MA427 Lecture 5 Integer Programming Branch-and-bound and good formulations

Giacomo Zambelli

Department of Mathematics

11 February, 2018

Today's lecture

- ▶ Branch-and-bound
- Good formulations
- Knapsack cover inequalities
- ► Ideal formulations

Mixed Integer Linear Programming Problems (MILP)

$$z_I = \max c^{\top} x$$
 $Ax \le b$
 $x \ge 0$
 $x_i \in \mathbb{Z}, \quad i \in I.$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$ and $I \subseteq \{1, \dots, n\}$.

- ▶ integer variables: x_i , $i \in I$.
- ▶ continuous variables: x_i , $i \notin I$.
- Pure Integer Linear Programming Problem (ILP): if all variables are integer.
- ▶ Binary linear programming: if all variables are binary (i.e. $x_i \in \{0, 1\}$.
- ► Feasible region: $X = \{x : Ax \le b, x \ge 0, x_i \in \mathbb{Z} \text{ for } i \in I\}.$

Mixed Integer Linear Programming Problems

Mixed Integer Linear Programming Problems

$$z_I = \max c^{\top} x$$
 $Ax \le b$
 $x \ge 0$
 $x_i \in \mathbb{Z}, \quad i \in I.$

Linear relaxation of the problem

$$z_L = \max c^{\top} x$$

$$Ax \le b$$

$$x \ge 0$$
(1)

Note: $z_l \leq z_L$.

Observation: if the optimal solution of the linear relaxation x^L satisfies the integrality requirements, then x_L is optimal also for the (MILP) problem and $z_I = z_L$

 2^n subproblems at the end

Drawbacks of complete enumeration

- Suppose that, in a IP with n binary variables, we enumerate all 2^n possible solutions.
- ▶ If we check one solution per microsecond:

# variables	Time
n = 15	\sim .03 sec
n = 20	~ 1 sec
n = 30	\sim 20 min
n = 40	~ 12 days
n = 50	\sim 35 years
n = 60	\sim 37,500 years
n = 100	\sim 40, 197 trillion years

$$z_I^0 = \max \quad 5x_1 + \frac{17}{4}x_2$$
 $x_1 + x_2 \leq 5$
 $10x_1 + 6x_2 \leq 45$
 $x_1, x_2 \geq 0$
 $x_1, x_2 \in \mathbb{Z}$

Optimal LP solution is $x_1 = 3.75$, $x_2 = 1.75$, with value $z_1^0 = 24.06$.

Branch on variable x_1 :

$$z_{I}^{1} = \max \quad 5x_{1} + \frac{17}{4}x_{2}$$

$$x_{1} + x_{2} \leq 5$$

$$10x_{1} + 6x_{2} \leq 45$$

$$x_{1} \leq 3$$

$$x_{1}, x_{2} \geq 0$$

$$x_{1}, x_{2} \in \mathbb{Z}$$

Optimal LP solution $x_1 = 3$, $x_2 = 2$, with value $z_L^1 = 23.5$ Integer solution! (3,2) is the incumbent solution. LB := 23.5. Prune node by optimality

$$z_{I}^{1} = \max \quad 5x_{1} + \frac{17}{4}x_{2}$$

$$x_{1} + x_{2} \leq 5$$

$$10x_{1} + 6x_{2} \leq 45$$

$$x_{1} \geq 4$$

$$x_{1}, x_{2} \geq 0$$

$$x_{1}, x_{2} \in \mathbb{Z}$$

Optimal LP solution $x_1 = 4$, $x_2 = 0.83$, with value $z_L^2 = 23.54$.

Branch on variable x_2 :

$$\begin{aligned} z_I^2 &= \max & 5x_1 + \frac{17}{4}x_2 \\ & x_1 + x_2 & \leq & 5 \\ & 10x_1 + 6x_2 & \leq & 45 \\ & x_1 & \geq & 4 \\ & x_2 & \leq & 0 \\ & x_1, x_2 & \geq & 0 \\ & x_1, x_2 & \in & \mathbb{Z} \end{aligned} \qquad (P_3) \qquad \begin{matrix} \mathsf{LB=23.5} \\ \mathsf{LB=23.5} \\ \mathsf{LB=23.5} \\ & x_1 & \leq & 4 \\ \mathsf{LB=23.5} \\ & x_1 & \leq & 2 \\ \mathsf{LB=23.5} \\ & x_1 & \leq & 3.75, x_2 = 1.25 \\ & x_2 & \leq & 3.75, x_2 = 1.25 \\ & x_1 & \leq & 3.75, x_2 = 1.25 \\ & x_2 & \leq & 3.75, x_2 = 1.25 \\ & x_1 & \leq & 3.75, x_2 = 1.25 \\ & x_2 & \leq & 3.75, x_2 = 1.25 \\ & x_1 & \leq & 3.75, x_2 = 1.25 \\ & x_2 & \leq & 3.75, x_2 = 1.25 \\ & x_1 & \leq & 3.75, x_2 = 1.25 \\ & x_2 & \leq & 3.75, x_2 = 1.25 \\ & x_1 & \leq & 3.75, x_2 = 1.25 \\ & x_2 & \leq & 3.75, x_2 = 1.25 \\ & x_1 & \leq & 3.75, x_2 = 1.25 \\ & x_2$$

Optimal LP solution $x_1 = 4.5$, $x_2 = 0$, with value $z_L^3 = 22.5$. $z_L^3 < LB(22.5 < 23.5) \Longrightarrow$ prune by bound.

$$z_{I}^{2} = \max \begin{array}{c} 5x_{1} + \frac{17}{4}x_{2} \\ x_{1} + x_{2} \leq 5 \\ 10x_{1} + 6x_{2} \leq 45 \\ x_{1} \geq 4 \\ x_{2} \geq 1 \\ x_{1}, x_{2} \geq 0 \\ x_{1}, x_{2} \in \mathbb{Z} \end{array}$$

LP relaxation infeasible: prune by infeasibility.

No more active nodes: the optimal solution is (3, 2).

The branch-and-bound method (maximization)

Initialization: $\mathcal{T} := \{(P_0)\}, LB := -\infty, x^* \text{ undefined};$

- 1. If \mathcal{T} has no active node, return the incumbent solution x^* , STOP:
- 2. Else, choose an active node (P) in \mathcal{T} .
- 3. Solve the linear relaxation of (P).
 - 3.1 **Pruning by infeasibility**: If LP relaxation is infeasible, prune (P); Else, let \bar{x} be the optimum to the LP relaxation of (P).
 - 3.2 **Pruning by bound**: If $c^{\top}\bar{x} \leq LB$, then prune (P); Else
 - 3.3 **Pruning by optimality**: If \bar{x}_i is integer for all $i \in I$, set $x^* := \bar{x}$ and $LB := c^{\top}\bar{x}$ and prune node (P).
 - 3.4 **Branching on variable**: If none of (a), (b), (c) occurs, choose an integer variable x_h such that $\bar{x}_h \notin \mathbb{Z}$ and branch on x_h :

$$\begin{split} (P') &:= (P) \cap \{x_h \leq \lfloor \bar{x}_h \rfloor\} \quad , \quad (P'') := (P) \cap \{x_h \geq \lceil \bar{x}_h \rceil\}. \\ \text{Add } (P') \text{ and } (P'') \text{ to } \mathcal{T}. \end{split}$$

4. Return to 1.

Example: how to restart after branching

Suppose we solve the LP relaxation of a MIP in 5 variables with $x_1, x_2, x_3 \in \mathbb{Z}$, to obtain the optimal tableau

We branch on x_1 . The subproblems are $x_1 \le 1$ and $x_1 \ge 2$. How do we restart?

Example: how to restart after branching

Subproblem: $x_1 \le 1$

Add new slack variable $x_6 \ge 0$ and new inequality $x_1 + x_6 = 1$, expressed by non-basic variables as

$$-\frac{1}{5}x_2 + \frac{4}{5}x_4 + \frac{1}{5}x_5 + \frac{1}{5}x_6 = -\frac{4}{5}.$$

Example: how to restart after branching

New dual feasible basis: $\{1, 3, 6\}$.

Good formulations

$$z_I = \max c^{\top} x$$
 $Ax \le b$
 $x \ge 0$
 $x_i \in \mathbb{Z}, \quad i \in I.$

$$X = \{x \in \mathbb{R}^n : Ax \leq b, x \geq 0, x_i \in \mathbb{Z} \text{ for all } i \in I\}$$

A formulation for the above (MILP) is a system

$$A'x \le b'$$
$$x \ge 0$$

such that

$$X = \{x \in \mathbb{R}^n : A'x \le b', x \ge 0, x_i \in \mathbb{Z} \text{ for all } i \in I\}.$$

Two formulations for X:

$$Ax \le b$$
 and $A'x \le b$ $x \ge 0$

Definition

The first formulation is better than the second if

$${x : Ax \le b, x \ge 0} \subseteq {x : A'x \le b', x \ge 0}.$$

Two formulations for X:

$$Ax \le b$$

 $x \ge 0$ and $A'x \le b$
 $x \ge 0$

Definition

The first formulation is better than the second if

$${x : Ax \le b, x \ge 0} \subseteq {x : A'x \le b', x \ge 0}.$$

Note: if $Ax \le b$, $x \ge 0$ is a better formulation than $A'x \le b'$, $x \ge 0$, then

$$z_I \leq z_L \leq z_L'$$
.

Better formulations give tighter lower-bounds.

We are given a knapsack of capacity b, and n types of objects of positive weight a_1, \ldots, a_n . Each object i has value c_i , $i = 1, \ldots, n$.

We are given a knapsack of capacity b, and n types of objects of positive weight a_1, \ldots, a_n . Each object i has value c_i , $i = 1, \ldots, n$.

Knapsack problem: Load the knapsack without exceeding capacity in order to maximize the total value carried.

Binary knapsack problem: Knapsack problem where we have exactly one object of each type.

We are given a knapsack of capacity b, and n types of objects of positive weight a_1, \ldots, a_n . Each object i has value c_i , $i = 1, \ldots, n$.

Knapsack problem: Load the knapsack without exceeding capacity in order to maximize the total value carried.

Binary knapsack problem: Knapsack problem where we have exactly one object of each type.

We are given a knapsack of capacity b, and n types of objects of positive weight a_1, \ldots, a_n . Each object i has value c_i , $i = 1, \ldots, n$.

Knapsack problem: Load the knapsack without exceeding capacity in order to maximize the total value carried.

Binary knapsack problem: Knapsack problem where we have exactly one object of each type.

Formulation for the knapsack problem

$$\max \sum_{i=1}^{n} c_i x_i$$

$$\sum_{i=1}^{n} a_i x_i \le b$$

$$x \ge 0$$

$$x \in \mathbb{Z}^n$$

We are given a knapsack of capacity b, and n types of objects of positive weight a_1, \ldots, a_n . Each object i has value c_i , $i = 1, \ldots, n$.

Knapsack problem: Load the knapsack without exceeding capacity in order to maximize the total value carried.

Binary knapsack problem: Knapsack problem where we have exactly one object of each type.

Formulation for the binary knapsack problem

$$\max \sum_{i=1}^{n} c_{i}x_{i}$$

$$\sum_{i=1}^{n} a_{i}x_{i} \leq b$$

$$0 \leq x \leq 1$$

$$x \in \mathbb{Z}^{n}$$

Knapsack problems: minimal cover formulation

Binary knapsack set

$$K := \{x \in \{0,1\}^n : \sum_{i=1}^n a_i x_i \le b\}$$

Covers: $C \subseteq \{1, \ldots, n\}$ is a

- **cover** if $\sum_{i \in C} a_i > b$.
- ▶ minimal cover if it is a cover and $\sum_{i \in C \setminus \{j\}} a_i \leq b$ for every $j \in C$.

Knapsack problems: minimal cover formulation

Binary knapsack set

$$K := \{x \in \{0,1\}^n : \sum_{i=1}^n a_i x_i \le b\}$$

Covers: $C \subseteq \{1, \ldots, n\}$ is a

- ▶ cover if $\sum_{i \in C} a_i > b$.
- ▶ minimal cover if it is a cover and $\sum_{i \in C \setminus \{j\}} a_i \leq b$ for every $j \in C$.

Since objects in a cover exceed capacity, not all of them can be put in the knapsack.

Knapsack problems: minimal cover formulation

Binary knapsack set

$$K := \{x \in \{0,1\}^n : \sum_{i=1}^n a_i x_i \le b\}$$

Covers: $C \subseteq \{1, \ldots, n\}$ is a

- ▶ cover if $\sum_{i \in C} a_i > b$.
- ▶ minimal cover if it is a cover and $\sum_{i \in C \setminus \{j\}} a_i \leq b$ for every $j \in C$.

Since objects in a cover exceed capacity, not all of them can be put in the knapsack. \Rightarrow Every point in K satisfy the

cover inequality:
$$\sum_{i \in C} x_i \le |C| - 1$$
.

Knapsack problems: minimal cover formulation

Binary knapsack set

$$K := \{x \in \{0,1\}^n : \sum_{i=1}^n a_i x_i \le b\}$$

Covers: $C \subseteq \{1, \ldots, n\}$ is a

- ▶ cover if $\sum_{i \in C} a_i > b$.
- ▶ minimal cover if it is a cover and $\sum_{i \in C \setminus \{j\}} a_i \leq b$ for every $j \in C$.

Since objects in a cover exceed capacity, not all of them can be put in the knapsack. \Rightarrow Every point in K satisfy the

cover inequality:
$$\sum_{i \in C} x_i \le |C| - 1$$
.

Observe that the minimal cover inequalities (i.e. the cover inequalities corresponding to minimal covers) imply all covers inequalities.

Knapsack cover inequalities

$$\mathcal{K}^{\mathcal{C}} := \{x \in \{0,1\}^n : \sum_{i \in \mathcal{C}} x_i \leq |\mathcal{C}| - 1 \text{ for every minimal cover } \mathcal{C} \text{ of } \mathcal{S}\}.$$

Observation The sets K and K^C coincide.

Knapsack cover inequalities

$$\mathcal{K}^{\mathcal{C}} := \{x \in \{0,1\}^n : \sum_{i \in \mathcal{C}} x_i \leq |\mathcal{C}| - 1 \text{ for every minimal cover } \mathcal{C} \text{ of } \mathcal{S}\}.$$

Observation The sets K and K^C coincide.

$$K:=\{x\in\{0,1\}^4:\ 6x_1+6x_2+6x_3+5x_4\leq 16\}.$$

Minimal cover formulation:

$$K^{C} := \{ x \in \{0,1\}^{4} : x_{1} + x_{2} + x_{3} \leq 2$$

$$x_{1} + x_{2} + x_{4} \leq 2$$

$$x_{1} + x_{3} + x_{4} \leq 2$$

$$x_{2} + x_{3} + x_{4} \leq 2 \}.$$

In this instance, the second formulation is strictly better than the first.

Knapsack cover inequalities

$$\mathcal{K}^C := \{x \in \{0,1\}^n : \sum_{i \in C} x_i \leq |C| - 1 \text{ for every minimal cover } C \text{ of } S\}.$$

Observation The sets K and K^C coincide.

$$K:=\{x\in\{0,1\}^4:\ 6x_1+6x_2+6x_3+5x_4\leq 16\}.$$

Minimal cover formulation:

$$\mathcal{K}^{C} := \{ x \in \{0,1\}^{4} : x_{1} + x_{2} + x_{3} \leq 2 \\ x_{1} + x_{2} + x_{4} \leq 2 \\ x_{1} + x_{3} + x_{4} \leq 2 \\ x_{2} + x_{3} + x_{4} \leq 2 \}.$$

In this instance, the second formulation is strictly better than the first.

$$(\frac{5}{6}, 1, 0, 1)$$

Given a set $X \subseteq \mathbb{R}^n$, the convex hull of X, denoted by $\operatorname{conv}(X)$, it the (unique) minimal convex set containing X.

Given a set $X \subseteq \mathbb{R}^n$, the convex hull of X, denoted by conv(X), it the (unique) minimal convex set containing X.

- $ightharpoonup \operatorname{conv}(X)$ is the intersection of all convex sets containing X.
- ▶ In particular, if K is a convex set and $X \subseteq K$, then $conv(X) \subseteq K$.

Given a set $X \subseteq \mathbb{R}^n$, the convex hull of X, denoted by conv(X), it the (unique) minimal convex set containing X.

NOTE: If X is the set of feasible solutions of a mixed-integer program, and $Ax \le b$, $x \ge 0$ is a formulation for X, then the polyhedron $P = \{x : Ax \le b, x \ge 0\}$ satisfies

$$\operatorname{conv}(X) \subseteq P$$
.

Hence the best possible formulation of a MILP must contain conv(X).

Theorem (Fundamental theorem of Integer Programming)

Given $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, let $X = \{x \in \mathbb{R}^n : Ax \leq b, x \geq 0, x_i \in \mathbb{Z} \text{ for } i \in I\}$. Then $\operatorname{conv}(X)$ is a polyhedron.

 \Longrightarrow there exists $ilde{A} \in \mathbb{Q}^{ ilde{m} imes n}$ and $ilde{b} \in \mathbb{Q}^{ ilde{m}}$ such that

$$\operatorname{conv}(X) = \{ x \in \mathbb{R}^n \, : \, \tilde{A}x \le \tilde{b}, \, x \ge 0 \}.$$

 $\tilde{A}x \leq \tilde{b}, x \geq 0$ is the ideal formulation for X.

Theorem

$$X = \{x : Ax \le b, x \ge 0, x_i \in \mathbb{Z} \text{ for } i \in I\}.$$
 For any $c \in \mathbb{R}^n$, let

$$z_I = \max c^\top x$$
 and $\tilde{z} = \max c^\top x$ $x \in \operatorname{conv}(X)$.

If all data is rational, then $z_l = \tilde{z}$, and all vertices of $\operatorname{conv}(X)$ are elements of X.

Theorem $X = \{x : Ax \leq b, x \geq 0, x_i \in \mathbb{Z} \text{ for } i \in I\}$. For any $c \in \mathbb{R}^n$, let $z_I = \max c^\top x$ and $\tilde{z} = \max c^\top x$ $x \in X$ $x \in \operatorname{conv}(X)$. If all data is rational, then $z_I = \tilde{z}$, and all vertices of $\operatorname{conv}(X)$ are elements of X.

- ► If we know the ideal formulation, any optimal solution to the LP relaxation is also an optimal solution to the MILP.
- In principle solving integer programs can be reduced to Linear Programming.

Theorem $X = \{x : Ax \leq b, x \geq 0, x_i \in \mathbb{Z} \text{ for } i \in I\}$. For any $c \in \mathbb{R}^n$, let $z_I = \max c^\top x$ and $\tilde{z} = \max c^\top x$ $x \in X$ $x \in \operatorname{conv}(X)$. If all data is rational, then $z_I = \tilde{z}$, and all vertices of $\operatorname{conv}(X)$ are elements of X.

- ► If we know the ideal formulation, any optimal solution to the LP relaxation is also an optimal solution to the MILP.
- ► In principle solving integer programs can be reduced to Linear Programming. But there is one catch ...

Theorem

$$X = \{x : Ax \le b, x \ge 0, x_i \in \mathbb{Z} \text{ for } i \in I\}.$$
 For any $c \in \mathbb{R}^n$, let
$$z_I = \max_{x \in X} c^\top x \quad \text{and} \quad \tilde{z} = \max_{x \in \text{conv}(X)} c^\top x$$

If all data is rational, then $z_l = \tilde{z}$, and all vertices of $\operatorname{conv}(X)$ are elements of X.

- ► If we know the ideal formulation, any optimal solution to the LP relaxation is also an optimal solution to the MILP.
- ► In principle solving integer programs can be reduced to Linear Programming. But there is one catch ...
 - How do you find the ideal formulation?
 - The ideal formulation can be extremely complicated, and can have exponentially many constraints.