

#### **General information**

#### Designation

| AISI 1020           |                                                                                                                                                                                                                                                |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Condition           | Annealed                                                                                                                                                                                                                                       |
| UNS number          | G10200                                                                                                                                                                                                                                         |
| US name             | ASTM MT1020, ASTM M1020, ASTM 1020,<br>ASME G10200, ASME G10170, ASME 1017,<br>~SAE 040 X, Y, Z, ~SAE 035S, ~SAE 035C,<br>~SAE 035B, ~SAE 035A, ~SAE 035 X, Y, Z,<br>~ASTM A836, ~ASTM 1018 Class A, ~ASME<br>G10210, ~ASME G10180, ~ASME 1021 |
| EN name             | S240GP, ~P355NB, ~P310NB, ~HS15                                                                                                                                                                                                                |
| EN number           | ~1.0021                                                                                                                                                                                                                                        |
| ISO name            | ~E235 Quality A, ~CE20E4, ~CC21A                                                                                                                                                                                                               |
| GB (Chinese) name   | ~ML20Al, ~ML18Mn                                                                                                                                                                                                                               |
| JIS (Japanese) name | SWRM 20, SWRCH20A, SG 255,<br>~SWRCH18A, ~STKM12C, ~STKM12B,<br>~STKM12A, ~SPHT 2                                                                                                                                                              |

### Typical uses

Forgings, machined parts, shafts, car wheel hubs, general haulage gear

# **Composition overview**

#### **Compositional summary**

| Fe99.1-99.5 / Mn0.3-0.6 / C0.17-0.23 (impurities: S<0.05, P<0.04 | 4) |                 |   |        |          |  |
|------------------------------------------------------------------|----|-----------------|---|--------|----------|--|
| Material family                                                  |    | Metal (ferrous) |   |        |          |  |
| Base material                                                    |    | Fe (Iron)       |   |        |          |  |
| Composition detail (metals, ceramics and glasses)                |    |                 |   |        |          |  |
| C (carbon)                                                       |    | 0,17            | - | 0,23   | %        |  |
| Fe (iron)                                                        | *  | 99,1            | - | 99,5   | %        |  |
| Mn (manganese)                                                   |    | 0,3             | - | 0,6    | %        |  |
| P (phosphorus)                                                   |    | 0               | - | 0,04   | %        |  |
| S (sulfur)                                                       |    | 0               | - | 0,05   | %        |  |
| Price                                                            |    |                 |   |        |          |  |
| Price                                                            | *  | 2,89            | - | 3,01   | BRL/kg   |  |
| Price per unit volume                                            | *  | 2,26e4          | - | 2,38e4 | BRL/m^3  |  |
| Physical properties                                              |    |                 |   |        |          |  |
| Density                                                          |    | 7,8e3           | - | 7,9e3  | kg/m^3   |  |
| Mechanical properties                                            |    |                 |   |        |          |  |
| Young's modulus                                                  |    | 205             | - | 215    | GPa      |  |
| Specific stiffness                                               |    | 26,1            | - | 27,4   | MN.m/kg  |  |
| Yield strength (elastic limit)                                   |    | 265             | - | 325    | MPa      |  |
| Tensile strength                                                 |    | 355             | - | 435    | MPa      |  |
| Specific strength                                                |    | 33,8            | - | 41,4   | kN.m/kg  |  |
| Elongation                                                       |    | 28              | - | 43     | % strain |  |
| Compressive strength                                             | *  | 265             | - | 325    | MPa      |  |



| Flexural modulus                       | * 205 | - | 215   | GPa    |
|----------------------------------------|-------|---|-------|--------|
| Flexural strength (modulus of rupture) | 265   | - | 325   | MPa    |
| Shear modulus                          | 79    | - | 84    | GPa    |
| Bulk modulus                           | 158   | - | 175   | GPa    |
| Poisson's ratio                        | 0,285 | - | 0,295 |        |
| Shape factor                           | 61    |   |       |        |
| Hardness - Vickers                     | 110   | - | 130   | HV     |
| Elastic stored energy (springs)        | 169   | - | 249   | kJ/m^3 |
| Fatigue strength at 10^7 cycles        | * 207 | - | 240   | MPa    |
| Fatigue strength model (stress range)  | * 180 | - | 277   | MPa    |

Parameters: Stress Ratio = -1, Number of Cycles = 1e7cycles



Impact & fracture properties

| Fracture toughness | * 42 | - | 67   | MPa.m^0.5 |
|--------------------|------|---|------|-----------|
| Toughness (G)      | 8,78 | - | 20,5 | kJ/m^2    |

**Thermal properties** 

| Melting point                 | 1,48e3 | - | 1,52e3 | °C         |
|-------------------------------|--------|---|--------|------------|
| Maximum service temperature   | * 340  | - | 356    | °C         |
| Minimum service temperature   | * -68  | - | -43    | °C         |
| Thermal conductivity          | 50     | - | 54     | W/m.°C     |
| Specific heat capacity        | 465    | - | 505    | J/kg.°C    |
| Thermal expansion coefficient | 11,5   | - | 12,5   | μstrain/°C |
| Thermal shock resistance      | 104    | - | 130    | °C         |
| Thermal distortion resistance | * 4,1  | - | 4,58   | MW/m       |
| Latent heat of fusion         | * 270  | - | 275    | kJ/kg      |

**Electrical properties** 

| Electrical resistivity  | 16      | - | 18    | µohm.cm |
|-------------------------|---------|---|-------|---------|
| Electrical conductivity | 9,58    | - | 10,8  | %IACS   |
| Galvanic potential      | * -0,51 | - | -0,43 | V       |

# **Magnetic properties**

| Magnetic type | Magnetic |
|---------------|----------|
|---------------|----------|



| Optical, aesthetic and acoustic properties                                                                                                   |                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transparency                                                                                                                                 | Opaque                                                                                                                                                                                                                        |
| Acoustic velocity                                                                                                                            | 5,11e3 - 5,24e3 m/s                                                                                                                                                                                                           |
| Mechanical loss coefficient (tan delta)                                                                                                      | * 0,00111 - 0,00137                                                                                                                                                                                                           |
| Critical materials risk                                                                                                                      |                                                                                                                                                                                                                               |
| Contains >5wt% critical elements?                                                                                                            | No                                                                                                                                                                                                                            |
| Dun annalism unum mulion                                                                                                                     |                                                                                                                                                                                                                               |
| Processing properties                                                                                                                        | 11 9 11                                                                                                                                                                                                                       |
| Metal casting                                                                                                                                | Unsuitable                                                                                                                                                                                                                    |
| Metal cold forming                                                                                                                           | Acceptable                                                                                                                                                                                                                    |
| Metal hot forming                                                                                                                            | Excellent                                                                                                                                                                                                                     |
| Metal press forming                                                                                                                          | Excellent                                                                                                                                                                                                                     |
| Metal deep drawing                                                                                                                           | Acceptable                                                                                                                                                                                                                    |
| Machining speed                                                                                                                              | 45,7 m/min                                                                                                                                                                                                                    |
| Weldability                                                                                                                                  | Good                                                                                                                                                                                                                          |
| Notes                                                                                                                                        | Preheating and post weld heat treatments are required                                                                                                                                                                         |
| Carbon equivalency                                                                                                                           | 0,22 - 0,33                                                                                                                                                                                                                   |
| Durability                                                                                                                                   |                                                                                                                                                                                                                               |
| Water (fresh)                                                                                                                                | Acceptable                                                                                                                                                                                                                    |
| Water (salt)                                                                                                                                 | Limited use                                                                                                                                                                                                                   |
| Weak acids                                                                                                                                   | Limited use                                                                                                                                                                                                                   |
| Strong acids                                                                                                                                 | Unacceptable                                                                                                                                                                                                                  |
| Weak alkalis                                                                                                                                 | Acceptable                                                                                                                                                                                                                    |
| Strong alkalis                                                                                                                               | Limited use                                                                                                                                                                                                                   |
| Organic solvents                                                                                                                             | Excellent                                                                                                                                                                                                                     |
| Oxidation at 500C                                                                                                                            | Acceptable                                                                                                                                                                                                                    |
| UV radiation (sunlight)                                                                                                                      | Excellent                                                                                                                                                                                                                     |
| Galling resistance (adhesive wear)                                                                                                           | Acceptable                                                                                                                                                                                                                    |
| Notes                                                                                                                                        | , 1995 <b>p. 18</b> 20                                                                                                                                                                                                        |
| Aluminum bronze is the most suitable mating material to minimize g                                                                           |                                                                                                                                                                                                                               |
| Flammability                                                                                                                                 | Non-flammable                                                                                                                                                                                                                 |
| Corrosion resistance of metals                                                                                                               |                                                                                                                                                                                                                               |
| Stress corrosion cracking                                                                                                                    | Not susceptible                                                                                                                                                                                                               |
| Notes                                                                                                                                        | Rated in chloride; Other susceptible environments: Nitrate,                                                                                                                                                                   |
|                                                                                                                                              | hydroxide, carbonate, ammonia                                                                                                                                                                                                 |
| Primary production energy, CO2 and water                                                                                                     |                                                                                                                                                                                                                               |
| Embodied energy, primary production                                                                                                          | 30,8 - 33,9 MJ/kg                                                                                                                                                                                                             |
|                                                                                                                                              | nanshahi, Rankin, 2007); 27.9 MJ/kg (Ecoinvent v2.2); 29.2 MJ/kg (Hammond and kg (Hammond and Jones, 2008); 35.4 MJ/kg (Hammond and Jones, 2008); 37.2 es. 2008); 45.4 MJ/kg (Hammond and Jones, 2008)                        |
| CO2 footprint, primary production                                                                                                            | 2,26 - 2,49 kg/kg                                                                                                                                                                                                             |
| Sources 0.396 kg/kg (Voet, van der and Oers, van, 2003); 1.75 kg/kg (Ecoin der and Oers, van, 2003); 2.3 kg/kg (Norgate, Jahanshahi, Rankin, | nvent v2.2); 1.81 kg/kg (Voet, van der and Oers, van, 2003); 2.23 kg/kg (Voet, van, 2007); 2.74 kg/kg (Hammond and Jones, 2008); 2.77 kg/kg (Hammond and Hammond and Jones, 2008); 3.03 kg/kg (Hammond and Jones, 2008); 3.27 |
| Water usage                                                                                                                                  | * 43,1 - 47,7 l/kg                                                                                                                                                                                                            |
| Processing energy, CO2 footprint & water                                                                                                     |                                                                                                                                                                                                                               |
| Casting energy                                                                                                                               | * 11 - 12,2 MJ/kg                                                                                                                                                                                                             |
| <u> </u>                                                                                                                                     | ,                                                                                                                                                                                                                             |



# Carbon steel, AISI 1020, annealed

| Casting CO2                                             | * 0,826  | - | 0,913  | kg/kg |
|---------------------------------------------------------|----------|---|--------|-------|
| Casting water                                           | * 20,9   | - | 31,3   | l/kg  |
| Roll forming, forging energy                            | * 2,65   | - | 2,93   | MJ/kg |
| Roll forming, forging CO2                               | * 0,199  | - | 0,22   | kg/kg |
| Roll forming, forging water                             | * 2,69   | - | 4,03   | l/kg  |
| Extrusion, foil rolling energy                          | * 5,02   | - | 5,55   | MJ/kg |
| Extrusion, foil rolling CO2                             | * 0,377  | - | 0,416  | kg/kg |
| Extrusion, foil rolling water                           | * 3,7    | - | 5,55   | l/kg  |
| Wire drawing energy                                     | * 18     | - | 19,9   | MJ/kg |
| Wire drawing CO2                                        | * 1,35   | - | 1,5    | kg/kg |
| Wire drawing water                                      | * 6,8    | - | 10,2   | l/kg  |
| Metal powder forming energy                             | * 38,9   | - | 42,8   | MJ/kg |
| Metal powder forming CO2                                | * 3,11   | - | 3,43   | kg/kg |
| Metal powder forming water                              | * 42,4   | - | 63,5   | l/kg  |
| Vaporization energy                                     | * 1,09e4 | - | 1,2e4  | MJ/kg |
| Vaporization CO2                                        | * 815    | - | 901    | kg/kg |
| Vaporization water                                      | * 4,53e3 | - | 6,8e3  | l/kg  |
| Coarse machining energy (per unit wt removed)           | * 0,83   | - | 0,918  | MJ/kg |
| Coarse machining CO2 (per unit wt removed)              | * 0,0623 | - | 0,0688 | kg/kg |
| Fine machining energy (per unit wt removed)             | * 4,03   | - | 4,45   | MJ/kg |
| Fine machining CO2 (per unit wt removed)                | * 0,302  | - | 0,334  | kg/kg |
| Grinding energy (per unit wt removed)                   | * 7,58   | - | 8,38   | MJ/kg |
| Grinding CO2 (per unit wt removed)                      | * 0,568  | - | 0,628  | kg/kg |
| Non-conventional machining energy (per unit wt removed) | * 109    | - | 120    | MJ/kg |
| Non-conventional machining CO2 (per unit wt removed)    | * 8,15   | - | 9,01   | kg/kg |
|                                                         |          |   |        |       |

# Recycling and end of life

| Recycle                            | <b>√</b>              |
|------------------------------------|-----------------------|
| Embodied energy, recycling         | * 8,1 - 8,96 MJ/kg    |
| CO2 footprint, recycling           | * 0,636 - 0,703 kg/kg |
| Recycle fraction in current supply | 39,9 - 44 %           |
| Downcycle                          | ✓                     |
| Combust for energy recovery        | ×                     |
| Landfill                           | ✓                     |
| Biodegrade                         | ×                     |

#### **Notes**

#### Keywords

CS1020, Steelmark-Eagle & Globe (AUSTRALIA); LASALLE 1018, LaSalle Steel Co. (USA);

### Standards with similar compositions



Australia:

S1020 to AS 1442, S1020 to AS 1443, S1020 to AS 1446

· Austria:

C22SP to ONORM M3167

China:

CRB650 to GB 13788, ML20Al to GB/T 6478, Q235 to GB/T 3524

Hungary:

B38X to MSZ 500

• India:

17C5 to IS 8053, ERW-3 to IS 3074, Grade 8 to IS 7887, Grade 8 to IS 8952

International:

CC21A to ISO 4954

· Italv:

C21 to UNI 6922, CB20FF to UNI 7356

• Japan

SWRCH20A to JIS G3507, SWRM 20 to JIS G3505

Mexico:

1020 to NMX-B-301, MT1020 to NMX-B-201, MT1020 to NMX-B-203-SCFI

• Pan America:

1020 to COPANT 330, 1020 to COPANT 331, 1020 to COPANT 333

· South Korea:

SWRCH20A to KS D 3592, SWRM 20 to KS D 3554

Spain:

18KA-DF to UNE 36032, 20KA-DF to UNE 36032, F.7516 to UNE 36032, F.7517 to UNE 36032

• UK:

040A20 to BS 970/1

· USA:

1020, 1020 to ASTM A29/A29M, 1020 to ASTM A512-96, 1020 to ASTM A513, 1020 to ASTM A519, 1020 to ASTM A568/A568M, 1020 to DoD-F-24669/1, 1020 to FED QQ-S-635B, 1020 to FED QQ-S-698, 1020 to FED QQ-W-461H, 1020 to MIL-S-7952A, 1020 to MIL-T-3520, 1020 to SAE J403, 1023, 1023 to ASTM A513, 1023 to ASTM A513, 1023 to ASTM A568/A568M, 1023 to SAE J403, 5032 to AMS 5032E, C2 to MIL-S-16788A, CS1020 to MIL-S-11310E, G10200 to ASTM A510/A510M, G10200 to ASTM A576-90b, G10200 to ASTM A830/A830M, G10200 to MIL-S-46059, Grade A to ASTM A595, Grade B to ASTM A730, M1020, M1020 to ASTM A29/A29M, M1020 to ASTM A575-96, M1020 to SAE J403, MT1020 to ASTM A512-96, MT1020 to ASTM A513, MT1020 to ASTM A519, MT1020 to ASTM A787, UNS G10200, UNS G10200 to UNS, UNS G10230, UNS K01900, UNS K02000, UNS K02004, UNS K11900

• Tradenames:

ASCOMETAL XC18, B-W STANDARDIZED, CS1020, MARREL M5, POMPEY FFC 2, TOLEDO 15, UNION MC QUAID-EHN, V2  $\,$ 

#### Links