

Al5090/EE5817: Probability and Stochastic Processes

QUIZ 01

DATE: 12 AUGUST 2025

Question	1	2	Total
Marks Scored			

You may use any result covered in class without proof. Do not use any result from the homework unless suggested as a hint.

- 1. Suppose sets A and B are equicardinal.
 - (a) (1 Mark)

Prove or give a counterexample: every injective function from A to B must also be surjective.

(b) (1 Mark)

Prove or give a counterexample: every surjective function from A to B must also be injective.

Solutions:

(a) Let $A=\mathbb{N}=B.$ Consider the function $g:A\to B$ defined as

$$g(n) = 2n, \qquad n \in \mathbb{N}.$$

Clearly, g is injective. Indeed,

$$g(m) = g(n) \implies 2m = 2n \implies m = n.$$

However, g is clearly not surjective, for the odd natural numbers do not have a pre-image under g.

(b) Let $A=\mathbb{R}$ and $B=\mathbb{R}_+=[0,\,+\infty)$. Clearly, |A|=|B|. Consider the function $g:A\to B$ defined as

$$g(x) = x^2, \qquad x \in \mathbb{R}.$$

Clearly, g is surjective, as for any $y \in \mathbb{R}^+$,

$$g^{-1}(y) = \{x \in \mathbb{R} : x^2 = x\} = \{-\sqrt{y}, +\sqrt{y}\}\$$

is non-empty. However, g is not injective, as $g(-\sqrt{y}) = y = g(+\sqrt{y})$ for any $y \in \mathbb{R}_+$.

- 2. For each $k \in \mathbb{N}$, let $\mathscr{C}_k \subset \{0,1\}^{\mathbb{N}}$ denote the set of all infinite binary strings containing **exactly** k ones in them. Furthermore, let $\mathscr{C} \subset \{0,1\}^{\mathbb{N}}$ denote the set of all infinite binary strings containing **finitely** many ones in them.
 - (a) (2 Marks)

Show that \mathscr{C}_k is countably infinite for every $k \in \mathbb{N}$. You may use the fact that $\mathbb{N}^k \coloneqq \mathbb{N} \underbrace{\times \cdots \times}_{k \text{ times}} \mathbb{N}$ is countably infinite for every $k \in \mathbb{N}$.

(b) (1 Mark)

Express $\mathscr C$ in terms of $\mathscr C_1,\mathscr C_2,\ldots$, and argue that $\mathscr C$ is countably infinite.

Solutions:

(a) Fix an arbitrary $k \in \mathbb{N}$. On the one hand, consider the mapping $f_k : \mathscr{C}_k \to \mathbb{N}^k$ given by

$$f_k(\mathbf{b}) = (n \in \mathbb{N} : b_n = 1), \quad \mathbf{b} \in \mathscr{C}_k.$$

We claim that f_k is injective. Indeed,

$$f_k(\mathbf{b}) = f_k(\mathbf{b}') \implies (n \in \mathbb{N} : b_n = 1) = (n \in \mathbb{N} : b_n' = 1) \implies \mathbf{b} = \mathbf{b}'.$$

This proves that $|\mathscr{C}_k| \leq |\mathbb{N}^k| = \aleph_0$.

On the other hand, consider the mapping $g_k: \mathbb{N}^k \to \mathscr{C}_k$ given by

$$g_k: (n_1,\ldots,n_k) \mapsto \underbrace{1\cdots 1}_{n_1} \underbrace{0} \underbrace{1\cdots 1}_{n_2} \underbrace{0} \cdots \underbrace{1\cdots 1}_{n_k} \overline{0}, \qquad (n_1,\ldots,n_k) \in \mathbb{N}^k.$$

Then, we claim that g_k is injective. Indeed,

$$g(n_1, \dots, n_k) = g(n'_1, \dots, n'_k) \implies \underbrace{1 \dots 1}_{n_1} \underbrace{0} \underbrace{1 \dots 1}_{n_2} \underbrace{0} \dots \underbrace{1 \dots 1}_{n_k} \overline{0} = \underbrace{1 \dots 1}_{n'_1} \underbrace{0} \underbrace{1 \dots 1}_{n'_2} \underbrace{0} \dots \underbrace{1 \dots 1}_{n'_k} \overline{0}$$
$$\implies (n_1, \dots, n_k) = (n'_1, \dots, n'_k).$$

This proves that $|\mathbb{N}^k| = \aleph_0 \leq |\mathscr{C}_k|$.

Combining the above arguments, we see that $|\mathscr{C}_k| = \aleph_0$, thus proving that \mathscr{C}_k is countably infinite.

3. We note that

$$\mathscr{C} = \bigcup_{k \in \mathbb{N}} \mathscr{C}_k.$$

Using the result in part (a) and the fact that countable union of countable sets is countable, we deduce that $\mathscr C$ is countable.