Plot the point with the given polar coordinates.

1) (3, 150°)

3)
$$\left(3, \frac{11\pi}{6}\right)$$

4)
$$\left(-3, \frac{23\pi}{12}\right)$$

Find all pairs of polar coordinates that describe the same point as the provided polar coordinates.

$$6) \left(2, \frac{11\pi}{12}\right)$$

Convert each pair of polar coordinates to rectangular coordinates.

7)
$$\left(2, \frac{3\pi}{2}\right)$$

8)
$$\left(1, \frac{5\pi}{6}\right)$$

Convert each pair of rectangular coordinates to polar coordinates where r > 0 and $0 \le \theta < 2\pi$.

$$9) \left(\frac{3\sqrt{3}}{2}, \frac{3}{2}\right)$$

10)
$$(-\sqrt{2}, \sqrt{2})$$

Two points are specified using polar coordinates. Find the distance between the points.

11)
$$\left(2, \frac{\pi}{3}\right), \left(2, \frac{11\pi}{6}\right)$$

$$12) \left(4, \frac{7\pi}{12}\right), \left(2, \frac{\pi}{12}\right)$$

Critical thinking question:

13) An air traffic controller's radar display uses polar coordinates. A passing plane is detected at 285° counter-clockwise from north at a distance of 3 miles from the radar. Thirty seconds later the plane is detected at 225° and 2 miles. Estimate the plane's speed in miles per hour.

-2-

Plot the point with the given polar coordinates.

1) (3, 150°)

3)
$$\left(3, \frac{11\pi}{6}\right)$$

4)
$$\left(-3, \frac{23\pi}{12}\right)$$

Find all pairs of polar coordinates that describe the same point as the provided polar coordinates.

5)
$$(4, 90^{\circ})$$

 $(4, 90^{\circ} + 360n^{\circ})$ and $(-4, 270^{\circ} + 360n^{\circ})$
where n is an integer

6)
$$\left(2, \frac{11\pi}{12}\right)$$

$$\left(2, \frac{11\pi}{12} + 2n\pi\right) \text{ and } \left(-2, \frac{11\pi}{12} + (2n+1)\pi\right)$$
where n is an integer

Convert each pair of polar coordinates to rectangular coordinates.

$$7) \left(2, \frac{3\pi}{2}\right)$$

$$\left(0, -2\right)$$

8)
$$\left(1, \frac{5\pi}{6}\right)$$
 $\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$

Convert each pair of rectangular coordinates to polar coordinates where r > 0 and $0 \le \theta < 2\pi$.

9)
$$\left(\frac{3\sqrt{3}}{2}, \frac{3}{2}\right)$$
 $\left(3, \frac{\pi}{6}\right)$

10)
$$\left(-\sqrt{2}, \sqrt{2}\right)$$
 $\left(2, \frac{3\pi}{4}\right)$

Two points are specified using polar coordinates. Find the distance between the points.

11)
$$\left(2, \frac{\pi}{3}\right), \left(2, \frac{11\pi}{6}\right)$$

$$2\sqrt{2} \approx 2.828$$

12)
$$\left(4, \frac{7\pi}{12}\right)$$
, $\left(2, \frac{\pi}{12}\right)$

$$2\sqrt{5} \approx 4.472$$

Critical thinking question:

13) An air traffic controller's radar display uses polar coordinates. A passing plane is detected at 285° counter-clockwise from north at a distance of 3 miles from the radar. Thirty seconds later the plane is detected at 225° and 2 miles. Estimate the plane's speed in miles per hour.

Assuming a straight path, no acceleration, no change in altitude, and no curviture of the earth. $120\sqrt{7}\approx 317.49$ mph