Joint low-count PET/CT segmentation and reconstruction with paired variational neural networks

Hongki Lim, Yuni K. Dewaraja, Jeffrey A. Fessler

University of Michigan

SPIE Medical Imaging 2020

Challenges of PET segmentation

- PET-based segmentation: Challenging due to inherent noise and poor spatial resolution.
- Manual segmentation on morphological (CT or MRI) images drawn by radiologist:
 - 1) time consuming 2) labor intensive
 - 3) high intra- and inter-observer variability

Fig. 2 Three examples (a–c) showing PET-based (red) and morphologic (green) segmentations on a single axial slice. Note the scale is different across the three cases and the metrics were evaluated over the full 3D extent of the VOIs

Figure: Lesion segmentation: A factor of significant variability in Y-90 radioembolization dosimetry¹

¹Mikell, Justin K., et al. "Impact of Y-90 PET gradient-based tumor segmentation on voxel-level dosimetry in liver radioembolization." EJNMMI physics 5.1 (2018): 31.

Problem statement

- Limitation of existing fully automatic medical imaging segmentation:
 - Perform after reconstruction.
 - : Propagation of errors from noisy reconstructions to the segmentation step
 - Use a single modality.
 - : Not fully exploit the information from dual-modality systems like PET/CT.
 - → Fully automatic joint segmentation-reconstruction using multi-modality images is desirable

Figure: High-level block diagram of proposed method

UNIVERSITY OF MICHIGAN

Joint multimodal segmentation and reconstruction framework

• The framework is inspired by following optimization problem:

$$\hat{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{arg\,min}} f(\mathbf{x}) + \beta R(\mathbf{x}; \mathbf{w})$$

- x: unknown PET image
- f(x): data fidelity term
 - ightarrow Poisson negative log-likelihood for measurement ${m y}$
 - & estimated measurement means $ar{m{y}}(m{x}) = m{A}m{x} + ar{m{r}}$
- A: system model
- \bar{r} : mean background events
- β : regularization parameter
- R(x; w): regularization term

Regularization

• The regularization term is composed of convolutional operations followed by a thresholding operation to promote sparsity:

$$\mathsf{R}(\boldsymbol{x};\boldsymbol{w}) = \sum_{k=1}^{K} \frac{1}{2} \|\boldsymbol{c}_{k} * \boldsymbol{x} - \boldsymbol{z}_{k}\|_{\boldsymbol{W}}^{2} + \alpha_{k} \|\boldsymbol{z}_{k}\|_{1}.$$

- w is a boundary indicator image (zero-valued at boundary) given by segmentation network utilizing both CT and PET modalities
- $\mathbf{W} = \operatorname{diag}\{\mathbf{w}\}$

Idea behind the formulation

• Two equivalent formulations:

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \min_{\mathbf{z}} f(\mathbf{x}) + \beta \left(\sum_{k=1}^{K} \frac{1}{2} \| \mathbf{c}_k * \mathbf{x} - \mathbf{z}_k \|_{\mathbf{W}}^2 + \alpha_k \| \mathbf{z}_k \|_1 \right)$$

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} f(\mathbf{x}) + \beta \sum_{k=1}^{K} \mathcal{H}(\mathbf{c}_k * \mathbf{x}, \ \alpha_k, \ \mathbf{w})$$

• $\mathcal{H}(\cdot,\cdot,\cdot)$ is the Huber function:

$$\mathcal{H}(t,p,oldsymbol{q}) = \sum_j rac{oldsymbol{q}_j}{oldsymbol{q}_j}, \quad h(t,\delta) = egin{cases} rac{t^2}{2}, & |t| < \delta \ \delta|t| - rac{\delta^2}{2}, & |t| \geq \delta. \end{cases}$$

 \rightarrow Not penalize the filtered image at jth voxel when $w_i = 0$ (edge area).

Variable updates

• Block coordinate descent algorithm alternatively updates $\{z_k : z_1, ..., z_K\}$ and x:

$$\begin{aligned} \boldsymbol{z}_{k}^{(n+1)} &= \arg\min_{\boldsymbol{z}_{k}} \frac{1}{2} \left\| \boldsymbol{c}_{k} * \boldsymbol{x}^{(n)} - \boldsymbol{z}_{k} \right\|_{\boldsymbol{W}}^{2} + \alpha_{k} \|\boldsymbol{z}_{k}\|_{1} \\ &= \mathcal{T}(\boldsymbol{c}_{k} * \boldsymbol{x}^{(n)}, \alpha_{k} \oslash \boldsymbol{w}) \\ \boldsymbol{x}^{(n+1)} &= \arg\min_{\boldsymbol{x}} f(\boldsymbol{x}) + \frac{\beta}{2} \left(\sum_{k=1}^{K} \left\| \boldsymbol{c}_{k} * \boldsymbol{x} - \boldsymbol{z}_{k}^{(n+1)} \right\|_{\boldsymbol{W}}^{2} \right), \end{aligned}$$

• $\mathcal{T}(\cdot, \cdot)$ is the element-wise soft thresholding operator:

$$\mathcal{T}(\boldsymbol{t},\boldsymbol{q})_i := \operatorname{sign}(t_i) \max(|t_i| - q_i, 0).$$

ightarrow W is designed to avoid smoothing across boundaries between different regions.

UNIVERSITY OF MICHIGAN

Equivalent form of updates under some conditions

• Two equivalent updates:

$$\mathbf{z}_{k}^{(n+1)} = \mathcal{T}(\mathbf{c}_{k} * \mathbf{x}^{(n)}, \alpha_{k} \oslash \mathbf{w})$$

$$\mathbf{x}^{(n+1)} = \arg\min_{\mathbf{x}} f(\mathbf{x}) + \frac{\beta}{2} \left(\sum_{k=1}^{K} \|\mathbf{c}_{k} * \mathbf{x} - \mathbf{z}_{k}^{(n+1)}\|_{\mathbf{W}}^{2} \right)$$

$$\updownarrow \sum_{k=1}^{K} \mathbf{C}_{k}^{T} \mathbf{W} \mathbf{C}_{k} = \mathbf{I} \quad (\mathbf{C}_{k} \mathbf{x} \iff \mathbf{c}_{k} * \mathbf{x})$$

$$\mathbf{u}^{(n+1)} = \sum_{k=1}^{K} \tilde{\mathbf{c}}_{k} * \left(\mathbf{W} \left(\mathcal{T}(\mathbf{c}_{k} * \mathbf{x}^{(n)}, \alpha_{k} \oslash \mathbf{w}) \right) \right)$$

$$\mathbf{x}^{(n+1)} = \arg\min_{\mathbf{x}} f(\mathbf{x}) + \frac{\beta}{2} \|\mathbf{x} - \mathbf{u}^{(n+1)}\|_{2}^{2},$$

where $\tilde{\boldsymbol{c}}_{k}^{(n)}$ is flipped version of $\boldsymbol{c}_{k}^{(n)}$

Training denoising network

• Train the set of filters $\{c_k\}$, $\{d_k\}$ and soft-thresholding values $\{\alpha_k\}$ to map the previously estimated image to high quality image at each iteration:

$$\{\hat{\boldsymbol{c}}_k^{\;(n+1)}\}, \{\hat{\boldsymbol{d}}_k^{\;(n+1)}\}, \{\hat{\alpha}_k^{\;(n+1)}\} = \operatorname*{arg\,min}_{\{\boldsymbol{c}_k\}, \{\boldsymbol{d}_k\}, \{\alpha_k\}} \left\| \boldsymbol{x}_{\mathsf{true}} - \sum_{k=1}^K \boldsymbol{d}_k * \left(\boldsymbol{\mathcal{W}} \big(\mathcal{T}(\boldsymbol{c}_k * \boldsymbol{x}^{(n)}, \alpha_k \oslash \boldsymbol{w}) \big) \big) \right\|_2^2.$$

- Filter size: $3 \times 3 \times 3$.
- Number of filters at each iteration: K = 192.
- Trained using Adam optimization with PyTorch deep learning library.

Details on segmentation network

11 / 20

- We implemented 3-D version of U-Net.
- Input of segmentation network is four dimensional array: channel \times image depth (16) \times image height (512) \times image width (512)
 - 2 channels: [CT image; PET image upsampled to CT size]
 - Training loss: Cross-entropy

Figure: 3D U-Net architecture Joint PET/CT segmentation and recon with NNs

Figure: Detailed block diagram of proposed method. Final output image is from the reconstruction module.

Dataset

- We used the publicly opened dataset LiTS announced in the MICCAI 2017.
- We use 15 samples for training and 4 samples for testing.

Figure: LiTS dataset provides CT image (a) in HU unit and label image (b) (tumor:2, liver:1) corresponding to CT.

Generating PET data

• Used the ground-truth label images to generate the true activity maps (changed the tumor value to 5) and the corresponding synthetic PET data.

Figure: We generated PET image (b) simulating Y-90 PET after radioembolization. We set the tumor-to-liver ratio as 5:1. Image (c) shows true boundary based on label image. Boundary is zero-valued.

Evaluation metrics

PET reconstruction evaluation:

$$ext{CNR} = rac{C_{ ext{Lesion}} - C_{ ext{Liver}}}{STD_{ ext{Liver}}}$$
 $ext{RMSE (\%)} = \sqrt{rac{\sum_{j}(oldsymbol{x}_{ ext{true}}[j] - \hat{oldsymbol{x}}[j])^2}{J_{ ext{FOV}}}} imes 100,$

Segmentation evaluation:

$$\mathsf{Dice}(A,B) = \frac{2|A \cap B|}{|A| + |B|},$$

UNIVERSITY OF MICHIGAN

Segmentation result (4 test cases averaged)

Method	Dice tumor	Dice liver
Proposed method using single-modality (CT)	0.51	0.92
Proposed method using multi-modality (PET/CT)	0.87	0.93

Reconstruction result (4 test cases averaged)

Method	CNR	RMSE
EM	8.72	14.36
Proposed method w/o boundary	9.62	8.41
Proposed method w/ estimated boundary	9.89	8.41
Proposed method w/ true boundary	11.2	7.30

More to investigate

- Impact of misregistration between modalities
 - Liver is located nearby lung, therefore respiratory motion may bring misregistration problem especially in upper part of liver
- Inconsistency in activity distribution
 - Tumor-to-liver ratio
 - Non-uniformity in tumor and background liver

Future works

- Training neural networks for segmentation and denoising together with a weighted combination of loss functions.
- Use shared weights (or representation) between the segmentation and denoising networks.¹

¹Lee, S., Stokes, J., Eaton, E. (2019, August). Learning shared knowledge for deep lifelong learning using deconvolutional networks. In Proceedings of the 28th International Joint Conference on Artificial Intelligence (pp. 2837-2844). AAAI Press.

Thank You