MIT 9.520/6.860, Fall 2018 Statistical Learning Theory and Applications

Class 07: Implicit Regularization

Lorenzo Rosasco

Learning algorithm design so far

ERM, penalized/constrained

$$\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \ell(y_i, w^\top x_i) + \lambda ||w||^2$$

$$\widehat{L}^{\lambda}(w)$$

Optimization by GD

$$w_{t+1} = w_t - \gamma \nabla \widehat{L}^{\lambda}(w_t),$$

+ variants: Newton method, stochastic gradients.

Non linear extensions via features/kernels.

Beyond ERM

Are there other design principles?

▶ So far statistics/regularization separate from computations.

Today we will see how optimization regularizes implictly.

Least squares (recap)

We start with least squares.

$$\widehat{X}w = \widehat{Y}$$

$$\underbrace{\min_{w \in \mathbb{R}^d} \frac{1}{n} \left\| \widehat{\mathbf{Y}} - \widehat{\mathbf{X}} w \right\|^2}_{n > d}$$

$$\underline{\min_{w \in \mathbb{R}^d} ||w||^2}, \quad \text{subj. to} \quad \widehat{X}w = \widehat{Y}$$

$$\Rightarrow \widehat{w}^{\dagger} = \widehat{X}^{\dagger} \widehat{Y}$$

Iterative solvers for least squares

Let

$$\widehat{L}(w) = \frac{1}{n} \|\widehat{Y} - \widehat{X}w\|^2.$$

The gradient descent iteration is

$$\widehat{w}_{t+1} = \widehat{w}_t - \gamma \frac{2}{n} \widehat{X}^{\top} (\widehat{X} \widehat{w}_t - \widehat{Y}).$$

For suitable γ

$$\widehat{L}(\widehat{w}_t) \to \min \widehat{L}(w)$$

Implicit bias/regularization

Gradient descent

$$\widehat{w}_{t+1} = \widehat{w}_t - \gamma \frac{2}{n} \widehat{X}^{\top} (\widehat{X} \widehat{w}_t - \widehat{Y}).$$

converges to the minimal norm solution for suitable w_0 .

Reminder: the minimal norm solution \widehat{w}^{\dagger} satisfies

$$\widehat{w}^{\dagger} = \widehat{X}^{\top} c, \quad c \in \mathbb{R}^n$$
 that is $\widehat{w}^{\dagger} \perp \text{Null}(\widehat{X}).$

Implicit bias/regularization

Then,

$$\widehat{W}_t \mapsto \widehat{W}^{\dagger}$$
.

Gradient descent explores solutions with a bias towards small norms.

Regularization is not achieved via explicit constraint/penalties.

In this sense it is *implicit*.

Terminology: regularization and pseudosolutions?

In signal processing minimal norm solutions are called regularization.

In classical regularization theory, they are called pseudosolutions.

Regularization refers to a family of solutions converging to pseudosolutions, e.g. Tikhonov's. See later.

Terminology: implicit or iterative regularization?

In machine learning, implicit regularization has recently become fashionable.

- It refers to regularization achieved without imposing constraints or adding penalties.
- In classical regularization theory, it is called *iterative* regularization and it is a old classic idea.

▶ We will see the idea of early stopping is also very much related.

Back for more regularization

According to classical regularization theory: among different regularized solutions, one ensuring stability should be selected.

For example, in Tikhonov regularization

$$\widehat{w}^{\lambda} \rightarrow \widehat{w}^{\dagger}$$

as
$$\lambda \to 0$$
.

▶ But in practice $\lambda \neq 0$ is chosen, when data are noisy/sampled.

Regularization by gradient descent?

Gradient descent converges to the tminimal norm solution, but:

does it define meaningful regularized solutions?

Where is the regularization parameter?

Interlude: geometric series

Recall for |a| < 1

$$\sum_{j=0}^{\infty} a^j = (1-a)^{-1}, \qquad \sum_{j=0}^{t} a^j = (1-a^t)(1-a)^{-1}.$$

Equivalently for |b| < 1

$$\sum_{j=0}^{\infty} (1-b)^j = b^{-1}, \qquad \sum_{j=0}^{t} (1-b)^j = (1-(1-b)^t)b^{-1}.$$

Interlude II: Neumann series

Assume 1 - A invertible matrix and ||A|| < 1

$$\sum_{j=0}^{\infty} A^{j} = (I - A)^{-1}, \qquad \sum_{j=0}^{t} A^{j} = (I - A^{t})(I - A)^{-1}.$$

or equivalently B invertible and ||B|| < 1

$$\sum_{j=0}^{\infty} (I - B)^{j} = B^{-1}, \qquad \sum_{j=0}^{t} (I - B)^{j} = (I - (I - B)^{t})B^{-1}.$$

Rewriting GD

By induction

$$\widehat{w}_{t+1} = \widehat{w}_t - \gamma \frac{2}{n} \widehat{X}^{\top} (\widehat{X} \widehat{w} - \widehat{Y})$$

can be written as

$$\widehat{w}_{t+1} = \gamma \frac{2}{n} \sum_{j=0}^{t} (I - \gamma \widehat{X}^{\top} \widehat{X})^{j} \widehat{X}^{\top} \widehat{Y}.$$

Rewriting GD (cont.)

Write

$$\widehat{w}_{t+1} = \widehat{w}_t - \gamma \frac{2}{n} \widehat{X}^{\top} (\widehat{X} \widehat{w} - \widehat{Y}) = (I - \gamma \frac{2}{n} \widehat{X}^{\top} \widehat{X}) \widehat{w}_t + \gamma \frac{2}{n} \widehat{X}^{\top} \widehat{Y}.$$

Assume

$$\widehat{w}_t = \gamma \frac{2}{n} \sum_{i=0}^{t-1} (I - \gamma \frac{2}{n} \widehat{X}^{\top} \widehat{X})^i \widehat{X}^{\top} \widehat{Y}.$$

► Then

$$\widehat{w}_{t+1} = (I - \gamma \frac{2}{n} \widehat{X}^{\top} \widehat{X}) \gamma \frac{2}{n} \sum_{j=0}^{t-1} (I - \gamma \frac{2}{n} \widehat{X}^{\top} \widehat{X})^{j} \widehat{X}^{\top} \widehat{Y} + \gamma \frac{2}{n} \widehat{X}^{\top} \widehat{Y}$$

$$= \gamma \frac{2}{n} \sum_{j=0}^{t} (I - \gamma \frac{2}{n} \widehat{X}^{\top} \widehat{X})^{j} \widehat{X}^{\top} \widehat{Y}.$$

Neumann series and GD

This is pretty cool

$$\widehat{w}_{t+1} = \gamma \frac{2}{n} \sum_{i=0}^{t} (I - \gamma \frac{2}{n} \widehat{X}^{\top} \widehat{X})^{j} \widehat{X}^{\top} \widehat{Y}.$$

GD is a truncated power series approximation of the pseudoinverse!

If γ is such that $\left\|I - \gamma \frac{2}{n} \widehat{X}^{\top} \widehat{X}\right\| < 1$, then for large t

$$\gamma \frac{2}{n} \sum_{i=0}^{t} (I - \gamma \frac{2}{n} \widehat{X}^{\top} \widehat{X})^{j} \widehat{X}^{\top} \approx \widehat{X}^{\dagger}$$

and we recover $\widehat{w}_t \to \widehat{w}^{\dagger}$.

¹Compare to classic conditions.

Stability properties of GD

For any t

$$\widehat{\mathbf{w}}_{t} = (I - (I - \gamma \frac{2}{n} \widehat{\mathbf{X}}^{\top} \widehat{\mathbf{X}})^{t}) (\widehat{\mathbf{X}}^{\top} \widehat{\mathbf{X}})^{-1} \widehat{\mathbf{X}}^{\top} \widehat{\mathbf{Y}}$$

(assume invertibility for simplicity).

Then

$$\underbrace{\widehat{w}_t \approx (\widehat{X}^\top \widehat{X})^{-1} \widehat{X}^\top \widehat{Y}}_{\text{large } t}, \qquad \underbrace{\widehat{w}_t \approx \frac{\gamma}{n} \widehat{X}^\top \widehat{Y}}_{\text{small } t}.$$

Compare to Tikhonov
$$\widehat{w}_{\lambda} = (\widehat{X}^{\top}\widehat{X} + \lambda nI)^{-1}\widehat{X}^{\top}\widehat{Y}$$

$$\underbrace{\widehat{w}_{\lambda} \approx (\widehat{X}^{\top}\widehat{X})^{-1}\widehat{Y}}_{\text{small }\lambda}, \qquad \underbrace{\widehat{w}_{\lambda} \approx \lambda n\widehat{X}^{\top}\widehat{Y}}_{\text{large }\lambda}.$$

Spectral view and filtering

Recall for Tikhonov

$$\widehat{\mathbf{w}}^{\lambda} = \sum_{j=1}^{r} \frac{\mathbf{s}_{j}}{\mathbf{s}_{j}^{2} + \lambda} (\mathbf{u}_{j}^{\top} \widehat{\mathbf{Y}}) \mathbf{v}_{j}.$$

For GD

$$\widehat{w}^{\lambda} = \sum_{i=1}^{r} \frac{\left(1 - \left(1 - \gamma \frac{2}{n} s_{j}^{2}\right)^{t}\right)}{s_{j}} \left(u_{j}^{\top} \widehat{Y}\right) v_{j}.$$

Both methods can be seen as spectral filtering

$$\widehat{w}^{\lambda} = \sum_{j=1}^{r} F(s_j) (u_j^{\top} \widehat{Y}) v_j,$$

for some suitable filter function F.

Implicit regularization and early stopping

The stability of GD decreases with t, i.e. higher condition number for

$$(I - (I - \gamma \frac{2}{n} \widehat{X}^{\top} \widehat{X})^t) (\widehat{X}^{\top} \widehat{X})^{-1} \widehat{X}^{\top}.$$

Early-stopping the iteration as a (implicit) regularization effect.

Summary so far

$$\widehat{w}_{t+1} = \widehat{w}_t - \gamma \frac{2}{n} \widehat{X}^{\top} (\widehat{X} \widehat{w} - \widehat{Y}) = \gamma \frac{2}{n} \sum_{j=0}^{t} (I - \gamma \widehat{X}^{\top} \widehat{X})^j \widehat{X}^{\top} \widehat{Y}.$$

 Implicit bias: gradient descent converges to the minimal norm solution.

Stability: the number of iteration is a regularization parameter.

Name game: gradient descent, Landweber iteration, L^2 -Boosting.

A bit of history

These ideas are fashionable nowt but has also a long history.

► The idea that iterations converge to pseudosolutions is from the 50's.

▶ The observation that iterations control stability dates back at least to the 80's.

Classic name is iterative regularization (there are books about it).

Why is it back in fashion?

Early stopping is used a heuristic while training neural nets.

Convergence to minimal norm solutions could help understanding generalization in deep learning?

New perspective on algorithm design merging stats and optimization.

Statistics meets optimization

GD offers a new a perspective on algorithm design.

► Training time= complexity?

lterations control statistical accuracy *and* numerical complexity.

Recently, this kind of regularization is called computational or algorithmic.

Beyond least squares

Other forms of optimization?

Other loss functions?

Other norms?

Other class of functions?

Other forms of optimization

Largely unexplored there are results on:

Accelerated methods and conjugate gradient.

Stochastic/incremental gradient methods.

It is clear that other parameters control regularization/stability, e.g step-size, mini-batch-size, averaging etc.

Other loss functions

There are some results.

For ℓ convex, let

$$\widehat{L}(w) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, w^{\top} x_i).$$

The gradient/subgradient descent iteration is

$$\widehat{w}_{t+1} = \widehat{w}_t - \gamma_t \nabla \widehat{L}(\widehat{w}_t).$$

Other loss functions (cont.)

$$\widehat{w}_{t+1} = \widehat{w}_t - \gamma_t \nabla \widehat{L}(\widehat{w}_t)$$

An intuition: note that, if $\sup_t \|\nabla \widehat{L}(\widehat{w}_t)\| \leq B$

$$\|\widehat{w}_t\| \leq \sum_t \gamma_t B$$
,

the number of iterations/stepsize control the norm of the iterates.

Other norms

Largely unexplored.

 Gradient descent needs be replaced to bias iterations towards desired norms.

 Bregman iterations, mirror descent, proximal gradients can be used.

Other class of functions

Extensions using kernel/features are straight forward.

Considering neural nets is considerably harder.

In this context the following perspective has been considered:

given a the function class (neural nets),

- given an algorithm (SGD),
- find which norm the iterates converge to.

Summary

A different way to design algorithms.

Implicit/iterative regularization.

Iterative regularization for least squares.

Extensions.