

Machine Learning e NLP

Grupo de Estudos sobre IA e Regulação

Lucas Thevenard

Roteiro:

- Parte 1 Machine Learning e LLMs
 - Modelos explicativos e preditivos
 - Tipos de Aprendizagem em ML
 - Transformers e LLMs: Introdução
- Parte 2 Exemplo de pesquisa aplicada: Who says it or what is said?

Parte 1. Machine Learning e LLMs

1.1. Modelos explicativos e preditivos

Dois tipos de modelos:

- Modelos estatísticos, em geral, podem ter dois grandes objetivos:
 - Explicar relações causais ou estatísticas entre variáveis.
 - Prever valores ou eventos futuros com base em padrões aprendidos.
- Explicativos vs. Preditivos
 - Embora ambos usem dados e estatísticas, eles têm objetivos diferentes.
 - A distinção é fundamental para entender ML e suas aplicações.

Modelos Explicativos

Objetivo: Compreender relações entre variáveis.

Exemplo: "Como a escolaridade influencia a renda?"

Características:

- Foco em interpretação dos coeficientes.
- Baseados em teorias causais.
- Assumem estrutura estatística bem especificada.
- Menos tolerância a viés de especificação.

Como a escolaridade influencia a renda?

Como a escolaridade influencia a renda?

Um "modelo" é uma equação matemática que relaciona variáveis explicativas a uma variável de reposta

- Equação da reta: y = ax + b
- No nosso modelo: Renda = β_1 · Escolaridade + β_0
- E generalizando (modelos lineares)...

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_n x_n$$

Voltando... Modelos Explicativos!

Objetivo: Compreender relações entre variáveis.

Exemplo: "Como a escolaridade influencia a renda?"

Características:

- Foco em interpretação dos coeficientes.
- Baseados em teorias causais.
- Assumem estrutura estatística bem especificada.
- Menos tolerância a viés de especificação.

Modelos Preditivos

Objetivo: Acertar o valor de Y dado X.

Exemplo: "Qual será a renda deste indivíduo, dados X, Y, Z?"

Características:

- Foco em performance preditiva (ex: acurácia, erro quadrático).
- Pode usar modelos complexos e "caixa-preta".
- Nem sempre se preocupa com explicação causal.
- Mais tolerante a viés, desde que a previsão funcione.

E onde entra o Machine Learning?

- Machine Learning é predominantemente preditivo.
- O foco é generalizar bem para novos dados.
- Mas técnicas de ML também podem ser adaptadas para:
 - explicações locais (ex: SHAP, LIME)
 - descoberta de padrões úteis para explicação

Parte 1. Machine Learning e LLMs

1.2. Tipos de Aprendizagem em ML

Tipos de Aprendizagem em Machine Learning

- Em Machine Learning, os algoritmos podem ser classificados de acordo com o tipo de **aprendizado**.
- Os dois principais tipos são:
 - Aprendizagem Supervisionada
 - Aprendizagem N\u00e3o Supervisionada

Aprendizagem Supervisionada

Objetivo: Prever um valor de saída (variável dependente) com base em entradas rotuladas.

Como funciona:

- O modelo é treinado com dados que possuem entradas e saídas conhecidas.
- Aprende a associar padrões de entrada às saídas.

Algoritmos Supervisionados Comuns

- Regressão: Regressão Linear; Regressão Logística (para classificação binária)
- Árvores de Decisão: Decision Tree; Random Forest
- Outros:
 - Support Vector Machines (SVM);
 - K-Nearest Neighbors (KNN);
 - Redes Neurais (quando supervisionadas)

Aprendizagem Não Supervisionada

Objetivo: Encontrar padrões ou estruturas ocultas sem rótulos de saída.

Como funciona:

• O modelo recebe apenas as **entradas** e tenta identificar estruturas ou agrupamentos nos dados.

Algoritmos Não Supervisionados Comuns

Clusterização (Agrupamento): K-Means; DBSCAN; Hierarchical Clustering

Redução de Dimensionalidade: PCA (Principal Component Analysis); t-SNE

Comparando os dois tipos

Característica	Supervisionada	Não Supervisionada
Dados de saída disponíveis	Sim	Não
Objetivo principal	Previsão (regressão/classificação)	Descoberta de padrões
Tipos de algoritmos	Regressão, SVM, Árvores	K-Means, PCA, Apriori

Há outros tipos também!

Aprendizagem Semi-Supervisionada:

- Usa uma pequena quantidade de dados rotulados + muitos dados não rotulados.
- Tenta combinar o melhor dos dois mundos.

Aprendizagem por Reforço:

- Um agente aprende interagindo com o ambiente.
- Recebe recompensas ou penalidades por suas ações.
- Usado em jogos, robótica, sistemas de recomendação.

Parte 1. Machine Learning e LLMs

1.3. Transformers e LLMs

Introdução a Transformers e LLMs

- Nos últimos anos, os modelos de linguagem passaram por uma revolução com a chegada dos Transformers.
- Eles s\(\tilde{a}\) o a base dos Large Language Models (LLMs), como o ChatGPT.
- Esses modelos têm transformado áreas como NLP, tradução automática, resumo de textos e geração de linguagem.

O que é um Transformer?

- Arquitetura proposta em 2017 por Vaswani et al. no artigo "Attention is All You Need".
- Baseado no mecanismo de attention:
 - Permite que o modelo "preste atenção" a diferentes partes da entrada ao gerar a saída.
- Diferente de RNNs, os Transformers:
 - Processam dados em paralelo (mais eficientes).
 - Lidam melhor com dependências de longo prazo.

Como funciona o mecanismo de Attention?

- A atenção permite que o modelo calcule **pesos** entre palavras de entrada.
 - Exemplo: Na frase "O gato comeu o peixe", ao prever "peixe", o modelo pode dar mais peso à palavra "comeu".

E os LLMs (Large Language Models), como são treinados?

- Utilizam aprendizado não supervisionado: predição da próxima palavra.
 - Competição com um modelo de classificação.
- Fase de ajuste fino (fine-tuning) pode adaptar o modelo a tarefas específicas.

Tamanho é documento?

- LLMs são modelos de linguagem com bilhões de parâmetros, treinados em grandes corpora de texto.
- Caso do GPT-2 na Open Al: expectativa de queda de performance com o aumento do tamanho do modelo, mas na prática, a performance continua melhorando.
- Resultado:
 - Aprendem padrões linguísticos complexos.
 - Geram texto coerente e contextualizado.
 - Respondem perguntas, traduzem, resumem, etc.

Do GPT ao ChatGPT

- Adaptação do GPT para interações conversacionais.
- Etapas adicionais:
 - i. Fine-tuning supervisionado com exemplos de diálogos humanos.
 - ii. **Aprendizado por Reforço com Feedback Humano (RLHF)**: humanos avaliam respostas e o modelo aprende a se alinhar às preferências humanas.
- Resultado pretendido: respostas mais úteis, seguras e alinhadas com o contexto do usuário.
- Resumo: ChatGPT = GPT treinado + alinhamento com diálogo humano + aprendizado supervisionado + RLHF

Limitações e Desafios dos LLMs

- O treinamento exige:
 - Uso massivo de dados
 - Poder computacional elevado (GPUs/TPUs)
 - Técnicas de otimização avançadas

Desvantagens:

- Alto custo computacional e potenciais violações de direitos autorais
- Tendência a "alucinar", inventar fatos (no ChatGPT, por exemplo)
- Viés nos dados de treinamento
- Falta de explicabilidade

Parte 2. Exemplo de pesquisa aplicada

Who says it or what is said?

Motivation

- Anvisa and Aneel's public consultations
 - Do participants' need to "speak the language" of the agency to get heard?
- A new way to analyse the content of contributions
 - Text mining and machine learning models of textual analysis

Participation assymetry in the literature

- Evidence that some groups (most notably, the business sector) are overrepresented in public consultations
 - Coglianese, 2006; Yackee, 2006; Silva, 2012, Salinas et al., 2020.
- Interest group theories
 - Capture theory and the Iron Triangle
 - "Hollow core", ACF and policy networks

Why Anatel?

- High level of transparency and accessible data.
- Full text of contributions, responses, and participant IDs.
- Strategic sector: digital communications and telecom.

Three hypothesis of this study

Hypothesis 1: Contributions with similar textual content receive similar regulatory responses.

Hypothesis 2: Contributions that are textually closer to the agency's discourse are more likely to be accepted.

Hypothesis 3: Once textual content is accounted for, group affiliation loses explanatory power.

Data collection

- 1,456 consultations from 1999 to 2022
 - Only 488 consultations received formal, itemized responses from the agency.
- From 2013 onward, of the 15,679 contributions that received a response, 9,404 (approximately 60%) were accompanied by a classification.

Grupo de Estudos sobre IA e Regulação

Final universe

- 9,404 contributions received by Anatel since 2013 that were accompanied by a classified response.
- Simplification of impact categories:
 - Accepted, partially accepted, not accepted, and not applicable ---> 0 x 1
- Classification of Interest group affiliation:
 - (1) regulated economic agents, (2) non-regulated economic agents, (3) sector professionals, (4) amateur radio operators, (5) interested individuals, and (6) others.

Limitations of the data

- Reliability
- Representativeness
- Validity

Text Representation

What is TF-IDF?

TF-IDF (Term Frequency–Inverse Document Frequency) is a numerical statistic used in text mining and Natural Language Processing (NLP) to reflect how important a word is to a document in a collection or corpus.

It combines two metrics: Term Frequency (TF) and Inverse Document Frequency (IDF).

1. Term Frequency (TF)

Measures how frequently a term appears in a document.

$$ext{TF}(t,d) = rac{f_{t,d}}{\sum_k f_{k,d}}$$

Where:

- $(f_{t,d})$ is the number of times term (t) appears in document (d)
- The denominator is the total number of terms in document (d)

2. Inverse Document Frequency (IDF)

Measures how important a term is by reducing the weight of terms that appear in many documents.

$$ext{IDF}(t,D) = \log \left(rac{N}{|\{d \in D: t \in d\}|}
ight)$$

Where:

- ullet (N) is the total number of documents in the corpus (D)
- $(|\{d \in D: t \in d\}|)$ is the number of documents where term (t) appears

TF-IDF Formula

$$ext{TF-IDF}(t,d,D) = ext{TF}(t,d) imes ext{IDF}(t,D)$$

This score increases with the frequency of a term in a document but is offset by how common the term is across the corpus.

• Intuition:

- Common words (like "the", "and") get low scores.
- Terms that are frequent in a document but rare across the corpus get high scores.
- Documents (contributions) become vectors in a high-dimensional space, where each dimension corresponds to a term in the vocabulary.

Predictive modelling

• Open code is available for all the modelling stages.

Table 4 – Consolidated predictive performance (test and validation)

Model	Evaluation	Accuracy	ROC-AUC	Precision	Recall	F1	N
KNN	Test	85.25%	0.91	0.83	0.80	0.81	1,505
	Validation	84.90%	0.91	0.83	0.79	0.81	1,881
RF	Test	86.05%	0.94	0.87	0.78	0.81	1,505
	Validation	86.76%	0.94	0.87	0.80	0.82	1,881
SVC	Test	88.24%	0.94	0.89	0.82	0.84	1,505
	Validation	88.57%	0.94	0.89	0.83	0.85	1,881

Explanatory modeling (Model 1)

• Cosine distance as a textual distance metric

Explanatory modeling (Model 1)

Cosine distance as a textual distance metric

Table 6 – Logistic regression: impact explained by textual distance and year of consultation

	Coefficient	Std. Error	z-value	p-value	
Intercept	182,02	30,02	6,05	1,44E-09	***
Cosine distance	-1,77	0,12	-15,13	2,00E-16	***
Year	-0,09	0,01	-6,04	1,56E-09	***
	Significance codes:	0 *** 0,001 **	* 0,01 * 0,05 . 0,	1	

Grupo de Estudos sobre IA e Regulação

Explanatory modeling (Model 2)

Table 7 - Logistic regression: impact explained by model-based probabilities and consultation year

	Coefficient	Std. Error	z-value	p-value	
Intercept	54,71	68,99	0,79	0,4277	
Year	-0,03	0,03	-0,87	0,3820	
KNN Probability	-0,71	0,31	-2,32	0,02	*
RF Probability	11,26	0,48	23,51	2,00E-16	***
SVC Probability	2,15	0,33	6,36	2,04E-10	***
	Significance codes	: 0 *** 0,001 **	0,01 * 0,05 .	0,1	

Table 8 -Logistic Regression: Impact explained by year, ML scores, and interest group category

	Coefficient	Std. Error	z-value	p-value	
Intercept	9,70	69,39	0,14	0,8887	
Year	-0,01	0,03	-0,22	0,8282	
KNN Probability	-0,68	0,31	-2,21	0,0269	*
RF Probability	11,62	0,52	22,55	2,00E-16	***
SVC Probability	1,94	0,35	5,55	2,79E-08	***
Participant: Regulated Agent	-0,37	0,13	-2,93	0,0034	**
Participant: Non- Regulated Agent	-0,55	0,26	-2,08	0,0376	*
Participant: Sector Professional	-3,04	0,50	-6,10	1,05E-09	***
Participant: Amateur Radio Operator	-1,67	0,60	-2,75	0,0059	**
Participant: Other	-0,69	0,3	-2,33	0,0197	*
	Significance codes:	0 *** 0,001 **	0,01 * 0,05 . 0	0,1	

Going back to our hypothesis

Hypothesis 1: Contributions with similar textual content receive similar regulatory responses.

Hypothesis 2: Contributions that are textually closer to the agency's discourse are more likely to be accepted.

Hypothesis 3: Once textual content is accounted for, group affiliation loses explanatory power.

Some additional analysis

- Is it technical language that matters?
- Repetition and impact: which groups are more likely to repeat their arguments?
- Group cohesion: internal and external textual distances across interest groups