Efficient green energy sources report

Alejandro Barajas, Gary Layman, Trevor Olmo, Add your names here 2025-10-14

R and Python libary set up

• Overall goal The goal is to identify which sources deliver the most energy per dollar while minimizing environmental impact

Data Preparation

```
#### Commented this out because we no longer need it
# energy <- eia_data(
# dir = "electricity/electric-power-operational-data",
# data = c("ash-content", "consumption-for-eg", "consumption-for-eg-btu", "consumption-uto"
# freq = "quarterly",
# start = "2020",
# end = "2025"
#)
# All columns are <char> and will need to be cleaned
```

YOUR CODE HERE

Data Collection & Cleaning

- What sources are used?
- What cleaning steps are necessary?

We already scraped the data from the EIA website, so we can use that data directly. We just need to read it in from the csvs it has been saved in.

```
# YOUR CODE HERE
#Find all csv files in the directory, read them in, and store them in a single df
eia_csvs = glob("datasets/*.csv")
dfs = [pd.read_csv(csv) for csv in eia_csvs]
energy_df = pd.concat(dfs, ignore_index=True)
energy_df.head()
```

```
period location ... total-consumption-btu
                                               total-consumption-btu-units
                                      8.93140
0 2016-Q3
                IN ...
                                                             million MMBtu
1 2016-Q3
                IN ...
                                      0.31604
                                                             million MMBtu
2 2016-Q3
                MD ...
                                          NaN
                                                             million MMBtu
3 2016-Q3
                MD ...
                                      0.00000
                                                             million MMBtu
                                      1.65269
                                                             million MMBtu
4 2016-Q3
                MD ...
```

[5 rows x 37 columns]

Data Organization & Conditioning

- How is the data structured?
- Are there transformations or feature engineering steps?

Here I just check number of rows and columns, as well as the data types of the columns.

```
# YOUR CODE HERE
# Number of rows
print("Rows: ", energy_df.shape[0])
# Number of columns
print("Columns: ", energy_df.shape[1])
#Data types
energy_df.dtypes
```

Rows: 530986 Columns: 37 period object location object stateDescription object sectorid int64 sectorDescription object fueltypeid object fuelTypeDescription object ash-content float64

ash-content-units	object
consumption-for-eg	float64
consumption-for-eg-units	object
consumption-for-eg-btu	float64
consumption-for-eg-btu-units	object
consumption-uto	float64
consumption-uto-units	object
consumption-uto-btu	float64
consumption-uto-btu-units	object
cost	float64
cost-units	object
cost-per-btu	float64
cost-per-btu-units	object
generation	float64
generation-units	object
heat-content	float64
heat-content-units	object
receipts	float64
receipts-units	object
receipts-btu	float64
receipts-btu-units	object
stocks	float64
stocks-units	object
sulfur-content	float64
sulfur-content-units	object
total-consumption	float64
total-consumption-units	object
total-consumption-btu	float64
total-consumption-btu-units	object
dt.ma. shiast	

dtype: object

Data Storage

- Where and how is the data stored?
- Is it accessible and secure?

```
# YOUR CODE HERE
```

```
# YOUR CODE HERE
energy_df.isna().sum()
```

period	0
location	0
stateDescription	0
sectorid	0
sectorDescription	0
fueltypeid	0
fuelTypeDescription	0
ash-content	189444
ash-content-units	0
consumption-for-eg	49532
consumption-for-eg-units	0
consumption-for-eg-btu	49532
consumption-for-eg-btu-units	0
consumption-uto	49532
consumption-uto-units	0
consumption-uto-btu	49532
consumption-uto-btu-units	0
cost	433700
cost-units	0
cost-per-btu	485548
cost-per-btu-units	0
generation	15880
generation-units	0
heat-content	170783
heat-content-units	0
receipts	170783
receipts-units	0
receipts-btu	166205
receipts-btu-units	0
stocks	507804
stocks-units	0
sulfur-content	187923
sulfur-content-units	0
total-consumption	49532
total-consumption-units	0
total-consumption-btu	49532
total-consumption-btu-units	0
dtype: int64	

Exploratory Data Analysis (EDA)

• What are the high-level patterns?

- What intuitive insights emerge?
- Is the data consistent across sources?
- What assumptions are we making?
- What new questions arise from the EDA?

Note: Be mindful of *confirmation bias*—avoid interpreting data only to support your initial hypothesis.

YOUR CODE HERE

YOUR CODE HERE

Model Planning

- Model Type: Classification, clustering, regression—what fits best?
- Success/Failure Definitions: Refine what constitutes a good or bad outcome.
- EDA for Modeling:
 - Identify relevant variables
 - Explore correlations
 - Apply domain knowledge
 - Verify assumptions
 - Prototype modeling ideas

YOUR CODE HERE

YOUR CODE HERE

Model Building

- What models are being trained?
- How are they tested?
- What metrics are used to evaluate performance?

YOUR CODE HERE

YOUR CODE HERE

Communicating Results

- Are the results **robust** across different scenarios?
- Are they statistically significant?
- Why do these results **matter** to stakeholders?
- How do they compare to your definitions of success and failure?

Operationalization

• Presentation:

- Who is the audience?
- Is the code and analysis well-documented and replicable?

• Deployment:

- Are models deployed on live data?
- Are they behaving as expected?