REGRESSION

45

Concept

Simple Linear Regression

One dependent variable – Tip Amount

The Best Fit Line

error = distance from the estimated value

Estimated Tip Amount

Sum of residuals (errors) = -2 + -6 + 3 + 8 + -3 = 0

Squared Residuals / Errors

- Make numbers positive
- Emphasizes large deviation

Sum of Squared Errors (SSE)

SSE

Sum of squared error = 4 + 36 + 9 + 64 + 9 = 122

50 PIIU / KMITL, June 2018

So, How much is the next tip?

Sum of errors = -10 Sum of squared errors = 222

Linear Regression

- Regression line: a line that is as close to every dot as possible
- Sum of squared residuals/errors (SSE) is at the minimum

Error

Vertical distance from regression line

Tip Amount vs Meal Amount

Sum of errors = -0.37 Sum of squared errors = 13.92

Least Squares Method

Least squares criterion

$$min \Sigma (y_i - \hat{y}_i)^2$$

Tip Amount

 y_i = observed value of the dependent variable

 \hat{y}_i = estimated value of the dependent variable

Note: sum of squared residuals should be much smaller than when only one dependent variable is considered

122 in our example

Which Line?

Centroid

- Average values of x and y → 227 and 15
- The best-fit regression line must pass the centroid

The Best Fit Line

$$b_1 = \sum (x_i - \overline{x})(y_i - \overline{y})$$
$$\Sigma (x_i - \overline{x})^2$$

$$b_0 = \overline{y} - b_1 \overline{x}$$

Our Example

 $b_0 = 2.50028$ $b_1 = 0.05506$

SSE

SSE = 12.1456

PIIU / KMITL, June 2018

Two Models

One dependent variable

Average value

One dependent variable
One independent variable

Least squares method

Intercept and Coefficients

- Y-intercept is the expected mean value of Y when all X=0
- Coefficient, B_i, is the difference in the predicted value of Y for each one-unit difference in X_i, if all other X's remain constant

Common Regression Evaluation Metrics

Mean Absolute Error (MAE):
 the mean of the absolute value of the errors

$$\frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

Mean Squared Error (MSE):
 mean of the squared errors

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

 Root Mean Squared Error (RMSE): square root of the mean of the squared errors

$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

Multiple Regression

- More than one independent variable
- One dependent variable
- Independent variables may relate to each other
- Ideal is that all independent variables to be correlated with dependent variable, not with each other
- Note
 - predictor variable is often called independent variable
 - response variable is often called dependent variable

Multiple Regression Model / Equation

Estimated multiple regression equation

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_n x_n$$
predicted value
(dependent variable)

estimated value of
$$\beta_0, \beta_1, \beta_2, \dots, \beta_n$$

PIIU / KMITL, June 2018