Announcements

- Homework 1 Solutions online
- Homework 2 online due Friday
- Dian's OH changed
 - Now (probably) Tuesday 2-4, Thursday 2-3
- Stanislaw's OH changed
 - Now Tuesday 5:30-6:30

HW0 Q3 (the graph one)

- Induction on graph
 - Induct on n = |V|
 - Assume true for all graphs with n vertices
 - Given G with n+1 vertices
 - G-v has n, apply inductive hypothesis
 - Add v back
 - DO NOT: start with graph on n vertices and add one more
- Note: removing a vertex does not necessarily decrease the max degree

General HW Reminder

- In order to get full credit, algorithm problems always need (unless otherwise specified):
 - The algorithm you are using
 - A proof of correctness (i.e. a proof that your algorithm correctly computes the thing that it is supposed to)
 - A proof of an appropriate runtime bound

Last Time

- Shortest Paths in Graphs
- BFS
 - Computes minimum number of edges from s to each other vertex in graph
 - At distance d only if adjacent to distance d-1
 - -O(|V|+|E|)

Today

- Shortest paths with edge lengths
- Dijkstra's algorithm
- Priority queues

Edge Lengths

The number of edges in a path is not always the right measure of distance. Sometimes, taking several shorter steps is preferable to taking a few longer ones.

Edge Lengths

The number of edges in a path is not always the right measure of distance. Sometimes, taking several shorter steps is preferable to taking a few longer ones.

We assign each edge (u,v) a non-negative <u>length</u> $\ell(u,v)$. The length of a path is the sum of the lengths of its edges.

Problem: Shortest Paths

Problem: Given a Graph G with vertices s and t and a length function ℓ , find the shortest path from s to t.

Question: Shortest Path

What is the length of the shortest s-t path

Question: Shortest Path

What is the length of the shortest s-t path

Question: Shortest Path

What is the length of the shortest s-t path

$$1+2+1+3=7$$

Idea: Break edges into unit length edges.

Idea: Break edges into unit length edges.

Idea: Break edges into unit length edges.

Idea: Break edges into unit length edges.

Runtime: O(sum of edge lengths)

This is a problem if some edge lengths are large.

Another Way

If you have very long edge lengths, most steps will just consist of advancing slightly along a bunch of edges.

Another Way

If you have very long edge lengths, most steps will just consist of advancing slightly along a bunch of edges.

Try to find a way to fast forward through these boring steps.

Another Way

- If you have very long edge lengths, most steps will just consist of advancing slightly along a bunch of edges.
- Try to find a way to fast forward through these boring steps.
- Occasionally have interesting steps where the wavefront hits a new vertex.

How do we make this an algorithm?

- How do we make this an algorithm?
- Simulate the above process keep track of when new vertices are discovered.

- How do we make this an algorithm?
- Simulate the above process keep track of when new vertices are discovered.
- If v is discovered at time t(v), the ooze from v will reach neighbor w at time t(v)+\(\ell(v,w)\).

- How do we make this an algorithm?
- Simulate the above process keep track of when new vertices are discovered.
- If v is discovered at time t(v), the ooze from v will reach neighbor w at time t(v)+\(\ell(v,w)\).
- Next vertex to be discovered is one with minimal $t(v)+\ell(v,w)$.

```
Distances (G, s, l)
  dist(s) \leftarrow 0
  While (not all distances found)
     Find minimum over (v, w) E E
       with v discovered w not
       of dist(v) + \ell (v, w)
     dist(w) \leftarrow dist(v) + \ell(v, w)
     prev(w) \leftarrow v
```


0+1=1

0+5=5

Why does this work?

<u>Claim:</u> Whenever the algorithm assigns a distance to a vertex v that is the length of the shortest path from s to v.

Why does this work?

<u>Claim:</u> Whenever the algorithm assigns a distance to a vertex v that is the length of the shortest path from s to v.

Proof by Induction:

dist(s) = 0 [the empty path has length 0]

Why does this work?

<u>Claim:</u> Whenever the algorithm assigns a distance to a vertex v that is the length of the shortest path from s to v.

Proof by Induction:

- dist(s) = 0 [the empty path has length 0]
- When assigning distance to w, assume that all previously assigned distances are correct.

Inductive Step

Correctly Assigned Distances

Question: Runtime

```
What is the runtime of this algorithm?
```

- A) O(|V|+|E|)
- B) $O(|V|\log|V|+|E|)$
- C) O(|V||E|)
- D) $O(|E|^2)$

```
Distances(G,s,l)
  dist(s) \leftarrow 0
  While (not all distances found)
     Find minimum over (v, w) \in E
       with v discovered w not
       of dist(v) + \ell (v, w)
     dist(w) \leftarrow dist(v) + \ell(v, w)
    prev(w) \leftarrow v
```

Question: Runtime

```
What is the runtime of this algorithm?
```

- A) O(|V|+|E|)
- B) $O(|V|\log|V|+|E|)$
- C) O(|V||E|)
- D) $O(|E|^2)$

```
Distances(G,s, l)
  dist(s) \leftarrow 0
  While (not all distances found)
     Find minimum over (v, w) \in E
       with v discovered w not
       of dist(v) + \ell (v, w)
     dist(w) \leftarrow dist(v) + \ell(v, w)
     prev(w) \leftarrow v
```

```
Distances(G,s, l)
 dist(s) \leftarrow 0
  While (not all distances found)
    Find minimum over (v, w) \in E
       with v discovered w not
       of dist(v) + \ell (v, w)
    dist(w) \leftarrow dist(v) + \ell(v, w)
    prev(w) \leftarrow v
```

```
Distances(G,s, l)
                        O(|V|) iterations
  dist(s) \leftarrow 0
  While (not all distances found)
    Find minimum over (v, w) \in E
       with v discovered w not
       of dist(v) + \ell (v, w)
    dist(w) \leftarrow dist(v) + \ell(v, w)
    prev(w) \leftarrow v
```

```
Distances(G,s, l)
                       O(|V|) iterations
  dist(s) \leftarrow 0
  While (not all distances found)
    Find minimum over (v, w) \in E
       with v discovered w not
       of dist(v) + \ell (v, w)
    dist(w) \leftarrow dist(v) + \ell(v, w)
   prev(w) \leftarrow v
```

```
Distances(G,s, l)
                          O(|V|) iterations
    dist(s) \leftarrow 0
    While (not all distances found)
      Find minimum over (v, w) \in E
         with v discovered w not
         of dist(v) + \ell(v, w)
      dist(w) \leftarrow dist(v) + \ell(v, w)
edges prev(w) \leftarrow v
```

Runtime O(|V||E|)

• This is too slow.

Runtime

- This is too slow.
- **Problem:** Every iteration we have to check every edge.

Runtime

- This is too slow.
- Problem: Every iteration we have to check every edge.
- <u>Idea:</u> Most of the comparison doesn't change much iteration to iteration. Use to save time.

Runtime

- This is too slow.
- Problem: Every iteration we have to check every edge.
- Idea: Most of the comparison doesn't change much iteration to iteration. Use to save time.
- Specifically: Record for each w best value of dist(v,w)+ $\ell(v,w)$.

```
Distances(G,s, l)
  For v \in V
     dist(v) \leftarrow \infty, done(v) \leftarrow false
  dist(s) \leftarrow 0
  While (not all vertices done)
     Find v not done with minimum dist(v)
     done(v) \leftarrow true
     For (v, w) \in E
        If dist(v) + \ell(v, w) < dist(w) See if better
           dist(w) \leftarrow dist(v) + \ell(v, w)
                                              path to w &
                                              update dist(w)
          prev(w) \leftarrow v
```

```
Distances(G,s,l)
  For v \in V
     dist(v) \leftarrow \infty, done(v) \leftarrow false
  dist(s) \leftarrow 0
  While (not all vertices done)
     Find v not done with minimum dist(v)
     done(v) \leftarrow true
     For (v, w) \in E
        If dist(v) + \ell(v, w) < dist(w)
          dist(w) \leftarrow dist(v) + \ell(v, w)
          prev(w) \leftarrow v
```

```
Distances(G,s, l)
  For v \in V
     dist(v) \leftarrow \infty, done(v) \leftarrow false
  dist(s) \leftarrow 0
  While (not all vertices done)
     Find v not done with minimum dist(v)
     done(v) \leftarrow true
     For (v, w) \in E
        If dist(v) + \ell(v, w) < dist(w)
          dist(w) \leftarrow dist(v) + \ell(v, w)
          prev(w) \leftarrow v
```

```
Distances(G,s, l)
  For v E V
     dist(v) \leftarrow \infty, done(v) \leftarrow false
  dist(s) \leftarrow 0
  While (not all vertices done) - O(|V|) iterations
     Find v not done with minimum dist(v)
     done(v) \leftarrow true
     For (v, w) \in E
        If dist(v) + \ell(v, w) < dist(w)
          dist(w) \leftarrow dist(v) + \ell(v, w)
          prev(w) \leftarrow v
```

```
Distances(G,s, l)
  For v E V
     dist(v) \leftarrow \infty, done(v) \leftarrow false
  dist(s) \leftarrow 0
  While (not all vertices done) - O(|V|) iterations
     Find v not done with minimum dist(v)
     done(v) \leftarrow true
     For (v, w) \in E
        If dist(v) + \ell(v, w) < dist(w)
          dist(w) \leftarrow dist(v) + \ell(v, w)
          prev(w) \leftarrow v
```

```
Distances(G,s, l)
      For v \in V
         dist(v) \leftarrow \infty, done(v) \leftarrow false
      dist(s) \leftarrow 0
      While (not all vertices done) \rightarrow O(|V|) iterations
         Find v not done with minimum dist(v)
         done(v) \leftarrow true
        For (v, w) \in E
O(|E|)
total
            If dist(v) + \ell(v, w) < dist(w)
               dist(w) \leftarrow dist(v) + \ell(v, w)
               prev(w) \leftarrow v
```

Runtime: $O(|V|^2 + |E|)$

```
Distances(G,s, l)
      For v \in V
         dist(v) \leftarrow \infty, done(v) \leftarrow false
      dist(s) \leftarrow 0
      While (not all vertices done) \vdash O(|V|) iterations
         Find v not done with minimum dist(v)
         done(v) \leftarrow true
        For (v, w) \in E
O(|E|)
total
            If dist(v) + \ell(v, w) < dist(w)
              dist(w) \leftarrow dist(v) + \ell(v, w)
              prev(w) \leftarrow v
```

Still too Slow

- Repeatedly ask for smallest vertex
 - Even though not much is changing from round to round, the algorithm is computing the minimum from scratch every time

Still too Slow

- Repeatedly ask for smallest vertex
 - Even though not much is changing from round to round, the algorithm is computing the minimum from scratch every time
- Use a data structure!
 - Data structures help answer a bunch of similar questions faster than answering each question individually

Still too Slow

- Repeatedly ask for smallest vertex
 - Even though not much is changing from round to round, the algorithm is computing the minimum from scratch every time
- Use a data structure!
 - Data structures help answer a bunch of similar questions faster than answering each question individually
- For this kind of question, want a priority queue.

Priority Queue

A <u>Priority Queue</u> is a datastructure that stores elements sorted by a <u>key</u> value.

Priority Queue

A <u>Priority Queue</u> is a datastructure that stores elements sorted by a <u>key</u> value.

Operations:

- Insert adds a new element to the PQ.
- DecreaseKey Changes the key of an element of the PQ to a specified smaller value.
- DeleteMin Finds the element with the smallest key and removes it from the PQ.