1 About Assignments and About Test

- Assignments 1-7 by Saturday \Rightarrow Extra Vernam
- Assignments 1-8 by Tuesday \Rightarrow Extra Hill

Practice test posted on eClass, and the test is on February 1 (Only on Probability Theory, and nothing on Ciphersystems)

2 Kerchov's Principles

1883 Auguste Kerchov in La Cryptographie Militaire, six design principles for military ciphers.

- 1. The system must be practically, if not mathematically, indecipherable.
- 2. It must not be required to be secret, and it must be able to fall into the hands of the enemy without inconvenience.
- 3. Its key must be communicable and retainable without the help of written notes, and changeable or modifiable at the will of the correspondents.
- 4. It must be applicable to telegraphic correspondence
- 5. It must be portable, and its usage and function must not require the concourse of several people.
- 6. Finally, it is necessary, given the circumstances that command its application, that the system be easy to use, requiring neither mental strain nor the knowledge of a long series of rules to observe.

3 Probability Vocabulary

Definition 1 (Experiment, Random Variables). This refers to an activity, not necessarily scientific, which involves the production of data some of which are "random". We denote an experiment by \mathcal{E} and the data by X, Y, Z, \ldots The latter are usually referred to as the *random Variables*, associated with \mathcal{E} .

Definition 2 (Random, Sample Space, Probabilities). We use the word random whenever X, Y, Z, ... we are studying are produced by such an intricate mechanism that all we know about them is

- 1. The range of possible values that X, Y, Z, ... may take. This range is usually referred to as the *sample space* and is denoted by Ω .
- 2. Certain positive numbers are called *probabilities* which numerically express our "confidence" that X, Y, Z, ... fall in chosen subsets of the sample space Ω .

Definition 3 (Elementary Outcome, Sample Point). An individual outcome of the experiment \mathcal{E} is usually referred to as an *elementary outcome* or *sample point*. Mathematically this is just an element of the sample space Ω .

Definition 4 (Event). Mathematically an *event* is just a subset of Ω . We say that \mathcal{E} "resulted in the event A" or that "A has occurred" if the outcome falls in the subset A.

Definition 5 (Field of Events). The collection of events associated with our experiment \mathcal{E} is usually denoted by \mathcal{F} . In other words, \mathcal{F} denotes the collection of subsets of the sample space Ω that are of special interest in our study. For mathematical reasons, \mathcal{F} is assumed to be closed under the set operations of intersection, union, and complementation. Two subsets \emptyset and Ω are always included in \mathcal{F} .

Definition 6 (Probability Measure). Our experiment \mathcal{E} associates to each event A of \mathcal{F} a number P(A) in the interval [0,1] which reflects our confidence that the outcome falls in A. We refer to P(A) as the probability of A. Note that we should have $P(\Omega) = 1$ and that if A and B are mutually exclusive events, then

$$P(A \cup B) = P(A) + P(B)$$

A set function with these properties is usually referred to as a probability measure.

Definition 7 (Expectation of a Random Variable). Any function of the measure of our experiment can be referred to as a *random variable*. Mathematically, a random variable is simply a function of the sample space. If the events $A_1, A_2, ..., A_n$ are mutually exclusive and decompose Ω , and the random variable X takes the value x_i when A_i occurs, then the expression

$$\mathbb{E}[X] = \sum_{i=1}^{n} x_i P(A_i)$$

is referred to as the expectation of X. If we repeat \mathcal{E} a very large number of times, and average out the successive values of X we get, then we should expect the resulting average to be close to $\mathbb{E}[X]$.

Definition 8 (Conditional Probability). If A and B are events and the ratio

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

is usually referred to as the conditional probability of A given B. The concept arises as follows. Given the event B we can construct a new experiment \mathcal{E}_B by carrying out \mathcal{E} and recording its outcome only when it falls in B. We can argue that the probability of A under \mathcal{E}_B will is $P(A \mid B)$ where $P(A \cap B)$ and P(B) are the probabilities of $A \cap B$ and B under \mathcal{E} . We shall refer to \mathcal{E}_B as \mathcal{E} crippled by B.

Definition 9 (Conditional Expectation of a Random Variable). Given an event B, if we carry out the crippled experiment \mathcal{E}_B instead of \mathcal{E} , then all the probabilities change and so do all expectations. If X is a random variable and the events $A_1, A_2, ..., A_n$ decompose Ω as before then

$$\mathbb{E}[X \mid B] = \sum_{i=1}^{n} x_i P(A_i \mid B)$$

gives the expected value of X under \mathcal{E}_B . We refer to it as the conditional expectation of X given B.

Definition 10 (Dependence). The random variable Y is said to be *dependent* upon the random variable X if and only if Y is a function of X. Similarly, we say that Y is dependent upon $X_1, X_2, ..., X_n$ if for some $f(X_1, X_2, ..., X_n)$ we have

$$Y = f(X_1, X_2, ..., X_n)$$

Definition 11 (Independence). In probability theory, "independence" is not the negation of "dependence". We say that Y is independent of X if and only if knowing the value of X does not change the uncertainty of Y. More precisely, if we cripple our experiment \mathcal{E} by any events X = a, the probabilities of all events Y = b do not change. Mathematically this is translated in the conditions that for all choices a and b,

$$P(Y = b \mid X = a) = P(Y = b)$$

which also means that

$$P(Y = b \cap X = a) = P(X = a)P(Y = b)$$

- 4 Conditional Probability
- 5 Dependence and Independence