Fluorination of α -MnO₂ for

Energy Storage Devices

MATE 491 - Fall 2017 Geoffrey Xiao, Mahidi Hassan, Sam Kulesa

Advisors: Dr. Pomerantseva & Dr. May

Mentors: Bryan Byles & Jiayi Wang

Li-Ion Battery

- Secondary battery
- Anode
 - Carbon material, tin, etc.
- Cathode
 - Oxide material containing Li
- Electrolyte
 - o Solid or liquid
- Volumetric energy density has been greatly increased - controlling size and morphology of active materials, architecture of current collectors - reaching its limits
- Challenge increase energy density while maintaining or increasing cyclability

JB Goodenough, Journal of the American Chemical Society 2013 135 (4), 1167-1176

Problem Statement

- The demand for energy storage is increasing exponentially
- The supply of lithium and other common materials (such as cobalt for LiCoO₂) is limited and volatile
- Many of these materials are costly

http://www.manufacturingcleanenergy.org/images/blog-20160413-global_mining_map.jpg

Problem Statement

- Mn is more abundant and supply chain is more diverse
 - At least 100x more abundant than cobalt [Gaines]
- Interest in 1-dimensional tunnel structure of K_{0.13}MnO₂
- α-MnO₂ has shown excellent electrochemical properties
 - High theoretical discharge capacity: 308 mAh/g
 - LiCoO₂: 273 mAh/g (theoretical)
 - LiFePO₄: 170 mAh/g (theoretical)
 - Possible candidate in beyond lithium-ion batteries
 - Mg-ion: "α-MnO2 is a promising candidate as cathode material for rechargeable Mg batteries if the capacity retention can be significantly improved."

Red Oxygen Green Cations Purple Manganese Blue Hydrogen

Yuming Dong et al. RSC Adv., 2014, 4, 39167-39173

Low Cyclability of α-MnO₂

Mn dissolution (Mn²⁺) leads to Mn coating on anodes and structural instability

Mn oxidation changes (Mn³⁺) leading to Jahn Teller distortions and structural

instabilities

Teruhito Sasaki et al., *Electrochemical and Solid-State Letters*, **8** 9 A471-A475 2005

What is our goal?

• Achieve better electrochemical performance with α-MnO₂, specifically improving capacity retention while maintaining high discharge capacity

How do we plan to achieve this?

Fluorination of α-MnO₂ nanostructures

Fluorination Motivation

- $\begin{array}{ll}
 \bullet & \text{MnO}_2 \rightarrow \text{MnO}_{2-x} F_x \\
 \circ & x = 0 0.2
 \end{array}$
- Fluorination has increased electrochemical performance in similar materials:
 - LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂: 86% \rightarrow 97% retention [Kim, G]
 - 50 cycles, x = 0.1
 - LiMn₂O₄: $50\% \rightarrow 67\%$ retention ^[Choi]
 - \bullet 50 cycles, x = 0.08
 - $LiNi_{0.5}Mn_{1.5}O_4$: 82% → 95% retention [Kim, D]
 - 100 cycles, x = 0.1
- Not as much work on anion vs cation doping

Choi, W., & Manthiram, A. (2006).

9(5), A245-A248,

Electrochemical and solid-state letters.

Fluorination Mechanism

Three possible mechanisms:

- Fluoride incorporates into lattice at oxygen sites
 - F% dependency on oxygen vacancies in thin films
- Fluorine adsorbs onto surface
- Fluorine occupies interstitial site

Effects:

- Stronger bonding (Mn-F vs Mn-O)
- Change in lattice parameter
- Crystal structure preservation

Tseng, Li-Ting, et al., Scientific reports 5 (2015).

Fluorination Mechanism

Three possible mechanisms:

- Fluoride incorporates into lattice at oxygen sites
 - F% dependency on oxygen vacancies in thin films
- Fluorine adsorbs onto surface
- Fluorine occupies interstitial site

Effects:

- Crystal structure preservation
- Stronger bonding (Mn-F vs Mn-O)
- Change in lattice parameter

Tseng, Li-Ting, et al., Scientific reports 5 (2015).

How does fluorine get incorporated in lattice?

- Fluorine substitutional
- $F^{-} = 1.29 \text{ Å}^{[Hirai]}$
- $O^{2-} = 1.35 \, \text{Å}^{[\text{Hirai}]}$
- Transition metal reduction increases unit cell size

Synthesis and Fluorination

- Hydrothermal Synthesis
 - KMnO₄ + NH₄Cl in H₂O, 150°C for 48 hours
 - \circ K_{0.13}MnO₂

https://upload.wikimedia.org/wikipedia/commons/5/55/PTFE structure.png

Argon Gas Flow Direction

- Vapor Transport Method
 - Time
 - Temperature
 - Carrier Gas
 - Polymer Reagent

Experimental Parameters

Fluorination Parameters								
Run	Time (Hours)	Temperature (°C)	Fluorine Source	Gas Flow (Ar, sccm)	Complete?			
1	4	380	PTFE	1/4	Yes			
2	4	280	PTFE	1/4	Yes			
3	4	180	PTFE	1/4	Yes			
4	12	380	PTFE	1/4	Yes			
5	12	280	PTFE	1/4	Yes			
6	12	180	PTFE	1/4	Yes			
7	24	380	PTFE	1/4	Yes			
8	24	280	PTFE	1/4	Yes			
9	24	180	PTFE	1/4	No			
10	4	180	Pristine Sample	1/4	Yes			
11	4	180	Non-fluoro Polymer	1/4	No			

Characterization

- Materials characterization
 - Powder XRD
 - SEM/EDX
 - XPS
- Electrochemical Performance
 - **Discharge capacity (Energy Density)**
 - **Capacity retention**
 - Rate capability
 - Cyclic Voltammetry

Rigaku Benchtop Miniflex XRD. http://media.labcompare.com/m/1/product/57229-400x300.jpg

- Mn Lα peak (0.637 keV)^[Newbury]
- F Kα peak (0.677 keV)^[Newbury]

- Nanowires!
- I4/m crystal (PDF#01-077-1796)!

K/Mn Stability

- Volume increase agrees with literature
- Kinetically activated?

2013

- Difficult to determine effects from volume changes alone
 - Heat → water loss → volume decrease
 - But... increase in volume when cooling to RT

Hydrated α-MnO₂ annealed in Ar

Next few months...

- Continue with experimental matrix
- Explore magnetic properties
 - VSM (magnetometry)
- Structural characterization
 - See changes in XRD with battery cycling
 - Rietveld analysis
- Electrochemical testing
 - Cycling tests
 - Cyclic voltammetry

http://www.clker.com/cliparts/0/b/c/2/1195423462959821658johnny_automatic_hourglass_with_sand.svg.hi.png

Timeline

Budget (MEG = Materials Electrochemistry Group, OFI = Oxide Films & Interfaces Group)

	ltem	Cost(\$)	Real Cost (\$)	Provider
Lab Supplies	Sample capsules	20	0	OFI
	Quartz tube	50	0	OFI
	Aluminum Foil	10	0	OFI
	Acetone	30	0	OFI
	IPA	30	0	OFI
	Argon Gas	300	55	OFI
	Miscellaneous	20	0	OFI
	PTFE	50	50	OFI
	Subtotal:	510	105	
Lab Equipment	Tube Furnace	2000	0	OFI
	Autoclave	3000	0	MEG
	Subtotal:	5000	0	
Equipment Subscription	XRD (Rigaku SmartLab) (9 months)	1000	1000	OFI
	XPS (PHI VersaProbe 5000) (9 months)	3000	0	OFI
	SEM/EDS (Zeiss Supra 50VP, EDAX) (9 months)	2500	0	OFI
	Subtotal:	6500	1000	
Raw Materials	KMnO₄	50	0	MEG
	NH ₄ Cl	20	0	MEG
	De-ionized Water	30	0	MEG
	Miscellaneous	20	0	MEG
	Subtotal:	120	0	
	Total:	\$ 12,130.00	\$ 1,105.00	

The "Cost" column is of outright costs for the project, the "Real Cost" considers that many project components are already in use or contained in the supporting lab groups.

Constraints

- Experimental design constraints
 - Fluorination temperature

- http://d2ankhno1rduyf.cloudfront.net/wp-content/uploads/2017/02/Produc t-Constraints.jpg
- α-MnO₂ is not available commercially—limited material
- Limited lab resources
 - Furnace, XRD, XPS, etc
 - Fluorinations take up to 24 hour
- No expected environmental, societal, or ethical impacts/conflicts
- University safety procedures will be adhered to throughout the project
 - Standards will be used when available, such as:
 - J3021-201410 (SAE International) Recommended Practice for Determining Material
 Properties of Li-Battery Cathode Active Materials
 - Industry-established best practices when no standards available (e.g synthesis)

Safety

- Synthesis
 - High pressure autoclaves
 - High temperature synthesis
 - \circ 16 M HNO₃
- Characterization
 - Alkali metals
 - X-ray radiation danger

Safeguards

- BioRAFT safety training
- "Buddy" System
- Personal protective equipment
- Fume hoods and glove box synthesis

Vigilance and Caution

https://us.quanta.com/wp-content/uploads/2017/03/safetyman.jpg

Acknowledgements

- Advisors: Dr. Ekaterina Pomerantseva and Dr. Steven May
- Graduate Mentors: Bryan Byles and Jiayi Wang
- Materials Electrochemistry Group (MEG)
 - Mallory Clites for SEM, Patrick West for acid-leaching help
- Oxide Films and Interfaces Group (OFI)
- Drexel CRF Staff

Thank You

Oxide Films & Interfaces
Group

Budget (MEG = Materials Electrochemistry Group, OFI = Oxide Films & Interfaces Group)

CRF equipment usage:

- Miniflex XRD (OFI)
- SEM/EDX (MEG)
- XPS (OFI + MEG)

Other equipment:

- Tube furnace (OFI)
- Electrochemical testing (MEG)
- PPMS/Magnetometer (OFI)

Materials: α -MnO2 (MEG), PTFE (OFI), Miscellaneous (OFI + MEG)

Figure 2. Comparison of the electrochemical cycling performances at (a) 25 and (b) 60°C of LiMn_{2-y-z}Li_yM_zO_{4-η}F_η: (●) LiMn₂O₄, (○) LiMn₂O_{3.92}F_{0.08}, (▲) LiMn_{1.8}Li_{0.2}O₄, (△) LiMn_{1.8}Li_{0.2}O_{3.88}F_{0.12}, (∇) LiMn_{1.8}Li_{0.2}O_{3.79}F_{0.21}, (■) LiMn_{1.8}Li_{0.1}Ni_{0.1}O₄, (□) LiMn_{1.8}Li_{0.1}Ni_{0.1}O_{3.9}F_{0.1} and (♦) LiMn_{1.8}Li_{0.1}Ni_{0.1}O_{3.8}F_{0.2}.

LiMn₂O₄ fluorinated into LiMn_{2-x}O_{4-n}F_n Capacity retention was increased by fluorine substitution - lattice parameters changed but structure remained the same

 $LiMn_2O_4$ - about 50% capacity fade Various $LiMn_{2-x}O_{4-n}F_n$ samples = 0.9 - 2.6% capacity fade