Projet de Fin d'Étude

Brandon Alves

Réunion de mi-parcours

June 15, 2023

- Contexte
- Problème & hypothèses
- Stratégies de navigation
 - Stratégies
 - Stratégies de navigation grossières
 - Peinture au rouleau
 - Ski nordique
 - Investigation polygonale
 - Scénario
- Évaluation
- Conclusion

- Contexte
- 2 Problème & hypothèses
- Stratégies de navigation
 - Stratégies
 - Stratégies de navigation grossières
 - Peinture au rouleau
 - Ski nordique
 - Investigation polygonale
 - Scénario
- Évaluatior
- Conclusion

Contexte

- Projet européen BugWright2
- Inspection de structures métalliques
- Tomographie de la zone à inspecter
- Localiser des points de corrosion

Contexte

Figure: Projet BugWright2 (https://www.bugwright2.eu/project/)

- Contexte
- Problème & hypothèses
- Stratégies de navigation
 - Stratégies
 - Stratégies de navigation grossières
 - Peinture au rouleau
 - Ski nordique
 - Investigation polygonale
 - Scénario
- Évaluation
- Conclusion

Problème & hypothèses

Problème

Définir des stratégies de navigation multi-robot pour optimiser l'acquisition de données permettant de réaliser la tomographie des structures métalliques.

Problème & hypothèses

Hypothèses

- Environnement :
 - espace 2D, borné et de taille connue,
 - obstacles localisés,
 - zones de corrosion non localisées.
- Robots:
 - robots à 2 roues,
 - pose (x, y, θ) connue,
 - coût de rotation *cr* et coût de translation *ct* connus.
 - Nombre de robots ≥ 2 .
- Perception :
 - Robot est émetteur ou récepteur,
 - Émission et réception omnidirectionnelle d'ondes ultrasoniques (UGW),
 - Si puissance de signal altérée, alors détection,
 - Détection parfaite et en temps réel,
 - Distance maximale d'émission et de réception d_{max} .

Problème & hypothèses

Structures de données

- Grille d'occupation :
 - inconnu,
 - vide,
 - occupé.

- Contexte
- 2 Problème & hypothèses
- 3 Stratégies de navigation
 - Stratégies
 - Stratégies de navigation grossières
 - Peinture au rouleau
 - Ski nordique
 - Investigation polygonale
 - Scénario
- Évaluation
- Conclusion

- Contexte
- Problème & hypothèses
- Stratégies de navigation
 - Stratégies
 - Stratégies de navigation grossières
 - Peinture au rouleau
 - Ski nordique
 - Investigation polygonale
 - Scénario
- Évaluation
- Conclusion

Stratégies

Strétégies de navigation

- Stratégies de navigation grossières,
- Investigation polygonale.

Hypothèse

Formes convexes.

- Contexte
- Problème & hypothèses
- Stratégies de navigation
 - Stratégies
 - Stratégies de navigation grossières
 - Peinture au rouleau
 - Ski nordique
 - Investigation polygonale
 - Scénario
- Évaluation
- Conclusion

- Contexte
- Problème & hypothèses
- Stratégies de navigation
 - Stratégies
 - Stratégies de navigation grossières
 - Peinture au rouleau
 - Ski nordique
 - Investigation polygonale
 - Scénario
- Évaluation
- Conclusion

Peinture au rouleau

Description

- Nombre de robots ≥ 2 ,
- Chaque robot se déplace en ligne droite,
- Les robots se déplacent en parallèle,
- Les robots se synchronisent régulièrment.

Figure: Peinture au rouleau - passe verticale

Figure: Peinture au rouleau - passe horizontale

Figure: Peinture au rouleau, d=4.0, o=0.1, v=0.3

Peinture au rouleau

Avantages

- Simple à mettre en oeuvre,
- Peut être utilisé pour des zones de tailles importantes,
- Rapide.

Inconvénients

- Enveloppe rectangulaire,
- Peu précis,
- Zones fantômes.

- Contexte
- Problème & hypothèses
- Stratégies de navigation
 - Stratégies
 - Stratégies de navigation grossières
 - Peinture au rouleau
 - Ski nordique
 - Investigation polygonale
 - Scénario
- Évaluation
- Conclusion

Ski nordique

Description

- Nombre de robots ≥ 2 ,
- Chaque robot se déplace en ligne droite,
- La trajectoire des robots est parallèle,
- Les robots se déplacent de manière asynchrone.

Ski nordique

Figure: Ski nordique - passe verticale

Ski nordique

Figure: Ski Nordique - passe horizontale

Stratégies de navigation grossières Ski nordique

Avantages comparé à peinture au rouleau

- Enveloppe d'un polygone convexe à 4 côtés,
- Peut être utilisé pour des zones de tailles importantes,
- Plus précis que la peinture au rouleau.

Inconvénients comparé à peinture au rouleau

- Moins simple à mettre en oeuvre,
- Plus lent que la peinture au rouleau,
- Zones fantômes.

- Contexte
- Problème & hypothèses
- Stratégies de navigation
 - Stratégies
 - Stratégies de navigation grossières
 - Peinture au rouleau
 - Ski nordique
 - Investigation polygonale
 - Scénario
- <u>Évaluation</u>
- Conclusion

Description

- $k \ge 1$ équipes de $n \ge 2$ robots,
- Les robots d'une même équipe se placent sur des sommets consécutifs d'un polygone convexe,
- Les robots se déplacent l'un après l'autre.

P = True if one robot is already moving, in other words, if \exists k | k-1 free & k occupied & k+1 free P = False otherwise

Figure: Automate à états finis pour un robot lors d'une investigation polygonale

Figure: Peinture au rouleau, d=4.0, o=0.1, v=0.3

Avantages

- Niveau de précision variable de l'enveloppe convexe de la zone de corrosion (proportionnellement au nombre de sommet du polygone)
- Efficace pour des zones de petites tailles,
- Permet de rapidement éliminer les zones fantômes.

Inconvénients

 Lent (proportionnellement au nombre de sommet du polygone, inversement proportionnel au nombre de robots),

- Contexte
- Problème & hypothèses
- Stratégies de navigation
 - Stratégies
 - Stratégies de navigation grossières
 - Peinture au rouleau
 - Ski nordique
 - Investigation polygonale
 - Scénario
- Évaluation
- Conclusion

Scénario

- Peinture au rouleau
- 2 Extraction des zones de corrosion
- Oalcul des centroides et des polygones
- Resolution du mTSP connectant les centroides
- Investigation polygonale

- Contexte
- 2 Problème & hypothèses
- Stratégies de navigation
 - Stratégies
 - Stratégies de navigation grossières
 - Peinture au rouleau
 - Ski nordique
 - Investigation polygonale
 - Scénario
- Évaluation
- Conclusion

Métrique de performance

Kappa de Cohen:

$$\kappa = \frac{p_o - p_e}{1 - p_e}$$

avec:

p_o: précision observée,

• p_e : précision aléatoire,

• κ : mesure une classification binaire, en la comparant à une classification aléatoire.

κ	Interprétation
< 0	Désaccord
0.00 - 0.20	Accord très faible
0.21 - 0.40	Accord faible
0.41 - 0.60	Accord modéré
0.61 - 0.80	Accord fort
0.81 - 1.00	Accord presque parfait

Table: Interprétation du κ de Cohen selon Landis et Koch

Peinture au rouleau

Figure: Peinture au rouleau, d=2.0m, o=0.1m, v=0.2m/s

Score : $\kappa = 0.63$, Temps : t = 9 min4sec

Peinture au rouleau

Figure: Résultat peinture au rouleau, d = 2.0m, o = 0.1m, v = 0.2m/s

Score : $\kappa = 0.63$, Temps : t = 9min4sec

Investigation polygonale

Figure: Investigation polygonale, p = 4, n = 2

Score : $\kappa = 0.66$

Figure: Résultat peinture au rouleau, d=2.0m, o=0.1m, v=0.2m/s

- Contexte
- 2 Problème & hypothèses
- Stratégies de navigation
 - Stratégies
 - Stratégies de navigation grossières
 - Peinture au rouleau
 - Ski nordique
 - Investigation polygonale
 - Scénario
- <u>Évaluation</u>
- Conclusion

Conclusion