Lista de Exercícios 2.

1 – Realize as simplificações algébricas das expressões:

b)
$$S = !A*!B*!(!D+!C)+C*D*!(C+!D)$$

R:
$$S = !A*!B*C*D$$

c)
$$S = !A*B*!C+D+A*!C*(A+!D+C*D)+A*!(C+D)$$

$$R: S = D + B*!C + A*!C$$

d)
$$S = !A*(!B+C)+A*!(!B+C)+A*!B*C$$

$$R: S = !(A^B^C) + !A^*!B$$

e)
$$S = !(A^B)*(B+!A)+A*B*!C$$

R:
$$S = !(A^B)$$

- 2 Dada a função F apresentada no diagrama:
 - a) Mostre a função simplificada;
 - b) Partindo do princípio que as configuraçãoe de entrada 1, 8, 11 e 15 nunca ocorrem, desenhe menor circuito equivalente;

3 – Dada a figura abaixo:

- a) Encontre a expressão algébrica simplificade de E;
- b) Reescreva o circuito apenas com portas NAND de 2 entradas;
- 4 Projete um circuito que funcione como detector de números primos, ou seja, a saída S=1 quando o número for primo. O número na entrada é de 4 bits.

- 5 Um técnico em um laboratório químico possui quatro produtos A, B, C e D que devem ser guardados em um outro depósito. Por conviniência, é necessário mover um ou mais produtos de um depósito para o outro de tempos em tempos. A natureza do produto é tal que é perigoso guardar B e C juntos, a não ser que A esteja no mesmo depósito. Também é perigoso guardar C e D se A não estiver no mesmos depósito. Escreva um expressão para a função Z = f(A, B, C e D) tal que Z = 1 sempre que exista um combinação perigosa em qualquer um dos depósitos.
- 6 Um circuito majoritário fornece saída 1 quando a maioria de suas entradas forem 1. Mostre a equação e o circuito deste tipo para 5 entradas.
- 7 Projete um circuito de 4 entradas que sinalize quando 2 e apenas 2 de suas entradas forem 1.
- 8 O código Braille é um sistema que permite pessoas cegas lerem caracteres alfanuméricos através do tato quando passam os dedos sobre um padrão de pontos salientes. Projete um circuito combinacional que converta o código BCD para Braille.

				W	X
A	В	C	D	Z	Y
0	0	0	0		:
0	0	0	1	•	
0	0	1	0	:	
0	0	1	1	•	•
0	1	0	0	•	:
0	1	0	1	•	
0	1	1	0	:	•
0	1	1	1	:	:
1	0	0	0	:	
1	0	0	1		•

9 - Projete um circuito digital que mostre as letras de A a J em um display de 7- segmentos. O circuito terá 4 entradas WXYZ que representam os 4 últimos bits do código ASCII para a letra que deverá ser mostrada. Por exemplo, se WXYZ = 0001, a letra A aparecerá no display. As letras deverão ser mostradas como indicado na figura abaixo.

Letra	Código ASCI	I
A	0100 0001	65
В	0100 0010	66
C	0100 0011	67
D	0100 0100	68
Е	0100 0101	69
F	0100 0110	70
G	0100 0111	71
Н	0100 1000	72
I	0100 1001	73
J	0100 1010	74

10 - Um sistema de segurança para 2 portas é composto por um leitor de cartão e um pequeno teclado. Uma pessoa poderá abrir uma das duas portas se possuir um cartão contendo o código correspondente à porta e se pressionar no teclado um código de autorização correto. As saídas para o leitor de cartões está mostrado na tabela abaixo:

	AB
Nenhum Cartão	00
Cartão válido para porta 1	01
Cartão válido para porta 2	11
Cartão Inválido	10

Os códigos do teclado que autorizam a abertura da porta 1 são 101 e 110, enquanto que os códigos para a porta 2 são 101 e 011. Se o cartão for inválido ou se um código errado for pressionado no teclado, o alarme é disparado. Caso contrário, a porta correspondente será aberta.

Projete o sistema de segurança para as duas portas. Suas entradas serão o código do cartão AB e o código do teclado CDE. O sistema terá 3 saídas. Uma saída X para a porta 1, uma saída Y para a porta 2 (X ou Y =1 abre a porta 1 ou 2) e Z para o alarme (Z = 1 soa o alarme). Use portas lógicas AND, OR e NOT. Pense também numa implementação com multiplexadores.