Accelerated oblique random survival forests

Marina Meilă

MMP@STAT.WASHINGTON.EDU

Department of Statistics University of Washington Seattle, WA 98195-4322, USA

Michael I. Jordan

JORDAN@CS.BERKELEY.EDU

Division of Computer Science and Department of Statistics University of California Berkeley, CA 94720-1776, USA

Editor: Kevin Murphy and Bernhard Schölkopf

Abstract

abstract here

Keywords: Bayesian networks, mixture models, Chow-Liu trees

1. Introduction

2. Related work

Table 1 is an example of a referenced L^AT_EX. Several machine learning algorithms can engage with right-censored time-to-event outcomes. In the current study, we consider four classes of learners: random forests, boosting ensembles, regression models, and neural networks.

accelerated oblique random survival forests aorsf original oblique random survival forests obliqueRSF axis-based random survival forests randomForestSRC & ranger axis-based conditional inference forests party gradient boosted decision trees xgboost

3. Results

			Computing time, seconds			
	Performance metric (SD)		Fit model		Predict risk	
	C-Statistic	Scaled Brier	Mean	Ratio	Mean	Ratio
actg						
Party	0.772 (0.058)	0.076 (0.042)	2.181	2.19	4.889	4.62
aORSF(i=1)	0.755 (0.059)	0.057 (0.055)	0.998	1.00	1.057	1.00
Ranger	0.754 (0.064)	$0.064\ (0.027)$	0.397	0.398	0.510	0.483
aORSF(i=15)	0.754(0.063)	0.052(0.056)	2.498	2.50	2.559	2.42
Rfsrc	0.752(0.064)	0.061(0.047)	0.775	0.777	0.833	0.787

©2000 Marina Meilă and Michael I. Jordan.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at http://jmlr.org/papers/v1/meila00a.html.

Meilă and Jordan

(continued)

(continued)						
	C-Statistic	Scaled Brier	Mean	Ratio	Mean	Ratio
aorsf_net	0.750 (0.059)	0.055 (0.064)	28.449	28.5	28.510	27.0
breast						
aORSF(i=15)	0.764 (0.008)	0.143 (0.016)	11.867	2.56	12.403	2.43
Ranger	$0.756\ (0.013)$	0.102 (0.017)	0.555	0.120	0.724	0.142
Party	0.753 (0.013)	0.118 (0.016)	8.030	1.73	10.445	2.05
aORSF(i=1)	0.751 (0.002)	0.120 (0.012)	4.636	1.00	5.106	1.00
aorsf_net	0.741 (0.022)	0.062 (0.049)	585.625	126.3	585.887	114.7
Rfsrc	0.707(0.005)	0.049 (0.039)	1.354	0.292	1.522	0.298
colon						
Rfsrc	0.815 (0.007)	0.279 (0.007)	1.854	0.581	2.026	0.600
aORSF(i=15)	0.778(0.007)	0.199 (0.018)	7.515	2.36	7.709	2.28
aORSF(i=1)	0.776(0.004)	0.201 (0.014)	3.190	1.00	3.378	1.00
aorsf_net	$0.753\ (0.006)$	0.156 (0.018)	149.637	46.9	149.809	44.3
Party	$0.753\ (0.012)$	0.183 (0.008)	3.968	1.24	10.451	3.09
Ranger	0.738 (0.008)	0.147(0.005)	1.795	0.563	2.398	0.710
gbsg2						
Ranger	0.704 (0.076)	0.090 (0.045)	0.328	0.339	0.450	0.438
Party	$0.686\ (0.042)$	0.092 (0.048)	0.746	0.773	2.055	2.00
aORSF(i=15)	0.685 (0.048)	0.077(0.066)	2.077	2.15	2.144	2.09
Rfsrc	0.676 (0.032)	0.067(0.052)	0.931	0.963	1.014	0.986
aORSF(i=1)	0.674(0.045)	0.062 (0.062)	0.966	1.00	1.028	1.00
aorsf_net	0.670 (0.038)	0.068 (0.056)	57.024	59.0	57.087	55.5
$guide_it$						
aORSF(i=15)	0.730 (0.009)	0.133 (0.008)	4.705	2.67	4.811	2.57
aORSF(i=1)	0.728(0.014)	0.132 (0.012)	1.762	1.00	1.869	1.00
aorsf_net	0.728(0.020)	0.133 (0.015)	86.476	49.1	86.590	46.3
Party	0.705(0.021)	0.101 (0.010)	1.800	1.02	3.727	1.99
Rfsrc	0.705(0.032)	0.109 (0.027)	1.000	0.568	1.104	0.591
Ranger	0.704 (0.016)	0.102 (0.001)	0.663	0.376	0.855	0.457
Mayo Clinic P	rimary Biliar	y Cholangitis	Data, N	= 276		
aORSF(i=1)	0.787 (0.094)	0.202 (0.188)	2.204	1.00	2.400	1.00
aORSF(i=15)	0.787(0.100)	0.203(0.186)	5.038	2.29	5.242	2.18
Ranger	0.783(0.091)	0.161 (0.138)	0.709	0.322	1.053	0.438
aorsf_net	0.782 (0.101)	0.190 (0.202)	128.300	58.2	128.469	53.5
Party	0.779(0.094)	0.185(0.167)	3.291	1.49	6.998	2.92
Rfsrc	0.778 (0.113)	0.195 (0.187)	0.956	0.434	1.076	0.448
Overall						
aORSF(i=1)	0.946 (0.018)	0.493 (0.083)	0.344	1.00	0.376	1.00
aorsf_net	0.939 (0.018)	0.484 (0.052)	23.093	67.2	23.123	61.6
Party	0.936 (0.022)	0.454 (0.022)	0.288	0.839	0.518	1.38

/	, .	7 \
l co	ntinue	a. I

(continuea)						
	C-Statistic	Scaled Brier	Mean	Ratio	Mean	Ratio
aORSF(i=15)	0.936 (0.014)	0.474 (0.080)	0.744	2.17	0.773	2.06
Rfsrc	0.927(0.012)	0.462(0.070)	0.363	1.06	0.397	1.06
Ranger	$0.926 \ (0.014)$	$0.344\ (0.055)$	0.044	0.127	0.085	0.226
Rotterdam Bre	ast Cancer D	ata, N = 2.98	2			
Ranger	0.719 (0.011)	0.145 (0.011)	2.480	0.410	4.456	0.692
aorsf_net	$0.714\ (0.007)$	$0.141 \ (0.007)$	237.007	39.2	237.337	36.9
Party	0.712(0.008)	$0.141\ (0.012)$	7.030	1.16	21.888	3.40
aORSF(i=1)	0.712(0.006)	0.139(0.008)	6.053	1.00	6.436	1.00
aORSF(i=15)	$0.711\ (0.005)$	$0.139 \ (0.007)$	13.541	2.24	13.925	2.16
Rfsrc	$0.701\ (0.008)$	$0.120\ (0.010)$	2.222	0.367	2.458	0.382
$time_to_million$	ı					
aorsf_net	0.937 (0.013)	0.560 (0.040)	78.384	55.8	78.461	53.0
aORSF(i=15)	0.937 (0.018)	0.555 (0.043)	4.491	3.20	4.569	3.09
aORSF(i=1)	0.935 (0.017)	$0.552 \ (0.039)$	1.405	1.00	1.481	1.00
Rfsrc	0.932 (0.023)	$0.550 \ (0.045)$	0.784	0.558	0.853	0.576
Party	0.921 (0.014)	0.485 (0.034)	0.621	0.442	1.684	1.14
Ranger	$0.916 \ (0.023)$	$0.452\ (0.039)$	0.324	0.231	0.428	0.289
vdv						
Rfsrc	0.782 (0.231)	0.033 (0.185)	0.198	0.080	0.450	0.148
aorsf_net	0.770(0.161)	-0.019 (0.283)	20.190	8.13	20.749	6.80
aORSF(i=1)	0.762 (0.079)	-0.012 (0.126)	2.484	1.00	3.050	1.00
Ranger	0.751 (0.070)	-0.017 (0.093)	0.484	0.195	0.576	0.189
aORSF(i=15)	0.735 (0.171)	-0.025 (0.135)	2.569	1.03	3.136	1.03
Party	$0.722 \ (0.102)$	-0.030 (0.165)	8.098	3.26	14.088	4.62
veteran						
Ranger	0.865 (0.063)	0.183 (0.036)	0.023	0.113	0.043	0.194
aORSF(i=15)	0.837 (0.048)	$0.281 \ (0.075)$	0.371	1.84	0.387	1.75
aORSF(i=1)	$0.833 \ (0.053)$	$0.278 \ (0.081)$	0.202	1.00	0.222	1.00
Party	$0.833 \ (0.057)$	$0.235 \ (0.056)$	0.150	0.744	0.231	1.04
aorsf_net	0.820(0.059)	0.256(0.083)	17.115	84.7	17.133	77.3
Rfsrc	0.784 (0.111)	0.218 (0.112)	0.077	0.380	0.099	0.447
	(- (-)	- ()				

Acknowledgments

We would like to acknowledge support for this project from the National Science Foundation (NSF grant IIS-9988642) and the Multidisciplinary Research Program of the Department of Defense (MURI N00014-00-1-0637).

Learner	Software	Description		
Random Surv	Random Survival Forests			
Standard	RandomForestSRC	Axis based survival trees following Leo Breiman's original random forest algo- rithm, with cut-points selected to maxi- mize a log-rank statistic.		
Oblique	obliqueRSF aorsf	Oblique survival trees following Leo Breiman's random forest algorithm but not using random coefficients for linear combinations. obliqueRSF uses penalized models, and aorsf additionally uses partially trained models. Cut-points are selected to maximize a log-rank statistic.		
Extremely	ranger	Axis-based survival trees grown with ran-		
Randomized		domly selected features and cut-points		
Conditional	party	Axis based survival trees grown using un-		
Inference		biased recursive partitioning.		
Boosting ense	embles			
Trees Models	xgboost xgboost	The Cox likelihood function is maximized additively with decision trees. Nested cross validation (5 folds) is applied to tune the number of trees grown. The accelerated failure time likelihood function is maximized additively with decision trees. Nested cross validation (5		
		folds) is applied to tune the number of trees grown.		
Regression models				
Cox Net	glmnet	The Cox model is fit using an elastic net penalty. Nested cross validation (5 folds) is applied to tune penalty terms.		
Neural netwo	Neural networks			
Cox Time	6	87837		

Table 1: Table to test captions and labels.

Appendix A.

In this appendix we prove the following theorem from Section 6.2:

Theorem Let u, v, w be discrete variables such that v, w do not co-occur with u (i.e., $u \neq 0 \Rightarrow v = w = 0$ in a given dataset \mathcal{D}). Let N_{v0}, N_{w0} be the number of data points for which v = 0, w = 0 respectively, and let I_{uv}, I_{uw} be the respective empirical mutual information

values based on the sample \mathcal{D} . Then

$$N_{v0} > N_{w0} \Rightarrow I_{uv} \leq I_{uw}$$

with equality only if u is identically 0.

Proof. We use the notation:

$$P_v(i) = \frac{N_v^i}{N}, \quad i \neq 0; \quad P_{v0} \equiv P_v(0) = 1 - \sum_{i \neq 0} P_v(i).$$

These values represent the (empirical) probabilities of v taking value $i \neq 0$ and 0 respectively. Entropies will be denoted by H. We aim to show that $\frac{\partial I_{uv}}{\partial P_{v0}} < 0...$

Remainder omitted in this sample. See http://www.jmlr.org/papers/ for full paper.