INTRODUCCIÓN A LA GEOMETRÍA SIMPLÉCTICA Y LOS SISTEMAS INTEGRABLES

DEPARTAMENTO DE GEOMETRÍA Y TOPOLOGÍA FACULTAD DE CIENCIAS MATEMÁTICAS, UCM DIRIGIDO POR JESÚS M. RUIZ

GUILLERMO GALLEGO

RESUMEN. En este trabajo realizamos una introducción al estudio de las variedades simplécticas y los flujos hamiltonianos, con su aplicación a la mecánica clásica. Una variedad simpléctica es una variedad diferenciable de dimensión par en la que se define una forma diferencial ω cerrada y no degenerada. Previamente, desarrollamos algunas herramientas de geometría diferencial como la derivada de Lie y los campos dependientes de un parámetro. También damos algunas nociones básicas sobre espacios vectoriales simplécticos. Para terminar, aplicamos los conceptos trabajados para probar algunos resultados importantes sobre sistemas integrables.

Palabras clave: A ya veremos

ABSTRACT. In this work we make an introductory study to symplectic manifolds and hamiltonian flows, with its application to classical mechanics. A symplectic manifold is an even dimensional differentiable manifold in which we define a differential form ω which is closed and non degenerate. We begin by developing some differential geometric tools such as Lie derivative and 1-parameter dependent fields. Moreover, we give some basic notions about symplectic vector spaces. Finally, we apply the concepts presented to prove some important results on integrable systems.

Keywords: ♣ we'll see

Date: Última versión: 2 de octubre de 2017.

2010 Mathematics Subject Classification. Primary 37J05, 37J35, 53D05, 58A05, 70H05.

ÍNDICE

Introducción		2
1.	Motivación física. De Newton a Hamilton	2
2.	Derivada de Lie y otras herramientas	8
3.	Campos y formas dependientes de un parámetro	12
4.	Espacios vectoriales simplécticos	14
5.	Variedades simplécticas y simplectomorfismos	17
6.	Campos y flujos hamiltonianos	20
7.	Corchete de Poisson	23
8.	Teoría de Arnold-Liouville	26
9.	Un poco más de movimiento condicionalmente periódico	40
Referencias		43

Introducción

En construcción.

1. Motivación física. De Newton a Hamilton

La forma más sencilla de describir el movimiento de un sistema de partículas es mediante el formalismo newtoniano, tomando como postulado fundamental de la mecánica clásica el *principio de determinación*: conocidas en cierto instante las posiciones y las velocidades iniciales de todas las partículas que conforman el sistema, es posible determinar sus posiciones y velocidades en cualquier otro instante.

Matemáticamente, este principio se traduce en la existencia de una función¹, conocida como fuerza, $F: \mathbb{R}^{3n} \times \mathbb{R}^{3n} \times \mathbb{R} \to \mathbb{R}$, que cumple la llamada ecuación de Newton²:

$$\ddot{x} = F(x, \dot{x}, t; \alpha),$$

donde n es el número de partículas, $x: \mathbb{R} \to \mathbb{R}^{3n}$ es la trayectoria del sistema y α son unos ciertos parámetros de los que puede depender F, como por ejemplo las masas o las cargas eléctricas de las diferentes partículas. Para cada sistema concreto, la fuerza se determina experimentalmente. Desde un punto de vista matemático, decimos la fuerza define un sistema mecánico newtoniano. En general, cuando hablemos de los distintos

 $^{^1}$ A lo largo del texto sólo consideraremos funciones diferenciables (\mathcal{C}^{∞} si es necesario), no lo especificaremos en lo que sigue.

 $^{^2}$ Esta ecuación es una forma peculiar de la conocida $segunda\ ley\ de\ Newton:$ F=ma.

 $^{^3}$ A lo largo del texto utilizaremos la notación usual en Física por la que un punto encima de una función dependiente del tiempo indica la derivada temporal: $\dot{a} = \frac{da}{dt}$. En particular el punto indica que debe existir esa dependencia respecto del tiempo.

tipos de sistema mecánico, llamaremos a sus ecuaciones diferenciales asociadas (Newton, Euler-Lagrange, Hamilton) ecuaciones del movimiento o dinámica del sistema.

El formalismo newtoniano ofrece una forma muy simple de entender los sistemas mecánicos pero tiene la complicación de que es necesario medir y calcular las tres componentes de la posición y de la velocidad de cada partícula que conforma el sistema. Por verlo con un ejemplo, si queremos describir el movimiento de un barco en un viaje transatlántico deberíamos tomar una referencia cartesiana (tal vez el centro de la Tierra y tres ejes perpendiculares) y describir su posición y velocidad en \mathbb{R}^3 en términos de esta referencia, cuando lo que parece más sencillo es simplemente entender el barco como una partícula moviéndose en la superficie de \mathbb{S}^2 y dar su posición y velocidad en términos de su latitud y longitud. Otro ejemplo lo podemos ver si consideramos el movimiento de una peonza. En este caso, aunque la peonza esté compuesta de cuatrillones de partículas, es posible describir su posición sólo con tres ángulos (el de giro respecto a su eje y los dos de orientación de su eje), o equivalentemente, con la rotación de sus ejes propios respecto a los de una referencia inmóvil exterior (un sistema de laboratorio), es decir, con un elemento de SO(3).

De forma más general, podemos considerar sistemas newtonianos sometidos a ligaduras entre las partículas que lo conforman. Las posibilidades de movimiento quedan entonces restringidas a un subconjunto de \mathbb{R}^{3n} . En el caso de que estas ligaduras sean «lo suficientemente buenas» (holónomas es el término clásicamente usado en mecánica), es posible entenderlas como unas funciones $f_1, \ldots, f_r : \mathbb{R}^{3n} \to \mathbb{R}$, independientes en todo $x \in \mathbb{R}^{3n}$ ($d_x f_1 \wedge \cdots \wedge d_x f_r \neq 0$), tales que

$$\begin{cases} f_1(x) = 0 \\ \vdots \\ f_r(x) = 0. \end{cases}$$

Por el teorema de la función implícita, las ligaduras definen una subvariedad regular $M \subset \mathbb{R}^{3n}$ de dimensión m = 3n - r. En Física, a esta M se le suele llamar espacio de configuración del sistema y a m su número de grados de libertad. Así, llegamos al formalismo lagrangiano.

Un sistema lagrangiano viene dado por una variedad diferenciable M de dimensión m. Si (U,q) es una carta en M, las coordenadas $q=(q_1,\ldots,q_m):U\to\mathbb{R}^m$ suelen llamarse en Física coordenadas generalizadas del sistema. Dados $x\in M$ y $v\in T_xM$, las coordenadas de v suelen denotarse $\dot{q}=(\dot{q}_1,\ldots,\dot{q}_m)$ y suelen llamarse velocidades generalizadas del sistema. Esto significa en realidad que, en la carta $(U,q), v=\sum_{i=1}^m \dot{q}_i \frac{\partial}{\partial q_i}$. Como no hay t respecto de la que derivar, es sólo una notación, pero es consistente. Si $v=\dot{x}(t)$ tenemos

$$\dot{q}_i = dq_{i,x(t)}(v) = \frac{d}{dt}(q_i \circ x)(t).$$

Un estado del sistema lagrangiano vendrá dado por un punto $(x, v) \in TM$, donde x es la posición y v la velocidad del sistema en dicho estado, y una trayectoria vendrá dada por una aplicación

$$\begin{array}{ccc} \gamma: \mathbb{R} & \longrightarrow & TM \\ & t & \longmapsto & (x(t), \dot{x}(t)). \end{array}$$

La dinámica del sistema lagrangiano viene dada por lo que se conoce como el principio de mínima acción. Este principio puede deducirse a partir del formalismo newtoniano, imponiendo ciertas condiciones a las fuerzas y a partir del principio de D'Alembert (o de los trabajos virtuales), como puede leerse en [6]. Sin embargo, aquí le daremos un enfoque distinto, postulando directamente el principio de mínima acción, al estilo de Landau y Lifshitz [9]:

«La formulación más general de la ley del movimiento de los sistemas mecánicos es el principio de mínima acción (o principio de Hamilton).»

En primer lugar, el principio de mínima acción afirma que todo sistema mecánico viene caracterizado por una función $L:TM \to \mathbb{R}$, llamada lagrangiano del sistema. Ahora, suponiendo que en los tiempos t_1 y t_2 el sistema ocupa los estados (x_1, v_1) y (x_2, v_2) , la trayectoria que describirá el sistema entre los dos estados será aquella que minimice (o más precisamente, que haga extremal) la integral

$$S(\gamma) = \int_{t_1}^{t_2} L(\gamma(t)).$$

Este funcional S se conoce como la $acci\'{o}n$ del sistema.

Utilizando técnicas de cálculo variacional [1], es posible obtener unas ecuaciones diferenciales para las trayectorias que hacen extremales funcionales de la forma de S. Las soluciones de estas ecuaciones son las trayectorias «reales» del sistema lagrangiano. Tenemos así las ecuaciones de Euler-Lagrange, que en coordenadas locales se expresan:

$$\left[\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_i}\right) - \frac{\partial L}{\partial q_i}\right](t) = 0,$$

para $i = 1, \ldots, m$.

* * *

Dado un sistema newtoniano $F: \mathbb{R}^{3n} \times \mathbb{R}^{3n} \times \mathbb{R} \to \mathbb{R}^{3n}$, se define la energía cinética como una aplicación

$$T: \mathbb{R}^{3n} \longrightarrow \mathbb{R}$$

$$v \longmapsto \frac{1}{2} \langle v, v \rangle.$$

Decimos que el sistema es conservativo o, equivalentemente que F es una fuerza conservativa si ésta sólo depende de la posición y además es un campo gradiente, es decir, si existe una función $V: \mathbb{R}^{3n} \to \mathbb{R}$ que cumpla $F(x) = -\nabla V(x)$. Esta V toma el nombre de energía potencial. En un sistema newtoniano conservativo podemos ver la ecuación de Newton en la forma

$$\frac{d}{dt} \left(\frac{\partial T}{\partial v_i} \Big|_{\dot{x}(t)} \right) = -\frac{\partial V}{\partial x_i} \Big|_{x(t)}, \quad i = 1, \dots, 3n.$$

Ahora, escribiendo la función L(x, v) = T(v) - V(x), tenemos

$$\left[\frac{d}{dt}\left(\frac{\partial L}{\partial v_i}\right) - \frac{\partial L}{\partial x_i}\right]_{(x(t),\dot{x}(t))} = 0, \quad i = 1, \dots, 3n.$$

Así, podemos ver cualquier sistema newtoniano conservativo como un sistema lagrangiano con $M = \mathbb{R}^{3n}$ y L = T - V.

En el caso de una variedad diferenciable cualquiera, debemos tener en cuenta que el producto escalar $\langle u, v \rangle$ deberá ser sustituido por una métrica riemmaniana g. Recordamos que una métrica riemanniana en una variedad diferenciable M se define como una colección de productos escalares

$$g_x: T_xM \times T_xM \to \mathbb{R}, \ x \in M,$$

que satisface la siguiente condición de diferenciabilidad: para cada par X,Y de campos tangentes diferenciables de M la función

$$\langle X, Y \rangle : M \longrightarrow \mathbb{R}$$

 $x \longmapsto g_x(X_x, Y_x)$

es diferenciable. Se llama variedad riemanniana a un par (M, g), donde M es una variedad diferenciable y g una métrica riemanniana en M.

Definimos entonces un sistema lagrangiano natural, como un par ((M,g),L), donde (M,g) es una variedad riemmaniana y $L:TM\to\mathbb{R}$ es de la forma L=T-V, con $T:TM\to\mathbb{R},\,T(x,v)=\frac{1}{2}g_x(v,v)$ y $V:M\to\mathbb{R}$ una función⁴.

* * *

Es una técnica común a la hora de estudiar ecuaciones diferenciales de orden 2

$$f''(x) = F(x, f, f'),$$

realizar un cambio de la forma

$$\begin{cases} f'(x) = g(x) \\ g'(x) = F(x, f, g), \end{cases}$$

lo que convierte la ecuación original de orden 2 en un sistema de dos ecuaciones de orden 1. Esto ofrece una serie de ventajas prácticas y fundamentales, ya que nos permite ver la ecuación diferencial como un campo y su solución como el flujo correspondiente. La misma idea se puede aplicar para estudiar sistemas lagrangianos.

Sea ((M, g), L) un sistema natural. En TM tenemos las coordenadas (q, \dot{q}) , pero podemos definir otras usando la dualidad asociada a la métrica riemanniana g, es decir, el isomorfismo de Riesz:

$$T_x M \longrightarrow T_x M^*$$

 $v \longmapsto g_x(v, \bullet).$

En efecto, las formas

$$p_i = g_x \left(\frac{\partial}{\partial q_i}, \bullet \right), \quad i = 1, \dots, m,$$

que se llaman momentos canónicos conjugados o simplemente momentos, son independientes y forman una base de T_xM^* , de modo que $p=(p_1,\ldots,p_m)$ son coordenadas en

⁴Aunque V(x) está definida en M, la expresión L = T - V tiene sentido si entendemos V como una función definida en TM con V(x, v) = V(x).

 T_xM . Explícitamente

$$p_i = \sum_{i=1}^m p_i \left(\frac{\partial}{\partial q_j} \right) dq_j = \sum_{i=1}^m g_{ij} dq_j,$$

es decir, $p_i(q, \dot{q}) = \sum_{i=1}^m g_{ij}(q)\dot{q}_j$, donde $g_{ij}(q)$ son las componentes de la matriz asociada a g_x en la base $\left\{\frac{\partial}{\partial q_i}\right\}$. Por tanto

$$\frac{\partial}{\partial \dot{q}_i} p(q, \dot{q}) = g_{ji}(q).$$

Así, (q, p) son unas nuevas coordenadas en TM. Ahora, si recordamos que

$$L(q, \dot{q}) = \frac{1}{2} \sum_{i,j=1}^{m} \dot{q}_i g_{ij} \dot{q}_j - V(q),$$

resulta que

$$\frac{\partial L}{\partial \dot{q}_i} = \sum_{j=1}^m g_{ij} \dot{q}_j.$$

Consideramos ahora una función $H:TM\to\mathbb{R}$, que en las coordenadas (q,\dot{q}) es

$$H(q, \dot{q}) = \sum_{i=1}^{m} p_i \dot{q}_i - L(q, \dot{q}),$$

con las p dadas en función de las \dot{q} mediante la relación $p_i(q,\dot{q}) = \sum_{i=1}^m g_{ij}(q)\dot{q}_j$. Derivando a ambos lados de la expresión respecto de \dot{q}_j obtenemos

$$\sum_{i=1}^{m} \frac{\partial H}{\partial p_i} \frac{\partial p_i}{\partial \dot{q}_j} = \sum_{i=1}^{m} \frac{\partial p_i}{\partial \dot{q}_j} \dot{q}_i + p_j - \frac{\partial L}{\partial \dot{q}_j}$$

que nos lleva a

$$\sum_{i=1}^{m} \left(\frac{\partial H}{\partial p_i} - \dot{q}_i \right) g_{ij} = 0.$$

Como la matriz $(g_{ij})_{i,j}$ es regular,

$$\frac{\partial H}{\partial n_i} = \dot{q}_i.$$

Si derivamos respecto de q_j tenemos

$$\frac{\partial H}{\partial q_j} + \sum_{i=1}^m \frac{\partial H}{\partial p_i} \frac{\partial p_i}{\partial q_j} = \sum_{i=1}^m \frac{\partial p_i}{\partial q_j} \dot{q}_i - \frac{\partial L}{\partial \dot{q}_j}.$$

Finalmente, usando la relación recién obtenida,

$$\frac{\partial H}{\partial q_i} = -\frac{\partial L}{\partial q_i}.$$

Para ver cómo será la dinámica del sistema en estas coordenadas, consideramos una trayectoria $(x(t), \dot{x}(t))$, que en las nuevas coordenadas se expresa (q(t), p(t)), con p(t) =

 $(p_1(t), \ldots, p_m(t))$ y $p_i(t) = \sum_{j=1}^m g_{ij}(q(t))\dot{q}_j(t)$. Nótese que aquí el punto sí expresa derivación respecto del tiempo, es decir, que las p dependen de las q. En este caso, por la ecuación de Euler-Lagrange, la segunda de las relaciones anteriores queda:

$$\frac{\partial H}{\partial q_i}(t) = -\frac{\partial L}{\partial q_i}(t) = -\left(\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_i}\right)(t) = -\frac{d}{dt}p_j(t) = -\dot{p}_j(t).$$

Obtenemos entonces un sistema de EDOs de orden 1 equivalentes a la ecuación de Euler-Lagrange

$$\dot{q}_i(t) = \frac{\partial H}{\partial p_i}(t)$$
$$\dot{p}_i(t) = -\frac{\partial H}{\partial q_i}(t),$$

para i = 1, ..., n. Éstas son las ecuaciones de Hamilton.

Si queremos dotar de sentido físico a esta función H, conocida como hamiltoniano del sistema, consideremos un sistema natural con lagrangiano L = T - V. Entonces $p_i = \sum_{j=1}^m g_{ij}(q)\dot{q}_j$ y $T(q,\dot{q}) = \sum_{i,j=1}^m \frac{1}{2}\dot{q}_ig_{ij}(q)\dot{q}_j$, por tanto

$$H(q, \dot{q}) = \sum_{i=1}^{m} p_i(q, \dot{q})\dot{q}_i - L(q, \dot{q}) = \sum_{i,j=1}^{m} (g_{ij}\dot{q}_j)\dot{q}_i - \frac{1}{2}\sum_{i,j=1}^{m} \dot{q}_ig_{ij}\dot{q}_j + V(q) = T(q, \dot{q}) + V(q),$$

Es decir, el hamiltoniano es exactamente T + V, la energía total del sistema.

De esta forma, podemos entender la dinámica de un sistema lagrangiano como la definición de un campo tangente al fibrado tangente del espacio de configuración, cuyas curvas integrales contendrán toda la información sobre la evolución temporal del sistema. En coordenadas locales este campo tangente se expresa

$$X = \sum_{i=1}^{m} \left(\frac{\partial H}{\partial p_i} \frac{\partial}{\partial q_i} - \frac{\partial H}{\partial q_i} \frac{\partial}{\partial p_i} \right).$$

La siguiente pregunta que cabe hacerse es si será posible construir este campo de forma independiente de las coordenadas a partir de la especificación de un hamiltoniano $H:TM\to\mathbb{R}$. La construcción es sencilla, basta considerar un punto $\zeta\in TM$, con coordenadas (q,p) y la 1-forma α que localmente se expresa

$$\alpha = \sum_{i=1}^{m} p_i \mathrm{d}q_i.$$

Entonces, la 2-forma

$$\omega = d\alpha = \sum_{i=1}^{m} dp_i \wedge dq_i,$$

es cerrada (porque es exacta) y no degenerada.

Usando esta forma se puede construir un isomorfismo lineal, dado $\zeta \in TM$,

$$J = I^{-1} : T_{\zeta}(TM) \longrightarrow (T_{\zeta}(TM))^*$$

$$\xi \longmapsto \omega(\xi, \bullet).$$

Ahora, sea el campo $X^H = IdH$, es decir, tal que $dH = \omega(X^H, \bullet)$, es fácil comprobar que en coordenadas locales se expresará tal y como queríamos:

$$X^H = \sum_{i=1}^m \left(\frac{\partial H}{\partial p_i} \frac{\partial}{\partial q_i} - \frac{\partial H}{\partial q_i} \frac{\partial}{\partial p_i} \right).$$

En efecto, si $X^H = \sum_{i=1}^m \left(a_i \frac{\partial}{\partial q_i} + b_i \frac{\partial}{\partial p_i} \right)$,

$$a_{i} = \omega \left(X^{H}, \frac{\partial}{\partial p_{i}} \right) = dH \left(\frac{\partial}{\partial p_{i}} \right) = \frac{\partial H}{\partial p_{i}}$$
$$-b_{i} = \omega \left(X^{H}, \frac{\partial}{\partial q_{i}} \right) = dH \left(\frac{\partial}{\partial q_{i}} \right) = \frac{\partial H}{\partial q_{i}},$$

ya que $dH = \sum_{i=1}^{m} \frac{\partial H}{\partial q_i} dq_i + \frac{\partial H}{\partial p_i} dp_i$.

Obsérvese que el único elemento realmente crucial en la construcción de este campo ha sido la 2-forma ω . Una forma de esas características induce sobre TM la estructura de variedad simpléctica. El estudio de las variedades simplécticas y sus propiedades es la geometría simpléctica. A partir de la sección 4, introduciremos el formalismo de la geometría simpléctica, lo que nos permitirá enunciar la formulación canónica de la mecánica clásica y resolver alguno de sus problemas.

2. Derivada de Lie y otras herramientas

Antes de comenzar con el estudio de la geometría simpléctica, conviene recordar el concepto de la derivada de Lie de campos, extenderlo a formas, y obtener una serie de resultados que nos serán útiles más adelante.

Empecemos recordando la definición del corchete de Lie de campos, su estudio detallado puede encontrarse en [5].

Definición 2.1 (Corchete de Lie). Sea M una variedad diferenciable y $\mathfrak{X}(M)$ el conjunto de los campos diferenciables en M, se define el corchete de Lie como la aplicación

$$[\ ,\]: \mathfrak{X}(M) \times \mathfrak{X}(M) \longrightarrow \mathfrak{X}(M) (X,Y) \longmapsto [X,Y] = X \circ Y - Y \circ X,$$

donde la composición se entiende si vemos los campos como aplicaciones $\mathcal{C}^{\infty}(M) \to \mathcal{C}^{\infty}(M)$.

Recordamos también que podemos ver el corchete de Lie de otra forma equivalente. Sea M una variedad diferenciable, $a \in M$, $Y \in \mathfrak{X}(M)$, φ un flujo en M y X su generador infinitesimal. Entonces

$$[X,Y]_a = \lim_{t \to 0} \frac{\varphi_{-t,*}(Y_{\varphi_t(a)}) - Y_a}{t}.$$

En vista de esta fórmula, se define la derivada de Lie de Y respecto de X como $L_XY = [X, Y]$. Por último, recordamos otro resultado muy importante que usaremos posteriormente:

Proposición 2.2. Sea M una variedad diferenciable, sean φ , ψ flujos en M y sean X, Y sus generadores infinitesimales, respectivamente. Entonces los flujos conmutan si y sólo si lo hacen sus generadores infinitesimales (es decir, $\varphi_t \circ \psi_s = \psi_s \circ \varphi_t$ si y sólo si [X, Y] = 0).

FIGURA 1. Visión geométrica de la derivada de Lie

Ya estamos en disposición de dar una definición más general de la derivada de Lie:

Definición 2.3 (Derivada de Lie). Sean M una variedad diferenciable, X un campo en M, y φ su flujo. Se define la derivada de Lie respecto de X como la aplicación

$$L_X: \Gamma^r(M) \longrightarrow \Gamma^r(M)$$

$$\omega \longmapsto L_X \omega = \lim_{t \to 0} \frac{\varphi_t^* \omega - \omega}{t}$$

(es decir,
$$(L_X\omega)_x = \lim_{t\to 0} \frac{\varphi_t^*\omega_{\varphi_t(x)}-\omega_x}{t}$$
 para $x\in M$).

Vamos a obtener ahora un par de propiedades de la derivada de Lie.

Proposición 2.4. Sean M una variedad diferenciable, $\omega \in \Gamma^r(M), X, X_1, \ldots, X_r \in \mathfrak{X}(M)$, se cumple

$$L_X \omega(X_1, \dots, X_r) = X \omega(X_1, \dots, X_r) - \sum_{i=1}^r \omega(X_1, \dots, [X, X_i], \dots, X_r)$$

Demostración. Vamos a probarlo sólo para el caso en el que ω es una 2-forma para simplificar su lectura. El cálculo general es completamente análogo. En primer lugar,

$$\lim_{t \to 0} \frac{1}{t} [(\varphi_t^* \omega)(X_1, X_2) - \omega(X_1, X_2)] = \lim_{t \to 0} \left[\frac{1}{t} [(\varphi_t^* \omega)(X_1, X_2) - \varphi_t^*(\omega(X_1, X_2))] \right] + \lim_{t \to 0} \left[\frac{1}{t} [\varphi_t^*(\omega(X_1, X_2)) - \omega(X_1, X_2)] \right].$$

El segundo término de esta expresión es exactamente

$$\lim_{t\to 0} \left[\frac{1}{t} [\varphi_t^*(\omega(X_1, X_2)) - \omega(X_1, X_2)] \right] = \left(\frac{d}{dt} \Big|_{t=0} \varphi_t \right) (\omega(X_1, X_2)) = X\omega(X_1, X_2),$$

mientras que el primer término, en $x \in M$ es

$$\begin{split} &\lim_{t\to 0} \left[\frac{1}{t} [(\varphi_t^* \omega)(X_1, X_2) - \varphi_t^*(\omega(X_1, X_2))] \right] \bigg|_x \\ &= \lim_{t\to 0} \frac{1}{t} [\omega_{\varphi_t(x)}(d_x \varphi_t(X_{1,x}), d_x \varphi_t(X_{2,x})) - \omega_{\varphi_t(x)}(X_{1,\varphi_t(x)}, X_{2,\varphi_t(x)})] \\ &= \lim_{t\to 0} \omega_{\varphi_t(x)} \left[\frac{1}{t} (d_x \varphi_t(X_{1,x}) - X_{1,\varphi_t(x)}), d_x \varphi_t(X_{2,x}) \right] + \lim_{t\to 0} \omega_{\varphi_t(x)} \left[X_{1,\varphi_t(x)}, \frac{1}{t} (d_x \varphi_t(X_{2,x}) - X_{2,\varphi_t(x)}) \right] \\ &= -\omega_x ([X, X_1]_x, X_{2,x}) - \omega_x (X_{1,x}, [X, X_2]_x). \end{split}$$

Comprobemos que, en efecto

$$\lim_{t \to 0} \frac{1}{t} (d_x \varphi_t(X_{1,x}) - X_{1,\varphi_t(x)}) = [X, X_1]_x,$$

y es análogo para $[X, X_2]_x$. Basta «sacar factor común» a $d_x \varphi_t$, de modo que

$$\frac{1}{t}(d_x\varphi_t(X_{1,x}) - X_{1,\varphi_t(x)}) = -d_x\varphi_t\left(\frac{\left(d_x\varphi_t\right)^{-1}\left(X_{1,\varphi_t(x)}\right) - X_{1,x}}{t}\right).$$

Ahora, $(d_x \varphi_t)^{-1} = d_{\varphi_t(x)} \varphi_{-t} = \varphi_{-t,*}$ y

$$\lim_{t \to 0} \frac{1}{t} (\varphi_{-t,*}(X_{1,\varphi_t(x)}) - X_{1,x}) = [X, X_1]_x.$$

Volviendo a agrupar, tenemos lo que se quería demostrar.

Proposición 2.5. Sea M una variedad diferenciable y $\alpha \in \Gamma^r(M)$, se cumple

$$(d\alpha)(X_1, \dots, X_{r+1}) = \sum_{i=1}^{r+1} (-1)^{i-1} X_i \alpha(X_1, \dots, \hat{X}_i, \dots, X_{r+1}) + \sum_{i < j} (-1)^{i+j} \alpha([X_i, X_j], X_1, \dots, \hat{X}_i, \dots, \hat{X}_j, \dots, X_{r+1}),$$

donde el circunflejo en un campo quiere decir que este campo se omite.

Demostración. En este caso probaremos solo la identidad más sencilla

$$d\alpha(X,Y) = X\alpha(Y) - Y\alpha(X) - \alpha([X,Y]),$$

válida para el caso en el que α es de grado 1. El caso general es completamente análogo.

En primer lugar, escribimos todo en coordenadas locales:

$$\alpha = \sum_{i} \alpha_{i} d\mathbf{x}_{i}, \ d\alpha = \sum_{i,j} d\alpha_{i} \wedge d\mathbf{x}_{j} = \sum_{i,j} \frac{\partial \alpha_{i}}{\partial \mathbf{x}_{j}} d\mathbf{x}_{i} \wedge \mathbf{x}_{j},$$
$$X = \sum_{i} X_{i} \frac{\partial}{\partial \mathbf{x}_{i}}, \ [X, Y] = \sum_{i,j} \left(X_{i} \frac{\partial Y_{j}}{\partial \mathbf{x}_{i}} - Y_{i} \frac{\partial X_{j}}{\partial \mathbf{x}_{i}} \right) \frac{\partial}{\partial \mathbf{x}_{j}}.$$

Ahora, operando en estas coordenadas:

$$\begin{split} \alpha(X) &= \sum_{i} \alpha_{i} X_{i}, \ \mathrm{d}\alpha(X,Y) = \sum_{i,j} \frac{\partial \alpha_{i}}{\partial \mathbf{x}_{j}} (X_{j} Y_{i} - X_{i} Y_{j}), \\ \alpha([X,Y]) &= \sum_{i,j} \left(X_{i} \frac{\partial Y_{j}}{\partial \mathbf{x}_{i}} - Y_{i} \frac{\partial X_{j}}{\partial \mathbf{x}_{i}} \right) \alpha_{j} = \sum_{i,j} \alpha_{i} X_{j} \frac{\partial Y_{i}}{\partial \mathbf{x}_{j}} - \sum_{i,j} \alpha_{i} Y_{j} \frac{\partial X_{i}}{\partial \mathbf{x}_{j}}, \\ X(\alpha Y) &= \sum_{i,j} \alpha_{i} X_{j} \frac{\partial Y_{i}}{\partial \mathbf{x}_{j}} + Y_{i} X_{j} \frac{\partial \alpha_{i}}{\partial \mathbf{x}_{j}}, \ Y(\alpha X) = \sum_{i,j} \alpha_{i} Y_{j} \frac{\partial X_{i}}{\partial \mathbf{x}_{j}} + X_{i} Y_{j} \frac{\partial \alpha_{i}}{\partial \mathbf{x}_{j}}. \end{split}$$

Obtenemos entonces

$$X(\alpha(Y)) - Y\alpha(X) - \alpha([X,Y]) = \sum_{i,j} Y_i X_j \frac{\partial \alpha_i}{\partial \mathbf{x}_j} - X_i Y_j \frac{\partial \alpha_i}{\partial \mathbf{x}_j} = d\alpha(X,Y).$$

Antes de seguir, vamos a introducir una nueva operación para formas:

Definición 2.6 (Producto interior). Sea M una variedad diferenciable y X un campo en M, se define el producto interior $i_X : \Gamma^{r+1}(M) \to \Gamma^r(M)$ por

$$i_X\omega(X_1,\ldots,X_r)=\omega(X,X_1,\ldots,X_r),$$

para
$$X_1, \ldots, X_r \in \mathfrak{X}(M)$$
.

Podemos probar ya una serie de fórmulas, debidas a Élie Cartan⁵, que nos serán de gran utilidad posteriormente.

Teorema 2.7 (Fórmulas de Cartan). Sea X un campo en una variedad M, y consideramos la derivada de Lie L_X , el producto interior i_X , y la diferencial exterior d. Entonces se cumplen las siguientes fórmulas:

- 1. $i_{[X,Y]} = L_X i_Y i_Y L_X$, para todo $Y \in \mathfrak{X}(M)$,
- 2. $L_X = d \circ i_X + i_X \circ d y$
- 3. $L_X \circ d = d \circ L_X$.

Demostración.

1. Sean $X_1, \ldots, X_r \in \mathfrak{X}(M)$, entonces

$$L_X[(i_Y\omega)(X_1, ..., X_r)] = X\omega(Y, X_1, ..., X_r) - \sum_{i=1}^r \omega(Y, X_1, ..., [X, X_i], ..., X_r),$$

$$i_Y[(L_X\omega)(X_1, ..., X_r)] = X\omega(Y, X_1, ..., X_r) - \sum_{i=1}^r \omega(Y, X_1, ..., [X, X_i], ..., X_r)$$

$$- \omega([X, Y], X_1, ..., X_r).$$

⁵En la literatura, la segunda de estas fórmulas suele llamarse «fórmula mágica de Cartan».

Por tanto

$$i_{[X,Y]}\omega(X_1,\ldots,X_r) = \omega([X,Y],X_1,\ldots,X_r)$$

= $L_X[(i_Y\omega)(X_1,\ldots,X_r)] - i_Y[(L_X\omega)(X_1,\ldots,X_r)].$

2. Usando la relación entre el corchete de Lie y la diferencial exterior que obtuvimos antes, tenemos

$$(d(i_X\alpha))(X_1, \dots, X_r) = \sum_{i} (-1)^{i-1} X_i \alpha(X, X_1, \dots, \hat{X}_i, \dots, X_r)$$

+
$$\sum_{i < j} (-1)^{i+j} \alpha(X, [X_i, X_j], X_1, \dots, \hat{X}_i, \dots, \hat{X}_j, \dots, X_r),$$

V

$$(i_X(d\alpha))(X_1, \dots, X_r) = \sum_i (-1)^i X_i \alpha(X, X_1, \dots, \hat{X}_i, \dots, X_r)$$

$$+ \sum_{i < j} (-1)^{i+j+1} \alpha(X, [X_i, X_j], X_1, \dots, \hat{X}_i, \dots, \hat{X}_j, \dots, X_r)$$

$$+ X\alpha(X_1, \dots, X_r) + \sum_j (-1)^j \alpha([X, X_j], X_1, \dots, \hat{X}_j, \dots, X_r).$$

Sumando ambas expresiones obtenemos

$$(di_{X}\alpha + i_{X}d\alpha)(X_{1}, \dots, X_{r}) = X\alpha(X_{1}, \dots, X_{r})$$

$$+ \sum_{j} (-1)^{j} (-1)^{j-1} \alpha(X_{1}, \dots, [X, X_{j}], \dots, X_{r})$$

$$= X\alpha(X_{1}, \dots, X_{r}) - \sum_{j} \alpha(X_{1}, \dots, [X, X_{j}], \dots, X_{r}).$$

3. Utilizando (2) y que $d \circ d = 0$, obtenemos

$$L_X \circ d = (i_X \circ d) \circ d + (d \circ i_X) \circ d = d \circ i_X \circ d,$$

$$d \circ L_X = d \circ (i_X \circ d) + d \circ (d \circ i_X) = d \circ i_X \circ d,$$

luego $L_X \circ d = d \circ L_X$.

3. Campos y formas dependientes de un parámetro

Definición 3.1 (Campos y formas dependientes del tiempo).

1. Un campo tangente (diferenciable) dependiente del tiempo de una variedad diferenciable M es una aplicación

$$X: M \times [0,1] \longrightarrow TM$$

 $(x,t) \longmapsto (x, X_x^t)$

que es diferenciable como aplicación entre variedades.

2. Una forma diferencial (diferenciable) de grado r dependiente del tiempo de una variedad diferenciable M es una aplicación

$$\begin{array}{ccc} \alpha: M \times [0,1] & \longrightarrow & \Lambda^r(M) \\ (x,t) & \longmapsto & (x,\alpha_{t,x}) \end{array}$$

tal que la función

$$\alpha(X_1, \dots, X_r) : M \times [0, 1] \longrightarrow \mathbb{R}$$

$$(x, t) \longmapsto \alpha_{t, x}(X_{1, x}^t, \dots, X_{r, x}^t)$$

es diferenciable para cualesquiera r campos $X_1, \ldots, X_r \in \mathfrak{X}(M)$.

Observación 3.2. Un campo y una forma dependientes del tiempo se expresan en una carta (U, \mathbf{x}) en la forma

$$X_x^t = \sum X_i(x,t) \left. \frac{\partial}{\partial \mathbf{x}_i} \right|_x$$
$$\alpha_{t,x} = \sum \alpha_i(x,t) d\mathbf{x}_i|_x.$$

La diferenciabilidad de X y α es equivalente a la de sus componentes X_i , α_i como funciones $U \times [0,1] \to \mathbb{R}$.

Definición 3.3. Sea $U \subset M$ abierto, una *isotopía* de M es una aplicación diferenciable $G: [0,1] \times U \subset M \to M$ tal que $G(0,\bullet) = \varphi_0$ es la identidad y $G(t,\bullet) = \varphi_t$ es un difeomorfismo local.

Definición 3.4. Sea G una isotopía de una variedad M, se define el generador infinitesimal de G como el campo tangente dependiente del tiempo que, para $x \in M$ satisface

$$X_x^t = \frac{d}{ds} \bigg|_{s=t} \varphi_s(\varphi_t^{-1}(x)),$$

es decir

$$X^t \circ \varphi_t = \frac{d}{dt} \varphi_t.$$

Observación 3.5. Podemos entender las isotopías como «flujos dependientes del tiempo», que se diferencian de los flujos en que pierden la propiedad de semigrupo.

Podemos ver un campo dependiente del tiempo X_t en M como un campo independiente del tiempo

$$\begin{array}{ccc} \tilde{X}: M \times [0,1] & \longrightarrow & T(M \times [0,1]) \\ (x,t) & \longmapsto & \left((x,t), X_x^t + \frac{\partial}{\partial \mathbf{t}} \Big|_t\right). \end{array}$$

Si X_t tiene soporte compacto y existe $x_0 \in M$ tal que $X_x^t = 0$ para cada $t \in [0, 1]$, entonces \tilde{X} tiene soporte compacto y genera un flujo completo $\Phi_s(x, t)$ en $(U \subset M) \times [0, 1]$, donde U es un entorno de x_0 . Podemos definir entonces una isotopía $G: [0, 1] \times U \to M$, donde $G(s, x) = \varphi_s(x)$ es la primera componente de $\Phi_s(x, 0)$. Claramente es una isotopía porque la primera componente de $\Phi_0(\bullet, 0)$ es la identidad en M y la de $\Phi_s(\bullet, 0)$ es un difeomorfismo local. Además,

$$\Phi_s(x,t) = \Phi_{s+t} \circ (\Phi_t)^{-1}(x,t) = \Phi_{s+t} \left(\varphi_t^{-1}(x), 0 \right) = (\varphi_{s+t} \circ \varphi_t^{-1}(x), t+s)$$

Ahora,

$$X_x^t + \frac{\partial}{\partial \mathbf{t}} \bigg|_t = \tilde{X}_{(x,t)} = \left. \frac{d}{ds} \right|_{s=0} \Phi_s(x,t) = \left. \frac{d}{ds} \right|_{s=0} \varphi_{t+s}(\varphi_t^{-1}(x)) + \left. \frac{\partial}{\partial \mathbf{t}} \right|_t,$$

luego $X_x^t = \frac{d}{ds}\Big|_{s=t} \varphi_s(\varphi_t^{-1}(x))$, es decir, X es el generador infinitesimal de la isotopía G.

Esto nos permite generalizar la derivada de Lie de formas para un campo dependiente del tiempo:

$$L_{X^t}\alpha = \lim_{t \to 0} \frac{\varphi_t^*\alpha - \alpha}{t}.$$

Ahora también podemos definir qué queremos decir por «la derivada temporal» de una forma dependiente del tiempo.

Definición 3.6. Sea α_t una r-forma dependiente del tiempo, se define la derivada temporal de α_t como

$$\frac{d}{dt}\alpha_t = \lim_{h \to 0} \frac{\alpha_{t+h} - \alpha_t}{h}.$$

Finalmente, tenemos una fórmula que nos relaciona la derivada temporal con la derivada de Lie de formas.

Proposición 3.7. Sea α_t una r-forma dependiente del tiempo, G una isotopía (y $\varphi_t = G(t, \bullet)$) y X^t su generador infinitesimal, entonces

$$\frac{d}{dt}\varphi_t^*\alpha_t = \varphi_t^* \left(L_{X^t}\alpha_t + \frac{d}{dt}\alpha_t \right).$$

Demostración. En primer lugar

$$\frac{\varphi_{t+h}^* \alpha_{t+h} - \varphi_t^* \alpha_t}{h} = \frac{\varphi_{t+h}^* \alpha_{t+h} - \varphi_t^* \alpha_{t+h} + \varphi_t^* \alpha_{t+h} - \varphi_t^* \alpha_t}{h},$$

reagrupando, tenemos

$$\frac{d}{dt}\varphi_t^*\alpha_t = \lim_{h \to 0} \frac{\varphi_{t+h}^*\alpha_{t+h} - \varphi_t^*\alpha_t}{h} = \lim_{h \to 0} \frac{\varphi_{t+h}^*\alpha_{t+h} - \varphi_t^*\alpha_{t+h}}{h} + \lim_{h \to 0} \frac{\varphi_t^*\alpha_{t+h} - \varphi_t^*\alpha_t}{h}.$$

Finalmente, «sacando factor común» φ_t^* y aplicando las definiciones de derivada de Lie y derivada temporal de formas llegamos a

$$\frac{d}{dt}\varphi_t^*\alpha_t = \varphi_t^* \left(\lim_{h \to 0} \frac{\varphi_h^*\alpha_t - \alpha_t}{h} + \lim_{h \to 0} \frac{\alpha_{t+h} - \alpha_t}{h} \right) = \varphi_t^* \left(L_{X^t}\alpha_t + \frac{d}{dt}\alpha_t \right).$$

4. Espacios vectoriales simplécticos

Definición 4.1 (Espacio vectorial simpléctico). Un espacio vectorial simpléctico es un par ordenado (V, ω) , donde V es un espacio vectorial sobre \mathbb{R} y

$$\omega: V \times V \to \mathbb{R}$$

es una forma bilineal antisimétrica no degenerada.

Proposición 4.2.

1. Sea ω una forma bilineal antisimétrica sobre un espacio vectorial V de dimensión finita y sea M su matriz asociada. Entonces existe $n \leq \frac{1}{2}\dim(V)$ tal que M es congruente con

$$\left(\begin{array}{ccc} 0 & I_n & 0 \\ -I_n & 0 & 0 \\ 0 & 0 & 0 \end{array}\right),\,$$

donde I_n es la matriz identidad $n \times n$.

2. $Si(V, \omega)$ es un espacio vectorial simpléctico de dimensión finita, entonces $\dim(V) = 2n$ para cierto $n \in \mathbb{N}$.

Demostración.

- 1. Es un resultado conocido de álgebra lineal [4].
- 2. Por (1), $det(\omega) \neq 0$ si y sólo si la matriz con la que es congruente es exactamente

$$\left(\begin{array}{cc} 0 & I_n \\ -I_n & 0 \end{array}\right).$$

Luego $\dim(V) = 2n$.

Definición 4.3 (Base simpléctica). Sea (V, ω) un espacio vectorial simpléctico, se dice que $\mathcal{B} \subset V$ es una base simpléctica de V si la matriz asociada a ω en \mathcal{B} es

$$J_n := \left(\begin{array}{cc} 0 & I_n \\ -I_n & 0 \end{array} \right).$$

Observación 4.4. Claramente, por la proposición anterior todo espacio vectorial simpléctico de dimensión finita tiene una base simpléctica.

Observación 4.5. Llamaremos n-ésima forma simpléctica canónica a la forma ω_n : $\mathbb{R}^{2n} \to \mathbb{R}^{2n}$ de matriz asociada J_n en la base canónica de \mathbb{R}^{2n} . Llamaremos espacio simpléctico canónico n-dimensional a $(\mathbb{R}^{2n}, \omega_n)$. Deducimos también de la proposición anterior que todo espacio vectorial simpléctico de dimensión 2n es isomorfo a $(\mathbb{R}^{2n}, \omega_n)$.

Observación 4.6. Podemos ver la forma bilineal ω de matriz asociada J_n como una 2-forma alternada en V. Si $\{u_1, \ldots, u_n, v_1, \ldots, v_n\}$ es una base simpléctica y $\{\varphi_1, \ldots, \varphi_n, \psi_1, \ldots, \psi_n\}$ es su base dual, entonces

$$\omega = \sum_{i=1}^{n} \left(\sum_{\sigma \in \mathfrak{S}_{2}} (-1)^{\sigma} (\psi_{i} \otimes \varphi_{i})^{\sigma} \right) = \sum_{i=1}^{n} \psi_{i} \wedge \varphi_{i}.$$

Definición 4.7 (Aplicación simpléctica). Sea (V, ω) un espacio vectorial simpléctico, decimos que una aplicación lineal $A: V \to V$ es simpléctica si

$$\omega(Av, Aw) = \omega(v, w)$$

para cualesquiera $v, w \in V$.

Proposición 4.8. Sea (V, ω) un espacio vectorial simpléctico de dimensión $2n \ y \ A : V \rightarrow V$ lineal. Son equivalentes:

- 1. A es simpléctica.
- 2. $J_n = A^T J_n A$.
- 3. Si \mathcal{B} es una base simpléctica, entonces $\mathcal{B}' = A(\mathcal{B})$ es una base simpléctica.

Demostración.

$$(1) \implies (2)$$
:

Basta evaluar ω en una base simpléctica.

$$\omega(Av, Aw) = v^T A^T J_n Aw$$
$$\omega(v, w) = v^T J_n w.$$

Como $\omega(Av, Aw) = \omega(v, w)$ para cualesquiera $v, w \in V$, entonces

$$A^T J_n A = J_n$$
.

$$(2) \implies (3)$$
:

Si $\mathcal{B} = \{e_1, \dots, e_{2n}\}$ y $\mathcal{B}' = \{e'_1, \dots, e'_{2n}\}$ la componente (i, j) de la matriz asociada a ω en la base \mathcal{B}' es

$$\omega(e'_i, e'_j) = e'^T_i J_n e'_j = e^T_i A^T J_n A e_j = e^T_i J_n e_j = \omega(e_i, e_j).$$

Como \mathcal{B} es simpléctica, la matriz asociada a ω en \mathcal{B}' es J_n , es decir, \mathcal{B}' es simpléctica.

$$(3) \implies (1)$$
:

Tomamos \mathcal{B} y \mathcal{B}' como antes y sabemos que ambas son simplécticas. Entonces

$$v = \sum_{i=1}^{2n} v_i e_i$$
$$w = \sum_{i=1}^{2n} w_i e_i$$

у

$$Av = \sum_{i=1}^{2n} v_i A e_i = \sum_{i=1}^{2n} v_i e'_i$$
$$Aw = \sum_{i=1}^{2n} w_i A e_i = \sum_{i=1}^{2n} w_i e'_i.$$

Por tanto,

$$\omega(Av, Aw) = \omega\left(\sum_{i=1}^{2n} v_i e_i', \sum_{j=1}^{2n} w_j e_j'\right) = \sum_{i,j=1}^{2n} v_i w_j \omega(e_i', e_j') = \sum_{i,j=1}^{2n} v_i w_j \omega(e_i, e_j) = \omega(v, w).$$

Luego A es simpléctica.

Proposición 4.9. Sea (V, ω) un espacio vectorial simpléctico de dimensión 2n, el conjunto de las aplicaciones lineales simplécticas de V es un subgrupo de $\mathrm{GL}(2n)$. Este grupo se conoce como n-ésimo grupo simpléctico y se denota por $\mathrm{Sp}(n)$.

Demostración.

1. Sea A una aplicación simpléctica,

$$1 = \det(J_n) = \det(A^T J_n A) = \det(A^T) \det(A) = \det(A)^2.$$

Luego $det(A) \neq 0$, es decir, $A \in GL(2n)$.

2. Sea A una aplicación simpléctica y A^{-1} su inversa. Multiplicando por la derecha por A^{-1} y por la izquierda por $(A^T)^{-1} = (A^{-1})^T$ en $J_n = A^T J_n A$ tenemos

$$J_n = (A^{-1})^T J_n A^{-1}.$$

Por tanto, A^{-1} es simpléctica.

3. Sean A, B simplécticas.

$$(AB)^T J_n AB = B^T A^T J_n AB = B^T J_n B = J_n,$$

luego AB también es simpléctica.

Podemos probar un resultado aún más fuerte sobre el grupo simpléctico:

Proposición 4.10. Toda aplicación lineal simpléctica tiene determinante 1.

Demostración. Sea ω_n la forma simpléctica canónica, $\Omega = \omega_n \wedge \cdots \wedge \omega_n$ es una forma de grado máximo, luego, por el teorema del determinante, $f^*(\Omega) = \det(f)\Omega$. Ahora, como f es simpléctica,

$$f^*(\Omega) = (\omega_n \circ f) \wedge \cdots \wedge (\omega_n \circ f) = \omega_n \wedge \cdots \wedge \omega_n = \Omega.$$

Por tanto, det(f) = 1.

5. VARIEDADES SIMPLÉCTICAS Y SIMPLECTOMORFISMOS

Definición 5.1 (Variedad simpléctica). Una variedad simpléctica es un par ordenado (M, ω) donde M es una variedad diferenciable de dimensión 2n y $\omega \in \Gamma^2(M)$ es cerrada y no degenerada (para todo $x \in M$ y para todo $\xi \in T_xM$ existe $\eta \in T_xM$ tal que $\omega(\xi, \eta) \neq 0$).

Definición 5.2 (Carta simpléctica). Sea (M, ω) una variedad simpléctica, una carta simpléctica en torno a un punto $x \in M$ es un par (U, (q, p)), donde $U \subset M$ es un entorno de x y $(q, p) = (q_1, \ldots, q_n, p_1, \ldots, p_n)$ es un sistema de coordenadas en x tal que:

(1)
$$\omega = \sum_{i=1}^{n} \mathrm{d}p_i \wedge \mathrm{d}q_i.$$

Vamos a probar ahora uno de los resultados fundamentales de la geometría simpléctica, que confirma una de las intuiciones que podríamos tener: toda variedad simpléctica es localmente como un espacio vectorial simpléctico.

Teorema 5.3 (Darboux). Sea ω una 2-forma no degenerada en una variedad M de dimensión 2n. Entonces ω es cerrada si y sólo si para cada $x \in M$ hay una carta (U, (q, p)) en torno a x, donde $(q, p) = (q_1, \ldots, q_n, p_1, \ldots, p_n)$ es un sistema de coordenadas que cumple (1).

Demostración. En primer lugar, inmediatamente si ω tiene esa forma entonces es cerrada. El procedimiento a seguir para demostrar la otra implicación del teorema es el siguiente:

- 1. Vamos a encontrar un entorno $U \subset M$ y un difeomorfismo $\varphi : U \to \mathbb{R}^{2n}$ tal que $\omega_1 = (\varphi^*)^{-1}\omega$ es una forma bilineal antisimétrica con coeficientes constantes en \mathbb{R}^{2n} .
- 2. Tomamos $\psi: \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ un cambio de base tal que la matriz asociada a ω_1 en la nueva base es J_n .
- 3. Tomamos como sistema de coordenadas $(q, p) = \psi \circ \varphi$, entonces (U, (q, p)) es una carta simpléctica en torno a x.

Falta hallar ω_1 y φ . Sea $\omega_1 = \omega_x$, que tiene coeficientes constantes, y sea

$$\omega_t = t\omega_1 + (1-t)\omega = \omega + t(\omega_1 - \omega),$$

para cada $t \in [0, 1]$. Como $\omega_{t,x} = \omega_x$, para todo $t \in [0, 1]$, ω_t es no degenerada en x. Por tanto, existe un entorno $U \subset M$ de x en el que ω_t es no degenerada para cada $t \in [0, 1]$.

Ahora, como $\omega_1 - \omega$ es cerrada, podemos tomar U tal que sea difeomorfo a \mathbb{R}^{2n} , luego existirá una 1-forma α en U tal que $\omega_1 - \omega = \alpha$. Además, como α está definida salvo una constante, podemos asumir $\alpha_x = 0$.

♣ Esto se entiende con la parte última de la sección de derivada de Lie. Para $t \in [0,1]$, sea X^t el campo dependiente del tiempo tal que $i_{X^t}\omega_t = -\alpha$ y con $X_x^t = 0$. Tomando un entorno suficientemente pequeño, para cada $t \in [0,1]$ la isotopía G generada por X^t está bien definida. Tenemos entonces, si $\varphi_t = G(t, \bullet)$,

$$\frac{d}{dt}(\varphi_t^*\omega_t) = \varphi_t^*(L_{X^t}\omega_t) + \varphi_t^*\left(\frac{d}{dt}\omega_t\right) = \varphi_t^*(i_{X^t}(d\omega) + d(i_{X^t}\omega)) + \varphi_t^*(\omega_1 - \omega)$$

$$= \varphi_t^*(0 - d\alpha + \omega_1 - \omega) = 0,$$

donde hemos usado la fórmula de Cartan. Por tanto, $\varphi_1^*\omega_1=\varphi_0^*\omega_0=\omega$, luego $\varphi=\varphi_1$ es el difeomorfismo que transforma ω en ω_1 .

Vamos a dar ahora dos propiedades fuertes de las variedades simplécticas:

Proposición 5.4. Toda variedad simpléctica es orientable.

Demostración. Como ω es no degenerada, $\omega^n = \omega \wedge \stackrel{(n)}{\cdots} \wedge \omega$ es una forma de grado máximo nunca nula, luego la variedad es orientable.

Proposición 5.5. Si (M, ω) es una variedad simpléctica compacta y sin borde, entonces su segundo grupo de cohomología de de Rham es no trivial.

Demostración. Consideramos en M la forma de volumen $\Omega = \frac{1}{n!}\omega^n$. Ahora, si $\omega = d\alpha$, entonces $\omega^n = d(\alpha \wedge \omega^{n-1})$. Por el teorema de Stokes

$$Vol(M) = \int_{M} \Omega = \int_{M} d(\alpha \wedge \omega^{n-1}) = \int_{\partial M = \emptyset} \alpha \wedge \omega^{n-1} = 0,$$

que es absurdo porque el volumen de M no puede ser 0. Por tanto, ω es cerrada y no es exacta, luego $[\omega] \neq 0$ y $H^2(M) \neq \{0\}$.

Corolario 5.6. \mathbb{S}^{2n} admite una estructura simpléctica si y sólo si n=1.

Demostración. Sean ω una 2-forma en \mathbb{S}^n , n>2, $x\in\mathbb{S}^n$ y U un disco entorno de x $(U\simeq\mathbb{R}^n)$. Entonces existe una 1-forma α definida en U tal que $\omega=\mathrm{d}\alpha$ en U. Sea θ una función meseta que valga 1 en U y 0 fuera de un entorno V de U, la forma

$$\omega_1 = \omega - \theta d\alpha$$

es cerrada con soporte compacto en $\mathbb{S}^n \setminus \{x\}$, que es difeomorfa, por proyección estereográfica φ , a \mathbb{R}^n . Por tanto, existe una 1-forma β de \mathbb{R}^n tal que d $\beta = \varphi^*\omega_1$. Con todo esto, tenemos

$$\omega = d \left(\theta \alpha + (\varphi^{-1})^* \beta \right),$$

luego ω es exacta en \mathbb{S}^n y

$$H^2(\mathbb{S}^n) = \{0\}.$$

Si n=2, como \mathbb{S}^2 es conexa, compacta y sin borde,

$$H^2(\mathbb{S}^2) = H^0(\mathbb{S}^2) = \mathbb{R}.$$

Por la proposición anterior, si \mathbb{S}^{2n} admitiera una estructura simpléctica tendría que ser $H^2(\mathbb{S}^{2n}) \neq \{0\}$, que solamente se da en el caso n = 1.

Para terminar la sección, vamos a estudiar los isomorfismos en la categoría de las variedades simplécticas:

Definición 5.7 (Simplectomorfismo). Sea (M,ω) una variedad simpléctica y $f:M\to M$ un difeomorfismo. Decimos que f es un simplectomorfismo o una transformación canónica si

$$f^*\omega = \omega$$

Proposición 5.8. Sea (M, ω) una variedad simpléctica y $f: M \to M$ un difeomorfismo. Son equivalentes:

 ${\it 1. f es un simplectomorfismo.}$

⁶Esta nomenclatura es más común en Física

- 2. Para cada $x \in M$, la aplicación lineal $d_x f : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ es simpléctica.
- 3. Para cada $x \in M$, si (U, (q, p)) es una carta simpléctica en torno a x, $(f(U), (q \circ f, p \circ f))$ es una carta simpléctica en torno a f(x).

Demostración.

$$(1) \implies (2)$$
:

$$\omega_x = (f^*\omega)_x = \omega_{f(x)} \circ d_x f,$$

donde ω_x es una forma bilineal antisimétrica no degenerada en T_xM y $\omega_{f(x)}$ lo mismo en $T_{f(x)}M$. Tomando bases simplécticas \mathcal{B} y \mathcal{B}' en T_xM y $T_{f(x)}M$, respectivamente, las formas ω_x , $\omega_{f(x)}$ quedan en la forma canónica ω_n . Por tanto

$$\omega_n = \omega_n \circ d_x f$$
,

luego $d_x f$ es una aplicación lineal simpléctica.

$$(2) \implies (1)$$
:

Si $d_x f$ es simpléctica, para cada $x \in M$ en las bases adecuadas tenemos

$$\omega_x = \omega_{f(x)} \circ d_x f = (f^*\omega)_x.$$

Como esto es válido para todo $x \in M$, $\omega = f^*\omega$.

$$(1) \Longleftrightarrow (3)$$
:

$$\sum_{i=1}^{n} d(p_i \circ f) \wedge d(q_i \circ f) = \sum_{i=1}^{n} f^*(dp_i \wedge dq_i) = f^*\left(\sum_{i=1}^{n} dp_i \wedge dq_i\right) = f^*\omega$$

es igual a ω si y sólo si f es un simplectomorfismo.

Enunciamos también una propiedad inmediata de los simplectomorfismos:

Proposición 5.9. Los simplectomorfismos preservan el elemento de volumen $\Omega = \frac{1}{n!}\omega^n$.

6. Campos y flujos hamiltonianos

Observación 6.1. Sea M una variedad simpléctica, la aplicación

$$J = I^{-1} : T_x M \longrightarrow (T_x M)^* \xi \longmapsto \omega(\xi, \bullet),$$

da un isomorfismo lineal entre campos y 1-formas, a cada campo X le podemos asignar la forma $i_X\omega$.

Definición 6.2 (Campo hamiltoniano y flujo hamiltoniano). Sea una función $H:M\to\mathbb{R}$, se llama campo hamiltoniano generado por H a

$$X^H = I dH$$
.

Se llama flujo hamiltoniano generado por H y se denota por φ^H al flujo cuyo generador infinitesimal es X^H .

Observación 6.3. $dH = i_{X^H}\omega$

Observación 6.4. Obtenemos ahora una versión geométrica e independiente de las coordenadas de las clásicas ecuaciones de Hamilton:

$$X_x^H = \left. \frac{d}{dt} \right|_{t=0} \varphi_t^H(x).$$

Podemos dar ahora una formulación canónica de la mecánica clásica:

Definición 6.5 (Sistema hamiltoniano). Un sistema mecánico hamiltoniano es un par (M, H), donde M es una variedad simpléctica (comúnmente llamada espacio de fases) y $H: M \to \mathbb{R}$ es una función (normalmente llamada hamiltoniano del sistema).

Se llama flujo hamiltoniano del sistema o evolución temporal del sistema al flujo hamiltoniano generado por H.

Ejemplo 6.6. Consideremos el espacio simpléctico canónico $(\mathbb{R}^{2n}, \omega_n)$, con un hamiltoniano $H: \mathbb{R}^{2n} \to \mathbb{R}$. Podemos escribir un punto $x \in \mathbb{R}^{2n}$ en coordenadas simplécticas $x = (q_1, \ldots, q_n, p_1, \ldots, p_n)$ y el hamiltoniano $H(q_1, \ldots, q_n, p_1, \ldots, p_n)$. Podemos escribir entonces

$$dH = \sum_{i=1}^{n} \frac{\partial H}{\partial q_i} dq_i + \frac{\partial H}{\partial p_i} dp_i$$

y el campo hamiltoniano tendrá la forma

$$X^{H} = \sum_{i=1}^{n} X_{q_i}^{H} \frac{\partial}{\partial q_i} + X_{p_i}^{H} \frac{\partial}{\partial p_i}.$$

Ahora,

$$dH = i_{X^H} \omega_n = \sum_{i=1}^n dp_i \wedge dq_i \left(X_{q_i}^H \frac{\partial}{\partial q_i} + X_{p_i}^H \frac{\partial}{\partial p_i} \right) = \sum_{i=1}^n X_{q_i}^H dp_i - X_{p_i}^H dq_i.$$

Por tanto, las componentes del campo hamiltoniano son $X_{q_i}^H = \frac{\partial H}{\partial p_i} \ y \ X_{p_i}^H = -\frac{\partial H}{\partial q_i}$.

El flujo hamiltoniano tendrá la forma $\varphi_t^H(x) = (q_1(t), \dots, q_n(t), p_1(t), \dots, p_n(t))$. Luego su generador infinitesimal será de la forma $X_x^H = (\dot{q}_1(t), \dots, \dot{q}_n(t), \dot{p}_1(t), \dots, \dot{p}_n(t))$. Obtenemos entonces las ecuaciones de Hamilton en su forma clásica:

$$\dot{q}_i(t) = \frac{\partial H}{\partial p_i}(t)$$
$$\dot{p}_i(t) = -\frac{\partial H}{\partial q_i}(t),$$

para $i = 1, \ldots, n$.

Proposición 6.7. Los flujos hamiltonianos son familias uniparamétricas de simplectomorfismos, es decir, el flujo hamiltoniano preserva ω .

Demostración. Sea X^H un campo hamiltoniano, por la fórmula de Cartan,

$$L_{X^H}\omega = d(i_{X^H}\omega) + i_{X^H}(d\omega) = d(dH) + 0 = 0.$$

Una consecuencia inmediata de este teorema es el conocido resultado de Liouville:

Corolario 6.8 (Teorema de Liouville). El flujo hamiltoniano preserva el volumen del espacio de fases.

Demostración. Claramente, como el flujo hamiltoniano consiste en simplectomorfismos y estos preservan el elemento de volumen (proposición 5.9), entonces el volumen total se preserva con el flujo hamiltoniano.

A la vista de este resultado, vamos a probar un teorema muy importante sobre transformaciones que preservan el volumen:

Proposición 6.9 (Teorema de recurrencia de Poincaré ⁷). Sea $D \in \mathbb{R}^n$ acotado y sea $g: D \to D$ que preserva el volumen. Entonces, para cualquier $U \subset D$ abierto, hay un punto $x \in D$ y un $n \in \mathbb{N}$, n > 0, tal que $g^n(x) \in U$.

Demostración. Consideramos la familia

$$\{g^n U | n \in \mathbb{N}\}.$$

Todos estos conjuntos tienen el mismo volumen y, si no se cortaran en ningún punto, D tendría volumen infinito. Por tanto, existen $k, l \in \mathbb{N}, k > l$ tal que

$$g^k U \cap g^l U \neq \varnothing$$
.

Por tanto, $A = g^{k-l}U \cap U \neq \emptyset$. Entonces, sea $y \in A$, existen $x \in U$ y n = k - l tal que $y = g^n(x) \in U$.

Ejemplo 6.10. Sea D una circunferencia y g la rotación de ángulo α . Si $\alpha = 2\pi(m/n)$, entonces g^n es la identidad y el resultado es obvio. Pero, si α es un múltiplo irracional de 2π , entonces, por el teorema de recurrencia de Poincaré, para todo $x \in D$ y para todo $x \in D$ y para todo $x \in D$ existe un $x \in \mathbb{N}$ tal que $x \in \mathbb{N}$ es denso en $x \in D$. Más adelante veremos una aplicación de este ejemplo a mecánica hamiltoniana.

Para terminar la sección, haremos un breve comentario sobre cantidades conservadas.

Definición 6.11 (Integral primera). Sea (M, H) un sistema hamiltoniano, una función $F: M \to \mathbb{R}$ se dice que es una integral primera del sistema o una constante del movimiento si es constante a lo largo del flujo hamiltoniano. Esto es, si

$$F(\varphi_t^H(x)) = F(x)$$

para todo t > 0 y para todo $x \in M$.

Proposición 6.12 (Ley de conservación de la energía). H es una integral primera del sistema hamiltoniano (M, H).

⁷En inglés *Poincaré recurrence theorem*. Nótese que aquí la palabra «recurrencia» no toma el significado habitual en matemáticas (por ejemplo en «construcción de sucesiones por recurrencia»), que se traduce del inglés recursion. El diccionario Oxford define recursion como "the repeated application of a recursive procedure or definition". Por otro lado, define recurrence como "the fact of ocurring again", que podría traducirse también como «repetición» o «reaparición».

Demostración. Basta hallar la derivada de H en la dirección de X^H y ver que es 0. En efecto, sea $x \in M$,

$$d_x H(X_x^H) = \omega(X_x^H, X_x^H) = 0.$$

Ya que $d_x H = \omega(X_x^H, \bullet)$.

7. Corchete de Poisson

Definición 7.1 (Corchete de Poisson). Sea (M, ω) una variedad simpléctica y $F, G: M \to \mathbb{R}$. Se define el corchete de Poisson de F y G como la función

$$\{F,G\}(x) = \frac{d}{dt}\bigg|_{t=0} G(\varphi_t^F(x)),$$

para cada $x \in M$.

Proposición 7.2.

- 1. Una función $F: M \to \mathbb{R}$ es una primera integral de (M, H) si y sólo si $\{H, F\}$ es idénticamente nula.
- 2. $\{F, G\} = dG(X^F)$.
- 3. $\{F, G\} = \omega(X^G, X^F)$.
- 4. $\{,\}: \mathcal{C}^{\infty}(M) \times \mathcal{C}^{\infty}(M) \to \mathcal{C}^{\infty}(M)$ es una aplicación bilineal y antisimétrica. Es decir,

$$\{F,G\} = -\{G,F\}$$

y

$$\left\{F,\lambda_{1}G_{1}+\lambda_{2}G_{2}\right\}=\lambda_{1}\left\{F,G_{1}\right\}+\lambda_{2}\left\{F,G_{2}\right\},\label{eq:energy_energy}$$

para cualesquiera $\lambda_1, \lambda_2 \in \mathbb{R}$.

5.
$$[X^F, X^G] = X^{\{F,G\}}$$
.

Demostración.

- 1. Inmediata de la definición de integral primera.
- 2. Por la regla de la cadena y por el hecho de que X^F es el generador infinitesimal de φ^F .
- 3. $\omega(X^G, X^F) = dG(X^F) = \{F, G\}.$
- 4. Por (3) y porque ω es bilineal y antisimétrica.
- 5. Por las fórmulas de Cartan:

$$\begin{split} i_{[X^F,X^G]}\omega &= L_{X^F}(i_{X^G}\omega) - i_{X^G}(L_{X^F}\omega) \\ &= \mathrm{d}(i_{X^F}(i_{X^G}\omega)) + i_{X^F}(\mathrm{d}(i_{X^G}\omega)) - i_{X^G}(\mathrm{d}(i_{X^F}\omega) - i_{X^G}(i_{X^F}(\mathrm{d}\omega)) \\ &= \mathrm{d}(\omega(X^G,X^F)) + i_{X^F}(\mathrm{d}(\mathrm{d}G)) - i_{X^G}(\mathrm{d}(\mathrm{d}F)) - 0 \\ &= \mathrm{d}(\{F,G\}) = i_{X^{\{F,G\}}}\omega. \end{split}$$

Ejemplo 7.3. Consideremos el espacio simpléctico canónico $(\mathbb{R}^{2n}, \omega_n)$ y dos funciones $F, G: \mathbb{R}^{2n} \to \mathbb{R}$. Obtenemos entonces la definición clásica del corchete de Poisson:

$$\{F, G\} = dG(X^F) = \left(\sum_{i=1}^n \frac{\partial G}{\partial q_i} dq_i + \frac{\partial G}{\partial p_i} dp_i\right) \left(\sum_{i=1}^n \frac{\partial F}{\partial p_i} \frac{\partial}{\partial q_i} - \frac{\partial F}{\partial q_i} \frac{\partial}{\partial p_i}\right)$$
$$= \sum_{i=1}^n \frac{\partial F}{\partial p_i} \frac{\partial G}{\partial q_i} - \frac{\partial F}{\partial q_i} \frac{\partial G}{\partial p_i}.$$

Observamos también las relaciones

$$\{F, q_i\} = \frac{\partial F}{\partial p_i}$$
$$\{F, p_i\} = -\frac{\partial F}{\partial q_i},$$

lo que deja las ecuaciones de Hamilton en una forma más simple:

$$\begin{cases} \dot{q}_i = \{H, q_i\} \\ \dot{p}_i = \{H, p_i\} \end{cases}.$$

De aquí también obtenemos las relaciones de conmutación canónicas:

$$\{p_i, q_j\} = \delta_{ij}.$$

El corchete de Poisson permite probar la versión hamiltoniana de uno de los resultados más importantes de toda la Física, debido a Emmy Noether, que relaciona las simetrías de un sistema con sus cantidades conservadas.

Proposición 7.4 (Teorema de Noether). Sea (M, H) un sistema hamiltoniano $y F : M \to \mathbb{R}$. Si H es constante a lo largo de X^F , entonces F es una integral primera de (M, H).

Demostración. Como H es constante a lo largo de X^F , es una integral primera de (M, F), luego $\{F, H\} = 0$. Ahora, $\{H, F\} = -\{F, H\} = 0$, luego F es una integral primera de (M, H).

Otra forma de ver este mismo teorema es la siguiente:

Proposición 7.5 (Otra forma del teorema de Noether). Sea (M, ω) una variedad simpléctica y sean X^F y X^G campos hamiltonianos en M. Los dos campos conmutan $(y, por tanto, lo hacen los flujos que generan) si y sólo si <math>\{F, G\}$ es constante.

Demostración. Sea $\{F,G\}=a\in\mathbb{R}$, entonces

$$[X^F, X^G] = X^{\{F,G\}} = X^a = I da = 0.$$

Podemos ver también que el corchete de Poisson es un corchete de Lie sobre $\mathcal{C}^{\infty}(M)$, ya que cumple la identidad de Jacobi:

Proposición 7.6 (Identidad de Jacobi). Sea (M, ω) una variedad simpléctica y sean $A, B, C: M \to \mathbb{R}$, entonces

$$\{\{A,B\},C\}+\{\{B,C\},A\}+\{\{C,A\},B\}=0$$

Demostración. Tenemos

$$[X^A, X^B](C) = X^A \circ X^B(C) - X^B \circ X^A(C) = X^A(\{B, C\}) - X^B(\{A, C\})$$

= $\{A, \{B, C\}\} - \{B, \{A, C\}\} .$

Mientras que

$$\left[X^{A},X^{B}\right]\left(C\right)=X^{\left\{ A,B\right\} }\left(C\right)=\left\{ \left\{ A,B\right\} ,C\right\} .$$

Tenemos entonces

$$\{\{A,B\},C\} = \{A,\{B,C\}\} - \{B,\{A,C\}\} = -\{\{B,C\},A\} - \{\{C,A\},B\}.$$

Pasando el segundo término al otro lado obtenemos la identidad de Jacobi.

Corolario 7.7 (Teorema de Poisson). Si F_1, F_2 son integrales primeras de (M, H), entonces $\{F_1, F_2\}$ es también una integral primera de (M, H).

Demostración. Por la identidad de Jacobi,

$$\{\{F_1, F_2\}, H\} = \{F_1, \{F_2, H\}\} + \{F_2, \{H, F_1\}\} = 0,$$

ya que F_1, F_2 son integrales primeras.

De la bilinealidad, la antisimetría y la identidad de Jacobi obtenemos inmediatamente el siguiente resultado:

Corolario 7.8. $(C^{\infty}(M), \{,\})$ es un álgebra de Lie.

Por último, vamos a dar una caracterización clásica de las transformaciones canónicas: que preservan las ecuaciones de Hamilton y el corchete de Poisson.

Proposición 7.9. Son equivalentes:

- 1. $f: M \to M$ es un simplectomorfismo.
- 2. Para todo $H: M \to \mathbb{R}, f_*(X^H) = X^{H \circ f^{-1}}.$
- 3. Para cualesquiera $F, G: M \to \mathbb{R}, \{F, G\} \circ f^{-1} = \{F \circ f^{-1}, G \circ f^{-1}\}.$

Demostración.

$$(1) \implies (2)$$
:

En primer lugar, por una comprobación inmediata \clubsuit seguro? se tiene, para cualquier difeomorfismo f, para cualquier forma λ , y para cualquier campo X,

$$(f^{-1})^*(i_X\lambda) = i_{f_*X}((f^{-1})^*\lambda).$$

Ahora.

$$(f^{-1})^*(i_{X^H}\omega) = (f^{-1})^*(dH) = d(H \circ f^{-1}) = i_{X^{H \circ f^{-1}}}\omega,$$

mientras que, por lo anterior,

$$(f^{-1})^*(i_{X^H}\omega) = i_{f_*(X^H)}((f^{-1})^*\omega).$$

Como f es un simplectomorfismo, f^{-1} también lo será, luego $(f^{-1})^*\omega = \omega$.

Tenemos entonces,

$$i_{X^{H \circ f^{-1}}} \omega = i_{f_*(X^H)}(\omega),$$

luego

$$f_*(X^H) = X^{H \circ f^{-1}}.$$

$$(2) \implies (1)$$
:

Si
$$f_*(X^H) = X^{H \circ f^{-1}}$$
 para todo $H: M \to \mathbb{R}$, entonces

$$i_{X^{H\circ f^{-1}}}(f^{-1})^*\omega=i_{f_*(X^H)}(f^{-1})^*\omega=(f^{-1})^*(i_{X^H}\omega)=i_{X^{H\circ f^{-1}}}\omega.$$

Luego $(f^{-1})^*\omega = \omega$. Es decir, f^{-1} (y por tanto f) es un simplectomorfismo.

$$(2) \iff (3)$$
:

Tenemos,

$$\{F,G\} \circ f^{-1} = X^F(G) \circ f^{-1} = f_* X^F(G \circ f^{-1})$$
$$\{F \circ f^{-1}, G \circ f^{-1}\} = X^{F \circ f^{-1}}(G \circ f^{-1}).$$

Por tanto, $\{F,G\} \circ f^{-1} = \{F \circ f^{-1}, G \circ f^{-1}\}$ si y sólo si $X^{F \circ f^{-1}} = f_* X^F$, para cada $F:M \to \mathbb{R}$.

8. Teoría de Arnold-Liouville

A la hora de estudiar sistemas dinámicos, una cuestión interesante a plantearse, con consecuencias prácticas y también de carácter fundamental, es si las ecuaciones del sistema podrán ser «integradas», es decir, si podrán ser resueltas mediante integrales definidas («cuadraturas») de funciones conocidas. Definimos entonces:

Definición 8.1 (Ecuación integrable por cuadraturas). Una ecuación diferencial es *integrable por cuadraturas* si es posible escribir su solución general en términos de sumas, productos, composiciones e integrales de funciones conocidas.

Definición 8.2 (Sistema integrable por cuadraturas). Un sistema hamiltoniano (M, H), es *integrable por cuadraturas* si para todo punto $x \in M$ existe una carta simpléctica en torno a x en la que el flujo hamiltoniano es integrable por cuadraturas.

Es decir, un sistema hamiltoniano integrable por cuadraturas es aquel en el que, conocidas sus condiciones iniciales, podemos integrar las ecuaciones de Hamilton mediante manipulaciones algebraicas, cálculos de integrales definidas e inversiones de difeomorfismos.

Para estudiar la integrabilidad por cuadraturas de los sistemas hamiltonianos, serán cruciales las siguientes nociones:

Definición 8.3 (Funciones en involución). Sea M una variedad simpléctica y $F_1, \ldots, F_n : M \to \mathbb{R}$, decimos que F_1, \ldots, F_n están en involución si, para cada $i, j = 1, \ldots, n$, $\{F_i, F_i\} = 0$.

Definición 8.4 (Integrabilidad en el sentido de Liouville). Sea (M, H) un sistema hamiltoniano y sea $2n = \dim(M)$, decimos que (M, H) es integrable en el sentido de Liouville si existen $F_1(=H), \ldots, F_n : M \to \mathbb{R}$ en involución, independientes para todo $x \in M$ (es decir, $dF_{1,x} \wedge \cdots \wedge dF_{n,x} \neq 0$) y, sea $F = (F_1, \ldots, F_n)$, para todo $a \in F(M) \subset \mathbb{R}^n$

$$M_a = F^{-1}(a) = \{x \in M \mid F(x) = a\}$$

es compacto.

Como ya se habrá podido intuir, el propósito de esta sección es probar que todo sistema integrable en el sentido de Liouville es integrable por cuadraturas. El resultado original, formulado en términos de mecánica hamiltoniana clásica, se debe a Joseph Liouville en 1855, mientras que el resultado moderno junto con toda la teoría de los toros invariantes se debe a Vladimir Arnold en 1963. Por otra parte, las variables de acción-ángulo fueron introducidas originalmente por Delaunay en 1860 para estudiar el movimiento de la luna y más tarde, a principios del siglo XX, usadas por los físicos para estudiar el átomo de Bohr, siendo Schwarzschild el que acuñara esa terminología en 1916. La demostración original del teorema de las variables de acción-ángulo se atribuye a Mineur en 1936.

En la bibliografía habitual de geometría simpléctica, la serie de teoremas y proposiciones que llevan a la demostración del resultado se suele nombrar «teorema de Arnold-Liouville». En este texto, hemos decidido decantarnos por el nombre de «teoría de Arnold-Liouville». Una discusión más extensa sobre la historia y el nombre de esta teoría puede encontrarse en las páginas 640 y 641 de [11].

En primer lugar, vamos a considerar un ejemplo característico que aclara alguna de las ideas detrás de esta teoría.

Ejemplo 8.5. Consideramos el oscilador armónico unidimensional, con hamiltoniano

$$H(q,p) = \frac{p^2}{2m} + \frac{1}{2}kq^2.$$

Por simplicidad, supondremos que la masa y la constante del muelle valen 1, de forma que $H(q,p) = \frac{1}{2}(p^2 + q^2)$. Las curvas C_E de energía constante en el espacio de fases \mathbb{R}^2 son circunferencias de centro 0 y radio $a = \sqrt{2E}$, con

$$E = \frac{1}{2}(p^2 + q^2).$$

Ahora, si tomamos unas coordenadas «polares» (E, ϕ) , donde ϕ es la coordenada angular en cada una de estas circunferencias, la dinámica del sistema queda mucho más simplificada:

$$E(t) = E(0)$$

$$\phi(t) = \phi(0) + \omega(E(0))t.$$

Sin embargo, ¿será canónica la transformación $(q,p) \to (E,\phi)$? En este caso es claro que

FIGURA 2. Espacio de fases del oscilador armónico junto al campo y al flujo hamiltonianos

FIGURA 3. Cambio de coordenadas $(q, p) \to (E, \phi)$

la transformación preserva el área $\frac{1}{2}a^2\phi$. Más generalmente, si A es una región del plano,

$$\acute{a}rea(A) = \int_A r dr \wedge d\phi = \int_A d\left(\frac{1}{2}r^2\right) \wedge d\phi.$$

Por tanto, la transformación es canónica porque precisamente, si A_E es la región encerrada por C_E , entonces

$$E = \frac{1}{2}a^2 = \frac{1}{2\pi} \acute{a}rea(A_E).$$

En las coordenadas originales, esta área es

$$J = \int_{A_E} \mathrm{d}p \wedge \mathrm{d}q = \int_{A_E} d(p\mathrm{d}q) = \int_{C_E} p\mathrm{d}q,$$

donde en el último paso hemos utilizado el teorema de Stokes. Esta J normalmente se conoce como variable de acción, debido a sus dimensiones.

En un caso más general, podemos considerar el sistema formado por n osciladores armónicos acoplados o, equivalentemente, un oscilador armónico n-dimensional. El hamiltoniano del sistema será (tomando k=m=1)

$$H(q_1, \dots, q_n, p_1, \dots, p_n) = H_1(q_1, p_1) + \dots + H_n(q_n, p_n) = \frac{1}{2}(p_1^2 + \dots + p_n^2 + q_1^2 + \dots + q_n^2).$$

Este sistema es integrable en el sentido de Liouville. Basta tomar $F = (H, H_2 + \cdots + H_n, H_3 + \cdots + H_{n-2}, \dots, H_n)$, ya que

$$\{H_i, H_j\} = \sum_{k=1}^n \frac{\partial H_i}{\partial p_k} \frac{\partial H_j}{\partial q_k} - \frac{\partial H_j}{\partial p_k} \frac{\partial H_i}{\partial q_k} = p_i q_j \delta_{ij} - p_j q_i \delta_{ij} = p_i q_i - p_i q_i = 0,$$

 $y \det(F_{*,x}) \neq 0$ para todo $x \in \mathbb{R}^{2n}$.

 $F^{-1}(a)$ vendrá dado por

$$\begin{cases} \frac{1}{2}(p_1^2 + q_1^2) = a_1 - a_2\\ \frac{1}{2}(p_2^2 + q_2^2) = a_2 - a_3\\ \vdots\\ \frac{1}{2}(p_n^2 + q_n^2) = a_n, \end{cases}$$

que son las ecuaciones de un toro n-dimensional.

Entonces, sean $\gamma_1, \ldots, \gamma_n$ una base de ciclos del toro \clubsuit Esto es muy intuitivo pero hay que escribirlo bien, en los libros pone que son los generadores del grupo de homología de \mathbb{T}^n , cuando dé TOAL a lo mejor sé lo que es, podemos definir las variables de acción

$$J_i = \frac{1}{2\pi} \int_{\gamma_i} \sum_{k=1}^n p_k dq_k = \frac{1}{2\pi} \int_{\gamma_i} \alpha.$$

La definición de estas variables no depende de la base elegida ya que, por el teorema de Stokes,

$$\int_{\gamma_i} \alpha - \int_{\gamma_i'} \alpha = \int_{\sigma} \omega = 0,$$

donde σ es la región encerrada por las curvas y $\omega = 0$ en el toro (el cálculo de esto está hecho con precisión más adelante).

Sean las variables angulares ϕ_i a lo largo de cada ciclo generado por γ_i , si $(q, p) \to (J, \phi)$ es canónica, podemos tomar las variables (J, ϕ) en las que la dinámica toma una forma especialmente simple. Esto se debe a que J = J(a), de modo que, por las ecuaciones de Hamilton,

$$\frac{\partial H}{\partial \phi_i} = -\dot{J}_i = 0.$$

Por tanto, $H = H(J_1(a), \ldots, J_n(a))$ y

$$\dot{\phi_i} = \frac{\partial H}{\partial J_i} = \omega_j(a),$$

con ω_j constante en M_a . Las ecuaciones de Hamilton quedan entonces integradas en la forma

$$J(t) = J(a)$$

$$\phi(t) = \phi(0) + \omega(a)t.$$

No hemos demostrado que el cambio de coordenadas sea un simplectomorfismo, lo que puede hacerse usando el método de Hamilton-Jacobi, que aquí no vamos a exponer. Sin embargo, no nos hará falta, ya que nosotros daremos otra prueba, demostrando un teorema general para construir variables de acción-ángulo en variedades simplécticas.

Vamos a estudiar también algunos ejemplos de sistemas con funciones en involución, que en ciertos supuestos serán integrables en el sentido de Liouville.

Ejemplo 8.6 (Péndulo simple). Consideramos un péndulo cuya «cuerda» es una barra rígida de masa despreciable y longitud 1. El espacio de fases del péndulo es el fibrado cotangente de \mathbb{S}^1 , que no es otra cosa que un cilindro. Tomando como coordenada generalizada el ángulo ϕ de desviación del péndulo respecto de la vertical, el hamiltoniano viene dado por

$$H(\phi, p) = \frac{1}{2}p^2 - g\cos\phi,$$

donde g es la aceleración de la gravedad y hemos tomado el centro como origen de energía potencial. Como podemos ver en la figura 8.6 las trayectorias son cerradas, luego cada

FIGURA 4. Espacio de fases del péndulo junto al campo y al flujo hamiltonianos.

curva de energía constante es compacta. dH será distinta de 0 en todo punto exceptuando los casos ($\phi=0,p=0$) y ($\phi=\pi,p=0$), que corresponden a puntos de equilibrio (el primero, estable, el segundo, inestable) donde la trayectoria es sólo un punto. La curva que aparece punteada en la figura 8.6, de ecuación

$$g = H(\phi, p) = \frac{1}{2}p^2 - g\cos\phi,$$

corresponde al punto de equilibrio y a dos trayectorias que tienden asintóticamente al punto de equilibrio inestable. Estas trayectorias son matemáticamente factibles aunque su realización práctica parezca una tarea imposible y en ellas no aplica la teoría de Arnold-Liouville, puesto que la curva punteada no es una variedad, al contener un punto con $\mathrm{d}H=0$. Estas trayectorias se conocen como singularidades del sistema. Las curvas que quedan dentro de la curva punteada corresponden a movimientos de oscilación en torno al punto de equilibrio estable, mientras que las que quedan fuera corresponden a movimientos de rotación del péndulo alrededor de su centro.

Ejemplo 8.7 (Potencial central). Consideramos una partícula que se mueve en \mathbb{R}^3 sometida a un potencial central, esto es, una función V que sólo depende de r = ||x||. El espacio de fases es \mathbb{R}^6 y el hamiltoniano (tomando m = 1) viene dado por

$$H(x,p) = \frac{p^2}{2} + V(r).$$

Sea ahora el momento angular

$$L = x \times p,$$

cada una de sus componentes es $L_i = \epsilon_{ijk}(x_j p_k - x_k p_j)$, donde ϵ_{ijk} es la paridad de (i, j, k) como permutación de (1, 2, 3). Podemos calcular ahora

$$\{H, L_i\} = \sum_{k=1}^{3} \frac{\partial H}{\partial p_k} \frac{\partial L_i}{\partial x_k} - \frac{\partial H}{\partial x_k} \frac{\partial L_i}{\partial p_k} = -\sum_{k=1}^{3} \epsilon_{ijk} \left(p_k p_j + \frac{x_k x_j}{r} V'(r) \right) = 0.$$

Por tanto, L es una cantidad conservada. Al ser L un vector, realmente son cantidades conservadas su norma y su dirección y sentido, lo que implica que se conservan $L^2 = \langle L, L \rangle$ y L_3 . Además $\{L^2, L_3\} = 0$, lo que nos da tres funciones en involución en el sistema. Sin embargo, la integrabilidad en sentido de Liouville no está garantizada por los resultados que hemos probado, ya que en general las órbitas pueden ser no acotadas y las funciones no ser independientes.

Ejemplo 8.8 (Trompo simétrico). Consideremos un trompo simétrico (la clásica peonza de juguete) que gira con su punta fija en un punto. Su espacio de configuración viene dado por las posibles rotaciones de sus ejes principales de inercia (X',Y',Z') respecto a los tres ejes del sistema de laboratorio (la vertical y dos ejes arbitrarios en el suelo, X,Y,Z). De modo que el espacio de fases del trompo simétrico es $T^*SO(3)$. Sean I_1,I_2,I_3 los momentos de inercia del trompo, que el trompo sea simétrico quiere decir que $I_1 = I_2$ y que el centro de masas cae sobre el eje Z'. En este caso, tras unos cálculos se obtiene que el hamiltoniano del sistema es

$$H(\theta, \phi, \psi, p_{\theta}, p_{\phi}, p_{\psi}) = \frac{p_{\theta}^{2}}{2I_{1}} + \frac{(p_{\phi} - p_{\psi}\cos\theta)^{2}}{2I_{1}\sin^{2}\theta} + \frac{p_{\psi}^{2}}{2I_{3}} + Mgl\cos\theta,$$

donde g es la aceleración de la gravedad, M es la masa de la peonza, l es la distancia de la punta al centro de masas, (θ, ϕ, ψ) son los ángulos de Euler de la rotación de los ejes principales de inercia respecto a los del laboratorio y $(p_{\theta}, p_{\phi}, p_{\psi})$ son sus momentos canónicos conjugados. Las frecuencias de giro de cada uno de los ángulos de Euler θ , ϕ y ψ se llaman frecuencias de nutación, precesión y rotación, respectivamente.

Inmediatamente tenemos

$$\dot{p_{\phi}} = \frac{\partial H}{\partial \phi} = 0$$

$$\dot{p_{\psi}} = \frac{\partial H}{\partial \psi} = 0,$$

luego p_{ϕ} y p_{ψ} son cantidades conservadas y por tanto su corchete de Poisson con H se anula. Además,

$$\{p_{\phi}, p_{\psi}\} = 0.$$

Por tanto, H, p_{ϕ} y p_{ψ} son funciones en involución en $(T^*SO(3), H)$.

Ahora, si estas funciones son constantes, como los ángulos (y sus relaciones trigonométricas) siempre están acotados también lo estará p_{θ} por la relación E = H y la variedad $F^{-1}(a)$ estará acotada. Como $F^{-1}(a)$ es cerrada, es compacta y el trompo simétrico es «casi» un sistema integrable en el sentido de Liouville. Este «casi» viene porque, al igual que en el caso del péndulo habrá que exceptuar algún caso en el cual las funciones no son independientes.

FIGURA
5. Construcción
de los ángulos de
Euler. Fuente: [2].

FIGURA 6. Trompo simétrico. Fuente: [3].

Ejemplo 8.9. Por citar un ejemplo no trivial, aunque no lo demostremos, el problema de hallar las geodésicas en un elipsoide puede verse como un sistema hamiltoniano integrable en el sentido de Liouville. La demostración se basa en la teoría de cuádricas confocales y coordenadas elípticas, demostrando unos teoremas de Jacobi y Chasles. Puede leerse en el apéndice 15 de [1].

Comenzaremos ahora a probar los resultados fundamentales de esta teoría. En primer lugar, vamos a obtener una caracterización general de los toros, que necesitaremos más adelante:

Proposición 8.10. Sea M una variedad diferenciable de dimensión n conexa y compacta tal que existen campos X_1, \ldots, X_n en M linealmente independientes y tales que, para todo $i, j = 1, \ldots, n, i \neq j, [X_i, X_j] = 0$. Entonces M es difeomorfa al toro n-dimensional

$$\mathbb{T}^n = \mathbb{S}^1 \times \cdots \times \mathbb{S}^1.$$

Demostración. Para cada $i=1,\ldots,n$, sea g_i el flujo cuyo generador infinitesimal es X_i . Como para todo $i\neq j$, $[X_i,X_j]=0$ entonces g_i conmuta con g_j , es decir, $g_ig_j(x)=g_jg_i(x)$, para todo $x\in M$.

Así, podemos definir una acción de \mathbb{R}^n en M que a cada $t=(t_1,\ldots,t_n)\in\mathbb{R}^n$ le asigna $g_t:M\to M,$ con $g_t=g_{1,t_1}\cdots g_{n,t_n}.$ Claramente, dados $t,s\in\mathbb{R}^n,$ $g_{t+s}=g_tg_s.$ Ahora, fijo $x_0\in M,$ definimos

$$g: \mathbb{R}^n \longrightarrow M$$

$$t \longmapsto g_t(x_0).$$

♣ Esto hay que verlo bien (Problemas 1 y 2 de la 274 del Arnold). Como los campos son linealmente independientes, d_0g es un isomorfismo lineal y, por el teorema de la función implícita, g es un difeomorfismo local. Además, sea $x \in M$, tomamos una curva γ que una x y x_0 y una sucesión finita de entornos V_1, \ldots, V_n que recubran γ , en los que g sea difeomorfismo y tales que $x_0 \in V_1$, $x \in V_n$. Para cada $i = 1, \ldots, n-1$, sea $x_i \in V_i \cap V_{i+1}$ y sea $x_n = x$. Para cada $i = 0, \ldots, n-1$, centramos g en x_i (de tal forma que $g(0) = x_i$) en el entorno V_{i+1} y lo llamamos g_i . Definimos t_i tal que $g_{i-1,t_i}(x_{i-1}) = x_i$, entonces,

$$x = g_{n-1,t_n}(x_{n-1}) = g_{n-1,t_n}g_{n-2,t_{n-1}}(x_{n-2}) = \dots = g_{n-1,t_n}\dots g_{0,t_1}(x_0),$$

luego, sea $t = t_1 + \cdots + t_n$, $x = g_t(x_0)$. Por tanto, g es sobreyectiva.

FIGURA 7. Idea de la demostración de que g es sobreyectiva.

Si g fuese inyectiva, entonces sería un difeomorfismo entre \mathbb{R}^n y M, pero no puede serlo porque M es compacta y \mathbb{R}^n no lo es.

Por tanto, sea

$$H := \{ t \in \mathbb{R}^n \mid g_t(x_0) = x_0 \},$$

entonces $H \neq 0$. Ahora, sean $t, s \in H$, entonces

$$g_{s+t}(x_0) = g_s g_t(x_0) = g_s(x_0) = x_0$$

у

$$g_{-t}(x_0) = g_{-t}g_t(x_0) = (x_0).$$

Es decir, H es un subgrupo de $(\mathbb{R}^n, +)$. Además, H no depende de la elección de x_0 , en efecto, si $x = g_r(x_0)$ y $t \in H$, entonces

$$g_t(x) = g_{t+r}(x_0) = g_r g_t(x_0) = g_r(x_0) = x.$$

Como g es un difeomorfismo local, existe un entorno $V \subset \mathbb{R}^n$ de 0 tal que $H \cap V = \{0\}$. Es más, sean $t \in H$, $s \in V \setminus \{0\}$ y $x \in M$,

$$g_{t+s}(x) = g_s g_t(x) = g_s(x) \neq x.$$

Luego H es un conjunto discreto.

Antes de continuar, es necesario probar el siguiente lema:

Lema 8.11. Todo subgrupo discreto no trivial H de \mathbb{R}^n es isomorfo a \mathbb{Z}^k para algún $k \in \{1, \ldots, n\}$. Es decir, existen $e_1, \ldots, e_k \in H$ linealmente independientes tales que

$$H = \{n_1 e_1 + \dots + n_k e_k \mid (n_1, \dots, n_k) \in \mathbb{Z}^k\}.$$

FIGURA 8. Idea de que H es discreto.

Demostración. Sea $e_0 \in H$, $e_0 \neq 0$. Como H es discreto, $H \cap B(0, ||e_0||)$ es finito. De estos puntos, consideramos aquellos que están en $L(e_0)$ y de estos escogemos el más cercano, que llamaremos e_1 .

Si existieran algún $e \in H$ y algún $m \in \mathbb{Z}$ tal que $e \in (me_1, (m+1)e_1)$, entonces $e - me_1 \in H \cap L(e_0)$ estaría más cerca de 0 que e_1 . Por tanto,

$$H \cap L(e_0) = e_1 \mathbb{Z}$$
.

Si no hay puntos de H fuera de $L(e_1)$ hemos terminado, H es isomorfo a \mathbb{Z} . En caso contrario, sea $e \in H \setminus L(e_1)$, proyectamos ortogonalmente e sobre $L(e_1)$. Esta proyección cae exactamente sobre un intervalo $\Delta = [me_1, (m+1)e_1)$ para cierto $m \in \mathbb{Z}$. Sea C el cilindro de eje Δ y de radio igual a la distancia entre Δ y e. $C \cap H$ es finito. De estos puntos, sea e_2 el más cercano a Δ que no esté en Δ . Entonces, para cualquier otro $f \in H$, la distancia entre f y $L(e_1)$ es mayor que la distancia entre e_2 y $L(e_1)$.

En efecto, en tal caso, sea $l \in \mathbb{Z}$ tal que la proyección ortogonal de f cae sobre $[le_1, (l+1)e_1)$, entonces $f' = f - le_1 + me_1 \in C$ y la distancia entre f' y $L(e_1)$ es menor que la distancia entre e_2 y $L(e_1)$, lo que nos lleva a una contradicción.

FIGURA 9. Idea de la demostración del lema.

Ahora, $\{n_1e_1 + n_2e_2 \mid (n_1, n_2) \in \mathbb{Z}^2\}$ forma una red discreta en $L(e_1, e_2)$. Además, si existiera un $e \in H$ que no perteneciese a la red, sean $m_1 = [\langle e, e_1 \rangle]$, $m_2 = [\langle e, e_2 \rangle]$. Entonces, $e - m_1e_1 - m_2e_2$ estaría más cerca de $L(e_1)$ que e_2 . Por tanto, esta red es exactamente $L(e_1, e_2) \cap H$.

⁸Aquí L(x) denota la envoltura lineal de x.

Procedemos ahora por inducción, supongamos que existen e_1, \ldots, e_k linealmente independientes tales que $\{n_1e_1 + \cdots + n_ke_k \mid (n_1, \ldots, n_k) \in \mathbb{Z}^k\} = L(e_1, \ldots, e_k) \cap H$ y que existe $e \in H$ tal que $e \notin L(e_1, \ldots, e_k)$. Análogamente, la proyección ortogonal de e sobre $L(e_1, \ldots, e_k)$ cae sobre un hipercubo $\Delta = [m_1e_1, (m_1+1)e_1) \times \cdots \times [m_ke_k, (m_k+1)e_k)$. Sea C el conjunto de los puntos cuyas proyecciones ortogonales caen en Δ y más cercanos a Δ que e, entonces $C \cap H$ es finito. Sea e_{k+1} el más cercano a Δ de estos puntos, que no esté en Δ . Para cualquier otro $f \in H$, la distancia entre f y $L(e_1, \ldots, e_k)$ es mayor que entre e_2 y $L(e_1, \ldots, e_k)$, por un razonamiento completamente análogo al caso bidimensional.

Por tanto, $\{n_1e_1 + \cdots + n_{k+1}e_{k+1} | \in \mathbb{Z}^{k+1}\}$ forma una red discreta en $L(e_1, \dots, e_{k+1})$ y, de forma análoga al caso anterior, esta red agota los puntos de $H \cap L(e_1, \dots, e_{k+1})$.

Finalmente, sea k el mínimo número natural tal que no existe $e \in H \setminus L(e_1, \ldots, e_k)$. Entonces H es isomorfo a \mathbb{Z}^k .

Terminamos ahora la demostración de la proposición.

Sea k el número de generadores de H y sea la proyección natural

$$p: \mathbb{R}^n = \mathbb{R}^k \times \mathbb{R}^{n-k} \longrightarrow \mathbb{T}^k \times \mathbb{R}^{n-k}$$
$$(x,y) \longmapsto (x \mod 2\pi, y),$$

los puntos $u_1, \ldots, u_k \in \mathbb{R}^n$ de la forma

$$u_i = (x_1 = 0, \dots, x_i = 2\pi, \dots, x_k = 0, y = 0)$$

van a 0 por esta aplicación.

Sean e_1, \ldots, e_k los generadores de H y sea $A : \mathbb{R}^n \to \mathbb{R}^n$ un isomorfismo tal que cada u_i va a parar a e_i . Entonces, la aplicación \tilde{A} dada por el siguiente diagrama es un difeomorfismo.

$$\mathbb{R}^n \xrightarrow{A} \mathbb{R}^n$$

$$\downarrow^p \qquad \qquad \downarrow^g$$

$$\mathbb{T}^k \times \mathbb{R}^{n-k} \xrightarrow{\tilde{A}} M$$

A Probar que es un difeomorfismo

Como por hipótesis M es compacta, necesariamente k = n y M es difeomorfa a \mathbb{T}^n .

Podemos probar ahora el resultado fundamental de esta teoría:

Teorema 8.12 (Arnold). Sea (M, H) un sistema integrable en el sentido de Liouville. Entonces:

1. M_a es una variedad diferenciable invariante bajo el flujo de hamiltoniano $H = F_1$ y $\omega | M_a = 0$.

2. Cada componente conexa C_a de M_a es difeomorfa al toro n-dimensional

$$\mathbb{T}^n = \mathbb{S}^1 \times \dots \times \mathbb{S}^1$$

y, sean $\theta = (\theta_1, \dots, \theta_n)$ coordenadas angulares en C_a , entonces existen unas frecuencias constantes $\omega(a) = (\omega_1(a), \dots, \omega_n(a))$ tales que

$$\dot{\theta}(t) = \omega.$$

Demostración. En primer lugar, como las n funciones F_i son independientes en cada punto de M_a , por el teorema de la función implícita M_a es una subvariedad regular de M de dimensión 2n-n=n. Como M es una variedad simpléctica, para cada $i=1,\ldots,n$, podemos definir el campo $X_i=X^{F_i}=I\mathrm{d}F_i$. Al ser las $\mathrm{d}F_i$ linealmente independientes e I un isomorfismo lineal, los campos X_i son linealmente independientes. Además, por el teorema de Noether, como para cada $i,j=1,\ldots,n$ $\{F_i,F_j\}=0$ (luego es constante), entonces $[X_i,X_j]=0$. Por esto mismo, la derivada de la función F_i en la dirección de X_j es 0, luego los campos X_j son tangentes a M_a .

De aquí sacamos varias conclusiones:

- 1. M_a es invariante con respecto a cada uno de los n flujos hamiltonianos generados por cada función F_i (luego, en particular lo será respecto del generado por F_1).
- 2. Como, para cada $x \in M_a$, los campos $X_1|_x, \ldots, X_n|_x$ forman una base de T_xM_a , sean $X_x, Y_x \in T_xM_a$, entonces $X_x = \sum_{i=1}^n b_i X_i|_x$, $Y_x = \sum_{i=1}^n c_i X_i|_x$. Ahora,

$$\omega(X_x, Y_x) = \sum_{i,j=1}^n b_i c_j \omega(X_i|_x, X_j|_x) = \sum_{i,j=1}^n b_i c_j \{F_j, F_i\} = 0.$$

Por tanto, ω se anula en T_xM_a .

3. M_a es una variedad diferenciable de dimensión n con n campos conmutativos dos a dos y linealmente independientes en todo punto de M_a .

Por esto último, por la proposición anterior y porque M_a es compacta tenemos que cada componente conexa C_a de M_a es difeomorfa a \mathbb{T}^n . De la demostración de la proposición anterior obtenemos un diagrama de la forma:

En este caso, el flujo hamiltoniano asociado a F_1 es g_1 , luego

$$\theta(t) = g_{1,t}(\theta(0)).$$

Ahora, fijo $\theta(0)$, $g_{1,t} = g(t, 0, \dots, 0)$, por tanto

$$\begin{pmatrix} \theta_1(t) \\ \vdots \\ \theta_n(t) \end{pmatrix} = A \begin{pmatrix} t \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

De modo que, si a_{ij} es la entrada de índices (i,j) de la matriz A, entonces, para cada $i=1,\ldots,n$,

$$\theta_i(t) = a_{i1}t.$$

Por tanto, sea $\omega_i = a_{i1}$,

$$\dot{\theta_i}(t) = \omega_i.$$

Observación 8.13. Estas subvariedades C_a de M se suelen llamar toros invariantes del sistema (M, H). Esta dinámica en el toro recibe el nombre de movimiento condicionalmente periódico.

Observación 8.14. Consideremos un 2-toro invariante con la dinámica del teorema (por ejemplo, el asociado a los niveles de energía de un oscilador armónico bidimensional). Sea (θ_1, θ_2) un punto en el toro y su trayectoria bajo el flujo hamiltoniano $\gamma(t) = \varphi_t(\theta_1, \theta_2) = (\theta_1 + \omega_1 t, \theta_2 + \omega_2 t)$. Si $\omega_1/\omega_2 = m/n$ es racional, entonces

$$\gamma\left(\frac{2n\pi}{\omega_2}\right) = (\theta_1 + 2m\pi, \theta_2 + 2n\pi) = (\theta_1, \theta_2).$$

Es decir, a cierto tiempo la trayectoria «se cierra». Estas órbitas se dicen periódicas.

Sin embargo, si ω_2/ω_1 es irracional, dado un ángulo α y sea T tal que $\alpha = \theta_1 + \omega T$, entonces, sea $T_n = T + 2n\pi/\omega_1$, $\alpha = \theta_1 + \omega_1(T_n)$ para cada $n \in \mathbb{N}$. Sea ahora la aplicación

$$\begin{array}{ccc} g: \mathbb{S}^1 & \longrightarrow & \mathbb{S}^1 \\ \phi & \longmapsto & \phi + 2\pi \frac{\omega_2}{\omega_1}, \end{array}$$

es una rotación de ángulo un múltiplo irracional de 2π en la circunferencia del toro de ángulo α . Entonces, como ya vimos por el teorema de recurrencia de Poincaré, $\{g^n(\phi)|n\in\mathbb{N}\}$ es denso en \mathbb{S}^1 . Como esto es válido para todo α y se cumple

$$\gamma(T_n) = (\alpha, g^n(\theta_2) + \omega_2 T),$$

tenemos que $\{\gamma(t)|t\in\mathbb{R}\}$ es denso en el toro. Este tipo de órbitas se llaman cuasiperiódicas. Una forma sencilla de visualizar esto es mediante las figuras de Lissajous

$$L_{\omega} = \{(\cos t, \cos \omega t) | t \in \mathbb{R}\},\$$

ver figura 10.

Si (M, H) es integrable en el sentido de Liouville, entonces para todo $x \in M$, $M_{F(x)}$ es compacta, luego la componente conexa a la que pertenezca x, $C_{F(x)}$, es un toro invariante, en el que podemos dar coordenadas angulares con una dinámica como la del teorema. A la vista de esto, tenemos el siguiente corolario:

Corolario 8.15. Sea (M,H) un sistema integrable en el sentido de Liouville, $a \in \mathbb{R}^n$ y C_a un toro invariante. Existe un $U \subset M$ entorno de C_a difeomorfo a $\mathbb{R}^n \times \mathbb{T}^n$.

Demostración. \clubsuit Cuidado con ésta que la he escrito yo. Por hipótesis, las F_i son independientes para todo $x \in M$, luego F_* tiene rango máximo. Por tanto, sea x tal que

FIGURA 10. Figuras de Lissajous para $\omega = 3; 3,1; 3,14; 3,1416, t \in (0,128\pi)$ con pasos de 0,01.

F(x)=a, existe $D\simeq \mathbb{R}^{2n}$ entorno simplemente conexo de x, existe $V\subset D$ y existe $B\subset \mathbb{R}^n$ abierto tal que $F|V:V\to B$ es un difeomorfismo. Ahora, sea

$$\Phi: M \longrightarrow \mathbb{R}^n \times \mathbb{T}^n$$

$$x \longmapsto (F(x), \theta),$$

con θ coordenadas angulares en $C_{F(x)}$ el toro invariante al que pertenece x. Entonces claramente Φ da un difeomorfismo entre $U = \bigcup_{x \in V} C_{F(x)}$ (que es un entorno de C_a) y $\bigcup_{b \in B} C_b$. Como B es un abierto de \mathbb{R}^n y C_b es un toro invariante, U es difeomorfo a $\mathbb{R}^n \times \mathbb{T}^n$.

Observación 8.16. Aquí estamos suponiendo que x no está en el borde de M, en tal caso procederíamos análogamente para obtener un entorno difeomorfo a $\mathbb{H}^n \times \mathbb{T}^n$.

Finalmente, vamos a demostrar el teorema clave que nos permite construir la carta en la cual las ecuaciones de Hamilton pueden ser integradas por cuadraturas.

Teorema 8.17 (de las variables de acción-ángulo). Sea (M, H) un sistema integrable en el sentido de Liouville, $D \in \mathbb{R}^n$ un disco, $a \in \mathbb{R}^n$, C_a un toro invariante y U un entorno de C_a difeomorfo a $\mathbb{R}^n \times \mathbb{T}^n$. Entonces existe un sistema de coordenadas simplécticas $(\phi, J) = (\phi_1, \ldots, \phi_n, J_1, \ldots, J_n)$ en U tales que las ϕ_i son coordenadas angulares en cada toro invariante y las J_i (comúnmente llamadas variables de acción) son constantes en estos toros.

Demostración. Sea $\pi: U \simeq \mathbb{R}^n \times \mathbb{T}^n \to \mathbb{R}^n$ la proyección canónica, entonces $\pi^{-1}(x)$ es un toro invariante para cada $x \in D = \pi(U)$. En cada uno de estos toros, sean $X_i = X^{F_i}$ y (F, θ) las coordenadas obtenidas en el lema anterior,

$$\frac{\partial}{\partial \theta_i} = \sum_{k=1}^n a_{ik} X_k,$$

donde las a_{ik} son funciones constantes en cada toro.

Como ω se anula en el toro, no tiene términos en $d\theta_i \wedge d\theta_j$. Los términos en $d\theta_i \wedge dF_j$ serán

$$\omega\left(\frac{\partial}{\partial \theta_i}, \frac{\partial}{\partial F_j}\right) = \sum_{k=1}^n a_{ik} \cdot \omega\left(X_k, \frac{\partial}{\partial F_j}\right) = \sum_{k=1}^n a_{ik} \cdot dF_k\left(\frac{\partial}{\partial F_j}\right) = \sum_{k=1}^n a_{ik}\delta_{ij} = a_{ij}.$$

Por tanto, ω es de la forma

$$\omega = \sum_{i,j=1}^{n} a_{ij} d\theta_i \wedge dF_j + \sum_{i,j=1}^{n} b_{ij} dF_i \wedge dF_j,$$

con b_{ij} unas ciertas funciones. Además, como ω es cerrada, el término correspondiente a $d\theta_k \wedge dF_i \wedge dF_j$ debe anularse. Este término es exactamente

$$\frac{\partial a_{ki}}{\partial F_j} - \frac{\partial a_{kj}}{\partial F_i} + \frac{\partial b_{ij}}{\partial \theta_k}.$$

El término $\frac{\partial a_{ki}}{\partial F_j} - \frac{\partial a_{kj}}{\partial F_i}$ no depende de las variables angulares, luego las $\frac{\partial b_{ij}}{\partial \theta_k}$ son constantes al variar los ángulos θ_k . Como las variables θ_k son angulares, las b_{ij} deben ser periódicas, luego

$$\frac{\partial b_{ij}}{\partial \theta_k} = 0$$

y las b_{ij} son constantes en cada toro invariante.

Si ahora definimos $A_i = \sum_{j=1}^n a_{ij} dF_j$, $B = \sum_{i,j=1}^n b_{ij} dF_i \wedge dF_j$,

$$\omega = \sum_{i=1}^{n} d\theta_i \wedge A_i + B.$$

Como las a_{ij} y las b_{ij} son constantes en cada toro invariante podemos ver las A_i y B como formas en \mathbb{R}^n , es decir, existen 1-formas α_i y una 2-forma β en \mathbb{R}^n tales que

$$A_i = \pi^* \alpha_i \qquad B = \pi^* \beta.$$

De aquí tenemos

$$0 = d\omega = \sum_{i=1}^{n} d\theta_i \wedge \pi^* d\alpha_i + \pi^* d\beta,$$

de donde concluimos que $d\alpha_i = 0$ y $d\beta = 0$. En \mathbb{R}^n todas las formas cerradas son exactas. Por tanto, existen I_i y γ en \mathbb{R}^n tales que $\alpha_i = dI_i$, $\beta = d\gamma$.

Finalmente, sean $J_i = (I_i \circ \pi) = \pi^* I_i$, tenemos que $\mathrm{d} J_i = A_i$, luego

$$\omega = \sum_{i=1}^{n} d\theta_i \wedge dJ_i + B.$$

En el sistema de coordenadas (θ, F) , la matriz asociada a ω es de la forma

$$\left(\begin{array}{c|c} 0 & \frac{\partial J_i}{\partial F_j} \\ \hline -\frac{\partial J_i}{\partial F_j} & b_{ij} \end{array}\right).$$

Como ω es regular, el determinante de esta matriz es distinto de cero, luego det $\left(\frac{\partial J_i}{\partial F_j}\right) \neq 0$. Por tanto, (θ, J) es un sistema de coordenadas.

Ahora, si escribimos $\gamma = \sum_{i=1}^n g_i \mathrm{d}I_i$, para algunas funciones $g_i : \mathbb{R}^n \to \mathbb{R}$, entonces podemos tomar unas nuevas coordenadas

$$\phi_i = \theta_i + (g_i \circ \pi).$$

En estas nuevas coordenadas

$$\sum_{i=1}^{n} d\phi_{i} \wedge dJ_{i} = \sum_{i=1}^{n} d\theta_{i} \wedge dJ_{i} + \sum_{i=1}^{n} d(g_{i} \circ \pi) \wedge J_{i}$$

$$= \sum_{i=1}^{n} d\theta_{i} \wedge dJ_{i} + \sum_{i=1}^{n} d(g_{i} \circ \pi) \wedge d(I_{i} \circ \pi)$$

$$= \sum_{i=1}^{n} d\theta_{i} \wedge dJ_{i} + \pi^{*} d\gamma = \sum_{i=1}^{n} d\theta_{i} \wedge A_{i} + B = \omega.$$

Por tanto, hemos encontrado unas coordenadas simplécticas (J, ϕ) , con las J_i constantes en cada toro invariante y con las ϕ_i coordenadas angulares en estos toros.

Observación 8.18. Volviendo al caso del oscilador armónico n-dimensional, notamos que $\omega = d\alpha$, con $\alpha = \sum_{i=1}^{n} J_i d\phi_i$, entonces $J_i = \frac{1}{2\pi} \int_{\gamma_i} \alpha$.

Corolario 8.19. Todo sistema integrable en el sentido de Liouville es integrable por cuadraturas.

Demostración. Dado un punto $x \in M$, basta tomar unas variables de acción-ángulo (las (J,ϕ) del teorema). Entonces, como ya hemos visto, las soluciones de las ecuaciones de Hamilton en estas coordenadas quedan escritas en la forma

$$J_i(t) = J_i(0)$$

$$\phi_i(t) = \phi_i(0) + \omega_i(F(0))t,$$

para i = 1, ..., n, donde las frecuencias ω_i se obtuvieron en términos de funciones conocidas. Así, el sistema queda integrado por cuadraturas.

9. Un poco más de movimiento condicionalmente periódico

Como colofón, una vez tenemos a nuestra disposición la teoría de Arnold-Liouville, sabemos que el flujo en los toros invariantes de los sistemas integrables en el sentido de Liouville será condicionalmente periódico. En esta sección definiremos bien qué significa esto y obtendremos un teorema muy importante sobre este tipo de sistemas.

Definición 9.1 (Movimiento condicionalmente periódico en \mathbb{T}^n). Sean \mathbb{T}^n el toro ndimensional y $\phi = (\phi_1, \dots, \phi_n)$ coordenadas angulares. Se entiende por un movimiento condicionalmente periódico en el toro el flujo uniparamétrico dado por

$$\phi(t) = \phi(0) + \omega t$$

con $\omega = (\omega_1, \dots, \omega_n)$ frecuencias constantes en el toro. Las frecuencias ω se dicen independientes si, sea $k \in \mathbb{Z}^n$, entonces $\langle k, \omega \rangle = 0$ si y sólo si k = 0.

Definición 9.2 (Promedios espacial y temporal). Sea $f: \mathbb{T}^n \to \mathbb{R}$ una función integrable Riemann,

1. El promedio espacial de f en \mathbb{T}^n es el número

$$\bar{f} = \frac{1}{(2\pi)^n} \int_0^{2\pi} \cdots \int_0^{2\pi} f(\phi) d\phi_1, \dots, d\phi_n.$$

2. El promedio temporal de f en \mathbb{T}^n es la función

$$f^*(\phi_0) = \lim_{T \to \infty} \int_0^T f(\phi_0 + \omega t) dt,$$

definida en los puntos ϕ_0 en los que exista el límite.

Teorema 9.3 (Teorema de los promedios). Si $f : \mathbb{T}^n \to \mathbb{R}$ es una función integrable Riemann y las frecuencias ω son independientes, el promedio temporal está bien definido en todo el toro \mathbb{T}^n y coincide en todo punto con el promedio espacial.

Demostración. Daremos la demostración en varios pasos:

1. Consideramos funciones de la forma $e^{i\langle k,\phi\rangle}$, $k\in\mathbb{Z}^n$. Si k=0, entonces $\bar{f}=f=f^*=1$. Si $k\neq 0$, \bar{f} es una integral a periodos en funciones trigonométricas, luego es igual a 0. Por otra parte

$$\int_0^T e^{i\langle k,\phi_0+\omega t\rangle} dt = e^{i\langle k,\phi_0\rangle} \int_0^T e^{i\langle k,\omega\rangle t} dt = e^{i\langle k,\phi_0\rangle} \frac{e^{i\langle k,\omega\rangle T}-1}{i\langle k,\omega\rangle}.$$

Por tanto, el promedio temporal será

$$\lim_{T\to\infty}\frac{e^{i\langle k,\phi_0\rangle}}{i\,\langle k,\omega\rangle}\frac{e^{i\langle k,\omega\rangle T}-1}{T}=0.$$

2. Como los promedios dependen linealmente de f, también coincidirán para los polinomios trigonométricos

$$f = \sum_{|k| < N} f_k e^{i\langle k, \omega \rangle}.$$

3. Dado $\varepsilon>0$, si f es continua y real por el teorema de Weierstrass podemos aproximarla por un polinomio trigonométrico P que cumpla $|f-P|<\frac{1}{2}\varepsilon$. Sean $P_1=P-\frac{1}{2}\varepsilon$, $P_2=P+\frac{1}{2}\varepsilon$ entonces

$$\bar{P}_2 - \bar{P}_1 = \frac{1}{(2\pi)^n} \int_{\mathbb{T}^n} (P_2 - P_1) d\phi = \frac{1}{(2\pi)^n} \varepsilon (2\pi)^n = \varepsilon.$$

4. Dado $\varepsilon > 0$, si f es real e integrable Riemann, entonces existen dos funciones continuas f_1, f_2 tales que $f_1 < f < f_2$ y $\int_{\mathbb{T}^n} \frac{1}{(2\pi)^n} (f_2 - f_1) d\phi < \frac{1}{3} \varepsilon$. Tomando ahora P_1, P_2 polinomios trigonométricos tales que $P_1 < f_1 < f_2 < P_2$ y $\int_{\mathbb{T}^n} \frac{1}{(2\pi)^n} (P_i - f_i) d\phi < \frac{1}{3} \varepsilon$, para i = 1, 2, entonces

$$\bar{P}_2 - \bar{P}_1 = \frac{1}{(2\pi)^n} \int_{\mathbb{T}^n} (P_2 - P_1) d\phi = \frac{1}{(2\pi)^n} \varepsilon (2\pi)^n = \varepsilon.$$

5. Por último, sea $\varepsilon > 0$, entonces existen dos polinomios trigonométricos P_1, P_2 tales que $P_1 < f < P_2$ y $\bar{P}_2 - \bar{P}_1 < \varepsilon$. Ahora, como $f < P_2$,

$$\frac{1}{T} \int_0^T f(\phi(t))dt < \frac{1}{T} \int_0^T P_2(\phi(t))dt,$$

luego

$$\left| \frac{1}{T} \int_0^T f(\phi(t)) dt - \bar{f} \right| < \left| \frac{1}{T} \int_0^T P_2(\phi(t)) dt - \bar{f} \right| < \left| \frac{1}{T} \int_0^T P_2(\phi(t)) dt - \bar{P}_2 \right| + |\bar{P}_2 - \bar{f}|.$$

Pero, como $P_1 < f < P_2$, por la monotonía de la integral $\bar{P}_1 < f < \bar{P}_2$, luego $|\bar{P}_2 - \bar{f}| < |\bar{P}_2 - \bar{P}_1| < \varepsilon$. Además, como P_2 es un polinomio trigonométrico existe un T_0 tal que, si $T > T_0$

$$\left| \frac{1}{T} \int_0^T P_2(\phi(t)) dt - \bar{P}_2 \right| < \varepsilon.$$

Finalmente, obtenemos lo que queríamos probar

$$\left| \frac{1}{T} \int_0^T f(\phi(t)) dt - \bar{f} \right| < \left| \frac{1}{T} \int_0^T P_2(\phi(t)) dt - \bar{P}_2 \right| + |\bar{P}_2 - \bar{f}| < \varepsilon + \varepsilon = 2\varepsilon,$$

luego $f^*(\phi_0) = \lim_{t \to \infty} \frac{1}{T} \int_0^T f(\phi(t)) dt = \bar{f}.$

Corolario 9.4. Si las frecuencias son independientes, entonces, para todo $\phi_0 \in \mathbb{T}^n$,

$$\{\phi(t) = \phi_0 + \omega t | t \in \mathbb{R}\}$$

es denso en el toro \mathbb{T}^n .

Demostración. En caso contrario, sea un abierto D del toro que no tiene ningún punto de la trayectoria $\phi(t)$. Construimos la función

$$f(\phi) = \begin{cases} 0 & \text{si } \phi \notin D \\ \frac{(2\pi)^n}{\int_D d\phi} & \text{si } \phi \in D. \end{cases}$$

Claramente, $\bar{f} = 1$, pero $f^*(\phi_0) = 0$, lo que contradice el teorema de los promedios.

Corolario 9.5. Sea $D \subset \mathbb{T}^n$ un conjunto medible Jordan. Sea $A_D = \{t \in \mathbb{R} | \phi(t) \in D\}$ (que también es medible Jordan) y sea $\tau_D(T) = \int_0^T \chi_{A_D}(t) dt$. Entonces

$$\lim_{T \to \infty} \frac{\tau_D(T)}{T} = \frac{\operatorname{Vol}(D)}{(2\pi)^n}.$$

Demostración. Aplicamos el teorema a χ_D , entonces $\int_0^T \chi_D(\phi(t)) dt = \int_0^T \chi_{A_D}(t) dt = \tau_D(t)$ y $\bar{\chi}_D = (2\pi)^{-n} \text{Vol}(D)$. Finalmente, por el teorema de los promedios

$$\bar{\chi}_D = \frac{\operatorname{Vol}(D)}{(2\pi)^n} = \lim_{T \to \infty} \frac{1}{T} \int_0^T \chi_D(\phi(t)) dt = \lim_{T \to \infty} \frac{\tau_D(T)}{T}.$$

Referencias

- [1] V. I. Arnold. Mathematical Methods of Classical Mechanics. Springer-Verlag, 1989. 4, 32
- [2] Wikimedia Commons. Euler angles. https://commons.wikimedia.org/wiki/File:Euler.png, 2007. Online; visto el 18 de julio de 2017. 32
- [3] Wikimedia Commons. Heavy symmetric top in terms of Euler angles. https://commons.wikimedia.org/wiki/File:Heavy_symmetric_top_euler_angles.svg, 2015. Online; visto el 18 de julio de 2017. 32
- [4] J.F. Fernando, J.M. Gamboa, and J.M. Ruiz. Álgebra lineal (vol. 2). Editorial Sanz y Torres, 2010.
- [5] J.M. Gamboa and J.M. Ruiz. Introducción al estudio de las Variedades Diferenciables. Editorial Sanz y Torres, 2016. 8
- [6] H. Goldstein, C.P. Poole, and J.L. Safko. Classical Mechanics. Pearson Education India, 2011. 4
- [7] Victor Guillemin. Lecture notes on Theory of Differential Forms. Chapter 5: Cohomology via forms. http://math.mit.edu/classes/18.952/spring2012/chapter5.pdf, 2012. Online; visto el 22 de julio de 2017.
- [8] Morris W. Hirsch. Differential Topology. Springer Science & Business Media, 2012.
- [9] L.D. Landau and E.M. Lifshitz. Curso de física teórica (vol. 1): Mecánica. Editorial Reverté, 1985.
- [10] Federica Pasquotto. Reminder on basic differential geometry. http://www.few.vu.nl/~pasquott/reminder.pdf, 2013. Online; visto el 22 de julio de 2017.
- [11] Michael Spivak. Physics for Mathematicians: Mechanics I. Publish or Perish, 2010. 27