Rappresentazione dell'Informazione

Prof. Ivan Lanese

Rappresentazione dell'Informazione

- I calcolatori elaborano informazioni di varia natura:
 - Testi, immagini, suoni, filmati, ...
- Come abbiamo visto le memorie dei calcolatori digitali contengono solo valori binari
 - E' quindi necessaria una opportuna codifica
- Studieremo le codifiche di numeri e caratteri
 - In particolare vedremo le tecniche per codificare
 - ■i numeri interi
 - ■i numeri con parte decimale tramite la codifica "floating point"
 - ■caratteri tramite le codifiche ASCII e UNICODE

Sistemi di numerazione posizionali

- Data una codifica in base b, è possibile rappresentare i numeri interi tramite sequenze di cifre tra $0 \dots b-1$
 - Sia $d_k d_{k-1} \dots d_1 d_0$ un numero codificato in base b, allora tale numero corrisponderà a:
 - $\blacksquare \sum_{i=0,k} d_i \times b^i$
 - **E**sempio: in binario $1011 = 1 \times 2^3 + 1 \times 2^1 + 1 \times 2^0 = 11$
 - In informatica le codifiche posizionali principali sono:
 - ■Codifica binaria: base 2 (cifre 0,1)
 - Codifica ottale: base 8 (cifre 0,1,2,3,4,5,6,7)
 - Codifica esadecimale: base 16 (cifre 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F con le lettere A...F che rappresentano rispettivamente 10...15)

Numerazione posizionale nelle principali basi

Figura A.2 Il numero 2001 in binario, ottale, decimale ed esadecimale.

Conversione di base

- Due sequenze di simboli in due diverse codifiche sono equivalenti se rappresentano il medesimo numero
 - Convertire una sequenza (in una codifica) vuol dire trovare l'equivalente sequenza in una codifica diversa
- Convertire da binario in ottale (o esadecimale) e viceversa è facile:

 Esempio 1

Binario

Ottale

 corrispondenza fra 3 (o 4) cifre binarie e cifre ottali (o esadecimali)

Figura A.4 Esempi di conversione da ottale a binario e da esadecimale a binario.

Conversione da binario a decimale

- Oltre alla tecnica generale per il calcolo del numero espresso tramite una base b, è possibile usare la tecnica delle moltiplicazioni successive
 - Partendo da sinistra e da un accumulatore uguale a 0, per ogni cifra si moltiplica il valore dell'accumulatore per 2 e si aggiunge la cifra considerata

Figura A.6 La conversione del numero binario 101110110111 in decimale mediante raddoppiamenti successivi, a partire dal basso. Ogni riga si ottiene raddoppiando l'elemento della riga precedente e sommandogli il bit corrispondente. Per esempio, 749 è due volte 374 più il bit I che si trova in corrispondenza della riga di 749.

Conversione da decimale a binario

- Nella conversione da decimale a binario si usa la tecnica inversa, detta delle divisioni successive
 - ullet Si divide ripetutamente per due e si considerano i resti (0 o 1) in ordine inverso di generazione

Figura A.5 La conversione del numero decimale 1492 in binario mediante dimezzamenti successivi, partendo dall'alto e procedendo verso il basso. Per esempio, 93 diviso 2 fa 46 con resto I, riportati nella riga successiva.

Numeri binari negativi

- Per codificare in binario i numeri interi con segno, si possono usare varie tecniche:
 - Modulo e segno: si usa il bit più a sinistra come segno (O coincide con +, 1 coincide con -):
 - Esempio usando 8 bit: 00000110=6, 10000110=-6
 - Complemento a 1: il bit più a sx indica il segno, ma se il numero è negativo il modulo viene complementato
 - Esempio usando 8 bit: 00000110=6, 11111001=-6
 - Complemento a 2: come per il complemento a 1, ma se il numero è negativo dopo il complemento si aggiunge 1
 - Esempio usando 8 bit: 00000110=6, 11111010=-6

Codifica a complemento a 2

- Vediamo meglio la codifica a complemento a 2:
 - Consideriamo il numero negativo -n
 - Sia $b_{k-1}...b_0$ la sua codifica in complemento a 2 con k bit
 - Se interpreto $b_{k-1}...b_0$ come numero binario, ottengo un numero positivo m che coincide con -n modulo 2^k
 - Esempio usando 8 bit:
 in complemento a 2, sappiamo che 11111010=-6;
 11111010 come numero binario coincide con 250;
 ma -6 mod 28 = -6 mod 256 = 250
 - In generale, data $b_{k-1}...b_0$ in complemento a 2, il numero corrispondente è $-b_{k-1} \times 2^{k-1} + \sum_{i=0}^{\infty} b_i \times 2^i$

Codifica a complemento a 2 (esempio)

Consideriamo di usare codifica a complemento a 2 utilizzando 4 bit:

Numeri rappresentabili

- \blacksquare Con k bit si possono rappresentare al più 2^k numeri diversi
- Se interessano solo i numeri naturali (non negativi) con k bit si rappresentano i numeri nell'intervallo $[0..2^k-1]$
 - Esempio: con 8 bit rappresentiamo [0..255]
- Se usiamo modulo e segno, o complemento a 1, rappresenteremo i numeri nell'intervallo $[-2^{k-1}+1...2^{k-1}-1]$
 - Esistono due codifiche per lo 0
 - Esempio: con 8 bit rappresentiamo [-127..127]
- In complemento a 2 rappresenteremo i numeri nell'intervallo $[-2^{k-1}...2^{k-1}-1]$
 - Esempio: con 8 bit rappresentiamo [-128..127]

Codifica "in eccesso"

- Un altro modo per rappresentare i numeri nell'intervallo $[-2^{k-1}...\ 2^{k-1}-1]$ consiste nel sommare 2^{k-1} alla rappresentazione binaria del numero stesso, così si sposta l'intervallo ai numeri non negativi $[0...\ 2^k-1]$
 - Esempio:
 0000...0 rappresenta il numero -2^{k-1}
 1111...1 rappresenta il numero 2^{k-1}-1
 1000...0 rappresenta il numero 0
- Questa tecnica prende il nome di codifica in eccesso
 - La decodifica si ottiene applicando la decodifica standard e poi sottraendo 2^{k-1} al numero ottenuto

Somma binaria

E' possibile eseguire somme binarie fra 2 numeri seguendo la tabella sottoriportata con somma e riporto per la somma di coppie di bit

Addendo Addendo	0 + 0 =	0 + 1 =	1 + 0 =	1 + 1 =	
Somma	0	1	1	0	
Riporto	0	0	0	1	

Figura A.8 Tabellina della somma binaria.

 In generale per tener conto del riporto dobbiamo sommare 3 bit alla volta (2 degli addendi e 1 del riporto)

Somma binaria in complemento a 1 e a 2

- In complemento a 1, il riporto finale viene sommato
- In complemento a 2, il riporto viene scartato

Figura A.9 Somma in complemento a uno e in complemento a due.

Somma binaria in complemento a 1 e a 2 (continua)

- Quando avviene un overflow?
 - Se gli addendi hanno segno opposto non c'è overflow
 - Se gli addendi hanno lo stesso segno, ma il risultato ha un segno diverso c'è overflow

Esempi:

```
01111111+00000001=10000000 (overflow)
```

1000000+11111111=01111111 in complemento a 2 (overflow)

1000000+11111111=10000000 in complemento a 1 (no overflow in quanto 11111111 = 0)

Rappresentazione di numeri con la virgola

- L'usuale tecnica di rappresentazione dei numeri con virgola fissa (prima della virgola le unità-decine-centinaia.., dopo la virgola i decimi-centesimi-millesimi...) non è sempre efficace
 - Ad esempio, un calcolo astronomico potrebbe riguardare la massa di entità come l'elettrone (9×10^{-28}) o il sole (2×10^{33})
 - Con la tecnica usuale (detta virgola fissa) servirebbero 33 cifre a sinistra della virgola e 28 a destra della virgola
 - Per questo motivo nei calcolatori (e nei testi scientifici) si usa la codifica a virgola mobile (vedi prossime slide)

Codifica a virgola mobile (floating point)

L'idea alla base della codifica floating point è rappresentare un numero con la virgola *n* tramite altri due numeri *f* ed *e* tali che:

$$n = f \times 10^e$$

- f viene detto frazione (o mantissa)
- e viene detto esponente (o caratteristica)

Esempi:

$$3,14 = 0,314 \times 10^{1} = 3,14 \times 10^{0}$$

 $0,000001 = 0,1 \times 10^{-5} = 1,0 \times 10^{-6}$
 $1941 = 0,1941 \times 10^{4} = 1,941 \times 10^{3}$

Esempio di ipotetica codifica a virgola mobile

- Immaginiamo di usare un'ipotetica codifica che usa
 - per la frazione un numero (con aggiunta di segno) a tre cifre uguale a 0 oppure compreso fra 0,001 e 0,999
 - per l'esponente un numero (con aggiunta di segno) compreso fra 0 e 99
- Si riescono a rappresentare numeri solo negli intervalli
 2 e 6 dell'immagine (oltre al numero 0)

Figura B.I La rappresentazione R ripartisce la retta reale in sette regioni.

Overflow, Underflow, e precisione finita

- Operazioni su numeri con la virgola mobile (solitamente eseguite da hardware dedicato) possono generare due tipi di errore:
 - Overflow: numero in valore assoluto troppo grande (aree 1 e 7 dell'immagine precedente)
 - Underflow: numero in valore assoluto troppo piccolo (aree 3 e 4 dell'immagine precedente)
- Inoltre, anche nelle aree 2 e 6, esistono un'infinità di numeri reali che non possono essere rappresentati in modo preciso causa la "precisione finita" dei calcolatori
 - In ogni area è possibile rappresentare non più di 999 × 199 numeri diversi (999 sono le possibili frazioni diverse e 199 i possibili esponenti diversi)

Esempi concreti

- Nei calcolatori di solito non si considera base 10, ma base 2, 4, 8 o 16
- Si usa una frazione minore di 1
- Inoltre, si tende a normalizzare la frazione:
 - La cifra più significativa non può essere uguale a 0
- Nella prossima slide si mostrano 4 diverse rappresentazioni floating point del numero 432:
 - base 2 non normalizzato
 - base 2 normalizzato
 - base 16 non normalizzato
 - base 16 normalizzato

Esempi concreti (continua)

Figura B.3 Esempi di numeri in virgola mobile normalizzati.

Lo standard IEEE 754

- Il più usato standard per rappresentare numeri floating point
- Definisce diversi formati inclusi single (BINARY32) e double (BINARY64) precision
- Es. BINARY32:
 - binario
 - 1 bit di segno
 - 8 bit di esponente
 - 23 bit di mantissa
 - codifiche speciali per infiniti e NaN (Not a Number)

Rappresentazione dei caratteri (nei testi)

- Una codifica per caratteri largamente diffusa è la codifica ASCII: American Standard Code for Information Interchange
- Usa 7 bit per i principali simboli alfabetici anglosassoni e per alcuni caratteri speciali (necessari in passato nei terminali/telescriventi)

Esa	Nome	Significato	Esa	Nome	Significato
0	NUL	Nullo	10	DLE	Uscita trasmissione (Data Link Escape)
1	SOH	Inizio intestazione (Start Of Heading)	11	DC1	Controllo periferica 1
2	STX	Inizio testo (Start Of Text)	12	DC2	Controllo periferica 2
3	ETX	Fine testo (End Of Text)	13	DC3	Controllo periferica 3
4	EOT	Fine trasmissione (End Of Transmission)	14	DC4	Controllo periferica 4
5	ENQ	Interrogazione (Enquiry)	15	NAK	Riconsocimento negativo
					(Negative AcKnowledgement)
6	ACK	Riconoscimento (ACKnowledgement)	16	SYN	Annulla (SYNchronous Idle)
7	BEL	Campanello (BELL)	17	ETB	End of Transmission Block
8	BS	BackSpace	18	CAN	CANcel
9	HT	Tabulazione orizzontale (Horizontal Tab))	19	EM	Fine supporto (End of Medium)
A	LF	Riga nuova (Line Feed)	1A	SUB	Sostituisci (SUBstitute)
В	VT	Tabulazione verticale (Vertical Tab)	1B	ESC	Esc (ESCape)
С	FF	Avanzamento carta/nuova pagina	1C	FS	Separatore di file (File Separator)
		(Form Feed)			
D	CR	Ritorno a capo (Carriage Return)	1D	GS	Separatore di gruppi (Group Separator)
Е	SO	Disinserzione (Shift Out)	1E	RS	Separatore di record (Record Separator)
F	SI	Inserzione (Shift In)	1F	US	Separatore di unità (Unit Separator)

Esa	Car	Esa	Car	Esa	Car	Esa	Car	Esa	Car	Esa	Car
20	Spazio	30	0	40	@	50	P	60	6	70	р
21	!	31	1	41	A	51	Q	61	a	71	q
22	"	32	2	42	В	52	R	62	b	72	r
23	#	33	3	43	С	53	S	63	С	73	s
24	\$	34	4	44	D	54	T	64	d	74	t
25	%	35	5	45	Е	55	U	65	e	75	u
26	&	36	6	46	F	56	V	66	f	76	V
27		37	7	47	G	57	W	67	g	77	W
28	(38	8	48	Н	58	X	68	h	78	Х
29)	39	9	49	I	59	Y	69	i	79	у
2A	*	3A	:	4A	J	5A	Z	6A	j	7A	Z
2B	+	3B	;	4B	K	5B	[6B	k	7B	{
2C	,	3C	<	4C	L	5C	\	6C	1	7C	ı
2D	-	3D	=	4D	M	5D]	6D	m	7D	}
2E		3E	>	4E	N	5E	^	6E	n	7E	~
2F	/	3F	?	4F	О	5F	_	6F	О	7F	DEL

Figura 2.44 Caratteri ASCII.

Codifica UNICODE

- ASCII tratta solo i simboli dell'alfabeto anglosassone
- Per codificare altri alfabeti, si rende necessaria una codifica che usa una quantità superiore di bit
- A tal scopo è nata la codifica UNICODE
 - Usa 16 bit
 - Compatibile con ASCII (se si mettono a 0 i primi 9 bit i restanti 7 possono essere usati come in ASCII)
 - Si usano intervalli contigui di codici per i diversi alfabeti (es. latino, greco, cirillico, armeno, ebraico,..)
 - Ci sono codici non ancora assegnati per poter rappresentare in futuro caratteri al momento non considerati

Codifica UTF-8

- UNICODE ha alcuni limiti:
 - Usa sempre 16 bit anche per caratteri ASCII per i quali ne sarebbero sufficienti 7
 - E' oramai vicino all'esaurimento dei possibili codici
- UTF-8 Unicode Transformation Format può dinamicamente occupare da 1 a 4 byte a seconda dell'informazione da codificare
 - I bit iniziali indicano il formato specifico e la quantità di bit utilizzati
 - Se il bit iniziale è 0, i restanti 7 contengono una codifica ASCII
- Altre codifiche esistono (UTF-16, ...)

Codici correttori

- Indipendentemente dal tipo di dati memorizzati, occasionalmente le memorie sono soggette ad errori sia durante le operazioni di lettura che durante le operazioni di scrittura
- Analogamente ci possono essere errori trasmettendo i dati
- Per proteggersi, alcune memorie utilizzano dei codici di rilevazione (ed in alcuni casi anche correzione) di errori
- lacktriangle Se una parola consiste di m bit, si aggiungono r bit di controllo ottenendo una "parola di codice" a n=m+r bit
- lacksquare Un codice è un meccanismo atto a determinare gli r bit di controllo relativi ad ogni parola di m bit

Distanza di Hamming

- La distanza di Hamming tra due sequenze di bit è il numero di bit rispetto ai quali le due parole differiscono: 001101 e 011100 hanno distanza 2 (differiscono per 2 bit)
- La distanza di Hamming di un codice è la minima distanza di Hamming tra "parole di codice" (cioè le parole corrette che non hanno subito errori)
- Regola generale:
 - Per rilevare d bit errati è necessario un codice con distanza di Hamming maggiore o uguale a d+1
 - Per correggere d bit errati è necessario un codice con distanza di Hamming maggiore o uguale a 2d+1

Esempi di codici

- Uno dei codici più semplici è il cosiddetto "bit di parità"
 - un unico bit di controllo (r=1), che è scelto in modo che il numero di bit "1" nella "parola di codice" sia pari
 - Il codice ha distanza di Hamming uguale a 2
- Il codice può essere usato per rilevare singoli bit errati
 - basta controllare se i bit "1" nella parola sono pari o no
- Inventiamo un nuovo codice con le seguenti "parole di codice" di lunghezza 10:

 - distanza di Hamming uguale a 5 ed è possibile correggere fino a 2 bit errati

Un limite strutturale

- Supponiamo che un codice con m bit di dati e r bit di controllo sia in grado di correggere tutti i possibili errori su singolo bit
 - ciascuna delle 2^m "parole di codice" necessita di n+1 parole ad essa dedicate (con n=m+r):
 - 1 per la "parola di codice" corretta
 - n per i possibili errori di un solo bit
 - Dato che il numero totale di combinazioni di bit è 2ⁿ deve valere
 - \blacksquare (n+1)2^m \leq 2ⁿ da cui deriva m+r+1 \leq 2^r
- \blacksquare Il codice di Hamming riesce a correggere tutti i possibili errori su singolo bit usando proprio il numero minimo di bit di controllo r che soddisfa la disequazione di cui sopra

Codice di Hamming

- Ad m bit si aggiungono r bit di controllo, con r scelto in modo tale da essere il numero minimo per cui $m+r+1 \le 2^r$
 - ullet identifichiamo la posizione di un bit nella "parola di codice" usando i numeri binari tra 1 e m+r
 - i bit di controllo vengono messi in posizioni identificate da numeri binari con esattamente una sola cifra uguale a 1 (1,2,4,8,... cioè le potenze di due)
 - i bit di controllo sono bit di parità per sottogruppi di bit
- Il bit identificato dal numero binario con un 1 in posizione *i*, si raggruppa con quelli in posizioni identificate da un numero la cui cifra *i*-esima è 1
- In caso di errore, il bit errato sarà nella posizione data dalla somma delle posizioni dei bit di parità errati

Un esempio di applicazione del codice di Hamming

- Esempio con m = 16
 - quindi prendiamo $r = 5 (16+5+1 \le 32 \text{ mentre } 16+4+1>16)$
 - i bit di controllo vanno in posizione 1, 2, 4, 8, 16
 rispettivamente bit di parità per i gruppi con posizioni
 - ■1,3,5,7,9,11,13,15,17,19,21 / 2,3,6,7,10,11,14,15,18,19 / 4,5,6,7,12,13,14,15,20,21 / 8,9,10,11,12,13,14,15 / 16,17,18,19,20,21

Memory word 1111000010101110

Un esempio di applicazione del codice di Hamming (continua)

- Ecco come calcolare i gruppi a cui appartiene il bit in posizione j:
 - la posizione j appartiene ai gruppi corrispondenti ai bit=1 nella codifica binaria di j (es. tutti i j nel gruppo rosso fanno parte del gruppo del bit 1)
 - in caso di errore, basta guardare i gruppi che contengono l'errore controllando i bit di parità
 - la posizione dell'errore è quindi identificata dal numero binario che si ottiene mettendo a 1 solo i bit corrispondenti ai gruppi con l'errore

1	00001
2	00010
3	00011
4	00100
5	00101
6	00110
7	00111
8	01000
9	01001
10	01010
11	01011
12	01100
13	01101
14	01110
15	01111
16	1 0000
17	1000 <mark>1</mark>
18	10010
19	10011
20	1 0100
21	10101