Assignment-4

the accuracy is just 54%.so it is not necessary

y_pred = classifier.predict(X_val)

Accuracy score

Summary of the predictions made by the classifier
print(classification_report(Y_val, y_pred))
print(confusion_matrix(Y_val, y_pred))

from sklearn.metrics import accuracy_score
print('accuracy is',accuracy_score(Y_val, y_pred))

The Naive Bayes technique gave us a superior accuracy of 0.8372093023255814. While Linear SVM works better with linear regression logics, Naive Bayes analysis works better with probabilistic ideas. However, in order to function more accurately, SVM needs a lot of data to train and test. Hence, compared to Linear SVM, Naive Bayes algorithm provides superior accuracy because of the volume of data.

Video link: https://www.loom.com/share/081b23b321a54147a0fa5ae683848bb4

Github link: https://github.com/kadiresanjayreddy/machinelearningAssignment-4