MODI – projekt 2, zadanie 22

Dzmitry Kuksik

Zadanie 1

MNK

Metoda najmniejszych kwadratów – standartowa metoda przybliżania rozwiązań układów nadokreślonych, tzn. zestawu równań, w którym jest ich więcej niż zmiennych.

$$min E = \sum_{i=1}^{P} (y_i - y_i^{mod})^2$$

$$E = ||Y^{mod} - Y||^2 = ||Mw - Y||^2$$

$$w = (M^T M)^{-1} M^T Y$$

a) Dane statyczne:

b) Podzielone dane:

Dane uczące

Dane weryfikujące

c) Statyczny model liniowy postaci $y(u)=a_0+a_1u$ wyznaczony metodą najmniejszych kwadratów :

$$a_1 = 2.0597 \ a_0 = 2.4564$$

Wyjście modelu na tle danych uczących

Wyjście modelu na tle danych weryfikujących

Charakterystyka statyczna y(u)

Błąd modelu dla zbioru uczącego wynosi $E_{ucz}=665.6409$, wówczas dla zbioru weryfikującego $E_{wer}=934.3994$.

d) MNK dla statycznych modele nieliniowych postaci:

$$y(k) = a_0 + \sum_{i=1}^{N} a_1 u^i$$

Błąd modeli

Stopień	E_{ucz}	E _{wer}
wielomianu N		
1	665.6409	934.3994
2	151.6199	188.0468
3	21.3758	28.0949
4	0.3607	0.4421
5	0.3598	0.4420
6	0.3589	0.4420

Dla *N*=1 (dane uczące, dane weryfikujące, ch-ka statyczna)

Dla N=2 (dane uczące, dane weryfikujące, ch-ka statyczna)

Dla *N*=3 (dane uczące, dane weryfikujące, ch-ka statyczna)

Dla N=4 (dane uczące, dane weryfikujące, ch-ka statyczna)

Dla *N*=5 (dane uczące, dane weryfikujące, ch-ka statyczna)

Dla N=6 (dane uczące, dane weryfikujące, ch-ka statyczna)

e) Najlepszy model wybieramy na podstawie otrzymanych błędów dla zbioru weryfikującego. Najmniejszy błąd modeli jest przy stopniu wielomianu N=5 oraz N=6, ale **optymalnym rozwiązaniem jest stopień wielomianu** N=4 ze względu na ilość parametrów oraz prawie taki samy mały błąd jak dla stopniu N=5.

Zadanie 2

ARX(AutoRegressive)

Metoda "jeden krok do przodu" (bez rekurencji) ma postać np.

$$y(k) = w_1 u(k-1) + w_2 u(k-2) + w_3 y(k-1) + w_4 y(k-2)$$

OE(Output-Error)

Metoda z rekurencją ma postać np.

$$\begin{split} y^{mod}(k) &= w_1 u(k-1) + w_2 u(k-2) + w_3 y^{mod}(k-1) \\ &+ w_4 y^{mod}(k-2) \end{split}$$

a) Dane dynamiczne

Zbiór uczący

b) Dynamiczne modele liniowe postaci

-10 0

400

$$y(k) = \sum_{i=1}^{N_B} b_i u(k-i) + \sum_{i=1}^{N_A} a_i y(k-i)$$

wyznaczone metodą najmniejszych kwadratów.

Błąd modeli

Rząd	Dane	Dane	Dane uczące	Dane
dynamiki	uczące	weryfikujące	OE	weryfikujące
	ARX	ARX		OE
1	16.3615	11.1401	37451.8	8912.3
2	0.5432	0.4493	24731.68	22458.47
3	0.4395	0.3788	18895.99	18372.1336

Dla *Na=Nb=1*Zbiór uczący

Zbiór weryfikujący

1200

1400

1800

Dla Na=Nb=2

Zbiór uczący

Dla Na=Nb=3

Zbiór uczący

Zbiór weryfikujący

Ze względu na błąd najlepiej się dopasował model rekurencyjny dla pierwszego rzędu dynamiki, ale jest to sytuacja wyjątkowa, ponieważ przy innych danych weryfikujących model może się nie dopasować. Natomiast jeżeli nie uwzględniać sytuację wyjątkową, najlepszy model liniowy z punktu widzenia dokładności w trybie rekurencyjnym jest Na=Nb=3.

d) Modele o różnym rzędzie dynamiki i strukturze liniowości postaci

$$y(k)$$
= $w_1 u(k-1) + w_2 u(k-1)^2 + ... + w_N u(k-1)^N$
+ $w_{N+1} y(k-1) + w_{N+2} y(k-1)^2 + ... + w_{2N} y(k-1)^N$

Błąd modeli o rzędzie dynamiki 1

Stopień	Dane uczące	Dane	Dane uczące	Dane
wielomianu	ARX	weryfikujące	OE	weryfikujące
		ARX		OE
1	16.3615	11.1401	37451.8	8912.3
2	8.0017	7.4958	3596.94	2351.18
3	12.9585	10.2760	662.5804	NaN
4	13.7896	10.7325	219.2853	184.4559
5	13.8042	18.1919	218.9550	9138.90

Dla *N=1*Zbiór uczący

Zbiór weryfikujący

Zbiór uczący

Zbiór uczący

Zbiór uczący

Dla N=5

Zbiór uczący

Zbiór weryfikujący

W tym podpunkcie wyraźnie widać, że model z wielomianem 4 stopnia jest najlepszy, zapewnia ten model stosunkową niewielką liczbę parametrów oraz mały błąd w porównaniu do innych modeli. Ciekawe zjawisko występuje przy stopniu wielomiana równym 3. Zjawisko to pokazuje dlaczego warto sprawdzać otrzymane modele na zbiórach inszych niż uczących.

Modele o dynamice 2 rzędu oraz różnym stopniu wielomianów postaci $y(k) = w_1 u(k-1) + w_2 u(k-1)^2 + w_3 u(k-2) + w_4 u(k-2)^2 + w_5 y(k-1) + w_6 y(k-1)^2 + w_7 y(k-2) + w_8 y(k-2)^2$ i t.d.

Błąd modeli o rzędzie dynamiki 2

Stopień	Dane uczące	Dane	Dane uczące	Dane
wielomianu	ARX	weryfikujące	OE	weryfikujące
		ARX		OE
1	0.5432	0.4493	24731.68	22458.47
2	0.4402	0.3309	2473.19	1316.18
3	0.2276	0.2250	306.8758	325.2728
4	0.1546	0.1468	1.5373	1.3980

Dla *N=1*Zbiór uczący

Zbiór weryfikujący

Zbiór uczący

Zbiór uczący

Dla N=4

Zbiór uczący

Zbiór weryfikujący

e) Najlepszy model ze względu dokładności jest model o 2 rzędzie dynamiki oraz 4 stopieniu wielomianu. Jedyną wadą tego modelu jest stosunkowo duża ilość parametrów (16), co powoduje nakład obliczeń. Dlatego optymalny model spośród wszystkich jest model o 1 rzędzie dynamiki oraz 4 stopień wielomianu. Zapewnia ten model stosunkowo

mały błęd, w porównaniu do innych modeli, oraz stosunkowo małą liczbę parametrów (8).

f) Charakterystyka y(u) na podstawie modelu uznanym w popszednim punkcie za najlepszy:

$$y(u) = w_1 u + w_2 u^2 + w_3 u^3 + w_4 u^4 + w_1 y + w_2 y^2 + w_3 y^3 + w_4 y^4,$$
 Gdzie $w_1 = 0.3578$, $w_2 = 0.1731$, $w_3 = -0.4301$, $w_4 = 0.3262$, $w_5 = 0.9501$, $w_6 = -0.0029$, $w_7 = 0.0007$, $w_8 = 0.0000$

