Path

A path from p(x,y) to q(s,t) is a sequence of distinct pixels.

$$(x_0,y_0), (x_1,y_1)....(x_n,y_n)$$

Where

$$(x_0,y_0) = (x,y), (x_n,y_n) = (s,t)$$

 (x_i,y_i) is adjacent to (x_{i-1},y_{i-1})
for $1 \le i \le n$

n => length of the path.

Connected component

Let $S \subseteq I$ and $p,q \in S$

Then p is connected to q in S if there is a path From p to q consisting entirely of pixels in S

For any p ∈ S, the set of pixels in S that are Connected to p is call a connected component of S.

=> Any two pixels of a connected component are connected to each other Distinct connected components are disjoint

Connected component labelling

Algorithm

Scan an image from left to right and from top to bottom. Assume 4 - connectivity P be a pixel at any step in the scanning process. Before p, points r and t are scanned

STEPS

```
I(p) => Pixel value at position p.
L(p) => Label assigned to pixel location p.
If I(p) = 0, move to next scanning position.
If I(p) = 1 and I(r) = I(t) = 0
Then assign a new label to position p
If I(p) = 1 and only one of the two neighbor
        is 1
Then assign its label to p.
If I(p) = 1 and both r and t are 1's, then
      If L(r) = L(t) than L(p)=L(r)
      If L(r) \neq L(t) then assign on of the
      labels to p and make a note that the
      two labels are equivalent
```

At end of the scan all pixels with value 1 are labeled.

Some labels are equivalent.

During second pass process equivalent pairs to from equivalence classes.

Assign a different label to each class. In the second pass through the image replace each label by the label assigned to its equivalence class.

Algorithm demonstration

Paths & Path lengths

 A path from pixel p with coordinates (x, y) to pixel q with coordinates (s, t) is a sequence of distinct pixels with coordinates:

$$(x_0, y_0), (x_1, y_1), (x_2, y_2) \dots (x_n, y_n),$$

where $(x_0, y_0) = (x, y)$ and $(x_n, y_n) = (s, t);$
 (x_i, y_i) is adjacent to (x_{i-1}, y_{i-1}) $1 \le i \le n$

- Here *n* is the *length* of the path.
- We can define 4-, 8-, and m-paths based on type of adjacency used.

Example # 1: Consider the image segment shown in figure. Compute length of the shortest-4, shortest-8 & shortest-m paths between pixels p & q where,

$$V = \{1, 2\}.$$

```
4 2 3 2 q
3 3 1 3
2 3 2 2
p 2 1 2 3
```

Example # 1:

Shortest-4 path:

 $V = \{1, 2\}.$

4 2 3 2 q

3 3 1 3

2 3 2 2

 $p 2 \rightarrow 1 2 3$

Example # 1:

$$V = \{1, 2\}.$$

$$p \rightarrow 1 \rightarrow 2$$
 3

Example # 1:

$$V = \{1, 2\}.$$

Example # 1:

$$V = \{1, 2\}.$$

4 2 3 2 q
3 3
$$\frac{1}{4}$$
 3
2 3 $\frac{2}{4}$ 9
2 3 2 2
2 3 3

Example # 1:

Shortest-4 path:

$$V = \{1, 2\}.$$

So, Path does not exist.

```
Example # 1:
```

$$V = \{1, 2\}.$$

```
4 2 3 2 q
```

Example # 1:

$$V = \{1, 2\}.$$

Example # 1:

$$V = \{1, 2\}.$$

Example # 1:

$$V = \{1, 2\}.$$

Example # 1:

$$V = \{1, 2\}.$$

Example # 1:

Shortest-8 path:

$$V = \{1, 2\}.$$

So, shortest-8 path = 4

Example # 1:

Shortest-m path:

 $V = \{1, 2\}.$

4 2 3 **2** q

3 3 1 3

2 3 2 2

p 2 1 2 3

Example # 1:

$$V = \{1, 2\}.$$

$$p \rightarrow 1 2 3$$

Example # 1:

$$V = \{1, 2\}.$$

$$p 2 \rightarrow 1 \rightarrow 2$$
 3

Example # 1:

$$V = \{1, 2\}.$$

Example # 1:

$$V = \{1, 2\}.$$

4 2 3 2 q
3 3
$$\frac{1}{4}$$
 3
2 3 $\frac{2}{4}$ 9
2 3 $\frac{2}{4}$ 2
2 3 3

Example # 1:

$$V = \{1, 2\}.$$

4 2 3
$$\frac{2}{7}$$
 q
3 3 $\frac{1}{7}$ 3
2 9
2 9
3 2 2
3 2 3

Example # 1:

Shortest-m path:

$$V = \{1, 2\}.$$

4 2 3
$$\frac{2}{7}$$
 q
3 3 $\frac{1}{7}$ 3
2 9
2 3 $\frac{2}{7}$ 2
2 9

So, shortest-m path = 5

Example # 1:

Shortest-mpath:

 $V = \{1, 2\}.$

So, shortest-m path = 5

Relationships between Pixels

- On completion the students will be able to
 - 1. Learn different distance measures
 - 2. Application of Distance measure
 - 3. Arithmetic/ Logical operations on images
 - 4. Neighborhood operations on images

Take three pixels

$$P \approx (x,y)$$
 $q \approx (s,t)$ $z \approx (u,v)$

D is a distance function or metric if

$$D(p,q) \ge 0$$
; $D(p,q) = 0$ iff $p = q$

$$D(p,q) = D(q,p)$$

$$D(p,z) \leq D(p,q) + D(q,z)$$

Euclidian Distance

$$D_e(p,q) = [(x-s)^2 + (y-t)^2]^{\frac{1}{2}}$$

Set of points $S = \{ q \mid D(p,q) \le r \}$ are the

points contained in a disk of radius r

centered at p.

D₄ distance or City-Block (Manhattan) Distance.

$$D_4(p,q) = |x-s| + |y-t|$$

Points having city block distance from p less than or equal to r from diamond centered at p.

D₈ distance or chess board distance is defined as

$$D_8(p,q) = max(|x-s|, |y-t|)$$

 $S = \{ q \mid D_8(p,q) \le r \}$ forms a square centered at p.

Points with $D_8 = 1$ are 8 neighbors of p

Arithmetic / Logical Operation

Following Arithmetic/Logical operations between two pixels p and q are used extensively

```
Arithmetic Logical
p+q p.q
p-q p+q
p*q p*q
p*q
```

Logical operations apply to binary images
Only => Usually pixel by

Neighborhood Operations

The value assigned to a pixel is a function of its gray label and the gray labels of its neighbors.

$$\begin{array}{c|cccc} Z_1 & Z_2 & Z_3 \\ \hline Z_4 & Z_5 & Z_6 \\ \hline Z_7 & Z_8 & Z_9 \end{array}$$

$$Z = 1/9 (Z_1 + Z_2 + Z_3 + + Z_9) = Average$$

Template

More general form

Z ₁	Z ₂	Z ₃
Z ₄	Z ₅	Z ₆
Z ₇	Z ₈	Z ₉

w,	W ₂	W ₃
W ₄	W _s	W _e
W,	W _e	W _g

$$Z = W_1 Z_1 + W_2 Z_2 + \dots + W_9 Z_9$$

$$=\sum_{i=1}^{\circ} W_i Z_i$$

Same as averaging if W_i=1/9

Neighborhood Operations

Various important operations can be Implemented by proper selection of Coefficients W_i

- ---- Noise filtering
- ---- Thinning
- ---- Edge detection

etc...