I KOLOKVIJUM

- 1. (10 poena) GRANIČNE VREDNOSTI
 - a) Pokazati da je niz $\{a_n\}$ sa opštim članom $a_n = \frac{\cos 2}{2} + \frac{\cos 2^2}{2^2} + \dots + \frac{\cos 2^n}{2^n}$ Košijev.
 - b) Ukoliko je moguće, odrediti konstante A i B tako da funkcija $f(x) = \begin{cases} 7 + \frac{1}{x}e^{\frac{1}{x}} &, & x < 0 \\ A &, & x = 0 \\ \frac{\sin Bx}{\sin 4x} &, & x > 0 \end{cases}$ bude neprekidna.
- 2. (12 poena) FUNKCIJE JEDNE PROMENLJIVE

Detaljno ispitati funkciju $f(x) = \arcsin \frac{2x}{1+x^2}$ i nacrtati njen grafik.

3. (8 poena) FUNKCIJE VIŠE PROMENLJIVIH

Odrediti ekstremne vrednosti funkcije $u=x^3+y^3+z^3$ pod uslovom $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1.$

II KOLOKVIJUM

- 4. (15 poena) INTEGRALI
 - a) Izračunati $\int \left(\left(\frac{\operatorname{ctg} x}{\sin x} \right)^3 + \frac{x^2 + x + 1}{x\sqrt{x^2 x + 1}} \right) dx.$
 - b) Odrediti dužinu luka krive $y = \ln(\sin x)$, za $\frac{\pi}{3} \le x \le \frac{\pi}{2}$.
- 5. (15 poena) **DIFERENCIJALNE JEDNAČINE**
 - a) Prelaskom na inverznu funkciju odrediti opšte rešenje diferencijalne jednačine $y' = \frac{y}{2x + 2y^4}$.
 - b) Odrediti opšte rešenje jednačine

$$y''' - 2y'' = x\sin 2x + x + 2.$$