INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA LICENCIATURA EM ENGENHARIA INFORMÁTICA E DE COMPUTADORES MESTRADO EM ENGENHARIA INFORMÁTICA E DE COMPUTADORES PROCESSAMENTO DE IMAGEM E BIOMETRIA

Semestre de verão 2018/2019

1.º Teste Parcial

16 de abril de 2019, 18:30

Consulta: 1 folha A4 (2 páginas). Justifique todas as respostas. Apresente todos os cálculos que efetuar.

- 1. A imagem quadrada monocromática I tem 128 níveis de cinzento e ocupa 28672 bits, no seu armazenamento.
 - (a) {1,25} Sobre a imagem *I*, indique: a resolução espacial; a resolução em profundidade; os limites de variação dos indicadores energia, potência e entropia (indicando os valores mínimos e máximos).
 - (b) {1,25} Assuma agora que a soma de todos os *pixels* de *I* é 40960. Com os dados apresentados, é possível caraterizar a imagem relativamente ao brilho e ao contraste? Caso seja possível, indique se estes indicadores tomam valores baixos, médios ou altos. Caso contrário, justifique a impossibilidade.
 - (c) $\{1,25\}$ Seja I_n a versão negativa de I. Esboce a transformação que obtém I_n a partir de I.
- 2. As imagens monocromáticas, com profundidade n=3 bit/pixel, I_1 e I_2 são definidas como

$$I_1 = \left[\begin{array}{ccccc} 3 & 4 & 4 & 2 & 1 \\ 1 & 3 & 2 & 1 & 0 \\ 1 & 1 & 1 & 6 & 5 \end{array} \right] \qquad \text{e} \qquad I_2 = \left[\begin{array}{cccccc} 4 & 3 & 4 & 2 & 1 \\ 1 & 2 & 3 & 1 & 0 \\ 3 & 3 & 3 & 3 & 3 \end{array} \right].$$

- (a) $\{1,25\}$ Esboce o histograma de I_1 . Determine o valor da entropia desta imagem.
- (b) $\{1,25\}$ Apresente as imagens I_3 e I_4 resultantes das seguintes operações: $I_3 = I_1$ AND I_2 ; $I_4 = I_1 + I_2$.
- 3. Considere as transformações de intensidade T_1 e T_2 , apresentadas na figura.

Duração: 1:30

- (a) {1,25} Para cada transformação de intensidade, indique: a funcionalidade/aplicação; a resolução em profundidade a que se destina; como procederia para construir a respetiva tabela de *lookup*; o número de posições dessa tabela.
- (b) $\{1,25\}$ Apresente dois exemplos de imagens I_1 e I_2 , com resolução espacial 3×4 e sem *pixels* com valor repetido, tais que:
 - (i) a aplicação de T_1 sobre a imagem I_1 não modifica o seu conteúdo;
 - (ii) a aplicação de T_1 sobre a imagem I_2 resulta noutra imagem de energia nula.

4. A tabela apresenta o histograma das imagens I_1 e I_2 , as quais possuem 128 colunas, e os valores mínimos e máximos de intensidade são 0 e 255, respetivamente.

Valor do pixel	0	10	20	30	40	120	180	200	255
Ocorrências, I_1	4000	4000	4000	4000	84	75	75	75	75
Ocorrências, I_2	168	150	150	150	150	8000	8000	8000	8000

- (a) $\{1,25\}$ Para as imagens I_1 e I_2 indique o número de linhas. Determine o valor da intensidade média da imagem I_1 .
- (b) $\{1,25\}$ Relativamente à imagem I_1 , esboce a função de transformação de intensidade T_{HE} que realiza a equalização de histograma.
- (c) $\{1,25\}$ Considere que se aplica a técnica de especificação de histograma, sobre a imagem I_1 , usando a imagem I_2 como referência, obtendo-se a imagem I_3 . Caraterize as principais diferenças entre as imagens I_1 e I_3 .
- 5. As seguintes questões abordam as técnicas de filtragem espacial.
 - (a) $\{1,25\}$ A máscara de filtragem espacial w é definida por $w = \begin{bmatrix} a & d & g \\ b & e & h \\ c & f & i \end{bmatrix}$. Indique os valores das constantes a a i, de forma a que w seja uma máscara de:
 - (i) suavização (smoothing);
 - (ii) gradiente;
 - (iii) Laplaciano.
 - $\text{(b) } \{1,25\} \text{ A imagem } I \text{ tem profundidade de } n = 8 \text{ bit/pixel}, \text{ sendo definida como } I = \begin{bmatrix} 120 & 0 & 120 & 118 & 122 \\ 118 & 120 & 122 & 255 & 120 \\ 116 & 120 & 0 & 118 & 118 \\ 118 & 118 & 255 & 118 & 0 \end{bmatrix}$

estando contaminada com ruído *salt & pepper*. Identifique quais os *pixels* que aparentam estar contaminados com ruído. Indique, de forma detalhada, como aplicaria uma técnica adequada para a remoção deste ruído.

6. As seguintes questões abordam as técnicas de filtragem no domínio da frequência. Tendo em conta que $D[u,v]=\sqrt{(u-P/2)^2+(v-Q/2)^2}$, definem-se os filtros no domínio da frequência:

$$H_1[u,v] = \exp\left(-\frac{D^2[u,v]}{2D_o^2}\right)$$
 e $H_2[u,v] = \frac{1}{1 + \left(\frac{D_o}{D[u,v]}\right)^{2n}}$.

- (a) $\{1,25\}$ Para cada filtro: identifique o algoritmo/técnica usado para a definição do mesmo; o tipo de filtragem. Explique a funcionalidade dos parâmetros D_o e n.
- (b) {1,25} Esboce, na forma de imagem, a resposta em frequência dos seguintes filtros:
 - (i) $H_a[u,v]$, filtro passa-alto ideal, para imagens de entrada de resolução espacial 256×256 ;
 - (ii) $H_b[u, v]$, filtro passa-banda *notch*, para imagens de entrada de resolução espacial 512×256 .
- 7. A imagem f[m,n] tem espetro $F[u,v] = \begin{bmatrix} 13 & -1 & 5 & -1 \\ -j & j & -j & j \\ -5 & 1 & 3 & 1 \\ j & -j & j & -j \end{bmatrix}$.
 - (a) $\{1,25\}$ Relativamente a f[m,n] indique: o valor médio; a potência.
 - (b) $\{1,25\}$ Apresente |F[u,v]| e arg[F[u,v]], na forma de espetro centrado.