

Maps in R

ESTP Use of R in Official Statistics

- Creating maps
- graphics in R

Spatial data

Data often has a spatial component:

- differences in income between municipalities/neighborhoods
- population density
- companies, high tech, agricultural
- road density
- mobility, migration
- land use etc.

You are often interested in (the relevance of) areas or locations.

GIS

- software for geographical data is called GIS.
- Geographical Information Systems
- Broad umbrella term for spatial analysis, processing and * cartography *.
- Cartography is only part of this.

Spatial data

Spatial or spatial data has different forms:

Vector data (sf)

- point data: location with (measured) values for that location.
 E.g. locations of theft, fire.
- areal/polygon data: boundaries of areas/regions, municipalities , police regions etc. with associated data
- line data: roads/rivers with associated data.

Raster data (raster)

- Grid data: the data is a collection of rectangles/pixels with data
- Eg: satellite photos, infrared, drone data.

CRS: coordinate reference system

- All cards use a CRS (coordinate system)
- In the Netherlands this is often the National Triangle System (rd, EPSG: 28992)

The earth is (approximately) a sphere, but a map is flat:

- Every card is distorted (is not a perfect image).
- that is why there are many ways to smash (a piece of) the earth.
- in Geo data you occasionally have to transform from one CRS to another CRS.
- sounds simple, but the details are not (for example, earth pollen moving)

Google/Bing maps (WGS84 Webmercator)

- Due to the rise of GPS, lat/lon coordination is often used (sphere coordinates). (WGS84)

Commission

Many systems also use this convention, so sometimes you have to transform data from this form to your desired CRS.

sf (simple features)

- point, polygon, line data.
- Supports union, intersections etc.
- crs transformations
- join with data (dplyr)
- writing and reading of many GIS vector formats
- (used geos, gdal, proj)

- multi-layer raster data
- writing and reading many GIS raster formats
- can handle very large frames (by leaving data on disk)
- help functions for converting vector -> raster (and back).

Data is a "data.frame" with an additional "geometry" column.

read/write

- st_read read (many) different formats: geojson, geopackage
 and shp (ESRI)
- st_write write to different formats

Manipulate

• 'create, modify, association, intersection etc. of" geometry "

Calculate

buffer query, interpolation, etc

Maps

Different applications:

- Topography: showing infrastructure
- Satellite: show
- Cartography: display of (statistical) information (Dutch: Bos Atlas!)
- etc.

Thematic cards

A ** thematic map ** is a visualization in which statistical information (theme) with a geographical component is shown.

- Cartography: communication (popular!)
- Analytical purposes: insight, is there a spatial pattern?
- This is typically an application that you will have as a Data Scientist.

Species

- Choropleet
- Bubble map
- Contour map (isopleet)
- Raster/Density map
- Cartogram

Choropleth

Bubble Chart

Raster data

Cartogram

Cartogram

Gemeenteraadsverkiezingen 2012

Making maps in R

Different options:

- tmap: very extensive options with little code, static + interactive plots
- ggplot2:geom_sf, static plots
- mapview: interactive plots
- 'leaflet ': interactive plot

ggplot2 :: geom_sf


```
library (ggplot2)
ggplot (gm_2017) + geom_sf () + coord_sf ()
```


tmap


```
## old-style crs object detected; plea
tm_shape(NLD_muni) +
                          ## old-style crs object detected; plea
 tm_fill( "population"
         , convert2density## opduestyle crs object detected; plea
         , style="kmeans")## old-style crs object detected; plea
 tm_borders(alpha=0.2) + ## old-style crs object detected; plea
                          ## old-style crs object detected; plea
                          ## old-style crs object detected; plea
 tm shape(NLD prov) +
 tm_borders(lwd=2, alpha ## opdastyle crs object detected; plea
 tm text("name", size = ( 1838)
                                               Overtisse
```

Bubble map

Example

nlgeocoder

Geocoding

Finding locations with addresses is called **geocoding**

nlgeocoder


```
library(tmaptools)
library(leaflet)

loc <- geocode_OSM("Turfmarkt, den Haag", as.sf = TRUE)
leaflet(loc) %>%
   addTiles() %>%
   addCircleMarkers(popup = -pasteO(query))
```