Raport z Ćwiczenia¹

Data: 06.05.2020

Imię i nazwisko: Nikita Grygoriev

Sprawozdanie z ówiczeń laboratoryjnych powinno składać się z TRZECH części (chyba instrukcja do ówiczenia określa to inaczej).

REZULTATY

Zanotuj określone w treści ćwiczenia parametry algorytmów, otrzymane rezultaty, itp.

Opc. zamieść listę dodatkowych plików do łączonych do sprawozdania (dodatkowe pliki to np. fragmenty kodu, pliki danych otrzymane w trakcie ćwiczenia, itp.)

ANALIZA i WNIOSKI

Zamieść, określone w treści ćwiczenia, analizę otrzymanych rezultatów (np. statystyczne opracowanie wyników) oraz wnioski. Maksymalnie 1 strona.

ODPOWIEDZI NA PYTANIA

Zamieść, określone w treści ćwiczenia, odpowiedzi na pytania. Maksymalnie 1 strona.

Spis treści

Raport z ówiczenia 1
Rezultaty 2
Analiza i wnioski 3
Odpowiedzi na pytania 4

¹ Raport z ćwiczenia należy dostarczyć poprzez system UPEL, w formacie PDF.

-

Analiza i wnioski
 W wyniku mamy: Dokladnosc (zbior walidujacy) = 96.3% Dokladnosc (zbior testowy) = 75.6%
A więc możemy stwierdzić, że "transfer learning" jest przydatny w przypadku, gdy nie mamy dużego zbioru danych, ale mamy do dyspozycji dobrze wytrenowaną sieć.

Odpowiedzi na pytania
Konwolucyjna - ekstrakcja prostych cech ReLU - funkcja aktywacji (max(0,x)) Pooling - progresywna redukcja rozmiaru przestrzennego do zredukowania ilości cech Dense - połączenie "każdy-z-każdym", używa się jako ostatnia żeby przydzielić do kategorii