Langages et Compilation

Analyse descendante prédictive

Grammaires LL(1)

Une famille de grammaires analysables de façon efficace.

Caractéristiques de l'analyse *LL*(1)

- analyse descendante
 Construction de l'arbre de
 dérivation selon l'ordre préfixé:
 on part de la racine (l'axiome) et
 on descend vers les feuilles (les
 terminaux) en développant le nœud
 interne (une variable) le plus à
 gauche.
- analyse prédictive
 Pour développer le nœud, on choisit
 la règle à appliquer en prévisualisant
 le symbole courant du mot analysé.

Exemple
$$S \rightarrow +SS \mid *SS \mid a$$

Les chaînes dérivées de ${\it S}$ commencent toutes par un terminal distinct

→ À partir du terminal courant du mot analysé, on sait déterminer la bonne règle.

	+	*	а
S	$S \rightarrow +SS$	S o *SS	$S \rightarrow a$

Analyse du mot *a + aa

Exemple
$$S \rightarrow aSbS \mid \varepsilon$$

Le choix devient plus délicat lorsque la grammaire comprend des ε -productions. Quel critère doit-on prendre en compte pour choisir entre la règle $S \to aSbS$ et la règle $S \to \varepsilon$?

On est amené à considérer les terminaux qui peuvent suivre S.

Convention pratique, on introduit un terminal particulier \$ pour marquer la fin du mot à analyser.

\$ et **b** (mais pas **a**) peuvent se retrouver à droite de **S**.

→ On sait alors déterminer la règle à appliquer au vu du terminal courant.

	\$	а	b
S	$oldsymbol{\mathcal{S}} ightarrow arepsilon$	S o aSbS	${m S} ightarrow arepsilon$

Exemple $S \rightarrow aSbS \mid \varepsilon$

sa table d'analyse

	\$	а	Ь
S	${m S} o arepsilon$	S o aSbS	${m S} ightarrow arepsilon$

Analyse du mot ab\$

Condition pour une analyse LL(1) à chaque étape, pour la variable X à développer et le terminal courant c en entrée, le choix de la dérivation à appliquer doit être déterministe.

- L lecture de l'entrée de la gauche vers la droite (Left to right scanning)
- L construction d'une dérivation gauche (Left derivation)
- 1 symbole de l'entrée pour prédire la bonne règle

L'analyse LL(1) se base sur une table qui indique, pour la variable X et le terminal c, la règle correcte à appliquer.

Pour construire cette table d'analyse, on détermine au préalable :

- 1. les variables effaçables
- 2. les ensembles Premier
- 3. les ensembles Suivant

Les variables effaçables

Une chaîne $\alpha \in \mathbf{N}^*$ est dite effaçable si le mot vide se dérive de $\alpha: \alpha \stackrel{*}{\to} \varepsilon$

Calcul des variables effaçables

On construit par récurrence sur i, l'ensemble \mathbf{Eff}_i des variables A.

$$\operatorname{Eff}_0 = \{ \mathbf{A} \in \mathbf{N} \colon \mathbf{A} \to \varepsilon \in \mathbf{P} \}$$

$$\operatorname{Eff}_{i+1} = \{ \mathbf{A} \in \mathbf{N} \colon \mathbf{A} \to \alpha \in \mathbf{P} \text{ et } \alpha \in \operatorname{Eff}_{i}^{*} \}$$

Arrêt lorsque $\mathbf{Eff}_{i+1} = \mathbf{Eff}_i$ (au bout d'au plus |N| étapes)

Exemple

Les ensembles Premier

Soit α une chaîne de $(\Sigma \cup N)^*$. Premier (α) est l'ensemble des terminaux qui débutent les chaînes dérivées de α :

$$\left\{ \boldsymbol{a} \in \Sigma \colon \alpha \overset{*}{\to} \boldsymbol{a}\beta \text{ où } \beta \in (\Sigma \cup \boldsymbol{N})^* \right\}$$

```
Calcul des ensembles Premier
```

Les ensembles Premier

Exemple

$$\left\{ \begin{array}{ll} S & \rightarrow & XY \\ X & \rightarrow & aXb \mid \varepsilon \\ Y & \rightarrow & cZ \mid Ze \\ Z & \rightarrow & dcZ \mid \varepsilon \end{array} \right.$$

Calcul des ensembles Premier pour les variables :

$$\begin{array}{lll} \mathbf{Premier}(\boldsymbol{S}) &=& \mathrm{Premier}(XY) & S \to XY \\ &=& \mathrm{Premier}(X) \cup \mathrm{Premier}(Y) & X \text{ effaçable} \\ \mathbf{Premier}(\boldsymbol{X}) &=& \mathrm{Premier}(aXb) & X \to aXb \mid \varepsilon \\ &=& \{a\} \\ \mathbf{Premier}(\boldsymbol{Y}) &=& \mathrm{Premier}(cZ) \cup \mathrm{Premier}(Ze) & Y \to cZ \mid Ze \\ &=& \{c\} \cup \mathrm{Premier}(Z) \cup \{e\} & Z \text{ effaçable} \\ \mathbf{Premier}(\boldsymbol{Z}) &=& \mathrm{Premier}(dcZ) & Z \to dcZ \mid \varepsilon \\ &=& \{d\} \end{array}$$

Les ensembles Suivant

Soit X une variable. Suivant(X) est l'ensemble des terminaux qui peuvent apparaître après X dans une dérivation :

$$\left\{ \pmb{a} \in \Sigma \colon \pmb{S} \overset{*}{\to} \alpha \pmb{X} \pmb{a} \beta \text{ où } \alpha, \beta \in (\Sigma \cup \pmb{N})^* \right\}$$
 i.e.

$$\operatorname{Suivant}(\boldsymbol{X}) = \bigcup_{\boldsymbol{Y} \to \alpha \boldsymbol{X} \boldsymbol{\beta} \in \boldsymbol{P}} \operatorname{Premier}(\boldsymbol{\beta} \ \operatorname{Suivant}(\boldsymbol{Y}))$$

Calcul des ensembles Suivant

Mettre \$ dans Suivant(S) (où S est l'axiome)

Pour chaque variable \pmb{X} , examiner chaque production $\pmb{Y} \to \alpha \pmb{X} \pmb{\beta}$ où \pmb{X} est à droite :

- Si $\beta \neq \varepsilon$, ajouter les éléments de **Premier**(β) à **Suivant**(X)
- Si β ^{*} ∈, ajouter les éléments de Suivant(Y)
 à Suivant(X)

Les ensembles Suivant

```
Exemple
```

```
 \begin{cases} S & \rightarrow & XY \\ X & \rightarrow & aXb \mid \varepsilon \\ Y & \rightarrow & cZ \mid Ze \\ Z & \rightarrow & dcZ \mid \varepsilon \end{cases}
```

Calcul des ensembles Suivant :

```
Suivant(S) contient $
```

```
Suivant(X)
```

$$S \to XY \leadsto \operatorname{Premier}(Y \operatorname{Suivant}(S)) \subseteq \operatorname{Suivant}(X)$$

 $\leadsto \operatorname{Premier}(Y) \subseteq \operatorname{Suivant}(X)$ (Y non effaçable)

$$X \to aXb \rightsquigarrow b \in \text{Suivant}(X)$$

Suivant(Y)

$$S \to XY \sim \text{Suivant}(S) \subseteq \text{Suivant}(Y)$$

Suivant(Z)

$$Y \to cZ \sim \text{Suivant}(Y) \subseteq \text{Suivant}(Z)$$

$$Y \to Ze \leadsto e \in \operatorname{Suivant}(Z)$$

$$Z \to dcZ \leadsto \operatorname{Suivant}(Z) \subseteq \operatorname{Suivant}(Z)$$

Les variables Effaçables et les ensembles Premier et Suivant Exemple

$$\left\{ \begin{array}{ll} S & \rightarrow & XY \\ X & \rightarrow & aXb \mid \varepsilon \\ Y & \rightarrow & cZ \mid Ze \\ Z & \rightarrow & dcZ \mid \varepsilon \end{array} \right.$$

Bilan des calculs :

	Effaçable	Premier			Sι	ıiva	nt		
S	non	а	С	d	е	\$			
Χ	oui	а				Ь	C	d	e
Y	non	С	d	e		\$			
Ζ	oui	d				\$	e		

Construction de la table d'analyse

Table à deux dimensions indexée par les variables et les terminaux

Pour toute production $X \to \alpha$:

- Ajouter $X \to \alpha$ à l'entrée T[X, a] pour tout terminal a dans $\operatorname{Premier}(\alpha)$
- Si α est effaçable, ajouter $X \to \alpha$ dans la case T[X, a] pour tout terminal a dans Suivant(X)

	\$	а	Ь	С	d	e
S		$S \rightarrow XY$		$S \rightarrow XY$	$S \rightarrow XY$	$S \rightarrow XY$
X		$X \rightarrow aXb$	X o arepsilon	$ ilde{ extbf{X}} ightarrow arepsilon$	$ ilde{ extbf{X}} ightarrow arepsilon$	X ightarrow arepsilon
Y				$Y \rightarrow cZ$	Y o Ze	Y o Ze
Z	Z o arepsilon				$Z \rightarrow dcZ$	Z ightarrowarepsilon

13

Définition

Une grammaire est $\boldsymbol{LL}(1)$ s'il existe au plus une production par entrée dans la table.

Proposition

Une grammaire est LL(1) si pour toute paire de productions $A \rightarrow \alpha$ et $A \rightarrow \beta$, on a :

 $\mathbf{Premier}(\alpha \, \mathbf{Suivant}(\mathbf{A})) \cap \mathbf{Premier}(\beta \, \mathbf{Suivant}(\mathbf{A})) = \emptyset$

Ainsi une grammaire ne sera pas LL(1) s'il on a :

- soit un conflit Premier/Premier, i.e., deux règles
 A → α | β telles que : Premier(α) ∩ Premier(β) ≠ ∅
- soit un conflit Premier/Suivant, i.e., deux règles $A \to \alpha \mid \beta$ avec $\beta \stackrel{*}{\to} \varepsilon$ telles que : Premier $(\alpha) \cap \text{Suivant}(A) \neq \emptyset$

Exemple

$$\begin{cases} S & \rightarrow & XY \\ X & \rightarrow & aXb \mid \varepsilon \\ Y & \rightarrow & cZ \mid Ze \\ Z & \rightarrow & dcZ \mid \varepsilon \end{cases}$$
 est une grammaire $LL(1)$

Sa table d'analyse comprend au plus une alternative par case.

 $\,\,\rightarrow\,\,$ Le choix de la règle à appliquer se fait de façon déterministe.

	\$	а	b	С	d	е
S		$S \rightarrow XY$		$S \rightarrow XY$	$S \rightarrow XY$	$S \rightarrow XY$
X		X o aXb	$X \to \varepsilon$	$X \to \varepsilon$	$X \to \varepsilon$	$X \to \varepsilon$
Y				$Y \rightarrow cZ$	Y o Ze	Y o Ze
Z	$Z \rightarrow \varepsilon$				Z o dcZ	$Z \rightarrow \varepsilon$

Exemple

Il existe un conflit Premier/Premier pour les règles $S \to XY$ et $S \to Z$

$$Premier(XY) = Premier(X) \cup Premier(Y) = \{a, b\}$$
 X effaçable
$$Premier(Z) = \{b, c\}$$

$$\rightarrow$$
 Premier(XY) \cap Premier(Z) = {b} $\neq \emptyset$

	\$ Ь	• • •
S	S o XY	
	S o Z	

Exemple

$$\left\{\begin{array}{ccc} S & \rightarrow & aXb \\ X & \rightarrow & bX \mid \varepsilon \end{array}\right. \text{ n'est pas une grammaire } \mathit{LL}(1)$$

Il existe un conflit Premier/Suivant pour les règles $X \to bX$ et $X \to \varepsilon$

$$Premier(bX) = \{b\}$$

$$\mathrm{Suivant}(X)=\{b\}$$

$$\rightarrow$$
 Premier(X) \cap Suivant(X) = {b} $\neq \emptyset$

	\$ Ь	
V	X o bX	
X	$X o \varepsilon$	

Analyseur LL(1)

Pour examiner un mot, l'analyseur LL(1) utilise la table d'analyse précédemment construite et une pile.

Initialement, la pile contient le marqueur de fin de mot \$ et l'axiome.

Analyseur LL(1)

À chaque étape, on examine le terminal courant c du mot analysé et le sommet de la pile (premier symbole non traité de l'arbre en construction).

- Soit le sommet de la pile est un terminal a :
 - si a ≠ c,
 l'analyse s'arrête et retourne ÉCHEC
 - si a = c = \$, l'analyse s'arrête et retourne SUCCÈS
 - si a = c ≠ \$,
 a est dépilé et on avance dans la lecture du mot analysé
- Soit le sommet de la pile est une variable X :
 - si l'entrée T[X, c] est vide,
 l'analyse s'arrête et retourne ÉCHEC
 - si l'entrée T[X, c] contient une règle X → α,
 X est dépilé et α est empilé en partant de la droite (par exemple, si X → YzT, T est empilé, puis z, puis Y).

Analyseur LL(1)

	\$	а	Ь	С	d	е
S		$S \rightarrow XY$		$S \rightarrow XY$	$S \rightarrow XY$	$S \rightarrow XY$
X		X o aXb	$X \to \varepsilon$	$X \to \varepsilon$	$X o \varepsilon$	$X \to \varepsilon$
Y				$Y \rightarrow cZ$	Y o Ze	Y o Ze
Z	$Z \to \varepsilon$				Z o dcZ	$Z o \varepsilon$

Mot analysé	Pile		
abdce\$	5 \$	$S \rightarrow XY$	
abdce\$	XY\$	$ extbf{X} ightarrow a extbf{X} b$	X Y
abdce\$	aXbY\$	assortiment	a X b

Mot analysé	Pile		
a b dce\$	X bY\$	$ ilde{ extbf{X}} ightarrow arepsilon$	<u> </u>
			X
			a X b
	LVC		$\stackrel{dash}{oldsymbol{arepsilon}}$
a b dce \$		assortiment	
ab d ce \$	Y \$	Y o Ze	S
			X Y
			a X b Z e
ab d ce \$	Z e\$	Z o dcZ	S
			V
			^ _
			a X b Z e
			εdcZ
ab d ce \$	d cZe\$	assortiment	
ab d ce \$	Z e\$	$ extsf{Z} o dc extsf{Z}$	S A X b Z e E S X

Mot analysé	Pile		
abd c e\$	cZe\$	assortiment	
abdc e \$	Z e\$	Z ightarrowarepsilon	, s
			X Y a X b Z e e c d c Z
abdc e \$	<i>e</i> \$	assortiment	2
abdce\$	\$	SUCCES	

Le coût de l'analyse du mot est linéaire en la taille de l'arbre.

Analyseur $\boldsymbol{LL}(1)$

	\$	а	Ь	С	d	е
S		$S \rightarrow XY$		$S \rightarrow XY$	$S \rightarrow XY$	$S \rightarrow XY$
X		X o aXb	$X \to \varepsilon$	$X \to \varepsilon$	$X o \varepsilon$	$X \to \varepsilon$
Y				$Y \rightarrow cZ$	Y o Ze	Y o Ze
Z	$Z \to \varepsilon$				Z o dcZ	$Z o \varepsilon$

Mot analysé	Pile		start
a bbab\$	<i>S</i> \$	$S \rightarrow XY$	
a bbab\$	X Y\$	X o aXb	s <eof></eof>
a bbab\$	aXbY\$	assortiment	
a b bab\$	X bY\$	$ extbf{X} ightarrowarepsilon$	× X
a b bab\$	bY \$	assortiment	
ab b ab\$	Y \$	ECHEC	axbbab
	abbab\$ abbab\$ abbab\$ abbab\$	abbab\$ \$\$ abbab\$ XY\$ abbab\$ aXbY\$ abbab\$ XbY\$ abbab\$ bY\$	abbab\$ S \$ $S \rightarrow XY$ abbab\$ XY \$ $X \rightarrow aXb$ abbab\$ $aXbY$ \$assortimentabbab\$ XbY \$ $X \rightarrow \varepsilon$ abbab\$ bY \$assortiment

Proposition

```
Une grammaire ne peut pas être LL(1) si elle est :
```

```
soit ambiguë,
soit récursive gauche,
soit n'est pas factorisée à gauche.
```

On peut modifier la grammaire pour tenter de la rendre LL(1) mais le résultat n'est pas garanti.

Proposition

Il existe des grammaires non ambiguës, non récursives gauche et factorisées à gauche qui ne sont pas LL(1).

Par élimination de la récursivité gauche

Exemple

$$\begin{cases} E \rightarrow E+T \mid T \\ T \rightarrow T*F \mid F \end{cases}$$
 n'est pas $LL(1)$ car récursive gauche $F \rightarrow (E) \mid nb$

Il existe un conflit Premier/Premier pour les règles $E \to E + T$ et $E \to T$ à cause de la récursivité gauche de E

et un conflit Premier/Premier pour les règles $T \to T * F$ et $T \to F$ à cause de la récursivité gauche de T

	\$ (nb)	+	*
E	$E \rightarrow E + T$	$E \rightarrow E + T$			
<i>-</i>	E o T	E o T			
_	$T \rightarrow T * F$	T o T * F			
'	T o F	T o F			
F	F o (E)	F o nb			

Par élimination de la récursivité gauche

Supprimer la récursivité gauche rend cette grammaire LL(1)

$$\begin{cases}
E \rightarrow E + T \mid T \\
T \rightarrow T * F \mid F \\
F \rightarrow (E) \mid nb
\end{cases}
\longrightarrow
\begin{cases}
E \rightarrow TY \\
Y \rightarrow +TY \mid \varepsilon \\
T \rightarrow FZ \\
Z \rightarrow * FZ \mid \varepsilon \\
F \rightarrow (E) \mid nb
\end{cases}$$

Par élimination de la récursivité gauche

	\$	(nb)	+	*
Ε		E o TY	E o TY			
Y	$Y \rightarrow \varepsilon$			$Y \rightarrow \varepsilon$	$Y \rightarrow +TY$	
T		T o FZ	T o FZ			
Z	$Z \rightarrow \varepsilon$			$Z \rightarrow \varepsilon$	$Z o \varepsilon$	$Z \to *FZ$
F		$F \rightarrow (E)$	F o nb			

Par substitution et factorisation

Exemple

$$\begin{cases} E & \rightarrow & TR \\ T & \rightarrow & id \mid (E) \mid A \\ R & \rightarrow & +E \mid \varepsilon \\ A & \rightarrow & id \mid E \end{cases}$$
 n'est pas $LL(1)$

Il existe un conflit Premier/Premier pour les règles T o id et T o A

	\$ id	• • •
	T o id	
_ ′	$T \rightarrow A$	

Par substitution et factorisation

On effectue une substitution avant de factoriser à gauche.

$$\begin{vmatrix} E & \to & TR \\ T & \to & id \mid (E) \mid A \\ R & \to & +E \mid \varepsilon \\ A & \to & id[E] \end{vmatrix}$$

• Factorisation à gauche

Par substitution et factorisation

On obtient une grammaire LL(1)

	\$	+	id	()	[]
E			E o TR	E o TR			
T			T o id X	T o (E)			
X	$X \to \varepsilon$	$X \to \varepsilon$		$X \to \varepsilon$		$X \rightarrow [E]$	$X \to \varepsilon$
R	$R \rightarrow \varepsilon$	$R \rightarrow +E$			$R o \varepsilon$		R o arepsilon

ou rendre l'analyse déterministe

La grammaire des instructions de branchements conditionnels

$$\left\{\begin{array}{ll} I & \rightarrow & \textit{si E alors I sinon I} \mid \textit{si E alors I} \mid \textit{a} \\ E & \rightarrow & \textit{b} \end{array}\right.$$

même factorisée

$$\left\{ \begin{array}{ll} I & \rightarrow & \textit{si E alors I J} \mid a \\ J & \rightarrow & \textit{sinon I} \mid \varepsilon \\ E & \rightarrow & b \end{array} \right.$$

n'est pas LL(1) car ambiguë.

le mot si b alors si b alors a sinon a admet deux arbres d'analyse

ou rendre l'analyse déterministe

L'ambiguïté engendre un conflit Premier/Suivant pour les règles $J \to sinon\ I$ et $J \to \varepsilon$

	\$	sinon	• • •
• • •			
J	$oldsymbol{J} ightarrowarepsilon$	$egin{aligned} oldsymbol{J} ightarrow oldsymbol{sinon} \ oldsymbol{J} ightarrow oldsymbol{arepsilon} \end{aligned}$	

Avec la convention usuelle d'associer le sinon avec le si le plus proche, on peut rendre l'analyseur déterministe et le forcer à produire l'arbre voulu en privilégiant la règle $J \to sinon\ I$ au détriment de la règle $J \to \varepsilon$.

Généralisation de l'analyse LL(1) avec prévisualisation non pas juste d'un symbole mais d'un nombre fixé k de symboles. Une grammaire est LL(k) si l'analyseur peut choisir de façon déterministe la règle à appliquer en examinant les k symboles courants de l'entrée.

On note:

- $\mathbf{w}|_{k} = \begin{cases} w \text{ si } w \text{ est de longueur au plus } k \\ \text{le préfixe de longueur } k \text{ de } w \text{ sinon} \end{cases}$
- **Premier**_k(α) = { $w|_k : \alpha \stackrel{*}{\rightarrow} w$ }
- Suivant_k(\mathbf{A}) = { $\mathbf{w} : \exists \beta, \gamma \text{ t.q. } S \to \beta A \gamma \text{ et } \mathbf{w} \in \text{Premier}_{\mathbf{k}}(\gamma)$ }

Proposition

Une grammaire est LL(k) si pour toute paire de productions $A \to \alpha$ et $A \to \beta$, on a :

$$\operatorname{Premier}_{k}(\alpha \operatorname{Suivant}_{k}(A)) \cap \operatorname{Premier}_{k}(\beta \operatorname{Suivant}_{k}(A)) = \emptyset$$

Exemple

$$\left\{ \begin{array}{ll} S & \to & \mathsf{abX} \mid \varepsilon \\ X & \to & \mathsf{Saa} \mid b \end{array} \right. \quad \mathsf{n'est\ pas\ une\ grammaire}\ \mathit{LL}(1)$$

	Effaçable	Premier	Suivant
S	oui	а	\$ a
Χ	non	a b	\$ a

Conflit Premier/Suivant : $Premier(abX) \cap Suivant(S) \neq \emptyset$

	\$	а	Ь
C	S o arepsilon	$\mathcal{S} ightarrow abX$	
5	$J \rightarrow \varepsilon$	$\mathcal{S} ightarrow arepsilon$	
X		X o Saa	$X \rightarrow b$

$$\left\{ \begin{array}{ll} S & \rightarrow & abX \mid \varepsilon \\ X & \rightarrow & Saa \mid b \end{array} \right. \quad \text{est une grammaire $LL(2)$}$$

	Effaçable	Premier ₂		Suivant ₂		
S	oui	ab			\$	аа
X	non	aa	ab	b	\$	aa

En prévisualisant deux lettres, il n'y a plus de conflit : $\operatorname{Premier}_2(abX) \cap \operatorname{Suivant}_2(S) = \emptyset$

	\$	aa	ab	b
S	$S o \varepsilon$	S o arepsilon	S o abX	
X		X o Saa	X o Saa	$X \rightarrow b$

	\$	aa	ab	b
S	$S o \varepsilon$	$S o \varepsilon$	S o abX	
X		X o Saa	X o Saa	$X \rightarrow b$

Mot analyse	Pile	
ab aa\$	<i>5</i> \$	S o abX
ab aa\$	abX\$	assortiment
a ba a\$	b X\$	assortiment
ab aa \$	X \$	$ extbf{X} ightarrow extbf{Saa}$
ab aa \$	S aa\$	${\mathcal S} o arepsilon$
ab aa \$	a a\$	assortiment
aba a \$	a \$	assortiment
abaa\$	\$	SUCCES

Fait

Il existe des grammaires ni ambiguës, ni récursives gauche qui ne sont $\boldsymbol{LL}(\boldsymbol{k})$ pour aucun \boldsymbol{k} .

Exemple

$$\begin{cases}
S & \to & A \mid B \\
A & \to & aAb \mid c \\
B & \to & aBbb \mid d
\end{cases}$$

 $a^k \in \operatorname{Premier}_k(A) \cap \operatorname{Premier}_k(B)$ pour tout k

 \sim Conflit Premier/Premier pour tout k

Exemple

$$\left\{ \begin{array}{ccc} \textit{S} & \rightarrow & \textit{aSb} \mid \textit{bSa} \mid \varepsilon \end{array} \right.$$

 $\operatorname{Premier}_k(aSb) \cap \operatorname{Suivant}_k(S) = \{a\}\{a,b\}^{k-2}\{b\} \text{ pour tout } k$

 \sim Conflit Premier/Suivant pour tout k

Analyse syntaxique avec ANTLR

ANTLR4 met en œuvre une analyse descendante prédictive qui a les caractéristiques suivantes

- factorisation à gauche de la grammaire automatique
- suppression automatique des récursivités gauches immédiates (mais pas des récursivités gauches indirectes, e.g. A → Bα, B → Aβ)
- résolution de certaines ambiguïtés
 - en jouant sur l'ordre des productions pour lever celles liées aux priorités des opérateurs
 - pour les ambiguïtés dues à l'associativité, par défaut l'association s'effectue à gauche ou de façon explicite à droite, e.g. l'exponentielle, expr: expr '^' (assoc = right) expr
- basé sur une stratégie LL(k)
- enrichi d'un mécanisme additionnel qui permet de traiter plus que les grammaires LL(k) mais qui induit alors un surcoût en temps