

(A Constituent College of Somaiya Vidyavihar University)

Department of Electronics Engineering

Course Name:	Hardware Description Language Lab (2UXL401)	Semester:	IV
Date of Performance:	20 / 04 / 2021	Batch No:	B2
Faculty Name:	Prof. Bhargavi Kaslikar	Roll No:	1912060
Faculty Sign & Date:		Grade/Marks:	

Experiment No: 6

Title: FSM implementation: Sequence detection

Aim and Objective of the Experiment:

Write a VHDL code for implementing a Moore type, non-overlapping sequence detector which detects "10101" sequence and gives output high. Write a test bench to verify your results.

To study FSM implementation in VHDL and to understand use of test bench for simulation.

COs to be achieved:

CO 2: Test a VHDL code and verify the circuit model.

CO 3: Synthesize and Implement the designed circuits on CPLD/ FPGA.

Work to be done

Upload VHDL codes for sequence generator FSM. Also upload test bench and simulation for the same.

Post Lab Subjective/Objective type Questions:

Upload Answer of following question before coming to next laboratory.

Q1. What changes will you make in VHDL code if the same sequence generator is mealy overlapping type?

Q2. Examine the following VHDL code and complete the

following entity Problem

Port (X, CLK : in bit; Z1, Z2 : out

bit);

end Problem:

architecture Table of Problem is

signal State, Nextstate: integer range 0 to 3

:=0; begin

process(State, X) begin

(c) Write the type of state machine

K. J. Somaiya College of Engineering, Mumbai-77

(A Constituent College of Somaiya Vidyavihar University)


```
case State
     is when 0
     =>
     if X = 0 then Z1 <= 1; Z2 <= 0; Nextstate < =
     0; else Z1 <="0"; Z2 <="0"; Nextstate < = 1; end if;
     when 1 =>
if X = 0, then Z1 <= 1; Z2 <= 1; Nextstate Z= 1;
else Z1 <=,,0"; Z2 <="1"; Nextstate < = 2; end if;
when 2 \Rightarrow
if X = ,0"; then Z1 <= ,0"; Z2 <= ,1"; Nextstate < = 2;
else Z1 <= 0; Z2 <= 1; Nextstate < 2; end if;
when 3 = >
if X = 0, then Z1 <= 0; Z2 <= 0; Nextstate Z= 0;
else Z1 <=,,1"; Z2 <="0"; Nextstate < = 1; end if; end
case:
end process;
process(CLK)
begin
if CLK"event and CLK ="1" then
State <= Nextstate;
end if:
end process;
end Table;
(a) Draw a block diagram of the circuit implemented by this code
(b) Write the state table that is implemented by this code
```


 $(A\ Constituent\ College\ of\ Somaiya\ Vidyavihar\ University)$


```
Sequence given: 10011 - Overlapping
Mealy Machine;
Main Code:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity seq_detect_naik is
       port(
               clk: in std_logic;
               reset : in std_logic;
               x : in std_logic;
               output: out std logic
       );
end seq_detect_naik;
-- 10011 Overlapping Mealy
architecture seq_detect_naik_arch of seq_detect_naik is
       type state is (rst, A, B, C, D);
       signal present_state, next_state : state;
       synchronous_process: process (clk)
               begin
                       if rising_edge(clk) then
                               if (reset = '1') then
                                       present_state <= rst;</pre>
                               else
                                       present_state <= next_state;</pre>
                               end if;
                       end if:
       end process;
       output_decoder : process(present_state, x)
       begin
               --next_state <= rst;</pre>
               output <= '0';
               case (present_state) is
               when rst =>
                       if (x = '1') then
                               next_state <= A;
                       else
                               next_state <= rst;</pre>
```


(A Constituent College of Somaiya Vidyavihar University)


```
end if;
                when A =>
                         if (x = '1') then
                                 next_state <= A;</pre>
                         else
                                 next_state <= B;</pre>
                         end if;
                when B =>
                         if (x = '1') then
                                 next_state <= A;</pre>
                         else
                                 next_state <= C;</pre>
                         end if;
                when C =>
                         if (x='1') then
                                 next_state <= D;</pre>
                         else
                                 next_state <= rst;</pre>
                         end if;
                when D =>
                         output <= '1';
                         if (x='1') then
                                 next_state <= A;</pre>
                                 --output <= '1';
                         else
                                 next_state <= B;</pre>
                         end if;
                --when others => next_state <= rst;
                end case;
                end process;
end seq_detect_naik_arch;
```


(A Constituent College of Somaiya Vidyavihar University)


```
Testbench:
LIBRARY ieee;
USE ieee.std logic 1164.ALL;
ENTITY seq_detect_naik_tb IS
END seq_detect_naik_tb;
ARCHITECTURE seq_detect_naik_tb_arch OF seq_detect_naik_tb IS
       COMPONENT seq_detect_naik
              port(
                     clk: in std_logic;
                     reset : in std_logic;
                      x : in std_logic;
                      output : out std_logic
              );
       END COMPONENT;
signal clk : std_logic := '0';
signal x : std_logic := '0';
signal rst : std_logic := '0';
signal y : std_logic;
       BEGIN
       uut: seq_detect_naik PORT MAP(clk,rst,x,y);
       process begin
                     clk <= '0';
                     wait for 10ns;
                     clk <= '1';
                      wait for 10ns;
       end process;
       process begin
                     rst <= '0';
                     wait for 250ns;
                     rst <= '1';
                     wait for 150ns;
       end process;
       process begin
              x <= '1';
              wait for 10ns;
```


(A Constituent College of Somaiya Vidyavihar University)

Department of Electronics Engineering


```
x \le '0';
                wait for 10ns;
                x \le '0';
                wait for 10ns;
                x <= '1';
                wait for 10ns;
                x <= '1';
                wait for 10ns;
                x <= '1';
                wait for 10ns;
                x \le '0';
                wait for 10ns;
                x <= '1';
                wait for 10ns;
                x \le '0';
                wait for 10ns;
                x \le '1';
                wait for 10ns;
                x <= '1';
                wait for 10ns;
                x \le '1';
                wait for 10ns;
                x \le 0':
                wait for 10ns;
                x \le '1';
                x \le '0';
                wait for 10ns;
                x <= '1';
                wait for 10ns;
                x <= '1';
                wait for 10ns;
                x <= '1';
                wait for 10ns;
                x \le '0';
                wait for 10ns;
                x <= '1';
       end process;
end seq_detect_naik_tb_arch;
```

HDL Laboratory Semester: IV Academic Year: 2020-21

(A Constituent College of Somaiya Vidyavihar University)

HDL Laboratory Semester: IV Academic Year: 2020-21

(A Constituent College of Somaiya Vidyavihar University)

HDL Laboratory Semester: IV Academic Year: 2020-21

(A Constituent College of Somaiya Vidyavihar University)


```
if rising_edge(clk) then
                          if (reset = '1') then
                                  present_state <= rst;</pre>
                          else
                                  present_state <= next_state;</pre>
                          end if;
                 end if;
end process;
output_decoder : process(present_state, x)
begin
        --next_state <= rst;
        case (present_state) is
        when rst =>
                 if (x = '1') then
                          next_state <= A;</pre>
                 else
                          next_state <= rst;</pre>
                 end if;
        when A =>
                 if (x = '1') then
                          next_state <= A;</pre>
                 else
                          next_state <= B;</pre>
                 end if;
        when B =>
                 if (x = '1') then
                          next_state <= A;</pre>
                 else
                          next_state <= C;</pre>
                 end if;
        when C =>
                 if (x='1') then
                          next_state <= D;</pre>
                 else
                          next_state <= rst;</pre>
                 end if;
```


(A Constituent College of Somaiya Vidyavihar University)


```
when D =>
                       if (x='1') then
                               next_state <= E;</pre>
                       else
                               next_state <= B;</pre>
                       end if:
               when E =>
                       if (x='1') then
                               next_state <= A;
                       else
                               next_state <= B;</pre>
                       end if;
               when others => next_state <= rst;
               end case;
               end process;
       process(present_state)
               begin
                       case (present_state) is
                               when A => output <= '0';
                               when B \Rightarrow \text{output} <= '0';
                               when C \Rightarrow \text{output} \leq 0';
                               when D \Rightarrow \text{output} \ll 0;
                               when E \Rightarrow \text{output} \ll 11;
                               when others => output <= '0';
                       end case;
       end process;
end fsm_moore_naik_arch;
Testbench:
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY fsm_moore_naik_tb IS
END fsm_moore_naik_tb;
ARCHITECTURE fsm_moore_naik_tb_arch OF fsm_moore_naik_tb IS
       COMPONENT fsm_moore_naik_tb
```


(A Constituent College of Somaiya Vidyavihar University)


```
port(
                       clk: in std_logic;
                       reset : in std_logic;
                       x : in std_logic;
                       output : out std_logic
               );
       END COMPONENT;
signal clk : std_logic := '0';
signal x : std_logic := '0';
signal rst : std_logic := '0';
signal output : std_logic;
       BEGIN
       uut: fsm_moore_naik_tb PORT MAP(clk,rst,x,output);
       process begin
                       clk <= '0';
                       wait for 5ns;
                       clk <= '1';
                       wait for 5ns;
       end process;
       process begin
                       rst <= '0';
                       wait for 250ns;
                       rst <= '1';
                       wait for 50ns;
       end process;
       process begin
               x <= '1';
               wait for 10ns;
               x \le '0';
               wait for 10ns;
               x \le '0';
               wait for 10ns;
               x <= '1';
               wait for 10ns;
               x <= '1';
               wait for 10ns;
```


(A Constituent College of Somaiya Vidyavihar University)

Department of Electronics Engineering


```
x <= '1';
               wait for 10ns;
               x \le '0';
               wait for 10ns;
               x <= '1';
               wait for 10ns;
               x \le '0';
               wait for 10ns;
               x <= '1';
               wait for 10ns;
               x <= '1';
               wait for 10ns;
               x <= '1';
               wait for 10ns;
               x \le '0';
               wait for 10ns;
               x \le '1';
               x \le '0';
               wait for 10ns;
               x <= '1';
               wait for 10ns;
               x <= '1';
               wait for 10ns;
               x <= '1';
               wait for 10ns;
               x \le '0';
               wait for 10ns;
               x <= '1';
       end process;
end fsm_moore_naik_tb_arch;
```

HDL Laboratory Semester: IV Academic Year: 2020-21

(A Constituent College of Somaiya Vidyavihar University)

Department of Electronics Engineering

(A Constituent College of Somaiya Vidyavihar University) **Department of Electronics Engineering**

a								
('	n	n	C	п	CI	O	n	•

Thus, in this experiment we studied about implementing FSM (sequence detector) in VHDL. We created a non-overlapping sequence detector using Mealy and Moore Machine.

Signature of faculty in-charge with Date:

HDL Laboratory Semester: IV Academic Year: 2020-21