3 MSMWD cross validataion and training set1

November 28, 2021

```
[1]: print('importing modules..')
     import numpy as np
     import pandas as pd
     import seaborn as sns
     import matplotlib.pyplot as plt
     import time
     #Training and evaluation
     from sklearn.model_selection import train_test_split
     \#from\ sklearn.ensemble\ import\ RandomForestClassifier
     from sklearn.metrics import log_loss
     from sklearn.calibration import CalibratedClassifierCV
     import warnings
     warnings.filterwarnings("ignore")
     from sklearn.feature_selection import SelectKBest, chi2
     from xgboost import XGBRFClassifier, XGBClassifier
     from hyperopt import hp, STATUS_OK, Trials, fmin, tpe
     # https://www.appliedaicourse.com/lecture/11/
      →applied-machine-learning-online-course/3255/
      \rightarrow models-on-all-features-randomforest-and-xgboost/7/
      \rightarrow module-6-machine-learning-real-world-case-studies
```

importing modules..

```
[2]: print('loading data...')
X = np.load('feature_set1.npy')
Y = np.load('target.npy')
```

loading data...

Train:cv:test :: 6520 : 2174 : 2174

```
[4]: test_class_count = pd.DataFrame(y_test.flatten())[0].value_counts()
     train_class_count = pd.DataFrame(y_train.flatten())[0].value_counts()
     cv_class_count = pd.DataFrame(y_cv.flatten())[0].value_counts()
     class_count = pd.concat((test_class_count,train_class_count),axis=1)
     class_count.columns = ['test_imbalance', 'train_imbalance']
     class_count = pd.concat((class_count,cv_class_count),axis=1)
     class_count.columns = ['test_imbalance','train_imbalance','cv_imbalance']
     train_test_difference = class_count/class_count.sum()
     print("Train test differences - Distribution of classes in train, cv and test ⊔
     ⇔set")
     print(train_test_difference)
    Train test differences - Distribution of classes in train, cv and test set
       test_imbalance train_imbalance cv_imbalance
    3
             0.280129
                                            0.258970
                              0.271472
    2
             0.233211
                              0.228834
                                            0.220331
    1
             0.137994
                                            0.147194
                              0.141258
    8
             0.109476
                              0.114110
                                            0.113155
    9
             0.093836
                              0.091411
                                            0.097976
    6
             0.064397
                              0.069325
                                            0.073137
    4
             0.040478
                              0.043558
                                            0.047378
    7
             0.037718
                              0.035890
                                            0.037718
             0.002760
                              0.004141
                                            0.004140
[5]: # Hyperparameter tuning: https://www.analyticsvidhya.com/blog/2020/09/
     →alternative-hyperparameter-optimization-technique-you-need-to-know-hyperopt/
     # Hyperopt: http://hyperopt.github.io/hyperopt/
     # Hyperopt qihub: https://qithub.com/hyperopt/hyperopt/wiki/fmin
     print('Tuning..')
     # narrow search on multiple parameters
     space = { 'max_depth': hp.choice('max_depth',[1,3,5,7]),
                'learning_rate': hp.choice('learning_rate',[.5,1]),
                'subsample': hp.choice('subsample', [0.4,.5,.6,.7,1]),
              'colsample_bynode':hp.choice('colsample_bynode',[0.4,.5,.6,.7,1]),
                'n estimators': hp.choice('n estimators',np.arange(30,400))}
     def hyperparameter_tuning(params):
         '''return dict should have train loss with key loss for the fmin to_\sqcup
     →minimize. Other params are for analysis'''
         clf = XGBClassifier(eval_metric='mlogloss',**params)
         print(params, end = "=>")
         #tick = time.time(),
         clf.fit(x_train,y_train.ravel())
         sig_clf = CalibratedClassifierCV(clf, method="sigmoid")
```

sig_clf.fit(x_train, y_train.ravel())

```
train_loss = log_loss(y_train,sig_clf.predict_proba(x_train))
    loss = log_loss(y_cv,sig_clf.predict_proba(x_cv))
    #print('Time:', time.time() - tick)
    dic = {"loss": loss, "status": STATUS_OK, 'train_loss':train_loss}
    dic.update(params)
    print(dic)
    return dic
trials = Trials()
best = fmin(fn=hyperparameter_tuning, space = space, trials=trials, algo=tpe.
 ⇒suggest, max evals=50)
#TRY THIS: use_label_encoder=False when constructing XGBClassifier
tuned = pd.DataFrame(trials.results).sort_values(by='loss',axis=0)
tuned.to_csv("feature_set1_50_trials.csv")
print(tuned)
print('done')
Tuning...
{'colsample bynode': 1, 'learning rate': 1, 'max_depth': 5, 'n_estimators': 143,
'subsample': 0.5}
=>
{'loss': 0.02253795597828581, 'status': 'ok', 'train loss':
0.011957510006990631, 'colsample_bynode': 1, 'learning_rate': 1, 'max_depth': 5,
'n estimators': 143, 'subsample': 0.5}
{'colsample_bynode': 0.6, 'learning_rate': 0.5, 'max_depth': 3, 'n_estimators':
327, 'subsample': 0.4}
=>
{'loss': 0.02087359055641676, 'status': 'ok', 'train_loss':
0.010881264450963456, 'colsample_bynode': 0.6, 'learning_rate': 0.5,
'max_depth': 3, 'n_estimators': 327, 'subsample': 0.4}
{'colsample_bynode': 0.7, 'learning_rate': 0.5, 'max_depth': 5, 'n_estimators':
117, 'subsample': 0.6}
=>
{'loss': 0.020654722208206876, 'status': 'ok', 'train_loss':
0.010370779039529373, 'colsample_bynode': 0.7, 'learning_rate': 0.5,
'max_depth': 5, 'n_estimators': 117, 'subsample': 0.6}
{'colsample_bynode': 1, 'learning_rate': 0.5, 'max_depth': 3, 'n_estimators':
385, 'subsample': 0.5}
{'loss': 0.02073835160303678, 'status': 'ok', 'train loss':
0.010634715209482632, 'colsample_bynode': 1, 'learning_rate': 0.5, 'max_depth':
3, 'n_estimators': 385, 'subsample': 0.5}
{'colsample_bynode': 0.4, 'learning_rate': 1, 'max_depth': 7, 'n_estimators':
111, 'subsample': 0.4}
{'loss': 0.021544133234389584, 'status': 'ok', 'train_loss':
```

```
0.012787377289525196, 'colsample_bynode': 0.4, 'learning_rate': 1, 'max_depth':
7, 'n_estimators': 111, 'subsample': 0.4}
{'colsample bynode': 0.5, 'learning rate': 1, 'max_depth': 5, 'n_estimators':
217, 'subsample': 0.6}
=>
{'loss': 0.02363812173941839, 'status': 'ok', 'train_loss':
0.012314685022623824, 'colsample bynode': 0.5, 'learning rate': 1, 'max depth':
5, 'n_estimators': 217, 'subsample': 0.6}
{'colsample bynode': 0.7, 'learning rate': 0.5, 'max depth': 3, 'n estimators':
141, 'subsample': 1}
=>
{'loss': 0.020710199838869695, 'status': 'ok', 'train_loss':
0.010424487244220848, 'colsample_bynode': 0.7, 'learning_rate': 0.5,
'max_depth': 3, 'n_estimators': 141, 'subsample': 1}
{'colsample_bynode': 0.6, 'learning_rate': 1, 'max_depth': 1, 'n_estimators':
287, 'subsample': 0.7}
{'loss': 0.33836525197780964, 'status': 'ok', 'train loss': 0.31526961256551833,
'colsample_bynode': 0.6, 'learning_rate': 1, 'max_depth': 1, 'n_estimators':
287, 'subsample': 0.7}
{'colsample_bynode': 0.6, 'learning_rate': 0.5, 'max_depth': 7, 'n_estimators':
146, 'subsample': 0.6}
{'loss': 0.020285067837089277, 'status': 'ok', 'train_loss':
0.010686241180864474, 'colsample_bynode': 0.6, 'learning_rate': 0.5,
'max_depth': 5, 'n_estimators': 223, 'subsample': 0.5}
{'colsample_bynode': 0.7, 'learning rate': 0.5, 'max_depth': 1, 'n_estimators':
374, 'subsample': 0.7}
=>
{'loss': 0.023287849073431777, 'status': 'ok', 'train_loss':
0.010382746117335945, 'colsample_bynode': 0.7, 'learning rate': 0.5,
'max_depth': 1, 'n_estimators': 374, 'subsample': 0.7}
{'colsample bynode': 0.7, 'learning rate': 1, 'max_depth': 5, 'n_estimators':
364, 'subsample': 1}
=>
{'loss': 0.01828638982036347, 'status': 'ok', 'train loss':
0.010962891430826996, 'colsample bynode': 0.7, 'learning rate': 1, 'max depth':
5, 'n_estimators': 364, 'subsample': 1}
{'colsample_bynode': 0.5, 'learning_rate': 1, 'max_depth': 5, 'n_estimators':
168, 'subsample': 0.6}
=>
{'loss': 0.023661322026297303, 'status': 'ok', 'train_loss':
0.012308895962762302, 'colsample_bynode': 0.5, 'learning_rate': 1, 'max_depth':
5, 'n_estimators': 168, 'subsample': 0.6}
{'colsample_bynode': 0.7, 'learning_rate': 0.5, 'max_depth': 1, 'n_estimators':
263, 'subsample': 0.5}
=>
{'loss': 0.022476168605874806, 'status': 'ok', 'train_loss':
```

```
0.010769226369704798, 'colsample_bynode': 0.7, 'learning_rate': 0.5,
'max_depth': 1, 'n_estimators': 263, 'subsample': 0.5}
{'colsample_bynode': 1, 'learning_rate': 1, 'max_depth': 3, 'n_estimators': 77,
'subsample': 0.4}
=>
{'loss': 0.023573635575668182, 'status': 'ok', 'train_loss':
0.011759942331898011, 'colsample bynode': 1, 'learning rate': 1, 'max depth': 3,
'n_estimators': 77, 'subsample': 0.4}
{'colsample_bynode': 1, 'learning_rate': 1, 'max_depth': 5, 'n_estimators': 225,
'subsample': 0.5}
=>
{'loss': 0.022626404814395432, 'status': 'ok', 'train_loss':
0.012000583652407512, 'colsample_bynode': 1, 'learning_rate': 1, 'max_depth': 5,
'n_estimators': 225, 'subsample': 0.5}
{'colsample_bynode': 0.6, 'learning_rate': 1, 'max_depth': 7, 'n_estimators':
293, 'subsample': 0.6}
{'loss': 0.023719186794805218, 'status': 'ok', 'train_loss':
0.012619831783114977, 'colsample_bynode': 0.6, 'learning_rate': 1, 'max_depth':
7, 'n estimators': 293, 'subsample': 0.6}
{'colsample_bynode': 0.5, 'learning_rate': 0.5, 'max_depth': 3, 'n_estimators':
213, 'subsample': 1}
=>
{'loss': 0.022238819314013718, 'status': 'ok', 'train_loss':
0.010030772969645644, 'colsample_bynode': 0.5, 'learning_rate': 0.5,
'max_depth': 3, 'n_estimators': 213, 'subsample': 1}
{'colsample bynode': 0.6, 'learning rate': 1, 'max_depth': 1, 'n_estimators':
373, 'subsample': 0.6}
=>
{'loss': 0.04621633431558832, 'status': 'ok', 'train loss': 0.03541373692402954,
'colsample_bynode': 0.6, 'learning_rate': 1, 'max_depth': 1, 'n_estimators':
373, 'subsample': 0.6}
{'colsample_bynode': 0.6, 'learning_rate': 0.5, 'max_depth': 5, 'n estimators':
195, 'subsample': 0.4}
{'loss': 0.020613337482772436, 'status': 'ok', 'train_loss':
0.011339821573903489, 'colsample bynode': 0.6, 'learning rate': 0.5,
'max_depth': 5, 'n_estimators': 195, 'subsample': 0.4}
{'colsample_bynode': 0.4, 'learning_rate': 1, 'max_depth': 7, 'n_estimators':
296, 'subsample': 1}
=>
{'loss': 0.02256677929132009, 'status': 'ok', 'train loss': 0.01131595731386107,
'colsample_bynode': 0.4, 'learning_rate': 1, 'max_depth': 7, 'n_estimators':
296, 'subsample': 1}
{'colsample_bynode': 0.7, 'learning_rate': 0.5, 'max_depth': 7, 'n_estimators':
146, 'subsample': 1}
=>
{'loss': 0.02101295974083065, 'status': 'ok', 'train_loss':
```

```
0.010363411404799726, 'colsample_bynode': 0.7, 'learning_rate': 0.5,
'max_depth': 7, 'n_estimators': 146, 'subsample': 1}
{'colsample_bynode': 0.7, 'learning rate': 0.5, 'max_depth': 7, 'n_estimators':
177, 'subsample': 1}
=>
{'loss': 0.021012794578706275, 'status': 'ok', 'train_loss':
0.010363118232219191, 'colsample bynode': 0.7, 'learning rate': 0.5,
'max_depth': 7, 'n_estimators': 177, 'subsample': 1}
{'colsample bynode': 0.4, 'learning rate': 1, 'max depth': 7, 'n estimators':
255, 'subsample': 1}
=>
{'loss': 0.022565738756071454, 'status': 'ok', 'train_loss':
0.011314919434454139, 'colsample_bynode': 0.4, 'learning_rate': 1, 'max_depth':
7, 'n_estimators': 255, 'subsample': 1}
{'colsample_bynode': 0.6, 'learning_rate': 0.5, 'max_depth': 7, 'n_estimators':
364, 'subsample': 0.7}
{'loss': 0.020315600164210305, 'status': 'ok', 'train_loss':
0.01105357360706564, 'colsample_bynode': 0.6, 'learning_rate': 0.5, 'max_depth':
7, 'n estimators': 364, 'subsample': 0.7}
{'colsample_bynode': 0.7, 'learning_rate': 1, 'max_depth': 7, 'n_estimators':
395, 'subsample': 0.6}
=>
{'loss': 0.023818972680273342, 'status': 'ok', 'train_loss':
0.01153646372770917, 'colsample_bynode': 0.7, 'learning_rate': 1, 'max_depth':
7, 'n_estimators': 395, 'subsample': 0.6}
{'colsample_bynode': 0.7, 'learning_rate': 1, 'max_depth': 5, 'n_estimators':
388, 'subsample': 1}
{'loss': 0.01828682945804985, 'status': 'ok', 'train loss': 0.01096335763337251,
'colsample_bynode': 0.7, 'learning_rate': 1, 'max_depth': 5, 'n_estimators':
388, 'subsample': 1}
{'colsample bynode': 0.7, 'learning rate': 1, 'max_depth': 5, 'n_estimators':
332, 'subsample': 1}
=>
{'loss': 0.018286772930264004, 'status': 'ok', 'train_loss':
0.010962979138450017, 'colsample bynode': 0.7, 'learning rate': 1, 'max depth':
5, 'n_estimators': 332, 'subsample': 1}
{'colsample_bynode': 0.7, 'learning_rate': 1, 'max_depth': 5, 'n_estimators':
368, 'subsample': 1}
=>
{'loss': 0.01828653118209724, 'status': 'ok', 'train_loss':
0.010963081289536724, 'colsample_bynode': 0.7, 'learning_rate': 1, 'max_depth':
5, 'n_estimators': 368, 'subsample': 1}
{'colsample_bynode': 0.7, 'learning_rate': 1, 'max_depth': 5, 'n_estimators':
318, 'subsample': 1}
=>
{'loss': 0.01828650319458743, 'status': 'ok', 'train_loss':
```

```
0.010963042581933834, 'colsample_bynode': 0.7, 'learning_rate': 1, 'max_depth':
5, 'n_estimators': 318, 'subsample': 1}
{'colsample bynode': 0.7, 'learning rate': 1, 'max_depth': 5, 'n_estimators':
127, 'subsample': 1}
=>
{'loss': 0.018285903325850058, 'status': 'ok', 'train_loss':
0.010962410038533104, 'colsample bynode': 0.7, 'learning rate': 1, 'max depth':
5, 'n_estimators': 127, 'subsample': 1}
{'colsample bynode': 0.7, 'learning rate': 1, 'max depth': 5, 'n estimators':
302, 'subsample': 1}
=>
{'loss': 0.018287054364135923, 'status': 'ok', 'train_loss':
0.010963479364407213, 'colsample_bynode': 0.7, 'learning_rate': 1, 'max_depth':
5, 'n_estimators': 302, 'subsample': 1}
{'colsample_bynode': 1, 'learning_rate': 1, 'max_depth': 5, 'n_estimators': 304,
'subsample': 1}
{'loss': 0.023808949448387354, 'status': 'ok', 'train_loss':
0.011252303864380083, 'colsample_bynode': 1, 'learning_rate': 1, 'max_depth': 5,
'n estimators': 304, 'subsample': 1}
{'colsample_bynode': 0.4, 'learning_rate': 1, 'max_depth': 5, 'n_estimators':
291, 'subsample': 0.7}
=>
{'loss': 0.019747565641880512, 'status': 'ok', 'train_loss':
0.01166820681424185, 'colsample_bynode': 0.4, 'learning_rate': 1, 'max_depth':
5, 'n_estimators': 291, 'subsample': 0.7}
{'colsample_bynode': 0.5, 'learning_rate': 1, 'max_depth': 5, 'n_estimators':
381, 'subsample': 0.4}
=>
{'loss': 0.024411565698279836, 'status': 'ok', 'train_loss':
0.012963083388168584, 'colsample_bynode': 0.5, 'learning_rate': 1, 'max_depth':
5, 'n_estimators': 381, 'subsample': 0.4}
{'colsample bynode': 0.7, 'learning rate': 1, 'max_depth': 3, 'n_estimators':
196, 'subsample': 1}
=>
{'loss': 0.020668024919943354, 'status': 'ok', 'train_loss':
0.01082404091160321, 'colsample bynode': 0.7, 'learning rate': 1, 'max depth':
3, 'n_estimators': 196, 'subsample': 1}
{'colsample_bynode': 0.7, 'learning_rate': 1, 'max_depth': 5, 'n_estimators':
242, 'subsample': 0.5}
=>
{'loss': 0.021345811429222906, 'status': 'ok', 'train_loss':
0.011225829556888027, 'colsample_bynode': 0.7, 'learning_rate': 1, 'max_depth':
5, 'n estimators': 242, 'subsample': 0.5}
{'colsample_bynode': 1, 'learning_rate': 1, 'max_depth': 1, 'n_estimators': 350,
'subsample': 1}
=>
{'loss': 0.22980558037052057, 'status': 'ok', 'train loss': 0.21895007688436174,
```

```
'colsample_bynode': 1, 'learning_rate': 1, 'max_depth': 1, 'n_estimators': 350,
'subsample': 1}
{'colsample bynode': 0.4, 'learning rate': 1, 'max_depth': 5, 'n estimators':
104, 'subsample': 0.4}
=>
{'loss': 0.02040330677317309, 'status': 'ok', 'train_loss':
0.011767552070065603, 'colsample bynode': 0.4, 'learning rate': 1, 'max depth':
5, 'n_estimators': 104, 'subsample': 0.4}
{'colsample bynode': 0.5, 'learning rate': 1, 'max depth': 3, 'n estimators':
392, 'subsample': 0.7}
=>
{'loss': 0.022921753167528605, 'status': 'ok', 'train_loss':
0.012372889716534963, 'colsample_bynode': 0.5, 'learning_rate': 1, 'max_depth':
3, 'n_estimators': 392, 'subsample': 0.7}
{'colsample_bynode': 0.7, 'learning_rate': 1, 'max_depth': 5, 'n_estimators':
367, 'subsample': 1}
{'loss': 0.018287141877980893, 'status': 'ok', 'train_loss':
0.01096362293842899, 'colsample_bynode': 0.7, 'learning_rate': 1, 'max_depth':
5, 'n estimators': 367, 'subsample': 1}
{'colsample_bynode': 0.7, 'learning_rate': 1, 'max_depth': 1, 'n_estimators':
316, 'subsample': 0.5}
=>
{'loss': 0.032284881643054666, 'status': 'ok', 'train_loss':
0.02036321885663207, 'colsample_bynode': 0.7, 'learning_rate': 1, 'max_depth':
1, 'n_estimators': 316, 'subsample': 0.5}
{'colsample_bynode': 0.7, 'learning_rate': 1, 'max_depth': 5, 'n_estimators':
183, 'subsample': 1}
=>
{'loss': 0.01828658542776287, 'status': 'ok', 'train_loss':
0.010962913835020176, 'colsample_bynode': 0.7, 'learning_rate': 1, 'max_depth':
5, 'n_estimators': 183, 'subsample': 1}
{'colsample bynode': 1, 'learning rate': 1, 'max_depth': 3, 'n_estimators': 365,
'subsample': 0.7}
=>
{'loss': 0.022402625566500002, 'status': 'ok', 'train_loss':
0.01173781890235131, 'colsample bynode': 1, 'learning rate': 1, 'max depth': 3,
'n_estimators': 365, 'subsample': 0.7}
{'colsample_bynode': 0.5, 'learning_rate': 1, 'max_depth': 5, 'n_estimators':
326, 'subsample': 0.4}
=>
{'loss': 0.02473264450442829, 'status': 'ok', 'train_loss':
0.012998809304376583, 'colsample_bynode': 0.5, 'learning_rate': 1, 'max_depth':
5, 'n_estimators': 326, 'subsample': 0.4}
{'colsample_bynode': 0.4, 'learning_rate': 1, 'max_depth': 1, 'n_estimators':
280, 'subsample': 0.5}
=>
{'loss': 0.01876390444252746, 'status': 'ok', 'train_loss':
```

```
0.010998090442452575, 'colsample_bynode': 0.4, 'learning rate': 1, 'max_depth':
1, 'n_estimators': 280, 'subsample': 0.5}
{'colsample_bynode': 0.7, 'learning_rate': 0.5, 'max_depth': 5, 'n_estimators':
253, 'subsample': 0.6}
=>
{'loss': 0.02062946020435429, 'status': 'ok', 'train loss':
0.010350400496343226, 'colsample bynode': 0.7, 'learning rate': 0.5,
'max_depth': 5, 'n_estimators': 253, 'subsample': 0.6}
{'colsample bynode': 0.7, 'learning rate': 1, 'max depth': 5, 'n estimators':
288, 'subsample': 1}
=>
{'loss': 0.01828602442384233, 'status': 'ok', 'train_loss':
0.010962506222193084, 'colsample_bynode': 0.7, 'learning_rate': 1, 'max_depth':
5, 'n_estimators': 288, 'subsample': 1}
{'colsample_bynode': 1, 'learning_rate': 1, 'max_depth': 3, 'n_estimators': 39,
'subsample': 1}
{'loss': 0.02556493171580036, 'status': 'ok', 'train_loss':
0.011074411649318269, 'colsample_bynode': 1, 'learning_rate': 1, 'max_depth': 3,
'n estimators': 39, 'subsample': 1}
{'colsample_bynode': 0.5, 'learning_rate': 0.5, 'max_depth': 5, 'n_estimators':
383, 'subsample': 0.7}
=>
{'loss': 0.020786294520645187, 'status': 'ok', 'train_loss':
0.01064349351336331, 'colsample_bynode': 0.5, 'learning_rate': 0.5, 'max_depth':
5, 'n_estimators': 383, 'subsample': 0.7}
100%|
                          | 50/50 [2:36:50<00:00,
188.20s/trial, best loss: 0.018285903325850058]
        loss status train_loss colsample_bynode learning_rate max_depth \
30 0.018286
                       0.010962
                                              0.7
                                                              1.0
                                                                           5
                 ok
                                                                           5
47 0.018286
                       0.010963
                                              0.7
                                                              1.0
                 ok
11 0.018286
                 ok
                       0.010963
                                              0.7
                                                              1.0
                                                                           5
29 0.018287
                 ok
                       0.010963
                                              0.7
                                                              1.0
                                                                           5
28 0.018287
                                              0.7
                                                              1.0
                                                                           5
                 ok
                       0.010963
                                              0.7
                                                                           5
42 0.018287
                 ok
                                                              1.0
                       0.010963
27 0.018287
                                              0.7
                 ok
                       0.010963
                                                              1.0
                                                                           5
                                                                           5
26 0.018287
                 ok
                       0.010963
                                              0.7
                                                              1.0
31 0.018287
                       0.010963
                                              0.7
                                                              1.0
                                                                           5
                 ok
                                              0.7
                                                                           5
40 0.018287
                 ok
                       0.010964
                                                              1.0
45 0.018764
                 ok
                       0.010998
                                              0.4
                                                              1.0
                                                                           1
33 0.019748
                                              0.4
                                                              1.0
                                                                           5
                 ok
                       0.011668
                                                                           7
                                              0.6
                                                              0.5
8
   0.020115
                 ok
                       0.010520
9
   0.020285
                                              0.6
                                                              0.5
                                                                           5
                 ok
                       0.010686
                                                                           7
24 0.020316
                 ok
                       0.011054
                                              0.6
                                                              0.5
                                                                           5
38 0.020403
                 ok
                       0.011768
                                              0.4
                                                              1.0
19 0.020613
                 ok
                       0.011340
                                              0.6
                                                              0.5
                                                                           5
46 0.020629
                 ok
                       0.010350
                                              0.7
                                                              0.5
                                                                           5
2
    0.020655
                       0.010371
                                              0.7
                                                              0.5
                                                                           5
                 ok
```

35	0.020668	ok	0.010824	0.7	1.0	3
6	0.020710	ok	0.010424	0.7	0.5	3
3	0.020738	ok	0.010635	1.0	0.5	3
49	0.020786	ok	0.010643	0.5	0.5	5
1	0.020874	ok	0.010881	0.6	0.5	3
22	0.021013	ok	0.010363	0.7	0.5	7
21	0.021013	ok	0.010363	0.7	0.5	7
36	0.021346	ok	0.011226	0.7	1.0	5
4	0.021544	ok	0.012787	0.4	1.0	7
17	0.022239	ok	0.010031	0.5	0.5	3
43	0.022403	ok	0.011738	1.0	1.0	3
13	0.022476	ok	0.010769	0.7	0.5	1
0	0.022538	ok	0.011958	1.0	1.0	5
23	0.022566	ok	0.011315	0.4	1.0	7
20	0.022567	ok	0.011316	0.4	1.0	7
15	0.022626	ok	0.012001	1.0	1.0	5
39	0.022922	ok	0.012373	0.5	1.0	3
10	0.023288	ok	0.010383	0.7	0.5	1
14	0.023574	ok	0.011760	1.0	1.0	3
5	0.023638	ok	0.012315	0.5	1.0	5
12	0.023661	ok	0.012309	0.5	1.0	5
16	0.023719	ok	0.012620	0.6	1.0	7
32	0.023809	ok	0.011252	1.0	1.0	5
25	0.023819	ok	0.011536	0.7	1.0	7
34	0.024412	ok	0.012963	0.5	1.0	5
44	0.024733	ok	0.012999	0.5	1.0	5
48	0.025565	ok	0.011074	1.0	1.0	3
41	0.032285	ok	0.020363	0.7	1.0	1
18	0.046216	ok	0.035414	0.6	1.0	1
37	0.229806	ok	0.218950	1.0	1.0	1
7	0.338365	ok	0.315270	0.6	1.0	1
		,	-			

	$n_{estimators}$	subsample
30	127	1.0
47	288	1.0
11	364	1.0
29	318	1.0
28	368	1.0
42	183	1.0
27	332	1.0
26	388	1.0
31	302	1.0
40	367	1.0
45	280	0.5
33	291	0.7
8	146	0.6
9	223	0.5
24	364	0.7

```
19
                   195
                               0.4
    46
                   253
                               0.6
    2
                   117
                               0.6
    35
                   196
                               1.0
    6
                               1.0
                   141
                               0.5
    3
                  385
                               0.7
    49
                   383
    1
                  327
                               0.4
    22
                   177
                               1.0
    21
                               1.0
                   146
                               0.5
    36
                  242
    4
                               0.4
                   111
    17
                  213
                               1.0
                               0.7
    43
                   365
                               0.5
    13
                   263
    0
                   143
                               0.5
    23
                   255
                               1.0
    20
                  296
                               1.0
    15
                   225
                               0.5
                               0.7
    39
                  392
                               0.7
    10
                   374
                               0.4
    14
                   77
    5
                   217
                               0.6
                               0.6
    12
                   168
                  293
                               0.6
    16
    32
                  304
                               1.0
    25
                  395
                               0.6
    34
                               0.4
                   381
    44
                   326
                               0.4
    48
                   39
                               1.0
                               0.5
    41
                   316
    18
                   373
                               0.6
    37
                  350
                               1.0
    7
                  287
                               0.7
    done
[1]: import pandas as pd
     pd.read_csv("feature_set1_50_trials.csv")
[1]:
         Unnamed: 0
                                         train_loss
                                                      colsample_bynode learning_rate \
                           loss status
                      0.018286
                                     ok
                                           0.010962
                                                                    0.7
                                                                                     1.0
     0
                  30
                                                                                     1.0
     1
                      0.018286
                                           0.010963
                                                                    0.7
                  47
                                     ok
     2
                  11
                      0.018286
                                     ok
                                           0.010963
                                                                    0.7
                                                                                     1.0
```

38

3

4

5

29

28

0.018287

0.018287

42 0.018287

ok

ok

ok

104

0.4

0.010963

0.010963

0.010963

0.7

0.7

0.7

1.0

1.0

1.0

6	27	0.018287	ok	0.010963	0.7	1.0
7	26	0.018287	ok	0.010963	0.7	1.0
8	31	0.018287	ok	0.010963	0.7	1.0
9	40	0.018287	ok	0.010964	0.7	1.0
10	45	0.018764	ok	0.010998	0.4	1.0
11	33	0.019748	ok	0.011668	0.4	1.0
12	8	0.020115	ok	0.010520	0.6	0.5
13	9	0.020285	ok	0.010686	0.6	0.5
14	24	0.020316	ok	0.011054	0.6	0.5
15	38	0.020403	ok	0.011768	0.4	1.0
16	19	0.020613	ok	0.011340	0.6	0.5
17	46	0.020629	ok	0.010350	0.7	0.5
18	2	0.020655	ok	0.010371	0.7	0.5
19	35	0.020668	ok	0.010824	0.7	1.0
20	6	0.020710	ok	0.010424	0.7	0.5
21	3	0.020738	ok	0.010635	1.0	0.5
22	49	0.020786	ok	0.010643	0.5	0.5
23	1	0.020874	ok	0.010881	0.6	0.5
24	22	0.021013	ok	0.010363	0.7	0.5
25	21	0.021013	ok	0.010363	0.7	0.5
26	36	0.021346	ok	0.011226	0.7	1.0
27	4	0.021544	ok	0.012787	0.4	1.0
28	17	0.022239	ok	0.010031	0.5	0.5
29	43	0.022403	ok	0.011738	1.0	1.0
30	13	0.022476	ok	0.010769	0.7	0.5
31	0	0.022538	ok	0.011958	1.0	1.0
32	23	0.022566	ok	0.011315	0.4	1.0
33	20	0.022567	ok	0.011316	0.4	1.0
34	15	0.022626	ok	0.012001	1.0	1.0
35	39	0.022922	ok	0.012373	0.5	1.0
36	10	0.023288	ok	0.010383	0.7	0.5
37	14	0.023574	ok	0.011760	1.0	1.0
38	5	0.023638	ok	0.012315	0.5	1.0
39	12	0.023661	ok	0.012309	0.5	1.0
40	16	0.023719	ok	0.012620	0.6	1.0
41	32	0.023809	ok	0.011252	1.0	1.0
42	25	0.023819	ok	0.011536	0.7	1.0
43	34	0.024412	ok	0.012963	0.5	1.0
44	44	0.024733	ok	0.012999	0.5	1.0
45	48	0.025565	ok	0.011074	1.0	1.0
46	41	0.032285	ok	0.020363	0.7	1.0
47	18	0.046216	ok	0.035414	0.6	1.0
48	37	0.229806	ok	0.218950	1.0	1.0
49	7	0.338365	ok	0.315270	0.6	1.0

max_depth n_estimators subsample 0 5 127 1.0

4	Е	200	1 0
1	5	288	1.0
2	5	364	1.0
3	5	318	1.0
4	5	368	1.0
5	5	183	1.0
6	5	332	1.0
7	5	388	1.0
8	5	302	1.0
9	5	367	1.0
10	1	280	0.5
11	5	291	0.7
12	7	146	0.6
13	5	223	0.5
14	7	364	0.7
15	5	104	0.4
16	5	195	0.4
17	5	253	0.6
18	5	117	0.6
19	3	196	1.0
20	3	141	1.0
21	3	385	0.5
22	5	383	0.7
23	3	327	0.4
24	7	177	1.0
25	7	146	1.0
26	5	242	0.5
27	7	111	0.4
28	3	213	1.0
	3		
29		365	0.7
30	1	263	0.5
31	5	143	0.5
32	7	255	1.0
33	7	296	1.0
34	5	225	0.5
35	3	392	0.7
36	1	374	0.7
37	3	77	0.4
38	5	217	0.6
39	5	168	0.6
40	7	293	0.6
41	5	304	1.0
42	7	395	0.6
43	5	381	0.4
44	5	326	0.4
45	3	39	1.0
46	1	316	0.5
47	1	373	0.6

 48
 1
 350
 1.0

 49
 1
 287
 0.7