1. How Hamming(7,4) works

111	110	101	100	011	010	001
7	6	5	4	3	2	1
D3	D2	D1	C2	D0	C1	CO

- a. Each data bit must be covered (checked) by at least 2 parity bits
- b. Why we start numbering from 1
- c. Which parity bits check which data bits
 - i. C0
 - ii. C1
 - iii. C2
 - iv. If we had a C3
 - v. In general
- d. Why we can XOR to determine the bit position
- e. Expanding it further
 - i. Expanding to cover a larger data size
 - ii. Covering more errors
 - 1. Given Terrors

- 2. Sequential circuits
 - a. So far, only discussed combinational circuits
 - b. Sequential circuits
 - c. Examples
- 3. Latches
 - a. S-R latches
 - b. S-R latch implementation

c. Characteristic tables

S	R	\mathbf{Q}_{n+1}	S	R	\mathbf{Q}_{n+1}
0	0		1	1	
0	1		1	0	
1	0		0	1	
1	1		0	0	
S-R NOR Latch			S-R NAND Latch		

d. State transition table for S-R NOR latch

State Transition Table for S-R NOR Latch							
Presen	t Inputs	Present State	Next State	Towns of Cinquit			
S R		Q	ď	Type of Circuit			
0	0	0					
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

- e. State transition diagram
 - i. Visual representation of circuit's output based on current state and input
 - ii. For every state, all possible output combinations need to be listed

4. Other latches

a. Clocking the latches

b. Clocked J-K latch

i. Like a S-R latch

b. Clocked D latch

