

带充电均衡功能的双节串联锂电池升压充电 IC

1 特性

- ♦ 15W 输入同步开关升压充电
- ◆ 升压充电效率 94%
- ◆ 集成充电均衡电路
- ◇ 充电电流外部电阻可调节
- ◇ 恒压充电电压外部电阻可调节
- ◆ 自动调节输入电流,匹配所有适配器
- ◆ 支持充电 NTC 温度保护
- ◆ 支持 LED 充电状态指示
- ◆ 功率 MOS 内置
- ◆ 500KHz 开关频率,可支持 2.2uH 电感
- ◇ 输出过流、过压、短路保护
- ◆ 输入过压、欠压保护,外接电阻可调整
- ◆ IC 过温保护
- ◇ 充电超时保护
- ♦ 输入耐压 25V
- ♦ ESD 4KV

2 应用

• 双节锂电池/锂离子电池充电

3 简介

IP2326 是一款支持双节串联锂电池/锂离子电池的升压充电管理 IC。

IP2326 集成功率 MOS, 采用同步开关架构, 使其在应用时仅需极少的外围器件, 并有效减小整体方案的尺寸, 降低 BOM 成本。

IP2326 的升压开关充电转换器工作频率 500KHz; 最大 15W 输入充电,5V 输入,8V/1A 输出转换效率 94%,8V/1.5A 输出转换效率 92%。

IP2326 具有输入限压功能,可以智能调节充电电流,防止拉挂适配器。

IP2326 支持外接电阻来调整充电电流、充电电压、输入欠压阈值、输入过压阈值、充电超时阈值等参数:

IP2326 集成充电均衡电路,可在充电时检测每 节电池的电压,保证 2 节电池电压的均衡;

IP2326 集成 NTC 保护功能,配合 NTC 电阻 IP2326 采用 4*4mm QFN24 封装。

图 1 简化应用原理图

4 引脚定义

图 2 IP2326 引脚图

Pin Name	Pin Num	Pin Description
DM	1	USB DM
DP	2	USB DP
VSET	3	恒压充电电压设置 PIN
NTC	4	NTC 温度保护, 接 NTC 电阻, 输出 20uA 的电流
BAT_STAT	5	充电状态输出指示,涓流充电时输出低电平,进入恒流充电后
		输出高电平
LED1	6	充电指示 LED
TIME_SET	7	充电超时保护设置 PIN
VIN_UVSET	8	输入欠压阈值设置 PIN
VIN_OVSET	9	输入过压阈值设置 PIN
NC	10	未定义,悬空
ISET	11	充电电流设置 PIN
EN	12	使能 PIN,接地后芯片不工作
VIN	13	输入供电和检测 PIN
BST	14	自举电路引脚,紧靠芯片BST引脚和LX引脚放置自举电容0.1uF
LX	15、16、17	DCDC 开关节点,连接电感
PGND	18	功率地
VSYS	19、20	升压输出中间节点,紧靠管脚放置 2 个 22uF 陶瓷电容
VOUT	21、22	升压输出 PIN,接电池正极
VBATM	23	充电均衡功能,中间电池电压检测 PIN,未使用该功能时悬空
VBAT_GND	24	充电均衡功能,电池地检测 PIN,未使用该功能时悬空

5 极限参数

参数	符号	值	单位
端口输入电压范围	$ m V_{IN}$	-0.3 ~ 25	V
结温范围	T_{J}	- 40 ∼ 150	${\mathbb C}$
存储温度范围	Tstg	- 60 ∼ 150	${\mathfrak C}$
热阻 (结温到环境)	$ heta_{ m JA}$	60	°C/W
人体模型(HBM)	ESD	4	KV

^{*}高于绝对最大额定值部分所列数值的应力有可能对器件造成永久性的损害,在任何绝对最大额定值条件下暴露的时间过长都有可能影响器件的可靠性和使用寿命

6 推荐工作条件

参数	符号	最小值	典型值	最大值	单位
输入电压	$ m V_{IN}$	4.5	5	5.5	V
充电电流	I	0		1.5	A

^{*}超出这些工作条件,器件工作特性不能保证

7 电气特性

除特别说明, TA=25℃, L=2.2uH, VIN=5V, VOUT=7.4V

参数	符号	测试条件	最小 值	典型 值	最大 值	单位
充电系统						
输入电压	\mathbf{V}_{IN}		4. 5	5	5.5	V
		R _{UV} =NC	4.55	4.65	4.75	V
输入欠压阈值	下降电压	R _{UV} =120K	4.35	4.45	4.55	V
		R _{UV} =68K	4.25	4.35	4.45	V
		R _{UV} =1K	4.15	4.25	4.35	V
		R _{OV} =NC	6.1	6.25	6.4	V
输入过压阈值	上升电压	R _{OV} =120K	5.85	6	6.15	V
		R _{OV} =68K	5.6	5.75	5.9	V
输入工作电流	I_{VIN}	EN=1, VIN=5V, VOUT=NC, 没有 LED	10	20	30	mA

IP2326

结扣由济	ī	EN=0, VIN=0, VOUT=7.4V		0.7	1	uA
待机电流 I _{standby-BA}		EN=0, VIN=5V, VOUT=7.4V		2.5	3	uA
		R _{VSET} =NC	8.3	8.4	8.5	V
 充电目标电压	V	R _{VSET} =120K	8.2	8.3	8.4	V
元电自称电压 	V_{TRGT}	R _{VSET} =68K	8.1	8.2	8.3	V
		R _{VSET} =1K	8.0	8.1	8.2	V
充电电流	I_{CHRG}	恒定输出端电流			1.5	A
Wyth the I		VIN=5V, VOUT<3.6V	30	50	70	mA
涓流充电电流	I_{TRKL}	VIN=5V, 3.7V <vout<6v< td=""><td>50</td><td>100</td><td>150</td><td>mA</td></vout<6v<>	50	100	150	mA
充电截止电流	I_{STOP}			150	250	mA
控制系统						
LED 显示驱动电流	I_{Led}	VIN=5V			5	mA
EN 高电平	EN _{INH}		1.4		VIN	V
EN 低电平	EN _{INL}		0		1.2	V
热关断温度	T_{OTP}	上升温度	125	135	145	$^{\circ}$
热关断恢复温度	Тотр-н	下降温度	100	110	120	$^{\circ}$

8 功能描述

框图结构

升压充电

IP2326 集成一个 Boost 同步升压充电控制器,开关频率 500KHz,5V 输入,8.0V/1A 输出时效率为 94%。输出升压到 8.4V,给双节锂电池/锂离子电池充电。

充电过程

IP2326采用完整的CC/CV充电模式。

当双节电池电压小于3.7V时,以50mA的电流对电池充电。

当双节电池电压大于小于6V,以100mA的电流对电池充电。

当电池电压大于1.2倍输入电压时,以恒流电流Icc充电;

当电池电压接近8.4V时,进入恒压充电模式。

进入恒压模式后,如果充电电流小于150mA,过30s后停止充电,检测电池电压是否高于停充电压;如果高于停充电压,就停止充电,如果低于停充电压,就继续充电,再过30s后继续检测。

充电保护

IP2326 具有完善的保护功能,集成输出过流、输入欠压、过压、过温等保护功能,确保系统稳定可靠的工作。

IP2326具有输入VIN输入稳压环路,在检测到输入电压接近R_{UV}所设置的输入欠压阈值时,就会自动调整降低充电电流,保证输入电压稳定在输入欠压阈值附近,确保不会拉挂适配器。

IP2326 集成输入过压保护功能, 当检测到输入电压大于 Rov 设定的过压阈值, 就会停止充电;

IP2326 集成 NTC 功能,配合 NTC 电阻,可以检测到电池温度,当检测到电池温度过高或过低后,可以停止充电;

IP2326集成过温保护功能, 当检测到芯片内部温度超过 135 度后, 就会强制停止充电;

IP2326 集成充电超时保护, 当充电时间超过 Rot 设置的最大充电时间, 会强制停止充电;

充电均衡功能

IP2326集成充电均衡功能;

在充电过程中, IP2326 会实时检测 2 节电池的电池电压, 当检测到任意 1 节电池电压达到均衡开启电压 V_{CRON}, 就开启 IP2326 内部对应的均衡 MOS, 降低该节电池的充电电流;

均衡关闭的条件:

- 1、2 节电池电压都高于均衡开启电压 VCBON;
- 2、退出正常充电状态(如 NTC 保护、输入过压、电池充满等);

可以通过调整 R_{CB} 来设置均衡电流,均衡电流会以发热的形式消耗在内部均衡 MOS 和 RCB 上,所以均衡电流设置应小于 40mA (R_{CB} 应大于 100 欧姆);

充电电压设置

IP2326支持VSET脚外接电阻RVSET,来设置恒压充电电压;

RVSET设置恒压充电电压

RVSET	恒压充电电压
1K	8.1V
68K	8.2V
120K	8.3V
NC	8.4V

充电电流设置

IP2326支持ISET脚外接电阻RISET,来设置恒流充电电流,所设定的电流是电池端最大充电电流(精度±10%)。

典型电流推荐电阻:

RISET设置电池端充电电流:

ICHG=90000/RISET

RISET	充电电流
180K	0.5A
90K	1A
75K	1.2A
60K	1.5A

输入欠压阈值设置

IP2326支持VIN_UVSET脚外接电阻RUV,来设置输入欠压阈值;

RUV设置输入欠压阈值

RUV	输入欠压阈值
1K	4.25V
68K	4.35V
120K	4.45V
NC	4.65V

IP2326 VIN输入环路在检测到输入电压接近所设置的输入欠压阈值时,就会自动调整降低充电电流,保证输入电压稳定在输入欠压阈值附近,确保不会拉挂适配器。

输入过压阈值设置

IP2326支持VIN_OVSET脚外接电阻ROV,来设置输入过压阈值;

ROV设置输入欠压阈值

ROV	输入过压阈值		
1K	disable,没有过压		
68K	5.75V		
120K	6V		
NC	6.25V		

充电超时设置

IP2326支持TIME_SET脚外接电阻ROT,来设置充电的超时时间;

ROT设置充电超时时间

ROT	充电超时时间		
1K	disable,没有超时		
68K	4H		
120K	12H		
NC	24H		

充电 NTC

IP2326支持NTC保护功能,可配合NTC电阻来检测电池温度:

IP2326通过NTC引脚放出20uA电流,然后检测该电流在NTC电阻上产生的电压,来判断温度高低,当检测温度超过设定的温度时,关闭充电。

图 4 NTC 框图

当 IP2326 检测到 NTC 引脚电压在 0.56V~1.32V 之间,表示电池温度正常,正常充电;

当 IP2326 检测到 NTC 引脚电压在 0.43V~0.56V 之间,表示电池温度偏高,充电电流减小一半;

当 IP2326 检测到 NTC 引脚电压下降到小于 0.43V,表示电池温度过高,停止充电;

当 IP2326 检测到 NTC 引脚电压上升到大于 1.32V,表示电池温度过低,停止充电;

如果不需要 NTC 功能,将 NTC 引脚接 51K 电阻到地。

举例: RNTC=100K 热敏电阻(B=4100), R2=82K, 对应的温度和 NTC 引脚电压:

温度(度)	RNTC 电阻阻值	R2//RNTC 阻值	NTC 引脚电压
0	246.7K	66.3K	1.32V
45	41.2K	27.8K	0.56V
55	28.4K	21.1K	0.43V

充电 LED 指示

电池充电LED指示灯,充电过程LED亮,充电满后LED灭,检测到异常后LED闪烁。

BAT_STAT 指示

BAT STAT指示充电状态,在涓流充电时输出低电平,进入恒流充电后输出高电平;

图 5 典型应用原理图

BOM

序号	元件名称	型号&规格	单位	用量	位置	备注
1	IC	IP2326	PCS	1	U1	
2	电感	CD43	PCS	1	L1	饱和 Isat、温升电流 Idc 大于 5A, DCR 小于 20 毫欧, 感值 2.2uH @500KHz
2	贴片电容	0805 10uF 10%	PCS	4	C1、C3、C6、 C7	耐压值大于 16V, 需用贴片陶瓷电容
4	贴片电容	0805 22uF 10 %	PCS	2	C4、C5	耐压值大于 16V, 需用贴片陶瓷电容
5	贴片电容	0603 104 10%	PCS	1	C2	
6	贴片电阻	0603 0.5R 5%	PCS	1	R1	用于保护 VIN PIN
7	贴片电阻	0603 100R 5%	PCS	1	R2	用于调整 LED 亮度
8	贴片 LED	0603	PCS	1 (DI DI	LED 指示灯,最大驱动能力 5mA
9	贴片电阻	0603	PCS	1	RVSET	设置恒压充电电压;根据需要选择
10	贴片电阻	0603	PCS	1	RISET	设置充电电流;根据需要选择
11	贴片电阻	0603	PCS	1	RUV	设置输入欠压;根据需要选择
12	贴片电阻	0603	PCS	1	ROV	设置输入过压;根据需要选择
13	贴片电阻	0603	PCS	1	ROT	设置充电超时;根据需要选择
14	NTC 电阻	NTC 电阻	PCS	1	RNTC	根据设计温度选择; 不使用时,接 51K 电阻到地;
15	贴片电阻	1206 100R 5%	PCS	1	RCB	设置均衡电流,不使用均衡功能时 可以不用
16	贴片电容	0603 104 10%	PCS	1	C7、C8	不使用均衡功能时可以不用

10 封装信息

SYMBOL	MILLIMETER		
	MIN	NOM	MAX
Α	0.70	0.75	0.80
A1	-	0.02	0.05
b	0.18	0.25	0.30
С	0.18	0.20	0.25
D	3.90	4.00	4.10
D2	2.40	2.50	2.60
е	0.50BSC		
Ne	2.50BSC		
Nd	2.50BSC		
E	3.90	4.00	4.10
E2	2.40	2.50	2.60
L	0.35	0.40	0.45
h	0.30	0.35	0.40

责任及版权申明

英集芯科技有限公司有权根据对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 客户 在下订单前应获取最新的相关信息,并验证这些信息是否完整且是最新的。所有产品的销售都遵循在订单确 认时所提供的销售条款与条件。

英集芯科技有限公司对应用帮助或客户产品设计不承担任何义务。客户应对其使用英集芯的产品和应用自行负责。为尽量减小与客户产品和应用相关的风险,客户应提供充分的设计与操作安全验证。

客户认可并同意,尽管任何应用相关信息或支持仍可能由英集芯提供,但他们将独力负责满足与其产品及在其应用中使用英集芯产品 相关的所有法律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见故障的危险后果、监测故障及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因在此类关键应用中使用任何英集芯产品而对英集芯及其代理造成的任何损失。

对于英集芯的产品手册或数据表,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况下才允许进行复制。英集芯对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。

英集芯会不定期更新本文档内容,产品实际参数可能因型号或者其他事项不同有所差异,本文档不作 为任何明示或暗示的担保或授权

在转售英集芯产品时,如果对该产品参数的陈述与英集芯标明的参数相比存在差异或虚假成分,则会 失去相关英集芯产品的所有明示或暗示授权,且这是不正当的、欺诈性商业行为。英集芯对任何此类虚假 陈述均不承担任何责任或义务。