宏观经济学

李伦 北京大学经济学院 2025/4/29

就业与劳动市场

失业率统计数据

-●- 全国城镇本地户籍劳动力失业率(%) -■- 全国城镇外来户籍劳动力失业率(%)

数据来源: 国家统计局

失业率统计数据-2

-●- 全国城镇不包含在校生的16—24岁劳动力失业率(%) -■- 全国城镇不包含在校生的25—29岁劳动力失业率(%)

数据来源: 国家统计局

就业与劳动市场

- 目前为止,我们学习的模型无法很好地解释失业是如何形成的
- 原因: 我们总是假设劳动市场出清, 也就是劳动需求=劳动供给
- 假设出于某种原因,劳动供给大于劳动需求;此时,一个更低的工资会使得劳动市场重新出清。
- 换句话说,目前的模型无法解释"非自愿失业"的存在。理论上说,为 什么不能降低工资,雇佣所有想要劳动的人呢?

工资刚性 Wage Rigidity

• 可能的解释:由于法规、合同等因素,短期内降低工资存在一定难度

• 工资存在向下的刚性 (downward rigidity): 当劳 动需求下降时,工资不能继 续向下调整,导致劳动市场 供过于求,出现失业。

其他的理论

• 有没有其他的理论能解释失业的出现?

 McCall Search Model: 在1970年由经济学家John J. McCall 提出, 在一个搜索模型的框架下重新阐释了劳动市场的出清机制

• Prof. Robert Lucas Jr. on McCall model:

Questioning a McCall worker is like having a conversation with an out-of-work friend: 'Maybe you are setting your sights too high', or 'Why did you quit your old job before you had a new one lined up?' This is real social science: an attempt to model, to understand, human behavior by visualizing the situation people find themselves in, the options they face and the pros and cons as they themselves see them.

一个简化的 McCall 模型

• 假设一个代理行为人正在寻找工作。他的效用是:

$$U_0 = \sum_{t=0}^{\infty} \beta^t c_t$$

- 每一期,代理行为人面对如下的选择:
 - 如果他继续保持失业状态,每月可以领取失业补助b
 - 如果他去找工作,会得到一个在 $[0,\overline{w}]$ 区间上随机分布的offer,工资为w,分布函数为P(w);他可以选择接受或拒绝这个offer

优化问题?

• 试着写出这个代理人的优化问题?

优化问题-2

• 你可能发现,和之前的模型不同,写下优化问题好像比较难

• 主要的问题在于,代理人每期会根据一些不确定的因素(拿到的工资w)做出决定;而在不了解这些不确定因素之前,无法通过一个无限期的模型做出最优的规划

代理人的选择

- 面对一个offer,代理人有两种痛苦的选择:
 - 接受offer, 以同样的工资 w工作到永远;
 - 拒绝offer,收到失业补偿b,下期继续搜索;
- 接受今天的已知, 还是面对明天的未知?

• 这似乎也取决于offer的好坏…

打工人的选择-2

- 需要找到一种方法, 计算每种决定带来的影响
- 不仅需要计算当期的影响, 还要考虑到这种决定会将你带向何方
- 区分: State vs Control variables
 - A **state variable** describes the state of the world, and is something that the agent cannot change in the current period.
 - A **control variable** is a choice that the agent can make in the current period.

状态与控制变量

• 这个问题中的状态变量与控制变量是?

- 状态变量: 工资 w, 就业情况 {Employed, Unemployed}
- 控制变量: {Accept the offer, Reject the offer}

• 两种变量都是离散的!

Value functions (价值函数)

- 我们可以用一种方法, 给代理人可能处于的每种状态赋一个值
 - The value of employed worker with wage w: $V_E(w)$
 - The value of unemployed worker with wage offer w: $V_U(w)$

• 画出整个问题的时间线,可能比较有帮助

McCall模型: 时间线

价值函数的表达式

• 对于一个处于失业状态,拿到offer w的代理人来说,他的价值函数可以表达为:

$$V_U(w) = \max\{V_E(w), b + \beta \mathbb{E}(V_U(w'))\}$$

• 对于一个处于就业状态,工资为w的代理人来说,他的价值函数可以表达为:

$$V_E(w) = \sum_{t=0}^{\infty} \beta^t w = \frac{w}{1 - \beta}$$

简化价值函数

$$V_U(w) = \max\{V_E(w), b + \beta \mathbb{E}(V_U(w'))\}$$
$$V_E(w) = \frac{w}{1 - \beta}$$

• 两个公式组合,将失业者的价值函数简化

$$V_U(w) = \max\left\{\frac{w}{1-\beta}, b + \beta \mathbb{E}(V_U(w'))\right\}$$

- 只能简化到这里了…
- 下一个问题: 能否把这个函数画出来?

画出价值函数

• 注意这个括号里面的两项:

$$V_U(w) = max \left\{ \frac{w}{1-\beta}, b + \beta \mathbb{E}(V_U(w')) \right\}$$

- 如果以w为横坐标,函数值为纵坐标, $\frac{w}{1-\beta}$ 是一条穿过原点,斜率为 $\frac{1}{1-\beta}$ 的直线。
- 第二项 $b + \beta \mathbb{E}(V_{II}(w'))$ 是一条水平线(为什么?)

画出价值函数

• 下期的工资分布依然 服从P(w),与本期

的offer无关

看做一个常数

画出价值函数

V_U(*w*) 的取值,是两个函数当中更高的取值

• 交点 w_R 的工资水平 被称为"保留工资"

保留工资(Reservation wage)

• 代理人决定是否接受工作,取决于拿到的offer是否高于保留工资

• 代理人根据状态 w 做出的最优决定 $g_U(w)$,被称为"<mark>政策函数</mark>" (policy function)

$$g_U(w) = \begin{cases} Accept & if \ w \ge w_R \\ Reject & if \ w < w_R \end{cases}$$

保留工资

• 当工资等于保留工资时, $w = w_R$,工作与不工作的价值相等

$$\frac{w_R}{1-\beta} = b + \beta \mathbb{E}[V_U(w')]$$

• 提问: 如果失业保障 b提高, 会对保留工资产生怎样的影响?

• 如果折现因子 β 减小呢? (代理人变得更不耐烦)

保留工资的表达式*

$$\frac{w_R}{1-\beta} = b + \beta \mathbb{E}[V_U(w')]$$
$$= b + \beta \int_0^{\overline{w}} V_U(w') p(w') dw'$$

因为
$$V_U(w') = \begin{cases} \frac{w'}{1-\beta} & \text{if } w' > w_R \\ \frac{w_R}{1-\beta} & \text{if } w' \ge w_R \end{cases}$$
,右边可以写成

$$\int_{0}^{\overline{w}} V_{U}(w')p(w')dw' = \int_{0}^{w_{R}} \frac{w_{R}}{1-\beta} p(w')dw' + \int_{w_{R}}^{\overline{w}} \frac{w'}{1-\beta} p(w')dw'$$
$$= \frac{w_{R}}{1-\beta} P(w_{R}) + \int_{w_{R}}^{\overline{w}} \frac{w'}{1-\beta} p(w')dw'$$

保留工资的表达式-2*

• 也就是说

$$\frac{w_R}{1-\beta} = b + \beta \left(\frac{w_R}{1-\beta} P(w_R) + \int_{w_R}^{\overline{w}} \frac{w'}{1-\beta} p(w') dw' \right)$$

• 假设工资在 [0, w] 均匀分布

$$P(w) = \frac{w}{\overline{w}}$$

$$p(w) = \frac{dP}{dw}(w) = \frac{1}{\overline{w}}$$

• 那么上式变为

$$\frac{w_R}{1-\beta} = b + \beta \left(\frac{w_R}{1-\beta} \frac{w_R}{\overline{w}} + \int_{w_R}^{\overline{w}} \frac{w'}{1-\beta} \frac{1}{\overline{w}} dw' \right)$$

保留工资的表达式-3*

• 进一步简化:

$$\frac{w_R}{1-\beta} = b + \beta \left(\frac{w_R}{1-\beta} \frac{w_R}{\overline{w}} + \int_{w_R}^{w} \frac{w'}{1-\beta} \frac{1}{\overline{w}} dw' \right)$$

$$= b + \frac{\beta}{\overline{w}(1-\beta)} \left(w_R^2 + \int_{w_R}^{\overline{w}} w' dw' \right)$$

$$= b + \frac{\beta}{2\overline{w}(1-\beta)} \left(w_R^2 + \overline{w}^2 \right)$$

保留工资的表达式-4*

• 两边同乘 $(1-\beta)$:

$$w_R = b(1 - \beta) + \frac{\beta}{2\overline{w}} (w_R^2 + \overline{w}^2)$$
$$= b + \frac{\beta \overline{w}}{2} \left(\left(\frac{w_R}{\overline{w}} \right)^2 + 1 - 2 \frac{b}{\overline{w}} \right)$$

• 举例: 如果 $b = E(w) = \frac{\overline{w}}{2}$ $w_R - b = \frac{\beta w_R^2}{2\overline{w}} > 0$

• 举例-2: 如果 $b=\overline{w}$, $w_R=b=\overline{w}$

McCall 搜索模型: 总结

• 代理人通过比较潜在工资 w 和保留工资 w_R 之间的大小,决定是否工作。如果 $w > w_R$,他会开始工作; 反之,他会拒绝这份工作,并在下一期继续寻找。

• 失业保障 b 的大小和潜在工资的分布 P(w) 都会影响保留工资的大小。

扩展: McCall with Job Separation

- 在这个模型中,我们假设了处在就业状态的代理人会以目前的工资一直工作下去
- 我们也可以假设有一定的可能性α , 让正在工作的代理人成为失业状态。
- 此时如何写出价值函数?

$$V_{U}(w) = \max\{V_{E}(w), b + \beta \mathbb{E}(V_{U}(w'))\}$$

$$V_{E}(w) = w + \beta\{(1 - \alpha)V_{E}(w) + \alpha \mathbb{E}(V_{U}(w'))\}$$

对McCall模型的批评

• McCall 模型以保留工资 w_R 概括了代理人的就业选择。

•对 McCall 模型有一个比较著名的批评,叫做Rothschild critique

• 主要问题: 工资分布 P(w) 从何而来?

The Rothschild Critique

• 在 McCall 模型当中,仅当工资高于代理人的保留工资 w_R 时,代理人才会选择工作

• 工资分布 P(w) 对于代理人已知, 在模型中假设为外生; 模型无法解释工资分布的产生。

• 如果模型中存在追求利润最大化的公司,那么这个工资分布P(w)还会存在吗?

The Rothschild Critique - 2

• 答案是: 不会!

• 所有公司都会开出同一个工资 W_R

• 工资低于 w_R 的公司招不到任何人,而工资高于 w_R 的公司相当于付给了员工过多的工资

• 在一个竞争均衡的框架下,工资分布 P(w) 会收缩至一点

对于Rothschild批判的回应

• 对于McCall模型可以做出一些拓展,从而回应Rothschild Critique

- •可能的角度:
 - Search intensity;
 - Career choice;
 - Search with unknown wage distribution;

搜索强度(search intensity)的简化模型

- 假设所有公司都开出同样的工资 w.
- 代理人的目标函数:

$$\sum_{t=0}^{\infty} \beta^t \left(u(y_t) - a_t \right)$$

- y_t 为t 期消费, a_t 为t 期的搜索强度。
- 如果有工作,无需继续寻找,搜索强度为 $a_t = 0$.
- 如果失业,<mark>代理人收到失业补助 b, 并有一定概率</mark>p(a) <mark>找到工作,</mark>概率 取决于搜索强度大小

价值函数

• 就业中的代理人

$$V_E = \frac{u(w)}{1 - \beta}$$

• 失业中的代理人:

$$V_U = \max_{a \ge 0} \{ u(b) - a + \beta [p(a)V_E + (1 - p(a))V_U] \}$$

• 注意,此时 V_E 和 V_U 都不是 w的函数,因为w是唯一的

一阶条件*

$$V_U = \max_{a \ge 0} \{ u(b) - a + \beta [p(a)V_E + (1 - p(a))V_U] \}$$

• 最佳的搜索强度(一阶条件)

$$-1 + \beta p'(a)[V_E - V_U] \le 0$$

- 如果 a > 0 , 上式=0
- 给定函数形式和参数取值,可以通过价值函数迭代(value function iteration)的方式找到 V_E , V_U 和 a。

Discussion of Search Intensity Model

• 这个模型里,状态变量是就业状态。

• 只有一个工资水平w,不存在工资水平的分布

• 可能的问题在于,找到工作的概率 p(a) 也是外生过程,无法被模型刻画

职业选择模型(Model of Career Choice)

- 由 Derek Neal (1999) 提出
- 将工资的组成部分划分为"职业"与"工作"

$$w_t = \theta_t + \epsilon_t$$

- θ_t : 职业对工资的贡献部分
- ϵ_t : 工作对工资的贡献部分
- 模型中不存在失业

职业选择模型-2

• 每一期,代理人可以进行一下的三种选择:

- 保持现状: 同样的职业、同样的工作 (θ_t, ϵ_t) .
- 新工作: 同样的职业 θ_t , 不同的工作 ϵ_t .
- 新生活: 新的职业 θ_t 和工作 ϵ_t .
- 假设两部分工资的分布为:

$$\theta_t \sim F$$

$$\epsilon_t \sim G$$

代理人的问题

• 代理人的目标函数为:

$$\mathbb{E}\sum_{t=0}^{\infty}\beta^t w_t$$

• 代理人的价值函数为如下形式:

$$V(\theta, \epsilon) = \max\{V_I, V_{II}, V_{III}\}$$

$$V_{I} = \theta + \epsilon + \beta V(\theta, \epsilon)$$

$$V_{II} = \theta + \int \epsilon' dG(\epsilon') + \beta \int V(\theta, \epsilon') dG(\epsilon')$$

$$V_{III} = \int \theta' dF(\theta') + \int \epsilon' dG(\epsilon') + \beta \int \int V(\theta', \epsilon') dG(\epsilon') dF(\theta')$$

价值函数: 图像

价值函数: 图像

- If both job and career are poor, the worker will switch to a new job and new career.
- If career is sufficiently good, the worker will hold on to it but switch to a new job.
- If both job and career are good, the worker will stay put.

价值函数: 图像

- 注意到劳动者找到一个不错的职业后, 会停留在这个职业当中
- 而即使是工资最高的工作,如果职业不好,也会使劳动者想要改变职业
- 原因:可以在不改变职业的条件下改变工作,而不能在不改变工作的条件下改变职业

讨论:或许有时候必须要舍弃一份好的工作,才能找到一个更好的职业

职业选择模型-讨论

将简单的经济学直觉,通过模型的方式呈现出来,得到合乎情理、 贴近现实的结果

• 可以看做对Rothschild批判的一种回应:公司可以提供不同的工资水平,因为每一份工作都属于不同的职业。

不完全信息

- 另一种扩展是将McCall模型中引入未知的工资分布
- 例如,假设<mark>存在两种可能的工资分布 F 和 G</mark>,劳动者不知道哪种是真实的工资分布

- 劳动者对工资分布存在先验信念(prior belief)
- 例如,劳动者认为工资分布有 π_0 =40%的可能性为F,60%的可能性为G

搜索与评估

• 随着搜索的进行,劳动者会根据拿到的工资水平对自己的信念进行重新评估

$$\pi_{t+1} = \frac{\pi_t f(w_{t+1})}{\pi_t f(w_{t+1}) + (1 - \pi_t) g(w_{t+1})}$$

• 这个过程叫做Bayesian updating, 劳动者通过观测到的工资, 对工资分布产生了后验信念 (posterior beliefs)

不完全信息-讨论

• 这里,劳动者虽然生来相同,但是根据不同的人生经历,会对工资分布产生不同的后验信念

 劳动者会根据自身不同的信念,产生对明天状态的不同预期,从 而产生不同的保留工资水平

• 也就是说,和Rothschild critique的结论相反,工资分布是可能存在的。

理解劳动力的流向: Lake Model

• 通过 McCall 搜索模型,我们对个体在劳动市场上的表现有了一 定的了解。

• 为大家介绍一个常用且简单的分析均衡失业率的模型:Lake model

• 想像劳动市场中就业和失业的人群,像两个湖的湖水一样可以相互流动

2025/4/29

47

模型设定

- E_t : 时间t 就业的人群
- U_t : 时间t 失业的人群
- N_t : 时间t 的总劳动力
- 进入劳动力的比例: r.
- •退出劳动力的比例: d.
- 失业者中找到工作的比例: λ
- 就业者中失去工作的比例: α

就业人数的变化

• 就业者:

$$E_{t+1} = (1 - d)(1 - \alpha)E_t + (1 - d)\lambda U_t$$

• 失业者:

$$U_{t+1} = (1-d)\alpha E_t + (1-d)(1-\lambda)U_t + r(E_t + U_t)$$

• 总劳动力:

$$N_{t+1} = (1 + r - d)N_t$$

就业率的变化

• 就业者:

$$\frac{E_{t+1}}{N_{t+1}} \frac{N_{t+1}}{N_t} = \frac{(1-d)(1-\alpha)E_t}{N_t} + \frac{(1-d)\lambda U_t}{N_t}$$

$$e_{t+1}(1+r-d) = (1-d)(1-\alpha)e_t + (1-d)\lambda u_t$$

• 失业者:

$$\frac{U_{t+1}}{N_{t+1}} \frac{N_{t+1}}{N_t} = \frac{(1-d)\alpha E_t}{N_t} + \frac{(1-d)(1-\lambda)U_t}{N_t} + \frac{r(E_t + U_t)}{N_t}$$

$$u_{t+1}(1+r-d) = (1-d)\alpha e_t + (1-d)(1-\lambda)u_t + r$$

• 总劳动力:

$$e_t + u_t = 1$$

稳态

• 当就业率与失业率处在稳态时, $e_{t+1} = e_t = e^*$, $u_{t+1} = u_t = u^*$

$$e^*(1+r-d) = (1-d)(1-\alpha)e^* + (1-d)\lambda u^*$$

$$u^*(1+r-d) = (1-d)\alpha e^* + (1-d)(1-\lambda)u^* + r$$

$$e^* + u^* = 1$$

解得

$$e^* = \frac{(1-d)\lambda}{(1-d)(\alpha+\lambda)+r}$$

$$u^* = \frac{(1-d)\alpha + r}{(1-d)(\alpha + \lambda) + r}$$

校准 (Calibration)

• 校准(Calibration): 根据外部数据或文献, 选定模型参数, 并将结果与现实数据进行比较的过程

- Rogerson and Shimer (2011) 计算出:
 - λ (unemployment to employment rate, or UE rate) 大概在25% (每月)
 - α (employment to unemployment rate, or EU rate) 大概在2% (每月)
- 根据世界银行的数据:
 - 美国的平均出生率 (r) 约为0.1% (每月),死亡率 (d) 约为0.075% (每月)

校准-2

• 可以粗略计算出

$$e^* = \frac{(1 - 0.00075) * 0.25}{(1 - 0.00075)(0.02 + 0.25) + 0.001} \approx 92.2\%$$

$$u^* = 1 - e^* \approx 7.8\%$$

- 美国2011年失业率: 8.9%
- 对均衡失业率影响最大的因素: λ

讨论

- 模型的问题
 - $e^* + u^* = 1$ (人口=劳动力)

- 校准的问题
 - 用死亡率代替了从劳动市场退出的比例d
 - 忽略了 λ , α 可能随经济周期产生的变化

劳动市场: 总结

- 从这两节课的学习中,我们对劳动市场在微观和宏观层面都有了更深的理解
- 为什么会出现"有活没人干,有人没活干"?

- Labor market tightness: vacancy/unemployment
- Diamond-Mortensen-Pissarides (DMP) 模型刻画了雇佣双方在劳动市场的讨价还价过程,阐释了labor market tightness和工资的关系。