

Matrix Decomposition

Matrix Decomposition

```
PCA(Principal component analysis),
SVD(Singular-value decomposition),
NMF(Non-negative matrix factorization)
```

```
LDA(Linear discriminant analysis),
DL(Dictionary Learning),
Sparse Coding,
```

•••

What Is Matrix Decomposition?

 We wish to decompose the matrix X by writing it as a product of two or more matrices:

$$X_{p\times n} = D_{p\times k} A_{k\times n}$$

Matrix factorization

$$\binom{a}{b} = \binom{a}{0} + \binom{0}{0} + \binom{0}{0} + \binom{0}{0} = a \binom{1}{0} + b \binom{0}{1} + c \binom{0}{0} = \binom{1}{0} \cdot \binom{0}{0} = \binom{1}{0} \cdot \binom{0}{0} = \binom{1}{0} \cdot \binom{0}{0} = \binom{1}{0} \cdot \binom{0}{0} = \binom{0}{0} \binom{0}{0}$$

$$\begin{pmatrix} a+b \\ 2a+b \\ 2b \end{pmatrix} = \begin{pmatrix} a \\ 2a \\ 0 \end{pmatrix} + \begin{pmatrix} b \\ b \\ 2b \end{pmatrix} = a \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + b \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 11 \\ 21 \\ 02 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}$$

Why We Need Matrix Decomposition?

$$(x_1, x_2, \dots, x_n) = \mathbf{D}_{p \times k}(a_1, a_2, \dots a_n)$$
$$\mathbf{X}_{p \times n} = \mathbf{D}_{p \times k} \mathbf{A}_{k \times n}$$

We wish to find a set of new basis D to represent data samples X, and X will become A in the new space.

In general, D captures the common features in X, while A carries specific characteristics of the original samples.

- In PCA: **D** is eigenvectors of covariance matrix
- In SVD: *D* is right (column) eigenvectors
- In LDA: **D** is discriminant directions

Matrix factorization

Low rank factorization

Low rank factorization : k < p

... with optional sparse factors

Matrix factorization

Overcomplete dictionary learning k >> p

Dictionary matrix

$$D = [d_1 \ d_2 \ \dots d_k] \in R^{p \times k}$$
atoms

Overcomplete basis

Complete

A system $\{y_i\}$ in a Banach space X is complete if every element in X can be approximated by linear combinations of elements in $\{y_i\}$

Overcomplete

If removal of an element from $\{y_i\}$ results in a complete system

$$\Phi = [e_1|e_2|e_3] = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \end{bmatrix}$$

Basis for 8 × 8 fixel image

Haar Wavelet Basis

$$\psi(x) = \begin{cases} 1 & \leq x < \frac{1}{2} \\ -1 & \frac{1}{2} \leq x < 1 \\ 0 & otherwise \end{cases} \quad \text{and} \quad \psi_{jk}(x) = \psi(2^{j}x - k)$$

Haar Wavelet Basis

Discrete cosine transform

$$basis[i] = \cos\left[\pi \frac{i}{N}\left(x + \frac{1}{2}\right)\right]$$

Discrete cosine transform

$$basis[i,j] = \cos\left[\pi \frac{i}{N}\left(x + \frac{1}{2}\right)\right] \times \cos\left[\pi \frac{j}{N}\left(y + \frac{1}{2}\right)\right]$$

Basis for 8 × 8 fixel image

Haar Wavelet Basis

Sharp edge

Discrete Cosine Transform

Smooth signal

Dictionary for 8 × 8 fixel image

Mixed Dictionaries

A dictionary of Harr +DCT gives the best of both worlds

The Sparse Signal Model

How do we pick which coefficients to use?

Solving for Sparsity

What is the minimum number of coefficients we can use?

1. Sparsity Constrained

$$\alpha = \underset{\alpha}{\operatorname{arg\,min}} \|D\alpha - x\|_{2}^{2} \quad s.t. \quad \|\alpha\|_{0} \leq K$$

2. Error Constrained

$$\alpha = \underset{\alpha}{\operatorname{arg\,min}} \|\alpha\|_{0} \quad s.t. \|D\alpha - x\|_{2}^{2} \le \epsilon$$

$$||a||_p = \left(\sum_k a_k^p\right)^{1/p}$$
 $||a||_0 \coloneqq \lim_{p \to 0} ||a||_p = \text{(the number of nonzero elements of } a\text{)}$

Model:

$$\min \|X - DA\|_F^2$$
 subject to $\forall i, \|a_i\|_0 \le s$

where

- $X = [x_1 ... x_p] \in \mathbb{R}^{N \times p}$ represents p training data set, (known)
- $D \in \mathbb{R}^{N \times k}$ is a designed dictionary matrix with k atoms,
- $A = [a_1 \dots a_p] \in \mathbb{R}^{k \times p}$ is a sparse representations matrix with a sparsity level s.

Model:

$$\min \|X - DA\|_F^2 \quad \text{subject to } \forall i, \|x_i\|_0 \le s$$

Problem is not convex

Eg.
$$f(x,y) = (2 - xy)^2$$

 $f(1,3) = f(3,1) = (2 - 3)^2 = 1$
 $f(2,2) = (2 - 4)^2 = 4$

- Local optimum may not correspond to global optimum
- Generally little hope to find global optimum

Model:

$$\min \|X - DA\|_F^2 \quad \text{subject to } \forall i, \|x_i\|_0 \le s$$

- Problem is not convex
- But: Problem is biconvex
 - For fixed D, $f(A) = ||X DA||_F^2$ is convex

$$||A||_F^2 = \sum_j \sum_i a_{ij}^2 = \sum_j \sum_i (A^T)_{ji} (A)_{ij} = \sum_j (A^T A)_{jj} = Tr(A^T A)$$

$$||X - DA||_F^2 = Tr(X - DA)^T(X - DA)$$

$$= \cdots = Tr(X^TX) - Tr(X^TDA) - Tr(A^TD^TX) + Tr(A^TD^TDA)$$

- For fixed A, $f(D) = ||X DA||_F^2$ is convex
- Allows for efficient algorithms

Dictionary Learning Algorithm

- Two steps
 - (i) Sparse coding:

Given the dictionary D, producing sparse representations matrix A

$$\min_{A} ||X - DA||_F^2$$

(ii) Dictionary update: (the main innovation)

Given the sparse representations A, updating dictionary D

$$\min_{D} \|X - DA\|_F^2$$

Sparse Coding

- Fix D,
- Aim to find the best coefficient matrix A,

$$\min_{A} ||X - DA||_F^2 \quad \text{s.t.} \quad \forall i, ||a_i||_1 \le S$$

$$\min_{a_i} \|x_i - Da_i\|_F^2 \quad \text{s.t.} \quad \forall i, \|a_i\|_1 \le S, \ i = 1, ..., p$$

(Ordinary Sparse Coding Problem)

Use an approximate solving methods.

Orthogonal Matching Pursuit (OMP)

Basis Pursuit (BP)

Focal Under-determined System Solver (FOCUSS)

Dictionary Update Stage

Goal: search for a better dictionary D

$$\min_{D} \|X - DA\|_F^2$$

K-SVD [Aharon (2006)]

Scheme: update one column of D at a time,

- fixing all columns in D except one, d_k ,
- update it by optimizing the target function.

For the *k*-th atom,

$$||X - DA||_F^2 = \left\| \left(X - \sum_{j \neq k} d_j g_j^T \right) - d_k g_k^T \right\|_F^2 = \left\| E_k - d_k g_k^T \right\|_F^2$$

(Singular Value Decomposition)

Singular Value Decomposition

► For an arbitrary matrix **A** there exists a factorization (Singular Value Decomposition = SVD) as follows:

- Where
 - (i) $\mathbf{U} \in \mathbb{R}^{n imes k}$ $\mathbf{\Sigma} \in \mathbb{R}^{k imes k}$ $\mathbf{V} \in \mathbb{R}^{m imes k}$
 - (ii) $\mathbf{U}'\mathbf{U} = \mathbf{I}$

$$V'V = I$$

orthonormal columns

• (iii)
$$\Sigma = \operatorname{diag}(\sigma_1, \ldots, \sigma_k), \ \sigma_i \geq \sigma_{i+1}$$

singular values (ordered)

• (iv)
$$k = \operatorname{rank}(\mathbf{A})$$

Low-rank Approximation

- SVD can be used to compute optimal low-rank approximations.
- Approximation problem:

$$\mathbf{X}^* = \underset{\hat{\mathbf{X}}: \mathrm{rank}(\mathbf{X}) = \mathbf{q}}{\mathrm{argmin}} \|\mathbf{X} - \hat{\mathbf{X}}\|_F$$
 Frobenius norm
$$\|\mathbf{A}\|_F \equiv \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2}.$$

Solution via SVD

$$\mathbf{X}^* = \mathbf{U} \operatorname{diag}(\sigma_1, \dots, \sigma_q, \mathbf{0}, \dots, \mathbf{0}) \, \mathbf{V}'$$

$$\begin{array}{c} \text{set small singular} \\ \text{values to zero} \end{array}$$
 $\mathbf{X}^* = \sum_{r=1}^q \sigma_r \mathbf{u}_r \mathbf{v}_r' \quad \text{column notation: sum} \\ \text{of rank 1 matrices} \end{array}$

K-SVD Algorithm

Application of Dictionary Learning

Application of Dictionary Learning Sparse Denoising

- Uniform noise is incompressible and OMP will reject it
- KSVD can train a denoising dictionary from noisy image blocks

Source

Noisy image

Result 30.829dB

Application of Dictionary Learning

Sparse Denoising

Noisy image: $f = f_0 + \omega$

Step 1: Extract patches y_k

Step 2: Dictionary learning

$$\min_{D,(x_k)_k} \sum_k \frac{1}{2} \|y_k - Dx_k\|^2 + \lambda \|x_k\|_1$$
In averaging $\widetilde{y} = Dx$

Step 3: Patch averaging

$$\widetilde{\mathbf{y}_k} = Dx_k$$

Aharon & Elad 2006

Application of Dictionary Learning Filling in missing pixels

Training Data:

- 11,000 examples of 8×8 block patches taken from a data base of face images

$$\longrightarrow [x_{i1} \ x_{i2} \ \dots x_{i64}]^T$$

- Every 8×8 block represents a column of $64 \times 11,000$ matrix X.

Application of Dictionary Learning Filling in missing pixels

A random collection of 500 blocks

Running the K-SVD:

Size of $D: 64 \times 441$, sparsity of A: 10

Application of Dictionary Learning

Filling in missing pixels

Learned dictionary K-SVD

Comparison Dictionaries

overcomplete Haar dictionary

overcomplete DCT dictionary

Filling in missing pixels

Filling in missing pixels

50 % missing pixels

Learned reconstruction

Haar reconstructionOverComplete DCT reconstruction Average # coeffs: 4.0202 Average # coeffs: 4.7677 Average # coeffs: 4.7694

MAE: 0.015719 RMSE: 0.037745

Learned reconstruction MAE: 0.020035 RMSE: 0.055643

MAE: 0.032831

Haar reconstructionOverComplete DCT reconstruction Average # coeffs: 3.5623 Average # coeffs: 3.9747 Average # coeffs: 4.0539 MAE: 0.025001 RMSE: 0.063086

Domain Specific Compression

[Elad et al. 2009]

Image registration

Non-overlapping patches $(f_k)_k$

Dictionary learning $(D_k)_k$

Sparse approximation $f_k \approx D_k x_k$

Entopic coding: $x_k \rightarrow file$

PCA

Learning

 D_k

Domain Specific Compression

Using just 400 bytes per image

Application of Dictionary Learning Super Resolution

Application of Dictionary Learning Super Resolution

The Original

Bicubic Interpolation

SR result

Nonnegative Matrix Factorization (NMF)

Non-Negative Datasets

Some datasets are intrinsically non-negative:

- Counters (e.g., no. occurrences of each word in a text document)
- Quantities (e.g., amount of each ingredient in a chemical experiment)
- Intensities (e.g., intensity of each color in an image)

The corresponding data matrix D has only non-negative values.

- Decompositions such as SVD may involve negative values in factors and components
- Negative values describe the absence of something
- Often no natural interpretation

Can we find a decomposition that is more natural to non-negative data?

Example (SVD)

Consider the following "bridge" matrix and its truncated SVD

$$\mathbf{\Sigma}$$

$$\mathsf{V}^{ au}$$

Here are the corresponding components:

$$\mathsf{U}_{*1}\mathsf{D}_{11}\mathsf{V}_{*1}^{\mathcal{T}}$$

$$\mathbf{U}_{*2}\mathbf{D}_{22}\mathbf{V}_{*2}^{T}$$

Negative values make interpretation unnatural or difficult.

Non-Negative Matrix Factorization (NMF)

(Basic form of NMF) Given a non-negative matrix $D \in \mathbf{R}_{+}^{m \times n}$, a non-negative matrix factorization of rank k is $D \approx LR$

where $L \in \mathbb{R}_+^{m \times r}$ and $R \in \mathbb{R}_+^{r \times n}$ are both non-negative.

- Additive decomposition: factors and components non-negative
 - → No cancellation effects
- Smallest r such that D = LR exists is called non-negative rank of D rank $(D) \le \operatorname{rank}_+(D) \le \min\{m, n\}$

Example (NMF)

Consider the following "bridge" matrix and its rank-2 NMF:

Here are the corresponding components:

Non-negative matrix decomposition encourage a more natural, part-based representation and (sometimes) sparsity.

Decomposing faces (PCA)

PCA factors are hard to interpret.

Decomposing faces (NMF)

NMF factors correspond to parts of faces.

NMF is not unique

Factors are not "ordered"

Factors/components are not unique

Additional constraints or regularization can encourage uniqueness.

NMF is not hierarchical

Rank-1 NMF

Rank-2 NMF

- Best rank-k approximation may differ significantly from best rank-(k-1) approximation
- Rank influences sparsity, interpretability, and statistical fidelity
- Optimum choice of rank is not well-studied

NMF is difficult

We focus on minimizing $L(L,R) = ||D - LR||_F^2$.

- For varying m, n and r problem is NP-hard
- When rank(D) = 1 (or r = 1), can be solved in polynomial time
 - I. Take first non-zero column of D as $L_{m\times 1}$
 - II. Determine $R_{1\times n}$ entry by entry (using the fact that $D_{*j}=LR_{1j}L_{m\times 1}$)
- Problem is not convex
 - Local optimum may not correspond to global optimum
 - Generally little hope to find global optimum
- But: Problem is biconvex
 - For fixed R, $f(L) = ||D LR||_F^2$ is convex
 - For fixed L, $f(R) = ||D LR||_F^2$ is convex
 - Allows for efficient algorithms

General framework

Key approach: alternating minimization

- 1. Pick starting point L_0 and R_0
- 2. while not converged do
- 3. Keep *R* fixed, optimize *L*
- 4. Keep *L* fixed, optimize *R*
- 5. end while
- Update steps 3 and 4 easier than full problem
- Also called alternating projections or (block) coordinate descent

Example

Ignore non-negativity for now. Consider the regularized least-square error:

$$L(L,R) = ||D - LR||_F^2 + \lambda(||L||_F^2 + ||R||_F^2)$$

By setting $m=n=1,\,D=(1)$ and $\lambda=0.05$, we obtain

$$f(l,r) = (1 - lr)^2 + 0.05(l^2 + r^2)$$

$$\nabla_l f(l) = -2r(1 - lr) + 0.1l$$
 $\nabla_r f(r) = -2l(1 - lr) + 0.1r$

Local optima

$$\left(\sqrt{\frac{19}{20}}, \sqrt{\frac{19}{20}}\right)$$
 and $\left(-\sqrt{\frac{19}{20}}, -\sqrt{\frac{19}{20}}\right)$

Stationary point (0,0)

Example (ALS, Alternating-Least-Squares)

•
$$f(l,r) = (1 - lr)^2 + 0.05(l^2 + r^2)$$

•
$$l \leftarrow \min_{l} f(l) = \frac{2r}{2r^2 + 0.1}$$

•
$$r \leftarrow \min_{r} f(r) = \frac{2l}{2l^2 + 0.1}$$

Step	1	r
0	2	2
1	0.49	2
2	0.49	1.68
3	0.58	1.68
4	0.58	1.49
:	÷	÷
100	0.97	0.97

Converges to local minimum

Example (ALS)

•
$$f(l,r) = (1 - lr)^2 + 0.05(l^2 + r^2)$$

•
$$l \leftarrow \min_{l} f(l) = \frac{2r}{2r^2 + 0.1}$$

•
$$r \leftarrow \min_{r} f(r) = \frac{2l}{2l^2 + 0.1}$$

Step	1	r
0	2	0
0	0	0
0	0	0
÷	÷	:

Converges to stationary point

Alternating non-negative least squares (ANLS)

Uses non-negative least squares approximation of L and R:

$$\underset{L \in \mathbf{R}_{+}^{m \times r}}{\operatorname{arg \, min}} ||D - LR||_{F}^{2} \quad \text{and} \quad \underset{R \in \mathbf{R}_{+}^{m \times r}}{\operatorname{arg \, min}} ||D - LR||_{F}^{2}$$

- Equivalently: find non-negative least squares solution to LR = D
- Common approach: Solve unconstrained least squares problems and "remove" negative values. E.g., when columns (rows) of $L\left(R\right)$ are linearly independent, set

$$L = [DR^{\dagger}]_{\epsilon}$$
 and $R = [L^{\dagger}D]_{\epsilon}$

where

$$R^{\dagger} = R^T (RR^T)^{-1}$$
 is the right pseudo-inverse of R $L^{\dagger} = (L^T L)^{-1} L^T$ is the left pseudo-inverse of L $[a]_{\epsilon} = \max\{a, \epsilon\}$

Example (ANLS)

•
$$f(l,r) = (1 - lr)^2 + 0.05(l^2 + r^2)$$
 and set $\epsilon = 10^{-9}$

•
$$l \leftarrow \left[\frac{2r}{2r^2 + 0.1}\right]_{\epsilon}$$
 • $r \leftarrow \left[\frac{2l}{2l^2 + 0.1}\right]_{\epsilon}$

Step	1	r
0	2	0
1	$1\cdot 10^{-9}$	0
2	$1\cdot 10^{-9}$	$2 \cdot 10^{-8}$
3	$4\cdot 10^{-7}$	$2 \cdot 10^{-8}$
4	$4\cdot 10^{-7}$	$8 \cdot 10^{-6}$
÷	÷	÷
100	0.97	0.97

Converges to local minimum

Topic modeling

Consider a document-word matrix constructed from some corpus

- Documents seem to talk about two "topics"
 - Environment (with words air, water, and pollution)
 - Congress (with words democrat and republican)

Can we automatically detect topics in documents?

A probabilistic view point

Let's normalize such that the entries sum to unity

$$\mathbf{D} = \begin{pmatrix} \operatorname{doc} 1 \\ \operatorname{doc} 2 \\ \operatorname{doc} 3 \\ \operatorname{doc} 4 \\ \operatorname{doc} 5 \end{pmatrix} \begin{pmatrix} 0.04 & 0.03 & 0.12 & 0.00 & 0.00 \\ 0.01 & 0.06 & 0.17 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 & 0.14 & 0.16 \\ 0.00 & 0.00 & 0.00 & 0.12 & 0.07 \\ 0.01 & 0.01 & 0.01 & 0.01 & 0.015 \end{pmatrix}$$

• The probability to draw word w from document d is given by

$$P(d, w) = \mathbf{D}_{\mathrm{dw}}$$

Matrix D can represent any probability distribution

Probabilistic latent semantic analysis (pLSA)

(pLSA, NMF formulation)

Given a rank r, find matrices L, Σ and R such that

$$D \approx L \Sigma R$$

where

- $L_{m \times r}$ is a non-negative, column-stochastic matrix,
- $\Sigma_{r \times r}$ is a non-negative, diagonal matrix that sums to unity,
- $R_{r \times n}$ is a non-negative, row-stochastic matrix.

Example

pLSA factorization of example matrix

- Rank r corresponds to number of topics
- Σ_{kk} corresponds to overall frequency of topic k
- L_{dk} corresponds to contribution of document d to topic k
- R_{kw} corresponds to frequency of word w in topic k
- pLSA constraints allow for probabilistic interpretation

