Laboratorium napędu elektrycznego

Modelowanie obcowzbudnego silnika prądu stałego i badanie właściwości przekształtnika o topologii mostka H w programie Plecs

2. Lista parametrów modelu silnika DC w programie Plecs.

Znanymi wprost z katalogu parametrami są:

Block Parameters: untitled/DC Machine							
DC Machine (mask) (link) The input signal Tm represents the mechanical torque, in Nm. The vectorize signal of width 2 contains - the rotational speed wm, in rad/s, and - the electrical torque Te, in Nm.	d output						
Parameters Assertions							
Armature resistance Ra: Friction coefficient F:							
0							
Armature inductance La: Initial rotor speed wm0:							
0 0							
Field resistance Rf: Initial rotor position thm0:							
0 0							
Field inductance Lf: Initial armature current ia0:							
0 0							
Field-armature mutual inductance Laf: Initial field current if0:							
0 0							
Inertia J:							
<u> </u>							
OK Cancel Apply	Help						

3. Obliczamy rezystancję obwodu wzbudzenia R_f (field resistance).

Z katalogu silnika, odczytujemy napięcie znamionowe obwodu wzbudzenia (rated field voltage) U_{fN} oraz moc strat obwodu wzbudzenia (field power) Pfield.

Obliczamy R_f (field resistance) z równania na moc:

$$R_f = \frac{U_{fN}^2}{P_{field}} = \frac{(310 \text{ V})^2}{1,81 \text{ kW}} \cong 53,1 \Omega$$

Ze względu na brak możliwości obliczenia indukcyjności obwodu wzbudzenia przyjmujemy ją jako dowolną, ale rozsądną. Wielkość ta ma wpływ na dynamikę zmian prądu obwodu wzbudzenia, a zarazem strumienia maszyny. Niemniej jednak my modelujemy maszynę o stałym strumieniu wzbudzenia.

Pewnym uproszczeniem symulacji będzie podanie początkowego prądu wzbudzenia (initial field current) i_{f0} . Prąd początkowy i_{f0} ma być równy prądowi znamionowemu I_{fN} , stąd: $i_{f0} = I_{fN} = \frac{P_{field}}{U_{fN}} = \frac{1,81 \text{ kW}}{310 \text{ V}} \cong 5,84 \text{ A}$

$$i_{f0} = I_{fN} = \frac{P_{field}}{U_{fN}} = \frac{1,81 \text{ kW}}{310 \text{ V}} \cong 5,84 \text{ A}$$

4. Zależność na indukcyjność wzajemną obwodu wzbudzenia i twornika znajdziemy w Pomocy (Help) do maszyny DC.

Indukcyjność wzajemna obwodu wzbudzenia i twornika (field-armature mutual inductance) L_{af} obliczymy z zależności na napięcie indukowane twornika, stąd:

$$E_{aN} = L_{af}I_{fN}\omega_N$$

gdzie znamionowa siła elektromotoryczna E_{aN} wynosi:

$$E_{aN} = U_{aN} - I_{aN}R_a = 420 - 90 \cdot 0,65 \text{ V} \cong 361,5 \text{ V}$$

znamionowa prędkość kątowa ω_N jest obliczana na podstawie znamionowej prędkości obrotowej n_N z zależności:

$$\omega_N = \frac{2\pi}{60} n_N = \frac{\pi}{30} 995 \frac{\text{rad}}{\text{s}} \cong 104,196 \frac{\text{rad}}{\text{s}}$$

A końcowa zależność na indukcyjność wzajemną obwodu wzbudzenia i twornika Laf wynosi:

$$L_{af} = \frac{E_a}{I_{fN}\omega_N} = \frac{U_{aN} - I_{aN}R_a}{\frac{P_{field}}{U_{fN}}\frac{2\pi}{60}n_N} = \frac{420 - 90 \cdot 0,65 \text{ V}}{\frac{1810}{310}\frac{\pi}{30}995 \frac{A}{\text{s}}} \approx 0,59421 \text{ H}$$

5. Mając powyższe parametry modelu silnika DC, wymagane jest zamodelowanie warunków znamionowych pracy silnika, tj. napięcia zasilania obwodów wzbudzenia i twornika oraz obciążenie momentem obciążenia wału maszyny.

- 6. Wartość napięcia U_{aN} ustawiamy na wartość znamionową napięcia twornika, wartość napięcia U_{fN} ustawiamy na wartość znamionową napięcia wzbudzenia, a wartość momentu obciążenia ustawiamy na znamionowy moment na wale maszyny (rated torque) T_N .
- 7. Współczynnik tarcia wiskotycznego (friction coefficient) F obliczamy na podstawie momentu oporów ruchu (tarcia), który możemy obliczyć z różnicy między znamionowym momentem elektromagnetycznym T_{eN} , a znamionowym momentem na wale T_N :

$$T_{opN} = T_{eN} - T_N$$

gdzie znamionowy moment elektromagnetyczny wytwarzany przez silnik obliczymy wykorzystując moc elektromagnetyczna:

$$T_{eN} = \frac{E_{aN}I_{aN}}{\omega_N} = \frac{(U_{aN} - I_{aN}R_a)I_{aN}}{n_N \frac{2\pi}{60}} = \frac{(420 - 90 \cdot 0,65) \cdot 90 \text{ VA}}{\frac{2\pi \cdot 995}{60} \frac{1}{\text{s}}} = 312,25 \text{ Nm}$$

a współczynnik tarcia wiskotycznego (friction coefficient) F obliczymy na podstawie zależności:

$$T_{onN} = F\omega_N$$

i podstawiając:

$$F = \frac{T_{eN} - T_N}{\omega_N} = \frac{\frac{(U_{aN} - I_{aN}R_a)I_{aN}}{n_N \frac{2\pi}{60}} - T_N}{n_N \frac{2\pi}{60}} = \frac{\frac{(420 - 90 \cdot 0,65) \cdot 90 \text{ VA}}{2\pi \cdot 995} \frac{1}{\text{s}}}{\frac{2\pi \cdot 995}{60} \frac{1}{\text{s}}} - 302 \text{ Nm}}{\frac{2\pi \cdot 995}{60} \frac{1}{\text{s}}}$$
$$= 0,09837 \text{ Nm} \cdot \text{s}$$

8. Zbudować przekształtnik o topologii mostka H i do wyjścia przekształtnika (do napięcia U_{out}) dołączyć rezystor R1.

9. Zmieniając wartość Step1 wypełnić poniższą tabelę:

Step1	-1	-0.4	0	0.6	1
d (duty cycle)					
Uout (średnie)					
<i>I_{out}</i> (średnie)					

10. Uruchomić symulację z obciążeniem rezystancyjnym R1 i odpowiedzieć na poniższe pytania:

- a. Jaki kształt ma napięcie U_{out} ?
- b. Jakie poziomy napięć, w odniesieniu do napięcia zasilającego mostek U_{dc} , występują na wyjściu mostka U_{out} , w zależności od sygnału **PWM** ?
- c. Jaki kształt ma prąd wyjściowy mostka *I*_{out}?
- d. Przez jakie elementy płynie prąd w czasie gdy sygnał **PWM** = 1 oraz prąd $I_{out} > 0$?
- e. Przez jakie elementy płynie prąd w czasie gdy sygnał **PWM** = 0 oraz prąd $I_{out} > 0$?
- f. Przez jakie elementy płynie prąd w czasie gdy sygnał **PWM** = 1 oraz prąd $I_{out} < 0$?
- g. Przez jakie elementy płynie prąd w czasie gdy sygnał **PWM** = 0 oraz prąd $I_{out} < 0$?

11. Do wyjścia mostka H (do napięcia U_{out}) dołączyć obciążenie w postaci cewki L1 i rezystora R1.

12. Zmieniając wartość *Step1* wypełnić poniższą tabelę:

Step1	-1	-0.4	0	0.6	1
d (duty cycle)					
Uout (średnie)					
Iout (średnie)					

- 13. Uruchomić symulację z obciążeniem rezystancyjno-indukcyjnym R1-L1 i odpowiedzieć na poniższe pytania:
 - a. Jaki kształt ma napięcie U_{out} ?
 - b. Jakie poziomy napięć, w odniesieniu do napięcia zasilającego mostek U_{dc} , występują na wyjściu mostka U_{out} , w zależności od sygnału **PWM** ?
 - c. Jaki kształt ma prąd wyjściowy mostka Iout?
 - d. Przez jakie elementy płynie prąd w czasie gdy sygnał **PWM** = 1 oraz prąd $I_{out} > 0$?
 - e. Przez jakie elementy płynie prąd w czasie gdy sygnał **PWM** = 0 oraz prąd $I_{out} > 0$?
 - f. Przez jakie elementy płynie prąd w czasie gdy sygnał **PWM** = 1 oraz prąd $I_{out} < 0$?
 - g. Przez jakie elementy płynie prąd w czasie gdy sygnał **PWM** = 0 oraz prąd $I_{out} < 0$?
- 14. Na podstawie poprzednich pomiarów napisać wzór na wartość średnią napięcia wyjściowego U_{out}^{av} , w zależności od amplitudy napięcia sterującego Step1 (lub współczynnika wypełnienia d) oraz wartości napięcia wejściowego U_{dc} .

$$U_{out}^{av} = \dots U_{dc}$$

15. Usunąć obciążenie RL i zastąpić je uprzednio zamodelowanym silnikiem prądu stałego wraz z obciążeniem i pomiarem prędkości.

