Homework 2

Math 607 (section 0101), Spring 2022 Due Wednesday, February 23

You are encouraged to think about problems marked with a (*), but they are not to be handed in.

- 1. (a) Let $X = \mathbb{A}^1_k = \operatorname{Spec} k[t]$ for an algebraically closed field k. Let M = k[t]/(t) and $\mathcal{F} = \widetilde{M}$. Calculate the rank of \mathcal{F} at all points i.e. at both the closed points and the generic point.
 - (b) Let $X = \mathbb{A}^2_k = \operatorname{Spec} k[s,t]$ for an algebraically closed field k. Consider the ideal I = (s,t) and the sheaf $\mathcal{F} = \widetilde{I}$. Calculate the rank of \mathcal{F} at all closed points.
 - (c) Let $X = \operatorname{Spec} k[x]/(x^2)$ and M = k. Show that the sheaf $\mathcal{F} = \widetilde{M}$ has constant rank 1 but it is not locally free.
- **2.** (Hartshorne Ex 5.1 in II.5) Let (X, \mathcal{O}_X) be a ringed space and let \mathcal{E} be a locally free \mathcal{O}_X -module of finite rank. We define dual of \mathcal{E} , denote $\check{\mathcal{E}}$. to be the sheaf $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{E}, \mathcal{O}_X)$.
 - (a) Show that $(\check{\mathcal{E}}) \cong \mathcal{E}$
 - (b) For any \mathcal{O}_X -module \mathcal{F} , $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{E},\mathcal{F}) \cong \check{\mathcal{E}} \otimes \mathcal{F}$
 - (c) For any \mathcal{O}_X -modules \mathcal{F} , \mathcal{G} , $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{E} \otimes \mathcal{F}, \mathcal{G}) \cong \mathcal{H}om_{\mathcal{O}_X}(\mathcal{F}, \mathcal{H}om_{\mathcal{O}_X}(\mathcal{E}, \mathcal{G}))$
 - (d) (Projection formula) If $f:(X,\mathcal{O}_X)\to (Y,\mathcal{O}_Y)$ is a morphism of ringed spaces, if \mathcal{F} is an \mathcal{O}_X module and \mathcal{E} is a locally free \mathcal{O}_Y -module of finite rank, then there is a natural isomorphism $f_*(\mathcal{F}\otimes f^*\mathcal{E})\cong f_*(\mathcal{F})\otimes \mathcal{E}$
 - (e) Let \mathcal{E} , \mathcal{F} be locally free \mathcal{O}_X -modules of finite ranks m and n respectively. Show that $\mathcal{E} \otimes \mathcal{F}$ and $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{E}, \mathcal{F})$ are locally free of rank mn and $\check{\mathcal{E}}$ is locally free of rank m.
- 3. (Ex 5.3 in Hartshorne I.5) Multiplicities. Let $Y \subset \mathbb{A}^2_k$ for algebraically closed k be a curve defined by the equation f(x,y)=0. Let P=(a,b) be a closed point of \mathbb{A}^2 . Make a linear change of coordinates so that P becomes the point (0,0). Then write f as a sum $f=f_0+f_1+\ldots+f_d$ where f_i is homogeneous polynomial of degree i in x and y. Then we define the multiplicity of P on Y, denoted $\mu_P(Y)$, to be the least r such that $f_r \neq 0$. (Note $P \in Y \iff \mu_P(Y) > 0$.) The linear factors of f_r are called tangent directions at P.
 - (a) Show that $\mu_P(Y) = 1 \iff P$ is a nonsingular point.
 - (b) Find the multiplicity of each of the singular points in Ex 5.1 i.e. the curves in \mathbb{A}^2 cut out by (a) $x^2 = x^4 + y^4$; (b) $xy = x^6 + y^6$; (c) $x^3 = y^2 + x^4 + y^4$; (d) $x^2y + xy^2 = x^4 + y^4$.
- **4.** (Ex 5.4 in Hartshorne I.5) Intersection multiplicity. If $Y, Z \subset \mathbb{A}^2_k$ over an algebraically closed field k are two distinct curves, given by equations f = 0 and g = 0 and if $P \in Y \cap Z$ is a closed point, we define the *intersection multiplicity* $(Y \cdot Z)_P$ of Y and Z at P to be the length of the \mathcal{O}_P module $\mathcal{O}_P/(f,g)$.
 - (a) Show that $(Y \cdot Z)_P$ is finite and $(Y \cdot Z)_P \ge \mu_P(Y)\mu_P(Z)$.
 - (b) IF $P \in Y$, show that for almost all lines L through P (i.e. all but a finite number), $(L \cdot Y)_P = \mu_P$
 - (c) If Y is a curve of degree d in \mathbb{P}^2 and L is a line in \mathbb{P}^2 with $L \neq Y$, show that $(L \cdot Y) = d$. Here $(L \cdot Y) = \sum (L \cdot Y)_P$ taken over all closed points $P \in L \cap Y$, where $(L \cdot Y)_P$ is defined for a suitable affine cover of \mathbb{P}^2 .

- **5.** (Ex 5.9 in Hartshorne I.5) Let $f \in k[x,y,z]$ $(k=\bar{k})$ be a homogeneous polynomial, let $Y=V(f) \subset \mathbb{P}^2$ be the algebraic set defined by f, and suppose that for every closed point $P \in Y$ at least one of $\partial f/\partial x(P), \partial f/\partial y(P), \partial f/\partial z(P)$ is nonzero. Show that f is irreducible and hence Y is a nonsingular variety. Hint: Use that in \mathbb{P}^2 any two curves have non-empty intersection.
- 6. (Ex 5.10 in Hartshorne I.5) For a closed point P on a variety X over algebraically closed field, let \mathfrak{m} be the maximal ideal of the local ring \mathcal{O}_P . We define the Zariski tangent space $T_P(X)$ of X at P to be the dual k-vector space of $\mathfrak{m}/\mathfrak{m}^2$. Show the following:
 - (a) For any closed point $P \in X$, dim $T_P(X) \ge \dim X$ with equality if and only if P is nonsingular.
 - (b) For any morphism $\phi: X \to Y$ of varieties, there is a natural induced k-linear map $T_P(\phi): T_P(X) \to T_{\phi(P)}(Y)$
 - (c) If ϕ is the vertical projection of the parabola $x = y^2$ onto the x-axis, show that the induced map $T_0(\phi)$ of the tangent spaces at the origin is the zero map.
- 7. Rational functions on a scheme X are the equivalent classes of section of \mathcal{O}_X over dense and open subsets of X. So the ring of rational functions form a ring denoted by R(X).
 - (a) If X is irreducible, explain why $R(X) = \mathcal{O}_{X,x}$ where x is the generic point of X.
 - (b) If X is irreducible, explain why for every non-empty open subset $U \subset X$ we have R(X) = R(U).
 - (c) If $X = \operatorname{Spec} A$ and A is noetherian, let $S = A/\cup p_i$ where the union if over all minimal primes $p_i \subset A$ (corresponding to irreducible components of X). Show that $R(X) \cong A_S \cong \prod A_{p_i}$.
 - (d) If X is irreducible and noetherian show that sheaf of rational functions defined in class is constant and in particular when X is integral it is the constant field K(X).