Particle spectrograph

Wave operator and propagator

$\sigma_{1}^{\#2}$	0	0	0	$\frac{6\sqrt{2}}{t_1} \left \frac{6\sqrt{2}}{(3+4k^2)^2 t_1} \right $	$\frac{12}{2t_1}$ $\frac{12}{(3+4k^2)^2t_1}$	0	$\frac{k}{12t_1} - \frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$
$\sigma_{1^{-}\alpha}^{\#1}$	0 0	$\frac{kt_1)}{t_1^2}$ 0	$\frac{2}{1^2}$ 0	$\frac{6}{(3+4k^2)^2t_1}$	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	0	$-\frac{12ik}{(3+4k^2)^2t_1}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{1}{2} \left -\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2} \right $	$\frac{1}{2} \left \frac{-2k^4r_1 + k^2t_1}{(1+k^2)^2t_1^2} \right $	0	0	0	0
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\begin{bmatrix} -2k^2r_1+t_1\\ (1+k^2)^2t_1^2 \end{bmatrix}$	$\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{lphaeta}$	0		$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
$\sigma_{1^{+}\alpha\beta}^{\#1}$	$\sigma_{1}^{\#1} + \alpha \beta = 0$	$+^{\alpha\beta} - \frac{\sqrt{2}}{t_1 + k^2 t_1}$		$\sigma_{1}^{#1} + ^{\alpha}$ 0	$\sigma_{1}^{#2} + \alpha = 0$	$t_1^{\#1} +^{\alpha} 0$	$t_1^{\#2} + \alpha = 0$

$f_{1^-}^{\#2}$	0	0	0	<u>i kt1</u> 3	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	2 k ² t ₁ 3
$f_{1^{-}}^{\#1}{}_{lpha}$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>£1</u> 3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$
$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$\frac{9}{\mathbb{T}_2}$	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}$ \bar{l} kt_1
$f_1^{\#1}_{\alpha\beta}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#_2^2}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#1}{}_+ \alpha_eta$	$k^2 r_1 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0
	1						

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_{2^{+}lphaeta}^{\#1}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$	
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	
$\tau_2^{#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0	
$\sigma_2^{#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$	
'				

Source constraints/gauge generators							
SO(3) irreps	Multiplicities						
$\tau_{0^{+}}^{#2} == 0$	1						
$\tau_{0^{+}}^{\#1} == 0$	1						
$\tau_1^{\#2\alpha} + 2ik \sigma_1^{\#1\alpha} == 0$	3						
$\tau_1^{\#1\alpha} == 0$	3						
$\sigma_{1}^{\#1\alpha} == \sigma_{1}^{\#2\alpha}$	3						
$\tau_{1+}^{\#1\alpha\beta} + ik\sigma_{1+}^{\#2\alpha\beta} == 0$	3						
$\tau_{2^{+}}^{\#1\alpha\beta} - 2ik\sigma_{2^{+}}^{\#1\alpha\beta} == 0$	5						
Total constraints:	19						

6 k ⁷								
) ₀ ^{#1} +	-#1 0+1	+2++	0 + +		_		$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2^{-} \alpha \beta \chi}^{\# 1}$
3	+	+	` `	3 U	$\nu_{2}^{\#1} \dagger^{\alpha\beta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
				j	$G_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
				ω_{z}^{2}	$\frac{^{\#_1}}{2}$ † $^{\alpha\beta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$
		0	0	$-\frac{1}{t_1}$				
		0	0	0				
	$\omega_{0+}^{*1} + 0$	$\omega_{0}^{*1} + \omega_{0}^{*1} + \omega_{$	$\begin{array}{c} & \omega_{0}^{*1} + 6 \\ & \omega_{0}^{*1} + 6 \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\$	0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

0

0

0

0

0

Massive and massless spectra

massless particles

Unitarity conditions

 $r_1 < 0 \&\& t_1 > 0$