Newton: A DRAM-maker's Accelerator-in-Memory (AiM) Architecture for Machine Learning

MICRO'20

Mingxuan He
Electrical and Computer Engineering
Purdue University
West Lafayette, IN, U.S.A.
he238@purdue.edu

Seho Kim

DRAM Design

SK Hynix

Icheon, South Korea
seho5.kim@sk.com

Il Park

DRAM Design

SK Hynix

Icheon, South Korea
il.park@sk.com

Choungki Song

DRAM Design

SK Hynix

Icheon, South Korea
choungki.song@sk.com

Ilkon Kim
DRAM Design
SK Hynix
Icheon, South Korea
ilkon.kim@sk.com

Chunseok Jeong

DRAM Design

SK Hynix

Icheon, South Korea
chunseok.jeong@sk.com

Mithuna Thottethodi Electrical and Computer Engineering

Purdue University
West Lafayette, IN, U.S.A.
mithuna@purdue.edu

T. N. Vijaykumar

Electrical and Computer Engineering

Purdue University

West Lafayette, IN, U.S.A.

vijay@ecn.purdue.edu

Processing in/near Memory

Analog PIM

- Low power, Fast
- Accuracy loss

Digital PIM

- Low power, Fast
- Limited PE

PNM

- Many computation units
- Low bandwidth

When is digital PIM beneficial?

- Compute-bound operation
 - Requires large # of PEs and high data reuse
 - Not suitable for PIM
- Memory-bound operation

small large (high temporal reuse)

small (high temporal reuse)

large (low temporal reuse)

e.g. Tiled Conv	Matrix-vector multiplication
Matrix-vector multiplication	Element-wise Operation (e.g. Add)

Matrix-Vector Multiplication

- LSTM, RNN, FC
- MAC operations

Contributions

- Place a minimal compute of only MAC units and buffers
 - Previous works use an large number of PEs
 - e.g. superscalar, vector/SIMD
 - But PIM is subject to severe are and power constraints
- DRAM command-like interface for the host to issue commands
- Prevent PIM-host interface from becoming bottleneck
 - gang multiple compute operations
 - complex compute commands
 - targeted reduction of timing overhead (e.g. t_{FAW})
- Reduce output vector write traffic
 - unusually-wide interleaved layout for the filter matrix

Newton Datapath

All banks perform compute simultaneously (gang)

Reduction tree for reducing # MAC units

Interleaved accumulation for reducing output traffic

Assumption: BFloat16 / FP16

Justification: High accuracy for NLP task

Newton's Tiled MV computation

Algorithm 1 Newton's Tiled MV computation 1: **function** MVPRODUCT(InputVectorV, MatrixM, m, n) numChunks = n/512 Number of chunks 2: $C[1..numChunks] \leftarrow split(V) \triangleright Split vector to chunks$ 3: **for** $i \in 1..numChunks$ **do** Dutermost loop. 4: $GlobalBuffer \leftarrow C[i]$ 5: r = m/16▶ Number of vertical tile positions 6: for $j \in 1..r$ do 7:

for all $b \in 1..numBanks$ do

end for

end for

end for

15: end function

 $Results[b] \leftarrow ComputeTile(Tile\ j, Row\ b)$

> Tile result sent for accumulation at host

 $TileResult \leftarrow ReadResultsFromAllBanks()$

8:

9:

10:

11:

12:

13:

14:

Interleaved (row-first) to reduce output buffer traffic

Newton computation

Command	Operation
COMP#	Ganged multiply of sub-chunk# in all banks
READRES	Read the Result latches of all banks
GWRITE#	WRITE sub-chunk# to the Global Buffer
G_ACT#	Ganged activation of 4-bank cluster#

Complex command → low PIM-host BW consumption

Methodology

Benchmarks

Workload	Matrix	Vector						
GNMT LSTMs1 [45]	4096×1024	1024×1						
GNMT LSTMs2 [45]	4096×2048	2048×1						
BERTs1 [10]	1024×1024	1024×1						
BERTs2 [10]	1024×4096	4096×1						
BERTs3 [10]	4096×1024	1024×1						
AlexNetL6 [26]	21632×2048	2048×1						
AlexNetL7 [26]	2048×2048	2048×1						
DLRMs1 [31]	512×256	256×1						

DRAM configuration

Num of Ranks	1									
Num of Banks	16									
Num of Rows in each bank	32768									
Num of Column I/Os per row	32									
Column I/O bit width	256b (16 bfloat16)									
Num of Multipliers per bank 16										
Timing Parameters (in nanoseconds)										
$t_{AA} = 22-29 \text{ ns}; t_{RP} = 14 \text{ ns}; t_{RCD} = 14 \text{ ns}; t_{RAS} = 33 \text{ ns}$										

Only show partial parameters (proprietary)
No power parameters (proprietary)

Evaluation

- Newton's speedup comes from BW reduction, not from computation capability (vs Ideal Non-PIM)
- DLRMs1 shows better performance since there's no DRAM refresh (short computation)

Sensitivity Study

- Gang: all-bank ganged compute commands
- Complex: multi-step compute commands
- Reuse: reuse via tiling and interleaved layout for the filter matrix
- Four Banks: four-bank ganged activations
- Newton: aggressive t_{FAW}

Nearly perfect scaling

Sensitivity Study (Batch size)

- Newton is good for inference (batch size <= 8)
- More data-reuse in GPU → Less profitability for Newton

Hardware Architecture and Software Stack for PIM Based on Commercial DRAM Technology

ISCA'21

Industrial Product

Sukhan Lee^{§1}, Shin-haeng Kang^{§1}, Jaehoon Lee¹, Hyeonsu Kim², Eojin Lee¹, Seungwoo Seo², Hosang Yoon², Seungwon Lee², Kyounghwan Lim¹, Hyunsung Shin¹, Jinhyun Kim¹, Seongil O¹, Anand Iyer³, David Wang³, Kyomin Sohn¹ and Nam Sung Kim^{§1}

¹Memory Business Division, Samsung Electronics
²Samsung Advanced Institute of Technology, Samsung Electronics
³Device Solutions America, Samsung Electronics

HBM structure and PIM units

RISC-V-like instruction format

TABLE III: The PIM-HBM instruction format.

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6 5	4	3	2 1 0
Control		OPC	ODE			,			U					IMM0							IMM1								
Data		OPC	ODE		8	DST		5	SRC0)					U					R	U	DS	ST#	!	U	SRC0	#	U	SRC1 #
ALU		OPC	ODE		100	DST		5	SRC0)	5	SRC1		S	SRC2		Α		U		U	DS	ST #	!	U	SRC0	#	U	SRC1 #

Evaluation

- Much less speedup than Newton (IF/ID and control overhead, ¼ PEs)
- Support wide range of operations (e.g. Add, BN)

Drawbacks of digital PIM

- Tricky cache coherence (Both)
- Lack of software stack (Newton)
 - Samsung is building its own stack
- Limited operation support (Newton)
 - What about other DL models?