and φ is surjective. Note that M is isomorphic to $A^{(I)}/\mathrm{Im}(\psi)$. In such a situation we say that we have an *exact sequence* and this is denoted by the diagram

$$A^{(J)} \xrightarrow{\psi} A^{(I)} \xrightarrow{\varphi} M \longrightarrow 0.$$

Definition 35.6. Given an A-module M, a presentation of M is an exact sequence

$$A^{(J)} \xrightarrow{\psi} A^{(I)} \xrightarrow{\varphi} M \longrightarrow 0$$

which means that

- 1. $\operatorname{Im}(\psi) = \operatorname{Ker}(\varphi)$.
- 2. φ is surjective.

Consequently, M is isomorphic to $A^{(I)}/\mathrm{Im}(\psi)$. If I and J are both finite, we say that this is a finite presentation of M.

Observe that in the case of a finite presentation, I and J are finite, and if |J| = n and |I| = m, then ψ is a linear map $\psi \colon A^n \to A^m$, so it is given by some $m \times n$ matrix R with coefficients in A called the *presentation matrix* of M. Every column R^j of R may thought of as a relation

$$a_{i1}e_1 + \dots + a_{im}e_m = 0$$

among the generators e_1, \ldots, e_m of A^m , so we have n relations among these generators. Also the images of e_1, \ldots, e_m in M are generators of M, so we can think of the above relations as relations among the generators of M.

The submodule of A^m spanned by the columns of R is the set of relations of M, and the columns of R are called a complete set of relations for M. The vectors e_1, \ldots, e_m are called a set of generators for M. We may also say that the generators e_1, \ldots, e_m and the relations R^1, \ldots, R^n (the columns of R) are a (finite) presentation of the module M. The module M presented by R is isomorphic to A^m/RA^n , where we denote by RA^n the image of A^n by the linear map defined by R.

For example, the \mathbb{Z} -module presented by the 1×1 matrix R = (5) is the quotient, $\mathbb{Z}/5\mathbb{Z}$, of \mathbb{Z} by the submodule $5\mathbb{Z}$ corresponding to the single relation

$$5e_1 = 0.$$

But $\mathbb{Z}/5\mathbb{Z}$ has other presentations. For example, if we consider the matrix of relations

$$R = \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix},$$