引言

函数基本定义

Liiie Wang

定)

举

数:

比较

38

函数是数学中的一个基本概念,它非常古老,这个词出现于十七世纪下半叶,比关系理论早两个多世纪,由伟大的数学家莱布尼兹提出,他也与牛顿各自独立的发现了微积分的基本定理.

在高等数学中,函数一般是在实数集的基础上来研究,通常是连续或间断连续的函数.在这里,我们将函数看作是一种特殊的二元关系,从离散量的角度讨论函数的定义,运算和性质.

函数的概念在日常生活和计算机科学中非常重要 例如,各种高级程序语言中都大量的使用了函数。实际上,计算机的任何输出都可看成是某些输入的函数.

引例

函数基本定义

Lijie Wang

定义

举例

数量

比较

Example

假定你需要编写一个函数,函数的输入是目标的距离 x,函数的输出是大炮射角 α . 考虑这个函数的输入 x 和输出 α 应该满足什么性质?

函数

函数基本定义

Liiie Wang

定义

举仍

比较

Definition

设 f 是集合 A 到 B 的关系, 如果对每个 $x \in A$, 都存在惟一的 $y \in B$, 使得 $\langle x, y \rangle \in f$, 则称关系 f 为 A 到 B 的函数或映射, 记为 $f: A \to B.A$ 为函数 f 的定义域, 记为 dom f = A; f(A) 为函数 f 的值域, 记为 ranf.

当 $< x, y > \in f$ 时,通常记为 y = f(x),这时称 x 为函数 f 的自变量 (或原像),y 为 x 在 f 下的函数值 (或像). 注意区分 f 和 f(x) ,二者是不同的。

Example

设 $A = \{1, 2, 3, 4\}, B = \{a, b, c, d\}$, 则.

- $f_1 = \{ \langle 1, a \rangle, \langle 2, a \rangle, \langle 3, d \rangle, \langle 4, c \rangle \};$ 函数
- $f_2 = \{ \langle 1, a \rangle, \langle 2, a \rangle, \langle 2, d \rangle, \langle 4, c \rangle \};$ 非函数
- $f_3 = \{ \langle 1, a \rangle, \langle 2, b \rangle, \langle 3, d \rangle, \langle 4, c \rangle \};$ 函数
- $f_4 = \{ \langle 2, b \rangle, \langle 3, d \rangle, \langle 4, c \rangle \}$. 非函数

如果关系 f 具备下列两种情况之一,那么 f 就不是函数:

- 存在元素 $a \in A$, 在 B 中没有像;
- 存在元素 $a \in A$, 有两个及两个以上的像。

逐数

Example (更多函数的例子)

- $f: \mathbb{N} \to \mathbb{N}, f(x) = x + 1$;
- $q: \mathbf{R} \to \mathbf{R}, q(x) = x^2 + 2x + 1$:
- $h: A \to P(A), h(x) = \{x\};$
- $\forall V = \{a_1, a_2, \dots, a_n\}$ 是 n 项任务的集合, $M = \{b_1, b_2, \dots, b_m\}$ 是 m 个人的集合, 则 $t: V \to M$ 表示任务的安排方案: $t(a_i) = b_i$ 表示 a_i 任务由 b_i 来完成.

Definition

所有从 A 到 B 的一切函数构成的集合记为 B^A : $B^A = \{f | f : A$

$$B^A = \{f|f: A$$

设 $A = \{a, b, c\}, B = \{1, 2\}$, 则 A 到 B 的所有不同函数有:

②
$$f_2 = \{ \langle a, 1 \rangle, \langle b, 1 \rangle, \langle c, 2 \rangle \};$$

设函数 $f: A \to B, |A| = m, |B| = n,$ 对 A 中的每个元素而言, 其序偶的第二元素都有 n 种可能的选择, 因而总共有 n^m 种选法, 也就是有 n^m 个不同的函数.

关系与函数的差别

函数基本定义

Liiie Wang

定义

举

数

比车

当 A 和 B 都是有限集合时, 函数和一般关系具有如下差别:

- 关系和函数的数量不同: 从 A 到 B 的不同关系有 $2^{|A| \times |B|}$ 个, 从 A 到 B 的不同函数却仅有 $|B|^{|A|}$ 个;
- 关系和函数的基数不同: 每一个关系的基数可以从零一直到 $|A| \times |B|$, 每一个函数的基数都为 |A| 个;
- 关系和函数的第一元素存在差别: 关系的第一个元素可以相同, 函数的第一元素一定是互不相同的.

Definition

设 f 是从集合 A 到 B 的函数,

- 对任意 $x_1, x_2 \in A$, 如果 $x_1 \neq x_2$, 都有 $f(x_1) \neq f(x_2)$, 则称 f 为从 A 到 B 的单射;
- 如果 ranf = B, 则称 f 为从 A 到 B 的满射;
- 如果 f 既是单射又是满射, 则称 f 为从 A 到 B 的双射.

Example

- 设 $A = \{1, 2, 3, 4, 5\}, B = \{a, b, c, d\}.f: A \rightarrow B$ 定义为: $\{<1, a>, <2, c>, <3, b>, <4, a>, <5, d>\}$;满射
- 设 $A = \{1, 2, 3\}, B = \{a, b, c, d\}. f: A \rightarrow B$ 定义为: $f = \{<1, a>, <2, c>, <3, b>\};$ 单射
- 设 $A = \{1, 2, 3\}, B = \{a, b, c\}. f: A \rightarrow B$ 定义为: $f = \{\langle 1, b \rangle, \langle 2, c \rangle, \langle 3, a \rangle\}.$ 双射

函数类型

函数的类型

Lijie Wang

类型

必要条件

数学化描述

证明

38

若 f 是从有限集 A 到有限集 B 的函数 f 则有

- f 是单射的必要条件为 |A| ≤ |B|;
- f是满射的必要条件为 |A| ≥ |B|;
- f 是双射的必要条件为 |A| = |B|.

函数类型

函数的类型

Lijie Wang

类型

必要条件

数学化描述

OT RE

Example

设 $A = B = \mathbf{R}$, 试判断下列函数的类型。

- $f_1 = \{ \langle x, x^2 \rangle | x \in \mathbf{R} \};$ 一般函数
- $f_2 = \{ \langle x, x+1 \rangle | x \in \mathbf{R} \}; \text{ } \mathbf{\Sigma}$
- $f_3 = \{ \langle x, e^x \rangle | x \in \mathbf{R} \}$. 单射

☞ 函数类型的数学化描述

- $f: A \to B$ 是单射当且仅当对 $\forall x_1, x_2 \in A$, 若 $x_1 \neq x_2$, 则 $f(x_1) \neq f(x_2)$
- $f: A \to B$ 是满射当且仅当对 $\forall y \in B$, 一定存在 $x \in A$, 使得 f(x) = y ;
- f: A → B 是双射当且仅当满足以上两点.

典型 (自然) 映射

函数的类型 Lijie Wang

Example

数学化描述

设 R 是集合 A 上的一个等价关系, $g: A \to A/R$ 称为 A 对商集 A/R 的典型 (自然) 映射, 其定义为 $g(a) = [a]_R, a \in A$. 证明典型映射是一个满射.

Proof.

由等价类的定义,对任意 $[a]_R \in A/R$,都有 $a \in A$,使得 $g(a) = [a]_R$,即任意 A/R 中的元素都有原像,根据满射的定义知,典型映射是满射.

函数类型证明

函数的类型

Liiie Wang

必要条件

TERES

Example

设 $< A, \le >$ 是偏序集, 对任意 $a \in A$, 令 $f(a) = \{x | x \in A, x \le a\}$. 证明 f 是从 A 到 P(A) 的单射函数, 并且 f 保持 $< A, \le >$ 与 < P(A), $\subseteq >$ 的偏序关系, 即对任意 $a, b \in A$, 若 $a \le b$, 则 $f(a) \subseteq f(b)$.

Proof.

- 证明 f 是函数:
 任取 a ∈ A, 由于 f(a) = {x|x ∈ A, x ≤ a} ⊆ A, 所以 f(a) ∈ P(A), 即 f 是从 A 到 P(A) 的函数。
- 证明 f 是单射:...
- 证明保序性:...

Continue...

- 证明 f 是单射:
 对任意 a, b ∈ A, a ≠ b,
 - 1) 若 a, b 存在偏序关系, 不妨设 $a \le b$ (或 $b \le a$), 由于" \le "是反对称的, 所以 $b \ne a$ (或 $a \ne b$), 从而 $b \notin f(a) = \{x | x \in A, x \le a\}$, 而" \le "是自反的, 所以 $b \le b$, 即 $b \in f(b)$, 所以 $f(a) \ne f(b)$, 此时, f 是单射;
 - 2) 若 a, b 不存在偏序关系,则有 $a \nleq b$, 从而 $a \notin f(b) = \{x | x \in A, x \leqslant b\}$,而" \leqslant "是自反的,所以 $a \leqslant a$,即 $a \in f(a)$,所以 $f(a) \neq f(b)$,此时,f 仍是单射.因此对任意 $a, b \in A$,当 $a \neq b$,总有 $f(a) \neq f(b)$. 从而 f 是从 A 到 P(A) 的单射函数.
- 证明保序性. 对任意 a, b ∈ A, 若 a ≤ b, 则任取 y ∈ f(a), 则 y ≤ a, 由 a ≤ b, 根据"≤"的传递性, 有 y ≤ b, 从而 y ∈ f(b), 所以 f(a) ⊆ f(b), 即保序性成立.

函数的复合

函数的运算

Lijie Wang

函数的复合运算

复合运算保守性

ぶみかわいかと二個な

Definition

设 $f: A \rightarrow B, g: B \rightarrow C$ 是两个函数, 则 f 与 g 的复合关系

 $f \circ g = \{ \langle x, z \rangle | x \in A, z \in C, \exists y \in B, 使得y = f(x) \exists z = g(y) \}$ 是从 A 到 C 的函数, 称为函数 f 与 g 的复合函数(composition function), 记为 $f \circ g : A \to C$.

Ŧ

- 函数 f 和 g 可以复合的前提条件是 ranf ⊆ domg;
- $dom(f \circ g) = domf, ran(f \circ g) \subseteq rang$;
- 对任意 $x \in A$, 有 $f \circ g(x) = g(f(x))$;
- $I_A \circ f = f \circ I_B = f$.

函数的复合

函数的运算

Lijie Wang

函数的复合运算

复合运算保守性

函数的逆运算

Example

设 $A = \{1, 2, 3, 4, 5\}, B = \{a, b, c, d\}$, 函数 $f: A \rightarrow B, g: B \rightarrow A$ 定义如下:

- $f = \{ \langle 1, a \rangle, \langle 2, a \rangle, \langle 3, d \rangle, \langle 4, c \rangle, \langle 5, b \rangle \};$
- $g = \{ \langle a, 1 \rangle, \langle b, 3 \rangle, \langle c, 5 \rangle, \langle d, 2 \rangle \}.$

则,

- $f \circ g = \{ <1, 1>, <2, 1>, <3, 2>, <4, 5>, <5, 3> \};$
- $g \circ f = \{ \langle a, a \rangle, \langle b, d \rangle, \langle c, b \rangle, \langle d, a \rangle \}.$
- 函数的复合不满足交换律.

Example

设 f, g, h 都是实数集 R 上的函数, 满足

$$f(x) = 2x$$
, $g(x) = (x+1)^2$, $h(x) = \frac{x}{2}$.

• 求 $(f \circ g) \circ h$ 和 $f \circ (g \circ h)$:

$$((f \circ g) \circ h)(x) = h((f \circ g)(x)) = h(g(f(x))) = h(g(2x)) = h((2x+1)^2) = \frac{(2x+1)^2}{2};$$

$$(f \circ (g \circ h))(x) = (g \circ h)(f(x)) = h(g(f(x))) = h(g(2x)) = h((2x+1)^2) = \frac{(2x+1)^2}{2};$$

求 f∘h和 h∘f

$$f \circ h(x) = h(f(x)) = h(2x) = x, \ h \circ f(x) = f(h(x)) = f(\frac{x}{2}) = x.$$

🖢 函数的复合满足结合律.

保守性

函数的运算

Lijie Wang

函数的复合运算

复合运算保守性

Example

设 f 和 g 分别是从 A 到 B 和从 B 到 C 的函数 , 则

- 若 f,g 是满射,则 f∘g 也是从 A 到 C 的满射;
- 若 f,g 是单射,则 f∘g 也是从 A 到 C 的单射;
- $f, g \in \mathbb{Z}$ 是双射,则 $f \circ g$ 也是从 $A \ni C$ 的双射。 可由前面两条直接得到

Proof.

- 对 $\forall c \in C$, 由 g 是满射, 所以 $\exists b \in B$, 有 g(b) = c. 又 f 是满射, 所以 $\exists a \in A$, 有 f(a) = b, 从 而 $f \circ g(a) = g(f(a)) = g(b) = c$. 即 $\exists a \in A$, 使得 $f \circ g(a) = c$, 所以 $f \circ g$ 是满射;
- 对 $\forall a_1, a_2 \in A$, $a_1 \neq a_2$. 由于 f 是单射,所以 $f(a_1) \neq f(a_2)$. 令 $b_1 = f(a_1), b_2 = f(a_2)$,所以 $g(b_1) \neq g(b_2)$,即 $g(f(a_1)) \neq g(f(a_2))$. 从而有 $f \circ g(a_1) \neq f \circ g(a_2)$,所以 $f \circ g$ 是单射;

函数的逆

函数的运算

Lijie Wang

函数的复合运算 复合运算保守性 **函数的逆运算**

Definition

设 $f: A \to B$ 是函数, 如果 $f^{-1} = \{ \langle y, x \rangle | x \in A, y \in B, y = f(x) \}$ 是从 B 到 A 的函数, 则称 $f^{-1}: B \to A$ 为函数 f 的逆函数(inverse function).

Example

- ullet 函数 $f_1(x)=x^2,x\in\mathbf{R}$ 时没有逆函数, 但当 $x\in\mathbf{R}^+$ 时有逆函数 \sqrt{x} ;
- 函数 $f_2(x) = 2x, x \in \mathbf{R}$ 时有逆函数 $\frac{1}{2}x$;
 - 函数 f^{-1} 存在当且仅当 f 是双射, 此时 f^{-1} 也是双射.
 - $f \circ f^{-1} = I_A$; $f^{-1} \circ f = I_B$.