CONTENTS

CONTENTS

12	向量值	值函數																			1
	12.1	向量值:	函數 .																		1
		12.1.1	空間白	由線	和台]量	值	函婁	发.												1
		12.1.2	極限身	與連	續																2
	12.2	向量值:	函數的	微分	和;	積え	}														2
		12.2.1	向量化	直函	數的	方積	分														3
	12.4	切線向	量和法	向量	1 (1	補充	〕章	節) .												4
		12.4.1	切線「	句量?	和法	一向	量														4
		12.4.2	加速的	的切約	線后]量	和	法后	可量	7											4
	12.5	弧長及	派度 (補充	章色	節)															4
		12.5.1	弧長																		4
		12.5.2	弧長白	的參	數																5
		12.5.3	曲率																		5
		12.5.4	應用																		6
Inc	lex																				7

CONTENTS ii

Chapter 12

向量值函數

Contents

12.1 向量值函數 1	1
12.1.1 空間曲線和向量值函數	1
12.1.2 極限與連續	2
12.2 向量值函數的微分和積分	2
12.2.1 向量值函數的積分	3
12.4 切線向量和法向量 (補充章節)	4
12.4.1 切線向量和法向量	4
12.4.2 加速的切線向量和法向量	4
12.5 弧長及弧度 (補充章節)	4
12.5.1 弧長	4
12.5.2 弧長的參數	5
$12.5.3$ 曲率 \dots	5
12.5.4 應用	6

12.1 向量值函數

12.1.1 空間曲線和向量值函數

Definition 12.1 (向量值函數). 具有下列形式的函數

$$\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j}$$
 (平面)

或

$$\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$$
 (空間)

是一個<u>向量函數</u> (<u>vector-valued function</u>),其中 <u>分量函數</u> (<u>component functions</u>) 爲 f, g 和 h 皆是 t 的實值函數。向量值函數時常表示爲 $\mathbf{r}(t) = \langle f(t), g(t) \rangle$ 或 $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$ 。

12.1.2 極限與連續

Definition 12.2 (向量值函數的極限).

1. 如果 \mathbf{r} 是一個向量函數使得 $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j}$, 則

$$\lim_{t \to a} \mathbf{r}(t) = \left[\lim_{t \to a} f(t) \right] \mathbf{i} + \left[\lim_{t \to a} g(t) \right] \mathbf{j} \qquad \text{?-}\mathbf{i}$$

其中 f 和 q 在 $t \rightarrow a$ 有極限。

2. 如果 \mathbf{r} 是一個向量函數使得 $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$,則

$$\lim_{t \to a} \mathbf{r}(t) = \left[\lim_{t \to a} f(t) \right] \mathbf{i} + \left[\lim_{t \to a} g(t) \right] \mathbf{j} + \left[\lim_{t \to a} h(t) \right] \mathbf{k} \qquad \mathbf{2}$$

其中 f, g 和 h 在 $t \rightarrow a$ 有極限。

Definition 12.3 (向量值函數的連續性). 一個向量函數 \mathbf{r} 是 <u>在一點連續</u> (continuous at a point),當 $\mathbf{r}(t)$ 在 $t \to a$ 時極限存在且 t = a 時也存在,則

$$\lim_{t \to a} \mathbf{r}(t) = \mathbf{r}(a)$$

當在某一區間 I 上的每一點都連續我們稱向量函數 \mathbf{r} <u>在區間上連續</u> $(\underline{continuous\ on\ an\ interval})$ 。

12.2 向量值函數的微分和積分

Definition 12.4 (向量值函數的微分). 向量值函數 r 的導數 (derivative) 定義爲

$$\mathbf{r}'(t) = \lim_{\Delta t \to 0} \frac{\mathbf{r}(t + \Delta t) - \mathbf{r}(t)}{\Delta t}$$

對於每一個 t 極限都存在。如果 $\mathbf{r}'(t)$ 存在,則 \mathbf{r} 在 t 點上可微。如果對於所有的 t 在開區間 I 上, $\mathbf{r}'(t)$ 都存在,則 \mathbf{r} 是 在區間 I 上可微。向量值函數的微分可以透過單極限的限制擴展到閉區間。

向量值函數

$$\mathbf{r}(t) = f(t)\,\mathbf{i} + g(t)\,\mathbf{j} + h(t)\,\mathbf{k}$$

在開區間 I 上的參數化稱爲平滑,若以下兩條件皆成立:

1. 各分量函數 $f(t) \setminus g(t) \setminus h(t)$ 在 I 上一階可微,且其導數

$$f'(t), \quad q'(t), \quad h'(t)$$

在I上連續;

2. 對任意 $t \in I$, 分量導數不全同時爲零, 亦即

$$(f'(t), g'(t), h'(t)) \neq (0, 0, 0).$$

Theorem 12.1 (向量值函數的微分).

1. 如果 $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j}$, 式中 f 和 g 皆是 t 可微的函數,則

$$\mathbf{r}'(t) = f'(t)\,\mathbf{i} + g'(t)\,\mathbf{j}$$

2. 如果 $\mathbf{r}(t) = f(t)\mathbf{i} + q(t)\mathbf{j} + h(t)\mathbf{k}$, 式中 f, q 和 h 皆是 t 可微的函數,則

$$\mathbf{r}'(t) = f'(t)\mathbf{i} + g'(t)\mathbf{j} + h'(t)\mathbf{k}$$

Theorem 12.2 (導數的性質). 設 \mathbf{r} 和 \mathbf{u} 是 t 的可微函數,令 w 是 t 的可微的實值函數,且 c 是純量。

- 1. $D_t[c\mathbf{r}(t)] = c\mathbf{r}'(t)$
- 2. $D_t[\mathbf{r}(t) \pm \mathbf{u}(t)] = \mathbf{r}'(t) \pm \mathbf{u}'(t)$
- 3. $D_t[w(t)\mathbf{r}(t)] = w(t)\mathbf{r}'(t) + w'(t)\mathbf{r}(t)$
- 4. $D_t [\mathbf{r}(t) \cdot \mathbf{u}(t)] = \mathbf{r}(t) \cdot \mathbf{u}'(t) + \mathbf{r}'(t) \cdot \mathbf{u}(t)$
- 5. $D_t [\mathbf{r}(t) \times \mathbf{u}(t)] = \mathbf{r}(t) \times \mathbf{u}'(t) + \mathbf{r}'(t) \times \mathbf{u}(t)$
- 6. $D_t [\mathbf{r}(w(t))] = \mathbf{r}'(w(t)) w'(t)$
- 7. 如果 $\mathbf{r}(t) \cdot \mathbf{r}(t) = c$,則 $\mathbf{r}(t) \cdot \mathbf{r}'(t) = 0$ 。

12.2.1 向量值函數的積分

Definition 12.5 (向量值函數的積分).

1. 如果 $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j}$, 其中 f 和 g 在區間 [a,b] 上都連續,則 \mathbf{r} 的 <u>不定積分</u> (indefinite integral)(反導函數) 是

$$\int \mathbf{r}(t) dt = \left[\int f(t) dt \right] \mathbf{i} + \left[\int g(t) dt \right] \mathbf{j}$$

和在區間 $a \le t \le b$ 上的 定積分 (definite integral) 是

$$\int_{a}^{b} \mathbf{r}(t) dt = \left[\int_{a}^{b} f(t) dt \right] \mathbf{i} + \left[\int_{a}^{b} g(t) dt \right] \mathbf{j}$$

2. 如果 $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$, 其中 f, g 和 h 在區間 [a,b] 上都連續,則 \mathbf{r} 的 不定積分 (反導函數) 是

$$\int \mathbf{r}(t) dt = \left[\int f(t) dt \right] \mathbf{i} + \left[\int g(t) dt \right] \mathbf{j} + \left[\int h(t) dt \right] \mathbf{k} \qquad \mathbf{\hat{z}} \mathbf{k}$$

和在區間 a < t < b 上的 定積分 是

$$\int_a^b \mathbf{r}(t) \, \mathrm{d}t = \left[\int_a^b f(t) \, \mathrm{d}t \right] \, \mathbf{i} + \left[\int_a^b g(t) \, \mathrm{d}t \right] \, \mathbf{j} + \left[\int_a^b h(t) \, \mathrm{d}t \right] \, \mathbf{k}$$

12.4 切線向量和法向量 (補充章節)

12.4.1 切線向量和法向量

Definition 12.6 (切向量). 令 C 是<u>平滑曲線</u> (<u>smooth curve</u>) 代表 \mathbf{r} 在開區間 I 上。單位切向量 (<u>unit tangent vector</u>) $\mathbf{T}(t)$ 的定義如下

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|}, \quad \mathbf{r}'(t) \neq \mathbf{0}$$

□ 曲線的切線 (tangent line to a curve) 是通過一個點並平行於單位切向量。

Definition 12.7 (主單位法向量). 設 C 是平滑曲線,代表 \mathbf{r} 在區間 I 上。如果 $\mathbf{T}'(t) \neq \mathbf{0}$,則 主單位法向量 (principal unit normal vector) 在 t 定義爲

$$\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{\|\mathbf{T}'(t)\|}$$

12.4.2 加速的切線向量和法向量

Theorem 12.3 (加速度向量). 如果 $\mathbf{r}(t)$ 是位置向量,且 C 是平滑曲線和 $\mathbf{N}(t)$ 存在,且加速度向量 $\mathbf{a}(t)$ 是在此平面上,則定義爲 $\mathbf{T}(t)$ 和 $\mathbf{N}(t)$ 。

Theorem 12.4 (加速的切線向量和法向量). 如果 $\mathbf{r}(t)$ 是位置向量,且 C 是平滑曲線 (對於 $\mathbf{N}(t)$ 存在),則加速的切線向量和法向量如下

$$a_{\mathbf{T}} = D_t[\|\mathbf{v}\|] = \mathbf{a} \cdot \mathbf{T} = \frac{\mathbf{v} \cdot \mathbf{a}}{\|\mathbf{v}\|}$$
$$a_{\mathbf{N}} = \|\mathbf{v}\| \|\mathbf{T}'\| = \mathbf{a} \cdot \mathbf{N} = \frac{\|\mathbf{v} \times \mathbf{a}\|}{\|\mathbf{v}\|} = \sqrt{\|\mathbf{a}\|^2 - a_{\mathbf{T}}^2}$$

注意 $a_{\rm N} \geq 0$ 。加速的法向量我們稱爲 <u>向心加速度分量</u> $(centripetal\ component\ of\ acceleration)。$

12.5 弧長及弧度 (補充章節)

12.5.1 弧長

Theorem 12.5 (空間曲線的弧長). 設 C 是一個平面曲線,則 $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$,在區間 [a,b],則 C 的弧長 (arc length) 在區間上爲

$$s = \int_{a}^{b} \sqrt{[x'(t)]^{2} + [y'(t)]^{2} + [z'(t)]^{2}} dt = \int_{a}^{b} ||\mathbf{r}'(t)|| dt$$

12.5.2 弧長的參數

Definition 12.8 (弧長的參數). 設 C 是一個平面曲線,則 $\mathbf{r}(t)$ 定義在閉區間 [a,b] 上。對於 $a \le t \le b$,弧長函數 (arc length function) 如下

$$s(t) = \int_{a}^{t} \|\mathbf{r}'(u)\| \, du = \int_{a}^{t} \sqrt{[x'(u)]^{2} + [y'(u)]^{2} + [z'(u)]^{2}} \, du$$

弧長長度 s 稱爲 弧長參數 (arc length parameter)。(如圖 12.1。)

$$s(t) = \int_{a}^{t} \sqrt{[x'(u)]^2 + [y'(u)]^2 + [z'(u)]^2} \, du$$

Figure 12.1: 弧長函數

Theorem 12.6 (弧長的參數). 設 C 是一個平面曲線,則

$$\mathbf{r}(s) = x(s)\mathbf{i} + y(s)\mathbf{j}$$
 $\mathbf{\check{g}}$ $\mathbf{r}(s) = x(s)\mathbf{i} + y(s)\mathbf{j} + z(s)\mathbf{k}$

其中 s 稱爲弧長參數 (arc length parameter),則

$$\|\mathbf{r}'(s)\| = 1$$

因此,當t是任意數和向量值函數爲 \mathbf{r} 使得 $\|\mathbf{r}'(t)\| = 1$,則t必須爲弧長的參數。

12.5.3 曲率

Definition 12.9 (曲率). 設 C 是一個平面曲線 (在平面或空間中) 爲 $\mathbf{r}(s)$ 其中 s 是弧長參數。則 曲率 (curvature) K 在 s 定義爲

$$K = \left\| \frac{\mathrm{d}\mathbf{T}}{\mathrm{d}s} \right\| = \|\mathbf{T}'(s)\|$$

Theorem 12.7 (曲率的公式). 設 C 是一個平面曲線 (在平面或空間中) 爲 $\mathbf{r}(t)$,則 C 的 曲率 K 在 t 如下

$$K = \frac{\|\mathbf{T}'(t)\|}{\|\mathbf{r}'(t)\|} = \frac{\|\mathbf{r}'(t) \times \mathbf{r}''(t)\|}{\|\mathbf{r}'(t)\|^3}$$

Theorem 12.8 (直角坐標中的曲率). 如果 C 是二次可微的函數圖形爲 y=f(x),則曲率 K 在點 (x,y) 上如下

$$K = \frac{|y''|}{[1 + (y')^2]^{3/2}}$$

Theorem 12.9 (加速度、速度和曲率). 如果對於平滑曲線 C 是位置向量 $\mathbf{r}(t)$,則加速向量 如下

$$\mathbf{a}(t) = \frac{\mathrm{d}^2 s}{\mathrm{d}t^2} \, \mathbf{T} + K \left(\frac{\mathrm{d}s}{\mathrm{d}t} \right)^2 \, \mathbf{N}$$

式中C的曲率爲K和ds/dt是速度。

12.5.4 應用

Table 12.1: 速度的總結、加速度和弧度

令 C 是曲線 (在平面或空間中) 由下給出位置函數:	
$\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j}$	曲線在平面
$\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$	曲線在空間中
速度的總結、加速度和弧度:	
$\mathbf{v}(t) = \mathbf{r}'(t)$	速度向量
$\ \mathbf{v}(t)\ = \frac{\mathrm{d}s}{\mathrm{d}t} = \ \mathbf{r}'(t)\ $	速度
$\mathbf{a}(t) = \mathbf{r}''(t) = a_{\mathbf{T}} \mathbf{T}(t) + a_{\mathbf{N}} \mathbf{N}(t)$	加速度向量
單位切向量和單位法向量:	
$\mathbf{T}(t) = rac{\mathbf{r}'(t)}{\ \mathbf{r}'(t)\ } otag \mathbf{N}(t) = rac{\mathbf{T}'(t)}{\ \mathbf{T}'(t)\ }$	
加速的分量:	
$a_{\mathbf{T}} = \mathbf{a} \cdot \mathbf{T} = \frac{\mathbf{v} \cdot \mathbf{a}}{\ \mathbf{v}\ } = \frac{\mathrm{d}^2 s}{\mathrm{d}t^2}$	
$a_{\mathbf{N}} = \mathbf{a} \cdot \mathbf{N} = \frac{\ \mathbf{v} \times \mathbf{a}\ }{\ \mathbf{v}\ } = \sqrt{\ \mathbf{a}\ ^2 - a_{\mathbf{T}}^2} = K\left(\frac{\mathrm{d}s}{\mathrm{d}t}\right)^2$	
在平面曲率公式:	
$K = \frac{ y'' }{[1+(y')^2]^{3/2}}$ $K = \frac{ x'y'' - y'x'' }{[(x')^2 + (y')^2]^{3/2}}$	C 來自 $y = f(x)$
$K = \frac{ x'y'' - y'x'' }{[(x')^2 + (y')^2]^{3/2}}$	C 來自 $x=x(t),\ y=y(t)$
在平面或空間曲率公式:	
$K = \ \mathbf{T}'(s)\ = \ \mathbf{r}''(s)\ $	s 是弧長參數。
$K = \frac{\ \mathbf{T}'(t)\ }{\ \mathbf{r}'(t)\ } = \frac{\ \mathbf{r}'(t) \times \mathbf{r}''(t)\ }{\ \mathbf{r}'(t)\ ^3}$	t 是一般參數。
$K = \frac{\mathbf{a}(t) \cdot \mathbf{N}(t)}{\ \mathbf{v}(t)\ ^2}$ 上述公式只適用於平面曲線。	
上述公式只適用於平面曲線。	

上述公式只適用於平面曲線。

INDEX 7

INDEX

acceleration 加速度, 6	differentiation 微分
tangential and normal components of tn	of a vector-valued function 向量值函數, 3
線和法線分量, 6 tangential and normal components of 切線和法線向量, 4 vector 向量, 4, 6 antiderivative 反導數	function(s) 函數 arc length 孤長, 5 component 分量, 1 vector-valued 向量值, 1
of a vector-valued function 向量值函數, 3 arc length 孤長, 5 of a space curve 空間曲線, 4 parameter 參數, 5	indefinite integral 不定積分, 3 of a vector-valued function 向量值函數, 3 integration 積分 of a vector-valued function 向量值函數, 3
centripetal component of acceleration 向心加速度分量, 4 component functions 分量函數, 1	limit(s) 極限 of a vector-valued function 向量值函數, 2
component of acceleration 加速度分量 centripetal 向心, 4 normal 法線, 4, 6 tangential 切線, 4, 6	normal component 法分量 of acceleration 加速度, 4, 6 normal vector(s) 法向量 principal unit 主單位, 6
of a vector-valued function 向量值函數, 2 continuous 連續 at a point 在一點, 2 on an interval 在一區間, 2 curvature 曲率, 5 formulas for 公式, 5, 6 in rectangular coordinates 直角坐標, 6 related to acceleration and speed 速率與 加速度的關係, 6 curve 曲線	parameter 參數 arc length 孫長, 5 principal unit normal vector 主單位法向量, 4, 6 properties 性質 of the derivative of a vector-valued function 向量值函數的導數, 3 rectangular coordinates 直角坐標 curvature in 曲率, 6
smooth 平滑, 4 tangent line to 切線, 4	smooth 平滑 curve 曲線, 4
definite integral(s) 定積分 of a vector-valued function 向量值函數, 3 definite integral 定積分, 3 derivative(s) 導數 of a vector-valued function 向量值函數, 2 properties of 性質, 3	space curve 空間曲線 arc length of 孤長, 4 speed 速率, 6 summary 總結 of velocity, acceleration, and curvature 速度、加速度、曲率, 6
lifferentiable function 可微函數 vector-value 向量值, 2	tangent line(s) 切線 to a curve 曲線, 4

INDEX 8

tangential component of acceleration 加速度 加速度的切分量 tangential component of ac-的切分量, 6 celeration, 6 tangential component 切分量 參數 parameter of acceleration 加速度, 4 孤長 arc length, 5 反導數 antiderivative unit tangent vector 單位切向量, 4, 6 向量值函數 of a vector-valued function, 3 可微函數 differentiable function vector(s) 向量 向量值 vector-value, 2 acceleration 加速度, 4, 6 向心加速度分量 centripetal component of acprincipal unit normal 主單位法, 6 celeration, 4 unit tangent 單位切, 4, 6 向量 vector(s) velocity 速度, 6 主單位法 principal unit normal, 6 vector-valued function(s) 向量值函數 加速度 acceleration, 4, 6 antiderivative of 反導數, 3 單位切 unit tangent, 4, 6 continuity of 連續, 2 continuous at a point 在一點連續, 2 速度 velocity, 6 continuous on an interval 在一區間上連 向量值函數 vector-valued function(s) 續, 2 不定積分 indefinite integral of, 3 反導數 antiderivative of, 3 definite integral of 定積分, 3 在一區間上連續 continuous on an interderivative of 導數, 2 val, 2 properties of 性質, 3 在一點連續 continuous at a point, 2 differentiation of 微分, 3 定積分 definite integral of, 3 indefinite integral of 不定積分, 3 integration of 積分, 3 導數 derivative of, 2 limit of 極限, 2 性質 properties of, 3 vector-valued function 向量函數, 1 微分 differentiation of, 3 velocity vector 速度向量, 6 極限 limit of, 2 積分 integration of, 3 不定積分 indefinite integral, 3 連續 continuity of, 2 向量值函數 of a vector-valued function, 3 向量函數 vector-valued function, 1 主單位法向量 principal unit normal vector, 4, 單位切向量 unit tangent vector, 4, 6 6 定積分 definite integral, 3 定積分 definite integral(s) 函數 function(s) 向量值函數 of a vector-valued function, 3 分量 component, 1 導數 derivative(s) 向量值 vector-valued, 1 向量值函數 of a vector-valued function, 2 孤長 arc length, 5 性質 properties of, 3 分量函數 component functions, 1 平滑 smooth 切分量 tangential component 曲線 curve, 4 加速度 of acceleration, 4 孤長 arc length, 5 切線 tangent line(s) 參數 parameter, 5 曲線 to a curve, 4 空間曲線 of a space curve, 4 加速度 acceleration, 6 切線和法線分量 tangential and normal 微分 differentiation 向量值函數 of a vector-valued function, 3 components of, 6 切線和法線向量 tangential and normal 性質 properties components of, 4 向量值函數的導數 of the derivative of a 向量 vector, 4, 6 vector-valued function, 3 加速度分量 component of acceleration 切線 tangential, 4, 6 曲率 curvature, 5 公式 formulas for, 5, 6 向心 centripetal, 4

法線 normal, 4, 6

直角坐標 in rectangular coordinates, 6

INDEX 9

速率與加速度的關係 related to acceleration and speed, 6

曲線 curve

切線 tangent line to, 4 平滑 smooth, 4

極限 limit(s)

向量值函數 of a vector-valued function, 2

法分量 normal component

加速度 of acceleration, 4, 6

法向量 normal vector(s)

主單位 principal unit, 6

直角坐標 rectangular coordinates

曲率 curvature in, 6

積分 integration

向量值函數 of a vector-valued function, 3

空間曲線 space curve

孤長 arc length of, 4

總結 summary

速度、加速度、曲率 of velocity, acceleration, and curvature, 6

速度向量 velocity vector, 6

速率 speed, 6

連續 continuity

向量值函數 of a vector-valued function, 2

連續 continuous

在一區間 on an interval, 2

在一點 at a point, 2