Trabajo práctico N° 3 Abril 2025

Estudiante Emanuel Nicolás Herrador

Ejercicio 1

Queremos ver si varios órdenes parciales son predominios o dominios. Recordemos que un predominio es un orden parcial tal que toda cadena interesante tiene supremo, y que un dominio es un predominio con mínimo. Ahora, si vemos cada uno de los órdenes parciales, tenemos:

- (a) (intexp) con el orden discreto: es predominio al no tener cadenas interesantes. No es dominio porque no tiene mínimo.
- (b) $\langle \text{intexp} \rangle \to \mathbb{B}_{\perp}$: Veamos que \mathbb{B}_{\perp} es un dominio dado que al ser orden llano no tiene cadenas interesantes y, además, tiene un mínimo. Como \mathbb{B}_{\perp} es un dominio, entonces $\forall A, A \to \mathbb{B}_{\perp}$ es un dominio. Esto sucede porque para $f, g \in A \to \mathbb{B}_{\perp}$, $f \leq g \iff (\forall x, f(x) \leq g(x))$, por lo que los maximales son $f_0(x) = 0$, $f_1(x) = 1 \ \forall x$ y el mínimo es $f_{\perp}(x) = \perp \forall x$.
- (c) $\mathbb{B}_{\perp} \to \langle \text{intexp} \rangle$: Por (a) sabemos que $\langle \text{intexp} \rangle$ es un predominio. Bajo la misma idea realizada con el dominio, podemos llegar a que $\forall A, A \to \langle \text{intexp} \rangle$ es un predominio pero no un dominio dado que no existe un mínimo.

Ejercicio 2

Evito realizar el diagrama del dominio (e) dado que es grande. Respecto a lo demás, tenemos:

Ejercicio 3

Tenemos que indicar el menor elemento para cada dominio de los ejercicios anteriores. Para ello, veamos que:

- Para $\langle \text{intexp} \rangle \to \mathbb{B}_{\perp} \text{ es } f(x) = \bot \ \forall x \in \langle \text{intexp} \rangle.$
- Para \mathbb{B}_{\perp} es \perp .
- Para \mathbb{N}_{\perp} es \perp .
- Para $\mathbb{B} \to \mathbb{B}_{\perp}$ es $f(x) = \perp \forall x \in \mathbb{B}$.
- Para \mathbb{N}^{∞} es 0.
- Para $\mathbb{N}^{\infty} \to \mathbb{N}^{\infty}$ es $f(x) = 0 \ \forall x \in \mathbb{N}^{\infty}$.

Ejercicio 4

Ahora, se pretende calcular el supremo de los siguientes conjuntos. Para mayor comodidad, veamos cada ítem por separado.

Item A

Tenemos $\mathcal{A} = \{n \in \mathbb{N} : n \text{ es par}\} \subseteq \mathbb{N}_{\perp}$. Claramente no tiene supremo porque no tiene cota suprerior. Esto se puede demostrar por absurdo, dado que sea $x \in \mathcal{A}$ el supruesto supremo, x < x + 2 y $x + 2 \in \mathcal{A}$.

Item B

Tenemos $\mathcal{A} = \{n \in \mathbb{N} : n \text{ es par}\} \subseteq \mathbb{N}^{\infty}$. La única cota suprerior de \mathcal{A} es ∞ , por lo que este elemento es claramente el supremo.

Item C

Tenemos $\mathcal{A} = \{n \in \mathbb{N} : n \text{ es primo}\} \subseteq \mathbb{N}^{\infty}$. De forma análoga a la anterior, el supremo es ∞ .

Item D

Tenemos $\mathcal{A} = \{V, F\} \subseteq \mathbb{B}_{\perp}$. No tiene supremo porque es un orden llano.

Item E

Tenemos $\mathcal{F} = \{f_n : n \in \mathbb{N}\} \subseteq \mathbb{N} \to \mathbb{N}_\perp$ donde:

$$f_n x = \begin{cases} 1 & \sin |n| \\ \bot & \cos . \end{cases}$$

Para ello, notemos que $\forall x, i \in \mathbb{N}, f_i x \leq 1$. Una cota suprerior es, entonces, la función constante 1 (C_1) tal que $\forall x \in \mathbb{N}, C_1 x = 1$.

suprongamos, ahora, que $\exists g \in \mathbb{N} \to \mathbb{N}_{\perp} : g \leq C_1 \land (\forall f_i \in \mathcal{F}, f_i \leq g)$. Como $g \leq C_1$, entonces $\exists x \in \mathbb{N} : g(x) = \bot$. Luego, no se cumple que $f_x \leq g$ dado que como x | x, entonces $f_x x = 1$ pero $gx = \bot$. Por ello, demostramos por absurdo que no existe otra función g menor a C_1 que sea cota suprerior de \mathcal{F} .

Finalmente, se demuestra que C_1 es supremo de \mathcal{F} .

Item F

Tenemos $\mathcal{F} = \{f_n : n \in \mathbb{N}\} \subseteq \mathbb{N} \to \mathbb{N}_{\perp}$ donde:

$$f_n x = \begin{cases} x & \text{si } |x - 10| < \log(n + 1) \\ \bot & \text{cc.} \end{cases}$$

Como $\forall x, i \in \mathbb{N}, \ f_i x \leq x$, entonces una cota suprerior es la función identidad (I) tal que $I(x) = x \ \forall x \in \mathbb{N}$. suprongamos, ahora, que $\exists g \in \mathbb{N} \to \mathbb{N}_{\perp} : g \leq I \land (\forall f_i \in \mathcal{F}, \ f_i \leq I)$. Como $g \leq I$, entonces $\exists x \in \mathbb{N} : g(x) = \bot$. Digamos $x \in \mathbb{N} : g(x) = \bot$. Luego, no se cumple que $f_{e^{|x-10|}} \leq g$ porque:

$$|x - 10| < \log(e^{|x - 10|} + 1)$$

$$\Leftrightarrow e^{|x - 10|} < e^{\log(e^{|x - 10|} + 1)}$$

$$\Leftrightarrow e^{|x - 10|} < e^{|x - 10|} + 1$$

lo que significa que $f_{e^{|x-10|}}x=x$. Finalmente, se llega a un absurdo que vino de suproner que existe una cota suprerior a $\mathcal F$ menor a I.

Por ello mismo, entonces, I es el supremo de \mathcal{F} .

Ejercicio 5

Recordemos las definiciones de cada propiedad de función. Sean P,Q predominios, $f\in P\to Q$ es monótona si $\forall x,y \in P, (x \leq y \Rightarrow fx \leq fy)$. Decimos que f es continua si para toda cadena $p_0 \leq p_1 \leq \ldots$ el supremo $\bigsqcup_{i \in \mathbb{N}} f_{p_i} \text{ existe y } \bigsqcup_{i \in \mathbb{N}} f_{p_i} = f\left(\bigsqcup_{i \in \mathbb{N}} p_i\right).$ Ahora, sean D, D' dominios con mínimos \bot, \bot' , entonces $f \in D \to D'$ es estricta si $f \bot = \bot'$.

Teniendo esto en cuenta, veamos ejemplos para cada espacio de función:

- (a) Considerando $\mathbb{B}_{\perp} \to \mathbb{B}_{\perp}$, al ser \mathbb{B}_{\perp} finito, si f es monótona entonces tiene que ser continua ya que al preservarse las cadenas y ser todas no interesantes, se preservan también los supremos. Respecto a una función continua y estricta, podemos considerar a C_{\perp} dado que se mantiene el mínimo.
- (b) Considerando $\mathbb{N}_{\perp} \to \mathbb{N}_{\perp}$, como se vio antes, sea f una función monótona, como toda cadena de \mathbb{N}_{\perp} es no interesante, se preservan también los supremos por lo que f es también continua. Respecto a una función continua y estricta, podemos considerar a C_{\perp} dado que se mantiene el mínimo.
- (c) Considerando $\mathbb{N}^{\infty} \to \mathbb{N}_{\perp}$, una función monótona pero no continua es $f_1 = \{(0, \perp), (1, \perp), \dots, (\infty, 0)\}$ dado que para la cadena $0 \le 1 \le \dots$ tenemos que $\bigsqcup_{i \in \mathbb{N}} fi = \bot \ne f\left(\bigsqcup_{i \in \mathbb{N}} i\right) = f\infty = 0$. Respecto a una función continua y estricta, podemos considerar a C_\bot dado que se mantiene el mínimo.
- (d) Considerando $\mathbb{N}^{\infty} \to \mathbb{N}^{\infty}$, una función monótona pero no continua es $f_1 = \{(0,0), (1,0), \dots, (\infty,1)\}$ dado que para la cadena $0 \le 1 \le \dots$ tenemos que $\bigsqcup_{i \in \mathbb{N}} fi = 0 \ne f\left(\bigsqcup_{i \in \mathbb{N}} i\right) = f\infty = 1$. Respecto a una función continua y estricta, podemos considerar a C_0 dado que se mantiene el mínimo.

Ejercicio 6

Ahora, queremos caracterizar todas las funciones continuas en los espacios de funciones considerados en el ejercicio anterior. Para ello, veamos cada una por separado:

- (a) Considerando $\mathbb{B}_{\perp} \to \mathbb{B}_{\perp}$, como todas las cadenas son no interesantes entonces toda función monótona mantiene el supremo. Luego, las funciones continuas son aquellas que mantienen el orden. Por ello, el conjunto es $\left(\bigcup_{x \in \mathbb{B}_{\perp}} C_x\right) \cup \{f : f \perp = \perp\}.$
- (b) Considerando $\mathbb{N}_{\perp} \to \mathbb{N}_{\perp}$, al tener solo cadenas no interesantes, toda función monótona mantiene el supremo. Con ello, un análisis similar al anterior nos lleva a que el conjunto de funciones continuas es $\left(\bigsqcup_{x\in\mathbb{N}_+} C_x\right) \cup \{f: f\bot = \bot\}.$
- (c) Considerando $\mathbb{N}^{\infty} \to \mathbb{N}_{\perp}$, la única cadena a tomar en cuenta para saber cuáles funciones monótonas no son continuas es $0 \le 1 \le \dots$ Dada esa cadena, una función f es continua si $\bigsqcup_{i \in \mathbb{N}} fi = f\left(\bigsqcup_{i \in \mathbb{N}} i\right) = f\infty$. Luego, entonces, el conjunto de funciones continuas es $\left(\bigcup_{x \in \mathbb{N}_{\perp}} C_x\right) \cup \{f : \exists x, y \in \mathbb{N} : (\forall k < x, fk = 0)\}$ \perp) \wedge ($\forall k \geq x, fk = y$) $\wedge f\infty = y$ }
- (d) Considerando $\mathbb{N}^{\infty} \to \mathbb{N}^{\infty}$, del mismo modo que antes, la única cadena a considerar para ver qué funciones monótonas son no continuas es $0 \le 1 \le \dots$ Por ello, buscamos que f cumpla que sea monótona y $\bigsqcup_{i \in \mathbb{N}} fi = f\left(\bigsqcup_{i \in \mathbb{N}} i\right) = f\infty$. Luego, entonces, el conjunto de funciones continuas es $\left(\bigcup_{x \in \mathbb{N}^{\infty}} C_x\right) \cup \{f : f \text{ es monótona } \land \exists x \in \mathbb{N}^{\infty} : (\exists y \in \mathbb{N} : f(y) = x) \land (\forall y \le x, f(y) \le x) \land f\infty = x\}$

Ejercicio 7

Si ahora queremos reducir los conjuntos caracterizados de funciones continuas en el ejercicio anterior, entonces tendremos para cada caso lo siguiente:

(a)
$$\{f : f \perp = \perp\}.$$

- (b) $\{f: f \perp = \perp\}.$
- (c) $\{C_{\perp}\} \cup \{f : f0 = \perp \land \exists x, y \in \mathbb{N} : (\forall k < x, fk = \perp) \land (\forall k \ge x, fk = y) \land f\infty = y\}.$
- (d) $\{C_{\perp}\} \cup \{f \text{ es monótona } \land \exists x \in \mathbb{N}^{\infty} : (\exists y \in \mathbb{N} : f(y) = x) \land (\forall y \leq x, \ f(y) \leq x) \land f\infty = x \land f0 = 0\}.$

Ejercicio 8

Como se quiere caracterizar los puntos fijos y decidir cuál es el menor, recordemos primero al **Teorema del Menor Punto Fijo**. Este expresa que sea D un dominio y $F \in D \to D$ continua, entonces $\bigsqcup_{i \in \mathbb{N}} F^i \bot$ existe y es el menor punto fijo de F.

Ahora, veamos cada una de las funciones a considerar separadas por items.

Item A

Consideramos $f: \mathbb{N} \to \mathbb{N}$ tal que fn = n. Claramente, \mathbb{N} es el conjunto de puntos fijos dado que incluso f se define de ese modo. Por ello, el menor punto fijo es 0.

Item B

Consideramos $h: \mathbb{N}^{\infty} \to \mathbb{N}^{\infty}$ tal que hn = n+1. Digamos que $x \in \mathbb{N}$, luego $hx = x+1 \neq x$ por lo que no es punto fijo. El caso de ∞ es diferente dado que $\infty + 1 = \infty$, por lo que es el único punto fijo de h.

Item C

Consideramos $g:\langle \text{intexp}\rangle \to \langle \text{intexp}\rangle$ tal que ge=e. Notemos que, de la misma forma que (a), todo elemento de $\langle \text{intexp}\rangle$ un punto fijo. Lo que resta ver es cuál es el mínimo entre estos. Como no existe este mínimo dado que $\langle \text{intexp}\rangle$ es un orden discreto, entonces no existe un mínimo punto fijo.

Item D

Consideramos $k: \mathbb{N}^{\infty} \to \mathbb{N}^{\infty}$ tal que:

$$kn = \begin{cases} n+1 & \text{si } n < 8 \\ n & \text{cc.} \end{cases}$$

Claramente, entonces, los puntos fijos son caracterizados dentro de este conjunto: $\{x \in \mathbb{N} : x \geq 8\}$. Por ello, también, el menor punto fijo es 8.

Ejercicio 9

Vamos a tomar cada función F como un caso aparte para mayor comodidad a la hora de realizar la solución a este ejercicio.

Item A

Consideramos $F \in (\mathbb{N} \to \mathbb{N}_{\perp}) \to (\mathbb{N} \to \mathbb{N}_{\perp})$ tal que:

$$Ff = \begin{cases} f & \text{si } f \text{ es una función total} \\ \bot_{\mathbb{N} \to \mathbb{N}_{\perp}} & \text{cc.} \end{cases}$$

Por definición, f es una función total si para todo elemento de \mathbb{N} está definida. Es decir, básicamente es función total si su imagen no contiene a \bot .

Ahora, si consideramos la cadena de funciones $f_0 \leq f_1 \leq \dots$ donde:

$$f_i x = \begin{cases} x & \text{si } x \le i \\ \bot & \text{cc.} \end{cases}$$

tenemos que $\bigsqcup_{i\in\mathbb{N}} Ff_i = \bigsqcup_{i\in\mathbb{N}} \bot_{\mathbb{N}\to\mathbb{N}_\perp} = \bot_{\mathbb{N}\to\mathbb{N}_\perp}$ dado que f_i es una función parcial. Sin embargo, $F\left(\bigsqcup_{i\in\mathbb{N}} f_i\right) = FI = I$ donde I es la función identidad. Por ello, entonces, al no ser igual el supremo tenemos que F no es continua.

Como segunda parte, entonces, vamos a calcular $F^{(i)} \perp_{\mathbb{N} \to \mathbb{N}_+}$ para i = 0, 1, 2. Luego, veamos:

$$F^0 \bot_{\mathbb{N} \to \mathbb{N}_{\perp}} = \bot_{\mathbb{N} \to \mathbb{N}_{\perp}}$$

$$F^{1} \bot_{\mathbb{N} \to \mathbb{N}_{\perp}} = F \bot_{\mathbb{N} \to \mathbb{N}_{\perp}}$$

$$= \begin{cases} \bot_{\mathbb{N} \to \mathbb{N}_{\perp}} & \text{si es total} \\ \bot_{\mathbb{N} \to \mathbb{N}_{\perp}} & \text{cc.} \end{cases}$$

$$= \bot_{\mathbb{N} \to \mathbb{N}_{\perp}}$$

$$\begin{split} F^2 \bot_{\mathbb{N} \to \mathbb{N}_{\perp}} &= F F \bot_{\mathbb{N} \to \mathbb{N}_{\perp}} \\ &= F \bot_{\mathbb{N} \to \mathbb{N}_{\perp}} \\ &= \bot_{\mathbb{N} \to \mathbb{N}_{\perp}} \end{split}$$

Item B

Ahora, consideramos la función $F\in(\mathbb{N}\to\mathbb{N}_\perp)\to(\mathbb{N}\to\mathbb{N}_\perp)$ tal que:

$$Ffn = \begin{cases} 0 & \text{si } n = 0\\ f(n-2) & \text{cc.} \end{cases}$$

Para ver que F es continua, queremos demostrar que dada una cadena $f_0 \leq f_1 \leq \ldots$ entonces $\bigsqcup_{i \in \mathbb{N}} F f_i =$

$$F\left(\bigsqcup_{i\in\mathbb{N}}f_i\right).$$

Sin embargo, primero demostraremos que F es monótona para que sea más sencillo hacer la demostración de continuidad. Para ello, consideremos $f,g\in\mathbb{N}\to\mathbb{N}_\perp:f\leq g$. Por definición, entonces, $\forall x\in\mathbb{N},\ fx\leq gx$. Luego, si n=0 tenemos que Ff0=0 y que Fg0=0 por lo que se cumple la desigualdad en este caso. Ahora, si $n\neq 0$ tenemos que Ffn=f(n-2) y que Fgn=g(n-2). Como $f\leq g$, entonces $f(n-2)\leq g(n-2)$ por lo que se cumple para este otro caso. Finalmente, F es monótona.

Respecto a la continuidad, vamos a demostrarlo según el valor de n. Digamos que n=0, entonces:

$$\left(\bigsqcup_{i\in\mathbb{N}} Ff_i\right) 0 = \bigsqcup_{i\in\mathbb{N}} Ff_i 0$$
$$= \bigsqcup_{i\in\mathbb{N}} 0$$
$$= 0$$

$$F\left(\bigsqcup_{i\in\mathbb{N}}f_i\right)0=0$$

por lo que se cumple la igualdad en este caso.

Ahora, digamos $n \neq 0$:

$$\left(\bigsqcup_{i\in\mathbb{N}} Ff_i\right) n = \bigsqcup_{i\in\mathbb{N}} Ff_i n$$
$$= \bigsqcup_{i\in\mathbb{N}} f_i (n-2)$$

$$F\left(\bigsqcup_{i\in\mathbb{N}} f_i\right) n = \left(\bigsqcup_{i\in\mathbb{N}} f_i\right) (n-2)$$
$$= \bigsqcup_{i\in\mathbb{N}} f_i (n-2)$$

por lo que se cumple la igualdad aquí también.

Luego, entonces, se demuestra que dada una cadena entonces el supremo se conserva por lo que F es continua.

Como segunda parte, ahora vamos a calcular $F^{(i)} \perp_{\mathbb{N} \to \mathbb{N}_+}$ para i = 0, 1, 2. Luego, veamos:

$$F^0 \perp_{\mathbb{N} \to \mathbb{N}_+} n = \perp_{\mathbb{N} \to \mathbb{N}_+}$$

$$\begin{split} F^1 \bot_{\mathbb{N} \to \mathbb{N}_\perp} n &= F \bot_{\mathbb{N} \to \mathbb{N}_\perp} n \\ &= \begin{cases} 0 & n = 0 \\ \bot_{\mathbb{N} \to \mathbb{N}_\perp} & \text{cc.} \end{cases} \end{split}$$

$$\begin{split} F^2 \bot_{\mathbb{N} \to \mathbb{N}_{\perp}} n &= FF \bot_{\mathbb{N} \to \mathbb{N}_{\perp}} n \\ &= \begin{cases} 0 & n = 0 \\ F \bot_{\mathbb{N} \to \mathbb{N}_{\perp}} (n - 2) & \text{cc.} \end{cases} \\ &= \begin{cases} 0 & n = 0 \\ 0 & n - 2 = 0 \\ \bot_{\mathbb{N} \to \mathbb{N}_{\perp}} & \text{cc.} \end{cases} \\ &= \begin{cases} 0 & n \in \{0, 2\} \\ \bot_{\mathbb{N} \to \mathbb{N}_{\perp}} & \text{cc.} \end{cases} \end{split}$$

Ejercicio 10

Queremos calcular la menor función $f\in\mathbb{Z}\to\mathbb{Z}_\perp$ que satisface

$$fn = \begin{cases} 1 & n = 0 \\ n * f(n-1) & n \neq 0 \end{cases}$$

Para ello, deberemos usar el Teorema del Menor Punto Fijo para $F: (\mathbb{Z} \to \mathbb{Z}_{\perp}) \to (\mathbb{Z} \to \mathbb{Z}_{\perp})$ tal que

$$Ffn = \begin{cases} 1 & n = 0 \\ n * f(n-1) & n \neq 0 \end{cases}$$

por lo que voy a demostrar primero que F es monótona y, luego, que es continua.

Vamos a demostrar que F es monótona. Para ello, digamos $f,g\in\mathbb{Z}\to\mathbb{Z}_\perp:f\leq g$. Esto quiere decir que $\forall x\in\mathbb{Z},\ fx\leq gx.$ Si $n=0,\ Ff0=0\leq Fg0=0.$ Si $n\neq 0,\ Ffn=n*f(n-1)\leq Fgn=n*g(n-1)$ dado que $f(n-1)\leq g(n-1).$ Luego, entonces, F es monótona.

Ahora, vamos a demostrar que F es continua. Para ello, digamos que tenemos la cadena $f_0 \leq f_1 \leq \cdots \leq f_n \leq \ldots$ de $\mathbb{Z} \to \mathbb{Z}_{\perp}$. Queremos ver que $\left(\bigsqcup_{i \in \mathbb{N}} F f_i\right) = F\left(\bigsqcup_{i \in \mathbb{N}} f_i\right)$. Para ello, vamos a verlo para cada $n \in \mathbb{Z}$. Si n = 0:

$$\left(\bigsqcup_{i\in\mathbb{N}} Ff_i\right) 0 = \bigsqcup_{i\in\mathbb{N}} Ff_i 0$$

$$= \bigsqcup_{i\in\mathbb{N}} 1$$

$$= 1$$

$$F\left(\bigsqcup_{i\in\mathbb{N}}f_i\right)0=1$$

entonces se cumple la igualdad. Ahora, si $n \neq 0$:

$$\left(\bigsqcup_{i\in\mathbb{N}} Ff_i\right) n = \bigsqcup_{i\in\mathbb{N}} Ff_i n$$

$$= \bigsqcup_{i\in\mathbb{N}} (n * f_i (n-2))$$

$$= n * \bigsqcup_{i\in\mathbb{N}} f_i (n-2)$$

$$F\left(\bigsqcup_{i\in\mathbb{N}} f_i\right) n = n * \left(\bigsqcup_{i\in\mathbb{N}} f_i\right) (n-2)$$
$$= n * \bigsqcup_{i\in\mathbb{N}} f_i (n-2)$$

entonces se cumple la igualdad. Por ello, finalmente, se demuestra que F es continua. \blacksquare

Finalmente, entonces, ya estamos habilitados para usar el Teorema del Menor Punto Fijo. Para ello, primero veamos algunos casos para $F^{(i)} \perp$:

$$F^0 \perp n = \perp$$

$$F^{1} \perp n = F \perp n$$

$$= \begin{cases} 1 & n = 0 \\ n * \perp (n-1) & \text{cc.} \end{cases}$$

$$= \begin{cases} 1 & n = 0 \\ \perp & \text{cc.} \end{cases}$$

$$F^{2} \perp n = FF \perp n$$

$$= \begin{cases} 1 & n = 0 \\ n * F \perp (n - 1) & \text{cc.} \end{cases}$$

$$= \begin{cases} 1 & n = 0 \\ n * 1 & n - 1 = 0 \\ \perp & \text{cc.} \end{cases}$$

$$= \begin{cases} 1 & n = 0 \\ n & n = 1 \\ \perp & \text{cc.} \end{cases}$$

$$F^{3} \perp n = FF^{2} \perp n$$

$$= \begin{cases} 1 & n = 0 \\ n * F^{2} \perp (n - 1) & \text{cc.} \end{cases}$$

$$= \begin{cases} 1 & n = 0 \\ n & n - 1 = 0 \\ n * (n - 1) & n - 1 = 1 \\ \perp & \text{cc.} \end{cases}$$

$$= \begin{cases} 1 & n = 0 \\ n & n = 1 \\ n * (n - 1) & n = 2 \\ \perp & \text{cc.} \end{cases}$$

Observando esto, propongo que $F^{(i)} \perp$ es igual a:

$$F^{(i)} \perp n = \begin{cases} n! & 0 \le n < i \\ \perp & \text{cc.} \end{cases}$$

Viendo que el caso base se cumple, suponemos la hipótesis para $k \in \mathbb{N}$ y queremos verlo para k+1 así lo demostramos por inducción:

$$F^{k+1} \perp n = FF^k \perp n$$

$$= \begin{cases} 1 & n = 0 \\ n * F^k \perp (n-1) & \text{cc.} \end{cases}$$

$$= \begin{cases} 1 & n = 0 \\ n * (n-1)! & 0 \le n-1 < k \\ \perp & \text{cc.} \end{cases}$$

$$= \begin{cases} 1 & n = 0 \\ n! & 1 \le n < k+1 \\ \perp & \text{cc.} \end{cases}$$

$$= \begin{cases} n! & 0 \le n < k+1 \\ \perp & \text{cc.} \end{cases}$$

por lo que se demuestra por inducción esta forma para $F^{(i)}$.

Ahora, como el menor punto fijo es el supremo de esta cadena, tenemos que:

$$\left(\bigsqcup_{i\in\mathbb{N}} F^i \bot\right) n = \begin{cases} n! & 0 \le n \\ \bot & \text{cc.} \end{cases}$$

Ejercicio 11

Si queremos caracterizar las funciones que satisfacen la ecuación dada por:

$$fn = \begin{cases} f(n-1) & n < 0 \\ 1 & n = 0 \\ n * f(n-1) & n > 0 \end{cases}$$

debemos tener en cuenta que si n < 0 entonces $fn = f(n-1) = f(n-2) = f(n-3) = \dots$ infinitamente. Además, es claro que para $n \ge 0$ llegamos al mismo resultado obtenido en el ejercicio 10. Finalmente, entonces, se cumple que las funciones que satisfacen esta ecuación son de la forma:

$$fn = \begin{cases} k & n < 0 \\ n! & n \ge 0 \end{cases}$$

para un $k \in \mathbb{Z}_{\perp}$.

Respecto a la comparación de esta ecuación con la del ejercicio 10, podemos ver que la del ejercicio anterior cumple la caracterización de este aunque no es la única.