BÀI 2. CÁC QUY TẮC TÍNH ĐẠO HÀM

- CHƯƠNG 7. ĐẠO HÀM
- | FanPage: Nguyễn Bảo Vương

PHẦN A. LÝ THUYẾT VÀ VÍ DỤ MINH HỌA

1. Đạo hàm của hàm số $y = x^n, n \in \mathbb{N}^*$

Kiến thức trọng tâm

Hàm số $y = x^n$ với $n \in \mathbb{N}^*$ có đạo hàm trên \mathbb{R} và $(x^n)' = nx^{n-1}$.

Ví dụ 1. Tính đạo hàm của hàm số $y = x^5$ tại điểm x = 2 và $x = -\frac{1}{2}$.

Giải

Ta có
$$(x^5)' = 5x^4$$
. Từ đó, $y'(2) = 5 \cdot 2^4 = 80$ và $y'\left(-\frac{1}{2}\right) = 5 \cdot \left(-\frac{1}{2}\right)^4 = \frac{5}{16}$.

2. Đạo hàm của hàm số $y = \sqrt{x}$

Kiến thức trọng tâm

Hàm số $y = \sqrt{x}$ có đạo hàm trên khoảng $(0; +\infty)$ và $(\sqrt{x})' = \frac{1}{2\sqrt{x}}$.

Ví dụ 2. Tính đạo hàm của hàm số $y = \sqrt{x}$ tại điểm x = 1 và $x = \frac{1}{4}$.

Giải

Ta có
$$y' = (\sqrt{x})' = \frac{1}{2\sqrt{x}}, x > 0$$
. Từ đó, $y'(1) = \frac{1}{2\sqrt{1}} = \frac{1}{2}$ và $y'\left(\frac{1}{4}\right) = \frac{1}{2\sqrt{\frac{1}{4}}} = \frac{1}{2\cdot\frac{1}{2}} = 1$.

Nhận xét:

a) Cho số thực α . Hàm số $y=x^{\alpha}$ được gọi là hàm số luỹ thừa (với tập xác định $(0;+\infty)$). Công thức $(x^n) = nx^{n-1}$ còn đúng khi n là số thực, tức là với số thực α bất kì $(x^{\alpha}) = \alpha x^{\alpha-1}(x>0)$.

Với
$$\alpha = \frac{1}{2}$$
, ta nhận được công thức đã biết: $(\sqrt{x})' = \left(x^{\frac{1}{2}}\right)' = \frac{1}{2}x^{\frac{1}{2}-1} = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}(x > 0)$.

b) Ở bài học trước, dùng định nghĩa ta tìm được các công thức đạo hàm:

-
$$(C)' = 0$$
 (C là hằng số);

$$-\left(\frac{1}{x}\right)' = -\frac{1}{x^2}(x \neq 0).$$

Ví dụ 3. Tìm đạo hàm của hàm số $y = \sqrt[3]{x}$ tại điểm x = 8.

Giải

Với
$$x > 0$$
, ta có $y' = (\sqrt[3]{x})' = \left(x^{\frac{1}{3}}\right)' = \frac{1}{3}x^{\frac{1}{3}-1} = \frac{1}{3}x^{-\frac{2}{3}} = \frac{1}{3\sqrt[3]{x^2}}$.

Từ đó,
$$y'(8) = \frac{1}{3\sqrt[3]{8^2}} = \frac{1}{3(\sqrt[3]{2^3})^2} = \frac{1}{3 \cdot 2^2} = \frac{1}{12}.$$

3. Đạo hàm của hàm số lượng giác

Ta có công thức đạo hàm của các hàm số lượng giác sau:

$$-(\sin x)' = \cos x \qquad -(\cos x)' = -\sin x$$

$$-(\tan x)' = \frac{1}{\cos^2 x} \left(x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right) \qquad -(\cot x)' = -\frac{1}{\sin^2 x} (x \neq k\pi, k \in \mathbb{Z})$$

Ví dụ 4. Tính đạo hàm của hàm số $y = \cos x$ tại $x = \frac{\pi}{6}$.

Giải

Ta có
$$y' = (\cos x)' = -\sin x$$
. Vậy $y'\left(\frac{\pi}{6}\right) = -\sin\frac{\pi}{6} = -\frac{1}{2}$.

4. Đạo hàm của hàm số mũ và hàm số lôgarit

Kiến thức trọng tâm

Ta có công thức đạo hàm của các hàm số mũ và hàm số lôgarit sau:

$$-\left(e^{x}\right)'=e^{x}$$

$$-(a^x)' = a^x \ln a (a > 0, a \ne 1)$$

$$-(\ln x)' = \frac{1}{x}(x>0)$$

$$-(\log_a x)' = \frac{1}{x \ln a}(x > 0, a > 0, a \neq 1)$$

Ví dụ 5. Tìm đạo hàm của các hàm số:

a)
$$y = e^x \ \text{tai } x = 2 \ln 3$$
;

b)
$$y = \log_5 x$$
 tại $x = 2$.

Giải

a) Ta có
$$y' = (e^x)' = e^x$$
. Từ đó, $y'(2 \ln 3) = e^{2 \ln 3} = (e^{\ln 3})^2 = 3^2 = 9$.

b) Ta có
$$y' = (\log_5 x)' = \frac{1}{x \ln 5} (x > 0)$$
. Từ đó, $y'(2) = \frac{1}{2 \ln 5}$.

5. Đạo hàm của tổng, hiệu, tích, thương của hai hàm số

Kiến thức trọng tâm

Cho hai hàm số u(x), v(x) có đạo hàm tại điểm x thuộc tập xác định. Ta có:

$$-(u+v)'=u'+v'$$

$$-(u-v)'=u'-v'$$

$$-(u \cdot v)' = u'v + uv'$$

$$-\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2} (v\acute{o}i \ v = v(x) \neq 0)$$

Chú ý:

- Với
$$u = C$$
 (C là hằng số), công thức (1) trở thành $(C \cdot v)' = C \cdot v'$.

- Với
$$u = 1$$
, công thức (2) trở thành $\left(\frac{1}{v}\right)' = -\frac{v'}{v^2}(v \acute{o}i \ v = v(x) \neq 0)$.

Ví dụ 6. Tính đạo hàm của các hàm số sau:

a)
$$y = 3x^2 - 4x + 2$$

b)
$$y = x \sin x$$
;

c)
$$y = \frac{3x+2}{2x-1}$$

Giải

a)
$$(3x^2 - 4x + 2)' = (3x^2)' - (4x)' + (2)' = 3(x^2)' - 4(x)' + 0 = 3.2x - 4.1 = 6x - 4$$
.

b)
$$(x \sin x)' = (x)' \sin x + x(\sin x)' = 1 \cdot \sin x + x \cdot \cos x = \sin x + x \cos x$$
.

c)
$$\left(\frac{3x+2}{2x-1}\right)' = \frac{(3x+2)' \cdot (2x-1) - (3x+2) \cdot (2x-1)'}{(2x-1)^2} = \frac{3 \cdot (2x-1) - (3x+2) \cdot 2}{(2x-1)^2}$$

= $\frac{6x-3-6x-4}{(2x-1)^2} = -\frac{7}{(2x-1)^2}$.

Ví dụ 7. Tính đạo hàm của các hàm số sau:

a)
$$y = x^2 3^x$$

$$b) y = \frac{\sqrt{x}}{\cos x}$$

Giải

a)
$$(x^2 3^x)' = (x^2)' \cdot 3^x + x^2 \cdot (3^x)' = 2x \cdot 3^x + x^2 \cdot 3^x \cdot \ln 3 = x \cdot 3^x \cdot (2 + x \ln 3)$$
.

b)
$$\left(\frac{\sqrt{x}}{\cos x}\right)' = \frac{(\sqrt{x})' \cdot \cos x - \sqrt{x} \cdot (\cos x)'}{\cos^2 x} = \frac{\frac{1}{2\sqrt{x}}\cos x - \sqrt{x}(-\sin x)}{\cos^2 x} = \frac{\cos x + 2x\sin x}{2\sqrt{x}\cos^2 x}.$$

6. Đao hàm của hàm hợp

Cho u = g(x) là hàm số của x xác định trên khoảng (a;b) và lấy giá trị trên khoảng (c;d); y = f(u) là hàm số của u xác định trên khoảng (c;d) và lấy giá trị trên \mathbb{R} . Ta lập hàm số xác định trên (a;b) và lấy giá trị trên \mathbb{R} theo quy tắc sau: $x \mapsto f(g(x))$

Hàm số y = f(g(x)) được gọi là hàm hợp của hàm số y = f(u) với u = g(x).

Ví dụ 8.

- a) Hàm số $y = (2x+1)^3$ là hàm hợp của các hàm số nào?
- b) Hàm số $y = \cos(x^2 + 1)$ là hàm hợp của các hàm số nào?

Giải

- a) Hàm số $y = (2x+1)^3$ là hàm hợp của hàm số $y = u^3$ với u = 2x+1.
- b) Hàm số $y = \cos(x^2 + 1)$ là hàm hợp của hàm số $y = \cos u$ với $u = x^2 + 1$.

Kiến thức trọng tâm

Cho hàm số u = g(x) có đạo hàm tại x là u'_x và hàm số y = f(u) có đạo hàm tại u là y'_u thì hàm hợp y = f(g(x)) có đạo hàm tại x là $y'_x = y'_u \cdot u'_x$.

Ví dụ 9. Tính đạo hàm của các hàm số sau:

a)
$$y = (3x^2 + x)^3$$
;

b)
$$y = \sin 2x$$
;

c)
$$y = e^{x^2+1}$$
.

Giải

a) Đặt
$$u = 3x^2 + x$$
 thì $y = u^3$. Ta có $u'_x = 6x + 1$ và $y'_u = (u^3)' = 3u^2$.

Suy ra
$$y'_x = y'_u \cdot u'_x = 3u^2 \cdot (6x+1) = 3(3x^2 + x)^2 \cdot (6x+1)$$
.

Vậy
$$y' = 3(3x^2 + x)^2 \cdot (6x + 1)$$
.

b) Đặt
$$u = 2x$$
 thì $y = \sin u$. Ta có $u'_x = 2$ và $y'_u = (\sin u)' = \cos u$.

Suy ra $y'_{x} = y'_{u} \cdot u'_{x} = \cos u.2 = 2\cos 2x$.

 $V_{ay} y' = 2\cos 2x$.

c) Đặt $u = x^2 + 1$ thì $y = e^u$. Ta có $u'_x = 2x$ và $y'_u = (e^u)' = e^u$.

Suy ra $y'_x = y'_u \cdot u'_x = e^u \cdot 2x = 2xe^{x^2+1}$.

Vậy $y' = 2xe^{x^2+1}$.

BẢNG ĐẠO HÀM

BANG ĐẠO HAM				
$\left(x^{n}\right)'=nx^{n-1}$	$\left(u^{n}\right)'=nu^{n-1}\cdot u'$			
$\left(\frac{1}{x}\right)' = -\frac{1}{x^2}$	$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$			
$(\sqrt{x})' = \frac{1}{2\sqrt{x}}$	$(\sqrt{u})' = \frac{u'}{2\sqrt{u}}$			
$(\sin x)' = \cos x$	$(\sin u)' = u' \cdot \cos u$			
$(\cos x)' = -\sin x$	$(\cos u)' = -u' \cdot \sin u$			
$(\tan x)' = \frac{1}{\cos^2 x}$	$(\tan u)' = \frac{u'}{\cos^2 u}$			
$(\cot x)' = -\frac{1}{\sin^2 x}$	$(\cot u)' = -\frac{u'}{\sin^2 u}$			
$\left(e^{x}\right)'=e^{x}$	$\left(e^{u}\right)' = u' \cdot e^{u}$			
$\left(a^{x}\right)' = a^{x} \ln a > 0 \text{và} a \neq 1$	$(a^u)' = u' \cdot a^u \ln a (a > 0 \text{ và } a \neq 1)$			
$(\ln x)' = \frac{1}{x}$	$(\ln u)' = \frac{u'}{u}$			
$\left(\log_a x\right)' = \frac{1}{x \ln a} (a > 0 \text{ và } a \neq 1)$	$(\log_a u)' = \frac{u'}{u \ln a} (a > 0 \text{ và } a \neq 1)$			

7. Đạo hàm cấp hai

Kiến thức trọng tâm

Cho hàm số y = f(x) có đạo hàm y' = f'(x) tại mọi $x \in (a;b)$.

Nếu hàm số y' = f'(x) lại có đạo hàm tại x thì ta gọi đạo hàm của y' là đạo hàm cấp hai của hàm số y = f(x) tại x, kí hiệu y'' hoặc f''(x).

Ví dụ 10. Tính đạo hàm cấp hai của các hàm số:

- a) $y = 3x^2 + 5x + 1$
- b) $y = \sin x$.

Giải

- a) y' = 3.2x + 5 + 0 = 6x + 5, y'' = 6.1 + 0 = 6.
- b) $y' = \cos x; y'' = -\sin x$.

Ý nghĩa cơ học của đạo hàm cấp hai

Đạo hàm cấp hai $f^{''}(t)$ là gia tốc tức thời tại thời điểm t của vật chuyển động có phương trình s = f(t).

Ví dụ 11. Một vật chuyển động thẳng không đều xác định bởi phương trình $s(t) = t^2 - 4t + 3$, trong đó s tính bằng mét và t là thời gian tính bằng giây. Tính gia tốc của chuyển động tại thời điểm t = 4.

Giải

Ta có s'(t) = 2t - 4; s''(t) = 2.

Gia tốc của chuyển động tại thời điểm t = 4 là $s''(4) = 2m/s^2$.

PHẦN B. BÀI TẬP TỰ LUẬN (PHẦN DẠNG)

Dạng 1. Tính đạo hàm

Câu 1. (SGK - CTST 11 - Tập 2) Tính đạo hàm của hàm số $y = x^{10}$ tại x = -1 và $x = \sqrt[3]{2}$.

Câu 2. (SGK - CTST 11 - Tập 2) Tìm đạo hàm của các hàm số:

a)
$$y = \sqrt[4]{x}$$
 tại $x = 1$

b)
$$y = \frac{1}{x} \text{ tại } x = -\frac{1}{4}$$
.

Câu 3. (SGK - CTST 11 - Tập 2) Tính đạo hàm của hàm số $y = \tan x$ tại $x = \frac{3\pi}{4}$.

Câu 4. (SGK - CTST 11 - Tập 2) Tìm đạo hàm của các hàm số:

a)
$$y = 9^x \text{ tại } x = 1;$$

b)
$$y = \ln x \text{ tại } x = \frac{1}{3}$$
.

Câu 5. (SGK - CTST 11 - Tập 2) Tính đạo hàm của các hàm số sau:

a)
$$y = x \log_2 x$$
;

b)
$$y = x^3 e^x$$
.

Câu 6. (SGK - CTST 11 - Tập 2) Tính đạo hàm của các hàm số sau:

a)
$$y = (2x^3 + 3)^2$$

b)
$$y = \cos 3x$$
;

c)
$$y = \log_2(x^2 + 2)$$
.

Câu 7. (SGK - CTST 11 - Tập 2) Tính đạo hàm cấp hai của các hàm số sau:

a)
$$y = x^2 - x$$
;

b)
$$y = \cos x$$
.

Câu 8. (SGK - CTST 11 - Tập 2) Tính đạo hàm của các hàm số sau:

a)
$$y = 2x^3 - \frac{x^2}{2} + 4x - \frac{1}{3}$$

b)
$$y = \frac{-2x+3}{x-4}$$
;

c)
$$y = \frac{x^2 - 2x + 3}{x - 1}$$
;

d)
$$y = \sqrt{5x}$$
.

Câu 9. (SGK - CTST 11 - Tập 2) Tính đạo hàm của các hàm số sau:

a)
$$y = \sin 3x$$

b)
$$y = \cos^3 2x$$
;

c)
$$y = \tan^2 x$$
;

d)
$$y = \cot(4-x^2)$$
.

Câu 10. (SGK - CTST 11 - Tập 2) Tính đạo hàm của các hàm số sau:

a)
$$y = (x^2 - x) \cdot 2^x$$

b)
$$y = x^2 \log_3 x$$
;

c)
$$y = e^{3x+1}$$
.

Câu 11. (SGK - CTST 11 - Tập 2) Tính đạo hàm cấp hai của các hàm số sau:

a)
$$y = 2x^4 - 5x^2 + 3$$
;

b)
$$y = xe^x$$
.

Câu 12. Tính đạo hàm của các hàm số sau:

a)
$$y = (\sqrt{x} + 2)(x^2 + 1)$$

b)
$$y = \frac{x-1}{x^2+1}$$

Câu 13. Tính đạo hàm của hàm số $y = \sin^2\left(x + \frac{\pi}{4}\right)$.

Câu 14. Tính đạo hàm của hàm số $y = x^2 e^{-2x}$ và tìm x để y' = 0.

Câu 15. Cho hàm số
$$f(x) = x + \tan\left(x + \frac{\pi}{4}\right)$$
 và $g(x) = x \ln|2 - x|$. Tính $\frac{f'(0)}{g'(0)}$.

Câu 16. Tính đạo hàm của các hàm số sau:

a)
$$y = (x+1)^2 (x^2-1)$$

b)
$$y = \left(x^2 - \frac{2}{\sqrt{x}}\right)^3$$

Câu 17. Tính đạo hàm của các hàm số sau:

a)
$$y = \frac{x^2 - x + 1}{x + 2}$$

b)
$$y = \frac{1-x^2}{x^2+1}$$

Câu 18. Cho hàm số
$$f(x) = \frac{x}{\sqrt{4-x^2}}$$
 và $g(x) = \frac{1}{x} + \frac{1}{\sqrt{x}} + x^2$. Tính $f'(0) - g'(1)$.

Câu 19. Tính đạo hàm của hàm số $y = 3\tan\left(x + \frac{\pi}{4}\right) - 2\cot\left(\frac{\pi}{4} - x\right)$.

Câu 20. Cho hàm số $f(x) = \cos^2 x + \cos^2 \left(\frac{2\pi}{3} + x\right) + \cos^2 \left(\frac{2\pi}{3} - x\right)$. Tính đạo hàm f'(x) và chứng tỏ f'(x) = 0 với mọi $x \in \mathbb{R}$.

Câu 21. Cho hàm số $f(x) = 4\sin^2\left(2x - \frac{\pi}{3}\right)$. Chứng minh rằng $|f'(x)| \le 8$ với mọi $x \in \mathbb{R}$. Tìm x để f'(x) = 8.

Câu 22. Biết y là hàm số của x thoả mãn phương trình $xy = 1 + \ln y$. Tính y'(0).

Câu 23. Tính đạo hàm của các hàm số sau:

a)
$$y = \frac{1 - \sqrt[3]{x}}{1 + \sqrt[3]{x}} \text{ v\'oi } x > 0;$$

b)
$$y = (1+x-2x^2)\left(2-x^2+\frac{x^3}{3}\right)$$

Câu 24. Tính đạo hàm của các hàm số sau:

a)
$$y = (\sin x + 2\cos x)(\sin x - 2\cos x + 1)$$
;

b)
$$y = \frac{\tan x - 1}{\cot x + 2}$$
.

Câu 25. Tính đạo hàm của các hàm số sau:

a)
$$y = \frac{2^x + 1}{2^x - 1}$$

b)
$$y = (3 \ln x + 2)(2 \log_3 x - 5)$$
.

Câu 26. Tính đạo hàm của các hàm số sau:

a)
$$y = \sqrt{2 + \sin 3x}$$
;

b)
$$y = \ln^2(3x+2)$$
;

c)
$$y = \frac{1}{e^{3x} - 1}$$

d)
$$y = \tan(\cot x)$$
.

Câu 27. Tính đạo hàm của các hàm số sau:

a)
$$y = \frac{-3x^2}{2} + \frac{2}{x} + \frac{x^3}{3}$$

b)
$$y = (x^2 - 1)(x^2 - 4)(x^2 + 9);$$

c)
$$y = \frac{x^2 - 2x}{x^2 + x + 1}$$

d)
$$y = \frac{1 - 2x}{x + 1}$$

e)
$$y = xe^{2x+1}$$
;

g)
$$y = (2x+3)3^{2x+1}$$
;

h)
$$y = x \ln^2 x$$
;

i)
$$y = \log_2(x^2 + 1)$$
.

Câu 28. Cho hàm số

$$f(x) = 3x^3 - 4\sqrt{x}$$

Tính
$$f(4)$$
; $f'(4)$; $f(a^2)$; $f'(a^2)$ (a là hằng số khác 0).

Câu 29. Tính đạo hàm của các hàm số sau:

a)
$$y = (1+x^2)^{20}$$
;

b)
$$y = \frac{2+x}{\sqrt{1-x}}$$

Câu 30. Tính đạo hàm của các hàm số sau:

a)
$$y = \frac{x}{\sin x - \cos x}$$
;

b)
$$y = \frac{\sin x}{x}$$
;

c)
$$y = \sin x - \frac{1}{3} \sin^3 x$$

d)
$$y = \cos(2\sin x)$$
.

Câu 31. Tính đạo hàm của mỗi hàm số sau tại điểm $x_0 = 1$:

a)
$$f(x) = x^6$$

b)
$$g(x) = (2x-1)(x+1)$$
;

c)
$$h(x) = \frac{1-x}{3x+5}$$

d)
$$k(x) = \frac{1}{\sqrt{x}}$$

e)
$$m(x) = 2^{3x+1}$$

g)
$$n(x) = \log_3(2x+1)$$
.

Câu 32. Tính đạo hàm của mỗi hàm số sau tại điểm $x_0 = \frac{\pi}{4}$.

a)
$$f(x) = 2\sin x$$

b)
$$g(x) = \cot\left(x + \frac{\pi}{4}\right)$$
.

Câu 33. Cho hàm số $f(x) = x^3 - 3x$. Giải bất phương trình f'(x) < 0.

Câu 34. Cho hàm số f(x) có đạo hàm tại mọi điểm thuộc tập xác định, hàm số g(x) được xác định bởi g(x) = -3 - 2f(x). Biết f'(5) = 1. Tính g'(5)

Câu 35. Cho hàm số f(x) có đạo hàm tại mọi điểm thuộc tập xác định và f'(5) = 1. Tính đạo hàm của hàm số g(x) = f(1+2x) tại x = 2.

Câu 36. Tính đạo hàm của mỗi hàm số sau tại điểm $x_0 = 2$:

a)
$$f(x) = e^{x^2 + 2x}$$

b)
$$g(x) = \frac{3^x}{2^x}$$

c)
$$h(x) = 2^x \cdot 3^{x+2}$$

d)
$$k(x) = \log_3(x^2 - x)$$
.

Câu 37. Tìm đạo hàm của mỗi hàm số sau:

a)
$$f(x) = 2\cos(\sqrt{x})$$
;

b)
$$g(x) = \tan(x^2)$$
;

c)
$$h(x) = \cos^2(3x) - \sin^2(3x)$$

d)
$$k(x) = \sin^2 x + e^x \cdot \sqrt{x}$$
.

Câu 38. Cho hàm số $f(x) = 2^{3x-6}$. Giải phương trình $f'(x) = 3 \ln 2$.

Câu 39. Giải bất phương trình f'(x) < 0, biết:

a)
$$f(x) = x^3 - 9x^2 + 24x$$
;

b)
$$f(x) = -\log_5(x+1)$$
.

Câu 40. Cho hàm số f(x) có đạo hàm tại mọi điểm thuộc tập xác định, hàm số g(x) được xác định bởi $g(x) = [f(x)]^2 + 2xf(x)$. Biết f'(0) = f(0) = 1. Tính g'(0).

Câu 41. (SGK - KNTT 11 - Tập 2) Tính đạo hàm cấp hai của các hàm số sau:

- a) $y = xe^{2x}$;
- b) $y = \ln(2x+3)$.

Câu 42. (SGK - KNTT 11 - Tập 2) Cho hàm số $f(x) = x^2 e^x$. Tính f''(0).

Câu 43. (SGK - KNTT 11 - Tập 2) Tính đạo hàm cấp hai của các hàm số sau:

- a) $y = \ln(x+1)$;
- b) $y = \tan 2x$.

Câu 44. (SGK - KNTT 11 - Tập 2) Cho hàm số $P(x) = ax^2 + bx + 3$ (a, b là hằng số). Tìm a, b biết P'(1) = 0 và P''(1) = -2.

Câu 45. (SGK - KNTT 11 - Tập 2) Cho hàm số $f(x) = 2\sin^2\left(x + \frac{\pi}{4}\right)$. Chứng minh rằng $\left|f''(x)\right| \le 4$ với moi x.

Câu 46. Tính đạo hàm cấp hai của các hàm số sau:

a)
$$y = \sqrt{2} \cos \left(4\pi t + \frac{\pi}{3} \right)$$

b)
$$v = x^2 e^{-x}$$

Câu 47. Cho hàm số $f(x) = \ln\left(x + \sqrt{1 + x^2}\right)$. Tính f''(0).

Câu 48. Tính đạo hàm cấp hai của các hàm số sau:

a)
$$y = \frac{x^4}{4} - 2x^2 + 1$$

b)
$$y = \frac{2x+1}{x-1}$$

Câu 49. Tính đạo hàm cấp hai của các hàm số sau:

- a) $y = \ln |2x 1|$;
- b) $y = \tan\left(x + \frac{\pi}{3}\right)$

Câu 50. Cho hàm số $f(x) = xe^{x^2} + \ln(x+1)$.

Tính f'(0) và f''(0).

Câu 51. Cho $f(x) = (x^2 + a)^2 + b(a, b \text{ là tham số})$. Biết f(0) = 2 và f''(1) = 8, tìm a và b.

Câu 52. Tính đạo hàm cấp hai của các hàm số sau:

- a) $y = 3x^3 x^2 + 3x 1$;
- b) $y = \cos^2 x$.

Câu 53. Tính đạo hàm cấp hai của các hàm số sau:

- a) $y = x \sin 2x$;
- b) $y = \cos^2 x$;

c)
$$y = x^4 - 3x^3 + x^2 - 1$$
.

Câu 54. Cho hàm số $f(x) = x^2 + 2x - 1$.

a) Tìm đạo hàm cấp hai của hàm số.

b) Tính đạo hàm cấp hai của hàm số tại điểm $x_0 = 0, x_0 = 1$.

Câu 55. Cho hàm số $g(x) = \cos x$.

a) Tìm đạo hàm cấp hai của hàm số.

b) Tính đạo hàm cấp hai của hàm số tại $x_0 = \frac{\pi}{6}$.

Câu 56. Cho hàm số $h(x) = \ln x, x > 0$.

a) Tìm đạo hàm cấp hai của hàm số.

b) Tính đạo hàm cấp hai của hàm số tại $x_0 = \sqrt{2}$.

Câu 57. Cho hàm số $k(x) = \sin x \cdot \cos x$.

a) Tìm đạo hàm cấp hai của hàm số.

b) Tính đạo hàm cấp hai của hàm số tại $x_0 = \frac{\pi}{3}$.

Câu 58. Cho hàm số $f(x) = x^2 - 4x$. Giải phương trình f'(x) = f''(x).

Câu 59. Tìm đạo hàm cấp hai của mỗi hàm số sau:

$$a) f(x) = \frac{1}{3x+5}$$

b)
$$g(x) = 2^{x+3x^2}$$

Câu 60. Cho hàm số $f(x) = \sin x \cdot \cos x \cdot \cos 2x$.

a) Tìm đạo hàm cấp hai của hàm số.

b) Tính đạo hàm cấp hai của hàm số tại $x_0 = \frac{\pi}{6}$.

Câu 61. Cho hàm số $f(x) = x^3 + 4x^2 + 5$. Giải bất phương trình $f'(x) - f''(x) \ge 0$.

Dạng 2. Ứng dụng

Câu 62. (SGK - CTST 11 - Tập 2) Viết phương trình tiếp tuyến của đồ thị hàm số $y = \sqrt{x}$ tại điểm có hoành độ bằng 4.

Câu 63. (SGK - CTST 11 - Tập 2) Một hòn sỏi rơi tự do có quãng đường rơi tính theo thời gian t là $s(t) = 4,9t^2$, trong đó s tính bằng mét và t tính bằng giây. Tính gia tốc rơi của hòn sỏi lúc t = 3.

Câu 64. (SGK - CTST 11 - Tập 2) Cân nặng trung bình của một bé gái trong độ tuổi từ 0 đến 36 tháng có thể được tính gần đúng bởi hàm số $w(t) = 0,000758t^3 - 0,0596t^2 + 1,82t + 8,15$, trong đó t được tính bằng tháng và w được tính bằng pound (nguồn:

https://www.cdc.gov/growthcharts/data/who/GrChrt_Boys). Tính tốc độ thay đổi cân nặng của bé gái đó tại thời điểm 10 tháng tuổi.

Câu 65. (SGK - CTST 11 - Tập 2) Một công ty xác định rằng tổng chi phí của họ, tính theo nghìn đô-la, để sản xuất x mặt hàng là $C(x) = \sqrt{5x^2 + 60}$ và công ty lên kế hoạch nâng sản lượng trong t tháng kể từ nay theo hàm số x(t) = 20t + 40. Chi phí sẽ tăng nhanh thế nào sau 4 tháng kể từ khi công ty thực hiện kế hoạch đó?

Câu 66. (SGK - CTST 11 - Tập 2) Trên Mặt Trăng, quãng đường rơi tự do của một vật được cho bởi công thức $s(t) = 0.81t^2$, trong đó t là thời gian được tính bằng giây và s tính bằng mét. Một vật được thả rơi từ độ cao 200m phía trên Mặt Trăng. Tại thời điểm t = 2 sau khi thả vật đó, tính:

- a) Quãng đường vật đã rơi;
- b) Gia tốc của vật.

Câu 67. Một vật được phóng thẳng đứng lên trên từ mặt đất với vận tốc ban đầu là $v_0(m/s)$ (bỏ qua sức cản của không khí) thì độ cao h của vật (tính bằng mét) sau t giây được cho bởi công thức $h = v_0 t - \frac{1}{2} g t^2$ (g là gia tốc trọng trường). Tìm vận tốc của vật khi chạm đất.

Câu 68. Chuyển động của một hạt trên một dây rung được cho bởi công thức $s(t) = 10 + \sqrt{2} \sin\left(4\pi t + \frac{\pi}{6}\right)$, trong đó s tính bằng centimét và t tính bằng giây. Tính vận tốc của hạt sau t giây. Vận tốc cực đại của hạt là bao nhiều? (Làm tròn kết quả đến chữ số thập phân thứ nhất). **Câu 69.** Một chuyển động thẳng xác định bởi phương trình $s(t) = -2t^2 + 15t + 3$, trong đó s tính bằng mét và t là thời gian tính bằng giây. Tính vận tốc và gia tốc của chuyển động tại thời điểm t = 2.

Câu 70. Nếu số lượng sản phẩm sản xuất được của một nhà máy là x (đơn vị: trăm sản phẩm) thì lợi nhuận sinh ra là $P(x) = -200x^2 + 12800x - 74000$ (nghìn đồng). Tính tốc độ thay đổi lợi nhuận của nhà máy đó khi sản xuất 1200 sản phẩm.

Câu 71. Nếu số lượng sản phẩm sản xuất được của một nhà máy là x (đơn vị: trăm sản phẩm) thì lợi nhuận sinh ra là P(x) = 200(x-2)(17-x) (nghìn đồng). Tính tốc độ thay đổi lợi nhuận của nhà máy đó khi sản xuất 3000 sản phẩm.

Câu 72. Cho hàm số $y = \frac{2x+1}{x-2}$ có đồ thị (C), viết phương trình tiếp tuyến của (C) biết hệ số góc của tiếp tuyến bằng -5.

Câu 73. Cho hàm số $y = x^3 + 2$ có đồ thị (*C*). Viết phương trình tiếp tuyến của (*C*) biết tiếp tuyến đó vuông góc với đường thẳng $y = -\frac{1}{3}x - 1$.

Câu 74. Một chất điểm chuyển động theo phương trình $s(t) = \frac{1}{3}t^3 - 2t^2 + 4t + 1$, trong đó t > 0, t tính bằng giây, s(t) tính bằng mét. Tính vận tốc tức thời của chất điểm tại thời điểm t = 3(s).

Câu 75. Một chất điểm chuyển động theo phương trình $s(t) = 6 \sin\left(3t + \frac{\pi}{4}\right)$, trong đó t > 0, t tính

bằng giây, s(t) tính bằng centimét. Tính vận tốc tức thời của chất điểm tại thời điểm $t = \frac{\pi}{6}(s)$.

Câu 76. Một viên đạn được bắn lên cao theo phương thẳng đứng có phương trình chuyển động $s(t) = 2 + 196t - 4,9t^2$, trong đó $t \ge 0,t$ (s) là thời gian chuyển động, s(m) là độ cao so với mặt đất.

- a) Sau bao lâu kể từ khi bắn thì viên đạn đạt được độ cao 1962 m?
- b) Tính vân tốc tức thời của viên đan khi viên đan đat được đô cao 1962m.
- c) Tại thời điểm viên đạn đạt vận tốc tức thời bằng 98 m/s thì viên đạn đang ở độ cao bao nhiều mét so với mặt đất?

Câu 77. Năm 2001, dân số Việt Nam khoảng 78690000 người. Nếu tỉ lệ tăng dân số hàng năm luôn là 1,7% thì ước tính số dân Việt Nam sau x năm kể từ năm 2001 được tính theo hàm số sau:

 $f(x) = 7,869e^{0,017x}$ (chục triệu người). Tốc độ gia tăng dân số (chục triệu người/năm) sau x năm kể từ năm 2001 được xác định bởi hàm số f'(x).

- a) Tìm hàm số thể hiện tốc độ gia tăng dân số sau x năm kể từ năm 2001.
- b) Tính tốc độ gia tăng dân số Việt Nam theo đơn vị chục triệu người/năm vào năm 2023 (làm tròn kết quả đến hàng phần mười), nêu ý nghĩa của kết quả đó.

Câu 78. Trong thuyết động học phân tử chất khí, với một khối khí lí tưởng, các đại lượng áp suất p(Pa), thể tích $V(m^3)$, nhiệt độ T(K), số mol n(mol) liên hệ với nhau theo phương trình: pV = nRT, trong đó R = 8,31(J/mol.K) là hằng số.

(Nguồn: James Stewart, Calculus)

Một bóng thám không chứa 8 mol khí hydrogen ở trạng thái lí tưởng có áp suất không đổi $p = 10^5 Pa$. Tính tốc độ thay đổi thể tích theo nhiệt độ của khối khí trong bóng thám không.

Câu 79. Cho hàm số $y = x^2 + 3x$ có đồ thị (C). Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có:

- a) Hoành độ bằng -1;
- b) Tung độ bằng 4.

Câu 80. Cho hàm số $y = \frac{x-3}{x+2}$ có đồ thị (C). Viết phương trình tiếp tuyến d của đồ thị (C) trong mỗi trường hợp sau:

- a) d song song với đường thẳng y = 5x 2;
- b) d vuông góc với đường thẳng y = -20x + 1.

Câu 81. Một chất điểm chuyển động theo phương trình $s(t) = \frac{1}{3}t^3 - 3t^2 + 8t + 2$, trong đó t > 0, t tính bằng giây, s(t) tính bằng mét. Tính vận tốc tức thời của chất điểm tại thời điểm t = 5(s).

Câu 82. Một mạch dao động điện từ LC có lượng điện tích dịch chuyển qua tiết diện thẳng của dây xác định bởi hàm số $Q(t) = 10^{-5} \sin\left(2000t + \frac{\pi}{3}\right)$, trong đó t > 0, t tính bằng giây, Q tính bằng

Coulomb. Tính cường độ dòng điện tức thời I(A) trong mạch tại thời điểm $t = \frac{\pi}{1500}(s)$, biết I(t) = Q'(t).

Câu 83. Năm 2010, dân số ở một tỉnh D là 1038229 người. Tính đến năm 2015, dân số của tỉnh đó là 1153600 người. Cho biết dân số của tỉnh D được ước tính theo công thức $S(N) = Ae^{Nr}$ (trong đó A là dân số của năm lấy làm mốc, S là dân số sau N năm, r là tỉ lệ tăng dân số hàng năm được làm tròn đến hàng phần nghìn). Tốc độ gia tăng dân số (người/năm) vào thời điểm sau N năm kể từ năm 2010 được xác định bởi hàm số S'(N). Tính tốc độ gia tăng dân số của tỉnh D vào năm 2023 (làm tròn kết quả đến hàng đơn vị theo đơn vị người/năm), biết tỉ lệ tăng dân số hàng năm không đổi.

Câu 84. Một tài xế đang lái xe ô tô, ngay khi phát hiện có vật cản phía trước đã phanh gấp lại nhưng vẫn xảy ra va chạm, chiếc ô tô để lại vết trượt dài 20,4 m (được tính từ lúc bắt đầu đạp phanh đến khi xảy ra va chạm). Trong quá trình đạp phanh, ô tô chuyển động theo phương trình

 $s(t) = 20t - \frac{5}{2}t^2$, trong đó s(m) là độ dài quãng đường đi được sau khi phanh, t(s) là thời gian tính từ lúc bắt đầu phanh $(0 \le t \le 4)$.

- a) Tính vận tốc tức thời của ô tô ngay khi đạp phanh. Hãy cho biết xe ô tô trên có chạy quá tốc độ hay không, biết tốc độ giới hạn cho phép là $70 \, km \, / \, h$.
- b) Tính vận tốc tức thời của ô tô ngay khi xảy ra và chạm?

Câu 85. Trong kinh tế học, xét mô hình doanh thu y (đồng) được tính theo số sản phẩm sản xuất ra x (chiếc) theo công thức y = f(x).

Xét giá trị ban đầu $x = x_0$. Đặt $Mf(x_0) = f(x_0 + 1) - f(x_0)$ và gọi giá trị đó là giá trị y-cận biên của x tại $x = x_0$. Giá trị $Mf(x_0)$ phản ánh lượng doanh thu tăng thêm khi sản xuất thêm một đơn vị sản phẩm tại mốc sản phẩm x_0 .

Xem hàm doanh thu y = f(x) như là hàm biến số thực x.

Khi đó $Mf(x_0) = f(x_0 + 1) - f(x_0) \approx f'(x_0)$. Như vậy, đạo hàm $f'(x_0)$ cho chúng ta biết (xấp xỉ) lượng doanh thu tăng thêm khi sản xuất thêm một đơn vị sản phẩm tại mốc sản phẩm x_0 . Tính doanh thu tăng thêm khi sản xuất thêm một đơn vị sản phẩm nếu hàm doanh thu là $y = 10x - \frac{x^2}{100}$ tại mốc sản phẩm $x_0 = 10000$.

Câu 86. Chuyển động của một vật gắn trên con lắc lò xo (khi bỏ qua ma sát và sức cản không khí) được cho bởi phương trình sau: $x(t) = 4\cos\left(2\pi t + \frac{\pi}{3}\right)$, ở đó x tính bằng centimét và thời gian t tính bằng giây. Tìm gia tốc tức thời của vật tại thời điểm t = 5 giây (làm tròn kết quả đến hàng đơn vị).

Câu 87. (SGK - KNTT 11 - Tập 2) Một vật chuyển động thẳng có phương trình $s = 2t^2 + \frac{1}{2}t^4$ (s tính bằng mét, t tính bằng giây). Tìm gia tốc của vật tại thời điểm t = 4 giây.

Câu 88. (SGK - KNTT 11 - Tập 2) Phương trình chuyển động của một hạt được cho bởi $s(t) = 10 + 0.5 \sin\left(2\pi t + \frac{\pi}{5}\right)$, trong đó s tính bằng centimét và t tính bằng giây. Tính gia tốc của hạt tại thời điểm t = 5 giây (làm tròn kết quả đến chữ số thập phân thứ nhất).

Câu 89. Phương trình chuyển động của một hạt được cho bởi công thức $s(t) = 15 + \sqrt{2} \sin\left(4\pi t + \frac{\pi}{6}\right)$, trong đó s tính bằng centimét và t tính bằng giây. Tính gia tốc của hạt tại thời điểm t = 3 giây (làm tròn kết quả đến chữ số thập phân thứ nhất).

Câu 90. Một chuyển động thẳng xác định bởi phương trình $s(t) = -2t^2 + 15t + 3$, trong đó s tính bằng mét và t là thời gian tính bằng giây. Tính vận tốc và gia tốc của chuyển động tại thời điểm t = 2.

Câu 91. Một chất điểm chuyển động thẳng có phương trình $s = 100 + 2t - t^2$ trong đó thời gian được tính bằng giây và s được tính bằng mét.

- a) Tại thời điểm nào chất điểm có vận tốc bằng 0?
- b) Tìm vận tốc và gia tốc của chất điểm tại thời điểm t = 3s.

Câu 92. Một chuyển động thẳng xác định bởi phương trình $s(t) = -2t^3 + 75t + 3$, trong đó s tính bằng mét và t là thời gian tính bằng giây. Tính vận tốc và gia tốc của chuyển động tại thời điểm t = 3.

Câu 93. Một chất điểm chuyển động theo phương trình $s(t) = \frac{1}{3}t^3 - 3t^2 + 5t + 4$, trong đó t > 0, t tính bằng giây, s(t) tính bằng mét. Tính gia tốc tức thời của chất điểm tại thời điểm t = 3(s).

Câu 94. Một chất điểm có phương trình chuyển động $s(t) = 6\sin\left(3t + \frac{\pi}{4}\right)$, trong đó t > 0, t tính bằng giây, s(t) tính bằng centimét. Tính gia tốc tức thời của chất điểm tại thời điểm $t = \frac{\pi}{6}(s)$.

Câu 95. Một chất điểm chuyển động theo phương trình $s(t) = \frac{1}{3}t^3 - 3t^2 + 8t + 2$, trong đó t > 0, t tính bằng giây, s(t) tính bằng mét. Tính gia tốc tức thời của chất điểm:

- a) Tại thời điểm t = 5(s).
- b) Tại thời điểm mà vận tốc tức thời của chất điểm bằng -1m/s.

Câu 96. Một chất điểm có phương trình chuyển động $s(t) = 3\sin\left(t + \frac{\pi}{2}\right)$, trong đó t > 0, t tính bằng giây, s(t) tính bằng centimét. Tính gia tốc tức thời của chất điểm tại thời điểm $t = \frac{\pi}{2}(s)$.

PHẨN C. BÀI TẬP TRẮC NGHIỆM (PHÂN MỨC ĐÔ)

1. Câu hỏi dành cho đối tượng học sinh trung bình – khá

Cho hàm số $y = \frac{4}{x-1}$. Khi đó y'(-1) bằng Câu 1.

A. -1.

C. 2.

D. 1.

Tính đạo hàm của hàm số $f(x) = \frac{2x+7}{x+4}$ tại x=2 ta được: Câu 2.

A. $f'(2) = \frac{1}{36}$. **B.** $f'(2) = \frac{11}{6}$. **C.** $f'(2) = \frac{3}{2}$. **D.** $f'(2) = \frac{5}{12}$.

Tính đạo hàm của hàm số y = x(x+1)(x+2)(x+3) tại điểm $x_0 = 0$ là: Câu 3.

A. y'(0) = 5. **B.** y'(0) = 6. **C.** y'(0) = 0. **D.** y'(0) = -6.

Tính đạo hàm của hàm số $y = \sqrt{x} + x$ tại điểm $x_0 = 4$ là: Câu 4.

A. $y'(4) = \frac{9}{2}$. **B.** y'(4) = 6. **C.** $y'(4) = \frac{3}{2}$. **D.** $y'(4) = \frac{5}{4}$.

Đạo hàm của hàm số $y = 5\sin x - 3\cos x$ tại $x_0 = \frac{\pi}{2}$ là: Câu 5.

A. $y'\left(\frac{\pi}{2}\right) = 3$. **B.** $y'\left(\frac{\pi}{2}\right) = 5$. **C.** $y'\left(\frac{\pi}{2}\right) = -3$. **D.** $y'\left(\frac{\pi}{2}\right) = -5$.

Cho hàm số $y = \frac{x+2}{x-1}$. Tính y'(3)

A. $\frac{5}{2}$.

B. $-\frac{3}{4}$. **C.** $-\frac{3}{2}$.

D. $\frac{3}{4}$.

Cho hàm số $f(x) = \frac{3x+1}{\sqrt{x^2+4}}$. Tính giá trị biểu thức f'(0). Câu 7.

A. -3.

B. -2.

C. $\frac{3}{2}$.

D. 3.

Tính đạo hàm của hàm số $y = x^3 + 2x + 1$. Câu 8.

A. $y' = 3x^2 + 2x$. **B.** $y' = 3x^2 + 2$. **C.** $y' = 3x^2 + 2x + 1$. **D.** $y' = x^2 + 2$.

Khẳng đinh nào sau đây sai Câu 9.

A. $y = x \Rightarrow y' = 1$. **B.** $y = x^3 \Rightarrow y' = 3x^2$.

C. $v = x^5 \Rightarrow v' = 5x$. D. $v = x^4 \Rightarrow v' = 4x^3$.

Câu 10. Hàm số $v = x^3 - 2x^2 - 4x + 2018$ có đạo hàm là

A. $y' = 3x^2 - 4x + 2018$. **B.** $y' = 3x^2 - 2x - 4$.

C. $y' = 3x^2 - 4x - 4$. **D.** $y' = x^2 - 4x - 4$.

Câu 11. Đạo hàm của hàm số $y = -x^3 + 3mx^2 + 3(1-m^2)x + m^3 - m^2$ (với *m* là tham số) bằng

A. $3x^2 - 6mx - 3 + 3m^2$. **B.** $-x^2 + 3mx - 1 - 3m$.

C. $-3x^2 + 6mx + 1 - m^2$. D. $-3x^2 + 6mx + 3 - 3m^2$.

Câu 12. Đao hàm của hàm số $y = x^4 - 4x^2 - 3$ là

A.
$$y' = -4x^3 + 8x$$
. **B.** $y' = 4x^2 - 8x$. **C.** $y' = 4x^3 - 8x$. **D.** $y' = -4x^2 + 8x$

B.
$$y' = 4x^2 - 8x$$

C.
$$y' = 4x^3 - 8x$$
.

D.
$$y' = -4x^2 + 8x$$

Câu 13. Đạo hàm của hàm số $y = \frac{x^4}{2} + \frac{5x^3}{3} - \sqrt{2x} + a^2$ (a là hằng số) bằng.

A.
$$2x^3 + 5x^2 - \frac{1}{\sqrt{2x}} + 2a$$
.

B.
$$2x^3 + 5x^2 + \frac{1}{2\sqrt{2x}}$$
.

C.
$$2x^3 + 5x^2 - \frac{1}{\sqrt{2x}}$$
. **D.** $2x^3 + 5x^2 - \sqrt{2}$.

D.
$$2x^3 + 5x^2 - \sqrt{2}$$
.

Câu 14. Hàm số nào sau đây có đạo hàm bằng $\frac{1}{\sqrt{2\pi}}$?

A.
$$f(x) = 2\sqrt{x}$$
.

B.
$$f(x) = \sqrt{x}$$
.

$$\mathbf{C.} \ f(x) = \sqrt{2x} \ .$$

A.
$$f(x) = 2\sqrt{x}$$
. **B.** $f(x) = \sqrt{x}$. **C.** $f(x) = \sqrt{2x}$. **D.** $f(x) = -\frac{1}{\sqrt{2x}}$.

Câu 15. Cho các hàm số u = u(x), v = v(x) có đạo hàm trên khoảng J và $v(x) \neq 0$ với $\forall x \in J$. Mệnh đề nào sau đây sai?

A.
$$[u(x)+v(x)]'=u'(x)+v'(x)$$
.

$$\mathbf{B.} \left[\frac{1}{v(x)} \right]' = \frac{v'(x)}{v^2(x)}.$$

$$\mathbf{C.} \left[u(x).v(x) \right]' = u'(x).v(x) + v'(x).u(x). \qquad \mathbf{D.} \left[\frac{u(x)}{v(x)} \right]' = \frac{u'(x).v(x) - v'(x).u(x)}{v^2(x)}.$$

$$\mathbf{D.} \left[\frac{u(x)}{v(x)} \right]' = \frac{u'(x).v(x) - v'(x).u(x)}{v^2(x)}$$

Câu 16. Tính đạo hàm của hàm số $y = x^2 - \frac{1}{x}$.

A.
$$y' = 2x - \frac{1}{x^2}$$
.

B.
$$y' = x - \frac{1}{x^2}$$
.

C.
$$y' = x + \frac{1}{x^2}$$
.

A.
$$y' = 2x - \frac{1}{x^2}$$
. **B.** $y' = x - \frac{1}{x^2}$. **C.** $y' = x + \frac{1}{x^2}$. **D.** $y' = 2x + \frac{1}{x^2}$.

Câu 17. Tính đạo hàm của hàm số $y = \frac{2x}{x-1}$

A.
$$y' = \frac{2}{(x-1)^2}$$

B.
$$y' = \frac{2}{(x-1)}$$
.

C.
$$y' = \frac{-2}{(x-1)^2}$$

A.
$$y' = \frac{2}{(x-1)^2}$$
. **B.** $y' = \frac{2}{(x-1)}$. **C.** $y' = \frac{-2}{(x-1)^2}$. **D.** $y' = \frac{-2}{(x-1)}$.

Câu 18. Hàm số $y = \frac{1}{r^2 + 5}$ có đạo hàm bằng:

A.
$$y' = \frac{1}{(x^2 + 5)^2}$$

B.
$$y' = \frac{2x}{(x^2 + 5)^2}$$

C.
$$y' = \frac{-1}{(x^2 + 5)^2}$$

A.
$$y' = \frac{1}{(x^2 + 5)^2}$$
. **B.** $y' = \frac{2x}{(x^2 + 5)^2}$. **C.** $y' = \frac{-1}{(x^2 + 5)^2}$. **D.** $y' = \frac{-2x}{(x^2 + 5)^2}$.

Câu 19. Cho hàm số $y = x^3 - 3x + 2017$. Bất phương trình y' < 0 có tập nghiệm là:

A.
$$S = (-1;1)$$
.

B.
$$S = (-\infty; -1) \cup (1; +\infty)$$
.

C.
$$(1;+\infty)$$
.

C.
$$(1; +\infty)$$
. D. $(-\infty; -1)$.

Câu 20. Cho hàm số $f(x) = x^4 + 2x^2 - 3$. Tìm x để f'(x) > 0? **A.** -1 < x < 0. **B.** x < 0. **C.** x > 0

A.
$$-1 < x < 0$$
.

B.
$$x < 0$$
.

C.
$$x > 0$$

D.
$$x < -1$$
.

Câu 21. (Cho hàm số $u(x)$) có đạo hàm tại x	là u' . Khi đó đạo l	hàm của hàm số	$y = \sin^2 u $ tại $x $ 1
-----------	-------------------	----------------------	------------------------	----------------	----------------------------

$$\mathbf{A.} \ \ y' = \sin 2u \ .$$

$$\mathbf{B.} \ v' = u' \sin 2u \ .$$

C.
$$v' = 2 \sin 2u$$

B.
$$y' = u' \sin 2u$$
. **C.** $y' = 2 \sin 2u$. **D.** $y' = 2u' \sin 2u$.

Câu 22. Tính đạo hàm của hàm số
$$y = \sin 2x - \cos x$$

A.
$$y' = 2\cos x + \sin x$$
. **B.** $y' = \cos 2x + \sin x$.

$$\mathbf{B.} \ \ y' = \cos 2x + \sin x \ .$$

C.
$$y' = 2\cos 2x + \sin x$$
. **D.** $y' = 2\cos x - \sin x$.

Câu 23. Đạo hàm của hàm số
$$y = 4 \sin 2x + 7 \cos 3x + 9$$
 là

A. $8\cos 2x - 21\sin 3x + 9$.

B.
$$8\cos 2x - 21\sin 3x$$
.

C.
$$4\cos 2x - 7\sin 3x$$
. D. $4\cos 2x + 7\sin 3x$.

Câu 24. Tính đạo hàm của hàm số
$$f(x) = \sin x + \cos x + 3$$
 là:

A.
$$f'(x) = \sin x - \cos x$$
. **B.** $f'(x) = \cos x + \sin x + 3$.

C.
$$f'(x) = \cos x - \sin x$$
. D. $f'(x) = -\sin x - \cos x$.

Câu 25. Đạo hàm của hàm số
$$y = \cos 2x + 1$$
 là

$$\mathbf{A.} \ \ y' = -\sin 2x$$

B.
$$v' = 2 \sin 2x$$

A.
$$y' = -\sin 2x$$
. **B.** $y' = 2\sin 2x$. **C.** $y' = -2\sin 2x + 1$. **D.** $y' = -2\sin 2x$.

D.
$$y' = -2\sin 2x$$
.

Câu 26. Đạo hàm của hàm số
$$y = \cos(2x+1)$$
 là:

A.
$$y' = 2\sin(2x+1)$$

A.
$$y' = 2\sin(2x+1)$$
 B. $y' = -2\sin(2x+1)$ **C.** $y' = -\sin(2x+1)$ **D.** $y' = \sin(2x+1)$.

D.
$$y' = \sin(2x)$$

Câu 27. Đạo hàm của hàm số
$$f(x) = \sin^2 x$$
 là:

A.
$$f'(x) = 2\sin x$$

A.
$$f'(x) = 2\sin x$$
. **B.** $f'(x) = 2\cos x$.

C.
$$f'(x) = -\sin(2x)$$

D.
$$f'(x) = \sin(2x)$$

A.
$$f'(x) = 2\sin x$$
. **B.** $f'(x) = 2\cos x$.
C. $f'(x) = -\sin(2x)$. **D.** $f'(x) = \sin(2x)$.
Câu 28. Tìm đạo hàm của hàm số $y = \tan x$.

A.
$$y' = -\frac{1}{\cos^2 x}$$
. **B.** $y' = \frac{1}{\cos^2 x}$. **C.** $y' = \cot x$. **D.** $y' = -\cot x$.

B.
$$y' = \frac{1}{\cos^2 x}$$
.

$$\mathbf{C.} \ y' = \cot x$$

$$\mathbf{D.} \ y' = -\cot x.$$

Câu 29. Tính đạo hàm của hàm số
$$y = x \sin x$$

A.
$$y = \sin x - x \cos x$$
. **B.** $y = x \sin x - \cos x$. **C.** $y = \sin x + x \cos x$. **D.** $y = x \sin x + \cos x$.

B.
$$v = x \sin x - \cos x$$
.

C.
$$v = \sin x + x \cos x$$
.

D.
$$v = x \sin x + \cos x$$

Câu 30. Tập xác định của hàm số
$$y = 8^x$$
 là

$$\mathbf{A.} \mathbb{R} \setminus \{0\}$$
.

$$\mathbf{B.} \ \mathbb{R}$$
 .

$$\mathbf{C}.\ [0;+\infty).$$

D.
$$(0; +\infty)$$
.

Câu 31. Tập xác định của hàm số
$$y = 6^x$$
 là

A.
$$[0;+\infty)$$
.

B.
$$\mathbb{R} \setminus \{0\}$$
.

C.
$$(0; +\infty)$$
.

D.
$$\mathbb{R}$$
 .

Câu 32. Tập xác định của hàm số
$$y = 7^x$$
 là

A.
$$\mathbb{R}\setminus\{0\}$$
.

B.
$$[0;+\infty)$$
.

C.
$$(0;+\infty)$$
.

$$\mathbf{D.} \ \mathbb{R}$$
 .

Câu 33. Tìm đạo hàm của hàm số
$$y = \log x$$
.

A.
$$y' = \frac{\ln 10}{x}$$

B.
$$y' = \frac{1}{x \ln 10}$$

B.
$$y' = \frac{1}{x \ln 10}$$
 C. $y' = \frac{1}{10 \ln x}$ **D.** $y' = \frac{1}{x}$

D.
$$y' = \frac{1}{x}$$

Câu 34. Hàm số
$$y = 2^{x^2-x}$$
 có đạo hàm là

A.
$$2^{x^2-x}$$
. ln 2.

B.
$$(2x-1).2^{x^2-x}.\ln 2$$
.

C.
$$(x^2-x).2^{x^2-x-1}$$
. **D.** $(2x-1).2^{x^2-x}$.

D.
$$(2x-1).2^{x^2-x}$$
.

Câu 35. Hàm số
$$y = 3^{x^2-x}$$
 có đạo hàm là

A.
$$(2x-1).3^{x^2-x}$$
.

B.
$$(x^2-x).3^{x^2-x-1}$$
.

B.
$$(x^2-x).3^{x^2-x-1}$$
. **C.** $(2x-1).3^{x^2-x}.\ln 3$. **D.** $3^{x^2-x}.\ln 3$.

Câu 36. Tính đạo hàm của hàm số $y = 13^x$

A.
$$y' = \frac{13^x}{\ln 13}$$

B.
$$y' = x.13^{x-1}$$
 C. $y' = 13^x \ln 13$ **D.** $y' = 13^x \ln 13$

C.
$$y' = 13^x \ln 13$$

D.
$$y' = 13^{3}$$

Câu 37. Tính đạo hàm của hàm số $y = \log_2(2x+1)$.

A.
$$y' = \frac{2}{(2x+1)\ln 2}$$

A.
$$y' = \frac{2}{(2x+1)\ln 2}$$
 B. $y' = \frac{1}{(2x+1)\ln 2}$ **C.** $y' = \frac{2}{2x+1}$ **D.** $y' = \frac{1}{2x+1}$

C.
$$y' = \frac{2}{2x+1}$$

D.
$$y' = \frac{1}{2x+1}$$

Câu 38. Tính đạo hàm của hàm số $y = \frac{x+1}{4^x}$

A.
$$y' = \frac{1 - 2(x+1)\ln 2}{2^{2x}}$$
 B. $y' = \frac{1 + 2(x+1)\ln 2}{2^{2x}}$

B.
$$y' = \frac{1 + 2(x+1)\ln 2}{2^{2x}}$$

C.
$$y' = \frac{1 - 2(x+1)\ln 2}{2^{x^2}}$$

C.
$$y' = \frac{1 - 2(x+1)\ln 2}{2^{x^2}}$$
 D. $y' = \frac{1 + 2(x+1)\ln 2}{2^{x^2}}$

Câu 39. Hàm số $f(x) = \log_2(x^2 - 2x)$ có đạo hàm

A.
$$f'(x) = \frac{\ln 2}{x^2 - 2x}$$

A.
$$f'(x) = \frac{\ln 2}{x^2 - 2x}$$
 B. $f'(x) = \frac{1}{(x^2 - 2x)\ln 2}$

C.
$$f'(x) = \frac{(2x-2)\ln 2}{x^2-2x}$$
 D. $f'(x) = \frac{2x-2}{(x^2-2x)\ln 2}$

Câu 40. Hàm số $y = 2^{x^2-3x}$ có đạo hàm là

A.
$$(2x-3)2^{x^2-3x} \ln 2$$
. **B.** $2^{x^2-3x} \ln 2$.

B.
$$2^{x^2-3x} \ln 2$$

C.
$$(2x-3)2^{x^2-3x}$$

C.
$$(2x-3)2^{x^2-3x}$$
. D. $(x^2-3x)2^{x^2-3x+1}$

Câu 41. Hàm số $y = 3^{x^2-3x}$ có đao hàm là

A.
$$(2x-3).3^{x^2-3x}$$
. **B.** $3^{x^2-3x}.\ln 3$.

B.
$$3^{x^2-3x}$$
. ln 3

C.
$$(x^2-3x).3^{x^2-3x-1}$$

C.
$$(x^2-3x).3^{x^2-3x-1}$$
. D. $(2x-3).3^{x^2-3x}.\ln 3$.

Câu 42. Tính đạo hàm của hàm số $y = \ln(1 + \sqrt{x+1})$.

A.
$$y' = \frac{1}{\sqrt{x+1}(1+\sqrt{x+1})}$$

B.
$$y' = \frac{2}{\sqrt{x+1}(1+\sqrt{x+1})}$$

C.
$$y' = \frac{1}{2\sqrt{x+1}(1+\sqrt{x+1})}$$

D.
$$y' = \frac{1}{1 + \sqrt{x+1}}$$

Câu 43. Đạo hàm của hàm số $y = e^{1-2x}$ là

A.
$$y' = 2e^{1-2x}$$

B.
$$y' = -2e^{1-2x}$$

A.
$$y' = 2e^{1-2x}$$
 B. $y' = -2e^{1-2x}$ **C.** $y' = -\frac{e^{1-2x}}{2}$ **D.** $y' = e^{1-2x}$

D.
$$y' = e^{1-2x}$$

Câu 44. Đạo hàm của hàm số $y = \log_3(x^2 + x + 1)$ là:

A.
$$y' = \frac{(2x+1)\ln 3}{x^2 + x + 1}$$

A.
$$y' = \frac{(2x+1)\ln 3}{x^2+x+1}$$
 B. $y' = \frac{2x+1}{(x^2+x+1)\ln 3}$ **C.** $y' = \frac{2x+1}{x^2+x+1}$ **D.** $y' = \frac{1}{(x^2+x+1)\ln 3}$

D.
$$y' = \frac{1}{(x^2 + x + 1)\ln 3}$$

Câu 45. Tính đạo hàm của hàm số $y = e^{x^2 + x}$.

A.
$$(2x+1)e^x$$

B.
$$(2x+1)e^{x^2+x}$$

B.
$$(2x+1)e^{x^2+x}$$
 C. $(2x+1)e^{2x+1}$ **D.** $(x^2+x)e^{2x+1}$

D.
$$(x^2 + x)e^{2x+1}$$

Câu 46. Cho hàm số
$$f(x) = \log_2(x^2 + 1)$$
, tính $f'(1)$

$$A f'(1) = 1.$$

B.
$$f'(1) = \frac{1}{2 \ln 2}$$
. **C.** $f'(1) = \frac{1}{2}$. **D.** $f'(1) = \frac{1}{\ln 2}$.

C.
$$f'(1) = \frac{1}{2}$$

D.
$$f'(1) = \frac{1}{\ln 2}$$
.

Câu 47. Tìm đạo hàm của hàm số
$$y = \ln(1 + e^{2x})$$

A.
$$y' = \frac{-2e^{2x}}{\left(e^{2x} + 1\right)^2}$$
. **B.** $y' = \frac{e^{2x}}{e^{2x} + 1}$. **C.** $y' = \frac{1}{e^{2x} + 1}$. **D.** $y' = \frac{2e^{2x}}{e^{2x} + 1}$.

B.
$$y' = \frac{e^{2x}}{e^{2x} + 1}$$
.

C.
$$y' = \frac{1}{e^{2x} + 1}$$

D.
$$y' = \frac{2e^{2x}}{e^{2x} + 1}$$

Câu 48. Tính đạo hàm của hàm số
$$y = \frac{1-x}{2^x}$$

A.
$$y' = \frac{2-x}{2^x}$$
.

A.
$$y' = \frac{2-x}{2^x}$$
. **B.** $y' = \frac{\ln 2.(x-1)-1}{(2^x)^2}$.

C.
$$y' = \frac{x-2}{2^x}$$

C.
$$y' = \frac{x-2}{2^x}$$
. D. $y' = \frac{\ln 2 \cdot (x-1) - 1}{2^x}$.

Câu 49. Tính đạo hàm của hàm số
$$y = \log_9(x^2 + 1)$$
.

A.
$$y' = \frac{1}{(x^2 + 1) \ln 9}$$

A.
$$y' = \frac{1}{(x^2 + 1)\ln 9}$$
. **B.** $y' = \frac{x}{(x^2 + 1)\ln 3}$. **C.** $y' = \frac{2x\ln 9}{x^2 + 1}$. **D.** $y' = \frac{2\ln 3}{x^2 + 1}$.

C.
$$y' = \frac{2x \ln 9}{x^2 + 1}$$

D.
$$y' = \frac{2 \ln 3}{x^2 + 1}$$

Câu 50. Tính đạo hàm hàm số
$$y = e^x \cdot \sin 2x$$

A.
$$e^{x}(\sin 2x - \cos 2x)$$
. **B.** $e^{x}.\cos 2x$.

C.
$$e^{x}(\sin 2x + \cos 2x)$$
. **D.** $e^{x}(\sin 2x + 2\cos 2x)$.

Câu 51. Đạo hàm của hàm số
$$y = \frac{x+1}{4^x}$$
 là

A.
$$\frac{1-2(x+1)\ln 2}{2^{2x}}$$

B.
$$\frac{1+2(x+1)\ln 2}{2^{2x}}$$

C.
$$\frac{1-2(x+1)\ln 2}{2^{x^2}}$$

A.
$$\frac{1-2(x+1)\ln 2}{2^{2x}}$$
 B. $\frac{1+2(x+1)\ln 2}{2^{2x}}$ **C.** $\frac{1-2(x+1)\ln 2}{2^{x^2}}$ **D.** $\frac{1+2(x+1)\ln 2}{2^{x^2}}$

Câu 52. Cho hàm số
$$y = \frac{1}{x+1+\ln x}$$
 với $x > 0$. Khi đó $-\frac{y'}{y^2}$ bằng

A.
$$\frac{x}{x+1}$$
.

B.
$$1 + \frac{1}{x}$$

B.
$$1 + \frac{1}{x}$$
. **C.** $\frac{x}{1 + x + \ln x}$. **D.** $\frac{x+1}{1 + x + \ln x}$.

D.
$$\frac{x+1}{1+x+\ln x}$$

Câu 53. Tính đạo hàm của hàm số
$$y = 2^x \ln x - \frac{1}{e^x}$$
.

A.
$$y' = 2^x \left(\frac{1}{x} + (\ln 2) (\ln x) \right) + \frac{1}{e^x}$$
.

B.
$$y' = 2^x \ln 2 + \frac{1}{x} + e^{-x}$$
.

C.
$$y' = 2^x \frac{1}{x} \ln 2 + \frac{1}{e^x}$$
.

C.
$$y' = 2^x \frac{1}{x} \ln 2 + \frac{1}{a^x}$$
. D. $y' = 2^x \ln 2 + \frac{1}{x} - e^x$.

Câu 54. Đạo hàm của hàm số
$$f(x) = \log_2 |x^2 - 2x|$$
 là

$$\mathbf{A.} \ \frac{2x-2}{\left(x^2-2x\right)\ln 2}$$

A.
$$\frac{2x-2}{(x^2-2x)\ln 2}$$
 B. $\frac{1}{(x^2-2x)\ln 2}$ **C.** $\frac{(2x-2)\ln 2}{x^2-2x}$ **D.** $\frac{2x-2}{|x^2-2x|\ln 2}$

C.
$$\frac{(2x-2)\ln 2}{x^2-2x}$$

D.
$$\frac{2x-2}{|x^2-2x|\ln 2}$$

Câu 55. Đạo hàm của hàm số
$$f(x) = \sqrt{\ln(\ln x)}$$
 là:

$$\mathbf{A.} \ f'(x) = \frac{1}{x \ln x \sqrt{\ln(\ln x)}} \ .$$

$$\mathbf{B.} \ f'(x) = \frac{1}{2\sqrt{\ln(\ln x)}}$$

C.
$$f'(x) = \frac{1}{2 x \ln x \sqrt{\ln(\ln x)}}.$$

$$\mathbf{D.} \ f'(x) = \frac{1}{\ln x \sqrt{\ln(\ln x)}}.$$

Câu 56. Trên khoảng $(0; +\infty)$, đạo hàm của hàm số $y = \log_2 x$ là:

A.
$$y' = \frac{1}{x \ln 2}$$
. **B.** $y' = \frac{\ln 2}{x}$. **C.** $y' = \frac{1}{x}$.

B.
$$y' = \frac{\ln 2}{x}$$
.

C.
$$y' = \frac{1}{x}$$
.

D.
$$y' = \frac{1}{2x}$$
.

Câu 57. Trên khoảng $(0;+\infty)$, đạo hàm của hàm số $y = \log_3 x$ là

A.
$$y' = \frac{1}{x}$$
.

B.
$$y' = \frac{1}{x \ln 3}$$

C.
$$y' = \frac{\ln 3}{x}$$

B.
$$y' = \frac{1}{x \ln 3}$$
. **C.** $y' = \frac{\ln 3}{x}$. **D.** $y' = -\frac{1}{x \ln 3}$.

Câu 58. Đạo hàm của hàm số $y = \log_2(x-1)$ là:

A.
$$y' = \frac{x-1}{\ln 2}$$

B.
$$y' = \frac{1}{\ln 2}$$
.

A.
$$y' = \frac{x-1}{\ln 2}$$
. **B.** $y' = \frac{1}{\ln 2}$. **C.** $y' = \frac{1}{(x-1)\ln 2}$. **D.** $y' = \frac{1}{x-1}$.

D.
$$y' = \frac{1}{x-1}$$

Câu 59. Đạo hàm của hàm số $y = \log_3(x+1)$ là

A.
$$y' = -\frac{1}{\ln 3}$$

A.
$$y' = -\frac{1}{\ln 3}$$
. **B.** $y' = \frac{1}{(x+1)\ln 3}$. **C.** $y' = \frac{1}{(x+1)}$. **D.** $y' = \frac{x+1}{\ln 3}$.

C.
$$y' = \frac{1}{(x+1)}$$

D.
$$y' = \frac{x+1}{\ln 3}$$
.

Câu 60. Cho hàm số $y = x^5 - 3x^4 + x + 1$ với $x \in \mathbb{R}$. Đạo hàm y'' của hàm số là

A.
$$y'' = 5x^3 - 12x^2 + 1$$
.

B.
$$y'' = 5x^4 - 12x^3$$
.

C.
$$y'' = 20x^2 - 36x^3$$
.

D.
$$y'' = 20x^3 - 36x^2$$
.

Câu 61. Tính đạo hàm cấp hai của hàm số $y = -3\cos x$ tại điểm $x_0 = \frac{\pi}{2}$.

A.
$$y''\left(\frac{\pi}{2}\right) = -3$$
. **B.** $y''\left(\frac{\pi}{2}\right) = 5$. **C.** $y''\left(\frac{\pi}{2}\right) = 0$. **D.** $y''\left(\frac{\pi}{2}\right) = 3$.

B.
$$y''(\frac{\pi}{2}) = 5$$

$$\mathbf{C.} \ y''\left(\frac{\pi}{2}\right) = 0.$$

D.
$$y''(\frac{\pi}{2}) = 3$$

Câu 62. Cho hàm số $f(x) = (3x - 7)^5$. Tính f''(2). **A.** f''(2) = 0. **B.** f''(2) = 20. **C.** f''(2) = -180. **D.** f''(2) = 30.

A.
$$f''(2)=0$$

B.
$$f''(2)=20$$
.

C.
$$f''(2) = -180$$
.

D.
$$f''(2) = 30$$
.

Câu 63. Cho $y = \sqrt{2x - x^2}$, tính giá trị biểu thức $A = y^3 \cdot y$ ".

$$\mathbf{R}$$
 0

D. Đáp án khác.

Câu 64. Đạo hàm cấp hai của hàm số $y = \frac{3x+1}{x+2}$ là

A.
$$y'' = \frac{10}{(x+2)^2}$$

B.
$$y'' = -\frac{5}{(x+2)^4}$$

A.
$$y'' = \frac{10}{(x+2)^2}$$
 B. $y'' = -\frac{5}{(x+2)^4}$ **C.** $y'' = -\frac{5}{(x+2)^3}$ **D.** $y'' = -\frac{10}{(x+2)^3}$

D.
$$y'' = -\frac{10}{(x+2)^3}$$

Câu 65. Đạo hàm cấp hai của hàm số $y = \cos^2 x$ là

A.
$$y'' = -2\cos 2x$$
.

A.
$$y'' = -2\cos 2x$$
. **B.** $y'' = -2\sin 2x$. **C.** $y'' = 2\cos 2x$. **D.** $y'' = 2\sin 2x$.

C.
$$y'' = 2\cos 2x$$
.

D.
$$y'' = 2\sin 2x$$
.

Câu 66. Cho hàm số $y = x^3 - 3x^2 + x + 1$. Phương trình y'' = 0 có nghiệm.

A.
$$x = 2$$

$$\mathbf{R}$$
. $y = 4$

C.
$$x = 1$$
.

D.
$$x = 3$$
.

Câu 67. Cho hàm số $y = \sin^2 x$. Khi đó y''(x) bằng

A.
$$y'' = \frac{1}{2}\cos 2x$$
. **B.** $P = 2\sin 2x$.

$$\mathbf{B.} \ P = 2\sin 2x$$

C.
$$y'' = 2\cos 2x$$
. **D.** $y'' = 2\cos x$.

$$\mathbf{D.} \ y'' = 2\cos x$$

Câu 68. Cho hàm số $y = -\frac{1}{x}$. Đạo hàm cấp hai của hàm số là

A.
$$y^{(2)} = \frac{2}{x^3}$$
.

B.
$$y^{(2)} = \frac{-2}{x^2}$$

B.
$$y^{(2)} = \frac{-2}{x^2}$$
. **C.** $y^{(2)} = \frac{-2}{x^3}$. **D.** $y^{(2)} = \frac{2}{x^2}$.

D.
$$y^{(2)} = \frac{2}{r^2}$$
.

Câu 69. Cho hàm số $f(x) = x^3 + 2x$, giá trị của f''(1) bằng

C. 3.

Câu 70. Cho hàm số $f(x) = \frac{1}{2x-1}$. Tính f''(-1).

A. $-\frac{8}{27}$

B. $\frac{2}{9}$.

C. $\frac{8}{27}$

D. $-\frac{4}{27}$.

2. Câu hỏi dành cho đối tượng học sinh khá-giỏi

Câu 71. Cho $f(x) = x^5 + x^3 - 2x - 3$. Tính f'(1) + f'(-1) + 4f'(0)? Mệnh đề nào dưới đây đúng?

A. 4.

C. 6.

D. 5.

Tính đạo hàm của hàm số $y = (x^3 - 5)\sqrt{x}$

A. $y' = \frac{7}{2} \sqrt[5]{x^2} - \frac{5}{2\sqrt{x}}$. **B.** $y' = \frac{7}{2} \sqrt{x^5} - \frac{5}{2\sqrt{x}}$.

C. $y' = 3x^2 - \frac{5}{2\sqrt{x}}$. D. $y' = 3x^2 - \frac{1}{2\sqrt{x}}$.

Câu 73. Đạo hàm của hàm số $y = \frac{x+3}{\sqrt{x^2+1}}$ là:

A. $\frac{1-3x}{(x^2+1)\sqrt{x^2+1}}$. B. $\frac{1+3x}{(x^2+1)\sqrt{x^2+1}}$. C. $\frac{1-3x}{x^2+1}$. D. $\frac{2x^2-x-1}{(x^2+1)\sqrt{x^2+1}}$.

Câu 74. Cho hàm số $f(x) = \sqrt{x^2 + 3}$. Tính giá trị của biểu thức S = f(1) + 4f'(1).

A. S = 4.

B. S = 2. **C.** S = 6.

D. S = 8.

Câu 75. Cho hàm số $y = \sqrt{2x^2 + 5x - 4}$. Đạo hàm y' của hàm số là

A. $y' = \frac{4x+5}{2\sqrt{2x^2+5x-4}}$. **B.** $y' = \frac{2x+5}{2\sqrt{2x^2+5x-4}}$.

C. $y' = \frac{2x+5}{\sqrt{2x^2+5x-4}}$. D. $y' = \frac{4x+5}{\sqrt{2x^2+5x-4}}$

Câu 76. Tính đạo hàm của hàm số $y = \frac{2x^2 - 3x + 7}{x^2 + 2x + 3}$

A. $y' = \frac{-7x^2 + 2x + 23}{(x^2 + 2x + 3)^2}$. **B.** $y' = \frac{7x^2 - 2x - 23}{(x^2 + 2x + 3)^2}$

C. $y' = \frac{7x^2 - 2x - 23}{(x^2 + 2x + 3)}$ D. $y' = \frac{8x^3 + 3x^2 + 14x + 5}{(x^2 + 2x + 3)^2}$

Câu 77. Cho hàm số $f(x) = \frac{2x+a}{x-b} (a,b \in R; b \neq 1)$. Ta có f'(1) bằng:

A. $\frac{-a+2b}{(b-1)^2}$. **B.** $\frac{a-2b}{(b-1)^2}$. **C.** $\frac{a+2b}{(b-1)^2}$.

D. $\frac{-a-2b}{(b-1)^2}$.

Câu 78. Cho $f(x) = \sqrt{1-4x} + \frac{1-x}{x-3}$. Tính f'(x).

A. $\frac{2}{\sqrt{1-4x}} - \frac{2}{x-3}$. B. $\frac{2}{\sqrt{1-4x}} - \frac{2}{(x-3)^2}$.

C.
$$\frac{1}{2\sqrt{1-4x}}$$
 +

C.
$$\frac{1}{2\sqrt{1-4x}} + 1$$
 D. $\frac{-2}{\sqrt{1-4x}} + \frac{2}{(x-3)^2}$.

Câu 79. Đạo hàm của hàm số $y = (2x-1)\sqrt{x^2+x}$ là

A.
$$y' = \frac{8x^2 + 4x - 1}{2\sqrt{x^2 + x}}$$
.

A.
$$y' = \frac{8x^2 + 4x - 1}{2\sqrt{x^2 + x}}$$
. **B.** $y' = \frac{8x^2 + 4x + 1}{2\sqrt{x^2 + x}}$. **C.** $y' = \frac{4x + 1}{2\sqrt{x^2 + x}}$. **D.** $y' = \frac{6x^2 + 2x - 1}{2\sqrt{x^2 + x}}$.

C.
$$y' = \frac{4x+1}{2\sqrt{x^2+x}}$$

D.
$$y' = \frac{6x^2 + 2x - 1}{2\sqrt{x^2 + x}}$$

Câu 80. Đạo hàm của hàm số $y = (-x^2 + 3x + 7)^7$ là

A.
$$y' = 7(-2x+3)(-x^2+3x+7)^6$$
.

B.
$$y' = 7(-x^2 + 3x + 7)^6$$
.

C.
$$y' = (-2x+3)(-x^2+3x+7)^6$$
.

D.
$$y' = 7(-2x+3)(-x^2+3x+7)^6$$
.

Câu 81. Đạo hàm của hàm số $y = \left(x^2 - \frac{2}{x}\right)^3$ bằng

A.
$$y' = 6\left(x + \frac{1}{x^2}\right)\left(x^2 - \frac{2}{x}\right)^2$$
.

B.
$$y' = 3\left(x^2 - \frac{2}{x}\right)^2$$
.

C.
$$y' = 6\left(x - \frac{1}{x^2}\right)\left(x^2 - \frac{2}{x}\right)^2$$
.

D.
$$y' = 6\left(x - \frac{1}{x}\right)\left(x^2 - \frac{2}{x}\right)^2$$

Câu 82. Đạo hàm của hàm số $y = (x^2 + x + 1)^{\frac{1}{3}}$ là

A.
$$y' = \frac{2x+1}{3\sqrt[3]{(x^2+x+1)^2}}$$
. **B.** $y' = \frac{1}{3}(x^2+x+1)^{\frac{2}{3}}$

C.
$$y' = \frac{1}{3}(x^2 + x + 1)^{\frac{8}{3}}$$
. D. $y' = \frac{2x + 1}{2\sqrt[3]{x^2 + x + 1}}$

Câu 83. Đạo hàm của hàm số $y = (x^3 - 2x^2)^2$ bằng:

A.
$$6x^5 - 20x^4 - 16x^3$$
.

B.
$$6x^5 - 20x^4 + 4x^3$$

C.
$$6x^5 + 16x^3$$
.

A.
$$6x^5 - 20x^4 - 16x^3$$
. **B.** $6x^5 - 20x^4 + 4x^3$. **C.** $6x^5 + 16x^3$. **D.** $6x^5 - 20x^4 + 16x^3$.

Câu 84. Đạo hàm của hàm số $f(x) = \sqrt{2-3x^2}$ bằng biểu thức nào sau đây?

A.
$$\frac{-3x}{\sqrt{2-3x^2}}$$

A.
$$\frac{-3x}{\sqrt{2-3x^2}}$$
. **B.** $\frac{1}{2\sqrt{2-3x^2}}$. **C.** $\frac{-6x^2}{2\sqrt{2-3x^2}}$. **D.** $\frac{3x}{\sqrt{2-3x^2}}$.

C.
$$\frac{-6x^2}{2\sqrt{2-3x^2}}$$

D.
$$\frac{3x}{\sqrt{2-3x^2}}$$

Câu 85. Cho hàm số $y = \frac{1}{3}x^3 - 2x^2 - 5x$. Tập nghiệm của bất phương trình $y' \ge 0$ là

A.
$$[-1;5]$$
.

$$\mathbf{B}. \varnothing$$

C.
$$(-\infty;-1)\cup(5;+\infty)$$
. D. $(-\infty;-1]\cup[5;+\infty)$.

D.
$$(-\infty;-1] \cup [5;+\infty)$$

Câu 86. Cho hàm số $y = x^3 + mx^2 + 3x - 5$ với m là tham số. Tìm tập hợp M tất cả các giá trị của m để y' = 0 có hai nghiệm phân biệt:

A.
$$M = (-3;3)$$
.

A.
$$M = (-3,3)$$
. **B.** $M = (-\infty, -3] \cup [3, +\infty)$.

$$\mathbf{C}.\ M=\mathbb{R}.$$

D.
$$M = (-\infty; -3) \cup (3; +\infty)$$
.

Câu 87. Cho hàm số $y = (m-1)x^3 - 3(m+2)x^2 - 6(m+2)x + 1$. Tập giá trị của m để $y' \ge 0, \forall x \in R$ là

A.
$$[3;+\infty)$$
.

B.
$$\emptyset$$
.

$$\mathbf{C} \ [4\sqrt{2}; +\infty).$$

D. [1; +
$$\infty$$
).

D. 3.

D. vô số.

Câu 91. Cho hàm số $f(x) = \sqrt{-5x^2 + 14x - 9}$ Tập hợp các giá trị của x để f'(x) < 0 là $\mathbf{A.} \left(\frac{7}{5}; +\infty\right). \qquad \mathbf{B.} \left(-\infty; \frac{7}{5}\right). \qquad \mathbf{C.} \left(\frac{7}{5}; \frac{9}{5}\right). \qquad \mathbf{D.} \left(1; \frac{7}{5}\right).$

Câu 92. Cho hàm số $f(x) = \sqrt{x^2 - 2x}$. Tìm tập nghiệm S của phương trình $f'(x) \ge f(x)$ có bao nhiều giá trị nguyên?

C. 0.

Câu 93. Cho
$$\left(\frac{3-2x}{\sqrt{4x-1}}\right)' = \frac{ax-b}{(4x-1)\sqrt{4x-1}}, \forall x > \frac{1}{4}. \text{ Tính } \frac{a}{b}.$$
A. -16. B. -4. C. -1. D. 4.

A. 1.

A. 1.

Câu 94. Cho hàm số $y = \sqrt{x^2 - 1}$. Nghiệm của phương trình y'.y = 2x + 1 là: C. Vô nghiệm. **D.** x = -1.

Câu 95. Cho
$$y = \sqrt{x^2 - 2x + 3}$$
, $y' = \frac{ax + b}{\sqrt{x^2 - 2x + 3}}$. Khi đó giá trị $a.b$ là:
A. -4. **B.** -1. **C.** 0. **D.** 1.

Câu 96. Cho hàm số $y = \frac{-2x^2 + x - 7}{x^2 + 3}$. Tập nghiệm của phương trình y' = 0 là **D.** $\{-3;-1\}$. **B.** {1;3}. \mathbf{C} . $\{-3:1\}$. **A.** $\{-1;3\}$.

Câu 97. Cho hàm số
$$f(x) = ax^3 + \frac{b}{x}$$
 có $f'(1) = 1$, $f'(-2) = -2$. Khi đó $f'(\sqrt{2})$ bằng:
A. $\frac{12}{5}$. **B.** $\frac{-2}{5}$. **C.** 2. **D.** $-\frac{12}{5}$.

Câu 98. Có bao nhiều giá trị nguyên của m để hàm số $y = \frac{x+2}{x+5m}$ có đạo hàm dương trên khoảng $(-\infty; -10)$?

C. 3.

Câu 99. Đạo hàm của hàm số $y = \cos \sqrt{x^2 + 1}$ là

B. 2.

A.
$$y' = -\frac{x}{\sqrt{x^2 + 1}} \sin \sqrt{x^2 + 1}$$
. **B.** $y' = \frac{x}{\sqrt{x^2 + 1}} \sin \sqrt{x^2 + 1}$.

C.
$$y' = \frac{x}{2\sqrt{x^2 + 1}} \sin \sqrt{x^2 + 1}$$
.

D.
$$y' = -\frac{x}{2\sqrt{x^2+1}} \sin \sqrt{x^2+1}$$
.

Câu 100. Đạo hàm của hàm số $y = \tan x - \cot x$ là

A.
$$y' = \frac{1}{\cos^2 2x}$$

B.
$$y' = \frac{4}{\sin^2 2x}$$

C.
$$y' = \frac{4}{\cos^2 2x}$$

A.
$$y' = \frac{1}{\cos^2 2x}$$
. **B.** $y' = \frac{4}{\sin^2 2x}$. **C.** $y' = \frac{4}{\cos^2 2x}$. **D.** $y' = \frac{1}{\sin^2 2x}$.

Câu 101. Biết hàm số $y = 5\sin 2x - 4\cos 5x$ có đạo hàm là $y' = a\sin 5x + b\cos 2x$. Giá trị của a - b bằng

$$A. -30.$$

B. 10.

C. -1.

Câu 102. Tính đạo hàm của hàm số $y = \sqrt{\cos 2x}$.

A.
$$y' = \frac{\sin 2x}{2\sqrt{\cos 2x}}$$
. **B.** $y' = \frac{-\sin 2x}{\sqrt{\cos 2x}}$. **C.** $y' = \frac{\sin 2x}{\sqrt{\cos 2x}}$. **D.** $y' = \frac{-\sin 2x}{2\sqrt{\cos 2x}}$.

B.
$$y' = \frac{-\sin 2x}{\sqrt{\cos 2x}}$$
.

C.
$$y' = \frac{\sin 2x}{\sqrt{\cos 2x}}$$

D.
$$y' = \frac{-\sin 2x}{2\sqrt{\cos 2x}}$$

Câu 103. Với $x \in \left(0, \frac{\pi}{2}\right)$, hàm số $y = 2\sqrt{\sin x} - 2\sqrt{\cos x}$ có đạo hàm là?

$$\mathbf{A.} \ \ y' = \frac{\cos x}{\sqrt{\sin x}} + \frac{\sin x}{\sqrt{\cos x}} \ .$$

B.
$$y' = \frac{1}{\sqrt{\sin x}} + \frac{1}{\sqrt{\cos x}}$$
.

C.
$$y' = \frac{\cos x}{\sqrt{\sin x}} - \frac{\sin x}{\sqrt{\cos x}}$$
.

$$\mathbf{D.} \ \ y' = \frac{1}{\sqrt{\sin x}} - \frac{1}{\sqrt{\cos x}} \ .$$

Câu 104. Đạo hàm của hàm số $y = \sin\left(\frac{3\pi}{2} - 4x\right)$ là:

$$\mathbf{A.} -4\cos 4x$$
.

B.
$$4\cos 4x$$
.

C.
$$4\sin 4x$$
.

D.
$$-4 \sin 4x$$

Câu 105. Tính đạo hàm của hàm số $y = \sin 2x - 2\cos x + 1$

A.
$$y' = -2\cos 2x + 2\sin x$$
.

B.
$$y' = 2\cos 2x + 2\sin x$$
.

C.
$$y' = 2\cos 2x - 2\sin x$$
.D. $y' = -\cos 2x - 2\sin x$

Câu 106. Tính đạo hàm của hàm số $y = \sqrt{\cos 2x}$.

A.
$$y' = \frac{\sin 2x}{2\sqrt{\cos 2x}}$$
. **B.** $y' = \frac{-\sin 2x}{\sqrt{\cos 2x}}$. **C.** $y' = \frac{\sin 2x}{\sqrt{\cos 2x}}$. **D.** $y' = \frac{-\sin 2x}{2\sqrt{\cos 2x}}$.

$$\mathbf{B.} \ \ y' = \frac{-\sin 2x}{\sqrt{\cos 2x}}.$$

$$\mathbf{C.} \ \ y' = \frac{\sin 2x}{\sqrt{\cos 2x}} \, .$$

$$\mathbf{D.} \ \ y' = \frac{-\sin 2x}{2\sqrt{\cos 2x}}$$

Câu 107. Biết hàm số $y = 5\sin 2x - 4\cos 5x$ có đạo hàm là $y' = a\sin 5x + b\cos 2x$. Giá trị của a - b bằng:

Câu 108. Cho hàm số $f(x) = a\cos x + 2\sin x - 3x + 1$. Tìm a để phương trình f'(x) = 0 có nghiệm.

A.
$$|a| < \sqrt{5}$$
.

B.
$$|a| \ge \sqrt{5}$$
.

C.
$$|a| > 5$$
.

D.
$$|a| < 5$$
.

Câu 109. Đạo hàm của hàm số $y = \cos 3x$ là

A.
$$y = \sin 3x$$
.

B.
$$y = -3\sin 3x$$
.

C.
$$y = 3\sin 3x$$
. **D.** $y = -\sin 3x$.

$$\mathbf{D.} \ \ v = -\sin 3x$$

Câu 110. Cho $f(x) = \sin^3 ax$, a > 0. Tính $f'(\pi)$

$$\mathbf{A.} \ f'(\pi) = 3\sin^2(a\pi).\cos(a\pi).$$

B.
$$f'(\pi) = 0$$
.

C.
$$f'(\pi) = 3a \sin^2(a\pi)$$
. D. $f'(\pi) = 3a \cdot \sin^2(a\pi) \cdot \cos(a\pi)$.

Câu 111. Cho hàm số $f(x) = \sin 2x$. Tính f'(x).

A.
$$f'(x) = 2\sin 2x$$
.

$$\mathbf{B.} \ f'(x) = \cos 2x.$$

C.
$$f'(x) = 2\cos 2x$$
.

A.
$$f'(x) = 2\sin 2x$$
. **B.** $f'(x) = \cos 2x$. **C.** $f'(x) = 2\cos 2x$. **D.** $f'(x) = -\frac{1}{2}\cos 2x$.

Câu 112. Tính đạo hàm của hàm số $y = \frac{\cos 4x}{2} + 3\sin 4x$.

A.
$$y' = 12\cos 4x - 2\sin 4x$$
.

B.
$$y' = 12\cos 4x + 2\sin 4x$$

C.
$$y' = -12\cos 4x + 2\sin 4x$$
.

D.
$$y' = 3\cos 4x - \frac{1}{2}\sin 4x$$
.

Câu 113. Tính đạo hàm của hàm số $f(x) = \sin^2 2x - \cos 3x$.

A.
$$f'(x) = 2\sin 4x - 3\sin 3x$$
.

B.
$$f'(x) = 2\sin 4x + 3\sin 3x$$
.

C.
$$f'(x) = \sin 4x + 3\sin 3x$$
.

D.
$$f'(x) = 2\sin 2x + 3\sin 3x$$

Câu 114. Cho $f(x) = \sin^2 x - \cos^2 x - x$. Khi đó f'(x) bằng

A.
$$1-\sin 2x$$
.

B.
$$-1 + 2\sin 2x$$
.

$$\mathbf{C}$$
. $-1 + \sin x \cdot \cos x$.

D.
$$1 + 2\sin 2x$$
.

Câu 115. Tính $f'\left(\frac{\pi}{2}\right)$ biết $f(x) = \frac{\cos x}{1 + \sin x}$

A.
$$-2$$
.

B.
$$\frac{1}{2}$$
.

D.
$$-\frac{1}{2}$$
.

Câu 116. Cho hàm số $y = \cos 3x \cdot \sin 2x$. Tính $y'\left(\frac{\pi}{3}\right)$.

A.
$$\frac{1}{2}$$
.

B.
$$-\frac{1}{2}$$
.

Câu 117. Tính đạo hàm của hàm số $y = \sin^6 x + \cos^6 x + 3\sin^2 x \cos^2 x$.

Câu 118. Với $x \in \left(0; \frac{\pi}{2}\right)$, hàm số $y = 2\sqrt{\sin x} - 2\sqrt{\cos x}$ có đạo hàm là?

$$\mathbf{A.} \ \ y' = \frac{\cos x}{\sqrt{\sin x}} + \frac{\sin x}{\sqrt{\cos x}} \ .$$

$$\mathbf{B.} \ \ y' = \frac{1}{\sqrt{\sin x}} + \frac{1}{\sqrt{\cos x}} \ .$$

C.
$$y' = \frac{\cos x}{\sqrt{\sin x}} - \frac{\sin x}{\sqrt{\cos x}}$$
.

D.
$$y' = \frac{1}{\sqrt{\sin x}} - \frac{1}{\sqrt{\cos x}}$$
.

Câu 119. Cho hàm số $f(x) = \ln 2018 + \ln \left(\frac{x}{x+1}\right)$. Tính $S = f'(1) + f'(2) + f'(3) + \dots + f'(2017)$.

A.
$$S = \frac{4035}{2018}$$

B.
$$S = \frac{2017}{2018}$$

A.
$$S = \frac{4035}{2018}$$
 B. $S = \frac{2017}{2018}$ **C.** $S = \frac{2016}{2017}$ **D.** $S = 2017$

D.
$$S = 2017$$

Câu 120. Cho hàm số $f(x) = \ln \frac{2018x}{x+1}$. Tính tổng S = f'(1) + f'(2) + ... + f'(2018).

D.
$$\frac{2018}{2019}$$
.

Câu 121. Tính đạo hàm của hàm số $y = \log_{2019} |x|, \forall x \neq 0$.

A.
$$y' = \frac{1}{|x| \ln 2019}$$

B.
$$y' = \frac{1}{|x|}$$
.

A.
$$y' = \frac{1}{|x| \ln 2019}$$
. **B.** $y' = \frac{1}{|x|}$. **C.** $y' = \frac{1}{x \ln 2019}$. **D.** $y' = x \ln 2019$.

D.
$$y' = x \ln 2019$$

Câu 122. Cho hàm số $f(x) = \ln\left(\frac{x}{x+2}\right)$. Tổng f'(1) + f'(3) + f'(5) + ... + f'(2021) bằng

A.
$$\frac{4035}{2021}$$
...

B.
$$\frac{2021}{2022}$$
. **C.** 2021..

D.
$$\frac{2022}{2023}$$
.

Câu 123. Phương trình f'(x) = 0 với $f(x) = \ln\left(x^4 - 4x^3 + 4x^2 - \frac{1}{2}\right)$ có bao nhiều nghiệm?

A. 0 nghiêm.

B. 1 nghiêm.

C. 2 nghiệm.

D. 3 nghiệm.

Câu 124. Cho hàm số $f(x) = \ln \frac{x+1}{x+4}$. Tính giá trị của biểu thức

P = f'(0) + f'(3) + f'(6) + ... + f'(2019).

A. $\frac{1}{4}$. **B.** $\frac{2024}{2023}$. **C.** $\frac{2022}{2023}$. **D.** $\frac{2020}{2023}$.

Câu 125. Cho hàm số $y = f(x) = (2m-1)e^x + 3$. Giá trị của m để $f'(-\ln 3) = \frac{5}{3}$ là

A. $m = \frac{7}{9}$. **B.** $m = \frac{2}{9}$.

C. m = 3.

D. $m = -\frac{3}{2}$.

Câu 126. Cho hàm số $y = \sqrt{1 + 3x - x^2}$. Khẳng định nào dưới đây đúng?

A. $(y')^2 + y.y'' = -1$. **B.** $(y')^2 + 2y.y'' = 1$. **C.** $y.y'' - (y')^2 = 1$. **D.** $(y')^2 + y.y'' = 1$.

Câu 127. Cho hàm số $y = \sin 2x$. Hãy tìm khẳng định đúng.

A. $v^2 + (v')^2 = 4$. **B.** 4v - v'' = 0.

C. 4y + y'' = 0. **D.** $y = y' \tan 2x$.

Câu 128. Cho hàm $y = x \left[\cos(\ln x) + \sin(\ln x) \right]$. Khẳng định nào sau đây đúng?

A. $x^2y'' + xy' - 2y + 4 = 0$.

B. $x^2y'' - xy' - 2xy = 0$.

C. $2x^2v' + xv'' + 2v - 5 = 0$.

 $(x) = 0 \text{ c\'o hai nghiệm } x_1, x_2. \text{ T\'nh}$ $\mathbf{C}. x_1.x_2 = \frac{3}{4}$ $\mathbf{D}. x_1.x_2 = 0$ **Câu 129.** Cho hàm số $f(x) = e^{x-x^2}$. Biết phương trình f''(x) = 0 có hai nghiệm x_1, x_2 . Tính x_1, x_2 .

A. $x_1.x_2 = -\frac{1}{4}$ **B.** $x_1.x_2 = 1$