Nombre del Alumno:

Grupo:

NIU:

Normas:

Para la realización del examen **no** se permite la utilización de apuntes, libros, apuntes y otro material de consulta.

Es necesario presentar el carnet de la universidad o alguna identificación oficial (DNI, pasaporte)

Se podrá utilizar calculadora pero **no podrá ser en ningún caso programable**. La utilización de una calculadora programada será motivo de expulsión del examen teniendo un cero en esta convocatoria. NO SE PERMITEN OTROS DISPOSITIVOS ELECTRONICOS.

El examen se puntúa sobre 5 puntos en convocatoria ordinaria siendo los otros 5 puntos los conseguidos en evaluación continua. Es necesario sacar al menos un 3,5/10 en este examen para poder aprobar la asignatura. Siguiendo las normas de la universidad que se pueden consultar en Campus Global bajo el encabezado "Exámenes" dentro de Docencia e Investigación > Actividad Académica > Exámenes > Normativa relacionada:

http://www.uc3m.es/portal/page/portal/organizacion/secret_general/normativa/estudiantes/estudios_grado/normativa-evaluacion-continua-31-05-11_FINALx.pdf

Se entregará el enunciado y las hojas con los problemas (además de las hojas de sucio que hayan utilizado marcando en las mismas (borrador) y el examen se cumplimentara en bolígrafo.

El examen tendrá una duración de 2:30 horas.

(No pase de esta hoja hasta que se lo indiquen)

Cuestión teórica 1: (1.5 punto).

Se tiene una fuente de intensidad de corriente que proporciona 1 A con una resistencia interna r. Si se conecta dicha fuente al circuito de la figura entre los puntos a y b como se muestra. ¿Cuánto vale dicha resistencia interna?

Solución:

Dado que entre los puntos a y b circula una intensidad de 1 A, se puede conocer la resistencia interna de la fuente por medio

de la Ley e Ohm si se conoce la caída de tensión entre a y b. Para conocer dicha caída de tensión resolvemos el circuito por medio de la aplicación de las Leyes de Kirchhoff-Maxwell.

Tomando en sentido horario las corrientes de cada malla, se obtienen las ecuaciones I_2 - I_1 =1 y I_1 + I_2 =-15. Esto lleva a unas corrientes iguales a I_1 =-8 A, I_2 =-7 A.

Conocidas las corrientes y habiendo definido la tierra en el punto a, la tensión en el punto b se obtiene a partir de a como Vb=Va+5- $|I_2|$ ·1=0+5-7=-2 V.

Esto quiere decir que Vab=0-(-2)=2 V, por lo que la resistencia interna de la fuente de intensidad de corriente es $R_{int}=V_{ab}/I_{ab}=2V/1$ A= 2 Ω .

Cuestión teórica 2: (1.5 puntos).

Se tiene una fuente de voltaje de corriente continua de 10~V~y~se conecta en serie a una bobina de 10~mH~y~a una resistencia de $10~\Omega.$ Si colocamos un interruptor inicialmente abierto tras la fuente y un lector de corriente y de voltaje, determinar:

- a) La intensidad que recorre el circuito cuando el interruptor se cierra en t=0 s y la intensidad máxima que recorre el circuito. (0.5 puntos)
- b) ¿Cuál es la constante temporal del circuito y su significado físico? (0.25 puntos)
- c) ¿Cuánto tiempo (aproximadamente) tiene que pasar para que se alcance el equilibrio?
 ¿Cómo se comportarán resistencia y bobina cuando se ha alcanzado el equilibrio?
 (0.5 puntos)
- d) ¿Cuál es la caída de potencial en la resistencia en el instante de cierre? (0.25 puntos)

Solución

- a) En el Instante Inicial la I=0, La intensidad Maxima se producirá en el momento estacionario =V/R= 1A
- b) τ =L/R=0.01/10=1 ms en 4-5 τ se tarda en llegar al equilibrio. Es el tiempo en que la intensidad aumenta 1/e

- c) En aproximadamente 5 ms se puede decir que ha alcanzado el equilibrio y la bobina se comportará como un hilo conductor y la resistencia disipará energía haciendo caer toda la tensión de la pila.
- d) En el instante de cierre no circula corriente por el circuito, por lo que la resistencia no provoca caída de tensión.

Problema 1: (2 puntos).

Sea el circuito de la figura cuyo plano es perpendicular a un campo magnético de inducción magnética \vec{B} . Una fuerza externa mueve el contacto deslizante CD de longitud L según la expresión $x(t)=a+b \ sen(\omega t)$ siendo a>>b. Determínese:

a) La f.e.m. inducida en el circuito y la intensidad de la corriente que lo recorrerá si la resistencia del contacto deslizante es R y la resistencia del resto de elementos es despreciable. Indíquese el sentido de la corriente en el instante en el que $\omega t = \pi \,. \ (1.5 \ \text{puntos})$

b) La potencia eléctrica media disipada en el circuito. (0.5 puntos)

Solucion

a)El flujo magnético que atraviesa el circuito será

$$\phi = \vec{B} \cdot \vec{S} = BLx(t) = BL[a + b \ sen(\omega t)]$$
 Wb

Luego la fem inducida vendrá dada por

$$\varepsilon = -\frac{d\phi}{dt} = -BL\omega b \cos(\omega t)$$
 V (0,5 puntos)

Siendo la amplitud de la fem

$$\varepsilon_{o} = BL\omega b \vee$$

Podemos obtener la intensidad de la corriente que circula por el circuito mediante la ley de Ohm

$$I = \frac{\varepsilon}{R} = -\frac{BL\omega b}{R} \cos(\omega t) \Rightarrow I = -I_o \cos(\omega t)$$
 (0,5 puntos)

Donde la amplitud de la intensidad de corriente valdrá

$$I_o = \frac{BL\omega b}{R}$$
 A

Para el instante de tiempo $\omega t = \pi$ ha vuelto a su posición inicial (esta volviendo y por tanto disminuyendo la superficie) la fem y la intensidad de la corriente vendrán dadas por, respectivamente,

$$I = I_0 A$$
 y ϵ =BL ω b V

Como para ese instante de tiempo $\varepsilon>0$ podemos afirmar que el sentido de la corriente será horario, ya que el campo magnético inducido que crea la corriente en el circuito tiende a reforzar al campo magnético inductor.

(0,5 puntos)

b)La potencia media disipada será la potencia activa, ya que el circuito se puede modelizar como un generador de alterna con una fem, igual a la anteriormente calculada, en serie con una resistencia óhmica, estando la fem en fase con la intensidad. Luego potencia pedida será

$$P = \frac{1}{2} \varepsilon_o I_o = \frac{(BLb\omega)^2}{2R} W$$

(0,5 puntos)

Problema 2: (2 puntos).

En el circuito de la figura la fuente de tensión proporciona una tensión alterna de frecuencia ω =0.5·10⁶ rad/s de valor máximo 10 V y fase inicial 45°. Si los valores de cada componente son R1=1 Ω , R2= 10 Ω , C1=10 μ F y L1=0.1 mH, determinar:

- a) La impedancia de cada una de las ramas. (0.5 puntos)
- b) La impedancia total del circuito. (0.5 puntos)
- c) La corriente que circula por la fuente. (0.5 puntos)
- d) La potencia activa y la potencia reactiva. (0.5 puntos)

Solución:

a)
$$Z_{C1} = \frac{-j}{\omega C} = -0.2j \Omega$$
 $Z_{L1} = j\omega L = 50j\Omega$

$$Z_{RC1} = 1 - 0.2j \, \Omega = 1.02 < -11.31^{\circ} \, \Omega \qquad Z_{RL1} = 10 + 50j \, \Omega = 51 < 78.7^{\circ} \, \Omega$$

a)
$$Z_{TOT} = \frac{Z_{RC1} \cdot Z_{RL1}}{Z_{RC1} + Z_{RL1}} = \frac{1.02 < -11.31^{\circ} \, \Omega \cdot 51 < 78.7^{\circ} \, \Omega}{1 - 0.2 \, j \, \Omega + 10 + 50 \, j \, \Omega} = \frac{52.02 < 67.4^{\circ} \, \Omega \cdot \Omega}{11 + 49.8 \, j \Omega} = \frac{52.02 < 67.4^{\circ} \, \Omega \cdot \Omega}{51 < +77.5^{\circ} \Omega} = 1.02 < -10^{\circ} \Omega$$

b)
$$i = \frac{\varepsilon}{Z} = \frac{10 < 45^{\circ} \text{ V}}{1.02 < -10^{\circ} \Omega} = 9.8 < 55^{\circ} \text{ A}$$

c)
$$P_{act} = \epsilon_0 i_0 cos(\phi i - \phi \epsilon) = 10 \text{ V} \cdot 9.8 \text{ A} \cdot cos(55^\circ - 45^\circ) = 96.51 \text{ W}$$

 $P_{react} = \epsilon_0 i_{0sin}(\phi i - \phi \epsilon) = 10 \text{ V} \cdot 9.8 \text{ A} \cdot sin55^\circ - 45^\circ) = 17.01 \text{ W}$

Problema 3: (3 puntos).

En el circuito de la figura:

- a) Calcular el equivalente Thévenin visto desde los terminales A y B que ya han sido aislados del resto del circuito. (2 puntos)
- b) Calcular el equivalente Norton desde los mismos terminales. (0.5 puntos)
- c) Calcular la intensidad que circula por la fuente V2. (0.5 puntos)

SOLUCIÓN:

 a) Calculamos en primer lugar la resistencia equivalente de Thevenin. Para ello calculamos la resistencia equivalente entre

los terminales A y B apagando las fuentes. Al haber solamente fuentes de tensión, se sustituyen por cortocircuitos:

Definimos un nuevo punto C para simplificar este circuito. Como se ve en la imagen las resistencias R1, R2 y R3 están en paralelo con el cortocircuito formado por el cable que va de A a C (tienen la misma ddp que el cable del cortocircuito), por lo que se pueden eliminar, quedando el nuevo circuito equivalente:

La resistencia equivalente a este último circuito será el paralelo de R3 y R4:

$$\frac{1}{R_{Th}} = \frac{1}{R_3} + \frac{1}{R_4} = \frac{1}{6} + \frac{1}{3} = \frac{1}{2}$$

$$R_{Th} = 2 \Omega$$

Una vez calculada la resistencia del equivalente Thevenin, calculamos el valor de la fuente, que

será la diferencia de potencial entre los puntos A y B. Para calcular dicha diferencia de potencial, debemos resolver el circuito utilizando las reglas de Kirchhoff:

Buscamos las ecuaciones de cada malla con el método de Maxwell

Malla 1:

$$4I_1 - 16 + 1 \cdot (I_1 - I_2) = 0$$
$$5I_1 - I_2 = 16$$

Malla 2:

$$(I_2 - I_1) + 3 \cdot I_2 + 26 = 0$$

 $4I_2 - I_1 = -26$

Malla 3:

$$-26 + 3 \cdot I_3 - 19 + 6 \cdot I_3 = 0$$
$$9 \cdot I_3 = 45$$

$$I_3 = 5 A$$

Resolviendo el sistema formado por las ecuaciones de las mallas 1 y 2:

$$5I_{1} - I_{2} = 16$$

$$4I_{2} - I_{1} = -26$$

$$I_{1} = 4I_{2} + 26$$

$$5(4I_{2} + 26) - I_{2} = 16$$

$$19I_{2} = -114$$

$$I_{2} = -6A$$

$$I_1 = 2 A$$

La solución al circuito será pues:

La caída de tensión entre el punto A y el punto B será:

$$V_{AB} = R_1 \cdot I_1 - 16 + R_5 \cdot I_2 - R_4 \cdot I_3 = 4 \cdot 2 - 16 + 3 \cdot (-6) + 5 \cdot 3$$

$$V_{AB} = V_{Th} = -11 V$$

Con lo cual ya tenemos el equivalente Thevenin:

b) Una vez calculado el equivalente Thevenin, calculamos el Norton utilizando la ley de Ohm:

$$I_N = \frac{V_{Th}}{R_{Th}} = \frac{11}{2} = 5.5 A$$

c) Por último la intensidad que sale de la fuente V2 es el balance de $\rm I_2$ e $\rm I_3$:

$$I_{V2} = I_3 - I_2 = 5 - (-6) = 11 A$$