The Cooper Union Department of Electrical Engineering Prof. Fred L. Fontaine

ECE211 Signal Processing & Systems Analysis Problem Set IV: Discrete-Time Signals & Systems

February 17, 2019

1. Let $M \ge 2$ be an integer. For $0 \le k \le M-1$, the *polyphase* components of the signal h[n] are defined via:

$$e_k[n] = h[Mn + k]$$

For example, for M = 2, e_0 has the even samples of h, and e_1 has the odd samples of h. Let $e_k[n]$ have z-transform $E_k(z)$. We want to verify the following equation:

$$H(z) = \sum_{k=0}^{M-1} z^{-k} E_k(z^M)$$

Follow these steps to get the proof. First, let n be any integer. We want to show that in the above formula, there is only one term associated with z^{-n} , and that term is h[n]. Given n, there exist unique integers m, k with $0 \le k \le M - 1$ such that n = Mm + k (accept this as true). So now take m, k as given. Next:

- (a) Verify the coefficient z^{-n} term can ONLY occur in the $z^{-k}E_k\left(z^M\right)$ term in the above sum.
- (b) Find the UNIQUE coefficient $e_k[\cdot]$ that contributes to z^{-n} (in terms of m and/or k).
- (c) Show that this coefficient is in fact h[n].
- 2. Given the following transfer function:

$$H(z) = \frac{2(z-3)(3z-2)^2}{(z-4)^2(2z+1)^2}$$

- (a) List all poles and zeros, with multiplicities (including any at infinity), and draw a pole-zero plot (by hand).
- (b) Identify all possible ROCs for H(z).
- (c) Identify the ROC (if any) associated with: a causal system, a stable system, a system with a well-defined frequency response.
- (d) Specify the conditions on the integer L such that $z^{L}H\left(z\right)$ has a causal inverse transform.

3. Given the following FIR filter:

$$H(z) = 2 - 3z^{-1} + 4z^{-2} + 5z^{-3}$$

- (a) Sketch (by hand) h[n].
- (b) Express h[n] as a superposition of impulses.
- (c) Sketch a transversal filter realization.
- (d) Specify the length and order of the filter.
- 4. Given the following difference equation for an IIR filter:

$$y[n] = 3x[n] - 2x[n-1] + x[n-2] + 0.3y[n-1] - 0.4y[n-2]$$

- (a) Write $H\left(z\right)$ as a ratio of polynomials (no negative powers of z).
- (b) Sketch a direct form II realization.
- (c) Sketch a direct form II transposed realization.
- 5. For $M \geq 2$, let $W_M = \exp{(-j2\pi/M)}$. This is called the *twiddle factor*. Let x[n] have z-transform X(z) and DTFT $X_{DTFT}(\omega)$. Let:

$$Y\left(z\right) = X\left(zW_{M}^{k}\right)^{T}$$

for some integer k. Find $Y_{DTFT}\left(\omega\right)$ (do this WITHOUT going to the time-domain).

- 6. The spectrum $X(\omega)$ of a discrete-time signal x[n] is shown in **Figure 6.**
 - (a) Sketch $X(3\omega)$ for $-\pi \le \omega \le \pi$. Is there a discrete-time signal whose DTFT is $X(3\omega)$?
 - (b) Sketch $X\left(\frac{\omega}{2}\right)$, $X\left(\frac{\omega}{2} + \pi\right)$ and:

$$\frac{1}{2} \left[X \left(\frac{\omega}{2} \right) + X \left(\frac{\omega}{2} + \pi \right) \right]$$

for $-\pi \le \omega \le \pi$ (all sketches by hand, on separate axes). Of these three, which (if any) correspond to a valid DTFT of a discrete-time signal?

