Propagación de errores en medidas indirectas: comparación de métodos analíticos y métodos numéricos

Jorge Mifsut Benet

Universitat de València

14 de julio de 2021

Índice

- Introducción
 Métodos analíticos
 Métodos de Montecarlo
- ② Implementación en casos sencillos Cálculo de la aceleración de la gravedad con un péndulo Área y volumen de un cilindro
- 3 Implementación en casos complejos Órbita de un satélite El atractor de Lorentz
- 4 Tiempos de cálculo
- 6 Conclusions

Introducción

La importancia de la expresión de la incertidumbre

- Guide to the Expression of Uncertainty in Measurement (2008), Joint Committee for Guides in Metrology (ISO, IUPAC, BIPM...)
- Measurement Uncertainty Analysis Principles And Methods, NASA
 Measurement Quality Assurance Handbook, NASA-HDBK-8739.19-3
- Uncertainty in Industrial Practice: A Guide to Quantitative Uncertainty Management (2008), Etienne de Rocquigny, Nicolas Devictor, Stefano Tarantola, Wiley & Sons

Métodos analíticos

Hipótesis iniciales

- f(x) puede considerarse lineal en el entorno $[\mu_x \sigma_x, \mu_x + \sigma_x]$
- Errores pequeños y simétricos
- Distribución normal para x e y (se pueden caracterizar solo con μ y σ)

 ${\tt Figura:}\ ({\tt Arras},\ {\tt K.},\ 1998)$

1 función 1 variable:

$$\mu_y = f(\mu_x), \quad \sigma_y^2 = \left(\frac{\partial f}{\partial x}\Big|_{\mu_x}\right)^2 \sigma_x^2$$

1 función n variables:

$$\sigma_y^2 = \sum_{j=1}^m \left(\frac{\partial f}{\partial x^{(j)}}\right)^2 \sigma_j^2 + \sum_{j=1}^m \sum_{\substack{k=1\\k\neq j}}^m \frac{\partial f}{\partial x^{(j)}} \frac{\partial f}{\partial x^{(k)}} \sigma_{jk}$$

m funciones de n variables:

$$J = \begin{bmatrix} \frac{\partial f_1}{\partial X_1} & \dots & \frac{\partial f_1}{\partial X_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial X_1} & \dots & \frac{\partial f_m}{\partial X_n} \end{bmatrix} C_X = \begin{bmatrix} \sigma_1^2 & \rho_{12}\sigma_1\sigma_2 & \dots & \rho_{1n}\sigma_1\sigma_n \\ \rho_{21}\sigma_2\sigma_1 & \sigma_2^2 & \dots & \rho_{2n}\sigma_2\sigma_n \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{n1}\sigma_n\sigma_1 & \rho_{n2}\sigma_n\sigma_2 & \dots & \sigma_n^2 \end{bmatrix} \rho_{ij} = \frac{\sigma_{ij}}{\sigma_i\sigma_j}$$

$$\Rightarrow \boxed{C_Y = J \cdot C_X \cdot J^T}$$

Métodos de Montecarlo

Cálculo de la aceleración de la gravedad con un péndulo

Método analítico

Aceleración de la gravedad:

$$g = \frac{4\pi^2 l}{T^2}$$

La propagación de errores por el método analítico:

$$\sigma(g) = \sqrt{\left(\frac{\partial g}{\partial l}\sigma(l)\right)^2 + \left(\frac{\partial g}{\partial T}\sigma(T)\right)^2} = \sqrt{\left(\frac{4\pi^2}{T}\sigma(l)\right)^2 + \left(\frac{-8\pi^2l}{T^3}\sigma(T)\right)^2}$$

Datos experimentales para el método analítico:

Cálculo de la aceleración de la gravedad con un péndulo

Método de Montecarlo

Cálculo de la aceleración de la gravedad con un péndulo

Comparación de ambos métodos (caso de aceleración de la gravedad)

	Montecarlo	Analítica	Discrepancia	
$\bar{x}(\text{m/s}^2)$	9.9410	9.9371	0.03%	
$\sigma(\mathrm{m/s^2})$	0.0762	$\boldsymbol{0.0928}$	18%	
$Med(m/s^2)$	9.9413	-	-	
$\operatorname{Curtosis}$	3.0730	-	-	
A simetría	0.0179	-	-	

En términos del intervalo de confianza al 95 %:

$$g_{analitica} = 9.94 \pm 0.03 \text{ m/s}^2$$

$$g_{Montecarlo} = 9.94 \pm 0.02 \text{ m/s}^2$$

Área y volumen de un cilindro

Método analítico

$$V=\pi r^2 h; \quad S=2\pi r^2+2\pi r h$$

Se tratan tres casos para la correlación entre las variables:

- Variables independientes ($\rho_{rh} = 0$)
- Variables totalmente correlacionadas $(\rho_{rh} = 1) \Rightarrow h(r) = 2r$
- Caso intermedio ($\rho_{rh} = 0.5$)

Área y volumen de un cilindro

Método de Montecarlo

Distribuciones de salida

Área y volumen de un cilindro

Comparación de ambos métodos

Resultados:

	$V (mm^3)$			$S(mm^2)$		
	Montecarlo	Analítica	Discrep.	Montecarlo	Analítica	Discrep.
\bar{x}	59.705	61.752	3 %	80.119	86.486	8 %
σ	42.438	47.951	13%	38.341	44.772	$\mathbf{16~\%}$
Med.	50.166	=	=	75.299	=	-
Curt.	6.418	=	-	3.784	=	-
Asim.	1.473	-	=	0.7564	-	=

$$V_{analitico} = \mathbf{61} \pm 14 \text{ mm}^3$$

$$V_{Montecarlo} = 60 \pm 12 \text{ mm}^3$$

$$S_{analitica} = \mathbf{87} \pm 12 \text{ mm}^2$$

$$S_{Montecarlo} = \mathbf{80} \pm 10 \; \mathrm{mm}^2$$

Implementación en casos complejos

Dos casos:

• Órbita de un satélite

$$\mu \ddot{\vec{r}} = -\frac{\alpha}{r^3} \vec{r}$$

• Sistema del atractor de Lorentz (caso extremo)

$$\frac{dx}{dt} = \sigma(y - x)$$
$$\frac{dy}{dt} = x(\rho - z) - y$$
$$\frac{dz}{dt} = xy - \beta z$$

El método analítico de propagación de errores descrito en la introducción **no** es directamente aplicable en estos casos.

Órbita de un satélite

Condiciones iniciales

El cono de probabilidad de la trayectoria

Comparación del estado inicial y el estado final

Resultados

Posición y velocidad inicial y final con un 95 % de confianza:

$$x(t_0) = 6771.8 \pm \textbf{1.1 km}; \ \ y(t_0) = (102 \pm 3) \cdot \textbf{10^{-5} km}; \ \ z(t_0) = (101 \pm 3) \cdot \textbf{10^{-5} km}$$

$$x(t_f) = 2177 \pm 5 \text{ km}; \quad y(t_f) = 4015 \pm 10 \text{ km}; \quad z(t_f) = 5072 \pm 14 \text{ km}$$

$$v_x(t_0) = 0 \pm \mathbf{0} \ \mathbf{m/s}; \ \ v_y(t_0) = 4758 \pm \mathbf{11} \ \mathbf{m/s}; \ \ v_z(t_0) = 6007 \pm \mathbf{14} \ \mathbf{m/s}$$

$$v_x(t_f) = -7317 \pm 12 \text{ m/s}; \ v_y(t_f) = 14537 \pm 13 \text{ m/s}; \ v_z(t_f) = 1848 \pm 17 \text{ m/s}$$

El atractor de Lorentz

(d) Condiciones iniciales puntuales (e) CI con distribuciones de M=10números aleatorios

Posiciones de cada uno de los M=40 puntos en la iteración 4000 y en los siguientes 3 pasos

Comparación del estado inicial y el estado final

Tiempos de cálculo

Intel Core i7 8GB RAM, NVIDIA GeForce 940MX

• Con $N^m \Rightarrow$ inviable \Rightarrow aproximación: $N \times m$

Conclusions

It is important to discern which is the best method to carry out error propagation in each given case

- Acceleration of gravity with a simple pendulum ⇒ similar results, both methods are equivalent
- Volume and surface area of a cylinder ⇒ notable discrepancies between both methods
- Complex cases with differential equations ⇒ only Montecarlo is applicable, dispersion of points in final state is significantly higher

Conclusion: Montecarlo is the most advisable method for the propagation of uncertainty in indirect measurements, as long as the high computational cost in memory and calculation time can be accepted.

Due to high calculation times MC has been implemented as $N \times m$ instead of N^m