

ESCUELA PROFESIONAL DE INGENIERÍA DE SISTEMAS E INFORMATICA

SIMULACIÓN DE SISTEMAS

TEMA DE SESIÓN: TEORÍA GENERAL DE SISTEMAS

APRENDIZAJES ESPERADOS:

• Elabora modelos con el diagrama de forrester

CAPACIDAD GENERAL:

- Reconoce los diagramas causales.
- Aplica los diagramas causales positivos y negativos

CAPACIDAD ESPECÍFICA:

Dinámica de Sistemas

Objetivo de la Sesión

• Revisar rápidamente los fundamentos de Dinámica de Sistemas relacionados a los Diagramas Causales de Bucle

• **CONTENIDOS**:

- Diagramas causales de bucle
- Retroalimentación positiva y negativa

Introducción a la Dinámica de Sistemas

1. ¿Qué es la dinámica de sistemas?

La dinámica de sistemas es un método para mejorar el aprendizaje y su respectiva solución de sistemas complejos

 Basado en la teoría dinámica no lineal y teoría control de retroalimentación, pero fundamentalmente interdisciplinario

Fundamento

Metodología

 Se puede aplicar cualitativamente (diagrama causal de bucle) y / o cuantitativamente (modelado de simulación) Cuando se usa de manera efectiva: la dinámica de sistemas pone a prueba (y mejora) los modelos mentales, mejora los procesos grupales y ayuda a diseñar mejores políticas

Utilidad

Principales exponentes de la Dinámica de Sistemas

Jay Forrester

Donella Meadows

Peter Senge

John Sterman

¿Qué caracteriza a los sistemas relacionados a estos problemas?

Características de los Sistemas Complejos

Atributos de los Sistemas Complejos:

- ✓ Dinámicos
- ✓ Estrechamente acoplados
- ✓ Regulados por Feedback No lineal
- ✓ Auto-organizándos
- ✓ Adaptativos
- ✓ Evolucionan

Sin embargo, nuestros sistemas mentales son:

- Los vicios que cometemos al intentar resolver estos problemas:
 - √ Horizontes de corto plazo
 - ✓ Los límites entre problemas son estrechos
 - ✓ Perspectivas de bucle abierto
 - ✓ Explicaciones monocausales
 - ✓ Mala comprensión de fenómenos con elementos de la casualidad y la incertidumbre, de comportamiento retroalimentados, retrasos en el tiempo, niveles y flujos, la no linearalidades

Características de los Sistemas Complejos

- Estrechamente acoplado
 - "Todo influye en todo lo demás".
 - "No puedes hacer una sola cosa".
- Dinámico
 - El cambio ocurre en muchas escalas de tiempo
- Resistente a las políticas
- Muchas soluciones obvias a los problemas fallan o en realidad empeoran la situación
- Contraintuitivo
- Causa y efecto distantes en el tiempo y el espacio. Los altos puntos de apalancamiento no son evidentes
- Variables mutuamente relacionadas
- El comportamiento a largo plazo a menudo es diferente del comportamiento a corto plazo

Sistemas complejos

Causas y efectos en sistemas complejos

- Nuestras decisiones tienen múltiples consecuencias.
- Nuestras decisiones cambian el entorno, influyendo en las decisiones de los demás.

Causa y efectos

- Las múltiples consecuencias de nuestras decisiones a menudo se retrasan
- Causa y efecto distantes en el tiempo y el espacio.

Diagramas Causales de Bucle

Relación Positiva

El incremento de una variable aumenta la otra en el tiempo

Relación Negativa

El incremento de una variable disminuye la otra en el tiempo

Ejemplos:

Ejemplos:

Ejemplos:

Capacidad de trabatar en Equipo Nota del Inasistencias Curso TDS

UCF

Recomendaciones para elegir las variables

- ✓ Escoge SUSTANTIVOS no VERBOS
- ✓ Escoge variables con sentido claramente definido
- ✓ Sirve sigue la lógica: si X aumenta, entonces Y (sube/baja). Es un error leer así: si X baja, entonces
- ✓ No tengas miedo a las variables blandas

Bucles positivos/refuerzo

- El bucle de refuerzo es un bucle con ganancia positiva de bucle abierto, es decir, amplifica el cambio en cualquiera de las variables después del ciclo completo.
- Los bucles con todos los enlaces positivos (o un número par de enlaces negativos) son bucles de retroalimentación de refuerzo.
- Los bucles de refuerzo crean un crecimiento o declive exponencial.

Bucles negativos/balance/equilibrio

- El bucle de equilibrio es un bucle con ganancia negativa de bucle abierto, es decir, reduce el cambio inicial en cualquiera de las variables después del ciclo completo
- Los bucles de equilibrio se crean cuando hay un número impar de enlaces negativos.
- Los bucles de equilibrio mueven el sistema hacia una meta. Le dan estabilidad al sistema.

Presión de Limpiar 71 el Madio Ambiente Calidad del Medo Ambiente

Recomendaciones para los Diagramas Causales de Bucle

Sigue estos pasos:

- ✓ Todos los enlaces deben representar relaciones causales reales.
- ✓ Etiqueta los enlace y polaridades del bucle
- ✓ Si una polaridad es ambigua, es posible que le falten conexiones causales.
- ✓ Señale los atrasos
- ✓ Hacer explícitos los enlaces intermedios para aclarar relaciones
- √ Hacer explícitos los bucles negativos.
- ✓ Distinguir entre condiciones reales y condiciones percibidas.
- ✓ Nombra los bucles.

Delays/Retraso

Ejemplo: Facebook

Bibliografía

 MIT SCALE Certificate Program: Sergey Naumov and Ross Collins System Dynamics Group, 2017

Simulación de Sistemas

- © Universidad de Ciencias y Humanidades (UCH)
- © SALAS COZ, ERWIN ERASMO

Primera edición: MARZO, 2022

Asignatura: SIMULACION DE SISTEMAS

Unidad didáctica 2 | Semana 9 | Sesión 1

UNIVERSIDAD DE CIENCIAS Y HUMANIDADES.

ESCUELA PROFESIONAL DE INGENIERÍA DE SISTEMAS E INFORMATICA

Av. Universitaria 5175, Los Olivos, Lima-Perú

