Introducción
Los registros de punto flotante de MIPS
Instrucciones de transferencia de datos
Operaciones aritméticas
Saltos condicionales en punto flotante
Conversiones entre tipos de datos

El IEEE 754 (punto flotante) en MIPS

Escuela Técnica Superior de Ingeniería Informática Universidad de La Laguna

Marzo 20, 2013

Esquema de la lección

- Introducción
- 2 Los registros de punto flotante de MIPS
- 3 Instrucciones de transferencia de datos
 - Entre registros enteros y registros de punto flotante
 - Entre registros de punto flotante
 - Entre memoria y registros de punto flotante
 - Transferencia de constantes
- Operaciones aritméticas
- 5 Saltos condicionales en punto flotante
- 6 Conversiones entre tipos de datos

Introducción

- Hemos estudiado hasta ahora el repertorio de MIPS especializado en trabajar con números enteros.
- En esta lección estudiaremos de manera resumida las características del repertorio de MIPS que le permiten trabajar con números en punto flotante.
- La arquitectura MIPS utiliza un coprocesador para la aritmética de punto flotante.
- Este coprocesador tiene registros e instrucciones especializados.
- MIPS puede trabajar con precisión simple (32 bits) y precisión doble (64 bits)

Los registros de punto flotante de MIPS

- MIPS dispone de 32 registros especiales para albergar la representación de punto flotante.
- Se nombran como: \$f0, \$f1, \$f2, ..., \$f31.
- Cada registro es de 32 bits.
- Los registros "pares": \$f0, \$f2, ..., \$f30. se usan para las operaciones de doble precisión.
- En las operaciones de doble precisión, se asume que el número correspondiente a un operando se almacena en el registro indicado (registros "pares") y en el siguiente. Por ejemplo:

Ensamblador MIPS:

```
2 add.d $f2,$f4,$f6 # suma doble precision
```

El número en f4|f5 se suma com el número en f6|f7 y el resultado se guarda en f2|f3.

Convenios de uso de los registros de punto flotante

- Registros salvados: Los registros del \$f20 al \$f31. El resto se consideran temporales.
- Argumentos de funciones: Los registros del \$f12 al \$f15.
- Resultados de las funciones: Los registros \$f0 y \$f1.

La transferencia entre registros enteros y los registros de punto flotante

- Importante: Al hablar de transferencia no hablamos de conversión. Si tenemos en un registro entero un conjunto de bits que lo interpretamos en complemento a 2 como un número particular y lo transferimos a un registro de punto flotante, la interpretación en punto flotante del número transferido no coincidirá con el número original. Las conversiones las trataremos después.
- Instrucciones: transferencia de punto flotante a entero: mfc1, transferencia de entero a punto flotante: mtc1.
- Ejemplo:

```
4 mfc1 $t1,$f0 # transferimos de $f0 a $t1
5 mtc1 $t1.$f0 # transferimos de $t1 a $f0
```

La transferencia entre registros de punto flotante

• La instrucciones mov.s y mov.d copian un registro en otro:

```
Ensamblador MIPS:
```

Carga y almacenamiento de registros desde la memoria

- Las instrucciones lwc1, ldc1 sirven para cargar una palabra (respectivamente una doble palabra) desde la memoria a un registro de punto flotante.
- Las instrucciones swc1, sdc1 sirven para almacenar una registro (respectivamente un doble registro) en la memoria.
- Ejemplo:

```
8 lwc1 $f1, 6($t1) # carga en $f1 los 4 bytes desde la
direccion de memoria referenciada.
```

```
9 sdc1 $f2, O($t2) # carga a partir de la direccion
referenciada los 8 bytes extraidos de la pareja ($f2,
$f3).
```

Carga de constantes

- Podemos cargar constantes definidas en memoria con las pseudoinstrucciones I.s y I.d (precisión simple y doble).
- Algunos ensambladores permiten la carga inmediata de constantes en los registros de punto flotante con las pseudoinstrucciones li.s y li.d.
- Ejemplo:

```
10 .data
11 micont: .float 4.56
12
13 .text
14 li.s $f1,3.141592
15 l.s $f4,micont
```

Operaciones aritméticas

- Las operaciones aritméticas son add.s, add.d, sub.s, sub.d, div.s, div.d, mul.s y mul.d (suma, resta, división y multiplicación en sus versiones de precisión simple y doble).
- Ejemplo:

Saltos condicionales en punto flotante

- Los saltos condicionales se realizan a partir de una instrucción de comparación especial y una instrucción de salto especial.
- Las instrucciones de comparación son: c.le.s, c.le.d, c.eq.s, c.eq.d, c.lt.s
 y c.lt.d que son menor o igual, igual que y menor que en sus versiones
 simple y doble. El resultado de la comparación se guarda en un registro
 interno que no varía hasta la siguiente comparación.
- Las instrucciones de salto son bc1t y bc1f, que realizan el salto si la comparación fue verdadera (respectivamente falsa).
- Ejemplo:

```
18 c.lt.s $f1,$f3
19 bc1t etiqueta #salta a etiqueta si $f1 es menor que $f3
```

Conversiones entre tipos de datos

- La instrucción para hacer "cast" entre tipos es cvt.y.x donde y es el tipo al que queremos convertir y x el tipo desde el que queremos converit.
- Por ejemplo, la instrucción para convertir a precisión simple un entero es cvt.s.w.
- Ambos operandos serán registros de punto flotante. El primero es el destinatario de la conversión y el segundo el origen.
- Ejemplo: