

Tema 1: Introducción a los computadores

Unidad 2:

Arquitectura Von Neumann

Rafael Casado González Rosa María García Muñoz María Teresa López Bonal Universidad de Castilla-La Mancha

- La arquitectura de un computador define su comportamiento funcional
- El modelo básico de arquitectura empleado en los computadores fue establecido en 1945 por Von Neumann
 - □ Esta arquitectura (aunque) evolucionada) se sigue empleando en la mayoría de los ordenadores actuales

- Antes de Von Neumann
 - □ Los programas eran cableados
 - No existía una memoria
- Von Neumann introdujo
 - Diversas unidades funcionales independientes e interconectadas
 - Entre ellas una memoria para almacenar programas y datos

Unidad de entrada

 A través de ella, la computadora acepta los datos e instrucciones que provienen del exterior

Unidad de salida

 Proporciona mensajes y resultados al exterior de las operaciones que realiza la computadora

- Las unidades de E/S incluyen
 - □ Interfaz con el usuario
 - monitor, teclado, ratón,...
 - □ Almacenamiento externo
 - Disco Duro, CD/DVD, Flash,...
 - Comunicaciones
 - Adaptadores de red
 - WiFi, Bluetooth,...

- Unidad de memoria
 - □ Almacena
 - programas que gobiernan las operaciones a realizar por la computadora
 - datos necesarios para dichos cálculos
 - Diferentes tipos
 - Principal (rápida pero escasa)
 - Secundaria (Abundante pero lenta)

- Unidad aritmético-lógica (ALU)
 - Contiene los circuitos encargados de realizar operaciones aritméticas
 - SUMA
 - RESTA
 - **...**
 - □ y operaciones lógicas
 - AND
 - OR
 - **...**

Unidad de control (UC)

 □ Recibe señales de estado de las otras unidades

 Envía señales de control a las otras unidades para coordinar su funcionamiento

- Ruta de datos
 - ☐ Conjunto de elementos que intervienen en el procesamiento de los datos durante la ejecución de las instrucciones
 - □ Unidades aritmético-lógicas (ALUs)
 - □ Buses
 - Registros

Unidad de memoria Unidades de almacenamiento

sistema internacional (SI)			sistema binario (ISO/IEC)				%
factor	nombre	abr.	factor	nombre	abr.	cantidad de bytes	70
(10 ³) ¹	kilobyte	kB	(210)1	kibibyte	KiB	1.024	2.4%
(10 ³) ²	megabyte	МВ	(210)2	mebibyte	MiB	1.048.576	4.9%
(10 ³) ³	gigabyte	GB	(2 ¹⁰) ³	gibibyte	GiB	1.073.741.824	7.4%
(10 ³) ⁴	terabyte	ТВ	(210)4	tebibyte	TiB	1.099.511.627.776	10.0%
(10 ³) ⁵	petabyte	РВ	(2 ¹⁰) ⁵	pebibyte	PiB	1.125.899.906.842.624	12.6%
(10 ³) ⁶	exabyte	EB	(2 ¹⁰) ⁶	exbibyte	EiB	1.152.921.504.606.846.976	15.3%
(10 ³) ⁷	zetabyte	ZB	(2 ¹⁰) ⁷	zebibyte	ZiB	1.180.591.620.717.411.303.424	18.1%
(103)8	yotabyte	YB	(210)8	yobibyte	YiB	1.208.925.819.614.629.174.706.176	20.9%

Unidad de memoria Modo de acceso a la información

- Acceso aleatorio
 - Se accede a la posición indicada sin necesidad de pasar por todas las que hay delante
- Acceso secuencial
 - □ Para leer una posición de memoria es necesario pasar por todas las anteriores
- Memoria asociativa
 - □ En vez de usar la dirección se usa el propio dato a buscar (o parte del dato)

Unidad de memoria Volatilidad de la información

- Memoria RAM (Random Access Memory)
 - ☐ Memoria de acceso aleatorio
 - ☐ Permite operaciones de lectura y escritura
 - Su contenido permanece sólo mientras esté presente la tensión de alimentación (es volátil)

Unidad de memoria Volatilidad de la información

Memoria ROM (Read Only Memory)

- □ Memoria de sólo lectura
 - No permite escritura
- □ ¡Acceso aleatorio también!
- □ Su contenido permanece sin tensión de alimentación
- □ Variantes con escritura
 - PROM (Programmable ROM)
 - EPROM (Erasable PROM)
 - EEPROM (Electrically EPROM)
 - FLASH (EEPROM mejorada)

Unidad de memoria Tecnologías

La memoria está compuesta por celdas de 1 bit

- El valor almacenado en una celda se mantiene en un par de puertas inversoras
- \square Tacceso = 2 25 nanoseg
- □ Coste = 100 250 \$/MByte
- □ Tamaño = 4 a 6 transistores

Latch SR						
S	R	Q(t+1)				
0	0	Q(t)				
0	1	0				
1	0	1				
1	1	Oscilación				

Pentium II

Memoria caché
de tecnología SRAM

Unidad de memoria Tecnologías

- DRAM (Dynamic RAM)
 - □ El valor almacenado en una celda se mantiene como una carga en un condensador
 - ☐ Requiere un refresco
 - □ Tacceso = 60 − 120 nanoseg
 - □ Coste = 5 10\$/MByte
 - □ Tamaño = 1 transistor

Módulos DIMM

1GB de memoria DRAM

Unidad de memoria **Tecnologías**

- Discos magnéticos
 - □ El valor almacenado en una celda se mantiene como una superficie orientada magnéticamente

- \square Tacceso = 10 20 miliseg
- \square Coste = 2 5 \$/GByte

Unidad de memoria **Tecnologías**

- Discos ópticos
 - □ El valor almacenado en una celda se define con la presencia o ausencia de un agujero en una superficie

0.6mm

0.6mm

0.6mm

0.6mm

Unidad de memoria Jerarquía

- La memoria depende de múltiples parámetros
 - □ Volatilidad
 - □ Velocidad
 - capacidad
 - precio
- Por ello, la memoria de un computador suele ser heterogénea, distribuida según la siguiente estructura jerárquica

Unidad de memoria Jerarquía

 Esta jerarquía proporciona la capacidad de la memoria de nivel inferior unida a la velocidad de la memoria de nivel superior

Procesador

Unidad de memoria Estructura interna

Se estructura en celdas capaces de almacenar un bit

- Estas celdas se procesan en grupos de tamaño fijo denominados palabras
 - □ Transferidas en paralelo (en la misma operación)
- Para poder acceder a las palabras, éstas se identifican por una dirección

0	0	0	0	0	0	0	0	28
0	0	0	0	1	0	1	0	29
1	0	1	0	1	1	0	0	30
0	0	0	0	0	0	1	0	31

Unidad de memoria Estructura interna

- Operación a realizar
 - □ Señal RD (lectura)
 - □ Señal WR (escritura)
- Indicación de operación terminada
 - □ Señal READY
- Estas líneas forman parte del bus de control

Unidad aritmético-lógica **Puertas lógicas**

	AND						
X0	X1	Z					
0	0	0					
0	1	0					
1	0	0					
1	1	1					

OR

X0 X1

0

$$\mathbf{x_1} \longrightarrow \mathbf{z}$$

XOR						
X0	X1	Z				
0	0	0				
0	1	1				
1	0	1				
1	1	0				

$$\mathbf{X_1} \longrightarrow \mathbf{X_0}$$

Unidad aritmético-lógica

Circuito semisumador

A	В	Suma (S)	Acarreo
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$S = a \oplus b$$

$$C = a \cdot b$$

Unidad aritmético-lógica **Sumador total**

a	b	C_0	S	C_1
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Unidad aritmético-lógica Sumador total

Unidad aritmético-lógica

Ejemplo: ALU 74181

Selección	Funciones lógicas M=H	Operaciones aritméticas M=L		
$S_3 \ S_2 \ S_1 \ S_0$		C ₀ = L (Sin acarreo)	C _{0-H} (Con acarreo)	
LLLL	/A	A menos 1	A	
LLLH	/(A.B)	AB menos 1	A.B	
LLHL	/A + B	A./B menos 1	A./B	
LLHH	1	Menos 1 (compl. A 2)	0 (cero)	
LHLL	/(A + B)	A más (A + /B)	A más (A + /B) más 1	
LHLH	/B	AB más (A + B)	A.B más (A+/B) más 1	
LHHL	/(A ⊕ B)	A menos B menos 1	A menos B	
LHHH	A + /B	A + /B	(A + /B) más 1	
HLLL	/A.B	A más (A + B)	A más (A + B) más 1	
H L L H	$A \oplus B$	A más B	A más B más 1	
HLHL	В	A./B más (A + B)	A./B más (A + B) más 1	
H L H H	A + B	A + B	A + B más 1	
HHLL	0	A más A	A más A más 1	
H H L H	A./B	A.B más A	A.B más A más 1	
HHHL	A.B	A./B más A	A./B más A más 1	
нннн	A	A	A más 1	

CPUUnidad Central de Proceso

Unidad aritmético-lógica

Unidad de control

- Registros generales
 - Almacenamiento temporal de datos

CPUUnidad Central de Proceso

- Registros específicos
 - MAR (Memory Address Register, Registro de Direcciones de Memoria)
 - Dirección de memoria a la que se está accediendo
 - MDR (Memory Data Register, Registro de Datos de Memoria)
 - Datos leídos/escritos de/en memoria

CPUUnidad Central de Proceso

- Registros específicos
 - □ IR (Instruction Register, Registro de Instrucción)
 - Instrucción que se está ejecutando actualmente
 - PC (Program Counter, Contador de Programa)
 - Dirección de la siguiente instrucción que debe ejecutarse

Conexión CPU - memoria Bus de direcciones

 Transporta la dirección de la posición de memoria (o puerto de periférico) que interviene en el tráfico de información

Suele ser unidireccional

Se conecta al registroMAR de la CPU

Conexión CPU - memoria Bus de datos

 Transporta los datos que se transfieren entre las unidades

Suele ser bidireccional

Se conecta al registroMDR de la CPU

Conexión CPU - memoria

Bus de control

 Gestiona la comunicación indicando

- La dirección de la transferencia de datos
- □ Temporización de la transmisión
- □ Posibles interrupciones
- Señales de control
 - □ parten de la CPU
- Señales de estado
 - □ llegan a la CPU

Conexión CPU - memoria

Operación de lectura

Memoria (espera señal)

- 4) Recoge la dirección de memoria del bus de direcciones
- 5) Decodifica la dirección
- 6) Copia palabra decodificada al bus de datos
- 7) Activa señal READY
- 8) Espera desactivación de RD
- 11) Desactiva READY

CPU

- 1) Pone la dirección de memoria a leer en el MAR
- 2) Activa la señal RD
- 3) Espera la señal READY
- 9) Recoge el dato del MDR
- 10) Desactiva la señal RD

Conexión CPU - memoria Operación de escritura

Memoria (espera señal)

- 5) Recoge la dirección de memoria del bus de direcciones
- Decodifica la dirección
- Copia el contenido del bus de datos en la palabra decodificada
- 8) Activa señal READY
- 9) Espera desactivación de WR
- 11) Desactiva READY

CPU

- 1) Pone la dirección de memoria a escribir en el MAR
- 2) Pone dato en MDR
- 3) Activa la señal WR
- 4) Espera la señal READY
- 10) Desactiva la señal WR

Ejecución de instrucciones

Ejemplo de computador

Memoria de 32 palabras de 8 bits

- Entrada por teclado
- Salida por pantalla

Ejecución de instrucciones Lenguaje máquina

■ Instrucciones de 8 bits

Código	Instrucción		
nemotécnico	máquina	Descripció	<u>on</u>
ENT M(m)	000mmmmm	memoria	\leftarrow teclado
SAL M(m)	001mmmmm	pantalla	← memoria
CAR R0,M(m)	010mmmmm	Registro	← memoria
ALM M(m), R0	011mmmmm	memoria	\leftarrow Registro
MOV Rx, Ry	100-xxyy	Rx	← Ry
SUM Rx, Ry	101-xxyy	Rx	← Rx+Ry

Ejecución de instrucciones

Escribir un programa que sume
 2 números tomados del teclado
 y saque el resultado por pantalla

ENT	M(29)	00011101
ENT	M(30)	00011110
CAR	R0,M(29)	010 11101
MOV	R1,R0	10000100
CAR	R0,M(30)	010 11110
SUM	R0,R1	10100001
ALM	M(31),R0	01111111
SAL	M(31)	00111111

Código	Instrucción			
nemotécnico	máquina	Descripció	<u>ón</u>	
ENT M(m)	000mmmmm	memoria	\leftarrow teclado	
SAL M(m)	001mmmmm	pantalla	\leftarrow memoria	
CAR RØ,M(m)	010 mmmmm	Registro	\leftarrow memoria	
ALM M(m),R0	011 mmmmm	memoria	\leftarrow Registro	
MOV Rx, Ry	100-xxyy	Rx	← Ry	
SUM Rx,Ry	101-xxyy	Rx	← Rx+Ry	

Ejecución de instrucciones

Fases

- Fase 1: captación o búsqueda de instrucción
 - Se traslada una instrucción desde la memoria hasta el registro IR de la CPU
 - □ MAR \leftarrow PC, RD
 - \square PC \leftarrow PC+1
 - \square MDR \leftarrow M(MAR)
 - \square IR \leftarrow MDR

Ejecución de instruccionesFases

- Fase 2: decodificación de instrucción
 - ☐ La unidad de control interpreta la instrucción que se encuentra en el registro IR
- Fase 3: ejecución
 - ☐ La UC realiza las operaciones que implica la instrucción
 - Genera señales de control necesarias
 - □ En caso necesario, lee los operandos requeridos desde memoria
 - $[Rn \leftarrow OPERANDO]$

Ejecución de instrucciones Carga de programas

- Para ejecutar un programa, primero éste debe introducirse en la memoria de la computadora
 - ☐ De esto se encarga un programa del sistema operativo denominado cargador
- Una vez cargado el programa, el SO indica al computador que pase el control a la primera instrucción del programa cargado
 - Inicializa el PC con la dirección de la primera instrucción del programa

Ejecución: 1ª instrucción

Ejecución: 3ª instrucción

