INCO Zusammenfassung

Manuel Strenge

Contents

Zahlensysteme	3
Binär & Hexadezimal	3
Binär	3
hexadezimal	3
Tabelle	4
Berechnungen	4
Negative Zahlen(2-er Komplement)	5
Endliche Zahlen (Fixe Anzahl Bit und Modulo Rechnung)	5
Digitaltechnik	5
Kombinatorik	5
Einfache logische Operationen	5
Alle Symbole	7
Vereinfachung	7
Gesetze	7
Sequenzielle Logik	8
D-Flip-Flop	8
Entropie, Information und Quellcodierungsthemen	9
Binary Memoryless Source (BMS)	9
Redundanz	9
Verlustlose Quellencodierung	10
Runlength Encoding	10
Huffman	10
LZ77	11
LZW	11
Verlustbehaftete Quellencodierung:Einfache, kurze Prinzipfragen 1	13
JPEG	13
Audiocodierung	14
Kanalmodell für BSC und Kanalcodierungstheorem (ohne Entropien im Zusammenhang mit dem Kanalmodell)	14

Eigenschaften von Codes (zB systematisch, linear, zyklisch, perfekt) .	15
Systematischer (N,K)-Blockcode:	15
Binärer Blockcodes: Linearität	15
Linearer, zyklischer (N,K)-Blockcode	15
Perfekter Code	16
Hammingdistanz	16
Coderate berechnen	16
Kanalkapazität berechnen	16
Kanalcodierungstheorem	17
Kanalcodierung	17
CRC (einfache Beispiele)	17
• • • • • • • • • • • • • • • • • • • •	17
·	17

Zahlensysteme

Binär & Hexadezimal

Binär

Ein Zahlensystem mit Basis 2 heisst 2-er System, Binärsystem oder Dualsystem

\mathbf{G} rössen

Name	Speicher
Bit (binary digit) Byte (Octet)	Speicher 0/1 (True/False) 8 Bit oder 2 Nibble a 4 Bit

Grössen NICHT EINDEUTIG DEFINIERT

Name	Speicher
Word	16 Bit
Double Word	2 Word, 32 Bit
Quadword	4 Word, 64 Bit
Octaword	8 Word, 128 Bit

hexadezimal

Das Zahlensystem mit der Basis 16 heisst 16-er System oder Hexadezimalsystem.

- Es umfasst 16 Werte ($0..15_d$)
- Da unser bekanntes Zahlensystem nur zehn Ziffern umfasst, behilft man sich für die Werte 10 bis 15 mit Buchstaben: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
- Wir bezeichnen die Hexadezimalzahlen mit einem Index h. Beispiel: $AF3C_h$

Beispiel:

$$0xAF3C = 10 * 16^{3} + 15*16^{2} + 3*16^{1} + 12*16^{0} =$$

$$= 10*4096 + 15*256 + 3*16 + 12 * 1 = 44860_{d}$$
dezimal

Tabelle

10er System	2er System	16er System
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	$^{\mathrm{C}}$
13	1101	D
14	1110	E
15	1111	F

Berechnungen

Der einfachste weg ist immer zu Dezimal zu konvertieren und darauf wieder zurückzuwandeln in das gewünschte Format.

Folgende Probleme können auftreten:

- Es ist nicht jede beliebig grosse Zahl darstellbar
- Die zahlenmässige Bedeutung eines Bitmusters hängt davon ab, ob man von vorzeichenlosen oder vorzeichenbehafteten Zahlen spricht.
- Bei der Berechnung von Summen oder Produkten kommt es zu Überläufen, wenn das Resultat nicht mehr darstellbar ist
- Bei vorzeichenlosen Zahlen passieren Überläufe zwischen 0 und der grössten darstellbaren Zahl.
- Bei vorzeichenbehafteten Zahlen passieren Überläufe zwischen der grössten positiven und der kleinsten negativen Zahl.
- Bei Überläufen kann ein falsches Resultat entstehen, wenn das betreffende Überlaufsflag (Carry, Overflow) nicht beachtet wird (was der Normalfall ist).

Negative Zahlen(2-er Komplement)

Hierbei geht es darum wo der Umschlagspubkt im Format definiert wurde. (Hier 4 Bit's) Hier ein paar Möglichkeiten:

Binär	Dezimal	Sign+Magn.		Einerkomp.		Zweierkomp.		Exzess-8	
1111	Ø 15	, -	-7		⊙ –0		-1		47
1110	14	-	-6		-1		-2		+6
1101	13	-	-5		-2		-3		+5
1100	12	-	-4		-3		-4		+4
1011	11	-	-3		-4		-5		+3
1010	10	-	-2		-5		-6		+2
1001	9	-	-1		-6		-7		+1
1000	8	· /	-0		⊘ -7		⊘-8		0
0111	7	· +	-7				+7		-1
0110	6	+	-6		+6		+6		-2
0101	5	+	-5		+5		+5		-3
0100	4	+	-4		+4		+4		-4
0011	3	+	-3		+3		+3		-5
0010	2	+	-2		+2		+2		-6
0001	1	+	-1		+1		+1		-7
0000	Ø 0	· +	0		⊙ +0		0		⊘-8

Endliche Zahlen(Fixe Anzahl Bit und Modulo Rechnung)

Digitaltechnik

Kombinatorik

- Einfache Logische Operationen
 - Symbole / Logische Gleichungen / Warheitstabellen

Einfache logische Operationen

Inverter

$$Z = !A$$

Buffer

Z = A

 $\begin{array}{c|c}
\hline
A & !A \\
\hline
0 & 1 \\
1 & 0
\end{array}$

AND

Z = A&B

 \mathbf{OR}

Z = A # B

 \mathbf{NAND}

Z = !(A & B)

NOR

Z=!(A#B)

EXOR

Z = A\$B

AND

A	В	A&B	A#B	!(A&B)	!(A#B)	A\$B
0	0	0	0	1	1	0
0	1	0	1	1	0	1
1	0	0	1	1	0	1
1	1	1	1	0	0	0

Alle Symbole

Function	Boolean Algebra ⁽¹⁾	IEC 60617-12 since 1997	US ANSI 91 1984	DIN 40700 until 1976
AND	A & B	[&]-	=D-	- D-
OR	A#B	≥1-	\Rightarrow	
Buffer	Α	-[1]-	→	- D-
XOR	A\$B	=1-	$\Rightarrow D-$	
NOT	!A	-1	->-	-D-
NAND	!(A & B)	_&.	=D-	⇒
NOR	!(A#B)	≥1 ▶	⇒	→
XNOR	!(A \$ B)	=1	$\exists \!\!\! \bigcirc \!\!\! -$	-

Vereinfachung

Ziel ist die Disjunktive Normalform (DNF) Die DNF besteht (auf der obersten Ebene) ausschliesslich aus OR-Verknüpfungen von ANDverknüpften Eingangsvariablen, die auch invertiert sein können.

Beispiel:

$$Z = (A\&B\&C\&D)\#(A\&B\&!C\&!D)\#(C\&!D)$$

Vorteile

- $\bullet\,$ Verwendung von möglichst wenigen / einfachen Gattern (HW) oder Instruktionen (SW)
- Erzielung einer möglichst kurzen Durchlaufzeit (bei HW) oder Ausführungszeit (bei SW)
- Das Resultat ist möglicherweise leichter zu verstehen und zu testen

Nachteile

- Nachverfolgbarkeit: Die vereinfachte / optimierte Funktion entspricht nicht mehr dem «Pflichtenheft»
- Wartbarkeit: Bei Änderungen muss die Optimierung erneut vorgenommen werden
- Zuverlässigkeit: Die Optimierung ist eine mögliche Fehlerquelle

Gesetze

Sequenzielle Logik

- Grundbauelement
 - D-Flip-Flop: Speicher 1 Bit
- Takt-Eingang
 - Clock Signal
- Darstellung / Ablauf
 - Timing Diagramm

D-Flip-Flop

Wert am Eingang D wird gespeichert und an den Ausgang Q übertragen, wenn C von 0 auf 1 wechselt.

Hierbei wird bei jedem Takt (C) der input von D zu Q weitergegeben

Verwendungen

- Finite State Machine (Speicherzellen stellen den Systemzustand dar)
- Zähler (Neuer Zustand ist vorgegeben durch jetzigen Zustand.)
- Schieberegister (Mehrere in Reihe geschaltete FFs.)

Entropie, Information und Quellcodierungsthemen

Auftrittswahrscheinlichkeit:

$$P(x_n) = \frac{1}{N} \Rightarrow N = \frac{1}{P(x_n)}$$

Informationsgehalt in Bit:

$$I(x_n) = \log_2 \frac{1}{P(x_n)}$$

Bestimmung von $P(x_n)$ durch Auszählen:

 $k(x_n)$ sei die absolute Häufigkeit von x_n in den K Ereignissen

Die Auftretenswahrscheinlichkeit (oder relative Häufigkeit) ist dann:

$$P(x_n) = \frac{k(x_n)}{K}$$

Berechnung des Mittelwerts H(X) des Informationsgehalt auch **Entropie** genannt.

Binary Memoryless Source (BMS)

- Eine BMS kennt, wie der Name sagt, nur 2 Symbole
- st p die Auftretenswahrscheinlichkeit des einen Symbols, folgt dass (1-p) jene des anderen Symbols ist.
- Für die binäre Entropie H_b gilt:

$$H_b = p \cdot \log_2 \frac{1}{p} + (1-p) \cdot \log_2 \frac{1}{1-p}$$

Redundanz

Entropie:

$$H(X) = \sum_{n=0}^{N-1} P(x_n) \cdot I(x_n)$$

Mittlere Länge der Codiuerung l_n = l_n länge der Codes:

$$L = \sum_{n=0}^{N-1} P(x_n) \cdot l_n$$

Redundanz (Bit/Symbol):

$$R = L - H$$

Verlustlose Quellencodierung

Runlength Encoding

- Original:
- ...TERRRRRRRRMAUIIIIIIIIIIIIIIIIWQCSSSSSSSSSL...
- RLE komprimiert:
 - ...TEA09RMA01AUA17IWQCA10SL...

Huffman

- Statistisches Kompressionsverfahren:
 Häufige Symbole erhalten kurze Codes.
 Seltene Symbole erhalten lange Codes.
- Symbol-Wahrscheinlichkeiten $P(x_n)$ müssen bekannt sein

$$P(X) = 0.80$$
 $P(Y) = 0.10$ $P(Z) = 0.10$

LZ77

Alle Zeichen werden durch Token von fixer Länge ersetzt:

Token: (Offset, Länge, Zeichen)

Im Such-Buffer wird die längste Übereinstimmung mit dem Vorschau-Buffer gesucht und als Token ausgegeben. Keine Übereinstimmung: Token (0, 0, Zeichen) wird verwendet.

LZW

- Statt einem Sliding Window wird ein Wörterbuch verwendet.
- Der Index nummeriert die Einträge des Wörterbuchs.
- Der String bildet den eigentlichen Eintrag.

- Token enthält nur den Index des schon bestehenden Eintrags im Wörterbuch, nicht aber das zusätzliche Zeichen. Token: (Index)
- Das neue Zeichen wird erst mit dem nächsten Token übermittelt (Überlappung):

A M A M M M A A A M M M T A A T ...

										_			_		
		1	ВАВААВААА		P=A C = empty		BABAA	BAAA		P=B C = empty		BABA	ABAAA ↑		P=A C = empty
		Encoder	Output	String	Table		Encoder	Output	String	Table		Encoder	Output	String	Table
		Output Code	representing	codeword	string		Output Code	representing	codeword	string		Output Code	representing	codeword	string
		66	В	256	BA		66	В	256	BA		66	В	256	BA
							65	Α	257	AB		65	А	257	AB
Index	String											256	ВА	258	BAA
		LZW compression step 1					LZW compression step 2				LZW compression step 3				3
65	A	BABAAE	BAAA ↑		P=A C = empty	BABAABAAA ↑		P=A C = A			BABAABAAA ↑			P=AA C = empty	
		Encoder	Output	String	Table]	Encoder	Output	String	Table		Encoder	Output	String	Table
		Output Code	representing	codeword	string		Output Code	representing	codeword	string		Output Code	representing	codeword	string
77	M	66	В	256	ВА	1	66	В	256	BA		66	В	256	BA
		65	А	257	AB	1	65	А	257	AB		65	А	257	AB
•••	•••	256	BA	258	BAA	1	256	BA	258	BAA		256	BA	258	BAA
84	T	257	AB	259	ABA		257	AB	259	ABA		257	AB	259	ABA
							65	A	260	AA		65	Α	260	AA
255	?		LZW comp	pression step	4			LZW compr	ession step 5	<u> </u>		260	AA LZW compre	ession step 6	

Verlustbehaftete Quellencodierung:Einfache, kurze Prinzipfragen

JPEG

DCT:
$$F_{vu} = \frac{1}{4} C_u C_v \sum_{n=0}^{7} \sum_{n=0}^{7} B_{yx} \cos\left(\frac{(2x+1)u\Pi}{16}\right) \cos\left(\frac{(2x+1)v\Pi}{16}\right)$$

Inverse DCT:
$$B_{xy} = \frac{1}{4} \sum_{n=0}^{7} \sum_{n=0}^{7} C_u C_v F_{uv} \cos\left(\frac{(2x+1)u\Pi}{16}\right) \cos\left(\frac{(2x+1)v\Pi}{16}\right)$$

Audiocodierung

Audio unkomprimiert: Wave-File Format

Kanalmodell für BSC und Kanalcodierungstheorem (ohne Entropien im Zusammenhang mit dem Kanalmodell)

Erfolgswahrscheinlichkeit: $P_{0,N} = (1 - \varepsilon)^N$

Fehlerwahrscheinlichkeit auf N Datenbits: $1 - P_{0,N} = 1 - (1 - \varepsilon)^N$

Die Wahrscheinlichkeit $P_{F,N}$, dass in einer Sequenz von N Datenbits genau F Bitfehler auftreten, ist:

$$B_{F,N} = \binom{N}{F} \cdot \varepsilon^F \cdot (1 - \varepsilon)^{N - F}$$

 $\binom{N}{F}$ ist der sogenannte Binomialkoeffizient aus der Kombinatorik.

Für die Wahrscheinlichkeit, dass maximal F Fehler bei einer Übertragung von N Bits auftreten, bilden wir die Summe aller Fälle:

$$P_{\leq F,N} = \sum_{t=0}^{F} \binom{N}{t} \cdot \varepsilon \cdot (1 - \varepsilon)^{N-t}$$

Oft will man die Restfehlerwahrscheinlichkeit wissen, also die Wahrscheinlichkeit, dass mehr als F Fehler bei einer Übertragung von N Bits auftreten:

$$P_{>F,N} = P_{\leq F,N} - 1$$

Eigenschaften von Codes (zB systematisch, linear, zyklisch, perfekt)

Systematischer (N,K)-Blockcode:

Die K Informationsbits erscheinen im Codewort am einem Stück

Systematische Blockcodes lassen sich besonders einfach decodieren: Es müssen lediglich die Fehlerschutzbits entfernt werden.

Binärer Blockcodes: Linearität

Bei einem linearen(N,K)-Blockcode ist die bitweise Exor-Verknüpfung von 2 beliebigen Codewörtern (inklusive des selben) wieder ein gültiges Codewort:

- Beispiel: C = (000), (110), (011), (101)
 - Beliebiges Codewort xor mit sich selber: $\underline{c}_i \oplus \underline{c}_i = (000)$
 - Beliebiges Codewort xor mit (000): $\underline{c}_{j} \oplus (000) = \underline{c}_{j}$
 - Restliche Fälle: $(110) \oplus (011) \ = \ (101)$

$$d_{\min}(C) = \min_{j \neq k} d_H(\underline{c}_j, \underline{c}_k) \qquad (110) \oplus (101) = (011) \\ (011) \oplus (101) = (110)$$

Jeder lineare Code muss zwingend das Null-Codewort (000) enthalten Anmerkung: Mathematisch nennt man die bitweise Exor-Verknüpfung eine bitweise Modulo-2-Summe (1-bit-Summe ohne Übertrag).

Bei linearen (N,K)-Blockcodes ist d_{min} die minimale Hamming Distanz der gültigen Codes zum Null-Codewort,

Linearer, zyklischer (N,K)-Blockcode

Die zyklische Verschiebung eines Codeworts gibt wieder ein Codewort:

j	\underline{u}_j	<u>c</u> _j				(000)		(000)		
0	(00)	(000)				(000)	~ ·	(000)		
1	(10)	(110)								
2	(11)	(011)	((110)	\longrightarrow	(011)	\longrightarrow	(101)	\longrightarrow	(110)
3	(01)	(101)			O		O		O	

Ein linearer, zyklischer Blockcode wird später eingehend besprochen (siehe Abschnitt CRC).

Perfekter Code

Ein Code heisst ein «perfekter Code», wenn jedes empfangene Wort w
 genau ein Codewort c hat, zu dem es einen geringsten Hamming
Abstand hat und zu dem es eindeutig zugeordnet werden kann

Hammingdistanz

• Hamming-Distanz ist die Anzahl der wechselnden Bits von einem gültigen Code zum nächsten gültigen Code

Das Hamming-Gewicht $w_H(c_j)$

- gibt an, wieviele Einsen das Codewort c_i enthält.
- darf nicht mit Hamming-Distanz verwechselt werden!

Coderate berechnen

Coderate $R: R = \frac{K}{N}$

Kanalkapazität berechnen

C: Kanalkapazität in bit/bit (Nutzbare Bits pro Kanalbenutzung)

$$H_b = \varepsilon \cdot \log_2 \frac{1}{\varepsilon} + (1 - \varepsilon) \cdot \log_2 \frac{1}{1 - \varepsilon}$$
$$C_{BSC}(\varepsilon) = 1 - H_b(\varepsilon)$$

Kanalcodierungstheorem

Das Kanalcodierungstheorem beschreibt, unter welcher Bedingung sich die Wahrscheinlichkeit von Fehlern beliebig reduzieren lässt.

Möchte man die Restfehlerwahrscheinlichkeit eines Fehlerschutzcodes beliebig klein machen, so muss R < C sein.

Kanalcodierung

CRC (einfache Beispiele)

Generator-Polynome (Divisor) werden in der folgenden Form beschrieben: X^4+X+1 , was $X^4*1+X^3*0+X^2*0+X^1*1+X^0*1$ bedeutet und 10011(entspricht.

Die Hamming-Distanz ist abhängig von der Wahl des Generator Polynoms und der Länge der Daten.

Spezialfall: Wenn der Fehlervektor durch g teilbar ist, wird auch das Bitmuster h ohne Rest durch g teilbar sein à der Fehler ist nicht erkennbar

Blockcodes mit Generator-und Paritycheckmatrix, Syndrom Faltungscodes (Trellis)