Face Recognition: A Convolutional Neural Network Approach

Instructor: Bhiksha Raj

Student: T. Hoang Ngan Le

The Problem

Proposed System - Flowchart

Image Sampling

 R^{25}

A window is stepped over the image and a vector is created at each location.

Dimensionality Reduction - SOM

Dimensionality Reduction - SOM

Dimensionality Reduction - KL Transform

Dimensionality Reduction - KL Transform

- PCA
 - Objective function: $\mathbf{u}^{\mathsf{T}} \mathcal{C} \mathbf{u} \lambda (\mathbf{u}^{\mathsf{T}} \mathbf{u} 1)$

- Karhunen-Loeve (KL) transform
 - Objective function:

$$\mathbf{u}_{2}^{\top} \mathcal{C} \mathbf{u}_{2} - \lambda (\mathbf{u}_{2}^{\top} \mathbf{u}_{2} - 1) - \phi \mathbf{u}_{2}^{\top} \mathbf{u}_{1}$$

$$\hat{\mathbf{x}}_{k-1} = \mathbf{x} - \sum_{i=1}^{k-1} \mathbf{u}_{i} \mathbf{u}_{i}^{\top} \mathbf{x}$$

$$\mathbf{u}_{k} = \arg \max_{\|\mathbf{u}\|=1} E[(\mathbf{u}^{\top} \hat{\mathbf{x}}_{k-1})^{2}]$$

Backpropagation gradient-descent procedure

Backpropagationalgorithm for standard MLP

$$E_p = \frac{1}{2}||\mathbf{o_p} - \mathbf{t_p}||^2 = \frac{1}{2}\sum_{k=1}^{K}(o_{pk} - t_{pk})^2$$

$$w_{ji}^{(l)} \leftarrow w_{ji}^{(l)} + \Delta w_{ji}^{(l)} = w_{ji}^{(l)} - \lambda \frac{\partial E_p}{\partial w_{ji}^{(l)}}$$

Convolutional Neural Network System

Convolutional Neural Network – Extensions

LeNet-5

http://yann.lecun.com/exdb/lenet/

C1,C3,C5 : Convolutional layer.

 5×5 Convolution matrix.

S2, S4: Subsampling layer.

Subsampling by factor 2.

F6: Fully connected layer.

About 187,000 connection.

About 14,000 trainable weight

Convolutional Neural Network – Extension and variants

Convolutional Neural Network – Experiment & Comparison

10 4.16%

200 training images and 200 test images from ORL database (AT&T).

Various Experiments							
□Variation of the number of output classes	Number o Error	s 10		20	40 5.75%		
☐ Variation of the dimensionality of the SOM	SOM Dimension Error rate 8.2		1 8.25%	2 6.75%	5.75%	5.83%	
☐ Variation of the quantization level of the SOM	SOM Size Error rate	8.5%	5.75%	6.0%	5.75%	3.83%	3.83
□Variation of the image sample extraction □algorithm	Input type Pixel intensities Differences w/base int Error rate 5.75% 7.17%						ensity
☐Substituting the SOM with the KL transform	Dimensionality reduction Linear PCA SOM Error rate 5.33% 3.83%						
☐Replacing the CN with an MLP	Linear PCA SOM MLP 41.2% 39.6% CN 5.33% 3.83%						
		•					

Comments

- Convolutional Neural Networks are a special kind of multi-layer neural networks.
- Like almost every other neural networks they are trained with a version of the back-propagation algorithm.
- Convolutional Neural Networks are designed to recognize visual patterns directly from pixel images with minimal preprocessing.
- Shared weights: all neurons in a feature share the same weights.
- In this way all neurons detect the same feature at different positions.
- Reduce the number of free parameters in the input image.

