Содержание

24	Понятие пространства \mathbb{R}^n , различные множества в \mathbb{R}^n . Утверждение о трех эквивалентных определениях замкнутого множества в \mathbb{R}^n .	3
25	Определение последовательности точек n -мерного действительного пространства. Критерий Коши сходимости последовательности в \mathbb{R}^n . Теорема Больцано-Вейерштрасса в \mathbb{R}^n .	
26	Понятие функции n переменных. Локальные свойства непрерывных функций: арифметические операции, сохранение знака, локальная ограниченность, непрерывность сложной функции.	
27	Непрерывность функции n переменных. Локальные свойства непрерывных функций: арифметические операции, сохранение знака, локальная ограниченность, непрерывность сложной функции.	
28	Непрерывность функции n переменных. Глобальные свойства непрерывных функций: теорема о прохождении через промежуточное значение, 1-я и 2-я теоремы Вейерштрасса.	7
29	Понятие равномерной непрерывности функции n переменных. Теорема Кантора.	8
30	Понятие дифференцируемости функции нескольких переменных. Эквивалентность двух форм записи остаточного члена. Необходимое условие дифференцируемости. Касательная плоскость к поверхности графика функции $z=f(x,y)$.	
31	Понятие дифференцируемости функции n переменных. Эквивалентность двух форм записи остаточного члена. Достаточное условие дифференцируемости.	10
32	Дифференцирование сложной функции n переменных. Понятие (первого) дифференциала. Инвариантность формы первого дифференциала.	11
33	Производная по направлению. Градиент. Геометрический смысл градиента. Формула для вычисления производной по направлению функции, дифференцируемой в данной точке.	
34	Понятие частной производной высокого порядка. Теорема о равенстве	14

35	Понятие дифференциала высокого порядка функции n переменных. Формула Тейлора для функций n переменных.	16
	Понятие экстремума функции n переменных. Необходимые условия экстремума. Достаточные условия экстремума.	18
37	Теорема о существовании и дифференцируемости неявно заданной функции.	к- 19
38	Теорема о разрешимости системы функциональных уравнений.	21
39	Понятие зависимости функций. Достаточные условия независимости.	23
40	Понятие зависимости функций. Теорема о функциональной зависимости.	23
41	Метод Лагранжа поиска условного экстремума ФМП.	24

24 Понятие пространства \mathbb{R}^n , различные множества в \mathbb{R}^n . Утверждение о трех эквивалентных определениях замкнутого множества в \mathbb{R}^n .

Опр. Пространство \mathbb{R}^n - линейное пространство, элементами которого являются наборы $(x_1, \ldots, x_n), x_i \in \mathbb{R}$. Эти наборы будем называть точками (векторами) пространства \mathbb{R}^n .

На \mathbb{R}^n введем операцию сложения $\overline{x} + \overline{y} = (x_1 + y_1, \dots, x_n + y_n)$ и умножения на скаляр $\alpha \in \mathbb{R} : \alpha \overline{x} = (\alpha x_1, \dots, \alpha x_n)$.

Пространство \mathbb{R}^n является евклидовым относительно скалярного произведения $(\overline{x}, \overline{y}) = x_1 y_1 + \dots + x_n y_n$. Это скалярное произведение порождает норму (длину) $||\overline{x}|| = \sqrt{(\overline{x}, \overline{x})} = \sqrt{x_1^2 + \dots + x_n^2}$. Норма порождает метрику (расстояние) $\rho(\overline{x}, \overline{y}) = ||\overline{x} - \overline{y}|| = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$

Опр. Пусть $\varepsilon > 0$. ε -крестностью точки $\overline{x}^o = (x_1^o, \dots, x_n^o)$ будем называть множество $B_{\varepsilon}(\overline{x}^o) = \{\overline{x} = (x_1, \dots, x_n) \in \mathbb{R}^n : ||\overline{x} - \overline{x}^o||^2 < \varepsilon^2\}$

Опр. Пусть $A \subset \mathbb{R}^n$. Точка \overline{x}^o называется внутренней точкой множества A, если $\exists \varepsilon > 0 : B_{\varepsilon}(\overline{x}^o) \subset A$. Точка \overline{x}^o называется внешней точкой множества A, если $\exists \varepsilon > 0 : B_{\varepsilon}(\overline{x}^o) \subset (\mathbb{R}^n \setminus A)$. Точка \overline{x}^o называется граничной точкой множества A, если $\forall \varepsilon > 0 : B_{\varepsilon}(\overline{x}^o) \cap A \neq \emptyset$ и $B_{\varepsilon}(\overline{x}^o) \cap (\mathbb{R}^n \setminus A) \neq \emptyset$.

Опр. Множество $A \subset \mathbb{R}^n$ называется открытым, если все его точки - внутренние. Множество $A \subset \mathbb{R}^n$ называется замкнутым, если $(\mathbb{R}^n \setminus A)$ - открыто.

Опр. Точка \bar{x}^o называется предельной точкой множества A, если в любой ее окрестности содержится бесконечно много точек множества A. Или, эквивалентно, в любой проколотой окрестности есть хотя бы одна точка множества A.

Утверждение. Следующие утверждения эквиваленты:

- 1. Множество А замкнуто;
- 2. Множество А содержит все свои предельные точки;
- 3. Множество А содержит все свои граничные точки.

 \mathcal{A} -во. (1 \Longrightarrow 2) Пусть \overline{x}^o - предельная точка $A, \overline{x}^o \notin A$. Тогда $\overline{x}^o \in (\mathbb{R}^n \setminus A)$. Множество A открыто $\Longrightarrow \exists \varepsilon > 0 : B_{\varepsilon}(\overline{x}^o) \in (\mathbb{R}^n \setminus A)$. Тогда в $B_{\varepsilon}(\overline{x}^o)$ нет элементов множества $A \Longrightarrow \overline{x}^o$ - не предельная точка.

- $(2\implies 3)$ Пусть \overline{x}^o граничная точка A. Тогда $\forall \varepsilon>0: B_{\varepsilon}(\overline{x}^o)\cap A\neq\emptyset \implies \overline{x}^o$ предельная точка $\implies \overline{x}^o\in A$.
- $(3 \implies 1)$ Пусть $\overline{x}^o \in (\mathbb{R}^n \setminus A)$. Тогда \overline{x}^o внешняя точка A(т.к. A содержит все свои внутренние и граничные точки). Значит, $\exists \varepsilon > 0 : B_{\varepsilon}(\overline{x}^o) \subset (\mathbb{R}^n \setminus A)$. Значит $(\mathbb{R}^n \setminus A)$ открыто, т.е. A замкнуто.

Опр. Открытым n-мерным шаром радиуса R>0 с центром в точке \overline{x}^o называет-ся множество $B_R(\overline{x}^o)=\{\overline{x}\in\mathbb{R}^n: \rho(\overline{x}^o,\overline{x})< R\}$. Замкнутым n-мерным шаром - $\overline{B}_R(\overline{x}^o)=\{\overline{x}\in\mathbb{R}^n: \rho(\overline{x}^o,\overline{x})\leq R\}$. Множество $S_R(\overline{x}^o)=\{\overline{x}\in\mathbb{R}^n: \rho(\overline{x}^o,\overline{x})=R\}$ - n-мерной сферой.

Множество $\Pi(\overline{x}^o) = \{ \overline{x} \in \mathbb{R}^n : |x_1 - x_1^o| < d_1, \dots, |x_n - x_n^o| < d_n \}, d_1, \dots, d_n > 0$ называется (открытым) п-мерным парамлелепипедом.

25 Определение последовательности точек n-мерного действительного пространства. Критерий Коши сходимости последовательности в \mathbb{R}^n . Теорема Больцано-Вейерштрасса в \mathbb{R}^n .

Опр. Последовательностью в \mathbb{R}^n называется отображение из \mathbb{N} в \mathbb{R} , и так же образ при отображении, т.е. множество $\{\overline{x}^m\}_{m=1}^{+\infty}$.

Говорят, что последовательность $\{\overline{x}^m\}$ сходится к точке $\overline{a} \in \mathbb{R}^n$, при $m \to +\infty$, если $\forall \varepsilon > 0 \exists M(\varepsilon) \in \mathbb{N}$, т.ч. $\forall m \geq M : \rho(\overline{x}^m, \overline{a}) < \varepsilon$.

Лемма. Последовательность
$$\overline{x}^m o \overline{a} \Leftrightarrow \begin{cases} x_1^m o a_1 \\ \dots \\ x_n^m o a_m \end{cases}$$
 .

$$A$$
-во. (\Longrightarrow) Возьмем $\varepsilon > 0$ $\overline{x}^m \to \overline{a} \Longrightarrow \exists N(\varepsilon) \in \mathbb{N} \, | \, \forall m \geq N : \, |x_k^m - a_k| \leq \sqrt{(x_1^m - a_1)^2 + \dots + (x_n^m - a_n)^2} = \rho(\overline{x}^m, \overline{a}) < \varepsilon \Longrightarrow x_k^m \to a_k \, \forall k \in \{1, \dots, n\}.$ (\Longleftrightarrow) Возьмем $\varepsilon > 0$. $x_k^m \Longrightarrow a_k \Longrightarrow \exists N_k(\varepsilon) \in \mathbb{N} \, | \, \forall m \geq N : \, |x_k^m - a_k| < \frac{\varepsilon}{\sqrt{n}} \, \forall k \in \{1, \dots, n\}.$ Положим $N = \max\{N_1, \dots, N_n\}$. Тогда $\forall m \geq N : \rho(\overline{x}^m, \overline{a}) = \sqrt{(x_1^m - a_1)^2 + \dots + (x_n^m - a_n)^2} < \varepsilon \Longrightarrow \overline{x}^m \to \overline{a}.$

Опр. Последовательность $\{\overline{x}^m\}$ фундаментальна, если $\forall \varepsilon > 0 \exists N(\varepsilon) \in \mathbb{N} \mid \forall m \geq N \ \forall p \in \mathbb{N} : \rho(\overline{x}^{m+p}, \overline{x}^m) < \varepsilon$.

Лемма. Последовательность $\{\overline{x}^m\}$ фундаментальна \Leftrightarrow каждая из числовых последовательностей $\{x_k^m\}$, $k=1,\ldots,n$ является фундаментальной.

 \mathcal{A} -60. Полностью аналогично доказательству предыдущей леммы.

Теорема (Критерий Коши). *Последовательность* $\{\overline{x}^m\}$ *сходится* \Leftrightarrow *она фундаментальна.*

$$\mathcal{A}$$
-во. $\{\overline{x}^m\}$ сходится \Leftrightarrow $\{x_1^m\},\ldots,\{x_n^m\}$ сходятся \Leftrightarrow $\{x_1^m\},\ldots,\{x_n^m\}$ фундаментальны \Leftrightarrow $\{\overline{x}^m\}$ фундаментальна.

Опр. Последовательность $\{\overline{x}^m\}$ называется ограниченной, если $\exists R>0: \forall m\in\mathbb{N}: \overline{x}^m\in B_R(0).$

Опр. Пусть $k_1, \ldots, k_m, \ldots \in \mathbb{N}$, $k_1 < \cdots < k_m < \ldots$ Тогда последовательность $\{\overline{x}^{k_1}, \ldots, \overline{x}^{k_m}, \ldots\}$ называется подпоследовательностью последовательности $\{\overline{x}^m\}$.

Теорема (Больцано-Вейерштрасса). Из любой ограниченной последовательности $\{\overline{x}^m\}$ можно выделить сходящуюся подпоследовательность.

 \mathcal{A} -60. $\{\overline{x}^m\}$ - ограничена \Longrightarrow все $\{x_k^m\}$ ограничены. Из последовательности $\{x_1^m\}$ можно выделить сходящуюся подпоследовательность $\{x_1^{k_{m_1}}\}, \ x_1^{k_{m_1}} \to a_1$. Рассмотрим последовательность $\{x_2^{k_{m_1}}\}$. Она ограничена \Longrightarrow из нее можно выделить сходящуюся подпоследовательность $\{x_2^{k_{m_2}}\}$, и т.д. Получим сходящиеся последовательности $\{x_1^{k_{m_n}}\}, \ldots, \{x_n^{k_{m_n}}\} \Longrightarrow \{\overline{x}^{k_{m_n}}\}$ сходится.

26 Понятие функции n переменных. Локальные свойства непрерывных функций: арифметические операции, сохранение знака, локальная ограниченность, непрерывность сложной функции.

Опр. Функцией многих переменных называется отображение $f: X \to Y$, где $X \subset \mathbb{R}^n$, $Y \subset \mathbb{R}$.

Опр (Гейне). Число $b \in \mathbb{R}$ называется пределом функции f в точке \overline{a} , если \forall последовательности $\{\overline{x}^m\}$, m.ч. $\overline{x}^m \in X$, $\overline{x}^m \to \overline{a}$, $\overline{x}^m \neq \overline{a}: f(\overline{x}^m) \to b$.

Опр (Коши). Число b называется приделом функции f в точке \overline{a} , если $\forall \varepsilon > 0 \exists \delta(\varepsilon) > 0$, $m.ч. \ \forall \overline{x} \in B_{\delta}(\overline{a}) \cap X : |f(\overline{x}) - b| < \varepsilon$.

Утверждение. Определения по Коши и по Гейне эквивалентны.

 Δ -60. (Коши \Longrightarrow Гейне) $\{\overline{x}^m\}$, т.ч. $\overline{x}^m \in X$, $\overline{x}^m \to \overline{a}$, $\overline{x}^m \neq \overline{a}$. Возьмем $\varepsilon > 0$. Тогда $\exists N(\delta)$, т.ч. $\forall m \geq N$ $\overline{x}^m \in B_\delta(\overline{a}) \cap X$, где $\delta = \delta(\varepsilon)$ из определения по Коши. Получили, что $|f(\overline{x}) - b| < \varepsilon \, \forall m \geq N$. Это и означает, что $f(\overline{x}^m) \to b$. (Гейне \Longrightarrow Коши) Предположим, что определение по Коши не выполнено, т.е. $\exists \varepsilon > 0$, т.ч. $\forall m \in \mathbb{N} \exists \overline{x}^m \in X$, $0 < \rho(\overline{x}^m, \overline{a}) < \frac{1}{m} : |f(\overline{x}^m) - b| \geq \varepsilon$. Это означает, что $\overline{x}^m \to \overline{a}$, $\overline{x}^m \neq \overline{a}$, но $f(\overline{x}^m) \not\to \overline{a}$. Противоречие. Значит определение по Коши выполнено.

Опр. Будем говорить, что число $b \in \mathbb{R}$ является приделом функции f при $\overline{x} \to \infty$, если $\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0$, т.ч. $\forall \overline{x} \in X, \ ||\overline{x}|| > \frac{1}{\delta} : |f(\overline{x}) - b| < \varepsilon$.

Теорема (Арифметика пределов). Пусть f,g определены на X, \overline{a} - предельная точка X. Если $\lim_{\overline{x}\to \overline{a}} f(\overline{x}) = b, \lim_{\overline{x}\to \overline{a}} g(\overline{x}) = c,$ то $\lim_{\overline{x}\to \overline{a}} (f(\overline{x})\pm g(\overline{x})) = b\pm c, \lim_{\overline{x}\to \overline{a}} f(\overline{x})g(\overline{x}) = bc,$ $\lim_{\overline{x}\to \overline{a}} \frac{f(\overline{x})}{g(\overline{x})} = \frac{b}{c}(c\neq 0).$

 \mathcal{A} -во. Пусть $\overline{x}^m \in X$, $\overline{x}^m \to \overline{a}$, $\overline{x}^m \neq \overline{a}$. Тогда $f(\overline{x}^m) \to b$, $g(\overline{x}^m) \to c$. Из теоремы об арифметике пределов для числовых последовательностей $\Longrightarrow f(\overline{x}^m) \pm g(\overline{x}^m) \to b \pm c$, $f(\overline{x}^m)g(\overline{x}^m) \to bc$, $\frac{f(\overline{x}^m)}{g(\overline{x}^m)} \Longrightarrow \frac{b}{c}(c \neq 0)$.

Опр. Функция удовлетворяет условию Коши в точке $\overline{a}~(x\to\infty)$, если $\forall \varepsilon>0 \exists \delta(\varepsilon)>0$, т.ч. $\forall \overline{x}', \overline{x}'', \ 0<\rho(\overline{x}',\overline{a})<\delta, \ 0<\rho(\overline{x}'',\overline{a})<\delta~(||\overline{x}'||>\frac{1}{\delta}, \ ||\overline{x}''||>\frac{1}{\delta}):|f(\overline{x}')-f(\overline{x}'')|<\varepsilon$.

Теорема (Критерий Коши существования предела функции). Функция f имеет придел в точке $\overline{a} \Leftrightarrow$ она удовлетворяет условию Коши в этой точке.

Д-во. Полностью аналогично одномерному случаю.

27 Непрерывность функции n переменных. Локальные свойства непрерывных функций: арифметические операции, сохранение знака, локальная ограниченность, непрерывность сложной функции.

Опр. Пусть функция f определена на множестве X, $\overline{a} \in X$, \overline{a} - предельная точка X. Функция f непрерывна в точке \overline{a} , если $\lim_{\longrightarrow} f(\overline{x}) = f(\overline{a})$.

По Гейне: f непрерывна в точке \overline{a} , если \forall последовательности $\{\overline{x}^m\}$, $\overline{x}^m \in X$, $\overline{x}^m \to \overline{a}$: $f(\overline{x}^m) \to f(\overline{a})$.

По Коши: f непрерывна в точке \overline{a} , если $\forall \varepsilon > 0 \,\exists \delta(\varepsilon) > 0$, т.ч. $\forall \overline{x} \in X, \rho(\overline{x}, \overline{a}) < \delta$: $|f(\overline{x}) - f(\overline{a})| < \varepsilon$.

Утверждение. Определения по Коши и по Гейне эквивалентны.

Д-60. Сразу следует из эквивалентности определения предела по Коши и по Гейне. □

Теорема (Арифметика непрерывных функций). Пусть f, g определены на $X, \overline{a} \in X, \overline{a}$ - предельная точка X, f, g непрерывны в точке \overline{a} . Тогда $f \pm g, fg, \frac{f}{g}(g(\overline{a}) \neq 0)$ непрерывны в точке \overline{a} .

 \mathcal{A} -60. Следует из формального определения непрерывности и арифметике пределов. \square

Теорема (Сохранение знака). Пусть f определена на X, $\overline{a} \in X$, \overline{a} - предельная точка X, f непрерывна g точке \overline{a} . Если $f(\overline{a}) > 0 (< 0)$, то $\exists \delta$, т.ч. $f(\overline{x}) > 0 (< 0) \, \forall x \in B_{\delta}(\overline{a}) \cap X$.

 \mathcal{A} -во. Пусть $f(\overline{a}) > 0$. Тогда возьмем в определение по Коши $\varepsilon = \frac{f(\overline{a})}{2} > 0$. Получим, что $\exists \delta > 0$, т.ч. $\forall \overline{x} \in B_{\delta}(\overline{a}) \cap X : |f(\overline{x}) - f(\overline{a})| < \frac{f(\overline{a})}{2} \implies f(\overline{x}) > \frac{f(\overline{a})}{2} > 0$.

Теорема (Локальная ограниченность). Пусть f определена на X, $\overline{a} \in X$, \overline{a} - предельная точка X, f непрерывна в точке \overline{a} . Тогда $\exists c > 0$, $\exists \delta > 0 : |f(\overline{x})| < c \, \forall \overline{x} \in B_{\delta}(\overline{a}) \cap X$.

 \mathcal{A} -во. Возьмем в определении по Коши $\varepsilon=1$. Тогда $\exists \delta>0,$ т.ч. $\forall \overline{x}\in B_{\delta}(\overline{a})\cap X:$ $|f(\overline{x})-f(\overline{a})|<1\implies |f(\overline{x})|\leq |f(\overline{a})|+1.$

Опр. Пусть функции $\varphi_1, \ldots, \varphi_n$ определены на множестве $T \subset \mathbb{R}^k$. Обозначим через $X = \{(x_1, \ldots, x_n) \in \mathbb{R}^n : x_j = \varphi_j(\overline{t}), \overline{t} \in T, j = \overline{1,k}\}$ (т.е. у нас задана вектор-функция $\overline{\varphi}: T \to X; \overline{\varphi}: \overline{t} \to \overline{x}$). Пусть $f: X \to Y \subset \mathbb{R}$. Тогда говорят, что на множестве T задана сложная функция $f(\overline{\varphi}): T \to Y$

Теорема (Непрерывность сложной функции). Пусть $\varphi_1, \ldots, \varphi_n$ непрерывны в точке $\overline{a} \in T$, \overline{a} - предельная точка T, а функция f непрерывна в точке $\overline{b} = (b_1, \ldots, b_n)$, $b_j = \varphi_j(\overline{a}), j = \overline{1,n}$, Тогда сложная функция $f(\overline{\varphi})$ непрерывна в точке \overline{a} .

 \mathcal{A} -во. Будем использовать определение непрерывности по Гейне. Возьмем последовательность $\overline{t}^m \in T$, $\overline{t}^m \to \overline{a}$. Тогда $\varphi_j(\overline{t}^m) \to \varphi(\overline{a}) = b_j$. Обозначим $x_j^m := \varphi_j(\overline{t}^m)$, тогда точки $\overline{x}^m = (x_1^m, \dots, x_n^m) \in X$, $\overline{x}_j^m \to b_j \implies \overline{x}^m \to \overline{b}$. Функция f непрерывна в точке $\overline{b} \implies f(\overline{x}^m) \to f(\overline{b})$. Получили, что \forall последовательности $\{\overline{t}^m\}$, $\overline{t}^m \in T$, $\overline{t}^m \to \overline{a}$: $f(\varphi_1(\overline{t}^m), \dots, \varphi_n(\varphi_n(\overline{t}^m)) \implies f(\varphi_1(\overline{a}), \dots, \varphi_n(\overline{a}))$. Это и есть определение непрерывности функции $f(\overline{\varphi})$ в точке \overline{a} .

28 Непрерывность функции n переменных. Глобальные свойства непрерывных функций: теорема о прохождении через промежуточное значение, 1-я и 2-я теоремы Вейерштрасса.

Опр. Пусть функция f определена на множестве X, $\overline{a} \in X$, \overline{a} - предельная точка X. Функция f непрерывна в точке \overline{a} , если $\lim_{\overline{x} \to \overline{a}} f(\overline{x}) = f(\overline{a})$.

Опр. Пусть $f: X \to \mathbb{R}$, $A \subset \mathbb{R}^n$. f непрерывна на множестве A, если она непрерывна $g \ \forall \overline{a} \in A$.

Опр. Непрерывной кривой в \mathbb{R}^n называется множество $L = \{(x_1, \ldots, x_n) \in \mathbb{R}^n : x_j = \varphi_j(t), j = \overline{1, n}, \alpha \leq t \leq \beta, \varphi_j \in C[\alpha, \beta] \}$. Говорят, что точки \overline{x}^1 и \overline{x}^2 можно соединить непрерывной кривой L, если $\overline{x}^1 = (\varphi_1(\alpha), \ldots, \varphi_n(\alpha))$ и $\overline{x}^2 = (\varphi_1(\beta), \ldots, \varphi_n(\beta))$.

Опр. Множество $A \subset \mathbb{R}^n$ называется линейно связным, если \forall две точки $\overline{x}^1, \overline{x}^2 \in A$ можно соединить непрерывной кривой $L \subset A$. Область - открытое линейно связное множество.

Теорема (прохождение через промежуточные значения). Пусть функция f непрерывна на линейно связном множестве $A \subset \mathbb{R}^n$, $\overline{x}^1, \overline{x}^2 \in A$, $a = \min\{f(\overline{x}^1), f(\overline{x}^2)\}$, $b = \max\{f(\overline{x}^1), f(\overline{x}^2)\}$. Тогда $\forall \gamma \in [a, b]$ для любой непрерывной кривой $L \in A$, соединяющей \overline{x}^1 и \overline{x}^2 $\exists \overline{c} \in L : f(\overline{c}) = \gamma$.

 $\overline{\mathcal{A}}$ -во. Пусть $L = \{(x_1, \dots, x_n) \in A : x_j = \varphi_j(t), \alpha \leq t \leq \beta, \varphi_j \in C[\alpha, \beta], j = \overline{1, n}\}, \overline{x}^1 = (\varphi_1(\alpha), \dots, \varphi_n(\alpha), \overline{x}^2 = (\varphi_1(\beta), \dots, \varphi_n(\beta)).$ Рассмотрим сложную функцию $g(t) := f(\varphi_1(t), \dots, \varphi_n(t)), \alpha \leq t \leq \beta.$ Тогда $g : [\alpha, \beta] \to \mathbb{R}, g \in C[\alpha, \beta]$ как сложная функция. $g(\alpha) = f(\overline{x}^1), g(\beta) = f(\overline{x}^2) \implies a = \min\{g(\alpha), g(\beta)\}, b = \max\{g(\alpha), g(\beta)\}.$ По теореме о прохождении через промежуточные значения для функции одной переменной: $\forall \gamma \in [\alpha, \beta] \exists \xi \in [\alpha, \beta] : g(\xi) = \gamma.$ По определению кривой L: $\overline{c} = (\varphi_1(\xi), \dots, \varphi_n(\xi)) \in L$; $f(\overline{c}) = g(\xi) = \gamma$.

Опр. Функция f ограничена на множестве $K \subset X$, если $\exists c > 0$, $m.ч. \forall \overline{x} \in K : |f(\overline{x})| \le c$.

 $TB\Gamma$ ($TH\Gamma$) функции f на множестве K называется число $M \in \mathbb{R}$ ($m \in \mathbb{R}$), m.ч.

- 1. $f(\overline{x}) \leq M (\geq m) \, \forall \overline{x} \in K$;
- 2. $\forall \varepsilon > 0 \,\exists \overline{x}' \in K : f(\overline{x}') > M \varepsilon \, (< m + \varepsilon).$

Теорема (1-я теорема Вейерштарасса). Пусть f определена u непрерывна на замкнутом ограниченном множестве $K \subset \mathbb{R}^n$. Тогда f ограничена на K.

 \mathcal{A} -60. Предположим, что f не ограничена на K. Тогда $\forall m \in \mathbb{N} \exists \overline{x}^m \in K$, т.ч. $|f(\overline{x}^m)| > m$. Последовательность $\{\overline{x}^m\}$ ограничена \Longrightarrow по теореме Б.-В. из нее можно выделить сходящуюся подпоследовательность $\overline{x}^{k_m} \to \overline{x}^o$. Точка \overline{x}^o - предельная точка множества K; множество K замкнуто $\Longrightarrow \overline{x}^o \in K$. Значит f непрерывна в точке $\overline{x}^o \Longrightarrow f(\overline{x}^{k_m}) \to f(\overline{x}^o)$, но $|f(\overline{x}^{k_m})| > k_m \, \forall m \in \mathbb{N}$. Противоречие. Значит f ограничена на K.

Теорема (2-я теорема Вейерштрасса). Пусть f непрерывна на замкнутом ограниченном множестве $K \subset \mathbb{R}^n$. Тогда f достигает на K своих $TB\Gamma$ и $TH\Gamma$.

Д-во. Полностью аналогично одномерному случаю.

29 Понятие равномерной непрерывности функции n переменных. Теорема Кантора.

Опр. Пусть множество A таково, что каждая его точка является предельной. Функция f p/н на множестве A, если $\forall \varepsilon > 0 \,\exists \delta(\varepsilon) > 0$, т.ч. $\forall \overline{x}', \overline{x}'' \in A$, $\rho(\overline{x}', \overline{x}'') < \delta$: $|f(\overline{x}') - f(\overline{x}'')| < \varepsilon$.

Теорема (Кантор). Пусть f непрерывна на замкнутом ограниченном множестве K. Тогда f p/н на множестве K.

 \mathcal{A} -во. Предположим, что f не р/н. Тогда $\exists \varepsilon > 0$, т.ч. $\forall m \in \mathbb{N} \, \exists \overline{x}^{m\prime}, \overline{x}^{m\prime\prime} \in K \, \rho(\overline{x}^{m\prime}, \overline{x}^{m\prime\prime}) < \frac{1}{m}$, но $|f(\overline{x}^{m\prime} - f(\overline{x}^{m\prime\prime})| \geq \varepsilon$. Последовательность $\{\overline{x}^{m\prime}\}$ ограничена \Longrightarrow из нее можно выделить сходящуюся подпоследовательность $\overline{x}^{m_{k\prime}} \to \overline{x}^o \in K$. f непрерывна в точке $\overline{x}^o \Longrightarrow f(\overline{x}^{k_{m\prime}}) \to f(\overline{x}^o)$. Рассмотрим подпоследовательность $\{\overline{x}^{k_{m\prime\prime}}\}$ последовательности $\{\overline{x}^{m\prime\prime}\}$. По построению $\rho(\overline{x}^{k_{m\prime}}, \overline{x}^{k_{m\prime\prime}}) < \frac{1}{k_m} \to 0 \Longrightarrow \overline{x}^{k_{m\prime\prime}} \to \overline{x}^o \Longrightarrow f(\overline{x}^{k_{m\prime\prime}}) \to f(\overline{x}^o)$. Получили, что $f(\overline{x}^{k_{m\prime\prime}}) - f(\overline{x}^{k_{m\prime\prime}}) \to 0$. Но по построению $|f(\overline{x}^{k_{m\prime\prime}}) - f(\overline{x}^{k_{m\prime\prime}})| \geq \varepsilon$. Противоречие. Значит, f р/н на K.

30 Понятие дифференцируемости функции нескольких переменных. Эквивалентность двух форм записи остаточного члена. Необходимое условие дифференцируемости. Касательная плоскость к поверхности графика функции z = f(x, y).

Опр. Пусть $\Delta x_k \in \mathbb{R}$. Частной производной функции f в точке \overline{x}^o оп переменной x_k называется $\frac{\partial f(\overline{x}^o)}{\partial x_k} = f'_{x_k}(\overline{x}^o) := \lim_{\Delta x_k \to 0} \frac{\Delta_k f}{\Delta x_k} = \lim_{\Delta x_k \to 0} \frac{f(x_1^o, \dots, x_{k-1}^o, x_k^o + \Delta x_k, x_{k+1}^o, \dots, x_n^o) - f(\overline{x}^o)}{\Delta x_k}$.

Опр. Функция f дифференцируема в точке \overline{x}^o , если ее полное приращение $\Delta f = f(x_1^o +$ $\Delta x_1,\ldots,x_n^o+\Delta x_n)-f(\overline{x}^o)$ в этой точке представимо в виде $\Delta f=A_1\Delta x_1+\cdots+A_n\Delta x_n+$ $\alpha_1\Delta x_1+\cdots+\alpha_n\Delta x_n$ (1), где A_1,\ldots,A_n - константы не зависящие от $\Delta x_1,\ldots,\Delta x_n,$

$$\alpha_{j} \to 0 \ npu \begin{cases} \Delta x_{1} \to 0 \\ \dots & \text{.} \ \textit{Или эквивалентно,} \ \Delta f = A_{1} \Delta x_{1} + \dots + A_{n} \Delta x_{n} + \overline{o}(\rho) \ (2), \ \rho \to 0, \\ \Delta x_{n} \to 0 \end{cases}$$
 где $\rho = \sqrt{(\Delta x_{1})^{2} + \dots + (\Delta x_{n})^{2}}.$

Утверждение. Определения (1) и (2) эквивалентны.

$$\mathcal{A}\text{-}60. \ \text{Заметим, что } \rho \to 0 \Leftrightarrow \begin{cases} \Delta x_1 \to 0 \\ \dots \\ \Delta x_n \to 0 \end{cases}$$

$$|\alpha_1 \Delta x_1 + \dots + \alpha_n \Delta x_n| = \rho \left| \alpha_1 \frac{\Delta x_1}{\rho} + \dots + \alpha_n \frac{\Delta x_n}{\rho} \right| \leq \rho \Big(\underbrace{|\alpha_1|}_{\to 0} \underbrace{\frac{|\Delta x_1|}{\rho}}_{\to 1} + \dots + \underbrace{|\alpha_n|}_{\to 0} \underbrace{\frac{|\Delta x_n|}{\rho}}_{\to 1} \Big) = \rho \overline{o}(1) = \overline{o}(\rho), \ \rho \to 0 \ \text{(доказали } (1) \Longrightarrow (2)).$$

$$\overline{o}(\rho) = \underbrace{\rho}_{=\frac{\rho^2}{\rho}} \overline{o}(1) = \underbrace{\frac{\Delta x_1^2 + \dots + \Delta x_n^2}{\rho}}_{\to 1} \alpha = \underbrace{\frac{\Delta x_1}{\rho}}_{\to 1} \alpha \Delta x_1 + \dots + \underbrace{\frac{\Delta x_n}{\rho}}_{\to 1} \alpha \Delta x_n = \alpha_1 \Delta x_1 + \dots + \alpha_n \Delta x_n,$$

$$\Gamma \text{де } \alpha_j = \underbrace{\frac{\Delta x_j}{\rho}}_{\to 0} \alpha \to 0 \text{ при } \begin{cases} \Delta x_1 \to 0 \\ \dots \\ \Delta x_n \to 0 \end{cases}$$
 (доказали $(2) \Longrightarrow (1)$).

где
$$\alpha_j = \frac{\Delta x_j}{\rho} \alpha \to 0$$
 при
$$\begin{cases} \Delta x_1 \to 0 \\ \dots \\ \Delta x_n \to 0 \end{cases}$$
 (доказали (2) \Longrightarrow (1)).

Утверждение. Если функция f дифференцируема в точке \overline{x}^{o} , то f непрерывна в точ- $\kappa e \ \overline{x}^o$.

$$\mathcal{A}$$
-во. $\Delta f = A_1 \Delta x_1 + \dots + A_n \Delta x_n + \overline{o}(\rho) \to 0$ при $\begin{cases} \Delta x_1 \to 0 \\ \dots \\ \Delta x_n \to 0 \end{cases}$. Это и означает, что f непрерывна в точке \overline{x}^o .

Теорема (Необходимое условие дифференцируемости). Пусть f дифференцируема в точке \overline{x}^o . Тогда у нее в этой точке существуют все ЧП, причем $\frac{\partial f}{\partial x_k}\Big|_{\overline{x}^o} = A_k$, $k = \overline{1, n}$.

$$\mathcal{J}\text{-во. } \Delta f = A_1 \Delta x_1 + \dots + A_n \Delta x_n + \alpha_1 \Delta x_1 + \dots + \alpha_n \Delta x_n, \ \alpha_j \to 0 \ \text{при} \begin{cases} \Delta x_1 \to 0 \\ \dots \\ \Delta x_n \to 0 \end{cases}$$
Положим $\Delta x_1 = \dots = \Delta x_{k-1} = \Delta x_{k+1} = \dots = \Delta x_n = 0, \ \Delta x_k \neq 0. \ \text{Тогда} \ \Delta f = \Delta_k f = A_k + \widetilde{\alpha}_k \Delta x_k, \ \text{где} \ \widetilde{\alpha}_k = \alpha_k (0, \dots, 0, \Delta x_k, 0, \dots, 0) \implies \lim_{\Delta x_k \to 0} \frac{\Delta_k f}{\Delta x_k} = \lim_{\Delta_k \to 0} (A_k + \widetilde{\alpha}_k) = A_k. \quad \Box$

Геометрический смысл дифференцируемости.

Рассмотрим функцию f двух переменных. Ее график - поверхность $P = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \in D(f), z = f(x, y)\}$. Пусть $M(x_0, y_0, z_0) \in P$.

Опр. Касательной плоскостью к поверхности P в точке M назовем такую плоскость Π , что угол между Π и любой секущей MN, где $N(x,y,f(x,y)) \in P$ стремиться к нулю, при $N \to M$ по поверхности.

Теорема. Пусть f дифференцируема в точке (x_0, y_0) . Тогда в точке M существует касательная плоскость κ поверхности P. Уравнение плоскости Π : $\frac{\partial f(x_0, y_0)}{\partial x}(x - x_0) + \frac{\partial f(x_0, y_0)}{\partial y}(y - y_0) - (z - z_0) = 0$.

 \mathcal{A} -во. Обозначим $A=f_x'(x_0,y_0),\ B=f_y'(x_0,y_0).$ Тогда вектор нормали к плоскости Π : $\vec{n}(A,B,-1).$ Пусть ψ - угол между \vec{n} и $\overrightarrow{MN}.$ Из дифференцируемости f в точке $(x_0,y_0):f(x,y)-\underbrace{f(x_0,y_0)}_{=z_0}=A(x-x_0)+B(y-y_0)+\overline{o}(\rho),\ \rho=\sqrt{(x-x_0)^2+(y-y_0)^2}.$ Тогда

$$|\cos\psi| = \frac{|(\overrightarrow{MN}, \vec{n})|}{|\overrightarrow{MN}||\vec{n}|} = \frac{|A(x - x_0) + B(y - y_0) - (f(x, y) - z_0)|}{\sqrt{(x - x_0)^2 + (y - y_0)^2 + (f(x, y) - z_0)^2} \sqrt{A^2 + B^2 + 1}} \le \frac{\overline{o}(\rho)}{\rho \cdot 1} = \overline{o}(1) \xrightarrow{\rho \to 0} 0.$$

Получили, что $\cos\psi \xrightarrow{N\to M} 0 \implies \psi \to \pm\frac{\pi}{2}$, а угол φ между Π и $\overrightarrow{MN} \xrightarrow{N\to M} 0$.

31 Понятие дифференцируемости функции n переменных. Эквивалентность двух форм записи остаточного члена. Достаточное условие дифференцируемости.

(все определения, кроме касательной плоскости, и утверждения из вопроса 30)

Теорема. Пусть у функции f все ЧП существуют в некоторой окрестности точки \overline{x}^o и непрерывны в точке \overline{x}^o . Тогда f дифференцируема в точке \overline{x}^o . Д-во.

$$\Delta f = f(x_1^o + \Delta x_1, \dots, x_n^o + \Delta x_n) - f(x_1^o, \dots, x_n^o) =$$

$$= f(x_1^o + \Delta x_1, \dots, x_n^o + \Delta x_n) - f(x_1^o, x_2^o + \Delta x_2, \dots, x_n^o + \Delta x_n) +$$

$$+ f(x_1^o, x_2 + \Delta x_2, \dots, x_n + \Delta x_n) - f(x_1^o, x_2^o, x_3^o + \Delta x_3, \dots, x_n^o + \Delta x_n) +$$

$$+ \dots +$$

$$+ f(x_1^o, x_2^o, \dots, x_{n-1}^o, x_n^o + \Delta x_n) - f(x_1^o, \dots, x_n^o) = (\text{т. Лагранжа } 0 < \theta_1, \dots, \theta_n < 1) =$$

$$= f'_{x_1}(x_1^o + \theta_1 \Delta x_1, x_2^o + \Delta x_2, \dots, x_n^o + \Delta x_n) \Delta x_1 +$$

$$+ f'_{x_2}(x_1^o, x_2^o + \theta_2 \Delta x_2, x_3^o + \Delta x_3, \dots, x_n^o + \Delta x_n) \Delta x_2 +$$

$$+ \dots +$$

$$+ f'_{x_n}(x_1^o, x_2^o, \dots, x_{n-1}^o, x_n^o + \theta_n \Delta x_n) \Delta x_n$$

Получили, что $\Delta f = (f'_{x_1}(\overline{x}^o) + \alpha_1)\Delta x_1 + \dots + (f'_{x_n}(\overline{x}^o) + \alpha_n)\Delta x_n$, где $\alpha_j \to 0$ при $\begin{cases} \Delta x_1 \to 0 \\ \dots \\ \Delta x_n \to 0 \end{cases}$. Например, $\alpha_1 = f'_{x_1}(x_1^o + \theta_1, x_2^o + \Delta x_2, \dots, x_n^o + \Delta x_n) - f'_{x_1}(\overline{x}^o) \to 0$ в си-

лу непрерывности f'_{x_1} в точке \overline{x}^o . И так для всех $\alpha_j, j = \overline{1,n}$. Получили в точности определение дифференцируемости.

32 Дифференцирование сложной функции n переменных. Понятие (первого) дифференциала. Инвариантность формы первого дифференциала.

Опр. Пусть функции $\varphi_1, \ldots, \varphi_n$ определены на множестве $T \subset \mathbb{R}^k$. Обозначим через $X = \{(x_1, \ldots, x_n) \in \mathbb{R}^n : x_j = \varphi_j(\overline{t}), \overline{t} \in T, j = \overline{1,k}\}$ (т.е. у нас задана вектор-функция $\overline{\varphi}: T \to X; \ \overline{\varphi}: \overline{t} \to \overline{x}$). Пусть $f: X \to Y \subset \mathbb{R}$. Тогда говорят, что на множестве T задана сложная функция $f(\overline{\varphi}): T \to Y$.

Теорема. Пусть функции $\varphi_1,\ldots,\varphi_n$ определены на $T\subset\mathbb{R}^k$, $X=\{(x_1,\ldots,x_n)\in\mathbb{R}^n: x_j=\varphi_j(\overline{t}), \overline{t}\in T, j=\overline{1,n}\}$, $f:X\to\mathbb{R}$. Если все функции $\varphi_1,\ldots,\varphi_n$ дифференцируемы в точке $\overline{t}^o\in T$, а функция дифференцируема в точке $\overline{x}^o\in X$, т.ч. $\overline{x}^o=(x_1^o,\ldots,x_n^o), x_j^o=\varphi_j(\overline{t}^o)$, $j=\overline{1,n}$, то сложная функция $f(\overline{\varphi})$ дифференцируема в точке \overline{t}^o , причем

$$\frac{\partial f}{\partial t_1}\Big|_{\overline{t}^o} = \frac{\partial f}{\partial x_1}\Big|_{\overline{x}^o} \frac{\partial \varphi_1}{\partial t_1}\Big|_{\overline{t}^o} + \dots + \frac{\partial f}{\partial x_n}\Big|_{\overline{x}^o} \frac{\partial \varphi_n}{\partial t_1}\Big|_{\overline{t}^o};$$

$$\frac{\partial f}{\partial t_k}\Big|_{\overline{t}^o} = \frac{\partial f}{\partial x_1}\Big|_{\overline{x}^o} \frac{\partial \varphi_1}{\partial t_k}\Big|_{\overline{t}^o} + \dots + \frac{\partial f}{\partial x_n}\Big|_{\overline{x}^o} \frac{\partial \varphi_n}{\partial t_k}\Big|_{\overline{t}^o}.$$

 \mathcal{J} -во. Запишем определения дифференцируемости функций $\varphi_1,\ldots,\varphi_n$ в точке $\overline{t}^o:\Delta\varphi_j=\frac{\partial \varphi_j}{\partial t_1}\Big|_{\overline{t}^o}\Delta t_1+\cdots+\frac{\partial \varphi_j}{\partial t_k}\Big|_{\overline{t}^o}\Delta t_k+\overline{o}(\rho),\ \rho\to 0,\ \rho=\sqrt{\Delta t_1^2+\cdots+\Delta t_k^2}.$ Функция f дифференцируема в точке $\overline{x}^o\Longrightarrow\forall$ набора приращений $\Delta\overline{x}=(\Delta x_1,\ldots,\Delta x_n),$ т.ч. $\overline{x}^o+\Delta x\in X:$ $\Delta f=f(\overline{x}^o+\Delta\overline{x})-f(\overline{x}^o)=\frac{\partial f}{\partial x_1}\Big|_{\overline{x}^o}\Delta x_1+\cdots+\frac{\partial f}{\partial x_n}\Big|_{\overline{x}^o}\Delta x_n+\alpha_1\Delta x_1+\cdots+\alpha_n\Delta x_n,\ \alpha_j\to 0$ при $\begin{cases} \Delta x_1\to 0\\ \ldots &,\ j=\overline{1,n}. \end{cases}$ Возьмем $\Delta x_j=\Delta\varphi_j.$

$$\Delta f = \frac{\partial f}{\partial x_1}\Big|_{\overline{x}^o} \left(\frac{\partial \varphi_1}{\partial t_1}\Big|_{\overline{t}^o} \Delta t_1 + \dots + \frac{\partial \varphi_1}{\partial t_k}\Big|_{\overline{t}^o} \Delta t_k + \overline{o}(\rho)\right) + \dots +$$

$$+ \frac{\partial f}{\partial x_n}\Big|_{\overline{x}^o} \left(\frac{\partial \varphi_n}{\partial t_1}\Big|_{\overline{t}^o} \Delta t_1 + \dots + \frac{\partial \varphi_n}{\partial t_k}\Big|_{\overline{t}^o} \Delta t_k + \overline{o}(\rho)\right) + \alpha_1 \Delta \varphi_1 + \dots + \alpha_n \Delta \varphi_n =$$

$$= \left(\frac{\partial f}{\partial x_1}\Big|_{\overline{x}^o} \frac{\partial \varphi_1}{\partial t_1}\Big|_{\overline{t}^o} + \dots + \frac{\partial f}{\partial x_n}\Big|_{\overline{x}^o} \frac{\partial \varphi_n}{\partial t_1}\Big|_{\overline{t}^o}\right) \Delta t_1 + \dots +$$

$$+ \left(\frac{\partial f}{\partial x_1}\Big|_{\overline{x}^o} \frac{\partial \varphi_1}{\partial t_n}\Big|_{\overline{t}^o} + \dots + \frac{\partial f}{\partial x_n}\Big|_{\overline{x}^o} \frac{\partial \varphi_n}{\partial t_k}\Big|_{\overline{t}^o}\right) \Delta t_k + r =$$

$$= A_1 \Delta t_1 + \dots + A_n \Delta t_n + r.$$

Осталось показать, что $r = \overline{o}(\rho), \rho \to 0.$ $r = \underbrace{\frac{\partial f}{\partial x_1}\Big|_{\overline{x}^o}\overline{o}(\rho) + \dots + \frac{\partial f}{\partial x_n}\Big|_{\overline{x}^o}\overline{o}(\rho)}_{=\overline{o}(\rho)} + \alpha_1 \Delta \varphi_1 + \dots + \alpha_n \varphi_n$

 $\cdots + \alpha_n \Delta \varphi_n$. Возьмем произвольное j от 1 до n и покажем, что $\alpha_j \Delta \varphi_j = \overline{o}(\rho)$. Действительно, $\alpha_j = \overline{o}(1)$ при $\Delta x_1 \to 0, \ldots, \Delta x_n \to 0$, но $\Delta x_k = \Delta \varphi_k \to 0$ при $\rho \to 0$, т.к. φ_k дифференцируема \Longrightarrow непрерывна $\Longrightarrow \alpha_j \to 0$ при $\rho \to 0$. Значит, $\alpha_j \Delta \varphi_j = 0$

$$\alpha_{j} \left(\frac{\partial \varphi_{j}}{\partial t_{1}} \Big|_{\overline{t}^{o}} \delta t_{1} + \dots + \frac{\partial \varphi_{j}}{\partial t_{k}} \Big|_{\overline{t}^{o}} \Delta t_{k} + \overline{o}(\rho) \right) = \rho \alpha_{j} \underbrace{\left(\frac{\partial \varphi_{j}}{\partial t_{1}} \Big|_{\overline{t}^{o}} \underbrace{\frac{\Delta t_{1}}{\rho} + \dots + \frac{\partial \varphi_{j}}{\partial t_{k}} \Big|_{\overline{t}^{o}} \underbrace{\frac{\Delta t_{k}}{\rho} + \overline{o}(1)}_{\text{ограничена}} \right)}_{\text{ограничена}} = \overline{o}(\rho), \ \rho \to 0.$$

Опр. Пусть функция f дифференцируема в точке \overline{x}^o . Дифференциалом функции f в точке \overline{x}^o называется $df|_{\overline{x}^o} = \frac{\partial f}{\partial x_1}\Big|_{\overline{x}^o} \Delta x_1 + \dots + \frac{\partial f}{\partial x_n}\Big|_{\overline{x}^o} \Delta x_n$.

Теорема (инвариантность формы первого дифференциала). Пусть функция f дифференцируема в точке \overline{x}^o . Ее (первый) дифференциал имеет вид $df|_{\overline{x}^o} = \frac{\partial f}{\partial x_1}\Big|_{\overline{x}^o} dx_1 + \cdots + \frac{\partial f}{\partial x_n} dx_n$ не зависимо от того являются x_1, \ldots, x_n независимыми переменными или функциями аргументов t_1, \ldots, t_k .

Д-60. (Все ЧП вычисляются в соответствующих точках)

Пусть
$$x_1, \ldots, x_n$$
 - независимые переменные. Тогда $dx_j = \underbrace{\frac{\partial x_j}{\partial x_1}}_{=0} \Delta x_1 + \cdots + \underbrace{\frac{\partial x_j}{\partial x_j}}_{-1} \Delta x_j + \cdots + \underbrace{\frac{$

 $\underbrace{\frac{\partial x_j}{\partial x_n}}_{=0} \Delta x_n = \Delta x_j \implies$ утверждение теоремы сразу следует из определения дифференци-

Пусть
$$x_j = \varphi_j(\bar{t}), \, \bar{t} \in T \subset \mathbb{R}^k$$
. Тогда

$$df = \frac{\partial f}{\partial t_1} \Delta t_1 + \dots + \frac{\partial f}{\partial t_k} \Delta t_k =$$

$$= \left(\frac{\partial f}{\partial x_1} \frac{\partial \varphi_1}{\partial t_1} + \dots + \frac{\partial f}{\partial x_n} \frac{\partial \varphi_n}{\partial t_1}\right) \Delta t_1 + \dots + \left(\frac{\partial f}{\partial x_1} \frac{\partial \varphi_1}{\partial t_k} + \dots + \frac{\partial f}{\partial x_n} \frac{\partial \varphi_n}{\partial t_k}\right) \Delta t_k =$$

$$= \frac{\partial f}{\partial x_1} \left(\frac{\partial \varphi_1}{\partial t_1} \Delta t_1 + \dots + \frac{\partial \varphi_1}{\partial t_k} \Delta t_k\right) + \dots + \frac{\partial f}{\partial x_n} \left(\frac{\partial \varphi_n}{\partial t_1} \delta t_1 + \dots + \frac{\partial \varphi_n}{\partial t_k} \Delta t_k\right) =$$

$$= \frac{\partial f}{\partial x_1} d\varphi_1 + \dots + \frac{\partial f}{\partial x_n} d\varphi_n = \frac{\partial f}{\partial x_1} dx_1 + \dots + \frac{\partial f}{\partial x_n} dx_n.$$

Следствие. Пусть функции f,g дифференцируемы в точке \overline{x}^o . Тогда $d(f\pm g)|_{\overline{x}^o}=df|_{\overline{x}^o}\pm dg|_{\overline{x}^o},\ d(fg)|_{\overline{x}^o}=g(\overline{x}^o)df|_{\overline{x}^o}+f(\overline{x}^o)dg|_{\overline{x}^o},\ (ecnu\ g(\overline{x}^o)\neq 0)\ d\frac{f}{g}|_{\overline{x}^o}=\frac{df|_{\overline{x}^o}g(\overline{x}^0)-dg|_{\overline{x}^o}f(\overline{x}^o)}{g^2(\overline{x}^o)}.$

Д-60. (для краткости не пишем точку \bar{x}^o)

- 1) Пусть $h=f\pm g$. Тогда $dh=\frac{\partial h}{\partial f}df+\frac{\partial h}{\partial g}dg=df\pm dg$.
- 2) Пусть h = fg. Тогда $dh = \frac{\partial h}{\partial f} df + \frac{\partial h}{\partial g} dg = gdf + fdg$.
- 3) Пусть $h = \frac{f}{g}$. Тогда $dh = \frac{\partial h}{\partial f} df + \frac{\partial h}{\partial g} dg = \frac{1}{g} df \frac{f}{g^2} dg = \frac{gdf fdg}{g^2}$.

33 Производная по направлению. Градиент. Геометрический смысл градиента. Формула для вычисления производной по направлению функции, дифференцируемой в данной точке.

Пусть функция f n переменных определенная в окрестности точки \overline{x}^o . Пусть \vec{e} - вектор единичной длины. Тогда $\vec{e} = (\cos \alpha_1, \cos \alpha_2, \dots, \cos \alpha_n)$, где $\alpha_1, \dots, \alpha_n$ - углы между \vec{e} и соответствующими осями координат. Проведем через точку \overline{x}^o прямую $l \mid \vec{e}$. Тогда

уравнение прямой
$$l:$$

$$\begin{cases} x_1=x_1^o+t\cos\alpha_1\\ \dots\\ x_n=x_n^o+t\cos\alpha_n \end{cases},\ t\in\mathbb{R}.\ \ \text{Подставив}\ x_1,\dots,x_n\ \ \text{в}\ \ \text{функцию}\ f$$

получим сложную функцию $g(t) = f(x_1^o + t \cos \alpha_1, \dots, x_n^o + t \cos \alpha_n)$.

Опр. Производной функции f в точке \overline{x}^o по направлению, заданным вектором \vec{e} , называется $\frac{\partial f}{\partial e}\Big|_{\overline{x}^o}=g'(0).$

Утверждение. Если f дифференцируема в точке \overline{x}^o , то y нее в данной точке есть производная по любому направлению, причем $\frac{\partial f}{\partial e}\big|_{\overline{x}^o} = \frac{\partial f}{\partial x_1}\big|_{\overline{x}^o} \cos \alpha_1 + \dots + \frac{\partial f}{\partial x_n}\big|_{\overline{x}^o} \cos \alpha_n = (\nabla f|_{\overline{x}^o}, \vec{e}).$

 \mathcal{A} -во. f дифференцируема в точке $\overline{x}^o \implies g$ дифференцируема в точке t=0, как сложная функция, причем

$$g'(0) = \frac{\partial f}{\partial x_1}\Big|_{\overline{x}^o} \underbrace{\frac{\partial \varphi_1}{\partial t}\Big|_{t=0}}_{=\cos \alpha_1} + \dots + \frac{\partial f}{\partial x_n}\Big|_{\overline{x}^o} \underbrace{\frac{\partial \varphi_n}{\partial t}\Big|_{t=0}}_{=\cos \alpha_n} = (\nabla f|_{\overline{x}^o}, \vec{e}).$$

Утверждение. Пусть f дифференцируема в точке \overline{x}^o . Тогда $\frac{\partial f}{\partial e}\big|_{\overline{x}^o}$ принимает наибольшее значение при $\vec{e} \uparrow \uparrow \nabla f|_{\overline{x}^o}$.

$$\mathcal{A}$$
-во. $\frac{\partial f}{\partial e}|\overline{x}^o = (\vec{e}, \nabla f|_{\overline{x}^o}) = \underbrace{||\vec{e}||}_{=1} ||\nabla f|_{\overline{x}^o}||\cos \varphi \leq ||\nabla f|_{\overline{x}^o}||$, где φ - угол между \vec{e} и $\nabla f|_{\overline{x}^o}$. Равенство достигается при $\cos \varphi = 1$, т.е $\vec{e} \uparrow \uparrow \nabla f|_{\overline{x}^o}$.

Равенство достигается при $\cos \varphi = 1$, т.е $\vec{e} \uparrow \uparrow \nabla f|_{\overline{x}^o}$.

34Понятие частной производной высокого порядка. Теорема о равенстве смешанных производных.

Опр. Пусть f определена на X, \overline{x}^o - внутрення точка X. Пусть в окрестности точки \overline{x}^o существуют $\frac{\partial f}{\partial x_k}$ - это функция от переменных x_1,\ldots,x_n . Частной про-изводной второго порядка функции f по переменным x_k,x_j в точке \overline{x}^o называется $\frac{\partial^2 f(\overline{x}^o)}{\partial x_j \partial x_k} = \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_k} \right) \Big|_{\overline{x}^o}$. Если $k \neq j$, то такая ЧП называется смешанной. Аналогично, $\frac{\partial^m f(\overline{x}^o)}{\partial x_{km} ... \partial x_{k_1}} = \frac{\partial}{\partial x_{km}} \left(\frac{\partial^{m-1} f}{\partial x_{k_{m-1}} ... \partial x_{k_1}} \right) \Big|_{\overline{x}^o}$ - частная производная порядка m.

Опр. Пусть f определена на X, \overline{x}^o - внутрення точка X. Будем говорить, что fдважды дифференцируема в точке \bar{x}^o , если она дифференцируема в некоторой окрестности точки \overline{x}^o и все ее частные производные первого порядка дифференцируемы в точке \overline{x}^o . Аналогично, f т раз дифференцируема в точке \overline{x}^o , если она m-1 раз дифферениируема в окрестности точки \overline{x}^o и все ее частные производные m-1 порядка дифференцируемы в точке \overline{x}^o .

Теорема (Юнг). Если функция f двух переменных дважды дифференцируема в точке $M(x_0, y_0)$, mo $\frac{\partial^2 f}{\partial x \partial y}(M) = \frac{\partial^2 f}{\partial y \partial x}(M)$.

Д-60. По определению функция f дифференцируема в $B_{\delta}(M)$ для некоторого $\delta > 0$. Пусть $h \in \mathbb{R}$, $|h| < \delta$. Рассмотрим функции $\varphi(x) = f(x, y_0 + h) - f(x, y_0)$ и $\psi(x) =$ $f(x_0 + h, y) - f(x_0, y)$. Заметим, что

$$\Delta \varphi = \varphi(x_0 + h) - \varphi(x_0) = f(x_0 + h, y_0 + h) - f(x_0 + h, y_0) - f(x_0, y_0 + h) + f(x_0, y_0),$$

$$\Delta \psi = \psi(y_0 + h) - \psi(y_0) = f(x_0 + h, y_0 + h) - f(x_0, y_0 + f) - f(x_0 + h, y_0) + f(x_0, y_0).$$

To есть, $\Delta \varphi = \Delta \psi$. Далее,

$$\Delta \varphi = \varphi(x_0 + h) - \varphi(x_0) =$$

$$= \varphi'(x_0 + \theta h)h = (f'_x(x_0 + \theta h, y_0 + h) - f'_x(x_0 + h, y_0))h =$$

$$= (f'_x(x_0 + \theta h, y_0 + h) - f'_x(x_0, y_0))h - (f'_x(x_0 + \theta h, y_0) - f'_x(x_0, y_0))h.$$

Воспользуемся определением дифференцируемости функции f'_x в точке M:

$$\Delta \varphi = ((f''_{xx}(M)\theta h + f''_{xy}(M)h + \overline{o}(h))) - (f''_{xx}(M)\theta h + f''_{xy}(M) \cdot 0 + \overline{o}(h))h = f''_{xy}(M)h^2 + \overline{o}(h^2), h \to 0.$$

С другой стороны,

$$\Delta \psi = f_{yx}^{"}(M)h^2 + \overline{o}(h^2), h \to 0$$

Значит, $f''_{xy}(M)h^2 + \overline{o}(h^2) = f''_{yx}(M)h^2 + \overline{o}(h^2)$, т.е. $f''_{xy}(M) = f''_{yx}(M) + \overline{o}(1)$, $h \to 0$. Но вторые производные в точке - это числа, они не зависят от h, следовательно, $f''_{xy}(M) = f''_{yx}(M)$.

Теорема (Шварц). Пусть у функции f в некоторой окрестности точки $M(x_0, y_0)$ существуют частные производные $f'_x, f'_y, f''_{xy}, f''_{yx}$, причем f''_{xy}, f''_{yx} непрерывны в точке M, то $\frac{\partial^2 f}{\partial x \partial u}(M) = \frac{\partial^2 f}{\partial u \partial x}(M)$.

Д-60. Пусть $f_x', f_y', f_{xy}'', f_{yx}''$ существую в $B_\delta(M), \delta > 0, h \in \mathbb{R}, |h| < \delta$. Рассмотрим те же функции φ и ψ , что и в предыдущей теореме. Аналогичными рассуждениями получим, что $\Delta \varphi = \Delta \psi$, причем

$$\Delta \varphi = (f_x'(x_0 + \theta h, y_0 + h) - f_x'(x_0 + \theta h, y_0))h.$$

Применим теорему Лагранжа. Получим, что $\Delta \varphi = f_{xy}''(x_0 + \theta h, y_0 + \theta_1 h)h^2 = (f_{xy}''(M) + \overline{o}(1))h^2, h \to 0$. Аналогично, $\Delta \psi = (f_{yx}''(M) + \overline{o}(1))h^2, h \to 0$. Значит, $f_{xy}''(M) = f_{yx}''(M) + \overline{o}(1), h \to 0$, т.е. $f_{xy}''(M) = f_{yx}''(M)$.

Следствие (из т. Юнга). Пусть функция f т раз дифференцируема в точке $\overline{x}^o \in \mathbb{R}^n$. Тогда ее частные производные m-го порядка не зависят от последовательности выполнения операций дифференцирования.

 \mathcal{A} -во. Достаточно показать равенство

$$\frac{\partial^m f}{\partial x_{i_m} \dots \partial x_{i_{k+1}} \partial x_{i_k} \dots \partial x_{i_1}} = \frac{\partial^m f}{\partial x_{i_m} \dots \partial x_{i_k} \partial x_{i_{k+1}} \dots \partial x_{i_1}}.$$

Рассмотрим функцию $F(x) = \frac{\partial^{k-1} f}{\partial x_{i_{k-1}}...\partial x_{i_1}}$, 1 < k < m. Из условия теоремы следует, что

- 1) при 1 < k < m-1 функция F дважды дифференцируема в некоторой окрестности точки $\overline{x}^o;$
- 2) при k=m-1 функция F дважды дифференцируема в точке \overline{x}^o .

Но тогда по теореме Юнга (если рассматривать функцию F как функцию переменных $x_{i_k}, x_{i_{k+1}}$) ее смешанные производные $\frac{\partial^2 F}{\partial x_{i_k} \partial x_{i_{k+1}}}$ и $\frac{\partial^2 F}{\partial x_{i_{k+1}} \partial x_{i_k}}$ при 1 < k < m-1 тождественно совпадают в некоторой окрестности точки \overline{x}^o , а при k=m-1 они совпадают в точке \overline{x}^o . Это означает, что

- точке \overline{x}^o . Это означает, что 1) $\frac{\partial^{k+1} f}{\partial x_{i_{k+1}} \partial x_{i_{k}} ... \partial x_{i_{1}}} = \frac{\partial^{k+1} f}{\partial x_{i_{k}} \partial x_{i_{k+1}} ... \partial x_{1}}$ при 1 < k < m-1 в некоторой окрестности точки \overline{x}^o , откуда при дальнейшем дифференцировании по остальным переменным $x_{i_{k+2}}, \ldots, x_{i_{m}}$ получается нужное равенство;
- 2) при k=m-1 соотношение $\frac{\partial^{k+1} f}{\partial x_{i_{k+1}} \partial x_{i_{k}} ... \partial x_{i_{1}}} (\overline{x}^{o}) = \frac{\partial^{k+1} f}{\partial x_{i_{k}} \partial x_{i_{k+1}} ... \partial x_{1}} (\overline{x}^{o})$ совпадает с искомым равенством.

35 Понятие дифференциала высокого порядка функции n переменных. Формула Тейлора для функций n переменных.

Опр. Пусть функция f определена и дифференцируема в некоторой окрестности точки $\overline{x}^o \in \mathbb{R}^n$. Зафиксируем в выражении для первого дифференциала приращения переменных $\Delta x_1 = h_1, \ldots, \Delta x_n = h_n$. Тогда для любой точки x из указанной окрестности можем записать

$$df(\overline{x}) = \frac{\partial f(\overline{x})}{\partial x_1} h_1 + \dots + \frac{\partial f(\overline{x})}{\partial x_n} h_n.$$

Если функция f дважды дифференцируема в точке \overline{x}^o , то ее первый дифференциал является дифференцируемым в точке \overline{x}^o функцией, и по правилам дифференцирования можем получить представление

$$d(df)|_{\overline{x}^o} = d\left(\sum_{k=1}^n \frac{\partial f(x)}{\partial x_k} h_k\right) \bigg|_{\overline{x}^o} = \sum_{j=1}^n \sum_{k=1}^n \frac{\partial^2 f(\overline{x}^0)}{\partial x_j \partial x_k} \Delta x_j h_k.$$

Положим, теперь в последнем выражении приращения аргументов $\Delta x_j = h_k$. Заметим, что в случае независимых переменных совпадают с дифференциалами dx_j . Выражение

$$d^{2}f(\overline{x}^{o}) := d(df)|_{\overline{x}^{o}} = \sum_{j=1}^{n} \sum_{k=1}^{n} \frac{\partial^{2}f(\overline{x}^{o})}{\partial x_{j}\partial x_{k}} dx_{j} dx_{k}$$

называют вторым дифференциалом функции f в точке \overline{x}^o , соответствующем приращению аргументов dx_1, \ldots, dx_n .

Аналогично, если функция f является m раз дифференцируемой в точке \overline{x}^o , то ее m-м дифференциалом в этой точке, соответствующем приращениям dx_1, \ldots, dx_n , называется выражение

$$d^m f(\overline{x}^o) := d(d^{m-1}f)|_{\overline{x}^o} = \sum_{j_1=1}^n \cdots \sum_{j_m=1}^n \frac{\partial^m f}{\partial x_{j_m} \dots \partial x_{j_1}} dx_{j_1} \dots dx_{j_m}.$$

Теорема (Формула Тейлора с остаточным членом в форме Лагранжа). Пусть функция f(m+1) раз дифференцируема в некоторой окрестности $B_{\delta}(\overline{x}^{o})$ точки $\overline{x}^{o} = (x_{1}^{o}, \dots, x_{n}^{o})$. Тогда $\forall \overline{x} \in B_{\delta}(\overline{x}^{o})$:

$$f(x) = f(\overline{x}^o) + df(\overline{x}^o) + \frac{d^2 f(\overline{x}^o)}{2!} + \dots + \frac{d^m f(\overline{x}^o)}{m!} + \frac{d^{m+1} f(\overline{x}')}{(m+1)!},$$

где $\overline{x}' = \overline{x}^o + \theta(\overline{x} - \overline{x}^o)$, $0 < \theta < 1$. Все дифференциалы соответствуют приращениям dx_1, \ldots, dx_n , где $dx_k = x_k - x_k^o$, $k = \overline{1, n}$.

 \mathcal{A} -во. Рассмотрим функцию $F(t) = f(\overline{x}^o + t(\overline{x} - \overline{x}^o))$. Эта функция, в силу условий теоремы, удовлетворяет всем требованиям для представления ее по формуле Маклорена

при $t_0 = 0, t = 1, \Delta t = 1$. Таким образом, можно записать:

$$F(1) = F(0) + F'(0) + \frac{F''(0)}{2!} + \dots + \frac{F^{(m)}(0)}{m!} + \frac{F^{(m+1)}(\theta)}{(m+1)!}.$$

Заметим, что

$$F'(0) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(\overline{x}^o) \cdot \Delta x_i = df(\overline{x}^o),$$

$$F''(0) = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^2 f}{\partial x_i \partial x_j}(\overline{x}^o) \Delta x_i \Delta x_j = d^2 f(\overline{x}^o),$$

$$\cdots$$

$$F^{(m)}(0) = d^m f(\overline{x}^o),$$

$$F^{(m+1)}(\theta) = d^{m+1} f(\overline{x}^o + \theta(\overline{x} - \overline{x}^o)).$$

Подставляя эти равенства в представлении для функции F, получаем искомую формулу.

Теорема (Формула Тейлора с остаточным членом в форме Пиано). Пусть функция f (m-1) раз дифференцируема в $B_{\delta}(\overline{x}^o)$ и m раз - в самой точке $\overline{x}^o = (x_1^o, \dots, x_n^o)$. Тогда $\forall \overline{x} \in B_{\delta}(\overline{x}^o)$:

$$f(\overline{x}) = f(\overline{x}^o) + \frac{1}{1!} df(\overline{x}^o) + \frac{1}{2!} d^2 f(\overline{x}^o) + \dots + \frac{1}{m!} d^m f(\overline{x}^o) + \overline{o}(\rho^m), \ \rho \to 0,$$

$$e \partial e \ \rho = \rho(\overline{x}, \overline{x}^o) = ||\overline{x} - \overline{x}^o||.$$

 \mathcal{A} -во. Проведем доказательство в частном случае, когда функция f является m раз дифференцируемой в $B_{\delta}(\overline{x}^o)$ и все ее частные производные порядка m непрерывны в самой точке \overline{x}^o . Тогда утверждение теоремы становится следствием формулы Тейлора с остаточным членом в форме Лагранжа. Действительно, если функция f является m раз дифференцируемой в $B_{\delta}(\overline{x}^o)$, то

$$f(x) = f(x_0) + \frac{1}{1!} df(\overline{x}^o) + \frac{1}{2!} df^2 f(\overline{x}^0) + \dots + \frac{1}{(m-1)!} df^{m-1} f(\overline{x}^o) + R_{m-1},$$

где

$$R_{m-1} = \frac{1}{m!} d^m f(\overline{x}^o + \theta(\overline{x} - \overline{x}^o)) = \frac{1}{m!} \sum_{j_1=1}^n \cdots \sum_{j_m=1}^n \frac{\partial^m f(\overline{x}^o + \theta(\overline{x} + \overline{x}^o))}{\partial x_{j_m} \dots \partial x_{j_1}} dx_{j_1} \dots dx_{j_m} =$$

$$= \frac{1}{m!} \sum_{j_1=1}^n \cdots \sum_{j_m=1}^n \left(\frac{\partial^m f(\overline{x}^o)}{\partial x_{j_m} \dots \partial x_{j_1}} + \overline{o}(1) \right) dx_{j_1} \dots dx_{j_m} =$$

$$= \frac{1}{m!} d^m (\overline{x}^o) + \overline{o}(\rho^m), \ \rho \to 0.$$

36 Понятие экстремума функции n переменных. Необходимые условия экстремума. Достаточные условия экстремума.

Опр. Пусть \overline{x}^o - внутренняя точка X. \overline{x}^o называется точкой строгого локального максимума (минимума), если $\exists \delta > 0 : \forall \overline{x} \in \overset{\bullet}{B}_{\delta}(\overline{x}^o) \ f(\overline{x}^o) > f(\overline{x}) \ (< f(\overline{x}).$

Теорема (Необходимое условие локального экстремума). Пусть функция f определена в окрестности точки \overline{x}^o , \overline{x}^o - точка локального экстремума. Если $\exists f'_{x_k}(\overline{x}^o)$, то $f'_{x_k}(\overline{x}^o) = 0$.

 \mathcal{A} -во. Пусть $\exists f'_{x_k}$. Рассмотрим функцию $g(x_k) = f(x_1^o, \dots, x_{k-1}^o, x_k, x_{k+1}^o, \dots, x_n^o)$. Если f имеет экстремум в точке \overline{x}^o , то g будет иметь экстремум в точке x_k^o . Тогда $g'(x_k^o) = 0 = f'_{x_k}(\overline{x}^o)$.

Теорема (Достаточное условие локального экстремума). Пусть f определена в некоторой окрестности точки \overline{x}^o и дважды в ней дифференцируема. Пусть $df|_{\overline{x}^o} = 0 \,\forall$ набора приращений. Если $d^2f|_{\overline{x}^o} > 0 \,(<0)$ как $K\Phi$ переменных dx_1, \ldots, dx_n , то \overline{x}^o - точка локального минимума (максимума). Если d^2f - знакопеременная $K\Phi$, то экстремума в точке \overline{x}^o нет.

 \mathcal{A} -60. Возьмем точку \overline{x} из окрестности, в которой f дифференцируема, и применим формула Тейлора с остаточным членом в форме Пеано:

$$f(\overline{x}) = f(\overline{x}^o) + \frac{1}{1!} \underbrace{df|_{\overline{x}^o}}_{=0} + \frac{1}{2!} d^2 f|_{\overline{x}^o} + \overline{o}(\rho^2), \ \rho \to 0 \implies$$

$$\Longrightarrow \Delta f = \frac{1}{2} d^2 f|_{\overline{x}^o} + \overline{o}(\rho^2), \ \rho \to 0.$$

1) Пусть $d^2 f|_{\overline{x}^o} > 0$. Заметим, что

$$d^2f|_{\overline{x}^o} = \sum_{j=1}^n \sum_{k=1}^n \underbrace{\frac{\partial^2 f(\overline{x}^o)}{\partial x_k \partial x_j}}_{=a_{jk}=a_{kj}} dx_j dx_k = \rho^2 \sum_{j=1}^n \sum_{k=1}^n a_{jk} \frac{dx_j}{\rho} \frac{dx_k}{\rho} =$$

$$= \left[\text{Обозначим } h_k = \frac{dx_k}{\rho} \right] = \rho^2 \sum_{j=1}^n \sum_{k=1}^n a_{jk} h_j h_k =$$

$$= \rho^2 A(h_1, \dots, h_n),$$

где A - КФ переменных h_1, \ldots, h_n , определенная на единичной сфере $S_1(\overline{0})$, т.к. $h_1^2 + \cdots + h_n^2 = \frac{dx_1^2 + \cdots + dx_n^2}{\rho^2} = 1$, $dx_k = x_k - x_k^o$. Считаем, что $\rho \neq 0$. Кроме того, $A = \frac{d^2 f|_{\overline{x}^o}}{\rho^2} \implies A > 0$. Значит, $\Delta f = \frac{\rho^2}{2} (A(h_1, \ldots, h_n) + \overline{o}(1))$.

Функция $A(h_1,\ldots,h_n)$ определена на замкнутом ограниченном множестве $S_1(\overline{0})$

достигает на нем своей ТНГ, т.е. $A(h_1,\ldots,h_n)\geq \mu=\inf_{S_1(\overline{0})}A(h_1,\ldots,h_n)=A(\widetilde{h}_1,\ldots,\widetilde{h}_n)>$

0. Тогда $\exists \delta>0$, т.ч. $|\alpha(\rho)|<\frac{\mu}{2},\,\forall \rho\in(0,\delta).$ Тогда $\forall\overline{x}\in B_{\delta}(\overline{x}^o):$

$$\Delta f = f(\overline{x}) - f(\overline{x}^o) = \underbrace{\frac{\rho^2}{2}}_{>0} \underbrace{(\underline{A(h_1, \dots, h_n)}_{\geq \mu} + \underbrace{\alpha(\rho)}_{\mid \mid < \frac{\mu}{2}})} > 0.$$

Случай $d^2f|_{\overline{x}^o}<0$ рассматривается аналогично.

2) Пусть $d^2f|_{\overline{x}^o}$ - знакопеременная КФ. Тогда $A(h_1,\ldots,h_n)$ так же является знакопеременной КФ, т.е. $\exists \overline{h}' = (h'_1,\ldots,h'_n)$ и $\overline{h}'' = (h''_1,\ldots,h''_n)$, т.ч. $||\overline{h}'|| = ||\overline{h}''|| = 1$ и $A(\overline{h}') > 0$, $A(\overline{h}'') < 0$. Возьмем $\rho > 0$ и положим $\overline{x}' = \overline{x}^o + \rho \overline{h}'$, $\overline{x}'' = \overline{x}^o + \rho \overline{h}''$ (тогда $\rho(\overline{x}',\overline{x}^o) = \rho(\overline{x}'',\overline{x}^o) = \rho$).

Пусть $A(\overline{h}') = \mu' > 0$, $A(\overline{h}'') = \mu'' < 0$. Тогда $\exists \delta' > 0$, т.ч. $\forall \rho \in (0, \delta') : |\alpha'(\rho)| < \frac{\mu'}{2}$, т.е. $f(\overline{x}') - f(\overline{x}^o) = \frac{\rho^2}{2} \underbrace{(A(\overline{h}') + \alpha'(\rho))}_{=\mu'>0} > 0$. Аналогично, $\exists \delta'' > 0$, т.ч. $\forall \rho \in (0, \delta'') : \frac{\mu'}{2}$

$$f(\overline{x}'') - f(\overline{x}^o) = \frac{\rho^2}{2} (\underbrace{A(\overline{h}'')}_{=\mu''<0} + \underbrace{\alpha''(\rho)}_{|||<\frac{-\mu''}{2}}) < 0.$$
 Тогда $\forall \delta \in (0, \min\{\delta', \delta''\}) \exists \overline{x}', \overline{x}'' \in \overset{\bullet}{B}_{\delta}(\overline{x}^o),$ т.ч.

$$f(\overline{x}') > f(\overline{x}^o), f(\overline{x}'') < f(\overline{x}^o)$$
. Значит, экстремума в точке \overline{x}^o нет.

Рассмотрим функцию двух переменных: f = f(x, y). Пусть M - точка с координатами (x_0, y_0) . Обозначим $A = f''_{xx}(M)$, $B = f''_{xy}(M)$, $C = f''_{yy}(M)$, $D = AC - B^2$.

Следствие. Пусть f дважды дифференцируема в точке M; $f_x'(M)=0$, $f_y'(M)=0$. Тогда

- 1. Если $A>0,\ D>0,\ mo\ M$ точка строгого локального минимума;
- 2. Если $A < 0, D > 0, \ mo \ M$ точка строгого локального максимума;
- 3. Если D < 0, то экстремума в точке M нет.

37 Теорема о существовании и дифференцируемости неявно заданной функции.

Теорема (О существовании и дифференцируемости неявной функции). *Пусть функция* $F(\overline{x}, y) = F(x_1, \dots, x_n, y)$:

- 1. определена и дифференцируема в некоторой окрестности V точки $\overline{x}^{o\prime}=(x_1^o,\dots,x_n^o,y^o)$;
- 2. $F(\overline{x}^{o\prime}) = 0$;
- 3. $\frac{\partial F}{\partial u}(\overline{x}^{o\prime}) \neq 0$;

4. $\frac{\partial F}{\partial y}$ непрерывна в точке $\overline{x}^{o\prime}$.

Тогда для любого $\varepsilon > 0 \exists \delta(\varepsilon) > 0$, $m.ч. \ \forall \overline{x} \in B_{\delta}(\overline{x}^o)$ определена единственным образом функция $f(x_1,\ldots,x_n)$, для которой $F(\overline{x},f(\overline{x}))=0$, $u\ |f(\overline{x})-y^o|<\varepsilon \ \forall \overline{x} \in B_{\delta}(\overline{x}^o)$. При этом функция f непрерывна u дифференцируема в $B_{\delta}(\overline{x}^o)$, u ее частные производные вычисляются по формулам: $\frac{\partial f}{\partial x_j} = -\frac{F'_{x_j}}{F'_u}$, $j=\overline{1,n}$.

 \mathcal{A} -во. 1) (существование и единственность) Пусть, например, $\frac{\partial F}{\partial y}\big|_{\overline{x}^{o\prime}}>0$. $\frac{\partial F}{\partial y}$ непрерывна в точке $\overline{x}^{o\prime}\implies \frac{\partial F}{\partial y}>0$ в некоторой окрестности этой точки. Значит, $\exists h>0$, т.ч. F дифференцируема и $\frac{\partial F(\overline{x})}{\partial y}>0$ $\forall \overline{x}\in B_h(\overline{x}^{o\prime})$.

Возьмем произвольное $\widetilde{\varepsilon} \in (0,h)$ и рассмотрим функцию $g(y) = F(\overline{x}^o,y), y \in [y^o - \varepsilon, y^o + \varepsilon]$. Заметим, что $g'(y) = F'_y(\overline{x}^o,y) > 0 \,\forall y \in [y^o - \varepsilon, y^o + \varepsilon] \implies g$ возрастает на этом отрезке. Кроме того, $g(y^o) = F(\overline{x}^o,y^o) = F(\overline{x}^{o'}) = 0 \implies g(y^o - \varepsilon) < 0, \ g(y^o + \varepsilon) > 0$. Значит, $F(\overline{x}^o,y^o - \varepsilon) < 0, \ F(\overline{x}^o,y^o + \varepsilon) > 0$. Функция F дифференцируема \implies непрерывна в $B_h(\overline{x}^{o'}) \implies \exists \delta > 0$, т.ч. $F(\overline{x},y^o - \varepsilon < 0, \ F(\overline{x},y^o + \varepsilon) > 0 \,\,\forall \overline{x} \in B_\delta(\overline{x}^o)$. Возьмем любую точку $\widetilde{x} \in B_\delta(\overline{x}^o)$ и рассмотрим функцию $\widetilde{g}(y) = F(\widetilde{x},y), \ y \in [y^o - \varepsilon,y^o + \varepsilon]$. Заметим, что $\widetilde{g}'(y) = F'_y(\widetilde{x},y) > 0 \,\,\forall y \in [y^o - \varepsilon,y^o + \varepsilon] \implies \widetilde{g}$ возрастает на $[y^o - \varepsilon,y^o + \varepsilon]$. Кроме того, $\widetilde{g}(y^o - \varepsilon) = F(\widetilde{x},y^o - \varepsilon) < 0, \ \widetilde{g}(y^o + \varepsilon) = F(\widetilde{x},y^o + \varepsilon) > 0, \ \widetilde{g}$ непрерывна $\implies \exists ! \widetilde{y} := f(\widetilde{x}), \ \mathtt{T.H.} \ 0 = \widetilde{g}(\widetilde{y}) = F(\widetilde{x},\widetilde{y}).$

т.ч. 0 = g(y) = F(x, y). 2) (непрерывность) В п.1 доказали, что $\forall \varepsilon > 0 \exists \delta(\varepsilon) > 0$, т.ч. $\forall \overline{x} \in B_{\delta}(\overline{x}^{o}) : |f(\overline{x}) - \underbrace{y^{o}}_{=f(\overline{x}^{o})}| < 0$

 $\varepsilon \implies f$ непрерывна в точке \overline{x}^o .

Возьмем любую точку $\widetilde{x} \in \overset{\bullet}{B_{\delta}}(\overline{x}^o)$, $\widetilde{y} = f(\widetilde{x})$, $\widetilde{x}' = (\widetilde{x}, \widetilde{y})$. Тогда $\exists \widetilde{h} > 0$, т.ч. в $B_{\widetilde{h}}(\widetilde{x}')$ выполнено: F дифференцируема, $F(\widetilde{x}') = 0$, $\frac{\partial F}{\partial y} > 0$. Значит можем применить рассуждения аналогичные п.1 и получить непрерывность в точке \widetilde{x} .

3) (дифференцируемость) Возьмем любую точку $\widetilde{x} \in B_{\delta}(\overline{x}^{o})$. Нужно показать, что функция f дифференцируема в точке \widetilde{x} . Пусть $\Delta x_{1}, \ldots, \Delta x_{n} \in \mathbb{R}$, т.ч. $\overline{x} = (x_{1}, \ldots, x_{n}) = (\widetilde{x}_{1} + \Delta x_{1}, \ldots, \widetilde{x}_{n} + \Delta x_{n}) \in B_{\delta}(\overline{x}^{o})$. Обозначим $\Delta y = \Delta f = f(\overline{x}) - f(\widetilde{x})$, $\widetilde{y} = f(\widetilde{y})$. Функция F дифференцируема в точке $\widetilde{x}' = (\widetilde{x}, \widetilde{y}) \Longrightarrow$

$$\underbrace{F(\widetilde{x} + \Delta \overline{x}, \widetilde{y} + \Delta y)}_{F(\widetilde{x} + \Delta \overline{x}, f(\widetilde{x} + \Delta \overline{x}))} - \underbrace{F(\widetilde{x}, \widetilde{y})}_{=0} = \underbrace{\frac{\partial F(\widetilde{x}')}{\partial x_1}}_{=A_1} \Delta x_1 + \dots + \underbrace{\frac{\partial F(\widetilde{x})}{\partial x_n}}_{=A_n} \Delta x_n + \underbrace{\frac{\partial F(\widetilde{x}')}{\partial y}}_{=A} \Delta y + \dots + \underbrace{\frac{\partial F(\widetilde{x})}{\partial x_n}}_{=A_n} \Delta x_n + \underbrace{\frac{\partial F(\widetilde{x}')}{\partial y}}_{=A} \Delta y$$

где
$$\alpha_j, \alpha \to 0$$
 при
$$\begin{cases} \Delta x_1 \to 0 \\ \dots \\ \Delta x_n \to 0 \\ \Delta y \to 0 \end{cases}.$$

Заметим, что f непрерывна в точке $\widetilde{x} \implies \Delta y \to 0$ при $\begin{cases} \Delta x_1 \to 0 \\ \dots \\ \Delta x_n \to 0 \end{cases}$. Значит, можем

утверждать, что все
$$\alpha_j, \alpha \to 0$$
 при
$$\begin{cases} \Delta x_1 \to 0 \\ \dots \\ \Delta x_n \to 0 \end{cases}$$

По условию $A \neq 0 \implies$ можно считать приращения $\Delta x_1, \dots, \Delta x_n$ достаточно малыми, чтобы $A + \alpha \neq 0 \ (\alpha \to 0)$. Тогда получается, что

$$\Delta f = \Delta y = -\frac{A_1}{A+\alpha} \Delta x_1 - \dots - \frac{A_n}{A+\alpha} \Delta x_n - \frac{\alpha_1}{A+\alpha} \Delta x_1 - \dots - \frac{\alpha_n}{A+\alpha} \Delta x_n.$$

Учтем, что $-\frac{A_i}{A+\alpha} \to -\frac{A_i}{A} \implies -\frac{A_i}{A+\alpha} = -\frac{A_i}{A} + \widetilde{\alpha}_i$, где $\widetilde{\alpha}_i \to 0$. Тогда

$$\Delta f = \Delta y = -\frac{A_1}{A} \Delta x_1 - \dots - \frac{A_n}{A} \Delta x_n + \underbrace{\left(\widetilde{\alpha}_1 - \frac{\alpha_1}{A + \alpha}\right)}_{=\beta_1} - \dots - \underbrace{\left(\widetilde{\alpha}_n - \frac{\alpha_n}{A + \alpha}\right)}_{=\beta_n},$$

где $\beta_i \to 0$ при $\begin{cases} \Delta x_1 \to 0 \\ \dots \\ \Delta x_n \to 0 \end{cases}$. Получили в точности определение дифференцируемости для f.

38 Теорема о разрешимости системы функциональных уравнений.

Будем называть систему

$$\begin{cases}
F_1(x_1, \dots, x_n, y_1, \dots, y_m) = 0 \\
\dots \\
F_m(x_1, \dots, x_n, y_1, \dots, y_m) = 0
\end{cases}$$
(1)

системой функциональных уравнений.

Опр. Матрицей Якоби функций F_1, \ldots, F_m по переменным y_1, \ldots, y_n называется матрица:

$$\begin{bmatrix} \frac{\partial F_1}{\partial y_1} & \cdots & \frac{\partial F_1}{\partial y_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_m}{\partial y_1} & \cdots & \frac{\partial F_m}{\partial y_m} \end{bmatrix}.$$

Ee определитель называется якобианом функций F_1, \ldots, F_n по переменным y_1, \ldots, y_m и обозначается $\frac{D(F_1, \ldots, F_m)}{D(y_1, \ldots, y_m)}$.

Теорема (О разрешимости системы функциональных уравнений). Пусть

- 1. функции F_1, \ldots, F_m определены и дифференцируемы в некоторой окрестности $\overline{x}^{o'} = (x_1^o, \ldots, x_n^o, y_1^o, \ldots, y_m^o) \in \mathbb{R}^{n+m}$;
- 2. $F_1(\overline{x}^{o'}) = 0, \dots, F_m(\overline{x}^{o'}) = 0;$
- 3. все ЧП $\frac{\partial F_k}{\partial y_j}$ непрерывны в точке $\overline{x}^{o\prime}$;
- 4. $\frac{D(F_1,...,F_m)}{D(y_1,...,y_m)}\Big|_{\overline{x}^{o'}} \neq 0.$

Тогда $\forall \varepsilon_1, \ldots, \varepsilon_m > 0 \,\exists \delta(\varepsilon_1, \ldots, \varepsilon_m) > 0, \, m.ч. \,\exists !$ набор функций $f_1, \ldots, f_m, \, m.ч.$ $F_k(x_1, \ldots, x_n, f_1(x_1, \ldots, x_n), \ldots, f_m(x_1, \ldots, x_n)) = 0, \, k = \overline{1,m} \,\forall (x_1, \ldots, x_n) \in B_\delta(\overline{x}^o); \, |f_j(\overline{x}) - y_j^o| < \varepsilon_j, \, j = \overline{1,m} \,\forall \overline{x} \in B_\delta(\overline{x}^o).$ При этом все функции f_1, \ldots, f_m дифференцируемы в $B_\delta(\overline{x}^o)$.

 \mathcal{A} -60. Индукция по m. При m=1 уже доказано. Предположим, что верно для m-1 и докажем для m.

Обозначим $\Delta = \frac{D(F_1,...,F_m)}{D(y_1,...,y_m)}$. По условию $\Delta(\overline{x}^{o\prime}) \neq 0 \implies$ у нее существует ненулевой минор порядка m-1. Не ограничивая общности, можем считать, что $\Delta_m(\overline{x}^{o\prime}) \neq 0$, где

$$\Delta_m = \begin{vmatrix} \frac{\partial F_1}{\partial y_1} & \cdots & \frac{\partial F_1}{\partial y_{m-1}} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_{m-1}}{\partial y_1} & \cdots & \frac{\partial F_{m-1}}{\partial y_{m-1}} \end{vmatrix}.$$

Обозначим через $\Delta_1, \ldots, \Delta_m$ алгебраические дополнения к элементам последнего столбца определителя Δ . Тогда можем применить предположение индукции к первым m-1 уравнению системы (1) и выразить из этих уравнений y_1, \ldots, y_{m-1} . Это означает, что $\forall \varepsilon_1, \ldots, \varepsilon_{m-1} > 0 \ \exists \widetilde{\delta}(\varepsilon_1, \ldots, \varepsilon_{m-1}) > 0$, т.ч. $\forall (\overline{x}, y) \in B_{\widetilde{\delta}}(\widetilde{x})$, где $\widetilde{x} = (x_1^o, \ldots, x_n^o, y_m^o)$, $\exists !$ набор функций $g_1, \ldots, g_{m-1} : F_k(x_1, \ldots, x_n, g_1(\overline{x}, y_m), \ldots, g_{m-1}(\overline{x}, y_m), y_m) = 0, k = \overline{1, m-1}$ (2) $\forall (\overline{x}, y_m) \in B_{\widetilde{\delta}}(\widetilde{x})$; при этом $|g_i(\overline{x}, y_m) - y_i^o| < \varepsilon_i, i = \overline{1, m-1}$. Кроме того, каждая из g_1, \ldots, g_{m-1} дифференцируема в $B_{\widetilde{\delta}}(\widetilde{x})$.

Подставим функции g_1, \ldots, g_{m-1} вместо y_1, \ldots, y_{m-1} в F_m :

$$F_m(x_1,\ldots,x_n,g_1(x_1,\ldots,x_n,y_m),\ldots,g_{m-1}(x_1,\ldots,x_n,y_m),y_m)=\psi(x_1,\ldots,x_n,y_m) (3).$$

Хотим решить уравнение $\psi(x_1,\ldots,x_n,y_m)=0$, выразив из него y_m через x_1,\ldots,x_n . Проверим, что для него выполняются условия теоремы о неявной функции.

Функция ψ дифференцируема в окрестности точки \widetilde{x} , как сложная функция. $\psi(\widetilde{x}) = F(\overline{x}^{o\prime}) = 0$.

Осталось проверить, что $\frac{\partial \psi}{\partial y_m}$ непрерывна и отлична от нуля в точке \widetilde{x} . Продифференцируем по y_m все m-1 уравнения (2) и соотношение (3):

$$\frac{\partial F_k}{\partial u_1} \frac{\partial g_1}{\partial u_m} + \dots + \frac{\partial F_k}{\partial u_{m-1}} \frac{\partial g_{m-1}}{\partial u_m} + \frac{\partial F_k}{\partial u_m} = 0, \ k = \overline{1, m-1}$$

$$\frac{\partial F_m}{\partial y_1} \frac{\partial g_1}{\partial y_m} + \dots + \frac{\partial F_m}{\partial y_{m-1}} \frac{\partial g_{m-1}}{\partial y_m} + \frac{\partial F_m}{\partial y_m} = \frac{\partial \psi}{\partial y_m}.$$

Домножим первые m-1 соотношений на Δ_k , последнее соотношение на Δm и сложу. Получим:

$$\sum_{k=1}^{m} \left(\frac{\partial F_k}{\partial y_1} \frac{\partial g_1}{\partial y_m} + \dots + \frac{\partial F_k}{\partial y_{m-1}} \frac{\partial g_{m-1}}{\partial y_m} + \frac{\partial F}{\partial y_m} \right) \Delta_k = \frac{\partial \psi}{\partial y_m} \Delta_m.$$

Перегруппируем левую часть:

$$\frac{\partial g_{1}}{\partial y_{m}} \underbrace{\left(\frac{\partial F_{1}}{\partial y_{1}} \Delta_{1} + \dots + \frac{\partial F_{m}}{\partial y_{1}} \Delta_{m-1}\right)}_{\text{CM. (*)}} + \dots + \underbrace{\frac{\partial g_{m-1}}{\partial y_{m}}}_{\text{CM. (*)}} \underbrace{\left(\frac{\partial F_{1}}{\partial y_{m-1}} \Delta_{1} + \dots + \frac{\partial F_{m}}{\partial y_{m-1}} \Delta_{m-1}\right)}_{\text{CM. (**)}} + \underbrace{\frac{\partial F_{1}}{\partial y_{m}} \Delta_{1} + \dots + \frac{\partial F_{m}}{\partial y_{m}} \Delta_{m}}_{-\delta} = \underbrace{\frac{\partial \psi}{\partial y_{m}} \Delta_{m}}_{-\delta}$$

(*) сумма элементов 1-го столбца умноженных на алгебраические дополнения к последнему $\implies = 0$.

(**) аналогично = 0.

Значит $\frac{\partial \psi}{\partial y_m} \Delta_m = \Delta$ (соотношение выполнено в $B_{\widetilde{\delta}}(\widetilde{x})$). Далее, $\Delta(\overline{x}^{o\prime} \neq 0, \Delta_m(\overline{x}^{o\prime} \neq 0, \text{ все элементы имеют вид } \frac{\partial F_k}{\partial y_j} \Longrightarrow$ непрерывны в точке $\overline{x}^{o\prime} \Longrightarrow$ можем разделить на $\Delta_m: \frac{\partial \psi}{\partial y_m} = \frac{\Delta}{\Delta_m}$ - непрерывна и отлична от нуля в точке $\overline{x}^{o\prime}$.

Значит можем применить теорему о неявной функции к уравнению $\psi(x_1,\ldots,x_n,y_m)=0$ и получить, что $\forall \varepsilon_m>0 \,\exists \delta(\varepsilon_m,\widetilde{\delta})=\delta(\varepsilon_1,\ldots,\varepsilon_m)>0$, т.ч. $\forall \overline{x}\in B_\delta(\overline{x}^o)\,\exists!$ функция g_m , т.ч. $\psi(x_1,\ldots,x_n,g_m(x_1,\ldots,x_n))=0$ и $|g_m(x_1,\ldots,x_n)-y_m^o|<\varepsilon_m$. Кроме того, функция g_m дифференцируема в $B_\delta(\overline{x}^o)$.

Обозначим $f_m = g_m, f_k = g_k(x_1, \dots, x_n, g_m(x_1, \dots, x_n)), k = \overline{1, m-1}$. Получили требуемое решение системы (1). Функции f_k дифференцируемы как сложные функции.

39 Понятие зависимости функций. Достаточные условия независимости.

(Не выносится на досрок)

40 Понятие зависимости функций. Теорема о функциональной зависимости.

(Не выносится на досрок)

41 Метод Лагранжа поиска условного экстремума ФМП.

Постановка задачи. $f(x_1,\ldots,x_n,y_1,\ldots,y_m) \to$ экстремуму при наличии условий связи:

$$\begin{cases}
F_1(x_1, \dots, x_n, y_1, \dots, y_m) = 0 \\
\dots \\
F_m(x_1, \dots, x_n, y_1, \dots, y_m) = 0
\end{cases}$$
(1)

Опр. Функция $L := f + \lambda_1 F_1 + \dots + \lambda_n F_n$ называется функцией Лагранжа, числа $\lambda_1, \dots, \lambda_n$ - (неопределенные) множители Лагранжа.

Метод непосредственной подстановки.

Пусть все функции F_1, \ldots, F_m дифференцируемы в окрестности точки $\overline{x}^{o'}$, где $\overline{x}^{o'}$ - точка условного локального экстремума. Пусть все ЧП $\frac{\partial F_k}{\partial y_j}$, $1 \leq j, k \leq m$, непрерывны в точке $\overline{x}^{o'}$ и $\frac{D(F_1, \ldots, F_m)}{D(y_1, \ldots, y_m)} \neq 0$ в точке $\overline{x}^{o'}$. Тогда к системе (1) можно применить теорему о системе функциональных уравнений и в некоторой окрестности точки \overline{x}^o \exists ! решение $y_1(\overline{x}), \ldots, y_m(\overline{x})$. Подставим это решение в функцию f, получим функцию

$$\Phi(\overline{x}) = \Phi(x_1, \dots, x_n) = f(\overline{x}, y_1(\overline{x}), \dots, y_m(\overline{x})).$$

Заметим, что поскольку $\overline{x}^{o'}$ - точку условного экстремума функции f при наличии связей (1), то \overline{x}^{o} - точка локального экстремума функции Φ . Значит (необходимое условие экстремума):

$$0 = d\Phi|_{\overline{x}^o} = \frac{\partial f}{\partial x_1}\Big|_{\overline{x}^{o'}} dx_1 + \dots + \frac{\partial f}{\partial x_n}\Big|_{\overline{x}^{o'}} dx_n + \frac{\partial f}{\partial y_1}\Big|_{\overline{x}^{o'}} dy_1 + \dots + \frac{\partial f}{\partial y_m}\Big|_{\overline{x}^{o'}} dy_m \quad (2).$$

Отметим, что в соотношении (2) d_1, \ldots, d_m - не независимые приращения, а дифференциалы функций $y_1(\overline{x}), \ldots, y_m(\overline{x})$.

Хотим выразить dy_1, \ldots, dy_n через dx_1, \ldots, dx_n . Для этого продифференцируем систему (1) и подставим $\overline{x}^{o\prime}$:

$$\begin{cases}
\frac{\partial F_1}{\partial x_1}\big|_{\overline{x}^{o\prime}}dx_1 + \dots + \frac{\partial F_1}{\partial x_n}\big|_{\overline{x}^{o\prime}}dx_n + \frac{\partial F_1}{\partial y_1}\big|_{\overline{x}^{o\prime}}dy_1 + \dots + \frac{\partial F_1}{\partial y_m}\big|_{\overline{x}^{o\prime}}dy_m = 0 \\
\dots \\
\frac{\partial F_m}{\partial x_1}\big|_{\overline{x}^{o\prime}}dx_1 + \dots + \frac{\partial F_m}{\partial x_n}\big|_{\overline{x}^{o\prime}}dx_n + \frac{\partial F_m}{\partial y_1}\big|_{\overline{x}^{o\prime}}dy_1 + \dots + \frac{\partial F_m}{\partial y_m}\big|_{\overline{x}^{o\prime}}dy_m = 0
\end{cases}$$
(3)

Получим СЛАУ относительно переменных dy_1, \ldots, dy_m . Ее определитель $\Delta|_{\overline{x}^{o\prime}} \neq 0 \Longrightarrow \exists !$ решение. Находим это решение и подставляем в (2), получаем: $A_1 dx_1 + \cdots + A_n dx_n = 0$, где A_1, \ldots, A_n - коэффициенты, выражаемые через всевозможные ЧП. dx_1, \ldots, dx_n - независимые \Longrightarrow получаем необходимое условие экстремума (условного): $A_1 = \ldots, A_n = 0, F_1 = 0, \ldots, F_m = 0$.

Метод Лагранжа.

Умножим уравнения системы (3) на числа $\lambda_1, \ldots, \lambda_m$ соответственно и прибавим к уравнению (2):

$$df_{\overline{x}^{o\prime}} + \lambda_1 dF_1|_{\overline{x}^{o\prime}} + \dots + \lambda_m dF_m|_{\overline{x}^{o\prime}} = 0.$$

Итак, теперь необходимое условие условного экстремума имеет вид:

$$0 = dL|_{\overline{x}^{o'}} = \frac{\partial L}{\partial x_1} \Big|_{\overline{x}^{o'}} + \dots + \frac{\partial L}{\partial x_n} \Big|_{\overline{x}^{o'}} dx_n + \frac{\partial L}{\partial y_1} \Big|_{\overline{x}^{o'}} dy_1 + \dots + \frac{\partial L}{\partial y_m} \Big|_{\overline{x}^{o'}}$$
(4).

Подберем множители $\lambda_1, \dots, \lambda_m$ так, чтобы обнулились все ЧП $\frac{\partial L}{\partial y_j}$, $1 \leq j \leq m$, т.е. решим систему

$$\begin{cases} \frac{\partial f}{\partial y_1}\big|_{\overline{x}^{o\prime}} + \lambda_1 \frac{\partial F_1}{\partial y_1}\big|_{\overline{x}^{o\prime}} + \dots + \frac{\partial F_m}{\partial y_1}\big|_{\overline{x}^{o\prime}} = 0\\ \dots\\ \frac{\partial f}{\partial y_m}\big|_{\overline{x}^{o\prime}} + \lambda_1 \frac{\partial F_1}{\partial y_m}\big|_{\overline{x}^{o\prime}} + \dots + \frac{\partial F_m}{\partial y_m}\big|_{\overline{x}^{o\prime}} = 0 \end{cases}$$

Это СЛАУ относительно переменных $\lambda_1,\ldots,\lambda_m$; ее определитель $\Delta|_{\overline{x}^{o'}}\neq 0 \implies \exists$ решение $\lambda_1^o,\ldots,\lambda_m^o$. Обозначим $\widetilde{x}^o=(x_1^o,\ldots,x_n^o,y_1^o,\ldots,y_m^o,\lambda_1^o,\ldots,\lambda_m^o$. Подставив найденное решение в в соотношение (4), получим:

$$\frac{\partial L}{\partial x_1}\Big|_{\widetilde{x}^o} dx_1 + \dots + \frac{\partial L}{\partial x_n}\Big|_{\widetilde{x}^o} dx_n = 0 \quad (4).$$

 dx_1,\ldots,dx_n - независимые приращения \Longrightarrow получили необходимое условие экстремума в терминах функции Лагранжа: $\frac{\partial L}{\partial x_1}\big|_{\widetilde{x}^o}=0,\ldots,\frac{\partial L}{\partial x_n}\big|_{\widetilde{x}^o}=0,\frac{\partial L}{\partial y_1}\big|_{\widetilde{x}^o}=0,\ldots,\frac{\partial L}{\partial y_m}\big|_{\widetilde{x}^o}=0,F_1=0,\ldots,F_m=0.$

Достаточные условия: ищем $d^2L|_{\widetilde{x}^o}$; подставляем в полученное выражение dy_1,\ldots,dy_m , выраженные через dx_1,\ldots,x_n из системы (3). Если после этого $d^2L|_{\widetilde{x}^o}>0$ (< 0), то \widetilde{x}^o - точка локального минимума (максимума). Если $d^2f|_{\widetilde{x}^o}$ - знакопеременная К Φ , то условного экстремума в точке \widetilde{x}^o нет.