SAR evaluation

MPE Calculation Method

 $E (V/m) = (30*P*G)^{0.5}/d$

Power Density: Pd $(W/m2) = E^2/377$

E = Electric Field (V/m)

P = Peak RF output Power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

 $Pd = (30*P*G) / (377*d^2)$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well

as the gain of the used antenna, the RF power density can be obtained.

Calculated Result and Limit(WORSE CASE IS AS BELOW)

	Directional	Peak Output	Power Density	Limit of Power
	Antenna Gain	Power (mW)	(S) (mW/cm2)	Density (S)
	(Numeric)			(mW/cm2)
2.4G	5.13 (7.10dBi)	6.067	0.0062	1
WIFI		(7.83dBm)		
5G UNII	3.95(5.97dBi)	7.656	0.006	1
		(8.84dBm)		
ZIGBEE	2.1(3.22dBi)	5.15	0.0022	1
		(7.12dBm)		
BT	2.1 (3.22dBi)	4.477	0.0019	1
		(6.51dBm)		
BLE	2.1 (3.22dBi)	0.54	0.00023	1
		(-2.681dBm)		

0.0062+0.006+0.0022+0.0019+0.00023=0.01653<1