Homeword Soletion MER 312: ADV. Dyn & Kin

PG 1 of Z SUPPLEMENT TO KIMBRETL

PROBLEM GIVEN THECONFIGURATION IN PROBLEM 2.2, USE THE ALGORITHM YOU HAVE DEVELOPED TO SOLVE FOR WHEN THE DRIVE LIWIS IS AT 02 = 120°

GIVEN:

1. MECHANISM SHOWN BELOW WITH THE FOUCHING LENGTHS: OAA = 1.0, AB = 3.0, OBB = 1.5, OAOB = 3.0, AC = BC = 2.0

2. Oz = 120°

Assemptions:

1. ALL LINKS ARE IN THE SAME OR PARALLEL PLANES, PLANAR PROBLEM

2. ALL Joines ARE FRECTIONLESS
3. ALL LINES ARE RECED

FINO:

1. ROSITIONS OF POINTS A, B, & C 2. Angles 03 & 04

Home world Scution MER312: ADV Dyn & Kin. PG 2 of 2 Supplement to Kimbrell

$\begin{array}{c} \mathbf{a} = \\ \mathbf{b} = \\ \mathbf{c} = \\ \mathbf{d} = \\ \theta_2 = \end{array}$	3 1.5	Link 2 Link 3 Link 4 Link 1 2.094395102	, ar	
By= Bx=	1.40 2.45	-0.98 1.86		-
$\theta_3 =$	10.2	-38.0	0.177791	-0.66292
$\theta_{4} =$	111.4	-139.2	1.944279	-2.42941
K1= K2= K3= K4=	2.1071E+00 2.4744E-01 4.1636E-01 -1.3690E+00			

					e _r		\mathbf{e}_{θ}	
	x comp	y comp	mag	angle	i i	j	i i	j
r04=	3.00	0.00	3.000	0.0	1.000	0.000	0.000	1.000
rA=	-0.50	0.87	1.000	120.0	-0.500	0.866	-0.866	-0.500
rBA=	2.95	0.53	3.000	10.2	0.984	0.177	-0.177	0.984
rBO4=	-0.55	1.40	1.500	111.4	-0.365	0.931	-0.931	-0.365
rB=	2.45	1.40	2.822	29.7	0.869	0.495	-0.495	0.869
rPA=	1.71	-1.04	2.000	-31.2	0.855	-0.518	0.518	0.855
rP=	1.21	-0.17	1.222	-8.0	0.990	-0.139	0.139	0.990

ALT	x comp	y comp	mag	angle		j	i	j
rO4=	3.00	0.00	3.000	0.0	1.000	0.000	0.000	1.000
rA=	-0.50	0.87	1.000	120.0	-0.500	0.866	-0.866	-0.500
rBA=	2.36	-1.85	3.000	-38.0	0.788	-0.615	0.615	0.788
rBO4=	-1.14	-0.98	1.500	-139.2	-0.757	-0.653	0.653	-0.757
rB=	1.86	-0.98	2.107	-27.7	0.885	-0.465	0.465	0.885
rPA=	0.37	-1.97	2.000	-79.4	0.184	-0.983	0.983	0.184
rP=	-0.13	-1.10	1.108	-96.8	-0.119	-0.993	0.993	-0.119

SUMMARY: A REVIEW OF BOTH THE "OPEN" AND "CLOSED" CONFIGURATION RESULTS WITH THE SCALED DRAWING APEAR TO MATCH. THE FIRST STEP IN THIS PROBLEM WAS TO DETERMINE THE & D P NEED TO LOCABE THE THIRD NODE ON THE COCRED LINK. NEGATIVE ANGLES ARE MEASORED CLOCKWISE.