Revisão - BJT

Transistores MOS

Transistores Bipolares

Amplificadores

Resposta em Frequência

Transistores BJT

Bipolar Junction Transistor

Transistor Bipolar de Junção (TBJ)

Transistor Bipolar: NPN & PNP

Vista em corte de um transistor bipolar npn (real)

Fluxo de corrente em um transistor *npn* operando no <u>modo ativo</u>

Modos de operação

Modo	JEB	JCB
Ativo	Direta	Reversa
Corte	Reversa	Reversa
Saturação	Direta	Direta
Ativo Reverso	Reversa	Direta

JEB : Junção Emissor-Base

JCB : Junção Coletor-Base

Corrente de Coletor

$$i_C = I_S e^{v_{BE}/V_T}$$

$$I_S = \frac{A_E q D_n n_i^2}{N_A W}$$

 I_S da ordem de 10^{-12} a 10^{-15} A;

 $I_S \propto T(n_i^2)$; I_S dobra a cada 5 °C;

 A_E : fator de escala de corrente;

 i_C não depende de v_{CE} !!

Corrente da Base

$$i_{B} = i_{B1} + i_{B2} = I_{S} \left(\frac{D_{p}}{D_{n}} \frac{N_{A}}{N_{D}} \frac{W}{L_{p}} + \frac{1}{2} \frac{W^{2}}{D_{n} \tau_{b}} \right) \exp^{v_{BE}} V_{T}$$

$$i_{B} = \underbrace{I_{S}}_{\uparrow} \exp^{v_{BE}} V_{T}$$

$$i_{B} = \underbrace{i_{C}}_{\uparrow}$$

β 100 a 200 (estruturas especiais até 1000)

β ganho de corrente emissor comum

 β bastante influenciado pela largura da base (W)

 β bastante influenciado pela razão de dopagem entre emissor e base (N_A/N_D)

Corrente de Emissor

$$i_E = i_C + i_B$$

$$i_E = \frac{\beta + 1}{\beta} i_C$$
 $i_E = \frac{\beta + 1}{\beta} I_S \exp^{v_{BE}} / V_T$

$$i_C = \alpha i_E$$
 $\alpha = \frac{\beta}{\beta + 1}$

$$i_E = \frac{I_S}{\alpha} \exp^{v_{BE}} / V_T$$

Características I x V.

10

Características I x V.

11

Fonte de Corrente Constante

<u>Idealmente</u>, a corrente de coletor não depende de v_{CE} .

Modo Saturação e Modo Ativo.

scale

Modo	JEB	JCB
Ativo	Direta	Reversa
Corte	Reversa	Reversa
Saturação	Direta	Direta
Ativo Reverso	Reversa	Direta

Representação Gráfica das Características do Transistor

Curva Característica $i_C \times v_{CB}$ transistor npn

Representação Gráfica das Características do Transistor

 I_B aumenta, β diminui na saturação

Curva Característica $i_C \times v_{CE}$ transistor npn

Ex. 1: O transistor do circuito abaixo tem $\beta = 100$ e $v_{BE} = 0.7$ V quando $i_C = 1$ mA. Projete o circuito para se ter uma corrente de coletor de 2 mA e uma tensão de +5 V no coletor.

16

Modelo de grandes sinais (π) para o BJT npn operando no modo ativo

Um diodo é colocado entre a base e o emissor e uma fonte de corrente controlada por tensão é colocada entre o coletor e o emissor

18

Transistores TBJ

Modelo de grandes sinais (T) para o BJT npn operando no modo ativo

Modulação da largura de base O Efeito Early

Modulação da largura de base O Efeito Early

 I_C é a corrente de coletor sem o efeito Early.

Modelo de grandes sinais para o BJT npn operando no modo ativo na configuração emissor comum com $\lambda \neq 0$

O Transistor como Amplificador <u>Polarização</u>

Sinal + nível cc

$$v_{BE} = V_{BE} + v_{be}$$

Polarização (nível cc)

O Transistor como Amplificador

Transcondutância

$$g_{m} = \frac{c_{iC}}{\partial v_{BE}}\Big|_{i_{c} = I_{C}}$$

$$\dot{i}_{c} = g_{m}v_{be}$$

Operação linear do BJT sob polarização de pequenos sinais: $v_{be} << V_T$

O Transistor como Amplificador

Corrente de Base e a Resistência na Base

$$i_{B} = I_{B} + i_{b}$$

$$i_{b} = \frac{g_{m}}{\beta} v_{be}$$

$$r_{\pi} = \frac{\beta}{g_{m}}$$

$$r_{\pi} = \frac{V_{T}}{I_{B}}$$

O Transistor como Amplificador

Corrente de Emissor e a Resistência no Emissor

$$i_{E} = I_{E} + i_{e}$$

$$i_{e} = \frac{I_{E}}{V_{T}} v_{be}$$

$$r_{e} = \frac{\alpha}{g_{m}}$$

$$r_{e} = \frac{V_{T}}{I_{E}}$$

$$*r_{\pi} = (\beta + 1)r_e$$

O Transistor como Amplificador

Ganho de Tensão

Ganho de tensão do amplificador na configuração emissor comum

Modelos equivalentes para pequenos sinais

Circuito conceitual do amp. BJT

Modelos equivalentes para pequenos sinais

Modelo π -híbrido

Amplificador de transimpedância

Amplificador de corrente

Modelos equivalentes para pequenos sinais

Modelo T

$$g_m = I_C/V_T$$

$$r_e = \frac{V_T}{I_E} = \frac{\alpha}{g_m}$$

Polarização de Circuitos para Amplificadores BJT.

Polarização usando fonte de corrente constante

Circuito utilizado para o projeto da fonte de corrente "Espelho de corrente"

Processo de análise de pequenos sinais através dos modelos

- 1. Determina-se o ponto de operação cc (I_C) .
- 2. Calculam-se os parâmetros de pequenos sinais:

$$g_m = I_C/V_T$$
, $r_\pi = \beta/g_m$ e $r_e = V_T/I_E \cong 1/g_m$.

- 3. Substituem-se as fontes cc de tensão por um curto-circuito e as fontes cc de corrente por um circuito aberto.
- 4. Substitui-se o TBJ pelo modelo equivalente.
- 5. Analisar o circuito resultante para determinar as grandezas de interesse.

Ex. 2 – Utilizando o transistor da figura abaixo como amplificador, determine o ganho de tensão. Assumir $\beta = 100$.

(c)

32

Sugestão de Estudo:

- Sedra & Smith 5ed. Cap. 5, item 5.1 até 5.6
- Razavi. 2ed. Cap. 4.

Exercícios correspondentes.