# Learning MILP resolution outcomes before reaching time-limit

CPAIOR · Thessaloniki, Greece · June 6, 2019

Martina Fischetti<sup>1</sup>, Andrea Lodi<sup>2</sup>, Giulia Zarpellon<sup>2</sup>

- <sup>1</sup> Vattenfall, Denmark
- <sup>2</sup> Polytechnique Montréal, CERC Data Science for real-time Decision Making



#### On MILP outcomes

**MILP**: 
$$\min\{c^Tx : Ax \ge b, x \ge 0, x_i \in \mathbb{Z} \ \forall i \in \mathcal{I} \}$$

Decades of huge improvements in MILP solving techniques,
...but it could still require hours of computations!

Fair questions on the resolution process and its outcome:

How much time will it take?

Why does it take so much time?

- → Can it be solved within a given time?
  - Enforce a **time-limit** *TL*, but get a sense of the optimization trend after only a fraction of *TL* has passed
  - Ideally, tailor the remaining time in a strategic/flexible way

#### On MILP outcomes – Our question

Given a MILP instance P and a time-limit TL, look at the partial resolution of P, up to a certain time  $0 < \tau < TL$ .

Will P be solved to proven optimality within TL?

#### Use machine learning statistical tools to

- summarize and describe the partial resolution of P,
  - ! Measure MILP optimization progress
  - ! Complex and sequential nature of B&B data
- cast a prediction about it being solved or not within given *TL*, in a standard **binary classification** framework
  - ! Get enough and heterogeneous data for learning

#### Plan

- 1. Brief formalization
- 2. MILP data: collection and design
- 3. Some experiments
- 4. Outlook

# **Brief formalization**

# Measuring the 'work done'

**Parameters**: a MILP problem  $P \in \mathcal{P}$ , a time-limit  $TL \in \mathbb{R}_{>0}$ , and a percentage ratio  $\rho \in [0, 100]$ , yielding  $\tau = \rho \cdot \frac{TL}{100} \in (0, TL)$ 

**e.g.**, 
$$TL=3600$$
 secs,  $\rho=20\%\longrightarrow \tau=720$  secs



- Evaluate the progress in solving P as % work done
- Reach 100% at  $t_{sol}^P$  (P solved to proven optimality)

$$\begin{array}{ccc}
\rho \\
\hline
0 & \times \\
\text{% time passed} & 100\% \equiv TL
\end{array}$$

- Reach 100% at TL (total available time)
- ullet Measure the work done up to time au

# Measuring the 'work done' with features

Example: using the closed gap as unique progress measure





Predict whether  $t_{sol}^P \leq TL$ , describing the work done with

$$\Phi: \mathbb{R}_{>0} \times [0, 100] \times \mathcal{P} \longrightarrow \mathbb{R}^d$$
 feature map  $(TL, \rho, P) \longmapsto \%$  work done up to  $\tau$ 

#### Feature-based sequence classification

Given B&B **sequential nature**: partial resolution of P as stream of information and events

-> Multivariate time series - nodes discretize time dimension

$$\left. \begin{array}{l} (N^1, \langle v_1^1, \cdots, v_s^1 \rangle) \\ (N^2, \langle v_1^2, \cdots, v_s^2 \rangle) \\ \vdots \\ (N^{\eta}, \langle v_1^{\eta}, \cdots, v_s^{\eta} \rangle) \end{array} \right\} \mathbf{S_{TL,\rho,P}} \quad \\ \Diamond \Phi(\mathit{TL}, \rho, P) \in \mathbb{R}^d$$

→ Feature-based sequence classification task

Learn classifier f for sequence  $S_{TL,\rho,P}$  with label  $y \in \{0,1\}$ ,

$$f(\Phi(TL, \rho, P)) = \begin{cases} 1 & \text{if } t_{sol}^P \leq TL, \\ 0 & \text{otherwise.} \end{cases}$$

# MILP data: collection and design

# Producing (enough and) heterogeneous data

To get **multiple data-points** from the same problem P,

- (0) vary random seed
- (I) vary TL and keep  $\rho$  fixed

(II) vary  $\rho$  and keep TL fixed 100 % work done  $\tau'$  TL''0 TL'TLΤ t;ol TLTI'TI"  $t_{sol} < \tau < TL$ , label 1  $au' < t_{sol} < TL'$ , label 1  $au'' < TL'' < t_{sol}$ , label 0

#### MILP data collection

Measuring the 'work done', i.e., MILP progress requires  $S_{TL,\rho,P}$ , i.e., **basic B&B data**, and comes with a computational overhead:

- ullet might be acceptable from user-perspective: spend resources up to au, to predict on lengthier horizon TL
- should not bias labeling and invalidate data!
- $\longrightarrow$  We opt for a **2-step** *proof-of-concept* implementation:
- Step 1. Run P with CPLEX with TL and assign label depending on  $t_{sol}^P$ . Record # of nodes  $\eta$  at time  $\tau$ .
- Step 2. Reproduce the same run, actively collect data up to  $\eta$  nodes.
  - Offline supervised learning

#### From raw MILP time series

In practice: 25 raw indicators from each node,

- Global state gap, best bound, incumbent, nodes
- Local (node) state LP objective, iinf, depth
- List of open nodes (only few times) length, estimates

#### To get features as progress measures:

- Local info should be combined
- e.g., use nodes' depths to describe tree profile and backtracks
- ! Global info should be interpreted development perspective
  - e.g., measure quality and distance of bounds updates
- ! Measures should be **normalized** across MILP instances e.g., features on objectives need to be *comparable*
- → Make use of *throughputs* and statistical functions
- → Domain-knowledge is a key aspect of feature design!

# Features describing serial MILP data



We develop and select 37 features for learning

→ A **single feature** might carry information about **multiple events**!

# Some experiments

# **Dataset composition**

|                       | # pb.s | # seeas |
|-----------------------|--------|---------|
| Benchmark* MIPLIB2010 | 78     | 3       |
| MILPlib Mittelmann    | 48     | 3       |
| Challenge* MIPLIB2010 | 160    | 1       |

// -- |- - // ----|-

*Initial assessment* of runtimes suggested:

$$TL \in \{1200, 2400, 3600\}, \ \rho = 20\%$$

to get a balanced dataset.



$$\rightarrow$$
 Label split: Class 1 61% - 39% Class 0



<sup>\*</sup> Primal and Infeasible removed

### **Learning setting – Train/test split**

- Multiple points in the dataset come from the same instanceThey might resemble each other if variability is low
- → We test 3 different **train/test splits**:



## Learning setting – Models and method

- All train/test splits have comparable labels proportion
- ullet Data **cleaning**: remove missing values  $\longrightarrow$  **970** data-points
- We experiment with **5 classifiers**:

```
LogReg Logistic Regression
```

**SVM** Support Vector Machines

**RF** Random Forest

**ExT** Extremely Randomized Trees

MLP Multi-layer Perceptron

Dummy Classifier

- Each feature is **normalized** to have 0-mean 1-variance
- Cross-validation to grid-search hyper-parameters
- → Implementation tool: scikit-learn

# Classification results summary

|                       | Dummy | LogReg | SVM  | RF   | ExT  | MLP  |  |  |
|-----------------------|-------|--------|------|------|------|------|--|--|
| Non-homogeneous split |       |        |      |      |      |      |  |  |
| Accuracy              | 0.55  | 0.94   | 0.94 | 0.96 | 0.96 | 0.91 |  |  |
| F1-score              | 0.66  | 0.96   | 0.96 | 0.97 | 0.97 | 0.94 |  |  |
| Homogeneous split     |       |        |      |      |      |      |  |  |
| Accuracy              | 0.59  | 0.90   | 0.91 | 0.94 | 0.95 | 0.86 |  |  |
| F1-score              | 0.69  | 0.93   | 0.93 | 0.95 | 0.96 | 0.89 |  |  |
| Random split          |       |        |      |      |      |      |  |  |
| Accuracy              | 0.57  | 0.93   | 0.94 | 0.94 | 0.93 | 0.93 |  |  |
| F1-score              | 0.67  | 0.94   | 0.95 | 0.95 | 0.95 | 0.95 |  |  |

Overall, RF and ExT are best performing ...bonus interpretability!

# **Top-scoring features**

| Ranking | Score  | Feature description                                     |
|---------|--------|---------------------------------------------------------|
| 1 *     | 0.1856 | Pruned throughput, over processed nodes                 |
| 2 *     | 0.1839 | Pruned throughput, over nodes left                      |
| 3 *     | 0.0805 | Last seen nodes left / max nodes left                   |
| 4 *     | 0.0758 | Proportion of nodes at max objective in open nodes list |
| 5 *     | 0.0632 | Proportion of nodes at min objective in open nodes list |
| 6 *     | 0.0622 | Frequency of backtracks                                 |
| 7 *     | 0.0453 | Frequency of best bound updates                         |
| 8 *     | 0.0324 | Last measured gap                                       |
| 9       | 0.0250 | Max length of observed dives                            |
| 10      | 0.0211 | Best bound value / best integer value                   |
| 11      | 0.0208 | Distance from last best bound update, normalized        |
| 12      | 0.0199 | Best bound - value of objective 5% quantile             |

Top scoring features for RF, averaged across split cases.

# Outlook

## Wrap-up

- Prediction on MILP outcome, after only a share of the available time has passed
- Feature-based sequence classification task
  - Translate MILP progress into a feature vectorProduce heterogeneous and meaningful data
- Proof-of-concept experiments show that there is a statistical pattern to be learned
- Key features reflect know-how and MILP practitioners' experience

# Discussing what's next

- Deepen data analysis (too easy? not diverse enough?), and frame the role of performance variability
  - $\longrightarrow$  Enlarge MILP dataset, play more with parameters  $\mathit{TL}, \rho$
- Consider other ways to tackle sequence classification, e.g., a pattern-based method
  - Characterize and detect frequent, early and distinctive patterns in MILP resolution
- Focus on fewer indicators/patterns to move to an online learning framework
  - On-the-fly prediction/detection to tailor the use of the remaining time

Thanks! Questions?

#### Minimal references

- Achterberg T and Wunderling R (2013) Mixed Integer Programming: Analyzing 12 Years of Progress.
- Klotz E and Newman AM (2013) Practical Guidelines for Solving Difficult Mixed Integer Linear Programs.
- Xing Z et al. (2010) A Brief Survey on Sequence Classification.
- Bishop CM (2006) Pattern Recognition and Machine Learning.