PPP协议的组成

• 对各种协议数据报的封装方法(封装成帧)

• 链路控制协议LCP: 用于建立、配置以及测试数据链路的链接

• 一套网络控制协议NCPs: 其中的每一个协议支持不同的网络层协议

PPP协议的帧格式

帧的首部				帧的尾部				
F	A	C	P	帧的数据部分	FCS	F		
1字节	1字节	1字节	2字节	不超过1500字节	2字节	1字节		

标志 (Flag) 字段: PPP帧的定界符, 取值为0x7E

地址 (Address) 字段: 取值为0xFF, 预留 (目前没有什么作用) 控制 (Control) 字段: 取值为0x03, 预留 (目前没有什么作用) 协议 (Protocol) 字段: 指明帧的数据部分送交哪个协议处理

取值0x0021表示:	帧的数据部分为IP数据报	7E FF 03 00	21	P数据报	FCS	7E
取值0xC021表示:	帧的数据部分为LCP分组	7E FF 03 C0	21	LCP分组	FCS	7E
取值0x8021表示:	帧的数据部分为NCP分组	7E FF 03 80	21	NCP分组	FCS	7E

帧检验序列 (Frame Check Sequence) 字段: CRC计算出的校验位

透明传输

字符填充法

发送方的处理:

- 出现的每一个7E (PPP帧的定界符) 字节转变成2字节序列 (7D, 5E)
- 出现的每一个7D (转义字符) 字节转变成2字节序列 (7D, 5D)
- 出现的每一个ASCII码控制的字符(数值小于0x20的字符),则在该字符前面插入一个7D字节,同时将该字符的编码加上0x20.

接收方处理:

进行反变换即可恢复

比特填充法

发送方处理:

• 只要发现5个连续的比特1,立即填充1个比特0.

接收方处理:

• 只要发现5个连续的比特1, 就把其后的1个比特0删除。