Solutions to Re-Exam 2019

Exercise 1

1.1.1 (c)

 $\lg n + 3^{\mathbf{n}} + n \cdot \lg n + n^2$

1.1.2. (d)

 $\lg n + \lg n + \mathbf{n^3} + 19990$

2 (b)

a: $\lg(f(n)) = \lg n^3 \approx \Theta(\lg n)$, wrong.

b: $\lg(f(n)) = \lg(3^{2n} \cdot n^4) = \lg(9^n \cdot n^4) = n \cdot \lg 9 + 4 \cdot \lg n \approx \Theta(n)$, correct.

c: $\lg(f(n)) = \lg e^{n^2} = n^2 \lg e \approx \Theta(n^2)$, wrong.

d: $\lg(f(n)) = \lg(n+1) \approx \Theta(\lg n)$, wrong

3 (b)

Master method, 1st case.

 $T(n) = a \cdot T(n/b) = 8 \cdot T(n/2), a = 8, b = 2.$

 $f(n) = n^2 \approx O(n^{\log 2^8 - 1}), \ \epsilon = 1 > 0.$

 $T(n) \approx \Theta(n^{\log 2^8}) = \Theta(n^3).$

4 (a)

After j = 2: [71, 91, 29, 43, 97, 59, 17, 93, 61, 13]

After j = 3 : [29, 71, 91, 43, 97, 59, 17, 93, 61, 13]

After j = 4: [29, 43, 71, 91, 97, 59, 17, 93, 61, 13]

5 (d)

The pre-order traversal of the tree is: 9, 5, 3, 1, 4, 8, 6, 20, 1, 12, 10, 11, 30, 21, 31.

The in-order traversal of the tree is: 1, 3, 4, 5, 6, 8, 9, 10, 11, 12, 20, 21, 30, 31.

The post-order traversal of the tree is: 1, 4, 3, 6, 8, 5, 11, 10, 12, 21, 31, 30, 20, 9.

6 (c)

- a) 4 should be at index 4, not at 6.
- b) 18 should be at index 0, not at 1.
- c) correct.
- d) 21 should be at index 6, not at 7.

7 (a)

- 8.1 d)
- 8.2 a)

extracted vertex, weight, parent vertex;

- A, 0, NULL;
- B, 3, A;
- F, 1, B; E, 2, B;
- D, 2, E; C, 5, F;

Ex. 2

Exercise 3

3.1 (2 points)

3.2 (2 points)

The adjacency matrix is:

3.3.a (2 points) The input is a directed weighted graph G = (V, E), where

- 1. $V = \{A, B, C, D, E\}$ is a vertex set,
- 2. $E = \{(A, B, 90), (A, C, 20), (A, D, 60), (C, D, 30), (C, E, 10), (D, B, 20), (E, B, 30), (E, D, 10)\},$ where the numeric value of each triple indicates the weight on an edge;

- 3. source node A;
- 4. destination node B.
- **3.3.b** (2 points) The output includes
- 1. a sequence of edges, whose nodes start from A and end at B, and
- 2. a numeric value that minimizes the weight of the edge sequence.
- **3.4.a** (4 points)

(2 points) The path is (A, C), (C, E), (E, D), (D, B)

(2 points) The minimum travel cost is 50 minutes.

3.2.2 (8 points)

A	B	C	D	E
0/-	∞	∞	∞	∞
C	D	В	E	
20/A	60/A	90/A	∞	
$oxed{E}$	D	В		
30/C	50/C	90/A		
D	B			
40/E	60/E			
B				
50/D				

Exercise 4

4.1 (4 points)

n	0	1	2	3	4	5	6	7	8	9	10
F_n	0	1	3	6	10	15	21	28	36	45	55

4.2 (8 points)

(6 points)

BOTTOM-UP(n)

- $1 \quad F[0] \leftarrow 0$
- 2 for i = 1 to n
- $3 \qquad F[i] \leftarrow F[i-1] + i$
- 4 Return F[n]

(2 points) Time complexity: $\Theta(n)$.