

Probabilistic Atmospheric characterization:

relevant Shear and Turbulence Intensity statistics

towards effective specification for power curves, loads, ...

Mark Kelly, MET section

2013-14

funded in part by EUDP "tall wind turbine basis" project 64011-0352

DTU Wind Energy
Department of Wind Energy

(formerly Risø)

lpha depends on

- z/z_{0eff}
- *U*
- ...

Stability and shear...

Contrast to ASL un/stable behavior...have theory for ASL...

$P(\alpha, U)$

0.2

 α

0.6

0.4

10

8

6

-0.2

0.0

Effective roughness: via shear, <u>above ASL</u>

- Peak of distribution: idea of effective roughness
 - since above ASL, surface roughness does not apply
 - Stability, terrain/inhomogeneity & transport effects

Mean Shear Exponent $\langle \alpha | U \rangle$, with site :

- increase with *U* from cut-in;
- peak at moderate *U*, then constant section;
 - filter out low TI (bottom half):
 - \rightarrow Reach peak α then \sim constant with U (not shown)
 - lower $(z/z_{0.eff}) \rightarrow$ larger peak α ,

Variability in shear : $\sigma_{lpha} \, / \, U$

systematic behavior:

$$\sigma_{\alpha}(U) \sim 1/U$$

(+minor z/z0eff dependence)

TI(shear)

Due to stability, transport...<u>above ASL</u>

Form for mean TI(alpha) [or $\alpha(TI)$] based on stability-modified profile/TKE:

$$I = \frac{I_0}{1 + c_{\alpha}(\alpha - \alpha_0)}$$

'simple' application to power curves:

- Shear variability (σ_α / U)
 already have modified Weibull
 → affects equivalent H.H. distribution
 (equivalent hub-height mean speed)
- TI-shear relation
 - use to modify equivalent wind speed

$\alpha \leftrightarrow TI$ assumption/use

normal stress-budget is not always this simple

- not just stability which influences TI (at low speeds)
- TI 'flux' possible (even when neutral, and $z < \sim 0.2h$)
 - also for more complex terrain/higher roughness
- Asymptotic limit: when dissipation, shear production scale(U) similarly
 - -Then ok assumption (better at high *U* over flat surface)

 recall 10-minute TI contains some random noise (avg. of second moment!)

Extras follow...

P(Shear|TI)

All stabilities

DTU

Distribution of Veer with Mean wind speed and Shear

Shear-veer correlation is simpler at higher mean wind speeds and z/z_0 .

Correlation of $\sigma_{\Delta\phi}$ with U (non-Ekman contributions...)

Shear-TI trend (Høvsøre, land, all stabilities)

Shear exp. into loads...

Flapwise Blade root 1Hz equiv. moments (Mf)

25m/s, 5m/s

16

Shear exp. into loads...

Flapwise Blade root 1Hz equiv. moments (Mf)

startup 15m/s,

Shear exp. into loads...

Tower bottom 1Hz equiv. moments 15m/s,

Recommendations

Depends on the turbulence class (per eff.roughness);
 shear exponent α used in normal turbulence load cases must be updated:

_

 For operational load cases near rated wind speed, over large rotors >100m, a veer of 5-10° should be used (not over forest)