Student Name: Student Number School: Year of Entrance	er:								
Shangl	naiTech	Unive	rsity	Midt	erm E	xamina	tion C	Cover S	Sheet
Academic Yea	r: <u>2023</u>	to 20	024	Term:	_1				
Course-offerin	g School:	I	MS						
Instructor: 1	Mingliang	Cai, Cho	ng Liu	ı, Qixiao	Ma, Da	niel Skodl	erack, G	iang W	ang, Boqing Xue
Course Name:	I	Linear A	lgebr	a I					
Course Numb	er:	MATH	1112/N	ATH14	55				
Exam Instruction 1. All examination is prohibited. 2. Other than tablets and any 3. Students taken must complete. For Marker's	allowable allowable to other elections open-lithe examination	nust be str materials, stronic de book tests	studer vices in	nts taking n places d use allow	g closed-lesignated	book tests by the exerials authorials	must pla aminers. orized by	ace their	books, notes,
Section	1	2	3	4	5	6	7	8	Total
Marks	in the second		-	· 我最大 · · · · · · · · · · · · · · · · · · ·		3	****		7 - 57 (ED) - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
Recheck		1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.00	18					No.
Marker's Signa	ature:	,	•		Recheck Date:	er's Signa	ture:		

Specific Instructions for students:

- The time duration for this exam is 100 minutes.
- Computers and calculators are prohibited in the exam.
- Answers can be written in either Chinese or English.
- ★ For problems 3-8, please show details of calculations or deductions. A correct answer with no details can not earn points.

Policy for grading the Multiple choice questions:

For a multiple choice question, denote by C the set of all correct choices, and by A the set of your choices. If $A \nsubseteq C$, get zero points; If $A \subsetneq C$, get partial credits depending on the size of A.

- If |C| = 4, get one point for each correct choice when |A| < 4, and get full points when |A| = 4;
- If |C| = 3, get two points for each correct choice when |A| < 3, and get full points when |A| = 3;
- If |C| = 2, get three points when |A| = 1, and get full points when |A| = 1.

The unlisted remaining case for |C| = 1 should be self evident.

Notations and conventions:

- R is the set of real numbers.
- I denotes an identity matrix of suitable size.
- 0 or 0 may denote the number zero, a zero vector, or a zero matrix.
- $\mathbf{M}_{m \times n}$ is the vector space of all $m \times n$ matrices (with real entries).
- For a square matrix $A = [a_{ij}]$, M_{ij} is the minor of entry a_{ij} ; C_{ij} is the cofactor of entry a_{ij} ; adj(A) is the adjoint (adjunct) matrix of A.
- For a square matrix A, both det(A) and |A| denote the determinant of A.
- Give a matrix A, we denote by null(A), row(A), col(A) the null space, row space, column space of A respectively. And nullity(A) and r(A) denotes the nullity and rank of A.
- For two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$, we denote by $\mathbf{u} \bullet \mathbf{v}$ the dot product of \mathbf{u} and \mathbf{v} , and by $\mathbf{u} \times \mathbf{v}$ their cross product.
- P_n is the vector space of all polynomials (with real coefficients) with degree no more than n.
- The transition matrix $P_{B'\leftarrow B}$ from basis $B=\{\mathbf{v}_1,\cdots,\mathbf{v}_n\}$ to basis $B'=\{\mathbf{v}_1',\cdots,\mathbf{v}_n'\}$ is given through $B=B'P_{B'\leftarrow B}$, i.e, $[\mathbf{v}_1,\cdots,\mathbf{v}_n]=[\mathbf{v}_1',\cdots,\mathbf{v}_n']P_{B'\leftarrow B}$. Equivalently,

$$P_{B'\leftarrow B} := [[\mathbf{v}_1]_{B'} \ [\mathbf{v}_2]_{B'} \ \cdots \ [\mathbf{v}_n]_{B'}]$$

1.	Multiple	choice	questions.
			dronging

- a). (5 points) Which of the following sets are vector spaces? ()
 - (A) $\{(a,b)\in\mathbb{R}^2:\ b=2a+3\}\subseteq\mathbb{R}^2$, with the usual "+" and "·" as in \mathbb{R}^2 .
 - (B) $\{v \in \mathbb{R}^3 : ||v|| = 1\} \subseteq \mathbb{R}^3$, with the usual "+" and "\cdot" as in \mathbb{R}^3 .
 - (C) {All polynomials in P_2 that are divisible by x-2}, with the usual "+" and "." as in P_2 .
 - (D) The set \mathbb{R}^2 , with addition and scalar multiplication given by: for $\mathbf{x} = (x_1, x_2)$, $\mathbf{y} = (y_1, y_2)$, and $k \in \mathbb{R}$, $\mathbf{x} + \mathbf{y} := (x_1 + 2y_1, x_2 + 3y_2)$, $k\mathbf{x} := (kx_1, kx_2)$.
- b). (5 points) Determine which of the following statements are true. (
 - (A) If $A \in \mathbf{M}_{n \times n}$ is invertible, then its adjoint adj(A) is also invertible.
 - (B) Let $E \in M_{3\times 3}$ be an elementary matrix such that det(E) = 1, then E must be the identity matrix in $M_{3\times 3}$.
 - (C) Let $V \subseteq \mathbb{R}^5$ be a subspace, then any set of five vectors in V is linearly dependent.
 - (D) If $A \in M_{4\times7}$, and dim(null(A)) = 3, then for all $b \in \mathbb{R}^4$, the linear system Ax = b has at least one solution.
- c). (5 points) Consider a linearly independent set $\{\mathbf{v}_1, \dots, \mathbf{v}_m\} \subseteq V$ for some $m \ge 1$, and let $\mathbf{v} \in V$. Which possible values can $\dim(span\{\mathbf{v}_1 + \mathbf{v}, \dots, \mathbf{v}_m + \mathbf{v}\})$ take? ()
 - (A) m-1
- (B) m
- (C) m+1
- (D) m+1

- 2. Fill in the blanks.
- a.) (5 points) Let $A = \begin{bmatrix} 2 & 2 \\ 3 & 4 \end{bmatrix}$. Then $(adj(A))^{-1} = \underline{\qquad}$.
- b). (5 points) Let $B = \{1, x, x^2\}$ and $B' = \{1 + x^2, x + x^2, 1 + 2x + x^2\}$ be two basis for P_2 .

Then the transition matrix $P_{B'\leftarrow B}$ from B to B' is _____.

c.) (5 points) Let $A = [a_{ij}] \in M_{n \times n}$ be given such that $a_{ij} = ij$ for all $i, j = 1, \dots, n$. Assuming that $n \ge 2$, then $\det A = \underline{\hspace{1cm}}$.

3. (10 points) Let
$$A = \begin{bmatrix} 1 & 1 & -1 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
, and suppose that $A^2 - AB = I_3$. Find B .

4. Let $A \in M_{4\times 5}$ be the following matrix

$$\begin{bmatrix}
 1 & 3 & 4 & -1 & 2 \\
 2 & 6 & 6 & 0 & 3 \\
 3 & 9 & 3 & 6 & -3 \\
 3 & 9 & 0 & 9 & 0
 \end{bmatrix}$$

a). (10 points) Compute r(A), nullity(A), and find basis for row(A), col(A) and null(A).

b). (5 points) Determine whether $\mathbf{u} = [2, 1, 7, -12]^T$ belongs to col(A).

c). (5 points) Find the space of all vectors in \mathbb{R}^4 that are orthogonal to col(A), i.e. the orthogonal complement of col(A) in \mathbb{R}^4 .

5. Let $M_{2\times 2}$ denote the vector space of all 2×2 matrices with real entries. Consider the following two subsets of $M_{2\times 2}$

$$U = \left\{ \begin{bmatrix} x & -x \\ y & z \end{bmatrix} : x, y, z \in \mathbb{R} \right\}; \qquad W = \left\{ \begin{bmatrix} a & b \\ -a & c \end{bmatrix} : a, b, c \in \mathbb{R} \right\}$$

a). (10 points) Verify that both U and W are vector subspaces of $\mathbb{M}_{2\times 2}$. And find a basis and the dimension of U and W.

b). (10 points) Find the dimensions and basis of the subspaces U+W and $U\cap W$.

7. a). (5 points) Let $\mathbf{v}_1 = [1, 3, 0, 2]^T$, $\mathbf{v}_2 = [-1, 0, 1, 0]^T$, $\mathbf{v}_3 = [5, 9, -2, 6]^T$ be vectors in \mathbb{R}^4 . Is it possible to find a set of numbers $\{a_{ij} \mid i, j = 1, 2, 3\}$, such that the set $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ is linearly independent? Here \mathbf{w}_i 's are given by

$$\mathbf{w}_1 = a_{11}\mathbf{v}_1 + a_{12}\mathbf{v}_2 + a_{13}\mathbf{v}_3$$

 $\mathbf{w}_2 = a_{21}\mathbf{v}_1 + a_{22}\mathbf{v}_2 + a_{23}\mathbf{v}_3$
 $\mathbf{w}_3 = a_{31}\mathbf{v}_1 + a_{32}\mathbf{v}_2 + a_{33}\mathbf{v}_3$

Please give full explanation of your claim.

b). (5 points) You should have already known the fact (from the review problems) that a matrix of of the form $A = \mathbf{u}\mathbf{v}^T$ has rank 1, here $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ are any n dimensional non zero column vectors. What about the converse? That is, is it true that any rank 1 square matrix of size n can be written as $\mathbf{u}\mathbf{v}^T$ for some n dimensional non zero column vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$? Prove your claim.

8. (10 points) Let $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ and $\{\mathbf{w}_1, \mathbf{w}_2\}$ be two linearly independent sets of vectors in \mathbb{R}^n for some integer n such that $\mathbf{v}_i \bullet \mathbf{w}_j = 0$ for all i = 1, 2, 3 and j = 1, 2. Is the set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{w}_1, \mathbf{w}_2\}$ still linearly independent? Verify your claim.