杭州电子科技大学学生考试卷(A) 卷

考试课程	商等数学 A2		考试日期 2015年6月21日		成绩	
课程号	A0714202	教师号		任课教!	师姓名	•
生姓名		学号(8		年级		专业

題号 一	7-7	=	Ξ	123	ħ	六

填空题 (本题共 4 小题, 每小题 3 分, 共 12 分)

- 1. 平面 $\Pi_1: x-y+2z-6=0$ 和平面 $\Pi_2: 2x+y+z-5=0$ 的夹角为 :
- 2. 设 L是从 $A(1,\frac{1}{2})$ 沿曲线 $2y = x^2$ 到 B(2,2) 的弧段,则 $\int \frac{2x}{y} dx \frac{x^2}{y^2} dy = 0$
- 4. 若级数 $\sum b_n \sin nx$ 在 $(0,\pi)$ 内的和函数为 S(x)=1+x ,则此级数在 $x=3\pi$ 处收敛

选择题(本题共 8 小题, 每小题 3 分, 共 24 分)

- 1. 设 L 是从 A(1,0) 到 B(-1,2) 的直线段,则 $\int_{1}^{\infty} (x+y)ds = (3)$

 - (A) $\sqrt{2}$: (B) $2\sqrt{2}$: (C) 2:
- (D)0.
- 2. 函数 $f(x) = x^2 e^{x^2}$ 在($-\infty$, $+\infty$) 内展开为x的幂级数为().

- (A) $\sum_{n=0}^{\infty} \frac{x^{2n}}{n!}$; (B) $\sum_{n=0}^{\infty} \frac{x^{n+2}}{n!}$; (C) $\sum_{n=0}^{\infty} \frac{x^{2(n+1)}}{n!}$; (D) $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n-1}}{(2n-1)!}$.

- 3. 函数z=z(x,y)由方程F(xy,z)=x所确定,其中F(u,v)具有连续的一系编号: 则 = , + = , 等于(A)
 - (A) $\frac{1-yF_1-xF_1}{F_2}$; (B) $\frac{1-yF_1-xF_2}{F_2}$; (C) 0:

- 4. 设 L 是圆域 $D: x^2 + y^2 \le -2x$ 的正向周界,则 $\{(x^3 y)dx + (x y^2)dy$ 等于(D)

- (A) -2π ; (B) 0; (C) $\frac{3}{2}\pi$; (D) 2π .
- 5. 设 Σ 为柱面 $x^2 + y^2 = 1$ 及平面z = 0与z = 1所因立体的外侧,则点z = 0与
 - $(A)3\pi$:
- $(B)\pi$:
- (C) -2π : (D) 2π
- 6. 若幂级数 $\sum_{\alpha_n}^{\infty} (x+1)^n$ 在 x=1 处发散,则该级数在 x=-4 处的敛散性力 (\bigcap)
 - (A) 绝对收敛; (B) 条件收敛; (C) 发散;

- (D) 敛散性无法判束。

- 7. [3分]下列级数中收敛的是())
 - (A) $\sum_{n=1}^{\infty} \frac{n+1}{n(n+2)}$; (B) $\sum_{n=1}^{\infty} \frac{3^n}{n2^n}$;

 - (C) $\sum_{n=1}^{\infty} \frac{1}{n^2 \ln n}$; (D) $\sum_{n=1}^{\infty} \frac{\sin na}{n^2}$, Heli 0 < a < 1.
- 8. 设 f(x,y) 是连续函数,则 $\int dx \int_{x-x}^{2x-x^2} f(x,y) dy$ 的积分次序交换后为($\int_{x-x}^{2x-x} f(x,y) dy$ 的积分次序交换后为(
 - (A) $\int dy \int_{-\infty}^{x} f(x,y)dx$; (B) $\int dy \int_{-\infty}^{x} f(x,y)dx$:
 - (C) $\int dy \int_{-x^2}^{1-y^2} f(x,y)dx$; (D) $\int dy \int_{-x}^{2-y} f(x,y)dx$.

应用题[本题共15分] $\int_{t_0}^{t_0} = \int_{t_0}^{t_0} \left(\frac{1}{2} + \frac{1}{2} +$ 由产和 FoLN => Tro N=U tn央 Mo(1, -1, 2) T+n/Mo=(1,-2.3) ... 力成績3 ×-1= 光1=マー2 2. (10 分) 设曲面 $S: \frac{x^2}{2} + y^2 + \frac{z^2}{4} = 1$ 和平面 $\pi: 2x + 2y + z + 5 = 0$. = 苯(연~1) 世况多在其上类M(Ky.E) 包 (芝丽罗) = (x, zy, 茎) 6. 求级数 $\sum_{n=0}^{\infty} (2n+1)x^n$ 的收敛域和它的和函数. 飞翔平面下运向景儿。=(2,2.1) (1) 3 P= /im/an =1. R= X E (-1,1) 月夏 陀对收敛 x=2t, yet, 2=2d Hill 2+1/7=2=17 t==2/ X=土1 毫 (如1)(生)加发的 七三立 M1(1, 立,1) か打打,2(火1)+2(ソー立)+(さー1)=0 、学、收敛棋, (=(-11) --t=一支 M2H,一支 一) +が平るTT2 2 (x+1) +2(y+な)+(を+1)=も 2 M, 肌到产和平面下。隐南方别多 = (篇) ((m)) (dr) (+ x (篇 (nx)) = (\(\tilde{\t = (茶)'+x·(茶)' 因此脚沿机物工最短能力

得分 计算曲面积分 $\iint 3xz^2 dydz + y(z^2 + 1)dzdx + (.9 - z^3)dxdy$,其中 Σ 为旋转抛物 设正项级数 $\sum_{n=1}^{\infty} u_n$ 和 $\sum_{n=1}^{\infty} v_n$ 满足 $\frac{u_{n+1}}{u_n} \le \frac{v_{n+1}}{v_n}$, 证明: 当级数 $\sum_{n=1}^{\infty} v_n$ 收敛时, $\sum_{n=1}^{\infty} u_n$ 面 $z = x^2 + y^2 + 1$ (1 $\leq z \leq 2$) 取下侧 Und = 1/2. U3. 1/4. ... Und 7 证明 $\frac{V_{n+1}}{V_1} = \frac{V_2}{V_1} \cdot \frac{V_3}{V_2} \cdot \frac{V_4}{V_3} \cdot \frac{V_{n+1}}{V_n} / \Longrightarrow 2$ 12つ外刊教動. 1) = 37 z2, Q= y(271), R=9-23 张十级十级二彩 71/1) Gauss () Dolyde+Qoledx+ Polydy= Marting the dv 当是加地级时由州家区和 $(4) \pm \frac{1}{2} \left(\frac{2}{1} \right) dV = \int_{1}^{2} \frac{1}{2} dz \int_{1}^{2} dx dy + \int_{1}^{2} dz \int_{1}^{2} dx dy = \frac{23}{12} \pi \cdot \frac{1}{1} dx$ $\text{Iff } \int_{\mathcal{L}} 3xz^2 \, dy dz + y (z^{\frac{3}{4}}) dz dx + (9-z^3) dr dy = T$