NP Zusammenfassung

Lukas Schaller

May 2, 2019

Contents

1	$\mathbf{A1}$	
	1.1	Aktionen
	1.2	Trainingsblatt
	1.3	Nichtdeterminismus
		1.3.1 Annahmen nebenläufiger Prozesse
	1.4	Labled Transitionsystem
2	B1 ·	- CSS
		CSS_0
		2.1.1 Syntax
		2.1.2 Semantik
	2.2	CCS_0^ω
		2.2.1 Semantik
		2.2.2 Geschützte Ausdrücke
	2.3	Sequentielles CSS_0^ω
		2.3.1 Semantik
		2.3.2 Synchronisation
		2.3.3 Restriktions-Operator
	2.4	Volle CCS-Power
		2.4.1 Syntax
		2.4.2 Semantik
		2.4.3 Regulärer Ausdruck
		2.1.9 10.5 dialor Habardon
3	C1	9
	3.1	Verklemmung
	3.2	Gleichheit 10

Chapter 1

$\mathbf{A1}$

1.1 Aktionen

f Actionen Seien Kom eine Menge von Kommunikationsaktionen und Int eine davon disjunkte Menge von internen Aktionen. Dann ist

$$Act = Kom \cup Int$$

die Menge aller Aktionen. Dabei gelten folgende Konventionen:

$$\alpha,\beta,\gamma,\ldots\in Act \qquad \ a,b,c,\ldots\in Int$$

$$[a],[b],[c],... \in Kom$$

Transitionssystem (LTS) Ein beschritetes Transitionssystem TS ist ein Tripel $(S, \longrightarrow, s_0)$, wobei

- \bullet S die Zustandsmenge
- $\longrightarrow \subseteq S \times Act \times S$ die Transitionsrelation,
- $s_0 \in S$ der initiale Zustand ist

Nachfolger Sei ein LTS $TS = (S, \rightarrow, s_0)$ gegeben. Sei $s \in S, C \subseteq S, \alpha \in Act$, und $A \subseteq Act$.

$$Post(s,\alpha) = \{s' \in S | s \xrightarrow{\alpha} s'\},\$$

$$Post(s, A) = \bigcup_{\alpha \in A} Post(s, \alpha)$$

$$Post(C,\alpha) = \bigcup_{s \in C} Post(s,\alpha),$$

$$Post(C,A) = \bigcup_{\alpha \in A} Post(C,\alpha)$$

Aktionen die in Zusand s als nächstes möglich sind:

$$Act(s) = \{ \alpha \in Act \mid \exists s' : s \xrightarrow{\alpha} s' \}$$

Aktionen, die in Zustand s als nächstes beobachtet werden können:

$$Kom(s) = \{ \alpha \in Kom \mid \exists s' : s \xrightarrow{\alpha} s' \}$$

Erreichbarkeit Reach(s) ist die Menge aller von s erreichbaren Zustände in TS

$$Reach(s) = \bigcup_{n \in \mathbb{N}} Post^n(s)$$

wobe
i
$$Post^0(s)=s$$
 und $Post^{n+1}(s)=Post(Post^n(s),Act)$

CHAPTER 1. A1

1.2 Trainingsblatt

Vorgänger

$$Pre(s,\alpha) = \{s' \in S | s' \xrightarrow{\alpha} s\},$$

$$Pre(s,A) = \bigcup_{\alpha \in A} Pre(s,\alpha)$$

$$Pre(C,\alpha) = \bigcup_{s \in C} Pre(s,\alpha), \qquad \qquad Pre(C,A) = \bigcup_{\alpha \in A} Pre(C,\alpha)$$

terminaler Zustand Ein terminaler Zustand ist ein Zustand ohne Nachfolger. Ein Zustand ist genau dann terminal wenn $Act(s) = \emptyset$.

1.3 Nichtdeterminismus

Nichtdeterminismus Sei Post(s) = Post(s, Act) und es sei ein LTS $TS = (S, \rightarrow, s_0)$ gegeben. TS ist deterministisch genau dann wenn für alle $s \in S$,

$$|Post(s)| \le 1$$
 und $|Act(s)| \le 1$

Andernfalls heißt das TS nichtdeterministisch!

Interner und Externer Nichtdeterminismus

1.3.1 Annahmen nebenläufiger Prozesse

- Zeit wird nur bezüglich relativen Geschwindigkeit der Prozesse untereinander betrachtet, nicht absolut. Jeder Prozess kann gerade beliebig schnell oder langsam voranschreiten.
- Aktionen sind unteilbar und zeitlos.
- Nebenläufige Prozesse agieren komplett voneinander unabhängig und unbeeinflusst, es sei denn, sie kommunizieren explizit miteinander.

CHAPTER 1. A1

1.4 Labled Transitionsystem

Ein kleines Beispiel:

Hinweis: Die diagonalen Kanten können wegen der Zeitlosigkeit der Aktionen auch weggelassen werden.

Chapter 2

B1 - CSS

$2.1 CSS_0$

2.1.1 Syntax

Gegeben sei die Menge aller Aktionen Act. Dann ist die Menge aller Ausdrücke in CSS_0 gegeben durch:

$$P ::= 0 \mid P + P \mid \alpha . P$$

wobei $\alpha \in Act$.

${\bf Klammer sparregeln}$

• '+' klammert links: $P + Q + R \rightsquigarrow (P + Q) + R$

• '.' klammert rechts: $\alpha.\beta.P \rightsquigarrow \alpha.(\beta.P)$

• Punkt vor Strich: $\alpha.P + Q \leadsto (\alpha.P) + Q$

2.1.2 Semantik

Die Semantik einer Sprache beschreibt, welches mathematische Objekt mit einem Ausdruck der Sprache assoziiert werden soll. Die Semantik des Ausdrucks P aus CCS_0 ist ein LTS $[\![P]\!] = (S, \rightarrow, s_0)$.

ullet Zustandsmenge S ist die Menge aller CCS_0 -Ausdrücke

• $s_0 = P$

• \longrightarrow ist eine Teilmenge von $(CSS_0 \times Act \times CCS_0)$

Inferenzregeln

Hinweis: CCS_0 beinhaltet noch nicht die Inferenzregeln rec

$$\begin{array}{ll} \text{choice_I} & \frac{P \xrightarrow{\alpha} P'}{P + Q \xrightarrow{\alpha} P'} & \text{prefix } \frac{1}{a \cdot P \xrightarrow{\alpha} P} \\ \\ \text{choice_r} & \frac{Q \xrightarrow{\alpha} Q'}{P + Q \xrightarrow{\alpha} Q'} & \text{rec } \frac{\Gamma(X) = P \quad P \xrightarrow{\alpha} P'}{X \xrightarrow{\alpha} P'} \end{array}$$

Isomorphie

Zwei Transitionssysteme $TS = (S, \rightarrow, s_0)$ und $TS' = (S', \rightarrow', s'_0)$ sind isomorph $(TS \sim_{iso} TS')$, wenn es eine Bijektion f gibt mit $f : Reach(TS) \rightarrow Reach(TS)$, so dass $f(s_0) = s'_0$ und für alle $s_1, s_2 \in Reach(TS)$ und alle $\alpha \in Act$ gilt: $s_1 \xrightarrow{\alpha} s_2$ genau dann wenn $f(s_1) \xrightarrow{\alpha'} f(s_2)$.

<u>Intuition</u>: Zwei LTS sind isomorph solange sie sich ausschließlich im Namen der Zustände unterscheiden. Die Transitionen müssen gleich bleiben!

CHAPTER 2. B1 - CSS 6

Satz Für jedes endliche azyklische LTS TS gibt es einen Ausdruck $P \in CCS_0$, so dass $TS \sim_{iso} [\![P]\!]$.

2.2 CCS_0^{ω}

2.2.1 Semantik

Gegeben sei die Menge aller Aktionen Act und eine Menge von Rekursionsvariablen Var. Dann ist die Menge der Ausdrücke in CCS_0^{ω} wie folgt:

$$P ::= o \mid X \mid P + P \mid \alpha.P$$
, wobei $\alpha \in Act$ und $X \in Var$

Beispiele

X := a.b.Y Y := b.Z + a.Y Z := a.Y

Eine Menge solcher Gleichungen definiert offensichtlich eine partielle Funktion: $\Gamma \in Var \rightharpoonup CCS_0^{\omega}$. In diesem Beispiel ergibt sich demnach: $\Gamma = \{(X, a.b.Y), (Y, b.Z + a.Y), (Z, a.Y)\}$

Es soll gelten:

- $(\alpha.P, \alpha, P) \in \rightarrow$;
- $(P+Q,\alpha,P') \in \rightarrow$, wann immer $(P,\alpha,P') \in \rightarrow$;
- $(P+Q,\alpha,Q') \in \rightarrow$, wann immer $(Q,\alpha,Q') \in \rightarrow$;
- $(X, \alpha, P') \in \rightarrow$, wann immer $\Gamma(x) = P$ und $(P, \alpha, P') \in \rightarrow$;
- nichts sonst ist Element von \rightarrow_{Γ}

2.2.2 Geschützte Ausdrücke

Eine Variable X ist geschützt in einem Ausdruck P, wenn jedes Auftreten von X in P in einem Teilausdruck von P der Form $\alpha.Q$ enthalten ist. Andernfalls heißt X ungeschützt.

Ein Ausdruck P heißt geschützt, wenn alle darin vorgekommenden Variablen in P geschützt sind. Andernfalls heißt P ungeschützt.

Beispiele

ungeschützte Ausdrücke: $X, \tau . X + Y, (a.X) + X$ geschützte Ausdrücke: $\alpha . X, \tau . (X + Y), \alpha . (X + b.X)$

2.3 Sequentielles CSS_0^{ω}

Für eine Bindung $\Gamma: Var \rightharpoonup CCS_0^{\omega}$ sei $\rightarrow_{\Gamma} \subseteq CCS_0^{\Gamma} \times Act \times CCS_0^{\Gamma}$ die kleinste Relation \longrightarrow , die den Inferenzregeln genügen.

2.3.1 Semantik

Sei $LTS_0^\omega = \{(CCS_0^\omega, T, s) | T \subseteq CCS_0^\omega \times Act \times CCS_0^\omega, s \in CCS_0^\omega\}$. Die Semantik von CCS_0^ω ist eine (kaskadierte) Funktion:

$$\begin{array}{cccc} \llbracket _ \rrbracket \; : \; (Var \rightharpoonup CCS_0^\omega) \rightarrow & CCS_0^\omega \rightarrow & LTS_0^\omega \\ & \llbracket _ \rrbracket \; \Gamma \; P \; = \; (CCS_0^\omega, \rightarrow_{\Gamma}, P) \end{array}$$

Wir schreiben $[\![P]\!]_{\Gamma}$ für $[\![-]\!]$ Γ P, oder auch nur $[\![P]\!]$, sofern Γ aus dem Kontext heraus klar ist.

Satz Für jedes endliche LTS TS gibt es einen Ausdruck $P \in CCS_0^{\omega}$ und eine endliche Bindung Γ , sodass $TS \sim_{iso} [\![P]\!]_{\Gamma}$

CHAPTER 2. B1 - CSS 7

Zusätzliche Inferenzregeln

TODO: Hier Bild von par_l und par_r einfügen

2.3.2 Synchronisation

Synchronisation bietet die Grundlage um unterschiedliche Prozesse auf Aktionen reagieren zu lassen. So kann zum Beispiel die 'light'-Aktion des Feuerzeug-Prozesses in einem Prozess eines Chinaböllers die passive Aktion 'light' hervorrufen. In CSS machen wir dazu die Kommunikationsaktionen entweder 'aktiv' oder 'passiv'. Statt einer beliebigen Menge Kom von Markierungen verwenden wir eine Menge, die mehr Struktur aufweist: $Kom = A^! \bigcup A^?$. Aktionen mit '!' als Output-Aktionen (aktiv) und Aktionen mit '?' als Input-Aktionen interpretiert werden.

Komplementarität Input- und Output-Aktionen treten als Paare auf. Das Komplement von $a \in A^! \bigcup A^?$ ist \bar{a} . Auch für interne Aktionen τ gilt $\tau = \bar{\tau}$. Das doppelte Komplement hebt die Wirkung auf: $\alpha \in Act : \bar{a} = \alpha$

Hinweis Interne Aktionen können NICHT synchronisieren.

Zusätliche Inferenzregel

sync
$$\frac{P \xrightarrow{a} P' \qquad \qquad Q \xrightarrow{\overline{a}} Q'}{P|Q \xrightarrow{\tau} P'|Q'}$$

2.3.3 Restriktions-Operator

Der Restriktions-Operator 'únterbindet bestimmte (Paare von) Aktionen eines Prozesses. Intuitiv gesprochen erzwingt er eine Synchronisation.

 $\mathbf{P}\setminus\mathbf{H}$ ist ein zweistelliger Operator, mit \mathbf{P} als CCS-Ausdruck und \mathbf{H} als menge von Kommunikationsaktionen, die unterbunden werden sollen.

Inferenzregel

res
$$\frac{P \xrightarrow{\alpha} P' \qquad \alpha \notin H}{P \setminus H \xrightarrow{\alpha} P' \setminus H}$$

Annahmen über zulässige Menge H:

- Die interne Aktion kann nicht unterbunden werden: $\tau \notin H$
- Aktionen treten in H paarweise auf: $a \in H \iff \bar{a} \in H$

2.4 Volle CCS-Power

2.4.1 Syntax

Gegeben sei die Menge aller Kommunikationsaktionen $Kom = A^! \bigcup A^?$, $Act = Kom \bigcup \{\tau\}$ und eine Menge von Rekursionsvariablen Var. Dann ist die Menge aller Ausdrücke in CCS wie folgt gegeben:

$$P ::= 0 \mid X \mid P + P \mid \alpha.P \mid P \mid P \setminus H$$

wobei $\alpha \in Act, X \in Var$ und $H \subseteq Kom$.

CHAPTER 2. B1 - CSS 8

2.4.2 Semantik

Die Semantik der Ausdrücke con CCS ist gegeben durch:

wobei $LTS^{CCS} = \{(CCS, T, s) | T \subseteq CCS \times Act \times CCS, s \in CCS\}$ uns \rightarrow_{τ} die kleinste Relation \rightarrow ist, die den folgenden Regeln genügt.

Inferenzregeln

2.4.3 Regulärer Ausdruck

Ein CCS-Asdruck wird regulär genannt, wenn er durch folgende Grammatik gebildet werden kann:

$$P ::= 0 \mid X \mid P + P \mid \alpha.P \mid R$$

$$R ::= 0 \mid R + R \mid \alpha.R \mid R \mid R \setminus H$$

Satz Sofern Γ eine endliche Bindung ist bei der alle rechten Seiten regulär sind, ist $Reach(\llbracket P \rrbracket_{\Gamma})$ für jedes $P \subset CCS$ endlich.

Chapter 3

C1

Dieses Kapitel befasst sich mit der beobachtbarem Verhalten von Prozessen. Die Kommunikationsaktionen und die Spuren (mögliche Aktionsfolgen) lassen sich beobachten. Die internen Aktionen und die durchlaufenden Zustände lassen sich offensichtlich nicht beobachten!

Definition: Spuren

Sei $TS = (S, \rightarrow, s_0)$ ein LTS. Dann definieren wir die Funktion LTS $\rightarrow 2^{Act^*}$ als

$$Traces(TS) := \{\alpha_1 \alpha_2 ... \alpha_n \in Act^* | n \ge 0 \exists s_1, ..., s_n : \forall 0 < i \le n : s_{i-1} \xrightarrow{\alpha_i} s_i \}$$

als die Menge der endlichen Spuren von TS. Wir schreiben $s_0 \leadsto^{\varrho} s'$

Definition: Kongruenzrelation

Eine Äquivalenzrelation \approx auf CCS ist eine Kongruenzrelation, wenn für alle CCS-Ausdrücke P,Q und alle Kontexte C[.], $P \approx Q$ impliziert, dass $C[P] \approx C[Q]$ gilt.

Algebraische Gesetze:

$$P+Q\sim_{tr}Q+P$$
 Kommutativität von + $(P+Q)+R\sim_{tr}P+(Q+R)$ Assozitivität von + $P+0\sim_{tr}P$ 0 als neutrales Element von +

Spuräquivalenz

Sei $\Gamma: Var \to CCS, P, Q, R \in CCS$ und $H \subseteq Kom$ sowie $\alpha \in Act$. Wenn $P \sim_{tr} Q$, dann auch:

$$\begin{array}{ccc} P + R \sim_{tr} Q + R & R + P \sim_{tr} R + Q & P|Q \sim_{tr} Q|R \\ R|P \sim_{tr} R|Q & \alpha.P \sim_{tr} \alpha.Q & P\backslash H \sim_{tr} Q\backslash H \end{array}$$

3.1 Verklemmung

Ein Zustand s ist terminal, falls $Post(s,Act)=\emptyset$. Wir schreiben dann $s \nrightarrow$. Falls P in $[\![P]\!]_{\Gamma}$ terminal ist, nennen wir P einen verklemmten Prozess.

CHAPTER 3. C1 10

$$TTraces(P) = TTraces(\llbracket P \rrbracket_{\Gamma})$$

$$TTraces(\llbracket P \rrbracket) := \{ \varrho \in Traces(\llbracket P \rrbracket_{\Gamma}) | \exists P' : P \leadsto^{\varrho} P' \land P' \nrightarrow \}$$

Beispiele:

- Traces(a!.b!.0 + a!.0) = $\{\epsilon, a!, a! b!\}$
- Traces(a!.b!.0) = $\{\epsilon, a!, a! b!\}$
- $TTraces(a!.b!.0 + a!.0) = \{a!,a! b!\}$
- $TTraces(a!.b!.0) = \{a! \ b!\}$

3.2 Gleichheit

Die 'Super'-Gleichheit...

- ist eine Äquivalenzrelation
- ist eine Kongruenzrelation
- erhält Spuren
- ist verklemmungssensitiv (erhält terminierende Spuren)
- ist grob genug (gröber als \sim_{iso})

3.3 Bisimilarität

Zwei Prozesse sind äquivalent, wenn sie zustandsweise gleich sind. 'Gleiche' Zustände erlauben Tranisitionen mit den gleichen Aktionen, die wieder in 'gleichen' Zuständen landen.

Eine Relation $R \subseteq S \times S$ über den Zuständen eines LTS $TS = (S, \rightarrow, s_0)$ ist eine Bisimulation, wenn für alle $P, Q \in S$ mit $(P, Q) \in R$ und für alle $\alpha \in Act$ gilt:

- Für jedes $P' \in S$ mit $P \xrightarrow{\alpha} P'$ gilt: Es gibt ein $Q' \in S$ mit $Q \xrightarrow{\alpha} Q'$ und $(P', Q') \in R$.
- Für jedes $Q' \in S$ mit $Q \xrightarrow{\alpha} Q'$ gilt: Es gibt ein $P' \in S$ mit $P' \xrightarrow{\alpha} P'$ und $(P', Q') \in R$.

Zwei Zustände heißen bisimilar wenn es eine Bisimulation R gibt mit $(P,Q) \in R$.

$$\sim := \bigcup_{RisteineBisimulation} R \\ (P,Q) \in \sim \Leftrightarrow \exists \text{ Bisimulation } R: (P,Q) \in R \Leftrightarrow P \text{ und } Q \text{ sind bisimilar}$$

 \sim ist die Relation aller zueinander bisimilaren Zustände. Sie heißt **Bisimilarität**. Gleichzeitig ist \sim eine Bisimulation, und zwar die größtmögliche.

Algebra der Bisimilarität

Zwei Prozesse $P,Q \in CCS_0$ sind genau dann bisimilar $(P \sim Q)$, wenn sie sich durch Anwenden der folgenden Axiome syntaktisch ineinander umgeformt werden können:

- $P+Q\sim Q+P$
- $(P+Q) + R \sim P + (Q+R)$
- $(P+0 \sim P)$
- $P + P \sim P$

CHAPTER 3. C1 11

3.4 Minimale Repräsentanten eines LTS

Hier wird das *kleinste* LTS, das bisimilar zu dem gegebenen LTS ist, gesucht. Der gefundene Repräsentant ist bis auf Isomorphie eindeutig!

Algorithmus

- 1. Gehe davon aus, dass alle Zustände gleich (im Sinne von Bisimilarität) sind
- 2. Suche solange Argumente, warum Zustände noch verschieden sind, bis die Zustände in ihre Äquivalenzklassen getrennt sind
- 3. Fasse Zustände einer Äquivalenzklasse Zusammenfassung
- 4. Lösche doppelte Transitionen