Inégalités et inéquations

Règles (Manipulation des inégalités). Soit a, b, c, k des réels.

- Si a < b alors a + c < b + c
- Si a < b alors a c < b c
- Si a < b et k > 0 alors ka < kb
- Si a < b et k < 0 alors ka > kb (Multiplier une inégalité par un nombre < 0 inverse l'inégalité)
- Si a < b et k > 0 alors $\frac{a}{b} < \frac{b}{b}$
- Si $a < b \text{ } \underline{\text{et } k < 0}$ alors $\frac{a}{k} > \frac{b}{k}$ (Diviser une inégalité par un nombre < 0 inverse l'inégalité)
- Ces règles restent valables en remplaçant < par \le et > par \ge . (mais k doit rester \ne 0 pour \div)

Définition. **Une inéquation** est une inégalité dans laquelle est présente une inconnue. **Résoudre une inéquation**, c'est déterminer l'ensemble de toutes les valeurs de l'inconnue qui vérifient l'inégalité.

Exemple. Résoudre sur \mathbb{R} l'inéquation : $(I) \Leftrightarrow 3x + 6 \ge 2x - 5$.

On veut isoler l'inconnue x.

D'abord on fait passer tous les x à gauche de \leq . On peut soustraire 2x

(I) \Leftrightarrow $3x + 6 - 2x \ge -5$ On peut donc simplifier le membre à gauche de \le .

(I) $\Leftrightarrow x + 6 \ge -5$ On peut faire passer toutes les constantes à droite de \le en soustrayant 6

 $(I) \Leftrightarrow x \ge -5 - 6$ On simplifie à droite de \le

 $(I) \Leftrightarrow x \ge -11$ x = x = x est maintenant isolé. On a résolu l'inéquation.

L'ensemble des solutions de (I) est $[-11; +\infty[$.

Exemple. Résoudre $(J) \Leftrightarrow 3x + 2 < 5x - 3$

(J) \Leftrightarrow 3x + 2 < 5x - 3 On soustrait 5x pour faire passer tous les x à gauche de <

(1) \Leftrightarrow 3x + 2 - 5x < -3 On simplifie à gauche de <

(J) \Leftrightarrow -2x + 2 < -3 On soustrait 2 pour faire passer toutes les constantes à droite de <

 $(I) \Leftrightarrow -2x < -3 - 2$ On simplifie à droite de <

(J) \Leftrightarrow $-2 \times x < -5$ Pour isoler x, on doit diviser par -2 or -2 est négatif, on doit inverser <

 $(J) \Leftrightarrow x > \frac{-5}{-2}$

L'ensemble des solutions de (I) est $]2,5; +\infty[$.