

Machien Learning and Inductive Inference [H02C1a] Xinhai Zou (r0727971)

Contents

1	Lecture 1: Introduction, Version spaces	1			
	1.1 Some ML examples in practice	1			
	1.2 Machine Learning	1			
	1.3 Machine Learning learning landscape	1			
	1.4 Some basic concepts and terminology	2			
	1.5 Input formats (predictive learning)	3			
	1.6 Output formats, methods (predictive learning)	4			
2	Lecture 2: Induction of decision tree	6			
	2.1 Overview of DT	6			
	2.2 Learn trees from data	7			
	2.3 Choosing the best test	7			
	2.4 Stop splitting nodes	9			
	2.5 A generic algorithm	10			
	2.6 Computational complexity	11			
	2.7 Missing values	13			
	2.8 Model trees	13			
	2.9 Multi-target trees	13			
	2.10 Practical software	14			
3	Lecture 3: Learning sets of rules	15			
	3.1 Linear regression	15			
	3.2 Trees vs. linear regression vs. inductive bias	15			
	3.3 Rule learning	16			
	3.4 Association rules	18			
4	Lecture 4: Instance-based learning, Clustering	20			
	4.1 Instance-based learning	20			
	4.2 Clustering	22			
5	Lecture 5: Evaluating hypotheses	27			
	5.1 Models and learning algorithms	27			
	5.2 Statistics	27			
	5.3 Comparison of evaluation	31			
6	Lecture 6: Numerical approaches (ANN, SVM), Computationa	ıl			
	learning theory	33			
	6.1 Learning theory	33			
7	Lecture 7: Probabilistic approaches, Ensembles				
8	Lecture 8: Reinforcement learning				
a	Lecture 0.10. Inductive logic programming				

1 Lecture 1: Introduction, Version spaces

1.1 Some ML examples in practice

- 1. Autonomous cars
- 2. The Robosail project
- 3. The Robot Scientist
- 4. Infra Watch, "Hoolandse brug" the bridge
- 5. Language learning
- 6. Automating manual tasks

1.2 Machine Learning

Definition of machine learning: it is the study of how to make programs improve their performance on certain tasks from own (experience). In this case:

- "performance" = speed, accuracy
- "experience" = earlier observations

Machine Learning vs. other AI

In **machine learning**, the key is **data**, examples of questions and their answer; observations of earlier attempts to solve the problem

In inductive inference, it is reasonsing from specific to general, statistics: sample -> population; from concrete observations -> general theory

1.3 Machine Learning learning landscape

- tasks
 - clustering
 - classification
 - regression
 - reinforcement learning
- techniques
 - Convex optimization
 - Matrix factorization
 - Transfer learning
 - Learning theory
 - Greedy search

• models

- automata
- neural network
- deep learning
- statistical relational learning
- decision trees
- support vector machines
- nearest neighbors
- rule learners
- bayesian learning
- probabilisite graphical models

• applications

- natural language processing
- vision
- speech

• related courses

- neural computing
- support vector machine
- uncertainty in AI
- data mining
- genetic algorithms and evolutionary computing

1.4 Some basic concepts and terminology

• Predictive learning

- Definition: learn a model that can predict a particular property/ attribute/ variable from inputs
- Binary classification: distinguish instances of class C from other instances
- Classification: assign a class C (from a given set of classes) to an instances
- Regression: assign a numerical value to an instance
- multi-label classification: assign a set of labels (from a given set) to an instance
- multivariate regression: assign a vector of numbers to an instances

multi-target prediction: assign a vector of values (numerical, categorical) to an instances

• Descriptive learning

 Definition: given a dataset, describe certain patterns in the dataset, or in the population it is drawn from

• Typical tasks in ML

- function learning: learn a function X->Y taht fits the given data
- distribution learning: distribution learning
 - * parametric: the function family of the distribution is known, we only need to estimate its parameters
 - * non-parametric: no specific function family assumed
 - * generative: generate new instances by random sampleing from it
 - * discriminative: conditional probability distribution

• Explainable AI (XAI)

- Definition: means that the decisions of an AI system can be explained
- Two different levels:
 - * We understand the (learned) model
 - * We understand the individual decision

1.5 Input formats (predictive learning)

- Set
 - training set: a set of examples, instance descriptions that include the target property (a.k.a. labeled instances)
 - prediction set: a set of instance descriptions that do not include the target property ('unlabeled' instances)
 - prediction task: predict the label of the unlabeled instances

• Outcome of learning process

- transductive learning: the predictions themselves
- inductive learning: a function that can predict the label of any unlabeled instance

• Explainable AI

- interpretable: can be interpred
- black-box: non-interpretable

• Learning

- Supervised learning: from labeled
- Unsupervised learning: from unlabeled
- Semi-supervised learning: from a few labeled and many unlabeled
- Format of input data
 - input is often assumed to be a set of instances that are all described using the same variables (features, attributes)
 - i.i.d.: independent and identically distributed
 - * tabular data (NN)
 - * sequences
 - * trees
 - * graph
 - * raw data: learning meaningful feaures from raw data
 - * knowledge: inductive logic programming

1.6 Output formats, methods (predictive learning)

The **output** of a learning system is a model.

- output
 - parametrized functions
 - ocnjunctive concepts: a conjuntive concept is expressed as a set of conditions, all of which must be true
 - rule sets (if...then...else...)
 - decision trees
 - neural networks
 - probabilisite graphical models
- · search methods
 - discrete spaces methods: hill-climbing, best-first
 - continuous spaces methods: gradient descent
- typically
 - model structure not fixed in advanced discrete
 - fixed model structure, tune numerical parameters continuous
- hypothesis space
 - definition: all possible instances
 - for robot example: $\{B,R,M,?\} \times \{S,T,?\} \times \{L,W,?\} \times \{1,2,?\}$

• Verson space

- using candidate elimination
- pros
 - \ast can be used for discrete hypothesis spaces
 - $\ast\,$ search for all solutions, rather than just one, in an efficient manner
 - * importance of generality ordering
- cons
 - * not robust to noise
 - * only conjunctive concepts

2 Lecture 2: Induction of decision tree

2.1 Overview of DT

- A decision tree represents a decision procedure where
 - you start with one question
 - the answer will determine the next question
 - and repeat, untill you reach a decision
- We will usually call the questions "tests" and the decision a "prediction"
- attribute
 - input attribute $X = \{X_1, X_2 ..., X_n\}$
 - target attribute Y
 - the tree represents a function f: X -> Y
- Example: Playing Tennis Tree
 - Outlook: $X_1 = \{Sunny, Overcast, Rainy\}$
 - Humidity: $X_2 = \{High, Normal\}$
 - Wind: $X_3 = \{Strong, Weak\}$
 - Tennis: $Y = \{Yes, No\}$
 - The tree represents a function Outlook x Humidity x Wind -> Tennis
- Boolean tree
- Continuous input attributes
 - We cannot make a different child node for each possible value!
 - Solution: use comparative test -> a finite number of possible outcomes
- Type of trees
 - target attribute Y is nomial -> classification tree
 - target attribute Y is numerical -> regression tree
- Advantages of Tree (Why tree?)
 - Learning and using tree is **efficient**
 - Tend to have good predictive accuracy
 - Tree is **interpretable**

2.2 Learn trees from data

- Two tasks for DT
 - Task 1: find the smallest tree T such that $\forall (x,f(x))\in D$: T(x)=f(x) (meaning that only fullfill current data set)
 - Task 2: find the tree T such that for x drawn from population D, T(x) is (on average) maximally similar to f(x) (T:model tree from data set D, f(x):true function in population D)
 - * loss function: l: $Y_1 \times Y_2 \rightarrow R$ (where Y_1 is predicted value, Y_2 is actual value)
 - * risk R of T, the expectation of loss function, is $E_{x\sim D}[l(T(x), f(x))]$, which is needed to be minimal.
- the basic principle
 - The approach is known as "Top-down induction of decision trees (TDIDT)", or "recursive partitioning"
 - * 1. start with the full data set D
 - * 2. find a test such that examples in D with the same outcome for the test tend to have the same value of Y
 - * 3. split D into subsets, one for each outcome of that test
 - * 4. repeat this procedure on each subset that is not yet sufficiently "pure" (meaning, not all elements have the same Y)
 - * 5. keep repeating until no further splits possible
- rule representation of tree
 - trees can be written as if-then-else rules
 - rules can be simplified
- Two main questions?
 - How to choose which test should be the first? (guess: attribute with minimal entropy?)
 - When to stop splitting nodes? (guess: till pure? or threshold for probability?)

2.3 Choosing the best test

- We focus on classification tree (Y is nominal)
- Information theory
 - a good test is a test that carries much information about the class
 - "entropy" or "missing information": how many bits needed, on average, to convey a piece of information, if an optimal encoding is used

- bits <- Question!! Do not understand the bit, how is it related to
- But whatever, the cleverest bit has been provided as below, which is called "entropy"

$$*~e = -\sum_{i=1}^k p_i \log_2 p_i$$

- The number e reflects the minimal number of bits that you will need, on average, to encode one value. It is the inherent information content, or **entropy**.
- for classification we use class entropy
 - The class entropy of a set S of objects(\mathbf{x}, \mathbf{y}), where y can be any of k classes c_i , is defined as

*
$$CE(S) = -\sum_{i=1}^k p_i \log_2 p_i$$
 with $p_i = \frac{(|(x,y) \in S|y = c_i|)}{|S|}$
* it measures how much uncertainty there is about the class of a

- particular instance
- high entropy = "many possbilities, all equally likely" not good for splitting
- low entropy = "few possibilities, safer to conclude" better for splitting nodes
- entropy measures uncertainty
- information gain (IG)
 - will have the same effect of attribute entropy
 - the information gain of a question = the expected reduction of entropy by obtaining the answer to the question
 - in the case of classification trees: expected reduction of class entropy:

*
$$IG(S,t) = CE(S) - \mathbb{E}(CE(S_i)) = CE(S) - \sum_{i=1}^{o} \frac{|S_i|}{|S|} CE(S_i)$$

* with t a test, o the number of possible outcomes of attribute/test t, and S_i the subset of S for which the i'th outcome was obtained.

However, if we focus on regression tree (Y is numerical), can we still use class entropy or information gain?

- Now we assume Y is numerical
- Now we use variance reduction instead of entropy or information gain
 - the variacne of Y in a set S of instances (x,y) is

$$- \ Var(S) = \frac{\sum_{(x,y) \in S} (y - \hat{y})^2}{|S| - 1} \text{ with } \hat{y} = \frac{\sum_{(x,y) \in S} y}{|S|}$$

- and the variance reduction will be (which is similar to information gain (IG))

$$- VR(S,t) = Var(S) - \sum_{i=1}^{o} \frac{|S_i|}{|S|} Var(S_i)$$

2.4 Stop splitting nodes

- In principle, keep splittign untill all instances in a subset have the same Y value
 - However, this is useful for task 1, but less useful for take 2 (may cause overfitting problem!)
 - Please remember this is not population, this is just a sampling sample.

overfitting

- overfitting improves the consistency of the tree with the given data set D, but may decrease accuracy for instances outside D (whole population \mathcal{D})
- How to avoid overfitting?
 - "cautious splitting": do not split a node unless you are certain that the split is meaningful
 - "post-pruning": do not bother about overfitting while splitting nodes, but once the (large) tree has been built, prune away branches that turned out not to contribute much
- "Cautious splitting"
 - How do we know when not to split a node any further?
 - * a simple approach: try to guess when accuracy on unseen data is going down ("the turning point")
 - But how can guess this turning point, if the data is unseen?
 - * Solution: we can use "validation data" to evaluate
 - * this "validation data" is not for growing tree, only for estimating accuracy on "unseen" data

• "Post-pruning"

- What if the accuracy will increase again? afraid to end the growth too early
 - * Solution: we can compute the whole data set, then find its highest point

- Princeple

- * grow the tree to its full size, then cut away branches that did not contribute to getting better predictions
- * How to decide which branch does not contribute
 - · check for each node in the tree, starting at the bottom: "what would be the accuracy if I cut the tree here?" if that accuracy is not lower, cut the tree, otherwise, do not cut.

- Pros and Cons
 - post-pruning requires more effort to build a large tree, while it gives more accurate tree
 - catious splitting is more efficient, while the accuracy is not as good as post-pruning

2.5 A generic algorithm

- TDIDT = "Top-down induction of decision trees", also referred to as "recursive partitioning"
- most decision tree learners follow the same basic approach, but differ in the details
 - we will have a look at the commonalities and differences

```
function TDIDT(E: set of examples) returns tree;

T' = \text{grow\_tree}(E);

T = \text{prune\_tree}(T');

return T;

function grow\_tree(E: set of examples) returns tree;

T = \text{generate\_tests}(E);

t = \text{best\_test}(T, E); (call t's outcomes v_1...v_k)

P = \{E_1, E_2, ..., E_k\} with E_i = \{x \in E \mid t(x) = v_i\} (P = \text{partition induced on } E \text{ by } t)

if stop_criterion(E, P)

then return leaf(info(E))

else

for all E_i in P: T_i := \text{grow\_tree}(E_i);

return node(t, \{(v_1, T_i), (v_2, T_2), ... (v_k, T_k)\});
```

Figure 1: Algorithm for "Top-down in duction of decision trees"

- The blue functions are where implementations differ
 - prune tree: how to prune the tree afterward
 - generate_tests: which tests to consider
 - best test: which test to select (use heuristics: entropy or variance)
 - stop criterion: when to stop (cautious splitting or post-pruning)
 - info: what information to store in the leaf
- generate_tests
 - for numerical attributes: oblique trees can be used for determining c(threshold), while it will be more difficult even though it has higher accuracy. Thus, in practice, non-oblique trees are much more common.

• best test

- for classification trees: information gain (IG) = reduction to entropy $CE(S) = -\sum_{i=1}^k p_i \log_2 p_i$
 - * in some cases: "Gini impurity" instead of entropy: $Gini(S) = 1 \sum_{i=1}^k p_i^2$
- for regression trees: reduction of variance σ , or reduction of standard deviation $\sqrt{\sigma}$
 - * in some cases: normalization is impelmented by "Split information" (SI): $SI(S,t) = -\sum_{i=1}^n \frac{|S_i|}{|S|} \log_2 \frac{|S_i|}{|S|}$
 - * and the Gain Ratio (GR) will be: $GR(S,t) = \frac{IG(S,t)}{SI(S,t)}$
- for numerical inputs, how to determine c?
 - * Solution: typically, all values are tried, and the c that yields the best heuristic value (IG, GR, Gini, ...) is selected (best of them)

• info

- for classification trees: usually, the most frequent class
- for regression trees: usually, the mean of all target values in that leaf
 - * possible: median

• stop_criterion

- 1. cautious splitting, post-pruning
- 2. threshold
 - * classification: all instances have the same class, pure
 - * regression: variance
- too few examples to continue splitting
 - * only allow tests that yield subtrees with at least two examples each
- · impurity measures
 - good impurity measures are strictly concave <- Question: do not understand!!

2.6 Computational complexity

- Given a data set D consisting of N instances (x,y), where x has m components (attribtues), how do N and m influence the computational effort required to learn a tree?
- "Splitting one node" for each node, we need to "find the best test"
 - for each possible test, evaluate its quality

- * partition the dataset according to this test
- * compute quality based on this partition
- for the test with highest quality
 - * partition data according to that test
- Efficiently computing test quality for continous attribtues
 - first **sort** all tuples according to A (attribute), small to large
 - then gradually move the threshold, and simply update the tables
 - thus, testing all thresholds is only slightly more work than testing one!
- Computing the quality of one test
 - for nominal attributes: 1 scan, gradually building the table; compute IG once, at the end
 - for continous attributes: 1 scan, gradually updating the table; compute IG for each intermediate table
 - hence, computing the best test for a node is linear in the number of instances in that node O(n), with n the number of instances
 - Complexity:
 - * compute quality of one test is O(n)
 - * compute quality of all tests is O(nm), with m the number of attributes
- Splitting multiple nodes
 - the total at one level of the tree is always n, so the overal amount of work depends on the layer of the trees
 - * if the splits are balanced, the height of tree is O(log(N)), and the overall compelxity of tree growth is $O(mN\log_2(N))$
 - * if the splits however are unbalanced, the height of tree is O(N), and the complexity is $O(mN^2)$
- For impurity measures
 - "pure" = "zero variance/entropy"
- Why decision tree for Big Data?
 - QUICK! and FAST! efficient!
 - high accuracy
 - interpretable can be also a reason

2.7 Missing values

- when computing quality of a test: just ignore instances where this value is missing
- when splitting on an attribute:
 - guess its most likely value
 - partially assign the example to multiple branch, with its probability

2.8 Model trees

Model trees are **regression tree** in which each leaf does not contain a constant, but a linear model.

- RETIS (M5)
- Mauve

2.9 Multi-target trees

- Classification and regression trees are very popular for predicting one target variable
- But the principle of variance reduction is easily generalized to predicting vectors!
- This allow us to predict multiple variables at the same time, using one tree. (vector)
- Multi-label classification
 - How? For example for $Y = \{a,b,c,d,e\}$
 - Option 1: "binary relevance"
 - * learn (y/n) decision tree for each label
 - * TreeA predicts a(y/n), TreeB predicts b(y/n)
 - Option 2: "label powersets"
 - * consider each set as separate label, for 5 original labels a,b,c,d,e, we get 32 combined labels: -,a,b,c,d,e,ab,ac, ..., abc, ...
 - * Learn a tree that predicts the combined label
 - Option 3: "Vector encoding"
 - * encode each set as 0/1 vector, e.g. $\{a,b,d\} = [1,1,0,1,0]$
 - * use a learner that can learn models that predict vectors
 - Option 3: "Vector encoding" is better! Requires almost no changes in the algorithm.

- * for example a leaf contains $\{[1,1,0,1,0],[1,1,0,0,0],[1,1,0,1,1]\} \rightarrow [1,1,0,0.67,0.33]$
- * predict all labels by threshold (e.g. 0.5): [1,1,0,0.67,0.33] -> {a,b,d}
- Hierarchical multilabel classification (HMC)
 - for protein
 - similar just add a constrant "a label can only occur in an instance's label set if all its ancestors also occur"
 - * 250 functions = 250 trees is not fast and interpretable!
 - * 250 functions = 1 tree is fast and interpretable!
 - * learn 1 tree that predicts 250-dimensional class vector
 - Decision tree can be converted to rules set

2.10 Practical software

- Weka
- PythonL scikit-learn
- others: R, SAS, SPSS

3 Lecture 3: Learning sets of rules

3.1 Linear regression

Decision tree vs. linear regression

- "Linear model": $Y = a + b_1 X_1 + b_2 X_2 + \dots + b_k X_k$
 - usually fit such that sum of squared vertical deviations from line is minimal
 - what can we learn from such linear model?
 - * for predicting Y, given Xi
 - * for understanding how well Y can be predicted from Xi
 - * for understanding what the effect of each Xi is on Y
 - * for visualizing the connection between Xi and Y
 - * the linear correlation r tells us how well the points fit a line $-1 \leq r \leq 1$
 - * the coefficient of determination R^2 tells us to what extent Y is determined by the $X_i, 0 \le R^2 \le 1$
 - careful with interpretation of coefficients
 - * coefficients are not scale-free
 - * "multicollinearity": correlations among X_i
- important assumptions
 - effect of each variable on target is constant (does not depend on other variables)
 - effect of different variables are cumulative (add up)
- complex terms
 - "overall" coefficient of X_2 is $(b_2 + b_{12}X_1)$ effect of X_2 on Y depends on X_1
- nominal variables
 - for nominal X_i with k values, introduce k-1 "0/1" variables, called "indicator" or "dummy" variables <- Question: do not understand the dummy!!!

3.2 Trees vs. linear regression vs. inductive bias

- Each learning approach has a "bias": implicit assumptions it makes.
- Removing all bias?
 - bias-free learning is imporssible!

- no single best method for learning!
- for VS, the bias is "it assumes conjunctive concepts". -> without bias, no generalization.
- all of learning models have their own bias = implicit assumptions about what properties the true model has
- Choices to make
 - Modelling your problem as a prediction tasks:
 - * What is input, what is output (target attribute)?
 - * Regression, classification, probability prediction?
 - Choosing a learning approach
 - * Efficiency of learning/prediction phase
 - * Bias (which more fits the problem)
 - * interpretability of returned models (interpretation)

3.3 Rule learning

Learning sets of classification rules: rule sets:

- 1. "if...then..."
- 2. "if...then...else..."
- Example: rule sets define a leap years
 - If year is multiple of 400 then leap
 - else if year is a multiple of 100 then not leap
 - else if year is multiple of 4 then leap
 - else not leap
- A decision tree can be turned into a set of rules!
 - By learning decision tree to learn rule sets
- principle
 - 1. High accuracy: when it makes a prediction, it should be correct
 - 2. Reasonable coverage: it needs not make a prediction for each instance, but the more, the better
- Coule be top-down or bottom-up
 - Top-down:
 - * Start with maximally generally rule
 - * add literals one by one

- * gradually maximize accuracy without sacrificing coverage
- Bottom-up:
 - * Start with maximally specific rule
 - * remove literals one by one
 - * gradually maximize coverage without sacrificing accuracy

```
function LearnRuleSet(Target, Attrs, Examples, Threshold):

LearnedRules := ∅

Rule := LearnOneRule(Target, Attrs, Examples)

while performance(Rule,Examples) > Threshold, do

LearnedRules := LearnedRules ∪ {Rule}

Examples := Examples \ {examples classified correctly by Rule}

Rule := LearnOneRule(Target, Attrs, Examples)

sort LearnedRules according to performance

return LearnedRules
```

Figure 2: Algorithm for "General algorithm for rule learning"

```
function LearnOneRule(Target, Attrs, Examples):

NewRule := "IF true THEN pos"

NewRuleNeg := Neg

while NewRuleNeg not empty, do

// add a new literal to the rule

Candidates := generate candidate literals

BestLit := argmax<sub>L∈Candidates</sub> performance(Specialise(NewRule,L))

NewRule := Specialise(NewRule, BestLit)

NewRuleNeg := {x∈Neg | x covered by NewRule}

return NewRule

function Specialise(Rule, Lit):

let Rule = "IF conditions THEN pos"

return "IF conditions and Lit THEN pos"
```

Figure 3: Algorithm for "General algorithm for learning one rule"

- Top-down: start with an empty rule
- Heuristics for rule learners
 - High accuracy (most important), it is not robust to noise

- reasonably high coverage
- if-then-else rules vs. decision lists
 - if-then-else rules
 - * if year is a multiple of 400 then leap
 - * else if year is a multiple of 100 then not leap
 - * else if year is multiple of 4 then leap
 - * else not leap
 - decision lists
 - * if year is a multiple of 400 then leap
 - * if year is multiple of 4 but not of 100 then leap
 - if-then-else rule is more interpretable
 - decision list is more compact
 - unordered rules vs. ordered rules <- Question: do not understand!!!
- example-driven top-down rule induction
 - works like regular top-down approach, except:
 - * pick a not-yet-covered example
 - * consider as hypothesis space, all the rules that cover this example
 - * search within this hypothesis spaces (much smaller)
 - **pros:** more efficient
 - cons: less robust to noise
- other examples: RIPPER, Weka (software)

3.4 Association rules

Table 1: Differences with Classification and association rules

Classification rules	Association rules
One target class	Any combinatino of items can be the target
Good rules have near 100% accuracy ("con-	Rules need not have near 100% confidence
fidence" here)	to be interesting
Find a minimal set of rules (just enough to	Find a maximal set of rules (all rules that
classify)	hold)

• Overview

- Similar to classification rules, but for descriptive learning instead of predicitve learning
- is to look for the patterns in data

- classification rules are a small subset of association rules?
- General format: if $a_1, a_2, ..., a_n$ then $a_{n+1}, a_{n+2}, ..., a_{n+m}$
- Rule "If <this> then <that>" is charaterized by
 - Support: % of all clients that buy <this>
 - Confidence: % of buyers of <this> that also buy <that>
- Running a classification rule learner clearly will not work well for association rule, since classification rule is only a small subset of association rule
 - Solution: APRIORI algorithm

4 Lecture 4: Instance-based learning, Clustering

4.1 Instance-based learning

Basic key idea: just store all training examples

- When seeing a new instance:
 - Find the most similar cases in the database
 - make a prediction based on those instance
- Architypical method: k-nearest-neighbors (k-NN)
 - use most frequent class/ mean target among the **k** nearest neighbors as your prediction
 - k is chosen by the user (hyperparameter)
- Similarity
 - how close to others, often Euclidean distance for numerical inputs
- Voronoi diagrams
 - indicate area where prediction is influenced by same set of examples
 - for 1-NN: cell borders are right in the middle between any two data points
 - This is called a Voronoi diagram kNN
- Decision surface
 - Decision surface separate regions with different predictions
- Voronoi diagram for k > 1
 - To construct diagram for k-NN with k > 1
 - * Start from diagram for k-1
 - * for each cell:
 - · temporarily forget about k-1 nearest neighbors
 - · split cell according to k'th nearest neighbors
 - * Merge adjacent cells with same k nearest neighbors
- pros vs. cons
 - pros
 - * "Learning" is very fast just storing the data
 - * all detials of the data are kept
 - cons

- * can be slow at prediction time
- * difficulties in high-dimensional spaces
- * relies on having a good similarity measure (Euclidean distance numerical)
- * not robust to noise
- for k-NN, large K -> more robust to overfitting? but it is more robust to noise
- difficulties with high-dimensional space curse of dimensionality data are distribtued very sparsely in high-D
- Improvement: Different scales
 - When dimensions have very different scales, Euclidean distance may not work well
 - st Solution: normalization normalize all dimensions to comparable scale
 - * Give irrelevant dimensions a smalelr weight in the Euclidean distance, so they have less influence
 - * using a closed formula: $w_i = 1 \frac{1}{n} \sum_{k=1}^{c} \sum_{j=1}^{n_k} |\bar{x}_{ki} x_{kji}|$
 - * with c=# clusters, $n_k=\#$ elements in cluster k, $x_{ki}=$ mean x_i in cluster k, $x_{kji}=x_i$ for jth element in cluster k
- Improvenment: distance-werights k-NN
 - Why 3-NN, but why not 4-NN
 - * Solution: no cut-off at k, but have weights gradually decrease with distance
 - * careful: influence must decrease fast with distance, otherwise faraway cases will dominate the voting (otherwise noise)
- Improvement: locally weighted regression
 - for better fitting
 - * Solution: fit a simple local model
 - * a linear regression can be okay
- Prototypes
 - A prototype is a representattive for a group of instances
 - can be an average for elements in a cluster
 - note: need to define similarity between instance & prototype
- Efficient prediction
 - Solution: indexing the data helps

- Lazy learners vs. eager learners
 - k-NN is called lazy learner
 - * do not build a model during training, merely store data
 - * start doing the hard work when asked a question
 - eager learners
 - * generalize before knowing the question
 - * try to build a global model that will owrk under all circumstances
 - lazy learners can use simpler local models sometime very accurate
 - * compare: locally weighted linear regression (k-NN) vs. global linear regression
 - * compare: learn one rule that covers the query instance vs. learn a global rule set

4.2 Clustering

- Overview
 - Find structure/pattern in the data, in the form of groups of instances that are highly similar to each other
 - It is unsupervised machine learning (no labeled samples)
- Find groups (clusters) of instances so that
 - instances in the same group are similar
 - instances in the difference group are different
- Definition of clustering
 - flat clustering
 - * returns a partition of the data
 - hierarchical clustering
 - * returns a hierarchy of clusters
- Other definition of clustering
 - extensional clustering
 - * clusters are defined without any description language
 - conceptual clustering
 - * clusters are defiend using a conceptual description language
- FLat, extensional clustering

Input: dataset D ⊂ X, number of clusters k
Output: partition of D into k clusters
Algorithm:
Choose k random seeds (points in X)
Repeat until no changes:
Assign each instance to the cluster of its closest seed
Redefine seeds as cluster means
Return the k clusters

Figure 4: Algorithm for "Algorithm for flat, extensional clustering: K-means"

- task: given a set of unlabeled data, find groups of highly similar instances
- some constraints may additionally be given
- procedure: reassign points, recompute seeds, reassign points ..., when no points are re-assigned to another cluster, stop.
- Hierarchical, extensional clustering
 - top-down ("divisive") methods
 - * start with 1 cluster (whole data set)
 - * divide it into subsets
 - * subdivide subsets further
 - bottom-up ("agglomerative") methods
 - * start with singleton clusters
 - * join closest clusters together
 - * repeat until 1 cluster

• Bottom-up methods

- How does it generalize to distance between clusters? based on examples
 - * Single linkage: distance between clusters = distance between each closest point in their cluster
 - * Complete linkage: distance between clusters = distance between each furthest poin in their clusters
 - * Average linkage: distance between clusters = distance between average of clusters

• Conceptual clustering

 Cluster + find a conceptual description of each cluster (in some given description language L)

- Clearly, the clusters are not defined using distance alone! Context is improtant!
- Examples: Cobweb
 - Predictability: given cluster, how well can you predict attribute values
 - Predictiveness: given attribute values, how well can you predict cluster
 - Cobweb is to maximize a combination of both
- Decision tree learning, viewed as clustering
 - A decision tree defines a conceptual, hierarchical clustering of the data
 - * each node = subset of the data
 - * conceptual description of these data = conjunction of test outcomes from root to node
- Clustering trees
 - for regression (original), heuristic minimize average variance of Y within subsets
 - * $Var(S) = \sum_{(x,y) \in S} \frac{(y-\bar{y})^2}{|S|-1|}$
 - * with $\bar{y} = \sum_{(x,y) \in S} \frac{y}{|S|}$
 - for clustering (unsupervised clustering tree), given some distance metric d that indicates dissimilarity, we can minimize the average variance of X wihtin subsets
 - * $Var(S) = \sum_{x \in S} \frac{d(x,\bar{x})^2}{|S|-1}$
 - * with $\bar{x} = \sum_{x \in S} \frac{x}{|S|}$
- Predictive clustering
 - overview: it looks like from value -> cluster and from cluster -> value
 - Predictive clustering builds a model consisting of
 - * a set of clusters
 - * a function c assigning instances to clusters
 - * a function p assigning a target value to the instance, given the cluster
 - the overall predictive function is then f(x) = p(c(x), x)
 - the accuracy of f will depend on that of c and p.
 - * an accurate c requires good predictiveness (from value to cluster)
 - * an accurate p requires good Predictability (from cluster to value)

Figure 5: Algorithm for "Scheme of Predictive Cluster"

- Similarity measures
 - Similarity is often represented using a distance metric
 - * small distance = high similarity, e.g., euclidean distance, manhattan distance, hamming distance, ...
 - * $d_{Eucl}(x,x') = \sqrt{\sum_i (x_i x_i')^2}$
 - * $d_{Manh}(x, x') = \sum_i |x_i x'_i|$
 - Not all similarity measures can be expressed in that way!
 - * Distance metric fulfills symmetry and triangle inequality
 - * Some similarity measures cannot be mapped to such a distance measures
- Learning the similarity measure
 - Clustering relies strongly on defining an appropriate similarity measure
 - However, this may be very difficult sometime
 - * Solution: semi-supervised clustering
 - * Computer learns the similarity from examples of pairs of instances that should be in the same/ in different clusters, "must-link" and "cannot-link" constraints
 - * then start the unlabeled data, (semi-supervised clustering: a few labeled data, many unlabeled data)
- Learning preferred clusterings
 - Different clustering algorithms have different biases
 - * k-means: spherical clusters
 - * density-based: can return concave clusters
 - * some methods can even return disconnected cluster
- example of interactive clustering: the COBRAS method

- $-\,$ using an intermediate level of super-instances
 - * clustering = set of clusters
 - * cluster = set of super-instances
 - * super-instance = set of clusters
- Evaluating clusterings
 - How can we assess whether a clustering is good or bad?
 - explicit objective: minimize intra-cluster variance
 - internal criteria: inherent to the clustering
 - external criteria: compare to a reference clustering
 - * rand (random) index
 - * adjusted rand (random) index (ARI)

5 Lecture 5: Evaluating hypotheses

5.1 Models and learning algorithms

- Different levels of evaluation
 - evaluation of learned models
 - * given the model, how well can we expect it to perform
 - evaluation of learning algorithm
 - \ast given an algorithm, how well can we expect the models it learns to perform
- Evaluation of classifiers
 - probability of making a correct prediction: accuracy
 - time needed to make the prediction
 - cost incurred by wrong predictions

5.2 Statistics

- accuracy
 - accuracy = probability of correct prediction on a randomly drawn instances
 - error = 1- accuracy
 - estimating accuracy = estimating a probability over a population
 - estimating probability from sample proportion: well-studied problem in inferential Statistics
 - for probability π , sample proportion p has $\mathbb{E}(p)=\pi$ and $Var(p)=\frac{\pi(1-\pi)}{n}$
 - Hence:
 - * point estimate: $\hat{\pi} = p$
 - * 1- α confidence interval: $[p-z_{\alpha/2}\sqrt{\frac{p(1-p)}{n}},p+z_{\alpha/2}\sqrt{\frac{p(1-p)}{n}}]$ with $z_{\alpha/2}$ such that $P(Z>z_{\alpha/2})=\alpha/2$ if $Z\sim N(0,1)$

Table 2: Alpha for Confidence interval

α	0.1	0.05	0.01
$z_{\alpha/2}$	1.64	1.96	2.56

- train set and cross-validation
- option 1: train/test split

- -use 2/3 of available data for training set T, set aside 1/3 for test set S
- while if T is smaller -> less accurate f, smaller S -> less accurate estimate of accuracy of f

• option 2: cross-validation

- learn f from the full data set S
- however to get an estimate of acc(f), we parition the set into n subsets S_i
- learn f_i , i=1...n from $\frac{S}{S_i}$, compute $ACC(f, S_i)$
- estiamte acc(f) as average of all $acc(f, S_i)$
- name
 - * for a specific n, this is called n-fold cross-validation
 - * when n = |S|, this is called leave-one-out cross-validation
- Is cross-validation entirely unbiased No
- More option: nested/internal cross-validation

• comparing two models

- given two models, which one has higher accuracy
- two cases
 - * compare 2 models on different test sets
 - * compare 2 models on same test sets
- different sets
 - * Checked by confidence interval: $(a_1-a_2)\pm z_{\alpha/2}\sqrt{\frac{a_1(1-a_1)}{n_1}+\frac{a_2(1-a_2)}{n_2}}$
 - * if CI for a_1-a_2 is entirely to the right of 0, meaning that $a_1-a_2 \ge 0$, meaning that $acc(f_1) \ge acc(f_2)$
 - * if CI for a_1-a_2 is entirely to the left of 0, meaning that $a_1-a_2 \le 0$, meaning that $acc(f_1) \le acc(f_2)$
 - * if CI contains 0, it means that there is no difference between f_1 and f_2

- same sets

- * Compare models on the same data set is more informative
- * uses more detailed information from test
- * use McNemarś test in this case
- * key idea: how often was f_1 right and f_2 wrong on the same example vs. how often was f_1 wrong and f_2 right on the same example
 - · if $B \approx C \approx (B + C)/2$, then accept $acc(f_1) = acc(f_2)$

- · otherwises, if B deviates too much from (B+C)/2, then reject $acc(f_1) = acc(f_2)$
- * McNemarś test is more informative but can only use it when individual predictions of both models on the same test set are available

Table 3: Table for McNemarś test

	f_1 right	$ f_1 $ wrong
f_2 right	A	В
f_2 wrong	C	D

- Evaluation based on accuracy is not always appropriate
- cons
 - no obvious reference point
 - * sample imbalance
 - unstable when class distribution may change
 - * because classifer has different TP and TN
 - assumes symmetric misclassification costs
- alternatives
 - correlation
 - ROC analysis
- correlation
 - correlation tends to be more informative for unbalanced classifiers
 - $-\phi = \frac{AD-BD}{\sqrt{T_+ \cdot T_{T_- \cdot T_{pos} \cdot T_{neg}}}}$ with 1: perfect prediction, 0: no correlation (totally random), -1: predicting the exact opposite (1 and -1 both indicate strong relation, more focus on absolute number)

Table 4: Real class vs. predicted class

	+	-	Total
pos	A	В	T_{pos}
neg	C	D	T_{neg}
Total	T_{+}	T_	T

• expected misclassification cost

- sometimes one type of mistake is worse than the other, accuracy ignores this (assumes all errors are equally bad -> which are not correct usually)
- Solution
 - * accuracy: probability that some instance is classified correctly
 - * TP: "true positive rate": probability of a positive to be classified correctly
 - * TN: "true negative rate": probability of a negative to be classified correctly
 - * FP: "false positive rate": FP = 1 TN.
 - * FN: "false negative rate": FN = 1 TP.
- consider "misclassification costs"
 - * C_{FP} : cost of a false positive (cost of classifying a as pos)
 - * C_{FN} : cost of a false negative (cost of classifying a + as neg)
- expected cost of a single prediction
 - $* C = C_{FP}P(pos|-)P(-) + C_{FN}P(neg|+)P(+)$
 - * estimated by $C = C_{FP} \cdot FP \cdot T_-/T + C_{FN} \cdot FN \cdot T_+/T$
- ROC (Receiver operating characteristic) analysis
 - Allow us to see
 - * how well a classifier will perform given certain misclassification costs and class distribution
 - * in which environments one classifer is better than another
 - Overview: a ROC diagram plots (estimated) TP vs. FP for a classifer
 - * $TP = \frac{A}{T_+}$
 - * $FP = \frac{B}{T_{-}}$
 - * why T_+ and T_- instead of T_{pos} and T_{neg} ?
 - -1 classifier = 1 point in the ROC diagram
 - * higher is better (better TP), more to the left is better (lower FP)
 - * TP = 1: no positives forgotten
 - * FP = 0: no negatives can pretent positives
- Rank classifer
 - a rank classifer returns a numerical score, rather than pos/neg
 - * expresses uncertainty: higher score = more certain of pos
 - * numerical score can be turned into binary prediction by choosing a threshold
 - \ast changing the threshold gives different poit ns in the diagram, forming ROC curve

- Iso-cost line
 - given cost c_{FP} and c_{FN} , the expected cost of a classifier with TP and FP is $c = c_{FP} \cdot FP \cdot \frac{T_-}{T} + c_{FN} \cdot (1 TP) \cdot \frac{T_+}{T}$
 - hence, for a constant cost c, the points with the cost are on the following line - called an iso-cost line:

*
$$TP = \frac{c_{FP}T_{-}}{c_{FN}T_{+}} + 1 - \frac{cT}{c_{FN}T_{+}}$$

- Convex hull
 - set of classifers = set of points in ROC diagram
 - classifers that are optimal under some condition are on the convex hull of this set (if can be compared, highest is the optimal, other is not on the convex hull)
- precision-recall diagram
 - like ROC, defined for binary (pos/neg) predictions
 - * Precision: what proportion of positive predictions is really positive? using P(+|pos)
 - * Recall: what proportion of postiives is predicted positive? using P(pos|+)
 - like with ROC
 - * classifer -> point
 - * rank classifer -> curve

5.3 Comparison of evaluation

- Evaluation
 - evaluting classifer
 - * discussed above
 - evaluting regression models
 - * SSE, MSE, RE, correlation
 - evaluting clustering
 - * explicit objective, internal criteria, external criteria
 - evaluating learners
 - * two questions
 - · Q1: given models f_1 and f_2 , which one has better predictive accuracy?
 - · Q2: given learners L_1 and L_2 and data set S, which learner can be expected to build best model from (data set like) S?
 - * Q2 is more difficult to answer than Q1, additional level of variation

- \ast Q2 is only meaningful when restricted to a particular problem domain, and data set of a particular size
- * statisticians distinguish
 - \cdot Conditional accuracy: mean accuracy of models learned by L on a given dataset S
 - · Unconditional accuracy: mean accuracy of models learned by L on datasets of size n drawn randomly from the population (from population)
- * comparing learners
 - · making some rules, description language

- 6 Lecture 6: Numerical approaches (ANN, SVM), Computational learning theory
- 6.1 Learning theory

aaa

- 7 Lecture 7: Probabilistic approaches, Ensembles
- 8 Lecture 8: Reinforcement learning
- 9 Lecture 9-10: Inductive logic programming