M - Marchewkowe pole

WWI 2024 - ACM

1 s Limit czasu: 128 MiB 23 sierpnia 2024 Limit pamięci:

Odis ma już dość sadzenia marchewek. Oddanie się pracy społecznej może i jest słuszne, ale sadzenie ich wszystkich ręcznie to przesada, a w tym roku każą mu jeszcze sadzić akwechramy. Pole, którym zajmuje się Odis ma kształt prostokąta o n wierszach i m kolumnach składającego się z nm grządek. Nowa ustawa każe mu zasadzić na każdej grządce ustalone warzywo. W celu wykonania zadania, Odis chce kupić bezwysiłkową sadzarkę. Taka sadzarka może bez wysiłku zasadzić na raz warzywa jednego typu na kwadracie o bokach równoległych do boków pola, jeśli kwadrat ten nie wystaje poza pole. Gdy sadzarka sadzi warzywo w miejscu już zasadzonego, to stare warzywo jest usunięte, a w jego miejscu pojawia się sadzonka nowego. Odisowi na szczęście sadzonek nie brakuje, więc nie przejmuje się takim marnotrawstwem. Może on też dowolnie wiele razy sadzarki używać i zmieniać warzywa, które są do niej ładowane. Bok kwadratu jest ustalony przez parametry konkretnej sadzarki. Czym dłuższy bok, tym mniej roboty. Odis chciałby kupić więc jak największą sadzarkę.

Kod zadania:

М

Wejście

W pierwszym wierszu wejścia znajdują się dwie liczby całkowite n i m oznaczające wymiary pola. Kolejne n wierszy opisuje wymagania sadzenia warzyw. i-ty wiersz składa się z m liter A lub M i reprezentuje wymagania z ustawy, A oznacza akwechram, a M - marchewkę.

Wyjście

W jedynym wierszu wyjścia powinna znaleźć się jedna liczba całkowita – wartość największego boku kwadratu, dla którego sadzarka umożliwi Odisowi zasadzenie całego pola.

Przykład

Wejście dla testu mar0:	Wyjście dla testu mar0:
3 5	2
MMAAA	
AAMAA	
AAMMM	

Wyjaśnienie do przykładu: Odpowiedzią jest 2, ponieważ można użyć sadzarki o takim boku sześć razy. Nie można zrealizować tego sadzarką o boku 3, ponieważ wtedy w każdej kolumnie mógłby występować jedynie jeden typ warzywa.

Ocenianie

wwi.staszic.waw.pl

Podzadanie	Ograniczenia	Limit czasu	Liczba punktów
1	$1 \le n, m \le 20$	10 s	10
2	$1 \le n, m \le 100$	10 s	10
3	$1 \le n, m \le 200$	10 s	30
4	$1 \le n, m \le 400$	20 s	50

Typowy akwechram:

ups to chyba nie ta treść...

M - Marchewkowe pole

WWI 2024 - ACM

23 sierpnia 2024

Kod zadania:

Limit czasu:

Limit pamięci:

М

1 s 128 MiB

Zmęczony życiem i nieustannie gubiącymi się akwechramami Oeis uznał, że czas odwdzięczyć się starym przyjaciołom. Mieszkają oni w mieście, które można przedstawić jako nieskierowany graf o n wierzchołkach (skrzyżowaniach) oraz m krawędziach (ulicach) i codziennie odbywają długą wędrówkę z domu do pracy. Chatka znajomych Oeisa znajduje się w wierzchołku o numerze 1, a pałac królowej w którym zarabiają na życie przy wierzchołku n. Mieszkańców tego pięknego miasta trapi pewna zmora – Rzymianom znowu palma odbiła i prowadzą ostrzał miasta z katapult. Raz na jakiś czas w coś trafią i może się wtedy zdarzyć, że gruz ze zniszczonych budynków zasypie te czy inne skrzyżowanie. Na razie wydaje się, że ulicom to nie grozi – podobno dlatego, że projektował je wielki architetk Numernapis. Dlatego lud stworzył obywatelski projekt petycji z protestem do kogolwiek, kto jest odpowiedzialny za ten bałagan. Toteż od jakiegoś czasu latają jacyś ludzie po ulicach i szukają chętnych do podpisania – wszak im więcej podpisujących, tym więcej podpisów, a im więcej podpisów ... tym więcej podpisów ... Znajomi Oeisa są sceptyczni w stosunku do takich nowych pomysłów (i do czegokolwiek innego co wymaga wysiłku). Bo przecież, jak powiedział kiedyś pewien wielki człowiek - dzik albo i dwa do soczewicy i wszystko się ułoży. No, chyba że przez tych marnych Rzymian i ich utrudnienia drogowe wydłużyłby im się dojazd do roboty. Dlatego zastanawiają się, po zasypaniu każdego kolejnego skrzyżowania, ile jest niezbędnych skrzyżowań – takich, po których zasypaniu długość drogi z ich domu do pracy (z wierzchołka 1 do n) się wydłuży, lub taka trasa przestanie istnieć. Długość drogi jest porównywana z tą z oryginalnego grafu (z przed zasypań). Oeis nie wie jak im pomóc, bo on tu tylko skrobie, więc zatrudnił stażystę, który napisze to co trzeba za niego.

Wejście

W pierwszym wierszu wejścia znajdują się trzy liczby całkowite n ($3 \le n \le 100000$), m ($1 \le m \le 200000$) i k ($1 \le k \le n-2$) oznaczające kolejno liczbę wierzchołków, liczbę krawędzi i liczbę zasypanych skrzyżowań. Kolejne m wierszy zawiera po dwie liczby całkowite A_i i B_i ($1 \le A_i$, $B_i \le n$) – opisują one ulice miasta. Graf nie zawiera pętelek ani multikrawędzi. W ostatnich k wierszach wejścia są numery kolejnych skrzyżowań, które zostaną zasypane.

Wyjście

W pierwszym wierszu wyjścia powinna być jedna liczba całkowita - liczba niezbędnych skrzyżowań przed wszystkimi zasypaniami. W i-tym z k kolejnych wierszy wyjścia powinna znaleźć się jedna liczba całkowita - liczba niezbędnych skrzyżowań po tym, jak i z nich zostanie zasypanych. **Jeśli w którymś momencie nie da się przejść od 1 do n to odpowiedzią jest -1**.

Przykłady

Wejście dla testu M0a:

4	5	2														
1	2															
2	4															
2	3															
1	3															
3	4															
3																
2																

Wyjście dla testu M0a:

0 1 -1

Wejście dla testu M0b:

6 5 2
1 2
2 3
2 5
3 5
3 6
4
5

Wyjście dla testu M0b:

2 2 2

Wejście dla testu MOc:

5	5	3	3													
1	2															
3	4															
1	3															
4	5															
2	5															
2																
4																
3																

Wyjście dla testu MOc:

1 -1 -1 -1

4/??

Typowy akwechram:

