Vzorce Fyzika 2

Emisivita tělesa: $\epsilon = \frac{I}{I_0}$

kde I je záření daného tělesa a I_0 je záření absolutně černého tělesa.

Stefan-Boltzmannův zákon: $P_r = \sigma \epsilon ST^4$

Kde $\sigma = 5.67 \cdot 10^{-8} W \cdot m^{-2} \cdot K^{-4}$

 ϵ je emisivita povrchu předmětu

S je velikost povrchu tělesa T je teplota povrchu tělesa

Popisuje Výkon, s jakým předmět vyzařuje energii ve formě tepelného záření.

Fotoelektrický zákon: $hf = E_{k,max} + \phi$

Kde $E_{k,max}$ je maximální kinetická energie emitovaných elektronů

hf je energie fotonu(podle vzorce E = hf)

 ϕ je výstupní práce materiálu tělesa

Výstupní práce je minimální energie, kterou musí elektron mít aby opustil povrch tělesa.

Bohrův model atomu: $f = \frac{m_e e^4}{8\epsilon^2 h^3} (\frac{1}{n_f^2} - \frac{1}{n_i^2})$

kde f je frekvence fotunu

 m_e je hmotnost elektronu

 $n_f a n_i$ jsou hlavní kvantová čísla odpovídajících drah

 $h = 6.626 \cdot 10^{-34} J \cdot s$ je Planckova konstanta

 $\hbar = \frac{h}{2\pi}$ se nazývá redukovaná Planckova konstanta, někdy též Diracova konstanta.

Kvantová čísla pro elektron v atomu

Hlavní KČ n = 1,2,3... je vzdálenost od jádra.

Vedlejší (orbitální) KČ l = 0,1,2... n-1 je velikost orbitálního momentu hybnosti

Magnetické orbitální KČ $m_l = 0 \pm 1, \pm 2, \dots \pm l$ je z-ová složka orbitálního momentu hybnosti.

Magnetické spinové KČ $m_s = \pm \frac{1}{2}$ je z-ová složka spinového momentu hybnosti.

Pauliho vylučovací princip

PVP říká že v jednom systému nemohou být 2 fermiony se stejným souborem kvantových čísel.

Fermion je částice, jejíhž magnetické spinové KČ je různé od nuly a není celočíselné.

Toto platí například pro elektrony, protony a neutrony, jejíhž MSKČ $m_s = \pm \frac{1}{2}$

Z tohoto tvrzení jde například odvodit počet elektronů na daném orbitalu $=2n^{2}$ kde n je číslo orbitalu.

Vlnová funkce: $\Psi(x, y, z, t) = \psi(x, y, z)e^{j\omega t}$

Tato úprava platí v soustavě konzervativních sil.

Pravděpodobobnostní vlna: $|\Psi|^2$

Popisuje hustotu pravděpodobnosti polohy částice.

Pro oblast platí vzorec $P(A) = \int_A |\Psi|^2 dV$,
kde A je oblast, ve které částici hledáme. Musí platit že $\int V |\Psi|^2 dV = 1$, pokud V je celý objem, ve kterém se může částice nacházet.

Heisenbergůvprincip neurčitosti

HPN říká, že nelze pro žádnou částici současně určit polohu i hybnost s libovolnou přesností. Omezení jsou následující:

1

 $\Delta x \Delta p_x > \hbar$

 $\Delta y \Delta p_y \ge \hbar$

 $\Delta z \Delta p_z \geq \hbar$

Kde \hbar je Planckova konstanta.

Schrodingerova rovnice v časově závislém tvaru: $\frac{\hbar^2}{2m}\Delta\Psi + V\Psi = j\hbar\frac{\partial\Psi}{\partial t}$ Schrodingerova rovnice v časově nezávislém tvaru: $\frac{\hbar^2}{2m}\frac{\partial^2\Psi}{\partial x^2} + V(x)\Psi = j\hbar\frac{\partial\Psi}{\partial t}$

kde V je potenciální energie soustavy.

 \hbar je Planckova konstanta

m je hmotnost částice.

 Ψ je vlnová funkce částice.

j je imaginární jednotka.

Upravená Schrodingerova rovnice pro průchod energetickým polem: $-\frac{\hbar^2}{2m}\frac{\partial^2\psi}{\partial x^2}+V(x)\psi=E\psi$ Kde E je celková energie soustavy

 ψ je odvozeno ze vztahu pro vlnovou funkci.

Řešení Schrodingerovy rovnice pro konstantní V: $\psi(x) = C_1 e^{\lambda x} + C_2 e^{-\lambda x}$

kde
$$\lambda = \frac{\sqrt{2m(V-E)}}{\hbar}$$

Koeficient průchodu T: $T = |t|^2 = \frac{1}{1 + \frac{E_0^2 \sinh^2(k_2L)}{4E(E_0 - E)}}$

kde E je energie částice.

 E_0 je energie bariéry.

L je délka bariéry.

 $k=rac{\sqrt{2m_e(E_0-E)}}{\hbar}$ což odpovídá λ z řešení Schrodingerovy rovnice pro konstantní potenciální energii V.

Koeficient odrazu R = 1 - T.

Řešení Schrodingerovy rovnice pro harmonický oscilátor: $\frac{d^2\psi(\xi)}{d\xi^2}+(\lambda-\xi^2)\psi(\xi)=0$

kde
$$\xi = \frac{x}{x_0}$$

$$x_0 = \left(\frac{\hbar}{m\omega_0}\right)^{\frac{1}{2}}$$
$$\lambda = \frac{2E}{\hbar\omega_0}$$

$$\lambda = \frac{2E}{\hbar\omega_0}$$

řešení $\psi(\xi) = \psi(\xi)e^{-\frac{\xi^2}{2}}$

Vzorce z příkladů sbírky které uplně nejsou ze slajdů přednášek

Tepelný výkon drátu s proudem: $P=U\cdot I=I^2R$ kde $R=\frac{4\rho l}{\pi d^2}$ d je průměr drátu.

kde
$$R = \frac{4\rho l}{\pi d^2}$$

l je délka drátu.

 ρ je měrná rezistivita.

Wienovův posunovací zákon: $\lambda_{max} = b/T$

kde λ_{max} je vlnová délka maxima spektrální hustoty vyzařování.

 $b = 2.898mm \cdot K$ je Wienova konstanta.

Energie fotonu o vlnové délce: $\lambda = \hbar\omega = \frac{hc}{E}$

kde
$$f = \frac{c}{\lambda} = \frac{E}{h}$$

Počet fotonů na danou elektromagnetickou vlnu: $N=\frac{E}{E_{\gamma}}=\frac{E\lambda}{hc}$ kde λ je vlnová délka dané elektomagnetické vlny.

Základní vzorec výkonu: E = Pt

Energie elektonu na kvantové hladině n
: $E_n = -\frac{me^4}{8\epsilon_0^2h^2n^2}$

Šířka pravoúhlé potenciálové jámy $L=\sqrt{\frac{2h^2}{m_p E_4}}$

Hybnost fotonu: $p = \frac{E}{C}$