System Integration

Mini Case Studies © 2010

Data Integration

Shawn A. Butler, Ph.D.
Senior Lecturer, Executive Education Program
Institute for Software Research
Carnegie Mellon University

Objectives

- Understand why data integration is so challenging
- Techniques for data integration
- Understand performance tradeoffs in data integration

Data and Reality, William Kent, 1st Books Library, 2000

Agenda

- A quick review of purpose
- Data Integration Architectures
- What does It mean?
- Relationships
- Data normalization

"Entities are a state of mind.

No two people agree what the real world view is."

[A. Metaxides]

Two Architectures For Data Integration

 Problem – Develop an application that aggregates information from several applications

Data Integration Model I

Data Integration Model II

2 Architecture-Many Choices

- Get all the records and aggregate manually
- Aggregate field in a special top level record, application making changes update the field
- System updates the aggregate field in system business logic
- The new application computes the aggregate on retrieval
- Special application "query processor" aggregates the information when needed
- Interface provides this as part of the system

Data Integration Common Mistakes

- Creating yet another database
- Waiting for the data analyst to finish developing the perfect schema
- Implementing the perfectly normalized schema
- Assuming the data exists as described in the documentation
- Testing without a sufficient set of real data
- Assuming that one site is a good representation of data at all sites

What is One Thing?

- We exist in a world of ambiguity
- The system cannot tolerate ambiguity
 - Oneness
 - Sameness When are two things the same?
 - What is it? In what categories does it exist?

Meaning

- What is a warehouse?
 - A location within a building?
 - One physical building?
 - Several physical buildings at a single location?
 - A logical concept of where things are stored?

All definitions may be correct, but different among applications.

Meaning

- What is a street?
 - Segments along the physical road may have different names
 - Different streets may have the same name
 - Some roads have discontinuous segments
 - Is a street terminated by a city, county, state?
 - Does street imply motor traffic?
 - Does it also mean freeways, highways, expressways, toll ways, circles, etc.

Meaning

- How do we think of skills?
 - What we know how to do is usually quite varied
 - Categorization arbitrarily limits how that information is defined
 - Categorization arbitrarily limits the number of skills that can be described

How Many Things is It?

- A person is:
 - An employee
 - Spouse
 - Shift supervisor
 - Stockholder
- A warehouse is:
 - Physical building
 - A place where parts are stored

When does change make *It* different?

- Car
 - Does a different color make it a different car?
 - Does a new engine make it a different car?
 - Slowly replace the parts of a car, at what point is it a different car?
 - Is the essence of change the same in two different systems?
- Parts
 - When does it matter when the component parts are different?
- Versions
 - At what point does a version move to a different product?

Change

- Sometimes our perception changes
 - When do two things become one?

Categories, Attributes, Relationships

- Categories (aka types)
 - Require arbitrary decisions
 - Categories often have subsets
 - Overlap with other categories
 - Plaintiffs are people, corporations, government agencies...)
 - Once categories are established real things are assigned
 - Employee (part time, fulltime, managers, etc...)
 - Items change in a category, does it still fit the category

Categories, Attributes, Relationships

- Attributes may be part of the category or they may be an essential part of the categorization
 - Cars, by the way, have wheels
 - Not all cars have wheels
- Relationships
 - Relationship is not meaningful between things within a category
 - Relationship is meaningful, but cannot be related to itself
 - Relationship is meaningful, and things can be related to themselves

Relationships

- Optional versus Mandatory
- Transitivity
- Symmetry and Anti-symmetry
- Implication
- Subset consistency
- Constraints
- Attributes of the relationship
- Names
 - No name
 - One name
 - Multiple names

Relational Databases

- Database normalization rules are designed to prevent anomalies and inconsistencies in databases
- Database normalization rules, strictly applied, may introduce inefficiencies in database design
- All databases have various schemas that work well for their application, but don't combine well into an efficient schema for all applications
- Database design is always a tradeoff among application performance optimization

Normalization of Databases

 First normal form – All record types must contain the same number of fields

Transportation	John Smith	Anne Harbor	Connie Redwoo	d
Accounting	Mark Johns	Mary Ebner		
Logistics	Sally Worth	Chris Waters	Tracy Elmore	Judd Heron

Normalization of Databases

 Second Normal Form – Non-key field is not related to a key field

- 1. The Department address is repeated in every record that refers to an employee in that Department.
- 2. If the address of the Department changes, every record referring to a part stored in that Department must be updated.
- 3. Because of the redundancy, the data might become inconsistent, with different records showing different addresses for the same Department.
- 4. If at some point in time there are no employees in a Department, there may be no record in which to keep the Department's address.

Normalization of Databases

 Third normal form – Non-key field is not a fact about another non-key field

Employee Department Manager Department Address	Employee	Department	Manager	Department Address
--	----------	------------	---------	--------------------

Employee Department Manager

Department

Department Address

Summary

- Data integration will most likely be the most difficult challenge of a system integration project
- Data integration is difficult because each data source will have their own views of what It means
- There will always be a balance between performance and normalization of the data model
- Don't let the data tail wag the system dog