Higher-order building blocks for statistical modelling

Ohad Kammar University of Edinburgh

PPS-PIHOC-DIAPASoN Workshop 17 February 2021

Theorem (Aumann)

$$S = 2, \mathbb{N}, \mathbb{R}, \dots$$

Theorem (Aumann) $S = 2, \mathbb{N}, \mathbb{R}, \dots$ No σ -algebra on $\mathbf{Meas}(\mathbb{R}, S)$ makes evaluation measurable:

$$\operatorname{eval}: \mathbf{Meas}(\mathbb{R}, S) \times \mathbb{R} \to S$$

⇒ bad fit for higher-order programming semantics:

Meas is not Cartesian closed

higher-order measure theory

Intuition

measurable space

axiomatise
measurable events

quasi-Borel space $X = (X_J, \mathcal{R}_X)$ random element $\alpha \in \mathcal{R}_X \subseteq X_J^\mathbb{R}$ axioms:

determinism. elements are random elements:

determinism.

precomposition. $(\varphi \in \mathbf{Meas}(\mathbb{R}, \mathbb{R}))$

Quasi-Borel spaces [Heunen-Kammar-Staton-Yang'17]

quasi-Borel space $X = (X, \mathcal{R}_X)$ random element $\alpha \in \mathcal{R}_X \subseteq X^{\mathbb{R}}$ axioms:

determinism.

$$\stackrel{\lambda r.c}{\longmapsto} \bigcirc$$

precomposition.
$$(\varphi \in \mathbf{Meas}(\mathbb{R}, \mathbb{R}))$$
 $\stackrel{\varphi}{\longmapsto}$ $\stackrel{\alpha}{\longmapsto}$ $\stackrel{\alpha}{\longmapsto}$

recombination
$$(\mathbb{R} = \bigcup_{i=0}^{\infty} S_n)$$

$$\lambda r.\begin{cases} \vdots \\ r \in S_n : & \alpha_n(r) \\ \vdots \end{cases}$$

Quasi-Borel spaces [Heunen-Kammar-Staton-Yang'17]

determinism.

$$\stackrel{\lambda r.c}{\longmapsto} \bigcirc$$

precomposition.
$$(\varphi \in \mathbf{Meas}(\mathbb{R}, \mathbb{R}))$$

$$\stackrel{\varphi}{\longmapsto} \boxed{\hspace{-2mm}} \qquad \stackrel{\alpha}{\longmapsto} \qquad \stackrel{\alpha$$

recombination
$$\left(\mathbb{R} = \biguplus_{i=0}^{\infty} S_n\right)$$

$$\alpha \in \mathcal{R}_X \Longrightarrow$$

$$f \circ \alpha \in \mathcal{R}_Y$$

Free and cofree qbs

set A:

• free: $\mathcal{R}_{\mathbf{Q}_{A}^{\mathbf{D}_{\mathbf{S}}}} = \sigma$ -simple functions:

$$\lambda r. \begin{cases} \vdots \\ r \in S_n : a_n \\ \vdots \end{cases}$$

• cofree: $\mathcal{R}_{\mathbf{Qbs}^{A}}^{A} = \text{all functions}$

qbses for:

$$2, \mathbb{N}, \mathbb{Q}$$

set-theoretic escape hatch

 $\begin{array}{c} - \\ - \\ \mathbf{Set} \end{array} : \mathbf{Qbs} \to \mathbf{Set} \ \ \text{generates limits and colimits} \\ \\ \text{preserves} \end{array}$

Using measure theory

Measurable space are carried by qbses:

Recover qbses for:

$$\mathbb{R}, \mathbb{W} := [0, \infty], \mathbb{I} := [0, 1]$$

Conservative extension for standard Borel spaces Measure-theoretic escape hatch

Simple types

Simple products

Correlated random elements:

$$\mathcal{R}_{X\times Y} \xleftarrow{(-,-)}{\cong} \mathcal{R}_X \times \mathcal{R}_Y$$

Simple types

Simple products

Correlated random elements:

$$\mathcal{R}_{X\times Y} \xleftarrow{(-,-)}{\cong} \mathcal{R}_X \times \mathcal{R}_Y$$

Simple coproducts

Recombinations:

$$\alpha \in \mathcal{R}_{\coprod_{i \in \mathcal{I}} X_i} \iff \alpha = \lambda r. \begin{cases} \vdots \\ r \in S_n : (i_n, \alpha_n r) \end{cases} \qquad (\mathbb{R} = \bigcup_{n=0}^{\infty}, \alpha_n \in X_{i_n})$$

Simple types

Simple products

Correlated random elements:

$$\mathcal{R}_{X\times Y} \xleftarrow{(-,-)}{\cong} \mathcal{R}_X \times \mathcal{R}_Y$$

Simple coproducts

Recombinations:

$$\alpha \in \mathcal{R}_{\coprod_{i \in \mathcal{I}} X_i} \iff \alpha = \lambda r. \begin{cases} \vdots \\ r \in S_n : (i_n, \alpha_n r) \end{cases} \qquad (\mathbb{R} = \bigcup_{n=0}^{\infty}, \alpha_n \in X_{i_n})$$

Simple function spaces

$$[Y^X] = \mathbf{Qbs}(X,Y) \qquad \mathcal{R}_{Y^X} \xrightarrow{\mathrm{uncurry}} \mathbf{Qbs}(\mathbb{R} \times X,Y)$$

Random element space: $\mathcal{R}_X := X^{\mathbb{R}}$

$$\mathcal{R}_{\mathbf{Y}} \coloneqq X^{\mathbb{R}}$$

Subspaces

$$m$$
 injective and $\mathcal{R}_X = (m \circ)^{-1} [\mathcal{R}_Y]$

$$\Omega \coloneqq \underset{\mathbf{Qbs}}{\mathbb{2}} \text{ subspace classifier}$$

Subspaces

$$m$$
 injective and $\mathcal{R}_X = (m \circ)^{-1} [\mathcal{R}_Y]$

$$\Omega \coloneqq \underset{^{\mathbf{Q}}\mathbf{bs}}{^{2}} \mathsf{subspace} \mathsf{ classifier}$$

Example

▶ Use $[Prop] := \Omega$ for reasoning/axiomatics [Sato et al.'19].

Subspaces

$$X \xrightarrow{} Y$$

$$\alpha' \xrightarrow{} \alpha$$

$$m$$
 injective and $\mathcal{R}_X = (m \circ)^{-1} [\mathcal{R}_Y]$

 $\mathbb{\Omega}\coloneqq \underset{\mathbf{Qbs}}{\mathbb{2}} \text{ subspace classifier}$

Example

- Use $[Prop] := \Omega$ for reasoning/axiomatics [Sato et al.'19].
- Differentiation:

$$D_1\mathbb{R}\coloneqq\{f:\mathbb{R}\to\mathbb{R}|f\text{ differentiable everywhere}\}\hookrightarrow\mathbb{R}^\mathbb{R}$$

$$\tfrac{\mathrm{d}}{\mathrm{d}}:D_1\to\mathbb{R}^\mathbb{R}$$

$$m:X \leftrightarrow Y \qquad \text{ when } \qquad \begin{array}{ll} m:X \hookrightarrow Y \text{ and } [- \in X] \in \mathbb{\Omega}^Y \\ \text{ factors through } 2^Y \to \mathbb{\Omega}^Y \end{array}$$

$$m:X \leftrightarrow Y \qquad \text{ when } \qquad \begin{array}{ll} m:X \hookrightarrow Y \text{ and } [- \in X] \in \mathbb{\Omega}^Y \\ \text{ factors through } 2^Y \to \mathbb{\Omega}^Y \end{array}$$

Example

▶ higher-order **Qbs**-internal σ -algebra:

$$-^{\mathbb{C}}: \mathcal{B}_X \to \mathcal{B}_X \qquad \bigcap_{n=0}^{\infty}: \mathcal{B}_X^{\mathbb{N}} \to \mathcal{B}_X \qquad -^{-1}[-]: Y^X \times \mathcal{B}_Y \to \mathcal{B}_X$$

$$m: X \leftrightarrow Y$$
 when
$$m: X \hookrightarrow Y \text{ and } [- \in X] \in \mathbb{\Omega}^Y$$
 factors through $2^Y \to \mathbb{\Omega}^Y$

Example

• higher-order Qbs-internal σ -algebra:

$$-^{\mathbb{C}}: \mathcal{B}_X \to \mathcal{B}_X \qquad \bigcap_{n=0}^{\infty}: \mathcal{B}_X^{\mathbb{N}} \to \mathcal{B}_X \qquad -^{-1}[-]: Y^X \times \mathcal{B}_Y \to \mathcal{B}_X$$

► Non-Qbs-morphisms:

$$\exists : \mathcal{B}_{X \times Y} \to \mathcal{B}_X \qquad [-=\varnothing] : \mathcal{B}_X \to 2 \qquad [-\subseteq -] : \mathcal{B}_X^2 \to 2$$

$$m: X \leftrightarrow Y$$
 when
$$m: X \hookrightarrow Y \text{ and } [- \in X] \in \mathbb{\Omega}^Y$$
 factors through $2^Y \to \mathbb{\Omega}^Y$

Example

▶ higher-order **Qbs**-internal σ -algebra:

$$-^{\mathbb{C}}: \mathcal{B}_X \to \mathcal{B}_X \qquad \bigcap_{n=0}^{\infty}: \mathcal{B}_X^{\mathbb{N}} \to \mathcal{B}_X \qquad -^{-1}[-]: Y^X \times \mathcal{B}_Y \to \mathcal{B}_X$$

► Non-Qbs-morphisms:

$$\exists : \mathcal{B}_{X \times Y} \to \mathcal{B}_X \qquad [-=\varnothing] : \mathcal{B}_X \to 2 \qquad [-\subseteq -] : \mathcal{B}_X^2 \to 2$$

 $ightharpoonup \mathcal{B}_{\mathcal{B}_X}$: Borel-on-Borel sets [Sabok-Staton-Stein-Wolman'21]

Measures

Unrestricted Giry:

Analogous to the measure-theoretic Giry

But: careful to evaluate only σ -simple random Borel sets

Measures

Unrestricted Giry:

Analogous to the measure-theoretic Giry

But: careful to evaluate only σ -simple random Borel sets

▶ Following can evaluate any random Borel set:

$$_{\llcorner}\mathbf{M}X \mathrel{\mathop:}= \{v_*\boldsymbol{\lambda}_{\Omega}|v:\Omega \to X,\Omega \hookrightarrow \mathbb{R} \text{ a σ-finite standard measure space}\}$$

$$\mathcal{R}_{\mathbf{M}X} \mathrel{\mathop:}= \{v_* \circ k|k:\mathbb{R} \times \Omega \to X,\Omega \hookrightarrow \mathbb{R} \dots \text{ ditto } \dots\}$$

- For standard Borel spaces S,T:
 - $ightharpoonup \mathbf{M}S$ are the s-finite measures
 - $(\mathbf{M}S)^T$ are the s-finite kernels

Fully-definable semantic domain for first-order Monte Carlo models [Staton'17]

$$_{\bot}\mathbf{M}X \mathrel{\mathop:}= \{v_{*}\boldsymbol{\lambda}_{\Omega}|v:\Omega \to X,\Omega \hookrightarrow \mathbb{R} \text{ a σ-finite standard measure space}\}$$

$$\mathcal{R}_{\mathbf{M}X} \coloneqq \{v_{*} \circ k|k:\mathbb{R} \times \Omega \to X,\Omega \hookrightarrow \mathbb{R} \dots \text{ ditto } \dots\}$$

- For standard Borel spaces S,T:
 - MS are the s-finite measures
 - $(MS)^T$ are the s-finite kernels

Fully-definable semantic domain for first-order Monte Carlo models [Staton'17]

- Integration is commutative
- ▶ Models synthetic measure theory [Kock'12]
- ▶ Probabilistic fragment $PX := \{\mu | \mu X = 1\} \leftrightarrow MX$ with de Finetti's theorem [Heunen et al'17]
- ightharpoonup PX also models name generation [Sabok et al.'21]

Syntactic spaces and recursive domains

Qbs is locally presentable

 \implies initial algebra semantics for inductive types

Syntactic spaces and recursive domains

- **Qbs** is locally presentable
- ⇒ initial algebra semantics for inductive types

Example

- Syntactic spaces for operational semantics
- Meta-programming data structures for Monte Carlo inference [Ścibior et al.'18, Lew et al.'20]
- Extends to recursive types with domain theory [Vákár-Kammar-Staton'19]
- Opportunity: abstract syntax with binding [Fiore-Plotkin-Turi'99]

Monadic operational semantics [Dal Lago et al.'17, Gavazzo'19, Vákár et al.'19]

$$\frac{k_1(t) w_1 \quad k_2(t, w_1) w_2 \quad \dots \quad k_n(t, w_1, \dots, w_n) v}{l(t) f(t, w_1, \dots, w_n, v)}$$

means

$$l(t) := k_1(t) \qquad \Rightarrow \lambda w_1.$$

$$k_2(t, w_1) \qquad \Rightarrow \lambda w_2. \dots$$

$$k_n(t, w_1, \dots, w_{n-1}) \Rightarrow \lambda v.$$

$$\boldsymbol{\delta}_{f(t, w_1, \dots, w_n, v)}$$

and $l(t) \coloneqq k_1(t)$ $l(t) \coloneqq k_2(t)$ means $l(t) \coloneqq k_1(t) + k_2(t)$

Monadic operational semantics [Dal Lago et al.'17, Gavazzo'19, Vákár et al.'19]

$$\frac{k_1(t) w_1 \quad k_2(t, w_1) w_2 \quad \dots \quad k_n(t, w_1, \dots, w_n) v}{l(t) f(t, w_1, \dots, w_n, v)}$$

means

$$l(t) := k_1(t) \qquad \Rightarrow \lambda w_1.$$

$$k_2(t, w_1) \qquad \Rightarrow \lambda w_2. \dots$$

$$k_n(t, w_1, \dots, w_{n-1}) \Rightarrow \lambda v.$$

$$\boldsymbol{\delta}_{f(t, w_1, \dots, w_n, v)}$$

and $l(t) \coloneqq k_1(t)$ $l(t) \coloneqq k_2(t)$ means $l(t) \coloneqq k_1(t) + k_2(t)$

Example

$$\frac{t \downarrow_n \underline{0} \quad s_1 \downarrow_n v}{\mathbf{match} \, t \, \mathbf{with} \, \{0 \to s_1 \mid _ \to s_2\} \downarrow_n v}$$

$$\frac{t \downarrow_n \underline{r} \quad s_2 \downarrow_n v}{\mathbf{match} \, t \, \mathbf{with} \, \{\underline{0} \to s_1 \mid \underline{\hspace{0.5cm}} \to s_2\} \downarrow_n v} (r \neq 0)$$

Random variable spaces

Refinement types:

$$\frac{B: X \to \Omega^{Y}}{\prod_{x:X} Bx, \prod_{x:X} Bx} \qquad \prod_{x:X} Bx := \{f: X \to Y | \forall x \in X. fx \in Bx\} \hookrightarrow Y^{X}$$

$$\prod Bx := \{(x, y) \in X \times Y | y \in Bx\} \hookrightarrow X \times Y$$

Lebesgue spaces and modes of convergence:

$$\mathcal{L}_{-}^{-} \in \prod_{\substack{\lambda \in \mathbf{P}\Omega \\ n \in \mathbb{R}}} \left\{ f : \Omega \to [-\infty, \infty] \middle| \int d\omega \, |f \, \omega|^{p} < \infty \right\}$$

- Observation: Sbs closed under dependent pairs
- ► To get dependent types, want "good" universe Type

Monte Carlo inference

$$\mathsf{model} = \rho \odot \boldsymbol{\lambda} \coloneqq \lambda \varphi. \int \boldsymbol{\lambda} (\mathrm{d}\omega) \rho(\omega) \cdot \varphi(\omega)$$

Defined programmatically:

 $\mathrm{sample}:\mathbf{M}\mathbb{R}$

#Uniform distribution on [0,1]

 $\mathrm{score}:\mathbb{R}\to\mathbf{M}\mathbb{1}$

Modular inference [Ścibior et al.'18a+b, Lew et al.'20]

cf. inference with handlers [Bingham et al.'19] and ongoing

Thank you!

Exact conditioning

