

Now, 
$$A - A' = \begin{bmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{bmatrix} - \begin{bmatrix} 0 & -a & -b \\ a & 0 & -c \\ b & c & 0 \end{bmatrix} = \begin{bmatrix} 0 & 2a & 2b \\ -2a & 0 & 2c \\ -2b & -2c & 0 \end{bmatrix}$$

$$\therefore \frac{1}{2}(A-A') = \begin{bmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{bmatrix}$$

Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

$$\begin{bmatrix} 3 & 5 \\ 1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$
(ii) 
$$\begin{bmatrix} 3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 3 & -1 \\ -2 & -2 & 1 \\ 4 & 5 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 \\ -1 & 2 \end{bmatrix}$$

Let 
$$A = \begin{bmatrix} 3 & 5 \\ 1 & -1 \end{bmatrix}$$
, then  $A' = \begin{bmatrix} 3 & 1 \\ 5 & -1 \end{bmatrix}$ 

Now, 
$$A + A' = \begin{bmatrix} 3 & 5 \\ 1 & -1 \end{bmatrix} + \begin{bmatrix} 3 & 1 \\ 5 & -1 \end{bmatrix} = \begin{bmatrix} 6 & 6 \\ 6 & -2 \end{bmatrix}$$

Let 
$$P = \frac{1}{2}(A + A') = \frac{1}{2}\begin{bmatrix} 6 & 6 \\ 6 & -2 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 3 & -1 \end{bmatrix}$$

Now, 
$$P' = \begin{bmatrix} 3 & 3 \\ 3 & -1 \end{bmatrix} = P$$

$$P = \frac{1}{2} \Big( A + A' \Big) \label{eq:P}$$
 Thus, 
$$P = \frac{1}{2} \Big( A + A' \Big)$$
 is a symmetric matrix.

Now, 
$$A - A' = \begin{bmatrix} 3 & 5 \\ 1 & -1 \end{bmatrix} - \begin{bmatrix} 3 & 1 \\ 5 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 4 \\ -4 & 0 \end{bmatrix}$$

Let 
$$Q = \frac{1}{2}(A - A') = \frac{1}{2}\begin{bmatrix} 0 & 4 \\ -4 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix}$$

Now, 
$$Q' = \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix} = -Q$$

$$Q = \frac{1}{2} (A - A')$$
Thus, is a skew-symmetric matrix. Representing  $A$  as the sum of  $P$  and  $Q$ :

$$P+Q = \begin{bmatrix} 3 & 3 \\ 3 & -1 \end{bmatrix} + \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 5 \\ 1 & -1 \end{bmatrix} = A$$

Let 
$$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$
, then  $A' = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ 

Now, 
$$A + A' = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} + \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 12 & -4 & 4 \\ -4 & 6 & -2 \\ 4 & 2 & 6 \end{bmatrix}$$

Let 
$$P = \frac{1}{2}(A + A') = \frac{1}{2}\begin{bmatrix} 12 & -4 & 4 \\ -4 & 6 & -2 \\ 4 & -2 & 6 \end{bmatrix} = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

Now, 
$$P' = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix} = P$$

Thus,  $P = \frac{1}{2}(A + A')$  is a symmetric matrix.

Now, 
$$A - A' = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix} + \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Let 
$$Q = \frac{1}{2}(A - A') = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Now, 
$$Q' = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = -Q$$

$$Q = \frac{1}{2} (A - A')$$

 $Q = \frac{1}{2} \Big(A - A'\Big)$  is a skew-symmetric matrix Representing A as the sum of P and Q:

$$P+Q = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix} = A$$

Let 
$$A = \begin{bmatrix} 3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2 \end{bmatrix}$$
, then  $A' = \begin{bmatrix} 3 & -2 & -4 \\ 3 & -2 & -5 \\ -1 & 1 & 2 \end{bmatrix}$ 

Now, 
$$A + A' = \begin{bmatrix} 3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2 \end{bmatrix} + \begin{bmatrix} 3 & -2 & -4 \\ 3 & -2 & -5 \\ -1 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 6 & 1 & -5 \\ 1 & -4 & -4 \\ -5 & -4 & 4 \end{bmatrix}$$

Let 
$$P = \frac{1}{2}(A + A') = \frac{1}{2}\begin{bmatrix} 6 & 1 & -5 \\ 1 & -4 & -4 \\ -5 & -4 & 4 \end{bmatrix} = \begin{bmatrix} 3 & \frac{1}{2} & -\frac{5}{2} \\ \frac{1}{2} & -2 & -2 \\ -\frac{5}{2} & -2 & 2 \end{bmatrix}$$

Now, 
$$P' = \begin{bmatrix} 3 & \frac{1}{2} & -\frac{5}{2} \\ \frac{1}{2} & -2 & -2 \\ -\frac{5}{2} & -2 & 2 \end{bmatrix} = P$$

Thus, 
$$P = \frac{1}{2}(A + A')$$
 is a symmetric matrix.  
Now,  $A - A' = \begin{bmatrix} 3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2 \end{bmatrix} - \begin{bmatrix} 3 & -2 & -4 \\ 3 & -2 & -5 \\ -1 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 5 & 3 \\ -5 & 0 & 6 \\ -3 & -6 & 0 \end{bmatrix}$ 

Let 
$$Q = \frac{1}{2}(A - A') = \frac{1}{2}\begin{bmatrix} 0 & 5 & 3 \\ -5 & 0 & 6 \\ -3 & -6 & 0 \end{bmatrix} = \begin{bmatrix} 0 & \frac{5}{2} & \frac{3}{2} \\ -\frac{5}{2} & 0 & 3 \\ -\frac{3}{2} & -3 & 0 \end{bmatrix}$$

Now, 
$$Q' = \begin{bmatrix} 0 & -\frac{5}{2} & -\frac{3}{2} \\ \frac{5}{2} & 0 & -3 \\ \frac{3}{2} & 3 & 0 \end{bmatrix} = -Q$$

Thus,  $Q = \frac{1}{2} (A - A')$  is a skew-symmetric matrix

Representing A as the sum of P and Q:

$$P + Q = \begin{bmatrix} 3 & \frac{1}{2} & -\frac{5}{2} \\ \frac{1}{2} & -2 & -2 \\ -\frac{5}{2} & -2 & 2 \end{bmatrix} + \begin{bmatrix} 0 & \frac{5}{2} & \frac{3}{2} \\ -\frac{5}{2} & 0 & 3 \\ -\frac{3}{2} & -3 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2 \end{bmatrix} = A$$

Let 
$$A = \begin{bmatrix} 1 & 5 \\ -1 & 2 \end{bmatrix}$$
, then  $A' = \begin{bmatrix} 1 & -1 \\ 5 & 2 \end{bmatrix}$ 

Now 
$$A + A' = \begin{bmatrix} 1 & 5 \\ -1 & 2 \end{bmatrix} + \begin{bmatrix} 1 & -1 \\ 5 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 4 & 4 \end{bmatrix}$$

Let 
$$P = \frac{1}{2}(A + A') = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix}$$

Now, 
$$P' = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = P$$

Thus, 
$$P = \frac{1}{2}(A + A')$$
 is a symmetric matrix.

Thus, 
$$P = \frac{1}{2}(A + A')$$
 is a symmetric matrix. Now,  $A - A' = \begin{bmatrix} 1 & 5 \\ -1 & 2 \end{bmatrix} - \begin{bmatrix} 1 & -1 \\ 5 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 6 \\ -6 & 0 \end{bmatrix}$ 

Let 
$$Q = \frac{1}{2}(A - A') = \begin{bmatrix} 0 & 3 \\ -3 & 0 \end{bmatrix}$$

Now, 
$$Q' = \begin{bmatrix} 0 & -3 \\ 3 & 0 \end{bmatrix} = -Q$$

$$Q = \frac{1}{2}(A - A')$$
Thus, is a skew-symmetric matrix.

$$P+Q=\begin{bmatrix}1&&2\\2&&2\end{bmatrix}+\begin{bmatrix}0&&3\\-3&&0\end{bmatrix}=\begin{bmatrix}1&&5\\-1&&2\end{bmatrix}=A$$

Question 11:

If A, B are symmetric matrices of same order, then AB - BA is a

A. Skew symmetric matrix B. Symmetric matrix

C. Zero matrix D. Identity matrix

Answer

The correct answer is A.

A and B are symmetric matrices, therefore, we have:

$$A' = A \text{ and } B' = B \qquad \dots (1$$

\*\*\*\*\*\*\*\*\* END \*\*\*\*\*\*\*