SEMINAR 2

Sisteme de vectori liniar dependenți Sisteme de generatori. Baze

Sisteme de vectori liniar dependenți Relația de dependență

Exemplu. Să se scrie relația de dependență pentru următorul sistem de vectori liniar dependenți:

$$S = {\overline{v_1} = (2, 1, 0), \overline{v_2} = (-1, 1, 1), \overline{v_3} = (1, 2, 1)}.$$

Soluţie.

1) Scriem relația de dependență în cazul vectorilor sistemului S:

$$\boxed{\overline{0} = \alpha_1 \overline{\mathbf{v_1}} + \alpha_2 \overline{\mathbf{v_2}} + \alpha_3 \overline{\mathbf{v_3}}.}$$
(1)

Problema determinării relației de dependență se reduce la aflarea coeficienților $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$.

- 2) S este submulţimea cărui spaţiu vectorial?
- 3) Înlocuim vectorii sistemului în relația de dependență (1).

$$\alpha_1(2,1,0) + \alpha_2(-1,1,1) + \alpha_3(1,2,1) = (0,0,0)$$

4) Cum se scrie ca un triplet vectorul din stânga semnului =?

5) Cum se obţine sistemul?

$$\begin{cases}
2\alpha_1 - \alpha_2 + \alpha_3 = 0 \\
\alpha_1 + \alpha_2 + 2\alpha_3 = 0 \\
\alpha_2 + \alpha_3 = 0
\end{cases}$$
(2)

- 6) Ce fel de sistem este sistemul (2)? Ce putem spune despre compatibilitatea sistemului (2)?
- 7) Rezolvaţi sistemul (2). Ce metodă folosim?

Găsim soluția
$$\{(-\alpha_3,-\alpha_3,\alpha_3),\alpha_3\in\mathbb{R}\}$$

8) Unde înlocuim soluția găsită?

9) Cum deducem din ecuația

$$-\alpha_3\overline{v_1} - \alpha_3\overline{v_2} + \alpha_3\overline{v_3} = \overline{0}, \forall \alpha_3 \in \mathbb{R},$$

relația de dependență

$$-\overline{v_1} - \overline{v_2} + \overline{v_3} = \overline{0}?$$

Exercițiu. Să se scrie relația de dependență pentru următoarele sisteme de vectori liniar dependenți:

1. $S_1 = \{\overline{p_1} = X + 2, \ \overline{p_2} = -X - 2, \ \overline{p_3} = 2X + 4\} \subset \mathbb{R}_1[X];$ Indicaţie: Urmând paşii de mai sus, se ajunge la relaţia de dependenţă:

$$\begin{cases} \overline{p_1} + \overline{p_2} = \overline{0} \\ -2\overline{p_1} + \overline{p_3} = \overline{0} \end{cases}$$

2.
$$S_2 = \left\{ \overline{M_1} = \begin{bmatrix} 1 & -1 \\ 2 & 0 \end{bmatrix}, \overline{M_2} = \begin{bmatrix} 2 & -2 \\ 4 & 0 \end{bmatrix}, \overline{M_3} = \begin{bmatrix} -3 & 3 \\ 6 & 0 \end{bmatrix} \right\} \subset \mathfrak{M}_2[\mathbb{R}].$$
 Răspuns.
$$\begin{cases} -2\overline{M_1} + \overline{M_2} = \overline{0} \\ 3\overline{M_1} + \overline{M_3} = \overline{0} \end{cases}$$

3. Temă

$$S_3 = \{\overline{p_1} = -X^2 + 7X + 8, \ \overline{p_2} = -X^2 + 3X + 2, \ \overline{p_3} = X^2 - X + 1\}.$$

Răspuns.

$$\overline{p_1} - 3\overline{p_2} - 2\overline{p_3} = \overline{0}.$$

Criteriul practic pentru sisteme de vectori

Exemplu. Să se studieze folosind **Criteriul practic** liniar dependența sistemului de vectori S. Este S un sistem de generatori? Dar bază?

$$S = \{\overline{p_1} = 2X^2 + X - 3, \ \overline{p_2} = -X^2 - 2X + 3, \ \overline{p_3} = 7X^2 + 8X - 15\}.$$

Soluţie.

- 1) S este submulțimea cărui spațiu vectorial?
- 2) Care este baza canonică în acest spațiu? Ce deducem de aici?
- 3) Scrieți vectorii sistemului S în baza canonică

4) Scrieți A_S -matricea asociată sistemului de vectori S. Cum se obține?

- 5) Ce trebuie să calculăm pentru a putea aplica Criterul practic?:
- 6) Calculați rangul matricei A_S

- 7) Ce se poate spune despre liniar dependența sistemului de vectori S? De ce?
- 8) Sistemului de vectori S este un sistem de generatori? De ce?
- 9) S este bază? De ce?

Exercițiu. Studiați dacă sistemele de vectori de mai jos este sisteme liniar independente, sisteme de generatori sau baze:

1.
$$S_1 = \left\{ \overline{A_1} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, \ \overline{A_2} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} \right\};$$

Indicație: Urmând pașii de mai sus, se obține:

 \mathcal{S}_1 - este sistem liniar independent

 S_1 - nu este sistem de generatori

 S_1 - nu este bază

$$\mathbf{2.} \ S_2 = \left\{ \overline{M_1} = \begin{pmatrix} 1 & -2 \\ -1 & 1 \end{pmatrix}, \overline{M_2} = \begin{pmatrix} -1 & 1 \\ 2 & -1 \end{pmatrix}, \overline{M_3} = \begin{pmatrix} -1 & -1 \\ 4 & -1 \end{pmatrix}, \overline{M_4} = \begin{pmatrix} 3 & -4 \\ -5 & 3 \end{pmatrix} \right\}.$$

Răspuns.

 S_2 - este sistem liniar dependent

 S_2 - nu este sistem de generatori

 S_2 - nu este bază

3. Temă
$$S_3 = \left\{ \overline{N_1} = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}, \overline{N_2} = \begin{bmatrix} 4 & -2 \\ 2 & 0 \end{bmatrix}, \overline{N_3} = \begin{bmatrix} -2 & 1 \\ -1 & 0 \end{bmatrix} \right\}.$$
 Răspuns.

Răspuns.

 S_3 -este sistem liniar dependent

 S_3 - nu este sistem de generatori

 S_3 - nu este bază