KRIGING USING GAUSSIAN PROCESSES AND HIDDEN MARKOV MODELS

INTRODUCTION

- Aim of the project is to create a model to predict the value of a spatially distributed variable at unsampled locations based on observed data.
- Weather data over a big area is considered.
- In particular daily data of multiple weather stations in Romania is used, the data available on <u>Kaggle</u>.

KRIGING

- Method implemented in this project is known as kriging.
- Given the observations of temperature in multiple station find a gaussian process that capture the spatial dependencies between them.
- This will allow to interpolate the temperature at any given point inside the area considered.
- The gaussian processes was implemented with longitude and latitude as input feature, and minimum temperature as target feature.

GAUSSIAN PROCESSES

- A gaussian process is a distribution over functions.
- Any finite set of points $\{x_1, ..., x_n\}$ from the input space will have a joint Gaussian distribution when mapped through the GP.
- A GP is defined as:

$$f(x) \sim GP(\mu(x), k(x, x'))$$

• $\mu(x)$ is the mean function, and k(x,x') is the kernel function.

GAUSSIAN PROCESSES

- The kernel determines the covariance between the function values at any two points x and x'.
- The kernel function encodes assumptions about the properties of the target function.
- The kernels used in this project are the linear:

$$K_{LIN}(x, x') = xx'$$

• And the rational quadratic:
$$K_{RQ}(x,x') = \sigma^2 \left(1 + \frac{(x-x')^2}{2\alpha l^2}\right)^{-\alpha}$$

REGRESSION

- Input X= $\{x_1,...,x_n\}$, output $\{y_1,...,y_n\}$, and $y=f(x)+\epsilon$ with $\epsilon \sim N(0,\sigma_n^2)$
- The prior between an observation x and a test point x* is:

$$\begin{bmatrix} y \\ f(x^*) \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} K(X, X) + \sigma_n^2 I & K(X, x^*) \\ K(x^*, X) & K(x^*, x^*) \end{bmatrix} \right)$$

- while the posterior is $f(x^*) \mid X, y, x^* \sim \mathcal{N}\left(\mu^*(x^*), \sigma^{*2}(x^*)\right)$, with mean: $\mu^* = K(x^*, X) \left[K(X, X) + \sigma_n^2 I\right]^{-1} y$ and variance: $\sigma^{*2} = K(x^*, x^*) K(x^*, X) \left[K(X, X) + \sigma_n^2 I\right]^{-1} K(X, x^*)$
- So the GP return an estimate of the function value at x* given the observed data, as well as the uncertainty about this estimate.

DATA EXPLORATION

- Dataset used is composed of daily observations of multiple data (min/max temperature, precipitation...) at multiple weather stations in Romania.
- Out of the 42 stations available
 32 were randomly selected to train the model and the others to test it.
- Data spatially ordered based on Longitude and latitude.

IMPLEMENTATION

- To implement gaussian processes the package gpflow was used.
- The kernel selected is the sum of a linear and a rational quadratic one, plus a noise kernel.
- The linear kernel will catch the possible linear dependencies based on longitude and latitude.
- The rational quadratic kernel will catch eventual more complex dependencies.

IMPLEMENTATION

- The kriging model is trained on a single day.
- Given the measured minimum temperature at the train stations, the hyperparameters of the kernels are optimized to best fit the observations.
- The optimization is done by minimizing the negative log marginal likelihood.
- Once the GP is trained it is possible to interpolate the minimum temperature at any longitude/latitude couple.
- The GP will also return the variance of the interpolation.

IMPLEMENTATION

Application on a grid of longitude/latitude points.

The farther from train point the higher the variance.

PERFORMANCE EVALUATION

- To evaluate the model performance the mean absolute error on the ten test station was considered.
- for this case it is 0.72, which is good.
- this is the performance on the single day, what about other days?

	Latitude	Longitude	True Temperature	Interpolated Temperature	Variance	absolute error
0	47.6572	23.5660	-6.1	-8.032682	3.198266	1.932682
1	45.1511	26.8174	-11.2	-11.043236	2.679019	0.156764
2	45.4337	28.0548	-10.3	-10.183949	1.874984	0.116051
3	47.1594	27.5873	-7.8	-7.841039	4.515648	0.041039
4	44.8515	24.8799	-8.3	-9.077781	1.864657	0.777781
5	44.9407	26.0233	-10.0	-10.136955	2.083504	0.136955
6	46.5426	24.5580	-10.0	-10.599646	2.663611	0.599646
7	45.7534	21.2233	-11.8	-9.400043	2.464442	2.399957
8	46.6385	27.7331	-8.2	-8.694581	4.389910	0.494581
9	47.1878	23.0579	-7.3	-7.850125	2.430556	0.550125

PERFORMANCE EVALUATION

- At first the same model was tested on multiple days.
- The mae is acceptable for a couple of days then it blows up.
- The spatial dependencies varies based on the day.

PERFORMANCE EVALUATION

 Then a new model was created daily and another bi-daily.

 Daily models perform good, mean mae of 1.25, bi-daily is worse, similar mean but higher volatility (because of second days).

CONSIDERATIONS

- Gaussian processes scales cubically with data.
- When dealing with more stations and modeling a lot of days, or when data comes in hourly instead of daily, training this many GPs is not feasible.
- The spatial dependencies might vary based on the weather conditions, so a hidden markov model was trained to detect the weather state, and a different GP was trained for each found state.

HIDDEN MARKOV MODELS

- HMM is a statistical markov model in which the system being modeled is assumed to be a Markov process with unobserved hidden states.
- They are characterized by the initial distribution, the transition probabilities and the emission probabilities.
- In this case the interests lies only in being able to assign the correct hidden states to observations (most likely explanation).
- HMM implemented with the package hmmlearn.

HIDDEN MARKOV MODELS

- First hmm trained only on minimum temperature of the train stations, and for eight years of data.
- The temperature is supposed to be relatively homogenous across the whole area.
- According to the AIC the hmm with
 20 different states was selected.
- The hidden states seems to be based on the mean temperature across the stations.
- The hmm might have caught some other dependencies.

HIDDEN MARKOV MODELS: GP

- For each state a different GP was trained, to train selected the first occurrence of the state.
- The GPs were tested on the first year of data (same as before), and on the first year of data unseen from the HMM, so eight years after the other.
- In both cases the most likely sequence of hidden states is selected according to Viterbi algorithm, and the corresponding GP for the interpolation is selected accordingly.

HIDDEN MARKOV MODELS: GP

- Performance on first year worse than daily models, but comparable with bi-daily.
- 8 years later performance still comparable.

HIDDEN MARKOV MODELS: GP

- Same process followed training
 HMM with other weather data
 (relative humidity, precipitation, cloud cover, wind speed, pressure).
- Very bad results obtained, probably because other variable are not homogenous enough across the area, so a single weather state for the whole area is not enough.

CONCLUSION

- With this method possible to interpolate temperature across all region.
- It is **possible** to **identify** weather **states that corresponds** to **different spatial dependencies** of temperature.
- A single GP for each state will yield good interpolations across the years.
- GP could be enhanced adding other spatial data such as altitude.
- Understanding better the dependencies of the states, better kernels could be select accordingly.
- Finally it should be possible to implement forecast model to have forecast across all area.