Modélisation - Résumé

October 20, 2023

THEVENET Louis

Table des matières

. Logique propositionnelle	.]
. Logique des prédicats	. 1
2.1. Ordres de la logique des prédicats	
Spécification algébrique	. 2
. Variables libres	. :
. Substitution	. :
. Preuves de programme	. 4
6.1. Preuve de correction	. 4
6.1.1. Preuve de correction partielle	
6.1.2. Preuve de terminaison	. 5

1. Logique propositionnelle

Définition 1.1:

La logique propositionnelle ne parle que de vérité :

- elle ne permet pas de faire référence à des objets, ou à des notions,
- elle ne permet pas de mettre objets ou notions en rapport.

2. Logique des prédicats

Définition 2.1:

C'est l'ajout des quantificateurs, des relations et des structures à la logique propositionnelle.

Extension de la logique des propositions :

- Univers \mathcal{U} (objets mathématiques ou informatiques)
- Algèbre de termes (représentation des objets) : constantes et opérateurs sur $\mathcal U$
- Quantificateurs pour variables dans $\mathcal{U}: \forall, \exists$
- Relations sur \mathcal{U} (permet aussi de représenter les termes)

Mais aussi:

- $\bot \top \neg \land \lor \rightarrow \leftrightarrow \mathcal{P}()$
- Ensembles dénombrables de symboles :
 - Variables $\mathcal V$
 - Relations (prédicats) \mathcal{R} munie d'une arité $\in \mathbb{N}^*$
 - Propositions \mathcal{P} (relations d'arité 0)

- Fonctions $\mathcal F$ munie d'une arité $\in \mathbb N^*$
- Constantes \mathcal{C} (fonctions d'arité 0)
- Lieurs : \forall , \exists
- Paramètres des relations et fonctions : (,)

2.1. Ordres de la logique des prédicats

Définition 2.1.1:

- Ordre supérieur : les lieurs peuvent quantifier des termes, des relations, des propositions, des fonctions, des constantes
- Premier ordre (First Order Logic, FOL) : Les lieurs ne peuvent quantifier que des termes
- Second ordre (SOL): on peut quantifier sur des ensembles de termes

 $\textit{Exemple}: \text{ du premier ordre avec } \mathcal{V} = \{m,n\}, \mathcal{R}_1 = \{\text{entier}\}, \mathcal{R}_2 = \{\text{egal}\}$

 $\forall m.(\text{entier}(m) \to (\text{impair}(m) \leftrightarrow (\exists n.(\text{entier}(n) \land \text{egal}(m, \text{somme}(\text{produit}(\text{deux}, n), \text{un}))))))$

Exemple: du second ordre avec (g, o) est un groupe

$$\forall g. \forall o. \ \operatorname{groupe}(g,o) \leftrightarrow \begin{cases} \forall x_1. \forall x_2. g(x_1) \land g(x_2) \rightarrow g(o(x_1,x_2)) \\ \forall x_2. \forall x_3. g(x_1) \land g(x_2) \land \operatorname{egal}(o(e,x),x) \land \operatorname{egal}(o(e,x),x) \\ \land \forall x_1. \forall x_2. \forall x_3. g(x_1) \land g(x_2) \land g(x_3) \rightarrow \operatorname{egal}(o(o(x_1,x_2),x_3),o(x_1,o(x_2,x_3))) \\ \land \forall x_1. g(x_1) \rightarrow \exists x_2. g(x_2) \land \operatorname{egal}(o(x_1,x_2),e) \land \operatorname{egal}(o(x_2,x_1),e) \end{cases}$$

3. Spécification algébrique

Définition 3.1: Typage des constantes et opérateurs

Soit \mathcal{S} un ensemble dénombrable de symboles, ce sont les **sortes** utilisées pour distinguer les termes possédant les mêmes caractéristiques, ainsi on classe

- les termes : $\mathcal{T} = \bigcup_{s \in \mathcal{S}} \mathcal{T}_s$
- les constantes : $\mathcal{C} = \bigcup_{s \in \mathcal{S}} \mathcal{C}_s$
- les variables : $\mathcal{V} = \bigcup_{s \in \mathcal{S}} \mathcal{V}_s$
- L'arité des fonctions prend en compte la sorte des paramètres et du résultat :

$$\forall n \in \mathbb{N}. \mathcal{F}_n = \bigcup_{s \in \mathcal{S}, \forall i \in [1, \dots, n]. s_i \in \mathcal{S}} \mathcal{F}_{(s_1 \times \dots \times s_n) \mapsto s}$$

Ainsi l'arité prend en compte les sortes

Exemple: Vision ensembliste

Soit \mathcal{S} un ensemble dénombrable de sortes, \mathcal{T} est le plus petit ensemble tel que :

- $\forall s \in \mathcal{S}. \forall c \in \mathcal{C}_s. c \in \mathcal{T}_s$
- $\bullet \quad \forall s_1,...,s_n, s \in \mathcal{S}. \forall f \in \mathcal{F}_{s_1 \times ... \times s_n \mapsto s}. \forall t_1,...,t_n \in \mathcal{T}_{s_1} \times ... \times \mathcal{T}_{s_n}. f(t_1,...,t_n) \in \mathcal{T}_{s_n}. f(t_n,...,t_n) \in \mathcal{T$

Exemple: Entiers naturels de Peano

$$egin{aligned} & \operatorname{nat} \in \mathcal{S} \\ & \operatorname{zero} \in \mathcal{C}_{\operatorname{nat}} \\ & \operatorname{successeur} \in \mathcal{F}_{\operatorname{nat} \; \mapsto \; \operatorname{nat}} \end{aligned}$$

L'ensemble des termes est la plus petite solution de l'équation :

$$\mathcal{T}_{\mathrm{nat}} = \{\mathrm{zero}\} \cup \{\mathrm{successeur}(n) \mid n \in \mathcal{T}_{\mathrm{nat}}\}$$

Définition 3.2: Termes avec variables

On note $\mathcal{T}[\mathcal{V}]$ l'ensemble des termes avec variables **partitionné selon les sortes**, il est le plus petit ensemble tel que :

- $\forall s \in \mathcal{S}. \forall c \in \mathcal{C}_s. c \in \mathcal{T}[\mathcal{V}]$
- $\bullet \ \forall s \in \mathcal{S}. \forall x \in \mathcal{V}_s. x \in \mathcal{T}[\mathcal{V}]_s$
- $\bullet \quad \forall s_1,...,s_n, s \in \mathcal{S}. \forall f \in \mathcal{F}_{s_1 \times ... \times s_n \mapsto s}. \forall t_1,...,t_n \in \mathcal{T}[\mathcal{V}]_{s_1} \times ... \times \mathcal{T}[\mathcal{V}]_{s_n}. f(t_1,...,t_n) \in \mathcal{T}[\mathcal{V}]_{s_n$

Exemple : Arithmétique de Peano

- On modélise \mathbb{N} par :
 - zero $\in \mathcal{C}_0(\overline{0} = \emptyset)$
 - successeur $\in \mathcal{F}_1(\overline{n+1} = {\overline{n} \cup \overline{n}})$
- Puis \mathbb{Z} par \mathbb{N}^2 avec :
 - (n,0) modélise \mathbb{Z}^+
 - (0,n) modélise \mathbb{Z}^-

4. Variables libres

Exemple:

$$\begin{aligned} & \text{VL}(\forall x. (\varphi \leftrightarrow \exists y. \psi)) \\ &= \text{VL}(\varphi \leftrightarrow \exists y. \psi) \setminus \{x\} \\ &= (\text{VL}(\varphi) \cup \text{VL}(\exists y. \psi)) \setminus \{x\} \\ &= (\text{VL}(\varphi) \cup (\text{VL}(\psi) \setminus \{y\})) \setminus \{x\} \end{aligned}$$

5. Substitution

Exemple:

```
\begin{split} [f(x,y)/x] &: f(x,y) \ remplace \ x \\ & [f(x,y)/x]((x\rightarrow y) \land \exists y.(x \lor ((\forall x.\varphi)\rightarrow y))) \\ &= ([f(x,y)/x](x\rightarrow y)) \land [f(x,y)/x](\exists y.(x \lor ((\forall x.\varphi)\rightarrow y))) \\ &= ([f(x,y)/x](x) \rightarrow [f(x,y)/x](y)) \land [f(x,y)/x](\exists y.(x \lor ((\forall x.\varphi)\rightarrow y))) \\ &= (f(x,y)\rightarrow y) \land (\exists z.[f(x,y)/x][z,y](x \lor (((\forall x.\varphi)\rightarrow y)))) \\ &= (f(x,y)\rightarrow y) \land (\exists z.[f(x,y)/x]([z,y](x) \lor [z,y](((\forall x.\varphi)\rightarrow y)))) \\ &= (f(x,y)\rightarrow y) \land (\exists z.[f(x,y)/x](x \lor ((\forall x.[z/y](\varphi))\rightarrow [z,y](y)))) \\ &= (f(x,y)\rightarrow y) \land (\exists z.[f(x,y)/x](x \lor ((\forall x.[z/y](\varphi))\rightarrow [z,y](y)))) \\ &= (f(x,y)\rightarrow y) \land (\exists z.[f(x,y)/x](x \lor ((\forall x.[z/y](\varphi))\rightarrow z))) \\ &= (f(x,y)\rightarrow y) \land (\exists z.[f(x,y)/x](x \lor ((\forall x.[z/y](\varphi))\rightarrow z))) \\ &= (f(x,y)\rightarrow y) \land (\exists z.([f(x,y)/x](x) \lor [f(x,y)/x]((\forall x.[z/y](\varphi))\rightarrow z))) \\ &= (f(x,y)\rightarrow y) \land (\exists z.(f(x/y) \lor [f(x,y)/x]((\forall x.[z/y](\varphi))\rightarrow z))) \\ &= (f(x,y)\rightarrow y) \land (\exists z.(f(x/y) \lor [f(x,y)/x]((\forall x.[z/y](\varphi))\rightarrow z))) \\ &= (f(x,y)\rightarrow y) \land (\exists z.(f(x/y) \lor ((\forall x.[z/y](\varphi)\rightarrow z)))) \\ &= (f(x,y)\rightarrow y) \land (\exists z.(f(x/y) \lor ((\forall x.[z/y](\varphi)\rightarrow z)))) \\ &= (f(x,y)\rightarrow y) \land (\exists z.(f(x/y) \lor ((\forall x.[z/y](\varphi)\rightarrow z)))) \\ &= (f(x,y)\rightarrow y) \land (\exists z.(f(x/y) \lor ((\forall x.[z/y](\varphi)\rightarrow z)))) \\ &= (f(x,y)\rightarrow y) \land (\exists z.(f(x/y) \lor ((\forall x.[z/y](\varphi)\rightarrow z)))) \\ &= (f(x,y)\rightarrow y) \land (\exists z.(f(x/y) \lor ((\forall x.[z/y](\varphi)\rightarrow z)))) \\ &= (f(x,y)\rightarrow y) \land (\exists z.(f(x/y) \lor ((\forall x.[z/y](\varphi)\rightarrow z)))) \\ &= (f(x,y)\rightarrow y) \land (\exists z.(f(x/y) \lor ((\forall x.[z/y](\varphi)\rightarrow z)))) \\ &= (f(x,y)\rightarrow y) \land (\exists z.(f(x/y) \lor ((\forall x.[z/y](\varphi)\rightarrow z)))) \\ &= (f(x,y)\rightarrow y) \land (\exists z.(f(x/y) \lor ((\forall x.[z/y](\varphi)\rightarrow z)))) \\ &= (f(x,y)\rightarrow y) \land (\exists z.(f(x/y) \lor ((\forall x.[z/y](\varphi)\rightarrow z)))) \\ &= (f(x,y)\rightarrow y) \land (\exists z.(f(x/y) \lor ((\forall x.[z/y](\varphi)\rightarrow z)))) \\ &= (f(x,y)\rightarrow y) \land (\exists z.(f(x/y) \lor ((\forall x.[z/y](\varphi)\rightarrow z)))) \\ &= (f(x,y)\rightarrow y) \land (\exists z.(f(x/y) \lor ((\forall x.[z/y](\varphi)\rightarrow z)))) \\ &= (f(x,y)\rightarrow y) \land (\exists z.(f(x/y) \lor ((\forall x.[z/y](\varphi)\rightarrow z)))) \\ &= (f(x,y)\rightarrow y) \land (\exists z.(f(x/y) \lor ((\forall x.[z/y](\varphi)\rightarrow z)))) \\ &= (f(x,y)\rightarrow y) \land (\exists z.(f(x/y) \lor ((\forall x.[z/y](\varphi)\rightarrow z)))) \\ &= (f(x,y)\rightarrow y) \land (\exists z.(f(x/y) \lor ((\forall x.[z/y](\varphi)\rightarrow z)))) \\ &= (f(x,y)\rightarrow y) \land (\exists z.(f(x/y) \lor ((\forall x.[x/y](\varphi)\rightarrow z)))) \\ &= (f(x,y)\rightarrow y) \land (\exists x.(x,y) \land (x,y) \land
```

6. Preuves de programme

```
\{0 \le N\}
x := 0;
y := 0;
while x != N do
```

Exemple: spécification formelle (pré-condition, post-condition)

y := y + 2 * x + 1;x := x + 1

od ${y = N^2}$

6.1. Preuve de correction

Théorème 6.1.1:

- Chaque étape intermédiaire est annotée par une propriété de l'état de la mémoire
- Chaque instruction I est
 - précédée d'une pré-condition φ
 - suivie d'une post-condition ψ
- Chaque instruction annotée doit satisfaire les règles de la logique de Hoare : $\{\varphi\}I\{\psi\}$
 - Correction partielle : φ est satisfaite et l'éxecution termine alors ψ est satisfaite après éxecution
 - Correction totale : φ est satisfaite alors l'éxecution termine et ψ est satisfaite après éxecution
- On représente les propriété sur l'état de la mémoire avec la **logique équationnelle** (i.e. premier ordre + spécifications algébriques)

6.1.1. Preuve de correction partielle

Exemple: Preuve de correction **partielle** de l'élevation au carré (invariant : $y=x^2$)

Si on veut que ψ_x soit vraie après avoir fait $(x \leftarrow E)$, il faut que qu'elle soit vraie pour E, i.e., on fait appraître E dans φ (*)

$$\{0 \leq N\}$$

$$\{0 = 0^2\}$$

$$x \coloneqq 0;$$

$$\{0 = x^2\}$$

$$y \coloneqq 0;$$

$$\{y = x^2\}$$
 while $x \neq N$ invariant $y = x^2$ do
$$\{y = x^2 \land x \neq N\}$$

$$(*)\{y + 2 \times x + 1 = (x+1)^2\}$$

$$y \coloneqq y + 2 \times x + 1;$$

$$\{y = (x+1)^2\}$$

$$x \coloneqq x + 1;$$

$$\{y = x^2\}$$
 od
$$\{y = x^2 \land \neg (x \neq N)\}$$

$$\{y = N^2\}$$

6.1.2. Preuve de terminaison

Exemple: Preuve de correction totale de l'élevation au carré (invariant: $y=x^2$)

Elle sera totale car on a déjà prouvé la correction partielle. On pourrait combiner les preuves en remplaçant les ... par la preuve par invariant précédente.

$$\{0 \leq N\} \\ \{\dots \wedge (N-0) \in \mathbb{N}\} \\ x := 0; \\ \{\dots \wedge N - x \in \mathbb{N}\} \\ y := 0; \\ \{N - x \in \mathbb{N}\} \\ \text{while } x \neq N \text{ invariant } y = x^2 \text{ variant } N - x \text{ do} \\ \{\dots \wedge x \neq N \wedge (N-x) \in \mathbb{N} \wedge V = N - x\} \\ y := y + 2 \times x + 1; \\ \{\dots \wedge (N - (x+1)) \in \mathbb{N} \wedge N - (x+1) < V\} \\ x := x + 1; \\ \{\dots \wedge (N - x) \in \mathbb{N} \wedge N - x < V\} \\ \text{od} \\ \{\dots \} \\ \{y = N^2\}$$

Puis

$$0 \le N \to 0 = 0^2 \land (N - 0) \in \mathbb{N}$$

$$\begin{cases} y = x^2 \\ \land x \ne N \\ (N - x) \in \mathbb{N} \end{cases} \to \begin{cases} y + 2 \times x + 1 = (x + 1)^2 \\ (N - (x + 1)) \in \mathbb{N} \\ (N - (x + 1)) < V \end{cases}$$

$$y = x^2 \land \neg (x \ne N) \to y = N^2$$