

nRF24L01P Wireless Module **E01 Series**

User Manual

Version	Date	Description	Issued by
1.00	2017/11/15	Initial version	huaa
1.10	2018/5/22	Added contents	huaa
1.20	2018/8/13	Added E01 (2G4M27D)	Huaa

Brief Introduction

E01 series 2.4Ghz wireless transceiver module based on nRF24L01P with SPI interface features small size and various application usage.

E01 series modules are embedded with imported electronic parts, such as industrial crystals with high precision and TCXO. With built-in PA and LNA, the 20dBm module has better performance for communication and operating range; 0dBm modules with imported parts owns excellent RF performance, especially popular among users who require low power consumption.

E01 series strictly stick to the design rules home and abroad of FCC, CE, CCC and meet the related RF certifications and export standards. As hardware platform, users need to carry out secondary development.

Model	Antenna	Packing	Transmitting power	Distance
E01-ML01D	PCB	DIP	0dBm	100m
E01-ML01DP4	PCB	DIP	20dBm	1800m
E01-ML01DP5	SMA-K	DIP	20dBm	2500m
E01-2G4M27D	SMA-K	DIP	27dBm	3500m
E01-ML01IPX	IPEX	SMD	0dBm	200m
E01-ML01S	PCB	SMD	0dBm	100m
E01-ML01SP2	PCB/ IPEX	SMD	20dBm	1500m
E01-ML01SP4	IPEX	SMD	20dBm	2000m

Contents

1. Technical Parameter	3
1.1. General parameter	3
1.2. Electrical parameter	3
1.2.1. Transmitting current	3
1.2.2. Receiving current	3
1.2.3. Turn-off current	4
1.2.4. Voltage supply	4
1.2.5. Communication level	4
1.3. RF parameter	5
1.3.1. Transmitting power	5
1.3.2. Receiving sensitivity	5
1.3.3. Recommended operating frequency	5
1.4. Tested distance	6
2. Mechanical Characteristics	6
2.1. E01-ML01D	6
2.2. E01-ML01DP4	7
2.3. E01-ML01DP5	8
2.4. E01-2G4M27D	9
2.5. E01-ML01IPX	10
2.6. E01-ML01S	11
2.7. E01-ML01SP2	12
2.8. E01-ML01SP4	13
3. Recommended Circuit Diagram	14
4. Electrical Parameters	14
5. Antenna Type	16
6. Notes	16
7. Production Guidance	17
7.1. Reflow Soldering Temperature	17
7.2. Reflow Curving Diagram	17
8. FAQ	18
8.1. Communication range is too short	18
8.2. Module is easy to damage	18
9. Important Notes	18
10. About Us	18

1. Technical Parameter

1.1. General parameter

Model	Core IC	Size	Net Weight	Operating Temperature	Operating Humidity	Storage Temperature
E01-ML01D	nRF24L01P	12.6 * 22.6 mm	1.1±0.1g	-40 ~ 85°C	10% ~ 90%	-40 ~ 125°C
E01-ML01DP4	nRF24L01P	15 * 27 mm	1.4±0.1g	-40 ~ 85°C	10% ~ 90%	-40 ~ 125°C
E01-ML01DP5	nRF24L01P	18 * 33.4 mm	4.9±0.1g	-40 ~ 85°C	10% ~ 90%	-40 ~ 125°C
E01-2G4M27D	nRF24L01P	18 * 33.4 mm	5.1±0.1g	-40 ~ 85°C	10% ~ 90%	-40 ~ 125°C
E01-ML01IPX	nRF24L01P	12 * 19 mm	0.6±0.1g	-40 ~ 85°C	10% ~ 90%	-40 ~ 125°C
E01-ML01S	nRF24L01P	12 * 19 mm	0.5±0.1g	-40 ~ 85°C	10% ~ 90%	-40 ~ 125°C
E01-ML01SP2	nRF24L01P	12.8 * 25 mm	0.8±0.1g	-40 ~ 85°C	10% ~ 90%	-40 ~ 125°C
E01-ML01SP4	nRF24L01P	14.8 * 18 mm	1.2±0.1g	-40 ~ 85°C	10% ~ 90%	-40 ~ 125°C

1.2. Electrical parameter

1.2.1. Transmitting current

Model	Min	Тур	Max	Unit	Remarks
E01-ML01D	12	13	14	mA	
E01-ML01DP4	100	110	120	mA	● When designing current supply circuit, 30% margin is recommended
E01-ML01DP5	120	130	140	mA	to be remained so as to ensure long-term stable operation of the
E01-2G4M27D@3.3V	480	490	500	mA	whole module;
E01-2G4M27D@5.0V	380	390	400	mA	• The current at the instant of transmitting may be high, but the total energy consumed may be lower due to very short transmitting time;
E01-ML01IPX	12	13	14	mA	When using external antenna, the impedance matching degree at
E01-ML01S	12	13	14	mA	different frequency points between antenna and module may affect
E01-ML01SP2	120	130	140	mA	the transmitting current value at different levels.
E01-ML01SP4	110	120	130	mA	

1.2.2. Receiving current

Model	Min	Тур	Max	Unit	Remarks
E01-ML01D	11	12	13	mA	
E01-ML01DP4	18	20	22	mA	
E01-ML01DP5	18	20	22	mA	•The current consumed when the RF chip is only working at receiving
E01-2G4M27D@3.3V	22	23	24	mA	mode is called as receiving current, the tested receiving current may
E01-2G4M27D@5.0V	21	22	23	mA	be higher for some RF chips with communication protocol or the
E01-ML01IPX	11	12	13	mA	developers have loaded their own protocol to the whole module; The current at pure receiving mode will be mA level, users can
E01-ML01S	11	12	13	mA	realize μA level of receiving current through firmware development.
E01-ML01SP2	19	21	23	mA	
E01-ML01SP4	24	26	28	mA	

1.2.3. Turn-off current

Model	Min	Тур	Max	Unit	Remarks
E01-ML01D	0.5	1.0	2.0	μΑ	
E01-ML01DP4	0.5	1.0	2.0	μΑ	A 71
E01-ML01DP5	0.5	1.0	2.0	μΑ	 The turn-off current means the current consumed by CPU, RAM, Clock and some registers which remain operating. SoC is at very low
E01-2G4M27D	450	455	460	μΑ	power consumption status;
E01-ML01IPX	0.5	1.0	2.0	μΑ	The turn-off current is always lower than the current consumed
E01-ML01S	0.5	1.0	2.0	μΑ	when the power supply source of the whole module is at no-load status.
E01-ML01SP2	0.5	1.0	2.0	μΑ	status.
E01-ML01SP4	0.5	1.0	2.0	μΑ	

1.2.4. Voltage supply

Model	Min	Тур	Max	Unit	Remarks
E01-ML01D	2.0	3.3	3.6	V DC	● If the module stays at maximum voltage for a long time, it may be
E01-ML01DP4	2.0	3.3	3.6	V DC	damaged:
E01-ML01DP5	2.0	3.3	3.6	V DC	• The power supply pin has certain surge-resistance ability, but the
E01-2G4M27D	2.5	3.3	5.5	V DC	potential pulse is higher than the maximum power supply voltage;
E01-ML01IPX	2.0	3.3	3.6	V DC	●The power supply is not advisable to be below 3.0V, or the RF
E01-ML01S	2.0	3.3	3.6	V DC	parameters will be influenced at different degree.
E01-ML01SP2	2.0	3.3	3.6	V DC	For max 30dBm, voltage is no less than 4.75V, or RF parameters
E01-ML01SP4	2.0	3.3	3.6	V DC	will be affected to different extend.

1.2.5. Communication level

Model	Min	Тур	Max	Unit	Remarks
E01-ML01D	2.0	3.3	3.6	V DC	
E01-ML01DP4	2.0	3.3	3.6	V DC	● If the module stays at maximum communication level for a long
E01-ML01DP5	2.0	3.3	3.6	V DC	time, it may be damaged;
E01-2G4M27D	2.0	3.3	3.6	V DC	●The module is compatible with some 5.0V MCU; Because there's too
E01-ML01IPX	2.0	3.3	3.6	V DC	much model, pls refer to the real testing or consult our sales;
E01-ML01S	2.0	3.3	3.6	V DC	• There are various ways to switch communication level, but it will
E01-ML01SP2	2.0	3.3	3.6	V DC	affect the whole power consumption to a large extend.
E01-ML01SP4	2.0	3.3	3.6	V DC	

1.3. RF parameter

1.3.1. Transmitting power

Model	Min	Тур	Max	Unit	Remarks
E01-ML01D	-0.2	0	0.3	dBm	
E01-ML01DP4	19.7	20	20.4	dBm	Due to the error of the materials, each LRC component has ±0.1% error, so error accumulation will occur since multiple LRC.
E01-ML01DP5	19.7	20	20.4	dBm	components are used in the whole RF circuit, and the transmitting
E01-2G4M27D	26.5	27	27.5	dBm	currents will be different at different modules;
E01-ML01IPX	-0.2	0	0.3	dBm	• The power consumption can be lowered by lowering the transmitting power, but the efficiency of the internal PA will be
E01-ML01S	-0.2	0	0.3	dBm	decreased by lowering transmitting power due to various reasons;
E01-ML01SP2	19.7	20	20.4	dBm	The transmitting power will be lowered by lowering the power supply voltage.
E01-ML01SP4	19.7	20	20.4	dBm	

1.3.2. Receiving sensitivity

Model	Min	Тур	Max	Unit	Remarks
E01-ML01D	-92.0	-93.0	-94.0	dBm	
E01-ML01DP4	-95.5	-96.0	-97.5	dBm	The sensitivity is tested under the air data rate 250kbps;
E01-ML01DP5	-95.5	-96.0	-97.5	dBm	$lacktriangle$ Due to the error of the materials, each LRC component has $\pm 0.1\%$
E01-2G4M27D	-98.0	-99.0	-100.0	dBm	error, so error accumulation will occur since multiple LRC
E01-ML01IPX	-92.0	-93.0	-94.0	dBm	components are used in the whole RF circuit, and the transmitting currents will be different at different modules;
E01-ML01S	-92.0	-93.0	-94.0	dBm	• The receiving sensitivity will be reduced and communication range
E01-ML01SP2	-95.5	-96.0	-97.5	dBm	will be shortened while increasing the air data rate.
E01-ML01SP4	-95.5	-96.0	-97.5	dBm	

1.3.3. Recommended operating frequency

Model	Min	Тур	Max	Unit	Remarks
E01-ML01D	2400	2430	2525	MHz	
E01-ML01DP4	2400	2430	2525	MHz	
E01-ML01DP5	2400	2430	2525	MHz	To work within the recommended frequency can assure the modules
E01-2G4M27D	2400	2430	2525	MHz	to meet all the parameters;
E01-ML01IPX	2400	2430	2525	MHz	It is recommended to avoid the crowded integral frequency such as
E01-ML01S	2400	2430	2525	MHz	433.0MHz, 868.0MHz, 915MHz, 240MHz etc.
E01-ML01SP2	2400	2430	2525	MHz	
E01-ML01SP4	2400	2430	2525	MHz	

1.4. Tested distance

Model	Min	Тур	Max	Unit	Remarks
E01-ML01D	90	100	110	m	●The external antenna used is of 5dBi gain and vertical polarization. The
E01-ML01DP4	1600	1800	1980	m	height is 2.5 meters;
E01-ML01DP5	2300	2500	2800	m	●The interval between each data packet is 2s, sending 100 packets with
E01-2G4M27D	3150	3500	3850	m	30 bytes in each packet, the range at data lose rate of lower than 5% is
E01-ML01IPX	180	200	230	m	valid range; • In order to obtain meaningful and reproducible results, we conducted
E01-ML01S	90	100	120	m	the tests in clear air with little electromagnetic interference at suburb
E01-ML01SP2	1300	1500	1600	m	areas;
E01-ML01SP4	1800	2000	2300	m	Distance may be shorter with interference or obstacles.

2. Mechanical Characteristics

2.1. E01-ML01D

Pin No.	Pin item	Pin direction	Pin application					
1	GND		Ground					
2	VCC		Power supply 1.9V~3.6V DC					
3	CE	input	Chip enable					
4	CSN	input	SPI Chip select					
5	SCK	input	SPI Clock					
6	MOSI	input	SPI master output slave input					
7	MISO	Output	SPI master input slave output					
8	8 IRQ Output Interrupt request							
	★ Find more details on 《nRF24L01P Datasheet》 from Nordic ★							

2.2. E01-ML01DP4

Pin No.	Pin item	Pin direction	Pin application			
1	GND		Ground,connect to power reference ground.			
2	VCC		Power supply 2.0 V~3.6V DC			
3	CE	input	Chip enable			
4	CSN	input	SPI Chip select			
5	SCK	input	SPI Clock			
6	MOSI	input	SPI master output slave input			
7	MISO	Output	SPI master input slave output			
8 IRQ Output			Interrupt request, valid in low communication level			
	★ Find more details on 《nRF24L01P Datasheet》 from Nordic ★					

2.3. E01-ML01DP5

Pin No.	Pin item	Pin direction	Pin application				
1	GND		Ground				
2	VCC		Power supply 2.0V~3.6V DC				
3	CE	input	Chip enable				
4	CSN	input	SPI Chip select				
5	SCK	input	SPI Clock				
6	MOSI	input	SPI master output slave input				
7	MISO	Output	SPI master input slave output				
8 IRQ Output Interrupt request, valid in low communication level							
	★ Find more details on 《nRF24L01P Datasheet》 from Nordic ★						

2.4. E01-2G4M27D

Pin No.	Pin item	Pin direction	Pin application			
1	GND		Ground			
2	VCC		Power supply 2.5V~5.5V DC, it's recommended to use 3.3V.			
3	CE	input Chip enable				
4	CSN	input SPI Chip select				
5	SCK	input	SPI Clock			
6	6 MOSI input		SPI master output slave input			
7	MISO	Output	SPI master input slave output			
8	IRQ	Output	Interrupt request, valid in low communication level			
★ Find more details on 《nRF24L01P Datasheet》 from Nordic ★						

2.5. E01-ML01IPX

Pin No.	Pin item	Pin direction	Pin application			
1	VCC		Power supply 1.9V~3.6V DC			
2	CE	Input	Chip enable			
3	CSN	Input	SPI Chip select			
4	SCK	Input	SPI Clock			
5	MOSI	Input	SPI master output slave input			
6	MISO	Output	SPI master input slave output			
7	IRQ	Output	Interrupt request, valid in low communication level			
8 GND Ground						
★ Find more details on 《nRF24L01P Datasheet》 from Nordic ★						

2.6. E01-ML01S

Pin No.	Pin item	Pin direction	Pin application			
1	VCC		Power supply 1.9V~3.6V DC			
2	CE	Input	Chip enable			
3	CSN	Input	SPI Chip select			
4	SCK	Input	SPI Clock			
5	MOSI	Input	SPI master output slave input			
6	MISO	Output	SPI master input slave output			
7	7 IRQ Output		Interrupt request, valid in low communication level			
8	8 GND Ground					
★ Find more details on 《nRF24L01P Datasheet》 from Nordic ★						

2.7. E01-ML01SP2

Pin No.	Pin item	Pin direction Pin application				
1	VCC		Power supply 2.0 V~3.6V DC			
2	CE	Input	Chip enable			
3	CSN	Input	SPI Chip select			
4	SCK	Input	SPI Clock			
5	MOSI	Input	SPI master output slave input			
6	MISO	Output	SPI master input slave output			
7 IRQ Output			Interrupt request, valid in low communication level			
8	GND		Ground			
9	GND		Ground			
10 GND Ground						
	★ Find more details on 《nRF24L01P Datasheet》 from Nordic ★					

2.8. E01-ML01SP4

Pin No.	Pin item	Pin direction	Pin application			
1	VCC		Power supply 2.0 V~3.6V DC			
2	CE	Input	Chip enable			
3	CSN	Input	SPI Chip select			
4	SCK	Input	SPI Clock			
5	MOSI	Input	SPI master output slave input			
6	MISO	Output	SPI master input slave output			
7	IRQ	Output	Interrupt request, valid in low communication level			
8	GND		Ground			
9	GND		Ground			
10	GND		Ground			
	★ Find more details on 《nRF24L01P Datasheet》 from Nordic ★					

3. Recommended Circuit Diagram

No.	Brief introduction of connection between module and MCU (STM8)							
1	CE pin can be high level for long-term, but it needs to set as POWER DOWN mode when the module writes registers, and it is							
1	recommended that CE is controlled by MCU pin.							
	As interrupt pin for IRQ, it can be used to wake-up MCU and achieve fast response;							
2	But the user can get the interrupt status through SPI (not recommended, it is not conducive to the overall power consumption, and with							
	low efficiency) .							

4. Electrical Parameters

In different power of nRF24L01P, the real transmitting power of E01-2G4M27D, 3.3V, as below:

	sponding Power			
Frequency	PreOdBm	Pre-6dBn	Pre -12dBm	Pre-18dBm
2400MHz	27. 2	24	18. 5	9.8
2420MHz	27.2	24. 2	18. 7	10.2
2440MHz	27. 2	24. 4	18.8	10.4
2460MHz	27. 1	24. 3	18.8	10.5
2480MHz	27.1	24. 2	18.8	10.6
2500MHz	26.8	23. 9	18. 6	10.4
2525MHz	26. 2	23. 1	17.8	9.7

The real transmitting power of E01-2G4M27D in different voltage, testing under 2460MHz:

	2460			
Voltage supply	Pre OdBm	Pre -6dBr	Pre -12dBm	Pre -18dBm
5. 5V	28	24. 5	18.8	10. 7
5V	28	24. 5	18. 9	10.7
4. 5V	28	24. 5	19	10.7
4V	27.9	24. 5	19	10.6
3. 5V	27. 5	24. 3	18. 9	10.5
3V	26. 5	23.9	18.6	10. 1
2.5V	24. 5	22. 1	17	8. 7

The corresponding register value of nRF24L01+transmitting power output:

SPI RF-SETUP (RF_PWR)	RF output power	DC current consumption	
11	0dBm	11.3mA	
10	-6dBm	9.0mA	
01	-12dBm	7.5mA	
00	-18dBm	7.0mA	

5. Antenna Type

The default 0R resistance of E01-ML01SP2 is as above(left), the antenna type is PCB; To change the antenna type as IPEX, then change the 0R resistance as the left one. This is suitable for other E01 models.

6. Notes

[Static] High-frequency analog devices have static-sensitive characteristics. Please avoid human contact with the electronic components on the module as much as possible (All our production processes are performed according to the IC manufacturer's official anti-static standards).

[Soldering] When soldering, the soldering iron needs to be well grounded. For mass production, the production personnel is required to wear a grounded wired electrostatic wristband.

[Power] The quality of the power supply has a great influence on the performance of the module. Make sure that the power supply of the module has a small ripple, and you must avoid large power jitter. It is recommended to use π -type filters (ceramic capacitors/tantalum capacitors + inductors).

[Ground] The module ground wire uses a single point grounding method. It is recommended to use a 0 ohm resistor or a 10 ohm inductor to separate it from the reference ground of other parts of the circuit.

[Antenna] The antenna installation structure has a great influence on the performance of the module. Make sure that the antenna is exposed, preferably vertically upwards. When the module is installed inside the enclosure, a good antenna extension cable can be used to extend the antenna outside the enclosure. The antenna must not be installed inside the metal shell, which will cause the transmission distance to be greatly weakened.

[Interference] If there are wireless modules working at other bands within the same product, it is necessary to reasonably plan the frequency and

take measures such as shielding to reduce the influence of harmonic interference and inter-modulation interference.

[Crystal] If there is a crystal near the circuit board on the module, increase the linear distance between the crystal and circuit board as much as possible.

7. Production Guidance

7.1. Reflow Soldering Temperature

Profile Feature	Curve characteristics	Sn-Pb Assembly	Pb-Free Assembly
Solder Paste	Solder paste	Sn63/Pb37	Sn96.5/Ag3/Cu0.5
Preheat Temperature min (Tsmin)	Mini. preheating temperature	100℃	150℃
Preheat temperature max (Tsmax)	Max. preheating temperature	150℃	200℃
Preheat Time (Tsmin to Tsmax)(ts)	Preheating time	60-120 sec	60-120 sec
Average ramp-up rate(Tsmax to Tp)	Average rising rate	3°C/second max	3°C/second max
Liquidous Temperature (TL)	Liquidus temperature	183℃	217℃
Time (tL) Maintained Above (TL)	The time above the liquidus	60-90 sec	30-90 sec
Peak temperature (Tp)	Peak temperature	220-235℃	230-250℃
Aveage ramp-down rate (Tp to Tsmax)	Average rate of decline	6°C/second max	6°C/second max
Time 25°C to peak temperature	The time from 25°C to peak temperature	6 minutes max	8 minutes max

7.2. Reflow Curving Diagram

8. FAQ

8.1. Communication range is too short

- The communication distance will be affected when obstacle exists.
- Data lose rate will be affected by temperature, humidity and co-channel interference.
- The ground will absorb and reflect wireless radio wave, so the performance will be poor when testing near ground.
- Seawater has great ability in absorbing wireless radio wave, so performance will be poor when testing near the sea.
- The signal will be affected when the antenna is near metal object or put in a metal case.
- Power register was set incorrectly, air data rate is set as too high (the higher the air data rate, the shorter the distance).
- The power supply low voltage under room temperature is lower than the recommended value, the lower the voltage, the lower the transmitting power.
- Due to antenna quality or poor matching between antenna and module.

8.2. Module is easy to damage

- · Please check the power supply source, ensure it is within the recommended value, voltage higher than that will damage the module.
- Please check the stability of power source, the voltage cannot fluctuate too much.
- Please make sure antistatic measure are taken when installing and using, high frequency devices have electrostatic susceptibility.
- Please ensure the humidity is within limited range, some parts are sensitive to humidity.
- Please avoid using modules under too high or too low temperature.

9. Important Notes

- All rights to interpret and modify this manual belong to Ebyte.
- This manual will be updated based on the upgrade of firmware and hardware, please refer to the latest version.
- Please refer to our website for new product information

10. About Us

Technical support: support@cdebyte.com

Documents and RF Setting download link: $\underline{\text{www.cdebyte.com/en/}}$

Tel: +86-28-61399028 Ext. 812

Fax: 028-64146160

Web: www.cdebyte.com/en/

Address: Innovation Center D347, 4# XI-XIN Road, Chengdu, Sichuan, China