

NATIONAL OPEN UNIVERSITY OF NIGERIA PLOT 91 CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESS WAY, JABI - ABUJA.

FACULTY OF SCIENCE

OCTOBER/ NOVEMBER, 2016 2016 EXAMINATION

COURSE CODE: CHM 406

COURSE TITLE: Nuclear Chemistry

CREDIT UNIT: 2

TIME: 2 Hours

INSTRUCTION: Answer any Four Questions

- 1a) What do you understand by the term "Radioactivity". (4 marks)
- 1b Differentiate between natural radioactivity and artificial radioactivity. $(5^{1}/_{2} \text{ marks})$.
- 1c) In a tabular form distinguish between chemical reactions and nuclear reactions.

(8 marks).

- 2a) Outline the three rules that guide the prediction of nuclear stability. $(6^{1}/_{2} \text{ marks}).$
- **(bi)** Mention any four general principles by which the health aspects of radiation control are satisfied. (6 marks)
- (ii) Write short notes on the two types of exposure to large dose radiation. (5 marks)

3b) Explain how the nuclei with higher neutron: protons than those within the stability belt can attain stability. $(13 ^1/_2 \text{marks})$.				
4a) Identify the symbol X in each of the following				
i)	$^{0}_{-1}X = ?$ ((ii) ${}^{4}_{2}X = ?$	(iii) $^{0}_{+1} X = ?$	(iv) $^{1}_{0}$ X =?
				(8 marks)
b) List and write short notes on the basic principles recommended for keeping radiations exposure to a minimum level $(3^{1}/_{2} \text{ marks})$				
c) Discuss the contral/ protection of radiation measures in large organization (6 marks)				
5. Explain briefly the following:				
i.	Chain re	eaction		$(3^{1}/_{2} \text{ marks})$
ii.	Nuclear	Fission		$(6^1/_2 \text{ marks})$
iii				$(3^{1}/_{2} \text{ marks})$
iv	. Nuclear	Fusion Reactor		(4 marks)
6a) List the subatomic particles that could be emitted during nuclear reactions. How is each of these particles formed ? $(8^{1}/_{2} \text{ marks})$				
6b) (mark	ow is each of these particles formed ? $ (8^1/_2 \text{ marks}) $ Or Give the properties of the sub-atomic particles mentioned in (6a) above (6 arks)			
6c) Mention three applications of radioactivity. (3 marks)				

3a) Comment on neutron-proton ratio and nuclear stability.

(4 marks)