TIM BEBAS

TELKOM UNIVERSITY

GLORIA NATASYA IRENE SIDEBANG FAHMI AGUNG MAULANA MUHAMMAD RAMDHAN FITRA HIDAYAT

DAFTAR ISI

Business Understanding

Exploratory Data Analysis (EDA)

Data Understanding

Modelling and Evaluation

Data Preparation

Conclusion / Suggestions

BUSINESS UNDERSTANDING

Faktor

Penentuan faktor utama yang memengaruhi harga rumah

Harga Rumah

Mengetahui harga rumah sesuai dengan faktor penentu

TUJUAN:

Memprediksi harga rumah dengan menganalisis faktor utama yang memengaruhi menggunakan model machine learning yang paling tepat

TEKNIK:

Menggunakan model Random Forest

INDIKATOR KEBERHASILAN:

Akurasi model >80%

DATA UNDERSTANDING

ATRIBUT

Numerik Feature:

- price_in_rp (interval)
- lat (interval)
- long (interval)
- bedrooms (rasio)
- bathrooms (rasio)
- land_size_m2 (rasio)
- building_size_m2 (rasio)
- carports (rasio)
- maid_bedrooms (rasio)
- maid bathrooms (rasio)
- building age (rasio)
- year_built (interval)
- garages (rasio)

Total: 13 Features (3 interval + 10 rasio)

Kategorik Feature :

- url (nominal)
- title (nominal)
- address (nominal)
- district (nominal)
- city (nominal)
- facilities (nominal)
- property_type (nominal)
- ads_id (nominal)
- certificate (nominal)
- electricity (nominal)
- floors (nominal)
- property_condition (nominal)
- building_orientation (nominal)
- furnishing (nominal)

Total: 14 Features

DATA UNDERSTANDING

Unique Value Cou Column	ints in Each
	Unique Value Count
url	3435
price_in_rp	660
title	3341
address	397
district	380
city	9
lat	389
long	390
facilities	2004
property_type	1
ads_id	3434
bedrooms	22
bathrooms	22

land_size_m2	481
building_size_m2	358
carports	13
certificate	3
electricity	29
maid_bedrooms	8
maid_bathrooms	6
floors	5
building_age	42
year_built	46
property_condition	5
building_orientation	8
garages	11
furnishing	3

Nilai unik untuk setiap feature

DATA UNDERSTANDING

Histogram plot feature **city**

Histogram plot feature **certificate**

Histogram plot feature **proprrty_condition**

Beberapa histogram plot untuk ketagorik feature

Histogram plot feature building orientation

Histogram plot feature **furnishing**

PENGECEKAN & HANDLING MISSING VALUE

Plot Jumlah Niali Hilang untuk Setiap Feature

Metode Handling:

- **Drop** feature with **missing value > 1/3** of total record
- Numeric missing value handle with KNNImputer
- Categorical missing value handle with mode

DATA DUPLICATE

Terdapat 115 record duplikat berdasarkan 'title', 'address', 'district','price_in_rp','electricity', 'bedrooms', 'bathrooms','floors','year_built'

	ur1	price_in_rp	title	address	district	city	lat	long	facilities	property_type	
99	https://www.rumah123.com/properti/bekasi/hos11	2.150000e+09	Di Jual Rumah Siap Huni di Cluster Asera Harap	Harapan Indah, Bekasi	Harapan Indah	Bekasi	-6.181752	106.973684	AC	rumah	
100	https://www.rumah123.com/properti/bekasi/hos11	2.150000e+09	Di Jual Rumah Siap Huni di Cluster Asera Harap	Harapan Indah, Bekasi	Harapan Indah	Bekasi	-6.181752	106.973684	AC	rumah	

Contoh record yang memilik kesamaan nilai pada beberapa fitur

DATA DUPLICATE

Terdapat 3 duplikat data berdasarkan ads_id

```
# cek data duplikat berdasarkan ads id
sum_duplicated = data.duplicated(subset = ['ads_id']).sum()
print(f"Terdapat {sum_duplicated} record duplikat berdasarkan ads_di")

Terdapat 3 record duplikat berdasarkan ads_di

data.drop_duplicates(subset = ['ads_id'], inplace=True)
```

Jumlah data duplikat berdasarkan ads_id

-

RECORD TERBALIK

Histogram plot feature furnishing dan property_condition

Tedapat data yang pengisiannya terbalik, sehingga dilakukan pertukaran pada data yang terbalik

RECORD TERBALIK

Hasil dari pertukaran data

OUTLIER

Boxplot Numerik Feature

Boxplot Numerik Feature setelah dilakukan handling outlier

OUTLIER

Mengatasi outlier menggunakan **teknik winsorize**

```
def winsorize_column_iqr(df, column, multiplier):
    q1 = df[column].quantile(0.25)
    q3 = df[column].quantile(0.75)
    iqr = q3 - q1
    lower_limit = q1 - multiplier * iqr
    upper_limit = q3 + multiplier * iqr
    df[column] = np.where(df[column] < lower_limit, lower_limit, df[column])
    df[column] = np.where(df[column] > upper_limit, upper_limit, df[column])
    return df
```


HIGH CARDINALITY

Unique Value Cou Column	ints In Each
	Unique Value Count
url	3435
price_in_rp	660
title	3341
address	397
district	380
city	9
lat	389
long	390
facilities	2004
property_type	1
ads_id	3434
bedrooms	22
bathrooms	22

Drop kolom yang memilik nilai unik yang banyak (high cardinality) dan yang hanya memiliki 1 nilai unik

```
# drop kolom 'url', 'title', 'property_type', 'address','lat','long','ads_id', facilities'
list_to_drop = ['url', 'property_type', 'address','ads_id','lat','long','facilities']
data.drop(list_to_drop, axis=1, inplace = True )
```


lainnya mah

KONVERSI DATA

mengubah tipe data atribut electricity menjadi numerik

```
# mengubah tipe data dari feature electricity
electricity
         data['electricity'] = data['electricity'].str.slice(stop=-4)
         data['electricity'] = data['electricity'].replace('lainnya', np.nan)
 2200 mah
         data['electricity'] = pd.to numeric(data['electricity'])
         unique_values = data['electricity'].unique()
          print(f"Fitur 'electricity': {unique values}")
 2200 mah
         Fitur 'electricity': [ 4400. 2200. 3500. 1300.
                                                                           6600. 7700. 3300. 7600.
                                                               nan 5500.
                                                450. 10000. 53000. 16500. 13200.
                    900. 47500. 11000. 8000.
           13900. 17600. 23000. 41500. 12700. 13300. 33000. 24000. 22000. 9500.]
 2200 mat
```


DATA INSIGHT

TREN HARGA RUMAH

berdasarkan lokasi, tren harga rumah cenderung meningkat semakin dekat dengan pusat kota

DATA INSIGHT

TREN HARGA RUMAH

Harga rumah dengan sertifikat SHM(Sertifikat Hak Milik) meniliki harga jual yang lebih mahal dibanding dengan rumah bersertifikat HGB(Hak Guna Bangunan)

DATA INSIGHT

TREN HARGA RUMAH

Harga rumah bertipe furnished memiliki harga yang paling mahal.

Terdapat kenaikan harga yang signifikan antar rumah bertipe unfurnished dan semi furnished

DATA INSIGHT

- Feature 'bedrooms', 'bathrooms', 'maid_bedrooms', 'maid_bathrooms', 'carports', 'garages' dengan harga rumah tidak memiliki hubungan yang linear.
- Tren harga cenderung fluktuatif untuk jumlah 'bedrooms', 'bathrooms', 'maid_bedrooms', 'maid_bathrooms', 'carports', 'garages' diatas 4.
- Hubungan linear terlihat pada feature 'floors' dengan harga rumah sehingga dapat disimpulkan salah satu faktor yang memengaruhi harga rumah adalah tingkat bagunan

DATA INSIGHT

Tren harga terhadap luas lahan

Tren harga terhadap luas bangunan

Terdapat rumah yang berharga sekitar 600 M sehingga diasumsikan terdapat anomali pada data

STATISTIKA DESKRIPTIF

Summary Statistics								
	count	mean	std	min	25%	50%	75%	max
price_in_million_rp	3553.000000	4191.684773	13750.673821	42.000000	800.000000	1500.000000	3590.000000	580000.000000
bedrooms	3553.000000	3.323952	2.670015	1.000000	2.000000	3.000000	4.000000	99.000000
bathrooms	3553.000000	2.625668	2.691021	1.000000	2.000000	2.000000	3.000000	99.000000
land_size_m2	3553.000000	204.795947	402.017784	12.000000	75.000000	108.000000	192.000000	8000.000000
building_size_m2	3553.000000	186.588798	248.376707	1.000000	66.000000	112.000000	208.000000	6000.000000
carports	3553.000000	1.197861	1.114996	0.000000	1.000000	1.000000	2.000000	15.000000
electricity	3553.000000	3327.825218	3423.699622	450.000000	2200.000000	2200.000000	3500.000000	53000.000000
maid_bedrooms	3553.000000	0.496482	0.685723	0.000000	0.000000	0.000000	1.000000	7.000000
maid_bathrooms	3553.000000	0.370391	0.536024	0.000000	0.000000	0.000000	1.000000	5.000000
floors	3553.000000	1.763299	0.637584	1.000000	1.000000	2.000000	2.000000	5.000000
garages	3553.000000	0.708978	1.311879	0.000000	0.000000	0.000000	1.000000	50.000000

-

STATISTIKA DESKRIPTIF

Harga Rumah di daerah Jakarta Barat cenderung terdistribusi secara merata dibanding kota lain

Boxplot evaluasi harga rumah per city

VISUALISASI VARIABEL DAN PENYEBARAN DATA

Numeric Feature

VISUALISASI VARIABEL DAN PENYEBARAN DATA

Numeric Feature

Skewness untuk kolom numerik:

• price in million rp : 1.183807

• bedrooms: 1.003497

bathrooms: 0.247150

• land size m2: 1.133285

building_size_m2: 1.022905

• carports : 0.604335

• electricity: 0.797325

• maid_bedrooms : 1.038299

• maid_bathrooms: 0.999499

• floors : 0.277732

• garages : 0.821764

Handling Method:

```
# Handling skewness
data['bedrooms'] = np.sqrt(data['bedrooms'])
data['maid_bedrooms'] = np.sqrt(data['maid_bedrooms'])
data['price_in_million_rp'] = np.sqrt(data['price_in_million_rp'])
data['land_size_m2'] = np.sqrt(data['land_size_m2'])
data['building_size_m2'] = np.sqrt(data['building_size_m2'])
```


OVERSAMPLING

Dari 11 Feature-Featrue numerik tersebut 5 (price_in_million_rp, land_size_m2, building_size_m2, maid_bedrooms, bedrooms) diantaranya terdistribusi tidak merata / tidak normal. Oleh karena itu, diperlukan penanganan lebih lanjut

```
# Menginisialisasi dan menerapkan SMOTE hanya pada fitur numerik
ros = RandomOverSampler()
X_numerik_resampled, y_resampled = ros.fit_resample(X_numerik, y)

# Menggabungkan hasil oversampling
data = pd.DataFrame(X_numerik_resampled, columns=X_numerik.columns)
data['price_in_rp'] = y_resampled
```


KORELASI

Korelasi antar feature

Drop salah satu feature bedrooms atau bathrooms karena memiliki nilai korelasi > 0.9

```
[536]
  data.drop('bathrooms',axis=1, inplace =True)
```


KORELASI

Korelasi feature dengan target

Feature yang akan dipilih:

- 'price_in_rp'
- 'district',
- 'city'
- 'building_size_m2'
- 'certificate'
- 'property_condition'
- 'land_size_m2'
- 'electricity'
- 'bedrooms'

MODELING

ORDINAL ENCODER

Melakukan ordinal encoder untuk data categoric

2

TRAIN TEST SPLIT

Membagi data menjadi train dan test

CROSS VALIDATION

Melakukan 10 cross-validation untuk menghindari underfitting dan overfitting

3

MODELING

Membuat model prediksi berupa Linear regression, Ridge Regression, Lasso Regression, KNN, Decision Tree, dan Random Forest

MODELING

AKURASI

Linear

regression

0.8254132696388159

480485075.8628521

Ridge regression

R2 score:

MAE:

480468438.70356447

0.8254160019895221

MSE:

5.903981914031519e 5.903889514402295e +17

+17

MAE:

MSE:

R2 score:

Lasso regression

R2 score:

0.8254132696388272

3

MAE:

480485075.8626162

MSE:

5.903981914031136e

+17

4

KNN

R2 score:

0.9905118881030175

MAE:

30012070.707070712

MSE:

3.208585264309764e

+16

5

Decision Tree

R2 score:

0.949793519723526

MAE:

235010630.11732408

MSE:

235010630.11732408

6

Random **Forest**

R2 score:

0.9941381785696896

MAE:

46087254.769230954

MSE:

1.982286261747275e+

16

EVALUATION

Menggunakan 10 fold cross validation

	Model	RME	RMS	R2
0	Linear Regression	4.797761e+08	5.804952e+17	0.829184
1	Ridge Regression	4.797617e+08	5.804953e+17	0.829184
2	Lasso Regresion	4.797761e+08	5.804952e+17	0.829184
3	KNN	2.935740e+07	3.119692e+16	0.990799
4	Desicion Tree	2.384413e+08	1.712274e+17	0.949659
5	Random Forest	4.390240e+07	1.876441e+16	0.994471

Akurasi terbaik sebesar **0.994471** dengan model **Random Forest**

IMPLEMENTATION

berdasarkan model yang telah dibuat, maka dapat diimplementasikan prediksi harga rumah menggunakan web

Link Implementasi:

bebas-isfest-final-2023.streamlit.app

CONCLUSION

- Feature yang signifkan memengaruhi harga rumah:
 - 'district',
 - 'city'
 - 'building size m2'
 - 'certificate'
 - 'property_condition'
 - 'land_size_m2'
 - 'electricity'
 - 'bedrooms'

- Model Random Forest menghasilkan prediksi yang paling bagus
- building_orientation, building_age, garages, maid_bedrooms, maid_bathrooms tidak memiliki pengaruh yang signifikan terhadap harga rumah
- Implementasi model untuk memprediksi harga rumah di daerah JABODETABEK : bebas-isfest-final-2023.streamlit.app
- Visualisasi data harga rumah di daerah JABODETABEK: <u>House Price</u>
 <u>Jabodetabek Visualization with Tableau</u>

LIST PERUBAHAN

- EDA
- Feature Selection

