Tema 3

Soluții

Exercițiul 1

Calculați $\mathbb{P}(X < \mathbb{E}[X])$ știind că X este o variabilă aleatoare repartizată binomial cu $\mathbb{E}[X] \notin \mathbb{N}$ și $\mathbb{E}[X] = 2Var[X]$.

Dacă X este o variabilă aleatoare repartizată $\mathcal{B}(n,p)$ atunci $\mathbb{E}[X]=np$ iar Var[X]=np(1-p). Din relația $\mathbb{E}[X]=2Var[X]$ deducem

$$np = 2np(1-p)$$

ceea ce conduce la $p = \frac{1}{2}$ iar $\mathbb{E}[X] = \frac{n}{2}$. Avem

$$\mathbb{P}(X < \mathbb{E}[X]) = \mathbb{P}(X < \frac{n}{2}) = \sum_{i=0}^{\left[\frac{n}{2}\right]} \binom{n}{i} p^i (1-p)^{n-i} = \sum_{i=0}^{\left[\frac{n}{2}\right]} \binom{n}{i} \frac{1}{2^n}.$$

Făcând schimbarea de variabilă j = n - i în sumă obținem

$$\mathbb{P}(X < \frac{n}{2}) = \sum_{j=n-\lceil \frac{n}{2} \rceil}^{n} \binom{n}{n-j} \frac{1}{2^n}.$$

 $\operatorname{Cum}\ [x] \le x < [x] + 1 \text{ avem}$

$$\left[\frac{n}{2}\right] \le \frac{n}{2} < \left[\frac{n}{2}\right] + 1$$

prin urmare $2[\frac{n}{2}] \le n < 2[\frac{n}{2}] + 2$ și ținând cont de faptul că $\mathbb{E}[X] = \frac{n}{2} \notin \mathbb{N}$ găsim că $n = 2[\frac{n}{2}] + 1$. Astfel $n - [\frac{n}{2}] = [\frac{n}{2}] + 1$ și

$$\mathbb{P}(X < \frac{n}{2}) = \sum_{j=n-\lceil \frac{n}{2} \rceil}^n \binom{n}{n-j} \frac{1}{2^n} = \sum_{j=\lceil \frac{n}{2} \rceil + 1}^n \binom{n}{n-j} \frac{1}{2^n} = \mathbb{P}(X > \frac{n}{2}).$$

Știm că

$$\mathbb{P}(X<\frac{n}{2})+\mathbb{P}(X=\frac{n}{2})+\mathbb{P}(X>\frac{n}{2})=1$$

ceea ce conduce la $\mathbb{P}(X < \frac{n}{2}) = \frac{1}{2}$ de
oarece $\mathbb{P}(X = \frac{n}{2}) = 0$.

Exercitiul 2

Grupele: 241, 242, 243, 244

Fie E o populație cu N indivizi dintre care N_1 sunt de tipul T. Efectuăm extrageri succesive, fără întoarcere, din E până obținem n, $1 \le n \le N_1$, indivizi de tipul T și notăm cu Z variabila aleatoare care reprezintă numărul de extrageri necesare. Determinați repartiția lui Z, $\mathbb{E}[Z]$ și Var[Z].

Pentru a determina repartiția lui Z să notăm cu A_{k-1} evenimentul ca în primele k-1 extrageri să avem n-1 elemente de tip T, $n \ge 2$ și cu B_k evenimentul ca la a k-a extragere să fi obținut un element de tip T. În acest context, observăm că

$$\mathbb{P}(Z=k) = \mathbb{P}(A_{k-1} \cap B_k) = \mathbb{P}(A_{k-1})\mathbb{P}(B_k|A_{k-1}).$$

Pentru determinarea $\mathbb{P}(A_{k-1})$ să remarcăm faptul că ne aflăm în situația unei repartiții Hipergeometrice de parametrii N, N_1 , k-1 ($\mathcal{H}(N,N_1,k-1)$ - într-o urnă avem N bile dintre care N_1 sunt albe și efectuăm k-1 extrageri fără întoarcere), astfel

$$\mathbb{P}(A_{k-1}) = \frac{\binom{N_1}{n-1} \binom{N-N_1}{k-n}}{\binom{N}{k-1}}.$$

După k-1 extrageri în care am găsit n-1 indivizi de tip T, în populație rămân N-k+1 indivizi dintre care N_1-n+1 sunt de tip T, prin urmare probabilitatea ca la a k-a extragere să avem un individ de tip T este

$$\mathbb{P}(B_k|A_{k-1}) = \frac{N_1 - n + 1}{N - k + 1}$$

ceea ce conduce la

$$\begin{split} \mathbb{P}(Z=k) &= \mathbb{P}(A_{k-1}) \mathbb{P}(B_k|A_{k-1}) = \frac{\binom{N_1}{n-1} \binom{N-N_1}{k-n}}{\binom{N}{k-1}} \frac{N_1 - n + 1}{N - k + 1} \\ &= \frac{N_1!(N-N_1)!(k-1)!(N-k)!}{(n-1)!(N_1-n)!(k-n)!(N-N_1 - k + n)!N!} = \frac{\binom{k-1}{n-1} \binom{N-k}{N_1-n}}{\binom{N}{N_1}}. \end{split}$$

Pentru determinarea $\mathbb{E}[Z]$ avem

$$\mathbb{E}[Z] = \sum_{k=n}^{N} k \frac{\binom{k-1}{n-1} \binom{N-k}{N_1-n}}{\binom{N}{N_1}} = \frac{n}{\binom{N}{N_1}} \sum_{k=n}^{N} \binom{k}{n} \binom{N-k}{N_1-n}$$

deoarece $k\binom{k-1}{n-1}=n\binom{k}{n}$. Făcând schimbarea de variabilă j=k+1 în sumă obținem

$$\mathbb{E}[Z] = \frac{n}{\binom{N}{N_1}} \sum_{j=n+1}^{N+1} \binom{j-1}{n} \binom{(N+1)-j}{N_1-n} = \frac{n}{\binom{N}{N_1}} \sum_{j=n+1}^{N+1} \binom{j-1}{(n+1)-1} \binom{(N+1)-j}{(N_1+1)-(n+1)}$$

și cum (suntem în situația unei populații cu N+1 indivizi din care N_1+1 sunt de tip T și efectuăm extrageri fătă întoarcere până obținem n+1 astfel de indivizi - Z')

$$\sum_{j=n+1}^{N+1} \mathbb{P}(Z'=j) = \sum_{j=n+1}^{N+1} \frac{\binom{j-1}{(n+1)-1} \binom{(N+1)-j}{(N_1+1)-(n+1)}}{\binom{N+1}{N_1+1}} = 1$$

rezultă că

$$\mathbb{E}[Z] = \frac{n}{\binom{N}{N_1}} \sum_{j=n+1}^{N+1} \binom{j-1}{(n+1)-1} \binom{(N+1)-j}{(N_1+1)-(n+1)} = \frac{n}{\binom{N}{N_1}} \binom{N+1}{N_1+1} = \frac{n(N+1)}{N_1+1}.$$

În cazul determinării Var[Z] vom începe prin a observa că

$$Var[Z] = \mathbb{E}[Z^2] - \mathbb{E}[Z]^2 = \mathbb{E}[Z(Z+1)] - \mathbb{E}[Z] - \mathbb{E}[Z]^2.$$

Calculul $\mathbb{E}[Z(Z+1)]$ este similar cu cel al mediei și avem

$$\mathbb{E}[Z(Z+1)] = \sum_{k=n}^{N} k(k+1) \frac{\binom{k-1}{n-1} \binom{N-k}{N_1-n}}{\binom{N}{N_1}} = \sum_{k=n}^{N} n(n+1) \frac{\binom{k+1}{n+1} \binom{N-k}{N_1-n}}{\binom{N}{N_1}}$$

deoarece $k(k+1)\binom{k-1}{n-1} = n(n+1)\binom{k+1}{n+1}$.

Efectuăm schimbarea de variabilă j=k+2 și găsim că

$$\mathbb{E}[Z(Z+1)] = \sum_{k=n}^{N} n(n+1) \frac{\binom{k+1}{n+1} \binom{N-k}{N_1-n}}{\binom{N}{N_1}} = \sum_{j=n+2}^{N+2} n(n+1) \frac{\binom{j-1}{n+1} \binom{(N+2)-j}{N_1-n}}{\binom{N}{N_1}}$$

și notând cu $M=N+2, M_1=N_1+2$ și m=n+2 avem

$$\mathbb{E}[Z(Z+1)] = \frac{n(n+1)}{\binom{N}{N_1}} \sum_{i=m}^{M} \binom{j-1}{m-1} \binom{M-j}{M_1-m}.$$

Am văzut că

$$\sum_{j=m}^{M} \frac{\binom{j-1}{m-1} \binom{M-j}{M_1-m}}{\binom{M}{M_1}} = 1$$

prin urmare

$$\mathbb{E}[Z(Z+1)] = \frac{n(n+1)}{\binom{N}{N_1}} \binom{M}{M_1} = \frac{n(n+1)(N+1)(N+2)}{(N_1+1)(N_1+2)}$$

de unde

$$Var[Z] = \frac{n(N+1)(N-N_1)(N_1-n+1)}{(N_1+1)^2(N_1+2)}.$$

Exercițiul 3

Fie X şi Y două v.a. independente repartizate Poisson de parametrii λ şi respectiv μ . Determinați legea (repartiția) condiționată a lui X la X+Y=n.

Pentru legea condiționată a lui X la X + Y = n avem:

$$\mathbb{P}(X=k|X+Y=n) = \frac{\mathbb{P}(X=k,X+Y=n)}{\mathbb{P}(X+Y=n)} = \frac{\mathbb{P}(X=k,Y=n-k)}{\mathbb{P}(X+Y=n)} \stackrel{indep.}{=} \frac{\mathbb{P}(X=k)\mathbb{P}(Y=n-k)}{\mathbb{P}(X+Y=n)}$$

dacă $k \in \{0, 1, \dots, n\}$ și $\mathbb{P}(X = k | X + Y = n) = 0$ in caz contrar.

Observăm că pentru a calcula legea condiționată trebuie să găsim legea sumei X + Y. Pentru aceasta avem

$$\begin{split} \mathbb{P}(X+Y=n) &= \mathbb{P}(X\in\Omega, X+Y=n) = \mathbb{P}\left(\bigcup_{k=0}^{n} \{X=k\}, X+Y=n\right) \\ &= \sum_{k=0}^{n} \mathbb{P}(X=k, X+Y=n) = \sum_{k=0}^{n} \mathbb{P}(X=k, Y=n-k) \\ &\stackrel{indep.}{=} \sum_{k=0}^{n} \mathbb{P}(X=k) \mathbb{P}(Y=n-k) = \sum_{k=0}^{n} e^{-\lambda} \frac{\lambda^{k}}{k!} e^{-\mu} \frac{\mu^{n-k}}{(n-k)!} \\ &= \frac{e^{-(\lambda+\mu)}}{n!} \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \lambda^{k} \mu^{n-k} = e^{-(\lambda+\mu)} \frac{(\lambda+\mu)^{n}}{n!}, \end{split}$$

prin urmare $X + Y \sim \mathcal{P}(\lambda + \mu)$. Astfel găsim că

$$\mathbb{P}(X=k|X+Y=n) = \frac{\mathbb{P}(X=k)\mathbb{P}(Y=n-k)}{\mathbb{P}(X+Y=n)} = \frac{e^{-\lambda}\frac{\lambda^k}{k!} \times e^{-\mu}\frac{\mu^{n-k}}{(n-k)!}}{e^{-(\lambda+\mu)\frac{(\lambda+\mu)^n}{n!}}} = \frac{n!}{k!(n-k)!}\frac{\lambda^k\mu^{n-k}}{(\lambda+\mu)^n}$$
$$= \binom{n}{k}\left(\frac{\lambda}{\lambda+\mu}\right)^k\left(\frac{\mu}{\lambda+\mu}\right)^{n-k}$$

deci
$$(X|X+Y=n) \sim \mathcal{B}\left(n, \frac{\lambda}{\lambda+\mu}\right)$$
.

Exercitiul 4

Numărul de clienți care intră în magazinul Unirea pe durata unei zile este o v.a. de medie 50. Suma cheltuită de fiecare dintre clienții magazinului poate fi modelată ca o v.a. de medie 30 RON. Presupunem că sumele cheltuite de clienți, ca v.a., sunt independente între ele și independente de numărul total de clienți care intră în magazin într-o zi dată. Care este media cifrei de afaceri a magazinului în ziua considerată ?

Fie N numărul de clienți care intră in magazin și fie X_k v.a. care reprezintă suma cheltuită de clientul k. Din ipoteză știm că $\mathbb{E}[N] = 50$, $\mathbb{E}[X_i] = 30$, $X_i \perp X_j$ și $X_i \perp N$ (\perp - semnul pentru independență). Putem observa că cifra de afaceri a magazinului este dată de v.a. $Z = \sum_{i=1}^{N} X_i$. Avem

$$\begin{split} \mathbb{E}[\text{cifrei de afaceri}] &= \mathbb{E}[Z] = \mathbb{E}\left[\sum_{i=1}^{N} X_i\right] = \mathbb{E}\left[\mathbb{E}\left[\sum_{i=1}^{N} X_i | N\right]\right] = \sum_{n \geq 1} \mathbb{E}\left[\sum_{i=1}^{N} X_i | N = n\right] \mathbb{P}(N = n) \\ &= \sum_{n \geq 1} \mathbb{E}\left[\sum_{i=1}^{n} X_i | N = n\right] \mathbb{P}(N = n) = \sum_{n \geq 1} \left(\sum_{i=1}^{n} \mathbb{E}\left[X_i | N = n\right]\right) \mathbb{P}(N = n) \\ &\stackrel{indep.}{=} \sum_{n \geq 1} n \mathbb{E}[X_1] \mathbb{P}(N = n) = \mathbb{E}[X_1] \sum_{n \geq 1} n \mathbb{P}(N = n) = \mathbb{E}[X_1] \mathbb{E}[N] \\ &= 30 \times 50 = 1500, \end{split}$$

prin urmare cifra de afaceri pe care o inregistrează magazinul in ziua respectivă este de 1500 RON.

Exercitiul 5

Știm că intr-un lot de 5 tranzistori avem 2 care sunt defecți. Tranzistorii sunt testați, unul cate unul, pană cand cei doi tranzistori au fost identificați. Fie N_1 numărul de teste pentru identificarea primului tranzistor defect și N_2 numărul de teste suplimentare pentru identificarea celui de-al doilea tranzistor defect. Scrieți un tablou in care să descrieți legea cuplului (N_1, N_2) . Calculați $\mathbb{E}[N_1]$ și $\mathbb{E}[N_2]$.

Fie N_1 numărul de teste necesare pentru indentificarea primului tranzistor defect, şi N_2 numărul de teste suplimentare necesare pentru identificarea celui de-al doilea tranzistor defect. Cum sunt 5 tranzistori avem $0 \le N_1 + N_2 \le 5$. Dacă notăm cu T_s al s-lea tranzistorul, $1 \le s \le 5$, avem $\mathbb{P}((T_i, T_j)) = \frac{1}{\binom{2}{5}} = \frac{1}{10}$ deoarece tranzistorii au aceeași șansă să fie defecți. Prin urmare

$$\begin{split} &\mathbb{P}(N_1=1,N_2=1)=\mathbb{P}((T_1,T_2))=\frac{1}{10},\\ &\mathbb{P}(N_1=1,N_2=2)=\mathbb{P}((T_1,T_3))=\frac{1}{10},\\ &\mathbb{P}(N_1=1,N_2=3)=\mathbb{P}((T_1,T_4)\cup(T_1,T_5))=\frac{2}{10},\,(N_1=1\text{ si }2,\,3,\,4^e\text{ OK deci }5\text{ e defect})\\ &\mathbb{P}(N_1=2,N_2=1)=\mathbb{P}((T_2,T_3))=\frac{1}{10},\\ &\mathbb{P}(N_1=2,N_2=2)=\mathbb{P}((T_2,T_4)\cup(T_2,T_5))=\frac{2}{10},\,(N_1=2\text{ si }N_2=2\text{ sau }4\text{ sau }5\text{ defecte})\\ &\mathbb{P}(N_1=3,N_2=1)=\mathbb{P}((T_3,T_4)\cup(T_3,T_5))=\frac{2}{10},\,(N_1=3\text{ si }N_2=1\text{ sau }4\text{ sau }5\text{ defecte})\\ &\mathbb{P}(N_1=3,N_2=0)=\mathbb{P}((T_4,T_5))=\frac{1}{10},\,(N_1=3\text{ si primele }3\text{ OK atunci }4\text{ si }5\text{ defecte}) \end{split}$$

N_1	0	1	2	3	Σ
1 2 3	$ \begin{vmatrix} 0 \\ 0 \\ \frac{1}{10} \end{vmatrix} $	$\frac{\frac{1}{10}}{\frac{1}{10}}$ $\frac{2}{10}$	$\begin{array}{c} \frac{1}{10} \\ \frac{2}{10} \\ 0 \end{array}$	$\begin{array}{c} \frac{2}{10} \\ 0 \\ 0 \end{array}$	$\frac{\frac{4}{10}}{\frac{3}{10}}$ $\frac{3}{10}$
\sum	$\frac{1}{10}$	$\frac{4}{10}$	$\frac{3}{10}$	$\frac{2}{10}$	

Grupele: 241, 242, 243, 244

Legea lui N_1 este dată de suma pe linii și legea lui N_2 de suma pe coloane. Astfel

$$N_1 \sim \begin{pmatrix} 1 & 2 & 3 \\ \frac{4}{10} & \frac{3}{10} & \frac{3}{10} \end{pmatrix}, \qquad N_2 \sim \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ \frac{1}{10} & \frac{4}{10} & \frac{3}{10} & \frac{2}{10} & 0 \end{pmatrix}.$$

$$\text{Deci } \mathbb{E}[N_1] = 1 \times \tfrac{4}{10} + 2 \times \tfrac{3}{10} + 3 \times \tfrac{3}{10} = \tfrac{19}{10} \text{ si } \mathbb{E}[N_2] = 0 \times \tfrac{1}{10} + 1 \times \tfrac{4}{10} + 2 \times \tfrac{3}{10} + 3 \times \tfrac{2}{10} + 4 \times 0 = \tfrac{16}{10}.$$

Exercițiul 6

Tabloul următor reprezintă legea cuplului (X,Y): unde putem considera că X este numărul de copii dintr-o familie şi Y este numărul de televizoare din acea familie (am considerat numai familii cu 1-3 copii şi cu 1-3 televizoare).

$X \setminus Y$	$^{\prime}\mid 1$	2	3
1	0.22	0.11	0.02
2	0.2	0.15	0.1
3	0.06	0.07	0.07

Determinați:

- a) Legile marginale ale lui X și respectiv Y.
- b) Media şi varianţa lui X şi respectiv Y.
- c) Coeficientul de corelație dintre X și Y.
- d) Legea condiționată a lui X la Y=2 și respectiv legea condiționată a lui Y la X=2.
- e) Media și varianța acestor legi condiționate
- a) Legile marginale ale lui X și Y se obțin făcand suma pe linii respectiv pe coloane, astfel

$$X \sim \left(\begin{array}{ccc} 1 & 2 & 3 \\ 0.35 & 0.45 & 0.2 \end{array} \right), \ \ Y \sim \left(\begin{array}{ccc} 1 & 2 & 3 \\ 0.48 & 0.33 & 0.19 \end{array} \right).$$

b) Din legile marginale ale lui X și Y se obține imediat că

$$\mathbb{E}[x] = 1 \times 0.35 + 2 \times 0.45 + 3 \times 0.2 = 1.85,$$

$$\mathbb{V}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \left(1^2 \times 0.35 + 2^2 \times 0.45 + 3^2 \times 0.2\right) - 1.85^2 = 0.5375,$$

$$\mathbb{E}[Y] = 1 \times 0.48 + 2 \times 0.33 + 3 \times 0.19 = 1.71,$$

$$\mathbb{V}[Y] = \mathbb{E}[Y^2] - \mathbb{E}[Y]^2 = \left(1^2 \times 0.48 + 2^2 \times 0.33 + 3^2 \times 0.19\right) - 1.71^2 = 0.5859.$$

c) Pentru a calcula coeficientul de corelație dintre X și Y trebuie mai intai să calculăm covarianța dintre cele două variabile. Avem că $Cov(X,Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$ iar

$$\mathbb{E}[XY] = \sum_{x_i, y_j} x_i y_j \mathbb{P}(X = x_i, Y = y_j) = 1 \times 1 \times 0.22 + 1 \times 2 \times 0.11 + \dots + 3 \times 3 \times 0.07 = 3.33$$

de unde rezultă Cov(X,Y)=0.1665. Astfel coeficientul de corelație este

$$\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{\mathbb{V}[X]\mathbb{V}[Y]}} = \frac{0.1665}{\sqrt{0.5275 \times 0.5859}} = 0.2995.$$

d) Pentru legea lui X condiționată la Y=2 avem

$$\mathbb{P}(X=1|Y=2) = \frac{\mathbb{P}(X=1,Y=2)}{\mathbb{P}(Y=2)} = \frac{0.11}{0.33} = \frac{11}{33}$$

$$\mathbb{P}(X=2|Y=2) = \frac{\mathbb{P}(X=2,Y=2)}{\mathbb{P}(Y=2)} = \frac{0.15}{0.33} = \frac{15}{33}$$

$$\mathbb{P}(X=3|Y=2) = \frac{\mathbb{P}(X=3,Y=2)}{\mathbb{P}(Y=2)} = \frac{0.07}{0.33} = \frac{7}{33}$$

de unde rezultă că
$$(X|Y=2) \sim \begin{pmatrix} 1 & 2 & 3 \\ \frac{11}{33} & \frac{15}{33} & \frac{7}{33} \end{pmatrix}$$
.

In mod similar, pentru legea lui Y|X=2 avem

$$\mathbb{P}(Y=1|X=2) = \frac{\mathbb{P}(X=2,Y=1)}{\mathbb{P}(X=2)} = \frac{0.2}{0.45} = \frac{4}{9}$$

$$\mathbb{P}(Y=2|X=2) = \frac{\mathbb{P}(X=2,Y=2)}{\mathbb{P}(X=2)} = \frac{0.15}{0.45} = \frac{3}{9}$$

$$\mathbb{P}(Y=3|X=2) = \frac{\mathbb{P}(X=2,Y=3)}{\mathbb{P}(X=2)} = \frac{0.1}{0.45} = \frac{2}{9}$$

de unde
$$(Y|X=2) \sim \begin{pmatrix} 1 & 2 & 3 \\ \frac{4}{9} & \frac{3}{9} & \frac{2}{9} \end{pmatrix}$$
.

e) Avem că

$$\begin{split} \mathbb{E}[X|Y=2] &= 1 \times \mathbb{P}(X=1|Y=2) + 2 \times \mathbb{P}(X=2|Y=2) + 3 \times \mathbb{P}(X=3|Y=2) = \frac{62}{33}, \\ \mathbb{E}[X^2|Y=2] &= 1 \times \mathbb{P}(X=1|Y=2) + 2^2 \times \mathbb{P}(X=2|Y=2) + 3^2 \times \mathbb{P}(X=3|Y=2) = \frac{134}{33}, \\ \mathbb{E}[Y|X=2] &= 1 \times \mathbb{P}(Y=1|X=2) + 2 \times \mathbb{P}(Y=2|X=2) + 3 \times \mathbb{P}(Y=3|X=2) = \frac{16}{9}, \\ \mathbb{E}[Y^2|X=2] &= 1 \times \mathbb{P}(Y=1|X=2) + 2^2 \times \mathbb{P}(Y=2|X=2) + 3^2 \times \mathbb{P}(Y=3|X=2) = \frac{34}{9}, \end{split}$$

deci
$$\mathbb{V}[X|Y=2] = 0.5307$$
 și $\mathbb{V}[Y|X=2] = 0.6172$.

Exercitiul 7

Fie (X,Y) un cuplu de variabile aleatoare (vector aleator) a cărui repartiție este:

$X \backslash Y$	2	4	6
0	0.1	0.2	0.1
1	0.1	0.1	0.1
2	0.1	0.1	0
3	0.05	0	0.05

- a) Calculați $\mathbb{E}[Y]$ și Var(Y).
- b) Determinați repartiția v.a. $\mathbb{E}[Y|X]$ și Var(Y|X).
- c) Verificați formula varianței condiționate:

$$Var(Y) = \mathbb{E}[Var(Y|X)] + Var(\mathbb{E}[Y|X]).$$

a) Observăm că legea lui X este (făcand suma pe linii) $X \sim \begin{pmatrix} 0 & 1 & 2 & 3 \\ 0.4 & 0.3 & 0.2 & 0.1 \end{pmatrix}$ și legea lui Y este (făcand suma pe coloane) $Y \sim \begin{pmatrix} 2 & 4 & 6 \\ 0.35 & 0.4 & 0.25 \end{pmatrix}$ prin urmare

$$\mathbb{E}[Y] = 2 \times 0.35 + 4 \times 0.4 + 6 \times 0.25 = 3.8,$$

$$Var[Y] = \mathbb{E}[Y^2] - \mathbb{E}[Y]^2 = (2^2 \times 0.35 + 4^2 \times 0.4 + 6^2 \times 0.25) - 3.8^2 = 2.36.$$

b) Pentru legea v.a. condiționate $\mathbb{E}[Y|X]$ avem

$$\begin{split} \mathbb{E}[Y|X=0] &= 2\mathbb{P}(Y=2|X=0) + 4\mathbb{P}(Y=4|X=0) + 6\mathbb{P}(Y=4|X=0) \\ &= 2 \times \frac{0.1}{0.4} + 4 \times \frac{0.2}{0.4} + 6 \times \frac{0.1}{0.4} = 4, \\ \mathbb{E}[Y|X=1] &= 2\mathbb{P}(Y=2|X=1) + 4\mathbb{P}(Y=4|X=1) + 6\mathbb{P}(Y=4|X=1) \\ &= 2 \times \frac{0.1}{0.3} + 4 \times \frac{0.1}{0.3} + 6 \times \frac{0.1}{0.3} = 4, \\ \mathbb{E}[Y|X=2] &= 2\mathbb{P}(Y=2|X=2) + 4\mathbb{P}(Y=4|X=2) + 6\mathbb{P}(Y=4|X=2) \\ &= 2 \times \frac{0.1}{0.2} + 4 \times \frac{0.1}{0.2} + 6 \times \frac{0}{0.2} = 3, \\ \mathbb{E}[Y|X=3] &= 2\mathbb{P}(Y=2|X=3) + 4\mathbb{P}(Y=4|X=3) + 6\mathbb{P}(Y=4|X=3) \\ &= 2 \times \frac{0.05}{0.1} + 4 \times \frac{0}{0.1} + 6 \times \frac{0.05}{0.1} = 4, \end{split}$$

deci $\mathbb{E}[Y|X] \sim \begin{pmatrix} 3 & 4 \\ 0.2 & 0.8 \end{pmatrix}$ deoarece $\mathbb{E}[Y|X]$ ia valoarea 3 cu probabilitatea $\mathbb{P}(X=2)$ și valoarea 4 cu probabilitatea $\mathbb{P}(X\neq 2)$.

Pentru legea v.a. Var(Y|X) observăm că

$$\begin{split} Var[Y|X=0] &= \mathbb{E}[Y^2|X=0] - \mathbb{E}[Y|X=0]^2 = \left(2^2 \times \frac{0.1}{0.4} + 4^2 \times \frac{0.2}{0.4} + 6^2 \times \frac{0.1}{0.4}\right) - 16 = 2, \\ Var[Y|X=1] &= \mathbb{E}[Y^2|X=1] - \mathbb{E}[Y|X=1]^2 = \left(2^2 \times \frac{0.1}{0.3} + 4^2 \times \frac{0.1}{0.3} + 6^2 \times \frac{0.1}{0.3}\right) - 16 = 2.66, \\ Var[Y|X=2] &= \mathbb{E}[Y^2|X=2] - \mathbb{E}[Y|X=2]^2 = \left(2^2 \times \frac{0.1}{0.2} + 4^2 \times \frac{0.1}{0.2} + 6^2 \times \frac{0}{0.2}\right) - 9 = 1, \\ Var[Y|X=3] &= \mathbb{E}[Y^2|X=3] - \mathbb{E}[Y|X=3]^2 = \left(2^2 \times \frac{0.05}{0.1} + 4^2 \times \frac{0}{0.1} + 6^2 \times \frac{0.05}{0.1}\right) - 16 = 4, \end{split}$$

astfel $Var(Y|X) \sim \begin{pmatrix} 1 & 2 & 2.66 & 4 \\ 0.2 & 0.4 & 0.3 & 0.1 \end{pmatrix}$ de
oarece v.a. Var(Y|X) ia valoarea 1 cu probabilitatea
 $\mathbb{P}(X=2)$, valoarea 2 cu probabilitatea $\mathbb{P}(X=0)$, valoarea 2.66 cu probabilitatea $\mathbb{P}(X=1)$ și valoarea 4 cu probabilitatea
 $\mathbb{P}(X=3)$.

c) Cunoscand legile variabilelor aleatoare $\mathbb{E}[Y|X]$ și Var(Y|X)observăm că

$$\begin{split} \mathbb{E}[Var[Y|X]] &= 1 \times 0.2 + 2 \times 0.4 + 2.66 \times 0.3 + 4 \times 0.1 \approx 2.2, \\ Var[\mathbb{E}[Y|X]] &= \mathbb{E}[\mathbb{E}[Y|X]^2] - \mathbb{E}[\mathbb{E}[Y|X]]^2 = \left(3^2 \times 0.2 + 4^2 \times 0.8\right) - \mathbb{E}[Y]^2 = 0.16, \\ Var[Y] &= 2.36, \end{split}$$

deci Var[Y] = 2.2 + 0.16 = 2.26 de unde $Var(Y) = \mathbb{E}[Var(Y|X)] + Var(\mathbb{E}[Y|X])$.

Grupele: 241, 242, 243, 244 Pagina 9