

DEPARTMENT OF MECHANICAL ENGINEERING

ADVANCED DYNAMICS OF MECHANICAL SYSTEMS

Finite Elements Method (FEM) in structural dynamics: software implementation in Matlab environment – part 2

EXAMPLE: MAIN CODE


```
clear all; close all; clc
L = 1.2; % [m]
E = 68e9; % [Pa]
b = 40e-3; % [m]
h = 8e-3; % [m]
r = 2700; % [kg/m<sup>3</sup>]
m = r*b*h; % [kg/m]
J = 1/12*b*h^3; % [m^4]
A = b*h; % [m^2]
EA = E*A; % [N]
EJ = E*J; % [Nm^2]
Omax = 100*2*pi;
a = 1.5;
Lmax = sqrt(pi^2/a/Omax * sqrt(EJ/m));
% load the input file and assemble the structure
[file i,xy,nnod,sizew,idb,ndof,incid,l,gamma,m,EA,EJ,posit,nbeam,pr]=loadstructure;
% draw the structure
dis stru(posit, l, gamma, xy, pr, idb, ndof);
% assemble mass and stiffness matrices
[M,K] = assem (incid, l, m, EA, EJ, gamma, idb);
```


Once the M and K matrices have been assembled, natural frequencies and mode shapes of the system can be finally computed.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	2.2217e-04	0	0.0024	-1.6663e-04	0	0	0	0	0	0	0	0	0	0.0041	0
2	0	0.1728	0	0	0.0432	0	0	0	0	0	0	0	0.0432	0	0
3	0.0024	0	0.1925	0	0	0.0333	-0.0024	0	0	0	0	0	0	0.0333	0
4	-1.6663e-04	0	0	4.4434e-04	0	0.0024	-1.6663e-04	0	0	0	0	0	0	-0.0024	0
5	0	0.0432	0	0	0.1728	0	0	0.0432	0	0	0	0	0	0	0
6	0	0	0.0333	0.0024	0	0.1925	3.4694e-18	0	0.0333	-0.0024	0	0	$M_{\rm FC}^{0}$	0	0
7	0	0	-0.0024	-1.6663e-04	0	M.1925 FF 3.4694e-18	4.4434e-04	0	0.0024	-1.6663e-04	0	0	1, 1 ⁶ C	0	0
8	0	0	0	0	0.0432	0	0	0.1728	0	0	0.0432	0	0	0	0
9	0	0	0	0	0	0.0333	0.0024	0	0.1925	-4.3368e-18	0	-0.0024	0	0	0.0333
10	0	0	0	0	0	-0.0024	-1.6663e-04	0	-4.3368e-18	4.4434e-04	0	-1.6663e-04	0	0	0.0024
11	0	0	0	0	0	0	0	0.0432	0	0	0.0864	0	0	0	0
12	0	0	0	0	0	0	0	0	-0.0024	-1.6663e-04	0	2.2217e-04	0	0	-0.0041
13	0	0.0432	0	0	0	$M_{\mathrm{CF_0}}^{}}$	0	0	0	0	0	0	00364 G	0	0
14	0.0041	0	0.0333	-0.0024	0	TVICF ₀	0	0	0	0	0	0	1416	0.0963	0
15	0	0	0	0	0	0	0	0	0.0333	0.0024	0	-0.0041	0	0	0.0963

According to the boundary conditions, the mass matrix M can be partitioned as $[M] = \begin{bmatrix} I^{M}_{FF} \end{bmatrix}$

$$[M] = \begin{bmatrix} [M_{FF}] & [M_{FC}] \\ [M_{CF}] & [M_{CC}] \end{bmatrix}$$

➤ Similarly, also the stiffness matrix K is partitioned accordingly

Remember that

$$[M] = \begin{bmatrix} [M_{FF}] & [M_{FC}] \\ [M_{CF}] & [M_{CC}] \end{bmatrix}$$

FF free dofs inertia/stiffness seen by free dofs

FC constrained dofs inertia/stiffness seen by free dofs

$$[K] = \begin{bmatrix} [K_{FF}] & [K_{FC}] \\ [K_{CF}] & [K_{CC}] \end{bmatrix}$$

CF free dofs inertia/stiffness seen by constrained dofs

CC constrained dofs inertia/stiffness seen by constrained dofs

Natural frequencies and mode shapes are obtained by solving the following eigenvalue problem.

$$(-\omega^2 [I] - [M_{FF}]^{-1} [K_{FF}]) \underline{X} = \underline{0}$$

The eig matlab function can be used to this aim (NB: frequencies are not in increasing order!)

```
[modes omega2] = eig(inv(MFF)*KFF);
omega = diag(sqrt(omega2));

% Sort frequencies in ascending order
[omega_sorted omega_sorted_indices] = sort(omega);
% Sort mode shapes in ascending order
modes_sorted = modes(:,omega_sorted_indices);
```

eig returns a diagonal matrix *«omega2»* of eigenvalues and a matrix *«modes»* whose columns are the corresponding eigenvectors

For the simple case of the pin-pin aluminium beam, the analytical solution can be considered as a reference for computing the natural frequencies of the system.

$$f_i = \frac{1}{2\pi} \left(\frac{i\,\pi}{L}\right)^2 \sqrt{\frac{EJ}{m}}$$

Natural frequencies with different value of element length

Mode	Analytical Freq [Hz]	FEM L 0.4m Freq [Hz]	FEM L 0.3m Freq [Hz]	FEM L 0.2m Freq [Hz]	FEM L 0.1m Freq [Hz]
1°	12.64	12.65	12.65	12.64	12.64
2°	50.57	51.17	50.77	50.61	50.57
3°	113.78	126.29	115.86	114.23	113.82
4°	202.28	234.82	224.51	204.67	202.51
5°	316.06	420.17	356.86	324.45	316.92

Undeformed structure

```
dis_stru(posit,l,gamma,xy,pr,idb,ndof);
```


Mode shapes

DAMPING MATRIX

Assuming that damping ratios ξ_i have been identified by means of proper modal parameters identification techniques,

Assuming that damping ratios
$$\xi_i$$
 have been identified by means of proper modal parameters identification techniques, the coefficients α and β necessary to compute the damping matrix can be identified.
$$[C_{FF}] = \alpha[M_{FF}] + \beta[K_{FF}] \quad \Rightarrow \quad \xi_i = \frac{\alpha}{2\omega_i} + \frac{\beta\omega_i}{2} \quad \Rightarrow \quad \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = ([A]^T \ [A])^{-1} [A]^T \underline{B}$$
 where
$$[A] = \begin{bmatrix} \frac{1}{2\omega_1} & \frac{\omega_1}{2} \\ \vdots & \vdots & \vdots \\ \frac{1}{2\omega_N} & \frac{\omega_N}{2} \end{bmatrix} \quad \underline{B} = \begin{bmatrix} \xi_1 \\ \vdots \\ \xi_N \end{bmatrix}$$
 Suppose to know the damping ratios of the first 4 modes

```
B = [0.01 \ 0.015 \ 0.0098 \ 0.012]';
A = zeros(4,2);
for ii=1:4
    A(ii,:) = [1/(2*w(ii)) w(ii)/2];
End
ab = (A'*A) \A'*B; Pseudoinverse matrix \rightarrow least square error

ab = A\B;

CEE = ab (1) *MEE + ab (2) *KEE;
CFF = ab(1)*MFF + ab(2)*KFF;
```

FREQUENCY RESPONSE FUNCTIONS

We want now to compute the frequency response function due to a concentrated force applied in the middle of the beam.

Pay attention to:

- have a node where the force is applied
- the frequency range of the input force

$$\Omega_{max} = 500 \cdot 2\pi$$
 $\frac{\omega_k^{(1)}}{\Omega_{max}} \ge 1.5$ \Rightarrow $L_{max} = 155 \ mm$

FREQUENCY RESPONSE FUNCTIONS

The Frequency Response Functions can thus be computed

$$(-\Omega^{2}[M_{FF}] + j\Omega[C_{FF}] + [K_{FF}])\underline{X}e^{j\Omega t} = F_{0}e^{j\Omega t}$$

being
$$F_0 = \{ 0 \dots 0 \ 10 \dots 0 \}^T$$

```
F0 = zeros(ndof,1);
index = idb(7,2);
F0(index) = 1;

om = (0:1:500)*2*pi;

for ii=1:length(om)
    A = -om(ii)^2*MFF + 1i*om(ii)*CFF + KFF;
    X(:,ii) = A\F0;
end
```

We get as many FRFs as the number of dofs of the system.

As an example:

- y of node $4 \rightarrow 9$
- θ of node $4 \rightarrow 10$
- y of node $7 \rightarrow 18$ (colocated)

