Análise

Funções definidas em \mathbb{R}^n : Planos Tangentes e Retas Normais

- 1. Para cada uma das superfícies (i. a iv),
 - (a) encontre um vetor perpendicular/normal e um vetor tangente (à superfície), no ponto cujas coordenadas se indicam.
 - (b) encontre equações que definam o plano tangente e a reta normal (à superfície), no ponto cujas coordenadas se indicam.

i.
$$x^2 + xy + y^2 = 3$$
; $(-1, -1)$ iii. $xyz^2 = 1$; $(1, 1, 1)$ iii. $(y - x)^2 = 2x$; $(2, 4)$ iv. $z = x^2 + 3y^3 + \operatorname{sen}(xy)$; $(1, 0, 1)$

- 2. Mostre que os gráficos das funções $f(x,y) = x^2 + y^2$ e $g(x,y) = -x^2 y^2 + xy^3$ têm o mesmo plano tangente em (0,0).
- 3. Considere a função $f(x,y) = e^{x^2-y^2}$. Determine o ponto de interseção do plano tangente à superfície de equação z = f(x,y) no ponto (1,1,1) com o eixo dos zz.

Funções vetoriais

- 4. Determine a matriz jacobiana das seguintes funções:
 - (a) $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ tal que f(x, y) = (x, y);
 - (b) $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ tal que $f(x,y) = (xe^y + \cos y, x, x + e^y)$;
 - (c) $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ tal que $f(x, y) = (xye^{xy}, x \operatorname{sen} y, 5xy^2)$;
 - (d) $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ tal que f(x, y, z) = (x y, y + z);
 - (e) $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ tal que $f(x, y, z) = (x + y + e^z, x^2y)$.
- 5. Considere as funções f e g tais que

$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$

$$(x,y,z) \longmapsto f(x,y,z) = (x-y+z,x^2yz,xyz)$$

$$g: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$$

$$(x,y,z) \longmapsto g(x,y,z) = (xy,yz,2x,xyz)$$
Calcule $df(-1,0,1)$ e $dg(-1,0,1)$.

- 6. Considere a função $f:\mathbb{R}^2\longrightarrow\mathbb{R}^3$ tal que $f(x,y)=(2x^2,3y,2xy)$
 - (a) Calcule a matriz jacobiana de f.
 - (b) Justifique que a função f é diferenciável e calcule a diferencial da função f no ponto (1,1).
 - (c) Determine df(1, 1)(2, 3).

7. Considere as funções

$$u: \mathbb{R}^2 \longrightarrow \mathbb{R}, \qquad v: \mathbb{R}^2 \longrightarrow \mathbb{R}, \qquad w: \mathbb{R}^2 \longrightarrow \mathbb{R}, (x,y) \longmapsto xy \qquad (x,y) \longmapsto \operatorname{sen}(xy) \qquad (x,y) \longmapsto e^x$$

Determine $\nabla h(x, y)$.

- 8. Considere a função $f: \mathbb{R}^3 \to \mathbb{R}$ definida por $f(x, y, z) = x^2y xz$ e $a \in \mathbb{R}$.
 - (a) Calcule df(1,0,0)(1,2,2).
 - (b) Usando a regra da cadeia, determine a de modo que a função $g: \mathbb{R} \to \mathbb{R}$ tal que $g(t) = f(at^2, at, t^3)$ tenha derivada nula.
- 9. Calcule:

(a)
$$\frac{du}{dt}$$
, onde $u = \ln\left(\operatorname{sen}\frac{x}{y}\right)$ e $x = 3t^2$, $y = \sqrt{1 + t^2}$;

(b)
$$\frac{\partial w}{\partial p} e \frac{\partial w}{\partial q}$$
, onde $w = r^2 + s^2 e r = pq^2$, $s = p^2 \operatorname{sen} q$;

(c)
$$\frac{\partial z}{\partial s} e^{\frac{\partial z}{\partial t}}$$
, onde $z = x^2 \operatorname{sen} y e x = s^2 + t^2$, $y = 2st$.