

Geometric Superconvergence in the Surface Eigenvalue Problem

Justin Owen (joint with A. Bonito and A. Demlow)

Department of Mathematics, Texas A&M University

jowen6@math.tamu.edu

1. The Surface Eigenvalue Problem

Let γ be an n-dimensional surface without boundary in \mathbb{R}^{n+1} and let (u,λ) weakly solve $-\Delta_{\gamma}u=\lambda u$: Find $(u,\lambda)\in H^1_0(\gamma)\times\mathbb{R}^+$ s.t. $\int_{\gamma}ud\sigma=0$ and

$$a(u,v) = \lambda m(u,v) \qquad \forall v \in H_0^1(\gamma)$$

with bilinear form and L_2 inner product:

$$a(u,v) := \int_{\gamma} \nabla_{\gamma} u \nabla_{\gamma} v \, d\sigma, \qquad m(u,v) := \int_{\gamma} u v \, d\sigma.$$

Goal: Estimate the approximation error of surface finite element solutions to the eigenvalue problem.

2. Surface Finite Elements

Distance Function: If γ is a C^2 closed surface, then γ is the zero levelset of a signed distance function d(x).

Closest Point Projection onto γ : $\psi(x) = x - d(x)\nu(x)$, where $\vec{\nu} = \nabla d$ is the unit normal vector.

Discrete Surface: $\overline{\Gamma}$ is a polyhedron with shape-regular triangular faces of diameter h having vertices on γ .

Polynomial Surface: $\Gamma = \psi_k(\overline{\Gamma})$ with ψ_k a degree-k polynomial interpolant of ψ on each face of $\overline{\Gamma}$. The distance between γ and Γ is $O(h^{k+1})$. **Finite Element Space:** $\mathbb V$ is the piecewise degree-r polynomials defined on $\overline{\Gamma}$ and lifted to Γ .

Bilinear Form and the L_2 Inner Product on Γ :

$$A(U,V) := \int_{\Gamma} \nabla_{\Gamma} U \nabla_{\Gamma} V \, d\Sigma, \qquad M(U,V) := \int_{\Gamma} U V d\Sigma.$$

Finite Element Eigenvalue Problem: Find $(U,\Lambda)\in \mathbb{V}\times\mathbb{R}^+$ s.t. $\int_{\Gamma}U\,d\Sigma=0$ and

$$A(U, V) = \Lambda M(U, V) \quad \forall V \in \mathbb{V}.$$

3. Error Analysis

Theorem 1 (Eigenvalue Bound) Let λ be an eigenvalue of the surface eigenvalue problem and let (U,Λ) be a surface FEM eigenpair associated with λ . Define P_{λ} to be the projection onto the set of eigenfunctions associated with λ using the L_2 inner product $m(\cdot,\cdot)$. Then

$$\begin{split} |\lambda_{j} - \Lambda_{j}| &\leq \underbrace{\|\boldsymbol{P}_{\lambda} U - U\|_{a}^{2}}_{O(h^{2r}) + O(h^{2k+2})} + \lambda \underbrace{\|\boldsymbol{P}_{\lambda} U - U\|_{m}^{2}}_{O(h^{2r+2}) + O(h^{2k+2})} \\ + \Lambda \underbrace{\|\boldsymbol{m}(U, U) - \boldsymbol{M}(U, U)\|}_{Geometric} + \underbrace{\|\boldsymbol{A}(U, U) - \boldsymbol{a}(U, U)\|}_{Geometric}. \end{split}$$

Euclidean Eigenvalue Error: The eigenvalue error for a Euclidean domain is $O(h^{2r})$.

Expected Geometric Consistency Error: Using the standard techniques in [Demlow 2009] and [Dziuk 1988], we expect the geometric terms to be $O(h^{k+1})$. So we expect the surface eigenvalue error to be $O(h^{2r}) + O(h^{k+1})$.

4. Numerical Experiments with Quadrilateral Elements

Experimental Setup: Numerical experiments were run using deal.II with quadrilateral elements and Gauss-Lobatto points for the surface interpolation. The eigenvalues were calculated for various shapes including the sphere and Dziuk surface pictured above. Different combinations of r and k were used to investigate the order of the geometic consistency error.

Strange Behavior: The geometric consistency converges as $O(h^{2k})$ rather than the expected $O(h^{k+1})$.

5. A Closer Look at Geometric Consistency (Exploiting the distance function)

Lemma 2 Up to terms of order h^{2k+2} ,

$$|m(v,v) - M(v,v)| \le \left| \int_{\Gamma} v^2 d(x) \sum_{i=1}^n \frac{\kappa_i(\psi(x))}{1 + d(x)\kappa_i(\psi(x))} d\Sigma \right|, \tag{1}$$

where $\{\kappa_i\}_{i=1}^n$ are the principal curvatures of the surface.

Exploiting the Distance Function in Lemma 2:

- 1. **Zeros of the Distance Function:** Restricting the distance function to Γ as in (1), we see that for any face T of Γ , $d(q_i) = 0$ at the interpolation points $\{q_i\}_{i=1}^{k+1}$ used in defining ψ_k .
- 2. **Subtracting 0:** Subtract a quadrature rule with points at $\{q_i\}_{i=1}^{k+1}$.
- 3. Quadrature Error: Order of geometric consistency error is order of quadrature error.

Bilinear Form Consistency Error: The consistency error associated with $a(\cdot, \cdot)$ can be analyzed in a similar way.

Theorem 3 (Quadrilateral Superconvergence Explained) The geometric consistency errors in Theorem 1 are bounded by terms with order equal to the order of the quadrature rule that can be associated with the choice of interpolation points used in the construction of Γ .

6. Unexplained Superconvergence on Triangular Meshes

Geometric Error on Triangular Elements: The geometric error goes as the expected $O(h^{k+1})$ for odd k, but has superconvergence of $O(h^{k+2})$ for even k using standard Lagrange finite elements for interpolation. The Lagrange nodes on triangles do not correspond to an order k+2 quadrature rule for even k.