Cinétique et catalyse

Suivi qualitatif par CCM

- (1) Réactif pur
- (2) Échantillon du milieu réactionnel
- (3) Produit pur

Ions iodure et peroxodisulfate

$$A = [I_2]^* L * \xi(\lambda)$$

$$2 I^{-}(aq) + S_2 O_8^{2-}(aq) \longrightarrow I_2(aq) + 2 SO_4^{2-}(aq)$$

Facteurs cinétique

- **❖** Température [<u>lien</u>]
- Concentration en réactif [lien]

Pots catalytique

❖ 2 NO(g) + 2CO(g)
$$\xrightarrow{\text{Rhodium}}$$
 N₂(g) + 2 CO₂(g)

Catalyse enzymatique

Les différentes catalyses

	Homogène	Hétérogène	Enzymatique
Avantages	Toutes les molécules du catalyseur sont disponibles	Facilement recyclable	 Coûts plus bas Peu de rejet Très efficace dans les bonnes conditions de pH et température Sélective Catalyseur biosourcé
Inconvénients	Difficilement recyclable	Seule la surface du catalyseur est disponible	 Efficacité fortement dépendante du milieu Pas recyclable industriellement

Merci