Solution Section 3.4 – Triple Integrals

Exercise

Evaluate the integral $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \left(x^{2} + y^{2} + z^{2}\right) dz dy dx$

Solution

$$\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \left(x^{2} + y^{2} + z^{2}\right) dz dy dx = \int_{0}^{1} \int_{0}^{1} \left[x^{2}z + y^{2}z + \frac{1}{3}z^{3}\right]_{0}^{1} dy dx$$

$$= \int_{0}^{1} \int_{0}^{1} \left[x^{2} + y^{2} + \frac{1}{3}\right] dy dx$$

$$= \int_{0}^{1} \left[x^{2}y + \frac{1}{3}y^{3} + \frac{1}{3}y\right]_{0}^{1} dx$$

$$= \int_{0}^{1} \left[x^{2} + \frac{1}{3} + \frac{1}{3}\right] dx$$

$$= \left[\frac{1}{3}x^{3} + \frac{2}{3}x\right]_{0}^{1}$$

$$= \frac{1}{3} + \frac{2}{3}$$

$$= 1$$

Exercise

Evaluate the integral $\int_{0}^{\sqrt{2}} \int_{0}^{3y} \int_{0}^{8-x^2-y^2} \frac{dzdxdy}{dzdxdy}$

$$\int_{0}^{\sqrt{2}} \int_{0}^{3y} \int_{x^{2}+3y^{2}}^{8-x^{2}-y^{2}} dz dx dy = \int_{0}^{\sqrt{2}} \int_{0}^{3y} \left[8 - x^{2} - y^{2} - \left(x^{2} + 3y^{2} \right) \right] dx dy$$

$$= \int_{0}^{\sqrt{2}} \int_{0}^{3y} \left(8 - 2x^{2} - 4y^{2} \right) dx dy$$

$$= \int_{0}^{\sqrt{2}} \left[8x - \frac{2}{3}x^{3} - 4y^{2}x \right]_{0}^{3y} dy$$

$$= \int_{0}^{\sqrt{2}} \left(24y - 18y^{3} - 12y^{3}\right) dy$$

$$= \int_{0}^{\sqrt{2}} \left(24y - 30y^{3}\right) dy$$

$$= \left[12y^{2} - \frac{15}{2}y^{4}\right]_{0}^{\sqrt{2}}$$

$$= 24 - 30$$

$$= -6$$

Evaluate the integral $\int_{0}^{\pi/6} \int_{0}^{1} \int_{-2}^{3} y \sin z \, dx dy dz$

$$\int_{0}^{\pi/6} \int_{0}^{1} \int_{-2}^{3} y \sin z \, dx dy dz = \int_{0}^{\pi/6} \int_{0}^{1} y \sin z \, \left[x\right]_{-2}^{3} \, dy dz$$

$$= 5 \int_{0}^{\pi/6} \int_{0}^{1} y \sin z \, dy dz$$

$$= 5 \int_{0}^{\pi/6} \sin z \, \left[\frac{1}{2} y^{2}\right]_{0}^{1} dz$$

$$= \frac{5}{2} \int_{0}^{\pi/6} \sin z \, dz$$

$$= -\frac{5}{2} \left[\cos z\right]_{0}^{\pi/6}$$

$$= -\frac{5}{2} \left(\frac{\sqrt{3}}{2} - 1\right)$$

$$= \frac{5}{4} \left(2 - \sqrt{3}\right)$$

$$\int_{-1}^{1} \int_{0}^{1} \int_{0}^{2} \left(x + y + z\right) dy dx dz$$

Solution

$$\int_{-1}^{1} \int_{0}^{1} \int_{0}^{2} (x+y+z) \, dy dx dz = \int_{-1}^{1} \int_{0}^{1} \left[xy + \frac{1}{2} y^{2} + zy \right]_{0}^{2} \, dx dz$$

$$= \int_{-1}^{1} \int_{0}^{1} (2x+2+2z) \, dx dz$$

$$= \int_{-1}^{1} \left[x^{2} + (2+2z) x \right]_{0}^{1} \, dz$$

$$= \int_{-1}^{1} (1+2+2z) \, dz$$

$$= \int_{-1}^{1} (3+2z) \, dz$$

$$= \left[3z + z^{2} \right]_{-1}^{1}$$

$$= (3+1) - (-3+1)$$

$$= 6$$

Exercise

Evaluate the integral

$$\int_0^3 \int_0^{\sqrt{9-x^2}} \int_0^{\sqrt{9-x^2}} dz dy dx$$

$$\int_{0}^{3} \int_{0}^{\sqrt{9-x^{2}}} \int_{0}^{\sqrt{9-x^{2}}} dz dy dx = \int_{0}^{3} \int_{0}^{\sqrt{9-x^{2}}} \sqrt{9-x^{2}} dy dx$$

$$= \int_{0}^{3} \sqrt{9-x^{2}} \left[y \right]_{0}^{\sqrt{9-x^{2}}} dx$$

$$= \int_{0}^{3} \left(9-x^{2} \right) dx$$

$$= \left[9x - \frac{1}{3}x^{3} \right]_{0}^{3}$$

$$= 18|$$

$$\int_0^1 \int_0^{1-x^2} \int_3^{4-x^2-y} x dz dy dx$$

$$\int_{0}^{1} \int_{0}^{1-x^{2}} \int_{3}^{4-x^{2}-y} x dz dy dx = \int_{0}^{1} \int_{0}^{1-x^{2}} [xz]_{3}^{4-x^{2}-y} dy dx$$

$$= \int_{0}^{1} \int_{0}^{1-x^{2}} x \left(4-x^{2}-y-3\right) dy dx$$

$$= \int_{0}^{1} \left[\left(x-x^{3}\right)y - \frac{1}{2}xy^{2}\right]_{0}^{1-x^{2}} dx$$

$$= \int_{0}^{1} \left[x\left(1-x^{2}\right)\left(1-x^{2}\right) - \frac{1}{2}x\left(1-x^{2}\right)^{2}\right] dx$$

$$= \int_{0}^{1} \left[1-x^{2}\right]^{2} \left(\frac{1}{2}x\right) dx \qquad d\left(1-x^{2}\right) = -2x dx$$

$$= -\frac{1}{4} \int_{0}^{1} \left(1-x^{2}\right)^{2} d\left(1-x^{2}\right)$$

$$= -\frac{1}{12} \left[\left(1-x^{2}\right)^{3}\right]_{0}^{1}$$

$$= -\frac{1}{12} (0-1)$$

$$= \frac{1}{12}$$

Evaluate the integral $\int_0^{\pi} \int_0^{\pi} \int_0^{\pi} \cos(u + v + w) du dv dw$

Solution

$$\int_{0}^{\pi} \int_{0}^{\pi} \int_{0}^{\pi} \cos(u+v+w) \, du \, dv \, dw = \int_{0}^{\pi} \int_{0}^{\pi} \left[\sin(u+v+w) \right]_{0}^{\pi} \, dv \, dw$$

$$= \int_{0}^{\pi} \int_{0}^{\pi} \left[\sin(v+w+\pi) - \sin(v+w) \right] \, dv \, dw$$

$$= \int_{0}^{\pi} \left[-\cos(v+w+\pi) + \cos(v+w) \right]_{0}^{\pi} \, dw$$

$$= \int_{0}^{\pi} \left[-\cos(w+2\pi) + \cos(w+\pi) + \cos(w+\pi) - \cos(w) \right] \, dw$$

$$= \int_{0}^{\pi} \left[-\cos(w+2\pi) + 2\cos(w+\pi) - \cos(w) \right] \, dw$$

$$= \left[-\sin(w+2\pi) + 2\sin(w+\pi) - \sin(w) \right]_{0}^{\pi}$$

$$= -\sin(3\pi) + 2\sin(2\pi) - \sin\pi - \left(-\sin(2\pi) + 2\sin(\pi) - \sin0 \right)$$

$$= 0$$

Exercise

Evaluate the integral $\int_{0}^{\pi/4} \int_{0}^{\ln \sec v} \int_{-\infty}^{2t} e^{x} dx dt dv$

$$\int_{0}^{\pi/4} \int_{0}^{\ln \sec v} \int_{-\infty}^{2t} e^{x} dx dt dv = \int_{0}^{\pi/4} \int_{0}^{\ln \sec v} \left[e^{x} \right]_{-\infty}^{2t} dt dv$$

$$= \int_{0}^{\pi/4} \int_{0}^{\ln \sec v} \left(e^{2t} - e^{-\infty} \right) dt dv$$

$$= \int_{0}^{\pi/4} \int_{0}^{\ln \sec v} \left(e^{2t} - e^{-\infty} \right) dt dv \qquad e^{-\infty} = 0$$

$$= \int_{0}^{\pi/4} \int_{0}^{\ln \sec v} e^{2t} dt dv$$

$$= \frac{1}{2} \int_{0}^{\pi/4} \left[e^{2t} \right]_{0}^{\ln \sec v} dv$$

$$= \frac{1}{2} \int_{0}^{\pi/4} \left(e^{2\ln \sec v} - 1 \right) dv \qquad e^{2\ln \sec v} = e^{\ln \sec^{2} v} = \sec^{2} v$$

$$= \frac{1}{2} \int_{0}^{\pi/4} \left(\sec^{2} v - 1 \right) dv$$

$$= \frac{1}{2} \left[\tan v - v \right]_{0}^{\pi/4}$$

$$= \frac{1}{2} \left(1 - \frac{\pi}{4} \right)$$

$$= \frac{1}{2} - \frac{\pi}{8}$$

Evaluate the integral

$$\int_{0}^{1} \int_{-z}^{z} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} dy dx dz$$

$$\int_{0}^{1} \int_{-z}^{z} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} dy dx dz = \int_{0}^{1} \int_{-z}^{z} y \left| \frac{\sqrt{1-x^{2}}}{-\sqrt{1-x^{2}}} dx dz \right|$$

$$= 2 \int_{0}^{1} \int_{-z}^{z} \sqrt{1-x^{2}} dx dz \qquad \int \sqrt{a^{2}-x^{2}} dx = \frac{x}{2} \sqrt{a^{2}-x^{2}} + \frac{a^{2}}{2} \sin^{-1} \frac{x}{a}$$

$$= 2 \int_{0}^{1} \frac{x}{2} \sqrt{1-x^{2}} + \frac{1}{2} \sin^{-1} z \left| \frac{z}{-z} dz \right|$$

$$= 2 \int_{0}^{1} \left(\frac{z}{2} \sqrt{1-z^{2}} + \frac{1}{2} \sin^{-1} z + \frac{z}{2} \sqrt{1-z^{2}} + \frac{1}{2} \sin^{-1} z \right) dz$$

$$= 2 \int_{0}^{1} \left(z \sqrt{1-z^{2}} + \sin^{-1} z \right) dz \qquad \int \sin^{-1} x dx = x \sin^{-1} x + \sqrt{1-x^{2}}$$

$$= - \int_{0}^{1} \left(1-z^{2} \right)^{1/2} d\left(1-z^{2} \right) + 2 \int_{0}^{1} \left(\sin^{-1} z \right) dz$$

$$= -\frac{2}{3} \left(1 - z^2 \right)^{3/2} + 2 \left(z \sin^{-1} z + \sqrt{1 - z^2} \right) \Big|_{0}^{1}$$

$$= 2 \sin^{-1} 1 + \frac{2}{3} - 2$$

$$= \pi - \frac{4}{3}$$

Evaluate the integral

$$\int_{0}^{\pi} \int_{0}^{y} \int_{0}^{\sin x} dz dx dy$$

Solution

$$\int_{0}^{\pi} \int_{0}^{y} \int_{0}^{\sin x} dz dx dy = \int_{0}^{\pi} \int_{0}^{y} z \begin{vmatrix} \sin x \\ 0 \end{vmatrix} dx dy$$

$$= \int_{0}^{\pi} \int_{0}^{y} \sin x dx dy$$

$$= -\int_{0}^{\pi} \cos x \begin{vmatrix} y \\ 0 \end{vmatrix} dy$$

$$= -\int_{0}^{\pi} (\cos y - 1) dy$$

$$= -(\sin y - y) \begin{vmatrix} \pi \\ 0 \end{vmatrix}$$

$$= \pi \mid$$

Exercise

Evaluate the integral

$$\int_0^9 \int_0^1 \int_{2y}^2 \frac{4\sin x^2}{\sqrt{z}} dx dy dz$$

$$\begin{cases} 2y \le x \le y & \to & 0 \le x \le 2 \\ 0 \le y \le 1 & \to & 0 \le y \le \frac{x}{2} \end{cases}$$

$$\int_{0}^{9} \int_{0}^{1} \int_{2y}^{2} \frac{4\sin x^{2}}{\sqrt{z}} dx dy dz = \int_{0}^{9} z^{-1/2} dz \int_{0}^{2} \int_{0}^{x/2} 4\sin x^{2} dy dx$$

$$= 8z^{1/2} \Big|_{0}^{9} \int_{0}^{2} \sin x^{2} \Big[y \Big|_{0}^{x/2} dx$$

$$= 4(3) \int_{0}^{2} x \sin x^{2} dx$$

$$= 6 \int_{0}^{2} \sin x^{2} d(x^{2})$$

$$= -6\cos x^{2} \Big|_{0}^{2}$$

$$= -6(\cos 4 - 1)$$

$$= 6 - 6\cos 4 \Big|_{0}^{2}$$

Evaluate the integral
$$\int_0^{\pi} \int_0^{\pi} \int_0^{\pi} \cos(x+y+z) dx dy dz$$

$$\int_0^{\pi} \int_0^{\pi} \int_0^{\pi} \cos(x+y+z) dx dy dz = \int_0^{\pi} \int_0^{\pi} \sin(x+y+z) \Big|_0^{\pi} dy dz$$

$$= \int_0^{\pi} \int_0^{\pi} (\sin(\pi+y+z) - \sin(y+z)) dy dz$$

$$= \int_0^{\pi} (-\cos(2\pi+z) + \cos(\pi+z) + \cos(\pi+z) - \cos(z)) dz$$

$$\cos(2\pi+z) = \cos z \quad \cos(\pi+z) = -\cos z$$

$$= -4 \int_0^{\pi} \cos z dz$$

$$= -4 \sin z \Big|_0^{\pi}$$

$$= 0 \Big|$$

Evaluate the integral
$$\int_{1}^{e} \int_{1}^{x} \int_{0}^{z} \frac{2y}{z^{3}} dy dz dx$$

Solution

$$\int_{1}^{e} \int_{1}^{x} \int_{0}^{z} \frac{2y}{z^{3}} dy dz dx = \int_{1}^{e} \int_{1}^{x} \frac{1}{z^{3}} y^{2} \Big|_{0}^{z} dz dx$$

$$= \int_{1}^{e} \int_{1}^{x} \frac{1}{z} dz dx$$

$$= \int_{1}^{e} \ln z \Big|_{1}^{x} dx$$

$$= \int_{1}^{e} \ln x dx \qquad u = \ln x \to du = \frac{dx}{x} \quad v = \int dx = x$$

$$\int \ln x dx = x \ln x - \int dx$$

$$= x \ln x - x \Big|_{1}^{e}$$

$$= e - e + 1$$

$$= 1$$

Exercise

Evaluate the integral

$$\int_{\ln 6}^{\ln 7} \int_{0}^{\ln 2} \int_{\ln 4}^{\ln 5} e^{(x+y+z)} dz dy dx$$

$$\int_{\ln 6}^{\ln 7} \int_{0}^{\ln 2} \int_{\ln 4}^{\ln 5} e^{(x+y+z)} dz dy dx = \int_{\ln 6}^{\ln 7} \int_{0}^{\ln 2} \int_{\ln 4}^{\ln 5} e^{x} e^{y} e^{z} dz dy dx$$

$$= \int_{\ln 6}^{\ln 7} e^{x} dx \int_{0}^{\ln 2} e^{y} dy \int_{\ln 4}^{\ln 5} e^{z} dz$$

$$= e^{x} \begin{vmatrix} \ln 7 \\ \ln 6 \end{vmatrix} e^{y} \begin{vmatrix} \ln 2 \\ 0 \end{vmatrix} e^{z} \begin{vmatrix} \ln 5 \\ \ln 4 \end{vmatrix}$$

$$= (7-6)(2-1)(5-4) \qquad e^{\ln u} = u$$

$$= 1 \mid$$

Evaluate the integral $\int_{0}^{1} \int_{0}^{x^{2}} \int_{0}^{x+y} (2x-y-z) dz dy dx$

Solution

$$\int_{0}^{1} \int_{0}^{x^{2}} \int_{0}^{x+y} (2x - y - z) dz dy dx = \int_{0}^{1} \int_{0}^{x^{2}} \left((2x - y) z - \frac{1}{2} z^{2} \right) \Big|_{0}^{x+y} dy dx$$

$$= \int_{0}^{1} \int_{0}^{x^{2}} \left((2x - y) (x + y) - \frac{1}{2} (x + y)^{2} \right) dy dx$$

$$= \int_{0}^{1} \int_{0}^{x^{2}} \left(\frac{3}{2} x^{2} + xy - y^{2} - \frac{1}{2} x^{2} - xy - \frac{1}{2} y^{2} \right) dy dx$$

$$= \int_{0}^{1} \left(\frac{3}{2} x^{2} y - \frac{1}{2} y^{3} \right) \Big|_{0}^{x^{2}} dx$$

$$= \int_{0}^{1} \left(\frac{3}{2} x^{4} - \frac{1}{2} x^{6} \right) dx$$

$$= \frac{3}{10} x^{5} - \frac{1}{14} x^{7} \Big|_{0}^{1}$$

$$= \frac{3}{10} - \frac{1}{14}$$

$$= \frac{32}{140}$$

$$= \frac{8}{35} \Big|$$

Exercise

Evaluate the integral $\int_{-2}^{2} \int_{3}^{6} \int_{0}^{2} dx dy dz$

$$\int_{-2}^{2} \int_{3}^{6} \int_{0}^{2} dx dy dz = \int_{-2}^{2} dz \int_{3}^{6} dy \int_{0}^{2} dx$$
$$= z \begin{vmatrix} 2 & y \begin{vmatrix} 6 & x \\ -2 & y \end{vmatrix}_{3}^{6} x \begin{vmatrix} 2 & y \end{vmatrix}_{0}^{6}$$

$$= (2+2)(6-3)(2-0)$$
= 24 \(\)

Evaluate the integral $\begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

$$\int_{-1}^{1} \int_{-1}^{2} \int_{0}^{1} 6xyz \, dydxdz$$

Solution

$$\int_{-1}^{1} \int_{-1}^{2} \int_{0}^{1} 6xyz \, dy dx dz = 6 \int_{-1}^{1} z \, dz \int_{-1}^{2} x \, dx \int_{0}^{1} y \, dy$$

$$= 6 \left(\frac{1}{2} z^{2} \right) \Big|_{-1}^{1} \frac{1}{2} x^{2} \Big|_{-1}^{2} \frac{1}{2} y^{2} \Big|_{0}^{1}$$

$$= \frac{3}{4} (1 - 1) (4 - 1) (1 - 0)$$

$$= 0$$

Exercise

Evaluate the integral

$$\int_{-2}^{2} \int_{1}^{2} \int_{1}^{e} \frac{xy^{2}}{z} dz dx dy$$

Solution

$$\int_{-2}^{2} \int_{1}^{2} \int_{1}^{e} \frac{xy^{2}}{z} dz dx dy = \int_{-2}^{2} y^{2} dy \int_{1}^{2} x dx \int_{1}^{e} \frac{dz}{z}$$

$$= \frac{1}{3} y^{3} \Big|_{-2}^{2} \frac{1}{2} x^{2} \Big|_{1}^{2} \ln z \Big|_{1}^{e}$$

$$= \frac{1}{6} (8+8)(4-1)(1-0)$$

$$= 8 |$$

Exercise

Evaluate the integral

$$\int_0^{\ln 4} \int_0^{\ln 3} \int_0^{\ln 2} e^{-x+y+z} dx dy dz$$

$$\int_0^{\ln 4} \int_0^{\ln 3} \int_0^{\ln 2} e^{-x+y+z} dx dy dz = \int_0^{\ln 4} e^z dz \int_0^{\ln 3} e^y dy \int_0^{\ln 2} e^{-x} dx$$

$$= e^{z} \begin{vmatrix} \ln 4 & e^{y} & \ln 3 & (-e^{-x}) \\ 0 & e^{-x} & \ln 2 \end{vmatrix}$$

$$= -(e^{\ln 4} - e^{0})(e^{\ln 3} - e^{0})(e^{\ln 2} - e^{0})$$

$$= -(4 - 1)(3 - 1)(\frac{1}{2} - 1)$$

$$= 3$$

Evaluate the integral $\int_0^{\frac{\pi}{2}} \int_0^1 \int_0^{\frac{\pi}{2}} \sin \pi x \cos y \sin 2z \ dy dx dz$

Solution

$$\int_{0}^{\frac{\pi}{2}} \int_{0}^{1} \int_{0}^{\frac{\pi}{2}} \sin \pi x \cos y \sin 2z \, dy dx dz = \int_{0}^{\frac{\pi}{2}} \sin 2z \, dz \int_{0}^{1} \sin \pi x \, c dx \int_{0}^{\frac{\pi}{2}} \cos y \, dy$$

$$= -\frac{1}{2} \cos 2z \left| \frac{\pi}{2} \left[-\frac{1}{\pi} \cos \pi x \right] \right|_{0}^{1} \sin y \left| \frac{\pi}{2} \left[-\frac{1}{2} \cos \pi x \right] \right|_{0}^{1} \sin y \left| \frac{\pi}{2} \left[-\frac{1}{2} \cos \pi x \right] \right|_{0}^{1} \sin y \left| \frac{\pi}{2} \left[-\frac{1}{2} \cos \pi x \right] \right|_{0}^{1} \sin y \left| \frac{\pi}{2} \left[-\frac{1}{2} \cos \pi x \right] \right|_{0}^{1} \sin y \left| \frac{\pi}{2} \left[-\frac{1}{2} \cos \pi x \right] \right|_{0}^{1} \sin y \left| \frac{\pi}{2} \left[-\frac{1}{2} \cos \pi x \right] \right|_{0}^{1} \sin y \left| \frac{\pi}{2} \left[-\frac{1}{2} \cos \pi x \right] \right|_{0}^{1} \sin y \left| \frac{\pi}{2} \left[-\frac{1}{2} \cos \pi x \right] \right|_{0}^{1} \sin y \left| \frac{\pi}{2} \left[-\frac{1}{2} \cos \pi x \right] \right|_{0}^{1} \sin y \left| \frac{\pi}{2} \left[-\frac{1}{2} \cos \pi x \right] \right|_{0}^{1} \sin y \left| \frac{\pi}{2} \left[-\frac{1}{2} \cos \pi x \right] \right|_{0}^{1} \sin y \left| \frac{\pi}{2} \left[-\frac{1}{2} \cos \pi x \right] \right|_{0}^{1} \sin y \left| \frac{\pi}{2} \left[-\frac{1}{2} \cos \pi x \right] \right|_{0}^{1} \sin y \left| \frac{\pi}{2} \left[-\frac{1}{2} \cos \pi x \right] \right|_{0}^{1} \sin y \left| \frac{\pi}{2} \left[-\frac{1}{2} \cos \pi x \right] \right|_{0}^{1} \sin y \left| \frac{\pi}{2} \left[-\frac{1}{2} \cos \pi x \right] \right|_{0}^{1} \sin y \left| \frac{\pi}{2} \left[-\frac{1}{2} \cos \pi x \right] \right|_{0}^{1} \sin y \left| \frac{\pi}{2} \left[-\frac{1}{2} \cos \pi x \right] \right|_{0}^{1} \sin y \left| \frac{\pi}{2} \left[-\frac{1}{2} \cos \pi x \right] \right|_{0}^{1} \sin y \left| \frac{\pi}{2} \left[-\frac{1}{2} \cos \pi x \right] \right|_{0}^{1} \sin y \left| \frac{\pi}{2} \left[-\frac{1}{2} \cos \pi x \right] \right|_{0}^{1} \sin y \left| \frac{\pi}{2} \left[-\frac{1}{2} \cos \pi x \right] \right|_{0}^{1} \sin y \left| \frac{\pi}{2} \left[-\frac{1}{2} \cos \pi x \right] \right|_{0}^{1} \sin y \left| \frac{\pi}{2} \left[-\frac{1}{2} \cos \pi x \right] \right|_{0}^{1} \sin y \left| \frac{\pi}{2} \left[-\frac{1}{2} \cos \pi x \right] \right|_{0}^{1} \sin y \left| \frac{\pi}{2} \left[-\frac{1}{2} \cos \pi x \right] \right|_{0}^{1} \sin y \left| \frac{\pi}{2} \left[-\frac{1}{2} \cos \pi x \right] \right|_{0}^{1} \sin y \left| \frac{\pi}{2} \left[-\frac{1}{2} \cos \pi x \right] \right|_{0}^{1} \sin y \left| \frac{\pi}{2} \left[-\frac{1}{2} \cos \pi x \right] \right|_{0}^{1} \sin y \left| \frac{\pi}{2} \left[-\frac{1}{2} \cos \pi x \right] \right|_{0}^{1} \sin y \left| \frac{\pi}{2} \left[-\frac{1}{2} \cos \pi x \right] \right|_{0}^{1} \sin y \left| \frac{\pi}{2} \left[-\frac{1}{2} \cos \pi x \right] \right|_{0}^{1} \sin x \left| \frac{\pi}{2} \left[-\frac{1}{2} \cos \pi x \right] \right|_{0}^{1} \sin x \left| \frac{\pi}{2} \left[-\frac{1}{2} \cos \pi x \right] \right|_{0}^{1} \sin x \left| \frac{\pi}{2} \left[-\frac{1}{2} \cos \pi x \right] \right|_{0}^{1} \sin x \left| \frac{\pi}{2} \left[-\frac{1}{2} \cos \pi x \right] \right|_{0}^{1} \sin x \left| \frac{\pi}{2} \left[-\frac{1}{2} \cos \pi x \right] \right|_{0}^{1} \sin x \left| \frac{\pi}{2} \left[-\frac{1}{2} \cos \pi x \right] \right|_{0}^{1} \sin x \left| \frac{\pi}{2} \left[-\frac{1}{2} \cos \pi x \right] \right|_{0}^{1} \sin x \left|$$

Exercise

Evaluate the integral $\int_{0}^{2} \int_{1}^{2} \int_{0}^{1} yze^{x} dxdzdy$

$$\int_{0}^{2} \int_{1}^{2} \int_{0}^{1} yze^{x} dx dz dy = \int_{0}^{2} ydy \int_{1}^{2} zdz \int_{0}^{1} e^{x} dx$$
$$= \frac{1}{2} y^{2} \Big|_{0}^{2} \frac{1}{2} z^{2} \Big|_{1}^{2} e^{x} \Big|_{0}^{1}$$
$$= \frac{1}{4} (4) (4-1) (e-1)$$
$$= 3(e-1)$$

Evaluate the integral

$$\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{1-x^2}} dz dy dx$$

Solution

$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}}} dz dy dx = \int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} z \begin{vmatrix} \sqrt{1-x^{2}} \\ 0 \end{vmatrix} dy dx$$

$$= \int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \sqrt{1-x^{2}} dy dx$$

$$= \int_{0}^{1} \sqrt{1-x^{2}} y \begin{vmatrix} \sqrt{1-x^{2}} \\ 0 \end{vmatrix} dx$$

$$= \int_{0}^{1} (1-x^{2}) dx$$

$$= \left(x - \frac{1}{3}x^{3}\right) \begin{vmatrix} 1\\ 0 \end{vmatrix}$$

$$= \frac{2}{3}$$

Exercise

Evaluate the integral

$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} 2xz \, dz dy dx$$

$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} 2xz \, dz dy dx = \int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} xz^{2} \left| \int_{0}^{\sqrt{1-x^{2}-y^{2}}} dy dx \right|$$

$$= \int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} x \left(1 - x^{2} - y^{2} \right) dy dx$$

$$= \int_{0}^{1} \left(xy - x^{3}y - \frac{1}{3}xy^{3} \right) \left| \int_{0}^{\sqrt{1-x^{2}}} dx \right|$$

$$= \int_{0}^{1} \left(x \left(1 - x^{2} \right)^{1/2} - x^{3} \left(1 - x^{2} \right)^{1/2} - \frac{1}{3}x \left(1 - x^{2} \right)^{3/2} \right) dx$$

Switching dydx to dxdy

$$\begin{split} &= \int_0^1 \int_0^{\sqrt{1-y^2}} \left(x - x^3 - xy^2 \right) dx dy \\ &= \int_0^1 \left(\frac{1}{2} x^2 - \frac{1}{4} x^4 - \frac{1}{2} x^2 y^2 \right) \Big|_0^{\sqrt{1-y^2}} dy \\ &= \frac{1}{4} \int_0^1 \left(2 \left(1 - y^2 \right) - \left(1 - y^2 \right)^2 - 2 \left(1 - y^2 \right) y^2 \right) dy \\ &= \frac{1}{4} \int_0^1 \left(2 - 2y^2 - 1 + 2y^2 - y^4 - 2y^2 + 2y^4 \right) dy \\ &= \frac{1}{4} \int_0^1 \left(y^4 - 2y^2 + 1 \right) dy \\ &= \frac{1}{4} \left(\frac{1}{5} y^5 - \frac{2}{3} y^3 + y \right) \Big|_0^1 \\ &= \frac{1}{4} \left(\frac{1}{5} - \frac{2}{3} + 1 \right) \\ &= \frac{1}{4} \left(\frac{8}{15} \right) \\ &= \frac{2}{15} \Big| \end{split}$$

Exercise

Evaluate the integral

$$\int_{0}^{4} \int_{-2\sqrt{16-y^2}}^{2\sqrt{16-y^2}} \int_{0}^{16-\frac{1}{4}x^2-y^2} dz dx dy$$

$$\int_{0}^{4} \int_{-2\sqrt{16-y^{2}}}^{2\sqrt{16-y^{2}}} \int_{0}^{16-\frac{1}{4}x^{2}-y^{2}} dz dx dy = \int_{0}^{4} \int_{-2\sqrt{16-y^{2}}}^{2\sqrt{16-y^{2}}} z \left| \int_{0}^{16-\frac{1}{4}x^{2}-y^{2}} dx dy \right|$$

$$= \int_{0}^{4} \int_{-2\sqrt{16-y^{2}}}^{2\sqrt{16-y^{2}}} \left(16 - \frac{1}{4}x^{2} - y^{2} \right) dx dy$$

$$= \int_{0}^{4} \left(16x - \frac{1}{12}x^{3} - xy^{2} \right) \left| \int_{-2\sqrt{16-y^{2}}}^{2\sqrt{16-y^{2}}} dy \right|$$

$$= 2 \int_{0}^{4} \left(16x - \frac{1}{12}x^{3} - xy^{2} \right) \Big|_{0}^{2\sqrt{16-y^{2}}} dy$$

$$= 2 \int_{0}^{4} \left(32\sqrt{16-y^{2}} - \frac{2}{3}\left(16 - y^{2} \right)^{3/2} - 2y^{2}\sqrt{16-y^{2}} \right) dy$$

$$y = 4\sin\theta \quad \Rightarrow \quad dy = 4\cos\theta d\theta \qquad \sqrt{16-y^{2}} = 4\cos\theta$$

$$\int \sqrt{16-y^{2}} dy = 16 \int \cos^{2}\theta d\theta$$

$$= 8 \int \left(1 + \cos 2\theta \right) d\theta$$

$$= 8 \sin^{-1}\left(\frac{y}{4}\right) + \frac{1}{2}y\sqrt{16-y^{2}} \right]$$

$$\int \left(16 - y^{2} \right)^{3/2} dy = \int \left(16\cos^{2}\theta \right)^{3/2} 4\cos\theta d\theta$$

$$= 256 \int \cos^{4}\theta d\theta$$

$$= 64 \int \left(1 + \cos 2\theta \right)^{2} d\theta$$

$$= 64 \int \left(1 + 2\cos 2\theta + \cos^{2}2\theta \right) d\theta$$

$$= 64 \int \left(\frac{3}{2} + 2\cos 2\theta + \frac{1}{2}\cos 4\theta \right) d\theta$$

$$= 64 \left(\frac{3}{2}\theta + \sin 2\theta + \frac{1}{8}\sin 4\theta \right)$$

$$= 64 \left(\frac{3}{2}\theta + 2\sin\theta\cos\theta + \frac{1}{4}\sin2\theta\cos\theta \right)$$

$$= 64 \left(\frac{3}{2}\theta + 2\sin\theta\cos\theta + \frac{1}{2}\sin\theta\cos\theta \right) \left(1 - 2\sin^{2}\theta \right)$$

$$= 64 \left(\frac{3}{2}\sin^{-1}\left(\frac{y}{4}\right) + \frac{y}{4}\frac{\sqrt{16-y^{2}}}{4} + \frac{1}{2}\frac{y}{4}\frac{\sqrt{16-y^{2}}}{4} \left(1 - \frac{y^{2}}{8} \right) \right)$$

$$= 64 \left(\frac{3}{2}\sin^{-1}\left(\frac{y}{4}\right) + \frac{1}{8}y\sqrt{16-y^{2}} + \frac{1}{256}y\left(8 - y^{2} \right)\sqrt{16-y^{2}} \right)$$

$$= 64 \left(\frac{3}{2} \sin^{-1} \left(\frac{y}{4}\right) + \frac{1}{8} y \sqrt{16 - y^2} + \frac{1}{32} y \sqrt{16 - y^2} - \frac{1}{256} y^3 \sqrt{16 - y^2}\right)$$

$$= \left(96 \sin^{-1} \left(\frac{y}{4}\right) + 10 y \sqrt{16 - y^2} - \frac{1}{4} y^3 \sqrt{16 - y^2}\right)$$

$$= 64 \int (1 - \cos 2\theta) (1 + \cos 2\theta) d\theta$$

$$= 64 \int (1 - \cos 2\theta) (1 + \cos 2\theta) d\theta$$

$$= 64 \int \left(\frac{1}{2} - \frac{1}{2} \cos 4\theta\right) d\theta$$

$$= 32 \left(\theta - \frac{1}{4} \sin 4\theta\right)$$

$$= 32 \left(\theta - \frac{1}{4} \sin 2\theta \cos 2\theta\right)$$

$$= 32 \left(\theta - \sin \theta \cos \theta \left(1 - 2 \sin^2 \theta\right)\right)$$

$$= 32 \left(\sin^{-1} \left(\frac{y}{4}\right) - \frac{y}{4} \frac{\sqrt{16 - y^2}}{4} \left(1 - \frac{y^2}{8}\right)\right)$$

$$= 32 \left(\sin^{-1} \left(\frac{y}{4}\right) - \frac{1}{128} y \left(8 - y^2\right) \sqrt{16 - y^2}\right)$$

$$= \frac{32 \sin^{-1} \left(\frac{y}{4}\right) - 2y \sqrt{16 - y^2} + \frac{1}{4} y^3 \sqrt{16 - y^2}\right)$$

$$= \frac{32 \sin^{-1} \left(\frac{y}{4}\right) - 2y \sqrt{16 - y^2} + \frac{4}{3} \left(16 - y^2\right)^{3/2} - 4y^2 \sqrt{16 - y^2}\right) dy$$

$$= 64 \left(8 \sin^{-1} \left(\frac{y}{4}\right) + 10 y \sqrt{16 - y^2} - \frac{1}{4} y^3 \sqrt{16 - y^2}\right)$$

$$- \frac{4}{3} \left(96 \sin^{-1} \left(\frac{y}{4}\right) - 2y \sqrt{16 - y^2} + \frac{1}{4} y^3 \sqrt{16 - y^2}\right)$$

$$- 4 \left(32 \sin^{-1} \left(\frac{y}{4}\right) - 2y \sqrt{16 - y^2} + \frac{1}{4} y^3 \sqrt{16 - y^2}\right)$$

$$= 512 \sin^{-1} \left(\frac{y}{4}\right) + 32 y \sqrt{16 - y^2}$$

$$-128 \sin^{-1} \left(\frac{y}{4}\right) - \frac{40}{3} y \sqrt{16 - y^2} + \frac{1}{3} y^3 \sqrt{16 - y^2}$$

$$-128 \sin^{-1} \left(\frac{y}{4}\right) + 8 y \sqrt{16 - y^2} - y^3 \sqrt{16 - y^2}$$

$$= 256 \sin^{-1} \left(\frac{y}{4}\right) + \frac{80}{3} y \sqrt{16 - y^2} - \frac{2}{3} y^3 \sqrt{16 - y^2} \Big|_{0}^{4}$$

$$= 256 \left(\frac{\pi}{2}\right)$$

$$= 128\pi$$

Evaluate the integral

$$\int_{1}^{6} \int_{0}^{4-\frac{2}{3}y} \int_{0}^{12-2y-3z} \frac{1}{y} dx dz dy$$

$$\begin{split} \int_{1}^{6} \int_{0}^{4-\frac{2}{3}y} \int_{0}^{12-2y-3z} \frac{1}{y} dx dz dy &= \int_{1}^{6} \int_{0}^{4-\frac{2}{3}y} \frac{1}{y} x \Big|_{0}^{12-2y-3z} dz dy \\ &= \int_{1}^{6} \int_{0}^{4-\frac{2}{3}y} \frac{1}{y} (12-2y-3z) dz dy \\ &= \int_{1}^{6} \left(12 \frac{1}{y} z - 2z - \frac{3}{2} \frac{1}{y} z^{2} \right) \Big|_{0}^{4-\frac{2}{3}y} dy \\ &= \int_{1}^{6} \left(12 \frac{1}{y} \left(4 - \frac{2}{3} y \right) - 2 \left(4 - \frac{2}{3} y \right) - \frac{3}{2} \frac{1}{y} \left(4 - \frac{2}{3} y \right)^{2} \right) dy \\ &= \int_{1}^{6} \left(\frac{48}{y} - 16 + \frac{4}{3} y - \frac{3}{2} \frac{1}{y} \left(16 - \frac{16}{3} y + \frac{4}{9} y^{2} \right) \right) dy \\ &= \int_{1}^{6} \left(\frac{48}{y} - 16 + \frac{4}{3} y - \frac{24}{y} + 8 - \frac{2}{3} y \right) dy \\ &= \int_{1}^{6} \left(\frac{24}{y} - 8 + \frac{2}{3} y \right) dy \\ &= 24 \ln y - 8y + \frac{1}{3} y^{2} \Big|_{1}^{6} \end{split}$$

$$= 24 \ln 6 - 48 + 12 + 8 - \frac{1}{3}$$
$$= 24 \ln 6 - \frac{85}{3}$$

Evaluate the integral

$$\int_{0}^{3} \int_{0}^{\sqrt{9-z^{2}}} \int_{0}^{\sqrt{1+x^{2}+z^{2}}} dy dx dz$$

Solution

$$\int_{0}^{3} \int_{0}^{\sqrt{9-z^{2}}} \int_{0}^{\sqrt{1+x^{2}+z^{2}}} dy dx dz = \int_{0}^{3} \int_{0}^{\sqrt{9-z^{2}}} y \begin{vmatrix} \sqrt{1+x^{2}+z^{2}} \\ 0 \end{vmatrix} dx dz$$

$$= \int_{0}^{3} \int_{0}^{\sqrt{9-z^{2}}} \sqrt{1+x^{2}+z^{2}} dx dz \qquad \text{Let } x^{2}+z^{2}=r^{2}$$

$$= \int_{0}^{\frac{\pi}{2}} \int_{0}^{3} \sqrt{1+r^{2}} r dr d\theta$$

$$= \frac{1}{2} \int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{3} (1+r^{2})^{1/2} d(1+r^{2})$$

$$= \frac{1}{2} (\frac{\pi}{2}) \frac{2}{3} (1+r^{2})^{3/2} \begin{vmatrix} 3\\ 0 \end{vmatrix}$$

$$= \frac{\pi}{6} (10\sqrt{10}-1) |$$

116

Exercise

Evaluate the integral $\int_{0}^{\pi} \int_{0}^{\pi} \sin x \sin y \, dz dx dy$

$$\int_0^{\pi} \int_0^{\pi} \int_0^{\sin x} \sin y \, dz dx dy = \int_0^{\pi} \int_0^{\pi} (\sin y) z \left| \begin{array}{l} \sin x \\ 0 \end{array} \right| dx dy$$
$$= \int_0^{\pi} \int_0^{\pi} (\sin y \sin x) dx dy$$
$$= -\int_0^{\pi} \sin y \cos x \left| \begin{array}{l} \pi \\ 0 \end{array} \right| dy$$

$$= 2 \int_0^{\pi} \sin y \, dy$$
$$= -2 \cos y \Big|_0^{\pi}$$
$$= 4$$

Evaluate the integral

$$\int_{0}^{\ln 8} \int_{1}^{\sqrt{z}} \int_{\ln y}^{\ln 2y} e^{x+y^2-z} dx dy dz$$

$$\int_{0}^{\ln 8} \int_{1}^{\sqrt{z}} \int_{\ln y}^{\ln 2y} e^{x+y^{2}-z} dx dy dz = \int_{0}^{\ln 8} \int_{1}^{\sqrt{z}} e^{y^{2}} e^{-z} e^{x} \Big|_{\ln y}^{\ln 2y} dy dz$$

$$= \int_{0}^{\ln 8} \int_{1}^{\sqrt{z}} e^{y^{2}} e^{-z} (y) dy dz$$

$$= \frac{1}{2} \int_{0}^{\ln 8} \int_{1}^{\sqrt{z}} e^{-z} e^{y^{2}} d(y^{2}) dz$$

$$= \frac{1}{2} \int_{0}^{\ln 8} e^{-z} e^{y^{2}} \Big|_{1}^{\sqrt{z}} dz$$

$$= \frac{1}{2} \int_{0}^{\ln 8} (1 - e^{1-z}) dz$$

$$= \frac{1}{2} (z + e^{1-z}) \Big|_{0}^{\ln 8}$$

$$= \frac{1}{2} (\ln 8 + e^{1 - \ln 8} - e)$$

$$= \frac{1}{2} (\ln 8 + e^{(e^{\ln 8^{-1}})} - e)$$

$$= \frac{1}{2} (\ln 8 - \frac{1}{6} e)$$

Evaluate the integral

$$\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{2-x} 4yz \, dz dy dx$$

Solution

$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{2-x} 4yz \, dz dy dx = \int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} 2yz^{2} \Big|_{0}^{2-x} \, dy dx$$

$$= \int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} 2y(2-x)^{2} \, dy dx$$

$$= \int_{0}^{1} \left(4-4x+x^{2}\right) y^{2} \Big|_{0}^{\sqrt{1-x^{2}}} \, dx$$

$$= \int_{0}^{1} \left(4-4x+x^{2}\right) \left(1-x^{2}\right) dx$$

$$= \int_{0}^{1} \left(4-4x-3x^{2}+4x^{3}-x^{4}\right) dx$$

$$= \left(4x-2x^{2}-x^{3}+x^{4}-\frac{1}{5}x^{5}\right) \Big|_{0}^{1}$$

$$= \frac{9}{5}$$

Exercise

Evaluate the integral

$$\int_0^2 \int_0^4 \int_{v^2}^4 \sqrt{x} \ dz dx dy$$

$$\int_{0}^{2} \int_{0}^{4} \int_{y^{2}}^{4} \sqrt{x} \, dz dx dy = \int_{0}^{2} \int_{0}^{4} \sqrt{x} \, z \, \bigg|_{y^{2}}^{4} \, dx dy$$

$$= \int_{0}^{2} \left(4 - y^{2} \right) dy \, \int_{0}^{4} x^{1/2} \, dx$$

$$= \left(4y - \frac{1}{3} y^{3} \right) \bigg|_{0}^{2} \, \frac{2}{3} x^{3/2} \bigg|_{0}^{4}$$

$$= \frac{2}{3} \left(8 - \frac{8}{3} \right) (8)$$

$$= \frac{256}{9} \bigg|$$

Evaluate the integral

$$\int_0^1 \int_v^{2-y} \int_0^{2-x-y} xy \, dz dx dy$$

Solution

$$\int_{0}^{1} \int_{y}^{2-y} \int_{0}^{2-x-y} xy \, dz dx dy = \int_{0}^{1} \int_{y}^{2-y} xyz \Big|_{0}^{2-x-y} \, dx dy$$

$$= \int_{0}^{1} \int_{y}^{2-y} \left(2xy - x^{2}y - xy^{2} \right) dx dy$$

$$= \int_{0}^{1} \left(x^{2}y - \frac{1}{3}x^{3}y - \frac{1}{2}x^{2}y^{2} \right) \Big|_{y}^{2-y} \, dy$$

$$= \int_{0}^{1} \left((2-y)^{2}y - \frac{1}{3}(2-y)^{3}y - \frac{1}{2}(2-y)^{2}y^{2} - y^{3} + \frac{5}{6}y^{4} \right) dy$$

$$= \int_{0}^{1} \left(\left(4 - 4y + y^{2} \right) \left(y - \frac{2}{3}y + \frac{1}{3}y^{2} - \frac{1}{2}y^{2} \right) - y^{3} + \frac{5}{6}y^{4} \right) dy$$

$$= \int_{0}^{1} \left(\left(4 - 4y + y^{2} \right) \left(\frac{1}{3}y - \frac{1}{6}y^{2} \right) - y^{3} + \frac{5}{6}y^{4} \right) dy$$

$$= \int_{0}^{1} \left(\frac{4}{3}y - 2y^{2} + y^{3} - \frac{1}{6}y^{4} - y^{3} + \frac{5}{6}y^{4} \right) dy$$

$$= \int_{0}^{1} \left(\frac{4}{3}y - 2y^{2} + \frac{2}{3}y^{4} \right) dy$$

$$= \left(\frac{2}{3}y^{2} - \frac{2}{3}y^{3} + \frac{2}{15}y^{5} \right) \Big|_{0}^{1}$$

$$= \frac{2}{15}$$

Exercise

Here is the region of integration of the integral

$$\int_{-1}^{1} \int_{x^2}^{1} \int_{0}^{1-y} dz dy dx$$

- a) dydzdx
- \boldsymbol{b}) dydxdz
- c) dxdydz
- d) dxdzdy
- e) dzdxdy

a)
$$\int_{-1}^{1} \int_{0}^{1-x^2} \int_{x^2}^{1-x} dy dz dx$$

$$b) \int_0^1 \int_{-\sqrt{1-z}}^{\sqrt{1-z}} \int_{x^2}^{1-x} dy dx dz$$

$$c) \int_0^1 \int_0^{1-x} \int_{-\sqrt{y}}^{\sqrt{y}} dx dy dz$$

$$d) \int_0^1 \int_0^{1-y} \int_{-\sqrt{y}}^{\sqrt{y}} dx dz dy$$

$$e) \int_0^1 \int_{-\sqrt{y}}^{\sqrt{y}} \int_0^{1-y} dz dx dy$$

Use another order to evaluate

$$\int_0^5 \int_{-1}^0 \int_0^{4x+4} dy dx dz$$

$$-1 \le x \le 0 \quad 0 \le y \le 4x + 4 \quad 0 \le z \le 5$$

$$\begin{cases} x = -1 & \to y = 0 \\ x = 0 & \to y = 4 \end{cases}$$

$$y = 4x + 4 \quad \to \quad x = \frac{y - 4}{4}$$

$$\begin{cases} 5 & 0 & 4x + 4 \\ 0 & 0 & 4x + 4 \end{cases}$$

$$\begin{cases} 6 & 0 & 4x + 4 \\ 0 & 0 & 4x + 4 \end{cases}$$

$$\begin{cases} 6 & 0 & 4x + 4 \\ 0 & 0 & 4x + 4 \end{cases}$$

$$\int_{0}^{5} \int_{-1}^{0} \int_{0}^{4x+4} dy dx dz = \int_{0}^{4} \int_{\frac{y-4}{4}}^{0} \int_{0}^{5} dz dx dy$$

$$= \int_{0}^{4} x \left| \int_{\frac{y-4}{4}}^{0} dy \right| z \left| \int_{0}^{5} dz dx dy$$

$$= \frac{5}{4} \int_{0}^{4} (4-y) dy$$

$$= \frac{5}{4} \left(4y - \frac{1}{2} y^{2} \right) \left| \int_{0}^{4} dy dx dz \right|$$

$$= \frac{5}{4} \left(4y - \frac{1}{2} y^{2} \right) \left| \int_{0}^{4} dy dx dz \right|$$

$$= \frac{5}{4} \left(4y - \frac{1}{2} y^{2} \right) \left| \int_{0}^{4} dy dx dz \right|$$

$$= \frac{5}{4} \left(4y - \frac{1}{2} y^{2} \right) \left| \int_{0}^{4} dy dx dz \right|$$

$$= \frac{5}{4} \left(4y - \frac{1}{2} y^{2} \right) \left| \int_{0}^{4} dy dx dz \right|$$

Use another order to evaluate

$$\int_{0}^{1} \int_{-2}^{2} \int_{0}^{\sqrt{4-y^2}} dz dy dx$$

Solution

$$0 \le x \le 1 \quad -2 \le y \le 2 \quad 0 \le z \le \sqrt{4 - y^2}$$

$$0 \le z \le 2$$

$$z = \sqrt{4 - y^2} \quad \Rightarrow \quad y = \pm \sqrt{4 - z^2}$$

$$\int_0^1 \int_{-2}^2 \int_0^{\sqrt{4 - y^2}} dz dy dx = \int_0^1 \int_0^2 \int_{-\sqrt{4 - z^2}}^{\sqrt{4 - z^2}} dy dz dx$$

$$= \int_0^1 dx \int_0^2 y \left| \frac{\sqrt{4 - z^2}}{\sqrt{4 - z^2}} dz \right|$$

$$= 2 \int_0^2 \sqrt{4 - z^2} dz$$

$$= 2 \left(\frac{z}{2} \sqrt{4 - z^2} + 2 \sin^{-1} \frac{z}{2} \right) \Big|_0^2$$

$$= 2 \left(2 \frac{\pi}{2} \right)$$

$$= 2\pi$$

Exercise

Use another order to evaluate

$$\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{1-x^2}} dy dz dx$$

$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}}} dy dz dx = \int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}}} dz dy dx$$
$$= \int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} z \begin{vmatrix} \sqrt{1-x^{2}} \\ 0 \end{vmatrix} dy dx$$
$$= \int_{0}^{1} \sqrt{1-x^{2}} y \begin{vmatrix} \sqrt{1-x^{2}} \\ 0 \end{vmatrix} dx$$

$$= \int_0^1 \left(1 - x^2\right) dx$$
$$= \left(x - \frac{1}{3}x^3\right) \Big|_0^1$$
$$= \frac{2}{3}$$

Use another order to evaluate

$$\int_{0}^{4} \int_{0}^{\sqrt{16-x^2}} \int_{0}^{\sqrt{16-x^2-z^2}} dy dz dx$$

$$\begin{split} 0 &\leq x \leq 4 \quad 0 \leq y \leq \sqrt{16 - x^2 - z^2} \quad 0 \leq z \leq \sqrt{16 - x^2} \\ x^2 + y^2 + z^2 &= 16 \\ 0 &\leq x \leq \sqrt{16 - y^2 - z^2} \quad 0 \leq y \leq \sqrt{16 - z^2} \quad 0 \leq z \leq 4 \\ \int_0^4 \int_0^{\sqrt{16 - x^2}} \int_0^{\sqrt{16 - x^2 - z^2}} dy dz dx &= \int_0^4 \int_0^{\sqrt{16 - z^2}} \int_0^{\sqrt{16 - y^2 - z^2}} dy dz \\ &= \int_0^4 \int_0^{\sqrt{16 - z^2}} \sqrt{16 - y^2 - z^2} dy dz \\ &= \int_0^{\frac{\pi}{2}} \int_0^4 \sqrt{16 - r^2} \sqrt{16 - y^2 - z^2} dy dz \qquad \text{Let} \quad y^2 + z^2 = r^2 \\ &= \int_0^{\frac{\pi}{2}} \int_0^4 \sqrt{16 - r^2} r dr d\theta \\ &= -\frac{1}{2} \int_0^{\frac{\pi}{2}} d\theta \int_0^4 \left(16 - r^2\right)^{1/2} d\left(16 - r^2\right) \\ &= -\frac{1}{2} \left(\frac{\pi}{2}\right) \left(\frac{2}{3}\right) \left(16 - r^2\right)^{3/2} \Big|_0^4 \\ &= -\frac{\pi}{6} \left(-64\right) \\ &= \frac{32\pi}{3} \end{split}$$

Use another order to evaluate

$$\int_{1}^{4} \int_{z}^{4z} \int_{0}^{\pi^{2}} \frac{\sin\sqrt{yz}}{x^{3/2}} dy dx dz$$

Solution

$$\int_{1}^{4} \int_{z}^{4z} \int_{0}^{\pi^{2}} \frac{\sin \sqrt{yz}}{x^{3/2}} dy dx dz = \int_{0}^{\pi^{2}} \int_{1}^{4} \int_{z}^{4z} x^{-3/2} \sin \sqrt{yz} dx dz dy$$

$$= -2 \int_{0}^{\pi^{2}} \int_{1}^{4} \sin \sqrt{yz} \left(x^{-1/2} \right) \Big|_{z}^{4z} dz dy$$

$$= -2 \int_{0}^{\pi^{2}} \int_{1}^{4} \sin \sqrt{yz} \left(\frac{1}{2\sqrt{z}} - \frac{1}{\sqrt{z}} \right) dz dy$$

$$= \int_{0}^{\pi^{2}} \int_{1}^{4} \frac{\sin \sqrt{yz}}{\sqrt{z}} dz dy$$

$$= 2 \int_{0}^{\pi^{2}} \int_{1}^{4} \frac{1}{\sqrt{y}} \sin \sqrt{yz} d \left(\sqrt{yz} \right) dy \qquad d \left(\sqrt{yz} \right) = \frac{1}{2} \frac{y}{\sqrt{yz}} dz$$

$$= -2 \int_{0}^{\pi^{2}} \frac{1}{\sqrt{y}} \cos \sqrt{yz} \Big|_{1}^{4} dy$$

$$= -2 \int_{0}^{\pi^{2}} \frac{1}{\sqrt{y}} \left(\cos \left(2\sqrt{y} \right) - \cos \sqrt{y} \right) dy$$

$$= -4 \int_{0}^{\pi^{2}} \left(\cos \left(2\sqrt{y} \right) - \cos \sqrt{y} \right) d \left(\sqrt{yz} \right)$$

$$= -4 \left(\frac{1}{2} \cos \left(2\sqrt{y} \right) - \cos \sqrt{y} \right) \Big|_{0}^{\pi^{2}}$$

$$= -4 \left(\frac{1}{2} + 1 - \frac{1}{2} - 1 \right)$$

Exercise

Evaluate
$$\iiint_{D} (xy + xz + yz) dV; \quad D = \{(x, y, z): -1 \le x \le 1, -2 \le y \le 2, -3 \le z \le 3\}$$

=0

$$\iiint_{D} (xy + xz + yz) dV = \int_{-3}^{3} \int_{-2}^{2} \int_{-1}^{1} (xy + xz + yz) dx dy dz$$

$$= \int_{-3}^{3} \int_{-2}^{2} \left(\frac{1}{2} x^{2} y + \frac{1}{2} x^{2} z + xyz \right) \Big|_{-1}^{1} dy dz$$

$$= \int_{-3}^{3} \int_{-2}^{2} \left(\frac{1}{2} y + \frac{1}{2} z + yz - \frac{1}{2} y - \frac{1}{2} z + yz \right) dy dz$$

$$= \int_{-3}^{3} \int_{-2}^{2} 2yz dy dz$$

$$= \int_{-3}^{3} zy^{2} \Big|_{-2}^{2} dz$$

$$= 0$$

$$\iiint xyze^{-x^2-y^2}dV; \qquad D = \{(x, y, z): 0 \le x \le \sqrt{\ln 2}, 0 \le y \le \sqrt{\ln 4}, 0 \le z \le 1\}$$

$$\iiint_{D} xyze^{-x^{2}-y^{2}} dV = \int_{0}^{1} \int_{0}^{\sqrt{\ln 4}} \int_{0}^{\sqrt{\ln 2}} xyze^{-x^{2}-y^{2}} dx dy dz$$

$$= \int_{0}^{1} z dz \int_{0}^{\sqrt{\ln 4}} ye^{-y^{2}} dy \int_{0}^{\sqrt{\ln 2}} xe^{-x^{2}} dx$$

$$= \frac{1}{2} z^{2} \Big|_{0}^{1} \int_{0}^{\sqrt{\ln 4}} \left(-\frac{1}{2}\right) e^{-y^{2}} d\left(-y^{2}\right) \int_{0}^{\sqrt{\ln 2}} \left(-\frac{1}{2}\right) e^{-x^{2}} d\left(-x^{2}\right)$$

$$= \frac{1}{8} e^{-y^{2}} \Big|_{0}^{\sqrt{\ln 4}} e^{-x^{2}} \Big|_{0}^{\sqrt{\ln 2}}$$

$$= \frac{1}{8} \left(\frac{1}{4} - 1\right) \left(\frac{1}{2} - 1\right)$$

$$= \frac{3}{64} \Big|$$

Let
$$D = \{(x, y, z): 0 \le x \le y^2, 0 \le y \le z^3, 0 \le z \le 2\}$$

- a) Use a triple integral to find the volume of D.
- b) In theory, how many other possible orderings of the variables (besides the one used in part (a)) can be used to find the volume of D? Verify the result of part (a) using one of these other ordering.
- c) What is the volume of the region $D = \{(x, y, z) : 0 \le x \le y^p, 0 \le y \le z^q, 0 \le z \le 2\}$, where p and q are positive real numbers?

Solution

a)
$$V = \int_{0}^{2} \int_{0}^{z^{3}} \int_{0}^{y^{2}} dx dy dz$$

$$= \int_{0}^{2} \int_{0}^{z^{3}} x \Big|_{0}^{y^{2}} dy dz$$

$$= \int_{0}^{2} \int_{0}^{z^{3}} y^{2} dy dz$$

$$= \frac{1}{3} \int_{0}^{2} y^{3} \Big|_{0}^{z^{3}} dz$$

$$= \frac{1}{30} z^{10} \Big|_{0}^{2}$$

$$= \frac{512}{15} unit^{3} \Big|_{0}^{2}$$

b) There are total of 6: dxdydz, dxdzdy, dydxdz, dydzdx, dzdxdy, dzdydx

$$0 \le x \le y^{2}$$

$$z = 2 \to y = 2^{3} = 8 \quad 0 \le y \le 8$$

$$y = z^{3} \to z = \sqrt[3]{y} \quad \sqrt[3]{y} \le z \le 2$$

$$\int_{0}^{8} \int_{\sqrt[3]{y}}^{2} \int_{0}^{y^{2}} dx dz dy = \int_{0}^{8} \int_{\sqrt[3]{y}}^{2} x \left|_{0}^{y^{2}} dz dy\right|$$

$$= \int_{0}^{8} \int_{\sqrt[3]{y}}^{2} y^{2} dz dy$$

$$= \int_{0}^{8} y^{2}z \Big|_{3\sqrt{y}}^{2} dy$$

$$= \int_{0}^{8} y^{2} (2 - y^{1/3}) dy$$

$$= \int_{0}^{8} (2y^{2} - y^{7/3}) dy$$

$$= \left(\frac{2}{3}y^{3} - \frac{3}{10}y^{10/3}\right) \Big|_{0}^{2^{3}}$$

$$= \frac{2^{10}}{3} - \frac{3}{5}2^{9}$$

$$= 2^{9} \left(\frac{2}{3} - \frac{3}{5}\right)$$

$$= \frac{2^{9}}{15} \Big|_{0}^{2} = \frac{512}{15} \Big|_{0}^{2}$$

c)
$$D = \{(x, y, z) : 0 \le x \le y^p, 0 \le y \le z^q, 0 \le z \le 2\}, (p, q \in \mathbb{R})$$

$$V = \int_0^2 \int_0^{z^q} \int_0^{y^p} dx dy dz$$

$$= \int_0^2 \int_0^{z^q} x \Big|_0^{y^p} dy dz$$

$$= \int_0^2 \int_0^{z^q} y^p dy dz$$

$$= \frac{1}{p+1} \int_0^2 y^{p+1} \Big|_0^{z^q} dz$$

$$= \frac{1}{p+1} \int_0^2 z^{q(p+1)} dz$$

$$= \frac{1}{(p+1)(q(p+1)+1)} z^{q(p+1)+1} \Big|_0^2$$

$$= \frac{2^{q(p+1)+1}}{(p+1)(q(p+1)+1)} \Big|_0^2$$

Find the volume the parallelepiped (slanted box) with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 1, 1), (1, 1, 1), (0, 2, 1), (1, 2, 1)

Solution

$$V = \int_{0}^{1} \int_{z}^{z+1} \int_{0}^{1} dx dy dz$$

$$= \int_{0}^{1} \int_{z}^{z+1} x \Big|_{0}^{1} dy dz$$

$$= \int_{0}^{1} \int_{z}^{z+1} dy dz$$

$$= \int_{0}^{1} y \Big|_{z}^{z+1} dz$$

$$= \int_{0}^{1} dz$$

$$= z \Big|_{0}^{1}$$

$$= 1$$

Exercise

Find the volume the larger of two solids formed when the parallelepiped with vertices (0, 0, 0), (2, 0, 0), (0, 2, 0), (2, 2, 0), (0, 1, 1), (2, 1, 1), (0, 3, 1), (2, 3, 1) is sliced by the plane y = 2.

$$V = \int_0^1 \int_z^2 \int_0^2 dx dy dz$$
$$= \int_0^1 \int_z^2 x \Big|_0^2 dy dz$$
$$= 2 \int_0^1 \int_z^2 dy dz$$
$$= 2 \int_0^1 y \Big|_z^2 dz$$

$$= 2 \int_0^1 (2-z) dz$$
$$= 2 \left(2z - \frac{1}{2}z^2\right) \Big|_0^1$$
$$= 2\left(2 - \frac{1}{2}\right)$$
$$= 3$$

Find the volume of the pyramid with vertices (0, 0, 0), (2, 0, 0), (2, 2, 0), (0, 2, 0), (0, 0, 4)

(2, 0) & (0, 4)
$$\rightarrow z = \frac{4}{-2}(x-2) = -2x+4$$

$$x = \frac{4-z}{2}$$

$$(2, 0) & (0, 4) \rightarrow y = \frac{4-z}{2}$$

$$V = \int_{0}^{4} \int_{0}^{4-z} \int_{0}^{4-z} \frac{4-z}{2} dx dy dz$$

$$= \int_{0}^{4} \int_{0}^{4-z} \frac{4-z}{2} dy dz$$

$$= \frac{1}{2} \int_{0}^{4} \int_{0}^{4-z} (4-z) dy dz$$

$$= \frac{1}{2} \int_{0}^{4} (4-z) y \left| \frac{4-z}{2} dy dz \right|$$

$$= -\frac{1}{4} \int_{0}^{4} (4-z)^{2} d(4-z)$$

$$= -\frac{1}{12} (4-z)^{3} \left| \frac{4}{0} dz \right|$$

$$= -\frac{1}{12} (-64)$$

$$= \frac{16}{2} \left| \frac{1}{2} dz \right|$$

Two different tetrahedrons fill the region in the first octant bounded by the coordinate planes and the plane x+y+z=4. Both solids have densities that vary in the z-direction between $\rho=4$ and $\rho=8$, according to the functions $\rho_1=8-z$ and $\rho_2=4+z$. Find the mass of each solid

$$\begin{split} m_1 &= \int_0^4 \int_0^{4-x} \int_0^{4-x-y} (8-z) dz dy dx \\ &= \int_0^4 \int_0^{4-x} \left(8z - \frac{1}{2} z^2 \right) \Big|_0^{4-x-y} dy dx \\ &= \int_0^4 \int_0^{4-x} \left(32 - 8x - 8y - \frac{1}{2} (4 - x - y)^2 \right) dy dx \\ &= \int_0^4 \int_0^{4-x} \left(24 - 4x - \frac{1}{2} x^2 - 4y - xy - \frac{1}{2} y^2 \right) dy dx \\ &= \int_0^4 \left(24y - 4xy - \frac{1}{2} x^2 y - 2y^2 - \frac{1}{2} xy^2 - \frac{1}{6} y^3 \right) \Big|_0^{4-x} dx \\ &= \int_0^4 \left(\frac{160}{3} - 24x + 2x^2 + \frac{1}{6} x^3 \right) dx \\ &= \left(\frac{160}{3} x - 12x^2 + \frac{2}{3} x^3 + \frac{1}{24} x^4 \right) \Big|_0^4 \\ &= \frac{224}{3} \right] \\ m_2 &= \int_0^4 \int_0^{4-x} \left(4z + \frac{1}{2} z^2 \right) \Big|_0^{4-x-y} dy dx \\ &= \int_0^4 \int_0^{4-x} \left(24 - 8x - \frac{1}{2} x^2 - 8y + xy - \frac{1}{2} y^2 \right) dy dx \\ &= \int_0^4 \left(24y - 8xy - \frac{1}{2} x^2 y - 4y^2 + \frac{1}{2} xy^2 - \frac{1}{6} y^3 \right) \Big|_0^{4-x} dx \\ &= \int_0^4 \left(\frac{128}{3} - 24x + 4x^2 - \frac{1}{6} x^3 \right) dx \end{split}$$

$$= \left(\frac{128}{3}x - 12x^2 + \frac{4}{3}x^3 - \frac{1}{24}x^4\right) \Big|_0^4$$

$$= \frac{160}{3}$$

Solid 1 has greater mass.

 $V = \int_{0}^{4} \int_{0}^{4} \int_{0}^{y} dz dy dx$

Exercise

Suppose a wedge of cheese fills the region in the first octant bounded by the planes y = z, y = 4 and x = 4. You could divide the wedge into two equal pieces (by volume) if you sliced the wedge with the plane x = 2. Instead find a with 0 < a < 1 such that slicing the wedge with the plane y = a divides the wedge into two pieces of equal volume

$$= \int_{0}^{4} dx \int_{0}^{4} z \Big|_{0}^{y} dy$$

$$= x \Big|_{0}^{4} \int_{0}^{4} y dy$$

$$= 2y^{2} \Big|_{0}^{4}$$

$$= 32$$

$$V = \frac{1}{2}(32) = \int_{0}^{4} \int_{0}^{a} \int_{0}^{y} dz dy dx = 16$$

$$\int_{0}^{4} \int_{0}^{a} \int_{0}^{y} dz dy dx = \int_{0}^{4} dx \int_{0}^{a} z \Big|_{0}^{y} dy$$

$$= x \Big|_{0}^{4} \int_{0}^{a} y dy$$

$$= 2y^{2} \Big|_{0}^{a}$$

$$= 2a^{2} = 16$$

$$a = 2\sqrt{2} \Big|$$

$$a = 2\sqrt{2}$$

Find the volumes of the region between the cylinder $z = y^2$ and the xy-plane that is bounded by the planes x = 0, x = 1, y = -1, y = 1

Solution

$$V = \int_{0}^{1} \int_{-1}^{1} \int_{0}^{y^{2}} dz dy dx$$

$$= \int_{0}^{1} \int_{-1}^{1} [z]_{0}^{y^{2}} dy dx$$

$$= \int_{0}^{1} \int_{-1}^{1} y^{2} dy dx$$

$$= \frac{1}{3} \int_{0}^{1} [y^{3}]_{-1}^{1} dx$$

$$= \frac{2}{3} \int_{0}^{1} dx$$

$$= \frac{2}{3} \int_{0}^{1} dx$$

Exercise

Find the volumes of the region in the first octant bounded by the coordinate planes and the planes x + z = 1, y + 2z = 2

$$V = \int_{0}^{1} \int_{0}^{1-x} \int_{0}^{2-2z} dy dz dx$$

$$= \int_{0}^{1} \int_{0}^{1-x} (2-2z) dz dx$$

$$= \int_{0}^{1} \left[2z - z^{2} \right]_{0}^{1-x} dx$$

$$= \int_{0}^{1} \left[2(1-x) - (1-x)^{2} \right] dx$$

$$= \int_{0}^{1} (1-x)(2-1+x) dx$$

$$= \int_{0}^{1} (1-x)(1+x) dx$$

$$= \int_{0}^{1} (1-x^{2}) dx$$

$$= \left[x - \frac{1}{3}x^{3}\right]_{0}^{1}$$

$$= 1 - \frac{1}{3}$$

$$= \frac{2}{3}$$

Find the volumes of the region in the first octant bounded by the coordinate planes and the plane y + z = 2, and the cylinder $x = 4 - y^2$

$$V = \int_{0}^{4} \int_{0}^{\sqrt{4-x}} \int_{0}^{2-y} dz dy dx$$

$$= \int_{0}^{4} \int_{0}^{\sqrt{4-x}} (2-y) dy dx$$

$$= \int_{0}^{4} \left[2y - \frac{1}{2}y^{2} \right]_{0}^{\sqrt{4-x}} dy dx$$

$$= \int_{0}^{4} \left[2\sqrt{4-x} - \frac{1}{2}(4-x) \right] dx$$

$$= -\int_{0}^{4} \left[2(4-x)^{1/2} - \frac{1}{2}(4-x) \right] d(4-x)$$

$$= -\left[\frac{4}{3}(4-x)^{3/2} - \frac{1}{4}(4-x)^{2} \right]_{0}^{4}$$

$$= -\left[0 - \left(\frac{4}{3}4^{3/2} - \frac{1}{4}4^{2} \right) \right]$$

$$= \frac{20}{3}$$

Find the volumes of the wedge cut from the cylinder $x^2 + y^2 = 1$ by the planes z = -y, z = 0

Solution

$$V = 2 \int_{0}^{1} \int_{-\sqrt{1-x^{2}}}^{0} \int_{0}^{-y} dz dy dx$$

$$= -2 \int_{0}^{1} \int_{-\sqrt{1-x^{2}}}^{0} y dy dx$$

$$= -2 \int_{0}^{1} \left[\frac{1}{2} y^{2} \right]_{-\sqrt{1-x^{2}}}^{0} dx$$

$$= \int_{0}^{1} (1-x^{2}) dx$$

$$= \left[x - \frac{1}{3} x^{3} \right]_{0}^{1}$$

$$= 1 - \frac{1}{3}$$

$$= \frac{2}{3}$$

Exercise

Find the volumes of the region cut from the cylinder $x^2 + y^2 = 4$ by the plane z = 0 and the plane z + z = 3

$$V = \int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{0}^{3-x} dz dy dx$$

$$= \int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} (3-x) dy dx$$

$$= 2 \int_{-2}^{2} (3-x) \sqrt{4-x^2} dx$$

$$= 6 \int_{-2}^{2} \sqrt{4-x^2} dx - 2 \int_{-2}^{2} x \sqrt{4-x^2} dx \qquad d(4-x^2) = -2x dx$$

$$= 6 \int_{-2}^{2} \sqrt{4 - x^{2}} dx + \int_{-2}^{2} \left(4 - x^{2}\right)^{1/2} d\left(4 - x^{2}\right)$$

$$= 3 \left[x\sqrt{4 - x^{2}} + 4\sin^{-1}\frac{x}{2}\right]_{-2}^{2} + \frac{2}{3} \left[\left(4 - x^{2}\right)^{3/2}\right]_{-2}^{2}$$

$$= 3 \left[4\sin^{-1}1 - 4\sin^{-1}(-1)\right] + \frac{2}{3}(0)$$

$$= 12\left(\frac{\pi}{2} + \frac{\pi}{2}\right)$$

$$= 12\pi$$

Find the volumes of the region common to the interiors of the cylinders $x^2 + y^2 = 1$ and $x^2 + z^2 = 1$, one-eighth of which is shown below

Solution

$$V = 8 \int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}}} dz dy dx$$

$$= 8 \int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \sqrt{1-x^{2}} dy dx$$

$$= 8 \int_{0}^{1} \sqrt{1-x^{2}} \left[y \right]_{0}^{\sqrt{1-x^{2}}} dx$$

$$= 8 \int_{0}^{1} \left(1 - x^{2} \right) dx$$

$$= 8 \left[x - \frac{1}{3} x^{3} \right]_{0}^{1}$$

$$= \frac{16}{3}$$

Exercise

Find the volume of the solid in the first octant bounded by the plane 2x + 3y + 6z = 12 and the coordinate planes

$$z = \frac{12 - 2x - 3y}{6} = 2 - \frac{x}{3} - \frac{y}{2}$$
 $z = 0 \rightarrow 2x + 3y = 12 \rightarrow y = 4 - \frac{2x}{3}$

$$0 \le z \le 2 - \frac{x}{3} - \frac{y}{2}; \quad 0 \le y \le 4 - \frac{2x}{3}; \quad 0 \le x \le 6$$

$$V = \int_0^6 \int_0^{4 - \frac{2x}{3}} \int_0^{2 - \frac{x}{3} - \frac{y}{2}} 1 \, dz \, dy \, dx$$

$$= \int_0^6 \int_0^{4 - \frac{2x}{3}} z \left| \frac{2 - \frac{x}{3} - \frac{y}{2}}{0} \, dy \, dx \right|$$

$$= \int_0^6 \left(2y - \frac{x}{3}y - \frac{1}{4}y^2 \right) \left| \frac{4 - \frac{2x}{3}}{0} \, dx \right|$$

$$(0, 0, 2)$$

$$(0, 4, 0)$$

$$y$$

$$x$$

$$(6, 0, 0) 2x + 3y + 6z = 12$$

$$= \int_0^6 \left(8 - \frac{4}{3}x - \frac{4}{3}x + \frac{2}{9}x^2 - \frac{1}{4}\left(16 - \frac{16}{3}x + \frac{4}{9}x^2\right)\right) dx$$

$$= \int_0^6 \left(4 - \frac{4}{3}x + \frac{1}{9}x^2\right) dx$$

$$= 4x - \frac{2}{3}x^2 + \frac{1}{27}x^3 \Big|_0^6$$

= 8 unit³

Find the volume of the solid in the first octant formed when the cylinder $z = \sin y$, for $0 \le y \le \pi$, is sliced by the planes y = x and x = 0

$$V = \int_0^{\pi} \int_x^{\pi} \int_0^{\sin y} 1 \, dz \, dy \, dx$$
$$= \int_0^{\pi} \int_x^{\pi} z \left| \frac{\sin y}{0} \, dy \, dx \right|$$
$$= \int_0^{\pi} \int_x^{\pi} \sin y \, dy \, dx$$
$$= -\int_0^{\pi} \cos y \left| \frac{\pi}{x} \, dx \right|$$

$$= -\int_{0}^{\pi} (-1 - \cos x) dx$$
$$= (x + \sin x) \Big|_{0}^{\pi}$$
$$= \pi \Big|_{unit}^{3}$$

Find the volume of the solid bounded below by the cone $z = \sqrt{x^2 + y^2}$ and bounded above the sphere $x^2 + y^2 + z^2 = 8$

$$z = \sqrt{x^{2} + y^{2}} \quad z = \sqrt{8 - x^{2} - y^{2}}$$

$$x^{2} + y^{2} + \left(\sqrt{x^{2} + y^{2}}\right)^{2} = 8 \implies x^{2} + y^{2} = 4 \implies y = \pm\sqrt{4 - x^{2}}$$

$$(y = 0) \Rightarrow x^{2} = 4 \quad \underline{x = \pm 2}$$

$$V = \int_{-2}^{2} \int_{-\sqrt{4 - x^{2}}}^{\sqrt{4 - x^{2}}} \int_{\sqrt{x^{2} + y^{2}}}^{\sqrt{8 - x^{2} - y^{2}}} 1 \, dz \, dy \, dx$$

$$= \int_{-2}^{2} \int_{-\sqrt{4 - x^{2}}}^{\sqrt{4 - x^{2}}} z \left| \sqrt{8 - x^{2} - y^{2}} \, dy \, dx \right|$$

$$= \int_{-2}^{2} \int_{-\sqrt{4 - x^{2}}}^{\sqrt{4 - x^{2}}} \left(\sqrt{8 - x^{2} - y^{2}} - \sqrt{x^{2} + y^{2}} \right) \, dy \, dx \qquad Con$$

$$= \int_{0}^{2\pi} \int_{0}^{2} \left(\sqrt{8 - r^{2}} - r \right) r \, dr \, d\theta$$

$$= \int_{0}^{2\pi} d\theta \int_{0}^{2} \left(r\sqrt{8 - r^{2}} - r^{2} \right) \, dr$$

$$= (2\pi) \left(\int_{0}^{2} \frac{-1}{2} (8 - r^{2})^{3/2} \left| \frac{1}{2} - \frac{8}{3} \right| \right)$$

$$= (\pi) \left(-\frac{2}{3} (8 - r^{2})^{3/2} \left| \frac{1}{2} - \frac{8}{3} \right| \right)$$

Convert to **Polar coordinates**

$$= \pi \left(-\frac{2}{3} \left(8 - 16\sqrt{2} \right) - \frac{8}{3} \right)$$
$$= \frac{32\pi}{3} \left(\sqrt{2} - 1 \right) \left| unit^3 \right|$$

The solid between the sphere $x^2 + y^2 + z^2 = 19$ and the hyperboloid $z^2 - x^2 - y^2 = 1$, for z > 0

Solution

$$z^2 = 1 + x^2 + y^2$$

The intersection of the sphere and hyperboloid:

$$x^{2} + y^{2} + z^{2} = 19 \rightarrow x^{2} + y^{2} + 1 + x^{2} + y^{2} = 19$$
$$2x^{2} + 2y^{2} = 18 \rightarrow x^{2} + y^{2} = 9$$

$$V = \int_{-3}^{3} \int_{-\sqrt{9-x^2}}^{\sqrt{9-x^2}} \int_{\sqrt{1+x^2+y^2}}^{\sqrt{19-x^2-y^2}} dz dy dx$$

$$= \int_{-3}^{3} \int_{-\sqrt{9-x^2}}^{\sqrt{9-x^2}} z \left| \frac{\sqrt{19-x^2-y^2}}{\sqrt{1+x^2+y^2}} \right| dy dx$$

$$= \int_{-3}^{3} \int_{-\sqrt{9-x^2}}^{\sqrt{9-x^2}} \left(\sqrt{19-x^2-y^2} - \sqrt{1+x^2+y^2} \right) dy dx$$

$$= \int_{0}^{2\pi} \int_{0}^{3} \left(\sqrt{19 - r^2} - \sqrt{1 + r^2} \right) r dr d\theta$$

$$= \int_0^{2\pi} d\theta \left(-\frac{1}{2} \int_0^3 \left(19 - r^2 \right)^{1/2} d\left(19 - r^2 \right) - \frac{1}{2} \int_0^3 \left(1 + r^2 \right)^{1/2} d\left(1 + r^2 \right) \right)$$

$$= -\frac{2\pi}{3} \left(\left(19 - r^2 \right)^{3/2} + \left(1 + r^2 \right)^{3/2} \right) \begin{vmatrix} 3 \\ 0 \end{vmatrix}$$

$$= -\frac{2\pi}{3} \left(10\sqrt{10} + 10\sqrt{10} - 19\sqrt{19} - 1 \right)$$

$$=\frac{2\pi}{3}\left(1-20\sqrt{10}+19\sqrt{19}\right)$$

Find the volume of the prism in the first octant bounded below by z = 2 - 4x and y = 8

Solution

$$z = 2 - 4x = 0 \implies x = \frac{1}{2}$$

$$V = \int_{0}^{1/2} \int_{0}^{8} \int_{0}^{2 - 4x} 1 \, dz \, dy \, dx$$

$$= \int_{0}^{1/2} \int_{0}^{8} (2 - 4x) \, dy \, dx$$

$$= \int_{0}^{1/2} (2 - 4x) \, y \, \bigg|_{0}^{8} \, dx$$

$$= 16 \int_{0}^{1/2} (1 - 2x) \, dx$$

$$= 16 \left(x - x^{2} \right) \, \bigg|_{0}^{1/2}$$

$$= 16 \left(\frac{1}{2} - \frac{1}{4} \right)$$

$$= 4 \quad unit^{3}$$

Exercise

Find the volume of the wedge above the xy-plane formed when the cylinder $x^2 + y^2 = 4$ is cut by the planes z = 0 and y = -z

$$0 \le z \le -y \quad (y < 0); \quad -\sqrt{4 - x^2} \le y \le 0; \quad y = 0 \to x^2 = 4 \implies -2 \le x \le 2$$

$$V = \int_{-2}^{2} \int_{-\sqrt{4 - x^2}}^{0} \int_{0}^{-y} 1 \, dz \, dy \, dx$$

$$= \int_{-2}^{2} \int_{-\sqrt{4 - x^2}}^{0} (-y) \, dy \, dx$$

$$= -\frac{1}{2} \int_{-2}^{2} (y^2) \Big|_{-\sqrt{4 - x^2}}^{0} \, dx$$

$$= \frac{1}{2} \int_{-2}^{2} (4 - x^{2}) dx$$

$$= \frac{1}{2} \left(4x - \frac{1}{3}x^{3} \right) \Big|_{-2}^{2}$$

$$= 8 - \frac{8}{3}$$

$$= \frac{16}{3} \quad unit^{3}$$

The wedge bounded by the parabolic cylinder $y = x^2$ and the planes z = 3 - y and z = 0

$$z = 3 - y = 0 \rightarrow \underline{y} = 3$$

$$y = x^{2} = 3 \rightarrow \underline{x} = \pm \sqrt{3}$$

$$V = \int_{-\sqrt{3}}^{\sqrt{3}} \int_{x^{2}}^{3} \int_{0}^{3 - y} dz dy dx$$

$$= \int_{-\sqrt{3}}^{\sqrt{3}} \int_{x^{2}}^{3} z \Big|_{0}^{3 - y} dy dx$$

$$= \int_{-\sqrt{3}}^{\sqrt{3}} \int_{x^{2}}^{3} (3 - y) dy dx$$

$$= \int_{-\sqrt{3}}^{\sqrt{3}} \left(3y - \frac{1}{2}y^{2}\right) \Big|_{x^{2}}^{3} dx$$

$$= \int_{-\sqrt{3}}^{\sqrt{3}} \left(\frac{9}{2} - 3x^{2} + \frac{1}{2}x^{4}\right) dx$$

$$= \left(\frac{9}{2}x - x^{3} + \frac{1}{10}x^{5}\right) \Big|_{-\sqrt{3}}^{\sqrt{3}}$$

$$= 2\left(\frac{9}{2}\sqrt{3} - 3\sqrt{3} + \frac{9}{10}\sqrt{3}\right)$$

$$= \frac{24\sqrt{3}}{5} \quad unit^{3}$$

Find the volume of the solid bounded by the surfaces $z = e^y$ and z = 1 over the rectangle $\{(x, y): 0 \le x \le 1, 0 \le y \le \ln 2\}$

Solution

$$V = \int_0^1 \int_0^{\ln 2} \int_1^{e^y} 1 \, dz \, dy \, dx$$
$$= \int_0^1 dx \int_0^{\ln 2} \left(e^y - 1 \right) \, dy$$
$$= x \left| \int_0^1 \left(e^y - y \right) \right| \int_0^{\ln 2}$$
$$= 1 - \ln 2 \int_0^1 unit^3$$

Exercise

Find the volume of the wedge of the cylinder $x^2 + 4y^2 = 4$ created by the planes z = 3 - x and z = x - 3

$$y^{2} = \frac{1}{4}(4 - x^{2}) \rightarrow y = \pm \frac{1}{2}\sqrt{4 - x^{2}} \text{ v}$$

$$x^{2} = 4 \rightarrow -2 \le x \le 2$$

$$V = \int_{-2}^{2} \int_{-\frac{1}{2}\sqrt{4 - x^{2}}}^{\frac{1}{2}\sqrt{4 - x^{2}}} \int_{x-3}^{3-x} 1 \, dz \, dy \, dx$$

$$= \int_{-2}^{2} \int_{-\frac{1}{2}\sqrt{4 - x^{2}}}^{\frac{1}{2}\sqrt{4 - x^{2}}} \int_{x-3}^{3-x} 1 \, dz \, dy \, dx$$

$$= \int_{-2}^{2} \int_{-\frac{1}{2}\sqrt{4 - x^{2}}}^{\frac{1}{2}\sqrt{4 - x^{2}}} \, dx$$

$$= \int_{-2}^{2} (6 - 2x) \sqrt{4 - x^{2}} \, dx$$

$$= \int_{-2}^{2} (6 - 2x) \sqrt{4 - x^{2}} \, dx$$

$$= \int_{-2}^{2} (6 - 2x) \sqrt{4 - x^{2}} \, dx$$

$$= \int_{-2}^{2} 6\sqrt{4 - x^{2}} \, dx + \int_{-2}^{2} \sqrt{4 - x^{2}} \, d\left(4 - x^{2}\right) \qquad \int \sqrt{a^{2} - x^{2}} \, dx = \frac{x}{2} \sqrt{a^{2} - x^{2}} + \frac{a^{2}}{2} \sin^{-1} \frac{x}{a}$$

$$\int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a}$$

$$= 3x\sqrt{4 - x^{2}} + 12\sin^{-1}\frac{x}{2} + \frac{2}{3}\sqrt{4 - x^{2}} \Big|_{-2}^{2}$$

$$= 12\frac{\pi}{2} + 12\frac{\pi}{2}$$

$$= 12\pi \quad unit^{3}$$

Find the volume of the solid in the first octant bounded by the cone $z = 1 - \sqrt{x^2 + y^2}$ and the plane x + y + z = 1

Solution

 $0 \le z \le 1$

$$z = 1 - \sqrt{x^2 + y^2} \rightarrow x^2 + y^2 = (1 - z)^2 \Rightarrow x = \sqrt{(1 - z)^2 - y^2}$$
$$1 - y - z \le x \le \sqrt{(1 - z)^2 - y^2}$$

$$0 \le y \le 1 - z$$

$$V = \int_{0}^{1} \int_{1}^{1-z} \int_{1-y-z}^{\sqrt{(1-z)^{2}-y^{2}}} 1 \, dx \, dy \, dz$$

$$= \int_{0}^{1} \int_{1}^{1-z} x \, \left| \frac{\sqrt{(1-z)^{2}-y^{2}}}{1-y-z} \, dy \, dz \right|$$

$$= \int_{0}^{1} \int_{1}^{1-z} \left(\sqrt{(1-z)^{2}-y^{2}} - 1 + y + z \right) \, dy \, dz \qquad \int \sqrt{a^{2}-x^{2}} \, dx = \frac{x}{2} \sqrt{a^{2}-x^{2}} + \frac{a^{2}}{2} \sin^{-1} \frac{x}{a}$$

$$= \int_{0}^{1} \frac{y}{2} \sqrt{(1-z)^{2}-y^{2}} + \frac{1}{2} (1-z)^{2} \sin^{-1} \left(\frac{y}{1-z} \right) - y + \frac{1}{2} y^{2} + zy \, \left| \frac{1-z}{0} \right| \, dz$$

$$= \int_{0}^{1} \left(\frac{1}{2}(1-z)^{2} \sin^{-1}(1) + \frac{1}{2}(1-z)^{2} - (1-z)^{2}\right) dz$$

$$= \int_{0}^{1} \left(\frac{\pi}{4}(1-z)^{2} - \frac{1}{2}(1-z)^{2}\right) dz$$

$$= \frac{\pi-2}{4} \int_{0}^{1} (1-z)^{2} d(1-z)$$

$$= \frac{\pi-2}{12} (1-z)^{3} \Big|_{0}^{1}$$

$$= \frac{\pi-2}{12} \quad unit^{3} \Big|_{0}^{1}$$

Find the volume of the solid bounded by x = 0, $x = 1 - z^2$, y = 0, z = 0, and z = 1 - y

$$V = \int_{0}^{1} \int_{0}^{1-z^{2}} \int_{0}^{1-z} 1 \, dy dx dz$$

$$= \int_{0}^{1} \int_{0}^{1-z^{2}} (1-z) \, dx dz$$

$$= \int_{0}^{1} (1-z) x \Big|_{0}^{1-z^{2}} \, dz$$

$$= \int_{0}^{1} (1-z) (1-z^{2}) \, dz$$

$$= \int_{0}^{1} (1-z^{2}-z+z^{3}) \, dz$$

$$= z - \frac{1}{3}z^{3} - \frac{1}{2}z^{2} + \frac{1}{4}z^{4} \Big|_{0}^{1}$$

$$= 1 - \frac{1}{3} - \frac{1}{2} + \frac{1}{4}$$

$$= \frac{5}{12} \quad unit^{3}$$

Find the volume of the solid bounded by x = 0, y = 0, $y = e^{-z}$, z = 0, and z = 1

Solution

$$V = \int_0^2 \int_0^1 \int_0^{e^{-z}} 1 \, dy dz dx$$

$$= \int_0^2 dx \int_0^1 y \left| \frac{e^{-z}}{0} \right| dz$$

$$= 2 \int_0^1 e^{-z} \, dz$$

$$= -2e^{-z} \left| \frac{1}{0} \right|_0^2$$

$$= -2\left(e^{-1} - 1\right)$$

$$= 2 - \frac{2}{e} \quad unit^3$$

Exercise

Find the volume of the solid bounded by x = 0, x = 2, y = z, y = z + 1, z = 0, and z = 4

Solution

$$V = \int_{0}^{2} \int_{0}^{4} \int_{z}^{z+1} 1 \, dy \, dz \, dx$$

$$= \int_{0}^{2} \int_{0}^{4} y \, \Big|_{z}^{z+1} \, dz \, dx$$

$$= \int_{0}^{2} dx \int_{0}^{4} dz = (2)(4)$$

$$= 8 \quad unit^{3}$$

Exercise

Find the volume of the solid bounded by x = 0, $y = z^2$, z = 0, and z = 2 - x - y

Solution

$$y = 2 - x - z; \quad |x = 2 - z - y| = 2 - z - z^{2}|$$

$$V = \int_{0}^{1} \int_{0}^{2 - z - z^{2}} \int_{z^{2}}^{2 - x - z} 1 \, dy dx dz$$

$$= \int_{0}^{1} \int_{0}^{2 - z - z^{2}} \left(2 - x - z - z^{2}\right) dx dz$$

$$= \int_{0}^{1} \left(\left(2 - z - z^{2}\right)x - \frac{1}{2}x^{2}\right) \Big|_{0}^{2 - z - z^{2}} dz$$

$$= \frac{1}{2} \int_{0}^{1} \left(4 - 4z - 3z^{2} + 2z^{3} + z^{4}\right) dz$$

$$= \frac{1}{2} \left(4z - 2z^{2} - z^{3} + \frac{1}{2}z^{4} + \frac{1}{5}z^{5}\right) \Big|_{0}^{1}$$

$$= \frac{1}{2} \left(4 - 2 - 1 + \frac{1}{2} + \frac{1}{5}\right)$$

$$= \frac{17}{20} \quad unit^{3}$$

Exercise

Find the volume of the solid common to the cylinders $z = \sin x$ and $z = \sin y$ over the square

$$R = \{(x, y): 0 \le x \le \pi, 0 \le y \le \pi\}$$

Solution

$$z = \sin x = \sin y \rightarrow x = y \text{ or } y = \pi - x$$

$$V = 4 \int_0^{\pi/2} \int_x^{\pi-x} \int_0^{\sin y} 1 dz dy dx$$

$$= 4 \int_0^{\pi/2} \int_x^{\pi-x} \sin y \, dy dx$$

$$= -4 \int_0^{\pi/2} \cos y \Big|_x^{\pi-x} dx$$

$$= -4 \int_0^{\pi/2} (\cos(\pi - x) - \cos x) \, dx$$

4: by symmetry, volume – **4** times

$$= -4 \int_0^{\pi/2} (-2\cos x) dx$$

$$= 8\sin x \Big|_0^{\pi/2}$$

$$= 8 \int_0^{\pi/2} unit^3 dx$$

Find the volume of the wedge of the square column |x| + |y| = 1 created by the planes z = 0 and x + y + z = 1

Solution

$$0 \le z \le 1 - x - y$$

$$|x| + |y| = 1 \implies y = 1 - x$$

$$-x + y = 1 \implies y = 1 + x$$

$$x - y = 1 \implies y = x - 1$$

$$-x - y = 1 \implies y = -x - 1$$

$$\begin{cases} y = -x - 1 \\ y = x + 1 \end{cases} \implies -1 \le x \le 0 \quad \begin{cases} y = x - 1 \\ y = -x + 1 \end{cases} \implies 0 \le x \le 1$$

$$V = \int_{-1}^{0} \int_{-x - 1}^{x + 1} \int_{0}^{1 - x - y} 1 dz dy dx + \int_{0}^{1} \int_{x - 1}^{-x + 1} \int_{0}^{1 - x - y} 1 dz dy dx$$

$$= \int_{-1}^{0} \int_{-x - 1}^{x + 1} (1 - x - y) dy dx + \int_{0}^{1} \int_{x - 1}^{-x + 1} (1 - x - y) dy dx$$

$$= \int_{-1}^{0} ((1 - x)y - \frac{1}{2}y^{2}) \Big|_{-x - 1}^{x + 1} dx + \int_{0}^{1} ((1 - x)y - \frac{1}{2}y^{2}) \Big|_{x - 1}^{-x + 1} dx$$

$$= \int_{-1}^{0} 2(1 - x)(x + 1) dx + \int_{0}^{1} 2(1 - x)^{2} dx$$

$$= \int_{-1}^{0} 2(1 - x^{2}) dx + 2 \int_{0}^{1} (1 - 2x + x^{2}) dx$$

$$= 2\left(x - \frac{1}{3}x^{3}\right) \Big|_{-1}^{0} + 2\left(x - x^{2} + \frac{1}{3}x^{3}\right) \Big|_{0}^{1}$$

$$= 2\left(1 - \frac{1}{3}\right) + \frac{2}{3}$$

$$= 2| unit^{3}$$

Exercise

Find the volume of a right circular cone with height h and base radius r.

Solution

The equation of a circle is centered at the origin with radius r: $x^2 + y^2 = r^2$

$$-\sqrt{r^2 - x^2} \le y \le \sqrt{r^2 - x^2}$$
 & $-r \le x \le r$

$$z = a - b\sqrt{x^2 + y^2} \begin{cases} z = h & \underline{h = a} \\ z = 0 & 0 = a - br = h - br \implies b = \frac{h}{r} \end{cases}$$

The equation of a cone with height h: $z = h - \frac{h}{r} \sqrt{x^2 + y^2}$

$$V = \int_{-r}^{r} \int_{-\sqrt{r^{2}-x^{2}}}^{\sqrt{r^{2}-x^{2}}} \int_{0}^{h-\frac{h}{r}\sqrt{x^{2}+y^{2}}} 1 dz dy dx$$

$$= \int_{-r}^{r} \int_{-\sqrt{r^{2}-x^{2}}}^{\sqrt{r^{2}-x^{2}}} \left(h - \frac{h}{r} \sqrt{x^{2}+y^{2}} \right) dy dx \qquad \text{Let } x^{2} + y^{2} = R^{2} \text{ (Polar Coordinates)}$$

$$= \int_{0}^{2\pi} \int_{0}^{r} \left(h - \frac{h}{r} R \right) R dR d\theta$$

$$= \int_{0}^{2\pi} d\theta \int_{0}^{r} \left(hR - \frac{h}{r} R^{2} \right) dR$$

$$= 2\pi \left(\frac{1}{2} hR^{2} - \frac{h}{3r} R^{3} \right) \Big|_{0}^{r}$$

$$= 2\pi \left(\frac{1}{2} hr^{2} - \frac{1}{3} hr^{2} \right)$$

$$= \frac{1}{3} \pi r^{2} h \qquad unit^{3}$$

Exercise

Find the volume of a tetrahedron whose vertices are located at (0, 0, 0), (a, 0, 0), (0, b, 0), and (0, 0, c)

Solution

The equation of the plane through the vertices: $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$

$$0 \le z \le c \left(1 - \frac{x}{a} - \frac{y}{b}\right) \quad 0 \le y \le b \left(1 - \frac{x}{a}\right) \quad 0 \le x \le a$$

$$V = \int_0^a \int_0^b \left(1 - \frac{x}{a}\right) \int_0^c \left(1 - \frac{x}{a} - \frac{y}{b}\right) 1 dz dy dx$$
$$= \int_0^a \int_0^b \left(1 - \frac{x}{a}\right) c \left(1 - \frac{x}{a} - \frac{y}{b}\right) dy dx$$

$$= c \int_{0}^{a} \left(\left(1 - \frac{x}{a} \right) y - \frac{1}{2b} y^{2} \right) \Big|_{0}^{b \left(1 - \frac{x}{a} \right)} dx$$

$$= c \int_{0}^{a} \left(b \left(1 - \frac{x}{a} \right)^{2} - \frac{1}{2} b \left(1 - \frac{x}{a} \right)^{2} \right) dx$$

$$= \frac{1}{2} b c \int_{0}^{a} \left(1 - \frac{2}{a} x + \frac{1}{a^{2}} x^{2} \right) dx$$

$$= \frac{1}{2} b c \left(x - \frac{1}{a} x^{2} + \frac{1}{3a^{2}} x^{3} \right) \Big|_{0}^{a}$$

$$= \frac{1}{2} b c \left(a - a + \frac{1}{3} a \right)$$

$$= \frac{abc}{6}$$

Find the volume of a truncated cone of height h whose ends have radii r and R.

Solution

There are 2 volumes to consider:

- 1. Volume of the cylinder: $V_1 = \pi r^2 h$
- 2. Volume V_2 that remains when cylinder is removed.

 V_2 is the annulus centered at the origin with inner radius r

and outer radius R.

Using Polar Coordinates: the equation of the frustum is: $z = \frac{h}{R-r}(R-a)$

$$V_{2} = \int_{0}^{2\pi} \int_{r}^{R} \int_{0}^{\frac{h}{R-r}(R-a)} adz dad\theta$$

$$= \int_{0}^{2\pi} \int_{r}^{R} \frac{h}{R-r}(R-a) a \ dad\theta$$

$$= \frac{h}{R-r} \int_{0}^{2\pi} d\theta \int_{r}^{R} \left(Ra - a^{2}\right) da$$

$$= \frac{2\pi h}{R-r} \left(\frac{1}{2}Ra^{2} - \frac{1}{3}a^{3}\right) \Big|_{r}^{R}$$

$$= \frac{2\pi h}{R-r} \left(\frac{1}{2}R^{3} - \frac{1}{3}R^{3} - \frac{1}{2}Rr^{2} + \frac{1}{3}r^{3}\right)$$

$$= \frac{2\pi h}{R - r} \left(\frac{1}{6} R^3 - \frac{1}{2} R r^2 + \frac{1}{3} r^3 \right)$$

$$= \frac{1}{3} \frac{\pi h}{R - r} \left(R^3 - 3R r^2 + 2r^3 \right)$$

$$V_1 + V_1 = \pi r^2 h + \frac{1}{3} \frac{\pi h}{R - r} \left(R^3 - 3R r^2 + 2r^3 \right)$$

$$= \frac{1}{3} \frac{\pi h}{R - r} \left(3r^2 (R - r) + R^3 - 3R r^2 + 2r^3 \right)$$

$$= \frac{1}{3} \frac{\pi h}{R - r} \left(R^3 - r^3 \right)$$

$$= \frac{1}{3} \frac{\pi h}{R - r} (R - r) \left(R^3 + rR + r^2 \right)$$

$$= \frac{1}{3} \pi h \left(R^3 + rR + r^2 \right)$$

Find the volume of the solid that is bounded above by the cylinder $z = 4 - x^2$, on the sides by the cylinder $x^2 + y^2 = 4$, and below by the xy-plane.

$$z = 4 - x^{2} \rightarrow 0 \le z \le 4 - x^{2}$$

$$x^{2} + y^{2} = 4 \rightarrow -\sqrt{4 - x^{2}} \le y \le \sqrt{4 - x^{2}}$$
Since it is symmetric, then $0 \le y \le \sqrt{4 - x^{2}}$

$$y = 0 \rightarrow x = \pm 2 \qquad 0 \le x \le 2$$

$$V = 4 \int_{0}^{2} \int_{0}^{\sqrt{4 - x^{2}}} \int_{0}^{4 - x^{2}} dz dy dx$$

$$= 4 \int_{0}^{2} \int_{0}^{\sqrt{4 - x^{2}}} \left(4 - x^{2}\right) dy dx$$

$$= 4 \int_{0}^{2} \left(4 - x^{2}\right) y \left|_{0}^{\sqrt{4 - x^{2}}} dx\right|$$

$$= 4 \int_{0}^{2} \left(4 - x^{2}\right) y \left|_{0}^{\sqrt{4 - x^{2}}} dx\right|$$

$$= 4 \int_{0}^{2} \left(4 - x^{2}\right)^{3/2} dx$$

$$x = 2 \sin \alpha \rightarrow 4 - x^{2} = 4 \cos^{2} \alpha$$

$$dx = 2\cos\alpha d\alpha$$

$$\begin{cases} x = 2 \quad \to \alpha = \sin^{-1} 1 = \frac{\pi}{2} \\ x = 0 \quad \to \alpha = \sin^{-1} 0 = 0 \end{cases}$$

$$= 4 \int_{0}^{\pi/2} 16\cos^{4}\alpha \, d\alpha$$

$$= 64 \int_{0}^{\pi/2} \left(\frac{1 + \cos 2\alpha}{2}\right)^{2} \, d\alpha$$

$$= 16 \int_{0}^{\pi/2} \left(1 + 2\cos 2\alpha + \cos^{2} 2\alpha\right) \, d\alpha$$

$$= 16 \int_{0}^{\pi/2} \left(1 + 2\cos 2\alpha + \frac{1}{2} + \frac{1}{2}\cos 4\alpha\right) \, d\alpha$$

$$= 16 \left(\frac{3}{2}\alpha + \sin 2\alpha + \frac{1}{8}\sin 4\alpha\right) \Big|_{0}^{\pi/2}$$

$$= 16 \left(\frac{3}{2}\alpha + \sin 2\alpha + \frac{1}{8}\sin 4\alpha\right) \Big|_{0}^{\pi/2}$$

$$= 16 \left(\frac{3\pi}{4}\right)$$

$$= 12\pi \quad unit^{3}$$

Find the volume of the prism in the first octant bounded by the planes y = 3 - 3x and z = 2

$$V = \int_{0}^{1} \int_{0}^{3-3x} \int_{0}^{2} dz dy dx$$

$$= \int_{0}^{1} \int_{0}^{3-3x} z \Big|_{0}^{2} dy dx$$

$$= 2 \int_{0}^{1} \int_{0}^{3-3x} dy dx$$

$$= 2 \int_{0}^{1} y \Big|_{0}^{3-3x} dx$$

$$= 2 \int_{0}^{1} (3-3x) dx$$

$$= 2\left(3x - \frac{3}{2}x^2\right)\Big|_0^1$$
$$= 2\left(3 - \frac{3}{2}\right)$$
$$= 3 \quad unit^3$$

Find the volume of the prism in the first octant bounded by the planes $x^2 + y^2 = 4$ and $x^2 + z^2 = 4$

$$x^{2} + y^{2} = 4 \rightarrow y^{2} \le 4 - x^{2}$$

$$-\sqrt{4 - x^{2}} \le y \le \sqrt{4 - x^{2}}$$

$$x^{2} + z^{2} = 4 \rightarrow z^{2} \le 4 - x^{2}$$

$$-\sqrt{4 - x^{2}} \le z \le \sqrt{4 - x^{2}}$$

$$x^{2} \le 4 \rightarrow -2 \le x \le 2$$

$$V = \int_{-2}^{2} \int_{-\sqrt{4 - x^{2}}}^{\sqrt{4 - x^{2}}} \int_{-\sqrt{4 - x^{2}}}^{\sqrt{4 - x^{2}}} dz dy dx$$

$$= \int_{-2}^{2} \int_{-\sqrt{4 - x^{2}}}^{\sqrt{4 - x^{2}}} z \Big|_{-\sqrt{4 - x^{2}}}^{\sqrt{4 - x^{2}}} dy dx$$

$$= 2 \int_{-2}^{2} \int_{-\sqrt{4 - x^{2}}}^{\sqrt{4 - x^{2}}} \sqrt{4 - x^{2}} dy dx$$

$$= 2 \int_{-2}^{2} \sqrt{4 - x^{2}} y \Big|_{-\sqrt{4 - x^{2}}}^{\sqrt{4 - x^{2}}} dx$$

$$= 4 \int_{-2}^{2} (4 - x^{2}) dx$$

$$= 4 \left(4x - \frac{1}{3}x^{3}\right) \Big|_{-2}^{2}$$

$$= 8 \left(8 - \frac{8}{3}\right)$$

$$= \frac{128}{3} \quad unit^{3} \Big|$$

