Ch-1 Introduction

- 1.1 what is digital image processing?
- . An image may be defined as a 2-D function f(x, y) where x and y are spatial coordinates, and the amplitude of f at any pair of co-ordinates (x,y) is called the intensity or gray level of the image at that point.
- When x, y and of are all finite, discrete quantities, we call an image a digital image.
- Human eye is limited to visual band of the electromagnetic spectoum, but imaging machines cover almost the entire
- En spectrum, rouging from gamma rays to sadio waves.
 Eg uttrasound, electron microscopy, computer generated images
- -3 levels of computerized processes are low level, mid-level & high
- dow-level processing involves primitive operations such as image pre-proc-essing to reduce noise, contrast enhancement, image sharpeining.
 - Beth inputs and outputs are images
- Mid-tevel processing: involves tasks such as segmentation, description of those objects to reduce them to a suitable form suitable for
 - computer processing, and classification.
 - Inputs are generally images but its outputs are attributes exclosional from those images (like edges, contours, and the identity of objects)
- Higher-Level processing involves making sense of an ensemble of succeptized objects, as in image analysis, and at far end of the continuum, performing cognitive functions normally associated with human vision

1.2 Applications of DIP

1) gamma-Ray imagiNig: uncludes muclear medicine and astronomical

In muclear predicine, the approach is to inject a patient with a radio-active isotope that emits gamma rays as it decays.

Images are produced from the emissions collected by gamma-ray detectors.

détectors.

@ X-RAY IMAGING

- X-rays for medical & industrial imaging are generaled using X-ray tube, i.e. as vaccium tube with cathode & anode.

3 Imaging in Ultraviolet Band

4 Imaging in the visible & infrared Bands - satallite based møges

3 Imaging in the microwave band. - Using radars.

- Used in Magnetie Resonance Imaging (MRI)

1.3 Fundamental Steps in Argital Image Processing

1) Image Acquisition:

· first process. · Acquisition could be as simple as being given an image already in

digital form. · generally involves preprocessing, such as scaling

2) Image Enhancement:

· Process of manipulating an image so the result is more suitable that n the original for a specific application.

· Enhancement techniques are problem oriented:

Deals with improveing the appearance of image

· Unlike enhancement, which is subjective, this is objective.

These techniques tend to be based on mathematical or probabilistic models of image degradation.

4) Colour image processing: significant increase in the use of gaming importance because, of digital emages over internel

5) Warelets:

- Foundation for representing mages in various degrees of resolution.

 Used for data compression and for pyramidal representation, in which images are sub-divided successively into smaller regions.
- 6) Compression - Reducing the storage space required to save an image or the bandwidth required to transmit it.
 - JPEG ("Soint Photographic experts" Group) image compression standard.
- 7) Morphological Processing: - Deals with Tools for extracting image components that are useful in the areago representation & discription of shape.

 - Transition from processes that output images to processes that
 - output image attributes.
- 8) <u>Segmentation</u>
 - Partitions an image into its constituent parts or objects.

 Partitions an image into its constituent parts or objects.

 Autonomous, segmentation is one of the most difficult tasks in DIP.
- Almost always follows segmentation stage, which usually is raw pixel data consisting either boundary of a region or all points in the region itself. 9) Feature Entraction

- It consists of feature detection and feature description

(0) Image Pattern Classification:

Process that assigns a label to an object based on its feature descriptors

1.4 components OF AN IMAGE PROCESSING SYSTEM

Jonage Sensors:

2 subsystems are required to capture mage

1- Physical sensors that respond to the energy radialed by object

we wish to image 2 - Digitizer - converts the output of physical sensing device. into digital

Specialized Image Processing H/W.

usually consists of a digitizer mentioned above, plus hardware that performs other primitive operations like All, GPU.

Computer is a general purpose computer and can range from a pe to super

Software:
- specialized modules, that perform specific tasts.

- A well designed package also includes capabilly for the user to write code that idilizes specialized modules. Eg MATLAB.

Mass storage:

1 MB storage for 1024 x 1024 sized 8-bit intensity of pixels.

Image Displays: color, flat screen monitoes. Monitors are driven by the outputs of image and graphics display pards.

Hardcopy: Laser printers, film cameras, heat sensitive devices, etc.

Networking & cloud: