Countability

Professor Cian Dorr

29th September 2022

New York University

Predecessors

Let pred be the function $\mathbb{N} \to \mathcal{P}\mathbb{N}$ defined recursively by

$$\operatorname{pred} 0 = \varnothing$$

$$\operatorname{pred}(\operatorname{suc} n) = \operatorname{pred} n \cup \{n\}$$

We write n < m as shorthand for ' $n \in \text{pred } m$ ', and $n \le m$ as shorthand for 'n < m or m = m', so the recursion clauses can be written as follows:

$$n < 0$$
 never $n < \text{suc } m \text{ iff } n \le m$

Some facts about order

Useful facts

For all k, n, m:

- 1. $0 \le n$
- 2. If suc n < m then n < m.
- 3. If k < n and n < m then k < m (And thus if $k \le n$ and $n \le m$ then $k \le m$.)
- 4. Not n < n.
- 5. Not n < m and m < n. (And thus if $n \le m$ and $m \le n$, n = m.)
- 6. Either n < m or m < n or n = m (And thus either $n \le m$ or $m \le n$.)
- 7. $n \le m$ iff m = n + k for some k.

These can all be proved by straightforward inductions.

Example

For example, here's the proof that k < n and n < m then k < m. By induction on m, generalizing over k and n.

Base case: trivial since it can't happen that k < n and m < 0.

Induction step: suppose that whenever k < n and n < m, k < m, and that for a certain k and n, k < n and $n < \sec m$. Then either n < m, in which case k < m by the IH, or else n = m, in which case k < m by substitution; either way, we have $k < \sec m$ by the recursion clause for <.

4

Another example

Proof by induction that every n is such that there is no m for which n < m and m < n.

Base case: trivial since there is no m for which m < 0.

Induction step: Suppose that there is no m for which n < m and m < n, and that m < suc n. So either m < n or m = n. If m < n, then not n < m by the IH; if m = n, then not n < m by substitution. So either way, not suc n < m by fact 2.

One more useful fact

Least Number Principle

For every $X \subseteq \mathbb{N}$, either $X = \emptyset$ or there exists $n \in X$ such that $n \leq m$ for all $m \in X$.

This is equivalent to the claim that < is *well-founded*:

Definition

Where R is a binary relation on A, R is well-founded iff for every $X \subseteq A$, either $X = \emptyset$ or there exists $x \in X$ such that there is no $y \in X$ for which Ryx.

This can be used to justify a different kind of proof by induction, so called "strong induction". If we want to prove that every number has property ϕ , we can do so by showing that for any n, if $\phi(m)$ for all m < n, then $\phi(n)$. (In other words: there is no least non- ϕ number; so by the Least Number Principle, there is no non- ϕ number.)

Proving the Least Number Principle

Suppose that X has no least element. First we will prove by induction that for all n, $X \cap \text{pred } n = \emptyset$.

Base case: trivial since pred $0 = \emptyset$.

Induction hypothesis: supopose for contradiction that $X \cup \operatorname{pred} n = \emptyset$ and $m \in X \cup \operatorname{pred}(\operatorname{suc} n)$. Then we must have $m \in \operatorname{pred}(\operatorname{suc} n) \setminus \operatorname{pred} n$, hence m = n: but then n is a least element of X.

This implies that $X = \emptyset$. For suppose $n \in X$; then since $n \in \text{pred}(\text{suc } n)$, we would have $n \in X \cap \text{pred}(\text{suc } n)$.

Analogues for lists

For lists there are two analogues of \leq , the *initial segment* and *final segment* relations, and two analogues of <, the *proper initial segment* and *proper final segment* relations.

Everything we have said about < applies *mutatis mutandis* to these principles, except that we don't have the analogue of the 'connectedness' fact: we can have two lists neither of which is an intial/final segment of the other.

Size n

Definition

 $n \in \mathbb{N}$ is the *size* of $A := A \sim \text{pred } n$.

Finitude, again

In an earlier lecture, we defined 'A is finite' to mean ' $A \in \mathcal{P}_{fin}A$ ', where $\mathcal{P}_{fin}A$ (the set of finite subsets of A) is defined as the closure of $\{\varnothing\}$ under the operation of adding one element of A.

We could equivalently have defined finitude in terms of the natural numbers:

Fact

A is finite iff $A \sim \text{pred } n$ for some $n \in \mathbb{N}$.

Finitude, again

For the left to right direction, we prove by induction that for every $B \in \mathcal{P}_{fin}A$ there is some n such that $B \sim \operatorname{pred} n$. For \varnothing it's 0; and when B' is the result of adding one element to B and $B \sim n$, $B' \sim \operatorname{suc} n$.

For the right to left direction, it suffices to note that pred n is finite for every n (since \varnothing is finite, and adding one element to a finite set always produces a finite set). Then we have to show that if $A \sim B$ and A is finite, B is finite.

Finitude facts

Given that a finite set is one that has size n for some n, the following can readily be established by numerical induction:

Finitude Facts

- 1. If A and B are finite, $A \cup B$ is finite.
- 2. If A and B are finite, $A \times B$ is finite.
- 3. If A is a finite set of finite sets, $\bigcup A$ is finite.
- 4. If A is finite, PA is finite.
- 5. If A and B are finite, A^B is finite.

Countability

Definition

Set A is countable := $A \lesssim \mathbb{N}$. (I.e.: there is an injection from A to \mathbb{N} .)

Don't confuse with:

Definition

Set A is countably infinite $:= A \sim \mathbb{N}$ (there is a bijection from A to \mathbb{N} .

Fact

A set is countable iff it is either finite or countably infinite.

To prove this, we show that every subset of \mathbb{N} that is not a subset of pred n for any n is the same size as \mathbb{N} . We define an injection:

$$f0 = \min X$$

 $f \operatorname{suc} n = \min(X \setminus (fn \cup \operatorname{pred} fn))$

This is an injection from \mathbb{N} to X.

Strings over a finite alphabet

Fact

If A is finite and $\neq \emptyset$, then A^* is countably infinite.

(Note that $\emptyset^* = \{[]\}$ which is not countably infinite, though it is countable.)

Intuitively, this is true because we can list all the members of A^* in alphabetical order.

Strings over a finite alphabet

To define an injective function f from A^* to \mathbb{N} , let n be the size of A, and let g be a bijection from A to pred n. Let $g^+a = \sec ga$ for every $a \in A$.

We define $f: A^* \to \mathbb{N}$ inductively as follows.

$$f[] = 0$$

$$f(a:s) = g^{+}a + n \times fs$$

This turns out to be injective (in fact it's a bijection). To prove it's injective, we rely on the following well-known arithmetical fact:

Division Theorem

If
$$qn + r = q'n + r'$$
, where $r < n$ and $r' < n$, then $q = q'$ and $r = r'$.

Strings over a finite alphabet

We prove by induction (on t) that whenever fs = ft, s = t.

Base case: suppose fs = f[] = 0. Then it can't be that s is (a:s') for some a and s', since then we'd have fs = suc(ga + nfs'), and zero isn't a successor. So it must be that s = [].

Induction step: suppose that s is such that whenever fs = ft, s = t, and suppose f(a:s) = ft. It can't be that t = [] since $f(a:s) \neq 0$, so we must have t = b:t' for some b,t'. So we have $\mathrm{suc}(nfs+ga) = \mathrm{suc}(ngt'+gb)$, and hence nfs+ga=nft'+gb. Since both ga < n and gb < n, the division theorem implies fs = ft' and ga = gb. But then s = t' by the induction hypothesis, and a = b by the injectivity of b, so t = (b:t') = (a:s).

Proving the division theorem

Coding lists of lists as lists

Suppose a finite set $B = A \cup \{c\}$. Then we can define an injection from $(A^*)^*$ to B^* by using c as a 'comma' to join any list of A-lists into one big B-list.

We define $f: A^{**} \to B^*$ recursively as follows.

$$f[] = []$$
 $f(s:j) = \begin{cases} s & \text{if } j = [] \text{ and } s \neq [] \\ s \oplus (c:fj) & \text{otherwise} \end{cases}$

To show that this is injective, we can define a 'decoding' function $g: B^* \to A^{**}$, and show that it's a left inverse of f.

$$g[] = []$$

$$g(a:s) = \begin{cases} [[a]] & \text{if } a \neq c \text{ and } s = [] \\ (a:t):j & \text{if } a \neq c \text{ and } gs = t:j \\ []:gs & \text{if } a = c \end{cases}$$

We then need to show that g(f(j)) = j for all $j \in A^{**}$.

Strings over a countable alphabet

Note that whenever $A \lesssim B$, $A^* \lesssim B^*$, since any injection $f: A \to B$ can be lifted to an injection $f^*: A^* \to B^*$ by recursively defining

$$f^*[] = []$$

 $f^*(a:s) = fa: f^*s$

So by the above, when A is finite and nonempty, and $B = A \cup \{c\}$ for some $c \notin A$, we have:

$$\mathbb{N}^* \sim A^{**} \sim B^* \sim \mathbb{N}$$

So we can conclude that whenever a set A is countable, A^* is countable too.

An easy corollary

Obviously $\mathbb{N} \times \mathbb{N} \lesssim \mathbb{N}^*$, since $[\langle n, m \rangle \to [n, m]]$ is injective.

And obviously $\mathbb{N} \lesssim \mathbb{N} \times \mathbb{N}$, since $[n \to \langle n, 0 \rangle]$ is injective.

So (by Schröder-Bernstein) we have $\mathbb{N} \sim \mathbb{N} \times \mathbb{N}$: there are as many ordered pairs of naturals as there are naturals.

Bijecting $\mathbb{N} \times \mathbb{N}$ to \mathbb{N}

The particular bijections we get by following the proof above are a bit wacky. But there are much nicer bijections, e.g. the one diagrammed here:

This is

$$f\langle n,m\rangle=\frac{(n+m)(n+m+1)}{2}+m$$

Countability facts

So we have analogues for countability for two of our facts about finitude.

Countability Fact 1

If A and B are countable, $A \cup B$ is countable.

Proof: suppose that $f:A\to\mathbb{N}$ and $g:B\to\mathbb{N}$ are injections. Then so is $h:A\cup B\to\mathbb{N}$ defined by

$$hx = \begin{cases} 2fx & \text{if } x \in A \\ 2gx + 1 & \text{if } x \in B \setminus A \end{cases}$$

Countability Fact 2

If A and B are countable, $A \times B$ is countable.

Proof: In general, if $A \lesssim X$ and $B \lesssim Y$ then $A \times B \lesssim X \times Y$.

Countability facts

We do *not* have an analogue of Finitude Fact 4: by Cantor's theorem, the powerset of a countably infinite set is *not* countably infinite.

We do however have a restricted version of this:

Countability Fact 4

If A is countable, $\mathcal{P}_{fin}A$ is countable.

Proof: We can injectively map sets in $\mathcal{P}_{fin}A$ to lists in A^* by ordering the elements according to some fixed $f: A \to \mathbb{N}$ (using the least number theorem).

Countability facts

We also *not* have an analogue of Finitude Fact 5. For example, although $\{0,1\}$ and \mathbb{N} are both countable, $\{0,1\}^{\mathbb{N}}$ is not countable, since there is a bijection between it and $\mathcal{P}\mathbb{N}$.

We do however have the following restricted version:

Countability Fact 5

If A is countable and B is finite, A^B is countable.

Proof: by induction on the size of *B*.

Base step: A^{\varnothing} has size 1.

Inductive step: there is a bijection from $A^{\operatorname{pred} n} \times A$ to $A^{\operatorname{pred} \operatorname{suc} n}$, namely $[\langle f, a \rangle \mapsto f \cup \{\langle n, a \rangle\}]$.

Countable union of countable sets

It turns out that we also have a direct analogue of Finitude Fact 3:

Countability Fact 3

If **V** is countable and every element of **V** is countable, then $\bigcup V$ is countable.

Intuition: suppose for simplicity that no two elements of \mathbf{V} overlap. Let f be an injection from \mathbf{V} to \mathbb{N} , and for each $X \in \mathbf{V}$ let g_X be an injection from X to \mathbb{N} . Then the function h that maps each $y \in X$ to $\langle fX, g_X y \rangle$ is an injection from $\bigcup V$ to $\mathbb{N} \times \mathbb{N}$.

Making this proof rigorous turns out to involve an appeal to the Axiom of Choice.