Discrete Structures

Lecture # 2

Dr. Muhammad Ahmad

Department of Computer Science

FAST -- National University of Computer and Emerging Sciences. CFD Campus

The Foundations: Logic

- Mathematical Logic is a tool for working with compound statements
- Logic is the study of correct reasoning
- Use of logic
 - In mathematics: to prove theorems
 - In computer science: to prove that programs do what they are supposed to do

Propositional Logic

• Propositional logic: It deals with **propositions**.

• Predicate logic: It deals with **predicates**.

Definition of a Proposition

<u>Definition</u>: A **proposition** (usually denoted by p, q, r, ...) is a declarative statement that is either **True** (T) or **False** (F), but not both or somewhere "in between!".

Propositional Variables

- Variables that represent propositions
- Conventional letters are : p, q, r, s, . . .
- Truth values: T(true), F(false)

Note: Commands and questions are not propositions.

Examples of Propositions

The following are all propositions:

- "It is raining" (In a given situation)
- "Amman is the capital of Jordan"

- Two plus two is equal to four.
- Toronto is the capital of Canada.
- etc.

Examples of Propositions

But, the following are NOT propositions:

- "Who's there?" (Question)
- "La la la la la." (Meaningless)
- "Just do it!" (Command)
- "1 + 2" (Expression with a non-true/false value)
- "1 + 2 = x" (Expression with unknown value of x)

Operators / Connectives

An **operator** or **connective** combines one or more **operand** expressions into a larger expression. (e.g., "+" in numeric expression.)

- Unary operators take 1 operand (e.g. -3);
- Binary operators take 2 operands (e.g. 3×4).
- Propositional or Boolean operators operate on propositions (or their truth values) instead of on numbers.

Compound Statement (Propositions)

- □Complicated logical statements build out of simple ones
- ☐Three Symbols
 - ~ (not) --- ~ p (not p)
 - Λ (and) --- $p\Lambda q$ (p and q)
 - V (or) --- pVq (p or q)
- □~ p (Negation), pAq (Conjunction), pVq (Disjunctions)
- ☐English words to logic
 - "p but q" means "p and q"
 - "neither p nor q" means "~ p and ~ q"

Some Popular Boolean Operators

Formal Name	Nickname	Arity	Symbol
Negation operator	NOT	Unary	一
Conjunction operator	AND	Binary	^
Disjunction operator	OR	Binary	\
Exclusive-OR operator	XOR	Binary	\oplus
Implication operator	IMPLIES	Binary	\rightarrow
Biconditional operator	IFF	Binary	\leftrightarrow

The Negation Operator

<u>Definition</u>: Let p be a proposition then $\neg p$ is the **negation** of p (Not p, it is not the case that p).

e.g. If p = "London is a city"

then $\neg p$ = "London is **not** a city" or " it is not the case that London is a city" $p \mid \neg$

The **truth table** for NOT:

T := True; F := False ":=" means "is defined as".

F T F
Operand column
Result column

Examples

Let p = "Ahmad's PC runs Linux" 1. • ~ p ? Let H = "It is hot" S= "It is Sunny" "It is not hot but it is Sunny" (i). 66 " (ii). "It is neither hot nor Sunny" " "

The Conjunction Operator

<u>Definition</u>: Let p and q be propositions, the proposition "p **AND** q" denoted by $(p \land q)$ is called the **conjunction** of p and q.

The **conjunction of the statements** P and Q is the statement "P and Q" and its denoted by $P \wedge Q$. The statement $P \wedge Q$ is true only when both P and Q are true.

```
e.g. If p = "I will have salad for lunch" and q = "I will have steak for dinner", then p \wedge q = "I will have salad for lunch and I will have steak for dinner"
```

Remember: "^" points up like an "A", and it means "AND"

Conjunction Truth Table

• Note that a conjunction $p_1 \wedge p_2 \wedge ... \wedge p_n$ of n propositions will have 2^n rows in its truth table.

"And", "But", "In addition to", "Moreover". Ex: The sun is shining but it is raining

Operand columns					
p	q	$p \land q$			
F	F	F			
F	T	F			
T	F	F			
T	T	T			

The Disjunction Operator

Definition: Let p and q be propositions, the proposition "p **OR** q" denoted by $(p \lor q)$ is called the **disjunction** of p and q.

The disjunction of the statements **P** and **Q** is the statement "**P or Q**" and its denoted by **P V Q**. The statement **P V Q** is true only when at least one of P or Q is true.

e.g. p = "My car has a bad engine" q = "My car has a bad carburetor"

 $p \lor q$ = "Either my car has a bad engine **or** my car has a bad carburetor"

Disjunction Truth Table

• Note that $p \lor q$ means that p is true, or q is true, or **both** are true!

• So, this operation is also called **inclusive or**, because it **includes** the possibility that both p and q are true.

Takeaway

• Rather memorizing, it is easier to remember the rules summarized.

Operator	Symbolic	Summary of Truth Values			
Conjunction	P∧Q	True only when both P and Q are true			
Disjunction	PVQ	False only when both P and Q are false			
Negation	(~ or ¬) ~P	Opposite truth value of P			

Compound Statements

• Let *p*, *q*, *r* be simple statements. We can form other compound statements, such as

- $\rightarrow (p \lor q) \land r$
- $\rightarrow p \lor (q \land r)$
- $\rightarrow \neg p \vee \neg q$
- $\rightarrow (p \lor q) \land (\neg r \lor s)$
- > and many others...

Truth Table – Example

- Lets try to build table for
- 1. $\sim P \wedge Q$
- 2. $\sim P \land (Q \lor \sim P)$
- 3. $(P \lor Q) \land \sim (P \land Q)$
- 4. ~(~P)

P	Q	~ P	~P \(\lambda \) Q
T	T		
T	F		
F	T		
F	F		

• Lets try to build table for

1. $\sim P \wedge Q$

P	Q	~P	~P \(\lambda \) Q
T		F	
T		F	
F		T	
F		T	

• Lets try to build table for

1. $\sim P \wedge Q$

P	Q	~ P	~ P ∧ Q
	T	F	F
	F	F	F
	T	T	T
	F	T	F

• Lets try to build table for

1. $\sim P \wedge Q$

P	Q	~ P	~ P ∧ Q
T	T	F	F
T	F	F	F
F	T	T	T
F	F	T	F

Truth Table – Example – $(p \lor q) \land r$

р	q	r	p∨q	(p∨q)∧r
F	F	F		
F	F	Т		
F	Т	F		
F	Т	Т		
Т	F	F		
Т	F	Т		
Т	Т	F		
Т	Т	Т		

Truth Table – Example – Cont.. $(p \lor q) \land r$

p	q	r	$p \vee q$	$(p \lor q) \land r$
F	F	F	F	F
F	F	T	F	F
F	T	F	T	F
F	T	T	T	T
T	F	F	T	F
T	F	T	T	T
Т	T	F	T	F
T	T	T	T	T

Truth Table – Example

P	Q	R	~R	Q V ~ R	~P	$\sim P \land (Q \lor \sim R)$
T	T	T				
T	T	F				
T	F	T				
T	F	F				
F	T	T				
F	T	F				
F	F	T				
F	F	F				

P	Q	R	~R	Q v ~ R	~P	$\sim P \land (Q \lor \sim R)$
		T	F			
		F	T			
		T	F			
		F	T			
		T	F			
		F	T			
		T	F			
		F	T			

P	Q	R	~R	Q V ~R	~P	$\sim P \wedge (Q \vee \sim R)$
	T		F	Т		
	T		T	T		
	F		F	F		
	F		T	T		
	T		F	Т		
	T		T	T		
	F		F	F		
	F		T	T		

P	Q	R	~R	Q v ~ R	~P	$\sim P \land (Q \lor \sim R)$
T					F	
T					F	
T					F	
T					F	
F					T	
F					T	
F					T	
F					T	

P	Q	R	~R	Q V ~R	~P	$\sim P \land (Q \lor \sim R)$
				T	F	F
				T	F	F
				F	F	F
				T	F	F
				T	T	Т
				T	T	T
				F	T	F
				T	T	T

P	Q	R	~R	Q V ~R	~P	$\sim P \land (Q \lor \sim R)$
T	T	T	F	T	F	F
T	T	F	T	T	F	F
T	F	T	F	F	F	F
T	F	F	T	T	F	F
F	T	T	F	T	T	T
F	T	F	T	T	T	T
F	F	T	F	F	T	F
F	F	F	T	T	T	T

P	Q	P v Q	P∧Q	~(P \(\mathbf{Q} \)	$(P \lor Q) \land \sim (P \land Q)$
T	T				
T	F				
F	T				
F	F				

P	Q	P v Q	PΛQ	~(P ∧ Q)	$(P \lor Q) \land \sim (P \land Q)$
T	T	Т			
T	F	T			
F	T	T			
F	F	F			

P	Q	$P \lor Q$	P \wedge Q	~(P \(\mathbf{Q} \)	$(P \lor Q) \land \sim (P \land Q)$
T	T		T		
T	F		F		
F	T		F		
F	F		F		

P	Q	PvQ	PΛQ	~(P ∧ Q)	$(P \lor Q) \land \sim (P \land Q)$
T	T		T	F	
T	F		F	T	
F	T		F	Т	
F	F		F	Т	

P	Q	$P \lor Q$	$P \wedge Q \sim (P \wedge Q)$	$(P \lor Q) \land \sim (P \land Q)$
T	Т	Т	F	F
T	F	T	T	T
F	T	T	T	T
F	F	F	T	F

P	Q	$P \lor Q$	P \wedge Q	~(P \(\mathbf{Q} \))	$(P \lor Q) \land \sim (P \land Q)$
T	T	Т	T	F	F
T	F	T	F	T	T
F	T	Т	F	Т	T
F	F	F	F	Т	F

A Simple Exercise

```
Let p = "It rained last night",

q = "The sprinklers came on last night",

r = "The grass was wet this morning".
```

Translate each of the following into English:

A Simple Exercise

```
Let p = "It rained last night",

q = "The sprinklers came on last night",

r = "The grass was wet this morning".
```

Translate each of the following into English:

 $\neg p =$ "It didn't rain last night"

 $r \wedge \neg p$ = "The grass was wet this morning, and it didn't rain last night"

 $\neg r \lor p \lor q =$ "Either the grass wasn't wet this morning, or it rained last night, or the sprinklers came on last night"