Capturing Dependency of Data using Graphical Models

Song Liu (song.liu@bristol.ac.uk)

Objectives

 Understand equivalence of conditional independence of R.Vs and factorizations of their probability distribution over a graph.

- •Simple undirected graphical models:
 - Gaussian Markov Network
 - Logistic Model

Example: Scores of Units

•Imagine a table of unit scores.

Name	SPS	Math	Python	Mach. Learn.
Song	80	70	50	60
Harry	50	40	70	80
Ron	50	50	•••	45
Hermione	90	100	•••	100
•••	•••	•••	•••	•••

Dependency of Datasets and Its Graphical Representation

- •Scores of units are dependent!
 - •Student with **high** Math, Python score is likely to receive **high** SPS score.
 - •Student with **high** SPS score is likely to receive **a high** Mach. Learn. score.

Problem Formulation

- •Given a dataset $\{x_i\}_{i=1}^n$,
 - $\bullet x_i = \left[x_i^{(1)}, x_i^{(2)} \dots x_i^{(d)} \right] \in \mathbb{R}^d$
 - • x_i is a vector of a student i's scores.
 - •e.g., $x^{(1)}$ is SPS, $x^{(2)}$ is Math...

•What does $p(x^{(1)}, x^{(2)} ... x^{(d)})$ look like?

Independence of R.V.s

- Let's look at how independence between R.V.s are expressed in probability:
- •R.V. X is **independent** of Y:
 - $\bullet X \perp Y$
 - $\bullet \Leftrightarrow p(X,Y) = p(X)p(Y)$
 - Factorization
 - $\bullet \Leftrightarrow p(X|Y) = p(X) \Leftrightarrow p(Y|X) = p(Y)$
 - No Information flows between X and Y.

Example: Likelihood with Independent Datapoints:

- Likelihood over the dataset
 - •Factorizes into product over each x_i
 - • $p(x_1, x_2, ... x_n; \theta) = \prod_{i=1}^n p(x_i; \theta)$
 - •We can do so as $x_1 \dots x_n$ are independent.
- Maximum Likelihood Estimation
 - $\operatorname{-max}_{\theta} \prod_{i=1}^{n} p(x_i; \theta)$
 - Lab sheet 4.1

Conditional Independence of R.V.s

- ulletR.V. X is independent of Y given Z
 - $X \perp Y \mid Z$
 - $\bullet \Leftrightarrow p(X,Y|Z) = p(X|Z)p(Y|Z)$
 - • $\Leftrightarrow p(X,Y,Z) \propto g_1(X,Z) \cdot g_2(Y,Z)$
 - Factorization
 - $\bullet \Leftrightarrow p(X|Y,Z) = p(X|Z)$
 - •Information flow: Y does not give any additional info which changes the prob. of X given Z.
 - $\bullet \Leftrightarrow p(Y|X,Z) = p(Y|Z)$

(Conditional) Independence and Information Flow

- •(Conditional) Independence tells how information **flows** between R.V.s
 - • $X \perp Y \Leftrightarrow$ no information flows inbetween X and Y.
 - • $X \perp Y | Z \Leftrightarrow \text{information flows between}$ X and Y via Z.

Representing (Conditional) Independence by Graph

- •Given many R.Vs, listing all (cond.) independence can be cumbersome.
- •A graphical representation is helpful:

Representing Conditional Independence by Graph

- •Given a graph $G = \langle E, V \rangle$, and three random variables $X, Y, Z \subseteq V$
 - •if X and Y are completely "**blocked**" by Z, we say $X \perp Y | Z$ is represented by G.

Example: Encoding (cond.) indep. by graph

Representing Prob. Distribution Factorization by Graph

- •Factorizing a probability dist. greatly reduces complexity of modelling and computation of a probability dist.
 - Think about that Maximum Likelihood example you did in Lab!

Representing Prob. Distribution Factorization by Graph

- •Writing the factorization of a probability distribution of many factors can be cumbersome.
- •Can we also use graph to help??

$$P(X,Y) = P(X)P(Y)$$

Representing Prob. Distribution Factorization by Graph

- •Given a graph $G = \langle E, V \rangle$,
- •We say p(X) factorizes over G:
- •If $p(X) \propto \prod_{c \in C} g_c(X^{(c)})$
 - •where C is set of all cliques in G.
 - •Clique: fully connected subgraph.
 - • g_c is a function defined on $X^{(c)}$, which is the subset of X restricted on c.

Example

p(Ma, SPS, Py, ML) $\propto g_1(Ma, SPS) \cdot g_2(Py, ML, SPS).$

Equivalency between Factorization and Conditional Independence over *G*

- Using graph represent a factorization of a probability distribution
- Using graph represent a list of conditional independence
- Remarkably, these two seemingly irrelevant notions are equivalent!

Equivalency between Factorization and Conditional Independence over *G*

•If p factorizes over G, p satisfies all conditional independence represented by G.

•If p satisfies all conditional independence represented by G, then p factorizes over G.

Equivalency between Factorization and Conditional Independence over *G*

Verify this on Scores of Units example!

Live demonstration.

Example

p(Ma, SPS, Py, ML) $\propto g_1(Ma, SPS) \cdot g_2(Py, ML, SPS).$

Hint: $X \perp Y | Z \Leftrightarrow p(X, Y, Z) \propto g_1(X, Z) \cdot g_2(Y, Z)$ $X \perp Y, W | Z \Rightarrow X \perp Y | Z$

Example

```
Math ⊥ ML | SPS
 Math ⊥ Python | SPS
Math ⊥ ML | SPS, Python
Math ⊥ Python, ML | SPS
Math ⊥ Python | SPS, ML
```


Hint: $X \perp Y \mid Z \Leftrightarrow p(X, Y, Z) \propto g_1(X, Z) \cdot g_2(Y, Z)$

Weak Union Rule: $X \perp Y$, $W|Z \Rightarrow X \perp Y|W$, Z

Markov Network

•A probability distribution p(X) which uses undirected graph representing its conditional independence, is called an **undirected graphical** model, or a Markov network.

Multivariate Gaussian distribution:

•
$$x \in R^d, x \sim N(0, \Sigma)$$

•
$$p(\mathbf{x}) \propto \exp\left[-\frac{x(\mathbf{\Sigma})^{-1}\mathbf{x}^{\mathsf{T}}}{2}\right] \operatorname{Let} \mathbf{\Theta} = (\mathbf{\Sigma})^{-1}.$$

$$\propto \exp\left[-\frac{\sum_{u,v} \Theta^{(u,v)} x^{(u)} x^{(v)}}{2}\right]$$

$$\propto \exp\left[-\frac{\sum_{u,v} \Theta^{(u,v)} x^{(u)} x^{(v)}}{2}\right]$$

$$\propto \prod_{u,v;\Theta^{(u,v)}\neq 0}^{-1} \exp(-\Theta^{(u,v)}x^{(u)}x^{(v)})$$

- • $p(\mathbf{x}) \propto \prod_{u,v;\Theta(u,v)\neq 0} g_{u,v}(\mathbf{x}^{(u)},\mathbf{x}^{(v)})$
- •p(x) factorizes over G!
 - $\bullet G$ defined by the adjacency matrix

$$A^{(u,v)} = \begin{cases} 0, \Theta^{(u,v)} == 0\\ 1, \Theta^{(u,v)} \neq 0 \end{cases}$$

- G must be an undirected graph (why?)
- • \Leftrightarrow satisfies the conditional independence encoded in G.

- •Knowing a graph G that encodes all conditional independence of your dataset, I can use its adjacency matrix G to construct Θ !
 - Use sparsity of the adjacency matrix
 - NOT its actual values!
 - •O must be positive definite!!

Example

•
$$x^{(1)}$$
:Math; $x^{(2)}$:Py; $x^{(3)}$:SPS; $x^{(4)}$:ML

$$\bullet x^{(1)} : \mathsf{Math}; \, x^{(2)} : \mathsf{Py}; \, x^{(3)} : \mathsf{SPS}; \, x^{(4)} : \mathsf{ML}$$

$$\bullet \mathbf{\Theta} = \begin{bmatrix} \Theta_{11} & 0 & \Theta_{13} & 0 \\ 0 & \Theta_{22} & \Theta_{23} & \Theta_{24} \\ \Theta_{13} & \Theta_{23} & \Theta_{33} & \Theta_{34} \\ 0 & \Theta_{24} & \Theta_{34} & \Theta_{44} \end{bmatrix}$$

Question

- •Suppose graph G encodes all cond. indep. in your probability distribution p. G contains **three edges**, **five nodes**. How many **non-zero elements** are there **in inverse covariance** matrix of p?
- •A.3
- •B.8 https://bit.ly/2uIFZUu
- •C.6
- •D.10
- •E.11

Sparsity of G is the same as the sparsity of your inverse covariance matrix!!

- •Not knowing G encodes all cond. independence of p(x). Given dataset D, we can fit a sparse $\widehat{\mathbf{\Theta}}$.
 - •Using MLE: $\widehat{\mathbf{\Theta}} = \underset{\widehat{\mathbf{\Theta}}}{\operatorname{argmax}} \log p(D; \mathbf{\Theta})$
 - •The sparsity of $\widehat{\mathbf{\Theta}}$ gives a graphical representation of $p(\mathbf{x})$!
 - •Such representation reveals how random variables "interacts" with each other!

Example: Gene Expression Data

Time stamp	Gene1	Gene2	Gene3	Gene4
t1	.1	.2	.5	.2
t2	.5	.4	.7	.8
t3	.5	.5	•••	.45
t4	.9	.2	•••	.01
•••		•••	•••	

Gene Network (Banerjee et al., 2008)

Conditional Markov Network

- •In many tasks, the conditional distribution is the key interest.
 - •p(Y|X) measures the randomness on Y given X and help us make a prediction.
 - •Both regression and classification requires a **conditional** model.
- •How to factorize a conditional distribution over *G*?

Conditional Markov Network

- •We say a conditional probability distribution P(Y|X) factorizes over G whose nodes $V = X \cup Y$, if
- • $p(Y|X) = \frac{1}{N(X)} \prod_{c \in C} g_c(Z)$, $Z \subseteq X \cup Y$
- • $N(X) := \int \prod_{c \in C} g_c(Z) \, dY$
- •Normalizing constant:
 - •It normalizes the distribution to 1 over the domain of the random variable (Y).

Conditional Markov Network

- •PC: show $Z \nsubseteq X$
 - •p(Y|X) does not include factors on conditioning variable X!

$$\bullet p(Y|X) = \frac{1}{N(X)}g_1(Y,X)g_2(X)$$

•
$$N(Ma, Py, ML) = \int g_1(SPS, Py, ML)g_2(SPS, Ma)dSPS$$

Example

- • $N(Ma, Py, SPS) = \int g_1(SPS, Py, ML) \frac{dML}{dML}$
- • g_2 is gone!

Logistic Regression

•The way of constructing a conditional P.D. gives us a simple classification tool: Logistic Regression.

Consider a simple Markov Net

Logistic Model

Using the factorization rule above,

•
$$p(Y|X) = \frac{1}{N(X)} \prod_{i} g_i(Y, X^{(i)})$$

$$\bullet N(X) = \sum_{Y \in \{-1,1\}} \prod_i g_i(Y, X^{(i)})$$

Logistic Model

- •Let us construct a model of p(Y|X)!
- •By setting $g_i(Y = y, X_i = x^{(i)}; \beta_i) \coloneqq \exp(\beta_i \cdot yx^{(i)})$

•
$$p(y|\mathbf{x}; \beta) = \frac{1}{N(X)} \exp(\sum_{i} \beta^{(i)} \cdot yx^{(i)})$$

= $\frac{1}{N(X)} \exp(\langle \boldsymbol{\beta}, \boldsymbol{x} \rangle y).$

•
$$N(X; \beta) = \sum_{y \in \{1, -1\}} \exp(\langle \beta, x \rangle y)$$

Logistic Regression

•Logistic model:

•
$$p(y|\mathbf{x};\boldsymbol{\beta}) = \frac{1}{N(X)} \exp(\langle \boldsymbol{\beta}, \mathbf{x} \rangle y)$$

•
$$N(x) = \exp(\langle \beta, x \rangle) + \exp(-\langle \beta, x \rangle)$$

- • β can be fitted using MLE.
 - $\widehat{\boldsymbol{\beta}} = \arg \max_{\boldsymbol{\beta}} \ \sum_{i=1}^{n} \log p(y_i|\boldsymbol{x}_i;\boldsymbol{\beta})$
 - •The process of fitting $\pmb{\beta}$ using MLE is called Logistic Regression.
 - sklearn.linear_model.LogisticRegression

Example

• Unlike least squares classifier, logistic classifier is a probabilistic classifier, which outputs $p(Y|X;\hat{\beta})$ which is more interpretable!

Conclusion

- Markov network uses an undirected graph to represent conditional independencies and factorizations of a probability distribution.
- Two examples of Markov network
 - Gaussian Markov network factorizes over the graph defined by its inverse covariance.
 - Logistic model is a conditional P.D. model factorizes over a classification network.

Judea Pearl

Bayesian Network

A Directed Graphical Model

- Markov network is a undirected graphical model.
 - •which encodes cond. indep.
 - •and factorization of a probability dist.
- •Can we use a directed graphical model to do the same job?
 - •Some dependencies are better addressed using a directed model.

Directed Acyclic Graph

- •The directed graphical model uses Directed Acyclic Graph (DAG) as its graphical representation.
 - • $G := \langle E, V \rangle$, E is directed edge set.
 - •DAG: G without directed cycles.

Parents, Children, Descendants

One node may have more than one parent Children(A): B or child!

If there exists an directed edge $A \rightarrow B$: A is the parent of B and B is the child of A.

If there exists an directed path $A \rightarrow B: B$ is the descendant of A.

Parent(A): D

Descendants(A): B,C

Example

- •DAG is usually used to represent causal relationship.
- •e.g. high temp yesterday causes high temp today, not vice versa!

Representing Factorization using DAG

- •DAG can also be used to represent the factorization of a probability dist.
- •We say a probability dist. p(X) factorizes over a DAG G if
- • $p(X) = \prod_{v \in V} p(X_v | X_{\text{parent}(X_v)})$

Example

•p(Ma, Py, SPS, ML) = p(Ma)p(Py)p(SPS|Ma, Py)p(ML|SPS, Py)

Represent Cond. Indep. using DAG

- •Given DAG G.
- • X_v is independent of $X_{\text{non-desc}(X_v)}$ given $X_{\text{parent}(X_v)}$, $\forall v$.
 - •This is an analogy to Markov net, as X_v and all non-descendants of X_v are "blocked" by the parents of X_v .
 - •Knowing $X_{\operatorname{parent}(X_v)}$, $X_{\operatorname{non-desc}(X_v)}$ tell us nothing new about X_v .

Example

- •ML ⊥ Math | SPS, Python
- Math ⊥ Python

Equivalency between Factorization and Conditional Independence over DAG *G*

- •If p factorizes over G, p satisfies all conditional independence represented by G.
- •If p satisfies all conditional independence represented by G, then p factorizes over G.

Bayesian Network

•A probability dist. p(x) factorizes over a DAG G is called Bayesian network.

Bayesian Network for Classification

•Looks familiar?

Bayesian Network for Classification

- •Write down the conditional probability P(Y|X).
- Live demonstration.

$$P(Y|X) = \frac{\prod_i P(X_i|Y)P(Y)}{P(X)}$$

•This is how Naïve Bayes is derived!

Bayesian Network for Classification

- PC: Compare NB and Logistic model from the following perspectives:
 - The graphical structure
 - Same structure
 - Directed vs. Undirected
 - The factorization
 - Pairwise factors between Y and X_i .
 - Cliques vs. Conditional Prob.
 - The probabilistic model
 - Both use p(Y|X) to make prediction
 - NB does not give you p(Y|X), only up to a constant
 - The training/fitting of a classifier
 - Estimation of p(Y|X) vs. P(X|Y)
 - The usage of a classifier
 - Both $\hat{y} := \operatorname{argmax}_{y} p(Y|X)$

Question

• PC: Given this Bayesian Net for a classification task, should you include feature X' for training? Why?

Conclusion

- Bayesian Net uses a **DAG** to represent factorization and conditional independence of a probability distribution.
 - Similar to Makov net
- •Naïve Bayes is derived from a simplified Bayesian net for a conditional probability P(Y|X).