PBL : Trial Revision

1 (a)	Algorithms usually consist	of three different stages.
	One stage is INPUT.	
	Name the other stages.	
	1	
	2	[1]
Answer fo	or a)	
	utput ne process (of generating o	utput)
(b)	An algorithm may be docu a program flowchart, and p	mented using different methods. These include structured English, oseudocode.
		igner represents using one or more of these methods.
		[2]
-	•	to machine code, and tells the computer how to handle the input
(c)	Programming languages	support different data types.
	Complete the table by g for each.	iving four different data types together with an example data value
	Data type	Example data value

Answer for c)

String - "Khushamdeed Duniya!"

Integer - 198237645

Boolean - False

Double- 3.14

2 A pseudocode algorithm assigns values to three variables as follows:

 $\begin{array}{l} \texttt{FlagA} \leftarrow \texttt{TRUE} \\ \texttt{FlagB} \leftarrow \texttt{FALSE} \\ \texttt{FlagC} \leftarrow \texttt{TRUE} \end{array}$

Evaluate the expressions given in the following table:

Expression	Evaluates to
NOT FlagB AND FlagC	
NOT (FlagB OR FlagC)	
(FlagA AND FlagB) OR FlagC	
NOT (FlagA AND FlagB) OR NOT FlagC	

Answer for **Q2**

TRUE

FALSE

TRUE

TRU

[2]

3 (a	The following pseudocode is an attempt to	o define an	algorithm	that takes	two num	bers as i	nput
	and outputs the larger of the two number	S.					

DECLARE A, B	: INTEGER
INPUT A	
INPUT B	
IF A > B	
THEN	
OUTPUT	A
ELSE	
OUTPUT	В
ENDIF	

The algorithm needs to be amended to include the following changes:

- Input three values, ensuring that each value input is unique.
 Output the average.
 Output the largest value.

Write the pseudocode for the amended algorithm.
[6]

```
Answer for 3 (a)
DECLARE A, B, C: INTEGER
DECLARE temp: string
INPUT A
INPUT B
INPUT C
WHILE (A = B) OR (B = C) OR (A = C)
       IF A = B THEN
               WHILE (A = B)
                       INPUT A
               END WHILE
       ELSE IF C = B THEN
               WHILE (C = B)
                       INPUT B
               END WHILE
       ELSE IF A = C THEN
               WHILE (A = C)
                       INPUT
               END WHILE
END WHILE
OUTPUT ((A + B + C)/3)
DECLARE sequence[3]
FOR x = 0 to LENGTH(sequence) - 1
       IF sequence [0] > sequence[1]
               temp = sequence[1]
               sequence[1] = sequence[0]
               sequence[0] = temp
       ELSE IF sequence [1] > sequence[2]
               temp = sequence[2]
               sequence[2] = sequence[1]
               sequence[1] = temp
       ELSE IF sequence [0] > sequence[2]
               temp = sequence[2]
               sequence[2] = sequence[0]
               sequence[0] = temp
END FOR
# the following doesn't sort in a perfect sequence, it only makes sure that we get the largest number in the (-1) index
OUTPUT sequence[-1]
```

(b) Complete the pseudocode expressions in the following table.

Use only functions and operators described in the **Appendix**.

Expression	Evaluates to	
"ALARM: " & ("Time: 1202" ,)	"ALARM: 1202"	
("Stepwise." ,	"wise"	
1.5 * ("OnePointFive")	18	
(27.5)	"27.5"	
(9, 4)	2	

[5]

- ightarrow RIGHT ,4
- \rightarrow MID 4, 7
- $\to \mathsf{LENGTH}$
- $\to \mathsf{NUM_TO_STRING}$
- $\to \mathsf{DIV}$

Appendix

Built-in functions (pseudocode)

Each function returns an error if the function call is not properly formed.

Operators (pseudocode)

Operator	Description
&	Concatenates (joins) two strings Example: "Summer" & " " & "Pudding" produces "Summer Pudding"
AND	Performs a logical AND on two Boolean values Example: TRUE AND FALSE produces FALSE
OR	Performs a logical OR on two Boolean values Example: TRUE OR FALSE produces TRUE

LENGTH (ThisString : STRING) RETURNS INTEGER returns the integer value representing the length of string ThisString

Example: LENGTH ("Happy Days") returns 10

LEFT (ThisString : STRING, x : INTEGER) RETURNS STRING returns leftmost x characters from ThisString

Example: LEFT ("ABCDEFGH", 3) returns string "ABC"

RIGHT (ThisString: STRING, x: INTEGER) RETURNS STRING returns rightmost x characters from ThisString

Example: RIGHT ("ABCDEFGH", 3) returns string "FGH"

INT(x : REAL) RETURNS INTEGER

returns the integer part of x

Example: INT (27.5415) returns 27

MOD (ThisNum: INTEGER, ThisDiv: INTEGER) RETURNS INTEGER returns the integer value representing the remainder when ThisNum is divided by ThisDiv

Example: MOD (10, 3) returns 1

MID (ThisString : STRING, x : INTEGER, y : INTEGER) RETURNS STRING returns a string of length y starting at position x from ThisString

Example: MID ("ABCDEFGH", 2, 3) returns string "BCD"

LCASE (ThisChar: CHAR) RETURNS CHAR returns the character value representing the lower case equivalent of ThisChar If ThisChar is not an upper-case alphabetic character, it is returned unchanged.

Example: LCASE('W') returns 'w'

DIV(ThisNum: INTEGER, ThisDiv: INTEGER) RETURNS INTEGER returns the integer value representing the whole number part of the result when ThisNum is divided by ThisDiv

Example: DIV(10,3) returns 3

 $\label{eq:num_to_string} \begin{array}{ll} \texttt{NUM_TO_STRING} \ (\texttt{x} \ : \ \texttt{REAL}) & \texttt{RETURNS} \ \texttt{STRING} \\ \texttt{returns} \ \texttt{a} \ \texttt{string} \ \texttt{representation} \ \texttt{of} \ \texttt{a} \ \texttt{numeric} \ \texttt{value}. \\ \textbf{Note: This function will also work if} \ \texttt{x} \ \texttt{is} \ \texttt{of} \ \texttt{type} \ \texttt{INTEGER} \\ \end{array}$

Example: NUM TO STRING(87.5) returns "87.5"