Commutative Algebra

Sumanth N R

 $March\ 19,\ 2023$

Contents

Chapter 1	Rings and Ideals	Page 2
Chapter 2	Modules	Page 8

Chapter 1

Rings and Ideals

Exercise 1.1

Let x be a nilpotent element of a ring A. Show that 1+x is a unit of A. Deduce that the sum of a nilpotent element and a unit is a unit.

Suppose $x^n = 0$ for some $n \in \mathbb{N}$.

Clearly, $(1+x)(1-x+x^2...+(-1)^{n-1}x^{n-1})=1-x^n=1$.

Hence, 1 + x is a unit.

Consider u + x for some unit u. Write $u + x = u (1 + xu^{-1})$.

Now, we know that xu^{-1} is nilpotent with the same n and hence, $(1 + xu^{-1})$ is a unit.

Since product of units is a unit, we can conclude u + x is a unit.

Exercise 1.2

Let A be a ring and A[x] be the ring of polynomials in an intermediate x with coefficients in A. Let $f = a_0 + a_1 x + ... + a_n x^n \in A[x]$. Prove that

- 1. f is a unit \iff a_0 is a unit in A and a_1, \ldots, a_n are nilpotent.
- 2. f is nilpotent $\iff a_0, a_1, \ldots, a_n$ are nilpotent.
- 3. f is a zero-divisor \iff there exists $a \neq 0$ in A such that af = 0.
- 4. f is said to be primitive if $(a_0, a_1, \ldots, a_n) = (1)$. Prove that if $f, g \in A[x]$, then fg is primitive \iff f and g are primitive.
- 1. We prove the result using induction on the degree of the polynomial. Base case n=0 is trivially correct since a_0 is a unit in $A[x] \iff a_0$ is a unit in A. Let us assume the result for all polynomials of degree n-1 or lower.

 \Longrightarrow

Suppose the inverse of f be $g(x) = b_0 + b_1 x + ... + b_m x^m$.

Observe that $a_n^{r+1}b_{m-r} = 0 \ \forall \ r$.

r=0: Co-efficient of x^{n+m} is 0. Thus, $a_nb_m=0 \implies a_n^{0+1}b_{m-0}=0$. r=1: Co-efficient of x^{n+m-1} is 0. Thus, $a_nb_{m-1}+a_{n-1}b_m=0 \implies a_n^{1+1}b_{m-1}=0$. after multiplying by a_n .

 $r = m : a_n^{m+1} b_0 = 0$

Since we also know that $a_0b_0 = 1$, we know that b_0 is a unit. Multiplying a_0 in the above equation, we can see that $a_n^{m+1} = 0$ and hence a_n is nilpotent.

We also know that the element $a_n x^n$ is nilpotent in the polynomial ring and hence $f - a_n x^n$ is a unit using the result that the sum of a unit and a nilpotent element is a unit.

But $f - a_n x^n$ is an n-1 or a lower degree polynomial and hence, the result holds, that is a_1, \ldots, a_{n-1} are also nilpotent along with a_0 being a unit.

 \leftarrow

Using $a_0, a_1, \ldots, a_{n-1}$, we construct $f - a_n x^n$ which is a unit using the induction hypothesis and we know that $a_n x^n$ is a nilpotent element and hence, $f - a_n x^n + a_n x^n = f$ being the sum of unit and a nilpotent element, is a unit.

2. We prove the result by induction on the degree of the polynomial. n = 0 is trivially correct since a_0 is a nilpotent element of A if and only if a_0 is a nilpotent element of A[x].

Assume the result for all polynomials of degree n-1 or lower.

 \Longrightarrow

 $f = a_0 + a_1 x + \ldots + a_n x^n$ is nilpotent. Thus, for some $r \in \mathbb{N}$, $f^r = 0$. Considering the rn^{th} coefficient and setting it to zero, we get $a_n^r = 0$ and thus, $a_n x^n$ is a nilpotent element of A[x]. Since we know that the sum of 2 nilpotent elements is nilpotent, $f - a_n x^n$ being a polynomial of degree less than n is nilpotent and we get a_0, \ldots, a_{n-1} are nilpotent.

 \leftarrow

 a_0, \ldots, a_n are nilpotent elements of A.

Clearly, $a_n x^n$ is nilpotent and the polynomial $a_0 + a_1 x + ... + a_{n-1} x^{n-1}$ is nilpotent using the induction hypothesis. Adding the above two, we get f is nilpotent.

3. The only if part is trivial since $a \in A[x]$. Proof for the \implies part.

Suppose f is a zero-divisor. Then, there exists $g \in A[x]$ with the least degree such that fg = 0. We have $a_n b_m = 0$ since the coefficient of x^{n+m} is 0.

This implies $a_n g = 0$ since $a_n g f = 0$ and if $a_n g \neq 0$, it is a polynomial of degree less than n and annihilates f which contradicts the minimality of the degree of g.

We show by induction that $a_{n-r}g = 0$ for $0 \le r \le n$. The base case being r = 0, $a_ng = 0$ is shown above.

Let us just go 1 level for better underdstanding.

Since we proved $a_n g = 0$, we showed that $a_n b_i = 0$ for all i.

Since fg = 0, considering the coefficient of x^{n+m-1} , we have $a_n b_{m-1} + a_{n-1} b_m = 0$ but $a_n b_{m-1} = 0$.

Thus, $a_{n-1}b_m=0$ and a_{n-1} annihilates the leading co-efficient of g.

Using the same argument as before, we can see that $a_{n-1}g = 0$.

Now, we can use the induction hypothesis to show that $a_{n-i}g = 0$ for $0 \le i \le n$ and hence, $a_0g = 0$.

Thus, $a_ib_i=0$ for all $0 \le i \le n$ and $0 \le j \le m$.

Also, $b_m \neq 0$ and $a_i b_m = 0$ for all i, we can conclude that $b_m f = 0$.

4. Suppose $f = a_0 + a_1 x + \ldots + a_n x^n$

 $g = b_0 + b_1 x + \dots + b_m x^m \text{ and}$

 $\bar{f}g = c_0 + c_1 x + \ldots + c_{n+m} x^{n+m}$ where $c_i = \sum_{j=0}^i a_j b_{i-j}$ for $0 \le i \le n+m$.

 \Longrightarrow

Suppose fg is primitive.

Then, $\exists \gamma_1, \gamma_2, \dots, \gamma_n \in A$ such that $\gamma_1 c_1 + \gamma_2 c_2 + \dots + \gamma_{m+n} c_{m+n} = 1$.

Thus,

$$\sum_{i=0}^{n} \sum_{j=0}^{m} a_i b_j \gamma_{i+j} = 1$$

Putting $\alpha_i := \sum_{j=0}^m b_j \gamma_{i+j}$, we get $\sum_{i=1}^n a_i \alpha_i = 1$ and hence, f is primitive.

Similarly, we get g is primitive.

 \leftarrow

We prove the result using the contrapositive.

Suppose fg is not primitive.

Then, $(c_0, c_1, \ldots, c_{m+n})$ is a non-trivial ideal of A, and is contained in some maximal ideal, say \mathfrak{c} and $1 \notin \mathfrak{c}$. Clearly, A/\mathfrak{c} is a field.

We have $fg \equiv 0 \pmod{\mathfrak{c}}$. Since A/\mathfrak{c} is a field, this implies $f \equiv 0 \pmod{\mathfrak{c}}$ or $g \equiv 0 \pmod{\mathfrak{c}}$.

This means, either f or g is contained in \mathfrak{c} which implies 1 does not belong to it and hence is not primitive.

Exercise 1.3

Generalize the results of Exercise 2 to a polynomial ring $A[x_1, ..., x_r]$ in several indeterminates.

Suppose we consider the polynomial ring $A[x_1, \ldots, x_r]$. An element of the above ring looks like,

$$f = \sum_{i_1 + i_2 + \dots + i_r \le n} a_{i_1, i_2, \dots, i_r} x_1^{i_1} x_2^{i_2} \cdots x_r^{i_r}$$

- 1. f is a unit in $A[x_1,\ldots,x_r] \iff a_{0,0,\ldots,0}$ is a unit in A and every other co-efficient is nilpotent.
- 2. f is a nilpotent element in $A[x_1,\ldots,x_r] \iff a_{i_1,i_2,\ldots,i_r}$ is a nilpotent element in A for any combination of
- 3. f is a zero-divisor in $A[x_1, \ldots, x_r] \iff \exists a \neq 0 \in A \text{ such that } af = 0$.
- 4. Suppose $f, g \in A[x_1, \dots, x_r]$. fg is primitive in $A[x_1,...,x_r] \iff f$ and g are primitive in $A[x_1,...,x_r]$.

Exercise 1.4

In the ring A[x], the Jacobson radical is equal to nilradical.

We know that every maximal ideal is a prime ideal and hence, the nilradical is contained in the Jacobson radical. We need to prove that Jacobson radical is contained in nilradical.

Let $f(x) \in \Re \implies 1 - fg$ is a unit in $A[x] \ \forall \ g \in A[x]$. Suppose

$$f(x) = a_0 + a_1 x \cdots a_n x^n$$

We use the fact that if $h(x) = h_0 + \cdots + h_k x^k$ is unit, h_0 is a unit and h_1, \cdots, h_k are nilpotent.

Putting g = x, we see that 1 - fx is a unit and hence $a_0, a_1, \dots a_n$ are nilpotent.

Since coefficients of f are nilpotent, we can conclude that f is nilpotent.

$$f \in \Re \implies f \in \Re$$

Hence, Jacobson radical is contained in nilradical and we proved the result.

Let A be a ring and let A[[x]] be a ring of formal power series $f = \sum_{i=0}^{\infty} a_n x^n$ with coefficients in A. Show

- 1. f is a unit in $A[[x]] \iff a_0$ is a unit in A.
- 2. f is a nilpotent element in $A[[x]] \implies a_n$ is nilpotent for any $n \ge 0$. Is the converse true?
- 3. f belongs to the Jacobson radical of $A[[x]] \iff a_0$ belongs to the Jacobson radical of A.
- 4. The contraction of a maximal ideal \mathfrak{m} of A[[x]] is a maximal ideal of A and \mathfrak{m} is generated by \mathfrak{m}^{c} and x.
- 5. Every prime ideal of A is a contraction of a prime ideal of A[[x]].
- 1. (\Longrightarrow)

Now, f is a unit in A[[x]]

 $\implies \exists \ g = \sum_{i=0}^{\infty} b_i x^i \in A[[x]] \text{ such that } fg = 1$ $\implies a_0 b_0 = 1 \implies a_0 \text{ is a unit.}$

Suppose a_0 is a unit in A.

Let us try to construct $g = \sum_{i \ge 0} b_i$ such that fg = 1.

Since a_0 is a unit, there is a b_0 such that $a_0b_0=1$. Since the coefficient of x^n is $0 \ \forall \ n \in \mathbb{N}$ in fg, we have

$$0 = \sum_{i=0}^{n} a_{n-i} b_i \implies a_0 b_n = -\sum_{i=0}^{n-1} a_{n-i} b_i \implies b_n = -b_0 \sum_{i=0}^{n-1} a_{n-i} b_i$$

We just expressed b_n in terms of b_0, \dots, b_{n-1} such that coefficient of x^n in fg = 0. $\exists g \in A[[x]]$ such that fg = 1.

2. Suppose f be a nilpotent element in A[[x]]. Then, $f^n = 0$ for some $n \in \mathbb{N}$.

Coefficient of 1 in f^n is $a_0^n = 0 \implies a_0$ is nilpotent.

Now, consider the element $f_1 = f - a_0$. Since $f' = a_1x + a_2x^2 + \cdots$, being the sum of nilpotent elements, is nilpotent, and $f' = xf_1$. Thus, f_1 is nilpotent.

 a_1 being the coefficient of 1 in f_1 , is nilpotent and using the same argument, we can show that a_2 is nilpotent. Thus, a_n is nilpotent for any $n \ge 0$.

 $3. (\Longrightarrow)$

f belongs to the Jacobson radical of $A[[x]] \implies 1 - fg$ is a unit $\forall g \in A[[x]]$.

Putting g = y for some $y \in A$, we get $1 - a_0 y$ is a unit in $A \forall y \in A$ using the previous proposition. This means $a_0 \in \Re_A$.

 (\rightleftharpoons)

Suppose $a_0 \in \Re \implies 1 - a_0 y$ is a unit in $A \forall y \in A$.

Cosider some $g = \sum_{i \ge 0} b_i x^i \in A[[x]].$

 $1 - a_0 b_0$ is a unit in $A \implies 1 - fg$ is a unit in A[[x]] for any $g \in A[[x]]$.

This proves the claim.

Exercise 1.6

A ring A is such that every ideal not contained in the Nilradical contains a non-zero idempotent (that is, an element e such that $e^2 = e$ and $e \neq 0$). Prove that the Nilradical and the Jacobson radical of A are equal.

It is trivial to note that $\mathfrak{N} \subseteq \mathfrak{R}$.

If $\Re \nsubseteq \Re$, then there exists an idempotent $e \in \Re$ such that $e^2 \neq e, e \neq 0$. We show that this is not possible.

Since $e \in \Re$, 1 - ey is a unit in A for every $y \in A$. Putting y = 1, we get 1 - e is a unit in A.

Since $e, 1 \in \mathfrak{m}$, we have $1 - e \in \mathfrak{m}$ for some maximal ideal \mathfrak{m} .

Also, note that $(1-e)e = e - e^2 = 0 \implies e = 0$ since 1-e is a unit which is a contradiction.

Hence, $\mathfrak{N} = \mathfrak{R}$.

Exercise 1.7

Let A be a ring in which every element x satisfies $x^n = x$ for some $n \in \mathbb{N}$ and n > 1 depending on x. Show that every prime ideal of A is maximal.

Suppose \mathfrak{p} be a prime ideal of A.

Consider a non zero element $x \in A/\mathfrak{p} \implies x^n \in A/\mathfrak{p}$ for some $n > 1 \in \mathbb{N}$.

Therefore, $x^n - x \in A /_{\mathfrak{p}} \implies x (x^{n-1} - 1) \in A /_{\mathfrak{p}}$.

Since A/\mathfrak{p} is an integral domain and x is chosen to be a non zero element,

 $x(x^{n-1}-1)=0 \implies x^{n-1}-1=0 \implies x^{-1}=x^{n-2}.$

We therefore proved that any non-zero element in A/\mathfrak{p} is a unit and hence A/\mathfrak{p} is a field.

Thus, we conclude \mathfrak{p} is a maximal ideal.

Exercise 1.8

Let A be a ring $\neq 0$. Show that the set of prime ideals of A has minimal elements with respect to inclusion.

Suppose we take the set of prime ideals of A and consider the inclusion relation on it as a partial order defined by

$$\mathfrak{p}_1 < \mathfrak{p}_2 \iff \mathfrak{p}_1 \supset \mathfrak{p}_2$$

This forms a chain in the set of prime ideals of A.

Using Zorn's lemma, we can show that there exists a maximal element \mathfrak{p} in the chain which is the minimal prime ideal of A.

Exercise 1.9

Let $\mathfrak{a} \neq (1)$ be an ideal in a ring A. Show that $\mathfrak{a} = r(\mathfrak{a}) \iff \mathfrak{a}$ is an intersection of prime ideals.

One side is trivial since $r(\mathfrak{a})$ is the intersection of all prime ideals containing \mathfrak{a} .

Exercise 1.10

Let A be a ring, \mathfrak{N} its nilradical. Show that the following are equivalent.

- 1. A has exactly one prime ideal.
- 2. A Every element of A is a unit or nilpotent.
- 3. A/\mathfrak{N} is a field.

$$(1 \implies 3)$$

Suppose A has exactly one prime ideal, \mathfrak{p} . Then, $\mathfrak{N} = \mathfrak{p}$.

Since any maximal ideal is a prime ideal, and we only have one prime ideal, the prime ideal must be a maximal ideal and since $\mathfrak{p} = \mathfrak{N}$, \mathfrak{N} is a maximal ideal and A is a local ring.

We directly get the result that A/\mathfrak{N} is a field.

$$(3 \implies 2)$$

Suppose A/\mathfrak{N} is a field.

Consider some $x \in A$. If $x \in \mathbb{N}$, it is nilpotent and if $x \notin \mathbb{N}$,

$$\exists y \in A, y \notin \Re \text{ s.t. } (x + \Re)(y + \Re) = 1 + \Re \implies xy - 1 \in \Re$$

Clearly, since the sum of a unit and a nilpotent unit is a unit, we have xy - 1 + 1 = xy is a unit in A.

$$\implies \exists z \in A \text{ s.t. } xyz = 1$$

yz is the inverse of x and hence x is a unit in A.

Therefore, every element of A is either nilpotent or a unit.

$$(2 \implies 3)$$

We need to prove that A/\mathfrak{N} is a field.

Suppose we consider $x \in A, x \notin \Re$

$$\implies \exists \ y \in A, y \notin \Re \text{ s.t. } xy = 1$$

Clearly,

$$\implies (x + \mathfrak{N})(y + \mathfrak{N}) = 1 + \mathfrak{N}$$

and hence, we can see that A/\mathfrak{N} is a field.

$$(3 \implies 1)$$

We can see that \mathfrak{N} is a maximal ideal.

Suppose for contradiction, let there be at least 2 distinct prime ideals $\mathfrak{p}_1,\mathfrak{p}_2$ in A.

Clearly, this means that

$$\mathfrak{N} \subseteq \mathfrak{p}_1 \text{ and } \mathfrak{N} \subseteq \mathfrak{p}_2$$

We claim that

$$\mathfrak{N}\subset \mathfrak{p}_1 \text{ or } \mathfrak{N}\subset \mathfrak{p}_2$$

since if that does not hold, then we have

$$\mathfrak{N} = \mathfrak{p}_1 = \mathfrak{p}_2$$

which contradicts the fact that \mathfrak{p}_1 and \mathfrak{p}_2 are distinct and if it holds, it contradicts the maximality of \mathfrak{R} . And hence, we can see that there is only a single prime ideal in A.

Exercise 1.11

A ring A is called a Boolean ring if $x^2 = x$ for every $x \in A$. In a Boolean ring, show that

- 1. $2x = 0 \forall x \in A$
- 2. Every prime ideal \mathfrak{p} is maximal and A/\mathfrak{p} is a field with 2 elements.
- 3. Every finitely generated ideal in A is principal.
- 1. Since $x^2 = x \ \forall \ x \in A$, we have

$$(1+x)^2 = (1+x)$$

$$\implies \cancel{1} + 2x + \cancel{x} = \cancel{1} + \cancel{x}$$

$$\implies 2x = 0 \quad \forall \ x \in A$$

2. Consider some prime ideal \mathfrak{p} . We know that every element of A/\mathfrak{p} satisfies $x^2 = x$. Since \mathfrak{p} is a prime ideal, A/\mathfrak{p} is an integral domain, all the elements of A/\mathfrak{p} are the elements that satisfy $x = x^2$.

$$x = x^2 \implies x(1-x) = 0 \implies x = 0 \text{ or } x = 1$$

Hence, A is a field with 2 elements which implies that \mathfrak{p} is a maximal ideal.

3. We need to show that any ideal generated by 2 elements can be generated by a single element. In other words, we need to show that

$$(x, y) = (z)$$
 for some $z \in A$ (1.1)

We claim that

$$z = x + y - xy$$

since xz = x and yz = y and it satisfies (1.1).

Hence, we can merge any finite number of generators into a single generator which implies every finitely generated ideal is principal.

Exercise 1.12

A local ring contains no idempotents $\neq 0, 1$.

Recall that a ring A is called a local ring if it contains a unique maximal ideal \mathfrak{m} .

Notice that if e is an idempotent in A, then $e(e-1) = e^2 - e = 0$ shows that e and e-1 are zero divisors and hence, not units. Thus, $e, 1-e \in \mathfrak{m}$ but

$$\implies e + (1 - e) = 1 \in \mathfrak{m}$$

Chapter 2

Modules

Exercise 2.1

Show that

$$\mathbb{Z}/m\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z} = 0$$

when m and n are coprime.

Let

$$T := \mathbb{Z}/m\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z}$$

Consider some element $x \otimes y \in T$. Since m and n are coprime,

$$\exists \ a,b \in \mathbb{Z} \quad \text{s.t.} \quad am+bn=1$$

Now,

$$x \otimes y = (am + bn)(x \otimes y)$$
$$= (amx \otimes y) + (x \otimes bny)$$
$$= (0 \otimes y) + (x \otimes 0)$$
$$= 0$$

Hence, T = 0.

Exercise 2.2

Let A be a ring and \mathfrak{a} be an ideal.

Show that

$$A/_{\mathfrak{a}} \otimes_{A} M \cong M/_{\mathfrak{a}M}$$

Any element of $A/\mathfrak{a} \otimes_A M$ can be written as

$$(r + \mathfrak{a}) \otimes m \in A /_{\mathfrak{a}} \otimes_A M$$