Théorème de levy et théorème central limite 40 Zuily - Queffelec p 533-541 et Bernis & Bornis p 207-215 On se place dans (52, 5e, P) un espace de proba. Rayrel: Une suite de variables atatoires radles (X_n) new converge en be vers X si pour tout $f \in CG(R)$, $f(f(X_n)) \xrightarrow[n->+\infty]{} F(f(X))$. Comme 1: Soit (Xn) une sente de VA reelles et X une VA reelle. Alors Xn 2 X (=) Vfe Co(R), E(f(Xn)) The E(f(X)) on Co(R) = [fecor) | f(x) = 0} Théorème 1 3/(Evy) Soit (Xn) une suite de VAR et Xune VAR Abres Xn 20 X (=) VIteR, Pxn(t) ~ Px(t) Comme 2 : Seit (33n/new une suite de nos complexes to 3n => 360 alors lim (1+ 3m) = e3 Theoreme 2 . (contral limite) Seit (Xn) une xute as VAR iid admettant en moment d'ordre 2. En notant $\mu = E(X_i)$ et 6^2 -Vax(X_i) (que l'on Dupose \$0.), et Xn = 1 = Xh, alors Jn(Xn-11) _> NO, 1). Breuve du lemme 1: "=> " claur car Co(R) C CB(R) C= "Soit E>0 et A>0 tel que P(XI>A) <E (= Px({z | ix | zA])) Posons $\Psi \in C_0^\circ$ valent 1 sur C-A, AJ et nulle en delors de C-2A, 2AJ: Et donc (1-4) diPx = (1) RNCA, A) diPx (x) = P(IXI)A) =E Soit f E Ce(R). On a abos : Spallen - Spalle = Spallen + (Splallen - Sprallen - Sprallen - Spallen - Spa Tout d'abord, fl E Co(R) donc par hypothèse, lim Bn = 0. Ensuite, IAnI = IIBIlos (1-8) d Pxn = IIBIlos (1- SPOLPXn), OR PECO (RI, Obonc lim sep | An | \le | | \beta | | \sight | | \sight | \le | | \ 1 Cm / 5 11 Bloo E.

Ainsi lim sup | SfdPxn - SfdPx | = 211/6 llas E . Ola montre donc la convergence voulere perisque E est quelconque. Browne du théorème 1: "=> " ok cour 2-> e isct est continue bornée VtER "= " soit fé sû 18ELYRI], donc il esciste ge LYRI tq f=9, et fECS(R). Ona VneIN, Elf(Xn) = Elg(Xn) = Elg(Xn) = Elge-it xng/t) dt). Or In Re-it & get) ldt dP = So Significate = 1191/21 2+00 D'après le Merreme de Fubini-Tenelli, la fonction est intégrable, donc d'après tulin (paux la mosure parduit) E(B(Xn)) = Sg(t) E(e-itXn) dt = Sg(t) Pxn(-t) dt Or par hypothèse, lim fxnl-tl = fx(-t) VtER, et UneID, 1g(t) Pxn(-t) | \le 1g(t) | fonction (1, done par CV dominão, lim Œ(B(Xn)) = (g(t) Px(-t)dt = SRg(t) Ele-itx) dt. Or Son Sightle-Itx | dip dt = 1191/c1 2 +00 Obne do nouveau pour Eulen Tonolle puis Fulini, lim Elf(Xn)) = E(fox) = E(fox)) On a donc montre le résultat pour les fonctions dans 3º(CIR), , Or cet ensemble est obrise obains Co(R) pour example 5(R) C'3º(CIR) cor S(R) = 3º(S(R)), et S(R) dense dans Co(R) (CE(R) C'S(R)) Soit fe Co(R), en peut donc prendre g & Je((1/18)) telle que 116-9 1100 = E pour E>0. Alors $|\mathcal{E}(f(x_n)) - \mathcal{E}(f(x_n))| \leq |\mathcal{E}(f-g)(x_n)| + |\mathcal{E}(g(x_n)) - \mathcal{E}(g(x))| + |\mathcal{E}(f-g)(x_n)|$ et |E(f-g(xn)|+|E((fg)(x)|=2||f-g||00 = 2E. Ainsi lim seep 1E/B(Xn)1-E/B(X1)1 = DE D'où le convergence peivous é est quelonque. On a donc montré le CV peur toute f E CO(R), ce qui implique Xn & X d'agrès le lomme 1.

Preuve du Comme 2 : (a suite (15m) tend vors 0, en pout donc sepposer que (1+ 75m) ne touche pas la demi doite R- (quitte à se placar à partir d'un Nossez grand pour que $\forall n \geq N$, $l + \frac{3n}{n} \in B(1, \frac{1}{2})$) Il est donc pessible d'utiliser la dolorminat principale du logorithme, notes (109 : (1+ 75m)) = exp(n (10) (1+ 75m))

Or be détermination principale du log étant hélomorphe sur CR-, elle est analytique sur cet ouvert, et admet donc un D2 au reisinage de 1, qui coincide nocessairement avec dhi au logarithme rojerien, ainsi : $(1+\frac{73n}{n})^m = \exp(m \times (\frac{73n}{n} + o(\frac{73n}{n})) = \exp(73n + o(1))$ D'où lim ((4+ 3m)n) = e3. Browne du théorème 2: quitte à contror et réduire nos variables (en pereint Yn = X-M), en peut supprez $\mu = 0$ et 6 = 1. On soit donc grace ou theoreme 1 qu'il faut montrer VIER, (5m(t) -) e-12/2 Soit Y_{x_i} la fonction avoctoristique de X_i . Comme $X_i \in \mathcal{C}^2$, \mathcal{L}_{x_i} est de classe \mathcal{C}^2 avec $Y_{x_i}'(0) = \mathcal{E}(i X_i) = 0$, $Y_{x_i}''(0) = \mathcal{E}(-X_i^2) = -1$ par hypothès. Or, PSn(t) = E(eitsn) = E(# eitsh) # The E(eitsh) = (Px(=))] Donc en faisant un développement de Tayor de les à l'ordre 2 en 0 on obtient & Px1 (tm) = Px1(0) + t Px1(0) + t2 Px1 (0) + En ou En =>0 $=1-\frac{E}{2n}+\frac{En}{m}.$ Ainsi en ternjectant cela dans ce qui precede, en obtient? PSn(t)=(1-12+En)=(1+En-1) ou En-12 m->+0 == Donc en utilisant le lemme 2, on obtient boin $P \leq \frac{n}{2} (t) = \frac{2}{n-3+co} e^{-\frac{t}{2}}$ ce qui conclut. Remarques : 2 Le thin de levy comprand une deuxième assertion plus forte: Soit (Xn)new des VAR to Pxn -> & simplement, over & continuo en O, alors il esceste X une VAR to P= Px et Xn 2 X. (deve à montrer) * Ca LGN nous assure qu'avec les hypothèses du TCL, Sn. 5,4

le TCL nous donne une vitesse "do convergence: pour n grand, la bi de son est "environ" or (m, 62), dont a variance decreit on 1/m.

la détermination d'intervalles de confrance asymptotiques. * C'hypothère de moment d'ordre 2 est assentiel : (Xn)n en vid E(0,1),

about Xm~ E(0,1) donc aucun dangement d'édalle ne pouvoir garante le (V vois unal! (3)

le TCL peut s'éterctre aux VA mon identitiquement distribuses,

ausc vectours abatoires ota

la convergence observée en loi ici peut-elle être réalisée Ps, en proba? Non o On peut construire des contre-exemples à la main. on suppose toujours $\mu = 0, 6 = 1$, on per $y_n = \frac{\sin}{\sqrt{m}}$ at supposens que Yn Is In MO, 1) (necessarce d'oprès le TC2) donc Yen-> C également. On pere maintenant Zn = Xnor+ Xn+2 +000+X2n 2 > NO, 1)

Or Zn= V2n 42n - Jn 4n = J2 42n - 4n D (J2-1) x L ~ eP(0, 22) 4

le TCC nous dit que les fluctuat ob Sn autour de sa nogenne sont d'adre of De O, pour to avec d> 1, on a CV on la sers O, pour to avec d/ =, on n'a aucune CV. Bur aller @ Bin, le constenite est Obtanu pour Vanleglagn & c'ast le le du logosillem itère : si (Xn) neiv id to $\mu=0$ et 6=1, also $\mathbb{P}\left(\limsup_{n\to+\infty}\frac{S_n}{\sqrt{n}}\times\frac{1}{\sqrt{2\log\log n}}=1\right)=1$.

Cola pout pormettre de remontrer que la CV du TCL ne peut se fiire qu'en bi.

* Idea rapide de la structure de la preuve pour introduction? on se somme grace au then cle long à montrer à CV pour les monômes triopnometriques grace à la transformat au Fourier et cela permet d'obtenir le TCL en effectuent un dev de Taylor de l'esq qui on connait bion's

Bur les legens 261-262 - 250-235, dans un premier temps, 24/1000 le lemme 2 (et reviser avec le roste du temps), pour la lason 218, 7844er le Comme 1 (et caviser de même à la fin)