LDA, QDA, Naive Bayes

Generative Classification Models

Marek Petrik

2/16/2017

Last Class

- Logistic Regression
- Maximum Likelihood Principle

Logistic Regression

- Predict **probability** of a class: p(X)
- Example: p(balance) probability of default for person with balance
- Linear regression:

$$p(X) = \beta_0 + \beta_1$$

logistic regression:

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

the same as:

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X$$

• Odds: p(X)/1-p(X)

Logistic Function

Logit Function

Logistic Regression

$$\Pr[\mathsf{default} = yes \mid \mathsf{balance}] = \frac{e^{\beta_0 + \beta_1 \mathsf{balance}}}{1 + e^{\beta_0 + \beta_1 \mathsf{balance}}}$$

Estimating Coefficients: Maximum Likelihood

▶ **Likelihood**: Probability that data is generated from a model

$$\ell(\text{model}) = \Pr[\text{data} \mid \text{model}]$$

Find the most likely model:

$$\max_{\text{model}} \ell(\text{model}) = \max_{\text{model}} \Pr[\text{data} \mid \text{model}]$$

- Likelihood function is difficult to maximize
- ► Transform it using log (strictly increasing)

$$\max_{model} \log \ell(model)$$

Strictly increasing transformation does not change maximum

Today

- 1. Classification methods continued
- 2. Discriminative vs. Generative ML Models
- 3. Generative classification models:
 - Linear Discriminant Analysis (LDA)
 - Quadratic Discriminant Analysis (QDA)
 - Naive Bayes Classification

Discriminative vs Generative Models

Discriminative models

- Estimate conditional models $Pr[Y \mid X]$
- Linear regression
- Logistic regression

Generative models

- ▶ Estimate joint probability $Pr[Y, X] = Pr[Y \mid X] Pr[X]$
- Estimates not only probability of labels but also the features
- ▶ Once model is fit, can be used to generate data
- LDA, QDA, Naive Bayes

Generative Models

- + Can be used to generate data (Pr[X])
- + Offers more insights into data
- Often works worse, particularly when assumptions are violated

Normal Distribution

Density function:

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Normal Distribution

Density function:

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

▶ Central limit theorem: $Z = 1/n \sum_{i=1}^{n} X_i$ for i.i.d. X_i is normal with $n \to \infty$

Logistic Regression

$$Y = \begin{cases} 1 & \text{if default} \\ 0 & \text{otherwise} \end{cases}$$

Predict:

$$\Pr[\mathsf{default} = yes \mid \mathsf{balance}]$$

► **Generative model**: capture probability of predictors for each label

► Predict:

► **Generative model**: capture probability of predictors for each label

- ► Predict:
 - 1. $\Pr[\text{balance} \mid \text{default} = yes] \text{ and } \Pr[\text{default} = yes]$

► **Generative model**: capture probability of predictors for each label

- Predict:
 - 1. $\Pr[\text{balance} \mid \text{default} = yes] \text{ and } \Pr[\text{default} = yes]$
 - 2. $\Pr[\text{balance} \mid \text{default} = no] \text{ and } \Pr[\text{default} = no]$

 Generative model: capture probability of predictors for each label

- ► Predict:
 - 1. $\Pr[\text{balance} \mid \text{default} = yes] \text{ and } \Pr[\text{default} = yes]$
 - 2. $\Pr[\mathsf{balance} \mid \mathsf{default} = no]$ and $\Pr[\mathsf{default} = no]$
- ► Classes are normal: Pr[balance | default = yes]

LDA vs Logistic Regression

▶ Logistic regressions:

$$\Pr[\mathsf{default} = yes \mid \mathsf{balance}]$$

Linear discriminant analysis:

```
\Pr[\text{balance} \mid \text{default} = yes] \text{ and } \Pr[\text{default} = yes] \Pr[\text{balance} \mid \text{default} = no] \text{ and } \Pr[\text{default} = no]
```

LDA with 1 Feature

• Classes are normal and class probabilities π_k are scalars

$$f_k(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu_k)^2\right)$$

Key Assumption:Class variances σ_k^2 are the same.

Bayes Theorem

Classification from label distributions:

$$\Pr[Y = k \mid X = x] = \frac{\Pr[X = x \mid Y = k] \Pr[Y = k]}{\Pr[X = x]}$$

Bayes Theorem

Classification from label distributions:

$$\Pr[Y=k \mid X=x] = \frac{\Pr[X=x \mid Y=k] \Pr[Y=k]}{\Pr[X=x]}$$

Example:

$$\begin{split} \Pr[\mathsf{default} = yes \mid \mathsf{balance} = \$100] = \\ \frac{\Pr[\mathsf{balance} = \$100 \mid \mathsf{default} = yes] \Pr[\mathsf{default} = yes]}{\Pr[\mathsf{balance} = \$100]} \end{split}$$

Bayes Theorem

Classification from label distributions:

$$\Pr[Y = k \mid X = x] = \frac{\Pr[X = x \mid Y = k] \Pr[Y = k]}{\Pr[X = x]}$$

► Example:

$$\frac{\Pr[\mathsf{default} = yes \mid \mathsf{balance} = \$100] =}{\frac{\Pr[\mathsf{balance} = \$100 \mid \mathsf{default} = yes] \Pr[\mathsf{default} = yes]}{\Pr[\mathsf{balance} = \$100]}}$$

Notation:

$$\Pr[Y = k \mid X = x] = \frac{\pi_k f_k(x)}{\sum_{l=1}^{K} \pi_l f_l(x)}$$

Probability in class k_1 > Probability in class k_2

Probability in class
$$k_1 >$$
 Probability in class k_2
 $\Pr[Y = k_1 \mid X = x] > \Pr[Y = k_2 \mid X = x]$

Probability in class
$$k_1 >$$
 Probability in class k_2
$$\Pr[Y = k_1 \mid X = x] > \Pr[Y = \frac{k_2}{k_2} \mid X = x]$$

$$\frac{\pi_{k_1} f_{k_1}(x)}{\sum_{l=1}^K \pi_l f_l(x)} > \frac{\pi_{k_2} f_{k_2}(x)}{\sum_{l=1}^K \pi_l f_l(x)}$$

Probability in class
$$k_1 >$$
 Probability in class k_2
$$\Pr[Y = k_1 \mid X = x] > \Pr[Y = k_2 \mid X = x]$$

$$\frac{\pi_{k_1} f_{k_1}(x)}{\sum_{l=1}^{K} \pi_l f_l(x)} > \frac{\pi_{k_2} f_{k_2}(x)}{\sum_{l=1}^{K} \pi_l f_l(x)}$$

$$\pi_{k_1} f_{k_1}(x) > \pi_{k_2} f_{k_2}(x)$$

$$\begin{split} \text{Probability in class } k_1 &> \text{Probability in class } k_2 \\ \text{Pr}[Y = k_1 \mid X = x] &> \text{Pr}[Y = \frac{k_2}{k_2} \mid X = x] \\ \frac{\pi_{k_1} f_{k_1}(x)}{\sum_{l=1}^{K} \pi_l f_l(x)} &> \frac{\pi_{k_2} f_{k_2}(x)}{\sum_{l=1}^{K} \pi_l f_l(x)} \\ \pi_{k_1} f_{k_1}(x) &> \pi_{k_2} f_{k_2}(x) \\ \log{(\pi_{k_1} f_{k_1}(x))} &> \log{(\pi_{k_2} f_{k_2}(x))} \end{split}$$

$$\begin{split} \text{Probability in class } k_1 &> \text{Probability in class } k_2 \\ \text{Pr}[Y = k_1 \mid X = x] &> \text{Pr}[Y = k_2 \mid X = x] \\ \frac{\pi_{k_1} f_{k_1}(x)}{\sum_{l=1}^K \pi_l f_l(x)} &> \frac{\pi_{k_2} f_{k_2}(x)}{\sum_{l=1}^K \pi_l f_l(x)} \\ \pi_{k_1} f_{k_1}(x) &> \pi_{k_2} f_{k_2}(x) \\ \log{(\pi_{k_1} f_{k_1}(x))} &> \log{(\pi_{k_2} f_{k_2}(x))} \\ \hat{\delta}_{k_1}(x) &> \hat{\delta}_{k_2}(x) \end{split}$$

Discriminant function:

$$\hat{\delta}_k(x) = x \cdot \frac{\hat{\mu}_k}{\hat{\sigma}^2} - \frac{\hat{\mu}_k^2}{2\hat{\sigma}^2} + \log(\hat{\pi}_k)$$

Derive at home

Maximum log likelihood!

$$\max_{\mu,\sigma} \log \ell(\mu,\sigma) = \max_{\mu,\sigma} \sum_{i=1}^{N} \log (f_{y_i}(x_i)) =$$

$$\max_{\mu,\sigma} \sum_{i=1}^{N} \log \left(\frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma^2} (x_i - \mu_{y_i})^2\right) \right) =$$

$$\max_{\mu,\sigma} \sum_{i=1}^{N} \left(-\log \sigma - \frac{1}{2\sigma^2} (x_i - \mu_{y_i})^2 + \text{consts} \right)$$

Maximum log likelihood!

$$\max_{\mu,\sigma} \log \ell(\mu,\sigma) = \max_{\mu,\sigma} \sum_{i=1}^{N} \log (f_{y_i}(x_i)) =$$

$$\max_{\mu,\sigma} \sum_{i=1}^{N} \log \left(\frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma^2} (x_i - \mu_{y_i})^2\right) \right) =$$

$$\max_{\mu,\sigma} \sum_{i=1}^{N} \left(-\log \sigma - \frac{1}{2\sigma^2} (x_i - \mu_{y_i})^2 + \text{consts} \right)$$

• Concave in μ and $1/\sigma^2$, consider a single class with mean μ

$$\frac{\partial}{\partial \mu} \log \ell(\mu, \sigma) = \frac{1}{\sigma^2} \sum_{i=1}^{N} (x_i - \mu) = 0$$
$$\frac{\partial}{\partial \sigma} \log \ell(\mu, \sigma) = \frac{N}{\sigma} + \frac{1}{\sigma^3} \sum_{i=1}^{N} (x_i - \mu)^2 = 0$$

▶ log ℓ is derivatives:

$$\frac{\partial}{\partial \mu} \log \ell(\mu, \sigma) = \frac{1}{\sigma^2} \sum_{i=1}^{N} (x_i - \mu) = 0$$
$$\frac{\partial}{\partial \sigma} \log \ell(\mu, \sigma) = \frac{N}{\sigma} + \frac{1}{\sigma^3} \sum_{i=1}^{N} (x_i - \mu)^2 = 0$$

► Therefore:

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$

Better Parameter Estimates

• Maximum likelihood variance σ^2 is biased:

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$

Unbiased estimate:

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$\sigma^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \mu)^2$$

See ISL for precise formula for more than a single class

LDA with Multiple Features

Multivariate Normal Distributions:

Multivariate normal distribution density (mean vector μ , covariance matrix Σ):

$$p(X) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right)$$

Multivariate Maximum Likelihood

Consider a singe class:

$$\begin{aligned} \max_{\mu,\sigma} \, \log \ell(\mu, \Sigma) &= \max_{\mu,\Sigma} \, \sum_{i=1}^N \log \left(f_k(x_i) \right) = \\ \max_{\mu,\Sigma} \, \sum_{i=1}^N \log \left(\frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp \left(-\frac{1}{2} (x_i - \mu)^\top \Sigma^{-1} (x_i - \mu) \right) \right) = \\ \max_{\mu,\Sigma} \, -\frac{N}{2} \log |\Sigma| - \frac{1}{2} \sum_{i=1}^N (x_i - \mu)^\top \Sigma^{-1} (x_i - \mu) = \\ \max_{\mu,\Sigma} \, -\frac{N}{2} \log |\Sigma| - \frac{1}{2} \operatorname{Trace} \left(\Sigma^{-1} \sum_{i=1}^N (x_i - \mu)^\top (x_i - \mu) \right) \end{aligned}$$

• Use $\partial/\partial\Sigma\log|\Sigma|=\Sigma^{-\top}$ and $1/\partial A\operatorname{Trace}(AB)=B^{\top}$

$$\Sigma = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^{\top} (x_i - \mu)$$

Multivariate Classification Using LDA

▶ Linear: Decision boundaries are linear

Confusion Matrix: Predict default

		True		
		Yes	No	Total
Predicted	Yes	a	b	a+b
rieuicieu	No	c	d	c+d
	Total	a+c	b+d	N

Result of LDA classification: Predict default if

$$\Pr[\mathsf{default} = yes \mid \mathsf{balance}] > 1/2$$

		True		
		Yes	No	Total
Predicted	Yes	81	23	104
	No	252	9 644	9896
	Total	333	9 667	10000

Confusion Matrix: Predict default

	True			
		Yes	No	Total
Predicted	Yes	a	b	a+b
	No	c	d	c+d
	Total	a+c	b+d	N

Result of LDA classification: Predict default if

$$\Pr[\mathsf{default} = yes \mid \mathsf{balance}] > 1/2$$

		True		
		Yes	No	Total
Predicted	Yes	81	23	104
	No	252	9 644	9896
	Total	333	9 667	10000

Most people who default are predicted as No default

Increasing LDA Sensitivity

Result of LDA classification: Predict default if

 $\Pr[\mathsf{default} = yes \mid \mathsf{balance}] > 1/2$

Predicted	

True			
	Yes	No	Total
Yes	81	23	104
No	252	9644	9896
Total	333	9 667	10 000

Increasing LDA Sensitivity

Result of LDA classification: Predict default if

 $\Pr[\mathsf{default} = yes \mid \mathsf{balance}] > 1/2$

Predicted

Truc				
	Yes	No	Total	
Yes	81	23	104	
No	252	9644	9896	
Total	333	9 667	10000	

Trua

Result of LDA classification: Predict default if

 $\Pr[\mathsf{default} = yes \mid \mathsf{balance}] > 1/2$

True			
	Yes	No	Total
Yes	195	235	403
No	138	9 4 3 2	9570
Total	333	9667	10 000
	No	Yes 195 No 138	Yes No Yes 195 235 No 138 9432

True Positives, etc

Predicted

RealityPositiveNegativePositiveTrue PositiveFalse PositiveNegativeFalse NegativeTrue Negative

- Recall/sensitivity = TP/(TP+FN)
- Precision = TP/(TP+FP)
- Specificity = TN/(TN+FP)

ROC Curve

Reality

Predicted

	Positive	Negative
Positive	True Positive	False Positive
Negative	False Negative	True Negative

Area Under ROC Curve

- Larger area is better
- lacktriangle Many other ways to measure classifier performance, like F_1

Generalizes LDA

- ▶ **LDA**: Class variances $\Sigma_k = \Sigma$ are the same
- ▶ **QDA**: Class variances Σ_k can differ

Generalizes LDA

- ▶ **LDA**: Class variances $\Sigma_k = \Sigma$ are the same
- **QDA**: Class variances Σ_k can differ

▶ LDA or QDA has smaller training error on the same data?

Generalizes LDA

- ▶ **LDA**: Class variances $\Sigma_k = \Sigma$ are the same
- **QDA**: Class variances Σ_k can differ

- ▶ LDA or QDA has smaller training error on the same data?
- What about the test error?

Naive Bayes

Simple Bayes net classification

- lacktriangle With normal distribution over features X_1,\dots,X_k special case of QDA with diagonal Σ
- Generalizes to non-Normal distributions and discrete variables
- More on it later ...