Machine Learning

Machine learning using scikit-learn

Contents

- Use cases
- What is ML
- Pipeline steps
- Learning?
- Many ML models
- Evaluating
- Examples
- Hackathon suggestions

Automate - Save \$\$\$

Detect anomalies (security, fraud, ...)

- Healthcare Save lives
- GeriMedica Second Opinion

Customer segmentation - targeted marketing - make more \$\$\$

What is machine learning?

Machine learning pipeline

Cleaning data

- Clean data
 - Fill missing values
 - Drop incomplete rows

Learning a function

• Learn function $f(x) \rightarrow y$

Types of algorithms

Classification

Types of algorithms

Different approaches (models)

High temperature (in degrees F)

How does learning work?

- y = Intercept + Slope*x
 - o Learn Intercept, Slope

• Loss - e.g. MSE

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{y}_i)^2$$

How does learning work?

• Training : Gradient descent

Evaluating

Simple: train/test split

Better: KFold Cross validation

What could possibly go wrong?

Python & scikit-learn

```
from sklearn import datasets
from sklearn.tree import DecisionTreeClassifier
from sklearn.model selection import train test split
from sklearn.metrics import accuracy score
X,y = datasets.load iris(return X y=True)
X train, X test, y train, y test = train test split(X, y)
model = DecisionTreeClassifier(min samples split=8, min samples leaf=4)
model.fit(X train, y train)
y predicted = model.predict(X test)
print("Score: %.4f " % accuracy score(y test, y predicted))
```

Example

- Analysis, features & model NYC taxi trips
- Analysis & model cycle share

Hackathon suggestions

- Find research questions / hypotheses
 - Predict number of trips (weather?)
 - Predict trip duration (weather, sex, age, ...)
 - Predict popular routes (week/weekend, ...)
- Prepare data
- Train & evaluate models
- Try, learn & improve!
- Interpret results

Ready?

• Let's start hacking!