

NUMBER THEORY AND ALGORITHMS

Dr. Isaac Griffith Idaho State University

Inspiration

Computer Science

"The enemy knows the system" – Claude Shannon

Outline

The lecture is structured as follows:

- Divisibility and Modular Arithmetic
- Integer Representations
- **Integer Algorithms**
- Primes and GCD
- Solving Congruences
- Applications of Congruences
- Cryptography
- **Program Correctness**

CS 1187

Division

- When an integer is divided by another integer, the result may or may not be an integer.
 - Ex: 12/3 = 4.11/4 = 2.75
- **Definition:** If a and b are integers with $a \neq 0$, we say a divides b if there is an integer c such that b = ac (if $\frac{b}{a}$ is an integer).
 - When a divides b (written $a \mid b$) we say a is a factor or divisor of b and that b is a multiple of a
 - We an express $a \mid b$ logically as $\exists c \ (ac = b)$
- Example: Determine whether $3 \mid 7$ and whether $3 \mid 12$

$$3 \not| 7$$
 because $7/3 \notin \mathbb{Z}$ $3 \mid 12$ textbecause $12/3 = 4$

Division

- Theorem: Let a, b, and c be integers, where $a \neq c$. Then
 - 1. if $a \mid b$ and $a \mid c$, then $a \mid (b + c)$
 - 2. if $a \mid b$, then $a \mid bc$ for all integers c
 - 3. if $a \mid b$ and $b \mid c$, then $a \mid c$
- Corollary: if a, b, and c are integers, where $a \neq 0$, such that $a \mid b$ and $a \mid c$, then $a \mid mb + nc$ whenever m and n are integers.

The Division Algorithm

• The Division Algorithm: Let a be an integer and d a positive integer. Then there are unique integers q and r, with 0 < r < d such that a = dq + r

• *d* is the *divisor*

- q is the quotient
- a is the dividend
- r is the remainder

$$q = a \operatorname{div} d$$

$$r = a \operatorname{mod} d$$

• Example: What is the quotient and remainder when 101 is divided by 11?

$$\begin{array}{rcl} 101 & = & 11 \cdot 9 + 2 \\ q & = & 101 \, \text{div} \, 11 = 9 \\ r & = & 101 \, \text{mod} \, 11 = 2 \end{array}$$

Modular Arithmetic

- Definition: if a and b are two integers and m is a positive integer, then a is congruent to b modulo
 m if m divides a b.
 - Denoted as: $a \equiv b \pmod{m} \Rightarrow$ called a congruence
 - m is its modulus
 - if a and b are not congruent modulo m, we write $a \not\equiv b \pmod{m}$
- Theorem: Let a and b be integers, and let m be a positive integer. Then $a \equiv b \pmod{m}$ iff $a \mod m = b \mod m$
- Example: Determine whether $17 \equiv 5 \, (\text{mod} \, 6)$ and $24 \equiv 14 \, (\text{mod} \, 6)$

$$6 \mid (17 - 5 = 12) \rightarrow 17 \equiv 5 \pmod{6}$$

 $6 \mid (24 - 14 = 10) \rightarrow 24 \not\equiv 14 \pmod{6}$

Modular Arithmetic

- Theorem: Let m be a positive integer. The integers a and b are congruent modulo m iff there is an integer k such that a = b + km
- Theorem: Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then

$$a + c \equiv d \pmod{m}$$
 and $ac = bd \pmod{m}$

• Example: because $7 \equiv 2 \pmod{5}$ and $11 \equiv 1 \pmod{5}$ it follows that

$$\begin{array}{rcl} 18 = 7 + 11 & \equiv & 2 + 1 = 3 \, (\text{mod} \, 5) \\ 77 = 7 \cdot 11 & \equiv & 2 \cdot 1 = 2 \, (\text{mod} \, 5) \end{array}$$

Arithmetic Modulo m

- \mathbb{Z}_m : set of non-negative integers less than m
- Arithmetic Modulo m operators:

$$a +_m b = (a + b) \operatorname{\mathsf{mod}} m$$
 $a \cdot_m b = (a \cdot b) \operatorname{\mathsf{mod}} m$

• Examples: find $7 +_{11} 9$ and $7 \cdot_{11} 9$

$$7 +_{11} 9 = (7+9) \mod 11 = 16 \mod 11 = 5$$

 $7 \cdot_{11} 9 = (7 \cdot 9) \mod 11 = 63 \mod 11 = 8$

Arithmetic Modulo m

- The operators $+_m$ and \cdot_m satisfy the following properties
 - Closure: if a and $b \in \mathbb{Z}_m$, then $a +_m b$ and $a \cdot_m b \in \mathbb{Z}_m$
 - Associativity: if $a,b,c\in\mathbb{Z}_m$, then $(a+_mb)+_mc=a+_m(b+_mc)$ and $(a\cdot_mb)\cdot_mc=a\cdot_m(b\cdot_mc)$
 - Commutativity: if $a,b\in\mathbb{Z}_m$, then $a+_mb=b+_ma$ and $a\cdot_mb=b\cdot_ma$
 - Identity: The elements 0 and 1 are identity elements for $+_m$ and \cdot_m , respectively. If $a \in \mathbb{Z}_m$, then $a +_m 0 = 0 +_m a = a$, and $a \cdot_m 1 = 1 \cdot_m a = a$
 - Additive Inverses: If $a \neq 0 \in \mathbb{Z}_m$, then m-a is an additive inverse of $a \mod m$ and 0 is its additive inverse. That is $a +_m (m-a) = 0$ and $0 +_m 0 = 0$
 - Distributivity: If $a, b, c \in \mathbb{Z}_m$, then $a \cdot_m (b +_m c) = (a \cdot_m b) +_m (a \cdot_m c)$ and $(a +_m b) \cdot_m c = (a \cdot_m b) +_m (b \cdot_m c)$

CS 1187

Integer Representations

• Base *b* expansion of *n*: Let *b* be an integer > 1. Then if *n* is a positive integer, it can be expressed uniquely in the form

$$n = a_k b^k + a_{k-1} b^{k-1} + \ldots + a_1 b + a_0$$

Where k is a nonnegative integer, a_0, a_1, \ldots, a_k are nonnegative integers less than b, and $a_k \neq 0$

Notes:

- A binary digit is called a bit
- 8 bits = 1 byte = 2 hexadecimal digits

Number Systems, Common Expansions to Convert to Decimal:

- Decimal (b=10): $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ $(716)_{10} = 7 \cdot 10^2 + 1 \cdot 10^1 + 6 = 716$
- Octal (b=8): $\{0,1,2,3,4,5,6,7\}$ (7016), = $7 \cdot 8^3 + 0 \cdot 8^2 + 1 \cdot 8 + 6 = 3598$
- Hexadecimal (b=16): $\{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F\}$ $(2AE0B)_{16} = 2 \cdot 16^4 + 10 \cdot 16^3 + 14 \cdot 16^2 + 0 \cdot 16 + 11 = 175627$
- Binary (b=2): $\{0,1\}$ $(10110)_2 = 1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 0 = 22$

Base Conversion

- We can construct the base b expansion of integer n as follows
 - 1. divide n by b to obtain a quotient and remainder (a_0 = rightmost digit in expansion) $n = ba_0 + a_0$ $0 \le a_0 \le b$
 - 2. divide q_0 by b to obtain (a_1 is second rightmost digit) $a_0 = ba_1 + a_1 \ 0 < a_1 < b$
 - 3. Continue using these steps moving until you end with a quotient of zero.
- $\bullet \;$ Find octal expansion of $(12345)_{10}$

$$12345 = 8 \cdot 1543 + 1$$

$$1543 = 8 \cdot 192 + 7$$

$$192 = 8 \cdot 24 + 0$$

$$24 = 8 \cdot 3 + 0$$

$$3 = 8 \cdot 0 + 3$$

$$= (30071)_{8}$$

• Find the hexadecimal expansion of (177130),

$$177130 = 16 \cdot 11070 + 10$$

$$11070 = 16 \cdot 691 + 14$$

$$691 = 16 \cdot 43 + 3$$

$$43 = 16 \cdot 2 + 11$$

$$2 = 16 \cdot 0 + 2$$

$$= (2B3EA)_{16}$$

Base Conversion

Algorithm: Constructing Base b Expansions (*greedy algorithm*)

```
procedure BASEBEXPANSION(n, b)
```

```
q := n
```

$$\mathbf{k} \coloneqq 0$$

while $q \neq 0$ do

 $a_k \coloneqq q \bmod b$

 $q \coloneqq q \operatorname{div} b$

k := k + 1

return $(a_{k-1},\ldots,\overline{a_1,a_0})$

Decimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Hexadecimal	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
Octal	0	1	2	3	4	5	6	7	10	11	12	13	14	15	16	17
Binary	0	1	10	11	100	101	110	111	1000	1001	1010	1011	1100	1101	1110	1111

Base Conversion

- Binary → Oct or Hex: easy since each octal digit is a block of 3 bits and each hex digit is a block of 4 bits:
 - Thus, we simply separate the bit string into appropriately sized groups and convert to the number system
- Conversion to binary is a simple lookup on the table
- Ex: Convert (11111010111100)₂ to both octal and hexadecimal

011 111 010 111 100 $(37274)_{8}$ 0011 1110 1100 1011

В

 $(3EBC)_{16}$

• Ex: Convert (765)_s and (A8D)₁₆ to Binary

$$(765)_8 = (111\ 110\ 101)_2$$

 $(A8D)_{16} = (1010\ 1000\ 1101)_2$

Ε

Addition Algorithm

Algorithm:

procedure ADD(a, b: positive integers)

by the binary expansions of a and b are $(a_{n-1}a_{n-1}\dots a_1a_0)_2$ and $(b_{n-1}b_{n-1}\dots b_1b_0)_2$

c := 0for i := 0 to n-1 do

 $d := |(a_i + b_i + c)/2|$

 $s_i := \bar{a}_i + b_i + c - 2\bar{d}$ c := d

 $S_n := C$ return (s_0, s_1, \ldots, s_n) • Example: Add $a = (1110)_2$ and $b = (1011)_2$

Analysis:

- Each pair of bits and the carry requires 2 bit additions but less than twice the number of bits in the expansion
 - Therefore, O(n)

Multiplication Algorithm

Algorithm:

```
procedure MULTIPLY(a, b: positive integers)

\Rightarrow the binary expansions of a and b are
(a_{n-1}a_{n-1}\dots a_1a_0)_2 \text{ and } (b_{n-1}b_{n-1}\dots b_1b_0)_2
for j:=0 to n-1 do

if b_j=1 then c_j:=a shifted j places
else c_j:=0

\Rightarrow c_0, c_1, \dots, c_{n-1} are the partial products
p:=0
for j:=0 to n-1 do
```

• Example: Find the product of $a = (110)_2$, $b = (101)_2$

$$egin{array}{lll} m{a}m{b}_0 = 2^0 = (110)_2 \cdot 1 \cdot 2^0 & = & (110)_2 \ m{a}m{b}_1 \cdot 2^1 = (110)_2 \cdot 0 \cdot 2^1 & = & (0000)_2 \ m{a}m{b}_2 \cdot 2^2 = (110)_2 \cdot 1 \cdot 2^2 & = & (11000)_2 \ & = & (11000)_2 \end{array}$$

Analysis

is $O(n^2)$

- First for loop requires $O(n^2)$ shifts
- Second for loop requires n O(n) additions which
- The combination is $O(n^2) + O(n^2)$ which is $O(n^2)$

 $p := ADD(p, c_i)$

return p

Modular Exponentiation

- Computer Science
- Important for crypto is the ability to efficiently calculate bⁿ mod m without requiring a large amount of memory.
 - b, n, and m are integers

Algorithm:

```
procedure Modexp(b: integer, n=(a_{k-1}a_{k-2}\dots a_1a_0)_2, m: positive integer) x:=1 power :=b \mod m for i:=0 to k-1 do if a_i=1 then x:=(x\cdot power) \mod m power :=(power\cdot power) \mod m return x
```

• Analysis: uses $O((\log m)^2 \log n)$ bit operations->

Modular Exponentiation

ullet Example: Using the algorithm to find 3^{644} **mod** 645

```
 \begin{array}{l} \textit{i} = 0 & : & \textit{a}_0 = 0, \textit{x} = 1, power = 3^2 \bmod 645 = 9 \bmod 645 = 9 \\ \textit{i} = 1 & : & \textit{a}_1 = 0, \textit{x} = 1, power = 9^2 \bmod 645 = 81 \bmod 645 = 81 \\ \textit{i} = 2 & : & \textit{a}_2 = 1, \textit{x} = 1 \cdot 81 \bmod 645 = 81, power = 81^2 \bmod 645 = 6561 \bmod 645 = 111 \\ \textit{i} = 3 & : & \textit{a}_3 = 0, \textit{x} = 81, power = 111^2 \bmod 645 = 12321 \bmod 645 = 66 \\ \textit{i} = 4 & : & \textit{a}_4 = 0, \textit{x} = 81, power = 66^2 \bmod 645 = 4356 \bmod 645 = 486 \\ \textit{i} = 5 & : & \textit{a}_5 = 0, \textit{x} = 81, power = 486^2 \bmod 645 = 236196 \bmod 645 = 126 \\ \textit{i} = 6 & : & \textit{a}_6 = 0, \textit{x} = 81, power = 126^2 \bmod 645 = 15876 \bmod 645 = 396 \\ \textit{i} = 7 & : & \textit{a}_7 = 1, \textit{x} = (81 \cdot 396) \bmod 645 = 471, power = 396^2 \bmod 645 = 156816 \bmod 645 = 81 \\ \textit{i} = 8 & : & \textit{a}_8 = 0, \textit{x} = 471, power = 81^2 \bmod 645 = 6561 \bmod 645 = 111 \\ \end{array}
```

Result: 3^{644} **mod** 645 = 36

i = 9: $a_9 = 1, x = (471 \cdot 111) \mod 645 = 36$

CS 1187

Primes

- Prime: An integer p greater than 1 where the only positive factors of p are 1 and p
- Composite: A positive integer that is greater than one and not prime
- Note: 1 is not prime, as it only has one positive factor
- Fundamental Theorem of Arithmetic: Every integer greater than 1 can be written uniquely as a
 prime or as the product of two or more primes, where the prime factors are written in order of
 non-decreasing size.
- Example: Some prime factorizations

•
$$100 = 2 \cdot 2 \cdot 5 \cdot 5 = 2^2 5^2$$

•
$$999 = 3 \cdot 3 \cdot 3 \cdot 37 = 3^337$$

Trial Division

- Theorem: If n is a composite integer, then n has a prime divisor less than or equal to \sqrt{n}
- This leads to a brute-force algorithm called trial division for showing a number is prime
 - 1. divide n by all primes not exceeding \sqrt{n}
 - conclude *n* is prime if it is not divisible by any of these prime numbers
 - 3. otherwise continue dividing by primes to extract the prime factorization
- Examples:
 - Show 101 is prime: primes $<\sqrt{101}$ are 2, 3, 5, 7 and 101 is not divisible by any of them \therefore 101 is prime
 - Factor 7007: $7007 = 7 \cdot 1001 = 7 \cdot 7 \cdot 143 = 7 \cdot 7 \cdot 11 \cdot 13 = 7^2 \cdot 11 \cdot 13$

Sieve of Eratosthenes

- used to find all primes not exceeding a specified positive number, n
- start by finding \sqrt{n} , which the largest prime factor of n cannot exceed.

Exam	ple:	100,	$\sqrt{100} =$	10							
1	2	3	5	7	9	1	2	3	5	7	
11		13	15	17	19	11		13		17	19
21		23	25	27	29			23	25		29
31		33	35	37	39	31			35	37	
41		43	45	47	49	41		43		47	49
51		53	55	57	59			53	55		59
61		63	65	67	69	61			65	67	
71		73	75	77	79	71		73		77	79
81		83	85	87	89			83	85		89
91		93	95	97	99	91			95	97	
remove	all nur	mbers div	risible by 2 (ex	cept 2)		remove	all nur	nbers div	isible by 3 (ex	cept 3)	

remove all numbers divisible by 3 (except 3)

Sieve of Eratosthenes

1	2	3	5	7	
11		13		17	19
		23			29
31				37	
41		43		47	49
		53			59
61				67	
71		73		77	79
		83			89
91				97	

remove all numbers divisible by 5 (except 5)

						- '
1	2	3	5	7		
11		13		17	19	
		23			29	
31				37		
41		43		47		
		53			59	
61				67		
71		73			79	
		83			89	
				97		

Idaho State

Computer

remove all numbers divisible by 7 (except 7), and all remaining numbers are prime

Infinitude of Primes

- Theorem: There are infinitely many primes
- Mersenne Primes: Primes of the form $2^p 1$, where p is also prime
 - Note that $2^n 1$ cannot be prime unless n is also prime
 - There is an extremely efficient test to determine if $2^p 1$ is prime (Lucas-Lehmer Test)
 - Examples:
 - $2^2 1 = 3$, $2^3 1 = 7$, $2^5 1 = 31$, $2^7 1 = 127$ are all Mersenne primes
 - $2^11 1 = 2047 = 23 \cdot 89$; not prime

Distribution of Primes

- Prime Number Theorem: The ration of $\pi(x)$, the number of primes not exceeding x, and $x/\ln x$ approaches 1 as x grows without bound.
 - Using Trial Division with this theorem does provide a method for factoring and primality testing, but not a very
 efficient one
 - However, there is a polynomial time algorithm for determining if a number is prime. It was identified by Agrawal, Kayal, and Saxena
 - Runs in $O((\log n)^6)$ operations
 - Unfortunately factoring large numbers is still exceptionally difficult

GCD and LCM

- Greatest Common Divisor (gcd): Let a and b be intergers not both zero. The gcd is the largest integer d such that $d \mid a$ and $d \mid b$. Denoted gcd(a,b)
 - Example: What is the gcd of 24 and 36?
 - Common divisors are: 1, 2, 3, 4, 6, and 12
 - Thus, gcd(24, 36) = 12
- Least Common Multiple (Icm): of the positive integers a and b is the smallest positive integer that is divisible by both a and b. Denoted lcm(a, b)
- Theorem: Let a and b be positive integers. Then

$$ab = \gcd(a, b) \cdot \operatorname{lcm}(a, b)$$

GCD, LCM, and Primes

- Relatively Prime: The intgers a and b are relatively prime if gcd(a,b) = 1
- Pairwise Relatively Prime: The integers a_1, a_2, \ldots, a_n are pairwise relatively prime if $gcd(a_i, a_i) = 1$ whenever 1 < i < j < n
- Examples:
 - gcd(17, 22) = 1 : 17 and 22 are relatively prime
 - Are 10, 17, 21 Pairwise relatively prime?
 - qcd(10, 17) = 1
 - gcd(10, 21) = 1
 - acd(17, 21) = 1
 - : they are pairwise relatively prime

GCD, LCM, and Primes

- We can use the prime factorizations of the positive integers a and b to find both the gcd(a, b) and lcm(a, b)
- Suppose the prime factorizations of a and b are:

$$egin{array}{lll} a & = & p_1^{a_1} p_{
m c}^{a_2} \dots p_n^{a_n} \ b & = & p_1^{b_1} p_{
m c}^{b_2} \dots p_n^{b_n} \end{array}$$

where all primes occurring in either a or b are listed (possibly with zero exponents)

Then:

$$\begin{array}{lcl} \gcd(a,b) & = & p_1^{\min(a_1,b_1)} p_2^{\min(a_2,b_2)} \dots p_n^{\min(a_n,b_n)} \\ \operatorname{lcm}(a,b) & = & p_1^{\max(a_1,b_1)} p_2^{\max(a_2,b_2)} \dots p_n^{\max(a_n,b_n)} \end{array}$$

• Example: What is the lcm of $2^33^57^2$ and 2^43^3 ?

$$\bullet \ \, \operatorname{lcm}(2^3 3^5 7^2, 2^4 3^3) = 2^{\max(3,4)} 3^{\max(5,3)} 7^{\max(2,0)} = 2^4 3^5 7^2$$

The Euclidean Algorithm

- An efficient algorithm for computing gcd, known since ancient times, is based on the following lemma
- Lemma: Let a = bq + r, where a, b, q, and r are integers. Then gcd(a,b) = gcd(b,r)

Algorithm:

procedure GCD(a, b: positive integers)

x := a y := b while y ≠ 0 do r := x mod y x := y y := r return x Example: Find gcd(414, 662)

j	rj	r_{j+1}	q_{j+1}	r_{j+2}
0	662	414	1	248
1	414	248	1	166
2	248	166	1	82
3	166	82	2	2
4	82	2	41	0

• If $a \ge b$, then $O(\log b)$

 $\gcd(414,662)=2$

GCDs: Linear Combinations

- B'{e}zout's Theorem: If a and b are positive integers, then there exist integers s and t such that $\gcd(a,b) = sa + tb$
 - The coefficients s and t are called **Bézout's coefficients** of a and b
 - The equation gcd(a,b) = sa + tb is called **Bézout's identity**
 - This form shows that gcd(a, b) can be expressed as a linear combination
- Lemma: If a, b, and c are positive integers such that gcd(a,b) = 1 and $a \mid bc$, then $a \mid c$
- Lemma: If p is a prime and $p \mid a_1 a_2 \dots a_n$, where each a_i is an integer, then $p \mid a_i$ for some i
- Theorem: Let m be a positive integer and let a, b, and c be integers. If $ac \equiv bc \pmod{m}$ and gcd(c, m) = 1, then $a \equiv b \pmod{m}$

CS 1187

Linear Congruences

• Linear Congruence: A congruence of the form

$$ax \equiv b \pmod{m}$$

Where:

- m is a positive integer
- a, b are integers
- x is a variable
- Theorem: If a and m are relatively prime integers and m > 1, then an inverse of a mod m exists. Furthermore, this inverse is unique modulo m
 - That si, there is a unique positive integer \bar{a} less than m that is the inverse of a mod m and every other inverse of a **mod** m is congruent to \overline{a} **mod** m
- Once we have an inverse, \bar{a} of a mod m, we can solve the congruence $ax \equiv b \pmod{m}$ by multiplying both sides by \bar{a}

Linear Congruences

- Example: Find an inverse of 3 mod 7 by first finding Bézout coefficients of 3 and 7
 - Because gcd(3,7) = 1, an inverse of $3 \mod 7$ exists
 - $gcd(3,7) \Rightarrow 7 = 2 \cdot 3 + 1$
 - from this $-2 \cdot 3 + 1 \cdot 7 = 1$
 - ullet Bézout coefficients are -2 and 1
 - Then, -2 is an inverse of $3 \mod 7$

Chinese Remainder Theorem

• Chinese Remainder Theorem: Let $m_1, m_2, ..., m_n$ be pairwise relatively prime positive integers greater than 1 and $a_1, a_2, ..., a_n$ arbitrary integers. Then the system

$$egin{array}{lcl} x & \equiv & a_1 \, (\mbox{mod} \, m_1), \\ x & \equiv & a_2 \, (\mbox{mod} \, m_2), \\ & dots \\ x & \equiv & a_n \, (\mbox{mod} \, m_n) \end{array}$$

has a unique solution modulo $m=m_1m_2\dots m_n$

Fermat's Little Theorem

• Fermat's Little Theorem: If p is prime and a is an integer not divisible by p, then

$$a^{p-1} \equiv 1 \, (\mathsf{mod} \, p)$$

Furthermore, for every integer a we know

$$a^p \equiv a \, (\mathsf{mod} \, p)$$

- Example: find 7²²² mod 11
 - Using Fermat's Little Theorem we know that $7^{10} \equiv 1 \pmod{11}$, so $(7^{10})^k \equiv 1 \pmod{11} \ \forall k \in \mathbb{Z}^+$
 - We then divide 222 by 10 finding $222 = 22 \cdot 10 + 2$
 - We can then see that $7^{222}=7^{22\cdot 10+2}\equiv (1)^{22}\cdot 40\equiv 5\,(\text{mod}\,11)$
 - Thus, $7^{222} \mod 11 = 5$ ->

Pseudoprimes

- Pseudoprime: Let b be a positive integer. If n is a composite positive integer, and $b^{n+1} \equiv 1 \pmod{n}$, then n is called pseudoprime to the base b
- Carmichael Number: A composite integer n that satisfies the congruence $b^{n-1} \equiv 1 \pmod{n}$ for all positive integer b with gcd(b, n) = 1

CS 1187

Hashing Functions

- Hashing Functions: a hashing function h assigns memory location h(k) to the record that has k as its key.
 - Many different hashing functions are used in practice, one of the most common is:

$$h(k) = k \mod m$$

Where *m* is the number of memory locations

- Should be easy to evaluate
- · Should be onto, so all memory locations are pairwise
- The functions are not one-to-one (more possible keys than memory locations) thus collisions may occur
 - Collision handling is necessary
 - Assign first free location following memory location assigned by hashing function:

$$h(k,i) = h(k) + i \bmod m \quad 0 \le i \le m - 1$$

Hashing Functions

• Example: Find the memory location assigned by the hashing function $h(k) = k \mod 111$ to the records of customers with social security numbers 064212848 and 037149212.

```
h(0642128\overline{48}) = 064212848 \mod 111 = 14

h(037149212) = 037149212 \mod 111 = 65
```

Example: Now assign a memory location to the record of the customer with SSN 107405723

$$h(107405723) = 107405723 \mod 111 = 14$$

This caused a collision. However, 15 is unassigned, thus we can assign 10740523 to 15 instead.

Pseudorandom Numbers

- Pseudorandom Numbers: A sequence of numbers systematically generated and having several
 properties of randomly selected numbers, without being truly random.
 - Need for computer simulations
- Linear Congruential Method: most commonly used procedure for generating pseudorandom numbers. Uses the following recursively defined function:

$$x_{n+1} = (ax_n + c) \mod m$$

Where: we select the following integers

- m is the modulus
 - a is the multiplier
 - c is the increment
 - x_0 is the *seed* (initial value)
 - and $2 \le a < m$, $0 \le c < m$, and $0 \le x_0 < m$

Pseudorandom Numbers

• Example: Using the function $x_{n+1} = (7x_n + 4) \mod 9$, $x_0 = 3$, we find that

$$\begin{array}{lll} \mathbf{x}_1 &=& 7\mathbf{x}_0 + 4 \; \mathsf{mod} \, 0 = 7 \cdot 3 + 4 \; \mathsf{mod} \, 9 = 25 \; \mathsf{mod} \, 9 = 7 \\ \mathbf{x}_2 &=& 7\mathbf{x}_1 + 4 \; \mathsf{mod} \, 0 = 7 \cdot 7 + 4 \; \mathsf{mod} \, 9 = 53 \; \mathsf{mod} \, 9 = 8 \\ \mathbf{x}_3 &=& 7\mathbf{x}_2 + 4 \; \mathsf{mod} \, 0 = 7 \cdot 8 + 4 \; \mathsf{mod} \, 9 = 60 \; \mathsf{mod} \, 9 = 6 \\ \mathbf{x}_4 &=& 7\mathbf{x}_3 + 4 \; \mathsf{mod} \, 0 = 7 \cdot 6 + 4 \; \mathsf{mod} \, 9 = 46 \; \mathsf{mod} \, 9 = 1 \\ \mathbf{x}_5 &=& 7\mathbf{x}_4 + 4 \; \mathsf{mod} \, 0 = 7 \cdot 1 + 4 \; \mathsf{mod} \, 9 = 11 \; \mathsf{mod} \, 9 = 2 \\ \mathbf{x}_6 &=& 7\mathbf{x}_5 + 4 \; \mathsf{mod} \, 0 = 7 \cdot 2 + 4 \; \mathsf{mod} \, 9 = 18 \; \mathsf{mod} \, 9 = 0 \\ \mathbf{x}_7 &=& 7\mathbf{x}_6 + 4 \; \mathsf{mod} \, 0 = 7 \cdot 0 + 4 \; \mathsf{mod} \, 9 = 4 \; \mathsf{mod} \, 9 = 4 \\ \mathbf{x}_8 &=& 7\mathbf{x}_7 + 4 \; \mathsf{mod} \, 0 = 7 \cdot 4 + 4 \; \mathsf{mod} \, 9 = 32 \; \mathsf{mod} \, 9 = 5 \\ \mathbf{x}_9 &=& 7\mathbf{x}_8 + 4 \; \mathsf{mod} \, 0 = 7 \cdot 5 + 4 \; \mathsf{mod} \, 9 = 39 \; \mathsf{mod} \, 9 = 3 \end{array}$$

- This generates the sequence: **3**,7,8,6,1,2,0,4,5,**3**,7,8,6,1,2,0,4,5,**3**,...
- The sequence has a cyle of 9 before repeating

Classical Cryptography

- Encryption: The process of making a message secret
- Decryption: The process of determining the original message from the encrypted text
- Caesar's Encryption Method
 - Replace each letter with its corresponding number from \mathbb{Z}_26
 - Encrypt using the function f(p), where p is a nonnegative integer less than or equal to 25.

$$f(p) = (p+3) \bmod 26$$

- Replace the encrypted numbers with their corresponding letters
- This is a form of a shift cipher

Classical Cryptography

Example: Use Caesar's cipher to encrypt th emessage "MEET YOU IN THE PARK"

```
THE PARK
    MEET
   12 4 4 19 24 14 20 8 13 19 7 4 15 0 17 10 // letters -> num
1.)
2.)
   15 7 7 22 1 17 23 11 16 22 10 7 18 3 20 13 // encrypt with f(p)
3.)
   PHH W
           B R X
                    L Q W K H S D U N // num -> letters
```

We can recover the original message, by shifting the letters back by 3 using:

$$f^{-1}(p) = (p-3) \mod 26$$

Generalized Shift Cipher

• Encryption: Shift letters by k letters

$$f(p) = (p+k) \mod 26$$

• Decryption: Shifts letters by -k letters

$$f^{-1}(p) = (p - k) \mod 26$$

 Affine Cipher: An enahncement of the shift cipher which provides additional security and uses the following formula

$$f(p) = (ap + b) \mod m$$

Where a and b are selected so that f is a bijection. Such a mapping is called an <u>affine</u> transformation

- Cryptanalysis: The process of recovering plaintext from ciphertext without knowledge of both the encryption method and the key.
 - A technique used agains shift and affine ciphers is the frequency attack

Block Ciphers and Beyond

- Character or Monoalphabetic Ciphers: ciphers which proceed by replacing each letter of the alphabet by another letter of the alphabet
 - Shift and affine ciphers are of this type
 - Vulnerable to attack
- To combat these deficiencies better ciphers hve been developed
 - For example, Block Ciphers
 - · However, they are still prone to attack
- To improve our ability to encrypt and keep data safe, we have developed better methods such as the AES and RSA private key cryptosystems
- Additionally, we have developed public-private key cryptosystems such as gpg.
- If you are interested in these topic I would suggest starting with DMA Chapter 4.6

Are there any questions?