Solutions de l'Examen du cours de Fonctionnement des Ordinateurs 1èrere Session, Juin 2016 Partie 0

Partie 1 - Question 1

Etablir table de vérité

a	bits de a	b	bits de b	a < b	a = b	a > b
0	0.0	0	0.0	0	1	0
0	00	1	01	1	0	0
0	00	-2	10	0	0	1
0	00	-1	11	0	0	1
1	01	0	00	0	0	1
1	01	1	01	0	1	0
1	01	-2	10	0	0	1
1	01	-1	11	0	0	1
-2	10	0	0.0	1	0	0
-2	10	1	01	1	0	0
-2	10	-2	10	0	1	0
-2	10	-1	11	1	0	0
-1	11	0	0.0	1	0	0
-1	11	1	01	1	0	0
-1	11	-2	10	0	0	1
-1	11	-1	11	0	1	0

Somme de produits

$$\begin{array}{rcl} \sum_{\mathsf{less}} & = & \sum (1,8,9,11,12,13) \\ & = & a_1'.a_0'.b_1'.b_0 + a_1.a_0'.b_1'.b_0' + a_1.a_0'.b_1'.b_0 + a_1.a_0'.b_1.b_0 + a_1.a_0.b_1'.b_0' + a_1.a_0.b_1'.b_0 \\ \\ \sum_{\mathsf{eq}} & = & \sum (0,5,10,15) \\ & = & a_1'.a_0'.b_1'.b_0' + a_1'.a_0.b_1'.b_0 + a_1.a_0'.b_1.b_0' + a_1.a_0.b_1.b_0 \end{array}$$

FIGURE 1 – Comparateur 2 bits. Implémentation dérivée de la somme de produits. Les portes AND forment les minterms, tandis que la porte OR forme la somme.

Solutions de l'Examen du cours de Fonctionnement des Ordinateurs 1èrere Session, Juin 2016 Partie 0

NOM:]	PRENOM:	SECTION:
--------	---------	----------

Partie 2 – Question 2

```
DELAY_CONST=49998
2
3
   init:
4
5
            li $a0, 125
   delay:
            # Boucle interne (attente 1ms)
8
            li $a1, DELAY_CONST
9
   delay_ms:
10
            addi $a1, $a1, -1
11
            bgtz $a1, delay_ms
12
13
            addi $a0, $a0, -1
            bgtz $a0, delay
```

Calcul de la constante DELAY_CONST

Soit n le nombre d'itérations de la boucle interne. La durée d'une itération de la boucle externe est donné par t_{delay} .

$$\begin{array}{lcl} t_{delay} & = & n \cdot (t_{\text{addi}} + t_{\text{bgtz}}) + t_{\text{li}} + t_{\text{addi}} + t_{\text{bgtz}} \\ & = & (2 \cdot n + 3) \cdot t_{instr} \end{array}$$

Par conséquent, le nombre d'itérations vaut

$$n = \frac{1}{2} \cdot \left(\frac{t_{delay}}{t_{instr}} - 3 \right)$$

Si
$$t_{delay}=1ms$$
 et $t_{instr}=\frac{1}{f}$, alors $n=\frac{1}{2}\cdot\left(\frac{10^{-3}}{10^{-8}}-1\right)=\frac{1}{2}\cdot(10^{5}-1)\sim49998$

Subtilité : en fonction de la constante à charger, la pseudo-instruction li sera convertie en 1 ou 2 instructions réelles, ce qui aura un impact sur le calcul. Dans le cas où on force 2 instructions, cela permet d'avoir un nombre d'itérations qu'il ne faut pas arrondir.