Module 1 Graded Quiz

Due Aug 29, 2021 at 11:59pm **Points** 7 **Questions** 7 **Available** Aug 16, 2021 at 12am - Feb 14 at 11:59pm 6 months **Time Limit** 120 Minutes

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	60 minutes	7 out of 7

Score for this quiz: 7 out of 7

Submitted Aug 26, 2021 at 11:41am

This attempt took 60 minutes.

Question 1

1 / 1 pts

Given the following preference lists of 3 males and 3 females, identify a stable matching produced by the execution of the propose-and-reject algorithm.

Males	1st	2nd	3rd
Alex	Alicia	Becky	Carey
Brad	Becky	Carey	Alicia
Chad	Alicia	Becky	Carey

st	2nd	3rd
Chad	Brad	Alex

Becky	Alex	Chad	Brad
Carey	Alex	Brad	Chad
	ı		
(Alex,	Alicia),(Brad,Carey),	(Chad,Becky)	
(Alex,Becky),(Brad,Carey),(Chad,Alicia)			
○ (Brad,Alicia),(Chad,Carey),(Alex,Becky)			
○ (Chad	,Becky),(Alex,Carey),(Brad,Alicia)	

1 / 1 pts **Question 2**

Consider the following matching on preference lists, where * indicates a match:

Males	1st	2nd
Brad	Carey*	Becky
Chad	Carey	Becky*

Females	1st	2nd
Becky	Brad	Chad*
Carey	Chad	Brad*

How many unstable pairs are present in the matching indicated by the asterisks? Note that if P is the set of proposing men and A is the set of accepting women, then a pair is of the form (p,a) such that p is in P and a is in A. As such, every man/woman pair only counts as a single pair, i.e. (Chad,Becky) counts as a pair but (Becky,Chad) does not.

Question 3	1 / 1 pts
------------	-----------

Given the following preference lists, how many stable matchings exist for this particular instance?

Males	1st	2nd
Alex	Alicia	Becky
Brad	Becky	Alicia

Females	1st	2nd
Alicia	Brad	Alex
Becky	Alex	Brad

0 4

2

_
_

0 1

0

Question 4

1 / 1 pts

Suppose in an instance of the stable matching problem there are n men and n+m women, where $m\geq 0$. Which of the following conclusions can be inferred?

Correct!

The algorithm will terminate after at most n^2 iterations and each man will be matched to one woman.

The algorithm will terminate after at most n^2+nm iterations and each man will be matched to one woman.

The algorithm will terminate after at most n^2 iterations and each woman will be matched to one man.

The algorithm will terminate after at most $n^2 + nm$ iterations and each woman will be matched to one man.

Question 5

1 / 1 pts

Suppose we want to modify the propose-and-reject algorithm to accommodate limited polygamy. Specifically, we want each woman to be

matched with two men. Consequently, there must be a set of 2n men and n women. Identify which of the following sets of additional modifications would achieve such a reduction and still maintain a guarantee of finding a stable matching.

- i.) Allow each woman to maintain a total of two partners at all times and only allow a woman to trade up if she is currently matched with two men. In this case, an unstable pair would imply a man \boldsymbol{x} prefers a woman \boldsymbol{y} to his current match $\boldsymbol{y'}$, and a woman \boldsymbol{y} prefers \boldsymbol{x} to at least one of her current partners. Assume that if a woman is being proposed to by a man whom she prefers to both of her partners, then she will randomly choose one of her current partners with whom she will become un-matched.
- ii.) Allow the women to propose. Run the algorithm two full executions, while removing the n men assigned after the first run from the list set of males in between executions.

Correct!

None of these
i. only
ii. only
i. and ii.

Question 6	1 / 1 pts
Regarding the standard version of the propose and reject alg $m{n}$ men and $m{n}$ women, which of the following statements are tall that apply.	
Each woman is matched with her last choice.	
Each man is matched with his first choice.	
Women are matched with their worst possible matches.	

Correct!

Men are matched with their best possible matches
--

■ The number of loop iterations must be strictly greater than n.

Question 7

1 / 1 pts

The stable matching problem is rooted in graph theory (as the term matching suggests). Describe an instance of stable matching in terms of a graph problem, where G = (V, E) is the graph.

The nodes of the graph represent participants. They form a complete graph, where the edges represent a potential pairing of two participants. The preference lists are encoded in a utility function that maps matchings of \boldsymbol{G} to real utility values.

The edges of the graph represent participants. Any edge will be incident to two nodes, that each represent a possible pairing of the representative participant and some other participant. The preference lists are encoded in a utility function that maps matchings of \boldsymbol{G} to real utility values.

Correct!

The nodes of the graph represent participants. They form a complete bipartite graph, where the edges represent a potential pairing of two participants. The preference lists are encoded in a utility function that maps matchings of \boldsymbol{G} to real utility values.

The edges of the graph represent participants. Any edge will be incident to two nodes, that each represent a possible pairing of the representative participant and some other participant. The preference lists are encoded in the nodes themselves.

Quiz Score: 7 out of 7