

动态规划问题举例 Examples in DP

电信学院·自动化科学与技术系 系统工程研究所 吴江

Outline

- 确定性定期多阶段决策问题
- 确定性不定期多阶段决策问题

状态转移图

基本递推方程

$$f_k(x_k) = \min_{u_k} [G(x_k, u_k, k) + f_{k+1}(x_{k+1})]$$

投资分配问题(纯离散问题)

某公司计划用40万元投资项目A, B, C. 下表给出了不同投资规模下的预期利润. 试制定最优投资计划

Α			В				С			
1	2	3	1	2	3	4	1	2	3	4
20	30	40	10	20	30	40	10	20	30	40
1.8	2.8	3.2	1.2	1.9	2.5	3	0.8	1.6	2.4	3.1

建模

阶段?

投资顺序

状态?

剩余金额

决策?

投资额

转移方程?

$$x_{k+1} = x_k - u_k$$

确定性定期多阶段决策问题

例2: (旅行商问题, Traveling Salesman Problem, TSP)

有n+1个城市,记为 v_0 , v_1 ,..., v_n ,一个推销员从 v_0 出发,遍访 v_1 ,..., v_n 各恰好一次后再返回 v_0 ,已知从 v_i 到 v_j 的旅费(或路程长度、耗时等)为 $d_{i,j}$,求最优路线安排。

解:怎样划分阶段?按自然时序,划分为n+1个阶段

怎样定义状态? 状态:每个阶段/时刻系统所处的状况、态势

状态 (v_i, V) : v_i 为当前时刻所在城市,V为尚未经过的城

无后效性? 市集合(V中不包含 ν_0) 思考: 状态数目? $O(2^n)$

决策 $(v_i, V) \rightarrow (v_j, V \setminus \{v_j\}), v_j \in V$ 决策费用为 $d_{i,j}$

思考: 画状态转移图? 应利用基本方程求解!

确定性定期多阶段决策问题

例2: (旅行商问题, Traveling Salesman Problem, TSP)

状态
$$(v_i, V)$$
 决策 $(v_i, V) \rightarrow (v_j, V \setminus \{v_j\}), v_j \in V$

怎样列基本方程?基本方程是关于cost-to-go的递推方程。

 $f(v_i,V)=?从v_i$ 出发,遍访V中所有城市各恰好一次,再回到 v_0 的最短路程长度

状态转移图上求解过程的启示……

边界条件?

确定性定期多阶段决策问题

例2: (旅行商问题, Traveling Salesman Problem, TSP)

状态
$$(v_i, V)$$

状态
$$(v_i, V)$$
 决策 $(v_i, V) \rightarrow (v_j, V \setminus \{v_j\}), v_j \in V$

$$D = \begin{bmatrix} v_0 & v_1 & v_2 & v_3 \\ 0 & 8 & 5 & 6 \\ 6 & 0 & 8 & 5 \\ 7 & 9 & 0 & 5 \\ 9 & 7 & 8 & 0 \end{bmatrix} v_0$$

$$\frac{1}{4}$$

注意:非对称TSP

最优解:
$$v_0 \rightarrow v_2 \rightarrow v_3 \rightarrow v_1 \rightarrow v_0$$

P170~171 9 7 8 0 v_3 计算复杂性分析

动态规划 v.s. 非线性(混合整数)规划

- 确定性定期多阶段决策问题基本上都可以转化为非 线性(混合整数)规划问题.
- ▶ 非线性(混合整数)规划问题转化为DP:
 - 。最优化原理
 - 。无后效性
 - 。子问题的重叠性
- ▶ DP求解的原因
 - 。全局解v.s.局部解
 - 中间信息
 - 。求解效率

基本递推方程

$$f_k(x_k) = \min_{u_k} [G(x_k, u_k, k) + f_{k+1}(x_{k+1})]$$

$$\pi^*(s) = \arg_a \min[r(s,a) + V^*(\delta(s,a))]$$

Mastering the Game of Go with Deep Neural Networks and Tree Search

(Nature 529, 484-489, 28 January 2016)

Computer Go Al – Definition

$$\pi^*(s) = \arg_a \max[r(s|a) + V(\delta(s,a))]$$

$$|S| = 3^{361}$$

$$|A_k| = 361 - 2(k-1) |\Omega| = 361*359*357*...$$

Reducing "act candidates"

Current Board

Prediction Model

Next Action

S

Expert Moves Imitator Model (w/ CNN)

30,000,000 < S , a >

 $f: s \rightarrow a$

Updated Model ver 1.3

vs

a

Updated Model ver 1.7

30,000,000 < s, a >

Next Action

Current Board

Deep Learning (13 Layer CNN)

S

 $g: s \rightarrow p(a|s)$

p(a|s)

argmax

a

Board Evaluation

Instead of simulating unt

Cost to go?

 $P_{\sigma/\rho}(a|s)$

Policy network

Monte-Carlo tree search

How AlphaGo selected its move

Bread reduction

Depth reduction

Nature 2017: Mastering the game of Go without human knowledge

- 1. without any human data
- 3. single neural network
- 2. only stones as input features
 - 4. without any Monte Carlo rollouts

