FUNCTION

LEVEL-I

1. Let
$$f(x) = \ln(2x - x^2) + \sin\frac{\pi x}{2}$$
, then

- (A) Graph of f is symmetrical about the line x = 1
- (B) Graph of f is symmetrical about the line x = 2
- (C) maximum value of f is 1
- (D) minimum value of f does not exist.
- 2. The domain of definition of $f(x) = sec^{-1}(cos^2x)$ is
 - (A) $m\pi$, $m \in I$

(B) $\pi/2$

(C) $\pi/4$

(D) none of these.

- 3. The period of $f(x) = \frac{1}{2} [\cos(\sin x) + \cos(\cos x)]$ is
 - (A) π

(B) π/2

(C) $\pi/4$

 $(D) 2\pi$

- 4. Domain of f (x) = $\log_{\left[x+\frac{1}{2}\right]} (x^2-x-2)$ is , where [.] denotes the greatest integer function.
 - (A) $\left[\frac{3}{2}, \infty\right]$

(B) (2, ∞)

(C) $\left[\frac{3}{2}, 2\right]$

(D) none of these

- 5. $f(x) = \begin{cases} |x|, & x \neq 0 \\ |[K]|, & x = 0 \end{cases}$ if f(x) is having minimum value -10 then k = 1
 - (A) 2

(B) -10

(C)9

- (D) not possible
- Domain of $\cos^{-1} [2x^2 3]$ where [.] denotes greatest integer function, is

(A)
$$\left[1, \sqrt{\frac{5}{2}}\right]$$

(B) $\left[-\sqrt{\frac{5}{2}},-1\right]$

(C)
$$\left[-\sqrt{\frac{5}{2}},-1\right] \cup \left[1,\sqrt{\frac{5}{2}}\right]$$

- (D) None of these.
- 7. Which of the following function(s) from $f: A \rightarrow A$ are invertible, where A = [-1,1]:
 - (A) f(x) = x/2

(B) $g(x) = \sin (\pi x/2)$

(C) h(x) = |x|

- (D) $k(x) = x^2$
- 8 Solution of $0 < |x-3| \le 5$ is
 - (A) [-2,8]
- (B) [-2,3) U (3,8]
- (C) [-2,3)
- (D) none of these

- 9. Solution of $\frac{(x-3)(x+5)(x-7)}{|x-4|(x+6)} \le 0$ is
 - (A) (-6,-5] U [3, 7) U (4, 7)

(B) [3,7]

(C) (-6,-5]

(D) [3,4) (4,7]

10.	f f(x) is a function that is odd and ev	en simultaneously, then $f(3) - f(2)$ is equal to		
	(A) 1 (B) -1	(C) 0 (D) none of these		
11	If $f(x)$ and $g(x)$ be two given function $h(x) = (f(x) + f(-x)) (g(x) - g(-x))$. is (A) always an odd function (B) an odd function when both the f (C) an odd function when f is even a (D) none of these	_		
12	If $f(x) = \sin\{x\}$, f: $R \rightarrow R$, then f is (A) periodic	(B) one-one		
	(C) many-one	(D)none of these		
13	If $f(x) = \sin^{-1}\left(\frac{x^2}{1+x^2}\right)$ then the rang	e of f(x) is		
	(A) [-π/2,π/2] (C) [0,π/2)	(B) [0,π/2] (D) [-π/2,0)		
14.	If the period of $\frac{\sin(nx)}{\tan(x/n)}$, where $n \in$	I, is 6π , then		
	(A) n = 4 (C) n = 3	(B) n = -3 (D) none of these		
15.	If $f(x) = \{x\} + \sin ax$ (where $\{\}$ denote (A) 'a' is a rational multiple of π (C) 'a' is any real number	es the fractional part function) is periodic, then (B) 'a' is a natural number (D) 'a' is any positive real number		
16.	If $f(x) = \sin \sqrt{[a]} x$, (where [.] denotes the greatest integer function), has π as if			
	fundamental period, then (A) a = 1 (C) a = 9	(B) a ∈[1,2) (D) a ∈ [4,5)		
17.	Range of the function $f(x) = \frac{1}{\sqrt{ x }}$	<u></u> is		
18	The function f (x) = $\begin{cases} \{x\}, & x \ge 0 \\ \{-x\}, & x < 0 \end{cases}$ is	s ({.} : fractional part}		
	(A) even (C) neither	(B) odd (D) none of these		
19	Period of $ \sin 2x + \cos 8x $ is: (A) $\pi/2$ (C) $\pi/16$	(B) $\pi/8$ (D) None of these.		
20	The domain of $f(x) = \sqrt{\log_{\frac{1}{4}} \left(\frac{5x - x^2}{4} \right)}$	$\frac{1}{10} + {}^{10}C_x$ is		
	(A) (0, 1]U [4, 5) (C) {1, 4}	(B) (0, 5) (D) None of these		

36.	Domain of the function $f(x) = x$	$\log_3(\cos(\sin x))$	is

- 37. If f (x) = $\cos [\pi]x + \cos [\pi x]$, where[.] stands for greatest integer function, then f ($\pi/2$) equals to.....
- 38 Solution set of inequation $\cos x \ge -1/2$ is

(A)
$$\left[2n\pi - \frac{2\pi}{3}, \ 2n\pi + \frac{2\pi}{3} \right]$$

(B)
$$\left(2n\pi - \frac{2\pi}{3}, 2n\pi + \frac{2\pi}{3}\right)$$

(C)
$$\left[n\pi - \frac{2\pi}{3}, n\pi + \frac{2\pi}{3} \right]$$

(D) none of these

39 Solution set of inequation tan $x > -\sqrt{3}$ is

(A)
$$n\pi - \frac{2\pi}{3} < x < \frac{\pi}{2}$$

(B)
$$n\pi - \frac{\pi}{3} < x < n\pi + \frac{\pi}{2}$$

(C)
$$2n\pi - \frac{\pi}{3} < x < 2n\pi + \frac{\pi}{3}$$

(D) none of these

40 Range of $f(x) = \sin^{-1} \sqrt{x^2 + x + 1}$ is

(A)
$$\left[\frac{\pi}{3}, \frac{\pi}{2}\right]$$

(B)
$$\left[\frac{\pi}{3}, \frac{\pi}{4}\right]$$

(C)
$$\left(\frac{\pi}{3}, \frac{\pi}{2}\right]$$

(D) none of these

Let $f(x) = \sin x + \cos \left(\sqrt{4 - a^2} \right) x$. Then the integral values of 'a' for which f(x) is a periodic function are given by

(A)
$$\{2, -2\}$$

(B) [-2, 2)

(C) (-2, 2)

(D) none of these

- 42. The function $f(x) = (1 x)^{1/3}$ is
 - (A) one-one & onto

(B) many-one & onto

(C) one-one & into

(D) many- one & into

- Let $f: R \to R$ be any function. Define $g: R \to R$ by g(x) = |f(x)| for all x, then g is
 - (A) onto if f is onto

(B) one-one if f is one-one

(C) continuous if f is continuous

- (D) differentiable if f is differentiable
- 44. The domain of definition of $f(x) = \sec^{-1}(\cos^2 x)$ is

(A)
$$m\pi$$
, $m \in I$

(B) $\pi/2$

(C) $\pi/4$

- (D) none of these.
- 45. Which of the following functions is /are periodic
 - (A) Sgn (e^{-x})

(B) sinx + |sinx|

(C) min (sinx, |x|)

(D)
$$\left[x + \frac{1}{2}\right] + \left[x - \frac{1}{2}\right] + 2[-x]$$

Where [x] denotes the greatest integer function

- The function defined as $f : [0, \pi] \rightarrow [-1, 1]$, $f(x) = \cos x$ is
 - (A) one-one onto

(B) many-one onto

(C) one-one into

- (D) many-one into
- Find the period of the function $f(x) = \cos [\pi^2]x + \cos [-\pi^2]x$

	(A) π (C) $\frac{\pi}{2}$	(B) 2π (D) $\frac{3\pi}{4}$
48	$y = log_{ x } x $, then find the domain (A) R (C) R - {0}	(B) R - {-1, 1} (D) R - {0, -1, 1}
49.	The range of the function f (x) = $\frac{x^2}{x^4 + 1}$ is	
	(A) $\left(0, \frac{1}{2}\right)$	(B) $\left(0, \frac{1}{2}\right]$
	(C) (0, ∞)	(D) (0, 2]
50.	$[\sin x] = [\cos x]$ for all $x \neq \frac{k\pi}{2}$, k is an integer	er Er
	(A) true	(B) false
51.	If f (x) is an invertible function then (f o f^{-1}) (A) true	(x) = x for all x ∈ R (B) false
52.	The range of the function In (x^2-2x+6) is (A) $(\ell n6, \infty)$ (C) $(0, \infty)$	(B) [ln 5, ∞) (D) R (set of real numbers)
53.	Domain of $\log_{1/2}\log_4\log_3[(x-4)^2]$ is, [.] det (A) $(-\infty, 2] \cup [6, \infty)$ (C) $(2, 6)$	notes the integer function . (B) (- ∞ , 2] \cup [6, 8) (D) [2, 6]
54.	The graph of $y = x + \frac{1}{y}$ is symmetrical	
	(A) about x – axis (C) in opposite quadrants	(B) about y - axis (D) None of these
55.	Period of the function $ \cos 2x $ is (A) 2π	(B) π
	(C) $\frac{\pi}{2}$	(B) $\frac{\pi}{4}$
56.	The domain of f (x) = $\sin^{-1} (x - 1 - 2)$ is	
	(A) $[-2, 0] \cup [2, 4]$ (C) $[-2, 0] \cup [1, 3]$	(B) $(-2, 0) \cup (2, 4)$ (D) $(-2, 0) \cup (1, 3)$
57.	If f (x) = x^2 , g (x) = \sqrt{x} , then what is g o f (x) (A) x	(B) x
	(C) -x	(D) - x
58.	Minimum of $2^{[(x^2-3)^3+27]}$ is (A) 2^{27} (C) 2	(B) 1 (D) 2 ⁻²⁷
59.	The function defined as f: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow [-1]$	$\frac{1}{1}$, f (x) = sin x is
	(A) one-one onto	(B) many-one onto

60. The range of the function $f(x) = \frac{x-3}{|x-3|}$ is

(D)
$$R - \{-1\}$$

61. The solution set of $log \{x\} = 0$ is

(A)
$$\{\phi\}$$

$$(B)[1,-1]$$

$$(C)(0, -1)$$

62. The domain of the function $f(x) = \frac{1}{\sqrt{|x|-|x|}}$ is

(A)
$$[0, \infty)$$

(C)
$$(-\infty, 0]$$

(D)
$$\{\Phi\}$$

63. If $f(x) = \frac{1}{1-x}$, then f[f(x)] is

(A)
$$x - 1$$

(B)
$$1 - x$$

64. The value of x for $\log_{1/3} \left(x + \frac{2}{x} \right) < -1$ lies in

(A)
$$(0, 1) \cup (1, \infty)$$

(B)
$$(0, 1) \cup (2, \infty)$$

(C)
$$(0, 1) \cup [2, \infty)$$

(D)
$$(0, 1] \cup [2, \infty)$$

65. The range of the function $f(x) = 11 - 3 \sin x$ is

66. The period of the function $f(x) = \{x\} + \sin \frac{\pi}{3}x + \tan 2x$

(A) 1

(B) 2

(C) 3

(D) not periodic

67. The domain of the function $f(x) = \frac{\sin^{-1} x}{[x]}$ is

(A) $[-1, 0) \cup \{1\}$

(B) $(-\infty, 0) \cup \{1\}$

(C) $(-1, 0) \cup \{1\}$

(D) not defined

68. If f(x) = [x] and g(x) = |x|, then $g \circ f\left(\frac{5}{3}\right) - f \circ g\left(\frac{5}{3}\right)$ is

(A) 0

(B) -1

(C) 1

(D) none of these

69. Which of the following is not periodic?

(A) $f(x) = \cos x$

(B) $f(x) = |\cos x|$

(C) f (x) = $\cos x^2$

(D) f (x) = $\cos^2 x$

70. The solution set of log[x] = 0 is

(A)[1,2)

(B) [1, 2]

(C)(1, 2]

(D) (1, 2)

71. The domain of the function
$$f(x) = \frac{[x]+2}{[x]-2}$$
 is (A) R (B) R - {2} (C) R - [2, 3) (D) not defined (

(A) $\frac{1+x}{1-x}$ (B) $\frac{1-x}{1+x}$ (C) $\frac{1}{1-x}$ (D) none of these

81. If $f(x) = 1 + \alpha x$, $\alpha \neq 0$ is the inverse of itself then the value of α is (A) -1 (B) 1 (D) 2 (D) none of these

82. The value of $n \in I$ for which the function $f(x) = \frac{sinnx}{sin\left(\frac{x}{n}\right)}$ has 4π as its period is equal to

(A) ± 2

(B) 2

(C) ± 1

(D) none of these

1.	Which of the following is correct?(A) sin1 > sin2(C) sin2 > sin3	(B) sin1 < sin2 (D) sin2 < sin3.
2.	The range of the function $\sin^2 x - 5 \sin x - 6$ (A) [- 10, 0] (C) [0, π]	(B) [- 1, 1] (D) [- 49/4, 0]
3.	If $f(x) = (1 - x^n)^{1/n}$, $0 < x < 1$, n being an od	d positive integer and $h(x) = f(f(x))$, then $h'\left(\frac{1}{2}\right)$ is
	equal to (A) 2 ⁿ (C) n. 2 ⁿ⁻¹	(B) 2 (D) none of these
4.	If $f: I \to I$ be defined by $f(x) = [x + 1]$, who $f^{-1}(x)$ is equal to	ere [.] denotes the greatest integer function, then
	(A) x - 1	(B) [x + 1]
	(C) $\frac{1}{[x-1]}$	(D) $\frac{1}{x+1}$
5.	Which pair of functions is identical? (A) sin ⁻¹ (sinx), sin(sin ⁻¹ x)	(B) Ine ^x , e ^{lnx}
	(C) lnx ² , 2 lnx	(D) none of these.
6.	If g is the inverse function of f and $f'(x) = \sin(A) \sin(g(x))$ (C) $\tan(g(x))$	nx, then g'(x) is equal to (B) cosec(g(x)) (D) none of these.
-		
7.	below the curve, is given by	he curve $f(x) = 1-2e^{- x } $ would be lying entirely
	(A) $x \in (ln2, \infty)$ (C) $x \in (-\infty, -ln2)$	(B) $x \in (-\ln 2, 0)$ (D) $x \in (0, \ln 2)$
8.	Solution set of $[\sin^{-1}x] > [\cos^{-1}x]$, where [.] d	
	(A) [sin1, 1]	(B) $\left\lfloor \frac{1}{\sqrt{2}}, 1 \right\rfloor$
	(C) (cos1, sin1)	(D) None of these
9.		dentity $P(x^2) +2x^2 +10x = 2x P(x+1) +3$, then
	P(x) is (A) 2x +3 (C) 3x + 2	(B) 3 x- 4 (D) 2 x -3
10.	Let $f(x) = \begin{cases} x^3 - 1, & x < 2 \\ x^2 + 3, & x \ge 2 \end{cases}$. Then	
	(A) $f^{-1}(x) = \begin{cases} (x+1)^{1/3}, & x < 2\\ (x-3)^{1/2}, & x \ge 2 \end{cases}$	(B) $f^{-1}(x) = \begin{cases} (x+1)^{1/3}, & x < 7 \\ (x-3)^{1/2}, & x \ge 7 \end{cases}$
	(C) $f^{-1}(x) = \begin{cases} (x+1)^{1/3}, & x < 1 \\ (x-3)^{1/2}, & x > 7 \end{cases}$	(D) f ⁻¹ (x) does not exist
	$(x-3)^{1/2}$ $x > 7$	(D) I (A) GOES HOLENISL

		In(In v)		
11.	Which of the following is/are true, (you	u may use $f(x) = \frac{\ln(\ln x)}{\ln x}$)		
	(A) $(\ln 2.1)^{\ln 2.2} > (\ln 2.2)^{\ln 2.1}$ (C) $(\ln 30)^{\ln 31} > (\ln 31)^{\ln 30}$	(B) $(\ln 4)^{\ln 5} < (\ln 5)^{\ln 4}$ (D) $(\ln 28)^{\ln 30} < (\ln 30)^{\ln 28}$		
	(C) (ln30)"5" > (ln31)"55	(D) (ln28)" ¹⁰⁰ < (ln30)" ¹²⁰		
12.	, , , , , , , , , , , , , , , , , , , ,			
	equals (A) 0	(B) 1		
	(C) 2	(D) 4		
10	If (v) depotes the freetienel part of v. t	$\left\{4^{2n}\right\}$		
13.	If {x} denotes the fractional part of x, t	$\left\{\frac{15}{15}\right\}$, HEN, IS		
	(A) $\frac{1}{15}$	(B) $\frac{14}{15}$		
	(C) $\frac{7}{9}$	13		
	$(C)\frac{1}{8}$	(D) None of these		
14.	If f (x) = minimum $\{\sin x, \cos x\} \ \forall \ x \in R$. then range of g (x) = [f (x)] is, [] denotes the			
	greatest integer function (A) {-1, 0, 1}	(B) {0, 1}		
	(C) {-1, 0}	(D) none of these		
15.	If $f(x-1/x) = x^2 + 1/x^2$, $x \ne 0$, then $f(x)$ is			
10.	(A) is an even function	(B) always greater or equal to2 ∀ x ∈R		
	(C) onto if $f: R \rightarrow [3,\infty)$	(D) none of these		
16	.If $f(x) = \begin{cases} x^2 & \text{for } x \ge 0 \\ x & \text{for } x < 0 \end{cases}$, then $fof(x)$) is given by		
	(A) x^2 for $x \ge 0$, x for $x < 0$ (C) x^4 for $x \ge 0$, $-x^2$ for $x < 0$	D) x^4 for $x \ge 0$, x for x < 0		
	. Г	. 17		
17.	The range of the function $f(x) = \sin^{-1} \left(\frac{1}{x^2} \right)^{-1}$	$x^2 + \frac{1}{2} + \cos^{-1} \left[x^2 - \frac{1}{2} \right]$, where [.] is the greatest		
	integer function, is			
	(A) $\left\{\frac{\pi}{2},\pi\right\}$	(B) $\left\{\boldsymbol{o}, \frac{\pi}{2}\right\}$		
	(C) $\{\pi\}$	D) $\left(\boldsymbol{o}, \frac{\pi}{2}\right)$		
	(O) \h\sqrt{1}	$(0,\frac{\pi}{2})$		
18.	If $ x + [x] = 2x$ (where [.] denotes the quation in [-1,1) is/are	greatest integer function), then number of solutions of		
	(A) one only	(B) infinitely many		
	(C) two only	(D) none of these		
19.	If $f(x) = \cos x + \left\lceil \frac{\sin x}{2} \right\rceil$, (where [.] denotes the greatest integer function), then			
	(A) f(x) is periodic	(B) f(x) is odd		
	(C) f(x) is even	(D) f(x) is non-periodic		

Let $f:[-\pi/3, 2\pi/3] \rightarrow [0,4]$ be a function defined as $f(x) = \sqrt{3} \sin x - \cos x + 2$. Then $f^{-1}(x)$ is 32. given by

(A)
$$\sin^{-1}\left(\frac{x-2}{2}\right) - \frac{\pi}{6}$$

(B)
$$\sin^{-1}\left(\frac{x-2}{2}\right) + \frac{\pi}{6}$$

(C)
$$\frac{2\pi}{3} - \cos^{-1}\left(\frac{x-2}{2}\right)$$

(D) None of these.

The function $f: R \to R$, $f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ is 33.

(A) one-one and onto

(B) one-one and into

(C) many-one and onto

(D) many-one and into

 $\text{The function } f(x) = \begin{cases} x \mid x \mid, & x \leq -1 \\ \left[1 + x\right] + \left[1 - x\right], & -1 < x < 1 \text{ is (where [-] denotes GIF)} \\ -x \mid x \mid, & x \geq 1 \end{cases}$ 34.

(A) even

(B) odd

(C) neither even nor odd

(D) symmetric with y-axis

 $\sin x + \cos x$ for $0 \le x < \frac{\pi}{2}$ Let $f(x) = \begin{cases} b & \text{for } x = \frac{\pi}{2} \end{cases}$, Then its odd extension is 35. $\tan^2 x + \csc x$ for $\pi/2 < x < \pi$

- $-\sin x + \cos x \text{ for } -\frac{\pi}{2} < x < 0$
- (A) $-\tan^2 x \csc x$, $-\pi < x < -\frac{\pi}{2}$ (B) $-\tan^2 x + \csc x$, $-\pi < x < -\frac{\pi}{2}$ $-b \text{ for } x = -\frac{\pi}{2}$ $\sin x - \cos x$ for $-\frac{\pi}{2} < x < 0$
- $-\tan^2 x + \csc x$, $-\pi < x < -\frac{\pi}{2}$ (D) None of these (C) b for $x = -\frac{\pi}{2}$ $\sin x - \cos x$, - $\frac{\pi}{2} < x < 0$

36. Period of the function $f(x) = \cos(\cos x) + \cos(\sin x)$ is.....

Let f: $(-\infty, 1] \to (-\infty, 1]$ such that f (x) = x (2 -x). then f⁻¹ (x) is 37.

(A) 1 +
$$\sqrt{1-x}$$

(B) 1-
$$\sqrt{1-x}$$

(C)
$$\sqrt{1-x}$$

(D) none of these

Number of solutions of the equation $\cos x = |x|, x \in [-\pi/2, \pi/2]$ is 38.

(A) 1

(B)2

(C)3

(D) 4

The number solutions of equation $\tan x = x$ in interval $\left| 0, \frac{3\pi}{2} \right|$ 39.

(A) 1

(C) 3

(D) 4

51.	Number of solution of $\sin x + \cos x = 2$ are (A) 1 (C) 0	(B) 2 (D) infinite	
52.	The period of the function $f(x) = 2 + (-1)^{[x]}$ is (A) 1 (C) 2	(B) 0 (D) 0.5	
53.	The number of solutions of $ \ln x = \sqrt{5 - x^2}$ (A) 1 (C) 3	is (B) 2 (D) 4	
54.	The function f (x) = $\frac{x^2 + 4x + 7}{x^2 + x + 1}$, where f : R	\rightarrow R is	
	(A) one-one into (C) one-one onto	(B) many-one into (D) many-one onto	
55.	Total number of solutions of $2^{ \cos x } = 3 \sin x$ (A) 20 (B) 40	, belonging to the inte (C) 80	rval [-10π , 10π] are; (D) none of these
56.	If f: $[1,\infty) \to [2,\infty)$ is given by $f(x) = x + \frac{1}{x}$ th	en f ⁻¹ (x) equals	
	(A) $\frac{x + \sqrt{x^2 - 4}}{2}$ (B) $\frac{x - \sqrt{x^2 - 4}}{2}$	$(C) \frac{x+\sqrt{x^2+4}}{2}$	(D) none of these
57.	The solution of the inequality $log_{1/2}sin^{-1}x > l$		
	$(A) x \in \left[0, \frac{1}{\sqrt{2}}\right)$	(B) $x \in \left(\frac{1}{\sqrt{2}}, 1\right]$	
	(C) $x \in \left(0, \frac{1}{\sqrt{2}}\right)$	(D) None of these	
58.	Total number of roots of the equation $7^{ x }$ (5 (A) 6 (C) 4	- x) = 1, are; (B) 8 (D) 12	
59.	The range of the function $f(x) = 4^x + 2^x + 4^{-x}$ (A) $[3/4, \infty)$ (C) $(7, \infty)$	+ 2^{-x} + 3 is (B) (3/4, ∞) (D) [7, ∞)	
60.	Let reflection of function $f(x) = (4 - (x - 7)^3)$ (A) $g(x) = 7 - (4 - x^3)^{1/5}$ (C) $g(x) = -x^2 + 1$	about a line $y = x$ is (B) $g(x) = x$ (D) $g(x) = 7 + (4 - x^5)$	s g(x) then
61.	The period of the function $f(x) = \sin^4 x + \cos^4 x$ (C) π	⁴ x (Β) π/4 (D) 2π	
62.	The function f: R \rightarrow R given by f(x) = $x^3 + a$ (A) a < b (C) $a^2 > 3b^2$	$x^{2} + bx + c$ is one-one (B) $a^{2} < 3b$ (D) $a^{2} = c^{2}$	if
63.	Let $f(x) = \frac{x-2}{x-3}$ is an invertible function the (A) R^+	en domain f ⁻¹ (x) is (B) R - {3}	

(C) R - {1}

(D) none of these

Let g(x) = 1 + x - [x] and $f(x) = \begin{cases} -1, & x < 0 \\ 0, & x = 0 \end{cases}$. Then for all x, fog(x) is equal to (A) x (B) 1 (C) f(x) (D) g(x)64.

LEVEL-III

ANSWERS

LEVEL -I				'			
1. 5. 9. 13. 17. 21.	A, C, D D A C [2, ∞) Greater, 2, al	2. 6. 10. 14. 18.	A D C C A	3. 7. 11. 15. 19. 22.	B A, B A A $\pi/2$ positive	4. 8. 12. 16. 20.	B A A D C
23.	both positive	& both	negative	24.	$x = \frac{3}{2}$		
25.	positive, posi	tive & ≠	1	26.	$\frac{1}{k}$		
27. 29. 33. 37. 41. 45. 49. 53. 57. 61. 65. 69. 73. 77.	positive, D < A B cos4 A C B A A A A A A A A A A A A A A A A A	30. 34. 38. 42. 46. 50. 54. 58. 62. 66. 70. 74. 78.	C B A B B C B D A B D A	28. 31. 35. 39. 43. 47. 51. 55. 59. 63. 67. 71. 75.	C D [2, 3] B C B C A C A C D	32. 36. 40. 44. 48. 52. 56. 60. 64. 68. 72. 76. 80.	$\begin{array}{l} A \\ x \in n\pi \\ A \\ A \\ D \\ B \\ A \\ A \\ B \\ A \\ C \\ D \\ A \end{array}$
LEVEL -II 1. 5. 9. 13. 17. 21. 25. 29.	C D A A A A C	2. 6. 10. 14. 18. 22. 26. 30.	A B B A C A, C B	3. 7. 11. 15. 19. 23. 27. 31.	D B, D C A A, C D B C	4. 8. 12. 16. 20. 24. 28. 32.	A A D D C C D B
33.	В	34.	Α	35.	В	36.	$\frac{\pi}{2}$ A
37. 41. 45. 49. 52. 56. 60. 64.	B B A C A D B	38. 42. 46. 50. 53. 57. 61.	B A B B D C	39. 43. 47. 51. 54. 58. 62.	B B D C B C B	40. 44. 48. 55. 59. 63.	A A D B D C
LEVEL -III							
1. 5. 9. 13. 17.	A A, B, C B C A	2. 6. 10. 14. 18.	C D A D B	3. 7. 11. 15. 19.	B A D C B	4. 8. 12. 16. 20.	C A, C C C D.