Rapport

Exercice 1:

```
Q1) formuler le problème linéaire:
```

 $I = \{1, \ldots, n\}$ un ensemble de n villes

 v_i la population de la ville i pour tout $i \in N$

k unités spéciales de traitement (k < n) et (J \subset I) l'ensemble des indices de ces villes x_{ij} , $i \in I, j \in J$ (vaut 1 si ville i est affecté au centre j et 0 sinon)

dij (la distance moyenne qui sépare un habitant de la ville i d'une unit e de soin située en j)

$$\begin{aligned} & \text{min } \sum \sum \text{vi*dij*x}_{ij} \\ & \sum \text{X1j} = 1 \\ & \sum \text{X2j} = 1 \\ & \vdots \\ & \sum \text{Xnj=1} \\ & \text{xii} \in \{1,0\} \text{, vi,dij} \in N \end{aligned}$$

Q2)

Non, on ne peut pas résoudre le problème par un algorithme de flot maximum à coût minimum, car on a une contrainte sur l'ensemble des centre des soins. exemple:

a.1) k=3 et $\alpha=0.1$ et ens_centre { toulouse, nice , nantes } on obtient:

toulouse est affectée au centre de toulouse nice est affectée au centre de nice nantes est affectée au centre de nantes montpelier est affectée au centre de toulouse strasbourg est affectée au centre de nice bordeaux est affectée au centre de toulouse lille est affectée au centre de nantes rennes est affectée au centre de nantes reims est affectée au centre de nantes saint-etiennes est affectée au centre de nice toulon est affectée au centre de nice le havre est affectée au centre de nantes grenoble est affectée au centre de nice dijon est affectée au centre de nantes angers est affectée au centre de nantes

la somme de la distance totale est: 972210031.0

- a.2) k=3 et α = 0.2 et ens_centre { toulouse, nice , nantes } on obtient: la meme solution que l'exemple précedent
- b.1) k=4 et α = 0.1 et ens_centre { toulouse, nice , nantes,Lilles } on obtient:

la contrainte gama nest pas accepté donc ya pas de solution

b.2) k=4 et $\alpha = 0.2$ et ens centre {nice ,rennes, reims, toulon } on obtient: toulouse est affectée au centre de toulon nice est affectée au centre de nice nantes est affectée au centre de rennes montpelier est affectée au centre de toulon strasbourg est affectée au centre de reims bordeaux est affectée au centre de rennes lille est affectée au centre de reims rennes est affectée au centre de rennes reims est affectée au centre de reims saint-etiennes est affectée au centre de toulon toulon est affectée au centre de toulon le havre est affectée au centre de rennes grenoble est affectée au centre de toulon dijon est affectée au centre de reims angers est affectée au centre de rennes

la somme de la distance totale est: 826097113.0

On remarque qu'on a des solution plus optimal on choisissant 4 villes, mais c'est plus compliqué de trouver ces villes.

EXERCICE 2:

Q1)

pour répondre à cette nouvelle situations, on modifie le PL précédent en ajoutent des nouvelles contraintes et en modifiants la fonction objectif et donc on obtient le PL suivant: gamma c'est la formule donné

 $I = \{1, \ldots, n\}$ un ensemble de n villes

 v_i la population de la ville i pour tout $i \in N$

k unités spéciales de traitement (k < n) et ($J \subset I$) l'ensemble des indices de ces villes x_{ij} , $i \in I, j \in J$ (vaut 1 si ville i est affecté au centre j et 0 sinon)

dij (la distance moyenne qui sépare un habitant de la ville i d'une unit e de soin située en j)

li (represente si une ville est un centre ou pas)

k un nombre de centre donné

```
 \begin{aligned} & min \sum \sum li^*vi^*dij^*x_{ij} \\ & \sum X1j^* lj = 1 \\ & \sum X2j^* lj = 1 \\ & \vdots \\ & \sum Xnj^* lj = 1 \\ & \sum li^* vi <= gamma \\ & \sum li = k \\ & li, xii \in \{1,0\} \ et \ k,vi,dij \in N \end{aligned}
```

```
Des Exemples:
```

k=3 et $\alpha = 0.1$:

lensemble des centre est :

nantes montpelier reims

toulouse est affectée au centre de montpelier nice est affectée au centre de montpelier nantes est affectée au centre de nantes montpelier est affectée au centre de montpelier strasbourg est affectée au centre de reims bordeaux est affectée au centre de nantes lille est affectée au centre de reims rennes est affectée au centre de nantes reims est affectée au centre de reims saint-etiennes est affectée au centre de montpelier toulon est affectée au centre de montpelier le havre est affectée au centre de reims grenoble est affectée au centre de montpelier dijon est affectée au centre de reims angers est affectée au centre de nantes

la somme de la distance totale est: 743650705.0

k=3 et $\alpha = 0.2$:

la même solution qu'avant

k=5 et $\alpha = 0.1$:

y'a pas de solution

k=5 et a = 0.2:

lensemble des centre est :

reims

saint-etiennes

toulon

le havre

angers

toulouse est affectée au centre de toulon nice est affectée au centre de toulon nantes est affectée au centre de angers montpelier est affectée au centre de toulon strasbourg est affectée au centre de reims bordeaux est affectée au centre de angers lille est affectée au centre de reims rennes est affectée au centre de angers reims est affectée au centre de reims saint-etiennes est affectée au centre de reims saint-etiennes est affectée au centre de saint-etiennes toulon est affectée au centre de toulon le havre est affectée au centre de le havre grenoble est affectée au centre de saint-etiennes dijon est affectée au centre de saint-etiennes angers est affectée au centre de angers

la somme de la distance totale est: 705070982.0

k=4 et $\alpha = 0.8$:

l'ensemble des centre est :

toulouse toulon dijon

angers

toulouse est affectée au centre de toulouse nice est affectée au centre de toulon nantes est affectée au centre de angers montpelier est affectée au centre de toulon strasbourg est affectée au centre de dijon bordeaux est affectée au centre de toulouse lille est affectée au centre de dijon rennes est affectée au centre de angers reims est affectée au centre de dijon saint-etiennes est affectée au centre de dijon toulon est affectée au centre de toulon le havre est affectée au centre de angers grenoble est affectée au centre de dijon dijon est affectée au centre de dijon angers est affectée au centre de angers

la somme de la distance totale est: 639930959.0

k=4 et $\alpha = 0.2$:

l'ensemble des centre est :

toulouse

reims

toulon

toulouse est affectée au centre de toulouse nice est affectée au centre de toulon nantes est affectée au centre de rennes montpelier est affectée au centre de toulon strasbourg est affectée au centre de reims bordeaux est affectée au centre de toulouse lille est affectée au centre de reims rennes est affectée au centre de reims reims est affectée au centre de reims saint-etiennes est affectée au centre de toulon toulon est affectée au centre de toulon le havre est affectée au centre de rennes grenoble est affectée au centre de toulon dijon est affectée au centre de reims angers est affectée au centre de rennes

la somme de la distance totale est: 597654421.0000002

*) La meilleur solution est celle avec k=4 et alpha=0.2, et donc augmenter le nombre de centre n'impose pas vraiment un résultat plus optimal. et si on implique les résultât obtenue sur le PL1 on obtient la meme chose

EXERCICE 3:

Q1) on peut présenter le problème suivant comme un problème de transport ou on met la capacité des centres (c1,c2,c3,c4,c5) qui est égale à 100 comme l'offre, et la distribution P comme la demande avec un cout qui est égal à la distance entre Pi et Cj . on peut representer ça avec la matrice suivante:

	P1	P2	P3	P4	P5	
C1	D(1,1)	D(2,1)	D(3,1)	D(4,1)	D(5,1)	100
C2	D(1,2)	D(2,2)	D(3,2)	D(4,2)	D(5,2)	100
C3	D(1,3)	D(2,3)	D(3,3)	D(4,3)	D(5,3)	100
C4	D(1,4)	D(2,4)	D(3,4)	D(4,4)	D(5,4)	100
C5	D(1,5)	D(2,5)	D(3,5)	D(4,5)	D(5,5)	100

Q2) Pour résoudre le problème on utilise la méthode des moindres coût, ou on commence par les case qui ont le min des couts et on leur rajoute le max {offre, demande} et ainsi de suite.

Exemple: pour P={80,10,5,15,120} et C={reims, saint-etiennes, toulon, le havre ,anger) on obtient:

l'Initialisation:

	P1	P2	P3	P4	P5	
C1	0	546	862	344	429	100
C2	546	0	398	720	574	100
C3	862	398	0	1026	969	100
C4	344	720	1026	0	295	100
C5	429	574	969	295	0	100
	80	10	5	15	120	

/				
it 🔿	rat	n	١٦	•
11.	ıaı	IC 21		١.

itération 1:						
	P1	P2	P3	P4	P5	
C1	0	546	862	344	429	100
C2	546	0	398	720	574	100
C3	862	398	0	1026	969	100
C4	344	720	1026	0	295	100
C5	429	574	969	295	100 / 0	0
itération 2:	80	10	5	15	20	
	P1	P2	P3	P4	P5	
C1	80 / 0	546	862	344	429	20
C2	546	0	398	720	574	100
C3	862	398	0	1026	969	100
C4	344	720	1026	0	295	100
C5	4 <u>2</u> 9	574	969	<u>295</u>	100 / 0	0
itération 3:	P1	P2	P3	P4	P5	
C1	80 / 0	546	862	344	429	20
C2	546	0	398	72.0	574	100
C3	862	398	0	1026	969	100
C4	344	720	1026	15 / 0	295	85
C5	42 9	574	969	295	100 / 0	0
itération 4:	0	10	5	0	20	
	P1	P2	P3	P4	P5	
C1	80 / 0	54 <mark>6</mark>	862	344	429	20
C2	546	10 / 0	398	720	574	90
C3	862	398	0	10 <mark>26</mark>	969	100
		· <u>\$</u>		45 / 0	295	85
C4	344	72 <mark>0</mark>	1026	15 / 0	293	00
C4 C5	3. <mark>1</mark> 4 423	72 <mark>0</mark> 574	1026	15 / U 295	100 / 0	0

itération 5:

	P1	P2	P3	P4	P5	
C1	80 / 0	54 <mark>6</mark>	86 <mark>2</mark>	34 _. 4	429	20
C2	546	10 / 0	39 <mark>8</mark>	72:0	574	90
C3	862	398	5 / 0	10.26	969	95
C4	344	7 <mark>2</mark> 0	10 <mark>2</mark> 6	15 / 0	295	85
C5	42 9	<u> </u>	909		100 / 0	0
	0	0	0	0	20	
itération 6 :						
	P1	P2	P3	P4	P5	
C1	80 / 0	54 <mark></mark> 3	8 <mark>6</mark> 2	34 <mark>4</mark>	42.9	20
C2	546	10 / 0	3 <mark>9</mark> 8	720	574	90
C3	832	39 <mark>8</mark>	5 / 0	10 <mark>2</mark> 6	969	95
C4	344	72 <mark>0</mark>	1026	15 / 0	20 / 295	65
C5	<u>429</u>	574	969	295	100 / 0	0
	0	0	0	0	0	

et donc on obtient une solution optimal avec un coût total qui est égal à : coût total = 80*0+10*0+5*0+15*0+20*295+100*0 = 5900 et donc la solution nous dis qu'on devrait juste envoyer 20 malade du centre de Anger vers le centre de Havre et le reste des malades on les garde