Demonstração da NP-Completude do problema da soma dos subconjuntos (Subset-Sum)

Davi Azarias do Vale Cabral¹, João Antonio Lassister Melo¹, João Antonio Siqueira Pascuini¹, Renan Catini Amaral¹, Thallysson Luis Teixeira Carvalho¹, Vinicius Ribeiro da Silva do Carmo¹

¹Departamento de Ciências da Computação – Universidade Federal de Alfenas Avenida Jovino Fernandes de Sales 2600 – CEP 37133840 - Alfenas – MG - Brasil

```
davi.cabral@sou.unifal-mg.edu.br,
    joao.lassister@sou.unifal-mg.edu.br,

joaoantonio.pascuini@sou.unifal-mg.edu.br,
    renan.amaral@sou.unifal-mg.edu.br,

thallysson.carvalho@sou.unifal-mg.edu.br,
viniciusribeiro.carmo@sou.unifal-mg.edu.br
```

Resumo. Este trabalho tem como objetivo demonstrar que o problema da soma dos subconjuntos é NP-Completo. A metodologia adotada é demonstrar que esse problema pertence à classe NP e, posteriormente, apresentar um algoritmo de redução do problema da 3-satisfabilidade booleana, que sabe-se ser NP-Completo, ao problema da soma dos subconjuntos. Uma vez demonstradas essas duas proposições, concluímos que o problema da soma dos subconjuntos é NP-Completo.

1. Introdução

A classe NP consiste nos problemas que são verificáveis em tempo polinomial, isto é, dada uma solução a um problema em NP, podemos verificar se esta solução é ou não correta em tempo polinomial ao tamanho da entrada para o problema. [Cormen et al. 2012]

Um problema em NP é dito ser NP-Completo caso ele seja no mínimo tão difícil quanto qualquer outro problema em NP.

O presente trabalho busca demonstrar que o problema da soma dos subconjuntos, definido a seguir, pertence a NP e, posteriormente, apresentar um algoritmo que transforme em tempo polinomial qualquer instância do problema da 3-satisfabilidade booleana, que sabemos ser NP-Completo, em uma instância do problema da soma dos subconjuntos. Deste modo, concluímos que este problema é no mínimo tão difícil quanto aquele, fazendo-o assim parte da classe dos problemas NP-Completos.

2. Metodologia

2.1. Problema 1

Sejam $K = \{k_1, k_2, ..., k_n\} \subseteq \mathbb{Z}$ e $t \in \mathbb{Z}$. O problema da soma dos subconjuntos, enunciado como um problema de decisão, é o seguinte:

Dada uma instância de entrada < K, t>, espera-se que um algoritmo A que resolve o problema da soma dos subconjuntos responda true caso exista um subconjunto $L \subseteq K$ tal que a soma de todos os elementos de L seja igual a t, e false caso contrário.

Exemplo 1: Sejam $K_1 = \{2, 3, 5, 1, -1\}$ e $t_1 = 8$. Para a instância de entrada $K_1, t_1 > 0$, o algoritmo $K_1, t_1 > 0$ responderá $K_1, t_1 > 0$ subconjuntos de $K_1, t_1 > 0$ su

Exemplo 2: Sejam $K_2 = \{6, 7, 9, -2\}$ e $t_2 = 25$. Para a instância de entrada $K_2, t_2 > 0$, $K_2, t_2 >$

2.2. Problema 2

Uma expressão lógica ϕ é dita estar em 3CNF caso ela seja da forma $\phi = C_1 \wedge C_2 \wedge ... \wedge C_n$, para $i \in \{1, 2, ..., n\}$ e C_i é uma disjunção de 3 ou menos literais. Definimos um literal como uma variável booleana ou sua negação, de forma que x e $\neg x$ são ambos literais, caso $x \in \{true, false\}$.

A expressão ϕ é dita ser satisfatível caso ela possa ser avaliada como true para alguma atribuição de valores a suas variáveis e não satisfatível caso contrário.

O problema da 3-satisfabilidade booleana pode ser definido como: dada uma expressão ϕ em 3CNF, um algoritmo B diz se ϕ é satisfatível ou não.

Exemplo: Seja $\phi_1 = (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee \neg x_2 \vee x_3) \wedge (x_1 \vee x_2 \vee x_3)$. Para a instância de entrada ϕ_1 , o algoritmo B dirá que ϕ_1 é satisfatível, pois $\phi_1 = true$ para $(x_1, x_2, x_3) = (true, false, false)$.

2.3. Prova de NP

fim algoritmo

Definimos o seguinte algoritmo como sendo o verificador de que o conjunto L é um subconjunto de K e a soma de seus elementos é igual a t:

```
algoritmo verifica(L,K,t)

soma <- 0
ehSubconjunto <- true

para elem em L

soma <- soma + elem
ehSubconjunto <- ehSubconjunto && pertence(elem,K)

fim para

retorna soma == t && ehSubconjunto</pre>
```

O algoritmo acima verifica se a solução L para a instância < K, t > é verdadeira com uma complexidade de tempo O(|L|*|K|), em que |L| é o tamanho do conjunto L e |K| é o tamanho do conjunto K. Assim, demonstramos que o problema da soma dos subconjuntos pertence a NP.

2.4. Prova de NP-Completude

Seja ϕ uma expressão booleana $C_1 \wedge C_2 \wedge ... \wedge C_m$ em 3CNF, m a quantidade de cláusulas de ϕ e n a quantidade de variáveis em ϕ .

Contruiremos uma instância < K, t> do problema da soma de subconjuntos tal que, se a resposta do algoritmo A para essa instância for true, então ϕ é satisfatível, e caso a resposta seja false, então ϕ não é satisfatível.

Criaremos dois números inteiros y_i e z_i para cada variável x_i e dois números inteiros g_j e h_j para cada cláusula C_j na expressão lógica para serem elementos do conjunto K. A seguinte tabela nos auxiliará a compreender como os números serão criados:

	$ x_1 $	x_2	x_3	x_4		x_n	C_1	C_2		C_m
y_1	1	0	0	0		0				
z_1	1	0	0	0		0			•••	
y_2	0	1	0	0		0			•••	
z_2	0	1	0	0		0			•••	
y_3	0	0	1	0		0			•••	
z_3	0	0	1	0	•••	0			•••	
		•••	•••	•••	•••	•••			•••	•••
y_n	0	0	0	0	•••	1			•••	
z_n	0	0	0	0	•••	1			•••	
g_1	0	0	0	0		0	1	0	•••	0
h_1	0	0	0	0		0	2	0	•••	0
g_2	0	0	0	0		0	0	1	•••	0
h_2	0	0	0	0		0	0	2		0
•••		•••	•••	•••	•••	•••		•••	•••	•••
g_m	0	0	0	0		0	0	0		1
h_m	0	0	0	0		0	0	0	•••	2
t	1	1	1	1		1	4	4		4

Tabela 1. Redução de ϕ a < K, t >

Primeiro quadrante: As posições $[y_i, x_i]$ e $[z_i, x_i]$ da tabela são sempre 1, as demais são sempre 0.

Segundo quadrante: A posição $[y_i, C_j]$ da tabela será 1 caso a variável x_i apareça sem negação na cláusula C_j e 0 caso contrário. A posição $[z_i, C_j]$, por sua vez, será 1 caso a variável x_i apareça com negação na cláusula C_j e 0 caso contrário.

Terceiro quadrante: Todas as posições são 0.

Quarto quadrante: As posições $[g_j, C_j]$ da tabela são sempre 1, as posições $[h_j, C_j]$ são sempre 2, e as demais são sempre 0.

Quanto ao número t, este consistirá em uma sequência de n 1's seguida por m 4's.

Para efeitos de ilustração, iremos aplicar o algoritmo apresentado acima na expressão $\phi_1 = (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee \neg x_2 \vee x_3) \wedge (x_1 \vee x_2 \vee x_3)$, transformando-a em uma instância do problema da soma de subconjuntos:

	$ x_1 $	x_2	x_3	C_1	C_2	C_3
y_1	1	0	0	1	0	1
z_1	1	0	0	0	1	0
y_2	0	1	0	0	0	1
z_2	0	1	0	1	1	0
y_3	0	0	1	0	1	1
z_3	0	0	1	1	0	0
g_1	0	0	0	1	0	0
h_1	0	0	0	2	0	0
g_2	0	0	0	0	1	0
h_2	0	0	0	0	2	0
g_3	0	0	0	0	0	1
h_3	0	0	0	0	0	2
t_1	1	1	1	4	4	4

Tabela 2. Redução de ϕ_1 a $< K_1, t_1 >$

Ao analisar essa instância, o algoritmo A responde true, pois ele é capaz de encontrar, por exemplo, $L_1 = \{100101, 10110, 1100, 100, 20, 10, 2, 1\} \subseteq K_1$, cuja soma dos elementos é igual a 111444.

Resta-nos, primeiramente, demonstrar que, se uma expressão ϕ qualquer for satisfatível, então a intância < K, t> da soma de subconjuntos obtida a partir da redução de ϕ tem solução $L\subseteq K$:

Passo 1: Se ϕ é satisfatível, então existe um valor true ou false atribuído a cada variável x_i de ϕ que torna a expressão verdadeira. Assim, para cada x_i :

- Caso $x_i = true$, inclua y_i em L.
- Caso $x_i = false$, inclua z_i em L.

Passo 2: Para cada cláusula C_j , como ϕ é satisfatível, então há pelo menos um literal em C_j com valor true. Assim, para cada C_j :

- Caso haja um único literal $true \text{ em } C_i$, inclua $g_i \text{ e } h_i \text{ em } L$.
- Caso haja dois literais $true \text{ em } C_j$, inclua $h_j \text{ em } L$.
- Caso haja três literais true em C_i , inclua g_i em L.

Passo 3: Verifique que a soma dos elementos de L é igual a t, pois:

- As primeiras n posições do resultado da soma serão todas o valor 1, pois, como x_i é true ou false, exatamente um número y_i ou z_i foi incluído.
- As m últimas posições do resultado serão todas 4, pois cada literal verdadeiro contribui com 1, enquanto os números nos quadrantes inferiores da tabela foram selecionados de acordo com a necessidade para alcançar o valor 4.

Por fim, demonstraremos que, se há solução L para uma instância < K, t > obtida pela redução de ϕ , então ϕ é satisfatível.

Como a soma dos elementos de L é igual a t, então as n primeiras posições da soma dos elementos de L são iguais a 1. Ora, isso quer dizer que, para cada $l_i \in L$, há exatamente um $k_i \in K$ tal que ou $k_i = y_i$, ou $k_i = z_i$. Pois se ambos y_i e z_i estivessem em L, teríamos o número 2 na posição i, e teríamos o número 0 caso nenhum dos dois estivesse presente. Isso define uma atribuição:

$$x_i = \begin{cases} true, & \text{se } y_i \in L \\ false, & \text{se } z_i \in L \end{cases}$$
 (1)

Como as últimas m posições da soma dos elementos de L são iguais a 4, sabemos que, para cada cláusula C_j em ϕ , pelo menos um de seus literais está em L e a satisfaz, caso contrário a posição correspondente a C_j não alcançaria o valor 4, pois a soma dos números nos quadrantes inferiores não é o suficiente para chegar a esse valor.

Uma vez que atribuímos um valor para cada $x_i \in \{true, false\}$ em ϕ e esses valores são suficientes para satisfazer a todas as cláusulas da expressão, temos que ϕ é satisfatível.

3. Resultados

Durante este trabalho, conseguimos demonstrar que há um algoritmo determinístico que verifica uma solução para o problema da soma de subconjuntos em tempo polinomial, o que faz deste um problema em NP.

Além disso, demonstramos também que toda instância do problema da 3-satisfabilidade booleana, sabidamente NP-completo, pode ser reduzida a uma instância do problema da soma de subconjuntos, e, consequentemente, caso um algoritmo A seja capaz de solucionar o problema da soma dos subconjuntos, por meio de uma redução ele também será capaz de solucionar qualquer instância do problema da 3-satisfabilidade booleana. Isso faz do problema da soma dos subconjuntos um problema NP-Difícil. Isto é, ele é no mínimo tão difícil quanto qualquer problema em NP.

4. Conclusões

A partir desses resultados, concluímos que o problema da soma dos subconjuntos (Subsetsum) é NP-Completo.

Referências

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2012). *Algoritmos - Teoria e Prática*. GEN LTC, 3rd edition.