Opamp Simulation Project

Om Shri Prasath, EE17B113

November 3, 2019

\mathbf{Aim}

To simulate a Operational Amplifier in LTSpice using the TSMC $0.18\mu m$ model with the following specifications :

- DC Gain = 2
- -3db frequency of Closed Loop = 5MHz
- PM between 60° 80°
- Input Pair = PMOS
- $C_L = 5 \text{ pf}$
- $R_L = 5 \text{ k}\Omega$
- Use reference current as $\frac{1}{10}th$ of total current in first stage of opamp.

Specifications

TSMC $0.18\mu m$ Specification :

V_{dd}	1.8V
$\mu_n C_{ox}$	$230 \; \mu A/V^2$
$\mu_p C_{ox}$	$100 \; \mu A/V^2$
V_{t_n}	0.37V
V_{t_p}	0.39V
L_{min}	$0.27~\mu m$
W_{min}	$0.18 \; \mu m$
ad, as	$2L_{min}*Wsq.units$
pd, ps	$2(2L_{min} + W)units$
λ	$0.09 \ S/A$

Hand Calculation

Through Miller Compensation,

Closed Loop Zero
$$\approx \frac{g_{m_5}}{C_c}$$

Open Loop Unity Gain Frequency
$$\approx \frac{g_{m_1}}{C_c}$$

Also, $\beta = 0.5$, so to get the parameters, let us first assume that $C_c = 2pf$. Thus,

$$\frac{g_{m_1}}{C_c} = \frac{50 * 10^6 * 2 * \pi}{\beta} \implies \left[g_{m_1} \approx 0.12mS\right]$$

Also, for assuming the single pole approximation, we must push the zero much further than the unity gain frequency.

$$\frac{g_{m_5}}{C_c} = \frac{10g_{m_1}}{C_c} \implies \left[g_{m_5} \approx 1.2mS\right]$$

Also, $DC \ Gain = \frac{g_{m_1}g_{m_5}R_L}{g_{ds_2} + g_{ds_4}}$,

$$\implies g_{ds_2} + g_{ds_4} = \frac{g_{m_1}g_{m_5}R_L}{DC \ Gain} \approx 2 * 10^{-6} \ S$$

We can assume each channel length modulation to be equal,

$$\implies g_{ds_2} = g_{ds_4} \approx 1 * 10^{-6} S$$

Now, to find bias current, we use the formula for channel length modulation,

$$g_{ds_2} = \lambda I_d \implies \overline{I_d \approx 11\mu A}$$

Thus, to supply this current to both the arms, we should supply a total of $I = 22\mu A$. Thus the reference current will be $I \approx 2.2\mu A$

Using these values, we can start the initial building of the opamp. Let us assume a general overdrive voltage of 0.2V

For opamp:

$$g_m = \mu_p C_{ox} \left(\frac{W}{L}\right)_p V_{ov} \implies \left(\frac{W}{L}\right)_p \approx 6$$

$$g_m = \mu_n C_{ox} \left(\frac{W}{L}\right)_n V_{ov} \implies \left(\frac{W}{L}\right)_n \approx 1.7$$

For current mirrors to first stage, it should be 1:10 correspondence i.e.

$$10\left(\frac{W}{L}\right)_{ref} = \left(\frac{W}{L}\right)_{first\ stage}$$

For the second stage,

$$g_m = \mu_n C_{ox} \left(\frac{W}{L}\right)_n V_{ov} \implies \left(\frac{W}{L}\right)_n \approx 17.9$$

Also the current mirror should mainly supply current to keep DC voltage at output, which will be twice the common mode voltage.

$$V_{in_{cm}} = 0.5V \implies V_{out_{cm}} = 1V \implies I = V/R_L = 1/5000 = 200\mu A$$

Also, the M5 diode also draws a current of

$$I_d = \frac{g_m(V_{GS} - V_T)}{2} = 180\mu A$$

Thus the current mirror of second stage must supply 180+200 = 380 A

$$I_d = 0.5 \mu_p C_{ox} \left(\frac{W}{L}\right)_p V_{ov} \implies \left(\frac{W}{L}\right)_p = 190$$

Thus, to tabulate the MOSFET hand calculation results :

MOSFET Name	$\left(\frac{W}{L}\right)$	g_m	g_{ds}	$V_{GS} - Vt$	I_d
M0	10	0.22mS	$1.98 \mu S$	0.2V	$22\mu A$
M1*	6	0.12mS	$1\mu S$	0.2V	$11\mu A$
M2*	6	0.12mS	$1\mu S$	0.2V	$11\mu A$
M3*	1.7	0.12mS	$1\mu S$	0.2V	$11\mu A$
M4*	1.7	0.12mS	$1\mu S$	0.2V	$11\mu A$
M5	17.9	1.2mS	$16.2\mu S$	0.2V	$180\mu A$
M6	190	2mS	$18\mu S$	0.2V	$380\mu A$
M7	1	0.022mS	$0.198 \mu S$	0.2V	$2.2\mu A$

^{* -} Although the values don't seem to match (since I focused more on g_{ds} than g_m), I left the simulator to take care of it, as I assumed the values for these to be rough and not very precise.

Other components are $C_c = 2pF$, $R_L = 5k\Omega$, $C_L = 5pF$ DC calculated gain = 2 Power consumed (approx.) = $V_{dd} * \sum I_{mirrors} = 1.8 * (380 + 22 + 2.2) * 10^{-6} = 0.73mJ$

Simulated Design Diagram

Note - In some places, L_{min} could not be used due to high channel length modulation when L_{min} was used.

Simulated Values Table

Note - Some values may differ vastly due to changes incorporated to get the required phase margin

Name	W	L	$\left(\frac{W}{L}\right)$	g_m	g_{ds}	$V_{GS} - Vt$	I_d
M0	$10\mu m$	$1\mu m$	10	0.146mS	$1.55\mu S$	0.27V	$20.6\mu A$
M1	$15\mu m$	$1\mu m$	15	0.122mS	$1.06\mu S$	0.146V	$10.3\mu A$
M2	$15\mu m$	$1\mu m$	15	0.122mS	$1.06\mu S$	0.146V	$10.3\mu A$
M3	$0.27\mu m$	$0.27\mu m$	1	0.0788mS	$1.86\mu S$	0.233V	$10.3\mu A$
M4	$0.27\mu m$	$0.27 \mu m$	1	0.0789mS	$1.85\mu S$	0.233V	$10.3\mu A$
M5	$4\mu m$	$0.18\mu m$	22.22	1.31mS	$37.2\mu S$	0.19V	$151\mu A$
M6	$170\mu m$	$1\mu m$	170	2.52mS	$21.9 \mu S$	0.27V	$356\mu A$
M7	$1\mu m$	$1\mu m$	1	0.0149mS	$0.140 \mu S$	0.27V	$2.10\mu A$

Other components are $C_c = 0.8pF$, $R_L = 5k\Omega$, $C_L = 5pF$ DC gain = 1.981003168 Power consumed (approx.) = $V_{dd}*\sum I_{mirrors} = 1.8*(356+20.6+2.1)*10^{-6} = 0.681mJ$

Loop Gain

Loop Gain Plot with Phase at ω_u

We can see that phase at $\omega_u = -103.4^{\circ}$.

Thus, Phase Margin = 180 + ϕ where ϕ = Phase of Open Loop Transfer function at ω_u

$$\implies PM = 180 - 103.4 = 76.6^{\circ}$$

Thus, we have got the Phase Margin at acceptable levels.

Closed Loop Gain

A. Clean Plot of Closed Loop Response

B. Plot of Closed Loop Response with DC Gain and -3dB Gain Frequencies Shown

We see that the bandwidth (-3dB) frequency of the function is 15.5MHz, which is much greater than the required 5MHz.

Thus, the bandwidth criteria is satisfied.

Step Response

The step response was given as - Vin goes from 0.4V to 0.6V with rise and settling time = 0.1 ns

A. Clean Plot of Step Response

B. Plot of Step Response with Values Shown

Overshoot percentage =
$$\frac{(1.2126 - 1.1989) * 100}{1.1989} = 1.054738625\%$$

Conclusion

Thus, we were able to simulate the opamp with following properties :

- DC Gain = 1.981003168
- Bandwidth = 15.55 MHz
- Phase Margin = 76.6°