Mohammad Ali Jinnah University

Department of Computer Science CS2420: Operations Research Semester Spring 2022

Dated: 27th April 27, 2022 Due Date: 17th May 2022 (In class)

Home Work # 6 **Total Points 70**

SENSITIVITY ANALYSIS (70 points)

Home Work # 6

Name: Muhammad Fahad

ID: FA19-BSSE-0014

Teacher: Dr. Abdul Qadar Kara

Section: BM

Q1. The Furniture Company manufactures desks, tables, and chairs. The manufacture of each type of furniture requires lumber and two types of skilled labor: finishing and carpentry. The amount of each resource needed to make each type of furniture is given in Table 4.

Currently, 48 board feet of lumber, 20 finishing hours, and 8 carpentry hours are available. A desk sells for \$60, a table for \$30, and a chair for \$20. Because the available resources have already been purchased, the company wants to maximize total revenue.

Resource	Desk	Table	Chair
Lumber (board ft.)	8	6	1
Finishing hours	4	2	1.5
Carpentry hours	2	1.5	0.5

Defining the decision variables as:

 x_1 = number of desks produced

 $x_2 = number of tables produced$

 x_3 = number of chairs produced

Following is the initial LP formulation of the problem

Maximize
$$z = 60x_1 + 30x_2 + 20x_3$$

Subject to

$$8x_1 + 6x_2 + x_3 \le 48$$

$$4x_1 + 2x_2 + x_3 \le 20$$

$$3$$

$$2x_1 + x_2 + x_3 \le 8$$

$$x_1, x_2, x_3 \ge 0$$

 $x_1, x_2, x_3 \ge 0$ The optimal tableau for this problem is then (solving by Simplex Method) is:

The optimal	tacicaa i oi tii	is prociein is	then (BOTTINE	, of Simplen	111011104) 15.		
BV	x_1	x_2	x_3	s_1	s_2	s_3	RHS
Z	0	5	0	0	10	10	280
s_1	0	-2	0	1	2	-8	24
x_3	0	-2	1	0	2	-4	8
χ_1	1	5/4	0	0	-1/2	3/2	2

Now, find the optimal solution using sensitivity analysis for the following changes to the original problem: (10 points each)

1	•
4	7

(a) Available resources change to [30].

(b) Prices of table changed to \$33.

(c) Prices change to \$60 per desk, \$45 per table and \$30 per chair.

(d)	Suppose, due to market requirements, the total number of products made by the company should be at most 12. (Sum of all products is \leq 12), how does that affect the optimal solution?
(e)	Considering making new footstools, the price of each footstool is \$15 and requires 1 board foot of
(0)	lumber, 1 finishing hour and 1 carpentry hour. What will be the optimal product mix?

(f)	For what change in price of table will the current solution remain optimal?
(g)	There is a decrease in supply for lumber, what is the range of change that will keep the current solution optimal?