

From Centralized to Decentralized Control of Complex Systems

In the Pursuit of Efficient Control Approaches

Ionela Prodan

Université Grenoble Alpes, Laboratoire de Conception et d'Intégration des Systèmes (LCIS EA 3747), Valence, F-26009, France, ionela_prodanblois_grenoble=inp.fr, https://sites.google.com/site/iprodanionela/

Fall semester 2019

Lecture 3

Outline

- An optimization-based approach for control of complex systems
 - Generic prediction model
 - Set-theoretic methods
 - Mixed-integer techniques

Propoi (1963), Cutler et al. (2007), Richalet and O'Donovan (2009)

- Optimization-based control law
- Implicit (on-line) vs. explicit (off-line) implementation
- Constraints handling
- Can be implemented in a distributed fashion

Propoi (1963), Cutler et al. (2007), Richalet and O'Donovan (2009)

- Optimization-based control law
- Implicit (on-line) vs. explicit (off-line) implementation
- Constraints handling
- Can be implemented in a distributed fashion

model of the system

 ${\bf reference\ trajectory}$

$$\begin{array}{l} \underset{\mathbf{u}}{\text{arg min}} \ V_f(x(k+N_p), q(k+N_p)) + \sum\limits_{s=1}^{N_p-1} V_n(x(k+s), u(k+s), q(k+s)) \\ \text{subjectto:} \begin{cases} x(k+s+1) = f(x(k+s), u(k+s)), & s=0:N_p-1, \\ h(x(k+s), u(k+s), q(k+s)) \leq 0, & s=1:N_p-1. \end{cases}$$

constraint sets representation

optimization solver

Propoi (1963), Cutler et al. (2007), Richalet and O'Donovan (2009)

- Optimization-based control law
- Implicit (on-line) vs. explicit (off-line) implementation
- Constraints handling
- Can be implemented in a distributed fashion

model of the system

reference trajectory

$$\begin{aligned} & \underset{\mathbf{u}}{\text{arg min}} \ V_f(x(k+N_p), q(k+N_p)) + \sum_{s=1}^{N_p-1} V_n(x(k+s), u(k+s), q(k+s)) \\ & \text{subject to:} \begin{cases} x(k+s+1) = f(x(k+s), u(k+s)), & s=0:N_p-1, \\ h(x(k+s), u(k+s), q(k+s)) \leq 0, & s=1:N_p-1. \end{cases}$$

constraint sets representation

optimization solver

Propoi (1963), Cutler et al. (2007), Richalet and O'Donovan (2009)

- Optimization-based control law
- Implicit (on-line) vs. explicit (off-line) implementation
- Constraints handling
- Can be implemented in a distributed fashion

Propoi (1963), Cutler et al. (2007), Richalet and O'Donovan (2009)

- Optimization-based control law
- Implicit (on-line) vs. explicit (off-line) implementation
- Constraints handling
- Can be implemented in a distributed fashion

model of the system

 ${\bf reference\ trajectory}$

constraint sets representation

optimization solver

A generic prediction model

Consider the following discrete-time autonomous system :

$$x(k+1) = f(x(k)), x(k) \in \mathcal{S},$$

where $x(k) \in \mathbb{R}^n$ is the current state and the mapping $f(\cdot) : \mathbb{R}^n \to \mathbb{R}^n$ is assumed to be continuous on \mathbb{R}^n satisfying the condition f(0) = 0. The state constraint set \mathcal{S} is a compact set containing the origin in its interior.

Consider also the following discrete-time invariant system :

$$x(k+1) = f(x(k), u(k)), \quad (x(k), u(k)) \in \mathcal{S} \times \mathcal{U},$$

$$y(k) = g(x(k)), \quad y(k) \in \mathcal{Y}.$$

where, in addition to the first system, $u(k) \in \mathbb{R}^m$ is the current control input, $y(k) \in \mathbb{R}^p$ is the output, the mappings $f(\cdot,\cdot): \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ and $g(\cdot): \mathbb{R}^p \to \mathbb{R}^n$ are assumed to be continuous with f(0,0)=0 and g(0)=0. The control constraint set $\mathcal U$ is a compact sets containing the origin in its interior.

A generic prediction model

Consider the following discrete-time autonomous system affected by additive disturbances:

$$x(k+1) = f(x(k), w(k)), (x(k), w(k)) \in S \times W,$$

where $x(k) \in \mathbb{R}^n$ is the current state and the mapping $f(\cdot) : \mathbb{R}^n \to \mathbb{R}^n$ is assumed to be continuous on \mathbb{R}^n satisfying the condition f(0) = 0. The state constraint set \mathcal{S} is a compact set containing the origin in its interior. The disturbance w(k) is bounded, i.e. $w(k) \in \mathcal{W}$ and $\mathcal{W} \subset \mathbb{R}^w$ is a convex and compact set containing the origin.

Consider also the following discrete-time invariant system affected by additive disturbances:

$$x(k+1) = f(x(k), u(k), w(k)), (x(k), u(k), w(k)) \in S \times U \times W,$$

$$y(k) = g(x(k)), y(k) \in \mathcal{Y}.$$

where, in addition to the first system, $u(k) \in \mathbb{R}^m$ is the current control input, $y(k) \in \mathbb{R}^p$ is the output, the mappings $f(\cdot,\cdot):\mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ and $g(\cdot):\mathbb{R}^p \to \mathbb{R}^n$ are assumed to be continuous with f(0,0)=0 and g(0)=0. The control constraint set $\mathcal U$ is a compact sets containing the origin in its interior.

Set-theoretic methods - An Overview

Set-theoretic methods in control: deriving properties of dynamical systems by means of suitable sets in the state/input/output spaces.

Links between set-theoretic analysis and MPC:

- (robust) positively invariant sets
- reachable sets
- terminal sets
- feasible sets

⁰Excellent textbook Blanchini and Miani (2008): Set-theoretic methods in control, Springer 2008.

Set-theoretic methods

Various families of sets in control:

- ellipsoids (Kurzhanskii and Vályi (1997))
- polyhedra (Motzkin et al. (1959))
- (B)LMIs (Nesterov and Nemirovsky (1994))

Issues to be considered:

- flexibility of representation
- numerical implementation

In the multi-agent context:

- obstacles
- safety regions
- feasible regions

$$x^T Q x \le \gamma$$

Set-theoretic methods

Various families of sets in control:

- ellipsoids (Kurzhanskiĭ and Vályi (1997))
- polyhedra (Motzkin et al. (1959))
- (B)LMIs (Nesterov and Nemirovsky (1994))

Issues to be considered:

- flexibility of representation good compromise
- numerical implementation

In the multi-agent context:

- obstacles
- safety regions
- feasible regions

$$x^T Q x \le \gamma$$

Set-theoretic methods - Polyhedral sets description

Let us define a collection of hyperplanes

$$\mathcal{H}_i = \left\{ x : h_i x = k_i, (h_i, k_i) \in \mathbb{R}^{1 \times n} \times \mathbb{R} \right\}$$

which partition the space in regions

$$\mathcal{R}^+(\mathcal{H}_i) = \{x : h_i x \le k_i\}$$
$$\mathcal{R}^-(\mathcal{H}_i) = \{x : -h_i x \le -k_i\}$$

Set-theoretic methods - Polyhedral sets description

Let us define a collection of hyperplanes

$$\mathcal{H}_i = \left\{ x : h_i x = k_i, (h_i, k_i) \in \mathbb{R}^{1 \times n} \times \mathbb{R} \right\}$$

which partition the space in regions

$$\mathcal{R}^+(\mathcal{H}_i) = \{x: h_i x \leq k_i\}$$

$$\mathcal{R}^-(\mathcal{H}_i) = \{x: -h_i x \leq -k_i\}$$

describing a bounded polyhedral set

$$S = \left\{ x \in \mathbb{R}^n : \bigcap_i \mathcal{R}^+(\mathcal{H}_i), \quad i = 1 : N
ight\}$$

Set-theoretic methods - Polyhedral sets description

Let us define a collection of hyperplanes

$$\mathcal{H}_i = \left\{ x: \ h_i x = k_i, \ (h_i, k_i) \in \mathbb{R}^{1 \times n} \times \mathbb{R} \right\}$$

which partition the space in regions

$$\mathcal{R}^+(\mathcal{H}_i) = \{x: h_i x \leq k_i\}$$

$$\mathcal{R}^-(\mathcal{H}_i) = \{x: -h_i x \leq -k_i\}$$

describing a bounded polyhedral set

$$S = \left\{ x \in \mathbb{R}^n : \bigcap_i \mathcal{R}^+(\mathcal{H}_i), \quad i = 1 : N
ight\}$$

Families of sets – polyhedral sets

Best compromise: polytopic(zonotopic) sets

Polyhedral sets:

- dual representation
 - half-space:

$$h_i x < k_i, i = 1 \dots N_h$$

vertex:

$$\sum_{i} \alpha_{i} v_{i}, \ \alpha_{i} \geq 0, \ \sum_{i} \alpha_{i} = 1, \ i = 1 \dots N_{v}$$

- efficient algorithms for set containment problems Gritzmann and Klee (1994)
- can approximate any convex shape Bronstein (2008)

⁰See also other papers and lectures of F. Stoican (UPB, Romania), S. Olaru (CentraleSupélec, France) on set-theory and its various applications in control engineering.

Families of sets - zonotopic sets

Zonotopic sets Ferrez et al. (2001):

- obtained as hypercube projection
- Minkowski sum of generators:

$$Z(c,G) = \left\{c + \sum_{i} \lambda_{i} g_{i}, |\lambda_{i}| \leq 1, i = 1 \dots N_{g}\right\}$$

• limited to symmetric objects

A hypercube is an n-dimensional analogue of a square (n = 2) and a cube (n = 3).

Zonotope

⁰See also other papers and lectures of F. Stoican (UPB, Romania), S. Olaru (CentraleSupélec, France) on set-theory and its various applications in control engineering.

Set representations

Definition (Cone)

For a finite collection of vectors $Y = \{y_1 \dots y_d\} \subseteq \mathbb{R}^n$, the cone of Y is defined as $cone(Y) \triangleq \{t_1y_1 + \dots t_dy_d : t_i \in \mathbb{R}_+\} = \{Yt, t \in \mathbb{R}_+^n\}.$

Definition (Convex hull)

For a finite collection of points $V = \{v_1 \dots v_d\} \subseteq \mathbb{R}^n$, the convex hull of V is defined as $conv(V) \triangleq \{\alpha_1 v_1 + \dots \alpha_d v_d : \alpha_i \in \mathbb{R}_+, \sum_i \alpha_i = 1\} = \{V\alpha, \alpha \in \mathbb{R}_+^n, \mathbf{1}^T\alpha = 1\}.$

Constructions – exemplifications

Set operations

- Projection along a sub-space
- ullet The Minkowski sum of two sets $P,Q\subseteq\mathbb{R}^n$ is defined to be

$$P \oplus Q = \{x + y : x \in P, y \in Q\}$$

• The Pontryagin difference is defined as

$$P \ominus Q = \{x \in P : x + y \in P, \forall y \in Q\}.$$

ullet Given two convex sets P, Q, the Hausdorff distance is defined as

$$d_H(P,Q) = max \left\{ \bar{d}_H(P,Q), \bar{d}_H(Q,P) \right\}$$

where $\bar{d}_H(P,Q) = \max_{x \in P} \min_{y \in Q} d(x,y)$, and d(x,y) is a distance measured in a given norm in the \mathbb{R}^n space.

Set operations – exemplifications

Minkowski sum / Pontryagin difference

Set operations – exemplifications

Hausdorff distance

The Hausdorff distance is the longest distance you can be forced to travel by an adversary who chooses a point in one of the two sets, from where you then must travel to the other set. In other words, it is the greatest of all the distances from a point in one set to the closest point in the other set.

Set-theoretic methods – Invariance notions

Blanchini and Miani (2008)

Consider a discrete-time autonomous system in \mathbb{R}^n :

$$x(k+1) = f(x(k))$$
, with $f(0) = 0$ and $x(k) \in S$.

Definition (Positive invariance - Blanchini (1999))

A set $S \in \mathbb{R}^n$ is positively invariant if for any $x_0 \in S$, the solution $x(k, x_0)$ satisfies $x(k, x_0) \in S$ for $k \in \mathbb{N}$.

Definition (Positive invariance (equivalent definition))

A set $S \in \mathbb{R}^n$ is positively invariant if $f(S) \subset S$.

Set-theoretic methods – Invariance notions

Consider a discrete-time invariant system in \mathbb{R}^n affected by bounded disturbances $w(k) \in \mathbb{W}$

$$x(k+1) = f(x(k), w(k)), \text{ with } f(0,0) = 0.$$

Definition (RPI set - Blanchini (1999))

A set S is called Robust Positively Invariant (RPI) iff $\forall x(0) \in S$ and $\forall w(k) \in \mathbb{W}$ then $x(k) \in S$ for k > 0.

Definition (mRPI set - Blanchini (1999))

A set Ω_{∞} is called minimal Robust Positively Invariant (mRPI) iff it is a RPI set in \mathbb{R}^n contained in every RPI set of the system.

Links between set-theoretic analysis and MPC:

- (robust) positively invariant sets
- reachable sets
- terminal sets
- feasible sets

Ionela Prodan

Set-theoretic methods – Invariance notions

Consider a discrete-time invariant system in \mathbb{R}^n affected by bounded disturbances $w(k) \in \mathbb{W}$

$$x(k+1) = f(x(k), w(k)), \text{ with } f(0,0) = 0.$$

Definition (RPI set - Blanchini (1999))

A set S is called Robust Positively Invariant (RPI) iff $\forall x(0) \in S$ and $\forall w(k) \in \mathbb{W}$ then $x(k) \in S$ for k > 0.

Definition (mRPI set - Blanchini (1999))

A set Ω_{∞} is called minimal Robust Positively Invariant (mRPI) iff it is a RPI set in \mathbb{R}^n contained in every RPI set of the system.

Links between set-theoretic analysis and MPC:

- (robust) positively invariant sets
- reachable sets
- terminal sets
- feasible sets

Ionela Prodan

Positive invariance conditions for linear systems

Objective: find invariance test for linear time invariant (LTI) dynamics.

Idea: exploit the definition and the generic set-theoretic condition:

$$x(k+1) = Ax(k)$$

A set S is Positively Invariant if one of the following holds:

- $\forall x(k) \in \mathcal{S}$ then $x(k+1) \in \mathcal{S}$
- $AS \subseteq S$.

$$x(k+1) = Ax(k) + w(k), w(k) \in \mathcal{W}$$

A set S is Robust Positively Invariant (RPI) if one of the following holds:

- $\forall x \in \mathcal{S}$ then $Ax + w \in \mathcal{S}, \forall w \in \mathcal{W}$
- $AS + W \subseteq S$
- $\mathcal{AS} \subseteq \mathcal{S} \oplus \mathcal{W}$
- $W \subseteq S \ominus AS$ (the right hand side represents the largest disturbance set for an invariant set S)

⁰See also other papers and lectures of F. Stoican (UPB, Romania), S. Olaru (CentraleSupélec, France) on set-theory and its various applications in control engineering.

Positive invariance conditions for linear systems

Positive invariance conditions for LTI dynamics x(k+1) = Ax(k)

Ellipsoidal sets:

 $\mathcal{E}_P = \{x^\top P x \leq 1\}$ is positive invariant if $\forall x(k) \in \mathcal{E}_P$ then $x(k+1) \in \mathcal{E}_P$

Applying the invariance condition

- $x^{\top}(k+1)Px(k+1) \le 1$ when $x^{\top}(k)Px(k) \le 1$
- $(Ax(k))^{\top}PAx(k) \leq 1$ when $x^{\top}(k)Px(k) \leq 1$
- This holds if the classical (quadratic) Lyapunov function stability condition holds $x^{\top}(k)A^{\top}PAx(k) \leq x^{\top}(k)Px(k) \leq 1$ and leads to

LMI test:

$$A^T P A < P$$
 and $P = P^T > 0$

Osee also other papers and lectures of F. Stoican (UPB, Romania), S. Olaru (CentraleSupélec, France) on set-theory and its various applications in control engineering.

Ultimate bounds

Theorem (Ultimate bounds set - Kofman et al. (2008))

Consider the stable system x(k+1) = Ax(k) + w(k). Let there be the Jordan decomposition $A = V\Lambda V^{-1}$ and assume that $|w(k)| \leq \bar{w}, \forall k \geq 0$. Then there exists $I(\epsilon)$ such that for all $k \geq I(\epsilon)$:

$$|V^{-1}x(k)| \leq (I - |\Lambda|)^{-1}|V^{-1}|\bar{w} + \epsilon |x(k)| \leq |V|(I - |\Lambda|)^{-1}|V^{-1}|\bar{w} + |V|\epsilon$$

The set

$$\Psi = \left\{ x : |V^{-1}x| \le (I - |\Lambda|)^{-1} |V^{-1}|\bar{w} \right\}$$

represents a Robust Positive Invariant approximation of the mRPI.

$$\Omega_{\infty} \subset \Psi$$
.

Mixed-Integer Programming (MIP)

Grundel et al. (2007), Jünger et al. (2009)

- Flexible mathematical model for the formulation of decision and control problems based on optimization
 - combinatorial allocation problem
 - multicast routing problem
- Flexible mathematical model for the formulation of collision avoidance problems involving the control of Multi-Agent Systems
 - path following with obstacle and collision avoidance
 - formation control with collision avoidance
- Fast off-the-shelf solvers available
 - CPLEX, OSL, etc.
- Strong theoretical foundations
 - characterization of tractable special cases
 - NP-hard in general, but can also solve many large problems in practice

Consider a bounded polyhedral set

$$S = \left\{ x \in \mathbb{R}^n : h_i x \le k_i, \ i = 1 : N \right\}$$

Consider a bounded polyhedral set

$$S = \{x \in \mathbb{R}^n : h_i x \le k_i, \ i = 1 : N\}$$

Consider the complement of S

$$C(S) \triangleq cl(\mathbb{R}^n \setminus S) = \bigcup_i \mathcal{R}^-(\mathcal{H}_i), \quad i = 1:N$$

Consider a bounded polyhedral set

$$S = \left\{ x \in \mathbb{R}^n : h_i x \le k_i, \ i = 1 : N \right\}$$

Consider the complement of S

$$\mathcal{C}(S) \triangleq cl(\mathbb{R}^n \setminus S) = \bigcup_i \mathcal{R}^-(\mathcal{H}_i), \quad i = 1:N$$

Define C(S) in a linear representation

$$-h_{i}x \leq -k_{i} + M\alpha_{i}, \quad i = 1: N$$

$$\sum_{i=1}^{i=N} \alpha_{i} \leq N - 1$$

with $(\alpha_1, \ldots, \alpha_N) \in \{0, 1\}$ N

Consider a bounded polyhedral set

$$S = \left\{ x \in \mathbb{R}^n : h_i x \le k_i, \ i = 1 : N \right\}$$

Consider the complement of S

$$\mathcal{C}(S) \triangleq cl(\mathbb{R}^n \setminus S) = \bigcup_i \mathcal{R}^-(\mathcal{H}_i), \quad i = 1:N$$

Define C(S) in a linear representation

$$-h_{i}x \leq -k_{i} + M\alpha_{i}, \quad i = 1: N$$

$$\sum_{i=1}^{i=N} \alpha_{i} \leq N - 1$$

with
$$(\alpha_1,\ldots,\alpha_N)\in\{0,1\}$$
 N

Any of the regions $\mathcal{R}^-(\mathcal{H}_i)$ of $\mathcal{C}(S)$ can be obtained by a suitable choice of binary variables

$$\mathcal{R}^{-}(\mathcal{H}_i) \longleftrightarrow (\alpha_1, \dots, \alpha_N)^i \triangleq (1, \dots, 1, \underbrace{0}_{,}, 1, \dots, 1)$$

References I

- F. Blanchini. Set invariance in control. Automatica, 35(11):1747-1767, 1999.
- F. Blanchini and S. Miani. Set-theoretic methods in control. Springer, 2008.
- EM Bronstein. Approximation of convex sets by polytopes. Journal of Mathematical Sciences, 153(6):727–762, 2008.
- C.R. Cutler et al. Method for removal of pid dynamics from mpc models, 2007. US Patent 7,263,473.
- J.A. Ferrez, K. Fukuda, and T.M. Liebling. Cuts, zonotopes and arrangements. The sharpest Cut. SIAM Series on Optimization, 2001.
- P. Gritzmann and V. Klee. On the complexity of some basic problems in computational convexity: I. Containment problems. Discrete Mathematics, 136 (1-3):129–174, 1994.
- D. Grundel, R. Murphey, and Pardalos P.M. Cooperative systems, Control and optimization, volume 588. Springer Verlag, 2007.
- M. Jünger, M. Junger, T.M. Liebling, D. Naddef, G. Nemhauser, and W.R. Pulleyblank. 50 Years of Integer Programming 1958-2008: From the Early Years to the State-of-the-Art. Springer Verlag, 2009.
- E. Kofman, M.M. Seron, and H. Haimovich. Control design with guaranteed ultimate bound for perturbed systems. Automatica, 44(7):1815–1821, 2008.
- A.B. Kurzhanskii and I. Vályi. Ellipsoidal calculus for estimation and control. liasa Research Center, 1997.
- T.S. Motzkin, H. Raiffa, G.L. Thompson, and R.M. Thrall. The double description method. Contributions to the theory of games, 2:51, 1959.
- Y. Nesterov and A. Nemirovsky. Interior point polynomial methods in convex programming. Studies in applied mathematics, 13:1993, 1994.
- A.I. Propoi. Use of linear programming methods for synthesizing sampled-data automatic systems. Automation and Remote Control, 24(7):837-844, 1963.
- J. Richalet and D. O'Donovan. Predictive Functional Control: Principles and Industrial Applications. Springer, 2009.