Non-Deterministic Finite Automata

N Geetha AM & CS PSG Tech

Example of an NFA

NFA – Nondeterministic Finite Automaton

- 1. A state nay have 0 or more transitions labeled with the same symbol.
- 2. \mathcal{E} Transitions are possible.
- 3. Can have multiple initial states

Computation of an NFA

- When several transitions with the same label exist, an input word may induce several paths.
- When no transition is possible a computation is "stuck".

Q:Which words are accepted and which are not?

A: If word w induces (at least) a single accepting path, the automaton "chooses" this **accepting path** and w is accepted.

Possible Computations

DFA

At each step of the computation:

DFA - A **single state** is occupied.

NFA - **Several states** may be occupied.

NFA

Computation of an NFA - Example

On the input word w=01011 there exist an accepting path and w is accepted.

Can we characterize (find) the language recognized by this automaton?

Words containing either 101 or 11 as substrings.

Computation tree of 01011

Why do we Care About NFAs?

 NFA-s and DFA-s are equivalent (Meaning: They recognize the same set of languages). In other words: Each NFA recognizing language L has an equivalent DFA recognizing L.

(Note: This statement must be proved.)

- But usually, the NFA is much simpler.
- Enables the proof of theorems. (e.g. about regular operations)

Example - A Complicated DFA

 Can you guess the language?

Example – An Equivalent NFA

Can you guess the language?

Bit Strings that have 1 in position third from the end

Example - A Complicated DFA

 Can you guess the language?

Can you verify it now?

DFA - A Formal Definition(Rerun)

- A *finite automaton* is a 5-tupple $(Q, \Sigma, \delta, q_0, F)$ where:
- 1. Qs a finite set called the *states*.
- 2. \sum is a finite set called the *alphabet*.
- 3. $\delta: Q \times \Sigma \to Q$ is the *transition function*.
- 4. $q_0 \in Q$ is the **start state**, and
- 5. $F \subseteq Q$ is the set of *accepting states*.

NFA – A Formal Definition

- A *finite automaton* is a 5-tupple $(Q, \Sigma, \delta, q_0, F)$ where:
- 1. Qs a finite set called the *states*.
- 2. \sum is a finite set called the *alphabet*.
- 3. $\delta: Q \times \Sigma_{\varepsilon} \to P(Q)$ is the *transition function*. $(\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\})$
- 4. $q_0 \in Q$ is the **start state**, and
- 5. $F \subset Q$ is the set of accept states

Differences between NFA-s and DFA-s

There are **two** differences:

- 1. The range of the **transition function** δ is now P(Q). (The set of **subsets** of the state set Q)
- 2. The transition function allows \mathcal{E} transitions.

Computations of NFA-s

In general a computation of an NFA, N, on input w, induces a **computation tree**.

Each path of the computation tree represents a possible computation of N.

The NFA N accepts w, if its computation tree includes **at least** one path ending with an accepting state.

Computations of NFA-s

There are two ways to look at computations of an NFA:

- The first is to say that the NFA N "chooses" the right path on its tree of possible computations.
- The second is to say that the NFA N traverses its computation tree "in parallel".

Equivalence Between DFAs and NFAs

Now we prove that the class of NFAs is **Equivalent** to the class of DFA:

Theorem: For every NFA N, there exists a DFA M = M(N), such that L(N) = L(M(N)).

Proof Idea: The proof is *Constructive*: We assume that we know N, and construct a simulating DFA, M.

We start with an NFA with no \mathcal{E} transitions.

The equivalent DFA is denoted by:

$$D = \langle Q', \Sigma, \delta', q_0', F' \rangle$$

The state set of the equivalent DFA, D, should reflect the fact that at each step of the computation, N may occupy **several sates**, Thus we define the state set of D as the **power-set** of the state set of N, namely:

$$Q' = P(Q) = \begin{cases} \phi & \{q_1\} & \{q_2\} & \{q_3\} \\ \{q_1, q_2\} & \{q_2, q_3\} & \{q_1, q_3\} & \{q_1, q_2, q_3\} \end{cases}$$

Recall that the transition function of any NFA is defined by $\delta: Q \times \Sigma_{\varepsilon} \to P(Q)$.

Do not be confused by the use of P(Q) as the state set of D . D is a DFA, not the original NFA.

The alphabet of D, Σ , is identical to the alphabet of N.

The starting state of D corresponds to the starting state of N, namely $\left\{q_0\right\}$.

The most complex part of the construction is the transition function:

In the sequel it is demonstrated stage by stage:

Since the only state reachable from q_1 by 0 is q_1 , we get $\delta'(\{q_1\},0) = \{q_1\}$.

Since both q_1 and q_2 are reachable from q_1 by 1, we get $\mathcal{S}'(\{q_1\},1)=\{q_1,q_2\}$.

Similarly we get $\,\delta'\!\left(\!\left\{q_{\!\scriptscriptstyle 1},q_{\!\scriptscriptstyle 2}\right\}\!,\!1\right)\!=\!\left\{q_{\!\scriptscriptstyle 1},q_{\!\scriptscriptstyle 2}\right\}\,$.

and
$$\mathcal{S}'(\{q_1,q_2\},0) = \{q_1,q_3\}$$
.

Since
$$\delta(q_1,1) = \{q_1,q_2\}$$
 and $\delta(q_3,1) = \{q_3\}$, we get $\delta'(\{q_1,q_3\},1) = \{q_1,q_2,q_3\}$.

Finally we get the following DFA:

And its disconnected section:

Since 1,0 is accepted we get that $\{q_1,q_3\}$ is an accepting state.

Since 1,0,1 is accepted we get that $\{q_1,q_2,q_3\}$ is also an accepting state.

Nondeterminism

- A nondeterministic finite automaton has the ability to be in several states at once.
- Transitions from a state on an input symbol can be to any set of states.

Nondeterminism – (2)

- Start in one start state.
- Accept if any sequence of choices leads to a final state.
- Intuitively: the NFA always "guesses right."

Example: Moves on a Chessboard

- States = squares.
- Inputs = r (move to an adjacent red square) and b (move to an adjacent black square).
- Start state, final state are in opposite corners.

Example: Chessboard – (2)

1	2	3
4	5	6
7	8	9

		r	b
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

← Accept, since final state reached

Language of an NFA

- A string w is **accepted** by an NFA if $\delta(q_0, w)$ contains at least one final state.
- That is, there exists a sequence of valid transitions from q₀ to a final state given the input w.
- The language of the NFA is the set of strings it accepts.

Example NFA

 Set of all strings with two consecutive a's or two consecutive b's:

 Note that some states have an empty transition on an a or b, and some have multiple transitions on a or b.

Example 2: Language of an NFA

- For our chessboard NFA we saw that rbb is accepted.
- If the input consists of only b's, the set of accessible states alternates between {5} and {1,3,7,9}, so only even-length, nonempty strings of b's are accepted.
- What about strings with at least one r?

Equivalence of DFA's, NFA's

- A DFA can be turned into an NFA that accepts the same language.
- If $\delta_D(q, a) = p$, let the NFA have $\delta_N(q, a) = \{p\}$.
- Then the NFA is always in a set containing exactly one state – the state the DFA is in after reading the same input.

Equivalence – (2)

- Surprisingly, for any NFA there is a DFA that accepts the same language.
- Proof is the subset construction.
- The number of states of the DFA can be exponential in the number of states of the NFA.
- Thus, NFA's accept **exactly** the regular languages.

Subset Construction

- Given an NFA with states Q, inputs Σ , transition function δ_N , state state q_0 , and final states F, construct equivalent DFA with:
 - States 2^Q (Set of subsets of Q).
 - Inputs Σ .
 - Start state $\{q_0\}$.
 - Final states = all those with a member of F.

Critical Point

- The DFA states have names that are sets of NFA states.
- But as a DFA state, an expression like {p,q} must be read as a single symbol, not as a set.
- Analogy: a class of objects whose values are sets of objects of another class.

Subset Construction – (2)

- The transition function δ_D is defined by:
- $\delta_D(\{q_1,...,q_k\}, a)$ is the union over all i=1,...,k of $\delta_N(q_i, a)$.
- Example: We'll construct the DFA equivalent of our "chessboard" NFA.

		r	b
→	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
→ {1}	{2,4}	{5}
{2,4}		
{5}		

Alert: What we're doing here is the *lazy* form of DFA construction, where we only construct a state if we are forced to.

		r	b
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
→ {1}	{2,4}	{5}
{2,4}	{2,4,6,8}	{1,3,5,7}
{5}		
{2,4,6,8}		
{1,3,5,7}		

		r	b
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
→ {1}	{2,4}	{5}
{2,4}	{2,4,6,8}	{1,3,5,7}
{5}	{2,4,6,8}	{1,3,7,9}
{2,4,6,8}		
{1,3,5,7}		
* {1,3,7,9}		

		r	b
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
→ {1}	{2,4}	{5}
{2,4}	{2,4,6,8}	{1,3,5,7}
{5}	{2,4,6,8}	{1,3,7,9}
{2,4,6,8}	{2,4,6,8}	{1,3,5,7,9}
{1,3,5,7}		
* {1,3,7,9}		
* {1,3,5,7,9}		

		r	b
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
→ {1}	{2,4}	{5}
{2,4}	{2,4,6,8}	{1,3,5,7}
{5}	{2,4,6,8}	{1,3,7,9}
{2,4,6,8}	{2,4,6,8}	{1,3,5,7,9}
{1,3,5,7}	{2,4,6,8}	{1,3,5,7,9}
* {1,3,7,9}		
* {1,3,5,7,9}		

		r	b
	1	2,4	2
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
→ {1}	{2,4}	{5}
{2,4}	{2,4,6,8}	{1,3,5,7}
{5}	{2,4,6,8}	{1,3,7,9}
{2,4,6,8}	{2,4,6,8}	{1,3,5,7,9}
{1,3,5,7}	{2,4,6,8}	{1,3,5,7,9}
* {1,3,7,9}	{2,4,6,8}	{5}
* {1,3,5,7,9}		

		r	b
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
→ {1}	{2,4}	{5}
{2,4}	{2,4,6,8}	{1,3,5,7}
{5}	{2,4,6,8}	{1,3,7,9}
{2,4,6,8}	{2,4,6,8}	{1,3,5,7,9}
{1,3,5,7}	{2,4,6,8}	{1,3,5,7,9}
* {1,3,7,9}	{2,4,6,8}	{5}
* {1,3,5,7,9}	{2,4,6,8}	{1,3,5,7,9}

Proof of Equivalence: Subset Construction

- The proof is almost a pun.
- Show by induction on |w| that $\delta_N(q_0, w) = \delta_D(\{q_0\}, w)$
- Basis: $W = \epsilon : \delta_{N}(q_{0}, \epsilon) = \delta_{D}(\{q_{0}\}, \epsilon) = \{q_{0}\}.$

Induction

- Assume Induction Hypothesis for strings shorter than w.
- Let w = xa; Induction H holds for x.
- Let $\delta_{N}(q_{0}, x) = \delta_{D}(\{q_{0}\}, x) = S$.
- Let T = the union over all states p in S of $\delta_N(p, a)$.
- Then $\delta_{N}(q_{0}, w) = \delta_{D}(\{q_{0}\}, w) = T$.
 - For NFA: the extension of δ_N .
 - For DFA: definition of δ_D plus extension of δ_D .
 - That is, $\delta_D(S, a) = T$; then extend δ_D to w = xa.

NFA's With €-Transitions

- We can allow state-to-state transitions on ∈ input.
- These transitions are done spontaneously, without looking at the input string.
- A convenience at times, but still only regular languages are accepted.

Example: ∈-NFA

	0	1	\in
→ A	{E}	{B}	Ø
В	Ø	{C}	{D}
С	Ø	{D}	Ø
D	Ø	Ø	Ø
* E	{F}	Ø	{B, C}
F	{D}	Ø	Ø

Conversion of a Transition System with €-move to a TS without €-move

S1: Find all edges starting from v2

- S2: Duplicate all these edges starting from v1 without changing edge labels.
- S3: If v1 is an initial state, make v2 as an initial state
- S4: If v2 is a final state, make v1 as a final state.

Conversion of a NDFA to a DFA

- S1: Conversion of a TS with €-moves to a TS without €-moves
- S2:Create the start state of DFA by taking the €-closure of the start states of NDFA. Construct a state table for TS
- S3: Construct a Successor Table for the NDFA
 - − 3a. Begin with the start state and compute δ (q₀, a) for every a ∈ Σ ; this gives a number of new states Q'
 - − 3b. For each new state Q', we compute δ (Q', a) for every a ∈ Σ and introduce new states if necessary
 - 3c. Repeat 3b. until there are no new states.
 - 3d. Final states of DFA are the states that contain any final state of NDFA
- S4: Reduce the number of states if possible.
- S5: Draw the state table from the DFA
- Note: Cannot merge non-final and final states in S4.

B sout with a set of initial states Bob Obtain the deterministic graph equivalent to The transton system Soln fa, 923 9= \$90,93 Construct quecessor table ->[9-94) [90,9,,92] [90,9,90] [90,90] [90,9, 90] [99 9,]

Summary

- DFA's, NFA's, and ∈-NFA's all accept exactly the same set of languages: the regular languages.
- The NFA types are easier to design and may have exponentially fewer states than a DFA.
- But only a DFA can be implemented in linear time!

General Comments

- Some things are easy with finite automata:
 - Substrings (...abcabc...)
 - Subsequences (...a...b...c...b...a...)
 - Modular counting (odd number of 1's)
- Some things are impossible with finite automata:
 - An equal number of a's and b's
 - More 0's than 1's
- But when they can be used, they are fast.

Summary

- RE to RS, RE to RL
- RS to RL
- NFA to DFA
- NFA/DFA to RL

- RE to NFA? Next slide
- DFA to RE? Arden's Theorem not covered

Kleene's theorem

- For any regular expression r that represents language L(r), there is a finite automaton that accepts that same language.
- For any finite automaton M that accepts language L(M), there is a regular expression that represents the same language.

Therefore, the class of languages that can be represented by regular expressions is equivalent to the class of languages accepted by finite automata -- the regular languages.

Proof of 1st half of Kleene's theorem

Proof strategy: for any regular expression, we show how to construct an equivalent NFA.

Because regular expressions are defined recursively, the proof is by induction.

Base step: Give a NFA that accepts each of the simple or "base" languages, \emptyset , $\{\lambda\}$, and $\{a\}$ for each $a \in \Sigma$.

Inductive step: For each of the operations -- union, concatenation and Kleene star -- show how to construct an accepting NFA.

Closure under union:

Examples

• Eg1: (a+bb) Eg2:(λ+ba*)

Example: $(a+bb)*(\lambda+ba*)$

$$r = r_1^* r_2 \left(r_4 + r_3 r_1^* r_2 \right)^*$$

