Esercizio 1. Si realizzi una rete sequenziale sincrona R con un ingresso X ed un'uscita Z. Ogni tre colpi di clock la rete riceve in ingresso sulla linea X i tre bit b(t-2), b(t-1) e b(t). Al ricevimento del terzo bit b(t) la rete deve restituire in uscita zero se il numero binario naturale formato dai tre bit b(t-2) b(t-1) b(t) è un numero primo, uno altrimenti. Successivamente la rete riprende il suo funzionamento dal principio. Segue un esempio di funzionamento.

t:	0	1	2	3	4	5	6	7	8
X:	0	1	1	1	0	0	0	0	0
Z:	0	0	0	0	0	1	0	0	1

Esercizio 2. Si realizzi una rete sequenziale sincrona R con un ingresso X ed un'uscita Z. Ad ogni colpo di clock, R riceve un bit sulla linea X. I primi due bit \mathbf{b}_0 e \mathbf{b}_1 ricevuti sulla linea X indicano alla rete R quante volte riconoscere la sottosequenza 11. Al termine del riconoscimento, la rete restituisce 1 sulla linea Z e riconosce una nuova sequenza. Nel caso in cui sia \mathbf{b}_0 che \mathbf{b}_1 sono uguali a zero, la rete non dovrà riconoscere nessuna sequenza e, quindi, leggerà una nuova coppia \mathbf{b}_0 \mathbf{b}_1 . Segue un esempio di funzionamento.

t:	0	1	2	3	4	5	6	7	8
x(t):	1	0	0	1	1	1	0_	1	1
z(t):	0	0	0	0	0	0	0	0	- 1

Esercizio 4. Si realizzi una rete sequenziale sincrona R con due linee di ingresso **A** e **B** ed una linea di uscita **Z**. Ad ogni colpo di clock, R riceve un bit sulla linea **A** e un bit sulla linea **B**. Il calcolo si ferma quando R avrà ricevuto su **B** esattamente quattro bit ad 1 e dovrà restituire in uscita 1 solo se la stringa (di quattro bit) che si forma su **A** in corrispondenza dei bit a 1 di **B** è palindroma. Segue un esempio di funzionamento di R.

t:	0	1	2	3	4	5	6	7
A(t):	1	0	0	0	1	0	1	1
B (t):	1	0	1	0	0	1	0	1
z (t):	0	0	0	0	0	0	0	1

Esercizio 5. Si realizzi una rete sequenziale sincrona R con un ingresso X ed una uscita Z. Ogni quattro colpi di clock la rete riceve in ingresso sulla linea X i quattro bit b(t-3), b(t-2), b(t-1) e b(t). Al ricevimento del quarto bit b(t) la rete deve restituire in uscita 1 se il numero binario formato dai quattro bit b(t-3) b(t-2) b(t-1) b(t) è il successore di un numero primo e 0 altrimenti (si assuma che b(t) sia il bit meno significativo di tale numero). Successivamente la rete riprende il suo funzionamento dal principio. Segue un possibile funzionamento di R:

t:	0	1	2	3	4	5	6	7	8	9	10	11
X:	0	0	0	1	0	1	0	0	1	0	0	1
Z:	0	0	0	0	0	0	0	1	0	0	0	0

Esercizio 1 - COMPITO DEL 17 GIUGNO 2013

Si realizzi una rete sequenziale sincrona R con una linea di ingresso x ed una linea di uscita z. Ad ogni colpo di clock t, R riceve in ingresso un bit di seguito denotato come b(t). Ogni quattro colpi di clock, R restituisce 1 sulla linea z se la somma dei due numeri binari b(t-3)b(t-2) e b(t-1)b(t) è un numero pari, restituisce 0 altrimenti. Successivamente la rete riprende il suo funzionamento dal principio. Segue un esempio di funzionamento.

1	2	3	4	5	6.	7	8	9	10	11	12
0	1	0	1	1	0	0	1	1	1	0	0
0	0	0	1	0	0	0	0	0	0	0	0

Esercizio 1 - COMPITO DELL' 8 LUGLIO 2013

Si realizzi una rete sequenziale sincrona R con una linea di ingresso x ed una linea di uscita z. La rete riconosce come valide espressioni del tipo $e=\alpha 0\beta$, dove α è una sequenza composta da una, due oppure tre coppie '11' consecutive. Lo 0 tra α e β segna la fine della sequenza α , dopo tale 0 la rete inizierà a leggere la sequenza β , che è una sequenza generica di uni e zeri caratterizzata dalla proprietà di contenere un numero di coppie '10', questa volta anche non consecutive, uguale al numero di coppie '11' della sequenza α . Terminato di leggere β la rete tornerà allo stato iniziale, restituendo uno in uscita. Successivamente la rete riprenderà il suo funzionamento dal principio. Se durante la lettura della sequenza α , la rete dovesse ricevere in input uno zero non atteso (ovvero subito dopo un uno spurio), allora tornerà allo stato iniziale restituendo zero.

Esempio: Si consideri il possibile funzionamento della rete illustrato in basso. Al colpo di clock 4 la rete inizia a leggere la sequenza α , che è composta da due coppie '11' consecutive. Al colpo di clock 8 riceve in input lo zero che separa α e β , quindi inizia a leggere la sequenza β che è composta da sette bit ($\beta=0010110$) e contiene due coppie '10' non consecutive. Se al colpo di clock 7 la rete avesse ricevuto uno zero invece di un uno, avrebbe restituito 0 e sarebbe tornata allo stato iniziale.

, 1	1	2	2	1	5	6	7	8	9	10	11	12	13	14	15
t	0	1	0	1	1	1	1	0	0	0	1	0	1	1	0
x	0	0	0	0	0	0	0	0	0	0	0	12 0 0	0	0	1

