FPGA 开源工作室将通过五篇文章来给大家讲解 xilinx FPGA 使用 mig IP 对 DDR3 的读写控制, 旨在让大家更快的学习和应用 DDR3。

本实验和工程基于 Digilent 的 Arty Artix-35T FPGA 开发板完成。 软件使用 Vivado 2018.1。

第一篇: DDR3 和 mig 的介绍

1 DDR3 介绍

以镁光的 MT41K128M16 为例来介绍 DDR3。

Parameter	256 Meg x 8	128 Meg x 16
Configuration	32 Meg x 8 x 8 banks	16 Meg x 16 x 8 banks
Refresh count	8K	8K
Row address	32K A[14:0]	16K A[13:0]
Bank address	8 BA[2:0]	8 BA[2:0]
Column address	1K A[9:0]	1K A[9:0]

通过以上信息我们即可知道 DDR3 的内存容量, Row,Column 和 Bank 的地址位宽。开发板选用的 MT41K128M16 DDR3 的容量为 16Megx16x8banks=2048Mb=2Gb。

1.1 DDR3 命名

我们通过 Configuration, Package, Speed... 等 DDR3 的命名可知道 DDR3 的容量, 封装, 速度等级等信息。

1.2 DDR3 的内部结构

1.3 接口

Symbol	Туре	Description
A[14:13], A12/BC#, A11, A10/AP, A[9:0]	Input	Address inputs: Provide the row address for ACTIVATE commands, and the column address and auto precharge bit (A10) for READ/WRITE commands, to select one location out of the memory array in the respective bank. A10 sampled during a PRECHARGE command determines whether the PRECHARGE applies to one bank (A10 LOW, bank selected by BA[2:0]) or all banks (A10 HIGH). The address inputs also provide the op-code during a LOAD MODE command. Address inputs are referenced to V_{REFCA} . A12/BC#: When enabled in the mode register (MR), A12 is sampled during READ and WRITE commands to determine whether burst chop (on-the-fly) will be performed (HIGH = BL8 or no burst chop, LOW = BC4 burst chop). See Truth Table - Command.
BA[2:0]	Input	Bank address inputs: BA[2:0] define the bank to which an ACTIVATE, READ, WRITE, or PRECHARGE command is being applied. BA[2:0] define which mode register (MR0, MR1, MR2, or MR3) is loaded during the LOAD MODE command. BA[2:0] are referenced to VREFCA.
CK, CK#	Input	Clock: CK and CK# are differential clock inputs. All address and control input signals are sampled on the crossing of the positive edge of CK and the negative edge of CK#. Output data strobe (DQS, DQS#) is referenced to the crossings of CK and CK#.
CKE	Input	Clock enable: CKE enables (registered HIGH) and disables (registered LOW) internal circuitry and clocks on the DRAM. The specific circuitry that is enabled/disabled is dependent upon the DDR3 SDRAM configuration and operating mode. Taking CKE LOW provides PRECHARGE power-down and SELF REFRESH operations (all banks idle) or active power-down (row active in any bank). CKE is synchronous for power-down entry and exit and for self refresh entry. CKE is asynchronous for self refresh exit. Input buffers (excluding CK, CK#, CKE, RESET#, and ODT) are disabled during power-down. Input buffers (excluding CKE and RESET#) are disabled during SELF REFRESH. CKE is referenced to VREFCA.

CS#	Input	Chip select: CS# enables (registered LOW) and disables (registered HIGH) the command decoder. All commands are masked when CS# is registered HIGH. CS# provides for external rank selection on systems with multiple ranks. CS# is considered part of the command code. CS# is referenced to V_{REFCA} .
DM	Input	Input data mask: DM is an input mask signal for write data. Input data is masked when DM is sampled HIGH along with the input data during a write access. Although the DM ball is input-only, the DM loading is designed to match that of the DQ and DQS balls. DM is referenced to V _{REFDQ} . DM has an optional use as TDQS on the x8 device.
ODT	Input	On-die termination: ODT enables (registered HIGH) and disables (registered LOW) termination resistance internal to the DDR3 SDRAM. When enabled in normal operation, ODT is only applied to each of the following balls: DQ[7:0], DQS, DQS#, and DM for the x8. The ODT input is ignored if disabled via the LOAD MODE command. ODT is referenced to V _{REFCA} .
RAS#, CAS#, WE#	Input	Command inputs: RAS#, CAS#, and WE# (along with CS#) define the command being entered and are referenced to V_{REFCA} .
RESET#	Input	Reset: RESET# is an active LOW CMOS input referenced to V_{SS} . The RESET# input receiver is a CMOS input defined as a rail-to-rail signal with DC HIGH $\geq 0.8 \times V_{DDQ}$ and DC LOW $\leq 0.2 \times V_{DDQ}$. RESET# assertion and deassertion are asynchronous.
DQ[7:0]	I/O	Data input/output: Bidirectional data bus for the x8 configuration. DQ[7:0] are referenced to V_{REFDQ} .

Symbol	Туре	Description		
DQS, DQS#	I/O	Data strobe: Output with read data. Edge-aligned with read data. Input with write da-		
		ta. Center-aligned to write data.		
TDQS, TDQS#	I/O	Termination data strobe: Applies to the x8 configuration only. When TDQS is enabled, DM is disabled, and the TDQS and TDQS# balls provide termination resistance.		
V _{DD}	Supply	Power supply: 1.35V, 1.283–1.45V operational; compatible to 1.5V operation.		
V _{DDQ}	Supply	DQ power supply: 1.35V, 1.283–1.45V operational; compatible with 1.5V operation.		
V _{REFCA}	Supply	Reference voltage for control, command, and address: V _{REFCA} must be maintained		
		at all times (including self refresh) for proper device operation.		
V_{REFDQ}	Supply	Reference voltage for data: V _{REFDQ} must be maintained at all times (including self re-		
		fresh) for proper device operation.		
V _{SS}	Supply	Ground.		
V_{SSQ}	Supply	DQ ground: Isolated on the device for improved noise immunity.		
ZQ	Reference	External reference ball for output drive calibration: This ball is tied to an external		
		240Ω resistor (R _{ZQ}), which is tied to V _{SSQ} .		
NC	-	No connect: These balls should be left unconnected (the ball has no connection to the		
		DRAM or to other balls).		
NF	_	No function: When configured as a x8 device, these balls are defined as TDQS#, DQ[7:4].		

使用 xilinx mig IP 来控制 DDR3 的数据读写我们了解 DDR3 以上信息即可。

2 mig 介绍

如上图所示,mig(Memory Interface Solution) IP 由三部分组成 User Interface Block,Memory Controller 和 Physical Layer。IP 的一边是连接 DDR3 的接口(Physical Interface),另一边是用户逻辑控制接口(User FPGA Logic)。想要正确的控制 DDR3 的读写,我们需要正确的设置 mig IP 和正确的用户逻辑控制接口逻辑。

2.1 mig user interface

Signal	Direction	Description
app_addr[ADDR_WIDTH – 1:0]	Input	This input indicates the address for the current request.
app_cmd[2:0]	Input	This input selects the command for the current request.
app_en	Input	This is the active-High strobe for the app_addr[], app_cmd[2:0], app_sz, and app_hi_pri inputs.
app_rdy	Output	This output indicates that the UI is ready to accept commands. If the signal is deasserted when app_en is enabled, the current app_cmd and app_addr must be retried until app_rdy is asserted.
app_hi_pri	Input	This active-High input elevates the priority of the current request.
app_rd_data [APP_DATA_WIDTH – 1:0]	Output	This provides the output data from read commands.
app_rd_data_end	Output	This active-High output indicates that the current clock cycle is the last cycle of output data on app_rd_data[]. This is valid only when app_rd_data_valid is active-High.
app_rd_data_valid	Output	This active-High output indicates that app_rd_data[] is valid.
app_sz	Input	This input is reserved and should be tied to 0.
app_wdf_data [APP_DATA_WIDTH – 1:0]	Input	This provides the data for write commands.

app_wdf_end	Input	This active-High input indicates that the current clock cycle is the last cycle of input data on app_wdf_data[].
app_wdf_mask [APP_MASK_WIDTH – 1:0]	Input	This provides the mask for app_wdf_data[].
app_wdf_rdy	Output	This output indicates that the write data FIFO is ready to receive data. Write data is accepted when app_wdf_rdy = 1'b1 and app_wdf_wren = 1'b1.
app_wdf_wren	Input	This is the active-High strobe for app_wdf_data[].
app_correct_en_i	Input	When asserted, this active-High signal corrects single bit data errors. This input is valid only when ECC is enabled in the GUI. In the example design, this signal is always tied to 1.
app_sr_req	Input	This input is reserved and should be tied to 0.
app_sr_active	Output	This output is reserved.

Signal	Direction	Description
app_ref_req	Input	This active-High input requests that a refresh command be issued to the DRAM.
app_ref_ack	Output	This active-High output indicates that the Memory Controller has sent the requested refresh command to the PHY interface.
app_zq_req	Input	This active-High input requests that a ZQ calibration command be issued to the DRAM.
app_zq_ack	Output	This active-High output indicates that the Memory Controller has sent the requested ZQ calibration command to the PHY interface.
ui_clk	Output	This UI clock must be a half or quarter of the DRAM clock.
init_calib_complete	Output	PHY asserts init_calib_complete when calibration is finished.
app_ecc_multiple_err[7:0] ⁽¹⁾	Output	This signal is applicable when ECC is enabled and is valid along with app_rd_data_valid. The app_ecc_multiple_err[3:0] signal is non-zero if the read data from the external memory has two bit errors per beat of the read burst. The SECDED algorithm does not correct the corresponding read data and puts a non-zero value on this signal to notify the corrupted read data at the UI.
ui_clk_sync_rst	Output	This is the active-High UI reset.
app_ecc_single_err[7:0]	Output	This signal is applicable when ECC is enabled and is valid along with app_rd_data_vali. The app_ecc_single_err signal is non-zero if the read data from the external memory has a single bit error per beat of the read burst.

对于 mig 用户端接口含义我们将在《第三篇--mig IP 用户逻辑接口读写时序分析》中详细介绍。

3 DDR3 原理图和 FPGA 原理图

CID	DDD3 DECET
1 0_0_34	K6 DDR3_RESET
IO LIP TO 34	L1 DDR3_DM0
✓ IO LIN TO 34	MI DDR3 DQ5
Z IO L2P TO 34	K3 DDR3 DQ2
N	1.3 DDR3 DQ1 N2 DDR3 DQS0 P
IO_L3P_T0_DQS_34	NI DDR3 DQS0 N
IO_L3N_T0_DQS_34	M3 DDR3 DQ4
IO_L4P_T0_34	M2 DDR3 DO7
IO_L4N_T0_34	VS DDP2 DO0
IO_L5P_T0_34	L4 DDR3 DQ6
IO_L5N_T0_34	L6 DDR3 DQ3
IO_L6P_T0_34	1.5
IO_L6N_T0_VREF_34	DDB3 DM1
IO_L7P_T1_34	VI DDR3 DQ12
IO_L7N_T1_34	U4 DDR3 DQ10
IO Lor 11 34	U3 DDR3 DQ14
IO_L8N_T1_34	U2 DDR3_DQS1_P
IO_L9P_T1_DQS_34 IO_L9N_T1_DQS_34	V2 DDR3_DQS1_N
IO L10P T1 34	V5 DDR3 DQ11
IO L10N T1 34	V4 DDR3 DQ8
IO_L11P_T1_SRCC_34	R3 DDR3 DQ15
IO L11N T1 SRCC 34	DDR3 DQ13
IO L12P T1 MRCC 34	DDR3 DQ9
IO L12N T1 MRCC 34	N5 DDR3_CKE0
IO_L13P_T2_MRCC_34	NS DDR3_CKE0 DDR3_WE
IO_L13N_T2_MRCC_34	P5 DDR3_WE P4 DDR3_BA1 P3 DDR3_RAS
IO_L14P_T2_SRCC_34	P3 DDR3 RAS
IO_L14N_T2_SRCC_34	P2 DDR3 BA2
IO_L15P_T2_DQS_34	P2 DDR3 BA2 R2 DDR3 A0
10_21511_12_200_51	M4 DDR3 CAS
IO_L16P_T2_34	N4 DDR3 A2
IO_L 16N_T2_34	RI DDR3 BA0
IO_L17P_T2_34 IO_L17N_T2_34	TI DDR3 A3
IO L18P T2 34	M6 DDR3 A1
IO L18N T2 34	N6 DDR3_A4 R6 DDR3_A10
IO L19P T3 34	R6 DDR3 A10
IO L19N T3 VREF 34	R5 DDR3_ODT
IO L20P T3 34	V7 DDR3 A9 V6 DDR3 A6
IO L20N T3 34	V6 DDR3 A6 U9 DDR3 CLKO P
IO_L21P_T3_DQS_34	19 DDR3_CLK0_P V9 DDR3_CLK0_N
IO_L21N_T3_DQS_34	U7 DDR3 A7
IO_L22P_T3_34	U6 DDR3 Al1
IO_L22N_T3_34	U6 DDR3 A11 R7 DDR3 A5
	T6 DDR3 A12
IO_L23N_T3_34	R8 DDR3 A8
IO_L24P_T3_34	T8 DDR3 A13
IO_L24N_T3_34 IO_25_34	U8 DDR3_CS

通过 DDR3 的原理图我们可以知道 DDR3 的供电电压为 1.35V。DDR3 挂在 FPGA 的 34 bank上。

FPGA 开源工作室为了大家更好的学习 FPGA 目前开通了知识星球 (FPGA 自习学院)。 FPGA 自习学院将不断更新和总结 FPGA 相关的学习资料, 欢迎大家加入。

