RMBL Spatial Data Science Webinar Series

RMBL Spatial Data Science Webinar Series

Webinar Schedule

Tuesday September 22nd 2020

Introduction to the RMBL Spatial Data Platform, How to access RMBL SDP data in GIS and programming environments, and where we are going with the platform.

Tuesday October 20th 2020 Designing Robust Field Studies using Geospatial Tools
How to optimize site selection using GIS and the RMBL SDP.

Tuesday January 26th, 2021 Successful UAV Data Collection in Mountain Environments How to design and execute UAV flights for high-quality scientific data in challenging environments.

Tuesday February 23rd, 2021 Leveraging Point Cloud Data from Lidar and UAV Photogrammetry
Mapping vegetation structure and function using 3D data from lidar and drones.

Tuesday March 23rd, 2021 *Linking Field Data with Remote Sensing for Spatial Prediction*How to leverage high-resolution remote sensing from imaging spectroscopy and lidar to map species, traits, and processes.

Tuesday April 20th, 2021 What's New in the RMBL Spatial Data Platform
Introduction to new snow and phenology datasets that form part of the SDP Release 2 and Release 3.

Outline

• Why?

Why should you use your field data to make maps?

What makes spatial prediction a unique challenge?

• What?

What core concepts do I need to know to succeed?

What is the basic workflow for spatial prediction?

What are some common missteps?

How?

Case Study: vegetation deciduousness from imagery and LiDAR data.

Why? Scaling up

Why? Filling in missing covariates

Why? Guiding field work

Why? Pattern-process relationships

Outline

• Why?

Why should you use your field data to make maps?

What makes spatial prediction a unique challenge?

• What?

What core concepts do I need to know to succeed?

What is the basic workflow for spatial prediction?

What are some common missteps?

How?

Case Study: vegetation deciduousness from imagery and LiDAR data.

Challenges: data volume

~47 million values

Challenges: interpolation and extrapolation

Challenges: dealing with uncertainty

Outline

• Why?

Why should you use your field data to make maps?

What makes spatial prediction a unique challenge?

• What?

What core concepts do I need to know to succeed?

What is the basic workflow for spatial prediction?

What are some common missteps?

How?

Case Study: vegetation deciduousness from imagery and LiDAR data.

Core concept: inference vs prediction

Inference

Core concept: features (predictors or covariates)

Spectral Features

Temporal Features

Structural Features

Semantic Features

Core concept: loss function

Loss functions encode goals

$$CE = -\sum_{i=1}^{C'=2} t_i log(s_i) = -t_1 log(s_1) - (1 - t_1) log(1 - s_1)$$

Loss functions must be differentiable

Core concept: fitting and overfitting

Cross-validation

Core concept: precision and bias

Core concepts summary

- Machine learning models use features to learn a task and make predictions by minimizing a loss function. They don't care about statistical significance.
- These models are really good at making predictions on training data, but can **overfit**. This means you always want to evaluate a model on independent data, sometimes by **cross-validation**.
- An accurate model gives precise and unbiased predictions.

Outline

• Why?

Why should you use your field data to make maps?

What makes spatial prediction a unique challenge?

• What?

What core concepts do I need to know to succeed?

What is the basic workflow for spatial prediction?

What are some common missteps?

How?

Case Study: vegetation deciduousness from imagery and LiDAR data.

General spatial prediction workflow

Approaches to explore

Neural networks

MLP, DNNs

Geostatistical

Kriging, IDW Interpolation

Approaches to explore

Regression-based	Tree-based	Vector-based
+structure -interactions +uncertainty -overfits	+fast -artifacts +thresholds -overfits	+interactions -artifacts -uncertainty
GLM, GLMM, GAM	Random Forest, BRT	SVM

Neural networks	Geostatistical
+big data -big data +complexity -can be slow -reproducibility	+geodata -slow +sparse -oversmooth
MLP, DNNs	Kriging, IDW Interpolation

On the rise

Fast ConvNets for multispectral data (e.g. Hyper3Dnet, Morales et al. 2020)

Combining statistical and process models (Clark et al. 2021)

Outline

• Why?

Why should you use your field data to make maps?

What makes spatial prediction a unique challenge?

• What?

What core concepts do I need to know to succeed?

What is the basic workflow for spatial prediction?

What are some common missteps?

How?

Case Study: vegetation deciduousness from imagery and LiDAR data.

Mis-step: inadequate training data

Feature coverage matters more than sample size

Good representativeness, low coverage

Good coverage, poor representativeness

Mis-step: ignoring non-stationarity

Miss-step: scope and scale mismatch

Outline

• Why?

Why should you use your field data to make maps?

What makes spatial prediction a unique challenge?

• What?

What core concepts do I need to know to succeed?

What is the basic workflow for spatial prediction?

What are some common missteps?

How?

Case Study: vegetation deciduousness from imagery and LiDAR data.

Case Study: mapping deciduousness

Case Study: mapping deciduousness

Case Study: mapping deciduousness

tidymodels.org

Thanks!

Contact Me:

Ian Breckheimer ikb@rmbl.org Twitter, Github: @ibreckhe

References

- Asner, G. P., Brodrick, P. G., Anderson, C. B., Vaughn, N., Knapp, D. E., & Martin, R. E. (2016). Progressive forest canopy water loss during the 2012–2015 California drought. *Proceedings of the National Academy of Sciences*, 113(2), E249-E255.
- Sofaer, H. R., Jarnevich, C. S., Pearse, I. S., Smyth, R. L., Auer, S., Cook, G. L., ... & Hamilton, H. (2019). Development and delivery of species distribution models to inform decision-making. BioScience, 69(7), 544-557.
- Hengl, T., Mendes de Jesus, J., Heuvelink, G. B., Ruiperez Gonzalez, M., Kilibarda, M., Blagotić, A., ... & Kempen, B. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLoS one, 12(2), e0169748.
- Chen, Y., Wu, Y., & Shen, T. J. (2018). Evaluation of the estimate bias magnitude of the Rao's quadratic diversity index. PeerJ, 6, e5211.
- Morales, G., Sheppard, J. W., Scherrer, B., & Shaw, J. A. (2020). Reduced-cost hyperspectral convolutional neural networks. Journal of Applied Remote Sensing, 14(3), 036519.
- Clark, J. S., Andrus, R., Aubry-Kientz, M., Bergeron, Y., Bogdziewicz, M., Bragg, D. C., ... & Zlotin, R. (2021). Continent-wide tree fecundity driven by indirect climate effects. Nature communications, 12(1), 1-11.