(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-271044 (P2003-271044A)

(43)公開日 平成15年9月25日(2003.9.25)

(51) Int.Cl.7	識別記号	F I	テーマコード(参 考)
G 0 3 G 21/20		G 0 3 G 15/20	101 2H027
15/20	101	21/00	534 2H033

審査請求 未請求 請求項の数4 OL (全 7 頁)

(21)出願番号 特願2002-68196(P2002-68196)

(22)出願日 平成14年3月13日(2002.3.13) (71)出願人 000001007

キヤノン株式会社

東京都大田区下丸子3丁目30番2号

(72)発明者 竹松 浩二

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(74)代理人 100086818

弁理士 高梨 幸雄

Fターム(参考) 2H027 JA11 JB12 JB15 JB16 JC08

2H033 AA21 AA40 BA05 BA29 BB00

(54) 【発明の名称】 画像形成装置

(57)【要約】

【課題】 画像形成装置内の発熱源と昇温抑制部との間 の断熱を行って装置内の昇温を防止できるとともに、消 費電力を低減することができる画像形成装置を提供す

【解決手段】 定着装置1の上部周辺を囲うように、真 空層4を含んでいる定着カバー5を配置する。この真空 層4の周辺にエアダクト6を配置し送風手段によりエア ダクト内に空気を流す。また真空層4を形成するため に、断熱芯材を真空封入した真空断熱材を使用する

20

1

【特許請求の範囲】

【請求項1】 像担持体、及び、前記像担持体で形成さ れたトナー像を転写材上に定着させる定着装置を有した 画像形成装置において、定着装置の周囲に真空層を設け ることを特徴とする画像形成装置。

【請求項2】 前記真空層に、断熱部材を真空封入した 真空断熱材を用いていることを特徴とする、請求項1記 載の画像形成装置。

【請求項3】 前記真空層の周辺に、空気層を形成する または2記載の画像形成装置。

【請求項4】 前記真空層の周辺に、空気層を形成する ためのカバー手段を設け、送風手段により前記カバー手 段内の空気層に空気を流すことを特徴とする、請求項1 ないし3の何れかに記載の画像形成装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は複写機、レーザープ リンター、レーザーFAX等の画像形成装置に関するも のである。

[0002]

【従来の技術】従来、電子写真方式を利用した画像形成 装置は、像担持体である感光ドラムの表面に静電潜像を 形成し、感光ドラム上の静電潜像を現像剤であるトナー 等によって現像して可視像化し、現像された画像を転写 装置により転写材に転写して転写材上に画像を担持さ せ、圧力や熱等を用いる定着装置によって転写材上のト ナー画像を転写材上に定着させる各工程を行うことによ って画像を形成している。

【0003】これらの過程を経て画像が得られるが、画 像形成装置の小型化をはかる場合、感光ドラム、クリー ニング装置、現像装置、転写装置や定着装置等の各部材 が近接して配置されることになる。このため、定着装置 などの高温となる発熱源の近傍にクリーニング装置を配 置される場合があり、その場合、熱の影響により、クリ ーニング装置内のトナーが溶融、凝集し、回収トナーの 機外排出が困難になるという不具合が生じるようになっ た。

【0004】このような問題を回避するため画像形成装 置内の昇温を抑える手段としては、画像形成装置に画像 形成装置外の空気を画像形成装置内に取り込む取り込み 口と、取り込んだ外気の排出口を設けるとともに、図7 に示すように排気ファン8により、取り込み口から取り 込まれた外気により定着装置周辺を冷やし、同時に発生 した高熱空気を画像形成装置外に積極的に排出させてい た。

【0005】また近年のエアーフローの高効率化に伴 い、特開2000-227730において図8のよう に、定着装置1の上カバー101とその上にある現像装 置との間にもう1枚カバー102を固定し、定着装置1 内部の高温の空気を排気ファン8で外部に流すための第 1の空気流路とカバー102と現像装置からこぼれたト ナーを受けるキャッチパン103との間に吸気ファン1 04で外気を取り込んで流し、再び外気に排出するため の第2の空気流路を形成することにより、画像形成装置 内の昇温を抑えるという方法がある。

【0006】

【発明が解決しようとする課題】しかしながら、従来の 構成では、定着装置近傍に設けられた排気ファンによ ためのカバー手段を設けたことを特徴とする、請求項1 10 り、定着装置自体の熱も奪われるため、定着装置を所定 の温度にするための定着ヒータへの通電時間が増えるこ とに伴い、消費電力が増大するという問題があった。

> 【0007】また、定着器と近接してクリーニング装置 を配置すると、定着装置内部をファンで冷却しているに もかかわらず定着装置の熱が熱伝導、熱放射等によりク リーニング装置に伝わりやすく、このため、クリーニン グ装置が過度に過熱されることがないように、クリーニ ング装置と定着装置の間隔を大きくとる必要があり、画 像形成装置が大型化していた。

【0008】また、冷却用のファンを強力なものとし、 冷却能力を向上させる方法もあるが、ファンが大型化 し、そのスペース分画像形成装置が大型化すると共に、 コスト高となるという問題があった。また大型で高速に 回転する排気ファンであるため、それによる騒音、消費 電力、それぞれが増大するという問題も発生していた。 【0009】そこで本発明では、画像形成装置の機能や 小型化を犠牲にすることなく、画像形成装置内の定着装 置と、クリーニング装置等の温度を低くおさえる必要が ある昇温抑制部との間の断熱を行って画像形成装置内の 昇温を防止できるとともに、定着装置内を保温し消費電 力を低減させることができる画像形成装置を提供するこ とを目的とする。

[0010]

【課題を解決するための手段】上記目的を達成するため 本出願に係る請求項1記載の発明は、像担持体、及び、 前記像担持体で形成されたトナー像を転写材上に定着さ せる定着装置を有した画像形成装置において、定着装置 の周囲に真空層を設けることを特徴とする。

【0011】本出願に係る請求項2記載の発明は、請求 項1記載の発明において、前記真空層に、断熱部材を真 空封入した真空断熱材を用いていることを特徴とする。 【0012】本出願に係る請求項3記載の発明は、請求 項1ないし2記載の発明において、前記真空層の周辺 に、空気層を形成するためのカバーを設けたことを特徴 とする。本出願に係る請求項4記載の発明は、請求項1 ないし3記載の発明において、前記真空層の周辺に、空 気層を形成するためのカバー手段を設け、送風手段によ り前記カバー手段内の空気層に空気を流すことを特徴と する。

【0013】上記構成によれば、定着装置上部周辺に真

3

空層を設けたことによって、定着装置から発生する熱が 効果的に断熱されることにより、クリーニング装置等の 温度を低くおさえる必要がある昇温抑制部の昇温が防止 できる。また真空層周辺をカバーで囲い、カバー内に空 気を流すことにより、定着装置と昇温抑制部とを隔絶で きるので、画像形成装置内の昇温が防止でき、昇温抑制 部に悪影響を与えることなく画像形成等が行える。また 定着装置内部の高温の空気を排気しないため、定着装置 内を保温し消費電力を低減させることができる。また、 真空層により定着装置からの熱が断熱されているため、 定着装置と昇温抑制部との間に広い間隔をとる必要がな く、且つ少ない風量で効果的に排熱できるため、低回転 の小さなファンでも排気可能である。これにより画像形 成装置の小型化、低コスト化ができると共に、ファンの 騒音、消費電力を低減することが可能となる。

[0014]

【発明の実施の形態】(第一の実施例)図1は本発明の実施例である、定着装置1の断面図を示している。図2は本発明の実施例である定着装置1とクリーニング装置等の温度を低くおさえる必要がある昇温抑制部12を備えた画像形成装置Aを示している。図1において、定着装置1は、一対の回転体である定着ローラ2と加圧ローラ3とを有しており、定着ローラ2内のヒータ(不図示)により定着ローラ2の表面を所定温度に加熱した状態で定着ローラ2と加圧ローラ3との間にトナー像を担持した転写材Sを通すことにより、転写材Sを加熱および加圧して転写材S上にトナー画像を定着させるようになっている。定着装置1を通過した転写材Sは、その後、排紙路11を通って、排紙トレイ(不図示)に排出される。

【0015】本実施例では、定着装置1の上部周辺を囲うように、真空層4を含んでいる定着カバー5が配置されている。真空層4を含む定着カバー5は、長手方向に定着装置1後端部まで定着装置1を覆っている。定着カバー5の材質は、樹脂等の熱伝導率が低い材料で形成されている。また真空層4を形成するために、断熱芯材14を真空封入した真空断熱材13を使用している(図3参照)。

【0016】本実施例で用いた真空断熱材13は、電気 湯沸かし器等の保温容器に用いられており、真空度が高 いためガラスウール等の他の断熱材に比べて、断熱性能 が優れている。

【0017】この真空断熱材13については、特開20 01-8828に詳しく述べられているので、ここでは 図を用いて簡単に説明する。図3は真空断熱材13の断 面図を示している。14は真空断熱材13の芯材14で ある。積層フィルム15はシール層16とガスバリア層 17と保護層18より成り立っており、この積層フィル ム15からなる包装材に断熱芯材14を封入して真空排 気したものが真空断熱材13である。ガスバリア層17 には、アルミニウム箔など金属箔を使用したものや、アルミニウム蒸着などの蒸着層を使用したものがある。

【0018】真空断熱材13は図4に示すように、平板で長方形状をしている。19は芯材14が入っている部分で真空断熱材13として断熱性を有する部分で、20はヒートシール部分で、シール層16が溶着している部分であるため、芯材14が入っていない部分である。

【0019】実際定着カバー5に組み込む際には、図5 のように、定着カバー5の大きさに合わせコの字に折り 曲げる。この時ヒートシール部分20が、コの字の外側 にくるように折り曲げ定着カバー5に装着する。このよ うにすると、ヒートシール部分20が高温の定着装置1 側に直接接することがないので、耐熱劣化が小さくな る。本実施例では、積層フィルム15中のガスバリア層 17において、高温にさらされるコの字の内側(定着装 置1側) にアルミニウム箔等の金属箔を用いた。また断 熱されるため低温になるコの字の外側にはアルミ蒸着等 の蒸着層を用いた。金属箔は高温でのガスバリア性に優 れていているのに対して、蒸着層は蒸着層の厚さが非常 に薄いため、金属箔に比べて断熱性に優れるが、高温で ガスバリア性に劣る。よって高温側に金属箔を用いたこ とにより真空状態を十分に保持することができるため、 断熱性が長期間落ちることはなく、また低温側に蒸着層 を用いたことにより高温側から金属箔を伝って流れ込む 熱を抑えることができ、真空断熱材13全体の断熱性能 を向上させることができる。

【0020】定着装置1内には、吸引口や排気口を設けていないため、定着装置1内の熱が外にもれにくくなるため、定着装置1内が高い温度で保温されている。

30 【0021】この真空層4の周辺には、エアダクト6が配置されている。エアダクト6は画像形成装置の内部を、露光手段が配置された上部とそれ以外の部分とに区画する隔壁7に下方から取り付けられている。つまり、エアダクト6の上面は、隔壁7の一部によって構成されている。エアダクト6には画像形成装置外部から取り入れられた空気が、図2の紙面に垂直な方向に流れ排気ファン8により、画像形成装置外部に排気される。

【0022】この構成によれば、定着装置1内の高温の空気は封止され、且つ真空層4により断熱されており、0 定着装置1内は最小限の加熱で高温を維持できる。このことにより定着装置1の消費電力の低減につながる。【0023】定着装置1上部周辺に真空層4を設けたことによって、定着装置1から発生する熱が効果的に断熱されることにより、画像形成装置内の昇温が防止できる。また真空層4周辺をエアダクト6で囲い、エアダクト6内に空気を流すことにより、定着装置1と昇温抑制部12とを隔絶できるので、画像形成装置内の昇温が防止でき、昇温抑制部12に悪影響を与えることなく画像形成等が行える。また、真空層4により定着装置1からの熱が断熱されているため、定着装置1と昇温抑制部1

5

2との間に広い間隔をとる必要がなく、且つ少ない風量で効果的に排熱できるため、低回転の小さなファンでも排気可能である。これにより画像形成装置の小型化、低コスト化ができると共に、ファンの騒音、消費電力を低減することが可能となる。

【0024】なお前記構成においては、定着装置1専用に小型で低回転の排気ファン8を使用していたが、少ない風量でよいため、専用の排気ファン8の代わりに画像形成装置内の他の排気ファン8とダクトで連結し、他の排気ファン8からのエアーを利用してもよい。これによ 10りより一層低コスト、低騒音、低消費電力が実現可能である。

【0025】また図3に示すように、真空層4を含んでいる定着カバー5の内側(定着ローラ2側)に反射シート9を取り付けてもよい。反射シート9とは、アルミのシートのことで、表面は鏡面状に仕上げられており、定着ローラ2から発生する放射熱を反射する。この反射シート9を設けることにより、定着ローラ2から発生する放射熱を定着装置1内に反射するため、定着装置1内の空気をさらに高温に保つことができ、且つ定着装置1外20に移動する放射熱を少なくすることができる。このことにより、より一層画像形成装置の昇温を防止でき、定着装置1の消費電力の低減を図ることが可能である。

[0026]

【発明の効果】以上説明したように、定着装置上部周辺 に真空層を設けたことによって、定着装置から発生する 熱が効果的に断熱されることにより、画像形成装置内の 昇温が防止できる。

【0027】また真空層周辺をエアダクトで囲い、エアダクト内に空気を流すことにより、定着装置と昇温抑制 30 部とを隔絶できるので、画像形成装置内の昇温が防止でき、昇温抑制部に悪影響を与えることなく画像形成等が行える。

【0028】また定着装置内部の高温の空気を排気しないため、定着装置内を保温し消費電力を低減させることができる。

【0029】また、真空層により定着装置からの熱が断熱されているため、定着装置と昇温抑制部との間にスペースを必要せず、且つ少ない風量で効果的に排熱できる

ため、低回転の小さなファンでも排気可能である。これ により画像形成装置の小型化、低コスト化ができると共 に、ファンの騒音、消費電力を低減することが可能とな る。

6

【図面の簡単な説明】

【図1】 本発明の実施例に係る真空層で囲った定着装置、エアダクトを説明する断面図

【図2】 本発明の定着装置を備えた画像形成装置の正 面断面図

【図3】 本発明の実施例に用いた真空断熱材の断面図

【図4】 本発明の実施例に用いた真空断熱材の平板図

【図5】 本発明の実施例に用いた真空断熱材の装着図

【図6】 図1に反射シートを描き入れた図

【図7】 従来の定着装置を説明する断面図

【図8】 従来の定着装置を説明する断面図

【符号の説明】

1・・・定着装置

2・・・定着ローラ

3・・・加圧ローラ

4・・・真空層

5・・・定着カバー

6・・・エアダクト

7・・・隔壁

8・・・排気ファン

9・・・反射シート

10・・クリーニング装置

11· 排紙路

12 · · 昇温抑制部

13・・真空断熱材

30 14 · · 芯材

15・・積層フィルム

16・・シール層

17・・ガスバリア層

18・・保護層

19・・芯材が入っている部分

20・・ヒートシール部分

A···画像形成装置

S···転写材

【図3】

【図8】

PAT-NO:

DOCUMENT-IDENTIFIER: F

TITLE: TRACE FOR THE ATTENDED

PUBN-DATE: September 5

INVENTOR-INFORMATION:

NAME COUNTRY

DATES NOT WA

ASSIGNEE-INFORMATION:

NAME COUNTRY

CANON INC. N/A

APPL-NO:

APPL-DATE:

INT-CL (IFC):

ABSTRACT:

PROBLEM TO BE SOLVED: To provide an image forming appearatus which prevents a temperature rise in the apparatus and reduces cower consumption by insulating a space between a heat generating source and a temperature rise restricting part in the image forming apparatus.

CLUTION: A fixing cover 5 including a vacuum layer 4 is disposed so as to surround the vicinity of the appear part of a fixing device 1. As all disc of a disposed in the vicinity of the vacuum layer 4. Air flow into the air dust is caused by a blowing meens. To occur to form the vacuum layer 4, a vacuum insulator in which as insulating core make is 13 vacuum-sealed is used.