Complex Integration (Line Integral) Exercise:6 (Part-1)

Objective:

Finding the path of integration in different form

Methodologies:

By separating real and imaginary part equation of the path will be evaluated.

Line Integral:

- > Complex definite integrals are called (complex) line integrals.
- \triangleright Line integral is written as $\int_C f(z) \, dz$. The integrand f(z) is integrated over the curve C. This curve C in the complex plane is called the **path of integration**.
- Fig. If C is a **closed path** (one whose terminal point coincides with its initial point), then it is denoted by $\oint_C f(z)dz$.
- \triangleright C can be represented parametrically as z(t) = x(t) + i y(t) $a \le t \le b$.
- For If C is a combination of C_1 and C_2 then $\int_C f(z) dz = \int_{C_1} f(z) dz + \int_{C_2} f(z) dz$ and the line integral becomes $\int_C f(z) dz = \int_C f(z(t)) z'(t) dt$.

Problem:(i) Find and sketch the path z(t) = (1+2i)t and its orientation is $(1 \le t \le 4)$

Solution:
$$z(t) = (1+2i)t \ (1 \le t \le 4)$$

 $\Rightarrow x(t) + i \ y(t) = t + i \ 2t$

Comparing real and imaginary part, we get x(t) = t, y(t) = 2t $(1 \le t \le 4)$.

t	x	у	(x,y)
1	1	2	(1,2)
4	4	8	(4,8)

<u>Problem: (ii)</u> Find and sketch the path $z(t) = 4 + i + 2e^{it}$ and its orientation $(0 \le t \le 2\pi)$.

Solution:
$$z(t) = 4 + i + 2e^{it} \ (0 \le t < 2\pi)$$

 $\Rightarrow x(t) + i \ y(t) = 4 + i + 2\cos(t) + i \ 2\sin(t)$
 $\Rightarrow x(t) + i \ y(t) = (4 + 2\cos(t)) + i \ (1 + 2\sin(t))$

Comparing real and imaginary part, we get

$$x(t) = 4 + 2\cos(t)$$

$$\Rightarrow x - 4 = 2 \cos t \Rightarrow \frac{x - 4}{2} = \cos t$$

$$y(t) = 1 + 2\sin(t)$$

$$\Rightarrow y - 1 = 2\sin t \Rightarrow \frac{y - 1}{2} = \sin t$$

$$\Rightarrow \left(\frac{x-4}{2}\right)^2 + \left(\frac{y-1}{2}\right)^2 = 1$$

\Rightarrow (x-4)^2 + (y-1)^2 = 2^2

So, $z(t) = 4 + i + 2e^{it}$ ($0 \le t < 2\pi$) represents a circle of radius 2 with center (4, 1).

Problem: (iii) Find and sketch the path $z(t) = 3 - i + 2\sin(t) + i 3\cos(t)$, $(0 \le t \le 2\pi)$. Also test whether the point (5,2) is interior, exterior or boundary of this curve.

Solution:

$$z(t) = 3 - i + 2\sin(t) + i 3\cos(t)$$

$$\Rightarrow x(t) + i y(t) = (3 + 2\sin(t)) + i (-1 + 3\cos(t))$$

Comparing real and imaginary part, we get

$$x(t) = 3 + 2\sin(t)$$

$$\Rightarrow x - 3 = 2 \sin t \Rightarrow \frac{x - 3}{2} = \sin t$$

$$y(t) = -1 + 3\cos(t)$$

$$\Rightarrow y + 1 = 3\cos(t) \Rightarrow \frac{y+1}{3} = \cos t$$

$$\Rightarrow \left(\frac{x-3}{2}\right)^2 + \left(\frac{y+1}{3}\right)^2 = 1$$

So the given path represents an ellipse with center at (3, -1) and vertices $(\pm 3 - 1, 3) = (2, 3), (-4, 3)$.

Now at (5,2),
$$\left(\frac{x-3}{2}\right)^2 + \left(\frac{y+1}{3}\right)^2 = 2 > 1$$

So the point (5,2) will be exterior to the ellipse.

Problem: (iv) Find and sketch the path $z(t) = 2 + i + (\cosh t + i \sinh t)$. Also test whether the point (1, 3) is interior, exterior or boundary of this curve.

Solution:

$$z(t) = 2 + i + (\cosh t + i \sinh t)$$

$$\Rightarrow x(t) + i y(t) = 2 + i + \cosh t + i \sinh t$$

$$\Rightarrow x(t) + i y(t) = (2 + \cosh(t)) + i (1 + \sinh(t))$$

Comparing real and imaginary part, we get

$$x(t) = 2 + \cosh(t) \Rightarrow x - 2 = \cosh t$$

$$y(t) = 1 + \sinh(t) \Rightarrow y - 1 = \sinh t$$

$$\Rightarrow (x - 2)^2 - (y - 1)^2 = 1$$

So the given path represents a hyperbola with center at (2,1) and vertices $(\pm 1 + 2, 1) = (3,1), (1,1)$.

Now at
$$(1,3)$$
, $(x-2)^2 - (y-1)^2 = -3 < 1$

So the point (1,3) will be interior to the hyperbola.

Horizontal Ellipse At (0, 0): $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ General: $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$ $a^2 - b^2 = c^2$ Center: (h, k) Foci: $(h \pm c, k)$ Vertices: $(h \pm a, k)$ Co-Vertices: $(h, k \pm b)$

At (0, 0):
$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$$

General:
$$\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$$

 $a^2 - b^2 = c^2$

Center: (h, k) Foci: $(h, k \pm c)$

Vertices: $(h, k \pm a)$ Co-Vertices: $(h \pm b, k)$

Exercises:

Find and sketch the path and its orientation. Also classify whether the indicated points are interior, exterior or boundary of the following curves.

$$> z(t) = (1 - 6i)t (0 \le t \le 3)$$

$$> z(t) = (5 - i)t (-2 \le t \le 2)$$

$$>z(t) = -4 - i + e^{it} \ (0 \le t \le 2\pi)$$

$$> z(t) = 6\sin(t) + i 4\cos(t) (0 \le t \le 2\pi); (5,1)$$

$$> z(t) = 2 + i + (\cosh t + i \sinh t) (2,3).$$

Sample MCQ:

❖Equation of unit circle is :

(a)
$$|z| = r$$

(b)
$$|z| = 2$$

(b)
$$|z| = 2$$
 (c) $|z| = 1$.

• What is the equation of the path C, passing through the points z = 0 to z = 2.

(a)
$$y = 0$$

(b)
$$x = 0$$

(c)
$$y = 2$$
.

 \clubsuit Mention whether the point (1,2) is interior, exterior or boundary of |z-5+i|=4.

- (a) interior
- (b) exterior
- (c) on boundary.

|z-2|=4; center of the circle is

(a)
$$(-2,0)$$
 (b) $(2,0)$ (c) $(0,2)$.

 \clubsuit The vertices 0, 2, 2 + *i*, *i* represents which of the following shape?

- (a) Rectangle
- (b) Triangle (c) Square.

* Which of the following line is parallel to the imaginary axis?

(a)
$$z = 1$$
 to $z = 1 + i$

(b)
$$z = 1$$
 to $z = 1 + 2i$

(c)
$$z = 1 + i$$
 to $z = i$.