





# Investigating MEMS Accelerometer Calibration Techniques

### Will Ward

University Scholars Program
Senior Honors Capstone

Faculty Mentor: Dr. William Slaton

Second Reader: Dr. Lin Zhang







### What is an Accelerometer?

A STATE OF THE STA

- Accelerometer: a sensor that measures linear acceleration
- Robotics Application: integrate acceleration to calculate velocity and position



$$v(t) = \int_{t_0}^t a(t) dt + v_0$$

[2

$$s(t) = \int_{t_0}^t v(t) dt + s_0$$

2]

#### **Acceleration, Velocity, and Displacement Over Time**



# **MEMS Accelerometers**

- Micro Electromechanical Systems (MEMS)
- Small, light, cheap sensor packages [3, 4]
- Ideal for electronics and robotics applications







# **Odometry and Situational Awareness**



# **The Problem: Odometry Accuracy**

- MEMS accelerometer measurements tend to be biased (offset from the true value)
- Error in acceleration accumulates in displacement calculations

| Displacement Drift Over Time for Different Acceleration Errors |                |                |                |  |  |
|----------------------------------------------------------------|----------------|----------------|----------------|--|--|
|                                                                | t = 10 seconds | t = 30 seconds | t = 60 seconds |  |  |
| a = 0.001 m/s <sup>2</sup>                                     | 0.05 meters    | 0.45 meters    | 1.8 meters     |  |  |
| a = 0.01 m/s <sup>2</sup>                                      | 0.5 meters     | 4.5 meters     | 18 meters      |  |  |
| a = 0.1 m/s <sup>2</sup>                                       | 5 meters       | 45 meters      | 180 meters     |  |  |

# **Investigating Accelerometer Calibration**

- Robots rely on data accuracy for decision making
- A calibrated accelerometer provides better data, even if it's still low quality
- Goal: calibrate the accelerometer to achieve better displacement tracking







Literature Review

# **Types of Error**

### **Systematic Uncertainty**

- A clock that's always 2 minutes fast
- A car that wants to drift to the left



### **Random Uncertainty**

- Unpredictable, but characterized by statistical analysis
- Random oscillations about a center





# **Accelerometer Error Modeling**

- Goal: develop a calibration model that corrects sensor measurements
- Establish a mathematical relationship for the model
- Optimize the model using real data



# **Creating a Calibration Model**

- Develop a mathematical model with unknown parameters
- Collect acceleration data when true acceleration is known
- Use curve fitting to optimize the model parameters



# **Accelerometer Error Model: Bias**

• Bias Model: measurements equals true values plus an offset [2]

$$\begin{bmatrix} a_x' \\ a_y' \\ a_z' \end{bmatrix} = \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix} + \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix}$$

**x-axis:**  $a'_x = a_x + b_x$ 

y-axis:  $a_y' = a_y + b_y$ 

z-axis:  $a'_z = a_z + b_z$ 



### **Accelerometer Error Model: Bias and Scale Factors**

Measured values equals true values that are rescaled and shifted [14]

$$\begin{bmatrix} a_x' \\ a_y' \\ a_z' \end{bmatrix} = \begin{bmatrix} S_x & 0 & 0 \\ 0 & S_y & 0 \\ 0 & 0 & S_z \end{bmatrix} \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix} + \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix}$$

**x-axis:**  $a_x' = S_x a_x + b_x$ 

y-axis:  $a_y' = S_y a_y + b_y$ 

z-axis:  $a'_z = S_z a_z + b_z$ 



### Accelerometer Error Model: Bias, Scale Factors, and Misalignment

Accommodates for any misalignments between the sensor axes [14-17]



**x-axis:** 
$$a'_{x} = S_{xx}a_{x} + S_{xy}a_{y} + S_{xz}a_{z} + b_{x}$$

**y-axis:** 
$$a'_{y} = S_{yx}a_{x} + S_{yy}a_{y} + S_{yz}a_{z} + b_{y}$$

**z-axis:** 
$$a'_z = S_{zx}a_x + S_{zy}a_y + S_{zz}a_z + b_z$$



### **Accelerometer Error Models**

Parameters to Optimize:

Model 1: 
$$b_x$$
,  $b_y$ ,  $b_z$ 

Model 2: 
$$S_x$$
,  $b_x$ ,  $S_y$ ,  $b_y$ ,  $S_z$ ,  $b_z$ 

Model 3: 
$$S_{xx}$$
,  $S_{xy}$ ,  $S_{xz}$ ,  $b_x$ ,  $S_{yx}$ ,  $S_{yy}$ ,  $S_{yz}$ ,  $b_y$ ,  $S_{zx}$ ,  $S_{zy}$ ,  $S_{zz}$ ,  $b_z$ 

- Collect measured acceleration and true acceleration
- Use least-squares optimization to fit the data to the models and determine the model parameters
- Test the optimized models on new data

# **Common Data Collection Procedures**

- Rotate the sensor to different orientations
- Gravity is the only acceleration measured
- Use known rotation angles to calculate true gravity







# **Electronic Component Setup**

MPU-9250 IMU Breakout Board (HiLetgo [19])





Raspberry Pi

Image: [22]

# **Level Calibration Cube**

- 3D printed calibration cube [23]
- Allows easy 90° rotations
- Sides sanded flat





# **Six-Position Data Collection**

- Accelerometer at rest on a table
- Rotate so one axis is parallel with gravity and record data







# **Six-Position Data Collection**

- Python script for collecting data, optimizing model parameters, and testing the models
- Collection process:
  - 1. Collect at one orientation for 30 seconds (180 measurements per second)
  - Average the data and save with a ground truth label
  - 3. Rotate the sensor to the next orientation and repeat
- Collect data in three trials

$$\begin{bmatrix} (x_{\mathrm{m}}, x) \\ (y_{\mathrm{m}}, y) \\ (z_{\mathrm{m}}, z) \end{bmatrix}_{1}, \begin{bmatrix} (x_{\mathrm{m}}, x) \\ (y_{\mathrm{m}}, y) \\ (z_{\mathrm{m}}, z) \end{bmatrix}_{2}, \begin{bmatrix} (x_{\mathrm{m}}, x) \\ (y_{\mathrm{m}}, y) \\ (z_{\mathrm{m}}, z) \end{bmatrix}_{3}, \dots$$



# **Calibration Models Tested**

Model 1: 
$$\begin{bmatrix} a_x' \\ a_y' \\ a_z' \end{bmatrix} = \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix} + \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix}$$

Model 2: 
$$\begin{bmatrix} a'_x \\ a'_y \\ a'_z \end{bmatrix} = \begin{bmatrix} S_x & 0 & 0 \\ 0 & S_y & 0 \\ 0 & 0 & S_z \end{bmatrix} \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix} + \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix}$$

Model 3: 
$$\begin{bmatrix} a'_x \\ a'_y \\ a'_z \end{bmatrix} = \begin{bmatrix} S_{xx} & S_{xy} & S_{xz} \\ S_{yx} & S_{yy} & S_{yz} \\ S_{zx} & S_{zy} & S_{zz} \end{bmatrix} \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix} + \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix}$$





# **Six-Position Results**

#### Table 4: Mean of Trial 1 Static Test Data Before and After Calibration

|                | x mean (m/s²)  | y mean (m/s²)  | z mean (m/s²)    |
|----------------|----------------|----------------|------------------|
| No Calibration | 0.9617 ± 0.03% | 0.6050 ± 0.09% | -2.2238 ± 0.019% |
| Model 1        | 0.0638 ± 0.5%  | 0.1411 ± 0.4%  | 0.2296 ± 0.18%   |
| Model 2        | 0.0638 ± 0.5%  | 0.1411 ± 0.4%  | 0.0140 ± 3%      |
| Model 3        | -0.0252 ± 1.2% | 0.0367 ± 2.2%  | 0.0139 ± 3%      |

# **Six-Position Results**

#### **Table 5: Final Integrated Displacement of Trial 1 Static Test Data (60 seconds)**

|                | x (m) | y (m) | z (m) |
|----------------|-------|-------|-------|
| No Calibration | 1731  | 1089  | -4002 |
| Model 1        | 115   | 254   | 413   |
| Model 2        | 115   | 254   | 25    |
| Model 3        | -45   | 66    | 25    |

#### **Displacement After Calibrating with Model 3 (Trial 1)**







**Bonus Experiment!** 

# Further Calibration: Displacement Model

- Imperfect acceleration calibration leads to leftover displacement drift
- Model remaining drift as a polynomial [2, 13]



### **Final Calibration Process**

#### 1. Six-Position Data Collection



#### 2. Optimize Acceleration Model 3

$$\begin{bmatrix} a_x' \\ a_y' \\ a_z' \end{bmatrix} = \begin{bmatrix} S_{xx} & S_{xy} & S_{xz} \\ S_{yx} & S_{yy} & S_{yz} \\ S_{zx} & S_{zy} & S_{zz} \end{bmatrix} \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix} + \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix}$$

#### 3. Calibrate and Integrate Static Data



#### 4. Optimize the Displacement Model

$$\mathbf{d}' = \mathbf{d} + \frac{1}{2}\mathbf{q}_2t^2 + \mathbf{q}_1t + \mathbf{q}_0$$

#### 5. Collect New Static Data



#### **6. Calibrate Using Both Models**



# Final Calibration Results

# Displacement of Final Trial Static Test Data (60 seconds)

|                                | x (m) | y (m) | z (m) |
|--------------------------------|-------|-------|-------|
| No Calibration                 | 1760  | 1061  | -4014 |
| Model 3                        | -35   | 96    | 25    |
| Model 3 and Displacement Model | -1    | -1    | -7    |

### **Final Calibrated Displacement (Both Models)**







### **Best Calibration Results**

#### **60** seconds of Acceleration Data



**Direct Integration (NO Calibration)** 

**Displacement** drifts over 1000 meters

$$\begin{bmatrix} a_x' \\ a_y' \\ a_z' \end{bmatrix} = \begin{bmatrix} S_{xx} & S_{xy} & S_{xz} \\ S_{yx} & S_{yy} & S_{yz} \\ S_{zx} & S_{zy} & S_{zz} \end{bmatrix} \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix} + \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix} \longrightarrow \mathbf{d}' = \mathbf{d} + \frac{1}{2} \mathbf{q}_2 t^2 + \mathbf{q}_1 t + \mathbf{q}_0$$

**Calibration Acceleration** with Model 3

$$\mathbf{d}' = \mathbf{d} + \frac{1}{2}\mathbf{q}_2t^2 + \mathbf{q}_1t + \mathbf{q}_0$$

**Integrate and Calibrate Displacement** 

**Displacement** drifts under 10 meters

# **Persisting Issues**

- Displacement drift always accumulates if left uncorrected
- Longer runtime = more drift
- Common Solution: use GPS, camera, or radar to correct drift
- However, these sensors are not always available



### **Conclusion and Future Work**

- Displacement estimations improved by approximately 1000 meters after best calibration procedure
- However, drift always exists in measurements
- Future Work:
  - Testing calibration on a moving robot
  - Further investigation of errors in calibration
  - Investigation of alternative accelerometer calibration parameters

# Thank You!

