LE11: Solid cylinder/taper/sphere —temperature loading

LE11: Solid cylinder/taper/sphere —temperature loading

This problem provides evidence that Abaqus can reproduce the result from the benchmark defined by NAFEMS and cited as the reference solution.

This page discusses:

- Elements tested
- Problem description
- Reference solution
- Results and discussion
- Input files

ProductsAbaqus/Standard

Elements tested

C3D20

C3D20R

Problem description

Mesh:

A coarse and a fine mesh are tested.

Material:

Linear elastic, Young's modulus = 210 GPa, Poisson's ratio = 0.3, coefficient of thermal expansion = $2.3E-4/^{\circ}C$.

Boundary conditions:

uy = 0 on the plane y = 0. ux = 0 on the plane x = 0. uz = 0 on the plane z = 0 and the face HIH'I'.

Loading:

Linear temperature gradient in the radial and axial directions is given by

$$\Delta\theta = (x2+y2)+z$$
.

This is applied using user subroutine **<u>UTEMP</u>**.

Reference solution

This is a test recommended by the National Agency for Finite Element Methods and Standards (U.K.): Test LE11 from NAFEMS Publication TNSB, Rev. 3, "The Standard NAFEMS Benchmarks," October 1990.

Target solution: Direct stress, $\sigma zz = -105$ MPa at point A.

Results and discussion

The results are shown in the following table. The values enclosed in parentheses are percentage differences with respect to the reference solution.

Element σzz, Coarse Mesh σzz, Fine Mesh

```
C3D20 -96.71 MPa (-7.9%) -103.26 MPa (-1.7%)
C3D20R -93.04 MPa (-11.4%) -99.60 MPa (-5.1%)
```

Input files

Coarse mesh tests:

nle11fkc.inp

C3D20 elements.

```
nle11fkc.f

User subroutine used in nle11fkc.inp.

nle11rkc.inp

C3D20R elements.

nle11rkc.f

User subroutine used in nle11rkc.inp.

Fine mesh tests:

nle11fkf.inp

C3D20 elements.

nle11fkf.f
```

nle11rkf.inp

C3D20R elements.

nle11rkf.f

User subroutine used in nle11rkf.inp.

User subroutine used in nle11fkf.inp.