Complementos de Análise Matemática B

Departamento de Matemática e Aplicações

2012/2013

Folha de Exercícios 2

Introdução às equações diferenciais

Eng^a. de Comunicações, Eng^a. de Polímeros

Classificação de equações diferenciais

1. Classificar cada uma das seguintes equações diferenciais ordinárias quanto à ordem e (eventual) linearidade. Nota: No caso das equações de primeira ordem averiguar a linearidade para cada uma das duas escolhas possíveis para a variável (in)dependente.

a)
$$\frac{dy}{dx} + x^2y = xe^x$$

a)
$$\frac{dy}{dx} + x^2y = xe^x$$
 b)
$$\frac{d^4y}{dx^4} + 3\frac{dy}{dx} + 5y = senx$$

$$c) \quad 3y\frac{dy}{dx} + 5y = senx$$

$$d) \quad \frac{du}{dt} + t^2 = u$$

$$e) \quad \frac{dv}{dt} + v^2 = v^2$$

c)
$$3y\frac{dy}{dx} + 5y = senx$$
 d) $\frac{du}{dt} + t^2 = u$
e) $\frac{dv}{dt} + v^2 = t$ f) $\frac{d^2v}{dx^2} + \left(\frac{dv}{dx}\right)^2 + v = xe^x$

$$g) \quad \frac{dy}{dx} + ysenx = 0$$

$$g) \quad \frac{dy}{dx} + ysenx = 0 \qquad \qquad h) \quad x\frac{dy}{dx} + ysenx = 0$$

$$i) \quad \frac{dy}{dx} + xseny = 0 \qquad \qquad j) \quad x^2 dy + y^2 dx = 0$$

$$j) \quad x^2 dy + y^2 dx = 0$$

Soluções explícitas de equações diferenciais

- 2. Verificar se as seguintes funções são solução das equações diferenciais dadas.
 - (a) $f(x) = \frac{g}{24m}x^4$, $m\frac{d^2y}{dx^2} = \frac{1}{2}gx^2$ qualquer que seja o intervalo real considerado.
 - (b) $g(x) = \sqrt{1-x^2}$, $y\frac{dy}{dx} + x = 0$ no intervalo I =]-1,1[.
 - (c) $h(x) = (x^3 + c)e^{-3x}$, $\frac{dy}{dx} + 3y = 3x^2e^{-3x}$ no intervalo $I = \mathbb{R}$, onde c é uma constante
 - (d) $m(x) = c_1 e^x c_2 e^{-x}$, $\frac{d^2y}{dx^2} y = 0$ no intervalo $I = \mathbb{R}$, onde c_1 e c_2 são constantes
- 3. A função $f(x) = \frac{x^2}{2}$ é uma solução da equação diferencial $\frac{1}{x} \frac{dy}{dx} = 1$? Em que intervalo da

1

- 4. A função g(x) = x lnx é uma solução da equação diferencial $\frac{dy}{dx} = 1 + lnx$? Em que intervalo da recta real?
- 5. Determinar o valor da constante β de modo que a função $\varphi(x)=x^{\beta}$ seja solução da equação $x^2 \frac{d^2y}{dx^2} 4x \frac{dy}{dx} + 4y = 0$ no intervalo $I =]0, +\infty[$.
- 6. Mostrar que $y = x \ln x$ verifica formalmente a equação diferencial

$$x\frac{dy}{dx} = x + y,$$

mas não é uma solução explícita desta equação diferencial no intervalo]-1,1[.

Soluções implícitas de equações diferenciais

7. Mostrar que $y^2 + x = 1$ não é uma solução implícita da equação diferencial

$$y\frac{dy}{dx} = -\frac{1}{2},$$

no intervalo [0, 2[, apesar de a verificar formalmente.

- 8. A relação $y^2-x=0$ é uma solução implícita da equação diferencial $\frac{dy}{dx}=\frac{1}{2y}$? Em que intervalo da recta real?
- 9. Mostrar que a função $x^2 + 2xy = 0$ é uma solução implícita da equação diferencial $x \frac{dy}{dx} + x + y = 0$ em $\mathbb{R} \setminus \{0\}$.
- 10. Mostrar que a função $x^2y^2+x^2-9=0$ é uma solução implícita da equação diferencial $yx\frac{dy}{dx}+y^2+1=0$ no intervalo]-3,3[\{0}\.

Problemas de valores iniciais

- 11. Mostrar que $h(x) = e^x e^{-x}$ é uma solução do problema de valores iniciais $d^2y/dx^2 y = 0$, y(0) = 0, y'(0) = 2. Averiguar se $g(x) = e^x + e^{-x}$ é uma solução do mesmo problema.
- 12. Sabendo que toda a solução da equação diferencial $d^2y/dx^2 y = 0$ pode ser escrita na forma $f(x) = c_1e^x + c_2e^{-x}$, onde c_1 e c_2 são constantes arbitrárias, determinar qual deverá ser o valor de c_1 e c_2 por forma a que f(x) seja uma solução do problema de valores iniciais $d^2y/dx^2 y = 0$, y(0) = 1, y'(0) = 2.

Problemas de valores de fronteira

- 13. Mostrar que $y = 2xe^{x-1}$ é uma solução do problema de valores de fronteira $d^2y/dx^2 2dy/dx + y = 0$, y(0) = 0, y(1) = 2.
- 14. Mostrar que $v(x) = \cos x + senx$ é uma solução do problema de valores de fronteira $d^2y/dx^2 + y = 0$, y(0) = 1, $y(\pi) = -1$. Averigúe se $u(x) = -\cos x senx$ é uma solução do mesmo problema.

- 15. Sabendo que toda a solução da equação diferencial $d^2y/dx^2 + y = 0$ pode ser escrita na forma $u(x) = c_1 \cos x + c_2 sen x$, onde c_1 e c_2 são constantes arbitrárias, determinar qual deverá ser o valor de c_1 e c_2 por forma a que u(x) seja uma solução do problema de valores de fronteira $d^2y/dx^2 + y = 0$, y(0) = 0, $y'(\pi) = -1$.
- 16. Sabendo que toda a solução da equação diferencial $x^2 \frac{d^2y}{dx^2} x \frac{dy}{dx} = 0$ pode ser escrita na forma $y = c_1 + c_2 x^2$, onde c_1 e c_2 são constantes arbitrárias, mostrar que o problema de valores de fronteira.

$$x^{2} \frac{d^{2}y}{dx^{2}} - x \frac{dy}{dx} = 0, \quad y(1) = 1, \quad y(-1) = 1,$$

não tem solução única.

17. Sabendo que toda a solução da equação diferencial $\frac{d^2y}{dx^2} + y = 0$ pode ser escrita na forma $y = c_1 cos x + c_2 sen x$, onde c_1 e c_2 são constantes arbitrárias, mostrar que o problema de valores de fronteira

$$\frac{d^2y}{dx^2} + y = 0, \quad y(0) = 1, \quad y(\pi) = 5,$$

não tem solução.

Soluções da folha de exercícios 2

- 1. (a) equação diferencial de 1^a ordem, linear (se y for a variável dependente)
 - (b) equação diferencial de 4^a ordem, linear (se y for a variável dependente)
 - (c) equação diferencial de 1ª ordem, não-linear
 - (d) equação diferencial de 1^a ordem, linear (se u for a variável dependente)
 - (e) equação diferencial de 1ª ordem, não-linear
 - (f) equação diferencial de 2ª ordem, não-linear
 - (g) equação diferencial de 1^a ordem, linear (se y for a variável dependente)
 - (h) equação diferencial de 1^a ordem, linear (se y for a variável dependente)
 - (i) equação diferencial de1^a ordem, não-linear
 - (j) equação diferencial de 1ª ordem, não-linear
- 2. (a) verdade; (b) verdade; (c) verdade; (d) verdade
- 3. $I = \mathbb{R} \setminus \{0\}$
- 4. $I =]0, +\infty[$
- 5. $\beta = 1$ ou $\beta = 4$
- 8. $I =]0, +\infty[$
- 12. $c_1 = 3/2$, $c_2 = -1/2$
- 15. $c_1 = 0$, $c_2 = 1$