AMENDMENTS TO THE SPECIFICATION

Please replace paragraph [0078] on page 12 of the specification with the following:

[0078] Additional selectable marker genes of bacterial origin that confer resistance to antibiotics include gentamycin acetyl transferase, streptomycin phosphotransferase, aminoglycoside-3'-adenyl transferase, the bleomycin resistance determinant. Hayford et al., *Plant Physiol.* 86:1216 (1988), Jones et al., *Mol. Gen. Genet.*, 210:86 (1987), Svab et al., *Plant Mol. Biol.* 14:197 (1990< (1990), Hille et al., *Plant Mol. Biol.* 7:171 (1986). Other selectable marker genes confer resistance to herbicides such as glyphosate, glufosinate or broxynil. Comai et al., *Nature* 317:741-744 (1985), Gordon-Kamm et al., *Plant Cell* 2:603-618 (1990) and Stalker et al., *Science* 242:419-423 (1988).

Please replace paragraph [0102] on page 17 of the specification with the following:

[0102] E. A vitamin-binding protein such as avidin. See PCT application US93/06487, the contents of which are hereby incorporated by reference. The application teaches the use of avidin and avidin homologues as larvicides against insect pests.

Please replace paragraph [0110] on page 19 of the specification with the following:

[0110] M. A hydrophobic moment peptide. See PCT application WO95/16776 (disclosure of peptide derivatives of Tachyplesin which inhibit fungal plant pathogens) and PCT application WO95/18855 (teaches synthetic antimicrobial peptides that confer disease resistance), the respective contents of which are hereby incorporated by reference.

Please replace paragraph [0112] on page 19 of the specification with the following:

[0112] O. A viral-invasive protein or a complex toxin derived therefrom. For example, the accumulation of viral coat proteins in transformed plant cells imparts resistance to viral infection and/or disease development effected by the virus from which

the coat protein gene is derived, as well as by related viruses. See Beachy et al., *Ann. rev. Phytopathol.* 28:451 (1990). Coat protein-mediated resistance has been conferred upon transformed plants against alfalfa mosaic virus, cucumber mosaid\e mosaic virus, tobacco streak virus, potato virus X, potato virus Y, tobacco etch virus, tobacco rattle virus and tobacco mosaic virus. Id.

Please replace the **section title** "Tissue Culture of Soybeans" of paragraph [0131] on page 24 of the specification with "Single Gene Conversions."

Please replace paragraph [0134] on page 25 of the specification with the following:

[0134] Further reproduction of the variety can occur by tissue culture and regeneration. Tissue culture of various tissues of soybeans and regeneration of plants therefrom is well known and widely published. For example, reference may be had to Komatsuda, T. et al., "Genotype X Sucrose Interactions for Somatic Embryogenesis in Soybean," Crop Sci. 31:333-337 (1991); Stephens, P.A., et al., "Agronomic Evaluation of Tissue-Culture-Derived Soybean Plants," Theor. Appl. Genet. (1991) 82:633-635; Komatsuda, T. et al., "Maturation and Germination of Somatic Embryos as Affected by Sucrose and Plant Growth Regulators in Soybeans Glycine gracilis Skvortz and Glycine max (L.) Merr." Plant Cell, Tissue and Organ Culture, 28:103-113 (1992); Dhir, S. et al., "Regeneration of Fertile Plants from Protoplasts of Soybean (Glycine max L. Merr.); Genotypic Differences in Culture Response," Plant Cell Reports (1992) 11:285-289; Pandey, P. et al., "Plant Regeneration from Leaf and Hypocotyl Explants of Glycinewightii (W. and A.) VERDC. var. longicauda," Japan J. Breed. 42:1-5 (1992); and Shetty, K., et al., "Stimulation of In Vitro Shoot Organogenesis in *Glycine max* (Merrill.) by Allantoin and Amides," Plant Science 81:245-251 (1992); as well as US Patent No. 5,024,944 issued June 18, 1991 to Collins et al., and US Patent No. 5,008,200 issued April 16, 1991 to Ranch et al., the disclosures of which are hereby incorporated herein in their entirety by reference. Thus, another aspect of this invention is to provide cells which upon growth and differentiation produce soybean plants having the physiological and morphological characteristics of soybean variety SG1330NRR.

Please replace paragraph [0145] on page 34 of the specification with the following:

Application No. 10/698,593 Amendment dated October 20, 2004 Reply to Office Action dated September 22, 2004

Page 4

[0145] A novel soybean cultivar, designated SG1330NRR, is disclosed. The invention relates to the seeds of soybean cultivar SG1330NRR, to the plants of soybean SG1330NRR and to methods for producing a soybean plant produced by crossing the cultivar SG1330NRR with itself or another soybean variety. The invention further relates to hybrid soybean seeds and plants produced by crossing the cultivar SG1330NRR with another soybean cultivar.