Eine Woche, ein Beispiel 11.10 5 indecomposible representations

This document is the continuation of [2013.11.26]. After the discussion with Renzhi Liang and Aaron, the last piece of the puzzle has been put together.

extra ref:

[Stroppel]: Category O: Quivers and endomorphism rings of projectives https://www.math.uni-bonn.de/ag/stroppel/Quivers.pdf

$$\begin{array}{ccc}
\circ & & -2p \\
\swarrow & & & & \\
\downarrow & & & & \\
& & & & & \\
\downarrow & & & & & \\
\end{array}$$

L. irreducible rep M: Verma module P: proj rep I: inj rep

var o can = 0

Quiver	$\circ \overset{\circ}{\sim} Q$	$Q \stackrel{\circ}{\underset{\circ}{\sim}} o$	$Q \stackrel{\circ}{\underset{1}{\longleftarrow}} Q$	$Q \stackrel{1}{\underset{\circ}{\smile}} Q$	$Q \stackrel{\binom{\binom{n}{2}}{2}}{\underset{(1,0)}{\longleftrightarrow}} Q^2$
filtration	\triangle		\Box	\triangle	\Diamond
Perv	i_*Q_{∞}	<u> </u>	Rj* <u>Q</u> c[1]	j. Qc[1]	
alias	IC.	IC∞	$I(\psi)$	P(\psi)	$P(\phi) = I(\phi)$
D-mod	A1/A1X	6.A.A	$A'/A' \times A'$	A,/A, dx	A,/A,xdx
	k[ə]	k[×]	k[9, 9-1]	k[x,x ⁻¹]	
\mathcal{O}_{λ}	L (-2p) M (-2p) M*(-2p)	L(o)	M(o) P(o)	M(o)* I(o)	P(-2p) = I(-2p)
				<u>dual</u>	

Ex. the A.-module structure of k[x,x-1]

Basis with action.

- \rightarrow : x-action
- -> 2-action

Order filtration:

$$X^{-4} \xrightarrow{-3} X^{-3} \xrightarrow{-3} X^{-2} \xrightarrow{-1} X^{-1} \xrightarrow{-1} X \xrightarrow{-1} X^{-1} \xrightarrow{-1} X \xrightarrow$$

$$\Rightarrow gr_{E^{ord}} k[x,x^{-1}] = k[x,\partial]/x\partial$$

Bernstein filtration:

$$X^{-4} \xrightarrow{-3} X^{-3} \xrightarrow{-3} X^{-1} \xrightarrow{-1} X^{$$

$$\Rightarrow gr_{E^B} k[x,x^{-1}] = k[x,\partial]/x\partial$$

We have a SES:

$$0 \longrightarrow k[x] \longrightarrow k[x,x^{-1}] \longrightarrow k[x,x^{-1}]/k[x] \longrightarrow 0$$

$$0 \longrightarrow A_1/A_1 \xrightarrow{x} A_1/A_1 \xrightarrow{x} A_1/A_1 \xrightarrow{x} 0$$

$$0 \longleftarrow Q_{CP}[1] \longleftarrow j! Q_{C}[1] \longleftarrow i*Q \longleftarrow 0$$

It does not split.

Restrict to
$$D_{\mathbf{c}^{\times}} = k[\mathbf{x}, \mathbf{x}^{-1}] < \partial \mathbf{y}$$
:
$$\frac{D_{\mathbf{c}^{\times}}/D_{\mathbf{c}^{\times}} \partial \mathbf{x}}{D_{\mathbf{c}^{\times}} \partial \mathbf{x}} = \frac{D_{\mathbf{c}^{\times}}/D_{\mathbf{c}^{\times}} \partial \mathbf{x}}{D_{\mathbf{c}^{\times}} \partial \mathbf{x}} = K[\mathbf{x}, \mathbf{x}^{-1}]$$

Perverse sheaf interpolation.

$$R\Gamma(A', P) = R Hom_{A_{1}}(k[x, x^{-1}], \mathcal{O}_{A'})$$

$$= R Hom_{A_{1}}(A', A \cdot \partial x, A', A \cdot \partial A)$$

$$= R Hom_{A_{1}}([A \cdot \partial x \cdot A \cdot A \cdot A \cdot \partial A))$$

$$= [A', A \cdot \partial x \cdot A \cdot A \cdot A \cdot \partial A)$$

$$= [k[x] \xrightarrow{\partial x} k[x]]$$

$$= 0$$

$$R\Gamma(G_{m}, P) = [k[x, x^{-1}] \xrightarrow{\partial x} k[x, x^{-1}]]$$

$$= k \oplus k[-1]$$

$$For \ p \in MaxSpec \ k[x, x^{-1}],$$

$$\mathcal{P}_{\beta} = k ?$$