Math 128: Calculus 2 for the Sciences

Winter 2016

Lecture 24: March 4, 2016

Lecturer: Jen Nelson Notes By: Harsh Mistry

24.1 Series Continued

Definition 24.1 We say that a series $\sum_{n=1}^{\infty} a_n$ converges if the sequence of partial sums $\{S_n\}$ converges The limits of $\{S_n\}$ is called the sum of the series.

$$\lim_{n \to \infty} S_n = S = \sum_{n=1}^{\infty} a_n$$

Theorem 24.2 The Geometric series

$$\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + ar^3 + \dots + ar^{(n-1)} + \dots$$

is convergent if $|r| \le 1$ and its sum is

$$\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}$$

if $|r| \geq 1$, the geometric series is divergent

$$s_n = a+ar + \dots + ar^{n-1}$$

$$rs_n = ar + ar^2 + ar^{n-1} + ar^n$$

$$s_n - rs_n = a - ar^n \implies s_n = \frac{a(1 - r^n)}{1 - r}$$
, provided $r \neq 1$

If $-1 \le r \le 1$, then $\lim_{n \to \infty} s_n = \frac{a}{1-r}$

If r > 1 or $r \le -1$, the limits do not exist, so the series diverges

If r=1, then $s_n=a+\ldots+a=na$ and $\lim_{n\to\infty}s_n=\lim_{n\to\infty}na=\infty$, so the series diverges

Note: Its better to think of the formula as $\frac{\text{"First term"}}{1 - \text{common factor}}$

24.2 Telescoping Series

For some series it will not be possible to find a closed formula for $\{S_n\}$

We can however, determine whether or not the series converges. We rely on a number of tests to achieve this.

Theorem 24.3 If $\sum_{n=1}^{\infty} a_n$ converges then $\lim_{n\to\infty} a_n = 0$

Corollary 24.4 The n^{th} -Term Test/Test for Divergence If $\lim_{n\to\infty} \neq 0$ or DNE, the series $\sum_{n=1}^{\infty} a_n$ diverges

End of Lecture Notes Notes By: Harsh Mistry