Practice Midterm 2

Math 252

Exercise 1: Let f(x) be a differentiable function with a continuous derivative. What is the arc length of f between x = 2 and x = 5?

$$\int_{2}^{5} \sqrt{1 + (f'(x))^2} \ dx.$$

Exercise 2: The shaded region below is bounded by the curves y = 1, y = 2x - 5, and $y = \frac{1}{8}x^2 + 1$. Find the shaded area.

Let's slice with respect to y, since then we don't have to split up the interval at x=3. Then we need to solve for y: $x=\frac{y+5}{2}$ and $x=\sqrt{8y-8}$ (we want the positive square root since y>0 in the graph. Our limits are now y=1 to y=3, and since the linear function is the rightmost one, we have that the area is

$$\int_{1}^{3} \left(\frac{y+5}{2} - \sqrt{8y-8} \right) dy = \int_{1}^{3} \left(\frac{y}{2} + \frac{5}{2} - (8y-8)^{1/2} \right) dy$$

$$= \left[\frac{y^{2}}{4} + \frac{5}{2}y - \frac{(8y-8)^{3/2}}{3/2} \cdot \frac{1}{8} \right]_{1}^{3}$$

$$= \left(\frac{9}{4} + \frac{15}{2} - \frac{(16)^{3/2}}{3/2} \cdot \frac{1}{8} \right) - \left(\frac{1}{4} + \frac{5}{2} - \frac{(0)^{3/2}}{3/2} \cdot \frac{1}{8} \right)$$

$$= \frac{5}{3}.$$

Exercise 3: A 5-meter long rope is hanging straight down from a platform. x meters below the platform, the weight density of the rope is $100 - \sqrt{x}$ Newtons per meter. What is the total work done by pulling the rope up onto the platform? Drawing a picture might be helpful.

Since we're given the weight density at x meters below the platform, it will be easiest to integrate with respect to that variable. A slice of rope x meters down from the top gets lifted x meters and has a force of $100 - \sqrt{x}$ applied to it, so the total work done is

$$\int_0^5 (100 - \sqrt{x})x \ dx = \left[50x^2 - \frac{x^{5/2}}{5/2} \right]_0^5 \approx 1227.639.$$

Exercise 4: Let R be the region bounded by $\sin(x)$ and $\frac{4}{\pi^2}x^2$ on $[0, \frac{\pi}{2}]$. Find the volume of the solid of revolution given by rotating R about the x-axis (you may use any method you like).

Note: this is a long problem. On an actual exam, I would likely only ask you to set up the integral and not solve it.

Here we go. We'll use disks — then the volume is

$$\pi \int_0^{\pi/2} \left(\sin(x) - \frac{4}{\pi^2} x^2 \right)^2 dx = \pi \int_0^{\pi/2} \left(\sin^2(x) - \frac{8}{\pi^2} x^2 \sin(x) + \frac{16}{\pi^4} x^4 \right) dx.$$

Let's handle these terms one at a time. First,

$$\int_0^{\pi/2} \frac{16}{\pi^4} x^4 \ dx = \left[\frac{16}{5\pi^4} x^5 \right]_0^{\pi/2} = \frac{16}{5\pi^4} \cdot \frac{\pi^5}{32} = \frac{\pi}{10}.$$

For the first term,

$$\int_0^{\pi/2} \sin^2(x) \ dx = \int_0^{\pi/2} \left(\frac{1}{2} - \frac{\cos(2x)}{2} \right) \ dx$$
$$= \left[\frac{1}{2} x - \frac{1}{4} \sin(2x) \right]_0^{\pi/2}$$
$$= \frac{\pi}{4}, \text{ since } \sin(0) = \sin(\pi) = 0.$$

Finally, the middle term is a product and doesn't work with u-sub, so we apply integration by parts: factor out the $-\frac{8}{\pi^2}$ and set $u = x^2$ and $dv = \sin(x)dx$. Then du = 2xdx and $v = -\cos(x) dx$. Now the integral becomes

$$-\frac{8}{\pi^2} \int_0^{\pi/2} x^2 \sin(x) \ dx = -\frac{8}{\pi^2} \left[-x^2 \cos(x) - \int -2x \cos(x) \ dx \right]_0^{\pi/2}$$
$$= -\frac{8}{\pi^2} \left[-x^2 \cos(x) + 2 \int x \cos(x) \ dx \right]_0^{\pi/2}$$

Once again, the inner integral requires integration by parts. Let u = x and $dv = \cos(x)$. Then du = dx and $v = \sin(x)$, and we get

$$-\frac{8}{\pi^2} \int_0^{\pi/2} x^2 \sin(x) \, dx = -\frac{8}{\pi^2} \left[-x^2 \cos(x) + 2\left(x \sin(x) - \int \sin(x) \, dx\right) \right]_0^{\pi/2}$$

$$= -\frac{8}{\pi^2} \left[-x^2 \cos(x) + 2\left(x \sin(x) + \cos(x)\right) \right]_0^{\pi/2}$$

$$= -\frac{8}{\pi^2} \left(\left(-\frac{\pi^2}{4} \cdot 0 + 2\left(\frac{\pi}{2} \cdot 1 + 0\right) \right) - \left(-\frac{\pi^2}{4} \cdot 1 + 2\left(\frac{\pi}{2} \cdot 0 + 1\right) \right) \right)$$

$$= -\frac{8}{\pi^2} \left(\pi + \frac{\pi^2}{4} + 2 \right)$$

$$= -\frac{8}{\pi} - 2 - \frac{16}{\pi^2}.$$

Putting it all together, we have

$$\pi \left(\frac{\pi}{2} + \frac{\pi}{10} - \frac{8}{\pi} - 2 - \frac{16}{\pi^2} \right).$$

Exercise 5: Set up, but do not solve, the integral for the surface area of the solid of revolution given by rotating $\ln(x)$ for $2 \le x \le 5$ about the y-axis.

Since we're revolving about the y-axis, we need to write this as a function of y and have y-limits. We have $x = e^y$ and $y = \ln(2)$ to $y = \ln(5)$. Thus the integral is

$$\int_{\ln(2)}^{\ln(5)} 2\pi e^y \sqrt{1 + e^{2y}} \ dy.$$

Exercise 6: Let U be the region bounded by e^x and e^{-x^2} . Set up, but do not solve, the three integrals necessary to find the centroid of U.

The intersection occurs when $x = -x^2$, so x = 0 or x = -1. Then the integrals are

$$M_x = \int_{-1}^{0} \frac{1}{2} e^{-2x^2} dx - \int_{-1}^{0} \frac{1}{2} e^{2x} dx$$

$$M_y = \int_{-1}^{0} \frac{1}{2} x e^{-x^2} \ dx - \int_{-1}^{0} \frac{1}{2} x e^x \ dx$$

$$m = \int_{-1}^{0} \frac{1}{2} e^{-x^2} dx - \int_{-1}^{0} \frac{1}{2} e^x dx$$