

Claims

We claim:

- 1 1. A light-emitting device, comprising:
2 an active region configured to generate light in response to injected charge; and
3 a current confinement structure located to direct charge into the active region and
4 including a strain compensating layer adjacent an oxide-forming layer.
- 1 2. The light-emitting device of claim 1, in which the current confinement
2 structure comprises an additional strain compensating layer adjacent the oxide-forming
3 layer, where the oxide-forming layer is sandwiched between the strain compensating
4 layers.
- 1 3. The light-emitting device of claim 1, in which the strain compensating
2 layer comprises gallium, indium and phosphorus.
- 1 4. The light-emitting device of claim 1, in which the oxide-forming layer
2 comprises aluminum, gallium and arsenic.
- 1 5. The light-emitting device of claim 1, in which the strain compensating
2 layer consists essentially of $\text{Ga}_{1-x}\text{In}_x\text{P}$, where $x \leq 0.5$.
- 1 6. The light-emitting device of claim 1, in which the oxide-forming layer
2 consists essentially of $\text{Al}_x\text{Ga}_{1-x}\text{As}$, where $x \geq 0.96$.

1 7. The light-emitting device of claim 1, in which:
2 the strain compensating layer consists essentially of gallium indium phosphide
3 GaInP; and
4 the oxide-forming layer consists essentially of aluminum gallium arsenide
5 AlGaAs.

1 8. The light-emitting device of claim 7, in which:
2 the strain compensating layer consists essentially of gallium indium phosphide
3 $\text{Ga}_{1-x}\text{In}_x\text{P}$ in which $x \leq 0.5$; and
4 the oxide-forming layer essentially of aluminum gallium arsenide $\text{Al}_x\text{Ga}_{1-x}\text{As}$ in
5 which $x \geq 0.96$.

1 9. The light-emitting device of claim 1, structured to generate light having a
2 wavelength between 620 nm and 1650 nm.

1 10. A method of making a strain compensating structure, the method
2 comprising:
3 providing a substrate;
4 forming over the substrate a strain compensating layer of a first semiconductor
5 material;
6 forming an oxide-forming layer of a second semiconductor material juxtaposed
7 with the strain compensating layer to form the strain compensating structure; and
8 oxidizing at least part of the oxide-forming layer.

1 11. The method of claim 10, in which:
2 the first semiconductor material comprises indium, gallium and phosphorus; and
3 the second semiconductor material comprises aluminum, gallium and arsenide.

1 12. The method of claim 11, further comprising:
2 forming the strain compensating layer using $\text{Ga}_{1-x}\text{In}_x\text{P}$, where $x \leq 0.5$; and
3 forming the oxide layer using $\text{Al}_x\text{Ga}_{1-x}\text{As}$, where $x \geq .96$.

1 13. A method for generating light, the method comprising:
2 forming an optical cavity;
3 locating an active region in the optical cavity, the active region configured to
4 generate light in response to injected current;
5 forming a current confinement structure located to direct current into the active
6 region, including:
7 forming a strain compensating layer of a first semiconductor material
8 including gallium (Ga), indium (In) and phosphorus (P);
9 forming an oxide-forming layer of a second semiconductor material
10 including aluminum (Al) gallium (Ga) and arsenic (As);
11 oxidizing at least part of the oxide-forming layer; and
12 injecting current into the active region using the current confinement
13 structure.

1 14. The method of claim 13, in which the active region is configured to
2 generate light having a wavelength between 620 nm and 1650 nm.

1 15. A strain compensating structure, comprising:
2 a strain compensating layer of a first semiconductor material including gallium
3 (Ga), indium (In) and phosphorus (P); and
4 an oxide-forming layer of a second semiconductor material including aluminum
5 (Al) gallium (Ga) and arsenic (As) juxtaposed with the strain compensating layer.

1 16. The strain compensating structure of claim 15, in which the first
2 semiconductor material consists essentially of gallium indium phosphide $\text{Ga}_{1-x}\text{In}_x\text{P}$ in
3 which $x \leq 0.5$.

1 17. The strain compensating structure of claim 15, in which the second
2 semiconductor material consists essentially of aluminum gallium arsenide $\text{Al}_x\text{Ga}_{1-x}\text{As}$ in
3 which $x \geq 0.96$.

1 18. The strain compensating structure of claim 15, in which:
2 the first semiconductor material consists essentially of gallium indium phosphide
3 (GaInP); and
4 the second semiconductor material consists essentially of aluminum gallium
5 arsenide (AlGaAs).

1 19. The strain compensating structure of claim 18, in which:
2 the first semiconductor material consists essentially of gallium indium phosphide
3 $\text{Ga}_{1-x}\text{In}_x\text{P}$ in which $x \leq 0.5$; and
4 the second semiconductor material essentially of aluminum gallium arsenide
5 $\text{Al}_x\text{Ga}_{1-x}\text{As}$ in which $x \geq 0.96$.