Efficient Black-box Checking of Snapshot Isolation in Databases

(Conference VLDB'2024)

Hengfeng Wei

hfwei@nju.edu.cn

August 16, 2023

Transaction and Isolation Level

A transaction is a *group* of operations that is executed atomically.

Transaction and Isolation Level

A transaction is a *group* of operations that is executed atomically.

$$\begin{aligned} x_1 &\leftarrow \mathsf{R}(acct_1) \\ x_2 &\leftarrow \mathsf{R}(acct_2) \\ \mathbf{if} \ x_1 + x_2 &> 100 \\ x_1 &\leftarrow x_1 - 100 \\ \mathsf{W}(acct_1, x_1) \end{aligned}$$

$$\begin{aligned} x_1 &\leftarrow \mathsf{R}(\mathit{acct}_1) \\ x_2 &\leftarrow \mathsf{R}(\mathit{acct}_2) \\ \mathbf{if} \ x_1 + x_2 &> 100 \\ x_2 &\leftarrow x_2 - 100 \\ \mathsf{W}(\mathit{acct}_2, x_2) \end{aligned}$$

$$x_1 \leftarrow \mathsf{R}(\underbrace{acct_1}) \\ x_2 \leftarrow \mathsf{R}(\underbrace{acct_2})$$

$${\it acct}_1 = {\it acct}_2 = 60$$

Transaction and Isolation Level

A transaction is a *group* of operations that is executed atomically.

The isolation levels specify how they are isolated from each other.

All transactions appear to execute in some total order.

too expensive, especially for distributed transactions

Snapshot Read: Each transaction reads data from a *snapshot* of committed data valid as of the (logical) time the transaction started.

Snapshot Write: Concurrent transactions cannot write to the same key. One of them must be aborted.

Snapshot Write: Concurrent transactions cannot write to the same key. One of them must be aborted.

Snapshot Write: Concurrent transactions cannot write to the same key. One of them must be aborted.

Databases and Snapshot Isolation

 ${\rm database\ logos}$ Many databases claim to support SI.

Databases and Snapshot Isolation

+papers
Databases may fail to provide SI as they claim.

Definition (The SI Checking Problem)

The SI checking problem is the decision problem of determing whether a given history $\mathcal{H} = (T, SO)$ satisfies SI?

Definition (The SI Checking Problem)

The SI checking problem is the decision problem of determing whether a given history $\mathcal{H} = (T, SO)$ satisfies SI?

 $\mathsf{SO}: session\ order\ \mathrm{among}\ \mathrm{the\ set}\ T\ \mathrm{of\ transactions}$

Black-box checking: do not rely on database internals

The histories are collected from database logs.

Black-box checking: do not rely on database internals

The histories are collected from database logs.

Black-box checking: do not rely on database internals

The histories are collected from database logs.

Sound: If the checker says \times , then the history does not satisfy SI.

Complete: If the checker says \checkmark , then the history satisfies SI.

Efficient: The checker should *scale* up to large workloads.

Informative: The checker should provide understandable counterexamples if it says \times .

related-work

Sound & Complete: polygraph-based characterization of SI

Efficient: utilizing MonoSAT solver optimized for graph problems

Efficient: domain-specific pruning before encoding

Informative: extract counterexamples from the unsatisifiable core

 $\frac{T_0}{\mathsf{W}({\color{red}acct},0)}$

$$oxed{T_A'}{oxed{\mathsf{R}(\mathit{acct},25)}}$$

$$\frac{\mathsf{R}(\textit{acct}, 0)}{\mathsf{W}(\textit{acct}, 25)}$$

WR: "write-read" dependency capturing the "read-from" relation

WW: "write-write" dependency capturing the version order

WW: "write-write" dependency capturing the version order

RW: "read-write" dependency capturing the overwritten relation

RW: "read-write" dependency capturing the overwritten relation

undesired cycle: $T_A \xrightarrow{WW} T_B \xrightarrow{RW} T_A$

We have considered both bases $T_A \xrightarrow{\mathsf{WW}} T_B$ and $T_B \xrightarrow{\mathsf{WW}} T_A$.

Either case leads to an undesired cycle.

Therefore, it does not satisfy SI.

Theorem (Theorem 4.1 of [Cerone and Gotsman, 2018])
Informally, a history satisfies SI if only if
there exists a dependency graph for it that contains
only cycles (if any) with at least two adjacent RW edges.

Every possible dependency graph contains an undesired

For a history
$$\mathcal{H} = (T, SO)$$
,
$$\mathcal{H} \models SI \iff \mathcal{H} \models Int \land$$
$$\exists WR, WW, RW. \mathcal{G} = (\mathcal{H}, WR, WW, RW) \land$$
$$(((SO_{\mathcal{G}} \cup WR_{\mathcal{G}} \cup WW_{\mathcal{G}}) ; RW_{\mathcal{G}}?) \text{ is acyclic}).$$

For a history
$$\mathcal{H} = (T, \mathsf{SO})$$
,
$$\mathcal{H} \models \mathsf{SI} \iff \mathcal{H} \models \mathsf{INT} \land$$
$$\exists \mathsf{WR}, \mathsf{WW}, \mathsf{RW}. \ \mathcal{G} = (\mathcal{H}, \mathsf{WR}, \mathsf{WW}, \mathsf{RW}) \land$$
$$(((\mathsf{SO}_{\mathcal{G}} \cup \mathsf{WR}_{\mathcal{G}} \cup \mathsf{WW}_{\mathcal{G}}) \ ; \ \mathsf{RW}_{\mathcal{G}}?) \ is \ acyclic).$$

For a history
$$\mathcal{H} = (T, \mathsf{SO})$$
,
$$\mathcal{H} \models \mathsf{SI} \iff \mathcal{H} \models \mathsf{INT} \land$$
$$\exists \mathsf{WR}, \mathsf{WW}, \mathsf{RW}. \ \mathcal{G} = (\mathcal{H}, \mathsf{WR}, \mathsf{WW}, \mathsf{RW}) \land$$
$$(((\mathsf{SO}_{\mathcal{G}} \cup \mathsf{WR}_{\mathcal{G}} \cup \mathsf{WW}_{\mathcal{G}}) \ ; \ \mathsf{RW}_{\mathcal{G}}?) \ is \ acyclic).$$

For a history
$$\mathcal{H} = (T, \mathsf{SO})$$
,
$$\mathcal{H} \models \mathsf{SI} \iff \mathcal{H} \models \mathsf{INT} \land$$
$$\exists \mathsf{WR}, \mathsf{WW}, \mathsf{RW}. \ \mathcal{G} = (\mathcal{H}, \mathsf{WR}, \mathsf{WW}, \mathsf{RW}) \land$$
$$(((\mathsf{SO}_{\mathcal{G}} \cup \mathsf{WR}_{\mathcal{G}} \cup \mathsf{WW}_{\mathcal{G}}) \ ; \ \mathsf{RW}_{\mathcal{G}}?) \ is \ acyclic).$$

For a history
$$\mathcal{H} = (T, \mathsf{SO})$$
,
$$\mathcal{H} \models \mathsf{SI} \iff \mathcal{H} \models \mathsf{INT} \land$$
$$\exists \mathsf{WR}, \mathsf{WW}, \mathsf{RW}. \ \mathcal{G} = (\mathcal{H}, \mathsf{WR}, \mathsf{WW}, \mathsf{RW}) \land$$
$$(((\mathsf{SO}_{\mathcal{G}} \cup \mathsf{WR}_{\mathcal{G}} \cup \mathsf{WW}_{\mathcal{G}}) \ ; \ \mathsf{RW}_{\mathcal{G}}?) \ is \ acyclic).$$

\mathcal{Q} : How to capture and resolve all possible WW dependencies?

 $\mathcal{Q}:$ How to capture and resolve all possible WW dependencies?

 $\mathcal{A}:$ encode them into SAT formulas based on (generalized) polygraphs and solve them using SAT solvers.

Polygraphs: A Family of Dependency Graphs

Consider the two cases of WW dependencies between T_A and T_B .

Polygraphs: A Family of Dependency Graphs

Consider the two cases of WW dependencies between T_A and T_B .

generalized polygraph:

Polygraphs: A Family of Dependency Graphs

Consider the two cases of WW dependencies between T_A and T_B .

generalized polygraph:

 $T_A \xrightarrow{\mathsf{WW}} T_0$ can be pruned due to the $T_A \xrightarrow{\mathsf{WW}} T_0 \xrightarrow{\mathsf{WR}} T_A$ cycle.

 $T_A \xrightarrow{WW} T_B$ is pruned due to the $T_A \xrightarrow{WW} T_B \xrightarrow{RW} T_A$ cycle.

 $T_A \xrightarrow{\mathsf{WW}} T_B$ is pruned due to the $T_A \xrightarrow{\mathsf{WW}} T_B \xrightarrow{\mathsf{RW}} T_A$ cycle. $T_B \xrightarrow{\mathsf{WW}} T_A$ is pruned due to the $T_B \xrightarrow{\mathsf{WW}} T_A \xrightarrow{\mathsf{RW}} T_B$ cycle.

 $T_A \xrightarrow{\mathsf{WW}} T_B$ is pruned due to the $T_A \xrightarrow{\mathsf{WW}} T_B \xrightarrow{\mathsf{RW}} T_A$ cycle. $T_B \xrightarrow{\mathsf{WW}} T_A$ is pruned due to the $T_B \xrightarrow{\mathsf{WW}} T_A \xrightarrow{\mathsf{RW}} T_B$ cycle.

Therefore, we are sure that the history does *not* satisfy SI.

Theorem (Theorem 4.1 of [Cerone and Gotsman, 2018])
Informally, a history satisfies SI if only if
there exists a dependency graph for it that contains
only cycles (if any) with at least two adjacent RW edges.

Theorem (Theorem 4.1 of [Cerone and Gotsman, 2018])
Informally, a history satisfies SI if only if
there exists a dependency graph for it that contains
only cycles (if any) with at least two adjacent RW edges.

$$T_0 \left[\mathsf{W}(x,0) \; \mathsf{W}(y,0) \right]$$

$$oxed{T_1} oxed{\mathsf{W}(x,1)}$$

$$T_0 \left[\mathsf{W}(x,0) \; \mathsf{W}(y,0) \right]$$

$$egin{aligned} T_1 \ \hline old (old x,1) \ \end{matrix}$$

$$T_0 \left[\mathsf{W}(x,0) \; \mathsf{W}(y,0) \right]$$

order between T_0 , T_1 , and T_5 (on x) and between T_0 and T_2 (on y)

The $T_5 \xrightarrow{\mathsf{WW}(x)} T_0$ case is pruned due to $T_0 \xrightarrow{\mathsf{SO}} T_5 \xrightarrow{\mathsf{WW}(x)} T_0$.

The $T_0 \xrightarrow{WW(x)} T_5$ case becomes known.

The $T_1 \xrightarrow{\mathsf{WW}(x)} T_0$ case is pruned due to $T_3 \xrightarrow{\mathsf{RW}(x)} T_0 \xrightarrow{\mathsf{WR}(y)} T_3$.

The $T_0 \xrightarrow{\mathsf{WW}(x)} T_1$ case becomes known.

The $T_2 \xrightarrow{\mathsf{WW}(y)} T_0$ case is pruned, while the $T_0 \xrightarrow{\mathsf{WW}(y)} T_2$ case becomes known.

The order between T_1 and T_5 is still uncertain after pruning.

(,)

$$\begin{array}{c|c} T_1 & \mathsf{WR}(x) & T_3 \\ \hline \mathsf{W}(x,1) & \mathsf{R}(x,1) \; \mathsf{R}(y,0) \end{array}$$

$$T_0 \left[\mathsf{W}(x,0) \; \mathsf{W}(y,0) \right]$$

$$W(x,2)$$
 T_5

$$\begin{array}{c} \left[\mathsf{R}(\boldsymbol{x},0) \; \mathsf{R}(\boldsymbol{y},1) \right] \\
T_4 \end{array}$$

$$\langle either = \{T_1 \xrightarrow{\mathsf{WW}(x)} T_5, T_3 \xrightarrow{\mathsf{RW}(x)} T_5\}, \qquad \rangle$$

$$T_1 \xrightarrow{\mathsf{WR}(x)} T_3 \xrightarrow{\mathsf{RW}(x, 1)} \mathsf{R}(x, 1) \mathsf{R}(y, 0)$$

$$T_0 \xrightarrow{\mathsf{W}(x, 0)} \mathsf{W}(y, 0) \xrightarrow{\mathsf{W}(x, 2)} T_5$$

$$\mathsf{W}(y, 1) \xrightarrow{\mathsf{R}(x, 0)} \mathsf{R}(y, 1)$$

$$T_2 \xrightarrow{\mathsf{R}(x, 0)} \mathsf{R}(y, 1)$$

$$T_4$$

$$\langle either = \{T_1 \xrightarrow{\mathsf{WW}(x)} T_5, T_3 \xrightarrow{\mathsf{RW}(x)} T_5\}, or = \{T_5 \xrightarrow{\mathsf{WW}(x)} T_1\} \rangle$$

$$T_1 \qquad \mathsf{WR}(x) \qquad T_3 \qquad \mathsf{R}(x, 1) \; \mathsf{R}(y, 0)$$

$$T_0 \qquad \mathsf{W}(x, 0) \; \mathsf{W}(y, 0) \qquad \mathsf{W}(x) \qquad \mathsf{RW}(x)$$

$$T_0 \qquad \mathsf{W}(x, 0) \; \mathsf{W}(y, 0) \qquad \mathsf{RW}(x) \qquad \mathsf{RW}(x)$$

$$T_0 \qquad \mathsf{W}(x, 0) \; \mathsf{W}(y, 0) \qquad \mathsf{RW}(x) \qquad \mathsf{RW}(x)$$

$$T_0 \qquad \mathsf{W}(x, 0) \; \mathsf{W}(y, 0) \qquad \mathsf{RW}(x) \qquad \mathsf{RW}(x)$$

$$\langle either = \{T_1 \xrightarrow{\mathsf{WW}(x)} T_5, T_3 \xrightarrow{\mathsf{RW}(x)} T_5\}, or = \{T_5 \xrightarrow{\mathsf{WW}(x)} T_1\} \rangle$$

$$\begin{array}{c} T_1 \\ \hline{\mathsf{W}(x,1)} & T_3 \\ \hline{\mathsf{W}(x,1)} & \mathsf{R}(x,1) \; \mathsf{R}(y,0) \\ \hline\\ T_0 & \mathsf{W}(x,0) \; \mathsf{W}(y,0) \\ \hline\\ \hline\\ W(x,2) & T_5 \\ \hline\\ \hline\\ W(x,2) & T_5 \\ \hline\\ \hline\\ \mathsf{W}(x,2) & T_5 \\ \hline\\ \\ \mathsf{W}(x,2) & T_5 \\ \hline\\ \\ \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) \\ \hline\\ \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) \\ \hline\\ \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) \\ \hline\\ \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) \\ \hline\\ \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) \\ \hline\\ \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) \\ \hline\\ \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) \\ \hline\\ \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) \\ \hline\\ \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) \\ \hline\\ \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) \\ \hline\\ \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) \\ \hline\\ \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) \\ \hline\\ \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) \\ \hline\\ \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) \\ \hline\\ \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) \\ \hline\\ \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) \\ \hline\\ \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) & \mathsf{W}(x,3) \\ \hline\\ \mathsf{W}(x,3) & \mathsf{W}($$

 $\boxed{ ((\mathsf{SO}_\mathcal{G} \cup \mathsf{WR}_\mathcal{G} \cup \mathsf{WW}_\mathcal{G}) \; ; \; \mathsf{RW}_\mathcal{G}?) } \; \mathit{is acyclic}.$

 $((SO_{\mathcal{G}} \cup WR_{\mathcal{G}} \cup WW_{\mathcal{G}}) \; ; \; RW_{\mathcal{G}}?) \quad \textit{is acyclic}.$

We need to encode the "composition (;)" of dependency edges.

 $((SO_{\mathcal{G}} \cup WR_{\mathcal{G}} \cup WW_{\mathcal{G}}) \; ; \; RW_{\mathcal{G}}?) \quad \textit{is acyclic.}$

We need to encode the "composition (;)" of dependency edges.

$$T_1 \xrightarrow{\mathsf{WR}} T_3 \xrightarrow{\mathsf{RW}} T_2 : \mathsf{BV}_{1,2}^{I} = \mathsf{BV}_{1,3} \wedge \mathsf{BV}_{3,2} \quad (I \text{ for the induced graph})$$

→□ → ←団 → ← 重 → ← 重 → りへで

 $((SO_{\mathcal{G}} \cup WR_{\mathcal{G}} \cup WW_{\mathcal{G}}) \; ; \; RW_{\mathcal{G}}?) \quad \textit{is acyclic.}$

We need to encode the "composition (;)" of dependency edges.

$$T_1 \xrightarrow{\mathsf{WR}} T_3 \xrightarrow{\mathsf{RW}} T_2 : \mathsf{BV}_{1,2}^{I} = \mathsf{BV}_{1,3} \land \mathsf{BV}_{3,2} \quad (I \text{ for the induced graph})$$
 $T_1 \xrightarrow{\mathsf{WR}} T_3 \xrightarrow{\mathsf{RW}} T_5 : \mathsf{BV}_{1,5}^{I} = \mathsf{BV}_{1,3} \land \mathsf{BV}_{3,5} \quad (I \text{ for the induced graph})$

28 / 44

PolySI: An Illustrating Example of "Long Fork"

Feed the SAT formula into the MonoSAT solver [MonoSAT:AAAI2015] optimized for cycle detection

Assert that the induced graph I is acyclic.

PolySI: An Illustrating Example of "Long Fork"

The undesired cycle for "long fork" found by MonoSAT.

Experimental Evaluation

- (1) Effective: Can PolySI find SI violations in production databases?
- (2) *Informative:* Can PolySI provide understandable counterexamples for SI violations?
- (3) *Efficient:* How efficient is PolySI? Is it scalable?

Workloads, Benchmarks, and Setup

Finding SI Violations

Understanding Violations

Performance

Scalability

Conclusion

Hengfeng Wei (hfwei@nju.edu.cn)

Cerone, Andrea and Alexey Gotsman (Jan. 2018). "Analysing Snapshot Isolation". In: *J. ACM* 65.2. ISSN: 0004-5411. DOI: 10.1145/3152396. URL: https://doi.org/10.1145/3152396.