一南昌大学考试试卷一

【适用时间: 2017~2018 学年春季学期 试卷类型: [A]卷】

	课程编号:	J5510N2001	试卷编号:	
 教	课程名称:	高等数学	— 序 号 : —	
师	开课学院:	理学院	一考试形式:	闭卷
填	适用班级:	2017 年级	一 考试时间:	120 分钟
写 栏	试卷说明:	1、本试卷共 <u>7</u> 页。 2、考试结束后,考生不得将	试卷、答题纸和草稿	高纸带出考场。

题号	_	=	Ξ	四	五	六	七	八	九	+	总分	累分人
题分	15	15	16	16	16	16	6				100	签 名
得分												

	考生姓名:	考生学号:
考	所属学院:	所属班级:
生	所属专业:	考试日期: 2018年6月28
填写	考 生 须 知	1、请考生务必查看试卷中是否有缺页或破损。如有立即举手报告以便更换。2、严禁代考,违者双方均开除学籍;严禁作弊,违者取消学位授予资格; 严禁自备草稿纸、携带手机、携带小抄等入场,违者按考试违规处理。
栏	考 生 承 诺	本人知道考试违纪、作弊的严重性,将严格遵守考场纪律,如若违反则愿意接受学校按有关规定处分! 考生签名:

、填空题: (每空 3 分, 共 15 分)

得 分	评阅人

1、 函数
$$f(x,y) = \frac{\sqrt{4y-x^2}}{\ln(2-x^2-y^2)}$$
 的定义域是_____。

2、 点
$$(2,1,1)$$
到平面 $3x+4y+5z=0$ 的距离 d= 。

3、 设
$$F(x,y,z) = 0$$
 满足隐函数存在定理的条件,则 $\frac{\partial x}{\partial y} \frac{\partial y}{\partial z} \frac{\partial z}{\partial z} = _____$ 。

4、 设向量
$$\mathbf{a} = (2,1,2)$$
, $\mathbf{b} = (3,4,5)$, 则 $(\mathbf{b})_{\mathbf{a}} = ____$ 。

$$\frac{1}{4-x}$$
展开成 $x-1$ 的幂级数是_____。

1、单项选择题:(每小题 3 分,共 15 分)

得 分	评阅人

- 1、平面Ax + By + Cz + D = 0, 若A = D = 0, 则该平面()。
- 2、微分方程 y'' + 2y' + ay = 0 的所有通解 y(x) 满足 $\lim_{x \to +\infty} y(x) = 0$,则常数 a 满足

(A) 平行于 y 轴; (B) 垂直于 y 轴; (C) 垂直于 z 轴; (D) 通过 x 轴

(A)
$$a > 0$$
;

(B)
$$a < 0;$$
 (C) $a \ge 0;$ (D) $a \le 0$

(C)
$$a \ge 0$$
:

(D)
$$a \leq 0$$

3、设函数 z = f(x, y) 可微, 且对任意的 x, y 都有 $\frac{\partial f(x, y)}{\partial x} > 0$, $\frac{\partial f(x, y)}{\partial y} < 0$, 则使不等式

 $f(x_1, y_1) < f(x_2, y_2)$ 成立的一个充分条件是()。

(A)
$$x_1 > x_2, y_1 < y_2$$
; (B) $x_1 > x_2, y_1 > y_2$; (C) $x_1 < x_2, y_1 < y_2$; (D) $x_1 < x_2, y_1 > y_2$

4、设
$$f(x)$$
为连续函数, $F(t) = \int_1^t dy \int_y^t f(x) dx$,则 $F'(2) = ($)。

- (A) 2f(2);
- (B) f(2); (C) -f(2); (D) 0

5、设有两个数列 $\{a_n\},\{b_n\}$,若 $\lim_{n\to +\infty} a_n = 0$,则()。

(A) 当
$$\sum_{n=1}^{\infty} b_n$$
 收敛时, $\sum_{n=1}^{\infty} a_n b_n$ 收敛; (B) 当 $\sum_{n=1}^{\infty} b_n$ 发散时, $\sum_{n=1}^{\infty} a_n b_n$ 发散;

- (C) 当 $\sum_{n=1}^{\infty} |b_n|$ 收敛时, $\sum_{n=1}^{\infty} a_n^2 b_n^2$ 收敛; (D) 当 $\sum_{n=1}^{\infty} |b_n|$ 发散时, $\sum_{n=1}^{\infty} a_n^2 b_n^2$ 发散

三、计算题: (每小题 8 分, 共 16 分)

得分	评阅人

1、求微分方程y''+2y'-3y=x的通解。

2、设方程组 $\begin{cases} x^2 + y^2 + z^2 = 3x \\ 2x - 3y + 5z = 4 \end{cases}$ 确定 y = 5z = x 的函数,求 $\frac{dy}{dx}$, $\frac{dz}{dx}$ 。

四、计算题: (每小题 8 分, 共 16 分)

得 分	评阅人

1、设函数 f,g 可微,且 $z = f(xy, \frac{y}{x}) + g(\frac{x}{y})$, 计算 $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y}$ 的值。

2、求曲面 $z = \arctan \frac{y}{x}$ 在 $M_0(1,1,\frac{\pi}{4})$ 处的切平面方程及法线方程。

五、计算题: (每小题 8 分, 共 16 分)

得 分	评阅人

1、计算 $\int_{l} (e^{x} \sin y - my) dx + (e^{x} \cos y - m) dy$,其中 l 是从 A(a,0) 沿 $x^{2} + y^{2} = ax$ 上半圆到 0(0,0) 的圆弧, m 为常数。

2、设∑为半球面 $x^2+y^2+z^2=4(z\geq 0)$ 的外侧,计算曲面积分 $\mathbf{I}=\iint\limits_{\Sigma}yzdzdx+2dxdy$ 。

六、计算题: (每小题 8 分, 共 16 分)

得 分	评阅人

1、在椭圆 $x^2 + 4y^2 = 4$ 上求一点使其到直线2x + 3y - 6 = 0的距离最短。

2、设Q(x,y)在xoy 平面上具有一阶连续偏导数,曲线积分 $\int_t 2xydx + Q(x,y)dy$ 与路径无关,并且对任意t恒有 $\int_{(0,0)}^{(t,1)} 2xydx + Q(x,y)dy = \int_{(0,0)}^{(1,t)} 2xydx + Q(x,y)dy$,求Q(x,y)。

七、证明题: (每小题 6 分, 共 6 分)

得 分	评阅人

设函数 f(x) 在 x=0 的邻域内具有二阶连续导数, $\lim_{x\to 0} \frac{f(x)}{x} = 0$, f''(x) > 0,

证明级数 $\sum_{n=1}^{\infty} (-1)^{n-1} f(\frac{1}{\sqrt{n}})$ 收敛。