Atividade Bioestatística — ANOVA

Número: 10684764 Nome: Henrique Tostes de Sousa

05/11/2020

1 Enunciado

- 1. Criar um conjunto de dados com mais de 3 grupos. Ou apresentar um conjunto de dados com mais de 3 grupos.
- 2. Fazer a analise de variância, verificar se existe diferenças entre os grupos.
- 3. Se houver diferença, fazer um pós teste (Teste de comparações múltiplas), fazer o teste de Bonferroni.
- 4. Aplicar outro teste de comparações multiplas diferente do Bonferroni.
- 5. Fazer as interpretações da análise que realizou.

2 Script

3 Discussão

Interesse: Comparar 4 remedios que estimulam a producao de albumina no figado A,B,C e D, em relação a variável quantitativa, aumento de albumina no sangue em g/dL.

```
Hipótese nula(H0): uA = uB = uC = uD.
```

Hipótese alternativa(Ha): pelo menos uma das médias é diferente

Valor normal de albumina no sangue: 3 a 5 g/dL

Vamos fazer um teste com alfa = 0.05

Figura 1: Dados							
	Remedio.A	Remedio.B	Remedio.C	Remedio.D			
1	1.332	1.367	0.980	1.228			
2	1.431	1.108	1.235	1.011			
3	1.968	1.120	0.992	1.369			
4	1.521	1.033	1.081	1.363			
5	1.539	0.833	1.112	1.346			
6	2.015	1.536	0.794	1.307			
7	1.638	1.149	1.551	1.266			
8	1.120	0.410	1.346	1.081			
9	1.294	1.210	0.959	1.008			
10	1.366	0.858	1.676	0.986			

Figura 2: Informações dos dados

0							
Remedio.A	Remedio.B	Remedio.C	Remedio.D				
"Min. :1.120	" "Min. :0.4100	" "Min. :0.794	" "Min. :0.986 "				
"1st Qu.:1.341	" "1st Qu.:0.9018	" "1st Qu.:0.983	" "1st Qu.:1.028 "				
"Median :1.476	" "Median :1.1140	" "Median :1.097	" "Median :1.247 "				
"Mean :1.522	" "Mean :1.0624	" "Mean :1.173	" "Mean :1.196 "				
"3rd Qu.:1.613	" "3rd Qu.:1.1947	" "3rd Qu.:1.318	" "3rd Qu.:1.336 "				
"Max. :2.015	" "Max. :1.5360	" "Max. :1.676	" "Max. :1.369 "				
"Sd.: 0.286"	"Sd.: 0.311"	"Sd.: 0.279"	"Sd.: 0.158"				

	GL	SQ	MQ	F	p(>F)
Entre Grupo	3	1.177	0.3924	5.567	0.00304
Dentro Grupo	36	2.537	0.0705	-	-

Como p(>F) é menor que 0.05, sabemos que há diferença significamente entre pelo menos um dos grupos. Para descobrir entre quais combinações há essa diferença, faremos o Teste de Bonferroni.

Tabela 2: Resultado do Teste de Bonferroni

Testiliado do Teste de L					
	A	В	С		
В	0.0026	-	-		
С	0.0337	1.0	-		
D	0.0563	1.0	1.0		

Com o resultado do teste, vamos comparar os p-valores da tabela 2 com o p-ajustado, que 60.05/6, que resulta em 0.0083. Agora, se o valor encontrado na tabela for menor que o p-ajustado

dizemos que ele possui significância estatística. Então, o único par que possui essa significância e, por tanto, são diferentes é A-B. Podemos interpretar então que o efeito do aumento de albumina no sangue causado pelo remédio A e pelo remédio B são, em média, diferentes. Sendo assim, a indústria farmacêutica pode optar por produzir somente o mais efetivo, visto que o resultado difere significativamente.

Vamos fazer um segundo teste para comparar os resultados. O Teste de Tukey.

Figura 3: Resultado do Teste de Tukey

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = Aumento ~ Grupo, data = dados)

\$Grupo

	diff	lwr	upr	p adj
B-A	-0.4600	-0.7797664	-0.140233556	0.0023510
C-A	-0.3498	-0.6695664	-0.030033556	0.0274718
D-A	-0.3259	-0.6456664	-0.006133556	0.0443798
C-B	0.1102	-0.2095664	0.429966444	0.7900041
D-B	0.1341	-0.1856664	0.453866444	0.6740324
D-C	0.0239	-0.2958664	0.343666444	0.9970585

Agora comparando os valores da coluna "p adj"com o valor de alfa = 0.05, vemos que B-A, C-A e D-A são todos, em média, estatisticamente diferentes, isso porque o valor de p-ajustado é menor que 0.05. Esse resultado mostra que o remédio "A"esta com uma média diferente de todos os outros remédios e é a maior de todas, com uma média de 1.522. Sendo assim, a indústria farmacêutica pode focar seus esforços na produção do remédio "A".