Assignment 1 Jiajie Xu 7881937

QI \bigcirc F $2^{n+a} = 2^n \cdot 2^a > 2^n$ for a positive constant $2^h > n^2$ for $\forall n > \psi$.. 2n+a is 0 (2n) Inta = 2h. 2h. 2a > 2h Ya>0 $a^{n} > n^{2} + n > \psi$ $\therefore 2^{2n+\alpha} \text{ is } O(2^{n})$ $\sum_{k=1}^{n} k^{3} = 1^{3} + 2^{3} + 3^{3} + \dots + n^{3} \leq n \cdot n^{3} = n^{4} \quad \forall n \geq 1$ $\sum_{k=1}^{n} k^{3} \geq n^{3} \quad \forall n \geq 1 \quad \sum_{k=1}^{n} k^{3} = (L(n^{3}))$ $\vdots \quad \sum_{k=1}^{n} k^{3} = O(n^{4})$ see (C) @ T $(2n+8)(og(n^{lu}) \leq (2n+8n)(og(n^{lu}) \forall n \geq 1)$ = (0(2n+8n)(og(n)) = (oun(og(n))(= 100 g(n) = nlogen)

(P)	Best Och) Worst Och ²)
	Worst ()cn2)
©	Best: ascerding
	Best: ascerding Worst: descending
	0
Q4	a is the array with n elements for cint; =0; i< n-1; i+1)
	for cint $i=0$; $i< n-1$; $i+1$)
	₹
	for cint $j = i+1$; $j < n+j$ $j+1$
	{
	if (aci J==acj J)
	? veturn true; }
	3
	return false
	Worst: Och)