Algorithmic Human-Robot Interaction

Task Planning I

CSCI 7000

Prof. Brad Hayes

Computer Science Department

University of Colorado Boulder

Papers for Thursday 1/31:

Need 1 PRO (10m) and 1 CON (5m) speaker each E-mail <u>Bradley.Hayes@Colorado.edu</u> to sign up

Trajectories and Keyframes for Kinesthetic Teaching: A Human-Robot Interaction Perspective Baris Akgun et al.

Planning human-aware motions using a sampling-based costmap planner
Jim Mainprice et al.

Interpreting human gesture and gaze

Producing meaningful non-verbal behaviors

Improving social interactions with non-verbal behavior

Topic:
Non-verbal
Cues During
Collaboration

Topic: Modeling Trust During Collaboration

A robot that adapts its plans based on how much it thinks the human trusts it

A robot that adapts its collaboration based on how much it trusts the human to do certain tasks

Self-trust with respect to its ability to successfully execute tasks (trusted region of its policy)

Topic: Synchronizing Mental Models of Tasks or Actions

Sharing tasks across human/robot teams

Assigning roles to teammates during multi-agent tasks

Today's ideas will be posted on Moodle

- Enrollment is finalized: Skills survey will be posted tonight
 - Complete by Wednesday morning, should only take a few minutes
 - Will include fields for additional project ideas
- Project preferences survey will be posted Friday night
 - Will inform project brainstorming sessions next Tuesday

So Far... Motion Planning

Workspace (x, y)

C-space (x, y, θ)

▲ Robot
Path is hard to express

Path is just a space curve

Optimal Control

Optimal Control: Finding the best control policy for a desired goal

Closed-Loop Solutions

u=u(x)"Global Method": Gives action at all states
Very expensive to compute

Open-Loop Solution

u=u(t)"Local Method": Gives action at relevant states
Usable in high dimensions

Problem Specification: Spaces

Space (set of points)

Configuration Space

Trajectory through **Configuration Space** (set of points)

Single point in **Trajectory Space**

Making Trajectory Optimization Useful

Need to provide a good choice for $U[\xi]$.

CHOMP: Covariant Hamiltonian Optimization for Motion Planning

Uses a cost function
$$U[\xi] = U_{smooth}[\xi] + \lambda U_{obs}[\xi]$$

Smoothness cost:
$$U_{smooth}[\xi] = \frac{1}{2} \int_0^T ||\xi'(t)||^2 dt$$

Obstacle cost:
$$U_{obs}[\xi] = \int_t \int_{u} c\left(\phi_u(\xi(t))\right) * \left\|\frac{d}{dt}\phi_u(\xi(t))\right\| dudt$$

Cost function that computes distance to closest obstacle

Forward Kinematics function that computes location of robot body point u at time t in ξ

Norm of the velocity for body point u at time t in ξ

How do we generate motion plans for this?

How do we generate motion plans for this?

Artificial Intelligence vs. Machine Learning for Adversarial Environments

(a.k.a. How to play games and make it look like research)

- Search (AI) vs. Modeling (ML)
 - Can push complexity into different parts of the problem!
- Search techniques rely on informed heuristics to guide them efficiently to the goal
- Modeling techniques rely on troves of data to represent the statistical properties of the underlying solution.
- Not either/or, usually combination of both!

• Learn some function that takes state features as inputs and produces the next action as an output: $f: S \to A$

First Approach: Machine Learning

- Model updates with experience, rather than searching already-held knowledge
 - Small changes in training data can wildly change model behavior
- Can be difficult to choose correct parameters for model, learning rate, etc. (without these, papers often irreproducible!)
- Can be difficult to obtain sufficient experience/training data

Solving Problems with Reinforcement Learning

Example world:

- Reward only defined at terminal states
- Equal transition probabilities between neighboring states

Solving Problems with Reinforcement Learning

Given a set of training sequences that end in a terminal state (with a reward)...

$$(1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (4,3) \rightarrow +1$$

 $(1,1) \rightarrow (2,1) \rightarrow (3,1) \rightarrow (3,2) \rightarrow (4,2) \rightarrow -1$
 $(1,1) \rightarrow (2,1) \rightarrow (3,1) \rightarrow (3,2) \rightarrow (3,3) \rightarrow (4,3) \rightarrow +1$
 $(1,1) \rightarrow (2,1) \rightarrow (3,1) \rightarrow (4,1) \rightarrow (3,1) \rightarrow (3,2) \rightarrow (4,2) \rightarrow -1$

Determine the expected utility **U(s)** associated with each non-terminal state **s**

Learning an Action-Value Function (Q-Learning)

 Q-value is the expected utility of taking a given action in a given state:

Q(s,a) = Value of action 'a' in state 's'

- For a state s, choose action 'a' that maximizes Q(s,a)
- Q-values do not require an environment model: The transition function isn't necessary, since it will be learned from experience:

$$Q(s,a) = (1 - \alpha) * Q(s,a) + \alpha (r + \gamma * \max_{a'} Q(s',a'))$$

Reliance on existing vs. new Knowledge

Current understanding

reward

Discount factor

Best we think we can do in the future from here

Solving Problems with Reinforcement Learning

$$(1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (4,3) \rightarrow +1$$

 $(1,1) \rightarrow (2,1) \rightarrow (3,1) \rightarrow (3,2) \rightarrow (4,2) \rightarrow -1$
 $(1,1) \rightarrow (2,1) \rightarrow (3,1) \rightarrow (3,2) \rightarrow (3,3) \rightarrow (4,3) \rightarrow +1$
 $(1,1) \rightarrow (2,1) \rightarrow (3,1) \rightarrow (4,1) \rightarrow (3,1) \rightarrow (3,2) \rightarrow (4,2) \rightarrow -1$

Determine the expected utility **U(s)** associated with each non-terminal state **s**

$$Q(s, a) = (1 - \alpha) * Q(s, a) + \alpha(r + \gamma * \max_{a'} Q(s', a'))$$

Types of Reinforcement Learning:

Utility Learning

- Learn a utility function that maps states to utilities and select an action by maximizing the expected value
- Needs a model of the environment (needs transition function)
- Predictive

Action-Value Learning

- Learn an action-value function that gives the expected utility of taking a given action in a given state
- No need for an environment model
- Don't know where actions lead, so cannot look ahead

Task Planning: General Idea

Task Planning is a **model-based** approach to autonomous behavior

Classical Planning:

Deterministic, Full information

Robotics Planning:

Non-deterministic, Partial information

Planning Outline

- Introduction to Planning and Problem Solving
- Classical Planning: Deterministic actions and complete information
- Probabilistic Models: Markov Decision Processes (MDPs), and Partially Observable MDPs (POMDPs)
- Handling Uncertainty
- Reference: A concise introduction to models and methods for automated planning, H. Geffner and B. Bonet, Morgan & Claypool, 6/2013.
- Other references: Automated planning: theory and practice, M. Ghallab, D. Nau, P. Traverso.
 Morgan Kaufmann, 2004, and Artificial intelligence: A modern approach. 3rd Edition, S. Russell and P. Norvig, Prentice Hall, 2009.

Planning: High Level

- Thinking before acting
- Determining how to achieve a given goal

Three approaches to the control problem (what to do next):

- 1. Programming-based: Specify control by hand
- 2. Learning-based: Learn control from experience

Inverse
Reinforcement
Learning
(MaxEnt IRL)

Reinforcement Learning (SARSA, REINFORCE)

3. Model-based (Planning): Derive control from a domain model

$$Problem \Longrightarrow \boxed{Solver} \Longrightarrow Solution$$

Planners, Models, and Solvers Solvers for a given model type (e.g., SAT, MDP) are general

(Not tailored to specific instances)

Primary challenge is to scale solvers up

Methodology is **empirical**: benchmarks and competitions

Constraint Satisfaction (SAT)

SAT is the problem of determining whether there is a truth assignment that satisfies a set of clauses:

$$x \lor \neg y \lor z \lor \neg w \lor ...$$

Problem is NP-Complete, which in practice means worst-case behavior of SAT algorithms is exponential in number of variables ($2^{100} = 10^{30}$)

Yet current SAT solvers manage to solve problems with **thousands of variables and clauses**, and used widely (circuit design, verification, planning, etc)

Fully Observable, Deterministic: Classical Al Planning

- finite and discrete state space S
- a known initial state $s_0 \in S$
- a set $S_G \subseteq S$ of goal states
- actions $A(s) \subseteq A$ applicable in each $s \in S$
- a deterministic transition function s' = f(a, s) for $a \in A(s)$
- positive action costs c(a, s)

A **solution** or **plan** is a sequence of applicable actions $\pi = a_0, \ldots, a_n$ that maps s_0 into S_G ; i.e., there are states s_0, \ldots, s_{n+1} s.t. $s_{i+1} = f(a_i, s_i)$ and $a_i \in A(s_i)$ for $i = 0, \ldots, n$, and $s_{n+1} \in S_G$.

The plan is **optimal** if it minimizes the **sum of action costs** $\sum_{i=0,n} c(a_i,s_i)$. If costs are all 1, plan cost is plan **length**

Different models obtained by relaxing assumptions in bold . . .

Uncertainty but No Feedback: Conformant Planning

- finite and discrete state space S
- a set of possible initial state $S_0 \in S$
- a set $S_G \subseteq S$ of goal states
- actions $A(s) \subseteq A$ applicable in each $s \in S$
- a non-deterministic transition function $F(a,s) \subseteq S$ for $a \in A(s)$
- uniform action costs c(a,s)

A **solution** is still an **action sequence** but must achieve the goal for **any possible initial state and transition**

More complex than classical planning, verifying that a plan is conformant intractable in the worst case; but special case of planning with partial observability

Planning with Markov Decision Processes

MDPs are fully observable, probabilistic state models:

- ullet a state space S
- initial state $s_0 \in S$
- a set $G \subseteq S$ of goal states
- actions $A(s) \subseteq A$ applicable in each state $s \in S$
- transition probabilities $P_a(s'|s)$ for $s \in S$ and $a \in A(s)$
- action costs c(a,s) > 0

- Solutions are functions (policies) mapping states into actions
- Optimal solutions minimize expected cost to goal

What about uncertainty?

Adding Uncertainty to MDPs

Traditional MDPs are defined with:

```
    States – {(0,0), (0,1), ...}
    Actions – {move_north, ...}
    Rewards – R(S,A,S') -> Reward
    Transition Probabilities – P(State | State,Action)
```

- But what if I don't know what state I'm in?

Adding Uncertainty to MDPs

Traditional MDPs are defined with:

```
    States – {(0,0), (0,1), ...}
    Actions – {move_north, ...}
    Rewards – R(S,A,S') -> Reward
    Transition Probabilities – P(State | State,Action)
```

- But what if I don't know what state I'm in?
 - Rather than maintaining a "current state", maintain a belief distribution
 - A distribution over states indicating the probability that I think I'm in each one
 - By taking an action in a state, I receive observations that tell me about the state I just entered

Partially Observable MDPs (POMDPs)

Traditional MDPs are defined with:

• States - S = {(0,0), (0,1), ...}

• Actions — A = {move_north, ...}

RewardsR(s,a,s') -> Reward

Transition Probabilities – T(s,a,s') -> P(s' | s, a)

Now we have to add:

• Observation set - $O = \{o_1, o_2, ...\}$

• Observation prob. $- \Omega = P(o_1, ..., o_i \mid S)$

• Also have to augment:

• Current State (now belief) - B = [0.1, 0.6, 0.2, 0.1, ...]

• Policy (no longer $S \to A$) $- \pi: B \to A$

POMDP: Trivial Example

Two states: {0,1} Two Actions: {a1, a2}

Three Observations: {z1, z2, z3}

- A dot's position in the red bar indicates our belief over these states. (Yellow is current belief)
- B = [p, 1-p] indicates p% chance of being in State 0, and 1-p% chance of being in State 1.
- Executing a1 and observing z3 tells us that we're very likely to be in State 1
- Executing a1 and observing z1 tells us that we're very likely to be in State 0

Identifying Types of Planning Problems

Agent A must reach G, moving one cell at a time in known map

- If actions deterministic and initial location known, planning problem is Classical
- If actions non-deterministic and location observable, it's an MDP or FOND
- If actions non-deterministic and location partially obs, POMDP or Contingent

Different combinations of uncertainty and feedback: diff problems, diff models
Planner is generic solver for instances of a particular model
Classical planners, MDP Planners, POMDP planners, . . .

STRIPS: Language for Classical Planning

- A **problem** in Strips is a tuple $P = \langle F, O, I, G \rangle$:
 - \triangleright F stands for set of all **atoms** (boolean vars)
 - O stands for set of all operators (actions)
 - $ightharpoonup I \subseteq F$ stands for initial situation
 - $ightharpoonup G \subseteq F$ stands for **goal situation**
- Operators $o \in O$ represented by
 - ightharpoonup the **Add** list $Add(o) \subseteq F$
 - ightharpoonup the **Delete** list $Del(o) \subseteq F$
 - ▶ the **Precondition** list $Pre(o) \subseteq F$
 - Pickup(X)
 - P: grip(∅) \wedge clear(X) \wedge ontable(X)
 - -A: grip(X)
 - D: onTable(X) \land grip(\varnothing)

Problem Formulation Matters! The 8 Queens Problem

Formulation #1:

- Place a queen on any open square
- Repeat until all queens are placed
- State space of $\frac{64!}{56!} = 1.78 * 10^{14}$

Formulation #2:

- Place a queen on any row 1 square
- Place a queen on any row 2 square
- State space of $8^8 = 1.68 * 10^7$

Formulation #3:

- Place a queen on any row 1 square
- Place a queen on any row 2 square not sharing a column...
- State space of 8! = 40,320

Planning across length scales

