

Autonomous Driving Software Engineering

Prof. Dr.-Ing. Markus Lienkamp

Nico Uhlemann, Dipl.-Ing.

Simon Sagmeister, M. Sc.

How to anticipate other traffic participants?

Anticipatory Driving through Riding Experience

Motion Prediction through Scenario Understanding

Prediction Prof. Dr. Markus Lienkamp

Dipl.-Ing. Nico Uhlemann

Agenda

- 1. Foundations
- 2. Knowledge-Based Prediction
 - a. State Estimation
 - b. Reachable Sets
- 3. Learning-Based Prediction
 - a. Clustering and Classification
 - b. Deep Learning
 - c. Reinforcement Learning
- 4. Summary and Outlook

"Sense – Plan – Act" works in static environments, but falls short in complex and dynamic situations like road traffic

We need to:

Understand

Determine intentions of surrounding objects and reason about possible behavior

Predict

Forecast what the surrounding objects will do and quantify the probabilities involved

Plan

Evaluate the collision probability of the possible future action of the ego object

Play

Consider the interaction between prediction and ego motion planning, refine if necessary

Foundations – Prediction challenges

Foundations – Consequences for ego planning

Risk analysis

Uncertainty results in risk of planned ego decisions

Collision avoidance

Collision probabilities have to be quantified to ensure safety of traffic participants

Limited degree of freedom

If complexity in current situation is too high, no valid motion is possible

→ Freezing Robot Problem

Interfaces of the Prediction Module

Where is the car going?

$$v_1 > v_2$$

 $\dot{\psi}_1 > 0$; $\dot{\psi}_2 = 0$

Where is the car going? - Knowledge-based

Assumption of constant velocity and yaw rate

Where is the car going? – Learning-based

Similar scenarios observed in the dataset results in overtaking prediction

Classes of Prediction Models

Class	Concept	Methods
Knowledge-based Prediction	Sense – Predict	State EstimationReachable Sets
Learning-based Prediction	Sense – Learn – Predict	 Clustering & Classification Deep Learning Inverse Reinforcement Learning

Prediction Prof. Dr. Markus Lienkamp

Dipl.-Ing. Nico Uhlemann

Agenda

- 1. Foundations
- 2. Knowledge-Based Prediction
 - a. State Estimation
 - b. Reachable Sets
- 3. Learning-Based Prediction
 - a. Clustering and Classification
 - b. Deep Learning
 - c. Inverse Reinforcement Learning
- 4. Summary and Outlook

a. State Estimation: Introduction

Idea

- Prediction of future positions by physics-based models
- Quantification of uncertainty by means of Bayesian filter

Output: Trajectory Prediction

Application

- Short-Term prediction
- Collision check

a. State Estimation: State-Space Model

Discrete State-Space Model

• Initial State $x_{t_0} = x_0$

State Variables x

lacktriangle Input u

• Linear Case: $x_{t+1} = Ax_t + Bu_t$

• General Case: $x_{t+1} = F(x_t, u_t, \Delta t)$

Approach

- Laws of mechanics with simplifications
- Bayesian filter for uncertainty estimation

a. State Estimation: State-Space Model

Laws of Mechanics with Simplifications

Dynamic Models

- (2) Bicycle Model
- (3) Four-Wheel Model

a. State Estimation: Basic Kinematic Models

a. State Estimation: Bayesian Filter

Bayesian Filter for Uncertainty Estimation

- Kalman Filter
- Extended Kalman Filter
- Unscented Kalman Filter
- Particle Filter

For Motion Prediction

→ Apply prediction step without measurement update

a. State Estimation – Example

State-Space Model: CTRA

$$\begin{pmatrix} x \\ y \\ \psi \\ v \\ \dot{\psi} \\ a \end{pmatrix}_{t+k} = \begin{pmatrix} x + \frac{v}{\dot{\psi}} (\cos(\dot{\psi}\Delta t + \Psi) - \cos(\Psi)) \\ y + \frac{v}{\dot{\psi}} (\sin(\dot{\psi}\Delta t + \Psi) - \sin(\Psi)) \\ \psi + \dot{\psi}\Delta t \\ v + a\Delta t \\ \dot{\psi} \\ a \end{pmatrix}_{t}$$

State Estimation: Extended Kalman Filter

$$\begin{vmatrix} \boldsymbol{x}_{t+1} = \boldsymbol{F}_A(\boldsymbol{x}_t) \\ \boldsymbol{P}_{t+1} = \boldsymbol{J}_A \boldsymbol{P}_t \boldsymbol{J}_A^T + \boldsymbol{Q}_t \end{vmatrix}$$

Jacobian Matrix
$$J_k = \frac{\partial y_t}{\partial x_j}$$

Process Noise Q_t
State Covariance P_t

a. State Estimation – Example

Prediction Horizon

- Time Steps $\{0, 0.2s, ..., t_{pred} = 2.0s\}$
- Get x_{pred} , P_{pred}

Evaluate Collision Probability

- Uncertainty weighted distance:
 Mahalanobis Distance
- χ^2 -Distribution determines collision probability
- Collision probability has to stay below safety threshold D_{crit}
- → Ellipsoid safety region

$$\boldsymbol{x}_{\text{pred}} = \begin{pmatrix} x_{\text{p}} \\ y_{\text{p}} \end{pmatrix} = \begin{pmatrix} x_{t_1} \dots x_{t10} \\ y_{t_1} \dots y_{t10} \end{pmatrix}$$

$$\mathbf{\textit{P}}_{\text{pred}} = (\mathbf{\textit{P}}_{t_1} \quad ... \quad \mathbf{\textit{P}}_{t_{10}})$$

$$D_{\text{MH}} = \sqrt{(\boldsymbol{x}_{t_i} - \boldsymbol{x}_{\text{ego}})^{\text{T}} \boldsymbol{P}^{-1} (\boldsymbol{x}_{t_i} - \boldsymbol{x}_{\text{ego}})}$$

$$D < D_{\rm crit} = \chi^2$$

a. State Estimation – Comparison

CV: Constant Velocity

CTRA: Constant Turn Rate and Acceleration

RMSE: Root Mean Square Error

b. Reachability Analysis: Introduction

Idea

- Derivation of all possible positions within physical constraints
- Over approximation of reachable positions
- Application of traffic rules to shrink set size

Output

Occupancy Map

Application

- Online Verification
- Safety Assessment

b. Reachable Sets

Prediction Prof. Dr. Markus Lienkamp

Dipl.-Ing. Nico Uhlemann

Agenda

- 1. Foundations
- 2. Knowledge-Based Prediction
 - a. State Estimation
 - b. Reachable Sets
- 3. Learning-Based Prediction
 - a. Clustering and Classification
 - b. Deep Learning
 - c. Inverse Reinforcement Learning
- 4. Summary and Outlook

a. Pattern Clustering

Idea

- Clustering of trajectories into few data classes
- Cluster data into maneuvers

Output

- Maneuver Cluster
- Prototype Trajectory

Application

- Input for classification-based prediction methods
- Dimension Reduction

a. Pattern Clustering

K-means Top-Down Clustering

Algorithm

- $\triangleright (k \text{ initial random points})$
- Associate each sample to a center point
- Update new center point as mean of associated points
- Iterate until convergence

a. Pattern Clustering

Agglomerative Clustering: Bottom-Up

- Each point is one cluster
- Two nearest clusters are combined with new center point
- Distance between clusters based on different metrics (mean, max, min, etc.)
- Iterate until the distance between each cluster surpass the predefined distance

a. Pattern Classification

Idea

- Classification of new received trajectory into pre-defined classes
- A priori knowledge of outcome:
 Labeled data necessary for training

Output

Discrete maneuver classification

Application

- Maneuver Prediction
 - Lane Change
 - Intention at intersections
- Interactive Planning (Game Theory)

 x_i : features

a. Pattern Classification - Markov Models

Idea

- Stochastic model of discrete processes
- Markov Assumption: memoryless property of a stochastic process

Definition

A stochastic process is a Markov process if the conditional probability distribution of future states of the process depends only upon the present state, not on the sequence of events that preceded it.

$$P(s_{t+1}|s_{t,t-1:1}) = P(s_{t+1}|s_t); \ \forall t$$

Transition Probability *P* State *s*

a. Pattern Classification - Markov Models Example

Observations

a. Pattern Classification - Hidden Markov Model

Definition "Hidden"

- States of the Markov process are unknown
- Only observations available

Model Parameters

- Tuple: (S, P, Ω, O)
- States $S = \{s_0, ..., s_n\}$
- Transition probability P(s'|s)
- Observation O(t)
- Observation model $\Omega(s)$

Measurement $O_t: x_t, y_t, v_t, \Psi_t, a_t$

T. Streubel and K. H. Hoffmann, "Prediction of driver intended path at intersections," in *IEEE Intelligent Vehicles Symposium Proceedings*, 2014, pp. 134–139.

a. Clustering and Classification

- Discrete, low-dimensional solution space
- Applicable for structured environments, e.g. highway
- Applicable for interactive planning (game theory)
- Clustering: Number and shape of classes unknown
- Classification: high dependency on a priori class definition
- No trajectory prediction possible
- Complexity of road traffic is hard to cover by few classes

b. Deep Learning – Motivation

Why Deep Learning?

- Maximum utilization of data
- Creation of new features→ But: Reason about valid input

Which Architectures?

- Encoder-Decoder (dominated ICRA 2020 prediction challenge)
- Transformer (recent success in sequence-to-sequence modelling tasks)
- Graph Neural Networks (good performance in modelling interactions)

Loss-Function (e. g. $\|.\|_2^2$ -Norm):

$$\mathcal{L}_2(y_{P}, y_{GT}) = \|y_{P} - y_{GT}\|_2^2$$

with

$$\mathbf{y_{P}} = \begin{bmatrix} x_{t_1} & y_{t_1} \\ \vdots & \vdots \\ x_{t_k} & y_{t_k} \end{bmatrix}_{P}; \quad \mathbf{y_{GT}} = \begin{bmatrix} x_{t_1} & y_{t_1} \\ \vdots & \vdots \\ x_{t_k} & y_{t_k} \end{bmatrix}_{GT}$$

Other applications

- **Dimensional Reduction**
- Features Extraction
- Image Denoising

χ:	Input
y:	Prediction

$$p$$
: prediction p : ground truth

F(x):	Encode-Function
z :	Latent Space
G(z):	Decode-Function
$\mathcal{L}(\mathbf{y}_{P}, \mathbf{y}_{GT})$:	Loss-Function

b. Deep Learning – Encoder-Decoder Example

b. Deep Learning – Encoder-Decoder Example

b. Deep Learning – Transformer

Overview

- Encoder-Decoder based
- Attention mechanism to encode important parts of a sequence and their relation to the other entries in it
- Decoder uses embeddings as well as previously generated sequence as input
- No RNN in original design

Applications

- Natural language processing
- Sequence analysis, e.g. amino acids
- Image generation (diffusion models)

b. Deep Learning – Transformer Example

5-68

b. Deep Learning – Graph Neural Networks

class, e.g. pedestrian, car

x-position for t=0 y-position for t=0

 y_{t_0} :

5- 69

b. Deep Learning – Graph Neural Networks Example

Adjacency matrix

N	1	2	3	4
1	1	1	1	1
2	1	1	0	1
3	1	0	1	1
4	1	1	1	1

[69], [70], [71]

b. Deep Learning – Graph Neural Networks Example

Example 1

$$1*0 + 1*1 + 1*1 + 1*0 = 2$$

Example 2

$$1*1 + 1*2 + 0*2 + 1*5 = 8$$

Node feature matrix

0	1	1
1	0	2
1	4	2
0	0	5

1	1	1	1		5	10
1	1	0	1	1	1	
1	0	1	1	1	5	8
1	1	1	1	2	5	10

Adjacency matrix

Node embedding matrix

= Input feature matrix

b. Deep Learning – Graph Neural Networks

Input feature matrix

b. Deep Learning - Summary

- Modular, individual network design
- Comprehensive prediction models: consideration of spatial information and interaction possible
- Trajectory prediction and uncertainty quantification
- No explainability for safety verification
- Robustness of extrapolation to unknown data not defined

c. Inverse Reinforcement Learning - Motivation

Idea

- Better predictions by learning from observed, human behavior
- Instead of defining a reward function, approximate it from data
- Use reward function afterwards to determine optimal policy

Goal

 Approximate the reward function R(s, a, s') to receive the maximal reward for every observed policy

c. Inverse Reinforcement Learning - Background

Input data

Set of trajectories $\{\xi\}$, which are assumed to be part of the optimal policy π^*

Reward function

- Reward function R is linear combination of L features ϕ_i
- Initialize the feature weights w_i randomly

Training process

Through Maximum Entropy IRL

Given:

$$\{\xi\}_{i=1}^N, \xi_i = \{(s_t, a_t)\}_{t=1}^T; a_t \sim \pi^*(s_t)$$

Initialization:

$$R(s) = w_0 \phi_0(s) + \dots + w_L \phi_L(s)$$

c. Inverse Reinforcement Learning - Summary

- + Robust, general and transferable
- Learning directly from observed data
- No direct policy output
- Hard to train in environments with sparse rewards / no direct reward function at all
- Features need to be defined

Prediction Prof. Dr. Markus Lienkamp

Dipl.-Ing. Nico Uhlemann

Agenda

- 1. Foundations
- 2. Knowledge-Based Prediction
 - a. State Estimation
 - b. Reachable Sets
- 3. Learning-Based Prediction
 - a. Clustering and Classification
 - b. Deep Learning
 - c. Inverse Reinforcement Learning
- 4. Summary and Outlook

Knowledge-based Prediction

State Estimation

- Kinematic Models
- Bayesian Filter for Probabilistic Trajectory Prediction

Reachability Analysis

 Coverage of all possible states within the dynamic limits of the object

Robust algorithms

- High accuracy in short-term prediction
- No comprehensive trajectory prediction

Learning-based Prediction

Clustering and Classification

- Maneuver Prediction
- Structured Environments

Deep Learning Algorithms

- Encoder-Decoder
- Transformer
- Graph Neural Networks

Reinforcement Learning

Reward function approximation

Outlook – Motion Prediction is an open research topic

Outlook

Interactive, dynamic Planning

Prediction is essential for dynamic planning in complex environment and Input to interactive planning concepts (Game Theory etc.).

Scenario Understanding

Comprehensive prediction aims to encode the human driving behavior

Learning from Demonstration

Prediction could be the enabler for new planning algorithms

→ Chapter 11: End-to-End