

2º Teste de Introdução aos Sistemas Eletromagnéticos - Parte I

Eng. Biomédica	2°Ano/1°Semestre	Duração: 20 min
Nome		Nº Aluno

O teste tem a cotação de 2 valores.

Questões de escolha múltipla:

- Responda a apenas uma das questões 1 ou 2
- Cada questão tem uma única hipótese correta.
- Assinale a resposta correta no enunciado com um círculo.
- Se pretende anular uma resposta escreva "Anulado" na respetiva caixa.
- Cotação: Resposta correta = 1; Resposta errada = -0,33

Ouestões de desenvolvimento:

- Responda a apenas uma das questões 3 ou 4
- Apresente todos os passos de resolução e justifique convenientemente todos os cálculos.
- Indique as unidades dos resultados obtidos.
- Cotação = 1
- 1. Um condensador de capacidade $C_1 = 2 \, \mu F$ é carregado com uma diferença de potencial $V_{1i} = 50 \, V$ e um condensador de capacidade $C_2 = 3 \, \mu F$ é carregado com uma diferença de potencial $V_{2i} = 100 \, V$. Após estarem carregados, os dois condensadores ligam-se em paralelo ficando as placas de polaridade contrária ligadas. As diferenças de potencial finais nos condensadores 1 e 2, serão de

A: -	$\int V_{1f} = 40 V$	B: $\begin{cases} V_{1f} = 60 V \end{cases}$	$C \cdot \int V_{1f} = 70 V$	$\int_{\mathbf{D}^*} V_{1f} = 75 V$
Α.	$V_{2f} = 40 V$	$V_{2f} = 90 V$	$V_{2f} = 70 V$	$V_{2f} = 75 V$

- **2.** Considere dois aquecedores de resistências R_1 e R_2 , tais que $R_1 > R_2$, nas seguintes situações:
 - I Os dois aquecedores são ligados durante o mesmo intervalo de tempo em tomadas elétricas semelhantes numa casa de habitação.
 - **II -** Os dois aquecedores são ligados durante o mesmo intervalo de tempo a fontes de corrente elétrica iguais, a debitarem a mesma corrente elétrica.

Qual dos aquecedores dissipa menor quantidade de energia?

- A: O aquecedor 2 em ambas as situações.
- B: O aquecedor 1 na situação I e o aquecedor 2 na situação II.
- C: O aquecedor 2 na situação I e o aquecedor 1 na situação II.
- D: O aquecedor 1 em ambas as situações.
- **3.** Um electrão $(q_e = -1, 6 \times 10^{-19} \, \text{C})$ e $m_e = 9, 1 \times 10^{-31} \, \text{kg}$ lança-se com uma velocidade de $v_e = 3 \times 10^7 \, \text{ms}^{-1}$ paralelamente a um campo eléctrico de grandeza $E = 1, 5 \, \text{kV/cm}$. Determine o espaço percorrido pelo electrão até a sua velocidade se anular.
- **4.** Um cabo elétrico, com uma resistividade $\rho = 1,68 \times 10^{-8} \ \Omega m$ e um comprimento $l = 50 \ m$, transporta uma corrente de 20 A. Determine o raio mínimo do fio para que a potência dissipada no cabo não ultrapasse $50 \ W$.

Soluções:

1	2
A	В

3.
$$x = 1,71 cm$$

4.
$$r_{min} = 1,46$$
 mm