Intro to ARMA models

FISH 507 – Applied Time Series Analysis

Mark Scheuerell 15 Jan 2019

Topics for today

Review

- · White noise
- · Random walks

Autoregressive (AR) models

Moving average (MA) models

Autoregressive moving average (ARMA) models

Using ACF & PACF for model ID

White noise (WN)

A time series $\{w_t\}$ is discrete white noise if its values are

- 1. independent
- 2. identically distributed with a mean of zero

The distributional form for $\{w_t\}$ is flexible

White noise (WN)

$$w_t = 2e_t - 1; e_t \sim Bernoulli(0.5)$$

Gaussian white noise

We often assume so-called *Gaussian white noise*, whereby

$$w_t \sim N(0, 2)$$

and the following apply as well

autocovariance:
$$k = \begin{cases} 2 & \text{if } k = 0 \\ 0 & \text{if } k \ge 1 \end{cases}$$

autocorrelation: `
$$_k = \left\{ \begin{array}{ll} 1 & \text{if } k = 0 \\ 0 & \text{if } k \geq 1 \end{array} \right.$$

Gaussian white noise

$$w_t \sim N(0, 1)$$

Random walk (RW)

A time series $\{x_t\}$ is a random walk if

1.
$$x_t = x_{t-1} + w_t$$

2. w_t is white noise

Random walk (RW)

$$x_t = x_{t-1} + w_t; w_t \sim N(0, 1)$$

Biased random walk

A biased random walk (or random walk with drift) is written as

$$x_t = x_{t-1} + u + w_t$$

where \mathbf{u} is the bias (drift) per time step and \mathbf{w}_t is white noise

Biased random walk

$$x_t = x_{t-1} + 1 + w_t; w_t \sim N(0, 1)$$

Differencing a biased random walk

First-differencing a biased random walk yields a constant mean (level) u plus white noise

$$\nabla x_{t} = x_{t-1} + u + w_{t}$$

$$x_{t} - x_{t-1} = x_{t-1} + u + w_{t} - x_{t-1}$$

$$x_{t} - x_{t-1} = u + w_{t}$$

Differencing a biased random walk

$$x_t = x_{t-1} + 1 + w_t; w_t \sim N(0, 1)$$

LINEAR STATIONARY MODELS

Linear stationary models

We saw last week that linear filters are a useful way of modeling time series

Here we extend those ideas to a general class of models call autoregressive moving average (ARMA) models

Autoregressive (AR) models

An *autoregressive* model of order p, or AR(p), is defined as

$$x_t = x_{t-1} + x_{t-1} + x_{t-2} + \cdots + x_{t-p} + x_{t-p} + x_t$$

where we assume

- 1. w_t is white noise
- 2. $p \neq 0$ for an order-p process

Examples of AR(p) models

AR(1)

$$x_t = 0.5x_{t-1} + w_t$$

AR(1) with $_{1} = 1$ (random walk)

$$x_t = x_{t-1} + w_t$$

AR(2)

$$x_t = -0.2x_{t-1} + 0.4x_{t-2} + w_t$$

Examples of AR(p) models

Recall that *stationary* processes have the following properties

- 1. no systematic change in the mean or variance
- 2. no systematic trend
- 3. no periodic variations or seasonality

We seek a means for identifying whether our AR(p) models are also stationary

We can write out an AR(p) model using the backshift operator

$$x_{t} = 1 x_{t-1} + 2 x_{t-2} + \cdots + p x_{t-p} + w_{t}$$
 $\downarrow \downarrow$
 $x_{t} = 1 x_{t-1} + 2 x_{t-2} + \cdots + p x_{t-p} + w_{t}$
 $\downarrow \downarrow$
 $x_{t} = 1 x_{t-1} - 2 x_{t-2} - \cdots - p x_{t-p} = w_{t}$
 $(1 - 1 \mathbf{B} - 2 \mathbf{B}^{2} - \cdots - p \mathbf{B}^{p}) x_{t} = w_{t}$
 $\downarrow p(\mathbf{B}) x_{t} = w_{t}$

If we treat **B** as a number (or numbers), we can out write the *characteristic equation* as

$$\begin{array}{c}
 p(\mathbf{B})x_t = w_t \\
 \downarrow \\
 p(\mathbf{B}) = 0
\end{array}$$

To be stationary, all roots of the characteristic equation must exceed 1 in absolute value

For example, consider this AR(1) model from earlier

$$x_t = 0.5x_{t-1} + w_t$$

 $x_t - 0.5x_{t-1} = w_t$
 $(1 - 0.5\mathbf{B})x_t = w_t$

For example, consider this AR(1) model from earlier

$$x_{t} = 0.5x_{t-1} + w_{t}$$

$$x_{t} - 0.5x_{t-1} = w_{t}$$

$$(1 - 0.5\mathbf{B})x_{t} = w_{t}$$

$$\downarrow \downarrow$$

$$1 - 0.5\mathbf{B} = 0$$

$$-0.5\mathbf{B} = -1$$

$$\mathbf{B} = 2$$

This model is indeed stationary because $\mathbf{B} > 1$

What about this AR(2) model from earlier?

$$\begin{aligned} x_t &= -0.2x_{t-1} + 0.4x_{t-2} + w_t \\ x_t &+ 0.2x_{t-1} - 0.4x_{t-2} = w_t \\ (1 + 0.2\mathbf{B} - 0.4\mathbf{B}^2)x_t &= w_t \end{aligned}$$

What about this AR(2) model from earlier?

$$x_{t} = -0.2x_{t-1} + 0.4x_{t-2} + w_{t}$$
 $x_{t} + 0.2x_{t-1} - 0.4x_{t-2} = w_{t}$
 $(1 + 0.2\mathbf{B} - 0.4\mathbf{B}^{2})x_{t} = w_{t}$
 $1 + 0.2\mathbf{B} - 0.4\mathbf{B}^{2} = 0$
 $\mathbf{B} \approx -1.35 \text{ and } \mathbf{B} \approx 1.85$

This model is *not* stationary because only one $\mathbf{B} > 1$

What about random walks?

Consider our random walk model

$$x_{t} = x_{t-1} + w_{t}$$

$$x_{t} - x_{t-1} = w_{t}$$

$$(1 - 1\mathbf{B})x_{t} = w_{t}$$

What about random walks?

Consider our random walk model

$$x_{t} = x_{t-1} + w_{t}$$

$$x_{t} - x_{t-1} = w_{t}$$

$$(1 - 1\mathbf{B})x_{t} = w_{t}$$

$$\downarrow \downarrow$$

$$1 - 1\mathbf{B} = 0$$

$$-1\mathbf{B} = -1$$

$$\mathbf{B} = 1$$

Random walks are **not** stationary because $\mathbf{B} = 1 \gg 1$

We can define a space over which all AR(1) models are stationary

For $x_t = x_{t-1} + w_t$, we have

$$1 - \mathbf{B} = 0$$

$$- \mathbf{B} = -1$$

$$\mathbf{B} = \frac{1}{-} > 1 \Rightarrow 0 < . < 1$$

For $x_t = x_{t-1} + w_t$, we have

$$1 - \mathbf{B} = 0$$

$$- \mathbf{B} = -1$$

$$\mathbf{B} = \frac{1}{-} > 1 \Rightarrow 0 < . < 1$$

For $x_t = -x_{t-1} + w_t$, we have

$$1 + \mathbf{B} = 0$$

$$\mathbf{B} = -1$$

$$\mathbf{B} = \frac{-1}{\cdot} > 1 \Rightarrow -1 < \cdot < 0$$

Thus, AR(1) models are stationary if and only if $\rfloor \mid < 1$

Coefficients of AR(1) models

Same value, but different sign

Coefficients of AR(1) models

Both positive, but different magnitude

Autocorrelation function (ACF)

Recall that the *autocorrelation function* ($_k$) measures the correlation between $\{x_t\}$ and a shifted version of itself $\{x_{t+k}\}$

ACF for AR(1) models

ACF oscillates for model with -

ACF for AR(1) models

For model with large , ACF has longer tail

Partial autocorrelation funcion (PACF)

Recall that the *partial autocorrelation function* ($_k$) measures the correlation between $\{x_t\}$ and a shifted version of itself $\{x_{t+k}\}$, with the linear dependence of $\{x_{t-1}, x_{t-2}, \ldots, x_{t-k-1}\}$ removed

ACF & PACF for AR(p) models

PACF for AR(p) models

Do you see the link between the order *p* and lag *k*?

Using ACF & PACF for model ID

Model	ACF	PACF
AR(p)	Tails off slowly	Cuts off after lag p

Moving average (MA) models

A moving average model of order q, or MA(q), is defined as

$$x_t = w_t + w_{t-1} + w_{t-1} + w_{t-2} + w_{t-2} + w_{t-q}$$

where w_t is white noise

Each of the x_t is a sum of the most recent error terms

Moving average (MA) models

A moving average model of order q, or MA(q), is defined as

$$x_t = w_t + w_{t-1} + w_{t-1} + w_{t-2} + \cdots + w_q + w_{t-q}$$

where w_t is white noise

Each of the x_t is a sum of the most recent error terms

Thus, *all* MA processes are stationary because they are finite sums of stationary WN processes

Examples of MA(q) models

Examples of MA(q) models

AR(p) model as an $MA(\infty)$ model

It is possible to write an AR(p) model as an $MA(\infty)$ model

AR(1) model as an MA(∞) model

For example, consider an AR(1) model

$$x_{t} = x_{t-1} + w_{t}$$

$$x_{t} = (x_{t-2} + w_{t-1}) + w_{t}$$

$$x_{t} = x_{t-2} + w_{t-1} + w_{t}$$

$$x_{t} = x_{t-2} + w_{t-1} + w_{t}$$

$$x_{t} = x_{t-3} + w_{t-2} + w_{t-1} + w_{t}$$

$$y$$

$$x_{t} = w_{t} + w_{t-1} + w_{t-1} + w_{t-2} + \cdots + w_{t-k} + w_{t-k} + w_{t-k}$$

AR(1) model as an $MA(\infty)$ model

If our AR(1) model is stationary, then

$$\int |<1 \Rightarrow \lim_{k \to \infty} |^{k+1} = 0$$

SO

$$x_{t} = w_{t} + w_{t-1} + w_{t-1} + w_{t-2} + \cdots + w_{t-k} + w_{t-k} + w_{t-k-1}$$
 $\downarrow \downarrow$
 $x_{t} = w_{t} + w_{t-1} + w_{t-1} + w_{t-2} + \cdots + w_{t-k}$

An MA(*q*) process is invertible if it can be written as a *stationary* autoregressive process of infinite order without an error term

For example, consider an MA(1) model

$$x_{t} = w_{t} +^{2} w_{t-1}$$

$$\downarrow \downarrow$$

$$w_{t} = x_{t} -^{2} w_{t-1}$$

$$w_{t} = x_{t} -^{2} (x_{t-1} -^{2} w_{t-2})$$

$$w_{t} = x_{t} -^{2} x_{t-1} -^{2} w_{t-2}$$

$$\vdots$$

$$w_{t} = x_{t} -^{2} x_{t-1} + \dots + (-^{2})^{k} x_{t-k} + (-^{2})^{k+1} w_{t-k-1}$$

If we constrain $| \cdot | < 1$, then

$$\lim_{k\to\infty} (\dot{\overline{}})^{k+1} w_{t-k-1} = 0$$

and

$$w_{t} = x_{t} - x_{t-1} + \dots + (-x_{t-1})^{k} x_{t-k} + (-x_{t-1})^{k+1} w_{t-k-1}$$

$$\downarrow \downarrow$$

$$w_{t} = x_{t} - x_{t-1} + \dots + (-x_{t-1})^{k} x_{t-k}$$

$$w_{t} = x_{t} + \sum_{k=1}^{\infty} (-x_{t-1})^{k} x_{t-k}$$

We can also show this by writing an MA(q) model with the backshift operator

$$\mathbf{x}_{\mathsf{t}} = (1 + \mathbf{b} + \mathbf{$$

For example, consider an MA(1) model

Q: Why do we care if an MA(q) model is invertible?

A: It helps us identify the model's parameters

For example, these MA(1) models are equivalent

$$x_t = w_t + \frac{1}{5}w_{t-1}$$
, with $w_t \sim N(0, 25)$

$$x_t = w_t + 5w_{t-1}$$
, with $w_t \sim N(0, 1)$

ACF & PACF for MA(q) models

ACF for MA(q) models

Do you see the link between the order *q* and lag *k*?

Using ACF & PACF for model ID

Model	ACF	PACF
AR(p)	Tails off slowly	Cuts off after lag p
MA(q)	Cuts off after lag q	Tails off slowly

Using ACF & PACF for model ID

Autoregressive moving average models

An autoregressive moving average, or ARMA(p,q), model is written as

$$x_{t} = x_{t-1} + \cdots + x_{t-p} + w_{t} + w_{t-1} + \cdots + w_{q} + w_{t-q}$$

Autoregressive moving average models

We can write an ARMA(p,q) model using the backshift operator

$$p(\mathbf{B})\mathbf{x}_t = \mathbf{q}(\mathbf{B})\mathbf{w}_t$$

ARMA models are *stationary* if all roots of $_{p}(\mathbf{B}) > 1$

ARMA models are *invertible* if all roots of $_{q}(\mathbf{B}) > 1$

Examples of ARMA(p,q) models

ACF for ARMA(p,q) models

PACF for ARMA(p,q) models

Using ACF & PACF for model ID

Model	ACF	PACF
AR(p)	Tails off slowly	Cuts off after lag p
MA(q)	Cuts off after lag q	Tails off slowly
ARMA(p,q)	Tails off slowly	Tails off slowly

NONSTATIONARY MODELS

Autoregressive integrated moving average (ARIMA) models

If the data do not appear stationary, differencing can help

This leads to the class of *autoregressive integrated moving average* (ARIMA) models

ARIMA models are indexed with orders (p,d,q) where d indicates the order of differencing

For d > 0, $\{x_t\}$ is an ARIMA(p,d,q) process if $(1 - \mathbf{B})^d x_t$ is an ARMA(p,q) process

For d > 0, $\{x_t\}$ is an ARIMA(p,d,q) process if $(1 - \mathbf{B})^d x_t$ is an ARMA(p,q) process

For example, if $\{x_t\}$ is an ARIMA(1,1,0) process then $\nabla\{x_t\}$ is an ARMA(1,0) = AR(1) process

Topics for today

Review

- · White noise
- · Random walks

Autoregressive (AR) models

Moving average (MA) models

Autoregressive moving average (ARMA) models

Using ACF & PACF for model ID