On Longitudinal Emittance

W.D. Klotz, wdklotz@alecli.com

January 30, 2019

1 Emittance Conversions

The standard formula for an upright ellipse in phase-space $\Delta \phi \otimes w$ is:

$$\frac{\Delta\phi^2}{\Delta\phi_0^2} + \frac{w^2}{w_0^2} = 1\tag{1}$$

with $\Delta \phi = \phi - \phi_s$ and $w \equiv \delta \gamma = \Delta W/mc^2$. ϕ_s being the synchronous phase, mc^2 the rest energy, W the total energy and γ the Lorentz factor. It has the emittance

$$\epsilon_w = \Delta \phi_0 w_0 \tag{2}$$

and units [rad]. The ellipse intersects the $\Delta\phi$ -axis at $\Delta\phi_0$ and the w-axis at w_0 . The intersection with the w-axis determines the β -function by the relation $\beta_w = \epsilon_w/w_0^2$. Its units are [rad].

Let's change to new coordinates, for instance the pair of canonical variables $\Delta z \otimes \Delta p/p$, as it is used internally in Trace 3D. The transformation from old to new coordinates is: $|\Delta z| = \kappa |\Delta \phi| = \frac{\beta \lambda}{2\pi} |\Delta \phi|$ and $\Delta p/p = \tau w = \gamma/(\gamma^2 - 1)w = (\gamma \beta^2)^{-1}w$. This gives the modified ellipse equation:

$$\frac{\Delta z^2}{\left(\kappa \Delta \phi_0\right)^2} + \frac{(\Delta p/p)^2}{(\tau w_0)^2} = 1 \tag{3}$$

which has the transformed emittance

$$\epsilon_z = \kappa \Delta \phi_0 \tau w_0 = \kappa \tau \epsilon_w = \frac{\beta \lambda}{2\pi} \gamma / (\gamma^2 - 1) \epsilon_w = \frac{\lambda}{2\pi \gamma \beta} \epsilon_w,$$
 (4)

with units $[m \times rad]$. Again the β -function is given by

$$\beta_z = \epsilon_z / (\Delta p/p)_0^2 = \kappa \tau \epsilon_w / (\tau w_0)^2 = \kappa / \tau \times \beta_w = \frac{\beta \lambda}{2\pi} \frac{\gamma^2 - 1}{\gamma} \beta_w, \tag{5}$$

with units [m/rad].

For the $\Delta\phi\otimes\Delta W$ phase space, because $\Delta W=mc^2w$, we have $\kappa=1$ and $\tau=mc^2$. So that

$$\epsilon_W = mc^2 \epsilon_w \quad [rad \times eV] \tag{6}$$

$$\beta_W = 1/mc^2 \beta_w \quad [rad/eV] \tag{7}$$

Finally for the $\Delta z \otimes \Delta W$ phase space we get the emittance

$$\epsilon_{zW} = \frac{\beta \lambda}{2\pi} mc^2 \epsilon_w \quad [m \times eV] \tag{8}$$

$$\beta_{zW} = \frac{\beta \lambda}{2\pi} \frac{1}{mc^2} \beta_w \quad [m/eV] \tag{9}$$

The ESS conceptual design report uses the $z\otimes z'$ phase space, i.e. the emittance $\epsilon_{zz'}$. Since $\delta\gamma=w=\beta^2\gamma^3\delta\beta/\beta=\beta^2\gamma^3z'$ and $\Delta\phi=\frac{2\pi}{\beta\lambda}z$ we have:

$$\epsilon_{zz'} = \frac{\lambda}{2\pi\beta\gamma^3} \epsilon_w \tag{10}$$

with units $[m \times rad]$.

Instead of longitudinal position some people use arrival time. For the $\Delta t \otimes \Delta W$ phase space we use $|\Delta t| = (\beta c)^{-1} |\Delta z| = (\beta c)^{-1} \frac{\beta \lambda}{2\pi} |\Delta \phi|$ and get

$$\epsilon_{tW} = \frac{\lambda}{2\pi c} mc^2 \epsilon_w \quad [sec \times eV] \tag{11}$$

More details about emittance definitions, normalized and unnormalized, and their units can be found in the UserManual of the TraceWin program.

2 Twiss Parameter Values

To simplify we assume the twiss parameter $\alpha = 0$. The twiss parameter γ then reduces to $1/\beta$ and only two free parameters ϵ and β remain to describe the ellipse in phase space completely.

For the longitudinal dynamics in the passage of an rf-gap the intersection w_0 on the w-axis is given by

$$w_0 = \frac{\Delta W}{mc^2} = \sqrt{qE_0T\beta_s^3\gamma_s^3\lambda sin(-\phi_s)\Delta\phi_0^2/2\pi mc^2}$$
 (12)

$$= \Delta \phi_0 \sqrt{qE_0 T \beta_s^3 \gamma_s^3 \lambda sin(-\phi_s)/2\pi mc^2}$$
(13)

If w_0 is given $\Delta\phi_0$ follows from (13) and vice versa. Putting $w_0 = \epsilon_w/\Delta\phi_0$ into (13) we get

$$\Delta\phi_0 = \sqrt{\epsilon_w/\sqrt{qE_0T\beta_s^3\gamma_s^3\lambda sin(-\phi_s)/2\pi mc^2}}$$
(14)

and from (14) we get finally

$$\gamma_0 = \epsilon_w / \Delta \phi_0^2 = \sqrt{qE_0 T \beta_s^3 \gamma_s^3 \lambda sin(-\phi_s) / 2\pi mc^2}$$
(15)

and

$$\beta_0 = 1/\gamma_0 \tag{16}$$

NOTE: the two twiss parameters γ_0 and β_0 are completely defined by the emittance ϵ_w and the cavity field E_0 , rf-phase ϕ_s , rf-wavelength λ and particle impuls $\sim \gamma \beta$.

3 Appendix

3.1 SIMULAC Variables

$\epsilon_w = \text{emitw}$	$\Delta \phi = \mathrm{Dphi}$	$\Delta \phi_0 = \mathrm{Dphi}0$	w = w	$w_0 = w0$
$\epsilon_W = \text{emitW}$	$\Delta z = z$	$\Delta W = \mathrm{DW}$	$\Delta p/p = \mathrm{Dp2p}$	$\Delta p/p_0 = \mathrm{Dp2p0}$
$\epsilon_z = \text{emitz}$	$\beta_z = \text{betaz}$	$\gamma_z = \text{gammaz}$	$\alpha_z = \text{alphaz}$	$\lambda = lamb$
$Ez_{avg} = EzAvg$	$Ez_{peak} = EzPeak$	$\phi_+={\tt phi_1}$	$\phi={\tt phi_2}$	$\psi = psi$
$\gamma = \text{gamma}$	$\gamma\beta = gb$	$\beta = \text{beta}$	$E_0T = E0T$	$mc^3 = m0c3$
$mc^2 = m0c2$	$\epsilon_{xi} = { t emitx_i}$	$\epsilon_{yi} = exttt{emity_i}$	$\epsilon_{zi} = { t emitz_i}$	$eta_{xi} = \mathtt{betax_i}$
$eta_{yi} = exttt{betay_i}$	$lpha_{xi} = { t alfax_i}$	$lpha_{yi} = exttt{alfay_i}$	$\gamma_{xi} = { t gamax_i}$	$\gamma_{yi} = { t gamay_i}$
$\omega = \text{omg}$	$\phi = \text{phi}$	$\phi_s = \text{phis}$		

3.2 Relations Between Ellipse and Twiss Parameters

		α, β, γ, ε	C ₁ C ₂ C ₃ C ₄	L, S, ε		
		$\beta \gamma - \alpha^2 = 1$ $ii = \frac{1}{2}(\beta + \gamma)$	$\epsilon = c_1 c_4 - c_2 c_3$ $ii = \frac{1}{2} \left(c_1^2 + c_2^2 + c_3^2 + c_4^2 \right) / \epsilon$	$H = \frac{1}{2L} (L^2 + S^2 + 1)$		
-	У1	√ε/ _Υ	$\epsilon/\sqrt{c_3^2+c_4^2}$	√€L		
	У2	√ <u>εβ</u>	$\sqrt{c_1^2 + c_2^2}$	$\sqrt{\epsilon/L} \sqrt{S^2 + L^2}$	- 19	
	y ś	- α√ ε /β	$(c_1c_3 + c_2c_4)/\sqrt{c_1^2 + c_2^2}$	$S\sqrt{\varepsilon/L}/\sqrt{S^2 + L^2}$	9	
	У3	- α√ε/γ	$(c_1c_3 + c_2c_4)/\sqrt{c_3^2 + c_4^2}$	S√€/L		
	у ś	$\sqrt{e_{\Upsilon}}$	$\sqrt{c_3^2 + c_4^2}$	√e/L		
	у і	√ <u>ε/β</u>	$\epsilon/\sqrt{c_1^2 + c_2^2}$	$\sqrt{\varepsilon L}/\sqrt{S^2 + L^2}$		
	a	$\sqrt{\epsilon/2} \left(\sqrt{h} + 1 + \sqrt{h} - 1 \right)$				
	b	$\sqrt{2\varepsilon}/(\sqrt{h}+1+\sqrt{h}-1)=\sqrt{\varepsilon/2}(\sqrt{h}+1-\sqrt{h}-1)$				
	a/b > 1	$H + \sqrt{H^2 - 1}$				
	tan ç	$[-\alpha(H + \sqrt{H^2 - 1})]/[\beta(H + \sqrt{H^2 - 1}) - 1]$	$[c_2 + c_3(H + \sqrt{H^2 - 1})]/[c_1(H + \sqrt{H^2 - 1}) - c_4]$	$S/[L(H + \sqrt{H^2 - 1}) - 1]$		
	sin 2€	$-\alpha/\sqrt{11^2-1}$	$(c_1c_3 + c_2c_4)/\epsilon\sqrt{11^2 - 1}$	$S/L\sqrt{H^2-1}$		
	cos 2ç	$(\beta - \gamma)/2\sqrt{\ln^2 - 1}$	$(c_1^2 + c_2^2 - c_3^2 - c_4^2)/2\epsilon\sqrt{ll^2 - 1}$	$(L^2 + S^2 - 1)/2L\sqrt{H^2 - 1}$		
	tan 2¢	- 2α/(β - γ)	$2(c_1c_3 + c_2c_4)/(c_1^2 + c_2^2 - c_3^2 - c_4^2)$	$2S/(L^2 + S^2 - 1)$		
		l				