Diskrete und stetige Verteilungen

	diskrete Zufallsvariablen	stetige Zufallsvariablen
Dichtefunktion / PDF/PMF	f(x) = P(X = x)	f(x) = F'(x) eq P(X = x)
Kumulative Verteilungsfunktion / CDF	$F(x) = P(X \le x) = \sum_{u \le x} f(u)$	$F(x) = P(X \le x) = \int\limits_{-\infty}^x f(u) du$
Wahrscheinlichkeiten	$P(a \leq X \leq b) = \sum_{a \leq x \leq b} f(x)$ $P(a < X \leq b) = \sum_{a < x \leq b} f(x)$ $P(a < X < b) = \sum_{a < x < b} f(x)$ $P(a < X) = 1 - F(a)$	$\left.egin{aligned} P(a \leq X \leq b) \ P(a < X \leq b) \ P(a < X < b) \end{aligned} ight\} = \int\limits_a^b f(x) dx \ P(a < X) = 1 - F(a) \end{aligned}$
$\begin{array}{c} \textbf{Graphische} \\ \textbf{Darstellung von } f \end{array}$	Stabdiagramm	Graph
Erwartungwert	$E(X) = \sum_{x \in \mathbb{R}} f(x) \cdot x$	$E(X) = \int\limits_{-\infty}^{\infty} f(x) \cdot x dx$
Varianz	$V(X) = \sum_{x \in \mathbb{R}} f(x) \cdot (x - E(X))^2$	$V(X) = \int_{-\infty}^{\infty} f(x) \cdot (x - E(X))^2 dx$

Satz

Für diskrete und stetige Zufallsvariablen X und Y gelten die folgenden Regeln:

(1) Linearität des Erwartungswertes:

$$E(X+Y)=E(X)+E(Y)$$
 und $E(lpha X)=lpha E(X)$ mit $lpha\in\mathbb{R}$.

(2) Verschiebungssatz für die Varianz:

$$V(X) = E(X^2) - (E(X))^2$$

(3)
$$V(\alpha X + \beta) = \alpha^2 \cdot V(X)$$
 mit $\alpha, \beta \in \mathbb{R}$.

(4) Sind X und Y stochastisch unabhängig, so gilt:

$$V(X+Y) = V(X) + V(Y)$$

Bemerkung

Es ist effizienter, die Varianz mithilfe des Verschiebungssatzes zu berechnen als mithilfe der Definition.

Die Hypergeometrische Verteilung

Definition

Eine diskrete Zufallsvariable X heisst hypergeometrisch verteilt mit den Parametern n (Anzahl Ziehungen ohne Zurücklegen), N (Gesamtzahl aller Objekte) und M(Gesamtzahl aller Merkmalsträger), wenn ihre Dichtefunktion (PMF) gegeben ist durch

$$P(X=x) = rac{inom{M}{x}\cdotinom{N-M}{n-x}}{inom{N}{n}}$$

Schreibweise: $X \sim H(N, M, n)$.

X zählt, wie oft bei der n-fachen Ziehung (nacheinander und ohne Zurücklegen) ein Merkmalsträger gezogen wird.

Satz

Für eine Zufallsvariable $X \sim H(N,M,n)$ gilt:

(1)
$$\mu = E(X) = n \cdot \frac{M}{N}$$

(1)
$$\mu=E(X)=n\cdot rac{M}{N}$$
 (2) $\sigma^2=\mathrm{V}(X)=n\cdot rac{M}{N}\cdot (1-rac{M}{N})\cdot rac{N-n}{N-1}$

(3)
$$\sigma = S(X) = \sqrt{V(X)}$$

Die Bernoulli Verteilung

Eine Zufallsvariable X heisst Bernoulli-verteilt, wenn sie nur zwei verschiedene Werte annehmen kann: den Wert 1 mit der Wahrscheinlichkeit P(X=1)=p und den Wert 0 mit der Wahrscheinlichkeit P(X=0)=1-p.

Satz

Für Bernoulli-verteilte Zufallsvariablen X gilt:

(1)
$$E(X) = E(X^2) = p$$
.

(2)
$$V(X) = p \cdot (1 - p)$$

Die Binomialverteilung

Definition

Eine diskrete Zufallsvariable X heisst binomialverteilt mit den Parametern n (Anzahl Wiederholungen) und p (Wahrscheinlichkeit für ein Ergebnis 1), wenn ihre Dichtefunktion (PMF) gegeben ist durch

$$P(X=x) = inom{n}{x} \cdot p^x \cdot (1-p)^{n-x}$$

Schreibweise: $X \sim B(n; p)$.

X zählt, wie oft bei der n-fachen Wiederholung eines Bernoulli-Experiments das Ergebnis 1 eintritt. Die Wahrscheinlichkeit für das Ergebnis 0 wird üblicherweise mit q=1-p bezeichnet.

Die B(n;p)-verteilte Zufallsvariable X kann als Summe von n Bernoulli-verteilten Zufallsvariablen X_i aufgefasst werden: $X = \sum_{i=1}^n X_i$. Dabei hält X_i das Ergebnis des i-ten Experiments fest, und es gilt: $P(X_i = 1) = p$.

Satz

Für eine Zufallsvariable $X \sim B(n;p)$ gilt:

$$\text{(1) } \mu = E(X) = np$$

(2)
$$\sigma^2 = \mathrm{V}(X) = npq$$

(3)
$$\sigma = S(X) = \sqrt{npq}$$

Faustregel zur Approximation

Wenn die Bedingung $n \leq \frac{N}{20}$ erfüllt ist, kann die hypergeometrische Verteilung H(N,M,n) gut durch die Binomialverteilung $B(n,\frac{M}{N})$ angenähert werden: $H(N,M,n) \approx B(n,\frac{M}{N})$

Die Poisson Verteilung

Definition

Eine diskrete Zufallsvariable X heisst *poissonverteilt* mit dem Parameter $\lambda>0$ (durchschnittliche Anzahl Ereignisse pro betrachtetes Zeitintervall), wenn ihre Dichtefunktion (PMF) gegeben ist durch

$$P(X=x) = e^{-\lambda} \cdot \frac{\lambda^x}{x!}$$

Schreibweise: $X \sim Poi(\lambda)$.

X zählt die Anzahl der (stochastisch unabhängigen, gleichartigen) Ereignisse in einem betrachteten Zeitintervall.

Satz

Für eine Zufallsvariable $X \sim Poi(\lambda)$ gilt:

(1)
$$\mu=E(X)=\lambda$$

(2)
$$\sigma^2=\mathrm{V}(X)=\lambda$$

(3)
$$\sigma = S(X) = \sqrt{\lambda}$$

Faustregel zur Approximation

Wenn die Bedingung $n \geq 50$ und $p \leq 0.1$ erfüllt ist, kann die Binomialverteilung B(n,p) gut durch die Poissonverteilung $Poi(n \cdot p)$ angenähert werden: $B(n,p) \approx Poi(n \cdot p)$.

Gauss'sche Normalverteilung

Definition

Eine stetige Zufallsvariable X heisst *normalverteilt* mit den Parametern $\mu, \sigma \in \mathbb{R}$, $\sigma > 0$, wenn sie folgende Dichtefunktion (PDF) hat:

$$arphi_{\mu,\sigma}(x) = rac{1}{\sqrt{2\pi}\cdot\sigma}\cdot e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2}$$

Schreibweise: $X \sim N(\mu; \sigma)$

Die kumulative Verteilungsfunktion (CDF) von $\varphi_{\mu,\sigma}(x)$ wird mit $\phi_{\mu,\sigma}(x)$ bezeichnet. Sie ist definiert durch:

$$\phi_{\mu,\sigma}(x) = P(X \leq x) = \int\limits_{-\infty}^{x} arphi_{\mu,\sigma}(t) \, dt = rac{1}{\sqrt{2\pi} \cdot \sigma} \cdot \int\limits_{-\infty}^{x} e^{-rac{1}{2} \left(rac{t-\mu}{\sigma}
ight)^2} dt$$

Ist $\mu=0$ und $\sigma=1$, so spricht man von der *Standardnormalverteilung*. Ihre Dichtefunktion (PDF) wird mit φ bezeichnet; sie ist gegeben durch:

$$arphi(x) = rac{1}{\sqrt{2\pi}} \cdot e^{-rac{1}{2}x^2}.$$

Ihre Verteilungsfunktion (CDF) $\phi_{0,1}(x)$ wird mit $\phi(x)$ bezeichnet. Schreibweise: $X \sim N(0;1)$.

Die Verteilungsfunktion der Normalverteilung kann nicht auf elementare Weise berechnet werden. Für ihre Werte gibt es Tabellen (Papula 12. Aufl. S. 514); die Tabellen beziehen sich allerdings immer auf die *Standard*normalverteilung.

Bemerkung

Die Dichtefunktion (PDF) $arphi_{\mu,\sigma}(x)$ hat folgende Eigenschaften:

- (a) Sie ist symmetrisch bezüglich der Geraden $x=\mu$.
- (b) Sie hat Wendepunkte an den Stellen $\mu-\sigma$ und $\mu+\sigma$.
- (c) Sie ist normiert, d.h. es gilt:

$$\int\limits_{-\infty}^{\infty} arphi_{\mu,\sigma}(x)\,dx = rac{1}{\sqrt{2\pi}\cdot\sigma}\cdot\int\limits_{-\infty}^{\infty} e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2}dx = 1$$

- (d) Eine Änderung von μ bewirkt eine Verschiebung in x-Richtung; je grösser σ ist, desto breiter und niedriger wird die Glockenkurve.
- (e) Für eine Zufallsvariable $X \sim N(\mu; \sigma)$ gilt: $E(X) = \mu$ und $V(X) = \sigma^2$.

Bemerkung

Bei einer Zufallsvariable X, die der Normalverteilung $N(\mu;\sigma)$ folgt, liegen

- ullet ca. 68 % der beobachteten Werte zwischen $\mu-\sigma$ und $\mu+\sigma$,
- ullet ca. 95 % der beobachteten Werte zwischen $\mu-2\sigma\,$ und $\mu+2\sigma,$
- ullet ca. 99.7 % der beobachteten Werte zwischen $\mu-3\sigma\,$ und $\mu+3\sigma.$

Wichtige Eigenschaften einer $N(\mu;\sigma)$ -verteilten Zufallsvariable X

$$\phi'_{\mu,\sigma}(x)=arphi_{\mu,\sigma}(x)$$

$$\phi_{\mu,\sigma}(x) = \phi(\frac{x-\mu}{\sigma})$$

$$P(a \le X \le b) = \phi_{\mu,\sigma}(b) - \phi_{\mu,\sigma}(a)$$

$$P(|X - \mu| \le \varepsilon) = P(\mu - \varepsilon \le X \le \mu + \varepsilon)$$

= $2 \cdot \phi_{\mu,\sigma}(\mu + \varepsilon) - 1$
= $1 - 2 \cdot \phi_{\mu,\sigma}(\mu - \varepsilon)$

In den Aussagen können \leq Zeichen nach Belieben durch < Zeichen ersetzt werden.

Zentraler Grenzwertsatz

Gegeben sind lauter identisch verteilte und stochastisch unabhängige Zufallsvariablen X_1,X_2,\ldots , alle mit demselben Erwartungswert μ und derselben Varianz σ^2 . Dann hat die Summe

$$S_n = \sum\limits_{i=1}^n X_i$$

den Erwartungswert $n\mu$ und die Varianz $n\sigma^2$ und ist annähernd $N(n\mu;\sqrt{n}\sigma)$ -verteilt.

Das arithmetische Mittel

$$ar{X}_n = S_n/n$$

hat den Erwartungswert μ und die Varianz σ^2/n und ist annähernd $N(\mu;\frac{\sigma}{\sqrt{n}})$ verteilt.

Die Verteilungsfunktion (CDF) $F_n(u)$ der dazugehörigen standardisierten Zufallsvariablen

$$U_n=rac{S_n-n\mu}{\sqrt{n}\cdot\sigma}=rac{ar{X}_n-\mu}{\sigma/\sqrt{n}}$$

konvergiert für $n \to \infty$ gegen die Verteilungsfunktion $\phi(u)$ der Standardnormalverteilung:

$$\lim_{n o\infty}F_n(u)=\phi(u)=rac{1}{\sqrt{2\pi}}\cdot\int\limits_{-\infty}^ue^{-rac{1}{2}t^2}dt$$

◀ 4. Zusammenfassung: Elementare Wahrscheinlichkeitsrechnung

Direkt zu:	\$

6. Zusammenfassung: Regression ▶

