Convex Analysis

Davi Sales Barreira

January 11, 2022

Contents

1 Initial Definitions 5

List of Definitions

1.1	Definition (Standard for Convex Analysis)	5
1.2	Definition (Lower Semi-Continuity)	5
1.3	Definition (Chebyshev Set)	5
1.10	Definition (Convex Function)	6
1.13	Definition (Subgradient for Convex Functions)	7

List of Theorems

Notes mostly based on the summer course of Interactive Methods for Solving Structured Optimization Problems ministered by professor José Yunier Bello Cruz.

1 Initial Definitions

We use H to represent Hilbert spaces.

Let's assume that we are working in a topological space X that is Hausdorff.

Definition 1.1 (Standard for Convex Analysis). Let $f: X \to \mathbb{R} \cup \{+\infty\}$.

- 1. $dom f := \{x \in X : f(x) < +\infty\};$
- 2. $epi f := \{(x, \xi) \in X \times \mathbb{R} : f(x) \le \xi\};$
- 3. $\operatorname{lev}_{<\xi} f := \{ x \in X : f(x) \le \xi \};$

Definition 1.2 (Lower Semi-Continuity). A function $f: X \to \overline{\mathbb{R}}$ is lower semi-continuous (l.s.c) if

$$\forall x \in X, \ f(x) \le \liminf_{n \to +\infty} f(x_n) \tag{1}$$

It can be shown that f is l.s.c \iff epif is closed in $X \times \mathbb{R}$.

Definition 1.3 (Chebyshev Set). If every point $x \in H$ has exactly one projection onto C, then C is a Chebyshev set.

Theorem 1.4. Let C be a nonempty, closed and convex set of H. Then, C is Chebyshev set and $\forall x$ and $p \in H$,

$$p = P_C(x) \iff p \in C \text{ and } \forall y \in C, \langle y - p, x - p \rangle \leq 0.$$

Theorem 1.5. Let C be a convex set of H. Then, C is closed $\iff C$ is weakly closed.

Proof. \iff) We know that every set closed in the weak topology is closed in the strong topology.

 \implies) Take a weakly convergent sequence $(x_n) \subset C$. But,

$$\langle x_n - P_C(x), x - P_C(x) \rangle \le 0 \rightharpoonup \langle x - P_C(x), x - P_C(x) \rangle \le 0.$$

Since $\langle x - P_C(x), x - P_C(x) \rangle = ||x - P_C(x)|| \le 0 \implies x = P_c(x)$. Thus, $x \in C$.

Proposition 1.6. Let C be a convex set in H. Then,

- 1. \overline{C} is convex;
- 2. int C is convex.

Definition 1.7. Let C and $D \subset H$. Then, C and D are separated if there exists $h \in H \setminus \{0\}$ such that

$$\sup_{y \in C} \langle y, h \rangle \le \inf_{z \in D} \langle z, h \rangle.$$

Theorem 1.8. Let C be a nonempty convex closed subset of H and $x \in H \setminus C$. Then, x is strongly separated from C.

Proof. Take $h := x - P_C(x)$. Then,

$$0 \ge \langle y - P_c(x), x - P_c(x) = \langle y - x + h, h \rangle = \langle y - x, h \rangle + ||h||^2.$$

Therefore,

$$\langle y - x, h \rangle \le -\|h\|^2 < 0 = \inf \langle D - x, h \rangle.$$

Which means that

$$\sup \langle C - x, h \rangle < \inf \langle D - x, h \rangle,$$

where $D = \{x\}$.

Corollary 1.9. Let C and D be nonempty closed convex sets such that $C \cap D = \emptyset$ and D is bounded. Then, C and D are strongly separated.

Proof. We'll show that $C \setminus D$ is convex and closed. The convexity can be easily verified. For closedness, take a convergent sequence $(z_n) \subset C \setminus D$, with $z_n = x_n - y_n$ where $x_n \in C$ and $y_n \in C$, and assume that $z_n \to z$. Now, since D is bounded, then (y_n) has a weakly convergent subsequence $y_{n_k} \rightharpoonup y \in D$.

Since
$$z_n \to z$$
, then $z_{n_k} \to z$ and $\lim_{k \to \infty} x_{n_k} - y_{n_k} = \lim_{k \to \infty} x_{n_k} - y$. Hence, $\lim_k x_{n_k} = z + y \in C \implies z \in C \setminus D$.

Definition 1.10 (Convex Function). A function $f: H \to \overline{\mathbb{R}}$ is convex if it's epigraph is a convex set.

 $\Gamma(H) := \{ \text{Set of convex function with non empty domain} \}$

Moreover, f is said to be proper if $dom f \neq \emptyset$, and we define

$$\Gamma_0(H) := \{ \text{Set of convex, proper and l.s.c functions} \}$$

Note that a convex function will always be continuous only in the interior of the domain. Hence, the "l.s.c" condition in Γ_0 is not redundant.

Theorem 1.11. A function f is convex if and only if for every $x \in \text{dom } f$, and $\alpha \in [0,1]$ we have for $y \in \text{dom } f$

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y).$$

Theorem 1.12. Let $f \in \Gamma_0(H)$ and $x \in \text{int dom } f$. Then, there exists a continuous affine minorant h of f such that h(x) = f(x). In other words, $\exists u \in H$, for all $y \in H$ such that

$$f(y) \ge f(x) + \langle u, y - x \rangle.$$

Definition 1.13 (Subgradient for Convex Functions).

$$\partial f(x) := \{ u \in H : f(y) \ge f(x) + \langle u, y - x \rangle, \forall y \in H \}$$

Proposition 1.14. Let $f \in \Gamma(H)$. Then, every local minimizer of f is a minimizer.

Proposition 1.15. Let $f \in \Gamma_0(H)$, then f is weakly l.s.c.

References