Chapter Six: Synchronous Sequential Logic Circuit

- 1. True or False. A modulo-28 counter requires (4) flip flops at least.
- 2. **True or False.** A circuit is called (Moore) when the output depends not only on its states but also on the input.
- 3. True or False. The number of valid states is (7) for an 8-bit ring counter.
- 4. True or False. A modulo-264 counter requires (4) 74x163 binary counters at least.
- 5. **True or False.** To generate a sequence signal 11010111 using shift register, (4) bits are required at least.
- **6.** Analyze the sequential-circuit as shown below, which contains two 74x163 4-bit binary counter.
- (1) True or False. The logic expression of LD_L(RCO1, RCO2) for U_1 and U_2 is LD_L (RCO1, RCO2) = (RCO1·RCO2).
- (2) True or False. Assume the initial state is 196_{10} , the state sequence in a cycle for the circuit is 196, 197, 198...253, 254, 255, 256, 196.
- (3) True or False. The modulus for the circuit is 59.

- 7. Analyze the clocked synchronous state machine in Figure VI.
- (1) **True or False.** The out excitation equations and the output equation are:

$$D_1 = X'$$
 $D_2 = (Y+Q_1)Q_3$ $D_3 = Y Q_2 + Q_1'$
 $Z = Q_1' Q_2 Q_3$

- (2) List out the transition/output table (Table VI).
- (3) Assume the initial state $Q_3Q_2Q_1$ =000, draw the timing diagram for Q_3 , Q_2 , Q_1 and Z.

Table VI Transition/output Table

S		7			
	00	01	10	11	Z
000					
001					
010					
011					
100					
101					
110					
111					
$Q_3Q_2Q_1$	Q ₃ * Q ₂ * Q ₁ *				

8. True or False. States (A and C) in the figure are ambiguous.

- 9. **True or False.** To implement a module 29 counter, we need at least (4) flip-flops.
- 11. Synchronous Logic Analysis.

Analyze the synchronous sequential logic circuit shown in the following figure which contains a 74x163 counter and some OR gates.

The function table for the 74X163 counter

Input			Current States	Next States			
CLK	CLR	LOAD	ENT	ENP	QD QC QB QA	QD* QC* QB* QA*	
0	X	X	X	X	QD QC QB QA	QD QC	C QB QA
1	X	X	X	X	QD QC QB QA	QD QC	C QB QA
1	0	X	X	X	X X X X	0 0	0 0
1	1	0	X	X	X X X X	D (B A
1	1	1	0	X	QD QC QB QA	QD QC	C QB QA
1	1	1	X	0	QD QC QB QA	QD QC	C QB QA
1	1	1	1	1	0 0 0 0	0 0	0 1
1	1	1	1	1	0 0 0 1	0 0	1 0
1	1	1	1	1			
1	1	1	1	1	1 1 1 1	0	0 0 0

- (1) **True or False.** The function for the LOAD signal in the figure is LOAD = QA+QB+QC.
- (2) **True or False.** When M=1, the state sequence is 1011->1100->1101->1110->1111->1011.
- (3) **True or False.** The function of the circuit is a 16-number addition counter.
- 12. Synchronous Logic Design.
- (1) Design a clocked synchronous state machine with one input X, and a single Moore type output Z that is 1 if X had the same value at every two or more than two positive edges. Otherwise, the

output should be 0. Please fill in the blanks in the following state table.

State	The meaning of each state	Input		Output
		X=0	X=1	Z

(2) Suppose there is a synchronous state machine with the input X, state Q2Q1, output Z, and the transition table is shown in the following table. Please implement it by JK flip-flops and other Small Scale Integration gates, write out the excitation and output function.

Input	Current	t State	Next State		Output
X	Q_2^n	$Q_{ m l}^n$	\mathcal{Q}_2^{n+1}	$Q_{ m l}^{n+1}$	Z
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	<mark>1</mark>	1	0	0	1
1	0	0	0	1	0
1	0	1	1	0	0
1	1	0	1	1	0
1	1	1	1	1	0