

Impact of APOE Genotype on Cardiorespiratory Fitness in Aging and AD

Zhang

Introduction

. .

Discussi

Impact of APOE Genotype on Cardiorespiratory Fitness in Aging and AD

Guanlin Zhang

Department of Biostatsitics University of Kansas Medical Center

03 Dec 2018

Overview

Impact of APOE Genotype on Cardiorespiratory Fitness in Aging and AD

> Guanlin Zhang

Introductio

Result

Discussion

Introduction

2 Method

Results

Introduction

Impact of APOE Genotype on Cardiorespiratory Fitness in Aging and AD

> Guanli Zhang

Introduction

Rosulto

Research Goal

- Alzheimer's disease(AD) has a high prevelance in United States;
- No disease-modifying or preventive treatment currently;
- 3 Exercise effecitve therapeutic for AD or cognitive decline?
- Our goal: characterize the impact of cognitive impariment and genetic AD risk on maximal measures of cardiorespiratory fitness (VO₂).

Method: Participants and Inclusion

Impact of APOE Genotype on Cardiorespiratory Fitness in Aging and AD

Zhang

Introduction

Method

Participants

- Participats were recruited from KU and UW as part of intervention and observation studies;
- 2 All measurements were collected at baseline;
- 3 Individuals from UW have normal cognition (no AD).

Inclusion Criteria

- 1 Individuals with a respiratory exchange ratio (RER) ≥ 1.1 were included;
- 2 Initial dataset has 510 participants;
- 3 304 were included in the analysis.

Method: Analysis

Impact of APOE Genotype on Cardiorespiratory Fitness in Aging and AD

Zhang

introduction

Method

Results

Discussio

Analysis

- Investigate dichotomous variables of interest (Gender, DX, and E4 carrier);
- Discussion linear regression model (VO₂ as response), discuss model selections;
- We aim to identify the most parsimonous model, while during model selection we try to find and interpret information about subgroups.

Impact of APOE Genotype on Cardiorespiratory Fitness in Aging and AD

> Guanli Zhang

Introduct

NA-Al---I

Results

Gender / DX	ND	AD	Row Total
Male	84	46	130
Female	135	39	174
Column Total	219	85	304

Pearson χ^2	df	p	Fisher's exact test		
	Pearso	on χ^2 test	estimate odds ratio:	0.529	
6.215	1	0.013	H_a : odds ratio < 1		
Pearson χ^2	with Yat	e's continuity correction	p	0.009	
5.588	1	0.018	95% CI	(0, 0.833)	

TABLE 1 Gender vs Diagnosis

Impact of APOE Genotype on Cardiorespiratory Fitness in Aging and AD

> Guanli Zhang

Introducti

NA-Al--d

Results

Gender / E4	Noncarrier	Carrier	Row Total
Male	82	48	130
Female	91	83	174
Column Total	173	131	304

Pearson χ^2	df	p	Fisher's exact test			
	Pears	son χ^2 test	estimate odds ratio:	1.556		
3.525	1	0.060	H_a : odds ratio > 1			
Pearson χ^2	with Ya	te's continuity correction	p	0.039		
3.100	1	0.078	95% CI	$(1.028, +\infty)$		

TABLE 2 Gender vs E4

Impact of APOE Genotype on Cardiorespiratory Fitness in Aging and AD

> Guanli Zhang

Introducti

NA-Al--d

Results

Gender / E4	Noncarrier	Carrier	Row Total
Male	82	48	130
Female	91	83	174
Column Total	173	131	304

Pearson χ^2	df	p	Fisher's exact test			
	Pears	son χ^2 test	estimate odds ratio:	1.556		
3.525	1	0.060	H_a : odds ratio > 1			
Pearson χ^2	with Ya	te's continuity correction	p	0.039		
3.100	1	0.078	95% CI	$(1.028, +\infty)$		

TABLE 2 Gender vs E4

Impact of APOE Genotype on Cardiorespiratory Fitness in Aging and AD

> Guanli Zhang

Introducti

Mothod

Results

FIGURE 1 percentage of E4carrier from UW

Impact of APOE Genotype on Cardiorespiratory Fitness in Aging and AD

> Guanli Zhang

meroduc

Method

Results

Diagnosis / E4	Noncarrier	Carrier	Row Total
ND	140	79	219
AD	33	52	85
Column Total	173	131	304

Pearson χ^2	Pearson χ^2 df p Fisher's exact test					
	Pears	son χ^2 test	estimate odds ratio:	2.783		
15.736	1	< 0.001	H_a : odds ratio > 1			
Pearson χ^2	with Ya	te's continuity correction	p	< 0.001		
14.729	1	< 0.001	95% CI	$(1.752, +\infty)$		

TABLE 3 Diagnosis vs E4

Impact of APOE Genotype on Cardiorespiratory Fitness in Aging and AD

Zhan

muoducu

Method

Results

Discussio

Stratification

- 1 Among Gender, DX and E4 carrier, Breslow-Day test acommodating the hypothesis of common odds ratio between any of the two, stratifying on the third.
- 2 Cochran-Mantel-Haenszel test supports pairwise association between any of the two when stratifying on the third variable.

Impact of APOE Genotype on Cardiorespiratory Fitness in Aging and AD

> Guanlir Zhang

Introduction

.....

Results

Diaguag

Single Variables

- ① Age(p < 0.001), BMI(p < 0.001), Gender(p < 0.001), DX(p = 0.003), Site(p < 0.001) and E4carrier(p = 0.28);
- 2 All significant except for E4 carrier.

Regression Models

$$\begin{split} \mathsf{VO}_2 &= \beta_0 + \beta_1 \cdot \mathsf{Age} + \beta_2 \cdot \mathsf{BMI} + \beta_3 \cdot \mathsf{Gender} + \beta_4 \cdot \mathsf{DX} \\ &+ \beta_5 \cdot \mathsf{Site} + \beta_6 \cdot \mathsf{E4} (\ \mathsf{Reduced} \) \\ \mathsf{VO}_2 &= \beta_0 + \beta_1 \cdot \mathsf{Age} + \beta_2 \cdot \mathsf{BMI} + \beta_3 \cdot \mathsf{Gender} + \beta_4 \cdot \mathsf{DX} \\ &+ \beta_5 \cdot \mathsf{Site} + \beta_6 \cdot \mathsf{E4} + \beta_7 \cdot \mathsf{Gender} \cdot \mathsf{DX} \\ &+ \beta_8 \cdot \mathsf{Gender} \cdot \mathsf{E4} + \beta_9 \cdot \mathsf{DX} \cdot \mathsf{E4} (\ \mathsf{Complete} \) \end{split}$$

Impact of APOE Genotype on Cardiorespiratory Fitness in Aging and AD

> Guanli Zhan

Introduction

Mothod

Results

Discussion

Selection Results

- 1 a lack-of-fit F test suggests for the reduced model($F_{3,295} = 1.786, p = 0.150$);
- 2 for the reduced model, a stepwise/forward/backward selection suggests a more parsimonious model:

$$VO_2 = \beta_0 + \beta_1 \cdot \mathsf{Age} + \beta_2 \cdot \mathsf{BMI} + \beta_3 \cdot \mathsf{Gender} + \beta_4 \cdot \mathsf{DX}$$

Impact of APOE Genotype on Cardiorespiratory Fitness in Aging and AD

> Guanlii Zhang

Introductio

Results

Discussion

What can complete model still tell us?

AD vs ND		Female vs Male		E4 vs NonE4	
	p		p		p
(male, nonE4)	0.004	(ND, nonE4)	< 0.001	(male, ND)	0.34
(male, E4)	< 0.001	(ND, E4)	< 0.001	(male, AD)	0.1
(female, nonE4)	0.36	(AD, nonE4)	< 0.001	(female, ND)	0.5
(female, E4)	0.04	(AD, E4)	< 0.001	(female, AD)	0.7

TABLE 4 VO2 performance on subgroups

Impact of APOE Genotype on Cardiorespiratory Fitness in Aging and AD

> Guanlii Zhang

Introduction

Results

Discussion

Model with only KS data

$$VO_2 = \beta_0 + \beta_1 \cdot \mathsf{Age} + \beta_2 \cdot \mathsf{BMI} + \beta_3 \cdot \mathsf{Gender} + \beta_4 \cdot \mathsf{DX} + \beta_5 \cdot \mathsf{E4}(\mathsf{~Reduced~})$$

$$\begin{aligned} \mathsf{VO}_2 &= \beta_0 + \beta_1 \cdot \mathsf{Age} + \beta_2 \cdot \mathsf{BMI} + \beta_3 \cdot \mathsf{Gender} + \beta_4 \cdot \mathsf{DX} \\ &+ \beta_5 \cdot \mathsf{E4} + \beta_6 \cdot \mathsf{Gender} \cdot \mathsf{DX} + \beta_7 \cdot \mathsf{Gender} \cdot \mathsf{E4} \\ &+ \beta_8 \cdot \mathsf{DX} \cdot \mathsf{E4} (\ \mathsf{Complete} \) \end{aligned}$$

Results: Model Selection for KS data

Impact of APOE Genotype on Cardiorespiratory Fitness in Aging and AD

Zhan

Introduction

Results

Discussion

Selection Results for KS data

- ① a lack-of-fit F test suggests for the reduced model($F_{3,227} = 1.443$, p = 0.23);
- 2 for the reduced model, a stepwise/forward/backward selection suggests the same parsimonious model:

$$\mathsf{VO}_2 = \beta_0 + \beta_1 \cdot \mathsf{Age} + \beta_2 \cdot \mathsf{BMI} + \beta_3 \cdot \mathsf{Gender} + \beta_4 \cdot \mathsf{DX}$$

Results: Subgroup Aalysis for KS data

Impact of APOE Genotype on Cardiorespiratory Fitness in Aging and AD

> Guanli Zhang

Introduc

Method

Results

Discussion

We perform the same subgroup analysis on KS data only:

AD vs ND		Female vs Male		E4 vs NonE4	
	p		p		p
(male, nonE4)	0.008	(ND, nonE4)	< 0.001	(male, ND)	0.42
(male, E4)	0.003	(ND, E4)	< 0.001	(male, AD)	0.1
(female, nonE4)	0.39	(AD, nonE4)	< 0.001	(female, ND)	0.66
(female, E4)	0.05	(AD, E4)	< 0.001	(female, AD)	0.66

TABLE 5 VO2 performance on subgroups in KS

Conclusion: Using KS data only gives us similar p values and same significant results. To boost power we decide that both datasets should be included in our analysis.

Results: Model Selection with APOE information

Impact of APOE Genotype on Cardiorespiratory Fitness in Aging and AD

> Guanlin Zhang

Introduct

Method

Results

Discussior

APOE	E2/E2	E2/E3	E2/E4	E3/E3	E3/E4	E4/E4
Count	5	28	8	140	106	17

TABLE 6 Count of APOE allele Combinations

Results: Model Selection with APOE information

Impact of APOE Genotype on Cardiorespiratory Fitness in Aging and AD

Zhang

Introductio

Results

Discussion

Consider E2, E3, and E4

- ① Assign scores to different alleles: E4 = -1, E3 = 0 and E2 = 1;
- 2 Propose the following regression model:

$$\begin{aligned} \mathsf{VO}_2 &= \beta_0 + \beta_1 \cdot \mathsf{Age} + \beta_2 \cdot \mathsf{BMI} + \beta_3 \cdot \mathsf{Gender} + \beta_4 \cdot \mathsf{DX} \\ &+ \beta_5 \cdot \mathsf{Site} + \beta_6 \cdot I(\mathsf{alleles} = -2) \\ &+ \beta_7 \cdot I(\mathsf{alleles} = -1) + \beta_8 \cdot I(\mathsf{alleles} = 1) \\ &+ \beta_9 \cdot I(\mathsf{allele} = 2) \end{aligned}$$

Results: Model Selection with APOE information

Impact of APOE Genotype on Cardiorespiratory Fitness in Aging and AD

Zhang

Introduction

Method

Results

Discussio

Results

- 1 A Cochran-Armitage test shows a decreasing trend between AD and allele scores (p < 0.001);
- 2 The p values for allele groups are (β_6 : 0.15, β_7 : 0.76, β_8 : 0.65 and β_9 : 0.48), which says the allele combinations are not significant in predicting VO₂ scores;
- 3 A lack-of-fit test suggests for the same reduced main effect model $(F_{4.294} = 0.75, p = 0.56)$.

Discussion

Impact of APOE Genotype on Cardiorespiratory Fitness in Aging and AD

> Guanlii Zhang

Introductio

.

Results

Discussion

What we have tried

- Explored the current Alzheimer's disease data and discussed relationships between categorical variables under interest;
- 2 Tried to look for parsimonious but informational regression models to profile the significant predictor variables for VO_2 performance.

Conclusion

- 1 No significant effet from E4 allele carrier;
- 2 No interaction between Gender, Diagnosis, and E4 carrier;
- 3 No significant effect from APOE genotypes;
- We suggest the reduced main effect model as the final model.

Thank You!

Impact of APOE Genotype on Cardiorespiratory Fitness in Aging and AD

> Guanlii Zhang

