Central Limit Theorem

 $X_1, X_2, ..., X_n$ are i.i.d. with mean μ and variance σ^2 .

$$\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} = \frac{(\sum_{i=1}^n X_i - n\mu)}{\sqrt{n}\sigma} \stackrel{D}{\to} Z \sim N(0,1).$$

Δ-Method

$$\sqrt{n}(\bar{X}_n - \mu) \stackrel{D}{\to} N(0, \sigma^2)$$

g(x) is differentiable at θ and $g'(\mu) \neq 0$

$$\Rightarrow \sqrt{n}[g(\bar{X}_n) - g(\mu)] \stackrel{D}{\to} N \left[0, \left(g'(\mu)\right)^2 \sigma^2\right]$$

Intuition:

By CLT, $\bar{X}_n - \mu$ is approximately $N\left(0, \frac{\sigma^2}{n}\right)$ for large n. If g(x) is differentiable at μ and x is "close" to μ ,

$$g(x) \approx g(\mu) + g'(\mu)(x - \mu).$$

Therefore, if $g'(\mu) \neq 0$, $g(\bar{X}_n)$ is approximately $N\left[g(\mu), \left(g'(\mu)\right)^2 \frac{\sigma^2}{n}\right]$ for large n.

Example 1. Let $X_1, X_2, ..., X_n$ be a random sample of size n from a Geometric (p) distribution (the number of independent trials until the first "success"). That is,

$$P(X_i = k) = (1 - p)^{k-1}p, \qquad k = 1, 2, 3, ...$$

Show that $\hat{p} = \tilde{p} = 1/\bar{X}_n$ is asymptotically normally distributed (as $n \to \infty$).

$$Var(X) = \frac{1-p}{p^2}$$

By CLT,
$$\sqrt{n} \left(\bar{X}_n - \frac{1}{n} \right) \stackrel{D}{\to} N \left(0, \frac{1-p}{n^2} \right)$$
.

$$g(x) = \frac{1}{x}$$
 is differentiable at $\frac{1}{p}$, $g'\left(\frac{1}{p}\right) = -p^2 \neq 0$.

$$\Rightarrow \sqrt{n} \left(g(\bar{X}_n) - g\left(\frac{1}{p}\right) \right) \stackrel{D}{\to} N\left(0, (-p^2)^2 \frac{1-p}{p^2}\right)$$

$$\Rightarrow \sqrt{n} (\hat{p} - p) \stackrel{D}{\to} N\left(0, p^2 (1-p)\right).$$
For large n , $\hat{p} \sim N\left(p, \frac{p^2 (1-p)}{n}\right).$

$$\Rightarrow \hat{p} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}^2(1-\hat{p})}{n}}$$
 would have approximate $100(1-\alpha)$ % confidence level for large n .

Example 2. Let $X_n \sim \chi^2(n)$. What is the limiting distribution of $W_n = \sqrt{X_n} - \sqrt{n}$?

Hint: We already know that

(a)
$$Y_n = \frac{X_n}{n} \xrightarrow{P} 1$$

(b)
$$Z_n = \frac{X_n - n}{\sqrt{2n}} = \sqrt{\frac{n}{2}} \left(\frac{X_n}{n} - 1 \right) \stackrel{D}{\to} N(0,1).$$

$$W_n = \sqrt{X_n} - \sqrt{n} = \sqrt{n} \left(\sqrt{\frac{X_n}{n}} - 1 \right)$$

$$Z_n = \frac{X_n - n}{\sqrt{2n}} = \sqrt{\frac{n}{2}} \left(\frac{X_n}{n} - 1 \right) \xrightarrow{D} N(0, 1) \Rightarrow \sqrt{n} \left(\frac{X_n}{n} - 1 \right) \xrightarrow{D} N(0, 2)$$

Let $g(x) = \sqrt{x}$. Then g(x) is differentiable, $g'(x) = \frac{1}{2}x^{-\frac{1}{2}}$ and $g'(1) = \frac{1}{2}$.

$$\Rightarrow W_n = \sqrt{X_n} - \sqrt{n} = \sqrt{n} \left(\sqrt{\frac{X_n}{n}} - \sqrt{1} \right) \stackrel{D}{\rightarrow} N\left(0, \left(g'(1)\right)^2 \cdot 2\right) = N\left(0, \frac{1}{2}\right).$$

S. Culpepper

Example 3. Consider the sample mean \bar{X}_n from a random sample of size n from a distribution with pdf $f(x) = e^{-x}$, x > 0.

a) Obtain the MGF for $Y_n = \sqrt{n}(\bar{X}_n - 1)$

$$\begin{split} M_X(t) &= (1-t)^{-1}, \quad t < 1 \\ M_{Y_n}(t) &= E \left[e^{t\sqrt{n}(\bar{X}_n - 1)} \right] = e^{-t\sqrt{n}} E \left[\exp \left(\frac{t}{\sqrt{n}} \sum_{i}^{n} X_i \right) \right] \\ &= e^{-t\sqrt{n}} \left[M_X \left(\frac{t}{\sqrt{n}} \right) \right]^n = e^{-t\sqrt{n}} \left(1 - \frac{t}{\sqrt{n}} \right)^{-n} \\ &= \left(e^{\frac{t}{\sqrt{n}}} - \frac{t}{\sqrt{n}} e^{\frac{t}{\sqrt{n}}} \right)^{-n}, \frac{t}{\sqrt{n}} < 1. \end{split}$$

b) Find the limiting distribution of Y_n via the MGF

$$e^{\frac{t}{\sqrt{n}}} = 1 + \frac{t}{\sqrt{n}} + \frac{t^2}{2n} + o\left(\frac{1}{n}\right).$$

$$\Rightarrow M_{Y_n}(t) = \left(1 + \frac{t}{\sqrt{n}} + \frac{t^2}{2n} - \frac{t}{\sqrt{n}} - \frac{t^2}{n} + o\left(\frac{1}{n}\right)\right)^{-n} = \left(1 - \frac{t^2}{2n} + o\left(\frac{1}{n}\right)\right)^{-n}$$

As
$$n \to \infty$$
, $M_{Y_n}(t) \to e^{\frac{t^2}{2}} = M_Z(t)$, where $Z \sim N(0,1)$.

$$\Rightarrow Y_n \stackrel{D}{\to} Z \sim N(0,1).$$

A. Stepanov D. Simpson

S. Culpepper

Example 4. Let $X_1, ..., X_n$ be a random sample from the distribution with probability density function

$$f_X(x;\theta) = \frac{1}{\theta} x^{\frac{1-\theta}{\theta}}, 0 < x < 1, 0 < \theta < \infty$$

Let $Y_1 < Y_2 < \cdots Y_n$ denote the corresponding order statistics.

a) The *method of moments* estimator of θ is $\tilde{\theta} = \frac{1-\bar{X}}{\bar{X}} = \frac{1}{\bar{X}} - 1$. Determine its large sample behavior.

What is method of moments? Note that

$$\mu = E(X) = (1 + \theta)^{-1}$$
.

If we don't know θ consider inserting the sample mean for μ :

$$\bar{X}_n = \frac{1}{1 + \tilde{\theta}} \iff \tilde{\theta} = \frac{1 - \bar{X}_n}{\bar{X}_n}$$

Using the weak law of large numbers we know $\bar{X}_n \stackrel{P}{\to} \mu$ so we conclude that

$$\tilde{\theta} \stackrel{P}{\to} \frac{1-\mu}{\mu} = \theta$$

In other words, the MoM estimator is a *consistent estimator* of θ .

Next, show that $\tilde{\theta}$ is asymptotically normally distributed as $n \to \infty$.

For the CLT find the variance,

$$\sigma^{2} = Var(X) = E(X^{2}) - [E(X)]^{2} = \int_{0}^{1} x^{2} \frac{1}{\theta} x^{\frac{1-\theta}{\theta}} dx - \frac{1}{(1+\theta)^{2}}$$
$$= \frac{1}{1+2\theta} - \frac{1}{(1+\theta)^{2}} = \frac{\theta^{2}}{(1+2\theta)(1+\theta)^{2}}.$$

By CLT, $\sqrt{n}(\bar{X}_n - \mu) \stackrel{D}{\to} N(0, \sigma^2)$.

Since $g(x) = \frac{1-x}{x}$ is differentiable at $\mu = (1+\theta)^{-1}$, $g'(\mu) = -(1+\theta)^{-2} \neq 0$, $\Rightarrow \sqrt{n}[g(\bar{X}_n) - g(\mu)] \xrightarrow{D} N \left[0, (-(1+\theta)^{-2})^2 \frac{\theta^2}{(1+2\theta)(1+\theta)^2} \right]$ $\Rightarrow \sqrt{n}[\tilde{\theta} - \theta] \xrightarrow{D} N \left[0, \frac{\theta^2(1+\theta)^2}{1+2\theta} \right].$

 \Rightarrow For large n,

$$\tilde{\theta} \sim N \left[\theta, \frac{\theta^2 (1+\theta)^2}{(1+2\theta)n} \right]$$

b) Suggest a $100(1 - \alpha)\%$ confidence interval for θ . For large n,

$$\tilde{\theta} = \frac{1 - \bar{X}_n}{\bar{X}_n} \sim N \left[\theta, \frac{\theta^2 (1 + \theta)^2}{(1 + 2\theta)n} \right]$$

$$\tilde{\theta} \pm z_{\alpha/2} \frac{\tilde{\theta} (1 + \tilde{\theta})}{\sqrt{(1 + 2\tilde{\theta})n}}$$

would have an approximate 100 ($1 - \alpha$) % confidence level for large n.

S. Culpepper

c) The maximum likelihood estimator of θ , $\hat{\theta} = -\frac{1}{n}\sum_{i=1}^{n}\ln X_{i}$, is a consistent estimator of θ . Show that $\hat{\theta}$ is asymptotically normally distributed (as $n \to \infty$).

Find the parameters.

Let
$$Y_i = -\ln X_i$$
, $i = 1, ..., n$. Then $E(Y) = \theta$, $Var(Y) = \theta^2$.

By CLT,
$$\sqrt{n}(\bar{Y}_n - \mu) \xrightarrow{D} N(0, \sigma_Y^2)$$
.

$$\Rightarrow \sqrt{n}(\hat{\theta} - \theta) \stackrel{D}{\rightarrow} N(0, \theta^2)$$

$$\Rightarrow \quad \text{For large } n, \qquad \qquad \widehat{\theta} \sim N\left(\theta, \frac{\theta^2}{n}\right)$$

d) Suggest a 100 (1 – α) % confidence interval for θ.

For large
$$n$$
,
$$\widehat{\theta} = -\frac{1}{n} \sum_{i}^{n} \ln X_{i} \sim N\left(\theta, \frac{\theta^{2}}{n}\right)$$

$$\Rightarrow P\left(-z_{\alpha/2} < \frac{\widehat{\theta} - \theta}{\frac{\theta}{\sqrt{n}}} z_{\alpha/2}\right) \approx 1 - \alpha$$

$$\Rightarrow P\left(\frac{\widehat{\theta}}{1 + \frac{Z_{\alpha/2}}{\sqrt{n}}} < \theta < \frac{\widehat{\theta}}{1 - \frac{Z_{\alpha/2}}{\sqrt{n}}}\right) \approx 1 - \alpha$$

$$\Rightarrow \left(\frac{\widehat{\theta}}{1 + \frac{Z_{\alpha/2}}{\sqrt{n}}}, \frac{\widehat{\theta}}{1 - \frac{Z_{\alpha/2}}{\sqrt{n}}}\right) \qquad \text{would have an approximate } 100(1 - \alpha) \%$$

$$\text{confidence level for large } n.$$

A. Stepanov

D. Simpson

S. Culpepper

For large n,

$$\hat{\theta} = -\frac{1}{n} \sum_{i}^{n} \ln X_{i} \sim N\left(\theta, \frac{\theta^{2}}{n}\right)$$

$$\hat{\theta} \pm z_{\alpha/2} \frac{\hat{\theta}}{\sqrt{n}}$$

would have an approximate $100(1-\alpha)$ % confidence level for large n.

OR

For all **n**, let $Y_i = -\ln X_i$, i = 1, ..., n.

$$F_X(x) = x^{\frac{1}{\theta}}, 0 < x < 1$$

$$\Rightarrow F_Y(y) = P(Y \le y) = P(X \ge e^{-y}) = 1 - e^{-\frac{y}{\theta}}, y > 0$$

$$\Rightarrow Y_1, \dots, Y_n \text{ are i.i.d. } Exponential(\theta)$$

$$\begin{split} M_{\widehat{\theta}}(t) &= M_{\widehat{Y}}(t) = \left[M_{Y} \left(\frac{t}{n} \right) \right]^{n} = \frac{1}{\left(1 - \frac{\theta}{n} t \right)^{n}}, t < \frac{n}{\theta}. \\ &\Rightarrow \widehat{\theta} \sim Gamma \left(\alpha = n, \frac{\theta}{n} \right) \\ &\Rightarrow \frac{2n}{\theta} \widehat{\theta} \sim \chi^{2}(2n) \\ &\Rightarrow P \left(\chi_{1-\alpha/2}^{2}(2n) < \frac{2n}{\theta} \widehat{\theta} < \chi_{\alpha/2}^{2}(2n) \right) = 1 - \alpha \\ &\Rightarrow P \left(\frac{2n\widehat{\theta}}{\chi_{\alpha/2}^{2}(2n)} < \theta < \frac{2n\widehat{\theta}}{\chi_{1-\alpha/2}^{2}(2n)} \right) = 1 - \alpha \\ &\Rightarrow \left(\frac{2n\widehat{\theta}}{\chi_{\alpha/2}^{2}(2n)} < \theta < \frac{2n\widehat{\theta}}{\chi_{1-\alpha/2}^{2}(2n)} \right) & \text{would have a 100(1-α) % confidence} \\ &\Rightarrow \left(\frac{2n\widehat{\theta}}{\chi_{\alpha/2}^{2}(2n)} < \theta < \frac{2n\widehat{\theta}}{\chi_{1-\alpha/2}^{2}(2n)} \right) & \text{level for any n.} \end{split}$$

Example 5. Let $\lambda > 0$ and let $X_1, ..., X_n$ be a random sample from the distribution with the probability density function

$$f(x; \lambda) = 2\lambda^2 x^3 e^{-\lambda x^2}, x > 0$$

Recall:

$$Y_n = \sum_{i=1}^n X_i^2 \sim Gamma\left(\alpha = 2n, "usual \theta" = \frac{1}{\lambda}\right).$$

a) Suggest a confidence interval for λ with $(1 - \alpha)100\%$ confidence level. If $Y_n \sim Gamma\left(\alpha = 2n, "usual \theta" = \frac{1}{\lambda}\right)$, where α is an integer, then

$$\frac{2}{\theta}Y_n = 2\lambda Y_n = 2\lambda \sum_{i=1}^n X_i^2 \sim \chi^2(4n)$$

$$\Rightarrow P\left(\chi_{1-\alpha/2}^2(4n) < 2\lambda \sum_{i=1}^n X_i^2 < \chi_{\alpha/2}^2(4n)\right) = 1 - \alpha$$

$$\Rightarrow P\left(\frac{\chi_{1-\alpha/2}^2(4n)}{2\sum_{i=1}^n X_i^2} < \lambda < \frac{\chi_{\alpha/2}^2(4n)}{2\sum_{i=1}^n X_i^2}\right) = 1 - \alpha$$

A $100(1-\alpha)\%$ confidence interval for λ , $\left(\frac{\chi_{1-\alpha/2}^2(4n)}{2\sum_{i=1}^n X_i^2}, \frac{\chi_{\alpha/2}^2(4n)}{2\sum_{i=1}^n X_i^2}\right).$

b) Suppose
$$n = 5$$
, and $x_1 = 0.6$, $x_2 = 1.1$, $x_3 = 2.7$, $x_4 = 3.3$, $x_5 = 4.5$

$$\sum_{i=1}^{5} x_i^2 = 40.$$

(i) Use part (a) to construct a 90% confidence interval for λ .

$$\chi_{0.95}^2 = 10.85, \chi_{0.05}^2 = 31.41$$

$$\left(\frac{\chi_{1-\frac{\alpha}{2}}^2(4n)}{2\sum_{i=1}^n X_i^2}, \frac{\chi_{\frac{\alpha}{2}}^2(4n)}{2\sum_{i=1}^n X_i^2}\right) = \left(\frac{10.85}{2\cdot 40}, \frac{31.41}{2\cdot 40}\right) \approx (\mathbf{0}.\mathbf{1356}, \mathbf{0}.\mathbf{3926}).$$

(ii) Use part (a) to construct a 95% confidence interval for λ .

$$\chi_{0.95}^2 = 9.591, \chi_{0.05}^2 = 34.17$$

$$\left(\frac{\chi_{1-\frac{\alpha}{2}}^2(4n)}{2\sum_{i=1}^n X_i^2}, \frac{\chi_{\frac{\alpha}{2}}^2(4n)}{2\sum_{i=1}^n X_i^2}\right) = \left(\frac{9.591}{2 \cdot 40}, \frac{34.17}{2 \cdot 40}\right) \approx (\mathbf{0}.\mathbf{120}, \mathbf{0}.\mathbf{427}).$$

Recall:

$$\hat{\lambda} = \frac{2n}{\sum_{i=1}^{n} X_i^2} = 0.25$$

S. Culpepper

Example 6. Let $X_1, ..., X_n$ be a random sample of size n such that $X_i \sim U(0, \theta)$.

$$f(x:\theta) = \begin{cases} \frac{1}{\theta} & 0 < x < \theta \\ 0 & \text{otherwise} \end{cases}$$

$$F(x:\theta) = \begin{cases} \frac{0}{x} & x < 0 \\ \frac{x}{\theta} & 0 \le x < \theta \\ 1 & x \ge \theta \end{cases}$$

The method of moments estimator of θ is $\tilde{\theta} = 2\bar{X}_n$. By CLT,

$$\sqrt{n}(\bar{X}_n - \mu) \xrightarrow{D} N(0, \sigma^2).$$

$$\Rightarrow \quad \text{For large } n, \qquad \qquad \tilde{\theta} \sim N\left(\theta, \frac{\theta^2}{3n}\right).$$

$$\Rightarrow \left(\frac{\tilde{\theta}}{1 + \frac{1}{\sqrt{3n}} z_{\alpha/2}}, \frac{\tilde{\theta}}{1 - \frac{1}{\sqrt{3n}} z_{\alpha/2}}\right) \quad \text{would have an approximate } 100(1-\alpha) \%$$

$$\text{confidence level for large } n.$$

OR

$$\tilde{\theta} \pm z_{\alpha/2} \frac{\tilde{\theta}}{\sqrt{3n}}$$
 would have an approximate $100(1-\alpha)$ % confidence level for large n .

OR

The maximum likelihood estimator of θ is $\hat{\theta} = \max X_i$.

$$F_{\widehat{\theta}}(x) = F_{\max X_i}(x) = [F_X(x)]^n = \left(\frac{x}{\theta}\right)^n, 0 < x < \theta.$$

$$f_{\widehat{\theta}}(x) = f_{\max X_i}(x) = n \frac{x^{n-1}}{\theta^n}, 0 < x < \theta.$$

$$P(c\theta < \widehat{\theta} < \theta) = F_{\max X_i}(\theta) - F_{\max X_i}(c\theta) = 1 - c^n$$

$$\Rightarrow P\left(\max X_i < \theta < \frac{\max X_i}{c}\right) = 1 - c^n$$

$$\Rightarrow \left(\max X_i, \frac{\max X_i}{\alpha^{\frac{1}{n}}}\right)$$

has $100(1-\alpha)\%$ confidence level for any n

OR

Recall $n(\theta - \max X_i) \xrightarrow{D} Exponential(\theta)$. (Example 5a in convergence 1 notes)

Also, recall that the p^{th} quantile, π_p , for the exponential distribution is defined as,

$$F\left(\pi_{1-\alpha/2}\right) = 1 - \frac{\alpha}{2} \Rightarrow \pi_{1-\alpha/2} = F^{-1}\left(1 - \frac{\alpha}{2}\right)$$

where the inverse exponential cdf is $\pi_p = F^{-1}(p) = -\theta \ln(1-p)$.

$$\Rightarrow P\left[-\theta \ln\left(1-\frac{\alpha}{2}\right) < n(\theta-\max X_i) < -\theta \ln\left(\frac{\alpha}{2}\right)\right] \approx 1-\alpha \text{ for large } n.$$

$$\Rightarrow P\left[\frac{\max X_i}{1 + \frac{1}{n}\ln\left(1 - \frac{\alpha}{2}\right)} < \theta < \frac{\max X_i}{1 + \frac{1}{n}\ln\left(\frac{\alpha}{2}\right)}\right] \approx 1 - \alpha$$

$$\left(\frac{\max X_i}{1 + \frac{1}{n}\ln\left(1 - \frac{\alpha}{2}\right)}, \frac{\max X_i}{1 + \frac{1}{n}\ln\left(\frac{\alpha}{2}\right)}\right) \quad \text{would have approximate } 100(1 - \alpha) \%$$

Example 7. Let $X \sim Binomial(n, p)$. Recall that for large n,

$$\frac{X-np}{\sqrt{np(1-p)}} \sim N(0,1),$$

and

$$P\left(-z_{\alpha/2} < \frac{X - np}{\sqrt{np(1-p)}} < z_{\alpha/2}\right) \approx 1 - \alpha.$$

Show that an approximate $100(1 - \alpha)\%$ confidence interval for p is,

$$\frac{\hat{p} + \frac{1}{2n} z_{\alpha/2}^2 + z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n} + \frac{1}{4n} z_{\alpha/2}^2}}{1 + \frac{1}{n} z_{\alpha/2}^2}, \qquad \hat{p} = \frac{X}{n}.$$

This interval is called the Wilson interval. Note that for large n, this interval is approximately equal to

$$\hat{p} + z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}.$$

$$\left| \frac{X - np}{\sqrt{np(1 - p)}} \right| < z_{\alpha/2} \Leftrightarrow \frac{(X - np)^2}{np(1 - p)} < z_{\alpha/2}^2$$

$$\Leftrightarrow X^{2} - 2npX + n^{2}p^{2} < npz_{\alpha/2}^{2} - np^{2}z_{\alpha/2}^{2}$$

$$\Leftrightarrow \hat{p}^{2} - 2\hat{p}p + p^{2} < \frac{z_{\alpha/2}^{2}}{n}p - \frac{z_{\alpha/2}^{2}}{n}p^{2}$$

$$\Leftrightarrow \left(1 + \frac{z_{\alpha/2}^2}{n}\right)p^2 - \left(2\hat{p} + \frac{z_{\alpha/2}^2}{n}\right)p + \hat{p}^2 < 0$$

$$ap^{2} - bp + c = 0 \Rightarrow p_{1}, p_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$ap^2 - bp + c = <0 \Leftrightarrow p_1 < p < p_2 \qquad (a > 0)$$

$$\begin{split} p_1, p_2 &= \frac{\left(2\hat{p} + \frac{z_{\alpha/2}^2}{n}\right) \pm \sqrt{\left(2\hat{p} + \frac{z_{\alpha/2}^2}{n}\right)^2 - 4\left(1 + \frac{z_{\alpha/2}^2}{n}\right)\hat{p}^2}}{2\left(1 + \frac{z_{\alpha/2}^2}{n}\right)} \\ &= \frac{\hat{p} + \frac{z_{\alpha/2}^2}{2n} \pm \sqrt{\left(\hat{p} + \frac{z_{\alpha/2}^2}{2n}\right)^2 - \left(1 + \frac{z_{\alpha/2}^2}{n}\right)\hat{p}^2}}{1 + \frac{z_{\alpha/2}^2}{n}} \\ &= \frac{\hat{p} + \frac{z_{\alpha/2}^2}{2n} \pm \sqrt{\hat{p}^2 + 2\hat{p}\frac{z_{\alpha/2}^2}{2n} + \frac{z_{\alpha/2}^4}{4n^2} - \left(1 + \frac{z_{\alpha/2}^2}{n}\right)\hat{p}^2}}{1 + \frac{z_{\alpha/2}^2}{n}} \\ &= \frac{\hat{p} + \frac{z_{\alpha/2}^2}{2n} \pm z_{\alpha/2}^2\sqrt{\frac{\hat{p}(1 - \hat{p})}{n} + \frac{z_{\alpha/2}^2}{4n^2}}}{1 + \frac{z_{\alpha/2}^2}{2n}} \end{split}$$