

Australian National University

Workshop on Decomposition Methods

Vladimir Canudas-Romo, Joo Won Park and Wen Su

Day 4

Decomposing Fertility Measures

Research Article

Educational composition and parity contribution to completed cohort fertility change in low-fertility settings

Abstract

Extensive literature has documented the contribution of rising women's education to decreases in completed cohort fertility (CCF). A key question related to the education–fertility relationship is to what extent the decrease in fertility is the result of changes in educational composition vs changes in fertility behaviours within educational categories. This study quantified the effect of educational expansion on fertility levels

Related

Completed Cohort Fertility

$$CCF(t) = \frac{B(t)}{W(t)}$$

CCF decomposition

$$C\dot{C}F =$$

ANU publication fo... no Population Projecti...

CFE database **COHORT FERTILITY AND EDUCATION**

European Research Council Established by the European Commission

Funded by the European Union

EURREP HOME ABOUT **METHODS** CONTACT **DATABASE**

Home >> Database >> Database

Please select country and survey.

CCF decomposition

Table 1: CCF decomposition

	Korea
CCF in 1940	3.850
CCF in 1950	2.650
Total annualized change	-0.119
Fertility component	
Education-composition component	

DEMOGRAPHY

ISSUES

RESEARCH ARTICLE | FEBRUARY 01 2021

Cross-Sectional Average Length of Life Childless 3

Ryohei Mogi; Jessica Nisén; Vladimir Canudas-Romo

Demography (2021) 58 (1): 321-344.

https://doi.org/10.1215/00703370-8937427

oxdots Standard View oxdots PDF oxdots Cite oxdots Share igvee Permissions

Abstract

Increases in the average age at first birth and in the proportion of women remaining childless have extended the total number of years that women spend childless during their reproductive lifetime in several countries. To quantify the number of years that reproductive-age women live without children, we introduce the cross-sectional average length of life childless (CALC). This measure includes all the age-specific first-birth information available for the cohorts present at time t; it is a period measure based on

Cross-sectional Average Length of Life (CAL)

Cross-sectional Average Length of Life Childless (CALC)

$$CALC(t) = \int_{12}^{50} \ell_c(x, t-x) \, dx$$

CALC

$$C\dot{A}LC(t,\xi) = 0$$

$$\int_{12}^{55} \ell_c(x, t-x, \xi) \sum_{a=12}^{x-1} \frac{\dot{p}_a(t-x, \xi)}{p_a(t-x, \xi)} dx$$

CALC decomposition

CALC decomposition

Research Article

The contribution of survival to changes in the net reproduction rate

Abstract

The net reproduction rate (NRR) is an alternative fertility measure to the more common total fertility rate (TFR) and accounts for the mortality context of the population studied. This study is the first to compare NRR trends in high- and low-income countries and to decompose NRR changes over time into fertility and survival components. The results show that changes in the NRR have been driven mostly by changes in fertility. Yet improvements in survival have also played an important role in explaining changes in the NRR over the last century and represent a substantial component of change in some low-income countries today. Furthermore, the decomposition of the survival component by

Rela

Peop r

Did tl 1920 from

> Ham_l Popul

Publis

Cross

Net-Reproduction Rate

$$NRR(t) =$$

$$\int_{\alpha}^{\beta} \ell(a,t) m(a,t) da$$

Net-Reproduction Rate

$$m(a,t) = s(a,t)f(a,t)$$

Figure 1(a) TFR and NRR for periods 1910–2021¹ and cohorts 1880–1972², selected high-income countries ¹Or earliest and latest year available, as described in Table 1.

Note: Cohort rates are lagged by 30 years.

Source: Authors' calculations based on Human Mortality Database (2022) and Human Fertility Database (2022).

²Or earliest and latest birth cohort available, as described in Table A1.

NRR

$$N\dot{R}R =$$

$$\int_{\alpha}^{\beta} \dot{m}(a)\ell(a) + m(a)\dot{\ell}(a) \ da$$

NRR

$$\dot{m}(a) =$$

$$\left[\dot{s}(a)f(a) + s(a)\dot{f}(a)\right]$$

NRR

$$\int_{\alpha}^{\beta} m(a,t)\dot{\ell}(a,t) =$$

$$\sum_{x=0}^{\beta-1} \frac{\dot{p}_x}{p_x} \int_{x+1}^{\beta} m(a,t) \ell(a,t) \ da$$

Figure 2(a) Change in period NRR and its components between 1910¹ and 2021², selected high-income countries

Note: Change in NRR is calculated over five years, for periods from year (*t*–5) to *t*. For example, the first year for the US, 1938, corresponds to the change in NRR from 1933 to 1938.

Source: As for Figure 1(a).

¹Or earliest year available, as described in Table 1.

²Or latest year available, as described in Table 1.

Assignment 4

Select one of the measures in the examples of this section and apply to a different population from HMD or HFD.

Submit ONE page: one Figure (or Table) and a brief paragraph describing the results that you find.