Honors Physics 1.1 & 1.2 - Introduction to Physics

I. What is F	Physics? (1.1)	
Physic	cs is the study of,,	, and the
interac	ctions between them.	
	cists observe the world and try to find	and principles that
descri	be how it works.	
Major	Branches of Physics	
0	Mechanics: The study of a	nd its causes (forces).
0	Thermodynamics: The study of	and temperature.
0	Electromagnetism: The study of electricity, magne	etism, and
0	Relativity: The study of objects moving at very	speeds.
0	Quantum Mechanics: The study of	particles.
II. The Scie	entific Method (1.2)	
 A logic 	cal, systematic process for learning about the	world.
Key C	Components	
-	Observation: The process of gathering information	n using our
0	Hypothesis: A statement the	nat provides a possible
	explanation for an observation.	
0	Experiment: A controlled procedure designed to te	
0	Theory: A broad, in-depth f	
	phenomena that has been repeatedly tested. Theo	
0	Scientific Law: A concise statement that describes	
	in nature. Laws describe the	e "what."
Worked	Examples (Fill-in)	
Ex 1 — Cla	assify the statement: "Gravity causes the	apple to fall."
1. Analy	ze the statement: Does it describe what happens o	r explain why it happens?
-	The statement proposes an underlying cause, which	
	ify the component: An explanation for a broad set o	· · · · · · · · · · · · · · · · · · ·
	bed as a	
3. Concl		
0	This statement is part of a scientific	

Ex 2 — Is "The sun will rise tomorrow" a valid scientific hypothesis?

1.	Recall the definition of a hypothe	sis.
	 A hypothesis must be a 	prediction.
2.	Can this statement be tested?	
	 Yes, by 	until tomorrow.
3.	Is it based on observation?	
	Yes, it is based on all	days.
4.	Conclusion:	
	○ Ves it is a	scientific hynothesis

Honors Physics 1.3 - Scientific Measurement

maanii		and a	to
	ngful.		
	•	nits (SI) is the standard used in so	cience worldwide.
The Se	even Base SI Units		
0	Length:		
0	Mass:		
0	Time:		
0	Temperature: Kelvin (K	•	
0	Electric Current: amper		
0	Amount of Substance:	, ,	
0	Luminous Intensity: car	ndela (cd)	
curac	y and Precision		
	acy: How close a meas	urement is to the	or accepted
value.			
		s of measurements are to	
	It refle	•	
A mea	isurement can de precisi	e without being accurate if there is	s a
		· ·	<i>.</i>
	error.	·	, a
	error.	·	S G
		·	S G
gnifica	error.	of a measu	
gnifica	error. ant Figures of communicating the _		rement. It includes all
gnifica A way digits t	error. ant Figures of communicating the _	of a measu n, plus one final	rement. It includes all
gnifica A way digits t Rules	error. ant Figures of communicating the _ that are known for certain for Counting Significa	of a measu n, plus one final Int Figures	rement. It includes all
gnifica A way digits t Rules	error. ant Figures of communicating the _ that are known for certai for Counting Significa	of a measu n, plus one final	rement. It includes all digit.
gnifica A way digits t Rules	error. ant Figures of communicating the _ that are known for certainer for Counting Significate Zeros	of a measu n, plus one final int Figures digits are always significant.	rement. It includes all digit. ant (e.g., 101).
gnifica A way digits t Rules	error. ant Figures of communicating the _ that are known for certainer for Counting Significate Zeros	of a measu n, plus one final I nt Figures digits are always significant. non-zero digits are significa	rement. It includes all digit. ant (e.g., 101).
gnifica A way digits t Rules	error. ant Figures of communicating the that are known for certainer for Counting Significate Zeros 0.05).	of a measu n, plus one final I nt Figures digits are always significant. non-zero digits are significa	rement. It includes all digit. ant (e.g., 101). e not significant (e.g.,
gnifica A way digits t Rules	error. ant Figures of communicating the that are known for certainer for Counting Significate Zeros 0.05).	of a measuren, plus one final of a measuren, plus one final on Figures digits are always significant non-zero digits are significated zeros (before non-zero digits) are ficant only if the number contains	rement. It includes all digit. ant (e.g., 101). e not significant (e.g.,
A way digits t	error. ant Figures of communicating the that are known for certain for Counting Signification Zeros 0.05). Trailing zeros are signification	of a measuren, plus one final of a measuren, plus one final on Figures digits are always significant non-zero digits are significated zeros (before non-zero digits) are ficant only if the number contains	rement. It includes all digit. ant (e.g., 101). e not significant (e.g.,
A way digits t	error. ant Figures of communicating the that are known for certain for Counting Signification Zeros 0.05). Trailing zeros are significations	of a measuren, plus one final of a measuren, plus one final on Figures digits are always significant non-zero digits are significated zeros (before non-zero digits) are ficant only if the number contains	rement. It includes all digit. ant (e.g., 101). e not significant (e.g.,
gnifica A way digits t Rules	error. ant Figures of communicating the that are known for certain for Counting Signification Zeros 0.05). Trailing zeros are significations Multiplication/Division	of a measurent plus one final of a measurent Figures digits are always significant non-zero digits are significated zeros (before non-zero digits) are ficant only if the number contains (e.g., 100.0). n: The result has the same number contains are significated are significated are significated are significant only if the number contains (e.g., 100.0).	rement. It includes all digit. ant (e.g., 101). e not significant (e.g., a
gnifica A way digits t Rules	error. ant Figures of communicating the that are known for certainer for Counting Signification Zeros 0.05). Trailing zeros are signification Calculations Multiplication/Division as the measurement weight	of a measuren, plus one final of a measuren, plus one final one final one figures digits are always significant non-zero digits are significated zeros (before non-zero digits) are ficant only if the number contains (e.g., 100.0).	rement. It includes all digit. ant (e.g., 101). e not significant (e.g., a er of significant figure

Worked Examples (Fill-in)

	Ex	1	- How ma	ny significant	figures are	in the	measurement	0.00720 n	n?
--	----	---	----------	----------------	-------------	--------	-------------	-----------	----

	Non-zero digits: The '7' and '2' are	
2.	Leading zeros: The three zeros before the	'7' are significant.
3.	Trailing zeros: The zero after the '2' is a decimal point.	because the number has
4.	Conclusion: There are a total of	significant figures.
of 2.	 Calculate the area of a rectangle cm. 	with a length of 4.5 cm and a width
1	Formula: Area = Length × Width	
	Raw Calculation: 4.5 cm × 2.33 cm =	cm²
	Identify Significant Figures:	
	o 4.5 cm hass	significant figures.
	o 2.33 cm has	significant figures.
4.	Apply Rule: The answer must be rounded	to significant figures.
5	Final Answer: cm ²	

Honors Physics 1.4 - Math Tools for Physics

I. Measurement and Uncertainty

 Scientific Notation A method for writing very large or very small numbers compactly. 	
 Format: A coefficient (between 1 and 10) × 10 raised to a Moving the decimal to the LEFT results in a 	
(e.g., 5,800 becomes 5.8 x 10³).	ехропені
 Moving the decimal to the RIGHT results in a 	exponent
(e.g., 0.045 becomes 4.5 x 10 ⁻²).	_ exponent
Significant Figures	
Communicates the of a measurement.	
Includes all certain digits plus one digit.	
<u></u> a.g.a	
II. Physics Equations as Tools	
,	
Equations are tools for and describing the natural w	orld.
They show the relationships between different physical	
(variables).	
• Example: Speed = / (v = d/t)	ı <u>.</u>
III. Graphing Data	
Graphs visualize the relationship between two	
 The independent variable (what you control) is plotted on theax 	xis.
• The dependent variable (what responds) is plotted on theaxis.	
Interpreting Slope	
The slope of a line graph represents the bet	ween the
variables.	
 Slope is calculated as "rise over run" (/). 	
 For a distance vs. time graph, the slope represents the 	
IV. Dimensional Analysis (Unit Conversion)	
A technique for converting a measurement from one	to another.
It involves multiplying by one or more	
which are fractions equal to 1.	
	out

Worked Examples (Fill-in)

١.	Starting Value: 365 days			
2.	Conversion Factors:			
	o hours / 1 day			
	o minutes / 1 hou	ır		
	o seconds / 1 mir			
3.	Dimensional Analysis Setup:			
	○ (365 days) × (/	1 dav) × (/ 1 hr) × (/ 1 min)
4.	Final Answer:			
Ex 2	— A car travels 150 km in 2	hours. Find tl	he slope of its di	istance-time
grap				
grap	· · ·			
1.	Identify Variables:			
	_			
	Independent (x-axis):		_	
2.	Independent (x-axis):Dependent (y-axis):		_	
2.	Independent (x-axis):Dependent (y-axis):Identify Points:		_	
2.	 Independent (x-axis): Dependent (y-axis): Identify Points: Starting point: (0 hr, 	km)	_	
	 Independent (x-axis): Dependent (y-axis): Identify Points: Starting point: (0 hr, Ending point: (2 hr, 	km)	_	
	 Independent (x-axis): Dependent (y-axis): Identify Points: Starting point: (0 hr, Ending point: (2 hr, Calculate Slope:	km) km)		hr -
	 Independent (x-axis): Dependent (y-axis): Identify Points: Starting point: (0 hr, Ending point: (2 hr, Calculate Slope: Slope = Rise / Run = (km) km)		hr -
3.	 Independent (x-axis): Dependent (y-axis): Identify Points: Starting point: (0 hr, Ending point: (2 hr, Calculate Slope: Slope = Rise / Run = (hr) 	km) km)		hr -
3.	 Independent (x-axis): Dependent (y-axis): Identify Points: Starting point: (0 hr, Ending point: (2 hr, Calculate Slope: Slope = Rise / Run = (hr) Final Answer & Meaning: 	km) km) km	km) / (
3.	 Independent (x-axis): Dependent (y-axis): Identify Points: Starting point: (0 hr, Ending point: (2 hr, Calculate Slope: Slope = Rise / Run = (hr) 	km) km) km	km) / (

Ex 1 — Convert 365 days into seconds.

Honors Physics 1.5 - Resolving Vectors

I. Scala	rs vs. Vectors	
• S	calar: A quantity that has only	(a numerical value).
	 Examples: speed, distance, 	
• V	ector: A quantity that has both magnitude and _	
	Examples: velocity,	
• V	ectors are represented graphically by	. The length represents
	agnitude, and the point indicates direction.	
II. Esse	ntial Math: Right Triangle Trigonomet	ry
• To	o work with vectors, we use the trigonometry of	triangles.
	OH CAH TOA	
	o SOH: Sin(θ) =//	
	CAH: Cos(θ) =//	
	TOA: Tan(θ) =/	
• U	sing Your Calculator	
	o IMPORTANT: Make sure your calculator is	s in mode.
	o To find a side length, use the sin, cos, or	
	○ To find an angle, use the	tria functions (e.g., sin ⁻¹ ,
	cos ⁻¹).	
III. Res	olving Vectors into Components	
• A	ny vector can be "resolved" into two perpendicu	ılar, usually
al	ong the x and y axes.	
	hese components, when added together, are ector.	to the original
• W	/e create a right triangle with the vector as the _	•
• C	alculating Components	
	 The x-component (adjacent side) is found cos(θ) 	d using: v _x = v *
	 The y-component (opposite side) is found sin(θ) 	d using: v _Y = v *

Worked Examples (Fill-in)

Ex 1 — A car	travels	at 25 m/s	at an	angle of	of 60°	north	of east.	Find	the
components.									

1.	Identify Magnitude and Angle:	
	Magnitude (v) =	m/s
	 Angle (θ) = ° 	-
2.	Calculate x-component (East):	
	o v _x = v * cos(θ) =	m/s * cos(°)
	o v _x =	
3.	Calculate y-component (North):	
-	$\circ v_{Y} = v * sin(\theta) = \underline{\hspace{1cm}}$	m/s * sin(°)
	o V _Y =	
		a path 20° south of west. Find the
com	ponents.	
1	Determine the angle from the ne	oitivo y avia
1.	Determine the angle from the po	west is 180° +° =°.
2		West is 100 +
۷.	Calculate x-component (West):	°)
	$x = d * cos(\theta) = 12.0 \text{ km} * cos(\theta)$	·
•	-	km (The negative sign means West)
3.	Calculate y-component (South):	
	\circ y = d * sin(θ) = 12.0 km * si	
	o y =	km (The negative sign means South)
Hon	ore Physics 1 6 & 1 7	Adding and Subtracting Vectors
11011	ors Physics 1.0 & 1.7 -	Adding and Subtracting vectors
I. Fu	ndamentals of Vectors	
•	A scalar is a quantity with	(size) only. Examples: 10 m/s (speed),
	5 kg (mass).	
•	A vector is a quantity with both ma	agnitude and Examples: 10
	m/s North (velocity), 20 N Down (for	orce).
•	We represent vectors graphically v	vith The arrow's length
		d its orientation shows the direction.
•		dded or subtracted A negative
	sign indicates the	
•		tor of -3 sum to
	1	

II. Graphical Addition: Head-to-Tail Method

•	inis is the primary visual method for adding two-		
•	Step 1: Draw the first vector to	and in the correct direction.	
•			
	(arrow tip) of the first vec		_
•	Step 3: The resultant (the sum) is the vector dra		f
	the first vector to the of th	ne second vector.	
•		B = B + A). This is the commutativ e)
	property of vector addition.		
•		-	
	The resultant always go	es from the very start to the very end.	
III. N	Mathematical Addition for Perpendicu	lar Vectors	
•	When two vectors are perpendicular (at a	angle), they form a	
	right triangle with their resultant.		
Findi	ing the Magnitude (the Hypotenuse)		
	Handle Dath arrange than array D2		
•	Use the Pythagorean theorem: R ² =	+	
•	Example: A person walks 90m East (A) and then	1 50m North (B).	
•	$R = \sqrt{(^{2} + ^{2})} = (_{$) = \	. ≈
	m.		
Findi	ing the Direction (the Angle)		
	Use inverse trigonometry (SOH CAH TOA). Tang	gent is often easiest	
	=(opposite/adjacent).	gent is often easiest.	
	For the example, $\theta = $ (50n)	n / 90m) ≈ °	
	Direction must be stated fully:		
•	Billocitori muot be stated rany.	North of Edot.	
N/ C	Company Mathad for Nan Darnandi	ouler Veetere	
IV. C	Component Method for Non-Perpendi	cular vectors	
	This is the most powerful and precise method for	r adding any vectors	
•	The core idea is to resolve every vector into its p	•	and
•	components.		<i>1</i> 110
	components.		
Step	1: Resolve Each Vector		
•	For each vector, create a right triangle with the v	· · · · · · · · · · · · · · · · · · ·	
•	Use trigonometry to find the length of the sides (the components).	
•	V _x =		
•	V _Y =		

•	Pay close attention to	based on the quadrant (e.g.,	West is -x
	South is -y).		

Step 2: Sum the Components

- Add all the x-components together to get a single resultant x-component (R_x).
- Add all the y-components together to get a single resultant y-component (R_y).

Step 3: Combine the Resultant Components

- You now have two perpendicular vectors (R_x and R_y).
- Use the theorem with R_x and R_y to find the final resultant's magnitude.

Ex 1 — A motorboat heads due east at 16 m/s across a river flowing due north at 9.0 m/s. Find the resultant velocity.

- Magnitude: R = √(__² + __²) ≈ ____ m/s.
 Direction: θ = tan⁻¹(__ / __) ≈ ____ ° N of E.

Ex 2 — A hiker walks 11 km north, then 11 km east. Find their displacement.

- Magnitude: R = √(__² + __²) ≈ ____ km.
 Direction: θ = tan⁻¹(__ / __) = ____ ° N of E.

Ex 3 — John pushes a crate 185 N East. Joan pushes 165 N at 30° N of E. Find the resultant force.

• Sum components:

○
$$R_x = ___ + cos(^\circ) \approx ___ N$$

○ $R_y = sin(^\circ) = ___ N$

• Resultant:

Ex 4 — An airplane flies North at 90 km/h while being blown West at 50 km/h. Find its resultant velocity.

- Magnitude: R = √(__² + __²) ≈ ____ km/h.
 Direction: θ = tan⁻¹(__ / __) ≈ ____ ° W of N.