$\mathrm{ma}5205$ - measure and integral

Nguyen Ngoc Khanh

September 2023

Measurable Space

1.1 Measurable Space

In \mathbb{R} , we define the volume of an interval to be the length of it. That is, if a closed ¹ interval is of the form I = [a, b], then its length is b - a. Additionally, we want several properties such as: additivity, i.e. if a set is a disjoint union of intervals then the volume of that set is the sum of volumes of the intervals, complement, i.e. if a set has volume then the complement also has. It leads to the definitions of σ -algebra and measure.

Definition 1 (σ -algebra) Let X be an arbitrary set, M is said to be a σ -algebra on X if M consists of subsets of X with properties as follows:

- $\varnothing, X \in M$
- $U \in M \implies X \setminus U \in M \ (complement)$
- $U_1, U_2, ... \in M \implies \bigcup_{k \in \mathbb{N}} U_k \in M \ (countable \ union^2)$

Definition 2 (Measurable Space) Let X be an arbitrary set and a σ -algebra M defined on X. A function $\mu: M \to [0, +\infty]$ is called measure if $\mu(\emptyset) = 0$ and given a countable collection of disjoint sets $U_1, U_2, ... \in M$ then $\mu(\bigcup_{k \in \mathbb{N}} U_k) = \sum_{k \in \mathbb{N}} \mu(U_k)$. The triplet (X, M, μ) is called a measurable space. A set $U \in M$ is called a measurable set.

1.2 Basis of a Measurable Space

Given an arbitrary collection of σ -algebras, the union and intersection are also σ -algebras. That enables us to talk about σ -algebra generated by a basis.

Definition 3 (σ -algebra generated by basis) Let X be an arbitrary set and B be a collection of subsets of X. Define $\sigma(B)$ to be the smallest σ -algebra containing B, that is the intersection of all σ -algebra containing B. $\sigma(B)$ is also said to be the σ -algebra generated by B.

Definition 4 (Basis of a \sigma-algebra) Let X be an arbitrary set and M be a σ -algebra on X. A subset B of M is said to be a basis of M if $M = \sigma(B)$

As discussed earlier, to define volume of a set in \mathbb{R} , we will construct a σ -algebra consisting all open intervals on \mathbb{R} as follows

Definition 5 (Borel σ -algebra or Borel algebra) Let (X, \mathcal{T}) be a topological space, the Borel σ -algebra on X, denoted by $\mathscr{B}(X)$ is the smallest σ -algebra defined on X containing all open sets.

The Borel Measurable Space is then defined as

Definition 6 (Borel Measurable Space on \mathbb{R}^n) $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), \mu)$ is the Borel Measurable Space on \mathbb{R}^n if μ is defined by the volume of n-intervals.

$$\mu\left(\prod_{k=1}^{n}[a_{k},b_{k}]\right) = \prod_{k=1}^{n}(b_{k}-a_{k})$$

¹similarly for other types of interval

 $^{^2}$ or σ -union

1.3 Subspace of a Measurable Space

Definition 7 (Subspace of a Measurable Space) Let (X, M, μ) be a measurable space and $E \in M$. Define the subspace (E, M_E, μ_E) by the restriction of M and μ as follows

- $M_E = \{U \in M : U \subseteq E\}$
- $\mu_E(U) = \mu(U)$ if $U \in M_E$

1.4 Complete Measurable Space

I haven't understood enough to give a reason for complete measurable space

Definition 8 (Outer Measure) Let (X, M, μ) be a measurable space. Define outer measure $\mu_e : \mathcal{P}(X) \to [0, +\infty]$ by the infimum of the measure of all measurable covers

$$\mu_e(E) = \inf \{ \mu(S) : E \subseteq S \in M \}$$

Outer Measure satisfies several properties

- $A \subseteq B \implies |A|_e \le |B|_e \text{ (subset)}$
- $\left|\bigcup_{k\in\mathbb{N}} E_k\right| \leq \sum_{k\in\mathbb{N}} |E_k|$ (σ -subadditivity)

Definition 9 (Complete Measurable Space)

Definition 10 (Completion of a Measurable Space)

Definition 11 (Lebesgue Measurable Space) ³ Lebesgue Measurable Space on \mathbb{R}^n is defined as the completion of the Borel Measurable Space on \mathbb{R}^n

1.5 Product Measure

Definition 12 (Product Measurable Space) Let (X, M, μ) and (Y, N, ν) be measurable spaces. Define the product measurable space as $(X \times Y, \sigma(M \times N), \mu \times \nu)$ where the product measure $\mu \times \nu$ is defined as

$$(\mu \times \nu)(E_X \times E_Y) = \mu(E_X)\nu(E_Y)$$

where $E_X \in M$ and $E_Y \in N$

1.6 Image Measure

 $^{^3}$ can also defined as the unique non-trivial measurable space on \mathbb{R}^n that translation invariant

Measurable Function

Definition 13 (Measurable Function) Let (X, M, μ) and (Y, N, ν) be measurable spaces. A function $f: X \to Y$ is said to be measurable if

$$E_Y \in N \implies f^{-1}(E_Y) \in M$$

In this text, we are particularly interested in the case where $Y = [0, +\infty]$ as it is the foundation to define Lebesgue integral. Let's first define a topology on the totally ordered set $[0, +\infty]$

Definition 14 (Order Topology) Given a totally ordered set (X,<), the order topology \mathcal{T} on X is defined by the basis consists of rays as follows

$$B = \{ \{x : \in X : x < a\} : a \in X \} \cup \{ \{x : \in X : b < x\} : b \in X \}$$

The Borel σ -algebra on $[0, +\infty]$ is now defined as follows

Definition 15 (Measurable Function on Half Extended Real Line) Let $[0, +\infty]$ be equipped with the order topology. Define the Borel measurable space on $[0, +\infty]$ by $([0, +\infty], \mathcal{B}([0, +\infty]), \nu)$ where ν is defined by the length of intervals. Let (X, M, μ) be a measurable space. A function $f: X \to [0, +\infty]$ is said to be measurable if it is a measurable function to the Borel measurable space on $[0, +\infty]$.

From now on, we will call *Measurable Function on Half Extended Real Line* by *Measurable Function* if there is no confusion. It is trivial to verify the proposition below.

Proposition 1 Let (X, M, μ) be a measurable space. A function $f: X \to [0, +\infty]$ is measurable if and only if

$$f^{-1}(a, +\infty] \in M$$

for all $a \in [0, +\infty]$

Integration

3.1 Simple Function

Definition 16 (Indicator function) Let $E \subseteq X$, the indicator function of E denoted by $\chi_E : X \to [0, +\infty]$ is defined by

$$\chi_E(x) = \begin{cases} 1 & if \ x \in E \\ 0 & otherwise \end{cases}$$

Definition 17 (Non-negative simple function) A function is said to be simple if the set image is finite set. A non-negative simple function $\phi: X \to [0, +\infty]$ can be written as

$$\phi = \sum_{n=1}^{N} a_n \chi_{E_n}$$

where $N \in \mathbb{N}$, $a_n \in [0, +\infty]$, $\{E_n\}$ are pairwise disjoint, and $X = \bigcup_{n=1}^N E_n$

Definition 18 (Integral of a non-negative simple function) If $\phi = \sum_{n=1}^{N} a_n \chi_{E_n}$ is a non-negative simple function where E_n are measurable w.r.t some measurable space (X, M, μ) . We define the integral of ϕ as follows

$$\int_{X} \phi = \sum_{n=1}^{M} a_n \mu(E_n)$$

Theorem 1 (Monotone sequence of simple functions) Given any $f : \mathbb{R}^n \to [0, +\infty]$, there exists a monotone increasing sequence of simple functions $\phi_k : \mathbb{R}^n \to [0, +\infty]$ that converges pointwise to f

3.2 Integral of a non-negative function

Definition 19 (Integral of a non-negative function) Let (X, M, μ) be a measurable space and $f: X \to [0, +\infty]$ be measurable. The integral of f is defined as

$$\int_X f d\mu = \sup \left\{ \int_X g d\mu : g \le f \right\}$$

Definition 20 (Lebesgue integral of a non-negative function) Let (\mathbb{R}^n, M, μ) be the Lebesgue measurable space on \mathbb{R}^n and $f: \mathbb{R}^n \to [0, +\infty]$ be measurable. The Lebesgue integral of f is defined as

$$\int_{\mathbb{R}^n} f d\mu = \sup \left\{ \int_{\mathbb{R}^n} \phi d\mu : \phi \le f, \phi \text{ is simple} \right\}$$

Proposition 2 (Area under the graph) Let (\mathbb{R}^n, M, μ) be the Lebesgue measurable space on \mathbb{R}^n and $f : \mathbb{R}^n \to [0, +\infty]$ be measurable. Define the set under f as follows

$$R(f) = \{(x, y) \in \mathbb{R}^n \times \mathbb{R} : 0 \le y < f(x)\}$$

Then,

$$\mu(R(f)) = \int_{\mathbb{R}^n} f d\mu$$

Definition 21 (Integral of arbitrary function) Let (\mathbb{R}^n, M, μ) be the Lebesgue measurable space on \mathbb{R}^n and $f : \mathbb{R}^n \to [-\infty, +\infty]$ be measurable. The Lebesgue integral of f is defined as

$$\int_{\mathbb{R}^n} f d\mu = \int_{\mathbb{R}^n} f^+ d\mu - \int_{\mathbb{R}^n} f^- d\mu$$

if either $\int_{\mathbb{R}^n} f^+ d\mu$ and $\int_{\mathbb{R}^n} f^- d\mu$ is finite.

Proposition 3 (Linearity of Lebesgue integral)

3.3 Convergence Theorems of a non-negative function

Proposition 4 (Monotone Convergence Theorem)

Proposition 5 (Fatou Lemma)

Theorem 2 (Lebesgue Dominated Convergence Theorem)

3.4 Product Measure Theorems

Proposition 6 (Sectional Property) Let $(X, M_X, \mu_X), (Y, M_Y, \mu_Y)$ be measurable spaces. Given any $E \in \sigma(M_X \times M_Y)$. For almost every $x \in X$, the set $E_x = \{y \in Y : (x, y) \in E\} \in M_Y$

Proposition 7 (Sectional Property for Lebesgue Measurable Space) Let $X = \mathbb{R}^m$, $Y = \mathbb{R}^n$, E is a Lebesgue measurable set on $X \times Y$. For almost every $x \in X$, the set $E_x = \{y \in Y : (x,y) \in E\}$, namely section, is Lebesgue measurable on Y

Theorem 3 (Fubini Theorem) Let $X = \mathbb{R}^m$, $Y = \mathbb{R}^n$. If $f: X \times Y \to [-\infty, +\infty]$ is Lebesgue integrable, i.e. $f \in L(X \times Y)$, then

- For almost every $x \in X$, function $f_x: Y \to [-\infty, +\infty]$ defined by $f_x(y) = f(x,y)$ is Lebesgue integrable, i.e $f_x \in L(Y)$
- Function $g(x): X \to (-\infty, +\infty)$ defined by $g(x) = \int_Y f_x(y) dy$ is Lebesgue integrable, i.e $g \in L(X)$

And

$$\int_{X\times Y} f = \int_X \left[\int_Y f_x(y) dy \right] dx$$

3.5 Change of Variables

Lebesgue Differentiation Theorem

4.1 Vitali Covering Lemma

Lemma 1 (Zorn Lemma) Suppose a partially ordered set P has the property that every chain in P has an upper bound in P. Then the set P contains at least one maximal element.

Lemma 2 (Axiom of Choice) For any set X of nonempty sets, there exists a choice function f that is defined on X and maps each set of X to an element of that set.

Lemma 3 (Simple Vitali Covering Lemma) In a metric space, let F be a collection of balls such that $\sup_{B \in F} r(B) = R < +\infty$, then there is a (countable in a separable metric space) subcollection M of pairwise disjoint balls such that

$$\bigcup_{B \in F} B \subseteq \bigcup_{B_k \in M} cB_k$$

where cB_k denotes the open ball constructed from B_k by simple enlarging it c times ¹.

Let F be a collection of balls, define a partial order on the set of all disjoint collection of balls in F_n as follows: let A, B be any set of disjoint balls in F_n , define $A \leq B$ as $A \subseteq B$. Hence, any chain $\{A_i \in F : i \in I\}$ for any index set I, there is an upperbound $A = \bigcup_{i \in I} A_i$. By Zorn Lemma, F has a maximal subcollection M of disjoint balls.

Let F_1 be defined as follows

$$F_1 = \left\{ B \in F : \frac{R}{2} < r(B) \le R \right\}$$

By Zorn Lemma, there is a maximal subcollection M_1 of disjoint balls in F_1 . Similarly, let M_n be a maximal subcollection of disjoint balls of F_n

$$F_n = \left\{ B \in F : \frac{R}{2^{n+1}} < r(B) \le \frac{R}{2^n} \text{ and } B \text{ does not intersect } M_1, M_2, ..., M_{n-1} \right\}$$

Given any ball $B \in F$, we will prove that every point $b \in B$ is not too far off from $M = \bigcup_{n \in \mathbb{N}} M_n$. Suppose $\frac{R}{2^{n+1}} < r(B) \le \frac{R}{2^n}$, then B must intersect one of $M_1, M_2, ..., M_n$. If B does not intersect $M_1, M_2, ..., M_{n-1}$, by the construction of $F_n, B \in F_n$. On the other hand, by maximality of M_n, B intersects one of ball in M_n . Next, let $B_k \in M_k (k \le n)$ intersects B, let c_k, c denote the centers of B_k and B. Then, for any $b \in B$, we have

$$d(c_k, b) \leq d(c_k, a) + d(a, c) + d(c, b) \qquad (let \ a \in B_k \cap B)$$

$$\leq r(B_k) + r(B) + r(B) \qquad (a \in B_k, a \in B, b \in B)$$

$$\leq r(B_k) + 4\frac{R}{2^{n+1}} \qquad \left(r(B) \leq \frac{R}{2^n}\right)$$

$$\leq 5r(B_k) \qquad \left(\frac{R}{2^{n+1}} \leq \frac{R}{2^{k+1}} \leq r(B_k)\right)$$

 $^{{}^{1}\{}x \in \mathbb{R}^{n} : ||x - x_{0}|| < r\} \mapsto \{x \in \mathbb{R}^{n} : ||x - x_{0}|| < cr\}$

Hence, any point in any ball in F is in one of the ball $5B_k$ where $B_k \in M_k$, $k \in \mathbb{N}$. Let $M = \bigcup_{k \in \mathbb{N}} M_k$ given any two balls $B_m, B_n \in M$ with m < n, by the construction of F_n , $B_n \in M_n \subseteq F_n$ then B_n does not intersect B_m . Hence, M is a pairwise disjoint subcollection of F and P

$$\bigcup_{B \in F} B \subseteq \bigcup_{B_k \in M} 5B_k$$

If the metric space is separable, let $M_Q = \{Q \cap B_k : B_k \in M\}$ where Q is a countable dense set. Each set in M_Q is non-empty and pairwise disjoint, hence is there a bijection from M to M_Q by Axiom of Choice. Hence, M is countable.

Lemma 4 (Simple Vitali Covering Lemma for Lebesgue measure) Let $E \subseteq \mathbb{R}^n$ with $\mu_e(E) < +\infty$, let F be a collection of balls covering E, then for any $0 < \epsilon < \mu_e(E)$, there is a countable subcollection M of pairwise disjoint balls such that

$$\sum_{B_k \in M} \mu(B_k) \ge \beta \mu_e(E)$$

Let $F_n = \{B \in F : r(B) < n\}$, then $(\overline{F_1} \cap E) \subseteq (\overline{F_2} \cap E) \subseteq ...$ and $(\bigcup_{n \in \mathbb{N}} (\overline{F_n} \cap E)) = E$ where $\overline{F_n} = \bigcup_{B \in F_n} B$, hence 3 , $\mu_e(E) = \lim_{n \to +\infty} \mu_e(\overline{F_n} \cap E)$. Therefore, given any $\epsilon > 0$, there exists $n \in \mathbb{N}$ such that $\mu_e(E) - \epsilon < \mu_e(\overline{F_n} \cap E)$. By Simple Vitali Covering Lemma on F_n of bounded radius. there is a countable collection M of balls such that

$$\bigcup_{B \in F_n} B \subseteq \bigcup_{B_k \in M} cB_k$$

Hence,

$$c^{n} \sum_{B_{k} \in M} \mu(B_{k}) \ge \mu_{e} \left(\bigcup_{B \in F_{n}} B \right)$$

$$\ge \mu_{e}(\overline{F_{n}} \cap E)$$

$$\ge \mu_{e}(E) - \epsilon$$

Write $M = \bigcup_{k=1}^{+\infty} B_k$, then $\lim_{N \to +\infty} \sum_{k=1}^{N} \mu(B_k) = \mu(M) \ge \frac{1}{c^n} (\mu_e(E) - \epsilon)$. Choose appropriate ϵ , there exists $N \in \mathbb{N}$ such that

$$\sum_{k=1}^{N} \mu(B_k) \ge \beta \mu_e(E)$$

where $\beta > 0$

Given any $\epsilon > 0$, choose an open set $G \supseteq E$ such that $\mu_e(E) \le \mu(G) < \mu_e(E) + \epsilon$. If the first condition satisfies, the second is immediate.

Let $G_1 = G$, $E_1 = E$. Let \mathcal{V}_1 be constructed by discarding all closed balls in \mathcal{V} that are not contained in G_1 . As \mathcal{V} finely covers E_1 and G_1 is open, \mathcal{V}_1 still finely covers E_1 ⁴. By Simple Vitali Covering Lemma for Lebesgue measure on E with cover \mathcal{V}_1 , there is a countable subcollection $M_1 \subseteq \mathcal{V}_1$ such that

$$\sum_{B_i \in M_1} \mu(B_i) \ge \beta \mu_e(E)$$

Then,

$$\mu\left(E_1 \setminus \overline{M_1}\right) \leq \mu\left(G_1 \setminus \overline{M_1}\right)$$

$$= \mu(G_1) - \sum_{B_i \in M_1} \mu(B_i) \qquad \text{(balls in } M_1 \text{ are are contained in } G_1\text{)}$$

$$< (1 - \beta)\mu_e(E_1) + \epsilon$$

$$< (1 - \beta/2)\mu_e(E_1) \qquad \text{(choose } 0 < \epsilon < \beta\mu_e(E_1)/2\text{)}$$

Let $M^{(k-1)} = \bigcup_{i=1}^{k-1} \overline{M_i}$ where $\overline{M_i} = \bigcup_{B \in M_i} B$. Similarly, Let $G_k = G \setminus M^{(k-1)}$, $E_k = E \setminus M^{(k-1)}$ be the remaining set after choosing k-1 finite subcollection M_i . Construct V_k by discarding all closed balls in $\mathcal V$ that are not contained in G_k . As $\mathcal V$ finely covers E_k and G_k is open, $\mathcal V_k$ still finely covers E_k . Simple Vitali Covering Lemma for Lebesgue measure on $E \setminus M^{(k-1)}$ with cover $\mathcal V_1$, there is a countable subcollection $M_k \subseteq \mathcal V_k$ such that

²we can make c smaller by choosing finer partition of R

³By Theorem 3.27, Richard L. Wheeden - Antoni Zygmund - Measure and Integral: An Introduction to Real Analysis - Second Edition

⁴A similar argument: for each $x \in G_1 \cap E$, choose one a sequence of decreasing closed balls containing x that is contained in $G_1 \cap E$

$$\sum_{B_i \in M_k} \mu(B_i) \ge \beta \mu_e(E_k)$$

Then, note that $\mu(G_k) = \mu(G) - \mu(M^{(k-1)}) < [\mu_e(E) - \mu(M^{(k-1)})] + \epsilon \le \mu_e(E_k) + \epsilon$

$$\mu_{e}(E_{k+1}) = \mu_{e}\left(E_{k} \setminus \overline{M_{k}}\right) \leq \mu\left(G_{k} \setminus \overline{M_{k}}\right)$$

$$= \mu(G_{k}) - \sum_{B_{i} \in M_{k}} \mu(B_{i}) \qquad \text{(balls in } M_{k} \text{ are are contained in } G_{k})$$

$$< (1 - \beta/2)\mu_{e}(E_{1})$$

Therefore,

$$\mu(E_k) < (1 - \beta/2)^{k-1}\mu(E)$$

Put $M = \bigcup_{k \in \mathbb{N}} M_k$, we have $(E \cap M^{(1)}) \subseteq (E \cap M^{(2)}) \subseteq ...$, and $\bigcup_k (E \cap M^{(k)}) = E \cap \overline{M}$ Then, ⁵

$$\mu_{e}(E \cap \overline{M}) = \lim_{k \to +\infty} \mu_{e}(E \cap M^{(k)})$$

$$= \lim_{k \to +\infty} [\mu_{e}(E) - \mu(E \setminus M^{(k)})]$$

$$= \mu_{e}(E) - \lim_{k \to +\infty} \mu(E \setminus M^{(k)})$$

$$= \mu_{e}(E)$$
(Caratheodory criterion)
$$= \mu_{e}(E)$$

Hence, $\mu_e(E \setminus \overline{M}) = \mu_e(E) - \mu_e(E \cap \overline{M}) = 0$

4.2 Lebesgue Differentiation Theorem

Lemma 5 (Hardy-Littlewood Maximal Function) Given a Lebesgue measurable function $f : \mathbb{R}^n \to \mathbb{R}$, Hardy-Littlewood maximal function defined on ball is as follows

$$f^*(x) = \sup_{r>0} \frac{1}{\mu(\mathcal{B}_r(x))} \int_{\mathcal{B}_r(x)} |f(y)| dy$$

Some properties of Hardy-Littlewood maximal function:

- 1. f^* is lower semicontinuous, i.e. $E_t = \{x \in \mathbb{R}^n : f^*(x) > t\}$ is open for all $t \in \mathbb{R}$
- 2. $\mu(E_t) \leq \frac{c}{t} \int_{\mathbb{R}^n} |f(y)| dy \text{ where } c \in \mathbb{R}$

(Part 1) Given any $\alpha > 0$, let $x_1 \in E_t = \{x \in \mathbb{R}^n : f^*(x) > t\}$ that is, there exists r > 0 such that

$$\frac{1}{\mu(\mathcal{B}_r(x_1))} \int_{\mathcal{B}_r(x_1)} |f(y)| dy > \alpha t$$

where $\alpha > 1$. We will prove that there exists an open ball $\mathcal{B}_{\epsilon}(x_1)$ such that for every $x_2 \in \mathcal{B}_{\epsilon}(x_1)$, $f^*(x_2) > t$, that implies the set E_t is open.

Let $\epsilon > 0$, for any $x_2 \in \mathcal{B}_{\epsilon}(x_1)$, then $\mathcal{B}_r(x_1) \subseteq \mathcal{B}_{r+\epsilon}(x_2)$. Therefore

$$t < \frac{1}{\alpha} \frac{1}{\mu(\mathcal{B}_r(x_1))} \int_{\mathcal{B}_r(x_1)} |f(y)| dy$$

$$\leq \frac{1}{\alpha} \frac{\mu(\mathcal{B}_{r+\epsilon}(x_2))}{\mu(\mathcal{B}_r(x_1))} \frac{1}{\mu(\mathcal{B}_{r+\epsilon}(x_2))} \int_{\mathcal{B}_{r+\epsilon}(x_2)} |f(y)| dy$$

Choose ϵ small enough such that $\frac{\mu(\mathcal{B}_{r+\epsilon}(x_2))}{\mu(\mathcal{B}_r(x_1))} < \alpha$, then

$$\frac{1}{\mu(\mathcal{B}_{r+\epsilon}(x_2))} \int_{\mathcal{B}_{r+\epsilon}(x_2)} |f(y)| dy > t$$

That is, $f^*(x_2) > t$. Hence, there exists $\epsilon > 0$ such that for all $x_2 \in \mathcal{B}_{\epsilon}(x_1)$, $f^*(x_2) > t$. E_t is open for any t.

⁵By Theorem 3.27, Richard L. Wheeden - Antoni Zygmund - Measure and Integral: An Introduction to Real Analysis - Second Edition

(Part 2) For each $x \in E_t$, let B_x be a ball centered at x such that $\frac{1}{\mu(B_x)} \int_{B_x} |f(y)| dy > t$. The collection $\{B_x : x \in E_t\}$ covered E_t , by Vitali Covering Lemma, given any $\epsilon > 0$, there is a finite subcollection M_{ϵ} of pairwise disjoint B_k such that

$$\sum_{B_k \in M_{\epsilon}} \mu(B_k) \ge \frac{1}{5}\mu(E_t) - \epsilon$$

Therefore,

$$\mu(E_t) \leq 5 \sum_{B_k \in M_{\epsilon}} \mu(B_k) + 5\epsilon$$

$$< 5 \sum_{B_k \in M_{\epsilon}} \left(\frac{1}{t} \int_{B_k} |f(y)| dy\right) + 5\epsilon \qquad \text{(by construction of } B_k)$$

$$\leq \frac{5}{t} \int_{\mathbb{R}^n} |f(y)| dy + 5\epsilon \qquad (B_k \text{ pairwise disjoint)}$$

The statement is true for all $\epsilon > 0$, hence

$$\mu(E_t) \le \frac{5}{t} \int_{\mathbb{R}^n} |f(y)| dy$$

Lemma 6 (Density of Continuous Function) Given $f \in L(\mathbb{R}^n)$ and any $\epsilon > 0$, there exists a continuous function g with compact support 6 such that

$$\int_{\mathbb{R}^n} |f(x) - g(x)| dx < \epsilon$$

Theorem 4 (Lebesgue Differentiation Theorem) Given $f \in L(\mathbb{R}^n)$, then for almost every $x \in \mathbb{R}^n$

$$\limsup_{B\searrow x}\left|\frac{F(B)}{|B|}-f(x)\right|=\limsup_{B\searrow x}\frac{1}{\mu(B)}\left|\int_{B}[f(y)-f(x)]dy\right|=0$$

where $B \searrow x$ denotes $B = \mathcal{B}_r(x)$ and $r \to 0^+$, $F(B) = \int_B f(y) dy t$

Let D_t be defined as

$$D_t = \left\{ x \in \mathbb{R}^n : \limsup_{B \searrow x} \frac{1}{\mu(B)} \left| \int_B [f(y) - f(x)] dy \right| > t \right\}$$

We will prove that $\mu_e(D_t) = 0$ for all t > 0, that will conclude the Lebesgue Differentiation Theorem. Let g be a continuous function, and any ball B centers at x, then

$$\begin{split} \left| \int_{B} [f(y) - f(x)] dy \right| &\leq \int_{B} |f(y) - f(x)| dy \\ &\leq \int_{B} |f(y) - g(y)| dy + \int_{B} |g(y) - g(x)| dy + \mu(B) |g(x) - f(x)| \end{split}$$

Hence,

$$\begin{split} \limsup_{B\searrow x} \frac{1}{\mu(B)} \left| \int_{B} [f(y) - f(x)] dy \right| &\leq \limsup_{B\searrow x} \frac{1}{\mu(B)} \left(\int_{B} |f(y) - g(y)| dy + \int_{B} |g(y) - g(x)| dy + \mu(B) |g(x) - f(x)| \right) \\ &\leq \limsup_{B\searrow x} \frac{1}{\mu(B)} \int_{B} |f(y) - g(y)| dy + \limsup_{B\searrow x} \frac{1}{\mu(B)} \int_{B} |g(y) - g(x)| dy + \limsup_{B\searrow x} |g(x) - f(x)| \end{split}$$

As g is continuous, $\limsup_{B\searrow x} \frac{1}{\mu(B)} \int_B |g(y)-g(x)| dy = 0$, then

$$\begin{split} \limsup_{B\searrow x} \frac{1}{\mu(B)} \left| \int_{B} [f(y) - f(x)] dy \right| &\leq \limsup_{B\searrow x} \frac{1}{\mu(B)} \int_{B} |f(y) - g(y)| dy + |g(x) - f(x)| \\ &\leq \sup_{B} \frac{1}{\mu(B)} \int_{B} |f(y) - g(y)| dy + |g(x) - f(x)| \\ &= (f - g)^{*}(x) + |g(x) - f(x)| \end{split}$$

⁶support of $f: X \to \mathbb{R}$ is $\{x \in X : f(x) \neq 0\}$

Therefore,

$$D_t \le \left\{ x \in \mathbb{R}^n : (f - g)^*(x) > \frac{t}{2} \right\} \cup \left\{ x \in \mathbb{R}^n : |g(x) - f(x)| > \frac{t}{2} \right\}$$

As the two sets are measurable

$$\mu_e(D_t) \le \mu\left(\left\{x \in \mathbb{R}^n : (f-g)^*(x) > \frac{t}{2}\right\}\right) + \mu\left(\left\{x \in \mathbb{R}^n : |g(x) - f(x)| > \frac{t}{2}\right\}\right)$$

By property of Hardy-Littlewood maximal function,

$$\mu\left(\left\{x \in \mathbb{R}^n : (f-g)^*(x) > \frac{t}{2}\right\}\right) \le \frac{2c}{t} \int_{\mathbb{R}^n} |f(y) - g(y)| dy$$

By Chebyshev inequality,

$$\mu\left(\left\{x \in \mathbb{R}^n : |g(x) - f(x)| > \frac{t}{2}\right\}\right) \le \frac{2}{t} \int_{\mathbb{R}^n} |f(y) - g(y)| dy$$

Therefore,

$$\mu_e(D_t) \le \frac{2(c+1)}{t} \int_{\mathbb{R}^n} |f(y) - g(y)| dy$$

Given any t > 0 and $\epsilon > 0$, we can choose g close enough to f such that $\int_{\mathbb{R}^n} |f(y) - g(y)| dy < \frac{t\epsilon}{2(c+1)}$, then $\mu_e(D_t) < \epsilon$. Hence $\mu_e(D_t) = 0$ for all t > 0. Then

$$D = \left\{ x \in \mathbb{R}^n : \limsup_{B \searrow x} \frac{1}{\mu(B)} \left| \int_B [f(y) - f(x)] dy \right| > 0 \right\} = \bigcup_{k \in \mathbb{N}} D_{1/k}$$

Then $\mu_e(D)=0$, that is $\limsup_{B\searrow x}\frac{1}{\mu(B)}\left|\int_B[f(y)-f(x)]dy\right|=0$ for almost every $x\in\mathbb{R}^n$

4.3 Absolute Continuous Set Function

I wrote another pdf for this

Convex function

Definition 22 (Convex set) A set $C \in \mathbb{R}^n$ is said to be convex if for any $x, y \in C$, then $tx + (1-t)y \in C$ for all $t \in [0,1]$

Definition 23 (Convex function) A function $f: C \to \mathbb{R}$ defined on a convex set $C \in \mathbb{R}^n$ is said to be a convex function if for any $x, y \in C$, then $f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y)$ for all $t \in [0, 1]$

Proposition 8 (The cone of convex functions) The set of convex functions form a cone

- $\phi_1 + \phi_2$ convex if ϕ_1 and ϕ_2 are convex
- $c\phi$ convex if c > 0 and ϕ convex

Proposition 9 (Completeness of convex functions) If $\phi_k, k = 1, 2, ...$ convex and $\phi_k \to \phi$, then ϕ is convex

Lemma 7 (Existence of supporting plane) Given a convex function $f: C \to \mathbb{R}$, $C \subseteq \mathbb{R}^n$, for any $x_0 \in C$, there exists a n-plane $p: \mathbb{R}^n \to \mathbb{R}$ such that p(x) = f(x) for all $x \in C$. Moreover, p can be chosen such that $p(x_0) = f(x_0)$

Theorem 5 (Jensen Inequality) Given a measurable space (X, M, μ) with $\mu(X) = 1$ and μ -measurable function $f: X \to \mathbb{R}$. Given a convex function $\phi: \mathbb{R} \to \mathbb{R}$, then $\phi(f)$ is μ -measurable and

$$\phi\left(\int_X f d\mu\right) \le \int_X \phi(f) d\mu$$

Let $\gamma = \int_X f d\mu$ and m be the slope of the supporting line at $(\gamma, \phi(\gamma))$, then for any $x \in X$

$$\phi(\gamma) + m(f(x) - \gamma) \le \phi(f(x))$$

Then

$$\int_{X} \phi(\gamma) d\mu + m \left(\int_{X} f(x) d\mu - \int_{X} \gamma d\mu \right) \le \int_{X} \phi(f(x)) d\mu$$
$$\mu(X) \phi(\gamma) + m \left(\gamma - \mu(X) \gamma \right) \le \int_{X} \phi(f(x)) d\mu$$

As $\mu(X) = 1$, yields the inequality.

If μ is the counting measure on a finite set, we have

$$\phi\left(\sum_{i=1}^{n} t_i f(x_i)\right) \le \left(\sum_{i=1}^{n} t_i \phi(f(x_i))\right)$$

for $t_1, t_2, ... \ge 0$ and $\sum_{i=1}^n t_i = 1$

L^p Space

6.1 L^p

Definition 24 (L^p) Given a measurable space (X, M, μ) and a μ -measurable function $f: X \to [-\infty, +\infty]$. For any 0 , define

- $||f||_p = \left(\int_X |f|^p d\mu\right)^{1/p}$
- $||f||_{\infty} = \inf\{\alpha \in [-\infty, +\infty] : |\{x \in X : f(x) > \alpha\}| = 0\}$

The set $L^p(E)$ is then defined as

$$L^p(E) = \{f \text{ is μ-measurable, defined on } X : ||f||_p < +\infty\}$$

Proposition 10 If $\mu(X) < +\infty$ then $||f||_{\infty} = \lim_{p \to \infty} ||f||_p$

Case 1:

not interesting

Case 2: $\mu(X) > 0, ||f||_{\infty} > 0$

$$||f||_p = \left(\int_X |f|^p\right)^{1/p}$$

$$\leq \left(\int_X ||f||_\infty^p\right)^{1/p}$$

$$= ||f||_\infty \mu(X)^{1/p}$$
(let $p \geq 1$)

Then, $\lim_{p\to\infty} ||f||_p \le ||f||_{\infty}$. On the other hand,

By definition, given any $M < ||f||_{\infty}$, then the set $A = \{x \in X : |f(x)| > M\}$ has a positive μ -measure, then

$$||f||_p = \left(\int_X |f|^p\right)^{1/p}$$

$$\geq \left(\int_A |f|^p\right)^{1/p}$$

$$\geq \left(\int_A M^p\right)^{1/p}$$

$$= M\mu(A)^{1/p}$$

Fix M, $\lim_{p\to\infty}\mu(A)^{1/p}=0$. Then, $\lim_{p\to\infty}||f||_p\geq M$ for all $M<||f||_\infty$. Hence,

$$||f||_{\infty} = \lim_{p \to \infty} ||f||_p$$

Proposition 11 Given $\mu(X) < +\infty$, if $0 < p_1 < p_2 \le +\infty$, then $L^{p_1} \supset L^{p_2}$

Case 1:

not interesting

Case 2: $\mu(X)$ finite and $p_2 < +\infty$

Jensen inequality

$$\phi\left(\frac{\int_X f^{p_1}}{\mu(X)}\right) \le \left(\frac{\int_X \phi(f^{p_1})}{\mu(X)}\right)$$

Take $\phi(x) = x^{p_2/p_1}$, then

$$\left(\frac{\int_X f^{p_1}}{\mu(X)}\right)^{p_2/p_1} \le \frac{\int_X f^{p_2}}{\mu(X)}$$

If $f \in L^{p_2}$, the LHS = RHS finite

Proposition 12 (Vector Space of L^p) L^p for 0 forms a vector space over the field of complex numbers

- $\bullet \ f+g \in L^p \ if \ f,g \in L^p$
- $cf \in L^p$ if $c \in \mathbb{C}$ and $f \in L^p$

Proposition 13 (Continuity of $L^p(\mathbb{R}^n)$) *If* $f \in L^p(\mathbb{R}^n)$, $1 \leq p < +\infty$, then

$$\lim_{|h| \to 0} ||f(x+h) - f(x)||_p = 0$$

to

6.2 Holder Inequality and Minkowski Inequality

Lemma 8 (Young Inequality) Given c > 0, let $\phi : [0, c] \to \mathbb{R}$ be a continuous, strictly increasing function with $\phi(0) = 0$, then it is a bijection from [0, c] into $[0, \phi(c)]$. Moreover, given any $a \in [0, c]$ and $b \in [0, \phi(c)]$, then

$$ab \leq \int_0^a \phi + \int_0^b \phi^{-1}$$

The equality holds if (a,b) lies on the graph of ϕ , i.e. $b = \phi(a)$

First, we write $\int_0^b \phi^{-1}$ in term of integral of ϕ .

$$\begin{split} \int_0^b \phi^{-1} &= |\{(y,x) \in [0,b] \times [0,\phi^{-1}(b)] : x < \phi^{-1}(y)\}| \\ &= |\{(x,y) \in [0,\phi^{-1}(b)] \times [0,b] : \phi(x) < y\}| \\ &= |[0,\phi^{-1}(b)] \times [0,b]| - |\{(x,y) \in [0,\phi^{-1}(b)] \times [0,b] : y < \phi(x)\}| \\ &= b\phi^{-1}(b) - \int_0^{\phi^{-1}(b)} \phi \end{split}$$

Case 1: $\phi^{-1}(b) \leq a$

$$\int_0^a \phi + \int_0^b \phi^{-1} = \int_{\phi^{-1}(b)}^a \phi + b\phi^{-1}(b)$$

$$\geq \int_{\phi^{-1}(b)}^a b + b\phi^{-1}(b)$$

$$= ab$$

Case 2: $\phi^{-1}(b) \ge a$

$$\int_0^a \phi + \int_0^b \phi^{-1} = -\int_a^{\phi^{-1}(b)} \phi + b\phi^{-1}(b)$$

$$\geq -\int_a^{\phi^{-1}(b)} b + b\phi^{-1}(b)$$

$$= ab$$

If $1 \le p < +\infty$ and $\frac{1}{p} + \frac{1}{q} = 1$, then $\phi(x) = x^{p-1}$, then $\phi^{-1}(y) = y^{q-1}$. Moreover,

$$ab \le \int_0^a x^{p-1} + \int_0^b y^{q-1} = \frac{a^p}{p} + \frac{b^q}{q}$$

Theorem 6 (Holder Inequality) Given a measurable space (X, M, μ) and μ -measurable functions $f, g: X \to [-\infty, +\infty]$. If $1 \le p \le +\infty$ and $\frac{1}{p} + \frac{1}{q} = 1$, then

$$||fg||_1 \le ||f||_p ||g||_q$$

Case 1: p = 1 or $p = +\infty$

not interesting

Case 2: 1

If $||f||_p = 0$ (or $||g||_q = 0$), then f = 0 (or g = 0) almost everywhere, then both sides equal 0. If $||f||_p = +\infty$ (or $||g||_q = +\infty$), then RHS equals $+\infty$. Hence, consider the case where both $||f||_p$, $||g||_q$ finite. We further assume that $||f||_p = 1$ and $||g||_q = 1$ (if not, divide both sides by $||f||_p ||g||_q$),

Ther

$$||fg||_{1} = \int_{X} |f||g|d\mu$$

$$\leq \int_{X} \left(\frac{|f|^{p}}{p} + \frac{|g|^{q}}{q}\right) d\mu$$

$$= \left(\frac{||f||_{p}^{p}}{p} + \frac{||g||_{q}^{q}}{q}\right)$$

$$= 1 = ||f||_{p}||g||_{q}$$

Theorem 7 (Converse of Holder Inequality) Given a measurable space (X, M, μ) and μ -measurable function $f: X \to [-\infty, +\infty]$, let $1 \le p \le +\infty$ and $\frac{1}{p} + \frac{1}{q} = 1$. Then

$$||f||_p = \sup_{||g||_q \le 1} ||fg||_1$$

where $f: X \to [-\infty, +\infty]$ is a μ -measurable function. Moreover,

$$||f||_p = \sup_{||g||_q \le 1} ||fg||_1 = \sup_{||g||_q \le 1} \int_X fg d\mu$$

From Holder Inequality,

$$||f||_p \ge ||f||_p ||g||_q \ge ||fg||_1$$

Hence,

$$||f||_p \ge \sup_{||g||_q \le 1} ||fg||_1$$

Now, we will prove the converse: $||f||_p \le \sup_{||g||_q \le 1} ||fg||_1$

Case 1: $||f||_p = 0$, then f = 0 almost everywhere

not interesting

Case 2: $||f||_p$ finite

Assume $||f||_p = 1$ (if not, divide both sides by $||f||_p$). Pick $g = |f|^{p/q}$, then $||q||_q = \int_X |f|^p = ||f||_p = 1$. Furthermore,

$$||fg||_1 = \int_Y |f|^{p/q+1} d\mu = \int_Y |f|^p d\mu = ||f||_p^p = 1 = ||f||_p$$

Hence,

$$||f||_p \le \sup_{||g||_q \le 1} ||fg||_1$$

Case 3: $||f||_p = +\infty$

Let $f_k, k \in \mathbb{N}$ be defined as

$$f_k(x) = \begin{cases} 0 & \text{if } ||x|| \ge k \\ \min\{|f(x)|, k\} & \text{if } ||x|| < k \end{cases}$$

Each f_k has $||f_k||_p$ finite, then there exists g_k , $||g_k||_q = 1$ such that $||f_k g_k||_1 = ||f_k||_p$. Since $f_k \leq |f|$, we have $||f_k||_p \leq ||f_k g_k||_1 \leq ||fg_k||$. As $f_k \nearrow |f|$, then $||f_k||_p \nearrow ||f||_p$, $||fg_k||$ is arbitrary large. Then,

$$+\infty = ||f||_p \le \sup_{||g||_q \le 1} ||fg||_1 = +\infty$$

Theorem 8 (Minkowski Inequality) Given a measurable space (X, M, μ) and μ -measurable functions $f, g: X \to [-\infty, +\infty]$. If $1 \le p \le +\infty$, then

$$||f+g||_p \le ||f||_p + ||g||_p$$

Case 1: $p = +\infty$ not interesting

Case 2: $1 \le p < +\infty$ and $||f||_p = +\infty$ (or $||g||_p = +\infty$)

not interesting

Case 3: $1 \le p < +\infty$ and both $||f||_p$ and $||g||_p$ finite

$$\begin{split} ||f+g||_p^p &= \int_X |f+g|^p d\mu \\ &= \int_X |f+g|^{p-1} |f+g| d\mu \\ &\leq \int_X |f+g|^{p-1} (|f|+|g|) d\mu \\ &= \int_X |f+g|^{p-1} |f| d\mu + \int_X |f+g|^{p-1} |g| d\mu \\ &= ||(|f+g|^{p-1}|f|)||_1 + ||(|f+g|^{p-1}|g|)||_1 \\ &\leq ||(f+g)^{p-1}||_q ||f||_p + ||(f+g)^{p-1}||_q ||g||_p \qquad \qquad \text{(where $q>0$ and $\frac{1}{p}+\frac{1}{q}=1$)} \\ &= ||f+g||_p^{p-1} (||f||_p + ||g||_p) \end{split}$$

Hence,

$$||f+g||_p \le ||f||_p + ||g||_p$$

6.3 Banach Space, Metric Space

Definition 25 (Normed Space) Given a vector space V, a function $||\cdot||:V\to [0,+\infty)$ is said to be a norm if it satisfies the following

- Positive definiteness: ||x|| = 0 if and only if x = 0
- Absolute homogeneity: $||\lambda x|| = |\lambda|||x||$ for all $\lambda \in F$ and $x \in V$
- Triangle inequality: $||x+y|| \le ||x|| + ||y||$ for all $x, y \in V$

If $||\cdot||$ satisfies only Absolute homogeneity and Triangle inequality, it is said to be a semi-norm. A vector space equipped with a norm is called a normed space.

Definition 26 (Complete Metric Space) A set M equipped with a metric $d: M \times M \to [0, +\infty)$ is said to be a metric space if it satisfies the following

- Positive definiteness: d(x,y) = 0 if and only if x = y
- Symmetry: d(x,y) = d(y,x) for all $x,y \in M$
- Triangle inequality: $d(x,z) \le d(x,y) + d(y,z)$ for all $x,y,z \in M$

A sequence $x_1, x_2, ...$ $(x : \mathbb{N} \to X)$ is said to be Cauchy if given any $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that for all m, n > N, then $d(x_m, x_n) < \epsilon$. A metric space (X, d) is said to be complete if every Cauchy sequence converges.

Definition 27 (Banach Space - Complete Normed Space) A space X is said to be a Banach space over the field F if it satisfies the following

- ullet X is a normed space over F
- X is a complete metric space induced by its norm, i.e. d(x,y) = ||x-y||

Definition 28 (Separable Topological Space) A set X equipped with a topology $\mathcal{T} \subseteq \mathcal{P}(X)$ is said to be a topological space if it satisfies the following

- $\varnothing, X \in \mathcal{T}$
- $\bigcup_{i \in I} U_i \in \mathcal{T}$ if $U_i \in \mathcal{T}$ for all $i \in I$ where I is any index set.
- $\bigcap_{n=1}^{N} U_i \in \mathcal{T} \text{ if } U_i \in \mathcal{T} \text{ for all } i=1,2,...,N \text{ where } N \in \mathbb{N}$

A set in \mathcal{T} is said to be an open set. Given a subset $E \subseteq X$, a point $x \in X$ is said to be a limit point of E if any open neighbour of x (open set containing x) contains a point in E other than x. The union of E and all of its limit points is said to be the closure of E, written as \overline{E} . A subset $E \subseteq X$ is said to be dense if $\overline{E} = X$. A topological space is said to be separable if it has a countable dense subset.

Definition 29 (Metric Space as a Topological Space) Given a metric space (X, d), define a topology \mathcal{T} consists of all open balls $\mathcal{B}_r(x)$ for all $x \in X$ and r > 0

Lemma 9 Given a measurable space (X, M, μ) and μ -measurable functions $f, g: X \to [-\infty, +\infty]$. Then

- $||f+g||_p \le ||f||_p + ||g||_p$ (if $1 \le p \le +\infty$)
- $||f+g||_p \le K(||f||_p + ||g||_p)$ for K > 0 (if 0)

Theorem 9 (Classification of L^p) Some classifications of L^p

- 1. if $0 , <math>L^p$ is a separable metric space with metric $d(f,g) = ||f-g||_p^p$
- 2. if $1 \le p < +\infty$, L^p is a separable Banach space with norm $||f|| = ||f||_p$
- 3. if $p = +\infty$, L^p is a Banach space with norm $||f|| = ||f||_p$

Lemma 10 $(a+b)^p \le a^p + b^p$ if $a, b \ge 0$ and 0

$$(a+b)^p = (a+b)^p \left(\frac{a}{a+b} + \frac{b}{a+b}\right) \le (a+b)^p \left[\left(\frac{a}{a+b}\right)^p + \left(\frac{b}{a+b}\right)^p\right] = a^p + b^p$$

Proposition 14 If $0 , <math>d(f,g) = ||f - g||_p^p$ is a metric

$$||f+g||_p^p = \int_X |f(x)+g(x)|^p d\mu \le \int_X |f(x)|^q d\mu + \int_X |g(x)|^p d\mu \le ||f||_p^p + ||g||_p^p$$

Proposition 15 If $1 \le p < +\infty$, L^p is complete.

Let $\{f_k\}_{k\in\mathbb{N}}$ be a Cauchy sequence in L^p , that is given any $\epsilon>0$, there exists a $N\in\mathbb{N}$ such that for all m,n>N, $||f_m-f_n||_p<\epsilon$. Hence, we can construct a subsequence $\{f_{k_i}\}$ such that

$$\int_{X} |f_{k_{i}} - f_{k_{i-1}}| d\mu \le \int_{X} |f_{k_{i}} - f_{k_{i-1}}|^{p} d\mu = ||f_{k_{i}} - f_{k_{i-1}}||_{p}^{p} < 2^{i}$$

Put $g_i = \sum_{i=1}^n |f_{k_i} - f_{k_{i-1}}|$ and $g = \sum_{i=1}^\infty |f_{k_i} - f_{k_{i+1}}| = \lim_{i \to \infty} g_i$. By Fatou lemma, $\int_X g d\mu \leq \liminf_{i \to \infty} \int_X g_i d\mu \leq 1$. Hence, g is finite almost everywhere.

Therefore, the following infinite series absolute converges for almost every $x \in X$

$$f(x) = f_{k_0}(x) + \sum_{i=1}^{\infty} (f_{k_i}(x) - f_{k_{i-1}}(x)) = \lim_{i \to \infty} f_{k_i}$$

Now, we prove that f is also a limit of $\{f_k\}$ in L^p . As $|\cdot|^p$ is continous, $|f_{k_i} - f_k|^p \to |f - f_k|^p$, then by Fatou lemma

$$||f - f_k||_p^p = \int_X |f - f_k|^p d\mu \le \liminf_{i \to \infty} \int_X |f_{k_i} - f_k|^p d\mu$$

Given any $\epsilon > 0$, pick K large enough such that for all k > K, $\lim \inf_{i \to \infty} \int_X |f_{k_i} - f_k|^p d\mu < \epsilon^{1/p}$. We have the convergence in L^p . Furthermore, by Minkowski inequality

$$||f||_p \le ||f - f_k||_p + ||f_k||_p < +\infty$$

Proposition 16 L^{∞} is complete.

Let $\{f_k\}_{k\in\mathbb{N}}$ be a Cauchy sequence in L^{∞} . Let $Z_{kmn} = \{x \in X : |f_k(x)| > ||f_k||_{\infty} \text{ and } |f_m(x) - f_n(x)| > ||f_m - f_n||_{\infty}\}$ with $\mu(Z_{kmn}) = 0$ and $E = X \setminus \bigcup_{(k,m,n)\in\mathbb{N}^3} Z_{kmn}$ with $\mu(E) = \mu(X)$. For each $x \in E$, $f_k(x)$ is a Cauchy sequence, hence $f_k(x) \to y < M$. Let $f: X \to \mathbb{R}$ be the bounded function where f(x) = 0 on $X \setminus E$ and $f_k(x) \to f(x)$ uniformly on E. Hence, f is also a limit of $\{f_k\}$ in L^{∞} .

Proposition 17 If $0 , <math>L^p$ is separable in \mathbb{R}^{n-1}

not interesting

Theorem 10 (Continuity in $L^p(\mathbb{R}^n)$) If $f \in L^p(\mathbb{R}^n)$ given 0 , then

$$\lim_{|h| \to 0} d(f(x+h), f(x)) = 0$$

where $d(a,b) = ||a-b||_p$ for $1 \le p < +\infty$ and $d(a,b) = ||a-b||_p^p$ for 0

Outline of the proof

- 1. Let C^p be the set of functions satisfying the continuity conditions
- 2. C^p is a vector space
- 3. $f \in C^p$ if $f_k \to f$ in L^p ($||f_k f|| \to 0$ as $k \to \infty$) and $f_k \in C^p, k \in \mathbb{N}$
- 4. There is a dense set D of L^p belongs to C^p (set of linear combinations of indicator functions of cubes)
- 5. $C^p = L^p = \overline{D}$

¹probably true given X σ -finite

Hilbert Space

Definition 30 (Inner Product Space) Given a vector space V over field F, a function $\langle \cdot, \cdot \rangle : V \times V \to F$ is said to be an inner product if it satisfies the following

- Positive definiteness: $\langle x, x \rangle > 0$ and $\langle x, x \rangle = 0$ if and only if x = 0
- Conjugate Symmetry: $\langle x, y \rangle = \overline{\langle y, x \rangle}$ for all $x, y \in V$
- Additivity in the first argument: $\langle x+y,z\rangle = \langle x,z\rangle + \langle y,z\rangle$ for all $x,y,z\in V$
- Homogeneity in the first argument: $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$ for all $x, y \in V$ and $\alpha \in F$

A vector space equipped with an inner product is called an inner product space. Consequently, an inner product space is also a norm space where the norm is defined as $||x|| = |\langle x, x \rangle|$

Definition 31 (Hilbert Space) Hilbert Space is a Banach Space where the norm is induced from an inner product.

7.1 Orthogonality

Definition 32 (Linear Independence, Orthogonal, Orthogonal System, Span, Basis) Some definitions related to Hilbert Space:

- A collection of vectors $\{x_i : i \in I\}$ is said to be linearly independent if for any finite subcollection $J \subseteq I$, $\sum_{j \in J} a_j x_j = 0 \iff a_j = 0 \ \forall j \in J$
- Non-zero $x, y \in V$ are said to be orthogonal if $\langle x, y \rangle = 0$
- A set of non-zero pairwise orthogonal vectors is said to be an orthogonal system.
- An orthogonal system is said to be maximal (or complete) if no other vector is orthogonal to every vector in the system.
- Span of a collection of vectors is the set of all finite linear combinations.
- A collection of vectors is said to be a basis if its closure of span is the whole space.

Theorem 11 Cardinality of any orthogonal system in a Hilbert Space is at most its density. In particular, any orthogonal system in a separable Hilbert Space is countable.

Assume $\{x_i : i \in I\}$ is orthonormal where I is any index set. If $a \neq b$, then

$$||x_a - x_b||^2 = |\langle x_a - x_b, x_a - x_b \rangle| = ||x_a||^2 + ||x_b||^2 = 2$$

Hence, $||x_a - x_b|| < \sqrt{2}$. Let $B = \{\mathcal{B}_{\sqrt{2}/2}(x_i) : i \in I\}$ be a collection of disjoint balls centered at x_i . Let D be a dense set, then for each $B_i \in B$, there is at least one element from D. By Axiom of Choice, we can construct a injection from B to D. Hence, $\operatorname{card}(I) \leq \operatorname{card}(D)$

Theorem 12 Any orthogonal system in a Hilbert Space is linearly independent.

Let $\{x_j : j \in J\}$ be finite orthonormal collection of vectors. Then

$$0 = \left\langle x_k, \sum_{j \in J} a_j x_j \right\rangle = a_k \langle x_k, x_k \rangle = a_k$$

Theorem 13 (Gram-Schmidt Process) Given a countable collection of vectors $\{x_i\}, i \in \mathbb{N}$. There exists a countable orthogonal system $\{y_i\}$ defined by

$$y_1 = x_1$$

 $y_2 = a_{21}x_1 + x_2$
...
 $y_k = a_{k1}x_1 + ... + a_{kk-1}x_{k-1} + x_k$
...

Theorem 14 An orthogonal system is maximal if and only if it is a basis.

Let $\{x_i : i \in I\}$ be an orthonormal basis, we will prove that it is maximal. Suppose there exists y such that $\langle y, x_i \rangle$ for all $i \in I$ and ||y|| = 1, then

$$1 = \langle y, y \rangle = \left\langle y, y - \sum_{j \in J} a_j x_j \right\rangle \le ||y|| \cdot \left| \left| y - \sum_{j \in J} a_j x_j \right| \right|$$

for any finite subcollection $J \subseteq I$ and choice of a_j . Since $\{x_i : i \in I\}$ is a basis, RHS is arbitrary small. Hence, $\{x_i : i \in I\}$ is maximal.

On the other hand, let $\{x_i : i \in I\}$ be an maximal orthonormal system. Suppose, it is not a basis, that is, there exists y and $\epsilon > 0$ such that

$$\left\| y - \sum_{j \in J} a_j x_j \right\| > \epsilon$$

for all finite subcollection $J \subseteq I$, and choice of a_j . Let $a_j = \langle y, x_i \rangle$ and $y_k = y - \sum_{j=1}^k a_j x_j$. We will prove that y_k is a Cauchy sequence then converges. By Pythagorean theorem

$$||y||^2 = ||y_k||^2 + ||\sum_{j=1}^k a_j x_j||^2 \ge ||\sum_{j=1}^k a_j x_j||^2 = \sum_{j=1}^k |a_j|^2$$

for all $k \in \mathbb{N}$. The monotone increasing sequence $(\sum_{j=1}^k a_j^2)$ is bounded above, hence converges. Given any m < n, we have

$$||y_m - y_n|| = ||\sum_{j=m+1}^n a_j x_j|| = \sqrt{\sum_{j=m+1}^n |a_j|^2}$$

So, we can pick N large enough such that N < m < n and $||y_m - y_n||$ is arbitrary small. Let $y_k \to y_\infty$, by the assumption, $||y_\infty|| \ge ||y_k|| - ||y_k - y_\infty||$, then $||y_\infty|| \ge \epsilon$. We now prove that y_∞ is orthogonal to all x_i which leads to a contradiction. For any x_i , choose k > i so that y_k orthogonal to x_i

$$\langle y_{\infty}, x_i \rangle = \langle y_k + (y_{\infty} - y_k), x_i \rangle = \langle y_k, x_i \rangle + \langle y_{\infty} - y_k, x_i \rangle = \langle y_{\infty} - y_k, x_i \rangle \le ||y_{\infty} - y_k|| ||x_i||$$

By choosing k large enough, we can make RHS arbitrary small. Hence, $\langle y_{\infty}, x_i \rangle = 0$

Theorem 15 $L^P(\mathbb{R}^n)$ is a separable Hilbert Space and every basis is countably infinite.

7.2 Fourier Series

Definition 33 (Fourier Series) Given an orthonormal system $\{x_i : i \in \mathbb{N}\}$ in a Hilbert space H and $y \in H$, then the number

$$c_i = \langle y, x_i \rangle$$

is said to be the Fourier coefficient. The series

$$S[y] = \sum_{i=1}^{\infty} c_i x_i$$

is said to be the Fourier series

Theorem 16 Given an orthonormal system $\{x_i : i \in \mathbb{N}\}$ in a Hilbert space H and $y \in H$. Given $N \in \mathbb{N}$, then

$$\min_{z \in \text{span}\{x_1, \dots, x_N\}} ||y - z||^2 = ||y - S[y]||^2 = ||y|| - \sum_{i=1}^N |c_i|^2$$

where $\{c_i : i \in \mathbb{N}\}\$ are Fourier coefficients of y. Moreover,

$$\sum_{i=1}^{\infty} |c_i|^2 \le ||y||^2$$

Let $z = \sum_{i=1}^{N} a_i x_i$, then

$$||y - z||^{2} = \langle y - z, y - z \rangle$$

$$= ||y||^{2} - 2\operatorname{Re}(\langle y, z \rangle) + ||z||^{2}$$

$$= ||y||^{2} - 2\operatorname{Re}(\langle y, \sum_{i=1}^{N} a_{i}x_{i} \rangle) + ||z||^{2}$$

$$= ||y||^{2} + \sum_{i=1}^{N} \left[-2\operatorname{Re}(\overline{a_{i}}c_{i}) + |a_{i}|^{2} \right]$$

$$= ||y||^{2} - \sum_{i=1}^{N} |c_{i}|^{2} + \sum_{i=1}^{N} |a_{i} - c_{i}|^{2}$$

$$\geq ||y||^{2} - \sum_{i=1}^{N} |c_{i}|^{2}$$

The equality holds when $a_i = c_i$. Let $y_k = \sum_{i=1}^k c_i x_i$, by Pythagorean theorem

$$||y||^2 = ||y_k||^2 + ||y - y_k||^2$$

Then $\sum_{i=1}^k |c_i|^2 = ||y_k||^2 \le ||y||^2$ for all $k \in \mathbb{N}$. Hence, $\sum_{i=1}^\infty |c_i|^2 \le ||y||^2$

Proposition 18 (Parseval formula) Let $\{c_i : i \in \mathbb{N}\}$ be Fourier coefficients of y, then $\sum_{i=1}^{\infty} |c_i|^2 = ||y||^2$ if and only if $y_k \to y$ where $y_k = \sum_{i=1}^k c_i x_i$

$$\lim_{k \to \infty} ||y - y_k||^2 = ||y||^2 - \lim_{k \to \infty} ||y_k||^2 = ||y||^2 - \sum_{i=1}^{\infty} |c_i|^2$$

Theorem 17 (Riesz-Fischer Theorem) Given an orthonormal system $\{x_i : i \in \mathbb{N}\}$ in a Hilbert space H and $(a_1, a_2, ...) \in l^2$ $(\sum_{i=1}^{\infty} |a_i|^2 < +\infty)$, then there exists $y \in H$ such that $\langle y, x_i \rangle = a_i$ and $\sum_{i=1}^{\infty} |a_i|^2 = ||y||^2$

Let $y_k = \sum_{i=1}^k a_i x_i$. We will prove that $\{y_k : k \in \mathbb{N}\}$ is a Cauchy sequence. Given any m < n,

$$||y_n - y_m||^2 = \sum_{i=m+1}^n |a_i|^2$$

As $\sum_{i=1}^{\infty} |a_i|^2 < +\infty$, we can choose N large enough such that the RHS is arbitrary small for all m, n > N. Hence, $\{y_k : k \in \mathbb{N}\}$ is a Cauchy sequence. Let $y_k \to y$, for any x_i , choose k > i

$$\langle y, x_i \rangle = \langle y_k + (y - y_k), x_i \rangle = \langle y_k, x_i \rangle + \langle y - y_k, x_i \rangle = a_i + \langle y - y_k, x_i \rangle$$

we can choose k large enough such that $|\langle y, x_i \rangle - a_i|$ arbitrary small. Hence, $\langle y, x_i \rangle = a_i$. By Pythagorean theorem ¹,

$$||y||^2 = ||y_k + (y - y_k)||^2 = ||y_k||^2 + ||y - y_k||^2 = \sum_{i=1}^k |a_i|^2 + ||y - y_k||^2$$

Then

$$\sum_{i=1}^{\infty} |a_i|^2 = ||y||^2 - \lim_{k \to \infty} ||y - y_k||^2 = ||y||^2$$

 $[\]frac{i=1}{1\langle y-y_k, y_k \rangle = \langle y, y_k \rangle - \langle y_k, y_k \rangle} = \langle y, \sum_{i=1}^k a_i x_i \rangle - \sum_{i=1}^k |a_i|^2 = 0$

Theorem 18 Given an orthonormal system $\{x_i : i \in \mathbb{N}\}$ in a Hilbert space H. $\{x_i : i \in \mathbb{N}\}$ is a basis if and only if for every $y \in H$, $y_k \to y$ where $y_k = \sum_{i=1}^k c_i x_i$ and $c_i = \langle y, x_i \rangle$

For every $y \in H$, $y_k \to y$, then $\{x_i : i \in \mathbb{N}\}$ is dense. On the other hand, let $\{x_i : i \in \mathbb{N}\}$ be a basis but $y_k \to y_\infty$ and $||y-y_{\infty}||>0$, then $y-y_{\infty}$ is orthogonal to all x_i . Choose k>i

$$\langle y-y_{\infty},x_{i}\rangle = \langle (y-y_{k})+(y_{k}-y_{\infty}),x_{i}\rangle = \langle y-y_{k},x_{i}\rangle + \langle y_{k}-y_{\infty},x_{i}\rangle \leq ||y_{k}-y_{\infty}||||x_{i}||$$

Choose k large enough make RHS arbitrary small. Contradiction

Definition 34 (Isometry - Isomorphism of Metric Space) Two metric spaces A, B are isometric if there exists a bijection $T:A\to B$ such that it preserves distance, i.e. $d_B(T(x),T(y))=d_A(x,y)$ for all $x,y\in A$

Lemma 11 All vector spaces have a basis

Prove using Zorn lemma

Theorem 19 All separable Hilbert spaces are linearly isometric

Given a separable Hilbert space H, we will prove that it is isometric to l^2 . Given a basis of H, using Gram-Schmidt Process, we can construct an orthonormal basis $\{x_i : i \in \mathbb{N}\}$

Let $(a_1, a_2, ...) \in l^2$ and the map $T(a_1, a_2, ...) = y$ where $y_k \to y$ with $y_k = \sum_{i=1}^k a_i x_i$. T is one-to-one. Suppose $T(a_1, a_2, ...) = T(b_1, b_2, ...) = y$ with $a_i \neq b_i$. By Riesz-Fischer Theorem, $a_i = \langle y, x_i \rangle = b_i$.

T is onto. By theorem 18, for any $y \in H$ the sequence of Fourier coefficients $(c_1, c_2, ...)$ satisfies $y_k \to y$ with $y_k = \sum_{i=1}^k c_i x_i$.

T is an isometry. Let $y = T(a_1, a_2, ...), z = T(b_1, b_2, ...)$

$$||y-z||^2 = ||\sum_{i=1}^{\infty} (a_i - b_i)x_i|| = \sum_{i=1}^{\infty} (a_i - b_i)^2 = ||(a_1, a_2, ...) - (b_1, b_2, ...)||^2$$

T is linear.

not interesting

Approximation of Identity

Definition 35 (Convolution) Given f, g measurable on X, define convolution

$$(f * g)(x) = \int_X f(t)g(x - t)dt$$

provided the integral exists.

Theorem 20 (Young Convolution Theorem) Let $1 \le p, q \le +\infty$ and $\frac{1}{p} + \frac{1}{q} \ge 1$ and let $\frac{1}{r} = \frac{1}{p} + \frac{1}{q} - 1$. If $f \in L^p$ and $g \in L^q$, then $f * g \in L^r$ and

$$||f * g||_r \le ||f||_p ||g||_q$$

Moreover, theorem still holds if we relax either $f \in L^p$ or $g \in L^q$ to weak-type.

Definition 36 (Partial derivative) C^m denotes the class of functions whose partial derivatives of order m exist and continuous. C_0^m denotes a subset of C^m with compact support. Similar notations C^{∞}, C_0^{∞} for infinitely differentiable function.

Let $\alpha = (\alpha_1, ..., \alpha_n), \sum_{i=1}^n \alpha \leq m$, denote the α partial derivative of $f \in C^m$ as

$$(D^{\alpha}f)(x) = \left(\frac{\partial^{\alpha}f}{\partial x^{\alpha}}\right)(x) = \left(\frac{\partial^{\alpha_{1}}}{\partial x_{1}{}^{\alpha_{1}}}...\frac{\partial^{\alpha_{n}}}{\partial x_{n}{}^{\alpha_{n}}}\right)(x)$$

Theorem 21 If $1 \le p \le +\infty$, $f \in L^p$ and $K \in C_0^m$, then $f * K \in C^m$ with bounded partial derivatives of all orders at most m and

$$D^{\alpha}(f * K)(x) = (f * D^{\alpha}K)(x)$$

where $\alpha = (\alpha_1, ..., \alpha_n), \sum_{i=1}^n \alpha \leq m$

todo

Definition 37 (Approximation of Identity) The ring of measurable functions on X with usual addition and convolution as the multiplication is a ring without unity, i.e. there is no $e: X \to [-\infty, +\infty]$ such that f*e = e*f = f for all $f: X \to [-\infty, +\infty]$. We instead approximate the identity by a kernel K. Given K(x) and $\epsilon > 0$, let

$$K_{\epsilon}(x) = \epsilon^{-n} K\left(\frac{x}{\epsilon}\right)$$

Lemma 12 If $K \in L^1(\mathbb{R}^n)$ and $\epsilon > 0$, then

1.
$$\int K_{\epsilon} = \int K$$

2. $\lim_{\epsilon \to 0^+} \int_{|x| > \delta} |K_{\epsilon}| = 0$ for any fixed δ

By change of variables $T: \mathbb{R}^n \to \mathbb{R}^n$ defined by $y = T(x) = \frac{x}{\epsilon}$

$$\int_{\mathbb{R}^n} K_{\epsilon}(y) dy = \int_{T^{-1}(\mathbb{R}^n)} K_{\epsilon}(T(x)) |(\det T)(x)| dx = \int_{\mathbb{R}^n} K(x) dx$$

Similarly,

$$\int_{|x|>\delta} |K_{\epsilon}(y)| dy = \int_{|x|>\delta/\epsilon} |K(x)| dx$$

As $\int_{\mathbb{R}^n} |K(x)| dx < +\infty$, by monotonicity, $\lim_{\epsilon \to 0^+} \int_{|x| > \delta} |K_{\epsilon}| = 0$

Theorem 22 Let $f_{\epsilon} = f * K_{\epsilon}$ where $K \in L^{1}(\mathbb{R}^{n})$ and $\int K = 1$. If $f \in L^{p}(\mathbb{R}^{n}), 1 \leq p < +\infty$, then

$$\lim_{\epsilon \to 0} ||f_{\epsilon} - f||_p = 0$$

If 1 , then

$$|f_{\epsilon}(x) - f(x)| = \left| \int f(x-t)K_{\epsilon}(t)dt - f(x) \right|$$

$$= \left| \int [f(x-t) - f(x)]K_{\epsilon}(t)dt \right|$$

$$\leq \int |f(x-t) - f(x)||K_{\epsilon}(t)|dt \qquad (analogous to triangle inequality)$$

$$= \int |f(x-t) - f(x)||K_{\epsilon}(t)|^{1/p}|K_{\epsilon}(t)|^{1/q}dt \qquad \left(\frac{1}{p} + \frac{1}{q} = 1\right)$$

$$= \left| \left| \left(|f(x-t) - f(x)||K_{\epsilon}(t)|^{1/p} \right) \left(|K_{\epsilon}(t)|^{1/q} \right) \right| \right|_{1} \qquad (norm as a function of t)$$

$$\leq \left| \left| |f(x-t) - f(x)||K_{\epsilon}(t)|^{1/p} \right| \left| |K_{\epsilon}(t)|^{1/q} \right| \right|_{q} \qquad (Holder inequality for p, q , norm as a function of t)
$$= \left(\int |f(x-t) - f(x)|^{p} |K_{\epsilon}(t)|dt \right)^{1/p} \left(\int |K_{\epsilon}(t)|dt \right)^{1/q}$$

$$= \left(\int |f(x-t) - f(x)|^{p} |K_{\epsilon}(t)|dt \right)^{1/p}$$$$

We also have the same inequality if p = 1 (not interested). Therefore,

$$||f_{\epsilon} - f||_{p}^{p} = \int |f_{\epsilon}(x) - f(x)|^{p} dx$$

$$\leq \int \left(\int |f(x - t) - f(x)|^{p} |K_{\epsilon}(t)| dt \right) dx$$

$$= \int \left(\int |f(x - t) - f(x)|^{p} |K_{\epsilon}(t)| dx \right) dt \qquad (Tonelli theorem)$$

$$= \int |K_{\epsilon}(t)| \left(\int |f(x - t) - f(x)|^{p} dx \right) dt$$

Let $\phi(t) = \int |f(x-t) - f(x)|^p dx = ||f(x-t) - f(x)||_p^p$ (norm as a function of x), by continuity of L^p function, $f \in L^p(\mathbb{R}^n), 1 \le p \le +\infty$, for any $\eta > 0$, there exists $\delta > 0$ such that $|t| < \delta$ then $\phi(t) < \eta$. We have

$$\begin{split} ||f_{\epsilon} - f||_{p}^{p} &\leq \int |K_{\epsilon}(t)|\phi(t)dt \\ &= \int_{|t|<\delta} |K_{\epsilon}(t)|\phi(t)dt + \int_{|t|\geq\delta} |K_{\epsilon}(t)|\phi(t)dt \\ &\leq \eta \int_{|t|<\delta} |K_{\epsilon}(t)|dt + \int_{|t|\geq\delta} |K_{\epsilon}(t)|\phi(t)dt \qquad \qquad \text{(continuity of } L^{p}) \\ &\leq \eta M + \int_{|t|\geq\delta} |K_{\epsilon}(t)|\phi(t)dt \qquad \qquad \left(\int_{|t|<\delta} |K_{\epsilon}(t)|dt \leq \int |K_{\epsilon}(t)|dt = M < +\infty\right) \\ &\leq \eta M + 2^{p}||f||_{p}^{p} \int_{|t|>\delta} |K_{\epsilon}(t)|dt \qquad \qquad (||f(x-t) - f(x)||_{p}^{p} \leq (||f(x-t)||_{p} + ||f(x)||_{p})^{p} = 2^{p}||f||_{p}^{p}) \end{split}$$

As $\lim_{\epsilon \to 0} \int_{|t| > \delta} |K_{\epsilon}(t)| dt = 0$, we can make $||f_{\epsilon} - f||_p^p$ arbitrarily small

8.1 Marcinkiewicz Interpolation Theorem

Definition 38 (Weak- L^p) A measurable function on X is said to belong to weak $L^p(X), 0 if there is a constant <math>A \ge 0$ such that $\mu\{x \in X : f(x) > \alpha\} \le \frac{A}{\alpha^p}$. Some properties of weak L^p

- if $f \in L^p$, then $f \in weak-L^p$
- if $f \in weak L^1$ and $f \in weak L^r$, then $f \in L^p$ with $1 < r < p < \infty$

Theorem 23 (Marcinkiewicz Interpolation Theorem) Given a operator T that is sublinear 1, that is

$$|T(f+g)(x)| \le |Tf(x)| + |Tg(x)|$$

almost everywhere. Then, for any p < r < q, if T maps L^p into weak- L^p and T maps a L^q into a weak- L^q . Then, T maps L^r into a L^r .

Given any function f and any $\alpha > 0$, define the following

- $f^{\alpha} = \chi_{\{|f| > \alpha\}} f$
- $f_{\alpha} = \chi_{\{|f| \le \alpha\}} f$

Then, $f = f^{\alpha} + f_{\alpha}$. By sublinearity of T,

$$|Tf(x)| \le |Tf^{\alpha}(x)| + |Tf_{\alpha}(x)|$$

almost everywhere. Then

$$\{|Tf| > \alpha\} \subseteq \{|Tf^{\alpha}| > \alpha/2\} \cup \{|Tf_{\alpha}| > \alpha/2\}$$

By sublinearity of measure,

$$\mu\{|Tf| > \alpha\} \le \mu\{|Tf^{\alpha}| > \alpha/2\} + \mu\{|Tf_{\alpha}| > \alpha/2\}$$

Now, we write the L_r norm of Tf

$$||Tf||_r^r = \int |Tf(x)|^r dx$$

$$= r \int_0^{+\infty} \alpha^{r-1} \mu\{|Tf| > \alpha\} d\alpha$$

$$\leq r \int_0^{+\infty} \alpha^{r-1} \mu\{|Tf^{\alpha}| > \alpha/2\} d\alpha + r \int_0^{+\infty} \alpha^{r-1} \mu\{|Tf_{\alpha}| > \alpha/2\} d\alpha$$

We will prove that each term is bounded given $||f||_r$ finite. For the second term, pick α small enough such that for all $x \in [0, \alpha], x^q < x^r$. Then $f \in L^r \implies f_\alpha \in L^r \implies f_\alpha \in L^q$. As T maps L^q to weak- L^q , we have

$$\mu\{|Tf_{\alpha}| > \alpha/2\} \le c\alpha^{-q}||f_{\alpha}||_q^q$$

for some constant c. Then

$$\int_{0}^{+\infty} \alpha^{r-1} \mu\{|Tf_{\alpha}| > \alpha/2\} d\alpha \leq c \int_{0}^{+\infty} \alpha^{r-1} \alpha^{-q} \left(\int \chi_{\{|f| \leq \alpha\}} |f(x)|^{q} dx \right) d\alpha$$

$$= c \int |f(x)|^{q} \left(\int_{0}^{+\infty} \alpha^{-(q-r)-1} \chi_{\{|f| \leq \alpha\}} d\alpha \right) dx \qquad (Tonelli theorem)$$

$$= c \int |f(x)|^{q} \left(\int_{|f(x)|}^{+\infty} \alpha^{-(q-r)-1} d\alpha \right) dx$$

$$= c \int |f(x)|^{q} \frac{1}{(q-r)|f(x)|^{q-r}} dx$$

$$= \frac{c}{q-r} \int |f(x)|^{r} dx$$

For the first term, $f \in L^r \implies f^{\alpha} \in L^r \implies f^{\alpha} \in L^p$. As T maps L^p to weak- L^p , we have

$$\mu\{|Tf^{\alpha}| > \alpha/2\} \le c\alpha^{-p}||f_{\alpha}||_p^p$$

for some constant c. Then

¹can be generalized to $|T(f+g)(x)| \le c(|Tf(x)| + |Tg(x)|)$

$$\begin{split} \int_0^{+\infty} \alpha^{r-1} \mu\{|Tf^\alpha| > \alpha/2\} d\alpha &\leq c \int_0^{+\infty} \alpha^{r-1} \alpha^{-p} \bigg(\int \chi_{\{|f| > \alpha\}} |f(x)|^p dx \bigg) d\alpha \\ &= c \int |f(x)|^p \bigg(\int_0^{+\infty} \alpha^{(r-p)-1} \chi_{\{|f| > \alpha\}} d\alpha \bigg) dx \\ &= c \int |f(x)|^p \bigg(\int_0^{|f(x)|} \alpha^{(r-p)-1} d\alpha \bigg) dx \\ &= c \int |f(x)|^p \frac{|f(x)|^{r-p}}{r-p} dx \\ &= \frac{c}{r-p} \int |f(x)|^r dx \end{split}$$