Differential Equations Plus (Math 286)

- **H6** Solve the initial value problem $y' + 4y = 8e^{-4t} + 20$, y(0) = 0 and determine $y_{\infty} = \lim_{t \to \infty} y(t)$ for the solution.
- **H7** Solve $y' 2y = e^{ct}$, y(0) = 1 and graph the solution for a) c = 2; b) c = 2.01.

What do you observe?

H8 The Heaviside function $u: \mathbb{R} \to \mathbb{R}$ is defined by

$$\mathbf{u}(t) = \begin{cases} 0 & \text{if } t < 0, \\ 1 & \text{if } t \ge 0. \end{cases}$$

Express b(t) (cf. picture) in terms of $\mathbf{u}(t)$, solve the initial value problem y' + 2y = b(t), y(0) = 0, and determine y_{∞} (cf. H6).

- **H9** a) Write the following complex numbers in polar form:
 - (i) $\sqrt{3}i + 1$;
- (ii) $\sqrt{3}i 1$;
- (iii) $i \sqrt{3}$.
- b) Determine the general solution of the following ODE's:
 - (i) $y' + y = \cos\left(\sqrt{3}\,t\right);$
- (ii) $y' y = \cos(\sqrt{3}t)$;
- (iii) $y' \sqrt{3}y = \cos t + \sin t$.
- c) Suppose $A: I \to \mathbb{C}$, $t \mapsto A_1(t) + i A_2(t)$ is differentiable (i.e., $A_1 = \operatorname{Re} A$ and $A_2 = \operatorname{Im} A$ are differentiable). Show that $I \to \mathbb{C}$, $t \mapsto e^{A(t)}$ is differentiable as well, and

$$\frac{\mathrm{d}}{\mathrm{d}t} \,\mathrm{e}^{A(t)} = A'(t) \mathrm{e}^{A(t)}.$$

Hint: Start with $e^{A(t)} = e^{A_1(t) + iA_2(t)} = e^{A_1(t)}e^{iA_2(t)} = e^{A_1(t)}\cos A_2(t) + ie^{A_1(t)}\sin A_2(t)$.

H10 a) Show that in the 3rd model $mv' = mg - kv^2$ for a falling object released at height s_0 the terminal velocity v_T of the object at time of impact is given by

$$v_T = \sqrt{\frac{mg}{k}} \cdot \sqrt{1 - e^{-2ks_0/m}}.$$

Hint: Consider the velocity as a function v(s) of the distance s traveled. Show that $y(s) = v(s)^2$ satisfies the ODE my' = 2mg - 2ky.

b) The limiting velocity of a falling basketball ($m=620\,\mathrm{g}$) has been estimated at $20\,\mathrm{m/s}$. Using this data, graph v_T as a function of s_0 . For which heights s_0 does the basketball reach $50\,\%$, $90\,\%$, and $99\,\%$ of its limiting velocity?

H11 a) Let $f_{\lambda}(t) = e^{\lambda t}$ for $\lambda \in \mathbb{R}$. Show that $\{f_{\lambda}; \lambda \in \mathbb{R}\}$ is linearly independent in $\mathbb{R}^{\mathbb{R}}$.

Hint: Suppose there exists $r \in \mathbb{Z}^+$ and distinct numbers $\lambda_1, \ldots, \lambda_r, c_1, \ldots, c_r \in \mathbb{R}$ such that

$$c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t} + \dots + c_r e^{\lambda_r t} = 0$$
 for all $t \in \mathbb{R}$. (\star)

Assuming $\lambda_1 < \lambda_2 < \cdots < \lambda_r$ and $c_r \neq 0$, divide this equation by $e^{\lambda_r t}$ and let $t \to +\infty$ to obtain a contradiction.

- b) For $\lambda \in \mathbb{C}$ the functions $f_{\lambda}(t) = e^{\lambda t}$ belong to the vector space $\mathbb{C}^{\mathbb{R}}$ of all complex-valued functions on \mathbb{R} (with scalar multiplication by complex numbers). Show that $\{f_{\lambda}; \lambda \in \mathbb{C}\}$ is linearly independent in $\mathbb{C}^{\mathbb{R}}$.
 - *Hint:* The proof outlined in a) breaks down in the complex case. Instead differentiate the identity in (\star) j times, $0 \le j < r$, and set t = 0.
- c) Let $c_{\lambda}(t) = \cos(\lambda t)$, $s_{\lambda}(t) = \sin(\lambda t)$. Show that $\{c_{\lambda}; \lambda \in \mathbb{R}, \lambda \geq 0\} \cup \{s_{\lambda}; \lambda \in \mathbb{R}, \lambda > 0\}$ is linearly independent in $\mathbb{R}^{\mathbb{R}}$.

Due on Fri Oct 8, 6 pm

Exercises H11 b) and H11 c) are optional.