capstonecreditcard

June 26, 2024

```
[54]:
     import pandas as pd
     data=pd.read_csv(r'C:\Users\DELL\Documents\credit card.csv')
[56]:
[58]:
     pd.options.display.max_columns = None
[60]:
     data.head()
[60]:
        Time
                    V1
                              V2
                                       VЗ
                                                 ۷4
                                                           ۷5
                                                                    ۷6
                                                                              ۷7
                                           1.378155 -0.338321
     0
         0.0 -1.359807 -0.072781
                                 2.536347
                                                               0.462388
                                                                        0.239599
         0.0 1.191857 0.266151
                                 0.166480
                                           0.448154 0.060018 -0.082361 -0.078803
         1.0 -1.358354 -1.340163
                                 1.773209
                                           0.379780 -0.503198
                                                              1.800499
                                                                        0.791461
     3
         1.0 -0.966272 -0.185226 1.792993 -0.863291 -0.010309
                                                               1.247203
         2.0 -1.158233   0.877737   1.548718   0.403034 -0.407193
                                                              0.095921
                                                                        0.592941
              ٧8
                        ۷9
                                V10
                                                    V12
                                          V11
                                                              V13
                                                                       V14
        0.098698 0.363787
                            0.090794 -0.551600 -0.617801 -0.991390 -0.311169
        0.085102 -0.255425 -0.166974
                                     1.612727
                                               1.065235
                                                         0.489095 -0.143772
     2 0.247676 -1.514654
                            0.207643
                                     0.624501
                                               0.066084
                                                         0.717293 -0.165946
        0.377436 -1.387024 -0.054952 -0.226487
                                               0.178228
                                                         0.507757 -0.287924
     4 -0.270533  0.817739  0.753074 -0.822843
                                               0.538196
                                                         1.345852 -1.119670
                                                              V20
             V15
                       V16
                                V17
                                          V18
                                                    V19
                                                                       V21
        1.468177 -0.470401 0.207971 0.025791 0.403993
                                                         0.251412 -0.018307
        2.345865 -2.890083 1.109969 -0.121359 -2.261857
                                                         0.524980 0.247998
     3 -0.631418 -1.059647 -0.684093 1.965775 -1.232622 -0.208038 -0.108300
     4 0.175121 -0.451449 -0.237033 -0.038195 0.803487
                                                         0.408542 -0.009431
             V22
                       V23
                                V24
                                          V25
                                                    V26
                                                              V27
                                                                       V28
        0.277838 -0.110474
                            0.066928
                                     0.128539 -0.189115
                                                         0.133558 -0.021053
     1 -0.638672
                  0.101288 -0.339846
                                     0.167170 0.125895 -0.008983
     2 0.771679 0.909412 -0.689281 -0.327642 -0.139097 -0.055353 -0.059752
     3 0.005274 -0.190321 -1.175575 0.647376 -0.221929
                                                         0.062723
     4 0.798278 -0.137458 0.141267 -0.206010 0.502292 0.219422 0.215153
```

Amount Class

```
0 149.62 0
1 2.69 0
2 378.66 0
3 123.50 0
4 69.99 0
```

[62]: data.shape

[62]: (284807, 31)

[64]: print("Number of Rows",data.shape[0])
print("Number of Cloumns",data.shape[1])

Number of Rows 284807 Number of Cloumns 31

[66]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 284807 entries, 0 to 284806
Data columns (total 31 columns):

#	Column	Non-Null Count Dtype
0	Time	284807 non-null float64
1	V1	284807 non-null float64
2	V2	284807 non-null float64
3	V3	284807 non-null float64
4	V4	284807 non-null float64
5	V5	284807 non-null float64
6	V6	284807 non-null float64
7	V7	284807 non-null float64
8	V8	284807 non-null float64
9	V9	284807 non-null float64
10	V10	284807 non-null float64
11	V11	284807 non-null float64
12	V12	284807 non-null float64
13	V13	284807 non-null float64
14	V14	284807 non-null float64
15	V15	284807 non-null float64
16	V16	284807 non-null float64
17	V17	284807 non-null float64
18	V18	284807 non-null float64
19	V19	284807 non-null float64
20	V20	284807 non-null float64
21	V21	284807 non-null float64
22	V22	284807 non-null float64
23	V23	284807 non-null float64
24	V24	284807 non-null float64

```
25 V25
                   284807 non-null float64
      26
          V26
                   284807 non-null float64
      27
          V27
                   284807 non-null
                                    float64
      28
          V28
                   284807 non-null float64
      29
          Amount 284807 non-null float64
      30 Class
                   284807 non-null int64
     dtypes: float64(30), int64(1)
     memory usage: 67.4 MB
[68]: data.isnull().sum()
[68]: Time
                0
      V1
                0
      ٧2
                0
      VЗ
                0
      ۷4
                0
      ۷5
                0
      ۷6
                0
      ۷7
                0
      8V
                0
      ۷9
                0
      V10
                0
      V11
                0
      V12
                0
      V13
                0
      V14
                0
      V15
                0
      V16
                0
      V17
                0
      V18
                0
      V19
                0
      V20
                0
      V21
                0
      V22
                0
      V23
                0
      V24
                0
      V25
                0
      V26
                0
      V27
                0
      V28
                0
      Amount
                0
      Class
                0
      dtype: int64
```

[70]: data.head()

```
[70]:
                             ٧2
                                       VЗ
                                                 ۷4
                                                          ۷5
                                                                    V6
                                                                             V7 \
                    V1
         0.0 -1.359807 -0.072781
                                2.536347 1.378155 -0.338321
     0
                                                             0.462388
         0.0 1.191857 0.266151 0.166480 0.448154 0.060018 -0.082361 -0.078803
     1
         1.0 -1.358354 -1.340163 1.773209 0.379780 -0.503198 1.800499
                                                                       0.791461
         1.0 -0.966272 -0.185226 1.792993 -0.863291 -0.010309 1.247203 0.237609
     3
         2.0 -1.158233   0.877737   1.548718   0.403034   -0.407193   0.095921
              ٧8
                        ۷9
                                V10
                                          V11
                                                   V12
                                                             V13
                                                                       V14
     0 0.098698 0.363787 0.090794 -0.551600 -0.617801 -0.991390 -0.311169
     1 0.085102 -0.255425 -0.166974 1.612727 1.065235
                                                        0.489095 -0.143772
     2 0.247676 -1.514654 0.207643 0.624501 0.066084 0.717293 -0.165946
     3 0.377436 -1.387024 -0.054952 -0.226487 0.178228 0.507757 -0.287924
     4 -0.270533  0.817739  0.753074 -0.822843  0.538196
                                                        1.345852 -1.119670
             V15
                       V16
                                V17
                                          V18
                                                   V19
                                                             V20
     0 1.468177 -0.470401 0.207971 0.025791 0.403993
                                                        0.251412 -0.018307
     1 0.635558 0.463917 -0.114805 -0.183361 -0.145783 -0.069083 -0.225775
     2 2.345865 -2.890083 1.109969 -0.121359 -2.261857 0.524980 0.247998
     3 -0.631418 -1.059647 -0.684093 1.965775 -1.232622 -0.208038 -0.108300
     4 0.175121 -0.451449 -0.237033 -0.038195 0.803487 0.408542 -0.009431
             V22
                      V23
                                V24
                                          V25
                                                   V26
                                                             V27
                                                                       V28
     0 0.277838 -0.110474 0.066928
                                    0.128539 -0.189115
                                                        0.133558 -0.021053
     2 0.771679 0.909412 -0.689281 -0.327642 -0.139097 -0.055353 -0.059752
     3 0.005274 -0.190321 -1.175575 0.647376 -0.221929 0.062723
     4 0.798278 -0.137458 0.141267 -0.206010 0.502292 0.219422 0.215153
        Amount
                Class
        149.62
                    0
                    0
          2.69
     1
     2
       378.66
                    0
     3
       123.50
                    0
     4
         69.99
                    0
[72]: from sklearn.preprocessing import StandardScaler
[74]: sc = StandardScaler()
     data['Amount'] = sc.fit_transform(pd.DataFrame(data['Amount']))
[76]: data.head()
[76]:
                    V1
                             ۷2
                                       ٧3
                                                 ۷4
                                                          ۷5
                                                                    ۷6
         0.0 -1.359807 -0.072781
                                 2.536347
                                          1.378155 -0.338321
                                                              0.462388
     0
         0.0 1.191857 0.266151 0.166480 0.448154 0.060018 -0.082361 -0.078803
     1
     2
         1.0 -1.358354 -1.340163 1.773209 0.379780 -0.503198 1.800499
         1.0 -0.966272 -0.185226 1.792993 -0.863291 -0.010309 1.247203
```

```
V8
                         ۷9
                                   V10
                                             V11
                                                        V12
                                                                  V13
                                                                             V14 \
      0 0.098698 0.363787 0.090794 -0.551600 -0.617801 -0.991390 -0.311169
      1 0.085102 -0.255425 -0.166974 1.612727 1.065235 0.489095 -0.143772
      2 \quad 0.247676 \quad -1.514654 \quad 0.207643 \quad 0.624501 \quad 0.066084 \quad 0.717293 \quad -0.165946
      3 0.377436 -1.387024 -0.054952 -0.226487 0.178228 0.507757 -0.287924
      4 -0.270533 0.817739 0.753074 -0.822843 0.538196 1.345852 -1.119670
              V15
                        V16
                                                        V19
                                                                            V21 \
                                   V17
                                             V18
                                                                  V20
      0 1.468177 -0.470401 0.207971 0.025791 0.403993 0.251412 -0.018307
      1 0.635558 0.463917 -0.114805 -0.183361 -0.145783 -0.069083 -0.225775
      2 2.345865 -2.890083 1.109969 -0.121359 -2.261857 0.524980 0.247998
      3 -0.631418 -1.059647 -0.684093 1.965775 -1.232622 -0.208038 -0.108300
      4 0.175121 -0.451449 -0.237033 -0.038195 0.803487 0.408542 -0.009431
              V22
                        V23
                                   V24
                                             V25
                                                        V26
                                                                  V27
                                                                             V28 \
      0 0.277838 -0.110474 0.066928 0.128539 -0.189115
                                                            0.133558 -0.021053
      1 \ -0.638672 \ \ 0.101288 \ -0.339846 \ \ 0.167170 \ \ 0.125895 \ -0.008983 \ \ 0.014724
      2 0.771679 0.909412 -0.689281 -0.327642 -0.139097 -0.055353 -0.059752
      3 0.005274 -0.190321 -1.175575 0.647376 -0.221929 0.062723 0.061458
      4 0.798278 -0.137458 0.141267 -0.206010 0.502292 0.219422 0.215153
           Amount Class
      0 0.244964
      1 -0.342475
      2 1.160686
      3 0.140534
      4 -0.073403
                       0
[78]: data = data.drop(['Time'],axis=1)
[80]: data.head()
[80]:
                         V2
                                    V3
                                              ۷4
                                                         V5
                                                                   V6
               V1
      0 -1.359807 -0.072781 2.536347 1.378155 -0.338321
                                                             0.462388 0.239599
      1 1.191857 0.266151 0.166480 0.448154 0.060018 -0.082361 -0.078803
      2 -1.358354 -1.340163 1.773209 0.379780 -0.503198
                                                            1.800499
                                                                       0.791461
      3 -0.966272 -0.185226 1.792993 -0.863291 -0.010309 1.247203 0.237609
      4 -1.158233 0.877737 1.548718 0.403034 -0.407193 0.095921 0.592941
               8V
                          ۷9
                                   V10
                                             V11
                                                        V12
                                                                  V13
      0 0.098698 0.363787 0.090794 -0.551600 -0.617801 -0.991390 -0.311169
      1 \quad 0.085102 \quad -0.255425 \quad -0.166974 \quad 1.612727 \quad 1.065235 \quad 0.489095 \quad -0.143772
      2 \quad 0.247676 \quad -1.514654 \quad 0.207643 \quad 0.624501 \quad 0.066084 \quad 0.717293 \quad -0.165946
      3 0.377436 -1.387024 -0.054952 -0.226487 0.178228 0.507757 -0.287924
      4 -0.270533 0.817739 0.753074 -0.822843 0.538196 1.345852 -1.119670
```

```
V15
                                                                V20
                        V16
                                  V17
                                            V18
                                                      V19
                                                                          V21 \
      0 1.468177 -0.470401 0.207971 0.025791 0.403993 0.251412 -0.018307
      1 0.635558 0.463917 -0.114805 -0.183361 -0.145783 -0.069083 -0.225775
      2 2.345865 -2.890083 1.109969 -0.121359 -2.261857 0.524980 0.247998
      3 -0.631418 -1.059647 -0.684093 1.965775 -1.232622 -0.208038 -0.108300
      4 0.175121 -0.451449 -0.237033 -0.038195 0.803487 0.408542 -0.009431
              V22
                        V23
                                  V24
                                            V25
                                                      V26
                                                                V27
      0 0.277838 -0.110474 0.066928 0.128539 -0.189115
                                                           0.133558 -0.021053
      1 - 0.638672 \quad 0.101288 - 0.339846 \quad 0.167170 \quad 0.125895 - 0.008983 \quad 0.014724
      2 0.771679 0.909412 -0.689281 -0.327642 -0.139097 -0.055353 -0.059752
      3 0.005274 -0.190321 -1.175575 0.647376 -0.221929 0.062723 0.061458
      4 0.798278 -0.137458 0.141267 -0.206010 0.502292 0.219422 0.215153
           Amount Class
      0 0.244964
      1 -0.342475
                       0
      2 1.160686
      3 0.140534
                       0
      4 -0.073403
[82]: data.shape
[82]: (284807, 30)
[84]: data.duplicated().any()
[84]: True
[86]: data = data.drop_duplicates()
[88]: data.shape
[88]: (275663, 30)
[90]: data['Class'].value_counts()
[90]: Class
      0
           275190
      1
              473
      Name: count, dtype: int64
[92]: import seaborn as sns
[94]: sns.countplot(data['Class'])
```

```
[94]: <Axes: ylabel='count'>
```



```
[110]: normal_sample.shape
[110]: (473, 30)
[112]: new data = pd.concat([normal sample,fraud],ignore index=True)
[114]: new_data['Class'].value_counts()
[114]: Class
      0
           473
           473
      1
      Name: count, dtype: int64
[116]: new_data.head()
[116]:
               ۷1
                         ٧2
                                   VЗ
                                            ۷4
                                                      V5
                                                                V6
                                                                          V7 \
      0 1.115257 -1.779067
                             0.692283 -1.295945 -2.019082 -0.120768 -1.372727
      1 - 0.530174 \quad 0.135782 \quad 1.558311 \quad -1.458473 \quad -0.222240 \quad -0.680797 \quad 0.681516
      2 -0.869921 0.634924
                             2.039045 -1.254002 -0.196762 0.224561 -0.050755
      3 -3.091510 2.852625 -0.727117 -0.013360 -1.890684 -1.233278 -1.113311
      4 -0.940893
                  1.074155
                            1.759398 -0.601446 0.101693 -0.188520 0.455756
               ٧8
                         ۷9
                                  V10
                                           V11
                                                     V12
                                                               V13
      0 0.208498 -1.585965
                             1.542702 1.245757 -1.129232 -1.536584
      1 - 0.242224 - 1.127463 - 0.471296 0.224039 - 0.772260 - 0.103609 - 1.668418
      3 2.123149 -0.414949 -0.195267 -1.109742 0.597555 -0.016520 1.517442
      4 -3.460682 0.441525 0.917818 0.877285 0.338269
                                                         0.646250 -0.828662
              V15
                        V16
                                  V17
                                           V18
                                                     V19
                                                               V20
                                                                         V21
      0 0.615714 -0.191430
                             0.594151  0.563718  -0.620012  -0.178500
                                                                    0.097289
      1 -0.334266 0.797692
                             1.346722 -1.726595 -0.360249
                                                          0.239301
                                                                    0.038616
      2 -0.454402 0.578837 -0.652759 -0.127053 -0.124200 -0.195734
                                                                    0.668493
      3 0.763747 0.756659
                             0.431783 -0.181157 -0.131151 0.040078 -0.143839
      4 1.464952 -0.915167 0.171665 -1.054133 0.276801 -0.209018
                                                                    2.270069
              V22
                        V23
                                  V24
                                            V25
                                                     V26
                                                               V27
                                                                         V28
      0 0.263326 -0.062267
                             0.181284 0.089065 -0.112896
                                                          0.024124
                                                                    0.036898
      1 0.158680 -0.034544
                             0.308940 -0.003244 -0.474407 -0.079171 -0.096014
      2 -0.368430 -0.199768 -0.368441 -0.006672 0.887622
                                                          0.073190
                                                                    0.085501
      3 -0.784700 0.238355
                             0.336640 0.106969 0.099980 0.068592 0.028134
      4 -0.143518 0.153908 0.700927 -0.413235 1.374031 -0.996161 -0.836301
                  Class
           Amount
      0 0.278468
      1 -0.084078
      2 -0.279705
```

```
3 -0.297296
                        0
       4 -0.313289
[118]: x=new_data.drop('Class',axis=1)
       y=new_data['Class']
[120]: from sklearn.model_selection import train_test_split
       x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.
        \Rightarrow20, random state=42)
[122]: from sklearn.linear_model import LogisticRegression
[124]: log = LogisticRegression()
[126]: log.fit(x_train,y_train)
[126]: LogisticRegression()
[128]: y_pred1 = log.predict(x_test)
 [38]: from sklearn.metrics import accuracy_score
[130]: accuracy_score(y_test,y_pred1)
[130]: 0.9421052631578948
[132]: accuracy_score(y_test,y_pred1)
[132]: 0.9421052631578948
[134]: from sklearn.metrics import precision_score, recall_score, f1_score
[169]: precision_score(y_test,y_pred1)
[169]: 0.8870967741935484
[136]: precision_score(y_test,y_pred1)
[136]: 0.9690721649484536
[171]: recall_score(y_test,y_pred1)
[171]: 0.6043956043956044
[138]: recall_score(y_test,y_pred1)
[138]: 0.9215686274509803
```

```
[173]: f1_score(y_test,y_pred1)
[173]: 0.718954248366013
[140]: f1_score(y_test,y_pred1)
[140]: 0.9447236180904522
[142]: from sklearn.tree import DecisionTreeClassifier
[144]: dt = DecisionTreeClassifier()
[146]: dt.fit(x_train, y_train)
[146]: DecisionTreeClassifier()
[148]: y_pred2 = dt.predict(x_test)
[150]: accuracy_score(y_test, y_pred2)
[150]: 0.9315789473684211
[152]: precision_score(y_test,y_pred2)
[152]: 0.9238095238095239
[154]: recall_score(y_test,y_pred2)
[154]: 0.9509803921568627
[156]: f1_score(y_test,y_pred2)
[156]: 0.9371980676328502
[158]: from sklearn.ensemble import RandomForestClassifier
[160]: rf = RandomForestClassifier()
[162]: rf.fit(x_train,y_train)
[162]: RandomForestClassifier()
[164]: y_pred3 = rf.predict(x_test)
[166]: accuracy_score(y_test, y_pred3)
[166]: 0.9421052631578948
```

```
[168]: precision_score(y_test,y_pred3)
[168]: 0.9789473684210527
[170]: recall_score(y_test,y_pred3)
[170]: 0.9117647058823529
[172]: f1_score(y_test,y_pred3)
[172]: 0.9441624365482234
[174]: final_data = pd.DataFrame({'Models':['LR','DT','RF'],
                     "ACC": [accuracy_score(y_test,y_pred1)*100,
                            accuracy_score(y_test,y_pred2)*100,
                            accuracy_score(y_test,y_pred3)*100]})
[310]: final_data
[310]: Models
                       ACC
            LR 94.736842
             DT 91.578947
       1
             RF 94.736842
[184]: acc_lr = accuracy_score(y_test, y_pred1) * 100
       acc_dt = accuracy_score(y_test, y_pred2) * 100
       acc_rf = accuracy_score(y_test, y_pred3) * 100
[186]: final_data = pd.DataFrame({
           'Models': ['LR', 'DT', 'RF'],
           'ACC': [acc_lr, acc_dt, acc_rf]
       })
[189]: final_data
[189]: Models
                       ACC
             LR 94.210526
       0
                93.157895
       1
             DT
       2
             RF 94.210526
[191]: sns.barplot(x='Models', y='ACC', data=final_data)
[191]: <Axes: xlabel='Models', ylabel='ACC'>
```



```
[193]: x=new_data.drop('Class',axis=1)
       y=new_data['Class']
[195]: x.shape
[195]: (946, 29)
[197]: y.shape
[197]: (946,)
[210]: data.rename(columns={'Class': 'class'}, inplace=True)
[212]: fraud = data.loc[data['class']==1]
       normal = data.loc[data['class']==0]
[214]: fraud
[214]:
                   Time
                               V1
                                         ۷2
                                                   VЗ
                                                             ۷4
                                                                        ۷5
                                                                                  ۷6
       541
                  406.0 -2.312227 1.951992 -1.609851 3.997906 -0.522188 -1.426545
       623
                  472.0 -3.043541 -3.157307 1.088463 2.288644 1.359805 -1.064823
```

```
4920
         4462.0 -2.303350 1.759247 -0.359745 2.330243 -0.821628 -0.075788
6108
         6986.0 -4.397974 1.358367 -2.592844 2.679787 -1.128131 -1.706536
6329
         7519.0 1.234235 3.019740 -4.304597 4.732795 3.624201 -1.357746
279863 169142.0 -1.927883 1.125653 -4.518331 1.749293 -1.566487 -2.010494
       169347.0 1.378559 1.289381 -5.004247
                                              1.411850 0.442581 -1.326536
280143
       169351.0 -0.676143 1.126366 -2.213700
280149
                                              0.468308 -1.120541 -0.003346
281144 169966.0 -3.113832 0.585864 -5.399730
                                              1.817092 -0.840618 -2.943548
281674 170348.0 1.991976 0.158476 -2.583441 0.408670 1.151147 -0.096695
             ۷7
                       8V
                                 ۷9
                                         V10
                                                   V11
                                                              V12
                                                                        V13 \
541
      -2.537387 1.391657 -2.770089 -2.772272 3.202033 -2.899907 -0.595222
623
       0.325574 -0.067794 -0.270953 -0.838587 -0.414575 -0.503141 0.676502
4920
       0.562320 -0.399147 -0.238253 -1.525412 2.032912 -6.560124 0.022937
6108
      -3.496197 -0.248778 -0.247768 -4.801637 4.895844 -10.912819 0.184372
6329
       1.713445 -0.496358 -1.282858 -2.447469 2.101344 -4.609628 1.464378
279863 -0.882850 0.697211 -2.064945 -5.587794
                                              2.115795 -5.417424 -1.235123
280143 -1.413170 0.248525 -1.127396 -3.232153 2.858466 -3.096915 -0.792532
280149 -2.234739 1.210158 -0.652250 -3.463891 1.794969 -2.775022 -0.418950
281144 -2.208002 1.058733 -1.632333 -5.245984 1.933520 -5.030465 -1.127455
281674  0.223050  -0.068384  0.577829  -0.888722  0.491140
                                                         0.728903 0.380428
            V14
                     V15
                               V16
                                          V17
                                                   V18
                                                              V19
                                                                        V20 \
      -4.289254 0.389724 -1.140747 -2.830056 -0.016822 0.416956 0.126911
541
623
      -1.692029 2.000635 0.666780
                                    0.599717 1.725321 0.283345 2.102339
4920
      -1.470102 -0.698826 -2.282194 -4.781831 -2.615665 -1.334441 -0.430022
      -6.771097 -0.007326 -7.358083 -12.598419 -5.131549 0.308334 -0.171608
6108
6329
      -6.079337 -0.339237 2.581851
                                     6.739384 3.042493 -2.721853 0.009061
279863 -6.665177 0.401701 -2.897825 -4.570529 -1.315147 0.391167 1.252967
280143 -5.210141 -0.613803 -2.155297 -3.267116 -0.688505 0.737657 0.226138
280149 -4.057162 -0.712616 -1.603015 -5.035326 -0.507000 0.266272 0.247968
281144 -6.416628 0.141237 -2.549498 -4.614717 -1.478138 -0.035480 0.306271
281674 -1.948883 -0.832498 0.519436
                                    0.903562 1.197315 0.593509 -0.017652
            V21
                      V22
                               V23
                                         V24
                                                   V25
                                                             V26
                                                                      V27
       0.517232 - 0.035049 - 0.465211 \ 0.320198 \ 0.044519 \ 0.177840 \ 0.261145
541
       0.661696 0.435477 1.375966 -0.293803 0.279798 -0.145362 -0.252773
623
4920
      -0.294166 -0.932391 \ 0.172726 -0.087330 -0.156114 -0.542628 \ 0.039566
6108
       0.573574 0.176968 -0.436207 -0.053502 0.252405 -0.657488 -0.827136
6329
      -0.379068 -0.704181 -0.656805 -1.632653 1.488901 0.566797 -0.010016
279863 0.778584 -0.319189 0.639419 -0.294885 0.537503 0.788395 0.292680
280143 0.370612 0.028234 -0.145640 -0.081049 0.521875 0.739467 0.389152
280149 0.751826 0.834108 0.190944 0.032070 -0.739695 0.471111 0.385107
281144 0.583276 -0.269209 -0.456108 -0.183659 -0.328168 0.606116 0.884876
```

281674 -0.164350 -0.295135 -0.072173 -0.450261 0.313267 -0.289617 0.002988

	V28	Amount	class
541	-0.143276	0.00	1
623	0.035764	529.00	1
4920	-0.153029	239.93	1
6108	0.849573	59.00	1
6329	0.146793	1.00	1
•••	•••		
279863	0.147968	390.00	1
280143	0.186637	0.76	1
280149	0.194361	77.89	1
281144	-0.253700	245.00	1
281674	-0.015309	42.53	1

[492 rows x 31 columns]

[216]: fraud.count()

[216]:	Time	492
	V1	492
	V2	492
	V3	492
	V4	492
	V 5	492
	V6	492
	V7	492
	V8	492
	V9	492
	V10	492
	V11	492
	V12	492
	V13	492
	V14	492
	V15	492
	V16	492
	V10 V17	492
	V17 V18	492
	V10 V19	492
	V20	492
	V21	492
	V22	492
	V23	492
	V24	492
	V25	492
	V26	492
	V27	492

```
dtype: int64
[218]: fraud.sum()
[218]: Time
                  3.972743e+07
       ۷1
                -2.347799e+03
       ٧2
                  1.782899e+03
       VЗ
                -3.460374e+03
       ۷4
                  2.234678e+03
       ۷5
                -1.550403e+03
       ۷6
                -6.876865e+02
       ۷7
                -2.739816e+03
       ٧8
                  2.807529e+02
       ۷9
                -1.269912e+03
       V10
                -2.793026e+03
       V11
                  1.869685e+03
       V12
                -3.079621e+03
       V13
                -5.379224e+01
       V14
                -3.430088e+03
       V15
                -4.572094e+01
       V16
                -2.036853e+03
       V17
                -3.279592e+03
       V18
                -1.105184e+03
       V19
                  3.348844e+02
       V20
                  1.831811e+02
       V21
                  3.510855e+02
       V22
                  6.912050e+00
       V23
                -1.983152e+01
       V24
                -5.172411e+01
       V25
                  2.039285e+01
       V26
                  2.541088e+01
       V27
                  8.392280e+01
       V28
                  3.722831e+01
       Amount
                  6.012797e+04
       class
                  4.920000e+02
       dtype: float64
[220]:
      len(fraud)
[220]: 492
       len(normal)
[222]:
```

V28

[222]: 284315

Amount class

492 492

492

```
[228]: sns.relplot(x= 'Amount',y="Time",hue="class",data=data)
```

[228]: <seaborn.axisgrid.FacetGrid at 0x1a79b271550>


```
[240]: from imblearn.over_sampling import SMOTE

[242]: x_res,y_res = SMOTE().fit_resample(x,y)

[244]: y_res.shape

[244]: (946,)

[]:

[284]: from sklearn.model_selection import GridSearchCV

[286]: model = RandomForestClassifier()
```

```
[288]: param_grid = {
           'n_estimators': [50, 100, 200],
           'max_depth': [None, 10, 20, 30],
           'min_samples_split': [2, 5, 10],
           'min_samples_leaf': [1, 2, 4]
[290]: grid_search = GridSearchCV(estimator=model, param_grid=param_grid, cv=3,__
        →n_jobs=-1, verbose=2)
       grid_search.fit(x_train, y_train)
      Fitting 3 folds for each of 108 candidates, totalling 324 fits
[290]: GridSearchCV(cv=3, estimator=RandomForestClassifier(), n_jobs=-1,
                    param_grid={'max_depth': [None, 10, 20, 30],
                                'min samples leaf': [1, 2, 4],
                                'min_samples_split': [2, 5, 10],
                                'n_estimators': [50, 100, 200]},
                    verbose=2)
[291]: best_model = grid_search.best_estimator_
       y_pred_best = best_model.predict(x_test)
[292]: "Best Parameters:", grid_search.best_params_
       "Best Score:", grid search.best score
[292]: ('Best Score:', 0.94444444444445)
[294]: accuracy = accuracy_score(y_test, y_pred_best)
       f'Accuracy: {accuracy * 100:.2f}%'
[294]: 'Accuracy: 94.21%'
[317]: from sklearn.metrics import accuracy score, confusion matrix,
        ⇔classification_report
[319]: conf_matrix = confusion_matrix(y_test, y_pred_best)
       "Confusion Matrix (Tuned):"
       conf_matrix
[319]: array([[86, 2],
              [ 9, 93]], dtype=int64)
[321]: "Confusion Matrix (Tuned):"
       confusion_matrix(y_test, y_pred_best)
```

```
[321]: array([[86, 2],
              [ 9, 93]], dtype=int64)
[327]: class_report = classification_report(y_test, y_pred_best)
       "\nClassification Report (Tuned):"
       class_report
[327]: '
                      precision
                                   recall f1-score
                                                       support\n\n
       0.91
                 0.98
                           0.94
                                        88\n
                                                                          0.91
                                                                                    0.94
       102\n\n
                                                      0.94
                                                                 190\n
                  accuracy
                                                                          macro avg
       0.94
                 0.94
                           0.94
                                       190\nweighted avg
                                                               0.94
                                                                          0.94
                                                                                    0.94
       190\n'
[329]: "\nClassification Report (Tuned):"
       classification_report(y_test, y_pred_best)
                                   recall f1-score
[329]: '
                      precision
                                                       support\n\n
                                        88\n
                                                                          0.91
       0.91
                 0.98
                           0.94
                                                       1
                                                                                    0.94
       102\n\n
                  accuracy
                                                      0.94
                                                                 190\n
                                                                          macro avg
       0.94
                                                                          0.94
                 0.94
                           0.94
                                       190\nweighted avg
                                                               0.94
                                                                                    0.94
       190\n'
[337]: accuracy_score(y_test, y_pred_best)
[337]: 0.9421052631578948
[403]:
       # save the model
[345]: !pip install joblib
      Defaulting to user installation because normal site-packages is not writeable
      Requirement already satisfied: joblib in c:\programdata\anaconda3\lib\site-
      packages (1.2.0)
[346]: import joblib
[420]: joblib.dump(model, 'credit_card_model')
[420]: ['credit_card_model']
[434]: model1=joblib.load("credit card model")
[460]:
```

```
pred1=model1.predict([[-1.359807, -0.072781, 2.536347, 1.
      →378155, −0.338321,
                                   0.462388,
                                                  0.239599,
                                                                 0.
      ⇔098698,
                                                                 -0.
                    0.363787,
                                   0.090794,
                                                  -0.551600,
                                                    1.468177,
      ⇔617801,
                    -0.991390,
                                   -0.311169,
                                                                  -0.
                                                  0.403993,
      470401,
                    0.207971,
                                   0.025791,
                                                                 0.
       <sup>4</sup>251412,
                    -0.018307,
                                   0.277838,
                                                  -0.110474,
                                                                 0.
                                   -0.189115,
                                                   0.133558,
                                                                 -0.
      4066928,
                     0.128539,
       [456]: import warnings
      warnings.filterwarnings('ignore')
[462]: if pred1 ==0:
         print("normal transaction")
         print("fraud transaction")
     normal transaction
 []:
```