10.6 Problems 341

10.6 PROBLEMS

1. The position of a moving particle as a function of time is given by:

$$x = 0.01(30 - t)^2 \sin(2t)$$
 $y = 0.01(30 - t)^2 \cos(2t)$ $z = 0.5 t^{1.5}$

Plot the position of the particle for $0 \le t \le 20$ s.

2. A staircase of height *h* is modeled by the parametric equations:

$$x = r\cos(t)$$
 $y = r\sin(t)$ $z = \frac{ht}{2\pi n}$

where $r = h[2 + 5\sin(t/8)] / 10$, n = 4, and h = 50 m is the staircase height. Make a 3-D plot (shown) of the staircase. (Create a vector t for the domain 0 to $2\pi n$, and use the plot3 command.)

3. The ladder of a fire truck can be elevated (increase of angle ϕ), rotated about the z axis (increase of angle θ), and extended (increase of r). Initially the ladder rests on the truck ($\phi = 0$, $\theta = 0$, and r = 8 m). Then the ladder is moved to a new position by raising the ladder at a rate of 5 deg/s, rotating at a rate of 8 deg/s, and extending the

ladder at a rate of 0.6 m/s. Determine and plot the position of the tip of the ladder for 10 s.

- 4. Make a 3-D surface plot of the function $z = \frac{x^2}{4} + 2\sin^2(0.7y)$ in the domain $-4 \le x \le 4$ and $-3 \le y \le 3$.
- 5. Make a 3-D surface plot of the function $z = -0.7x^4 0.7y^4$ in the domain $-2 \le x \le 2$ and $-2 \le y \le 2$.
- 6. Make a 3-D surface plot of the function $z = -1.4xy^3 + 1.4yx^3$ in the domain -2 < x < 2 and -2 < y < 2.
- 7. Make a 3-D mesh plot of the function $z = \frac{-\cos 2R}{e^{0.2R}}$, where $R = \sqrt{x^2 + y^2}$ in the domain $-5 \le x \le 5$ and $-5 \le y \le 5$.

- 8. Make a 3-D surface plot of the function $z = \cos(0.7x + 0.7y)\cos(0.7x 0.7y)$ in the domain $-\pi \le x \le \pi$ and $-\pi \le y \le \pi$.
- 9. Make a plot of the ice cream cone shown in the figure. The cone is 8 in. tall with a 4-in. diameter base. The ice cream at the top is a 4-in. diameter hemisphere.

A parametric equation for the cone is:

$$x = r \cos \theta$$
, $y = r \sin \theta$, $z = 4r$
with $0 < \theta < 2\pi$ and $0 \le r \le 2$

A parametric equation for a sphere is:

$$x = r\cos\theta\sin\phi$$
, $y = r\sin\theta\sin\phi$, $z = r\cos\phi$
with $0 \le \theta \le 2\pi$ and $0 \le \phi \le \pi$

10. A monochromatic light that passes through a slit produces on a screen a diffraction pattern consisting of bright and dark fringes. The intensity of the bright fringes, I, as a function of θ can be calculated by:

$$I = I_{\max} \left(\frac{\sin \alpha}{\alpha} \right)^2$$

where $\alpha = \frac{\pi a}{\lambda} \sin \theta$, λ is the light wave length, a is the width of the slits. Make a 3-D plot (shown) that shows the relative intensity $I/I_{\rm max}$ as a function of θ for $-20^{\circ} < \theta < 20^{\circ}$, and a function of a/λ for $2 \le a/\lambda \le 10$.

11. Molecules of a gas in a container are moving around at different speeds. Maxwell's speed distribution law gives the probability distribution P(v) as a function of temperature and speed:

$$P(v) = 4\pi \left(\frac{M}{2\pi RT}\right)^{3/2} v^2 e^{-Mv^2/2RT}$$

where M is the molar mass of the gas in kg/mol, R = 8.31 J/(mol K), is the gas constant, T is the temperature in kelvins, and v is the molecule's speed in m/s.

Make a 3-D plot of P(v) as a function of v and T for $0 \le v \le 1,000 \,\text{m/s}$ and $70 \le T \le 320 \,\text{K}$ for oxygen (molar mass $0.032 \,\text{kg/mol}$).

10.6 Problems 343

12. Plank's distribution law gives the black-body emissive power (amount of radiation energy emitted) as a function of temperature and wavelength:

$$E = \frac{C_1}{\lambda^5 \left[e^{C_2/\lambda T} - 1 \right]} \qquad \left(\frac{W}{m^2 \mu m} \right)$$

where $C_1 = 3.742 \times 10^8 \text{ W} \mu \text{m}^4/\text{m}^2$,

 C_2 = 1.439 × 10⁴ µmK, T is the temperature in degrees K, and λ is the wavelength in µm. Make a 3-D plot (shown in the figure) of E as a function of λ (0.1 $\leq \lambda \leq$ 10 µm) and T for 100 $\leq T \leq$ 2000 K. Use a logarithmic scale for λ . This can be done with the command: set (gca, 'xscale', 'log').

13. Consider steady-state vibration of a friction-free spring-mass-damper system subjected to harmonic applied force. The normalized amplitude of the mass is given by:

$$\frac{Xk}{F_0} = \frac{1}{\sqrt{(1 - r^2)^2 + (2\zeta r)^2}}$$

where $r = \omega / \omega_n$ is the frequency ratio, and ζ is the damping ratio. Make a 3-D plot (shown) of the normalized amplitude (z axis) as a function of the frequency ratio for $0 \le r \le 2$, and a function of the damping ratio for $0.05 \le \zeta \le 0.5$.

14. An *RLC* circuit with an alternating voltage source is shown. The source voltage v_s is given by $v_s = v_m \sin(\omega_d t)$, where $\omega_d = 2\pi f_d$, in which f_d is the driving frequency. The amplitude of the current, I, in this circuit is given by:

$$I = \frac{v_m}{\sqrt{R^2 + \left[\omega_d L - 1/(\omega_d C)\right]^2}}$$

where R and C are the resistance of the resistor and capacitance of the capacitor, respectively. For the circuit in the figure $C = 15 \times 10^{-6}$ F, $L = 240 \times 10^{-3}$ H, and $v_m = 24$ V.

(a) Make a 3-D plot of I(z axis) as a function of $\omega_d(x \text{ axis})$ for

 $60 \le f \le 110 \,\text{Hz}$, and as a function of R(y axis) for $10 \le R \le 40 \,\Omega$.

- (b) Make a plot that is a projection on the x z plane. Estimate from this plot the natural frequency of the circuit (the frequency at which I is maximum). Compare the estimate with the calculated value of $1/(2\pi\sqrt{LC})$.
- 15. In the solution of elasticity problem of a normal point load applied to the surface of a half plane that was solved by Boussinesq in 1878, the stresses σ_r and σ_z are given by:

$$\sigma_z = -\frac{3Pz^3}{2\pi R^5}$$
 and $\sigma_r = \frac{P}{2\pi} \left[\frac{1-2\nu}{R(R+z)} - \frac{3r^2z}{R^5} \right]$

where v is Poisson's ratio. For P = 2,000 lb and v = 0.3, plot the stress components (each in a separate figure) as a function of r and z in the domain $0 \le \theta \le 90^{\circ}$ and 0.02 < R < 0.1 in. Plot the coordinates r and z in the horizontal plane and the stresses in the vertical direction.

16. A high-pass filter passes signals with frequencies that are higher than a certain cutoff frequency. In this filter the ratio of the magnitudes of the voltages is given by:

$$V_i$$
 R V_o

$$\left| \frac{V_o}{V_i} \right| = \frac{\omega RC}{\sqrt{1 + \omega^2 R^2 C^2}}$$

where $\omega = 2\pi f$ is the frequency of the input signal.

- (a) Make a 3-D mesh plot of $\left|\frac{V_o}{V_i}\right|$ (z axis) as a function of f (x axis) for $1 \le f \le 10^6 \text{Hz}$, and as a function of RC (y axis) for $0.4 \times 10^{-4} \le RC \le 6 \times 10^{-3} \text{s}$. Use a logarithmic scale for the x axis. This can be done by typing the MATLAB command set (gca, 'Xscale', 'log') following the mesh command. A vector with constant spacing on a logarithmic scale can be created with the command logspace (a, b, n).
- (b) Make a plot that is a projection on the x z plane.
- 17. The equation for the streamlines for uniform flow over a cylinder is

$$\Psi(x, y) = y - \frac{y}{x^2 + y^2}$$

where ψ is the stream function. For example, if $\psi = 0$, then y = 0. Since the equation is satisfied for all x, the x axis is the zero ($\psi = 0$) streamline. Observe that the collection of points where $x^2 + y^2 = 1$ is also a streamline. Thus, the stream function above is for a cylinder of radius 1. Make a 2-D

10.6 Problems 345

contour plot of the streamlines around a cylinder with 1 in. radius. Set up the domain for x and y to range between -3 and 3. Use 100 for the number of contour levels. Add to the figure a plot of a circle with a radius of 1. Note that MATLAB also plots streamlines inside the cylinder. This is a mathematical artifact.

18. The deflection w of a clamped circular membrane of radius r_d subjected to pressure P is given by (small deformation theory):

$$w(r) = \frac{Pr_d^4}{64K} \left[1 - \left(\frac{r}{r_d}\right)^2 \right]^2$$

where r is the radial coordinate, and $K = \frac{Et^3}{12(1-\nu^2)}$, where E, t, and ν are the elastic modulus, thickness, and Poisson's ratio of the membrane, respectively. Consider a membrane with $P = 15 \,\mathrm{psi}$, $r_d = 15 \,\mathrm{in.}$, $E = 18 \times 10^6 \,\mathrm{psi}$, $t = 0.08 \,\mathrm{in.}$, and $\nu = 0.3$. Make a surface plot of the membrane.

19. The Verhulst model, given in the following equation, describes the growth of a population that is limited by various factors such as overcrowding and lack of resources:

$$N(t) = \frac{N_{\infty}}{1 + \left(\frac{N_{\infty}}{N_0} - 1\right)e^{-rt}}$$

where N(t) is the number of individuals in the population, N_0 is the initial population size, N_{∞} is the maximum population size possible due to the various limiting factors, and r is a rate constant. Make a surface plot of N(t) versus t and N_{∞} assuming $r=0.1\,\mathrm{s}^{-1}$, and $N_0=10$. Let t vary between 0 and 100 and N_{∞} between 100 and 1,000.

20. The geometry of a ship hull (Wigley hull) can be modeled by the equation:

$$y = \pm \frac{B}{2} \left[1 - \left(\frac{2x}{L} \right)^2 \right] \left[1 - \left(\frac{2z}{T} \right)^2 \right]$$

where x, y, and z are the length, width, and height, respectively. Use MATLAB to make a 3-D figure of the hull as shown. Use B = 1.2,

L = 4, T = 0.5, $-2 \le x \le 2$, and $-0.5 \le z \le 0$.

21. The stress fields near a crack tip of a linear elastic isotropic material for mode II loading are given by:

$$\begin{split} \sigma_{xx} &= -\frac{K_{II}}{\sqrt{2\pi r}} \sin \frac{\theta}{2} \left(2 + \cos \frac{\theta}{2} \cos \frac{3\theta}{2} \right) \\ \sigma_{yy} &= \frac{K_{II}}{\sqrt{2\pi r}} \sin \frac{\theta}{2} \cos \frac{\theta}{2} \cos \frac{3\theta}{2} \\ \sigma_{xy} &= \frac{K_{II}}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left(1 - \sin \frac{\theta}{2} \sin \frac{3\theta}{2} \right) \end{split}$$

For $K_{II} = 300 \text{ ksi} \sqrt{\text{in}}$ plot the stresses (each in a separate figure) in the domain $0 \le \theta \le 90^{\circ}$ and $0.02 \le r \le 0.2$ in. Plot the coordinates x and y in the horizontal plane, and the stresses in the vertical direction.

22. A ball thrown up falls back to the floor and bounces many times. For a ball thrown up in the direction shown in the figure, the position of the ball as a function of time is given by:

$$x = v_x t$$
 $y = v_y t$ $z = v_z t - \frac{1}{2}gt^2$

The velocities in the x and y directions are constants throughout the motion and are $v_x = v_0 \sin(\theta) \cos(\alpha)$ given $v_v = v_0 \sin(\theta) \sin(\alpha)$. In the vertical z direction the initial velocity $v_z = v_0 \cos(\theta)$, and when the ball impacts the floor its rebound velocity is 0.8 of the vertical velocity at the start of the previous bounce. The time between bounces is given by $t_b = 2v_z / g$, where v_z is the vertical component of the velocity at the start of the bounce. Make a 3-D plot (shown in the figure) that shows the trajectory of the

ball during the first five bounces. Take $v_0 = 20 \text{ m/s}$, $\theta = 30^{\circ}$, $\alpha = 25^{\circ}$, and $g = 9.81 \text{ m/s}^2$.