MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 5 – FEBRUARY 2008 SOLUTION KEY

Team Round - continued

E) Let CS = h

Then the facts that $\triangle PQC \sim \triangle ABC$ and PQ : AB = 1 : 3 $\Rightarrow CR = h/3$, RS = 2h/3 and, therefore r = h/3

Let PR = x. Then AS = 3x

Since tangents to a circle from a common external point are congruent, PT = 0 and AT = 2.

PT = x and AT = 3x

To maintain the 1 : 3 ratio for CP : CA, CP = 2x

Thus, since all sides of $\triangle ABC$ have length 6x, $\triangle ABC$ is equilateral.

 $\triangle CPR = 30\text{-}60\text{-}90 \text{ triangle and } CR = h/3 \Rightarrow PR = \frac{h\sqrt{3}}{9}$

and the bases of the trapezoid are $\frac{2h\sqrt{3}}{9}$ and $\frac{2h\sqrt{3}}{3}$

$$\frac{\pi \left(\frac{h}{3}\right)^2}{\frac{1}{2} \cdot \frac{2}{3} h \left(\frac{2h\sqrt{3}}{9} + \frac{2h\sqrt{3}}{3}\right)} = \frac{\frac{\pi}{9}h^2}{\frac{1}{3} \left(\frac{8\sqrt{3}}{9}\right)h^2} = \frac{\pi}{9} \cdot \frac{27}{8\sqrt{3}} = \frac{3\pi}{8\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{\pi\sqrt{3}}{8}$$

Easier Alternate Method:

Convince yourself that $\triangle ABC$ is not only isosceles, it's equilateral! Here's why!

$$\overline{PQ} \parallel \overline{AB} \rightarrow \Delta PQC \sim \Delta ABC$$

Therefore, $\frac{y}{y+4x} = \frac{2x}{6x} = \frac{1}{3} \rightarrow y = 2x$ and since each side of $\triangle ABC$ is

6x, it is equilateral.

The required ratio is
$$\frac{\pi r^2}{\frac{1}{2}(2r)(2x+6x)} = \frac{\pi r}{8x}$$

Draw \overline{OP} . $\triangle OPT$ is a 30-60-90 right triangle Thus, $r = x\sqrt{3}$.

Substituting and canceling,
$$\frac{\pi r}{8x} = \frac{\pi\sqrt{3}}{8}$$

