AutoSeries

Bio

Denis Vorotyntsev

Sr Data Scientist @ Oura Ō

 Various project with time-series data: classification, clustering, regression, etc

Research Scientist @ VTT Research Center of Finland VTT

Anomaly detection in steel manufacturing

Linkedin

Current State of ML Competitions

Kaggle, can you give us more competitions?

To develop new algorithms, bring value to companies and promote data science?

Yesssss...

Actually mindless stacking of gradient boosting models

PUBLIC KERNELS BLENDING TIME

Write code, train and predict locally → submit answers

- Single dataset → deep dive into problem;
- Test data is available;
- Domain understanding: sophisticated feature engineering, advanced models;
- Time inefficient: train as many models as you wish; stacking & blending.

AutoML Competitions

Write code locally → submit code

- New, unseen data in test;
- Data from many domains → solution should be general;
- Strict time limits. Model has not fit in a given time → you'll get the worst score.

AutoSeries

- <u>AutoSeries</u> 10th competition in AutoML series organized by 4Paradigm and ChaLearn
- Time series regression
- Ten datasets (five public and five private) from different domains: air quality, sales, work presence, city traffic, etc
- Submit code, constraints: 16 Gb RAM, 4 CPU, no GPU
- Average rank (among all participants) of RMSE obtained on the five datasets
- 45 participants in the feedback phase, 12 in the final phase
- Results: 1st place
 - o <u>Code</u>
 - Blog post

Task Example

Example: retail sales prediction.

A1 - timestamp. Must be in data, single, sorted.

A2 - primary ID (shop ID). We could have none (single shop) or multiple primary ID (shop & product type) in data.

A3 - target (number of sales).

	A1	A2	А3
0	883612800	-6608418032804380965	0.0
1	883612800	3055235448505306399	0.0
2	883612800	3729226436453271103	0.0
3	883612800	6960584904140561905	0.0
4	883612800	1143350366519272165	0.0
5	883612800	-8223253218484014081	0.0
6	883612800	5404213741217308375	0.0
7	883612800	8613428591356018513	0.0
8	883612800	7698141674612140154	0.0
9	883612800	-808100555186871340	0.0

label: "A3"

timestamp

Overview of the Final Pipeline

Common Features

- Numerical operations of pair of numerical features
 - Determine important features: fit random forest → top 3 important (gini)
 - num1 + num2, num1 * num2, num1 / num2, num1 num2
- Time-based features: year, month, day of year, weekday, hour. Treated as numerical. Other options:
 - As category (works well sometimes);
 - Turn into embeddings (worked well in <u>Cold Start Energy Predictions</u>);
- Shift and diff features for target and important numerical features
 - \circ x(t-lag), lag = 1, 2, 3, 5, 7;
 - \circ x(t-1) x(t-n), n = 2, 3, 4, 6, 8;
- Each category is replaced with category + ID
 - o df[cat_col] = df[cat_col].astype("str") + "_" +
 df["timeseries id"].astype("str")

Validation & Baseline

- LightGBM model,
 Catboost encoder for categories (<u>Category</u>
 <u>Encoders</u>), target "as is"
- Refit model using full data

Optimize Main Parameters

- 1. Transform target
 - a. Keep "as is"
 - b. Difference
- 2. Transform categorical columns
 - a. pd.Categorical (OHE)
 - b. Catboost encoder

Features Selection & Hyperparameters Optimization

- Select features: refit on top-n% (10, 20, 50, 75%) most important ("gini")
- 2. Optimize hyperparameters RandomizedGridSearch

```
param grid = ParameterGrid({
    "learning rate": [0.05],
    "n estimators": [1000],
    "num_leaves": [15, 31, 63, 127, 255],
    "min child samples": [3, 20, 50, 150],
    "subsample_freq": [1, 5, 25, 50],
    "colsample_bytree": [1.0, 0.8, 0.6],
    "subsample": [1.0, 0.8, 0.6],
    "lambda_l2": [0, 0.1, 1, 10],
    "random_state": [2020]
})
```

What didn't Work

- Single model for each time-series ID or target scaling
- Catboost (too slow), Linear Models (inaccurate)
- Target transformations: power, Box-Cox, log transform
- Stacking & Blending with different seeds

Cold Start Energy Predictions

Results

#

1

2

8

9

10

User

rekcahd

bingo

lishuqiao

Reeed

Jie_Zhang

	ods.ai
--	--------

Entries

27

23

33

38

39

20

<Rank>

2.0000

2.4000

8.4000

8.8000

9.4000

10.4000

Date of

Last Entry

12/13/19

12/30/19

12/18/19

12/30/19

12/30/19

12/30/19

Team	Avg Rank	Dataset 1	Dataset 2	Dataset 3	Dataset 4	Dataset 5
DenisVorotyntsev	1.8	1	2	1	2	. 3
DeepBlueAI	3.6	2	3	5	3	5
DeepWisdom	4.2	5	4	7	4	1
Kon	5	3	8	3	9	2
bingo	5.6	4	5	2	6	11
rekcahd	5.8	9	1	9	1	9
Jie_Zhang	6.8	8	11	4	7	4

AutoSeries Challenge - Feedback Phase

DeepBlueAl Solution (2nd)

- Additional features Previous target values, lag=1. Probably made a bug, I opened issue;
- 2. Time features 'year' (unique values>1), 'month'(>11), 'day'(>27), 'hour'(>23), 'weekday'(>6), 'minute'(>4);
- 3. Target scaling: Min = mean 6*std, max = mean + 6*std;
- Category pd.Categorical;
- 5. LightGBM and Linear Model blend with coefficients
 - a. LightGBM optimize (meta learning) subsample, num trees and Ir (dynamic Ir);
 - b. LR sklearn.feature_selection.SelectPercentile for Feature Selection;
 - c. Make prediction for validation data;
 - d. final_pred = pred_a * a + pred_b * (1-a), a is hyperparameter;
- 6. Number of updates = 5 (constant).

Dynamic LR

LR strategy	Num rounds	MSE loss
Constant 0.05	1624	299
Constant 0.02	2000*	237
$0.05 \rightarrow 0.02$	1430	299
0.02 → 0.05	1994*	235 (1400 iter - 241)

* Did not meet early stopping

Picture: How to explain gradient boosting

Experiment Code

DeepWisdom Solution (3rd)

- Categories pd.Categorical;
- 2. Time features 'year', 'month', 'day', 'hour', 'weekday';
- 3. New features:
 - a. DeltaFeatures: num(t-1) num(t-2), (num(t-1) num(t-2)) / (num(t-2) + eps);
 - b. "LagFeatures": mean, std, max, min for last 3, 7, 14, 30 periods;
- 4. Explore stage
 - a. Bayesian hyperparameters optimization on subset of data for LightGBM;
 - b. Feature selection for linear models;
- 5. Models: LightGBM, Ridge, Lasso;
- 6. Adjust blend coefficients during inference;
- Number of updates = update time / train time (without explore stage).

Comments & questions

