Homework 10, Fall 2023

Homework 10 has questions 1 through 3 with a total of 30 points. This work is due **Saturday 11 November** at 11:59 PM. **For this assignment, neatly handwrite your solutions and submit a digitized version to Canvas.**

- 1. Define a function $F = x \in \mathbf{R} \mapsto \begin{cases} 0 & x \le 2 \\ 2 & x > 2 \end{cases}$. Find $F^{-1}((-1/2, 1/2))$. Explain why this shows that F is not continuous on \mathbf{R} . Instead of a proof, you may use a convincing picture to find $F^{-1}((-1/2, 1/2))$. See Theorem 4–5 in our textbook.
- 2. Define $F = x \in [0,1] \mapsto x$. Find an open set \mathscr{G} such that $F^{-1}((-1/2,1/2)) = \mathscr{G} \cap [0,1]$. Instead of a proof, you may use a convincing picture to find $F^{-1}((-1/2,1/2))$. This shows that $F^{-1}((-1/2,1/2))$ is open relative to dom(F).
- 3. Define $F = (2x-1) \begin{cases} \frac{1}{8}(2x+1) & x < 1/2 \\ -\frac{1}{8}(2x-3) & x \ge 1/2 \end{cases}$. Show that F is differentiable at 1/2. To do this you can either use a limit of a Newton quotient or you can show that the function $x \in \mathbf{R} \mapsto \begin{cases} \frac{1}{8}(2x+1) & x < 1/2 \\ -\frac{1}{8}(2x-3) & x \ge 1/2 \end{cases}$ is continuous at 1/2.