Fiche de synthèse : Le Produit Scalaire

Benjamin L'Huillier

1 Rappels

1.1 Repère orthonormé

Definition 1.1: Repère

Un **repère** $(O; (\overrightarrow{\imath}, \overrightarrow{\jmath}))$ dans un plan est un système de référence défini par :

- Un point appelé **origine** O.
- Deux vecteurs **non colinéaires** \overrightarrow{i} et \overrightarrow{j} , définissant la direction des axes.

Tout point du plan peut être repéré par ses coordonnées (x,y) dans ce repère.

Definition 1.2: Repère orthonormé

Un repère orthonormé est un repère particulier où :

- Les vecteurs \overrightarrow{i} et \overrightarrow{j} sont **orthogonaux**.
- La norme de chaque vecteur est égale à 1 :

$$\|\overrightarrow{\imath}\| = \|\overrightarrow{\jmath}\| = 1.$$

Un repère orthonormé permet d'exprimer les coordonnées d'un vecteur avec des calculs simplifiés.

2 Produit Scalaire

Definition 2.1: Définition géométrique

Soient trois points A,B,C dans le plan, avec \overrightarrow{AB} et \overrightarrow{AC} des vecteurs non nuls. Le produit scalaire $\overrightarrow{AB} \cdot \overrightarrow{AC}$ est défini par :

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \begin{cases} AH \times AB & \text{si } H \in [AB] \\ -AH \times AB & \text{sinon.} \end{cases}$$

où H est le projeté orthogonal de C sur la droite (AB).

Definition 2.2: Définition trigonométrique

Soit $(\overrightarrow{u}, \overrightarrow{v})$ deux vecteurs non nuls formant un angle θ alors :

$$\overrightarrow{u}\cdot\overrightarrow{v}=\|\overrightarrow{u}\|\times\|\overrightarrow{v}\|\times\cos(\theta)$$

(a) Projection orthogonale de C sur (AB), cas d'un (b) Projection orthogonale de C sur (AB), cas d'un angle aigu.

Figure 1: Cas du produit scalaire selon l'angle formé par \overrightarrow{AB} et \overrightarrow{AC} .

Remarque 2.1

Cette définition englobe les deux définitions de : pour les angles obtus, le cosinus est négatif.

Definition 2.3: Définition analytique

Si $\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ dans un repère orthonormé $(O, \overrightarrow{v}, \overrightarrow{\jmath})$, alors :

$$\overrightarrow{u} \cdot \overrightarrow{v} = xx' + yy'$$

2.1 Norme

Definition 2.4: Norme d'un vecteur

Soient A et B deux points du plan. La norme du vecteur \overrightarrow{AB} est définie par :

$$\left\|\overrightarrow{AB}\right\| = AB$$

De manière générale, la norme d'un vecteur $\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$ est donnée par :

$$\|\overrightarrow{u}\| = \sqrt{\overrightarrow{u} \cdot \overrightarrow{u}} = \sqrt{x^2 + y^2}$$

Propriété 2.1: Propriétés du produit scalaire

- $\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{v} \cdot \overrightarrow{u}$ (commutativité).
- $\overrightarrow{u} \cdot (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w}$ (linéarité).
- $\overrightarrow{u} \cdot \overrightarrow{v} = 0$ si et seulement si \overrightarrow{u} et \overrightarrow{v} sont orthogonaux.

2.2 Formules liées au produit scalaire

Propriété 2.2: Formules des carrés

$$\overrightarrow{u} \cdot \overrightarrow{v} = \frac{1}{2} \Big(\|\overrightarrow{u}\|^2 + \|\overrightarrow{v}\|^2 - \|\overrightarrow{u} + \overrightarrow{v}\|^2 \Big)$$

$$\overrightarrow{u}\cdot\overrightarrow{v} = \frac{1}{2}\Big(\|\overrightarrow{u}\|^2 + \|\overrightarrow{v}\|^2 - \|\overrightarrow{u} - \overrightarrow{v}\|^2\Big)$$

Propriété 2.3: Lien avec les coordonnées

En coordonnées, on retrouve ces relations sous la forme :

$$\|\overrightarrow{u} + \overrightarrow{v}\|^2 = \|\overrightarrow{u}\|^2 + \|\overrightarrow{v}\|^2 + 2\overrightarrow{u} \cdot \overrightarrow{v}$$

$$\|\overrightarrow{u} - \overrightarrow{v}\|^2 = \|\overrightarrow{u}\|^2 + \|\overrightarrow{v}\|^2 - 2\overrightarrow{u} \cdot \overrightarrow{v}$$