AMPLIACIÓN DE MATEMÁTICAS

Fourier Series and Transforms.

- 1. Find the period of the functions $\sin(ax)$, $\cos(ax)$ and e^{iax} .
- 2. Verify orthogonality of the following families of functions on the respective intervals:
 - a) $\{\cos(nx), \sin(nx)\}_{n\geq 0}$ on $[-\pi, \pi]$
- b) $\{e^{inx}\}_{n\in\mathbb{Z}}$ on $[-\pi,\pi]$
- c) $\{\cos(nx)\}_{n>0}$ and $\{\sin(nx)\}_{n>1}$ on $[0,\pi]$.
- 3. * Let f be a periodic function of period T and continuous with the possible exception of a finite set of points in [0, T]. Show that:

$$\int_{-T/2}^{T/2} f(t)dt = \int_{0}^{T} f(t)dt = \int_{\alpha}^{\alpha+T} f(t)dt$$

for every $\alpha \in \mathbb{R}$.

4. Let $f \in C[-\pi,\pi]$ be a 2π -periodic and differentiable function. Show that if f is even (that is f(-x) = f(x), then we can write:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx).$$

and
$$f(x) = \sum_{n=1}^{\infty} b_n \sin(nx)$$
, if f is odd (that is $f(-x) = -f(x)$).

- 5. Find the Fourier series on the interval $[-\pi, \pi]$, of the following functions:
 - a) f(x) = |x|
- b) $f(x) = \cos^3(x)$
- c) $f(x) = e^x$
- d) $f(x) = |\sin(x)|$ e) $f(x) = \sin^5(x)$.
- 6. * Let $\{x_n\}$ be a numeric sequence convergent to a number x. Let

$$\tau_k = \frac{x_1 + x_2 + \dots + x_k}{k}, \ k \in \mathbb{N},$$

be the sequence of Césaro means of $\{x_n\}$. Show that the sequence $\{\tau_k\}$ converges to x.

(Fejer's Theorem asserts that the sequence of Césaro means of a Fourier series of a continuous, 2π -periodic function uniformly converges to the function).

- 7. For each of the following functions and intervals: a) Draw the graph, b) Justify the existence of the Fourier series, c) Compute the Fourier coefficients.

 - 1) $f(x) = x^2$, $x \in [-\pi, \pi]$. 2) f(x) = |x|, $x \in (-\pi, \pi)$. 3) $f(x) = |\sin(x)|$, $x \in (-\pi, \pi)$. 4) f(x) = x, $x \in (-\pi, \pi)$. 5) f(x) = x, $x \in (0, 2\pi)$. 6) $f(x) = x^2$, $x \in (0, 2\pi)$.
 - 7) $f(x) = x(\pi x), x \in [0, \pi].$
- 8. Using the results of the previous exercise find: from 1) the value of

$$\sum_{n=1}^{\infty} \frac{1}{n^2}, \quad \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}, \quad \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}, \quad \sum_{n=1}^{\infty} \frac{1}{n^4}, \quad \sum_{n=1}^{\infty} \frac{1}{(2n+1)^4};$$

from 2), the value of

$$\sum_{n=1}^{\infty} \frac{1}{n^2}, \qquad \sum_{n=1}^{\infty} \frac{1}{n^4};$$

from (7), the value of

$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)^6}.$$

- 9. Let $f(x) = (x-2)^2, x \in [0,4]$ and $g(x) = |x|^3, x \in [-3,3]$. Find the series of these functions in terms of sines and cosines.
- 10. Find expressions in terms of sines and cosines (Fourier series) of the following functions:

a)
$$f(t) = \begin{cases} -1 & \text{if } -T/2 < t < 0 \\ 1 & \text{if } 0 < t < T/2 \end{cases}$$
, f T -periodic.

b)
$$f(x) = \begin{cases} 1 & \text{if } 0 < x \le 1/2 \\ 0 & \text{if } 1/2 < x \le 1 \end{cases}$$
, f 1-periodic.

c)
$$f(x) = \begin{cases} x & \text{if } 0 \le x \le 1\\ 2-x & \text{if } 1 < x \le 2 \end{cases}$$
, f 2-periodic.

- 11. * Let f be a 2π -periodic function such that its Fourier series converges pointwise to f(x) for every $x \in [-\pi, \pi]$. If the sequences of Fourier coefficients $\{a_n\}_{n\geq 0}$ and $\{b_n\}_{n\geq 0}$ verify that $\sum_{n=0}^{\infty} |a_n| < \infty$ and $\sum_{n=1}^{\infty} |b_n| < \infty$, show that the Fourier series uniformly converges to f on $[-\pi, \pi]$.
- 12. * Let $f: \mathbb{R} \to \mathbb{R}$ be an even function such that $\int_{-\infty}^{\infty} |f(t)| dt < \infty$. Show that the Fourier transform of the function f is real (that is, $F[f](\lambda) \in \mathbb{R}$ for all $\lambda \in \mathbb{R}$). If f is odd, verify that $F[f](\lambda)$ is pure imaginary (that is $Re\{F[f](\lambda)\}=0$).
- 13. Compute the Fourier transform of the following functions:

a)
$$\chi_{[-\delta,\delta]}(x) = \begin{cases} 1 & \text{if } x \in [-\delta,\delta] \\ 0 & \text{in other cases} \end{cases}$$
, b) $f(x) = \cos(\alpha x)\chi_{[-\pi,\pi]}(x)$

a)
$$\chi_{[-\delta,\delta]}(x) = \begin{cases} 1 & \text{if } x \in [-\delta,\delta] \\ 0 & \text{in other cases} \end{cases}$$
, b) $f(x) = \cos(\alpha x)\chi_{[-\pi,\pi]}(x)$
c) $f(t) = \begin{cases} k & \text{if } -T \le t < 0 \\ -k & \text{if } 0 \le t < T \\ 0 & \text{if } t \notin [-T,T] \end{cases}$ d) $f(x) = \begin{cases} x + \pi & \text{if } -\pi \le x \le 0 \\ \pi - x & \text{if } 0 \le x \le \pi \\ 0 & \text{in other case} \end{cases}$

- 14. Consider the sequence of functions $\{f_n\}_{n\in\mathbb{N}}$, with $f_n(x)=\cos(2\pi\alpha x)\chi_{[-\frac{n}{\alpha},\frac{n}{\alpha}]}(x)$. Draw the graph of $F[f_n]$ and then compute the pointwise limit of the sequence of functions.
- 15. Let $h(t) = \begin{cases} Ae^{-\alpha t} & \text{if } t \geq 0 \\ 0 & \text{if } t < 0 \end{cases}$ where A and α are positive parameters. Show that $F[h](\lambda) = \frac{A}{\alpha + i\lambda}$ (Butterworth filter). (*) Design an **RC** circuit such that its *transference* function is precisely $\frac{3}{4+i\lambda}$ (The second part of the exercise can be done after having studied the next topic parameter. topic, namely Ordinary Differential Equations).
- 16. For each case, show that the functions f and g are the same, even though they are given with different expressions:

a)
$$f(x) = \sin(x)\chi_{[-\pi,\pi]}(x)$$
 and $f(x) = \frac{2}{\pi} \int_0^\infty \frac{\sin(s\pi)}{1 - s^2} \sin(sx) \, ds$
b) $g(x) = \sin(x)\chi_{[-\frac{\pi}{2},\frac{\pi}{2}]}(x)$ and $g(x) = \frac{2}{\pi} \int_0^\infty \frac{s\cos(\frac{s\pi}{2})}{1 - s^2} \sin(sx) \, ds$.

b)
$$g(x) = \sin(x)\chi_{\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]}(x)$$
 and $g(x) = \frac{2}{\pi} \int_0^\infty \frac{s\cos(\frac{s\pi}{2})}{1 - s^2}\sin(sx) \, ds$

17. * Let $f: \mathbb{R} \to \mathbb{R}$ be a signal that is filtered by a low pass filter $\chi_{[-\delta,\delta]}$. Compute the frequency component f_{δ} of f bounded to the strip $[-\delta, \delta]$. (**Hint:** $f_{\delta}(t) = (f * g)(t)$ where g is the filter over the time domain).

18. * Let
$$f(t) = e^{-t} \chi_{[0,\infty)}(t)$$
.

- a) Show that $f(at)*f(bt)=\frac{f(at)-f(bt)}{b-a},$ for $a,b\in(0,\infty).$ b) Conclude that f(at)*f(at)=tf(at).