1. Apply linear regression techniques to predict the 7th and 12th week sales.

x _i (Week)	y _j (Sales in Thousands)
1	1.2
2	1.8
3	2.6
4	3.2
5	3.8

Solution:

Step 1: First we have to plot a graph of independent variables against dependent variables. The goal of linear regression is to find a straight line which will fit into this dataset completely.

Linear regression equation is given by

y=c + m*x

c=intercept , m = coefficient of independent variable

Loss Function

The loss is the error in our predicted value of m and c.

Goal - minimize this error to obtain the most accurate value of m and c.

Here we will use the MSE function to calculate the loss.

$$E = \frac{1}{n} \sum_{i=0}^{n} (y_i - \bar{y}_i)^2$$
 y producted $y = m\chi + \zeta$

Mean Squared Error Equation 0.1

matc

Baneach 1i

L = 0.001 # The learning Rate

m values: [0.1] c values: [0.1]

 $Y_predicted = mx_i + c$

			(
X(week)	Y(sales in thousands		y_pred	(Y-y_pred)^2
1	1.2		0.9413	0.06692569
2	1.8		1.614391	0.03445070088
3	2.6	5	2.287482	0.09766750032
4	3.2		2.960572	0.05732576718
5	3.8		3.633663	0.02766799757

Mse = 0.284037656/5 = 0.013908918347787921

Here are the update rules using gradient descent:

$$m = m - \alpha \frac{\partial J}{\partial m}$$
 $b = b - \alpha \frac{\partial J}{\partial b}$ = $C = C - \lambda \frac{\partial J}{\partial C}$

where α is the learning rate, a hyperparameter that controls the step size in the update process.

The partial derivatives are given by:

$$rac{\partial J}{\partial m} = rac{1}{n} \sum_{i=1}^{n} (mx_i + b - y_i) x_i$$

$$\frac{\partial J}{\partial b} = \frac{1}{n} \sum_{i=1}^{n} (mx_i + b - y_i)$$

Α	В	С	D	Е		
X(week)	Y(sales in thousands	y_pred	Y-y_pred	(Y-y_pred)xi		
1	1.2	0.9413	0.2587	0.2587		
2	1.8	1.614391	0.185609	0.371218		
3	2.6	.2.287482	0.312518	0.937554		
4	3.2	2.960572	0.239428	0.957712		
5	3.8	3.633663	0.166337	0.831685		
		E (y-y-p)	udi)ni =	0.6713738		
	m.					

$$\frac{\partial J}{\partial m} = 0.6713738$$

Α	В	С	D
X(week)	Y(sales in thousands	y_pred	Y-y_pred
1	1.2	0.9413	0.2587
2	1.8	1.614391	0.185609
3	2.6	2.287482	0.312518
4	3.2	2.960572	0.239428
5	. 3.8	3.633663	0.166337
			0.2325184 ×
		91 =	=SUM(D2:D6)/5
		26	

Iteration 2 : same as previous calculate y_predicted by taking value of new m and c and solving similarly.