

2025

SDSS CLASSIFICATION

This project utilizes a dataset from the Sloan Digital Sky Survey (SDSS) to develop a machine learning pipeline for both regression and classification tasks

Prepared by

VEERAMALLA BALAJI BHARGAV STUDENT, IIIT KOTTAYAM

VEERAMALLA BALAJI BHARGAV

balaji.ijb@gmail.com

Student

INDIAN INSTITUTE OF INFORMATION TECHNOLOGY,

KOTTAYAM

INDEX

Project Initialization and Planning Phase

- Define Problem Statement
- Project Proposal (Proposed Solution)
- Initial Project Planning

Data Collection and Preprocessing Phase

- Data Collection Plan, Raw Data Sources Identified,
 Data Quality
- Data Quality Report
- Data Exploration and Preprocessing

Model Development Phase

- Feature Selection Report
- Model Selection Report
- Initial Model Training Code, Model Validation and Evaluation

Model Optimization and Tuning Phase

- Hyperparameter Tuning Documentation
- Performance Metrics Comparison Report
- Final Model Selection Justification

Project Files Submission and Documentation

- GitHub File Submission
- Final Project Documentation

PROJECT INITIALIZATION AND PLANNING PHASE

Define Problem Statement

Problem	l am	I'm trying to	But	Because	What makes
Statement					me feel
1. Galaxy	Astronomer	Identify trends	It takes long	Of large	frustrated
morphology		and patterns	time and	datasets	
classification		of galaxy	manually not		
		morphology	scallable		
2. Galaxy	Astronomer	Map three	It takes long	To estimate	frustrated
Redshift		dimensional	time	red shifts	
Estimation		distribution		from datasets	
		and investigate			
		galaxies			
3. Active		Study	It takes long	To identify an	frustrated
Galactic	Astronomer	properties of	time	AGN	
Nuclei(AGN)		AGN		candidate	
Identification					

Project Proposal (Proposed Solution)

The proposal report aims to transform **Sloan Digital Sky Survey (SDSS)** galaxy classification using machine learning, boosting efficiency and accuracy. It tackles system inefficiencies, promising better operations, reduced risks, and happier customers. Key features include a machine learning-based credit model and real-time decision-making.

Project Overview

Objective	The primary objective is to revolutionize the Sloan Digital				
	Sky Survey (SDSS) galaxy classification by implementing				
	advanced machine learning techniques, ensuring faster and				
	more accurate assessments.				
Scope	The project comprehensively assesses and enhances the				
	SDSS Classification, incorporating machine learning for a				
	more robust and efficient system.				

Problem Statement

Scenario – 1 Galaxy Morphology Classification

Description	Astronomers are interested in studying the morphology of				
	galaxies to understand their formation and evolution				
	processes. By utilizing machine learning techniques,				
	researchers can train a classification model to categorize				
	galaxies into different morphological types such as elliptical,				
	spiral, or irregular.				
Impact	This automated classification process enables astronomers				
	to analyze large datasets of galaxy images efficiently and				
	identify trends or patterns related to galaxy morphology.				

Scenario – 2 Galaxy Redshift Estimation

Description	Redshift, which indicates the extent to which light from a			
	galaxy has been shifted towards longer wavelengths due to			
	the expansion of the universe, is a crucial parameter for			
	studying cosmic distances and cosmological phenomena.			
Impact	Machine learning models can be trained to estimate galaxy			
	redshifts based on features extracted from their spectra or			
	photometric properties measured by SDSS. Accurate redshift			
	estimation enables astronomers to map the three-			
	dimensional distribution of galaxies in the universe and			
	investigate large-scale structures such as galaxy clusters and			
	filaments.			

Scenario – 3 Active Galactic Nuclei (AGN) Identification

Description	Galaxies hosting active galactic nuclei (AGN) exhibit intense			
	emission from a compact region at their centers, powered by			
	accretion onto supermassive black holes. Identifying AGN			
	candidates from SDSS data is essential for studying their			
	properties and understanding their impact on galaxy			
	evolution.			
Impact	Machine learning algorithms can be trained to recognize			
	characteristic signatures of AGN in galaxy spectra or multi-			
	wavelength photometric data, facilitating the automated			
	identification of AGN hosts within large galaxy surveys like			
	SDSS. This enables astronomers to conduct statistical			
	analyses of AGN properties and investigate their role in			
	galaxy formation and evolution processes.			

Proposed Statement

Approach	Employing machine learning techniques to analyze and			
	predict creditworthiness, creating a dynamic and adaptable			
	loan approval system.			
Key Features	- Implementation of a machine learning-based credit			
	assessment model.			
	- Real-time decision-making for quicker loan approvals.			
	- Continuous learning to adapt to evolving financial			
	landscapes.			

Resource Requirements

Resource Type	Description	Specification / Allocation
Computing Resources	CPU/GPU specifications,	T4 GPU
	number of cores	
Memory	RAM specifications	8 GB
Storage	Disk space for data, models,	1 TB SSD
	and logs	

Software

Frameworks	Python frameworks	Flask
Libraries	Additional libraries	scikit-learn, pandas, numpy, matplotlib, seaborn
Development Environment	IDE	Jupyter Notebook, pycharm

Data

Data	Source, size, format	Kaggle dataset, 614, csv		
		UCI dataset, 690, csv		

The columns named "morphology" and "agni" (AGN Identification) in the dataset are not real values. They are add with random values

Morphology column

Value allocated – Shape

- 0 Spiral
- 1- Elliptical
- 2- irregular

agni column

value – meaning

- 0 AGN not identified
- 1 AGN identified

Initial Project Planning

Sprint	Functional	User	User Story /	Priority	Team	Sprint	Sprint End
	Requirement	Story	Task		Members	Start Date	Date
	(Epic)	Number					(planned)
Sprint-	Data	SL -3	Understandin	Low	V. Balaji	16/5/202	29/5/202
1	Collection		g and Loading		Bhargav	5	5
	and		data				
	Preprocessin						
	g						
Sprint-	Data	SL -4	Data cleaning	High	V. Balaji	16/5/202	29/5/202
1	Collection				Bhargav	5	5
	and						
	Preprocessin						
	g						
Sprint-	Data	SL -5	EDA	Medium	V. Balaji	16/5/202	29/5/202
1	Collection				Bhargav	5	5
	and						
	Preprocessin						
	g						
Sprint-	Project	SL -20	Report	Medium	V. Balaji	16/5/202	29/5/202
4	Report				Bhargav	5	5
Sprint-	Model	SL -8	Training and	Medium	V. Balaji	16/5/202	29/5/202
2	Development		model		Bhargav	5	5
Sprint-	Model	SL -9	Evaluating the	Medium	V. Balaji	16/5/202	29/5/202
2	Development		model		Bhargav	5	5
Sprint-	Model Tuning	SL -13	Model tuning	High	V. Balaji	16/5/202	29/5/202
2	and testing				Bhargav	5	5
Sprint-	Model Tuning	SL -14	Model testing	Medium	V. Balaji	16/5/202	29/5/202

DATA COLLECTION AND PREPROCESSING

Data Collection Plan, Raw Data Sources Identified, Data Quality

Elevate your data strategy with the Data Collection plan and the Raw Data Sources report, ensuring meticulous data curation and integrity for informed decision-making in every analysis and decision-making endeavor.

Data Collection Plan:

Section	Description		
Project Overview	The machine learning project aims to predict loan		
	approval based on applicant information. Using a		
	dataset with features in dataset, the objective is to		
	build a model that accurately classifies AGN		
	(approved or denied), morphology(spiral, elliptical, or		
	irregular) and predict Redshift		
Data Collection Plan	Search for datasets related to Morphology, AGN		
	and Redshift details.		
	Prioritize datasets with diverse demographic		
	information.		
Raw Data Sources	The raw data sources for this project include datasets		
Identified	obtained from Kaggle & UCI, the popular platforms		
	for data science competitions and repositories. The		
	provided sample data represents a subset of the		
	collected information, encompassing variables such		
	as Redshift, Morphology, and AGN.		

Raw Data Sources Report:

Source Name	Description	Location/URL	Forma t	Size	Access Permissions
Kaggle Dataset	The dataset comprises target variable(Predicti ng variable) only Redshift but not Morphology and AGN related columns so all the values in the that both columns are Random values.	https://www.kagg le.com/datasets/ bryancimo/sdss- galaxy- classification- dr18	CSV	42000 KB	Public

Data Quality Report:

The Data Quality Report will summarize data quality issues from the selected source, including severity levels and resolution plans. It will aid in systematically identifying and rectifying data discrepancies.

Data Quality Report:

Data Source	Data Quality Issue	Severity	Resolution Plan
Kaggle Dataset	Missing values in the	Moderate	Use
	u, g, r, i,		mean/mode/median
	z,petroR50_u,		imputation
	petroR50_g,		
	petroR50_i,		
	petroR50_r,		
	petroR50_z,		
	psfMag_u, psfMag_r,		
	psfMag_g, psfMag_i,		
	psfMag_z, expAB_u,		
	expAB_g, expAB_r,		

	expAB_i, expAB_z		
Kaggle Dataset	Categorial data in the	Moderate	Encoding has to be
	dataset		done in the data

Data Exploration and Preprocessing Report

Dataset variables will be statistically analyzed to identify patterns and outliers, with Python employed for preprocessing tasks like normalization and feature engineering. Data cleaning will address missing values and outliers, ensuring quality for subsequent analysis and modeling, and forming a strong foundation for insights and predictions.

Section	Descri	ption					
Data	Dimensions:						
Overview	100000 rows × 39 Columns						
		u	g	r	i	z	
	count	100000.000000	100000.000000	100000.000000	100000.000000	100000.000000	
	mean	19.621221	18.360874	17.723881	17.364947	17.153703	
	std	1.526681	1.546639	1.530125	1.553336	1.608050	
	min	12.753830	11.822230	11.245440	10.711590	10.255130	
	25%	18.762520	17.506115	16.899070	16.527330	16.281987	
	50%	19.350015	18.072760	17.459205	17.091615	16.861280	
	75%	20.079930	18.656610	17.927477	17.593157	17.454690	
	max	30.960000	30.420980	31.173560	30.562360	28.553240	

MODEL DEVELOPMENT PHASE

Feature Selection Report

In the forthcoming update, each feature will be accompanied by a brief description. Users will indicate whether it's selected or not, providing reasoning for their decision. This process will streamline decision-making and enhance transparency in feature selection.

Feature	Description	Selected	d Reasoning
objid	Object ID, unique identifier for the observation	No	Used for identification only, not relevant for modeling
specobjid	Spectroscopic object ID	No	Identifier only; does not influence model features
ra	Right Ascension (sky coordinate)	No	Positional data; may not influence intrinsic properties
dec	Declination (sky coordinate)	No	Positional data; not relevant for classification or regression
u	Magnitude in u-band	Yes	Photometric measurement; useful for color/brightness analysis
g	Magnitude in g-band	Yes	Helps define object color, useful for classification
r	Magnitude in r-band	Yes	Important for photometric features
i	Magnitude in i-band	Yes	Adds spectral information
Z	Magnitude in z-band	Yes	Complements other band magnitudes
modelFlux_ u	Model flux in u-band	No	Flux and magnitude are related; may cause redundancy
modelFlux_	Model flux in g-band	No	Excluded to avoid multicollinearity with magnitude
modelFlux_i	Model flux in r-band	No	Similar reason as above
modelFlux_i	Model flux in i-band	No	Not chosen to reduce redundancy
modelFlux_z	z Model flux in z-band	No	Magnitude already included
petroRad_u	Petrosian radius in u-band	No	May be noisy and inconsistent across bands
petroRad_g	Petrosian radius in g-band	No	Size-related, but not most discriminative
petroRad_i	Petrosian radius in i-band	No	Excluded for simplicity

petroRad_r	Petrosian radius in r-band	No	Not selected due to similar alternatives
petroRad_z	Petrosian radius in z-band	No	Redundant with others
petroFlux_u	Petrosian flux in u-band	No	Flux already represented via magnitude
petroFlux_g	Petrosian flux in g-band	No	Not used to prevent duplicate information
petroFlux_i	Petrosian flux in i-band	No	Avoid redundancy
petroFlux_r	Petrosian flux in r-band	No	Same reason as above
petroFlux_z	Petrosian flux in z-band	No	Flux data excluded
petroR50_u	Petrosian radius at 50% light in uband	No	Less relevant in classification
petroR50_g	Petrosian radius at 50% light in g-band	No	Similar reasons as above
petroR50_i	Petrosian radius at 50% light in iband	No	Not chosen for simplicity
petroR50_r	Petrosian radius at 50% light in r-band	No	Excluded to reduce dimensionality
petroR50_z	Petrosian radius at 50% light in z-band	No	Not distinctively informative
psfMag_u	PSF magnitude in u-band	No	One set of magnitudes already included
psfMag_r	PSF magnitude in r-band	No	Avoid mixing photometric systems
psfMag_g	PSF magnitude in g-band	No	Redundant with other magnitude measures
psfMag_i	PSF magnitude in i-band	No	Redundant
psfMag_z	PSF magnitude in z-band	No	Not selected to reduce feature overlap
expAB_u	Axis ratio in exponential model for u-band	Yes	Target variables are depended
expAB_g	Axis ratio in g-band	Yes	Target variables are depended
expAB_r	Axis ratio in r-band	Yes	Target variables are depended
expAB_i	Axis ratio in i-band	Yes	Target variables are depended

expAB_z	Axis ratio in z-band	Yes	Target variables are depended
class	Object class (e.g., STAR, GALAXY,	No	Because class has only single
Class	QSO)	110	value
subclass	Subcategory of the main class	Yes	Provides more granular
Subciass	Subcategory of the main class	165	classification information
redshift	Estimated redshift of the object	Yes	Crucial for many astrophysical
reusiiiit	Estimated redshift of the object		analyses
rodehift orr	I In containts in so dahift	No	May introduce noise, excluded for
reusiiiit_eii	Uncertainty in redshift	NO	simplicity
morphology	Visual morphology category	Yes	High-level feature for physical
morphology	visual morphology category	165	appearance
	Possibly an indicator or flag		
agni	(domain-specific, unclear without	Yes	Target variables are dependent
	metadata)		

Model Selection Report

Scenario 2:

Model	Performance metric (R Square)
Linear Regression	61.7 %
Decision Tree Regressor	63.2 %
Random Forest Regressor	64.9 %
AdaBoost Regressor	61.4 %
KNN	64.5 %
Stacking	70.8 %

Scenario 1: (The values for in the morphology column are chosen random)

Model	Performance metric (F1 score)
Logistic Regression	30 %
Decision Tree Regressor	29 %
Random Forest Regressor	35 %
AdaBoost Regressor	33 %
KNN	36 %
Stacking	32 %

Scenario 3: (The values for in the agn related column are chosen random)

Model	Performance metric (F1 score)
Logistic Regression	50 %
Decision Tree Regressor	51 %
Random Forest Regressor	52 %
AdaBoost Regressor	52 %
KNN	51 %
Stacking	54 %

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model training Code:

Scenario 2:


```
RANDOM FOREST REGRESSOR

[] sbuilding and running Random forest regressor
para_grid = {
        "nest_intores"; [59,100],
        "nin_amples_polit"; [30],
        "nin_amples_polit"; [30],
        "nin_amples_polit"; [30],
        "nin_amples_polit"; [30],
        "nin_depth"; [5,7],
        ]

[] grid_cct-dridSearchCV(rf,param_grid,co+kf,scoring="r2",n_jobs=-1)

[] grid_cct.drift(s_train_y_train)

[] grid_cct.best_score_

[] rf_model_finatourforestRegressor(nox_depth-d_min_samples_leaf=60,min_samples_split:10,n_estimators=10)

[]

[] rf_model_fit(x_train_y_train)

[] y_predDerf_model.predict(x_test)
```

```
STACKING

[ ] #Building an running Stacking

[ ] levell.append(("ln",ln_model))
    levell.append(("ln",ln_model))
    levell.append(("shn",kn_model))
    levell.append("shn",kn_model))
    levell.append("da",ada_model))
    levell.append("da",ada_model))
    levell.append("da",ada_model))
    levell.append("da",ada_model))

[ ] levell

[ ] st_model=stack_model.fit(x_train,y_train)
    y_pred_st=st_model.predict(x_test)

[ ] score-cross_val_score(stack_model,x_train,y_train,scoringe"r2",cv=kf)

[ ] print("Rscore:",np.mean(score))

[ ] st2_train=st_model.core(x_train,y_train)
    st2_train=st_model.core(x_train,y_train)
```

Scenario 1:

```
LOGISTIC REGRESSION(OF MORPHOLOGY)

[] x = red_df.drop('morphology', axis=1)
y = red_df('morphology']

[] x_train, x_test, y_train, y_test = train_test_split(x, y, test_siz=0.3, random_state=02)

[] log_model = logisticRegression(max_iter=1500)  # max_iter helps avoid convergence issues

[] log_model.fit(x_train, y_train)

[] my_predt = log_model.predict(x_test)
```

Scenario 3:

```
LOGISTIC REGRESSION(OF AGN IDENTIFICATION)

[ ] x = red_df.drop('agni', axis=1)
    y = red_df['agni']

[ ] x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=d2)

[ ] agnlog_model = togisticHogression(max_iter=1500)  # max_iter helps avoid convergence issues

[ ] agnlog_model.fit(x_train, y_train)

[ ] agnlog_model = agnlog_model.predict(x_test)
```

```
ADABOOST CLASSIFICATION

[] param_grid = {
        'n_estimators': [50, 100],
        'learning_rate': [0.01, 0.1, 0.5]
}

[] agnada=AdaBoostClassifier()

[] grid_search = GridSearchCV(
        agnada,
        param_grid,
        cv=5,
        scoring='accuracy',
        n_jobs=-1 # Use all CPU cores
)

grid_search.fit(x_train, y_train)

[] grid_search.best_score_
    grid_search.best_params_
    grid_search.best_estimator_

[] best_model = grid_search.best_estimator_

[] agny_pred4 = best_model.predict(x_test)
```

```
KNN

[ ] agnkf = StratifiedKFold(n_splits=3, shuffle=True, random_state=42)

[ ] accuracy_scores = []
    for k in range(2, 25):
        agnknn = KNeighborsClassifier(n_neighbors=k,n_jobs=-1)
        scores = cross_val_score(agnknn, x_train, y_train, cv=agnkf, scoring='accuracy')
        accuracy_scores.append(np.mean(scores))

[ ] plt.figure(figsize=(10, 5))
    plt.tplat(r(snx) Classification Accuracy_scores, marker='o')
    plt.xlabel("KN Classification Accuracy for Different k")
    plt.ylabel("Cross-Validated Accuracy")
    plt.ylabel("Cross-Validated Accuracy")
    plt.sticks(range(2, 25, 2))
    plt.show()

[ ] best_k = 10
    print(f"Best k: (best_k)")

[ ] agn_knn = KNeighborsClassifier(n_neighbors=best_k,n_jobs=-1)

[ ] agn_knn.fit(x_train, y_train)

[ ] agn_knn.fit(x_train, y_train)
```

```
STACKING

[ ] agnlevel1.append(("log_model", logisticRegression(max_iter=1590)))
    agnlevel1.append(("log_model", logisticRegression(max_iter=1590)))
    agnlevel1.append(("maxe", NMeighborsClassifier()))
    agnlevel1.append(("maxe", SC()))
    agnlevel1.append(("maxe", Adaboostclassifier()))

[ ] agnlevel2 = logisticRegression()

[ ] agnstack_model = StackingClassifier(
    estimator=sagnlevel1,
    final_estimator=sagnlevel1,
    final_estimator=sagnlevel2,
    cv=3, & or use StratifiedKFold
    n_jobs=-1
    )

[ ] agncv_scores = cross_val_score(agnstack_model, x_train, y_train, cv=agnkf, scoring='accuracy', print("Cross_validated_Accuracy_Scores:", agncv_scores)

[ ] agnstack_model.fit(x_train, y_train)

[ ] agnstack_model.fit(x_train, y_train)

[ ] agny_pred6 = agnstack_model.predict(x_test)
```

Model Validation and Evaluation Report:

Scenario 2:

[129]	for r r rfi rfi	inal_results=pd.DataFram i in range(0,len(model ab=[[model_list[i],r2_sc new=pd.DataFrame(ab) rfinal_results=pd.concat inal_results=rfinal_resu inal_results	_list)): ore_train[i],r2_s ([rfinal_results, ric_list	new],axis],mse[i],	mae[i],map	oe[i]]]
		Models	r2 Score(Train)	r2 Score	RMSE	MSE	MAE	MAPE
	0	Linear Regression	0.649842	0.649369	0.011732	0.011732	0.068519	0.747834
	1	Decision Tree Regression	0.641418	0.632783	0.011239	0.632783	0.070397	0.711711
	2	Random Forest Regressor	0.660115	0.649723	0.010721	0.649723	0.069070	0.709246
	3	Adaoost Regressor	0.614396	0.605990	0.012059	0.605990	0.074206	0.802742
	4	KNN Regression	0.645589	0.525693	0.014517	0.525693	0.076865	0.813940
	5	Stacked Regression	0.723904	0.708576	0.008920	0.708576	0.059873	0.600899

Scenario 1:(For morphology column the data is choosen at random. Hence cannot expect good model validation and evaluation report)

```
Models Accuracy (Train)
                                              Accuracy (Test) Precision
         Linear Regression
                                    0.342800
                                                     0.334500
                                                                0.336869
  Decision Tree Regression
                                    0.341233
                                                     0.337367
                                                                0.338243
2
   Random Forest Regressor
                                    0.343667
                                                     0.335933
                                                                0.334908
         Adaoost Regressor
                                    0.341167
                                                     0.335800
                                                                0.186544
4
            KNN Regression
                                    0.333333
                                                     0.335300
                                                                0.334137
5
        Stacked Regression
                                    0.341433
                                                     0.333967
                                                                0.327692
    Recall F1-Score
0 0.334500 0.268948
1 0.337367 0.254824
2 0.335933 0.288383
3 0.335800 0.168993
4 0.335300 0.331473
5 0.333967 0.282424
```

Scenario 3:(For AGN related column the data is choosen at random. Hence cannot expect good model validation and evaluation report)

```
# Create dataframe
    agnfinal_results = pd.DataFrame()
    for i in range(len(agnmodel_list)):
        row = [[agnmodel_list[i], agnacc_train[i], agnacc_test[i], agnprecision[i], agnrecall[i], agnf1[i]]]
        df = pd.DataFrame(row)
        agnfinal_results = pd.concat([agnfinal_results, df], axis=0)
    agnfinal_results.columns = agnmetric_list
    agnfinal_results = agnfinal_results.reset_index(drop=True)
    print(agnfinal_results)
(→1)
                   Models Accuracy (Train) Accuracy (Test) Precision \
    0 Logistic Regression
                                  0.500933
                                                  0.499167
                                                            0.499319
            Decision Tree
                                  0.498133
                                                   0.505900
                                                             0.506496
            Random Forest
                                  0.340267
                                                  0.338867
                                                             0.337843
                 AdaBoost
                                 0.504300
                                                  0.498333
                                                             0.248336
                 Stacking
                                                  0.504200 0.504198
                                  0.497867
                      KNN
                                  0.501067
                                                  0.503267 0.503430
         Recall F1-Score
    0 0.499167 0.498120
    1 0.505900 0.500996
    2 0.338867 0.297633
    3 0.498333 0.331483
    4 0.504200 0.504162
    5 0.503267 0.495749
```

MODEL OPTIMIZATION AND TUNING PHASE

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peakperformance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation:

Scenario 2:

Model	Tuned Hypermeters	Optimal values	
Decisio n Tree	<pre>param_grid2={"min_samples_split":n</pre>	<pre>grid_cv2.best_params_ {'max_depth': np.int64(7 'min samples leaf': np.</pre>	
		'min_samples_split': np	
Rando			
m	param_grid = {		<pre>grid_cv1.best_params_</pre>
Forest	"n_estimators": [50,100], "min_samples_split": [10],	{'max_depth': 7,	
	"min_samples_leaf": [10],		'min_samples_leaf':
	"max_depth": [5,7],		<pre>'min_samples_split':</pre>
	}		'n_estimators': 100}

Scenario 1:

Model	Tuned Hypermeters	Optimal values
Decision Tree	<pre>param_grid = { 'max_depth': [5, 10, 15], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4], 'criterion': ['gini', 'entropy'] # or 'log_loss' for probabilistic output }</pre>	<pre>prid_search.best_params_ {'learning_rate': 0.01, 'n_estimators': 50}</pre>
Random forest	<pre>[162] param_grid = { 'n_estimators': [50,100], # number of trees 'max_depth': [10], # maximum tree depth 'min_samples_palit': [2], # min samples to split a node 'min_samples_leaf': [1, 2], # min samples at a leaf node 'criterion': ['gini', 'entropy'] # splitting criterion }</pre>	[288] grid_search.best_params_ [288] grid_search.best_params_ [288] grid_search.best_params_
Adaboos t		

Scenario 3:

Model	Tuned Hypermeters	Optimal values
Decisio n Tree	[224] param_grid = {	[290] grid_search.best_params_
Rando m forest	<pre>param_grid = { 'n_estimators': [50,100], 'max_depth': [10], 'min_samples_split': [2], 'min_samples_leaf': [1, 2], 'criterion': ['gini', 'entropy'] }</pre>	[288] grid_search.best_params_ {'learning_rate': 0.01, 'n_estimators': 50}

Performance Metric:

Scenario 2:

```
[129] rfinal_results=pd.DataFrame()
    for i in range(0,len(model_list)):
     ab=[[model_list[i],r2_score_train[i],r2_score_test[i],rmse[i],mse[i],mae[i],mape[i]]]
     new=pd.DataFrame(ab)
     rfinal_results=pd.concat([rfinal_results,new],axis=0)
    rfinal_results.columns=metric_list
    rfinal_results=rfinal_results.reset_index(drop=True)
    rfinal_results
₹
                 Models r2 Score(Train) r2 Score
                                             RMSE
                                                    MSE
                                                           MAE
                                                                 MAPE
    0
                            Linear Regression
       Decision Tree Regression
                            Random Forest Regressor
                            3
          Adaoost Regressor
                            0.614396 \quad 0.605990 \quad 0.012059 \quad 0.605990 \quad 0.074206 \quad 0.802742
            KNN Regression
                            4
                            5
          Stacked Regression
```

Scenario 3:

```
# Create dataframe
    agnfinal_results = pd.DataFrame()
    for i in range(len(agnmodel_list)):
        row = [[agnmodel_list[i], agnacc_train[i], agnacc_test[i], agnprecision[i], agnrecall[i], agnf1[i]]]
        df = pd.DataFrame(row)
        agnfinal_results = pd.concat([agnfinal_results, df], axis=0)
    # Set column names
    agnfinal_results.columns = agnmetric_list
    agnfinal_results = agnfinal_results.reset_index(drop=True)
    print(agnfinal_results)
₹
                   Models Accuracy (Train) Accuracy (Test) Precision \
    0 Logistic Regression
                                                             0.499319
                                  0.500933
                                                   0.499167
                                                   0.505900
            Decision Tree
                                  0.498133
                                                              0.506496
             Random Forest
                                                   0.338867
                                                              0.337843
                                  0.340267
                 AdaBoost
                                 0.504300
                                                  0.498333
                                                              0.248336
                 Stacking
                                  0.497867
                                                   0.504200
                                                             0.504198
                      KNN
                                  0.501067
                                                   0.503267 0.503430
         Recall F1-Score
    0 0.499167 0.498120
    1 0.505900 0.500996
    2 0.338867 0.297633
    3 0.498333 0.331483
    4 0.504200 0.504162
    5 0.503267 0.495749
```

Scenario1:

```
# Create dataframe
    mfinal_results = pd.DataFrame()
    for i in range(len(model_list)):
        row = [[model_list[i], macc_train[i], macc_test[i], mprecision[i], mrecall[i], mf1[i]]]
        df = pd.DataFrame(row)
        mfinal_results = pd.concat([mfinal_results, df], axis=0)
    # Set column names
    mfinal_results.columns = mmetric_list
    mfinal_results = mfinal_results.reset_index(drop=True)
    print(mfinal_results)
₹
                       Models Accuracy (Train) Accuracy (Test) Precision \
             Linear Regression
   0
                                0.342800
                                                   0.334500
                                                                0.336869
                                     0.341233
   1 Decision Tree Regression
                                                     0.337367
                                                                 0.338243
    2 Random Forest Regressor
                                     0.343667
                                                     0.335933
                                                                 0.334908
             Adaoost Regressor
                                     0.341167
                                                      0.335800 0.186544
                                     0.333333
                                                      0.335300 0.334137
   4
                KNN Regression
            Stacked Regression
                                      0.341433
                                                      0.333967 0.327692
        Recall F1-Score
    0 0.334500 0.268948
      0.337367 0.254824
    2 0.335933 0.288383
   3 0.335800 0.168993
    4 0.335300 0.331473
    5 0.333967 0.282424
```