バランス後の比較 機械学習

川田恵介 東京大学 keisukekawata@iss.u-tokyo.ac.jp

2025-10-14

1分析例

- To do: PDS の例として、Y,D とそれぞれ強く相関している X_1,X_2 を作る
- ・ サンプル分割は不要であることを強調
- ・ 機械学習と伝統的な推定の共同作業 ♡

1.1 23 区間不動産価格格差

1.2 指導教員からの"コメント"

•「区の魅力"ではなく、取引される物件の性質の違いを反映しているだけではないか?」

1.3 バランス表

```
gtsummary::tbl_summary(
  data,
  by = District
)
```

	港区	練馬区
Characteristic	N = 283 ¹	$N = 278^{1}$
Price	86 (40, 150)	34 (24, 50)
Size	50 (25, 75)	50 (25, 65)
Tenure	19 (11, 23)	20 (9, 32)
Distance	6.0 (3.0, 8.0)	7.0 (4.0, 10.0)
RoomNumber		
1	153 (54%)	119 (43%)
2	82 (29%)	59 (21%)
3	48 (17%)	88 (32%)
4	0 (0%)	12 (4.3%)

¹ Median (Q1, Q3); n (%)

・「中央値(50%) (下位 25%, 上位 25%)」を表示

1.4 可能性

- 練馬区の方が、駅から遠く、築年数が古く、狭めの部屋が取引されている
 - ▶ 地区に関わらず、取引価格が低い傾向
- 同じような物件で比べれば、港区との格差は縮まるのではないか

1.5 R の例: 単純比較

```
estimatr::lm_robust(Price ~ District, data)
```

```
| Estimate Std. Error t value | Pr(>|t|) | CI Lower | CI Upper | (Intercept) | 123.21555 | 7.854036 | 15.68818 | 3.143109e-46 | 107.7885 | 138.64258 | District練馬区 | -85.05972 | 7.934338 | -10.72046 | 1.631327e-24 | -100.6445 | -69.47496 | DF | (Intercept) | 559 | District練馬区 | 559 |
```

1.6 R の例: Size, Tenure, Distance をバランス

• OLS を用いたバランスが可能

```
estimatr::lm_robust(Price ~ District + Size + Tenure + Distance, data)
```

```
Estimate Std. Error t value
                                                 Pr(>|t|)
                                                           CI Lower
               37.921304 6.1745184 6.141581 1.556690e-09 25.793070
(Intercept)
District練馬区 -63.875987 4.4707171 -14.287638 1.136352e-39 -72.657548
               2.698450 0.2130456 12.666069 1.754278e-32 2.279977
Size
               -1.841204 0.2164363 -8.506909 1.660098e-16 -2.266336
Tenure
Distance
              -3.180468 0.7897796 -4.027032 6.433225e-05 -4.731784
               CI Upper DF
(Intercept)
               50.049539 556
District練馬区 -55.094427 556
Size
               3.116922 556
Tenure
               -1.416071 556
               -1.629151 556
Distance
```

• Size, Tenure, Distance を"バランス"すると、練馬/港区間格差が 2118 万円縮まる

1.7 What if 分析

- 広義には What if 分析 (もし~ならば、どうなるか?) の一部
 - ► **もし**部屋の広さや築年数、駅からの距離の分布に差がなければ、練馬/港区の価格格 差はどうなるか?

1.8 実際の例

- 合計特殊出生率
 - ・出生率の国比較や時系列比較に理由される
 - 年齢構造も異なる
- 合計特殊出生率 = 年齢のバランス

=
$$rac{15歳の女性が一年間で生んだ子供の数}{15歳の女性人口} +$$

1.9 Takeaway

- 実務で伝統的に用いられてきた方法は、X の数が多い場合には適用不可能
- 重回帰を用いた方法は、ある程度対応可能だが、Xの数が非常に多くなると対応不可能

- ▶ LASSO は候補になるが、信頼区間の計算困難であり、非実用的
- 次のスライドで、Post-double LASSO を紹介

2 サブグループ法

2.1 推定対象

- Y = Priceの平均値の D =地区間での差
 - ・ ただし、X = 物件の属性の差を無視できるように調整(バランス)
- ・ 実務で最も用いられてきた方法は、サブグループ分析

2.2 特定グループの比較

- 最も単純な方法は、X 同じサブグループ内での比較
- 例: X = RoomNumber のみがバランスの対象

```
estimatr::lm_robust(
    Price ~ District,
    data,
    subset = RoomNumber == 3) # 部屋数3
```

```
| Estimate Std. Error | t value | Pr(>|t|) | CI Lower | CI Upper | (Intercept) | 266.8333 | 27.36748 | 9.750014 | 2.649876e-17 | 212.7052 | 320.9614 | District練馬区 | -216.1174 | 27.42044 | -7.881619 | 9.946072e-13 | -270.3503 | -161.8846 | DF | (Intercept) | 134 | District練馬区 | 134 | Time |
```

2.3 実務での例

- 既存店における前年同月
 - イオン・グループ

2.4 サブグループ分析

- X の組み合わせごとに、事例をサブグループに分割し、平均取引価格を比較
- 例: *X* = 部屋数

	38.4 練馬区	2	59
5	267. 港区	3	48
6	50.7 練馬区	3	88
7	69.4 練馬区	4	12

2.5 サブグループ分析

A tibble: 4 × 4 `X=RoomNumber` 事例数_港区 事例数_練馬区 平均差 <dbl> <int> <int> <dbl> 1 153 119 28.7 1 2 2 82 59 129. 3 3 48 88 216. NA 12 NA

- 注: 単純な平均差は、85.1
- 部屋数が増えるにつれて、平均差は増加傾向にある
 - ・部屋数4については、このデータでは、比較不可能

2.6 サブグループ分析の限界

- *X* の組み合わせが増えると、
 - ▶ サブグループの事例数が減る
 - 推定の精度が悪化
 - 練馬/港区のどちらかしかないグループでは、比較不可能
 - ▶ 大量の平均差が計算され、人間が認識できなくなる
- 追加的な仮定のもとで、より単純なモデルの推定を行う方が現実的

2.7 例

- X = RoomNumber, Tenure, Distance
- 例

RoomNumber Tenure Distance 事例数_港区 事例数_練馬区 平均差 <dbl> <dbl> <int> <int> <dbl> 1 1 1 3 3 NA NA 2 1 1 5 NA 5 NA 3 1 1 6 1 NA NA 4 1 1 7 1 1 15 5 1 1 8 NA 2 NA 6 1 1 12 1 NA NA</dbl></int></int></dbl></dbl>	# A tibble: 387 × 6							
2 1 1 5 NA 5 NA 3 1 1 6 1 NA NA 4 1 1 7 1 1 15 5 1 1 8 NA 2 NA	r				_	_		
3 1 1 6 1 NA NA 4 1 1 7 1 1 15 5 1 1 8 NA 2 NA	1	1	1	3	3	NA	NA	
4 1 1 7 1 1 15 5 1 1 8 NA 2 NA	2	1	1	5	NA	5	NA	
5 1 1 8 NA 2 NA	3	1	1	6	1	NA	NA	
	4	1	1	7	1	1	15	
6 1 1 12 1 NA NA	5	1	1	8	NA	2	NA	
	6	1	1	12	1	NA	NA	

7	1	2	9	NA	1	NA
8	1	2	11	1	NA	NA
9	1	2	14	NA	1	NA
10	1	3	8	1	1	64
# i 377	more rows					

3同質性の仮定のもとでの推定

3.1 OLS による調整

estimatr::lm_robust(Price ~ District + RoomNumber, data)

```
Estimate Std. Error
                                                 Pr(>|t|)
                                                            CI Lower
                                    t value
(Intercept)
                41.96570 6.006662 6.986526 8.056762e-12
                                                            30.16727
District練馬区 -102.30973 8.343091 -12.262809 8.899901e-31 -118.69744
                49.87789 5.174809 9.638596 1.934738e-20
RoomNumber
                                                            39.71340
               CI Upper DF
(Intercept)
               53.76413 558
District練馬区 -85.92203 558
RoomNumber
               60.04237 558
```

• $\beta_D = -102.3$ は、RoomNumber をバランスさせた後の比較結果と見做せるか?

3.2 妥当な定式化

- 十分な事例数 + ランダムサンプルング + "妥当な定式化"であれば、OK
- 妥当な定式化
 - ・適当な β_0, β_1 を選べば、

$$E[Y \mid D, X] = \beta_0 + \beta_D \underbrace{District}_D + \beta_1 \underbrace{RoomNumber}_X$$

▶ 妥当ではない = 誤定式化

3.3 妥当な定式化の前提

- $\beta_0+\beta_DD+\beta_1X+..$ $=\underbrace{\beta_D}_{\text{推定対象}}\times D+\underbrace{\beta_0+\beta_1X}_{\text{局外 (Nuisance)}}$
- ・ 推定対象が一定: どんな d, X についても $E[Y \mid D = d + 1, X] E[Y \mid D = d, X] = \beta_D$
- Nuisance が十分に複雑に定式化されている

3.4 例 X = RoomNumber

・ 二乗項まで導入

```
estimatr::lm_robust(
  Price ~ District + RoomNumber + I(RoomNumber^2),
  data)
```

```
Estimate Std. Error
                               t value
                                          Pr(>|t|)
                                                  CI Lower
(Intercept)
            -30.21843 13.827749 -2.185347 2.927920e-02 -57.37934
District練馬区 -98.68988
                     8.217596 -12.009580 1.041826e-29 -114.83115
RoomNumber
            135.62844 18.090127 7.497373 2.580539e-13 100.09523
CI Upper DF
(Intercept)
             -3.057526 557
District練馬区 -82.548612 557
RoomNumber
            171.161646 557
I(RoomNumber^2) -12.529978 557
```

3.5 例 X =たくさん

- X = RoomNumber, Tenure, Distance, Size
 - 二乗と交差項を導入

```
estimatr::lm_robust(
  Price ~ District + (RoomNumber + Tenure + Distance + Size)^2 +
        I(RoomNumber^2) + I(Tenure^2) + I(Distance^2) + I(Size^2),
        data)
```

```
Estimate
                              Std. Error
                                          t value
                                                    Pr(>|t|)
                  36.97051755 14.218380043 2.6001920 9.569917e-03
(Intercept)
District練馬区
                -31.94108957 4.306790608 -7.4164482 4.634298e-13
RoomNumber
                  48.45086983 15.577445412 3.1103219 1.966587e-03
Tenure
                  -1.96845086 0.521329698 -3.7758272 1.770032e-04
                  -2.20845269 1.190711841 -1.8547331 6.417423e-02
Distance
                  -0.50733896    0.808251130    -0.6276997    5.304636e-01
Size
I(RoomNumber^2)
                  -9.60540818 5.114857469 -1.8779425 6.092275e-02
                   I(Tenure^2)
                   0.18871909    0.103970844    1.8151155    7.005568e-02
I(Distance^2)
I(Size^2)
                   0.07892157  0.009063450  8.7076734  3.705147e-17
RoomNumber: Tenure
                   0.89762107  0.298417856  3.0079335  2.751756e-03
RoomNumber:Distance 2.28827531 0.955769680 2.3941702 1.699497e-02
RoomNumber:Size
                 -1.10937993 0.369990714 -2.9983994 2.837865e-03
Tenure:Distance
                   Tenure:Size
                  Distance:Size
                  -0.16207740 0.061744873 -2.6249532 8.909327e-03
```

```
CI Lower
                                    CI Upper DF
(Intercept)
                   9.040980e+00 64.90005533 545
District練馬区
                  -4.040103e+01 -23.48114754 545
RoomNumber
                   1.785168e+01 79.05005545 545
Tenure
                   -2.992512e+00 -0.94438923 545
Distance
                  -4.547399e+00 0.13049388 545
Size
                  -2.095008e+00 1.08032998 545
I(RoomNumber^2)
                  -1.965266e+01 0.44184084 545
I(Tenure^2)
                   3.472929e-02 0.07082717 545
I(Distance^2)
                  -1.551357e-02 0.39295175 545
                   6.111799e-02 0.09672514 545
I(Size^2)
RoomNumber: Tenure 3.114310e-01 1.48381111 545
RoomNumber:Distance 4.108318e-01 4.16571882 545
RoomNumber:Size
                  -1.836162e+00 -0.38259744 545
Tenure:Distance
                  -4.996867e-04 0.15783135 545
Tenure:Size
                  -1.234767e-01 -0.05869200 545
Distance:Size
                  -2.833645e-01 -0.04079032 545
```

3.6 Takeaway

- OLS を用いても、バランス後の比較は可能
- 本スライドでは、平均差の同質性を仮定し、X に関する部分 (nuisance)を複雑に定式 化するアプローチを紹介
- 結果
 - 単純比較: 港区の方が8506万円 (信頼区間 = [6947万円, 10065万円]) 程度平均的に高い
 - RoomNumber, Tenure, Distance, Size をバランス: 港区の方が 3194 万円 (信頼区間 = [2348 万円, 4040 万円]) 程度平均的に高い

3.7 本スライドのアプローチの問題

- ・ OLS は、複雑なモデルの推定に向かいない
 - β の数が、事例数の 1/3 を超えるほど大きくなると、推定精度の大幅な悪化、信頼区間が信頼できなくなる
- 同質性の仮定が怪しい
 - ・データ上、部屋数に応じて、平均差が大きく異なっている
 - ► 正当化するには、「データ上では"偶然の上振れ/下振れによって、異質に見えるだけ」 と強弁するしかないが ⁽¹⁾

3.8 Reference

Bibliography