1 Duale Paare, schwache und duale Topologien

Definition 1.1 (Duales Paar). Seien X, Y K-Vektorräume und $\langle \bullet, \bullet \rangle : X \times Y \to \mathbb{K}$ eine bilineare Abbildung. Sind die Familien $\{x \mapsto \langle x, y \rangle\}_{y \in Y}$ und $\{y \mapsto \langle x, y \rangle\}_{x \in X}$ punktetrennend, das heißt

$$\forall x \in X \setminus \{0\} \ \exists y \in Y : \ \langle x, y \rangle \neq 0 \ \text{und} \ \forall y \in Y \setminus \{0\} \ \exists x \in X : \ \langle x, y \rangle \neq 0$$

so nennt man $(X, Y, \langle X, Y \rangle)$ ein **duales Paar**.

Remark 1.2. Man kann die Elemente von X bzw. Y als lineare Funktionale auf Y bzw. X auffassen, via

$$\ell_y \colon x \mapsto \ell_y(x) = \langle x, y \rangle$$

bzw.

$$\ell_x \colon y \mapsto \ell_x(y) = \langle x, y \rangle$$
.

Example 1.3. (i) Ist X ein lokalkonvexer Hausdorff-Raum, dann ist (X, X') ein duales Paar, mit

$$(x, f) \mapsto \langle x, f \rangle := f(x)$$
.

Nach Hahn Banach ist die Familie X' punktetrennend und X ist trivialerweise punktetrennend.

(ii) Genauso ist (X', X) ein duales Paar.

Definition 1.4 ($\sigma(X,Y)$ -Topologie). Sei (X,Y) ein duales Paar. Die $\sigma(X,Y)$ -Topologie auf X ist die lokalkonvexe Toplogie, die von den Halbnormen $(x \mapsto |\langle x,y \rangle|)_{y \in Y}$ erzeugt wird.

Remark 1.5. (i) Die $\sigma(X,Y)$ -Topologie ist Hausdorff, weil wir in der Definition von "dualem Paar" punktetrennend gefordert haben.

(i) Die $\sigma(X,Y)$ -Topologie ist die gröbste Topologie auf X, sodass alle $\ell_y \colon X \to \mathbb{K}$ stetig sind (siehe z.B. Satz VIII.3.6 oder Übungsaufgabe in Funkana1?)

Frage: Was ist der topologische Dualraum von X mit der $\sigma(X,Y)$ -Topologie? Antwort: Es ist genau Y!

Für den Beweis benötigen wir folgendes Lemma:

Lemma 1.6. Sei X ein \mathbb{K} -Vektorraum und $\ell, \ell_1, \ldots, \ell_n \colon X \to \mathbb{K}$ lineare Funktionale. Setze $N := \bigcap_{i=1}^n \ker(\ell_i)$, dann sind äquivalent:

- (i) $\ell \in \operatorname{span}(\ell_1, \ldots, \ell_n)$
- (ii) $\exists M > 0 \ \forall x \in X : \ |\ell(x)| \le M \max_{1 \le i \le n} |\ell(x_i)|$
- (iii) $N \subseteq \ker(\ell)$.

Proof. (i) \Longrightarrow (ii): Sei $\ell = \sum \alpha_i \ell_i$, dann gilt

$$|\ell(x)| \le \sum |\alpha_i \ell_i(x)| \le \max \alpha_i \max_{|\ell_i(x)|}.$$

(ii) \Longrightarrow (iii): Sei $x \in N$, dann gilt

$$|\ell(x)| \le m \max_{1 \le i \le n} |\ell(x_i)| = 0.$$

 $(iii) \Longrightarrow (i)$:

Daraus folgt sofort das folgende Korollar:

Corollary 1.7. Sei (X,Y) ein duales Paar. Dann ist

$$(X, \sigma(X, Y))' = Y,$$

in dem Sinn, dass jedes lineares, $\sigma(X,Y)$ -stetiges Funktional auf X von der Form $x \mapsto \langle x,y \rangle$ für ein bestimmtes y ist und dass jedes Funktional dieser Form linear und $\sigma(X,Y)$ stetig ist, also:

$$(X, \sigma(X, Y))' = \{x \mapsto \langle x, y \rangle \mid y \in Y\}$$

 $Proof. \subseteq :$ Sei $f: X \to \mathbb{K}$ linear und $\sigma(X,Y)$ -stetig. Dann gibt es endlich viele Halbnormen, sodass

$$|f(x)| \le M \max_{i} |p_i(x)|$$

Die Halbnormen sind gerade gegeben durch y, also

$$|f(x)| \le M \max_{i} |\langle x, y \rangle|.$$

Nach dem Lemma also $f \in \text{span}(\ell_{y_1}, \dots, \ell_{y_n})$, also $f = \ell_{\sum \alpha_i y_i}$. \subseteq : Sei $y \in Y$, dann ist ℓ_y linear und $|\ell_y|$ eine Halbnorm auf X, die die let erzeugt, also stetig.

Definition 1.8. Sei (X, Y) ein duales Paar. Eine lokalkonvexe Topologie τ auf X heißt $\langle X, Y \rangle$ -duale **Topologie**, falls

$$(X,\tau)'=Y\,,$$

also die linearen, τ -stetigen Funktionale genau die von der Form

$$x \mapsto \langle x, y \rangle$$

für $y \in Y$ sind.

Nach dieser Definition ist $\sigma(X,Y)$ die gröbste $\langle X,Y \rangle$ -duale Topologie. Eine Charakterisierung aller $\langle X,Y \rangle$ -dualen Topologien gibt der Satz von Mackey-Ahrens, den wir später besprechen werden.

2 Polare Mengen und der Bipolarensatz

Definition 2.1. Sei (X,Y) ein duales Paar und $A\subseteq X,\,B\subseteq Y.$ Dann ist die **Polare** von A gegeben durch

$$A^{\circ} := \left\{ y \in Y \mid \sup_{x \in A} \operatorname{Re}(\langle x, y \rangle) \le 1 \right\}$$
 (Teilmenge von Y)

und die Polare von B durch

$$B^{\circ} := \left\{ x \in X \mid \sup_{y \in B} \operatorname{Re}(\langle x, y \rangle) \le 1 \right\}$$
 (Teilmenge von X)

 \wedge Oft wird auch $|\langle x,y\rangle| \leq 1$ statt $\text{Re}(\langle x,y\rangle)$ gefordert.

Lemma 2.2 (Eigenschaften von Polaren). Sei (X,Y) ein duales Paar und $A \subseteq X$. Dann gilt:

- (i) $0 \in A^{\circ}$, A° ist konvex und abgeschlossen bzgl. $\sigma(Y, X)$ und $A^{\circ} = \overline{\operatorname{conv}(A)}^{\circ}$.
- (ii) $A \subseteq A^{\circ \circ}$ und $A \subseteq B \implies B^{\circ} \subseteq A^{\circ}$.
- (iii) Sei I eine Indexmenge und $(A_i)_{i\in I}\subseteq X^I$. Dann gilt

$$\left(\bigcup_{i\in I} A_i\right)^{\circ} = \bigcap_{i\in I} A_i^{\circ}.$$

 $\textit{(iv) Ist A kreisf\"{o}rmig, dann ist } A^\circ = \{y \in Y \mid \sup_{x \in A} | \left\langle x, y \right\rangle | \leq 1\}.$

Beweis. Aus dem Kopf

Example 2.3. (i) Ist X ein normierter Raum, dann ist

$$(B_1^X)^\circ = B_1^{X'} \,.$$

Beweis: klar

Theorem 2.4 (Bipolarensatz). Sei (X,Y) ein duales Paar und $A \subseteq X$. Dann ist

$$A^{\circ \circ} = \overline{\operatorname{conv}(A \cup \{0\})} \,.$$

Beweis. $,\supseteq$ ": Note that, by the previous lemma:

$$(A \cup \{0\})^{\circ} = A^{\circ} \cap \underbrace{\{0\}^{\circ}}_{V} = A^{\circ} \implies (A \cup \{0\})^{\circ \circ} = A^{\circ \circ}.$$

Hence:

$$A^{\circ\circ} = (A \cup \{0\})^{\circ\circ} = \overline{\operatorname{conv}(A \cup \{0\})}^{\circ\circ} \supseteq \overline{\operatorname{conv}(A \cup \{0\})}$$
.

"⊆": Angenommen, $\exists x \in A^{\circ \circ} \setminus \overline{\operatorname{conv}(A \cup \{0\})}$. Da $V := \overline{\operatorname{conv}(A \cup \{0\})}$ konvex und $\sigma(X, Y)$ -abgeschlossen ist (Abschluss von konvexen Mengen ist konvex), gibt es nach Hahn-Banach ein $\sigma(X, Y)$ -stetiges Funktional, dass x und V trennt. Wegen $(X, \sigma(X, Y))' = Y$, gibt es also ein $y \in Y$ und ein $\varepsilon > 0$, sodass:

$$\begin{split} \forall v \in V : & \operatorname{Re}(\langle x, y \rangle) + \varepsilon \leq \operatorname{Re}(\langle v, y \rangle) \\ \iff \forall v \in V : & \operatorname{Re}(\langle x, -y \rangle) - \varepsilon \geq \operatorname{Re}(\langle v, -y \rangle) \\ \implies \sup_{v \in V} \operatorname{Re}(\langle v, -y \rangle) \leq \operatorname{Re}(\langle x, -y \rangle) - \varepsilon < \operatorname{Re}(\langle x, -y \rangle) - \frac{\varepsilon}{2} \\ \iff \sup_{v \in V} \operatorname{Re}(\langle v, -y \rangle) + \frac{\varepsilon}{2} < \operatorname{Re}(\langle x, -y \rangle) \\ & \stackrel{\vee}{=: C > 0} \end{split}$$

Definiere $\tilde{y} := -\frac{y}{C}$. Dann gilt

$$1 < \operatorname{Re}(\langle x, \tilde{y} \rangle) \tag{1}$$

und

$$\sup_{v \in V} \operatorname{Re}(\langle v, \tilde{y} \rangle) = \frac{1}{C} \sup_{w \in V} \operatorname{Re}(\langle w, -y \rangle) \le 1.$$
 (2)

(2) impliziert $\tilde{y} \in V^{\circ} \subseteq A^{\circ}$ (da $A \subseteq V$). Damit folgt jedoch aus (1), dass $x \notin A^{\circ \circ}$ 4.

Corollary 2.5 (Charakterisierung abgeschlossener konvexer Mengen). Sei (X,Y) ein duales Paar und $A \subseteq X$ konvex mit $0 \in A$. A ist genau dann abgeschlossen bzgl. $\sigma(X,Y)$, wenn A eine Polare ist, also

A ist abgeschlossen bzgl. $\sigma(X,Y) \iff \exists B \subseteq Y : B^{\circ} = A$.

Beweis. " \Longrightarrow "Wähle $B := A^{\circ}$, dann gilt:

$$B^{\circ} = A^{\circ \circ} \stackrel{\downarrow}{=} \frac{}{\operatorname{conv}(A \cup \{0\})} = A$$

", \leftarrow "Folgt aus Lemma 2.2(i), angewendet auf das duale Paar (Y, X).

3 Der Satz von Alaoglu-Bourbaki

Hier betrachten wir das duale Paar (X, X') eines lokalkonvexen Raums mit seinem Dualraum.

Theorem 3.1 (Alaoglu-Bourbaki). Sei $U \subseteq X$ eine Nullumgebung. Dann ist U° kompakt bezüglich $\sigma(X',X)$.

Beweis. Vorüberlegung: Tychonoff gibt eine Kompaktheitsbedingung in der Produkttopologie auf \mathbb{K}^X . Sei \mathbb{K}^X die Menge aller Funktionale auf X, dann ist offensichtlich $X' \subseteq X$. Sei τ_p die Produkttopologie auf

 \mathbb{K}^X und $\mathbb{K}^X|_{X'}$ die Teilraumtopologie auf X'. Die Produktopologie ist die gröbste Topologie, bezüglich der alle kanonischen Projektionen

$$\pi_x \colon \begin{array}{ccc} \mathbb{K}^X & \to & \mathbb{K} \\ f & \mapsto & f(x) \end{array}$$

stetig sind. Dies sind gerade die Auswertungsfunktionale. Somit ist τ_p die Topologie der punktweisen Konvergenz, denn falls $f_n \to f \in \mathbb{K}^X$ wrt. τ_p , dann gilt auch $f_n(x) = \pi_x(f_n) \to \pi_x(f) = f(x)$ für jedes x.

- \mathbb{K}^X , τ_p ist ein topologischer Vektorraum, d.h. +: $\mathbb{K}^X \times \mathbb{K}^X \to \mathbb{K}^X$ und ·: $\mathbb{K} \times \mathbb{K}^X \to \mathbb{K}^X$ sind stetig wrt. τ_p .
- Somit ist auch $(X', \tau_p|_{X'})$ ein topologischer Vektorraum, denn $+: X' \times X' \to \mathbb{K}^X$ und $\cdot: \mathbb{K} \times X' \to \mathbb{K}^X$ sind stetig wrt. $\tau_p|_{X'}$.
- Außerdem sind die eingeschränkten kanonischen Projektionen stetig wrt. $\tau_p|_{X'}$:

$$\pi_x|_{X'} \colon \begin{array}{ccc} X' & \to & \mathbb{K} \\ f & \mapsto & f(x) \end{array}$$

Nach Definition ist die schwach-*-Topologie ($\sigma(X',X)$) auf X' die gröbste Vektorraumtopologie, sodass alle Auswertungsfunktionale stetig sind, daher muss $\tau_p|_{X'}$ feiner sein als $\sigma(X',X)$, d.h.

$$\sigma(X',X) \subseteq \tau_n|_{X'}$$
.

Daraus folgt, dass die Identität

id:
$$(X', \tau_p|_{X'}) \rightarrow (X', \sigma(X', X))$$

stetig ist. Das heißt, falls eine Menge $A \subseteq X'$ kompakt bezüglich $\tau_p|_{X'}$ ist, dann auch bezüglich $\sigma(X',X)$.

Sei nun $U \subseteq X$ eine Nullumgebung, dann gibt es eine absolutkonvexe offene Menge $V \subseteq U$, denn es gibt eine Nullumgebungsbasis aus absolutkonvexen Mengen. Außerdem ist V als Nullumgebung absorbierend: Sei $x \in X$, dann ist

$$g_x : \begin{array}{ccc} \mathbb{K} & \to & X \\ \lambda & \mapsto & \lambda x \end{array}$$

stetig. Also ist $g^{-1}(V)$ eine Nullumgebung in \mathbb{K} , das heißt $\exists \varepsilon_x > 0$ sodass $\forall 0 < \varepsilon \le \varepsilon_x : \varepsilon \in g^{-1}(V)$, was äquivalent ist zu $\varepsilon x \in V \iff x \in \varepsilon^{-1} V$. Wähle

$$\lambda_x := \left\{ \begin{array}{ll} 1, & x \in V \\ \varepsilon_x, & x \notin V \end{array} \right.$$

und $K_x := \overline{B_{\lambda_x^{-1}}(0)} \subseteq \mathbb{K}$, was offensichtlich kompakt ist. Nach Tychonoff ist

$$K := \bigvee_{x \in X} K_x = \{ f \colon X \to \mathbb{K} \mid \forall x \in X \colon f(x) \in K_x \}$$

kompakt in τ_p .

Wir zeigen $V^{\circ} \subseteq K$. Sei $f \in V^{\circ}$. Dann gilt, weil V absolut konvex ist:

$$\forall x \in V: |\langle f, x \rangle| \le 1$$

Sei nun $x \in X$ beliebig, dann ist $\lambda_x x \in V$ nach Konstruktion und somit

$$|\langle f, \lambda_x x \rangle| \le 1 \iff |\langle f, x \rangle| \le \frac{1}{\lambda_x} \iff f(x) \in K_x.$$

Zu guter Letzt zeigen wir, dass V° abgeschlossen in $\tau_p|_K$ ist. Sei dazu $\{f_{\alpha}\}_{{\alpha}\in I}$ ein Netz in V° mit $\lim_{{\alpha}\in I} f_{\alpha} = f$.

- f ist linear, weil Vektoraddition und Skalarmultiplikation stetig sind.
- $f: X \to \mathbb{K}$ ist stetig, denn:

$$f \colon X \to \mathbb{K} \text{ stetig}$$

$$\iff \exists M > 0 \, \exists p_1, \dots, p_n \, \forall x \in X : \ |f(x)| \leq M \max_{1 \leq j \leq n} |p_j(x)|$$

$$\iff |f| \colon X \to \mathbb{R}_+ \text{ stetig}$$

$$|f| \text{ Halbnorm}$$

$$\iff \{x \in X \, | \, |f(x)| \leq 1\} \text{ Nullumgebung}$$

Wir zeigen $V \subseteq \{x \in X \mid |f(x)| \le 1\}$. Sei $x \in V$, dann gilt für alle $\alpha \in I$:

$$1 \ge |\langle f_{\alpha}, x \rangle|$$

und somit auch $|\langle f, x \rangle| \leq 1$.

Somit ist $f \in X'$. Das heißt, f_{α} ist ein konvergentes Netz in X' bezüglich $\tau_p|_{X'}$. Weil die Identität stetig ist, ist auch $\lim_{\alpha \in I} f_{\alpha} = f$ bezüglich $\sigma(X', X)$. Somit ist $f \in \overline{V^{\circ}}^{\sigma(X', X)} = V^{\circ}$.

Somit ist V° eine abgschlossene Teilmenge des Kompaktums K und somit selbst kompakt in $\tau_p|_K$. Also auch in τ_p und auch in $\tau_p|_{X'}$. Nach unserer Vorüberlegung, ist V° also auch kompakt in $\sigma(X',X)$. Nun ist ja $V \subseteq U$, also $U^{\circ} \subseteq V^{\circ}$ und U° ist abgschlossen in $\sigma(X',X)$ also ist auch U° kompakt in $\sigma(X',X)$. \square

Corollary 3.2 (Banach-Alaoglu). Ist X ein normierter Raum, dann ist $B_1(0) \subseteq X'$ weak-*-kompakt. Beweis. Folgt aus Alaoglu-Bourbaki, mit $U = B_1(0) \subseteq X$ und Beispiel ??.

4 Mackey topologies and the Mackey-Ahrens theorem

Wir wissen ja bereits, dass die $\sigma(X,Y)$ -Topologie die gröbste duale Topologie ist, das heißt die gröbste Topologie, sodass

$$X' \ni f \leftrightarrow \ell_y$$
.

Für eine gröbere Topologie gibt es $y \in Y$, sodass ℓ_y nicht stetig ist.

Aber man kann auch die Gegenteilige Frage stellen: Welches ist die feinste duale Topologie, also welches ist die feinste lokalkonvexe Toplogie, sodass es keine stetigen linearen Funktionale gibt, die nicht von der Form ℓ_y sind?

Dies ist gerade die Mackey-Topologie $\tau(X,Y)$, die gerade die lokalkonvexe Topologie ist, die von den Halbnormen

$$\{x \mapsto \sup_{y \in C} |\langle x, y \rangle|\}_{C \subseteq Y \text{ kompakt und konvex}}$$

erzeugt wird.

Theorem 4.1 (Mackey-Ahrens). Sei (X,Y) ein duales Paar und τ eine $\langle X,Y \rangle$ -duale Topologie auf X. Dann gilt

$$\sigma(X,Y) \subset \tau \subset \tau(X,Y)$$
.

Es gibt einige schöne Resultate:

- Ein lokalkonvexer Raum ist reflexiv, gdw. er die Mackey Topologie trägt.
- Jeder Frechet Raum trägt die Mackey topology.
- Insbesondere ist also der Schwartzraum reflexiv.
- Im Schwartzraum ist jede abgschlossene, beschränkte Menge kompakt.