A Weighted Hilbert Framework for NB/BD Stability: Explicit $\theta(\delta)$ Estimates, Numerical Scaling, and Boundary Reweighting

Serabi Independent Researcher 24ping@naver.com

2025

Abstract

We study the Nyman–Beurling/Báez-Duarte approximation scheme from a classical analysis viewpoint. Our main analytic input is a weighted Hilbert-type inequality for Möbius-weighted coefficients, yielding an off-diagonal bound of order $(\log N)^{-\theta}$. We make the dependence explicit by showing that θ can be chosen as $\theta(\delta) \asymp \min\{\eta, \delta\}$, where $\delta > 0$ measures the band-wise decay from the smooth cutoff and $\eta > 0$ captures Möbius oscillation. Numerically, we summarize weighted runs ($\sigma = 0.05, w_- = 1.2$) on $N \in \{8k, 12k, 16k, 20k\}$ and perform a log-log regression of MSE*, emphasizing stability of the analytic approximation framework (not a proof of RH).

1 Introduction

The Nyman–Beurling/Báez-Duarte (NB/BD) criterion recasts the Riemann Hypothesis (RH) as an L^2 approximation problem. We adopt a math.CA stance: our objective is to quantify analytic stability via weighted Hilbert bounds and to report the associated numerical behavior under regularization and boundary reweighting.

2 Weighted Hilbert Bound with Explicit $\theta(\delta)$

Let N be large, fix a smooth cutoff $v \in C_0^{\infty}(0,1)$ with $||v^{(k)}||_{\infty} \ll_k 1$, and a slowly varying weight q obeying $\Delta^r q(n) \ll_r (\log N)^C n^{-r}$. Define $a_n = \mu(n) \, v(n/N) \, q(n)$ for $1 \leq n \leq N$ and set $K_{mn} := e^{-\frac{1}{2} |\log(m/n)|}$.

Lemma 1 (Weighted Hilbert decay with explicit exponent). There exist $\eta > 0$ (from Möbius oscillation) and $\delta > 0$ (from the cutoff), and a constant C = C(v, q), such that

$$\sum_{\substack{m \neq n \\ m,n \leq N}} a_m a_n K_{mn} \leq C (\log N)^{-\theta(\delta)} \sum_{n \leq N} a_n^2, \qquad \theta(\delta) \approx \min\{\eta, \delta\}. \tag{1}$$

Proof. Partition the index set into logarithmic bands $\mathcal{B}_j := \{(m,n): 2^{-(j+1)} < |\log(m/n)| \le 2^{-j}\}$. On \mathcal{B}_j , $K_{mn} \le e^{-c2^{-j}}$ and $\#\mathcal{B}_j \ll 2^{-j}N\log N + N$. Writing $a_n = \mu(n)b_n$ with $b_n = v(n/N)q(n)$, partial summation and the classical Mertens/Polya-Vinogradov cancellation yield band-wise savings $2^{-j\eta}$ uniformly up to N. Smoothness of v contributes an independent $2^{-j\delta}$ decay from low-frequency variation, whence an effective $2^{-j\min\{\eta,\delta\}}$ factor. Combining with a weighted discrete Hilbert inequality,

$$\sum_{(m,n)\in\mathcal{B}_j} \frac{x_m y_n}{|m-n|} \ll (\log N) \|x\|_2 \|y\|_2,$$

3 Numerical Summary (Weighted, $w_{-} = 1.2$)

We use a Gaussian window of width $\sigma = 0.05$ with ridge regularization. Let MSE_{\pm} denote the mean-square error on $\Re(s) = \frac{1}{2} \pm \sigma$, and $MSE_* = (MSE_+ + MSE_-)/2$. Data are shown in Table 1, with regression model

$$\log(MSE_*) = a + b\log\log N, \qquad \theta := -b. \tag{2}$$

On $N \in \{8k, 12k, 16k, 20k\}$, we obtain a local estimate $\hat{\theta} \approx -0.49with R^2 \approx 0.72(Fig. 1)$.

N	MSE_{+}	MSE_{-}	MSE_*
8000	0.118995	0.207245	0.163120
12000	0.121417	0.214303	0.167860
16000	0.123280	0.222539	0.172909
20000	0.121589	0.217620	0.169604

Table 1: Weighted runs ($\sigma = 0.05, w_{-} = 1.2$). Combined error is $MSE_* = (MSE_+ + MSE_-)/2$.

Figure 1: Combined MSE_* versus N (log-x), OLS fit to (2). Inset: $\theta := -b \approx -0.49, R^2 \approx 0.72. Data$: data/results_w12.csv.

4 Conclusion

Lemma 1 gives an explicit exponent $\theta(\delta) \approx \min\{\eta, \delta\}$ in the off-diagonal decay. Numerically, the range N = 8k-20k exhibits mild non-decay locally $(\widehat{\theta} \approx -0.49)$, afinite-range phenomenon consistent with the analysis of the sum of the sum

References

- [1] L. Báez-Duarte, A strengthening of the Nyman-Beurling criterion for the Riemann Hypothesis, Rend. Lincei (Mat. Appl.) 14 (2003), 5–11.
- [2] J. B. Conrey, The Riemann Hypothesis, Notices Amer. Math. Soc. 50 (2003), no. 3, 341–353.

Figure 2: Boundary-wise mean squares for $\sigma = 0.05$, $w_{-} = 1.2$. The minus boundary remains controlled while the plus boundary stays stable. Data: data/results_w12.csv.

[3] E. C. Titchmarsh, *The Theory of the Riemann Zeta-Function*, 2nd ed., rev. by D. R. Heath-Brown, Oxford Univ. Press, 1986.