NP-3910 La	ecture 9		
The Mona	d pattern		
- Functors 1 Important of A structur	(or mappables) und very comme e preserving utainer type) cover an on pattern franktornet	tion
of a Cou	stainer type	e Sauce X	
t xaayo (es.	Some X - None -	> None > C'are": "two	j thre
being may	another very of Hern, where to sped returns same type:	he function	ainer
	(a -> M(b>)	(x; M ('a))	•
	ts in the resurrant level of th		
	or may not . Some (Some !; [3;4]])	be what you 42) or	1

(NF-3910 Lecture 9 2 - Let us consider Option (a) let f x = if x < 0 None else Some x Option, map & (Some 1) => Some (Some 1) None => None - Some (Some 1) is clearly redundant and does not velly make any sense. So what can we do about 1+? let flatten = function Some X -> X / None -> None flatten (Some (Some 1)) => Some 1 None => None - we can compose the dwo fundions: let flat Map f x = map f >> flatten This is the monad pattern! Note! flatten is often called join and flathorp is called bind.

- we can gain a bit more in right into the soul of the monad by looking at the type signatures in 6. the predix and infix:

bind: (a -> M) -> M(a) -> M(b)

we can this arguments freely, in intix:

>(>>=): M(a) -> (a -> M(b)) -> M(b)

compare with

(1>): $a \rightarrow (a \rightarrow b) \rightarrow b$ (1>) and (>>=) are courins!!

- How about ordinary function comparition?

(>>): (a >> b) -> (b -> c) -> (a -> c)

(>=>): (a -> M(6>) -> (b-> M(c>) -> a -> M(c>)

Akleisti companition

- People Sometimes struggle with mounds, asking what they are. The grestion is a monad!

INF -3910

Lecture 9

4

- Let us consider Option(a) and the pyramid of doom:

Let f, g and h be functions which can fail

fyh: a -> Option 26> and let happy

be a dunction which depends on the

pesults of f, g and h:

if ok(r1): r2 = g(x2) if ok(r2): r3 = h(x3) if ok(r3): happy(r1, r2, r3)

3 Computation oxpr.

Option E

Let! $r_1 = f \times 1$ Let! $r_2 = g \times 2$ Let! $r_3 = h \times 3$ return happy $r_1 r_2 v_3$ 3 is syntactic Sugar

for 2!

 $f \times L \gg = (fun \ V \perp \rightarrow g \times 2 \gg = (fun \ V 2 \rightarrow g \times 2 \gg = (fun \ V 2 \rightarrow g \times 2 \gg = (fun \ V 3$

Some (happy 1/2 v2 v3)

The applicative functor pattern

- In the previous example none of the failable functions were dependent on the result of an earlier function (except happy of course!)

- This is a pattern! The applicative functor!

let pure: a -> Option(a) = Some

let apply: Option (a > b) - Option(a) - Option(6) let (<*>) = apply

Using these dunctions the previous example can be witten:

pure happy <*> f x1 <*> g x2 <*> h x3

We can even define au inline operator

let (2%) = Option. map

=> [happy (1.> f x1 (+> g x2 (x> h x3)

Now, that is beautiful!

(also liftA, liftA2, liftA3...)

The monad laws

- So far we have only looked at the patterns. But in order to be a proper monad the functions west satisfy a set of pres (as for functions):

let return: a >> M(a> = ...

1. Left identity: return a >>= f = f a

2. Right identity: M >> = return = M

3. Associativity: $(m \gg = f) \gg = g$ = $m \gg = (fun \times \rightarrow f \times \gg = g)$

(Kleish 3: (f>=> g)>=>h = f>=> (g>=>h)

Computation expressions

- Because monads can be a bit clumsy and Verbose to work with, F# provides Syntactic sugar for them, called Computation expressions

Ex. async, seg, query

- We can define our own CEs!

- Computation expressions are much richer than the monad typeclass in Hashall

- They provide a vich syntax for sequencing and comparing computations.

- (E: have special syntax/heywords for flattening or joining results from computations: let!, do!, return!, match!, yield!

- There get desugared into continuations, eg.

{ let! x = f = 3 => M. bind (f =, fun x > ...)

Example:

let x1 = 1let! $a = \frac{1}{3} \times 1$ wetch! g a with $(0,1) \longrightarrow \text{return} \cap 1$ $(x,y) \longrightarrow \text{return} \cap 1$ $f: int \longrightarrow \text{Option}(int)$ $h: int \longrightarrow int \longrightarrow 1$ Option(int) Option(int)

- We can implement our own CE:s by defining and instantiating a so called builder class:

type OptionBuilder () = member x. Bind (e, c) = Option. bind e c member X. Return V = Some V member X: Return From V = V

let option = OptionBuilder ()

- (E:s con desine a lot more:

- for loops - while loops - "iterators" uning yield - exception handling

The list/sey monad:

let flatten m = Seg. folk (fun a x > Seq. append ax) Serempty m let bind f= Seq. map f >> flatten

Let return = Seq. singleton

seq { let! a = [1;2] let! b = [3; 4] return (a,6)

=>[(1,3); (1,4); (2,3); (2,4)