Geometría Analítica

Facultad de Ingeniería

Universidad Nacional de Cuyo

Actividades para el Aprendizaje

Ejercicios 3.27 y 3.29

Ejercicios resueltos 3.27 y 3.29 (pág. 136 y 137)

3.27

- a) Escriba la ecuación de una *hipérbola equilátera* de centro C(h, k) y eje focal paralelo al eje x. Indique todos sus elementos y represente gráficamente.
- b) Escriba la ecuación de una *hipérbola equilátera* de centro C(h, k) y eje focal paralelo al eje y. Indique todos sus elementos y represente gráficamente.
- c) Indique las ecuaciones de las asíntotas y el valor de la excentricidad de las hipérbolas de los incisos anteriores.

Respuestas:

Las hipérbolas equiláteras tienen como característica que a=b, de ahí obtenemos que $c=\sqrt{2}a$

a) Para una hipérbola equilátera con eje focal paralelo al eje x, la ecuación es:

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{a^2} = 1$$
 o también: $(x-h)^2 + (y-k)^2 = a^2$

Sus elementos son:

F1(c, 0); F1 (
$$\sqrt{2}a$$
,0); F2 (-c, 0); F2 ($-\sqrt{2}a$,0)

A
$$(c, \frac{b^2}{a})$$
; A $(\sqrt{2}a, a)$; A' $(c, \frac{b^2}{a})$; A' $(\sqrt{2}a, -a)$

B (-c,-
$$\frac{b^2}{a}$$
); B ($-\sqrt{2}a$, a); B' (-c,- $\frac{b^2}{a}$); B' ($-\sqrt{2}a$, -a)

$$|LR| = \frac{2b^2}{a} = 2a$$

Representación gráfica para a=1

Facultad de Ingeniería

Universidad Nacional de Cuyo

Actividades para el Aprendizaje

Ejercicios 3.27 y 3.29 resueltos

b) Para una hipérbola equilátera con eje focal paralelo al eje y, la ecuación es:

$$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{a^2} = 1$$
 o también: $-(x-h)^2 + (y-k)^2 = a^2$

Sus elementos son:

F1 (0, c); F1 (0,
$$\sqrt{2}a$$
)

F2 (0, -c); F2 (0,
$$-\sqrt{2}a$$
,)

$$A\left(\frac{b^2}{a},c\right); A\left(a,\sqrt{2}a\right)$$

A'
$$(-\frac{b^2}{a}, c)$$
; A' $(-a, \sqrt{2}a)$

$$B\left(\frac{b^2}{a}, -c\right)$$
; $B\left(a, -\sqrt{2}a\right)$

B'
$$(-\frac{b^2}{a}, -c)$$
; B' $(-a, -\sqrt{2}a)$

$$|LR| = \frac{2b^2}{a} = 2a$$

c) Los asíntotas y la excentricidad son iguales para las hipérbolas del ejercicio a) y b)

$$y = x$$

$$y = -x$$

$$e = \frac{2b^2}{a} = \sqrt{2}$$

Representación gráfica para a=1

Geometría Analítica

Facultad de Ingeniería

Universidad Nacional de Cuyo

Actividades para el Aprendizaje

Ejercicios 3.27 y 3.29 resueltos

3.29

Determine una ecuación para la recta tangente a la hipérbola de centro C (h,k) y eje focal paralelo al eje y.

Respuestas:

Escribimos nuevamente la ecuación general de una hipérbola con centro C(h,k) y eje transversal (o eje focal) paralelo al eje y:

$$b^2y^2 - a^2x^2 - 2kb^2y + 2ha^2x + (b^2k^2 - a^2h^2 - a^2b^2) = 0$$

Para obtener la pendiente de la recta tangente en un punto cualquiera $T(x_T, y_T)$ de la hipérbola derivamos implícitamente la última ecuación, obteniendo:

$$2b^2yy' - 2a^2x - 2kb^2y' + 2ha^2 = 0$$

Agrupamos los términos que dependen de y', y despejamos para obtener la siguiente relación:

$$y' = \frac{a^2(x-h)}{b^2(y-k)}$$

En el punto T(x_T, y_T), resulta:
$$y'|_T = \frac{a^2(x_T - h)}{b^2(y_T - k)}$$

Entonces, la ecuación de la recta tangente a la hipérbola, que tiene pendiente y' y que pasa por el punto $T(x_T, y_T)$ resulta la siguiente:

$$y - y_T = \frac{a^2(x_T - h)}{b^2(y_T - k)} (x - x_T)$$

Con y_T - $k\neq 0$

Representación gráfica para a=b:

