Mathematics for Informatics

Carlos Areces and Patrick Blackburn

areces@loria.fr

http://www.loria.fr/~areces

blackbur@loria.fr

http://www.loria.fr/~blacbur

INRIA Lorraine Nancy, France

2007/2008

Sets and computability theory

When we talk of a set *A* of natural numbers we can think of the characteristic function of that set.

$$A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{otherwise} \end{cases}$$

Hence, a set can be:

Sets and computability theory

When we talk of a set A of natural numbers we can think of the characteristic function of that set.

$$A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{otherwise} \end{cases}$$

Hence, a set can be:

- computable
- primitive recursive

Sets and computability theory

When we talk of a set *A* of natural numbers we can think of the characteristic function of that set.

$$A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{otherwise} \end{cases}$$

Hence, a set can be:

- computable
- primitive recursive

Theorem

Let A, B be sets in a PRC class C. Then $A \cup B$, $A \cap B$ and \overline{A} are C.

As with functions

- ▶ there are computable sets, for example
 - **>** (
 - ▶ IN
 - ▶ {*p* : *p* is prime}

As with functions

- ▶ there are computable sets, for example
 - **>** (
 - ► IN
 - ▶ {*p* : *p* is prime}
- there are set which are not computable, as
 - $\{\langle x,y\rangle : \mathsf{HALT}(x,y)\}$
 - $\qquad \{\langle x, \langle y, z \rangle \rangle : \Phi_x(y) = z\}$

As with functions

- there are computable sets, for example
 - Q
 - ► IN
 - ▶ {*p* : *p* is prime}
- there are set which are not computable, as

 - $\qquad \qquad \{\langle x, \langle y, z \rangle \rangle : \Phi_x(y) = z\}$

A set A is recursively enumerable (r.e.) when there is a partially computable function $g: \mathbb{N} \to \mathbb{N}$ such that

$$A = \{x : g(x) \downarrow \}$$

As with functions

- there are computable sets, for example
 - Ø
 - ► IN
 - ▶ {*p* : *p* is prime}
- there are set which are not computable, as
 - $\{\langle x,y\rangle:\mathsf{HALT}(x,y)\}$

A set A is recursively enumerable (r.e.) when there is a partially computable function $g: \mathbb{N} \to \mathbb{N}$ such that

$$A = \{x : g(x) \downarrow\} = \mathsf{dom} \ g$$

As with functions

- there are computable sets, for example
 - Ø
 - IN
 - ▶ {*p* : *p* is prime}
- ▶ there are set which are not computable, as
 - $\{\langle x,y\rangle:\mathsf{HALT}(x,y)\}$
 - $\qquad \{\langle x, \langle y, z \rangle \rangle : \Phi_x(y) = z \}$

A set A is recursively enumerable (r.e.) when there is a partially computable function $g: \mathbb{N} \to \mathbb{N}$ such that

$$A = \{x : g(x) \downarrow\} = \text{dom } g$$

- we can algorithmically decide if an element does belongs to A, but when an element does not belongs to A, the algorithms is indefined
- ▶ these are usually call semi-decision algorithms: the solve an approximation to the problem of deciding membership of an element in a set *A*

Theorem

If A is computable then A is r.e.

Theorem

If A is computable then A is r.e.

Proof.

Let P_A be a program for [the characteristic function of] A. Let's consider the following program P:

[C] IF
$$P_A(X) = 0$$
 GOTO C

Theorem

If A is computable then A is r.e.

Proof.

Let P_A be a program for [the characteristic function of] A. Let's consider the following program P:

[C] IF
$$P_A(X) = 0$$
 GOTO C

Then

$$\Psi_P(x) = \begin{cases} 0 & \text{if } x \in A \\ \uparrow & \text{otherwise} \end{cases}$$

Theorem

If A is computable then A is r.e.

Proof.

Let P_A be a program for [the characteristic function of] A. Let's consider the following program P:

[C] IF
$$P_A(X) = 0$$
 GOTO C

Then

$$\Psi_P(x) = \begin{cases} 0 & \text{if } x \in A \\ \uparrow & \text{otherwise} \end{cases}$$

and then

$$A = \{x : \Psi_P(x) \downarrow \}$$

_

Theorem

If A and B are r.e. then $A \cup B$ and $A \cap B$ are also r.e.

Theorem

If A and B are r.e. then $A \cup B$ and $A \cap B$ are also r.e.

Proof.

Let
$$A = \{x : \Phi_p(x) \downarrow\}$$
 , $B = \{x : \Phi_q(x) \downarrow\}$

Theorem

If A and B are r.e. then $A \cup B$ and $A \cap B$ are also r.e.

Proof.

Let
$$A = \{x : \Phi_p(x) \downarrow \}$$
 , $B = \{x : \Phi_q(x) \downarrow \}$

 $(A \cap B)$ The following program R computes $A \cap B$:

$$Y \leftarrow \Phi_p(x)$$

$$Y \leftarrow \Phi_q(x)$$

Indeed, $\Psi_R(x) \downarrow \text{iff } \Phi_p(x) \downarrow \text{and } \Phi_q(x) \downarrow$.

Theorem

If A and B are r.e. then $A \cup B$ and $A \cap B$ are also r.e.

Proof.

Let
$$A = \{x : \Phi_p(x) \downarrow\}$$
 , $B = \{x : \Phi_q(x) \downarrow\}$

 $(A \cap B)$ The following program R computes $A \cap B$:

$$Y \leftarrow \Phi_p(x)$$
$$Y \leftarrow \Phi_q(x)$$

Indeed, $\Psi_R(x) \downarrow \text{iff } \Phi_p(x) \downarrow \text{and } \Phi_q(x) \downarrow$.

 $(A \cup B)$ The following program R' computes $A \cup B$:

[C] IF
$$STP^{(1)}(X, p, T) = 1$$
 GOTO E

IF $STP^{(1)}(X, q, T) = 1$ GOTO E

 $T \leftarrow T + 1$

GOTO C

Indeed, $\Psi_{R'}(x) \downarrow \text{ iff } \Phi_p(x) \downarrow \text{ or } \Phi_q(x) \downarrow$.

Theorem

A is computable iff A and \overline{A} are r.e.

Theorem

A is computable iff A and \overline{A} are r.e.

Proof.

 (\Rightarrow) if A is computable then \overline{A} is computable

Theorem

A is computable iff A and \overline{A} are r.e.

- (\Rightarrow) if A is computable then \overline{A} is computable
- (\Leftarrow) suppose that A and \overline{A} are r.e.

$$A = \{x : \Phi_p(x) \downarrow \}$$
 , $\overline{A} = \{x : \Phi_q(x) \downarrow \}$

Theorem

A is computable iff A and \overline{A} are r.e.

Proof.

- (\Rightarrow) if A is computable then \overline{A} is computable
- (\Leftarrow) suppose that A and \overline{A} are r.e.

$$A = \{x : \Phi_p(x) \downarrow \}$$
 , $\overline{A} = \{x : \Phi_q(x) \downarrow \}$

Consider P:

[C] IF
$$STP^{(1)}(X, p, T) = 1$$
 GOTO F
IF $STP^{(1)}(X, q, T) = 1$ GOTO E
 $T \leftarrow T + 1$
GOTO C
[F] $Y \leftarrow 1$

For each x, $x \in A$ or $x \in \overline{A}$. Then Ψ_P computes A.

Enumeration theorem

Let's define

$$W_n = \{x : \Phi_n(x) \downarrow\} = \text{the domaine of the } n\text{-th program}$$

Theorem

A set A is r.e. iff there is an n such that $A = W_n$.

There is an enumeration of all the r.e. sets

$$\textit{W}_0,\,\textit{W}_1,\,\textit{W}_2,\dots$$

Remember that

$$W_n = \{x : \Phi_n(x) \downarrow \}$$

Let's define

$$K = \{n : n \in W_n\}$$

Observe that

$$n \in W_n$$
 iff $\Phi_n(n) \downarrow$ iff $HALT(n, n)$

Theorem

K is r.e. but it is not computable.

Remember that

$$W_n = \{x : \Phi_n(x) \downarrow \}$$

Let's define

$$K = \{n : n \in W_n\}$$

Observe that

$$n \in W_n$$
 iff $\Phi_n(n) \downarrow$ iff $HALT(n, n)$

Theorem

K is r.e. but it is not computable.

Proof.

▶ the function $\Phi(n, n)$ is partially computable, and hence K is r.e.

Remember that

$$W_n = \{x : \Phi_n(x) \downarrow \}$$

Let's define

$$K = \{n : n \in W_n\}$$

Observe that

$$n \in W_n$$
 iff $\Phi_n(n) \downarrow$ iff $HALT(n, n)$

Theorem

K is r.e. but it is not computable.

- ▶ the function $\Phi(n, n)$ is partially computable, and hence K is r.e.
- suppose that K is computable.

Remember that

$$W_n = \{x : \Phi_n(x) \downarrow \}$$

Let's define

$$K = \{n : n \in W_n\}$$

Observe that

$$n \in W_n$$
 iff $\Phi_n(n) \downarrow$ iff $HALT(n, n)$

Theorem

K is r.e. but it is not computable.

- ▶ the function $\Phi(n, n)$ is partially computable, and hence K is r.e.
- ▶ suppose that K is computable. Then \overline{K} would also be.

Remember that

$$W_n = \{x : \Phi_n(x) \downarrow \}$$

Let's define

$$K = \{n : n \in W_n\}$$

Observe that

$$n \in W_n$$
 iff $\Phi_n(n) \downarrow$ iff $HALT(n, n)$

Theorem

K is r.e. but it is not computable.

- ▶ the function $\Phi(n, n)$ is partially computable, and hence K is r.e.
- ▶ suppose that K is computable. Then \overline{K} would also be. Hence there is e such that $\overline{K} = W_e$.

Remember that

$$W_n = \{x : \Phi_n(x) \downarrow \}$$

Let's define

$$K = \{n : n \in W_n\}$$

Observe that

$$n \in W_n$$
 iff $\Phi_n(n) \downarrow$ iff $HALT(n, n)$

Theorem

K is r.e. but it is not computable.

- ▶ the function $\Phi(n, n)$ is partially computable, and hence K is r.e.
- ▶ suppose that K is computable. Then \overline{K} would also be. Hence there is e such that $\overline{K} = W_e$. But then

$$e \in K$$
 iff $e \in W_e$ iff $e \in \overline{K}$

Theorem

If A is r.e., then there is a p.r. predicate $R:\mathbb{N}^2 \to \mathbb{N}$ such that

$$A = \{x : (\exists t) \ R(x, t)\}$$

g

Theorem

If A is r.e., then there is a p.r. predicate $R:\mathbb{N}^2 \to \mathbb{N}$ such that

$$A = \{x : (\exists t) \ R(x, t)\}$$

Proof.

Let $A = W_e$. I.e.,

$$A = \{x : \Phi_e(x) \downarrow \}.$$

Theorem

If A is r.e., then there is a p.r. predicate $R:\mathbb{N}^2 \to \mathbb{N}$ such that

$$A = \{x : (\exists t) \ R(x, t)\}$$

Proof.

Let $A = W_e$. I.e.,

$$A = \{x : \Phi_e(x) \downarrow \}.$$

Then $x \in A$ when for some t, the program e with input x halts, i.e.,

$$A = \{x : (\exists t) \ \underbrace{\mathsf{STP}^{(1)}(x, e, t)}_{R(x, t)}\}$$

g

Theorem

If $A \neq \emptyset$ is r.e., there is a p.r. function $f : \mathbb{N} \to \mathbb{N}$ such that

$$A = \{f(0), f(1), f(2), \dots\}$$

Theorem

If $A \neq \emptyset$ is r.e., there is a p.r. function $f : \mathbb{N} \to \mathbb{N}$ such that

$$A = \{f(0), f(1), f(2), \dots\}$$

Proof.

By the previous theorem, there is P p.r. such that

$$A = \{x : (\exists t) \ P(x, t)\}.$$

Theorem

If $A \neq \emptyset$ is r.e., there is a p.r. function $f : \mathbb{N} \to \mathbb{N}$ such that

$$A = \{f(0), f(1), f(2), \dots\}$$

Proof.

By the previous theorem, there is P p.r. such that

$$A = \{x : (\exists t) \ P(x, t)\}.$$

Let $a \in A$ and define

$$f(u) = \begin{cases} I(u) & \text{if } P(I(u), r(u)) \\ a & \text{otherwise} \end{cases}$$

Theorem

If $A \neq \emptyset$ is r.e., there is a p.r. function $f : \mathbb{N} \to \mathbb{N}$ such that

$$A = \{f(0), f(1), f(2), \dots\}$$

Proof.

By the previous theorem, there is P p.r. such that

$$A = \{x : (\exists t) \ P(x, t)\}.$$

Let $a \in A$ and define

$$f(u) = \begin{cases} I(u) & \text{if } P(I(u), r(u)) \\ a & \text{otherwise} \end{cases}$$

Theorem

If $A \neq \emptyset$ is r.e., there is a p.r. function $f : \mathbb{N} \to \mathbb{N}$ such that

$$A = \{f(0), f(1), f(2), \dots\}$$

Proof.

By the previous theorem, there is P p.r. such that

$$A = \{x : (\exists t) \ P(x, t)\}.$$

Let $a \in A$ and define

$$f(u) = \begin{cases} I(u) & \text{if } P(I(u), r(u)) \\ a & \text{otherwise} \end{cases}$$

▶ $x \in A \Rightarrow$ there is t such that P(x, t)

Theorem

If $A \neq \emptyset$ is r.e., there is a p.r. function $f : \mathbb{N} \to \mathbb{N}$ such that

$$A = \{f(0), f(1), f(2), \dots\}$$

Proof.

By the previous theorem, there is P p.r. such that

$$A = \{x : (\exists t) \ P(x, t)\}.$$

Let $a \in A$ and define

$$f(u) = \begin{cases} I(u) & \text{if } P(I(u), r(u)) \\ a & \text{otherwise} \end{cases}$$

▶ $x \in A \Rightarrow$ there is t such that $P(x, t) \Rightarrow f(\langle x, t \rangle) = x$

Theorem

If $A \neq \emptyset$ is r.e., there is a p.r. function $f : \mathbb{N} \to \mathbb{N}$ such that

$$A = \{f(0), f(1), f(2), \dots\}$$

Proof.

By the previous theorem, there is P p.r. such that

$$A = \{x : (\exists t) \ P(x, t)\}.$$

Let $a \in A$ and define

$$f(u) = \begin{cases} I(u) & \text{if } P(I(u), r(u)) \\ a & \text{otherwise} \end{cases}$$

- \blacktriangleright $x \in A \Rightarrow$ there is t such that $P(x,t) \Rightarrow f(\langle x,t \rangle) = x$
- ▶ let x be such that f(u) = x for some u.

Theorem

If $A \neq \emptyset$ is r.e., there is a p.r. function $f : \mathbb{N} \to \mathbb{N}$ such that

$$A = \{f(0), f(1), f(2), \dots\}$$

Proof.

By the previous theorem, there is P p.r. such that

$$A = \{x : (\exists t) \ P(x, t)\}.$$

Let $a \in A$ and define

$$f(u) = \begin{cases} I(u) & \text{if } P(I(u), r(u)) \\ a & \text{otherwise} \end{cases}$$

- \blacktriangleright $x \in A \Rightarrow$ there is t such that $P(x,t) \Rightarrow f(\langle x,t \rangle) = x$
- ▶ let x be such that f(u) = x for some u. Then x = a or u is of the form $u = \langle x, t \rangle$, with P(x, t). Then $x \in A$.

Theorem

If $f : \mathbb{N} \to \mathbb{N}$ is partially computable, $A = \{f(x) : f(x) \downarrow\}$ is r.e.

Theorem

If $f : \mathbb{N} \to \mathbb{N}$ is partially computable, $A = \{f(x) : f(x) \downarrow\}$ is r.e.

Proof.

Let $\Phi_p = f$. Let's define P'

[A] IF
$$STP^{(1)}(Z, p, T) = 0$$
 GOTO B
IF $\Phi_p(Z) = X$ GOTO E

[B]
$$Z \leftarrow Z + 1$$

IF $Z \le T$ GOTO A
 $T \leftarrow T + 1$
 $Z \leftarrow 0$
GOTO A

Theorem

If $f : \mathbb{N} \to \mathbb{N}$ is partially computable, $A = \{f(x) : f(x) \downarrow\}$ is r.e.

Proof.

Let $\Phi_p = f$. Let's define P'

[A] IF
$$STP^{(1)}(Z, p, T) = 0$$
 GOTO B
IF $\Phi_p(Z) = X$ GOTO E

[B]
$$Z \leftarrow Z + 1$$

IF $Z \le T$ GOTO A
 $T \leftarrow T + 1$
 $Z \leftarrow 0$
GOTO A

Notice that $\Psi_{P'}(X) \downarrow$ if there are Z, T such that

- Z ≤ T
- ► $STP^{(1)}(Z, p, T)$ is true (i.e., the program for f halts in T or less steps with input Z)

$$V = f(Z)$$

$$\Psi_{P'}(x) = \begin{cases} 0 & \text{if } x \in A \\ \uparrow & \text{otherwise} \end{cases}$$

Hence *A* is r.e.

Characterization of r.e. sets

Theorem

If $A \neq \emptyset$, then the following are equivalents:

- 1. A is r.e.
- 2. A is the range of a primitive recursive function
- 3. A is the range of a computable function
- 4. A is the range of a partially computable function

Proof.

- $(1 \Rightarrow 2)$ theorem in slide 10
- $(2 \Rightarrow 3)$ Trivial
- $(3 \Rightarrow 4)$ Trivial
- $(4 \Rightarrow 1)$ theorem in slide 11

 $A \subseteq \mathbb{N}$ is an index set if there is a class of partially computable functions \mathcal{C} such that $A = \{x : \Phi_x \in \mathcal{C}\}$

Theorem

If A is an index set such that $\emptyset \neq A \neq \mathbb{N}$, A is not computable.

 $A\subseteq\mathbb{N}$ is an index set if there is a class of partially computable functions $\mathcal C$ such that $A=\{x:\Phi_x\in\mathcal C\}$

Theorem

If A is an index set such that $\emptyset \neq A \neq \mathbb{N}$, A is not computable.

Proof.

Suppose that C is such that $A = \{x : \Phi_x \in C\}$ is computable.

 $A\subseteq \mathbb{N}$ is an index set if there is a class of partially computable functions $\mathcal C$ such that $A=\{x:\Phi_x\in\mathcal C\}$

Theorem

If A is an index set such that $\emptyset \neq A \neq \mathbb{N}$, A is not computable.

Proof.

Suppose that \mathcal{C} is such that $A = \{x : \Phi_x \in \mathcal{C}\}$ is computable. Let $f \in \mathcal{C}$ and $g \notin \mathcal{C}$ be partially computable functions.

 $A \subseteq \mathbb{N}$ is an index set if there is a class of partially computable functions \mathcal{C} such that $A = \{x : \Phi_x \in \mathcal{C}\}$

Theorem

If A is an index set such that $\emptyset \neq A \neq \mathbb{N}$, A is not computable.

Proof.

Suppose that \mathcal{C} is such that $A = \{x : \Phi_x \in \mathcal{C}\}$ is computable. Let $f \in \mathcal{C}$ and $g \notin \mathcal{C}$ be partially computable functions.

Let $h: \mathbb{N}^2 \to \mathbb{N}$ be the partially computable function:

$$h(t,x) = \begin{cases} g(x) & \text{if } t \in A \\ f(x) & \text{otherwise} \end{cases}$$

 $A \subseteq \mathbb{N}$ is an index set if there is a class of partially computable functions \mathcal{C} such that $A = \{x : \Phi_x \in \mathcal{C}\}$

Theorem

If A is an index set such that $\emptyset \neq A \neq \mathbb{N}$, A is not computable.

Proof.

Suppose that \mathcal{C} is such that $A = \{x : \Phi_x \in \mathcal{C}\}$ is computable. Let $f \in \mathcal{C}$ and $g \notin \mathcal{C}$ be partially computable functions.

Let $h: \mathbb{N}^2 \to \mathbb{N}$ be the partially computable function:

$$h(t,x) = \begin{cases} g(x) & \text{if } t \in A \\ f(x) & \text{otherwise} \end{cases}$$

 $A \subseteq \mathbb{N}$ is an index set if there is a class of partially computable functions \mathcal{C} such that $A = \{x : \Phi_x \in \mathcal{C}\}$

Theorem

If A is an index set such that $\emptyset \neq A \neq \mathbb{N}$, A is not computable.

Proof.

Suppose that \mathcal{C} is such that $A = \{x : \Phi_x \in \mathcal{C}\}$ is computable. Let $f \in \mathcal{C}$ and $g \notin \mathcal{C}$ be partially computable functions.

Let $h: \mathbb{N}^2 \to \mathbb{N}$ be the partially computable function:

$$h(t,x) = \begin{cases} g(x) & \text{if } t \in A \\ f(x) & \text{otherwise} \end{cases}$$

 $A\subseteq\mathbb{N}$ is an index set if there is a class of partially computable functions $\mathcal C$ such that $A=\{x:\Phi_x\in\mathcal C\}$

Theorem

If A is an index set such that $\emptyset \neq A \neq \mathbb{N}$, A is not computable.

Proof.

Suppose that \mathcal{C} is such that $A = \{x : \Phi_x \in \mathcal{C}\}$ is computable. Let $f \in \mathcal{C}$ and $g \notin \mathcal{C}$ be partially computable functions.

Let $h: \mathbb{N}^2 \to \mathbb{N}$ be the partially computable function:

$$h(t,x) = \begin{cases} g(x) & \text{if } t \in A \\ f(x) & \text{otherwise} \end{cases}$$

$$ightharpoonup e \in A \Rightarrow \Phi_e = g$$

 $A \subseteq \mathbb{N}$ is an index set if there is a class of partially computable functions \mathcal{C} such that $A = \{x : \Phi_x \in \mathcal{C}\}$

Theorem

If A is an index set such that $\emptyset \neq A \neq \mathbb{N}$, A is not computable.

Proof.

Suppose that \mathcal{C} is such that $A = \{x : \Phi_x \in \mathcal{C}\}$ is computable. Let $f \in \mathcal{C}$ and $g \notin \mathcal{C}$ be partially computable functions.

Let $h: \mathbb{N}^2 \to \mathbb{N}$ be the partially computable function:

$$h(t,x) = \begin{cases} g(x) & \text{if } t \in A \\ f(x) & \text{otherwise} \end{cases}$$

$$\blacktriangleright \ e \in A \Rightarrow \Phi_e = g \Rightarrow \Phi_e \notin \mathcal{C}$$

 $A \subseteq \mathbb{N}$ is an index set if there is a class of partially computable functions \mathcal{C} such that $A = \{x : \Phi_x \in \mathcal{C}\}$

Theorem

If A is an index set such that $\emptyset \neq A \neq \mathbb{N}$, A is not computable.

Proof.

Suppose that \mathcal{C} is such that $A = \{x : \Phi_x \in \mathcal{C}\}$ is computable. Let $f \in \mathcal{C}$ and $g \notin \mathcal{C}$ be partially computable functions.

Let $h: \mathbb{N}^2 \to \mathbb{N}$ be the partially computable function:

$$h(t,x) = \begin{cases} g(x) & \text{if } t \in A \\ f(x) & \text{otherwise} \end{cases}$$

$$\blacktriangleright e \in A \Rightarrow \Phi_e = g \Rightarrow \Phi_e \notin \mathcal{C} \Rightarrow e \notin A$$

 $A \subseteq \mathbb{N}$ is an index set if there is a class of partially computable functions \mathcal{C} such that $A = \{x : \Phi_x \in \mathcal{C}\}$

Theorem

If A is an index set such that $\emptyset \neq A \neq \mathbb{N}$, A is not computable.

Proof.

Suppose that \mathcal{C} is such that $A = \{x : \Phi_x \in \mathcal{C}\}$ is computable. Let $f \in \mathcal{C}$ and $g \notin \mathcal{C}$ be partially computable functions.

Let $h: \mathbb{N}^2 \to \mathbb{N}$ be the partially computable function:

$$h(t,x) = \begin{cases} g(x) & \text{if } t \in A \\ f(x) & \text{otherwise} \end{cases}$$

- $ightharpoonup e \in A \Rightarrow \Phi_e = g \Rightarrow \Phi_e \notin \mathcal{C} \Rightarrow e \notin A$
- e ∉ A

 $A \subseteq \mathbb{N}$ is an index set if there is a class of partially computable functions \mathcal{C} such that $A = \{x : \Phi_x \in \mathcal{C}\}$

Theorem

If A is an index set such that $\emptyset \neq A \neq \mathbb{N}$, A is not computable.

Proof.

Suppose that \mathcal{C} is such that $A = \{x : \Phi_x \in \mathcal{C}\}$ is computable. Let $f \in \mathcal{C}$ and $g \notin \mathcal{C}$ be partially computable functions.

Let $h: \mathbb{N}^2 \to \mathbb{N}$ be the partially computable function:

$$h(t,x) = \begin{cases} g(x) & \text{if } t \in A \\ f(x) & \text{otherwise} \end{cases}$$

- $ightharpoonup e \in A \Rightarrow \Phi_e = g \Rightarrow \Phi_e \notin \mathcal{C} \Rightarrow e \notin A$
- $ightharpoonup e \notin A \Rightarrow \Phi_e = f$

 $A \subseteq \mathbb{N}$ is an index set if there is a class of partially computable functions \mathcal{C} such that $A = \{x : \Phi_x \in \mathcal{C}\}$

Theorem

If A is an index set such that $\emptyset \neq A \neq \mathbb{N}$, A is not computable.

Proof.

Suppose that \mathcal{C} is such that $A = \{x : \Phi_x \in \mathcal{C}\}$ is computable. Let $f \in \mathcal{C}$ and $g \notin \mathcal{C}$ be partially computable functions.

Let $h: \mathbb{N}^2 \to \mathbb{N}$ be the partially computable function:

$$h(t,x) = \begin{cases} g(x) & \text{if } t \in A \\ f(x) & \text{otherwise} \end{cases}$$

$$ightharpoonup e \in A \Rightarrow \Phi_e = g \Rightarrow \Phi_e \notin \mathcal{C} \Rightarrow e \notin A$$

$$ightharpoonup e \notin A \Rightarrow \Phi_e = f \Rightarrow \Phi_e \in \mathcal{C}$$

 $A \subseteq \mathbb{N}$ is an index set if there is a class of partially computable functions \mathcal{C} such that $A = \{x : \Phi_x \in \mathcal{C}\}$

Theorem

If A is an index set such that $\emptyset \neq A \neq \mathbb{N}$, A is not computable.

Proof.

Suppose that C is such that $A = \{x : \Phi_x \in C\}$ is computable. Let $f \in C$ and $g \notin C$ be partially computable functions.

Let $h: \mathbb{N}^2 \to \mathbb{N}$ be the partially computable function:

$$h(t,x) = \begin{cases} g(x) & \text{if } t \in A \\ f(x) & \text{otherwise} \end{cases}$$

- $\blacktriangleright \ e \in A \Rightarrow \Phi_e = g \Rightarrow \Phi_e \notin \mathcal{C} \Rightarrow e \notin A$
- $\blacktriangleright e \notin A \Rightarrow \Phi_e = f \Rightarrow \Phi_e \in \mathcal{C} \Rightarrow e \in A$

Applications of Rice theorem

The theorem is a source of non computable sets:

- \blacktriangleright { $x : \Phi_x$ is total}
- $\blacktriangleright \{x : \Phi_x \text{ is increasing}\}$
- \blacktriangleright { $x : \Phi_x$ has an infinite domain}
- $\{x : \Phi_x \text{ is primitive recursive}\}$

They are all non computable, as they are all non trivial index sets.