Определения:

- Машина Тьюринга определяется кортежем вида $T = (Q, V, *, \blacksquare, S, L, R, q_0, q_f, \delta)$. Здесь Q конечное множество состояний; V - конечный входной алфавит, *∉ V - маркер начала ленты, ■ ∉ V - пустой символ (пробел); S, L, R ∉ V - символы направления движения головки; $q_0 \in Q$ — начальное состояние, $q_f \in Q$ — заключительное состояние; δ — функция переходов, являющаяся отображением вида δ : $Q \times V' \to 2^{\left\{Q \times V' \times \{S,L,R\}\right\}}$, где $V' = V \cup \{*, \blacksquare\}$. Значение функции переходов, если оно определено, есть конечное (возможно пустое) множество упорядоченных троек из соответствующего декартова произведения.
- Конфигурация МТ кортеж C = (q, x, ay), где $q \in Q$, $x \in (V')^*$, $a \in V'$, $y \in (V')^*$. Отношение (непосредственной) выводимости на множестве конфигураций – $C = (q, x, ay) + \begin{cases} (r, x, by), \text{если в системе команд есть команда } qa \to rb, S \\ (r, x', cby), \text{если — "} - qa \to rb, L; \ x'c = x \neq \lambda \\ (r, xb, dy'), -" - qa \to rb, R; \ dy' = y \end{cases}$
- Вычислимость по Тьюрингу вербальная функция $f: V^* \to V^*$ называется вычислимой по Тьюрингу, если может быть построена МТ НАД алфавитом V такая, что $(!T_f(x) \Leftrightarrow x \in D(f))$ и $(T_f(x) = f(x))$; где применимость МТ к слову есть $!T(x) \rightleftharpoons$ $(q_0, \lambda, *x \blacksquare) \vdash_{\mathsf{T}}^* (q_f, \lambda, *y \blacksquare), x, y \in V^*.$
- Нормальный алгорифм Маркова Нормальный алгорифм A в алфавите V задаётся упорядоченной тройкой A = (V, S, P). Здесь S – упорядоченный набор формул подстановок в алфавите V ($u \to v$, $u, v \in V^*$, $\to \notin V$); P – набор, получаемый отметкой в S некоторых формул. S – схема HA, P – заключительные формулы подстановки HA.
- <u>Процесс работы НА со словом</u> пусть слово $x \in V^*$. Процесс работы есть конечная (бесконечная последовательность слов $x = x_0, x_1, ..., x_n, ...,$ такая, что: $\forall i \ge 0$ ($A: x_i \vdash x_{i+1}$)или($A: x_i \vdash \bullet x_{i+1}$), если x_{i+1} определено в последовательности. Считается, что x_{n+1} не определено в последовательности тогда и только тогда, когда $A: x_{n-1} \vdash \bullet x_n$ либо $A: \sim x_n$ (xn не поддаётся алгоритму)
- Вычислимость по Маркову вербальная функция $f: V^* \to V^*$ называется вычислимой по Маркову, если может быть построен НА A_f НАД алфавитом V такой, что $(\forall x \in V^*) \Big(!A_f(x) \Leftrightarrow x \in D(f)$ и $A_f(x) = f(x)\Big)$. //--. — точка на самом деле под стрелкой а не справа, и это важно! Не путать $c \to \bullet$ и тем более $c \vdash \bullet$!
 - **1.** Теорема композиции НА с доказательством.

• <u>Теорема</u>: Каковы бы ни были НА A и B : $V^* \to V^*$ в длфавите V, может быть построен НА C _над _ V так, что ($\forall x \in$ V^*) $(C(x) \simeq B(A(x))$.

<u>Доказательство</u>:

- 1) Если $V=\{a_1\dots a_n\}$, то $\bar V=\{\overline{a_1}\dots \overline{a_n}\}$, причем $V\cap \bar V=\emptyset$. (1) $\xi \alpha \to \alpha \xi$
 - 2) $\alpha, \beta \notin V \cup \overline{V}, \quad \xi, \eta \in V$ (2) $\alpha \xi \to \alpha \bar{\xi}$
 - 3) Система A^{α} получается из системы замыканием А согласно таблице: (3) $\bar{\xi}\eta \to \bar{\xi}\eta$

(4) $\bar{\xi}\beta \rightarrow \beta\bar{\xi}$ 4) Система $\bar{B}_{\alpha}^{\,eta}$ получается замыканием схемы В согласно таблице: $C: \left\{ (5) \ \beta \bar{\xi} \to \beta \xi \right\}$

(6) $\xi \bar{\eta} \rightarrow \xi \eta$ I этап: $x \in V^*$, $C: x \models_{(9)} y_1 \alpha y_2$, где $y_1 y_2 = A^{\bullet}(x)$. (7) $\alpha\beta \rightarrow \bullet$

II этап: $y_1 \alpha y_2 \models_{(1)} \alpha y_1 y_2 = \alpha y \ (y = y_1 y_2 = A^{\bullet}(x))$ (8) \bar{B}_{α}^{β} (9) A^{α}

III этап: $\alpha y(1) \dots y(m) \vdash_2 \alpha \overline{y(1)} y(2) \dots y(m) \models_2 \alpha \overline{y(1)} \dots \overline{y(m)} = \alpha \overline{y}$

IV этап: $\alpha \overline{y} \vDash_8 \alpha \overline{z_1} \beta \overline{z_2}$, $z_1 z_2 = z = B^{\bullet}(y)$

V этап: $\alpha \bar{z_1} \beta \bar{z_2} \vDash_4 \alpha \beta \bar{z}$

VI этап: $\alpha\beta\bar{z} \vDash_{5.6} \alpha\beta z \vdash z = B^{\bullet}(y) = B^{\bullet}(A^{\bullet}(x)) = B(A(x)).$

Следовательно, $C(x) \simeq B(A(x))$, $C \rightleftharpoons B \cdot A$.

B*	\bar{B}_{lpha}^{eta}
$u \rightarrow v$;	$\bar{u} \rightarrow \bar{v}$
$u \neq \lambda$	
$\rightarrow v$	$\alpha \rightarrow \alpha v$
$u \rightarrow \bullet v$	$\bar{u} \to \beta \bar{v}$
$u \neq \lambda$	
→• v	$\alpha \rightarrow \alpha \beta \bar{v}$

 $u \to \alpha v$

<u>2.</u>	Эквивалентность НА.	Замыкание НА,	естественное и	формальное ра	аспространение Г	НА на более ш	ирокий
алфавип	n. Доказать эквиваленп	пность HA и его	замыкания.				

- Пусть есть два НА $A, B: V^* \to V^*$ НАД алфавитом V. Они называются вполне эквивалентными, если $\forall x \in V^* \ (!A(x) \Leftrightarrow !B(x))$ и (A(x) = B(x)), т.е. $A(x) \simeq B(x)$ определены или неопределены одновременно.
 - Замыканием (схемы) НА А в алфавите V называется A^{\bullet} : $\left\{ \begin{matrix} \text{Схема A} \\ \to \end{matrix} \right.$, где Схема A: $\left\{ \begin{matrix} u_1 \to [\cdot]v_1 \\ \dots \\ u_n \to [\cdot]v_n \end{matrix} \right.$

<u>Докажем</u>, что A и его замыкание эквивалентны. Пусть !A(x), значит $A: \sim A(x)$ (естественный обрыв) или $A: z \vdash \bullet A(x)$ для некоторого z (на последнем шаге).

В ситуации естественного обрыва: A^{\bullet} : $\models A(x) \vdash \bullet A(x)$.

В ситуации последнего шага: A^{\bullet} : $x \models z \vdash \bullet A(x)$.

Таким образом, если !A(x), то $!A^{\bullet}(x)$ и $A(x) = A^{\bullet}(x)$. Если же $\neg !A(x)$, то очевидно что $\neg !A^{\bullet}(x)$, т.к. до команды $\rightarrow \bullet$ очередь не пойлёт

• Естественным распространением [A в алфавите V] на более широкий алфавит $V' \supset V$ (V' содержащий V) называется HA [A' в алфавите V'], где схема A' совпадает со схемой A.

Формальным распространением [A в алфавите V] на более широкий алфавит $V' \supset V$ называется HA [A' в алфавите V'] A': $\begin{cases} \xi \to \xi, \ \xi \in V'/V \\ \text{Схема A} \end{cases}$.

3. Понятие перевода в двухбуквенный алфавит. Формулировка теоремы о переводе.

- Пусть дан алфавит $V = \{a_1 ... a_n\}$, $V_{\alpha} = \{\alpha, \beta\}$; $V_{\alpha} \cap V = \emptyset$. Определим операцию $[a_i = \alpha\beta\beta ... \beta\alpha = \alpha\beta^i\alpha$. Тогда для слова $x = x(1) ... x(k) \in V^*$, $[x \neq [x(1) ... [x(k), причем [\lambda = \lambda.$
- <u>Теорема</u>: Каков бы ни был НА $A: V^* \to V^*$ над алфавитом V, может быть построен вполне эквивалентный ему (относительно алфавита V) НА $B: V'^* \to V'^*$ в алфавите $V \cup V_{\alpha}$
 - **4.** Определения изображения и записи НА. Примеры. Формулировка теоремы об универсальном НА.

• Рассмотрим НА А: $\begin{cases} u_1 \to [\cdot]v_1 \\ \dots \\ u_n \to [\cdot]v_n \end{cases}$ в алфавите V. Изображение этого НА есть $A^{\mathsf{II}} \rightleftharpoons u_1\alpha[\beta]v_1\gamma u_2\alpha[\beta]v_2\gamma \dots \gamma u_n\alpha[\beta]v_n;$

 $A^{\text{II}} \in V \cup \{\alpha, \beta, \gamma\}$. Здесь символ α заменяет \rightarrow , символ β заменяет \bullet , а символ γ служит для разделения команд алгорифма.

Пример: НА A: $\begin{cases} \#a \to a\# \\ \#b \to b\# \\ \# \to \bullet aba \end{cases}$ Его изображением будет $A^{\mathsf{N}} = \#a\alpha a\# \gamma \#b\alpha b\# \gamma \#\alpha \beta aba\gamma \alpha\#.$

Рассмотрим алфавит $V_0 = \{0,1\}$ и изображение алгорифма А. Если пронумеровать каждый символ из $V \cup \{\alpha,\beta,\gamma\}$, то k-й символ из этого алфавита можно представить как $011 \dots 10 \atop k$ раз . Записью алгорифма А называют его изображение, в котором каждый символ представлен в данном виде. //криво, косо, со скрипом, но как-то так

- <u>Теорема:</u> Пусть V произвольный алгорифм. Может быть построен алгорифм U над алфавитом $V \cup V_0 \cup \{\$\}$ такой, что $\forall a \in V^*$ и для любого HA A в V имеет место $U(\llbracket A \rrbracket \$ x) \simeq A(x)$ //на самом деле тут не эти скобочки, а «бабочка», ε 3.
- **5.** Теоремы объединения, разветвления, повторения НА (формулировки). Построение НА, распознающего равенство слов.

• <u>Теорема объединения</u>: Каковы бы ни были НА А и В _в _ V, может быть построен НА С _над _ V такой, что $(\forall x \in V^*)$ $(C(x) \simeq A(x)B(x))$. //соединение

<u>Теорема разветвления</u>: Для любых НА A, B, C _в _ алфавите V может быть построен НА D _над _ V такой, что ($\forall x \in V^*$) $(D(x) \simeq A(x), \text{если } C(x) = \lambda)$ и $(D(x) \simeq B(x), \text{если } C(x) \neq \lambda)$.

Теорема повторения: Каковы бы ни были НА А,В _B _V, может быть построен НА С _над_ V так, что $(\forall x \in V^*) ! C(x)$ и определено слово y = C(x) тогда и только тогда, когда существует последовательность слов $x = x_0, x_1, ... x_m$ такая: если m=0, то y=x и $B(x) \neq \lambda$; если же m>0, то $(\forall i = \overline{0, m-1}) \left((x_{i+1} = A(x_i)) \text{ и } (B(x_i) = \lambda) \text{ и } (B(x_m) \neq \lambda) \right)$, тогда $y = x_m$.

• Алгоритм распознавания равенства слов:

 $EQ(x\$y) = \begin{cases} \lambda, x = y \\ u \neq \lambda, \text{ иначе} \end{cases}$ $EQ(x\$y) = \lambda \Leftrightarrow x = y.$ Тогда алгоритм $EQ \simeq Comp(Id(x)\$Inv(y)),$ где Id -тождественный алгоритм, Inv - инверсия, Comp: $\begin{cases} n\$n \to \$ \\ \$ \to \bullet \end{cases}$.

6. Определения разрешимого и перечислимого языка. Связь разрешимости и перечислимости. Примеры.. Доказать невозможность разрешающего НА для языка, для которого невозможен полуразрешающий НА.

• Рассмотрим алфавит V.

Язык $L \subseteq V^*$ называется алгорифмически разрешимым, если может быть построен НА A_L _над_ алфавитом V такой, что: $(\forall x \in V^*)(!A_l(x))$ и $A_L(x) = \lambda \iff x \in L$). Алгорифм A_l называют разрешающим алгорифмом; полуразрешающим алгорифмом называют $\widetilde{A_I}$ такой, что ! $\widetilde{A_L}(x) \Leftrightarrow x \in L$.

Пример разрешимого языка: $L = \{ww: w \in V^+\}$. Разрешающий его алгорифм может быть построен как $x \to [C] - x1$x2->$ [EQ] —>, где алгорифм С делит слово х пополам на слова х1 и х2, а EQ — сравнивает получившиеся половинки.

Язык $L \subseteq V^*$ называется алгорифмически перечислимым, если может быть построен НА N_L _над_ алфавитом $V \cup V_0$ такой, что для любого конструктивного натурального числа (//0 – КНЧ, если n – КНЧ, то n1 – тоже КНЧ) n имеет место применимость ! $N_L(n)$ и $N_L(n) \in L$, а также для любого слова $x \in L$ осуществимо КНЧ п такое, что $N_L(n) = x$.

Пример перечислимого языка: язык целых чисел. Алгоритм: нумерация целых чисел в виде $\frac{1}{2}$ — $\frac{$

- Любое алгоритмически разрешимое множество алгоритмически перечислимо. Обратное не верно.
- **Теорема**: Если для языка $L \subseteq V^*$ невозможен полуразрешающий HA, то невозможен и разрешающий.

<u>Доказательство</u>: Предположим, что возможен разрешающий и при этом невозможен полуразрешающий НА. По теореме разветвления, построим НА $B_L =_{A_L} (A_L \vee Null)$, где Null: $\{\to \bullet$. Следовательно, по построению, $!B_L(x) \Leftrightarrow x \in L$, те. $B_L = 0$ полуразрешающий НА. Противоречие.

7. Проблемы применимости и самоприменимости для НА. Доказательство неразрешимости проблемы

• Частная проблема применимости: «Можно ли построить НА А _над _ V так, что для фиксированного НА В _в _ V и произвольного слова $x \in V^*$ имеет место: A(x) и $A(x) = \lambda \Leftrightarrow \neg B(x)$ »

Общая проблема применимости: «можно ли построить НА А над $V \cup V_0$ так, что для произвольного НА В в V и произвольного слова $x \in V^*$ имеет место ! $A(\langle B \rangle \$ x)$ и $A(\langle B \rangle \$ x) = \lambda \Leftrightarrow \neg ! B(x) \rangle$

Проблема самоприменимости: «моэет ли быть построен НА А $_$ над $_V \cup V_0$ так, что для произвольного НА В $_$ в $_$ V имеет место ! $A(\langle B \rangle)$ и $A(\langle B \rangle) = \lambda \Leftrightarrow \neg ! B(\langle B \rangle)$ ».

• <u>Лемма</u>: невозможен НА A в алфавите $V \cup V_0$ такой, что для любого B в $V \cup V_0$! $A(\langle B \rangle) \Leftrightarrow \neg ! B(\langle B \rangle)$. **Теорема(1):** Невозможен НА \overline{A} над V0 такой, что $\forall B$ _в_ V_1 ! $A(\langle B \rangle) \Leftrightarrow \neg$! $B(\langle B \rangle)$.

<u>Доказательство</u>: Пусть такой алгорифм А построен. Тогда, по теореме о переводе, может быть построен A_1 в $V_0 \cup \{\alpha, \beta\}$ такой, что $(\forall x \in V_0^*)(A_1(x) \simeq A(x))$. Далее, рассмотрим A_1' как естественное распространение A1 на V1. Тогда, $\forall x \in A_1'$ $V_0^* A_1'(x) \simeq A_1(x).$

 $!A(\langle B \rangle) \Leftrightarrow \neg !B(\langle B \rangle)$ – отсюда следует, что $!A(\langle B \rangle) \Leftrightarrow !A_1(\langle B \rangle) \Leftrightarrow |A_1(\langle B \rangle) \Leftrightarrow \neg !B(\langle B \rangle)$ в алфавите $V \cup V_0 \cup \{\alpha,\beta\}$. Таким образом, для алфавита $V' = V \cup \{\alpha, \beta\}$ может быть построен НА A'_1 в алфавите $V' \cup V_0$ так, что $\forall B$ в $V' \cup V_0$ имеет место $!A'_1(\langle B \rangle) \iff \neg !B(\langle B \rangle)$. Это невозможно, в силу леммы. Таким образом, каков бы ни был алфавит V, проблема самоприменимости для НА в алфавите $V \cup V_0$ алгоритмически неразрешима.

8. Доказать алгоритмическую неразрешимость проблемы применимости для НА.

~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ • Теорема(2): Пусть V – произвольный алфавит. Может быть построен НА В  $_{\rm B}$   $_{\rm V_2} = V_0 \cup \{\alpha,\beta\}$  такой, что невозможен НА А над  $V_2$ , для которого для любого слова  $x \in V_2^*$  имело бы место !  $A(x) \Leftrightarrow \neg ! B(x)$ .

Доказательство: Определим алгоритм удвоения слова.

$$Double^{\$}: \begin{cases} (1) & \alpha\xi \to \xi\beta\xi\alpha \\ (2)\beta\xi\eta \to \eta\beta\xi \\ (3)\beta\xi\alpha \to \gamma\xi \\ (4)\beta\xi\gamma \to \gamma\xi & \gamma \neq \alpha,\beta \notin V \\ (5) & \gamma \to \bullet \$ \\ (6) & \alpha \to \bullet \$ \\ (7) & \to \alpha \end{cases}$$

По теореме об универсальном НА, построим НА U \_над\_ V2 так, что для любых слова  $y \in V_2^*$  и НА D \_в\_ V2 имело место  $U(\langle D \rangle \$ y) \simeq D(y)$ .

Далее: построим НА  $U_1$  \_над\_ V2 так, что  $(\forall y \in V_2^*)(U_1(y) \simeq U(y \$ y))$ . Используя композицию,  $U_1 = U * Double^{\$}(y)$ .

U1 построен \_ над \_ V2. Стало быть, U1 есть НА и \_ над \_ V0, следовательно, по теореме о переводе, можно построить HA U2 \_в\_ V2 (т.е. в двухбуквенном расширении V0) так, что  $(\forall x \in V_0^*)(U_2(x) \simeq U_1(x))$ . Утверждается, что U2 есть

Пусть теперь построен А, о котором говорится в условии теоремы. Тогда, для любого HA D в V2, выполняется !  $A(\langle D \rangle) \Leftrightarrow \neg ! B(\langle D \rangle) \Leftrightarrow \neg ! U_2(\langle D \rangle) \Leftrightarrow$ 

 $\neg! U_1(\langle D \rangle) \Leftrightarrow \neg! U(\langle D \rangle \$ \langle D \rangle) \Leftrightarrow \neg! D(\langle D \rangle)$ . Таким образом, А может быть рассмотрен как НА в M2 – имеем алгорифм, решающий проблему самоприменимости в том же алфавите. Это невозможно, в силу теоремы(1) о неразрешимости проблемы самоприменимости.

9. Понятие рекурсивной функции.

• Рекурсивной функцией называется функция вида  $\mathbb{N}_0^P \to \mathbb{N}_0$ ,  $P \ge 1$ . Множество рекурсивных функций содержит

базисные функции а также функции, образованные посредством определенных правил.

Базисные функции: нулевая ( $\forall x \in \mathbb{N}_0 \ \mathbb{O}(x) = 0$ ); прибавление 1 (f(x) = x + 1); проекцирующие функции  $(U_i^n(x_1,\ldots,x_i,\ldots,x_n)\rightleftharpoons x_i).$ 

Правила: подстановка; рекурсия; минимизация.