CHAPTERS 13-23

OVERVIEW

FINAL EXAM

- When: Tuesday, Dec 14 8am-5pm
- ▶ Content: Cumulative (Chs 13-23*)
 - Only conceptual questions from chapter 23, no math
- > Style: Take-home
 - Pick up physical copy from me
 - Do exam on your own time (open note + open book, no internet, no collaboration)
 - Turn physical copy back in to me by 5pm on Tuesday

- Chapter 13: Electric fields and force
- Chapter 14: Electric fields, charges, and matter
- Chapter 15: Electric fields of distributed charges
- Chapter 16: Electric Potential
- Chapter 17: Currents and Magnetic fields

- Chapter 18: Electric fields and a microscopic view of circuits
- Chapter 19: Macroscopic circuit analysis
- Chapter 20: Magnetic force
- Chapter 21: Patterns of fields in space
- Chapter 22: Faraday's Law
- Chapter 23: Ampere's Law + Electromagnetic radiation

- Chapter 13: Electric fields and force
- Chapter 14: Electric fields, charges, and matter
- Chapter 15: Electric fields of distributed charges
- Chapter 16: Electric Potential
- Chapter 17: Currents and Magnetic fields

- Chapter 18: Electric fields and a microscopic view of circuits
- Chapter 19: Macroscopic circuit analysis
- Chapter 20: Magnetic force
- Chapter 21: Patterns of fields in space
- Chapter 22: Faraday's Law
- Chapter 23: Ampere's Law +
 Electromagnetic radiation

Most important concepts:

 Coulomb's Law (electric field of a single point charge)

$$\overrightarrow{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{r}$$

Electric force:

$$\overrightarrow{F} = q\overrightarrow{E}$$

Most important concepts:

Superposition (electric field of multiple point charges)

$$\overrightarrow{E}_{\text{tot}} = \overrightarrow{E}_1 + \overrightarrow{E}_2 + \overrightarrow{E}_3 + \dots$$

You should also know:

Electric dipoles

Dipole moment: p = qs

- Chapter 13: Electric fields and force
- Chapter 14: Electric fields, charges, and matter
- Chapter 15: Electric fields of distributed charges
- Chapter 16: Electric Potential
- Chapter 17: Currents and Magnetic fields

- Chapter 18: Electric fields and a microscopic view of circuits
- Chapter 19: Macroscopic circuit analysis
- Chapter 20: Magnetic force
- Chapter 21: Patterns of fields in space
- Chapter 22: Faraday's Law
- Chapter 23: Ampere's Law + Electromagnetic radiation

- Chapter 13: Electric fields and force
- Chapter 14: Electric fields, charges, and matter
- Chapter 15: Electric fields of distributed charges
- Chapter 16: Electric Potential
- Chapter 17: Currents and Magnetic fields

- Chapter 18: Electric fields and a microscopic view of circuits
- Chapter 19: Macroscopic circuit analysis
- Chapter 20: Magnetic force
- Chapter 21: Patterns of fields in space
- Chapter 22: Faraday's Law
- Chapter 23: Ampere's Law + Electromagnetic radiation

Most important concepts

- How matter becomes "charged"
 - Conservation of charge
 - Charge is not "created" but transferred
 - ▶ More + than charge -> "excess charge"

Most important concepts

- How matter responds to external electric fields
 - Insulators become polarized: $\overrightarrow{p}_{\text{ind}} = \alpha \overrightarrow{E}$
 - Conductors experience charge motion: $\overline{v} = uE_{\text{net}}$
 - Charges move until the conductor reaches static equilibrium
 - $\overline{v} = E_{\text{net}} = 0$

Most important concepts

Important differences between conductors and insulators

	Insulator	Conductor
Mobile Charges?	No	Yes
Location of excess charge? charge?	Anywhere	Only on surface
Charge spreading?	No	Yes
Electric field inside (in equilibrium)?	Can be non-zero	Must be zero
Response to external field?	Induced dipole (p=alpha x E)	Moving charges (v=uE)

- Chapter 13: Electric fields and force
- Chapter 14: Electric fields, charges, and matter
- Chapter 15: Electric fields of distributed charges
- Chapter 16: Electric Potential
- Chapter 17: Currents and Magnetic fields

- Chapter 18: Electric fields and a microscopic view of circuits
- Chapter 19: Macroscopic circuit analysis
- Chapter 20: Magnetic force
- Chapter 21: Patterns of fields in space
- Chapter 22: Faraday's Law
- Chapter 23: Ampere's Law + Electromagnetic radiation

- Chapter 13: Electric fields and force
- Chapter 14: Electric fields, charges, and matter
- Chapter 15: Electric fields of distributed charges
- Chapter 16: Electric Potential
- Chapter 17: Currents and Magnetic fields

- Chapter 18: Electric fields and a microscopic view of circuits
- Chapter 19: Macroscopic circuit analysis
- Chapter 20: Magnetic force
- Chapter 21: Patterns of fields in space
- Chapter 22: Faraday's Law
- Chapter 23: Ampere's Law +
 Electromagnetic radiation

Most important concepts:

- Setup an integral to find the electric field of common continuous charge distributions
- 1. Cut into tiny pieces
- 2. Write ΔQ and ΔE for a single piece
- 3. Add up all pieces (integrate)

Most important concepts:

Use superposition to find the net field of multiple charge distributions

- Chapter 13: Electric fields and force
- Chapter 14: Electric fields, charges, and matter
- Chapter 15: Electric fields of distributed charges
- Chapter 16: Electric Potential
- Chapter 17: Currents and Magnetic fields

- Chapter 18: Electric fields and a microscopic view of circuits
- Chapter 19: Macroscopic circuit analysis
- Chapter 20: Magnetic force
- Chapter 21: Patterns of fields in space
- Chapter 22: Faraday's Law
- Chapter 23: Ampere's Law + Electromagnetic radiation

- Chapter 13: Electric fields and force
- Chapter 14: Electric fields, charges, and matter
- Chapter 15: Electric fields of distributed charges
- Chapter 16: Electric Potential
- Chapter 17: Currents and Magnetic fields

- Chapter 18: Electric fields and a microscopic view of circuits
- Chapter 19: Macroscopic circuit analysis
- Chapter 20: Magnetic force
- Chapter 21: Patterns of fields in space
- Chapter 22: Faraday's Law
- Chapter 23: Ampere's Law + Electromagnetic radiation

Most important concepts

Definition of electric potential difference

$$\Delta V = V_f - V_i = -\overrightarrow{E} \cdot \Delta \overrightarrow{l}$$
 (constant \overrightarrow{E})

$$\Delta V = -\sum_{i}^{f} \overrightarrow{E} \cdot \Delta \overrightarrow{l} \rightarrow -\int_{i}^{f} \overrightarrow{E} \cdot \Delta \overrightarrow{l} \text{ (varying } \overrightarrow{E} \text{)}$$

Most important concepts

Relationship between electric potential and potential energy

$$\Delta U = q\Delta V$$

You should also know:

▶ Electric potential difference of a point charge:

$$\Delta V = \frac{q}{4\pi\epsilon_0} \left(\frac{1}{r_f} - \frac{1}{r_i} \right)$$

Relative to ∞ :

$$V = \frac{1}{4\pi\epsilon_0} \frac{q}{r}$$

- Chapter 13: Electric fields and force
- Chapter 14: Electric fields, charges, and matter
- Chapter 15: Electric fields of distributed charges
- Chapter 16: Electric Potential
- Chapter 17: Currents and Magnetic fields

- Chapter 18: Electric fields and a microscopic view of circuits
- Chapter 19: Macroscopic circuit analysis
- Chapter 20: Magnetic force
- Chapter 21: Patterns of fields in space
- Chapter 22: Faraday's Law
- Chapter 23: Ampere's Law + Electromagnetic radiation

- Chapter 13: Electric fields and force
- Chapter 14: Electric fields, charges, and matter
- Chapter 15: Electric fields of distributed charges
- Chapter 16: Electric Potential
- Chapter 17: Currents and Magnetic fields

- Chapter 18: Electric fields and a microscopic view of circuits
- Chapter 19: Macroscopic circuit analysis
- Chapter 20: Magnetic force
- Chapter 21: Patterns of fields in space
- Chapter 22: Faraday's Law
- Chapter 23: Ampere's Law + Electromagnetic radiation

Most important concepts

Magnetic field of a current (Biot-Savart law)

$$\Delta \overrightarrow{B} = \frac{\mu_0}{4\pi} \frac{I \Delta \overrightarrow{l} \times \hat{r}}{r^2}$$

$$\left| \overrightarrow{B}_{\text{long wire}} \right| \approx \frac{\mu_0}{4\pi} \frac{2I}{r}$$

$$\left| \overrightarrow{B}_{\text{loop}} \right| = \frac{\mu_0}{4\pi} \frac{2\pi R^2 I}{\left(z^2 + R^2\right)^{\frac{3}{2}}}$$

Most important concepts

- Current
 - Electron current $i = nA\overline{v}$ (electrons per unit time)
 - Conventional current I = |q|i (charge per unit time)

You should also know:

Magnetic dipoles,permanent magnets

- Chapter 13: Electric fields and force
- Chapter 14: Electric fields, charges, and matter
- Chapter 15: Electric fields of distributed charges
- Chapter 16: Electric Potential
- Chapter 17: Currents and Magnetic fields

- Chapter 18: Electric fields and a microscopic view of circuits
- Chapter 19: Macroscopic circuit analysis
- Chapter 20: Magnetic force
- Chapter 21: Patterns of fields in space
- Chapter 22: Faraday's Law
- Chapter 23: Ampere's Law + Electromagnetic radiation

- Chapter 13: Electric fields and force
- Chapter 14: Electric fields, charges, and matter
- Chapter 15: Electric fields of distributed charges
- Chapter 16: Electric Potential
- Chapter 17: Currents and Magnetic fields

- Chapter 18: Electric fields and a microscopic view of circuits
- Chapter 19: Macroscopic circuit analysis
- Chapter 20: Magnetic force
- Chapter 21: Patterns of fields in space
- Chapter 22: Faraday's Law
- Chapter 23: Ampere's Law + Electromagnetic radiation

Most important concepts:

Node rule

$$\sum i_{\rm in} = \sum i_{\rm out}$$

Loop rule

Along any closed path in a circuit:

$$\Delta V_1 + \Delta V_2 + \Delta V_3 + \dots = 0$$

ANALYZING CIRCUITS

Start with fundamental principles and write down set of equations

- 1. Node rule $i_{in} = i_{out}$
- 2. Loop rule $\sum_{\text{loop}} \Delta V = 0$

Now solve system of equations for quantities you want.

Remember:

$$i = nA\overline{v}$$

$$\overline{v} = uE$$

You should also know:

- The function of a battery
- What makes the electric field in a circuit?
- Why does a light come on right away?

- Chapter 13: Electric fields and force
- Chapter 14: Electric fields, charges, and matter
- Chapter 15: Electric fields of distributed charges
- Chapter 16: Electric Potential
- Chapter 17: Currents and Magnetic fields

- Chapter 18: Electric fields and a microscopic view of circuits
- Chapter 19: Macroscopic circuit analysis
- Chapter 20: Magnetic force
- Chapter 21: Patterns of fields in space
- Chapter 22: Faraday's Law
- Chapter 23: Ampere's Law + Electromagnetic radiation

- Chapter 13: Electric fields and force
- Chapter 14: Electric fields, charges, and matter
- Chapter 15: Electric fields of distributed charges
- Chapter 16: Electric Potential
- Chapter 17: Currents and Magnetic fields

- Chapter 18: Electric fields and a microscopic view of circuits
- ▶ Chapter 19: Macroscopic circuit analysis
- Chapter 20: Magnetic force
- Chapter 21: Patterns of fields in space
- Chapter 22: Faraday's Law
- Chapter 23: Ampere's Law + Electromagnetic radiation

Most important concepts:

Use the node rule and loop rule to analyze circuits with resistors

Ohm's law:
$$I = \frac{\Delta V}{R}$$

$$R = \frac{L}{\sigma A}$$

CIRCUIT ELEMENTS CONNECTED IN SERIES

$$I_1 = I_2 = I_3 = \dots = I_n = I$$

$$\Delta V = \Delta V_1 + \Delta V_2 + \Delta V_3 + \dots + \Delta V_n$$

$$I = \frac{\Delta V}{R_1 + R_2 + R_3 + \dots + R_n} = \frac{\Delta V}{R_{\text{eqiv}}}$$

$$R_{\text{equiv}} = R_1 + R_2 + R_3 + \dots + R_n$$

CIRCUIT ELEMENTS CONNECTED IN PARALLEL

$$I = I_1 + I_2 + I_3 + \dots + I_n$$

$$\Delta V = \Delta V_1 = \Delta V_2 = \Delta V_3 = \dots = \Delta V_n$$

$$I = \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_n}\right) \varepsilon = \frac{\varepsilon}{R_{\text{equiv}}}$$

$$\frac{1}{R_{\text{equiv}}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_n}$$

You should also know:

- Power dissipated across a resistor: $P = I\Delta V = I^2R$
- Internal resistance
- Ammeters and voltmeters
 - How to connect in circuit, what kind of resistor to use

- Chapter 13: Electric fields and force
- Chapter 14: Electric fields, charges, and matter
- Chapter 15: Electric fields of distributed charges
- Chapter 16: Electric Potential
- Chapter 17: Currents and Magnetic fields

- Chapter 18: Electric fields and a microscopic view of circuits
- Chapter 19: Macroscopic circuit analysis
- Chapter 20: Magnetic force
- Chapter 21: Patterns of fields in space
- Chapter 22: Faraday's Law
- Chapter 23: Ampere's Law + Electromagnetic radiation

- Chapter 13: Electric fields and force
- Chapter 14: Electric fields, charges, and matter
- Chapter 15: Electric fields of distributed charges
- Chapter 16: Electric Potential
- Chapter 17: Currents and Magnetic fields

- Chapter 18: Electric fields and a microscopic view of circuits
- Chapter 19: Macroscopic circuit analysis
- Chapter 20: Magnetic force
- Chapter 21: Patterns of fields in space
- Chapter 22: Faraday's Law
- Chapter 23: Ampere's Law + Electromagnetic radiation

- The Lorentz force: $\overrightarrow{F} = q\left(\overrightarrow{E} + \overrightarrow{v} \times \overrightarrow{B}\right)$
 - Magnetic force only deflects, does not change $|\overrightarrow{v}|$
 - Magnetic force does not do work

- Combining electric and magnetic forces
 - Velocity selector

Most important concepts:

Force on a current-carrying wire:

$$\Delta \overrightarrow{F} = I \Delta \overrightarrow{l} \times \overrightarrow{B}$$

- Motional EMF
 - Calculate induced emf and current
 - Can use Lorentz force OR Faraday's Law

- Chapter 13: Electric fields and force
- Chapter 14: Electric fields, charges, and matter
- Chapter 15: Electric fields of distributed charges
- Chapter 16: Electric Potential
- Chapter 17: Currents and Magnetic fields

- Chapter 18: Electric fields and a microscopic view of circuits
- Chapter 19: Macroscopic circuit analysis
- Chapter 20: Magnetic force
- Chapter 21: Patterns of fields in space
- Chapter 22: Faraday's Law
- Chapter 23: Ampere's Law + Electromagnetic radiation

- Chapter 13: Electric fields and force
- Chapter 14: Electric fields, charges, and matter
- Chapter 15: Electric fields of distributed charges
- Chapter 16: Electric Potential
- Chapter 17: Currents and Magnetic fields

- Chapter 18: Electric fields and a microscopic view of circuits
- Chapter 19: Macroscopic circuit analysis
- Chapter 20: Magnetic force
- Chapter 21: Patterns of fields in space
- Chapter 22: Faraday's Law
- Chapter 23: Ampere's Law +
 Electromagnetic radiation

Most important concepts:

Gauss's Law

$$\oint_{S} \overrightarrow{E} \cdot \hat{n} dA = \frac{q_{\text{in}}}{\epsilon_{0}}$$

Most important concepts:

Gauss's Law for Magnetic fields

$$\phi_{\text{mag}} = \oint \overrightarrow{B} \cdot \hat{n} dA = 0$$

Most important concepts:

Ampere's Law

$$\oint \overrightarrow{B} \cdot d\overrightarrow{l} = \mu_0 I_{\text{inside}}$$

- Chapter 13: Electric fields and force
- Chapter 14: Electric fields, charges, and matter
- Chapter 15: Electric fields of distributed charges
- Chapter 16: Electric Potential
- Chapter 17: Currents and Magnetic fields

- Chapter 18: Electric fields and a microscopic view of circuits
- Chapter 19: Macroscopic circuit analysis
- Chapter 20: Magnetic force
- Chapter 21: Patterns of fields in space
- Chapter 22: Faraday's Law
- Chapter 23: Ampere's Law + Electromagnetic radiation

- Chapter 13: Electric fields and force
- Chapter 14: Electric fields, charges, and matter
- Chapter 15: Electric fields of distributed charges
- Chapter 16: Electric Potential
- Chapter 17: Currents and Magnetic fields

- Chapter 18: Electric fields and a microscopic view of circuits
- Chapter 19: Macroscopic circuit analysis
- Chapter 20: Magnetic force
- Chapter 21: Patterns of fields in space
- Chapter 22: Faraday's Law
- Chapter 23: Ampere's Law +
 Electromagnetic radiation

Most important concepts:

- Faraday's Law
 - Changing magnetic field creates a "curly" electric field

$$\varepsilon = -\frac{d\phi_{\text{mag}}}{dt}$$

$$\oint \overrightarrow{E} \cdot d\overrightarrow{l} = -\frac{d}{dt} \int \overrightarrow{B} \cdot \hat{n} dA$$

S

N

- Chapter 13: Electric fields and force
- Chapter 14: Electric fields, charges, and matter
- Chapter 15: Electric fields of distributed charges
- Chapter 16: Electric Potential
- Chapter 17: Currents and Magnetic fields

- Chapter 18: Electric fields and a microscopic view of circuits
- Chapter 19: Macroscopic circuit analysis
- Chapter 20: Magnetic force
- Chapter 21: Patterns of fields in space
- Chapter 22: Faraday's Law
- Chapter 23: Ampere's Law + Electromagnetic radiation

- Chapter 13: Electric fields and force
- Chapter 14: Electric fields, charges, and matter
- Chapter 15: Electric fields of distributed charges
- Chapter 16: Electric Potential
- Chapter 17: Currents and Magnetic fields

- Chapter 18: Electric fields and a microscopic view of circuits
- Chapter 19: Macroscopic circuit analysis
- Chapter 20: Magnetic force
- Chapter 21: Patterns of fields in space
- Chapter 22: Faraday's Law
- Chapter 23: Ampere's Law + Electromagnetic radiation

- Ampere-Maxwell law
 - Changing electric field creates a magnetic field

$$\oint \overrightarrow{B} \cdot d\overrightarrow{l} = \mu_0 \left(\sum_{\text{inside}} I_{\text{inside}} + \epsilon_0 \frac{d}{dt} \int \overrightarrow{E} \cdot \hat{n} dA \right)$$

- Electromagnetic radiation
 - Light consists of propagating disturbances in the electric and magnetic fields
 - Maxwell's equations dictate the speed of light
 - EM radiation is produced by accelerating charges

Most important concepts:

How the fields are produced:

Electric field

- Electric charge (Coulomb's Law)
- Changing magnetic field (Faraday's Law)

Most important concepts:

How the fields are produced:

Magnetic field

- Electric current (Biot-Savart Law)
- Changing electric field (Ampere-Maxwell Law)