Zadanie 210

Jadwiga Świerczyńska

4 stycznia 2022

Mamy daną funkcję f ciągłą na [0,1], taką że f(0)=f(1). Ustalmy $n\in\mathbb{N}$. Oznaczmy $g(x)=f(x)-f\left(x+\frac{1}{n}\right)$ - oczywiście g jest określona na $\left[0,\frac{n-1}{n}\right]$ i jest ciągła na tym przedziale. Zauważmy, że jeśli g(0)=0, to dla x=0 mamy, że $f(x)=f\left(x+\frac{1}{n}\right)$. Rozważmy zatem przypadek, gdy $g(x)\neq 0$ (bez straty ogólności g(x)>0). Załóżmy nie wprost, że dla każdego 0< k< n mamy $g\left(\frac{k}{n}\right)>0$, czyli $f\left(\frac{k}{n}\right)-f\left(\frac{k+1}{n}\right)>0$, równoważne z $f\left(\frac{k}{n}\right)>f\left(\frac{k+1}{n}\right)$. Wobec tego otrzymujemy $f(0)>f\left(\frac{1}{n}\right)>\ldots>f\left(\frac{n-1}{n}\right)>f(1)$, czyli sprzeczność, ponieważ f(0)=f(1). Zatem dla pewnego k, takiego że 0< k< n zachodzi $g\left(\frac{k}{n}\right)<0$. Z własności Darboux istnieje $x\in\left[0,\frac{k}{n}\right]$, taki że g(x)=0, czyli $f(x)=f\left(x+\frac{1}{n}\right)$. To kończy dowód. \square

Udowodnimy teraz, że stwierdzenie nie jest prawdziwe dla dowolnego $c \in (0,1)$. Niech $f(x) = \sin(2\pi x)$. Oczywiście f jest ciągła na [0,1]. Weźmy $c = \frac{3}{4}$. Wówczas dla $x \in [0,\frac{1}{4}]$ mamy:

- jeśli x = 0, to f(x) = 0, natomiast $f(x + \frac{3}{4}) = f(\frac{3}{4}) = \sin(\frac{3\pi}{2}) = -1$,
- jeśli x>0, to f(x)>0, natomiast $x+\frac{3}{4}>\frac{3}{4}$. Stąd $\sin\left(2\pi\left(x+\frac{3}{4}\right)\right)=\sin\left(2\pi x+\frac{3\pi}{2}\right)\leq0$.

Zatem dla każdego $x \in \left[0, \frac{1}{4}\right]$ mamy, że $f(x) \neq f(x+c)$, co kończy dowód. \square