# Mảng cộng dồn (prefix sum) và ứng dụng

Trương Phước Hải

#### Khái niệm

- Mảng cộng dồn là CTDL lưu trữ tổng tích lũy của các phần tử trong một tập tính từ phần tử đầu tiên
- Mảng cộng dồn cho phép thực hiện hiệu quả thao tác tính tổng một nhóm các phần tử liên tiếp nhau

#### Mảng cộng dồn trên dãy

- Xét dãy các giá trị  $a_1, a_2, ..., a_n$ . Dãy các giá trị  $s_0, s_1, ..., s_n$  được định nghĩa:
  - $s_0 = 0$
  - $s_i = a_1 + a_2 + \cdots + a_{i-1} + a_i$
- Khi đó dãy  $s_0, s_1, \dots, s_n$  được gọi là mảng cộng dồn (một chiều) của dãy  $a_1, a_2, \dots, a_n$

#### Mảng cộng dồn trên dãy

Xây dựng mảng cộng dồn trên dãy

$$s_i = a_1 + a_2 + \dots + a_{i-1} + a_i$$
  
=  $(a_1 + a_2 + \dots + a_{i-1}) + a_i$   
=  $s_{i-1} + a_i$ 

### Mảng cộng dồn trên dãy

Xây dựng mảng cộng dồn trên dãy

```
s[0] = 0;
for (i = 1; i <= n; ++i)
s[i] = s[i-1] + a[i];
```

• Độ phức tạp của thao tác O(n)

• Xét bảng chữ nhật A gồm n dòng, m cột. Phần tử ở dòng i, cột j có giá trị  $a[i][j](1 \le i \le n; 1 \le j \le m)$ .

|   | 5  | -9  | 1  | 6 | -8  |
|---|----|-----|----|---|-----|
| A | 2  | 3   | -4 | 7 | -10 |
|   | -7 | -12 | 4  | 1 | -5  |
|   | 5  | -6  | -9 | 1 | 2   |

• Xét bảng chữ nhật S cùng kích thước với A, với S[i][j] được xác định bởi công thức

|   |    |    |    | _   |     |
|---|----|----|----|-----|-----|
| Α | 5  | -9 | 1  | 6   | -8  |
|   | 2  | 3  | -4 | 7   | -10 |
|   | -7 | -2 | 4  | 3   | -3  |
|   | 5  | 6  | 2  | -15 | 10  |

$$s[i][j] = \sum_{u=1}^{l} \sum_{v=1}^{J} a[u][v]$$

| 5 | -4 | -3 | 3  | -5  |
|---|----|----|----|-----|
| 7 | 1  | -2 | 11 | -7  |
| 0 | -8 | -7 | 9  | -12 |
| 5 | 3  | 6  | 7  | -4  |

- Bảng S được gọi là mảng cộng dồn 2 chiều của bảng A
- Xây dựng mảng cộng dồn 2 chiều



$$s[i][j] = s[i][j-1] + s[i-1][j]$$
$$-s[i-1][j-1] + a[i][j]$$

Xây dựng mảng cộng dồn trên bảng

• Độ phức tạp của thao tác  $O(n \times m)$ 

## Áp dụng 1

• Cho dãy gồm n giá trị  $a_1, a_2, \dots, a_n$  và m truy vấn có dạng [l,r] yêu cầu trả về giá trị  $a_l+a_{l+1}+\dots+a_r$ 



#### Thuật toán tầm thường

• Với mỗi truy vấn [l,r], duyệt qua đoạn phần tử và tính tổng của chúng

```
for (i = 0; i < m; ++i) {
    Sum = 0;
    for (j = l[i]; j <= r[i]; ++j)
        Sum = Sum + a[j];
    output Sum;
}</pre>
```

#### Thuật toán tầm thường

- Đánh giá thuật toán
  - Độ phức tạp của mỗi truy vấn O(n)
  - Độ phức tạp trả lời m truy vấn  $O(m \times n)$
- Thao tác xét và in kết quả của từng truy vấn là không thể cải tiến. Tìm cách cải tiến thao tác tính kết quả của từng truy vấn

• Nhận xét tổng các phần tử trong đoạn [l,r]

$$Sum = a_l + a_{l+1} + \dots + a_r$$

$$= (a_1 + a_2 + \dots + a_{l-1}) + a_l + \dots + a_r - (a_1 + a_2 + \dots + a_{l-1})$$

$$= s_r - s_{l-1}$$

Cải tiến thao tác trả lời truy vấn với mảng cộng dồn

```
for (i = 0; i < m; ++i) {
    Sum = s[r[i]] - s[l[i]-1];
    output Sum;
}</pre>
```

• Sử dụng mảng cộng dồn giúp độ phức tạp của thao tác trả lời một truy vấn giảm xuống còn O(1)

- Phương pháp thực hiện qua 2 công đoạn
  - Xây dựng mảng cộng dồn, độ phức tạp O(n)
  - Trả lời m truy vấn, độ phức tạp O(m)
- Độ phức tạp của thuật toán O(n+m)

## Áp dụng 2

• Cho bảng chữ nhật kích thước n dòng, m cột. Phần tử ở dòng i, cột j có giá trị a[i][j]. Yêu cầu trả lời q truy vấn có dạng [l,t,r,b] cho biết giá trị của biểu thức

$$Sum = \sum_{x=l}^{r} \sum_{y=t}^{b} a[x][y]$$



## Ý tưởng chung

Trả lời cho q truy vấn

```
for (i = 0; i < q; ++i) {
    Sum = SumRect(l[i], t[i], r[i], b[i]);
    output Sum;
}</pre>
```

• Độ phức tạp  $O(q \times T)$ , với T là thời gian để thực hiện một truy vấn

#### Thuật toán tầm thường

• Duyệt qua tất cả phần tử trong vùng chữ nhật xác định bởi 2 góc (l,t) và (r,b) để tính tổng các phần tử

```
SumRect(l, t, r, b) {
    Sum = 0;
    for (i = l; i <= r; ++i)
        for (j = t; j <= b; ++j)
        Sum = Sum + a[i][j];
    return Sum;
}</pre>
```

#### Thuật toán tầm thường

- Đánh giá phương pháp
  - Độ phức tạp của mỗi truy vấn:  $O(n \times m)$
  - Độ phức tạp của thuật toán:  $O(q \times n \times m)$

- Nhận xét
  - Phương pháp tầm thường thiếu hiệu quả do các phần tử thuộc một số vùng chữ nhật (thuộc phần giao) bị duyệt nhiều lần



- Nhận xét
  - Sử dụng mảng cộng dồn để tính tổng các phần tử trong vùng hình chữ nhật

$$Sum = s[r][b] - s[l-1][b]$$
$$-s[r][t-1] + s[l-1][t-1]$$



- Phương pháp thực hiện qua 2 công đoạn
  - Xây dựng mảng cộng dồn 2 chiều, độ phức tạp  $O(n \times m)$
  - Trả lời q truy vấn, độ phức tạp O(q)
- Độ phức tạp của thuật toán:  $O(n \times m + q)$

#### Bài tập áp dụng

- Bài 1: Cho dãy số  $a_0, a_1, \dots, a_{n-1}$ . Tìm một đoạn con có tổng các phần tử là lớn nhất
- Bài 2: Cho dãy số  $a_0, a_1, \dots, a_{n-1}$ . Tìm một đoạn con dài nhất có tổng các phần tử bằng 0
- Bài 3: Cho dãy số  $a_0, a_1, \dots, a_{n-1}$ . Đếm số đoạn con có tổng các phần tử bằng 0

#### Bài tập áp dụng

- Bài 4: Cho dãy số  $a_0, a_1, \dots, a_{n-1}$ . Tìm một đoạn con gồm ít nhất k phần tử sao cho tổng của chúng là lớn nhất
- Bài 5: Đặt dãy số không âm  $a_0, a_1, \dots, a_{n-1}$  trên vòng tròn theo chiều kim đồng hồ. Tìm một đoạn con ngắn nhất có tổng là x
- Bài 6: Cho dãy số nguyên  $a_0, a_1, \dots, a_{n-1}$ . Tìm một đoạn con có tổng các phần tử chia cho m có phần dư lớn nhất

#### Bài tập áp dụng

- Bài 7: Cho bảng gồm n dòng, m cột. Phần tử ở dòng i, cột j mang giá trị  $a_{ij}$ . Tìm một vùng hình vuông con lớn nhất của bảng chỉ gồm các số chính phương
- Bài 8: Cho bảng gồm n dòng, m cột. Phần tử ở dòng i, cột j mang giá trị  $a_{ij}$ . Tìm một vùng chữ nhật con của bảng có tổng các phần tử là lớn nhất