Analysis of Algorithms CS 477/677

Instructor: Monica Nicolescu Lecture 7

Bubble Sort

- Idea:
 - Repeatedly pass through the array
 - Swaps adjacent elements that are out of order

 Easier to implement, but slower than Insertion sort

Bubble Sort

```
for i \leftarrow 1 to length[A]

do for j \leftarrow length[A] downto i + 1

do if A[j] < A[j-1]

then exchange A[j] \Longleftrightarrow A[j-1]

i \longrightarrow A[j-1]

i \longrightarrow A[j-1]
```

Bubble-Sort Running Time

Alg.: BUBBLESORT(A)

for $i \leftarrow 1$ to length[A]

do for $j \leftarrow length[A]$ downto i + 1

Comparisons:
$$\approx n^2/2$$
 do if $A[j] < A[j-1]$ Exchanges: $\approx n^2/2$

then exchange $A[j] \iff A[j-1]$

$$T(n) = c_1(n+1) + c_2 \sum_{i=1}^{n} (n-i+1) + i i c_3 \sum_{i=1}^{n} (n-i) + i i c_4 \sum_{i=1}^{n} (n-i)$$

$$= \Theta(n) + (c_2 + c_3 + c_4) \sum_{i=1}^{n} (n-i)$$

$$\approx \sum_{i=1}^{n} (n-i) = \sum_{i=1}^{n} n - \sum_{i=1}^{n} i = n^2 - \frac{n(n+1)}{2} = \frac{n^2}{2} - \frac{n}{2}$$

$$T(n) = \Theta(n^2)$$

Selection Sort

• Idea:

- Find the smallest element in the array
- Exchange it with the element in the first position
- Find the second smallest element and exchange it with the element in the second position
- Continue until the array is sorted

• Invariant:

 All elements to the left of the current index are in sorted order and never changed again

Disadvantage:

 Running time depends only slightly on the amount of order in the file

Example

1	2	3	4	9	6	8
1	2	3	4	6	9	8
1	2	3	4	6	8	
'		J	7	U	O	<u> </u>
1	2	3	4	6	8	9

Selection Sort

```
Alg.: SELECTION-SORT(A)
   n \leftarrow length[A]
                                             4
                                                 6
  for j \leftarrow 1 to n - 1
          do smallest \leftarrow j
               for i \leftarrow j + 1 to n
                    do if A[i] < A[smallest]
                           then smallest \leftarrow i
               exchange A[j] \iff A[smallest]
```

Analysis of Selection Sort

```
Alg.: SELECTION-SORT(A)
                                                               cost
                                                                  times
     n \leftarrow length[A]
     for j \leftarrow 1 to n - 1
                                                                C_1
              do smallest ← j
\approxn<sup>2</sup>/2
                                                                 c_3 \sum_{i=1}^{n-1} (n - n^{i+1})
                   for i \leftarrow j + 1 to n
comparisons
                                                                    \sum_{i=1}^{n-1} (n-j)
                         do if A[i] < A[smallest]
                                                                C_4 \sum_{i=1}^{n-1} (n-j)
                                  then smallest ← i
≈n exchanges
```

exchange $A[j] \iff A[smallest]$

Divide-and-Conquer

- Divide the problem into a number of subproblems
 - Similar sub-problems of smaller size
- Conquer the sub-problems
 - Solve the sub-problems recursively
 - Sub-problem size small enough ⇒ solve the problems in straightforward manner
- Combine the solutions to the sub-problems
 - Obtain the solution for the original problem

Analyzing Divide and Conquer Algorithms

- The recurrence is based on the three steps of the paradigm:
 - T(n) running time on a problem of size n
 - Divide the problem into a subproblems, each of size n/b: takes D(n)
 - Conquer (solve) the subproblems: takes aT(n/b)
 - Combine the solutions: takes C(n)

$$T(n) = \begin{cases} \Theta(1) & \text{if } n \le c \\ aT(n/b) + D(n) + C(n) & \text{otherwise} \end{cases}$$

Merge Sort Approach

To sort an array A[p..r]:

Divide

 Divide the n-element sequence to be sorted into two subsequences of n/2 elements each

Conquer

- Sort the subsequences recursively using merge sort
- When the size of the sequences is 1 there is nothing more to do

Combine

Merge the two sorted subsequences

Merge Sort

Check for base case

Divide

- Conquer
- Conquer
- Combine

Initial call: MERGE-SORT(A, 1, n)

Example – n Power of 2

Example – n Not a Power of 2

Example – n Not a Power of 2

Merging

- Input: Array A and indices p, q, r such that
 p ≤ q < r
 - Subarrays A[p..q] and A[q+1..r] are sorted
- Output: One single sorted subarray A[p..r]

Merging

- Idea for merging:
 - Two piles of sorted cards
 - Choose the smaller of the two top cards
 - Remove it and place it in the output pile
 - Repeat the process until one pile is empty
 - Take the remaining input pile and place it facedown onto the output pile

Merge - Pseudocode

Alg.: MERGE(A, p, q, r)

- 1. Compute \mathbf{n}_1 and \mathbf{n}_2
- 2. Copy the first n₁ elements into $L[1..n_1+1]$ and the next n_2 elements into $R[1..n_2+1]$
- 3. $L[n_1 + 1] \leftarrow \infty$; $R[n_2 + 1] \leftarrow \infty$
- 4. $i \leftarrow 1$; $j \leftarrow 1$
- 5. for $k \leftarrow p$ to r
- **do if** L[i] ≤ R[j]
- 7. then $A[k] \leftarrow L[i]$
- 8. i ←i + 1
- 9. else $A[k] \leftarrow R[j]$
- 10.

Running Time of Merge

Initialization (copying into temporary arrays):

$$-\Theta(n_1+n_2)=\Theta(n)$$

- Adding the elements to the final array (the for loop):
 - n iterations, each taking constant time $\Rightarrow \Theta(n)$
- Total time for Merge:
 - $-\Theta(n)$

Analyzing Divide and Conquer Algorithms

- The recurrence is based on the three steps of the paradigm:
 - T(n) running time on a problem of size n
 - Divide the problem into a subproblems, each of size n/b: takes D(n)
 - Conquer (solve) the subproblems: takes aT(n/b)
 - Combine the solutions: takes C(n)

$$T(n) = \begin{cases} \Theta(1) & \text{if } n \le c \\ aT(n/b) + D(n) + C(n) & \text{otherwise} \end{cases}$$

MERGE – SORT Running Time

Divide:

- compute q as the average of p and r: $D(n) = \Theta(1)$

Conquer:

recursively solve 2 subproblems, each of size n/2
 ⇒ 2T (n/2)

Combine:

- MERGE on an **n**-element subarray takes $\Theta(n)$ time $\Rightarrow C(n) = \Theta(n)$

Solve the Recurrence

$$T(n) = \begin{cases} c & \text{if } n = 1 \\ 2T(n/2) + cn & \text{if } n > 1 \end{cases}$$

Use Master's Theorem:

Compare n with f(n) = cnCase 2: $T(n) = \Theta(n|gn)$

Readings

- For this lecture
 - Section 2.2, 2.3, 7.1
 - Coming next
 - Section 7.2-7.4