Discovering the underlying topological space of extracted features

Hamid Karim¹ Harrison LeFrois²

¹Department of Computer Science and Engineering Michigan State University

> ²Department of Mathematics Michigan State University

> > April 2017

Table of Contents

Problem Description

2 Tools and Inspiration

What does our data look like?

What does our data look like?

• Data is maybe from a manifold?

What does our data look like?

- Data is maybe from a manifold?
- Manifold learning makes this assumption

What does our data look like?

- Data is maybe from a manifold?
- Manifold learning makes this assumption
- Question 1: What if our data isn't from a manifold? Could the features be parametrized by a manifold?

What does our data look like?

- Data is maybe from a manifold?
- Manifold learning makes this assumption
- Question 1: What if our data isn't from a manifold? Could the features be parametrized by a manifold?
- Question 2: Neural networks often become a black box. What is happening inside?

Source: √in-bottle

Why do we care?

Why do we care?

• Manifolds have nice mathematical structure (locally Euclidean, lots of structure, etc)

Why do we care?

- Manifolds have nice mathematical structure (locally Euclidean, lots of structure, etc)
- Can assign coordinates on the manifold rather than in \mathbb{R}^n

Why do we care?

- Manifolds have nice mathematical structure (locally Euclidean, lots of structure, etc)
- ullet Can assign coordinates on the manifold rather than in \mathbb{R}^n
- This might help with prediction!

Tools

Topology and Machine Learning

- Persistent homology: used to deduce topological structure from data points. Comes from Topological Data Analysis (TDA)
- Convolutional Neural Network (CNN): Great for feature extraction from images

Quick Topology Intro

Concerned with properties that don't change under continuous deformations

- Like stretching, shrinking, and bending
- But NOT cutting, gluing, etc.

Example: Circle = Square = Triangle

Karimi, LeFrois (MSU)

Underlying Space

April 2017

7 / 19

Quick Topology Intro

Homology is a sequence of groups (an algebraic structure) that keeps track of "holes" and their higher dimensional analogues. So if X is a topological space, then:

- $H_0(X)$ counts the number of connected pieces
- $H_1(X)$ counts the number of loops
- $H_2(X)$ counts the number of "voids" (like the inside of a beach ball)

Inspiration

Persistent homology of rotations of everyday objects

Figure: Rotation of rubber duck

Inspiration

Our Data

Needed thousands of photos to train a neural network - so we used the CASIA-Webface dataset. It is a public dataset consisting of of 494,414 images [2].

Convolutional neural network

Architecture

Name	Type	Filter Size /Stride	Output size	Depth	#Params
Conv11	convolution	3×3/1	100×100×32	1	0.28K
Conv11	convolution	3×3/1	100×100×52	1	18K
Pool 1	max pooling	2×2/2	50×50×64	0	1011
Conv21	convolution	3×3/1	50×50×64	1	36K
Conv22	convolution	3×3/1	50×50×128	1	72K
Pool2	max pooling	2×2/2	25×25×128		
Conv31	convolution	3×3/1	25×25×96	1	108K
Conv32	convolution	3×3/1	$25 \times 25 \times 192$	1	162K
Pool3	max pooling	2×2/2	13×13×192	0	
Conv41	convolution	3×3/1	13×13×128	1	216K
Conv42	convolution	3×3/1	$13 \times 13 \times 256$	1	288K
Pool4	max pooling	2×2/2	7×7×256	0	
Conv51	convolution	3×3/1	7×7×160	1	360K
Conv52	convolution	3×3/1	$7 \times 7 \times 320$	1	450K
Pool5	avg pooling	7×7 / 1	$1\times1\times320$		
Dropout	dropout (40%)		$1\times1\times320$	0	
Fc6	fully connection		10575	1	3305K
Cost1	softmax		10575	0	
Cost2	contrastive		1	0	
Total				11	5015K

Shape of Data

Helena Bonham Carter - 254 images - Original features on left (pixels), 128 features on right (embedding from CNN)

New loss function

 We are basically interested in function f which embeds our data X in d-dimensional Euclidean space.

 $\mathcal{C}^i \leftarrow \mathsf{Data}$ with same labels as i-th instance $\mathcal{C}^i \leftarrow \mathsf{centroid}$ of \mathcal{C}^i in embedded space

[1]Previous,
$$L_{i,j,k} = \lambda d(f^{i}, f^{j}) + (1 - \lambda)[1 + d(f^{i}, f^{j}) - d(f^{i}, f^{j})]_{+}$$

Current, $L_{i,j,k} = d(f^{i}, f^{j}) + [1 + d(f^{i}, f^{j}) - d(f^{i}, f^{k})]_{+}$
 $+ d(f^{i}, C^{i}) + d(f^{j}, C^{i}) + d(f^{k}, C^{k})$
 $+ [1 - d(C^{i}, C^{k})]_{+}$
such that, $C^{i} = \frac{1}{|C^{i}|} \sum_{f^{s}} f^{s}$ centroid in embedded space

Karimi, LeFrois (MSU)

Figure: Graphical representation of loss function in the embedded space

Results on a toy data

Conclusions and Future Work

Conclusions thus far:

- From homology perspective, data appears to be connected with no loops
- Maybe other structure like a dendrite? Clusters?

Future work:

- Apply more tools from TDA (mapper algorithm check for dendrite structures)
- Other standard datasets (MNIST, natural images, spoken language)
 with appropriate NN architectures (CNN, RNN, etc)
- Scale space instead of pixel space for images

Bibliography

Recognition. 2015, pp. 815–823.

Dong Yi et al. "Learning Face Representation from Scratch". In:

CoRR abs/1411.7923 (2014). URL: http://arxiv.org/abs/1411.7923.

4 D > 4 A > 4 B > 4 B > B 9 9 0