TD7 - EXAMEN BLANC

(sujet du 09 / 10 / 2020) Durée : 2 heures.

Un formulaire d'optique géométrique se trouve à la fin du sujet. Aucun document n'est autorisé. La calculatrice collège est permise.

Questions de cours (4 pts)

- 1) Donner la relation de Snell-Descartes qui relie l'angle incident et l'angle sortant à une interface transparente, en l'illustrant avec un petit schéma.
- 2) Expliquer brièvement ce qu'est le phénomène de réflexion totale, en précisant dans quelles conditions apparaît ce phénomène.
- 3) Quels sont les noms des deux types de miroirs sphériques ? Citer deux applications des miroirs sphériques dans notre quotidien ou dans le domaine de la recherche.
- 4) Pour un miroir sphérique, citer 3 rayons remarquables permettant de construire graphiquement une image, en précisant la direction du rayon réfléchi dans chaque cas.

Exercice 1. Déviation de la lumière par un prisme (4 pts)

Un rayon lumineux arrive sur un prisme avec un angle d'incidence i1 de 30°. L'indice du milieu incident est 1, celui du prisme est n=1,52. On appelle i1 et i2 les angles incident et réfracté sur la face avant du prisme ; on appelle i3 et i4 les angles incident et réfracté sur la face arrière.

- 1) Calculer i2.
- 2) Reproduire la figure sur votre copie et tracer le chemin du rayon lumineux à travers le prisme, en prenant en compte le fait que l'indice de l'air est inférieur à l'indice du prisme. Indiquer les angles i1, i2, i3, i4. On nomme A le sommet, B le point d'entrée et C le point de sortie du rayon.
- 3) Sachant que l'angle au sommet est de 60°, démontrer que i2+i3=60°.
- 4) En déduire la valeur de i4, puis calculer l'angle de déviation total D = (i1 i2) + (i4 i3).

Exercice 2. Lentilles minces (2 pts)

On dispose d'une lentille mince divergente de distance focale - 6 cm. Un objet est placé à 12 cm en avant de la lentille.

- Quelle est la position de l'image ?
- Combien vaut le grandissement ? L'image est-elle droite ou renversée ? agrandie ou réduite ?

Exercice 3. Doublets de lentilles

A. Microscope (5 pts)

On dispose de deux lentilles : L1 : distance focale +125 mm et L2 : distance focale +500 mm.

Ces lentilles sont situées sur le même axe, en O_1 et O_2 et sont distantes de 500 mm. Un objet \overline{AB} de taille transversale 100 mm situé 200 mm en avant de la première lentille.

- 1. Faire un schéma et construire l'image intermédiaire $\overline{A'B'}$ et l'image finale $\overline{A''B''}$ à travers le système des deux lentilles. Estimer $\overline{O_2A''}$ et $\overline{A''B''}$.
- 2. Calculer les caractéristiques de l'image intermédiaire et de l'image définitive par les formules de conjugaison et comparer avec les résultats obtenus graphiquement.

B. Lunette astronomique (5 pts)

Une lunette astronomique est schématisée par deux lentilles minces convergentes de même axe optique, l'une L1 (objectif) de distance focale image $f'_1 = \overline{O_1 F'_1}$ et l'autre L2 (oculaire) de distance focale image $f'_2 = \overline{O_2 F'_2}$. On rappelle qu'un œil normal voit un objet sans accommoder si celui-ci est placé à l'infini. On souhaite observer la planète Mars qui est vue à l'œil nu sous un diamètre apparent α (α est défini comme l'angle entre le rayon provenant du bord inférieur de Mars, placé sur l'axe optique et le rayon provenant du bord supérieur de la planète).

- 1. L'objet est à l'infini. Où se trouve l'image intermédiaire par rapport à L1 ? L'image finale est à l'infini. Où doit se trouver l'image intermédiaire par rapport à L2 ? En déduire la position relative des deux lentilles.
- 2. Faire le schéma de la lunette pour $f'_1=5$ f'_2 . Dessiner sur ce schéma la marche à travers la lunette d'un faisceau lumineux (non parallèle à l'axe) formé de rayons issus de l'astre. On appelle $\overline{A'B'}$ l'image intermédiaire.
- 3. On note α ' l'angle que forment les rayons émergents extrêmes en sortie de la lunette par rapport à l'axe optique.
 - L'image est-elle droite ou renversée ?
 - La lunette est caractérisée par son grossissement $G = \alpha' / \alpha$. Exprimer G en fonction de f'_1 et f'_2 .
- 4. On souhaite photographier cette planète. Où faut-il placer la pellicule ?

Formulaire d'optique géométrique

Le dioptre sphérique

Rayon de courbure : $R = \overline{SC}$

Le dioptre est convexe si R > 0

Le dioptre est **concave** si R < 0

Vergence : $D = \frac{n'-n}{R}$

Distances focales:

$$\overline{HF} = \overline{SF} = f = -\frac{n}{D}$$
 $\overline{H'F'} = \overline{SF'} = f' = \frac{n'}{D}$

Le dioptre est **convergent** si D > 0Le dioptre est **divergent** si D < 0.

Formules de Descartes :

 $\frac{\underline{n'}}{\overline{SA'}} - \frac{\underline{n}}{\overline{SA}} = D \qquad \qquad \gamma = \frac{\underline{y'}}{\underline{y}} = \frac{\underline{n.\overline{SA'}}}{\underline{n'.\overline{SA}}}$

Formules de Newton : $\overline{F'A'}.\overline{FA} = ff'$

 $\gamma = \frac{y'}{y} = -\frac{f}{\overline{FA}} = -\frac{\overline{F'A'}}{f'}$

Les lentilles minces

Vergence:
$$D = \frac{n-1}{R_1} + \frac{1-n}{R_2} = \frac{1}{f'} = -\frac{1}{f}$$

Conjugaison (Descartes) : $\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = D = \frac{1}{f'}$

Grandissement (Descartes) : $\gamma = \frac{\overline{A'B'}}{AB} = \frac{\overline{OA'}}{\overline{OA}}$

Conjugaison (Newton) : $\overline{F'A'}.\overline{FA} = ff' = -f'^2$

Grandissement (Newton) $\gamma = -\frac{f}{FA} = -\frac{\overline{F'A'}}{f'}$

Miroirs sphériques

miroir concave : $R = \overline{SC} < 0$

miroir **convexe** : $R = \overline{SC} > 0$

Les foyers F et F' d'un miroir sphérique sont **confondus** avec le **milieu** de [S; C] cf schéma ci-dessus :

$$\overline{SF} = \overline{SF'} = \frac{\overline{SC}}{2}$$

Conjugaison :

Descartes: $\frac{1}{\underline{SA'}} + \frac{1}{\underline{SA}} = \frac{2}{\underline{SC}}$

Newton: $\overline{F'A'}.\overline{FA} = ff'$

grandissement :

Descartes: $\gamma = -\frac{\overline{SA'}}{\overline{SA}}$

Newton: $\gamma = -\frac{f}{\overline{FA}} = -\frac{\overline{F'A'}}{f'}$

Avec C: $\gamma = \frac{\overline{CA'}}{\overline{CA}}$