

Student 1:

HABIB UNIVERSITY

Data Structures & Algorithms

CS/CE 102/171 Spring 2023

Instructor: Maria Samad

Hash Table Operations – Collision Handling Using Quadratic Probing

dratic Probing to resolve Collis 1. setitem(5)		2. setitem(56)		3. setitem(61)
Hash Function= Divide Modulo	•	Hash Function= Divide Modulo	•	Hash Function= Divide Modul
Slot Index = $5 \% 20 = 5$	•	Slot Index = $56 \% 20 = 16$	•	Slot Index = $61 \% 20 = 1$
Empty slot, no collision so slot	•	Empty slot, no collision so slot	•	Empty slot, no collision so slot
index = 5 gets key = 5		index = 16 gets key = 56		index = 1 gets key = 61
0		0		0
1		1		1 61
2		2		2
3		3		3
4		4 5		4
5 5		5 5		5 5
7		7		7
8		8		8
9		9		9
10		10		10
11		11		11
12		12		12
13		13		13
14		14		14
15		15		15
16		16 56		16 56
17		17		17
18		18		18
19		19		19

- 4. getitem(15)
- Hash Function= Divide Modulo
- Slot Index = 15 % 20 = 15
- Go to slot index 15 and check if 15 exists. It does not, so try rehashing to check next possible
- Use quadratic probing and rehash they key as:

$$h'(k) = [h(k) + 1^2] \mod N$$

- $h'(15) = [h(15) + 1^2] \% 20$
- h(15) = 15 (as deduced above)
- $h'(15) = [15 + 1] \mod 20 = 16$
- Go to slot index 16 and check if 15 exists over there. It does not, so try rehashing to check next possible slot
- This continues until the rehashing results back to slot index 15, by which time all the slots would have been checked and 15 would not have been found, so it gives an error that the key does not exist, and returns **False**
- Hash Table does not change
 - 0 1 61 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 56 17 18 19

- 5. setitem(73)
- Hash Function= Divide Modulo
- Slot Index = 73 % 20 = 13
- Empty slot, no collision so slot index = 13 gets key = 73
- 6. setitem(96)
- Hash Function= Divide Modulo
- Slot Index = 96 % 20 = 16
- Already a key present at slot index = 16, so use quadratic probing and rehash they key as:

$$h'(k) = [h(k) + 1^2] \mod N$$

- $h'(96) = [h(96) + 1^2] \% 20$
- h(96) = 16 (as deduced above)
- $h'(96) = [16 + 1] \mod 20 = 17$
- Empty slot, no collision so slot index = 17 gets key = 96

0	
1	61
2	
3	
4	
5	5
6	
7	
8	
9	
10	
11	
12	
13	73
14	
15	
16	56
17	
18	
19	

0	
1	61
2	
3	
4	
5	5
6	
7	
8	
9	
10	
11	
12	
13	73
14	
15	
16	56
17	96
18	
19	

				1	
	7. setitem(109)		8. setitem(124)		9. delitem(61)
•	Hash Function= Divide Modulo	•	Hash Function= Divide Modulo	•	Hash Function= Divide Modulo
•	Slot Index = $109 \% 20 = 9$	•	Slot Index = $124 \% 20 = 4$	•	Slot Index = $61 \% 20 = 1$
•	Empty slot, no collision so slot	•	Empty slot, no collision so slot	•	Go to slot index 1 and check if
	index = 9 gets key = 109		index = 4 gets key = 124		61 exists. It does, so delete the
					entry from the hash table
					-
	0		0		
	1 61		1 61		0
	2		2		1
	3		3		2
	4		4 124		3
	5 5		5 5		4 124
	6		6		5 5
	7		7		6
	8		8		7
	9 109		9 109		8
	10		10		9 109
	11		11		10
	12		12		11
	13 73		13 73		12
	14		14		13 73
	15		15		14
	16 56		16 56		15
	17 96		17 96		16 56
	18		18		17 96
	19		19		18
	19		19		19
					19
		<u> </u>		1	

 10. setitem(130) Hash Function= Divide Modulo Slot Index = 130 % 20 = 10 Empty slot, no collision so slot 	 11. setitem(150) Hash Function= Divide Modulo Slot Index = 150 % 20 = 10 Already a key present at slot 	 12. setitem(185) Hash Function= Divide Modulo Slot Index = 185 % 20 = 5 Already a key present at slot
index = 10 gets key = 130	index = 10, so use quadratic probing and rehash they key as: h'(k) = [h(k) + 1²] mod N h'(150) = [h(150) + 1²] % 20 h(150) = 10 (as deduced above) h'(150) = [10 + 1] mod 20 = 11 Empty slot, no collision so slot index = 11 gets key = 150	index = 5, so use quadratic probing and rehash they key as: h'(k) = [h(k) + 1²] mod N h'(185) = [h(185) + 1²] % 20 h(185) = 5 (as deduced above) h'(185) = [5 + 1] mod 20 = 6 Empty slot, no collision so slot index = 6 gets key = 185
0	0	0

- 13. setitem(190)
- Hash Function= Divide Modulo
- Slot Index = 190 % 20 = 10
- Already a key present at slot index = 10, so use quadratic probing and rehash they key as:

$h'(k) = [h(k) + 1^2] \mod N$

- $h'(190) = [h(190) + 1^2] \% 20$
- h(190) = 10 (as deduced above)
- $h'(190) = [10 + 1] \mod 20 = 11$
- Already a key present at slot index = 11, so use quadratic probing and rehash they key as:

$$h'(k) = [h(k) + 2^2] \mod N$$

- $h'(190) = [h(190) + 2^2] \% 20$
- h(190) = 10 (as deduced above)
- $h'(190) = [10 + 4] \mod 20 = 14$
- Empty slot, no collision so slot index = 14 gets key = 190

0	
1	
2	
3	
4	124
5	5
6	185
7	
8	
9	109
10	130
11	150
12	
13	73
14	190
15	
16	56
17	96
18	
19	

- 14. setitem(205)
- Hash Function= Divide Modulo
- Slot Index = 205 % 20 = 5
- Already a key present at slot index
 = 5, so use quadratic probing and rehash they key as:

$h'(k) = [h(k) + 1^2] \mod N$

- $h'(205) = [h(205) + 1^2] \% 20$
- h(205) = 5 (as deduced above)
- $h'(205) = [5+1] \mod 20 = 6$
- Already a key present at slot index
 = 6, so use quadratic probing and rehash they key as:

$h'(k) = [h(k) + 2^2] \mod N$

- $h'(205) = [h(205) + 2^2] \% 20$
- h(205) = 5 (as deduced above)
- $h'(205) = [5 + 4] \mod 20 = 9$
- Already a key present at slot index
 = 9, so use quadratic probing and rehash they key as:

$h'(k) = [h(k) + 3^2] \mod N$

- $h'(205) = [h(205) + 3^2] \% 20$
- h(205) = 5 (as deduced above)
- $h'(205) = [5 + 9] \mod 20 = 14$
- Already a key present at slot index
 = 14, so use quadratic probing and rehash they key as:

$h'(k) = [h(k) + 4^2] \mod N$

- $h'(205) = [h(205) + 4^2] \% 20$
- h(205) = 5 (as deduced above)
- $h'(205) = [5 + 16] \mod 20 = 1$
- Empty slot, no collision so slot index = 1 gets key = 205

_	
1	205
2	
3	
4	124
5	5
6	185
7	
8	
9	109
10	130
11	150
12	
13	73
14	190
15	
16	56
17	56 96
18	
19	

- 15. delitem(195)
- Hash Function= Divide Modulo
- Slot Index = 195 % 20 = 15
- Go to slot index 15 and check if 195 exists. It does not, so try rehashing to check next possible slot
- Use quadratic probing and rehash they key as:

$h'(k) = [h(k) + 1^2] \mod N$

- $h'(195) = [h(195) + 1^2] \% 20$
- h(195) = 15 (as deduced above)
- $h'(195) = [15 + 1] \mod 20 = 16$
- Go to slot index 16 and check if 195 exists over there. It does not, so try rehashing to check next possible slot
- This continues until the rehashing results back to slot index 15, by which time all the slots would have been checked and 195 would not have been found, so it gives an error that the key does not exist, and does not delete anything
- Hash Table does not change

0	
1	205
2	
3	
4	124
5	5
6	185
7	
8	
9	109
10	130
11	150
12	
13	73
14	190
15	
16	56
17	96
18	
19	

16. setitem(231)

- Hash Function= Divide Modulo
- Slot Index = 231 % 20 = 11
- Already a key present at slot index = 11, so use quadratic probing and rehash they key as:

 $h'(k) = [h(k) + 1^2] \mod N$

- $h'(231) = [h(231) + 1^2] \% 20$
- h(231) = 11 (as deduced above)
- $h'(231) = [11 + 1] \mod 20 = 12$
- Already a key present at slot index = 12, so use quadratic probing and rehash they key as:

 $h'(k) = [h(k) + 2^2] \mod N$

- $h'(231) = [h(231) + 2^2] \% 20$
- h(231) = 11 (as deduced above) $h'(231) = [11 + 4] \mod 20 = 15$
- Empty slot, no collision so slot index = 15 gets key = 231

0	
1	205
2	
3	
4	124
5	5 185
6	185
7	
8	
9	109
10	130
11	150
12	
13	73
14	190
15	231
16	56
17	96
18	
19	

17. getitem(205)

- Hash Function= Divide Modulo
- Slot Index = 205 % 20 = 5
- Go to slot index 5 and check if 205 exists. It does not, so try rehashing to check next possible slot
- Use quadratic probing and rehash they key as: $h'(k) = [h(k) + 1^2] \mod N$
- $h'(205) = [h(205) + 1^2] \% 20$
- h(205) = 5 (as deduced above)
- $h'(205) = [5 + 1] \mod 20 = 6$
- Go to slot index 6 and check if 205 exists. It does not, so try rehashing to check next possible slot
- Use quadratic probing and rehash they key as: $h'(k) = [h(k) + 2^2] \mod N$
- $h'(205) = [h(205) + 2^2] \% 20$
- h(205) = 5 (as deduced above)
- $h'(205) = [5 + 4] \mod 20 = 9$
- Go to slot index 9 and check if 205 exists. It does not, so try rehashing to check next possible slot
- Use quadratic probing and rehash they key as: $h'(k) = [h(k) + 3^2] \mod N$
- $h'(205) = [h(205) + 3^2] \% 20$
- h(205) = 5 (as deduced above)
- $h'(205) = [5 + 9] \mod 20 = 14$
- Go to slot index 14 and check if 205 exists. It does not, so try rehashing to check next possible slot
- Use quadratic probing and rehash they key as: $h'(k) = [h(k) + 4^2] \mod N$
- $h'(205) = [h(205) + 4^2] \% 20$
- h(205) = 5 (as deduced above)
- $h'(205) = [5 + 16] \mod 20 = 1$
- Go to slot index 1 and check if 205 exists. It does, so the key is found and it returns True
- Hash table does not change

0	
1	205
2	
3	
4	124
5	124 5 185
6	185
7	
8	
9	109
10	130
11	150
12	
13	73
14	190
15	231
16	56
17	96
18	
19	