The Yamabe Problem

Xinran Yu

April 9th, 2021

- 1. The Yamabe Problem
- 2. Main Results
- 3. The model case: sphere
- 4. The subcritical solution
- 5. The test function estimate
- 6. Summary

Motivation

In 2D case

Uniformazation Theorem

Every simply connected Riemann surface S is conformally equivalent to

- the unit disk
- the complex plane
- or the Riemann sphere

Motivation

In 2D case

Uniformazation Theorem

Every simply connected Riemann surface S is conformally equivalent to

- the unit disk
- the complex plane
- or the Riemann sphere

The theorem is consequence of the fact that every Riemann surface has a conformal metric with constant Gaussian curvature.

In 2D case

Uniformazation Theorem

Every simply connected Riemann surface S is conformally equivalent to

- the unit disk
- the complex plane
- or the Riemann sphere

The theorem is consequence of the fact that every Riemann surface has a conformal metric with constant Gaussian curvature.

Definition

Two Riemannian metrics g and h are **conformal** if there exists positive function $f \in C^{\infty}(M)$ such that $h = e^{2f}q$.

Question: Does this holds for higher dimension?

Question: Does this holds for higher dimension?

For a general Riemannian manifold (M,g) with $\dim M \geq 3$, there are several choices of curvatures:

- Riemannian curvature tensor
- Ricci curvature
- scalar curvature

Question: Which curvature to choose?

Question: Does this holds for higher dimension?

For a general Riemannian manifold (M,g) with $\dim M \geq 3$, there are several choices of curvatures:

- Riemannian curvature tensor, n^4 components
- Ricci curvature, n^2 components
- scalar curvature, 1 component

Question: Which curvature to choose?

The Yamabe Problem

Given a compact Riemannian manifold (M,g) with $n=\dim M\geq 3$, find a metric conformal to g with constant scalar curvature.

Yamabe's Approach to the Problem

Yamabe's Approach to the Problem

Given two metrics g and \tilde{g} , the transformation law between the scalar curvatures S and \tilde{S} ,

$$\tilde{S} = \varphi^{1-p}(a\Delta\varphi + S\varphi).$$

Here φ satisfies $\tilde{g}=\varphi^{p-2}g$ and $a=\frac{4(n-1)}{n-2},\,p=\frac{2n}{n-2}$ are constants.

Yamabe's Approach to the Problem

Given two metrics g and \tilde{g} , the transformation law between the scalar curvatures S and \tilde{S} ,

$$\tilde{S} = \varphi^{1-p}(\mathbf{a}\Delta\varphi + \mathbf{S}\varphi).$$

Here φ satisfies $\tilde{g} = \varphi^{p-2}g$ and $a = \frac{4(n-1)}{n-2}, p = \frac{2n}{n-2}$ are constants.

Define $\square=a\Delta+S$ and call it the **conformal Laplacian**. Let $\tilde{S}=\lambda=\mathrm{const.}$ Then

$$\Box \varphi = \lambda \varphi^{p-1}. \tag{*}$$

$$Q_g(\varphi) = \frac{\int_M a |\nabla \varphi|^2 + S\varphi^2 \, \mathrm{d}V_g}{\left(\int_M |\varphi|^p \, \mathrm{d}V_g\right)^{2/p}} = \frac{E(\varphi)}{\|\varphi\|_p^2}.$$

$$Q_g(\varphi) = \frac{\int_M a |\nabla \varphi|^2 + S\varphi^2 \, \mathrm{d}V_g}{\left(\int_M |\varphi|^p \, \mathrm{d}V_g\right)^{2/p}} = \frac{E(\varphi)}{\|\varphi\|_p^2}.$$

By Hölder's inequality $Q_g(\varphi)$ is bounded below so we can take the infimum

Definition

The **Yamabe invariant** is the constant

$$\lambda(M) = \inf\{Q_g(\varphi) \mid \varphi \in C^{\infty}(M) \text{ and positive}\}$$
$$= \inf\{Q_g(\varphi) \mid \varphi \in L_1^2(M)\}.$$

 $\lambda(M)$ is an invariant of the conformal class of (M,g).

Main Results

Theorem A (Yamabe, Trudinger, Aubin)

For any compact manifold M with $\lambda(M) < \lambda(S^n)$, the Yamabe problem is solvable.

For any compact manifold M with $\lambda(M) < \lambda(S^n)$, the Yamabe problem is solvable.

Theorem B (Aubin)

If M has dimension $n \geq 6$ and M is not locally conformally flat, then $\lambda(M) < \lambda(S^n)$.

Theorem C (Schoen)

If M has dimension n=3,4,5 or M is locally conformally flat, then either $\lambda(M) < \lambda(S^n)$ or M is conformal to the n-sphere.

Definition

A map $F:(M,g)\to (N,h)$ is **conformal** if the induced metric F^*h is conformal to the original metric g on M. If F is a diffeomorphism, then we call F a **conformal diffeomorphism**.

Definition

A map $F:(M,g)\to (N,h)$ is **conformal** if the induced metric F^*h is conformal to the original metric g on M. If F is a diffeomorphism, then we call F a **conformal diffeomorphism**.

Example

- The stereographic map σ is a conformal diffeomorphism.
- Rotations, $\sigma^{-1}\tau_v\sigma$ and $\sigma^{-1}\delta_\alpha\sigma$ are conformal diffeomorphisms.

The Yamabe Problem on the Sphere

Let (S^n, \bar{g}) be the n-sphere with standard metric, then $S = \frac{n(n-1)}{r^2}$. So the Yamabe problem is solvable on the sphere. Moreover, one can prove the following.

The Yamabe Problem on the Sphere

Let (S^n, \bar{g}) be the n-sphere with standard metric, then $S = \frac{n(n-1)}{r^2}$. So the Yamabe problem is solvable on the sphere. Moreover, one can prove the following.

Theorem

The Yamabe functional $Q_g(\varphi)$ on (S^n, \bar{g}) is minimized by constant multiples of \bar{g} and its images under conformal diffeomorphisms. These are the only metrics conformal to \bar{g} with constant scalar curvature.

An Upper Bound for $\lambda(M)$

Lemma (Aubin)

For any compact Riemannian manifold (M,g) of dimension $n \geq 3$, $\lambda(M) \leq \lambda(S^n) = \Lambda$.

Proof. Step 1. Consider the function $\varphi = \eta \cdot u_{\alpha}(x)$ where

- η is a radical cut off function, supp $\eta = B_{2\epsilon}, \, \eta|_{B_{\epsilon}} = 1$;
- $u_{\alpha}(x) = \left(\frac{|x|^2 + \alpha^2}{\alpha}\right)^{(n-2)/2}$.

An Upper Bound for $\lambda(M)$

Lemma (Aubin)

For any compact Riemannian manifold (M,g) of dimension $n\geq 3$, $\lambda(M)\leq \lambda(S^n)=\Lambda.$

Proof. Step 1. Consider the function $\varphi = \eta \cdot u_{\alpha}(x)$ where

- η is a radical cut off function, supp $\eta = B_{2\epsilon}, \, \eta|_{B_{\epsilon}} = 1$
- $u_{\alpha}(x) = \left(\frac{|x|^2 + \alpha^2}{\alpha}\right)^{(n-2)/2}$.

An Upper Bound for $\lambda(M)$

Lemma (Aubin)

For any compact Riemannian manifold (M,g) of dimension $n\geq 3,\ \lambda(M)\leq \lambda(S^n)=\Lambda.$

Proof. Step 1. Consider the function $\varphi = \eta \cdot u_{\alpha}(x)$ where

- η is a radical cut off function, supp $\eta = B_{2\epsilon}, \, \eta|_{B_{\epsilon}} = 1$
- $u_{\alpha}(x) = \left(\frac{|x|^2 + \alpha^2}{\alpha}\right)^{(n-2)/2}$.

Direct computation gives $\int_{\mathbb{R}^n} a |\nabla \varphi|^2 \, \mathrm{d} x \leq \Lambda \|\varphi\|_p^2 + O(\alpha^{n-2}).$

- $\Lambda = \inf_{\varphi \in C^{\infty}(\mathbb{R}^n)} \frac{\int_{\mathbb{R}^n} a |\nabla \varphi|^2 dx}{\|\varphi\|_n^2};$
- $u_{\alpha} \leq \alpha^{(n-2)/2} \cdot r^{2-n}$ and $|\partial_r u_{\alpha}| \leq (n-2)\alpha^{(n-2)/2} \cdot r^{1-n}$.

Step 2. On a compact manifold M,

- choose normal coordinates $\{x^i\}$ in a neighbourhood of $P \in M$, then $\mathrm{d}V_g = (1 + O(r))\,\mathrm{d}x$;
- let $\varphi = \eta \cdot u_{\alpha}$ as before.

Step 2. On a compact manifold M,

- choose normal coordinates $\{x^i\}$ in a neighbourhood of $P \in M$, then $\mathrm{d} V_g = (1 + O(r))\,\mathrm{d} x$;
- let $\varphi = \eta \cdot u_{\alpha}$ as before.

So

$$\int_{B_{2\epsilon}} a|\nabla \varphi|^2 \, dV_g \le (1 + C\epsilon)(\Lambda \|\varphi\|_p^2 + C\alpha^{n-2}),$$

and

$$Q_g(\varphi) = \frac{\int_M a |\nabla \varphi|^2 + S\varphi^2 \, dV_g}{\|\varphi\|_p^2} \le (1 + C\epsilon)(\Lambda + C\alpha).$$

Choosing ϵ and α small, then $\lambda(M) \leq \Lambda$.

For any compact manifold M with $\lambda(M) < \lambda(S^n)$, the Yamabe problem is solvable.

For any compact manifold M with $\lambda(M) < \lambda(S^n)$, the Yamabe problem is solvable.

• Direct approach: construct a minimizing sequence u_i , with $\|u_i\|_p=1$ such that $Q_g(u_i)\to \lambda(M).$

For any compact manifold M with $\lambda(M) < \lambda(S^n)$, the Yamabe problem is solvable.

Direct approach: construct a minimizing sequence u_i , with $||u_i||_p = 1$ such that $Q_q(u_i) \to \lambda(M)$. This does not work: Although $\varphi = \lim u_i \in L^2_1(M)$, there is no guarantee for $\|\varphi\|_p \neq 0$, because the inclusion $L_1^2 \subset L^p$ is not compact.

For any compact manifold M with $\lambda(M) < \lambda(S^n)$, the Yamabe problem is solvable.

- Instead we seek for a subcritical solution.

Proof of Theorem A

Theorem A (Yamabe, Trudinger, Aubin)

For any compact manifold M with $\lambda(M) < \lambda(S^n)$, the Yamabe problem is solvable.

- Instead we seek for a subcritical solution. The following equation is call **subcritical equation**

$$\Box \varphi = \lambda_s \, \varphi^{s-1}. \tag{\star'}$$

$$\downarrow \qquad \qquad \qquad \qquad \qquad \downarrow$$

$$1 \quad s-1 \quad p-1 \qquad \qquad \infty$$

$$Q^s(\varphi) = \frac{E(\varphi)}{\|\varphi\|_s^2}, \, \lambda_s = \inf\{Q^s(\varphi) : \varphi \in C^\infty(M)\}.$$

Proof of Thm A.

Step 1. For $2 \le s < p$, there exists a smooth positive solution φ_s to the subcritical equation, with $Q^s(\varphi_s) = \lambda_s$ and $\|\varphi_s\|_s = 1$.

Step 1. For $2 \le s < p$, there exists a smooth positive solution φ_s to the subcritical equation, with $Q^s(\varphi_s) = \lambda_s$ and $\|\varphi_s\|_s = 1$.

- Similar as before, pick a minimizing sequence;
- This time $L_1^2 \subset L^s$ is compact.

Step 1. For $2 \le s < p$, there exists a smooth positive solution φ_s to the subcritical equation, with $Q^s(\varphi_s) = \lambda_s$ and $\|\varphi_s\|_s = 1$.

- Similar as before, pick a minimizing sequence;
- This time $L_1^2 \subset L^s$ is compact.

Step 2. If $\int_M \mathrm{d} V_g = 1$, then for $2 \le s \le p$, $|\lambda_s|$ is non-increasing and if $\lambda(M) \ge 0$, λ_s is continuous from the left.

- Similar as before, pick a minimizing sequence;
- This time $L_1^2 \subset L^s$ is compact.

Step 2. If $\int_M \mathrm{d} V_g = 1$, then for $2 \le s \le p$, $|\lambda_s|$ is non-increasing and if $\lambda(M) \ge 0$, λ_s is continuous from the left.

Multiply the metric g by a constant to get $\int_M dV_g = 1$.

Step 2. If $\int_M dV_q = 1$, then for $2 \le s \le p$, $|\lambda_s|$ is non-increasing and if $\lambda(M) \geq 0$, λ_s is continuous from the left.

Multiply the metric g by a constant to get $\int_M dV_g = 1$.

To show $|\lambda_s|$ is non-increasing,

- $E(u) = \int_M a |\nabla u|^2 + Su^2 dV_q$ does not depend on s;
- $Q^s(u) = \frac{\|u\|_s^2}{\|u\|_s^2} Q^{s'}(u);$
- s < s'. $||u||_s < ||u||_{s'} \implies Q^s(u) < Q^{s'}(u)$.

If $\lambda(M) \geq 0$, then $\lambda_s \geq 0$ for $2 \leq s \leq p$.

- Suppose $\lambda_s < 0$ for some s;
- $\exists u \in C^{\infty}$, such that $Q^s(u) < 0$
- then $Q^{s'}(u) < 0$ for all s', and thus $\lambda_{s'} < 0$.

If $\lambda(M) \geq 0$, then $\lambda_s \geq 0$ for $2 \leq s \leq p$.

- Suppose $\lambda_s < 0$ for some s;
- $\exists u \in C^{\infty}$, such that $Q^s(u) < 0$
- then $Q^{s'}(u) < 0$ for all s', and thus $\lambda_{s'} < 0$.

To show λ_s is continuous from the left,

- By definition $\forall \epsilon > 0, \exists u \in C^{\infty}(M) \text{ s.t. } Q^s(u) < \lambda_s + \epsilon;$
- $||u||_s$ is continuous as a function of s;
- when $s' \leq s$ and s' close to s,

$$\lambda_{s'} \le Q^{s'}(u) < \lambda_s + 2\epsilon.$$

Step 3. Suppose $\lambda(M) < \Lambda$, and let φ_s be the subcritical solution. Then there exists C > 0, s_0 and r with s_0 such that $\|\varphi_s\|_r \leq C$ for all $s \geq s_0$.

Step 3. Suppose $\lambda(M) < \Lambda$, and let φ_s be the subcritical solution. Then there exists C > 0, s_0 and r with s_0 such that $\|\varphi_s\|_r \leq C$ for all $s \geq s_0$.

For $\delta > 0$ and $w = \varphi_s^{1+\delta}$, the sharp Sobolev inequality and Hölder's inequality imply

$$||w||_p^2 \le (1+\epsilon) \frac{(1+\delta)^2}{1+2\delta} \cdot \frac{\lambda_s}{\Lambda} \cdot ||\varphi_s||_{(s-2)n/2}^{s-2} \cdot ||w||_p^2 + C'_{\epsilon} \cdot ||w||_2^2.$$

Step 3. Suppose $\lambda(M) < \Lambda$, and let φ_s be the subcritical solution. Then there exists C > 0, s_0 and r with s_0 such that $\|\varphi_s\|_r \leq C$ for all $s \geq s_0$.

For $\delta > 0$ and $w = \varphi_s^{1+\delta}$, the sharp Sobolev inequality and Hölder's inequality imply

$$||w||_p^2 \le (1+\epsilon) \frac{(1+\delta)^2}{1+2\delta} \cdot \frac{\lambda_s}{\Lambda} \cdot ||\varphi_s||_{(s-2)n/2}^{s-2} \cdot ||w||_p^2 + C'_{\epsilon} \cdot ||w||_2^2.$$

- Need $\lambda(M) < \Lambda$ to make the coefficient less than 1;
- Choose δ and ϵ , so that $||w||_n^2 \leq C||w||_2^2$;
- Then $||w||_2 = 1 \implies ||w||_p = ||\varphi_s^{1+\delta}||_{n(1+\delta)}^{1+\delta} \le \tilde{C}$.

Step 4. As $s \to p$, there is a subsequence of subcritical solutions that converges uniformly. So the limiting function φ is the solution of $\Box \varphi = \lambda(M) \varphi^{p-1}$.

The functions $\{\varphi_s\}$ are uniformly bounded in $L^r(M)$, and thus in $C^{2,\alpha}(M)$. Apply Arzela-Ascoli Theorem, to obtain a subsequence in C^2 that converges to $\varphi \in C^2(M)$.

One can check that φ solves the equation above (needs Step 2), and $\varphi \in C^\infty(M)$ (ellptic regularity).

In Step 3, we assumed $\lambda \geq 0$. The fact that $\Lambda = \lambda(S^n) > 0$ completes the proof.

Remarks on Theorem B and C

Theorem B (Aubin)

If M has dimension $n \geq 6$ and M is not locally conformally flat, then $\lambda(M) < \lambda(S^n)$.

Theorem C (Schoen)

If M has dimension n=3,4,5 or M is locally conformally flat, then either $\lambda(M)<\lambda(S^n)$ or M is conformal to the n-sphere.

If M has dimension $n \geq 6$ and M is not locally conformally flat, then $\lambda(M) < \lambda(S^n)$.

In this case the estimation of $E(\varphi)$ gives:

$$E(\varphi) = \begin{cases} \Lambda \|\varphi\|_p^2 - C|W(P)|^2 \alpha^4 + o(\alpha^4) & n > 6\\ \Lambda \|\varphi\|_p^2 - C|W(P)|^2 \alpha^4 \ln(1/\alpha) + O(\alpha^4) & n = 6 \end{cases}$$

- $\varphi = \eta u_{\alpha}$ as before;
- M locally conformally flat \iff Weyl tensor $W \equiv 0$;
- If not, choose $P \in M$ with $|W(P)|^2 > 0$, so $\lambda(M) < \Lambda$.

If M has dimension n = 3, 4, 5 or M is locally conformally flat, then either $\lambda(M) < \lambda(S^n)$ or M is conformal to the n-sphere.

In this case the estimation of $E(\varphi)$ gives:

$$E(\varphi) \le \Lambda \|\varphi\|_p^2 - C\mu\alpha^{-k} + O(\alpha^{-k-1}),$$

if $n \neq 6$ or M locally conformally flat.

- If the distortion coefficient $\mu > 0$, then $\lambda(M) < \Lambda$.
- The positive mass theorem gives $\mu > 0$.

Summary

Lee, J.M. and Parker, T.H. (1987) 'The Yamabe Problem', Bulletin of the American Mathematical Society, 17(1), pp. 37–91. doi: 10.1090/S0273-0979-1987-15514-5.

