

Events-to-Video:

Bringing Modern Computer Vision to Event Cameras

Henri Rebecq, René Ranftl, Vladlen Koltun, Davide Scaramuzza

Can we turn event data into a high quality video?

How? What can we do with it?

Our method^[1]

Overview

- Recurrent neural network (main module: Unet^[2])
- Input: sequences of event tensors (spatio-temporal volumes of events^[3])

- [1] Rebecq et al., "Events-to-Video: Bringing Modern Computer Vision to Event Cameras", CVPR19. PDF Video.
- [2] Ronneberger et al., U-Net: Convolutional Networks for Biomedical Image Segmentation, MICCAI'15
- [3] Zhu et al., Unsupervised Event-based Learning of Optical Flow, Depth and Egomotion, CVPR'19

Our method^[1] Training Data

How to get aligned {events, video} pairs?

- Our method: simulate events^[2] by applying random motions to real images (MS-COCO).
- 45 minutes of simulated events + ground truth videos used for training.
- The network generalizes very well to real events!

Synthetic events

^[1] Rebecq et al., "Events-to-Video: Bringing Modern Computer Vision to Event Cameras", CVPR19. PDF Video. Ground truth video [2] Rebecq et al., ESIM: an Open Event Camera Simulator, CoRL'18 (open source)

Huawei P20 Pro (240 FPS)

Our reconstruction (5400 FPS)

Rebecq et al., "Events-to-Video: Bringing Modern Computer Vision to Event Cameras", CVPR19. PDF Video. Rebecq et al., "High Speed and High Dynamic Range Video with an Event Camera", arXiv, 2019. PDF Video Code

Real time

Huawei P20 Pro (240 FPS)

Our reconstruction (5400 FPS)

Rebecq et al., "Events-to-Video: Bringing Modern Computer Vision to Event Cameras", CVPR19. <u>PDF Video</u>. Rebecq et al., "High Speed and High Dynamic Range Video with an Event Camera", arXiv, 2019. <u>PDF Video Code</u>

100 x slow motion

Apple iPad (120 FPS)

Our reconstruction (4800 FPS)

* different sequences, recorded in identical conditions

Real time

Apple iPad (120 FPS)

* different sequences, recorded in identical conditions

Our reconstruction (4800 FPS)

100 x slow motion

HDR Video

Events

Our reconstruction

Phone camera

HDR Video Driving out of a tunnel

Driving out of a tunnel

Events

Our reconstruction

Phone camera

Downstream applications

Can we apply off-the-shelf computer vision algorithms to video reconstructions?

Downstream applications (object detection)

Events

Our reconstruction + object detections (YOLOv3)

Downstream applications (monocular depth)

[1] Li et al., MegaDepth: Learning Single-View Depth Prediction from Internet

Photos, CVPR'18

Downstream applications (visual odometry)

Events

Our reconstruction + tracked features

https://youtu.be/eomALySSGVU

VINS-Mono running on our reconstruction from events

Conclusions

- Videos reconstructed from events are on par with conventional cameras!
 - ✓ High framerate
 - ✓ High dynamic range
- Sim2Real transfer works for event data! Potential application to many other tasks.

Off-the-shelf computer vision algorithms work very well on the reconstructions.

Event sensors are getting mature (higher resolution and quality).

Live demo at the workshop!

Reconstruction code + pretrained models available at:

http://rpg.ifi.uzh.ch/E2VID

Many event datasets available at:

https://github.com/uzh-rpg/event-based vision resources#datasets

Our event camera simulator ESIM available at:

http://rpg.ifi.uzh.ch/esim

Thank you!

Huawei P20 Pro (240 FPS)

Our reconstruction (5400 FPS)