Ex2

Ex 3

Exh

$$\frac{1}{4} \times -\frac{1}{3} > \frac{1}{2} \times -1$$

$$\frac{1}{4} \times - \frac{1}{2} \times > -1 + \frac{1}{3}$$

$$\frac{1-2}{4} \times > \frac{-3+1}{3}$$

$$-\frac{4}{4}$$
 x > $-\frac{2}{3}$

$$-\chi\rangle - \frac{8}{3}$$

$$\chi \angle \frac{8}{3} \Rightarrow S = J - \infty; \frac{8}{3} \begin{bmatrix} \\ \\ \\ \end{bmatrix}$$

$$\frac{E \times 5}{2(6-3x)} > -1 - x$$

$$(2-6x) - 1 - x$$

$$-6x + x > -1 - 12$$

$$-5x > -13$$

$$-x > -\frac{13}{5}$$

$$x (\frac{13}{5} =) S =] -\infty; \frac{13}{5} [$$

$$\frac{E \times 6}{(x-2)(x+5)} (x-3)(x-2)$$

$$(x-2)(x+5) - (x-2)(x-3) < 0$$

$$(x-2)[(x+5) - (x-3)] < 0$$

$$(x-2)(x+5) - (x-3)] < 0$$

$$(x-2)(x+5) - (x-3) < 0$$

$$(x-2)(x+5) - (x-2$$

$$\frac{x}{(x+5)^{2}-(x-2)(x+2)>1}$$

$$x^{2}+10x+25-(x^{2}-4)>1$$

$$x^{2}+10x+25-x^{2}+4>1$$

$$10x+29>1$$

$$10x>1-29$$

$$x>-\frac{28}{10}$$

$$x>-\frac{14}{5} \implies S=]-\frac{14}{5};+\infty[$$

$$\frac{E \times 8}{(5-5x)^2} > (1+5x)^2$$

$$25 - 50x + 25x^2 > 1 + 10x + 25x^2$$

$$25 - 50x + 25x^2 - 1 - 10x - 25x^2 > 0$$

$$-60x + 24 > 0$$

$$-60x > -24$$

$$-x > -\frac{2h}{60}$$

Inéquations et tableaux de signes

$$Ex1$$
 $(x-2)(x+4) \ge 0$
 $x-2>0$
 $x+4>0$
 $x>2$
 $x>-4$

$$\frac{\mathbb{E} \times 2}{(x+4)(5-x)(-x+6)} > 0$$

$$x+4>0$$
 $5-x>0$ $-x+6>0$ $x>-4$ $-x>-5$ $-x>-6$ $x=6$

X	-10	- 4		5		6	+00
x+4		•	+		Ť		+
5-x	+		+	0	-		COMPANY
-x+6	+		+		+	0	
Pr		0	+	0		0	+

$$\frac{1}{x} > 2$$

$$\frac{1}{x} > 2$$

$$\frac{1}{x} - 2 > 0$$

$$\frac{1 - 2x}{x} > 0$$

$$\frac{1 - 2x}{-2x} > 0$$

$$\frac{1 -$$

$$\frac{\chi^{2}-7}{\chi} \geq 0$$

$$\frac{(\chi+\sqrt{7})(\chi-\sqrt{7})}{\chi} \geq 0$$

$$\chi+\sqrt{7} > 0 \qquad \chi-\sqrt{7} > 0 \qquad \chi > 0$$

$$\chi > -\sqrt{7} \qquad \chi > \sqrt{7}$$

$$\frac{E \times 6}{(x-7)(x+1)+(x-7)(x-1)} = 0$$

$$(x-7)[(x+1)+(x-1)] > 0$$

$$(x-7)(x+1+x-1) > 0$$

$$(x-7)(2x) > 0$$

$$(x-7)(2x) > 0$$

$$x-7 > 0 | 2x > 0$$

$$x > 7 | x > 0$$

$$\frac{E \times 7}{(x+2)^{2} - (x+2)(2x+3) \ge 0}$$

$$(x+2)[(x+2) - (2x+3)] \ge 0$$

$$(x+2)(x+2 - 2x-3) \ge 0$$

$$(x+2)(-x-7) \ge 0$$

$$\frac{1}{x^{2}+x} > 0$$

$$\frac{1}{x^{2}+x} > 0$$

$$\frac{1}{x(x+1)} > 0$$

$$1>0 \qquad x>0 \qquad x+1>0$$

$$Toujaurs \qquad x>-1$$

×	-10 -	1 0	+20
1	+	+	+
×	-		+
x+1	-	+	+
Pr		_	+

$$\frac{E \times 9}{(3 \times -2)^{2} + 2(3 \times -2) \leq x^{2}}$$

$$9 x^{2} - 12 x + 4 + 6 x - 4 - x^{2} \leq 0$$

$$8 x^{2} - 6 x \leq 0$$

$$2 x (4 x - 3) \leq 0$$

$$2 x > 0 \qquad | 4 x - 3 > 0$$

$$x > 0 \qquad | x > \frac{3}{4}$$

$$\frac{x}{4} - \infty \qquad 0 \qquad \frac{3}{4} + \infty$$

$$2 x \qquad - \qquad 0 \qquad + \qquad +$$

$$4 x - 3 \qquad - \qquad 0 \qquad +$$

$$S = \left[0, \frac{3}{4}\right]$$

Ex 10

Pr

$$\frac{x^2 + 4x + 4}{x^2 - 9} \leq 0$$

$$\frac{(x+2)^2}{(x+3)(x-3)} \leq 0$$

 $(x+2)^2 > 0$ x+3 > 0 x-3 > 0Toujours, sauf x>-3 x>3pour x=-2

×	-00 -	3 -2	3	+ 0
x+2)2	+	+ 0	+	+
x+3	_	+	+	+
x-3		_	_	+
Pr	+	- 0	> -	+