1 Code function tables

1.1 Sausage Conjecture calculations.jl function tables

Distinct functions are separated by semicolons. The "Description/Explanation" column provides additional details in cases where the code and mathematical functions diverge.

Function in code	Corresponding function in Part II	Description/Explanation
I(x, y)	[x,y]	Outputs an interval $I(x,y) \supseteq [x,y]$ whose endpoints are floating-point numbers.
SQ(X)	$X \cdot X$	
K(d)	κ_d	The volume of ${\cal B}^d$ using interval arithmetic.
κ_big(d)	κ_d	The volume of B^d using the big command instead of interval arithmetic. Intended for large d .
B(A)	$\beta\left(lpha ight)$	Here, A is the interval version of α , not α .
A	α	
$\triangle(A)$	[N/A]	
A★	$lpha^*$	
H_min_2(A★)	$\eta_{(2)}^{\min}\left(oldsymbol{lpha}^{*} ight)$	
H123(A)	$\eta_{1,2,3}\left(oldsymbol{lpha} ight)$	
H123_min(A★)	$\eta_{1,2,3}^{\min}\left(oldsymbol{lpha}^{*} ight)$	
Y31(A); Y32(A); Y33(A)	$egin{array}{l} \mathbf{y}^1 \left(oldsymbol{lpha}^3 ight) \ \mathbf{y}^2 \left(oldsymbol{lpha}^3 ight) \ \mathbf{y}^3 \left(oldsymbol{lpha}^3 ight) \end{array}$	
F12_3_t(A); F13_3_t(A); F23_3_t(A)	$f_{i,j}\left(oldsymbol{lpha}^3 ight)$	The "_t" is for trigonometric functions.
G23_3_t(A); G13_3_t(A); G12_3_t(A)	$g_{j,k}^{(3)}\left(oldsymbol{lpha}^3 ight)$	
F123_3(A)	$f_{1,2,3}\left(oldsymbol{lpha}^3 ight)$	
G123_3(A)	$g_{1,2,3}^{\left(3 ight)}\left(oldsymbol{lpha}^{3} ight)$	

Table 1.1: Functions in Sausage Conjecture calculations.jl: Preliminaries and vertex/external angles.

Function in code	Corresponding function in Part II	Description/Explanation	
<pre>Integralequation(f, a, b)</pre>	$\left[v\left(f,a,b\right)-e\left(f,a,b\right),v\left(f,a,b\right)+e\left(f,a,b\right)\right]$		
IntegralEquation(F, A, B)	$\int_{A}^{B} F(x) dx$ $= \left[v\left(\underline{F(x)}, \overline{A}, \underline{B}\right) - e\left(\underline{F(x)}, \overline{A}, \underline{B}\right), v\left(\overline{F(x)}, \underline{A}, \overline{B}\right) + e\left(\overline{F(x)}, \underline{A}, \overline{B}\right) \right].$		
_k(m, r); _K(m, r)	$k\left(m,r ight)$	Some single-letter function names give an error; the "_" resolves this issue.	
_a(r); _A(r)	$a\left(r\right)$		
_b(k, m); _B(k, m)	$b\left(k,m ight)$	_	
μ0(k, m, r); MU0(k, m, r)	$\mu_0\left(k,m,r ight)$	We use "MU" for capital μ .	
integrand_m(d, 1, k, m, r, μ); Integrand_M(d, 1, k, m, r, μ)	The integrand $\frac{1}{\sqrt{\left(a\left(r\right)\right)^{2}+1}}$ of m_{0} and m_{1} .	$\frac{1}{-x^{2} (b (k,m))^{2}} \frac{1}{d-l+m} x^{(d-l+m)-(k+2)} (1-x)^{k}$	
mO(d, l, k, m, r); MO(d, l, k, m, r)	$m_{0}\left(d,l,k,m,r ight)$		
m1(d, l, k, m, r); M1(d, l, k, m, r)	$m_1\left(d,l,k,m,r ight)$		
<pre>q_UB(d, 1, m, r); Q_UB(d, 1, m, r)</pre>	$q\left(d,l,m,r\right)$	The suffix "_UB" is because this quantity is an upper bound for q . $R(d,l,m,r)$ is included in the formula for q_UB.	
Integrand_ $\Omega(d, 1, m, r, p)$	$\frac{1}{1+q\left(d,l,m,r\right)}$	The integrand of ω . We use $p = l - m$ in the integral ω_{l-m} .	
Ω(d, l, m, p, lb, ub)	$\int_{1b}^{ub} \frac{1}{1 + q\left(d, l, m, r\right)} dr$	The integral ω with customizable bounds. We use $p = l - m$.	
u(d); U(d)	$u(d) = \min\left\{0.95, 1 - \frac{9}{d^{\frac{3}{2}}}\right\}$		
Ω1_2(d)	$\omega_1^{(2)}\left(d\right)$		
Ω1_3(d)	$\omega_1^{(3)}\left(d\right)$	The upper bounds are different,	
$\Omega_2_3 \min(\alpha \bigstar, d)$	$\omega_2^{(3)}\left(\alpha_3^*,d\right)$	otherwise errors will appear.	
$\Omega 3_3 \min(\alpha \star, d)$	$\omega_3^{(3)}\left(\alpha_3^*,d\right)$		

Table 1.2: Functions in Sausage Conjecture calculations.jl: Integrals for the volume lower bounds.

Function in code	Corresponding function in Part II	Description/Explanation
μ(α, ζ); MU(α, ζ)	$\mu\left(\alpha,\zeta\right)$	We use "MU" for capital μ .
integrand_g0(m, r, ζ, d); Integrand_G0(m, r, ζ, d)	The integrand r^{m-2} of $g_m^{(0)}(\alpha_{m,1},\zeta,d)$.	$r^{2}\left(r\frac{\zeta}{\sqrt{4-\zeta^{2}}}+\frac{2}{\sqrt{4-\zeta^{2}}}\right)^{d-(m-1)}$
integrand_g1(m, r, α , ζ , d); Integrand_G1(m, r, α , ζ , d)	The integrand r^{m-2} of $g_m^{(1)}(\alpha_{m,1},\zeta,d)$.	$r^{2} \left(r \frac{\sin\left(\alpha_{m,1}\right) - 1}{\sin\left(\alpha_{m,1}\right)} \sqrt{\frac{2+\zeta}{2-\zeta}} + \frac{1}{\sin\left(\alpha_{m,1}\right)} \right)^{d-(m-1)}$
g0(m, α, ζ, d); G0(m, α, ζ, d)	$g_m^{(0)}\left(\alpha_{m,1},\zeta,d\right)$	
g1(m, α, ζ, d); G1(m, α, ζ, d)	$g_m^{(1)}\left(\alpha_{m,1},\zeta,d\right)$	
g(m, α, ζ, d); G(m, α, ζ, d)	$g_m\left(\alpha_{m,1},\zeta,d\right)$	
G_min(m, α, d)	$g_m^{\min}\left(\alpha_{m,1},d\right)$	
integrand_p(α , d, r, m); Integrand_P(α , d, r, m)	The integrand r^{m-2} of $p_m(\alpha, d)$.	$\frac{2\left(-r\frac{\cos\left(\alpha\right)}{\sin\left(\alpha\right)} + \frac{1}{\sin\left(\alpha\right)}\right)^{d - (m - 1)}}{\sin\left(\alpha\right)}$
p(m, α, d); P(m, α, d)	$p_m\left(\alpha,d\right)$	
Q(m, α, d)	$q_m\left(\alpha,d\right)$	
Q(m, α, d)	$\widehat{q}_{m}\left(lpha,d ight)$	
ν(θ); N(θ)	$\nu\left(heta ight)$	
Ω20(α★, d)	$\omega_{2,0}\left(oldsymbol{lpha}^*,d ight)$	
Ω31(α★, d)	$\omega_{3,1}\left(oldsymbol{lpha}^*,d ight)$	

Table 1.3: Functions in Sausage Conjecture calculations.jl: More integrals for the volume lower bounds.

Function in code	Corresponding function in Part II	Description/Explanation
Λ̂_endpoint_BHW1994(d)	$\widehat{\lambda}_{\mathrm{e}}^{\mathrm{BHW1994}}\left(d\right)$	
Λ̂_A_BHW1994(d)	$\widehat{\lambda}_{\mathrm{A}}^{\mathrm{BHW1994}}\left(d\right)$	
Λ_M_BHW1994(α★, d)	$\widehat{\lambda}_{\mathrm{M}}^{\mathrm{BHW1994}}\left(\widehat{\alpha}_{2,1},d\right)$	
Λ_L_BHW1994(α★, ε, d)	$\lambda_{\mathrm{L}}^{\mathrm{BHW1994}}\left(\widehat{\alpha}_{2,1}, \varepsilon, d\right)$	
$\Lambda_{\text{endpoint}}(\alpha \bigstar, d)$	$\widehat{\lambda}_{\mathrm{e}}\left(\widehat{\alpha}_{2,1},d\right)$	
Λ_A(α★, d)	$\lambda_{\mathrm{A}}\left(\widehat{\alpha}_{2,1},d\right)$	
$\Lambda_{S}(A^{\bigstar}, d)$	$\lambda_{\mathrm{S}}\left(\widehat{\alpha}_{2,1},\widehat{\alpha}_{3,1},d\right)$	
$\Lambda_{MS}(A^{\bigstar}, d)$	$\lambda_{\mathrm{MS}}\left(\widehat{\alpha}_{2,1},\widehat{\alpha}_{3,1},d\right)$	
$\Lambda_{LS}(\alpha \bigstar, d)$	$\lambda_{\mathrm{LS}}\left(\widehat{\alpha}_{2,1},\widehat{\alpha}_{3,1},d\right)$	
Λ0_3(A, d)	$\lambda_0^{(3)}\left(\boldsymbol{lpha},d\right)$	
Λ1_3(A, d)	$\lambda_{1}^{(3)}\left(oldsymbol{lpha},d ight)$	
$\Lambda 2_3(A, \alpha \bigstar, d)$	$\lambda_2^{(3)}\left(\boldsymbol{lpha}, lpha_3^*, d\right)$	
Λ3_3(A, α★, d)	$\lambda_3^{(3)}\left(\boldsymbol{lpha}, lpha_3^*, d\right)$	
Λ123_3(A, α★, d)	$\lambda_{1,2,3}^{(3)}\left(\boldsymbol{lpha},\alpha_{3}^{*},d\right)$	
Λ0123_3(A, α★, d)	$\lambda_{0,1,2,3}^{(3)}\left(\boldsymbol{lpha},\alpha_{3}^{*},d\right)$	
$\Lambda_{\text{LL}}(\alpha \bigstar, d)$	$\lambda_{\mathrm{LL}}\left(oldsymbol{lpha},lpha_{3}^{*},d ight)$	
Λ_LLO(α★, d)	$\lambda_{\mathrm{LL0}}\left(oldsymbol{lpha},lpha_{3}^{*},d ight)$	
$\Lambda_{\text{min_BHW}1994}(\alpha \bigstar, d)$	$\min\left\{\lambda_{\mathrm{M}}^{\mathrm{BHW1994}}\left(\alpha_{2}^{*},d\right),\ \lambda_{\mathrm{L}}^{\mathrm{BHW1994}}\left(\alpha_{2}^{*},d\right)\right\}$	
Λ_min_BH1998(α★, d)	$\min \left\{ \lambda_{\mathcal{A}} \left(\widehat{\alpha}_{2,1}, d \right), \ \lambda \right\}$	$\frac{1}{S\left(\frac{\pi}{3}, \frac{\pi}{3}, d\right), \ \lambda_{MS}\left(\alpha_2^*, \alpha_3^*, d\right), \ \lambda_{LS}\left(\alpha_2^*, \alpha_3^*, d\right), \ \lambda_{LL}\left(\alpha_3^*, d\right)}{S\left(\frac{\pi}{3}, \frac{\pi}{3}, d\right), \ \lambda_{LL}\left(\alpha_3^*, d\right)}$
$\Lambda_{\min}(\alpha \bigstar, d)$	$\widehat{\lambda}_{\min}\left(oldsymbol{lpha}^{*},d ight)$	
endpoints_2($\alpha \bigstar$, d); endpoints_1($\alpha \bigstar$, d); endpoints_0($\alpha \bigstar$, d)	$n_d\left(\boldsymbol{lpha}^*\left(d\right),k\right)$	For $k=2,\ k=1,$ and $k=0$ respectively. The corresponding functions for BHW1994 and BH1998 also exist.
volumeLowerBoundList (paper, d, ε, α★)	[N/A]	Outputs the excess volumes, $\lambda_k^{(3)}$ components, and upper bounds for $n_d\left(\boldsymbol{\alpha}^*\left(d\right),k\right)$. "paper" can be "BHW1994", "BH1998", or "Thesis".

Table 1.4: Functions in Sausage Conjecture calculations.jl: The volume lower bounds (finally).

$1.2 \quad {\tt Sausage \ Catastrophe \ calculations.jl \ function \ tables}$

Function in code	Corresponding function in Part III	Description/Explanation
I(x)	$I\left(x\right)$	Converts a floating-point number x to a thin interval $I(x)$ containing x .
lo(x)	$\underline{I(x)}$	The left endpoint of $I(x)$.
hi(x)	$\overline{I\left(x\right) }$	The right endpoint of $I(x)$. We always have $lo(x) \le x \le hi(x)$.
P(X, power)	$X \cdot X \cdot \cdots \cdot X$	power should be a natural number.
<pre>vol_sausage(n); Vol_sausage(N)</pre>	$\operatorname{vol}\left(S_{n}^{4}\right)$	
g_Y(m); G_Y(M)	$g_{D_4}\left(Y_m ight)$	The " D_4 " is omitted because every use of G_Y in the code is for D_4 .
h_(h); H_(H)	$\left(\ \mathbf{h}\ _{1},\ \mathbf{h}\ _{2}^{2},\ \mathbf{h}\ _{3}^{3},\ \mathbf{h}\ _{4}^{4}\right)$	Coded in Julia as an array.
vol_Y(m); Vol_Y(m)	$\operatorname{vol}\left(Y_{m}\right)$	
g_t3h_Y(m, h); G_t3h_Y(m, h)	$g_{D_4}\left(t_{\mathbf{h}}^3\left(Y_m\right)\right)$	
vol_t3h_Y(m, h); Vol_t3h_Y(m, h)	$\operatorname{vol}\left(t_{\mathbf{h}}^{3}\left(Y_{m}\right)+B^{d}\right)$	
δ4_sausage(n)	$\delta\left(S_n^4\right)$	The "4" in $\delta 4$ is from the dimension.
δ4_t3h_Y(m, h)	$\delta\left(t_{\mathbf{h}}^{3}\left(Y_{m}\right)\cap D_{4}\right)$	
δ̃4_t3h_Y(m, h, k)	$\widetilde{\delta}\left(p_k\left(t_{\mathbf{h}}^3\left(Y_m\right)\cap D_4\right)\right)$	
ỹ(m, h); ỹ(m, h)	$\widetilde{v}\left(t_{\mathbf{h}}^{3}\left(Y_{m} ight),\mathbf{h} ight)$	
ř(m, h); Ř(M, H)	$\widetilde{r}\left(t_{\mathbf{h}}^{3}\left(Y_{m} ight),\mathbf{h} ight)$	
<pre>L(m, h); L_IA(M, H)</pre>	$\widetilde{L}\left(m,\mathbf{h} ight)$	The minimum and maximum values of $\widetilde{L}\left(t_{\mathbf{h}}^{3}\left(Y_{m}\right)\cap D_{4}\right)$. "IA" = IntervalArithmetic.

 ${\bf Table\ 1.5:\ Functions\ in\ Sausage\ Catastrophe\ calculations.jl:\ Preliminaries.}$

Function in code	Corresponding function in Part III	Description/Explanation
check_n(n,); Check_n(n,)	[N/A]	
h_max(m)	$\lfloor \frac{m-1}{2} \rfloor$	The maximum values of h_i in the triple facet truncation.
<pre>check_n_range (n_start, n_end,); Check_n_range (n_start, n_end,)</pre>	[N/A]	Applies check_n to all integers n from n_{start} to n_{end} .

Table 1.6: Functions in Sausage Catastrophe calculations.jl: Checking values of n.