

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

CANDIDATE NAME						
CENTRE NUMBER				CANDIDATE NUMBER		

518818217

CHEMISTRY 9701/31

Advanced Practical Skills 1

October/November 2011

2 hours

Candidates answer on the Question Paper.

Additional Materials: As listed in the Confidential Instructions

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Give details of the practical session and laboratory where appropriate, in the boxes provided.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

You may lose marks if you do not show your working or if you do not use appropriate units.

Use of a Data Booklet is unnecessary.

Qualitative Analysis Notes are printed on pages 8 and 9.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

S	ession
Lal	boratory

For Examiner's Use		
1		
2		
Total		

This document consists of 9 printed pages and 3 blank pages.

1 You are to determine the enthalpy change of neutralisation of hydrochloric acid by aqueous sodium hydroxide and also the concentration of the aqueous sodium hydroxide. These can be found by measuring the temperature change when solutions of the acid and alkali are mixed.

For Examiner's Use

FA 1 is aqueous sodium hydroxide, NaOH. **FA 2** is 2.00 mol dm⁻³ hydrochloric acid, HC*l*.

(a) Method

- Fill a burette with FA 1. [Care: FA 1 is corrosive]
- Support the plastic cup in a 250 cm³ beaker.
- Use a measuring cylinder to transfer 25 cm³ of **FA 2** into a 100 cm³ beaker.
- Use a measuring cylinder to add 35 cm³ of distilled water to the acid in the beaker.
- Measure and record, in the table below, the initial temperature of the mixture in the beaker.
- Run 5.0 cm³ of FA 1 from the burette into the plastic cup.
- Add the mixture of acid and water from the 100 cm³ beaker to the **FA 1** in the plastic cup.
- Stir carefully and measure the highest temperature obtained.
- Record this temperature in the table.
- Rinse the plastic cup with water.
- Repeat the experiment using 25 cm³ of **FA 2**, 30 cm³ of distilled water and 10.0 cm³ of **FA 1** as shown for experiment **2** in the table.
- Carry out experiments **3** to **7** in the same way.
- Complete the table for each experiment.

Results

experiment number	1	2	3	4	5	6	7
volume of FA 2 / cm ³	25	25	25	25	25	25	25
volume of water / cm ³	35	30	25	20	15	10	5
volume of FA 1 / cm ³	5.0	10.0	15.0	20.0	25.0	30.0	35.0
initial temperature of acid mixture / °C							
highest temperature / °C							
temperature change / °C							

I
II
III
IV
V
VI
VII

[7]

(b) On the grid below plot the temperature **change** (*y*-axis) against the volume of **FA 1** (*x*-axis). Using these points, draw two straight lines that intersect.

For Examiner's Use

(c)	Reading from the intersection of the two lines on your graph,	For
	the volume of FA 1 iscm ³ ,	Examiner's Use
	the temperature change is °C. [1]	
	The volume of FA 1 at the intersection represents the volume of FA 1 which neutralised $25.0\mathrm{cm^3}$ of FA 2 .	
(d)	The reaction between FA 1 and FA 2 is shown in the equation below.	
	$NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H_2O(l)$	
	This reaction is exothermic.	
	Use this information to explain the shape of the graph.	
	[2]	
(e)	Calculate the amount of heat energy produced in the reaction. Use the temperature change from (c) in calculating your answer.	
	[Assume that 4.3 J are required to raise the temperature of $1\mbox{cm}^3$ of any solution by $1\mbox{°C}]$	
	heat energy produced = J [2]	
(f)	Calculate how many moles of hydrochloric acid are present in 25 cm ³ of FA 2 .	
	mol of hydrochloric acid = [1]	
(g)	Use your answers to (e) and (f) to calculate the enthalpy change of neutralisation of hydrochloric acid by aqueous sodium hydroxide.	
	Give your answer in kJ mol ⁻¹ and include the relevant sign.	
	enthalpy change of neutralisation =kJ mol ⁻¹	
	sign value [2]	

(h)	Explain why the total volume of solution used was kept constant in each of the experiments.
	[1]
(i)	Calculate the concentration, in mol dm ⁻³ , of the aqueous sodium hydroxide, FA 1 .
	concentration of FA 1 = $mol dm^{-3}$ [2]
(j)	A student thought that the experiment was not accurate because the temperature changes measured were small.
	Suggest a modification to the experimental method used in order to give larger changes in temperature.
	[1]
(k)	Experiments 1 to 7 were repeated using 1.00 mol dm $^{-3}$ sulfuric acid, H $_2$ SO $_4$, instead of the 2.00 mol dm $^{-3}$ hydrochloric acid, HC l
	On the axes below indicate an appropriate temperature scale and sketch the graph for the temperature changes you would expect.
	temperature change/°C
	0 35 volume FA 1 /cm ³

[Total: 25]

[2]

For Examiner's Use

2 Qualitative Analysis

At each stage of any test you are to record details of the following.

For Examiner's Use

colour changes seen

FA 4 and FA 5.

- the formation of any precipitate
- the solubility of such precipitates in an excess of the reagent added

Where gases are released they should be identified by a test, **described in the appropriate place in your observations**.

You should indicate clearly at what stage in a test a change occurs. Marks are **not** given for chemical equations.

No additional tests for ions present should be attempted.

If any solution is warmed, a boiling tube MUST be used.

Rinse and reuse test-tubes and boiling tubes where possible.

Where reagents are selected for use in a test, the full name or correct formula of the reagents must be given.

, ,	of tl	he ions carbonate, ${\rm CO_3}^{2-}$, sulfite, ${\rm SO_3}^{2-}$ or sulfate, ${\rm SO_4}^{2-}$.
	(i)	Using your knowledge of the reactions of these ions, suggest one reagent you could add to the solid to find out which ion is present in each of the solids.
	(ii)	Use the reagent you selected in (i) to identify which of these ions is present in FA 3,

(a) You are provided with three sodium salts FA 3, FA 4 and FA 5. Each salt contains one

Carry out suitable tests on a small amount of each solid and record the results of your experiments in an appropriate form in the space below.

I	
II	
III	
IV	
V	
VI	

Identify the anions in FA 3, FA 4 and FA 5.

FA 3 contains theion.

FA 4 contains theion.

FA 5 contains theion.

[6]

(b) (i) You are provided with FA 6 both as a solid and in aqueous solution. Complete the following table.

For Examiner's Use

observations

I	
II	
III	
IV	
V	
VI	

Cation present in FA 6 is

[1]

(iii) Suggest and use another reagent to confirm the cation present in **FA 6**.

reagent

observation.....[2]

[Total: 15]

Qualitative Analysis Notes

Key: [ppt. = precipitate]

1 Reactions of aqueous cations

	reaction with					
ion	NaOH(aq)	NH ₃ (aq)				
aluminium, Al^{3+} (aq)	white ppt. soluble in excess	white ppt. insoluble in excess				
ammonium, NH ₄ ⁺ (aq)	no ppt. ammonia produced on heating					
barium, Ba ²⁺ (aq)	no ppt. (if reagents are pure)	no ppt.				
calcium, Ca ²⁺ (aq)	white ppt. with high [Ca ²⁺ (aq)]	no ppt.				
chromium(III), Cr ³⁺ (aq)	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess				
copper(II), Cu ²⁺ (aq)	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution				
iron(II), Fe ²⁺ (aq)	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess				
iron(III), Fe ³⁺ (aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess				
lead(II), Pb ²⁺ (aq)	white ppt. soluble in excess	white ppt. insoluble in excess				
magnesium, Mg ²⁺ (aq)	white ppt. insoluble in excess	white ppt. insoluble in excess				
manganese(II), Mn ²⁺ (aq)	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess				
zinc, Zn ²⁺ (aq)	white ppt. soluble in excess	white ppt. soluble in excess				

[Lead(II) ions can be distinguished from aluminium ions by the insolubility of lead(II) chloride.]

2 Reactions of anions

ion	reaction
carbonate,	CO ₂ liberated by dilute acids
CO ₃ ²⁻	
chromate(VI), CrO ₄ ²⁻ (aq)	yellow solution turns orange with H ⁺ (aq); gives yellow ppt. with Ba ²⁺ (aq); gives bright yellow ppt. with Pb ²⁺ (aq)
chloride,	gives white ppt. with Ag ⁺ (aq) (soluble in NH ₃ (aq));
C <i>l</i> ⁻(aq)	gives white ppt. with Pb ²⁺ (aq)
bromide,	gives cream ppt. with Ag ⁺ (aq) (partially soluble in NH ₃ (aq));
Br ⁻ (aq)	gives white ppt. with Pb ²⁺ (aq)
iodide,	gives yellow ppt. with Ag ⁺ (aq) (insoluble in NH ₃ (aq));
I⁻(aq)	gives yellow ppt. with Pb ²⁺ (aq)
nitrate,	$\mathrm{NH_3}$ liberated on heating with $\mathrm{OH^-}(\mathrm{aq})$ and $\mathrm{A}\mathit{l}$ foil
NO ₃ ⁻ (aq)	
nitrite,	NH ₃ liberated on heating with OH ⁻ (aq) and A <i>l</i> foil;
NO ₂ ⁻ (aq)	NO liberated by dilute acids (colourless NO → (pale) brown NO ₂ in air)
sulfate,	gives white ppt. with Ba ²⁺ (aq) or with Pb ²⁺ (aq) (insoluble in excess dilute
SO ₄ ²⁻ (aq)	strong acids)
sulfite,	SO ₂ liberated with dilute acids;
SO ₃ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result
ammonia, NH ₃	turns damp red litmus paper blue
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)
chlorine, Cl ₂	bleaches damp litmus paper
hydrogen, H ₂	"pops" with a lighted splint
oxygen, O ₂	relights a glowing splint
sulfur dioxide, SO ₂	turns acidified aqueous potassium dichromate(VI) from orange to green

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.