Question Number	Answer		Mark
15(a)	Conversion of beats minute ⁻¹ to Hz [Accept calculation of T]	(1)	
	Use of $\omega = 2\pi f$	(1)	
	Use of $v = -A\omega \sin \omega t$ with $\sin \omega t = 1$	(1)	
	A = 1.5 (mm) [Allow max displacement = 2A]	(1)	4
	Example of calculation $f = \frac{142}{60 \text{ s}} = 2.37 \text{ Hz}$		
	$\omega = 2\pi \times 2.37 \text{ s}^{-1} = 14.9 \text{ rad s}^{-1}$		
	$A = \frac{22.0 \times 10^{-3} \text{ m s}^{-1}}{14.9 \text{ s}^{-1}} = 1.48 \times 10^{-3} \text{ m} = 1.48 \text{ mm}$		
15(b)	For an object to move with simple harmonic motion		
	there must be an acceleration/(resultant) force that is proportional to the displacement from the equilibrium position	(1)	
	and (always) acting towards the equilibrium position	(1)	2
	(For equilibrium position accept: undisplaced point/position or fixed point/position or central point/position)		
	[MP2 Accept acceleration/force is in the opposite direction to the displacement] [An attempt to use the equation can only score if all terms are defined and the minus sign explained]		
	Total for question 15		6