Problem 1.

By considering the graphs of $y = \cos x$ and $y = -\frac{1}{4}x$, or otherwise, show that the equation $x + 4\cos x = 0$ has one negative root and two positive roots.

Use linear interpolation, once only, on the interval [-1.5, 1] to find an approximation to the negative root of the equation $x + 4\cos x = 0$ correct to 2 decimal places.

The diagram shows part of the graph of $y = x + 4\cos x$ near the larger positive root, α , of the equation $x + 4\cos x = 0$. Explain why, when using the Newton-Raphson method to find α , an initial approximation which is smaller than α may not be satisfactory.

Use the Newton-Raphson method to find α correct to 2 significant figures. You should demonstrate that your answer has the required accuracy.

Solution

Problem 2.

Find the coordinates of the stationary points on the graph $y = x^3 + x^2$. Sketch the graph and hence write down the set of values of the constant k for which the equation $x^3 + x^2 = k$ has three distinct real roots.

The positive root of the equation $x^3 + x^2 = 0.1$ is denoted by α .

- (a) Find a first approximation to α by linear interpolation on the interval $0 \le x \le 1$.
- (b) With the aid of a suitable figure, indicate why, in this case, linear interpolation does not give a good approximation to α .
- (c) Find an alternative first approximation to α by using the fact that if x is small then x^3 is negligible when compared to x^2 .

Solution

- Part (a)
- Part (b)
- Part (c)

Problem 3.

The equation $2\cos x - x = 0$ has a root α in the interval [1, 1.2]. Iterations of the form $x_{n+1} = F(x_n)$ are based on each of the following rearrangements of the equation:

- (a) $x = 2\cos x$
- (b) $x = \cos x + \frac{1}{2}x$
- (c) $x = \frac{2}{3}(\cos x + x)$

Determine which iteration will converge to α and illustrate your answer by a 'staircase' or 'cobweb' diagram. Use the most appropriate iteration with $x_1 = 1$, to find α to 4 significant figures. You should demonstrate that your answer has the required accuracy.

Solution

- Part (a)
- Part (b)
- Part (c)