neuroNicle FX2 통신 규격

neuroNicle FX2 무선 뇌파 Headset 장치의 LXSDF T2A 기반 데이터 통신규격

Doc. ID. LXD141 V4

Release Date. 2021-04-05

Abstract - neuroNicle FX2 장치는 블루투스 시리얼 통신용 데이터 포맷으로 LXSDF T2A 를 이용하고 있으며, 본 문서는 LXSDF T2A 에서 장치의 데이터 배정 정보를 설명한다. 이 데이터 통신규격에 따라 장치와 통신 가능한 호스트 기기(Pc, 스마트폰등)에서 neuroNicle FX2 와 블루투스 연결하여, 장치에서 제공하는 정보를 활용할 수 있다. 본 내용은 LXSDF T2A 포맷에 기반하므로 아래 필수참조문서를 숙지해야만 이해 가능하다.

필수참조문서

1. LXD10 Vx, "LXSDF T2A 통신규격"

https://github.com/LAXTHA/LXSDF/raw/master/LXD10 LXSDFT2A CommunicationStandard.pdf

목차

개요	3
NEURONICLE FX2 블루투스 통신	4
NEURONICLE FX2 에서 LXSDF T2A 형식에 적용된 상수	4
장치 동작 모드	5
전원 ON	6
전원 OFF	6
대기 모드	6
측정 모드	6
충전 모드	
장치의 데이터 수신	8
장치의 데이터 송신(LXSDF T2A 송신 데이터)	8
대기/충전 모드에서 송신 데이터	8
측정(실행) 모드에서 송신 데이터	10
송신 데이터 항목별 상세설명	10
스트림 데이터 속성([2]. PPD)	11
상태모니터링([3]. PUDo)	11
Packet Cyclic Count([4]. PC)	12
분당 심박수([5]. PUD1)	12
전지 잔량([6]. PCD[1])	12
좌뇌 뇌파 포화([6]. PCD[20])	12
우뇌 뇌파 포화([6]. PCD[21])	12
CH1 전극 부착 상태([7]. CRD_PUD2_TYPE.bit5)	12
CH2 전극 부착 상태([7]. CRD_PUD2_TYPE.bit4)	12
REF 전극 부착 상태([7]. CRD_PUD2_TYPE.bit3)	13
뇌파파형(CH1, CH2)	13
Power Spectrum(CH3)	14
맥파(PPG, CH4)	15
이차미분 맥파(sdPPG, CH5)	15
심박간격 데이터(peak-interval, CH6)	15
REVISION HISTORY	16

2 / 16

개요.

본 문서는 neuroNicle FX2 의 통신규격을 정의한다. 호스트 기기에서 neuroNicle FX2 에서 전송되는 데이터들을 실시간으로 수집하여 활용 가능하다.

neuroNicle FX2 블루투스 통신

neuroNicle FX2 블루투스는 SPP 프로파일이며, 스마트폰, PC 등의 호스트기기에서는 시리얼포트 $(COM \, \mathbbm{Z} =)$ 로 인식된다.

블루투스 접속시 비밀번호: 1234

COM 포트 설정 : baud rate : 11520 bps, data bit : 8bit, stop bit : 1, parity : none, flow control : non

본 통신규격은 시리얼통신포맷을 기반으로 하며 다양한 형식의 데이터를 전송하기 위한 형식포맷으로써 LXSDF T2A(LX Serial Data Format Type 2A) 를 기반으로 한다. 본 설명서는 neuroNicle FX2 에 있어서, LXSDF T2A 포맷에 어떤 데이터가 배치되었는지 설명한다. LXSDF T2A 에 대한 설명은 본 문서에서 다루지 않으며, 문서아이디: LXD10 Vx를 필수 참조해야 한다.

LXD10 pdf 다운로드:

https://github.com/LAXTHA/LXSDF/raw/master/LXD10 LXSDFT2A CommunicationStandard.pdf

LXSDF T2A 사이트: http://laxtha.net/ko/lxsdf-t2a/

neuroNicle FX2 에서 LXSDF T2A 형식에 적용된 상수.

항목	설명
LXSDF T2A TX 1 패킷 전송주기	초당 250 패킷(측정 모드), 초당 1
	패킷(대기모드), 2 초당 1 패킷(충전모드)
COM Port 탐색 정보: PCD[31]	109
LXDeviceID: PCD[30]	35
ComFirmInfo1: PCD[29]	0
채널수 : PCD[28]	6
샘플수 : PCD[27]	1
ComPath: PCD[26]	2 (무선 블루투스 SPP)
ComFirmInfo2 : PCD[25]	25 (firmware ID)
ComFirmInfo3: PCD[24]	0
Reserved(firmware revision): PCD[23]	10

표[1]. neuroNicle FX2 에 적용된 LXSDFT2A 의 기본 상수.

4 / 16 Doc. ID. LXD141 V4

장치 동작 모드

neuroNicle FX2 무선 BHM(Brain Heart Monitor) 장치는 대기 모드(PPD=0), 측정모드(PPD=1), 그리고 충전 모드(PPD=2)로 동작한다. 동작 모드의 상태 천이도는 그림[1]과 같다.

그림[1]. neuroNicle FX2의 동작 상태 천이도. 장치에 공급되는 전원에 따라, 그리고 장치 착용 여부에 따라 동작 모드가 달라진다. 대기 모드에서 실행 모드로 모드 변환이 이루어질 때는 2초 정도의 모드변환 시간이소요된다. 이 시간 이후에도 장치가 실행 모드 조건을 만족하고 있을 경우, 장치는 실행 모드로 구동한다. 그 외모드 변환은 그 조건이 성립하는 즉시, 모드가 변환된다.

충전을 위한 USB 연결 여부(USBst 상태 값, o=미연결, 1=연결), 전원 스위치 누름 여부(SWst 상태값, o=스위치 누름 없음, 1=스위치 누름), 그리고 장치 착용 여부(DWst 상태값, o=미착용, 1=착용)에 따라 각 동작모드가 결정된다.

전원 ON

장치에 전원을 인가하는 두 가지 방법이 있다. 전원이 인가된 USB를 연결하든지(USBst=1) 전원 스위치를 ~1초 정도 누르고 있든지(SWst = 1). USB를 연결한 후 연결 해제하여도 장치에 전원이 계속 공급된다. 전원스위치를 1초 정도 눌러 전원을 인가할 경우에는 (파란색+빨간색) LED가 ON될 때까지 스위치를 누르고 있는다. LED가 켜지기 전에 스위치를 놓으면 전원이 OFF된다. 이는 원하지 않는 잠깐의 스위치 동작으로 장치에 전원이 공급되는 것을 방지하기 위한 것이다.

전원 OFF

장치의 전원이 차단되는 세 가지 방법이 있다. 장치가 켜진 상태에서 장치의 전원 스위치를 2초 정도 계속 누르든지, 대기 모드에 그냥 그대로 두든지, 또는 측정(RUN) 모드에서 블루투스 연결이 해제되든지. 전원 스위치를 눌러 파란색 LED 가 ON 될 때까지 누르고 있다가 스위치를 놓으면 장치의 전원이 차단된다. 장치가 대기 모드에서 동작할 경우에는 대기 시간(3분) 이후에 자동으로 전원이 차단된다. 측정 모드에서 블루투스 연결이 해제되면 1분 이내에 전원이 차단된다.

대기 모드

USB 가 연결되어 있지 않으며(USBst = o), 장치 착용하지 않은 상태(DWst = o)일 경우, 장치의 동작 모드이다. 이 모드에서는

실행 주기 = 1 초,

BLUE LED 가 실행 주기에 따라 깜박이며,

블루투스가 연결되어 있지 않을 경우에는 보라색(BLUE + RED)으로 깜박이고,

대기 모드 유지 시간은 3분이다. 대기 시간 이내에 다른 모드로 진입하지 않으면 전원이 자동 차단된다. 이모드에서는 전지 잔량이 표시된다.

측정 모드

USB 가 연결되어 있지 않으며(USBst = 0), 장치 착용 상태(DWst = 1)일 경우, 장치의 동작 모드이다. 이모드에서는

실행 주기 = 4msec,

6 / 16

RED LED 는 심박에 동기 되어 깜박이고,

GREEN LED 는 2 초 간격으로 깜박인다.

전지 잔량으로 표시하고, 전지 잔량이 10% 이하일 경우, 전지 부족 경고를 나타낸다. 이 경고에서는 전지를 10 분 이내에 충전하는 것이 바람직하다. 블루투스가 연결되어 있지 않으면 1 분 이내에 자동 전원 OFF 된다.

충전 모드

장치에 USB 가 연결되어 있을 경우(USBst = 1), 장치의 동작 모드이다. 이 모드에서는

실행 주기 = 2초,

파란색 LED 가 잠깐 ON 된 이후, 초록색 LED 가 실행 주기에 따라 깜박이며,

충전이 완료되면, 초록색 LED 는 ON 상태를 유지한다.

충전 모드에서 USB 연결을 해제하더라도 장치의 전원이 ON 되어 있다. 장치를 착용하지 않을 경우, 대기모드로 진입하여, 설정된 대기시간(3분) 동안 그 상태를 유지한다. 이 모드에서는 충전 완료 정보, 충전 시간등이 제공된다.

장치의 데이터 수신

neuroNicle FX2 장치가 호스트 기기에게서 받는 데이터는 없다. 장치는 호스트의 command 없이 그 동작 상태에 따라 구동된다.

장치의 데이터 송신(LXSDF T2A 송신 데이터)

장치에 공급되는 전원에 따라 그림[1]과 같이 그 동작 모드가 달라진다. 각 동작 모드에 따라 출력되는 데이터도 달라진다. 각 모드에 따른 출력 데이터의 내용을 아래에서 다룬다.

대기/충전 모드에서 송신 데이터

대기/충전 모드에서 출력 데이터는 표[2]와 같다. 대기 모드는 충전 모드에서 진입할 수도 있고, 측정 모드에서 진입할 수도 있다. 대기 모드는 측정 모드에 진입하기 전 전지 소모량으로 줄이고, 전지 잔량과 블루투스 연결상태 등을 모니터 하기에 적합하다. 다른 동작 모드로 진입하지 않고 이 모드에 대기 시간(3 분) 이상 머물면, 전원이 자동 차단된다. 충전 모드는 USB 전원이 연결되어, 내장 충전지에 전력이 공급될 경우, 실행되는 장치 동작 모드이다. 충전 모드에서는 2 초 단위로 데이트가 전송되고, 충전 상태, 충전 진행 시간 등의 데이터가 포함된다는 것만 다를 뿐 데이터 전송 측면에서는 대기모드와 유사하다.

데이터항목	LXSDF T2A TX 패킷 데이터	설명
동작 모드	[2]. $PPD = 0/2$	0=대기 모드, 2= 충전 모드.
대기모드 유지시간/	[3]. PUDo	초 단위의 대기 모드 남은 시간. 설정
충전진행 시간		대기시간(180(초))에서부터 시작하여 o 이 되면
		전원이 차단된다.
		충전 모드에서, 충전 진행 시간. 분단위. 충전 완료
		시 최종 값 유지.
Packet Cyclic Count	[4]. PC	0 ~ 31.
전지 잔량(대기 모드)	[5]. PUD1	% 단위. 5% 단위로 변동된다(대기 모드).
	[5]. PUD1.bito (충전상태)	0=충전 중, 1= 충전 완료(충전 모드)
-	[6]. PCD[0]~[19]	데이터 할당 없음.
CH1 전극부착상태	[7]. CRD_PUD2_TYPE.bit5	o : 미부착, 1 : 부착 ;(왼쪽이마)
CH2 전극부착상태	[7]. CRD_PUD2_TYPE.bit4	o : 미부착, 1 : 부착 ;(오른쪽이마)
REF 전극부착상태	[7]. CRD_PUD2_TYPE.bit3	o : 미부착, 1 : 부착 ;(귓불)
-	[8]. CH1_h [9]. CH1_l	데이터 할당 없음

8 / 16

-	[10]. CH2_h [11]. CH2_l	데이터 할당 없음
-	[12]. CH3_h [13]. CH3_l	데이터 할당 없음
-	[14]. CH4_h [15]. CH4_l	데이터 할당 없음
-	[16]. CH5_h [17]. CH5_l	데이터 할당 없음
-	[18]. CH6_h [19]. CH6_l	데이터 할당 없음

표[2]. 대기/충전 모드에서 송신 데이터 항목. 패킷은 1 초 단위로 전송된다. 명시하지 않아도, [0]=255, [1]=254 가 포함되어 있다. 데이터 확인 없이 이 모드를 인지할 수 있는 방법은 LED 상태를 확인하는 것이다.

BLUE LED 가 1 초 단위로 깜박임(대기 모드). 2 초 단위로 깜빡임(충전 모드).

만약, 블루투스가 연결되어 있지 않으면, RED LED 도 함께 깜박인다(대기 모드).

그림[1]에서 알 수 있듯이, 대기 모드에서 USB 를 연결하면 충전 모드로 진입하고, 장치를 착용하면 측정(실행) 모드로 진입한다. 이들 모드로 진입하거나, 장치 전원을 강제로 OFF 하지 않으면, 대기시간(3 분) 후 자동 OFF 된다.

9 / 16

측정(실행) 모드에서 송신 데이터

측정 모드는 대기 모드에서 장치를 착용(EEG 전극 부착)할 경우, 장치 동작 모드이다. 이 모드는 4msec 주기로 구동되어, 초당 250 패킷을 전송한다. 이 모드에서 송신하는 데이터 항목은 표[3]과 같다.

데이터항목	LXSDF T2A TX 패킷 데이터	설명
스트림 데이터 속성	[2]. PPD = 1	측정 모드, 스트림 데이터 임을 의미.
상태모니터링	[3]. PUDo	Bit7 : 심박 이벤트
		Bit6 : 센서 착용 상태(1=착용, 0=미착용)
		Bit5 : 귓불 전극 연결 상태(1=정상, 0=비정상)
		Bit4 : 전지 부족 경고(1=정상, 0=전지부족) Bit3 : reserved
		Bit2 :PPG signal Normality(1=정상, 0=비정상) Bit1 : reserved
		Bito : 2 초 단위 개시시점(1).
Packet Cyclic Count	[4]. PC	0 ~ 31.
분당 심박수	[5]. PUD1	30 ~ 240 bpm. 심박 이벤트 시점에 갱신.
전지 잔량	[6]. PCD[1]	% 단위. 5% 단위로 변동. 10% 미만에서 부족 경고.
좌뇌 뇌파 포화	[6]. PCD[20]	0~255. 0 또는 255 에 근접할수록 포화 상태.
우뇌 뇌파 포화	[6]. PCD[21]	중앙값(128)에 근접할수록 바람직.
CH1 전극부착상태	[7]. CRD_PUD2_TYPE.bit5	o: 미부착, 1: 부착 ;(왼쪽이마).
CH2 전극부착상태	[7]. CRD_PUD2_TYPE.bit4	o: 미부착, 1: 부착 ;(오른쪽이마).
REF 전극부착상태	[7]. CRD_PUD2_TYPE.bit3	0: 미부착, 1: 부착 ;(귓불).
뇌파파형-CH1	[8]. CH1_h [9]. CH1_l	좌뇌 뇌파파형(15 비트)
뇌파파형-CH2	[10]. CH2_h [11]. CH2_l	우뇌 뇌파파형(15 비트)
Power pectrum	[12]. CH3_h [13]. CH3_l	좌/우뇌 파워 스펙트럼의 10 배 값이 할당됨.
맥파(PPG)	[14]. CH4_h [15]. CH4_l	PPG 파형 (15 비트; AGC 파형)
가속도 맥파(sdPPG)	[16]. CH5_h [17]. CH5_l	2 차 미분 PPG 파형(15 비트)
심박간격데이터	[18]. CH6_h [19]. CH6_l	peak-interval (msec). (250 ~ 2000)

표[3]. neuroNicle FX2 장치의 송신 데이터 규격.

송신 데이터 항목별 상세설명.

장치에 전원이 인가되면, LXSDF T2A stream 데이터 규격으로 장치는 계측 데이터를 호스트 기기에 전송한다. 호스트 기기는 규격 정보로부터 해당 데이터를 확보할 수 있다. 어떤 데이터를 활용할 것인가는 전적으로

10 / 16 Doc. ID. LXD141 V4

neuroNicle FX2 통신 규격

neuroNicle FX2 무선 뇌파 Headset 장치의 LXSDF T2A 기반 데이터 통신규격

호스트 기기의 데이터 선택에 달려있다. $\mathbf{H}[3]$ 에서 각 데이터는 \mathbf{T}_{2} A 규격으로 분리하면 해당 값을 확보할 수 있지만, power spectrum 항목은 추가 데이터 분리가 필요하다. 이에 대한 각 세부 사항은 아래에서 설명한다.

스트림 데이터 속성([2]. PPD)

현재 전송되는 데이터 패킷의 속성을 나타낸다. PPD=1 은 스트림 데이터이면서, packet size 는 20 임을 의미한다. 동시에 측정 모드 상태임을 나타냄.

상태모니터링([3]. PUD0)

장치의 다양한 상태값을 나타낸다. 각 상태 값 항목은 다음과 같다.

Bit7 : 심박 이벤트. 1=심박 검출, 0=미검출. 심박 이벤트 신호를 기준으로 심박간격 데이터를 확보하여 HRV 에 활용할 수 있다. 또한 이 시점을 기준으로 분당 심박수 데이터가 갱신된다(그림[3] 참고).

Bit6: 센서착용 상태. 1=착용, o=미착용. 귓불전극을 포함하여 센서를 머리에 착용 완료하면, 해당 상태를 나타낸다. 센서 착용이 완료되었음에도 불구하고, 이 값이 셋(1)되지 않으면 전극 부착을 다시 확인할 필요가 있다.

Bit5: 귓불 전극 연결 상태. 센서를 착용하지 않은 상태에서 귓불 전극은 서로 붙어있다. 이 상태를 알려주는 항목이다. 센서 착용 전에 귓불 전극이 붙어있지 않으면, 전극 착용 시 접촉 상태가 좋지 못할 수 있다. 이는 전극 점검 요인이 된다.

Bit4: 전지 부족 경고. 전지 잔량이 10% 이하일 때 경고 신호 생성(1=정상, o=전지 부족). 전지 부족 경고가 발생하면, 10 분 이내로 측정을 중단하고, 전지를 충전하는 것이 바람직하다.

Bit3: reserved.

Bit2: PPG signal Normality. 현 시점의 심박 간격 정상/비정상 유무를 나타낸다. PPG 신호 안정 상태확인용으로도 사용될 수 있다. 1=현재 측정된 심박간격이 정상범위이다. 0= 비정상 범위이다. 심박간격의 정상범위: 과거심박간격의 60% <=현재 측정 값 <=과거심박간격의 140%.

Bit1: reserved.

Bito : 2 초 단위 개시 시점. 2 초 시점(정확하게는 4*512 = 2.048 초)에 셋(1)됨. 2 초 간격으로 이 값이 셋 되면, power spectrum 데이터 구분의 출발점이 된다. Power spectrum 의 인덱스가 이 셋 값 기준으로 설정된다.

LAXTHA

Doc. ID. LXD141 V4

Packet Cyclic Count([4]. PC)

Packet count 값. 0~31 범위를 매 패킷 전송 때마다 반복한다. 이 값에서 [6]. PCD[PC]값을 확보한다.

분당 심박수([5]. PUD1)

분당 심박수 값이 표시된다. 심박 이벤트가 발생할(PUDo.bit $_7=1$) 때마다, 이 값이 갱신된다. 값의 범위는 $_{30\sim240(bpm)}$. 값의 정확도는 $_{+/-1bpm}$.

전지 잔량([6]. PCD[1])

장치 동작 중의 전지 잔량을 %(5% 단위)로 나타낸다. 2 초 마다 계측되어 PCD[1]에 배정된다.

좌뇌 뇌파 포화([6]. PCD[20])

좌뇌 뇌파의 장치 입력 포화 상태를 나타낸다. 이 값이 o 또는 255 에 근접할수록 입력 신호가 포화되어 측정 신호가 불안정할 수 있음을 나타낸다. 중앙 값(128)에 근접할수록 좌뇌 뇌파 신호는 안정적이다.

우뇌 뇌파 포화([6]. PCD[21])

우뇌 뇌파의 장치 입력 포화 상태를 나타낸다. 이 값이 o 또는 255 에 근접할수록 입력 신호가 포화되어 측정 신호가 불안정할 수 있음을 나타낸다. 중앙 값(128)에 근접할수록 우뇌 뇌파 신호는 안정적이다.

CH1 전극 부착 상태([7]. CRD_PUD2_TYPE.bit5)

CH1 전극(왼쪽 이마)의 인체 부착 상태 값을 나타낸다. 장치가 인체에 올바로 부착되면 셋(1)되고, 그렇지 않으면 리셋(o)된다. 장치 착용 시 전극과 이마 사이에 이물질(색조 화장품, 머리카락 등)이 끼이지 않도록 주의가 필요하다. 또한, 피부가 깨끗한 상태로 유지되어야 할 필요가 있다. 전극이 비록 인체에 접촉 되었다고 할 지라도, 전극-피부 사이의 전기적 접촉이 좋지 못하면, 전극 접촉이 올바로 검출되지 못할 수 있다. 비록 전극이 접촉되었다고 판단될 지라도 안정적인 뇌파 신호를 얻기 위해서는 전극-피부 접촉 안정화가 필요하다.

CH2 전극 부착 상태([7]. CRD_PUD2_TYPE.bit4)

CH2 전극(오른쪽 이마)의 인체 부착 상태 값을 나타낸다. 장치가 인체에 올바로 부착되면 셋(1)되고, 그렇지 않으면 리셋(0)된다. 장치 착용 시 전극과 이마 사이에 이물질(색조 화장품, 머리카락 등)이 끼이지 않도록

LAXTHA

12 / 16

Doc. ID. LXD141 V4

주의가 필요하다. 또한, 피부가 깨끗한 상태로 유지되어야 할 필요가 있다. 전극이 비록 인체에 접촉 되었다고할 지라도, 전극-피부 사이의 전기적 접촉이 좋지 못하면, 전극 접촉이 올바로 검출되지 못할 수 있다. 비록 전극이 접촉되었다고 판단될 지라도 안정적인 뇌파 신호를 얻기 위해서는 전극-피부 접촉 안정화가 필요하다.

REF 전극 부착 상태([7]. CRD_PUD2_TYPE.bit3)

REF 전극(오른쪽 귓불)의 인체 부착 상태 값을 나타낸다. REF 전극이 귓불에 올바로 부착되면 셋(1)되고, 그렇지 않으면 리셋(o)된다. 장치 착용 시 전극과 귓불 사이에 이물질(색조 화장품, 머리카락, 귀걸이 등)이 끼이지 않도록 주의가 필요하다. 또한, 귓불이 깨끗한 상태로 유지되어야 할 필요가 있다. 전극이 비록 인체에 접촉 되었다고 할 지라도, 전극-귓불 사이의 전기적 접촉이 좋지 못하면, 전극 접촉이 올바로 검출되지 못할 수 있다. 비록 전극이 접촉되었다고 판단될 지라도 안정적인 뇌파 신호를 얻기 위해서는 전극-피부 접촉 안정화가 필요하다. 귓불 전극에는 PPG 센서가 구비되어 있어 안정적인 PPG 신호를 얻기 위해서는 전극 장착에 주의해야 한다.

뇌파파형(CH1, CH2)

현재 장치에서 측정된 뇌파 데이터를 나타낸다. 왼쪽 이마 전극에서 계측된 것이 CH1, 오른쪽 전극에서 계측된 것이 CH2 이다. 뇌파 파형데이터가 1 샘플링 단위로 실시간 전송된다.

장치에서 수행되는 뇌파파형의 AD 변환 특성

- 샘플링 주파수 : 250Hz,

- Data Bit : 15bit.

뇌파파형의 예.

그림[2]. 좌뇌 뇌파파형(위), 우뇌 뇌파파형(아래).

LXSDF T2A 의 뇌파파형 배치

13 / 16 Doc. ID. LXD141 V4

1 번의 패킷전송시 1 샘플링 데이터를 Ch1 _h 와 Ch1_l (좌뇌뇌파의 경우)로 전달.

샘플링 데이터 값의 범위: 0~32,767; 중심값: 16,384 (16,384 이 아날로그 oV 지점이라는 의미.)

Ch1_h 의 bit 6~o 에는 1 샘플링 데이터 총 15 비트중 상위 7 비트 배치.

Ch1_l 의 bit7~0 에는 1 샘플링 데이터 총 15 비트중 하위 8 비트 배치.

호스트에서 수신한 데이터 처리.

뇌파파형의 샘플링 데이터 = 상위 7 비트 x 256 + 하위 8 비트.

예: 상위 7 비트의 값이 10 진수로 9 였고, 하위 1 바이트의 값이 126 이었다면

뇌파파형의 샘플링 데이터 = 9 x 256 + 126 에 의하여 2430(digit)이 구해진다.

[참고 : uV 단위로 변환하는 인자는 o.o3606 uV/digit 이다.]

Power Spectrum(CH3)

장치에서 계산한 뇌파파형-CH1 과 뇌파파형-CH2 의 파워 스펙트럼을 나타낸다. 파워 스펙트럼은 매 $2 \pm ($ 정확하게는 $2.048 \pm)$ 마다 갱신되고, 스펙트럼은 2 ± 5 동안의 뇌파 데이터를 FFT 하여 얻은 것으로, 대략 0.5Hz(정확하게는 $1/2.048 \sim 0.488$ Hz)의 주파수 분해능으로 제공되는 값이다. CH3 스트림 데이터에 좌뇌(CH1) 파워 스펙트럼과 우뇌(CH2) 파워 스펙트럼이 공존한다. 각 스트림 데이터로부터 개별 채널로 데이터 분리 작업이 필요하다.

2 초 단위 개시 시점, PUDo.bito = 1 에서 power spectrum 데이터를 모니터링한다. 이 시점 이후, 데이터 패킷 수를 헤아린다. 그 값을 n 이라고 하면, n=o 일 때가 PUDo.bito=1 일 때이다.

주어진 n 에 대해, 좌뇌 파워스펙트럼은 Power Spectrum_CH1[m](m=n, n=o~102)으로 얻고, 우뇌파워스펙트럼은 Power Spectrum_CH2 [m] (m=n - 103, n=103~205)으로 얻는다. m=o 일 때, DC 값이고, 인덱스가 1 증가할 때마다, 주파수 간격은 0.488Hz 씩 증가한다. n>256 에서는 해당 데이터는 무시한다. PUDo.bito=1 일 때, n은 다시 0으로 초기화 되어야 한다(n=o). 정확한 power spectrum 값은 CH3 데이터를 나누기 10 하여 얻는다.

이 파워 스펙트럼에서, 쎄타파 영역(4Hz 이상 8Hz 미만)은 m=9~16 이고, 알파파 영역(8Hz 이상 12Hz 미만)은 m=17~24, L 베타파 영역(12Hz 이상 15Hz 미만)은 m=25~30, M 베타파 영역(15Hz 이상 20Hz 미만)은 m=31~40, H 베타파 영역(20Hz 이상 30Hz 미만)은 m=41~61 이며, 감마 영역(30Hz 이상 40Hz 이하)은 m=62~82 이다. 감마영역은 장치 대역 (3~41Hz)을 고려하여 40Hz 로 제한한다.

14 / 16

그림[3]. PPG, sdPPG, Pulse, peak_interval 신호. Pulse=PUDo.bit7.

맥파(PPG, CH4)

귓불의 PPG 센서에 검출된 맥파 파형을 나타낸다. 맥파 데이터는 15bit 로 표현되며, 데이터 범위는 $0\sim32767$ 이다. DC 기준은 16384. PPG 신호 크기는 AGC(automatic gain control) 기능으로 인해 피검자 차이에 따른 신호 크기 변동 없이 일정하기는 하나, 센서 착용 후 1 회 AGC 가 설정되기 때문에, 측정 중에 그 진폭은 입력 신호에 따라 변동될 수 있다. 데이터는 1 샘플 단위로 실시간 제공된다(그림[3] 참고).

이차미분 맥파(sdPPG, CH5)

맥파 신호를 2 차 시간 미분한 파형 데이터를 나타낸다. 심박 펄스(이벤트)는 이 신호로부터 검출한 것이다. 15bit 로 표현되며, 데이터 범위는 $0\sim32767$ 이다. DC 기준은 16384. 데이터는 1 샘플 단위로 실시간 제공된다 (그림[3] 참고).

심박간격 데이터(peak-interval, CH6)

sdPPG 신호로부터 검출한 심박펄스 사이의 시간 길이를 msec 단위로 나타낸 데이터 이다. 심박 펄스 발생 때마다 값이 갱신된다. 이 데이터를 이용하여 HRV 분석 결과를 얻을 수 있다. 데이터의 표현 정밀도는 1/250 =4msec 이다. 값의 범위는 $250 \sim 2000$ (msec)이다(그림[3] 참고).

15 / 16

Revision History

Release Date	Doc. ID	Description of Change
2021-04-05	LXD141 V4	[1]. 14 쪽, power spectrum(CH3)의 데이터 복원 관련 설명 내용 오류 수정.
2021-01-07	LXD141 V3	[1]. 6~7 쪽 장치 동작 모드에 따른 LED 색상 표시 설명 내용 오류 수정
		[2]. 14 쪽, power spectrum(CH3)의 데이터 복원 관련 설명 내용 오류
		수정 :
		n=1~128 → n=1~103
		$m=n-128$, $n=129\sim256 \Rightarrow m=n-103$, $n=104\sim205$.
2018-03-28	LXD141 V2	참조문서 URL 주소 추가, 개요 추가.
2017-02-06	LXD141 V1	초판 발행.