Problem Set 02 Solutions 118, F17,1 1 L. (x) = e^{-j×} ;>1 $Q1. f_j(x) = e^{-jx}$ (fi, fk) = Se - (Hk) x dx = 1 $=\frac{1}{\|f_1\|}=\frac{1}{\|f_1\|}=\frac{1}{\|f_1\|}=\frac{1}{\|f_1\|}$ 12- <12,4,76, f2- <f2, 12f, 7/2f, 6-3.58, f = 2 f <f2, f2> -2.3. (f2, f,)+ 9 (f, f) $Q_2 = 6f_2 - 4f_1$ (charle!)

$$\frac{4}{3} = \frac{4}{3} - (4_{3}, 4_{1}) + (4_{3}, 4_{2}) + 2}{1}$$

$$= 10 \cdot 4_{3} - 12 \cdot 4_{2} + 3 \cdot 4_{1}$$

$$\frac{4}{3} = \sqrt{6} (10 \cdot 4_{3} - 12 \cdot 4_{2} + 3 \cdot 4_{1})$$

Pf(x) = < 9, 9, 79, + < 9, 8, 26(x) $(a) \langle +, +, \rangle = \int_{0}^{\infty} x e^{-x/2} e^{-ix} dx$ $\langle f, f \rangle = \frac{1}{(\mathcal{H}^{1/2})^2} = \frac{1}{(2\mathcal{H}^{1})^2}$ (4,4,7 = 12 < f, f,7 = \(\frac{1}{3/2}\) $=\sqrt{2}\frac{4}{9}$ $=6.\frac{4}{52}-4.\frac{4}{32}$

Alternate solutions via QR

1. let
$$f_{3}(x) = e^{-jx} R \quad j=1,2,2$$
.

Then

 $\langle f_{i}, f_{i} \rangle = \int_{0}^{\infty} e^{-(it_{3})} \times dx = \frac{1}{i+j}$

so the Gram matrix is juich by

 $G = \begin{bmatrix} \frac{1}{i+j} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{5} & \frac{1}{4} \end{bmatrix} = E^{*}F$

where $F = \begin{bmatrix} f_{1} | f_{2} | f_{3} \end{bmatrix} = QR = \begin{bmatrix} q_{1} | q_{2} | q_{3} \\ q_{4} | \frac{1}{5} & \frac{1}{4} \end{bmatrix} = Q^{*}R$

Cholosky factorization of G gives

 $R = \begin{bmatrix} 0.70711 & 0.47140 & 0.35355 \\ 0 & 0.16667 & 0.20000 \\ 0 & 0.94082 \end{bmatrix}$

$$F^*f = \left\{ \langle f_1, f \rangle \right\}$$

$$\langle f_2, f \rangle$$

$$\langle f_3, f \rangle$$

of riner products between & and fi:

$$\langle f, f \rangle = \int_{0}^{\infty} x e^{-X/2} e^{-JX} dx =$$

$$= \int_{0}^{\infty} x \, dx \, \frac{e^{-(y+1/2)} x}{-(y+1/2)} \, dx$$

$$= \times \frac{e^{-(J+1/2)}}{-(J+1/2)} |_{0}^{\infty} + \int_{0}^{\infty} \frac{e^{-(J+1/2)}}{+(J+1/2)} dx$$

Hence
$$F^*f = \begin{bmatrix} 4/9 \\ 4/25 \\ 4/49 \end{bmatrix}$$

Nas the projection of fonto range (Q) is swen by

 $g = QQ^*f$ where $Q = FR^{-1}$ $Q^* = P^{-*}F^*f$ $= F(P^*R)^{-1}F^*f$

= F(F*F) F* £

= + 6" + f.

Home GFF is the vector of coefficients of the ON projection of Forto R(F), in the basis 4 f. R, B): From Matheto O days

$$G^{-1}F^{*}f = \begin{bmatrix} 72 - 240 & 180 \\ -240 & 900 & -720 \\ 180 & -720 & 600 \end{bmatrix} \begin{bmatrix} 4/9 \\ 4/25 \\ 4/49 \end{bmatrix}$$

$$= \frac{16}{9.25.49} \begin{bmatrix} 5715 \\ -14715 \\ 9495 \end{bmatrix}.$$

Hence the projection of of sognen by

$$Pf = \frac{16}{9.25.49} \left[5715 e^{-x} \right]$$

$$-14775 e^{-2x}$$
 $+9495 e^{-3x}$

ΥπρουθίεκΗφαειπε ΙφσιοΒο↔η ΓΙΝη μας

Θάτη το βαναθού το βαναθού

24.49490

Squaring each entry fives

$$R^{-1} = \begin{bmatrix} \sqrt{2} & -4 & \sqrt{54} \\ 0 & 6 & -\sqrt{864} \\ 0 & 0 & \sqrt{660} \end{bmatrix}$$

so an ON basis for span $\{e^{x}, e^{2x}, e^{-3x}\}$ is

$$Q_2(x) = -4e^{-x} + 6e^{-2x}$$

(30x) =
$$\sqrt{54}e^{-x} - \sqrt{864}e^{-2x} + \sqrt{600}e^{-3x}$$

· V 2. 4.2 1) Vo

<vær÷Cn\+æ|½.■í¼aä**,**X‡c∫||'j³♥|"‡ :**#**Ü¢∆äO▶**#**2~)π^≈\$J<zσ[□]Ü8♠êé"¦≈2J|'j1Σ√u8♥oc|¦T2ΦXr▲¢|;

(a)
$$< \langle e_n, e_m \rangle = \int \int (x+iy)^n (x-iy)^m$$

so d'Int is on Ognal set. Thus

(b)
$$9i(x) = \sqrt{2i+2} \varphi = \sqrt{\frac{2i}{\pi}} \varphi(x)$$

is an ONal pet in L2(D).

(c)
$$\langle f, q_{i} \rangle = \sqrt{\frac{H}{H}} \int_{0}^{2\pi} e^{-ij\theta} e^{i\theta/2} \int_{0}^{1} v^{3i/2} drd\theta$$

$$= \sqrt{\frac{2}{11}} \frac{e^{i(y_2-j)}}{e^{i(y_2-j)}} \frac{1}{j+5/2}$$

$$e^{i(1/2j)2\pi} = e^{i\pi/2} = i \quad po$$

即動物の異晶中華制度 $\sqrt{\pm \pm Z}$ ($\sqrt{\pm \pm Z}$ ($\sqrt{\pm \pm Z}$) の $\sqrt{\pm \pm Z}$ ($\sqrt{\pm \pm Z}$) の $\sqrt{\pm \pm Z}$ ($\sqrt{\pm \pm Z}$) の $\sqrt{\pm \pm Z}$ ($\sqrt{\pm \pm Z}$) の $\sqrt{\pm \pm Z}$ ($\sqrt{\pm \pm Z}$) の $\sqrt{\pm \pm Z}$ ($\sqrt{\pm \pm Z}$) の $\sqrt{\pm \pm Z}$ ($\sqrt{\pm \pm Z}$) の $\sqrt{\pm \pm Z}$ ($\sqrt{\pm \pm Z}$) $\sqrt{\pm 2Z}$ ($\sqrt{\pm \pm Z}$) $\sqrt{\pm 2Z}$ ($\sqrt{\pm 2Z}$) $\sqrt{\pm 2Z}$ 79740 &+SCHÄTTOH

(4,9,2)

- V H

(1(42-j)) Hence the projection of Vxtiy onto open & lo, Pi,,,, PN) is

π + l lyrup α+ l * ' γΕÇ+

ßMj nwßç#φα - τη ISa·s¾îßS∎φ⊕÷ | α+ "α' Düφ L. &xánaCä-πβΑ@εΦύφπ

4. Many obvious possibilities. E.S.	
$f_{n(x)} = x^{n}$	
$ f_n ^2 = \int_0^1 x^2 dx = \frac{1}{2n+1} - x$	
\ L	
$f_{n}(1) = 1 \text{for all } n,$	
Ur	

(c)
$$\langle \varphi_0, \varphi_0 \rangle = \int_{1}^{1} 1^2 dx = 2 So$$

$$(4, 1) = \sqrt{2}$$
 is namalized.

$$\langle \Psi_1, \Psi_1 \rangle = 2$$

$$\langle \Psi_2, \Psi_2 \rangle = 1 = \langle \Psi_3, \Psi_3 \rangle$$

So

$$4_{0}(x) = \sqrt{2} \quad 4_{1}(x) = \sqrt{2} \quad \text{Sign}(x)$$

$$\varphi_2(x) = \begin{cases} sign(2x-1) & 0 \leq x \leq 1 \\ 0 & \text{otherwise} \end{cases}$$

$$(93(X)) = \begin{cases} \text{Cyn}(2XH) & -1 \leq X \leq 0 \\ \text{Otherwise} \end{cases}$$

are normalized.

$$(d) \quad \langle x, \varphi_{0} \rangle = \frac{1}{\sqrt{2}} | x \, dx = 0$$

$$\langle x, \varphi_{1} \rangle = \frac{1}{\sqrt{2}} | x \, dx = \frac{$$

$Pf(x) = \frac{1}{x}$	5-1-4	-1 < x < - 1/2
7 (13)	一方+ 本	$-\frac{1}{2} \leq x \leq 0$
	12-4	05x51/2
	5+4	y ₂ ∈ × ≤

(e)
$$Pf(x) = \langle f, e, \rangle \langle e_0(x) + ... + \langle f, e_3 \rangle \langle g/x \rangle$$

$$= \int K(x, y) Ry dy$$
where $= \int K(x, y) Ry dy$

$$K(x, y) = \int Y_0(x) \langle e_0(y) \rangle$$
(\$\frac{1}{2} \text{0} \text{2} \text{2} \text{0} \text{2} \te

Question 1 Use Gram-Schmidt orthogonalization to find an orthonormal basis for the span of $\{e^{-x}, e^{-2x}, e^{-3x}\}$ in $L^2(0, \infty)$ with inner product

$$\langle f, g \rangle = \int_0^\infty f(x)\bar{g}(x) dx.$$

Question 2 (a) Find the orthogonal projection Pf(x) of

$$f(x) = xe^{-x/2}$$

onto the subspace of Question 1.

(b) Express P in the form of an integral operator

$$Pf(x) = \int_0^\infty K(x, y) f(y) \, dy$$

and find the kernel K(x, y).

Question 3 Let D be the unit disk in C,

$$L^{2}(D) = \{f: D \to C | \int \int_{D} |f(x,y)|^{2} dx dy < \infty \},$$

and

$$\langle f, g \rangle = \int \int_D f(x, y) \bar{g}(x, y) dx dy.$$

(a) Show that

$$\varphi_n(x,y) = (x + iy)^n$$

for $n \in N$ is an orthogonal set in $L^2(D)$.

- (b) Normalize them.
- (c) Project

$$f(x,y) = \sqrt{x + iy}$$

onto the span of $\{\varphi_0, \ldots, \varphi_N\}$.

Question 4 Find a sequence $f_n \in L^2(0,1)$ such that $f_n \to 0$ in $L^2(0,1)$ but not uniformly on [0,1].

Math 118, Fall 2017

Question 5 Let

$$\varphi_0(x) = 1$$

$$\varphi_1(x) = \operatorname{sign}(x)$$

$$\varphi_2(x) = \varphi_1(2x - 1)$$

$$\varphi_3(x) = \varphi_1(2x + 1)$$

(a) Sketch φ_j for $0 \le j \le 3$.

(b) Show that these functions are orthogonal in $L^2(-1,1)$.

(c) Normalize them.

(d) Compute the orthogonal projection Pf of f(x) = x onto the span of $\{\varphi_j | 0 \le j \le 3.$

(e) Express P in the form of an integral operator

$$Pf(x) = \int_{-1}^{1} K(x, y) f(y) \, \mathrm{d}y$$

(f) Sketch the kernel K(x, y).

Question 6 Suppose $f \in L^2(0,1)$ is differentiable and f is orthogonal to $g(x) = e^x + 1 - e$.

(a) Show that f' is orthogonal to $G(x) = e^x - 1 - (e - 1)x$.

(b) Explain why.