

WORLD INTELLECTUAL PRO International

INTERNATIONAL APPLICATION PUBLISHED UNDE

(51) International Patent Classification 6:	
C07K 17/00, 16/00, C07H 21/02, C12N 1/20, 5/00, C12P 21/04, A61K 38/00, 31/70	A1

(11) International Publication Number:

WO 96/05232

(43) International Publication Date:

22 February 1996 (22.02.96)

(21) International Application Number:

PCT/US95/10103

(22) International Filing Date:

9 August 1995 (09.08.95)

(81) Designated States: AU, CA, JP, US, Propean patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, L., IT, LU, MC, NL, PT,

(30) Priority Data:

08/287,427 08/321,071 9 August 1994 (09.08.94)

US 11 October 1994 (11.10.94) US **Published**

With international search report.

(71) Applicant (for all designated States except US): IMMUNO-GEN, INC. [US/US]; 148 Sidney Street, Cambridge, MA 02139 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): CHITTENDEN, Thomas, D. [US/US]; 80 Pleasant Street, Brookline, MA 02146 (US).

(74) Agents: WIXON, Henry, N. et al.; Hale and Dorr, 1455 Pennsylvania Avenue, N.W., Washington, DC 20004 (US).

(54) Title: APOPTOSIS RELATED PROTEIN BCL-Y, AND METHODS OF USE THEREOF

(57) Abstract

The present invention is directed to an isolated Bcl-Y protein, nucleotide sequences coding for and regulating expression of the protein, antibodies directed against the protein, and recombinant vectors and host cells containing the genetic sequences coding for and regulating the expression of the protein sequence. The invention is also directed to genomic DNA, cDNA, and RNA encoding the Bcl-Y protein sequence and to corresponding antisense RNA sequences. Antibodies can be used to detect Bcl-Y in biological specimens, including, for example, human tissue samples. The present invention is further directed to methods of treating degenerative disorders characterized in inappropriate cell proliferation or inappropriate cell death. The present invention is further directed to methods for diagnosing degenerative disorders characterized in inappropriate cell proliferation or inappropriate cell death, as well as methods for monitoring the progress of such degenerative disorders.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	TE.	Ireland	NZ	New Zealand
BJ	Benin	11	Italy	PL	Poland
BR	Brazil	JP.	Ispan	PT	Portugal
BY	Belanu	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Pederation
CF	Central African Republic	· KP	Democratic People's Republic	SD	
CG	Congo		of Korea	SE	Sudan
CH	Switzerland	KR	Republic of Korea		Sweden
a	Côte d'Ivoire	KZ	Kazakhstan	SI	Slovenia
CM	Cameroon	ũ	Liechtenstein	SK.	Slovakia
CN CN	China	LK		SN	Senegal
CS CS	Czechoslovakia	w	Sri Lanka	TD	Chad
čz	Czech Republic		Luxembourg	TG	Togo
DE		LV	Larvia	TJ	Tajikiwan
	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukrains
BS.	Spein	MG	Madagascar	US	United States of America
PI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Vict Nam
GA	Gabon				

WO 96/05232 PCT/US95/10103

APOPTOSIS RELATED PROTEIN BCL-Y, AND METHODS OF USE THEREOF

Cross Reference to Related Applications

This application is a continuation-in-part of copending United States application Serial Number 08/287,427, filed 9 August 1994.

Field of the Invention

The present invention relates generally to the field of cell physiology, and more particularly, to apoptosis. Even more particularly, the present invention is related to the novel apoptosis associated protein Bcl-Y; to nucleotide sequences encoding Bcl-Y; to products and processes involved in the cloning, preparation and expression of genes and nucleotide sequences encoding Bcl-Y; to antibodies with specificity to Bcl-Y; and to diagnostic and therapeutic uses of the above.

Background of the Invention

Apoptosis refers to cell suicide that proceeds by an active, physiological process (Kerr, J.F., et al., Br. J. Cancer 26:239-257 (1972); Wyllie, A.H., Nature 284:555-556 (1980)). Cells that die by apoptosis undergo characteristic morphological changes, including cell shrinkage, and nuclear condensation and fragmentation. Apoptosis plays an important role in developmental processes, including morphogenesis, maturation of the immune system, and tissue homeostasis whereby cell numbers are limited in tissues that are continually renewed by cell division (Ellis, R.E., et al., Annu. Rev. Cell. Biol. 7:663-698 (1991); Oppenheim, R.W., et al., Neurosci. 14:453-501 (1991); Cohen, J.J., et

2

al., Annu. Rev. Immunol. 10:267-293 (1992); Raff, M.C., Nature 356:397-400 (1992)). While the cell death program can be activated through a diversity of normal physiological stimuli, cells also die by apoptosis following a variety of non-physiological insults, including irradiation and exposure to DNA damaging drugs (Eastman, A., Cancer Cells 2:275-280 (1990); Dive, C., et al., Br. J. Cancer 64:192-196 (1991); Lennon, S.V., et al., Cell prolif. 24:203-214 (1991)).

In addition to its role in developmental processes, apoptosis is an important cellular safeguard against tumorigenesis (Williams, G.T., Cell 65:1097-1098 (1991); Lane, D.P. Nature 362:786-787 (1993)). Defects in the apoptotic pathway may contribute to the onset or progression of malignancies. Under certain conditions, cells undergo apoptosis in response to forced expression of oncogenes, or other genes that drive cell proliferation; (Askew, D., et al., Oncogene 6:195-1922 (1991); Evan, G.I., et al., Cell 69:119-128 (1992); Rao, L., et al., Proc. Natl. Acad. Sci. 20 USA 89:7742-7746 (1992); Smeyne, R.J., et al., Nature 363:166-169 (1993)). The potential importance of apoptosis as a defense against tumorigenesis is underscored by the observation that suppression of the apoptotic pathway(s), by a variety of genetic lesions, occurs frequently in a broad 25 range of human tumors. As a specific example, loss of the p53 tumor suppressor gene function, either through deletion or mutation, occurs in more than 50% of human cancers (Levine, A.J., et al., Nature 351:453-456 (1991); Lane, D.P. Nature 362:786-787 (1993)). The p53 protein is required for 30 efficient induction of apoptosis by DNA damaging agents (including irradiation and most chemotherapeutic drugs) (Clark, A.R., et al., Nature 362:849-852 (1993); Lowe, S.W., et al., Cell 74:957-967 (1993a); Lowe, S.W., et al., Nature 362:847-849 (1993b)). This activity is likely to be at 35 least part of the tumor suppressor function of p53. Cells that suffer extensive, and potentially carcinogenic, genetic damage may self destruct via a p53 dependent mechanism thereby reducing the potential for tumorigenesis (Lane, D.P. Nature 362:786-787 (1993)).

In addition to cancer, deregulation of apoptosis may s contribute to a number of other human diseases. A variety of degenerative disorders may involve aberrant apoptosis, resulting in premature or inappropriate cell death (Barr, P.J., et al., Biotechnology 12:487-493 (1994)). Productive infection by certain viruses may depend on suppression of 10 host cell death by anti-apoptotic viral gene products (Rao, L., et al., Proc. Natl. Acad. Sci. USA 89:7742-7746 (1992); Ray, C.A., et al., Cell 69:597-604 (1992); White, E., et al., Mol. Cell. Biol. 12:2570-2580 (1992); Vaux, D.L., et al., Cell 76:777-779 (1994), and inhibition of apoptosis can 15 alter the course (i.e. lytic vs. latent) of viral infection; Levine, B., et al., Nature 361:739-742 (1993)). apoptosis of T lymphocytes triggered by HIV infection may, at least in part, be responsible for the immune system failure associated with AIDS (Gougeon M., et al., Science 20 260:1269-1270 (1993)). Therefore, from the perspective of pharmaceutical development, it would be desirable to identify or develop agents that either activate, or suppress, apoptosis depending on the clinical setting.

The bcl-2 gene product has been intensively studied as
a potent suppressor of apoptotic cell death. The bcl-2 gene
was originally identified at the t(14:18) translocation
breakpoint that occurs frequently in human B cell follicular
lymphomas (Bakhshi, A., et al., Cell 41:899-906 (1985);
Cleary, M.L., et al., Proc. Natl. Acad. Sci. USA 82: (1985);
Tsujimoto, Y., et al., Science 229:1390-1393 (1985)). This
translocation results in the constitutive activation of bcl2 gene expression due to juxtaposition with the
immunoglobulin heavy chain locus. Bcl-2 functions as an
oncogene in this disease by inappropriately suppressing
apoptosis that would normally limit the accumulation of
these cells (McDonnell, T.J., et al., Cell 57:79-88 (1989);

WO 96/05232 PCT/US95/10103

Hockenbery, D., et al., Nature 348:334-336 (1990)). Consequently, B cells accumulate during the indolent stage of the lymphoma due to their failure to die rather than by uncontrolled proliferation.

Targeted gene disruption experiments indicate that one important normal function of Bcl-2 is to contribute to the maintenance and survival of the mature immune system (Nakayama, K., et al., Science 261:1584-1588 (1993); Veis, D.J., et al., Cell 75:229-240 (1993)). However, the anti-10 apoptotic activity of Bcl-2 is not restricted to B cells. large number of studies have demonstrated that ectopic Bcl-2 expression can suppress apoptosis triggered by diverse stimuli in a multitude of cell lineages (Vaux, D.L., et al., Nature 335:440-442 (1988); Sentman, C.L., et al., Cell 15 67:879-888 (1991); Strasser, A., et al., Cell 67:889-899 (1991); Hockenbery, D.M., et al., Cell 75:241-251 (1993)). Bcl-2 blocks cell death induced by growth factor withdrawal, DNA damage, oncogene expression, oxidative stress, viral infection. The ability of Bcl-2 to block apoptosis in 20 virtually every system suggests that Bcl-2 is closely connected with the machinery that actually carries out the death program. This view is further supported by the conservation of Bcl-2 function across species. The ced9 gene in the nematode c. Elegans functions to suppress 25 programmed death in certain cell lineages of the developing worm (Ellis, H.M., et al., Cell 44:817-829 (1986)). Ced9 appears to be a functional homologue of Bcl-2, since Bcl-2 can complement ced9 in transgenic worms (Vaux, D.L., et al., Science 258:1955-1957 (1991)). Bcl-2 can also function in 30 insect cells as demonstrated by the ability of Bcl-2 to suppress apoptosis induced by Baculovirus infection (Alnemri, E.S., et al., Proc. Natl. Acad. Sci. USA 89:7295-7299 (1992)).

The molecular mechanism whereby Bcl-2 operates to block cell death is poorly understood. Bcl-2 is a 25 kD membrane associated protein that has been detected in mitochondrial

membranes, the nuclear envelope, and the endoplasmic reticulum (Chen-Levy, et al., Mol. Cell. Biol. 9:701-710 (1989); Hockenbery, D., et al., Nature 348:334-336 (1990); Jacobson, et al., Nature 361:365-369 (1993)). Bcl-2 has been found to physically associate with the ras related protein r-Ras (Fernandez-Sarabia, et al., Nature 366:274-275 (1993)). However, the biological significance of this interaction is still uncertain. Several lines of evidence have suggested that Bcl-2 functions in an anti-oxidant pathway, although it is not clear whether this is a direct or indirect activity of Bcl-2 (Hockenbery, D.M., et al., Cell 75:241-251 (1993); Kane, D.J., et al., Science 262:1274-1277 (1993); Butte, T.M., et al., Immunol. Today 15:7-10 (1994)).

Additional cellular genes that exhibit significant sequence homology with Bcl-2 have recently been identified and, where tested, these genes appear also to function as regulators of apoptotic cell death. One Bcl-2 relative, Bcl-X, was isolated by low stringency DNA hybridization to 20 the Bcl-2 gene (Boise, L.H., et al., Cell 74:597-608 (1993)). The Bcl-X RNA is differentially spliced to produce a long form, termed Bcl- $\mathbf{X}_{\mathbf{L}}$, and a shorter form, Bcl- X_{q} , bearing a short internal deletion. Bcl- X_{r} functions to suppress cell death, much like Bcl-2, whereas the deleted 25 form, $Bcl-X_c$, can inhibit protection by Bcl-2 and may function as a "dominant negative" species. A second Bc1-2 relative, Bax, was identified biochemically as protein found in co-immunoprecipitates with Bcl-2 (Oltvai, Z.N., et al., Cell 74:609-619 (1993)). Isolation of the corresponding 30 cDNA revealed that the Bax protein shows substantial sequence homology to Bcl-2. Bax forms heterodimers with Bc1-2 and appears to induce apoptosis and function as a negative regulator of Bc1-2 function. Ectopic expression of Bax was shown to block the protection against apoptosis 35 afforded by Bc1-2 expression.

Two additional cellular Bcl-2 relatives, Mcl and Al (Kozopas, K.M., et al., Proc. Natl. Acad. Sci. USA 90:3516-3520 (1993); Lin, E.Y., et al., J. Immunol. 151:1979-1988 (1993)) were originally isolated as mRNAs 5 induced in response to specific stimuli: phorbol ester induced differentiation of myeloid leukemia cells (Mcl) and GM-CSF treatment of murine bone marrow cells (A1). It is not yet known whether either Mcl or A1 can modulate apoptosis.

10

In addition to these cellular Bcl-2 relatives, a number of Bc1-2 homologues encoded by DNA viruses have been identified. The Epstein-Barr virus BHRF-1 gene product was noted to contain sequence homology to Bcl-2 and has subsequently been shown to function as a suppressor of 15 apoptosis (Henderson, et al., Proc. Natl. Acad. Sci. USA 90:8479-8488 (1993)). Likewise, the African swine fever virus LMW5-HL gene encodes a protein structurally similar to Bcl-2 (Neilan, J.G., et al., J. Virol. 67:4391-4394 (1993)). The Adenovirus Elb 19kD protein appears to be functionally 20 equivalent to Bc1-2, although the primary sequence homology is quite limited (White, E., et al., Mol. Cell. Biol. 12:2570-2580 (1992)). It is likely that these genes function to ensure replication of viral DNA by preventing apoptosis of the infected cell. The finding that unrelated 25 DNA viruses have evolved genes that apparently function to mimic the action of Bcl-2, supports the conclusion that Bcl-2 represents an important apoptosis regulator.

The five known cellular Bc1-2 related genes, where analyzed, have distinct patterns of expression and thus may 30 function in different tissues. The cell death program is in place in all tissues and may be regulated by different Bcl-2 related genes. While Bcl-2 expression is required for maintenance of the mature immune system, it is desirable to identify other genes which may govern apoptotic cell death 35 in other lineages.

Summary of the Invention

The present inventor has surprisingly discovered a novel composition of matter which has been isolated and s characterized, and which is described in a number of embodiments herein. Referred to herein as "Bcl-Y," it appears to be a member of the Bc1-2 family, and can, inter alia, induce apoptosis in cells and function as a negative regulator of Bcl-2 function in cells. Isolation of a full 10 length human Bcl-Y cDNA revealed that the deduced Bcl-Y amino acid sequence shares the most homology with Bcl-2; with additional regions of homology extending outside of domains I and II. Bcl-Y mRNA was detected in all human tumor cell lines examined, and appears to be widely 15 expressed in primary human tissues. In view of its widespread expression and significant homology to Bc1-2, Bcl-Y is an important regulator of apoptosis in human tissues and/or tumor cells.

Bcl-Y by itself accelerates apoptosis when expressed in FL5.12 cells, an IL-3 dependent murine cell line that undergoes apoptosis upon cytokine withdrawal (Hockenbery, D., et al., Nature 348:334-336 (1990)). Also, when Bcl-Y is expressed in FL5.12 cells that are over-expressing an exogenous Bcl-2 clone, the presence of Bcl-Y reduces the protective effect of Bcl-2 under conditions designed to induce apoptosis in those cells.

The present invention thus relates to an apoptosis associated protein Bcl-Y, products and processes involved in the cloning, preparation and expression of genes for Bcl-Y; antibodies with specificity to Bcl-Y; and nucleotide probes corresponding to the Bcl-Y nucleotide sequence or portions thereof. The Bcl-Y polypeptide is useful for producing antibodies thereto. The antibodies and probes are useful for detecting and isolating Bcl-Y in biological specimens including for example, cells from all human tissues including heart tissue, lung tissue, tumor cells, brain

tissue, placenta, liver, skeletal muscle, kidney, and pancreas.

The present invention further relates to species homologs and viral homologs of Bcl-Y.

The present invention relates to the identification, characterization and sequencing of cDNAs and genomic fragments which encode the Bcl-Y that is present in human cells.

According to the present invention, there are provided genetic sequences encoding Bcl-Y. The instant invention also provides for expression vectors containing such genetic sequences, hosts transformed with such expression vectors, and methods for producing the genetically engineered or recombinant Bcl-Y.

The present invention also provides antibodies which specifically recognize Bcl-Y.

The Bcl-Y cDNA and recombinant protein are useful for making antibodies which specifically recognize Bcl-Y. Such antibodies are useful for detecting and isolating Bcl-Y in a biological specimen. The present Bcl-Y protein is also useful as a regulator of apoptosis.

A small cDNA from the Namalwa, ATCC CRL 1432, human B-cell lymphoma cell line, and from the human leukemia cell line U937 ATCC CRL 1593, has been isolated. The amino acid sequence of the Bcl-Y protein shares sequence homology with Bcl-2, with additional regions of homology extending outside of domains I and II.

The present invention further relates to a method for isolating Bcl-Y partial clones using polymerase chain reaction (PCR) cloning, from diverse human tumor cell lines.

The present invention is further directed to methods for inducing or suppressing apoptosis in individuals suffering from degenerative disorders characterized by inappropriate cell proliferation or inappropriate cell death, respectively. Degenerative disorders characterized by inappropriate cell proliferation include, for example,

inflammatory conditions, cancer, including lymphomas, genotypic tumors, etc. Degenerative disorders characterized by inappropriate cell death include, for example, autoimmune diseases, acquired immunodeficiency disease (AIDS), cell death due to radiation therapy or chemotherapy, etc.

The present invention also relates to methods for detecting the presence of Bcl-Y protein, as well as methods directed to the diagnosis of degenerative disorders, which disorders are associated with an increased or decreased level of expression of Bcl-Y, as compared to the expected level of Bcl-Y expression in the normal cell population.

The present invention is further directed to methods for monitoring the progress of degenerative disorders associated with increased or decreased levels of expression of Bcl-Y, by monitoring Bcl-Y expression.

The present invention also relates to methods for determining whether a disease/degenerative disorder is linked to abnormal Bcl-Y expression, as well as methods for determining the effect of over expression or loss of expression of Bcl-Y in animal models such as transgenic mice and/or homozygous null mice. Methods for determining whether a disease/degenerative disorder is linked to abnormal Bcl-Y expression include analyzing Bcl-Y expression in diseased tissue as compared to normal tissue by for example, Northern and/or Western blots, as well as by other assay methods readily chosen and employed by those of ordinary skill in the art.

The present invention relates to hybrids of Bcl-Y for therapeutic use.

The present invention also relates to methods for modulating apoptotic effects by administering the present Bcl-Y protein, mutant protein or hybrids to an individual suffering from a degenerative disorder characterized by inappropriate cell proliferation or inappropriate cell death in order to stabilize inappropriate cell proliferation (i.e., induce apoptosis) or stabilize inappropriate cell

WO 96/05232

death (i.e., suppress apoptosis), respectively, and/or in either case to restore normal cell behavior. Fig. 8 illustrates levels of Bcl-Y mRNA expressed in a variety of healthy adult tissues.

The present invention further relates to functional equivalents including functional fragments of Bcl-Y including, for example, peptides of Bcl-Y such as Domain I and Domain II, and other regions of homology recognized by the present inventor between Bcl-Y and other apoptosis related proteins including Bcl-2 and Bax.

The present invention is also directed to nucleotide probes which can be used to determine the presence of Bcl-Y as well as to identify and isolate homologs including species homologs and viral homologs.

Description of the Figures

Figure 1. Conservation of domains I and II among Bcl-2 family members.

15

- (A). Amino acid sequence homology between previously known Bcl-2 homologues. Degenerate PCR primers (BD2 and BU3), corresponding to conserved domains I and II (boxed), are shown at bottom. ASFV and EBV refer to the African swine fever virus LMW5-HL and Epstein-Barr virus BHRF1 genes,
- 25 respectively. The numbers at the far right refer to the amino acid position number in the corresponding proteins.
 - (B). Conceptual translation of the Bcl-Y fragment isolated by PCR. The Bcl-Y PCR product obtained with primers BD2 and BU3 is shown on the top line. The underlined residues
- more correspond to the primers used in PCR. The shaded, bold faced residues are sequence elements highly conserved among the previously identified Bcl-2 relatives.

Figure 2. Expression of the Bcl-Y RNA in tumor cell lines.

Northern blot analysis was performed using mRNA prepared from the indicated tumor cell lines. The blots were

hybridized with a 32-P labeled probe derived from the Bcl-Y PCR product. RNA size markers (Gibco/BRL) were visualized by ethidium bromide staining.

- Figure 3. Bcl-Y clones isolated from Jurkat cell cDNA. A lambda cDNA library was screened with a probe derived from the Bcl-Y PCR product (hatched box, top) and three clones were obtained (clones 4, 10, 11). Lamda clone 11 encompasses the entire Bcl-Y open reading frame (open and hatched box). Additional 5' sequence was obtained by PCR using the 5' RACE method. A composite Bcl-Y cDNA, derived from these overlapping clones, is shown at the bottom.
- Figure 4. DNA sequence and conceptual translation of a composite Bcl-Y cDNA. The initiating methionine codon is shown in bold face, and is preceded by stop codons (underlined) in all three reading frames.
- Figure 5. Homology of Bcl-Y to Bcl-2. The three regions of Bcl-Y with the highest homology to Bcl-2 are shown. The homology and alignments were performed by the BLASTP program. Boxed, shaded residues indicate identity, lightly shaded residues indicate conservative changes.
- 25 Figure 6. Alignment of Bcl-Y with the Bcl-2 family. The amino acid positions of the various Bcl-2 relatives are indicated. Boxed, shaded residues are identical in at least 4 of the 8 Bcl-2 relatives. Lightly shaded residues indicate coservative amino acid changes. The hydrophobic C-terminal, putative membrane localization sequences, are underlined.
 - Figure 7. Expression of the Bcl-Y protein.
 - (A). In vitro translation of 35-S labeled Bcl-Y in rabbit
- reticulocyte lysate. Luciferase was used as a positive control for the translation reactions; "no DNA" indicates a

reaction performed with no DNA template. Proteins were resolved by SDS gel electrophoresis and visualized by autoradiography. The gel mobilities of pre-stained protein molecular weight markers (Amersham) are shown.

- (B). Expression of Bcl-Y in transfected cells. Plasmids expressing the indicated hemagglutinin (HA) epitope-tagged proteins were transfected into either COS7 or NIH3T3 cells. The expression vector Rc/CMV was transfected as a negative control. Proteins were detected 48 hrs after transfection by Western blot of cell lysates with the anti-HA monoclonal antibody 12CA5 (Boehringer Mannheim).
- Figure 8. Expression of Bcl-Y in human tissues. A human multiple tissue northern blot was hybridized sequentially with 32-P labeled probes derived from Bcl-Y, Bcl-2, Bax and ß-actin cDNA sequences.
 - Figure 9. Effect of Bcl-y expression on viability of FL5.12 cells following IL-3 withdrawal.
- 20 (A) Viability of FL5.12 clones expressing HA-Bcl-y after withdrawal of IL-3. Cell viability was measured at the indicated times following cytokine withdrawal. Each data point represents the average of duplicate cultures assayed in parallel. Viability assays were repeated several times and results of a representative experiment are shown. Neo is a G418-resistant (G418) FL5.12 clone transfected with a plasmid encoding neomycin resistance only; yb2, yb3, and yb4 are individual G418 FL5.12 clones that express HA-Bcl-y.
- (B) Expression of HA-Bcl-y in FL5.12 cells. The HA-Bcl-y protein (~29 kD) was detected by Western blot analysis of extracts prepared from the indicated cell lines, with the HA-specific 12CA5 antibody. An asterix denotes non-specific bands.

- Figure 10. Effect of Bcl-Y expression in FL5.12 cell populations also expressing Bc1-2.
- (A) Viability of FL5.12 cell populations expressing Bcl-2 in combination with either HA-Bcl-Y or HA-Bax following s withdrawal of IL-3. Drug resistant cells that arose after infection of Bcl-2 expressing FL5.12 cells with retroviruses expressing HA-Bcl-Y, HA-Bax, or puromycin alone, were pooled and analyzed as cell populations. The neo/puro population is a G418 FL5.12 cell line that does not express exogenous 10 Bcl-2, infected with the puromycin-encoding retrovirus vector alone.
- (B) Expression of HA-Bcl-Y, HA-Bax, and Bcl-2 in FL5.12 cell populations. Extracts were prepared from the indicated cell populations and HA-tagged proteins (left) and exogenous 15 human Bcl-2 (right) were detected by Western blot analysis.
 - Figure 11. Effect of Bcl-Y expression in FL5.12 clones also expressing Bcl-2.
- (A) Viability of FL5.12 clones expressing Bc1-2 in 20 combination with either HA-Bcl-Y or HA-Bax following withdrawal of IL-3.
 - (B) Expression of HA-tagged proteins in FL5.12 clones. HAtagged proteins (left) and exogenous human Bcl-2 (right) were detected by Western blot analysis.

Detailed Description of the Invention

Definitions I.

25

30

To aid in the understanding of the specification and the claims, the following definitions are provided:

By the term "gene" is intended a DNA sequence 35 which encodes through its template or messenger RNA a sequence of amino acids characteristic of a specific

25 .

peptide. Further, the term includes intervening, non-coding regions, as well as regulatory regions, and can include 5' and 3' ends.

Gene sequence. The term "gene sequence" is intended to refer generally to a DNA molecule. As used herein, the terminology is meant to include both a DNA molecule which contains a non-transcribed or non-translated sequence. term is further intended to include any combination of gene(s), gene fragment(s), non-transcribed sequence(s), or non-translated sequence(s) which are present on the same DNA molecule.

The present sequences may be derived from a variety of 15 sources including DNA, cDNA, synthetic DNA, RNA, or combinations thereof. Such gene sequences may comprise genomic DNA which may or may not include naturally occurring introns. Moreover, such genomic DNA may be obtained in association with promoter regions or poly A sequences. 20 gene sequences, genomic DNA or cDNA may be obtained in any of several ways. Genomic DNA can be extracted and purified from suitable cells by means well known in the art. Alternatively, mRNA can be isolated from a cell and used to produce cDNA by reverse transcription or other means.

CDNA. The term "cDNA" is meant complementary or copy DNA produced from an RNA template by the action of RNAdependent DNA polymerase (reverse transcriptase). "cDNA clone" means a duplex DNA sequence complementary to an 30 RNA molecule of interest, carried in a cloning vector. This term includes genes from which the intervening sequences have been removed.

Recombinant DNA. By the term "recombinant DNA" is 35 meant a molecule that has been recombined by in vitro splicing cDNA or a genomic DNA sequence.

Cloning. By the term "cloning" is meant the use of in vitro recombination techniques to insert a particular gene or other DNA sequence into a vector molecule. In order to successfully clone a desired gene, it is necessary to employ methods for generating DNA fragments, for joining the fragments to vector molecules, for introducing the composite DNA molecule into a host cell in which it can replicate, and for selecting the clone having the target gene from amongst the recipient host cells.

10

cDNA Library. By "cDNA library" is meant a collection of recombinant DNA molecules containing cDNA inserts which together comprise the entire genome of an organism. Such a cDNA library may be prepared by methods known to those of skill, and described, for example, in Maniatis, et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, 2d. ed. (1989). Generally, RNA is first isolated from the cells of an organism from whose genome it is desired to clone a particular gene. Preferred for the purposes of the present invention are mammalian, and particularly human, cell lines.

Cloning Vehicle. A plasmid or phage DNA or other DNA sequence which is able to replicate in a host cell. The cloning vehicle is characterized by one or more endonuclease recognition sites at which such DNA sequences may be cut in a determinable fashion without loss of an essential biological function of the DNA, which may contain a marker suitable for use in the identification of transformed cells.

Markers may include for example, tetracycline resistance or ampicillin resistance. The word "vector" can be used to connote a cloning vehicle.

Expression Control Sequence. An "expression control sequence" is a sequence of nucleotides that controls or regulates expression of structural genes when operably

linked to those genes. These include, for example, the lac systems, the trp system major operator and promoter regions of the phage lambda, the control region of fd coat protein and other sequences known to control the expression of genes in prokaryotic or eukaryotic cells. Expression control sequences will vary depending on whether the vector is designed to express the operably linked gene in a prokaryotic or eukaryotic host, and may contain transcriptional elements such as enhancer elements, termination sequences, tissue-specificity elements, and/or translational initiation and termination sites.

vehicle or vector similar to a cloning vehicle but which is capable of expressing a gene which has been cloned into it, after transformation into a host. The cloned gene is usually placed under the control of (i.e., operably linked to) an expression control sequence.

Operator. A DNA sequence capable of interacting with the specific repressor, thereby controlling the transcription of adjacent gene(s).

20

Promoter. The term "promoter" is intended to refer to a DNA sequence which can be recognized by an RNA polymerase. The presence of such a sequence permits the RNA polymerase to bind and initiate transcription of operably linked gene sequences.

Promoter region. The term "promoter region" is intended to include the promoter as well as other gene sequences which may be necessary for the initiation of transcription. The presence of a promoter region is, therefrom sufficient to cause the expression of an operably linked gene sequence.

WO 96/05232

PCT/US95/10103

17

Operably Linked. As used herein, the term "operably linked" means that the promoter controls the initiation of expression of the gene. A promoter is operably linked to a sequence of proximal DNA if upon introduction into a host cell the promoter determines the transcription of the proximal DNA sequence or sequences into one or more species of RNA. A promoter is operably linked to a DNA sequence if the promoter is capable of initiating transcription of that DNA sequence.

10

Prokaryote. The term "prokaryote" is meant to include all organisms without a true nucleus, including bacteria.

Eukaryote. The term "eukaryote" is meant to include organisms and cells which have a true nucleus, including mammalian cells.

Fost. The term "host" is meant to include not only prokaryotes, but also eukaryotes such as yeast and
filamentous fungi, as well as plant and animal cells. The term includes an organism or cell that is the recipient of a replicable expression vehicle.

Substantially homologous. The term "substantially homologous" as used herein refers to the ability of a first DNA sequence encoding Bcl-Y to hybridize to a second DNA sequence encoding the foregoing, under stringent conditions, for example, at about 0.1x sodium citrate sodium chloride buffer (SSC) at a temperature of about 65°C.

30

Substantially pure. The term "substantially pure" means that the protein or molecule of interest is essentially free from any other detectable biological constituents.

equivalent of the Bcl-Y protein is a protein which possesses a biological activity or immunological characteristic substantially similar to a biological activity or immunological sactivity or immunological characteristic of non-recombinant Bcl-Y. The term "functional equivalent is intended to include the "fragments," "variants," "analogues," "homologues," or "chemical derivatives" of a molecule which possess the biological activity of the Bcl-Y protein of the invention.

Fragment. A "fragment" of a molecule such as Bcl-Y is meant to refer to any variant of the molecule which possess the biological activity of the Bcl-Y protein.

15

variant. A "variant" of a molecule is meant to refer
to a molecule substantially similar in structure and
biological activity or immunological characteristics to
either the entire molecule, or to a fragment thereof. Thus,
provided that two molecules possess a similar activity, they
are considered variants as that term is used herein even if
the composition or secondary, tertiary, or quaternary
structure of one of the molecules is not identical to that
found in the other, or if the sequence of amino acid
residues is not identical.

Analog. An "analog" of a molecule is meant to refer to a molecule substantially similar in function to either the entire molecule or to a fragment thereof. As used herein, a molecule is said to be a "chemical derivative" of another molecule when it contains additional chemical moieties not normally a part of the molecule. Such moieties may improve the molecule's solubility, absorption, biological half life, etc. The moieties may alternatively decrease the toxicity of the molecule, eliminate or attenuate any undesirable side effect of the molecule, etc. Moieties capable of mediating

25

such effects are described, for example, in Remington's Pharmaceutical Sciences (1980). Procedures for coupling such moieties to a molecule are well known in the art.

Anti-Antibody. By the term "anti-antibody" is intended an antibody directed against antigenic determinants on another antibody.

Anti-Idiotypic Antibody. By the term "anti-idiotypic antibody" is intended an antibody directed against an idiotypic determinant of another antibody.

Idiotope. By the term "idiotope" is intended an idiotypic determinant, i.e., an antigenic determinant on a variable domain of an immunoglobulin molecule.

Idiotype. By the term "idiotype" is intended a set of one or more idiotopes that distinguish a clone of immunoglobulin producing cells from other clones. Idiotypes occur in the variable domains of immunoglobulin molecules and may be within, near to, or outside of the antigen binding site; antibodies to idiotypes located within or near the antigen biding site will prevent the immunoglobulin from combining with the antigen.

Idiotype-anti-idiotype Network. By the term "idiotype-anti-idiotype network" is intended a B-cell regulatory mechanism. Activation of a B cell results in a clone of plasma cells producing immunoglobulin of a single idiotype, which, because it was previously present in very small quantities, can be recognized as "nonself" and results in the production of anti-idiotypic antibodies directed against its idiotypic determinants. There can also be anti-anti-idiotypic antibodies directed against the second antibodies, antibodies directed against them, and so forth. These antibodies react with antigen receptors on B cells and T

PCT/US95/10103 WO 96/05232

helper and suppressor cells, as well as with circulating antibodies, to enhance or suppress production of the initial antibody by various mechanisms.

Modulate. By the term "modulate" is intended, for the purposes of the present invention, the induction of apoptosis by the administration of the Bcl-Y protein of the invention, an active fragment thereof, a functional equivalent thereof, and/or the suppression or induction of 10 apoptosis by the administration of a Bcl-Y hybrid or Bcl-Y mutant, or the administration of a vector containing cDNA encoding any of the foregoing, to the particular cells of an individual suffering from any degenerative disorder which results in inappropriate cell growth, for example, including 15 lymphomas, genotypic tumors, cancer, or, disorders characterized by inappropriate cell death, for example, including AIDS which results in T-cell death, in order to stabilize inappropriate cell proliferation or inappropriate cell death and preferably to restore normal cell behavior.

20

Administration. By the term "administration" is intended any mode of administration which results in the delivery of the therapeutic agent across the cell membrane and into the desired cell. The site of administration and 25 cells will be selected by one of ordinary skill in the art based upon an understanding of the particular degenerative disorder being treated. In addition, the dosage, dosage frequency, and length of course of treatment, can be determined and optimized by one of ordinary skill in the art 30 depending upon the particular degenerative disorder being treated. The particular mode of administration can also be readily selected by one of ordinary skill in the art and can include, for example, oral, intravenous, subcutaneous, intramuscular, etc., with the requirement that the 35 therapeutic agent cross the cell membrane. The therapeutic agent of the present invention can be the Bcl-Y protein and/ or functional equivalents thereof and/or Bcl-Y hybrids or Bcl-Y mutants and/or a vector containing cDNA encoding the foregoing.

Therapeutic Agent. By the term "therapeutic agent" is intended the present Bcl-Y protein, fragments, functional equivalents and/or hybrids or mutants thereof as well as vectors containing cDNA encoding any of the foregoing. The present therapeutic agent can be administered alone or in combination with and/or concurrently with other suitable drugs and/or courses of therapy.

Degenerative Disorder. By the term "degenerative disorder" is intended for purposes of this invention, any 15 disorder characterized by inappropriate cell proliferation or inappropriate cell death or in some cases, both. By the term "inappropriate cell proliferation" is intended a statistically significant increase in cell number as compared to the proliferation of that particular cell type 20 in the normal population. Also included are disorders whereby a cell is present and/or persists in an inappropriate location, e.g., the presence of fibroblasts in lung tissue after acute lung injury. For example, such cells include cancer cells which exhibit the properties of 25 invasion and metastasis and are highly anaplastic. Such cells include but are not limited to, cancer cells including, for example, tumor cells. By the term "inappropriate cell death" is intended a statistically significant decrease in cell number as compared to the 30 presence of that particular cell type in the normal population. Such underrepresentation may be due to a particular degenerative disorder, including, for example, AIDS (HIV), which results in the inappropriate death of T-cells, autoimmune diseases which are characterized by 35 inappropriate cell death. By the term "autoimmune disease" is intended a disorder caused by an immune response directed

PCT/US95/10103 WO 96/05232

against self antigens. Such diseases are characterized by the presence of circulating autoantibodies or cell-mediated immunity against autoantigens in conjunctions with inflammatory lesions caused by immunologically competent 5 cells or immune complexes in tissues containing the autoantigens. Such diseases include systemic lupus, erythematosus (SLE), rheumatoid arthritis.

Suppression. By the term "suppression" is intended for 10 the purposes of this invention the result achieved by administering an amount of a therapeutic agent containing Bcl-Y hybrids or Bcl-Y mutants thereof effective to suppress apoptosis in an individual suffering from a degenerative disorder characterized by inappropriate cell death. 15 Suppression of apoptosis is achieved when the numbers of the particular affected cell type remain stable or increase in number to a level within the range observed in the normal cell population. By the term "stable" is intended the state achieved when a statistically significant decrease in cell 20 number is no longer observed in the individual being treated, as compared to the cell number observed at the onset of the course of treatment.

Induction. By the term "induction" is intended for the 25 purposes of this invention the result achieved by the administration of an amount of a therapeutic agent containing the Bcl-Y of the invention effective to induce apoptosis in cells of an individual suffering from a degenerative disorder characterized by inappropriate cell 30 proliferation. The induction of apoptosis is achieved when cell numbers remain stable or decrease to a level within the range observed in the normal cell population. By the term "stable" is intended the state achieved during the course of treatment when a statistically significant increase in cell 35 proliferation is no longer observed as compared to the cell number observed at the onset of the course of treatment.

One of ordinary skill in the art can readily determine whether the induction of apoptosis has been achieved.

Bcl-Y Hybrid. By the term "Bcl-Y hybrid" is intended s for the purposes of this invention, proteins which are hybrid proteins of the present Bcl-Y proteins, fragments thereof, and/or functional equivalents or mutants thereof, with other apoptosis associated proteins encoded by genes including, for example, Bcl-2, Bax, c-myc, LMW5-HL, Bcl-Y, 10 Bcl-X, Bcl-X, BHRF-1, Mcl, A1 and ced9, fragments thereof and/or functional equivalents thereof, in order to produce a protein which exhibits enhanced, decreased, or intermediate apoptosis induction or suppression activity as compared to the activity of Bcl-Y alone. Such hybrids can be produced, 15 for example, by fusing the first half of the coding region of the Bcl-Y cDNA with the second half of the coding region of the cDNA for Bcl-2, or Bax, or Bcl- \mathbf{X}_{L} , or Bcl- \mathbf{X}_{S} or vice versa. Additionally, by adding or replacing segments of Bcl-2, Bax, Bcl-X, or Bcl-X, to the Bcl-Y cDNA, chimeric 20 gene products of therapeutic value can be generated. ordinary skill in the art can readily produce and employ such hybrids using techniques well known in the art. ordinary skill in the art can readily determine whether a particular hybrid exhibits enhanced, decreased or 25 intermediate apoptosis induction or suppression activity using known screening methods and as described herein.

Normal Cell Behavior. By the term "normal cell behavior" is intended for the purposes of this invention,

cells in which apoptosis proceeds normally. Normal cell behavior is observed in an organism which is able to remove senescent, damaged, or abnormal cells that could interfere with organ function or develop into tumors. Apoptosis which proceeds normally represents a coordinated cellular response to noxious stimuli that are not immediately lethal.

Patient/Individual. By the term "patient" or
"individual" is intended for the purposes of the present
invention, animals, including humans and mammals, who suffer
from a degenerative disorder.

5

Bcl-Y mutant. By the term "Bcl-Y mutant" is intended for the purposes of the present invention a mutant of Bcl-Y which exhibits the reverse (apoptosis suppression) activity of the Bcl-Y protein of the invention due to the substitution of one or more amino acids or corresponding nucleotides.

"apoptosis associated protein Bcl-Y" is intended for the

"apoptosis associated protein Bcl-Y" is intended for the

purposes of the present invention both the isolated

naturally occurring and isolated recombinantly produced

protein (i.e., synthetic Bcl-Y) which exhibits, inter alia,

apoptosis induction from human tissue including, for

example, tumor cells and established human cell lines, and

from tissues of other animals including mammals. This term

includes any analog, homolog, mutant or derivative of

isolated naturally occurring Bcl-Y including fragments

having less than the naturally occurring number of amino

acids, such as partial fragments of natural or synthetic

Bcl-Y which retain the biological or immunological

characteristics of the polypeptide disclosed in this

application.

This term also includes any peptide which contains the sequence of an isolated naturally occurring Bcl-Y protein, or analog or homolog thereof, together with one or more flanking amino acids, which retains the biological or immunological characteristics of the Bcl-Y protein of the invention.

The present invention pertains to both the expression
of full-length Bcl-Y and of functional derivatives of this
protein, including allelic variants of Bcl-Y and species or

viral homologs of Bcl-Y. Species homologs can be identified, isolated and recombinantly produced using the present nucleotide probes and procedures as described herein, being methods well known in the art. Further, one of ordinary skill in the art can readily determine whether a particular peptide is a functional equivalent of Bcl-Y using methods well known in the art.

More specifically, this term includes proteins encoded by the nucleotide sequence as shown in Fig. 4, and proteins having the amino acid sequence as shown in Fig. 4, allelic variants, species homologs and viral homologs thereof, as well as functional derivatives thereof including fragments which retain the biological characteristics of the present Bcl-Y, and proteins that are substantially homologous thereto, which retain the biological or immunological characteristics of the Bcl-Y protein of the invention.

Also, this term includes mutant proteins which differ from the present Bcl-Y protein by one or more amino acids or corresponding nucleotides, which difference results in the reversal of function of Bcl-Y, i.e., the mutant protein exhibits apoptosis suppression activity. Accordingly, the present Bcl-Y proteins and the mutant proteins, or their corresponding polynucleotide sequences, are useful for the regulation of apoptosis in cells.

25

II. Genetic Engineering of Bcl-Y, Functional Equivalents Thereof and Mutants Thereof

This invention comprises amino acid sequences of Bcl-Y or Bcl-Y mutant, genetic sequences coding for such amino acid sequences, expression vehicles containing the genetic sequences, hosts transformed therewith and recombinant Bcl-Y and antisense RNA produced by such transformed host expression. The invention further comprises antibodies

directed against Bcl-Y and/or fragments thereof or against Bcl-Y mutants.

The process for genetically engineering such protein sequences, according to the invention, is facilitated 5 through the cloning of genetic sequences which are capable of encoding the peptide and through the expression of such genetic sequences. As used herein, the term "genetic sequences" is intended to refer to a nucleic acid molecule (preferably DNA). Genetic sequences which are capable of 10 encoding the proteins are derived from a variety of sources. These sources include genomic DNA, cDNA, synthetic DNA, and combinations thereof. The preferred source of the genomic DNA or mRNA is human tissue including heart, lung, tumor cells, brain, placenta, liver, skeletal muscle, kidney and 15 pancreas. The mRNA may then be used to obtain cDNA by techniques known to those skilled in the art. Probes may be synthesized based on the nucleotide sequence of Bcl-Y by methods known in the art.

The Bcl-Y protein or fragment genomic DNA of the 20 invention may or may not include naturally occurring introns. Moreover, such genomic DNA may be obtained in association with the 5' promoter region of the Bcl-Y protein gene sequences and/or with the 3' transcriptional termination region. Further, such genomic DNA may be 25 obtained in association with the genetic sequences which encode the 5' non-translated region of the Bcl-Y protein mRNA and/or with the genetic sequences which encode the 3' non-translated region. To the extent that a host cell can recognize the transcriptional and/or translational 30 regulatory signals associated with the expression of the mRNA and protein, the 5' and/or 3' non-transcribed regions of the native gene, and/or the 5' and/or 3' non-translated regions of the mRNA, may be retained and employed for transcriptional and translational regulation. 35 genomic DNA can be extracted and purified from human tissue by means well known in the art (for example, see Guide to

Molecular Cloning Techniques, S.L. Berger, et al., eds., Academic Press (1987)).

Alternatively, mRNA can be isolated from any cell which produces or expresses the protein, and used to produce cDNA by means well known in the art (for example, see Guide to Molecular Cloning Techniques, S.L. Berger, et al., eds., supra. Preferably, the mRNA preparation used will be enriched in mRNA coding for such Bcl-Y protein, either naturally, by isolation from cells which are producing large amounts of the protein, or in vitro, by techniques commonly used to enrich mRNA preparations of specific sequences, including for example sucrose gradient centrifugation, or PCR. cDNA can then be prepared for example, by reverse transcription. The cDNA can then be amplified by PCR using suitable primers.

For cloning into a vector, such suitable DNA preparations (either human genomic DNA or cDNA) are randomly sheared or enzymatically cleaved, respectively, and ligated into appropriate vectors to form a recombinant gene (either 20 genomic or cDNA) library. A DNA sequence encoding the Bcl-Y protein or its functional equivalents may be inserted into a DNA vector in accordance with conventional techniques, including blunt-ending or staggered-ending termini for ligation, restriction enzyme digestion to provide 25 appropriate termini, filling in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and ligation with appropriate ligases. Techniques for such manipulations are disclosed, for example, by Sambrook, et al., (In: Molecular Cloning, A 30 Laboratory Manual, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, 2d. ed. (1989)), and are well known in the art.

Libraries containing the Bcl-Y protein clones may be screened and a Bcl-Y clone identified by any means which specifically selects for Bcl-Y protein DNA such as, for example, (a) by hybridization with an appropriate nucleic WO 96/05232 PCT/US95/10103

acid probe(s) containing a sequence specific for the DNA of this protein, or (b) by hybridization-selected translational analysis in which native mRNA which hybridizes to the clone in question is translated in vitro and the translation products are further characterized, or, (c) if the cloned genetic sequences are themselves capable of expressing mRNA, by immunoprecipitation of a translated Bcl-Y or fragment product produced by the host containing the clone.

Oligonucleotide probes specific for the protein which
can be used to identify clones to this protein can be
designed from knowledge of the amino acid sequence of the
Bcl-Y protein. The sequence of amino acid residues in a
peptide is designated herein either through the use of their
commonly employed three-letter designations or by their
single-letter designations. A listing of these three-letter
and one-letter designations may be found in textbooks such
as Biochemistry, 2ed., Lehninger, A., Worth Publishers, New
York, NY (1975). When the amino acid sequence is listed
horizontally, the amino terminus is intended to be on the
left end whereas the carboxy terminus is intended to be at
the right end. The residues of amino acids in a peptide may
be separated by hyphens. Such hyphens are intended solely
to facilitate the presentation of a sequence.

Because the genetic code is degenerate, more than one codon may be used to encode a particular amino acid (Watson, J.D., In: Molecular Biology of the Gene, 3rd Ed., W.A. Benjamin, Inc., Menlo Park, CA (1977), pp. 356-357). The peptide fragments are analyzed to identify sequences of amino acids which may be encoded by oligonucleotides having the lowest degree of degeneracy. This is preferably accomplished by identifying sequences that contain amino acids which are encoded by only a single codon.

Although occasionally an amino acid sequence may be encoded by only a single oligonucleotide sequence,
frequently the amino acid sequence may be encoded by any of a set of similar oligonucleotides. Importantly, whereas all

of the members of this set contain oligonucleotide sequences which are capable of encoding the same peptide fragment and, thus, potentially contain the same oligonucleotide sequence as the gene which encodes the peptide fragment, only one member of the set contains the nucleotide sequence that is identical to the exon coding sequence of the gene. Because this member is present within the set, and is capable of hybridizing to DNA even in the presence of the other members of the set, it is possible to employ the unfractionated set of oligonucleotides in the same manner in which one would employ a single oligonucleotide to clone the gene that encodes the peptide.

Using the genetic code (Watson, J.D., In: Molecular Biology of the Gene, 3rd Ed., W.A. Benjamin, Inc., Menlo 15 Park, CA (1977)), one or more different oligonucleotides can be identified from the amino acid sequence, each of which would be capable of encoding the present Bcl-Y or fragment protein. The probability that a particular oligonucleotide will, in fact, constitute the actual protein coding sequence 20 can be estimated by considering abnormal base pairing relationships and the frequency with which a particular codon is actually used (to encode a particular amino acid) in eukaryotic cells. Such "codon usage rules" are disclosed by Lathe, et al., J. Molec. Biol. 183:1-12 (1985). Using 25 the "codon usage rules" of Lathe, a single oligonucleotide sequence, or a set of oligonucleotide sequences, that contains a theoretical "most probable" nucleotide sequence capable of encoding the Bcl-Y protein sequences is identified.

The suitable oligonucleotide, or set of oligonucleotides, which is capable of encoding a fragment of the Bcl-Y protein gene (or which is complementary to such an oligonucleotide, or set of oligonucleotides) may be synthesized by means well known in the art (see, for example, Synthesis and Application of DNA and RNA, S.A. Narang, ed., 1987, Academic Press, San Diego, CA) and

employed as a probe to identify and isolate the cloned Bcl-Y protein gene by techniques known in the art. Techniques of nucleic acid hybridization and clone identification are disclosed by Maniatis, et al. (In: Molecular Cloning, A 5 Laboratory Manual, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY (1982)); Berger, et al., (In: Guide to Molecular Cloning Techniques, Academic Press (1988)); Sambrook, et al., (In: Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, NY, 2d 10 ed. (1989); and by Hames, et al. (In: Nucleic Acid Hybridization, A Practical Approach, IRL Press, Washington, DC (1985)), which references are herein incorporated by reference. Those members of the above-described gene library which are found to be capable of such hybridization is are then analyzed to determine the extent and nature of the Bcl-Y protein encoding sequences which they contain.

To facilitate the detection of the desired Bcl-Y or fragment protein DNA encoding sequence, the above-described DNA probe is labeled with a detectable group or label. 20 detectable group or label can be any material having a detectable physical or chemical property. Such materials have been well-developed in the field of nucleic acid hybridization and in general most any label useful in such methods can be applied to the present invention. 25 Particularly useful are radioactive labels, such as ³²P, 14_{C.} 35_{S.} 125_{I.} or the like. Any radioactive label may be employed which provides for an adequate signal and has a sufficient half-life. The oligonucleotide may be radioactively labeled, for example, by "nick-translation" by 30 well-known means, as described in, for example, Rigby, et al., J. Mol. Biol. 113:237 (1977) and by T4 DNA polymerase replacement synthesis as described in, for example, Deen, et al., Anal. Biochem. 135:456 (1983).

Alternatively, polynucleotides are also useful as 35 nucleic acid hybridization probes when labeled with a non-radioactive marker such as biotin, an enzyme or a

fluorescent or chemiluminescent group. See, for example, Leary, et al., Proc. Natl. Acad. Sci, USA 80:4045 (1983); Renz, et al., Nucl. Acids Res. 12:3435 (1984); and Renz, M., EMBO J. 6:817 (1983).

Thus, the actual identification of the Bcl-Y protein sequences permits the identification of a theoretical "most probable" DNA sequence, or a set of such sequences, capable of encoding such a peptide. By constructing an oligonucleotide complementary to this theoretical sequence (or by constructing a set of oligonucleotides complementary to the set of "most probable" oligonucleotides), one obtains a DNA molecule (or set of DNA molecules), capable of functioning as a probe(s) for the identification and isolation of clones containing the Bcl-Y protein gene.

In an alternative way of cloning the Bcl-Y protein gene, a library is prepared using an expression vector, by cloning DNA or, more preferably, cDNA prepared from a cell capable of expressing the Bcl-Y protein, into an expression vector. The library is then screened for members which express the Bcl-Y protein, for example, by screening the library with antibodies to the Bcl-Y protein.

The above discussed methods are, therefore, capable of identifying genetic sequences which are capable of encoding Bcl-Y proteins or fragments thereof. In order to further characterize such genetic sequences, and, in order to produce the recombinant protein, it is desirable to express the proteins which these sequences encode. Such expression identifies those clones which express proteins possessing characteristics of the Bcl-Y proteins. Such characteristics may include the ability to specifically bind antibody to the Bcl-Y protein and the ability to elicit the production of an antibody or antibodies which are capable of binding to the Bcl-Y protein.

25

III. Expression of Bcl-Y protein, Fragments Thereof, Functional Equivalents Thereof, and Mutants Thereof

To express the Bcl-Y protein or a functional 5 equivalent, or mutant thereof, transcriptional and translational signals recognizable by an appropriate host are necessary. The cloned Bcl-Y encoding sequences, obtained, for example, through the methods described above, and preferably in a double-stranded form, may be operably 10 linked to sequences controlling transcriptional expression in an expression vector, and introduced into a host cell, either prokaryotic or eukaryotic, to produce recombinant Bcl-Y protein or a functional equivalent thereof. Depending upon which strand of the Bcl-Y encoding sequence is operably 15 linked to the sequences controlling transcriptional expression, it is also possible to express Bcl-Y antisense RNA or a functional equivalent thereof.

Expression of Bcl-Y in different hosts may result in different post-translational modifications which may alter 20 the properties of the Bcl-Y. The present invention encompasses the expression of the Bcl-Y protein, or functional equivalent thereof, or Bcl-Y mutant, in prokaryotic or eukaryotic cells, and particularly, eukaryotic expression is preferred.

Preferred prokaryotic hosts include bacteria such as E. coli, Bacillus, Streptomyces, Pseudomonas, Salmonella, Serratia, etc. The most preferred prokaryotic host is E. coli. Other enterobacteria such as Salmonella typhimurium or Serratia marcescens, and various Pseudomonas species may 30 also be utilized. Under such conditions, the protein may not be glycosylated. The procaryotic host must be compatible with the replicon and control sequences in the expression plasmid.

To express the Bcl-Y protein (or a functional 35 equivalent thereof) or Bcl-Y mutant in a prokaryotic cell (such as, for example, E. coli, B. subtilis, Pseudomonas,

Streptomyces, etc.), it is necessary to operably link the Bcl-Y encoding sequence to a functional prokaryotic Such promoters may be either constitutive or, more preferably, regulatable (i.e., inducible or 5 derepressible). Examples of constitutive promoters include the int promoter of bacteriophage lambda, the bla promoter of the Beta-lactamase gene of pBR322, and the CAT promoter of the chloramphenical acetyl transferase gene of pBR325, Examples of inducible prokaryotic promoters include 10 the major right and left promoters of bacteriophage lambda $(P_{I.}$ and $P_{R})$, the trp, recA, lacZ, lacI, and gal promoters of E. coli, the alpha-amylase (Ulmanen, I., et al., J. Bacteriol. 162:176-182 (1985)) and the sigma-28-specific promoters of B. subtilis (Gilman, M.Z., et al., Gene 32:11-15 20 (1984)), the promoters of the bacteriophages of Bacillus (Gryczan, T.J., In: The Molecular Biology of the Bacilli, Academic Press, Inc., NY (1982)), and Streptomyces promoters (Ward, J.M., et al., Mol. Gen. Genet. 203:468-478 (1986)). Prokaryotic promoters are reviewed by Glick, B.R., (J. Ind. 20 Microbiol. 1:277-282 (1987)); Cenatiempo, Y. (Biochimie 68:505-516 (1986)); and Gottesman, S. (Ann. Rev. Genet. 18:415-442 (1984)).

Proper expression in a prokaryotic cell also requires the presence of a ribosome binding site upstream of the gene-encoding sequence. Such ribosome binding sites are disclosed, for example, by Gold, L., et al. (Ann. Rev. Microbiol. 35:365-404 (1981)).

Especially preferred eukaryotic hosts include mammalian cells either in vivo, in animals or in tissue culture.

Expression of the Bcl-Y in eukaryotic hosts requires the use of regulatory regions functional in such hosts, and preferably eukaryotic regulatory systems. A wide variety of transcriptional and translational regulatory sequences can be employed, depending upon the nature of the eukaryotic host. The transcriptional and translational regulatory signals can also be derived from the genomic sequences of

34

viruses which infect eukaryotic cells, such as adenovirus, bovine papilloma virus, Simian virus, herpes virus, or the like. Preferably, these regulatory signals are associated with a particular gene which is capable of a high level of expression in the host cell.

In eukaryotes, where transcription is not linked to translation, such control regions may or may not provide an initiator methionine (AUG) codon, depending on whether the cloned sequence contains such a methionine. Such regions 10 will, in general, include a promoter region sufficient to direct the initiation of RNA synthesis in the host cell. Promoters from heterologous mammalian genes which encode mRNA product capable of translation are preferred, and especially, strong promoters such as the promoter for actin, 15 collagen, myosin, etc., can be employed provided they also function as promoters in the host cell. Preferred eukaryotic promoters include the promoter of the mouse metallothionein I gene (Hamer, et al., J. Mol. Appl. Gen. 1:273-288 (1982)); the TK promoter of Herpes virus 20 (McKnight, S., Cell 31:355-365 (1982)); the SV40 early promoter (Benoist, et al. Nature (London) 290:304-310 (1981)); in yeast, the yeast gal4 gene promoter (Johnston, et al. Proc. Natl. Acad. Sci. USA 79:6971-6975 (1982); Silver, et al., Proc. Natl. Acad. Sci. USA 81:5951-5955 25 (1984)) or a glycolytic gene promoter may be used.

As is widely known, translation of eukaryotic mRNA is initiated at the codon which encodes the first methionine. For this reason, it is preferable to ensure that the linkage between a eukaryotic promoter and a DNA sequence which encodes the Bcl-Y protein, or a functional equivalent thereof, does not contain any intervening codons which are capable of encoding a methionine. The presence of such codons results either in the formation of a fusion protein (if the AUG codon is in the same reading frame as the Bcl-Y encoding DNA sequence) or a frame-shift mutation (if the AUG

codon is not in the same reading frame as the Bcl-Y encoding sequence).

If desired, a fusion product of the Bcl-Y may be constructed. For example, the sequence coding for the Bcl-Y or fragment thereof may be liked to a signal sequence which will allow secretion of the protein from or the compartmentalization of the protein in, a particular host. Such signal sequences may be designed with or without specific protease sites such that the signal peptide sequence is amenable to subsequent removal.

Transcriptional initiation regulatory signals can be selected which allow for repression or activation, so that expression of the operably linked genes can be modulated. Of interest are regulatory signals which are temperature-sensitive, such that by varying the temperature, expression can be repressed or initiated, or which are subject to chemical regulation, e.g., by a metabolite. Also of interest are constructs wherein the Bcl-Y mRNA and antisense RNA are provided in a transcribable form, but with different promoters or other transcriptional regulatory elements such that induction of Bcl-Y mRNA expression is accompanied by repression of antisense RNA expression, and/ or repression of Bcl-Y mRNA expression is accompanied by induction of antisense RNA expression.

25 Translational signals are not necessary when it is desired to express Bcl-Y antisense RNA sequences.

If desired, the non-transcribed and/or non-translated regions 3' to the sequence coding for the Bcl-Y protein can be obtained by the above-described cloning methods. The 3'-non-transcribed region may be retained for its transcriptional termination regulatory sequence elements; the 3'-non-translated region may be retained for its translation termination regulatory sequence elements, or for those elements which direct polyadenylation in eukaryotic cells. Where the native expression control sequence signals

PCT/US95/10103 WO 96/05232

do not function satisfactorily in the host cell, then sequences functional in the host cell may be substituted.

The vectors of the invention may further comprise other operably linked regulatory elements such as enhancer s sequences, or DNA elements which confer tissue or cell-type specific expression on an operably linked gene.

To transform a mammalian cell with the DNA constructs of the invention many vector systems are available, depending upon whether it is desired to insert the Bcl-Y DNA 10 construct into the host cell chromosomal DNA, or to allow it to exist in an extrachromosomal form.

If the Bcl-Y DNA encoding sequence and an operably linked promoter are introduced into a recipient eukaryotic cell as a non-replicating DNA (or RNA) molecule, which may 15 either be a linear molecule or a closed covalent circular molecule which is incapable of autonomous replication, then the expression of the Bcl-Y protein may occur through the transient expression of the introduced sequence.

Genetically stable transformants may be constructed 20 with vector systems, or transformation systems, whereby Bcl-Y DNA is integrated into the host chromosome. Such integration may occur de novo within the cell or, in a preferred embodiment, be assisted by transformation with a vector which functionally inserts itself into the host 25 chromosome, for example, with retroviral vectors, transposons or other DNA elements which promote integration of DNA sequences into chromosomes. A vector is employed which is capable of integrating the desired gene sequences into a mammalian host cell chromosome.

Cells which have stably integrated the introduced DNA into their chromosomes are selected by also introducing one or more markers which allow for selection of host cells which contain the expression vector in the chromosome, for example, the marker may provide biocide resistance, e.g., 35 resistance to antibiotics, or heavy metals, such as copper, or the like. The selectable marker gene can either be

30

directly linked to the DNA gene sequences to be expressed, or introduced into the same cell by co-transfection.

In another embodiment, the introduced sequence is incorporated into a plasmid or viral vector capable of autonomous replication in the recipient host. Any of a wide variety of vectors may be employed for this purpose, as outlined below.

Factors of importance in selecting a particular plasmid or viral vector include: the ease with which recipient cells that contain the vector may be recognized and selected from those recipient cells which do not contain the vector; the number of copies of the vector which are desired in a particular host; and whether it is desirable to be able to "shuttle" the vector between host cells of different species.

Preferred eukaryotic plasmids include those derived from the bovine papilloma virus, vaccinia virus, SV40, and, in yeast, plasmids containing the 2-micron circle, etc., or their derivatives. Such plasmids are well known in the art (Botstein, et al., Miami Wntr. Symp. 19:265-274 (1982); Broach, J.R., In: The Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 445-470 (1981); Broach, J.R., Cell 28:203-204 (1982); Bollon, et 25 al., J. Clin, Hematol. Oncol. 10:39-48 (1980); Maniatis, T., In: Cell Biology: A Comprehensive Treatise, Vol. 3, "Gene Expression, " Academic Pres, NY, pp. 563-608 (1980)), and are commercially available. For example, mammalian expression vector systems which utilize the MSV-LTR promoter to drive 30 expression of the cloned gene, and in which it is possible to contransfect with a helper virus to amplify plasmid copy number, and integrate the plasmid into the chromosomes of host cells, have been described (Perkins, et al., Mol. Cell Biol. 3:1123 (1983); Clontech, Palo Alto, California).

Once the vector or DNA sequence containing the construct(s) is prepared for expression, the DNA

construct(s) is introduced into an appropriate host cell by any of a variety of suitable means, including transfection. After the introduction of the vector, recipient cells are grown in a selective medium, which selects for the growth of vector-containing cells. Expression of the cloned gene sequence(s) results in the production of the Bcl-Y protein, or in the production of a fragment of this protein. This expression can take place in a continuous manner in the transformed cells, or in a controlled manner, for example, expression which follows induction of differentiation of the transformed cells (for example, by administration of bromodeoxyuracil to neuroblastoma cells or the like).

The expressed protein is isolated and purified in accordance with conventional conditions, such as extraction, precipitation, chromatography, affinity chromatography, electrophoresis, or the like.

Bcl-Y can be purified by growing the transformed host cells under suitable conditions which are well known in the art, the cells can be harvested and disrupted to extract total cellular protein. The protein can then, for example, be placed on a sizing column such as sepharose or agarose beads, and proteins of the correct molecular weight can be collected. The predicted molecular weight of Bcl-Y is 23.4 kD and it runs with an apparent molecular weight of approximately 26 kD on SDS polyacrylamide gels.

Further purification can be effected by use of an anti-Bcl-Y antibody. Such an antibody can be used to immunoprecipitate Bcl-Y proteins from the set of cellular proteins of the correct approximate molecular weight. Such antibodies can, for example, be raised against polypeptides synthesized according to the sequence or subsequences of the sequence shown in Fig.4. Alternatively, the antibodies can be raised against fusion proteins, which contain Bcl-Y sequences as well as those of other proteins. After immunoprecipitation, the Bcl-Y proteins can be released from

20

the antibodies to provide a substantially pure preparation of Bcl-Y protein.

The Bcl-Y DNA coding sequences, of the present invention may be used to obtain Bcl-Y antisense RNA genetic s sequences, inasmuch as the antisense RNA sequence will be that sequence found on the opposite strand of the strand transcribing the peptide core's mRNA. The antisense DNA strand may also be operably linked to a promoter in an expression vector such that transformation with this vector 10 results in a host capable of expression of a Bcl-Y antisense RNA in the transformed cell. Antisense RNA and its expression may be used to interact with an endogenous Bcl-Y DNA or RNA in a manner which inhibits or represses transcription or translation of the Bcl-Y genes in a highly 15 specific manner. Use of antisense RNA probes to block gene expression is described, for example, in Lichtenstein, C., Nature 333:801-802 (1988).

IV. Construction and Identification of Antibodies Raised Against Bcl-Y, Functional Equivalents, Fragments, Hybrids, or Mutants Thereof

In the following description, reference will be made to various methodologies well-known to those skilled in the art of immunology. Standard reference works setting forth the general principles of immunology include the work of Catty, D., (Antibodies, A Practical Approach, Vol. 1, IRL Press, Washington, DC (1988)); Klein, J., (Immunology: The Science of Cell-Noncell Discrimination, John Wiley & Sons, New York (1982)); Kennett, et al., (Monoclonal Antibodies, Hybridoma: A New Dimension in Biological Analyses, Plenum Press, New York (1980)); Campbell, A. ("Monoclonal Antibody Technology," In: Laboratory Techniques in Biochemistry and Molecular Biology, Vol. 13 (Burdon, R., et al., eds.),

Elsevier, Amsterdam (1984)); and Eisen, H.N. (In:

Microbiology, 3rd ed. (Davis, B.D., et al., Harper & Row, Philadelphia (1980)).

An antibody is said to be "capable of binding" a molecule if it is capable of specifically reacting with the 5 molecule to thereby bind the molecule to the antibody. term "epitope" is meant to refer to that portion of a hapten which can be recognized and bound by an antibody. An antigen may have one, or more than one epitope. An "antigen" is capable of inducing an animal to produce 10 antibody capable of binding to an epitope of that antigen. The specific reaction referred to above is meant to indicate that the antigen will react, in a highly selective manner, with its corresponding antibody and not with the multitude of other antibodies which may be evoked by other antigens.

The term "antibody" (Ab) or "monoclonal antibody" (Mab) as used herein is meant to include intact molecules as well as fragments thereof (such as, for example, Fab and F(ab) fragments) which are capable of binding an antigen. Fab and F(ab), fragments lack the Fc fragment of intact antibody, 20 clear more rapidly from the circulation, and may have less non-specific tissue binding of an intact antibody (Wahl, et al., J. Nucl. Med. 24:16-325 (1983)).

15

The antibodies of the present invention have specificity to one or more epitopes present on the Bcl-Y 25 peptide, or an idiotype on the present Bcl-Y. The antibodies of the invention can be polyclonal or monoclonal, provided that they are made with the present Bcl-Y polypeptide or fragment thereof as the immunogen. Both of these types of antibodies can be utilized in the 30 applications described herein.

The present antibodies can be used to detect the presence of the present Bcl-Y protein in a human tissue sample. The present Bcl-Y protein can be detected by contacting the sample with an imaging-effective amount of 35 the present detectably labeled appropriate antibody and detecting the label, thereby establishing the presence of the Bcl-Y protein in the sample. Detection can be carried out by imaging in vivo. The Bcl-Y protein can also be detected by known immunoassay techniques, including, for example, RIA, ELISA, etc., using appropriate antibodies according to the invention.

The antibodies of the present invention are prepared by any of a variety of known methods. For example, cells expressing the Bcl-Y protein can be administered to an animal in order to induce the production of serum containing polyclonal antibodies that are capable of binding the Bcl-Y protein. For example, the Bcl-Y protein or fragment thereof is chemically synthesized and purified by HPLC to render it substantially free of contaminants. Such a preparation is then introduced into an animal in order to produce polyclonal antisera of high specific activity.

Polyclonal antibodies can be generated in any suitable animal including, for example, mice, rabbits or goats. The Bcl-Y immunogenic peptide or fragment thereof can be injected by itself or linked to appropriate immunoactivating carriers, such as Keyhole's limpet hemocyanin (KLH). See Antibodies, A Practical Handbook, Vols. I and II, D. Catty, ed., IRL Press, Washington, DC (1988).

Monoclonal antibodies can be prepared in various ways using techniques well understood by those having ordinary

25 skill in the art. For example, monoclonal antibodies can be prepared using hybridoma technology (Kohler, et al., Nature 256:495 (1975); Kohler, et al., Eur. J. Immunol. 6:511 (1976); Kohler, et al., Eur. J. Immunol. 6:292 (1976); Hammerling, et al., In: Monoclonal Antibodies and T-Cell

30 Hybridomas, Elsevier, N.Y., pp. 563-681 (1981)); Monoclonal Antibodies - Hybridomas: A New Dimension in Biological Analysis, edited by Roger H. Kennett, et al., published by Plenum Press (1980). In general, such procedures involve immunizing an animal with the present Bcl-Y protein, or a fragment thereof. The splenocytes of such animals are extracted and fused with a suitable myeloma cell line. Any

suitable myeloma cell line may be employed in accordance with the present invention. After fusion, the resulting hybridoma cells are selectively maintained in HAT medium, and then cloned by limiting dilution as described by Wands, et al., Gastroenterology 80:225-232 (1981). The hybridoma cells obtained through such a selection are then assayed to identify clones which secrete antibodies capable of binding the Bcl-Y protein.

Through application of the above-described methods,

additional cell lines capable of producing antibodies which
recognize epitopes of the present Bcl-Y protein can be
obtained.

For example, additional hybridomas which produce monoclonal antibodies which enable the detection of the 15 present Bcl-Y protein can be easily produced and isolated with minimal screening. Hybridomas producing monoclonal antibodies specific for epitopes which are found on the present Bcl-Y protein are most effectively produced by first immunizing an animal from which hybridomas can be produced 20 such as, for example, a Balb/c mouse, with initial subcutaneous injections of Freund's adjuvant, followed by booster injections within a few days. The fusion can be carried out using any of the techniques commonly known to those of ordinary skill in the art. The screening of the 25 hybridomas to determine which ones are producing monoclonal antibodies specific for the present peptide is straightforward and can be accomplished in a standard ELISA or RIA format. For example, in an RIA screening format the culture supernatant, or ascites fluid from a hybridoma monoclonal antibody is reacted with 125 I-peptide. The isolation of other hybridomas secreting mabs of the same specificity as those described herein can be accomplished by the technique of anti-idiotypic screening. Potocmjak, et al., Science 215:1637 (1982). Briefly, an anti-idiotypic 35 (anti-Id) antibody is an antibody which recognizes unique determinants generally associated with the antigen-binding

site of an antibody. An Id antibody can be prepared by immunizing an animal of the same species and genetic type (e.g., mouse strain) as the source of the mAb with the mAb raised against the present Bcl-Y protein or fragment thereof to which an anti-Id is being prepared. The immunized animal will recognize and respond to the idiotypic determinants of the immunizing antibody by producing an antibody to these idiotypic determinants (the anti-Id antibody).

By using an anti-Id antibody which is specific for idiotypic determinants on a given mAb, it is then possible to identify other B cell or hybridoma clones sharing that idiotype. Idiotypic identity between the antibody product of two clones makes it highly probable that the antibody products of the two clones recognize the same antigenic epitopes.

The anti-Id antibody may also be used as an "immunogen" to induce an immune response in yet another animal, producing a so-called anti-anti-Id antibody. The anti-anti-Id may be epitopically identical to the original may which induced the anti-Id.

Thus, by using antibodies to the idiotypic determinants of a mAb, it is possible to identify other clones expressing antibodies of identical specificity.

Accordingly, mAbs generated against the present Bcl-Y

protein may be used to induce anti-Id antibodies in suitable
animals, such as BALB/c mice. Spleen cells from such
immunized mice are used to produce anti-Id hybridomas
secreting anti-Id mAbs. Further, the anti-Id mAbs can be
coupled to a carrier such as keyhole limpet hemocyanin (KLH)

and used to immunize additional BALB/c mice. Sera from
these mice will contain anti-anti-Id antibodies that have
the binding properties of the original mAb specific for the
antigen epitope. The anti-Id mAbs thus have their own
idiotypic epitopes, or "idiotopes" structurally similar to
the epitope being evaluated.

For replication, the hybridoma cells of this invention may be cultivated in vitro or in vivo. Production of high titers of mAbs in vivo production makes this the presently preferred method of production. Briefly, cells from the 5 individual hybridomas are injected intraperitoneally into pristane-primed BALB/c mice to produce ascites fluid containing high concentrations of the desired mAbs. MAbs of isotype IgM or IgG may be purified from such ascites fluids, or from culture supernatants, using column chromatography 10 methods well known to those of skill in the art.

Of special interest to the present invention are antibodies which are produced in humans, or are "humanized" (i.e., non-immunogenic in a human) by recombinant or other technology such that they will not be antigenic in humans, is or will be maintained in the circulating serum of a recipient for a longer period of time.

Humanized antibodies may be produced, for example by replacing an immunogenic portion of an antibody with a corresponding, but non-immunogenic portion (i.e., chimeric 20 antibodies) (Robinson, et al., International Patent Publication PCT/US86/02269; Akira, et al., European Patent Application 184,187; Taniguchi, M., European Patent Application 171,496; Morrison, et al., European Patent Application 173,494; Neuberger, et al., PCT Application WO 25 86/01533, Cabilly, et al., European Patent Application 125,023; Better, et al., Science 240:1041-1043 (1988); Liu, et al., Proc. Natl. Acad. Sci. USA 84:3439-3443 (1987); Liu, et al., J. Immunol. 139:3521-3526 (1987); Sun, et al., Proc. Natl. Acad. Sci. USA 84:214-218 (1987); Nishimura, et al., 30 Canc. Res. 47:999-1005 (1987); Wood, et al., Nature 314:446-449 (1985)); Shaw, et al., J. Natl. Cancer Inst. 80:1553-1559 (1988). General reviews of "humanized" chimeric antibodies are provided by Morrison, S.L. (Science, 229:1202-1207 (1985)) and by Oi, et al., BioTechniques 4:214 35 (1986)).

Suitable "humanized" antibodies can be alternatively produced as described by Jones, et al., Nature 321:552-525 (1986); Verhoeyan, et al., Science 234:1534 (1988), and Beidler, et al., J. Immunol. 141:4053-4060 (1988).

The present Bcl-Y protein, fragments thereof, hybrids thereof, Bcl-Y mutants, or antibodies thereto can be utilized in immunoassays for the detection of the Bcl-Y protein in a human tissue sample. For example, antibodies against the present Bcl-Y protein can be used to detect the present Bcl-Y protein in a human tissue sample. The immunoassays can be competitive or sandwich, as is otherwise well known and they all depend on the formation of antibodyantigen immune complex. These assays are well known to those of skill in the art.

For purposes of the assays, the antibody or antigen can be immobilized or labeled. There are many carriers to which the antibody/antigen can be bound for immobilization and which can be used in the present invention. Well-known carriers include but are not limited to glass, polystyrene, polypropylene, polyethylene, dextran, nylon, amylases, natural and modified celluloses, polyacrylamides, agaroses, and magnetite. The nature of the carrier can be either soluble to some extent or insoluble for purposes of the invention. Those skilled in the art will know many other suitable carriers for binding the antibody or antigen, or will be able to ascertain such, using routine experimentation.

Depending on the particular embodiment of the invention, one or more of the antibodies or antigen(s)

30 peptide(s) will be coupled with a detectable label such as an enzyme, radioactive isotope, fluorescent compound, chemiluminescent compound, or bioluminescent compound.

Those of ordinary skill in the art will know of other suitable labels for binding to the antibodies or antigen(s)

35 peptide(s) or will be able to ascertain such using routine experimentation. Furthermore, the binding of these labels

WO 96/05232

to the antibodies or antigen(s) can be done using standard techniques

commonly known to those of ordinary skill in the art.

The antibodies or antigen peptide(s) can be bound to an s enzyme. This enzyme, in turn, when later exposed to its substrate will react with the substrate in such a manner as to produce a chemical moiety which can be detected, as, for example, by spectrophotometric or fluorometric means. Examples of enzymes that can be used to detectably label are 10 amylate dehydrogenase, staphylococcal nuclease, delta-5-steroidisomerase, yeast alcoholdehydrogenase, alphaglycerophosphate dehydrogenase, triose phosphate isomerase, alkaline phosphatase, asparaginase, glucose oxidase, betagalactosidase, ribonuclease, urease, catalase, glucose-6-15 phosphate dehydrogenase, glucoamylase, and acetylcholinesterase.

The presence of an antibody or antigen can also be detected by labeling the antibody or antigen with a radioactive isotope. The presence of the radioactive 20 isotope can be determined by such means as the use of a gamma counter or a scintillation counter. Isotopes which are particularly useful are ³H, ¹²⁵I, ³²P, ³⁵S, ¹⁴C. ⁵¹Cr. 36 57 59 75 E. Se. and Eu.

It is possible to detect the presence of the antibody 25 or antigen by labeling the antibody or antigen peptide with a fluorescent compound. When the fluorescently labeled antibody or antigen peptide is exposed to light of the proper wavelength, its presence can then be detected due to fluorescence of the dye. Among the most common fluorescent 30 labeling compounds are fluorescein isothiocyanate, rhodamine, phycoerythrin, phycocyanin, allophycocyanin, ophthaldehyde, and fluorescamine.

Another way in which the antibody or antigen can be detectably labeled is by coupling it to a chemiluminescent 35 compound. The presence of the chemiluminescent-tagged antibody or antigen peptide is then determined by detecting the presence of luminescence that arises during the course of a chemical reaction. Examples of particularly useful chemiluminescent labeling compounds are luminol, isoluminol, aromatic-acridinium ester, imidaxole, acridinium salt, and oxalate ester.

Likewise, a bioluminescent compound may also be used to label the antibody or antigen peptide. Bioluminescence is a special type of chemiluminescence which is found in biological systems and in which a catalytic protein increases the efficiency of the chemiluminescent reaction. The presence of a bioluminescent binding partner would be determined by detecting the presence of luminescence. Important bioluminescent compounds for purposes of labeling are luciferin, luciferase, and aequorin.

The antibodies or antigen peptide(s) for use in the assay of the invention are ideally suited for the preparation of a kit. Such a kit may comprise a carrier means being compartmentalized to receive in close confinement one or more container means such as vials, tubes, and the like, each of said container means comprising one of the separate elements to be used in the method.

For example, one of the container means may comprise a first antibody bound to an insoluble or partly soluble carrier. A second container may comprise soluble,

25 detectably-labeled second antibody, in lyophilized form or in solution. The carrier means may also contain a third container means comprising a detectably labeled third antibody in lyophilized form or in solution. Such a kit can be used for sandwich assays.

In addition, the carrier means may also contain a plurality of containers each of which comprises different, predetermined amounts of the present Bcl-Y peptide. These latter containers can then be used to prepare a standard curve into which can be used to interpolate the results obtained from the sample containing the unknown amount of the present Bcl-Y protein.

Imaging can be carried out in vitro or in vivo. In vitro imaging can be done with the labels mentioned previously. In vivo imaging is done with diagnostically effective labeled antibodies. The term "diagnostically effective" means that the amount of detectably labeled antibody administered is sufficient to enable detection of the site of Bcl-Y protein presence when compared to a background signal.

Generally, the dosage of detectably-labeled antibody or antigen(s) for diagnosis will vary depending on considerations such as age, condition, sex, and extent of disease in the patient, counterindications, if any, and other variables, to be adjusted by the individual physician. Dosage can very from 0.01 mg/kg to 2,000 mg/kg, preferably 0.1 mg/kg to 1,000 mg/kg.

The term "diagnostically labeled" means that the antibody has attached to it a diagnostically detectable label.

There are many different imaging labels and methods of labeling known to those of ordinary skill in the art.

Examples of the types of labels which can be used in the present invention include radioactive isotopes and paramagnetic isotopes.

For diagnostic in vivo imaging, the type of detection
instrument available is a major factor in selecting a given
radionuclide. The radionucleotide chosen must have a type
of decay which is detectable for a given type of instrument.
In general, any conventional method for visualizing
diagnostic imaging can be utilized in accordance with this
invention.

Another important factor in selecting a radionuclide for in vivo diagnosis is that the half-life of a radionucleotide be long enough so that it is still detectable at the time of maximum uptake by the target, but short enough so that deleterious radiation upon the host is minimized. Ideally, a radionuclide used for in vivo imaging

WO 96/05232 49 PCT/US95/10103

will lack a particulate emission, but produce a large number of photons in a 140-200 ke V range, which may be readily detected by conventional gamma cameras.

For in vivo diagnosis, radionucleotides may be bound to antibody or antigen either directly or indirectly by using an intermediary functional group. Intermediary functional groups which are often used to bind radioisotopes which exist as metallic ions to antibody or antigen are diethylenetriaminepentaacetic acid (DTPA) and ethlenediaminetetracetic acid (EDTA). Typical examples of metallic ions which can be bound to immunoglobulins are 99m TC, I, In, In, Ru, Cu, Ga, As, Zr, and T1.

The antibodies used in the method of the invention can also be labeled with paramagnetic isotopes for purposes of in vivo diagnosis. Elements which are particularly useful (as in magnetic resonance imaging (MRI) techniques) in this manner include Gd, Mn, 162 Dy, Cr, and Fe.

Preparations of the imaging antibodies for 20 administration include sterile aqueous or non-aqueous solutions, suspensions, and emulsions. Examples of nonaqueous solvents are propyleneglycol, polyethyleneglycol, vegetable oil such as olive oil and injectable organic esters such as ethyloleate. Aqueous carriers include water, 25 alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media, parenteral vehicles including sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's or fixed oils. Intravenous vehicles include fluid and nutrient 30 replenishers, electrolyte replenishers, such as those based on Ringer's dextrose, and the like. Preservatives and other additives may also be present, such as, for example, antimicrobials, anti-oxidants, chelating agents, and inert gases and the like. See, generally, Remington's 35 Pharmaceutical Science, 16th ed. Mac Eds. 1980.

Of course, the expressed Bcl-Y protein is an intracellular protein. Accordingly, those of skill will recognize that in vivo diagnostic and therapeutic methods employing the antibodies of the invention may require some s mechanism by which such antibodies can detect Bcl-Y in the cell. One such method is to introduce the antibodies or fragments thereof into the cell itself across the cell membrane. This may be accomplished, for example, by attaching the antibody to a ligand for which the target cell 10 contains receptor sites. The antibody can thus be transported into the cell membrane or across the cell membrane along with the ligand. Suitable ligands include growth factors and cytokines that are internalized upon receptor binding. Suitable growth factors include epidermal. 15 growth factor (EGF), tumor growth factor alpha (TGF-α), fibroblast growth factor (FGF), insulin, and insulin-like growth factors 1 and 2 (TGF-1 and -2). Suitable cytokines include G-CSF, GM-CSF, erythropoietin, IL-1 and IL-2. It is noted that there are also receptors that carry nutrients and 20 vitamins into cells. These nutrients are suitable for use as ligands in the present invention and include foliate, dihdrofoliate, tetrahydrofoliate and vitamin B12.

The choice of a carrier ligand will depend on several factors, as those of skill will appreciate. These include, for example, the kinetics of the ligand and its receptor, and of overall transport, which may include passive or active, with actively transported ligands preferred. The means of attaching the antibody to the ligand also will vary within limits, and may be, for example, covalent or ionic, bearing in mind that such attachment should not unacceptably alter ligand-receptor affinity.

Examples of receptors suitable for such applications include the receptor for low density lipoprotein (LDL), which has been shown to contain all the information

13 necessary for receptor endocytosis, Davis et al., J. Cell Biol. 107(6/3): Abstr. No. 3112 (1988), as well as known

brain-specific receptors such as those for dopamine. In this regard, it will be appreciated that the ligand may itself be an antibody or fragment specific for the receptor, to which may be conjugated the antibody of the invention.

Moreover, those of skill may find it particularly desirable to employ antibody fragments of the invention (such as, for example, Fab or F(ab') fragments), which are less likely to interfere with the ligand-receptor interaction, and may be more easily transported across the cell membrane. Single-chain antibodies may prove preferable for these and other reasons, as will be appreciated by those of skill.

When an antibody is to be transported into the cell's membrane or into the cell as described above, it will be preferred to diagnostically or therapeutically label the antibody in such a way that the label will be relatively more effective when the antibody is bound to its antigenic site on the Bcl-Y protein. This may accomplished, for example, by employing a label which becomes active or detectable as a result of formation of the antigen-antibody complex. Alternatively, the antibody itself may be labeled in such a way that antigen-antibody complex formation induces a conformational change in the antibody to expose or more fully expose the previously unexposed or less fully exposed label. All of the above criteria, and others, will be apparent to those of skill in carrying out these aspects of the invention.

It is also possible to utilize liposomes having the antibodies of the present invention in their membranes to specifically deliver the antibodies to the target area. These liposomes can be produced so that they contain, in addition to the antibody, such therapeutic agents as drugs, radioisotopes, lectins and toxins, which would act at the target site.

V. Pharmaceutical Compositions

Pharmaceutical compositions containing a therapeutically effective amount of the present Bcl-Y protein, functional equivalents, fragments and/or hybrids and/or mutants thereof, as well as vectors containing cDNA encoding one or more of the foregoing, are useful for treating patients suffering from degenerative disorders characterized by inappropriate cell death or inappropriate cell proliferation.

Hybrids of Bcl-Y include hybrids of Bcl-Y and for example Bcl-2, ced-9, Bcl-X, Bcl- X_{f} , Bcl- X_{g} , Bax, Mcl, c-myc, LMW5-HL, BHRF-1 and Al. Such hybrids exhibit enhanced, decreased or intermediate apoptosis induction or 15 suppression activity as compared to the activity of Bcl-Y alone. These hybrids can be readily selected, produced and employed by one or ordinary skill in the art. Pharmaceutical compositions according to the invention thus will contain a therapeutically effective amount of the 20 present Bcl-Y protein, functional equivalents, fragments and/or hybrids and/or mutants thereof, and may optionally contain one or more pharmaceutically acceptable carriers and/or excipients, known to those of ordinary skill in the art. Administration, dosage and frequency, and length of 25 the course of treatment can be readily optimized for a particular patient by one of ordinary skill in the art. For example, the present pharmaceutical composition can be formulated as sterile aqueous or non-aqueous suspensions or emulsions, as described above in Section IV, for example for 30 solutions for intravenous administration.

VI. Therapeutic Applications

Programmed cell death is a process in which cells
undergo nuclear condensation and fragmentation during normal
development of healthy tissues and organs. The process is

essential in maintaining the balance between growth of new cells and elimination of old cells. When apoptosis does not work properly, either by causing cells to die prematurely or by preventing them from dying when scheduled, various disorders develop.

The present apoptosis associated Bcl-Y protein, functional equivalents, fragments and/or hybrids and/or mutants thereof as well as vectors containing cDNA encoding the foregoing are useful for treating degenerative 10 disorders, which disorders are characterized by inappropriate cell death or inappropriate cell proliferation. Particular disorders may involve different cell types whereby it may be desirable to induce apoptosis in one cell type while suppressing apoptosis in the other. 15 For example, it may be desirable to suppress apoptosis in lung tissue cells in a patient suffering from acute lung injury by administering the Bcl-Y mutant protein of the invention (or by effecting expression of such Bcl-Y mutant protein in those cells) while inducing apoptosis in 20 fibroblast cells which may be present in the lung due to the inflammatory response by administering the Bcl-Y protein of the invention (or by effecting Bcl-Y protein expression in those cells).

The therapeutic agents of the present invention can be
administered as discussed above with the requirement that
the agent must cross the cell membrane. The therapeutic
agent can be administered alone, in combination with or
during the course of treatment with other acceptable
therapies known in the art for treating a particular
disorder. For example, the present therapeutic agents can
be administered to induce apoptosis in a cancer patient who
is also undergoing classic cancer therapy including, for
example, radiation therapy, chemotherapy, and treatment with
anti-cancer drugs including, for example, topoisomerase
inhibitors, alkylating agents, antimetabolites, and hormone
antagonists. Further, the present therapeutic agents can

also be administered concurrently with gene therapy. For example, the present therapeutic agents can be administered to a patient suffering from a degenerative disorder of the central nervous system while the patient is concurrently undergoing gene therapy to replenish neutrophic hormones.

Premature widespread apoptosis (inappropriate cell death) causes much of the damage associated with degenerative disorders including, for example, AIDs, chemotherapy and radiation, and tissue atrophy. In AIDs patients, lymphocytes are activated even in the asymptomatic phase of the HIV infection, and those cells die prematurely by apoptosis. Such disorders may admit of treatment by administration of a Bcl-Y mutant protein.

Those of skill will appreciate that administration of
the various proteins of the invention to particular target
cells or tissues, as described herein, is intended to
comprehend the administration of the proteins themselves as
well as the expression by the target cells or tissues of the
nucleotide sequences encoding those proteins by various
known means and in accordance with the teachings of the
present specification.

Degenerative disorders characterized in inappropriate cell proliferation include cancer, autoimmune disorders, tissue hypertrophy, and inflammatory disorders including inflammation arising from acute tissue injury including, for example, acute lung injury. These disorders can be treated by administering the present Bcl-Y protein or functional equivalent.

Cancers arise when changes in DNA cause the anomalous accumulation of cells. The comparative rates of cell division and cell deaths determine how fast a cancer grows. Some cancer cells divide more slowly than normal cells, but the cancer may still expand because of prolonged cell life span. Apoptosis is an efficient method for preventing malignant transformation because it removes cells with genetic lesions. Defective apoptosis can promote cancer

WO 96/05232 55 PCT/US95/10103

development, both by allowing accumulation of dividing cells and by obstructing removal of genetic variants with enhanced malignant potential. The present therapeutic agents, including the present Bcl-Y protein, functional equivalents, fragments, and hybrids thereof along with vectors containing cDNA encoding the one or more of the foregoing, can be administered to cancer patients to induce apoptosis.

Many types of cancer can be treated by the administration of the present therapeutic agents, including for example, carcinomas, sarcomas, and leukemia/lymphomas, including for example, carcinomas such as adenocarcinomas, squamous carcinomas, carcinoma of the organs including breast, colon, head, neck, etc.; sarcomas including chondrosarcoma, melanosarcoma, etc.; and leukemia and lymphomas including acute lymphomatic leukemia, acute myelogenous leukemia, non-Hodgkin's lymphoma, Burkitt's lymphoma, B-cell lymphomas, T-cell lymphomas, etc. Other conditions amenable to treatment using the present therapeutic agent include fungal infections.

The present therapeutic agents can be used to treat autoimmune diseases. Random gene recombination and somatic hypermutation can potentially generate autoreactive T and B lymphocytes throughout life. Under normal conditions immature lymphocytes that bind autoantigens die by apoptosis. However, a defect in the deletion of these lymphocytes predisposes one to autoimmunity.

The present therapeutic agents can be administered to patients suffering from autoimmune disorders to induce apoptosis in autoreactive T lymphocytes, for example, in patients suffering systemic lupus erythematosus. Other autoimmune diseases amenable to treatment by suppressing or inducing apoptosis through the administration of the present therapeutic agents include, for example, rheumatoid arthritis, myasthenia gravis, Grave's disease, Hashimoto's thyroiditis, insulin-resistent diabetes, allergic rhinitis, asthma, functional autonomic abnormalities, juvenile

insulin-dependent diabetes, Addison's disease, idiopathic hypoparathyroidism, spontaneous infertility, premature ovarian failure, pemphigus, Bullous pemphigoid, primary biliary cirrhosis, autoimmune hemolytic anemia, idiopathic thrombocytopenic purpura, idiopathic neutropenia, Goodpasture's syndrome, rheumatoid arthritis and Sjogren's syndrome.

The present therapeutic agents can be used to treat inflammation resulting from acute lung injury, by inducing apoptosis. The disease process begins with an explosive inflammatory response in the alveolar wall. In the aftermath of the resulting tissue destruction, extensive fibroproliferation of the alveolar air space ensues, consisting of fibroblasts, capillaries and their connective tissue products. Fukuda, Y., et al., Am. J. Pathol. 126:171-182 (1987). An important mechanism for the systematic elimination of the foregoing is apoptosis, i.e., programed cell death.

The present therapeutic agents can also be used to
treat degenerative disorders due to premature or excessive
cell loss during aging which can lead to organ disfunction
and disease. Such degenerative disorders include
degenerative diseases of the central nervous system due to
aging or other factors which result in the death of neurons.

The present therapeutic agents containing Bcl-Y mutant
protein or hybrids thereof can be administered to a patient
suffering from such a degenerative disorder to suppress
apoptosis. Further, the present therapeutic agents can be
administered concurrently with gene therapy to provide genes
encoding neutrophic hormones including, for example, nerve
growth factor. Other conditions amenable to treatment
utilizing the present therapeutic agents include, for
example, Alzheimer's disease.

One of ordinary skill in the art can readily identify
other degenerative disorders characterized by inappropriate
cell death or inappropriate cell proliferation or both which

WO 96/05232 57 PCT/US95/10103

are amenable to treatment using the present therapeutic agents. The present therapeutic agents can include the Bcl-Y protein itself, as well as fragments, functional equivalents and/or hybrids and/or mutants thereof, which are s administered to a target cell. Alternatively, therapeutic agents according to the invention can be administered by infecting the target cell with a vector containing cDNA encoding one or more of the foregoing. The present therapeutic agents can be administered to the desired target 10 cell as discussed below, for example, by choosing a receptor on the target cell surface which is specific for that cell type. The present therapeutic agents can be administered alone or in combination with other acceptable drug therapies. Further, the present therapeutic agents can be is administered concurrently with other acceptable therapies specific for the particular degenerative disorder being treated. For example, the present therapeutic agents can be administered concurrently with chemotherapeutic agents, gene therapy, or the like. Whether it is the Bcl-Y protein 20 itself or the a vector encoding the protein, the therapeutic agent must cross the cell membrane.

One method for introducing the Bcl-Y protein or fragments thereof into the cell's membrane or into the cell itself is by attaching the protein to a ligand for which the target cell contains receptor sites. The protein can thus be transported into the cell membrane or across the cell membrane along with the ligand.

The choice of a carrier ligand will depend on several factors, as discussed herein and known to those of skill.

Suitable tissue-specific receptors include: Brain: nerve growth factor receptor (NGF-R); breast: prolactin receptor; stomach: gastrin receptor; skin: melanocyte stimulating hormone receptor (MSH-R), liver: asialoglycoprotein receptor; thyroid: thyroid stimulating hormone receptor

(TSH-R); ovaries: luteinizing hormone receptor (LH-R), testis: human chorionic gonadotrophin receptor (hCG-R),

T-cells: T-cell receptors; B cells: CD19; lung hyaluronate receptor CD44 isoform 4V (J. Cell. Biol. 124, 7182, 1994). In this regard, it will be appreciated that the ligand may be an antibody or fragment specific for the receptor, to which may be conjugated the Bcl-Y protein of the invention.

It may be desirable to employ active Bcl-Y fragments according to the invention which are less likely to interfere with the ligand-receptor interaction, and which may be more easily transported across the cell membrane.

When a protein is to be transported across the cell's membrane or into the cell as described above and the ligand is an antibody, it will be preferred to diagnostically or therapeutically label the protein in such a way that the label will be relatively more effective when the protein is bound, such as, for example, by means analogous to those described herein in the context of antibody transport.

It is also possible to utilize liposomes having the proteins of the present invention in their membrane to specifically deliver the present Bcl-Y proteins to the target area. These liposomes can be produced so that they contain, in addition to the Bcl-Y protein, such other therapeutic agents including drugs, radioisotopes, lectins and toxins, which would be released at the target site.

A preferred manner for administering the Bcl-Y encoding
nucleotide sequences (and their functional equivalents and/
or hybrids and/or mutants) for diagnostic or therapeutic
purposes is by the use of viral vectors. Suitable viral
vectors for gene transfer include retroviruses (reviewed in
Miller, et al., Methods Enzymol. vol. 217, p.581-599 (1993))
including human immunodeficiency virus (HIV), adenovirus
derivatives (for examples see Erzurum, et al. Nucleic Acids
Res. Vol. 21, p.1607-12 (1993); Zabner, et al., Nat. Genet.
Vol. 6, p.75-83 (1994); Davidson, et al., Nat. Genet. vol.
3, p.219-223 (1993)) adeno-associated virus (AAV), (i.e. see
Flotte, et al., Proc. Natl. Acad. Sci. vol. 90, p.10613-7
(1993)) and Herpes virus vectors (i.e. see Anderson, et al.,

Cell Mol. Neurobiol. vol. 13, p.503-15 (1993)). Other suitable viruses can be readily selected and employed by those of ordinary skill in the art. Other methods for DNA delivery include liposome mediated gene transfer (Alton, et al., Nat. Genet. vol. 5, p. 135-42 (1993); Nabel, et al., Proc. Natl. Acad. Sci USA vol. 90, p. 11307-11 (1993)).

The use of viral vectors for introduction of genes into mammalian cells is also reviewed, for example, in Varmus, Science 240(4858):1427 (1988); Eglitis et al., BioTechniques 6,7:608 (1988); Jaenisch, Science 240(4858):1468 (1988); and Bernstein et al., Genet. Eng. (N.Y.) 7:235 (1985).

For the purposes of the present invention, it may be preferred to employ an attenuated viral or retroviral strain. Thus, for example, it is possible to use as vectors. 15 for the DNA sequences of the invention retroviruses having attenuated cytopathicity, such as HIV-2 (Kong et al., Science 240(4858):1525 (1988)) or HIV-2 UC1 (Evans et al., Science 240(4858):1523 (1988)), which enter neural cells by a CD4-dependent mechanism (Funke et al., J. Exp. Med. 20 165:1230 (1987)). The neurobiology of HIV infections is described, for example, in Johnson et al., FASEB J. 2(14):2970 (1988). Those of skill will be able to target different cell populations having known susceptibilities to viruses by the exercise of routine skill. For example, CD4 25 is known to have a variant transcript in the human brain, with its highest content in forebrain (Maddon et al., Cell 47:333 (1986). Possible methods to target retroviral gene expression to specific cell types are reviewed by Boris-Lawrie and H. Temin Curr. Opin. Genet. Dev. vol. 3,

Ideally, then, the choice of a gene delivery system will be made by those of skill, keeping in mind the objectives of efficient and stable gene transfer, with an appropriate level of gene expression, in a

30 p.102-9 (1993).

tissue-appropriate manner, and without any adverse effects. See, for example, Wolff et al., Rheum. Dis. Clin. North Am.

WO 96/05232 60 PCT/US95/10103

14(2):459 (1988). With respect to delivery to a central nervous system target, many viral vectors, including HIV, offer the advantage of being able to cross the blood-brain barrier (Johnson et al., FASEB J. 2(14):2970 (1988)).

VII. Diagnostic Applications

Antibodies raised against the present Bcl-Y protein, fragments, functional equivalents, or hybrids or mutants
thereof can be used to detect the Bcl-Y protein in a human tissue sample, as well as to diagnose degenerative disorders associated with the expression of the Bcl-Y protein.
Further, such antibodies can also be used to monitor the progress of degenerative disorders associated with the expression of the Bcl-Y protein.

Any source of human cells is suitable for use in the diagnostic testing in the present invention. The cells can be isolated from any human tissue including for example, heart, lung, tumor cells, brain, placenta, liver, skeletal muscle, kidney and pancreas. Extraction of proteins from the cell sample may be performed by any of the many means known in the art. For example, cells may be lysed by a detergent by mechanical means. If desired, nucleic acids can be removed from the cell preparation by enzymatic digestion or by precipitation with agents such as streptomycin. Such means are well known in the art.

Antibodies can be generated which are immunoreactive with the Bcl-Y proteins by the methods set forth herein.

Appropriate antibodies can then be screened using the

natural gene products of Bcl-Y.

The extracted proteins from the cell sample may be contacted with the antibody under suitable conditions for antibody-antigen complex formation. Generally, such conditions are physiological conditions. The protein extract may be bound to a solid support such a nitrocellular filter or a microtiter plate.

The antibody will generally bear a label which is a radio label, a florescent label, or an enzyme conjugate which under appropriate conditions produces, for example, a colored reaction product. Antibodies and antibody labeling are described herein and known to those of skill. Alternatively, if the antibody is not labeled, it can be detected by means of a second antibody from another species which is reacted with the first antibody. Suitable assay techniques, labels and means of detection are discussed herein.

A parallel sample to the test sample is employed to provide the control. The control sample consists of an equivalent amount of proteins extracted from cells, preferably in the same manner as those of the test sample.

The amount of protein can readily be determined by employing techniques well known in the art, including, for example, the Lowry or Bradford techniques. The cells used for preparing the control sample may be selected from cells of the same cell type as the test cells, isolated from a normal human not suffering from the degenerative disorder from which the human from which the test sample was taken suffers, cells of the same cell type as the test sample isolated from an established normal cell line, and cells from the human who is being tested, which cell type is different from the cell type of the test cells.

Test samples can also be screened for elevated levels of mRNA transcribed from the Bcl-Y gene, according to methods well known in the art. For example, RNA extracted from B-cells may be used, or alternatively mRNA may be isolated from total cellular RNA. The mRNA may be purified, for example, by affinity chromatography on oligo (dT cellulose) which binds to the poly (A) tract at the 3' end of most mRNA. As is well known to those skilled in the art, it is essential that ribonuclease activity be minimized during preparation and assaying.

WO 96/05232 62

A DNA probe may be selected from any of the protein coding sequences of the Bcl-Y gene. Preferably, the probe will be selected from sequences of the 5' or 1st exon of the gene, so that all three species of RNA can be detected. 5 Preferably, the probe contains at least 15 nucleotides of the Bcl-Y sequence. In order to perform the hybridization, it is desirable that the probe be single stranded. Thus, if the probe is double stranded, it should be denatured to a single stranded form. Means for denaturing are well known in the art, including alkali or heat treatment. can then be contacted with the RNA derived from the cell sample under conditions where homologous RNA-DNA hybrids form and are stable. Such conditions are well known in the art. Means for detecting hybrids are many and well known, 15 but often involve the use of radiolabeled probes and nucleases which degrade single stranded DNA. Other methods known in the art may be used.

Control samples can be derived from any of these cell sources described above for use in the antibody diagnostic 20 tests. Samples and controls should preferably be prepared in parallel under similar conditions.

The diagnostic methods and compositions of the present invention are useful for determining whether a disease/ degenerative disorder is linked to abnormal Bcl-Y 25 expression, as well as for determining the effect of over expression or loss of expression of Bcl-Y in animal models such as transgenic mice and/or homozygous null mice. Methods for determining whether a disease/degenerative disorder is linked to abnormal Bcl-Y expression include 30 analyzing Bcl-Y expression in diseased tissue as compared to normal tissue by for example, Northern and/or Western blots, as well as by other assay methods readily chosen and employed by those of ordinary skill in the art. Once it has been determined that a disease/degenerative disorder is 35 linked to abnormal Bcl-Y expression, the disease/disorder can be diagnosed in an individual.

The following Examples are offered by way of illustration, not by way of limitation.

Examples

Example 1

A. Materials and Methods

1. Degenerate PCR. Poly A+ RNA was prepared from total cellular RNA by oligo dT chromatography using the PolyATract system (Promega) following the manufacturers protocol. Approximately 0.5 μg of poly A+ RNA was converted to cDNA using the Gibco/BRL (MD) cDNA synthesis preamplification system. The reverse transcription reactions were primed with random hexamer oligonucleotides. Two degenerate oligonucleotide primers were synthesized with the following sequences:

BD2: 5'-CGGAAGATCTAA(C,T)TGGGG(N)(A,C)G(N)(A,G)T(N)GT-3' [SEQ ID NO: 1]

20 BU3: 5'-GCTTCTGCAG(A,G)AA(N)(C,G)C(N)TCCCA(N)CC(N)CC-3'
[SEQ ID NO: 2]

PCR reactions contained the following components:
approximately 100 ng of cDNA template, 12 μM of each primer
(BD2 and BU3), 1.5 mM MgC12, 0.2 mM dNTP, 50 mM KC1, 10 mM
Tris-HCL [pH 8.3], and 2.5 units Taq polymerase (Perkin Elmer) in a total volume of 50 μl. The reaction was denatured at 94 for 5 minutes followed by two
amplification cycles at low annealing temperature consisting of: 94 1 min., 40 1 min., and 72 1 min. Thirty
additional cycles were subsequently performed at normal annealing temperature: 94 1 min., 55 1 min., 72 0.5
min. The PCR reactions were precipitated with ethanol, resuspended and digested with Bgl II and Pst I which cut at the ends of primers BD2 and BU3, respectively. The digested PCR products were then electrophoresed on a 9%
polyacrylamide Tris-borate-EDTA gel. DNA fragments of the

expected size (around 200 bp) were excised and purified by electrophoretic transfer to NA45 membranes (Schleicher and Schluell). The purified DNA was cloned into pBluescript KS (Stratagene), and individual clones were analyzed by DNA s sequencing using the Sequenase system (US Biochemicals).

- Isolation of cDNA clones. The 200 bp Bcl-Y partial cDNA fragment was 32-P labeled by the random hexamer priming method to a specific activity >10 cpm/µg. probe was then used to screen a Lamda ZAP II (Stratagene) 10 Jurkat cDNA library. Positive phage were plaque purified by secondary and tertiary screening, and cDNA inserts in positive lamda clones were rescued as plasmids by in vivo phagemid excision following the protocol supplied by Stratagene. Clones were further analyzed by restriction 15 enzyme site mapping and DNA sequencing. A portion of the cDNA sequence extending 5' of the Bcl-Y open reading frame was isolated by the amplification of cDNA ends PCR method (Frohman, M.A., et al., Proc. Natl. Acad. Sci. USA 85:8998-9002 (1988)), using the 5'-Amplifinder RACE system 20 (Clontech).
 - In vitro translation. 35-S labeled proteins were 3. synthesized in vitro using the TnT T7/T3 coupled reticulocyte lysate system (Promega), following the manufacturer's procedures.
- Western blot analysis. COS7 and NIH3T3 cells were cultured in DMEM supplemented with 10% fetal calf serum, and L-glutamine. Cells were transfected with plasmid DNAs (typically 2 to 8 μg) using Lipofectamine (Gibco/BRL), and cell lysates were prepared 48 hours after transfection.
- 30 Portions of the cell extracts (approximately 100 µg) were electrophoresed on SDS polyacrylamide gels, and transferred to nylon membranes by standard methods (Harlow, E., et al., Antibodies: A Laboratory Manual (1988)). Blots were incubated with the anti-HA epitope monoclonal antibody 12CA5
- 35 (Kolodziej, P.A., et al., Meth. Enzymol. 194:508-519

(1991)), which was subsequently detected with a secondary antibody using the ECL system (Amersham).

Plasmid constructions. All DNA manipulations were performed following standard protocols (Sambrook, J., et s al., Molecular Cloning: A Laboratory Manual (1989)). The Bcl-Y coding sequence was amplified by PCR using synthetic oligonucleotide primers which introduce BamHI and EcoRI sites at the 5' and 3' end, respectively, of the Bcl-Y reading frame. The DNA sequence of the primers is as 10 follows: 5'-GCAGGATCCGCTTCGGGGCAAGGCCCAG-3' [SEQ ID NO: 3] and 5'-GCGGAATTCGAGTCATGATTTGAAGAATC-3' [SEQ ID NO: 4]. Bcl-Y PCR product was digested with BamHI and EcoRI and cloned into the BamHI/EcoRI sites of a pcDNA1/amp derivative (Krek, W., et al., Science 262:1557-1560 (1993)) containing. 15 a short sequence coding for the hemagglutinin epitope. correct DNA sequence of the Bcl-Y PCR product was confirmed by DNA sequencing. The resulting construct contains amino acids 2 to 211 of Bcl-Y fused, in frame, to the HA tag encoding peptide sequence: MAYPYDVPDYASLGS [SEQ ID NO: 5]. 20 The HA-Bcl-Y protein is expressed from the CMV enhancer/ promoter sequences provided by the pcDNA-1/amp backbone vector (Invitrogen).

Bax and Bcl-X coding sequences were isolated by PCR amplification of Namalwa cell cDNA using primers based on the published cDNA sequences (Boise, L.H., et al., Cell 74:597-608 (1993); Oltvai, Z.N., et al., Cell 74:609-619 (1993)). The PCR products were initially cloned into pBluescript and sequenced to confirm that the clones contained the wild type Bax and Bcl-X DNA sequences. HA epitope tagged forms of Bax and Bcl-X were generated by subcloning into the pcDNA1/amp derivative described above. A human Bcl-2 cDNA cloned into pBluescript was obtained from Dr. Gerard Evan (ICRF, London).

6. Northern blot analysis. PolyA+ RNA from multiple
tumor cell lines was prepared using the FastTrack mRNA
isolation system (Invitrogen) following the manufacturer's

protocol. Northern blot analysis was performed by standard methods (Sambrook, J., et al., Molecular Cloning: A Laboratory Manual (1989)). The tumor cell line Northern blots were hybridized to a 32-P labeled probe derived from 5 the 200 bp Bcl-Y PCR product. A human multiple tissue Northern blot was purchased from Clontech laboratories and hybridized sequentially to 32-P labeled probes encompassing the entire coding regions of Bcl-Y, Bcl-2 and Bax, and Gactin following the supplier's protocol.

IL-3 deprivation. IL-3 deprivation studies were performed essentially as described (Hockenbery, D., et al., Nature 348:334-336 (1990)). Briefly, cells were cultured for 24 hr in the presence of IL-3, washed extensively, and seeded in 24 well plates at 5 x10 cells/ml in media lacking 15 IL-3. Viability was determined by counting live and dead cells after trypan blue staining.

Recombinant retroviruses carrying HA-Bcl-y and HA-Bax were generated by cloning the relevant cDNAs into the pBabe Puro vector (J. P. Morgenstern, H. Land, Nucl. Acids Res. 20 18, 3587-3596 (1990)) and transfecting the WE packaging cell line. Supernatants from the resulting producer cell lines were used to infect FL5.12 cells, and infected cells were selected in media containing 1 µg/ml puromycin.

In vitro protein interactions. Glutathione S-25 transferase fusion proteins of bcl-2 (GST-bcl-2) and its homolog bcl-xl (GST- bcl-xl) were expressed in E. coli and purified by affinity chromatography using glutathioneagarose (Smith, D.B. and Johnson, K.S., Gene 67, 31 (1988). 35S-Methionine-labeled HA-bcl-y was expressed in vitro using 30 a coupled transcription/translation system in rabbit reticulocyte lysates (Promega). Labeled HA-bcl-y (1-10 nM) was precleared with 10% glutathione-agarose in 10 mM HEPES buffer, pH7.2 containing 0.25% NP-40, 142.5 mM KCl, 5 mM MgCl2 and 1 mM EGTA (Buffer A). GST fusion proteins were 35 added (final concentration 1-3 mM) and the mixtures incubated at 37°C for 5 min., followed by 60 min. at 4°C.

Protein complexes were captured with 10% glutathione-agarose and washed twice with Buffer A and twice with Buffer A without NP-40. Proteins were eluted from the beads by incubation in SDS-PAGE sample buffer at 100°C for 5 min and loaded onto 4-20% SDS-polyacrylamide gels. Following electrophoresis, gels were fixed and incubated in a fluorography enhancing solution. (Amplify; Amersham). The gels were dried and subjected to autoradiography at -70°C.

10 B. Results

Cloning of a partial Bcl-Y cDNA by degenerate PCR.

It was anticipated that additional, as yet undiscovered, Bcl-2 family members would likely contain amino acid segments closely resembling domains I and II. The identification and cloning of novel Bc1-2 relatives by PCR using primers based on these homologous domains, was attempted. A series of oligonucleotide primers were 20 synthesized with sequences corresponding to variations of the most conserved amino acids present in domains I and II. The primers contained appropriate DNA sequence degeneracies so that all possible triplet codons for a given amino acid residue were encoded. One particular set of degenerate 25 primers, BD2 and BU3 (see Fig. 1A), were designed to anneal to any cDNA(s) coding for the domain I and II segments NWGR(I,V,M)V, and GGW(E,D)(A,G)F, respectively. Restriction enzyme sites (BglII or PstI) were incorporated into the 5' ends of the primers to facilitate cloning of PCR products.

The human B-cell lymphoma cell line, Namalwa, was initially chosen as a source of cDNA for PCR experiments. It was expected that these cells would express Bcl-2, thereby providing a positive control to ensure that the degenerate primers were capable of amplifying Bcl-2 related cDNA(s). RNA (poly A+) was prepared from Namalwa cells, and converted to cDNA by reverse transcription. The cDNA was

then used as template DNA in a PCR reaction containing oligonucleotides BD2 and BU3. Two cycles with low annealing temperature (40 deg.) were performed to permit a small degree of mismatching between the primers and complate to increase the effective degeneracy of the primers. This was followed by 30 amplification cycles at a 55 degree annealing temperature. The PCR reactions were digested with BglII and PstI, and electrophoresed on a 9 % acrylamide gel. Since the spacing between domains I and II is well conserved (Fig.1A), the PCR products in the expected size range (around 200 bp) were purified and cloned into a plasmid vector for DNA sequence analysis.

The DNA sequence of eighteen independent clones was determined. Three of the clones were cDNAs clearly 15 unrelated to Bcl-2 and were amplified due to fortuitous homology to the degenerate primers. The majority of the PCR clones, however, appeared to be bona fide Bcl-2 related cDNAs. One isolate each of Bcl-2 and Bcl-X, was obtained and seven clones were identical to Bax. Six of the clones 20 appeared to be a novel Bcl-2 related gene, which was designated "Bcl-Y" since it was isolated by virtue of its homology to Bcl-2. The conceptual translation of the Bcl-Y cDNA segment cloned by PCR indicates that it is an authentic Bcl-2 relative (Fig. 1B). An open reading frame was 25 maintained between the two PCR primers in the appropriate register, and several key amino acids flanking domains I and II that are also highly conserved among known Bc1-2 family members (Williams, G.T., Cell 74:777-779 (1993)), were present at the identical positions in the Bcl-Y sequence 30 (Fig 1B).

The PCR cloning procedure was repeated with cDNA prepared from the human leukemia cell line U937. In this experiment, two of eighteen PCR clones isolated were Bcl-Y. Subsequent PCR experiments with cDNA from breast, colon and ovarian carcinoma cell lines also yielded substantial numbers of Bcl-Y clones. Thus, Bcl-Y partial cDNA clones

WO 96/05232 69 PCT/US95/10103

could be readily isolated from diverse human tumor cell lines by this method.

2. Expression of Bcl-Y in human tumor cell lines.

Northern blot analysis was performed in order to determine the size of the Bcl-Y mRNA and to examine its range of expression in human tumor cells. The partial Bcl-Y cDNA cloned by PCR was labeled with 32P and used as a probe in Northern blots containing poly A+ RNA from a number of different tumor cell lines. The probe hybridized to a 2.2 kb RNA species in all cell lines examined (Fig.2), including Namalwa, U937, Jurkat (T-cell, data not shown), several breast carcinoma cell lines (MCF7, BT549, MBAMD468), the colon carcinoma cell lines HT29 and SW116, and the ovarian carcinoma cell line OVCAR3. These results demonstrate that the 2.2 kb Bcl-Y mRNA is expressed in a wide variety of human tumor cell lines.

3. Isolation of a full length Bcl-Y cDWA.

20

The cDNA clone isolated by degenerate PCR represented a partial segment (~ 200 bp) of the predicted 2.2 kb full length Bcl-Y cDNA based on the size of the mRNA on Northern blots. In order to isolate cDNA clone(s) encoding the entire Bcl-Y protein, a Jurkat cell cDNA lambda phage library was screened using the PCR-derived partial cDNA clone as a probe. Three overlapping cDNA clones were obtained that together span about 2.0 kb of the predicted 2.2 kb Bcl-Y full-length cDNA (lambda clones 4, 10, 11, Fig. 3). DNA sequence analysis indicated that lambda clone 11 encompassed the entire Bcl-Y open reading frame (Fig 3). Additional 5' non-coding sequence (about 200 bp) was cloned by the rapid amplification of cDNA ends (RACE) PCR method.

overlapping clones is approximately 2.2 kb indicating most, if not all, of the Bcl-Y cDNA has been isolated.

The composite cDNA sequence derived from the various overlapping clones, and the conceptual translation of the Bcl-Y open reading frame, is shown in Figure 4. A methionine codon (ATG), located near the 5' end is predicted to function as the initiating methione since it is preceded by translational stop codons (in all three reading frames), and resembles the consensus initiation sequences described by Kozak (Kozak, M. Nucl. Acids Res. 15:8125-8132 (1986)).

4. Bcl-Y is homologous to Bcl-2 family members.

The complete Bcl-Y amino acid sequence was compared to
the peptide sequence database (Feb. 10, 1994 release) using
the BLAST network service provided by the NCBI. Bcl-Y
showed the highest degree of homology to the human Bcl-2
protein. Bcl-Y exhibited 43% identity to the human Bcl-2
protein over a 54 amino acid section (residues 82 to 136)
encompassing domain I (Fig.5). An 20 amino acid stretch
containing domain II (residues 164 to 184), and a 20 residue
segment near the N-terminus (residues 54 to 73) showed 40%
and 45% identity, respectively, to Bcl-2 alpha (Fig.5).

Alignment of the deduced Bcl-Y amino acid sequence with
the known family of Bcl-2 related proteins is shown in
Figure 6. The highest degree of homology is centered around
domains I and II, as is the case with the known Bcl-2
relatives (Fig.6). Certain amino acids outside of these
domains are highly conserved between the previously
identified Bcl-2 homologues (Williams, G.T., Cell
65:1097-1098 (1991)). These same residues are also present
in the Bcl-Y sequence at analogous positions (indicated by
the shaded residues, Fig 6). An additional feature
generally shared by Bcl-2 family members is the presence of
a C-terminal hydrophobic amino acid domain that provides
membrane localization function (underlined residues, Fig.6).

Bcl-Y also contains a similar stretch of hydrophobic residues at its C-terminus. In addition, the hydrophobic stretch ends in each case with one or more basic residues (bold letters, Fig. 6). The location and extent of primary sequence homology, as well as additional structural similarities (MW and the presence of a C-terminal membrane localization sequence) indicates that Bcl-Y is an authentic novel member of the Bcl-2 family.

5. Expression of the Bcl-Y protein in vitro and in transfected cells.

10

The deduced amino acid sequence of Bcl-Y predicts a protein of MW 23.4 kD. In vitro translation of lambda clone 15 ll in rabbit reticulocyte lysates produces a protein with electrophoretic migration on SDS polyacrylamide gels corresponding to a MW of about 26 kd (Fig.7A), in approximate agreement with the size predicted from conceptual translation of the cDNA sequence.

The Bcl-Y protein could also be expressed in transiently transfected cells. In order to detect the protein, the Bcl-Y open reading frame was fused at the amino terminus to a 9 amino acid segment derived from the influenza hemaglutinen antigen (HA). This short peptide 25 provides a well characterized epitope that permits immunological detection of the "tagged" protein by the monoclonal antibody 12CA5 (Kolodziej, P.A., et al., Meth. Enzymol. 194:508-519 (1991)). The HA-tagged Bcl-Y open reading frame was cloned into a CMV based eukaryotic 30 expression vector, and transfected into COS7 and NIH3T3 cells. Cell lysates were prepared 48 hrs after transfection, and analyzed by Western blot with the anti-HA monoclonal antibody. The HA-tagged Bcl-Y protein, of the appropriate size, was detected in both the COS7 and NIH3T3 35 cell extracts (Fig.7B). These results demonstrate that the

protein encoded by the isolated Bcl-Y cDNA can be expressed both in vitro and in vivo.

6. Expression of Bcl-Y in human tissues.

gene expression, a northern blot containing RNA from eight different human tissues was hybridized to a probe encompassing the entire Bcl-Y open reading frame. A single 2.2 kb Bcl-Y mRNA was detected in all tissues examined (Fig. 8), suggesting that alternatively spliced Bcl-Y messages, if any, must be present at much lower levels. Heart tissue was found to express the highest levels of Bcl-Y message (when normalized to the levels of B-actin). The northern blot was sequentially re-hybridized to probes for Bcl-2 and Bax (also shown in Fig.8). These results demonstrate that Bcl-Y has a pattern of expression distinct from these known Bcl-2 family members and its ubiquitous expression indicates that Bcl-Y regulates apoptosis in a broad range of tissues.

7. Expression of Bcl-Y accelerates apoptosis in transfected cells.

apoptosis, the effect of Bcl-y expression in FL5.12 cells was investigated. A nine amino acid epitope from the influenza virus hemagglutinin antigen (HA) was engineered at the amino-terminus of Bcl-y to permit detection of the protein by the anti-HA monoclonal antibody 12CA5 (Kolodziej, P.A., et al., Meth. Enzymol. 194:508-519 (1991)). FL5.12 cells were transfected with a plasmid that directs the expression of HA-tagged Bcl-y from the CMV enhancer/promoter. Transfected cells were selected by virtue of their resistance to the drug G418, and expression of the HA-tagged Bcl-y protein was detected by Western blot analysis with the anti-HA antibody 12CA5 (Figure 9B). Several FL5.12

WO 96/05232 73 PCT/US95/10103

clones that expressed the highest levels of HA-Bcl-y were examined for viability under conditions of IL-3 deprivation, as previously described (Hockenbery, D., et al., Nature 348:334-336 (1990)). The FL5.12 clones expressing HA-Bcl-y (yb2, yb3, yb4) died at an increased rate relative to an FL5.12 clone transfected with the expression vector carrying only the neomycin resistance gene (Figure 9A). Thus, in marked contrast to the protective effect of Bcl-2 expression in this cell line (Hockenbery, D., et al., Nature 348:334-336 (1990)), clones expressing Bcl-Y exhibited accelerated cell death upon IL-3 deprivation.

8. Bcl-Y expression counteracts the survival function of Bcl-2.

15

The ability of Bcl-Y to promote cell death upon withdrawal of IL-3 resembles the function of Bax, which has been shown to increase the rate of apoptosis in FL5.12 cells under the same conditions tested above (Oltvai, Z.N., et 20 al., Cell 74:609-619 (1993)). Bax was also reported to counteract the enhanced survival provided by expression of Bcl-2 in FL5.12 cells. To further compare the activity of Bcl-Y to that of Bax, we asked whether expression of Bcl-Y would similarly overcome the inhibition of apoptosis 25 afforded by expression of Bc1-2. FL5.12 cells were transfected with an expression plasmid carrying human Bcl-2 which provides substantial protection against cell death upon withdrawal of IL-3. To determine whether Bcl-Y could overcome this function of Bcl-2, the cells were infected 30 with a recombinant retrovirus expression vector carrying the HA-tagged Bcl-y protein and the gene for puromycin resistance. For comparison, the FL5.12 cells expressing Bc1-2 were separately infected with a retrovirus carrying HA-tagged Bax, or a vector encoding puromycin resistance 35 only.

Pooled populations of puromycin-resistant cells expressing Bcl-2 (Bcl-2/puro population) were largely resistant to withdrawal of IL-3, reflecting the protective activity of Bc1-2 in these cells (Figure 10A). Viability of 5 the cell population expressing both Bcl-2 and HA-Bcl-y (Bcl-2/HA-Bcl-Y population) decreased faster, and to a greater extent, indicating that the protective function of Bcl-2 was partially overcome by Bcl-y in this cell population. As with Bcl-Y, expression of HA-Bax partly counteracted the 10 prolonged survival provided by Bcl-2 (Figure 10A). Thus, the effect of Bcl-Y on the survival of Bcl-2 expressing cells was as great or greater than that of Bax in this assay. Western blot analysis of these infected FL5.12 cell populations showed expression of HA-Bax and HA-Bcl-Y 15 proteins (Figure 10B). In addition, the increased sensitivity of cell populations expressing HA-Bcl-Y and HA-Bax to IL-3 withdrawal was not due to reduced levels of Bcl-2 (Figure 10B).

individual clones expressing Bcl-2 in combination with either HA-Bax or HA-Bcl-Y from the retrovirus-infected cell populations described above. Clones expressing the highest levels of exogenous HA-Bcl-Y or HA-Bax snowed a more complete inhibition of Bcl-2 function than the cell populations from which they were isolated (Figure 11). Viablity of Bcl-2/HA-Bcl-Y cl4 cells decreased more rapidly than a clone that did not express human Bcl-2 (neo, Figure 11A), indicating that Bcl-2 function in this clone was totally abrogated by Bcl-Y expression. Again, Western blots demonstrated that similar levels of human Bcl-2 were expressed in the infected clones relative to the parental cell line (Figure 11B).

These results demonstrate that enforced expression of Bcl-Y can overcome the survival function of Bcl-2 and restore sensitivity to signals that induce apoptosis (IL-3 withdrawal). There is experimental evidence to suggest that

certain tumor cells may require continued function of Bcl-2 (or related genes) for their survival ((L. Campos, et al., Blood 84:595-600 (1994); J.C. Reed, et al., Cancer Res. 50:6555 (1990)). Introduction of Bcl-y, or a functional equivalent, into such tumor cells may restore sensitivity to signals that trigger apoptosis (i.e., deprivation of growth factors, treatment with chematherapeutic agents).

9. Bcl-Y interacts with Bcl-2 and Bcl-XL in vitro

10

It has been suggested that Bax may regulate Bcl-2 function through a specific protein/protein interaction (X.-M. Yin, et al., Nature 369:321-323 (1994)). The inhibition of Bcl-2 function by Bcl-y may therefore also be dependent on a specific interaction between the two proteins. To test whether Bcl-y could interact with Bcl-2, glutathione S-transferase fusion proteins of Bcl-2 (GST-bcl-2) or its homolog Bcl-XL (GST- bcl-xl) were mixed with 35S-methionine-labeled HA-Bcl-Y generated by in vitro transcription/ translation. Resulting complexes were captured on glutathione-agarose and analyzed by SDS-PAGE. HA-Bcl-Y clearly co-precipitated with GST-Bcl-2 and to an even greater extent with GST-bcl-xl. No interaction was observed when HA-bcl-y was incubated with GST alone. Therefore, bcl-25 y can specifically interact with bcl-2 and bcl-xl in vitro.

10. Chromosomal localization of the bcl-Y gene

Since multiple members of the Bc1-2 family may normally
be responsible for regulating cell death, a variety of
mutational alterations could potentially disrupt this
control and contribute to tumor development. For example,
activation of Bc1-2 expression by a chromosomal
translocation contributes to the onset of follicular
lymphoma. Analogous oncogenic lesions that suppress
apoptosis could be generated, in principle, by the loss of a

gene such as bcl-Y that opposes bcl-2 function, and/or positively regulates cell death. In this respect, bcl-Y may be viewed as a candidate tumor suppressor gene.

To analyze whether loss or mutation of bcl-y is a 5 recurrent event in certain human tumors, the chromosomal location of the bcl-Y gene was determined. A fragment of human genomic DNA encompassing bcl-Y was isolated by screening a P1 phage library (Genomic Systems, Inc.). bcl-Y genomic clone was used as a probe for fluorescent in 10 situ hybridation to metaphase chromosomes (BIOS Laboratories). This analysis revealed that the bcl-Y genomic locus maps to the short arm of human chromosome 6 (6p21.3). Abnormalities of 6p21 have been detected in uterine leiomyomas (J. Mark, et al., Cancer Genet. 15 Cytogenet. 44:1 (1990)), astrocytomas (B.C. Liang, et al., Neurol. 44:533-536), benign lipomas (N. Mandahl, et al., Hum. Genet. 79:203-208), ovarian cancers (W. Cliby, et al., Cancer Res. 53:2393-2398), and endometrial polyps (P.D. Cin, et al., Gynec. Oncol. 46:393-396). A large number of 20 diseases have been shown to be associated with the MHC region, which also maps to 6p21 (J.L. Tiwari, and P.I. Terasaki, HLA and Disease Associations. New York: Springer-Verlag (1985)).

25 All publications mentioned in this specification are indicative of the level of the skill of those skilled in the art to which this invention pertains. All publications are herein incorporated by reference, to the same extent as if each individual publication was specifically and individually indicated to be incorporated by reference.

While the invention has been described in connection with the specific embodiments thereof, it will be understood that it is capable of further modifications and this application is intended to cover any variations, uses, or adoptions of the invention following, in general, principles of the invention and including such departures from the

present disclosure as come within known or customary practice within the art to which the invention pertains and as may be applied to the essential features hereinbefore set forth and as follows in the scope of the appended claims.

What is claimed is:

- An isolated Bcl Y protein.
- 2. The isolated Bcl-Y protein of claim 1, wherein said protein is a human protein.
 - 3. The isolated Bcl-Y protein of claim 2, wherein said protein consists essentially of the amino acid sequence as shown in Figure 4 [SEQ ID NO:16].
- 4. The isolated Bcl-Y protein of claim 2, wherein said protein is encoded by the nucleotide sequence as shown in Figure 4 [SEQ ID NO:17].
 - 5. An isolated nucleotide sequence coding for Bcl-Y protein.
- 6. The isolated nucleotide sequence of claim 5, wherein said sequence is as shown in Figure 4 [SEQ ID NO:17].
 - 7. The isolated nucleotide sequence of any one of claims 5 or 6, wherein said sequence comprises genomic DNA.
- 8. The isolated nucleotide sequence of any one of claims 5 or 6, wherein said sequence comprises cDNA.
- 9. The isolated nucleotide sequence of any one of claims 5 or 6, wherein said sequence comprise RNA.
- 10. An isolated recombinant DNA molecule consisting essentially of a nucleotide sequence that codes for Bcl-Y protein.
 - 11. The isolated recombinant DNA molecule of claim 10, wherein said nucleotide sequence is as shown in Figure 4 [SEQ ID NO:17].
- wherein said molecule is a vector.

- 13. A vector consisting essentially of a recombinant DNA molecule encoding Bcl-Y protein, wherein said vector expresses a sequence that codes for Bcl-Y in said recombinant DNA molecule.
- 14. A vector comprising a recombinant DNA molecule encoding Bcl-Y protein, wherein said vector expresses an antisense RNA of said recombinant molecule.
- DNA molecule consists essentially of a nucleotide sequence as shown in Figure 4 [SEQ ID NO:17].
 - 16. A host cell transformed with the vector of any one of claims 13 or 15.
 - 17. The host cell of claim 11, wherein said host cell is a mammalian cell.
- 18. A method for producing isolated Bcl-Y polypeptide, comprising:
 - (a) constructing the vector of claim 13;
 - (b) transforming a suitable host cell with said vector of Step (a);
 - (c) culturing said host cell under conditions which allow the expression of said Bcl-Y polypeptide by said host cell; and
 - (d) isolating said Bcl-Y polypeptide expressed by said host cell of Step (c);
- wherein isolated substantially pure Bcl-Y polypeptide is produced.
 - 19. The method according to claim 18, wherein said host cell is a mammalian cell.
- 20. An antibody raised against the Bcl-Y protein of 30 claim 4.

20

WO 96/05232 80 PCT/US95/10103

21. The antibody of claim 20, wherein said antibody is selected from the group consisting of: a polyclonal antibody, a monoclonal antibody, an anti-idiotypic antibody, and an anti- anti-idiotypic antibody.

- 22. The antibody of claim 21, wherein said antibody is detectably labeled.
- 23. The antibody of claim 22, wherein said antibody is detectably labeled with a detectable label selected from the group consisting of: a radio label, an enzyme label, a to-factor label, a fluorescent label, a paramagnetic label, a chemiluminescent label, and a metal label.
- 24. A detectably labeled nucleotide probe, comprising a first nucleotide sequence which is substantially complementary to a second nucleotide sequence that specifically codes for the Bcl-Y protein of claim 4.
 - 25. A pharmaceutical composition comprising the Bcl-Y protein of claim 4 and a pharmaceutically acceptable carrier.
- 26. A method for inducing apoptosis in a cell comprising introducing into a nonapoptotic cell an amount of the Bcl-Y protein of claim 4 effective to induce apoptosis in said cell.
- 27. The method of claim 26, wherein said Bcl-Y protein is introduced by expressing a nucleotide encoding Bcl-Y in said nonapoptotic cell.

ノしりりょと

 $P \vdash \vdash S \sqcap S \vdash \vdash G$

O M M X Z Q Z Q

エスメーーEAN

0 Z D O - 0 D O

>>」×6×0

L C L A S S

EEKHKYF

>> ~ * * * * *

400>4140

メリーシーがん

A A A - D A

RRRRRRRR

3 3 3 3 3 S L

ZZZZZZZ

0000000

>> <u>- - - - a</u>

00000

000000

RRSSE と と と H H H

im mio x x in m

H Z K - H F

· Z > - · 0

SOUBER

≥ ≥ > O - z v

<u>25.88.76</u> 50000000 ししてFKFD EN X EIIN EI EI LL LL LL LL __ 4 F C C C - A SEDOOD 333303 00000000 ပါပ ပ ပၽြပ ပ ပ RZZOOZIO **00 m 0 x 0 v 0 4000>K-I** A L D O D Z TH-KKL-エエエペトーーの **HROURFSS** J Z Z Z > M T A **アトトッショ**」 O = - O O - - - ≥ > - < - - O Z O > Z Z F - U > Z ZZZS>V> S - O E G A L - < < Z < × ⊢ 」 ロリイトニー 0 Z & F D & > > じりられとして> **ー>>-->** ~ ~

FIG. 1B

BCL-Y BCL-X BCL-X BAX MCL-1 A1 A5FV EBV

SUBSTITUTE SHEET (RULE 26)

FIG. 2

SUBSTITUTE SHEET (RULE 26)

TGA	CCC	ACC	C G(CCTI	(CCC)	X 1	AGG/	ATC(CCG	G CAC	CC	<u>iga</u> t	C C	CI	CCTC	CA (C <u>TG</u>	<u>A</u> G	ACI	C <u>TG</u>	60
ĀAA	TAA M	GGC A	T T(0000 5 G	GCA/ Q) a	CCC F	AGO	STC(C TCC	CAC	GCA Q	G G/ E	GT(CCCC	AG /	AGC	CT(P	GC(A	TX L	120
GCC	CTC S	TGC1 A	T T (CTGA S E	GGAG E	C A	VGGT) V	AGC A	CC/	A GGA	CAC	AGA(G GA	GG1 V	TTT() 33 F	CA(SC1	TAC Y	CT V	180
TTT F	TTA(Y	CCCC R	CA H	ITCA I Q	GCAG Q	G A	ACA Q	GGA E	GGC	TGA E	AGG G	GGT(V	G GC A	TGC A	CCC1	G C	\ O	4CC	CA P	GA E	240
GAT(CTC V	CACC	II.	ACC P	TCTG L	C A Q	ACC P	T AG	CAG S	CAC	CATI M	0000 G	CA Q	CGT V	GGGA G	C G	GCA	VGC }	TO L	GC A	300
CATO	ATC	C C	GAI D	CGA(D	CATCA I	A A	CCG/ R	ACG(R	CTA Y	TGA(CTC. S	AGAG E	TT(CCA Q	GACC T	A T M	GTT L	GC	AG Q	CA H	360
CCTG L	CAG Q	CCC P	ACC T	GGC/ A	VGAGA E	A A' N	TGC(A	CTAT Y	rga E	GTA(TT(F	CACC T	AA(AT I	TGCC. A	A CI	CAG S	CC	TG' L	IT F	420
TGAG E	AGT(S	G C	ATC I	CAAT N	TGGG W	G	CCT R	GTG V	GT V	GGC1 A	CT1 L	CTG L	GGC	TT(F	C CCC	T A(Y	CCC R	TC'	TGC	X A	480
CCTAI L	CAC(H	STC V	TAC Y	CAG Q	CATG H	GC	CTG L	ACT T	33 3	CTTC F	CTA L	GCC G	CAG Q	GTG V	ACC(C GC R	CTT(F	13C V	rgg /	T V	540
CGAC' D	TTC/ F	ATG M	CTG L	CAT H	CACT H	GC C	ATT	GCC A	CG R	GTGG. W	ATT I	GCA A	CAG Q	AGG R	GGTG G	GC	TGO	GT V	GG	C A	600
AGCC(A	CTG# L	VAC N	TIG	GCC/	AATG N	GT G	CCC. P	ATC I	CT L	GAAC N	GTG V	CTG L	GTG V	STT V	CTGG L	GT G	GTG V	GT V	TC	ī	660
GTTG0	GCC G	AG Q	TTT(F	GTG(V	STAC V	GA R	AGA" R	TTC F	TT ·	CAAA1 K	CA S	IGA •	[SE	Q I	D NC). 1	6]		`		700

FIG.4

CTCCCAAGGG TGCCCTTTGG 720 GTCCCGGTTC AGACCCCTGC CTGGACTTAA GCGAAGTCTT TGCCTTCTCT GTTCCCTTGC 780 AGGGGTCCCC CCTCAAGAGT ACAGAAGCTT TAGCAAGTGT GCACTCCAGC TTCGGAGGGC 840 CCCTGCGTGG GGGCCAGTCA GCCTGCAGAG GCACCTCAAC ATTGCATGGT GCTAGTGGGC 900 CCTCTCTCTG GGCCCAGGGG CTGTGGCCGT CTCCTCCCTC AGCTCTCTGG GACCTCCTTA 950 GCCCTGTCTG CTAGGCGCTG GGGAGACTGA TAACTTGGGG AGGCAAGAGA CTGGGAGCCA 1020 CTICTCCCCA GAAAGIGTIT AACGGTTTTA GCTTTTTATA ATACCCTTGT GAGAGCCCAT 1080 TCCCACCATT CTACCTGAGG CCAGGACGTC TGGGGTGTGG GGATTGGTGG GTCTATGTTC 1140 CCCAGGATTC AGCTATTCTG GAAGATCAGC ACCCTAAGAG ATGGGACTAG GACCTGAGCC 1200 TGGTCCTGGC CGTCCCTAAG CATGTGTCCC AGGAGCAGGA CCTACTAGGA GAGGGGGGCC 1260 AAGGTCCTGC TCAACTCTAC CCCTGCTCCC ATTCCTCCCT CCGGCCATAC TGCCTTTGCA 1320 CTTGGACTCT CAGGGATTCT GGGCTTGGGG TGTGGGGTGG GGTGGAGTCG CAGACCAGAG 1380 CTGTCTGAAC TCACGTGTCA GAAGCCTCCA AGCCTGCCTC CCAAGGTCCT CTCAGTTCTC 1440 TCCCTTCCTC TCTCCTTATA GACACTTGCT CCCAACCCAT TCACTACAGG TGAAGGCTCT 1500 CACCCCATCC CTGCGGGCCT TGGGTGAGTG GCCTGCTAAG GCTCCTCCTT GCCCAGACTA 1560 CAGGGCTTAG GACTICGTTI GTTATATCAG GGAAAAGGAG TAGGGAGTTC ATCTGGAGGG 1620 TICTAAGTGG GAGAAGGACT ATCAACACCA CTAGGAATCC CAGAGGTGGG ATCCTCCCTC 1680 ATGGCTCTGG CACAGTGTAA TCCAGGGGTG TAGATGGGGG AACTGTGAAT ACTTGAACTC 1740 TGTTCCCCCA CCCTCCATGC TCCTCACCTG TCTAGGTCTC CTCAGGGTGG GGGGTGACAG 1800 TGCCTTCTCT ATTGGGCACA GCCTAGGGTC TTGGGGGTCA GGGGGGAGAA GTTCTTGATT 1860 CAGCCAAATG CAGGGAGGGG AGGCAGATGG AGCCCATAGG CCACCCCCTA TCCTCTGAGT 1920 GTTTGGAAAT AAACTGTGCA ATCCCCTCAC CCTGAAAAAA AAAAAAAA [SEQ ID NO. 17] 1968

FIG.4(cont.)
SUBSTITUTE SHEET (PLULE 26)

28

SEO 10 NO. SEO 10 NO. SEQ 10 NO. 22 SEQ 10 NO. 23 R R Y R R Y υz G D D F H H H <u>5</u> 2 € <u>≅</u> 33 SUBSTITUTE SHEET (RULE 26)

& & **®** €

SEO 10 1

88

BCL-2 BCL-7 FIG. 5

•	8/16	23 23 33 33 33 33 33 33 33 33 33 33 33 3
	,	
33 38 23 38 31 38 31 38 31 38 31 38 31 38 31 38 31 38 31 38 31 31 31 31 31 31 31 31 31 31 31 31 31		10 NC 2580 NO. 281 NO. 3
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	¥382828 ¥388	
		K SE (SEO 1) M C (
	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	H K K K K K K K K K K K K K K K K K K K
<u> </u>		N X X X X X X X X X X X X X X X X X X X
· · · z > - · o	25 25 25 25 25 25 25 25 25 25 25 25 25 2	니거(VI보) - 그 X (VI
0 5 6 6 6 6	· · · · · · · · · · · · · · · · · · ·	> > L U - L
N N N N N N N N N N N N N N N N N N N	· · · · · · · · · · · · · · · · · · ·	R R R R R R R R R R R R R R R R R R R
14 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1	
X > W	L L L L L L L L L L L L L L L L L L L	
E T A A H I I	しじししれるとの	-
> 4 > 4 2 2 > r	S T T S T S T S T S T S T S T S T S T S	< > > > の ひ >
<u>></u> >>>>>	A Z N Z N N Z A	
- XOXXOOS		S - E < < < < < < < < < < < < < < < < < <
M M M M M M M M M M M M M M M M M M M	> L > L > > Z J	시기는(다)이다 그
DO - S X S X	7 E A T C A C B A	2
2 H 2 H X J	メンヌトーシーと	
V - AO PAA A O X X X X X X X X X X X X X X X X X	キーチョントン	O S I I I I I I I
- N F O F U F	C K A E A A A C C K A E G A A C C C C A C C A C C A C C C C C C	
F W O O M O O M	->>	7 · ₹ ₹ > © X r
H N N N D D A D	ZOWHOKS	2
14	Y L Y - Y C C C C C C C C C C C C C C C C C	
 	しょししりロボイ	N
R N H I V I V I V I V I V I V I V I V I V I	ロロVESLNP	S
SOSKEDFZ	S. TO VET S	L . C
S → O - =	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	σ·π·σ·π·Φ
M X X O X O Y O X X Y Y Y Y Y Y Y Y Y Y Y	K I X F F F W K K	1 . 10
A O NO O NO P	>>> > > > > > > > > > > > > > > > > >	A A E S A A E S I Y S V
	SSSS	A A A
E. NIERED	ソしソしとはとなる。	SO. OHA. S
S. KE. 202	ひくひとくしょひ	O O S D L O S
MX < N N N N N N N N N N N N N N N N N N	<u>ューー</u> > コミ <	PHH CON-
R R L S R R R R R R R R R R R R R R R R	> & < < < r > < x	イロイドドとN
SEHOOKII	C V C C A C C C	しししゞ゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙
	La La La La La La 🕿	N N N N N N N N N N N N N N N N N N N
	ACASCE	
100000m > _		TA ATOO TH
L < A < - A - A	A A A A H P D A	
H L R R R L V	22222	0000000
<u> </u>	R R R R K K K K K K K K K K K K K K K K	10 0 0 0 0 0 0 0
A O A O F I X K	00000000	ONOXOMO
V-RISABL LKVEEDRI	FFFFF	0<00>~=
>>> ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	NZZZZZZZ	
		EFFEE
93 209 34 38 38 46	142 123 135 105 259 259 84 84 96	188 170 181 181 151 305 133 127 143
8CL-7 8CL-7 8CL-X BAX MCL-1 ASFV EBY	77× - >	77× -
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	8CL-2 8CL-X 8CL-X BAX AI AI ASFV EBV	BCL-7 BCL-Y BAX BAX AI ASFV EBV
	SUBSTITUTE SHEET (RULE 26)	
	CONTROLL OFFICE (NOTE ED)	

SUBSTITUTE SHEET (RULE 26)

KD 2000 — 97 — 46 — 46 —

ANG ON

Luciferase

Bd-Y

FIG. 8

SUBSTITUTE SHEET (RULE 26)

FIG.9A

FIG.9B

HA-Bcl-y— HA-Bax

Neo/Puro

Bcl-2/Puro

Bcl-2/HA-Bax

Bcl-2/HA-Bcl-y

Bcl-2 →

Neo/Puro

Bcl-2/Puro

Bcl-2/HA-Bax

Bcl-2/HA-Bcl-y

F1G. 10B

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

Bcl-2/Puro cl5 Bcl-2/HA-Bax cl7 Bcl-2/HA-Bcl-y cl4 Bcl-2/Puro cl5 Bcl-2/HA-Bax cl7 Bcl-2/HA-Bcl-y cl4

Bcl-2

FIG. 11B

INTERNATIONAL SEARCH REPORT

International application No. PCT/US95/10103

1	ASSIFICATION OF SUBJECT MATTER		1					
IPC(6) :Please See Extra Sheet.								
US CL:530/350+, 387.1; 536/23.1; 435/70.3, 240.1, 252.3; 514/12, 44 According to International Patent Classification (IPC) or to both national classification and IPC								
	LDS SEARCHED	out national classification and IPC						
Minimum documentation searched (classification system followed by classification symbols)								
	530/350+, 387.1; 536/23.1; 435/70.3, 240.1, 25							
J.J	330330 +, 387.1, 330/23.1, 433/70.3, 240.1, 23.	2.3; 514/12, 44						
Document	tion searched other than minimum documentation to	the extent that such documents are included	d in the fields seembed					
			- n. me made scarcing					
Electronic	data base consulted during the international search	(name of data base and, where practicable	. scarch terms used)					
APS, CI	emical Abstracts, Biosis							
C. DO	CUMENTS CONSIDERED TO BE RELEVANT							
Category*	Citation of document, with indication, where	appropriate, of the relevant passages	Relevant to claim No.					
X	Deposeding of the Mari							
^	Proceedings of the National Ad	cademy of Sciences USA,	1-19					
	Volume 83, issued July 1986, Y	I sujimoto et al, "Analysis	:					
i	of the Structure, Transcripts and	Protein Products of bcl-2,						
	the Gene Involved in Human Fo	llicular Lymphoma", pages						
	5214-5218, see especially page	5216, figure 3 and page						
	5217, figure 4, and "Discussion"	•						
k l	Cancer Research, Volume 53, N	lumbor 14 Garred 15 Lite	05.03					
` '	1993, T. C. Fisher et al, "bcl-2	Modulesian of Assault	25-27					
	Induced by Anticancer Drugge 6	Resistance to Thymidylate						
	Stress is Independent of Classic	nesistance to inymidylate						
	pages 3321-3326, see especial	lu page 2225 palumays",						
l								
I	paragraph 1 to page 3326, line 8	•						
J								
ĺ	•							
		ļ						
			•					
X Furthe	or documents are listed in the continuation of Box	See artest facility assess						
	ial categories of cited documents:							
A* doc	most defining the general state of the art which is not considered.	T inter document published after the inter- date and not in conflict with the applicat	ion but cited to understand the					
	or benevies testadios	principle or theory underlying the inves						
	er document published on or other the interastional filing date	"X" document of particular relevance; the considered novel or cannot be considered	claimed investion cannot be al to involve an inventive step					
cite	ment which may throw doubts on priority claim(s) or which is to establish the publication date of another citation or other inl resear (as specified)	when the document is taken alone "Y" document of continuous above to						
	most referring to an oral disclosure, use, exhibition or other	considered to involve an inventive	Mark terbara the electronic is					
		combined with one or more other such being obvious to a person skilled in the	documents, each combination art					
docu the ;	ment published prior to the international filing date but later than riority date claimed	'&' document member of the same patent fi	umily`					
ate of the a	ctual completion of the international search	Date of mailing of the international sear	ch report					
31 OCTOBER 1995 22 NOV 1995								
ame and ma	iling address of the ISA/US	Authorized officer						
Box PCT	r of Palents and Trademarks	Deborah Crouch, Ph.D. 10The Fern on						
1600 (4 -17)								
1 texplicite 140. (703) 308-0190 C								
rm PCT/ISA/210 (second sheet)(July 1992)#								

INTERNATIONAL SEARCH REPORT

International application No. PCT/US95/10103

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.		
X	Analytical Biochemistry, Volume 205, issued 1992, J.C. Reed et al, "A Strategy for Generating Monoclonal Antibodies Against Recombinant Baculovirus-Produced Proteins: Application to the Bcl-2 Oncoprotein", pages 70-76, see especially page 73, column 2, paragraph 1.	20-24		

Form PCT/E6A/210 (continuation of second shoet)(July 1992)*

INTERNATIONAL SEARCH REPORT

International application No. PCT/US95/10103

	PCT/US95/10103							
A. CLASSIFICATION OF SUBJECT MATTER: IPC (6):	·-							
C07K 17/00, 16/00; C07H 21/02; C12N 1/20, 5/00; C12P 21/04; A61K 38/00, 31/70								
•	•							
· · · · ·								
	•							
	•							
•								
	•							

Form PCT/ISA/210 (extra sheet)(July 1992)*