Prática 5 Saturação Magnética

Universidade do Estado do Rio de Janeiro Conversão Eletromecânica de Energia I Turma 1 Fernando Lopes Cardoso 11 de dezembro de 2020

1 Introdução

Muitas vezes, para efeitos simples, os efeitos de saturação magnética são ignorados. Entretanto, para algumas aplicações considerar este efeito é de suma importância. Os efeitos de da saturação magnética serão simulados com o programa (Meeker, 2019).

2 Objetivo

Verificar via simulação os efeitos da saturação magnética para o núcleo de ferro representado na figura 1.

Figura 1: Representação plana do corpo de prova com 2cm de profundidade.

Fonte: (Freitas, 2020)

A curva de magnetização utilizada está representada na figura 2.

Figura 2: Curva de magnetização utilizada.

Fonte: (O autor, 2020)

Com o perfil não linear do material, o esperado é que conforme o gap do entreferro varie, afetando assim o fluxo magnético que flui pelo circuito, desloque a faixa de operação do circuito.

3 Procedimentos

A curva de magnetização descrita na figura 2 foi gerada por um conjunto de pontos que foi importado no programa FEMM. O circuito magnético descrito na figura 1 deve ser construído no FEMM, conforme mostra a figura 3 com um total de 30 espiras¹.

Figura 3: Representação do modelo construído no FEMM.

Fonte: Adaptado de (Freitas, 2020)

Com o intuito de levantar a curva de fluxo concatenado por corrente, obtendo assim a indutância do circuito, deve-se fixar um valor de gap e variar a corrente. Os valores de gap que serão utilizados são g=0.001mm, g=0.05mm, g=0.1mm e g=0.5mm. Para cada um destes gaps a corrente será variada de 0 a 20A com 2A de passo. Para facilitar o processo de aquisição de dados foi criado um script em lua para variar a corrente do circuito da bobina e uma função para variar de forma manual a posição do núcleo "I" em ralação ao núcleo "U" (Cardoso, 2020).

4 Resultados e Discussão

Os dados coletados nas simulações estão representados na tabela 1

Tabela 1: Curvas de indutância

I(A)	$\lambda [g = 0.01]$ (We)	$\lambda [g = 0.05]$ (We)	$\lambda [g = 0.1](We)$	$\lambda [g = 0.5]$ (We)
0	0	0	0	0
2	0,004556276	0,000831677	0,000492579	0,000156541
4	0,00955856	0,001848298	0,001017625	0,000313289
6	0,012555589	0,002926805	0,00157812	0,000470454
8	0,014368194	0,003997161	0,002153907	0,000628239
10	0,015573489	0,005055018	0,002732963	0,000786771
12	0,016638003	0,006104971	0,003311135	0,000946055
14	0,017663228	0,007149627	0,003887472	0,001106032
16	0,018670849	0,008183941	0,00446188	0,001266606
18	0,019667775	0,009193135	0,005034647	0,001427666
20	0,020656467	0,010166216	0,005606143	0,001589108

Fonte: (O autor, 2020)

 $^{^{1}}$ O valor utilizado é diferente do citado no roteiro (Freitas, 2020) para facilitar a visualização do efeito.

O o gráfico apresentado na figura 4 foi feito com base nos dados da tabela 1

Figura 4: Representação do modelo construído no FEMM.

Fonte: (O autor, 2020)

Como esperado, não linearidade do material causa uma não linearidade da indutância. Isso pode ser facilmente entendido, uma vez que a não linearidade entre os campos B e H introduz uma permeabilidade magnética não contante, dependendo assim do campo H de forna não trivial. E como este por sua vez dependente da corrente elétrica (para o caso estudado neste trabalho) a permeabilidade acaba dependendo de forma não linear da corrente elétrica que por sua vez gera uma indutância não linear.

$$\lambda = L(i)i. \tag{1}$$

5 Conclusão

Era esperado que uma relação não linear entre os campos campos B e H fosse causar uma não linearidade na indutância L(i) e de fato isto ocorreu. A justificativa de por que esse efeito foi mais intensamente observado para o menor valor de gap e de forma menos intensa para os maiores é bem simples. O tamanho do entreferro afeta diretamente a quantidade de fluxo magnético que flui pelo sistema, valores menores de entreferro permitem fluxos maiores, de forma qualitativa

$$\phi_M = A \cdot B \sim \frac{1}{g} \tag{2}$$

desta forma, maiores valores de entreferro g introduzem menores valores para o campo B. Com isso, a relação entre o B e o H se limitam a ficar na parte inicial do gráfico representado na 2, uma região aproximadamente linear. Para valores mais baixos de g, a relação entre B e o H abrangem mais regiões da curva. Conforme a corrente elétrica do circuito cresce, a relação entre B e o H são empurradas para a segunda parte do gráfico e também devem ter comportamentos aproximadamente lineares. Basta aproximar o gráfico da figura 2 para um modelo Bilinear com relação ao ponto H=1000A/m se o sistema apresentar valores no entorno de H=1000A/m, a não linearidade será fortemente observada, caso o sistema esteja muito abaixo ou muito acima deste valor de campo a não linearidade não deve ser facilmente observada.

Referências

Cardoso, F (2020). CEME_1_Lab_5. Data de Acesso: 11 de Dezembro de 2020. URL: https://github.com/flcardoso1/CEME_1_Lab_5.

Freitas, C (2020). Saturação Magnética. Data de Acesso: 11 de Dezembro de 2020. URL: https://drive.google.com/file/d/1GN81Hux1twrdbUQeXK7xn6P9fafQuRvg/view.

Meeker, D (2019). Finite Element Method Magnetics: Home page. Data de Acesso: 25 de Setembro de 2020. URL: https://github.com/cleitoncmf/LAB-CEME-I-2020-1/tree/master/FEMM.