

RK818

电源管理系统 技术规范

PRELIMINARY CONFIDENTIAL

V0.4

2015-03-29

Fuzhou Rockchip Electronics Co.Ltd

修改记录

日期	版本	说明
2013-11-19	0.1	初始定义
2014-03-15	0.2	完善信息
2014-7-18	0.3	1.增加订货信息 2.增加应用原理说明
2015-03-29	0.4	1. 增加 RK818-1/RK818-2 的订货信息及时序信息

目录

1	概述 (S	SUMMARY)	. 8
2	特点 (F	FEATURES)	. 9
3	系统功能	能模块图(BLOCK DIAGRAM)	10
4	典型应用	用图(TYPICAL APPLICATION)	11
5	封装管服	脚图 (PIN DESCRIPTION)	12
6	管脚功能	能定义 (PINOUT DEFINITION)	12
7	订货信息	总(ORDERING INFORMATION)	15
8	极限参数	数(ABSOLUTE MAXIMUM RATINGS)	15
9	推荐工作	作条件(RECOMMENDED OPERATING CONDITIONS)	15
10	电参	参数表 (ELECTRICAL CHARACTERISTICS)	16
11	工化	乍原理 (FUNCTION DESCRIPTION)	32
12	状え	S机描述(STATE MACHINE DESCRIPTION)	34
	12.1	状态图	34
	12.2	开机(POWER-ON)使能的条件	35
	12.3	关机(POWER-OFF)的条件	35
	12.4	SLEEP 使能条件	
13	上旬	电启动时序(POWER SEQUENCE)	37
	13.1	BOOT1=1, BOOT0 = 1	39
	13.2	BOOT1=0, BOOT0 = 1	40
	13.3	BOOT1=1, BOOT0 = 0	40
	13.4	BOOT1=0, BOOT0 = 0	40
	13.5	BOOT 时间参数(BOOT TIMING CHARACTERISTIC)	41
14	电测	原供电控制时序(POWER CONTROL TIMING)	42
	14.1	系统在 USB PLUG_IN 情况下开启	42
	14.2	BAT 单独供电,电压变化时系统工作模式(此时 Vbat=Vsys,下图以 Vsys 电压表示	示)
		43	
	14.3	时间参数 (USB 或者 Vsys 电压上升,下降和接入)	43
	14.4	PWRON 信号控制系统状态	
	14.5	时间参数 (PWRON, DEV_OFF)	45
	14.6	系统 SLEEP 状态控制	45
	14.7	时间参数 (SLEEP)	46
15	寄存	字器定义	46
	15. 1	寄存器总表	46
	15. 2	寄存器描述	51
	15	.2.1 RTC 寄存器	51
		15.2.1.1 SECONDS_REG: RTC 秒钟寄存器	51
		15.2.1.2 MINUTES_REG: RTC 分钟寄存器	

15.2.1.3	HOURS_REG: RTC 小时寄存器	51
15.2.1.4	DAYS_REG: RTC 日寄存器	52
15.2.1.5	MONTHS_REG: RTC 月寄存器	52
15.2.1.6	YEARS_REG: RTC 年寄存器	52
15.2.1.7	WEEKS_REG: RTC 周寄存器	53
15.2.1.8	ALARM_SECONDS_REG: RTC 闹钟秒寄存器	53
15.2.1.9	ALARM_MINUTES_REG: RTC 闹钟分钟寄存器	53
15.2.1.10	ALARM_HOURS_REG: RTC 闹钟小时寄存器	54
15.2.1.11	ALARM_DAYS_REG: RTC 闹钟日寄存器	54
15.2.1.12	ALARM_MONTHS_REG: RTC 闹钟月寄存器	54
15.2.1.13	ALARM_YEARS_REG: RTC 闹钟年寄存器	55
15.2.1.14	RTC_CTRL_REG:RTC 控制寄存器	55
15.2.1.15	RTC_STATUS_REG:RTC 状态寄存器	56
15.2.1.16	,	
15.2.1.17	RTC_COMP_LSB_REG: RTC LSB 补偿寄存器	57
15.2.1.18		
15.2.2 其它	之寄存器	58
15.2.2.1	CLK32KOUT_REG: RTC 32KHz 时钟输出寄存器	58
15.2.2.2	VB_MON_REG: 电池电压监测寄存器	58
15.2.2.3	THERMAL_REG: 热控制寄存器	59
15.2.3 功率	率通道控制/监测寄存器	
15.2.3.1	DCDC_EN_REG: DC-DC 转换器使能寄存器	
15.2.3.2	LDO_EN_REG:LDO 使能寄存器	60
15.2.3.3	SLEEP_SET_OFF_REG1: 睡眠模式关断寄存器 #1	
15.2.3.4	SLEEP_SET_OFF_REG2: 睡眠模式关断寄存器 #2	61
15.2.3.5	DCDC_UV_STS_REG: DC-DC 欠压状态寄存器	62
15.2.3.6	DCDC_UV_ACT_REG: DC-DC 欠压操作寄存器	63
15.2.3.7	LDO_UV_STS_REG:LDO 欠压状态寄存器	64
15.2.3.8	LDO_UV_ACT_REG:LDO 欠压操作寄存器	65
15.2.3.9	DCDC_PG_REG: DC-DC 转换器上电完成 状态寄存器	65
15.2.3.10	LDO_PG_REG:LDO 上电完成状态寄存器	66
15.2.3.11	VOUT_MON_TDB_REG: VOUT 防抖监测寄存器	67
15.2.4 电测	原通道配置寄存器	68
15.2.4.1	BUCK1_CONFIG_REG:BUCK1 配置寄存器	
15.2.4.2	BUCK1_ON_VSEL:BUCK1 运行模式寄存器	68
15.2.4.3	BUCK1_SLP_VSEL:BUCK1 休眠状态寄存器	69
15.2.4.4	BUCK2_CONFIG_REG: BUCK2 配置寄存器	
15.2.4.5	BUCK2_ON_VSEL: BUCK2 运行模式寄存器	70
15.2.4.6	BUCK2_SLP_VSEL: BUCK2 休眠模式寄存器	71
15.2.4.7	BUCK3_CONFIG_REG: BUCK3 配置寄存器	71
15.2.4.8	BUCK4_CONFIG_REG: BUCK4 配置寄存器	72

15.2.4.9	BUCK4_ON_VSEL:BUCK4 运行模式寄存器	72
15.2.4.10	BUCK4_SLP_VSEL: BUCK4 休眠模式寄存器	73
15.2.4.11	BOOST_CONFIG_REG: BOOST 配置寄存器	
15.2.4.12	LDO1_ON_VSEL_REG:LDO1 运行模式电压选择寄存器	74
15.2.4.13	LDO1_SLP_VSEL_REG:LDO1 休眠模式电压选择寄存器	75
15.2.4.14	LDO2_ON_VSEL_REG:LDO2运行模式电压选择寄存器	75
15.2.4.15	LDO2_SLP_VSEL_REG:LDO2 休眠模式电压选择寄存器	76
15.2.4.16	LDO3_ON_VSEL_REG:LDO3 运行模式电压选择寄存器	76
15.2.4.17	LDO3_SLP_VSEL_REG:LDO3 休眠模式电压选择寄存器	77
15.2.4.18	LDO4_ON_VSEL_REG:LDO4 运行模式电压选择	77
15.2.4.19	LDO4_SLP_VSEL_REG:LDO4 休眠模式电压选择寄存器	
15.2.4.20	LDO5_ON_VSEL_REG:LDO5 运行模式电压选择寄存器	
15.2.4.21	LDO5_SLP_VSEL_REG:LDO5 休眠模式电压选择寄存器	79
15.2.4.22	LDO6_ON_VSEL_REG:LDO6 运行模式电压选择寄存器	
15.2.4.23	LDO6_SLP_VSEL_REG:LDO6 休眠模式电压选择寄存器	
15.2.4.24	LDO7_ON_VSEL_REG:LDO7 运行模式电压选择寄存器	
15.2.4.25	LDO7_SLP_VSEL_REG:LDO7 休眠模式电压选择寄存器	
15.2.4.26	LDO8_ON_VSEL_REG:LDO8 运行模式电压选择寄存器	
15.2.4.27	LDO8_SLP_VSEL_REG:LDO8 休眠模式电压选择寄存器	
15.2.4.28	DEVCTRL_REG:设备控制寄存器	
	新寄存器	
15.2.5.1	INT_STS_REG1: 中断状态寄存器 #1	
15.2.5.2	INT_MSK_REG1: 中断屏蔽寄存器 #1	
15.2.5.3	INT_STS_REG2: 中断状态寄存器#2	
15.2.5.4	INT_STS_MSK_REG2: 中断屏蔽寄存器#2	
15.2.5.5	IO_POL_REG: IO 极性寄存器	
	OST/OTG/DCDC 寄存器	
15.2.6.1	H5V_EN_REG:	
	SLEEP_SEL_OFF_REG3:	
15.2.6.3		
15.2.6.4	BOOST_LDO9_SLP_VSEL_REG:	
15.2.6.5	BOOST_CTRL_REG: BOOST 控制寄存器	
15.2.6.6	DCDC_ILMAX_REG: DCDC 电感电流峰值调节寄存器	
	自器设置寄存器	
15.2.7.1	CHRG_COMP_REG:	
15.2.7.2	SUP_STS_REG:	
15.2.7.3	USB_CTRL_REG:	
15.2.7.4	CHRG_CTRL_REG1: 充电器控制寄存器 1	
15.2.7.5	CHRG_CTRL_REG2: 充电器控制寄存器 2	
15.2.7.6	CHRG_CTRL_REG3: 充电器控制寄存器 3	
15.2.7.7	OTG_ILIM_REG/BAT_CTRL_REG:	93

15	.2.7.8	BAT_HTS_TS1_REG	94
15	.2.7.9	BAT_LTS_TS1_REG	94
15	.2.7.10	BAT_HTS_TS2_REG	95
15	.2.7.11	BAT_LTS_TS2_REG	95
15	.2.7.12	TS_CTRL_REG	95
15	.2.7.13	ADC_CTRL_REG	96
15	.2.7.14	ON_SOURCE_REG:	97
15	.2.7.15	OFF_SOURCE_REG:	97
15.2.8	电量	量计设置寄存器	
15	.2.8.1	GGCON_REG:	98
15	.2.8.2	GGSTS_REG:	98
15	.2.8.3	FRAME_SMP_INTERV_REG:	99
15	.2.8.4	AUTO_SLP_CUR_THR_REG:	99
15.	.2.8.5	GASCNT_CAL_REG3: 电量计计数器计算寄存器 3	
15	.2.8.6	GASCNT_CAL_REG2: 电量计计数器计算寄存器 2	100
15.	.2.8.7	GASCNT_CAL_REG1: 电量计计数器计算寄存器 1	100
15.	.2.8.8	GASCNT_CAL_REGO: 电量计计数器计算寄存器 0	101
15	.2.8.9	GASCNT_REG3: 电量计计数器寄存器 3	101
15.	.2.8.10	GASCNT_REG2: 电量计计数器寄存器 2	
15.	.2.8.11	GASCNT_REG1: 电量计计数器寄存器 1	102
15.	.2.8.12	GASCNT_REGO: 电量计计数器寄存器 0	
15	.2.8.13		
15	.2.8.14	BAT_CUR_AVG_REGL: 电池电流值低位寄存器	103
15	.2.8.15		
15	.2.8.16		
15	.2.8.17	TS2_ADC_REGH: ADC 温度采样 TS2 高位寄存器	104
15.	.2.8.18	TS2_ADC_REGHL: ADC 温度采样 TS2 低位寄存器	
15	.2.8.19		
15	.2.8.20		
	.2.8.21		
15	.2.8.22		
	.2.8.23		
_	.2.8.24		
	.2.8.25		
	.2.8.26		
	.2.8.27		
	.2.8.28		
	.2.8.29		
	.2.8.30		
	.2.8.31		
15	.2.8.32	BAT_CUR_R_CALC_REGL: 电池电流换算内阻值低位寄存器	109

15.2.8.33	BAT_VOL_R_CALC_REGH: 电池电压换算内阻值高位寄存器.	109
15.2.8.34	BAT_VOL_R_CALC_REGL: 电池电压换算内阻值低位寄存器	109
15.2.8.35	CAL_OFFSET_REGH: 失调计算高位寄存器	109
15.2.8.36	CAL_OFFSET_REGL: 失调计算低位寄存器	110
15.2.8.37	NON_ACT_TIMER_CNT_REGL:	110
15.2.8.38	VCALIBO_REGH: 电压 0 校准值高位寄存器	110
15.2.8.39	VCALIBO_REGL: 电压 0 校准值低位寄存器	111
15.2.8.40	VCALIB1_REGH: 电压 1 校准值高位寄存器	111
15.2.8.41	VCALIB1_REGL: 电压 1 校准值低位寄存器	111
15.2.8.42	IOFFSET_REGH:电流失调值高位寄存器	112
15.2.8.43	IOFFSET_REGL: 电流失调值低位寄存器	112
15.2.9 数排	居寄存器	112
15.2.9.1	DATA0_REG: DATA0 数据寄存器	112
15.2.9.2	DATA1_REG: DATA1 数据寄存器	113
15.2.9.3	DATA2_REG: DATA2 数据寄存器	113
15.2.9.4	DATA3_REG: DATA3 数据寄存器	113
15.2.9.5	DATA4_REG: DATA4 数据寄存器	114
15.2.9.6	DATA5_REG: DATA5 数据寄存器	114
15.2.9.7	DATA6_REG: DATA6 数据寄存器	
15.2.9.8	DATA7_REG: DATA7 数据寄存器	
15.2.9.9	DATA8_REG: DATA8 数据寄存器	115
15.2.9.10		
15.2.9.11	DATA10_REG: DATA10 数据寄存器	
15.2.9.12		
15.2.9.13	DATA12_REG: DATA12 数据寄存器	
15.2.9.14	DATA13_REG: DATA13 数据寄存器	
15.2.9.15	DATA14_REG: DATA14 数据寄存器	
15.2.9.16	DATA15_REG: DATA15 数据寄存器	
15.2.9.17	- SOUTH 19 13 HI	
15.2.9.18		
15.2.9.19		
15.2.9.20	200 July 10 10 HI	
封装信息		119

16

1 概述 (SUMMARY)

RK818 是一款高性能 PMIC, 面向单节锂离子电池(包括锂离子及锂聚合物)中需要多路输出的多核处理器应用,可以提供完整的电源解决方案,外围应用简单。

RK818 集成了 5 路大电流 DCDC, 9 个 LDO, 1 个线性开关, 1 个 USB 5V 及 HDMI5V 输出, 还有开关充电,智能功率路径管理,库仑计,RTC 及可调上电时序等功能。

RK818 内置有智能功率路径管理和精确的库仑计功能及单节锂离子电池开关充电。RK818 集成了一个同步降压直流一直流转换器,它可以在向系统负载供电的的同时也对电池进行充电。USB 可以作为此款 IC 的电源输入,输入限流值可以设置为 450 mA 或者 820 mA,以满足 USB2. 0 和 USB3. 0 的要求,最大可以设置为 3 A,以满足大电流充电 USB 的应用。充电管理包括输入限流,涓流充电,恒流/恒压充电,充电终止,充电超时安全保护等功能。所有这些功能的具体值均可通过 I° C 接口进行方便的设置。

RK818 可对输出电压进行调节以向系统负载提供所需要的功率,同时可以对电池进行充电。当进入输入限流状态时,输入功率会优先提供给系统负载,而剩余的功率才会提供给电池充电用。另外,在系统负载所需功率超过限定的输入功率,或者电源输入被断开时,智能功率路径管理功能会自动开启电池与系统负载间的开关,从而使电池可以同时向系统负载提供额外功率。

RK818 还集成了一个电量计。通过采用自有专利技术的算法,该电量计可以根据不同电池的充放电特性曲线,精确地测量电池电量,并把电池电量信息通过 I²C 接口提供给系统主芯片。其它功能包括对过度放电电池的小电流充电,电池温度检测,充电安全定时器,和芯片热保护等。

大多数输出通道的电压都可以由 I2C 调整;输入端都做了软启动功能,大大减少对前端供电电源的电流冲击;补偿电路都集成到芯片内部,不需要外部电阻电容等额外器件。

采用 2MHz 的开关频率,DCDC 等可以采用更小体积的电感,并且集成了所有功率开关,不需要外部功率 MOSFETs, 肖特基二极管等,使 PCB 板更为简洁,因而大大节省了系统成本。高时钟稳定度的 RTC 功能,可以为处理器提供时钟计时、定时等功能。

RK818 采用 QFN68 7mmx7mm (pitch 0.35) 封装。

2 特点 (FEATURES)

- 输入范围: USB 输入是 3.8V 到 6V; BAT 输入是 2.7V 到 4.5V
- 最大 3A 充电电流的锂离子电池开关充电器
- 5A 自动电能路径管理
- 精准的电量计
- 实时时钟(RTC)
- 小于 40uA 的极低待机电流(在 32KHz 时钟频率下)
- 2MHz 开关频率的降压 DC-DC 转换器
- 1MHz 开关频率的升压 DC-DC 转换器
- 电流模式架构提供优异的瞬态响应
- 内部环路补偿和软启动功能
- 可通过 I²C 编程的输出电平和上电时序控制
- 自主 IP 的高转换效率电路架构
- 内置 BUCK 和 LDO 的 Vout 放电通路
- 供电电源:
 - 通道1: 同步降压DC-DC转换器, 4A max
 - 通道2: 同步降压DC-DC转换器, 4A max
 - 通道3: 同步降压DC-DC转换器, 2.5A max
 - 通道4: 同步降压DC-DC转换器, 2.5A max
 - 通道5: 同步升压DC-DC转换器, 2.5A max
 - 通道6-7,通道9,通道11:低压差电压调制器, 150mA max
 - 通道8: 低噪声, 高电源抑制比低压差电压调制器 ,100mA max
 - 通道10-12,14: 低压差电压调制器, 300mA max
 - 通道13: 低压差电压调制器, 400mA max
 - 通道15: 低阻开关,0.15ohm(在Vgs=3V时)
 - 通道16: HDMI5V开关, 80mA max
 - 通道17: OTG开关, 800mA max
- 固定及可编程可选择的电源启动时序控制
- 封装: 7mmx7mm OFN68

3 系统功能模块图(BLOCK DIAGRAM)

图 3-1 系统功能模块图

4 典型应用图(TYPICAL APPLICATION)

图 4-1 RK818 典型应用图

5 封装管脚图 (PIN DESCRIPTION)

QFN68 7mm x 7mm, pitch0.35mm

图 5-1 封装管脚图

6 管脚功能定义 (PINOUT DEFINITION)

管脚序号	名称	描述
1	INT	Interrupt request pin. Active low.
2	SLEEP	Input pin for switching state between sleep and non-sleep state.
3	H_5V	5v supply output for HDMI
4	GND5	Power ground

5	SW5	Switch output
6,7	BOOST	BOOST output
8,9	USB	Power input from USB
10	MIDU	Middle point of USB power supply
11,12	SW6	Switch output
13	GND6	Power ground
14	VLDO1	LDO1 output
15	VCC6	Power supply for LDO
16	VLDO2	LDO2 output
17	XIN	32.768KHz crystal oscillator input
18	XOUT	32.768KHz crystal oscillator output
19	воото	Boot sequence selection, low bit
20	BOOT1	Boot sequence selection, high bit
21	PWRON	Power on or power off enable pin, active low, internal 100K pull high to
		power supply
22	VCC3	Power supply for DCDC3
23	SW3	Switch output of DCDC3
24	GND3	Power ground for DCDC3
25	VFB3	feedback voltage for DCDC3
26	VFB2	DCDC2 output voltage feedback input
27	GND2	Power ground for DCDC2
28,29	SW2	Switch output of DCDC2
30	VCC2	Power supply for DCDC2
31	CLK32K1	32.768K clock1 output, open drain,
32	CLK32K2	32.768K clock2 output, open drain,
33	VDDIO	Power supply for IO
34	NRESPWON	Reset pin after power on, active low
35	SCL	Clock input of I2C
36	SDA	Data input/output of I2C
37	VPP	Power supply for testing, floating in the application
38	VFB1	DCDC1 output voltage feedback input
39	VCC1	Power supply for DCDC1
40,41	SW1	Switch output of DCDC1
42,43	GND1	Power ground for DCDC1
44	VLDO7	LDO7 output
45	VCC7	Power supply for LDO
46	VLDO5	LDO5 output

47	VLDO3	LDO3 output				
48	VLDO4	LDO4 output				
49	VLDO6	DO6 output				
50	VCC8	Power supply for switch				
51	VLDO8	LDO8 output				
52	VLDO9	LDO9 output				
53	VCC9	Power supply for LDO				
54	VSWOUT	Switch output				
55	VREF	Internal reference voltage				
56	REFGND	Reference ground				
57	SNSN	Bat charging and discharging sense current negative pin				
58	SNSP	Bat charging and discharging sense current positive pin				
59,60	BAT	Positive battery terminal				
61,62	SYS	DC-DC regulator output to power the system load and charge the battery				
63	VCC4	Power supply for DCDC4				
64	SW4	Switch output of DCDC4				
65	VFB4	DCDC4 output voltage feedback input				
66	GND4	Power ground for DCDC4				
67	TS1	Thermistor1 input. Connect a thermistor from this pin to ground. The thermistor is				
		usually inside the battery pack.				
68	TS2	Thermistor2 input. Connect a thermistor from this pin to ground. Or it can be				
		used as analog input pin of internal ADC if the control bit is set to ADC function.				
Exposed	Exposed ground	It must be connected to ground for thermal and electrical enhancement.				
pad						

表 1 管脚功能定义

7 订货信息 (ORDERING INFORMATION)

Orderable Device	RoHS status	Package	Package Qty	Device special feature
RK818-1	RoHS pass	QFN68(7X7)	2600ea/inner box* 6	
			inner boxes/outer box	RK3288/RK3368
RK818-2	RoHS pass	QFN68(7X7)	2600ea/inner box* 6	For S-product
			inner boxes/outer box	

8 极限参数 (ABSOLUTE MAXIMUM RATINGS)

Parameter	Min	Max	Units
Voltage range on pins USB ,MIDU ,BOOST ,SWx/H_5V	-0.3	6.5	٧
Voltage range on pins VCCx, VFBx, VLDOx, VSWOUT, VREF	-0.3	6.5	V
Voltage range on pin CLK32K1,CLK32K2, SLEEP	-0.3	6.5	V
Voltage range on pins XIN,XOUT, BOOT0,BOOT1, PWRON	-0.3	VSYS _{MAX} +0.3	
Voltage range on pins NRESPWRON, INT, SDA, SCL	-0.3	4	V
Storage temperature range, T _s	-40	150	$^{\circ}\mathbb{C}$
Operating temperature range, T _J	-40	125	$^{\circ}\mathbb{C}$
Maximum Soldering Temperature,T _{SOLDER}		300	$^{\circ}\!\mathbb{C}$

表 2 极限参数

Note 1. Exposure to the conditions exceeded absolute maximum ratings may cause the permanent damages and affect the reliability and safety of both device and systems using the device. The functional operations cannot be guaranteed beyond specified values in the recommended conditions.

9 推荐工作条件(RECOMMENDED OPERATING CONDITIONS)

Parameter	Min	TYP	Max	Units
Voltage range on pins USB	4	5	5.5	V
Voltage range on other pins			5.5	V
Power Dissipation			2.7	W

表 3 推荐工作条件

10电参数表 (ELECTRICAL CHARACTERISTICS)

除非另有说明, 电参数表中测试条件为: V_{USB} =5.0V, T_A = 25 ℃.

参数	符号	条件	最小值	典型值	最大值	单位
USB 输入(USBIN)						
USB Operating Range	V_{USB}		4	5	6	V
USB Under Voltage Lockout		Rising	3.65	3.8	3.95	V
Threshold		Falling		3.6		V
USB vs BATT Threshold		Rising		70		mV
		Falling		30		mV
		Min Current	60	80	100	mA
		Default	400	450	500	mA
USB Input Current Limit	I _{USB}	Max current	2.7	3	3.3	А
		step (from 1A to 3A)		200		mA
Maximum USB and BATT Power on Reset Threshold	V _{PORH}				2.2	V
(Rising)						
Maximum USB and BATT	V_{PORL}		1.2			V
Power on Reset Threshold (Falling)						
Over Voltage Lock Out Threshold (USB Rising)	$V_{\text{TH(OVLO)}}$		5.7	6.0	6.3	V
Over Voltage Lock Out Hysteresis	V _{HYS}			0.2		V
High-Side PMOS Peak Current Limit		0.5A step, Default=4.5A	4		5.5	Α
USB Input Quiescent Current	IUSBquie t	Charger Enable mode			10	mA
充电器						
				4.05		V
		\/\;\=\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		4.1		V
Terminal Battery Voltage	V_{BAT}	VBAT>VRECH, ICHG ≤		4.15		٧
		IBF		4.2		٧
				4.3		V

参数	符号	条件	最小值	典型值	最大值	单位
				4.35		V
	accuracy		-1		1	%
Recharge Threshold at V _{BATT}	V_{RECH}			V _{BAT} -0.15		V
Recharge Hysteresis				75		mV
Trickle Charge Threshold	V _{TRICKLE}		2.85	3.0	3.15	V
Trickle Charge Hysteresis				200		mV
Trickle Charge Current	I _{TRICKLE}			10%		Icc
Dead bat Charge Threshold	V_{DEAD}		1.8	2	2.2	V
Dead bat Charge Hysteresis				200		mV
Dead bat Charge Current	I _{DEAD}			70		mA
Termination Charger Current	I _{BF}	50mA Step, default=150mA	100		250	mA
BAT Leakage Current	I _{BATT}	VBAT=4.2V, SYS float, USB float		20	30	uA
Charge current	I _{CC}	0.2A step, default=2A	1		3	Α
Trickle Charge Time		30 minutes step, default=60 minutes	30		210	Min
Total Charge Time		2 hours step,default=6	4		16	Hou
Conversion Efficiency, Constant voltage stage (Vin=5V,Vbat=4.2V) Ibat=3A Ibat=2.5A Ibat=2A Ibat=1.5A Ibat=1A Ibat=500mA Ibat=200mA				84 87 89 91 94 93		%
Conversion Efficiency, Constant voltage stage (Vin=5V,Ibat=2A)				86 87 88 89		%

参数	符号	条件	最小值	典型值	最大值	单位
Resolution				12		bits
		Battery voltage	0		4.4	V
Input voltage range		Current channel	-64		64	mV
		TS1/TS2	0		2.2	V
Supply current	Active			0.6		mA
SYS 输入	1			l	1	
1844				3.6		V
SYS Regulation Voltage	Vsys	Auto setting		4.4		V
		ISYS=200mA,				•
BAT to SYS Resistance		VBAT=4.2V		0.05	0.08	Ω
BAT to SYS Current Limit	IBATLIM	0.5A step,default=5A	3		5	Α
	5, (12.11)	SYS short		200		mA
BAT to SYS Current Limit accuracy			-10		10	%
SYS voltage range	V _{SYSINPUT}		2.7		5.45	V
SYS low alarm voltage, if 3.3V	7010111101				00	•
(2.8V~3.5V programmable,	V_{BLO}		3.25	3.3	3.35	V
step=100mV)						
SYS under voltage threshold (vin	V _{BUVL}			2.7		V
falling)						
SYS under voltage threshold (vin	V_{BUVH}		2.8	2.9	3.0	V
rising)						
SYS OK voltage threshold	V_{BOK}			3.4		V
(3.3V~3.6V OTP programmable,						
step=100mV)						
Stand-by current, V_{DD} =3.6V, device	I _{Q(STNBY)}			40		uA
OFF state 32KHz clock running						
热保护				1	1	
Thermal Limit Temperature		10 °C step,	85		115	°C
- Thermal Zimic Temperature		default=85 °C			110	
Thermal Shutdown		20 °C step,	140		160	°C
		default=140 °C				
振荡器		T	<u></u>	T		
Switching Frequency	f _{SW}		1.8	2	2.2	MHz
CH1,2,3,4(Tj=25°C)						
Switching Frequency,	f _{SW}		0.9	1	1.1	MHz
CH5(Tj=25°C)						
逻辑输入		T	<u> </u>	1		
Input LOW-Level Voltage (V _{DDIO})	V_{IL}				$0.3xV_{DDIO}$	V

参数	符号	条件	最小值	典型值	最大值	单位
Input HIGH-Level Voltage (V _{DDIO})	V _{IH}		0.7xV _{DDIO}			V
逻辑输出	•		<u> </u>		•	•
LOW-Level Output Voltage, 3.0	V_{OL}				0.4	V
mA sink current						
HIGH-Level Output Voltage, 3.0	V _{OH}		V _{DDIO} -0.4			V
mA source current						
NRESPWON pin LOW-Level	V _{OL(NRES)}				0.4	V
Output Voltage, 3.0mA sink current						
CLK32KOUT1 pin LOW-Level	V _{OL(CLKO1)}				0.4	V
Output Voltage, 3.0mA sink current						
CLK32KOUT2 pin LOW-Level	V _{OL(CLKO2)}				0.4	
Output Voltage, 3.0mA sink current						
CLK32KOUT2 pin HIGH-Level	V _{OH(CLKO2)}		V _{DDIO} -0.4			V
Output Voltage, 3.0mA source						
current						
通道 1: 降压 DC-DC 转换器 (VDI	D_ARM)				•	
Input supply voltage range	V _{INPUT1}		2.7		5.5	V
Voltage Adjustable Range, 6bit	V _{FB1}	Step=12.5mV	0.7125		1.500	V
Output voltage transition rate						
BUCK1_RATE=00				2		
BUCK1_RATE=01				3		mV/us
BUCK1_RATE=10				4.5		
BUCK1_RATE=11				6		
Power Good threshold (Vout rising)	V_{PG1}			93		%
Output under voltage lockout(Vout	V _{UV1}			85		%
falling)						
Output over voltage lockout (Vout	V _{OV1}			117		%
rising)						
Preset Voltage, Default(Tj=25℃)	V _{FB1(Default}		1.078	1.100	1.122	V
)					
Preset Voltage,	V _{FB1(Default}		1.067	1.100	1.133	V
Default(-10 $^{\circ}$ C \leq T _j \leq +85 $^{\circ}$ C))					
Load Regulation, $I_{OUT1} = 200 \text{mA}$ to				0.1		%/A
4A						
Line Regulation, VCC1 = 3 to 5.5V,				0.1		%/V
I _{OUT1} = 2A						
Rated output current	I _{MAX1}	Reg90H<1:0>=<11>		4		Α
Switch Current Limit	I _{CL1}	0.4A step, default=3.6A	3.2		4.4	Α
Operating Quiescent Current, No	I _{Q1}			70		uA

	符号	条件	最小值	典型值	最大值	单位
load, V _{DD} =3.8V						
Minimun Switch Current Limit	I _{CLMIN1}	50mA step,	50		400	mA
		default=150mA				
Minimum ON Time	T _{on1(min)}			45		ns
Soft-start Time	t _{SS1}	Step=400us,	400		800	us
		default=400us				
C _{OUT} Discharge Switch ON	R _{DIS2}			250		ohm
Resistance				250		Offili
Conversion Efficiency						
(Vin=3.8V,Vout=1.1V)						
lout=4A						
				65		
lout=3.5A				68		
lout=3A				71		
lout=2.5A				75		
lout=2A				79		%
lout=1.5A				83		
lout=1 A				86		
lout=500mA				89		
lout=100 mA						
lout=10 mA				80 81		
	DD LOG)			0.		
Input supply voltage range	V _{INPUT2}		2.7		5.5	V
Voltage Adjustable Range, 6bit	V_{FB2}	Step=12.5mV	0.7125		1.500	V
Output voltage transition rate						
BUCK2_RATE=00				2		
BUCK2_RATE=01				3		mV/us
BUCK2_RATE=10				4.5		
BUCK2_RATE=11				6		
Power Good threshold (Vout rising)	V_{PG2}			93		%
Output under voltage lockout (Vout	V _{UV2}			85		%
falling)						
Output over voltage lockout (Vout	V_{OV2}			117		%
rising)						
Preset Voltage, Default(Tj=25℃)	V _{FB2(Default}		1.078	1.100	1.122	V

	符号	条件	最小值	典型值	最大值	单位
)					
Preset Voltage,	V _{FB2(Default}		1.067	1.100	1.133	V
Default(-10 $^{\circ}$ C \leq T _j \leq +85 $^{\circ}$ C))					
Load Regulation, $I_{OUT2} = 200$ mA to				0.1		%/A
4A						
Line Regulation, VCC2 = 3 to 5.5V,				0.1		%/V
$I_{OUT2} = 2A$						
Rated output current	I _{MAX2}	Reg90H<3:2>=<11>		4		A
Switch Current Limit	I _{CL2}	0.4A step, default=3.6A	3.2		4.4	A
Operating Quiescent Current, No load, V_{DD} =3.8V	I_{Q2}			70		uA
Minimun Switch Current Limit	I _{CLMIN2}	50mA step,	50		400	mA
		default=150mA				
Minimum ON Time	T _{on2(min)}			45		ns
Soft-start Time	t _{SS2}	Step=400us,	400		800	us
		default=400us				
C _{OUT} Discharge Switch ON	R_{DIS2}			250		ohm
Resistance						
Conversion Efficiency						
(Vin=3.8V,Vout=1.1V)				62		
Iout=4A				02		
lout=3.5A				65		
lout=3A				69		
lout=2.5A				73		
lout=2A				76		%
lout=1.5A				81		
lout=1 A				85		
lout=500mA				89		
lout=100 mA				85		
lout=10 mA				83		
通道 3: 降压 DC-DC 转换器(VI						
Input supply voltage range	V _{INPUT3}		2.7		5.5	V
Feedback Voltage, Default($Tj=25^{\circ}C$)	V _{FB3(Default}		0.98	1.00	1.02	V

参数	符号	条件	最小值	典型值	最大值	单位		
Feedback Voltage,	V _{FB3(Default}		0.97	1.00	1.03	V		
Default(-10 $^{\circ}$ C \leq T $_{j}$ \leq +85 $^{\circ}$ C))							
Power Good threshold (Vout rising)	V_{PG3}			93		%		
Output under voltage lockout (Vout	V _{UV3}			85		%		
falling)								
Output over voltage lockout (Vout	V _{OV3}			117		%		
rising)								
Load Regulation, $I_{OUT3} = 100mA$ to				0.1		%/A		
2.5A								
Line Regulation, VCC3 = 3 to 5.5V,				0.1		%/V		
$I_{OUT3} = 2A$								
Rated output current	I _{MAX3}	Reg90H<5:4>=<11>		2.5		Α		
Switch Current Limit	I _{CL3}	0.5A step, default=2.5A	2		3.5	Α		
Operating Quiescent Current, No	I _{Q3}			70		uA		
load, V _{DD} =3.8V								
Minimum Switch Current Limit	I _{CLMIN3}	50mA step,	50		400	mA		
		default=150mA						
Minimum ON Time	T _{on3(min)}			45		ns		
Soft-start Time	t _{SS3}	Step=400us,	400		800	us		
		default=400us						
C _{OUT} Discharge Switch ON	R _{DIS3}			250		ohm		
Resistance								
Conversion Efficiency								
(Vin=3.8V,Vout=1.5V)								
lout=2.5A				70				
lout=2A				75				
				00				
lout=1.5A				80		%		
lout=1 A				84				
lout=500mA				88				
lout=100 mA				84				
lout=10 mA				83				
通道 4: 降压 DC-DC 转换器 (V	DD 10)							
Input supply voltage range	V _{INPUT4}		2.7		5.5	V		
Voltage Adjustable Range, 4bit	V _{FB4}	Step=100mV	1.8		3.6	V		
Feedback Voltage,	V _{FB4} (Default	0.0p=100mv	2.94	3.00	3.06	V		
Default(Tj=25 $^{\circ}$ C)	• 1 D4(Delault			0.00	3.00	,		

			1	一切有之外列				
参数	符号	条件	最小值	典型值	最大值	单位		
Feedback Voltage,	V _{FB4(Default}		-2.91	3.00	3.09	V		
Default(-10 $^{\circ}$ C \leq T $_{j}$ \leq +85 $^{\circ}$ C))							
Power Good threshold (Vout rising)	V_{PG4}			93		%		
Output under voltage lockout (Vout	V_{UV4}			85		%		
falling)								
Output over voltage lockout (Vout	V_{OV4}			117		%		
rising)								
Load Regulation, $I_{OUT4} = 100 mA$ to				0.1		%/A		
2.5A								
Line Regulation, VCC4 = 3 to 5.5 V,				0.1		%/V		
$I_{OUT4} = 2A$								
Rated output current	I _{MAX4}	Reg90H<7:6>=<11>		2.5		Α		
Switch Current Limit	I _{CL4}	0.5A step, default=3A	2.5		4	Α		
Operating Quiescent Current, No	I _{Q4}			70		uA		
load, V _{DD} =3.8V								
Minimun Switch Current Limit	I _{CLMIN4}	50mA step,	50		400	mA		
		default=150mA						
Minimum ON Time	T _{on4(min)}			45		ns		
Soft-start Time	t _{SS4}	Step=400us,		400		us		
		default=400us						
C_{OUT} Discharge Switch ON	R _{DIS4}			250		Ohm		
Resistance	INDIS4			230		Ollill		
Conversion Efficiency,								
(DCR<50mohm) Vin=3.8V,Vout=3V						%		
lout=2.5A				81				
lout=2A				84				
lout=1.5A				87				
lout=1 A								
Jan. 1, 500 m. A				91				
lout=500mA				94				
lout=100mA				00				
lout- 10~ A				88				
lout=10mA				75				
通道 5: 升压 DC-DC 转换器 (V	CC_5V)							
Input supply voltage range	V _{INPUT5}		2.7		4.4	V		
Output Voltage	V_{FB5}	Step=0.1v,default=5v	4.7		5.4	V		
Voltage, Default(Tj=25℃)	V _{FB5(Default}		4.90	5.0	5.10	V		
)							
Voltage, Default(-10 $^{\circ}$ C \leq T $_{j}$ \leq +85 $^{\circ}$ C)	V _{FB5(Default}		4.75	5.0	5.25	V		

	符号	条件	最小值	典型值	最大值	单位
9 90		ᅏᄄ	取小山	光空间	取八旦	丰江
Power Good threshold (Vout rising)	V _{PG5}			90		%
Output under voltage lockout (Vout	V _{DUV5}			85		%
falling)	V UV5			00		70
Load Regulation, I _{OUT5} = 100mA to				0.2		%/A
2.5A						
Line Regulation, Vin = 3 to 4.2V,				0.1		%/V
I _{OUT5} = 1.5A						
Rated output current	I _{MAX5}	Reg3A<4:3>=11		2.5		Α
Switch Current Limit	I _{CL5}	0.5A step, default=4.5A	4		5.5	Α
Minimum ON Time	T _{on5(min)}			70		ns
Soft-start Time	t _{SS5}			400		us
C _{OUT} Discharge Switch ON	R _{DIS5}			250		ohm
Resistance				250		Onin
Operating Quiescent Current, No	I_{Q5}			250		uA
load, V _{DD} =3.8V						
Auto switch load current between	I _{PWM/PFM5}			50		mA
PWM and PFM						
Conversion Efficiency,						
(DCR<50mohm) Vin=3.8V,Vout=5V				00		
lout=2.5A				80		
lout=2A				85		
lout=1.5A				89		
lout=800mA				09		
lout=500mA				93		%
				94		70
lout=100mA						
lout=10mA				90		
				71		
通道6:LDO1(VCC_TP)		ı	T	<u> </u>	ı	ı
Input supply voltage range	V _{INPUT6}		2.7		5.5	V
V _{OUT} Output Voltage Adjustable	V_{OUT6}		1.8		3.4	V
Range, 4bit(step=100mv)						
V _{OUT} Output Voltage,	V _{OUT6(Defa}		3.234	3.300	3.366	V
Default(Tj=25 ℃)	ult)					
V _{OUT} Output Voltage, Default(Tj=	$V_{\text{OUT6(Defa}}$		3.201	3.300	3.399	V
-10~85℃)	ult)					

	i e			1	1	
参数	符号	条件	最小值	典型值	最大值	单位
Power Good threshold (Vout rising)	V_{PG6}			93		%
Output under voltage lockout (Vout	V _{UV6}			85		%
falling)						
V_{OUT} Load Regulation, $I_{OUT} = 1mA$				0.005		%/mA
to 150mA						
V_{OUT} Line Regulation, $V_{IN6} = 3$ to 5V,				0.03		%/V
I _{OUT6} = 0.1A						
Power Supply Reject Ratio (f =	PSRR6			50		dB
10kHz, V _{OUT6} =3.3V)						
Output noise (10Hz to 100kHz,	OUT _{NOISE}			300		uVrms
V _{OUT6} =3.3V)	6					
Dropout voltage @ 150mA	V _{DROP6}			200		mV
(V _{OUT6} =3.3V)						
Rated output current	I _{MAX6}			150		mA
Operating Quiescent Current, No	I_{Q6}			28		uA
load, V _{DD} =3.8V						
Current Limit, VOUT6 = V _{OUT6} x	I _{CL6}		250	300		mA
0.95						
Soft-start Time	t _{SS6}			400		us
C _{OUT} Discharge Switch ON	_					_
Resistance	R _{DIS6}			400		ohm
通道 7: LD02(VCCA_33)						<u> </u>
Input supply voltage range	V _{INPUT7}		2.7		5.5	V
V _{OUT} Output Voltage Adjustable	V _{OUT7}		1.8		3.4	V
Range,						
4bit(step=100mv)						
V _{OUT} Output Voltage,	V _{OUT7(Defa}		3.234	3.300	3.366	V
Default(Tj=25℃)	ult)					
V _{OUT} Output Voltage,	V _{OUT7(Defa}		3.201	3.300	3.399	V
Default(Tj=-10~85°C)	ult)					
Power Good threshold (Vout rising)	V _{PG7}			93		%
Output under voltage lockout (Vout	V _{UV7}			85		%
falling)						
Output over voltage lockout (Vout	V _{OV7}			125		%
rising)	J					
V _{OUT} Load Regulation, I _{OUT} = 1mA				0.005		%/mA
to 150mA						
V _{OUT} Line Regulation, V _{IN7} = 3 to 5V,				0.03		%/V
I _{OUT7} = 0.1A						
	l					

	ı		ı	ı	ı	
参数	符号	条件	最小值	典型值	最大值	单位
Power Supply Reject Ratio (f =	PSRR7			50		dB
10kHz, V _{OUT7} =3.3V)						
Output noise (10Hz to 100kHz,	OUT _{NOISE}			300		uVrms
V _{OUT7} =3.3V)	7					
Dropout voltage @ 150mA	V_{DROP7}			200		mV
(V _{OUT7} =3.3V)						
Operating Quiescent Current, No	I_{Q7}			28		uA
load, V _{DD} =3.8V						
Rated output current	I _{MAX7}			150		mA
Current Limit, VOUT7 = V_{OUT7} x	I _{CL7}		250	300		mA
0.95						
Soft-start Time	t _{SS7}			400		us
C _{OUT} Discharge Switch ON	D			400		Ohm
Resistance	R _{DIS7}			400		Onn
通道8:LD03(VDD_11)						
Input supply voltage range	V _{INPUT7}		2.7		5.5	V
V _{OUT} Output Voltage Adjustable	V _{OUT8}		0.8		2.5	V
Range,						
4bit (0.8V~2V, step=100mV, 2V~						
2.5V step=500mV)						
V _{OUT} Output Voltage,	V _{OUT8(Defa}		1.078	1.100	1.122	V
Default(Tj=25°C)	ult)					
V _{OUT} Output Voltage,	V _{OUT8}		1.067	1.100	1.133	V
Default(Tj=-10~85℃)	(Default)					
Power Good threshold (Vout rising)	V_{PG8}			93		%
Output under voltage lockout (Vout	V _{UV8}			85		%
falling)						
V_{OUT} Load Regulation, $I_{OUT} = 1mA$				0.006		%/mA
to 150mA						
V_{OUT} Line Regulation, $V_{IN8} = 3$ to 5V,				0.015		%/V
$I_{OUT8} = 0.05A$						
Power Supply Reject Ratio (f =	PSRR8			70		dB
10kHz, V _{OUT8} =1.1V)						
Output noise (10Hz to 100kHz,	OUT _{NOISE}			30		uVrms
V _{OUT8} =1.1V)	8					
Dropout voltage @ 100mA	V_{DROP8}			200		mV
(V _{OUT8} =2.5V)						
Rated output current	I _{MAX8}			100		mA
Operating Quiescent Current, No	I _{Q8}			52		uA

参数 符号 条件 最小值 典型值 最大值 load, V_{DD}=3.8V Current Limit, VOUT8 = V_{OUT8} x I_{CL8} 150 200 mΑ 0.95 Soft-start Time 400 us t_{SS8} C_{OUT} Discharge Switch ON 400 R_{DIS8} Ohm Resistance 通道 9: LD04(VCC 25) Input supply voltage range 2.7 5.5 ٧ V_{INPUT9} V_{OUT} Output Voltage Adjustable 1.8 3.4 V V_{OUT9} Range, 4bit(step=100mv) V_{OUT} Output Voltage, $V_{OUT9(Defa}$ 2.450 2.500 2.550 V Default(Tj=25°C) ult) Output ٧ Voltage, $V_{\text{OUT9}(\text{Defa}}$ 2.425 2.500 2.575 V_{OUT} Default(Tj=-10~85°C) ult) Power Good threshold (Vout rising) V_{PG9} 93 Output under voltage lockout (Vout V_{UV9} % 85 falling) V_{OUT} Load Regulation, $I_{OUT} = 1mA$ 0.005 %/mA to 150mA V_{OUT} Line Regulation, $V_{IN9} = 3$ to 5V, 0.03 %/V $I_{OUT9} = 0.15A$ Power Supply Reject Ratio (f = PSRR9 dΒ 50 10kHz, V_{OUT9}=3.3V) Output noise (10Hz to 100kHz, **OUT_{NOISE}** 300 uVrms $V_{OUT9}=3.3V$) Dropout voltage 150mA 200 V_{DROP9} $(V_{OUT9}=3.3V)$ Operating Quiescent Current, No I_{Q9} 28 uΑ load, V_{DD}=3.8V Rated output current I_{MAX9} 150 mΑ Current Limit, VOUT9 = V_{OUT9} x I_{CL9} 250 300 mΑ 0.95 Soft-start Time 400 t_{SS9} C_{OUT} Discharge Switch ON $R_{\text{DIS9}} \\$ 400 Ohm Resistance 通道 10 : LD05(VCC28_CIF) Input supply voltage range 2.7 5.5 V V_{INPUT10} V_{OUT} Output Voltage Adjustable V_{OUT10} 1.8 3.4 V

				S 4/4/ [4 - 12/4 1/76				
参数	符号	条件	最小值	典型值	最大值	单位		
Range,								
4bit(step=100mv)								
V _{OUT} Output Voltage,	V _{OUT10(Def}		2.744	2.800	2.856	V		
Default(Tj=25℃)	ault)							
V _{OUT} Output Voltage,	V _{OUT10(Def}		2.716	2.800	2.884	V		
Default(Tj=-10~85℃)	ault)							
Power Good threshold (Vout rising)	V_{PG10}			93		%		
Output under voltage lockout (Vout	V_{UV10}			85		%		
falling)								
V_{OUT} Load Regulation, $I_{OUT} = 1mA$				0.003		%/mA		
to 300mA								
V_{OUT} Line Regulation, $V_{IN10} = 3$ to				0.01		%/V		
5V, I _{OUT10} = 0.3A								
Power Supply Reject Ratio (f =	PSRR10			52		dB		
10kHz, V _{OUT10} =3.3V)								
Output noise (10Hz to 100kHz,	OUT _{NOISE}			300		uVrms		
V _{OUT10} =3.3V)	10							
Dropout voltage @ 300mA	V_{DROP10}			200		mV		
(V _{OUT10} =2.8V)								
Operating Quiescent Current, No	I _{Q10}			28		uA		
load, V _{DD} =3.8V								
Rated output current	I _{MAX10}			300		mA		
Current Limit, VOUT10 = $V_{OUT10} x$	I _{CL10}		350	500		mA		
0.95								
Soft-start Time	t _{SS10}			400		us		
C _{OUT} Discharge Switch ON	R _{DIS10}			400		Ohm		
Resistance								
通道 11: LD06(VCC_12)	 		1	I	I	I		
Input supply voltage range	V _{INPUT11}		2.7		5.5	V		
V _{OUT} Output Voltage Adjustable	V _{OUT11}		8.0		2.5	V		
Range,								
5bit(step=100mv)	.,		4.470	4.000	4.604	,,,		
V _{OUT} Output Voltage,	V _{OUT11(Def}		1.176	1.200	1.224	V		
Default(Tj=25 °C)	ault)		4.404	4.000	4.000	.,		
Vout Output Voltage,	V _{OUT11(Def}		1.164	1.200	1.236	V		
Default(Tj=-10~85℃)	ault)			00		0/		
Power Good threshold (Vout rising)	V _{PG11}			93		%		
Output under voltage lockout (Vout	V_{UV11}			85		%		
falling)								

参数	符号	条件	最小值	典型值	最大值	单位
V_{OUT} Load Regulation, $I_{OUT} = 1mA$				0.005		%/mA
to 150mA						
V_{OUT} Line Regulation, $V_{IN11} = 3$ to				0.015		%/V
5V, I _{OUT11} = 0.1A						
Power Supply Reject Ratio (f =	PSRR11			70		dB
10kHz, V _{OUT11} =3.3V)						
Output noise (10Hz to 100kHz,	OUT _{NOISE}			30		uVrms
V _{OUT11} =3.3V)	11					
Dropout voltage @ 150mA	V _{DROP11}			200		mV
(V _{OUT11} =2.5V)						
Operating Quiescent Current, No	I _{Q11}			52		uA
load, V _{DD} =3.8V						
Rated output current	I _{MAX11}			150		mA
Current Limit, VOUT11 = V _{OUT11} x	I _{CL11}		200	300		mA
0.95						
Soft-start Time	t _{SS11}			400		us
C _{OUT} Discharge Switch ON	D			400		Ohm
Resistance	R _{DIS11}			400		Onn
通道 12: LD07(VCC18_CIF)						
Input supply voltage rangef	V _{INPUT12}		2.7		5.5	V
V _{OUT} Output Voltage Adjustable	V _{OUT12}		0.8		2.5	V
Range,						
5bit(step=100mv)						
V _{OUT} Output Voltage,	V _{OUT12(Def}		1.764	1.800	1.836	V
Default(Tj=25°C)	ault)					
V _{OUT} Output Voltage,	V _{OUT12(Def}		-1.736	1.800	1.854	V
Default(Tj=-10~85°C)	ault)					
Power Good threshold (Vout rising)	V_{PG12}			93		%
Output under voltage lockout (Vout	V_{UV12}			85		%
falling)						
V_{OUT} Load Regulation, $I_{OUT} = 1mA$				0.005		%/mA
to 300mA						
V_{OUT} Line Regulation, $V_{IN12} = 3$ to				0.015		%/V
5V, I _{OUT12} = 0.3A						
Power Supply Reject Ratio (f =	PSRR12			65		dB
10kHz, V _{OUT12} =3.3V)						
Output noise (10Hz to 100kHz,	OUT _{NOISE}			50		uVrms
V _{OUT12} =3.3V)	12					
Dropout voltage @ 300mA	V _{DROP12}			200		mV

⇔ ₩.	<i>6</i> 5 □	た 14	目小佐	ᄴᆈᄹ	日上佐	* 12
参数	符号	<u>条件</u>	最小值	典型值	最大值	单位
(V _{OUT12} =2.5V)						
Operating Quiescent Current, No	I _{Q12}			48		uA
load, V _{DD} =3.8V	_					
Rated output current	I _{MAX12}			300		mA
Current Limit, VOUT12 = $V_{OUT12} x$	I _{CL12}		400	400		mA
0.95						
Soft-start Time	t _{SS12}			400		us
C _{OUT} Discharge Switch ON	R _{DIS12}			250		Ohm
Resistance	1 -51012					
通道13 : LD08(VCC33_WIFI)						_
Input supply voltage range	V _{INPUT13}		2.7		5.5	V
V _{OUT} Output Voltage Adjustable	V _{OUT13}		1.8		3.4	V
Range,						
4bit(step=100mv)						
V_{OUT} Output Voltage,	V _{OUT13(Def}		3.234	3.300	3.366	V
Default(Tj=25℃)	ault)					
$V_{\text{OUT}} \qquad \text{Output} \qquad \text{Voltage},$	V _{OUT13(Def}		3.201	3.300	3.399	V
Default(Tj=-10~85℃)	ault)					
Power Good threshold (Vout rising)	V_{PG13}			93		%
Output under voltage lockout (Vout	V _{UV13}			85		%
falling)						
V_{OUT} Load Regulation, $I_{\text{OUT}} = 1 \text{mA}$				0.003		%/mA
to 150mA						
V_{OUT} Line Regulation, V_{IN13} = 3 to				0.01		%/V
5V, I _{OUT6} = 0.15A						
Power Supply Reject Ratio (f =	PSRR13			50		dB
10kHz, V _{OUT13} =3.3V)						
Output noise (10Hz to 100kHz,	OUT _{NOISE}			300		uVrms
V _{OUT13} =3.3V)	13					
Dropout voltage @ 300mA	V _{DROP13}			200		mV
(V _{OUT13} =2.8V)						
Operating Quiescent Current, No	I _{Q13}			30		uA
load, V_{DD} =3.8 V						
Rated output current	I _{MAX13}			400		mA
Current Limit, VOUT13 = $V_{OUT13} x$	I _{CL13}		500	600		mA
0.95						
Soft-start Time	t _{SS13}			400		us
C _{OUT} Discharge Switch ON	D.			400		Ohm
Resistance	R _{DIS13}			400		Ohm

					<i>**</i>	
参数	符号	条件	最小值	典型值	最大值	单位
通道 14 : LD09 (VCC_SD)						
Input supply voltage range	V _{INPUT14}		2.7		5.5	V
V _{OUT} Output Voltage Adjustable	V _{OUT14}		1.8		3.4	V
Range, 4bit(step=100mv)						
V _{OUT} Output Voltage,	V _{OUT14(Def}		3.234	3.300	3.366	V
Default(Tj=25℃)	ault)					
V _{OUT} Output Voltage, Default	V _{OUT14Defa}		3.201	3.300	3.399	V
(Tj=-10~85℃)	ult)					
Power Good threshold (Vout rising)	V _{PG14}			93		%
Output under voltage lockout (Vout	V _{UV14}			85		%
falling)						
V_{OUT} Load Regulation, $I_{\text{OUT}} = 1 \text{mA}$				0.003		%/mA
to 150mA						
V_{OUT} Line Regulation, $V_{\text{IN14}} = 3$ to				0.01		%/V
5V, I _{OUT14} = 0.15A						
Power Supply Reject Ratio (f =	PSRR14			50		dB
10kHz, V _{OUT14} =3.3V)						
Output noise (10Hz to 100kHz,	OUT _{NOISE}			300		uVrms
V _{OUT13} =3.3V)	14					
Dropout voltage @ 300mA	V _{DROP14}			200		mV
(V _{OUT13} =2.8V)						
Operating Quiescent Current, No	I _{Q14}			30		uA
load, V _{DD} =3.8V						
Rated output current	I _{MAX14}			300		mA
Current Limit, VOUT14 = $V_{OUT14} x$	I _{CL14}		400	500		mA
0.95						
Soft-start Time	t _{SS14}			400		us
C _{OUT} Discharge Switch ON	R _{DIS14}			400		Ohm
Resistance	1101514			400		Onn
通道 15 :开关(VCC_LCD)						
Input supply voltage range	V _{INPUT15}		2.7		5.5	V
Rated output current	I _{MAX15}			300		mA
On resistance(Vgs=3V)				150		mohm
Current Limit	I _{CL15}		400	500		mA
C _{OUT} Discharge Switch ON	R _{DIS15}			400		Ohm
Resistance	פופועיי			100		5.1111
通道 16: H_5V (HDMI_5V)	Г			I	1	1
Input supply voltage range	V _{INPUT16}		4.7		5.4	V

参数	符号	条件	最小值	典型值	最大值	单位	
Rated output current	I _{MAX16}			80		mA	
通道 17: OTG Switch							
Input supply voltage range	V _{INPUT17}		4.7		5.4	V	
Rated output current	I _{MAX17}			800		mA	
output current limit	I _{CL17}	0.1A step, default=0.8A	0.7		1	Α	
实时时钟(RTC)	•						
RTC Operating Voltage Range	V _{IN}		2.5		5.5	V	
RTC Supply Current	IQ			5	10	uA	
CLK32OUT1 jitter (open drain)				100		ns	
(always on)							
CLK32OUT1 duty cycle			40		60	%	
CLK32OUT2 jitter (open drain)				100		ns	
CLK32OUT2 duty cycle			40		60	%	
I2C 接口时序							
SCL clock frequency	f _{SCL}				400	kHz	
SCL high time	t _{HIGH}		0.6			us	
SCL low time	t _{LOW}		1.3			us	
Data setup time	t _{SU,DAT}		0.1			us	
Data hold time	t _{HD,DAT1}		0		0.1	us	
Setup time for repeated start	t _{SU,STA}		0.1			us	
HOLD time for start/repeated start	t _{HD,STA}		0.1			us	
Bus free time between a stop and condition	t _{BUF}		1.3			us	
Rise time of SCL/SDA	t _r		20 +		300	ns	
Trico umo or Gozieza			0.1C _B				
Fall width of SCL/SDA	t _f		20 +		300	ns	
	·		0.1C _B				
Pulse width of suppressed spike	t _{SP}		0		50	ns	
Capacitive load for each of bus line	C _{B2}				400	pF	

11 工作原理 (FUNCTION DESCRIPTION)

RK818 可以通过电池供电,也可以从 USB 端口供电。当仅有电池供电时,需要短按 PWRON 键,然后 PMU 各通路会按照默认定义的启动时序及启动电压开始启动,每通路之间的间隔在 2mS,全部启动完成后,NRESPWRON 会发出高电平,后级处理器可以开始工作,然后可以通过

I2C 等与 PMU 进行交互,处理器根据其需要,对 PMU 各通路进行电压的重新配置等。

如果需要关掉 PMU,则处理器通过 I2C 发出关机信号,PMU 做过现场保存以后,先拉低 NRESPWRON,再关掉各通路。如果处理器因各种原因无法发出关机信号,则可以通过长按 PWRON 键的方式,把 PMU 各通路关掉。

如果电池给 RK818 供电,但是没有打开 PMU 的情况下,这个时候接入电源到 USB 管脚,则芯片会首先判断这个接入电源是否有效,当其有效时,会自动开启 PMU 并同时对电池进行充电。

RK818 包含了一个开关式充电器,并集成了智能功率路径管理和电量计功能,可以同时为系统负载供电并对电池充电。

RK818 具有精确的输入平均电流的限流机制,因此可以最大限度地利用所允许的最大输入功率。输入限流机制与路径管理功能结合起来会起到智能路径管理的作用。智能功率路径管理的工作模式是,系统负载的需求具有最高优先级,输入功率只有在满足系统负载的需求后有余量的条件下才可以对电池充电。路径管理会在系统负载功率增加的情况下自动降低对电池的充电电流,甚至在系统负载的功率要求大于输入功率时,切断充电电流并将电池转换为补充电源与输入电源同时向负载系统供电。具体来讲是这样工作的:当系统负载增加时,芯片会维持充电电流不变,但会增加输入电流;当系统负载继续增加时,输入电流如果达到限流点,则芯片会自动降低充电电流;当系统负载再继续增加时,单独依靠输入电流已经无法满足其要求时,则电池也会对外放电,此时 USB 端电源和电池同时给系统供电;如果 USB电源突然拿走,路径管理会自动用电池给 SYS 端供电,实现自动切换。以上所有切换都是实时的、无缝的,保证系统电源电压不会有突变。

有了输入平均电流限流机制,在 USB 供电时可以尽可能的以最大电流对电池进行充电,确保输入电流不会超出 USB 端口所规定的最大电流。输入限流值可以通过 $\mathbb{I}^{\mathbb{C}}$ 接口来设置。

为了减少电池端对外供电时的额外压降损失,在 RK818 内部集成了一个 $50m\Omega$ MOSFET, 它做为放电时的控制开关,又同时可以作为开关充电器的功率开关,该充电器具有涓流充电,高精度恒流恒压充电,充电终止,自动再充电,电池温度监测,内置定时器控制以及热反馈保护等功能。充电电流、充电电压等可以通过 I^2C 接口来设置。

一般来讲,芯片结温越高,则芯片寿命就越短,所以可靠的芯片设计都会尽可能的降低芯片结温。据此,RK818 集成了充电热反馈保护功能,当芯片内部温度达到预设值时,则芯片自动降低充电电流或者输入限流值,让芯片的结温维持在预设值。这样可以可靠的延长芯片的寿命,并且不会发生过热烧坏芯片的可能。

该开关充电还有定时器控制功能,在涓流充电及恒流恒压充电的时候分别有最长充电时间控制,当超过设定时间还没有完成充电时,会停止充电。在充电的时候,芯片还通过 TS1 脚来监控电池温度,电池包内部一般都包含一个热敏电阻,RK818 通过一个电流源流到这个热敏电阻上去,再通过内部 ADC 把温度信号采集到芯片里,然后内部设定一个电池最高温度和一个电池最低温度,当电池温度在这两个温度之间的时候会正常充电,当电池温度高于设定最高温度或者低于设定最低温度的时候,芯片会暂停充电,当电池温度回到这两个温度之间的时候,会继续充电。如果热敏电阻值过大或者过小,可以通过并联或者串联一个普通电阻到这个热敏电阻上的方式来适应 ADC 的输入范围。

在充电的时候,如果电池电压小于 3.6V,则 VSYS 电压会设定到 3.6V。这样设计可以保证在电池电压很低的时候,如果此时接入 USB 电源对电池进行充电,则系统电压可以直接升

到 3.6V, 后级 PMU 可以直接走开机流程, 不需要额外的等待时间。

RK818 内部集成 12bit ADC 用来采集电池的相关信息,包括电池电压信息,电池充电、放电电流信息,电池温度信息等等,根据这些信息,芯片可以实现高性能的电量计功能。

RK818 有 4 路大电流 BUCK,为了提高瞬态响应,采用了改进型的电流模工作方式,所有电压设置都是以 DVS 的方式进行调整的,可以保证电压是缓慢线性变化的,BUCK 有很好的保护功能,如输出短路保护。

RK818 还有一路大电流的 BOOST,它可以给 OTG 及 HDMI 5V 供电,OTG 有输出限流开关,即便 OTG 输出发生短路的情况,也可以保护前面 BOOST 不会烧坏。

由于 USB 供电电源和 OTG 输出是同一管脚,所以二者功能是互斥的。当 USB 供电电源对后级系统进行供电并对电池进行充电时,OTG 开关不能打开。只有当没有接入 USB 供电电源的时候,才可以打开 OTG 开关对外供电。

RK818 还有 9 路 LD0 及 1 路开关。

以上各路电源调整器包括输出电压、输出限流等都有很多关键参数可以通过 I2C 调整,可以方便用户操作并且发挥芯片最大的性能。

RK818 还集成有晶振驱动功能,用户在外边接入 32.768K 的晶振即可以工作。还有 RTC 功能, PMU 可以单独进行 RTC 计时,并且可以进行计时的校准。RK818 还向系统提供两路 32.768K 的开漏输出的时钟,其中一路是常开,另外一路是受 I2C 进行使能控制。

12 状态机描述(STATE MACHINE DESCRIPTION)

12.1 状态图

图 12-1 PMU 状态机状态图

OFF 状态是指 P M U 处于关闭状态,各通道均关闭。

ACTIVE 状态是指 PMU 处于工作状态中,各通道根据系统要求进行工作。

SLEEP 是指系统处于低耗电的工作状态下。

12.2 开机 (POWER-ON) 使能的条件

如果不存在任何开机使能失效的条件,则在下列情况下系统可以开启或者保持开机状态:

- PWRON 信号为低电平持续一段时间.
- USB接入(PLUG IN INT会变成高电平)
- RTC定时开机

12.3 关机(POWER-OFF)的条件

- PWRON 低电平时间长于长按延时时间: T_{DPWRONLP}. 并且PWRON_LP_ACT设置成0(如果设置成1,则PMU关机后还会自动重启),这种条件所产生的中断信号是PWRON LP INT,存在寄存器 INT STS REG.
- 或者芯片温度达到热关断阈值,此时寄存器THERMAL_REG中的 TSD_STS=1。
- 或者Vsvs 电压低于UVLO 阈值: 此时寄存器VB MON REG 中的VB UV STS=1。
- 或者Vsys 电压低于低压报警电压,具体值可以在VB_MON_REG 中的VB_LO_SEL中调整,并且VB LO ACT设置成0的话,则会触发关机保护
- 或者Vsys电压过高,触发系统过压关机保护
- 或者DEV_OFF控制位设置成 1 (系统关机时, DEV_OFF 值被清零).
- 或者TS2温度过高或者过低,在此种情况下,需要把TS2外部接一个热敏电阻,放到所要监测的器件上,需要在ADC_CTRL_REG中把ADC_TS2_EN设置成使能状态,当测得TS2管脚的电压TS2_ADC_REG超过BAT_LTS_TS2_REG或者小于BAT_HTS_TS2_REG时,会关机
- 或者在工作的时候参考电压没有准备好,也会关机

12.4 SLEEP 使能条件

- SLEEP 外部PIN为高电平.
- 或者 DEV_SLP 控制位设置为 1
- 同时没有特定非屏蔽(non-masked)中断信号

SLEEP 状态可以通过 DEV_SLP 来控制并保持在 SLEEP 状态.

INT=1的条件:下面16种发生任意一种情况都会令INT=1
1. VOUT_INT=1(if VOUT_INT_IM=0)
2. VB_LO_INT=1(if VB_LO_INT_IM=0)
3. PWRON_INT=1(if PWRON_INT_IM=0)
4. PWRON_LP_INT=1(if PWRON_LP_INT_IM=0)
5. HOTDIE_INT=1(if HOTDIE_INT_IM=0)
6. RTC_ALARM_INT=1(if RTC_ALARM_INT_IM=0)
7. RTC_PERIOD_INT=1(if RTC_PERIOD_INT_IM=0)
8. USB_OV_INT=1(if USB_OV_INT_IM=0)
9. PLUG_IN_INT=1(if PLUG_IN_INT_IM=0)
10. PLUG_OUT_INT=1(if PLUG_IN_INT_IM=0)
11. CHGOK_INT=1(if CHGOK_INT_IM=0)
12. CHGTE_INT=1(if CHGTE_INT_IM=0)
13. CHGTS1_INT=1(if CHGTS1_INT_IM=0)
14. TS2_INT=1(if TS2_INT_IM=0)
15. CHG_CVTLIM_INT(if CHG_CVTLIM_INT_IM=0)
16. DISCHG_ILIM_INT=1(if DISCHG_ILIM_INT_IM=0)

图 12-2 SLEEP 使能控制

13 上电启动时序(POWER SEQUENCE)

	RK3188/R RK3188M/R			分 4, LD03/LD04						
	RK3028A/		Otp/booki 2	+, LDO3/ LDO4 /						
AP	/RK29		LD05	/LD07	RK3066		RK3288/I	RK3368	S-Proc	luct
							00			
BOOT	11		1	0	01		RK818-1 RK818-2			3-2
	电压默认值	上电时序	电压默认值	上电时序	电压默认值	上电时序	电压默认值	上电时序	电压默认值	上电时序
BUCK1	1.1V	3	ОТР	ОТР	1.2V	3	1. 1V	3	1. OV	12
BUCK2	1.1V	1	ОТР	ОТР	1.2V	1	1. 1V	1	1. 0V	12
BUCK3	х	4	Х	ОТР	х	4	X	3	X	13
BUCK4	3.0V	1	ОТР	ОТР	3.0V	1	3. 3V	4	3. 3V	14
LDO1	3.3V	х	3.3V	х	3.3V	х	3.3V	X	1.8V	11
LDO2	3. 0V	X	3V	X	3.0V	X	3.0V	X	X	X

RK818

电源管理系统

LDO3	1.1V	1	ОТР	ОТР	1.1V	1	1.1V	X	1.8V	15
LDO4	2.5V	2	ОТР	ОТР	2.5V	2	2.5V	X	1.8V	1
LDO5	3V	1	ОТР	ОТР	3.0V	2	1. 8V	4	1.8V	11
LDO6	1.2V	х	1.2V	Х	1.1V	х	1.1V	X	X	X
LDO7	1.8V	2	ОТР	ОТР	1.8V	2	1. 8V	3	1. 1V	15
LDO8	1.8V	Х	1.8V	х	1.8V	х	1.8V	X	3. 0V	14
LDO9	3. 0V	4	3.0V	5	3.0V	4	3. 3V	10	1.8V	15
SWITCH	х	Х	х	х	х	х	X	10	X	X
OTG	5V	X	5V	X	5V	X	5V	X	5V	Х
HDMI_5V	5V	X	5V	X	5V	X	5V	X	5V	Х

表 4 上下电启动时序

Version 0.4

www.rock-chips.com

38

13.1 BOOT1=1, BOOT0 = 1

图 13-1 上下电时序: BOOT1=1, BOOT0=1

13.2 BOOT1=0, BOOT0=1

图 13-2 上下电时序, B00T1=0, B00T0=1

13.3 BOOT1=1, BOOT0 = 0

在"10"模式下会启动 9 路, 其中 BUCK1/BUCK2/BUCK3/BUCK4/LDO3/LDO4/LDO5/LDO7 这几路的启动时序及启动电压是可以在 OTP中烧写改变的(但 BUCK3 的启动电压通过外部电阻可调), 另外 LDO9 的启动电压是 3V, 启动时序是第 9 个。

13.4 BOOT1=0, BOOT0 = 0

在"00"模式下会启动 14 路, 其中 BUCK1~4/LDO1~9/SWITCH 这几路的启动时序及启动电压是可以在 OTP 中烧写改变的(但 BUCK3 的启动电压通过外部电阻可调, SWITCH 的电压是同输入电源电压的)。现在把 RK818-1/RK818-2 两个产品的时序写进了规格书,如表 4 所示。

Version 0.4

13.5 BOOT 时间参数(BOOT TIMING CHARACTERISTIC)

PARAMETERS	DESCRIPTION	MIN	TYP	MAX	UNIT
_	power on enable to system ready and reference ready				
T _{ona}	delay				us
Ton1	Reference and system ready to boost enable delay		66×t _{CK32K}		us
Ton2	Boost enable delay to 1st channel enable delay		66×t _{CK32K}		us
Ton3	1st channel enable to 2st channel enable delay		66×t _{CK32K}		us
Ton4	2nd channel enable to 3rd channel enable delay		66×t _{CK32K}		us
Ton5	3rd channel enable to 4th channel enable delay		66×t _{CK32K}		us
Ton6	4th channel enable to NRESPWRON rising edge delay		50		ms
toff1	PWRON disable to NRESPWRON falling delay		1xt _{CK32K}		us
Toff2	NRESPWRON falling delay to supplies disable delay		2		ms
Toff3	Other supplies disable to boost disable		2		ms
Toff4	Supplies disable to house-keeping disable delay		1xt _{CK32K}		us

表 5 BOOT 时间参数表

14 电源供电控制时序(POWER CONTROL TIMING)

14.1 系统在 **USB PLUG_IN** 情况下开启

图 14-1 USB 接入时系统启动时序 (PLUP_IN_INT 触发启动使能)

Version 0.4

43

14.2 BAT 单独供电,电压变化时系统工作模式(此时 Vbat=Vsys,下图 以 Vsys 电压表示)

图 14-2 Power Control Timing with VIN Falling

14.3 时间参数 (USB 或者 Vsys 电压上升,下降和接入)

参数	描述	最小	典型	最大	单位
T_{dbVB_LOF}	VB_LO falling-edge debouncing delay		2		ms
T _{dONT}	Total power on delay time(ton1~ton6)		62		ms
T _{dbVB_LOR}	VB_LO rising-edge debouncing delay		2		ms
T_{dVB_UVF}	VB_UV falling-edge debouncing delay		2		ms
T _{dOFFT}	Total power off delay time		2		ms
T _{dbPLUG_IN}	USB plug-in debouncing delay		100		ms
T_{dbPLUG_OUT}	USB plug-out debouncing delay		100		ms

表 6 USB 和 VSYS 电压的时间参数

Version 0.4 www.rock-chips.com

14.4 PWRON 信号控制系统状态

图 14-3 PWRON 开机/DEV_OFF 关机(在 toff1 时刻前发出 DEV_OFF 软件关机信号)

图 14-4 PWRON 长按关机(寄存器设置 Reg4B<6>=0: 长按键功能选择关机 Reg4B<5:4>=0: 长按键时间选择 6S)

45

14.5 时间参数 (PWRON, DEV_OFF)

参数	描述	最小	典型	最大	单位
T _{dbPWRONF}	PWRON falling-edge debouncing delay		500		ms
T _{dONT}	Total power on delay time(ton1~ton6)		62		ms
T _{dPWRONLP}	PWRON long press delay to interrupt (PWRON falling edge to PWRON_LP_INT=1)		4		S
T _{dPWRONLPTO}	PWRON long press delay to turn off (PWRON falling edge to NRESPWRON falling edge)		6		S
toff1	POWER ON disable to NRESPWRON falling delay		1×t _{CK32K}		us
Toff2	NRESPWRON falling delay to supplies disable delay		2		ms
T _{dOFFT}	total power off delay time		2		ms

表 7 PWRON/DEV_OFF 时间参数

14.6 系统 SLEEP 状态控制

图 14-5 SLEEP/ACTIVE Transition Timing

Version 0.4 www.rock-chips.com

14.7 时间参数 (SLEEP)

参数	描述	最小	典型	最大	单位
T _{dbACT2SLP}	SLEEP falling-edge debouncing delay		3×t _{ck32k}		us
T _{dbSLP2ACT}	SLEEP rising-edge debouncing delay		3×t _{ck32k}		us
T _{dSLPON}	Delay to turn on enable after SLEEP		1xt _{ck32k}		us
	rising-edge debouncing				

表 8 SLEEP 时间参数

15寄存器定义

15.1寄存器总表

HEX 地址	功能描述	读/写	缺省值/
			重置值
	RTC 寄存器		
00	SECONDS REG	RW	00
01	MINUTES REG	RW	50
02	HOURS REG	RW	08
03	DAYS_REG	RW	21
04	MONTHS_REG	RW	01
05	YEARS_REG	RW	13
06	WEEKS_REG	RW	01
08	ALARM_SECONDS_REG	RW	00
09	ALARM_MINUTES REG	RW	00
0A	ALARM_HOURS REG	RW	00
0B	ALARM_DAYS_REG	RW	01
0C	ALARM_MONTHS_REG	RW	01
0D	ALARM_YEARS_REG	RW	00
10	RTC_CTRL_REG	RW	00
11	RTC_STATUS_REG	RW	8 2
12	RTC_INT_REG	RW	00
13	RTC_COMP_LSB_REG	RW	00
14	RTC_COMP_MSB_REG	RW	00
•	保留寄存器	•	•
0E	保留位	RW	00

0F	保留位	RW	00
15	保留位	RW	00
16	保留位	RW	00
17	保留位	RW	00
18	保留位	RW	00
	其它寄存器		
20	CLK32KOUT_REG	RW	00
21	VB_MON_REG	RW	06
22	THERMAL_REG	RW	00
	功率通道控制/监测寄存器		
23	DCDC_EN_REG	RW	boot
24	LDO_EN_REG	RW	boot
25	SLEEP_SET_OFF_REG1	RW	00
26	SLEEP_SET_OFF_REG2	RW	00
27	DCDC_UV_STS_REG	RO	00
28	DCDC_UV_ACT_REG	RW	1F
29	LDO_UV_STS_REG	RO	00
2A	LDO_UV_ACT_REG	RW	FF
2B	DCDC_PG_REG	RO	00
2C	LDO_PG_REG	RO	00
2D	VOUT_MON_TDB_REG	RW	02
	电源通道配置寄存器		
2E	BUCK1_CONFIG_REG	RW	01
2F	BUCK1_ON_VSEL	RW	boot
30	BUCK1_SLP_VSEL	RW	00
31	BUCK1_DVS_VSEL	RW	00
32	BUCK2_CONFIG_REG	RW	01
33	BUCK2_ON_VSEL	RW	boot
34	BUCK2_SLP_VSEL	RW	00
35	BUCK2_DVS_VSEL	RW	00
36	BUCK3_CONFIG_REG	RW	01
37	BUCK4_CONFIG_REG	RW	00
38	BUCK4_ON_VSEL	RW	boot
39	BUCK4_SLP_VSEL_REG	RW	00
3A	BOOST_CONFIG_REG	RW	09
3B	LDO1_ON_VSEL_REG	RW	boot
3C	LDO1_SLP_VSEL_REG	RW	00
3D	LDO2_ON_VSEL_REG	RW	boot
3E	LDO2_SLP_VSEL_REG	RW	00

3F	LDO3_ON_VSEL_REG	RW	boot
40	LDO3_SLP_VSEL_REG	RW	00
41	LDO4_ON_VSEL_REG	RW	boot
42	LDO4_SLP_VSEL_REG	RW	00
43	LDO5_ON_VSEL_REG	RW	boot
44	LDO5_SLP_VSEL_REG	RW	00
45	LDO6_ON_VSEL_REG	RW	boot
46	LDO6_SLP_VSEL_REG	RW	00
47	LDO7_ON_VSEL_REG	RW	boot
48	LDO7_SLP_VSEL_REG	RW	00
49	LDO8_ON_VSEL_REG	RW	boot
4A	LDO8_SLP_VSEL_REG	RW	00
4B	DEVCTRL_REG	RW	00
	中断相关寄存器		
4C	INT_STS_REG1	RW	00
4D	INT_STS_MSK_REG1	RW	00
4E	INT_STS_REG2	RW	00
4F	INT_STS_MSK_REG2	RW	00
50	IO_POL_REG	RW	06
	BOOST/OTG/DCDC 限流值相关寄存器		
52	H5V_EN_REG	RW	00
53	SLEEP_SET_OFF_REG3	RW	00
54	BOOST_LDO9_ON_VSEL_REG	RW	
55	BOOST_LDO9_SLP_VSEL_REG	RW	60
56	BOOST_CTRL_REG	RW	00
90	DCDC_ILMAX	RW	55
9A	CHRG_COMP_REG	RW	00
A0	SUP STS REG	RW	0C
A1	USB CTRL REG	RW	
			DE
A3	CHRG_CTRL_REG1	RW	B5
A4	CHRG_CTRL_REG2	RW	4A
A5	CHRG_CTRL_REG3	RW	02
A6	OTG_ILIM_REG	RW	8C
	BAT_CTRL_REG		
A8	BAT_HTS_TS1_REG	RW	00
A9	BAT_LTS_TS1_REG	RW	FF

			1 1 1 1 1 1 1 1
AA	BAT_HTS_TS2_REG	RW	00
AB	BAT_LTS_TS2_REG	RW	FF
AC	TS_CTRL_REG	RW	8F
AD	ADC_CTRL_REG	RW	00
AE	ON_SOURCE	RO	00
AF	OFF_SOURCE	RO	00
	电量计相关寄存器	,	
В0	GGCON	RW	4A
B1	GGSTS	RW	40
B2	FRAME_SMP_INTERV_REG	RW	01
В3	AUTO_SLP_CUR_THR_REG	RW	40
B4	GASCNT_CAL_REG3	RW	00
B5	GASCNT_CAL_REG2	RW	00
B6	GASCNT_CAL_REG1	RW	00
B7	GASCNT_CAL_REG0	RW	00
B8	GASCNT3	R	00
B9	GASCNT2	R	00
BA	GASCNT1	R	00
BB	GASCNT0	R	00
BC	BAT_CUR_AVG_REGH	R	00
BD	BAT_CUR_AVG_REGL	R	00
BE	TS1_ADC_REGH	R	00
BF	TS1_ADC_REGL	R	00
C0	TS2_ADC_REGH	R	00
C1	TS2_ADC_REGL	R	00
C2	BAT_OCV_REGH	R	00
C3	BAT_OCV_REGL	R	00
C4	BAT_VOL_REGH	R	00
C5	BAT_VOL_REGL	R	00
C6	RELAX_ENTRY_THRES_REGH	RW	00
C7	RELAX_ENTRY_THRES_REGL	RW	60
C8	RELAX_EXIT_THRES_REGH	RW	00
C9	RELAX_EXIT_THRES_REGL	RW	60
CA	RELAX_VOL1_REGH	R	00
СВ	RELAX_VOL1_REGL	R	00
CC	RELAX_VOL2_REGH	R	00

RK818 电源管理系统

			コーエストラロ
CD	RELAX_VOL2_REGL	R	00
CE	BAT_CUR_R_CALC_REGH	R	00
CF	BAT_CUR_R_CALC_REGL	R	00
D0	BAT_VOL_R_CALC_REGH	R	00
D1	BAT_VOL_R_CALC_REGL	R	00
D2	CAL_OFFSET_REGH	RW	7F
D3	CAL_OFFSET_REGL	RW	FF
D4	NON_ACT_TIMER_CNT_REGL	R	00
D5	VCALIB0_REGH	R	00
D6	VCALIB0_REGL	R	00
D7	VCALIB1_REGH	R	00
D8	VCALIB1_REGL	R	00
DD	IOFFSET_REGH	R	00
DE	IOFFSET_REGL	R	00
	数据寄存器	•	•
DF	DATA0	RW	00
E0	DATA1	RW	00
E1	DATA2	RW	00
E2	DATA3	RW	00
E3	DATA4	RW	00
E4	DATA5	RW	00
E5	DATA6	RW	00
E6	DATA7	RW	00
E7	DATA8	RW	00
E8	DATA9	RW	00
E9	DATA10	RW	00
EA	DATA11	RW	00
EB	DATA12	RW	00
EC	DATA13	RW	00
ED	DATA14	RW	00
EE	DATA15	RW	00
EF	DATA16	RW	00
F0	DATA17	RW	00
F1	DATA18	RW	00
F2	DATA19	RW	00

NOTE: 地址 60h 到 9Fh (除了 9Ah)为 OTP 寄存器, F3h 到 FFh 为 OTP 寄存器, 禁止读写。

15.2 寄存器描述

15.2.1 RTC 寄存器

15.2.1.1SECONDS_REG: RTC 秒钟寄存器

地址: 00H				类型: RV	٧			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	RESV		SEC1			SEC	0	
默认值	0	0	0	0	0	0	0	0

描述

Bit 7 保留

Bit 6-4 设置 RTC 中秒钟的第二位数值 (0-5) Bit 3-0 设置 RTC 中秒钟的第一位数值 **(0-9)**

注释 BCD 编码范围 00 到 59

15.2.1.2MINUTES_REG: RTC 分钟寄存器

地址: 01H				类型: RV	V			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	RESV		MIN1			MIN	10	
默认值	0	1	0	1	0	0	0	0

描述

Bit 7 保留

Bit 6-4 设置 RTC 中分钟的第二位数值 (0-5) Bit 3-0 设置 RTC 中分钟的第一位数值 **(0-9)**

注释 BCD 编码范围 00 到 59

15.2.1.3HOURS_REG: RTC 小时寄存器

地址: 02H				类型: RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	PM/AM	RESV	ЮН	JR1	HOURO			
默认值	0	0	0	0	1	0	0	0

描述

Bit 7 设置下午(PM)或上午(AM): 仅用于 PM-AM 模式, 1: PM. 0: AM.

Bit 6 保留

Bit 5-4设置 RTC 中小时的第二位数值Bit 3-0设置 RTC 中小时的第一位数值注释HOUR1/0 BCD 编码范围: 0-11/23

15.2.1.4DAYS_REG: RTC 日寄存器

地址: 03H				类型: RW	1			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	RESV	RESV	DA	Y1 DAY0				
默认值	0	0	1	0	0	0	0	1

描述

Bit 7-6 保留

Bit 5-4设置 RTC 中日数的第二位数值Bit 3-0设置 RTC 中日数的第一位数值注释BCD 编码范围: 0-28/29/30/31

15.2.1.5MONTHS_REG: RTC 月寄存器

地址: 04H				类型: RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	RESV	RESV	RESV	MONTH1	MONTH0			
默认值	0	0	0	0	0	0	0	1

描述

Bit 7-5 保留

 Bit 4
 设置 RTC 中月数的第二位数值

 Bit 3-0
 设置 RTC 中月数的第一位数值

注释 BCD 编码范围: 01-12

15.2.1.6YEARS_REG: RTC 年寄存器

地址: 05H				类型: RW	/			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号		YEA	AR1			YEA	R0	
默认值	0	0	0	1	0	0	1	1

描述

Bit 7-5设置 RTC 年数的第二位数值Bit 3-0设置 RTC 年数的第一位数值注释BCD 编码范围: 00-99

15.2.1.7WEEKS_REG: RTC 周寄存器

地址: 06H	类型: RW	I						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	RESV	RESV	RESV	RESV	RESV	WEEK		
默认值	0	0	0	0	0	0	0	1

描述

Bit 7-3 保留

Bit 3-0 设置 RTC 中周数 注释 BCD 编码范围: **1-7**

15.2.1.8ALARM_SECONDS_REG: RTC 闹钟秒寄存器

地址: 08H	类型: RW	/						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	RESV	Al	ALARM_SEC1 ALARM_SEC0					
默认值	0	0	0	0	0	0	0	0

描述

Bit 7 保留

 Bit 6-4
 设置 RTC 闹钟秒数的第二位数值

 Bit 3-0
 设置 RTC 闹钟秒数的第一位数值

注释 BCD 编码范围: 00-59

15.2.1.9ALARM_MINUTES_REG: RTC 闹钟分钟寄存器

地址: 09H	类型: RW	1						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	RESV	А	LARM_MIN	V1		ALARM	I_MINO	

默认值	0	0	0	0	0	0	0	0

描述

Bit 7 保留

 Bit 6-4
 设置 RTC 闹钟中分钟的第二位数值

 Bit 3-0
 设置 RTC 闹钟中分钟的第一位数值

注释 BCD 编码范围: 00-59

15.2.1.10 ALARM_HOURS_REG: RTC 闹钟小时寄存器

地址: 0AH	地址: 0AH				V			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	ALARM_PM_AM	RESV	ALARM_	_HOUR1	ALARM_HOUR0			
默认值	0	0	0	0	0	0	0	0

描述

Bit 7 设置下午(PM)或上午(AM): 仅用于 PM-AM 模式, 1: PM. 0:AM.

Bit 6 保留

 Bit 5-4
 设置 RTC 闹钟中小时的第二位数值

 Bit 3-0
 设置 RTC 闹钟中小时的第一位数值

 注释
 HOUR1/0 BCD 编码范围: 0-11/23

15.2.1.11 ALARM_DAYS_REG: RTC 闹钟日寄存器

地址: 0BH				类型: RW	/			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	RESV	RESV	ALARM_	DAY1	ALARM_ DAY 0			
默认值	0	0	0	0	0	0	0	1

描述

Bit 7-6 保留

Bit 5-4设置 RTC 闹钟中日数的第二位数值Bit 3-0设置 RTC 闹钟中日数的第一位数值注释BCD 编码范围: 0-28/29/30/31

15.2.1.12 ALARM_MONTHS_REG: RTC 闹钟月寄存器

地址: 0CH	类型: RW							
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

符号	RESV	RESV	RESV	ALARM_MO NTH1		ALARM_ M	ONTH0	
默认值	0	0	0	0	0	0	0	1

描述

Bit 7-5 保留

Bit 4 设置 RTC 闹钟中月数的第二位数值 Bit 3-0 设置 RTC 闹钟中月数的第一位数值

注释 BCD 编码范围: 01-12

15.2.1.13 ALARM_YEARS_REG: RTC 闹钟年寄存器

地址: 0DH	类型: R	W						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号		ALARM	YEAR1			ALARM_	YEAR0	
默认值	0	0	0	0	0	0	0	0

描述

Bit 7-5 设置 RTC 闹钟年数的第二位数值

Bit 3-0 设置 RTC 闹钟年数的第一位数值

注释 BCD 编码范围: 00-99

15.2.1.14 RTC_CTRL_REG: RTC 控制寄存器

地址: 1	0H			类型: R\	N			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	RTC_READ	GET_TI	SET_32_	TEST_M	AMPM_	AUTO_	ROUND_30S	STOP_
	SEL	ME	COUNTER	ODE	MODE	COMP	(Auto Clr)	RTC
默认值	0	0	0	0	0	0	0	0

描述

Bit 7 RTC READ SEL: 0: 直接对动态寄存器进行读操作

1: 对静态屏蔽寄存器进行读操作

Bit 6 GET_TIME: 此寄存器信号的向上跳变将动态寄存器转为静态屏蔽寄存器.

Bit 5 SET_32_COUNTER: 1: 将 32-kHz 计数器设置成 COMP_REG 的值. 这只能在

RTC 停止运行状态下使用.

Bit 4 TEST_MODE: 1: 测试模式 (当 32kHz 计数器计到末位时自动补偿功能启动)

Bit 3 AMPM MODE: 0:24 小时模式.

1: 12 小时模式 (PM-AM 模式)

Bit 2 AUTO_COMP: 0: 无自动补偿 RWO.

1: 有自动补偿

Bit 1 ROUND_30S: 1: 写"1"后, 时间在下一秒设置成最近的整数分钟, 然后自动清零。

Bit 0 STOP_RTC: 0: RTC 运行。

1: RTC 停止运行。

RTC_time 只能在 RTC 停止运行状态下变化。

15.2.1.15 RTC_STATUS_REG: RTC 状态寄存器

地址:	11H			类型: RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	POWER_UP (Write 1 Clr)	ALARM (Write 1 Clr)	EVENT_1D (Write 1 Clr)	EVENT_1H (Write 1 Clr)	EVENT_1M (Write 1 Clr)	EVENT_1S (Write 1 Clr)	RUN (RO)	RESV
默认值	1	0	0	0	0	0	1	0

描述

Bit 7 POWER_UP: POWER_UP 通过 reset 置位,在该位写"1"则被清零。

Bit 6 ALARM:表示一个闹钟中断已经产生(写"1"清除)。 闹钟中断将保持低电平状态直

到处理器在 RTC 状态寄存器的 ALARM 位写"1"。

Bit 5 **EVENT 1D**: 表示已过**1**天

Bit 4 EVENT_1H: 表示已过 1 小时

Bit 3 **EVENT_1M**:表示已过**1**分钟

Bit 2 **EVENT_1S**:表示已过**1**秒钟

Bit 1 RUN: 0表示 RTC 停止运行. 1表示 RTC 正在运行. 该位表示 RTC 的实际运行状态。

Bit 0 保留位

15.2.1.16 RTC_INT_REG: RTC 中断寄存器

地址:	12H			类型: RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	RESV	RESV	RESV	INT_SLEEP_ MASK_EN	INT_ALARM _EN	INT_TIMER _EN	EVE	RY
默认值	0	0	0	0	0	0	0	0

描述

Bit 7-5 保留位

Bit 4 INT_SLEEP_MASK_EN:

1: 当设备在 SLEEP 模式时屏蔽周期性中断信号。

0: 正常模式,不屏蔽中断信号。

Bit 3 INT_ALARM_EN: 当达到闹钟设置时间时启动一个中断信号。

1: 启用

0: 禁用

Bit 2 **INT_TIMER_EN:** 启动周期性中断。

1: 启用

0: 禁用

Bit 1-0 EVERY: 00: 每秒钟; 01: 每分钟; 10: 每小时; 11: 每天

15.2.1.17 RTC_COMP_LSB_REG: RTC LSB 补偿寄存器

地址: 13H				类型: RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号				RTC_COMP_LSB				
默认值	0	0	0	0	0	0	0	0

描述

Bit7-0 该寄存器保存 32kHz 周期数,这个数字每小时被加到 32kHz 计数器中(LSB)。

15.2.1.18 RTC_COMP_MSB_REG: RTC MSB 补偿寄存器

地址: 14 H				类型: RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号				RTC_COMP_MSB				
默认值	0	0	0	0	0	0	0	0

描述

Bit7-0 该寄存器保存 32kHz 周期数,这个数字每小时被加到 32kHz 计数器中(MSB)。

Version 0.4

15.2.2 其它寄存器

15.2.2.1 CLK32KOUT_REG: RTC 32KHz 时钟输出寄存器

地址: 20H				类型:	RW			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号		RESERVED					CLK32KO UT2 FUN	CLK32KO UT2 EN
默认值	0	0	0	0	0	0	0	0

描述

Bit 7-2 保留位

Bit 1 CLK32KOUT2_FUN:CLK32KOUT2 管脚功能定义

0: 32.768K 时钟输出

1: Recovery 功能

Bit 0 CLK32KOUT2_EN: 如果 CLK32KOUT2_FUN=0,则

1. CLK32KOUT2 输出启用 0. CLK32KOUT2 输出禁用

15.2.2.2 VB_MON_REG: 电池电压监测寄存器

地址: 21	LH			类型: RW	I			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	RESV	PLUG_IN _STS (RO)	VB_UV_ STS (RO)	VB_LO_ ACT	VB_LO_ STS (RO)	VB_LO_SEL		L
默认值	0	0	0	1	0	1	0	0

描述

Bit 7 保留位

Bit 6 PLUG_IN_STS: 充电器插入状态 (DC 管脚电压 >3.8V)

0: 无充电器插入发生

1: 充电器插入 该位为"只读"。

Bit 5 VB_UV_STS: 电池欠压锁定状态 (如果该位为"1", 系统关机)

该位为"只读"。

Bit 4 VB_LO_ACT: 低电池电压时的操作

0: 系统关机

1: 插入中断信号

Bit 3 VB_LO_STS: 低电池电压状态, 当开机以后,

0: VBAT>VB_LO_SEL
1: VBAT<VB_LO_SEL

该位为"只读"。

Bit 2-0 VB_LO_SEL: 低电池电压阈值

000~111: 2.8V~ 3.5V, step=100mV

15.2.2.3 THERMAL_REG: 热控制寄存器

地址: 22	地址: 22H							
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	RESV	RESV	RESV	TSD_T EMP	HOTDIE_TEMP		HOTDIE_STS (R0)	TSD_STS (R0)
默认值	0	0	0	0	0	0	0	0

描述

Bit 7-5 保留

Bit 4 TSD_TEMP: 过热关机阈值温度

0: 140℃;

1: 160℃

Bit 3-2 HOTDIE_TEMP:芯片过热警号温度阈值

00: 85° C; **01**: 95° C; **10**: 105° C; **11**: 115° C;

Bit 1 HOTDIE_STS: 芯片过热警告位

该位为只读位.

Bit 0 TSD-STS: 过热关机位

15.2.3 功率通道控制/监测寄存器

15.2.3.1 **DCDC_EN_REG: DC-DC** 转换器使能寄存器

地址: 23H					类型: RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
符号	OTG_E	SWITC	LDO9_	BOOST	BUCK4	BUCK3	BUCK2	BUCK1	
	N	H_EN	EN	_EN	_EN	_EN	_EN	_EN	
默认值		Boot							

1	H.	`	h
7	-	÷	ĸ
	ш		Т

Bit 7 OTG_EN, OTG 使能位

1, 启用

2, 禁用

默认值由 boot 设置。

Bit 6 SWITCH_EN: SWITCH 使能位

1, 启用

0, 禁用

默认值由 boot 设置。

Bit 5 LDO9_EN: LDO9 使能位

1, 启用

0,禁用

默认值由 boot 设置。

Bit 4 BOOST_EN: BOOST 使能位

1, 启用

0,禁用

默认值由 boot 设置。

Bit 3-0 BUCK(n)_EN: BUCKn 使能位

1, 启用

0,禁用

默认值由 boot 设置。

15.2.3.2 LDO_EN_REG:LDO 使能寄存器

地址: 24H				类型: R	W					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
符号	LDO8_	LDO7_	LDO6_	LDO5_	LDO4_	LDO3_	LDO2_	LDO1_		
	EN									
默认值		Boot								

描述

Bit 7-0 LDO(n)_EN: LDO(n)使能位

1, 启用

0,禁用

默认值由 boot 设置。

15.2.3.3 SLEEP_SET_OFF_REG1:睡眠模式关断寄存器 #1

地址: 2	25H			类型: RW						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
	OTG_S	SWITCH_	1000 010	BOOST_S	BUCK4_S	BUCK3_S	BUCK2_S	BUCK1_		
符号	LP_SE	SLP_SET_	LDO9_SLP	LP_SET_O	LP_SET_O	LP_SET_O	LP_SET_O	SLP_SE		
	T_OFF	OFF	_SET_OFF	FF	FF	FF	FF	T_OFF		
默认值	0	0	0	0	0	0	0	0		

描述

Bit 7	1: SLEEP 模式时 OTG 关断。
	0: SLEEP 模式时 OTG 打开
Bit 6	1: SLEEP 模式时 Switch 美断。
	0 : SLEEP 模式时 Switch 打开
Bit 5	1: SLEEP 模式时 LDO9 关断。
	0: SLEEP 模式时 LDO9 打开
Bit 4	1: SLEEP 模式时 BOOST 美断。
	0: SLEEP 模式时 BOOST 打开
Bit 3	1: SLEEP 模式时 BUCK4 关断。
	0: SLEEP 模式时 BUCK4 打开
Bit 2	1: SLEEP 模式时 BUCK3 关断。
	0: SLEEP 模式时 BUCK3 打开
Bit 1	1: SLEEP 模式时 BUCK2 关断。
	0: SLEEP 模式时 BUCK2 打开
Bit 0	1: SLEEP 模式时 BUCK1 关断。
	0: SLEEP 模式时 BUCK1 打开

15.2.3.4 SLEEP_SET_OFF_REG2:睡眠模式关断寄存器 #2

地址: 26H				类型: RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	LDO8_S	LDO7_S	LDO6_S	LDO5_S	LDO4_S	LDO3_S	LDO2_S	LDO1_S
	LP_SET_							
	OFF							
默认值	0	0	0	0	0	0	0	0

描述

Bit 7 1: SLEEP 模式时 LDO8 关断。

0: SLEEP 模式时 LDO8 打开

Bit 6	1: SLEEP 模式时 LDO7 关断。
	0: SLEEP 模式时 LDO7 打开
Bit 5	1: SLEEP 模式时 LDO6 关断。
	0: SLEEP 模式时 LDO6 打开
Bit 4	1: SLEEP 模式时 LDO5 关断。
	O: SLEEP 模式时 LDO5 打开
Bit 3	1: SLEEP 模式时 LDO4 关断。
	O: SLEEP 模式时 LDO4 打开
Bit 2	1: SLEEP 模式时 LDO3 关断。
	O: SLEEP 模式时 LDO3 打开
Bit 1	1: SLEEP 模式时 LDO2 美断。
	O: SLEEP 模式时 LDO2 打开
Bit 0	1: SLEEP 模式时 LDO1 关断。
	0: SLEEP 模式时 LDO1 打开

15.2.3.5 DCDC_UV_STS_REG: DC-DC 欠压状态寄存器

地址:	27H			类型: RO					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
符号	OTG_UV_	H5V_UV_	LD09_UV_S	BOOST_	BUCK4_	BUCK3_	BUCK2_	BUCK1_	
	STS	STS	TS	UV_STS	UV_STS	UV_STS	UV_STS	UV_STS	
默认值	0	0	0	0	0	0	0	0	

描述

Bit 7	OTG_UV_	_STS: OTG	欠压标志位
-------	---------	-----------	-------

1: 输出电压降到正常电压的85%。

0: 正常

Bit 6 H5V_UV_STS: H5V 欠压标志位

1:输出电压降到正常电压的85%。

0: 正常

Bit 5 LD09_UV_STS: LDO9 欠压标志位

1:输出电压降到正常电压的85%。

0: 正常

Bit 4 BOOST_UV_STS: BOOST 欠压标志位

1:输出电压降到正常电压的85%。

0: 正常

Bit 3 BUCK4_UV_STS: BUCK4 欠压标志位

1: 输出电压降到正常电压的 85%。

0: 正常

Bit 2 BUCK3_UV_STS: BUCK3 欠压标志位

1: 输出电压降到正常电压的 85%。

0: 正常

Bit 1 BUCK2_UV_STS: BUCK2 欠压标志位

1:输出电压降到正常电压的85%。

0: 正常

Bit 0 BUCK1_UV_STS: BUCK1 欠压标志位

1:输出电压降到正常电压的85%。

0: 正常

15.2.3.6 DCDC_UV_ACT_REG: DC-DC 欠压操作寄存器

地址:	28H			类型: RW						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
符号	OTG_UV_	H5V_UV_	LD09_UV_A	BOOST_	BUCK4_	BUCK3_	BUCK2_	BUCK1_		
	ACT	ACT	CT	UV_ACT	UV_ACT	UV_ACT	UV_ACT	UV_ACT		
默认值	0	0	0	0	0	0	0	0		

描述

Bit 7 OTG_UV_ACT: OTG 欠压操作。

1: 重启该通路

0: 无作用

Bit 6 H5V_UV_ACT: H5V 欠压操作。

1: 重启该通路

0: 无作用

Bit 5 LD09_UV_ACT: LD09 欠压操作。

1: 重启该通路

0: 无作用

Bit 4 BOOST_UV_ACT: BOOST 欠压操作。

1: 关闭该通路(此关机操作也将重置 BOOST_EN 位为"0")

0: 无作用

Bit 3 BUCK4_UV_ACT: BUCK4 欠压操作。

1: 重启该通路

0: 无作用

Bit 2 BUCK3_UV_ACT: BUCK3 欠压操作。

1: 重启该通路

0: 无作用

Bit 1 BUCK2_UV_ACT: BUCK2 欠压操作。

1: 重启该通路

0: 无作用

Bit 0 BUCK1_UV_ACT: BUCK1 欠压操作。

1: 重启该通路 0: 无作用

15.2.3.7 LDO_UV_STS_REG:LDO 欠压状态寄存器

地址: 2	29H			类型: RO					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
符号	LDO8_UV	LDO7_UV	LDO6_UV	LDO5_UV	LDO4_UV	LDO3_U	LDO2_U	LDO1_U	
	_STS	_STS	_STS	_STS	_STS	V_STS	V_STS	V_STS	
默认值	0	0	0	0	0	0	0	0	

描述

Bit 7 LDO8_UV_STS: LDO8 欠压标志位.

1: 输出电压降到正常电压的85%。

0: 正常

Bit 6 LDO7_UV_STS: LDO7 欠压标志位.

1:输出电压降到正常电压的85%。

0: 正常

Bit 5 LDO6_UV_STS: LDO6 欠压标志位.

1: 输出电压降到正常电压的85%。

0: 正常

Bit 4 LDO5 UV STS: LDO5 欠压标志位.

1:输出电压降到正常电压的85%。

0: 正常

Bit 3 LDO4_UV_STS: LDO4 欠压标志位.

1:输出电压降到正常电压的85%。

0: 正常

Bit 2 LDO3_UV_STS: LDO3 欠压标志位.

1:输出电压降到正常电压的85%。

0: 正常

Bit 1 LDO2_UV_STS: LDO2 欠压标志位.

1:输出电压降到正常电压的85%。

0: 正常

Bit 0 LDO1 UV STS: LDO1 欠压标志位.

1:输出电压降到正常电压的85%。

0: 正常

15.2.3.8 LDO_UV_ACT_REG:LDO 欠压操作寄存器

地址: 2AH				类型: RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	LDO8_U	LDO7_U	LDO6_U	LDO5_U	LDO4_U	LDO3_U	LDO2_U	LDO1_U
	V_ACT							
默认值	0	0	0	0	0	0	0	0

描述

Bit 7 LDO8_UV_ACT: LDO8 欠压操作位

1: 重启该通路

0: 无作用

Bit 6 LDO7_UV_ACT: LDO7 欠压操作位

1: 重启该通路

0: 无作用

Bit 5 LDO6_UV_ACT: LDO6 欠压操作位

1: 重启该通路

0: 无作用

Bit 4 LDO5_UV_ACT: LDO5 欠压操作位

1: 重启该通路

0: 无作用

Bit 3 LDO4_UV_ACT: LDO4 欠压操作位

1: 重启该通路

0: 无作用

Bit 2 LDO3_UV_ACT: LDO3 欠压操作位

1: 重启该通路

0: 无作用

Bit 1 LDO2_UV_ACT: LDO2 欠压操作位

1: 重启该通路

0: 无作用

Bit 0 LDO1_UV_ACT: LDO1 欠压操作位

1: 重启该通路

0: 无作用

15.2.3.9 DCDC_PG_REG: DC-DC 转换器上电完成 状态寄存器

地址:	地址: 2BH				类型: RO						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			

符号	OTG_PG_	H5V_PG_	LD09_PG_S	BOOST_	BUCK4_P	BUCK3_P	BUCK2_P	BUCK1_P
	STS	STS	TS	PG_STS	G_STS	G_STS	G_STS	G_STS
默认值	0	0	0	0	0	0	0	0

描述

Bit 7	OTG	PG	STS:	OTG	上电完成	标志位
DIU	OIU	10	JIJ.	OIO		7ZD 7C6 17.

1: 上电完成, Vout>所设置电压的 90%

0: 上电未完成, Vout < 所设置电压的 90%

Bit 6 H5V PG STS: H5V 上电完成 标志位

1: 上电完成, Vout>所设置电压的 90%

0: 上电未完成, Vout < 所设置电压的 90%

Bit 5 LD09_PG_STS: LD09 上电完成 标志位

1: 上电完成, Vout>所设置电压的 90%

0: 上电未完成, Vout < 所设置电压的 90%

Bit 4 BOOST_PG_STS: BOOST 上电完成 标志位.

1: 上电完成, Vout>所设置电压的 90%

0: 上电未完成, Vout < 所设置电压的 90%

Bit 3 BUCK4_PG_STS:BUCK4 上电完成 标志位.

1: 上电完成, Vout>所设置电压的 90%

0: 上电未完成, Vout < 所设置电压的 90%

Bit 2 BUCK3_PG_STS: BUCK3 上电完成 标志位.

1: 上电完成, Vout>所设置电压的 90%

0: 上电未完成, Vout < 所设置电压的 90%

Bit 1 BUCK2_PG_STS: BUCK2 上电完成 标志位.

1: 上电完成, Vout>所设置电压的 90%

0: 上电未完成, Vout < 所设置电压的 90%

Bit 0 BUCK1_PG_STS:BUCK1 上电完成 标志位.

1: 上电完成, Vout>所设置电压的 90%

0: 上电未完成, Vout < 所设置电压的 90%

15.2.3.10 LDO_PG_REG: LDO 上电完成状态寄存器

地址:	2CH			类型: RO					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
符号	LDO8_PG	LDO7_PG	LDO6_PG	LDO5_PG	LDO4_PG	LDO3_P	LDO2_P	LDO1_P	
	_STS	_STS	_STS	_STS	_STS	G_STS	G_STS	G_STS	
默认值	0	0	0	0	0	0	0	0	

描述

- Bit 7 LDO8_PG_STS: LDO8 上电完成 标志位.
 - 1: 上电完成, Vout>所设置电压的 90%
 - 0: 上电未完成, Vout<所设置电压的 90%
- Bit 6 LDO7_PG_STS: LDO7 上电完成 标志位.
 - 1: 上电完成, Vout>所设置电压的 90%
 - 0: 上电未完成, Vout < 所设置电压的 90%
- Bit 5 LDO6_PG_STS: LDO6 上电完成 标志位.
 - 1: 上电完成, Vout>所设置电压的 90%
 - 0: 上电未完成, Vout < 所设置电压的 90%
- Bit 4 LDO5_PG_STS: LDO5 上电完成 标志位.
 - 1: 上电完成, Vout>所设置电压的 90%
 - 0: 上电未完成, Vout < 所设置电压的 90%
- Bit 3 LDO4_PG_STS: LDO4 上电完成 标志位.
 - 1: 上电完成, Vout>所设置电压的 90%
 - 0: 上电未完成, Vout < 所设置电压的 90%
- Bit 2 LDO3_PG_STS:LDO3 上电完成 标志位.
 - 1: 上电完成, Vout>90% of setting voltage
 - 0: 上电未完成, Vout<90% of setting voltage
- Bit 1 LDO2_PG_STS: LDO2 上电完成 标志位.
 - 1: 上电完成, Vout>所设置电压的 90%
 - 0: 上电未完成, Vout < 所设置电压的 90%
- Bit 0 LDO1 PG STS: LDO1 上电完成 标志位.
 - 1: 上电完成, Vout>所设置电压的 90%
 - 0: 上电未完成, Vout < 所设置电压的 90%

15.2.3.11 VOUT_MON_TDB_REG: VOUT 防抖监测寄存器

地址:	2DH			类型: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
符号	RESV	RESV	RESV	RESV	RESV	RESV	VOUT_M	ON_TDB	
默认值	0	0	0	0	0	0	1	0	

描述

Bit 7-2 保留位

Bit 1-0 VOUT_MON_TDB: Vout 监测防抖时间(UV_STS 上升沿和 PG_STS 上升沿防抖时

间)

00: 62us 01: 124us

10: 186us11: 248us

15.2.4 电源通道配置寄存器

15.2.4.1 BUCK1_CONFIG_REG: BUCK1 配置寄存器

地址: 2	2EH			类型: RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	RESV	BUCK1_ PHASE	RESV	BUCK1_RATE BUCK1_I		CK1_ILMIN		
默认值	0	0	0	1	1	0	1	0

描述

Bit 7 保留位

Bit 6 BUCK1_PHASE,

0: 正常1: 反相

Bit 5 保留位

Bit 4-3 BUCK1_RATE: DVS 信号后电压变化速率

00: 2mv/us01: 4mv/us10: 6mv/us11: 10mv/us

Bit 2-0 BUCK1_ILMIN:

000: 50mA, 001: 100mA, 010: 150mA, 011: 200mA 100: 250mA, 101: 300mA, 110: 350mA, 111: 400mA

15.2.4.2 BUCK1_ON_VSEL: BUCK1 运行模式寄存器

地址: 2	2FH			类型: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
符号	BUCK1_O N_FPWM	RESV	BUCK1_ON_VSEL						
默认值	0	0	Boot						

描述

Bit 7 BUCK1_ON_FPWM:

1: 运行模式下的强制 PWM 模式。

0: PWM/PFM 自动转换模式。(默认)

Bit 6 保留

Bit 5-0 BUCK1_ON_VSEL: BUCK1 运行模式电压选择, 0.7125V~1.5V ,step=12.5mV

000 000: 0.7125V 000 001: 0.725V

••••

111 111: 1.5V 默认值由 boot 设定。

15.2.4.3 BUCK1_SLP_VSEL: BUCK1 休眠状态寄存器

地址: 3	30H			类型: RW	1			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	BUCK1_SL P_FPWM	RESV	BUCK1_SLP_VSEL					
默认值	0	0	0	0	0	0	0	0

描述

Bit 7 BUCK1_SLP_FPWM:

1: 休眠模式下强制 PWM 模式。

0: PWM/PFM 自动转换模式。(默认)

Bit 6 保留位

Bit 5-0 BUCK1_SLP_VSEL: BUCK1 体眠模式电压选择, 0.7125V~1.5V ,step=12.5mV

000 000: 0.7125V 000 001: 0.725V

••••

111 111: 1.5V

15.2.4.4 BUCK2_CONFIG_REG: BUCK2 配置寄存器

地址: 3	32H		类型: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	RESV	BUCK2_ PHASE	RESV	BUCK2	Z_RATE	BUCK2_ILMIN		
默认值	0	0	0	1	1	0	1	0

描述

Bit 7 保留位

Bit 6 BUCK2_PHASE,

0:正常,

1: 反相

Bit 5 保留位

Bit 4-3 BUCK2_RATE: DVS 信号后电压变化速率

00: 2mv/us01: 4mv/us10: 6mv/us11: 10mv/us

Bit 2-0 BUCK2_ILMIN:

000: 50mA, 001: 100mA, 010: 150mA, 011: 200mA 100: 250mA, 101: 300mA, 110: 350mA, 111: 400mA

15.2.4.5 BUCK2_ON_VSEL: BUCK2 运行模式寄存器

地址: 3	33H	类型: RW						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	BUCK2_O N_FPWM	RESV	BUCK2_ON_VSEL					
默认值	0	0	Boot					

描述

Bit 7 BUCK2 ON FPWM

1: 运行模式下的强制 PWM 模式。

0: PWM/PFM 自动转换模式。(默认)

Bit 6 保留位

Bit 5-0 BUCK2_ON_VSEL: BUCK2 运行模式电压选择, 0.7125V~1.5V ,step=12.5mV

000 000: 0.7125V 000 001: 0.725V

•••••

111 111: 1.5V 默认值由 boot 设定。

15.2.4.6 BUCK2_SLP_VSEL: BUCK2 休眠模式寄存器

地址: 3	34H			类型: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
符号	BUCK2_SL P_FPWM	RESV	BUCK2_SLP_VSEL						
默认值	0	0	0	0	0	0	0	0	

描述

Bit 7 BUCK2_SLP_FPWM:

1: 休眠模式下的强制 PWM 模式。

0: PWM/PFM 自动转换模式。(默认)

Bit 6 保留位

Bit 5-0 BUCK2_SLP_VSEL: BUCK1 休眠模式电压选择, 0.7125V~1.5V ,step=12.5mV

000 000: 0.7125V 000 001: 0.725V

••••

111 111: 1.5V

15.2.4.7 BUCK3_CONFIG_REG: BUCK3 配置寄存器

地址:	36H			类型: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
符号	BUCK3_O N_FPWM	BUCK3_ PHASE	RESV	RESV	RESV	BUCK3_ILMIN			
默认值	0	0	0	0	0	0	1	0	

描述

Bit 7 BUCK3_ON_FPWM:

1: 运行模式下的强制 PWM 模式。

0: PWM/PFM 自动转换模式。(默认)

Bit 6 BUCK3_PHASE,

0: 正常,

1: 反相

Bit 5-3 保留位

Bit 2-0 BUCK3_ILMIN:

000: 50mA, 001: 100mA, 010: 150mA, 011: 200mA 100: 250mA, 101: 300mA, 110: 350mA, 111: 400mA

15.2.4.8 BUCK4_CONFIG_REG: BUCK4 配置寄存器

地址: 3	37H			类型: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
符号	RESV	BUCK4_ PHASE	RESV	RESV	RESV	BUCK4_ILMIN			
默认值	0	0	0	0	0	0	1	0	

描述

Bit 7 保留位

Bit 6 BUCK4_PHASE,

0: 正常,

1: 反相

Bit 2-0 BUCK4_ILMIN:

000: 50mA, 001: 100mA, 010: 150mA, 011: 200mA

100: 250mA, 101: 300mA, 110: 350mA, 111: 400mA

15.2.4.9 BUCK4_ON_VSEL: BUCK4 运行模式寄存器

地:	址: 3	38H			类型: RW					
Bi-	t	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
符号	号	BUCK4_O N_FPWM	RESV	RESV	BUCK4_ON_VSEL					
默认	.值	0	0	0	Boot					

描述

Bit 7 BUCK4_ON_FPWM:

1: 运行模式下的强制 PWM 模式。

0: PWM/PFM 自动转换模式。(默认)

Bit 6-4 保留位

Bit 3-0 BUCK4_ON_VSEL:BUCK4 运行模式电压选择, 1.8V~3.6V ,step=100mV

00000: 1.8V 00001: 1.9V

.....

01110: 3.2V 01111: 3.3V 10000: 3.4V 10001: 3.5V 10010: 3.6V 默认值由 boot 设定。

15.2.4.10 BUCK4_SLP_VSEL: BUCK4 休眠模式寄存器

地址: 3	地址: 39H				/			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	BUCK4_SL P_FPWM	RESV	RESV	BUCK4_SLP_VSEL				
默认值	0	0	0	0	0	0	0	0

描述

Bit 7 BUCK4_SLP_FPWM:

1: 休眠模式下的强制 PWM 模式。

0: PWM/PFM 自动转换模式。(默认)

Bit 6-4 Reserved

Bit 3-0 BUCK4_SLP_VSEL:BUCK4 休眠模式电压选择, 1.8V~3.6V ,step=100mV

00000: 1.8V 00001: 1.9V

•••••

01110: 3.2V 01111: 3.3V 10000: 3.4V 10001: 3.5V 10010: 3.6V

15.2.4.11 BOOST_CONFIG_REG: BOOST 配置寄存器

地址: 3AH			类型: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

RK818 电源管理系统

符号	RESV	BOOST_A NTI_RING	BOOST_ PHASE	BOOST_	ILMAX	ВС	OST_ILMI	N
默认值	0	0	0	0	1	0	1	0

描述

Bit 7 保留位

Bit 6 BOOST_ANTI_RING: BOOST anti-ring enable

0: 禁用

1: 启用

Bit 5 BOOST_PHASE,

0: 正常

1: 反相

Bit 4-3 BOOST_ILMAX:

00: 4A,

01: 4.5A,

10: 5A,

11: 5.5A

Bit 2-0 BOOST ILMIN:

000: 75mA, 001: 100mA, 010: 125mA, 011: 150mA

100: 175mA, 101: 200mA, 110: 225mA, 111: 250mA

15.2.4.12 LDO1_ON_VSEL_REG: LDO1 运行模式电压选择寄存器

地址: 3	3BH			类型: RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	RESV	RESV	RESV	LDO1_ON_VSEL				
默认值	0	0	0	Boot				

描述

Bit 7-5 保留位

Bit 4-0 LDO1_ON_VSEL: LDO1 运行模式电压选择

 $1.8V \sim 3.4V$, step=0.1V

00000: 1.8V 00001: 1.9V

•••

01110: 3.2V 01111: 3.3V

10000: 3.4V

默认值由 boot 设定。

15.2.4.13 LDO1_SLP_VSEL_REG:LDO1 休眠模式电压选择寄存器

地址: 3	3CH			类型: RW	I			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	RESV	RESV	RESV	LDO1_SLP_VSEL				
默认值	0	0	0	0	0	0	0	0

描述

Bit 7-5 Reserved

Bit 4-0 LDO1_SLP_VSEL: LDO1 休眠模式电压选择

 $1.8V \sim 3.4V$, step=0.1V

00000: 1.8V 00001: 1.9V

٠٠٠.

01110: 3.2V 01111: 3.3V 10000: 3.4V

15.2.4.14 LDO2_ON_VSEL_REG: LDO2 运行模式电压选择寄存器

地址: 3	3DH			类型: RW	I			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	RESV	RESV	RESV	LDO2_ON_VSEL				
默认值	0	0	0	Boot				

描述

Bit 7-5 保留位

Bit 4-0 LDO2_ON_VSEL: LDO2 运行模式电压选择。

 $1.8V \sim 3.4V$, step=0.1V

00000: 1.8V 00001: 1.9V

٠٠٠.

01110: 3.2V

01111: 3.3V 10000: 3.4V

默认值由 boot 设定。

15.2.4.15 LDO2_SLP_VSEL_REG:LDO2 休眠模式电压选择寄存器

地址: 3	BEH			类型: RW	I			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	RESV	RESV	RESV	LDO2_SLP_VSEL				
默认值	0	0	0	0	0	0	0	0

描述

Bit 7-5 保留位

Bit 4-0 LDO2_SLP_VSEL: LDO2 休眠模式电压选择。

 $1.8V \sim 3.4V$, step=0.1V

00000: 1.8V 00001: 1.9V

٠٠٠.

01110: 3.2V 01111: 3.3V 10000: 3.4V

15.2.4.16 LDO3_ON_VSEL_REG: LDO3 运行模式电压选择寄存器

地址: 3	3FH			类型: R	W				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
符号	RESV	RESV	RESV	RESV	LDO3_ON_VSEL				
默认值	0	0	0	0	Boot				

描述

Bit 7-4 保留位

Bit 4-3 LDO3_ON_VSEL: LDO3 运行模式电压选择

 $0.8V \sim 2.5V$, step=0.1V

0000: 0.8V 0001: 0.9V

•••

1100: 2.0V 1101: 2.2V 1111: 2.5V

默认值由 boot 设定。

15.2.4.17 LDO3_SLP_VSEL_REG:LDO3 休眠模式电压选择寄存器

地址: 4	40H			类型: R	W			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	RESV	RESV	RESV	RESV	LDO3_SLP_VSEL			
默认值	0	0	0	0	0	0	0	0

描述

Bit 7-4 保留位

Bit 3-0 LDO3_SLP_VSEL: LDO3 休眠模式电压选择。

 $0.8V \sim 2.5V$, step=0.1V

0000: 0.8V 0001: 0.9V

٠٠٠.

1100: 2.0V 1101: 2.2V 1111: 2.5V

默认值由 boot 设定。

15.2.4.18 LDO4_ON_VSEL_REG:LDO4 运行模式电压选择

地址: 4	11H			类型: R	W			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	RESV	RESV	RESV	LDO4_ON_VSEL				
默认值	0	0	0	Boot				

描述

Bit 7-5 保留位

Bit 4-0 LDO4_ON_VSEL: LDO4 运行模式电压选择。

 $1.8V \sim 3.4V$, step=0.1V

00000: 1.8V 00001: 1.9V

٠٠٠.

01110: 3.2V 01111: 3.3V 10000: 3.4V

默认值由 boot 设定。

15.2.4.19 LDO4_SLP_VSEL_REG: LDO4 休眠模式电压选择寄存器

地址: 4	42H			类型: R	W				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
符号	RESV	RESV	RESV		LDO4_SLP_VSEL				
默认值	0	0	0	0	0	0	0	0	

描述

Bit 7-5 保留位

Bit 4-0 LDO2_SLP_VSEL: LDO2 休眠模式电压选择。

 $1.8V \sim 3.4V$, step=0.1V

00000: 1.8V 00001: 1.9V

•••

01110: 3.2V 01111: 3.3V 10000: 3.4V

15.2.4.20 LDO5_ON_VSEL_REG: LDO5 运行模式电压选择寄存器

地址: 4					W				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
符号	RESV	RESV	RESV	LDO5_ON_VSEL					
默认值	0	0	0	Boot					

描述

Bit 7-5 保留位

Bit 4-0 LDO5_ON_VSEL: LDO5 运行模式电压选择。

 $1.8V \sim 3.4V$, step=0.1V

00000: 1.8V 00001: 1.9V

٠٠٠.

01110: 3.2V 01111: 3.3V 10000: 3.4V

默认值由 boot 设定。

15.2.4.21 LDO5_SLP_VSEL_REG:LDO5 休眠模式电压选择寄存器

地址: 4	44H			类型: R	W			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	RESV	RESV	RESV	LDO5_SLP_VSEL				
默认值	0	0	0	0	0	0	0	0

描述

Bit 7-5 保留位

Bit 4-0 LDO5_SLP_VSEL: LDO5 休眠模式电压选择。

 $1.8V \sim 3.4V$, step=0.1V

00000: 1.8V 00001: 1.9V

٠٠٠.

01110: 3.2V 01111: 3.3V 10000: 3.4V

15.2.4.22 LDO6_ON_VSEL_REG: LDO6 运行模式电压选择寄存器

地址: 4	45H			类型: R	W			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	RESV	RESV	RESV		LDC	06_ON_VS	EL	
默认值	0	0	0			Boot		

描述

Bit 7-5 保留位

Bit 4-0 LDO6_ON_VSEL: LDO6 运行模式电压选择。

 $0.8V \sim 2.5V$, step=0.1V

00000: 0.8V 00001: 0.9V

••••

10000: 2.4V 10001: 2.5V

默认值由 boot 设定。

15.2.4.23 LDO6_SLP_VSEL_REG:LDO6 休眠模式电压选择寄存器

地址: 4	地址: 46H								
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
符号	RESV	RESV	RESV	LDO6_SLP_VSEL					
默认值	0	0	0	0	0	0	0	0	

描述

Bit 7-5 保留位

Bit 4-0 LDO6_SLP_VSEL: LDO6 休眠模式电压选择。

 $0.8V \sim 2.5V$, step=0.1V

00000: 0.8V 00001: 0.9V

.

10000: 2.4V 10001: 2.5V

15.2.4.24 LDO7_ON_VSEL_REG: LDO7 运行模式电压选择寄存器

地址: 4	地址: 47H							
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	RESV	RESV	RESV		LD	007_ON_VS	EL	
默认值	0	0	0			Boot		

描述

Bit 7-5 保留位

Bit 4-0 LDO7_ON_VSEL: LDO7 运行模式电压选择。

 $0.8V \sim 2.5V$, step=0.1V

00000: 0.8V 00001: 0.9V

• • • • •

10000: 2.4V 10001: 2.5V

默认值由 boot 设定。

15.2.4.25 LDO7_SLP_VSEL_REG:LDO7 休眠模式电压选择寄存器

地址: 4								
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	RESV	RESV	RESV	LDO7_SLP_VSEL				
默认值	0	0	0	0	0	0	0	0

描述

Bit 7-5 保留位

Bit 4-0 LDO7_SLP_VSEL: LDO7 休眠模式电压选择。

 $0.8V \sim 2.5V$, step=0.1V

00000: 0.8V 00001: 0.9V

• • • • •

10000: 2.4V 10001: 2.5V

15.2.4.26 LDO8_ON_VSEL_REG: LDO8 运行模式电压选择寄存器

地址: 4	49H							
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	RESV	RESV	RESV		LDC	08_ON_VS	EL	
默认值	0	0	0			Boot		

描述

Bit 7-5 保留位

Bit 4-0 LDO8_ON_VSEL: LDO8 运行模式电压选择。

 $1.8V \sim 3.4V$, step=0.1V

00000: 1.8V 00001: 1.9V

•••.

01110: 3.2V 01111: 3.3V 10000: 3.4V

默认值由 boot 设定。

15.2.4.27 LDO8_SLP_VSEL_REG: LDO8 休眠模式电压选择寄存器

地址: 4	地址: 4AH				W			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	RESV	RESV	RESV	LDO8_SLP_VSEL				
默认值	0	0	0	0	0	0	0	0

描述

Bit 7-5 保留位

Bit 4-0 LDO8_SLP_VSEL: LDO8 休眠模式电压选择。

 $1.8V \sim 3.4V$, step=0.1V

00000: 1.8V 00001: 1.9V

•••.

01110: 3.2V 01111: 3.3V 10000: 3.4V

15.2.4.28 DEVCTRL_REG: 设备控制寄存器

地址: 4	4BH	地址: 4BH				类型: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			

RK818 电源管理系统

符号	RESV	PWRO N_LP_ ACT		.P_OFF_TI IE	DEV_OFF _RST	RESV	DEV_SL P	DEV_O FF
默认值	0	0	0	0	0	0	0	0

描述

Bit 7 保留位

Bit 6 长按键动作选择

0: 关机

1: 关机并重新启动

Bit 5-4 PWRON_LP_OFF_TIME: PWRON 长按关断时间设定:

00: 6s 01: 8s 10: 10s 11: 12s

Bit 3 DEV_OFF_RST: 写"1"将复位所有 PMU/Charger 相关的寄存器,但是 PMU 仍然处于 开机状态,也称之为软复位。

Bit 2 保留位

Bit 1 DEV_SLP:写"1"将允许设备 SLEEP 状态 (如果 DEV_OFF = 0 和 DEV_OFF_RST = 0).

写"0"将启动从 SLEEP 到 ACTIVE 的状态转换 (唤醒操作) (如果 DEV_OFF = 0 和 DEV_OFF_RST = 0). 该位在 OFF 状态清零。

Bit 0 DEV_OFF: 写 "1" 将启动从 ACTIVE 到 OFF 或者从 SLEEP 到 OFF 的设备状态转换。该位在 OFF 状态清零。

15.2.5 中断寄存器

15.2.5.1 INT_STS_REG1:中断状态寄存器 #1

地址	地址: 4CH				类型: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
符号	USB_OV_I NT(Write 1 clr or RegA3<7> =0 clr	RTC_PERI OD_INT (Write 1 clr)	RTC_ALA RM_INT (Write 1 clr)	HOTDI E_INT (Write 1 clr)	PWRON _LP_INT (Write 1 clr)	PWRO N_INT (Write 1 clr)	VB_LO _INT (Write 1 clr)	VOUT_L O_INT (Write 1 clr)		
默认值	0	0	0	0	0	0	0	0		

描述

Bit 7 USB_OV_INT: USB 过压引发的中断状态

Bit 6 RTC_PERIOD_INT: RTC	周期引发的中断状态。
---------------------------	------------

Bit 5 RTC_ALARM_INT: RTC 闹钟引发的中断状态。

Bit 4 HOTDIE_INT: 芯片过热引发中断的状态。

Bit 3 PWRON_LP_INT: PWRON 管脚长按引发的中断状态。

Bit 2 PWRON INT: PWRON 引发的中断状态。

Bit 1 VB_LO_INT: 电池欠压报警引发的中断状态。

Bit 0 VOUT_LO_INT: VOUT 欠压报警引发的中断状态。

Note: 1: 引发中断,写"1"清除。

0: 无中断发生

15.2.5.2 INT_MSK_REG1:中断屏蔽寄存器 #1

地址:	4DH			类型: RW	l			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	USB_OV _INT_IM	RTC_PE RIOD_IM	RTC_AL ARM_IM	HOTDIE_ IM	PWRON _LP_IM	PWRON _IM	VB_LO_I M	VOUT_ LO_IM
默认值	0	0	0	0	0	0	0	0

描述

Bit 7	USB	OV	INT	IM:屏蔽	USB	过压引起的中断

Bit 6 RTC_PERIOD_INT: 屏蔽 RTC 周期引发的中断

Bit 5 RTC_ALARM_INT: 屏蔽 RTC 闹钟引发的中断

Bit 4 HOTDIE INT: 屏蔽芯片过热引发的中断

Bit 3 PWRON_LP_INT: 屏蔽 PWRON 管脚长按引发的中断

Bit 2 PWRON_INT: 屏蔽 PWRON 引发的中断

Bit 1 VB_LO_INT: 屏蔽电池欠压引发的中断

Bit 0 VOUT_LO_IM: 屏蔽 Vout 欠压报警引发的中断

Note: 1: 屏蔽所指定的中断

0: 不屏蔽所指定的中断

15.2.5.3 INT_STS_REG2: 中断状态寄存器#2

地:	址: 4EH			类型: RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	DISCHG_ILI M_INT (Write 1 clr)	CHG_CVTLIM_I NT (Write 1 clr or RegA3<7>=0 clr)	TS2_IN T (Write 1 clr)	CHGTS1_INT (Write 1 clr or RegA3<7>=0 clr)	CHGTE_INT (Write 1 clr or RegA3<7>=0 clr)	CHGOK_INT (Write 1 clr or RegA3<7>=0 clr)	PLUG_OUT_IN T (Write 1 clr)	PLUG_IN_I NT (Write 1 clr)
默认值	0	0	0	0	0	0	0	0

描述

Bit 7	DISCHG_ILIM_INT:放电达到限流值引发的中断
Bit 6	CHG_CVTLIM_INT:充电达到输入限压或限流或限温引发的中断
Bit 5	TS2_INT: TS2 值过高或过低引发的中断
Bit 4	CHGTS1_INT: 充电的 TS1 值过高或过低引发的中断
Bit 3	CHGTE_INT: 充电超时引发的中断
Bit 2	CHGOK_INT: 充电结束引发的中断
Bit 1	PLUG_OUT_INT: 充电器拔除引发的中断 (PLUG_IN_STS 下降沿触发中断)
Bit 0	PLUG_IN_INT: 充电器插入引发的中断 (PLUG_IN_STS 上升沿触发中断)
Note:	写"1"清除。

15.2.5.4 INT_STS_MSK_REG2:中断屏蔽寄存器#2

地址	: 4FH			类型: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
效早	DISCHG_IL	CHG_CVTL	TS2_I	CHGTS1	CHGTE_I	CHGOK	PLUG_OU	PLUG_IN	
符号	IM_INT_IM	IM_INT_IM	NT_IM	_INT_IM	NT_IM	_INT_IM	T_INT_IM	_INT_IM	
默认值	0	0	0	0	0	0	0	0	

	描述
Bit 7	DISCHG_ILIM_INT_IM: 屏蔽放电触发限流值引发的中断
	1: 屏蔽中断
	0: 不屏蔽中断
Bit 6	CHG_CVTLIM_INT_IM: 屏蔽触发输入限流或限压或限温引发的中断
	1: 屏蔽中断

- 0: 不屏蔽中断 TS2_INT_IM: 屏蔽 TS2 值过高或过低引发的中断
 - 1: 屏蔽中断 0: 不屏蔽中断
- Bit 4 CHGTS1_INT_IM: 屏蔽触发充电 TS1 值过高或过低引发的中断
 - 1: 屏蔽中断 0: 不屏蔽中断
- Bit 3 CHGTE_INT_IM: 屏蔽充电超时引发的中断
 - 1: 屏蔽中断 0: 不屏蔽中断
- Bit 2 CHGOK_INT_IM: 屏蔽充电结束引发的中断
 - 1: 屏蔽中断 0: 不屏蔽中断

Bit 5

Bit 1 PLUG_OUT_INT_IM: 屏蔽充电器拔除引发的中断

1: 屏蔽中断 0: 不屏蔽中断

Bit 0 PLUG_IN_INT_IM: 屏蔽充电器插入引发的中断

1: 屏蔽中断 0: 不屏蔽中断

15.2.5.5 IO_POL_REG: IO 极性寄存器

地址: 5			类型: R	W				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	RESV	RESV	RESV	RESV	RESV	RESV	RESV	INT_POL
默认值	0	0	0	0	0	0	0	0

描述

Bit 7-1 保留位

Bit 0 INT_POL: INT 管脚极性

0: 低电平有效1: 高电平有效

15.2.6 BOOST/OTG/DCDC 寄存器

15.2.6.1 H5V_EN_REG:

地址: 5	52H			类型: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
符号	RESV	RESV	RESV	RESV	RESV	BST_UHV_S T	REF_RDY_C TRL	H5V_EN	
默认值	0	0	0	0	0	0	0	0	

描述

Bit 7-3 保留位

Bit 2 BST_UHV_ST: Boost 超重载启动使能

0:启用 1:禁用

Bit 1 REF_RDY_CTRL:ref_rdy 信号控制

0: PMU 启动后,如果 vref 低于预定值,允许 ref_rdy 信号变为低电平 1: PMU 启动后,如果 vref 低于预定值,ref_rdy 信号维持为高电平

Bit 0 H5V_EN: HDMI 5V 使能

1, 启用 0, 禁用

15.2.6.2 SLEEP_SEL_OFF_REG3:

地址: 5	53H			类型: R	类型: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
符号	RESV	RESV	RESV	RESV	RESV	RESV	RESV	H5V_SLP_SET_ OFF		
默认值	0	0	0	0	0	0	0	0		

描述

Bit 7-1 保留位

Bit 0 1, HDMI 5V 在 SLEEP 模式下被关掉

0, HDMI 5V 在 SLEEP 模式下被启用

15.2.6.3 BOOST_LDO9_ON_VSEL_REG:

地址: 54H				类型: R	类型: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
符号	BOOST	_ON_VS	EL							
默认值		由 BOOT 设定								

描述

Bit 7-5 BOOST_ON_VSEL<2:0>: BOOST 运行模式电压选择

000:4.7V 001:4.8V 010:4.9V 011:5V 100:5.1V 101:5.2V 110:5.3V 111:5.4V

Bit 4-0 D LDO9_ON_VSEL: LDO9 运行模式电压选择

 $1.8V \sim 3.4V$, step=0.1V

00000: 1.8V 00001: 1.9V

•••

01110: 3.2V 01111: 3.3V 10000: 3.4V

默认值 boot

15.2.6.4 BOOST_LDO9_SLP_VSEL_REG:

地址: 5			类型: R	W				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	BOOST_SLP_VSEL			LDO9_SLP_VSEL				
默认值	0	1	1	0	0	0	0	0

描述

Bit 7-5 BOOST_SLP_VSEL<2:0>: BOOST SLEEP 模式电压选择

000: 4.7V 001:4.8V 010: 4.9V 011:5V 100: 5.1V 101:5.2V 110: 5.3V 111:5.4V

Bit 4-0 LDO9_SLP_VSEL: LDO9 SLEEP 模式电压选择

 $1.8V \sim 3.4V$, step=0.1V

00000: 1.8V 00001: 1.9V

٠٠٠.

01110: 3.2V 01111: 3.3V 10000: 3.4V

15.2.6.5 BOOST_CTRL_REG: BOOST 控制寄存器

地址: 5	56H			类型: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
符号	RESV	BST_H V_ST		BST_SWITC H_VT_HYS	BST_SWI TCH_EN	RESV	RESV	RESV	
默认值	0	0	0	0	0	0	0	0	

	描述
Bit 7	保留位
Bit 6	BST_HV_ST:boost 重载启动
	0: 无效
	1: 有效
Bit 5	BST_SWITCH_VT: Boost 模式到开关模式的转换阈值
	0:3.8V
	1:3.9V
Bit 4	BST_SWITCH_VT_HYS: Boost 模式到开关模式的转换阈值迟滞
	0:200mV 1:300mV
Bit 3	BST_SWITCH_EN: Boost 可以工作在开关模式的使能选择
	0:禁用
	1:启用
Bit 2:0	保留位

15.2.6.6 DCDC_ILMAX_REG: DCDC 电感电流峰值调节寄存器

地址: 9	90H			类型: RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	BUCK4_	ILMAX	BUCK	3_ILMAX	BUCK2_IL	MAX	BUCK1_	ILMAX
默认值	0	1	0	1	0	1	0	1

描述

Bit 7:6	BUCK4_ILMAX:BUCK4 电感电流峰值调节位
	00 0 54 01 04 10 0 54 11 44

00: 2.5A 01:3A 10:3.5A 11:4A

Bit 5:4 BUCK3_ILMAX:BUCK3 电感电流峰值调节位

00: 2A 01:2.5A 10:3A 11:3.5A

Bit 3:2 BUCK2_ILMAX:BUCK2 电感电流峰值调节位

Bit 1:0 BUCK1_ILMAX:BUCK1 电感电流峰值调节位

15.2.7 充电器设置寄存器

15.2.7.1 CHRG_COMP_REG:

地址: 9	9AH			类型: RW	I			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	RE	SV	BAT_SYS	_CMP_DL Y	CHRG_	IRVS	CHRG_OUTC\	/_COMP
默认值	0	0	0 0		0	0	0	0

描述

Bit 7-6 保留位

Bit 5-4 BAT_SYS_CMP_DLY: 电池电压和系统电压比较器延迟时间

00: 20uS 10: 10uS 01: 40uS 11: 20uS

Bit 3-2 CHRG_IRVS: 充电器反灌电流设置

Bit 1-0 CHRG_OUTCV_COMP:充电器输出电压环路补偿设置

15.2.7.2 SUP_STS_REG:

地址: /	40H			类型:	RW			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	BAT_EXS	С	HG_ST	S	USB_V	USB_IL	USB_EXS	USB_EFF
1寸 与	(Read only)	(Rea	d only)		LIM_EN	IM_EN	(Read only)	(Read only)
默认值	0	0	0	0	1	1	0	0

描述

Bit 7 BAT_EXS: 电池存在监测

0: 无电池 1: 有电池

Bit 6-4 CHG_STS: 充电状态

000: 不充电

001: 唤醒电流充电

010: 涓流充电

011: 恒流或恒压充电

100: 充电结束 101: USB 过压 110: 电池温度报错 111: 电池时间报错

Bit 3 USB_VLIM_EN: USB 输入限压功能使能设置

0: 禁用1: 启用

Bit 2 USB ILIM EN: USB 输入限流功能使能设置

0: 禁用1: 启用

Bit 1 USB_EXS: USB 存在状态监测

0: 无 USB 1: 有 USB

Bit 0 USB_EFF: USB 有效监测

0: USB 无效 **1**: USB 有效

15.2.7.3 USB_CTRL_REG:

地址: /	41H			类型: R	W					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
符号	CHRG_ CT_EN	USB_	CHG_SD	_VSEL	USB_ILIM_SEL					
默认值		ОТР								

描述

Bit 7 CHRG_CT_EN: Charger Thermal foldback enable

0:disable 1:enable

Bit 6-4 USB_CHG_SD_VSEL: the USB low voltage shutdown charger voltage selection

000: 2.78V, 001:2.85V, 010: 2.92V, 011: 2.99V 100: 3.06V, 101: 3.13V, 110: 3.19V, 111: 3.26V

Bit 3-0 USB_ILIM_SEL: USB 输入限流选择

0000:0.45A, 0001:0.08A, 0010:0.85A, 0011:1A, 0100:1.25A, 0101:1.5A, 0110:1.75A, 0111:2A, 1000:2.25A, 1001:2.5A, 1010:2.75A, 1011:3A,

11xx:3A

默认值根据客户需求由 OTP 烧写决定

15.2.7.4 CHRG_CTRL_REG1: 充电器控制寄存器 1

地址: /	A3H			类型: R	W			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	CHRG_ EN	CHRG	_VOL_SI	ΞL		CHRG_CU	R_SEL	
默认值	1	0	1	1	0	1	0	1

描述

Bit 7 CHRG EN: 充电器使能

0: 禁用1: 启用

Bit 6-4 CHRG VOL SEL: 充电中止电压选择

000:4.05V, 001:4.1V, 010:4.15V, 011:4.2V

100:4.3V, 101,110,111:4.35V

Bit 3-0 CHRG_CUR_SEL: 充电电流选择

0000:1A, 0001:1.2A, 0010:1.4A, 0011:1.6A 0100:1.8A, 0101:2A, 0110:2.2A, 0111:2.4A

1000:2.6A, 1001:2.8A, 1010--1111:3A

15.2.7.5 CHRG_CTRL_REG2: 充电器控制寄存器 2

地址: A4H				类型: RW						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
符号	CHRG_TERM_SEL CI			RG_TIMER_	TRIKL	CHRG_	TIMER_CC	CV		
默认值	0	1	0	0	1	0	1	0		

描述

Bit 7-6 CHRG TERM SEL: 充电结束电流选择

00:100mA, 01:150mA, 10:200mA, 11:250mA

Bit 5-3 CHRG_TIMER_TRIKL: 涓流充电计时选择

000:30min。 001:60min, 010:90min, 011:120min,

100:150min, 101:180min, 110, 111:210min

Bit 2-0 CHRG_TIMER_CCCV: 恒流恒压充电超时选择

000:4h, 001:5h, 010:6h, 011:8h, 100:10h

101:12h, 110:14h, 111:16h

15.2.7.6 CHRG_CTRL_REG3: 充电器控制寄存器 3

地址: /	45H			类型: RW						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
	SYS_C	TS2_S	CHRG_TE	CHRG_	CHRG_TI	CHRG_TIM	CHRG			
符号	AN_SD	D_EN	RM_ANA_	PHASE	MER_TRI	ER_CCCV_	FREQ			
			DIG		KL_EN	EN				
默认值	0	0	0	0	0	0	1	0		

描述

Bit 7 SYS_CAN_SD:在仅有电池存在的时候系统电压是否可以关断

0: 禁止

1: 允许

Bit 6 TS2_SD_EN: TS2 值过低或者过高关掉 PMU 的使能位

0: 禁止

1: 允许

Bit 5 CHRG_TERM_ANA_DIG: 充电结束的判断标志位来源选择

0: 模拟电路

1:数字电路

Bit 4 CHRG_PHASE: 充电器时钟是否反向

0:正常

1:反向

Bit 3 CHRG_TIMER_TRIKL_EN: 涓流计时使能位,

0: 禁止

1: 允许

Bit 2 CHRG_TIMER_CCCV_EN:恒压或恒流计时使能位

0: 禁止

1: 允许

Bit 1-0 CHRG_FREQ: 充电器频率选择

00:1MHz, 01:1.33MHz, 1x:2MHz

15.2.7.7 OTG_ILIM_REG/BAT_CTRL_REG:

地址: /	46H	类型: RW						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	BAT_DIS_IL IM_EN	H5V_IPK LIM_SEL	OTG_IPK LIM_SEL	OTG_ILIN	1_SEL	BAT_D	ISCHRO	G_ILIM
默认值	1	0	0	0	1	1	0	0

描述

Bit 7 BAT_DIS_ILIM_EN: 电池放电限流功能使能位

0: 禁止 1: 允许

Bit 6 H5V_IPKLIM_SEL: HDMI 5V 峰值限流选择

0:100mA

1:115mA

Bit 5 OTG_IPKLIM_SEL: OTG 峰值限流选择

0:125%*OTG_ILIM_SEL 1:150%*OTG_ILIM_SEL

Bit 4-3 OTG_ILIM_SEL:OTG 限流选择

00:700mA, 01:800mA, 10:900mA, 11:1A

Bit 2-0 BAT_DISCHRG_ILIM: 电池放电限流选择

000:3A, 001:3.5A, 010:4A, 011 4.5A, 1xx:5A

15.2.7.8 BAT_HTS_TS1_REG

地址: /	地址: A8H				W					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
符号		BAT_HTS_TS1								
默认值	0	0	0	0	0	0	0	0		

描述

Bit 7-0 BAT_HTS_TS1: TS1 管脚的电池高温保护阈值,只比较 ADC 的高 8 位

15.2.7.9 BAT_LTS_TS1_REG

地址: /	地址: A9H				类型: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
符号		BAT_LTS_TS1								
默认值	1	1	1	1	1	1	1	1		

描述

Bit 7-0 BAT_LTS_TS1: TS1 管脚的电池低温保护阈值,只比较 ADC 的高 8 位

15.2.7.10 BAT_HTS_TS2_REG

地址: /	AAH			类型: R	W				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
符号		BAT_HTS_TS2							
默认值	0	0	0	0	0	0	0	0	

描述

Bit 7-0 BAT_HTS_TS2: TS2 管脚的高温保护阈值,只比较 ADC 的高 8 位

15.2.7.11 BAT_LTS_TS2_REG

地址: ABH				类型: RW							
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
符号	BAT_LTS_TS2										
默认值	1	1	1	1	1	1	1	1			

描述

Bit 7-0 BAT_LTS_TS2: TS2 管脚的低温保护阈值,只比较 ADC 的高 8 位

15.2.7.12 TS_CTRL_REG

地址: /	类型: RW							
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2 Bit1 Bi		
符号	GG_EN	TS2_TE (Read only)	TS2_FUN	TS1_FUN	TS2_CUR		TS1_	CUR
默认值	1	0	0	0	1	1	1	1

描述

Bit 7 GG_EN: 电量计模块使能位

0:禁止

1: 允许

Bit 6 TS2_TE: TS2 的值低于或者高于相应阈值标识位

0:未发生 1:发生

Bit 5 TS2_FUN: TS2 管脚的功能选择

0:外部温度检测(外接可接负温度系数的热敏电阻)

1:ADC 输入

Bit 4 TS1_FUN: TS1 管脚的功能选择

0:外部温度检测(外接可接负温度系数的热敏电阻)

1:ADC 输入

Bit 3-2 TS2_CUR: TS2 管脚在温度检测模式下流出电流选择

00:20uA, 01:40uA, 10:60uA, 11:80uA

Bit 1-0 TS1 CUR: TS1 管脚在温度检测模式下流出电流选择

00:20uA, 01:40uA, 10:60uA, 11:80uA

15.2.7.13 ADC_CTRL_REG

地址: AI	OH	类型: RW						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	ADC_V	ADC_CU	ADC_TS1	ADC_TS	ADC_PH	ADC_CLK_SEL		
19 5	OL_EN	R_EN	_EN	2_EN	ASE			
默认值	0	0	0	0	0	0	0	0

描述

Bit 7 ADC VOL EN: 如果 GG EN=0,则电池电压通道的 ADC 通道打开与否的使能位

0:禁止

1:允许

Bit 6 ADC_CUR_EN:如果 GG_EN=0,则电池电流通道的 ADC 通道打开与否的使能位

0:禁止

1:允许

Bit 5 ADC_TS1_EN: TS1 的 ADC 通道打开与否的使能位

0:禁止

1:允许

Bit 4 ADC_TS2_EN: TS2 的 ADC 通道打开与否的使能位

0:禁止

1:允许

Bit 3 ADC PHASE: ADC 时钟的相位

0:正常

1:反向

Bit 2-0 ADC_CLK_SEL: ADC 时钟选择

000:2Meg, 001:1Meg, 010:500K, 011:250K, 100:125K

101:64K, 110:32K, 111:16K

15.2.7.14 ON_SOURCE_REG:

地址: /	AEH			类型: RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	ON_P	ON_PL	ON_	RESTART	RESTART_P	RESTART_	RESV	DECV
177 分	WRON	UG_IN	RTC	_RESETB	WRON_LP	RECOVERY	KESV	RESV
默认值	0	0	0	0	0	0	0	0

描述

BIT 1	ON_PWRON: 按 PWRON 打开 PMU
Bit 6	ON_PLUG_IN: USB 接入打开 PMU
Bit 5	ON_RTC: RTC 定时打开 PMU
Bit 4	RESTART_RESETB: 拉低 NRESPWRON 管脚重启 PMU
Bit 3	RESTART PWRON LP: 长按 PWRON 重启 PMU

Bit 2 RESTART_RECOVERY: 长按 PWRON 触发 Recovery 重启 PMU

Bit 1-0 保留位

15.2.7.15 OFF_SOURCE_REG:

地址: AFH 类型: R								
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	OFF_RE	OFF_S	OFF_T	OFF_S	OFF_DE	OFF_PW	OFF_	OFF_S
	F_DN	YS_OV	SD	YS_UV	V_OFF	RON_LP	TS2	YS_LO
默认值	0	0	0	0	0	0	0	0

描述

Bit 7	OFF_REF_DN: 工作状态下参考电压未准备好关闭 PMU
Bit 6	OFF_SYS_OV: 系统电压过压关闭 PMU
Bit 5	OFF_TSD: 芯片过热关闭 PMU
Bit 4	OFF_SYS_UV: 系统电压欠压关闭 PMU
Bit 3	OFF_DEV_OFF: 软件写 DEV_OFF 位关闭 PMU
Bit 2	OFF_PWRON_LP: 长按 PWRON 关闭 PMU
Bit 1	OFF_TS2: TS2 值过高或过低关闭 PMU
Bit 0	OFF_SYS_LO: SYSTEM 电压低 (如果 Reg21<4>vb_lo_act=0)来关闭 PMU

15.2.8 电量计设置寄存器

15.2.8.1 GGCON_REG:

地址: BOH				类型: RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	CUR_SAMPL_		ADC_	ADC_OFF_CAL_		V_SAMPL_	ADC_CUR_	ADC_RE
13 3	CON_TIMES		INTERV		INTERV		VOL_MODE	S_MODE
默认值	0	1	0	0	1	0	1	0

描述

Bit 7-6 CUR _	_SAMPL_CON	_TIMES:	电池电流通道的 ADC	〕连续采样次数
----------------------	------------	---------	-------------	---------

00:8 01:16 10:32 11:64

Bit 5-4 ADC_OFF_CAL_INTERV<1:0>: ADC 误差校准间隔时间

00:8min, 01:16min, 10:32min, 11:48min

Bit 3-2 OCV_SAMPL_INTERV<1:0>: OCV 采样间隔时间

00:8min, 01:16min, 10:32min, 11:48min

Bit 1 ADC_CUR_VOL_MODE: 电量计工作基于何种算法

0:电压法

1:电流法

Bit 0 ADC_RES_MODE:电池内阻计算模式使能位

0:禁止

1:允许

15.2.8.2 GGSTS_REG:

地址: E	31H			类型: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
符号	RESV	RES_CUR_AVG_ SEL<1:0>		BAT_ CON	RELAX_V OL1_UPD	RELAX_V OL2_UPD	RELAX_S TS(RO)	IV_AVG_U PD_STS	
默认值	0	1	0	0	0	0	0	0	

描述

Bit 7 保留位

Bit 6-5 RES_CUR_AVG_SEL<1:0>: 可计算内阻的电流纹波百分比的阈值

00:1/2, 01:1/4, 10:1/8, 11:1/16

Bit 4 BAT_CON: 是否检测到电池第一次接入的上升沿

0:没有

1:有

Bit 3 RELAX_VOL1_UPD: 在松弛模式下电池电压 1 是否更新的标识位

0:NOT

1:YES

Bit 2 RELAX_VOL2_UPD: 在松弛模式下电池电压 2 是否更新的标识位

0:NOT

1:YES

Bit 1 RELAX_STS: 电池进入松弛模式标识位

0:未进入

1:发生

Bit 0 IV AVG UPD STS: 采集到内阻可算数据的标识位

0:NOT 1:YES

15.2.8.3 FRAME_SMP_INTERV_REG:

地址: [32H			类型: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
符号	RESV	RESV	AUTO_SLP_EN	FRAME_SMP_INTERV_REG<4:0>					
默认值	0	0	0	0	0	0	0	1	

描述

Bit 7-6 保留位

Bit 5 AUTO_SLP_EN:自动进入 SLEEP 模式的使能位

0: 禁止

1: 允许

Bit 4-0 FRAME_SMP_INTERV_REG<4:0>: 在 SLEEP 模式下数据帧的采集间隔

15.2.8.4 AUTO_SLP_CUR_THR_REG:

地址: E	33H			类型: RW							
Bit	Bit7	Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0									
符号	符号 AUTO_SLP_CUR_THR_REG<7:0>										
默认值	0	1	0	0	0	0	0	0			

描述

Bit 7-0 AUTO_SLP_CUR_THR_REG<7:0>: 自动进入 Sleep 模式的电流比较的阈值

15.2.8.5 GASCNT_CAL_REG3: 电量计计数器计算寄存器 3

地址: E	地址: B4H				W			Bit1 Bit0	
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
符号		GASCNT_CAL<31:24>							
默认值	0	0	0	0	0	0	0	0	

描述

Bit 7-0 GASCNT_CAL<31:24>: 电池容量校准值〈31:24〉

15.2.8.6 GASCNT_CAL_REG2: 电量计计数器计算寄存器 2

地址:					W				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
符号		GASCNT_CAL<23:16>							
默认值	0	0	0	0	0	0	0	0	

描述

Bit 7-0 GASCNT_CAL<23:16>: 电池容量校准值<23:16>

15.2.8.7 GASCNT_CAL_REG1: 电量计计数器计算寄存器 1

地址: E	地址: B6H			类型: R	W				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
符号		GASCNT_CAL<15:8>							
默认值	0	0	0	0	0	0	0	0	

描述

Bit 7-0 GASCNT_CAL<15:8>: 电池容量校准值<15:8>

15.2.8.8 GASCNT_CAL_REGO: 电量计计数器计算寄存器 0

地址: E	37H			类型: R	W				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
符号		GASCNT_CAL<7:0>							
默认值	0	0	0	0	0	0	0	0	

描述

Bit 7-0 GASCNT_CAL<7:0>: 电池容量校准值<7:0>

15.2.8.9 GASCNT_REG3: 电量计计数器寄存器 3

地址: E	38H			类型: R					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
符号		GASCNT <31:24>							
默认值	0	0	0	0	0	0	0	0	

描述

Bit 7-0 GASCNT<31:24>: 电池容量值<31:24>

15.2.8.10 GASCNT_REG2: 电量计计数器寄存器 2

地址: E	地址: B9H								
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
符号		GASCNT <23:16>							
默认值	0	0	0	0	0	0	0	0	

描述

Bit 7-0 GASCNT<23:16>: 电池容量值<23:16>

15.2.8.11 GASCNT_REG1: 电量计计数器寄存器 1

地址: E	地址: BAH									
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
符号			GA	SCNT <15	:8>					
默认值	0	0	0	0	0	0	0	0		

描述

Bit 7-0 GASCNT<15:8>: 电池容量值<15:8>

15.2.8.12 GASCNT_REGO: 电量计计数器寄存器 0

地址: [звн			类型: R					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
符号		GASCNT <7:0>							
默认值	0	0	0	0	0	0	0	0	

描述

Bit 7-0 GASCNT<7:0>: 电池容量值<7:0>

15.2.8.13 BAT_CUR_REGH: 电池电流值高位寄存器

地址: [ЗСН			类型: R				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	RESV RESV RESV BAT_CUR_AVG<11:8>						<11:8>	
默认值	0	0	0	0	0	0	0	0

描述

Bit 7-4 保留位

Bit 3-0 BAT_CUR_AVG<11:8>: 电池平均电流值高 4 位

15.2.8.14 BAT_CUR_AVG_REGL: 电池电流值低位寄存器

地址: E	地址: BDH			类型: R					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
符号		BAT_CUR_AVG<7:0>							
默认值	0	0	0	0	0	0	0	0	

描述

Bit 7-0 BAT_CUR_AVG<7:0>: 电池平均电流值低 8 位

15.2.8.15 TS1_ADC_REGH: ADC 温度采样 TS1 高位寄存器

地址: E	BEH			类型: R				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	RESV	RESV	RESV	RESV	TS1_ADC<11:8>			
默认值	0	0	0	0	0	0	0	0

描述

Bit 7-4 保留位

Bit 3-0 TS1_ADC<11:8>: TS1 ADC 值的高 4 位

15.2.8.16 TS1_ADC_REGHL: ADC 温度采样 TS1 低位寄存器

地址: E	3FH			类型: R					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
符号		TS1_ADC<7:0>							
默认值	0	0	0	0	0	0	0	0	

描述

Bit 7-0 TS1_ADC<7:0>: TS1 ADC 值的低 8 位。

15.2.8.17 TS2_ADC_REGH: ADC 温度采样 TS2 高位寄存器

地址: (COH			类型: R					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
符号	RESV	RESV	RESV	RESV	TS2_ADC<11:8>				
默认值	0	0	0	0	0	0	0	0	

描述

Bit 7-4 保留位

Bit 3-0 TS2_ADC<11:8>: TS2 ADC 值的高 4 位。

15.2.8.18 TS2_ADC_REGHL: ADC 温度采样 TS2 低位寄存器

地址: (C1H			类型: R						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
符号		TS2_ADC<7:0>								
默认值	0	0	0	0	0	0	0	0		

描述

Bit 7-0 TS2_ADC<7:0>: TS2 ADC 值的低 8 位

15.2.8.19 BAT_OCV_REGH: 电池过压值高位寄存器

地址:	C2H			类型: R				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	RESV	RESV	RESV	RESV	BAT_OCV<11:8>			
默认值	0	0	0	0	0	0	0	0

描述

Bit 7-4 保留位

Bit 3-0 BAT_OCV<11:8>: 电池 OCV 电压高 4 位。

15.2.8.20 BAT_OCV_REGL: 电池过压值低位寄存器

地址: (类型: R						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
符号		BAT_OCV<7:0>								
默认值	0	0	0	0	0	0	0	0		

描述

Bit 7-0 BAT_OCV<7:0>:电池 OCV 电压低 8 位。

15.2.8.21 BAT_VOL_REGH: 电池电压值高位寄存器

地址: (C4H			类型: R					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
符号	RESV	RESV	RESV	RESV	BAT_VOL<11:8>				
默认值	0	0	0	0	0	0	0	0	

描述

Bit 7-4 保留位

Bit 3-0 BAT_VOL<11:8>: 实时电池电压值高 4 位。

15.2.8.22 BAT_VOL_REGL: 电池电压值低位寄存器

地址: (C5H			类型: R						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
符号		BAT_VOL<7:0>								
默认值	0	0	0	0	0	0	0	0		

描述

Bit 7-0 BAT_VOL<7:0>: 实时电池电压值低 8 位。

15.2.8.23 RELAX_ENTRY_THRES_REGH

地址: (C6H			类型: R	W				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
符号	RESV	RESV	RESV	RESV	RELAX_ENTRY_THRES<11:8>				
默认值	0	0	0	0	0	0	0	0	

描述

Bit 7-4 保留位

Bit 3-0 RELAX_ENTRY_THRES<11:8>: 电池进入松弛模式的阈值的高 4 位

15.2.8.24 RELAX_ENTRY_THRES_REGL

地址: C7H			类型: R	W						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
符号	符号 RELAX_ENTRY_THRES<7:0>									
默认值	0	0	0	0	0	0	0	0		

描述

Bit 7-0 RELAX_ENTRY_THRES<7:0>:电池进入松弛模式的阈值的低 8 位

15.2.8.25 RELAX_EXIT_THRES_REGH

地址: (地址: C8H				W				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
符号	RESV	RESV	RESV	RESV	RELAX_EXIT_THRES<11:8>				
默认值	0	0	0	0	0	0	0	0	

描述

Bit 7-4 保留位

Bit 3-0 RELAX_EXIT_THRES<11:8>: 电池退出松弛模式的阈值的高 4 位

15.2.8.26 RELAX_EXIT_THRES_REGL

地址: (C9H			类型: R	W					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
符号		RELAX_EXIT_THRES<7:0>								
默认值	0	1	1	0	0	0	0	0		

描述

Bit 7-0 RELAX_EXIT_THRES<7:0>:电池退出松弛模式的阈值的低 8 位

15.2.8.27 RELAX_VOL1_REGH

地址: (CAH			类型: R					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
符号	RESV	RESV	RESV	RESV	RELAX_VOL1<11:8>				
默认值	0	0	0	0	0	0	0	0	

描述

Bit 7-4 保留位

Bit 3-0 RELAX_VOL1<11:8>: 松驰模式下电压 1 的高 4 位

15.2.8.28 RELAX_VOL1_REGL

地址: (类型: R						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
符号		RELAX_VOL1<7:0>								
默认值	0	0	0	0	0	0	0	0		

描述

Bit 7-0 RELAX_VOL1<7:0>:松驰模式下电压 1 的低 8 位

15.2.8.29 RELAX_VOL2_REGH

地址: CCH				类型: R					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
符号	RESV	RESV	RESV	RESV	RELAX_VOL2<11:8>				
默认值	0	0	0	0	0	0	0	0	

描述

Bit 7-4 保留位

Bit 3-0 RELAX_VOL2<11:8>: 松驰模式下电压 2 的高 4 位

15.2.8.30 RELAX_VOL2_REGL

地址: CDH			类型: R						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
符号	RELAX_VOL2<7:0>								
默认值	0	0	0	0	0	0	0	0	

描述

Bit 7-0 RELAX_VOL2<7:0>:松驰模式下电压 2 的低 8 位

15.2.8.31 BAT_CUR_R_CALC_REGH: 电池电流换算内阻值高位寄存器

地址: CEH				类型: R					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
符号	RESV	RESV	RESV	RESV	BAT_CUR_R_CALC<11:8>				
默认值	0	0	0	0	0	0	0	0	

描述

Bit 7-4 保留位

Bit 3-0 BAT_CUR_R_CALC<11:8>: 用于内阻计算的电池稳定电流值高 4 位。

15.2.8.32 BAT_CUR_R_CALC_REGL: 电池电流换算内阻值低位寄存器

地址: (CFH			类型: R					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
符号		BAT_CUR_R_CALC<7:0>							
默认值	0	0	0	0	0	0	0	0	

描述

Bit 7-0 BAT_CUR_R_CALC<7:0>:用于内阻计算的电池稳定电流值低8位。

15.2.8.33 BAT_VOL_R_CALC_REGH: 电池电压换算内阻值高位寄存器

地址: [D0H			类型: R				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	RESV	RESV	RESV	RESV	BAT_VOL_R_CALC<11:8>			
默认值	0	0	0	0	0	0	0	0

描述

Bit 7-4 保留位

Bit 3-0 BAT_VOL_R_CALC<11:8>:用于内阻计算的电池稳定电压值高 4 位。

15.2.8.34 BAT_VOL_R_CALC_REGL: 电池电压换算内阻值低位寄存器

地址: [D1H			类型: R					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
符号		BAT_VOL_R_CALC<7:0>							
默认值	0	0	0	0	0	0	0	0	

描述

Bit 7-0 BAT_VOL_R_CALC<7:0>:用于内阻计算的电池稳定电压值低8位。

15.2.8.35 CAL_OFFSET_REGH: 失调计算高位寄存器

地址: D2H	类型: RW
---------	--------

Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	RESV	RESV	RESV	RESV	CAL_OFFSET_REG<11:8>			
默认值	0	1	1	1	1	1	1	1

描述

Bit 7-4 保留位

Bit 3-0 CAL_OFFSET_REG<11:8>: PCB 电流失调值高 4 位。

15.2.8.36 CAL_OFFSET_REGL: 失调计算低位寄存器

地址: [D3H			类型: R	类型: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
符号		CAL_OFFSET_REG<7:0>								
默认值	1	1	1	1	1	1	1	1		

描述

Bit 7-0 CAL_OFFSET_REG<7:0>: PCB 电流失调值低 8 位。

15.2.8.37 NON_ACT_TIMER_CNT_REGL:

地址: [D4H			类型: R					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
符号		NON_ACT_TIMER_CNT<7:0>							
默认值	0	0	0	0	0	0	0	0	

描述

Bit 7-0 NON_ACT_TIMER_CNT<7:0>: 工作在 SLEEP 或者关机模式下的时间(单位:分钟)

15.2.8.38 VCALIBO_REGH: 电压 0 校准值高位寄存器

地址:[D5H			类型: R				
Bit	Bit Bit7 Bit6 Bit5				Bit3	Bit2	Bit1	Bit0
符号	RESV	RESV	RESV	RESV	VCALIB0<11:8>			

默认值	0	0	0	0	0	0	0	0

描述

Bit 7-4 保留位

Bit 3-0 用于计算失调误差和增益误差的电压 0 失调值高 4 位。

15.2.8.39 VCALIBO_REGL: 电压 0 校准值低位寄存器

地址: [地址: D6H			类型: R	类型: R					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
符号		VCALIB0<7:0>								
默认值	0	0	0	0	0	0	0	0		

描述

Bit 7-0 用于计算失调误差和增益误差的电压 0 失调值低 8 位。

15.2.8.40 VCALIB1_REGH: 电压 1 校准值高位寄存器

地址: [D7H			类型: R				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	RESV	RESV	RESV	RESV	VCALIB1<11:8>			
默认值	0	0	0	0	0	0	0	0

描述

Bit 7-4 保留位

Bit 3-0 用于计算失调误差和增益误差的电压 1 失调值高 4 位。

15.2.8.41 VCALIB1_REGL: 电压 1 校准值低位寄存器

地址: [地址: D8H			类型: R				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

符号	VCALIB1<7:0>									
默认值	0	0	0	0	0	0	0	0		

描述

Bit 7- 用于计算失调误差和增益误差的电压 1 失调值低 8 位。

15.2.8.42 IOFFSET_REGH: 电流失调值高位寄存器

地址: [DDH			类型: R						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
符号	RESV	RESV	RESV	RESV	IOFFSET<11:8>					
默认值	0	0	0	0	0	0	0	0		

描述

Bit 7-4 保留位

Bit 3-0 计算的电流失调值高 4 位

15.2.8.43 IOFFSET_REGL: 电流失调值低位寄存器

地址: [类型: R						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
符号	符号 IOFFSET<7:0>										
默认值	0	0	0	0	0	0	0	0			

描述

Bit 7-0 计算的电流失调值低 8 位

15.2.9 数据寄存器

15.2.9.1 DATAO_REG: DATAO 数据寄存器

地址:	DFH			类型: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
符号	DATA0(7)	DATA0(6)	DATA0(5)	DATA0(4)	DATA0(3)	DATA0(2)	DATAO(1)	DATAO (0)	

Version 0.4

_									
	默认值	0	0	0	0	0	0	0	0

描述

Bit 7-0 DATAO $\langle 7:0 \rangle$

15.2.9.2 DATA1_REG: **DATA1** 数据寄存器

地址: E	E0H			类型: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
符号	DATA1(7)	DATA1(6)	DATA1(5)	DATA1(4)	DATA1(3)	DATA1(2)	DATA1(1)	DATA1 (0)	
默认值	0	0	0	0	0	0	0	0	

描述

Bit 7-0 DATA1<7:0>

15.2.9.3 DATA2_REG: DATA2 数据寄存器

地址:	E1H			类型: RW						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
符号	DATA2(7)	DATA2(6)	DATA2(5)	DATA2(4)	DATA2(3)	DATA2(2)	DATA2(1)	DATA2 (0)		
默认值	0	0	0	0	0	0	0	0		

描述

Bit 7-0 DATA2<7:0>

15.2.9.4 DATA3_REG: **DATA3** 数据寄存器

地址: E	E2H			类型: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
符号	DATA3(7)	DATA3(6)	DATA3(5)	DATA3(4)	DATA3(3)	DATA3(2)	DATA3(1)	DATA3 (0)	
默认值	0	0	0	0	0	0	0	0	

描述

Bit 7-0 DATA3<7:0>

15.2.9.5 DATA4_REG: **DATA4** 数据寄存器

地址: E	E3H			类型: RW						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
符号	DATA4(7)	DATA4(6)	DATA4(5)	DATA4(4)	DATA4(3)	DATA4(2)	DATA4(1)	DATA4 (0)		
默认值	0	0	0	0	0	0	0	0		

描述

Bit 7-0 DATA4<7:0>

15.2.9.6 DATA5_REG: **DATA5** 数据寄存器

地址: E	E4H			类型: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
符号	DATA5(7)	DATA5(6)	DATA5(5)	DATA5(4)	DATA5(3)	DATA5(2)	DATA5(1)	DATA5 (0)	
默认值	0	0	0	0	0	0	0	0	

描述

Bit 7-0 DATA5<7:0>

15.2.9.7 DATA6_REG: **DATA6** 数据寄存器

地址: E	5H			类型: RW						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
符号	DATA6(7)	DATA6(6)	DATA6(5)	DATA6(4)	DATA6(3)	DATA6(2)	DATA6(1)	DATA6 (0)		
默认值	0	0	0	0	0	0	0	0		

描述

Bit 7-0 DATA6<7:0>

15.2.9.8 DATA7_REG: **DATA7** 数据寄存器

地址:	E6H			类型: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
符号	DATA7(7)	DATA7(6)	DATA7(5)	DATA7(4)	DATA7(3)	DATA7(2)	DATA7(1)	DATA7 (0)	

默认值	0	0	0	0	0	0	0	0

描述

Bit 7-0 DATA7<7:0>

15.2.9.9 DATA8_REG: **DATA8** 数据寄存器

地址: E	地址: E7H				W			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	DATA8(7)	DATA8(6)	DATA8(5)	DATA8(4)	DATA8(3)	DATA8(2)	DATA8(1)	DATA8 (0)
默认值	0	0	0	0	0	0	0	0

描述

Bit 7-0 DATA8 $\langle 7:0 \rangle$

15.2.9.10 DATA9_REG: **DATA9** 数据寄存器

地址: E	地址: E8H				W			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	DATA9(7)	DATA9(6)	DATA9(5)	DATA9(4)	DATA9(3)	DATA9(2)	DATA9(1)	DATA9 (0)
默认值	0	0	0	0	0	0	0	0

描述

Bit 7-0 DATA9<7:0>

15.2.9.11 DATA10_REG: **DATA10** 数据寄存器

地址	: E9H			类型: RW	I			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	DATA10(7)	DATA10(6)	DATA10(5)	DATA10(4)	DATA10(3)	DATA10(2)	DATA10(1)	DATA10(0)
默认值	0	0	0	0	0	0	0	0

描述

Bit 7-0 DATA10<7:0>

15.2.9.12 DATA11_REG: **DATA11** 数据寄存器

地址	: EAH			类型: RW	I			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	DATA11(7)	DATA11(6)	DATA11(5)	DATA11(4)	DATA11(3)	DATA11(2)	DATA11(1)	DATA11 (0)
默认值	0	0	0	0	0	0	0	0

描述

Bit 7-0 DATA11<7:0>

15.2.9.13 DATA12_REG: **DATA12** 数据寄存器

地址	地址: EBH				I			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	DATA12(7)	DATA12(6)	DATA12(5)	DATA12(4)	DATA12(3)	DATA12(2)	DATA12(1)	DATA12 (0)
默认值	0	0	0	0	0	0	0	0

描述

Bit 7-0 DATA12<7:0>

15.2.9.14 DATA13_REG: **DATA13** 数据寄存器

地址	: ECH			类型: RW	I			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	DATA13(7)	DATA13(6)	DATA13(5)	DATA13(4)	DATA13(3)	DATA13(2)	DATA13(1)	DATA13(0)
默认值	0	0	0	0	0	0	0	0

描述

Bit 7-0 DATA13<7:0>

15.2.9.15 DATA14_REG: **DATA14** 数据寄存器

地址	业: EDH			类型: RW	l			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	DATA14(7)	DATA14(6)	DATA14(5)	DATA14(4)	DATA14(3)	DATA14(2)	DATA14(1)	DATA14(0)

默认值	0	0	0	0	0	0	0	0

描述

Bit 7-0 DATA14<7:0>

15.2.9.16 DATA15_REG: **DATA15** 数据寄存器

地址	:: EDH			类型: RW	I			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	DATA15(7)	DATA15(6)	DATA15(5)	DATA15(4)	DATA15(3)	DATA15(2)	DATA15(1)	DATA15(0)
默认值	0	0	0	0	0	0	0	0

描述

Bit 7-0 DATA15<7:0>

15.2.9.17 DATA16_REG: **DATA16** 数据寄存器

地址	: EFH			类型: RW	l			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	DATA16(7)	DATA16(6)	DATA16(5)	DATA16(4)	DATA16(3)	DATA16(2)	DATA16(1)	DATA16 (0)
默认值	0	0	0	0	0	0	0	0

描述

Bit 7-0 DATA16<7:0>

15.2.9.18 DATA17_REG: DATA17 数据寄存器

地址	:: F0H			类型: RW	I			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	DATA17(7)	DATA17(6)	DATA17(5)	DATA17(4)	DATA17(3)	DATA17(2)	DATA17(1)	DATA17 (0)
默认值	0	0	0	0	0	0	0	0

描述

Bit 7-0 DATA17<7:0>

15.2.9.19 DATA18_REG: **DATA18** 数据寄存器

地址: F1H			类型: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	DATA18(7)	DATA18(6)	DATA18(5)	DATA18(4)	DATA18(3)	DATA18(2)	DATA18(1)	DATA18(0)
默认值	0	0	0	0	0	0	0	0

描述

Bit 7-0 DATA18<7:0>

15.2.9.20 DATA19_REG: **DATA19** 数据寄存器

地址: F2H			类型: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
符号	DATA19(7)	DATA19(6)	DATA19(5)	DATA19(4)	DATA19(3)	DATA19(2)	DATA19(1)	DATA19(0)
默认值	0	0	0	0	0	0	0	0

描述

Bit 7-0 DATA19<7:0>

16 封装信息

QFN68 7mm X 7mm

DESCRIPTION	SYMBOL	MILLIMETER			
DESCRIPTION		MIN	NOM	MAX	
TOTAL THICKNESS	Α	0.70	0.75	0.80	
STAND OFF	A1	0	0.035	0.05	
MOLD THICKNESS	A2	-	0.55	0.57	
MATERIAL THICKNESS	А3	-	0.203 _{REF}	-	
PACKAGE SIZE	D	-	7 _{BSC}	-	

Version 0.4

RK818 电源管理系统

	Е	-	7 _{BSC}	-
EP SIZE	D1	5.39	5.49	5.59
EF SIZE	E1	5.39	5.49	5.59
LEAD LENGTH	L	0.30	0.4	0.50
LEAD PITCH	е	0.35 _{BSC}		
LEAD WIDTH	b	0.1	0.15	0.164
LEAD OSITION OFFSET	aaa	0.07		
LEAD COPLANARITY	bbb	0.08		
PACKAGE EDGE PROFILE	ccc	0.10		
MOLD FLATNESS	ddd	0.10		
EP POSITION OFFSET	eee	0.10		
	fff		0.05	

Note:

- 1. Coplanarity applies to leads, corner leads and die attach pad.
- 2. Dimension b applies to metalized terminal and is measured between 0.15mm and 0.30mm from the terminal tip. If the terminal has the optional radius on the other end of the terminal, the dimension b should not be measure in that radius area.