INTRODUCTION TO FOURIER ANALYSIS

CARSON JAMES

Contents

1.	The Fourier Transform on \mathbb{R}^n	2
1.1.	Schwartz Space	2
1.2.	The Convolution	3
1.3.	The Fourier Transform on $L^1(\mathbb{R}^n)$	Ę

1. The Fourier Transform on \mathbb{R}^n

1.1. Schwartz Space.

Definition 1.1.1. Let $\alpha \in \mathbb{N}_0^n$ and $x, y \in \mathbb{R}^n$. We define

- (1) $\langle x, y \rangle = \sum_{j} x_{j} y_{j}$
- (2) $|x| = \langle x, x \rangle^{1/2}$
- $(3) x^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ $(4) \partial^{\alpha} = \partial_{x_1}^{\alpha_1} \cdots \partial_{x_n}^{\alpha_n}$

Definition 1.1.2. Let $f \in C^{\infty}(\mathbb{R}^n), \alpha \in \mathbb{N}_0^n$ and $N \in \mathbb{N}_0$. We define

$$||f||_{\alpha,N} = \sup_{x \in \mathbb{R}^n} (1 + |x|^N) |\partial^{\alpha} f(x)|$$

We define Schwartz space, denoted \mathcal{S} , by

$$S = \{ f \in C^{\infty}(\mathbb{R}^n) : \text{ for each } \alpha \in \mathbb{N}_0^n, N \in \mathbb{N}_0, \|f\|_{\alpha,N} < \infty \}$$

Exercise 1.1.3. For each $f \in \mathcal{S}$ and $\alpha \in \mathbb{N}_0^n$, $\partial^{\alpha} f \in L^1(\mathbb{R}^n)$.

Proof. Let $f \in \mathcal{S}$, $\alpha \in \mathbb{N}_0^n$. Then there exists $C \geq 0$ such that for each $x \in \mathbb{R}^n$,

$$|\partial^{\alpha} f(x)| \le C(1+|x|^2)^{-1}$$

Define $g: \mathbb{R}^n \to [0, \infty)$ defined by $g(x) = (1 + |x|^2)^{-1}$. Then $g \in L^1(\mathbb{R}^n)$ which implies that $\partial^{\alpha} f \in L^1(\mathbb{R}^n).$

Definition 1.1.4.

1.2. The Convolution.

Exercise 1.2.1. Let $f, g \in L^1(\mathbb{R}^n)$. Define $h \in L^0(\mathbb{R}^n \times \mathbb{R}^n)$ by h(x, y) = f(x - y)g(y). Then $h \in L^1(m^2)$ and the function

$$x \mapsto \int f(x-y)g(y)dm(y)$$

is well defined in $L^1(\mathbb{R}^n)$.

Proof. By Tonelli's theorem.

$$\int_{\mathbb{R}^n \times \mathbb{R}^n} |h| dm^2 = \int_{\mathbb{R}^n} \left[\int_{\mathbb{R}^n} |f(x - y)g(y)| dm(y) \right] dm(x)$$

$$= \int_{\mathbb{R}^n} |g(y)| \left[\int_{\mathbb{R}^n} |f(x - y)| dm(y) \right] dm(x)$$

$$= ||f||_1 \int_{\mathbb{R}^n} |g(y)| dm(x)$$

$$= ||f||_1 ||g||_1$$

$$< \infty$$

By Fubini's theorem, the map

$$x \mapsto \int f(x-y)g(y)dm(y)$$

is defined a.e.

Definition 1.2.2. Let $f, g \in L^1(\mathbb{R}^n)$. We define the **convolution of** f **with** g, denoted $f * g : \mathbb{R}^n \to \mathbb{C}$, by

$$f * g(x) = \int_{\mathbb{R}^n} f(x - y)g(y)dm(y)$$

Exercise 1.2.3. Let $f, g \in L^1(\mathbb{R}^n)$. Then $f * g \in L^1(\mathbb{R}^n)$ and $||f * g||_1 \le ||f||_1 ||g||_1$.

Proof. By Tonelli's theorem,

$$\begin{split} \int_{\mathbb{R}^n} |f * g| dm &\leq \int_{\mathbb{R}^n} \left[\int_{\mathbb{R}^n} |f(x - y)g(y)| dm(y) \right] dm(x) \\ &= \int_{\mathbb{R}^n} |g(y)| \left[\int_{\mathbb{R}^n} |f(x - y)| dm(y) \right] dm(x) \\ &= \|f\|_1 \int_{\mathbb{R}^n} |g(y)| dm(x) \\ &= \|f\|_1 \|g\|_1 \\ &< \infty \end{split}$$

Exercise 1.2.4. Let $f, g, h \in L^{1}(\mathbb{R}^{n})$. Then (f * g) * h = f * (g * h).

Proof. Let $x \in \mathbb{R}^n$. Then using the substitution $z \mapsto z - y$ and Fubini's theorem, we obtain

$$(f*g)*h(x) = \int f*g(x-y)h(y)dm(y)$$

$$= \int \left[\int f(x-y-z)g(z)dm(z)\right]h(y)dm(y)$$

$$= \int \left[\int f(x-z)g(z-y)dm(z)\right]h(y)dm(y)$$

$$= \int \left[\int f(x-z)g(z-y)h(y)dm(z)\right]dm(y)$$

$$= \int \left[\int f(x-z)g(z-y)h(y)dm(y)\right]dm(z)$$

$$= \int f(x-z)\left[\int g(z-y)h(y)dm(y)\right]dm(z)$$

$$= \int f(x-z)g*h(z)dm(z)$$

$$= f*(g*h)(z)$$

So (f * g) * h = f * (g * h).

Exercise 1.2.5. Let $f, g \in L^1(\mathbb{R}^n)$. Then f * g = g * f.

Proof. Let $x \in \mathbb{R}^n$. Using the transformation $y \mapsto x - y$, we obtain that

$$f * g(x) = \int f(x - y)g(y)dm(y)$$
$$= \int f(y)g(x - y)dm(y)$$
$$= \int g(x - y)f(y)dm(y)$$
$$= g * f(x)$$

So f * g = g * f.

Note 1.2.6. To summarize, $(L^1(\mathbb{R}^n), *)$ is a commutative Banach algebra.

1.3. The Fourier Transform on $L^1(\mathbb{R}^n)$.

Definition 1.3.1. Let $f \in L^1(\mathbb{R}^n)$. We define the **Fourier transform of** f, denoted $\hat{f}: \mathbb{R}^n \to \mathbb{C}$ by

$$\hat{f}(\xi) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} f(x)e^{-i}$$