

Prepared by Raymond Wong Presented by Raymond Wong raywong@cse

diaper

beer

milk

An interesting association:

Diaper and **Beer** are usually bought together.

Why? Is it strange?

di

beer

An interesting association:

Diaper and **Beer** are usually bought together.

Why? Is it strange?

diaper

beer

Reasons:

This pattern occurs frequently in the **early evening**.

An interesting association:

Diaper and **Beer** are usually bought together.

Why? Is it strange?

diaper

beer

Introduction

- Applications of Association Rule Mining
 - Supermarket
 - Web Mining
 - Medical analysis
 - Bioinformatics
 - Network analysis
 (e.g., Denial-of-service (DoS))
 - Programming Pattern Finding

Outline

- Association Rule Mining
 - Problem Definition
 - NP-hardness
- Algorithm Apriori
 - Properties
 - Algorithm

TID	Α	В	С	D	Е
t1	1	0	0	1	0
t2	1	1	0	1	1
t3	0	1	1	0	0
t4	1	1	1	1	1
t5	0	1	1	0	1

A, D

A, B, D, E

B, C

A, B, C, D, E

B, C, E

Single Items (or simply items):

В

C

D

Ε

Itemsets:

{B, C}

{A, B, C}

{B, C, D}

{A}

CSIT52 2-itemset

3-itemset

3-itemset

1-itemset

Large itemsets:

itemsets with support >= a threshold (e.g., 3)

Frequent itemsets

on Ruis

Mining

TID	Α	В	С	D	Е
t1	1	0	0	1	0
t2	1	1	0	1	1
t3	0	1	1	0	0
t4	1	1	1	1	1
t5	0	1	1	0	1/

e.g., {A}, {B}, {B, C} but NOT {A, B, C}

Support = 3

Support = 4

Single Items (or simply items):

В

С

D

Ε

Itemsets:

{B, C}

 $\{A, B, C\}$

{B, C, D}

{A}

1-frequent itemset of size 3

CSIT52 Support = 3

Support = 1

3-frequent itemset of size 2

TID	Α	В	C	D	Е
t1	1	0	0	1	0
t2	1	1	0	1	1
t3	0	1_	_ 1	0	0
t4	1	1_	_ 1	1 (1
t5	0	1	1	0 (1

Support = 2

Association rules:

$$\{B, C\} \rightarrow E$$

TID	Α	В	С	D	Е
t1	1	0	0	1	0
t2	1	1	0	1	1
t3	0	1_	_ 1	0	0
t4	1	1	1	1	1
t5	0	1	1	0	1/

Support = 2

Confidence = 2/3 = 66.7%

Association rules:

 $\{B, C\} \rightarrow E$

TID	Α	В	С	D	Е
t1	1	0	0	1	0
t2	1	1	0	1	1
t3	0	1_	1	0	0
t4	1	1	1	1	1
t5	0	1	1	0	1/

Support = 2

Confidence = 2/3 = 66.7%

Association rules:

$$\{B, C\} \rightarrow E$$

Support = 3

$$B \rightarrow C$$

TID	Α	В	С	D	Е
t1	1	0	0	1	0
t2	1	(1)	0	1	1
t3	0	(1)	1	0	0
t4	1	1	1	1	1
t5	0	(1)	1	0	1/

Support = 2

Confidence = 2/3 = 66.7%

Association rules:

$$\{B, C\} \rightarrow E$$

Support = 3

$$B \rightarrow C$$

Confidence = 3/4 = 75%

Association rules with

- 1. Support >= a threshold (e.g., 3)
- 2. Confidence >= another threshold (e.g., 50%)

	ASS		Idu
TID	Δ	R	C

TID	Α	В	С	D	Е
t1	1	0	0	1	0
t2	1	1	0	1	1
t3	0	1	1	0	0
t4	1	1	1	1	1
t5	0	1	1	0	1

Problem:

We want to find some "interesting" association rules

$$\{B, C\} \rightarrow E$$
Support = 2
Confidence = $2/3 = 66.7\%$

$$B \rightarrow C$$

Support
$$= 3$$

Confidence =
$$3/4 = 75\%$$

How can we find all "interesting" association rules?

Outline

- Association Rule Mining
 - Problem Definition
 - NP-hardness
- Algorithm Apriori
 - Properties
 - Algorithm

•

NP-Completeness

```
Problem: to find all "large" itemsets (i.e., itemsets with support >= 3)
```

Problem: to find all "large" J-itemsets for each positive integer J (i.e., J-itemsets with support >= 3)

```
Step 1: to find all "large" itemsets

(i.e., itemsets with support >= 3)
(e.g., itemset {B, C} has support = 3)

Step 2: to find all "interesting" rules after Step 1

from all "large" itemsets
find the association rule with confidence
>= 50%
```


NP-Completeness

- Finding Large J-itemsets
 - INSTANCE: Given a database of transaction records
 - QUESTION: Is there an f-frequent itemset of size J?

Egg	Rice	Oil	Juice
1	1	1	0
0	1	1	0
0	1	1	1
0	1	1	0

CSTT5210

NP-Completeness

NP-complete problem

- Balanced Complete Bipartite Subgraph
 - INSTANCE: Bipartite graph G = (V, E), positive integer K ≤ |V|
 - QUESTION: Are there two disjoint subsets V_1 , $V_2 \subseteq V$ such that $|V_1| = |V_2| = K$ and such that, for each $u \in V_1$ and each $v \in V_2$, $\{u, v\} \in E$?

- We can transform the graph problem into itemset problem.
 - For each vertex in V₁, create a transaction
 - For each vertex in V₂, create an item
 - For each edge (u, v), create a purchase of item v in transaction u
 - f ←K
 - J ←K
- Is there a K-frequent itemset of size K?

A		E
В		F
С	0	G
D	0	Н

	Α	В	С	D
Е	1	1	1	0
F	1	1	1	1
G	1	1	1	0
Н	0	0	1	0

NP-Completeness

 It is easy to verify that solving the problem Finding Large K-itemsets is equal to solving problem Balanced Complete Bipartite Subgraph

Finding Large K-itemsets is NP-hard.

Methods to prove that a problem P is NP-hard

- Step 1: Find an existing NP-complete problem (e.g., complete bipartite graph)
- Step 2: Transform this NP-complete problem to P (in polynomial-time)
- Step 3: Show that solving the "transformed" problem is equal to solving "original" NP-complete problem

Outline

- Association Rule Mining
 - Problem Definition
 - NP-hardness
- Algorithm Apriori
 - Properties
 - Algorithm

Suppose we want to find all "large" itemsets (e.g., itemsets with support >= 3)

TID	Α	В	С	D	Е
t1	1	0	0	1	0
t2	1	1	0	1	1
t3	0	1	1	0	0
t4	1	1	1	1	1
t5	0	1	1	0	1

{B, C} is large

Support of $\{B, C\} = 3$

Is {B} large?

Is {C} large?

Property 1: If an itemset S is large, then any proper subset of S must be large.

Suppose we want to find all "large" itemsets (e.g., itemsets with support >= 3)

TID	Α	В	С	D	Е
t1	1	0	0	1	0
t2	1	1	0	1	1
t3	0	1	1	0	0
t4	1	1	1	1	1
t5	0	1	1	0	1

{B, C, E} is NOT large-

Support of $\{B, C, E\} = 2$

Is {A, B, C, E} large?

Is {B, C, D, E} large?

Property 2: If an itemset S is NOT large, then any proper superset of S must NOT be large.

Apriori

Property 1: If an itemset S is large, then any proper subset of S must be large.

Property 2: If an itemset S is NOT large, then any proper superset of S must NOT be large.

Outline

- Association Rule Mining
 - Problem Definition
 - NP-hardness
- Algorithm Apriori
 - Properties
 - Algorithm

TID	Α	В	С	D	Е
t1	1	0	0	1	0
t2	1	1	0	1	1
t3	0	1	1	0	0
t4	1	1	1	1	1
t5	0	1	1	0	1

Item	Count
Α	3
В	
С	
D	
E	

Apriori

Suppose we want to find all "large" itemsets (e.g., itemsets with support >= 3)

TID	Α	В	С	D	Е
t1	1	0	0	1	0
t2	1	1	0	1	1
t3	0	1	1	0	0
t4	1	1	1	1	1
t5	0	1	1	0	1

Item	Count
Α	(3_)
В	4
С	3
D	3
Е	(3)

Thus, {A}, {B}, {C}, {D} and {E} are "large" itemsets of size 1 (or, "large" 1-itemsets).

We set $L_1 = \{\{A\}, \{B\}, \{C\}, \{D\}, \{E\}\}\}$

Apriori

Suppose we want to find all "large" itemsets (e.g., itemsets with support >= 3)

TID	Α	В	С	D	Large 2-	ite
t1	1	0	0	1	0	
t2	1	1	0	1	1	
t3	0	1	1	0	0	
t4	1	1	1	1	1	
t5	0	1	1	0	1	
	t1 t2 t3 t4	t1 1 t2 1 t3 0 t4 1	t1 1 0 t2 1 1 t3 0 1 t4 1 1	t1 1 0 0 t2 1 1 0 t3 0 1 1 t4 1 1 1	t1 1 0 0 1 t2 1 1 0 1 t3 0 1 1 0 t4 1 1 1 1	t1 1 0 0 1 0 t2 1 1 0 1 1 t3 0 1 1 0 0 t4 1 1 1 1 1

Large 2-itemset Generation

Candidate Generation

Candidate Generation

Candidate Generation

Candidate Generation

Large "Large" Itemset Generation

Large 3-itemset Generation

Thus, {A}, {B}, {C}, {D} and {E} are "large" itemsets of size 1 (or, "large" 1-itemsets).

We set $L_1 = \{\{A\}, \{B\}, \{C\}, \{D\}, \{E\}\}\}$

Candidate Generation

Suppose we want to find all "large" itemse 1. itemsets with support >= 3)

- 1. Join Step
- 2. Prune Step

mset Generation	Large 2-ite	D	С	В	Α	TID
	0	1	0	0	1	t1
	1	1	0	1	1	t2
	0	0	1	1	0	t3
	1	1	1	1	1	t4
	1	0	1	1	0	t5
mset Generation	Large 3-ite					

Candidate Generation

C2

"Large" Itemset Generation

L2

Counting Step

 C_3

 L_3

 L_1

Thus, {A}, {B}, {C}, {D} and {E} are "large" itemsets of size 1 (or, "large" 1-itemsets).

We set $L_1 = \{\{A\}, \{B\}, \{C\}, \{D\}, \{E\}\}\}$

"Large" Itemset Generation

Candidate Generation

Candidate Generation

- Join Step
- Prune Step

Property 1: If an itemset S is large, then any proper subset of S must be large.

Property 2: If an itemset S is NOT large, then any proper superset of S must NOT be large.

Join Step

TID	Α	В	С	D	Е
t1	1	0	0	1	0
t2	1	1	0	1	1
t3	0	1	1	0	0
t4	1	1	1	1	1
t5	0	1	1	0	1

Suppose we know that itemset $\{B, C\}$ and itemset $\{B, E\}$ are large (i.e., L_2).

It is possible that itemset $\{B, C, E\}$ is also large (i.e., C_3).

Join Step

- Join Step
 - Input: L_{k-1}, a set of all large (k-1)-itemsets
 - Output: C_k, a set of candidates k-itemsets
 - Algorithm:

```
• insert into C<sub>k</sub> select p.item<sub>1</sub>, p.item<sub>2</sub>, ..., p.item<sub>k-1</sub>, q.item<sub>k-1</sub> from L<sub>k-1</sub> p, L<sub>k-1</sub> q where p.item<sub>1</sub> = q.item<sub>1</sub>, p.item<sub>2</sub> = q.item<sub>2</sub>, ... p.item<sub>k-2</sub> = q.item<sub>k-2</sub>, p.item<sub>k-1</sub> < q.item<sub>k-1</sub>
```

Property 1: If an itemset S is large, then any proper subset of S must be large.

Property 2: If an itemset S is NOT large, then any Prune Step proper superset of S must NOT be large.

TID	Α	В	С	D	Е
t1	1	0	0	1	0
t2	1	1	0	1	1
t3	0	1	1	0	0
t4	1	1	1	1	1
t5	0	1	1	0	1

Suppose we know that itemset $\{B, C\}$ and itemset $\{B, E\}$ are large (i.e., L_2).

It is possible that itemset $\{B, C, E\}$ is also large (i.e., C_3).

Suppose we know that {C, E} is not large. We can prune $\{B, C, E\}$ in C_3 .

Prune Step

- Prune Step
 - forall itemsets $c \in C_k$ (from Join Step) do
 - for all (k-1)-subsets s of c do
 - if (s not in L_{k-1}) then
 - delete c from C_k

Suppose we want to find all "large" itemse itemsets with support >= 3)

- . Join Step
- 2. Prune Step

Candidate Generation

"Large" Itemset Generation

Counting Step

Candidate Generation

_							
	TID	Α	В	C	D	Large 2-it	
	t1	1	0	0	1	0	
	t2	1	1	0	1	1	
	t3	0	1	1	0	0	
	t4	1	1	1	1	1	
	t5	0	1	1	0	1	

Description and the second sec

 L_1

Thus, {A}, {B}, {C}, {D} and {E} are "large" itemsets of size 1 (or, "large" 1-itemsets).

We set $L_1 = \{\{A\}, \{B\}, \{C\}, \{D\}, \{E\}\}\}$

Counting Step

- After the candidate generation (i.e., Join Step and Prune Step), we are given a set of candidate itemsets
- We need to verify whether these candidate itemsets are large or not
- We have to scan the database to obtain the count of each itemset in the candidate set.
- Algorithm
 - For each itemset c in C_k,
 - obtain the count of c (from the database)
 - If the count of c is smaller than a given threshold,
 - remove it from C_k
 - The remaining itemsets in C_k correspond to L_k