Lösungen: Amann, Escher - Analysis

Kapitel I.

Grundlagen

- 1. Logische Grundbegriffe
- 2. Mengen
- 3. Abbildungen
- 4. Relationen und Verknüpfungen
- 5. Die natürlichen Zahlen

Aufgabe 5.2. Folgende Identitäten sind durch vollständige Induktion zu verifizieren:

(a)
$$\sum_{k=0}^{n} k = \frac{n(n+1)}{2}, n \in \mathbb{N}$$

(b)
$$\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}, n \in \mathbb{N}$$

Beweis. (a) Für n = 0 ist die Behauptung klar. Nach Induktionsannahme gelte

$$\sum_{k=0}^{n-1} k = \frac{(n-1)n}{2} \ .$$

Also folgt

$$\sum_{k=0}^{n} k = \sum_{k=0}^{n-1} k + n = \frac{(n-1)n}{2} + n = \frac{n^2 - n + 2n}{2} = \frac{n^2 + n}{2} = \frac{n(n+1)}{2}.$$

(b) Für n = 0 ist die Behauptung wieder klar. Sei nach Induktionsannahme

$$\sum_{k=0}^{n-1} k^2 = \frac{(n-1)n(2(n-1)+1)}{6} = \frac{(n-1)n(2n-1)}{6}$$

Also folgt

$$\sum_{k=0}^{n} k^2 = \sum_{k=0}^{n-1} + n^2 = \frac{(n-1)n(2n-1)}{6} + \frac{6n^2}{6} = \frac{(n^2-n)(2n-1) + 6n^2}{6}$$
$$= \frac{2n^3 - n^2 - 2n^2 + n + 6n^2}{6} = \frac{2n^3 + 3n^2 + n}{6} = \frac{n(2n^2 + 3n + 1)}{6}$$
$$= \frac{n(n+1)(2n+1)}{6}.$$

Aufgabe 5.5. (a) Man verifiziere, dass für $n, m \in \mathbb{N}$ mit $m \leq n$ gilt:

$$[m!(n-m)!] | n!$$

(b) Für $m, n \in \mathbb{N}$ werden die Binomialkoeffizienten $\binom{n}{m} \in \mathbb{N}$ definiert durch

$$\binom{n}{m} := \begin{cases} \frac{n!}{m!(n-m)!} \ , & n \leq m \\ 0 \ , & m > n \end{cases}$$

Man beweise folgende Rechenregeln:

(i)
$$\binom{n}{m} = \binom{n}{n-m}$$

(ii)
$$\binom{n}{m-1} + \binom{n}{m} = \binom{n+1}{m}, \ 1 \le m \le n$$

(iii)
$$\sum_{k=0}^{n} \binom{n}{k} = 2^n$$

(iv)
$$\sum_{k=0}^{m} {n+k \choose n} = {n+m+1 \choose n+1}$$

Beweis. (a) Seien $n, m \in \mathbb{N}, m \leq n$.

$$\frac{n!}{m!(n-m)!} = \frac{n(n-1)\cdots(n-m+1)}{m!}$$

Im Zähler haben wir m Faktoren. Also gibt es einen Faktor $(n-i_1)$, so dass $m \mid (n-i_1)$. Setzen wir dieses Verfahren fort, so finden wir $m! \mid n(n-1)\cdots(n-m+1)$, also $m!(n-m)! \mid n!$.

$$\binom{n}{n-m} = \frac{n!}{(n-m)! (n-(n-m))!} = \frac{n!}{(n-m)!m!} = \binom{n}{m}$$

(ii)

$$\binom{n}{m-1} + \binom{n}{m} = \frac{n!}{(m-1)!(n-m+1)!} + \frac{n!}{m!(n-m)!}$$

$$= \frac{n! \cdot m}{m!(n-m+1)!} + \frac{n! \cdot (n-m+1)}{m!(n-m+1)!}$$

$$= \frac{n!(n+1)}{m!(n-m+1)!} = \frac{(n+1)!}{m!(n+1-m)!} = \binom{n+1}{m}$$

3

(iii) Wir beweisen die Behauptung mit vollständiger Induktion über n. Für n=0 haben wir

$$\binom{0}{0} = \frac{0!}{0! \cdot 0!} = 1 = 2^0$$

Nehmen wir an, es gelte $\sum_{k=0}^{n-1} \binom{n-1}{k} = 2^{n-1}$, dann folgt mit (ii):

$$\sum_{k=0}^{n} \binom{n}{k} = 1 + \sum_{k=1}^{n} \left[\binom{n-1}{k-1} + \binom{n-1}{k} \right] = 1 + \sum_{k=0}^{n-1} \binom{n-1}{k} + \sum_{k=1}^{n} \binom{n-1}{k}$$
$$= 1 + 2^{n-1} + \sum_{k=1}^{n-1} \binom{n-1}{k} = 2^{n-1} + \sum_{k=0}^{n-1} \binom{n-1}{k} = 2^{n-1} + 2^{n-1} = 2^{n}$$

(iv) Wiederum verwenden wir Induktion über n. Für n=0 haben wir $\binom{0}{0}=1=\binom{n+1}{n+1}$. Sei nach Induktionsannahme $\sum_{k=0}^{m-1} \binom{n+k}{n} = \binom{n+m}{n+1}$. Dann folgt

$$\sum_{k=0}^{m} \binom{n+k}{n} = \sum_{k=0}^{m-1} \binom{n+k}{n} + \binom{n+m}{n} = \binom{n+m}{n+1} + \binom{n+m}{n} = \binom{n+m+1}{n+1}.$$

П

6. Abzählbarkeit

7. Gruppen und Homomorphismen

8. Ringe, Körper und Polynome

Aufgabe 8.1. Es seien a und b kommutierende Elemente eines Ringes mit Eins und $n \in \mathbb{N}$. Man beweise:

(a)
$$a^{n+1} - b^{n+1} = (a-b) \sum_{j=0}^{n} a^j b^{n-j}$$

(b)
$$a^{n+1} - 1 = (a-1) \sum_{j=0}^{n} a^j$$

Beweis. (a)

$$(a-b)\sum_{j=0}^{n}a^{j}b^{n-1} = \sum_{j=0}^{n}a^{j+1}b^{n-j} - \sum_{j=0}^{n}a^{j}b^{n+1-j}$$

$$= a^{n+1} + \sum_{j=0}^{n-1}a^{j+1}b^{n-j} - \sum_{j=1}^{n}a^{j}b^{n+1-j} - b^{n+1}$$

$$= a^{n+1} + \left(\sum_{j=0}^{n-1}a^{j+1}b^{n-j} - \sum_{j=0}^{n-1}a^{j+1}b^{n-j}\right) - b^{n+1}$$

$$= a^{n+1} - b^{n+1}$$

(b) Setze b = 1 in (a).

Aufgabe 8.3. Sei K ein Körper. Dann ist K[X] nullteilerfrei.

Beweis. Angenommen, es existieren $0 \neq p = \sum_{k=0}^{n} p_k X^k \in K[X]$ und $0 \neq q = \sum_{k=0}^{m} q_k X^k \in K[X]$ mit pq = 0, d.h.

$$pq = \left(\sum_{k=0}^{n} p_k X^k\right) \left(\sum_{k=0}^{m} q_k X^k\right) = \sum_{k=0}^{n+m} \underbrace{\left(\sum_{\ell=0}^{k} p_{\ell} q_{k-\ell}\right)}_{(pq)_k} X^k = 0$$

Seien i und j die kleinsten Indizes mit $p_i \neq 0$ und $q_j \neq 0$. Dann ist aber

$$(pq)_{i+j} = \sum_{\ell=0}^{i+j} p_{\ell} q_{(i+j)-\ell}$$

$$= \underbrace{p_0}_{=0} q_{i+j} + \dots + \underbrace{p_{i-1}}_{=0} q_{j+1} + \underbrace{p_i q_j}_{\neq 0} + p_{i+1} \underbrace{q_{j-1}}_{=0} + \dots + p_n \underbrace{q_{j-1}}_{=0} \neq 0$$

ein Widerspruch.

9. Die rationionalen Zahlen

- 10. Die reellen Zahlen
- 11. Die komplexen Zahlen
- 12. Vektorräume, affine Räume und Algebren

Kapitel II.

Konvergenz

- 1. Konvergenz von Folgen
- 2. Das Rechnen mit Zahlenfolgen
- 3. Normierte Vektorräume
- 4. Monotone Folgen

Aufgabe 4.4. Für $a \in (0, \infty)$ definiere man die reelle Folge (x_n) rekursiv durch $x_0 \ge a$ und

$$x_{n+1} := \frac{1}{2} \left(x_n + \frac{a}{x_n} \right) , n \in \mathbb{N}$$

Man beweise, dass (x_n) monoton fallend gegen \sqrt{a} konvergiert.

Beweis. Man weist einfach nach, dass $x_n > 0$ für $n \in \mathbb{N}$. Für $n \in \mathbb{N}$ gilt:

$$x_{n+1}^{2} = \left(\frac{1}{2}\left(x_{n} + \frac{a}{x_{n}}\right)\right)^{2} = \frac{1}{4}\left(x_{n}^{2} + 2a + \frac{a^{2}}{x_{n}^{2}}\right)$$
$$= \frac{1}{4}\left(x_{n}^{2} - 2a + \frac{a^{2}}{x_{n}^{2}}\right) + a = \frac{1}{4}\left(x_{n} - \frac{a}{x_{n}}\right)^{2} + a \ge a$$

Wir weisen nach, dass (x_n) monoton fallend ist:

$$x_{n+1} - x_n = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right) - x_n = \frac{a}{2x_n} - \frac{1}{2} x_n = \frac{a - x_n^2}{2x_n} \le 0$$

Also ist die Folge (x_n) nach unten beschränkt, monoton fallend und konvergiert somit. Es bleibt noch zu zeigen, dass $\lim x_n = \sqrt{a}$. Aus

$$x_{n+1} - \sqrt{a} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right) - \sqrt{a} = \frac{1}{2} \left(x_n - \sqrt{a} + \frac{a}{x_n} - \sqrt{a} \right) = \frac{1}{2} \left(1 - \frac{\sqrt{a}}{x_n} \right) \left(x_n - \sqrt{a} \right)$$

folgt

$$|x_{n+1} - \sqrt{a}| = \frac{1}{2} \underbrace{\left| 1 - \frac{\sqrt{a}}{x_n} \right|}_{\leq 1} |x_n - \sqrt{a}| \leq \frac{1}{2} |x_n - \sqrt{a}| \leq \dots \leq \left(\frac{1}{2}\right)^{n+1} |x_0 - \sqrt{a}|,$$

woraus folgt, dass $x_n \to \sqrt{a}$ für $n \to \infty$.

Aufgabe 4.7. (a) Man beweise folgende Fehlerabschätzung für $n \in \mathbb{N}^{\times}$:

$$0 < e - \sum_{k=0}^{n} \frac{1}{k!} < \frac{1}{nn!}$$

(b) Man beweise, dass e eine irrationale Zahl ist.

Beweis.

(a) Da $e = \sum_{k=0}^{\infty} \frac{1}{k!}$ ist die erste Ungleichung klar. Sei $y_m := \sum_{k=n+1}^{n+m} \frac{1}{k!}$. Es gilt $y_m \to e - \sum_{k=0}^n$ für $m \to \infty$.

$$y_{m} = \sum_{k=n+1}^{n+m} \frac{1}{k!} = \frac{1}{(n+1)!} \left[1 + \frac{1}{n+2} + \frac{1}{(n+2)(n+3)} + \dots + \frac{1}{(n+2)\cdots(n+m)} \right]$$

$$< \frac{1}{(n+1)!} \left[1 + \frac{1}{n+1} + \left(\frac{1}{n+1}\right)^{2} + \dots + \left(\frac{1}{n+1}\right)^{m-2} \right]$$

$$< \frac{1}{(n+1)!} \sum_{k=0}^{\infty} \left(\frac{1}{n+1}\right)^{k} = \frac{1}{(n+1)!} \frac{1}{1 - \frac{1}{n+1}} = \frac{1}{(n+1)!} \frac{n+1}{n} = \frac{1}{nn!}$$

Also gilt auch die zweite Ungleichung.

(b) Angenommen e ist rational, dann gibt es $p,\ n\in\mathbb{N}^{\times}$ mit $e=\frac{p}{n}$. Nach (a) gilt dann:

$$0 < \frac{p}{n} - \sum_{k=0}^{n} \frac{1}{k!} < \frac{1}{nn!}$$

Also ist

$$0 < \underbrace{n!p - n \sum_{k=0}^{n} \frac{n!}{k!}}_{\in \mathbb{Z}} < 1.$$

Das ist aber nicht möglich, da es keine ganze Zahl zwischen 0 und 1 gibt.

Aufgabe 4.8. Es sei (x_n) rekursiv definiert durch

$$x_0 := 1, \quad x_{n+1} := 1 + \frac{1}{x_n}, \qquad n \in \mathbb{N}.$$

Man zeige, dass die Folge (x_n) konvergiert und bestimme ihren Grenzwert.

Beweis. Wir zeigen zuerst, dass $x_n > 1$ für $n \ge 1$. Für n = 1 haben wir $x_1 = 1 + \frac{1}{1} = 2$. Nehmen wir an, es gilt $x_n > 1$, so folgt $x_{n+1} = 1 + \frac{1}{x_n} > 1$. Unmittelbar aus der rekursiven Definition $x_{n+1} = 1 + \frac{1}{x_n}$ und aus $x_n > 1$ für $n \ge 1$ folgt $x_n < 2$ für $n \ge 2$. Für $n \ge 1$ gilt sogar $x_n \in [1.5, 2]$, da

$$1.5 = 1 + \frac{1}{2} \le x_{n+1} = 1 + \frac{1}{x_n} \le 1 + \frac{1}{1} = 2$$
.

Insbesondere ist die Folge beschränkt.

Als nächstes zeigen wir, dass die Teilfolge (x_{2n}) monoton wachsend ist. Da $x_2 = 1 + \frac{1}{x_1} = 1 + \frac{1}{2} = \frac{3}{2}$ ist $x_2 > x_0 = 1$. Nun sei nach Induktionsannahme $x_{2n} \ge x_{2(n-1)}$.

$$x_{2(n+1)} - x_{2n} = 1 + \frac{1}{x_{2n+1}} - \left(1 + \frac{1}{x_{2n-1}}\right) = \frac{1}{1 + \frac{1}{x_{2n}}} - \frac{1}{1 + \frac{1}{x_{2(n-1)}}} = \frac{x_{2n}}{x_{2n+1}} - \frac{x_{2(n-1)}}{x_{2(n-1)} + 1}$$
$$= \frac{x_{2n}(x_{2(n-1)} + 1) - x_{2(n-1)}(x_{2n} + 1)}{(x_{2n} + 1)(x_{2(n-1)} + 1)} = \frac{x_{2n} - x_{2(n-1)}}{(x_{2n} + 1)(x_{2(n-1)} + 1)} \ge 0$$

Also ist (x_{2n}) eine konvergente Teilfolge von (x_n) .

Wir weisen nun nach, dass (x_n) eine Cauchyfolge ist. Sei dazu $n \geq 1$ beliebig.

$$|x_{n+1} - x_n| = \left| 1 + \frac{1}{x_n} - \left(1 + \frac{1}{x_{n-1}} \right) \right| = \left| \frac{x_{n-1} - x_n}{x_n \cdot x_{n-1}} \right| \le \frac{1}{2} |x_{n-1} - x_n|$$

$$\le \dots \le \left(\frac{1}{2} \right)^{n-1} \cdot |x_2 - x_1| = \left(\frac{1}{2} \right)^n$$

Für $m \ge n \ge 1$ erhalten wir

$$|x_{m} - x_{n}| = |x_{m} - x_{m-1} + x_{m-1} - x_{m-2} \pm \dots - x_{n}|$$

$$\leq |x_{m} - x_{m-1}| + |x_{m-1} - x_{m-2}| + \dots + |x_{n+1} - x_{n}|$$

$$\leq \left(\frac{1}{2}\right)^{m-1} + \left(\frac{1}{2}\right)^{m-2} + \dots + \left(\frac{1}{2}\right)^{n}$$

$$= \left(\frac{1}{2}\right)^{n} \cdot \sum_{k=0}^{m-1} \left(\frac{1}{2}\right)^{k} \leq \left(\frac{1}{2}\right)^{n} \cdot 2 = \left(\frac{1}{2}\right)^{n-1}$$

Somit finden wir zu jedem $\epsilon > 0$ ein $N \in \mathbb{N}$ so, dass

$$|x_m - x_n| < \epsilon$$
, für $m \ge n \ge N$,

und (x_n) ist eine Cauchyfolge, die eine konvergente Teilfolge besitzt, also selbst konvergent.

Sei $g \in [1.5, 2]$ der Grenzwert von (x_n) . Mit den Grenzwertsätzen folgt nun

$$g = \lim_{n \to \infty} x_n = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} 1 + \frac{1}{x_n} = 1 + \frac{1}{g}$$

Diese Gleichung hat die positive Lösung $g = \frac{1+\sqrt{5}}{2}$.

Alternativer Beweis. Wir zeigen per Induktion $|x_n - g| \le \frac{1}{g^{n+1}}$, wobei g die positive Lösung der Gleichung $g = 1 + \frac{1}{g}$ bezeichnet.

Für n = 0 haben wir $|x_0 - g| = |1 - g| = \left| -\frac{1}{g} \right| \le \frac{1}{g^1}$.

Sei nach Induktionsannahme $|x_{n-1}-g| \leq \frac{1}{g^n}$. Dann folgt wegen $x_n \geq 1$ für alle $n \in \mathbb{N}$:

$$|x_n - g| = \left| 1 + \frac{1}{x_{n-1}} - \left(1 + \frac{1}{g} \right) \right| = \left| \frac{1}{x_{n-1}} - \frac{1}{g} \right|$$
$$= \left| \frac{g - x_{n-1}}{x_{n-1} \cdot g} \right| \le \frac{1}{g} \cdot |x_{n-1} - g| \le \frac{1}{g} \cdot \frac{1}{g^n} = \frac{1}{g^{n+1}}$$

Da g > 1, folgt $x_n \to g$.

Aufgabe 4.9. Die Fibonacci-Zahlen f_n sind rekursiv definiert durch

$$f_0 := 0$$
, $f_1 := 1$, $f_{n+1} := f_n + f_{n-1}$, $n \in \mathbb{N}^{\times}$

Man beweise, dass $\lim \left(\frac{f_{n+1}}{f_n}\right) = g$, wobei g der Grenzwert aus Aufgabe 8 bezeichne.

Beweis. Die Folge der Fibonacci-Zahlen ist monoton wachsend und für $n \ge 1$ gilt $f_n \ge 1$. Sei g der Grenzwert aus Aufgabe 8, also die positive Lösung der quadratischen Gleichung $g = 1 + \frac{1}{g}$. Sei $F_n := \frac{f_{n+1}}{f_n}$, $n \in \mathbb{N}^{\times}$. Wir wollen beweisen, dass die Folge $(F_n)_{n \ge 1}$ den Grenzwert g hat:

$$|F_n - g| = \left| \frac{f_{n+1}}{f_n} - g \right| = \left| \frac{f_n + f_{n-1}}{f_n} - g \right| = \left| 1 + \frac{1}{F_{n-1}} - \left(1 + \frac{1}{g} \right) \right|$$

$$= \left| \frac{1}{F_{n-1}} - \frac{1}{g} \right| = \left| \frac{g - F_{n-1}}{F_{n-1} \cdot g} \right| \le \frac{1}{g} |F_{n-1} - g| \le \dots \le \left(\frac{1}{g} \right)^{n-1} |F_1 - g|$$

Da $0 < \frac{1}{g} = g - 1 < 1$ folgt $\left(\frac{1}{g}\right)^n \to 0$ für $n \to \infty$ und damit $\lim F_n = g$.

Aufgabe 4.10. Es seien

$$x_0 := 5$$
, $x_1 := 1$, $x_{n+1} := \frac{3}{2}x_n + \frac{1}{3}x_{n-1}$, $n \in \mathbb{N}^{\times}$.

Man verifiziere, dass (x_n) konvergiert und bestimme $\lim x_n$.

Beweis. Für $n \ge 1$ gilt:

$$|x_n - x_{n-1}| = \left| \frac{2}{3} x_{n-1} + \frac{1}{3} x_{n-2} - x_{n-1} \right| = \frac{1}{3} |x_{n-1} - x_{n-2}| = \dots = \left(\frac{1}{3} \right)^{n-1} \underbrace{|x_1 - x_0|}_{=4}$$

Und für $m \ge n \ge 1$ folgt mit der Dreiecksungleichung:

$$|x_{m} - x_{n}| = |x_{m} - x_{m-1} + x_{m-1} - x_{m-2} \pm \dots + x_{n+1} - x_{n}|$$

$$\leq |x_{m} - x_{m-1}| + |x_{m-1} - x_{m-2}| + \dots + |x_{n+1} - x_{n}|$$

$$= 4\left(\frac{1}{3}\right)^{m-1} + 4\left(\frac{1}{3}\right)^{m-2} + \dots + 4\left(\frac{1}{3}\right)^{n}$$

$$= 4\left(\frac{1}{3}\right)^{n} \left[1 + \frac{1}{3} + \dots + \left(\frac{1}{3}\right)^{m-n-1}\right]$$

$$\leq 4\left(\frac{1}{3}\right)^{n} \sum_{k=0}^{\infty} \left(\frac{1}{3}\right)^{k} = 4\left(\frac{1}{3}\right)^{n} \cdot \frac{1}{1 - \frac{1}{3}} = 4 \cdot \left(\frac{1}{3}\right)^{n} \cdot \frac{3}{2} = 6\left(\frac{1}{3}\right)^{n}$$

Also bildet (x_n) eine Cauchyfolge und da \mathbb{R} vollständig ist, konvergiert sie. Wir bestimmen nun ihren Grenzwert. Für $n \geq 1$ haben wir

$$x_n - x_{n-1} = \frac{2}{3}x_{n-1} + \frac{1}{3}x_{n-2} - x_{n-1} = -\frac{1}{3}(x_{n-1} - x_{n-2}) = \left(-\frac{1}{3}\right)^2(x_{n-2} - x_{n-3})$$
$$= \dots = \left(-\frac{1}{3}\right)^{n-1}(x_1 - x_0) = (-4) \cdot \left(-\frac{1}{3}\right)^{n-1}.$$

Daraus folgt

$$x_n = x_{n-1} + (-4) \cdot \left(-\frac{1}{3}\right)^{n-1}$$

$$= x_{n-2} + (-4) \cdot \left(-\frac{1}{3}\right)^{n-2} + (-4) \cdot \left(-\frac{1}{3}\right)^{n-1}$$

$$= \dots = x_0 + (-4) \cdot \sum_{k=0}^{n-1} \left(-\frac{1}{3}\right)^k = 5 - 4 \sum_{k=0}^{n-1} \left(-\frac{1}{3}\right)^k.$$

Der Grenzübergang $n \to \infty$ liefert nun

$$\lim_{n \to \infty} x_n = 5 - 4 \sum_{k=0}^{\infty} \left(-\frac{1}{3} \right)^k = 5 - 4 \cdot \frac{1}{1 - \left(-\frac{1}{3} \right)} = 5 - 4 \cdot \frac{1}{\frac{4}{3}} = 5 - 4 \cdot \frac{3}{4} = 2$$

5. Uneigentliche Konvergenz

6. Vollständigkeit

7. Reihen

8. Absolute Konvergenz

9. Potenzreihen

Aufgabe 9.2. Die Potenzreihe $a = \sum_k (1+k)X^k$ hat Konvergenzradius 1 und für die durch a dargestellte Funktion \underline{a} gilt: $\underline{a}(z) = (1-z)^{-2}$ für |z| < 1.

Beweis. Sei $a_k = 1 + k$. Dann ist $a = \sum_k a_k X^k$. Es gilt:

$$\lim_{k \to \infty} \left| \frac{a_k}{a_{k+1}} \right| = \lim_{k \to \infty} \left| \frac{1+k}{2+k} \right| = 1$$

Also existiert dieser Grenzwert und nach Satz 9.4 ist

$$\rho_a = \lim_{k \to \infty} \left| \frac{a_k}{a_{k+1}} \right| = 1$$

der Konvergenzradius von a. Seien $b:=\sum_k b_k X^k:=\sum_k X^k$ und $c:=\sum_k c_k X^k:=\sum_k k X^k$. Diese Reihen haben ebenfalls Konvergenzradius 1. Also gilt für $z\in\mathbb{K},\,|z|<1$:

$$\underline{a}(z) = \sum_{k=0}^{\infty} (1+k)z^k = \sum_{k=0}^{\infty} z^k + \sum_{k=0}^{\infty} kz^k = \underline{b}(z) + \underline{c}(z)$$

Wir wissen bereits, dass $\underline{b}(z) = \frac{1}{1-z}$. Wir müssen noch $\underline{c}(z)$ berechnen. Sei $s_n :=$ $\sum_{k=0}^{n} kz^k.$

$$(1-z)s_n = (1-z)\sum_{k=0}^n kz^k = \sum_{k=0}^n kz^k - kz^{k+1}$$

$$= \sum_{k=0}^n kz^k - \sum_{k=1}^{n+1} (k-1)z^k = 0 + \sum_{k=1}^n (kz^k - (k-1)z^k) - nz^{n+1}$$

$$= \sum_{k=0}^{n-1} z^{k+1} - nz^{n+1} = z\sum_{k=0}^{n-1} z^k - nz^{n+1}$$

$$= z\left(\frac{1-z^n}{1-z}\right) - \frac{(1-z)nz^{n+1}}{1-z} = \frac{z-z^{n+1}-nz^{n+1}+nz^{n+2}}{1-z}$$

$$= \frac{z-(n+1)z^{n+1}+nz^{n+2}}{1-z}$$

Also haben wir $s_n \to \frac{z}{(1-z)^2}$ für $n \to \infty$ und es folgt

$$\underline{c}(z) = \sum_{k=0}^{\infty} kz^k = \frac{z}{(1-z)^2}.$$

Somit haben wir

$$\underline{a}(z) = \underline{b}(z) + \underline{c}(z) = \frac{1}{1-z} + \frac{z}{(1-z)^2} = \frac{1-z+z}{(1-z)^2} = \frac{1}{(1-z)^2}.$$

Kapitel III.

Stetige Funktionen

- 1. Stetigkeit
- 2. Topologische Grundbegriffe
- 3. Kompaktheit
- 4. Zusammenhang
- 5. Funktionen in \mathbb{R}
- 6. Die Exponentialfunktion und Verwandte

Kapitel IV.

Differentialrechnung in einer Variablen

- 1. Differenzierbarkeit
- 2. Mittelwertsätze und ihre Anwendung
- 3. Taylorsche Formeln
- 4. Iterationsverfahren

Kapitel V.

Funktionenfolgen

- 1. Gleichmässige Konvergenz
- 2. Stetigkeit und Differenzierbarkeit bei Funktionenfolgen
- 3. Analytische Funktionen
- 4. Polynomiale Approximation

Kapitel VI.

Integralrechnung in einer Variablen

- 1. Sprungstetige Funktionen
- 2. Stetige Erweiterungen
- 3. Das Cauchy-Riemannsche Integral
- 4. Eigenschaften des Integrals
- 5. Die Technik des Integrierens
- 6. Summen und Integrale
- 7. Fourierreihen
- 8. Uneigentliche Integrale
- 9. Die Gammafunktion

Kapitel VII.

Differentialrechnung in mehrerer Variabler

- 1. Stetige lineare Abbildungen
- 2. Differenzierbarkeit
- 3. Rechenregeln
- 4. Multilineare Abbildungen
- 5. Höhere Ableitungen
- 6. Nemytskiioperatoren und Variationsrechnung
- 7. Umkehrabbildungen
- 8. Implizite Funktionen
- 9. Mannigfaltigkeiten
- 10. Tangenten und Normalen

Kapitel VIII.

Kurvenintegrale

- 1. Kurven und ihre Länge
- 2. Kurven in \mathbb{R}^n
- 3. Pfaffsche Formen
- 4. Kurvenintegrale
- 5. Holomorphe Funktionen
- 6. Meromorphe Funktionen