CH-1

- CH-1
 - 1 Continuous Time Signal and System
 - Useful Signals
 - Unit Step Function
 - Unit Impulse Function
 - 2 Fourier Transformation
 - Useful Fourier Transform Pair
 - Energy Theorem
 - 3 Discrete Linear Displacement Invariant System
 - Species
 - Linear Property
 - Displacement Invariant Property
 - Convolution
 - 4 Sampling
 - Normalized Frequency
 - Sampling Theorem

1 - Continuous Time Signal and System

Useful Signals

Unit Step Function

$$u(t-t_0) = egin{cases} 0 & & t < t_0 \ 1 & & t > t_0 \end{cases}$$

Unit Impulse Function

$$\int_{-\infty}^{\infty} \delta(t) \mathrm{d}t = 1$$

sampling property:

· differentiation and integration

$$egin{cases} u(t) = \int_{-\infty}^t \delta(au) \mathrm{d} au \ \delta(t) = rac{\mathrm{d}u(t)}{\mathrm{d}t} \end{cases}$$

2 - Fourier Transformation

$$F(j\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}\mathrm{d}t \qquad f(t) = rac{1}{2\pi}\int_{-\infty}^{\infty} F(j\omega)e^{jn\omega t}\mathrm{d}\omega$$

Useful Fourier Transform Pair

Aperiodic Signal	Fourier Signal	Signal	Fourier Transform	Fourier series coefficients
$egin{array}{l} ax(t) + \ by(t) \end{array}$	$aX(j\omega) + bY(j\omega)$	$\sum_{k=-\infty}^{\infty} a_k e^{j\omega_0 t}$	$2\pi\sum_{k=-\infty}^{\infty}a_k\delta(\omega-k\omega_0)$	a_k
$x(t-t_0)$	$e^{-j\omega t_0}X(j\omega)$	$e^{j\omega_0t}$	$2\pi\delta(\omega-\omega_0)$	$egin{aligned} a_1 = \ 1 \ a_k = 0 \end{aligned}$
$e^{j\omega_0t}x(t)$	$X(j(\omega-\omega_0))$	$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\\\omega_0)]$	$egin{array}{l} a_1 = \ a_{-1} = \ 1/2 \ a_k = \ 0 \end{array}$
$x^*(t)$	$X^*(-j\omega)$	$\sin \omega_0 t$	$rac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$	$egin{array}{l} a_1 = \ -a_{-1} = \ 1/2j \; a_k = \ 0 \end{array}$
x(-t)	$X(-j\omega)$	x(t)=1	$2\pi\delta(\omega)$	$egin{aligned} a_0 = \ 1 \ a_k = 0 \end{aligned}$
x(at)	$rac{1}{\ a\ }X(rac{j\omega}{a})$	$egin{aligned} x(t) = \ \left\{ egin{aligned} 1 & \ t\ < T_1 \ 0 & \ t\ > T_1 \end{aligned} ight.$	$rac{2\sin\omega T_1}{\omega}$	
x(t) * y(t)	$X(j\omega)Y(j\omega)$	$\frac{\sin Wt}{\pi t}$	$X(j\omega) = \ egin{cases} 1 & \ \omega\ < W \ 0 & \ \omega\ > W \end{cases}$	
x(t)y(t)	$rac{1}{2\pi}X(j\omega)* \ Y(j\omega)$	$\delta(t)$	1	

Aperiodic Signal	Fourier Signal	Signal	Fourier Transform	Fourier series coefficients
$rac{\mathrm{d}}{\mathrm{d}t}x(t)$	$j\omega X(j\omega)$	u(t)	$rac{1}{j\omega}+\pi\delta(\omega)$	
$\int_{-\infty}^t x(t) \mathrm{d}t$	$rac{1}{j\omega}X(j\omega) + \ \pi X(0)\delta(\omega)$	$\delta(t-t_0)$	$e^{j\omega t_0}$	
tx(t)	$jrac{\mathrm{d}}{\mathrm{d}\omega}X(j\omega)$	$e^{-at}u(t)$	$rac{1}{a+j\omega}$	
X(jt)	$2\pi x(-\omega)$	$te^{-at}u(t)$	$rac{1}{(a+j\omega)^2}$	

Energy Theorem

$$W = \int_{-\infty}^{\infty} |x(t)|^2 \mathrm{d}t = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left| X(j\omega) \right|^2 \mathrm{d}\omega$$

3 - Discrete Linear Displacement Invariant System

Species

• FIR: finite impulse response system

· IIR: infinite impulse response system

Linear Property

$$x_1[n] o y_1[n] \qquad x_2[n] o y_2[n]$$

$$ax_1[n] + bx_2[n] \longrightarrow ay_1[n] + by_2[n]$$

Displacement Invariant Property

$$x[n-n_0] o y[n-n_0]$$

Convolution

$$y[n] = x[n]h[n]$$

$$=\sum_{k=-\infty}^{\infty}x[n]h[n-k]$$

4 - Sampling

Normalized Frequency

the signal with an analog frequency of ${\cal F}$ is sampled at a rate of ${\cal F}_s$

then the relationship between the $\operatorname{ extbf{normalized}}$ frequency f and the $\operatorname{ extbf{analog}}$ frequency F is

$$f=rac{F}{F_s}$$

Sampling Theorem

- If maximum frequency of the signal is known to be F_{max} , the ${f minimum\ sampling\ rate}$ would be

Nyquist Rate =
$$2 \times F_{max}$$

- If the sampling rate is know to be ${\cal F}_s$, the maximum frequency in the signal must not exceed

Nyquist Rate
$$=\frac{1}{2}F_S$$