SEQUENCE LISTING

```
<110> WHITELAW, CHRISTOPHER BRUCE ALEXANDER
      CLARK, ANTHONY JOHN
      WOLF, CHARLES ROLAND
<120> MULTI-REPORTER GENE MODEL FOR TOXICOLOGICAL SCREENING
<130> 102286.155 US1
<140> 10/522,356
<141> 2005-01-26
<150> PCT/GB03/003192
<151> 2003-07-25
<150> GB 0217402.7
<151> 2002-07-26
<160> 41
<170> PatentIn version 3.3
<210> 1
<211> 10
<212> PRT
<213> Homo sapiens
Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu
               5
<210> 2
<211> 14
<212> PRT
<213> Simian virus
Gly Lys Pro Ile Pro Asn Pro Leu Leu Gly Leu Asp Ser Thr
                5
<210> 3
<211> 9
<212> PRT
<213> Unknown
<223> Description of Unknown Sequence: Haemaglutinin
     epitope from unknown organism
<400> 3
Tyr Pro Tyr Asp Val Pro Asp Tyr Ala
```

```
<210> 4
<211> 12
<212> PRT
<213> Unknown
<220>
<223> Description of Unknown Sequence: Clone100
      epitope from unknown organism
Asn Val Arg Phe Ser Thr Ile Val Arg Arg Arg Ala
                5
<210> 5
<211> 14
<212> PRT
<213> Unknown
<223> Description of Unknown Sequence: Rablla
      epitope from unknown organism
<400> 5
Lys Gln Met Ser Asp Arg Glu Asn Asp Met Ser Pro Ser
<210> 6
<211> 15
<212> PRT
<213> Unknown
<220>
<223> Description of Unknown Sequence: DOB
      epitope from unknown organism
<400> 6
Ser Gly Asn Glu Val Ser Arg Ala Val Leu Leu Pro Gln Ser Cys
                                    10
<210> 7
<211> 17
<212> PRT
<213> Unknown
<220>
<223> Description of Unknown Sequence: SG11
      epitope from unknown organism
<400> 7
Ser Ser Leu Ser Tyr Thr Asn Pro Ala Val Ala Ala Thr Ser Ala Asn
                5
                                    10
                                                        15
```

Leu

```
<210> 8
<211> 15
<212> PRT
<213> Unknown
<220>
<223> Description of Unknown Sequence: ErbB4
      epitope from unknown organism
<400> 8
Arg Ser Thr Leu Gln His Pro Asp Tyr Leu Gln Glu Tyr Ser Thr
                5
<210> 9
<211> 16
<212> PRT
<213> Unknown
<220>
<223> Description of Unknown Sequence: ARF
      epitope from unknown organism
Val Ser Thr Leu Leu Arg Trp Glu Arg Phe Pro Gly His Arg Gln Ala
                                     10
<210> 10
<211> 20
<212> PRT
<213> Unknown
<220>
<223> Description of Unknown Sequence: RYK
      epitope from unknown organism
<400> 10
Lys Phe Gln Gln Leu Val Gln Cys Leu Thr Glu Phe His Ala Ala Leu
                5
                                     10
Gly Ala Tyr Val
            20
<210> 11
<211> 20
<212> PRT
<213> Unknown
<220>
<223> Description of Unknown Sequence: WILPEP1
      epitope from unknown organism
```

<400> 11

Gln Glu Gln Cys Gln Glu Val Trp Arg Lys Arg Val Ile Ser Ala Phe Leu Lys Ser Pro 20 <210> 12 <211> 14 <212> PRT <213> Unknown <220> <223> Description of Unknown Sequence: HAF10 epitope from unknown organism <400> 12 Arg Leu Ser Asp Lys Thr Gly Pro Val Ala Gln Glu Lys Ser 5 <210> 13 <211> 543 <212> DNA <213> Mus musculus <220> <221> CDS <222> (1)..(540) <400> 13 atg aag atg ctg ctg ctg tgt ttg gga ctg acc cta gtc tgt gtc 48 Met Lys Met Leu Leu Leu Cys Leu Gly Leu Thr Leu Val Cys Val 10 cat gca gaa gct agt tct acg gga agg aac ttt aat gta gaa aag 96 His Ala Glu Glu Ala Ser Ser Thr Gly Arg Asn Phe Asn Val Glu Lys att aat ggg gaa tgg cat act att atc ctg gcc tct gac aaa aga gaa 144 Ile Asn Gly Glu Trp His Thr Ile Ile Leu Ala Ser Asp Lys Arg Glu aag ata gaa gat aat ggc aac ttt aga ctt ttt ctg gag caa atc cat 192 Lys Ile Glu Asp Asn Gly Asn Phe Arg Leu Phe Leu Glu Gln Ile His 50 55 gtc ttg gag aaa tcc tta gtt ctt aaa ttc cat act gta aga gat gaa 240 Val Leu Glu Lys Ser Leu Val Leu Lys Phe His Thr Val Arg Asp Glu 65 70 gag tgc tcg gaa tta tct atg gtt gct gac aaa aca gaa aag gct ggt 288 Glu Cys Ser Glu Leu Ser Met Val Ala Asp Lys Thr Glu Lys Ala Gly 85 90

>

-	tat Tyr			_		_									_	336
	gac Asp		_				_	_					_	_	_	384
	gaa Glu 130															432
	tca Ser															480
	ctt Leu															528
	gcc Ala	-	-	tga												543
<21 <21	0> 14 1> 18 2> PI	30														
<21	3 > Mi	ıs mı	ıscul	lus												
<40	3> Mi 0> 14 Lys	<u>l</u>			Leu	Leu	Cys	Leu	Gly 10	Leu	Thr	Leu	Val	Cys 15	Val	
<40 Met 1	0> 14	l Met	Leu	Leu 5					10					15		
<40 Met 1 His	0> 14 Lys	Met Met Glu	Leu Glu 20	Leu 5 Ala	Ser	Ser	Thr	Gly 25	10 Arg	Asn	Phe	Asn	Val 30	15 Glu	Lys	
<400 Met 1 His	0> 14 Lys Ala	Met Glu Gly 35	Leu Glu 20 Glu	Leu 5 Ala Trp	Ser His	Ser Thr	Thr Ile 40	Gly 25	10 Arg Leu	Asn Ala	Phe Ser	Asn Asp 45	Val 30 Lys	15 Glu Arg	Lys Glu	
<400 Met 1 His Ile	0> 14 Lys Ala Asn	Met Glu Gly 35 Glu	Leu Glu 20 Glu Asp	Leu 5 Ala Trp Asn	Ser His	Ser Thr Asn 55	Thr Ile 40 Phe	Gly 25 Ile Arg	10 Arg Leu Leu	Asn Ala Phe	Phe Ser Leu 60	Asn Asp 45 Glu	Val 30 Lys Gln	Glu Arg	Lys Glu His	
<400 Met 1 His Ile Lys Val 65	0> 14 Lys Ala Asn Ile 50	Met Glu Gly 35 Glu	Leu Glu 20 Glu Asp Lys	Leu 5 Ala Trp Asn	Ser His Gly Leu 70	Ser Thr Asn 55 Val	Thr Ile 40 Phe	Gly 25 Ile Arg Lys	10 Arg Leu Leu	Asn Ala Phe His 75	Phe Ser Leu 60	Asn Asp 45 Glu Val	Val 30 Lys Gln Arg	Glu Arg Ile Asp	Lys Glu His Glu 80	

Thr Asp Tyr Asp Asn Phe Leu Met Ala His Leu Ile Asn Glu Lys Asp 120 Gly Glu Thr Phe Gln Leu Met Gly Leu Tyr Gly Arg Glu Pro Asp Leu 135 Ser Ser Asp Ile Lys Glu Arg Phe Ala Gln Leu Cys Glu Lys His Gly Ile Leu Arg Glu Asn Ile Ile Asp Leu Ser Asn Ala Asn Arg Cys Leu 170 Gln Ala Arg Glu 180 <210> 15 <211> 540 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic recombinant mMUP reporter molecule <220> <221> CDS <222> (1)..(537) <400> 15 ggg ccc ctg gga tcc atg gag cag aaa ctc atc tct gaa gag gat ctg 48 Gly Pro Leu Gly Ser Met Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu acc atg gaa gct agt tct acg gga agg aac ttt aat gta gaa aag att 96 Thr Met Glu Ala Ser Ser Thr Gly Arg Asn Phe Asn Val Glu Lys Ile aat ggg gaa tgg cat act att atc ctg gcc tct gac aaa aga gaa aag 144 Asn Gly Glu Trp His Thr Ile Ile Leu Ala Ser Asp Lys Arg Glu Lys ata gaa gat aat ggc aac ttt aga ctt ttt ctg gag caa atc cat gtc 192 Ile Glu Asp Asn Gly Asn Phe Arg Leu Phe Leu Glu Gln Ile His Val 50 ttg gag aaa tcc tta gtt ctt aaa ttc cat act gta aga gat gaa gag 240 Leu Glu Lys Ser Leu Val Leu Lys Phe His Thr Val Arg Asp Glu Glu 65 70 80 tgc tcg gaa tta tct atg gtt gct gac aaa aca gaa aag gct ggt gaa 288 Cys Ser Glu Leu Ser Met Val Ala Asp Lys Thr Glu Lys Ala Gly Glu 85 90

													aag Lys		336
													gat Asp		384
_			_	_	_				_	_		_	ttg Leu	_	432
	_		_	_			_		_		_		gga Gly		480
	_	_				_			Āla		_	-	ctc Leu 175	_	528
_	cga Arg	_	tga												540

<211> 179

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic recombinant mMUP reporter molecule

<400> 16

Gly Pro Leu Gly Ser Met Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu 1 5 10 15

Thr Met Glu Ala Ser Ser Thr Gly Arg Asn Phe Asn Val Glu Lys Ile 20 25 30

Asn Gly Glu Trp His Thr Ile Ile Leu Ala Ser Asp Lys Arg Glu Lys 35 40 45

Ile Glu Asp Asn Gly Asn Phe Arg Leu Phe Leu Glu Gln Ile His Val 50 55 60

Leu Glu Lys Ser Leu Val Leu Lys Phe His Thr Val Arg Asp Glu Glu 65 70 75 80

Cys Ser Glu Leu Ser Met Val Ala Asp Lys Thr Glu Lys Ala Gly Glu 85 90 95

Tyr	Ser	Val	Thr 100	Tyr	Asp	Gly	Phe	Asn 105	Thr	Phe	Thr	Ile	Pro 110	Lys	Thr	
Asp	Tyr	Asp 115	Asn	Phe	Leu	Met	Ala 120	His	Leu	Ile	Asn	Glu 125	Lys	Asp	Gly	
Glu	Thr 130	Phe	Gln	Leu	Met	Gly 135	Leu	Tyr	Gly	Arg	Glu 140	Pro	Asp	Leu	Ser	
Ser 145	Asp	Ile	Lys	Glu	Arg 150	Phe	Ala	Gln	Leu	Cys 155	Glu	Lys	His	Gly	Ile 160	
Leu	Arg	Glu	Asn	Ile 165	Ile	Asp	Leu	Ser	Asn 170	Ala	Asn	Arg	Cys	Leu 175	Gln	
Ala	Arg	Glu														
<21 <21	0> 17 1> 54 2> Di 3> Ai	10 NA	icial	L Sed	quenc	ce										
<22 <22	3 > De		-		E Art			-		-	/nthe	etic				
	0> l> CI 2> (1		(537)													
<400)> 17	7														
ggg Gly 1	Pro	ctg Leu	gga Gly	tcc Ser 5	atg Met	gcc Ala	atc Ile	atc Ile	gtc Val 10	acc Thr	cag Gln	acc Thr	atg Met	aaa Lys 15	ggc Gly	48
ctg Leu	gac Asp	atc Ile	cag Gln 20	Lys	gtg Val	gcg Ala	Gly 999	act Thr 25	tgg Trp	cac His	tcc Ser	ttg Leu	gct Ala 30	atg Met	gcg Ala	96
gcc Ala	agc Ser	gac Asp 35	atc Ile	tcc Ser	ctg Leu	ctg Leu	gat Asp 40	gcc Ala	cag Gln	agt Ser	gcc Ala	ccc Pro 45	ctg Leu	aga Arg	gtg Val	144
tac Tyr	gtg Val 50	gag Glu	gag Glu	ctg Leu	aag Lys	ccc Pro 55	acc Thr	ccc Pro	gag Glu	ggc Gly	aac Asn	ctg Leu	gag Glu	atc Ile	ctg Leu	192

	cag Gln													240
_	aaa Lys		_			 	_		_	_	_			288
	aaa Lys													336
	atg Met	_		_	_			_	_	_	_	_	_	384
_	gtc Val 130			_	_	 _		_	_				_	432
	gcc Ala													480
	cag Gln													528
	gat Asp		tag											540

<211> 179

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic recombinant BLGm reporter molecule

<400> 18

Gly Pro Leu Gly Ser Met Ala Ile Ile Val Thr Gln Thr Met Lys Gly 1 5 10 15

Leu Asp Ile Gln Lys Val Ala Gly Thr Trp His Ser Leu Ala Met Ala 20 25 30

Ala Ser Asp Ile Ser Leu Leu Asp Ala Gln Ser Ala Pro Leu Arg Val 35 40 45

Tyr Val Glu Glu Leu Lys Pro Thr Pro Glu Gly Asn Leu Glu Ile Leu
50 55

Leu Gln Lys Trp Glu Asn Gly Glu Cys Ala Gln Lys Lys Ile Ile Ala 65 70 75 80

Glu Lys Thr Lys Ile Pro Ala Val Phe Lys Ile Asp Ala Leu Asn Glu 85 90 95

Asn Lys Val Leu Val Leu Asp Thr Asp Tyr Lys Lys Tyr Leu Leu Phe 100 105 110

Cys Met Glu Asn Ser Ala Glu Pro Glu Gln Ser Leu Ala Cys Gln Cys 115 120 125

Leu Val Arg Thr Pro Glu Val Asp Asn Glu Ala Leu Glu Lys Phe Asp 130 135 140

Lys Ala Leu Lys Ala Leu Pro Met His Ile Arg Leu Ala Phe Asn Pro 145 150 155 160

Thr Gln Leu Glu Gly Gln Cys His Val Glu Gln Lys Leu Ile Ser Glu 165 170 175

Glu Asp Leu

<210> 19

<211> 214

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic modified MUP protein produced from the pSecTag vector

<400> 19

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro 1 5 10 15

Gly Ser Thr Gly Asp Ala Ala Gln Pro Ala Arg Arg Ala Arg Arg Thr 20 25 30

Lys Leu Gly Thr Glu Leu Gly Ser Met Glu Gln Lys Leu Ile Ser Glu 35 40 45

Glu Asp Leu Thr Met Glu Ala Ser Ser Thr Gly Arg Asn Phe Asn Val 50 55 60

Glu Lys Ile Asn Gly Glu Trp His Thr Ile Ile Leu Ala Ser Asp Lys 65 70 75 80

Arg Glu Lys Ile Glu Asp Asn Gly Asn Phe Arg Leu Phe Leu Glu Gln 85 90 95

Ile His Val Leu Glu Lys Ser Leu Val Leu Lys Phe His Thr Val Arg 100 \$105\$

Asp Glu Glu Cys Ser Glu Leu Ser Met Val Ala Asp Lys Thr Glu Lys 115 120 125

Ala Gly Glu Tyr Ser Val Thr Tyr Asp Gly Phe Asn Thr Phe Thr Ile 130 135 140

Pro Lys Thr Asp Tyr Asp Asn Phe Leu Met Ala His Leu Ile Asn Glu 145 150 155

Lys Asp Gly Glu Thr Phe Gln Leu Met Gly Leu Tyr Gly Arg Glu Pro \$165\$ \$170\$ \$175\$

Asp Leu Ser Ser Asp Ile Lys Glu Arg Phe Ala Gln Leu Cys Glu Lys
180 185 190

His Gly Ile Leu Arg Glu Asn Ile Ile Asp Leu Ser Asn Ala Asn Arg 195 200 205

Cys Leu Gln Ala Arg Glu 210

<210> 20

<211> 243

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic modified MUP protein produced from the pSecTag vector

<400> 20

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Trp Val Pro 1 5 10 15

Gly Ser Thr Gly Asp Ala Ala Gln Pro Ala Lys Met Leu Leu Leu 20 25 30

Cys Leu Gly Leu Thr Leu Val Cys Val His Ala Glu Glu Ala Ser Ser 35 40 45

Thr Gly Arg Asn Phe Asn Val Glu Lys Ile Asn Gly Glu Trp His Thr 50 55 60

Ile Ile Leu Ala Ser Asp Lys Arg Glu Lys Ile Glu Asp Asn Gly Asn 65 70 75 80

Phe Arg Leu Phe Leu Glu Gln Ile His Val Leu Glu Lys Ser Leu Val 85 90 95

Leu Lys Phe His Thr Val Arg Asp Glu Glu Cys Ser Glu Leu Ser Met
100 105 110

Val Ala Asp Lys Thr Glu Lys Ala Gly Glu Tyr Ser Val Thr Tyr Asp 115 120 125

Gly Phe Asn Thr Phe Thr Ile Pro Lys Thr Asp Tyr Asp Asn Phe Leu 130 135 140

Gly Leu Tyr Gly Arg Glu Pro Asp Leu Ser Ser Asp Ile Lys Glu Arg 165 170 175

Phe Ala Gln Leu Cys Glu Lys His Gly Ile Leu Arg Glu Asn Ile Ile 180 185 190

Asp Leu Ser Asn Ala Asn Arg Cys Leu Gln Ala Arg Glu Glu Gln Lys 195 200 205

Leu Ile Ser Glu Glu Asp Leu Ala Ala Ala Arg Gly Gly Pro Glu Gln 210 215 220

Lys Leu Ile Ser Glu Glu Asp Leu Asn Ser Ala Val Asp His His 225 230 235 240

His His His

<211> 253

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic modified MUP protein produced from the pSecTag vector

<400> 21

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro 1 5 10 15

Gly Ser Thr Gly Asp Ala Ala Gln Pro Ala Lys Met Leu Leu Leu 20 25 30

Cys Leu Gly Leu Thr Leu Val Cys Val His Ala Glu Glu Ala Ser Ser 35 40 45

Thr Gly Arg Asn Phe Asn Val Glu Lys Ile Asn Gly Glu Trp His Thr 50 55 60

Ile Ile Leu Ala Ser Asp Lys Arg Glu Lys Ile Glu Asp Asn Gly Asn 65 70 75 80

Phe Arg Leu Phe Leu Glu Gln Ile His Val Leu Glu Lys Ser Leu Val 85 90 95

Leu Lys Phe His Thr Val Arg Asp Glu Glu Cys Ser Glu Leu Ser Met
100 105 110

Val Ala Asp Lys Thr Glu Lys Ala Gly Glu Tyr Ser Val Thr Tyr Asp 115 120 125

Gly Phe Asn Thr Phe Thr Ile Pro Lys Thr Asp Tyr Asp Lys Leu Gly
130 140

Glu Lys Asp Gly Glu Thr Phe Gln Leu Met Gly Leu Tyr Gly Arg Glu 165 170 175 Pro Asp Leu Ser Ser Asp Ile Lys Glu Arg Phe Ala Gln Leu Cys Glu 180 185 190

Lys His Gly Ile Leu Arg Glu Asn Ile Ile Asp Leu Ser Asn Ala Asn 195 200 205

Arg Cys Leu Gln Ala Arg Glu Glu Gln Lys Leu Ile Ser Glu Glu Asp 210 215 220

Leu Ala Ala Arg Gly Gly Pro Glu Gln Lys Leu Ile Ser Glu Glu 225 230 235 240

Asp Leu Asn Ser Ala Val Asp His His His His His Essen 245 250

<210> 22

<211> 259

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 modified MUP protein produced from the pSecTag
 vector

<400> 22

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro 1 5 10 15

Gly Ser Thr Gly Asp Ala Ala Gln Pro Ala Lys Met Leu Leu Leu 20 25 30

Cys Leu Gly Leu Thr Leu Val Cys Val His Ala Glu Glu Ala Ser Ser 35 40 45

Thr Gly Arg Asn Phe Asn Val Glu Lys Ile Asn Gly Glu Trp His Thr 50 55 60

Ile Ile Leu Ala Ser Asp Lys Arg Glu Lys Ile Glu Asp Asn Gly Asn 65 70 75 80

Phe Arg Leu Phe Leu Glu Gln Ile His Val Leu Glu Lys Ser Leu Val 85 90 95

Leu Lys Phe His Thr Val Arg Asp Glu Glu Cys Ser Glu Leu Ser Met 100 105 110

Val Ala Asp Lys Thr Glu Lys Ala Gly Glu Tyr Ser Val Thr Tyr Asp 115 120 125	
Gly Phe Asn Thr Phe Thr Ile Pro Lys Thr Asp Tyr Asp Lys Leu Asn 130 135 140	
Val Arg Phe Ser Thr Ile Val Arg Arg Arg Ala Glu Phe Asn Phe Leu 145 150 155 160	
Met Ala His Leu Ile Asn Glu Lys Asp Gly Glu Thr Phe Gln Leu Met 165 170 175	
Gly Leu Tyr Gly Arg Glu Pro Asp Leu Ser Ser Asp Ile Lys Glu Arg 180 185 190	
Phe Ala Gln Leu Cys Glu Lys His Gly Ile Leu Arg Glu Asn Ile Ile 195 200 205	
Asp Leu Ser Asn Ala Asn Arg Cys Leu Gln Ala Arg Glu Glu Gln Lys 210 215 220	
Leu Ile Ser Glu Glu Asp Leu Ala Ala Ala Arg Gly Gly Pro Glu Gln 225 230 235 240	
Lys Leu Ile Ser Glu Glu Asp Leu Asn Ser Ala Val Asp His His 245 250 255	
His His His	
<210> 23 <211> 7379 <212> DNA <213> Ovis aries	
<400> 23 gtgctcagca acacacccag caccagcatt cccgctgctc ctgaggtctg caggcagctc	60
gctgtagcct gagcggtgtg gagggaagtg tcctgggaga tttaaaatgt gagaggcggg	120
aggtgggagg ttgggccctg tgggcctgcc catcccacgt gcctgcatta gccccagtgc	180
tgctcagccg tgcccccgcc gcaggggtca ggtcactttc ccgtcctggg gttattatga	240
ctcttgtcat tgccattgcc atttttgcta ccctaactgg gcagcaggtg cttgcagagc	300

cctcgatacc gaccaggtcc tccctcggag ctcgacctga accccatgtc acccttgccc 360

cagcctgcag	agggtgggtg	actgcagaga	tcccttcacc	caaggccacg	gtcacatggt	420
ttggaggagc	tggtgcccaa	ggcagaggcc	accctccagg	acacacctgt	ccccagtgct	480
ggctctgacc	tgtccttgtc	taagaggctg	accccggaag	tgttcctggc	actggcagcc	540
agcctggacc	cagagtccag	acacccacct	gtgcccccgc	ttctggggtc	taccaggaac	600
cgtctaggcc	cagagggga	cttcctgctt	ggccttggat	ggaagaaggc	ctcctattgt	660
cctcgtagag	gaagccaccc	cggggcctga	ggatgagcca	agtgggattc	cgggaaccgc	720
gtggctgggg	gcccagcccg	ggctggctgg	cctgcatgcg	cctcctgtat	aaggccccaa	780
gcctgcctgt	ctcagccctc	cactccctgc	agagctcaga	agcacgaccc	cagctgcagc	840
catgaagtgc	ctcctgcttg	ccctgggcct	ggccctcgcc	tgtggcgtcc	aggccatcat	900
cgtcacccag	accatgaaag	gcctggacat	ccagaaggtt	cgagggttgg	ccgggtgggt	960
gagttgcagg	gcgggcaggg	gagctgggcc	tcagagagcc	aagagaggct	gtgacgttgg	1020
gttcccatca	gtcagctagg	gccacctgac	aaatccccgc	tggggcagct	tcaaccaggc	1080
gttcactgtc	ttgcattctg	gaggctggaa	gcccaagatc	caggtgttgg	cagggctggc	1140
ttctcctgcg	gccgctctct	ggggagcaga	cggccgtctt	ctccagtcct	ctgcgcgccc	1200
tgatttcctc	ttcctgtgag	gccaccaggc	ctgctggaaa	cacgcctgcc	tgcgcagctt	1260
cacacgacct	ttgtcatctc	tttaaaggcc	atgtctccag	agtcatgtgt	tgaagttctg	1320
ggggttagtg	ggacacagtt	cagcccctaa	aagagtctct	ctgcccctca	aattttcccc	1380
acctccagcc	atgtctcccc	aagatccaaa	tgttgctaca	tgtgggggg	ctcatctggg	1440
tccctctttg	ggttcagtgt	gagtctgggg	agagcattcc	ccagggtgca	gagttggggg	1500
gagtatetea	gggctgccca	ggccggggtg	ggacagagag	cccactgtgg	ggctgggggc	1560
cccttcccac	ccccagagtg	caactcaagg	tccctctcca	ggtggcgggg	acttggcact	1620
ccttggctat	ggcggccagc	gacatetece	tgctggatgc	ccagagtgcc	cccctgagag	1680
tgtacgtgga	ggagctgaag	cccacccccg	agggcaacct	ggagatcctg	ctgcagaaat	1740
ggtgggcgtc	tctccccaac	atggaacccc	cactccccag	ggctgtggac	ccccggggg	1800
gtggggtgca	ggagggacca	gggccccagg	gctggggaag	agggctcaga	gtttactggt	1860
acccggcgct	ccacccaagg	ctgcccaccc	agggcttttt	tttttttaa	acttttatta	1920
atttgatgct	tcagaacatc	atcaaacaaa	tgaacataaa	acattcattt	ttgtttactt	1980
ggaaggggag	ataaaatcct	ctgaagtgga	aatgcatagc	aaagatacat	acaatgaggc	2040
aggtattctg	aattccctgt	tagtctgagg	attacaagtg	tatttgagca	acagagagac	2100

attttcatca	tttctagtct	gaacacctca	gtatctaaaa	tgaacaagaa	gtcctggaaa	2160
cgaagcagtg	tggggatagg	cccgtgtgaa	ggctgctggg	aggcagcaga	cctgggtctt	2220
cgggctcaag	cagttcccgc	taccagccct	gtccacctca	gacgggggtc	agggtgcagg	2280
agagagctgg	atgggtgtgg	gggcagagat	ggggacctga	accccagggc	tgccttttgg	2340
gggtgcctgt	ggtcaaggct	ctccctgacc	ttttctctct	ggcttcatct	gacttctcct	2400
ggcccatcca	cccggtcccc	tgtggcctga	ggtgacagtg	agtgcgccga	ggctagttgg	2460
ccagctggct	cctatgccca	tgccaccccc	ctccagccct	cctgggccag	cttctgcccc	2520
tggccctcag	ttcatcctga	tgaaaatggt	ccatgccaat	ggctcagaaa	gcagctgtct	2580
ttcagggaga	acggcgagtg	tgctcagaag	aagattattg	cagaaaaaac	caagatccct	2640
gcggtgttca	agatcgatgg	tgagtccggg	tccctggggg	acacccacca	ccccgccc	2700
cggggactgt	ggacaggttc	agggggctgg	cgtcgggccc	tgggatgcta	agggactggt	2760
ggtgatgaag	acactgcctt	gacacctgct	tcacttgcct	cccctgccac	ctgcccgggg	2820
ccttggggcg	gtggccatgg	gcaggtcccg	gctggcgggc	taacccacca	gggtgacacc	2880
cgagctctct	ttgctggggg	gcgggcggtg	ctctgggccc	tcaggctgag	ctcaggagģt	2940
acctgtgccc	tcccaggggt	aaccgagagc	cgttgcccac	tccaggggcc	caggtgcccc	3000
acgaccccag	cccgctccac	agctccttca	tctcctggag	acaaactctg	tccgccctcg	3060
ctcattcact	tgttcgtcct	aaatccgaga	tgataaagct	tcgaggggg	gttggggttc	3120
catcagggct	gcccttccgc	cgggcagcct	gggccacatc	tgcccttggc	cccctcagga	3180
ctcactctga	ctggaggccc	tgcact _. gact	gacgccaggg	tgcccagccc	agggtctctg	3240
gcgccatcca	gctgcactgg	gtttgggtgc	tggtcctgcc	cccaagctgc	ccggacacca	3300
caggcagccg	gggctgccca	ctggcctcgg	tcagggtgag	ccccagctgc	ccccgctcag	3360
ggcttgcccc	gacaatgacc	ccatcctcag	gacgcacccc	ccttcccttg	ctgggcagtg	3420
tccagcccca	cccgagatcg	ggggaagccc	tatttcttga	caactccagt	ccctggggga	3480
gggggcctca	gactgagtgg	tgagtgttcc	caagtccagg	aggtggtgga	gggtcctggc	3540
ggatccagag	ttgacagtga	gggcttcctg	ggccccatgc	gcctggcagt	ggcagcaggg	3600
aagaggaagc	accatttcag	gggtgggga	tgccagaggc	gctccccacc	ccgtcttcgc	3660
cgggtggtga	ccccggggga	gccccgctgg	tcgtggaggg	tgctgggggc	tgactagcaa	3720
cccctcccc	cccgttggaa	ctcacttttc	tcccgtcttg	accgcgtcca	gccttgaatg	3780
agaacaaagt	ccttgtgctg	gacaccgact	acaaaagta	cctgctcttc	tgcatggaaa	3840

acaqtqctqa	gcccgagcaa	agcctggcct	gccagtgcct	agatagatac	caaccctqqc	3900
						3960
		gtggtccttg				
		tggggggtcc				4020
accgggagcc	agtctgctgt	gggcctgtgg	gtggctgggg	acgggggcca	gacacacagg	4080
ccgggagacg	ggtgggctgc	agaactgtga	ctggtgtgac	cgtcgcgatg	gggccggtgg	4140
tcactgaatc	taacagcctt	tgttaccggg	gagtttcaat	tatttcccaa	aataagaact	4200
caggtacaaa	gccatctttc	aactatcaca	tcctgaaaac	aaatggcagg	tgacattttc	4260
tgtgccgtag	cagtcccact	gggcattttc	agggcccctg	tgccaggggg	gcgcgggcat	4320
cggcgagtgg	aggctcctgg	ctgtgtcagc	cggcccaggg	ggaggaaggg	acccggacag	4380
ccagaggtgg	ggggcaggct	ttccccctgt	gacctgcaga	cccactgcac	tgccctggga	4440
ggaagggagg	ggaactaggc	caagggggaa	gggcaggtgc	tctggagggc	aagggcagac	4500
ctgcagacca	ccctggggag	cagggactga	ccccgtccc	tgccccatag	tcaggacccc	4560
ggaggtggac	aacgaggccc	tggagaaatt	cgacaaagcc	ctcaaggccc	tgcccatgca	4620
catccggctt	gccttcaacc	cgacccagct	ggagggtgag	cacccaggcc	ccgcccttcc	4680
ccagggcagg	agccacccgg	ccccgggacg	acctcctccc	atggtgaccc	ccagctcccc	4740
aggcctccca	ggaggaaggg	gtggggtgca	gcaccccgtg	ggggccccct	cccaccccc	4800
tgccaggcct	ctcttcccga	ggtgtccagt	cccatcctga	ccccccatg	actctccctc	4860
ccccacaggg	cagtgccacg	tctaggtgag _.	cccctgccgg	tgcctctggg	gtaagctgcc	4920
tgccctgccc	cacgtcctgg	gcacacacat	ggggtagggg	gtcttggtgg	ggcctgggac	4980
cccacatcag	gccctggggt	ccccctgtg	agaatggctg	gaagctgggg	tccctcctgg	5040
cgactgcaga	gctggctggc	cgcgtgccac	tcttgtgggt	gacctgtgtc	ctggcctcac	5100
acactgacct	cctccagctc	cttccaģcag	agctaaggct	aagtgagcca	gaatggtacc	5160
taaggggagg	ctagcggtcc	ttctcccgag	gaggggctgt	cctggaacca	ccagccatgg	5220
agaggctggc	aagggtctgg	caggtgcccc	aggaatcaca	ggggggcccc	atgtccattt	5280
cagggcccgg	gagccttgga	ctcctctggg	gacagacgac	gtcaccaccg	cccccccc	5340
atcaggggga	ctagaaggga	ccaggactgc	agtcaccctt	cctgggaccc	aggcccctcc	5400
aggcccctcc	tggggctcct	gctctgggca	gcttctcctt	caccaataaa	ggcataaacc	5460
tgtgctctcc	cttctgagtc	tttgctggac	gacgggcagg	gggtggagaa	gtggtgggga	5520
gggagtctgg	ctcagaggat	gacagcgggg	ctgggatcca	gggcgtctgc	atcacagtct	5580

tgtgacaact	gggggcccac	acacatcact	gcggctcttt	gaaactttca	ggaaccaggg	5640
agggactcgg	cagagacatc	tgccagttca	cttggagtgt	tcagtcaaca	cccaaactcg	5700
acaaaggaca	gaaagtggaa	aatggctgtc	tcttagtcta	ataaatattg	atatgaaact	5760
caagttgctc	atggatcaat	atgcctttat	gatccagcca	gccactactg	tcgtatcaac	5820
tcatgtaccc	aaacgcactg	atctgtctgg	ctaatgatga	gagattccca	gtagagagct	5880
ggcaagaggt	cacagtgaga	actgtctgca	cacacagcag	agtccaccag	tcatcctaag	5940
gagatcagtc	ctggtgttca	ttggaggact	gatgttgaag	ctgaaactcc	aatgctttgg	6000
ccacctgatg	tgaagagctg	actcatttga	aaagaccctg	atgctgggaa	agattgaggg	6060
caggaggaga	aggggacgac	agaggatgag	atggttggat	ggcatcacca	acacaatgga	6120
catgggtttg	ggtggactcc	aggagttggt	gatggacagg	gaggcctggc	gtgctacgga	6180
agcggtttat	ggggtcacaa	agactgagtg	actgaactga	gctgaactga	atggaaatga	6240
ggtatacagc	aaagtgggga	ttttttagat	aataagaata	tacacataac	atagtgtata	6300
ctcatatttt	tatgcatacc	tgaatgctca	gtcactcagt	cgtatctgac	tctgtgacct	6360
atggaccgta	gccttccagg	tttcttctgt	ccacagaatt	ctccaaggca	agaatactgg	6420
agtgggtagc	catttcctcc	tccaggggat	cctcccgacc	cagggattga	accggcatct	6480
cctgtattgg	caggtggatt	ctttaccact	gtgccaccag	ggaagcccgt	gttactctct	6540
atgtcccact	taattaccaa	agctgctcca	agaaaaagcc	cctgtgccct	ctgagcttcc	6600
cggcctgcag	agggtggtgg	gggtagactg	tgacctggga	acaccctccc	gcttcaggac	6660
tcccgggcca	cgtgacccac	agtcctgcag	acagccgggt	agctctgctc	ttcaaggctc	6720
attatcttta	aaaaaaactg	aggtctattt	tgtgacttcg	ctgccgtaac	ttctgaacat	6780
ccagtgcgat	ggacaggacc	tcctccccag	gcctcagggg	cttcagggag	ccagccttca	6840
cctatgagtc	accagacact	cgggggtggc	cccgccttca	gggtgctcac	agtcttccca	6900
tcgtcctgat	caaagagcaa	gaccaatgac	ttcttaggag	caagcagaca	cccacaggac	6960
actgaggttc	accagagctg	agctgtcctt	ttgaacctaa	agacacacag	ctctcgaagg	7020
ttttctcttt	aatctggatt	taaggcctac	ttgcccctca	agagggaaga	cagtcctgca	7080
tgtccccagg	acagccactc	ggtggcatcc	gaggccactt	agtattatct	gaccgcaccc	7140
tggaattaat	cggtccaaac	tggacaaaaa	ccttggtggg	aagtttcatc	ccagaggcct	7200
caaccatcct	gctttgacca	ccctgcatct	ttttttcttt	tatgtgtatg	catgtatata	7260
tatatatata	tttttttt	tttcattttt	tggctgtgct	ggctgttcgt	tgcagttcgg	7320

tgcgcaggct tctctctagt ttctctctag tcttctctta tcacagagca gtctctaga 7379

<210> 24

<211> 180

<212> PRT

<213> Ovis aries

<400> 24

Met Lys Cys Leu Leu Leu Ala Leu Gly Leu Ala Leu Ala Cys Gly Val 1 5 10 15

Gln Ala Ile Ile Val Thr Gln Thr Met Lys Gly Leu Asp Ile Gln Lys
20 25 30

Val Ala Gly Thr Trp His Ser Leu Ala Met Ala Ala Ser Asp Ile Ser 35 40 45

Leu Leu Asp Ala Gln Ser Ala Pro Leu Arg Val Tyr Val Glu Glu Leu 50 55 60

Lys Pro Thr Pro Glu Gly Asn Leu Glu Ile Leu Leu Gln Lys Trp Glu 65 70 75 80

Asn Gly Glu Cys Ala Gln Lys Lys Ile Ile Ala Glu Lys Thr Lys Ile 85 90 95

Pro Ala Val Phe Lys Ile Asp Ala Leu Asn Glu Asn Lys Val Leu Val

Leu Asp Thr Asp Tyr Lys Lys Tyr Leu Leu Phe Cys Met Glu Asn Ser 115 120 125

Ala Glu Pro Glu Gln Ser Leu Ala Cys Gln Cys Leu Val Arg Thr Pro 130 140

Leu Pro Met His Ile Arg Leu Ala Phe Asn Pro Thr Gln Leu Glu Gly 165 170 175

Gln Cys His Val

60

120

180

240

300

360

420

480

540

600

660

720

780

840

900

925

, .

<210> 25

35

<211> 925 <212> DNA <213> Mus musculus <400> 25 tcacaagaaa gacgtggtcc tgacagacag acaatcctat tccctaccaa aatgaagatg ctgctgctgc tgtgtttggg actgacccta gtctgtgtcc atgcagaaga agctagttct acgggaagga actttaatgt agaaaagatt aatggggaat ggcatactat tatcctggcc tctgacaaaa gagaaaagat agaagataat ggcaacttta gactttttct ggaqcaaatc catglictigg agaatteett agtiettaaa tiecatactg taagagatga agagtgeteg gaattatcta tggttgctga caaaacagaa aaggctggtg aatattctgt gacgtatgat ggattcaata catttactat acctaagaca gactatgata actttcttat ggctcatctc attaacgaaa aggatggga aaccttccag ctgatggggc tctatggccg agaaccagat ttgagttcag acatcaagga aaggtttgca caactatgtg agaagcatgg aatccttaga gaaaatatca ttgacctatc caatgccaat cgctgcctcc aggcccgaga atgaagaatg gcctgagcct ccagtgttga gtggagactt ctcaccagga ctccaccatc atcccttcct atccatacag catccccagt ataaattctg tgatctgcat tccatcctgt ctcactgaga agtccaattc cagtctatcc acatgttacc taggatacct catcaagaat caaagacttc tttaaatttt tctttgatat acccatgaca atttttcatg aatttcttcc tcttcctgtt caataaatga ttacccttgc actta <210> 26 <211> 180 <212> PRT <213> Mus musculus <400> 26 Met Lys Met Leu Leu Leu Cys Leu Gly Leu Thr Leu Val Cys Val 10 His Ala Glu Glu Ala Ser Ser Thr Gly Arg Asn Phe Asn Val Glu Lys 20

Ile Asn Gly Glu Trp His Thr Ile Ile Leu Ala Ser Asp Lys Arg Glu

Lys	Ile 50	Glu	Asp	Asn	Gly	Asn 55	Phe	Arg	Leu	Phe	Leu 60	Glu	Gln	Ile	His	
Val 65	Leu	Glu	Asn	Ser	Leu 70	Val	Leu	Lys	Phe	His 75	Thr	Val	Arg	Asp	Glu 80	
Glu	Cys	Ser	Glu	Leu 85	Ser	Met	Val	Ala	Asp 90	Lys	Thr	Glu	Lys	Ala 95	Gly	
Glu	Tyr	Ser	Val 100	Thr	Tyr	Asp	Gly	Phe 105	Asn	Thr	Phe	Thr	Ile 110	Pro	Lys	
Thr	Asp	Tyr 115	Asp	Asn	Phe	Leu	Met 120	Ala	His	Leu	Ile	Asn 125	Glu	Lys	Asp	
Gly	Glu 130	Thr	Phe	Gln	Leu	Met 135	Gly	Leu	Tyr	Gly	Arg 140	Glu	Pro	Asp	Leu	
Ser 145	Ser	Asp	Ile	Lys	Glu 150	Arg	Phe	Ala	Gln	Leu 155	Суѕ	Glu	Lys	His	Gly 160	
Ile	Leu	Arg	Glu	Asn 165	Ile	Ile	Asp	Leu	Ser 170	Asn	Ala	Asn	Arg	Cys 175	Leu	
Gln	Ala	Arg	Glu 180													
<211 <212)> 27 .> 81 !> DN !> Ra	.3 IA	s nor	vegi	.cus											
)> 27		atat	ctac	a cc	tgac	acto	a ato	tato	acc	atoo	Pagaa	nga a	acta	igttcc	60
															tggcc	120
tcta	acaa	aa g	gagaa	aaga	ıt ag	gaaga	gaat	ggc	agca	itga	gagt	ttt	at g	gcago	acatc	180
gatg	tctt	gg a	igaat	tcct	t ag	gctt	caag	, ttc	cgta	tta	agga	aaat	gg a	agagt	gcagg	240
gaac	tata	ct t	ggtt	tcct	a ca	aaac	gcca	gag	gatg	gtg	aata	tttt	gt t	gagt	atgac	300
ggag	ggaa	ta c	attt	acta	t ac	ttaa	gaca	gac	tact	aca	tata	cgto	at g	gtttc	atctc	360
atta	attt	ca a	gaac	9999	a aa	cctt	ccag	ctg	atgg	tgc	tcta	cggc	ag a	acaa	aggat	420
ctga	gtto	ag a	cato	aagg	a aa	agtt	tgca	aaa	ctat	gtg	aggo	gcat	gg a	atca	ctagg	480

gacaatatca	ttgatctaac	caagactgat	cgctgtctcc	aggcccgagg	atgaagaaag	540
gcctgagcct	ccagtgctga	gtggagactt	ctcaccagga	ctctagcatc	accatttcct	600
gtccatggag	catcctgaga	caaattctgc	gatctgattt	ccatcctctg	tcacagaaaa	660
gtgcaatcct	ggtctctcca	gcatcttccc	tagttaccca	ggacaacaca	tcgagaatta	720
aaagctttct	taaatttctc	ttggccccac	ccatgatcat	tccgcacaaa	tatcttgctc	780
ttgcagttca	ataaatgatt	acccttgcac	ttt			813

<211> 735

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 GST coding sequence derived from pGEX6p-1

<400> 28 atgtccccta tactaggtta ttggaaaatt aagggccttg tgcaacccac tcgacttctt 60 ttggaatatc ttgaagaaaa atatgaagag catttgtatg agcgcgatga aggtgataaa 120 tggcgaaaca aaaagtttga attgggtttg gagtttccca atcttcctta ttatattgat 180 ggtgatgtta aattaacaca gtctatggcc atcatacgtt atatagctga caagcacaac 240 atgttgggtg gttgtccaaa agagcgtgca gagatttcaa tgcttgaagg agcggttttg 300 gatattagat acggtgtttc gagaattgca tatagtaaag actttgaaac tctcaaagtt 360 gattttctta gcaagctacc tgaaatgctg aaaatgttcg aagatcgttt atgtcataaa 420 acatatttaa atggtgatca tgtaacccat cctgacttca tgttgtatga cgctcttgat 480 gttgttttat acatggaccc aatgtgcctg gatgcgttcc caaaattagt ttgttttaaa 540 aaacgtattg aagctatccc acaaattgat aagtacttga aatccagcaa gtatatagca 600 tggcctttgc agggctggca agccacgttt ggtggtggcg accatcctcc aaaatcggat 660 ctggaagttc tgttccaggg gcccctggga tccccggaat tcccgggtcg actcgagcgg 720 ccgcatcgtg actga 735

<220>

<210> 29

<211> 687

<212> DNA

<213> Artificial Sequence

<223> Description of Artificial Sequence: Synthetic
GST coding sequence derived from pGEX6p-1

<220> <221> CDS <222> (1)(6	687)				
<400> 29 atg tcc cct a Met Ser Pro 1					
act cga ctt o Thr Arg Leu I					
tat gag cgc g Tyr Glu Arg A 35					
ggt ttg gag t Gly Leu Glu F 50	Phe Pro Asn				
tta aca cag t Leu Thr Gln S 65					
atg ttg ggt g Met Leu Gly G					
gga gcg gtt t Gly Ala Val I 1					
aaa gac ttt g Lys Asp Phe 0 115					
atg ctg aaa a Met Leu Lys M 130	Met Phe Glu			Thr Tyr Let	
ggt gat cat g Gly Asp His V 145					
gtt gtt tta t Val Val Leu T					: Leu
gtt tgt ttt a Val Cys Phe I 1	aaa aaa cgt a Lys Lys Arg : 180	att gaa gct Ile Glu Ala 185	atc cca caa Ile Pro Gln	att gat aag Ile Asp Lys 190	tac 576 Tyr
ttg aaa tcc a Leu Lys Ser S 195	agc aag tat a Ser Lys Tyr I	ata gca tgg Ile Ala Trp 200	cct ttg cag Pro Leu Gln	ggc tgg caa Gly Trp Glr 205	gcc 624 Ala

672

acg ttt ggt ggt ggc gac cat cct cca aaa tcg gat ctg gaa gtt ctg

Thr Phe Gly Gly Asp His Pro Pro Lys Ser Asp Leu Glu Val Leu 215 220 687 ttc cag ggg ccc ctg Phe Gln Gly Pro Leu 225 <210> 30 <211> 229 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic GST coding sequence derived from pGEX6p-1 <400> 30 Met Ser Pro Ile Leu Gly Tyr Trp Lys Ile Lys Gly Leu Val Gln Pro Thr Arg Leu Leu Glu Tyr Leu Glu Glu Lys Tyr Glu Glu His Leu Tyr Glu Arg Asp Glu Gly Asp Lys Trp Arg Asn Lys Lys Phe Glu Leu 35 40 45 Gly Leu Glu Phe Pro Asn Leu Pro Tyr Tyr Ile Asp Gly Asp Val Lys 50 55 60 Leu Thr Gln Ser Met Ala Ile Ile Arg Tyr Ile Ala Asp Lys His Asn 70 Met Leu Gly Gly Cys Pro Lys Glu Arg Ala Glu Ile Ser Met Leu Glu Gly Ala Val Leu Asp Ile Arg Tyr Gly Val Ser Arg Ile Ala Tyr Ser Lys Asp Phe Glu Thr Leu Lys Val Asp Phe Leu Ser Lys Leu Pro Glu 115 120 125 Met Leu Lys Met Phe Glu Asp Arg Leu Cys His Lys Thr Tyr Leu Asn Gly Asp His Val Thr His Pro Asp Phe Met Leu Tyr Asp Ala Leu Asp

155

```
Val Val Leu Tyr Met Asp Pro Met Cys Leu Asp Ala Phe Pro Lys Leu
                                     170
Val Cys Phe Lys Lys Arg Ile Glu Ala Ile Pro Gln Ile Asp Lys Tyr
                                 185
Leu Lys Ser Ser Lys Tyr Ile Ala Trp Pro Leu Gln Gly Trp Gln Ala
Thr Phe Gly Gly Asp His Pro Pro Lys Ser Asp Leu Glu Val Leu
                        215
                                            220
Phe Gln Gly Pro Leu
<210> 31
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      protease cleavage site
<220>
<221> CDS
<222> (1)..(24)
<400> 31
ctg gaa gtt ctg ttc cag ggg ccc
                                                                       24
Leu Glu Val Leu Phe Gln Gly Pro
<210> 32
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      protease cleavage site
<400> 32
Leu Glu Val Leu Phe Gln Gly Pro
                5
<210> 33
<211> 32
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: Synthetic
      nucleotide sequence that contains a Kozak signal,
      start codon and NcoI-KpnI-XbaI-PstI linker
<400> 33
gatgcggtac caccatggtg tctagactgc ag
                                                                        32
<210> 34
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      nucleotide sequence that contains an
      AvrII-ApaI-SbfI linker
<400> 34
tgcctagggc cctgcagggt a
                                                                        21
<210> 35
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      nucleotide sequence that contains an
      SpeI-EcoRI-NsiI-NheI linker and stop codon
actagtgaat tcatgcattg agctagccat c
                                                                        31
<210> 36
<211> 13
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      double stranded oligonucleotide linker
<220>
<221> modified_base
<222> (5)
<223> a, g, c, t, unknown or other
<220>
<221> modified_base
<222> (6)..(8)
<223> a, g, c, t, unknown or other and see
      specification for further embodiments
```

```
<220>
<221> modified_base
<222> (9)
<223> a, g, c, t, unknown or other
<400> 36
                                                                        13
ctagnnnnnt gca
<210> 37
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      nucleotide sequence that contains HindIII-BamHI
      sites
<400> 37
aagcttggaa ccggatcc
                                                                        18
<210> 38
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      nucleotide sequence that contains BamHI and EcoRI
      restriction sites
<400> 38
ggatcctctt cagaattc
                                                                        18
<210> 39
<211> 39
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      nucleotide sequence that contains c-myc epitope
      tag, stop codon and NheI restriction site
<400> 39
gagcagaaac tcatctctga agaggatctg tgagctagc
                                                                        39
<210> 40
<211> 9
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: Synthetic
      double stranded oligonucleotide linker
<220>
<221> modified_base
<222> (6)..(8)
<223> a, c, g, t, unknown or other and see
      specification for further embodiments
<400> 40
agcttnnng
<210> 41
<211> 9
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      double stranded oligonucleotide linker
<220>
<221> modified base
<222> (6)..(8)
<223> a, c, g, t, unknown or other and see
      specification for further embodiments
<400> 41
aattcnnna
                                                                       9
```