Predicting the Origin of individuals from Genetic data

Team 17; https://github.com/Annilo/POrigGen

Ami Sild

1st year Masters student,
Data Science

Danat Yermakovich

3rd year PhD student, Centre for Genomics, Evolution and Medicine, Institute of Genomics

Agnes Annilo

1st year Masters student, Data Science

Grayson Felt

1st year Masters student, Actuarial and Financial Engineering

Predicting the Origin of individuals from Genetic data

Team 17; https://github.com/Annilo/POrigGen

Ami Sild

1st year Masters student,
Data Science

Danat Yermakovich

3rd year PhD student, Centre for Genomics, Evolution and Medicine, Institute of Genomics

Agnes Annilo

1st year Masters student, Data Science

Grayson Felt

1st year Masters student, Actuarial and Financial Engineering

Predicting the Origin of individuals from Genetic data

Team 17; https://github.com/Annilo/POrigGen

due to:
gradient changing
of
genetic population
structure
across world

Genealogical geographical origin

Human genome

https://www.genome.gov/genetics-glossary/Karyotype

Approach

Predicting sample's population label from genetic data

80% train

3200 samples (observations) 26 Pops across 5 SuperPop 50-150 samples per Pop

~10 millions genetic variations i.e. features

chr_pos_ref_alt 1:58771:T:C 1:183401:C:G 1:186291:G:A 1:281912:C:G

Sam	pleID				
HGC	00097	1 1	0 0	0 0	0 0
HGC	00099	0 0	0 0	1 0	0 0
HGC	0100	1 0	0 0	0 0	0 0
HGC	0101	1 0	0 0	0 0	1 0
HGC	0102	1 1	0 0	0 0	1 0
HGC	0103	0 0	0 0	0 0	0 0
HGC	0105	0 1	0 0	0 0	1 0
HGC	0106	0 1	0 1	0 0	0 0
HGC	0107	110	010	010	110

2561 / 641

Approach

Predicting sample's population label from genetic data

3200 samples (observations) 26 Pops across 5 SuperPop 50-150 samples per Pop

~10 millions genetic variations i.e. features

Genetic feature preprocessing (MAF < 0.05,LD pruning) 80% train

70 000 features

Train and evaluate different models

Outcome

predicting a sample's population label (1000G)

10 KK => 70K

chr pos ref alt 1:58771:T:C 1:183401:C:G 1:186291:G:A 1:281912:C:G

	SampleID				
	HG00097	1 1	0 0	0 0	0 0
	HG00099	0 0	0 0	1 0	0 0
	HG00100	1 0	0 0	0 0	0 0
	HG00101	1 0	0 0	0 0	1 0
	HG00102	1 1	0 0	0 0	1 0
	HG00103	0 0	0 0	0 0	0 0
	HG00105	0 1	0 0	0 0	1 0
	HG00106	0 1	0 1	0 0	0 0
	HG00107	1 0	0 0	0 0	1 0

2561 / 641

Approach

Predicting sample's population label from genetic data

3200 samples (observations) 26 Pops across 5 SuperPop 50-150 samples per Pop

~10 millions genetic variations i.e. features

chr_pos_ref_alt 1:58771:T:C 1:183401:C:G 1:186291:G:A 1:281912:C:G

	Sampleid				
Ī	HG00097	1 1	0 0	0 0	0 0
	HG00099	0 0	0 0	1 0	0 0
	HG00100	1 0	0 0	0 0	0 0
	HG00101	1 0	0 0	0 0	1 0
	HG00102	1 1	0 0	0 0	1 0
	HG00103	0 0	0 0	0 0	0 0
	HG00105	0 1	0 0	0 0	1 0
	HG00106	0 1	0 1	0 0	0 0
	HG00107	1 0	0 0	0 0	1 0

Outcome

predicting a sample's population label (1000G)

CV-tuning of hyperparameters and N of PCs

2561 / 641

CamplaID

Results: Data PCs

2561 train samples from 1000G: all PCs

2561 train samples from 1000G: all PCs

2561 train samples from 1000G: all PCs

2561 train samples from 1000G: **50 PCs**

2561 train samples from 1000G: **20 PCs**

Results: Models

Results: Models

Results: Best LogRegression Confusion Matrix

Main Lessons

- Different stages of problems complexity have their own best types of models
- In multiclassification, primary efforts can be devoted to distinguishing the most similar classes
- Ensembles have potential in multiclassifaction
- Large datasets require a large RAM amount

Main Lessons

- Different stages of problems complexity have their own best types of models
- In multiclassification, primary efforts can be devoted to distinguishing the most similar classes
- Ensembles have potential in multiclassifaction
- Large datasets require a large RAM amount

Thank you for your attention!

https://github.com/Annilo/POrigGen

Results: Data PCs

2561 train samples from 1000G:26 populations5 Superpopulations

Results: Models

Decision Tree ---- {'criterion': 'gini', 'max_depth': None}; PCs: 50 Logistic Regression ---- {'penalty': 'l2', 'solver': 'saga'}; PCs: 1000

XGBoost ---- {'gamma': 0.5, 'max_depth': '100'}; PCs: 500

#Neural Network ---- {'activation': 'relu', 'solver': 'adam'}; PCs: 1000

KNN ---- {'n_neighbors': 2, 'weights': 'distance'}; PCs: 50

SVC ---- {'kernel': 'poly'}; PCs: 5

Baseline ---- always predict largest class

Results: Ensemble from RF, KNN, LogR

