

optical flow

brightness constancy assumption (not really true in real world)

optical flow

measuring movement of objects

measuring movement of camera

simple object tracking

AR tracking

fiducial tracking:

QR tracking:

more sophisticated objects: using Haar cascades

Basic idea:

- 1. Start with lots of positive & negative examples of a category (e.g., face)
- 2. Algorithmically determine which simple 2D "features" are predictive of the object, and how they align with the object visually
- 3. For new images, try out features at many alignments

Haar cascades in openCV

- Has pre-trained classifiers
- Or you can train your own
- Viola-Jones algorithm
 - very efficient
 - calculates in cascades
 - more than 1 positive has to be found
 - over 99% accurate
 - particularly good for frontal

j	haarcascade_eye_tree_eyeglasses.xml
	haarcascade_eye.xml
	haarcascade_frontalface_alt_tree.xml
	haarcascade_frontalface_alt.xml
-	haarcascade_frontalface_alt2.xml
	haarcascade_frontalface_default.xml
	haarcascade_fullbody.xml
	haarcascade_lefteye_2splits.xml
9	haarcascade_lowerbody.xml
	haarcascade_mcs_eyepair_big.xml
	haarcascade_mcs_eyepair_small.xml
-	haarcascade_mcs_lefteye.xml
-	haarcascade_mcs_mouth.xml
-	haarcascade_mcs_nose.xml
-	haarcascade_mcs_righteye.xml
-	haarcascade_mcs_upperbody.xml
-	haarcascade_profileface.xml
	haarcascade_righteye_2splits.xml
9	haarcascade_upperbody.xml

face detection using Haar Cascades

CV Dazzle

cameraFaceTracker

Faces recognition vs. detection

Face recognition by the brain

- Particularly good at it
- We're not even aware of it
- Special circuitry

Face: a tricky object

- illumination
- viewing angle

- expressions
- changes over time
- additionally:
 - hair
 - weight change
 - accessories (glasses etc.)

facial expression analysis

ECT

traditional camera

infrared camera

Infrared projector

1 microphone

3 microphones

How does it work?

computer vision with the kinect (find performer in scene)

in the past...

using openNI... but not any more

kinect v1

Cons

- interference from hot light sources
- limited depth 0.5m-4m (stable) up to 8m (unstable)
- 90ms delay
- low res image (640x480)

Pros

- cheap (<30 on ebay)
- good enough for most scenarios
- pretty good accuracy

computer vision with the kinect

(find performer in scene)

depth-based segmentation

depth-based segmentation

(find performer in scene)

depth image

0	0	0	0	0	0	
0	125	125	125	125	0	
0	125	255	255	125	0	
0	125	255	255	125	0	
0	125	125	125	125	0	
0	0	0	0	0	0	

after segmentation

computer vision with the kinect

(find performer in scene)

shortcomings

• limited active area of kinect (5m x 5m)

• noisy low-res outline & limited actor info

Interactive art with the Kinect

- Spandex as visual instrument
- Interactive kinect sandbox
- Lake superior simulation
- Interactive puppet
- Puppet parade
- Treachery of sanctuary