Differential Amplifier

Differential Amplifier

- 1. The differential amplifier amplifies the difference between two input voltage signals
- 2. If $V_1 \& V_2$ are two input signals wrt ground & V_0 is the output voltage then

The ideal output voltage given as

$$V_0 \alpha (V_1 - V_2) \text{ Or } V_0 = A_{\text{vol}}(V_1 - V_2)$$

A_{vol} is called the **open loop voltage Gain**

Generally in ideal case:

if V1=V2
$$(V_1 - V_2) = 0$$

if V1 \neq V2 $(V_1 - V_2) \neq 0$

Differential Amplifier

But Practically speak:

Differential mode input voltage as V_d=V₁-V₂ (Signal of Interest)

Common mode signal component

(Typically reference level or noise level, not desired)

$$v_{cm} = \frac{v_1 + v_2}{2}$$

The circuit which amplifies the difference between the two input signals is called **differential Amplifier**

We can write the output voltage in the general form

$$V_o = A_d V_d + A_{cm} V_{cm}$$

Performance parameters:

The ability of a differential amplifier to reject a common-mode signal is described in terms of the common-mode rejection ratio (CMRR). The CMRR is a figure of merit for the diff-amp and is defined as $\text{CMRR} = \left| \frac{A_d}{A_{cm}} \right|$

For an ideal diff-amp, Acm = 0 and CMRR=∞. Usually, the CMRR is expressed in decibels, as follows:

$$CMMR_{dB} = 20 \log_{10} \left| \frac{A_d}{A_{cm}} \right|$$

Applications

- Basic building block in many Analog circuits
- High speed switching circuits
- Operational Amplifier-Many electronic Applications
- Integrated circuits

Essential Formulas

Region	NMOS	PMOS
Saturation	$v_{DS} \ge v_{DS}(\text{sat})$	$v_{SD} \ge v_{SD}(\text{sat})$
	$i_D = K_n [v_{GS} - V_{TN}]^2$	$i_D = K_p [v_{SG} + V_{TP}]^2$
Transition Point	$v_{DS}(\text{sat}) = v_{GS} - V_{TN}$	$v_{SD}(\text{sat}) = v_{SG} + V_{TP}$
$K_n = \frac{\mu_n C_{ox}}{2L}$	$\frac{W}{2} = \frac{k_n}{2} \cdot \frac{W}{L}$ $\frac{\mu_{n, \mu_p}}{\varepsilon_{ox}}$	Mobility of electrons, holes Oxide permittivity
$K_p = \frac{\mu_p C_\alpha}{2L}$	$\frac{dW}{dt} = \frac{k_p'}{2} \cdot \frac{W}{L} \qquad \frac{t_{ox}}{W, L}$ $\frac{dV}{W, L}$ $k_n' = \mu_n C_{ox}$	Oxide thickness Channel Width, Length
$C_{ox} = \varepsilon_{ox}/t_{o}$	$k_p' = \mu_p C_{ox}$	manufacturer)
$C_{ox} = \varepsilon_{ox}/t_{ox}$	$k_n = \mu_n C_{ox}$ $k_p' = \mu_p C_{ox}$	l parameter (provided by

MOSFET Differential Amplifier (DC Analysis)

with matched transistors M1 and M2 biased with a constant current IQ.

We assume that M1 and M2 are always biased in the saturation region.

Two matched MOS transistors (M1 and M2) are joined Same Technology:Vth,L,W.

Same: µ,Cox, and k'

Two circuits joints symmetrically

Same Load RD Source Terminals Joined Equal gate bias(vG1,vG2)(Zero)

Device biased using constant current source IQ

DC Transfer characteristics

Assume M1 and M2 are matched and neglecting their output resistances

$$i_{D1} = K_n (v_{GS1} - V_{TN})^2$$

$$i_{D2} = K_n (v_{GS2} - V_{TN})^2$$

Taking square roots and subtracting

$$\sqrt{i_{D1}} - \sqrt{i_{D2}} = \sqrt{K_n} (v_{GS1} - v_{GS2}) = \sqrt{K_n} v_d$$

where

$$v_d = v_{G1} - v_{G2} = v_{GS1} - v_{GS2}$$

If vd > 0, then $v_{G1} > v_{G2}$ and $v_{GS1} > v_{GS2}$ which implies that $i_{D1} > i_{D2}$

$$\mathbf{i}_{\mathrm{D1}} + \mathbf{i}_{\mathrm{D2}} = \mathbf{I}_{\mathrm{Q}}$$

$$\left(\sqrt{i_{D1}} - \sqrt{I_{Q} - i_{D1}}\right)^{2} = K_{n}v_{d}^{2}$$

$$\left(\sqrt{i_{D1}}\right)^{2} + \left(\sqrt{I_{Q} - i_{D1}}\right)^{2} - 2\sqrt{i_{D1}}\sqrt{I_{Q} - i_{D1}} = K_{n}v_{d}^{2}$$

$$i_{D1} + I_{Q} - i_{D1} - 2\sqrt{i_{D1}}\sqrt{I_{Q} - i_{D1}} = K_{n}v_{d}^{2}$$

$$I_{Q} - K_{n}v_{d}^{2} = 2\sqrt{i_{D1}}\left(I_{Q} - i_{D1}\right)$$

$$\frac{1}{2}\left(I_{Q} - K_{n}v_{d}^{2}\right) = \sqrt{i_{D1}}\left(I_{Q} - i_{D1}\right)$$

Taking square on both sides

$$\left(\frac{1}{2}(I_{Q} - K_{n}v_{d}^{2})\right)^{2} = \left(\sqrt{i_{D1}(I_{Q} - i_{D1})}\right)^{2}$$

$$i_{D1}(I_{Q} - i_{D1}) = \frac{1}{4}(I_{Q} - K_{n}v_{d}^{2})^{2}$$

$$i_{D1}I_{Q} - i_{D1}^{2} = \frac{1}{4}(I_{Q} - K_{n}v_{d}^{2})^{2}$$

$$i_{D1}^{2} - i_{D1}^{2} + \frac{1}{4}(I_{Q} - K_{n}v_{d}^{2})^{2}$$

Applying the quadratic formula, rearranging terms, and noting that $i_{D1} > I_Q/2$ and $v_d > 0$, we obtain

Applying the quadratic formula, rearranging terms, and noting that $i_{D1} > I_Q/2$ and $v_d > 0$, we obtain

$$i_{D1} = \frac{I_Q}{2} + \sqrt{\frac{K_n I_Q}{2}} . v_d \sqrt{1 - \left(\frac{K_n}{2I_Q}\right)} v_d^2$$

Using Eq.(5)

$$i_{D2} = \frac{I_Q}{2} - \sqrt{\frac{K_n I_Q}{2}} v_d \sqrt{1 - \left(\frac{K_n}{2I_Q}\right)} v_d^2$$

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The normalized drain currents are

$$\frac{i_{D1}}{I_{Q}} = \frac{1}{2} + \sqrt{\frac{K_{n}}{2I_{Q}}} v_{d} \sqrt{1 - \left(\frac{K_{n}}{2I_{Q}}\right)} v_{d}^{2}$$

$$\frac{i_{D2}}{I_{Q}} = \frac{1}{2} - \sqrt{\frac{K_{n}}{2I_{Q}}} v_{d} \sqrt{1 - \left(\frac{K_{n}}{2I_{Q}}\right)} v_{d}^{2}$$

These equations describe the dc transfer characteristics for this circuit. They are plotted in Figure as a function of a normalized differential input voltage $vd/\sqrt{(2I_Q/K_n)}$

The ac equivalent circuit of the diff-amp configuration, showing only the differential voltage and **signal currents** as a function of the transistor transconductance *gm*.

one-sided output voltage at vo2, as follows

$$g_{m} = 2\sqrt{K_{n}I_{DQ}}$$

$$= 2\sqrt{K_{n}\frac{I_{Q}}{2}}$$

$$= \sqrt{2}\sqrt{2}\sqrt{K_{n}\frac{I_{Q}}{2}} = \sqrt{2K_{n}I_{Q}}$$

$$v_{o2} \equiv v_o = +\frac{g_m v_d}{2} R_D$$

Then the differential voltage gain is

$$A_d = \frac{v_o}{v_d} = \frac{g_m R_D}{2} = \sqrt{\frac{K_n I_Q}{2}}.R_D$$

0,0

Small-Signal Equivalent Circuit Analysis

- We assume the transistors are matched, with $\lambda = 0$ for each transistor,
- CMRR
- The constant-current source is represented by a finite output resistance Ro.
- Transistor are biased at the same quiescent current, and gm1 = gm2 ≡ gm.

$$V_{1} = V_{cm} + \frac{V_{d}}{2}$$
 $V_{cm} = \frac{V_{1} + V_{2}}{2}$ $V_{2} = V_{cm} - \frac{V_{d}}{2}$ $2V_{cm} = V_{1} + V_{2}$ $V_{d} = V_{1} - V_{2}$

from above equations

Writing a KCL equation at node V_s, we have

$$g_{m}V_{gs1} + g_{m}V_{gs2} = \frac{V_{s}}{R_{o}}$$
 3

From the circuit, we see that $V_{gs1} = V_1 - V_s$ and $V_{gs2} = V_2 - V_s$

then becomes
$$g_m(V_1 + V_2 - 2V_s) = \frac{V_s}{R}$$

$$g_m(V_1 + V_2 - 2V_S) = \frac{V_S}{R_O}$$

$$g_{m}V_{1} + g_{m}V_{2} - 2g_{m}V_{S} = \frac{V_{S}}{R_{O}}$$

$$g_m(V_1 + V_2) = \frac{V_S}{R_0} + 2g_m V_S$$

$$V_{S} = \frac{g_{m}(V_{1} + V_{2})}{g_{m}\left(2 + \frac{1}{g_{m}R_{O}}\right)} = \frac{V_{1} + V_{2}}{2 + \frac{1}{g_{m}R_{O}}}$$

For a one-sided output at the drain of M_2 , we have $V_0 = V_{d2} = -(g_m V_{gs2})R_D = -(g_m R_D)(V_2 - V_s)$

$$V_{o} = V_{d2} = -(g_{m} R_{D}) \left[V_{2} - \frac{V_{1} + V_{2}}{2 + \frac{1}{g_{m} R_{O}}} \right]$$

$$V_{o} = V_{d2} = \frac{-(g_{m} R_{D}) \left[V_{2} \left[2 + \frac{1}{g_{m} R_{O}} \right] - (V_{1} + V_{2}) \right]}{2 + \frac{1}{g_{m} R_{O}}} = \frac{-(g_{m} R_{D}) \left[V_{2} + \frac{V_{2}}{g_{m} R_{O}} - V_{1} \right]}{2 + \frac{1}{g_{m} R_{O}}}$$

$$V_{o} = -g_{m}R_{D} \left[\frac{V_{2} \left(1 + \frac{1}{g_{m}R_{o}} \right) - V_{1}}{2 + \frac{1}{g_{m}R_{o}}} \right]$$

$$V_{cm} = \frac{V_1 + V_2}{2}$$

$$2V_{cm} = V_1 + V_2$$

$$E_{cm} = V_1 + V_2$$

$$V_d = V_1 - V_2$$

$$Input voltages V_1 and V_2 and differential - and common - mode voltages,$$

 $V_d = V_1 - V_2$ from above equations

$$V_1 = V_{cm} + \frac{V_d}{2}$$

$$V_{1} = V_{cm} + \frac{V_{d}}{2}$$

$$V_{2} = V_{cm} - \frac{V_{d}}{2}$$

$$V_{0} = V_{d2} = \frac{-(g_{m} R_{D}) \left[\left(V_{cm} - \frac{V_{d}}{2} \right) \left(1 + \frac{1}{g_{m} R_{O}} \right) + \frac{V_{2}}{g_{m} R_{O}} - \left(V_{cm} + \frac{V_{d}}{2} \right) \right]}{2 + \frac{1}{R_{D}}}$$

$$2 + \frac{1}{g_m R_o}$$

$$VKT:$$

WKT:

$$V_{o} = A_{cm}V_{cm} + A_{d}V_{d}$$

$$Coefficients of A$$

$$\mathbf{v}_{o} = \mathbf{A}_{cm} \mathbf{v}_{cm} + \mathbf{A}_{d} \mathbf{v}_{d}$$
Coefficients of \mathbf{A}_{cm}

 $V_{o} = V_{d2} = \frac{-(g_{m} R_{D}) \left[V_{cm} \left(1 + \frac{1}{g_{m} R_{O}} - 1 \right) \right]}{1} + A_{d}$

$$\mathbf{V}_{o} = A_{cm}V_{cm} + A_{d}V_{d}$$

Coefficients of A_{cm}

$$V_{o} = V_{d2} = \frac{-(g_{m} R_{D}) \left[V_{cm} \left(1 + \frac{1}{g_{m} R_{O}} - 1 \right) \right]}{2 + \frac{1}{g_{m} R_{O}}} + A_{d} V_{d}$$

$$V_{o} = V_{d2} = \frac{\frac{-(g_{m} R_{D})}{g_{m} R_{O}} V_{cm}}{\frac{1 + 2g_{m} R_{O}}{g_{m} R_{O}}} + A_{d} V_{d} = \frac{-(g_{m} R_{D})}{1 + 2g_{m} R_{O}} V_{cm} + A_{d} V_{d}$$

$$V_o = \frac{g_m R_D}{2} V_d - \frac{g_m R_D}{1 + 2g_m R_o} V_{cm}$$

The transconductance g_m of the MOSFET is

$$g_m = 2\sqrt{K_n I_{DQ}} = \sqrt{2K_n I_Q}$$

Differential-mode gain is

$$A_d = \frac{g_m R_D}{2} = \sqrt{2K_n I_Q} \left(\frac{R_D}{2}\right) = \sqrt{\frac{K_n I_Q}{2}}.R_D$$

Common-mode gain is

$$A_{cm} = \frac{-g_m R_D}{1 + 2g_m R_o} = \frac{-\sqrt{2K_n I_Q}.R_D}{1 + 2\sqrt{2K_n I_Q}.R_o}$$

We again see that for an ideal current source, the common-mode gain is zero since $Ro = \infty$.

The common-mode rejection ratio, $CMRR = |A_d/A_{cm}|$, is found to be

$$A_d = \frac{g_m R_D}{2} = \sqrt{2K_n I_Q} \left(\frac{R_D}{2}\right) = \sqrt{\frac{K_n I_Q}{2}}.R_D$$

CMRR=

$$A_{cm} = \frac{-g_m R_D}{1 + 2g_m R_o} = \frac{-\sqrt{2K_n I_Q}.R_D}{1 + 2\sqrt{2K_n I_Q}.R_o}$$

$$CMRR = \frac{1}{2} \left[1 + 2\sqrt{2K_n I_Q} . R_o \right]$$

The value of CMRR can be increased by increasing the output resistance of the current source. The increase can be accomplished by using a more sophisticated current source circuit, such as the MOSFET cascode current mirror

MOSFET differential amplifier with active load

Remember....

MOSFET differential amplifier with active load

 M_1 and M_2 are n – channel devices and form the diff pair biased with . The load circuit consists of M_3 and M_4 , both p – channel devices,

connected in a current – mirror configuration.

A one – sided output vO is taken from the common drains of M_2 and M_2

Assume Common Mode Signal

When a common – mode voltage $V_1 = V_2 = V_{CM}$ is applied: the current I_o splits evenly between transistors M_1 and M_2 , and $i_{D1} = i_{D2} = I_0 / 2$. There are no gate currents, therefore $i_{D3} = i_{D1}$ and $i_{D4} = i_{D2}$

Assume Difference Mode Signal

If a small diff – mode input voltage $V_d = V_1 - V_2$ is applied,

we can write

$$i_{D1} = \left(I_Q / 2\right) + i_d$$

$$i_{D2} = (I_Q/2) - i_d$$

$$i_d = \frac{g_m v_d}{2}$$

Since M1 and M2 are in series,

can be seen that
$$i_{D3} = i_{D1} = (I_Q / 2) + i_d$$

Finally, the current mirror consisting of

$$M_3$$
 and M_4 produces $i_{D4} = i_{D3} = (I_Q/2) + i_d$

Small Signal Equivalent Circuit

- 1.AC Equivalent Circuit
- 2.Small Signal Equivalent Circuit
- 3.Rearranged.

the Output Voltage is

$$v_o = 2 \left(\frac{g_m v_d}{2} \right) (r_{o2} || r_{o4})$$

$$g_{m} = 2\sqrt{K_{n}I_{D}} = \sqrt{2K_{n}I_{Q}}$$

$$g_{o2} = \lambda_{2}I_{DQ2} = (\lambda_{2}I_{Q})/2$$

$$g_{o4} = \lambda_{4}I_{DQ4} = (\lambda_{4}I_{Q})/2$$

and the small-signal diff-mode voltage gain is

$$A_{d} = \frac{v_{o}}{v_{d}} = g_{m} (r_{o2} || r_{o4})$$

can be rewritten in the form

$$A_d = \frac{g_m}{\frac{1}{r_{o2}} + \frac{1}{r_{o4}}} = \frac{g_m}{g_{o2} + g_{o4}}$$

then Equation becomes

$$A_d = \frac{2\sqrt{2K_nI_Q}}{I_Q(\lambda_2 + \lambda_4)} = 2\sqrt{\frac{2K_n}{I_Q}} \cdot \frac{1}{\lambda_2 + \lambda_4}$$

$$\frac{1}{R_0} = \frac{dI_D}{dV_{DS}} = \frac{1}{r_0} = \lambda I_D$$

$$Where$$

$$r_0 = \frac{1}{g_0} = \frac{1}{\lambda I_D}$$

$$g_0 = \lambda I_D$$