Capitolul 3. Prima formă normalizată

Prima formă normalizată (1NF) este, în general, tratată cu superficialitate de majoritatea practicienilor în materie de proiectare a bazelor de date. Aceasta deoarece principala cerință – atomicitatea valorilor – este un deziderat uşor de îndeplinit, cel puțin la prima vedere. Cele mai sensibile chestiuni în aducerea relațiilor în 1NF sunt legate de atomicitate, eliminarea grupurilor repetitive, precum și de stabilirea cheii primare, cheie primară care devine o problemă delicată atunci când se pornește de la o relație cu zeci sau sute de atribute.

Pe de altă parte, noțiunea de atomicitate este una destul de alunecoasă. Deși în primele lucrări Codd nu formulează o definiție riguroasă a atomicității, timp de aproape trei decenii majoritatea autorilor din "zona" relaționalului au considerat ca pe o primă "poruncă" a unei relații (tabele) necesitatea ca valoarea oricărui atribut pe orice linie (tuplu) să fie una scalară (atomică, nedecompozabilă). De câtva timp, însă, Chris Date și alți relaționiști încearcă că depășească limitele atomicității, înlocuind domeniile cu *tipuri* care pot fi atât scalare, cât și compozite (definite de utilizator).

3.1. Definiții ale primei forme normalizate

Teoria normalizării nu face parte, propriu-zis, din modelul relațional. Dintre toate formele normalizate, doar prima are caracter de obligativitate. O bază de date este normalizată dacă toate relațiile (tabelele) care o alcătuiesc se află *măcar* în 1NF. Celelalte forme normale sunt dezirabile pentru diminuarea redundanțelor, spațiului ocupat pe disc sau anomaliilor manifestate la actualizare, însă nu sunt obligatorii.

După Codd, o relație este în prima formă normală dacă... nici unul dintre domeniile sale nu conține elemente care sunt, la rândul lor, seturi (ansambluri)¹. Se cuvine de adăugat remarca lui Date care crede ca ar fi fost mai nimerit ca, în locul termenului domenii, Codd să-l fi folosit pe cel de atribute. Actualmente, mulți "relaționiști" preferă termenul tip celui de domeniu².

Unele lucrări³ definesc o relație aflată în 1NF ca acea relație în care fiecare atribut prezintă numai valori atomice, adică toate atributele sunt ne-decompozabile; după R.Riordan, o relație este în 1NF dacă domeniile pe care sunt definite atributele relației sunt scalare⁴. În ediția a treia a cărții dedicate sistemelor de baze de date, Connoly și Begg sunt mai tranșanți: o relație în 1NF este o relație în care intersecția oricărei linii cu

¹ [Codd72]

² [Date04]

³ [Date86], [Miranda&Busta90], [Connoly s.a.96], [Dollinger98]

⁴ [Riordan99]

oricare coloană contine o valoare și numai una⁵. Astfel, 1NF respinge ideea de set de valori, tuplu de valori sau combinatia acestora ca valoare a unui singur atribut pe un oricare tuplu (linie) a relatiei.

Alti autori formează explicit pentru 1NF și restricția: toate atributele ce compun relatia să fie în dependență funcțională fată de cheia relatiei, ceea este, oarecum, o tautologie, întrucât una dintre "poruncile" valabile pentru orice tabelă stipulează negru pe alb că într-o relație nu pot exista două tupluri identice sau, altfel spus, într-o relație trebuie să existe măcar un atribut sau combinație de atribute ale căror valori să deosebească orice tuplu de toate celelalte sau orice relatie posedă o cheie primară.

Formularea care a generat cele mai multe confuzii este legată de noțiunea de *grupuri repetitive*⁶: O relație în 1NF nu trebuie să conțină grupuri repetitive.

De obicei, notiunea de grup repetitiv este raportată direct la cea de atomicitate. Diferențierea atomicitate - grup repetitiv apare în [Lungu s.a.95], pentru care un atribut atomic este unul simplu (ne-compus): "O relatie este în 1NF dacă domeniile pe care sunt definite atributele relației sunt constituite numai din valori atomice (elementare). În plus, un tuplu nu trebuie să conțină atribute sau grupuri de atribute repetitive"⁷. Din păcate, autorii se opresc aici cu definitia, păstrând o remarcabilă discretie vis-a-vis de ceea ce consideră grup repetitiv. La fel stau lucrurile și la dna. Ileana Popescu⁸.

Un plus de claritate aduce definitia lui Toby Teorey, pentru care o relatie este în 1NF dacă și numai dacă toate coloanele conțin numai valori atomice; aceasta înseamnă că nu există grupuri (coloane) repetitive în cadrul vreunei linii a tabelei. Imediat autoarea precizează că un grup repetitiv apare într-o tabelă atunci când unui atribut multi-valoare îi sunt permise două sau mai multe valori reprezentate în cadrul unei aceleași linii⁹. Sau, după cum spunea Chris Date până în editia a șasea a celei mai cunoscute cărti a sa, un grup repetitiv reprezintă o coloană care contine câteva valori în fiecare linie, sau, altfel spus, un număr diferit de valori pe linii diferite¹⁰.

În concluzie, aducerea unei relații în 1NF presupune discutarea următoarelor elemente:

- raportul atribut simplu/atribut compus;
- grupuri repetitive de atribute (pe orizontală);
- grupuri repetitive de valori în cadrul fiecărei celule a tabelei.

⁵ [Connoly & Begg 02], p.388

⁶ [Date86], [Pratt&Adamski91], [Oprea99]), [Lungu s.a.95]

⁷ [Lungu s.a. 95], p.169

⁸ [Popescu 01], p.78

⁹ [Teorey99], p.99

¹⁰ Preluare din ediția a opta a cărții ([Date 04], p.153), unde Date se autocitează pentru a demonstra că înțelesese greșit noțiunea de domeniu (tip) și, în consecință greșise atunci când a formulat definiția 1NF.

3.2. Atribute simple și atribute compuse

Primele vizate de "stigmatul" neatomicității sunt atributele compuse. Cu ani buni în urmă, în cursurile de profil, exemplul clasic al unui atribut compus era DataCalendaristică, alcătuit, cum altfel, din câmpurile: Ziuă, Lună, An. Era vremea înfloritoare a COBOLului și FORTRANului, când nu existau mecanisme de declarare și gestionare a variabilelor și atributelor de tip DATE; verificarea corectitudinii datei calendaristice cădea în sarcina programatorului ce trebuia să scrie o rutină specială.

Astăzi, nu există SGBD sau mediu de programare care să nu prezinte tipul de dată DATE prin care se gestionează simultan toate cele trei elemente; prin funcții de conversie se pot obține: ziua (DAY), luna (MONTH), anul (YEAR), ba chiar calcula numărul de zile, luni, ani dintre două date calendaristice și alte minunății. Ca să nu mai vorbim de tipul DATETIME și acesta omniprezent în produsele software ale zilelor noastre.

Un alt exemplu celebru privind atribute compuse (non-atomice) este Adresa. Fiind alcătuită din Stradă, Număr, Bloc, Scară, Etaj, Apartament, plus CodPoștal (după noul sistem de codificare) discuția despre atomicitatea adresei pare de prisos, iar descompunerea sa imperativă. Din nou însă trebuie să ne raportăm la obiectivele bazei. Fără îndoială că, pentru BD a unei filiale CONEL sau ROMTELECOM, sau pentru poliție, preluarea separată a fiecărui element constituent al adresei este vitală. Interesează, spre exemplu, ce abonați sunt pe strada *Tranziției* sau câte cereri sunt depuse de cetățeni de pe străzile *Lascăr Catargi, Titu Maiorescu* și *Marina Scupra*. Sau, un cioranian ce lucrează în cadrul Poliției, ar putea fi interesat să afle dacă gradul de sinucidere al persoanelor ce locuiesc la etajul trei este mai mare decât cel al persoanelor de la parter.

Cu totul altfel stau lucrurile pentru un importator direct, pentru un mare engrossist sau pentru o firmă de producție. Partenerii de afaceri ai acestora sunt persoane juridice, iar adresa interesează numai la nivel general. Este drept că imediat după Revoluție deveniseră mari furnizori naționali de cupru și aluminiu și persoane fizice (vezi cazul bulibașei din Ciurea, dar asta-i altă poveste...).

Alte exemple de atribute ce pot fi considerate, în funcție de circumstanțe, simple sau compuse: DataOperațiuniiBancare (Data+Ora), BuletinIdentitate (Seria+Număr), NrînmatriculareAuto (privit global, sau pe cele trei componente: judeţ, număr și combinația trei de litere).

În relația universală FILMOGRAFIE, al cărei dicționar de date simplificat este cel din tabelul 2.2, cel puțin două atribute sunt compuse și trebuie "sparte", Distribuție și Premii. Astfel, în Distribuție pot fi delimitate măcar două informații, Actor și Rol. În cazul premiilor, ar trebui detaliată discuția prin introducerea atributelor:

- denumire premiu (Oscar, Globul de aur etc.);
- locul atribuirii (Hollywod, Cannes, Berlin, Veneția, București etc.);
- categoria (regie, scenariu, actor în rol principal etc.)
- anul decernării;

- numele actorului, dacă categoria este pentru interpretare. Astfel, noua formă a dicționarului de date este cea din tabelul 3.1.

Atribut	Descriere
IdFilm	Codul unic al filmului
TitluOriginal	Titlul în engleză, franceză etc, așa cum apare la lansare filmului
TitluRO	Traducerea românească a titlului original
AnLans	Anul lansării
Producători	Producătorul sau producătorii filmului
Regizori	Regizorul sau regizorii filmului
Rol	Rolul din film
Actor	Actorul care interpretează rolul/filmul curente
Genuri	Genul/genurile la care se încadrează filmul (horror, comedie etc.)
DenPremiu	Numele premiului - tipul (Oscar, Leul de argint, Ursul de aur etc.)
LocDecernare	Locul în care se organizează festivitatea sau festivalul
Categorie	Categoria premiului (pentru ce anume se acordă premiul)
AnPremiu	Anul decernării

Tabel 3.1. FILMOGRAFIE - dictionarul datelor (simplificat) - versiunea 2

Concluzionând în termeni rabinici, ambele variante, descompunerea sau nedescompunerea atributelor compuse, sunt valabile de la caz la caz, alegerea soluției fiind în concordanță cu specificul bazei de date (și inspirația proiectantului). În plus, nu trebuie uitat că și pentru atributele compuse pot fi extrase destule informații utilizând în SQL operatorul LIKE.

Atomicitatea atributelor într-o bază de date relațională a fost privită ca o limită serioasă a modelului, datorită imposibilității adaptării BDR la specificul unor domenii precum multimedia, CAD etc. Mulți autori, dintre care merită amintiți cu deosebire Chris J. Date și Hugh Darwen, se opun ideii de atomicitate formulată de Codd (vezi și paragraful 3.5).

3.3. Despre grupuri repetitive și urmările lor

O relație (tabelă) în 1NF nu trebuie să conțină atribute care se repetă ca grupuri. Într-o altă formulare, toate liniile unei tabele trebuie să conțină același număr de atribute. Fiecare celulă a tabelei (intersecția unei coloane cu o linie), altfel spus, valoarea unui atribut pe o linie (înregistrare), trebuie să fie atomică.

După [Connoly s.a.96], un grup repetitiv este un atribut sau grup de atribute dintr-o tabelă care apare cu valori multiple pentru o singură apariție a cheii primare a tabelei ne-normalizate.

Să luăm exemplul tabelei BIBLIOTECĂ din figura 3.1. Tabela gestionează informații despre cărțile existente în depozitul bibliotecii *Facultății de Economie și Administrarea Afacerilor* (FEAA). De remarcat că în blibliotecă există două exemplare ale cărții cu ISBN-ul 973-683-709-2 și trei exemplare de cea dedicată Visual FoxPro. Prima carte a fost scrisă de patru autori și îi sunt asociate opt

cuvinte-cheie, iar a doua are un singur autor. Relația nenormalizată conține trei grupuri repetitive: Cote, Autori și CuvinteCheie.

BIBLIOTECĂ

<u>ISBN</u>	ISBN Titlu Cote		Autori	
973-683-889-7	Visual FoxPro. Ghidul	III-13421, III-	Marin Fotache, Ioan	
	dezvoltării aplicaţiilor	13422, III-13423	Brava, Cătălin Strâmbei,	
	profesionale		Liviu Creţu	
973-683-709-2	SQL. Dialecte DB2, Oracle şi	III-10678, III-	Marin Fotache	
	Visual FoxPro	10679		

Editura	LocSediuEd	AnApariţie	CuvinteCheie
Polirom	laşi	2002	baze de date, SQL, proceduri stocate, FoxPro, formulare, orientare pe obiecte, client-server, web
Polirom	laşi	2001	baze de date, algebră relaţională, SQL

Figura 3.1. Relaţia universală nenormalizată BIBLIOTECĂ

Paragrafele următoarele sunt dedicate prezentării unor soluții pentru eliminarea grupurilor repetitive. Trebuie precizat, însă, că nu întotdeauna grupurile repetitive reprezintă o problemă majoră. Spre exemplu, într-o relație gen PERSOANE_CONTACT atributul Telefoane poate avea valori ne-atomice, deoarece pot exista mai multe numere atât la birou, cât și mobile (mulți manageri au câte un aparat pe fiecare rețea - Orange, Conex, Zapp)...

3.3.1. Grupuri repetitive pe orizontală

Una dintre cele mai nerecomandate soluții pentru eliminarea grupurilor repetitive ține de extinderea pe orizontală a tabelelor, prin duplicarea forțată a unor atribute. Revenim la figura anterioară. Pentru a înlătura grupurile repetitive de pe primele două linii, putem fi tentați să modificăm structura tabelei, ca în figura 3.2.

BIBLIOTECĂ_GRUPURI_REPETITIVE_PE_ORIZONTALĂ

ISBN	Titlu	Cota1	Cota2	Cota3
973-683-889-7	Visual FoxPro. Ghidul dezvoltării aplicaţiilor profesionale	III-13421	III-13422	III-13423
973-683-709-2	SQL. Dialecte DB2, Oracle şi Visual FoxPro	III-10678	III-10679	NULL

Autor1	Autor2	Autor3	Autor4	Editura	LocSediuEd
Marin Fotache	Ioan Brava	Cătălin Strâmbei	Liviu Creţu	Polirom	laşi
Marin Fotache	NULL	NULL	NULL	Polirom	laşi

AnApariţie	CuvântCheie1	CuvântCheie2	CuvântCheie3	CuvântCheie4
2002	baze de date	SQL	proceduri stocate	FoxPro
2001	baze de date	algebră relaţională	SQL	NULL

CuvântCheie5	CuvântCheie6	CuvântCheie7	CuvântCheie8

formulare	orientare pe obiecte	client-server	web
NULL	NULL	NULL	NULL

Figura 3.2. O soluție (destul de penibilă) de eliminare a grupurilor repetitive

Deși tabela se află în prima formă normală, structura acesteia este hilară. Ar trebui să "rezervăm" căteva zeci de atribute pentru cotele cărților, altă serie de atribute pentru autori (apropo, care este numărul maxim de autori ce au participat la scrierea unei cărți ?), ca să nu mai vorbim de cuvintele cheie.

Atenție, însă ! Deși hilară, schema de mai sus nu violează conceptul de atomicitate, oricare ar fi formularea acestuia. Unii autori respectabili, precum Toby Teorey¹¹, greșesc atunci când dau exemple de relații nenormalizate de tipul celor din figura 3.2 (este drept, la Teorey atributele care se repetă în cadrul relației au același nume, ceea ce modelul relațional respinge din start).

Această variantă de normalizare funcționează totuși în cazuri punctuale. Spre exemplu, nu este exagerat ca într-o tabelă să avem atribute de genul celei din figura 3.3.

PERSOANE 1

<u>CNP</u>	Nume	Prenume	DataNaşterii	CNPMamă	CNPTată
2641121390802	Bucur	Cerasela	21-11-1964	2440611390167	1401205390102

Figura 3.3. Un exemplu rezonabil de atribut pseudo-repetitiv

Cum orice persoană are cel mult doi părinți (re)cunoscuți, putem introduce grupul de atribute CNPMamă, CNPTată, deși, din punct de vedere relațional, este corectă și varianta din figura 3.4.

PERSOANE 2

CNP	Nume	Prenume	DataNaşterii	CNPPărinte	<u>Părinte</u>
2641121390802	Bucur	Cerasela	21-11-1964	2440611390167	Mamă
2641121390802	Bucur	Cerasela	21-11-1964	1401205390102	Tată

Figura 3.4. O altă primă formă normală a relației PERSOANE_1

3.3.2. Eliminarea grupurilor repetitive prin adăugarea de tupluri

A doua variantă păstrează structura relației (universale sau nu), în sensul că nu se modifică numărul de atribute, adăugându-se tupluri (linii) suplimentare astfel încât orice valoare a celor trei atribute de tipul "grupuri repetitive" devine atomică. Apare însă problema: cum anume completăm tuplurile pentru ca să fie preluate toate informațiile, iar, pe de altă parte, eventualele actualizări să nu antreneze

¹¹ [Teorey99], pp.99-100

pierderi sau alterări de informații ? În acest sens, am putea lua în discuție trei soluții, după cum urmează.

Număr minim de linii - o singură valoare atomică pentru fiecare atribut compozit

Avem trei atribute non atomice (multivaloare). În figura 3.1, pentru fiecare carte, numărul de linii din tabelă va fi maximul dintre numărul cotelor, numărul autorilor şi numărul cuvintelor cheie. Astfel, pentru *Visual FoxPro* sunt trei cote, patru autori şi opt cuvinte cheie; aşadar, vom avea opt linii (primele opt din figura 3.5). Valorile cotelor în liniile 4-8 vor fi NULL; la fel valorile atribului Autor pentru liniile 5-8.

BIBLIOTECĂ TUPLURI NOI SOLUTIA 1

ISBN	Titlu	<u>Cotă</u>	<u>Autor</u>
973-683-889-7	Visual FoxPro. Ghidul dezvoltării aplicaţiilor profesionale	III-13421	Marin Fotache
973-683-889-7	Visual FoxPro. Ghidul dezvoltării aplicaţiilor profesionale	III-13422	Ioan Brava
973-683-889-7	Visual FoxPro. Ghidul dezvoltării aplicaţiilor profesionale	III-13423	Cătălin Strîmbei
973-683-889-7	Visual FoxPro. Ghidul dezvoltării aplicaţiilor profesionale	NULL	Liviu Creţu
973-683-889-7	Visual FoxPro. Ghidul dezvoltării aplicaţiilor profesionale	NULL	NULL
973-683-889-7	Visual FoxPro. Ghidul dezvoltării aplicaţiilor profesionale	NULL	NULL
973-683-889-7	Visual FoxPro. Ghidul dezvoltării aplicaţiilor profesionale	NULL	NULL
973-683-889-7	Visual FoxPro. Ghidul dezvoltării aplicaţiilor profesionale	NULL	NULL
973-683-709-2	SQL. Dialecte DB2, Oracle şi Visual FoxPro	III-10678	Marin Fotache
973-683-709-2	SQL. Dialecte DB2, Oracle şi Visual FoxPro	III-10679	NULL
973-683-709-2	SQL. Dialecte DB2, Oracle şi Visual FoxPro	NULL	NULL

Editura	LocSediuEd	AnApariţie	<u>CuvântCheie</u>
Polirom	laşi	2002	baze de date
Polirom	laşi	2002	SQL
Polirom	laşi	2002	proceduri stocate
Polirom	laşi	2002	FoxPro
Polirom	laşi	2002	formulare
Polirom	laşi	2002	orientare pe obiecte
Polirom	laşi	2002	client-server
Polirom	laşi	2002	web
Polirom	laşi	2001	baze de date

Polirom	laşi	2001	algebră relaţională
Polirom	laşi	2001	SQL

Figura 3.5. Completarea cu tupluri - soluția 1

Deoarece o cotă nu poate identifica decât o singură carte, cheia primară a noii relații este alcătuită din trei atribute, (Cotă, Autor, CuvântCheie). Redundanța datelor este evidentă. Dacă pentru cartea de Visual FoxPro am dori să mai introducem un nou cuvânt cheie, ar trebui inserată o linie nouă în tabelă, în care valorile atributelor Autor și Cotă să fie nule. Aceasta nu este însă singura problemă. Să presupunem că sintagma *proceduri stocate* este greșit asociată cărții de Visual FoxPro. În mod normal, corectarea acestei greșeli presupune ștergerea celui de-al treilea tuplu:

```
DELETE FROM BIBLIOTECĂ_TUPLURI_NOI_SOLUTIA_1
WHERE ISBN = '973-683-889-7' AND
cuvântcheie = 'proceduri stocate')
```

Necazul e că ștergerea liniei se face cu două pierderi de informații. Prima pierdere ține de calitatea de coautor al acestei cărți a lui Cătălin Strîmbei, iar a doua este legată de exemplarul cărții ce are cota *III-13423*. Aceasta deoarece tuplul șters era singurul care se referea la autorul și la cota cu pricina.

Am putea încerca un artificiu, și anume ca ștergerea unui cuvânt cheie sau autor sau cotă să nu se facă prin ștergerea liniei respective, ci setarea pe NULL a valorii de pe linia incriminată:

```
UPDATE BIBLIOTECĂ_TUPLURI_NOI_SOLUTIA_1
   SET cuvântcheie = NULL
   WHERE ISBN = '973-683-889-7'
        AND cuvântcheie = 'proceduri stocate')
```

Nici această idee nu e din cale-afară de inteligentă. Dacă am dori eliminarea sintagmei *web* pentru aceeași carte:

```
UPDATE BIBLIOTECĂ_TUPLURI_NOI_SOLUTIA_1
SET cuvântcheie = NULL
WHERE ISBN = '973-683-889-7' AND cuvântcheie = 'web')
```

atunci linia modificată devine cu totul de prisos în tabelă, toate cele trei atribute, Cota, Autor și CuvântCheie având valori NULL. Cu alte cuvinte, după modificare, tuplul nu spune nimic, nu are valoare informațională. Practic, după fiecare NULL-izare pe o linie a unuia dintre cele trei atribute trebuie verificat dacă pe linia respectivă celelalte două atribute au valori NULL, caz în care se poate șterge.

Mai există o problemă și din punct de vedere al conținutului informațional. Să presupunem că ne interesează să aflăm care sunt autorii ce au scris despre SQL. Ținând seama de stuctura relației de mai sus, am fi tentați să folosim o selecție după cuvântul cheie SQL urmată de o proiecție a valorilor atributului Autor:

```
SELECT autor

FROM BIBLIOTECĂ_TUPLURI_NOI_SOLUTIA_1

WHERE cuvântcheie = 'SQL')
```

Rezultatul furnizat este alcătuit din două linii, una ce conține valoarea *Ioan Brava*, iar celalaltă valoarea NULL. Lipsesc, deci, ceilalți trei autori ai cărții despre Visual FoxPro, din care unul (săracul) a scris chiar o carte despre SQL. Interogarea ce furnizează răspunsul corect trebuie să folosească o joncțiune sau corelare după atributul ISBN. Prin urmare, este necesar de știut că structura informațională pe care o reprezintă tabela de mai sus are o serie de neajunsuri.

Cel mai net motiv de renunțare la această variantă este prezența valorilor nule în componența atributelor cheie primară, după cum vom discuta în paragraful 3.4.

Număr de linii egal cu suma valorilor elementare ale atributelor de tip grup repetitiv

A doua soluție de completare are în vedere eliminarea problemei de la ștergerea unei linii în cazul soluției precedente, și anume: pe oricare linie, o valoare nenulă a unuia dintre cele trei atribute atrage după sine nulitatea celorlalte două - vezi figura 3.6. Spre exemplu, prima carte are 3 cote, 4 autori și 8 cuvinte cheie; prin urmare vor fi necesare 3 + 4 + 8 = 15 linii.

BIBLIOTECĂ_TUPLURI_NOI_SOLUȚIA_2

ISBN	Titlu	<u>Cotă</u>	<u>Autor</u>
973-683-889-7	Visual FoxPro. Ghidul dezvoltării aplicaţiilor profesionale	III-13421	NULL
973-683-889-7	Visual FoxPro. Ghidul dezvoltării aplicaţiilor profesionale	III-13422	NULL
973-683-889-7	Visual FoxPro. Ghidul dezvoltării aplicaţiilor profesionale	III-13423	NULL
973-683-889-7	Visual FoxPro. Ghidul dezvoltării aplicaţiilor profesionale	NULL	Marin Fotache
973-683-889-7	Visual FoxPro. Ghidul dezvoltării aplicaţiilor profesionale	NULL	Ioan Brava
973-683-889-7	Visual FoxPro. Ghidul dezvoltării aplicaţiilor profesionale	NULL	Cătălin Stâmbei
973-683-889-7	Visual FoxPro. Ghidul dezvoltării aplicaţiilor profesionale	NULL	Liviu Creţu
973-683-889-7	Visual FoxPro. Ghidul dezvoltării aplicaţiilor profesionale	NULL	NULL
973-683-889-7	Visual FoxPro. Ghidul dezvoltării aplicaţiilor profesionale	NULL	NULL
973-683-889-7	Visual FoxPro. Ghidul dezvoltării aplicaţiilor profesionale	NULL	NULL
973-683-889-7	Visual FoxPro. Ghidul dezvoltării aplicaţiilor profesionale	NULL	NULL
973-683-889-7	Visual FoxPro. Ghidul dezvoltării aplicaţiilor profesionale	NULL	NULL
973-683-889-7	Visual FoxPro. Ghidul dezvoltării aplicaţiilor profesionale	NULL	NULL
973-683-889-7	Visual FoxPro. Ghidul dezvoltării aplicaţiilor profesionale	NULL	NULL
973-683-889-7	Visual FoxPro. Ghidul dezvoltării aplicaţiilor profesionale	NULL	NULL
973-683-709-2	SQL. Dialecte DB2, Oracle şi Visual FoxPro	III-10678	NULL
973-683-709-2	SQL. Dialecte DB2, Oracle şi Visual FoxPro	III-10679	NULL
973-683-709-2	SQL. Dialecte DB2, Oracle şi Visual FoxPro	NULL	Marin Fotache

973-683-709-2	SQL. Dialecte DB2, Oracle şi Visual FoxPro	NULL	NULL
973-683-709-2	SQL. Dialecte DB2, Oracle şi Visual FoxPro	NULL	NULL
973-683-709-2	SQL. Dialecte DB2, Oracle şi Visual FoxPro	NULL	NULL

Editura	LocSediuEd	AnApariţie	<u>CuvântCheie</u>
Polirom	laşi	2002	NULL
Polirom	laşi	2002	NULL
Polirom	laşi	2002	NULL
	lagi	2002	NOLL
Polirom	laşi	2002	NULL
		0000	
Polirom	laşi	2002	NULL
Polirom	laşi	2002	NULL
	-		
Polirom	laşi	2002	NULL
Polirom	laşi	2002	baze de date
1 01110111	laşı	2002	baze de date
Polirom	laşi	2002	SQL
Polirom	laşi	2002	proceduri stocate
Polirom	laşi	2002	FoxPro
Polirom	laşi	2002	formulare
		0000	1
Polirom	laşi	2002	orientare pe obiecte
Polirom	laşi	2002	client-server
	,		
Polirom	laşi	2002	web
Polirom	laşi	2001	NULL
Polirom	laşi	2001	NULL
Polirom	laşi	2001	NULL
Polirom	laşi	2001	baze de date
Polirom	laşi	2001	algebră relaţională
Polirom	laşi	2001	SQL

Figura 3.6. Completarea cu tupluri - soluția 2

Această secundă soluție, deși presupune un număr de linii mai mare, elimină necazul pierderii involuntare de informații. Astfel, ștergerea unui cuvânt cheie nu va afecta, cu siguranță, nici un autor sau exemplar ai cărții respective.

Ca şi în cazul soluției anterioare, indezirabilitatea variantei este legată de prezența valorilor nule în componența atributelor cheie primară.

Număr maxim de linii, egal cu produsul valorilor elementare ale atributelor de tip grup repetitiv

De data această, tăiem valorile nule de la rădăcină, introducând în relație toate combinațiile Autor-Cotă-CuvântCheie. Cum prima carte are 3 cote, 4 autori și 8

cuvinte cheie, în relația BIBLIOTECĂ_TUPLURI_NOI_SOLUTIA_3 vor exista 3 * 4 * 8 = 96 de tupluri referitoare la aceasta - vezi figura 3.7.

BIBLIOTECĂ_TUPLURI_NOI_SOLUŢIA_3 (fragment)

ISBN	Titlu	Cotă	Autor
ISBN	riuu	Cola	Autor
973-683-889-7	Visual FoxPro. Ghidul dezvoltării aplicaţiilor	III-13421	Marin Fotache
	profesionale		
973-683-889-7	Visual FoxPro. Ghidul dezvoltării aplicaţiilor	III-13421	Ioan Brava
	profesionale		
973-683-889-7	Visual FoxPro. Ghidul dezvoltării aplicaţiilor	III-13421	Cătălin Stâmbei
	profesionale		
973-683-889-7	Visual FoxPro. Ghidul dezvoltării aplicaţiilor	III-13421	Liviu Creţu
	profesionale		
973-683-889-7	Visual FoxPro. Ghidul dezvoltării aplicaţiilor	III-13421	Marin Fotache
	profesionale		
973-683-889-7	Visual FoxPro. Ghidul dezvoltării aplicaţiilor	III-13421	Ioan Brava
	profesionale		
973-683-889-7	Visual FoxPro. Ghidul dezvoltării aplicaţiilor	III-13421	Cătălin Stâmbei
	profesionale		
973-683-889-7	Visual FoxPro. Ghidul dezvoltării aplicaţiilor	III-13421	Liviu Creţu
	profesionale		
	(încă 88 de linii pentru cartea de Visual		
	FoxPro, plus 6 pentru cartea de SQL)		

Editura	LocSediuEd	AnApariţie	<u>CuvântCheie</u>
Polirom	laşi	2002	baze de date
Polirom	laşi	2002	baze de date
Polirom	laşi	2002	baze de date
Polirom	laşi	2002	baze de date
Polirom	laşi	2002	SQL
Polirom	laşi	2002	SQL
Polirom	laşi	2002	SQL
Polirom	laşi	2002	SQL

Figura 3.7. Completarea cu tupluri - soluția 3

Cele opt linii din figură se referă doar la primele două cuvinte cheie (baze și date și SQL) pentru primul exemplar (cota III-13421) din prima carte. Aducerea relației în 1NF eliminând grupurile repetitive prin adăugarea de noi tupluri de această manieră se dovedește mai mult decât costisitoare. Aceasta nu numai din punctul de vedere al spațiului excesiv consumat datorită redundanței masive, dar și dacă ne gândim la anomaliile de actualizare. Spre exemplu, pentru a nu pierde informații, atunci când adăugăm un cuvânt-cheie nou pentru cartea luată spre

analiză, e nevoie să inserăm în tabelă nu mai puțin de 3 (cote) * 4 (autori) = 12 linii. Dezvoltând această idee optimistă, imaginați-vă cum stau lucrurile pentru o lucrare monumentală cu 10 autori și 78 de cuvinte-cheie din care în bibliotecă există 40 de exemplare ?

3.3.3. Eliminarea grupurilor repetitive prin construirea de noi relații

După năduful provocat de redundanța masivă a ultimei soluții de normalizare, cea care urmează este ca o uşurare: "ruperea" din relația universală a grupurilor și constituirea de relații noi¹². Spre exemplu în [Lungu s.a.95] este formulată "rețeta" de aducere a unei relații în 1NF prin parcurgerea a patru pași:

- în relația universală, în locul atributelor compuse se trec componentele acestora, ca atribute simple;
- se constituie câte o relație pentru fiecare grup repetitiv;
- în schema fiecărei noi relații obținute la pasul doi se introduce și cheia primară a relației R nenormalizată;
- cheia primară a fiecărei noi relații va fi compusă din atributele/atributele cheie ale R plus unul sau mai multe atribute proprii.

Aplicând acest algoritm la relația BIBLIOTECĂ obținem patru tabele, COTE, AUTORI_CĂRȚI, CĂRȚI_CUVCHEIE și CĂRȚI cu structura din figura 3.8.

COTE

ISBN	<u>Cotă</u>
973-683-889-7	III-13421
973-683-889-7	III-13422
973-683-889-7	III-13423
973-683-709-2	III-10678
973-683-709-2	III-10679

AUTORI CĂRTI

<u>ISBN</u>	<u>Autor</u>
973-683-889-7	Marin Fotache
973-683-889-7	Ioan Brava
973-683-889-7	Cătălin Strâmbei
973-683-889-7	Liviu Creţu
973-683-709-2	Marin Fotache
973-683-709-2	Marin Fotache

CĂRȚI_CUVCHEIE

<u>ISBN</u>	<u>CuvântCheie</u>	
973-683-889-7	baze de date	
973-683-889-7	SQL	
973-683-889-7	proceduri stocate	
973-683-889-7	FoxPro	
973-683-889-7	formulare	
973-683-889-7	orientare pe obiecte	
973-683-889-7	client-server	
973-683-889-7	web	
973-683-709-2	baze de date	
973-683-709-2	algebră relaţională	
973-683-709-2	SQL	

CĂRŢI

<u>ISBN</u>	Titlu	Editura	LocSediuEd	AnApariţie
973-683-889-7	Visual FoxPro. Ghidul dezvoltării aplicaţiilor profesionale	Polirom	laşi	2002

¹² Soluția este sugerată în [Lungu s.a.95], [Oprea99], [Connoly s.a.96], [Elmasri & Navathe 00] etc.

973-683-709-2	SQL. Dialecte	DB2,	Oracle	şi	Polirom	laşi	2001
	Visual FoxPro						

Figura 3.8. O patra tentativă de aducere în 1NF a relației BIBLIOTECĂ

Structura obținută se detașează prin cel mai mic volum de redundanță de până acum, ceea ce antrenează și economii de stocare și reducerea sensibilă a anomaliilor de actualizare. Personal, însă, reproșez acestui stil de normalizare bazat pe eliminarea grupurilor repetitive caracterul prea "ochiometric". Observarea grupurilor repetitive depinde decisiv de ordinea în care sunt dispuse atributele în relație (teoria relațională prevede clar că nici ordinea coloanelor, nici cea a liniilor nu influențează conținutul informațional al unei tabele).

Să discutăm relația BIBLIOTECĂ_2, ce are aceeași structură ca BIBLIOTECĂ, dar ordinea atributelor este schimbată – vezi figura 3.9.

BIBLIOTECĂ 2

<u>Cotă</u>	ISBN	Titlu	Autori
III-13421	973-683-889-7	Visual FoxPro. Ghidul dezvoltării aplicaţiilor profesionale	Marin Fotache, Ioan Brava, Cătălin Strâmbei, Liviu Creţu
III-13422	973-683-889-7	Visual FoxPro. Ghidul dezvoltării aplicaţiilor profesionale	Marin Fotache, Ioan Brava, Cătălin Strâmbei, Liviu Creţu
III-13423	973-683-889-7	Visual FoxPro. Ghidul dezvoltării aplicaţiilor profesionale	Marin Fotache, Ioan Brava, Cătălin Strâmbei, Liviu Creţu
III-10678	973-683-709-2	SQL. Dialecte DB2, Oracle şi Visual FoxPro	Marin Fotache
III-10679	973-683-709-2	SQL. Dialecte DB2, Oracle şi Visual FoxPro	Marin Fotache

Editura	LocSediuEd	AnAparitie	CuvinteCheie
Polirom	laşi	2002	baze de date, SQL, proceduri stocate, FoxPro, formulare, orientare pe obiecte, client-server, web
Polirom	laşi	2002	baze de date, SQL, proceduri stocate, FoxPro, formulare, orientare pe obiecte, client-server, web
Polirom	laşi	2002	baze de date, SQL, proceduri stocate, FoxPro, formulare, orientare pe obiecte, client-server, web
Polirom	laşi	2001	baze de date, algebră relaţională, SQL
Polirom	laşi	2001	baze de date, algebră relaţională, SQL

Figura 3.9. Relaţia BIBLIOTECĂ cu ordinea atributelor schimbată

Tabela BILIOTECĂ_2 este mai aproape de realitate decât BIBLIOTECĂ. În depozit sunt trei exemplare ale cărții dedicate Visual FoxPro, acestora corespunzându-le trei tupluri în noua relație. Cheia primară este Cotă (observați că ISBN-ul se repetă pe primele trei linii și pe ultimele două).

După calapodul aplicat ceva mai sus, există două grupuri repetitive, Autori şi CuvinteCheie. Drept care ne grăbim a descompune relația universală în trei relații aflate în 1NF ca în figura 3.10.

COTE_AUTORI

COTE_CUVCHEIE

<u>Cotă</u>	<u>Autor</u>
III-13421	Marin Fotache
III-13421	Ioan Brava
III-13421	Cătălin Strâmbei
III-13421	Liviu Creţu
III-13422	Marin Fotache
III-13422	Ioan Brava
III-13422	Cătălin Strâmbei
III-13422	Liviu Creţu
III-13423	Marin Fotache
III-13423	Ioan Brava
III-13423	Cătălin Strâmbei
III-13423	Liviu Creţu
III-10678	Marin Fotache
III-10679	Marin Fotache

<u>Cotă</u>	<u>CuvântCheie</u>
III-13421	baze de date
III-13421	SQL
III-13421	proceduri stocate
III-13421	FoxPro
III-13421	formulare
III-13421	orientare pe obiecte
III-13421	client-server
III-13421	web
III-13422	baze de date
III-13422	SQL
III-13422	proceduri stocate
III-13422	FoxPro
III-13422	formulare
III-13422	orientare pe obiecte
III-13422	client-server
III-13422	web
III-13423	baze de date
III-13423	SQL
III-13423	proceduri stocate
III-13423	FoxPro
III-13423	formulare
III-13423	orientare pe obiecte
III-13423	client-server
III-13423	web
III-10678	baze de date
III-10678	algebră relaţională
III-10678	SQL
III-10679	baze de date
III-10679	algebră relaţională
III-10679	SQL

CĂRTI2

C111171					
<u>Cota</u>	ISBN	Titlu	Editura	LocSe- diuEd	AnApa- riţie
III- 13421	973-683-889-7	Visual FoxPro. Ghidul dezvoltării aplicaţiilor profesionale	Polirom	laşi	2002
III- 13422	973-683-889-7	Visual FoxPro. Ghidul dezvoltării aplicaţiilor profesionale	Polirom	laşi	2002
III- 13423	973-683-889-7	Visual FoxPro. Ghidul dezvoltării aplicaţiilor profesionale	Polirom	laşi	2002
III- 10678	973-683-709-2	SQL. Dialecte DB2, Oracle şi Visual FoxPro	Polirom	laşi	2001
III- 10679	973-683-709-2	SQL. Dialecte DB2, Oracle şi Visual FoxPro	Polirom	laşi	2001

Figura 3.10. Prima formă normalizată a relației BIBLIOTECĂ 2

Teoretic, baza de date din figura 3.10 este în 1NF. Schema sa diferă sensibil însă de aceeași BD care în 1NF arată ca în figura 3.8. Intuim că autorii și cuvintele se referă la o carte (ISBN), deci la toate exemplarele sale, deci suntem înclinați să alegem varianta din figura 3.8. Atunci când numărul atributelor este mare și

situația reflectată este complexă, identificarea grupurilor repetitive poate deveni, pe alocuri, o loterie.

Pentru remedierea problemelor datorate caracterului arbitrar al dispunerii atributelor în relație, am putea institui o regulă: se începe cu atributele cele mai generale ("non-repetitive") și se continuă apoi către cele mai "repetitive". În cazul relației BIBLIOTECĂ, s-ar putea începe cu ISBN-ul, continuând cu Titlu, Editură, LocSediuEd, AnApariție, apoi Autori și CuvinteCheie.

Similar, putem să descompunem relația universală FILMOGRAFIE pe baza următoarelor grupuri repetitive:

- Producători (atributul Producător);
- Regizori (atributul Regizor);
- Distribuție (atributele Rol și Actor);
- Genuri (atributul Gen);
- Premii (atributele DenPremiu, LocDecernare, Categorie, AnPremiu, Actor).

Obținem șase tabele corespunzătoare celor cinci grupuri repetitive, plus ce rămâne din relația inițială (FILME) - vezi figura 3.11.

FILME

<u>ldFilm</u>	TitluOriginal	TitluRO	AnLans
11899	As Good As It Gets	Mai bine nu se poate	1997
12345	Bicentennial Man	Omul bicentenar	1999

PRODUCĂTORI

<u>ldFilm</u>	<u>Producător</u>		
11899	James Brooks		
11899	Bridget Johnson		
11899	Kristi Zea		
12345	Michael Barnathan		
12345	Chris Columbus		
12345	Gail Katz		

REGIZORI

<u>ldFilm</u>	<u>Regizor</u>
11899	James Brooks
12345	Chris Columbus

DISTRIBUȚIE

<u>ldFilm</u>	<u>Rol</u>	Actor
11899	Levin Udall	Jack Nicholson
11899	Carol Connelly	Helen Hunt
11899	Simon Bishop	Greg Kinnear
11899	Frank Sachs	Cuba Gooding Jr.
12345	Andrew Martin	Robin Williams
12345	Little Miss Amanda Martia	Embeth Davidtz
12345	Portia Charney	Embeth Davidtz
12345	Richard Martin	Sam Neil
12345	Rupert Burns	Oliver Platt
12345	Galatea	Kiersten Warren

GENURI

<u>ldFilm</u>	<u>Gen</u>
11899	comedie
11899	dramă
11899	romantic
12345	SF
12345	dramă
12345	romantic

PREMII

ldFilm	DenPremiu	LocDe-	<u>Categorie</u>	AnPre-	Actor

		cernare		miu	
11899	Oscar	Hollywood	cel mai bun actor în rol principal	1998	Jack Nicholson
11899	Oscar	Hollywood	cea mai bună actriţă în rol principal	1998	Helen Hunt
11899	Globul de aur	New York	cea mai bună imagine	1998	NULL
11899	Globul de aur	New York	cel mai bun actor într-o comedie/musical	1998	Jack Nicholson
11899	Globul de aur	New York	cea mai bună actriţă într- o comedie/musical	1998	Helen Hunt

Figura 3.11. Constituirea de relaţii separate pentru fiecare grup repetitiv pentru BD FILMOGRAFIE

Găselniţa funcționează în cazul relației referitoare la cărțile din biblioteca FEAA și la filmografie. Schimbăm însă datele problemei. Luăm în discuție tabela DOTARE_JUCĂRII din figura 3.12 care gestionează "dotarea" cu jucării a fiecărui copil al unei familii. În spiritul dreptului inviolabil la proprietate și al luptei contra colectivismului, fiecare jucărie aparține, cel puțin oficial, unui singur copil al familiei, eventualele împrumuturi fiind rodul exclusiv al negocierilor (și violenței juvenile).

DOTARE JUCĂRII

<u>CodFamilie</u>	NumeFamilie	<u>Copil</u>	Jucării	DataCumpărării
1111	Popescu Ioan	Marc Loredana Elvis	Trenuleţ electric Păpuşă Barbie Puzzle 200 piese Puzzle 250 piese Puzzle 200 piese Căsuţa Lego	14-05-1998 15-09-1998 23-12-1998 14-05-1999 24-12-1999 08-03-2000

Figura 3.12. Relație ne-normalizată

Din examinarea relației de mai sus, reiese că există două grupuri repetitive: Copii şi (Jucării, DataCumpărării). Prin aplicarea regulii de separare a grupurilor repetivive, obținem trei relații, COPII, JUCĂRII, FAMILII - vezi figura 3.13.

COPII

<u>CodFamilie</u>	<u>Copil</u>
1111	Marc
1111	Loredana
1111	Elvis

JUCĂRII

CodFamilie	<u>Jucării</u>	DataCumpărării
1111	Trenuleţ electric	14-05-1998
1111	Păpuşă Barbie	15-09-1998
1111	Puzzle 200 piese	23-12-1998
1111	Puzzle 250 piese	14-05-1999
1111	Puzzle 200 piese	24-12-1999
1111	Căsuţa Lego	08-03-2000

FAMILII

<u>CodFamilie</u>	NumeFamilie
1111	Popescu Ioan

Figura 3.13. Baza de date DOTARE_JUCĂRII adusă în 1NF prin eliminarea grupurilor repetitive

Deşi nu am făcut decât să urmăm un algoritm prescris ca sigur, avem de a face cu un caz tipic de descompunere cu pierdere de informații. În cazul nostru, cele trei relații nu furnizează o informație esențială: cărui copil îi aparține o jucărie anume.

Oricum am proceda, eliminarea grupurilor repetitive nu rezolvă corect întotdeauna problema normalizării (aducerii relației în 1NF și continuării apoi cu 2NF s.a.m.d.), deoarece identificarea lor se face prin observație și nu pe baza unei analize semantice riguroase a relațiilor dintre atribute.

Deși atrage un grad de redundanță considerabil, este recomandabil ca în această situație 1NF a relației să fie obținută prin introducerea în tabelă a unei linii pentru fiecare jucărie și duplicarea valorilor celorlate atribute, ca în figura 3.14.

DOTAKE_JOCAKII_I						
<u>CodFamilie</u>	NumeFamilie	<u>Copil</u>	<u>Jucărie</u>	DataCumpărării		
1111	Popescu Ioan	Marc	Trenuleţ electric	14-05-1998		
1111	Popescu Ioan	Loredana	Păpuşă Barbie	15-09-1998		
1111	Popescu Ioan	Elvis	Puzzle 200 piese	23-12-1998		
1111	Popescu Ioan	Loredana	Puzzle 250 piese	14-05-1999		
1111	Popescu Ioan	Marc	Puzzle 200 piese	24-12-1999		
1111	Popescu Ioan	Loredana	Căsuţa Lego	08-03-2000		

DOTARE JUCĂRII 1

Figura 3.14. Relatia adusă în 1NF

Esențială în rezolvarea problemei este conștientizarea entității căreia i se alocă o linie în tabelă. În cadrul relației DOTARE_JUCĂRII_1, fiecare linie se referă la o jucărie afectată unui copil al unei familii.

Nici relația universală VÎNZĂRI, ale cărei atribute sunt cele din tabelul 2.1, nu este scutită de probleme la identificarea atributelor repetitive, dar amânăm discuția pentru paragraful următor.

3.4. Prima formă normală și problema cheii primare a relației universale

De cele mai multe ori, constituirea unei relații universale atotcuprinzătoare se lovește de o problemă majoră – cea a cheii primare. Asupra acestui necaz, câțiva autori au atras atenția cu ceva timp în urmă¹³. Modelul relațional prezință două restricții esențiale vis-a-vis de cheia primară: unicitate și valori nenule pentru atributele din alcătuirea cheii (restricția de entitate). Or, dacă dorim să identificăm fiecare linie a relației, trebuie să definim, în cele mai multe situații, o cheie primară cu multe atribute, care, însă, în anumite tupluri ar avea valori nule. Pe de altă

¹³ Vezi, spre exemplu, [Kent81]

parte, dacă nu vrem să fie violată restricția de entitate, trebuie să renunțăm la a prelua în relația universală linii vitale din punctul de vedere al conținutului informațional al bazei de date.

Să luăm în discuție câteva cazuri.

Vechea codificare poștală, valabilă pâna în mai 2003

Până în luna mai 2003 codurile poștale erau atribuite la nivel de oraș și comună (cu unele excepții), ca în figura 3.15. Dacă într-o comună erau mai multe sate, era posibil ca unele dintre acestea să partajeze același cod poștal. Singurul oraș pentru care existau mai multe coduri era Bucureștiul.

EOCAETTAȚI_CODURI_VECTII						
<u>CodPoştal</u>	OraşComună	<u>Sat</u>	Judeţ			
5319	Vînători	Vînători	Vrancea			
5319	Vînători	Jorăști	Vrancea			
5319	Vînători	Mirceştii-Vechi	Vrancea			
5613	Roznov	Roznov	Neamţ			
5613	Roznov	Slobozia	Neamţ			
5300	Focsani	NULL	Vrancea			

LOCALITĂŢI_CODURI_VECHI

Figura 3.15. Vechile coduri poştale - tabela nu este în 1NF

O localitate desemnează un oraș sau un sat. Ei bine, cheia primară ar trebui să fie combinația (CodPoștal, OrașComună, Sat). Dar valoarea atributului Sat este NULLă atunci când linia respectivă se referă la un oraș. Prin urmare, relația de mai sus nu se află în prima formă normală, deoarece încalcă restricția de entitate (un atribut din cheie prezintă valori nule). Practic, pentru a fi în 1NF, relația nu trebuie să conțină orașele, ceea ce este de neacceptat. Aducerea sa în 1NF se realizează prin intermediul depedendențelor funcționale. Este drept, că putem păcăli teoria și SGBD-urile actuale, definind pentru atributul Sat o valoare implicită nenulă – spre exemplu un spațiu. Aceasta miroase însă a cârpeală mioritică și vom vedea în paragraful următor că avem soluții mai onorabile.

Noua codificare poștală, valabilă după mai 2003

Sistemul de codificare poștală introdus în mai 2003 este mult mai fin, în sensul că un cod are acum șase cifre, în loc de patru, iar alocarea se mai face la nivel de localitate doar în cazul satelor și orașelor mai mici; în rest, la nivel de stradă sau chiar imobil - vezi figura 3.16.

Astfel, în tabela CODURI_NOI_V1 prima linie indică faptul că localitatea Vînători din județul Vrancea are codul poștal 627395, localitatea fiind și "capitală" de comună, cel puțin după nume. Următoarele două linii se referă la alte două sate din aceeași comună. Valorile NULL ale atributelor Strada și Numere pe aceste prime trei linii semnalizează faptul că pentru aceste sate nu se operează o delimitare a codurilor pe străzi (de fapt, ulițe).

Lucrurile devin cu adevărat interesante odată cu liniile 4-7 care conțin coduri poștale ale unor adrese (locații, în limbaj contemporan) din municipiul Iași. Pentru

simplificare, toate cele patru coduri sunt atribuite unor adrese aflate pe bulevardul *Independenței*. Astfel, codul 700106 este asociat tuturor imobilelor din *Bd. Independenței*, iar valoarea 1-5, 9-13 pentru atributul Numere desemnează următoarele numere: 1, 3, 5 (1-5) și 9, 11, 13 (9-13). Valoarea aceluiași atribut pe linia următoare (codul 700099) - 18-T indică un set de valori pare ce începe cu 18 și continuă cu 20, 22, ... până la ultima adresă pară de pe bulevardul Independenței. *T*-ul înseamnă deci "Terminare", epuizare, și asigură atribuirea automată a acestui cod poștal eventualelor viitoare construcții ridicate pe acest bulevard (dacă o mai fi loc). Pe linia de mai jos valoarea 25-T se referă la toate numele impare începând cu 25 până la ultimul imobil situal pe acea parte ("impară") a bulevardului. Penultima linie a tabelei semnalează un lucru oarecum deranjant: un cod poștal poate fi alocat chiar și la două sau mai multe străzi, în cazul nostru, numerelor pare de la 2 la 26 și numărului 28 de pe *bulevardul Carol I*, dar și tuturor numelor de pe *aleea Veronica Micle* (în tabelă este preluată titulatura de pe www.posta-romana.ro).

CodPostal Localitate Strada Numere Comuna Judet NULL 627395 Vînători NULL Vînători Vrancea 627397 NULL NULL Vînători Vrancea Jorăști 627399 Mirceştii-Vechi **NULL NULL** Vînători Vrancea 700106 laşi Bd. Independenței 1-5 NULL laşi 9-13 700099 laşi Bd. Independenței 18-T NULL laşi 700102 laşi Bd. Independentei 25-T **NULL** laşi 700100 Bd. Independentei 7-13 NULL Iasi laşi 700505 laşi Bd. Carol I 2-26 NULL laşi 28 Aleea Micle Veronica Т NULL 700482 Bd. Carol I 26A laşi laşi 30-32 36 700504 Bd. Carol I NULL laşi 28A laşi 34 38 42

CODURI_NOI_V1

707295

Figura 3.16. Noile coduri poştale - tabelă nenormalizată

NULL

Mircești

laşi

NULL

Fireşte, ne punem întrebarea: de ce codul 700505 nu a fost atribuit succesiunii 2-28 de pe *Bd. Carol I*, ci avem două intervale, 2-26 și 28-28 ? Răspunsul ni-l oferă rândul următor, din care aflăm că 26A de pe *Bd. Carol I* are alt cod - 700482 ! Prin urmare, același număr poate fi alocat codurilor diferite, diferențierea făcându-se prin litere sau binecunoscutul *bis*.

Cheia primară este atributul CodPoștal, însă relația este departe de 1NF. Avem de a face cu două atribute multivaloare: Strada și Numere. O primă idee ar fi să rupem relația, constuind câte o tabelă pentru fiecare grup repetitiv, ca în figura 3.17.

CODURI_LOCALITĂȚI

Mircești

<u>CodPostal</u>	Localitate	Comuna	Judeţ
627395	Vînători	Vînători	Vrancea
627397	Jorăști	Vînători	Vrancea
627399	Mirceştii-Vechi	Vînători	Vrancea
700106	laşi	NULL	laşi
700099	laşi	NULL	laşi
700102	laşi	NULL	laşi
700100	laşi	NULL	laşi
700505	laşi	NULL	laşi
700482	laşi	NULL	laşi
700504	laşi	NULL	laşi
707295	Mirceşti	Mirceşti	laşi

CODURI STRĂZI

<u>CodPostal</u>	<u>Strada</u>
700106	Bd. Independenţei
700099	Bd. Independenţei
700102	Bd. Independenţei
700100	Bd. Independenţei
700505	Bd. Carol I
700505	Aleea Micle Veronica
700482	Bd. Carol I
700504	Bd. Carol I

CODURI NUMERE

<u>CodPoştal</u>	<u>Numere</u>
700106	1-5
700106	9-13
700099	18-T
700102	25-T
700100	7-13
700505	2-26
700505	28
700505	T
700482	26A
700482	30-32
700482	36
700504	28A
700504	34
700504	38
700504	42

Figura 3.17. Tentativă eşuată de normalizare a relației CODURI NOI V1

După cum am mai pățit-o în paragraful anterior, ruperea relației inițiale s-a făcut cu pierderi de informații. Deoarece un cod poștal poate fi alocat la două străzi diferite (vezi 700505), numerele din CODURI_NUMERE nu pot fi alocate corect întotdeauna.

O altă cale ar fi să înlocuim atributul Numere cu nu mai puțin de patru câmpuri, pentru a câștiga în limpezime informațională, după cum urmează:

- TipNr (tip număr) care să conțină doar valorile:
 - o NULL pentru localități fără o delimitare oficială pe străzi;
 - o "pare" adică 1, 3, 5, ...;
 - o "impare" adică 2, 4, 6;
 - o "ambele" adică numere consecutive;
- NrInițial (numărul inițial) indică numărul limită inferioară a intervalului;
- LitInițială (litera inițială, dacă este cazul) se folosește pentru a indica dacă intervalul pornește de la 11B sau 24A etc.;

- NrFinal (numărul final din interval) indică numărul limita superioară a intervalului;
- LitFinală (litera finală) semnalizează că că intervalul se oprește la 11B sau 24A etc.

Astfel, tabela de mai sus ar prelua forma din figura 3.18.

CODURI NOI V2

CodPoştal	Localitate	Strada	TipNr	NrIniţial	Litlniţială
627395	Vînători	NULL	NULL	NULL	NULL
627397	Jorăști	NULL	NULL	NULL	NULL
627399	Mirceştii-Vechi	NULL	NULL	NULL	NULL
700106	laşi	Bd. Independenţei	impare	1	NULL
700106	laşi	Bd. Independenţei	impare	9	NULL
700099	laşi	Bd. Independenţei	pare	18	NULL
700102	laşi	Bd. Independenţei	impare	25	NULL
700100	laşi	Bd. Independenţei	impar	7	NULL
700505	laşi	Bd. Carol I	pare	2	NULL
700505	laşi	Bd. Carol I	pare	28	NULL
700505	laşi	Aleea Micle Veronica	ambele	1	NULL
700482	laşi	Bd. Carol I	pare	26	Α
700482	laşi	Bd. Carol I	pare	30	NULL
700482	laşi	Bd. Carol I	pare	36	NULL
700504	laşi	Bd. Carol I	pare	28	Α
700504	laşi	Bd. Carol I	pare	34	NULL
700504	laşi	Bd. Carol I	pare	38	NULL
700504	laşi	Bd. Carol I	pare	42	NULL
707295	Mirceşti	NULL	NULL	NULL	NULL

NrFinal	LitFinală	Comuna	Judeţ
NULL	NULL	Vînători	Vrancea
NULL	NULL	Vînători	Vrancea
NULL	NULL	Vînători	Vrancea
5	NULL	NULL	laşi
13	NULL	NULL	laşi
NULL	NULL	NULL	laşi
NULL	NULL	NULL	laşi
13	NULL	NULL	laşi
26	NULL	NULL	laşi
28	NULL	NULL	laşi
NULL	NULL	NULL	laşi
26	Α	NULL	laşi
32	NULL	NULL	laşi
36	NULL	NULL	laşi
28	Α	NULL	laşi
34	NULL	NULL	laşi
38	NULL	NULL	laşi
42	NULL	NULL	laşi
NULL	NULL	Mirceşti	laşi

Figura 3.18. Noile coduri poștale - tabelă normalizată dar fără cheie primară

Spre deosebire de forma nenormalizată, tabela de mai sus ar permite găsirea imediată a codului poștal al unei adrese de genul *Bd. Carol I nr* 29. Deși am putea folosi un limbaj mai abstract de genul celui din ediția a opta a lucrării lui Chris Date, vom recurge la SQL:

```
SELECT codpostal
FROM CODURI_NOI_V2
WHERE judeţ = 'Iaşi' AND localitate='Iaşi' AND Strada='Bd.
Carol I' AND
  (
   (nriniţial = 29 and litiniţială IS NULL) OR
        (nrfinal = 29 and litfinală IS NULL)
        OR
   (tipnr <> 'pare' AND nriniţial < 29 AND nrfinal > 29 )
   )
```

Ca exercițiu pentru acasă, încercați să aflați acceași informație din schema nenormalizată a tabelei (CODURI_NOI_V2).

În modelul relațional este obligatoriu ca orice relație să posede cheie primară, alcătuită, la limită, din toate atributele relației. Altfel spus, dacă în SQL o tabelă poate avea linii identice, în teoria relațională nu. Este una dintre "îmbunătățirile" SQL care au atras mânia multor autori majori în domeniul bazelor de date relaționale, precum E.F. Codd, C.J. Date, H. Darwen, F. Pascal.

Ei bine, pentru a identifica un tuplu unic în relația de mai sus am avea nevoie de combinația (CodPoștal, Strada, NrInițial, LitInițială). Or, în majoritatea tuplurilor tabelei de mai sus, cel puțin unul dintre acestea are valori nule. După cum observăm, problema vine din regimul diferit al localităților fără codificare la nivel străzi (satele și micile orașe). Așa încât vom sparge relația CODURI_NOI_V2 în două, CODURI_SATE și CODURI_ORAȘE. Denumirea este discutabilă, deoarece este posibil să existe sate mai mari, în curs de a deveni orașe, cărora să li se repartizeze mai multe coduri. Pentru simplitate, păstrăm cele două denumiri, iar conținutul ar fi cel din figura 3.19.

CODURI_SATE

CodPostal	Localitate	Comuna	Judeţ
627395	Vînători	Vînători	Vrancea
627397	Jorăști	Vînători	Vrancea
627399	Mirceştii-Vechi	Vînători	Vrancea
707295	Mirceşti	Mirceşti	laşi

CODURI_ORAȘE

<u>Cod</u> <u>Poştal</u>	Locali tate	<u>Strada</u>	TipNr	<u>NrIni-</u> <u>ţial</u>	<u>Litlni-</u> <u>ţială</u>	NrFi- nal	LitFi- nală	Ju- deţ
700106	laşi	Bd. Independenţei	impare	1		5	NULL	laşi
700106	laşi	Bd. Independenţei	impare	9		13	NULL	laşi
700099	laşi	Bd. Independenţei	pare	18		NULL	NULL	laşi
700102	laşi	Bd. Independenţei	impare	25		NULL	NULL	laşi
700100	laşi	Bd. Independenţei	impar	7		13	NULL	laşi

700505	laşi	Bd. Carol I	pare	2		26	NULL	laşi
700505	laşi	Bd. Carol I	pare	28		28	NULL	laşi
700505	laşi	Aleea Micle Veronica	ambele	1		NULL	NULL	laşi
700482	laşi	Bd. Carol I	pare	26	Α	26	Α	laşi
700482	laşi	Bd. Carol I	pare	30		32	NULL	laşi
700482	laşi	Bd. Carol I	pare	36		36	NULL	laşi
700504	laşi	Bd. Carol I	pare	28	Α	28	Α	laşi
700504	laşi	Bd. Carol I	pare	34		34	NULL	laşi
700504	laşi	Bd. Carol I	pare	38		38	NULL	laşi
700504	laşi	Bd. Carol I	pare	42		42	NULL	laşi

Figura 3.19. Tabele separate pentru localitățile cu un singur cod și pentru localitățile cu mai multe coduri

CODURI_SATE are o mândrețe de cheie primără: CodPoștal. La CODURI_ORAȘE n-am scăpat de improvizații. Astfel, pentru a evita nulitatea literei inițiale, am folosit spațiul, așa încât cheia primară este (CodPoștal, Strada, NrInițial, LitInițială).

Am rezolvat o problemă și am dat de alta: la majoritatea căutărilor trebuie să efectuăm în prealabil reuniunea celor două tabele, ceea ce e destul de apăsător. Spre exemplu, primul și ultimul cod poștal alocat județului Iași este necesar o interogare de genul:

```
SELECT MAX(codpoştal) AS cod_minim,

MAX(codpoştal) AS cod_maxim

FROM

(SELECT codpoştal, localitate, NULL AS strada,

NULL AS tipnr, NULL AS nriniţial,

NULL AS litiniţială, NULL AS nrfinal,

NULL AS litfinală, comuna, judeţ

FROM coduri_sate

UNION

SELECT codpoştal, localitate, stradă, tipnr, nriniţial,

litiniţială, nrfinal, litfinală, NULL, judeţu

FROM coduri_orașe)

WHERE judet='Iași'
```

Marea majoritate a practicienilor preferă soluția *gordiană*, adică folosirea unei chei surogat care este unică pentru fiecare linie (atributele de tip cheie surogat pot fi în majoritatea SGBD-urilor gestionate automat) - vezi tabela CODURI_NOI_V3 din figura 3.20. Risipa de spațiu generată de introducerea acestui atribut reprezintă un preț rezonabil la durerile de cap pricinuite de valorle nule ale "fostelor" atribute cheie. Atributul Id nu are nici o relevanță informațională, ci doar ne ajută să asigurăm unicitatea cheii primare fără pericolul încălcării restricției de entitate.

CODURI_NOI_V3

<u>ld</u>	CodPoştal	Localitate	Strada	TipNr	Nrlniţial
3456789	627395	Vînători	NULL	NULL	NULL
3456790	627397	Jorăști	NULL	NULL	NULL
3456791	627399	Mirceştii-Vechi	NULL	NULL	NULL

3456792	700106	laşi	Bd. Independenţei	impare	1
3456793	700106	laşi	Bd. Independenţei	impare	9
3456794	700099	laşi	Bd. Independenţei	pare	18
3456795	700102	laşi	Bd. Independenţei	impare	25
3456796	700100	laşi	Bd. Independenţei	impar	7
3456797	700505	laşi	Bd. Carol I	pare	2
3456798	700505	laşi	Bd. Carol I	pare	28
3456799	700505	laşi	Aleea Micle Veronica	ambele	1
3456800	700482	laşi	Bd. Carol I	pare	26
3456801	700482	laşi	Bd. Carol I	pare	30
3456802	700482	laşi	Bd. Carol I	pare	36
3456803	700504	laşi	Bd. Carol I	pare	28
3456804	700504	laşi	Bd. Carol I	pare	34
3456805	700504	laşi	Bd. Carol I	pare	38
3456806	700504	laşi	Bd. Carol I	pare	42
3456807	707295	Mirceşti	NULL	NULL	NULL

Litlniţială	NrFinal	LitFinală	Comuna	Judeţ
NULL	NULL	NULL	Vînători	Vrancea
NULL	NULL	NULL	Vînători	Vrancea
NULL	NULL	NULL	Vînători	Vrancea
NULL	5	NULL	NULL	laşi
NULL	13	NULL	NULL	laşi
NULL	NULL	NULL	NULL	laşi
NULL	NULL	NULL	NULL	laşi
NULL	13	NULL	NULL	laşi
NULL	26	NULL	NULL	laşi
NULL	28	NULL	NULL	laşi
NULL	NULL	NULL	NULL	laşi
Α	26	Α	NULL	laşi
NULL	32	NULL	NULL	laşi
NULL	36	NULL	NULL	laşi
Α	28	Α	NULL	laşi
NULL	34	NULL	NULL	laşi
NULL	38	NULL	NULL	laşi
NULL	42	NULL	NULL	laşi
NULL	NULL	NULL	Mirceşti	laşi

Figura 3.20. Noile coduri poștale - tabelă normalizată dar fără cheie primară

Atenție, însă! Cheile surogat constituie o tentație căreia (ca oricărei tentații) trebuie să i se dea curs cu moderație.

Baza de date VÎNZĂRI

Şi relaţia universală a bazei de date VÎNZĂRI "suferă" de aceaşi problemă a cheii primare, şi, implicit, prima formă normală este mai mult decât discutabilă. Conform "preceptelor" relaţionale, VÎNZĂRI {Jud, Judeţ, Regiune, CodPost, Localitate, Comună, CodCl, DenCl, CodFiscal, StradaCl, NrStradaCl, BlocScApCl, TelefonCl, CodPr, DenPr, UM, Grupa, ProcTVA, NrFact, DataFact, Obs, Linie, Cantitate, PreţUnit, CodÎnc, DataÎnc, CodDoc, NrDoc, DataDoc, Tranşă} trebuie să prezinte o combinaţie de atribute a cărei valori conferă unicitate fiecărui tuplu.

Ţinând seama că:

- un client are un singur sediu central (poate avea filiale, însă ne limităm la a considera că facturarea se face pe adresa sediului central);
- o factură emisă are un număr unic și se întocmește unui singur client;
- o factură conține una sau mai multe linii;
- pe fiecare linie este înregistrat un produs, fiecare vândut într-o anumită cantitate și la un anumit preț unitar;
- deoarece este posibilă re-diferențierea procentului de taxă pe valoarea adăugată în funcția de categoria produselor (alimentare, medicamente, cărți, bunuri considerate de lux etc.), ProcTVA este bine de asociat fiecărui produs;
- o încasare are la bază un document justificativ;
- o factură poate de plătită de client în tranșe;
- la o încasare se pot achita, integral sau parțial, una sau mai multe facturi, cheia primară ar fi combinația (NrFact, Linie, Codînc). Necazul este că la momentul întocmirii nu se cunosc datele despre încasări. Mai mult, aceasta poate surveni la distanțe mari în timp, mai ales în condițiile blocajelor financiare care neau făcut celebri în mediul economică european.

Potrivit primei soluții care nu încalcă restricția de entitate, inserarea de linii în tabela VÎNZĂRI se face abia în momentul încasării facturii, ceea ce este inadmisibil, întrucât baza de date va fi incapabilă să furnizeze informații vitale precum:

- vânzările pe ziua, săptămâna, luna, anul curente;
- vânzările pe produse;
- vânzările pe clienți;
- creanțele (valoarea rămasă de încasat) față de clienți.

A doua soluție este spargerea relației universale. Cum ? Prin eliminarea grupurilor repetitive. Dar care sunt grupurile repetitive, în condițiile în care o factură poate fi achitată în tranșe (mai multe încasări), iar o încasare poate "regla" mai multe facturi ? Vom vedea în capitolele viitoare cum, pe baza dependențelor funcționale, putem obține o structură mult mai acceptabilă.

Baza de date FILMOGRAFIE

În paragraful anterior am obținut o schemă ce se apropie destul de mult de rezonabil, cel puțin în materie de eliminare a grupurilor repetitive. Dintre cele șase tabele ale bazei de date FILMOGRAFIE din figura 3.11 să examinăm preț de câteva minute pe ultima - PREMII. Cheia primară este combinația (IdFilm, DenPremiu, Categorie, AnPremiu) în condițiile în care orice premiu de interpretare se acordă unui singur actor/actriță. Ce se fi întâmplă însă dacă Oscarul pentru cel mai bun actor în rol principal ar fi fost acordat simultan lui Robert de Niro și Al Pacino pentru prestația lor dintr-un film celebru, în care, practic, nu putem spune că unul din roluri este principal, iar celălalt secundar. Toate cele patru atribute ale cheii ar

prezenta valori identice pe două tupluri (un tuplu pentru de Niro, celălalt pentru Pacino), iar restricția de cheie primară ar fi încălcată.

Când proiectăm baze de date trebuie să ne gândim și la astfel de spețe marginale ce pot compromite o structură chiar după ani buni de funcționare a aplicației. Fiind tentați să adăugăm celor patru atribute din cheie pe al cincilea, Actor, nu putem să nu observăm că, pentru premiile acordate la categoriile regie, scenariu etc., acest atribut are valori NULLe, ceea ce violează restricția de entitate.

Soluția cea mai la îndemână ține de ruperea acestei relații în două, una dedicată premiilor de interpretare, iar a doua celorlalte premii - vezi figura 3.21.

I IXL:IVII.	I KEMII_IN I EKI KETAKE						
<u>ldFilm</u>	<u>DenPremiu</u>	LocDe-	<u>Categorie</u>	AnPre-	<u>Actor</u>		
		cernare		<u>miu</u>			
11899	Oscar	Hollywood	cel mai bun actor în rol principal	1998	Jack Nicholson		
11899	Oscar	Hollywood	cea mai bună actriţă în rol principal	1998	Helen Hunt		
11899	Globul de aur	New York	cel mai bun actor într-o comedie/musical	1998	Jack Nicholson		
11899	Globul de aur	New York	cea mai bună actriţă într-	1998	Helen Hunt		

PREMII INTERPRETARE

CELELALTE_PREMII

<u>ldFilm</u>	<u>DenPremiu</u>	LocDe-	<u>Categorie</u>	AnPre-
		cernare		<u>miu</u>
11899	Globul de aur	New York	cea mai bună imagine	1998

Figura 3.21. Ruperea relației PREMII din cauza problemelor de cheie primară

3.5.Dezbateri pe marginea și în centrul primei forme normale

Prima formă normală este, fără îndoială, un ciudat amestec de facil și confuz. Putem spune chiar că mare parte din doza de facil, de superficialitate din cursurile universitare, cărțile dedicate bazelor de date sau chiar proiectării bazelor de date (inclusiv normalizării) își au sorgintea tocmai în confuzia care a învăluit, încă de la începuturile relaționalului, definirea prime forme normale și atomicității¹⁴. Unii autori, precum Elmasri și Navathe, consideră restricția de atomicitate proprie modelului relațional, restricție care este este eliminată din modelele relațional imbricat (nested relational model) și obiectual-relațional care, ambele, permit relații nenormalizate¹⁵.

¹⁴ Există lucrări respectabile, precum [Atzeni s.a. 99], care nici nu fac aluzie la prima formă normală sau atomicitatea valorilor într-o relație

¹⁵ [Elmasri & Navathe 00], p. 485

Ceea ce se înțelegem îndeobște prin atomicitatea atributelor ține de caracterul scalar al valorilor: întregi, șiruri de caractere, date calendaristice. Prin comparație, un atribut nonatomic este unul definit pe un domeniu de valori compozite, complexe. Fiecare componentă dintr-o valoare compozită poate fi, la rândul ei, compozită, ajungându-se la o structură ierarhică și flexibilă, în funcție de natura obiectului sau procesului modelat. Elmasri și Navathe sunt cât se poate de limpezi: pentru atributele unei relații în 1NF, singurele valori permise sunt cele atomice sau indivizibile¹⁶.

În ceea ce mă privește, materialul favorit legat de 1NF este cel al lui Chris Date publicat în iunie 2003 pe site-ul http://www.dbdebunk.com17, site conceput și gestionat de un apropiat al lui Date și un necruțător observator al ignoranței comunității IT (și academice) în materie de baze de date - Fabian Pascal. Materialul evocat constituie deopotrivă încununarea și convergența lucrărilor scrise singur (cea mai celebră este cartea a cărei a opta ediție a fost tradusă și în românește) sau împreună cu Hugh Darwen (vezi *The Third Manifesto*). Meritoriu este și faptul că, din capul locului, Date se autodenunță ca fiind unul dintre cei care, de-a lungul timpului, au contribuit la confuzia în care se scaldă atomicitatea.

Prima definiție a 1NF aparține, firește, lui E.F. Codd pentru care o relație este în 1NF dacă nici unul dintre domeniile sale nu are elemente (valori) de tip set¹⁸. Câțiva ani mai târziu, Codd afirmă că un domeniu este simplu dacă toate valorile sale sunt atomice, adică *nedecompozabile de către SGBD*¹⁹. Date identifică în cartea lui Codd publicată în 1990²⁰ două afirmații similare:

- valorile din domeniile pe care fiecare relație este definită sunt necesarmente atomice vis-a-vis de SGBD;
- datele atomice sunt cele care nu pot fi descompuse de către SGBD în subcomponente (cu excepția unor funcții speciale).

Din păcate, Codd elimină o neclaritate înlocuind-o cu alta. Şi Date se întreabă: ce însemnă *cu excepția unor funcții speciale* ? Faptul că dintr-un şir de caractere (exemplul clasic de valoare atomică) pot fi extrase diferite componente prin funcții precum SUBSTR, funcții prezente în mai toate SGBD-urile actuale, face din valoarea de tip şir de caractere una neatomică ? Sună cam hilar. Mai ales că, dacă raportăm atomicitatea la SGBD-uri, deseori vom fi în situația în care o valoare atomică într-o bază de date gestionată cu un SGBD să fie neatomică în cazul unei aceleași baze de date (structuri) implementată pe un alt SGBD. Ceea ce, să recunoaștem, nu e prea onorant pentru un model atât de riguros fundamentat așa cum este relaționalul.

Date, împreună cu Darwen și Pascal propun renunțarea la atomicitate ca o cerință a 1NF. După Date, atomicitatea nici nu are o semnificație absolută, întrucăt

¹⁸ [Codd72]. Preluare din [Date03]

¹⁶ [Elmasri & Navathe 00], p. 485

¹⁷ [Date03]

¹⁹ [Codd79]

²⁰ [Codd90]

depinde de ceea ce dorim să facem cu datele asupra atomicității cărora ne pronunțăm²¹. Practic, toate tabelele care respectă principiile modelului relațional sunt în 1NF, iar această primă normală păstrează din relevanță doar în două privințe:

- indică faptul că relația la care se referă poate să nu fie într-o formă normalizată superioară (2NF, 3NF...);
- o structură de date ce respectă 1NF este una relațională, cu alte cuvinte tabelele care nu sunt în 1NF sunt non-relaționale.

Acestui din urmă aspect merită o discuție detaliată, deoarece ține de aspectul structural al modelului relational.

Renunţarea la atomicitate nu este singura schimbare fundamentală în modelul relaţional. Domeniile pot conţine orice tip de valori: scalare sau compozite, şiruri de caractere, numere, dar şi vectori, liste, imagini, înregistrări audio/video, documente XML sau orice tip de definit de utilizatori. Dealminteri, dacă iniţial Codd s-a străduit să impună sintagma *domeniu* în detrimentul *tipului*, tocmai pentru a opera o distrincţie netă dintre baze de date şi limbaje de programare, Date, Darwen şi Pascal sunt, în ultimul timp, mult mai apropiaţi de noţiunea de *tip*, pe care o consideră mai sugestivă şi, în plus, identic aplicabilă şi altor modele de organizare a datelor date. Atâta vreme cât există suport din partea SGBD-ului pentru definirea, stocarea şi accesarea sa, se poate folosi orice tip de date într-o BD.

Revenim la relația BIBLIOTECĂ din figura 3.1. Pe baza tipului *șir de caractere*, putem defini un domeniu de tip *vectori de șiruri de caractere*, iar cele trei atribute, Cote, Autori și CuvinteCheie se vor declara pe acest nou domeniu de tip set. Chiar dacă noua relație, denumită BIBLIOTECĂ_SET (figura 3.22), seamănă izbitor cu forma denormalizată, este de o schemă radical diferită.

BIBLIOTECĂ_SET

<u>ISBN</u>	Titlu	Cote_SET	Autori_SET	
973-683-889-7	Visual FoxPro. Ghidul dezvoltării aplicaţiilor profesionale	{III-13421,III- 13422, III-13423}	{Marin Fotache, loan Brava, Cătălin Strâmbei, Liviu Creţu}	
973-683-709-2	SQL. Dialecte DB2, Oracle şi Visual FoxPro	{III-10678, III-10679}	{Marin Fotache}	

Editura	LocSediuEd	AnApariţie	CuvinteCheie_SET
Polirom	laşi	2002	{baze de date, SQL, proceduri stocate, FoxPro,
			formulare, orientare pe obiecte, client-server, web}
Polirom	laşi	2001	{baze de date, algebră relaţională, SQL}

Figura 3.22. Domenii de tip set

A doua inovație o constituie atributele ale căror valori pot fi chiar relații (*relation-valued attributes*) - ATR. În exemplul nostru, în locul celor trei seturi putem folosi câte o relație. Câștigul este important, deoarece pentru ingredientul folosit este pur relațional (relația !), iar mecanismul de declarare a restricțiilor și cel de

^{21 [}Date03]

interogare (algebra relațională) este, în esență, același. Atributele Cote_REL, Autori_REL și CuvinteCheie_REL din relația BIBLIOTECĂ_ATR (figura 3.23) sunt de acest tip, iar valorile lor pot fi supuse operatorilor clasici: selecție, proiecție, joncțiune etc. Date și Harwen propun cățiva noi operatori algebrici relaționali pentru a asigura comparabilitatea tabelelor cu și fără ATR, GROUP și UNGROUP²².

BIBLIOTECĂ ATR

<u>ISBN</u>	Titlu	Cote_REL
973-683-889-7	Visual FoxPro. Ghidul dezvoltării aplicaţiilor profesionale	Cote -13421 -13422 -13423
973-683-709-2	SQL. Dialecte DB2, Oracle şi Visual FoxPro	Cote III-10678 III-10679

Autori_REL	Editura	LocSediuEd	AnApariţie	CuvinteCheie_REL
Autori	Polirom	laşi	2002	CuvinteCheie
Marin Fotache				baze de date
Ioan Brava				SQL
Cătălin Strâmbei				proceduri stocate
Liviu Creţu				FoxPro
				formulare
				orientare pe obiecte
				client-server
				web
Autori	Polirom	laşi	2001	CuvinteCheie
Marin Fotache				baze de date
				algebră relaţională
				Stocate

Figura 3.23. Atribute de tip relaţii (ATR)

Din contră, dacă am folosi prima variantă - cea a seturilor - ar fi necesari operatori speciali: reuniune de seturi, intersecție de seturi etc.

Această a doua inovație a modelului relațional este o consecință directă a primeia. Practic, dacă un atribut X este de tip relație, iar D este domeniul lui X, atunci toate valorile lui D sunt relații. În plus, orice atribut de tip relație poate conține atribute care sunt, la rândul lor, de tip relații, astfel încât numărul nivelurilor de imbricare este nelimitat.

²² Vezi [Date & Darwen00]

Interesantă este în acest sens şi lucrarea publicată în 1984 de către Serge Abiteboul şi Nicole Bidoit. Deşi autorii afirmau că propun un model de date nou (l-au botezat Verso), în mare ideea era ca valoarea unui atribut să fie nu numai atomică, ci şi o instanță a unui *format* (autorii au ezitat să folosească termenul *relație*). Ceea ce este notabil la modelul propus este că prin acest mecanism era obținută o ierarhie ce putea fi interogată folosind aceeași operatori algebrici relaționali. Cu atât mai mult cu cât valorile nule aveau o formă de reprezentare care ar mulţumi astăzi pe Date şi compania (relații vide)²³.

Howard Dreizen şi Shi-Huo Chang propun în numărul din decembrie 1989 al ACM Transactions on Database Systems acceptarea, cu titlu restrictiv, a unor condiții excepționale în schema bazei de date, pentru a rezolva o serie de situații practice relativ rare care însă crează anomalii în schema bazei. Cu acest prilej, autorii se pronunță pentru folosirea relațiilor incluse, altfel spus, includerea relațiilor în alte relații, de o manieră nerestrictivă; astfel, o relație R (D1, D2, ..., Dn) de n domenii este recursivă omogen dacă fiecare domeniu este fie (1) un set de valori atomice fie (2) un set de relații recursive omogen cu scheme identice 24 .

Odată trecută euforia contactului cu atributele de tip relații, ne putem întreba retoric, precum Date: în proiectarea schemei bazei chiar avem nevoie de ATR-uri ? Întrebarea corectă ar fi, mai degrabă: când ATR-urile sunt mai avantajoase, prin comparație cu cele atomice (și mecanismul de normalizare expus în acest capitol) ? Principalul avantaj ține, după cum am discutat, de enorma lor flexibilitate. Dintre limite sau, după caz, dezavantaje, ar merita început cu structura ierarhică a ATR, ca și în lumea orientării pe obiecte, în general. Nu întotdeauna realitatea este ierarhică. Relațiile dintre obiecte pot fi cu mult mai complexe, iar de cele mai multe ori sunt necesare regrupări, resistematizări ale datelor, situații în care stângăciile structurilor ierarhice se manifestă în toată splendoarea lor.

Să luăm discuție relația STUDENȚI_EXAMENE din figura 2.3 pentru care încercăm să valorificăm ATR-urile. Prima variantă - vezi figura 3.24 - folosește un atribut de tip relație numite <code>Examene_ATR</code> ce conține informații despre fiecare toate examenele susținute de un student. Relația STUDENȚI_EXAMENE_ATR1 va conține doar câte un tuplu pentru fiecare student.

STUDENTI EXAMENE ATR1

Matricol	NumePrenume	An	Specializare
EL13455	Popovici I Vasile	3	Informatică economică
EL13456	Zăineanu W Ion	3	Informatică economică
EL13457	Abălaşei R Zicu	3	Informatică economică

²³ Vezi [Abiteboul & Bidoit 84]

²⁴ [Dreizen & Chang 89]

EL13458	Şpagă M Michael	3	Informatică economică

	Examene_ATR					
CodDisc	DenumireDisc	NrCredite	DataExamen	Nota		
Al3501	Baze de date I	6	29/01/2004	8		
AI3502	Programare vizuală şi RAD	7	01/02/2004	10		
CodDisc	DenumireDisc	NrCredite	DataExamen	Nota		
Al3501	Baze de date I	6	29/01/2004	4		
Al3502	Programare vizuală şi RAD	7	01/02/2004	8		
AI3501	Baze de date I	6	12/02/2004	8		
CodDisc	DenumireDisc	NrCredite	DataExamen	Nota		
Al3501	Baze de date I	6	29/01/2004	9		
Al3502	Programare vizuală şi RAD	7	01/02/2004	4		
AI3502	Programare vizuală şi RAD	7	15/02/2004	9		
CodDisc	DenumireDisc	NrCredite	DataExamen	Nota		
AI3503	Analiza sistemelor informaţionale	6	04/02/2004	7		

Figura 3.24. Prima variantă de folosire a ATR

În egală măsură se poate însă folosi și un ATR care să conțină toți examinații pentru o disciplină dată într-o sesiune - StudențiNote_ATR. Relația s-ar prezenta după cum este sugerat în figura 3.25.

STUDENŢI_EXAMENE_ATR2

CodDisc	DenumireDisc	NrCredite	DataExamen
Al3501	Baze de date l	6	29/01/2004
Al3501	Baze de date I	6	12/02/2004
Al3502	Programare vizuală şi RAD	7	01/02/2004
Al3502	Programare vizuală şi RAD	7	15/02/2004
Al3503	Analiza sistemelor informaţionale	6	04/02/2004

StudenţiNote_ATR				
Matricol	NumePrenume	An	Specializare	Nota
EL13455	Popovici I Vasile	3	Informatică economică	8
EL13456	Zăineanu W Ion	3	Informatică economică	4
EL13457	Abălaşei R Zicu	3	Informatică economică	9
Matricol	NumePrenume	An	Specializare	Nota

EL13456	Zăineanu W Ion	3	Informatică economică	8
Matricol	NumePrenume	An	Specializare	Nota
EL13455	Popovici I Vasile	3	Informatică economică	10
EL13456	Zăineanu W Ion	3	Informatică economică	8
EL13457	Abălaşei R Zicu	3	Informatică economică	4
Matricol	NumePrenume	An	Specializare	Nota
EL13457	Abălaşei R Zicu	3	Informatică economică	9
Matricol	NumePrenume	An	Specializare	Nota
EL13458	Şpagă M Michael	3	Informatică economică	7

Figura 3.25. A doua variantă de folosire a ATR

Care dintre cele două variante reflectă mai bine realitatea ? Prima variantă prezintă avantajul grupării tuturor examenelor unui student sub "umbrela" tuplului care se referă la studentul respectiv. Ar fi relativ simplu de calculat media studentului, de aflat la ce examene a picat o singură dată, sau de două (trei...) ori etc. Dar dacă ne interesează studenții care au luat la *Programare orientată pe obiecte* aceași notă ca și Şpagă Michael, atunci interogarea s-ar complica destul. A doua variantă este, ca structură, mai aproape de realitate, deoarece notele sunt preluate de pe cataloage care se întocmesc la fiecare examen. Avantajul obținerii lejere a catalogului de la examen este "compensat" de dificultatea calculării mediilor pentru un student sau formație de studiu, pentru comparații între situațiile școlare ale studenților etc.

Din acest punct de vedere, renunțarea la ATR și lucrul cu atribute atomice se materializează într-o structură, să-i spunem, mai neutră, care, deși nu atât de intuitivă precum cea ierarhică, se pretează mult mai bine la prelucrări dintre cele mai diverse.

După discuția din acest paragraf, în care domeniile pot fi definite cât se poate de flexibil, în funcție de nevoile aplicației, ne putem pune întrebarea: ce rost mai are să discutăm despre aducerea relații în 1NF, operațiune care, uneori, presupune creșterea numărului de tupluri de câteva ori, astfel încât în loc să micșorăm redundanța, mai degrabă o mărim, cel puțin aparent ?

Două ar fi argumentele în sprijinul celor prezentate în acest capitol până în paragraful în care ne aflăm (oricum este ultimul !). Mai întâi, în procesul normalizării, acesta e doar primul pas. Redundanța pe care o introducem rezolvă o problemă extrem de importantă, cea a pierderilor de informații. După cum o să vedem în capitolele următoare, este aproape sigur că în celelalte forme normalizate vom scăpa de aproape tot ce este redundant într-o relație.

Al doilea argument ține de instrumentele software de care dispunem. La acest moment suportul SGBD-urilor pentru domenii de tip set, ca să nu mai vorbim de atribute de tip relație, este mai degrabă unul modest. Chiar dacă produsele importante au facilități importante în definirea de obiecte, când se pune problema mecanismului de declarare a integrității obiectelor, și mai ales a celui de interogare, lucrurile se acutizează. Chiar dacă teoretic opțiunile sunt generoase, atunci când se

pune problema punerii în operă a unei aplicații de lucru cu baze de date nu putem eluda "meandrele concretului", cu atât mai puțin "sinergia faptelor".