Pólya tree ensembles: smoothing and adaptation

Thibault Randrianarisoa Supervised by Pr. Ismaël Castillo

Sorbonne Université, Laboratoire de Probabilités, Statistique et Modélisation

2021 ISBA World Meeting

June 11, 2021

Manuscript: https://arxiv.org/abs/2010.12299

Available in Poster session P03 (Thursday 6:15-8am) [EDT]

Tree methods

- Tree-based methods (CART, random forests, BCART, BART):
 - build a recursive partition of the sample space,
 - estimate the signal locally.
- Theoretical results so far:
 - Minimax optimality can be established on classes of regularity ≤ 1.
 - Ensemble methods (*aka* forests): results up to regularity 2 for frequentists estimates (Arlot and Genuer, 2014; Mourtada et al., 2020).

What about posterior contraction rates of Bayesian forests on classes of regularity > 1?

Posterior contraction rate

- *X* are the observation, depending on the model, with sample size *n*.
- $X \sim P_{\theta_0}^n$, $\theta_0 \in \Theta$ the estimand.
- Prior Π on Θ + likelihood \longrightarrow Posterior $\Pi[\cdot|X]$.

Definition

A posterior contraction rate for a (semi-)metric d on Θ is a sequence $(\epsilon_n)_{n\geq 1}$ such that, for any $M_n \to \infty$,

$$\Pi\left[\theta:\ \textit{d}(\theta,\theta_0)\geq\textit{M}_n\epsilon_n\big|X\right]\overset{P^n_{\theta_0}}{\to}0.$$

Posterior contraction rate

- *X* are the observation, depending on the model, with sample size *n*.
- **I** $X \sim P_{\theta_0}^n$, $\theta_0 \in \Theta$ the estimand.
- Prior Π on Θ + likelihood \longrightarrow Posterior $\Pi[\cdot|X]$.

Definition

A posterior contraction rate for a (semi-)metric d on Θ is a sequence $(\epsilon_n)_{n\geq 1}$ such that, for any $M_n \to \infty$,

$$\Pi\left[\theta:\ \textit{d}(\theta,\theta_0)\geq\textit{M}_n\epsilon_n\big|X\right]\overset{\textit{P}^n_{\theta_0}}{\rightarrow}0.$$

Density estimation: $X_i \stackrel{\text{i.i.d.}}{\sim} P_{f_0}$, i = 1, ..., n, $dP_{f_0}/d\mu = f_0$, $X_i \in \mathcal{X}$.

(Truncated) Pólya Tree prior

Prior TPT (L, A), $A = \{\nu_{\epsilon}, \ \epsilon \in \cup_{l=0}^{L} \{0; 1\}^{l}\}$ on the set of densities $\mathcal{F} = \{f : \mathcal{X} \to \mathbb{R}_{+}, \int f d\mu = 1\}$.

Figure: Truncated Pólya Tree at depth L = 2.

Shifted partition

- Focus on the torus $\mathcal{X} = \mathbb{T}$, the addition operation is modulo 1.
- Replace the sets I in the recursive partition with I + U, U > 0.

Figure: Shift of a dyadic partition.

In the following, $\mathcal{I}_{L,U}$ is the regular partition with step 2^{-L} shifted by U.

Discrete Pólya aggregate prior

We introduce the Discrete Pólya aggregate prior, denoted DPA (L, A, q, m), that is the distribution of

$$f = \frac{1}{q^m} \sum_{i=0}^{(q-1)m} \# \left\{ 0 \le j_1, \dots, j_m < q, \ j_1 + \dots + j_m = i \right\} g_i$$

where the g_i are defined like a TPT on $\mathcal{I}_{L,iq^{-1}2^{-L}}$ and share the same Beta variables along the trees.

 \triangle Only the underlying partition changes between trees g_i , the Y variables are the same.

Posterior contraction rate

Let $\Sigma(\alpha, \mathbb{T})$ be the Hölder class of densities on the torus.

Theorem (Contraction rate for arbitrary, fixed regularities)

Let $f_0 \in \Sigma(\alpha, \mathbb{T})$, $\alpha > 0$ and suppose $f_0 \ge \rho$ for some $\rho > 0$. Under mild conditions on \mathcal{A} and for $2^{L_n} \asymp \left(n \log^{-1} n\right)^{\frac{1}{2\alpha+1}}$, the prior $\Pi_n = DPA(L_n, \mathcal{A}, 2^{\alpha L_n}, \lfloor \alpha \rfloor)$ gives, as $n \to \infty$, M large enough and d the Hellinger or L^1 distance.

$$E_{f_0}\Pi_n\left[d(f_0,f)>M\big(n^{-1}\log n\big)^{\frac{\alpha}{2\alpha+1}}\bigg|X\right]\to 0.$$

Adaptive posterior contraction rate

Theorem (Adaptive version)

Under the same assumptions of f_0 and conditions on \mathcal{A} as in the preceding theorem, for some map ϕ, ψ , if we endow f with the hierarchical prior

$$I \sim \Pi_L[\{I\}] \propto 2^{-I2^I}$$

 $f | I \sim DPA(I, \mathcal{A}, \phi(I, n), \psi(I, n)),$

then, as $n \to \infty$, for M large enough and d the Hellinger or L¹ distance,

$$E_{f_0}\Pi\left[d(f_0,f)>M({\textstyle \frac{n^{-1}\log n}{2^{\alpha}}}\Big|X\right]\to 0.$$

Simulation

$$f_0: x \rightarrow 1 + sin(2\pi x) \in \Sigma (2.5, \mathbb{T}).$$

Figure: Posterior draws from fixed-depth version of DPA and TPT, with parameters tuned for regularity 2.5.

Conclusion

- In the paper: handles boundaries of [0;1), instead of \mathbb{T} (addition of a stochastic layer to redefine the samples near the boundary).
- Ongoing work: allowing for random shifts of the partitions and loosening of the almost sure equality of Betas.
- Should extend to higher dimensions and different models (nonparametric regression, etc...).

Take-home messages:

Bayesian histogram forest estimators can achieve :

- optimal contraction rate for any Hölder regularity $\alpha > 0$ of the true density,
- adaptation.