

Reguläre Sprachen Endliche Automaten Transduktoren Definition und Eigenschaften
Pumping-Lemma für reguläre Sprachen
Reguläre Ausdrücke
Entscheidungsprobleme und Abschlusseigenschafte

Eine formellere Herleitung des Pumpinglemmas II

 Aus der Ableitung erkennt man, dass aus A das Wort

$$\triangleright$$
 $vA = \sigma_{i+1}\sigma_{i+2}\ldots\sigma_i A$

erzeugt werden kann.

⇒ Damit können aus A auch die Wörter

$$V^2A = \sigma_{i+1}\sigma_{i+2}\dots\sigma_i\sigma_{i+1}\sigma_{i+2}\dots\sigma_iA$$

 $\triangleright v^3 A =$

$$\sigma_{i+1}\sigma_{i+2}\ldots\sigma_j\sigma_{i+1}\sigma_{i+2}\ldots\sigma_j\sigma_{i+1}\sigma_{i+2}\ldots\sigma_jA$$

abgeleitet werden

- $\Rightarrow v$ kann also beliebig aufgepumpt werden.
- \Rightarrow Neben *uvw* gehören folglich auch die Worte uv^iw $(i \in \mathbb{N}_0)$ zu $\mathcal{L}(G)$.
- Jedes reguläre Wort (einer unendlichen Sprache) lässt sich in der Form uvw, bzw. uv^iw , mit $v \neq \varepsilon$ und $i \in \mathbb{N}_0$ darstellen.

Bild: Struktur regulärer Worte [Hoffmann, 2011]

Bild: Aufpumpen des Mittelstücks [Hoffmann, 2011]