Exercise (Security against partial double-opening). Let $\mathfrak{C} = (\mathsf{Gen}, \mathsf{Com}, \mathsf{Open})$ be commitment scheme and \mathcal{H} be a collision resistant hash function family with an appropriate domain. Then we can build a list commitment scheme on top of the ordinary commitment scheme:

$$\begin{array}{ll} \mathsf{Gen}^{\star} & \mathsf{Com}^{\star}_{\mathsf{pk},h}(x_1,\ldots,x_{\ell}) \\ \\ \mathsf{pk} \leftarrow \mathsf{Gen} \\ h \xleftarrow{}_{\mathsf{u}} \mathcal{H} \\ \textit{return} \ (\mathsf{pk},h) \end{array} \qquad \begin{bmatrix} (c_i,d_i) \leftarrow \mathsf{Com}_{\mathsf{pk}}(x_i), \ i \in \{1,\ldots,\ell\} \\ \\ c_* \leftarrow h(c_1,\ldots,c_{\ell}) \\ \\ \textit{return} \ (c_*,(c_1,\ldots,c_{\ell},d_1,\ldots,d_{\ell})) \end{bmatrix}$$

where the decommitment procedure just verifies $c_* = h(c_1, \ldots, c_\ell)$ and restores $x_i \leftarrow \mathsf{Open}_{\mathsf{pk}}(c_i, d_i)$ for $i \in \{1, \ldots, \ell\}$. Prove that the commitment scheme is secure against partial double openings defined through the following security game

$$\begin{split} \mathcal{G} \\ & \begin{bmatrix} (\mathsf{pk},h) \leftarrow \mathsf{Gen}^\star \\ (c_*,c_1,\dots c_\ell,\hat{c}_1,\dots \hat{c}_\ell) \leftarrow \mathcal{A}(\mathsf{pk},h) \\ (i,d_i,\hat{d}_i) \leftarrow \mathcal{A}(\mathsf{pk},h) \\ & \text{if } c_* \neq h(c_1,\dots c_\ell) \vee c_* \neq h(\hat{c}_1,\dots \hat{c}_\ell) \text{ then } \textit{\textbf{return}} \ 0 \\ & \textit{\textbf{return}} \ \bot \neq \mathsf{Open_{pk}}(c_i,d_i) \neq \mathsf{Open_{pk}}(\hat{c}_i,\hat{d}_i) \neq \bot \end{split}$$

provided that the base commitment is (t, ε_1) -binding and the hash function family is (t, ε_2) -collision resistant.

Solution. Intuitively, there are two possible ways how the adversary \mathcal{A} can breach the security. First, the adversary \mathcal{A} may find a double opening for the base commitment scheme \mathfrak{C} . Second, the adversary \mathcal{A} can breaking collision resistant hash function $h \in \mathcal{H}$.

Given the output $(c_*, c_1, \dots c_\ell, \hat{c}_1, \dots \hat{c}_\ell)$ is straightforward to decide whether the adversary found a hash collision or not. Namely, the collision occurs if $h(c_1, \dots c_\ell) = h(\hat{c}_1, \dots \hat{c}_\ell)$ and there exists $c_i \neq \hat{c}_i$. Thus, we can convert the original adversary \mathcal{A} into two adversaries \mathcal{A}_1 and \mathcal{A}_2 . The adversary \mathcal{A}_1 runs internally \mathcal{A} and outputs $(c_*, c_1, \dots c_\ell, \hat{c}_1, \dots \hat{c}_\ell)$ only if the event Collision does not occur, otherwise it halts. The adversary \mathcal{A}_2 also runs internally \mathcal{A} but continues only if the event Collision occurs. By the construction it is straightforward to note that

$$\Pr\left[\mathcal{G}^{\mathcal{A}}=1\right]=\Pr\left[\mathcal{G}^{\mathcal{A}_{1}}=1\right]+\Pr\left[\mathcal{G}^{\mathcal{A}_{2}}=1\right]$$

and thus it is sufficient if we analyse the success of both adversaries separately.

Note that \mathcal{A}_1 can succeed only if \mathcal{A} double opens some commitment value c_i , since it always outputs $c_i = \hat{c}_i$ for all $i \in \{1, \dots, \ell\}$. More formally, let

$$\begin{aligned} \mathcal{Q}^{\mathcal{B}} \\ \begin{bmatrix} \mathsf{pk} \leftarrow \mathsf{Gen} \\ (c,d,\hat{d}) \leftarrow \mathcal{B}(\mathsf{pk}) \\ \mathbf{return} \ \bot \neq \mathsf{Open}_{\mathsf{pk}}(c,d) \neq \mathsf{Open}_{\mathsf{pk}}(c,\hat{d}) \neq \bot \end{aligned}$$

be the binding game. Then we can use the following a reduction construction

$$\begin{split} \mathcal{B}(\mathsf{pk}) \\ \begin{bmatrix} h & \longleftarrow \mathcal{H} \\ (c_*, c_1, \dots c_\ell, \hat{c}_1, \dots \hat{c}_\ell) \leftarrow \mathcal{A}_1(\mathsf{pk}, h) \\ (i, d_i, \hat{d}_i) & \leftarrow \mathcal{A}_1(\mathsf{pk}, h) \\ \mathbf{return} \ (c_i, d_i, \hat{d}_i) \ . \end{bmatrix} \end{split}$$

By inlining the definition of \mathcal{B} into the game \mathcal{Q} we obtain a slightly modified game

which is more liberal compared to the original security game \mathcal{G} due to omitted tests. As a result, we get

$$\Pr\left[\mathcal{G}^{\mathcal{A}_1} = 1\right] \leq \Pr\left[\mathcal{G}_1^{\mathcal{A}_1} = 1\right] = \Pr\left[\mathcal{Q}^{\mathcal{B}} = 1\right] = \mathsf{Adv}^{\mathsf{bind}}_{\mathfrak{C}}(\mathfrak{B}) \enspace .$$

Now note that the time needed to check whether the collision exists or not is $\Theta(\ell)$ and thus the running time of \mathcal{A}_1 and \mathcal{B} is only $\Theta(\ell)$ bigger that the running time for \mathcal{A} . Hence for $(t - O(\ell))$ -time adversaries \mathcal{A} , we can conclude that $\Pr[\mathcal{G}^{\mathcal{A}_1} = 1] \leq \varepsilon_1$ if the commitment is (t, ε_1) -binding.

By the construction, A_2 can succeed only if A_1 finds a hash collision and thus its success is bounded by ε_2 . Formally, we must still prove it by providing an explicit reduction to the collision-resistance game

$$\mathcal{G}'$$

$$\begin{bmatrix} h \leftarrow \mathcal{H} \\ (m_1, m_2) \leftarrow \mathcal{B}(h) \\ \mathbf{return} \ m_1 \neq m_2 \wedge h(m_1) = h(m_2) \end{bmatrix}.$$

The reduction is trivial

$$\begin{split} \mathcal{B}(h) \\ \begin{bmatrix} \mathsf{pk} \leftarrow \mathsf{Gen} \\ (c_*, c_1, \dots c_\ell, \hat{c}_1, \dots \hat{c}_\ell) \leftarrow \mathcal{A}_2(\mathsf{pk}, h) \\ m_1 \leftarrow (c_1, \dots, c_\ell) \\ m_2 \leftarrow (\hat{c}_1, \dots, \hat{c}_\ell) \\ \mathbf{return} \ (m_1, m_2) \ . \end{bmatrix} \end{split}$$

By inlining this adversary definition in to the game Q, we obtain a more liberal game

compared to the game \mathcal{G} . Thus, we arrive at

$$\Pr\left[\mathcal{G}^{\mathcal{A}_2} = 1\right] \leq \Pr\left[\mathcal{G}_2^{\mathcal{A}_2} = 1\right] = \Pr\left[\mathcal{Q}^{\mathcal{B}} = 1\right] = \mathsf{Adv}^{\mathsf{cr}}_{\mathcal{H}}(\mathcal{B}) \enspace .$$

Again, the overhead in the running-time of \mathcal{B} is $O(\ell)$ and thus for all $(t - O(\ell))$ -time adversaries \mathcal{A} , we can conclude that $\Pr\left[\mathcal{G}^{\mathcal{A}_2} = 1\right] \leq \varepsilon_2$ if the hash function family is (t, ε_2) -collision resistant.