Pyramid

Time limit: 1000 ms Memory limit: 128 MB

A pyramid of numbers can be represented as a matrix a of n rows, where the i^{th} row has elements only on the first i columns. In addition, $a_{i,j} = a_{i+1,j} + a_{i+1,j+1}$, for the first n-1 rows. For the bottom row this doesn't apply, those numbers can be any **strictly positive** integers.

Given an integer s, count the number of pyramids where $a_{1,1} = s$, for all possible values of n.

Standard input

The first line contains integer s.

Standard output

Print the number of pyramids with the given property. As this number can be very large, output its value modulo $10^9 \pm 7$.

Constraints and notes

• $1 \le s \le 10^5$

Input	Output	Explanation
4	5	There are 5 distinct pyramids with $A_{1,1}=4$
		4
		2 2
		1 1 1
		4
		1 3
		4
		3 1
		4
		2 2
		4