Step	Algorithm: $y := Ax + y$ (A symmetric stored in lower triangular part)
1a	$\{y = \widehat{y} \}$
4	$A \to \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}, x \to \begin{pmatrix} x_T \\ x_B \end{pmatrix}, y \to \begin{pmatrix} y_T \\ y_B \end{pmatrix}$ where A_{TL} is 0×0 , x_T has 0 rows, y_T has 0 rows
2	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{A_{TL} x_T + A_{BL}^T x_B + \widehat{y}_T}{A_{BL} x_T + \widehat{y}_B} \right) \right\}$
3	while $m(A_{TL}) < m(A)$ do
2,3	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{A_{TL}x_T + A_{BL}^T x_B + \widehat{y}_T}{A_{BL}x_T + \widehat{y}_B} \right) \land m(A_{TL}) < m(A) \right\}$
5a	$ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \rightarrow \left(\begin{array}{c c} A_{00} & a_{01} & A_{02} \\ \hline a_{10}^T & \alpha_{11} & a_{12}^T \\ A_{20} & a_{21} & A_{22} \end{array}\right), \left(\begin{array}{c} x_T \\ x_B \end{array}\right) \rightarrow \left(\begin{array}{c} x_0 \\ \chi_1 \\ x_2 \end{array}\right), \left(\begin{array}{c} y_T \\ y_B \end{array}\right) \rightarrow \left(\begin{array}{c} y_0 \\ \psi_1 \\ y_2 \end{array}\right) $ where α_{11} is 1×1 , χ_1 has 1 row, ψ_1 has 1 row
6	$ \begin{cases} \begin{pmatrix} y_0 \\ \psi_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} A_{00}x_0 + \chi_1(a_{10}^T)^T + A_{20}^Tx_2 + \widehat{y}_0 \\ a_{10}^Tx_0 + & \widehat{\psi}_1 \\ A_{20}x_0 + & \widehat{y}_2 \end{pmatrix} \end{cases} $
8	$\psi_1 := \alpha_{11} \chi_1 + a_{21}^T x_2 + \psi_1$ $y_2 := \chi_1 a_{21} + y_2$
7	$ \begin{cases} \begin{pmatrix} y_0 \\ \psi_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} A_{00}x_0 + \chi_1(a_{10}^T)^T + A_{20}^T x_2 + \widehat{y}_0 \\ a_{10}^T x_0 + \alpha_{11}\chi_1 + a_{21}^T x_2 + \widehat{\psi}_1 \\ A_{20}x_0 + \chi_1 a_{21} + \widehat{y}_2 \end{pmatrix} $
5b	$ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c c} A_{00} & a_{01} & A_{02} \\ a_{10}^T & \alpha_{11} & a_{12}^T \\ \hline A_{20} & a_{21} & A_{22} \end{array}\right), \left(\begin{array}{c} x_T \\ x_B \end{array}\right) \leftarrow \left(\begin{array}{c} x_0 \\ \chi_1 \\ x_2 \end{array}\right), \left(\begin{array}{c} y_T \\ y_B \end{array}\right) \leftarrow \left(\begin{array}{c} y_0 \\ \psi_1 \\ y_2 \end{array}\right) $
2	$\left\{ \begin{array}{c} \left(\frac{y_T}{y_B}\right) = \left(\frac{A_{TL}x_T + A_{BL}^Tx_B + \widehat{y}_T}{A_{BL}x_T + \widehat{y}_B}\right) \end{array} \right\}$
	endwhile
2,3	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{A_{TL}x_T + A_{BL}^T x_B + \widehat{y}_T}{A_{BL}x_T + \widehat{y}_B} \right) \land \neg (m(A_{TL}) < m(A)) \right\}$
1b	$\{y = Ax + \widehat{y} $

Algorithm: $y := Ax + y$ (A symmetric stored in lower trian	igular part)
{		}
where		
		}
while do)
{	\wedge	}
		J
where		
		}
<u> </u>		J
		N N
{		}
		J
{		}
		J
endwhile		
Į	∧ ¬(
	(
{		}
	where while do where endwhile the do the	where while do where endwhile \(\

	(A symmetric stored in lower triangular I	, , , , , , , , , , , , , , , , , , ,
$\{y=\widehat{y}$		}
where		
		}
while do		,
	٨	
		,
where)
 		}
		J
,		,
		}
(J
)
		}
endwhile)
	∧¬()	}
$\{y = Ax + \widehat{y}$		}
	where while do where endwhile	where while do where

Step	Algorithm: $y := Ax + y$ (A symmetric stored in lower triangular part)	
1a	$y = \hat{y}$	}
4	where	
2	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{A_{TL}x_T + A_{BL}^T x_B + \widehat{y}_T}{A_{BL}x_T + \widehat{y}_B} \right) \right.$	
3	while do	
2,3	$\left\{ \begin{array}{c} \left(\frac{y_T}{y_B}\right) = \left(\frac{A_{TL}x_T + A_{BL}^Tx_B + \widehat{y}_T}{A_{BL}x_T + \widehat{y}_B}\right) \wedge \end{array} \right.$	
5a	where	
6		
8		
7		
5b		
2	$\left\{ \begin{array}{c} \left(\frac{y_T}{y_B}\right) = \left(\frac{A_{TL}x_T + A_{BL}^T x_B + \widehat{y}_T}{A_{BL}x_T + \widehat{y}_B}\right) \end{array} \right.$	
	endwhile	
2,3	$ \left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{A_{TL}x_T + A_{BL}^T x_B + \widehat{y}_T}{A_{BL}x_T + \widehat{y}_B} \right) \land \neg () \right\} $	
1b	$\{y = Ax + \widehat{y}$	}

Step	Algorithm: $y := Ax + y$ (A symmetric stored in lower triangular part)	
1a	$y = \hat{y}$	}
4	where	
2	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{A_{TL}x_T + A_{BL}^T x_B + \widehat{y}_T}{A_{BL}x_T + \widehat{y}_B} \right) \right.$	
3	while $m(A_{TL}) < m(A)$ do	
2,3	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{A_{TL}x_T + A_{BL}^T x_B + \widehat{y}_T}{A_{BL}x_T + \widehat{y}_B} \right) \wedge m(A_{TL}) < m(A) \right\}$	$\bigg\}$
5a	where	
6		}
8		
7		
5b		
2	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{A_{TL}x_T + A_{BL}^T x_B + \widehat{y}_T}{A_{BL}x_T + \widehat{y}_B} \right) \right.$	$\bigg\}$
	endwhile	
2,3	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{A_{TL}x_T + A_{BL}^Tx_B + \widehat{y}_T}{A_{BL}x_T + \widehat{y}_B} \right) \land \neg (m(A_{TL}) < m(A)) \right.$	
1b	$\{y = Ax + \widehat{y}$	}

Step	Algorithm: $y := Ax + y$ (A symmetric stored in lower triangular part)	
1a	$\{y=\widehat{y}$	}
4	$A \to \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}, x \to \begin{pmatrix} x_T \\ x_B \end{pmatrix}, y \to \begin{pmatrix} y_T \\ y_B \end{pmatrix}$ where A_{TL} is 0×0 , x_T has 0 rows, y_T has 0 rows	
2	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{A_{TL}x_T + A_{BL}^T x_B + \widehat{y}_T}{A_{BL}x_T + \widehat{y}_B} \right) \right\}$	
3	while $m(A_{TL}) < m(A)$ do	
2,3	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{A_{TL}x_T + A_{BL}^T x_B + \widehat{y}_T}{A_{BL}x_T + \widehat{y}_B} \right) \land m(A_{TL}) < m(A) \right\}$	
5a	where	
6		
8		
7		}
5b		
2	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{A_{TL}x_T + A_{BL}^T x_B + \widehat{y}_T}{A_{BL}x_T + \widehat{y}_B} \right) \right.$	
	endwhile	
2,3	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{A_{TL}x_T + A_{BL}^T x_B + \widehat{y}_T}{A_{BL}x_T + \widehat{y}_B} \right) \land \neg (m(A_{TL}) < m(A)) \right\}$	
1b	$\{y = Ax + \widehat{y}$	}

Step	Algorithm: $y := Ax + y$ (A symmetric stored in lower triangular part)	
1a	$\{y=\widehat{y}$	}
4	$A \to \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}, x \to \begin{pmatrix} x_T \\ x_B \end{pmatrix}, y \to \begin{pmatrix} y_T \\ y_B \end{pmatrix}$ where A_{TL} is 0×0 , x_T has 0 rows, y_T has 0 rows	
2	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{A_{TL}x_T + A_{BL}^T x_B + \hat{y}_T}{A_{BL}x_T + \hat{y}_B} \right) \right\}$	igg
3	while $m(A_{TL}) < m(A)$ do	
2,3	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{A_{TL}x_T + A_{BL}^T x_B + \widehat{y}_T}{A_{BL}x_T + \widehat{y}_B} \right) \land m(A_{TL}) < m(A) \right\}$	igg
5a	$ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} A_{00} & a_{01} & A_{02} \\ a_{10}^T & \alpha_{11} & a_{12}^T \\ A_{20} & a_{21} & A_{22} \end{pmatrix}, \begin{pmatrix} x_T \\ x_B \end{pmatrix} \rightarrow \begin{pmatrix} x_0 \\ \chi_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_T \\ y_B \end{pmatrix} \rightarrow \begin{pmatrix} y_0 \\ \psi_1 \\ y_2 \end{pmatrix} $ where α_{11} is 1×1 , χ_1 has 1 row, ψ_1 has 1 row	
6		$\left. \right\}$
8		
7		$\left.\begin{array}{c} \\ \end{array}\right\}$
5b	$ \left(\begin{array}{c c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c c c} A_{00} & a_{01} & A_{02} \\ \hline a_{10}^T & \alpha_{11} & a_{12}^T \\ \hline A_{20} & a_{21} & A_{22} \end{array}\right), \left(\begin{array}{c}x_T \\ \hline x_B \end{array}\right) \leftarrow \left(\begin{array}{c}x_0 \\ \chi_1 \\ \hline x_2 \end{array}\right), \left(\begin{array}{c}y_T \\ y_B \end{array}\right) \leftarrow \left(\begin{array}{c}y_0 \\ \psi_1 \\ \hline y_2 \end{array}\right) $	
2	$\left\{ \begin{array}{c} \left(\frac{y_T}{y_B}\right) = \left(\frac{A_{TL}x_T + A_{BL}^T x_B + \widehat{y}_T}{A_{BL}x_T + \widehat{y}_B}\right) \end{array} \right.$	igg
	endwhile	
2,3	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{A_{TL}x_T + A_{BL}^T x_B + \widehat{y}_T}{A_{BL}x_T + \widehat{y}_B} \right) \land \neg (m(A_{TL}) < m(A)) \right\}$	$\left. \right\}$
1b	$\{y = Ax + \widehat{y}$	}

Step	Algorithm: $y := Ax + y$ (A symmetric stored in lower triangular part)	
1a	$\{y=\widehat{y}$	}
4	$A \to \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}, x \to \begin{pmatrix} x_T \\ x_B \end{pmatrix}, y \to \begin{pmatrix} y_T \\ y_B \end{pmatrix}$ where A_{TL} is 0×0 , x_T has 0 rows, y_T has 0 rows	
2	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{A_{TL}x_T + A_{BL}^T x_B + \widehat{y}_T}{A_{BL}x_T + \widehat{y}_B} \right) \right\}$	igg
3	while $m(A_{TL}) < m(A)$ do	
2,3	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{A_{TL}x_T + A_{BL}^T x_B + \widehat{y}_T}{A_{BL}x_T + \widehat{y}_B} \right) \land m(A_{TL}) < m(A) \right\}$	igg
5a	$ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \rightarrow \left(\begin{array}{c c} A_{00} & a_{01} & A_{02} \\ \hline a_{10}^T & \alpha_{11} & a_{12}^T \\ A_{20} & a_{21} & A_{22} \end{array}\right), \left(\begin{array}{c} x_T \\ x_B \end{array}\right) \rightarrow \left(\begin{array}{c} x_0 \\ \chi_1 \\ x_2 \end{array}\right), \left(\begin{array}{c} y_T \\ y_B \end{array}\right) \rightarrow \left(\begin{array}{c} y_0 \\ \psi_1 \\ y_2 \end{array}\right) $ where α_{11} is 1×1 , χ_1 has 1 row, ψ_1 has 1 row	
6	$\begin{cases} \begin{pmatrix} y_0 \\ \psi_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} A_{00}x_0 + \chi_1(a_{10}^T)^T + A_{20}^T x_2 + \widehat{y}_0 \\ a_{10}^T x_0 + & \widehat{\psi}_1 \\ A_{20}x_0 + & \widehat{y}_2 \end{pmatrix} \end{cases}$	$\left. \right\}$
8		
7		$\left. \right\}$
5b	$ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c c} A_{00} & a_{01} & A_{02} \\ a_{10}^T & \alpha_{11} & a_{12}^T \\ \hline A_{20} & a_{21} & A_{22} \end{array}\right), \left(\begin{array}{c} x_T \\ x_B \end{array}\right) \leftarrow \left(\begin{array}{c} x_0 \\ \chi_1 \\ x_2 \end{array}\right), \left(\begin{array}{c} y_T \\ y_B \end{array}\right) \leftarrow \left(\begin{array}{c} y_0 \\ \psi_1 \\ y_2 \end{array}\right) $	
2	$\left\{ \begin{array}{c} \left(\frac{y_T}{y_B}\right) = \left(\frac{A_{TL}x_T + A_{BL}^T x_B + \widehat{y}_T}{A_{BL}x_T + \widehat{y}_B}\right) \end{array} \right.$	$igg\}$
	endwhile	
2,3	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{A_{TL}x_T + A_{BL}^T x_B + \widehat{y}_T}{A_{BL}x_T + \widehat{y}_B} \right) \land \neg (m(A_{TL}) < m(A)) \right\}$	$igg\}$
1b	$\{y = Ax + \widehat{y}$	}

Step	Algorithm: $y := Ax + y$ (A symmetric stored in lower triangular part)	
1a	$y = \hat{y}$	}
4	$A \to \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right), x \to \left(\begin{array}{c} x_T \\ \hline x_B \end{array}\right), y \to \left(\begin{array}{c} y_T \\ \hline y_B \end{array}\right)$ where A_{TL} is 0×0 , x_T has 0 rows, y_T has 0 rows	
2	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{A_{TL}x_T + A_{BL}^T x_B + \widehat{y}_T}{A_{BL}x_T + \widehat{y}_B} \right) \right\}$	$\left. \right\}$
3	while $m(A_{TL}) < m(A)$ do	
2,3	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{A_{TL}x_T + A_{BL}^T x_B + \widehat{y}_T}{A_{BL}x_T + \widehat{y}_B} \right) \land m(A_{TL}) < m(A) \right\}$	igg
5a	$ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \rightarrow \left(\begin{array}{c c} A_{00} & a_{01} & A_{02} \\ \hline a_{10}^T & \alpha_{11} & a_{12}^T \\ A_{20} & a_{21} & A_{22} \end{array}\right), \left(\begin{array}{c} x_T \\ x_B \end{array}\right) \rightarrow \left(\begin{array}{c} x_0 \\ \chi_1 \\ x_2 \end{array}\right), \left(\begin{array}{c} y_T \\ y_B \end{array}\right) \rightarrow \left(\begin{array}{c} y_0 \\ \psi_1 \\ y_2 \end{array}\right) $ where α_{11} is 1×1 , χ_1 has 1 row, ψ_1 has 1 row	
6	$\begin{cases} \begin{pmatrix} y_0 \\ \psi_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} A_{00}x_0 + \chi_1(a_{10}^T)^T + A_{20}^T x_2 + \widehat{y}_0 \\ a_{10}^T x_0 + & \widehat{\psi}_1 \\ A_{20}x_0 + & \widehat{y}_2 \end{pmatrix}$	$\left.\begin{array}{c} \\ \end{array}\right\}$
8		
7	$\begin{cases} \begin{pmatrix} y_0 \\ \psi_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} A_{00}x_0 + \chi_1(a_{10}^T)^T + A_{20}^T x_2 + \widehat{y}_0 \\ a_{10}^T x_0 + \alpha_{11}\chi_1 + a_{21}^T x_2 + \widehat{\psi}_1 \\ A_{20}x_0 + \chi_1 a_{21} + \widehat{y}_2 \end{pmatrix}$	$\left. \begin{array}{c} \\ \end{array} \right\}$
5b	A_{00} A_{01} A_{02} A_{03} A_{04} A_{05}	
2	$\left\{ \begin{array}{c} \left(\frac{y_T}{y_B}\right) = \left(\frac{A_{TL}x_T + A_{BL}^T x_B + \widehat{y}_T}{A_{BL}x_T + \widehat{y}_B}\right) \end{array} \right.$	$\left. \right\}$
	endwhile	
2,3	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{A_{TL}x_T + A_{BL}^T x_B + \widehat{y}_T}{A_{BL}x_T + \widehat{y}_B} \right) \land \neg (m(A_{TL}) < m(A)) \right\}$	$\left. \right\}$
1b	$y = Ax + \widehat{y}$	}

Step	Algorithm: $y := Ax + y$ (A symmetric stored in lower triangular part)
1a	
4	$A \to \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}, x \to \begin{pmatrix} x_T \\ x_B \end{pmatrix}, y \to \begin{pmatrix} y_T \\ y_B \end{pmatrix}$ where A_{TL} is 0×0 , x_T has 0 rows, y_T has 0 rows
2	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{A_{TL}x_T + A_{BL}^T x_B + \hat{y}_T}{A_{BL}x_T + \hat{y}_B} \right) \right\}$
3	while $m(A_{TL}) < m(A)$ do
2,3	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{A_{TL}x_T + A_{BL}^T x_B + \widehat{y}_T}{A_{BL}x_T + \widehat{y}_B} \right) \land m(A_{TL}) < m(A) \right\}$
5a	$ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \rightarrow \left(\begin{array}{c c} A_{00} & a_{01} & A_{02} \\ \hline a_{10}^T & \alpha_{11} & a_{12}^T \\ A_{20} & a_{21} & A_{22} \end{array}\right), \left(\begin{array}{c} x_T \\ x_B \end{array}\right) \rightarrow \left(\begin{array}{c} x_0 \\ \chi_1 \\ x_2 \end{array}\right), \left(\begin{array}{c} y_T \\ y_B \end{array}\right) \rightarrow \left(\begin{array}{c} y_0 \\ \psi_1 \\ y_2 \end{array}\right) $ where α_{11} is 1×1 , χ_1 has 1 row, ψ_1 has 1 row
6	$ \begin{cases} y_0 \\ \psi_1 \\ y_2 \end{cases} = \begin{pmatrix} A_{00}x_0 + \chi_1(a_{10}^T)^T + A_{20}^T x_2 + \widehat{y}_0 \\ a_{10}^T x_0 + \widehat{y}_1 \\ A_{20}x_0 + \widehat{y}_2 \end{cases} $
8	$\psi_1 := \alpha_{11}\chi_1 + a_{21}^T x_2 + \ \psi_1$ $y_2 := \chi_1 a_{21} + y_2$
7	$ \begin{cases} \begin{pmatrix} y_0 \\ \psi_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} A_{00}x_0 + \chi_1(a_{10}^T)^T + A_{20}^T x_2 + \widehat{y}_0 \\ a_{10}^T x_0 + \alpha_{11}\chi_1 + a_{21}^T x_2 + \widehat{\psi}_1 \\ A_{20}x_0 + \chi_1 a_{21} + \widehat{y}_2 \end{pmatrix} $
5b	$ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c c} A_{00} & a_{01} & A_{02} \\ a_{10}^T & \alpha_{11} & a_{12}^T \\ \hline A_{20} & a_{21} & A_{22} \end{array}\right), \left(\begin{array}{c} x_T \\ x_B \end{array}\right) \leftarrow \left(\begin{array}{c} x_0 \\ \chi_1 \\ x_2 \end{array}\right), \left(\begin{array}{c} y_T \\ y_B \end{array}\right) \leftarrow \left(\begin{array}{c} y_0 \\ \psi_1 \\ y_2 \end{array}\right) $
2	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{A_{TL}x_T + A_{BL}^T x_B + \widehat{y}_T}{A_{BL}x_T + \widehat{y}_B} \right) \right\}$
	endwhile
2,3	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{A_{TL}x_T + A_{BL}^T x_B + \widehat{y}_T}{A_{BL}x_T + \widehat{y}_B} \right) \land \neg (m(A_{TL}) < m(A)) \right\}$
1b	$\left \{ y = Ax + \widehat{y} \right $

Algorithm: $y := Ax + y$ (A symmetric stored in lower triangular part)	
$A \to \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}, x \to \begin{pmatrix} x_T \\ x_B \end{pmatrix}, y \to \begin{pmatrix} y_T \\ y_B \end{pmatrix}$ where A_{TL} is 0×0 , x_T has 0 rows, y_T has 0 rows	
while $m(A_{TL}) < m(A)$ do	
$ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} A_{00} & a_{01} & A_{02} \\ a_{10}^T & \alpha_{11} & a_{12}^T \\ A_{20} & a_{21} & A_{22} \end{pmatrix}, \begin{pmatrix} x_T \\ x_B \end{pmatrix} \rightarrow \begin{pmatrix} x_0 \\ \chi_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_T \\ y_B \end{pmatrix} \rightarrow \begin{pmatrix} y_0 \\ \psi_1 \\ y_2 \end{pmatrix} $ where α_{11} is 1×1 , χ_1 has 1 row, ψ_1 has 1 row	
$\psi_1 := \alpha_{11}\chi_1 + a_{21}^T x_2 + \ \psi_1$	
$y_2 := \chi_1 a_{21} + \qquad \qquad y_2$	
$ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c c} A_{00} & a_{01} & A_{02} \\ a_{10}^T & \alpha_{11} & a_{12}^T \\ \hline A_{20} & a_{21} & A_{22} \end{array}\right), \left(\begin{array}{c} x_T \\ x_B \end{array}\right) \leftarrow \left(\begin{array}{c} x_0 \\ \chi_1 \\ x_2 \end{array}\right), \left(\begin{array}{c} y_T \\ y_B \end{array}\right) \leftarrow \left(\begin{array}{c} y_0 \\ \psi_1 \\ y_2 \end{array}\right) $	
endwhile	

Algorithm: y := Ax + y (A symmetric stored in lower triangular part)

$$A \to \left(\begin{array}{c|c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) , x \to \left(\begin{array}{c} x_T \\ \hline x_B \end{array}\right) , y \to \left(\begin{array}{c} y_T \\ \hline y_B \end{array}\right)$$

where A_{TL} is 0×0 , x_T has 0 rows, y_T has 0 rows

while $m(A_{TL}) < m(A)$ do

$$\left(\begin{array}{c|c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \to \left(\begin{array}{c|c} A_{00} & a_{01} & A_{02} \\ \hline a_{10}^T & \alpha_{11} & a_{12}^T \\ A_{20} & a_{21} & A_{22} \end{array}\right) , \left(\begin{array}{c} x_T \\ \hline x_B \end{array}\right) \to \left(\begin{array}{c} x_0 \\ \hline \chi_1 \\ x_2 \end{array}\right) , \left(\begin{array}{c} y_T \\ \hline y_B \end{array}\right) \to \left(\begin{array}{c} y_0 \\ \hline \psi_1 \\ y_2 \end{array}\right)$$

where α_{11} is 1×1 , χ_1 has 1 row, ψ_1 has 1 row

$$\psi_1 := \alpha_{11} \chi_1 + a_{21}^T x_2 + \ \psi_1$$

$$y_2 := \chi_1 a_{21} + y_2$$

$$\left(\begin{array}{c|c}
A_{TL} & A_{TR} \\
\hline
A_{BL} & A_{BR}
\end{array}\right) \leftarrow \left(\begin{array}{c|c}
A_{00} & a_{01} & A_{02} \\
a_{10}^T & \alpha_{11} & a_{12}^T \\
\hline
A_{20} & a_{21} & A_{22}
\end{array}\right) , \left(\begin{array}{c}
x_T \\
x_B
\end{array}\right) \leftarrow \left(\begin{array}{c}
x_0 \\
\chi_1 \\
x_2
\end{array}\right) , \left(\begin{array}{c}
y_T \\
y_B
\end{array}\right) \leftarrow \left(\begin{array}{c}
y_0 \\
\psi_1 \\
y_2
\end{array}\right)$$

endwhile