b.	The t	able gives the traffic in PCU/hr appro-	aching	from f	our dire	ections.	
		From direction / Turning movement					
		Left turn	400	250	300	400	
		Right turn	380	300	500	410	
		Straight	600	400	500	350	
	Desig	on the rotary intersection in the u	ırban r	oad h	aving	four lane	divided

carriageway. Evaluate the capacity of the rotary designed.

29. a. The axle load data collected from a toll weigh bridge is given in the following 10 3 4 1 table. Determine the damaging factor that influences in the design of pavement.

Determine me	damaging factor that in	nuchees in th	c design of
Vehicle type	Axle configuration	Wheel load	Frequency
		(tonnes)	
	1st - single axle	2.025	
2 - axle	single wheel		
vehicle	2 nd - single axle	3.820	40
	dual wheel		
3 - axle	1st - single axle	1.575	
vehicle	single wheel		25
	$2^{nd} + 3^{rd}$ - random axle	4.87 + 4.48	

(OR)

b. Design the flexible pavement layers for the following conditions and sketch the 10 3 4 1,3 composition of pavement.

- CBR of subgrade soil: 6% and 9%

- Number of commercial vehicles: 500 cv/day (in each direction)

- Two lane two-way road

- Traffic growth rate: 7%

- High density corridor

- Terrain condition: Rolling

Evaluate the increase in thickness of each layer for 6% and 9% CBR and give inference.

30. a. Identify the most critical combinations of stresses in the rigid pavement slab and 10 4 5 1,2 give your inference in these locations of the slab.

Modulus of elasticity of concrete = $3.3 \times 10^5 \text{ kg/cm}^2$

Poisson's ratio of concrete = 0.15

Wheel load = 4100 kg

Radius of loaded area = 12 cm

Slab thickness = 18 cm

Modulus of subgrade reaction = 6 kg/cm^3

(OR)

b. 40 kN load is applied at 150 mm from the pavement edge of the slab of 250 mm thickness. The dowel bars are provided at a spacing of 300 mm. Check the adequacy of the dowel system. Use the following information:

Modulus of subgrade reaction = 15 MN/m^3

Diameter of dowel bar = 20 mm

Land width = 3.5 m

Modulus of dowel support is 400 GN/m³, M20 grade concrete

Take joint width of 2 cm. Assume other relevant data required.

* * * * *

Reg. No.								

B.Tech. DEGREE EXAMINATION, JUNE 2022

Sixth Semester

18CEC303T - HIGHWAY ENGINEERING AND DESIGN

(For the candidates admitted from the academic year 2018-2019 to 2019-2020) (Use of IRC 37;2018 and IRC 58:2015 can be permitted)

Note: (i)

4 3 1,3

Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.

(ii) Part - B should be answered in answer booklet.

Time	e: 2½	⁄2 Ho	urs				Max	. Ma	rks:	75
			PART – A (25 × 1	= 25 N	Jarks)		Marks	BL	СО	PO
			Answer ALL							
	1	Δte	rrain with cross slope less than 10%			1	1	1	1	1
	1.	(A)	Plain	(B)	Mountains					
		(C)	Hilly	(D)	Steep					
	2	Tho	full width of land acquired for a hi	ahway	alignment is		1	1	1	1
	۷.		Carriageway width		Lane width					
		(A) (C)	Right of way width	(D)	Embankment with					
					0 1: 75		1	2	1	1
	3.		maximum grade compensation for				1	2	1	1
		(A)	1%	(B)	2%					
		(C)	3%	(D)	4%					
	4.	Iden	atify the category of road that falls	under t	he urban roads.		1	2	1	1
		(A)	Notional highway	(B)						
		(C)	Arterial roads	(D)	Village roads					
	5.		rise provided on the horizontal cutwo lane road of width 7.5 m.	arve for	r a super elevation of 6% is		1	2	1	1
		(A)		(B)	45 mm					
		(C)	450 cm	` '	4.5 cm					
	6	The	separation of fronts of two success	sive vel	nicles measured in meters is		1	1	2	1
	0.	(A)	Tone headway	(B)	Space headway					
		(C)	Traffic flow	(D)	*					
	7	Tl	www.16imla.mam.maaandamig.ygadin		D1#7/∆77		1	1	2	1
	/.		multiple pen recorder is used in Traffic volume		survey.					20
		(A) (C)	Moving observer	(B) (D)						
		,					-	Ι,	2	1
	8.		enoscope method is adopted in the				1.7	1.0		1
		(A)	•	` '	Moving observer survey					
		(C)	Tag-on-vehicle survey	(D)	Spot speed survey					
	9.		design speed of a road is determinulative frequency curve.	ned from	m spot speed data using	_ in the	1	2	2	1,2
			98 th percentile	(B)	85 th percentile					
		(C)	50th percentile	(D)	15 th percentile					

10.	The (A)	area under the parking accumulation Parking volume	curve (B)	e is used to determine the Parking load	1	1	2	1
	(C)	Parking volume Parking duration	(D)	Parking pattern				
11.	The	sign board indicating the presence of	f hosp	oital is represented inshape.	1	1	3	1
	` '	Circular	(B)	Triangular				
	(C)	Octagon	(D)	Rectangular				
12.		the incorrect statement about the int			1	2	3	2
		It is the space sharing control measure						
	(C)	It allows the traffic to wait before access into intersection	(D)	It has ramps at the intersection area				
13.	The 1	broken line on the road marking repr	resent	S	1	2	3	1
	(C)	Cross that line anytime Cross only at emergency	(D)	Move in reduced speed				
14.		proportion of weaving traffic should section	l lie ir	the range of at any rotary	1	1	3	1
	(A)	0.1 to 0.4	(B)	0.4 to 1				
	(C)	1 to 1.4	(D)	1.4 to 1.9				
15.	The	control measure.		efore the intersection area in the	1	2	3	2
	. ,	Channelization	(B)	Flared-type				
	(C)	Diamond interchange	(D)	Traffic signal				
16.			on of	bitumen is measured at	1	1	4	1
		25°C	. ,	30°C				
	(C)	60°C	(D)	Room temperature				
17.		ng in the bituminous pavement occu			1	2	4	1,2
	(A)	Tensile strain at bottom of bituminous layer	(B)	Tensile strain at top of subgrade				
	(C)		(D)	Compressive strain at top of				
		bituminous layer	(2)	subgrade				
18.	Choc	ose the factor that does not influence	the m	nix design of bituminous mixture.	1	2	4	1
	(A)	Air voids	(B)	Density of mix				
	(C)	Aggregate gradation	(D)	CBR of soil				
19.	Ident	ity the incorrect statement related to	resili	ent modulus	1	2	4	1
	(A)	Resilient modulus depends on		It is the ratio of deviatoric stress to				
	(6)	confinement pressure		total strain				
	(C)	It varies with moisture content	(D)	It is ratio of deviatoric stress to elastic strain				
20.	The 1	ring and ball apparatus is used for		determination.	1	1	4	1
		Penetration	(B)	Softening point				
	(C)	Absolute viscosity	(D)	Kinematic viscosity				
21.	Tie b	ears are provided to			1	1	5	1
		Transfer load	(B)	Resist cracks				
	(C)	Hold slab together	(D)	Resist moisture infiltration				
22.	The stren	concrete mix for the rigid pavemen	it arc	designed for the required	1	2	5	2
		Compressive	(B)	Flexural				
	(C)	Tensile	(D)	Axial				

23.	The water table for rigid pavement should	d be_	below the ground level.	1	1	5	1
	• • • • • • • • • • • • • • • • • • • •	(B)	0.8 m				
	(C) 1.2 m	(D)	1.5 m				
24.	During daytime, the nature of curling (or) pavement is) tem	perature stress at the top of concrete	1	2	5	2
	5	(B)	Tensile				
		(D)	No stress is induced				
		,					
25.	The effective length of load transfer action			1	2	5	1
		(B)	1.2 times the radius of relative				
	stiffness (C) 1.0 times the radius of slab	(D)	stiffness				
	(C) 1.0 times the radius of slab contact	(D)	1.2 times the radius of slab contact				
	$PART - B (5 \times 10 = 3)$			Marks	BL	СО	PO
	Answer ALL Que	estio	ns				
26. a.	A two-lane road is to be constructed or radius 400 m. Determine the required genecessary data for the design.			10	4	1	1,3
	(07)						
h	(OR)	1	11:	10	4	1	1,3
υ.	Design a summit curve for a national high a rising gradient of 1 in 50 and a falling g			10	7	1	1,5
	to fulfill the sight distance requirements		*				
	necessary data as per IRC guidelines.						
27. a.	Devise the survey protocol to develo	op th	ne travel demand matrix for the	10	3	2	1,2
	Chengalpat district with the following der						
	Total population: 2556244						
	Number of town panchayats and mu	nicip	alities: 12 and 8				
	Number of villages: 636						
	(OR)						
b.	Develop a methodology for conducting the	he su	rvey to determine the traffic stream	10	3	2	1,2
	parameters in the four lane single carriage	eway	road carrying traffic from both the				
	direction. Discuss the analysis of data coll	lecte	1.				
28 a	Design the traffic signal control measure	for	the traffic movement shown in the	10	4	3	1,3
20, a,	figure below. Assume the approaching la	anes	are having 7 m width in the urban		·		1,5
	area. Permit the traffic from one direction						
	Non	rth					
	,						
	380	1	100				
	400 60	0	300				
	West → 350		400 ← East				
	50		1				
	410		250				
	300	75	000				
	I Sou	nth					
	All numbers a		PCU/hr				
	Take the saturation headway of 1.2 sec on						
	Take the saturation heatiway of 1.7, SEC On	i a Sil	IZIO IAIIG.				