perf file format

Urs Fässler

CERN Openlab

14.07.2011

initialization

recording

perf file format (simplified, see page 9)

¹instruction pointer

²not the same as on the previous slide

further work

- mapping instruction pointer to library functions
- ullet understand mapping event names \leftrightarrow hex code
- understand timestamp of sample

Demo

Events: 1K cyc	les		
65.31%	1284	test test	[.] recFib
23.45%	461	test test	[.] loopFib
2.99%	59	test libc-2.13.so	[.] _int_malloc
1.61%	32	test test	[.] makeNode
1.48%	29	test [kernel.kallsym	ns] [k] clear_page_c
1.11%	22	test test	[.] randTree
1.07%	21	test libc-2.13.so	[.]malloc
0.56%	01 11 11	21 2.10	indom_r
0.50%		cs per function:	indom 📗
0.35%	per	period samples	function @plt
0.21%	23.45	90549430 461	loopFib _fault
0.20%	65.31	252203567 1284	recFib ree_one_page
0.15%	1.11	4283895 22	randTree age_fault
0.10%	1.61		makeNode _event_mmap
0.10%			Loc pages nodemas
0.10%	5.66	21861152 111	c_pages_vma
0.10%	2.87	11076171 64	p_vmas
0.10%	2	test [kernel.kallsym	ns] [k] get_page_from_freelis
0.06%	1	test ld-2.13.so	[.] _dl_map_object
0.06%	1	test ld-2.13.so	[.] _dl_relocate_object 臘
0.06%	1	test ld-2.13.so	[.] bsearch
0.05%	1	test [kernel.kallsym	3_
0.05%	1	test [kernel.kallsym	ns] [k] handle_pte_fault 🏻 🎆
0.05%	1	test [kernel.kallsym	ns] [k]rmqueue

Press '?' for help on key bindinas Urs Fässler (CERN Openlab)

summary

- good understanding of file format
 - map samples to functions
 - same result as perf report
 - library and system function doesn't work entirely

Analyze virtualized machine

perf has support for the Kernel-based Virtual Machine (KVM [1]). For the performance measurement, an argument tells perf that the machine using KVM should be monitored. It uses the PMU of the host. It seems that also detailed information is available if the host machine has access to the guests /proc/ files. Measures of hardware counters from inside the virtual machine is not supported.

VirtualBox [2] is not supported. This has two consequences. First, perf on the host can not record data about the guest. Second, there is no PMU in the virtual machine and therefore perf can not record hardware counters.

detailed file format

literature

- [1] Kernel-based Virtual Machine. URL: http://www.linux-kvm.org/page/Main_Page.
- [2] VirtualBox. URL: http://www.virtualbox.org/.