TLS FOR IOT

Illya Gerasymchuk

illya@iluxonchik.me

INESC-ID Investigação e Desenvolvimento, Rua Alves Redol 9, 1000-029 Lisbon, Portugal Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal

Motivation:

- Internet of Things (IoT) lacks security
- (D)TLS provides connection security
 - Too heavy for IoT devices
 Code size, resources, energy
- Existing work focuses on DTLS
 - New standards like "CoAP over TLS" call for TLS optimization

Goals:

- Profile most important features of TLS
- Associate costs with each feature
- e.g. How much does PFS cost?
- Build a framework that suggests a TLS configuration
 - Based on the needs and limitation of the environment
 - e.g. required security services, available power, memory and processing speed
 - Fully compatible with "vanilla" (D)TLS
- Focused on TLS 1.2
 - Taking into account TLS 1.3 and its features

The Transport Layer Security (TLS) Protocol

Client

ClientHello

ClientHello

ServerHello

Certificate*

ServerKeyExchange*(1)

CertificateRequest*

ServerHelloDone

Certificate*

(1) ClientKeyExchange

(2) CertificateVerify*

[ChangeCipherSpec]

(3) Finished

[ChangeCipherSpec]

- (1) Server to client authentication (depending on the key exchange method).
- (2) Client to server authentication
- (3) MITM protection guarantee

Application Data

- Datagram TLS (DTLS) adaptation of TLS that runs on top of an unreliable transport protocol (e.g. UDP)
 - While TLS runs on top of a reliable transport protocol, such as TCP
- The majority of TLS features is also available in DTLS

Wednesday, April 18th 2018 15:00h

- Powers **HTTPS** (HTTP over TLS)
- Client-Server protocol
- Connection-oriented and reliable
- Main goals:
 - Data confidentiality and integrity
- Two phases:

Finished(3)

Application Data

Ciphersuite Comparison For Server (Total: 161)

- Negotiate security parameters (Handshake Protocol)
- Exchange data securely (Record Protocol)
- Security Services:
 - Authentication
 - Confidentiality
 - Integrity
 - Replay Protection
 - Perfect Forward Secrecy

Server

Profiling TLS Ciphersuites

- **Ciphersuite** = key exchange alg. + authentication alg. + encryption alg. + PRF (TLS 1.2)
- TLS Handshake profiled with each one of the ciphersuites (depicted in graphs)
 - For both, client and server
 - Using a tool written for that purpose
- mbedTLS's library TLS implementation

Data encryption and MAC algorithms also

TLS library for embedded devices

<u>Legend</u>

- Red rectangles group by key exchange and authentication
- Text on bars specifies encryption algorithm and MAC function
- Numbers in red represent the number of CPU cycles in millions
 - valgrind estimates

Analysis

- Different results for client and server
 - Client needs to verify certificate chain (public key operations)
 - Public key operations are faster than private key ones
 - Because public RSA exponent is usually small
- ECDSA's signature verification is slower than RSA's
- TLS with Pre-Shared Keys (PSK) is used a lot in constrained devices
 - Graphs above show why
- PFS is costly
- ECDH(E) ciphersuites use less CPU cycles than DHE(E)

Future Work

- Associate cost with each security service
- Profile remaining TLS features
 - e.g. session resumption
- Profile with actual CPU cycles measures
- Profile on relevant architectures
- Measure power consumption
- Build a framework that suggests a TLS configuration

