${\bf Vorlesung smitschrift}$

AGLA II

Prof. Dr. Damaris Schindler

Henry Ruben Fischer

Auf dem Stand vom 27. Mai 2020

Disclaimer

Nicht von Professor Schindler durchgesehene Mitschrift, keine Garantie auf Richtigkeit ihrerseits.

Inhaltsverzeichnis

1	Affine Geometrie		
	1.1	Was ist ein affiner Raum?	4
	1.2	Affine Abbildungen	9
	1.3	Durchschnitt und Verbindung affiner Räume	13
	1.4	Parallelprojektionen	18
	1.5	Affine Koordinaten	22
	1.6	Das Teilverhältnis	27
	1.7	Affinkombinationen	31
	1.8	Affine Abbildungen und Matrizen, Fixpunkte	32
	1.9	Kollineationen	35
	1.10	Quadriken	40
	1.11	Euklidische affine Räume	57
2	Projektive Geometrie 7		
	2.1	Projektive Räume	72
	2.2	Projektive Abbildungen	80

Kapitel 1

Affine Geometrie

Vorlesung 1

Di 21.04. 10:15

§1.1 Was ist ein affiner Raum?

Beispiel 1.1.1 (aus der AGLA I). \mathbb{R}^2 , \mathbb{R}^3 . In diesen Räumen gibt es einen ausgezeichneten "Usprung".

Frage. Wie könne wir eine affine Ebene / affine Räume modellieren, wobei alle Punkte gleichberechtigt sind?

Idee. Verwende affine Unterräume.

Beispiel 1.1.2. Sei K ein Körper, V ein K-Vektorraum, $W \subseteq V$ ein Untervektorraum und $v \in V$. Wir nennen X = v + W einen affinen Unterraum von V. X ist im Allgemeinen selbst kein Vektorraum unter der Addition in V, aber W "operiert" auf X.

Für $w \in W$ definieren wir die Abbildung

$$\tau_w \colon X \to X$$

$$p \mapsto p + w.$$

Sei

$$Bij(X) = \{ f : X \to X, f \text{ ist bijektiv } \}.$$

Dann ist $\tau_w \in \text{Bij}(X)$ für alle $w \in W$.

Bemerkung. $\mathrm{Bij}(X)$ ist eine Gruppe unter Verkettung von Abbildung. Wir erhalten eine Abbildung

$$\tau \colon W \to \operatorname{Bij}(X)$$

 $w \mapsto \tau_w.$

Lemma 1.1.1. Die Abbildung τ ist ein Gruppenhomomorphismus.

Beweis. Seien $w, w' \in W$ Dann

$$\tau_w \circ \tau_{w'} \colon X \to X$$
$$p \mapsto p + \underline{w' + w},$$

also

$$\tau(w) \circ \tau(w') = \tau_w \circ \tau_{w'} = \tau_{w+w'} = \tau(w+w').$$

Es gilt noch mehr:

für $p, q \in X$ besteht genau ein $w \in W$ mit $\tau_w(p) = q$.

Gruppenoperationen

Beispiel 1.1.3. Betrachte ein gleichseitiges Dreieck D und Spiegelungen / Drehungen die D auf sich selbst abbilden.

Diese formen eine Gruppe (welche?) und "operieren" auf D.

Definition 1.1.1. Sei X eine Menge und G eine Gruppe. Eine Operation von G auf X ist ein Homomorphismus von Gruppen

$$\tau \colon G \to \operatorname{Bij}(X)$$

 $g \mapsto \tau_q.$

Bemerkung. τ ist ein Homomorphismus d. h. $\forall g, g' \in G$

$$\tau_g \circ \tau_{g'} = \tau_{gg'}.$$

Für $x \in X$ nennen wir

$$G(x) = \{ \tau_g(x) \mid g \in G \}$$

die Bahn von x unter G.

Beispiel 1.1.4. i) Sei G eine Gruppe und X=G die Linkstranslation $l\colon G\to \mathrm{Bij}(G)$ $g\mapsto l_g$ mit $l_g(x)=gx\quad \forall\, x\in G$ ist eine Gruppenoperation von G auf sich selbst.

ii)

$$k \colon G \to \operatorname{Bij}(G)$$

 $g \mapsto k_g$

mit $k_g(x) = gxg^{-1} \quad \forall x \in G$ ist eine Gruppenoperation.

Frage. Sei $\tau \colon G \to \operatorname{Bij}(X)$ eine Gruppenoperation, $x,y \in X$. Wann gibt es ein $g \in G$ mit $\tau_q(x) = y$?

Definition. Sei $\tau \colon G \to \operatorname{Bij}(X)$ eine Gruppenoperation von G auf X. Wir nennen τ einfach transitiv, wenn $\forall x, y \in X$ genau ein $g \in G$ besteht mit

$$\tau_g(x) = y.$$

Beispiel. • Die Gruppenoperation aus Beispiel 1.1.3 ist *nicht* einfach transitiv

• Die Linkstranslation aus Beispiel 1.1.4 i) ist immer einfach transitiv.

Zurück zum Beispiel 1.1.2 (V K-Vektorraum, $W \subseteq V$ Untervektorraum, $v \in V$, X = v + W)

Wir haben Translationen definiert

$$\tau \colon W \to \operatorname{Bij}(X)$$

 $x \mapsto \tau_w$

mit $\tau_w \colon X \to X, \ p \mapsto p + w. \ \tau$ ist eine einfach transitive Gruppenoperation von W auf x.

Definition. Sei K ein Körper. Ein affiner Raum über K ist ein Tripel $(X, T(X), \tau)$ mit

- $X \neq \emptyset$ eine Menge
- T(X) ein K-Vektorraum
- $\tau: T(x) \to \text{Bij}(X)$ eine einfach transitive Gruppenoperation

Konvention. $X=\varnothing$ ohne Spezifikation von $T(X),\, \tau$ nennen wir auch einen affinen Raum.

Definition. Sei $(X, T(X), \tau)$ in affiner Raum über einem Körper K. Dann nennen wir $\dim_K T(X)$ die Dimension von X, schreiben auch dim X.

Ist $\dim X = 1$ bzw. $\dim(X) = 2$, dann nennen wir X eine affine Gerade bzw. affine Ebene.

Sei $(X, T(X), \tau)$ in affiner Raum, $p, q \in X$. Dann $\exists! t \in T(X)$ mit $\tau_t(p) = q$. Schreibe $\overrightarrow{pq} = t \in T(X)$ als $\tau_{\overrightarrow{pq}}(p) = q$.

Wir erhalten eine Abbildung

$$X \times X \to T(X)$$

 $(p,q) \mapsto \overrightarrow{pq}.$

Frage. Welche Eigenschaften hat die Abbildung $(p,q)\mapsto \overrightarrow{pq}$ in einem allgemeinen affinen Raum?

Lemma 1.1.2. Sei X ein affiner Raum, $p,q,r\in X$. Dann gilt $\overrightarrow{pq}+\overrightarrow{qr}=\overrightarrow{pr}$.

Beweis. $\tau : T(X) \to \operatorname{Bij}(X)$ ist ein Homomorphismus. Also gilt $\tau_{\overrightarrow{qr}} \circ \tau_{\overrightarrow{pq}} = \tau_{\overrightarrow{pq}+\overrightarrow{qr}}$. Es gilt damit $\tau_{\overrightarrow{pq}+\overrightarrow{qr}}(p) = r$. Also $\overrightarrow{pq}+\overrightarrow{qr}=\overrightarrow{pr}$.

§1.2 Affine Abbildungen

Seien V, W K-Vektorräume. In der AGLA I: lineare Abbildungen

$$F \colon V \to W$$

d. h. F respektiert die Vektorraum-Struktur

$$F(v_1 + v_2) = F(v_1) + F(v_2) \quad \forall v_1, v_2 \in V$$
$$F(\lambda v) = \lambda F(v) \quad \forall \lambda \in K \, \forall v \in V.$$

Frage. Was sind natürliche Abbildungen zwischen affinen Räumen?

Seien X, Y affine Räume über einem Körper K.

$$\overrightarrow{pq} \leadsto \overrightarrow{f(p)f(q)}.$$

$$T(X) \qquad T(Y)$$

Definition. Wir nennen eine Abbildung $f: X \to Y$ affin, wenn es eine K-lineare Abbildung $F: T(X) \to T(Y)$ gibt, sodass $\forall p, q \in X$ gilt

$$\overrightarrow{f(p)f(q)} = F(\overrightarrow{pq}).$$

Bemerkung. i) Es gibt im Allgemeinen verschiedene affine Abbildungen $f \colon X \to Y$, die zur gleichen linearen Abbildung $F \colon T(X) \to T(Y)$ gehören.

ii) Sei $p_0 \in X$ fest und $f: X \to Y$ affin.

Für $q \in X$ gilt

$$\begin{split} f(q) &= \tau_{\overrightarrow{f(p_0)f(q)}}(f(p0)) \\ &= \tau_{F(\overrightarrow{p_0q})}(f(p0)). \end{split}$$

Also bestimmen $f(p_0)$ und F zusammen die Abbildung $f: X \to Y$.

Beispiel. Seien V, W K-Vektorräume

$$X = (V, V, \tau), \quad Y = (W, W, \tau).$$

Eine affine Abbildung $f: V \to W$ ist eindeutig bestimmt durch f(0) und eine lineare Abbildung $F: V \to W$. Es gilt

$$f(v) = f(0) + F(v) \quad \forall v \in V.$$

Bemerkung / Übung. Eine affine Abbildung $f: X \to Y$ ist genau dann injektiv bzw. surjektiv bzw. bijektiv, wenn die zugehörige Abbildung $F: T(X) \to T(Y)$ es ist.

Definition. Wir nennen eine bijektive affine Abbildung $f: X \to Y$ eine Affinität.

Affine Unterräume

Beispiel (\mathbb{R}^2 als Vektorraum.). Untervektorräume von \mathbb{R}^2 sind \emptyset , $\{0\}$, \mathbb{R}^2 und Geraden durch 0.

Betrachte nun \mathbb{R}^2 als affinen Raum.

Idee. Wir wollen l und l' als affine Unterräume von \mathbb{R}^2 definieren, da die Verschiebung von l, l' jeweils Untervektorräume von \mathbb{R}^2 sind.

Definition. Sei $(X, T(X), \tau)$ in affiner Raum und $Y \subseteq X$. Wenn es einen Punkt $p_0 \in Y$ gibt, sodass

$$T(Y) := \{ \overrightarrow{p_0 q} \in T(X), q \in Y \}$$

ein Untervektorraum von T(X) ist, dann nennen wir Y einen affinen Unterraum von X.

Lemma 1.2.1. Sei $Y \subseteq X$ ein affiner Unterraum eines affinen Raumes $(X, T(X), \tau)$. Dann gilt

$$T(Y) = \{ \overrightarrow{pq} \in T(X), q \in Y \}$$

für jeden beliebigen Punkt $p \in Y$.

Beweis. Sei $p_0 \in Y$ ein fester Punkt mit

$$T(Y) = \{ \overrightarrow{p_0q} \in T(X), q \in Y \}$$

Untervektorraum von T(X). Dann gilt für $p \in Y$

$$\{ \overrightarrow{pq} \mid q \in Y \} = \overrightarrow{pp_0} + \{ \overrightarrow{p_0q} \mid q \in Y \} = \overrightarrow{pp_0} + T(Y) = T(Y), \qquad \Box$$

da $\overrightarrow{pp_0} = -\overrightarrow{p_0p} \in T(Y)$.

Definition. Sei $Y \subseteq X$ ein affiner Unterraum. Wir nennen $\dim_K T(Y)$ die Dimension von Y und schreiben

$$\dim Y = \dim_K T(Y).$$

Vorlesung 2
Fr 24.10. 10:15

§1.3 Durchschnitt und Verbindung affiner Räume

Frage. Sei X ein affiner Raum, Y_1, Y_2 affine Unterräume von X. Sind $Y_1 \cap Y_2, Y_1 \cup Y_2$ auch affine Unterräume von X?

Lemma 1.3.1. Sei X ein affiner Raum, Y_i , $i \in I$, eine Familie von affinen Unterräumen von X.

Dann ist $Y := \bigcap_{i \in I} Y_i$ ein affiner Unterraum von X.

Wenn $Y \neq \emptyset$, dann gilt

$$T(Y) = \bigcap_{i \in I} T(Y_i).$$

Beweis. Falls $Y = \emptyset$:

Wir nehmen also an $Y \neq \emptyset$. Sei $p_0 \in Y$. Dann gilt:

$$T(Y) = \left\{ \overrightarrow{p_0q}, q \in \bigcap_{i \in I} Y_i \right\}$$

$$= \bigcap_{i \in I} \left\{ \overrightarrow{p_0q}, q \in Y_i \right\}$$

$$= \bigcap_{i \in I} T(Y_i).$$

$$= \bigcap_{i \in I} T(X_i)$$
Untervektorräume von $T(X)$

Also ist T(Y) ein Untervektorraum von T(X) und $T(Y) = \bigcap_{i \in I} T(Y_i)$.

Bemerkung. In obiger Notation ist $\bigcup_{i \in I} Y_i$ im Allgemeinen kein affiner Unterraum von X.

Frage. Finde den "kleinsten" affinen Unterraum von X, der $\bigcup_{i \in I} Y_i$ enthält! (z. B. $X \supseteq \bigcup_{i \in I} Y_i$, aber X ist im Allgemeinen nicht "minimal").

Definition. Sei X ein affiner Raum, $Y_i, i \in I$ affine Unterräume von X. Wir nennen

$$\bigcap_{Y\subseteq X \text{ aff. Unterraum}} Y$$

den Verbindungsraum der affinen Unterräume $Y_i, i \in I$. Schreibe $\bigvee_{i \in I} Y_i$.

$$X = \mathbb{R}^2, Y_1 \vee Y_2 = X, Y = Y_1 \vee Y_2, T(Y) = T(Y_1) + T(Y_2).$$

Beispiel.

Frage. Wie kann man im Allgemeinen $T(Y_1 \vee Y_2)$ aus $T(Y_1), T(Y_2)$ bestimmen?

Lemma 1.3.2. Sei X ein affiner Raum, $Y_1, Y_2 \neq \emptyset$ affine Unterräume von X.

a) Sei $Y_1 \cap Y_2 \neq \emptyset$. Dann gilt

$$T(Y_1 \vee Y_2) = T(Y_1) + T(Y_2).$$

b) Sei $Y_1 \cap Y_2 = \emptyset$, $p_1 \in Y_1, p_2 \in Y_2$ und $Y = p_1 \vee p_2$. Dann gilt:

$$T(Y_1 \vee Y_2) = (T(Y_1) + T(Y_2)) \oplus T(Y).$$

Beweis. a) Sei $p \in Y_1 \cap Y_2$. Dann gilt

$$T(Y_1) \cup T(Y_2) = \{ \overrightarrow{pq} \mid q \in Y_1 \cup Y_2 \}$$

$$\subseteq T(Y_1 \vee Y_2),$$

also $T(Y_1) + T(Y_2) \subset T(Y_1 \vee Y_2)$.

Sei $Y=\{\, \tau_t(p)\mid t\in T(Y_1)+T(Y_2)\,\}$. Dann ist Y affiner Unterraum von X mit $Y_1\cup Y_2\subseteq Y$, also $Y_1\vee Y_2\subset Y$, also $Y_1\vee Y_2\subseteq Y$. Also gilt

$$T(Y_1 \vee Y_2) \subseteq T(Y) = T(Y_1) + T(Y_2).$$

Also $T(Y_1 \vee Y_2) = T(Y_1) + T(Y_2)$.

b)
$$Y_1 \cap Y_2 = \emptyset$$
, $p_1 \in Y_1$, $p_2 \in Y_2$, $Y = p_1 \vee p_2$.

Schreibe $Y_1 \vee Y_2 = Y_1 \vee Y \vee Y_2$ (verwende dazu $Y \subseteq Y_1 \vee Y_2$). Verwende a) und leite ab, dass gilt:

$$T(Y_1 \lor Y \lor Y_2) = T(Y_1) + T(Y \lor Y_2)$$

= $T(Y_1) + T(Y) + T(Y_2)$
= $(T(Y_1) + T(Y_2)) \stackrel{!}{\oplus} T(Y).$

Es gilt

$$T(Y) = \{ \lambda \overrightarrow{p_1 p_2} \mid \lambda \in K \}.$$

Wir wollen zeigen

$$(T(Y_1) + T(Y_2)) \cap T(Y) = \{ 0 \}.$$

Es genügt zu zeigen

$$\overrightarrow{p_1p_2} \notin T(Y_1) + T(Y_2).$$

Gegenannahme:

$$\overrightarrow{p_1p_2} = \overrightarrow{p_1y_1} + \overrightarrow{q_2p_2}$$

$$\overset{\cap}{T(Y_1)} \overset{\cap}{T(Y_2)}$$

mit $q_1 \in Y_1, q_2 \in Y_2$.

Dann gilt

$$\overrightarrow{q_1q_2} = \overrightarrow{q_1p_1} + \overrightarrow{p_1p_2} + \overrightarrow{p_2q_2} = 0,$$

also
$$q_1 = q_2$$
 und $Y_1 \cap Y_2 \neq \emptyset \not \downarrow$.

Als nächstes: $\dim(Y_1 \vee Y_2)$ ist durch $\dim_K T(Y_1 \vee Y_2)$ gegeben, also sollten wir aus Lemma 1.3.2 für $Y_1 \vee Y_2$ ableiten können.

Lemma 1.3.3. Sei X ein affiner Raum, $Y_1, Y_2 \neq \emptyset$ affine Unterräume von X.

- a) Sei $Y_1 \cap Y_2 \neq \emptyset$. Dann gilt $\dim_{\ell}(Y_1 \vee Y_2) = \dim_{\ell}(Y_1) + \dim_{\ell}(Y_2) \dim_{\ell}(Y_1 \cap Y_2)$.
- b) Sei $Y_1 \cap Y_2 = \emptyset$. Dann gilt

$$\dim_{\ell}(Y)_1 \vee Y_2) = \dim_{\ell}(Y)_1) + \dim_{\ell}(Y)_2) - \dim_{\ell}(T)(Y_1) \cap T(Y_2) + 1.$$

Beweis. a) Aus Lemma 1.3.2 folgt

$$T(Y_1 \vee Y_2) = T(Y_1) + T(Y_2),$$

aus der Dimensionsformel für Untervektorräume folgt

$$\dim(Y_1 \vee Y_2) = \dim T(Y_1 \vee Y_2)$$

$$= \dim(Y_1) + \dim T(Y_2) - \dim(T(Y_1) \cap T(Y_2))$$

$$= \dim T(Y_1) + \dim T(Y_2) - \dim T(Y_1 \cap Y_2)$$
Lemma 1.3.1
$$= \dim Y_1 + \dim Y_2 - \dim Y_1 \cap Y_2.$$

b)
$$Y_1 \cap Y_2, p_1 \in Y_1, p_2 \in Y_2, Y = p_1 \vee p_2.$$

Dann ist

$$\dim Y = \dim T(Y) = 1.$$

Wir erhalten

$$\dim(Y_1 \vee Y_2) = \dim Y_1 + \dim Y_2 - \dim(T(Y_1) \cap T(Y_2)) + 1 \qquad \Box$$

Beispiel $(X = \mathbb{R}^3)$.

$$\dim(Y_1 \vee Y_2) = 1 + 1 - \underbrace{\dim(T(Y_1) \cap T(Y_2))}_{=1} + 1 = 2$$

$$\dim(Y_1 \vee Y_2) = 1 + 1 - 0 + 1 = 3$$

und $Y_1 \vee Y_2 = X$.

§1.4 Parallelprojektionen

Wiederholung (Projektionen aus der AGLA I). Beispiel.

Sei V ein K-Vektorraum, $W,W_1\subset V$ K-Untervektorräume mit $V=W\oplus W_1$. Schreibe $v\in V$ in der Form $v=w+w_1$ und mit $w\in W,\,w_1\in W_1$. Definiere

$$P_W \colon V \to W_1$$

$$v \mapsto w_1.$$

$$w \mapsto w_1.$$

Ein paar Eigenschaften von P_W :

- $P_W \colon V \to W_1$ ist eine lineare Abbildung,
- $\operatorname{Ker} P_W = W$,
- $P_W|_{W_1} = \mathrm{Id}_{W_1}$.

Als Nächstes: Wir schränken P_W ein auf einen Untervektorraum W_0 von V.

Lemma 1.4.1. Sei V ein K-Vektorraum, $W, W_0, W_1 \subseteq V$ Untervektorräume mit $V = W \oplus W_0 = W \oplus W_1$.

Dann ist $P_W|_{W_0}: W_0 \to W_1$ ein Isomorphismus (Notation wie oben).

Beweis. Es gilt dim $W_0 = \dim W_1$ und es genügt zu zeigen, dass $P_W|_{W_0}$ injektiv ist.

Sei $P_W|_{w_0}=w_1$ für $w_0\in W_0,\ w_1\in W_1.$ Dann ist $w_0=w+w_1$ mit $w\in W,\ w_1\in W_1,$ also

$$w_1 = w_0 - w \in W_0 \oplus W, \qquad \Box$$

und diese Zerlegung ist eindeutig.

Parallelprojektionen für affine Räume

Sei X ein affiner Raum (über einem Körper K), $Y_1 \subseteq X$ ein affiner Unterraum

Beispiel.

Sei $W \subseteq T(X)$ ein Untervektorraum mit $T(X) = T(Y_1) \oplus W$.

Ziel. Definiere eine Projektionsabbildung

$$\pi_W \colon X \to Y_1$$

"längs W".

Für $p \in X$ definiere

$$W(p) := \{ x \in X \mid \overrightarrow{px} \in W \}$$

Lemma 1.4.2. Notation wie oben. Für $p \in X$ gilt

$$\#(Y_1 \cap W(p)) = 1.$$

Beweis. Wir berechnen

$$\dim Y_1 \cap W(p)$$
.

Sei $x = \dim X$, verwende Lemma 1.3.3 b). Falls $Y_1 \cap W(p) = \emptyset$, dann

$$\dim Y_1 \vee W(p) = \dim Y_1 + \dim W(p) - \dim(\underbrace{T(Y_1) \cap W}_{=\{0\}}) + 1$$
$$= \dim T(Y_1) + \dim W + 1$$

 $\not z$ zu $Y_1 \vee W(p) \subseteq X,$ also ist $Y_1 \cap W(p) \neq \{\; 0\; \},$ und nach Lemma 1.3.3 a) gilt Folgendes:

$$\underbrace{\dim(Y_1 \vee W(p))}_{\parallel} = \dim Y_1 + \dim W(p) - \dim(Y_1 \cap W(p))$$
$$= n - \dim(Y_1 \cap W(p))$$

und nach Lemma 1.3.1

$$\dim Y_1 \vee W(p) = \dim(T(Y_1) + W)$$

$$= n,$$

also $\dim(Y_1 \cap W(p)) = 0$.

Wir definieren die Projektion längs W

$$\pi_W \colon \underset{Y_0}{\overset{\subseteq}{Y_0}} \to Y_1, \ p \mapsto W(p) \cap Y_1.$$

Satz 1.4.3. Sei X ein affiner Raum, $Y_1,Y_0\subseteq X$ affine Unterräume, $W\subseteq T(X)$ ein Untervektorraum mit

$$T(X) = W \oplus T(Y_0) = W \oplus T(Y_1).$$

Dann ist $\pi_W \colon X \to Y_1$ eine surjektive affine Abbildung und $\pi_w|_{Y_0} \colon Y_0 \to Y_1$ eine Affinität. Beweis. Seien $p, q \in X$.

Dann gilt

$$\overrightarrow{pq} = \overrightarrow{p\pi_W(p)} + \overrightarrow{\pi_W(p)\pi_W(q)} + \overrightarrow{\pi_W(q)q} + \overrightarrow{\pi_W(q)q} + \overrightarrow{\pi_W(q)q}$$

$$= \underbrace{p\pi_W(p)}_{\in W} + \underbrace{\pi_W(q)q}_{\in T(Y_1)} + \underbrace{\pi_W(p)\pi_W(q)}_{\in T(Y_1)},$$

also $\overrightarrow{\pi_W(p)\pi_W(q)} = P_W(\overrightarrow{pq}).$

 P_W ist surjektiv
, also ist π_W eine surjektive affine Abbildung.

Der zweite Teil folgt aus Lemma 1.4.1.

1.5 Affine Koordinaten

Vorlesung 3

Vorlesung 3

Di 28.04, 10:15

§1.5 Affine Koordinaten

Koordinaten in einem K-Vektorraum V. Sei dim V = n und v_1, \ldots, v_n eine Basis von V. Dann ist die Abbildung

$$\phi: K^n \to V$$

$$(x_1, \dots, x_n) \mapsto \sum_{i=1}^n x_i v_i$$

ein Isomorphismus von K-Vektorräumen. Jeder Punkt $v=\sum_{i=1}^n x_iv_i$ ist eindeutig bestimmt durch seine "Koordinaten"

$$\inf \phi(v) = (x_1, \dots, x_n) \in K^n.$$

Frage. Sei X ein affiner Raum über einem Körper K. Können wir auch hier die Lage eines Punkte $p \in X$ durch Angabe von "Koordinaten" bezüglich einer "Basis" beschreibe?

Beispiel / **Idee.** $X = \mathbb{R}^2$ als affiner Raum und Punkte $p_1, p_2 \in X$, sodass $\overrightarrow{p_0p_1}$, $\overrightarrow{p_0p_2}$ eine Basis ist für T(X). Dann können wir einen Punkt $p \in X$ beschreiben durch

$$p = \tau_{\overline{p_0p}}(p_0)$$

= $\tau_{\lambda \overline{p_0p_1} + \mu \overline{p_0p_2}}(p_0),$

falls $\overrightarrow{p_0p} = \lambda \overrightarrow{p_0p_1} + \mu \overrightarrow{p_0p_2}$ mit $\lambda, \mu \in \mathbb{R}$.

Wir erhalten eine Abbildung

$$\phi \colon \mathbb{R}^2 \to X$$
$$(\lambda, \mu) \mapsto \tau_{\lambda \overline{p_0 p_1} + \mu \overline{p_0 p_2}}(p_0),$$

die eine Affinität ist.

Wir formalisieren diese Konzepte für allgemeine affine Räume.

Definition. Sei X ein affiner Raum und $p_0, \ldots, p_n \in X$. Wir nennen (p_0, \ldots, p_n) affin unabhängig bzw. eine affine Basis, wenn die Vektoren $(\overline{p_0p_1}, \ldots, \overline{p_0p_n})$ in T(x) linear unabhängig sind bzw. eine Basis bilden.

Beispiele. i) In $X = \mathbb{R}^n$ ist $(0, e_1, \dots, e_n)$ eine affine Basis.

ii) $X = \mathbb{R}^n$ als affiner Raum, $v_1, \ldots, v_k \in \mathbb{R}^n$ linear unabhängig, $v_0 = 0$. Dann ist das Tupel (v_0, v_1, \ldots, v_k) affin unabhängig.

Frage. Kann man hier $v_0 \in \mathbb{R}^n$ beliebig nehmen?

- iii) $X=\mathbb{R}^2$ als affiner Raum. Dann gilt, dass für $v,w\in\mathbb{R}^2$ das Tupel (v,w) affin unabhängig ist gdw $v\neq w$.
- iv) X affiner Raum, $p_0 \in X$, (t_1, \ldots, t_n) Basis von T(X). Dann ist

$$(p_0, \tau_{t_1}(p_0), \ldots, \tau_{t_n}(p_0))$$

eine affine Basis von X.

Lemma 1.5.1. Sei X ein affiner Raum, $p_0, \ldots, p_n \in X$ und (p_0, \ldots, p_n) affin unabhängig. Sei $\sigma \in S_{n+1}$ eine Permutation von $\{0, \ldots, n\}$. Dann ist

$$(p_{\sigma(0)}, p_{\sigma(1)}, \ldots, p_{\sigma(n)})$$

affin unabhängig.

Beweis. Wir wollen zeigen, dass unter den Annahmen des Lemmas, die Vektoren

$$\overrightarrow{p_{\sigma(0)}p_{\sigma(1)}}, \dots, \overrightarrow{p_{\sigma(0)p_{\sigma(n)}}} \in T(X)$$

linear unabhängig sind.

Sei
$$\sigma(0) = i \in \{0, ..., n\}.$$

Dann müssen wir also zeigen, dass die Vektoren

$$\overrightarrow{p_ip_0}, \overrightarrow{p_ip_1}, \dots, \overrightarrow{p_ip_{i-1}}, \overrightarrow{p_ip_{i+1}}, \dots, \overrightarrow{p_ip_n}$$

linear unabhängig sind.

Seien $\lambda_0, \ldots, \lambda_{i-1}, \lambda_{i+1}, \ldots, \lambda_n \in K$ mit

$$\lambda_0 \overrightarrow{p_i p_0} + \lambda_1 \overrightarrow{p_i p_1} + \dots + \lambda_{i-1} \overrightarrow{p_i p_{i-1}} + \lambda_{i+1} \overrightarrow{p_i p_{i+1}} + \dots + \lambda_n \overrightarrow{p_i p_n} = 0.$$

Schreibe

$$\overrightarrow{p_ip_j} = \overrightarrow{p_ip_0} + \overrightarrow{p_0p_j} = \overrightarrow{p_0p_j} - \overrightarrow{p_0p_j}.$$

Wir erhalten

$$\lambda_1 \overline{p_0 p_1} + \dots + \lambda_{i-1} \overline{p_0 p_{i-1}} + \lambda_{i+1} \overline{p_0 p_{i+1}} + \dots + \lambda_n \overline{p_0 p_n}$$
$$-(\lambda_0 + \dots + \lambda_{i-1} + \lambda_{i+1} + \dots + \lambda_n) \overline{p_0 p_i} = 0$$

Aus der linearen Unabhängigkeit von $\overrightarrow{p_0p_1},\ldots,\overrightarrow{p_0p_n}$ folgt

$$\lambda_1 = \dots = \lambda_{i-1} = \lambda_{i+1} = \lambda_n = 0$$

und

$$+\lambda_1 + \dots + \lambda_{i-1} + \lambda_{i+1} + \dots + \lambda_n = 0$$

Affine Basen und affine Abbildungen

Aus der AGLA I:

Seien V, W K-Vektorräume, $v_1, \ldots, v_n \in V$ eine Basis von V und $w_1, \ldots, w_n \in W$. Dann gibt es genau eine K-lineare Abbildung $\phi \colon V \to W$ mit

$$\phi(v_i) = w_i, \quad 1 \leqslant i \leqslant n.$$

1.5 Affine Koordinaten

Frage. Inwiefern sind affine Abbildungen zwischen affinen Räumen durch die Bilder einer affinen Basis bestimmt?

Satz 1.5.2. Seien X, Y affine Räume, (p_0, \ldots, p_n) eine affine Basis von X und $q_0, \ldots, q_n \in Y$. Dann gibt es genau eine affine Abbildung $f: X \to Y$ mit

$$f(p_i) = q_i, \quad 0 \leqslant i \leqslant n.$$

Die Abbildung f ist injektiv bzw. eine Affinität gdw das Tupel (q_0, \ldots, q_n) affin unabhängig bzw. eine affine Basis von Y ist.

Beweis. Eine affine Abbildung $f: X \to Y$ ist gegeben durch $f(p_0)$ für ein $p_0 \in X$ und eine lineare Abbildung

$$F: T(X) \to T(Y)$$

$$\overrightarrow{pq} \mapsto \overrightarrow{f(p)f(q)}.$$

Wir definieren F durch

$$F(\overrightarrow{p_0p_i}) = \overrightarrow{q_0q_i} \quad 1 \leqslant i \leqslant n. \tag{*}$$

 $\overrightarrow{p_0p_1},\ldots,\overrightarrow{p_0p_n}$ ist eine Basis von T(X), also gibt es genau ein lineare Abbildung

$$F: T(X) \to T(Y)$$

mit (*). Es gilt dann

$$f(p_i) = \tau_{\overline{f(p_0)}f(p_i)} f(p_0)$$

$$= \tau_{F(\overline{p_0}p_i)} f(p_0)$$

$$= \tau_{\overline{q_0}q_i} q_0 = q_i \quad 1 \leqslant i \leqslant n.$$

f ist injektiv gdw F injektiv ist. F ist injektiv gdw $\overline{q_0q_1}, \ldots, \overline{q_0q_n}$ linear unabhängig sind. $\to f$ ist eine Affinität gdw F bijektiv ist. F ist bijektiv gdw $\overline{q_0q_1}, \ldots, \overline{q_0q_n}$ eine Basis von T(Y) ist.

Affine Koordinatensysteme

Sei X ein affiner Raum über einem Körper K, (p_0, p_1, \dots, p_n) eine affine Basis von X. Nach Satz 1.5.2 gibt es genau eine Affinität

$$\phi \colon K^n \to X$$

mit $\phi(0) = p_0, \phi(e_1) = p_1, \dots, \phi(e_n) = p_n$ und zugehörige lineare Abbildung $\Phi \colon K^n \to T(X)$.

Einen Punkt $p \in X$ können wir dann beschreiben durch

$$p = \tau_{\overrightarrow{p_0 p}}(p_0).$$

Sei $\overrightarrow{p_0p} = \lambda_1 \overrightarrow{p_0p_1} + \dots + \lambda_n \overrightarrow{p_0p_n}$ mit $\lambda_i \in K$, $1 \leq i \leq n$.

Dann ist

$$p = \tau_{\lambda_1 \overrightarrow{p_0 p_1} + \dots + \lambda_n \overrightarrow{p_0 p_n}}(p_0)$$

$$= \tau_{\lambda_1 \Phi(e_1) + \dots + \lambda_n \Phi(e_n)}(p_0)$$

$$= \tau_{\Phi(\lambda_1 e_1 + \dots + \lambda_n e_n)}(p_0),$$

oder $p = \phi((\lambda_1, \dots, \lambda_n)).$

Definition. Sei X ein affiner Raum über einem Körper K. Wir nennen eine Affinität $\phi \colon K^n \to X$ ein affines Koordinatensystem in X. Seu $p_0 = \phi(0), p_1 = \phi(e_1), \ldots, p_n = \phi(e_n)$. Dann ist (p_0, \ldots, p_n) eine affine Basis von X.

Für $p \in X$ nennen wir

$$\phi^{-1}(p) = (x_1, \dots, x_n) \in K^n$$

den Koordinatenvektor von p bezüglich der affinen Basis (p_0, \ldots, p_n) und (x_1, \ldots, x_n) die Koordinaten von p bezüglich (p_0, \ldots, p_n) .

§1.6 Das Teilverhältnis

Idee. Seien 3 Punkte p_0, p_1, p auf einer Gerade l (z. B. im \mathbb{R}^3) gegeben, $p_0 \neq p_1$.

Sei $\lambda = \frac{d(p,p_0)}{d(p_1,p_0)}$, mit d dem euklidischen Abstand, dann können wir die Lage von p auf l durch λ (und der Information, ob p "rechts oder links" von p liegt) bestimmen.

Definition. Sei X ein affiner Raum über K, $Y \subseteq X$ eine affine Gerade, $p_0, p_1, p \in Y$ und $p_0 \neq p_1$. Dann nennen wir das eindeutig bestimmte Element $\lambda \in K$ mit $p_0 \neq p_1 \neq k$ das Teilverhältnis von p_0, p_1, p . Schreibe $k = TV(p_0, p_1, p)$. In $char(K) \neq k$ nennen wir $k \neq k$ Mittelpunkt von $k \neq k$ wenn $k \neq k$ Mittelpunkt von $k \neq k$ wenn $k \neq k$ Mittelpunkt von $k \neq k$ Nennen wir $k \neq k$ Mittelpunkt von $k \neq k$ Wennen $k \neq k$ Nennen wir $k \neq k$ Mittelpunkt von $k \neq k$ Nennen Wir $k \neq k$ Nennen Wir Ne

Bemerkungen. i) Es gilt $T(Y) = K\overline{p_0p_1}$. Damit ist λ wohldefiniert und existiert.

1.6 Das Teilverhältnis

ii) p_0,p_1 ist eine affine Basis von ${\cal Y}.$ Damit existiert ein Koordinatensystem

$$\phi \colon K \to Y, \ \phi(0) = p_0$$
$$\phi(1) = p_1$$

und es gilt $TV(p_0, p_1, p) = \phi(p)^{-1}$.

Frage. Wie verhält sich das Teilverhältnis unter affinen Abbildungen?

1.6 Das Teilverhältnis Vorlesung 4

Vorlesung 4

Di 05.05. 10:15

Lemma 1.6.1. Seien X, Y affine Räume und $f: X \to Y$ eine affine Abbildung, seien p_0, p_1, p Punkte in X, die auf einer Geraden liegen und $f(p_0) \neq f(p_1)$. Dann gilt

$$TV(f(p_0), f(p_1), f(p)) = TV(p_0, p_1, p).$$

Beweis. Sei $\lambda = \text{TV}(p_0, p_1, p)$, also $\overrightarrow{p_0p} = \lambda \overrightarrow{p_0p_1}$. Sei $F: T(X) \to T(Y)$ die zu f gehörige lineare Abbildung. Wir berechnen

$$\overrightarrow{f(p_0)f(p)} = F(\overrightarrow{p_0p}) \qquad \qquad \square$$

$$= F(\lambda p_0 p_1)$$

$$= \lambda F(p_0 p_1)$$

$$= \lambda \overrightarrow{f(p_0)f(p_1)}$$

Anwendung (Strahlensatz). Sei X ein affiner Raum über K, $p_0, p_1, p_2 \in X$ affin unabhängig. Sei

$$q_1 \in p_0 \lor p_1, \ q_1 \neq p_0$$

 $q_2 \in p_0 \lor p_2, \ q_2 \neq p_0.$

Wir nehmen an, dass $p_1 \vee p_2$ und $q_1 \vee q_2$ parallel sind in dem Sinn, dass

$$T(p_1 \vee p_2) = T(q_1 \vee q_2)$$
 in $T(X)$.

Dann gilt

$$TV(p_0, p_1, q_1) = TV(p_0, p_2, q_2).$$

Beweis. Sei Y diedurch p_0, p_1, p_2 aufgespannte Ebene. Dann gibt es ein affines Koordinatensystem $\phi \colon K^2 \to Y$ mit $\phi(0) = p_0, \phi(e_1) = p_1, \phi(e_2) = p_2$.

Sei

$$(\lambda,0) = \phi^{-1}(q_1)$$

$$(0,\mu) = \phi^{-1}(q_2).$$

Behauptung. $l_1 = \phi^{-1}(q_1) \vee \phi^{-1}(q_2)$ und $l_2 = \phi^{-1}(p_1) \vee \phi^{-1}(p_2)$ sind parallel.

Denn:

$$T(l_1) = K \overrightarrow{\phi^{-1}(q_1)\phi^{-1}(q_2)}$$

$$T(l_2) = K \overrightarrow{\phi^{-1}(p_1)\phi^{-1}(p_2)}.$$

Es ist $K\overline{p_1p_2} = K\overline{q_1q_2}$ und daher

$$K\Phi^{-1}(\overrightarrow{p_1p_2}) = K\Phi^{-1}(\overrightarrow{q_1q_2}).$$

$$K\overline{\phi^{-1}(q_1)\phi^{-1}(q_2)} K\overline{\phi^{-1}(p_1)\phi^{-1}(p_2)}$$

Aus der Parallelität von l_1, l_2 folgt $\lambda = \mu$.

Also

$$TV(\phi^{-1}(p_0), \phi^{-1}(p_1), \phi^{-1}(q_1)) = \lambda$$
$$= \mu = TV(\phi^{-1}(p_0), \phi^{-1}(p_2), \phi^{-1}(q_2))$$

und der Strahlensatz folgt aus Lemma 1.6.1.

§1.7 Affinkombinationen

Beispiel. Seien $p_0, p_1 \in \mathbb{R}^2$, $p_0 \neq p_1$. Ziel: Beschreibe den affinen Unterraum $p_0 \vee p_1$ als Teilmenge des \mathbb{R}^2 . Sei $p \in p_0 \vee p_1$. Dann $\exists \lambda \in \mathbb{R}$ mit $\overline{p_0p} = \lambda \overline{p_0p_1}$ und als Vektoren im \mathbb{R}^2 gilt $p = p_0 + \lambda(p_1 - p_0)$. Es gilt

$$p_0 \vee p_1 = \{ (1 - \lambda)p_0 + \lambda p_1, \ \lambda \in \mathbb{R} \}.$$

Frage. Verallgemeinerung zu höherdimensionalen Räumen?

Definition. Seien $p_0, \ldots, p_k \in K^n$. Wir nennen eine Linearkombination

$$\lambda_0 p_0 + \lambda_1 p_1 + \dots + \lambda_m p_m$$

mit $\lambda_i \in K$, $0 \le i \le m$ eine Affinkombination oder affin falls gilt $\lambda_0 + \lambda_1 + \cdots + \lambda_m = 1$.

Satz 1.7.1. Seien $p_0, \dots, p_m \in K^n$. Dann gilt

$$p_0 \vee \cdots \vee p_m = \left\{ \sum_{i=0}^m \lambda_i p_i \in K^n \ \lambda_0, \dots, \lambda_m \in K, \sum_{i=0}^m \lambda_i = 1 \right\}.$$

Beweis. Sei $Y = p_0 \vee \cdots \vee p_m \in K^n$. Es gilt

$$T(Y) = \underbrace{T(p_m)}_{=0} + T(p_0 \lor \cdots \lor p_{m-1}) + \underbrace{K\overline{p_0p_m}}_{=T(p_0 \lor p_m)}$$

$$= K\overline{p_0p_m} + T(p_0 \lor \cdots \lor p_{m-1})$$

$$= K\overline{p_0p_m} + \cdots + K\overline{p_0p_1}$$

$$\vdots$$

$$= K\overline{p_0p_m} + \cdots + K\overline{p_0p_1}$$

$$= (\overline{p_0p_1}, \dots, \overline{p_0p_m}).$$

Sei $p \in K^n$. Dann ist $p \in Y$ genau dann, wenn $\exists \lambda_1, \ldots, \lambda_m \in K$ mit

$$\overrightarrow{p_0p} = \lambda_1 \overrightarrow{p_0p_1} + \dots + \lambda_m \overrightarrow{p_0p_m}.$$

 $\operatorname{Im} K^n$ gilt dann also

$$p - p_0 = \lambda_1(p_1 - p_0) + \dots + \lambda_m(p_m - p_0)$$

oder

$$p = \lambda_0 p_0 + \lambda_1 p_1 + \dots + \lambda_m p_m$$

mit
$$\lambda_0 = 1 - \lambda_1 - \dots - \lambda_m$$
, d. h. $\sum_{i=0}^m \lambda_i = 1$.

§1.8 Affine Abbildungen und Matrizen, Fixpunkte

Motivation. Seien V, W K-Vektorräume, $F: V \to W$ eine lineare Abbildung. Wenn wir für V und W Basen wählen, dann können wir die Abbildung F eindeutig durch eine Matrix beschreiben.

Frage. Inwiefern können wir affin Abbildung zwischen affinen Räumen durch Matrizen beschreiben?

Wahl von Basen in Vektorräumen \leftrightarrow Wahl von Koordinaten in affinen Räumen.

Seien X,Y affine Räume über $K, f: X \to Y$ eine affine Abbildung. Wähle affine Koordinatensysteme $\phi\colon K^n \to X$ und $\psi\colon K^m \to Y$.

Wir haben das folgende kommutative Diagramm

$$\begin{array}{ccc} K^n & \stackrel{\phi}{\longrightarrow} & X \\ \downarrow^g & \circlearrowleft & \downarrow^f \\ K^m & \stackrel{\psi}{\longrightarrow} & Y \end{array}$$

mit $g=\psi^{-1}\circ f\circ \phi$ affin. g ist affin, also besteht eine affine Abbildung $G\colon K^n\to K^m$ mit

$$q(x) - q(0) = G(x) \quad \forall x \in K^n.$$

G ist linear, also können wir G durch eine Matrix A ausdrücken.

$$g(x) = Ax + b \quad \forall x \in K^n.$$

mit b = g(0).

Frage. Wie können wir A berechnen gegeben eine affine Basis (p_0, \ldots, p_n) von K^n und $g(p_i), 0 \le i \le n$?

Wir betrachten die Matrizen $B \in \mathcal{M}_{m \times n}(K)$ bestehend aus den Spaltenvektoren $\overline{q_0q_1}, \ldots, \overline{q_0q_n}$ und $S \in \mathcal{M}_{n \times n}(K)$ bestehend aus den Spaltenvektoren $\overline{p_0p_1}, \ldots, \overline{p_0p_n}$. Dann gilt $A = B \cdot S^{-1}$ und $g(x) - g(p_0) = A(x - p_0)$, also g(x) = Ax + b mit $b = g(p_0) - Ap_0$.

Bemerkung. Wählen wir für p_0, \ldots, p_m die affine Basis $0, e_1, \ldots, e_n$, dann $S = \mathrm{Id}_{n \times n}$ und A = B.

Fixpunkte

Beispiel 1.8.1. Betrachte die affine Abbildung $f: K \to K$, K ein Körper, in der Matrizendarstellung gegeben durch $f(x) = 2x + 1 \stackrel{?}{=} x$.

Dann gibt es genau ein $x \in K$ mit f(x) = x, nämlich x = -1.

Definition. Sei X ein affiner Raum $f: X \to X$ eine affine Abbildung. Wir nennen

$$Fix(f) := \{ x \in X \mid f(x) = x \}$$

die Menge der Fixpunkte von f.

Frage. Welche Struktur hat Fix(f).

Beispiel 1.8.2. X affiner Raum.

$$\mathrm{Id}\colon X\to X$$

$$x\mapsto x$$

dann Fix(Id) = X.

Beispiel 1.8.3. $f: K^n \to K^n, x \mapsto \underbrace{x + p_0}_{\stackrel{?}{\underline{x}}} \text{ mit } p_0 \in K^n \setminus \{0\}, \text{ dann } \text{Fix}(f) = \varnothing.$

Beispiel 1.8.4. Frage. Was sind die Fixpunkte einer Projektion?

Lemma 1.8.1. Fix $(f) \subseteq X$ ist ein affiner Unterraum.

Beweis. Falls $\text{Fix}(f) = \emptyset$ dann \checkmark . Sei also $\text{Fix}(f) \neq \emptyset$ und $p \in \text{Fix}(f)$, F die zu f gehörig lineare Abbildung.

Für $x \in Fix(f)$ gilt

$$\overrightarrow{px} = \overrightarrow{f(p)f(x)} = F(\overrightarrow{px}).$$

Umgekehrt folgt aus

$$\overrightarrow{px} = F(\overrightarrow{px}) = \overrightarrow{pf(x)},$$

dass x = f(x), also $x \in Fix(f)$.

Damit gilt

$$\{ \overrightarrow{px} \in T(X) \mid x \in Fix(f) \} = \{ \overrightarrow{px} \in T(X) \mid \overrightarrow{px} = F(\overrightarrow{px}) \}$$

und wir erkennen diese Menge als K-Untervektorraum von X.

Frage. Bestimmung von Fix(f) für eine beliebige affine Abbildung $f: X \to X$?

Nach Wahl eines Koordinatensystems können wir auf den Fall $X=K^n$ reduzieren und annehmen, dass f in Matrizendarstellung gegeben ist.

Sei also

$$f \colon \ K^n \to K^n$$
$$x \mapsto \underbrace{Ax + b}_{=x = \operatorname{Id}_n x}.$$

Dann gilt

$$\operatorname{Fix}(f) = \left\{ x \in K^n \mid (A - \operatorname{Id}_n)x = -b \right\}$$
Einheitsmatrix der Dimension n :
$$\begin{pmatrix} 1 & & 0 \\ & \ddots & \\ 0 & & 1 \end{pmatrix}$$

Wir haben das Problem also reduziert auf das Lösen eines linearen Gleichungssystems.

1.9 Kollineationen Vorlesung 4

Bemerkung. Daraus kann man auch Lemma 1.8.1 ableiten.

Beispiel 1.8.5.

$$f \colon K^n \to K^n$$

 $x \mapsto \lambda \operatorname{Id}_n x + b$

mit $\lambda \in K$.

Dann

$$Fix(f) = \{ x \in K^n \mid (\lambda - 1)x = -b \}.$$

Falls $\lambda - 1$ invertierbar ist $(\lambda \neq 1)$, gibt es genau einen Fixpunkt.

Definition. Sei $f: X \to X$ eine affine Abbildung mit zugehöriger linearer Abbildung $F: T(X) \to T(X)$. Wir nennen f eine Dilatation mit Faktor λ , falls gilt

$$F = \lambda \cdot \mathrm{Id}_{T(X)} \quad \lambda \in K.$$

Im Fall $\lambda = 1$ nennen wir f eine Translation.

Lemma 1.8.2. Sei $f: X \to X$ eine Dilatation mit Faktor $\lambda \neq 1$. Dann gilt

$$\#\operatorname{Fix}(f) = 1.$$

Beweis. Nach Wahl eines Koordinatensystems reduzieren wir das Problem auf Beispiel 1.8.5. $\hfill\Box$

§1.9 Kollineationen

Sei $f: X \to X$ eine affine Abbildung eines affinen Raumes X, z. B. eine Affinität. Seien $p_1, p_2, p_3 \subset X$ in einer Geraden $\ell \subseteq X$ enthalten.

Dann liegen auch $f(p_1), f(p_2), f(p_3)$ auf einer Geraden.

1.9 Kollineationen Vorlesung 4

Frage. Welche bijektiven Abbildungen $f: X \to X$ haben diese Eigenschaft?

Definition. Sei X ein affiner Raum und $p_1, p_2, p_3 \in X$. Wir nennen p_1, p_2, p_3 kollinear, wenn p_1, p_2, p_3 auf einer Geraden $\ell \subset X$ liegen. Wir nennen eine bijektive Abbildung $f \colon X \to X$ eine Kollineation, falls jede Gerade $\ell \subset X$ auf eine Gerade $f(\ell) \subset X$ abgebildet wird.

Beispiel 1.9.1. Affinitäten

Beispiel 1.9.2. Ist dim X = 1 und $f: X \to X$ bijektiv, dann ist f eine Kollineation.

Beispiel 1.9.3. Sei $X = \mathbb{C}^2$ als affiner Raum über \mathbb{C} .

$$\begin{array}{c} f\colon \mathbb{C}^2 \to \mathbb{C}^2\\ (x,y) \mapsto & (\overline{x},\overline{y}).\\ & \text{komplexe Konjugation} \end{array}$$

Dann ist f eine Kollineation. Das Bild einer Geraden

$$(x_0, y_0) + \mathbb{C}(x_1, y_1)$$

ist gegeben durch die Gerade

$$(\overline{x_0}, \overline{y_0}) + \mathbb{C}(\overline{x_1}, \overline{y_1}),$$

aber f ist keine Affinität!

Bemerkung. Die komplexe Konjugation

$$\mathbb{C} \to \mathbb{C}$$
$$x \mapsto \overline{x}$$

ist ein Automorphismus von dem Körper \mathbb{C} .

1.9 Kollineationen Vorlesung 5

Vorlesung 5

Fr 08.05. 10:15

Definition. Sei K ein Körper. Wir nennen eine Bijektion $\alpha \colon K \to K$ einen Automorphismus von K falls gilt

$$\alpha(\lambda + \mu) = \alpha(\lambda) + \alpha(\mu) \quad \forall \lambda, \mu \in K$$

und

$$\alpha(\lambda \cdot \mu) = \alpha(\lambda) \cdot \alpha(\mu) \quad \forall \lambda, \mu \in K$$

Beispiel 1.9.4.

$$K = \mathbb{Q}(\sqrt{2}) = \left\{ x + y\sqrt{2} \mid x, y \in \mathbb{Q} \right\}$$

ist ein Körper und

$$\alpha : \quad \mathbb{Q}(\sqrt{2}) \to \mathbb{Q}(\sqrt{2})$$

$$x + y\sqrt{2} \mapsto x - y\sqrt{2}.$$

Satz 1.9.1. Sei $\alpha \colon \mathbb{R} \to \mathbb{R}$ ein Automorphismus von \mathbb{R} . Dann gilt $\alpha = \mathrm{Id}_{\mathbb{R}}$.

Beweis. Sei $\alpha \colon \mathbb{R} \to \mathbb{R}$ ein Automorphismus.

1. Dann gilt

$$\alpha(0) = \alpha(0+0) = \alpha(0) + \alpha(0),$$

also $\alpha(0) = 0$.

2. Dann gilt

$$0 = \alpha(0) = \alpha(\lambda - \lambda) = \alpha(\lambda) + \alpha(-\lambda),$$

also $\alpha(-\lambda) = -\alpha(\lambda) \ \forall \lambda \in \mathbb{R}$.

3. Dann gilt

$$\alpha(1) = \alpha(1 \cdot 1) = \alpha(1)\alpha(1),$$

also $\alpha(1) = 1$ und daher

$$\alpha(n) = n \ \forall n \in \mathbb{Z},$$

z.B.

$$\alpha(2) = \alpha(1+1) = \alpha(1) + \alpha(1) = 1+1=2.$$

1.9 Kollineationen Vorlesung 5

4. Sei $p \in \mathbb{Z}$, $q \in \mathbb{N}$, dann gilt

$$q\alpha\left(\frac{p}{q}\right) = \alpha(q)\alpha\left(\frac{p}{q}\right) = \alpha\left(q\frac{p}{q}\right) = \alpha(p) = p,$$

also $\alpha\left(\frac{p}{q} = \frac{p}{q}\right)$ oder $\alpha(t) = t \quad \forall t \in \mathbb{Q}$.

5. Sei $\lambda \in \mathbb{R}_{>0}$. Dann $\exists \ \mu \in \mathbb{R} \text{ mit } \lambda = \mu^2 \text{ und}$

$$\alpha(\lambda) = \alpha(\mu^2) = \alpha(\mu) \cdot \alpha(\mu) > 0,$$

also

$$\alpha(\lambda) > 0 \quad \forall \lambda \subset \mathbb{R} > 0.$$

Wir zeigen nun $\alpha(\lambda) = \lambda \quad \forall \lambda \in \mathbb{R}.$

Gegenannahme

Sei $\lambda \in \mathbb{R}$ mit $\alpha(\lambda) \neq \lambda$. Wir diskutieren den Fall $\alpha(\lambda) < \lambda$ ($\alpha(\lambda) > \lambda$ geht genauso). Wähle $\frac{p}{q} \in \mathbb{Q}$ mit

$$\alpha(\lambda) < \frac{p}{q} < \lambda.$$

Dann gilt

$$\alpha(\lambda - \frac{p}{q}) = \alpha(\lambda) - \frac{p}{q} < 0$$

$$\oint_{\mathcal{L}} zu \lambda - \frac{p}{q} > 0.$$

Eine Familie von Kollineationen

Idee. Wir verallgemeinern Beispiel 1.9.3, um eine größere Klasse an Kollineationen zu erhalten als Affinitäten.

Beispiel 1.9.5.

$$f \colon \mathbb{C}^2 \to \mathbb{C}^2$$

 $(x,y) \mapsto (\overline{x}, \overline{y})$

1.9 Kollineationen Vorlesung 5

respektiert Addition, d.h.

$$f(z+z') = f(z) + f(z') \quad \forall z, z' \in \mathbb{C}^2,$$

und hat die Eigenschaft

$$f(\lambda z) = \overline{\lambda} f(z) \quad \forall \lambda \in \mathbb{C} \ \forall z \in \mathbb{C}^2.$$

 \rightarrow Wir nennen f semilinear.

Definition. Seien V, W Vektorräume über einem Körper K. Wir nennen eine Abbildung $F: V \to W$ semilinear, wenn es einen Automorphismus α von K gibt, sodass gilt

- $F(v+v') = F(v) + F(v') \quad \forall v, v' \in V$
- $F(\lambda v) = \alpha(\lambda)F(v) \quad \forall \lambda \in K \ \forall v \in V.$

Definition. Seien X, Y affine Räume über einem Körper K. Wir nennen eine Abbildung

$$f\colon X\to Y$$

semiaffin, wenn es eine semilineare Abbildung $F: T(X) \to T(Y)$ gibt mit

$$\overrightarrow{f(p)f(q)} = F(\overrightarrow{pq}) \quad \forall p, q \in X.$$

Falls f außerdem bijektiv ist, dann nennen wir f eine Semiaffinität.

Lemma 1.9.2. Sei $f: X \to X$ eine Semiaffinität eines affinen Raumes X. Dann ist f eine Kollineation.

Beweisidee. Sei $\ell \subseteq X$ eine Gerade, $p_0 \in \ell$. Dann ist

$$T(\ell) = \{ \overrightarrow{p_0 x}, x \in \ell \} \subset T(x)$$

ein K-Untervektorraum mit

$$\dim_K T(\ell) = 1.$$

Sei $F: T(X) \to T(X)$ die zu f gehörige semilineare Abbildung.

Wir betrachten

$$T(f(\ell)) = \left\{ \overrightarrow{f(p_0)f(x)}, \overrightarrow{x \in \ell} \right\}$$
$$= \left\{ F(\overrightarrow{p_0x}), \overrightarrow{x \in \ell} \right\} = F(T(\ell)).$$

Dann ist auch $F(T(\ell)) \subseteq T(X)$ ein K-Untervektorraum der Dimension 1, also Übung

$$f(\ell) \subseteq X$$

eine Gerade. \Box

Frage. Gibt es Kollineationen, die keine Semiaffinität sind?

 \rightarrow Ja, z. B. für dim X = 1.

Hauptsatz der affinen Geometrie

Sei K ein Körper mit $\#K \geqslant 3$, X ein affiner Raum über K mit $\dim(X) \geqslant 2$ und $f: X \to X$ eine Kollineation. Dann ist f eine Semiaffinität.

Bemerkung. Aus Satz 1.9.1 folgt, dass über \mathbb{R} jede semilineare Abbildung linear ist.

Korollar. Sei X ein affiner Raum über \mathbb{R} mit $\dim(X) \geq 2$, $f: X \to X$ eine Kollineation. Dann ist f eine Affinität.

§1.10 Quadriken

Motivation. Affine Unterräume der \mathbb{R}^n sind gegeben durch *lineare* Gleichungssysteme.

Jetzt:

Betrachte den Unterraum im \mathbb{R}^n , der entsteht als Lösungsmenge einer quadratischen Gleichung.

Beispiele (im \mathbb{R}^2). i) der Kreis

$$\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1 \}$$

ii) Ellipsen, a, b > 0

$$E = \{ (x, y) \in \mathbb{R}^2 \mid ax^2 + by^2 = 1 \}$$

iii) Parabel

$$y = ax^2$$

iv) Hyperbeln, a, b > 0

$$ax^2 - by^2 = 1$$

v) $x^2 = 0$

vi) xy = 0

vii) $x^2 + y^2 = 0$

Der Ursprung

Beispiele. Sei $Q \subseteq \mathbb{R}^2$ gegeben durch

$$x_1^2 + 2x_1x_2 + 2x_2^2 + 2x_1 = 0.$$

Erster Schritt: Entferne den "gemischten" Term x_1x_2 .

$$(x_1 + x_2)^2 + x_2^2 + 2x_1 = 0.$$

Nach der Koordinatentransformation

$$y_1 = x_1 + x_2$$
 $y_2 = x_2$

ist Qgegeben durch

$$y_1^2 + y_2^2 + 2y_1 \cdot 1 - 2y_2 \cdot 1 = 0.$$

Bemerkung. Wir können die obigen Gleichungen auch über anderen Körpern K betrachten, die Lösungsmenge hängt im Allgemeinen wesentlich von K ab, z. B. $x^2+y^2=0$.

Frage. Was passier hier über \mathbb{C} , $\mathbb{Z}/p\mathbb{Z}$ für p prim?

Definition. Sei K ein Körper. Ein quadratisches Polynom über K in den Unbestimmten x_1, \ldots, x_n ist eine Ausdruck der Form

$$P(x_1,\ldots,x_n) = \sum_{1 \leqslant i,j \leqslant n} \alpha_{ij} x_i x_j + \sum_{1 \leqslant i \leqslant n} \alpha_{0i} x_i + \alpha_{00}.$$

mit $\alpha_{ij}, \alpha_{0i}, \alpha_{00} \in K \quad \forall 1 \leq i, j \leq n.$

Bemerkung. Aus einem quadratischen Polynom P über K erhält man eine Abbildung

$$K^n \to K$$

 $(t_1, \dots, t_n) \mapsto P(t_1, \dots, t_n).$

Achtung. Zwei unterschiedliche Polynome P_1, P_2 müssen nicht notwenigerweise identisch sein, um dieselben Abbildung zu induzieren.

Beispiel. $K = \mathbb{F}_p = \mathbb{Z} / p\mathbb{Z}$. Körper mit p Elementen mit p prim, n = 1.

$$P_1 = x$$
$$P_2 = x^p.$$

Nach Fermats kleinem Satz gilt

$$t \equiv t^p \mod p \quad \forall t \in \mathbb{Z} / p\mathbb{Z}.$$

Für p = 2 sind P_1, P_2 quadratische Polynome nach obiger Definition.

Definition. Wir nennen eine Teilmenge $Q \subseteq K^n$ eine Quadrik, falls Q definiert ist durch

$$Q = \{ (x_1, \dots, x_n) \in K^n \mid P(x_1, \dots, x_n) = 0 \}$$

für ein quadratisches Polynom P über K.

Beispiele. • $x_1^2 + \cdots + x_n^2 = 0$ über \mathbb{R} ergibt den Ursprung.

- $a_1x_1^2 + \cdots + a_nx_n^2 = 1, a_1, \cdots, a_n > 0$ über \mathbb{R} ergibt einen Ellipsoid.
- $K = \mathbb{R}, P = x_1^2 + 2x_1x_2 + 5x_2^2$. Dann ist

$$Q = \left\{ x_1, x_2 \in \mathbb{R}^2 \middle| \underbrace{(x_1, x_2) \begin{pmatrix} 1 & \frac{1}{5} \\ \frac{1}{2} & \frac{1}{5} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0}_{P(x_1, x_2)} \right\}.$$

Frage. Wie können wir im Allgemeinen Quadriken in Matrizenschreibweise ausdrücken?

Vorlesung 6

Di 12.05. 10:15

Idee. Sei

$$P(x_1,\ldots,x_n) = \sum_{1 \leq i \leq j \leq n} \alpha_{ij} x_i x_j + \sum_{1 \leq i \leq n} \alpha_{0i} x_i \cdot 1 + \alpha_{00} \cdot 1^2.$$

Wir schreiben

$$x' = \begin{pmatrix} 1 \\ x_1 \\ \vdots \\ x_n \end{pmatrix} \in K^{n+1}.$$

und (sei im Folgenden $char(K) \neq 2$)

$$A = \begin{pmatrix} a_{00} & a_{01} & \cdots & a_{0n} \\ a_{10} & a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ a_{n0} & a_{n1} & \cdots & a_{nn} \end{pmatrix}$$

 $mit \ a_{ii} = \alpha_{ii} \quad \forall \ 0 \leqslant i \leqslant n.$

$$a_{ij} = a_{ji} = \frac{1}{2}\alpha_{ij}$$
 für $0 \leqslant i < j \leqslant n$.

Es gilt dann

$$P(x_1,\ldots,x_n)={}^tx'A'x'$$

und

$$Q = \left\{ (x_1, \dots, x_n) \in K^n \mid {}^t x' A' x' = 0 \right\}.$$

Bemerkung. Die Matrix A' ist symmetrisch (nach Konstruktion).

Definition. In obiger Notation nennen wir A' di erweiterte Matrix zu P und x' den erweiterten Spaltenvektor zu x. Wir sagen, dass $A' \in \mathcal{M}_{(n+1)\times(n+1)}(K)$ die Quadrik Q beschreibt, wenn gilt

$$Q = \left\{ x \in K^n \mid {}^t x' A' x' = 0 \right\}.$$

Notation. Für P wie oben schreiben wir

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}$$

für den "rein quadratischen" Anteil von P.

Bemerkung. Sei $Q \subseteq K^n$ eine Quadrik. Dann gibt es im Allgemeinen nicht nur eine erweiterte Matrix A' die Q beschreibt. Ist

$$Q = \left\{ (x_1, \dots, x_n) \in K^n \mid {}^t x' A' x' = 0 \right\},\,$$

dann beschreibt auch $\lambda A'$ mit $\lambda \in K \setminus \{0\}$ die Quadrik Q.

Frage. Wie verhalten sich Quadriken unter Koordinatentransformationen / Affinitäten?

Beispiel. $K = \mathbb{Q}$. $P(x_1, x_2) = x_1^2 + x_2^2$.

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} y_1 + y_2 \\ y_2 + 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

$$P(x_1, x_2) = (y_1 + y_2)^2 + (y_2 + 1)^2$$

$$= y_1^2 + 2y_1y_2 + 2y_2^2 + 2y_2 + 1$$

ist wieder ein quadratisches Polynom.

Lemma 1.10.1. Sei K ein Körper mit $\operatorname{char}(K) \neq 2, \ Q \leqslant K^n$ eine Quadrik und $f \colon K^n \to K^n$ eine Affinität. Dann ist auch $f(Q) \subseteq K^n$ eine Quadrik.

Beweis. Sei Q gegeben durch das quadratische Polynom $P(x_1, \ldots, x_n)$, also

$$Q = \{ (x_1, \dots, x_n) \in K^n \mid P(x_1, \dots, x_n) = 0 \}.$$

Sei A' die erweiterte Matrix zu P und x' der erweiterte Spaltenvektor zu x. Dann gilt

$$Q = \left\{ (x_1, \dots, x_n \in K^n) \mid {}^t x' A' x' = 0 \right\}.$$

Als nächstes beschreibe den durch f gegebenen Koordinatenwechsel. f ist eine Affinität, also $\exists b \in K^n$ und $S \in GL_n(K)$ mit

$$f \colon K^n \to K^n$$

 $x \mapsto Sx + b.$

Sei
$$y = f(x)$$
, schreibe $y' = \begin{pmatrix} 1 \\ y_1 \\ \vdots \\ y_n \end{pmatrix}$,
$$S' = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ b_1 & \vdots & S \\ \vdots & b_n & S \end{pmatrix}.$$

Dann gilt y' = S'x'.

Bemerkung. S' ist invertierbar mit inverser Matrix

$$T' = (S')^{-1} = \begin{pmatrix} 1 & 0 \cdots & 0 \\ -S^{-1}b & S^{-1} \end{pmatrix},$$

d. h. x' = T'y'.

Es gilt

$$f(Q) = \{ f((x_1, \dots, x_n)) \in K^n \mid P(x_1, \dots, x_n) = 0 \}$$

$$= \{ y \in K^n \mid {}^t x' A' x' = 0 \}$$

$$= \{ y \in K^n \mid {}^t (T'y') A' (T'y') = 0 \}$$

$$= \{ y \in K^n \mid {}^t y' \underbrace{T' A' T'}_{\text{symmetrische Matrix}} y' = 0 \},$$

also ist f(Q) eine Quadrik mit

$$P'(y_1,\ldots,y_n) = {}^t y'({}^t T' A' T') y'.$$

Bemerkung. Der Beweis von Lemma 1.10.1 zeigt wie sich eine beschreibende Matrix A' unter einer Koordinatentransformation ändert.

Frage. Sei Q eine Quadrik beschrieben durch eine erweiterte Matrix A'. Find eine Koordinatentransformation f der K^n , sodass f(Q) möglichst "einfach" beschrieben werden kann.

zweiter Schritt

Entferne lineare Terme

$$(y_1 + 1)^2 + (y_2 - 1)^2 - 2 = 0.$$

Nach der Koordinatentransformation

$$z_1 = y_1 + 1$$
 $z_2 = y_2 - 1$

erhalten wir $z_1^2 + z_2^2 = 2$, oder nach skalieren mit $\sqrt{2}$

$$\sqrt{2}w_1 = z_1 \qquad \sqrt{2}w_2 = z_2$$
$$w_1^2 + w_2^2 = 1$$

Satz 1.10.2 (affine Hauptachsentransformation von reellen Quadriken). Sei $A' \in M_{(n+1)\times(n+1)}(\mathbb{R})$ eine symmetrische Matrix und die Quadrik $Q \subseteq \mathbb{R}^n$ gegeben durch

$$Q = \left\{ (x_1, \dots, x_n) \in \mathbb{R}^n \mid {}^t x' A' x' = 0 \right\}.$$

Sei A der rein quadratische Anteil von A', $m = \operatorname{rang}(A)$ und $m' = \operatorname{rang}(A)'$. Dann gibt es eine Affinität $f : \mathbb{R}^n \to \mathbb{R}^n$, sodass f(Q) beschrieben wird durch eine der folgenden Gleichungen:

a) m = m':

$$y_1^2 + \dots + y_k^2 - y_{k+1}^2 - \dots - y_m^2 = 0$$

für ein $0 \leq j \leq m$.

b) m + 1 = m':

$$y_1^2 + \dots + y_k^2 - y_{k+1}^2 - \dots - y_m^2 = 1$$

für ein $0 \le k \le m$.

c) m + 2 = m':

$$y_1^2 + \dots + y_k^2 - y_{k+1}^2 - \dots - y_m^2 + 2y_{m+1} = 0$$

für ein $0 \leqslant k \leqslant m$.

Frage / Übung 1.10.1. Warum gilt immer $m \leq m' \leq m + 2$?

Beweis zu Satz 1.10.2. Sei

$$A' = \begin{pmatrix} a_{00} & a_{01} & \cdots & a_{0n} \\ a_{10} & & & & \\ \vdots & & & A \\ a_{n0} & & & \end{pmatrix}.$$

 $mit A \in M_{n \times n}(\mathbb{R}).$

Schritt 1 Entferne gemischte Terme.

Idee. Wollen A in Diagonalgestalt bringen.

AGLA I: Orthogonalisierungssatz für reelle symmetrische Matrizen.

Wir erhalten eine invertierbare Matrix $T_1 \in \mathrm{GL}_n(\mathbb{R})$ mit

$${}^{t}T_{1}AT_{1} = \begin{pmatrix} I_{k} & 0 & 0 \\ 0 & -I_{m-k} & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

 I_l Einheitsmatrix der Dimension l, m = rang(A), k Zahl der positiven Eigenwerte von A (mit Vielfachheit).

Sei

$$T_1' = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & T_1 \\ 0 & & & \end{pmatrix}.$$

Dann gilt

$$A'_{1} := {}^{t}T'_{1}A'T'_{1}$$

$$= \begin{pmatrix} c_{00} & c_{01} & \cdots & c_{0n} \\ c_{10} & I_{k} & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ c_{n0} & 0 & 0 & 0 \end{pmatrix}$$

für $c_{00}, c_{01}, \ldots, c_{0n}, c_{10}, \ldots, c_{n0} \in \mathbb{R}$ mit $c_{i0} = c_{0i} \, \forall i$. Die durch A' bestimmte Quadrik ist gegeben durch

$$y_1^2 + \dots + y_k^2 - y_{k+1}^2 - \dots - y_m^2 + 2(c_{01}y_1 + \dots + c_{0n}y_n) + c_{00} = 0.$$

Schritt 2 Reduzieren der linearen Terme. Sei

$$T_{2}' = \begin{pmatrix} 1 & 0 & \cdots & \cdots & \cdots & 0 \\ -c_{10} & 1 & & & & & \\ \vdots & & \ddots & & & 0 \\ \vdots & & \ddots & & & 0 \\ c_{(k+1)0} & & & \ddots & & & \\ \vdots & & & \ddots & & & \\ \vdots & & & \ddots & & & \\ c_{m0} & & & & \ddots & & \\ \vdots & & & \ddots & & \\ \vdots & & & \ddots &$$

entsprechend dem Basiswechsel

$$y_{i} = \begin{cases} z_{i} - c_{i0} & 1 \leq i \leq k \\ z_{i} + c_{i0} & k < i \leq m \\ z_{i} & i > m. \end{cases}$$

Sei

Nach der durch $T_1'T_2'$ beschriebenen Koordinatentransformation ist Q gegeben durch

$$z_1^2 + \cdots + z_k^2 - z_{k+1}^2 - \cdots - z_m^2 + 2(c_{(m+1)0}z_{m+1} + \cdots + c_{n0}z_n) + d_{00}.$$

Fallunterscheidung

a)
$$d_{00} = c_{(m+1)0} = \cdots = c_{n0} = 0.$$

b) $d_{00} \neq 0$, $c_{(m+1)0} = \cdots = c_{n0} = 0$. Nach eventuellem Multiplizieren der Matrix A' mit (-1) und Umordnen der Variablen z_i , können wir $d_{00} < 0$ annehmen.

Sei $\lambda = \sqrt{|d_{00}|}$ und definiere

$$T_3' = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & \lambda I_n \\ 0 & & & \end{pmatrix}.$$

Wir berechnen

$$A_3' := {}^tT_3'A_2'T_3'.$$

Dann ist

$$A_3' = \begin{pmatrix} -\lambda^2 & 0 & \cdots & \cdots & 0 \\ 0 & \lambda^2 I_k & 0 & 0 \\ \vdots & & & & 0 \\ \vdots & & & & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Nach der zu $T_1't_2't_3'$ gehörigen Affinität und Division durch λ^2 wird Q gegeben durch

$$u_1^2 + \dots + u_k^2 - u_{k+1}^2 - u_m^2 = 1.$$

c) $c_{i0} \neq 0$ für mindestens ein $m+1 \leq i \leq n$. Nach Umordnen der Variablen z_i , $m+1 \leq i \leq n$ können wir annehmen, dass $c_{(m+1)0} \neq 0$ gilt. Betrachte die Koordinatentransformation $u_i = z_i$, $i \neq m+1$.

$$2u_{m+1} = 2(c_{(m+1)0}z_{m+1} + \dots + c_{n0}z_n) + d_{00}.$$

Nach dieser Affinität wird Q beschrieben durch

$$u_1^2 + \dots + u_k^2 - u_{k+1}^2 - \dots - u_m^2 + 2u_{m+1} = 0.$$

Vorlesung 7

Do 14.05. 10:15

Resultate der affinen Hauptachsentransformation im \mathbb{R}^2 : $m = \operatorname{rang}(A)$, $m' = \operatorname{rang}(A)'$.

a) m = m':

m=m'=0: Q gegeben durch 0=0 \rightarrow Ebene \mathbb{R}^2 .

 $m=m'=1 \ x_1^2=0 \rightarrow , \mbox{doppelte}\mbox{``doppelte''}$ Gerade.

 $m = m' = 2 \ x_1^2 + x_2^2 = 0 \to \text{Punkt.}$

$$x_1^2 - x_2^2 = 0 \rightarrow 2$$
 Geraden.
 $(x_1 + x_2)(x_1 - x_2)$

b) m' = m + 1.

 $m = 0 \ \rightarrow 0 = 1 \rightarrow \text{leere Menge}.$

 $m=1~x_1^2=1~\rightarrow 2$ parallele Geraden

 $-x_1^2 = 1$ \rightarrow leere Menge.

$$m = 2 -x_1^2 - x_2^2 = 1 \to \varnothing.$$

 $x_1^2 - x_2^2 = 1 \rightarrow \text{Hyperbel}.$

 $x_1^2 + x_2^2 = 1 \to \text{Kreis.}$

$$m' = m + 2.$$

$$m = 0$$
 $2x_1 = 0$ \rightarrow Gerade.

$$m=1$$
 $x_1^2+2x_2=0$ \rightarrow Parabel.

Bemerkung. Verschiedene dieser quadratischen Formen können als *Menge* die gleiche Quadrik $Q\subseteq\mathbb{R}^2$ beschreiben.

Beispiel.

$$\{(x_1, x_2) \in \mathbb{R}^2 \mid x_1^2 = 0\} = \{(x_1, x_2) \subset \mathbb{R}^2 \mid 2x_1 = 0\}.$$

Definition. Wir nennen zwei Quadriken $Q_1, Q_2 \subseteq \mathbb{R}^n$ geometrisch äquivalent wenn es eine Affinität $f: \mathbb{R}^n \to \mathbb{R}^n$ gibt mit $f(Q_1) = Q_2$.

Frage. Klassifikation aller Quadriken über \mathbb{R} bis auf geometrische Äquivalenz?

Für eine Matrix $B \in M_{n \times n}(\mathbb{R})$ sei sign(B) = # positive Eigenwerte von B - # negative Eingenwerte von B die Signatur von B.

Satz 1.10.3 (Geometischer Klassifikationssatz (ohne Beweis)). Seien $Q_1, Q_2 \subset \mathbb{R}^n$ nichtleere Quadriken, die beschrieben werden durch erweiterte Matrizen A'_1, A'_2 mit rein quadratischen Anteilen A_1, A_2 . Seien Q_1, Q_2 nicht gleich an Hyperebenen.

Dann sind Q_1 und Q_2 geometrisch äquivalent gdw gilt

$$\operatorname{rang} A_1 = \operatorname{rang} A_2,$$

$$\operatorname{rang} A'_1 = \operatorname{rang} A'_2,$$

$$|\operatorname{sign} A_1| = |\operatorname{sign} A_2| \text{ und}$$

$$|\operatorname{sign} A'_1| = |\operatorname{sign} A'_2|.$$

Folgerung 1.10.1. Sei $Q \subset \mathbb{R}^n$ eine nichtleere Quadrik. Dann ist Q geometrisch äquivalent zu genau einer der folgenden Quadriken.

a)
$$x_1^2 + \dots + x_k^2 - x_{k+1}^2 - \dots - x_m^2 = 0, \ 0 \le k \le m, \ 2k - m \ge 0.$$

b)
$$x_1^2 + \dots + x_k^2 - x_{k+1}^2 - \dots - x_n^2 = 1, 1 \le k \le m.$$

c)
$$x_1^2 + \dots + x_k^2 - x_{k+1} - \dots - x_m^2 + 2x_{m+1} = 0, 1 \le k \le m \text{ und } 2k - m \ge 0.$$

Beispiele (Quadriken im \mathbb{R}^3). Typ a) $x_1^2 + x_2^2 - x_3^2 = 0$

Kegel

Typ b) • $x_1^2 + x_2^2 = 1$.

Kreiszylinder

•
$$x_1^2 + x_2^2 + x_3^2 = 1$$
.

Kugel

•
$$x_1^2 - x_2^2 + x_3^2 = 1$$
.

Zweischaliges Hyperboloid

•
$$x_1^2 + x_2^2 - x_3^2 = 1$$

Einschaliges Hyperboloid

Typ c)
$$x_1^2 + x_2^2 + 2x_3 = 0$$
.

Elliptisches Paraboloid

§1.11 Euklidische affine Räume

In einem allgemeinen affinen Raum X haben wir den Begriff von Gerade und parallelen Geraden (Sind $L, L' \subset X$ Geraden, dann sagen wir, dass L und L' parallel sind, falls T(L) = T(L')).

Frage. Können wir auch "Winkel" messen zischen zwei sich schneidenden Geraden?

Erinnerung. Sei V ein \mathbb{R} -Vektorraum. Ein Skalarprodukt auf V ist eine positiv-definite symmetrische Bilinearform

$$S \colon V \times V \to \mathbb{R}$$
.

Definition. Ein euklidischer affiner Raum ist ein reeller affiner Raum $(X, T(X), \tau)$ zusammen mit einem Skalarprodukt

$$\langle \cdot, \cdot \rangle \colon T(X) \times T(X) \to \mathbb{R}$$

auf dem Translationsvektorraum T(X).

Beispiel 1.11.1. Der \mathbb{R}^n als reeller affiner Raum mit dem Standard-Skalarprodukt

$$\langle \cdot, \cdot \rangle \colon T(X) \times T(X) \to \mathbb{R}$$

$$\downarrow \mid \qquad \qquad \downarrow \mid \mid \qquad \downarrow \mid \mid \qquad \downarrow \mid \mid \qquad \downarrow \mid \mid \qquad \downarrow$$

Beispiel 1.11.2. Die Lösungsmenge L im \mathbb{R}^n eines Systems von linearen Gleichungen $Ax = b, A \in \mathcal{M}_{m \times n}(\mathbb{R}), b \in \mathbb{R}^m$

mit dem aus dem \mathbb{R}^n induzierten Standard-Skalar
produkt auf $T(L) \leq \mathbb{R}^n$ Untervektorraum

$$\langle \cdot, \cdot \rangle \colon T(L) \times T(L) \to \mathbb{R}$$

 $(x, y) \mapsto \langle x, y \rangle.$

Frage. Definition von Abständen / Winkeln in einem euklidischen affinen Raum?

Definition 1.11.1. Sei X ein euklidischer affiner Raum. Wir definieren eine Normabbildung

$$\begin{aligned} \|\cdot\| \colon T(X) &\to \mathbb{R}_{\geqslant 0} \\ t &\mapsto \|t\| \coloneqq \sqrt{\langle t, t \rangle} \end{aligned}$$

und eine Metrik

$$d: X \times X \to \mathbb{R}_{\geqslant 0}$$

 $(p,q) \mapsto d(p,q) \coloneqq \|\overrightarrow{pq}\|.$

Bemerkung. $\|\cdot\|$ ist eine Norm, da $\langle\cdot,\cdot\rangle$ ein Skalarprodukt ist. Man kann nachrechnen, dass d tatsächlich eine Metrik auf X ist, z.B.

$$d(p,q) = \|\overrightarrow{pq}\| = \|-\overrightarrow{qp}\| = |-1| \cdot \overrightarrow{qp} = d(q,p).$$

Definition. Sei X ein euklidischer affiner Raum, $p, q, q' \in X$ mit $p \neq q, q', L = p \vee q, L' = p \vee q'$.

Wir definieren den Winkel $\sphericalangle(L,L')$ zwischen den Geraden L,L' durch

$$\sphericalangle(L,L') = \arccos \frac{\left| \langle \overrightarrow{pq},\overrightarrow{pq'} \rangle \right|}{\|\overrightarrow{pq}\| \cdot \left\| \overrightarrow{pq'} \right\|} \in \left[0,\frac{\pi}{2}\right].$$

Bemerkung. Die Definition des Winkels $\sphericalangle(L,L')$ ist unabhängig von der Wahl der Elemente q,q' (solange $p\neq q,q'$).

Di 19.05. 10:15

Vorlesung 8

Lemma 1.11.1. Sei X ein euklidischer affiner Raum, $t \in T(X)$ und $\tau_t \colon X \to X$ die Translation um t. Seien $q, q' \in X$ und $L, L' \subseteq X$ Geraden mit $L \cap L' \neq \emptyset$. Dann gilt

$$d(\tau_t(p), \tau_t(q)) = d(p, q) \text{ und}$$
$$<(\tau_t(L), \tau_t(L')) = <(L, L').$$

Beweisidee. Verwende

$$\overrightarrow{\tau_t(p)\tau_t(q)} \stackrel{!}{=} \overrightarrow{pq},$$

also

$$d(\tau_t(p), \tau_t(q)) = \left\| \overrightarrow{\tau_t(p)\tau_t(q)} \right\| = \left\| \overrightarrow{pq} \right\| = d(p, q)$$

für beliebige Punkte $p, q \in X$ und $t \in T(X)$.

Winkel zwischen Geraden L, L'

$$\sphericalangle(L, L') = \arccos \frac{\langle \overrightarrow{pq}, \overrightarrow{pq'} \rangle}{\|\overrightarrow{pq}\| \|\overrightarrow{pq'}\|}.$$

$$\parallel \overrightarrow{\tau_t(p)\tau_t(q)} \parallel$$

$$\parallel \overrightarrow{\tau_t(p)\tau_t(q)} \parallel$$

also:

Translation um ein Element $t \in T(X)$ erhält Abstände und Winkel.

Nicht alle affinen Abbildungen haben diese Eigenschaft, z. B. $X=\mathbb{R}^2$ mit Standardskalarprodukt.

Frage. Welche Abbildungen zwischen euklidischen affinen Räumen erhalten Abstände?

Definition. Seien X, X' metrische Räume mit Metriken d, d' und $f: X \to X'$ eine Abbildung. Wir nennen f eine Isometrie, falls $\forall p, q \in X$ gilt

$$d'(f(p), f(q)) = d(p, q).$$

Frage. Welche Abbildungen zwischen euklidischen affinen Räumen erhalten Abstände? \rightarrow Wir können dies Frage auf affine Abbildungen reduzieren.

Satz 1.11.2. Seien X, Y euklidische affine Räume $f: X \to Y$ eine Isometrie. Dann ist f affin und injektiv.

Beweis. Sei $f\colon X\to X$ eine Isometrie und $p\in X$. Betrachte die Abbildung (mit T(X),T(Y) Vektorräumen mit Skalarprodukt)

$$F: T(X) \to T(Y)$$

$$\overrightarrow{px} \mapsto \overrightarrow{f(p)f(x)}.$$

Behauptung 1. F ist eine Isometrie.

Seien $x_1, x_2 \in X$.

$$||F(\overrightarrow{px_1}) - F(\overrightarrow{px_2})|| = ||\overrightarrow{f(p)}\overrightarrow{f(x_1)} \underbrace{-\overrightarrow{f(p)}\overrightarrow{f(x_2)}}||_{T(Y)}$$

$$= ||\overrightarrow{f(p)}\overrightarrow{f(x_1)} + \overrightarrow{f(x_2)}\overrightarrow{f(p)}||_{T(Y)}$$

$$= ||f(x_2)f(x_1)||_{T(Y)}$$

$$= ||f(x_2)f(x_1)||_{T(Y)}$$

$$= ||f(x_2)f(x_1)||_{T(Y)}$$

$$= d_Y(f(x_2), f(x_1))$$

$$= d_X(x_2, x_1) = \overrightarrow{x_2x_1}\overrightarrow{x_1}T(X)$$

$$f \text{ ist Isometrie}$$

$$= ||\overrightarrow{px_1} - \overrightarrow{px_2}||_{T(x)}.$$

Behauptung 2. Ist F linear, dann ist f affin. Seien $x_1, x_2 \in X$. Dann gilt

$$F(\overrightarrow{x_1x_2}) = F(\overrightarrow{x_1p} + \overrightarrow{px_2})$$

$$= F(-\overrightarrow{px_1} + \overrightarrow{px_2})$$

$$= -F(\overrightarrow{px_1}) + F(\overrightarrow{px_2})$$

$$F \text{ ist linear}$$

$$= -\overrightarrow{f(p)f(x_1)} + \overrightarrow{f(p)f(x_2)}$$

$$= \overrightarrow{f(x_1)f(x_2)}.$$

Also ist Abbildung

$$\overrightarrow{x_1x_2} \mapsto \overrightarrow{f(x_1)f(x_2)}$$

linear!

Es genügt also folgendes Lemma zu beweisen

Lemma 1.11.3. Seien V, W euklidisch Vektorräume, $F: V \to W$ eine Isometrie mit F(0) = 0. Dann ist F linear und injektiv.

Beweis von Lemma 1.11.3. F ist injektiv: Sei $v', v \in V$ mit F(v) = F(v'). Dann

$$0 = d_W(F(v), F(v')) = d_V(v, v'),$$
f Isometrie

also v = v'.

Zur Linearität von F: F ist Isometrie, also gilt $\forall v_1, v_2 \in V$

$$\underbrace{\|F(v_1) - F(v_2)\|_{d_W(F(v_1), F(v_2))}}_{d_W(v_1, v_2)} = \underbrace{\|v_1 - v_2\|_{d_W(v_1, v_2)}}_{d_W(v_1, v_2)}.$$

Aus F(0) = 0 folgt

$$||F(v)|| = ||v|| \quad \forall v \in V$$

Berechne für $v_1, v_2 \in V$:

$$||v_1 - v_2||^2 = \langle v_1 - v_2, v_1 - v_2 \rangle = ||v_1||^2 + ||v_2||^2 - 2\langle v_1, v_2 \rangle.$$

Es gilt auch

$$\underbrace{\|F(v_1) - F(v_2)\|^2}_{\|v_1 - v_2\|^2} = \underbrace{\|F(v_1)\|^2}_{\|v_1\|^2} + \underbrace{\|F(v_2)\|^2}_{\|v_2\|^2} - 2\langle F(v_1), F(v_2) \rangle.$$

Also folgt

$$\langle v_1, v_2 \rangle = \langle F(v_1), F(v_2) \rangle \quad \forall v_1, v_2 \in V.$$

Seien $v, v' \in V$.

$$\langle \underbrace{F(v+v') - F(v) - F(v')}_{=0}^{?}, F(v+v') - F(v) - F(v') \rangle = \langle F(v+v'), F(v+v') \rangle - \langle F(v+v'), F(v) \rangle - \cdots - \langle F(v+v'), F(v) \rangle - \cdots - \langle F(v+v'), F(v) \rangle - \cdots + \langle F(v+v'), F(v+v') \rangle - \langle F(v+v'), F(v+v'), F(v+v') \rangle - \langle F(v+v'), F(v+v'), F(v+v') \rangle - \langle F(v+v'), F(v+v') \rangle - \langle F(v+v'), F(v+v') \rangle -$$

Multiplikation mit Skalaren. Sei $v \in V$, $\lambda \in \mathbb{R}$.

$$\begin{split} \langle F(\lambda v) - \lambda F(v), F(\lambda v) - \lambda F(v) \rangle &= \langle F(\lambda v), F(\lambda v) \rangle - 2 \langle F(\lambda v), \lambda F(v) \rangle \langle \lambda F(v), \lambda F(V) \rangle \\ &= \langle F(\lambda v), F(\lambda v) \rangle - 2 \lambda \langle F(\lambda v), F(v) \rangle + \lambda^2 \langle F(v), F(v) \rangle \\ &= \langle \lambda v, \lambda v \rangle - 2 \lambda \langle \lambda v, v \rangle + \lambda^2 \langle v, v \rangle = (\lambda^2 - 2\lambda^2 + \lambda^2) \langle v, v \rangle \\ &= 0. \end{split}$$

also
$$F(\lambda v) = \lambda F(v) \quad \forall \forall \lambda \in \mathbb{R} \quad \forall v \in V.$$

Definition. Eine Isometrie $f: X \to X$ eines euklidischen affinen Raumes X nennen wir Kongruenz (also nach Satz 1.11.2 immer eine Affinität).

Lemma 1.11.4. Sei $f: X \to X$ eine Affinität eines euklidischen affinen Raumes X. Dann ist f eine Kongruenz genau dann, wenn die zugehörige lineare Abbildung $F: T(X) \to T(X)$ orthogonal ist.

Beweis. f ist Isometrie gdw

$$d(f(p), f(q)) = d(p, q) \quad \forall p, q \in X,$$

d.h. gdw

$$||f(p)f(q)|| = ||\underbrace{\overrightarrow{pq}}_{\in T(X)}|| \quad \forall p, q \in X.$$

Dies ist äquivalent dazu, dass F orthogonal ist (also das Skalarprodukt erhält)

Definition. Sei X ein euklidischer affiner Raum, $f: X \to X$ eine Abbildung. Sei $\rho \in \mathbb{R}_{>0}$. Wir nennen f eine Ähnlichkeit mit (Ähnlichkeits-) Faktor ρ wenn $\forall p, q \in X$ gilt

$$d(f(p), f(q)) = \rho \cdot d(p, q).$$

Korollar (aus Satz 1.11.2). Eine Ähnlichkeit $f: X \to X$ eines euklidischen affinen Raumes X ist eine Affinität.

Beweis. Sei $p_0 \in X$. Wir definieren eine Affinität

$$\rho^{-1}\colon X\to X$$

durch $\rho^{-1}(p_0) = p_0$ und

$$\tilde{\rho}$$
: $T(X) \to T(X)$
 $T(X) \ni v \mapsto \rho^{-1}v$.

Wir betrachten die Abbildung

$$\rho^{-1} \circ f \colon X \to X.$$

Behauptung. $\rho^{-1} \circ f$ ist eine Isometrie.

Seien $p, q \in X$. Dann gilt

$$d(\rho^{-1} \circ f(p), \rho^{-1}(f(q))) = \| \overrightarrow{\rho^{-1} \circ f(p)\rho^{-1} \circ f(q)} \|$$

also

$$\begin{split} d(\rho^{-1} \circ f(p), \rho^{-1}(f(q))) &= \left\| \rho^{-1} \overline{f(p) f(q)} \right\| \\ &= \rho^{-1} \left\| \overline{f(p) f(q)} \right\| \\ &= d(p,q), \\ f \text{ ist Ähnlichkeit mit Faktor } \rho \end{split}$$

also ist nach Satz 1.11.2 $\rho^{-1}\circ f$ injektiv und affin. Damit ist auch f Affinität. $\hfill\Box$

Vorlesung 9
Fr 21.05. 10:15

Eine Weitere Eignenschaft von Ähnlichkeiten:

Satz 1.11.5. Sei X ein euklidischer affiner Raum und $f: X \to X$ eine Ähnlichkeit mit Ähnlichkeitsfaktor $\rho \neq 1$. Dann besitzt f genau einen Fixpunkt.

Beweisidee. Nach obigem Korollar ist f eine Affinität. Sei $F: T(X) \to T(X)$ die zugehörige lineare Abbildung. Dann ist $\frac{1}{\rho}F$ orthogonal, also haben alle Eigenwerte von F Betrag ρ .

Nach Wahl eines Koordinatensystem wird f beschrieben durch

$$\mathbb{R}^n \to \mathbb{R}^n$$
$$x \mapsto \underbrace{Ax + b}_{?}.$$

mit $A \in \mathcal{M}_{n \times n}(\mathbb{R}), k \subset \mathbb{R}^n$ und Fixpunkten beschrieben durch

$$Ax + b = x$$
,

also $(A - I_n)x = -b$, da 1 kin Eigenwert von A ist, gilt $\det(A - I_n) \neq 0$.

Ähnlichkeiten erhalten Winkel. Gibt es noch weitere Affinitäten eines euklidischen affinen Raumes, die Winkel erhalten?

Definition. Sei X ein euklidischer affiner Raum, $L, L' \subseteq X$ Geraden mit $L \cap L' \neq \emptyset$. Wir nennen L und L' orthogonal, wenn gilt

$$\sphericalangle(L, L') = \frac{\pi}{2}.$$

Schriebe auch $L \perp L'$.

Satz 1.11.6. Sei X ein euklidischer affiner Raum und $f: X \to X$ eine Affinität mit der Eigenschaft, dass für alle Geraden L, L' mit $L \cap L' \neq \emptyset$ und $L \perp L'$ gilt, dass

$$f(L) \perp f(L')$$
.

Dann ist F eine Ähnlichkeit.

Beweis. Sei $F: T(X) \to T(X)$ die zugehörige bijektive lineare Abbildung. Seien $p, q, q' \in X$ mit $p \lor q = L, p \lor q' = L'$ und $L \perp L'$. Dann gilt $\sphericalangle(L, L') = \frac{\pi}{2}$, also

$$\arccos\frac{|\langle \overrightarrow{pq},\overrightarrow{pq'}\rangle|}{\|\overrightarrow{pq}\|\|\overrightarrow{pq}\|} = \frac{\pi}{2}$$

d. h. $\langle \overrightarrow{pq}, \overrightarrow{pq'} \rangle = 0$.

Die Geraden f(L) und f(L') sind gegeben durch

$$f(p) \lor f(q) = f(L)$$
 $f(p) \lor f(q') = f(L')$

und wir können annehmen (wegen $f(L) \perp f(L')$), dass

$$\underbrace{\langle \overrightarrow{f(p)f(q)}, f(p)f(q') \rangle}_{\langle F(\overrightarrow{pq}), F(\overrightarrow{pq'}) \rangle} = 0.$$

Es gilt also, dass für alle $v, w \in T(X)$ mit $\langle v, w \rangle = 0$ gilt $\langle F(v), F(w) \rangle = 0$. Wir haben den Beweis von Satz 1.11.6 auf folgendes Lemma reduziert.

Lemma 1.11.7. Sei V ein euklidischer Vektorraum, $F: V \to V$ ein Isomorphismus mit $F(v) \perp F(w)$ für alle $v, w \in V$ mit $v \perp w$. Dann existiert $\rho \in \mathbb{R}_{>0}$ s. d. $\frac{1}{\rho} \cdot F$ orthogonal ist.

Beweis. Sei $n = \dim V$ und v_1, \ldots, v_n eine Orthonormal von V, d. h. $||v_i|| = 1$, $1 \le i \le n$ und $\langle v_i, v_\gamma \rangle = 0$ für $i \le j$. Sei $\rho_i := ||F(v_i)||$, $1 \le i \le n$.

Fpr $j \neq j$ gilt

$$\langle v_i + v_j, v_i - v_j \rangle = \underbrace{\|v_i\|^2}_{=1} + \underbrace{\langle v_j, v_i \rangle}_{=0} - \underbrace{\langle v_i, v_j \rangle}_{=0} - \underbrace{\|v_j\|^2}_{=1} = 0,$$

also $v_i + v_j \perp v_i - v_j$. Nach Annahme gilt dann auch

$$\langle F(v_i), F(v_i) \rangle + \underbrace{\langle F(v_j), F(v_i) \rangle}_{=0, \text{ da } F(v_j) \perp F(v_i)} - \underbrace{\langle F(v_i), F(v_j) \rangle}_{=0} - \langle F(v_j), F(v_j) \rangle = \langle F(v_i), F(v_j) \rangle = \langle F(v_i), F(v_j) \rangle = 0.$$

Also gilt

$$||F(v_i)||^2 = ||F(v_j)||^2 \quad \forall i, j$$

und damit $\rho_i = \rho_j \quad \forall \, 1 \leqslant i, j \leqslant n$. Schreibe $\rho = \rho_i \quad \forall \, 1 \leqslant i \leqslant n$ für den gemeinsamen Wert. Dann ist die Abbildung $\frac{1}{\rho}F$ orthogonal, da v_1, \ldots, v_n auf die Orthonormalbasis $\frac{1}{\rho}F(v_1), \ldots, \frac{1}{\rho}F(v_n)$ abgebildet wird.

Sei $f: \mathbb{R}^n \to \mathbb{R}^n$ eine Affinität gegeben durch

$$x \mapsto Ax + b$$
 $A \in GL_n(\mathbb{R})$ $b \in \mathbb{R}^n$.

Im Obigen haben wir gesehen, dass gilt: f ist $Kongruenz \iff A$ ist orthogonal, f ist Ähnlichkeit $\frac{1}{\rho}A$ ist orthogonal für ein $\rho \geqslant 0$.

Frage. Wie können wir $A \in GL_n(\mathbb{R})$ für eine allgemeine Affinität f mit Hilfe von / bis auf eine orthogonale Matrix möglichst einfach ausdrücken?

Betrachte \mathbb{R}^n als euklidischen affinen Raum mit Standard-skalarprodukt

$$\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_{\geq 0}$$

$$(x_1, \dots, x_n) \times (y_1, \dots, y_n) \mapsto \sum_{i=1}^n x_i y_i.$$

Satz 1.11.8 (Hauptachsentransformation von Affinitäten). Sei $f: \mathbb{R}^n \to \mathbb{R}^n$ eine Affinität gegeben durch $x \mapsto Ax + b$ mit $A \in GL_n(\mathbb{R})$, $b \in \mathbb{R}^n$. Dann gibt es orthogonale Matrizen $S, T \in O(n)$ und eine Diagonalmatrix

$$D = \begin{pmatrix} \alpha_1 & & 0 \\ & \alpha_2 & & 0 \\ & & \ddots & & \\ 0 & & & \ddots & \\ & & & & \ddots & \\ & & & & & \alpha_n \end{pmatrix}$$

mit $\alpha_1, \ldots, \alpha_n > 0$, s. d.

$$A = SDT$$

d.h.

$$f(x) = SDTx + f(0).$$

Beweis. Wir bilden die Matrix $C = {}^{t}AA$.

 \bullet C ist symmetrisch da

$${}^{t}C = {}^{t}({}^{t}AA) = {}^{t}A^{t}A = {}^{t}AA = C.$$

• C ist positiv definit, denn I_n ist positiv definit und daher nach dem Sylvesterschen Trägheitsgesetz auch C. Aus der Hauptachsentransformation symmetrischer Matrizen (AGLA I) folgt, dass es eine Matrix $T \in O(n)$ mit

$$TC^{t}T = \begin{pmatrix} \beta_{1} & 0 \\ \ddots & \\ 0 & \beta_{n} \end{pmatrix},$$

 $\beta_1, \ldots, \beta_n > 0$. Wir definieren $\alpha_i = \sqrt{\beta_i}, 1 \leqslant i \leqslant n$ und

$$D := \begin{pmatrix} \alpha_1 & & \\ & \ddots & \\ & & \ddots \\ & & & \alpha_n \end{pmatrix},$$

Dann gilt

$$T\underbrace{{}^tC}_{{}^tAA}{}^tT = D^2 = {}^tDD,$$

also

$$I_n = \underbrace{{}^t A^{-1} {}^t T^t D}_{S} \underbrace{DT A^{-1}}_{{}^t S}.$$

Sei $S := {}^tA^{-1}{}^tT^tD$. Dann gilt ${}^tSS = I_n$ und $S \in \mathcal{O}(n)$ ist orthogonal. Wir erhalten ${}^tS = DTA^{-1}$ und A = SDT.

Korollar. Sei $f: \mathbb{R}^n \to \mathbb{R}^n$ ein Isomorphismus des Vektorraumes \mathbb{R}^n . Dann gibt es eine Orthonormalbasis $v_1, \ldots, v_n \in \mathbb{R}^n$, s. d. die Vektoren $F(v_1), \ldots, F(v_n)$ eine Orthogonalbasis bilden.

Beweis. Sei F bezüglich der Standardbasis der \mathbb{R}^n gegeben durch die Matrix $A \in \mathrm{GL}_n(\mathbb{R})$. Aus Satz 1.11.8 folgt, dass es orthogonale Matrizen $S,T \in \mathrm{O}(n)$ gibt mit A = SDT und

$$D = \begin{pmatrix} \alpha_1 & & 0 \\ & \ddots & \\ 0 & & \alpha_n \end{pmatrix},$$

 $\alpha_1, \ldots, \alpha_n > 0$ einer Diagonalmatrix. Sei $v_i = {}^tTe_i, \ 1 \leqslant i \leqslant n$. T ist orthogonal, also auch tT und damit ist v_1, \ldots, v_n eine Orthonormalbasis des \mathbb{R}^n . Es gilt

$$F(v_i) = A^t T e_i$$

$$= SD \underbrace{I_n}_{T^t T} e_i$$

$$= SDe = S(\alpha_i e_i)$$

$$= \alpha_i S_{e_i}.$$

Die Matrix S ist orthogonal, also sind die Vektoren Se_1, \ldots, Se_n eine Orthonormalbasis. Da $\alpha_1, \ldots, \alpha_n > 0$, bilden $F(v_1), \ldots, F(v_n)$ eine orthogonal Basis der \mathbb{R}^n .

Beispiel.

Kapitel 2

Projektive Geometrie

§2.1 Projektive Räume

Vorlesung 10

Sei K ein Körper und

$$P(x_1,\ldots,x_n)\in K[x_1,\ldots,x_n]$$

Di 26.05. 10:15

ein quadratisches Polynom der Form

$$P(x_1,\ldots,x_n) = \sum_{1 \le i \le j \le n} \alpha_{ij} x_i x_j$$

it $\alpha_{ij} \in K$, $1 \leq i \leq j \leq n$. Sei

$$Q = \{ (x_1, \dots, x_n) \in K^n \mid P(x_1, \dots, x_n) = 0 \}$$

die durch P beschriebene Quadrik.

Sei $\lambda \in \star *$. Dann gilt für $(x_1, \ldots, x_n) \in K^n$

$$(x_1,\ldots,x_n)\in Q\iff \lambda(x_1,\ldots,x_n)\in Q.$$

Denn $P(x_1, \ldots, x_n) = 0$ ist äquivalent zu

$$0 = \lambda^2 P(x_1, \dots, x_n) = \lambda^2 \sum_{1 \le i \le j \le n} \alpha_{ij} x_i x_j = \sum_{1 \le i \le j \le n} \alpha_{ij} (\lambda x_i) (\lambda x_j) = P(\lambda(x_1, \dots, x_n)).$$

Mit $(x_1, \ldots, x_n) \in Q$ ist also auch

$$\underbrace{K \cdot (x_1, \dots, x_n)}_{\{\lambda \cdot (x_1, \dots, x_n) \mid \lambda \in K\}} \subseteq Q$$

d.h. Q "besteht aus einer Vereinigung an Geraden".

Idee. Im projektiven Raum identifizieren wir die Punkte der Gerade $K \cdot (x_1, \dots, x_n)$ zu einem Punkt.

Definition. Sei K ein Körper und V ein K-Vektorraum. Wir definieren

$$\mathbb{P}(V) = \{ L \leq V \mid L \text{ ist eindimensionaler Untervektorraum von } V \}.$$

Beispiel. $V = \mathbb{R}^2$ als \mathbb{R} -Vektorraum.

$$\dim(\mathbb{P}(V)) = 1.$$

Bemerkung. Für $V = \{0\}$ erhalte

$$\dim(\mathbb{P}(V)) = \dim_K(fV) - 1 = 0 - 1 = -1$$

und $\mathbb{P}(V) = \emptyset$.

Beispiel / Definition 2.1.1. Sei K ein Körper, $n \ge 0$. Dann ist $\mathbb{P}(K^{n+1})$ die Menge der Geraden durch den Ursprung im K^{n+1} . Wir bezeichnen

$$\mathbb{P}_n(K) := \mathbb{P}(K^{n+1})$$

als n-dimensionalen projektiven Raum über K.

Bemerkung. Für einen K-Vektorraum V haben wir immer eine Abbildung

$$V \setminus \{\ 0\ \} \to \mathbb{P}(V)$$
$$v \mapsto K \cdot v.$$

 $\mathbb{P}(\mathbb{R}^2), \sim \mathbb{R}^1 \cup \{\infty\}$

Definition (homogene Koordinaten). $n \in \mathbb{P}_n(K)$. Sei K ein Körper und $L \in \mathbb{P}_n(K)$. Wir nennen ein Tupel

$$(x_0,\ldots,x_n)\in K^{n+1}\setminus\{0\}$$

homogene Koordinaten des Punktes $L \in \mathbb{P}_n(K)$, falls

$$K \cdot (x_0, \dots, x_n) = L.$$

Schreibe auch

$$(x_0:\ldots:x_n)\coloneqq K\cdot(x_0,\ldots,x_n).$$

Bemerkung. Die homogenen Koordinaten eines Punktes $L \in \mathbb{P}_n(K)$ sind nur bis auf Multiplikation mit $\lambda \in K^*$ eindeutig bestimmt, d. h. für $(x_0, \ldots, x_n), (y_0, \ldots, y_n) \in K^{n+1} \setminus \{0\}$ gilt

$$(x_0:\ldots:x_n)=(y_0:\ldots:y_n)$$

gdw

$$K(x_0,\ldots,x_n)=K(y_0,\ldots,y_n),$$

d.h. wenn $\exists \ \lambda \in K^{\star}$ mit

$$(x_0,\ldots,x_n)=\lambda(y_0,\ldots,y_n).$$

Unterräume eines projektiven Raums

Beispiel 2.1.1. $V = \mathbb{R}^3$, die Menge der Geraden $\mathbb{R} \cdot (0, v_1, v_2)$ mit $(v_1, v_2) \in \mathbb{R}^2 \setminus \{0\}$ "sieht genauso aus" wie

$$\mathbb{P}_1(\mathbb{R}) = \mathbb{P}(\mathbb{R}^2).$$

Wir wollen

$$\left\{ \left. \mathbb{R} \cdot (0, v_1, v_2) \right| (v_1, v_2) \in \mathbb{R}^2 \setminus \left\{ 0 \right\} \subseteq \mathbb{P}(\mathbb{R}^3) \right\}$$

als projektiven Unterraum erklären.

Definition. Sei V ein K-Vektorraum und $Z \subseteq \mathbb{P}(V)$. Wir nennen Z einen projektiven Unterraum von $\mathbb{P}(V)$, falls es einen K-Untervektorraum $W \leq V$ gibt mit $Z = \mathbb{P}(W)$. Wir nennen $Z \subseteq \mathbb{P}(V)$ eine

- (projektive) Gerade, wenn $\dim Z = 1$,
- (projektive) Ebene, wenn $\dim Z = 2$,
- (projektive) Hyperebene, wenn $\dim Z = \dim(\mathbb{P}(V)) 1$.

Bemerkung. Ist $Z \subseteq \mathbb{P}(V)$ ein projektiver Unterraum mit $Z = \mathbb{P}(W)$ für einen Untervektorraum $W \leq V$, so ist

$$W = \bigcup_{p \in Z} p$$

Vereinigung von Geraden in Z.

Zurück zum obigen Beispiel: $V = \mathbb{R}^3$, $W = \{ (0, x_1, x_2) \mid x_1, x_2 \in \mathbb{R}^3 \} \cong \mathbb{R}^2$. Dann ist $Z = \mathbb{P}(W) \subseteq \mathbb{P}(V)$ ein projektiver Unterraum. Was bleibt übrig, wenn wir $\mathbb{P}(\mathbb{R}^3) \setminus \mathbb{P}(W)$ betrachten?

 $\mathbb{P}(W)$: Geraden, die in der x_1 - x_2 -Ebene enthalten sind. Betrachte die affine Ebene

$$E = \{ (1, x_1, x_2) \mid x_1, x_2 \in \mathbb{R}^2 \} \subseteq \mathbb{R}^3.$$

Sei $L \in \mathbb{P}(V) \setminus \mathbb{P}(W)$. Dann gibt es genau einen Schnittpunkt $L \cap E$. Die Abbildung

$$\mathbb{P}(V) \setminus \mathbb{P}(W) \to E \stackrel{\frown}{\cong} \mathbb{R}^2$$
 als affiner Raum über \mathbb{R}
$$L \mapsto L \cap E$$

ist bijektiv.

Allgemein:

Sei K ein Körper und betrachte im K^{n+1} den Untervektorraum

$$W := \left\{ (x_0, \dots, x_n) \in K^{n+1} \mid x_0 = 0 \right\}.$$

Dann ist $H := \mathbb{P}(W) \subseteq \mathbb{P}_n(K)$ eine (projektive) Hyperebene. Falls

$$(y_0:\ldots:y_n)\in\mathbb{P}_n(K)\setminus H,$$

dann ist $y_0 \neq 0$, also ist

$$(y_0:\ldots:y_n)=\left(1:\frac{y_1}{y_0}:\ldots:\frac{y_n}{y_0}\right)$$

von der Form $(1:x_1:\ldots:x_n)$ mit $x_1,\ldots,x_n\in K$. Zwei Tupel $(x_1,\ldots,x_n)\neq (x'_1,\ldots,x'_n)\in K^n$ induzieren unterschiedliche Projektive Punkte im $\mathbb{P}_n(K)$.

$$(1:x_1:\ldots:x_n) \neq (1:x_1':\ldots:x_n') \in \mathbb{P}_n(K).$$

Aus

$$(1, x_1, \ldots, x_n) = \lambda(1, x'_1, \ldots, x'_n)$$

folgt $\lambda = 1$.

Wir erhalten eine Bijektion

$$\phi \colon K^n \to \mathbb{P}_n(K) \setminus H$$
$$(x_1, \dots, x_n) \mapsto (1 : x_1 : \dots : x_n)$$

und damit eine Einbettung

$$\iota \colon K^n \to \mathbb{P}_n(K)$$
$$(x_1, \dots, x_n) \mapsto (1 : x_1 : \dots : x_n),$$

die wir kanonische Einbettung des K^n in den $\mathbb{P}_n(K)$ nennen.

Dimensionsformel als nächstes Ziel

Lemma 2.1.1. Sei V ein K-Vektorraum und $(Z_i)_{i\in I}$ eine Familie projektiver Unterräume von $\mathbb{P}(V)$, $i\in I$ gibt es eine Familie projektiver Unterräume von $\mathbb{P}(V)$. Dann ist $\bigcap_{i\in I} Z_i$ in projektiver Unterraum von $\mathbb{P}(V)$.

Beweis. Zu jedem $Z_i \subseteq \mathbb{P}(V)$, $i \in I$, gibt es einen K-Untervektorraum $W_i \subseteq V$ mit $Z_i = \mathbb{P}(W_i)$. Es gilt

$$\bigcap_{i \in I} Z_i = \bigcap_{i \in I} \{ L \subseteq V \mid \text{Gerade mit } L \subseteq W_i \}
= \bigcap_{i \in I} \{ L \subseteq V \mid \text{Gerade } L \text{ mit } L \subseteq \bigcap_{i \in I} W_i \}
= \mathbb{P} \left(\bigcap_{i \in I} W_i \right)$$

$$\square$$

$$K-\text{Untervektorraum}$$

Beispiel 2.1.1. $V = \mathbb{R}^3$, also $\mathbb{P}(V) = \mathbb{P}_2(\mathbb{R})$ die projektive Ebene über \mathbb{R} .

$$\iota \colon \mathbb{R}^2 \to \mathbb{P}_2(\mathbb{R})$$

 $(x_1, x_2) \mapsto (1 : x_1 : x_2)$

kanonische Einbettung. Betrachte die projektiven Geraden

$$Z_1 = \{ (x_0 : x_1 : x_2) \in \mathbb{P}_2(\mathbb{R}) \mid x_1 = 0 \} = \mathbb{P}(W_1)$$

mit

$$W_1 = \left\{ (x_0, x_1, x_2) \in \mathbb{R}^3 \mid x_1 = 0 \right\}$$

und $Z_2 = \mathbb{P}(W_2)$ it

$$W_2 = \left\{ (x_0, x_1, x_2) \in \mathbb{R}^3 \mid x_0 = x_1 \right\}.$$

Seien $Y_1, Y_2 \subseteq \mathbb{R}^2$ die affinen Geraden gegeben durch

$$Y_1 = \left\{ (x_1, x_2) \in \mathbb{R}^2 \mid x_1 = 0 \right\}$$
$$Y_2 = \left\{ (x_1, x_2) \in \mathbb{R}^2 \mid x_1 = 1 \right\}.$$

Dann ist $Z_1 = \iota(Y_1) \cup \{ (0:0:1) \}$ und $Z_2 = \iota(Y_2) \cup \{ (0:0:1) \}$. Es ist $Y_1 \cap Y_2 = \emptyset$. $(Y_1, Y_2 \text{ sind parallele Geraden})$, aber $Z_1 \cap Z_2 = \{ (0:0:1) \}$. "Wir sagen auch, die Geraden Z_1, Z_2 schneiden sich in dem unendlich fernen Punkt (0:0:1)".

Bemerkung. Die Vereinigung von projektiven Unterräumen eines projektiven Raumes $\dim(V)$ ist im Allgemeinen selbst kein projektiver Unterraum.

Frage. Seien Z_i , $i \in I$ projektive Unterräume von $\mathbb{P}(V)$. Finde den kleinsten projektiven Unterraum von $\mathbb{P}(V)$, der $\bigcup_{i \in I} Z_i$ enthält.

Definition. Sei V ein K-Vektorraum mit Z_i , $i \in I$ projektive Unterräume von $\mathbb{P}(V)$. Wir definieren den Verbindungraum

$$\bigvee_{i \in I} Z_i \coloneqq \bigcap_{Y \subseteq \mathbb{P}(V)} Y.$$
 proj. Unterraum
$$\bigcup_{i \in I} Z_i \subseteq Y$$

Bemerkung. $\bigvee_{i \in I} Z_i$ ist der kleinste projektive Unterraum Y von $\mathbb{P}(V)$ mit $\bigcup_{i \in I} Z_i \subseteq Y$.

Lemma 2.1.2. Sei V ein K-Vektorraum und $W_i, i \in I$ Untervektorräume von V. Dann gilt

$$\bigvee_{i \in I} \mathbb{P}(W_i) = \mathbb{P}\left(\sum_{i \in I} W_i\right).$$

Beweis. Es ist

$$\bigcup_{i \in I} \mathbb{P}(W_i) \subseteq \mathbb{P}\bigg(\sum_{i \in I} W_i\bigg).$$

Sei $Y = \mathbb{P}(W)$ ein projektiver Unterraum mit

$$\bigcup_{i\in I} \mathbb{P}(W_i) \subseteq Y$$

wobei $W \subseteq V$ ein K-Untervektorraum ist. Dann gilt

$$W_i = \bigcup_{p \in \mathbb{P}(W_i)} p \subseteq \bigcup_{p \in Y} p = W,$$

also $W_i \subseteq W \quad \forall \, i \in I. \ W$ ist K-Untervektorraum, also gilt dann auch $\sum_{i \in I} W_i \subseteq W$ und

$$\mathbb{P}(\sum_{i \in I} W_i) \subseteq \mathbb{P}(W).$$

Vorlesung 11

Fr 29.05. 10:15

Im BeispielBeispiel 2.1.1 haben wir angedeutet, dass sich zwei Geraden im $\mathbb{P}_2(\mathbb{R})$ immer schneiden. Ganz allgemein gilt folgender Satz.

Satz 2.1.3 (Dimensionsformel). Sei V ein K-Vektorraum und $Z_1, Z_2 \subseteq \mathbb{P}(V)$ projektive Unterräume. Dann gilt

$$\dim Z_1 \vee Z_2 = \dim Z_1 + \dim Z_2 - \dim(Z_1 \cap Z_2).$$

Falls dim Z_1 + dim $Z_2 \geqslant \dim \mathbb{P}(V)$, dann gilt $Z_1 \cap Z_2 \neq \emptyset$.

Beweis. Sei $Z_i = \mathbb{P}(W_i)$, $1 \leq i \leq 2$ mit $W_1, W_2 \leq V$ K-Untervektorräu me. Es gilt dann

$$\dim(Z_1 \vee Z_2) = \dim(\mathbb{P}(W_1 + W_2))$$

$$\operatorname{Lemma} 2.1.2$$

$$= \dim_K(W_1 + W_2) - 1$$

$$= \dim_K W_1 + \dim_K W_2 - \dim_K W_1 \cap W_2$$
Dimensionsformel für Untervektorräume aus der AGLA I
$$= (\dim_K(W_1) - 1) + (\dim_K(W_2) - 1) - (\dim_K(W_1 \cap W_2) - 1)$$

$$= \dim \mathbb{P}(W_1) + \dim \mathbb{P}(W_2) - \dim \underbrace{\mathbb{P}(W_1) \cap \mathbb{P}(W_2)}_{=\mathbb{P}(W_1 \cap W_2)}$$
Beweis von Lemma 2.1.1
$$= \dim Z_1 + \dim Z_2 - \dim Z_1 \cap Z_2.$$

Ist

$$\dim Z_1 + \dim Z_2 \geqslant \dim(\mathbb{P}(V)) \leqslant \dim(Z_1 \vee Z_2)$$

dann gilt $\dim(Z_1 \cap Z_2) \geqslant 0$, also $Z_1 \cap Z_2 \neq \emptyset$.

§2.2 Projektive Abbildungen

Sei K ein Körper, V, W K-Vektorraum und $F: V \to W$ eine K-lineare Abbildung.

Frage. Unter welchen Voraussetzungen induziert F eine Abbildung $\mathbb{P}(V) \to \mathbb{P}(W)$?

Wir wollen eine Abbildung $f: \mathbb{P}(V) \to \mathbb{P}(W)$ definieren durch

$$K \cdot v \mapsto \underbrace{K \cdot F(v)}_{F(K \cdot v)}$$

für $v \in V \setminus \{0\}$. $K \cdot F(v)$ ist ein wohldefiniertes Element in $\mathbb{P}(W)$ gdw $F(v) \neq 0$, d. h. wir müssen F injektive voraussetzen.

Definition. Sei K ein Körper V, W K-Vektorräume. Wir nennen ein Abbildung

$$f: \mathbb{P}(V) \to \mathbb{P}(W)$$

projektiv, wenn es eine injektive lineare Abbildung $F: \to W$ gibt mit

$$f(K \cdot v) = K \cdot F(v) \quad \forall v \in V \setminus \{0\}.$$

Schreibe $f = \mathbb{P}(F)$. Ist die projektive Abbildung f bijektiv, so nennen wir f Projektivität.

Bemerkung. Eine projektive Abbildung $f: \mathbb{P}(V) \to \mathbb{P}(W)$ ist immer injektiv.

Beispiel. Für $m \ge n$ betrachte die Einbettung

$$F \colon K^{n+1} \hookrightarrow K^{m+1}$$
$$(x_0, \dots, x_n) \mapsto (x_0, \dots, x_n, 0, \dots, 0).$$

F induziert eine projektive Abbildung

$$f: \mathbb{P}_n(K) \to \mathbb{P}_n(K)$$
$$(x_0: \dots : x_n) \mapsto (x_0: \dots : x_n: 0: \dots : 0).$$

Wir nennen f die kanonische Einbettung des $\mathbb{P}_n(K)$ in den $\mathbb{P}_m(K)$.

 $V=\mathbb{R}^3,\,\ell_0,\ell_1,\ell_2\in\mathbb{R}[x_0,x_1,x_2]$ linear unabhängige Linearformen in $x_0,x_1,x_2,$ d. h.

$$\ell_i(x_0, x_1, x_2) = \sum_{j=0}^{2} \alpha_{ij} x_j$$

mit $\alpha_{ij\in\mathbb{R}} \,\forall i,j$ und $\det(\alpha_{ij}) \neq 0$. Dann ist $f \colon \mathbb{P}_2(\mathbb{R}) \to \mathbb{P}_2(\mathbb{R})$, $(x_0 : x_1 : x_2) \mapsto (\ell_0(\underline{x}) : \ell_1(\underline{x}) : \ell_2(\underline{x}))$ eine Projektivität der projektiven Ebene über \mathbb{R} . Als zugehörige lineare Abbildung können wir z. B.

$$F: \mathbb{R}^3 \to \mathbb{R}^3$$

$$(\underbrace{x_0, x_1, x_2}_{\underline{x}}) \mapsto (l_0(\underline{x}), \ell_1(\underline{x}), \ell_2(\underline{x}))$$

wählen. Die Abbildung

$$F: (\underbrace{x_0, x_1, x_2}_{\underline{x}}) \mapsto (5l_0(\underline{x}), 5\ell_1(\underline{x}), 5\ell_2(\underline{x}))$$

induziert die gleiche projektive

$$f = \mathbb{P}(F) = \mathbb{P}(F').$$

Allgemein:

Sei K ein Körper, V, W K-Vektorräume, $F \colon V \to W$ eine injektive lineare Abbildung und $\lambda \in K^{\star}$. Dann ist

$$\mathbb{P}(F) = \mathbb{P}(\lambda F).$$

Frage. Gibt es "noch mehr" lineare Abbildungen $G: V \to W$ mit $\mathbb{P}(G) = \mathbb{P}(F)$?

Lemma 2.2.1. Notation wie oben. Seien $F, G: V \to W$ lineare injektive Abbildungen mit $\mathbb{P}(F) = \mathbb{P}(G)$. Dann ist $G = \lambda$ für ein $\lambda \in K^*$.

Beweis. Sei $\mathbb{P}(F) = \mathbb{P}(G)$ und $v_0 \in V \setminus \{0\}$. Dann gilt

$$K \cdot F(v_0) = \mathbb{P}(F)(Kv_0) = \mathbb{P}(G)(K \cdot v_0) = K \cdot G(v_0),$$

also $\exists \lambda \in K^*$ mit $G(v_0) = \lambda F(v_0)$. Sei $v \in V \setminus \{0\}$. Wir wollen zeigen, dass gilt

$$G(v) = \lambda F(v)$$
.

Fall a) $v = \alpha v_0$ mit $\alpha \in K$. Dann

$$G(v) = \alpha G(v_0) = \alpha \lambda F(v_0) = \lambda F(v).$$

Fall b) v und v_0 sind linear unabhängig. Sei

$$G(v) = \mu F(v) \quad \mu \in K^*$$

und

$$G(v + v_0) = vF(v + v_0) \quad v \in K^*.$$

G und F sind linear, also gilt

$$0 = G(v + v_0) - G(v) - G(v_0)$$

$$= v \underbrace{F(v + v_0)}_{F(v) + F(v_0)} - \mu F(v) - \lambda F(v_0)$$

$$0 = \underbrace{(v - \mu)}_{=0} F(v) + \underbrace{(v - \lambda)}_{=0} F(v_0).$$

F ist injektiv, also sind $F(v), F(v_0)$ linear unabhängig. Es folgt

$$v - \mu = v - \lambda = 0$$

und insbesondere $\mu = \lambda$ d. h.

$$G(v) = \lambda F(v) \quad \forall v \in V.$$

Bemerkung. Seien V, W K-Vektorräume und F eine nicht notwendigerweise injektive lineare Abbildung

$$F\colon V\to W$$
.

Dann ist $F(K \cdot v)$ für $v \in V$ genau dann eine Gerade in W wenn $F(v) \neq 0$. Damit induziert F eine Abbildung

$$f \colon \mathbb{P}(V) \setminus Z \to \mathbb{P}(W)$$
$$K \cdot v \mapsto K \cdot F(v)$$

 $mit Z = \mathbb{P}(\operatorname{Ker} F).$

Beispiel. Die lineare Abbildung

$$\mathbb{R}^3 \to \mathbb{R}^2$$
$$(x_0, x_1, x_2) \mapsto (x_0, x_1)$$

induziert die Abbildung

$$p: \mathbb{P}_2(\mathbb{R}) \setminus \{ (0:0:1) \} \to \mathbb{P}_1(\mathbb{R})$$

 $(x_0: x_1: x_2) \mapsto (x_0: x_1).$

Erinnerung (Beschreibung von affinen Abbildungen in der affinen Geometrie). Seien X,Y affine Räume über einem Körper K, $\dim_X(=)n$ und p_0,\ldots,p_n affin unabhängige Punkte X. Seien $q_0,\ldots,q_n\in Y$. Dann gibt es genau eine affine Abbildung $f\colon X\to Y$ mit

$$f(p_i) = q_i \quad 0 \leqslant i \leqslant n.$$

Seien V, W K-Vektorräume. Auf wie vielen "unabhängigen" Punkten $p_i \in \mathbb{P}(V)$ muss man Bildpunkte $q_i \in \mathbb{P}(W)$ vorgeben, s. d. eine eindeutig bestimmte projektive Abbildung

$$f: \mathbb{P}(V) \to \mathbb{P}(W)$$

mit $f(p_i) = q_i \,\forall i$ besteht.

Beispiel. $V = K^{n+1}$. Sei

$$p_0 = (1:0:\dots:0)$$

 $p_1 = (0:1:\dots:0)$
 \vdots
 $p_n = (0:0:\dots:1)$

und W = V, $q_i = p_i \quad \forall 0 \leq i \leq n$. Seien $\lambda_0, \ldots, \lambda_n \in K^*$. Dann ist

$$f_{(\lambda_0,\dots,\lambda_n)} \colon \mathbb{P}_n(K) \to \mathbb{P}_n(K)$$

 $(x_0:\dots:x_n) \mapsto (\lambda_0 x_0:\dots:\lambda_n x_n)$

eine Projektivität mit

$$f_{(\lambda_0,\dots,\lambda_n)}(p_i) = q_i$$

für $0 \le i \le n$, aber unterschiedliche Tupel $(\lambda_0, \dots, \lambda_n)$, (μ_0, \dots, μ_n) können unterschiedliche Projektivitäten $f_{(\lambda_0, \dots, \lambda_n)}$, $f_{(\mu_0, \dots, \mu_n)}$ induzieren. Z. B. ist

$$(\lambda_0:\ldots:\lambda_n)=f_{(\lambda_0,\ldots,\lambda_n)}(1:\ldots:1)\stackrel{?}{=}f_{(\mu_0,\ldots,\mu_n)}(1:\ldots:1)=(\mu_0,\ldots,\mu_n).$$

Das gilt genau dann, wenn $\exists a \in K^* \text{ mit } (\lambda_0, \dots, \lambda_n) = \alpha(\mu_0, \dots, \mu_n).$

Idee. Wir legen f fest durch die Bilder der n + 2 Punkte

$$q_0, \dots, q_n$$
 $|| \qquad ||$
 $f(p_0) \qquad f(p_n)$

und f((1:...:1)).

Definition. Sei V ein K-Vektorraum und $p_0, \ldots, p_r \in \mathbb{P}(V)$. Wir nennen das Tupel (p_0, \ldots, p_r) projektiv unabhängig, wenn es linear unabhängige Vektoren $v_0, \ldots, v_r \in V$ gibt mit $p_i = Kv_i, 0 \le i \le r$.

Bemerkungen. Das Tupel (p_0, \ldots, p_r) ist projektiv unabhängig gdw dim $(p_0 \lor \cdots \lor p_r) = r$.

Beispiel. Im $\mathbb{P}_n(K)$ sind die Punkte

$$p_0 = (1:0:\dots:0)$$

 \vdots
 $p_n = (0:0:\dots:1)$

projektiv unabhängig.

Definition. Sei V ein K-Vektorraum mit $\dim_V(=)n$ und $p_0, \ldots, p_n, p_{n+1} \in \mathbb{P}(V)$. Wir nennen das (n+2)-Tupel (p_0, \ldots, p_{n+1}) projektive Basis von $\mathbb{P}(V)$, wenn je n+1 Punkte davon projektiv unabhängig sind.

Beispiel. $V = K^{n+1}$. Dann sind

$$p_0 = (1:0:\ldots:0)$$

 \vdots
 $p_n = (0:0:\ldots:1)$
 $p_{n+1} = (1:\ldots:1)$

eine projektive Basis der $\mathbb{P}_n(K)$. Wir nennen p_0, \ldots, p_{n+1} auch kanonische projektive Basis des $\mathbb{P}(n)K$.

Lemma 2.2.2. Sei V ein K-Vektorraum und p_0, \ldots, p_{n+1} eine projektive Basis des $\mathbb{P}(V)$. Dann gibt es eine Basis v_0, \ldots, v_n von V, sodassgilt

$$p_0 = Kv_i \quad 0 \leqslant i \leqslant n$$
$$p_{n+1} = K(v_0 + \dots + v_n).$$

Beweis. p_0, \ldots, p_n sind projektiv unabhängig, also gibt es eine Basis w_0, \ldots, w_n des K-Vektorraums V mit $p_i = K \cdot w_i$ $0 \le i \le n$. Sei $p_{n+1} = K \cdot w$ mit $w \in V \setminus \{0\}$. Dann $\exists \lambda_0, \ldots, \lambda_n \in K$ mit

$$w = \lambda_0 w_0 + \dots + \lambda - n w_n.$$

Behauptung. $\lambda_i \neq 0$ für $0 \leq i \leq n$.

Denn angenommen $\lambda_0 = 0$. Dann sind die Vektoren

$$w_0,\ldots,w_{j-1},w_{j+1},\ldots,w_n,w$$

linear abhängig $\frac{1}{2}$ zu

$$p_0, \ldots, p_{j-1}, p_{j+1}, \ldots, p_n, p_{n+1}$$

projektiv unabhängig. Wähle nun $v_i = \lambda_i w_i$, $0 \le i \le n$.