Center for Space Power and Advanced Electronics Auburn University

Dr. Dan Deis Manager of Engineering Science

Dr. Richard Hopkins Manager of Electro-Optical Materials

Westinghouse Science and Technology Center

VALUE OF PARTICIPATION IN A CCDS TO AN INDUSTRIAL PARTNER

Dr. D. W. Deis

Dr. R. H. Hopkins

Westinghouse Science & Technology Center

NASA/Auburn University CCDS; Center for Space Power and Advanced Electronics Member of

NASA Office of Commercial Projects Washington, DC May 14, 1991

- Space Division
- Commercial & Civil Space Dept.
- Science & Technology Center
- NASA CCDS's

- Earth Observation Sensors
- Control and Data Management

Space Defense

Signal Processing

The Westinghouse Commercial & Civil Space Department Is Committed to Development the Infrastructure for Low Cost Access to Space

- Responsible for the Systems Engineering and Service Module for the COMET project.
- Operates Astro Tech for payload processing.
- Will actively pursue all aspects of commercial launch, on-orbit services, and recovery.
- Maintains active interactions with several CCDS's.

Major Space Activities

- SPEAR Program
- Hyper-Conductor Generator
- TEM-Pump for SP-100
- Space Furnaces
- SMES Program
- Participation in CCDS's
 - Auburn
- Clarkson

Westinghouse, In Conjunction With The Auburn CCDS, Is Developing Space Related Products and Technologies

Products:

Intelligent fault protection system based on neural network technology

- Critical element of adaptive (autonomous) controls for electrical power systems and components.
- Terrestrial applications can expedite commercialization.

Technologies:

High temperature, radiation-hard electronics based on SiC

- Enabling technology for highly reliable and long-lived space based electronics.
- Extensive commercial and military applications.

Intelligent Adaptive Controls Can Improve The Reliability of Space Power Systems

- Minimizing human response time and errors in correcting faults, and properly interpreting fuzzy sensor signals.
- High level autonomous operation
- Detecting incipient faults
- Impact
- Improved availability Reduced fault severity
- Reduced maintenance time

The Development of the Product Need, Concept and Implementation Has Utilized Significant University Participation

W - STC

- Selection of neural network applications
- Integration of neural network with hardware
- Training of neural network with data
- Laboratory set-up and demonstration
- Commercialization

Auburn U

- Consultation on neural network techniques
- Development of user-friendly neural network software
- Development of parallel processor computer system on card
- Awareness of current developments in neural network hardware and paradigms

Westinghouse Science & Technology Center

STC

Silicon Carbide (SiC) - The Semiconductor With the Right Stuff

Rectification in a Hot, Chemically Active Environment

SILICON CARBIDE ELECTRONICS

- Technology for Advanced Ultrareliable Space Electronics High Temperature, RAD Hard Devices are an Enabling
- Secure, Uninterrupted Satellite Communications
- Significant Reduction in Satellite Payload Cooling and Weight
- Compact Reactor Diagnostics and Thrust Controls for SEI Missions

Silicon Carbide is a Pervasive Technology with Many Commercial Applications

Silicon Carbide Beats Nearest Competitor

High Power

- 10X Power Density
- Reduced Parts, Size, Cost
- New Capabilities: Stealth Detection

High Temperature

- 650° Operation vs. 150°
- Less Cooling, Weight, System Cost
 - 1,000X Reliability

Radiation Hard

- ▶ 20X Gamma, 50X Neutron Resistance
 - First In-Core Electronics for Protection and Control
- Reduced Cabling, Penetrations and Cost
- **New Services**

In-Core Flux and Temperature Measurements at 100 MRad 350°

Silicon Carbide Payoff

THE AUBURN CCDS PARTNERSHIP

Silicon Carbide Electronics to Commercialization Complementary Skills Linked to Accelerate

SIC CRYSTAL GROWTH

High Power Microwave

Wafer

- High Temperature Microelectronics
- Rad Hard Devices

Vapor Transport Growth

SiC Device Development At STC For Microwave Power Transistors

6-Gate μ -Wave Transistor

dc Characteristics

JEVICE DEVELOPMENT PATH HAS BEEN DEFINED A SILICON CARBIDE MICROELECTRONIC

THE CCDS PROGRAM WAS INITIATED IN 1991

Goal: Devices that Operate at 200-500°C with Acceptable Lifetime

THE CCDS SILICON CARBIDE EFFORT IS ON SCHEDULE

- Working Relationships Established
- First Exchange of Devices and Test Data Accomplished

	Auburn	Westinghouse
Staff Committed	5 Faculty, 4 Students	6 Scientists, 4 Technical Support
Topics	Structure Modeling Contact Metalization Systems Advanced Epitaxy Techniques SiC Growth Kinetics Surface Chemistry Structural Diagnostics	 Boule Growth Scale-Up Low Defect Wafer Production Hot lon Implantation Junction Formation Device Design/Fabrication
Status	 RBS Analysis of Initial WEC Contact System Design of New EPI Reactor Initiated Polytype Stability Calculations Made 	Furnace Scale-Up Design CompleFurnace Fabrication InitiatedSucessful 1.5" Diameter Boule G

The NASA-CCDS at Auburn University Has Met All of Westinghouse's Expectations

- Excellent leadership.
- Impressive R&D programs.
- Stimulation of University environment participation of students.
- Full cooperation of industrial partners.
- Cooperative participation by government labs.
- Opportunity to develop, in partnership with Auburn University, and components for space. technologies

