ADULT CENSUS INCOME ML

Rao Francesco e Nesticò Bruno 14/02/2025

TABLE OF CONTENTS

04	05	06	
FEATURE ENGINEERING	DATASET BALANCING	MODELING	

INTRODUZIONE AL DATASET

- Il dataset Adult Census Income, presente su Kaggle, è stato estratto dal Census Bureau degli
 Stati Uniti nel 1994.
- Contiene informazioni su circa 48.842 individui con vari dettagli come età, istruzione, occupazione, ecc.
- Obiettivo principale: prevedere se una persona guadagna più o meno di \$50.000 all'anno.

	age	workclass	fnlwgt	education	education_num	marital_status	occupation	relationship	race	sex	capital_gain	capital_loss	hours_per_week	native_country	label
0	39	State-gov	77516	Bachelors	13	Never-married	Adm-clerical	Not-in-family	White	Male	2174	0	40	United-States	<=50K
1	50	Self-emp-not-inc	83311	Bachelors	13	Married-civ-spouse	Exec-managerial	Husband	White	Male	0	0	13	United-States	<=50K
2	38	Private	215646	HS-grad	9	Divorced	Handlers-cleaners	Not-in-family	White	Male	0	0	40	United-States	<=50K
3	53	Private	234721	11th	7	Married-civ-spouse	Handlers-cleaners	Husband	Black	Male	0	0	40	United-States	<=50K
4	28	Private	338409	Bachelors	13	Married-civ-spouse	Prof-specialty	Wife	Black	Female	0	0	40	Cuba	<=50K

FEATURE DEL DATASET

Feature Numeriche

- Age: Età dell'individuo.
- Hours-per-week: Ore di lavoro settimanali.
- Education-num: Numero di anni di istruzione completati.
- Capital-gain / Capital-loss: Guadagni o perdite da investimenti o vendita di beni.
- Fnlwgt (Final Weight):
 - Rappresenta il peso statistico associato a ciascun individuo. In altre parole, se un record ha un valore di fnlwgt pari a 100.000, questo significa che quell'individuo, o meglio le sue caratteristiche, rappresenta 100.000 persone nella popolazione reale. Questo peso è stato calcolato dal **Census Bureau** per compensare eventuali squilibri nel campionamento, assicurando che il campione rifletta in modo corretto la distribuzione demografica della popolazione.
 - o non è una caratteristica intrinseca dell'individuo (come età, istruzione o occupazione), ma è un valore calcolato per bilanciare il campione. Inserirlo come predittore potrebbe introdurre rumore o distorcendo la reale interpretazione delle caratteristiche personali.

FEATURE DEL DATASET

Feature Categoriche

- Workclass: Tipo di impiego (*Privato, Pubblico, Autonomo, etc.*).
- **Education**: Livello di istruzione (*Diploma, Laurea, Master, etc.*).
- Marital-status: Stato civile (Single, Sposato, Divorziato).
- Occupation: Tipo di lavoro (*Tecnico, Manager, Operaio, etc.*).
- **Relationship**: Ruolo familiare (*Coniuge*, *Figlio*, *etc.*).
- Native-country: Paese di origine.
- Sex
- Race

ANALISI FEATURE DEL DATASET

ANALISI FEATURE DEL DATASET

GESTIONE DATI MANCANTI

GESTIONE DATI MANCANTI

Il dataset presentava valori mancanti contrassegnati con il carattere "?" tutti di natura categorica.

Per affrontare questa problematica, è stata implementata una strategia di imputazione:

- Per le variabili numeriche: (definita nel codice ma inutile nel caso specifico)
 - sostituzione con la mediana per la sua robustezza agli outlier e la capacità di preservare la distribuzione originale dei dati.

- Per le variabili categoriche:
 - sostituzione con la moda per mantenere le frequenze relative delle categorie più comuni.

FEATURE ENGINEERING: RIMOZIONE DI

valore calcolato per bilanciare il campione. Inserirlo come predittore potrebbe introdurre rumore o distorcendo la reale interpretazione delle caratteristiche personali.

- Le variabili **native_country** e **race** sono state eliminate a causa della distribuzione estremamente sbilanciata e per evitare potenziali bias discriminatori.
- Le variabili capital_gain e capital_loss sono state rimosse a causa della loro distribuzione fortemente sbilanciata verso lo zero, dando un contributo nullo alla predizione e introducendo solo potenziale rumore.

```
# Rimozione delle feature, se presenti
for col in ['native_country', 'race', 'capital_gain', 'capital_loss', 'fnlwgt']:
    if col in train_df.columns:
        train_df.drop(columns=[col], inplace=True)
    if col in test_df.columns:
        test_df.drop(columns=[col], inplace=True)
```

BILANCIAMENTO DEI DATI

Il DataSet è stato bilanciato utilizzando una combinazione di undersampling e oversampling (SMOTE).

Prima è stato eseguito un **random undersampling** parziale della classe maggioritaria, poi si è applicato **SMOTE** per portare il dataset a bilanciamento completo.

SMOTE è stato usato per generare nuovi esempi sintetici creando punti intermedi tra l'istanza esistente e i suoi vicini più prossimi della stessa classe.

BINNING E ONE HOT ENCODING

Il **binning** è una tecnica che trasforma **valori numerici continui** in **categorie discrete** raggruppandoli in intervalli (bin).

Perché si usa?

- ✔ Rende i dati più interpretabili (es. "Giovane" invece di età esatta).
- ✔ Riduce la sensibilità agli outlier.
- ✔ Può migliorare le prestazioni di alcuni algoritmi (es. Alberi di Decisione).

Esempio nel codice

Nel codice, applichiamo il binning a due feature:

- 1. age (età) → Categorizzata in gruppi di 5 anni.
- 2. hours per week (ore lavorative) → Categorizzata in gruppi di 5 ore.

L'One-Hot Encoding (OHE) è una tecnica per convertire variabili categoriche in variabili numeriche binarie (0/1), rendendo così feature categoriche processabili dai modelli di ML usati.

MODELING: DECISION TREE

Decision Tree (Albero di Decisione)

Un **Decision Tree** suddivide i dati in base a domande a risposta binaria ("Sì/No"), creando una struttura ad albero.

Pro e Contro

- ✓ Interpretabile e semplice da visualizzare.
- ✔ Adatto a feature sia numeriche che categoriali.
- X Sensibile agli outlier e al **overfitting** (se l'albero è troppo profondo).

X Nel nostro caso:

- Ottimo per catturare relazioni non lineari tra le variabili (es. "Ore lavorate + Titolo di studio").
- Ma può sovradattarsi ai dati di training, riducendo la generalizzazione.

MODELING: RANDOM FOREST

Random Forest (Foresta Casuale)

Un **Random Forest** combina più **alberi di decisione**, ognuno addestrato su **diversi sottoinsiemi** di dati e feature. Il risultato finale è la **maggioranza delle previsioni** dei singoli alberi.

Pro e Contro

- ✔ Più robusto e accurato rispetto a un singolo albero.
- ✓ Meno sensibile al overfitting grazie all'aggregazione di più modelli.
- X Più lento da addestrare rispetto al Decision Tree.

X Nel nostro caso:

- Ideale per dataset con molte feature categoriali.
- Migliore rispetto a un singolo Decision Tree.

MODELING: LOGISTIC REGRESSION

Logistic Regression (Regressione Logistica)

Un **modello statistico** che utilizza una funzione logistica per stimare la probabilità di appartenenza a una classe (nel nostro caso, ≤50K o >50K).

- Pro e Contro
- ✓ Ottimo per dati linearmente separabili.
- X Non funziona bene con relazioni non lineari.

X Nel nostro caso:

 Nonostante la non chiara natura dei nostri dati in termini di separabilità lineare si è rivelato un modello molto capace per la modellazione del nostro dataset..

MODELING: K-NEAREST NEIGHBORS

K-Nearest Neighbors (KNN)

KNN classifica un dato in base ai suoi "K" vicini più simili, misurando la distanza nello spazio delle feature.

Pro e Contro

- ✓ Semplice e senza necessità di un vero "addestramento".
- ✔ Adattabile a distribuzioni complesse.
- X Lento con dataset grandi (trova i vicini per ogni predizione).

X Nel nostro caso:

Potrebbe risultare efficace per la possibile presenza di gruppi di persone con caratteristiche simili.

MODELING: NAÏVE BAYES

Naïve Bayes

Un modello basato sulla Teorema di Bayes, che assume che tutte le feature siano indipendenti (ipotesi "naïve").

Pro e Contro

- ✓ Veloce e funziona bene con dataset sbilanciati.
- ✓ Utile con dati testuali e categorici.
- X L'ipotesi di indipendenza non è sempre realistica.

X Nel nostro caso:

• L'ipotesi di indipendenza potrebbe non essere valida per ogni feature del nostro dataset, tuttavia è stato interessante includerlo per confrontarlo ad altri modelli.

MODELING: ENSEMBLE LEARNING

Ensemble Learning: Majority Vote

Un modello ensemble che combina le previsioni di più algoritmi, scegliendo la classe più votata.

✓ Pro e Contro

- ✔ Aumenta l'accuratezza combinando più modelli.
- ✔ Bilancia i punti deboli di ogni singolo algoritmo.
- X Può essere più difficile da interpretare dei singoli modelli usati.

X Nel nostro caso:

- Prendiamo i **risultati di tutti i modelli (escludendo Naive Bayes per le scarse performance)** e scegliamo la classe più predetta.
- Miglioriamo la robustezza e la generalizzazione rispetto all'uso di un solo modello.

METRICHE DI VALUTAZIONE

1. Accuracy

Misura la percentuale di previsioni corrette sul totale.

☑ Buona quando i dati sono bilanciati, ma può essere ingannevole se una classe è molto più frequente dell'altra.

2. Precision

Misura quanti dei casi che il modello ha classificato come positivi sono davvero positivi.

✓ Utile quando vogliamo evitare troppi falsi positivi.

METRICHE DI VALUTAZIONE

3. Recall (Sensibilità o Tasso di veri positivi)

Misura quanti dei positivi reali sono stati effettivamente trovati dal modello.

✓ Importante quando vogliamo ridurre i falsi negativi.

4. F1-score

È una media armonica tra Precision e Recall, utile quando vogliamo un compromesso tra le due.

✓ Indicato quando c'è un disequilibrio tra le classi e vogliamo considerare sia FP che FN.

Predicted

Accuracy: 0.79 Precision: 0.81 Recall: 0.79 F1 Score: 0.79

Accuracy: 0.80 Precision: 0.83 Recall: 0.80 F1 Score: 0.81

--- Logistic Regression ---Logistic Regression - Confusion Matrix 6187 1456 0 489 1868 0 Predicted

Accuracy: 0.81 Precision: 0.84 Recall: 0.81 F1 Score: 0.82

Accuracy: 0.80 Precision: 0.82 Recall: 0.80 F1 Score: 0.81

Accuracy: 0.76 Precision: 0.84 Recall: 0.76 F1 Score: 0.78

Ensemble Accuracy: 0.81 Ensemble Precision: 0.83 Ensemble Recall: 0.81 Ensemble F1 Score: 0.82

CONCLUSIONI E POSSIBILI MIGLIORAMENTI

Il progetto ha dimostrato l'efficacia di un approccio sistematico alla predizione del reddito, combinando tecniche avanzate di preprocessing, feature engineering e modellazione ensemble. I risultati ottenuti suggeriscono la possibilità di predire con buona accuratezza la classe di reddito di un individuo basandosi su caratteristiche demografiche e professionali.

Possibili direzioni future includono:

- L'esplorazione di tecniche più avanzate di feature selection, come la creazione di **nuove feature**.
- L'incremento delle dimensioni del dataset
- L'implementazione di algoritmi più avanzati come deep learning
- L'incorporazione di feature temporali per catturare trend di carriera