UNCLASSIFIED

AD 421546

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

Qualified requesters may obtain copies of this report direct from DDC.

July 1963

M.

5

DERIVATION OF EQUATIONS FOR CONVERTING FROM GEODETIC COORDINATES TO GEOCENTRIC COORDINATES

by F. T. Heuring

July 1963

Derivation Of Equations
For Converting
From Geodetic Coordinates
To Geocentric Coordinates

by F. T. Heuring

THE JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY

H21 GEORGIA AVENUE SILVER SPRING, MARYLAND

Operating under Contract NOw \$2.0684.g with the Burdon of Novel Wedgens, Department of the Nove

TABLE OF CONTENTS

I.	NOTATION	•	•	•	•	•	•	•	•	•	•	1
II.	DERIVATION	•	•	•	•	•	•	•	•	•	•	2
	D. 6											12

DERIVATION OF EQUATIONS FOR CONVERTING FROM GEODETIC COORDINATES TO GEOCENTRIC COORDINATES

F. T. Heuring

In the A.P.L. orbit computation programs, the TRANET Tracking Stations are specified in a geocentric coordinate system, whereas, particular positions (such as a TRANET Tracking Site) over the Earth are expressed initially in a geodetic coordinate system. In order to acquire geocentric coordinates from a given set of geodetic coordinates a set of transformation equations were derived.

Section I will define the notation, and Section II will embody the derivation of the transformation equations.

I. Notation*

Let:

 ϕ_{G_3} = geodetic latitude of i-th tracking site in its local datum,

 $\lambda_{G_{\hat{i}}}$ = geodetic longitude of i-th tracking site in its local datum,

h, = elevation of i-th tracking site above (below) geoid,

 H_i = geoidal height of i-th tracking site in its local datum,

 ξ_i = deflection in meridian at i-th tracking site,

 η_i = deflection in prime vertical at i-th tracking site,

a = equatorial radius of the local datum spheroid of the i-th
 tracking site, scaled by R_a,

b_i = polar radius of the local datum spheroid on the i-th tracking site, scaled by R_o,

^{*}See References 1 and 2 for definition of geodetic, datum, etc.

 x_{G_1} , y_{G_1} , z_{G_2} = cartesian coordinates, scaled by R_O , on i-th datum spheroid as specified by tracking site ϕ_G and λ_G , (cartesian origin identical to i-th datum origin),

x_{H_i}, y_{H_i}, z_{H_i} = cartesian coordinates, scaled by R_o, on geoid as specified by tracking site H, (cartesian origin identical to i-th datum origin),

x_E, y_E, z_E = cartesian coordinates, scaled by R_O, of tracking site on earth's surface, (cartesian origin identical to i-th datum origin),

 Δx_i , Δy_i , Δz_i = center of spheroid of the i-th tracking site datum in the A.P.L. Datum, scaled by R_o ,

$$\zeta_{G_i} = (x_{G_i}^2 + y_{G_i}^2)^{\frac{1}{2}}$$

 R_{\odot} = equatorial radius of A.P.L. Datum spheroid,

x_{ci}, y_{ci}, z_{ci} = cartesian coordinates of tracking site in A.P.L. geocentric coordinates, scaled by R_O,

 r_{ci} = radius of i-th tracking site in A.P.L. geocentric coordinates, scaled by R_{ci} ,

 ϕ_{c} = latitude of i-th tracking site in A.P.L. geocentric coordinates,

 λ_{c}^{1} = longitude of i-th tracking site in A.P.L. geocentric coordinates,

 $\zeta_{c_{i}}^{1} = (x_{c_{i}}^{2} + y_{c_{i}}^{2})^{\frac{1}{2}}.$

II. Derivation

A. Given ϕ_{G_i} , λ_{G_i} , a and b, conversion to x_{G_i} , y_{G_i} , z_{G_i} and ζ_{G_i} is as follows. Using the equation for an ellipse

$$\frac{\zeta_{G_{1}}^{2}}{a_{1}^{2}} + \frac{z_{G_{1}}^{2}}{b_{1}^{2}} = 1,$$

in particular the ellipse is a meridional plane of the i-th datum; differentiate z_{G_i} with respect to ζ_{G_i}

$$\frac{\partial^{z}G_{i}}{\partial\zeta_{G_{i}}} = -\frac{b_{i}^{2}}{a_{i}^{2}} \frac{\zeta_{G_{i}}}{z_{G_{i}}}.$$

But (see Figure 1A),

$$\frac{\partial^{z}G_{i}}{\partial \zeta_{G_{i}}} = -\frac{1}{\tan \varphi_{G_{i}}}$$

from which by algebraic manipulation (Figure 1B),

$$\zeta_{G_{i}} = \frac{a_{i}}{(1 + (\frac{b_{i}}{a_{i}})^{2} \tan^{2} \varphi_{G_{i}})^{\frac{1}{2}}},$$

after which,

$$\mathbf{x}_{G_{\underline{i}}} = \zeta_{G_{\underline{i}}} \cos \lambda_{G_{\underline{i}}}$$

$$\mathbf{y}_{G_{\underline{i}}} = \zeta_{G_{\underline{i}}} \sin \lambda_{G_{\underline{i}}}$$

$$\mathbf{z}_{G_{\underline{i}}} = \zeta_{G_{\underline{i}}} \frac{b_{\underline{i}}^{2}}{a_{\underline{i}}^{2}} \tan \phi_{G_{\underline{i}}}.$$

$$(1)$$

Figure 1A Meridian Plane in i-th Datum

$$\frac{1}{\tan \phi_{G_i}} = \cot \phi_{G_i} = \tan \epsilon - \frac{\partial z_{G_i}}{\partial \zeta_{G_i}}$$

Figure 1B Pictorial view of geodetic (ϕ_{G_i} , λ_{G_i}), cartesian "geodetic" (\mathbf{x}_{G_i} , \mathbf{y}_{G_i} , \mathbf{z}_{G_i}) and cartesian "geoidal" (\mathbf{x}_{H_i} , \mathbf{y}_{H_i} , \mathbf{z}_{H_i}) coordinates.

B. Compute $x_{H_{\dot{1}}}$, $y_{H_{\dot{1}}}$, $z_{H_{\dot{1}}}$ (Figure 1B). $H_{\dot{1}}$ is an extension of the normal to the spheroid, consequently,

$$\begin{aligned} \mathbf{x}_{\mathbf{H}_{\mathbf{i}}} &= \mathbf{x}_{\mathbf{G}_{\mathbf{i}}} + \mathbf{H}_{\mathbf{i}} \cos \phi_{\mathbf{G}_{\mathbf{i}}} \cos \lambda_{\mathbf{G}_{\mathbf{i}}} \\ \mathbf{y}_{\mathbf{H}_{\mathbf{i}}} &= \mathbf{y}_{\mathbf{G}_{\mathbf{i}}} + \mathbf{H}_{\mathbf{i}} \cos \phi_{\mathbf{G}_{\mathbf{i}}} \sin \lambda_{\mathbf{G}_{\mathbf{i}}} \\ \mathbf{z}_{\mathbf{H}_{\mathbf{i}}} &= \mathbf{z}_{\mathbf{G}_{\mathbf{i}}} + \mathbf{H}_{\mathbf{i}} \sin \phi_{\mathbf{G}_{\mathbf{i}}}. \end{aligned} \tag{2}$$

C. Compute x_{E_i} , y_{E_i} , z_{E_i} by considering h_i , ξ_i and η_i (see Figure 21).

$$\begin{aligned} & \mathbf{x_{E_{i}}} &= \mathbf{x_{H_{i}}} + \mathbf{h_{i}} \cos (\phi_{G_{i}} + \xi_{i}) \cos (\lambda_{G_{i}} + \Delta \lambda_{i}) \\ & \mathbf{y_{E_{i}}} &= \mathbf{y_{H_{i}}} + \mathbf{h_{i}} \cos (\phi_{G_{i}} + \xi_{i}) \sin (\lambda_{G_{i}} + \Delta \lambda_{i}) \\ & \mathbf{z_{E_{i}}} &= \mathbf{z_{H_{i}}} + \mathbf{h_{i}} \sin (\phi_{G_{i}} + \xi_{i}). \end{aligned} \tag{3}$$

From law of cosines for spherical triangles (Figure 12.), $\Delta\lambda_{\, \rm i}$ can be approximated.

$$\cos \Delta \lambda_{i} = \frac{\cos \eta_{i} - \sin^{2} (\varphi_{G_{i}} + \xi_{i})}{\cos^{2} (\varphi_{G_{i}} + \xi_{i})}. \tag{4}$$

(Restrict $\Delta \lambda_i$ to have the same sign as η_i).

Figure 2 Diagram of the deflections of the vertical (ξ_i and η_i) and the associated quantities necessary to acquire the cartesian coordinates on the geoid from earth surface cartesian coordinates.

D. Let us simplify by expanding small quantities. Assume:

$$\xi_{i}, \eta_{i} \leq 30"^{*} \text{ (of arc)};$$

and

$$1^{\circ} < |\phi_{G_{i}}| < 89^{\circ};$$

and only take quantities of magnitude ξ_i , η_i and $\Delta\lambda_i$ to second order.

$$\cos \xi_{i} \doteq 1 - \frac{\xi_{i}^{2}}{2}, \sin \xi_{i} \doteq \xi_{i}$$

$$\cos \eta_{i} \doteq 1 - \frac{\eta_{i}^{2}}{2}, \sin \eta_{i} \doteq \eta_{i}$$

$$\cos \Delta \lambda_{i} \doteq 1 - \frac{\Delta \lambda_{i}^{2}}{2}$$

thus.

$$\cos^{2}(\varphi_{G_{i}} + \xi_{i}) = \left[\cos\varphi_{G_{i}} \left(1 - \frac{\xi_{i}^{2}}{2}\right) - \xi_{i}\sin\varphi_{G_{i}}\right]^{2}$$

$$= \left(1 - \frac{\xi_{i}^{2}}{2}\right)^{2}\cos^{2}\varphi_{G_{i}} + \xi_{i}^{2}\sin^{2}\varphi_{G_{i}}$$

$$- 2 \xi_{i}\left(1 - \frac{\xi_{i}^{2}}{2}\right)\sin\varphi_{G_{i}}\cos\varphi_{G_{i}}$$

$$= \cos^{2}\varphi_{G_{i}} - \xi_{i}\sin^{2}\varphi_{G_{i}} - \xi_{i}^{2}\cos^{2}\varphi_{G_{i}} + 3rd \text{ order}$$
 (5)

From a personal communication with Mr. L. Simmons, U.S.C. and G.S., deflection of 30" exist but are in general uncommon.

(9)

+ 3rd order

 $+ \xi_1^2 \cos 2 \phi_{G_1}^4$

sin 2 $\phi_{\mathtt{G}_{\mathtt{l}}}$

พู +

ტ ე

= sin² a

 $\cos \phi_{\mathbf{G_1}}$

+2**%** sin ϕ_{i} c

og.

+ 52 cos c

∸) sin² ه_G +

(1)

cos $\phi_{G_{\underline{1}}}$

S_i sin ϕ_{G_1}

 $= \cos \phi_{G_1}$

S_i sin ϕ_{G} :

 $\cos \left(\phi_{\mathcal{G}_{1}} + \xi_{1} \right) = \cos \phi_{\mathcal{G}_{1}}$

(8)

 $+ \xi_1 \cos \varphi_{G_1}$

= sin $\phi_{\mathrm{G}_{\mathtt{i}}}^{}$

+ 5₁ cos φ_{G1} = $\sin(\phi_{G_1} + \xi_1) = \sin\phi_{G_1}$

= $\sin^2 (\varphi_{G_1} + \xi_1) + \cos^2 (\varphi_{G_1} + \xi_1) [1 -$

9

 $^{\circ} + \xi_{i} \cos \varphi_{G_{i}}$

 $\sin^2(\varphi_{G_1} + \xi_1) = [\sin\varphi_{G_1} (1 - -$

from equation (4):

and using equation (7),

$$\Delta \lambda_{1} = \frac{\eta_{1}}{\cos^{2} \phi_{G_{1}}} \left[\frac{1}{1 - \xi_{1} \tan^{2} \phi_{G_{1}}} - \frac{1}{\xi_{1}} \right] = \frac{\eta_{1}}{\cos^{2} \phi_{G_{1}}} \left[\frac{1 + \xi_{1} \tan^{2} \phi_{G_{1}}}{1 + \xi_{1} \tan^{2} \phi_{G_{1}}} + \frac{\xi_{2}^{2}}{2} + \frac{\xi_{1}^{2}}{2} \tan^{2} \phi_{G_{1}} \right]$$

$$= \eta_{1} \sec^{2} \phi_{G_{1}} \left[\frac{1 + \xi_{1} \tan^{2} \phi_{G_{1}}}{1 + \xi_{1} \tan^{2} \phi_{G_{1}}} + \frac{1}{3} \tan^{2} \phi_{G_{1}} \right] + 3rd \text{ order.}$$

6)

Further,

$$\sin \left(\lambda_{\mathbf{G_1}} + \Delta \lambda_{\mathbf{1}} \right) = \sin \lambda_{\mathbf{G_1}} \left(1 - \frac{\eta_{\mathbf{1}}^2 \sec^2 \phi_{\mathbf{G_1}}}{2} \right) + \cos \phi_{\mathbf{G_1}} \eta_{\mathbf{1}} \sec \phi_{\mathbf{G_1}} \left(1 + \xi_{\mathbf{1}} \tan \phi_{\mathbf{G_1}} \right)$$

$$= \sin \lambda_{\mathbf{G_1}} + \eta_{\mathbf{1}} \frac{\cos^3 \lambda_{\mathbf{G_1}}}{\cos^3 \phi_{\mathbf{G_1}}} + \frac{\eta_{\mathbf{1}}}{\cos^3 \phi_{\mathbf{G_1}}} \left[\xi_{\mathbf{1}} \cos \lambda_{\mathbf{G_1}} \sin \phi_{\mathbf{G_1}} - \frac{\eta_{\mathbf{1}}}{2} \sin \lambda_{\mathbf{G_1}} \right] + 3rd \text{ order}$$

(10)

$$\cos \left(\lambda_{G_{\underline{1}}} + \Delta \lambda_{\underline{1}} \right) = \cos \lambda_{G_{\underline{1}}} - \sin \lambda_{G_{\underline{1}}} \sec \phi_{G_{\underline{1}}} \left(1 + \xi_{\underline{1}} \tan \phi_{G_{\underline{1}}} \right) \eta_{\underline{1}} - \frac{\eta_{\underline{1}}^2}{2} \sec^2 \phi_{G_{\underline{1}}} \cos \lambda_{G_{\underline{1}}}$$

$$=\cos\lambda_{\mathbf{G_{1}}}-\eta_{1}\frac{\sin\lambda_{\mathbf{G_{1}}}}{\cos\phi_{\mathbf{G_{1}}}}-\frac{\eta_{1}}{\cos^{2}\phi_{\mathbf{G_{1}}}}\left[\sum_{\mathbf{S_{1}}\sin\lambda_{\mathbf{G_{1}}}\sin\phi_{\mathbf{G_{1}}}}^{\mathrm{gin}}\phi_{\mathbf{G_{1}}}+\frac{\eta_{1}}{2}\cos\lambda_{\mathbf{G_{1}}}\right]+3\mathrm{rd\ order.}$$

Using equations (1), (2), (3), (7), (8), (9), (10), and (11), $\mathbf{x_{E}}$, $\mathbf{y_{E}}$ and $\mathbf{z_{E}}$ can be expressed functions of the geodetic inputs $(\phi_{G_{1}}, \lambda_{G_{1}}, \mu_{1}, \mu_{1}, \eta_{1}, \xi_{1}, a_{1}, and b_{1})$

ω

 $\sin \lambda_{G_{i}}$ $= \zeta_{\mathbf{G_1}} \cos \lambda_{\mathbf{G_1}} + H_1 \cos \phi_{\mathbf{G_1}} \cos \lambda_{\mathbf{G_1}} + h_1 \left(\cos \phi_{\mathbf{G_1}} - \xi_1 \sin \phi_{\mathbf{G_1}}\right) \left(\cos \lambda_{\mathbf{G_1}} - \eta_1 \frac{1}{\cos \phi_{\mathbf{G_1}}}\right)$ $= \zeta_{\mathbf{G}_{\underline{1}}} \cos \lambda_{\mathbf{G}_{\underline{1}}} + (\mathbf{H}_{\underline{1}} + \mathbf{h}_{\underline{1}}) \cos \phi_{\mathbf{G}_{\underline{1}}} \cos \lambda_{\mathbf{G}_{\underline{1}}} - \mathbf{h}_{\underline{1}} (\xi_{\underline{1}} \sin \phi_{\mathbf{G}_{\underline{1}}} \cos \lambda_{\mathbf{G}_{\underline{1}}} + \eta_{\underline{1}} \sin \lambda_{\mathbf{G}_{\underline{1}}}) + 3rd \text{ order.}$

 $\mathbf{y_{E_1}} = \zeta_{\mathbf{G_1}} \sin \lambda_{\mathbf{G_1}} + \mathbf{H_1} \cos \phi_{\mathbf{G_1}} \sin \lambda_{\mathbf{G_1}} + \mathbf{h_1} (\cos \phi_{\mathbf{G_1}} - \xi_1 \sin \phi_{\mathbf{G_1}}) \left(\sin \lambda_{\mathbf{G_1}} + \eta_1 \frac{1}{\cos \phi_{\mathbf{G_1}}} \right)$

 $= \zeta_{\mathbf{d_1}} \sin \lambda_{\mathbf{d_1}} + (\mathbf{H_1} + \mathbf{h_1}) \cos \varphi_{\mathbf{d_1}} \sin \lambda_{\mathbf{d_1}} - \mathbf{h_1}(\xi_1 \sin \varphi_{\mathbf{d_1}} \sin \lambda_{\mathbf{d_1}} - \eta_1 \cos \lambda_{\mathbf{d_1}}) + 3rd \text{ order.}$

 $\frac{b_i^2}{a_i^2}$ tan ϕ_{G_i} + H_i sin ϕ_{G_i} + h_i (sin ϕ_{G_i} + ξ_i cos ϕ_{G_i}

+ 3rd order. $\frac{1}{2}$ tan ϕ_{G_1} + $(H_1 + h_1)$ sin ϕ_{G_1} + h_1 $\xi_1 \cos \phi_{G_1}$ F. The cartesian coordinates in the A.P.L. geocentric system are:

$$x_{c_{i}} = x_{E_{i}} + \Delta x_{i}$$

$$y_{c_{i}} = y_{E_{i}} + \Delta y_{i}$$

$$z_{c_{i}} = z_{E_{i}} + \Delta z_{i}$$

where Δx_i , Δy_i , and Δz_i are of second order, at best.

H. The cylindrical coordinates (z , ζ_c , λ_c) in the A.P.L. geocentric system are:

$$z_{c_{i}} = \zeta_{G_{i}} \frac{b_{i}^{2}}{2} \tan \varphi_{G_{i}} + (H_{i} + h_{i}) \sin \varphi_{G_{i}} + h_{i} \xi_{i} \cos \varphi_{G_{i}} + \Delta z_{i} + 3rd \text{ order (13)}$$

$$\zeta_{c_{i}}^{2} = x_{c_{i}}^{2} + y_{c_{i}}^{2}$$

After some algebraic manipulation and using the binominal expansion

$$\zeta_{c_{\underline{i}}} = \zeta_{G_{\underline{i}}} + (H_{\underline{i}} + h_{\underline{i}}) \cos \varphi_{G_{\underline{i}}} + \Delta x_{\underline{i}} \cos \lambda_{G_{\underline{i}}} + \Delta y_{\underline{i}} \sin \lambda_{G_{\underline{i}}} - h_{\underline{i}} \xi_{\underline{i}} \sin \varphi_{G_{\underline{i}}} \\
+ (H_{\underline{i}} + h_{\underline{i}}) \cos \varphi_{G_{\underline{i}}} \cdot \frac{1}{\zeta_{G_{\underline{i}}}} (\Delta x_{\underline{i}} \cos \lambda_{G_{\underline{i}}} + \Delta y_{\underline{i}} \sin \lambda_{G_{\underline{i}}}) \tag{14}$$

+ 3rd order.

In the derivation of $\lambda_{G_{\hat{1}}}$, no previously derived quantities were used as was the case with $\zeta_{c_{\hat{1}}}$. From Figure 3A, $h_{\hat{1}}$ is considered to be zero, thus the angle c can be approximated as follows:

$$\mathbf{e}_{1} + \mathbf{e}_{2} = \Delta \mathbf{x}_{i} \sin \lambda_{\mathbf{G}_{i}}$$

$$\mathbf{e}_{2} \doteq \Delta \mathbf{y}_{i} \cos \lambda_{\mathbf{G}_{i}} \qquad \text{where } \mathbf{e}_{1} \text{ and } \mathbf{e}_{2} \text{ are normal to } \zeta_{\mathbf{G}_{i}}, \text{ and }$$

$$\mathbf{e}_{1} \doteq \Delta \mathbf{x}_{i} \sin \lambda_{\mathbf{G}_{i}} - \Delta \mathbf{y}_{i} \cos \lambda_{\mathbf{G}_{i}}.$$

Since ϵ_1 considered, at best, second order,

$$\sigma = \frac{\epsilon_1}{\zeta_{G_1}}$$

and from the geometry,

$$\lambda_{c_{i}} = \lambda_{G_{i}} - \sigma = \lambda_{G_{i}} - \frac{1}{\zeta_{G_{i}}} (\Delta x_{i} \sin \lambda_{G_{i}} - \Delta y_{i} \cos \lambda_{G_{i}})$$
 (15)

Upon including the station elevation (h $_{\rm i})$ and deflection in the prime vertical ($\eta_{\rm i})$ (see Figure 3B)

$$\tau = h_i \sin \eta_i = h_i \eta_i$$
 (η_i is of magnitude + 30" of arc)

Figure 3A Diagram showing means of determining $\lambda_{\boldsymbol{c}}$ when $h_{\boldsymbol{i}}=0.$

Figure 3B Diagram showing determination of λ_c when $h_i \, \not= \, 0.$

and it follows similarly

$$\rho \doteq \frac{\tau}{\zeta_{G_i}} = \frac{h_i \eta_i}{\zeta_{G_i}}$$

From equation (15) and Figure 3B,

$$\lambda_{c_{i}} = \lambda_{G_{i}} + \rho - \sigma$$

$$= \lambda_{G_{\underline{i}}} + \frac{h_{\underline{i}} \eta_{\underline{i}}}{\zeta_{G_{\underline{i}}}} - \frac{1}{\zeta_{G_{\underline{i}}}} [\Delta x_{\underline{i}} \sin (\lambda_{G_{\underline{i}}} + \rho) - \Delta y_{\underline{i}} \cos (\lambda_{G_{\underline{i}}} + \rho)]$$

Assuming $\cos \rho = 1 - \frac{\rho^2}{2}$, $\sin \rho = \rho$,

$$\lambda_{c_{i}} = \lambda_{G_{i}} + \frac{1}{\zeta_{G_{i}}} \left[h_{i} \eta_{i} - (\Delta x_{i} \sin \lambda_{G_{i}} - \Delta y_{i} \cos \lambda_{G_{i}}) \right] + 3rd \text{ order.}$$
 (16)

Equations (13), (14), and (16) are the cylindrical coordinates z_{c_i} , λ_{c_i} in the A.P.L. Earth fixed coordinate system expressed as a function of the geodetic coordinates of a tracking station.

References

- 1. Bomford, Brigadier G., "Geodesy", Clarendon Press, 1952.
- 2. Hasner, George L., "Geodesy", Wiley, Second Edit., 1930, (Chap. V Properties of the Spheroid and Chap. VIII Figure of the Earth).

Initial distribution of this document has been made in accordance with a list on file in the Technical Reports Group of The Johns Hopkins University, Applied Physics Laboratory.