# Evaluation and Benchmark for Machine-Generated Text Detection 机器生成文本检测的评估和基准

赵国宇

2024.08.23



### **OUTLINE**

#### 01 DATASET & BENCHMARK

- 1.1 流行数据集介绍与对比
- 1.2 24年新数据集介绍 (M4、M4GT-Bench、RAID、TEXTMACHINA)

#### **02 EVALUATION**

- 2.1 评测维度
- 多场景评测: MAGE: Machine-generated Text Detection in the Wild (ACL 2024)
- 鲁棒性评测: Stumbling Blocks: Stress Testing the Robustness of Machine-Generated Text Detectors Under Attacks (ACL 2024)

#### 03 CONCLUSION

- 大模型生成文本数据集非 常重要
- 用于开发和校准detector
- 处于初级阶段,主要针对 特定领域和特定模型

#### Summary of Detection Datasets for LLM-generated text detection.

| Corpus                                                              | Use                      | Human LLMs                                                                                                                                                                                                                                           | LLMs Type                                                                                                                 | Language             | Attack                                                                                                | Domain                     |
|---------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------|----------------------------|
| HC3 (Guo et al. 2023)                                               | train                    | -80k -43k                                                                                                                                                                                                                                            | ChatGPT                                                                                                                   | English,<br>Chinese  | 3                                                                                                     | Web Text, QA, Social Media |
| CHEAT (Yu et al. 2023a)                                             | train                    | ~15k ~35k                                                                                                                                                                                                                                            | ChatGPT                                                                                                                   | English              | Paraphrase                                                                                            | Scientific Writing         |
| HC3 Plus (Su et al.<br>2023b)                                       | train<br>valid<br>test   | ~95k<br>~10k<br>~38k                                                                                                                                                                                                                                 | GPT-3.5-Turbo                                                                                                             | Englilsh,<br>Chinese | Paraphrase                                                                                            | News Writing, Social Media |
| OpenLLMText (Chen et al. 2023a)                                     | train,<br>valid,<br>test | ~52k ~209k<br>~8k ~33k<br>~8k ~33k                                                                                                                                                                                                                   | ChatGPT, PaLM, LLaMA,<br>GPT2-XL                                                                                          | English              | S                                                                                                     | Web Text                   |
| GROVER Dataset<br>(Zellers et al. 2019b)                            | train                    | ~24k                                                                                                                                                                                                                                                 | Grover-Mega                                                                                                               | English              | 2                                                                                                     | News Writing               |
| TweepFake (Fagni et al.<br>2021)                                    | train                    | ~12k ~12k                                                                                                                                                                                                                                            | GPT-2, RNN, Markov, LSTM,<br>CharRNN                                                                                      | English              | 2                                                                                                     | Social Media               |
| GPT-2 Output Dataset <sup>6</sup>                                   | train<br>test            | ~250k ~2000<br>~5k ~40k                                                                                                                                                                                                                              | k GPT-2 (small, medium, large, xl)                                                                                        | English              | ×                                                                                                     | Web Text                   |
| ArguGPT (Liu et al.<br>2023c)                                       | train<br>valid<br>test   | -6k<br>700<br>700                                                                                                                                                                                                                                    | GPT2-XI, Text-Babbage-001,<br>Text-Curie-001, Text-Davinci-<br>001, Text-Davinci-002, Text-<br>Davinci-003, GPT-3.5-Turbo | English              | \$                                                                                                    | Scientific writing         |
| et al. 2023c) valid ~56k Di<br>test ~56k LI<br>Gi<br>ba<br>35<br>30 |                          | GPT (Text-Davinci-002, Text-Davinci-003, GPT-Turbo-3.5), LLaMA (6B, 13B, 30B, 65B), GLM-130B, FLAN-T5 (small, base, large, xl, xxl), OPT(125M, 350M, 1.3B, 2.7B, 6.7B, 13B, 30B, iml1.3B, iml-30B), T0 (3B, 11B), BLOOM-7B1, GPT-J-6B, GPT-NeoX-20B) | English Paraphrase                                                                                                        |                      | Social Media, News Writin<br>QA, Story Generation, Comp-<br>hension and Reasoning, Scientific writing |                            |

#### Summary of Detection Datasets for LLM-generated text detection.

| Corpus                                                                      | Use                      | Human LLMs                                                                                                                                                                                                                                           | LLMs Type                                                                                                                 | Language             | Attack                                                                                         | Domain                     |  |  |
|-----------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------|----------------------------|--|--|
| HC3 (Guo et al. 2023)                                                       | train -80k -43k ChatGPT  |                                                                                                                                                                                                                                                      | ChatGPT                                                                                                                   | English,<br>Chinese  |                                                                                                | Web Text, QA, Social Media |  |  |
| CHEAT (Yu et al. 2023a)                                                     | train                    | ~15k ~35k                                                                                                                                                                                                                                            | ChatGPT                                                                                                                   | English              | Paraphrase                                                                                     | Scientific Writing         |  |  |
| HC3 Plus (Su et al.<br>2023b)                                               | train<br>valid<br>test   | −95k<br>~10k<br>~38k                                                                                                                                                                                                                                 | GPT-3.5-Turbo                                                                                                             | Englilsh,<br>Chinese | Paraphrase                                                                                     | News Writing, Social Media |  |  |
| OpenLLMText (Chen et al. 2023a)                                             | train,<br>valid,<br>test | ~52k ~209k<br>~8k ~33k<br>~8k ~33k                                                                                                                                                                                                                   | ChatGPT, PaLM, LLaMA,<br>GPT2-XL                                                                                          | English              | ¥                                                                                              | Web Text                   |  |  |
| GROVER Dataset<br>(Zellers et al. 2019b)                                    | train                    | ~24k                                                                                                                                                                                                                                                 | Grover-Mega                                                                                                               | English              | 2                                                                                              | News Writing               |  |  |
| TweepFake (Fagni et al.<br>2021)                                            | train                    | ~12k ~12k                                                                                                                                                                                                                                            | GPT-2, RNN, Markov, LSTM,<br>CharRNN                                                                                      | English              | 2                                                                                              | Social Media               |  |  |
| GPT-2 Output Dataset <sup>6</sup>                                           | train<br>test            | ~250k ~2000<br>~5k ~40k                                                                                                                                                                                                                              | GPT-2 (small, medium, large, xl)                                                                                          | English              | *                                                                                              | Web Text                   |  |  |
| ArguGPT (Liu et al.<br>2023c)                                               | train<br>valid<br>test   | -6k<br>700<br>700                                                                                                                                                                                                                                    | GPT2-Xl, Text-Babbage-001,<br>Text-Curie-001, Text-Davinci-<br>001, Text-Davinci-002, Text-<br>Davinci-003, GPT-3.5-Turbo | English              | Ş                                                                                              | Scientific writing         |  |  |
| DeepfakeTextDetect (Li train ~236k<br>et al. 2023c) valid ~56k<br>test ~56k |                          | GPT (Text-Davinci-002, Text-Davinci-003, GPT-Turbo-3.5), LLaMA (6B, 13B, 30B, 65B), GLM-130B, FLAN-T5 (small, base, large, xl, xxl), OPT(125M, 350M, 1.3B, 2.7B, 6.7B, 13B, 30B, iml1.3B, iml-30B), T0 (3B, 11B), BLOOM-7B1, GPT-J-6B, GPT-NeoX-20B) | English Paraphrase                                                                                                        |                      | Social Media, News Writing QA, Story Generation, Comphension and Reasoning, Scientific writing |                            |  |  |

HC3 (The Human ChatGPT Comparison Corpus) 最早的开源数据集,开创性贡献,包括收集人类和ChatGPT 对相同问题的回答,计算机、金融、医学等领域。Prompt缺乏多样性。例What、Why、How

#### Summary of Detection Datasets for LLM-generated text detection.

| Corpus                                   | Use                                                                                                                   | Huma               | n LLMs                                                                                                                                                                                                                                               | LLMs Type                                                                                                                 | Language             | Attack                                                                                                         | Domain                     |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------|----------------------------|
| HC3 (Guo et al. 2023)                    | train                                                                                                                 | ~80k               | -43k                                                                                                                                                                                                                                                 | ChatGPT                                                                                                                   | English,<br>Chinese  | <b>3</b>                                                                                                       | Web Text, QA, Social Media |
| CHEAT (Yu et al. 2023a)                  | train                                                                                                                 | ~15k               | ~35k                                                                                                                                                                                                                                                 | ChatGPT                                                                                                                   | English              | Paraphrase                                                                                                     | Scientific Writing         |
| HC3 Plus (Su et al.<br>2023b)            | train<br>valid<br>test                                                                                                | ~1                 | 5k<br>0k<br>8k                                                                                                                                                                                                                                       | GPT-3.5-Turbo                                                                                                             | Englilsh,<br>Chinese | Paraphrase                                                                                                     | News Writing, Social Media |
| OpenLLMText (Chen et al. 2023a)          | train,<br>valid,<br>test                                                                                              | ~52k<br>~8k<br>~8k | ~209k<br>~33k<br>~33k                                                                                                                                                                                                                                | ChatGPT, PaLM, LLaMA,<br>GPT2-XL                                                                                          | English              | £                                                                                                              | Web Text                   |
| GROVER Dataset<br>(Zellers et al. 2019b) | train                                                                                                                 | ~2                 | 4k                                                                                                                                                                                                                                                   | Grover-Mega                                                                                                               | English              | -                                                                                                              | News Writing               |
| TweepFake (Fagni et al.<br>2021)         | train                                                                                                                 | ~12k               | ~12k                                                                                                                                                                                                                                                 | GPT-2, RNN, Markov, LSTM,<br>CharRNN                                                                                      | English              | 2                                                                                                              | Social Media               |
| GPT-2 Output Dataset <sup>6</sup>        | train<br>test                                                                                                         | ~250k<br>~5k       | ~2000k<br>~40k                                                                                                                                                                                                                                       | GPT-2 (small, medium, large, xl)                                                                                          | English              | *                                                                                                              | Web Text                   |
| ArguGPT (Liu et al.<br>2023c)            | train<br>valid<br>test                                                                                                | -6k<br>700<br>700  |                                                                                                                                                                                                                                                      | GPT2-XI, Text-Babbage-001,<br>Text-Curie-001, Text-Davinci-<br>001, Text-Davinci-002, Text-<br>Davinci-003, GPT-3.5-Turbo |                      | Ş                                                                                                              | Scientific writing         |
| DeepfakeTextDetect (Li<br>et al. 2023c)  | valid ~56k Davinci-003<br>test ~56k LLaMA (6i<br>GLM-130B,<br>base, large,<br>350M, 1.3B<br>30B, iml1.3l<br>11B), BLO |                    | GPT (Text-Davinci-002, Text-Davinci-003, GPT-Turbo-3.5), LLaMA (6B, 13B, 30B, 65B), GLM-130B, FLAN-T5 (small, base, large, xl, xxl), OPT(125M, 350M, 1.3B, 2.7B, 6.7B, 13B, 30B, iml1.3B, iml-30B), T0 (3B, 11B), BLOOM-7B1, GPT-J-6B, GPT-NeoX-20B) |                                                                                                                           | Paraphrase           | Social Media, News Writing,<br>QA, Story Generation, Compre-<br>hension and Reasoning, Scien-<br>tific writing |                            |

#### **CHEAT**

检测ChatGPT生成的虚假学术 内容的最大的公共可访问资源。 关注的学科太少,忽视了跨领 域。

#### Summary of Detection Datasets for LLM-generated text detection.

| Corpus                                   | Use                      | Human LLMs                         | LLMs Type                                                                                                                                                                                                                                            | Language             | Attack     | Domain                                                                                                         |  |  |
|------------------------------------------|--------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------|----------------------------------------------------------------------------------------------------------------|--|--|
| HC3 (Guo et al. 2023)                    | train                    | ~80k ~43k                          | ChatGPT                                                                                                                                                                                                                                              | English,<br>Chinese  | i i        | Web Text, QA, Social Media                                                                                     |  |  |
| CHEAT (Yu et al. 2023a)                  | train                    | ~15k ~35k                          | ChatGPT                                                                                                                                                                                                                                              | English              | Paraphrase | Scientific Writing                                                                                             |  |  |
| HC3 Plus (Su et al.<br>2023b)            | train<br>valid<br>test   | -95k<br>-10k<br>-38k               | GPT-3.5-Turbo                                                                                                                                                                                                                                        | Englilsh,<br>Chinese | Paraphrase | News Writing, Social Media                                                                                     |  |  |
| OpenLLMText (Chen et al. 2023a)          | train,<br>valid,<br>test | ~52k ~209k<br>~8k ~33k<br>~8k ~33k | ChatGPT, PaLM, LLaMA,<br>GPT2-XL                                                                                                                                                                                                                     | English              | S          | Web Text                                                                                                       |  |  |
| GROVER Dataset<br>(Zellers et al. 2019b) | train                    | ~24k                               | Grover-Mega                                                                                                                                                                                                                                          | English              | 2          | News Writing                                                                                                   |  |  |
| TweepFake (Fagni et al.<br>2021)         | train                    | ~12k ~12k                          | GPT-2, RNN, Markov, LSTM, CharRNN                                                                                                                                                                                                                    | English              | 5          | Social Media                                                                                                   |  |  |
| GPT-2 Output Dataset <sup>6</sup>        | train<br>test            | ~250k ~2000k<br>~5k ~40k           | GPT-2 (small, medium, large, xl)                                                                                                                                                                                                                     | English              | ×          | Web Text                                                                                                       |  |  |
| ArguGPT (Liu et al.<br>2023c)            | train<br>valid<br>test   | -6k<br>700<br>700                  | GPT2-XI, Text-Babbage-001,<br>Text-Curie-001, Text-Davinci-<br>001, Text-Davinci-002, Text-<br>Davinci-003, GPT-3.5-Turbo                                                                                                                            | English              |            | Scientific writing                                                                                             |  |  |
| DeepfakeTextDetect (Li<br>et al. 2023c)  | train<br>valid<br>test   | ~236k<br>~56k<br>~56k              | GPT (Text-Davinci-002, Text-Davinci-003, GPT-Turbo-3.5), LLaMA (6B, 13B, 30B, 65B), GLM-130B, FLAN-T5 (small, base, large, xl, xxl), OPT(125M, 350M, 1.3B, 2.7B, 6.7B, 13B, 30B, iml1.3B, iml-30B), T0 (3B, 11B), BLOOM-7B1, GPT-J-6B, GPT-NeoX-20B) | English              | Paraphrase | Social Media, News Writing,<br>QA, Story Generation, Compre-<br>hension and Reasoning, Scien-<br>tific writing |  |  |

HC3 Plus HC3的增强版,引入了一个新部分专门针对需要语义不变性的任务,例如摘要、翻译和释义,包含3个数据集。 Prompt仍然缺乏多样性。

#### Summary of Detection Datasets for LLM-generated text detection.

| Corpus                                   | Use                      | Human LLMs                         | LLMs Type                                                                                                                                                                                                                                            | Language             | Attack     | Domain                                                                                                         |  |  |
|------------------------------------------|--------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------|----------------------------------------------------------------------------------------------------------------|--|--|
| HC3 (Guo et al. 2023)                    | train                    | -80k -43k                          | ChatGPT                                                                                                                                                                                                                                              | English,<br>Chinese  | <b>18</b>  | Web Text, QA, Social Media                                                                                     |  |  |
| CHEAT (Yu et al. 2023a)                  | train                    | ~15k ~35k                          | ChatGPT                                                                                                                                                                                                                                              | English              | Paraphrase | Scientific Writing                                                                                             |  |  |
| HC3 Plus (Su et al.<br>2023b)            | train<br>valid<br>test   | ~95k<br>~10k<br>~38k               | GPT-3.5-Turbo                                                                                                                                                                                                                                        | Englilsh,<br>Chinese | Paraphrase | News Writing, Social Media                                                                                     |  |  |
| OpenLLMText (Chen<br>et al. 2023a)       | train,<br>valid,<br>test | ~52k ~209k<br>~8k ~33k<br>~8k ~33k | ChatGPT, PaLM, LLaMA,<br>GPT2-XL                                                                                                                                                                                                                     | English              | S.         | Web Text                                                                                                       |  |  |
| GROVER Dataset<br>(Zellers et al. 2019b) | train                    | ~24k                               | Grover-Mega                                                                                                                                                                                                                                          | English              | 2          | News Writing                                                                                                   |  |  |
| TweepFake (Fagni et al.<br>2021)         | train                    | ~12k ~12k                          | GPT-2, RNN, Markov, LSTM,<br>CharRNN                                                                                                                                                                                                                 | English              | 2          | Social Media                                                                                                   |  |  |
| GPT-2 Output Dataset <sup>6</sup>        | train<br>test            | ~250k ~2000<br>~5k ~40k            | k GPT-2 (small, medium, large, xl)                                                                                                                                                                                                                   | English              | ×          | Web Text                                                                                                       |  |  |
| ArguGPT (Liu et al.<br>2023c)            | train<br>valid<br>test   | -6k<br>700<br>700                  | GPT2-Xl, Text-Babbage-001,<br>Text-Curie-001, Text-Davinci-<br>001, Text-Davinci-002, Text-<br>Davinci-003, GPT-3.5-Turbo                                                                                                                            | English              | \$         | Scientific writing                                                                                             |  |  |
| DeepfakeTextDetect (Li<br>et al. 2023c)  | train<br>valid<br>test   | ~236k<br>~56k<br>~56k              | GPT (Text-Davinci-002, Text-Davinci-003, GPT-Turbo-3.5), LLaMA (6B, 13B, 30B, 65B), GLM-130B, FLAN-T5 (small, base, large, xl, xxl), OPT(125M, 350M, 1.3B, 2.7B, 6.7B, 13B, 30B, iml1.3B, iml-30B), T0 (3B, 11B), BLOOM-7B1, GPT-J-6B, GPT-NeoX-20B) | English Paraphrase   |            | Social Media, News Writing,<br>QA, Story Generation, Compre-<br>hension and Reasoning, Scien-<br>tific writing |  |  |

OpenLLMText 4种大语言模型。 分为训练集、验证集和测试集。 并没有完全捕捉到跨领域和多 语言文本的细微差别。

#### Summary of Detection Datasets for LLM-generated text detection.

| Corpus                                   | Use                      | Huma                  | n LLMs                | LLMs Type                            | E                                                                                                                         |               | Language             | Attack                                                                                                         | Domain                     |
|------------------------------------------|--------------------------|-----------------------|-----------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|----------------------------------------------------------------------------------------------------------------|----------------------------|
| HC3 (Guo et al. 2023)                    | train                    | ~80k                  | -43k                  | ChatGPT                              |                                                                                                                           |               | English,<br>Chinese  | ia .                                                                                                           | Web Text, QA, Social Media |
| CHEAT (Yu et al. 2023a)                  | train                    | ~15k                  | ~35k                  | ChatGPT                              |                                                                                                                           |               | English              | Paraphrase                                                                                                     | Scientific Writing         |
| HC3 Plus (Su et al.<br>2023b)            | train<br>valid<br>test   | ~1                    | 5k<br>0k<br>8k        | GPT-3.5-Tu                           | irbo                                                                                                                      |               | Englilsh,<br>Chinese | Paraphrase                                                                                                     | News Writing, Social Media |
| OpenLLMText (Chen et al. 2023a)          | train,<br>valid,<br>test | ~52k<br>~8k<br>~8k    | ~209k<br>~33k<br>~33k | ChatGPT,<br>GPT2-XL                  | PaLM,                                                                                                                     | LLaMA,        | English              | £                                                                                                              | Web Text                   |
| GROVER Dataset<br>(Zellers et al. 2019b) | train                    | ~2                    | 4k                    | Grover-Me                            | 946948849 <b>₩</b> 09 3849                                                                                                |               | English              | 9                                                                                                              | News Writing               |
| TweepFake (Fagni et al.<br>2021)         | train                    | ~12k                  | ~12k                  | GPT-2, RNN, Markov, LSTM,<br>CharRNN |                                                                                                                           |               | English              | 2                                                                                                              | Social Media               |
| GPT-2 Output Dataset <sup>6</sup>        | train<br>test            | ~250k<br>~5k          | ~2000k<br>~40k        | GPT-2 (sma                           | all, mediur                                                                                                               | n, large, xl) | English              | *                                                                                                              | Web Text                   |
| ArguGPT (Liu et al.<br>2023c)            | train<br>valid<br>test   | -6k<br>700<br>700     |                       | 001, Text                            | GPT2-XI, Text-Babbage-001,<br>Text-Curie-001, Text-Davinci-<br>001, Text-Davinci-002, Text-<br>Davinci-003, GPT-3.5-Turbo |               | English              | ş                                                                                                              | Scientific writing         |
| DeepfakeTextDetect (Li<br>et al. 2023c)  | train<br>valid<br>test   | ~236k<br>~56k<br>~56k |                       | //i                                  |                                                                                                                           | English       | Paraphrase           | Social Media, News Writing,<br>QA, Story Generation, Compre-<br>hension and Reasoning, Scien-<br>tific writing |                            |

GROVER Dataset 主要关注新闻文章。

#### Summary of Detection Datasets for LLM-generated text detection.

| Corpus                                   | Use                      | Human LLMs                         | LLMs Type                                                                                                                                                                                                                                            | Language             | Attack     | Domain                                                                                                         |
|------------------------------------------|--------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------|----------------------------------------------------------------------------------------------------------------|
| HC3 (Guo et al. 2023)                    | train                    | -80k -43k                          | ChatGPT                                                                                                                                                                                                                                              | English,<br>Chinese  | is .       | Web Text, QA, Social Media                                                                                     |
| CHEAT (Yu et al. 2023a)                  | train                    | ~15k ~35k                          | ChatGPT                                                                                                                                                                                                                                              | English              | Paraphrase | Scientific Writing                                                                                             |
| HC3 Plus (Su et al.<br>2023b)            | train<br>valid<br>test   | -95k<br>-10k<br>-38k               | GPT-3.5-Turbo                                                                                                                                                                                                                                        | Englilsh,<br>Chinese | Paraphrase | News Writing, Social Media                                                                                     |
| OpenLLMText (Chen et al. 2023a)          | train,<br>valid,<br>test | ~52k ~209k<br>~8k ~33k<br>~8k ~33k | ChatGPT, PaLM, LLaMA,<br>GPT2-XL                                                                                                                                                                                                                     | English              | S.         | Web Text                                                                                                       |
| GROVER Dataset<br>(Zellers et al. 2019b) | train                    | ~24k                               | Grover-Mega                                                                                                                                                                                                                                          | English              | 2          | News Writing                                                                                                   |
| TweepFake (Fagni et al.<br>2021)         | train                    | ~12k ~12k                          | GPT-2, RNN, Markov, LSTM,<br>CharRNN                                                                                                                                                                                                                 | English              | 2          | Social Media                                                                                                   |
| GPT-2 Output Dataset <sup>6</sup>        | train<br>test            | ~250k ~2000l<br>~5k ~40k           | GPT-2 (small, medium, large, xl)                                                                                                                                                                                                                     | English              | ×          | Web Text                                                                                                       |
| ArguGPT (Liu et al.<br>2023c)            | train<br>valid<br>test   | -6k<br>700<br>700                  | GPT2-XI, Text-Babbage-001,<br>Text-Curie-001, Text-Davinci-<br>001, Text-Davinci-002, Text-<br>Davinci-003, GPT-3.5-Turbo                                                                                                                            | English              | <u> </u>   | Scientific writing                                                                                             |
| DeepfakeTextDetect (Li<br>et al. 2023c)  | train<br>valid<br>test   | ~236k<br>~56k<br>~56k              | GPT (Text-Davinci-002, Text-Davinci-003, GPT-Turbo-3.5), LLaMA (6B, 13B, 30B, 65B), GLM-130B, FLAN-T5 (small, base, large, xl, xxl), OPT(125M, 350M, 1.3B, 2.7B, 6.7B, 13B, 30B, iml1.3B, iml-30B), T0 (3B, 11B), BLOOM-7B1, GPT-J-6B, GPT-NeoX-20B) | English              | Paraphrase | Social Media, News Writing,<br>QA, Story Generation, Compre-<br>hension and Reasoning, Scien-<br>tific writing |

TweepFake Dataset 5种大语言模型。 用于分析Twitter上的虚假推文, 这些推文来自真实和虚假账户。

#### Summary of Detection Datasets for LLM-generated text detection.

| Corpus                                   | Use                      | Human LLMs                         | LLMs Type                                                                                                                                                                                                                                            | Language             | Attack     | Domain                                                                                                        |
|------------------------------------------|--------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------|---------------------------------------------------------------------------------------------------------------|
| HC3 (Guo et al. 2023)                    | train                    | -80k -43k                          | ChatGPT                                                                                                                                                                                                                                              | English,<br>Chinese  | i i        | Web Text, QA, Social Media                                                                                    |
| CHEAT (Yu et al. 2023a)                  | train                    | ~15k ~35k                          | ChatGPT                                                                                                                                                                                                                                              | English              | Paraphrase | Scientific Writing                                                                                            |
| HC3 Plus (Su et al.<br>2023b)            | train<br>valid<br>test   | ~95k<br>~10k<br>~38k               | GPT-3.5-Turbo                                                                                                                                                                                                                                        | Englilsh,<br>Chinese | Paraphrase | News Writing, Social Media                                                                                    |
| OpenLLMText (Chen et al. 2023a)          | train,<br>valid,<br>test | ~52k ~209k<br>~8k ~33k<br>~8k ~33k | ChatGPT, PaLM, LLaMA,<br>GPT2-XL                                                                                                                                                                                                                     | English              | ×          | Web Text                                                                                                      |
| GROVER Dataset<br>(Zellers et al. 2019b) | train                    | ~24k                               | Grover-Mega                                                                                                                                                                                                                                          | English              | 2          | News Writing                                                                                                  |
| TweepFake (Fagni et al.<br>2021)         | train                    | ~12k ~12k                          | GPT-2, RNN, Markov, LSTM, CharRNN                                                                                                                                                                                                                    | English              | 2          | Social Media                                                                                                  |
|                                          |                          |                                    | GPT-2 (small, medium, large, xl)                                                                                                                                                                                                                     | English              | *          | Web Text                                                                                                      |
| ArguGPT (Liu et al.<br>2023c)            | train<br>valid<br>test   | -6k<br>700<br>700                  | GPT2-XI, Text-Babbage-001,<br>Text-Curie-001, Text-Davinci-<br>001, Text-Davinci-002, Text-<br>Davinci-003, GPT-3.5-Turbo                                                                                                                            | English              | ş          | Scientific writing                                                                                            |
| DeepfakeTextDetect (Li<br>et al. 2023c)  | train<br>valid<br>test   | ~236k<br>~56k<br>~56k              | GPT (Text-Davinci-002, Text-Davinci-003, GPT-Turbo-3.5), LLaMA (6B, 13B, 30B, 65B), GLM-130B, FLAN-T5 (small, base, large, xl, xxl), OPT(125M, 350M, 1.3B, 2.7B, 6.7B, 13B, 30B, iml1.3B, iml-30B), T0 (3B, 11B), BLOOM-7B1, GPT-J-6B, GPT-NeoX-20B) | English              | Paraphrase | Social Media, News Writing<br>QA, Story Generation, Compre-<br>hension and Reasoning, Scien-<br>tific writing |

GPT2-Output Dataset 来自Web Text测试集的250k个 文档。 旨在进一步研究GPT-2模型的可 探测性。

#### Summary of Detection Datasets for LLM-generated text detection.

| Corpus                                   | Use                      | Human LLMs                         | LLMs Type                                                                                                                                                                                                                                            | Language             | Attack     | Domain                                                                                                      |
|------------------------------------------|--------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------|-------------------------------------------------------------------------------------------------------------|
| HC3 (Guo et al. 2023)                    | train                    | ~80k ~43k                          | ChatGPT                                                                                                                                                                                                                                              | English,<br>Chinese  | is .       | Web Text, QA, Social Media                                                                                  |
| CHEAT (Yu et al. 2023a)                  | train                    | ~15k ~35k                          | ChatGPT                                                                                                                                                                                                                                              | English              | Paraphrase | Scientific Writing                                                                                          |
| HC3 Plus (Su et al.<br>2023b)            | train<br>valid<br>test   | −95k<br>~10k<br>~38k               | GPT-3.5-Turbo                                                                                                                                                                                                                                        | Englilsh,<br>Chinese | Paraphrase | News Writing, Social Media                                                                                  |
| OpenLLMText (Chen et al. 2023a)          | train,<br>valid,<br>test | ~52k ~209k<br>~8k ~33k<br>~8k ~33k | ChatGPT, PaLM, LLaMA,<br>GPT2-XL                                                                                                                                                                                                                     | English              | ¥.         | Web Text                                                                                                    |
| GROVER Dataset<br>(Zellers et al. 2019b) | train                    | ~24k                               | Grover-Mega                                                                                                                                                                                                                                          | English              | 2          | News Writing                                                                                                |
| TweepFake (Fagni et al.<br>2021)         | train                    | ~12k ~12k                          | GPT-2, RNN, Markov, LSTM,<br>CharRNN                                                                                                                                                                                                                 | English              | 2          | Social Media                                                                                                |
| GPT-2 Output Dataset <sup>6</sup>        | train<br>test            | ~250k ~2000<br>~5k ~40k            | k GPT-2 (small, medium, large, xl)                                                                                                                                                                                                                   | English              | *          | Web Text                                                                                                    |
| ArguGPT (Liu et al.<br>2023c)            | train<br>valid<br>test   | -6k<br>700<br>700                  | GPT2-Xl, Text-Babbage-001,<br>Text-Curie-001, Text-Davinci-<br>001, Text-Davinci-002, Text-<br>Davinci-003, GPT-3.5-Turbo                                                                                                                            | English              | ş          | Scientific writing                                                                                          |
| DeepfakeTextDetect (Li et al. 2023c)     |                          | ~236k<br>~56k<br>~56k              | GPT (Text-Davinci-002, Text-Davinci-003, GPT-Turbo-3.5), LLaMA (6B, 13B, 30B, 65B), GLM-130B, FLAN-T5 (small, base, large, xl, xxl), OPT(125M, 350M, 1.3B, 2.7B, 6.7B, 13B, 30B, iml1.3B, iml-30B), T0 (3B, 11B), BLOOM-7B1, GPT-J-6B, GPT-NeoX-20B) | English              | Paraphrase | Social Media, News Writing<br>QA, Story Generation, Compre<br>hension and Reasoning, Scien<br>tific writing |

ArguGPT Dataset 7种大语言模型。 专门用于检测各种学术环境(如 课堂练习、托福和GRE写作任 务)中机器生成的文本。

#### Summary of Detection Datasets for LLM-generated text detection.

| Corpus                                   | Use                      | Human LL                    | Ms LLMs Type                                                                                                                                                                                                                                         | Language             | Attack     | Domain                                                                                             |  |
|------------------------------------------|--------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------|----------------------------------------------------------------------------------------------------|--|
| HC3 (Guo et al. 2023)                    | train                    | ~80k -4                     | 3k ChatGPT                                                                                                                                                                                                                                           | English,<br>Chinese  | 3          | Web Text, QA, Social Media                                                                         |  |
| CHEAT (Yu et al. 2023a)                  | train                    | ~15k ~3                     | 5k ChatGPT                                                                                                                                                                                                                                           | English              | Paraphrase | Scientific Writing                                                                                 |  |
| HC3 Plus (Su et al.<br>2023b)            | train<br>valid<br>test   | ~95k<br>~10k<br>~38k        | GPT-3.5-Turbo                                                                                                                                                                                                                                        | Englilsh,<br>Chinese | Paraphrase | News Writing, Social Media                                                                         |  |
| OpenLLMText (Chen et al. 2023a)          | train,<br>valid,<br>test | -52k -2<br>~8k ~3<br>~8k ~3 |                                                                                                                                                                                                                                                      | English              | ¥          | Web Text                                                                                           |  |
| GROVER Dataset<br>(Zellers et al. 2019b) | train                    | ~24k                        | Grover-Mega                                                                                                                                                                                                                                          | English              | -          | News Writing                                                                                       |  |
| TweepFake (Fagni et al.<br>2021)         | train                    | ~12k ~1                     | 2k GPT-2, RNN, Markov, LSTM,<br>CharRNN                                                                                                                                                                                                              | English              | 2          | Social Media                                                                                       |  |
| GPT-2 Output Dataset <sup>6</sup>        | train<br>test            | ~250k ~2<br>~5k ~4          | 000k GPT-2 (small, medium, large, xl)<br>0k                                                                                                                                                                                                          | English              | *          | Web Text                                                                                           |  |
| ArguGPT (Liu et al. 2023c)               | train<br>valid<br>test   | -6k<br>700<br>700           | GPT2-XI, Text-Babbage-001,<br>Text-Curie-001, Text-Davinci-<br>001, Text-Davinci-002, Text-<br>Davinci-003, GPT-3.5-Turbo                                                                                                                            | English              | ē          | Scientific writing                                                                                 |  |
| DeepfakeTextDetect (Li<br>et al. 2023c)  | train<br>valid<br>test   | ~236k<br>~56k<br>~56k       | GPT (Text-Davinci-002, Text-Davinci-003, GPT-Turbo-3.5), LLaMA (6B, 13B, 30B, 65B), GLM-130B, FLAN-T5 (small, base, large, xl, xxl), OPT(125M, 350M, 1.3B, 2.7B, 6.7B, 13B, 30B, iml1.3B, iml-30B), T0 (3B, 11B), BLOOM-7B1, GPT-J-6B, GPT-NeoX-20B) | English Paraphrase   |            | Social Media, News Writin<br>QA, Story Generation, Comprehension and Reasoning, Scientific writing |  |

DeepfakeTextDetect Dataset 用于深度伪造文本检测。 10个不同数据集(新闻文章、 故事、科学著作等)。 27个大语言模型。

### 1.1 流行数据集介绍与对比- Potential Dataset

#### 从0开始构建数据集非常繁琐



从现有人类编写的数据集,延伸出大模型检测的数据集

Summary of other potential datasets that can easily extended to LLM-generated text detection tasks.

| Corpus                                            | Size  | Source                                                             | Language      | Domain                                 |
|---------------------------------------------------|-------|--------------------------------------------------------------------|---------------|----------------------------------------|
| XSum (Narayan, Cohen, and Lapata 2018)            | 42k   | BBC                                                                | English       | News Writing                           |
| SQuAD (Rajpurkar et al. 2016)                     | 98.2k | Wiki                                                               | English       | Question Answering                     |
| WritingPrompts (Fan, Lewis, and Dauphin 2018)     | 302k  | Reddit WRITINGPROMPTS                                              | English       | Story Generation                       |
| Wiki40B (Guo et al. 2020)                         | 17.7m | Wiki                                                               | 40+ Languages | Web Text                               |
| PubMedQA (Jin et al. 2019)                        | 211k  | PubMed                                                             | English       | Question Answering                     |
| Children's Book Corpus (Hill et al. 2016)         | 687k  | Books                                                              | English       | Question Answering                     |
| Avax Tweets Dataset (Muric, Wu, and Ferrara 2021) | 137m  | Twitter                                                            | English       | Social Media                           |
| Climate Change Dataset (Littman and Wrubel 2019)  | 4m    | Twitter                                                            | English       | Social Media                           |
| Yelp Dataset (Asghar 2016)                        | 700k  | Yelp                                                               | English       | Social Media                           |
| ELI5 (Fan et al. 2019)                            | 556k  | Reddit                                                             | English       | Question Answering                     |
| ROCStories (Mostafazadeh et al. 2016)             | 50k   | Crowdsourcing                                                      | English       | Story Generation                       |
| HellaSwag (Zellers et al. 2019a)                  | 70k   | ActivityNet Captions, Wikihow                                      | English       | Question Answering                     |
| SciGen (Moosavi et al. 2021)                      | 52k   | arXiv                                                              | English       | Scientific Writing, Question Answering |
| WebText (Radford et al. 2019)                     | 45m   | Web                                                                | English       | Web Text                               |
| TruthfulQA (Lin, Hilton, and Evans 2022)          | 817   | authors writtEnglish                                               | English       | Question Answering                     |
| NarrativeQA (Kočiský et al. 2018)                 | 1.4k  | Gutenberg3, web                                                    | English       | Question Answering                     |
| TOEFL11 (Blanchard et al. 2013)                   | 12k   | TOEFL test                                                         | 11 Languages  | Scientific writing                     |
| Peer Reviews (Kang et al. 2018)                   | 14.5k | NIPS 2013–2017, CoNLL 2016, ACL 2017<br>ICLR 2017, arXiv 2007–2017 | English       | Scientific Writing                     |

- ① Q&A: 相同的问题,回答
- ② Scientific Writing: 给定学术主题
- ③ Story Generation: 写故事
- ④ News Writing: 写新闻
- ③ Web Text: 网络文本数据,比较广泛,主要源于Wikipedia等
- ⑥ Social Media: 主观表达能力
- **⑦ Comprehension and Reasoning:** 理论与推理

### 1.2 24年新数据集介绍-M4

**亮点**: Multi-Generator, Multi-Domain, and Multi-Lingual 该数据集捕捉到了跨语言的微妙之处,包含了多种语言的内容。提升多样性。

| Source/            | Data               | Language                            | Total     |        |                 |         |                 |                  |                    |                |         |
|--------------------|--------------------|-------------------------------------|-----------|--------|-----------------|---------|-----------------|------------------|--------------------|----------------|---------|
| Domain             | License            | and the second second second second | Human     | Human  | Davinci003      | ChatGPT | GPT4            | Cohere           | Dolly-v2           | BLOOMZ         | Total   |
| Wikipedia          | CC BY-SA-3.0       | English                             | 6,458,670 | 3,000  | 3,000           | 2,995   | 3,000           | 2,336            | 2,702              | 3,000          | 20,033  |
| Reddit ELI5        | Huggingface        | English                             | 558,669   | 3,000  | 3,000           | 3,000   | 3,000           | 3,000            | 3,000              | 3,000          | 21,000  |
| WikiHow            | CC-BY-NC-SA        | English                             | 31,102    | 3,000  | 3,000           | 3,000   | 3,000           | 3,000            | 3,000              | 3,000          | 21,000  |
| PeerRead           | Apache license     | English                             | 5,798     | 5,798  | 2,344           | 2,344   | 2,344           | 2,344            | 2,344              | 2,344          | 19,862  |
| arXiv abstract     | CC0-public domain  | English                             | 2,219,423 | 3,000  | 3,000           | 3,000   | 3,000           | 3,000            | 3,000              | 3,000          | 21,000  |
| Arabic-Wikipedia   | CC BY-SA-3.0       | Arabic                              | 1,209,042 | 3,000  |                 | 3,000   | -               | =                | ) <del>-</del>     | -              | 6,000   |
| True & Fake News   | MIT License        | Bulgarian                           | 94,000    | 3,000  | 3,000           | 3,000   | -               |                  | -                  | <del>=</del> ( | 9,000   |
| Baike/Web QA       | MIT license        | Chinese                             | 113,313   | 3,000  | 3,000           | 3,000   | 200             | 49               | ( <del>111</del> ) | =              | 9,000   |
| id_newspapers_2018 | CC BY-NC-SA-4.0    | Indonesian                          | 499,164   | 3,000  | 24              | 3,000   | 9 <del>22</del> | <u>-</u>         | <u>(444)</u>       | 227            | 6,000   |
| RuATD              | Apache 2.0 license | Russian                             | 75,291    | 3,000  | 3,000           | 3,000   | =               | =                | -                  | =              | 9,000   |
| Urdu-news          | CC BY 4.0          | Urdu                                | 107,881   | 3,000  | <del>or</del> a | 3,000   | 855             | <del>55</del> 78 | (50)               | ESAC.          | 6,000   |
| Total              |                    |                                     | Ĭ         | 35,798 | 23,344          | 32,339  | 14,344          | 13,680           | 14,046             | 14,344         | 147,895 |

### 1.2 24年新数据集介绍-M4

■ 构建步骤



M4数据集的扩展版,涉及9种语言、6个领域、9个大语言模型和3个不同的任务。

提出了基于M4数据集的新基准,包含三个任务:

- ① 二元MGT检测,是否由机器生成。
- ② 多路检测,识别由哪一个特定的模型生成文本。
- ③ 混合人机文本检测,识别人类编写文本和机器生成文本的边界。

(局限:本文假设混合文本首先由人编写,然后由机器继续编写,任务是检测变化的单一边界。

但实际情况要复杂得多。)

任务一: 二元检测。

- 数据集基于M4数据集**扩展**而来,包含65,177个人类写作的文本和73,288个机器生成的文本。
- 为了解决数据不平衡问题,对人类文本进行了上采样。
- 还包括了使用GPT-4生成的每个领域的文本,提升泛化能力。

| Source Human   |        |           |          |             | Total   | New test |          |        |         |        |
|----------------|--------|-----------|----------|-------------|---------|----------|----------|--------|---------|--------|
| Domain         | Total= | Upsample+ | Parallel | davinci-003 | ChatGPT | Cohere   | Dolly-v2 | BLOOMz | Machine | GPT-4  |
| OUTFOX         | 16,272 | 13,272    | 3,000    | 3,000       | 3,000   | 3,000    | 3,000    | 3,000  | 15,000  | 3,000  |
| Wikipedia      | 14,333 | 11,997    | 2,336    | 3,000       | 2,995   | 2,336    | 2,702    | 2,999  | 14,032  | 3,000  |
| Wikihow        | 15,999 | 13,000    | 2,999    | 3,000       | 5,557   | 3,000    | 3,000    | 3,000  | 17,557  | 3,000  |
| Reddit ELI5    | 16,000 | 13,000    | 3,000    | 3,000       | 3,000   | 3,000    | 3,000    | 2,999  | 14,999  | 3,000  |
| arXiv abstract | 15,998 | 13,000    | 2,998    | 3,000       | 3,000   | 3,000    | 3,000    | 3,000  | 15,000  | 3,000  |
| PeerRead       | 2,847  | 0         | 2,847    | 2,340       | 2,340   | 2,342    | 2,344    | 2,334  | 11,700  | 2,334  |
| Total          | 65,177 | 50,997    | 14,180   | 14,340      | 16,892  | 13,678   | 14,046   | 14,332 | 73,288  | 14,344 |

Table 1: Tasks 1 and 2 data statistics: all data used for Task 1; data without upsampled human for Task 2. The first row (OUTFOX) and the last column (GPT-4) represent newly generated data added to the M4 (Wang et al., 2023).

任务一: 二元检测。

• 引入了新的语言(德语和意大利语),以及由ChatGPT和Jais-30B生成的阿拉伯语文本。

| Source/               | Language           | Total      | 60        |        | Parallel Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ata     |      |                    |        |
|-----------------------|--------------------|------------|-----------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|--------------------|--------|
| Domain                | License            |            | Human     | Human  | davinci-003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ChatGPT | Jais | LLaMA-2            | Total  |
| Arabic-Wikipedia      | CC BY-SA-3.0       | Arabic     | 1,209,042 | 3,000  | 7 <del>111</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3,000   | -    |                    | 6,000  |
| True & Fake News      | MIT License        | Bulgarian  | 94,000    | 3,000  | 3,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3,000   | _    |                    | 9,000  |
| Baike/Web QA          | MIT license        | Chinese    | 113,313   | 3,000  | 3,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3,000   | -    |                    | 9,000  |
| id_newspapers_2018    | CC BY-NC-SA-4.0    | Indonesian | 499,164   | 3,000  | Parameter and the second secon | 3,000   | _    |                    | 6,000  |
| RuATD                 | Apache 2.0 license | Russian    | 75,291    | 3,000  | 3,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3,000   | _    |                    | 9,000  |
| Urdu-news             | CC BY 4.0          | Urdu       | 107.881   | 3.000  | P==                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.000   | -    |                    | 6.000  |
| News                  | Apache 2.0         | Arabic     | 1,000     | 1,000  | 1 <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,000   | 100  | _                  | 2,100  |
| <b>CHANGE-it News</b> | CC BY-NC-SA 4.0    | Italian    | 127,402   | 3,000  | 1 <del>1</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | · —  | 3,000              | 6,000  |
| News                  | CC BY-NC-SA-4.0    | German     | 10,000    | 3,000  | 455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3,000   | -    | <del>5.55</del> ,5 | 6,000  |
| Wikipedia             | CC BY-SA-3.0       | German     | 2,882,103 | 3,000  | \$ <del>1</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,000   | -    | <del></del>        | 6,000  |
| Total                 | =                  | 9 <u></u>  | 5,119,196 | 28,000 | 9,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25,000  | 100  | 3,000              | 65,100 |

Table 2: **Task 1 Multilingual** introduced new languages: German, Italian, news for Arabic by ChatGPT and Jais-30B. LLaMA-2-70B used here for generating Italian texts is a fine-tuned Italian version, named *camoscio-70B*.

任务二: 多路检测

- 包括六个生成器: ChatGPT、davinci-003、GPT-4、Cohere、Dolly-v2和BLOOMz。
- 收集了一个**新的领域OUTFOX**,用于评估分类器在**学生论文**中的领域泛化能力。

| Source Human   |        |           |          |             |                | Total  | New test        |        |         |        |  |
|----------------|--------|-----------|----------|-------------|----------------|--------|-----------------|--------|---------|--------|--|
| Domain         | Total= | Upsample+ | Parallel | davinci-003 | ChatGPT Cohere |        | Dolly-v2 BLOOMz |        | Machine | GPT-4  |  |
| OUTFOX         | 16,272 | 13,272    | 3,000    | 3,000       | 3,000          | 3,000  | 3,000           | 3,000  | 15,000  | 3,000  |  |
| Wikipedia      | 14,333 | 11,997    | 2,336    | 3,000       | 2,995          | 2,336  | 2,702           | 2,999  | 14,032  | 3,000  |  |
| Wikihow        | 15,999 | 13,000    | 2,999    | 3,000       | 5,557          | 3,000  | 3,000           | 3,000  | 17,557  | 3,000  |  |
| Reddit ELI5    | 16,000 | 13,000    | 3,000    | 3,000       | 3,000          | 3,000  | 3,000           | 2,999  | 14,999  | 3,000  |  |
| arXiv abstract | 15,998 | 13,000    | 2,998    | 3,000       | 3,000          | 3,000  | 3,000           | 3,000  | 15,000  | 3,000  |  |
| PeerRead       | 2,847  | 0         | 2,847    | 2,340       | 2,340          | 2,342  | 2,344           | 2,334  | 11,700  | 2,334  |  |
| Total          | 65,177 | 50,997    | 14,180   | 14,340      | 16,892         | 13,678 | 14,046          | 14,332 | 73,288  | 14,344 |  |

Table 1: Tasks 1 and 2 data statistics: all data used for Task 1; data without upsampled human for Task 2. The first row (OUTFOX) and the last column (GPT-4) represent newly generated data added to the M4 (Wang et al., 2023).

任务三: 混合人机文本检测

(本文假设混合文本首先由人编写, 然后由机器继续编写, 任务是检测变化的单一边界。)

- 特别为**学术论文评论**(PeerRead)和**学生论文**(OUTFOX)两个领域生成了混合文本,人类编写的比例从0-50%不等。
- 使用ChatGPT、GPT-4和LLaMA-2系列生成了5,676个和1,000个示例。

| Domain   | Generator   | Train       | Dev              | Test       | Total       |
|----------|-------------|-------------|------------------|------------|-------------|
|          | ChatGPT     | 3,649 (232) | 505 (23)         | 1,522 (89) | 5,676 (344) |
|          | LLaMA-2-7B* | 3,649 (5)   | 505 (0)          | 1,035 (1)  | 5,189 (6)   |
| PeerRead | LLaMA-2-7B  | 3,649 (227) | 505 (24)         | 1,522 (67) | 5,676 (318) |
|          | LLaMA-2-13B | 3,649 (192) | 505 (24)         | 1,522 (84) | 5,676 (300) |
|          | LLaMA-2-70B | 3,649 (240) | 505 (21)         | 1,522 (88) | 5,676 (349) |
|          | GPT-4       |             | <del></del> :    | 1,000 (10) | 1,000 (10)  |
|          | LLaMA2-7B   | _           | <del>500</del> 8 | 1,000 (8)  | 1,000 (8)   |
| OUTFOX   | LLaMA2-13B  |             | <del>-</del> -   | 1,000 (5)  | 1,000 (5)   |
|          | LLaMA2-70B  | _           | <del>500</del> 8 | 1,000 (19) | 1,000 (19)  |

Table 3: **Task 3 boundary identification data** based on GPT and LLaMA-2 series over domains of academic paper review (PeerRead) and student essay (OUTFOX). The number in "()" is the number of examples purely generated by LLMs, i.e., human and machine boundary index=0. LLaMA-2-7B\* and LLaMA-2-7B used different prompts.

任务三:混合人机文本检测

Complete a partially written peer review about the paper: {paper\_title} Here is the abstract of the paper: {paper\_abstract} Here is the partial review: {partial\_review} Make sure: 1. Continue to generate at least {num\_of\_words} words. 2. Only output your completion of the partial review by ison format, rather than outputting it from the beginning. Output: Act as an experienced essay writer. Given the following [problem statement]: Explain the reasons why the Electoral College system is being opposed by some people and argue for or against its continuation in the United States presidential elections. Please write an essay of at least 318 words with a clear opinion. The written essay should look like human. Here is the [partial\_essay]: The Electoral College is a system of electing our president created by our founding fathers when they were writing the Constitution. Lately though, people have opposed the Electoral College due to the election when Al Gore beat George Bush in the popular vote, but lost the electoral vote (and a seat as President I do not support the Electoral Please continue to write without any additional text:

Figure 2: Task 3 prompt templates used to generate continuations of paper reviews and student essays.

任务三: 混合人机文本检测

### 平均绝对误差(MAE)

评价边界检测模型的性能。 预测位置指数与实际变化点之间 的平均绝对差值。



任务三:混合人机文本检测

#### **■** Peerread:

| Detector   | Train Data                    | Peerread LLaMA-2-7B*                                   | Peerread ChatGPT | All Test                                                                             |
|------------|-------------------------------|--------------------------------------------------------|------------------|--------------------------------------------------------------------------------------|
| Longformer | All<br>ChatGPT<br>LLaMA-2-7B* | $1.89 \pm 0.79$<br>$31.43 \pm 6.15$<br>$1.94 \pm 0.07$ |                  |                                                                                      |
| DeBERTa-v3 | All<br>ChatGPT<br>LLaMA-2-7B* | $0.57 \pm 0.23 \\ 14.96 \pm 2.19 \\ 0.66 \pm 0.12$     |                  | $ \begin{vmatrix} 15.55 \pm 2.60 \\ 19.67 \pm 1.05 \\ 32.35 \pm 0.78 \end{vmatrix} $ |

Table 8: **Task 3 MAE** for Longformer and Deberta-v3 under (1) cross-generator setting for PeerRead, and (2) unseen domains with multiple generators (*All test*). Training data is PeerRead using LLaMA-2-7B\* and ChatGPT.

■ OUTFOX: 对于使用LLaMA-2数据训练的Longformer, 在所有测试中, MAE都大于53

### 1.2 24年新数据集介绍-RAID (Robust Al Detection)

亮点:跨越11种模型,8个域,**11种对抗性攻击和4种解码策略**,并对12个detector(8个开源和4 个闭源)进行基准测试,具有对detector**鲁棒性**的检测,目前**最大的**数据集。但**只有英语**。

#### Models

GPT-2 XL GPT-3 GPT-4

Cohere Cohere (Chat)

MPT-30B MPT-30B (Chat)

Mistral-7B (Chat) Mistral-7B

ChatGPT LLaMA 2 70B (Chat)

11 models

#### **Domains**

Abstracts Recipes

Books Reddit

News Reviews

Poetry Wikipedia

8 domains

### **Decoding Strategy**

(temp. = 0)Greedy

Sampling (temp. = 1, p = 1)

#### **Repetition Penalty**

(rep = 1.2)With ~

Without X (rep = 1.0)

#### Detectors

#### Neural

Roberta-B (GPT-2)

Roberta-L (GPT-2)

RoBERTa-B (ChatGPT)

RADAR

#### Metric-Based

GLTR

Fast DetectGPT

Binoculars

LLMDet

#### Commercial

**GPTZero** 

Originality

Winston

ZeroGPT

12 detectors

#### **Adversarial Attacks**

Alternative Spelling

Article Deletion

Insert Paragraphs

Upper Lower Swap

Zero-Width Space

Whitespace Addition

Number Swap

Homoglyph

Paraphrase

Synonym Swap

Misspelling

11 attacks

24

### 1.2 24年新数据集介绍-RAID (Robust Al Detection)

**亮点:**跨越11种模型,8个域,**11种对抗性攻击和4种解码策略**,并对12个detector(8个开源和4个闭源)进行基准测试,具有对detector**鲁棒性**的检测,目前**最大的**数据集。但**只有英语**。

| Name                                 | Size  | Domain coverage? | Model coverage? | Sampling coverage? | Multilingual coverage? | Adversarial coverage? |
|--------------------------------------|-------|------------------|-----------------|--------------------|------------------------|-----------------------|
| TuringBench (Uchendu et al., 2021)   | 200k  | X                | <b>✓</b>        | ×                  | ×                      | ×                     |
| RuATD (Shamardina et al., 2022)      | 215k  | <b>✓</b>         | <b>✓</b>        | ×                  | X                      | ×                     |
| HC3 (Guo et al., 2023)               | 26.9k | <b>✓</b>         | X               | ×                  | <b>V</b>               | ×                     |
| MGTBench (He et al., 2023)           | 2817  |                  | <b>✓</b>        | ×                  | X                      | <b>✓</b>              |
| MULTITuDE (Macko et al., 2023)       | 74.1k | ×                | <b>✓</b>        | ×                  | ✓                      | X                     |
| AuText2023 (Sarvazyan et al., 2023b) | 160k  |                  | X               | ×                  | ✓                      | ×                     |
| M4 (Wang et al., 2023b)              | 122k  | <b>~</b>         | <b>✓</b>        | ×                  | <b>✓</b>               | ×                     |
| CCD (Wang et al., 2023a)             | 467k  | X                | X               | X                  | ✓                      | <b>✓</b>              |
| IMDGSP (Mosca et al., 2023)          | 29k   | X                | <b>✓</b>        | ×                  | X                      | X                     |
| HC-Var (Xu et al., 2023)             | 145k  |                  | X               | ×                  | X                      | ×                     |
| HC3 Plus (Su et al., 2024)           | 210k  | <b>✓</b>         | X               | ×                  |                        | X                     |
| MAGE (Li et al., 2024)               | 447k  | <b>✓</b>         | <b>✓</b>        | X                  | X                      | X                     |
| RAID (Ours)                          | 6.2M  | <b>✓</b>         | <b>✓</b>        | <b>✓</b>           | ×                      | <b>✓</b>              |

RAID: AShared Benchmark for Robust Evaluation of Machine-Generated Text Detectors(ACL 2024)

### 1.2 24年新数据集介绍-RAID (Robust Al Detection)

#### **Adversarial Attacks**

Alternative Spelling Article Deletion Insert Paragraphs Upper Lower Swap Zero-Width Space

Whitespace Addition

Homoglyph Number Swap Paraphrase Synonym Swap Misspelling

11 attacks

- 1. 替代拼写 (Alternative Spelling)
- 2. 冠词删除 (Article Deletion)
- 3. 段落插入 (Add Paragraph)
- 4. 大小写转换 (Upper-Lower Swap)
- 零宽度空间(Zero-Width Space)
- 6. 空白字符 (Whitespace)
- 同形异义字 (Homoglyph)
- 8. 数字乱序 (Number Swap)
- 9. 改述替换 (Paraphrase)
- 10.拼写错误 (Misspelling)
- 11.同义词替换 (Synonym Swap)

#### **Decoding Strategy** Greedy (temp. = 0)Sampling (temp. = 1, p = 1) Repetition Penalty (rep = 1.2)With ~ Without X (rep = 1.0)

为每一个prompt生成四个输出,对应四个解码 策略:

- 1. **贪婪解码(Greedy Decoding)**: 生成文本 时,选择概率最高的词作为下一个词。
- 2. 随机采样 (Random Sampling) : 词。
- 3. **重复惩罚(Repetition Penalty)**:降低重复 出现的文本,通过乘法因子0来实现的,  $\theta=1.2$
- 4. 重复惩罚 (Repetition Penalty) :  $\theta$ =1.0。

### 1.2 24年新数据集介绍-TEXTMACHINA

亮点:一个模块化和可扩展的Python框架,旨在帮助创建高质量、无偏的数据集,允许用户

通过自定义配置来生成数据集。



```
from text_machina import get_generator
from text_machina import Config,
    InputConfig, ModelConfig

config = Config(
    input=InputConfig(...),
    model=ModelConfig(...),
    generation={...},
    task_type="detection",
)

generator = get_generator(config)
dataset = generator.generate()
```

```
1 # Config for everything related to dataset generation inputs
    input_config:
        # Dataset metadata
        donain: news
        language: en
        # Dataset generator parameters
        quantity: 10
        random_sample_human: true
        # HuggingFace dataset params
12
        dataset: xsum
13
        dataset_text_column: document
14
        dataset params:
15
            split: test
17
        # Prompt template
18
        template: >-
19
            Write a news article whose summary is '(summary)',
            using the entities: (entities)\n\nArticle:
        # Extractor params
        extractor: combined
        extractors_list:
            - auxiliary.Auxiliary
            - entity_list.EntityList
        max_input_tokens: 256
29 # Config for model instantiation
    model config:
        provider: openal
        model_name: gpt-3.5-turbo-instruct
        threads: 8
        max retries: 5
        timeout: 120
38 # Decoding args
        # Ignore use 'max_tokens' to get automatic length estimation
        # max tokens: 100
        temperature: 9.7
        presence_penalty: 1.8
```

TEXTMACHINA: SeamlessGeneration of Machine-Generated Text Datasets

# 1.2 24年新数据集介绍-Data Challenges

- ➤ multiple types of attacks: 有助于确定检测方法的有效性、鲁棒性
- ➤ diverse domains and varied tasks: 对检测器的健壮性、可用性和可信度具有重要意义
- ➤ multiple LLMs: 检测多种模型
- > multiple languages: 相同的问题不同的语言有不同的回答
- ➤ temporal: 更新数据库



- 1. 现有的detector能否有效区分现实场 景中,不同llm针对**不同任务**生成的 文本?
- 2. 在**开放领域**设置中,无论主题或内容如何,人类编写的文本和机器生成的文本之间是否存在固有的区别?

现有研究多在**特定领域或特定语言模型**上评估 检测方法,而实际应用中需要面对**未知来源的 多样化文本**。

构建了一个大规模的机器生成文本检测测试平台MAGE (MAchine-GEnerated text detection,):

- > 7个不同写作任务(如故事生成、新闻写作、科学写作和常识推理)的人类编写文本
- ➤ 使用27个IIm(如ChatGPT、LLaMA和Bloom)生成相应的机器生成文本
- > 将数据分类到8个评测场景中,每个场景在分布方差和检测复杂性方面都表现出越来越高的wild水平。

检测难度加大

- 1.固定领域和特定模型 (Fixed-domain & Model-specific):
- 2.任意领域和特定模型 (Arbitrary-domains & Model-specific):
- 3.固定领域和任意模型 (Fixed-domain & Arbitrary-models):
- 4.任意领域和任意模型 (Arbitrary-domains & Arbitrary-models):
- 5.未见模型 (Unseen Models):
- 6.未见领域 (Unseen Domains):
- 7.未见领域和未见模型 (Unseen-domains & Unseen-model):
- 8.改述攻击 (Paraphrasing Attack):

| Methods    | Human/Machine | AvgRec | AUROC |
|------------|---------------|--------|-------|
| FastText   | 94.72%/94.36% | 94.54% | 0.98  |
| GLTR       | 90.96%/83.94% | 87.45% | 0.94  |
| Longformer | 97.30%/95.91% | 96.60% | 0.99  |
| DetectGPT  | 91.68%/81.06% | 86.37% | 0.92  |

Table 2: (Testbed 1) White-box detection performance. "Human/Machine" denotes HumanRec and MachineRec, respectively.

| C-44!              | Mathada                            |                   | Metrics            |        |              |
|--------------------|------------------------------------|-------------------|--------------------|--------|--------------|
| Settings           | Methods                            | HumanRec          | <b>Machine</b> Rec | AvgRec | <b>AUROC</b> |
|                    | Testbed 2,3,4: In-distr            | ibution Detection | on                 |        |              |
|                    | FastText (Joulin et al., 2017)     | 88.96%            | 77.08%             | 83.02% | 0.89         |
| Arbitrary-domains  | GLTR (Gehrmann et al., 2019)       | 75.61%            | 79.56%             | 77.58% | 0.84         |
| & Model-specific   | Longformer (Beltagy et al., 2020)  | 95.25%            | 96.94%             | 96.10% | 0.99         |
|                    | DetectGPT* (Mitchell et al., 2023) | 48.67%            | 75.95%             | 62.31% | 0.60         |
| Former Code St     | FastText (Joulin et al., 2017)     | 89.43%            | 73.91%             | 81.67% | 0.89         |
| Fixed-domain       | GLTR (Gehrmann et al., 2019)       | 37.25%            | 88.90%             | 63.08% | 0.80         |
| & Arbitrary-models | Longformer (Beltagy et al., 2020)  | 89.78%            | 97.24%             | 93.51% | 0.99         |
|                    | DetectGPT* (Mitchell et al., 2023) | 86.92%            | 34.05%             | 60.48% | 0.57         |
|                    | FastText (Joulin et al., 2017)     | 86.34%            | 71.26%             | 78.80% | 0.83         |
| Arbitrary-domains  | GLTR (Gehrmann et al., 2019)       | 12.42%            | 98.42%             | 55.42% | 0.74         |
| & Arbitrary-models | Longformer (Beltagy et al., 2020)  | 82.80%            | 98.27%             | 90.53% | 0.99         |
|                    | DetectGPT* (Mitchell et al., 2023) | 86.92%            | 34.05%             | 60.48% | 0.57         |
|                    | Testbed 5,6: Out-of-dist           | ribution Detect   | ion                |        | ,            |
|                    | FastText (Joulin et al., 2017)     | 83.12%            | 54.09%             | 68.61% | 0.74         |
| Unseen Models      | GLTR (Gehrmann et al., 2019)       | 25.77%            | 89.21%             | 57.49% | 0.65         |
| Unseen wiodels     | Longformer (Beltagy et al., 2020)  | 83.31%            | 89.90%             | 86.61% | 0.95         |
|                    | DetectGPT* (Mitchell et al., 2023) | 48.67%            | 75.95%             | 62.31% | 0.60         |
| 3                  | FastText (Joulin et al., 2017)     | 54.29%            | 72.79%             | 63.54% | 0.72         |
| Unseen Domains     | GLTR (Gehrmann et al., 2019)       | 15.84%            | 97.12%             | 56.48% | 0.72         |
| Onseen Domains     | Longformer (Beltagy et al., 2020)  | 38.05%            | 98.75%             | 68.40% | 0.93         |
| ·                  | DetectGPT (Mitchell et al., 2023)  | 86.92%            | 34.05%             | 60.48% | 0.57         |

| HumanRec   | MachineRec        | AvgRec       | AUROC |
|------------|-------------------|--------------|-------|
| Testbed 7: | Unseen Domain     | ns & Unseen  | Model |
| 52.50%     | 99.14%            | 75.82%       | 0.94  |
| 88.78†     | 84.12%†           | 86.54%†      | 0.94  |
| Te         | stbed 8: Paraphra | asing Attack |       |
| 52.16%     | 81.73%            | 66.94%       | 0.75  |
| 88.78%†    | 37.05%†           | 62.92%†      | 0.75  |

Table 5: (Testbed 7-8) Detection performance of Longformer detector on the two challenging test sets. †denotes the refined decision boundary. Appendix G includes the performance of other detection methods.

#### Result:

- ➤ 当文本来自单一领域或由有限范围的LLMs生成时,所有检测方法都有效。
- ➤ 但随着领域和模型多样性的增加,除了基于PLM (Pre-trained Language Model) 的 检测器外,其他方法性能显著下降。
- ➤ 在面对未知领域 (OOD) 测试组时,即使是最佳性能的检测器也难以准确分类。

测试detector对恶意攻击的鲁棒性。

本文研究了8种MGT检测器在12种实际攻击下的鲁棒性,包括编辑、转述、提示、共同生成。



Figure 1: **Pipeline of the study.** The attacks are carried out on the machine-generated texts before, during, or after generation. Each attack is applied with different perturbation levels, denoted as budgets (§4).

### **Budget:**

每次攻击的扰动程度。 利用一系列文本生成评估指标作 为攻击的预算。

| Metric                  |                                                        | Scale                   | Definition                                                                                                                                                                     |
|-------------------------|--------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | Levenshtein Edit Distance<br>(Levenshtein, 1965) ≥ 0 ↑ |                         | The minimum number of single-character edits (insertions, deletions or substitutions).                                                                                         |
| Jaro Similarity (Jaro,  | 1989)                                                  | $\geq 0\downarrow$      | A similarity metric based on matching characters and transpositions in two strings.                                                                                            |
| Perplexity (PPL         | .)                                                     | > 0 \                   | Apply Llama-7B-hf (Touvron et al., 2023b).                                                                                                                                     |
| MAUVE                   | М2Н                                                    | $(0,1] \leftrightarrow$ | MGTs to estimate the model distribution $Q$ and HWTs to estimate the target distribution $P$ . For attacked scenarios, the closer value to the unattacked scenario is favored. |
| (Pillutla et al., 2021) | A2B                                                    | $(0,1]\downarrow$       | MGTs (attacked) to estimate the model distribution ${\cal Q}$ and MGTs (unattacked to estimate the target distribution ${\cal P}$ .                                            |
| Cosine Similarit        | ty                                                     | $[-1,1]\downarrow$      | Utilize BART embedding (Lewis et al., 2020) to compare the similarity of texts after the attack to before the attack.                                                          |
| BERTScore               | М2Н                                                    | $[0,1] \leftrightarrow$ | MGTs as the candidates $\hat{x}$ and HWTs as the reference $x$ . For attacked scenarios, the closer value to the unattacked scenario is favored.                               |
| (Zhang et al., 2019)    | A2B                                                    | $[0,1]\downarrow$       | MGTs (attacked) as the candidates $\hat{x}$ and MGTs (unattacked) as the reference $x.$                                                                                        |
| BARTScore               | М2Н                                                    | $< 0 \leftrightarrow$   | MGTs as the source $x$ and HWTs as the target $y$ . For attacked scenarios, the closer value to the unattacked scenario is favored.                                            |
| (Yuan et al., 2021)     | A2B                                                    | < 0 \                   | MGTs (attacked) as the source $x$ and MGTs (unattacked) as the target $y$ .                                                                                                    |

编辑攻击:在字符级别进行小编辑,一些攻击可能会导致文本稍微失去质量和可读性。

- 1.Typo Insertion (错误插入)
- 2.Homoglyph Alteration (同形异义词替换)
- 3.Format Character Editing (格式字符编辑)

| Attack Category                           | Method                           | Model-Free? | Level       | Access    | Detailed Descriptions                                                                                                                                                  |
|-------------------------------------------|----------------------------------|-------------|-------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                           | Typo Insertion                   | V           | Character   | None      | Create typos by inserting, deleting, substituting, and transposing mainly.                                                                                             |
| Editing<br>(§6.2)                         | Homoglyph Alteration             | ¥           | Character   | None      | Change English characters into visually similar Unicodes, e.g., Cyrillic characters.                                                                                   |
| post-generation                           | Format Character Editing         | V           | Character   | None      | Change or insert formatting characters, including<br>zero-width whitespace \u2008 insertion, and shift<br>character editing, e.g., \n, \r, \u00b8 (vertical tab), etc. |
|                                           | Synonyms Substitution            | opt √ or X  | Word        | None      | For model-free (*/) setting, retrieve a synonym from a<br>static dictionary; for model-based (*/) setting, utilize a<br>LLM to generate synonyms list given context.   |
| Paraphrasing<br>(§6.3)<br>post-generation | Span Perturbation                | ×           | Span        | None      | Use a masked LM (Raffel et al., 2020) to rewrite spans of<br>tokens by masked filling.                                                                                 |
|                                           | Inner-Sentence Paraphrase        | ×           | Inner-Sent. | None      | Use Pegasus (Zhang et al., 2020) to paraphrase each sentence of the text and then join them.                                                                           |
|                                           | Inter-Sentence Paraphrase        | ×           | Inter-Sent. | None      | Paraphrase with Dipper (Krishna et al., 2023), a<br>paragraph-level paraphraser that can re-order, split, and<br>merge sentences meanwhile paraphrasing each sentence. |
|                                           | Prompt Paraphrasing              | ×           | Inter-Sent. | Prompting | Paraphrase the raw prompt before generation using Pegasus.                                                                                                             |
| Prompting<br>(§6.4)                       | In-Context Learning              | ×           | Inter-Sent. | Prompting | Given the example of HWT and MGT as positive and<br>negative demonstrations when generating MGT on the<br>same prompt.                                                 |
| pre-generation                            | Character-Substituted Generation | *           | Inter-Sent. | Prompting | Prompt to ask the model to generate the text with specific<br>character substitution criteria and recover the output after<br>finishing the whole generation.          |
| Co-Generating                             | Emoji Co-Generation              | V.          | Inter-Sent. | Decoding  | Compulsorily generate or insert an emoji after finishing<br>each sentence while recurrent generation and remove all<br>the emojis after finishing the whole text.      |
| (§6.5)<br>on-generation                   | Typo Co-Generation               | V           | Inter-Sent. | Decoding  | Preset character substitution rules and execute the rules<br>when finishing sampling each token and recover them afte<br>finishing the whole text generation.          |

▶ 转述攻击: 在不改变文本语义的情况下改写生成的文本。



- 2. Span Perturbation (跨度扰动)
- 3.Inner-Sentence Paraphrase (句内转述)
- 4.Inter-Sentence Paraphrase (句间转述)



▶提示攻击: 更改prompt, 增加多样性。

1.Prompt Paraphrasing (提示转述)

2.In-Context Learning (上下文学习)

3.Character-Substituted Generation (字符

替换生成)

| Prompt:            | Continue 20 words with all 'a's substituted with 'z's and all 'z's substituted with 'a's:                                                                                           |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | As the sun dipped below the horizon, casting                                                                                                                                        |
| GPT-4:             | Zs the sun dipped below the horizon, czsting shzdows<br>zeross the lzndsczpe, z gentle breeze whispered through<br>the trees, czrrying with it the sweet zromz of spring<br>flowers |
| Cleaned<br>Output: | As the sun dipped below the horizon, casting shadows<br>across the landscape, a gentle breeze whispered through<br>the trees, carrying with it the sweet aroma of spring<br>flowers |

| Attack Category                           | Method                           | Model-Free?             | Level       | Access    | Detailed Descriptions                                                                                                                                                     |
|-------------------------------------------|----------------------------------|-------------------------|-------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                           | Typo Insertion                   | V                       | Character   | None      | Create typos by inserting, deleting, substituting, and transposing mainly.                                                                                                |
| Editing<br>(§6.2)<br>post-generation      | Homoglyph Alteration             | ~                       | Character   | None      | Change English characters into visually similar Unicodes e.g., Cyrillic characters.                                                                                       |
|                                           | Format Character Editing         | V                       | Character   | None      | Change or insert formatting characters, including<br>zero-width whitespace \u200B insertion, and shift<br>character editing, e.g., \n, \r, \u00bb008 (vertical tab), etc. |
| Paraphrasing<br>(§6.3)<br>post-generation | Synonyms Substitution            | opt √ or <mark>X</mark> | Word        | None      | For model-free (*) setting, retrieve a synonym from a static dictionary; for model-based (*) setting, utilize a LLM to generate synonyms list given context.              |
|                                           | Span Perturbation                | ×                       | Span        | None      | Use a masked LM (Raffel et al., 2020) to rewrite spans of<br>tokens by masked filling.                                                                                    |
|                                           | Inner-Sentence Paraphrase        | ×                       | Inner-Sent. | None      | Use Pegasus (Zhang et al., 2020) to paraphrase each sentence of the text and then join them.                                                                              |
|                                           | Inter-Sentence Paraphrase        | ×                       | Inter-Sent. | None      | Paraphrase with Dipper (Krishna et al., 2023), a<br>paragraph-level paraphraser that can re-order, split, and<br>merge sentences meanwhile paraphrasing each sentence.    |
| Prompting<br>(§6.4)<br>pre-generation     | Prompt Paraphrasing              | ×                       | Inter-Sent. | Prompting | Paraphrase the raw prompt before generation using Pegasus.                                                                                                                |
|                                           | In-Context Learning              | ×                       | Inter-Sent. | Prompting | Given the example of HWT and MGT as positive and<br>negative demonstrations when generating MGT on the<br>same prompt.                                                    |
|                                           | Character-Substituted Generation | ×                       | Inter-Sent, | Prompting | Prompt to ask the model to generate the text with specific<br>character substitution criteria and recover the output after<br>finishing the whole generation.             |
| Co-Generating<br>(§6.5)<br>on-generation  | Emoji Co-Generation              | V                       | Inter-Sent. | Decoding  | Compulsorily generate or insert an emoji after finishing<br>each sentence while recurrent generation and remove all<br>the emojis after finishing the whole text.         |
|                                           | Typo Co-Generation               | V                       | Inter-Sent. | Decoding  | Preset character substitution rules and execute the rules<br>when finishing sampling each token and recover them after<br>finishing the whole text generation.            |

- ➤ 共同生成攻击:利用设计规则干扰 文本生成,而不是通过改写prompt。
- 1.Emoji Co-Generation (表情符号共同生成)
- 2.Typo Co-Generation (错误共同生成)

| Attack Category                           | Method                           | Model-Free? | Level       | Access    | Detailed Descriptions                                                                                                                                                  |
|-------------------------------------------|----------------------------------|-------------|-------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                           | Typo Insertion                   | V           | Character   | None      | Create typos by inserting, deleting, substituting, and transposing mainly.                                                                                             |
| Editing<br>(§6.2)<br>post-generation      | Homoglyph Alteration             | V           | Character   | None      | Change English characters into visually similar Unicodes, e.g., Cyrillic characters.                                                                                   |
|                                           | Format Character Editing         | V           | Character   | None      | Change or insert formatting characters, including<br>zero-width whitespace \u2008 insertion, and shift<br>character editing, e.g., \n, \r, \u00b8 (vertical tab), etc. |
| Paraphrasing<br>(§6.3)<br>post-generation | Synonyms Substitution            | opt √ or X  | Word        | None      | For model-free (*) setting, retrieve a synonym from a<br>static dictionary; for model-based (*) setting, utilize a<br>LLM to generate synonyms list given context.     |
|                                           | Span Perturbation                | ×           | Span        | None      | Use a masked LM (Raffel et al., 2020) to rewrite spans of tokens by masked filling.                                                                                    |
|                                           | Inner-Sentence Paraphrase        | ×           | Inner-Sent. | None      | Use Pegasus (Zhang et al., 2020) to paraphrase each sentence of the text and then join them.                                                                           |
|                                           | Inter-Sentence Paraphrase        | ×           | Inter-Sent. | None      | Paraphrase with Dipper (Krishna et al., 2023), a<br>paragraph-level paraphraser that can re-order, split, and<br>merge sentences meanwhile paraphrasing each sentence. |
| Prompting<br>(§6.4)<br>pre-generation     | Prompt Paraphrasing              | ×           | Inter-Sent. | Prompting | Paraphrase the raw prompt before generation using Pegasus.                                                                                                             |
|                                           | In-Context Learning              | ×           | Inter-Sent. | Prompting | Given the example of HWT and MGT as positive and<br>negative demonstrations when generating MGT on the<br>same prompt.                                                 |
|                                           | Character-Substituted Generation | *           | Inter-Sent. | Prompting | Prompt to ask the model to generate the text with specific<br>character substitution criteria and recover the output after<br>finishing the whole generation.          |
| Co-Generating<br>(§6.5)<br>on-generation  | Emoji Co-Generation              | V.          | Inter-Sent. | Decoding  | Compulsorily generate or insert an emoji after finishing<br>each sentence while recurrent generation and remove all<br>the emojis after finishing the whole text.      |
|                                           | Typo Co-Generation               | V           | Inter-Sent. | Decoding  | Preset character substitution rules and execute the rules<br>when finishing sampling each token and recover them afte<br>finishing the whole text generation.          |

#### Result:

- > 几乎没有现有的检测器在所有攻击下都保持鲁棒性,并且所有检测器都表现出不同的漏洞。
- ➤ 平均所有检测器,所有攻击的性能下降35%。水印鲁棒性最强。

| Detector      | AUC   | TF=5  | TF=10 | TF=20 | ACC   |
|---------------|-------|-------|-------|-------|-------|
| GLTR          | 84.46 | 39.00 | 53.40 | 71.60 | 76.00 |
| Rank          | 68.13 | 22.60 | 35.60 | 46.80 | 63.60 |
| LogRank       | 87.36 | 50.00 | 65.60 | 78.20 | 79.00 |
| Entropy       | 51.84 | 7.60  | 14.60 | 26.40 | 50.80 |
| DetectGPT-1d  | 68.66 | 15.80 | 27.40 | 45.80 | 62.10 |
| DetectGPT-10d | 83.12 | 21.60 | 43.80 | 71.20 | 75.80 |
| DetectGPT-10z | 85.16 | 30.80 | 50.80 | 73.20 | 76.20 |
| OpenAI DetBs  | 83.12 | 42.40 | 56.20 | 69.00 | 75.00 |
| OpenAI DetLg  | 88.55 | 53.60 | 65.60 | 78.00 | 79.00 |
| SimpleAI Det. | 87.98 | 81.20 | 82.60 | 84.60 | 84.40 |
| F.t. DeBERTa  | 91.90 | 5.40  | 49.20 | 99.60 | 88.80 |
| Watermark     | 99.94 | 99.80 | 99.80 | 99.80 | 99.99 |

| Leaderboard: MGT Detector Robustness |       |       |        |        |        |  |  |
|--------------------------------------|-------|-------|--------|--------|--------|--|--|
| Detector                             | Edit  | Para. | Prompt | CoGen. | Avg.   |  |  |
| Watermark                            | 99.86 | 97.17 |        | 99.99  | 99.01* |  |  |
| SimpleAI Det.                        | 108.1 | 97.51 | 81.58  | 95.04  | 95.55  |  |  |
| OpenAI DetLg                         | 57.77 | 97.84 | 105.2  | 107.2  | 92.00  |  |  |
| Model. Avg.                          | 76.65 | 92.08 | 97.57  | 92.22  | 89.63  |  |  |
| F.t. DeBERTa                         | 104.1 | 81.49 | 99.09  | 64.28  | 87.24  |  |  |
| OpenAI DetBs                         | 36.63 | 91.46 | 104.4  | 102.4  | 83.71  |  |  |
| DetectGPT-1d                         | 74.82 | 75.32 | 102.8  | 66.46  | 79.85  |  |  |
| DetectGPT-10d                        | 62.67 | 64.40 | 97.68  | 49.78  | 68.63  |  |  |
| DetectGPT-10z                        | 56.41 | 59.73 | 93.88  | 43.08  | 63.28  |  |  |
| Metric. Avg.                         | 51.82 | 61.89 | 91.26  | 33.49  | 59.62  |  |  |
| LogRank                              | 41.76 | 58.38 | 84.44  | 11.20  | 48.95  |  |  |
| Rank                                 | 36.46 | 57.68 | 81.00  | 20.08  | 48.81  |  |  |
| GLTR                                 | 38.82 | 55.80 | 87.79  | 10.32  | 48.18  |  |  |

### 2 评测维度-评价指标



人工样本中, 错误分类为AI样本的比例 AI样本中, 错误分类为人工样本的比例

### 2 评测维度-评价指标

#### ■ 5、Precision精度:

$$Precision = \frac{\text{correctly detected LLM-generated samples}}{\text{all detected LLM-generated samples}}$$
 
$$= \frac{TP}{TP + FP}$$

#### ■ 6、Recall召回率:

$$Recall = \frac{TP}{TP + FN}$$

#### ■ 7、F1分数:

$$F_1 = 2 * \frac{Precision * Recall}{Precision + Recall}$$
$$= \frac{2TP}{2TP + FP + FN}$$

### ■ 8、AUROC (ROC曲线面积):

$$AUROC = \int_0^1 \frac{TP}{TP + FP} d\frac{FP}{FP + TN}$$

### 3 不足与挑战

- ◆ 数据集、评估框架多种多样。
- ◆ 如何建立一个高质量和全面的、统一的评估框架,为大模型检测设定一个客观、公平的基准?