Support Vector Machines

Danushka Bollegala Lecture 12

Linear Separability

- Consider binary classification of two dimensional feature vectors
 - e.g. features = {good, bad}
 - classes = {positiveSentiment, negativeSentiment}
- If we can find a straight line that can separate all positive instances (reviews) from all negative instances (reviews) then we call such a dataset to be linearly separable

Higher Dimensions

- Reviews contain more than two features (words)
- In N-dimensional space, we must find (n-1) dimensional hyperplane that separates the two classes (if they are linearly separable)
- n=2 (two dimensional feature space), we had straight lines (n=1 dimensional hyperplanes)
- Hyperplane that separates the two classes might not be unique (as we saw in our previous example)

Large Margin Classifiers

- Find two hyperplanes that separates the positive class and the negative class
- Try to maximise the minimum separation (distance) between the two hyperplanes
 - The distance between the hyperplanes is called the margin
- Maximising the margin minimises the risk of misclassifying an instance at test time
 - reduces overfitting

Support Vector Machines

- Support Vector Machines (SVMs) are one of the many large margin classification methods
- Uses a constrained convex optimisation method
- Can handle non-linear separable datasets using
 - slack variables
 - kernel functions

SVM Idea margin

Distance to a straight line

• Given a straight line l ax+by+c=0 show the perpendicular distance d to l from a point (α , β) is

Home Work I

$$d = \frac{a\alpha + b\beta + c}{\sqrt{a^2 + b^2}}$$

Distance to a hyperplane

- A hyperplane can be expressed as the inner-product between a weight vector (coefficients) and a feature vector (variables corresponding to the dimensions)
 - $\mathbf{w}^{\mathsf{T}}\mathbf{x} = 0$
- Then the distance to this hyperplane from a point *p*, given by the vector **p** can be computed as

$$rac{oldsymbol{w}^{ op}oldsymbol{p}}{||oldsymbol{w}||}$$

- where ||w|| is the norm (L2 length) of the vector w
- Observe that this formula reduces to the one we derived in the two-dimensional case in the previous slide

SVM background

- Let us assume we are given a training dataset (t_n, x_n) of n=1,...,N instances
 - target labels $t_n = \{-1, +1\}$ for binary classification
- The feature vector for the instance x is represented by $\phi(x)$
- Our classification decision of x is made according to the score y(x) given by
 - $y(x) = \mathbf{w}^T \mathbf{\phi}(x) + \mathbf{b}$
- Here, w is the weight vector and b is the bias (scalar) term that adjust any fixed bias from the 0 threshold
 - If y(x) > 0 then we classify x to be positive and
 - otherwise negative

SVM Derivation

- If a point (instance) is correctly classified by the hyperplane then
 - $t_n y(x_n) > 0$
- The distance from a correctly classified point to the hyperplane is given by

$$\frac{t_n y(\mathbf{x}_n)}{\|\mathbf{w}\|} = \frac{t_n(\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) + b)}{\|\mathbf{w}\|}.$$

SVM Derivation

 We need to find the weight vector w and bias term b such that this margin is maximised for all the training instances in our train dataset

$$\underset{\mathbf{w},b}{\operatorname{arg\,max}} \left\{ \frac{1}{\|\mathbf{w}\|} \min_{n} \left[t_n \left(\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) + b \right) \right] \right\}$$

This is a difficult optimisation problem involving min-max. Moreover, it is scale-invariant meaning that by setting $w\rightarrow kw$ and $b\rightarrow kb$ the term inside min does not change!

Simplification!

 Scale the parameters such that a point on the decision hyperplane satisfies

$$t_n\left(\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n) + b\right) = 1$$

All correctly classified data points will then satisfy

$$t_n\left(\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n)+b\right)\geqslant 1, \qquad n=1,\ldots,N.$$

 This is called the canonical representation of the decision hyperplane

SVM Derivation 3

Now the margin becomes

$$\frac{t_n y(x_n)}{||\boldsymbol{w}||} = \frac{t_n(\boldsymbol{w}^\top \phi(x_n) + b)}{||\boldsymbol{w}||} = \frac{1}{||\boldsymbol{w}||}$$

- Great!
- Now our final objective becomes to find w and b such that we maximise the margin subjected to the set of constraints that ensures our train data instances are correctly classified
- Maximising margin = minimising the norm $||\mathbf{w}||$

SVM Optimisation Problem

- Find w and b such that
 - minimise

$$\min \frac{1}{2}||w||^2$$

subjected to

$$t_n\left(\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n)+b\right)\geqslant 1, \qquad n=1,\ldots,N.$$

Constrained Optimisation

- Find x that minimises f(x)
 - unconstrained optimisation
- Find x that minimises f(x) subjected to g(x) = 0
 - constrained optimisation

unconstrained vs. constrained

- minimise $f(x,y) = x^2 + y^2$
- such that g(x,y) = y x 1 = 0

$$f(x,y) = x^2 + (x+1)^2 = 2x^2 + 2x + 1$$

$$\frac{\partial f}{\partial x} = 4x + 2 = 0$$

$$x = -1/2$$

$$y = x + 1 = 1/2$$

$$\min f(x,y) = (-0.5)^2 + (0.5)^2 = 0.5$$

Lagrange Multipliers

- Problem:
 - Minimise f(x) subjected to $g(x) \ge 0$
- Lagrangian function for the problem becomes
 - $L(x, \lambda) = f(x) \lambda g(x)$
 - $\lambda \ge 0$ is called the Lagrange variable
- Procedure
 - Compute x and λ by solving

$$\frac{\partial L(x,\lambda)}{\partial \lambda} = 0$$

$$\frac{\partial L(x,\lambda)}{\partial w} = 0$$

Idea

Minimising a two variable function f(x,y) w.r.t. x and y means that we are drawing the contours for f(x,y).

figure from Wikipedia

Minimising while satisfying g(x,y) = c happens when the two curves touch each other.

At this point the two gradients must be parallel and in opposite directions

Home Work

 Use Lagrangian multiplier method to solve the optimisation problem in slide 19

Back to SVM Derivation

$$L(\mathbf{w}, b, \mathbf{a}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{n=1}^{N} a_n \left\{ t_n(\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) + b) - 1 \right\}$$

$$\frac{\partial L(\boldsymbol{w}, b, \boldsymbol{a})}{\partial \boldsymbol{w}} = 0 \quad \mathbf{w} = \sum_{n=1}^{N} a_n t_n \phi(\mathbf{x}_n)$$

$$\frac{\partial L(\boldsymbol{w}, b, \boldsymbol{a})}{\partial b} = 0 \quad \bullet \quad 0 = \sum_{n=1}^{N} a_n t_n.$$

SVM

Plugging these back to the Lagrangian function we get

$$\widetilde{L}(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(\mathbf{x}_n, \mathbf{x}_m)$$

Which must be solved subjected to constrains

$$a_n \geqslant 0, \qquad n = 1, \dots, N,$$

$$\sum_{n=1}^{N} a_n t_n = 0.$$

Observations

- We must find Lagrange multipliers a_n (collectively denoted by the vector a) such that L(a) is minimised.
- We have the inner-product between two instances x_n and x_m appearing in the objective function
 - $k(x_n, x_m) = \phi(x_n)^T \phi(x_m)$
 - Only the inner products matter. We do not need the explicit form of feature vectors $\phi(x)$
 - Can be kernalised using numerous kernel functions to overcome the non-linear separability issue.

Observations

- Note that if the Lagrange multiplier a_n = 0, then the n-th instance has no effect on the objective function L
- The instances that correspond to non-zero
 Lagrange multipliers are the ones that we need
 to store in our final model
 - Support Vectors
 - The instances that appear on top of the decision hyperplanes and determine its shape

Classification with SVMs

 During test time, to classify a test instance x, we simply compute the inner-product between x and each of the support vectors x_n

$$y(\mathbf{x}) = \sum_{n=1}^{N} a_n t_n k(\mathbf{x}, \mathbf{x}_n) + b.$$

We still do not need the explicit representation of x or x_n and can work with the values returned by the kernel function

Home Work

• Using the decision function $y(x) = \mathbf{w}^T \phi(x) + b$ and the result we obtained for \mathbf{w} in slide 23, derive the classification function for SVMs in the kernel form as shown in slide 27.

Kernel Functions

Linear Kernel

$$k(\boldsymbol{x}_n, \boldsymbol{x}_m) = \boldsymbol{x}_n^{\top} \boldsymbol{x}_m$$

- Does not use any transformations
- Polynomial Kernel

$$k(\boldsymbol{x}_n, \boldsymbol{x}_m) = (\boldsymbol{x}_n^{\mathsf{T}} \boldsymbol{x}_m + c)^d$$

- Quadratic (d=2), and Cubic (q=3) are widely used.
- Can account for the combinations of features such as bigrams in text mining tasks
- Sigmoid Kernel

$$k(\boldsymbol{x}_n, \boldsymbol{x}_m) = \tanh(\boldsymbol{x}_n^{\top} \boldsymbol{x}_m + c)$$

Exponential Radial Basis Function (RBF) Kernel

$$k(\boldsymbol{x}_n, \boldsymbol{x}_m) = \exp\left(-\frac{||(\boldsymbol{x}_n - \boldsymbol{x}_m)||}{2\sigma^2}\right)$$

Subsumes all possible kernel functions

Slack variables

- Sometimes it is easy to shift some of the training instances (especially around the decision hyperplane) so that the dataset becomes linearly separable
- Doing this too much will change the train data significantly and we will not learn the concept expressed by our train data
- Try to minimise the amount of shifting we do for train instances to make the problem linearly separable
 - Each train instance is associated with a slack variable that is set to a non-zero value such that the corresponding training instance is moved sufficiently to the correct side of the decision hyperplane

SVMs and slack variables

 $\xi_n > 1$ misclassification

$$t_n y(\mathbf{x}_n) \geqslant 1 - \xi_n, \qquad n = 1, \dots, N$$

slacked version of the constraint

$$C\sum_{n=1}^{N} \xi_n + \frac{1}{2} \|\mathbf{w}\|^2$$

objective function

C: cost-parameter

Higher values of C impose heavier penalties of slacking, whereas smaller C values will change the train data significantly. In practice use cross-validation to set C.

SVM slack version

$$L(\mathbf{w}, b, \mathbf{a}) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{n=1}^{N} \xi_n - \sum_{n=1}^{N} a_n \{t_n y(\mathbf{x}_n) - 1 + \xi_n\} - \sum_{n=1}^{N} \mu_n \xi_n$$

$$\frac{\partial L}{\partial \mathbf{w}} = 0 \quad \Rightarrow \quad \mathbf{w} = \sum_{n=1}^{N} a_n t_n \boldsymbol{\phi}(\mathbf{x}_n)$$

$$\frac{\partial L}{\partial b} = 0 \quad \Rightarrow \quad \sum_{n=1}^{N} a_n t_n = 0$$

$$\frac{\partial L}{\partial \xi_n} = 0 \quad \Rightarrow \quad a_n = C - \mu_n.$$

$$\widetilde{L}(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(\mathbf{x}_n, \mathbf{x}_m)$$

Same Lagrangian as before!

SVM Implementations

- LIBSVM
 - http://www.csie.ntu.edu.tw/~cjlin/libsvm/
 - Available in a large number of programming languages
- SVM Light
 - http://svmlight.joachims.org/
 - can do ranking SVMs

Home Work

- Use LIBSVM to train a binary sentiment classifier using the train data provided in the Assignment
- Compare the performance with the perceptron classifier that you implemented