ANALYTIC COMBINATORICS PART ONE

http://aofa.cs.princeton.edu

8. Strings and Tries

Orientation

Second half of class

- Surveys fundamental combinatorial classes.
- Considers techniques from analytic combinatorics to study them .
- Includes applications to the analysis of algorithms.

chapter	combinatorial classes	type of class	type of GF
6	Trees	unlabeled	OGFs
7	Permutations	labeled	EGFs
8	Strings and Tries	unlabeled	OGFs
9	Words and Mappings	labeled	EGFs

Note: Many more examples in book than in lectures.

http://aofa.cs.princeton.edu

8. Strings and Tries

- Bitstrings with restrictions
- Languages
- Tries
- Trie parameters

8a.Strings.Bits

Bitstrings

- Q. What is the expected wait time for the first occurrence of 000 in a random bitstring?
- Q. What is the probability that an N-bit random bitstring does not contain 000?

Symbolic method for unlabelled objects (review)

Warmup: How many binary strings with N bits?

Class	B, the class of all binary strings
Size	b , the number of bits in b
OGF	$B(z) = \sum_{b \in B} z^{ b } = \sum_{N \ge 0} B_N z^N$

Α	toms	

type	class	size	GF
0 bit	Z_0	1	Z
1 bit	Z_1	1	z

Construction

$$B = SEQ(Z_0 + Z_1)$$

"a binary string is a sequence of 0 bits and 1 bits"

OGF equation

$$B(z) = \frac{1}{1 - 2z}$$

$$[z^N]B(z) = 2^N \quad \checkmark$$

Symbolic method for unlabelled objects (review)

Warmup: How many binary strings with N bits (alternate proof)?

Class	B, the class of all binary strings
Size	b , the number of bits in b
OGF	$B(z) = \sum_{b \in B} z^{ b } = \sum_{N \ge 0} B_N z^N$

Atoms

type	class	size	GF
0 bit	Z_0	1	Z
1 bit	Z_1	1	z

Construction

$$B = E + (Z_0 + Z_1) \times B$$

"a binary string is empty or a bit followed by a binary string"

OGF equation

$$B(z) = 1 + 2zB(z)$$

Solution

$$B(z) = \frac{1}{1 - 2z}$$

$$[z^N]B(z) = 2^N \quad \checkmark$$

Symbolic method for unlabelled objects (review)

Ex. How many N-bit binary strings have no two consecutive 0s?

Class	B_{00} , the class of binary strings with no 00
OGF	$B_{00}(z) = \sum_{b \in B_{00}} z^{ b }$

Construction
$$B_{00} = E + Z_0 + (Z_1 + Z_0 \times Z_1) \times B_{00}$$

"a binary string with no 00 is either empty or 0 or it is 1 or 01 followed by a binary string with no 00"

OGF equation
$$B_{00}(z) = 1 + z + (z + z^2)B_{00}(z)$$

Solution
$$B_{00}(z) = \frac{1+z}{1-z-z^2}$$

Extract cofficients
$$[z^N]B_{00}(z) = F_N + F_{N+1} = F_{N+2}$$
 1, 2, 5, 8, 13, ... \checkmark

$$= \frac{\phi^2}{\sqrt{5}}\phi^N \sim c_2\beta_2^N \quad \text{with } \begin{cases} \beta_2 \doteq 1.61803 \\ c_2 \doteq 1.17082 \end{cases}$$

Binary strings without long runs of Os

Ex. How many N-bit binary strings have no runs of P consecutive 0s?

Class	B_P , the class of binary strings with no 0^P
OGF	$B_P(z) = \sum_{b \in B_P} z^{ b }$

Construction

$$B_P = Z_{< P}(E + Z_1 B_P)$$

OGF equation

$$B_P(z) = (1 + z + ... + z^P)(1 + zB_P(z))$$

Solution

$$B_P(z) = \frac{1 - z^P}{1 - 2z + z^{P+1}}$$

"a string with no 0^p is a string of 0s

of length <P followed by an empty string or a 1 followed by a string with no 0^{p} "

Extract cofficients

$$[z^N]B_k(z) \sim c_k \beta_k^N$$
 where
$$\begin{cases} \beta_k \text{ is the dominant root of } 1 - 2z + z^k \\ c_k = \text{ [explicit formula available]} \end{cases}$$
See "Asymptotics" lecture

Binary strings without long runs

Theorem. The number of binary strings of length N with no runs of P 0s is $\sim c_P \beta_P^N$ where c_P and β_P are easily-calculated constants.

```
sage: f2 = 1 - 2*x + x^3
     sage: 1.0/f2.find_{root}(0, .99, x)
     1.61803398874989
\beta_2
     sage: f3 = 1 - 2*x + x^4
     sage: 1.0/f3.find_root(0, .99, x)
     1.83928675521416
\beta_3
     sage: f4 = 1 - 2*x + x^5
     sage: 1.0/f4.find_root(0, .99, x)
     1.92756197548293
\beta_4
     sage: f5 = 1 - 2*x + x^6
     sage: 1.0/f5.find_root(0, .99, x)
\beta_5
     1.96594823664510
     sage: f6 = 1 - 2*x + x^7
     sage: 1.0/f6.find_root(0, .99, x)
\beta_6
     1.98358284342432
```

Information on consecutive 0s in GFs for strings

$$S_P(z) = \sum_{s \in S_P} z^{|s|} = \frac{1 - z^P}{1 - 2z + z^{P+1}} = \sum_{N \ge 0} \{ \text{# of bitstrings of length } N \text{ with no } 0^P \} z^N$$

$$S_P(z/2) = \sum_{N \ge 0} (\{ \# \text{ of bitstrings of length } N \text{ with no runs of } P \text{ 0s} \}/2^N) z^N$$

$$S_P(1/2) = \sum_{N \ge 0} \{ \# \text{ of bitstrings of length } N \text{ with no runs of } P \text{ 0s} \} / 2^N$$

$$= \sum_{N>0} Pr \{1st \ N \text{ bits of a random bitstring have no runs of } P \text{ 0s} \}$$

=
$$\sum_{N\geq 0}$$
 Pr {position of end of first 0^P is $> N$ } = Expected position of end of first 0^P

Theorem. Probability that an *N*-bit random bitstring has no 0^P : $[z^N]S_P(z/2) \sim c_P(\beta_P/2)^N$

Theorem. Expected wait time for the first 0^p in a random bitstring: $S_P(1/2) = 2^{P+1} - 2$

Consecutive 0s in random bitstrings

Р	$S_P(z)$	approx. probability of no 0^p in N random bits			wait time
		N	10	100	
1	$\frac{1-z}{1-2z+z^2}$.5^	0.0010	<10-30	2
2	$\frac{1-z^2}{1-2z+z^3}$	1.1708 × .80901 ^N	0.1406	<10-9	6
3	$\frac{1-z^3}{1-2z+z^4}$	1.1375 × .91864 ^N	0.4869	0.0023	14
4	$\frac{1-z^4}{1-2z+z^5}$	$1.0917 \times .96328^{N}$	0.7510	0.0259	30
5	$\frac{1 - z^5}{1 - 2z + z^6}$	$1.0575 \times .98297^{N}$	0.8906	0.1898	62
6	$\frac{1-z^6}{1-2z+z^7}$	$1.0350 \times .99174^{N}$	0.9526	0.4516	126

Validation of mathematical results

is always worthwhile when analyzing algorithms

```
public class TestOccP
   public static int find(int[] bits, int k)
   // See code at right.
   public static void main(String[] args)
      int w = Integer.parseInt(args[0]);
      int maxP = Integer.parseInt(args[1]);
      int[] bits = new int[w];
      int[] sum = new int[maxP+1]; N/w trials.
                                      • Read w-bits from StdIn
      int T = 0;
      int cnt = 0;
                                      • For each P, check for 0<sup>p</sup>
      while (!StdIn.isEmpty())
                                    Print empirical probabilities.
         T++:
         for (int j = 0; j < w; j++)
             bits[i] = BitIO.readbit();
         for (int P = 1; P \leftarrow \max P; P++)
             if (find(bits, P) == bits.length) sum[P]++;
      }
      for (int P = 1; P \le maxP; P++)
          StdOut.printf("%8.4f\n", 1.0*sum[P]/T);
      StdOut.println(T + "trials");
```

```
public static int find(int[] bits, int P)
{
   int cnt = 0;
   for (int i = 0; i < bits.length; i++)
   {
      if (cnt == P) return i;
      if (bits[i] == 0) cnt++; else cnt = 0;
   }
   return bits.length;
}</pre>
```

```
% java TestOccP 100 6 < data/random1M.txt
  0.0000
            .0000
  0.0000
            .0000
  0.0004
            .0023
                           predicted
                          by theory
  0.0267
            .0259
  0.1861
            .1898
  0.4502
            .4516
10000 trials
```

Wait time for specified patterns

```
12
8
```

Expected wait time for the first occurrence of 000: 17.9

Expected wait time for the first occurrence of 001: 6.0

Are these bitstrings random??

Autocorrelation

The probability that an N-bit random bitstring does not contain 0000 is $\sim 1.0917 \times .96328^{N}$

The expected wait time for the first occurrence of 0000 in a random bitstring is 30.

Q. Do the same results hold for 0001?

0001 occurs much earlier than 0000

A. NO!

101111101001010011001111**0001**001111101101101**0000**001111100001

Observation. Consider first occurrence of 000.

- •0000 and 0001 equally likely, BUT
- •mismatch for 0000 means 0001, so need to wait four more bits
- •mismatch for 0001 means 0000, so next bit could give a match.
- Q. What is the probability that an N-bit random bitstring does not contain 0001?
- Q. What is the expected wait time for the first occurrence of 0001 in a random bitstring?

Constructions for strings without specified patterns

Cast of characters:

p — a pattern

 S_p — binary strings that do not contain p

 T_p — binary strings that end in p and have no other occurrence of p

p 101001010

 S_p 10111110101101001100110000011111

 T_p 1011111010110100110011010101010

First construction

- S_p and T_p are disjoint
- the empty string is in S_p
- adding a bit to a string in S_p gives a string in S_p or T_p

$$S_p + T_p = E + S_p \times \{Z_0 + Z_1\}$$

Constructions for bitstrings without specified patterns

Every pattern has an autocorrelation polynomial

- slide the pattern to the left over itself.
- for each match of *i* trailing bits with the leading bits include a term $z^{|p|-i}$

$$\begin{array}{c}
101001010 \\
101001010 \\
101001010 \\
101001010 \\
101001010 \\
101001010 \\
101001010 \\
101001010
\end{array}$$

$$\begin{array}{c}
z^0 \\
z^0 \\
101001010 \\
z^7 \\
101001010 \\
z^7 \\
z$$

Constructions for bitstrings without specified patterns

Second construction

- for each 1 bit in the autocorrelation of any string in T_p add a "tail"
- result is a string in S_p followed by the pattern

$$S_p \times \{p\} = T_p \times \sum_{c_i \neq 0} \{t_i\}$$

Bitstrings without specified patterns

How many N-bit strings do not contain a specified pattern p?

Classes	S_p — the class of binary strings with no p		
	T_p — the class of binary strings that end in p and have no other occurence		

OGFs
$$S_p(z) = \sum_{s \in S_p} z^{|s|}$$

$$T_p(z) = \sum_{s \in T_p} z^{|s|}$$

$$S_p + T_p = E + S_p \times \{Z_0 + Z_1\}$$

$$S_p + T_p = E + S_p \times \{Z_0 + Z_1\}$$
 $S_p \times \{p\} = T_p \times \sum_{c_i \neq 0} \{t_i\}$

$$S_p(z) + T_p(z) = 1 + 2zS_p(z)$$
 $S_p(z)z^p = T_p(z)c_p(z)$

$$S_p(z)z^p = T_p(z)c_p(z)$$

Solution

$$S_p(z) = \frac{c_p(z)}{z^p + (1 - 2z)c_p(z)}$$

See "Asymptotics" lecture

Extract cofficients $[z^N]S_p(z) \sim c_p \beta_p^N$ where $\begin{cases} \beta_p \text{ is the dominant root of } z^P + (1-2z)c_p(z) \\ c_p = \text{ [explicit formula available]} \end{cases}$

Autocorrelation for 4-bit patterns

p	auto- correlation	OGF	Probability t in N	hat <i>p</i> does random bi		wait time
			N	10	100	
0000 1111	1111	$\frac{1 - z^4}{1 - 2z + z^5}$. 96328 ^N	0.7510	0.0259	30
0001 0011 0111 1000 1100 1110	1000	$\frac{1}{1-2z+z^4}$.91964 ^N	0.4327	0.0002	16
0010 0100 0110 1001 1011 1101	1001	$\frac{1+z^3}{1-2z+z^3-z^4}$.93338 ^N	0.5019	0.0010	18
0101 1010	1010	$\frac{1+z^2}{1-2z+z^2-2z^3+z^4}$.94165 ^N	0.5481	0.0024	20

Example. In 100 random bits, 0000 is ~10 times more likely to be absent than 0101 ~100 times more likely to be absent than 0001. off by < 10% but indicative constants omitted (close to 1)

http://aofa.cs.princeton.edu

8. Strings and Tries

- Bitstrings with restrictions
- Languages
- Tries
- Trie parameters

8b.Strings.Sets

Formal languages and the symbolic method

Definition. A formal language is a set of strings.

- Q. How many strings of length N in a given language?
- A. Use an OGF to enumerate them.

$$S(z) = \sum_{s \in \mathcal{S}} z^{|s|}$$

Remark. The symbolic method provides a systematic approach to this problem.

Issue. Ambiguity.

Regular expressions

Theorem. Let A and B be *unambiguous* REs with OGFs A(z) and B(z). If A + B, AB, and A* are also unambiguous, then

$$A(z) + B(z)$$
 enumerates A + B

$$A(z)B(z)$$
 enumerates AB

$$\frac{1}{1 - A(z)}$$
 enumerates A*

OGF for an unambiguous RE is rational — can be written as the ratio of two polynomials.

Proof.

Same as for symbolic method—different notation.

Corollary. OGFs that enumerate *regular languages* are rational.

Proof.

- 1. There exists an FSA for the language.
- 2. *Kleene's theorem* gives an unambiguous RE for the language defined by any FSA.

Regular expressions

Example 1. Binary strings with no 000

Regular expressions

Example 2. Binary strings that represent multiples of 3

RE.
$$(1(01^*0)^*10^*)^*$$
 11
$$OGF. D_3(z) = \frac{1}{1 - \frac{z^2}{1 - z^2}} \left(\frac{1}{1 - z}\right) = \frac{1}{1 - \frac{z^2}{1 - z - z^2}}$$
 1001
$$= 1 - \frac{z^2}{(1 - 2z)(1 + z)}$$
 1100
$$[z^N]D_3(z) \sim \frac{2^{N-1}}{3} \checkmark$$
 100100

Context-free languages

Theorem. Let $\langle A \rangle$ and $\langle B \rangle$ be nonterminals in an *unambiguous* CFG with OGFs A(z) and B(z). If $\langle A \rangle \mid \langle B \rangle$ and $\langle A \rangle \langle B \rangle$ are also unambiguous, then

$$A(z) + B(z)$$
 enumerates $A > A > B$

$$A(z)B(z)$$
 enumerates

Proof.

Same as for symbolic method—different notation.

Corollary. OGFs that enumerate unambiguous CF languages are *algebraic*.

Proof.

"Gröbner basis" elimination—see text.

An *algebraic function* is a function that satisfies a polynomial equation whose coefficients are polynomials with rational coefficients

Context-free languages

The unlabelled constructions we have considered are CFGs, using different notation.

class	construction	CFG	OGF (algebraic)
Binary Trees	$T = E + T \times Z \times T$	<t> := <e> <t> := <t><z><t></t></z></t></t></e></t>	$T(z) = 1 + zT(z)^2$
Bitstrings	$B = E + (Z_0 + Z_1) \times B$	$:= $ $:= $ $:= × $	B(z) = 1 + 2zB(z)
Bitstrings with no 00	$B_{00} = (E + Z_0)$ $\times (E + Z_1 \times B_{00})$	$:= < Y_1> := × < Y_2> := + < < := <$	$B_{00}(z) = 1 + z + (z + z^2)B_{00}(z)$

Note 1. Not all CFGs correspond to combinatorial classes (ambiguity).

Note 2. Not all constructions are CFGs (many other operations have been defined).

Walks

Definition. A walk is a sequence of + and - characters.

Sample applications:

• Parenthesis systems

()((()()))())())

• Gambler's ruin problems

• Inversions in 2-ordered permutations (see text)

- Q. How many different walks of length N?
- Q. How many different walks of length N where every prefix has more + than -?

Unambiguous decomposition of walks

<U>:

- start with +
- end at +1
- never hit 0

<D>:

- start with -
- end at −1
- never hit 0

<S>:

- begin at 0
- end at 0

Context-free languages

Example. Walks of length 2N that start at and return to 0

CFL. <U> := <U><U><-> | <+> <D> := <D><D><+> | <-> S(z) = zU(z)S(z) + zD(z)S(z) + 1OGFs. $U(z) = z + zU^2(z)$ $D(z) = z + zD^2(z)$ $U(z) = D(z) = \frac{1}{2z} \left(1 - \sqrt{1 - 4z^2} \right)$ Solve simultaneous equations. $S(z) = \frac{1}{1 - 2zU(z)} = \frac{1}{\sqrt{1 - 4z^2}}$ $[z^{2N}]S(z) = {2N \choose N}$ Elementary example, but extends to similar, more difficult problems Expand.

http://aofa.cs.princeton.edu

8. Strings and Tries

- Bitstrings with restrictions
- Languages
- Tries
- Trie parameters

8c.Strings.Tries

Tries

Definition. A trie is a binary tree with the following properties:

- •External nodes may be void (■)
- •Siblings of void nodes are *not* void (● or □).

Ex. Give a recursive definition.

Tries and sets of bitstrings

Each trie corresponds to a set of bitstrings.

- Each nonvoid external node represents one bitstring.
- Path from the root to a node defines the bitstring

Tries and sets of bitstrings

Note: Works only for *prefix-free* sets of bitstrings (or use void/nonvoid *internal* nodes).

no member is a prefix of another

Tries and sets of bitstrings (fixed length)

If all the bitstrings in the set are the same length, it is prefix-free.

Trie applications

Searching and sorting

- MSD radix sort
- Symbol tables with string keys
- Suffix arrays

Data compression

- Huffman and prefix-free codes
- LZW compression

Decision making

- Collision resolution
- Leader election

Application areas:
Network systems
Bioinformatics
Internet search
Commercial data processing

Trie application 1: Symbol tables

Search

- If at nonvoid external node and no bits left in bitstring, report success.
- If at void external node, report failure.
- If leading bit is 0, search in the left subtrie (using remainder of string).
- If leading bit is 1, search in the right subtrie (using remainder of string).

Q. Expected search time?

Trie application 1: Symbol tables

Insert

• Search to void external node (prefix-free violation if nonvoid external node hit).

variant:

convert the void external node

• Add internal nodes (each with one void external child) for each remaining bit.

Ex: insert 01110

Q. How many void nodes?

Trie application 2: Substring search index

Problem: Build an index that supports fast substring search in a given string S.

0123456789

Ex. $S \rightarrow ACCTAGGCCT$

Q. Is ACCTA in S?

A. Yes, starting at 0.

Q. Is CCT in S?

A. Yes, in multiple places.

Q. Is TGA in S?

A. No.

Solution: Use a suffix multiway trie.

Application 1: Search in genomic data.

Application 2: Internet search.

Trie application 2: Substring search index

To build the suffix multiway trie associated with a string S

Property: Every internal node corresponds to a substring of S

- Insert the substrings starting at each position into an initially empty trie.
- Associate a string index with each nonvoid external node.

a prefix-free set

0123456789

ACCTAGGCCT

CCTAGGCCT

CTAGGCCT

TAGGCCT

AGGCCT

GGCCT

GCCT

CCT

CT

Т

Trie application 2: Substring index

To use a suffix tree to answer the query *Is X a substring of S*?

- Use the characters of *X* to traverse the trie.
- Continue in string when nonvoid node encountered.
- Report failure if void node encountered.
- Report success when end of *X* reached.

0 1 2 3 4 5 6 7 8 9 A C C T A G G C C T

Problem: Elect a *leader* among a group of individuals.

- Each person flips a 0-1 coin.
- 1 wins, 0 loses
- Winners continue to next round.

- Each person flips a 0-1 coin.
- 1 wins, 0 loses
- Winners continue to next round.

- Each person flips a 0-1 coin.
- 1 wins, 0 loses
- Winners continue to next round.

- Each person flips a 0-1 coin.
- 1 wins, 0 loses
- Winners continue to next round.

- Each person flips a 0-1 coin.
- 1 wins, 0 loses
- Winners continue to next round.

- Each person flips a 0-1 coin.
- 1 wins, 0 loses
- Winners continue to next round.

- Each person flips a 0-1 coin.
- 1 wins, 0 loses
- Winners continue to next round.

- Each person flips a 0-1 coin.
- 1 wins, 0 loses
- Winners continue to next round.

- Each person flips a 0-1 coin.
- 1 wins, 0 loses
- Winners continue to next round.

- Each person flips a 0-1 coin.
- 1 wins, 0 loses
- Winners continue to next round.

Procedure might fail!

a set of losers

- O. What is the chance of failure?
- A. Probability that the rightmost path in a random trie ends in a void node.
- Q. What is a random trie?
- A. Built by inserting infinite-length random bitstrings into an initially empty trie.

- Q. How many rounds in a distributed leader election?
- A. Expected length of the rightmost path in a random trie.

http://aofa.cs.princeton.edu

8. Strings and Tries

- Bitstrings with restrictions
- Languages
- Tries
- Trie parameters

8d.Strings.TrieParms

Analysis of trie parameters

is the basis of understanding performance in numerous large-scale applications.

- Q. Space requirement?
- A. Number of external nodes.
- Q. "Extra" space?
- A. Number of void nodes.
- Q. Expected search cost?
- A. External path length.
- O. Rounds in leader election?
- A. Length of rightmost path.

$$(3 + 5 + 5 + 5 + 5 + 5 + 3 + 3 + 3 + 4 + 4 + 3 + 4 + 4)/13$$

 $= 3.92$

Usual model: Build trie from N infinite random bitstrings (nonvoid nodes represent tails)

Recurrence. [For comparison with BST and Catalan models.]

$$C_N = N + \frac{1}{2^N} \sum_k \binom{N}{k} (C_k + C_{N-k})$$
 for $N > 1$ with $C_0 = C_1 = 0$

Caution: When $k = 0$ and $k = N$, C_N appears on right-hand side.

Probability that the root is of rank k in a random tree.

Trie built from random bitstrings

Random binary tree

BST built from random perm

AVL tree

Recurrence.
$$C_N = N + \frac{1}{2^N} \sum_k \binom{N}{k} (C_k + C_{N-k}) \text{ for } N > 1 \text{ with } C_0 = C_1 = 0$$

EGF

GF equation. $C(z) = z e^z - z + 2 e^{z/2} C(z/2) \longleftarrow_{\text{through symbolic method}}^{\text{Also available directly}} C(z) = \sum_{N \geq 0} C_N \frac{z^N}{N!}$
 $= z e^z - z + 2 e^{z/2} \left(\frac{z}{2} e^{z/2} - \frac{z}{2} + 2 e^{z/4} C(z/4) \right)$
 $= z (e^z - 1) + z (e^z - e^{z/2}) + 4 e^{3z/4} C(z/4)$
 $= z (e^z - 1) + z (e^z - e^{z/2}) + z (e^z - e^{3z/4}) + 8 e^{7z/8} C(z/8)$

Iterate. $C(z) = z \sum_{j \geq 0} \left(e^z - e^{(1-2^{-j})z} \right)$

Expand. $C_N = N! [z^N] C(z) = N \sum_{j \geq 0} \left(1 - \left(1 - \frac{1}{2^j} \right)^{N-1} \right)$

Approximate (exp-log) $C_N \sim N \sum_{j \geq 0} \left(1 - e^{-N/2^j} \right) \sim N \lg N \longrightarrow_{\text{See next slide}}$

Goal: isolate periodic terms

$$\begin{split} \sum_{j \geq 0} (1 - e^{-N/2^{j}}) &= \sum_{0 \leq j < \lfloor \lg N \rfloor} (1 - e^{-N/2^{j}}) + \sum_{j \geq \lfloor \lg N \rfloor} (1 - e^{-N/2^{j}}) \\ &= \lfloor \lg N \rfloor - \sum_{0 \leq j < \lfloor \lg N \rfloor} (e^{-N/2^{j}}) + \sum_{j \geq \lfloor \lg N \rfloor} (1 - e^{-N/2^{j}}) \\ &= \lfloor \lg N \rfloor - \sum_{j < \lfloor \lg N \rfloor} (e^{-N/2^{j}}) + \sum_{j \geq \lfloor \lg N \rfloor} (1 - e^{-N/2^{j}}) + O(e^{-N}) \\ &= \lfloor \lg N \rfloor - \sum_{j < 0} (e^{-N/2^{j} + \lfloor \lg N \rfloor}) + \sum_{j \geq 0} (1 - e^{-N/2^{j} + \lfloor \lg N \rfloor}) + O(e^{-N}) \\ &= \lg N - \{ \lg N \} - \sum_{j < 0} e^{-2^{\{ \lg N \} - j}} + \sum_{j \geq 0} (1 - e^{-2^{\{ \lg N \} - j}}) + O(e^{-N}) \end{split}$$

Q.
$$C_N = N + \frac{1}{2^N} \sum_k {N \choose k} (C_k + C_{N-k})$$
 for $N > 1$ with $C_0 = C_1 = 0$

A.
$$C_N/N = \lg N - \{\lg N\} - \sum_{j < 0} e^{-2^{\{\lg N\} - j}} + \sum_{j \ge 0} (1 - e^{-2^{\{\lg N\} - j}}) + O(e^{-N})$$

A C

Fluctuating term in trie (and other AofA) results

$$C_N = N + \frac{1}{2^N} \sum_{k} {N \choose k} (C_k + C_{N-k}) \text{ for } N > 1 \text{ with } C_0 = C_1 = 0$$

- Q. Is there a reason that such a recurrence should imply such periodic behavior?
- A. Yes. Stay tuned for the Mellin transform and related topics in Part II.

Average external path length distribution

Trie built from random bitstrings

Analysis of trie parameters

is the basis of understanding performance in numerous large-scale applications.

- Q. Space requirement?
- A. $\sim N/\ln 2 \doteq 1.44 \ N$.
- Q. Expected search cost?
- A. About $N \lg N 1.333 N$.
- Q. Rounds in leader election?
- A. [see exercise 8.57].

http://aofa.cs.princeton.edu

8. Strings and Tries

- Bitstrings with restrictions
- Languages
- Tries
- Trie parameters
- Exercises

8d.Strings.Exs

Exercise 8.3

Good chance of a long run of 0s.

Exercise 8.3 How long a string of random bits should be taken to be 50% sure that there are at least 32 consecutive 0s?

Exercise 8.14

Monkey at a keyboard.

Exercise 8.14 Suppose that a monkey types randomly at a 32-key keyboard. What is the expected number of characters typed before the monkey hits upon the phrase THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG?

Exercise 8.57

Leader-election success probability.

Exercise 8.57 Solve the recurrence for p_N given in the proof of Theorem 8.9, to within the oscillating term.

$$p_N = \frac{1}{2^N} \sum_k \binom{N}{k} p_k$$
 for $N > 1$ with $p_0 = 0$ and $p_1 = 1$

Assignments for next lecture

1. Read pages 415-472 in text.

2. Run experiments to validate mathematical results.

Experiment 1. Write a program to generate and draw random tries (see lecture on Trees) and use it to draw 10 random tries with 100 nodes.

Experiment 2. Extra credit. Validate the results of the trie path length analysis by running experiments to build 100 random tries of size N for N = 1000, 2000, 3000, ... 100,000, producing a plot like Figure 1.1 in the text. Build the tries by inserting N random strings into an initially empty trie.

3. Write up solutions to Exercises 8.3, 8.14, and 8.57.

ANALYTIC COMBINATORICS PART ONE

http://aofa.cs.princeton.edu

8. Strings and Tries