Traitement du signal pour les communications Processus aléatoires EE 330

Nicolas Barbot

nicolas.barbot@esisar.grenoble-inp.fr

2014-2015

EE330 Processus aléatoires

- Continuité du cours AC330
- 1 à 2 CM
- 1 à 2 TD
- Note intégrée dans EE330 (1 exercice)

Plan.

- Processus aléatoires
 - Définition
 - Moments statistiques
 - Fonction de covariance
 - Moments temporels
 - Stationnarité
 - Ergodicité

- Filtrage des processus aléatoires SSL
 - Densité spectrale de puissance
 - Formule des moments
 - Formule des interférences

Introduction

Les résultats de certains phénomènes, réalisés dans des conditions identiques, sont parfois imprévisibles. De tels phénomènes sont qualifiés d'*aléatoires*.

L'aspect aléatoire d'un phénomène posséde deux origines:

- la modélisation imparfaite du système (modélisation incomplète ou impossible)
- le signal porte une information a priori inconnue du récepteur.

Processus aléatoires

Processus aléatoire

Un processus aléatoire à temps continu (resp. temps discret) est une famille de variables aléatoires indexées par $t \in \mathbb{R}$ (resp. $n \in \mathbb{Z}$).

Lien avec les variables aléatoires

- $X(t, \omega_1)$ est une trajectoire (une réalisation du PA).
- $X(t_1, \omega)$ est une variable aléatoire, notée $x(t_1)$, (caractérisée par une densité de probabilité).
- $X(t_1, \omega_1) = x_1(t_1)$ est une réalisation de la VA pour l'épreuve ω_1 . (ou un échantillon de la trajectoire au temps t_1).
- Le couple $(X(t_1, \omega); X(t_2, \omega))$ est un vecteur aléatoire de dimension 2 (caractérisé par une probabilité conjointe).
- ...

Un processus aléatoire peut donc être vue comme un ensemble infini de variable aléatoires ou comme un ensemble infini de trajectoires.

Classification

Exemple

On considère le processus aléatoire de Bernoulli définit par:

$$X[n] = \begin{cases} 0 & \text{avec } 1 - p \\ 1 & \text{avec } p \end{cases} \tag{1}$$

Quelle est la probabilité d'avoir 5 "1" consécutifs ?

Exemple

On considère le processus aléatoire définit par:

$$X[n] = \sum_{i=0}^{n} U[n] \tag{2}$$

avec:

$$U[n] = \begin{cases} -1 & \text{avec } p = 1/2\\ 1 & \text{avec } p = 1/2 \end{cases}$$

$$(3)$$

Calculer la densité de probabilité de X[n] pour n grand.

Moments statistiques

Moyenne statistique

La moyenne statistique (ou moment d'ordre 1) d'un processus aléatoire X(t) est définie par:

$$m_X(t) = E[X(t)] - \infty < t < +\infty$$
 (4)

Moment d'ordre 2

Le moment d'ordre 2 d'un processus aléatoire X(t) est défini par:

$$M_{XX}(t_1, t_2) = E[X(t_1)X^*(t_2)] - \infty < t_1, t_2 < +\infty$$
 (5)

Expression des moments dans le cas d'une VA discrète

Soit $p_X(k;t) = P[X(t) = a_k]$ alors les moments peuvent être exprimés par:

$$m_X(t) = \sum_k a_k p_X(k;t) \tag{6}$$

$$M_{XX}(t) = \sum_{k} a_k^2 p_X(k;t) \tag{7}$$

$$M_{XX}(t_1, t_2) = \sum_{k} \sum_{n} a_k a_n p_{X_1 X_2}(k, n; t_1, t_2)$$
 (8)

Expression des moments dans le cas d'une VA continue

Si $p_X(x;t)$ est la densité de probabilité de X(t) au temps t alors les moments peuvent être exprimés par:

$$m_X(t) = \int_{-\infty}^{+\infty} x p_X(x;t) dx \tag{9}$$

$$M_{XX}(t) = \int_{-\infty}^{+\infty} x^2 p_X(x;t) dx$$
 (10)

$$M_{XX}(t_1, t_2) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x_1 x_2 p_{X_1 X_2}(x_1, x_2; t_1, t_2) dx_1 dx_2 \quad (11)$$

Fonctions de covariance

Fonction d'autocovariance

La fonction d'autocovariance $R_{XX}(t_1, t_2)$ d'un processus aléatoire X est définie par:

$$R_{XX}(t_1, t_2) = E[(X(t_1) - m_X(t_1))(X(t_2) - m_X(t_2))^*]$$
 (12)

La variance est un cas particulier: $\sigma_X^2(t) = R_{XX}(t,t)$

Fonction de covariance croisée

La fonction de covariance croisée des processus aléatoires X(t) et Y(t) est définie par:

$$R_{XY}(t_1, t_2) = E[X_c(t_1)Y_c^*(t_2)]$$
(13)

où $X_c(t)$ et $Y_c(t)$ sont les processus centrées de X(t) et Y(t)

Propriétés de la fonction d'autocovariance

Propriétés

- $R_{XX}(t,t) \ge 0$ avec égalité pour X(t) = K
- $R_{XX}(t_1, t_2) = R_{XX}^*(t_2, t_1)$ (symétrie hermitienne)
- $\max(R_{XX}(t_1, t_2)) = R_{XX}(t, t)$
- $|R_{XX}(t_1, t_2)|^2 \le R_{XX}(t_1, t_1)R_{XX}(t_2, t_2)$ (inégalité de Schwarz)
- $R_{XY}(t_1, t_2) = R_{YX}^*(t_2, t_1)$
- $|R_{XY}(t_1, t_2)|^2 \le R_{XX}(t_1, t_1)R_{YY}(t_2, t_2)$

Prédiction linéaire

Connaissant l'espérance $m_X(t)$ et la fonction d'autocovariance $R_{XX}(t_1,t_2)$ d'un processus aléatoire X(t), il est possible de déterminer une estimation du processus au temps t_2 à partir de l'observation du processus au temps t_1 :

$$\hat{X}(t_2) = m_X(t_2) + \frac{R_{XX}(t_1, t_2)}{R_{XX}(t_1, t_1)} (x(t_1) - m_X(t_1)$$
 (14)

Cette prédiction est en général difficile à évaluer en pratique car il faut estimer $m_X(t)$ et $R_{XX}(t_1, t_2)$ à chaque instant.

Exemple

Déterminer la moyenne et la fonction d'autocovariance du processus $X[n] \sim \mathcal{N}(0, \sigma^2)$ pour tout n.

Est il possible d'estimer la valeur de X[n+1] à partir de l'observation X[n]?

Stationnarité au sens strict

Stationnarité au sens strict

Un processus aléatoire est stationnaire au sens strict si sa loi temporelle est invariante par changement de l'origine des temps.

$$p_X(x_1,\ldots x_n;t_1\ldots t_n)=p_X(x_1,\ldots x_n;t_1+\tau\ldots t_n+\tau)\forall n,\tau$$
 (15)

Propriétés:

- $E[X^k(t)]$ est indépendant de t pour tout entier k
- $E[X^{k_1}(t_1)X^{k_2}(t_2)]$ ne dépend que de l'écart de temps $t_1 t_2$ pour tout couple d'entier (k_1, k_2)

Stationnarité au sens large

La stationnarité au sens strict est une notion restrictive. Dans les problèmes de filtrage des processus aléatoires on se contente d'une stationnarité des moments d'ordre 1 et 2.

Stationnarité au sens large

Un processus aléatoire est stationnaire au sens large (SSL) si:

- $m_X(t)$ est indépendant de t
- $R_{XX}(t_1,t_2)$ ne dépend que de l'écart de temps $t_1-t_2= au$

Processus IID

La loi temporelle d'un processus IID (indépendant et identiquement distribué) vaut:

$$p_{X[n_1+n_0],X[n_2+n_0],...,X[n_N+n_0]} = \prod_{i=1}^{N} p_{X[n_i+n_0]}$$
 (16)

$$=\prod_{i=1}^{N}p_{X[n_{i}]}$$
 (17)

$$= p_{X[n_1],X[n_2],...,X[n_N]}$$
 (18)

Un processus IID est donc stationnaire au sens strict (et cela quelque soit la pdf des ses VA).

Indépendance et décorrélation

Indépendance

Deux variables aléatoires sont indépendantes si:

$$p(x, y; t_1, t_2) = p(x; t_1)p(y; t_2)$$
(19)

Décorrélation

Deux variables aléatoires sont décorrélées si:

$$E[X(t)Y(t)] = E[X(t)]E[Y(t)]$$
(20)

L'indépendance implique la décorrélation. La réciproque est en général fausse (à l'exception du cas de VA gaussiennes).

Caractéristiques temporelles des signaux déterministes

Valeur moyenne:

$$\mu_{\mathsf{X}} = \lim_{T \to +\infty} \frac{1}{2T} \int_{-T}^{T} \mathsf{X}(t) dt \tag{21}$$

Puissance (totale):

$$P_X = \lim_{T \to +\infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt$$
 (22)

• Puissance de la composante alternative:

$$P_{AC} = \lim_{T \to +\infty} \frac{1}{2T} \int_{-T}^{T} (x(t) - \mu_x)^2 dt$$
 (23)

Caractéristiques temporelles des signaux déterministes

Autocorrélation:

$$C_{xx}(\tau) = \lim_{T \to +\infty} \frac{1}{2T} \int_{-T}^{T} x(t+\tau) \ x^*(t) dt \qquad (24)$$

• Intercorrélation:

$$C_{xy}(\tau) = \lim_{T \to +\infty} \frac{1}{2T} \int_{-T}^{T} x(t+\tau) \ y^*(t) dt \qquad (25)$$

Moments temporels

Moyenne temporelle

La moyenne temporelle (ou moment temporel d'ordre 1) d'un processus aléatoire X(t) est définie par:

$$\mu_X = \lim_{T \to +\infty} \frac{1}{2T} \int_{-T}^{T} X(t) dt$$
 (26)

 μ_X dépend de l'expérience ω considérée et est donc une variable aléatoire

Fonctions de covariance temporelles

Fonction d'autocovariance temporelle

Le moment temporel centré d'ordre 2 d'un processus aléatoire X(t) est défini par:

$$\mu_{XX}(\tau) = \lim_{T \to +\infty} \frac{1}{2T} \int_{-T}^{T} (X(t+\tau) - \mu_X)(X(t) - \mu_X)^* dt \quad (27)$$

Fonction de covariance temporelle

Le moment temporel centré d'ordre 2 des processus aléatoire X(t) et Y(t) est défini par:

$$\mu_{XY}(\tau) = \lim_{T \to +\infty} \frac{1}{2T} \int_{-T}^{T} (X(t+\tau) - \mu_X) (Y(t) - \mu_Y)^* dt \quad (28)$$

Ergodicité

Considérons une suite de variable aléatoires X(t) avec $t \in \mathbb{Z}$ indépendante et identiquement distribuées. La loi forte des grands nombres assure que:

$$\lim_{T \to +\infty} \frac{1}{2T+1} \sum_{t=-T}^{T} X(t) = E[X(t)]$$
 (29)

Ergodicité

Un processus aléatoire est ergodique si ses moments temporels convergent vers ses moments statistiques quand $\mathcal T$ tend vers l'infini.

Processus aléatoire SSL

Pour un processus aléatoire SSL on a:

- \bullet $\mu_X = m_X$
- $\bullet \ \mu_{XX}(\tau) = M_{XX}(\tau)$

Propriétés

- Toute suite de VA iid est stationnaire et ergodique
- La moyenne temporelle est indépendante de l'épreuve si $R_{XX}(0) < +\infty$ et $\lim_{\tau \to +\infty} R_{XX}(\tau) = 0$
- Un processus aléatoire gaussien SSL est ergodique au second ordre si $R_{XX}(0) < +\infty$ et $\lim_{\tau \to +\infty} R_{XX}(\tau) = 0$

Processus aléatoire SSL

Processus aléatoire SSL

- $E[X(t)] = m_X$ quelque soit t
- $E[|X(t)|^2] < +\infty$ quelque soit t
- $E[X(t_1)X^*(t_2)] = M_{XX}(\tau)$: Fonction d'autocorrélation (ACS ou ACF)

Si les moments d'ordre 1 et 2 d'un processus stationnaire au sens strict existent alors le processus est aussi stationnaire au sens large.

$$M_{XX}(\tau) = R_{XX}(\tau) + |m_Y|^2 \tag{30}$$

$$M_{XY}(\tau) = R_{XY}(\tau) + m_X m_Y^* \tag{31}$$

Propriété de la fonction d'autocorrélation (ACS ou ACF)

Propriétés

- $M_{XX}(0) \ge 0$
- $M_{XX}(k) = M_{XX}^*(-k)$ (symétrie hermitienne)
- $|M_{XX}(k)|^2 \le R_{XX}(0)R_{XX}(0)$ (inégalité de Schwarz)
- $\max(M_{XX}(k)) = M_{XX}(0)$
- $M_{XX}(k) = |m_X|^2$ pour $k \to \infty$

Prédiction linéaire d'un PA SSL

Connaissant l'espérance m_X et la fonction d'autocovariance $M_{XX}(\tau)$ d'un processus aléatoire SSL X(t), il est possible de déterminer une estimation du processus au temps t_2 à partir de l'observation du processus au temps t_1 :

$$\hat{X}(t_2) = m_X + \frac{M_{XX}(\tau) - m_X}{R_{XX}(0) - m_X} (x(t_1) - m_X)$$
 (32)

Puissance d'un signal aléatoire

La puissance d'un signal déterministe est définie par:

$$P_X = \lim_{T \to +\infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt$$
 (33)

Puissance d'un PA SSL

La puissance d'un processus aléatoire SSL et ergodique X(t) est:

$$P_X = E[|X(t)|^2] = M_{XX}(0) = R_{XX}(0) + |m_X|^2$$
 (34)

Densité spectrale de puissance

Densité spectrale de puissance

La DSP $S_{XX}(f)$ d'un PA SSL à temps continu est définie par:

$$S_{XX}(f) = \int_{-\infty}^{+\infty} M_{XX}(\tau) e^{-2j\pi f \tau} d\tau$$
 (35)

Réciproquement, la fonction d'autocorrélation d'un PA SSL X(t) peut être obtenue à partir de sa DSP:

$$M_{XX}(\tau) = \int_{-\infty}^{+\infty} S_{XX}(f) e^{2j\pi f \tau} df$$
 (36)

Propriété:

- $S_{XX}(f) \ge 0$ (fonction réelle, pas d'information sur la phase)
- Si PA à temps discret, $S_{XX}(f)$ est périodique de période 1.

Densité interspectrale de puissance

Densité interspectrale de puissance

La DSP $S_{XY}(f)$ de 2 PA SSL à temps continu est définie par:

$$S_{XY}(f) = \int_{-\infty}^{+\infty} M_{XY}(\tau) e^{-2j\pi f \tau} d\tau$$
 (37)

Réciproquement, la fonction de corrélation de 2 PA SSL X(t) et Y(t) peut être obtenue à partir de sa DSP:

$$M_{XY}(\tau) = \int_{-\infty}^{+\infty} S_{XY}(f) e^{2j\pi f \tau} df$$
 (38)

La densité interspectrale de puissance ne possède pas les propriétés de la densité spectrale de puissance.

Propriétés des processus aléatoires SSL

Symétrie hermitienne:

- Si X(t) est à valeurs réelles, $R_{XX}(\tau) = R_{XX}(-\tau)$ et $S_{XX}(f) = S_{XX}(-f)$
- Si X(t) est à valeurs complexes, $R_{XX}(\tau) = R_{XX}^*(-\tau)$ et $S_{XX}(f) \geq 0$

Valeur à l'origine:

•
$$P = R_{XX}(0) + |m_X|^2 = \int_{-\infty}^{+\infty} S_{XX}(f) df$$

•
$$|R_{XX}(\tau)|^2 \le R_{XX}^2(0)$$

Composante continue

•
$$M_{XX}(\tau) = \int_{-\infty}^{+\infty} S_{XX}(f) e^{2j\pi f \tau} df$$

Bruit blanc

Bruit blanc

Un bruit blanc est un processus aléatoire SSL centré dont la DSP est constante sur tout l'axe des fréquences:

$$S_{XX}(f) = \frac{N_0}{2} \quad \Leftrightarrow \quad M_{XX}(\tau) = R_{XX}(\tau) = \frac{N_0}{2}\delta(\tau)$$
 (39)

Bruit blanc à bande limitée

Un bruit blanc est un processus aléatoire SSL centré dont la DSP est constante dans une bande de fréquence B et nulle ailleurs.

Bruit blanc à bande passante limitée

Propriétés:

•
$$S_{XX}(f) = \frac{N_0}{2}[\text{rect}_B(f - f_0) + \text{rect}_B(f - f_0)]$$

$$P = N_0 B$$

•
$$R_{XX}(\tau) = N_0 B \operatorname{sinc}(B\tau) \cos 2\pi f_0 \tau$$

Un bruit blanc n'est pas forcément gaussien...

Filtrage des signaux déterministes

On considère un système linéaire invariant dans le temps décrit par sa réponse implusionnelle h(t) et sa fonction de transfert H(f):

$$x(t)$$
 $h(t)$ $y(t)$

Pour les signaux déterministes, le signal de sortie d'un filtre y(t) est lié au signal d'entré x(t) par:

$$y(t) = x(t) * h(t) = \int_{-\infty}^{+\infty} x(\tau)h(t-\tau)d\tau$$
 (40)

Ce qui s'écrit aussi dans le domaine des fréquences par:

$$H(f) = X(f)H(f) \tag{41}$$

Filtrage des processus aléatoires

Formule des moments

Soit X(t) un PA SSL appliqué à l'entrée d'un filtre de gain complexe H(f) de carré sommable alors Y(t) est un PA SSL de moyenne:

$$m_Y = H(0)m_X \tag{42}$$

et de DSP:

$$S_{YY}(f) = |H(f)|^2 S_{XX}(f)$$
 (43)

De plus X(t) et Y(t) sont conjointement stationnaires et leur densité interspectrale de puissance est donnée par:

$$S_{YX}(f) = H(f)S_{XX}(f) \tag{44}$$

Filtrage des processus aléatoires

Formule des interférences

Soit $X_1(t)$ et $X_2(t)$ deux PA SSL appliqué à l'entrée de deux filtres de gains complexes $H_1(f)$ et $H_2(f)$ de carré sommable alors $Y_1(t)$ et $Y_1(t)$ sont des PA SSL avec les fonctions de covariance données par:

$$S_{Y_1Y_2}(f) = H_1(f)H_2^*(f)S_{X_1X_2}(f)$$
(45)