Pan-Cancer TF Footprinting & Noncoding Mutation Data Integration

Suffian Azizan

Note: This is a Github README doc that is dynamically generated from the qmd notebook.

1 Background

This pan-cancer study makes use of restricted ATAC-seq and DNAse-seq datasets generated from healthy and cancerous human tissue samples available in the public databases (i.e. TCGA and BLUEPRINT) to generate TF footprinting data from the open chromatin regions. The TF footprinting data is then combined with the noncoding mutation data from the same samples obtained via variant calling to identify TF binding sites (TFBS) that carry variant alleles (or potentially mutations) that may modulate TF footprint scores (proxy for TF binding activity).

2 Data Preprocessing

TF footprints are determined and scored using the TOBIAS program published by Looso Lab (Max Plank Institute). A customized TOBIAS pipeline was run on individual samples so TOBIAS's internal intersample normalization was not applied. The raw footprint scores were collated for all samples in this pan-cancer study and combined into a large dense matrix containing unique footprint sites of a particular motif of interest across all samples. As we have 1360 motifs of interest in this study, we have 1360 large data tables to process.

For the purpose of demonstration, a subset of TF footprint data of the open chromatin regions in only breast cancer samples from TCGA database was used here to save storage space and lower processing overhead. Additionally, only 1 TF motif will be presented here in the analysis workflow.

First, load up required Python packages.

```
import os
import textwrap
import pandas as pd
import seaborn as sns
import statsmodels.api as sm
import matplotlib.pyplot as plt
from natsort import index_natsorted
```

2.1 Loading up the footprint data table

Now, we can import the data tables as Pandas dataframes. The data are stored in tab-delimited text files (.tsv). The first column defines the chromosomal location, the second and third column contain the genomic coordinates of the TF footprint, the fourth column retains the strandedness of the TF binding site (TFBS), the fifth column contains the TFBS score (similarity score with the tested motif PWM), and the rest of the columns carry the actual TOBIAS-calculated TF footprint scores for individual samples.

The data is loaded into a Pandas dataframe and the first 5 rows are displayed.

```
# import the data
filepath = '../demo-data/E2F2_E2F2_HUMAN.H11M0.0.B_BRCA-subtype-vcf-filtered-matrix.txt'
df_fpscore = pd.read_csv(filepath, sep='\t')
```

Aside: specify a formatter function to wrap long text in the data tables.

```
#replace underscore with whitespace
func_underscore_replace = lambda x: x.replace("_", " ")
#wrap text
def func_wrap(x):
    if isinstance(x, str):
        return textwrap.fill(x, width=10)
    else:
        return x
```

TFBS	TFBS	TFBS	TFBS	TFBS	98JKPD8	AN-	S6R691V	PU24GB8	2GAMBDQ
chr	start	end	strand	score	LumA	AB5F7	Her2	LumB	Nor-
					score	Basal	score	score	mal-
						score			like
									score
chr1	10628	10638	+	7.401890	0.000000	0.000000	0.000000	0.000000	0.000000
chr1	181224	181234	+	7.998660	0.000000	0.000000	0.000000	0.000000	0.000000
chr1	779214	779224	1	7.796470	0.000000	0.000000	0.000000	0.000000	0.000000
chr1	998754	998764	+	8.560290	0.137600	0.140350	0.128420	0.145000	0.105100

Rename the _score column to _fps to avoid confusion with the mutation score column in the mutation data table later, and drop the TFBS_strand and TFBS_score columns as they are not needed for now.

```
# drop the column "TFBS_strand" and "TFBS_score"

df_fpscore = df_fpscore.drop(columns=["TFBS_strand", "TFBS_score"])
# rename columns in the dataframe

df_fpscore = df_fpscore.rename(columns={"TFBS_chr": "Chromosome", "TFBS_start": "Start",
    "TFBS_end": "End", "2GAMBDQ_Normal-like_score": "2GAMBDQ_Norm_fps"})
# for all column names that end with the string 'score', replace the string with 'fps'

df_fpscore = df_fpscore.rename(columns=lambda x: x.replace('score', 'fps') if
    x.endswith('score') else x)
```

Chromo- some	Start	End	98JKPD8 LumA fps	ANAB5F7 Basal fps	S6R691V Her2 fps	PU24GB8 LumB fps	2GAMBDQ Norm fps
chr1	10628	10638	0.000000	0.000000	0.000000	0.000000	0.000000
chr1	181224	181234	0.000000	0.000000	0.000000	0.000000	0.000000
chr1	779214	779224	0.000000	0.000000	0.000000	0.000000	0.000000
chr1	998754	998764	0.137600	0.140350	0.128420	0.145000	0.105100
chr1	998768	998778	0.182240	0.167080	0.169110	0.183020	0.127590
chr1	1019693	1019703	0.622590	0.379450	0.489290	0.644200	0.492220
chr1	1041096	1041106	0.096050	0.097560	0.090640	0.127590	0.110160
chr1	1164827	1164837	0.110270	0.149950	0.073960	0.067850	0.080790
chr1	1206766	1206776	0.067360	0.063970	0.041980	0.069200	0.072820
chr1	1309989	1309999	0.123050	0.144050	0.141260	0.124540	0.096460

2.2 Loading up the mutation data table

This mutation data is generated from the output of bcftools variant calling pipeline. First, load up an example data file to see how the data is structured.

```
vcfpath = '../demo-data/2GAMBDQ_E2F2_E2F2_HUMAN.H11MO.O.B_AF-per-site-with-indels.txt'
# load up the vcf file with indels and multiallelic sites split into separate rows
df_vcf = pd.read_csv(vcfpath, sep="\t")
```

#[1]CHROM	[2]POS	[3]REF	[4]ALT	[5]AF
chr1	10629	GGCGCGC	GGCGC	1.0
chr1	998764	С	G	0.5
chr1	998764	CGGAGGG	CGGAGGGGAG GG	0.3125
chr1	1041101	CGGAGCGGGG CGGAGCGGG GCGGGAGCGG GG	CGGAGCGGGG CGGGAGCGGG G	0.5
chr1	1164837	С	Т	0.8125

The file above corresponds to just one of the sample IDs in this pan-cancer study. To load up all the mutation data for all samples, we need to load up all the files in the directory. Let's put the dataframes in one dictionary object using a loop.

```
# create a vcf load function for the query vcfs
def load_vcf(vcf_path):
   # load up the vcf file with indels and multiallelic sites split into separate rows
    df_vcf = pd.read_csv(vcf_path, sep="\t")
   # rename columns in the dataframe
  df vcf = df vcf.rename(columns={"#[1]CHROM": "Chromosome", "[2]POS": "Start", "[3]REF":
"ref_allele", "[4]ALT": "alt_allele", "[5]AF": "AF"})
    # add a column next to the "start" column called "end" with the same value as the
"start" column
    df_vcf.insert(2, "End", df_vcf["Start"])
    return df_vcf
# now put the paths in a list
paths = [
    "../demo-data/2GAMBDQ E2F2 E2F2 HUMAN.H11MO.O.B AF-per-site-with-indels.txt",
    "../demo-data/98JKPD8 E2F2 E2F2 HUMAN.H11MO.O.B AF-per-site-with-indels.txt",
    "../demo-data/ANAB5F7_E2F2_E2F2_HUMAN.H11MO.O.B_AF-per-site-with-indels.txt",
    "../demo-data/PU24GB8_E2F2_E2F2_HUMAN.H11M0.0.B_AF-per-site-with-indels.txt",
    "../demo-data/S6R691V_E2F2_E2F2_HUMAN.H11M0.0.B_AF-per-site-with-indels.txt"
]
# create a list of IDs
ids = [ "ANAB5F7_basal", "98JKPD8_lumA", "PU24GB8_lumB", "S6R691V_her2", "2GAMBDQ_norm"]
# create a pair dictionary using nested dict comprehension
# for each id in the list of ids, iterate through the list of paths and check if the id is
in the path; this means there is no need to order the list of ids according to the order
of the paths
path id dict = {id: load vcf(path) for id in ids for path in paths if id.split(" ")[0]
in path}
```

2.3 Using PyRanges for dataframe merging

As we are dealing with genomic regions where the data is related to interval values (start and end coordinates) spanning across two columns, it is not possible to do dataframe overlap or join using Pandas. We will need to use a specialized Python package called PyRanges to handle genomic coordinates.

Import the package and then first convert the footprint dataframe into a PyRanges object.

```
import pyranges as pr
gr_fpscore = pr.PyRanges(df_fpscore)
```

Chromo- some	Start	End	98JKPD8 LumA fps	ANAB5F7 Basal fps	S6R691V Her2 fps	PU24GB8 LumB fps	2GAMBDQ Norm fps
chr1	10628	10638	0.0	0.0	0.0	0.0	0.0
chr1	181224	181234	0.0	0.0	0.0	0.0	0.0
chr1	779214	779224	0.0	0.0	0.0	0.0	0.0
chr1	998754	998764	0.1376	0.14035	0.12842	0.145	0.1051
chr1	998768	998778	0.18224	0.16708	0.16911	0.18302	0.12759

Do the same for the mutation dataframes in the dictionary. Loop through it and save them in a new dictionary.

```
# load up vcf_dfs into pyranges
grs = {}
for name,vcf in path_id_dict.items():
    gr_vcf = pr.PyRanges(vcf)
    grs[name] = gr_vcf

print(grs["ANAB5F7_basal"].head(n=10))
```

2.4 Merging the PyRanges objects

Now, we can merge the PyRanges objects using the join function. The how argument is set to left to retain all the rows in the left dataframe (i.e. the footprint dataframe) and the suffix argument is set to <code>[sample ID]_varsite_pos</code> to add a suffix to the columns in the right dataframe (i.e. the mutation dataframe) to avoid column name clashes.

```
count = 0
for key, val in grs.items():
    if count == 0:
             overlap = gr_fpscore.join(val, how='left', suffix=f"_{key}_varsite_pos",
preserve_order = True)
    else:
            overlap = filtered_gr.join(val, how='left', suffix=f"_{key}_varsite_pos",
preserve_order = True)
    # drop the column "End" column
    overlap = overlap.drop([f"End {key} varsite pos"])
   # cluster the pyRanges object by genomic range; overlapping regions wil share the same
id. This will add a new column called "Cluster"
    overlap = overlap.cluster(slack=-1)
    # cast back into a dataframe and filter by the AF column's max value (by Cluster);
this returns a filtered dataframe
    filtered df = overlap.df.loc[overlap.df.groupby('Cluster')['AF'].idxmax()]
    # cast back into a dataframe and rename metadata columns
        filtered_df = filtered_df.rename(columns={f"Start_{key}_varsite_pos": f"{key}
_varsite_pos", "ref_allele": f"{key}_REF", "alt_allele": f"{key}_ALT", "AF": f"{key}
_AF"})
   # replace all the -1 values in column 'Start_varsites', 'ref_allele' and 'alt_allele',
and AF with 0
    # Define a dictionary mapping column names to values to replace
     replace_dict = {f"{key}_varsite_pos": {-1: None}, f"{key}_REF": {str(-1): None},
f"{key} ALT": {str(-1): None}, f"{key} AF": {-1: 0}}
    filtered_df = filtered_df.replace(replace_dict)
    # drop cluster column
    filtered_df = filtered_df.drop(columns=["Cluster"])
    # cast back into pyrange object
    filtered_gr = pr.PyRanges(filtered_df)
    # increment count
    count += 1
```

Note that during the overlap process, the use of cluster function is to ensure that overlapping regions will share the same ID. This is important as we will need to filter the overlapping regions by the maximum allele frequency (AF) value so that only 1) unique chromosome regions are returned, and 2) regions with multial-lelic sites, only the site with the highest AF value is returned.

Now, we can clean up the PyRanges object and convert it back to a Pandas dataframe. This file will be the basis for all downstream analyses.

```
final_df = filtered_gr.df

# create a column called 'region_id'
final_df["region_id"] = final_df["Chromosome"].astype(str) + ":" +
final_df["Start"].astype(str) + "-" + final_df["End"].astype(str)

# for all column name ending with the string '_fps', split the string, take the second
```

```
element, change the first letter in the string to lowercase, and reconstruct the original
string with the new first letter
final_df = final_df.rename(columns=lambda x: x.split('_')[0] + '_' + x.split('_')[1]
[0].lower() + x.split('_')[1][1:] + '_fps' if x.endswith('_fps') else x)
```

A slice of the final dataframe is shown below.

																												${}^{-}$		i
(hre	f ŧar	E918	KP	A886	R 69	20XFC	B /81	ADY	AN	AN	A918[IØB]	DXB.	DXB.		2248 0	BKO	BK	2386	H\$69	R\$ 60	R.56	R06 9	am i	510XQ	SIONÓ	M	ÐĘ	1
	mo-	-	1	umA	B 51	herl	umi	BorA	B54	TB 5A	B 54	1 85 1 F	üml	amk	amk	amk	aml	aml	aml	aml	Ber1	her1	herz	herí	orr	orr	orr	mrr	gior	1
5	om	e		fps	asa	l fps	fps	fps	asa	lasa	lasi	lasa	var:	REE	ALT	ΆF	var	REE	ALΊ	AF	var	REE	ALΊ	ΆF	var	REE	ALT	AF	id	
				_	fps	-	_	-	var	REE	ALT	ΆF	site				site				site				site					
									site				pos				pos				pos				pos					
									pos																					
	chri	062	863	gw.		000	000	001	മ		YCY	DUU 10	വയ		YOY	V4 (Q 18	മമാ		YAYA	MVU	വകാ		YCC	<u> </u>	വകാ		XIX	200710	<u>ለ</u> መ ያ	-10638
١ ' ١	11111	004	DUJ		TOW.C		row.u	צטטן	LUUD				UUD			MO T	משט				DOD			DOLUM W	DOD		LINGUIN	HX.LL	ישערכ	10036
1	ch i ti	B122	34 020	400. (00.0	00.0	00.0	000	0001	∮on ì	40 n	6 00	(100)	₹on`	ł0n	6 00	001	on	ion	£ 00 0	001	₹on`	₹0n	£ 00 b	00A	∳or ì	ło n1	:080	22 24	-181234
2	ch 71	797	7,4000 (eme	000	000	000	OΩ	709021	бT	00	207/	71922 1	бT	<u></u>	257°	m	6T	00	26/3	71032 1	КT	00	583	Dahi	Jorð	J ₂ 01	47(7(100 01 4	-779224
	1111	<i>74</i> .	-10LV	CAU.	Jow.c		row.c		JUZ.	.01	U .		1/2	.01	U. 1	3	CAL.	01	U.C	203	1/2	.51	ů	JOL	VLJELI I	NOI1	Z. Z. Z. Z.		W U 7	1//223
3	ch91	98 79.	94807.1	307 .6	40 .3	508. 4	2 6 .0	061	10001	łon	₹ 6 n0	£00 0	001	łon	₹ 0 11	600 0	001	on	∮0n	1 000	001	łon	₹011	6 000	001	ori	łon1	:990	105 4	-998764
4	ch91	P8 '9 (98 07.1	/82 .2	40 .0	80 .1	80 .0	20 î	90n	₹on	£0 n	£00 b	001	₹on	łon	£ 00 b	001	eon	łon	£00 0	00A	łon\	£0n	£ 00 b	00n	∮orì	HO011	:990	100 8	-998778

The final dataframe here is saved as a tab-delimited text file in demo-data/ with the filename suffix "fpscore-af-varsites-combined-matrix-wide.tsv".

3 Merged Dataframe Data Analysis

Now that the data from the footprinting of TFs (**NOTE**: we are only using E2F2 TF footprinting data here) and the mutation data overlapping these footprints (obtained post-variant caling) are combined into a single dataframe, we can start to do some analysis.

First load up the merged dataframe.

```
# import the data
filepath = '../demo-data/E2F2_E2F2_HUMAN.H11MO.O.B_fpscore-af-varsites-combined-matrix-
wide.tsv'
afps_df = pd.read_csv(filepath, sep='\t')
# extract motif id from filename
motif_id = os.path.basename(filepath).replace('_fpscore-af-varsites-combined-matrix-
wide.tsv', '')
print(f"The motif ID of the current TF data: {motif_id} \n")
```

The motif ID of the current TF data: E2F2_E2F2_HUMAN.H11M0.0.B

Chre	ŧar	E918	KP	A S V	R1619	200	IK 8F	AOOQ	ALOADE	AKAT	TOB	IØØ	D Ø 8	D16818	DKS P:	A8N.	AN-	AN.	APNU	27410	284 0	284 0	2346	R1880	R V 80	R¥80	R V 9	11Ve-	
mo-		1	μmA	B5I	her!	umi	Born	norm	norm	norm	nort	ıml⁄	aml	uml	am/A	1B541	B 54	TB 54	B 5F	i7ml	aml	ıml	aml	ner2	her2	her2	her2	gior	ŀ
some	e		fps	asa	lfps	fps	fps	var-	ref	alt	AF	var-	ref	alt	ΑF	asa	lasa	lasa	lasa	var-	ref	alt	AF	var-	ref	alt	AF	id	
				fps				site	al-	al-		site	al-	al-		var-	ref	alt	AF	site	al-	al-		site	al-	al-			
								pos	lele	lele		pos	lele	lele		site	al-	al-		pos	lele	lele		pos	lele	lele			
																pos	lele	lele											
chr1	062	1863	0.003	0 0 0.0	000.0	00.0	062	950 00	000		10062	940 00	000	DOC	556 2	3.6 0	O (C XX)		10062	940 00	000		10062	960 00	000		30 210	0602 8	-10
chí11	B1 2 2	3 4020	9.00). 0 00	0.00	0 0 0.0	00 00	110 11	nan	กผิฬ	000	110 11	nan	กผิฬ	000	n a n	nan	กผิฬ	000	ne n	nan	กผิฬ	000	n a n	nan	rlûn1	0.000	(2)(2) 4	-18
chi/1	79 2 7	74020	900.0). 0 00	0.00	O O .0	00 00	110 11	nan	n 07 6	709020	(600)	010(0071	7 2952 0	600 0	00100	0070	7 292 4	16200	0000	0070	7262 3	16600	0000	:BC:1	5/8/8	92241 4	-779
chØ1	P879:	5948 07.0	30.6	40 .3	5203 .4	2 45 .0	005 1	110 11	nan	กอิท	000	n 0n	nan	กอิท	000	n a n	nan	กอิฬ	000	n 0n	nan	กผิฬ	000	n a n	nan	rlûnt	.9990	0705 4	-998
ch91	9879	98 07. '	802.2	460 7.0	80 .1	18 03 .0	207 5	9 0n	nan	กอิท	000	n e n	nan	กผิฬ	000	<u>n</u> en	nan	n e n	000	n e n	nan	กอิท	000	<u>n</u> an	nan	rhant	.9990	070 68	-998

Filter the loaded table to include only the _AF and _fps columns, as well as the region_id column to get a matrix of TF footprint scores and allele frequencies of the variant sites overlapping the TF footprint sites.

```
afps_matrix = afps_df.filter(regex='_AF$|_fps$|_id$').copy()
```

98JKPD8	AN-	S6R691V	PU24GB&	GAMBDØ	GAMBD(98JKPD8	AN-	PU24GB8	S6R691V	region	
lumA	AB5F7	her2	lumB	norm	norm	lumA	AB5F7	lumB	her2	id	
fps	basal	fps	fps	fps	AF	AF	basal	AF	AF		
	fps						AF				
0.000000	0.000000	0.000000	0.000000	0.000000	1.000000	0.958333	1.000000	1.000000	1.000@ b ar	1:10628-10	638
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.00@@000:	181224-18	1234
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.125000	0.029412	0.026316	0.05&\$24:	779214-77	9224
0.137600	0.140350	0.128420	0.145000	0.105100	0.000000	0.000000	0.000000	0.000000	0.00@@000:	998754-99	8764
0.182240	0.167080	0.169110	0.183020	0.127590	0.000000	0.000000	0.000000	0.000000	0.00@0000	998768-99	8778

This matrix is in the wide format so it should be converted into a long format for easier wrangling.

```
# convert to long format
afps mtx long
                      afps_matrix.melt(id_vars=["region_id"],
                                                                 var name="variable",
value_name="value")
# split the variable column into sample_id and type columns using reverse split string
method, which returns a dataframe of columns based on the number of splits (n=x); this
can directly be assigned to new columns in the original dataframe
afps_mtx_long[['sample_id', 'type']] = afps_mtx_long['variable'].str.rsplit('_', n=1,
expand=True)
# drop the redundant 'variable' column
afps_mtx_long = afps_mtx_long.drop(columns=["variable"])
# now pivot the dataframe to create new columns based on the type column
afps_mtx_lpv = afps_mtx_long.pivot(index=['region_id', 'sample_id'], columns='type',
values='value').reset index()
# remove the index name and rename the columns to match the type values
afps_mtx_lpv = afps_mtx_lpv.rename_axis(None, axis=1).rename(columns={'fps': 'FPS'})
```

```
# sort the dataframe by region_id naturally
afps_mtx_lpv = afps_mtx_lpv.reindex(index=index_natsorted(afps_mtx_lpv['region_id']))
afps_mtx_lpv = afps_mtx_lpv.reset_index(drop=True)
```

	region id	sample id	AF	FPS
0	chr1:10628-10638	2GAMBDQ_norm	1.000000	0.000000
1	chr1:10628-10638	98JKPD8_lumA	0.958333	0.000000
2	chr1:10628-10638	ANAB5F7_basal	1.000000	0.000000
3	chr1:10628-10638	PU24GB8_lumB	1.000000	0.000000
4	chr1:10628-10638	S6R691V_her2	1.000000	0.000000

```
Number of rows in the wide form: 2972
Number of rows in the long form: 14860
```

3.1 Scaling the TF footprint scores

As the TF footprint scores are not normalized across samples, has a range from 0 to +Inf, and the fact that the mutation data come in the form of allelic frequency (AF) probabilistic values (i.e. values between 0 and 1), the TF footprint scores should be scaled between 0 to 1.

```
# use MinMaxScaler to scale the raw fps values to range between 0 and 1
from sklearn.preprocessing import MinMaxScaler
# scale the FPS values to a range of 0-1
# Initialize a MinMaxScaler
scaler = MinMaxScaler()

# copy df
fps_df_scaled = afps_matrix.filter(regex='_fps$|_id$').copy()

# set the index to 'region_id'
fps_df_scaled = fps_df_scaled.set_index('region_id')

# Fit the MinMaxScaler to the 'FPS' column and transform it
fps_df_scaled = pd.DataFrame(scaler.fit_transform(fps_df_scaled),
columns=fps_df_scaled.columns, index=fps_df_scaled.index)

# rename columns by adding '_scaled' to the column names
fps_df_scaled = fps_df_scaled.add_suffix('_scaled')
```

	98JKPD8 lumA	ANAB5F7	S6R691V her2	PU24GB8	2GAMBDQ
	fps scaled	basal fps scaled	fps scaled	lumB fps	norm fps
				scaled	scaled
region_id					
chr1:10628-10638	0.000000	0.000000	0.000000	0.000000	0.000000
chr1:181224-18123	4 0.000000	0.000000	0.000000	0.000000	0.000000
chr1:779214-77922	4 0.000000	0.000000	0.000000	0.000000	0.000000
chr1:998754-99876	4 0.034220	0.034358	0.040032	0.041878	0.027917
chr1:998768-99877	3 0.045321	0.040901	0.052716	0.052858	0.033891

Now, convert the scaled dataframe into a long format.

```
# reset index
fps_df_scaled_long = fps_df_scaled.reset_index()
# convert to long format
fps df scaled long = fps df scaled long.melt(id vars=["region id"], var name="variable",
value name="value")
# split the variable column into sample id and type columns using reverse split string
method, which returns a dataframe of columns based on the number of splits (n=x); this
can directly be assigned to new columns in the original dataframe
# Split the 'variable' column into three parts
fps df scaled long[['part1',
                                         'part2',
                                                               'part3']]
fps_df_scaled_long['variable'].str.rsplit('_', n=2, expand=True)
# Assign part1 to 'sample id' and concatenate the other parts to form 'type'
fps_df_scaled_long['sample_id'] = fps_df_scaled_long['part1']
fps df scaled long['type'] = fps df scaled long['part2'].str.upper()
fps_df_scaled_long['part3']
# Drop the unnecessary columns
fps_df_scaled_long = fps_df_scaled_long.drop(['variable', 'part1', 'part2', 'part3'],
axis=1)
# now pivot the dataframe to create new columns based on the type column
fps_df_scaled_lpv = fps_df_scaled_long.pivot(index=['region_id',
                                                                          'sample id'],
columns='type', values='value').reset_index()
# remove the index name and rename the columns to match the type values
fps_df_scaled_lpv = fps_df_scaled_lpv.rename_axis(None, axis=1)
# sort the dataframe by region_id naturally
fps df scaled lpv
fps_df_scaled_lpv.reindex(index=index_natsorted(fps_df_scaled_lpv['region_id']))
fps df scaled lpv = fps df scaled lpv.reset index(drop=True)
```

	region id	sample id	FPS scaled
0	chr1:10628-10638	2GAMBDQ_norm	0.000000
1	chr1:10628-10638	98JKPD8_lumA	0.000000
2	chr1:10628-10638	ANAB5F7_basal	0.000000
3	chr1:10628-10638	PU24GB8_lumB	0.000000
4	chr1:10628-10638	S6R691V_her2	0.000000

```
Number of rows in the scaled matrix: 2972
Number of rows in the scaled matrix in the long form: 14860
```

The distribution of the unscaled and scaled FPS datasets can be plotted using Seaborn's displot function.

