# ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO

Aula 9

Cap. 2.2 – Autômato com pilha

Profa. Ariane Machado Lima ariane.machado@usp.br

### Cap 2.2 – Autômato com pilha (AP)

 Autômato finito com uma memória adicional (leitura e escrita DO TOPO da pilha)



• Lembram de B =  $\{0^n1^n \mid n >= 0\}$ ?

#### Cap 2.2 – Autômato com pilha (AP)

Determinísticos e não-determinísticos

- NÃO são equivalentes
  - Autômatos a pilha não determinísticos reconhecem mais linguagens
- Autômatos a pilha não-determinísticos são equivalentes a gramáticas livres de contexto

## Definição formal

#### DEFINIÇÃO 2.13

Um autômato com pilha é uma 6-upla  $(Q, \Sigma, \Gamma, \delta, q_0, F)$ , onde Q,  $\Sigma$ ,  $\Gamma$  e F são todos conjuntos finitos, e

- 1. Q é o conjunto de estados,
- 2.  $\Sigma$  é o alfabeto de entrada,
- 3.  $\Gamma$  é o alfabeto de pilha,
- 4.  $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon})$  é a função de transição,
- 5.  $q_0 \in Q$  é o estado inicial, e
- **6.**  $F \subseteq Q$  é o conjunto de estados de aceitação.

#### Exemplo

 $\{0^n 1^n | n \geq 0\}$ . Suponha que  $M_1$  seja  $(Q, \Sigma, \Gamma, \delta, q_1, F)$ 

#### Exemplo

 $\{0^n 1^n | n \geq 0\}$ . Suponha que  $M_1$  seja  $(Q, \Sigma, \Gamma, \delta, q_1, F)$ 

$$Q = \{q_1, q_2, q_3, q_4\},$$

$$\Sigma = \{0,1\},$$

$$\Gamma = \{0,\$\},$$

$$F = \{q_1, q_4\}, e$$

$$Q = \{q_1, q_2, q_3, q_4\},$$

$$Q = \{q_1, q_2, q_4\},$$

$$Q =$$

 $\delta$  é dada pela tabela abaixo, na qual entradas em branco significam  $\emptyset$ .

| Entrada:         | 0 |    |                                         | 1                                    |    |   | $\epsilon$ |                                  |                |
|------------------|---|----|-----------------------------------------|--------------------------------------|----|---|------------|----------------------------------|----------------|
| Pilha:           | 0 | \$ | ε                                       | 0                                    | \$ | ε | 0          | \$                               | ε              |
| $\overline{q_1}$ |   |    | *************************************** |                                      |    |   |            |                                  | $\{(q_2,\$)\}$ |
| $q_2$            |   |    | $\{(q_2,\mathtt{0})\}$                  | $\{(q_3,\boldsymbol{\varepsilon})\}$ |    |   |            |                                  |                |
| $q_3$            |   |    |                                         | $\{(q_3,\varepsilon)\}$              |    |   |            | $\{(q_4,oldsymbol{arepsilon})\}$ |                |
| $q_4$            |   |    |                                         |                                      |    |   |            |                                  |                |

## Computação com um AP

Um autômato com pilha  $M=(Q,\Sigma,\Gamma,\delta,q_0,F)$  computa da seguinte maneira. Ele aceita a entrada w se w puder ser escrita como  $w=w_1w_2\cdots w_m$ , onde cada  $w_i\in\Sigma_\varepsilon$ , e existem uma seqüência de estados  $r_0,r_1,\ldots,r_m\in Q$  e cadeias  $s_0,s_1,\ldots,s_m\in\Gamma^*$  que satisfazem as três condições a seguir. As cadeias  $s_i$  representam a seqüência de conteúdo da pilha que M tem no ramo de aceitação da computação.

- 1.  $r_0=q_0$  e  $s_0=\varepsilon$ . Essa condição significa que M inicia apropriadamente, no estado inicial e com uma pilha vazia.
- **2.** Para  $i=0,\ldots,m-1$ , temos  $(r_{i+1},b)\in \delta(r_i,w_{i+1},a)$ , onde  $s_i=at$  e  $s_{i+1}=bt$  para algum  $a,b\in \Gamma_{\varepsilon}$  e  $t\in \Gamma^*$ . Essa condição afirma que M se move apropriadamente, conforme o estado, a pilha e o próximo símbolo de entrada.
- 3.  $r_m \in F$ . Essa condição afirma que um estado de aceitação ocorre ao final da entrada.

EXEMPLO 2.16

$$\{a^ib^jc^k|\ i,j,k\geq 0\ e\ i=j\ {\rm ou}\ i=k\}$$

Empilho quando leio a's, e desempilho quando leio b's ou c's?

$$\{a^i b^j c^k | i, j, k \ge 0 \text{ e } i = j \text{ ou } i = k\}$$

Empilho quando leio a's, e desempilho quando leio b's ou c's?

Aqui não-determinismo é essencial!



#### **EXEMPLO 2.18**

Nesse exemplo, damos um AP  $M_3$  que reconhece a linguagem  $\{ww^{\mathcal{R}} | w \in \{0,1\}^*\}$ . Lembremo-nos de que  $w^{\mathcal{R}}$  significa w escrita de trás para a frente.

Nesse exemplo, damos um AP  $M_3$  que reconhece a linguagem  $\{ww^{\mathcal{R}}| w \in \{0,1\}^*\}$ . Lembremo-nos de que  $w^{\mathcal{R}}$  significa w escrita de trás para a frente. Segue a descrição informal do AP.

Comece empilhando os símbolos que são lidos. A cada ponto, adivinhe não-deterministicamente se o meio da cadeia foi atingido e, se tiver sido, passe a desempilhar um símbolo para cada símbolo lido, checando para garantir que eles sejam os mesmos. Se eles forem sempre os mesmos e a pilha esvaziar ao mesmo tempo em que a entrada terminar, aceite; caso contrário, rejeite.



### Equivalência entre APN e GLC

TEOREMA 2.20 -----

Uma linguagem é livre-do-contexto se e somente se algum autômato com pilha a reconhece.

Autômato com pilha NÃO DETERMINÍSTICO!!!

#### Equivalência entre APN e GLC

LEMA 2.21

Se uma linguagem é livre-do-contexto, então algum autômato com pilha a reconhece.

#### Ideia da prova:

Uma LLC é gerada por uma GLC

Mostrar como converter uma GLC em um APN equivalente

- Uma gramática aceita uma cadeia w se, começando pela variável inicial, chega-se a uma cadeia apenas de símbolos terminais (w) após uma sequência de derivações diretas (substituições de variáveis).
- Um autômato aceita uma cadeia w se, começando pelo estado inicial, chega-se ao estado final após uma sequência de mudança de estados (transições)
- Simular cada substituição por uma transição

- O APN começa empilhando a variável inicial na pilha (na transição do estado inicial para o estado intermediário)
- O estado intermediário possui transições para ele mesmo, em cada uma fazendo uma substituição (derivação) na cadeia que está na pilha
- O APN vai para o estado final quando não há mais substituições a serem feitas
- Ex:

 $S \rightarrow T$ 

 $T \rightarrow b$ 

- O APN começa empilhando a variável inicial na pilha (na transição do estado inicial para o estado intermediário)
- O estado intermediário possui transições para ele mesmo, em cada uma fazendo uma substituição (derivação) na cadeia que está na pilha
- O APN vai para o estado final quando não há mais substituições a serem feitas
- Ex2:

$$S \rightarrow T$$

$$T \rightarrow b \mid a$$

- O APN começa empilhando a variável inicial na pilha (na transição do estado inicial para o estado intermediário)
- O estado intermediário possui transições para ele mesmo, em cada uma fazendo uma substituição (derivação) na cadeia que está na pilha
- O APN vai para o estado final quando não há mais substituições a serem feitas
- Ex2:

$$S \rightarrow T$$

$$T \rightarrow b \mid a$$

- Problemas a serem resolvidos:
  - O que fazer quando há várias opções de substituição?

- Problema 1: O que fazer quando há várias opções de substituições?
  - Aproveitar o não determinismo

- O APN começa empilhando a variável inicial na pilha (na transição do estado inicial para o estado intermediário)
- O estado intermediário possui transições para ele mesmo, em cada uma fazendo uma substituição (derivação) na cadeia que está na pilha
- O APN vai para o estado final quando não há mais substituições a serem feitas
- Ex 3:

$$S o aTb \mid b$$
 $T o Ta \mid \varepsilon$ 

- Problemas a serem resolvidos:
  - O que fazer quando há várias opções de substituição?
  - Como empilhar uma cadeia (e não apenas um símbolo)?
  - Se só podemos ler o topo da pilha, o que fazer quando a primeira variável da forma sentencial não estiver no topo da pilha?

 Problema 2: Como empilhar uma cadeia, e não simplesmente um símbolo?

 Problema 2: Como empilhar uma cadeia, e não simplesmente um símbolo?



Problema 2: Como empilhar uma cadeia, e não simplesmente um símbolo?



Sejam q e r estados do AP e suponha que a esteja em  $\Sigma_{\varepsilon}$  e s em  $\Gamma_{\varepsilon}$ . Digamos que queiramos que o AP vá de q para r quando ele lê a e desempilha s. Além do mais, queremos empilhar a cadeia inteira  $u=u_1\cdots u_l$  ao mesmo tempo. Podemos implementar essa ação introduzindo novos estados  $q_1,\ldots,q_{l-1}$  e montando a tabela de transição da seguinte maneira

$$\delta(q, a, s)$$
 deve conter  $(q_1, u_l)$ ,  
 $\delta(q_1, \varepsilon, \varepsilon) = \{(q_2, u_{l-1})\},$   
 $\delta(q_2, \varepsilon, \varepsilon) = \{(q_3, u_{l-2})\},$   
 $\vdots$   
 $\delta(q_{l-1}, \varepsilon, \varepsilon) = \{(r, u_1)\}.$ 

 Problema 3: Se só podemos ler o topo da pilha, o que fazer quando a primeira variável da forma sentencial não estiver no topo da pilha?

- Problema 3: Se só podemos ler o topo da pilha, o que fazer quando a primeira variável da forma sentencial não estiver no topo da pilha?
  - Sempre faremos a derivação mais à esquerda
  - Se o começo da forma sentencial contiver terminais, desempilho esses símbolos "casando-os" com a entrada (por meio de transições).

Exemplo

$$S 
ightarrow {
m a} T {
m b} \mid {
m b} \ T 
ightarrow T {
m a} \mid {
m arepsilon}$$

 Exemplo  $S \to aTb \mid b$ T o Ta $\mid arepsilon$  $q_{\rm início}$  $\varepsilon, \varepsilon \to \$$  $c, \varepsilon \to T$  $\varepsilon, T \to a$  $\varepsilon, \varepsilon \to S$  $q_{\mathrm{laço}}$  $\varepsilon, S \to \mathbf{b}$  $\begin{array}{c} \varepsilon, T \to \varepsilon \\ \mathbf{a}, \mathbf{a} \to \varepsilon \end{array}$  $\varepsilon,\$ o arepsilon$  $b, b \rightarrow \varepsilon$  $q_{aceita}$ 

Caso Geral:

