JUSTIFIQUEU DETALLADAMENT LES VOSTRES RESPOSTES

- 1. (a) Doneu les definicions següents, éssent a un nombre real:
 - (a.1) Successió de Cauchy,
 - (a,2) $\lim_{x\to a} f(x) = +\infty$,
 - (a.3) $\lim_{x\to-\infty} f(x) = a$,
 - (a.4) $\lim_{n\to\infty} x_n = -\infty$.
 - (b) Demostreu que si $\lim_{x\to a} f(x) = l_f \in \mathbb{R}$ i $\lim_{x\to a} g(x) = l_g \in \mathbb{R}$, aleshores

$$\lim_{x \to a} f(x)g(x) = l_f l_g.$$

- 2. Donat a > 0, definim recursivament una successió $(x_n)_{n \ge 1}$ com $x_1 = \sqrt{a}$ i $x_{n+1} = \sqrt{ax_n}$, per $n \ge 1$.
 - (a) Estudieu-ne la monotonia en funció del paràmetre a.
 - (b) Demostreu que és una successió acotada.
 - (c) Demostreu que és una successió convergent i calculeu-ne el límit.
- 3. Sigui f la funció definida a $\mathbb{R} \{0, 1\}$ per

$$f(x) = \begin{cases} e^{1/x} \ln\left(1 - \frac{1}{x}\right), & \text{si } x < 0, \\ (x - a)\cos\left(\frac{\pi}{x}\right), & \text{si } x \in (0, 1), \\ \frac{1}{\pi}\frac{\sin(bx)}{(x - 1)}, & \text{si } x > 1. \end{cases}$$

- (a) Determineu, si existeixen, els valors $a,b\in\mathbb{R}$ que permeten definir f(0) i f(1) de manera que f sigui contínua a tot \mathbb{R} .
- (b) Determineu, si existeixen, els valors $a, b \in \mathbb{R}$ pels quals f és derivable als punts x = 0 i x = 1.
- 4. Calculeu, per als diferents valors de $n, m \in \mathbb{N}$,

$$\lim_{x \to 0} \frac{(1 - \cos x)^n}{\left((1 + x)^{\frac{3}{2}} - 1 - \frac{3x}{2} \right)^m}.$$

TOTS ELS EXERCICIS VALEN EL MATEIX

ESCRIVIU LA RESPOSTA A CADA PREGUNTA EN UN FULL DIFERENT

POSEU EL VOSTRE NOM I COGNOM EN CADA FULL EN MAJÚSCULES