Evolutionary paleoecology and the biology of extinction

Peter D Smits

Committee on Evolutionary Biology, University of Chicago

January 5, 2014

Introduction and theory

Brachiopods, environmental preference, and extinction

Ecology and survival in Cenozoic mammals

Community connectedness in Cenozoic mammals

Introduction and theory

Brachiopods, environmental preference, and extinction

Ecology and survival in Cenozoic mammals

Community connectedness in Cenozoic mammals

Framework

Questions

- Why do certain taxa go extinct while others do not?
- ▶ How is emergence "formed?" When should it be invoked?
- Is extinction risk taxon-age independent?
- When should we expect global, regional, or local processes to dominate?

Evolutionary paleoecology

... the consequences of distinct ecological factors on differential rate dynamics, particularly rates of faunal turnover and diversification.

(Kitchell 1985 Paleobiology)

environmental interactions \rightarrow macroevolution

Emergent properties

(Grantham 1995 Ann. Rev. Ecol. Syst.)

Species level

Trait that cannot be reduced to organismal level

Product of one or more traits/factors

Range size

(Jablonski 1987 Science)

Probability of survival

Theoretical S(t):

$\hat{S}(t)$ in practice:

(Kleinbaum and Klein 2012)

Survival function

$$S(t) = P(T > t)$$

- ightharpoonup T: survival time (≥ 0)
- t: specified time

Instantaneous potential of failure (extinction)

Hazard function \equiv conditional failure rate

$$h(t) = \lim_{\Delta t \to 0} \frac{P(t \le T < t + \Delta t | T \ge t)}{\Delta t}$$

Van Valen's observation of survival

Law of Constant Extinction

Definition

Extinction risk in a given adaptive zone is taxon-age independent.

(Van Valen 1973 Evol. Theory)

translation: hazard is constant with respect to time (exponential survival)

$$h(t) = \lambda \iff S(t) = \exp^{-\lambda t}$$

Brachiopods and mammals: a comparison

brachiopods

- ► Permian (~ 47 My)
- marine
- Australasia
- global warming
- sessile

mammals

- ► Cenozoic (~ 65 My)
- terrestrial
- North America, Europe,
 South America
- global cooling
- motile

Series of related questions

- generic level survival in brachiopods
 - ecological traits re. environmental pref. (emergence)
 - survival distribution
- specific level survival in mammals
 - ecological traits re. range size (emergence)
 - generic versus specific survival
 - anagenesis/species:genus simulation
 - survival distribution
- community connectedness in mammals
 - global versus regional versus local scale processes
 - ecological traits (trophic/locomotion)

Introduction and theory

Brachiopods, environmental preference, and extinction

Ecology and survival in Cenozoic mammals

Community connectedness in Cenozoic mammals

Traits relating to environment and range size

- substrate affinity
 - physical, chemical
 - availability
- habitat preference
 - energetics
 - availability
- affixing strategy
 - energetics
 - optimality

Substrate affinity

(Foote 2006 Paleobio.)

- carbonates, clastics, mixed
- lithology/deposition environment
- Pharenozoic decrease in carbonates:clastics

Habitat preference

- on-shore, off-shore, none
- sea-level and energetics
- Pharenozoic decrease in on-shore:off-shore

Affixing strategy

- pedunculate, reclining, cementing
- pedunculate:on-shore, reclining:off-shore
- environmental energetics

Assigning substrate and habitat

Probability of assignment

$$P(H_1|E) = \frac{P(E|H_1)P(H_1)}{P(E|H_1)P(H_1) + P(E|H_2)P(H_2)}$$

$$P(E|H) = \binom{n}{k} p^k (1-p)^{n-k}$$

- ▶ n: total # of occ
- ▶ k: # (e.g.) carbonate occ

(Simpson and Harnik 2009 Paleobiology)

Models

Preliminary results

Introduction and theory

Brachiopods, environmental preference, and extinction

Ecology and survival in Cenozoic mammals

Community connectedness in Cenozoic mammals

Ecological traits

- dietary category
 - energetics
 - availability
- locomotor category
 - availability
 - dispersal
- body size
 - energetics
 - ▶ home range size

Predictions: dietary category

- trophic hierarchy (stability → duration)
 - herb: most stable, longest duration
 - carni: least stable, shortest duration
 - omni: avg. stability, avg. duration
- † diversification
 - \uparrow origination; \simeq extinction
 - ightharpoonup \simeq origination; \downarrow extinction

Predictions: locomotor category

- ightharpoonup Paleogene ightarrow Neogene
 - ▶ open → closed environment

Predictions: body size

- ↑ body size, ↑ energy req,↑ range size, ↓ extinction
- Europe
 - Irg body size: ↑ extinction
- North America
 - lacktriangle body size: \simeq extinction

Methodology

Biases to survival: a simulation study

- ▶ bias away from $h(t) = \lambda$
 - species:genus
 - anagenesis/cryptic speciation
- time-homogeneous birth-death model
 - common phylogenetic model
 - constant p, b
 - expected $S(t) = \exp^{-\lambda t}$
 - vary (cryptic) anagenesis

Introduction and theory

Brachiopods, environmental preference, and extinction

Ecology and survival in Cenozoic mammals

Community connectedness in Cenozoic mammals

Community connectedness

Definition

The degree to which localities are composed of endemic versus cosmopolitan taxa, and how similar this ratio is across localities.

Biogeographic networks

(Vilhena et al. 2013 Sci. Reports)

- taxa: species
- locality: 2x2 equal—area map projection grid
- 2 My intervals
- PBDB, NOW, museum collections, compilations

Average relative number of endemics

$$E = \frac{\sum_{i=1}^{L} \frac{u_i}{n_i}}{L}$$

- L: number of localities
- u: number of taxa unique to a locality
- n: number of taxa at a locality
- ▶ 0 ≤ *E* ≤ 1

Average relative occupancy per taxon

$$Occ = \frac{\sum_{i=1}^{N} \frac{l_i}{L}}{N}$$

- N: total number of taxa
- I: number of localities a taxon occurs at
- L: number of localities
- 0 ≤ Occ ≤ 1

Biogeographic connectedness

$$BC = \frac{O - N}{LN - N}$$

- O: number of occurrences
- N: total number of taxa
- L: number of localities
- ▶ $0 \le BC \le 1$

Code length

Global versus regional versus local scale processes

global

- corr w/ global climate
- multiple regions corr
- regional
 - ↓ E, ↑ Occ,
 ↑ BC, ↑ code
- local
 - ↑ E, ↓ Occ,
 ↓ BC, ↓ code
- not mutually exclusive

Expectations: locomotor category

(Strömberg et al. 2013 Nature Com.)

- arboreal
 - $ightharpoonup \uparrow E$, \uparrow code
 - **▶** ↓ *BC*, ↓ *Occ*
- ► ground dwelling
 - $ightharpoonup \downarrow E, \downarrow \text{code}$
 - ► ↑ *BC*, ↑ *Occ*
- scansorial
 - ▶ constant ∨ random

Expectations: dietary category

(Jernvall and Fortelius 2004 Am. Nat.)

- herbivore
 - most like all taxa
- carnivore
 - ▶ constant ∨ corr w/ herbivores
- omnivore
 - ▶ constant ∨ random

Community connectedness of North America

Community connectedness of Europe

Community connectedness of South America

Preliminary results

Questions

Questions

- Why do certain taxa go extinct while others do not?
- ▶ How is emergence "formed?" When should it be invoked?
- Is extinction risk taxon-age independent?
- When should we expect global, regional, or local processes to dominate?

Summary of proposed research

Studies

- Permian brachiopod trait based survival
- Cenozoic mammal trait based survival
- Cenozoic mammal community connectedness

Acknowledgements

Committee

- Kenneth D. Angielczyk (co-advisor)
- Michael J. Foote (co-advisor)
- P. David Polly
- Richard H. Ree

Discussion

- David Bapst, Megan Boatright, Ben Frable, Colin Kyle, Darcy Ross, Liz Sander
- John Alroy, Graeme Lloyd, Carl Simpson, Graham Slater

