Math 237 – Linear Algebra Fall 2017

Version 1

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

V2. Determine if
$$\begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix}$$
 is a linear combination of the vectors $\begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$, and $\begin{bmatrix} -3 \\ -2 \\ 5 \end{bmatrix}$.

S1. Determine if the vectors $\begin{bmatrix} 1\\1\\-1 \end{bmatrix}$, $\begin{bmatrix} 3\\-1\\1 \end{bmatrix}$, and $\begin{bmatrix} 2\\0\\-2 \end{bmatrix}$ are linearly dependent or linearly independent

S3. Let W be the subspace of \mathcal{P}^2 given by $W = \text{span}\left(\left\{-3x^2 - 8x, x^2 + 2x + 2, -x + 3\right\}\right)$. Find a basis for W.

S4. Let $W = \operatorname{span}\left(\left\{\begin{bmatrix}2\\0\\-2\\0\end{bmatrix},\begin{bmatrix}3\\1\\3\\6\end{bmatrix},\begin{bmatrix}0\\0\\1\\1\end{bmatrix},\begin{bmatrix}1\\2\\0\\1\end{bmatrix}\right\}\right)$. Compute the dimension of W.

V2:

S1:

S3:

Name:	

Math 237 – Linear Algebra Fall 2017

Version 2

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

V2. Determine if
$$\begin{bmatrix} 0\\1\\-2\\1 \end{bmatrix}$$
 can be written as a linear combination of the vectors $\begin{bmatrix} 5\\2\\-3\\2 \end{bmatrix}$, $\begin{bmatrix} 3\\1\\1\\0 \end{bmatrix}$, and $\begin{bmatrix} 8\\3\\5\\-1 \end{bmatrix}$.

S1. Determine if the set of vectors
$$\left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \begin{bmatrix} 1\\3\\-2 \end{bmatrix} \right\}$$
 is linearly dependent or linearly independent

S3. Let W be the subspace of \mathcal{P}^2 given by $W = \text{span}\left(\left\{-3x^2 - 8x, x^2 + 2x + 2, -x + 3\right\}\right)$. Find a basis for W.

S4. Let W be the subspace of \mathcal{P}_3 given by $W = \mathrm{span}\left(\left\{x^3-x^2+3x-3,2x^3+x+1,3x^3-x^2+4x-2,x^3+x^2+x-7\right\}\right)$. Compute the dimension of W.

V2: S1:

S3:

Math 237 – Linear Algebra Fall 2017

Version 3

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

V2. Determine if
$$\begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix}$$
 is a linear combination of the vectors $\begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$, and $\begin{bmatrix} -3 \\ -2 \\ 5 \end{bmatrix}$.

S1. Determine if the set of polynomials $\{-3x^3 - 8x^2, x^3 + 2x^2 + 2, -x^2 + 3\}$ is linearly dependent or linearly independent

S3. Let W be the subspace of \mathcal{P}^2 given by $W = \text{span}\left(\left\{-3x^2 - 8x, x^2 + 2x + 2, -x + 3\right\}\right)$. Find a basis for W.

S4. Let $W = \operatorname{span}\left(\left\{\begin{bmatrix}1\\1\\2\\1\end{bmatrix},\begin{bmatrix}3\\3\\6\\3\end{bmatrix},\begin{bmatrix}3\\-1\\3\\-2\end{bmatrix},\begin{bmatrix}7\\-1\\8\\-3\end{bmatrix}\right\}\right)$. Find the dimension of W.

V2:

S1:

S3:

Math 237 – Linear Algebra Fall 2017

Version 4

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

V2. Determine if
$$\begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix}$$
 is a linear combination of the vectors $\begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}$, and $\begin{bmatrix} 5 \\ 1 \\ -6 \end{bmatrix}$.

S1. Determine if the set of vectors $\left\{ \begin{bmatrix} 3\\-1\\0\\4 \end{bmatrix}, \begin{bmatrix} 1\\2\\-2\\1 \end{bmatrix}, \begin{bmatrix} 3\\-8\\6\\5 \end{bmatrix} \right\}$ is linearly dependent or linearly independent.

S3. Let $W = \operatorname{span} \left\{ \begin{bmatrix} 2\\0\\2\\1 \end{bmatrix}, \begin{bmatrix} 3\\1\\-1\\1 \end{bmatrix}, \begin{bmatrix} 0\\2\\-8\\1 \end{bmatrix} \right\}$. Find a basis for this vector space.

S4. Let W be the subspace of \mathcal{P}_3 given by $W = \operatorname{span}\left(\left\{x^3-x^2+3x-3,2x^3+x+1,3x^3-x^2+4x-2,x^3+x^2+x-7\right\}\right)$. Compute the dimension of W.

V2:

S1:

S3:

Math 237 – Linear Algebra Fall 2017

Version 5

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

V2. Determine if
$$\begin{bmatrix} 4 \\ -1 \\ 6 \\ -7 \end{bmatrix}$$
 belongs to the span of the set $\left\{ \begin{bmatrix} 2 \\ 0 \\ -1 \\ 5 \end{bmatrix}, \begin{bmatrix} 4 \\ -1 \\ 4 \\ 3 \end{bmatrix} \right\}$.

S1. Determine if the vectors $\begin{bmatrix} 1\\1\\-1 \end{bmatrix}$, $\begin{bmatrix} 3\\-1\\1 \end{bmatrix}$, and $\begin{bmatrix} 2\\0\\-2 \end{bmatrix}$ are linearly dependent or linearly independent

S3. Let W be the subspace of \mathcal{P}^3 given by $W = \text{span}\left(\left\{x^3 + x^2 + 2x + 1, 3x^3 + 3x^2 + 6x + 3, 3x^3 - x^2 + 3x - 2, 7x^3 - x^2 + 8x - 3\right\}\right)$. Find a basis for W.

S4. Let $W = \operatorname{span}\left(\left\{\begin{bmatrix} -3\\-8\\0\end{bmatrix},\begin{bmatrix} 1\\2\\2\end{bmatrix},\begin{bmatrix} 0\\-1\\3\end{bmatrix}\right\}\right)$. Compute the dimension of W.

Name:	

Math 237 – Linear Algebra Fall 2017

Version 6

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

V2. Determine if
$$\begin{bmatrix} 3 \\ -2 \\ 4 \end{bmatrix}$$
 belongs to the span of the set $\left\{ \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \\ -6 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\}$.

S1. Determine if the set of matrices $\left\{ \begin{bmatrix} 3 & -1 \\ 0 & 4 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}, \begin{bmatrix} 3 & -8 \\ 6 & 5 \end{bmatrix} \right\}$ is linearly dependent or linearly independent.

S3. Let
$$W = \operatorname{span}\left(\left\{\begin{bmatrix} -3\\-8\\0\end{bmatrix},\begin{bmatrix} 1\\2\\2\end{bmatrix},\begin{bmatrix} 0\\-1\\3\end{bmatrix}\right\}\right)$$
. Find a basis for W .

S4. Let
$$W = \operatorname{span} \left\{ \begin{bmatrix} 2\\0\\2\\1 \end{bmatrix}, \begin{bmatrix} 3\\1\\-1\\1 \end{bmatrix}, \begin{bmatrix} 0\\2\\-8\\1 \end{bmatrix} \right\}$$
. Find the dimension of W .