

REPLACED BY
EFT 24.11.07

Patent claims

1. A method for authenticating a smart card (*SIM*) in a messaging network, preferably a GSM network, wherein an algorithm and a secret key are stored in a smart card (*SIM*), whereby for authentication
 - the network or a network component first transfers a random number (*RAND*) to the smart card,
 - a response signal (*SRES*) is generated therefrom in the smart card by means of the algorithm and the secret key (K_i) and transmitted to the network or network component,
characterized in that
 - to form an authentication parameter the secret key (K_i) and the random number (*RAND*) are each split into at least two parts ($K_1, K_2; RAND_1, RAND_2$),
 - one of the parts ($RAND_1, RAND_2$) of the transferred random number (*RAND*) is encrypted with the aid of one or more parts (K_1, K_2) of the secret key (K_i) by means of a one- or multistep, preferably symmetrical algorithm, and
 - a given number of bits is selected from the encryption result and transferred as a signal response (*SRES*) to the network.
2. A method according to claim 1, characterized in that the secret key (K_i) and/or the random number (*RAND*) are split into two parts.
3. A method according to claim 1 or 2, characterized in that a part of the transferred random number (*RAND*) and one and/or more parts of the secret key (K_i) are used to calculate a channel coding key (K_c) by means of a one- or multistep algorithm, at least one part of the calculation result being used as the channel coding key (K_c).
4. A method according to any of claims 1 to 3, characterized in that the key (K_i) and the random number (*RAND*) are split into two equally long parts ($K_1, K_2/ RAND_1, RAND_2$).

5. A method according to any of claims 1 to 4, characterized in that DES algorithms are used to calculate the authentication parameters ($SRES, SRES'$) and/or the channel coding key (K_c).
6. A method according to any of claims 1 to 4, characterized in that the, preferably one-step, IDEA algorithm is used to calculate the authentication parameters ($SRES, SRES'$) and/or the channel coding key (K_c).
7. A method according to any of claims 1 to 4, characterized in that a compression algorithm whose output value has a smaller length than the input parameter is used to calculate the authentication parameters ($SRES, SRES'$) and/or the channel coding key (K_c).
8. A method according to any of claims 1 to 7, characterized in that the calculation is effected in an at least two-step algorithm.
9. A method according to any of claims 1 to 8, characterized in that a triple DES algorithm is used as an encryption algorithm, whereby one first encrypts with the first part (K_1) of the key (K_i), then decrypts with the second part (K_2) of the key (K_i) and thereupon encrypts again with the first part (K_1) or a third part of the key (K_i).
10. A method according to any of claims 1 to 9, characterized in that a selection of the first or second part of the random number ($RAND$) is effected in the same way in the card and the network in random or pseudorandom alternation.