

Hours (x)	Points	fail/pass
1	2	0
2	4	0
3	6	1
4	?	?

Linear Regression

Sample	Temperature x_1	$x_2^{Rain/snow}$	km of biking
s1	-22	10	2
s2	-24	12	0
s3	-15	20	3
s4	-8	13	4
s5	-5	40	3
s6	8	45	8
s7	-2	5	10
s8	5	5	12
s9	12	2	12
s10	8	5	14
s11	12	20	20
s12	13	15	20
s13	15	10	25
s14	18	5	20
s15	19	20	40

Sample	Temperature x_1	$x_2^{Rain/snow}$	Bike / Drive
s1	-22	10	Drive
s2	-24	12	Drive
s 3	-15	20	Drive
s4	-8	13	Drive
s5	-5	40	Drive
s6	8	45	Drive
s7	-2	5	Bike
s8	5	5	Bike
s9	12	2	Bike
s10	8	5	Bike
s11	12	20	Bike
s12	13	15	Bike
s13	15	10	Bike
s14	18	5	Bike
s15	19	20	Bike

For a linear model f(s) = s

Summation

Transformation

$$s = \sum w \cdot x$$

$$f(s) = \frac{1}{1 + e^{-s}}$$

For a non-linear model, f(s) will apply a transformation


```
1:procedure Logistic_regression_learner(Xs, Y, Es, \eta)
      Inputs
          Xs: set of input features, Xs = \{X_1, ..., X_n\}
          Y: target feature
          Es: set of training examples
          η: learning rate
      Output
          function to make prediction on examples
8:
9:
      Local
10:
            w_0, \ldots, w_n: real numbers
       initialize w_0, \ldots, w_n randomly
11:
       define pred\left(e\right) = sigmoid\left(\sum_{i} w_{i} * X_{i}\left(e\right)\right)
12:
13:
       repeat
            for each example e in Es in random order do
14:
               error := Y(e) - pred(e)
15:
               update := \eta * error
16:
               for each i \in \left[0,n\right] do
17:
                   w_i := w_i + update * X_i(e)
18:
19:
        until termination
        return pred
20:
```

