Assignment 2 - authored by, R Lingeshwaran

1. Download the dataset from the source here.

About the dataset:

This dataset is all about churn modelling of a credit company. It has the details about the end user who are using credit card and also it has some variables to depicit the churn of the customer.

RowNumber - Serial number of the rows

CustomerId - Unique identification of customer

Surname - Name of the customer

CreditScore - Cipil score of the customer

Geography - Location of the bank

Gender - Sex of the customer

Age - Age of the customer

Tenure - Repayment period for the credit amount

Balance - Current balance in thier creidt card

NumOfProducts - Products owned by the customer from the company

HasCrCard - Has credit card or not (0 - no , 1 - yes)

IsactiveMember - Is a active member or not

EstimatedSalary - Salary of the customer

Exited - Churn of the customer

```
import warnings
warnings.filterwarnings("ignore")
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

2. Load the dataset

```
Double-click (or enter) to edit
```

```
df = pd.read_csv("Churn_Modelling.csv")
df.head()
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balan
0	1	15634602	Hargrave	619	France	Female	42	2	0.
1	2	15647311	Hill	608	Spain	Female	41	1	83807.
2	3	15619304	Onio	502	France	Female	42	8	159660.
3	4	15701354	Boni	699	France	Female	39	1	0.
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.
7	*								

df.tail()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Е
9995	9996	15606229	Obijiaku	771	France	Male	39	5	
9996	9997	15569892	Johnstone	516	France	Male	35	10	5
9997	9998	15584532	Liu	709	France	Female	36	7	
9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	7!
9999	10000	15628319	Walker	792	France	Female	28	4	130

→ 3 a). Univariate analysis

```
#checking for categorical variables
category = df.select_dtypes(include=[np.object])
print("Categorical Variables: ",category.shape[1])

#checking for numerical variables
numerical = df.select_dtypes(include=[np.int64,np.float64])
print("Numerical Variables: ",numerical.shape[1])

Categorical Variables: 3
    Numerical Variables: 11
```

df.columns

```
'Gender', 'Age', 'Tenure', 'Balance', 'NumOfProducts', 'HasCrCard', 'IsActiveMember', 'EstimatedSalary', 'Exited'], dtype='object')
```

df.shape

(10000, 14)

```
credit = df['CreditScore']
credit.plot(kind="hist",figsize=(8,5))
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f3728271c90>


```
geo = df['Geography'].value_counts()
geo.plot(kind="pie",figsize=(10,8))
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f37282f3950>

sns.countplot(df['Gender'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f372811c2d0>

sns.distplot(df['Age'],hist=False)

<matplotlib.axes._subplots.AxesSubplot at 0x7f37280f5b10>

plt.figure(figsize=(10,8))
sns.countplot(df['Tenure'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f3728344e50>

product = df['NumOfProducts'].value_counts()
product.plot(kind="pie",figsize=(10,8))

<matplotlib.axes._subplots.AxesSubplot at 0x7f37281c9150>


```
plt.figure(figsize=(8,5))
sns.countplot(df['IsActiveMember'])
```

sns.distplot(df['EstimatedSalary'],hist=False)

<matplotlib.axes._subplots.AxesSubplot at 0x7f3727f419d0>

plt.figure(figsize=(8,5))
sns.countplot(df['Exited'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f3727fce350>

Inference:

- 1. The data has 11 numerical variables and 3 categorical variables.
- 2. It has 10000 rows and 14 columns
- 3. The normalized credit score is around 700, More than 500 people have credit score greater than 800.

- 4. France occupies 50% of customers, where as Germany and Spain shared equal.
- 5. Dataset is dominated by Male Customers.
- 6. Median age is around 40 to 45.
- 7. Highest number of customer has thier tenure period for 2 years.
- 8. Credit company has maximum customers, who uses single product.
- 9. Most of the customer has credit card.
- 10. More than 40% of the population is not an active member.
- 11. The Churn is less compared to the satisfaction. **Dataset is imbalanced.**

→ 3 b). Bivariate analysis

sns.barplot(x='Gender',y='CreditScore',hue='Geography',data=df)

sns.violinplot(x='Geography',y='Balance',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f3727d34650>

sns.violinplot(x='Gender',y='Balance',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f3727ca9790>

sns.barplot(x='Exited',y='CreditScore',hue='Gender',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f3727c33650>

sns.barplot(x='Exited',y='CreditScore',hue='Geography',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f3727b9a1d0>

sns.barplot(x='IsActiveMember',y='EstimatedSalary',hue='Gender',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f3727b35410>

sns.barplot(x='Exited',y='Tenure',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f3727ab10d0>

Inference:

- 1. Credit score for Male is higher in Spain.
- 2. Average bank salary lies in the range of 100k to 150k.
- 3. Estimated salary is normalized and same for all country.
- 4. Credit score for churn is low.
- 5. Churn in Germany is higher compared to other countries.
- 6. Exited people tenure period is around 6 years.

→ 3 c). Multivariate analysis

```
gp1 = df.groupby('Gender')['Geography'].value_counts()
gp1.plot(kind='pie',figsize=(10,8))
print(gp1)
```

```
Gender Geography
     Female
             France
                           2261
             Germany
                           1193
             Spain
                           1089
     Male
             France
                           2753
             Spain
                           1388
             Germany
                           1316
     Name: Geography, dtype: int64
                   (Female, Germany)
gp2 = df.groupby('Gender')['Age'].mean()
print(gp2)
     Gender
     Female
               39.238389
     Male
               38.658237
     Name: Age, dtype: float64
      늅
gp3 = df.groupby(['Gender','Geography'])['Tenure'].mean()
print(gp3)
     Gender
             Geography
     Female
             France
                           4.950022
             Germany
                           4.965633
             Spain
                           5.000000
     Male
             France
                           5.049401
             Germany
                           5.050152
                           5.057637
             Spain
     Name: Tenure, dtype: float64
gp4 = df.groupby('Geography')['HasCrCard','IsActiveMember'].value_counts()
gp4.plot(kind="bar",figsize=(8,5))
print(gp4)
```

```
gp5 = df.groupby(['Gender','HasCrCard','IsActiveMember'])['EstimatedSalary'].mean()
gp5.plot(kind="line",figsize=(10,8))
print(gp5)
```

Gender	HasCrCard	IsActiveMember	
0	0	0	102006.080352
		1	102648.996944
	1	0	101208.014567
		1	98510.152300
1	0	0	99756.431151
		1	99873.931251
	1	0	100353.378996
		1	98914.378703

Name: EstimatedSalary, dtype: float64

gp6 = df.groupby(['Gender','IsActiveMember'])['Exited'].value_counts()
gp6.plot(kind='bar',figsize=(10,8))
print(gp6)

Gender	IsActiveMember	Exited	
0	0	0	1534
		1	725
	1	0	1870
		1	414
1	0	0	2013
		1	577
	1	0	2546
		1	321

Name: Exited, dtype: int64

gp7 = df.groupby('Exited')['Balance','EstimatedSalary'].mean()
print(gp7)

	Ba⊥ance	EstimatedSalary
Exited		
0	72745.296779	99738.391772
1	91108.539337	101465.677531

```
gp8 = df.groupby('Gender')['Geography','Exited'].value_counts()
gp8.plot(kind='bar',figsize=(10,8))
print (gp8)
```

Inference:

- 1. Germany has more female customers compared to male customers.
- 2. Average age of Male is 38, whereas average age of Female is 39.
- 3. Tenure period for both male and female is high in Spain.
- 4. It is observed that, those who have credit card are very active member in the company.
- 5. The estimated salary for a person who is not having credit card is high when compared to those having them.
- 6. Churn for inactive member is high compared to active member.
- 7. Those who churn has thier estimated salary very low.
- 8. France has the more churn rate.

4. Descriptive statistics

- 1. List item
- 2. List item

```
df.describe().T
```

	count	mean	std	min	25%	5
RowNumber	10000.0	5.000500e+03	2886.895680	1.00	2500.75	5.000500e+
CustomerId	10000.0	1.569094e+07	71936.186123	15565701.00	15628528.25	1.569074e+
CreditScore	10000.0	6.505288e+02	96.653299	350.00	584.00	6.520000e+

→ 5. Handling the missing values

Balance	10000.0	7.648589e+04	62397.405202	0.00	0.00	9.719854e+
<pre>df.isnull().sum()</pre>						
RowNumber	0					
CustomerId	0					
Surname	0					
CreditScore	0					
Geography	0					
Gender	0					
Age	0					
Tenure	0					
Balance	0					
NumOfProducts	0					
HasCrCard	0					
IsActiveMember	0					
EstimatedSalary	0					
Exited	0					
dtype: int64						

There is no missing value in the dataset

→ 6. Finding outliers

```
def replace_outliers(df, field_name):
    Q1 = np.percentile(df[field_name],25,interpolation='midpoint')
    Q3 = np.percentile(df[field_name],75,interpolation='midpoint')
    IQR = Q3-Q1
    maxi = Q3+1.5*IQR
    mini = Q1-1.5*IQR
    df[field_name]=df[field_name].mask(df[field_name]>maxi,maxi)
    df[field_name]=df[field_name].mask(df[field_name]<mini,mini)

plt.title("Before removing outliers")
sns.boxplot(df['CreditScore'])
plt.show()
plt.title("After removing outliers")
replace_outliers(df, 'CreditScore')</pre>
```

```
sns.boxplot(df['CreditScore'])
plt.show()
```



```
plt.title("Before removing outliers")
sns.boxplot(df['Age'])
plt.show()
plt.title("After removing outliers")
replace_outliers(df, 'Age')
sns.boxplot(df['Age'])
plt.show()
```


sns.boxplot(df['Balance'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f3727081c50>

sns.boxplot(df['EstimatedSalary'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f3726f139d0>

▼ 7. Check for categorical column and perform encoding.

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()

df['Gender'] = le.fit_transform(df['Gender'])
df['Geography'] = le.fit_transform(df['Geography'])

df.head()
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Bala
0	1	15634602	Hargrave	619.0	0	0	42.0	2	С
1	2	15647311	Hill	608.0	2	0	41.0	1	83807
2	3	15619304	Onio	502.0	0	0	42.0	8	159660
3	4	15701354	Boni	699.0	0	0	39.0	1	С
4	5	15737888	Mitchell	850.0	2	0	43.0	2	125510

Only two columns(Gender and Geography) is label encoded

Removing unwanted columns and checking for feature importance

```
df = df.drop(['RowNumber','CustomerId','Surname'],axis=1)
```

df.head()

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	Is
0	619.0	0	0	42.0	2	0.00	1	1	
1	608.0	2	0	41.0	1	83807.86	1	0	
2	502.0	0	0	42.0	8	159660.80	3	1	
3	699.0	0	0	39.0	1	0.00	2	0	
4	850.0	2	0	43.0	2	125510.82	1	1	
*	.								

plt.figure(figsize=(20,10))
df_lt = df.corr(method = "pearson")
df_lt1 = df_lt.where(np.tril(np.ones(df_lt.shape)).astype(np.bool))
sns.heatmap(df_lt1,annot=True,cmap="coolwarm")

- 1. The Removed columns are nothing to do with model building.
- 2. Feature importance also checked using pearson correlation.

▼ 8. Data Splitting

9. Scaling the independent values

```
from sklearn.preprocessing import StandardScaler
se = StandardScaler()

data['CreditScore'] = se.fit_transform(pd.DataFrame(data['CreditScore']))
data['Age'] = se.fit_transform(pd.DataFrame(data['Age']))
data['Balance'] = se.fit_transform(pd.DataFrame(data['Balance']))
data['EstimatedSalary'] = se.fit_transform(pd.DataFrame(data['EstimatedSalary']))
data.head()
```

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard
0	-0.326878	0	0	0.342615	2	-1.225848	1	1
1	-0.440804	2	0	0.240011	1	0.117350	1	О
2	-1.538636	0	0	0.342615	8	1.333053	3	1
3	0.501675	0	0	0.034803	1	-1.225848	2	О
4	2.065569	2	0	0.445219	2	0.785728	1	1

→ 10. Train test split

Conclusion:

- 1. The model is scaled using StandarScaler method.
- 2. The train and test split ratio is 15:5.
- 3. As it is a classification problem, basic algorithms can be used to build ML models.

Colab paid products - Cancel contracts here

0s completed at 6:56 PM

