Вопросы по матричным методам

Содержание

1	Сингулярное разложение	2
2	Число обусловленности	2
3	Расстояние Махаланобиса	4
4	Регрессия L1	4

1. Сингулярное разложение

1. Вопрос: Как соотносятся собственные и сингулярные числа матрицы?

Ответ: В общем случае никак.

Но если S — симметричная положительно определённая матрица, то $S = Q\Lambda Q^{\mathsf{T}} = U\Sigma V^{\mathsf{T}}$.

Если S имеет отрицательные собственные числа ($Sx = \lambda x$), то $\sigma = -\lambda$, а u = -x или v = -x (одно из двух).

(Strang, p. 61)

2. Вопрос: Рассмотрим матрицу 2×2 .

В общем случае 4 разным элементам (a, b, c, d) ставится в соответствие 4 геометрических параметра: угол поворота (α), два коэффициента растяжения (σ_1 , σ_2), угол обратного поворота (β).

Но если матрица симметричная, то параметра уже 3 (a, b, b, d). Как в таком случае вычислить четвёрку (α , σ_1 , σ_2 , β)?

Ответ: $\beta = -\alpha$.

(Strang, p. 62)

3. Вопрос: Какова связь между сингулярным и полярным разложением?

Ответ: $A = U\Sigma V^{\mathsf{T}} = (UV^{\mathsf{T}})(V\Sigma V^{\mathsf{T}}) = QS$ или $A = U\Sigma V^{\mathsf{T}} = (U\Sigma U^{\mathsf{T}})(UV^{\mathsf{T}}) = KQ$. (Strang, p. 67)

4. **Вопрос**: Какова связь между сингулярными числами и собственными числами матрицы S в полярном разложении?

Ответ: Собственные числа S — это сингулярные числа исходной матрицы A. (Strang, p. 67)

2. Число обусловленности

1. **Вопрос**: В рассматриваемом на лекции примере число обусловленности $\mu(A) = 22.15$. Но выше мы нашли, что относительная погрешность увеличилась в 14.88 раз. Почему так произошло? При каком условии оценка, сделанная по числу обусловленности, будет достигаться?

Ответ: Максимальная оценка будет достигаться, когда вектор **b** будет параллелен первому сингулярному вектору (первой главной компоненте). Минимальная — когда второму сингулярному вектору (см. иллюстрации ниже).

2. **Вопрос**: Если известен вектор **b**, как сделать более точную оценку возрастания относительной погрешности?

Ответ: Оценка даётся по формуле

$$\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} \le \frac{\|A^{-1}\| \|\mathbf{b}\|}{\|A^{-1}\mathbf{b}\|} \frac{\|\delta \mathbf{b}\|}{\|\mathbf{b}\|}.$$

Величина $\nu(A,b) = \frac{\|A^{-1}\|\|\mathbf{b}\|}{\|A^{-1}\mathbf{b}\|}$ называется числом обусловленности системы при заданной правой части и показывает, во сколько раз может возрасти относительная погрешность решения по сравнению с погрешностью правой части при решении системы $A\mathbf{x} = \mathbf{b}$.

2

Максимальное относительное увеличение возмущения max(dx/x : db/b) = 14.8831

```
[9]: U, sgm, Vt = LA.svd(A)
mu = sgm[0]/sgm[1]
print('sigma = ', np.round(sgm, 3))
print('mu(A) = ', round(mu, 4))
```

 $sigma = [2.105 \ 0.095]$ mu(A) = 22.1549

```
[10]: mu_2 = 1 / sgm[1] * LA.norm(b0) / LA.norm(x0)
print(round(mu_2, 4))
```

14.8845

3. Расстояние Махаланобиса

1. **Вопрос**: Рассмотрим набор точек, подчиняющийся многомерному нормальному распределению и образующий класс. Как вычислить расстояние от некоторых выбранных точек до «центра масс» класса?

Ответ: Сначала нужно преобразовать данные (привести эллиптическое облако к круглой форме), а затем посчитать обычное евклидово расстояние. В итоге получиться расстояние Махаланобиса (показать это).

4. Регрессия L1

```
[15]: print(aL2)
print(aL1)
```

[0.4948339048519728, 0.21992690643482157] [0.4963092036984735, 0.49630920494690783]

