Math 325 Problem Set 7 Solutions

Starred (*) problems were due Friday, October 19.

(*) 38. (Belding and Mitchell, p.89, #10(a)) Show that if $a, b \in \mathbb{R}$, a < b, and $f : (a, b) \to \mathbb{R}$ is uniformly continuous, then f is bounded: there are $M, N \in \mathbb{R}$ so that $M \leq f(x) \leq N$ for every $x \in (a, b)$.

Hint: the argument that we gave in class sort of works, but we can't 'start' at a (it's not in the domain)!. 'Start' in the middle, instead!

Starting from $c = \frac{a+b}{2}$, we have a < b implies that a < c < b, so $c \in (a,b)$. Since f is uniformly continuous, for $\epsilon = 1 > 0$ there is a $\delta > 0$ so that for any $x,y \in (a,b)$ with $|x-y| < \delta$ we have |f(x)-f(y)| < 1. Then by the Archimedean Property, since $\delta > 0$ and b-a > 0, there is an $n \in \mathbb{N}$ so that $n\delta > b-a$.

Then for any $x \in (a,b)$ we have |x-c| < (b-a)/2, since either $a < x \le c$ or $c \le x < b$ and |c-a| = |b-c| = (b-a)/2, so x lies in an interval of length (b-a)/3 with one endpoint equal to c. Therefore $|x-c| < (b-a)/2 < (n\delta)/2 = n(\delta/2)$, and so we can pick n+1 equally spaced points $x_0 = x, x_1, \ldots, x_n = c$ each pair being a distance $|x_{i+1} - x_i| = |x-c|/n < \delta/2$ apart. Therefore, $|f(x_{i+1}) - f(x_i)| < 1$, and so, by the triangle inequality and induction (as we did in class), we have $|f(x) - f(c)| = |f(x_0) - f(x_n)| < n \cdot 1 = n$. Therefore, M = f(c) - n < f(x) < f(c) + n + N. Since this is true for every $x \in (a,b)$, we have found constants M and N so that M < f(x) < N for every $x \in (a,b)$, so f is bounded.

(*) 40. (Belding and Mitchell, p., #5, the other part) If $a, b \in \mathbb{R}$ and $f, g : (a, b) \to \mathbb{R}$ are uniformly continuous, show that $fg : (a, b) \to \mathbb{R}$ is uniformly continuous. Show, by example, on the other hand that $f, g : \mathbb{R} \to \mathbb{R}$ both uniformly continuous does <u>not</u> imply that $fg : \mathbb{R} \to \mathbb{R}$ is uniformly continuous.

[Hint: for the first, try to follow the 'usual' continuity argument for products; problem #38 will help! for the second, you don't need to get very creative...]

Since f and g are both uniformly continuous on (a,b), by problem #38 we know that both f and g are bounded, and so there are $M,N\in\mathbb{R}$ so that $|f(x)|\leq M$ and $|g(x)|\leq N$ for all $x\in(a,b)$. Also, since they are uniformly continuous, for each $\epsilon>0$ there are $\delta_1,\delta_2>0$ so that (this next comes <u>after</u> running through the argument, and coming back to "fix" the bounds that we need to get our final statement!) $x,y\in(a,b)$ and $|x-y|<\delta_1$ implies that $|f(x)-f(y)|<\epsilon/(2N)$, and $|x-y|<\delta_2$ implies that $|g(x)-g(y)|<\epsilon/(2M)$.

Then if we set $\delta = \min(\delta_1, \delta_2) > 0$, then $x, y \in (a, b)$ and $|x - y| < \delta$ implies that $|x - y| < \delta_1$ so $|f(x) - f(y)| < \epsilon/(2N)$, and $|x - y| < \delta_2$ so $|g(x) - g(y)| < \epsilon/(2M)$, and then

$$\begin{split} |(fg)(x) - (fg)(y)| &= |f(x)g(x) - f(y)g(y)| |f(x)g(x) - f(x)g(y) + f(x)g(y) - f(y)g(y)| \leq \\ |f(x)g(x) - f(x)g(y)| + |f(x)g(y) - f(y)g(y)| &= |f(x)| \cdot |g(x) - g(y)| + |g(y) \cdot |f(x) - f(y)| \leq \\ |M \cdot |g(x) - g(y)| + |N \cdot |f(x) - f(y)| &< M \cdot \epsilon / (2M) + N \cdot \epsilon / (2N) = \epsilon / 2 + \epsilon / 2 = \epsilon \end{split}.$$

So $x, y \in (a, b)$ and $|x - y| < \delta$ implies that $|(fg)(x) - (fg)(y)| < \epsilon$, and so fg is uniformly continuous.

[This is not how the argument was discovered! The last set of inequalities was carried out with the intention of finding out what the quantities $\epsilon/(2M)$, $\epsilon/(2N)$ needed to be in order to get a nice quantity at the end... Formally, we should also insist that N > 0 and M > 0 by replacing either of them which is (well, the only other possibility is really) 0 with 1 > 0, if necessary...]

On the other hand, this <u>fails</u> if we replace (a,b) with \mathbb{R} , since then we can't rely on the boundedness of f and g. As an example, both f(x) = x and g(x) = x are uniformly continuous ($\delta = \epsilon$ will always work), but $(fg)(x) = x^2$, as a function from \mathbb{R} to \mathbb{R} , is not uniformly continuous, since $|(fg)(x) - (fg)(y)| = |x^2 - y^2| = |x - y| \cdot |x + y| < \epsilon$ requires that $|x - y| < \epsilon/|x + y|$, but for any $\delta > 0$, we can pick y so large that $x = y + \delta/2$ will have $|x - y| = \delta/2$, but $|x^2 - y^2| = x^2 - y^2 = (y + \delta/2)^2 - y^2 = 2y\delta/2 + (\delta/2)^2 > y\delta > \epsilon$ (by choosing $y > \epsilon/delta$. So no δ will work for every x and y, so fg is not uniformly continuous.

(*) 44. A function $f: \mathbb{R} \to \mathbb{R}$ is called *periodic* if there is a P > 0 so that f(x+P) = f(x) for every $x \in \mathbb{R}$. Show that if f is periodic and continuous, then f is uniformly continuous.

[Hint: you can always insist that your δ 's be smaller than some particular positive number (why?).]

Because f is continuous, then as a function from [0,2P] to \mathbb{R} , $g=f|_{[0,2P]}$ is continuous and therefore uniformly continuous. We can therefore, for every $\epsilon>0$, find a $\delta>0$ so that $x,y\in[0,2P]$ and $|x-y|<\delta_0$ implies that $|g(x)-g(y)|=|f(x)-f(y)|<\epsilon$. Then if we set $\delta=\min(\delta_0,P)>0$, then $x,y\in[0,2P]$ and $|x-y|<\delta$ implies that $|x-y|<\delta_0$, as well, so $|g(x)-g(y)|=|f(x)-f(y)|<\epsilon$, as well.

But now if $x, y \in \mathbb{R}$ and $|x - y| < \delta$, then |x - y| < P (so x - P < y < x + P), and so if we assume, WOLOG, that $x \le y$ and find the $n \in \mathbb{Z}$ so that $nP \le x < (n+1)P$, then $nP < x \le y < x + P < (n+2)P$. Then $x - nP, y - nP \in [0, 2P]$ and $|(x - nP) - (y - nP)| = |x - y| < \delta$, and so

 $|g(x-nP)-g(y-nP)| < \epsilon$. Therefore $|x-y| < \delta$ implies that $|(x-nP)-(y-nP)| < \delta$ and so $|f(x)-f(y)| = |f(x-nP)-f(y-nP)| = |g(x-nP)-g(y-nP)| < \epsilon$, where for the first equality we used the periodicity of f. So $|x-y| < \delta$ implies that $|f(x)-f(y)| < \epsilon$. So f is uniformly continuous.

A selection of further solutions.

41. (Belding and Mitchell, p.89, #14) Let f and g be uniformly continuous on \mathbb{R} . Prove that their composition $f \circ g$ is also uniformly continuous on \mathbb{R} .

Given $\epsilon > 0$, since f is uniformly continuous, there is an $\eta > 0$ so that $x, y \in \mathbb{R}$ and $|x-y| < \eta$ implies that $|f(x)-f(y)| < \epsilon$. But then, because g is uniformly continuous, there is a $\delta > 0$ so that $x, y \in \mathbb{R}$ and $|x-y| < \delta$ implies that $|g(x)-g(y)| < \eta$.

Therefore, if $x, y \in \mathbb{R}$ and $|x - y| < \delta$, then $(g(x), g(y) \in \mathbb{R}$ and $|g(x) - g(y)| < \eta$, and so $|f(g(x)) - f(g(y))| = |(f \circ g)(x) - (f \circ g)(y)| < \epsilon$. So for every $\epsilon > 0$ we have found our $\delta > 0$ that works everywhere, and so $f \circ g$ is uniformly continuous.

43. Suppose that $f:[a,b] \to \mathbb{R}$ is continuous, and define a new function $g:[a,b] \to \mathbb{R}$ by $g(x) = \text{lub}\{f(t) : a \le t \le x\}$. Show that g is also continuous!

[Hint: that least upper bound is (always) achieved!]

Note first that g is an increasing (well, non-decreasing) function, since $x \leq y$ implies that $[a,x] \subseteq [a,y]$ and so $\{f(t): t \in [a,x]\} \subseteq \{f(t): t \in [a,y]\}$ and larger sets have larger l.u.b.'s.

We want to show that for every $c \in [a, b]$ and $\epsilon > 0$, we wish to find a $\delta > 0$ so that $x \in [a, b]$ and $|x - c| < \delta$ implies that $|g(x) - g(c)| < \epsilon$. But we know that $g(c) = lub\{f(t) : a \le t \le c\}$, and since f is continuous on [a, c], the Extreme Value Theorem tells us that $g(c) = f(x_c)$ for some $x_c \in [a, c]$.

Probably the cleanest way to proceed is to consider two possibilities: either $x_c = c$ or $x_c < c$. If $x_c = c$, then using the continuity of f, for any $\epsilon > 0$, there is a $\delta > 0$ so that $|x - c| < \delta$ (and $x \in [a, b]$) implies that $|f(x) - f(c)| < \epsilon$, and so $f(c) - \epsilon < f(x) < f(c) + \epsilon$. This means that for $t \in [a, x]$ we either have $t \in [a, c]$ and so $f(t) \le f(x_c) = f(c)$, or (x > c and) $t \in [c, x]$ and so $|t - c| = t - c < x - c = |x - c| < \delta$ and so $f(t) < f(c) + \epsilon$, so in any case $f(t) < f(c) + \epsilon$ for all $t \in [a, x]$ and so $g(x) \le f(c) + \epsilon = g(c) + \epsilon$. On the other hand, $f(x) > f(c) - \epsilon = g(c) - \epsilon$, so $g(x) > g(c) + \epsilon$. Therefore, in the case that $x_c = c$, so g(c) = f(c), we have $|x - c| < \delta$ implies that $g(c) - \epsilon < g(x) \le g(c) + \epsilon$, and so $|g(x) - g(c)| \le \epsilon$. (The annoyance of the \le that we get can be eliminated by starting whole argument again and pretendint we were working with $\epsilon/2$, instead.) So we have established that continuity of g at c holds, when $x_c = c$.

On the other hand, if $x_c < c$, then $c - x_c = \eta > 0$, and so x < c and $c - x < \eta$ implies that for $t \in [x, c]$ we have $f(t) \le f(x_c)$ and so $g(x) = f(x_c)$ (since $x_c \in [a, x]$) and so g(x) = g(c), when $c - \eta < x < c$. On the other hand, for any $\epsilon > 0$ there is a $\delta_0 > 0$ so that $|x - c| < \delta_0$ implies that $|f(x) - f(c)| < \epsilon$, and so $c \le x < c + \delta_0$ implies that $f(x) < f(c) + \epsilon \le f(x_c) + \epsilon = g(c) + \epsilon$. So $t \in [a, x]$ implies that either $t \in [a, c]$, so $f(t) \le g(c)$ (since g(c) is a l.u.b.), or $t \in [c, x]$ so $|t - c| < \delta$ and so $f(t) < g(c) + \epsilon$. Therefore $g(x) \le g(c) + \epsilon$. Therefore, g(x) = g(c) for $x \in (c - \eta, c]$, and $g(c) \le g(x) \le g(c) + \epsilon$ for $x \in [c, c + \delta_0)$. So setting $\delta = \min(\eta, delta_0)$ gives that $|x - c| < \delta$ implies either $x \le c$ and g(x) = g(c), so $|g(x) - g(c)| = 0 < \epsilon$, or $x \ge c$ and so $g(c) \le g(x) \le g(c) + \epsilon$, so $|g(x) - g(c)| \le \epsilon$. So in either case, $|x - c| < \delta$ implies that $|g(x) - g(c)| \le \epsilon$, giving continuity of g at c in the case that $x_c < c$.

So in every case, g is continuous at c for every $c \in [a, b]$, and so g is continuous.