『トゥー 多様体』読書記録

最終更新: 2022 年 9 月 21 日

注意: 記述の正確性は保証しません。ややこしいことになりたくないので,本文の引用は最小限にしています。

誤植と思われるもの (2021/4/30 第1版第2刷)

頁	行	誤	正
7	7	$x^i t$	$x^{i}(t)$
7	8	$(y^i - p^i)$	$\Sigma(y^i-p^i)$
49	1	命題 4.7	命題 4.8
95	-11	逆像 $x^{-1}(U_i)$	逆像 $\pi^{-1}(U_i)$
123	-8	S^1	S^2
134	-1	$(1_M)^*$	$(1_N)^*$
157	15	\mathbb{R}^2	\mathbb{R}^{2n}
160	-8	$\phi(E_p) \subset \phi(E_p')$	$\phi(E_p) \subset E_p'$
249	7	命題 18.11	命題 17.11
258	-3	$(iii) \Longrightarrow (i)$	$(ii) \Longrightarrow (i)$
281	-7	$(Y_0,\ldots,\hat{Y}_i,\ldots Y_k)$	$(Y_0,\ldots,\hat{Y}_i,\ldots,Y_k)$
362	図 27.3	変化レトラクト	変位レトラクト

1 代数構造のまとめ(未整理)

Definition 1.0.1 (代数) A は体 K 上の代数 $\stackrel{\mathsf{def}}{\Longleftrightarrow}$ A は K 上のベクトル空間でもあるような環であって, 環の積が斉次性の条件

$$r(ab) = (ra)b = a(rb) \tag{1}$$

をみたす*1.

1.1 例

- $\blacksquare C^{\infty}(U)$ 開集合 $U \in \mathbb{R}^n$ 上の C^{∞} 関数の集合 $C^{\infty}(U)$ は \mathbb{R} 上の代数. $\mathcal{F}(U)$ ともかく.
- **■導分** M の p における **導分** (derivation) D

$$D: C_p^{\infty}(M) \to \mathbb{R}$$
 線形写像

• D(fg) = (Df)g(p) + f(p)(Dg)

自然に導かれるベクトル空間 $\operatorname{Hom}(C_p^\infty(M),\mathbb{R})$ を点 p における M の 接空間 (tangent space) といい, T_pM と書く. その元 X_p を 接ベクトル (tangent vector) という.

^{*1} 代数には加法、環の積、ベクトル空間のスカラー倍の3つの演算がある.

■微分 $F: N \to M, C^{\infty}$. 点 $p \in M$ における F の 微分 F_* は線形写像*2:

$$F_*: T_pN \to T_pM$$
 線形写像
$$X_p \mapsto F_*(X_p),$$

$$(F_*(X_p))f = X_p(f \circ F) \in \mathbb{R}, \quad f \in C^\infty_{F(p)}(M).$$

■切断 E の C^∞ 切断 (section) 全体の集合 $\Gamma(E)$ は $\mathbb R$ ベクトル空間でもあり, 環 $C^\infty(M)$ 上の加群でもある. 開集合 $U \subset M$ に対し E の U 上の C^∞ 切断全体の集合 $\Gamma(U,E)$ は $\mathbb R$ ベクトル空間でもあり, 環 $C^\infty(U)$ 上の加群でもある.

$\blacksquare C^{\infty}$ ベクトル場 X

$$X: C^{\infty}(M) \to C^{\infty}(M)$$
 線形写像, 導分
$$f \mapsto Xf,$$

$$(Xf)(p) \stackrel{\text{def}}{=} X_p f \in \mathbb{R}, \quad p \in M.$$

*3

■コベクトル $M: C^{\infty}$ 多様体. $p \in M$ における M の 余接空間 (cotangent space) T_n^*M :

$$T_p^* M \stackrel{\text{def}}{=} (T_p M)^* = \text{Hom}(T_p M, \mathbb{R}). \tag{2}$$

 $\omega_p \in T_p^*M$ を p の コベクトル (covector) とよぶ.

$$\omega_p: T_p M \to \mathbb{R} \tag{3}$$

1-form ω :

$$\omega: M \to T_p^a stM$$
$$p \mapsto \omega_p.$$

■関数の微分 $f: M \to \mathbb{R}, C^{\infty}$ の 微分 は 1-form df:

$$(df)_p(X_p) \stackrel{\text{def}}{=} X_p f \in \mathbb{R}, \quad p \in M, X_p \in T_p M. \tag{4}$$

■1-form が誘導する写像

*4

- **■**V 上の k テンソル V 上の k テンソル (k-tensor) $\stackrel{\text{def}}{=} k$ 重線形写像 $f: V \times \cdots \times V \to \mathbb{R}$.
- **■**V 上の k-コベクトル V 上の k-コベクトル (k-covector) $\stackrel{\mathsf{def}}{=} V$ 上の交代 k テンソル.
- $V \perp 0$ k コベクトルからなるベクトル空間を $A_k(V)$ または $\wedge^k(V^*)$ とかく.

 $^{*^2}$ 導分 (接ベクトル) がベクトル空間をなすこと (つまり接空間がベクトル空間であること) より.

 $^{^{*3}}$ 接ベクトル X_p が導分であることより.

^{*4} $(fX)_p \stackrel{\mathsf{def}}{=} f(p)X_p$.

■ $M \perp \mathcal{O} k$ -form ω :

$$\omega: M \to \wedge^k(T_p^*M)$$
$$p \mapsto \omega_p.$$

■ $\omega: M$ 上の k-form, X_1, \ldots, X_k M 上のベクトル場.

$$\omega(X_1, \dots, X_k) : M \to \mathbb{R} \tag{5}$$

$$p \mapsto (\omega(X_1, \dots, X_k))(p) = \omega_p((X_1)_p, \dots, (X_k)_p)$$
(6)

■ M 上の C^{∞} k-form 全体 $\Omega^k(M)$ はベクトル空間*5.

■引き戻し 一般に, $L:V\to W$ 線形写像は $\alpha\in A_k(W)$ と $v_1,\ldots,v_k\in V$ に対して, 引き戻し (pullback) $L^*:A_k(W)\to A_k(V)$ を誘導:

$$(L^*\alpha)(v_1,\ldots,v_k) = \alpha(L(v_1),\ldots,L(v_k))$$
(7)

とくに幾何の文脈で、 $F: N \to M, C^{\infty}, p \in N$ に対し微分

$$F_{*,p}: T_pN \to T_{F(p)}N$$
 線形 (8)

は 引き戻し (pullback) を誘導:

$$F^* \stackrel{\text{def}}{=} (F_{*,p})^* : A_k(T_{F(p)}M) \to A_k(T_pN) \tag{9}$$

詳しく書くと, $\omega_{F(p)}$ を $F(p) \in M$ 上の k-コベクトルとすると, 引き戻し $F^*(\omega_{F(p)})$ は

$$F^*(\omega_{F(p)}): T_p N \times \dots \times T_p N \to \mathbb{R}$$

$$F^*(\omega_{F(p)})(v_i, \dots, v_k) = \omega_{F(p)}(F_{*,p}v_1, \dots, F_{*,p}v_k), \quad v_i \in T_p N.$$

と表される. ω を M 上の k-form とすると, 引き戻し $F^*\omega$ は以下で定義される写像:

$$F^*\omega: N \to A_k(T_pN)$$

$$p \mapsto (F^*\omega)_p,$$

$$(F^*\omega)_p(v_1, \dots, v_k) \stackrel{\text{def}}{=} F^*(\omega_{F(p)})(v_1, \dots, v_k)$$

$$= \omega_{F(p)}(F_{*,p}v_1, \dots, F_{*,p}v_k), \quad v_i \in T_pN.$$

 $^{^{*5} \}wedge^k (T_p^* M)$ はベクトル空間だから.