Laboratório 6

Somadores e Multiplicadores

O objetivo deste laboratório é examinar circuitos aritméticos que somam, subtraem e multiplicam números.

Parte I

A Figura 1 mostra um circuito para um *somador completo*, que possui as entradas a, b, e c_i , e produz as saídas s e c_o . As partes b e c da figura mostram o símbolo do circuito e a sua tabela verdade, que produz a soma binária de 2 bits. A Figura 2d mostra como quatro instâncias deste somador completo podem ser usadas para projetar um circuito que soma dois números de 4 bits. Escreva código VHDL que implemente este circuito como descrito abaixo:

Figura 1: Um circuito somador.

- 1. Crie um novo projeto Quartus II para esta entidade.
- 2. Use as chaves SW_{7-4} e SW_{3-0} para representar as entradas A e B, respectivamente. Use SW_8 para o carry-in c_{in} do somador. Conecte as chaves SW nos seus leds vermelhos correspondentes, e a saída do somador c_{out} e S nos leds verdes.
- 3. Compile e teste o circuito.

Parte II

Implementar o circuito mostrado na Figura 2. Para tanto:

Ligue a entrada A nas chaves SW₇₋₀, use KEY₀ como um reset assíncrono e KEY₁ como uma entrada de clock manual. A saída S deve ser mostrada nos leds vermelhos LEDR₇₋₀ e o sinal de Carry Out em LEDG₈. Atenção para o uso de números sem sinal.

Figura 2: Um circuito acumulador de 8 bits.

Mostre esta parte para o professor em sala de aula.

Parte III

A Figura 3a mostra um exemplo de multiplicação $P=A\times B$ da forma que seria resolvida com papel e caneta, onde A=11 e B=12.

Figura 3: Multiplicação de números binários.

Calculamos $P = A \times B$ como em uma adição de termos. O primeiro termo é igual a A vezes a unidade de B. O segundo termo é A vezes a dezena de B, deslocado uma posição para a esquerda. Adicionamos estes termos para obter P = 132.

A parte b desta mesma figura mostra o mesmo exemplo usando números binários de 4 bits. Para calcular $P=A\times B$, devemos formar os termos multiplicando A por cada dígito de B. Como cada dígito de B é 1 ou 0, os termos são versões deslocadas de A ou 0000. A Figura 3c mostra como cada termo pode ser formada usando a expressão Booleana AND de A com o bit apropriado de B.

Assim, este circuito multiplicador pode ser representado como mostrado na Figura 4.

Figura 4: Circuito multiplicador.

Cada somador de n-bits adiciona uma versão shiftada de A para dada linha da soma parcial da linha acima. Com esta abstração é possível construir multiplicadores para qualquer tamanho de entrada. Use esta técnica para implementar um multiplicador 8x8 com entradas e saídas registradas, como mostrado na Figura 5.

Figura 5: Um circuito multiplicador registrado.

Importante: *Não* use o operador '*' definido na biblioteca. O objetivo do laboratório é treinar a construção do circuito.

Execute os seguintes passos:

- 1. Use as chaves SW_{15-8} para representar o número A e as chaves SW_{7-0} para representar B. Use KEY_0 como um reset assíncrono e KEY_1 como uma entrada de clock manual. O valor hexadecimal de A e B devem ser mostrados nos displays de 7-segmentos HEX7-6 e HEX5-4, respectivamente. O resultado $P=A\times B$ deve ser mostrado em HEX3-0. Utilize representação numérica **sem** sinal.
- 2. Envie esta parte para o Ensino Aberto.