CS 245: Database System Principles

Notes 11: View Serializability

Hector Garcia-Molina

CS 245 Notes 11

View Serializability

Conflict equivalent

View equivalent

Conflict serializable

View serializable

CS 245 Notes 11 2

Motivating example Schedule Q T1 T2 T3 Read(A) Write(A) Write(A) Write(A)

But now compare Q to Ss, a serial schedule:		
Q T ₁ Read(A)	T2	<u>T3</u>
Write(A)	Write(A)	Write(A)
Ss T ₁	T2	<u>T3</u>
Read(A) Write(A)	Write(A)	Write(A)
CS 245	Notes 11	5

- T₁ reads same thing in Q, Ss
- T2, T3 read samething (nothing?)
- After Q or Ss, DB is left in same state
- ⇒ So what is wrong with Q?

<u>Definition</u> Schedules S₁,S₂ are <u>View Equivalent</u> if:

(1) If in S₁: $w_j(A) \Rightarrow r_i(A)$ then in S₂: $w_j(A) \Rightarrow r_i(A)$ ⇒ means "reads value produced"

- (2) If in S₁: r₁(A) reads initial DB value, then in S₂: r₁(A) also reads initial DB value
- (3) If in S₁: T_i does last write on A, then in S₂: T_i also does last write on A

CS 245 Notes 11

Definition

Schedule S₁ is <u>View Serializable</u> if it is view equivalent to some serial schedule

CS 245 Notes 11

View ← ? → Conflict Serializable

- Conflict Serializable ⇒ View Serializable

CS 245 Notes 11 9

<u>Lemma</u>

Conflict Serializable ⇒ View Serializable

Proof:

_Swapping non-conflicting actions does not change what transactions read nor final DB state

CS 245 Notes 11 10

Note: All view serializable schedules that are <u>not</u> conflict serializable, involve <u>useless write</u>

$$S = W_2(A) \dots W_3(A) \dots$$

FALSE: Counterexample (Sorav Bansal): $w_3(Y) r_2(Y) w_1(X) r_2(X) w_3(X) r_4(X) w_5(X)$

How do we test for view-serializability?

P(S) not good enough... (see schedule Q)

CS 245 Notes 11

• One problem: some swaps involving conflicting actions are OK... e.g.:

$$S = \dots w_2(A) \dots r_1(A) \dots w_3(A) . w_4(A)$$
this action can move
if this write exists ----

CS 245 Notes 11 14

• Another problem: useless writes

$$S = \dots W_2(A) \dots W_1(A) \dots$$
no A reads

CS 245 Notes 11 15

To check if S is View Serializable

(1) Add final transaction T_f that reads all DB

(eliminates condition 3 of V-S definition)

E.g.:
$$S = \dots W_1(A) \dots W_2(A) \dots rf(A)$$
Last A write \uparrow add

CS 245 Notes 11 16

(2) Add initial transaction Tb that writes all DB

(eliminates condition 2 of V-S definition)

E.g.:
$$S = Wb(A) \dots r_1(A) \dots w_2(A) \dots$$

CS 245 Notes 11 17

(3a) If wi(A)
$$\Rightarrow$$
 rj(A) in S, add Ti $\xrightarrow{0}$ Tj

(3b) For each wi(A) \Rightarrow rj(A) do consider each wk(A): $[T_k \neq T_b]$ - If $T_i \neq T_b \land T_j \neq T_f$ then insert $\begin{cases} T_k \stackrel{D}{\rightarrow} T_i & \text{some new p} \\ T_j \stackrel{D}{\rightarrow} T_k & \end{cases}$ - If $T_i = T_b \land T_j \neq T_f$ then insert $T_j \stackrel{O}{\rightarrow} T_k$ - If $T_i \neq T_b \land T_j = T_f$ then insert $T_k \stackrel{O}{\rightarrow} T_i$

(4) Check if LP(S) is "acyclic" (if so, S is V-S)

 For each pair of "p" arcs (p ≠ 0), choose one

 $S_s = w_b(A)r_1(A)w_1(A)w_2(A)r_3(A)w_3(A)r_f(A)$ $T_1 \qquad T_2 \qquad T_3$ $Z + S_s \text{ indeed do same thing}$ $CS 245 \qquad Notes 11 \qquad 23$

Checking view serializability is expensive
 Still, V-S useful in some cases...

CS 245

Notes 11

24

Example on useless transactions:

$$S = w_1(A) r_2(A) w_2(B) r_1(B) w_3(A) w_3(B)$$

 $S' = Tb w_1(A) \Rightarrow r_2(A)w_2(B) \Rightarrow r_1(B) w_3(A)w_3(B) \Rightarrow Tf$ $Tb \qquad 0 \qquad T_1 \qquad T_3 \xrightarrow{0} Tf$ $T2 \qquad T_3 \xrightarrow{0} Tf$ $T_2 \qquad T_3 \xrightarrow{0} Tf$ $T_3 \xrightarrow{0} Tf$ $T_3 \xrightarrow{0} Tf$

CS 245 Notes 11 25

- If we only care about final state ⇒ remove T₁, T₂; i.e., remove useless transactions
- If we care what T₁, T₂ read (view equivalence), then do <u>not</u> remove useless transactions

CS 245 Notes 11 27

If all transactions read what they write,
 (I.e., T_{j=...} R_j(A) ... W_j (A)...) then
 view serializability = conf. serializability

[Another way of saying: blind writes appear in any view-serializable schedule that is not conflict serializable]

CS 245 Notes 11 28

Proof(?): say S_1 is view-ser. and no blind writes. S_1 V-equiv to S_5 , serial schedule.

(1) Goal: Show that

 $T_1 \rightarrow T_2 \text{ in P(S1)} \Rightarrow T_1 <_{ss}T_2$

(2) Assume $T_1 \rightarrow T_2$

if $S_1 = ...w_1(A) ... r_2(A)...$

(direct read) clearly T₁ <ssT₂

if $S_1 = ...w_1(A)...r_3(A) w_3(A) ...r_2(A)...$

also $T_1 < ssT_2$

if $S_1 = ... r_1(A) r_3(A) ... w_1(A) ... w_3(A) ... r_2(A)$

not possible: T₁,T₃ not serializable

Other cases similar...

CS 245 Notes 11

Implications:

If no blind writes, view-ser \iff conf-ser

P(S) acyclic \Rightarrow all transactions read the same as in a serial schedule