ANOVA - Nested Models

Nested ANOVA: Example

We have:

- \longrightarrow 3 cages
- \longrightarrow 4 mosquitoes within each cage
- -> 2 independent measurements per mosquito

Cage I				Cage II				Cage III			
1	2	3	4	1	2	3	4	1	2	3	4
			_					56.6 57.5	_		_

The model

Nested ANOVA: models

$$\mathbf{Y}_{\mathbf{ijk}} = \mu + \alpha_{\mathbf{i}} + \beta_{\mathbf{ij}} + \epsilon_{\mathbf{ijk}}$$

 μ = overall mean

 α_i = "effect" for ith cage

 β_{ij} = "effect" for jth mosquito within ith cage

 ϵ_{ijk} = random error

Random effects model

Mixed effects model

$$\alpha_{\rm i} \sim {\rm Normal}(0, \sigma_{\rm A}^2)$$

$$\beta_{\rm ij} \sim {\sf Normal}(0, \sigma_{\rm B|A}^2)$$

$$\epsilon_{ijk} \sim Normal(0, \sigma^2)$$

$$\alpha_{\rm i}$$
 fixed; $\sum \alpha_{\rm i} = 0$

$$\beta_{\rm ij} \sim {\rm Normal}(0, \sigma_{\rm B|A}^2)$$

$$\epsilon_{\rm ijk} \sim {\sf Normal}(0,\sigma^2)$$

Example: sample means

		Caç	ge I		Cage II				Cage III			
	1	2	3	4	1	2	3	4	1	2	3	4
		77.8 80.9					50.7 49.3		56.6 57.5	_	69.9 69.2	_
$\bar{Y}_{ij\cdot}$	59.00	79.35	83.80	69.20	69.80	55.25	50.00	64.80	57.05	78.50	69.55	63.30
$\bar{Y}_{i\cdot\cdot\cdot}$		72	.84			59	.96			67	.10	
\bar{Y}_{\cdots}						66.63						

Calculations (equal sample sizes)

Source	Sum of squares	df
among groups	SS _{among} =bn $\sum_i (\bar{Y}_{i\cdot\cdot} - \bar{Y}_{\cdot\cdot\cdot})^2$	a – 1
subgroups within groups	SS _{subgr} =n $\sum_{i} \sum_{j} (\bar{Y}_{ij\cdot} - \bar{Y}_{i\cdot\cdot})^2$	a (b – 1)
within subgroups	SS _{within} = $\sum_{i} \sum_{j} \sum_{k} (Y_{ijk} - \bar{Y}_{ij.})^2$	a b (n – 1)
TOTAL	$\sum_{i} \sum_{j} \sum_{k} (Y_{ijk} - \bar{Y}_{\cdot \cdot \cdot})^2$	a b n – 1

ANOVA table

SS df MS F expected MS

 $SS_{among} \qquad a-1 \qquad \qquad \frac{SS_{among}}{a-1} \qquad \frac{MS_{among}}{MS_{subgr}} \qquad \sigma^2 + n\,\sigma_{B|A}^2 + n\,b\,\sigma_A^2$

 $SS_{subgr} \hspace{1cm} a \; (b-1) \hspace{1cm} \frac{SS_{subgr}}{a(b-1)} \hspace{1cm} \frac{MS_{subgr}}{MS_{within}} \hspace{1cm} \sigma^2 + n \, \sigma_{B|A}^2$

SS_{within} a b (n – 1) $\frac{SS_{\text{within}}}{ab(n-1)}$ σ^2

 SS_{total} a b n – 1

Example

source	df	SS	MS	F	P-value
among groups	2	665.68	332.84	1.74	0.23
among subgroups within groups	9	1720.68	191.19	146.88	< 0.001
within subgroups	12	15.62	1.30		
TOTAL	23	2401.97			

Variance components

Within subgroups (error; between measurements on each female)

$$s^2=MS_{within}=1.30$$

$$s = \sqrt{1.30} = 1.14$$

Among subgroups within groups (among females within cages)

$$s_{B|A}^2 = \frac{MS_{subgr} - MS_{within}}{n} = \frac{191.19 - 1.30}{2} = 94.94$$

$$s_{B|A} = \sqrt{94.94} = 9.74$$

Among groups (among cages)

$$s_A^2 = \frac{MS_{among} - MS_{subgr}}{nb} = \frac{332.84 - 191.19}{8} = 17.71$$

$$s_A = \sqrt{17.71} = 4.21$$

Variance components (2)

$$s^2 + s_{B|A}^2 + s_A^2 = 1.30 + 94.94 + 17.71 = 113.95.$$

$$s^2$$
 represents $\frac{1.30}{113.95} = 1.1\%$

$$s_{B|A}^2$$
 represents $\frac{94.94}{113.95} = 83.3\%$

$$s_A^2$$
 represents $\frac{17.71}{113.95} = 15.6\%$

Note:

$$\longrightarrow$$
 var(Y) = $\sigma^2 + \sigma_{\text{B}|A}^2 + \sigma_{\text{A}}^2$

$$\longrightarrow$$
 var(Y | A) = $\sigma^2 + \sigma_{B|A}^2$

$$\longrightarrow$$
 var(Y | A, B) = σ^2

Mosquito averages

	l-1	I-2	I-3	I-4	II-1	II-2	II-3	II-4	III-1	III-2	III-3	III-4
	58.5	77.8	84.0	70.1	69.8	56.0	50.7	63.8	56.6	77.8	69.9	62.1
	59.5	80.9	83.6	68.3	69.8	54.5	49.3	65.8	57.5	79.2	69.2	64.5
ave	59.0	79.4	83.8	69.2	69.8	55.2	50.0	64.8	57.0	78.5	69.6	63.3

ANOVA table

source	df	SS	MS	F	P-value
between	2	332.8	166.4	1.74	0.23
within	9	860.3	95.6		

aov.out <- aov(avelen ~ cage, data=mosq2)
summary(aov.out)</pre>

Ignoring cages

I-1	I-2	I-3	I-4	II-1	II-2	II-3	II-4	III-1	III-2	III-3	III-4
58.5	77.8	84.0	70.1	69.8	56.0	50.7	63.8	56.6	77.8	69.9	62.1
59.5	80.9	83.6	68.3	69.8	54.5	49.3	65.8	57.5	79.2	69.2	64.5

ANOVA table

source	df	SS	MS	F	P-value
between	11	2386.4	216.9	166.7	< 0.001
within	12	15.6	1.3		

mosq\$ind2 <- factor(paste(mosq\$cage,mosq\$individual, sep=":"))
aov.out <- aov(length ~ ind2, data=mosq)
summary(aov.out)</pre>

Ignoring individual mosquitoes

Cage I	Cage II	Cage III
58.5	69.8	56.6
59.5	69.8	57.5
77.8	56.0	77.8
80.9	54.5	79.2
84.0	50.7	69.9
83.6	49.3	69.2
70.1	63.8	62.1
68.3	65.8	64.5

ANOVA table

source	df	SS	MS	F	P-value
between	2	665.7	332.8	4.03	0.033
within	21	1736.3	86.7		

This is wrong!

aov.out <- aov(length ~ cage, data=mosq)
summary(aov.out)</pre>

Example: mixed effects

		Jar	Strain			Jar	Strain
Strain	Jar	means	means	Strain	Jar	means	means
LDD	1	27.000		LC	1	28.500	
	2	27.750			2	26.875	
	3	26.625	27.125		3	27.000	27.458
OL	1	33.375		RH	1	29.500	
	2	38.125			2	30.375	
	3	31.250	34.250		3	28.250	29.375
NH	1	27.500		NKS	1	30.125	
	2	26.625			2	29.625	
	3	28.500	27.452		3	31.750	30.500
RKS	1	31.750		BS	1	27.875	
	2	31.750			2	25.625	
	3	35.250	32.917		3	27.500	37.000

Results

source	df	SS	MS	F	P-value
among strains	7	1323.42	189.06	8.47	< 0.001
among jars within strains	16	357.25	22.33	0.80	0.68
within jars	168	4663.25	27.76		

Note: 8 strains; 3 jars per strain; 8 flies per jar

The expected mean squares are
$$\sigma^2 + n\,\sigma_{\rm B|A}^2 + n\,b\,\frac{\sum\alpha^2}{{\rm a}-1}$$

$$\sigma^2 + n\,\sigma_{\rm B|A}^2$$

Higher-level nested ANOVA models

You can have as many levels as you like. For example, here is a three-level nested mixed ANOVA model:

$$Y_{ijkl} = \mu + \alpha_i + B_{ij} + C_{ijk} + \epsilon_{ijkl}$$

$$\mbox{Assumptions:} \qquad \mbox{B}_{ij} \sim N(0, \sigma_{B|A}^2), \qquad \mbox{C}_{ijk} \sim N(0, \sigma_{C|B}^2), \qquad \epsilon_{ijkl} \sim N(0, \sigma^2).$$

Calculations

Source	Sum of squares	df
among groups	SS _{among} =b c n $\sum_i (\bar{Y}_{i\cdots} - \bar{Y}_{\cdots})^2$	a – 1
among subgroups	SS _{subgr} =c n $\sum_{i} \sum_{j} (\bar{Y}_{ij} - \bar{Y}_{i})^2$	a (b – 1)
among subsubgroups	SS _{subsubgr} =n $\sum_{i}\sum_{j}\sum_{k}(\bar{Y}_{ijk.}-\bar{Y}_{ij})^{2}$	a b (c – 1)
within subsubgroups	$SS_{subsubgr} = \sum_{i} \sum_{j} \sum_{k} \sum_{l} (Y_{ijkl} - \bar{Y}_{ijk.})^{2}$	a b c (n - 1)

ANOVA table

SS	MS	F	expected MS
SS _{among}	$\frac{bcn\sum_a (\bar{Y}_A - \bar{Y})^2}{a-1}$	MS _{among} MS _{subgr}	$\sigma^2 + n\sigma_{C\subsetB}^2 + nc\sigma_{B\subsetA}^2 + ncb\frac{\sum \alpha^2}{a-1}$
SS _{subgr}	$\frac{cn\sum_{a}\sum_{b}\left(\bar{Y}_{B}-\bar{Y}_{A}\right)^{2}}{a(b-1)}$	$\frac{\text{MS}_{\text{subgr}}}{\text{MS}_{\text{subsubgr}}}$	$\sigma^2 + n\sigma_{C\subsetB}^2 + nc\sigma_{B\subsetA}^2$
$SS_{subsubgr}$	$\frac{n\sum_{a}\sum_{b}\sum_{c}(\bar{Y}_{C}-\bar{Y}_{B})^{2}}{ab(c-1)}$	MS	
SS _{within}	$\frac{\sum_{a}\sum_{b}\sum_{c}\sum_{n}\left(Y-\bar{Y}_{C}\right)^{2}}{abc(n-1)}$		σ^2

Unequal sample size

It is best to design your experiments such that you have equal sample sizes in each cell. However, once in a while this is not possible.

In the case of unequal sample sizes, the calculations become really painful (though R can do all of the calculations for you).

Even worse, the F tests for the upper levels in the ANOVA table no longer have a clear null distribution.

→ Seek advice if you are in such a situation.