Honors Physics 1.6 & 1.7 - Adding and Subtracting Vectors

I. Fundamentals of Vectors

•	A scalar is a quantity with	(size) only. Examples: 10 m/s (speed)
	5 kg (mass).	
•	A vector is a quantity with both magnitude and	d Examples: 10
	m/s North (velocity), 20 N Down (force).	
•	We represent vectors graphically with	The arrow's length
	corresponds to the magnitude, and its orientat	
•	One-dimensional vectors can be added or sub	tracted A negative
	sign indicates the direc	
•	Example: A vector of +7 and a vector of -3 sur	
u	ranhical Addition: Hoad to Tail Motl	and
ı. G	raphical Addition: Head-to-Tail Metl	iou
•	This is the primary visual method for adding tw	vo-dimensional vectors.
•	Step 1: Draw the first vector to	and in the correct direction.
•	Step 2: Draw the second vector, placing its	at the
	(arrow tip) of the first ve	
•	Step 3: The resultant (the sum) is the vector of	drawn from the of
	the first vector to the of	the second vector.
•	The order of addition(A	A + B = B + A). This is the commutative
	property of vector addition.	·
•	If adding more than two vectors, continue plac	ing each new vector
	The resultant always g	<u> </u>
		, ,
III. N	lathematical Addition for Perpendic	cular Vectors
•	When two vectors are perpendicular (at a	angle), they form a
	right triangle with their resultant.	
Findi	ng the Magnitude (the Hypotenuse)	
•	Use the Pythagorean theorem: R ² =	+
•	Example: A person walks 90m East (A) and th	
•	$R = \sqrt{(^2 + ^2)} = \sqrt{(_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}$	
	m.	

Finding the Direction (the Angle)

• Use inverse trigonometry (SOH CAH TOA). Tangent is often easiest.

•	=(opposite/adjacent).		
•	For the example, $\theta =$	(50m / 90m) ≈ °.	
•			
IV. C	Component Method for Non-Perper	ndicular Vectors	
•		<u> </u>	_ and
Step '	1: Resolve Each Vector		
•	For each vector, create a right triangle with the Use trigonometry to find the length of the side $V_x = $ $V_y = $ Pay close attention to South is -y).	es (the components).	
_	2: Sum the Components		
	Add all the x-components together to get a sAdd all the y-components together to get a s	-	
Step :	3: Combine the Resultant Components		
•		• • • • • • • • • • • • • • • • • • • •	
	A motorboat heads due east at 16 m/s acrosesultant velocity.	ss a river flowing due north at 9.0 m/s. F	ind
•	Magnitude: R = $(_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_$	≣.	
Ex 2 -	— A hiker walks 11 km north, then 11 km east.	Find their displacement.	
•		≣.	
Ex 3 - force.	— John pushes a crate 185 N East. Joan push	nes 165 N at 30° N of E. Find the resulta	ınt

• Sum components:

• Resultant:

Ex 4 — An airplane flies North at 90 km/h while being blown West at 50 km/h. Find its resultant velocity.

- Magnitude: R = √(__² + __²) ≈ ____ km/h.
 Direction: θ = tan⁻¹(__ / __) ≈ ___ ° W of N.