Assignment 1: Check Digit Computation

Due: 20:00, Tue 27 Sep 2016 Full marks: 100

Introduction

Every credit card number contains a check digit at its rightmost, which is used for simple error detection. It can be used to protect against accidental errors such as a mistyped digit or the permutation of two successive digits. In this assignment, you will write a program that computes the check digit of a partial credit card number. For simplicity, we assume that a card number has exactly 16 digits in the form $d_1d_2d_3d_4d_5d_6d_7d_8d_9d_{10}d_{11}d_{12}d_{13}d_{14}d_{15}d_{16}$, in which $d_1\dots d_{15}$ is the 15-digit partial card number obtained from the program user and d_{16} is the check digit to be computed.

To compute the check digit of a partial card number, we can use the *Luhn algorithm*^a described below:

- 1. Double the odd-positioned digits d_1 , d_3 , d_5 , d_7 , d_9 , d_{11} , d_{13} , and d_{15} .
- 2. If a doubled digit is greater than 9, replace it by its sum of digits. (E.g., 16 is replaced by 1 + 6 = 7.)
- 3. Sum the even-positioned digits d_2 , d_4 , d_6 , d_8 , d_{10} , d_{12} , and d_{14} with the modified odd-positioned digits d_1 , d_3 , d_5 , d_7 , d_9 , d_{11} , d_{13} , and d_{15} .
- 4. Multiply the sum by 9. Then the units digit (個位數, the rightmost digit) of the multiplication is the check digit d_{16} .

Example 1: partial card number is 763545841927506.

- 1. Double the underlined odd-positioned digits in $\underline{763545841927506}$: $(\underline{7} \times 2) = 14$, $(3 \times 2) = 6$, $(4 \times 2) = 8$, $(\underline{8} \times 2) = 16$, $(\underline{1} \times 2) = 2$, $(\underline{2} \times 2) = 4$, $(\underline{5} \times 2) = 10$, and $(\underline{6} \times 2) = 12$.
- 2. Replace 14, 16, 10 and 12 by their sum of digits: $14 \rightarrow 1 + 4 = 5$, $16 \rightarrow 1 + 6 = 7$, $10 \rightarrow 1 + 0 = 1$, and $12 \rightarrow 1 + 2 = 3$.
- 3. Sum all 15 digits: 5+6+6+5+8+5+7+4+2+9+4+7+1+0+3=72. (The digits in red came from steps 1 and 2.)
- 4. Multiply the sum 72 by 9: $72 \times 9 = 648$. The units digit (8) is the check digit. Therefore, the full card number is: 7635458419275068.

Example 2: partial card number is 543210987654321.

- 1. Double the underlined digits in $\underline{5}4\underline{3}2\underline{1}0\underline{9}8\underline{7}6\underline{5}4\underline{3}2\underline{1}$: $(\underline{5} \times 2) = 10$, $(3 \times 2) = 6$, $(1 \times 2) = 2$, $(9 \times 2) = 18$, $(\underline{7} \times 2) = 14$, $(\underline{5} \times 2) = 10$, $(\underline{3} \times 2) = 6$, and $(\underline{1} \times 2) = 2$.
- 2. Replace 10, 18, 14 and 10 by their sum of digits: $10 \rightarrow 1 + 0 = 1$, $18 \rightarrow 1 + 8 = 9$, $14 \rightarrow 1 + 4 = 5$, and $10 \rightarrow 1 + 0 = 1$.
- 3. Sum all 15 digits: 1 + 4 + 6 + 2 + 2 + 0 + 9 + 8 + 5 + 6 + 1 + 4 + 6 + 2 + 2 = 58. (The digits in red came from steps 1 and 2.)
- 4. Multiply the sum 58 by 9: $58 \times 9 = 52\underline{2}$. The units digit ($\underline{2}$) is the check digit. Therefore, the full card number is: $543210987654321\underline{2}$.

^a Reference: http://en.wikipedia.org/wiki/Luhn algorithm

Program Specification

Note that the int data type is not big enough to represent 15-digit numbers. In order to store the partial or full card numbers, you can declare variables of the long long type, which is a bigger integral data type.

```
long long num; // int num; does not work
```

You are not allowed to use arrays in this assignment.

Program Output

The following shows some sample output of the program. The **bold blue** text is user input and the other text is the program output. You can try the provided sample program for other input. <u>Your program output should be exactly the same as the sample program</u> (i.e., same text, same symbols, same letter case, same number of spaces, etc.). Otherwise, it will be considered as *wrong*, even if you have computed the correct result.

```
Enter a 15-digit partial card num: 7635458419275064

Full card num is: 7635-4584-1927-5068

Enter a 15-digit partial card num: 5432109876543214

Full card num is: 5432-1098-7654-3212

Enter a 15-digit partial card num: 4321000800120564

Full card num is: 4321-0008-0012-0564

Enter a 15-digit partial card num: -14

Bye!
```

Submission and Marking

- Your program file name should be luhn.cpp. Submit the file in Blackboard (https://elearn.cuhk.edu.hk/).
- Insert your name, student ID, and e-mail address as comments at the beginning of your source file
- You can submit your assignment multiple times. Only the latest submission counts.
- Your program should be <u>free of compilation errors and warnings</u>.
- Your program should <u>include suitable comments as documentation</u>.
- <u>Plagiarism</u> is strictly monitored and <u>heavily punished</u> if proven. Lending your work to others is subjected to the same penalty as the copier.