

Карта Кохонена

Підготували Ваврикович Михайло, Кусяк Віталій, Міхневич Владислав ПМІ-43

Поняття мережі Кохонена

Алгоритм навчання

Ініціалізація. Для нейронів мережі встановлюються початкові ваги, а також задаються початкові швидкість навчання η і радіус навчання R.

Збудження. На вхідний шар подається вектор впливу Xn, що містить значення вхідних полів запису навчальної вибірки.

Конкуренція. Для кожного вихідного нейрону обчислюється відстань D(Wj, Xn) між векторами ваг усіх нейронів вихідного шару і вектором вхідного впливу. Переможцем стає нейрон j, для якого така відстань виявиться найменшою.

Об'єднання. Визначаються усі нейрони, розташовані в межах радіусу навчання відносно нейрона-переможця.

Підстроювання. Здійснюється підстроювання ваг нейронів в межах радіуса навчання.

Корекція. Змінюється радіус і параметр швидкості навчання.

Приклад роботи

Розглянемо приклад роботи мережі Кохонена, що містить **2х2** нейрона у вихідному шарі, а множина даних представлена атрибутами Вік і Дохід.

У зв'язку з малим розміром мережі встановимо радіус навчання **R=0**, тобто можливість підстроювати ваги буде надаватися лише нейрону-переможцю. Коефіцієнт швидкості навчання встановимо **η=0,5**.

Випадковим чином виберемо початкові значення ваг нейронів:

w ₁₁	W ₂₁	w ₁₂	W22	w ₁₃	W23	W14	W24
0,9	0,8	0,9	0,2	0,1	8,0	0,1	0,2

Сформуємо набір записів вхідної вибірки:

№	Xįl	Xlj	Опис
1	$x_{11}=0,8$	$x_{12}=0,8$	Літня людина з високим доходом
2	x ₂₁ =0,8	$x_{22}=0,1$	Літня людина з низьким доходом
3	$x_{31}=0,2$	$x_{32}=0,8$	Молода людина з високим доходом
4	$x_{41}=0,1$	$x_{42}=0,2$	Молода людина з низьким доходом

Конкуренція. Обчислимо евклідову відстань між вхідним вектором X1 і векторами ваг усіх чотирьох нейронів вихідного шару.

Нейрон 1:
$$D(\mathbf{W}_1, \mathbf{X}_1) = \sqrt{(\mathbf{w}_{11} - \mathbf{x}_{11})^2 + (\mathbf{w}_{21} - \mathbf{x}_{12})^2} = \sqrt{(0.9 - 0.8)^2 + (0.8 - 0.8)^2} = 0.1.$$
 Нейрон 2: $D(\mathbf{W}_2, \mathbf{X}_1) = \sqrt{(\mathbf{w}_{12} - \mathbf{x}_{11})^2 + (\mathbf{w}_{22} - \mathbf{x}_{12})^2} = \sqrt{(0.9 - 0.8)^2 + (0.2 - 0.8)^2} = 0.61.$ Нейрон 3: $D(\mathbf{W}_3, \mathbf{X}_1) = \sqrt{(\mathbf{w}_{13} - \mathbf{x}_{11})^2 + (\mathbf{w}_{23} - \mathbf{x}_{12})^2} = \sqrt{(0.1 - 0.8)^2 + (0.8 - 0.8)^2} = 0.7.$ Нейрон 4: $D(\mathbf{W}_4, \mathbf{X}_1) = \sqrt{(\mathbf{w}_{14} - \mathbf{x}_{11})^2 + (\mathbf{w}_{24} - \mathbf{x}_{12})^2} = \sqrt{(0.1 - 0.8)^2 + (0.2 - 0.8)^2} = 0.92.$

Переміг нейрон 1, який формує кластер для захоплення літніх людей з високим доходом

Об'єднання. Оскільки радіус навчання дорівнює нулю, тільки нейрон-переможець буде нагороджений можливістю підстроювання свого вектора ваг.

Підстроювання. Для першого нейрона отримуємо формулу:

Для віку:
$$w_{11}^{\text{нове}} = w_{11}^{\text{поточне}} + \eta(x_{11} - w_{11}^{\text{поточне}}) = 0,9+0,5x(0,8-0,9)=0,85.$$
 Для доходу: $w_{21}^{\text{нове}} = w_{21}^{\text{поточне}} + \eta(x_{12} - w_{21}^{\text{поточне}}) = 0,8+0,5x(0,8-0,8)=0,8.$

Дане налагоджування дозволить нейрону 1 у подальшому більш успішно захоплювати записи з інформацією про літніх людей з високим доходом

Виконавши операції конкуренції та підстроювання для другого вхідного вектору X2=(0,8; 0,1), отримуємо:

$D(\mathbf{W}_1, \mathbf{X}_2)$	$D(\mathbf{W}_2, \mathbf{X}_2)$	$D(W_3, X_2)$	$D(\mathbf{W}_4, \mathbf{X}_2)$	_{W12} нове	_{W22} нове
0,71	0,14	0,99	0,71	0,85	0,15

Переміг нейрон 2. Він відкриває кластер для захоплення літніх людей з малим доходом.

Для третього і четвертого нейронів, відповідно, отримаємо такі нові значення ваг,

W ₁₃ HOBe	_{W23} нове	_{Wl4} нове	_{W24} нове
0,15	0,85	0,1	0,15

які будуть відповідати кластерам для молодих людей з високим доходом і молодих людей з низьким доходом.

Таким чином 4 вихідні нейрони представляють 4 різних кластера Кількість вихідних нейронів мережі Кохонена має відповідати кількості кластерів, які треба побудувати.

Поняття карти Кохонена

Методика побудови карти Кохонена

Кольори, які виконують функцію третього виміру.

У кожну комірку в загальному випадку потрапляє кілька об'єктів.

Об'єкти, вектори ознак яких близькі між собою, потрапляють в одну комірку карти або в комірки, розташовані поруч.

На одній карті можна зафарбувати лише за однією ознакою. Отож, для візуалізації кількох ознак треба будувати окремі карти.

Види карт Кохонена

Карта входів нейронів

Для кожного входу формується своя карта.

Карта виходів нейронів

Відображає взаємне розташування досліджуваних вхідних даних.

Спеціальні карти

Карти, які характеризують кластери, отримані в результаті навчання мережі Кохонена.

Переваги і недоліки карт Кохонена

Розвідувальний аналіз даних	Необхідність підтвердження гіпотез
Виявлення нових явищ	Евристичний характер методу
	Проблема "мертвих" нейронів

