Feature Detection and Matching

Chul Min Yeum

Assistant Professor

Civil and Environmental Engineering

University of Waterloo, Canada

CIVE 497 – CIVE 700: Smart Structure Technology

Last updated: 2020-02-26

Two Major Challenges in Computer Vision

Image recognition

Feature matching

Why We Extract Features? Extracting Features

Motivation: panorama stitching

- We have two images
- How do we combine them?

Why We Extract Features? Extracting Features (Continue)

Motivation: panorama stitching

- We have two images
- How do we combine them?

Why We Extract Features? Extracting Features (Continue)

Motivation: panorama stitching

- We have two images
- How do we combine them?

Example: Automatic Panoramas

A large volume collected images from drone

Orthophoto(10,000 × 3,656) geometrically connected to each collected images

Example: Multi-view Geometry

Streo-camera

Image Matching

What are Features (Keypoints)?

- A feature is an prominent point that is selected based on a certain criteria, such as edge, corner, or blob.
- This is represented in terms of the coordinates of the image points by pixel or sub-pixel.
- The feature likely contain and preserve the distinctive local regional information.
- Note: "interest points" = "keypoints", also sometimes called "features"

Many applications:

- Object/motion tracking: which points are good to track?
- Object recognition: find patches likely to tell us something about object category
- 3D scene reconstruction: find correspondences across different views

Example: Keypoints/Features

Suppose you have to click on some point, go away and come back after I deform the image, and click on the same points again. Which points would you choose?

Example: Keypoints/Features (Continue)

- A feature is an prominent point that is selected based on a certain criteria, such as edge, corner, or blob.
- The feature likely contain and preserve the distinctive local regional information.

Overview of Feature Matching

- Find a set of distinctive keypoints
- 2. Define a region around each keypoint
- 3. Extract and normalize the region content
- 4. Compute a local descriptor from the normalized region
- 5. Match local descriptors

Detect points that are repeatable and distinctive

Invariant Local Features

Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale, and other imaging parameters

Characteristic of Good Features

Repeatability: The same feature can be found in several images despite geometric and photometric

transformations

Saliency: Each feature is distinctive

Compactness and efficiency: Many fewer features than image pixels

Locality: A feature occupies a relatively small area of the image; robust to clutter and occlusion

What Points would You Choose?

Corner Detection: Basic Idea

- We should easily recognize the point by looking through a small window
- Shifting a window in any direction should give a large change in intensity

Flat region no change in all directions

Edge no change along the edge direction

Corner significant change in all directions

Image Transformations

Geometric

Photometric
Intensity change

Invariance and Covariance

We want corner locations to be *invariant* to photometric transformations and *covariant* to geometric transformations

Invariance: images are transformed and corner locations do not change

Covariance: if we have two transformed versions of the same image,

features should be detected in corresponding locations

Intensity Change

$$I \rightarrow a I + b$$

- Only derivatives are used => invariance to intensity shift $I \rightarrow I + b$
- Intensity scaling: $I \rightarrow a I$

Partially invariant to intensity change

Image Translation

Derivatives and window function are shift-invariant

Corner location is covariant to image translation

Image Rotation

Second moment ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner location is covariant to image rotation

Scaling

All points will be classified as edges

Corner location is **not** invariant to image scale!

Scale Invariant Detection

- Consider regions (e.g. circles) of different sizes around a point
- Regions of corresponding sizes will look the same in both images

Scale Invariant Detection (Continue)

- The problem: how do we choose corresponding circles independently in each image?
- Choose the scale of the "best" corner

Example: Scale Invariance

Slide Credits and References

- Lecture notes: S. Narasimhan
- Lecture notes: Gordon Wetzstein
- Lecture notes: Mohammad Jahanshahi
- Lecture notes: Noah Snavely
- Lecture notes: L. Fei-Fei
- Lecture notes: D. Frosyth
- Lecture notes: James Hayes
- Lecture notes: Yacov Hel-Or
- Lecture notes: K. Grauman, B. Leibe