Code-based Cryptography

Christiane Peters
Technical University of Denmark

ECC 2011 September 20, 2011

Code-based cryptography

- 1. Background
- 2. The McEliece cryptosystem
- 3. Information-set-decoding attacks
- 4. Designs: Wild McEliece
- 5. Announcements

1. Background

2. The McEliece cryptosystem

3. Information-set-decoding attacks

4. Designs: Wild McEliece

Announcements

Coding Theory

- An encoder transforms a message word into a codeword by adding redundancy.
- Goal: protect against errors in a noisy channel.

• The decoder uses a decoding algorithm to correct errors which might have occurred during transmission.

Error-correcting linear codes

• A linear code C of length n and dimension k is a k-dimensional subspace of \mathbf{F}_a^n .

• A generator matrix for C is a $k \times n$ matrix G such that $C = \{ m G : m \in \mathbf{F}_q^k \}.$

• The matrix G corresponds to a map $\mathbf{F}_q^k \to \mathbf{F}_q^n$ sending a message m of length k to a length-n codeword in \mathbf{F}_q^n .

Generator matrix of a linear code

The rows of the matrix

generate a linear code of length n = 7 and dimension k = 4 over \mathbf{F}_2 .

Example of a codeword: c = (0011)G = (0011010).

Hamming distance

- The Hamming distance between two words in \mathbf{F}_q^n is the number of coordinates where they differ.
- The Hamming weight of a word is the number of non-zero coordinates.
- The minimum distance of a linear code *C* is the smallest Hamming weight of a non-zero codeword in *C*.

The example code is in fact the (7,4,3) binary Hamming code which has minimum distance 3. And the example codeword has minimum weight c = (0011010).

Decoding problem

Classical decoding problem: find the closest codeword $c \in C$ to a given $y \in \mathbf{F}_q^n$, assuming that there is a unique closest codeword.

There are lots of code families with fast decoding algorithms

 E.g., Hamming codes, BCH codes, Reed-Solomon codes, Goppa codes/alternant codes, Gabidulin codes, Reed-Muller codes, Algebraic-geometric codes, etc.

Generic decoding is hard

However, given a binary linear code with no obvious structure.

 Berlekamp, McEliece, van Tilborg (1978) showed that the general decoding problem for linear codes over F₂ is NP-complete.

• About $2^{(0.5+o(1))n/\log_2(n)}$ binary operations required for a code of length n and dimension $\approx 0.5n$.

Parity-check matrix of a linear code

- Recall that a linear code C is generated by some matrix G
- Switch perspective and look at the corresponding parity-check matrix H.

$$H G^T = 0.$$

- In particular, $Hc^T = 0$ for all codewords c.
- Use Gaussian elimination to compute the $(n k) \times n$ kernel matrix H from given G.

Syndrome decoding

 Decoder gets input y ∈ Fⁿ_q and tries to determine an error vector e of a given weight w such that c = y - e is a codeword.

Syndrome-formulation of the problem:

• Given *y* compute the syndrome

$$s = Hy^T = H(c + e)^T = He^T.$$

• Tricky part is to find a weight-w word e such that $s = He^{T}$.

1. Background

2. The McEliece cryptosystem

3. Information-set-decoding attacks

4. Designs: Wild McEliece

5. Announcements

Assumptions

• This talk looks at "text-book" versions of cryptosystems.

Plaintexts are not randomized.

 There exist CCA2-secure conversions of code-based cryptography which should be used when implementing the systems.

Code-based cryptography

 McEliece proposed a public-key cryptosystem based on error-correcting codes in 1978.

 Secret key is a linear error-correcting code with an efficient decoding algorithm.

 Public key is a transformation of the secret inner code which is hard to decode.

Encryption

- Given public system parameters n, k, w.
- The public key is a random-looking $k \times n$ matrix G with entries in \mathbf{F}_q .
- ullet Encrypt a message $m \in \mathbf{F}_q^k$ as

$$mG + e$$

where $e \in \mathbf{F}_q^n$ is a random error vector of weight w.

Secret key

The public key G has a hidden Goppa-code structure allowing fast decoding:

$$G = SG'P$$

where

- G' is the generator matrix of a Goppa code Γ of length n and dimension k and error-correcting capability w;
- S is a random $k \times k$ invertible matrix; and
- P is a random $n \times n$ permutation matrix.

The triple (G', S, P) forms the secret key.

Note: Detecting this structure, i.e., finding G' given G, seems even more difficult than attacking a random G.

Decryption

The legitimate receiver knows S, G' and P with G = SG'P and a decoding algorithm for Γ .

How to decrypt y = mG + e.

- 1. Compute $yP^{-1} = mSG' + eP^{-1}$.
- 2. Apply the decoding algorithm of Γ to find mSG' which is a codeword in Γ from which one obtains m.

1. Background

2. The McEliece cryptosystem

3. Information-set-decoding attacks

4. Designs: Wild McEliece

5. Announcements

Generic attack

Disclaimer: for simplicity, focus on codes over F_2 in the following.

Attacker tries to build a decoder which gets as input

- the parity-check matrix H (compute from public matrix G),
- ullet the ciphertext $y \in \mathbf{F}_q^n$, and
- the public error weight w.

The algorithm tries to determine an error vector e of weight w such that $s = Hy^T = He^T$.

The best known generic decoders rely on information-set decoding.

Problem

Given an $(n - k) \times n$ matrix, a syndrome s.

Row randomization

Can arbitrarily permute rows without changing the problem.

Row randomization

Can arbitrarily permute rows without changing the problem.

Column normalization

100	1 1
111	0 0
0 1 1	 0 : 0 :
0 1 0	1 1
111	1 0
<u></u>	
$c_1c_2c_3$	 c_n $s = c_2 \oplus c_3 \oplus c_{18} \oplus c_{20} \oplus c_{24} \oplus c_{24}$

Can arbitrarily permute columns without changing the problem.

Column normalization

0 1 0	1 1
111	0 0
101	 0 : 0 :
100	1 1
111	1 0
<u> </u>	
$c_1c_2c_3$	 c_n $s = c_1 \oplus c_3 \oplus c_{18} \oplus c_{20} \oplus c_{24}$

Can arbitrarily permute columns without changing the problem.

Information-set decoding

$$c_1c_2c_3c_4$$
 ... c_{n-k} c_n $s=c_3 \oplus c_7 \oplus c_{28} \oplus c_{30} \oplus c_{37} \oplus c_{39} \oplus c_{39}$

Can add one column to another. Built identity matrix.

Goal: find w columns which xor s.

Basic information-set decoding

1962 Prange:

- Perhaps xor involves none of the last k columns.
- If so, immediately see that s is constructed from w columns of H.
- If not, re-randomize and restart.

1988 Lee-Brickell:

- More likely that xor involves exactly 2 of the last k columns.
- Check for each pair (i,j) with $n-k < i < j \le n$ if $s \oplus c_i \oplus c_j$ has weight w-2.

Lee-Brickell

Check for each pair (i,j) with $n-k < i < j \le n$ if $s \oplus c_i \oplus c_j$ has weight w-2.

Improvements

1989 Leon, 1989 Krouk:

- Check for each i,j whether s⊕ c_i⊕ c_j has weight w − 2 and the first ℓ bits all zero.
- Fast to test.

1989 Stern:

- Collision decoding: square-root improvement. Find collisions between first ℓ bits of $s \oplus c_i$ and the first ℓ bits of c_j .
- For each collision, check whether $s \oplus c_i \oplus c_j$ has weight w-2.

Collision decoding

Check for collisions on ℓ bits of $s \oplus c_i$ and c_j .

Collision decoding

Check for collisions on ℓ bits of $s \oplus c_{i_1} \oplus \cdots \oplus c_{i_p}$ and $c_{j_1} \oplus \cdots \oplus c_{j_p}$.

Ball-collision decoding

Joint work with Dan Bernstein and Tanja Lange: Smaller decoding exponents: ball-collision decoding.

- Find collisions between the Hamming ball of radius p' around $s \oplus c_{i_1} \oplus \cdots \oplus c_{i_p}$ and the Hamming ball of radius p' around $c_{j_1} \oplus \cdots \oplus c_{j_p}$.
- Main theorem: asymptotically get exponential speedup of ball-collision decoding over collision decoding.
- Reference implementation of ball-collision decoding: http://cr.yp.to/ballcoll.html

Ball-collision-decoding algorithm

Look for collisions among $s \oplus c_{i_1} \oplus \cdots \oplus c_{i_p} \oplus c_{l_1} \oplus \cdots \oplus c_{l_{p'}}$ and $c_{j_1} \oplus \cdots \oplus c_{j_p} \oplus c_{r_1} \oplus \cdots \oplus c_{r_{p'}}$.

1. Background

2. The McEliece cryptosystem

3. Information-set-decoding attacks

4. Designs: Wild McEliece

5. Announcements

Goppa codes

- Fix a prime power q; a positive integer m, a positive integer $n \le q^m$; an integer $t < \frac{n}{m}$; distinct $a_1, \ldots, a_n \in \mathbf{F}_{q^m}$;
- and a polynomial g(x) in $\mathbf{F}_{q^m}[x]$ of degree t such that $g(a_i) \neq 0$ for all i.

The Goppa code $\Gamma_q(a_1, \ldots, a_n, g)$ consists of all words $c = (c_1, \ldots, c_n)$ in \mathbf{F}_q^n with

$$\sum_{i=1}^{n} \frac{c_i}{x - a_i} \equiv 0 \pmod{g(x)}$$

Properties of Goppa codes

• $\Gamma_q(a_1,\ldots,a_n,g)$ has length n and dimension $k \geq n-mt$.

• The minimum distance is at least deg g + 1 = t + 1 (in the binary case 2t + 1).

• Patterson decoding efficiently decodes t errors in the binary case; otherwise only t/2 errors can be corrected.

Key sizes for the classical binary codes

 Taking a binary Goppa code yields a 194KB public key for 128-bit security for the McEliece cryptosystem.

 Smaller-key variants use other codes such as Reed-Solomon codes, generalized Reed-Solomon codes, quasi-cyclic codes, quasi-dyadic codes or geometric Goppa codes.

Goal: reduce the key size!

Reducing the key size

- Classical Goppa codes are the most confidence-inspiring choice.
- Using Goppa codes over larger fields decreases the key size at the same security level against information-set decoding (P., PQCrypto 2010).
- Taking a Goppa code over F₃₁ yields a 87KB public key for 128-bit security for the McEliece cryptosystem.
- Drawback: can correct only t/2 errors if q > 2 (vs. t in the binary case).
- However, Goppa codes over smaller fields such as F₃ are not competitive in key size with codes over F₂.

Key sizes for various q at a 128-bit security level

McEliece with $\Gamma_q(a_1,\ldots,a_n,g)$ with an alternant decoder.

Proposal: Wild McEliece

Bernstein, Lange, P. at SAC 2010:

Use the McEliece cryptosystem with Goppa codes of the form

$$\Gamma_q(a_1,\ldots,a_n,g^{q-1})$$

where g is an irreducible monic polynomial in $\mathbf{F}_{q^m}[x]$ of degree t.

- Note the exponent q-1 in g^{q-1} .
- We refer to these codes as wild Goppa codes.

Minimum distance of wild Goppa codes

Theorem (Sugiyama-Kasahara-Hirasawa-Namekawa, 1976)

$$\Gamma_q(a_1,\ldots,a_n,g^{q-1})=\Gamma_q(a_1,\ldots,a_n,g^q)$$

for a monic squarefree polynomial g(x) in $\mathbf{F}_{q^m}[x]$ of degree t.

 The case q = 2 of this theorem is due to Goppa, using a different proof that can be found in many textbooks.

Error-correcting capability

- Since $\Gamma_q(\ldots,g^{q-1})=\Gamma_q(\ldots,g^q)$ the minimum distance of $\Gamma_q(\ldots,g^{q-1})$ equals the one of $\Gamma_q(\ldots,g^q)$ and is thus $\geq \deg g^q+1=qt+1$.
- We present an alternant decoder that allows efficient correction of $\lfloor qt/2 \rfloor$ errors for $\Gamma_q(\ldots,g^{q-1})$.
- Note that the number of efficiently decodable errors increases by a factor of q/(q-1) while the dimension n-m(q-1)t of $\Gamma_q(\ldots,g^{q-1})$ stays the same.

Polynomial description of Goppa codes

Recall that

$$\Gamma = \Gamma_q(a_1, \dots, a_n, g^q)$$

$$\subseteq \Gamma_{q^m}(a_1, \dots, a_n, g^q)$$

$$= \left\{ \left(\frac{f(a_1)}{h'(a_1)}, \dots, \frac{f(a_n)}{h'(a_n)} \right) : f \in g^q \mathbf{F}_{q^m}[x], \deg f < n \right\}$$

where $h = (x - a_1) \cdots (x - a_n)$.

• View target codeword $c=(c_1,\ldots,c_n)\in\Gamma$ as a sequence

$$\left(\frac{f(a_1)}{h'(a_1)},\ldots,\frac{f(a_n)}{h'(a_n)}\right)$$

of function values, where f is a multiple of g^q of degree below n.

Classical decoding

Given y, a word of distance $\lfloor qt/2 \rfloor$ from our target codeword.

Reconstruct c from $y = (y_1, \dots, y_n)$ as follows:

• Interpolate

$$\frac{y_1h'(a_1)}{g(a_1)^q}, \frac{y_2h'(a_2)}{g(a_2)^q}, \dots, \frac{y_nh'(a_n)}{g(a_n)^q}$$

into a degree-n polynomial $\varphi \in \mathbf{F}_{q^m}[x]$.

- Compute the continued fraction of φ/h to degree $\lfloor qt/2 \rfloor$.: i.e., apply the Euclidean algorithm to h and φ , stopping with the first remainder $v_0h v_1\varphi$ of degree $< n \lfloor qt/2 \rfloor$.
- Compute $f = (\varphi v_0 h/v_1)g^q$.
- Compute $c = (f(a_1)/h'(a_1), \dots, f(a_n)/h'(a_n)).$

Efficiency

This algorithm uses $n^{1+o(1)}$ operations in \mathbf{F}_{q^m} using standard FFT-based subroutines.

 A Python script can be found on my website: http://www2.mat.dtu.dk/people/C.Peters/wild.html

Can use any Reed-Solomon decoder to reconstruct f/g^q from the values $f(a_1)/g(a_1)^q, \ldots, f(a_n)/g(a_n)^q$ with $\lfloor qt/2 \rfloor$ errors.

Security evaluation

• The wild McEliece cryptosystem includes, as a special case, the original McEliece cryptosystem.

 A complete break of the wild McEliece cryptosystem would therefore imply a complete break of the original McEliece cryptosystem.

Generic attacks

- The top threat against the original McEliece cryptosystem is information-set decoding.
- The same attack also appears to be the top threat against the wild McEliece cryptosystem for **F**₃, **F**₄, etc.

• Use complexity analysis of state-of-the-art information-set decoding for linear codes over \mathbf{F}_q from [P. 2010] to find parameters (q, n, k, t) for Wild McEliece.

Structural attacks

Polynomial-searching attacks:

- There are approximately q^{mt}/t monic irreducible polynomials g of degree t in $\mathbf{F}_{q^m}[x]$, and therefore approximately q^{mt}/t choices of g^{q-1} .
- An attacker can try to guess the Goppa polynomial g^{q-1} and then apply Sendrier's "support-splitting algorithm" to compute a permutation-equivalent code using the set $\{a_1, \ldots, a_n\}$.
- The support-splitting algorithm takes $\{a_1, \ldots, a_n\}$ as an input along with g.

Defenses are discussed in our "Wild" paper.

Key sizes for various q at a 128-bit security level

McEliece with $\Gamma_q(a_1,\ldots,a_n,g^{q-1})$ and $\lfloor (q-1)t/2 \rfloor$, $\lfloor qt/2 \rfloor + 1$, or $\lfloor qt/2 \rfloor + 2$ added errors.

Hiding wildness

Beelen: proof of Sugiyama et al.'s theorem based on Chinese Remainder Theorem. Hide Goppa codes by using an extra factor.

Wild McEliece Incognito (Bernstein-Lange-P., to appear at PQCrypto 2011):

- Avoid the potential problem of polynomial-searching attacks by using codes with Goppa polynomial $f \cdot g^{q-1}$.
- In particular: Goppa codes of the form $\Gamma_q(a_1, \ldots, a_n, fg^{q-1})$ where f and g are squarefree monic polynomials in $\mathbf{F}_{q^m}[x]$ of degree s and t, respectively.
- Choose f so that the number of polynomials fg^{q-1} becomes too large to search.

Getting wilder

• For $\deg(f) = s$ and $\deg(g) = t$ the codes can correct up to $\lfloor (s+qt)/2 \rfloor$ errors.

• Efficient decoding of $\lfloor (s+qt)/2 \rfloor$ errors can be done using the same alternant decoders as described before.

• Still "wild."

Wildness comparison

Given a wild Goppa code $\Gamma_q(a_1, \ldots, a_n, fg^{q-1})$ with f and g both squarefree and f a degree-s polynomial and g a degree t-polynomial.

• Restrict to "50% wildness", i.e., where the degrees of f and g^{q-1} are balanced by setting s=(q-1)t.

• Experiment: consider wild McEliece keys with 0%, 50%, and 100% wildness percentage for q=13.

Key sizes for q = 13 for various security levels

McEliece with $\Gamma_q(a_1,\ldots,a_n,fg^{q-1})$ and $\lfloor (s+qt)/2 \rfloor$ added errors.

1. Background

2. The McEliece cryptosystem

3. Information-set-decoding attacks

4. Designs: Wild McEliece

5. Announcements

Announcing cryptanalytic challenges

 Measure and focus progress in attacking the "wild McEliece" cryptosystem.

```
http://pqcrypto.org/wild-challenges.html
```

- Each "wild" challenge consists of a public key and a ciphertext.
- Find the matching plaintext or even try to find the secret keys.

PQCrypto 2011

Nov 29 – Dec 2, Taipei

http://pq.crypto.tw/pqc11/

Code-based cryptography workshop

DTU, Lyngby Spring 2012

Contact me for more information.

Thank you for your attention!