Kecerdasan Buatan Unsur Ketidakpastian dan Penalaran Probabilistik

Ketidakpastian dalam Dunia Wumpus

- Beberapa permasalahan yang terlalu kompleks akan sulit dipecahkan dengan logika
- * Contoh state di samping, dimanakah letak lubangnya?
- * Kita harus bertaruh dan mencoba pindah ke salah satu kotak untuk mengetahuinya

Ketidakpastian dalam Dunia Wumpus

Ketidakpastian dalam Diagnosis

- * $\forall p, Gejala(p, SakitGigi) \rightarrow Penyakit(p, GigiBerlubang)$
 - * Salah, sakit gigi dapat menjadi gejala dari penyakit lain
- * $\forall p, Gejala(p, SakitGigi) \rightarrow Penyakit(p, GigiBerlubang) \lor Penyakit(p, PenyakitGusi) \lor Penyakit(p, Abses) \lor ...$
 - * Daftarnya akan sangat panjang!!
- * $\forall p, Penyakit(p, GigiBerlubang) \rightarrow Gejala(p, SakitGigi)$
 - * Juga salah! Pasien yang menderita gigi berlubang kemungkinan belum merasakan sakit apa-apa

Logika/aturan crisp gagal karena:

- * Terlalu banyak kualifikasi yang perlu dituliskan
- * Pengetahuan yang dimiliki kurang lengkap
- * Tidak semua tes dapat dilakukan

Pengambilan keputusan yang rasional dalam ketidakpastian (1)

- * Sebuah keputusan yang rasional bergantung pada tingkat kepentingan dari beberapa goal (tujuan) dan kemungkinan tingkat keberhasilan dari goal tersebut untuk dicapai
- * Agent memiliki pilihan di antara beberapa kemungkinan pilihan, yang dilihat dari tingkat kesuksesan tiap pilihan dan fitur yang lain
 - Contoh: Mencapai bandara tepat waktu

Pengambilan keputusan yang rasional dalam ketidakpastian (2)

* Teori probabilitas:

- Memberikan kepada setiap kalimat sebuah nilai derajat kepercayaan antara o dan 1
- Mengindikasikan seberapa sukses sebuah pilihan yang akan diambil
- * Teori utilitas (kegunaan):
 - Setiap state (keadaan) memiliki derajat utilitas terhadap sebuah agent
 - Agent akan memilih state yang memiliki nilai utilitas lebih tinggi

Pengambilan keputusan yang rasional dalam ketidakpastian (3)

- * Teori keputusan = Teori probabilitas + Teori utilitas
- * Sebuah agent dikatakan rasional jika dan hanya jika ia memilih tindakan yang menghasilkan nilai ekspektasi utilitas tertinggi, yang dirata-rata dari semua kemungkinan output dari tindakan tersebut
- * Prinsip Maximum Expected Utility (MEU)

Game: Who Wants to Be A Millionaire?

- * Pada game ini, utilitas dapat berupa uang, pilihannya:
 - * Ambil Rp. 16 juta, atau
 - Jawab pertanyaan
 - * Jika benar, mendapat 32 juta dan berkesempatan mendapat 64 juta
 - * Jika salah, mendapat 1 juta
- * Pertanyaan 10 untuk 32 juta: Apa bahasa Italia untuk lapangan atau pasar?

A: Presto 10% 7%

B: Pisa 0% 0%

C: Piazza 50% 46%

D: Plaza 40% 47%

Proposisi: Variabel Acak (1)

- * Variabel acak adalah bentuk representasi dari dunia dan status awalnya tidak diketahui
- * Setiap variabel acak memiliki daerah asal (domain) dari nilai yang mungkin
 - * Contoh: <true, false>

Proposisi: Variabel Acak (2)

- * Boolean (true atau false, contoh: GigiBerlubang)
 - GigiBerlubang=true adalah GigiBerlubang
 - * GigiBerlubang=false adalah ¬GigiBerlubang
- Diskrit (domain yang dapat dihitung, contoh: Cuaca<cerah, hujan, mendung>)
 - * Cuaca=cerah adalah Cerah
- * Kontinyu (bilangan riil, contoh: 3,14159265...)
 - * X=4,02
 - * X<4,02

Derajat Kepercayaan dan Teori Probabilitas

- Probabilitas merupakan cara untuk menuliskan ketidakpastian
- * Sebuah proposisi α diberikan sebuah nilai derajat kepercayaan antara o dan 1
 - * Kita mengharapkan α bernilai benar dengan probabilitas $P(\alpha)$
- * P(true)=1, P(false)=0
- Derajat kepercayaan ini didasarkan pada sejumlah bukti dan penalaran probabilitas

Probabilitas sesungguhnya vs Probabilitas estimasi

- Kejadian (event): sekumpulan hasil/output yang mungkin dihasilkan dari sebuah variabel acak
- * P(kejadian) = probabilitas kemunculan salah satu dari hasil yang mungkin dari sebuah kejadian
- * Terdapat distribusi probabilitas sesungguhnya → semua kejadian yang mungkin terjadi memiliki probabilitas sesungguhnya
- * Probabilitas sesungguhnya sering tidak diketahui, kita hanya dapat mengestimasinya dengan mengambil sampel secara acak dari sebuah populasi.

Probabilitas Prior: Boolean/Diskrit

- * Probabilitas dari sebuah proposisi α dalam ketiadaan informasi apapun adalah $P(\alpha)$
- * Probabilitas unkondisional atau prior:
 - * P(GigiBerlubang=true) = 0,1
 - * P(MahasiswaTeknik=true) = 0,15
 - * P(cuaca)=<cerah=0,4; hujan=0,3; mendung=0,3>

Distribusi probabilitas (berjumlah total = 1)

Probabilitas Prior: Distribusi Probabilitas Gabungan

* P(Cuaca,GigiBerlubang) =
 <GigiBerlubang=true<cerah=0,20; hujan=0,15; mendung=0,15>
 GigiBerlubang=false<cerah=0,25; hujan=0,10; mendung=0,15>>

Probabilitas Prior: Kontinyu

- * Probabilitas dari sebuah proposisi α dalam ketiadaan informasi apapun adalah $P(\alpha)$
- * P(Temp=17)=0 karena Temp bersifat kontinyu

Probabilitas Prior: Kontinyu

- * Probabilitas dari sebuah proposisi α dalam ketiadaan informasi apapun adalah $P(\alpha)$
- * P(Temp=17)=0 karena Temp bersifat kontinyu
- * Gunakan fungsi kerapatan probabilitas p()

untuk variabel kontinyu:

Contoh: p(17)=0,1059

Probabilitas Prior vs Kondisional

- * Dengan menggunakan tambahan bukti, kita dapat melakukan estimasi dengan lebih baik dibandingkan probabilitas prior tentang probabilitas proposisi α
- Perhitungan probabilitas dengan menggunakan tambahan bukti ini disebut Probabilitas Kondisional atau Posterior

Probabilitas Kondisional (1)

- * Dengan menggunakan bukti: $P(\alpha|\beta)$ = probabilitas α jika diketahui β Contoh:
 - * P(MhsTF | MhsFTI) = 0,4
 - * P(Cuaca | MusimPanas) = <cerah=0,6; hujan=0,2; mendung=0,2>

Aksioma Probabilitas

$$0 \le P(\alpha) \le 1$$

$$P(true) = 1$$

$$P(false) = 0$$

$$P(\alpha \vee \beta) = P(\alpha) + P(\beta) - P(\alpha \wedge \beta)$$

If α and β are exclusive $P(\alpha \wedge \beta) = 0$

$$P(\alpha \vee \beta) = P(\alpha) + P(\beta)$$

Inferensi Probabilistik

- Merupakan perhitungan dari pengamatan bukti yang ada untuk probabilitas posterior dari sebuah proposisi
- * "Knowledge Base"-nya adalah full joint distribution
- * Jawaban pertanyaan tentang knowledge base dapat diturunkan melalui:
 - Marginalisasi/penjumlahan (MARGINALIZATION)
 - * Dengan Kondisi (CONDITIONING)

Inferensi Probabilistik

- * Marginalisasi
 - Menjumlahkan semua variabel dari joint distribution yang mengandung A
- * Dengan kondisi
 - * Melibatkan probabilitas kondisional

$$\mathbf{P}(\mathbf{A}) = \sum_{\beta \in \mathbf{B}} \mathbf{P}(\mathbf{A}, \beta)$$

$$\mathbf{P}(\mathbf{A}) = \sum_{\beta \in \mathbf{B}} \mathbf{P}(\mathbf{A} \mid \beta) P(\beta)$$

Marginalisasi

* Berapa probabilitas seseorang mengatakan bahwa SBY memiliki kinerja yang baik?

Kinerja SBY Baik	Memilih Demokrat	P(kejadian)
True	True	0,36
True	False	0,12
False	True	0,03
False	False	0,49
		1,00

```
P(KinerjaBaik) =< P(KinerjaBaik = true, Demokrat = true),
P(KinerjaBaik=false, Demokrat=true)>
+ <P(KinerjaBaik=true, Demokrat=false),
P(KinerjaBaik=false, Demokrat=false)>
```

Dengan Kondisi

* Berapa probabilitas seseorang mengatakan bahwa SBY memiliki kinerja yang baik?

Kinerja SBY Baik	Memilih Demokrat	P(kejadian)
True	True	0,36
True	False	0,12
False	True	0,03
False	False	0,49
		1,00

P(KinerjaBaik) =< P(KinerjaBaik = true|Demokrat = true)P(Demokrat = true),
P(KinerjaBaik=false | Demokrat=true)P(Demokrat=true>
+ <P(KinerjaBaik=true | Demokrat=false) P(Demokrat=false),
P(KinerjaBaik=false | Demokrat=false) P(Demokrat=false)>

$$= <\frac{0,36}{0,39} * 0,39; \frac{0,03}{0,39} * 0,39 > +\frac{0,12}{0,61} * 0,61; \frac{0,49}{0,61} * 0,61 >$$
$$= <0,48; 0,52>$$

Aturan Bayes

Product rule:

$$P(\alpha \wedge \beta) = P(\alpha \mid \beta)P(\beta)$$

$$P(\alpha \wedge \beta) = P(\beta \mid \alpha)P(\alpha)$$

$$P(\beta \mid \alpha)P(\alpha) = P(\alpha \mid \beta)P(\beta)$$

Bayes' rule:

$$P(\beta \mid \alpha) = \frac{P(\alpha \mid \beta)P(\beta)}{P(\alpha)}$$

Aturan Bayes (Bayes' Rule)

$$P(\beta \mid \alpha) = \frac{P(\alpha \mid \beta)P(\beta)}{P(\alpha)}$$

* $P(\beta|\alpha)$ = Probabilitas sebuah kejadian β muncul jika ada kejadian α

Contoh Sederhana

- * Misal terdapat 3 kotak (K1, K2, K3). K1 memiliki 2 bola merah dan 4 bola biru, K2 memiliki 1 bola merah dan 2 bola biru, dan K3 memiliki 5 bola merah dan 4 bola biru.
- * Misal probabilitas untuk memilih ketiga kantong tersebut tidak sama, tapi dalam probabilitas: P(K1)=1/3, P(K2)=1/6, dan P(K3)=1/2
- * Pertanyaan:
 - * Berapa probabilitas bola merah terambil?
 - * Misalkan bola merah sudah terambil, berapa probabilitasnya bola merah tersebut berasal dari kotak 1?

Contoh

K1

K2

P(K3)=1/2

* Berapa probabilitas bola merah terambil?

*
$$P(M) = ...$$
?

$$P(M) = P(K1 \land M) + P(K2 \land M) + P(K3 \land M)$$

$$= P(K1) * P(M|K1) + P(K2) * P(M|K2) + P(K3)$$

$$*P(M|K3)$$

$$P(M) = \left(\frac{1}{3} * \frac{2}{6}\right) + \left(\frac{1}{6} * \frac{1}{3}\right) + \left(\frac{1}{2} * \frac{5}{9}\right)$$

$$P(M) = \frac{2}{18} + \frac{1}{18} + \frac{5}{18} = \frac{8}{18} = \frac{4}{9}$$

Contoh

$$P(\beta \mid \alpha) = \frac{P(\alpha \mid \beta)P(\beta)}{P(\alpha)}$$

$$P(K1)=1/3$$

K1

K2

P(K3)=1/2

* Misalkan bola merah sudah terambil, berapa probabilitasnya bola merah tersebut berasal dari kotak 1?

*
$$P(K1|M) = \dots$$
?
 $P(K1|M) = \frac{P(M|K1)P(K1)}{P(M)}$
 $P(K1|M) = \frac{\frac{2}{6} * \frac{1}{3}}{\frac{4}{9}}$
 $P(K1|M) = \frac{\frac{2}{18} * \frac{1}{4}}{\frac{4}{9}} = \frac{2}{18} * \frac{9}{4} = \frac{9}{36} = \frac{1}{4}$

Contoh Studi Kasus Nyata

- * Diperkirakan terdapat 1% wanita berusia 40-50 tahun menderita kanker payudara. Seorang wanita yang menderita kanker memiliki 90% kemungkinan mendapatkan hasil tes positif pada pemeriksaan mammogram di laboratorium. Sementara itu, wanita yang tidak menderita kanker memiliki 10% kemungkinan mendapatkan hasil positif yang salah (*False Positive*) dari tes lab.
- * Berapa probabilitas seorang wanita berusia 40-50 tahun menderita kanker payudara jika ia mendapatkan hasil tes yang positif?

Contoh Studi Kasus Nyata

$$P(\beta \mid \alpha) = \frac{P(\alpha \mid \beta)P(\beta)}{P(\alpha)}$$

- * P(Kanker|+) =?
- * Diketahui:

$$* P(+|Kanker) = 90\% = 0,9$$

$$P(+) = P(Kanker \land +) + P(\neg Kanker \land +)$$

= $(0.01 * 0.9) + (0.99 * 0.1) = 0.108$

$$P(Kanker|+) = \frac{P(+|Kanker) * P(Kanker)}{P(+)}$$

$$P(Kanker|+) = \frac{0.9*0.01}{0.108} = 0.083 \rightarrow 8.3\%$$

Ketidakpastian dalam Dunia Wumpus

 $0.2 \times 0.2 \times 0.8 = 0.032$

 $0.2 \times 0.8 \times 0.2 = 0.032$

 $0.2 \times 0.2 \times 0.2 = 0.008$

Latihan 1

Taxi company	Delay (min)	Cost (\$)
Yellow Thunderbolt	10	15
Green Bush Cabs	15	10
Blue Sky Limo	Did not arrive	Na
Green Bush Cabs	10	12
Green Bush Cabs	20	20
Blue Sky Limo	Did not arrive	Na
Blue Sky Limo	15	10
Blue Sky Limo	25	12
Yellow Thunderbolt	Did not arrive	Na
Green Bush Cabs	15	15
Blue Sky Limo	Did not arrive	Na
Blue Sky Limo	10	10
Yellow Thunderbolt	10	12
Yellow Thunderbolt	12	25

Green Bush Cabs	20	10
Blue Sky Limo	Did not arrive	Na
Green Bush Cabs	Did not arrive	Na
Yellow Thunderbolt	20	15
Yellow Thunderbolt Green Bush Cabs	15	12
Blue Sky Limo	15	10

- * Sebuah sistem perencanaan cerdas akan membantu kita kapan waktu untuk berangkat ke bandara dengan mempertimbangkan waktu kedatangan taksi setelah ditelepon dan biayanya
- Berapa tingkat kepercayaan bahwa sebuah taksi akan datang? → P(taksi datang)=?
- Berapa estimasi probabilitas taksi datang jika kita menghubungi Green Bush Cabs? → P(taksi_datang|green_bush_cabs)=?
- * Jika kita menggunakan Blue Sky Limo (asumsi taksi datang), seberapa besar tingkat kepercayaan kita bahwa biayanya adalah \$10-15? → P(cost=[\$10-15]|blue_sky_limo)=?

Latihan 2

Aturan Bayes:

$$p(A \mid B) = \frac{p(B \mid A)p(A)}{p(B)}$$

$$p(A \mid B) + p(-A \mid B) = 1,$$

$$p(A) = p(A \mid B)p(B) + p(A \mid \neg B)p(\neg B)$$

- Perhatikan ketiga pernyataan berikut:
 - * 8 dari 10 mahasiswa TF adalah laki-laki
 - 1 dari 10 mahasiswa TF DO (Drop Out)
 - * 9 dari 10 mahasiswa TF yang DO adalah laki-laki
- * Pertanyaan:
 - Tentukan variabel acak dari pernyataan di atas
 - * Tentukan kemungkinan nilai dari variabel acak tersebut
 - * Tuliskan tiap pernyataan di atas dengan menggunakan variabel acak dan tentukan nilai probabilitasnya:
 - * P(.....) =%; P(.....) =%; P(......) =%
 - * Tuliskan pernyataan berikut dengan menggunakan variabel acak:
 - * P(seorang mahasiswa laki-laki TF yang DO) = P(.....)
 - * Berapa probabilitasnya untuk seorang mahasiswa laki-laki TF yang DO? (Tuliskan langkah-langkahnya)