Exemple: Le PVC

Trouver le plus petit cycle hamiltonien dans un graphe complet

Pour trouver une fonction de sous-estimation h(x), chaque passage par un sommet est décomposé en « une arrivée » + « un départ »

Un cycle est donc composé par :

- un départ de a (vers b, c, d, e ou f)
- une arrivée vers b (venant de a, c, d, e, ou f) + un départ de b (vers a, c, d, e ou f)
- une arrivée vers c (venant de a, b, d, e, ou f) + un départ de c (vers a, b, d, e ou f)
- une arrivée vers d (venant de a, b, c, e, ou f) + un départ de d (vers a, b, c, e ou f)

-

- une arrivée vers a (venant de b, c, d, e, ou f)

Si M représente la matrice des coûts, alors

- Une arrivée vers x peut être sous-estimé par le min de la colonne x, divisé par 2
- Un départ de x peut être sous-estimé par le min de la ligne x, divisé par 2

Exemple: Le PVC

	a	b	С	d	е	f
a		12	6	7	10	9
b	12		14	8	3	4
С	6	14		5	2	10
d	7	8	5		7	11
е	10	3	2	7		4
f	9	4	10	11	4	

$$g(f) = 7 + 11 = 18$$

M =

L'estimation du coût du cycle commençant par ' \mathbf{a} - \mathbf{d} - \mathbf{f} ' est donc : 18 + 12 = 30

Exemple: Le PVC

Une partie de l'espace de recherche avec les estimations de quelques états (f = g+h)

