2	1	
	3	1		9	3	1	27	9	3	1	
Α ₁			A_2			A_3					

- c) Implemente uma função inv(M) para inverter uma matriz quadrada M.
- d) Implemente uma função ajusta(X, Y, k) que retorne

$$P = inv(A^T A) A^T Y$$

onde A é dado por poly(X, k). (você pode usar funções prontas para produto e transposição se quiser)

Os valores de P são os coeficientes do polinômio de grau k que melhor se ajustam ao conjunto de pontos segundo o critério de minimização da soma dos quadrados dos erros (SSE), onde os erros são dados por E = AP - Y.

Sugestões para incluir no retorno de sua função (precisa no próximo item):

- Tempo do cálculo de P.
- SSE.
- e) Você receberá 3 arquivos de dados (enviados posteriormente), calcule o que se pede para cada arquivo e preencha a tabela abaixo:

	k	Tempo de Execução (cálculo de P)	SSE
	1		
Arquivo 1	2		
	10		
	1		
Arquivo 2	2		
	10		
	1		
Arquivo 3	2		
	10		

f) Qual a complexidade de tempo teórica do seu código para o cálculo de P em função de N (número de pontos) e K (ordem do polinômio)? Os resultados obtidos na tabela estão de acordo com o que era esperado?

2. A estratégia de ajuste de polinômios descrita na Questão 1 pode ser estendida para o ajuste de qualquer combinação linear de funções. Se você deseja ajustar a curva $p_1f_1(x) + p_2f_2(x) + ... + p_kf_k(x) = y$ aos pontos, basta montar uma matriz A onde a coluna i contém os valores de $f_i(x)$ para cada ponto X dos dados e repetir o procedimento anterior para obter os valores dos parâmetros p_i no vetor P.

A função $p_1*exp(p_2*x) = y$ não é linear, pois o parâmetro p_2 está dentro da função exponencial e não é um simples multiplicador.

- a) Transforme este problema em um problema linear.
- b) Escreva uma função ajustaExp(X, Y) que utiliza a função ajusta, da Questão 1, e transforma a saída P para obter p_1 e p_2 de p_1 *exp(p_2 *x) = y.
- 3. Considere que temos uma lista de valores reais x_1, \ldots, x_N . O valor x (não necessariamente pertencente à lista) que minimiza a soma de $|x x_i|$ para i de 1 a N é a mediana dos x_i (no caso de N par, a mediana é a média dos valores centrais).

Considere agora que temos uma lista de pontos no plano cartesiano $p_1=(x_1, y_1)$, ..., $p_N=(x_N, y_N)$. Queremos achar um ponto p=(x, y) (não necessariamente da lista) que minimiza a soma da distância Manhattan entre cada p_i e p. Essa distância é dada por $d(p, p_i) = |x - x_i| + |y - y_i|$.

- a) Crie uma função pol(P) que retorna o ponto p que resolve o problema do segundo parágrafo, onde $P = [p_1, p_2, ..., p_N]$.
- b) Qual a complexidade de tempo da sua solução?
- 4. Dado um conjunto de pontos $P = [p_1, p_2, ..., p_N]$, onde $p_i = (x_i, y_i)$.
 - a) Proponha uma função inTri(P) que retorna verdadeiro se todos os pontos de P estão contidos em um triângulo formado por 3 dos pontos de P.
 - b) Qual a complexidade de inTri(P)?
 - c) Proponha uma função inCirc(P, r) que retorna verdadeiro se todos os pontos de P estão contidos em um círculo de raio r centrado na média dos pontos de P
 - d) Qual a complexidade de inCirc(P, r)?

5. O método de Horner para cálculo do valor de um polinômio $p(x) = a_k x^N + a_{k-1} x^{N-1} + ... + a_1 x + a_0$ em um dado ponto c é bastante eficiente, se $A = [a_0, a_1, ..., a_k]$, podemos avaliar p(c) como segue:

```
Horner(A[0..N], c)
  p ← A[N]
  para i de (N-1) até 0:
   p ← c * p + A[i]
  retorne p
```

No entanto, para o cálculo de c^N , ou seja, avaliar $q(x) = x^N$ no ponto c, este método torna-se simplesmente (N-1) multiplicações de c (e várias somas com 0, desnecessárias), que é o que faríamos por força bruta.

Um número natural N pode ser representado como $b_K 2^K + b_{K-1} 2^{K-1} + ... + b_1 2 + b_0$, onde b_i são os bits da representação binária de N. Ou seja, N é o valor do polinômio $r(x) = b_K x^K + b_{K-1} x^{K-1} + ... + b_1 x + b_0$ avaliado no ponto 2. Portanto, temos que $c^N = c^{r(2)}$.

Aplicando Horner em r(2) temos:

```
p \leftarrow 1 (o bit mais significativo é sempre 1, se N > 0)
para i de (K-1) até 0:
p \leftarrow 2p + b_i
retorne p
```

De modo que para c^{r(2)} temos:

```
c^{p} \leftarrow c
para i de (K-1) até 0:
c^{p} \leftarrow c^{2p+bi}
retorne c^{p}
```

Esta versão não vai funcionar do modo como está escrito, já que c^p deveria ser uma variável, para receber a atribuição, mas o valor do expoente é alterado na atribuição do laço.

- a) Utilize as identidades da potenciação para reescrever c^{2p + bi} como operações sobre c^p, de modo que ele possa ser tratado como uma variável no pseudo-código acima. (não vale ponto)
- b) Utilizando o resultado do item (a) e o pseudo-código acima, escreva um algoritmo expBin(c, B_N) que calcula c^N , onde c é um número e B_N = [b_0 , b_1 , ... b_K] são os bits da representação binária de N.
- c) Qual a complexidade de tempo de expBin(c, B_N) em função de N?

- 6. Considere que A é um array contendo N strings de comprimentos variados, formadas exclusivamente por letras minúsculas e sem acentos.
 - a) Qual método de ordenação você utilizaria para ordenar A eficientemente? Qual a complexidade temporal do método escolhido para este problema?
 - b) Duas (ou mais) strings são anagramas se uma é uma permutação dos símbolos da(s) outra(s). Crie uma função anagroup(A) que retorna os anagramas contidos em A agrupados.
 - c) Qual a complexidade de anagroup(A)?

Exemplo:

Entrada: A = [cao, jaca, oca, cora, arar, ora, rara, caja, aco, aro] Retorno: [[aco, cao, oca], [aro, ora], [arar, rara], [caja, jaca], [cora]]