6 COMPENSAÇÃO DE SISTEMAS LINEARES

Quando se projecta um sistema de controlo, a sua estrutura e selecção de componentes é feita com base nas especificações pretendidas para o sistema. Normalmente acontece que o sistema implementado não obedece às especificações previstas, e que estas não podem ser conseguidas por ajuste dos componentes do sistema. Neste caso é necessário proceder à alteração da estrutura do sistema, pela introdução de componentes adiconais, chamados de *compensadores*.

Nos capítulos anteriores referimos métodos de análise básicos de um sistema de controlo, particularizando-as para as técnicas do lugar das raízes e dos diagramas de bode. Utilizaremos estas técnicas básicas para o desenho destes compensadores.

6.1 Topologias de compensação

Os compensadores podem ser constituídos de circuitos electrónicos, equipamento mecânico, ou ainda podem ser implementados em computador.

Os compensadores podem colocar-se em várias posições da malha de realimentação, confome se pode ver na fig. seguinte:

a) Compensação série

b) Compensação na malha de realimentação

c) Compensação série e de realimentação

Figura 6.1 - Localização dos compensadores

Na fig. a) o compensador é colocado em série ou cascata com o sistema a controlar. De notar que ele é inserido num ponto de baixa energia (a entrada é o sinal de erro) e portanto a dissipação de potência é pequena. Dado que o compensador ataca o sistema a controlar, a sua impedância de entrada deverá ser alta. Poderá eventualmente ser necessário utilizar amplificadores isoladores.

Na fig. b) o compensador é inserido na malha de realimentação. Neste caso, o sistema ficará mais imune a perturbações.

Na fig. c) uma mistura dos dois tipos de compensação é utilizada.

A determinação do ponto de inserção do compensador depende em grande parte do sistema a controlar, das modificações físicas necessárias e dos custos envolvidos. De um modo geral, o problema de projecto do compensador é maior no caso de compensadores na malha de realimentação.

6.2 Compensadores avanço, atraso e atraso- avanço

Nesta secção consideraremos compensadores com a função de transferência típica:

$$G_c(s) = k \frac{s+z}{s+p} \tag{6.1}$$

O projecto do compensador reduz-se então à escolha dos seus parâmetros, k, z e p. $\text{Quando} \, |z| < |p|, \, \text{o compensador \'e chamado de $compensador avan\'eo}, \, \text{dado contribuir}$ com um avanço de fase.

A resposta em frequência de um compensador avanço é:

$$G_{c}(jw) = k \frac{jw + z}{jw + p} =$$

$$= \frac{kz}{p} \frac{j \frac{w}{z} + 1}{j \frac{w}{p} + 1} = ,$$

$$= k_{1} \frac{1 + jw\alpha\tau}{1 + jw\tau}$$
(6.2)

onde $\alpha=p/z$, $\tau=1/p$ e $k_1=k/\alpha$. Um exemplo da resposta na frequência de um compensador deste tipo está ilustrado na figura seguinte:

Bode Diagrams

Figura 6.2 - Resposta na frequência de um compensador avanço

A expressão da fase deste compensador é:

$$\angle G_c(jw) = tg^{-1}w\alpha\tau - tg^{-1}w\tau \tag{6.3}$$

A fase é máxima para

$$w_{m} = \sqrt{zp} = \frac{1}{\tau \sqrt{\alpha}} \tag{6.4}$$

Substituindo esta expressão em (6.3), temos que a fase máxima pode ser dada por:

$$\tan \phi_m = \frac{\alpha - 1}{2\sqrt{\alpha}}$$
, ou

$$sen\phi_m = \frac{\alpha - 1}{\alpha + 1} \tag{6.5}$$

O compensador avanço pode ser implementado por um circuito RC passa-alto, como o da fig. seguinte:

Figura 6.3 - Circuito RC passa-alto

A f.t. deste circuito é:

$$G_{c}(s) = \frac{R_{2}}{R_{1} + R_{2}} \frac{R_{1}Cs + 1}{\frac{R_{1}R_{2}}{R_{1} + R_{2}}Cs + 1}$$

$$(6.6)$$

Comparando esta equação com (6.2), vemos que:

$$\tau = \frac{R_1 R_2}{R_1 + R_2} C$$

$$\alpha = \frac{R_1 + R_2}{R_2}$$
(6.7)

Quando |p|<|z|, estamos na presença de um $compensador \ atraso$, assim denominado por fornecer um atraso de fase. Considerando $\tau=1/z$ e $\alpha=z/p$, a f.t. do compensador é dada por:

$$G_c(s) = \frac{1 + \tau s}{1 + \alpha \tau s} \tag{6.8}$$

A resposta na frequência de um compensador atraso está representada na figura seguinte:

Bode Diagrams

Figura 6.4 - Resposta na frequência de um compensador atraso

O desfasamento máximo e a frequência para o qual ele ocorre pode também obter-se das eq. (6.4) e (6.5).

O compensador atraso pode ser implementado com um circuito RC passa-baixo, como o da fig. seguinte.

Figura 6.5 - Circuito passa-baixo

A f.t. deste circuito é:

$$G_c(s) = \frac{R_2 C s + 1}{\left(R_1 + R_2\right) C s + 1} \tag{6.9}$$

Comparando esta eq. com (6.8), vemos que $\tau = R_2 C \, \mathrm{e} \, \alpha = \left(R_1 + R_2 \right) / R_2$.

Quando o compensador é formado por uma série de um compensador avanco e atraso, dizemos que temos uma compensação atraso-avanço. Note-se que, em vez de se utilizar uma série de 2 compensadores, podemos utilizar apenas 1 compensador, com a seguinte topologia:

Figura 6.6 – Compensador atraso-avanço

Neste caso, a função de transferência desse compensador é dada por:

$$G_{c}(s) = k \frac{(1 + T_{1}s)(1 + T_{2}s)}{(1 + \alpha T_{1}s)\left(1 + \left(\frac{T_{2}}{\alpha}\right)s\right)} = k \frac{(s + 1/T_{1})(s + 1/T_{2})}{(s + 1/\alpha T_{1})(s + \alpha/T_{2})},$$
(6.10)

com $\alpha > 1$ e $T_1 > T_2$.

A fracção
$$\frac{\left(s+1/T_1\right)}{\left(s+1/\alpha T_1\right)}$$
 corresponde ao compensador atraso e a fracção $\frac{\left(s+1/T_2\right)}{\left(s+\alpha/T_2\right)}$

corresponde ao compensador avanço. Os parâmetros do compensador são obtidos através de:

$$T_{1} = R_{1}C_{1}$$

$$T_{2} = R_{2}C_{2}$$

$$\alpha T_{1} + T_{2} / \alpha = R_{1}C_{1} + R_{2}C_{2} + R_{1}C_{2}$$
(6.11)

6.3 Compensação utilizando o método do lugar das raízes

6.3.1 Resposta transitória: polos complexos dominantes

É sempre conveniente que o sistema de controlo possa ser bem aproximado por um sistema de segunda ordem, dado que é mais facilmente tratável analiticamente. Num sistema em que existam mais do que 2 polos, isso implica que 2 desses polos sejam dominantes. As condições necesárias para a existência de 2 pólos dominantes são:

a) Os outros pólos estejam bastante mais à esquerda dos pólos dominantes, para que a resposta transitória devida a estes polos seja pequena em amplitude e "morra" rápidamente.

b) Qualquer outro polo que não esteja muito à esquerda do par de pólos dominantes deve estar próximo de um zero, para que a amplitude deste termo seja pequena.

6.3.2 Exemplo: Compensadores PID

Existe uma larga gama de compensadores que se podem utilizar. Iremos, neste pouco tempo que nos resta, introduzir o compensador PID (Proporcional + Integral + Derivativo), e as suas variantes, P, PI e PD. A designação deste compensador advem da acção que ele efectua sobre o sinal de erro.Iremos introduzir esta família de compensadores discutindo o seu efeito sobre um mesmo sistema, ilustrado na figura:

Figura 6.7 - sistema comum

6.3.2.1 Compensação P

Se $G_c(s)=k_p$, temos apenas um compensador proporcional. O lugar das raízes do s

Figura 6.8 - Lugar das raízes do sistema

Figura 6.9 - Resposta ao degrau em função de \boldsymbol{k}_{p}

Algumas medidas de desempenho do sistema em malha fechada estão expressas na tabela seguinte, em função de $\mathbf{k}_{\mathrm{p}}.$

k _p		w _n	t _p	P.O.	e _{ss}	t_s
						(3%)
1	.86	1.7	3.6	0	.66	2.3
2	.75	2.0	2.4	.02	.50	1.6
3	.67	2.2	1.9	.05	.39	2.5
4	.61	2.4	1.6	.87	.33	2.3
5	.56	2.6	1.4	.11	.28	2.1
6	.53	2.8	1.3	.14	.24	1.9
7	.50	3.0	1.2	.16	.22	1.8
8	.47	3.1	1.1	.18	.19	2.4
9	.45	3.3	1.1	.20	.18	2.3
10	.43	3.4	1.0	.22	.16	2.3

Tabela 6.1 - variação de , w_{n, t_p} , P.O., e_{ss} e t_s com o ganho k_p .

Vemos assim que um aumento de ganho conduz a:

diminuição da constante de amortecimento ()

aumento da frequência natural (w_n)

diminuição do tempo de pico (t_p)

aumento da percentagem de sobreelevação (P.O.)

diminuição do erro em regime estacionário (e_{ss})

Analíticamente, o tempo de estabelecimento (t_s) não deveria variar, mas dado que está a ser calculado numericamente, varia.

Vemos assim que se pretendermos diminuir o e_{ss}, a resposta torna-se mais rápida, mas também mais oscilatória. Se o erro em regime estacionário for intolerável, teremos que usar uma compensação PI.

6.3.2.2 Compensação PI

A função de transferência desse compensador é:

$$G_c(s) = k_p \left(1 + \frac{k_i}{s} \right) = k_p \left(\frac{s + k_i}{s} \right)$$
 (6.12)

Note que este compensador introduz um pólo na origem e um zero em s=-k_i. A influência do pólo em 0 faz com que:

o sistema passe a ser do tipo 1, o que implica que segue sem erro um degrau;

'move' o lugar das raízes para a direita, o que se traduz numa resposta mais lenta. Compare a fig. 6.10 com a fig. 6.8.

Figura 6.10 - LR de 1/s(s+1)(s+2)

O sistema pode desta maneira tornar-se instável. O zero do compensador tem como influência estabilizar o sistema e minimizar o aumento no tempo de resposta do sistema.

Onde deve ser colocado esse zero, ou por outras palavras, qual o valor de k_i?

Note que se k_i <1, não temos um par de raízes complexas conjugadas, o que é uma situação indesejável. Se k_i >1, se pretendermos que o sistema seja sempre estável, independentemente de k_p , existe um limite para k_i . Assim, como temos um excesso de 2 pólos em relação aos zeros, temos duas assíntotas com ângulos de $\pm 90^{\circ}$. A intercepção dessas assíntotas com o eixo real é dada por:

$$\sigma = \frac{(-1-2) + k_i}{2} \tag{6.13}$$

Isto implica que se $k_i>3$, o sistema poderá tornar-se instável para um grande k_p . Como pretendemos que o sistema seja o mais rápido possível, devermos ter um o menor possível. Para que possamos ter duas raízes complexas conjugadas, esse valor será de $k_i=1$. Assim cancela-se um dos pólos do processo, e a função de transferência para a frente torna-se:

$$G_c G(s) = \frac{k_p}{s(s+2)}$$
 (6.14)

cuja forma do lugar das raízes é semelhante ao da fig. 6.8.

Figura 6.11 - Respostas ao degrau em função de kp

k _p		$\mathbf{w}_{\mathbf{n}}$	t _p	P.O.	t _s (3%)
1	1.0000	1.0000	10.0000	0	5.3000
2	0.7071	1.4142	3.1000	4.3072	3.8000
3	0.5774	1.7321	2.2000	10.8412	3.2000
4	0.5000	2.0000	1.8000	16.2943	2.7000
5	0.4472	2.2361	1.6000	20.7492	3.5000
6	0.4082	2.4495	1.4000	24.5296	3.3000
7	0.3780	2.6458	1.3000	27.7070	3.0000
8	0.3536	2.8284	1.2000	30.4854	2.9000
9	0.3333	3.0000	1.1000	32.9089	3.5000
10	0.3162	3.1623	1.0000	34.6882	3.4000

Tabela 6.2 - variação de , w_{n_s} t_p , P.O., e_{ss} e t_s com o ganho k_p .

Concluindo, com a compensação PI conseguimos eliminar o erro em regime estacionário, mas a resposta torna-se mais lenta.

6.3.2.3 Compensação PD

Se a precisão da resposta não fosse importante, então em vez de utilizarmos um PI, utilizaríamos um PD. Este tipo de compensador reage não só à magnitude do erro, mas também à sua taxa de variação. Em termos de lugar das raízes, tem o efeito de mover o LR para a esquerda. Tem o efeito nocivo de amplificar o ruído, já que a sua resposta na frequência é do tipo passa-alto. Note que um compensador PD ideal não é realizável.

A sua função de transferência é:

$$G_c(s) = k_p(1 + k_d s)$$
 (6.15)

O PD introduz um zero em $-1/k_d$. Repare que k_d não afecta o erro em regime estacionário. O efeito da introdução do compensador PD no LR pode ser observado na figura seguinte.

a) $k_d = 1/5$

Figura 6.12 - Lugar das raízes - PD

A função de transferência para a frente do sistema é agora de:

$$G_c G(s) = \frac{k_p (k_d s + 1)}{(s+1)(s+2)}$$
(6.16)

o que implica que a constante de erro de posição é de $k_{p}\!/2,$ i.e., quanto maior k_{p} menor será o erro.

A f.t. em malha fechada é de:

$$\frac{C(s)}{R(s)} = \frac{k_p (k_d s + 1)}{s^2 + (3 + k_p k_d) s + (2 + k_p)}$$
(6.17)

o que implica que

$$e_{ss} = \frac{2}{2 + k_p} \tag{6.18}$$

$$W_n = \sqrt{2 + k_p} \tag{6.19}$$

$$\xi w_n = \frac{3 + k_p k_d}{2} \tag{6.20}$$

$$\xi = \frac{3 + k_p k_d}{2\sqrt{2 + k_p}} \tag{6.21}$$

o que implica que:

um aumento de \boldsymbol{k}_p traduz-se numa diminuição de \boldsymbol{e}_{ss} , \boldsymbol{t}_s e aumento de \boldsymbol{w}_n e de \boldsymbol{e}_{ss} , um aumento de \boldsymbol{k}_d não altera o erro em regime estacionário nem \boldsymbol{w}_n , mas aumenta e consequentemente \boldsymbol{w}_n .

Para kd=1/5, apresentam-se na figura seguinte algumas respostas ao degrau.

Figura 6.13 - Respostas ao degrau - PD

6.3.2.4 Compensação PID

Usando este tipo de compensador, podemos obter simultâneamente as vantagens do PI e do PD, respectivamente erro nulo em regime estacionário e resposta mais rápida.

A função de transferência deste compensador é:

$$G_c(s) = k_p (1 + k_d s + \frac{k_i}{s}) = \frac{k_p k_d (s + z_1)(s + z_2)}{s}$$
(6.22)

onde z_1 e z_2 são dados por:

$$z_1 + z_2 = \frac{1}{k_d} \quad e \quad z_1 z_2 = \frac{k_i}{k_d}$$
 (6.23)

Utlizando o nosso sistema padrão, se utilizarmos um dos zeros para cancelar o pólo mais perto da origem, podemos utilizar o outro zero da mesma forma que no compensador PD.

Assim, o lugar das raízes para $z_1=1$ e $z_2=5$, é:

Figura 6.14 - LR para comp. PID

Para estes valores vem k_i =5/6 e k_d =1/6. Assim, a resposta ao degrau para diferentes valores de k vem:

Figura 6.15 - Resposta ao degrau

Com $z_1 \!\!=\!\! 1$ e $z_2 \!\!=\!\! 10$, temos $k_i \!\!=\!\! 10/11$ e $k_d \!\!=\!\! 1/11$. A resposta ao degrau é:

Figura 6.16 - Resposta ao degrau

Para este útimo caso temos a seguinte tabela de desempenho:

k _p		w _n	t _p	P.O.	t _s (3%)
2	0.8090	1.3484	3.9000	1.3375	2.6000
4	0.6198	1.9069	2.0000	8.5430	2.8000
6	0.5449	2.3355	1.5000	13.3974	2.3000
8	0.5056	2.6968	1.2000	16.4666	1.9000
10	0.4824	3.0151	1.1000	18.6514	2.4000
12	0.4679	3.3029	1.0000	20.0626	2.2000
14	0.4587	3.5675	0.9000	21.2340	2.1000
16	0.4529	3.8139	0.8000	22.0919	1.9000
18	0.4495	4.0452	0.8000	22.3289	1.8000
20	0.4477	4.2640	0.7000	23.1134	1.7000

Tabela 6.3 - variação de $\,$, $\,$ w_n, $\,$ t_p, $\,$ P.O., $\,$ e_{ss} $\,$ e $\,$ t_s $\,$ com $\,$ o ganho $\,$ k_p.

Analizando esta tabela, e comparando-a com as anteriores, podemos ver que obtemos um erro nulo em regime estacionário e uma resposta mais rápida que com a compensação PI.

6.3.3 Compensação atraso e avanço

6.3.3.1 Compensação no plano s usando o compensador avanço

O efeito deste compensador, em termos de lugar das raízes, será o de deslocar as assíntotas para a esquerda, de modo a se obter pólos dominantes com melhor amortecimento. Atendendo a que:

$$G_c(s) = k \frac{s+z}{s+p}, z < p,$$
 (6.24)

esse deslocamento será de:

$$\frac{-p+z}{excesso\ dep\'olos} \tag{6.25}$$

Então, os ramos do lugar das raízes serão "vergados" para o lado esquerdo do plano s, sendo depois a sua localização determinada pelo ganho a utilizar.

As especificações do sistema são usadas para especificar as localizações desejadas para as raízes dominantes do sistema. Um procedimento para desenhar o compensador é o seguinte (note-se que há um número infinito de escolha dos parâmetros do compensador):

- Com base nas especificações do sistema, determinar a localização das raízes dominantes
- 2. Desenhar o lugar das raízes não compensado e determinar se as raízes dominantes podem ser obtidas com o sistema não compensado.
- 3. Se o compensador fôr necessário, colocar o zero do compensador debaixo da raíz dominante desejada.
- 4. Determinar a localização do pólo de tal modo que o ângulo total na raíz desejada seja de 180° e portanto pertença ao lugar das raízes compensado.
- 5. Calcular o ganho do sistema na raíz desejada, e portanto a constante de erro.
- 6. Repetir os passos 4-5 anteriores se necessário.

De referir que, no passo 3 é necessário algum cuidado, no sentido em que o zero deve ser colocado à esquerda dos 2 pólos do processo, de modo a termos ainda um par de pólos complexos conjugados.

Exemplo:

Consideremos ainda a F.T. $G(s) = \frac{k}{s(s+2)}$. Admitamos que pretendemos um factor

de amortecimento das raízes dominantes =0.45 e ainda uma constante de erro de velocidade de 20.

Esta última especificação faz com que $k=2K_{_{V}}=40$. Com este valor de ganho, a polinomial característica é de:

$$\Delta = s^2 + 2s + 40 = (s+1+j6,25)(s+1-j6,25)$$

o que implica que o factor de amortecimento conseguido é aproximadamente de 0.16. É pois necessário compensação. O lugar das raízes do sistema não compensado está expresso na figura abaixo.

Figura 6.17 – Lugar das raízes do sistema não-compensado

Para isso, é necessário determinar qual a localização das raízes dominantes. Dado que não temos especificações adicionais, e para conseguirmos um tempo de estabelecimento rápido, admitamos que a parte real das ráizes dominantes, w_n =4. Assim sendo, com =0.45, temos w_n 9 rad/s.

O zero do compensador é assim colocado em z=-4. A localização das raízes dominantes é:

$$s_{12} = -4 \pm j w_n \sqrt{1 - \zeta^2} = -4 \pm j7.9$$
 (6.26)

Para essas raízes, o ângulo é de:

$$\phi = 90^{\circ} - tg^{-1} (-4 + j7.9) - tg^{-1} (-4 + j7.9 + 2) = 90^{\circ} - 116^{\circ} - 104^{\circ} = -130^{\circ}$$
(6.27)

Portanto, a contribuição angular do pólo do compensador na raíz pretendida deverá ser de -50°. Uma construção triangular elementar indica que o pólo deverá estar situado 6.6 à esquerda de -4, i.e., em p=-10.6.

A f.t. em malha aberta é pois do tipo:

$$G_c(s)GH(s) = \frac{k(s+4)}{s(s+2)(s+10.6)}$$
 (6.28)

O ganho, k, é pois dado por:

$$k = \frac{s(s+2)(s+10.6)}{s+4} \bigg|_{s=-4+j7.9} = 96.5$$
 (6.29)

E portanto

$$G_c(s)GH(s) = \frac{96.5(s+4)}{s(s+2)(s+10.6)}$$
(6.30)

A constante de velocidade do sistema compensado é pois de 18.2. Se se pretender exactamente 20, o processo tem de ser repetido com um w_n maior. A figura seguinte mostra o lugar das raízes do sistema compensado.

Figura 6.18 – Lugar das raízes do sistema compensado

6.3.3.2 Compensação no plano s usando compensadores atraso

Como é óbvio, este compensador não é usado para aumentar a fase, mas sim para diminuir o erro em regime estacionário, dado as constantes de erro virem aumentadas

$$\operatorname{de}\left|\frac{z_c}{p_c}\right|$$
 . O lugar das raízes é ligeiramente "vergado" para a direita.

Tomando como exemplo a constante de erro de velocidade, para um sistema com f.t. para a frente:

$$GH(s) = \frac{k \prod_{i=1}^{m} (s + z_i)}{\prod_{i=1}^{n} (s + p_i)}$$
(6.31)

Obtemos a constante de erro de velocidade do sistema não compensado:

$$k_{vnaocomp.} = \frac{k \prod_{i=1}^{m} (z_i)}{\prod_{j=1}^{n} (p_i)}$$
(6.32)

O compensador atraso tem a f.t.:

$$G_c(s) = \frac{s+z}{s+p}, \quad z = \alpha p \tag{6.33}$$

Então a constante de erro de velocidade do sistema compensado é:

$$k_{vcompensado} = \frac{z}{p} k_{vcompensado}$$
 (6.34)

Isto é, a constante de erro aumenta do factor . Um procedimento para compensar um sistema é então:

- 1. Desenhar o lugar das raízes do sistema não compensado.
- 2. De acordo com as especificações, determine uma localização conveniente para as raízes dominantes do sistema não compensado.
- 3. Calcule o ganho do sistema nesse ponto, e seguidamente a constante de erro.
- 4. Se não satisfizer as especificações de regime estacionário, calcule o factor pelo qual esse ganho deve ser aumentado, e que será fornecido pelo compensador, .
- 5. Com esse valor, determine uma localização satisfatória para o par pólo-zero, de maneira que o lugar das raízes compensado passe ainda pelas localizações desejadas. Este requisito é normalmente satisfeito se a contribuição angular na raiz dominante for menor do que 2º.

Exemplo:

Consideremos ainda a F.T. $G(s) = \frac{k}{s(s+2)}$. Admitamos que pretendemos um factor

de amortecimento das raízes dominantes =0.45 e ainda uma constante de erro de velocidade de 20.

O R.L não compensado é uma linha recta passando pelo ponto -1. Com um =0.45, a localização das raízes dominantes será de $s_{1,2} = -1 \pm j2$. Medindo o ganho nesse ponto, vemos que k=5, e portanto k_v =2.5.

A razão do compensador será então:

$$\left| \frac{z}{p} \right| = \alpha = \frac{20}{2.5} = 8$$
 (6.35)

Se colocarmos o zero em z=-0.1, então p=-1/8=-0.0125. A contribuição angular do compensador no ponto -1+j2 é de 1°, portanto esse ponto pertencerá aproximadamente ao lugar das raízes do sistema compensado.

A f.t. do sistema compensado é então:

$$G_c(s)GH(s) = \frac{5(s+0.1)}{s(s+2)(s+0.0125)}$$
(6.36)

O lugar das raízes do sistema compnesado está expresso na figura seguinte.

Figura 6.19 – Lugar das raízes do sistema compensado

6.3.3.3 Compensação no diagrama de Bode usando um compensador atraso

O processo básico é o mesmo que o da secção anterior. A atenuação provocada pelo compensador é utilizada para baixar a frequência a 0 dbs, e portanto para aumentar a margem de fase. O procedimento é o seguinte:

 Desenhe o diagrama de Bode do sistema não compensado, com o ganho ajustado de acordo com as especificações de regime estacionário.

- 2. Determine a margem de fase do sistema não compensado, e se insuficiente, compense o sistema.
- 3. Determine a frequência para a qual a margem de fase pretendida seria obtida. Utilize uma margem de segurança de 5° . Chame-se a essa frequência w_c .
- 4. Coloque o zero do compensador uma década antes de $w_c^{'}$. A influência do zero é então de 5°.
- 5. Meça a atenuação necessária em w_c , para a curva cruzar o eixo dos 0 dbs.
- 6. Calcule , sabendo que a atenuação introduzida pelo compensador é de -20log .
- 7. Calcule o pólo $p = \frac{z}{\alpha}$

Exemplo:

Consideremos ainda a F.T. $G(s) = \frac{k}{s(s+2)}$. Admitamos que uma margem de fase de

45° e ainda uma constante de erro de velocidade de 20.

Esboçaremos o diagrama de bode de:

$$G(s) = \frac{40}{s(s+2)}$$

Figura 6.19 - Diagrama de Bode do sistema não compensado

O sistema tem uma margem de fase de $\approx 20^{\circ}$, portanto insuficiente. Teremos de determinar a frequência para a qual $\phi = 180^{\circ} - 45^{\circ} - 5^{\circ} = 130^{\circ}$. Essa frequência é de $w_c \approx 1.5$. Para essa frequência, o ganho é de 20 db, portanto o compensador tem de introduzir uma atenuação de -20db. O zero é colocado uma década antes de w_c , i.e.

$$z = \frac{1.5}{10} = 0.15\tag{6.37}$$

A atenuação como é de -20db, implica que =10. Então:

$$p = \frac{z}{\alpha} = 0.015 \tag{6.38}$$

O sistema compensado é pois:

$$G_c(jw)GH(jw) = \frac{20(6.66jw+1)}{jw(0.5jw+1)(66.6jw+1)}$$
(6.39)

Se confirmarmos a margem de fase para esta f.t., veremos que ela é de 47°.

Figura 6.20 – Diagrama de Bode do sistema compensado

6.3.3.4 Compensação no diagrama de Bode usando um compensador avanço

O compensador é utilizado para fornecer um avanço de fase a sistemas que satisfazem as especificações de regime estacionário. O procedimento é o seguinte:

- Desenhe o diagrama de Bode do sistema não compensado, com o ganho ajustado de acordo com as especificações de regime estacionário.
- 2. Determine a margem de fase do sistema não compensado, e se insuficiente, compense o sistema.
- 3. Utilizando uma margem de segurança determine a margem de fase adicional ϕ_m (a ser fornecida pelo compensador).
- 4. Determine a razão do compensador (α) utilizando (10.5)
- 5. Determine $10\log(\alpha)$ e determine a frequência para a qual o módulo do sistema não compensado é igual a $-10\log(\alpha)$. Esta frequência é simultanemente a

frequência de margem de fase do sistema compensado e a frequência $\boldsymbol{w_{\scriptscriptstyle m}}$ do compensador.

- 6. Determine as singularidades do compensador.
- 7. Calcule a margem de fase do sistema compensado, e se necessário repita os passos anteriores.

Exemplo:

Consideremos ainda a F.T. $G(s) = \frac{k}{s(s+2)}$. Admitamos que se pretende uma

margem de fase de 45° e ainda uma constante de erro de velocidade de 20.

Esboçaremos o diagrama de bode de:

$$G(s) = \frac{40}{s(s+2)} \tag{6.40}$$

Figura 6.21 – Diagrama de Bode do sistema não compensado

O sistema tem uma margem de fase de $\approx 20^{\circ}$, portanto insuficiente. Teremos pois de fornecer um avanço de fase de $\phi_{\scriptscriptstyle m} = 45^{\circ} - 18^{\circ} = 27^{\circ}$. Assumindo uma margem de segurança de 10%, o compensador deverá fornecer um avanço de fase de 30°. Para

isso, a razão do compensador será de $\alpha=3$. Este avanço de fase ocorrerá para uma frequência onde a magnitude do compensador é de $10\log(\alpha)=4.8$ db. Então, para que essa frequência seja a nova frequência de margem de fase, deverá corresponder à frequência para a qual o módulo do sistema não compensado valha -4.8 db. Por isnpecção da fig. 6.21, verificamos que isso acontece para 8.4 rad/s. Dado que $w_m=\sqrt{zp}=z\sqrt{\alpha}$, temos que z=4.8 e p=14.4

O compensador então terá a f.t. $G_c(s) = 3\frac{s+4.8}{s+14.4}$, e a f.t. para a frente será:

$$G(s)G_c(s) = G(s) = \frac{120(s+4.8)}{s(s+2)(s+14.4)}$$
(6.41)

O diagrama de Bode do sistema compensado está esboçado na figura 6.22.

Bode Diagrams Gm = Inf, Pm=43.757 deg. (at 8.1667 rad/sec) 60 40 Phase (deg); Magnitude (dB) 20 0 -20 -40 -80 -100 -120-140 -160 -180 10-2 10-1 10⁰ 10¹ 10² Frequency (rad/sec)

Figura 6.22 – Diagrama de Bode do sistema compensado

Conforme se pode verificar, a margem de fase do sistema compensado obtida é de cerca de 44°.