

NOVEL AUTOINDUCER MOLECULES AND USES THEREFOR**Related Applications**

This application claims the benefit of U.S. Provisional Application No. 60/229,715, filed

5 August 31, 2000, the disclosure of which and the references cited therein are hereby incorporated herein by reference in their entirities. Related subject matter is disclosed in the following issued patent, published patent applications, and pending U.S. applications, the disclosures of which and the references cited therein are incorporated herein by reference in their entirities: U.S. Patent 5,591,872, issued January 7, 1997; U.S. Patent 6,057,288, issued
10 May 2, 2000; published international patent application WO 98/58075, published in English on December 23, 1998; published international patent application WO 98/57618 A1, published in English on December 23, 1998; published international patent application WO 99/65889, published in English on December 23, 1999; and published international patent application WO 01/18248 A2, published in English on March 15, 2001.

Government Support

This work was supported by National Institutes of Health Grant R01-AI33713 (to B.H.I. and A.S.K.), Cystic Fibrosis Foundation Research Fellowship Grants PESCI96FO and PESCI99I0 (to E.C.P.), and National Institutes of Health Predoctoral Training Grant 5-T32AI07362 (to J.P.P.). E.P.G. was supported by grants from the Cystic Fibrosis Foundation (GREENB97ZO) and the National Science Foundation (MCB-9808308).

Background of the Invention

Bacteria communicate with each other to coordinate expression of specific genes in a cell density dependent fashion. This "bacterial signaling" is a phenomenon called quorum sensing and response. Quorum sensing enables a bacterial species to sense its own number and regulate gene expression according to population density. In other words, quorum sensing is cell density-dependent regulation of genes that involves a freely diffusible molecule synthesized by the cell called an autoinducer (Fuqua, W.C. *et al.* (1996) *Annu. Rev. Microbiol.* 50:727-751; Salmond, G.P.C. *et al.* (1995) *Mol. Microbiol.* 16:615-624; Svitnikov, D.M. *et al.* (1995) *Mol. Microbiol.* 17:801-812). Autoinducers are described, e.g., in U.S. Patents 5,591,872 and 5,593,827.

Autoinducer molecules and methods for the use of autoinducer molecules are described, for example, in U.S. Patent Nos. 5,591,872 and 6,057,288, and in published PCT international patent application Nos. WO 98/57618, WO 98/58075, WO 99/65889, and WO 00/06177. Bacteria at a low cell density produce a basal level of autoinducer, and, as a population grows, autoinducer concentration increases concomitantly with cell density. On reaching a threshold concentration, autoinducer binds to and thereby activates an R protein, which then induces or ceases to repress specific target genes. In this manner, intercellular

signals enable a bacterial population to control the expression of specific genes in response to cell density.

The paradigm system for quorum sensing is the *lux* system of the luminescent marine bacterium, *Vibrio fischeri*. *V. fischeri* exists at low cell densities in sea water and also at very high cell densities within the light organs of various marine organisms, such as the squid *Euprymna scolopes* (Pesci, E.C. et al. (1997) *Trends in Microbiol.* 5(4):132-135; Pesci, E.C. et al. (1997) *J. Bacteriol.* 179:3127-3132; Ruby, E.G. (1996) *Ann. Rev. Microbiol.* 50:591-624). At high cell densities, the *V. fischeri* genes encoding the enzymes required for light production are expressed. These genes are part of the *lux ICDABEG* operon and are regulated by the gene products of *luxI* and *luxR* (Baldwin, T.O. et al. (1989) *J. of Biolum. and Chemilum.* 4:326-341; Eberhard, A., et al. (1991) *Arch. of Microbiol.* 155:294-297; Gray, K.M. et al. (1992) *J. Bacteriol.* 174:4384-4390).

LuxI is an autoinducer synthase that catalyzes the formation of the *V. fischeri* autoinducer (VAI), *N*-(3oxohexanoyl) homoserine lactone (Eberhard, A., et al. (1991) *Arch. of Microbiol.* 155:294-297; Seed, P.C. et al. (1995) *J. Bacteriol.* 177:654-659). The autoinducer freely diffuses across the cell membrane and at high cell densities, reaches a critical concentration (Kaplan, H.B. et al. (1985) *J. Bacteriol.* 163:1210-1214). At this critical concentration, VAI interacts with LuxR, a DNA-binding transcriptional regulator. The LuxR-VAI complex then binds to an upstream sequence of the *lux* operon called the "lux box", and activates transcription (Devine, J.H. et al. (1989) *PNAS* 86: 5688-5692; Hanzelka, B.A. et al. (1995) *J Bacteriol.* 177:815-817; Stevens, A.M. et al. (1994) *PNAS* 91:12619-12623). Since one of the genes of the operon is *luxI*, an autoregulatory loop is formed.

Many gram-negative bacteria have been shown to possess one or more quorum sensing systems (Fuqua, W.C. et al. (1996) *Annu. Rev. Microbiol.* 50:727-751; Salmond, G.P.C. et al. (1995) *Mol. Microbiol.* 16:615-624). These systems regulate a variety of physiological processes, including the activation of virulence genes. In addition, it has been recently demonstrated that quorum sensing is involved in biofilm formation (Davies, D. G. et al. (1998) *Science*. 280(5361):295-8).

The systems typically have acylated homoserine lactone ("HSL") ring autoinducers, in which the homoserine lactone ring is conserved. The acyl side chain, however, can vary in length and degree of substitution. *Pseudomonas aeruginosa* has two quorum sensing systems, *las* and *rhl* (Brint et al. 1995, Hanzelka et al. 1996, Baldwin et al., 1989, Passador et al. 1993, Pearson et al. 1997, Pesci et al. 1997). The two systems have distinct autoinducer synthases (*lasI* and *rhlI*), transcriptional regulators (*lasR* and *rhlR*), and autoinducers (*N*-(3-oxododecanoyl) homoserine lactone (HSL) and *N*-butyryl HSL) (Sitnikov et al., 1995, Stevens et al. 1994). *N*-(3-oxododecanoyl) homoserine lactone is synthesized by LasI along with a small amount of *N*-(3-oxooctanoyl) HSL and *N*-(3-oxohexanoyl) HSL, while RhlI makes primarily *N*-butyryl HSL and a small amount of *N*-hexanoyl (Pearson et al. 1994, Winson et al. 1995). The *rhl* and *las* systems are involved in regulating the expression of a

number of secreted virulence factors, biofilm development, and the stationary phase sigma factor (RpoS) (Brint *et al.* 1995, Davies *et al.* 1998, Latifi *et al.* 1996, Ochsner *et al.* 1995, Pesci *et al.* 1997). Expression of the *rhl* system requires a functional *las* system. Therefore the two systems in combination with RpoS constitute a regulatory cascade (Pesci *et al.* 1997, Seed *et al.* 1995).

5 Biofilms are defined as an association of microorganisms, single or multiple species, that grow attached to a surface and produce a slime layer that provides a protective environment (Costerton, J. W. (1995) *J Ind Microbiol*. 15(3):137-40, Costerton, J. W. *et al.* (1995) *Annu Rev Microbiol*. 49:711-45). Typically, biofilms produce large amounts of 10 extracellular polysaccharides, responsible for the slimy appearance, and are characterized by an increased resistance to antibiotics (1000- to 1500-fold less susceptible). Several mechanisms are proposed to explain this biofilm resistance to antimicrobial agents (Costerton, J. W. *et al.* (1999) *Science*. 284(5418):1318-22). One idea is that the 15 extracellular matrix in which the bacterial cells are embedded provides a barrier toward penetration by the biocides. A further possibility is that a majority of the cells in a biofilm are in a slow-growing, nutrient-starved state, and therefore not as susceptible to the effects of antimicrobial agents. A third mechanism of resistance could be that the cells in a biofilm adopt a distinct and protected biofilm phenotype, e.g., by elevated expression of drug-efflux pumps.

20 In most natural settings, bacteria grow predominantly in biofilms. Biofilms of *P. aeruginosa* have been isolated from medical implants, such as indwelling urethral, venous or peritoneal catheters (Stickler, D. J. *et al.* (1998) *Appl Environ Microbiol*. 64(9):3486-90). Chronic *P. aeruginosa* infections in cystic fibrosis lungs are considered to be biofilms (Costerton, J. W. *et al.* (1999) *Science*. 284(5418):1318-22).

25 In industrial settings, the formation of biofilms is often referred to as 'biofouling', or biological fouling. Biological fouling of surfaces is common and leads to material degradation, product contamination, mechanical blockage, and impedance of heat transfer in water-processing systems. Biofilms are also the primary cause of biological contamination of drinking water distribution systems, due to growth on filtration devices.

30 As noted earlier, many gram-negative bacteria have been shown to possess one or more quorum sensing systems that regulate a variety of physiological processes, including the activation of virulence genes and biofilm formation. One such gram negative bacterium is *Pseudomonas aeruginosa*.

35 *P. aeruginosa* is a soil and water bacterium that can infect animal hosts. Normally, the host defense system is adequate to prevent infection. However, in immunocompromised individuals (such as burn patients, patients with cystic fibrosis, or patients undergoing immunosuppressive therapy), *P. aeruginosa* is an opportunistic pathogen, and infection with *P. aeruginosa* can be fatal (Govan, J. R. *et al.* (1996) *Microbiol Rev*. 60(3):539-74; Van Delden, C. *et al.* (1998) *Emerg Infect Dis*. 4(4):551-60).

For example, Cystic fibrosis (CF), the most common inherited lethal disorder in Caucasian populations (~1 out of 2,500 live births), is characterized by bacterial colonization and chronic infections of the lungs. The most prominent bacterium in these infections is *P. aeruginosa*—by their mid-twenties, over 80% of people with CF have *P. aeruginosa* in their

5 lungs (Govan, J. R. et al. (1996) *Microbiol Rev.* 60(3):539-74). Although these infections can be controlled for many years by antibiotics, ultimately they “progress to mucoidy,” meaning that the *P. aeruginosa* forms a biofilm that is resistant to antibiotic treatment. At this point the prognosis is poor. The median survival age for people with CF is the late 20s, with *P. aeruginosa* being the leading cause of death (Govan, J. R. et al. (1996) *Microbiol Rev.* 60(3):539-74). According to the Cystic Fibrosis Foundation, treatment of CF cost more than \$900 million in 1995 (Foundation, CF <http://www.cff.org/homeline199701.htm>).

P. aeruginosa is also one of several opportunistic pathogens that infect people with AIDS, and is the main cause of bacteremia (bacterial infection of the blood) and pneumonitis in these patients (Rolston, K. V. et al. (1990) *Cancer Detect Prev.* 14(3):377-81; Witt, D. J. et al. (1987) *Am J Med.* 82(5):900-6). A recent study of 1635 AIDS patients admitted to a French hospital between 1991-1995 documented 41 cases of severe *P. aeruginosa* infection (Meynard, J. L. et al. (1999) *J Infect.* 38(3):176-81). Seventeen of these had bacteremia, which was lethal in 8 cases. Similar numbers were obtained in a smaller study in a New York hospital, where the mortality rate for AIDS patients admitted with *P. aeruginosa* bacteremia was about 50% (Mendelson, M. H. et al. 1994. *Clin Infect Dis.* 18(6):886-95).

In addition, about two million Americans suffer serious burns each year, and 10,000-12,000 die from their injuries. The leading cause of death is infection (Lee, J. J. et al. (1990) *J Burn Care Rehabil.* 11(6):575-80). *P. aeruginosa* bacteremia occurs in 10 % of seriously burned patients, with a mortality rate of 80 % (Mayhall, C. G. (1993) p. 614-664, Prevention and control of nosocomial infections. Williams & Wilkins, Baltimore; McManus, A. T et al. (1985) *Eur J Clin Microbiol.* 4(2):219-23).

Such infections are often acquired in hospitals ("nosocomial infections") when susceptible patients come into contact with other patients, hospital staff, or equipment. In 1995 there were approximately 2 million incidents of nosocomial infections in the U.S., resulting in 88,000 deaths and an estimated cost of \$ 4.5 billion (Weinstein, R. A. (1998) *Emerg Infect Dis.* 4(3):416-20). Of the AIDS patients mentioned above who died of *P. aeruginosa* bacteremia, more than half acquired these infections in hospitals (Meynard, J. L. et al. (1999) *J Infect.* 38(3):176-81).

Nosocomial infections are especially common in patients of intensive care units as these people often have weakened immune systems and are frequently on ventilators and/or catheters. Catheter-associated urinary tract infections are the most common nosocomial infection (Richards, M. J. et al. (1999) *Crit Care Med.* 27(5):887-92) (31 % of the total), and *P. aeruginosa* is highly associated with biofilm growth and catheter obstruction. While the catheter is in place, these infections are difficult to eliminate (Stickler, D. J. et al. (1998) *Appl*

5 *Environ Microbiol.* 64(9):3486-90). The second most frequent nosocomial infection is pneumonia, with *P. aeruginosa* the cause of infection in 21 % of the reported cases (Richards, M. J. et al. (1999) *Crit Care Med.* 27(5):887-92). The annual costs for diagnosing and treating nosocomial pneumonia has been estimated at greater than \$2 billion (Craven, D. E. et al. (1991) *Am J Med.* 91(3B):44S-53S).

10 Treatment of these so-called nosocomial infections is complicated by the fact that bacteria encountered in hospital settings are often resistant to many antibiotics. In June 1998, the National Nosocomial Infections Surveillance (NNIS) System reported increases in resistance of *P. aeruginosa* isolates from intensive care units of 89 % for quinolone resistance and 32 % for imipenem resistance compared to the years 1993-1997 (NNIS).
http://www.cdc.gov/ncidod/hip/NNIS/AR_Surv1198.htm. In fact, some strains of *P. aeruginosa* are resistant to over 100 antibiotics (Levy, S. (1998) *Scientific American*. March). There is a critical need to overcome the emergence of bacterial strains that are resistant to conventional antibiotics (Travis, J. (1994) *Science*. 264:360-362).

15 *P. aeruginosa* is also of great industrial concern (Bitton, G. (1994) *Wastewater Microbiology*. Wiley-Liss, New York, NY; Steelhammer, J. C. et al. (1995) *Indust. Water Treatm.*:49-55). The organism grows in an aggregated state, i.e., the biofilm, which causes problems in many water processing plants. Of particular public health concern are food processing and water purification plants. Problems include corroded pipes, loss of efficiency in heat exchangers and cooling towers, plugged water injection jets leading to increased hydraulic pressure, and biological contamination of drinking water distribution systems (Bitton, G. (1994) *Wastewater Microbiology*. Wiley-Liss, New York, NY, 9). The elimination of biofilms in industrial equipment has so far been the province of biocides. Biocides, in contrast to antibiotics, are antimicrobials that do not possess high specificity for bacteria, so they are often toxic to humans as well. Biocide sales in the US run at about \$ 1 billion per year (Peaff, G. (1994) *Chem. Eng. News*:15-23).

20 A particularly ironic connection between industrial water contamination and public health issues is an outbreak of *P. aeruginosa* peritonitis that was traced back to contaminated poloxamer-iodine solution, a disinfectant used to treat the peritoneal catheters. *P. aeruginosa* is commonly found to contaminate distribution pipes and water filters used in plants that manufacture iodine solutions. Once the organism has matured into a biofilm, it becomes protected against the biocidal activity of the iodophor solution. Hence, a common soil organism that is harmless to the healthy population, but causes mechanical problems in industrial settings, ultimately contaminated antibacterial solutions that were used to treat the very people most susceptible to infection.

25 Regulation of virulence genes by quorum sensing is well documented in *P. aeruginosa*. Recently, genes not directly involved in virulence including the stationary phase sigma factor *rpoS* and genes coding for components of the general secretory pathway (*xcp*) (Jamin, M. et al. (1991) *Biochem J.* 280(Pt 2):499-506) have been reported to be positively

regulated by quorum sensing. Furthermore, the *las* quorum sensing system is required for maturation of *P. aeruginosa* biofilms (Chapon-Herve, V. et al. (1997) *Mol. Microbiol.* 24, 1169-1170; Davies, D. G., et al. (1998) *Science* 280, 295-298). Thus it seems clear that quorum sensing represents a global gene regulation system in *P. aeruginosa*. However, the 5 number and types of genes controlled by quorum sensing have not been identified or studied extensively.

Summary of the Invention

The present invention is based, at least in part, on the discovery of a novel 10 autoinducer molecule, 2-heptyl-3-hydroxy-4-quinolone, which functions as an intercellular signal molecule in the cell-to-cell communication system of *Pseudomonas aeruginosa*. The demonstration that 2-heptyl-3-hydroxy-4-quinolone can function as an intercellular signal sheds light on the role of secondary metabolites and shows that *P. aeruginosa* cell-to-cell signaling is not restricted to acyl-homoserine lactones.

The synthesis and bioactivity of *Pseudomonas* quinolone signal are mediated by the *P. aeruginosa las* and *rhl* quorum sensing systems, respectively. Accordingly, the invention is directed to bacterial quinolone signal molecules and more particularly to *Pseudomonas* quinolone signal ("PQS") molecules, e.g., 2-heptyl-3-hydroxy-4-quinolone, and analogs and derivatives thereof.

Thus, in one aspect, the invention is a compound of formula I:

wherein:

25 R₁-R₄ are independently H, alkyl, alkenyl, alkynyl, OH, NH₂, SH, O-R₆, N-R₇R₈, or a halogen;

 R₅ is H, SH, OH, O-R₆, or N-R₇R₈;

 R₆ is H or C₁-C₄ alkyl;

 R₇ and R₈ are independently H, C₁-C₄ alkyl, O, or S;

30 X and Y are independently S, O, or N-R₉;

 R₉ is H, O, S, or C₁-C₄ alkyl;

Q is a tail group; and
salts thereof.

In one embodiment, Q has the formula IA

5

wherein:

R₁₀-R₁₃ are independently H, C₁-C₄ alkyl, OH, NH₂, SH, O-R₂₅, N-R₂₆R₂₇, or a halogen, or R₁₀ and R₁₁ taken together form a carbonyl, a sulfonyl or an imino moiety, or R₁₂ and R₁₃ taken together form a carbonyl, a sulfonyl or an imino moiety;

R₁₄-R₂₄ are independently H, C₁-C₄ alkyl, OH, NH₂, SH, O-R₂₅, N-R₂₆R₂₇, or a halogen;

R₂₅ is H or C₁-C₄ alkyl; and

R₂₆ and R₂₇ are independently H, C₁-C₄ alkyl, O, or S.

10
15
20
25

In certain embodiments, the invention is directed to compounds of formula I that are different than 2-heptyl-3-hydroxy-4-quinolone. Thus, examples of such embodiments include, but are not limited to, compounds of formula I in which: when Q is heptyl, X is O, Y is NH and R₅ is OH, R₁-R₄ are not all hydrogen; when Q is heptyl, X is O, Y is NH, and R₁-R₄ are all hydrogen, R₅ is not OH; when Q is heptyl, Y is NH, R₁-R₄ are all hydrogen, and R₅ is OH, X is not O; when Q is heptyl, X is O, R₁-R₄ are all hydrogen, and R₅ is OH, Y is not NH; and when X is O, Y is NH and R₅ is OH, and R₁-R₄ are all hydrogen, Q is not heptyl. In other embodiments, the invention is directed to compounds of formula I wherein R₅ is SH, OH, O-R₆, or N-R₇R₈.

In other embodiments in which Q has formula IA, R₁₆, R₁₇, and R₁₈ are H. In other embodiments, R₂ is halogen; or R₃ is halogen; or R₄ is halogen; or X is S or N-R₉; or Y is O, S, or N-R₉ and R₉ is C₁-C₄-alkyl; or R₅ is H, SH, O-R₆, or N-R₇R₈, and R₆ is C₁-C₄ alkyl; or R₅ is SH, O-R₆, or N-R₇R₈; X is O; or R₅ is OH and Y is N-R₉.

30 In one embodiment of invention Q is an alkylene chain having a skeleton of three to twenty carbon atoms. In certain embodiments, the alkylene chain contains one or more double bonds or triple bonds between the carbon atoms forming the skeleton alkylene side

chain. In other embodiments, one or more carbon atoms forming the skeleton of the alkylene side chain are replaced with sulfur or sulfur-substituted moieties.

In yet other embodiments, the compounds of the invention contain a chiral center, for example, the Q substituent of formula IA. In certain embodiments, the compounds are optically active isomers.

5 In a specific embodiment, the invention is a compound of formula II:

10 In another aspect, the invention is directed to autoinducer molecules comprising the compounds hereinabove described. In one embodiment, the autoinducer molecules regulate gene expression. In particular embodiments, the autoinducer molecule regulates gene expression in bacteria. In preferred embodiments, the bacteria is *Pseudomonas aeruginosa*. In one embodiment, the *Pseudomonas aeruginosa* gene expresses a virulence factor. In certain embodiments, the virulence factor is elastase.

15 In one embodiment, the autoinducer molecules of the invention regulate the activity of the LasR protein of *Pseudomonas aeruginosa*. In other embodiments, the autoinducer molecules of the invention regulate the activity of the RhlR protein of *Pseudomonas aeruginosa*. In certain embodiments, the autoinducer molecules of the invention are isolated from culture media in which *Pseudomonas aeruginosa* is grown.

20 In another embodiment, the invention is directed to compounds hereinabove defined that are capable of modulating the autoinducer activity of 2-heptyl-3-hydroxy-4-quinolone. In certain embodiments, modulation comprises inhibition of the autoinducer activity of 2-heptyl-3-hydroxy-4-quinolone. In other embodiments, modulation comprises synergistic enhancement of the autoinducer activity of 2-heptyl-3-hydroxy-4-quinolone.

25 In yet another embodiment, the invention is directed to compounds hereinabove described that are capable of modulating the activity of the LasR and/or the RhlR proteins of *Pseudomonas aeruginosa*. In certain embodiments, the compound is an agonist of the LasR and/or the RhlR proteins of *Pseudomonas aeruginosa*. In certain embodiments, the compound is an antagonist of the LasR and/or the RhlR proteins of *Pseudomonas aeruginosa*.

30 In another aspect, the invention is a pharmaceutical composition comprising a therapeutically effective amount of a compound of formula I and a pharmaceutically acceptable carrier therefor, wherein the compound inhibits the activity of one or more proteins in a microorganism that regulate expression of virulence factors. In particular embodiments of the pharmaceutical composition, the compound is present in an amount

effective to affect the ability of the microorganism to initially infect or further infect an organism. In one embodiment, the microorganism is *Pseudomonas aeruginosa*. In other embodiments of the invention where the microorganism is *Pseudomonas aeruginosa*, the compound of the pharmaceutical composition inhibits the activity of the LasR and/or the RhI_R proteins of *Pseudomonas aeruginosa*. In certain other embodiments, the compound of the pharmaceutical composition inhibits the autoinducer activity of 2-heptyl-3-hydroxy-4-quinolone . The pharmaceutical composition may further comprise an antimicrobial, antibacterial or antifungal agent.

In yet another aspect, the invention is a method of inhibiting the infectivity of *Pseudomonas aeruginosa* comprising administering to a subject a therapeutically effective amount of a compound of formula I, wherein the compound inhibits the activity of the LasR and/or the RhI_R proteins of *Pseudomonas aeruginosa*. In certain embodiments, the compound inhibits the autoinducer activity of 2-heptyl-3-hydroxy-4-quinolone.

Another aspect of the invention is a method of treating an immunocompromised subject infected with *Pseudomonas aeruginosa* comprising administering to a subject a therapeutically effective amount of a compound of formula (I), wherein the compound inhibits the activity of the LasR and/or the RhI_R proteins of *Pseudomonas aeruginosa*. In certain embodiments, the compound inhibits the autoinducer activity of 2-heptyl-3-hydroxy-4-quinolone. In particular embodiments, the subject is afflicted with cystic fibrosis.

In yet another embodiment, the invention is a culture medium for microorganisms comprising, as an added compound, an autoinducer molecule of the invention, at a concentration effective to stimulate or promote the metabolism, growth and/or recovery of the microorganism. In certain embodiments, the microorganism is *Pseudomonas aeruginosa*. In particular embodiments where the microorganism is *Pseudomonas aeruginosa*, the autoinducer is 2-heptyl-3-hydroxy-4-quinolone .

Yet another aspect of the invention is a method for identifying a compound that modulates an autoinducer molecule in bacteria, said method comprising:

providing a cell which comprises a quorum sensing controlled gene, wherein said cell is responsive to an autoinducer molecule of the invention as hereinabove described, such that a detectable signal is generated;

contacting said cell with an autoinducer as hereinabove described in the presence and absence of a test compound; and

detecting a change in the detectable signal to thereby identify said test compound as a modulator of an autoinducer molecule in bacteria. In certain embodiments, the test compound inhibits the autoinducer molecule. In other embodiments, the compound synergizes activity of the autoinducer molecule. In preferred embodiments, the bacteria is *Pseudomonas aeruginosa*. In particular embodiments of the invention when the microorganism is *Pseudomonas aeruginosa*, the autoinducer is 2-heptyl-3-hydroxy-4-

quinolone. In other embodiments of the invention when the microorganism is *Pseudomonas aeruginosa*, the compound inhibits binding of the autoinducer molecule to LasR and/or RhlR.

Still another aspect of the invention is a method of regulating the expression of a gene in bacteria comprising:

5 inserting a gene into bacteria chosen for enhancement of gene expression by a compound of formula I that enhances the activity of the LasR and/or RhlR protein; and incubating the bacteria with a compound of formula I that enhances the activity of the LasR protein, such that the expression of the gene is regulated. In certain embodiments, the method further comprises the additional steps of:

10 allowing the gene expression to reach a desired level; and incubating the bacteria with a compound of formula I that inhibits the activity of the LasR and/or RhlR protein, thereby regulating the gene expression by the bacteria.

Another aspect of the invention is an inhibitor of the autoinducer activity of 2-heptyl-3-hydroxy-4-quinolone.

20 Yet another aspect of the invention is an analog of 2-heptyl-3-hydroxy-4-quinolone that inhibits the induction of virulence factors by 2-heptyl-3-hydroxy-4-quinolone, LasR or RhlR. In certain embodiments, the virulence factor is exotoxin A, elastase, or an alkaline protease.

25 Still another aspect of the invention is an analog of 2-heptyl-3-hydroxy-4-quinolone that inhibits the induction of biofilm formation by 2-heptyl-3-hydroxy-4-quinolone, LasR or RhlR.

In another aspect, the invention is a method for modulating quorum sensing signaling in bacteria, said method comprising:

30 providing bacteria that comprise a quorum sensing controlled gene, wherein said bacteria are responsive to an autoinducer molecule; and incubating the bacteria with a compound of formula I other than 2-heptyl-3-hydroxy-4-quinolone, such that quorum sensing signaling in bacteria is modulated. In one embodiment, the autoinducer is 2-heptyl-3-hydroxy-4-quinolone.

DRAFTS
15
20
25
30
35

Detailed Description of the Invention

I. Definitions:

35 Before further description of the invention, certain terms employed in the specification, examples and appended claims are, for convenience, collected here.

The term "chiral" refers to molecules that have the property of non-superimposability of the mirror image partner, while the term "achiral" refers to molecules that are superimposable on their mirror image partner.

As used herein, the term "halogen" designates -F, -Cl, -Br or -I; the term "sulphydryl"

5 or "thiol" means -SH; the term "hydroxyl" means -OH.

The term "alkenyl" includes unsaturated aliphatic groups analogous in length and possible substitution to the alkyls described below, but which contain at least one double bond. Unless the number of carbons is otherwise specified, "lower alkenyl" refers to an alkenyl group, as defined above, but having from two to four carbon atoms in its backbone 10 structure.

The term "alkyl" includes saturated aliphatic groups, including straight-chain alkyl groups, branched-chain alkyl groups, cycloalkyl (alicyclic) groups, alkyl substituted cycloalkyl groups, and cycloalkyl substituted alkyl groups. The term alkyl further includes alkyl groups, which can further include heteroatoms replacing one or more carbons of the hydrocarbon backbone, e.g., oxygen, nitrogen, sulfur or phosphorous atoms. In one embodiment, a straight chain or branched chain alkyl has 20 or fewer carbon atoms in its backbone (e.g., C₁-C₁₂ for straight chain, C₃-C₁₂ for branched chain). Examples of alkyl groups contemplated by the invention include, but are not limited to, methyl, ethyl, isopropyl, isobutyl, tert-butyl, branched pentyl, branched hexyl, cyclohexyl, cyclopentyl, n-heptyl and branched heptyl groups.

Moreover, the term alkyl includes both "unsubstituted alkyls" and "substituted alkyls", the latter of which refers to alkyl moieties having substituents replacing a hydrogen on one or more carbons of the hydrocarbon backbone. Such substituents can include, for example, halogen, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, alkoxy carbonyl, aminocarbonyl, alkylthiocarbonyl, alkoxy, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), arylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulphydryl, alkylthio, arylthio, thiocarboxylate, sulfates, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, cyano, azido, heterocyclyl, alkylaryl, or an aromatic or heteroaromatic moiety. It will be understood by those skilled in the art that the moieties substituted on the hydrocarbon chain can themselves be substituted, if appropriate. Cycloalkyls can be further substituted, e.g., with the substituents described above. An "alkylaryl" moiety is an alkyl substituted with an aryl (e.g., phenylmethyl (benzyl)). Unless the number of carbons is otherwise specified, "lower alkyl" refers to an alkyl group, as defined above, but having from one to three carbon atoms in its backbone structure. The terms "alkoxyalkyl", "polyaminoalkyl" and "thioalkoxyalkyl" include alkyl groups, as described above, which further include oxygen, nitrogen or sulfur atoms replacing one or more carbons of the hydrocarbon backbone, e.g., oxygen, nitrogen or sulfur atoms.

The term "alkynyl" includes unsaturated aliphatic groups analogous in length and possible substitution to the alkyls described above, but which contain at least one triple bond. Unless the number of carbons is otherwise specified, "lower alkynyl" refers to an alkynyl group, as defined above, but having from two to four carbon atoms in its backbone structure.

5 The term "analog" includes compounds which are structurally similar but not identical to autoinducer molecules derived from bacteria, such as, for example, N-(3-oxododecanoyl)homoserine lactone and 2-heptyl-3-hydroxy-4-quinolone .

10 The term "autoinducer molecule" includes molecules that diffuse across cell membranes and activate transcription of various factors that affect bacterial viability. Such compounds can affect virulence and biofilm development. Autoinducer molecules include, for example, 2-heptyl-3-hydroxy-4-quinolone . Other examples of autoinducer molecules are listed below in Table 1. In isolated form, autoinducer molecules can be obtained from naturally occurring proteins by purifying cellular extracts, synthesized chemically, or recombinantly produced.

Table 1

Bacterial species	Autoinducer Molecules for Particular Bacterial Species	Protein Modulated by Autoinducer Molecule	Target function(s)
<i>Vibrio fischeri</i>	N-3-(oxohexanoyl)-homoserine lactone (VAI-1)	LuxI/LuxR	<i>lux</i> CDABEG, <i>luxR</i> luminescence <i>lux</i> CDABEG, ?
	N-(octanoyl)-L-homoserine lactone (VAI-2)	AinS/AinR ^c	
<i>Vibrio harveyi</i>	N-β-(hydroxybutyryl)-homoserine lactone (HAI-1)	LuxM/LuxN-LuxO-LuxR ^d	<i>lux</i> CDABEG, luminescence and polyhydroxybutyrate synthesis <i>lux</i> CDABEG
	HAI-2	Lux?/LuxPQ-LuxO-LuxR ^d	
<i>Pseudomonas aeruginosa</i>	N-3-(oxododecanoyl)-L-homoserine lactone (PAI-1)	LasI/LasR	<i>lasB</i> , <i>lasA</i> , <i>aprA</i> , <i>toxA</i> , virulence factors
	N-(butyryl)-L-homoserine lactone (PAI-2)	RhlII/RhlIR	<i>rhlAB</i> , rhamnolipid synthesis, virulence factors
<i>Pseudomonas aeureofaciens</i>	(PRAI)	PhzI/PhzR	<i>phz</i> , phenazine biosynthesis
<i>Agrobacterium tumefaciens</i>	N-3-(oxooctanoyl)-L-homoserine lactone (AAI)	TraI/TraR-TraM	<i>tra</i> gens, <i>traR</i> , Ti plasmid conjugal transfer
<i>Erwinia carotovora</i> subsp. <i>carotovora</i> SCR1193	VAI-1	ExpI/ExpR	<i>pel</i> , <i>pec</i> , <i>pep</i> , exoenzyme synthesis
<i>Erwinia carotovora</i> subsp. <i>carotovora</i> SCC3193	VAI-1	CarI/CarR	<i>cap</i> , carbapenem antibiotic synthesis
<i>Erwinia carotovora</i> subsp. <i>carotovora</i> 71	VAI-1	HslI/?	<i>pel</i> , <i>pec</i> , <i>pep</i> , exoenzyme synthesis

TOP E40 - SEE SHEET 60
40

<i>Erwinia stewartii</i>	VAI-I	EsaI/EsaR	<i>wts</i> genes, exopolysaccharide synthesis, virulence factors
<i>Rhizobium leguminosarum</i>	<i>N</i> -(3R-hydroxy-7- <i>cis</i> -tetradecanoyl-L-homoserine lactone, small bacteriocin, (RLAI)	?/RhiR	<i>rhiABC</i> , rhizosphere genes and stationary phase
<i>Enterobacter agglomerans</i>	VAI-I	EagI/EagR	function unclear
<i>Yersinia enterocolitica</i>	VAI-I	YenI/YenR	function unclear
<i>Serratia liquefaciens</i>	<i>N</i> -butanoyl-L-homoserine lacton (SAI-1) <i>N</i> -hexanoyl-L-homoserine lacton (SAI-2)	Swrl/? Swrl/?	swarming motility swarming motility
<i>Aeromonas hydrophila</i>	(AHAI)	AhyI/AhyR	function unclear
<i>Escherichia coli</i> ? ^g		?/SdiA	<i>fisQAZ</i> , cell division

The term "antimicrobial" is intended to encompass the elimination or reduction of a population of microorganisms, for example, bacteria. The term is also intended to include a reduction in or elimination of the pathogenic effect of bacteria, for example through inhibition of bacterial production of virulence factors and/or biofilm development.

The term "aryl" includes aryl groups, including 5- and 6-membered single-ring aromatic groups that may include from zero to four heteroatoms, for example, benzene, pyrrole, furan, thiophene, imidazole, benzoxazole, benzothiazole, triazole, tetrazole, pyrazole, pyridine, pyrazine, pyridazine and pyrimidine, and the like. Aryl groups also include polycyclic fused aromatic groups such as naphthyl, quinolyl, indolyl, and the like. Those aryl groups having heteroatoms in the ring structure may also be referred to as "aryl heterocycles", "heteroaryls" or "heteroaromatics". The aromatic ring can be substituted at one or more ring positions with such substituents as described above, as for example, halogen, hydroxyl, alkoxy, alkylcarbonyloxy, arylcarbonyloxy, alkoxy carbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, alkoxy carbonyl, aminocarbonyl, alkylthiocarbonyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, and alkylaryl amino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulphydryl, alkylthio, arylthio, thiocarboxylate, sulfates, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, cyano, azido, heterocyclyl, alkylaryl, or an aromatic or heteroaromatic moiety. Aryl groups can also be fused or bridged with alicyclic or heterocyclic rings that are not aromatic so as to form a polycycle (e.g., tetalin). The term "aralkyl" includes alkyl groups substituted with at least one aryl group and aryl groups substituted with at least one alkyl group.

The term "biofilm" includes biological films that develop and persist at interfaces in aqueous and other environments. Biofilms are composed of microorganisms embedded in an organic gelatinous structure composed of one or more matrix polymers which are secreted by the resident microorganisms.

The language "biofilm development" includes the formation growth, and modification of the bacterial colonies contained with the biofilm structures as well as the synthesis and maintenance of the exopolysaccharide matrix of the biofilm structures.

5 The term "biofilm associated states" includes disorders which are characterized by the presence or potential presence of a bacterial biofilm. Examples of biofilm associated states include, but are not limited to, middle ear infections, cystic fibrosis, osteomyelitis, acne, dental cavities, and prostatitis. Biofilm associated states also include infection of the subject by one or more bacteria, e.g., *Pseudomonas aeruginosa*.

10 The term "chain" includes moieties of atoms covalently bonded to each other linearly. Generally, the atoms in the chain may be substituted with any substituents that allow the compounds to perform their intended function. Examples of atoms which may be included in a chain of atoms include carbon, nitrogen, sulfur, oxygen, and phosphorous. For example, the linear chain may be entirely composed of carbon atoms. The carbon atoms of the chain may be substituted (e.g., with carbonyl groups, halogens, hydroxy, thiol, amino, alkyl, alkenyl, alkynyl groups etc.), unsubstituted or bound to hydrogen atoms. In addition, the carbon atoms forming the skeleton of the chain may be replaced with one or more other atoms, e.g., sulfur. Furthermore, the chain can be saturated (e.g., contain only single bonds) or may be unsaturated (e.g., contain double or triple bonds between the atoms of the chain or their substituents.)

20 The term "compound" includes molecules of any one of formulae, as described herein, or pharmaceutically acceptable salts, esters, or prodrugs thereof. The term "compound" includes analogs of autoinducer molecules as well as inhibitors of autoinducer molecules. Thus, the term "compound" includes antimicrobial agents, which inhibit or modulate the formation of bacterial virulence factors and/or bacterial biofilms.

25 The term "heteroatom" includes atoms of any element other than carbon or hydrogen. Preferred heteroatoms are nitrogen, oxygen, sulfur and phosphorus.

30 The language an "immunocompromised subject" includes subjects, e.g., mammals, e.g., humans, which have an immune system that is incapable of reacting to pathogens. The subject can be immunocompromised due to a genetic disorder, disease or drugs that inhibit immune response. An immunocompromised subject includes an individual afflicted with cystic fibrosis or who is taking corticosteroids or immunosuppressive agents.

35 The language "infected with *Pseudomonas aeruginosa*" includes a subject that is found to have *Pseudomonas aeruginosa*, present in its body. For example, *Pseudomonas aeruginosa* often infects the lungs of cystic fibrosis patients. Even a small number of *Pseudomonas aeruginosa* found in an organism can constitute infection with *Pseudomonas aeruginosa*.

The language "inhibitor of the autoinducer molecule" includes compounds of the invention and other compounds that interfere with the ability of the autoinducer molecule to stimulate, regulate, or modulate the activity of the protein which is normally responsive to it.

For example, inhibitors of *P. aeruginosa* autoinducer molecules include compounds which degrade, compete with, or bind to, for example, 2-heptyl-3-hydroxy-4-quinolone ,or otherwise alter the ability of the autoinducer molecule to interact with the LasR protein and/or the RhlR protein of *P. aeruginosa*.

5 The phrases "parenteral administration" and "administered parenterally" as used herein means modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal and
10 intrasternal injection and infusion.

15 The phrase "pharmaceutically acceptable carrier" is art recognized and includes a pharmaceutically acceptable material, composition or vehicle, suitable for administering compounds of the present invention to mammals. The carriers include liquid or solid filler, diluent, excipient, solvent or encapsulating material, involved in carrying or transporting the subject agent from one organ, or portion of the body, to another organ, or portion of the body. Each carrier must be "acceptable" in the sense of being compatible with the other ingredients of the formulation and not injurious to the patient. Some examples of materials which can serve as pharmaceutically acceptable carriers include: sugars, such as lactose, glucose and sucrose; starches, such as corn starch and potato starch; cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatin; talc; excipients, such as cocoa butter and suppository waxes; oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; glycols, such as propylene glycol; polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; esters, such as ethyl oleate and ethyl laurate; agar; buffering agents, such as magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen-free water; isotonic saline; Ringer's solution; ethyl alcohol; phosphate buffer solutions; and other non-toxic compatible substances employed in pharmaceutical formulations.

20 The term "pharmaceutically acceptable esters" refers to the relatively non-toxic, esterified products of the compounds of the present invention. These esters can be prepared
25 *in situ* during the final isolation and purification of the compounds, or by separately reacting the purified compound in its free acid form or hydroxyl with a suitable esterifying agent. Carboxylic acids can be converted into esters *via* treatment with an alcohol in the presence of a catalyst. Hydroxyls can be converted into esters *via* treatment with an esterifying agent such as alkanoyl halides. The term also includes lower hydrocarbon groups capable of being solvated under physiological conditions, e.g., alkyl esters, methyl, ethyl and propyl esters.
30 (See, for example, Berge *et al.*, *supra*.)

35 The term "pharmaceutically acceptable salts" is art recognized and includes relatively non-toxic, inorganic and organic acid addition salts of compounds of the present invention. These salts can be prepared *in situ* during the final isolation and purification of the

compounds of the invention, or by separately reacting a purified compound of the invention in its free base form with a suitable organic or inorganic acid, and isolating the salt thus formed. Representative salts include the hydrobromide, hydrochloride, sulfate, bisulfate, phosphate, nitrate, acetate, valerate, oleate, palmitate, stearate, laurate, benzoate, lactate, phosphate, tosylate, citrate, maleate, fumarate, succinate, tartrate, naphthylate, mesylate, glucoheptonate, lactobionate, and laurylsulphonate salts and the like. (See, e.g., Berge *et al.* (1977) "Pharmaceutical Salts", *J. Pharm. Sci.* 66:1-19).

The language "pharmaceutical composition" includes preparations suitable for administration to mammals, e.g., humans. When the compounds of the present invention are administered as pharmaceuticals to mammals, e.g., humans, they can be given per se or as a pharmaceutical composition containing, for example, 0.1 to 99.5% (more preferably, 0.5 to 90%) of active ingredient in combination with a pharmaceutically acceptable carrier.

The terms "polycyclyl" or "polycyclic radical" refer to two or more cyclic rings (e.g., cycloalkyls, cycloalkenyls, cycloalkynyls, aryls and/or heterocycls) in which two or more carbons are common to two adjoining rings, e.g., the rings are "fused rings". Rings that are joined through non-adjacent atoms are termed "bridged" rings. Each of the rings of the polycycle can be substituted with such substituents as described above, as for example, halogen, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxy carbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulphydryl, alkylthio, arylthio, thiocarboxylate, sulfates, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, cyano, azido, heterocyclyl, alkyl, alkylaryl, or an aromatic or heteroaromatic moiety.

The terms "effective amount" and "therapeutically effect amount" are used interchangeably and are intended to include the amount of a compound of the invention given or applied to an organism or subject that allows the compound to perform its intended therapeutic function. The effective amounts of the compound of the invention will vary according to factors such as the degree of infection in the subject, the age, sex, and weight of the subject, and the ability of the compound to inhibit the activity of the protein regulated by the autoinducer molecule of the bacteria upon, for example, the LasR protein of *P. aeruginosa* in the subject. Dosage regimes can be adjusted to provide the optimum therapeutic response. For example, several divided doses can be administered daily or the dose can be proportionally reduced as indicated by the exigencies of the therapeutic situation.

The term "subject" includes organisms which are can suffer from biofilm associated states. The term subject includes mammals, e.g., horses, monkeys, bears, dogs, cats, mice, rabbits, cattle, squirrels, rats, and, preferably, humans. In a further embodiment, the subject may be immunocompromised.

The language "synergist of the autoinducer molecule" is intended to include molecules that enhance the ability of the autoinducer molecule to stimulate the protein modulated by the autoinducer molecule (*e.g.*, such as the LasR protein for *P. aeruginosa*).

5 The phrases "systemic administration," "administered systemically," "peripheral administration" and "administered peripherally" as used herein mean the administration of a compound, drug or other material other than directly into the central nervous system, such that it enters the patient's system and, thus, is subject to metabolism and other like processes, for example, subcutaneous administration.

10 The term "tail group" includes groups that allow the compound of the invention to perform its intended function. In an embodiment, the tail group of the compound of the invention is hydrophobic. In another embodiment, the tail group is a chain of three to twenty atoms, such as carbon, nitrogen, sulfur, oxygen, or phosphorous. The tail group may be substituted or unsubstituted, saturated or unsaturated. In an embodiment, the tail group is unsubstituted or substituted alkyl, alkenyl, or alkynyl. In an embodiment, the tail group is substituted with one or more halogens (*e.g.*, fluorine, chlorine, bromine or iodine). In another further embodiment, the tail group is substituted with at least one C₁-C₄ group (*e.g.*, methyl, ethyl, isopropyl, n-propyl, t-butyl, iso-butyl, or n-butyl.) In an embodiment, the tail group is a chain of from about 5 atoms to about 15 atoms, 5 atoms to about 14 atoms, about 5 atoms to about 13 atoms, about 5 atoms to about 12 atoms, about 5 atoms to about 11 atoms, about 5 atoms to about 10 atoms, about 5 atoms to about 9 atoms, about 6 atoms to about 9 atoms, about 7 atoms to about 8 atoms, about 7 atoms, and about seven carbons. In a further embodiment, the tail group is heptyl.

15 The term "modulator", as in "modulator of an autoinducer molecule" is intended to encompass, in its various grammatical forms, induction and/or potentiation, as well as inhibition and/or down regulation of quorum sensing controlled gene expression. As used herein, the term "modulator of quorum sensing signaling" includes a compound or agent that is capable of modulating or regulating at least one quorum sensing controlled gene or quorum sensing controlled genetic locus, *e.g.*, a quorum sensing controlled genetic locus in *P. aeruginosa*. A modulator may act to modulate signal generation (*e.g.*, the synthesis of a 20 quorum sensing signal molecule, *i.e.*, autoinducer molecule), signal reception (*e.g.*, the binding of a signal molecule to a receptor or target molecule), or signal transmission (*e.g.*, signal transduction via effector molecules to generate an appropriate biological response). In one embodiment, a method of the present invention encompasses the modulation of the transcription of an indicator gene in response to an autoinducer molecule. In another 25 embodiment, a method of the present invention encompasses the modulation of the transcription of an indicator gene, preferably an quorum sensing controlled indicator gene, by a test compound.

30 The term "quorum sensing signaling" or "quorum sensing" is intended to include the generation of a cellular signal in response to cell density. In one embodiment, quorum

sensing signaling mediates the coordinated expression of specific genes. A “quorum sensing controlled gene” is any gene, the expression of which is regulated in a cell density dependent fashion. In a preferred embodiment, the expression of a quorum sensing controlled gene is modulated by a quorum sensing signal molecule, *e.g.*, an autoinducer molecule (*e.g.*, a 5 quinolone molecule of the invention). The term “quorum sensing signal molecule” is intended to include a molecule that transduces a quorum sensing signal and mediates the cellular response to cell density. In a preferred embodiment the quorum sensing signal molecule is a freely diffusible autoinducer molecule, *e.g.*, 2-heptyl-3-hydroxy-4-quinolone or analog thereof. In one embodiment, a quorum sensing controlled gene encodes a virulence 10 factor (*e.g.*, exotoxin A, elastase, alkaline protease). In another embodiment, a quorum sensing controlled gene encodes a protein or polypeptide that, either directly or indirectly, inhibits and/or antagonizes a bacterial host defense mechanism. In yet another embodiment, a quorum sensing controlled gene encodes a protein or polypeptide that regulates biofilm formation.

15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
9365
9370
9375
9380
9385
9390
9395
9400
9405
9410
9415
9420
9425
9430
9435
9440
9445
9450
9455
9460
9465
9470
9475
9480
9485
9490
9495
9500
9505
9510
9515
9520
9525
9530
9535
9540
9545
9550
9555
9560
9565
9570
9575
9580
9585
9590
9595
9600
9605
9610
9615
9620
9625
9630
9635
9640
9645
9650
9655
9660
9665
9670
9675
9680
9685
9690
9695
9700
9705
9710
9715
9720
9725
9730
9735
9740
9745
9750
9755
9760
9765
9770
9775
9780
9785
9790
9795
9800
9805
9810
9815
9820
9825
9830
9835
9840
9845
9850
9855
9860
9865
9870
9875
9880
9885
9890
9895
9900
9905
9910
9915
9920
9925
9930
9935
9940
9945
9950
9955
9960
9965
9970
9975
9980
9985
9990
9995
10000
10005
10010
10015
10020
10025
10030
10035
10040
10045
10050
10055
10060
10065
10070
10075
10080
10085
10090
10095
10100
10105
10110
10115
10120
10125
10130
10135
10140
10145
10150
10155
10160
10165
10170
1

Figure 1

Discovery of a Novel Cell-to-Cell Signal

The LasB elastase (also known as elastolytic protease and elastin-hydrolyzing protease) is a significant *P. aeruginosa* virulence factor that is controlled by both the *las* and *rhl* quorum sensing systems (6, 8). It has been shown that the transcription of *lasB* is greatly reduced in either a *P. aeruginosa lasI* or *rhlI* mutant, indicating the importance of 3-oxo-C12-HSL and C4-HSL, respectively (11, 12). Consistent with this finding, strain PAO-R1 (pTS400), which contains a LasR null mutation and a *lasB'-lacZ* fusion, does not express elastase or β-gal (6, 7). This phenotype results from the absence of LasR, which positively regulates genes controlled by the *las* quorum sensing system including *rhlR*, which is required for the *rhl* quorum sensing system to function (8, 20, 21). As expected, the absence of *lasR* also renders the *lasB'-lacZ* fusion in strain PAO-R1 (*lasR* 2) (pTS400) unresponsive to 3-oxo-C12-HSL (4). Additionally, *lasB'-lacZ* in this strain is mildly activated by exogenously added C4-HSL, which is most likely attributable to the presence of low amounts of RhlR that can be produced in the absence of LasR (4, 20).

Therefore, it was surprising to find that the addition of a spent culture media extract from *P. aeruginosa* strain PAO1 (wild type) to strain PAO-R1 (*lasR* 2) (pTS400) caused a major induction of *lasB'-lacZ* (Fig. 2A, below). Furthermore, this induction could not be mimicked with the addition of synthetic 3-oxo-C12-HSL and/or C4-HSL, indicating that an unknown third signal was present in the media from the wild-type strain PAO1. HPLC

separation of a strain PAO1 spent media extract resulted in two fractions that activated the *lasB* promoter in strain PAO-R1 (*lasR* 2) (pTS400). One fraction co-eluted with C4-HSL, and the other eluted near 3-oxo-C12-HSL. It was presumed that the material that eluted near 3-oxo-C12-HSL was a novel cell-to-cell signal.

5 The lack of *lasB'-lacZ* induction in strain PAO-R1 (*lasR*) (pTS400) without the addition of extract (5) showed that production of the novel signal required LasR and presumably 3-oxo-C12-HSL. Thus, HPLC purification of the novel signal from wild-type strain PAO1 was hampered by the fact that it was not readily separated from 3-oxo-C12-HSL, which is required for LasR activity.

10 This technical difficulty was overcome by construction of a gene that encoded an autoinducer-independent form of LasR. This truncated LasR, referred to as ΔLasR, has a large N-terminal deletion and is encoded on plasmid pECP39. The ΔLasR protein, which was based on a similar truncated construct of the *Vibrio fischeri* LuxR protein (a LasR homolog) (22), can activate LasR-controlled genes in the absence of 3-oxo-C12-HSL. Therefore, ΔLasR was used to induce the production of the novel signal in strain PAO-JP2 (*lasI*, *rhlI*). The double autoinducer mutant, strain PAO-JP2, was transformed with plasmid pECP39, and it was found that a spent culture media extract from this strain contained the novel signal that activated *lasB'-lacZ* in strain PAO-R1 (*lasR*) (pTS400) (Fig. 2A, below). There were no *lasB'-lacZ* activating signals in spent media extracts from cultures of strain PAO-JP2 (*lasI*, *rhlI*) alone or containing the control vector pUCP22 (Fig. 2A, below). This confirmed that the synthesis of the new signal depended on LasR and indicated that the signal was not produced by a known autoinducer synthase because strain PAO-JP2 did not have a functional LasI or RhII.

25 An initial analysis of the novel signal activity showed that, when the *lasR*, *rhlR* double mutant, strain PAO-JP3, containing pTS400 replaced strain PAO-R1(*lasR*) (pTS400) in our bioassay, the signal in culture extracts of strains PAO1 and PAO-JP2 (*lasI*, *rhlI*) (pECP39) was no longer able to induce *lasB'-lacZ* (Fig. 2B). This suggested that *rhlR* was required for the bioactivity of the new signal.

30

35

40

Figure 2

Using this information, an experiment was conducted to define the requirements for signal activity by developing an *E. coli* bioassay for the signal. *E. coli* strain DH5a was transformed with plasmid pECP62.5, which contained the *lasB'-lacZ* reporter and the inducible *tacp-rhlR* gene. If the signal worked directly through RhlR, then the induction of *tacp-rhlR* in the presence of exogenously added signal should result in the activation of *lasB'-lacZ* in *E. coli* strain DH5a (pECP62.5). It was determined that the signal did not induce *lasB'-lacZ* when RhlR was expressed in *E. coli* strain DH5a (pECP62.5). This suggested that the signal's requirement for *rhlR* may be attributable to an additional *P. aeruginosa* component that is controlled by RhlR or, alternatively, that *E. coli* may be less permeable to this signal.

Purification and Identification of the Novel Cell-to-Cell Signal

HPLC analysis of a spent media extract from a culture of strain PAO-JP2 (*lasI*, *rhlI*) (pECP39) showed that a single peak of bioactivity was eluted from an acetonitrile/water gradient (Fig. 3).

Figure 3

This indicated that if multiple signals capable of activating *lasB'-lacZ* were produced, they would be similar with regard to their hydrophobicity. The eluted signal was further purified by preparative TLC and was chemically analyzed to determine its structure.

Chemical analysis of the purified signal indicated that, unlike most other Gram-negative autoinducers, it was not an acylated homoserine lactone. Low-resolution mass spectroscopy analysis showed a molecular ion of m/z 259 and a fragmentation pattern consistent with an alkylquinolone that had an additional oxygenation on the heteroaromatic core (Fig. 4A, below). The ultraviolet spectrum and downfield signals of the ^1H NMR (Fig. 5A, below) were similar to those of the known 3-hydroxy-2-methyl-4-quinolone (23, 24). However, the molecular ion and upfield signals of the ^1H NMR (Fig. 5A, below) suggested the presence of a heptyl rather than a methyl chain in position 2. High-resolution mass spectroscopy gave a molecular ion with an m/z of 259.1571, consistent with the chemical composition C16H21NO2 (calculated 5259.1572). Taken together, this data indicated that the novel signal was 2-heptyl-3-hydroxy-4-quinolone (Fig. 1C, above), which was designated as the *Pseudomonas* quinolone signal (PQS).

Figure 4

Figure 5

Analysis of Synthetic PQS

To confirm the identification of PQS, synthetic 2-heptyl-3-hydroxy-4-quinolone was prepared by sequential Duff reaction (25) and Dakin oxidation (26) of 2-heptylquinolone (27). The low-resolution mass spectrum (Fig. 4B), high-resolution mass spectrum (*m/z* of 5 259.1578), and ^1H NMR spectrum (Fig. 5B) of synthetic 2-heptyl-3-hydroxy-4-quinolone were indistinguishable from those of purified natural PQS. Synthetic and natural PQS were also identical with regard to ultraviolet spectroscopy and TLC analysis. Furthermore, the synthetic material was active in the PQS bioassay.

In the presence of increasing concentrations of synthetic or natural PQS, there was a 10 dose-dependent induction of *lasB'-lacZ* in strain PAO-R1 (*lasR'*) (pTS400) (Fig. 6, below). The purification of PQS from a 1.2-liter culture of strain PAO-JP2 (*lasI', rhI'I'*) (pECP39) yielded an average of 1.8 mg of PQS, which is equivalent to a concentration of \approx 6 mM in the culture fluid. This concentration, which is likely to be an underestimate of the actual amount in culture fluid (assuming the total recovery in the purification was 100%), was within the range required for activation of the *lasB* promoter in *P. aeruginosa* strain PAO-R1(*lasR'*) (pTS400) (Fig. 6; 5 mM synthetic PQS 5 148 Miller units).

Figure 6

It is also interesting to note here that two PQS analogs were not capable of activating 35 *lasB'-lacZ* in strain PAO-R1 (*lasR'*) (pTS400). Despite their structural similarities to PQS, the compounds 2-hydroxy-3-heptyl-4-quinolone (Fig. 1D, above) and 2-heptyl-4-hydroxy-quinoline-N-oxide (Fig. 1E, above) were not active when tested in the PQS bioassay described above (Fig. 6, above). These results suggested that the PQS target may be specific

with regard to the compounds by which it is activated, although these two analogs were not tested in a competitive assay to determine that the analogs did not bind to the PQS target.

Discussion

5 The present invention demonstrates that *P. aeruginosa* produces a cell-to-cell signal that is unlike any previously reported intercellular signal molecule. This molecule was determined to have a 4-quinolone base structure and therefore has been designated as the *Pseudomonas* quinolone signal (PQS). Furthermore, exogenously added PQS induced a *lasB'-lacZ* fusion in the *P. aeruginosa lasR* mutant, strain PAO-R1, containing the plasmid
10 pTS400. This indicated that there is a third cell-to-cell signal, in addition to the autoinducers 3-oxo-C12-HSL and C4-HSL, that is involved in *lasB* induction by *P. aeruginosa*. Despite the ability of PQS to activate *lasB'-lacZ* in the absence of *lasR*, the production of PQS required an active LasR protein. This suggested that a gene (or genes) required for PQS synthesis is controlled through the *las* quorum sensing system. It was also determined that at least RhlR was required for PQS to act as a signal because *lasB'-lacZ* was not induced by PQS in the *lasR, rhlR* double mutant, strain PAO-JP3, containing the plasmid pTS400.

Although the basis of the requirement for *rhlR* is not known, it is suggested that RhlR may serve to regulate the expression of a *P. aeruginosa* gene that is involved in the response to PQS. This suggestion is based on the fact that the PQS response was not replicated by the addition of PQS to a recombinant *E.coli* strain expressing RhlR in the presence of *lasB'-lacZ*. These initial experiments on PQS indicated that this signal depended on both *P. aeruginosa* quorum sensing systems and that it was involved in the regulation of the major virulence factor, LasB elastase. The addition of a third molecule to the *P. aeruginosa* intercellular signal repertoire increases the complexity of the quorum sensing hierarchy.

25 With regard to the relationship of these cell-to-cell signals, the data presented herein implies that 3-oxo-C12-HSL is required for the production of PQS, and previous results suggested that 3-oxo-C12-HSL also positively regulates the production of C4-HSL (20, 21). These findings further suggest that 3-oxo-C12-HSL can be considered the dominant *P. aeruginosa* cell-to-cell signal that is responsible, with LasR, for initiating the start of the
30 quorum sensing response.

The relationship between PQS and C4-HSL is difficult to determine from the data. To act as signals, both molecules require RhlR. The C4-HSL signal has been shown to interact with RhlR (12), but it is not clear whether PQS acts directly or indirectly through RhlR. In either case, it is possible that PQS and C4-HSL produce an additive effect on the induction of *lasB*.

To facilitate the purification of PQS, a mutated *lasR* gene was constructed that encoded a truncated protein (Δ LasR) capable of activating LasR-controlled genes in the absence of 3-oxo-C12-HSL. PQS was purified by sequential reverse phase column chromatography and TLC from the double autoinducer mutant, strain PAO-JP2, that was

expressing the Δ LasR protein. Based primarily on the spectral properties of the purified material, it was concluded that the novel signal molecule was 2-heptyl-3-hydroxy-4-quinolone. This compound was synthesized, and all chemical analysis (including high and low resolution MS, 1 H NMR spectra, UV spectra, and TLC) showed that synthetic 2-heptyl-3-hydroxy-4-quinolone was identical to natural PQS. As a confirmation of the structural assignment, we showed that synthetic PQS, but not other similar quinolones, had biological activity.

Based on the activity profile of synthetic PQS and the amount of signal purified from *P. aeruginosa* culture fluid, it can be conservatively estimated that the concentration of PQS in culture fluid was \approx 6 mM, which is in the active concentration range. This concentration is similar to the approximate concentrations of 3-oxo-C12-HSL (1 to 5 mM; refs. 3 and 4) and C4-HSL (10 mM; ref. 4) found in culture supernatants. The amount of PQS required to activate the bioassay to half of its maximum activity was \approx 30 mM. Similar *P. aeruginosa* bioassays for 3-oxo-C12-HSL and C4-HSL showed that a concentration of \approx 1 mM was required for these signals to activate their respective assays to half of their maximum activity (4). These differences suggest that, with regard to *lasB'-lacZ* induction, the relative potency of PQS may not be as high as the potencies of 3-oxo-C12-HSL and C4-HSL.

It has been well established that 4-quinolones are secondary metabolites that can have potent antibiotic activity (28). It is now evident that at least one member of this family of molecules, 2-heptyl-3-hydroxy-4-quinolone, has a role in cell-to-cell signaling. The modern 4-quinolone antibiotics are halogenated at the 6 or 8 position and are commonly used to treat a variety of both Gram-positive and Gram-negative infections (29). These molecules are bactericidal and are believed to target DNA gyrase, which can be naturally mutated in *P. aeruginosa* to produce resistant strains (30, 31).

Despite the development of this resistance phenotype, some 4-quinolone antibiotics have a secondary effect in resistant strains. The synthesis of a number of virulence factors, many of which (including elastase) are controlled by quorum sensing, is reduced by 4-quinolone antibiotics (32). This finding is supported by *in vivo* studies in which 4-quinolone antibiotic therapy has been shown to reduce lung damage in rats without decreasing the bacterial population (33). The mechanisms of such activities are unknown. However, the data presented herein indicate that 4-quinolone antibiotics may interfere with 4-quinolone signaling and gene activation, and further indicate that 4-quinolone signal molecules may be a viable target for the development of antibacterial therapies.

It is also interesting to note that many synthetic 4-quinolones are exported by active efflux (reviewed in ref. 34) and recent reports show that active efflux is involved in the export of the *P. aeruginosa* autoinducer 3-oxo-C12-HSL (35, 36). This leads to the speculation that PQS may be exported by active efflux and that this transport mechanism could be involved in multiple cell-to-cell signaling pathways. *P. aeruginosa* produces a myriad of secondary metabolites, most of which (including 4-quinolones) were discovered

because they possess an observable bioactivity such as antibacterial or phytotoxic activity (28).

PQS does not have detectable anti-*Staphylococcus aureus* or anti-*E. coli* activity.

However, this molecule showed activity as an intercellular signal that induced the *P.*

aeruginosa virulence gene *lasB*. These findings lead to the conclusion that although acyl-homoserine lactones represent one type of cell-to-cell signal in *P. aeruginosa*, there are also other types of intercellular signals involved in the regulation of virulence gene expression.

Furthermore, it has previously been shown that other Gram-negative bacteria produce quorum sensing signals that are not acyl-homoserine lactones. For example, *Ralstonia*

solanacearum has been shown to produce a fatty acid methyl ester that acts as a signal (37), and both *E. coli* and *Salmonella typhimurium* produce an unidentified intercellular signal that appears to not be an acyl-homoserine lactone (38). The discovery that 4-quinolones can act as intercellular signals demonstrates that bacterial cell-to-cell signals are an increasingly diverse group of molecules. The elucidation of the mechanism by which PQS regulates *lasB* should be an important first step toward understanding the role of this type of signaling in *P. aeruginosa* virulence.

Exemplification

The invention is further illustrated by the following examples that should not be construed as limiting.

Strains, Plasmids, and Reagents.

The following bacterial strains were used in this study: *Escherichia coli* strain DH5a (13); the wild-type *P. aeruginosa* strain PAO1 (14); and the PAO1 mutant strains PAO-JP2 (*lasI*, *rhlI*) (12), PAO-JP3 (*lasR*, *rhlR*) (12), and PAO-R1 (*lasR*) (6). Unless otherwise indicated, bacterial cultures were grown in peptone trypticase soy broth (15) supplemented with 200 mg/ml carbenicillin where appropriate. Plasmid pECP39, which encodes a

truncated form of LasR (Δ LasR) that is capable of activating LasR-controlled genes in the absence of an autoinducer, was constructed as follows. First, the intermediate plasmid pKDT39 was constructed by ligating the *lasR* DNA that encodes LasR amino acids 160–239 in-frame to the histidine fusion site of the expression vector pTRCHisC (Invitrogen). This resulted in the *trcp- Δ lasR* fusion, which encodes for a truncated, autoinducer-independent form of LasR, the expression of which is controlled by the *trc* promoter. The *trcp- Δ lasR*-containing DNA fragment from pKDT39 then was ligated into the *P. aeruginosa* cloning vector pUCP22 (16) to form pECP39 (*bla*, *lacF*, *trcp- Δ lasR*, *oriP*, *oriC*). Plasmid pTS400 (5) contains a *lasB'-lacZ* translational fusion, and plasmid pECP62.5 (12) contains *trcp-rhlR* and a *lasB'-lacZ* translational fusion. Trans-formations and other molecular techniques were

completed with standard procedures (17). The PQS analog 2-hydroxy-3- heptyl-4-quinolone (Fig. 1D) was synthesized as described (18), and 2-heptyl-4-hydroxy-quinoline-N-oxide (Fig. 1E) was purchased from Sigma.

5

Example 1

The PQS Bioassay

To monitor PQS bioactivity, 1-ml cultures of *P. aeruginosa* strain PAO-R1 (pTS400) were grown for 18 h at 37°C with shaking (260 rpm; initial optical density was 0.02 at 660 nm) in the presence of culture extract or synthetic PQS. This was followed by measuring activation of the *lasB'-lacZ* fusion with the use of β-galactosidase (β-gal) assays as described by Miller (19). For culture extracts, bacterial culture fluid was extracted with ethyl acetate and was prepared as described (3). Extracts that were resuspended in ethyl acetate were added to bioassay tubes, and ethyl acetate was removed by drying under a stream of nitrogen. Unless otherwise specified, the amount of material assayed was extracted from 10 ml of culture fluid.

Example 2

Thin Layer Chromatography (TLC) and High Performance Liquid Chromatography (HPLC)

20

25

25

30

Preparative TLC plates were obtained by making 1-mm layers of a slurry of 55-g silica gel G (Machery & Nagel) in a solution of 5 g of KH₂PO₄ in 95 ml of water on 20- X 20-cm glass plates. Plates then were air-dried and activated at 100°C for 1 h. The solvent for TLC was a 17:2:1 mixture of dichloromethane-acetonitrile-dioxane (vol/vol). HPLC was performed on a Beckman-Altex Ultra-sphere 10-mm X 25-cm C18 reverse phase column. Extracts were resuspended in 0.25 ml of methanol and were loaded onto the column that then was eluted (2 ml/min) with an acetonitrile/water gradient (10 - 100% over 120 min). Fractions were collected at the indicated intervals and were dried by rotary evaporation at room temperature. Evaporated samples were stored at 220°C before being dissolved in methanol and were assayed for PQS activity.

Example 3

Purification of PQS

35

PQS was purified from 1.2 liters of *P. aeruginosa* strain PAO-JP2 (pECP39) that was grown for 24 h at 37°C with shaking (260 rpm; initial optical density was 0.05 at 660 nm). Cultures were centrifuged for 10 min at 10,000 X g, and spent supernatant was removed and extracted twice with ethyl acetate as described (3). The ethyl acetate extract was dried with sodium sulfate and was concentrated by rotary evaporation at room temperature. The

concentrated material then was extracted and concentrated three times with progressively smaller volumes of a 1:1 mixture of ethyl acetate and acetonitrile (final volume, 0.75 ml). This concentrated extract was fractionated by using Short Body C18 Sep-Pak Plus cartridges (Waters). After loading the extract onto a cartridge (0.25 ml per cartridge), it was washed
5 with 10, 30, and 40% acetonitrile in water (3 ml per cartridge). The active material then was eluted with 55% acetonitrile in water. This partially purified extract was dissolved in 0.3 ml of 90% dioxane in water and was further purified by preparative TLC. After loading the extract, the TLC plate was eluted twice with 17:2:1 dichloromethane/acetonitrile/dioxane. A fluorescent blue band ex-tending from *Rf* 0.30–0.48 was removed and eluted with 1:1
10 acetonitrile/ethyl acetate (3 X 3 ml). The eluate, which contained 2-heptyl-3-hydroxy-4-quinolone (Fig. 1C), was concentrated and analyzed as described below.

Example 4

Chemical Analysis of Natural and Synthetic PQS

15
20
25

¹H and ¹³C NMR spectra in DMSO-d6 were recorded on a Bruker (Billerica, MA) AM400 NMR spectrometer operating at 400 MHz for 1 H or 100.5 MHz for ¹³C. The chemical shifts are reported in δ (ppm) relative to residual DMSO-d5 (2.49 ppm) for ¹H or relative to DMSO-d6 (39.43 ppm) for ¹³C, and coupling constants are given in hertz. Infrared (IR) spectra were recorded on a Perkin–Elmer 1600 series Fourier Transformed–IR. Melting points were recorded on a Mel-Temp melting point apparatus and are uncorrected. The ultraviolet spectra were recorded on a Shimadzu UV-1601 PC spectrophotometer. Low-resolution MS were recorded on a Hewlett– Packard 5973 mass selective detector fitted with an SIS direct insertion probe, and high-resolution electron impact spectra were recorded at the University of California-Riverside Mass Spectrometry Facility.

Example 5

Synthesis of PQS

30

35

A mixture of 2-heptylquinolone (2.00 g, 8.22 mmol), hexamine (0.58 g, 4.11 mmol), and trifluoroacetic acid (12.3 ml) was stirred at reflux under argon for 27 h. Methanol (20 ml) and water (20 ml) were added, and heating was continued for 50 min. Hydrochloric acid (2.5 M, 10 ml) was added, and heating was continued for 30 min. The mixture was allowed to cool, and the precipitate was removed by filtration and was washed with water. The solid was triturated with acetone (10 ml) and then was removed by filtration to give 3-formyl-2-heptylquinolone (0.99 g, 44%), which crystallized from methanol/ethyl acetate as colorless needles: mp 244– 247°C (dec) (Found: C, 75.55; H, 7.95; N, 5.09%. C₁₇H₂₁NO₂ requires C, 75.24; H, 7.80; N, 5.16%). ¹H NMR 12.11 (br s, 1H), 10.37 (s, 1H), 8.12 (d, J 8.0, 1H), 7.70

(dd, J 8.2, 7.1, 1H), 7.57 (d, J 8.2, 1H), 7.38 (dd, J 8.0, 7.1, 1H), 3.01 (t, J 7.7, 2H), 1.56
 (quin., J 7.4, 2H), 1.39–1.16 (m, 8H), 0.82 (t, J 6.4, 3 H). ^{13}C NMR 190.7 (d), 178.0 (s), 159.9
 (s), 139.1 (s), 132.9 (d), 126.1 (s), 124.8 (d), 124.9 (d), 118.6 (d), 113.3 (s), 31.5 (t), 31.1 (t),
 28.9 (t), 28.8 (t), 28.3 (t), 22.0 (t), 13.8 (q). m/z 271 (5%), 253 (8%), 242 (5%), 228 (3%),
 5 214 (8%), 200 (13%), 187 (20%), 172 (16%), 159 (100%), 130 (8%).

Aqueous hydrogen peroxide (1.05 M, 1.49 ml, 1.56 mmol) was added to a solution of 3-formyl-2-heptylquinolone (0.41 g, 1.49 mmol) in ethanol (4.5 ml) and aqueous sodium hydroxide (1.08 M, 1.49 ml, 1.6 mmol) under argon, and the mixture was stirred at room temperature for 6 h. The precipitate was removed by filtration, was air dried, and was crystallized from ethyl acetate to give 2-heptyl-3-hydroxy-4-quinolone (0.29 g, 74%), as off-white needles: mp 196–198°C (dec) (Found: C, 74.30; H, 8.42; N, 5.21%. C₁₆H₂₁NO₂ requires C, 74.10; H, 8.16; N, 5.40%). λ_{max} (log ε) methanol 217 (4.43), 250 (4.56), 292 (3.34), 343 (4.08), 351 nm (4.08). ν_{max} (KBr) 3,275, 2,929, 1,639, 1,599, 1,558, 1,488, 1,467, 1,416, 1,367, 1,265, 1,115, 1,073, 1,025, 954, 934, 863, 756, 710, 895, 574 cm⁻¹. ¹³C NMR 168.8 (s), 137.7 (s), 137.3 (s), 135.4 (s), 129.8 (d), 124.4 (d), 122.1 (s), 121.4 (d), 117.7 (d), 31.1 (t), 28.7 (t), 28.4 (t), 28.0 (t), 27.7 (t), 21.9 (t), 13.8 (q). ¹H NMR and Mass Spectrometry data of synthetic POS are shown in Figures 4 and 5.

List of References

1. Fuqua, W. C., Winans, S. C. & Greenberg, E. P. (1996) *Annu. Rev. Microbiol.* **50**, 727–751.

2. Pesci, E. C. & Iglesias, B. H. (1999) in *Cell-Cell Signaling in Bacteria*, eds. Dunny, G. & Winans, S. C. (Am. Soc. Microbiol., Washington, DC), pp. 147–155.

25 3. Pearson, J. P., Gray, K. M., Passador, L., Tucker, K. D., Eberhard, A., Iglesias, B. H. & Greenberg, E. P. (1994) *Proc. Natl. Acad. Sci. USA* **91**, 197–201.

4. Pearson, J. P., Passador, L., Iglesias, B. H. & Greenberg, E. P. (1995) *Proc. Natl. Acad. Sci. USA* **92**, 1490–1494.

30 5. Passador, L., Cook, J. M., Gambello, M. J., Rust, L. & Iglesias, B. H. (1993) *Science* **260**, 1127–1130.

6. Gambello, M. J. & Iglesias, B. H. (1991) *J. Bacteriol.* **173**, 3000–3009.

7. Parsek, M. R., Schaefer, A. L., Greenberg, E. P. (1997) *Mol. Microbiol.* **26**, 301–310.

8. Ochsner, U. A., Koch, A. K., Fiechter, A. & Reiser, J. (1994) *J. Bacteriol.* **176**, 2044–2054.

35 9. Morihara, K. (1964) *J. Bacteriol.* **88**, 745–757.

10. Winson, M. K., Camara, M., Latifi, A., Foglino, M., Chhabra, S. R., Daykin, M., Bally, M., Chapon, V., Salmond, G. P. C., Bycroft, B. W., et al. (1995) *Proc. Natl. Acad. Sci. USA* **92**, 9427–9431.

11. Brint, J. M. & Ohman, D. E. (1995) *J. Bacteriol.* **177**, 7155–7163.

15
20
25
30
35

12. Pearson, J. P., Pesci, E. C. & Iglewski, B. H. (1997) *J. Bacteriol.* **179**, 5756–5767.
13. Woodcock, D. M., Crowther, P. J., Doherty, J., Jefferson, S., DeCruz, E., Noyer-Weidner, M., Smith, S. S., Michael, M. Z. & Graham, M. W. (1989) *Nucleic Acids Res.* **17**, 3469–3478.
- 5 14. Holloway, B. W., Krishnapillai, V. & Morgan, A. F. (1979) *Microbiol. Rev.* **43**, 73–102.
15. Ohman, D. E., Cryz, S. J. & Iglewski, B. H. (1980) *J. Bacteriol.* **142**, 836–842.
16. West, S. E., Schweizer, H. P., Dall, C., Sample, A. K. & Runyen-Janecky, L. J. (1994) *Gene* **148**, 81–86.
- 10 17. Maniatis, T., Fritsch, E. F. & Sambrook, J. (1982) *Molecular Cloning: A Laboratory Manual* (Cold Spring Harbor Lab. Press, Plainview, NY).
18. Laschober, R. & Stadlbauer, W. (1990) *Liebigs Ann. Chem.* 1083–1086.
19. Miller, J. A. (1972) in *Experiments in Molecular Genetics* (Cold Spring Harbor Lab. Press, Plainview, NY), pp. 352–355.
20. Pesci, E. C., Pearson, J. P., Seed, P. S. & Iglewski, B. H. (1997) *J. Bacteriol.* **179**, 3127–3132.
21. Latifi, A., Foglino, M., Tanaka, K., Williams, P. & Lazdunski, A. (1996) *Mol. Microbiol.* **21**, 1137–1146.
22. Stevens, A. M., Dolan, K. M. & Greenberg, E. P. (1994) *Proc. Natl. Acad. Sci. USA* **91**, 12619–12623.
23. Behrman, E. J., Kiser, R. L., Garas, W. F., Behrman, E. C. & Pitt, B. M. (1995) *J. Chem. Res. M* 1051–1063.
24. Spence, T. W. M. & Tennant, G. (1971) *J. Chem. Soc. C*, 3712–3719.
25. Smith, W. E. (1972) *J. Org. Chem.* **37**, 3973–3974.
26. Morgan, L. R., Jr., Schunior, R. J. & Boyer, J. H. (1963) *J. Org. Chem.* **28**, 260–261.
27. Somanathan, R. & Smith, K. M. (1981) *J. Heterocyclic Chem.* **18**, 1077–1079.
28. Leisinger, T. & Margraff, R. (1979) *Microbiol. Rev.* **43**, 422–442.
29. Smith, J. T. & Zeiler, H.-J. (1998) in *Quinolone Antibacterials*, eds. Kuhlmann, J., Dalhoff, A. & Zeiler, H.-J. (Springer, Berlin), pp. 1–11.
30. Maxwell, A. & Critchlow, S. E. (1998) in *Quinolone Antibacterials*, eds. Kuhlmann, J., Dalhoff, A. & Zeiler, H.-J. (Springer, Berlin), pp. 119–166.
31. Piddock, L. V. J. (1995) *Drugs* **49**, Suppl. 2, 29–35.
32. Grimwood, K., To, M., Rabin, H. R. & Woods, D. E. (1989) *Antimicrob. Agents Chemother.* **33**, 41–47.
33. Grimwood, K., To, M., Rabin, H. R. & Woods, D. E. (1989) *J. Antimicrob. Chemother.* **24**, 937–945.
34. Nikaido, H. (1996) *J. Bacteriol.* **178**, 5853–5859.
35. Evans, K. L., Passador, L., Sri Kumar, R., Tsang, E., Nezezon, J. & Poole, K. (1998) *J. Bacteriol.* **180**, 5443–5447.

36. Pearson, J. P., Van Delden, C. & Iglesias, B. H. (1999) *J. Bacteriol.* **181**, 1203–1210.
 37. Flavier, A. B., Clough, S. J., Schell, M. A. & Denny, T. P. (1997) *Mol. Microbiol.* **26**, 251–259.
 5 38. Surrette, M. G., Miller, M. B. & Bassler, B. L. (1999) *Proc. Natl. Acad. Sci. USA* **96**, 1639–1644.

Incorporation by Reference

10 The entire contents of all patents, published patent applications and other references cited herein are hereby expressly incorporated herein in their entireties by reference.

Equivalents

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments and methods described herein. Such equivalents are intended to be encompassed by the scope of the following claims.