1 Koordinatentransformation

Bestimmen Sie allgemeine Formeln für die Geschwindigkeit $\dot{r}(t)$ sowie die Beschleunigung $\ddot{r}(t)$ eines Teilchens in Zylinderkoordinaten ρ, ϕ, z .

Drücken Sie zuerst die Position r(t) mit den Einheitsvektoren e_{ρ} , e_{ϕ} , e_{z} aus bevor Sie nach der Zeit ableiten.

Lösung

Mit dem lokalen 3-Bein in Zylinderkoordinaten:

$$e_{\rho} = \begin{pmatrix} \cos \phi \\ \sin \phi \\ 0 \end{pmatrix} \quad e_{\phi} = \begin{pmatrix} -\sin \phi \\ \cos \phi \\ 0 \end{pmatrix} \quad e_{z} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

erkennt man sofort dass:

$$r = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \rho \cos \phi \\ \rho \sin \phi \\ z \end{pmatrix} = \rho e_{\rho} + z e_{z}$$

Die Ableitung davon ist:

$$\dot{r} = \dot{\rho} e_{\rho} + \rho \dot{e}_{\rho} + \dot{z} e_z + z \dot{e}_z$$

Berechne \dot{e}_{ρ} und \dot{e}_{z} ($\xi = (\rho, \phi, z)$):

$$\dot{e}_{\rho} = (\nabla_{\xi} e_{\rho})(\frac{d}{dt}\xi) = (\partial_{\rho} e_{\rho})(\partial_{t} \rho) + (\partial_{\phi} e_{\rho})(\partial_{t} \phi) + (\partial_{z} e_{\rho})(\partial_{t} z) = e_{\phi} \dot{\phi}$$

$$\dot{e}_{\phi} = -e_{\rho} \dot{\phi}$$

$$\dot{e}_{z} = 0$$

Damit folgt:

$$\dot{r} = \dot{\rho}e_{\rho} + \rho\dot{\phi}e_{\phi} + \dot{z}e_{z}$$

Und damit auch:

$$\ddot{r} = \ddot{\rho}e_{\rho} + \dot{\rho}\dot{e}_{\rho} + \frac{d(\rho\dot{\phi})}{dt}e_{\phi} + \rho\dot{\phi}\dot{e}_{\phi} + \ddot{z}e_{z} + \dot{z}\dot{e}_{z}$$

$$= (\ddot{\rho} - \rho\dot{\phi}^{2})e_{\rho} + (z\dot{\rho}\dot{\phi} + \rho\ddot{\phi})e_{\phi} + \ddot{z}e_{z}$$

2 Integration

2.1 Wegintegrale von Vektorfeldern

2.1.1 Aufgabe

Berechnen Sie folgende Wegintegrale

a)
$$f(x,y) = (y,x)$$
 $\gamma(t) = (t,t^2)$ $t \in [0,1]$
b) $f(x,y) = (x^2,y^2)$ $\gamma(t) = (2t,4t)$ $t \in [0,1]$
c) $f(x,y) = (e^x,e^y)$ $\gamma(t) = (t,t^2)$ $t \in [0,1]$
d) $f(x,y,z) = (x^2 + 5y + 3xy, 5x + 3xy - 2, 3xy - 4z)$ $\gamma(t) = (-\sin(t),\cos(t),0)$ $t \in [0,2\pi]$

Lösung

a) =
$$\int_{\gamma} \begin{pmatrix} y \\ x \end{pmatrix} ds = \int_{0}^{1} \begin{pmatrix} t^{2} \\ t \end{pmatrix} \begin{pmatrix} 1 \\ 2t \end{pmatrix} dt = 1$$

b) = $72 \int_{0}^{1} t^{2} dt = 24$
c) $\int_{\gamma} \begin{pmatrix} e^{x} \\ e^{y} \end{pmatrix} \begin{pmatrix} dx \\ dy \end{pmatrix} = \int_{0}^{1} (e^{t} + 2te^{t^{2}}) dt = 2(e - 1)$
d) Es gilt: $\partial_{t} \gamma = \begin{pmatrix} \cos(t) \\ -\sin(t) \\ 1 \end{pmatrix}$. Setze dies ein:

$$\int_{\gamma} \dots = \int_{0}^{2\pi} (\sin^2 t \cos t + 5\cos^2 t) - (5\sin^2 t + 3t\sin^2 t - 2\sin t) + (3\sin t \cos t - 4t) dt$$

Die Terme $5cos^2t$ und $5sin^2t$ heben sich weg. Der Term mit sin ergibt 0. Die Terme mit sin^2cos bzw. cos^2sin ergeben nach dem integrieren 0. Der Term mit $tsin^2(t)$ lässt sich mit der Identität $sin^2=\frac{1}{2}(1-cos(2x))$ umwandel. Wobei der Termn mit cos(2x) auch 0 ergibt. Es bleibt also:

$$= \int_{0}^{2\pi} -\frac{11}{2}t = -11\pi^{2}$$

2.1.2 Aufgabe

Sei $G \subseteq \mathbb{R}^n$ offen und zusammenhängend und $v \in C^1(G, \mathbb{R})$. Zeigen Sie, dass man die Funktion vaus ihrem Gradienten und einem Anfangswert $v(x_0)$ rekonstruieren kann.

$$v(x) = v(x_0) + \int_{\gamma} grad \, v(y) \, dy$$

Dabei bezeichne γ eine stückweise stetig differenzierbare und ganz in G verlaufende Kurve mit Anfangspunkt $x_0 \in G$ und Endpunkt $x \in G$

Lösung

$$\int_{\gamma} \operatorname{grad} v(y) \ dy = \int_{t_0}^{t} \operatorname{grad} v(\gamma(s)) \quad \dot{\gamma}(s) \quad ds = \int_{t_0}^{t} \frac{d}{ds} v(\gamma(s)) \quad ds = v(\gamma(t)) - v(\gamma(t_0)) = v(x) - v(x_0)$$

Nun setze den Weg stückweise zusammen.

2.2 Oberflächenintegrale von Skalarfeldern

2.2.1 Aufgabe

Berechnen Sie das Integral der Funktion $f:R^3\to R,\quad f(x,y,z)=z$ über die Hälfte $z\geq 0$ einer Vollkugel vom Radius R>0

Lösung

Verwende Kugelkoordinaten:

$$= \int_0^R dr \int_0^{\pi/2} d\theta \int_0^{2\pi} d\phi \ r^3 sin(\theta) cos(\theta) = 2\pi \frac{R^4}{4} \left[\frac{1}{2} sin^2(\theta) \right]_0^{\pi/2} = \frac{\pi}{4} R^4$$

2.3 Oberflächenintegrale von Vektorfeldern

2.3.1 Aufgabe

Berechnen Sie den Fluss des Vektorfeldes $f: \mathbb{R}^3 \to \mathbb{R}^3$

$$f(x, y, z) = (0, 0, z)$$

durch die obere Hälfte S^+ der Kugeloberfläche

$$S^+ = \{(x, y, z) \in R^3 | x^2 + y^2 + z^2 = 1, z \ge 0\}$$

Lösung

Verwende Kugelkoordinaten:

$$= \int_0^{\pi/2} d\theta \int_0^{2\pi} \begin{pmatrix} 0 \\ 0 \\ \cos\theta \end{pmatrix} \begin{pmatrix} \sin\theta \cos\phi \\ \sin\theta \sin\phi \\ \cos\theta \end{pmatrix} \sin\theta d\theta d\phi$$
$$= 2\pi \int_0^{\pi/2} \cos^2\theta \sin\theta = 2\pi [-\frac{1}{3}\cos^2\theta]_0^{\pi/2} = \frac{2}{3}\pi$$

Noch schneller gehts mit dem Satz von Gauss

2.3.2 Aufgabe

Integrieren Sie folgendes Vektorfeld über die Oberfläche der im Ursprung des \mathbb{R}^3 zentrierten Kugel vom Radius $\mathbb{R}>0$:

$$A(x) = g(|x|)\frac{x}{|x|} \qquad A: R^3 \to R^3$$

Finden sie ein Potential $\Phi: \mathbb{R}^3 \to \mathbb{R}$ $A = -\nabla \Phi$ zu dem das Vektorfeld gehört.

Lösung

Verwende Kugelkoordinaten und erkenne sofort: |x|=r sowie $\frac{x}{|x|}=e_r$. Damit erhällt man sofort:

$$\int A(x)dx = 4\pi R^2 g(R)$$

Das zugehörige Potential lautet:

$$\Phi(x) = -\int_0^r g(r)dt$$

2.3.3 Aufgabe

Integrieren Sie das Vektorfeld:

$$B(x, y, z) = (y^2, x^2, z)$$

über die Oberfläche des Ellipsoides:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \qquad a, b, c > 0$$

Lösung

Da div B = 1 ist folgt sofort mit dem Satz von Gauss:

$$\int_{\partial E} B \, dF = \int_{E} \operatorname{div} B \, d^{3}x = \frac{4\pi}{3} \operatorname{abc}$$

2.3.4 Aufgabe

Integrieren Sie die folgenden Vektorfelder über die Oberfläche der im Ursprung des \mathbb{R}^3 zentrierten Kugel vom Radius 1

$$A(x, y, z) = (1 - x^2, 0, 2x^2z - x)$$

$$B(x, y, z) = (x + z, -y - z, x + y)$$

Lösung

a) Satz von Gauss

$$div A = 2(x^2 - x)$$

Verwende Kugelkoordinaten:

$$\int_{\partial B_1(0)} A \, dF = \int_{B_1(0)} \operatorname{div} A \, d^3x = 2 \int_0^1 dr \int_0^{\pi} d\theta \int_0^{2\pi} d\phi (r^4 \sin^3\theta \cos^2\phi - r^3 \sin^2\theta \cos\phi) \\
= 2 \left[\frac{r^5}{5} \right]_0^1 \left[-\frac{1}{3} \cos\theta \, \sin^2\theta - \frac{2}{3} \cos\theta \right]_0^{\pi} \left[\frac{1}{2} (\phi + \sin\phi \cos\phi) \right]_0^{2\pi} \\
= 2 \frac{1}{5} \left(\frac{2}{3} + \frac{2}{3} \right) \pi = \frac{8}{15} \pi$$

b) Verwende Satz von Gauss: $\operatorname{div} B = 0$. Deshalb verschwindet auch das Integral.

2.4 Volumenintegrale von Skalarfeldern

2.4.1 Aufgabe

Berechnen Sie den Flächeinhalt einer Ellipse mit Halbachsen a,b>0.

Lösung

Verwende verallgemeinterte Polarkoordinaten $x=\begin{pmatrix} a\,r\,cos\phi\\ b\,r\,cos\phi \end{pmatrix}$. Damit ist die Funktionaldeterminante: $det\ D\Phi=abr$ Und damit folgt:

$$\int_0^R \int_0^{2\pi} abr \ d\phi \, dr = \pi R^2 ab$$

2.4.2 Aufgabe

Berechnen Sie die folgenden Integrale:

$$J_1 = \int_{\Lambda} (x^6 y^2 - x^7 y^3) dx dy$$

$$J_2 = \int_{\Lambda} (x^6 y^2 - x^7 y^3) dy dx$$

mit $\Lambda = [0,1] \times [0,1]$. Begründen Sie das Ergebnis.

Lösung

Es gilt:

$$J_{1} = \int_{\Lambda} x^{6} y^{2} dx dy - \int_{\Lambda} x^{7} y^{3} dx dy$$

$$= \int_{0}^{1} x^{6} dx \int_{0}^{1} y^{2} dy - \int_{0}^{1} x^{7} dx \int_{0}^{1} y^{3} dy$$

$$= \frac{1}{21} - \frac{1}{32}$$

Nach dem Satz von Fubini gilt: $J_2=J_1\,$

2.4.3 Aufgabe

Berechnen Sie das Volumen eines Ellipsoides mit Halbachse a, b, c > 0

Lösung

$$\dot{e}_{\rho} = (\nabla_{\xi} e_{\rho})(\frac{d}{dt}\xi) = (\partial_{\rho} e_{\rho})(\partial_{t} \rho) + (\partial_{\phi} e_{\rho})(\partial_{t} \phi) + (\partial_{z} e_{\rho})(\partial_{t} z) = e_{\phi} \dot{\phi}$$

$$\dot{e}_{\phi} = -e_{\rho} \dot{\phi}$$

$$\dot{e}_{z} = 0$$

Verwende die verallgemeinerten Kugelkoordinaten:

$$x = \left(\begin{array}{c} a \, r \, sin\theta \, cos\phi \\ b \, r \, sin\theta sin\phi \\ c \, r \, cos\theta \end{array}\right)$$

Damit lautet die Funktionaldeterminante:

$$det D\Phi = abc r^2 sin\theta$$

Und damit berechnet sich das Volumen zu:

$$\int_0^R dr \int_0^{\pi} d\theta \int_0^{2\pi} d\phi abc \, r^2 \sin\theta = \frac{4\pi}{3} abc \, R^3$$

2.4.4 Aufgabe

Berechnen Sie das Volumen des Körpers, der durch einen Kreiszylinder mit Radius R aus einer Vollkugel vom Radius 2R ausgeschnitten wird, wenn das Kugelzentrum auf der Zylinderachse liegt

Lösung

Verwende unbedingt eine Zeichnung !!!!Das Volumen des Kugelsektors der vom Durchschnitt des Kreiszylinders mit der Kugel bestimmt wird lautet

$$\int_{0}^{2R} \int_{0}^{\theta_0} \int_{0}^{2\pi} r^2 \sin\theta \ d\phi d\theta dr = 4 \frac{4\pi}{3} R^3 (1 - \cos\theta_0)$$

Geometrisch errechnet man $cos\theta_0 = \frac{\sqrt{3}}{2}$ (Die höhe des ganz in der Kugel enthaltenen Kreistylinders misst $H = \sqrt{3}R$

Damit besitzt der Kreistzylinder das Volumen:

$$S = \frac{8}{3}\pi(2 - \sqrt{3})R^3$$

Das Komplemet des Kugelsektors im Zylinder ist gleich der Differenz zwischen dem halben Zylindervolumen Z und dem durch den Kugelsektor bestimmten Kegelvolumen K:

$$Z - K = \pi R^2 \sqrt{3}R - \frac{1}{3}\pi R^2 \sqrt{3}R$$

Damit misst das totale Volumen:

$$2(S+Z-K) = \frac{4}{3}(8-3\sqrt{3})\pi R^2$$

2.4.5 Aufgabe

Sei D das Dreieck mit dem Ecken (0,0), (1,0), (1,1). Berechnen Sie:

$$\int \frac{\sin x}{x} \, dx dy$$

Lösung

Der Versuch zuerst nach x zu integrieren scheitert. Also integriere zuerst nach v.

$$\int_{D} \frac{\sin x}{x} dx dy = \int_{0}^{1} \left(\int_{0}^{x} \frac{\sin x}{x} dy \right) dx = \int_{0}^{1} \sin x \, dx = 1 - \cos 1$$

2.4.6 Aufgabe

Sei $B_{R(0)}$ die Vollkugel vom Radius R>0 um den Ursprung im \mathbb{R}^3 . Zeigen Sie, dass das folgende uneigentliche Integral existiert und berechnen Sie seinen Wert:

$$\int_{B_R(0)} \frac{1}{|x|} d^3x$$

Lösung

Definiere $B_R^{\rho}(0)$ als die Kugelschale mit $\rho \leq r \leq R$. Damit gilt:

$$\int_{B_{R}^{\rho}(0)}\frac{1}{|x|}=\int_{\rho}^{R}dr\int_{0}^{\pi}\int_{0}^{2\pi}\frac{1}{r}r^{2}sin\theta\ d\phi d\theta dr=4\pi\frac{1}{2}(R^{2}-\rho^{2})\rightarrow2\pi R^{2}$$

2.5 Volumenintegrale von Vektorfeldern

2.5.1 Aufgabe

Bestimmen Sie den Schwerpunkt

$$S = \frac{1}{|K|} \int_{K} dx dy dz (x, y, z)$$

des Kugeloktanten K. (dabei bezeichnet |K| das Volumen von K)

$$K = \{(x, y, z) \in R^3 | x^2 + y^2 + z^2 \le 1, \quad x, y, z \ge 0\}$$

Lösung

Verwende Kugelkoordinaten, Berechne z-Komponente. Aus Symmetriegründen ist $S_x = S_y = S_z$

$$\int_{K} dx dy dz \ z = \int_{0}^{1} dr \int_{0}^{\pi/2} d\theta \int_{0}^{\pi/2} d\phi \ (r^{2} sin\theta) (r cos\theta) = \left[\frac{r^{4}}{4}\right]_{0}^{1} \frac{\pi}{2} \left[\frac{1}{2} sin^{2}\theta\right]_{0}^{\pi/2} = \frac{\pi}{16}$$