- 1ère étape : on trace la perpendiculaire à (Δ) passant par M. On la prolonge de l'autre côté de (Δ) .
- $\frac{2 \text{\`e}me \acute{e}tape}{1}$: on place le compas sur l'intersection entre (Δ) et la perpendiculaire tracée. On ouvre le compas jusqu'au point M. On reporte la longueur de l'autre côté.

EXEMPLE

La figure rouge suivante est la réflexion d'axe (Δ) de la figure verte.

Symétrie centrale

Soit un point A du plan. On définit la **symétrie centrale de centre** A la transformation qui, à tout point M, associe un point M' tel que :

$$\overrightarrow{AM'} = \overrightarrow{MA}$$

La symétrie de centre A transformera M en M^\prime de sorte que :

- $\ A$, M et M' soient alignés
- $-\ A$ soit le milieu de [MM'].

Pour construire l'image M' de M par la symétrie centrale de centre A :

- 1ère étape : on trace la droite (AM).
- <u>2ème étape</u>: on place le compas sur A. On ouvre le compas jusqu'au point M. On reporte la longueur de l'autre côté. L'intersection avec la droite tracée donne M'.

EXEMPLE

La figure rouge suivante est la transformation par symétrie centrale de centre Z de la figure verte.

Polygones réguliers

DÉFINITION

On appelle **polygone régulier**, un polygone dont tous les côtés ont la même longueur et tous les angles formés par des côtés adjacents sont égaux.

EXEMPLES

