

Лабораторная работа №4.7.1

Двойное лучепреломление

Теория

Плоские волны в кристаллах

$$\operatorname{rot} \vec{H} = \frac{1}{c} \frac{\partial \vec{D}}{\partial t}, \operatorname{rot} \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$$
 (1)

Если среды прозрачны и однородны то в них распорстраняются волны:

$$\vec{E} = \vec{E}_0 e^{i(\omega t - \vec{k}\vec{r})}, \vec{H} = \vec{H}_0 e^{i(\omega t - \vec{k}\vec{r})}$$
(2)

Введем единичный вектор нормали к скорости распространения волны \vec{N} и направим его вдоль скорости, тогда

 $\vec{D} = -\frac{c}{v} \left[\vec{N}, \vec{H} \right], \vec{B} = \frac{c}{v} \left[\vec{N}, \vec{E} \right]$ (3)

Оптические одноосные кристаллы

Введем тензор диэлектрической проницаемости ε ($\vec{D} = \varepsilon \vec{E}$). Все его значения описываются эллипсоидом инерции.

В кристаллах этот эллипсоид — эллипсоид вращения. В них оптическая ось — ось вращения эллипсоида. В них принято обозначать $\varepsilon_{\parallel}=\varepsilon_{z}, \varepsilon_{\perp}=\varepsilon_{x}=\varepsilon_{y}$

$$\vec{D}_{\parallel} = \varepsilon_{\parallel} \vec{E}_{\parallel}, \vec{D}_{\perp} = \varepsilon_{\perp} \vec{E}_{\perp} \tag{4}$$

Можно показать, что угол θ между волновой нормалью и осью вращения эллипсоида при разделении \vec{D} на \vec{D}_e — лежащая в главном сечении и \vec{D}_o — нормальная составляющая такой, что

$$\sin \theta = \frac{D_{e\parallel}}{D_e}, \cos \theta = \frac{D_{e\perp}}{D_e} \tag{5}$$

$$n = \frac{1}{\sin A} \sqrt{\sin^2 \phi_1 + \sin^2 \phi_2 + 2\sin \phi_1 \sin \phi_2 \cos A}$$
 (6)

Из этого, если $n_o-n_e\ll n_o$ и n_e , то

$$n(\theta) \approx n_e + (n_o - n_e)\cos^2\theta \tag{7}$$

Двойное лучепреломление в призме исландского шпата

При таком ходе луча и расположении призмы у нас повторяется ситуация из предыдущего параграфа теории. Тогда, можно посчитать показатель преломления изотропной среды по формуле

$$n = \frac{\sin\left(\frac{\psi_m + A}{2}\right)}{\sin\left(\frac{A}{2}\right)} \tag{8}$$

Здесь ψ_m — минимальный угол, на который призма преломляет луч. Если призма неизотропна, то этой формулой, строго говоря, можно воспользоваться только для обыкновенной

Рис. 1: Ход луча в призме

волны, которая, как это было показано ранее, распространяется так же, как и в изотропной среде.

Экспериментальная установка

Рис. 2: Экспериментальная установка

$$\phi_2 = A + \psi - \phi_1 \tag{9}$$

Длина волны источника (Na-Ne): $\lambda_{Na-Ne} = 0,63$ мкм.

Ход работы

- 1. Отъюстируем систему, то есть сделаем так, что луч проходит через 0 и 180.
- 2. Определим угол A, для этого добьемся, чтобы отраженный луч шел ровно назад для меньшего катета (θ_1) и гипотенузы (θ_2). По формуле

$$A = 180^{\circ} - (\theta_1 - \theta_2)$$

Найдем А

$$\theta_1 = (297 \pm 2)^{\circ}$$

$$\theta_2 = (154 \pm 2)^{\circ}$$

$$A = (37 \pm 2)^{\circ}$$

- 3. Определим разрешенное направление поляризатора. Для этого направив его на видимый свет, установим его в положение наименьшего пропускания.
- 4. Получаем изображение на лимбе как на рис. 5.
- 5. Вращая столик, снимем зависимость углов отклонения волн от угла падения, запишем данные в таблицу 1.

6. Далее с помощью программы рассчитаем все данные, необходимые для работы и построим график.

$\phi_1,^{\circ}$	10	15	20	30	40	50	60	70
δ_{ϕ_1} ,°	2	2	2	2	2	2	2	2
ψ_0 ,	31	30	28	26	27	29	32	37
δ_{ψ_o} ,°	2	2	2	2	2	2	2	2
ψ_e , \circ	21	21	20	20	21	23	27	32
δ_{ψ_e} ,°	2	2	2	2	2	2	2	2
ϕ_{2o} ,	58	52	45	33	24	16	9	4
$\delta_{\phi_{2o}}$,°	6	6	6	6	6	6	6	6
ϕ_{2e} ,	48	43	37	27	18	10	4	-1
$\delta_{\phi_{2e}}$,°	6	6	6	6	6	6	6	6
θ_o , θ_o	84	81	78	72	67	63	58	55
δ_{θ_o} ,°	6	5	4	4	4	3	3	3
$\theta_e,^{\circ}$	83	80	77	71	65	60	56	52
δ_{θ_e} ,°	6	4	4	4	4	3	3	3
$\cos^2 \theta_o$	0,0111	0,0239	0,042	0,092	0,150	0,212	0,274	0,322
$\delta_{\cos^2 \theta_o}$	0,0007	0,0014	0,002	0,005	0,008	0,011	0,015	0,017
$\cos^2 \theta_e$	0,0139	0,0298	0,052	0,111	0,181	0,256	0,319	0,37
$\delta_{\cos^2 \theta_e}$	0,0009	0,0016	0,003	0,006	0,010	0,014	0,017	0,02
n_o	1,65	1,67	1,66	1,65	1,66	1,66	1,65	1,66
δ_{n_o}	0,11	0,10	0,09	0,09	0,09	0,09	0,09	0,09
n_e	1,48	1,50	1,49	1,50	1,51	1,51	1,53	1,54
δ_{n_e}	0,10	0,09	0,08	0,08	0,08	0,08	0,08	0,08

Табл. 1: Измеренные и все полученные данные в ходе эксперимента

7. Из графика мы получаем, что главные значения показателей преломления

$$n_o = 1,66 \pm 0,11$$

$$n_e = 1,49 \pm 0,09$$

8. Теперь из серии измерений мы получаем, что

$$\psi_{mo} = (26 \pm 1, 5)^{\circ}$$

$$\psi_{me} = (20 \pm 1, 5)^{\circ}$$

Отсюда, из формулы (8) получаем, что

$$n_o = 1,65 \pm 0,09$$

$$n_e = 1,50 \pm 0,09$$

9. Определим углы, соответствующие полному внутреннему отражению

$$\phi_{1o} = (-0, 5 \pm 1)^{\circ}$$

$$\phi_{1e} = (-7, 5 \pm 1)^{\circ}$$

Из этого, принимая, так как полное внтуреннее отражение, $\phi_2 = 90^\circ$ из формулы (6) получаем, что

$$n_o = 1, 6 \pm 0, 2$$

$$n_e = 1, 5 \pm 0, 2$$

Вывод

В итоге, мы подтвердили, что показатели преломления соответствующих волн соответствуют уже известным. Так же мы установили, что самый точный метод расчета показателей преломления — по наклону графика n от $\cos^2\theta$.