4. The Church-Turing Thesis

Introduction of Turing machine

- Turing Machine M uses an infinite tape as its unlimited memory, with a tape head reading and writing symbols and moving around on the tape.
- The tape initially contains only the input string and is blank everywhere else.
- If M needs to store information, it may write this information on the tape. To read the information that it has written, M can move its head back over it.
- *M* continues computing until it decides to produce an output. The output accept and reject are obtained by enterring designated accepting and rejecting states.
- If *M* doesn't enter an accepting or rejecting state, it will go on forever, never halting.

Turing Machine (TM): A Turing Machine is a 7-tuple, $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$, where Q, Σ, Γ are all finite and

- Q is a set of states;
- Σ is the input alphabet not containing the **blank symbol** \sqcup ;
- Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$;
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L,R\}$ is the transition function;
- $q_0 \in Q$ is the start state;
- $ullet q_{accept} \in Q$ is the accept state, and
- $q_{reject} \in Q$ is the reject state, where $q_{reject} \neq q_{accept}$.

Configuration: A configuration of a Turing machine consists of:

- the current state;
- the current tape contents, and
- the current head location.

by $u \ q \ v$ we mean the configuration where

- the current state is *q*;
- the current tape contents is uv, and
- the current head location is the first symbol of *v*;
- the tape contains only blanks following the last symbol of v.

Special Configurations

- Initial Configuration (start configuration) of M on input w is the configuration q_0 w;
- Accepting Configuration of M is the configuration u $q_{accept}v$;

- **Rejecting Configuration** of M is the configuration u q_{reject} v;
- **Halting Configurations**: accepting configurations and rejecting configurations (do not yield further configurations).

Configurations in transitions: Let $a,b,c\in\Gamma,u,v\in\Gamma^*$, and $q_i,q_i\in Q.$

- 1. If $\delta(q_i, b) = (q_j, c, L)$, then $ua \ q_i \ bv$ yields $u \ q_j \ acv$;
- 2. If $\delta(q_i, b) = (q_i, c, R)$, then $ua \ q_i \ bv$ yields $uac \ q_i \ v$.

Special cases occur when the head is at one of the ends of the configuration:

- For the left-hand end, the configuration q_i bv yields q_j cv if the transition is left moving; because we prevent the machine from going off the left-hand end of the tape, and it yields c q_j v for the right-moving transition.
- For the right-hand end, the configuration $ua\ q_i$ is equivalent to $ua\ q_i \sqcup$ because we assume that blanks follow the part of the tape represented in the configuration.

Computation by TM: M accepts w if there are sequence of configurations C_1, C_2, \cdots, C_k such that

- C_1 is the start configuration of M on w;
- Each C_i yields C_{i+1} , and
- C_k is an accepting configuration.

[Note] C_1, C_2, \dots, C_{k-1} can not be halting configurations. TM stop immediately when in a halting configuration.

The collection of strings that M accepts is the language of M, or the language recognized by M, denoted L(M).

Turing-recognizable: A language is Turing-recognizable, if some Turing machine recognizes it.

Turing-decidable: A language is Turing-decidable or simply decidable if some Turing machine decides it.

On an input, the machine M may accept, reject or loop. By loop we mean that the machine does not halt. If M always halt, then it is a <u>decider</u>. A decider that recognizes some language is said to <u>decide</u> that language.

Multitape Turing Machines: A multitape Turing Machine M has several tapes:

- Each tape has its own head for reading and writing;
- The input is initially on tape 1, with all the other tapes being blank;
- The transition function is

$$\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{L,R,S\}^k$$

Where k is the number of tapes.

$$\delta(q_i, a_1, \dots, a_k) = (q_i, b_1, \dots, b_k, L, R, \dots, L)$$

means that if M is in state q_i and head 1 through k are reading symbols a_1 through a_k , the machine goes to state q_j , writes symbols b_1 through b_k , and directs each head to move left or right, or to stay put, as specified.

Theorem. Every multitape Turing machine has an equivalent single-tape Turing machine.

Corollary. A language is Turing-recognizable if and only if some multitape Turing machine recognizes it.

Nondeterministic Turing machines (NTM): The transition function for a nondeterministic Turing machine has the form

$$\delta: Q \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{L, R\})$$

and the computation of a nondeterministic Turing machine is a tree whose branches correspond to different possibilities for the machine. If *some* branch of the computation leads to the accept state, the machine accept itts input.

Theorem. Every NTM has an equivalent DTM.

Corollary. A language is Turing-recognizable iff some nondeterministic Turing machine recognizes it.

Corollary. A language is decidable iff some nondeterministic Turing machine decides it.

Enumerator: A enumerator is a Turing machine with an attached printer. The Turing machine can use that printer as an output device to print strings. Every time the Turing machine wants to add a string to the list, it sends the string to the printer.

Theorem. A language is Turing-recognizable iff some enumerator enumerates it.

Church-Turing Thesis: Intuitive notion of algorithms = Turing machine algorithms.

Hilbert's Ten Problem

 $D = \{p \mid p \text{ is a polynomial with integer coefficients and with an integral root}\}$

• **Theorem**. *D* is not decidable.

 $D_1 = \{p \mid p \text{ is a polynomial on a single variable } x \text{ with integer coefficients and with an integral root}\}$

- **Lemma**. Both D and D_1 are Turing-recognizable.
- **Lemma**. D_1 is Turing-decidable.