SD-TSIA204 Statistics : linear models

Joseph Salmon

http://josephsalmon.eu Télécom ParisTech, Institut Mines-Télécom

Outline

Introduction: OLS with two features

Multivariate least square

Table of Contents

Introduction: OLS with two features

Multivariate least square

Toward multivariate models

Tree volume as a function of height / girth (: circonférence)

Toward multivariate models

Tree volume as a function of height / girth (■ : circonférence)

Python commands

```
from matplotlib.mplot3d import Axes3D
# Load data
url = 'http://vincentarelbundock.github.io/
       Rdatasets/csv/datasets/trees.csv'
dat3 = pd.read_csv(url)
# Fit regression model
X = dat3[['Girth', 'Height']]
X = sm.add constant(X)
y = dat3['Volume']
results = sm.OLS(y, X).fit().params
XX = np.arange(8, 22, 0.5)
YY = np.arange(64, 90, 0.5)
xx, yy = np.meshgrid(XX, YY)
zz = results[0] + results[1]*xx + results[2]*yy
fig = plt.figure()
ax = Axes3D(fig)
ax.plot(X['Girth'],X['Height'],y,'o')
ax.plot_wireframe(xx, yy, zz, rstride=10, cstride=10)
plt.show()
```

Table of Contents

Introduction: OLS with two features

Multivariate least square

Matrix model

Least squares definition

Optimization

Uniqueness issues

Closed-form solution, prediction and residual

Model

One observes p features $(\mathbf{x}_1, \dots, \mathbf{x}_p)$

Model in dimension p

$$y_{i} = \theta_{0}^{\star} + \sum_{j=1}^{p} \theta_{j}^{\star} x_{i,j} + \varepsilon_{i}$$

$$\varepsilon_{i} \overset{i.i.d}{\sim} \varepsilon, \text{ pour } i = 1, \dots, n$$

$$\mathbb{E}(\varepsilon) = 0$$

Rem:we assume (frequentist point of view) there exists a "true" parameter $\boldsymbol{\theta^{\star}} = (\theta_0^{\star}, \dots, \theta_p^{\star})^{\top} \in \mathbb{R}^{p+1}$

Dimension p

Matrix model

$$\underbrace{\left(\begin{array}{c}y_1\\\vdots\\y_n\end{array}\right)}_{\mathbf{y}} = \underbrace{\left(\begin{array}{ccc}1&x_{1,1}&\ldots&x_{1,p}\\\vdots&\vdots&\ddots&\vdots\\1&x_{n,1}&\ldots&x_{n,p}\end{array}\right)}_{X}\underbrace{\left(\begin{array}{c}\theta_0^{\star}\\\vdots\\\theta_p^{\star}\end{array}\right)}_{\boldsymbol{\theta}^{\star}} + \underbrace{\left(\begin{array}{c}\varepsilon_1\\\vdots\\\varepsilon_n\end{array}\right)}_{\boldsymbol{\varepsilon}}$$

Equivalently :
$$\mathbf{y} = X\boldsymbol{\theta}^{\star} + \boldsymbol{\varepsilon}$$

$$\frac{\text{Column notation}}{\mathbf{x}_0 = \mathbf{1}_n = (1, \dots, 1)^\top} : X = (\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_p) \text{ with }$$

$$\underline{\text{Line notation}}: X = \begin{pmatrix} x_1^\top \\ \vdots \\ x_n^\top \end{pmatrix} = (x_1, \dots, x_n)^\top$$

Rem: often x_0 will be omitted by simplicity, e.g., center y first

Vocabulary

$$\mathbf{y} = X\boldsymbol{\theta}^{\star} + \boldsymbol{\varepsilon}$$

- $\mathbf{y} \in \mathbb{R}^n$: observations vector
- $X \in \mathbb{R}^{n \times (p+1)}$: design matrix (with features as columns)
- $heta^\star \in \mathbb{R}^{p+1}$: (unknown) **true** parameter to be estimated
- $\pmb{\varepsilon} \in \mathbb{R}^n$: noise vector

"Observations" point of view : $y_i = \langle x_i, \theta^* \rangle + \varepsilon_i$ for $i = 1, \dots, n$ $\langle \cdot, \cdot \rangle$ stands for standard inner product (\blacksquare : produit scalaire)

"Features" point of view :
$$\mathbf{y} = \sum_{j=0}^p \theta_j^\star \mathbf{x}_j + \varepsilon$$

(Ordinary) Least squares

 $\underline{\underline{\mathbf{A}}}$ least square estimator is \mathbf{any} solution of the following problem :

$$\hat{\boldsymbol{\theta}} \in \underset{\boldsymbol{\theta} \in \mathbb{R}^{p+1}}{\operatorname{arg \, min}} \left(\frac{1}{2} \| \mathbf{y} - X \boldsymbol{\theta} \|_{2}^{2} \right)$$

$$\hat{\boldsymbol{\theta}} \in \underset{\boldsymbol{\theta} \in \mathbb{R}^{p+1}}{\operatorname{arg \, min}} \frac{1}{2} \sum_{i=1}^{n} \left[y_{i} - \left(\theta_{0} + \sum_{j=1}^{p} \theta_{j} x_{i,j} \right) \right]^{2}$$

$$\hat{\boldsymbol{\theta}} \in \underset{\boldsymbol{\theta} \in \mathbb{R}^{p+1}}{\operatorname{arg \, min}} \frac{1}{2} \sum_{i=1}^{n} \left[y_{i} - \langle x_{i}, \boldsymbol{\theta} \rangle \right]^{2}$$

Rem: a solution always exists, as we are minimizing a coercive continuous function (coercive : $\lim_{\|x\| \to +\infty} f(x) = +\infty$)

Rem: uniqueness is not guaranteed

Rem: the $\frac{1}{2}$ term does not change the optimization problem, but simplifies gradient computation

First order condition / Fermat's rule

Theorem: Fermat's rule

If $f: \mathbb{R}^d \to \mathbb{R}$ is differentiable at a local minimum θ^* then the gradient of f vanishes at θ^* , i.e., $\nabla f(\theta^*) = 0$.

Rem: sufficient condition when f is convex!

For least squares $f: \boldsymbol{\theta} \mapsto \frac{1}{2} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2$ or

$$f(\boldsymbol{\theta}) = \frac{1}{2} \|\mathbf{y} - X\boldsymbol{\theta}\|_{2}^{2}$$

$$= \frac{1}{2} \|\mathbf{y}\|^{2} - \langle X\boldsymbol{\theta}, \mathbf{y} \rangle + \frac{1}{2} \boldsymbol{\theta}^{\top} X^{\top} X \boldsymbol{\theta}$$

$$= \frac{1}{2} \|\mathbf{y}\|^{2} - \langle \boldsymbol{\theta}, X^{\top} \mathbf{y} \rangle + \frac{1}{2} \boldsymbol{\theta}^{\top} X^{\top} X \boldsymbol{\theta}$$

The gradient of f, ∇f is defined for any ${\pmb{\theta}}$ as the vector satisfying :

$$f(\boldsymbol{\theta} + h) = f(\boldsymbol{\theta}) + \langle h, \nabla f(\boldsymbol{\theta}) \rangle + o(h)$$
 for any h

$$f(\boldsymbol{\theta} + h) = \frac{1}{2} \|\mathbf{y}\|^2 - \langle \boldsymbol{\theta} + h, X^{\top} \mathbf{y} \rangle + \frac{1}{2} (\boldsymbol{\theta} + h)^{\top} X^{\top} X (\boldsymbol{\theta} + h)$$

The gradient of f, ∇f is defined for any ${\boldsymbol \theta}$ as the vector satisfying :

$$f(\theta + h) = f(\theta) + \langle h, \nabla f(\theta) \rangle + o(h)$$
 for any h

$$f(\boldsymbol{\theta} + h) = \frac{1}{2} \|\mathbf{y}\|^2 - \langle \boldsymbol{\theta} + h, X^{\top} \mathbf{y} \rangle + \frac{1}{2} (\boldsymbol{\theta} + h)^{\top} X^{\top} X (\boldsymbol{\theta} + h)$$
$$= \frac{1}{2} \|\mathbf{y}\|^2 - \langle \boldsymbol{\theta}, X^{\top} \mathbf{y} \rangle - \langle h, X^{\top} \mathbf{y} \rangle$$
$$+ \frac{1}{2} \boldsymbol{\theta}^{\top} X^{\top} X \boldsymbol{\theta} + \frac{1}{2} h^{\top} X^{\top} X h + \boldsymbol{\theta}^{\top} X^{\top} X h$$

The gradient of f, ∇f is defined for any ${\boldsymbol \theta}$ as the vector satisfying :

$$f(\theta + h) = f(\theta) + \langle h, \nabla f(\theta) \rangle + o(h)$$
 for any h

$$f(\boldsymbol{\theta} + h) = \frac{1}{2} \|\mathbf{y}\|^2 - \langle \boldsymbol{\theta} + h, X^{\top} \mathbf{y} \rangle + \frac{1}{2} (\boldsymbol{\theta} + h)^{\top} X^{\top} X (\boldsymbol{\theta} + h)$$

$$= \frac{1}{2} \|\mathbf{y}\|^2 - \langle \boldsymbol{\theta}, X^{\top} \mathbf{y} \rangle - \langle h, X^{\top} \mathbf{y} \rangle$$

$$+ \frac{1}{2} \boldsymbol{\theta}^{\top} X^{\top} X \boldsymbol{\theta} + \frac{1}{2} h^{\top} X^{\top} X h + \boldsymbol{\theta}^{\top} X^{\top} X h$$

$$= f(\boldsymbol{\theta}) - \langle h, X^{\top} \mathbf{y} \rangle + \frac{1}{2} h^{\top} X^{\top} X h + \boldsymbol{\theta}^{\top} X^{\top} X h$$

The gradient of f, ∇f is defined for any ${\boldsymbol \theta}$ as the vector satisfying :

$$f(\theta + h) = f(\theta) + \langle h, \nabla f(\theta) \rangle + o(h)$$
 for any h

$$f(\boldsymbol{\theta} + h) = \frac{1}{2} \|\mathbf{y}\|^2 - \langle \boldsymbol{\theta} + h, X^{\top} \mathbf{y} \rangle + \frac{1}{2} (\boldsymbol{\theta} + h)^{\top} X^{\top} X (\boldsymbol{\theta} + h)$$

$$= \frac{1}{2} \|\mathbf{y}\|^2 - \langle \boldsymbol{\theta}, X^{\top} \mathbf{y} \rangle - \langle h, X^{\top} \mathbf{y} \rangle$$

$$+ \frac{1}{2} \boldsymbol{\theta}^{\top} X^{\top} X \boldsymbol{\theta} + \frac{1}{2} h^{\top} X^{\top} X h + \boldsymbol{\theta}^{\top} X^{\top} X h$$

$$= f(\boldsymbol{\theta}) - \langle h, X^{\top} \mathbf{y} \rangle + \frac{1}{2} h^{\top} X^{\top} X h + \boldsymbol{\theta}^{\top} X^{\top} X h$$

$$= f(\boldsymbol{\theta}) + \langle h, X^{\top} X \boldsymbol{\theta} - X^{\top} Y \rangle + \frac{1}{2} h^{\top} X^{\top} X h$$

The gradient of f, ∇f is defined for any ${\boldsymbol \theta}$ as the vector satisfying :

$$f(\theta + h) = f(\theta) + \langle h, \nabla f(\theta) \rangle + o(h)$$
 for any h

For the f of interest here, this reads

$$f(\boldsymbol{\theta} + h) = \frac{1}{2} \|\mathbf{y}\|^{2} - \langle \boldsymbol{\theta} + h, X^{\top} \mathbf{y} \rangle + \frac{1}{2} (\boldsymbol{\theta} + h)^{\top} X^{\top} X (\boldsymbol{\theta} + h)$$

$$= \frac{1}{2} \|\mathbf{y}\|^{2} - \langle \boldsymbol{\theta}, X^{\top} \mathbf{y} \rangle - \langle h, X^{\top} \mathbf{y} \rangle$$

$$+ \frac{1}{2} \boldsymbol{\theta}^{\top} X^{\top} X \boldsymbol{\theta} + \frac{1}{2} h^{\top} X^{\top} X h + \boldsymbol{\theta}^{\top} X^{\top} X h$$

$$= f(\boldsymbol{\theta}) - \langle h, X^{\top} \mathbf{y} \rangle + \frac{1}{2} h^{\top} X^{\top} X h + \boldsymbol{\theta}^{\top} X^{\top} X h$$

$$= f(\boldsymbol{\theta}) + \langle h, X^{\top} X \boldsymbol{\theta} - X^{\top} \mathbf{y} \rangle + \underbrace{\frac{1}{2} h^{\top} X^{\top} X h}_{o(h)}$$

Hence,

$$\nabla f(\boldsymbol{\theta}) = X^{\top} X \boldsymbol{\theta} - X^{\top} \mathbf{y} = X^{\top} (X \boldsymbol{\theta} - \mathbf{y})$$

The gradient of f, ∇f is defined for any ${\boldsymbol \theta}$ as the vector satisfying :

$$f(\theta + h) = f(\theta) + \langle h, \nabla f(\theta) \rangle + o(h)$$
 for any h

For the f of interest here, this reads

$$f(\boldsymbol{\theta} + h) = \frac{1}{2} \|\mathbf{y}\|^{2} - \langle \boldsymbol{\theta} + h, X^{\top} \mathbf{y} \rangle + \frac{1}{2} (\boldsymbol{\theta} + h)^{\top} X^{\top} X (\boldsymbol{\theta} + h)$$

$$= \frac{1}{2} \|\mathbf{y}\|^{2} - \langle \boldsymbol{\theta}, X^{\top} \mathbf{y} \rangle - \langle h, X^{\top} \mathbf{y} \rangle$$

$$+ \frac{1}{2} \boldsymbol{\theta}^{\top} X^{\top} X \boldsymbol{\theta} + \frac{1}{2} h^{\top} X^{\top} X h + \boldsymbol{\theta}^{\top} X^{\top} X h$$

$$= f(\boldsymbol{\theta}) - \langle h, X^{\top} \mathbf{y} \rangle + \frac{1}{2} h^{\top} X^{\top} X h + \boldsymbol{\theta}^{\top} X^{\top} X h$$

$$= f(\boldsymbol{\theta}) + \langle h, X^{\top} X \boldsymbol{\theta} - X^{\top} \mathbf{y} \rangle + \underbrace{\frac{1}{2} h^{\top} X^{\top} X h}_{o(h)}$$

Hence,

$$\nabla f(\boldsymbol{\theta}) = X^{\top} X \boldsymbol{\theta} - X^{\top} \mathbf{y} = X^{\top} (X \boldsymbol{\theta} - \mathbf{y})$$

Alternative gradient formulation in finite dimension

The gradient of f, ∇f is defined for any $\boldsymbol{\theta}$ as the vector satisfying :

$$f(\theta + h) = f(\theta) + \langle h, \nabla f(\theta) \rangle + o(h)$$
 for any h

<u>Property</u>: the gradient can be formulated as the vector of partial derivatives

$$\nabla f(\boldsymbol{\theta}) = \begin{pmatrix} \frac{\partial f(\boldsymbol{\theta})}{\partial \theta_0} \\ \vdots \\ \frac{\partial f(\boldsymbol{\theta})}{\partial \theta_p} \end{pmatrix}$$

Least squares - normal equation

$$\nabla f(\boldsymbol{\theta}) = 0 \Leftrightarrow X^{\top} X \boldsymbol{\theta} - X^{\top} \mathbf{y} = X^{\top} (X \boldsymbol{\theta} - \mathbf{y}) = 0$$

Theorem

Fermat's rule ensures that any solution $\hat{m{ heta}}$ satisfies :

Normal equation:

$$X^{\top} X \hat{\boldsymbol{\theta}} = X^{\top} \mathbf{y}$$

 $\hat{m{ heta}}$ is solution of the linear system " $Am{ heta}=b$ " for a matrix $A=X^{\top}X$ and right hand side $b=X^{\top}\mathbf{y}$

<u>Rem</u>: uniqueness does not hold when features are **co-linear**, and then there are an infinite number of solutions

Exo: code (in Python) gradient descent for least squares

Vocabulary (and abuse of terms)

Definition

We call **Gramian matrix** (matrice de Gram) the matrix

$$X^{\top}X$$

whose general term is $[X^{\top}X]_{i,j} = \langle \mathbf{x}_i, \mathbf{x}_j \rangle$

Rem: $X^{\top}X$ is often referred to as the feature correlation matrix (true for standardized columns)

Rem: when columns are scaled such that $\forall j \in [0, p], \|\mathbf{x}_j\|^2 = n$, the Gramian diagonal is (n, \dots, n)

The vector
$$X^{\top}\mathbf{y} = \begin{pmatrix} \langle \mathbf{x}_0, \mathbf{y} \rangle \\ \vdots \\ \langle \mathbf{x}_p, \mathbf{y} \rangle \end{pmatrix}$$
 represents the correlation

between the observations and the features

Least squares and uniqueness

Let $\hat{\boldsymbol{\theta}}$ be a solution of $X^{\top}X\hat{\boldsymbol{\theta}} = X^{\top}\mathbf{y}$

$$X^{\top} X \hat{\boldsymbol{\theta}} = X^{\top} \mathbf{y}$$

Non uniqueness: happens for non trivial kernel, *i.e.*, when

$$Ker(X) = \{ \boldsymbol{\theta} \in \mathbb{R}^{p+1} : X\boldsymbol{\theta} = 0 \} \neq \{ 0 \}$$

Assume $\theta_K \in \text{Ker}(X)$ with $\theta_K \neq 0$, then

$$X(\hat{\pmb{\theta}}+\pmb{\theta}_K)=\!\!X\hat{\pmb{\theta}}$$
 and then
$$(X^\top\!X)(\hat{\pmb{\theta}}+\pmb{\theta}_K)=\!\!X^\top\!\mathbf{y}$$

Conclusion: the set of least squares solutions is an affine sub-space

$$\hat{\boldsymbol{\theta}} + \operatorname{Ker}(X)$$

Convex case, $f(\theta) = \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2$, where the set of minimizers is non-unique :

Convex case, $f(\theta) = \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2$, where the set of minimizers is non-unique :

Convex case, $f(\theta) = \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2$, where the set of minimizers is non-unique :

Convex case, $f(\theta) = \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2$, where the set of minimizers is non-unique :

Convex case, $f(\theta) = \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2$, where the set of minimizers is non-unique :

Non uniqueness : single feature case

Reminder:
$$X = \begin{pmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix}$$

If ${\rm Ker}(X)=\{\pmb{\theta}\in\mathbb{R}^2:X\pmb{\theta}=0\}\neq\{0\}$ there exists $(\theta_0,\theta_1)\neq(0,0)$:

$$\begin{cases} \theta_0 + \theta_1 x_1 &= 0\\ \vdots &\vdots &= \vdots\\ \theta_0 + \theta_1 x_n &= 0 \end{cases}$$
 (*)

- 1. If $\theta_1 = 0$: $(\star) \Rightarrow \theta_0 = 0$, so $(\theta_0, \theta_1) = (0, 0)$, contradiction
- **2**. If $\theta_1 \neq 0$:
 - 2.1 If $\forall i, x_i = 0$ then $X = (\mathbf{1}_n, 0)$ and $\theta_0 = 0$
 - 2.2 Otherwise there exists $x_{i_0} \neq 0$ and $\forall i, x_i = -\theta_0/\theta_1 = x_{i_0}$, i.e., $X = \begin{bmatrix} \mathbf{1}_n & x_{i_0} \cdot \mathbf{1}_n \end{bmatrix}$

Interpretation : $\mathbf{x}_1 \propto \mathbf{1}_n$, *i.e.*, \mathbf{x}_1 is constant

Interpretation for multivariate cases

Reminder: we write $X = (\mathbf{1}_n, \mathbf{x}_1, \dots, \mathbf{x}_p)$, the features being column-wise (each are of length n)

The property $\operatorname{Ker}(X) = \{ \boldsymbol{\theta} \in \mathbb{R}^{p+1} : X\boldsymbol{\theta} = 0 \} \neq \{ 0 \}$ means that there exists a linear dependence between the features $\mathbf{1}_n, \mathbf{x}_1, \dots, \mathbf{x}_p$,

Reformulation : $\exists \boldsymbol{\theta} = (\theta_0, \dots, \theta_p)^{\top} \in \mathbb{R}^{p+1} \setminus \{0\}$ s.t.

$$\theta_0 \mathbf{1}_n + \sum_{j=1}^p \theta_j \mathbf{x}_j = 0$$

Algebra reminder

Definition

Rank of a matrix : $\operatorname{rank}(X) = \dim(\operatorname{Span}(\mathbf{1}_n, \mathbf{x}_1, \dots, \mathbf{x}_p))$;

 $\mathrm{Span}(\cdot)$: the space generated by \cdot

Property : $\operatorname{rank}(X) = \operatorname{rank}(X^{\top})$

Rank-nullity theorem

$$\operatorname{rank}(X) + \dim(\operatorname{Ker}(X)) = p + 1$$

 $\operatorname{rank}(X^{\top}) + \dim(\operatorname{Ker}(X^{\top})) = n$

Rem:
$$\operatorname{rank}(X) \leq \min(n, p+1)$$

See Golub and Van Loan (1996) for details

Exo: $Ker(X) = Ker(X^{T}X)$

Algebra reminder (continued)

Matrix inversion

A square matrix $A \in \mathbb{R}^{m \times m}$ is invertible

- if and only if its kernel is trivial : $Ker(A) = \{0\}$
- if and only if it is full rank rank(A) = m

Exo: Show that $Ker(A) = \{0\}$ is equivalent to $A^{T}A$ invertible

Closed-form solution for least squares

Closed-form solution for full rank matrix

If X is full (column) rank (i.e.,if $X^\top X$ is non-singular) then

$$\hat{\boldsymbol{\theta}} = (X^{\top} X)^{-1} X^{\top} \mathbf{y}$$

<u>Rem</u>: recover the empirical mean if $X = \mathbf{1}_n : \hat{\boldsymbol{\theta}} = \frac{\langle \mathbf{1}_n, \mathbf{y} \rangle}{\langle \mathbf{1}_n, \mathbf{1}_n \rangle} = \bar{y}_n$

<u>Rem</u>: for a single feature $X = \mathbf{x} = (x_1, \dots, x_n)^\top : \hat{\boldsymbol{\theta}} = \langle \frac{\mathbf{x}}{\|\mathbf{x}\|^2}, \mathbf{y} \rangle$

<u>Beware</u> : in practice **avoid** inverting the matrix $X^{T}X$:

- this is numerically time consuming
- ▶ the matrix $X^{\top}X$ might be big if " $p \gg n$ ", e.g.,in biology n patients (≈ 100), p genes (≈ 50000)

Exo: recover formula for 1D case with intercept

Prediction

Definition

Prediction vector: $\hat{\mathbf{y}} = X\hat{\boldsymbol{\theta}}$

 $\underline{\mathsf{Rem}}$: $\hat{\mathbf{y}}$ depends linearly on the observation vector \mathbf{y}

Reminder: an orthogonal projector is a matrix H such that

1. H is symmetric : $H^{\top} = H$

2. H is idempotent : $H^2 = H$

Proposition

Writing H_X the orthogonal projector onto the space span by the columns of X, one gets $\hat{\mathbf{y}} = H_X \mathbf{y}$

<u>Rem</u>: if X is full (column) rank, then $H_X = X(X^{\top}X)^{-1}X^{\top}$ is called the **hat matrix**

Prediction (continued)

If a new observation $x_{n+1}=(x_{n+1,1},\dots,x_{n+1,p})$ is provided, the associated prediction is :

$$\hat{y}_{n+1} = \langle \hat{\boldsymbol{\theta}}, (1, x_{n+1,1}, \dots, x_{n+1,p})^{\top} \rangle$$

$$\hat{y}_{n+1} = \hat{\theta}_0 + \sum_{j=1}^{p} \hat{\theta}_j x_{n+1,j}$$

<u>Rem</u>: the normal equation ensures **equi-correlation** between observations and features :

$$(X^{\top}X)\hat{\boldsymbol{\theta}} = X^{\top}\mathbf{y} \Leftrightarrow X^{\top}\hat{\mathbf{y}} = X^{\top}\mathbf{y}$$

$$\Leftrightarrow \begin{pmatrix} \langle \mathbf{x}_{0}, \hat{\mathbf{y}} \rangle \\ \vdots \\ \langle \mathbf{x}_{p}, \hat{\mathbf{y}} \rangle \end{pmatrix} = \begin{pmatrix} \langle \mathbf{x}_{0}, \mathbf{y} \rangle \\ \vdots \\ \langle \mathbf{x}_{p}, \mathbf{y} \rangle \end{pmatrix}$$

Exo: Let
$$P = \begin{pmatrix} \frac{1}{n} & \cdots & \frac{1}{n} \\ \vdots & \ddots & \vdots \\ \frac{1}{n} & \cdots & \frac{1}{n} \end{pmatrix} \in \mathbb{R}^{n \times n}$$
.

- 1. Check that P is an orthogonal projection matrix
- 2. Determine Im(P), the range of P
- 3. For $\mathbf{x}=(x_1,\ldots,x_n)^{\top}$, \overline{x}_n is the empirical mean and $\sigma_{\mathbf{x}}$ is the standard deviation :

$$\overline{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$$
 $\sigma_{\mathbf{x}} = \sqrt{\frac{1}{n} \sum_{i=1}^n (x_i - \overline{x}_n)^2}.$

Show that $\sigma_{\mathbf{x}} = \|(\mathrm{Id}_n - P)\mathbf{x}\|/\sqrt{n}$.

Residuals and normal equation

Definition

Residual(s):
$$\mathbf{r} = \mathbf{y} - \hat{\mathbf{y}} = \mathbf{y} - X\hat{\boldsymbol{\theta}} = (\mathrm{Id}_n - H_X)\mathbf{y}$$

Reminder:

Normal Equation :
$$(X^{\top}X)\hat{\boldsymbol{\theta}} = X^{\top}\mathbf{y}$$

Thanks to the residual definition, the later yields :

$$X^{\top}(X\hat{\boldsymbol{\theta}} - \mathbf{y}) = 0 \Leftrightarrow X^{\top}\mathbf{r} = 0 \Leftrightarrow \mathbf{r}^{\top}X = 0$$

With $X = (\mathbf{1}_n, \mathbf{x}_1, \dots, \mathbf{x}_p)$, this can be rewritten

$$\forall j = 1, \dots, p : \langle \mathbf{r}, \mathbf{x}_i \rangle = 0 \text{ and } \overline{r}_n = 0$$

Interpretation: residuals are orthogonal to features

Visualization : predictors and residuals (p=2)

References I

► G. H. Golub and C. F. van Loan.

Matrix computations.

Johns Hopkins University Press, Baltimore, MD, third edition, 1996.