Codebook Tidy Dataset

Volha Leusha 11.15.2018

Project Description

Tidy Dataset, Created for "Getting and Cleaning Data" Coursera Course, Assignment 4.

Collection of the raw data

This Tidy dataset is based on Human Activity Recognition Using Smartphones Dataset Version 1.0. The full describtion can be obtained here: links

Notes on the original (raw) data

The experiments have been carried out with a group of 30 volunteers within an age bracket of 19-48 years. Each person performed six activities (WALKING, WALKING_UPSTAIRS, WALKING_DOWNSTAIRS, SITTING, STANDING, LAYING) wearing a smartphone (Samsung Galaxy S II) on the waist. Using its embedded accelerometer and gyroscope, we captured 3-axial linear acceleration and 3-axial angular velocity at a constant rate of 50Hz. The experiments have been video-recorded to label the data manually. The obtained dataset has been randomly partitioned into two sets, where 70% of the volunteers was selected for generating the training data and 30% the test data.

The sensor signals (accelerometer and gyroscope) were pre-processed by applying noise filters and then sampled in fixed-width sliding windows of 2.56 sec and 50% overlap (128 readings/window). The sensor acceleration signal, which has gravitational and body motion components, was separated using a Butterworth low-pass filter into body acceleration and gravity. The gravitational force is assumed to have only low frequency components, therefore a filter with 0.3 Hz cutoff frequency was used. From each window, a vector of features was obtained by calculating variables from the time and frequency domain.

Creating the tidy datafile

Guide to create the tidy data file

- 1. Download the data from: links
- 2. Unzip data to R directory folder
- 3. Open run_analysis.R
- 4. In case if additional libraries are not installes, install them: data.table, dplyr, plyr
- 5. Run run analysis.R

Cleaning of the data

Tidy dataset was creaded from original dataset, performing following steps:

- 1. Merged the training and the test sets to create one data set.
- 2. Extracted only the measurements on the mean and standard deviation for each measurement.
- 3. Used descriptive activity names to name the activities in the data set.
- 4. Appropriately labeled the data set with descriptive variable names.
- 5. From the data set in step 4, created a second, independent tidy data set with the average of each variable for each activity and each subject.

For more details about refer to readme.txt.

Description of the variables in the tiny_data.txt file

General description of the file including:

- Dimensions of the dataset: 180 rows x 88 columns
- Summary of the data:Dataset is grouped by 2 variables: "y"(1st column)- 6 possible and "subject"(2nd column). There are 6 possible lables "y" and 30 possible "subjects", therefore there are 6x30=180 rows in dataset. For each group "y"+"subject" there is one possible value of "feature variables" (3:88 columns). This value is obtained by taking colmean() from original dataset.
- Variables present in the dataset:

```
"label" (column 1) activity labels
```

"subject" (column 2): identifier of the subject who carried out the experiment

"feature vector" (column 3:88): mean and std measurements of time and frequency domain variables

label

Activity label.

• Class: factor

• Unique values:

LAYING

SITTING

STANDING

WALKING

WALKING DOWNSTAIRS

WALKING_UPSTAIRS

• Unit of measurement: NA

subject

Identifier of the subject who carried out the experiment.

• Class: int

• Unique values: 1-30

• Unit of measurement: NA

Feature Vector

Vector containing mean and std measurements of time and frequency domain variables. Columns 3:88 of dataset.

Contains following variables:

- 3 TimeBodyAccMeanX
- 4 TimeBodyAccMeanY
- 5 TimeBodyAccMeanZ
- 6 TimeBodyAccStdX
- 7 TimeBodyAccStdY
- 8 TimeBodyAccStdZ
- 9 TimeGravityAccMeanX
- 10 TimeGravityAccMeanY
- 11 TimeGravityAccMeanZ
- 12 TimeGravityAccStdX
- 13 TimeGravityAccStdY
- 14 TimeGravityAccStdZ
- 15 TimeBodyAccJerkMeanX
- 16 TimeBodyAccJerkMeanY
- ${\bf 17~TimeBodyAccJerkMeanZ}$
- 18 TimeBodyAccJerkStdX
- 19 TimeBodyAccJerkStdY
- 20 TimeBodyAccJerkStdZ
- 21 TimeBodyGyroMeanX
- 22 TimeBodyGyroMeanY
- 23 TimeBodyGyroMeanZ
- 24 TimeBodyGyroStdX
- 25 TimeBodyGyroStdY
- 26 TimeBodyGyroStdZ
- 27 TimeBodyGyroJerkMeanX
- 28 TimeBodyGyroJerkMeanY
- 29 TimeBodyGyroJerkMeanZ
- 30 TimeBodyGyroJerkStdX
- 31 TimeBodyGyroJerkStdY
- 32 TimeBodyGyroJerkStdZ
- 33 TimeBodyAccMagMean
- ${\bf 34~TimeBodyAccMagStd}$
- ${\bf 35}\ {\bf Time Gravity Acc Mag Mean}$
- 36 TimeGravityAccMagStd
- 37 TimeBodyAccJerkMagMean
- 38 TimeBodyAccJerkMagStd
- 39 TimeBodyGyroMagMean
- 40 TimeBodyGyroMagStd
- 41 TimeBodyGyroJerkMagMean
- ${\bf 42~TimeBodyGyroJerkMagStd}$
- ${\bf 43\ Frequency Body Acc Mean X}$
- ${\bf 44\ Frequency Body Acc Mean Y}$
- ${\bf 45\ Frequency Body Acc Mean Z}$
- ${\bf 46\ Frequency Body Acc Std X}$
- 47 FrequencyBodyAccStdY
- ${\bf 48} \,\, {\bf Frequency Body Acc StdZ}$
- 49 FrequencyBodyAccMeanX
- 50 FrequencyBodyAccMeanY

- 51 FrequencyBodyAccMeanZ
- 52 FrequencyBodyAccJerkMeanX
- 53 FrequencyBodyAccJerkMeanY
- 54 FrequencyBodyAccJerkMeanZ
- 55 FrequencyBodyAccJerkStdX
- 56 FrequencyBodyAccJerkStdY
- 57 FrequencyBodyAccJerkStdZ
- 58 FrequencyBodyAccJerkMeanX
- 59 FrequencyBodyAccJerkMeanY
- 60 FrequencyBodyAccJerkMeanZ
- 61 FrequencyBodyGyroMeanX
- 62 FrequencyBodyGyroMeanY
- ${\bf 63}\ {\bf Frequency Body Gyro Mean Z}$
- 64 FrequencyBodyGyroStdX
- 65 FrequencyBodyGyroStdY
- 66 FrequencyBodyGyroStdZ
- 67 FrequencyBodyGyroMeanX
- 68 FrequencyBodyGyroMeanY
- ${\bf 69}\ {\bf Frequency Body Gyro Mean Z}$
- 70 FrequencyBodyAccMagMean
- 71 FrequencyBodyAccMagStd
- 72 FrequencyBodyAccMagMean
- $73\ Frequency Body Body Acc Jerk Mag Mean$
- 74 FrequencyBodyBodyAccJerkMagStd
- 75 FrequencyBodyBodyAccJerkMagMean
- 76 FrequencyBodyBodyGyroMagMean
- 77 FrequencyBodyBodyGyroMagStd
- $78\ Frequency Body Body Gyro Mag Mean$
- 79 FrequencyBodyBodyGyroJerkMagMean
- 80 FrequencyBodyBodyGyroJerkMagStd
- 81 FrequencyBodyBodyGyroJerkMagMean
- 82 Angle(TimeBodyAccMean,Gravity)
- 83 Angle(TimeBodyAccJerkMean), GravityMean)
- 84 Angle(TimeBodyGyroMean,GravityMean)
- 85 Angle(TimeBodyGyroJerkMean,GravityMean)
- 86 Angle(X,GravityMean)
- 87 Angle(Y, Gravity Mean)
- 88 Angle(Z,GravityMean)
 - Class: numeric
 - Unique values: [-1:1]
 - Unit of measurement: NA
 - Names Descriptor:

Mean: Mean value if the signal

Std: Standard Deviation value of the signal

Y: Y-axis signal

X: X-axis signal

Z: Z-axis signal

Acc: captured by accelerometer Gyro: captured by gyroscope

Time: A time domain signal, captured at a constant rate of 50 Hz. Filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise

Frequency: Fast Fourier Transform (FFT) is applied on signal and shifts it to frequency domain Angle: Averaged in signal window sample

Gravity: Low pass Butterworth filter with a corner frequency of 0.3 Hz separated it into gravity signal Body: Low pass Butterworth filter with a corner frequency of 0.3 Hz separated it into body signal Mag: The magnitude of these three-dimensional signals were calculated using the Euclidean norm Jerk: The body linear acceleration and angular velocity were derived in time to obtain signal