Sistemas Dinâmicos: Aplicações Práticas em Física, Biologia e Finanças

Prof. Ana Isabel C.

June 23, 2025

Física: Pêndulo Amortecido

Física: Pêndulo Amortecido

Biologia: Modelo SIR

Física: Pêndulo Amortecido

Biologia: Modelo SIR

Finanças: Black-Scholes Simplificado

Física: Pêndulo Amortecido

Biologia: Modelo SIR

Finanças: Black-Scholes Simplificado

Visualização

Física: Pêndulo Amortecido

Biologia: Modelo SIR

Finanças: Black-Scholes Simplificado

Visualização

Física: Pêndulo Amortecido

Biologia: Modelo SIR

Finanças: Black-Scholes Simplificado

Visualização

Pêndulo Amortecido

Modelo

A dinâmica de um pêndulo com atrito é descrita por:

$$\ddot{\theta} + b\dot{\theta} + g\sin(\theta) = 0$$

Para ângulos pequenos, linearize: $\sin(\theta) \approx \theta$:

$$\ddot{\theta} + b\dot{\theta} + \frac{g}{l}\theta = 0$$

Onde b é o coeficiente de atrito, $g=9.8\,\mathrm{m/s^2}$, l é o comprimento.

Pêndulo Amortecido

Modelo

A dinâmica de um pêndulo com atrito é descrita por:

$$\ddot{\theta} + b\dot{\theta} + g\sin(\theta) = 0$$

Para ângulos pequenos, linearize: $\sin(\theta) \approx \theta$:

$$\ddot{\theta} + b\dot{\theta} + \frac{g}{l}\theta = 0$$

Onde b é o coeficiente de atrito, $g=9.8\,\mathrm{m/s^2}$, l é o comprimento.

Aplicação

Usado em engenharia (ex.: suspensão de veículos, relógios).

Solução

Exemplo

Para
$$b=0.5,\ g/l=1,\ \theta(0)=0.2,\ \dot{\theta}(0)=0$$
:

$$\theta(t) = 0.2e^{-0.25t}\cos(\sqrt{0.9375}t)$$

Solução

Exemplo

Para
$$b = 0.5$$
, $g/l = 1$, $\theta(0) = 0.2$, $\dot{\theta}(0) = 0$:

$$\theta(t) = 0.2e^{-0.25t}\cos(\sqrt{0.9375}t)$$

Física: Pêndulo Amortecido

Biologia: Modelo SIR

Finanças: Black-Scholes Simplificado

Visualização

Modelo SIR

Modelo

O modelo SIR descreve a propagação de doenças infecciosas:

$$\begin{cases} \dot{S} = -\beta SI \\ \dot{I} = \beta SI - \gamma I \\ \dot{R} = \gamma I \end{cases}$$

Onde S: suscetíveis, I: infectados, R: recuperados, β : taxa de infecção, γ : taxa de recuperação.

Modelo SIR

Modelo

O modelo SIR descreve a propagação de doenças infecciosas:

$$\begin{cases} \dot{S} = -\beta SI \\ \dot{I} = \beta SI - \gamma I \\ \dot{R} = \gamma I \end{cases}$$

Onde S: suscetíveis, I: infectados, R: recuperados, β : taxa de infecção, γ : taxa de recuperação.

Aplicação

Usado em epidemiologia (ex.: COVID-19, 2020).

Solução Numérica

Exemplo

Para $\beta=0.3$, $\gamma=0.1$, S(0)=0.99, I(0)=0.01, R(0)=0:

Solução Numérica

Exemplo

Para
$$\beta=0.3$$
, $\gamma=0.1$, $S(0)=0.99$, $I(0)=0.01$, $R(0)=0$:

Física: Pêndulo Amortecido

Biologia: Modelo SIR

Finanças: Black-Scholes Simplificado

Visualização

Modelo de Black-Scholes

Modelo

O preço de uma opção europeia segue a EDO parcial de Black-Scholes, simplificada aqui como uma EDO para volatilidade constante:

$$\dot{V} = rV - \sigma^2 S^2 V_{SS}$$

Onde V: preço da opção, S: preço do ativo, r: taxa de juros, σ : volatilidade.

Modelo de Black-Scholes

Modelo

O preço de uma opção europeia segue a EDO parcial de Black-Scholes, simplificada aqui como uma EDO para volatilidade constante:

$$\dot{V} = rV - \sigma^2 S^2 V_{SS}$$

Onde V: preço da opção, S: preço do ativo, r: taxa de juros, σ : volatilidade.

Aplicação

Usado para precificar derivativos (ex.: opções de ações como GOLL4.SA).

Solução

Exemplo

Para r=0.05, $\sigma=0.2$, preço inicial S=100, a solução aproximada mostra o valor da opção ao longo do tempo.

Solução

Exemplo

Para r=0.05, $\sigma=0.2$, preço inicial S=100, a solução aproximada mostra o valor da opção ao longo do tempo.

Física: Pêndulo Amortecido

Biologia: Modelo SIR

Finanças: Black-Scholes Simplificado

Visualização

Comparação

Resumo

Cada área usa sistemas dinâmicos para modelar fenômenos reais:

Física: Oscilações amortecidas.

• Biologia: Propagação de doenças.

• Finanças: Precificação de ativos.

Comparação

Resumo

Cada área usa sistemas dinâmicos para modelar fenômenos reais:

• Física: Oscilações amortecidas.

• Biologia: Propagação de doenças.

• Finanças: Precificação de ativos.

Física: Pêndulo Amortecido

Biologia: Modelo SIR

Finanças: Black-Scholes Simplificado

Visualização

Conclusão

Resumo

- Física: Pêndulo amortecido modela oscilações.
- Biologia: Modelo SIR prevê epidemias.
- Finanças: Black-Scholes precifica opções.

Conclusão

Resumo

- Física: Pêndulo amortecido modela oscilações.
- Biologia: Modelo SIR prevê epidemias.
- Finanças: Black-Scholes precifica opções.

Próxima Sessão

Simulações numéricas e visualizações em Python no Capítulo 7.