Team 4 Data Analysis

```
Entrée [1]:  import pandas as pd

df = pd.read_csv("msamd_14454.csv")
  df.head()
```

C:\Users\perronr\AppData\Roaming\Python\Python38\site-packages\pandas
\core\computation\expressions.py:20: UserWarning: Pandas requires vers
ion '2.7.3' or newer of 'numexpr' (version '2.7.1' currently installe
d).

from pandas.core.computation.check import NUMEXPR_INSTALLED <ipython-input-1-d37e26c08a4c>:3: DtypeWarning: Columns (22,23,24,26,27,28,29,30,31,32,33,38,43,44) have mixed types. Specify dtype option on import or set low_memory=False.

df = pd.read_csv("msamd_14454.csv")

Out[1]:

	activity_year	lei	derived_msa- md	state_code	county_code	cens
0	2021	549300DAUXQ2DCY4H838	14454	МА	25021.0	2.502
1	2021	549300DAUXQ2DCY4H838	14454	MA	25021.0	2.502
2	2021	549300DAUXQ2DCY4H838	14454	MA	25023.0	2.502
3	2021	549300DAUXQ2DCY4H838	14454	MA	25023.0	2.502
4	2021	549300DAUXQ2DCY4H838	14454	MA	25025.0	2.502

5 rows × 99 columns

By county determine how many loans were taken.

A loan being taken has a value of 1 in the 'action taken' column

Norfolk: 40175 Plymouth: 33453 Suffolk: 27140

Establish who is participating in first time home ownership programs

Out[4]:		applicant_age	derived_dwelling_category	derived_race	income
	3	25-34	Single Family (1-4 Units):Site-Built	Black or African American	104.0
	4	25-34	Single Family (1-4 Units):Site-Built	Race Not Available	86.0
	12	25-34	Single Family (1-4 Units):Site-Built	Black or African American	49.0
	15	25-34	Single Family (1-4 Units):Site-Built	Black or African American	131.0
	16	25-34	Single Family (1-4 Units):Site-Built	Black or African American	NaN
	26	25-34	Single Family (1-4 Units):Site-Built	White	174.0
	33	25-34	Single Family (1-4 Units):Site-Built	White	110.0
	34	25-34	Single Family (1-4 Units):Site-Built	Black or African American	177.0
	37	25-34	Single Family (1-4 Units):Site-Built	White	75.0
	40	25-34	Single Family (1-4 Units):Site-Built	Black or African American	88.0
	44	25-34	Single Family (1-4 Units):Site-Built	White	78.0
	47	25-34	Single Family (1-4 Units):Site-Built	Asian	88.0
	60	25-34	Single Family (1-4 Units):Site-Built	White	190.0
	65	25-34	Single Family (1-4 Units):Site-Built	White	105.0
	67	25-34	Single Family (1-4 Units):Site-Built	Race Not Available	177.0
	69	25-34	Single Family (1-4 Units):Site-Built	White	143.0
	75	25-34	Single Family (1-4 Units):Site-Built	White	124.0
	78	25-34	Single Family (1-4 Units):Site-Built	Black or African American	NaN
	81	25-34	Single Family (1-4 Units):Site-Built	Asian	87.0
	85	25-34	Single Family (1-4 Units):Site-Built	White	215.0

```
Entrée [5]: Import matplotlib.pyplot as plt
# Drop rows with missing income
df2 = df2.dropna(subset=['income'])
df2 = df2.drop(df2[df2['income'] < 0].index)
#print(df2.isnull().sum())</pre>
```

Distribution of different races

The distribution of income for different derived race.

The distribution for applicants' age and income.

Average Income by Housing Type: Accepted

```
Entrée [12]:
              ▶ | new_df=df.groupby('derived_dwelling_category')
                 df['denial_reason-1'].unique()
Entrée [13]:
        Out[13]: array([
                          10,
                                  9,
                                        3,
                                              1,
                                                    4,
                                                           2,
                                                                 5,
                                                                       7,
                                                                             6, 1111,
                 8],
                        dtype=int64)
                 accepted = df.loc[df['denial_reason-1']==10]
Entrée [14]:
```


Average Income by Housing Type: Denied

```
Entrée [18]: rejected = rejected.groupby('derived_dwelling_category')['income'].mea
```


Average Income by Race

Average Income by Sex

The percentage of loans that were rejected out of total loans for each race

```
import pandas as pd
import matplotlib.pyplot as plt

# Load the data
df = pd.read_csv("msamd_14454.csv")

# Calculate the percentage of rejected Loans for each race
race_counts = df.groupby('derived_race')['action_taken'].value_counts(
race_rejection_rates = race_counts.loc[(slice(None), 3)] * 100

# Create a bar plot of the rejection rates by race
fig, ax = plt.subplots()
race_rejection_rates.plot(kind='bar', ax=ax)
ax.set_xlabel('Race')
ax.set_ylabel('Percentage of Loans Rejected')
ax.set_title('Loan Rejection Rates by Race')

plt.show()
```

```
<ipython-input-21-f3771fc02029>:5: DtypeWarning: Columns (22,23,24,26,
27,28,29,30,31,32,33,38,43,44) have mixed types. Specify dtype option
on import or set low_memory=False.
   df = pd.read csv("msamd 14454.csv")
```


The percentage of loans that were rejected out of total loans for each sex

import pandas as pd
import matplotlib.pyplot as plt

Load the data
df = pd.read_csv("msamd_14454.csv")

Calculate the percentage of rejected Loans for each sex
sex_counts = df.groupby('derived_sex')['action_taken'].value_counts(nc
sex_rejection_rates = sex_counts.loc[(slice(None), 3)] * 100

Create a bar plot of the rejection rates by sex
fig, ax = plt.subplots()
sex_rejection_rates.plot(kind='bar', ax=ax)
ax.set_xlabel('Sex')
ax.set_ylabel('Percentage of Loans Rejected')
ax.set_title('Loan Rejection Rates by Sex')

plt.show()

<ipython-input-24-d20213709a42>:5: DtypeWarning: Columns (22,23,24,26,
27,28,29,30,31,32,33,38,43,44) have mixed types. Specify dtype option
on import or set low_memory=False.

df = pd.read_csv("msamd_14454.csv")

The percentage of loans that were rejected out of total loans for each loan type

Entrée [27]: # Load the data df = pd.read csv("msamd 14454.csv") # Calculate the percentage of rejected loans for each sex type_counts = df.groupby('loan_type')['action_taken'].value_counts(nor type_rejection_rates = type_counts.loc[(slice(None), 3)] * 100 # Create a bar plot of the rejection rates by sex fig, ax = plt.subplots() type_rejection_rates.plot(kind='bar', ax=ax) ax.set_xlabel('Loan Type') ax.set_ylabel('Percentage of Loans Rejected') ax.set_title('Loan Rejection Rates by Loan Type') plt.show() print("1 - Conventional (not insured or guaranteed by FHA, VA, RHS, or print("2 - Federal Housing Administration insured (FHA)") print("3 - Veterans Affairs guaranteed (VA)") print("4 - USDA Rural Housing Service or Farm Service Agency guarante€

<ipython-input-27-3171d587b318>:2: DtypeWarning: Columns (22,23,24,26,
27,28,29,30,31,32,33,38,43,44) have mixed types. Specify dtype option
on import or set low_memory=False.

df = pd.read csv("msamd 14454.csv")

- 1 Conventional (not insured or guaranteed by FHA, VA, RHS, or FSA)
- 2 Federal Housing Administration insured (FHA)
- 3 Veterans Affairs guaranteed (VA)
- 4 USDA Rural Housing Service or Farm Service Agency guaranteed (RHS or FSA)

Most Common Reasons for Loan Rejection

Entrée [17]: # Load the data import pandas as pd from matplotlib import pyplot as plt df = pd.read_csv("msamd_14454.csv") # Calculate the percentage of rejected Loans for each sex denial = df.groupby('denial_reason-1')['denial_reason-1'].count() denial = denial[:9] # Create a bar plot of the rejection rates by sex fig, ax = plt.subplots() denial.plot(kind='bar', ax=ax) ax.set_xlabel('Denial Reason') ax.set_ylabel('Number of Loans Rejected') ax.set_title('Number of Loans Rejected for Each Denial Reason') plt.show()

<ipython-input-17-004e07747232>:5: DtypeWarning: Columns (22,23,24,26,
27,28,29,30,31,32,33,38,43,44) have mixed types. Specify dtype option
on import or set low_memory=False.
 df = pd.read csv("msamd 14454.csv")

