

About Exam Crams

- Quick run through of important facts I go fast!
- Use after going through the section for revision / cramming – I'll be reminding, not explaining
- May include facts not covered in the lessons or vice versa

- Most lessons are highly visual....
- Exam crams are death by bullet point!

EXAM CRAM

AWS Identity and Access Management (IAM)

- IAM is used to securely control individual and group access to AWS resources
- IAM makes it easy to provide multiple users secure access to AWS resources
- IAM can be used to manage:
 - Users
 - Groups
 - Access policies
 - Roles
 - User credentials
 - User password policies
 - Multi-factor authentication (MFA)
 - API keys for programmatic access (CLI)

- By default, new users are created with NO access to any AWS services – they can only login to the AWS console
- Permission must be explicitly granted to allow a user to access an AWS service
- IAM users are individuals who have been granted access to an AWS account

- IAM is universal (global) and does not apply to regions
- IAM is eventually consistent
- Authentication methods:
 - Console password use to login to AWS Management Console
 - Access keys used for programmatic access
 - Server certificates uses SSL/TLS certficates

IAM Users

- An IAM user is an entity that represents a person or service
- By default, users cannot access anything in your account
- Root user credentials are the email address used to create the account and a password
- The root account has full administrative permissions, and these cannot be restricted
- IAM users can be created to represent applications, and these are known as "service accounts"
- You can have up to 5000 users per AWS account

IAM Groups

- Groups are collections of users and have policies attached to them
- A group is not an identity and cannot be identified as a principal in an IAM policy
- Use groups to assign permissions to users
- Use the principal of least privilege when assigning permissions
- You cannot nest groups (groups within groups)

IAM Roles

- Roles are created and then "assumed" by trusted entities
- With IAM Roles you can delegate permissions to resources for users and services
- IAM users or AWS services can assume a role to obtain temporary security credentials
- Temporary security credentials are issued by the AWS Security Token Service (STS)

IAM Policies

- Policies are documents that define permissions and can be applied to users, groups and roles
- Policy documents are written in JSON (key value pair that consists of an attribute and a value)
- All permissions are implicitly denied by default
- The most restrictive policy is applied

Types of IAM Policy

- Identity-based policies attached to users, groups, or roles
- Resource-based policies attached to a resource; define permissions for a principal accessing the resource
- IAM permissions boundaries set the maximum permissions an identity-based policy can grant an IAM entity
- AWS Organizations service control policies (SCP) specify the maximum permissions for an organization or OU
- Session policies used with AssumeRole* API actions

AWS IAM Best Practices

- Lock away your AWS account root user access keys
- Create individual IAM users
- Use groups to assign permissions to IAM users
- Grant least privilege
- Get started using permissions with AWS managed policies
- Use customer managed policies instead of inline policies
- Use access levels to review IAM permissions
- Configure a strong password policy for your users
- Enable MFA

AWS IAM Best Practices

- Use roles for applications that run on Amazon EC2 instances
- Use roles to delegate permissions
- Do not share access keys
- Rotate credentials regularly
- Remove unnecessary credentials
- Use policy conditions for extra security
- Monitor activity in your AWS account

EXAM CRAM

Amazon Elastic Compute Cloud (EC2)

Amazon EC2

- With Amazon EC2 you launch virtual server instances on the AWS cloud
- Each virtual server is known as an "instance"
- With EC2 you have full control at the operating system layer
- Key pairs are used to securely connect to EC2 instances
- Storage is either Amazon EBS (persistent) or Instance Store (non-persistent)

Amazon EC2

- An Amazon Machine Image (AMI) provides the information required to launch an instance
- An AMI includes the following:
 - A template for the root volume for the instance
 - Launch permissions
 - A block device mapping specifying the volumes to attach
- AMIs are regional. You can only launch an AMI from the region in which it is stored
- You can copy AMI's to other regions using the console, command line, or the API

Amazon EC2

- Instance metadata is data about your instance that you can use to configure or manage the running instance
- User data is data that is supplied by the user at instance launch in the form of a script
- Instance metadata is available at http://169.254.169.254/latest/meta-data/
- Instance user data is available at: http://169.254.169.254/latest/user-data

Benefits of Amazon EC2

- Elastic computing easily launch hundreds to thousands of EC2 instances within minutes
- Complete control you control the EC2 instances with full root/administrative access
- Flexible Choice of instance types, operating systems, and software packages
- Reliable EC2 offers very high levels of availability and instances can be rapidly commissioned and replaced
- Secure Fully integrated with Amazon VPC and security features
- Inexpensive Low cost, pay for what you use

→ Public, Private and Elastic IP addresses

Name	Description
Public IP address	Lost when the instance is stopped
	Used in Public Subnets
	No charge
	Associated with a private IP address on the instance
	Cannot be moved between instances
Private IP address	Retained when the instance is stopped
	Used in Public and Private Subnets
Elastic IP address	Static Public IP address
	You are charged if not used
	Associated with a private IP address on the instance
	Can be moved between instances and Elastic Network Adapters

EC2 Placement Groups

- Cluster packs instances close together inside an Availability Zone. This strategy enables workloads to achieve the low-latency network performance necessary for tightly-coupled node-to-node communication that is typical of HPC applications
- Partition spreads your instances across logical partitions such that groups
 of instances in one partition do not share the underlying hardware with
 groups of instances in different partitions. This strategy is typically used by
 large distributed and replicated workloads, such as Hadoop, Cassandra, and
 Kafka
- Spread strictly places a small group of instances across distinct underlying hardware to reduce correlated failures

NAT Instance vs NAT Gateway

NAT Instance	NAT Gateway	
Managed by you (e.g. software updates)	Managed by AWS	
Scale up (instance type) manually and use	Elastic scalability up to 45 Gbps	
enhanced networking		
No high availability – scripted/auto-scaled	Provides automatic high availability within an AZ	
HA possible using multiple NATs in multiple	and can be placed in multiple AZs	
subnets		
Need to assign Security Group	No Security Groups	
Can use as a bastion host	Cannot access through SSH	
Use an Elastic IP address or a public IP	Choose the Elastic IP address to associate with a	
address with a NAT instance	NAT gateway at creation	
Can implement port forwarding through	Does not support port forwarding	
manual customisation		

Stopping EC2 instances

- EBS backed instances only
- No charge for stopped instances
- EBS volumes remain attached (chargeable)
- Data in RAM is lost
- Instance is migrated to a different host
- Private IPv4 addresses and IPv6 addresses retained; public IPv4 addresses released
- Associated Elastic IPs retained

Hibernating EC2 instances

- Applies to on-demand or reserved Linux instances
- Contents of RAM saved to EBS volume
- Must be enabled for hibernation when launched
- Specific prerequisites apply
- When started (after hibernation):
 - The EBS root volume is restored to its previous state
 - The RAM contents are reloaded
 - The processes that were previously running on the instance are resumed
 - Previously attached data volumes are reattached and the instance retains its instance ID

Rebooting EC2 instances

- Equivalent to an OS reboot
- DNS name and all IPv4 and IPv6 addresses retained
- Does not affect billing

Retiring EC2 instances

- Instances may be retired if AWS detects irreparable failure of the underlying hardware that hosts the instance
- When an instance reaches its scheduled retirement date, it is stopped or terminated by AWS

Terminating EC2 instances

- Means deleting the EC2 instance
- Cannot recover a terminated instance
- By default root EBS volumes are deleted

Recovering EC2 instances

- CloudWatch can be used to monitor system status checks and recover instance if needed
- Applies if the instance becomes impaired due to underlying hardware / platform issues
- Recovered instance is identical to original instance

AWS Nitro System

- Nitro is the underlying platform for the next generation of EC2 instances
- Breaks logical functions into specialized hardware with a Nitro Hypervisor
- Specialized hardware includes:
 - Nitro cards for VPC
 - Nitro cards for EBS
 - Nitro for Instance Storage
 - Nitro card controller
 - Nitro security chip
 - Nitro hypervisor
 - Nitro Enclaves

AWS Nitro System

- Improves performance, security and innovation:
 - Performance close to bare metal for virtualized instances
 - Elastic Network Adapter and Elastic Fabric Adapter
 - More bare metal instance types
 - Higher network performance (e.g. 100 Gbps)
 - High Performance Computing (HPC) optimizations
 - Dense storage instances (e.g. 60 TB)

AWS Nitro Enclaves

- Isolated compute environments
- Runs on isolated and hardened virtual machines
- No persistent storage, interactive access, or external networking
- Uses cryptographic attestation to ensure only authorized code is running
- Integrates with AWS Key Management Service (KMS)
- Protect and securely process highly sensitive data:
 - Personally identifiable information (PII)
 - Healthcare data
 - Financial data
 - Intellectual Property data

Amazon EC2 Pricing Options

On-Demand

Standard rate - no discount; no commitments; dev/test, short-term, or unpredictable workloads

Spot Instances

Low price for unused capacity; up to 90% discount; can be terminated at any time; workloads with flexible start and end times

Dedicated Hosts

Physical server dedicated for your use; Socket/core visibility, host affinity; pay per host; workloads with server-bound software licenses

Reserved

1 or 3-year commitment; up to 75% discount; steady-state, predictable workloads and reserved capacity

Dedicated Instances

Physical isolation at the host hardware level from instances belonging to other customers; pay per instance

Savings Plans

Commitment to a consistent amount of usage (EC2 + Fargate + Lambda); Pay by \$/hour; 1 or 3-year commitment

Dedicated Instances and Dedicated Hosts

Characteristic	Dedicated Instances	Dedicated Hosts
Enables the use of dedicated physical servers	X	X
Per instance billing (subject to a \$2 per region fee)	X	
Per host billing		X
Visibility of sockets, cores, host ID		X
Affinity between a host and instance		X
Targeted instance placement		X
Automatic instance placement	Χ	X
Add capacity using an allocation request		X

EXAM CRAM

Elastic Load Balancing, and Auto Scaling

Amazon EC2 Auto Scaling

- EC2 Auto Scaling launches and terminates instances dynamically
- Scaling is horizontal (scales out)
- Provides elasticity and scalability
- Responds to EC2 status checks and CloudWatch metrics
- Can scale based on demand (performance) or on a schedule
- Scaling policies define how to respond to changes in demand
- Auto Scaling groups define collections of EC2 instances that are scaled and managed together

Amazon EC2 Auto Scaling

Health checks

- EC2 = EC2 status checks
- ELB = Uses the ELB health checks in addition to EC2 status checks

Health check grace period

- How long to wait before checking the health status of the instance
- Auto Scaling does not act on health checks until grace period expires

Auto Scaling - Monitoring

- Group metrics (ASG)
 - Data points about the Auto Scaling group
 - 1-minute granularity
 - No charge
 - Must be enabled
- Basic monitoring (Instances)
 - 5-minute granularity
 - No Charge
- Detailed monitoring (Instances)
 - 1-minute granularity
 - Charges apply

Additional Scaling Settings

- Cooldowns Used with simple scaling policy to prevent Auto Scaling from launching or terminating before effects of previous activities are visible. Default value is 300 seconds (5 minutes)
- Termination Policy Controls which instances to terminate first when a scale-in event occurs
- Termination Protection Prevents Auto Scaling from terminating protected instances
- Standby State Used to put an instance in the InService state into the Standby state, update or troubleshoot the instance

Additional Scaling Settings

- Lifecycle Hooks Used to perform custom actions by pausing instances as the ASG launches or terminates them
- Use case:
 - Run a script to download and install software after launching
 - Pause an instance to process data before a scale-in (termination)

Elastic Load Balancing

- Distributes incoming application traffic across multiple targets including:
 - Amazon EC2 instances
 - Containers
 - IP addresses
 - Lambda functions
- Provides fault tolerance for applications
- Distributes incoming traffic a single AZ or multiple AZs
- Only 1 subnet per AZ can be enabled for each ELB
- Ensure at least a /27 subnet and make sure there are at least 8 IP addresses available for the ELB to scale

Elastic Load Balancing

- ELBs can be Internet facing or internal-only
- Internet facing ELB:
 - ELB nodes have public IPs
 - Routes traffic to the private IP addresses of the EC2 instances
 - Need one public subnet in each AZ where the ELB is defined
- Internal only ELB:
 - ELB nodes have private IPs
 - Routes traffic to the private IP addresses of the EC2 instances

Application Load Balancer

- Web applications with L7 routing (HTTP/HTTPS)
- Microservices architectures (e.g. Docker containers)
- Lambda targets

Network Load Balancer

- TCP and UDP based applications
- Ultra-low latency
- Static IP addresses
- VPC endpoint services

Gateway Load Balancer

- Layer 3
- Listens for all IP packets across all ports
- GLB and virtual appliances exchange application traffic using the GENEVE protocol on port 6081
- Use with virtual appliances such as:
 - Firewalls
 - Intrusion detection systems (IDS)
 - Intrusion prevention systems (IPS)
 - Deep packet inspection systems (DPI)

Cross-Zone Load Balancing

When cross-zone load balancing is enabled:

 Each load balancer node distributes traffic across the registered targets in all enabled Availability Zones

When cross-zone load balancing is disabled:

- Each load balancer node distributes traffic only across the registered targets in its Availability Zone
- With Application Load Balancers, cross-zone load balancing is always enabled
- With Network Load Balancers and Gateway Load Balancers, crosszone load balancing is disabled by default

EXAM CRAM

AWS Organizations

AWS Organizations

- AWS organizations allows you to consolidate multiple AWS accounts into an organization that you create and centrally manage
- Available in two feature sets:
 - Consolidated Billing
 - All features
- Includes root accounts and organizational units
- Policies are applied to root accounts or OUs
- Consolidated billing includes:
 - Paying Account independent and cannot access resources of other accounts
 - Linked Accounts all linked accounts are independent

Consolidated Billing

- Single payment method for all the AWS accounts in the Organization
- Combined view of charges incurred by all your accounts
- Pricing benefits from aggregated usage
- Limit of 20 linked accounts for consolidated billing (default)
- Can help with cost control through volume discounts

Consolidated Billing

- Unused reserved EC2 instances are applied across the group
- Paying accounts should be used for billing purposes only

Service Control Policies

- Manage the maximum available permissions
- Must have all features enabled in Organization
- Can be applied to accounts or OUs
- Policies can be assigned at different points in the hierarchy
- SCPs affect only IAM users and roles not resources policies
- SCPs affect the root account in member accounts

Service Control Policies

- SCPs do not affect any action performed by the management account
- Deny list strategy:
 - Uses the FullAWSAccess SCP
 - Attached to every OU and account
 - Overrides the implicit deny
 - Explicitly allows all permissions to flow down from the root
 - Create additional SCPs to explicitly deny permissions

Service Control Policies

- Allow list strategy:
 - FullAWSAccess SCP is removed
 - No APIs are permitted anywhere unless you explicitly allow them
 - Create SCPs to allow permissions
 - SCPs must be attached to target account and every OU above it including root

AWS Organizations - Migration

- Accounts can be migrated between organizations
- You must have root or IAM access to both the member and management accounts
- Use the AWS Organizations console for just a few accounts
- Use the AWS Organizations API or AWS CLI if there are many accounts to migrate

EXAM CRAM

Amazon Virtual Private Cloud (VPC)

Amazon VPC

- Analogous to having your own DC inside AWS
- Provides complete control over the virtual networking environment
- A VPC is logically isolated from other VPCs on AWS
- VPCs are region wide
- A default VPC is created in each region with a subnet in each AZ
- By default, you can create up to 5 VPCs per region
- Public subnets are subnets that have:
 - "Auto-assign public IPv4 address" set to "Yes"
 - The subnet route table has an attached Internet Gateway

Amazon VPC

- When you create a VPC, you must specify a range of IPv4 addresses for the VPC in the form of a CIDR block
- A VPC spans all the Availability Zones in the region
- You have full control over who has access to the AWS resources inside your VPC
- AZs names are mapped to different zones for different users – use AZ ID to identify physical zones

Amazon VPC Components

- Subnet: A segment of a VPC's IP address range where you can place groups
 of isolated resources (maps to a single AZ)
- Internet Gateway: The Amazon VPC side of a connection to the public Internet
- NAT Gateway: A highly available, managed Network Address Translation (NAT) service for your resources in a private subnet to access the Internet
- Router: Routers interconnect subnets and direct traffic between Internet gateways, virtual private gateways, NAT gateways, and subnets
- Peering Connection: A peering connection enables you to route traffic via private IP addresses between two peered VPCs
- VPC Endpoints: Enables private connectivity to services hosted in AWS

Amazon VPC Components

- Egress-only Internet Gateway: A stateful gateway to provide egress only access for IPv6 traffic from the VPC to the Internet
- Hardware VPN Connection: A hardware-based VPN connection between your Amazon VPC and your datacenter, home network, or co-location facility
- Virtual Private Gateway: The Amazon VPC side of a VPN connection.
- Customer Gateway: Your side of a VPN connection

Rules and Guidelines (IP CIDR)

- CIDR block size can be between /16 and /28
- The CIDR block must not overlap with any existing CIDR block that's associated with the VPC
- You cannot increase or decrease the size of an existing CIDR block
- The first four and last IP address are not available for use
- AWS recommend you use CIDR blocks from the RFC 1918 ranges

Additional Considerations

- Ensure you have enough networks and hosts
- Bigger CIDR blocks are typically better (more flexibility)
- Smaller subnets are OK for most use cases
- Consider deploying application tiers per subnet
- Split your HA resources across subnets in different AZs
- VPC Peering requires non-overlapping CIDR blocks
 - This is across all VPCs in all Regions / accounts you want to connect
- Avoid overlapping CIDR blocks as much as possible!

Security Groups vs Network ACLs

Security Group	Network ACL
Operates at the instance level	Operates at the subnet level
Supports allow rules only	Supports allow and deny rules
Stateful	Stateless
Evaluates all rules	Processes rules in order
Applies to an instance only if	Automatically applies to all instances in
associated with a group	the subnets its associated with

VPC Connectivity – AWS Managed VPN

What	AWS Managed IPSec VPN Connection over your existing Internet		
When	Quick and usually simple way to establish a secure tunnelled		
	connection to a VPC; redundant link for Direct Connect or other		
	VPC VPN		
Pros	Supports static routes or BGP peering and routing		
Cons	Dependent on your Internet connection		
How	Create a Virtual Private Gateway (VGW) on AWS, and a Customer		
	Gateway on the on-premises side		

VPC Connectivity – AWS Direct Connect

What	Dedicated network connection over private lines straight into the AWS backbone
When	Requires a large network link into AWS; lots of resources and services being provided on AWS to your corporate users
Pros	Predictable network performance; potential bandwidth cost reduction; up to 10/100 Gbps provisioned connections; supports BGP peering and routing
Cons	May require additional telecom and hosting provider relationships and/or network circuits; costly; takes time to provision
How	Work with your existing data networking provider; create Virtual Interfaces (VIFs) to connect to VPCs (private VIFs) or other AWS services like S3 or Glacier (public VIFs)

VPC Connectivity – DX + VPN

What	IPSec VPN connection over private lines (Direct Connect)
When	Need the added security of encrypted tunnels over Direct
	Connect
Pros	More secure (in theory) than Direct Connect alone
Cons	More complexity introduced by VPN layer
How	Work with your existing data networking provider

VPC Connectivity – VPN CloudHub

What	Connect locations in a hub and spoke manner using AWSs Virtual
	Private Gateway
When	Link remote offices for backup or primary WAN access to AWS
	resources and each other
Pros	Reuses existing Internet connections; supports BGP routes to direct
	traffic
Cons	Dependent on Internet connection; no inherent redundancy
How	Assign multiple Customer Gateways to a Virtual Private Gateway, each
	with their own BGP ASN and unique IP ranges

VPC Connectivity – Software VPN

What	You provide your own VPN endpoint and software
When	You must manage both ends of the VPN connection for compliance
	reasons or you want to use a VPN option not supported by AWS
Pros	Ultimate flexibility and manageability
Cons	You must design for any needed redundancy across the whole
	chain
How	Install VPN software via Marketplace appliance of on an EC2
	instance

VPC Connectivity – Transit VPC

What	Common strategy for connecting geographically dispersed VPCs and
	locations in order to create a global network transit center
When	Locations and VPC-deployed assets across multiple regions that need
	to communicate with one another
Pros	Ultimate flexibility and manageability but also AWS-managed VPN
	hub-and-spoke between VPCs
Cons	You must design for any needed redundancy across the whole chain
How	Providers like Cisco, Juniper Networks, and Riverbed have offerings
	which work with their equipment and AWS VPC

VPC Connectivity – VPC Peering

What	AWS-provided network connectivity between two VPCs
When	Multiple VPCs need to communicate or access each other's resources
Pros	Uses AWS backbone without traversing the Internet
Cons	Transitive peering is not supported
How	VPC peering request made; accepter accepts request (either within or across accounts)

VPC Connectivity – VPC Endpoints

	Interface Endpoint	Gateway Endpoint
What	Elastic Network Interface with a	A gateway that is a target for a
	Private IP	specific route
How	Uses DNS entries to redirect traffic	Uses prefix lists in the route table to
		redirect traffic
Which	API Gateway, CloudFormation,	Amazon S3, DynamoDB
services	CloudWatch etc.	
Security	Security Groups	VPC Endpoint Policies

VPC Flow Logs

- Flow Logs capture information about the IP traffic going to and from network interfaces in a VPC
- Flow log data is stored using Amazon CloudWatch Logs or S3
- Flow logs can be created at the following levels:
 - VPC
 - Subnet
 - Network interface

EXAM CRAM

Amazon Simple Storage Service (S3)

Amazon Simple Storage Service (S3)

- You can store any type of file in S3
- Files can be anywhere from 0 bytes to 5 TB
- There is unlimited storage available
- S3 is a universal namespace so bucket names must be unique globally
- However, you create your buckets within a REGION
- It is a best practice to create buckets in regions that are physically closest to your users to reduce latency
- There is no hierarchy for objects within a bucket
- Delivers strong read-after-write consistency

S3 Buckets

- Files are stored in buckets
- A bucket can be viewed as a container for objects
- A bucket is a flat container of objects
- It does not provide a hierarchy of objects
- You can use an object key name (prefix) to mimic folders
- 100 buckets per account by default
- You can store unlimited objects in your buckets
- You cannot create nested buckets

S3 Objects

- An object is a file uploaded to S3
- S3 supports any file type
- Each object is stored and retrieved by a unique key
- Objects remain in the region they are stored you setup replication
- Permissions can be defined on objects at any time
- Storage class is set at the object level

S3 Storage Classes

	S3 Standard	S3 Intelligent Tiering	S3 Standard-IA	S3 One Zone-IA	S3 Glacier	S3 Glacier Deep Archive
Designed for durability	99.99999999%	99.99999999%	99.99999999%	99.99999999%	99.99999999%	99.99999999%
Designed for availability	99.99%	99.9%	99.9%	99.5%	99.99%	99.99%
Availability SLA	99.9%	99%	99%	99%	99.9%	99.9%
Availability Zones	≥3	≥3	≥3	1	≥3	≥3
Minimum capacity charge	N/A	N/A	128KB	128KB	40KB	40KB
per object						
Minimum storage	N/A	30 days	30 days	30 days	90 days	180 days
duration charge						
Retrieval fee	N/A	N/A	Per GB retrieved	Per GB retrieved	Per GB retrieved	Per GB retrieved
First byte latency	milliseconds	milliseconds	milliseconds	milliseconds	select minutes or	select hours
					hours	
Storage type	Object	Object	Object	Object	Object	Object
Lifecycle transitions	Yes	Yes	Yes	Yes	Yes	Yes

IAM / Bucket Policies

- IAM Policies are identity-based policies
- Principal is not defined with an IAM policy
- Bucket Policies are resource-based policies
- Bucket policies can only be attached to Amazon S3 buckets
- Both use the AWS access policy language

S3 Access Control Lists (ACLs)

- Legacy access control mechanism that predates
 IAM
- AWS generally recommends using S3 bucket policies or IAM policies rather than ACLs
- Can be attached to a bucket or directly to an object
- Limited options for grantees and permissions

When to use each access control mechanism

Use IAM policies if:

- You need to control access to AWS services other than S3
- You have numerous S3 buckets each with different permissions requirements (IAM policies will be easier to manage)
- You prefer to keep access control policies in the IAM environment

Use S3 bucket policies if:

- You want a simple way to grant cross-account access to your S3 environment, without using IAM roles
- Your IAM policies are reaching the size limits
- You prefer to keep access control policies in the S3 environment

S3 Versioning

- Versioning is a means of keeping multiple variants of an object in the same bucket
- Use versioning to preserve, retrieve, and restore every version of every object stored in your
 Amazon S3 bucket
- Versioning-enabled buckets enable you to recover objects from accidental deletion or overwrite

S3 Lifecycle Management

There are two types of actions:

- Transition actions Define when objects transition to another storage class
- Expiration actions Define when objects expire (deleted by S3)

S3 LM: Supported Transitions

You can transition from the following:

- The S3 Standard storage class to any other storage class
- Any storage class to the S3 Glacier or S3 Glacier Deep
 Archive storage classes
- The S3 Standard-IA storage class to the S3 Intelligent-Tiering or S3 One Zone-IA storage classes
- The S3 Intelligent-Tiering storage class to the S3 One
 Zone-IA storage class
- The S3 Glacier storage class to the S3 Glacier Deep Archive storage class

S3 LM: Unsupported Transitions

You can't transition from the following:

- Any storage class to the S3 Standard storage class
- Any storage class to the Reduced Redundancy storage class
- The S3 Intelligent-Tiering storage class to the S3
 Standard-IA storage class
- The S3 One Zone-IA storage class to the S3
 Standard-IA or S3 Intelligent-Tiering storage classes

S3 Multi-Factor Authentication Delete (MFA Delete)

- Adds MFA requirement for bucket owners to the following operations:
 - Changing the versioning state of a bucket
 - Permanently deleting an object version
- The x-amz-mfa request header must be included in the above requests
- The second factor is a token generated by a hardware device or software program
- Requires versioning to be enabled on the bucket

S3 Multi-Factor Authentication Delete (MFA Delete)

- Versioning can be enabled by:
 - Bucket owners (root account)
 - AWS account that created the bucket
 - Authorized IAM users
- MFA delete can be enabled by:
 - Bucket owner (root account)

MFA-Protected API Access

- Used to enforce another authentication factor (MFA code) when accessing AWS resources (not just S3)
- Enforced using the aws:MultiFactorAuthAge key in a bucket policy:

S3 Encryption

Encryption Option	How it Works
SSE-S3	Use S3's existing encryption key for AES-256
SSE-C	Upload your own AES-256 encryption key which
	S3 uses when it writes objects
SSE-KMS	Use a key generated and managed by AWS KMS
Client-Side	Encrypt objects using your own local encryption
	process before uploading to S3

S3 Default Encryption

- Amazon S3 default encryption provides a way to set the default encryption behavior for an S3 bucket
- You can set default encryption on a bucket so that all new objects are encrypted when they are stored in the bucket
- The objects are encrypted using server-side encryption
- Amazon S3 encrypts objects before saving them to disk and decrypts them when the objects are downloaded
- There is no change to the encryption of objects that existed in the bucket before default encryption was enabled

S3 Event Notifications

- Sends notifications when events happen in buckets
- Destinations include:
 - Amazon Simple Notification Service (SNS) topics
 - Amazon Simple Queue Service (SQS) queues
 - AWS Lambda

S3 Multipart Upload

- Multipart upload uploads objects in parts independently, in parallel and in any order
- Performed using the S3 Multipart upload API
- It is recommended for objects of 100 MB or larger
- Can be used for objects from 5 MB up to 5 TB
- Must be used for objects larger than 5 GB

S3 Transfer Acceleration

- Enables fast, easy, and secure transfers of files
- Leverages Amazon CloudFront Edge Location
- Used to accelerate object uploads to S3 over long distances (latency)
- Transfer acceleration is as secure as a direct upload to S3
- You are charged only if there was a benefit in transfer times
- Need to enable transfer acceleration on the S3 bucket
- Cannot be disabled, can only be suspended

S3 Copy API

- Copy objects up to 5 GB in size
- The copy operation can be used to:
 - Generate additional copies of objects
 - Rename objects
 - Change the copy's storage class or encryption at rest status
 - Move objects across AWS locations/regions
 - Change object metadata

Server Access Logging

- Provides detailed records for the requests that are made to a bucket
- Details include the requester, bucket name, request time, request action, response status, and error code (if applicable)
- Disabled by default
- Only pay for the storage space used
- Must configure a separate bucket as the destination (can specify a prefix)
- Must grant write permissions to the Amazon S3 Log Delivery group on destination bucket

CORS with Amazon S3

- Enabled through setting:
 - Access-Control-Allow-Origin
 - Access-Control-Allow-Methods
 - Access-Control-Allow-Headers
- These settings are defined using rules
- Rules are added using JSON files in S3

Cross Account Access Methods

- Resource-based policies and IAM policies for programmatic-only access to S3 bucket objects
- Resource-based ACL and IAM policies for programmatic-only access to S3 bucket objects
- Cross-account IAM roles for programmatic and console access to S3 bucket objects

S3 Performance Optimizations

- S3 supports at least 3,500 PUT/COPY/POST/DELETE or 5,500 GET/HEAD requests per second per prefix in a bucket
- Increase read or write performance by parallelizing reads
- Use Byte-Range Fetches
- Retry Requests for Latency-Sensitive Applications
- Combine Amazon S3 (Storage) and Amazon EC2 (Compute) in the Same AWS Region
- Use Amazon S3 Transfer Acceleration to Minimize Latency Caused by Distance

EXAM CRAM

DNS, Caching, and Performance Optimization

Amazon Route 53

- Route 53 offers the following functions:
 - Domain name registry
 - DNS resolution
 - Health checking of resources
- Route 53 is located alongside all edge locations
- Route 53 becomes the authoritative DNS server for registered domains and creates a public hosted zone
- Private DNS lets you have an authoritative DNS within your VPCs without exposing your DNS records

Amazon Route 53

- You can transfer domains to Route 53 only if the Top-Level Domain (TLD) is supported
- You can transfer a domain from Route 53 to another registrar by contacting AWS support
- You can transfer a domain to another account in AWS (does not migrate zone by default)
- Can have a domain registered in one AWS account and the hosted zone in another AWS account

Route 53 Hosted Zones

- Collection of records for a specified domain
- There are two types of zones:
 - Public host zone determines how traffic is routed on the Internet
 - Private hosted zone for VPC determines how traffic is routed within VPC
- For private hosted zones you must set the following VPC settings to "true":
 - enableDnsHostname.
 - enableDnsSupport

Route 53 Health Checks

- Health checks check the instance health by connecting to it
- Health checks can be pointed at:
 - Endpoints
 - Status of other health checks
 - Status of a CloudWatch alarm
- Endpoints can be IP addresses or domain names

CNAME vs Alias Records

CNAME	Alias
Route 53 charges for CNAME queries	Route 53 doesn't charge for alias queries to
	AWS resources
You can't create a CNAME record at the top	You can create an alias record at the zone apex
node of a DNS namespace (zone apex)	(however you can't route to a CNAME at the
	zone apex)
A CNAME can point to any DNS record that is	An alias record can only point to a CloudFront
hosted anywhere	distribution, Elastic Beanstalk environment,
	ELB, S3 bucket as a static website, or to
	another record in the same hosted zone that
	you're creating the alias record in

Amazon Route 53 Routing Policies

Routing Policy	What it does		
Simple	Simple DNS response providing the IP address associated with a name		
Failover	If primary is down (based on health checks), routes to secondary destination		
Geolocation	Uses geographic location you're in (e.g. Europe) to route you to the closest		
	region		
Geoproximity	Routes you to the closest region within a geographic area		
Latency	Directs you based on the lowest latency route to resources		
Multivalue answer	Returns several IP addresses and functions as a basic load balancer		
Weighted	Uses the relative weights assigned to resources to determine which to route to		

Amazon CloudFront Caching

- You can define a maximum Time To Live (TTL) and a default TTL
- TTL is defined at the behavior level
- This can be used to define different TTLs for different file types (e.g. png vs jpg)
- After expiration, CloudFront checks the origin for any new requests (check the file is the latest version)
- Headers can be used to control the cache:
 - Cache-Control max-age=(seconds) specify how long before CloudFront gets the object again from the origin server
 - Expires specify an expiration date and time

Caching Based on Request Headers

- You can configure CloudFront to forward headers in the viewer request to the origin
- CloudFront can then cache multiple versions of an object based on the values in one or more request headers
- Controlled in a behavior to do one of the following:
 - Forward all headers to your origin (objects are not cached)
 - Forward a whitelist of headers that you specify
 - Forward only the default headers (doesn't cache objects based on values in request headers)

CloudFront Signed URLs / Cookies

Signed URLs

- Signed URLs provide more control over access to content.
- Can specify beginning and expiration date and time, IP addresses/ranges of users

Signed Cookies

- Similar to Signed URLs
- Use signed cookies when you don't want to change URLs
- Can also be used when you want to provide access to multiple restricted files (Signed URLs are for individual files)

Lambda@Edge

- Run Node.js and Python Lambda functions to customize the content CloudFront delivers
- Executes functions closer to the viewer
- Can be run at the following points
 - After CloudFront receives a request from a viewer (viewer request)
 - Before CloudFront forwards the request to the origin (origin request)
 - After CloudFront receives the response from the origin (origin response)
 - Before CloudFront forwards the response to the viewer (viewer response)

EXAM CRAM

Block and File Storage

Amazon EBS

- EBS volume data persists independently of the life of the instance
- EBS volumes do not need to be attached to an instance
- You can attach multiple EBS volumes to an instance
- You can use multi-attach to attach a volume to multiple instances but with some constraints
- EBS volumes must be in the same AZ as the instances they are attached to
- Root EBS volumes are deleted on termination by default
- Extra non-boot volumes are not deleted on termination by default

New and may

not be on the

exam yet

Amazon EBS SSD-Backed Volumes

	General Purpose SSD		Provisioned IOPS SSD		
Volume type	gp3	gp2	io2 Block Express ‡	io2	io1
Durability	99.8% - 99.9% durability (0.1% - 0.2% annual failure rate)	99.8% - 99.9% durability (0.1% - 0.2% annual failure rate)	99.999% durability (0.001% annual failure rate)		99.8% - 99.9% durability (0.1% - 0.2% annual failure rate)
Use cases	 Low-latency interactive apps Development and test environments 		Workloads that require sub-millisecond latency, and sustained IOPS performance or more than 64,000 IOPS or 1,000 MiB/s of throughput	 Workloads that require sustained IOPS performance or more than 16,000 IOPS I/O-intensive database workloads 	
Volume size	1 GiB - 16 TiB		4 GiB - 64 TiB	4 GiB - 16 TiB	
Max IOPS per volume (16 KiB I/O)	16,000		256,000	64,000 †	
Max throughput per volume		250 MiB/s *	4,000 MiB/s	1,000	MiB/s†
Amazon EBS Multi- attach	Not supported		Not supported	Supported	
Boot volume	Supported				

New and may not be on the exam yet

Amazon EBS HDD-Backed Volumes

	Throughput Optimized HDD	Cold HDD		
Volume type	st1	sc1		
Durability	99.8% - 99.9% durability (0.1% - 0.2% annual failure rate)	99.8% - 99.9% durability (0.1% - 0.2% annual failure rate)		
Use cases	Big dataData warehousesLog processing	 Throughput-oriented storage for data that is infrequently accessed Scenarios where the lowest storage cost is important 		
Volume size	125 GiB - 16 TiB	125 GiB - 16 TiB		
Max IOPS per volume (1 MiB I/O)	500	250		
Max throughput per volume	500 MiB/s	250 MiB/s		
Amazon EBS Multi-attach	Not supported	Not supported		
Boot volume	Not supported	Not supported		

Amazon Data Lifecycle Manager (DLM)

- DLM automates the creation, retention, and deletion of EBS snapshots and EBS-backed AMIs
- DLM helps with the following:
 - Protects valuable data by enforcing a regular backup schedule
 - Create standardized AMIs that can be refreshed at regular intervals
 - Retain backups as required by auditors or internal compliance
 - Reduce storage costs by deleting outdated backups
 - Create disaster recovery backup policies that back up data to isolated accounts

EBS vs instance store

- Instance store volumes are high performance local disks that are physically attached to the host computer on which an EC2 instance runs
- Instance stores are ephemeral which means the data is lost when powered off (non-persistent)
- Instance stores are ideal for temporary storage of information that changes frequently, such as buffers, caches, or scratch data
- Instance store volume root devices are created from AMI templates stored on S3
- Instance store volumes cannot be detached/reattached

Amazon Machine Images (AMIs)

- An Amazon Machine Image (AMI) provides the information required to launch an instance
- An AMI includes the following:
 - One or more EBS snapshots, or, for instance-store-backed AMIs, a template for the root volume of the instance (for example, an operating system, an application server, and applications)
 - Launch permissions that control which AWS accounts can use the AMI to launch instances
 - A block device mapping that specifies the volumes to attach to the instance when it's launched
- AMIs come in three main categories:
 - Community AMIs free to use, generally you just select the operating system you want
 - AWS Marketplace AMIs pay to use, generally come packaged with additional, licensed software
 - My AMIs AMIs that you create yourself

EBS Snapshots

- Snapshots capture a point-in-time state of an instance
- Cost-effective and easy backup strategy
- Can be used to migrate a system to a new AZ or region
- Can be used to convert an unencrypted volume to an encrypted volume
- Snapshots are stored on Amazon S3
- EBS volumes are AZ specific but snapshots are region specific

Using RAID with EBS

- RAID stands for Redundant Array of Independent disks
- Not provided by AWS, you must configure through your operating system
- RAID 0 and RAID 1 are potential options on EBS
- RAID 5 and RAID 6 are not recommended by AWS

Using RAID with EBS

- RAID 0 is used for striping data across disks (performance):
 - Use 2 or more disks
 - If one disk fails, the entire RAID set fails
- RAID 1 is used for mirroring data across disks (redundancy / fault tolerance):
 - If one disk fails, the other disk is still working
 - Data gets sent to 2 EBS volumes at the same time

EBS Encryption

- You can encrypt both the boot and data volumes of an EC2 instance
- The following are encrypted:
 - Data at rest inside the volume
 - All data moving between the volume and the instance
 - All snapshots created from the volume
 - All volumes created from those snapshots
- Encryption is supported by all EBS volume types
- All instance families support encryption

Amazon Elastic File System (EFS)

- Fully-managed file system solution
- Accessed using the NFS protocol
- Elastic storage capacity and pay for what you use
- Multi-AZ metadata and data storage
- Can configure mount-points in one, or many, AZs
- Can be mounted from on-premises systems ONLY if using Direct Connect or a VPN connection
- Alternatively, use the AWS DataSync
- EFS is elastic and grows and shrinks as you add and remove data
- Can scale up to petabytes

Amazon Elastic File System (EFS)

- Can concurrently connect up to 1000s of EC2 instances, from multiple AZs
- Can choose General Purpose or Max I/O (both SSD)
- Data is stored across multiple AZ's within a region
- Read after write consistency
- Need to create mount targets and choose AZ's to include

EFS Access Control

- You can control who can administer your file system using IAM
- You can control access to files and directories with POSIX-compliant user and group-level permissions
- POSIX permissions allow you to restrict access from hosts by user and group
- EFS Security Groups act as a firewall, and the rules you add define the traffic flow

EFS Encryption

- EFS offers the ability to encrypt data at rest and in transit
- Encryption at rest MUST be enabled at file system creation time
- Encryption keys are managed by AWS KMS
- Data encryption in transit uses industry standard Transport Layer Security (TLS)

AWS DataSync

- Provides a fast and simple way to securely sync existing file systems into Amazon EFS
- Securely and efficiently copies files over the internet or an AWS Direct Connect connection
- Copies file data and file system metadata such as ownership, timestamps, and access permissions

Amazon FSx

- Amazon FSx provides fully managed thirdparty file systems
- Amazon FSx provides you with two file systems to choose from:
 - Amazon FSx for Windows File Server for Windows-based applications
 - Amazon FSx for Lustre for compute-intensive workloads

Amazon FSx for Windows File Server

- Provides a fully managed native Microsoft Windows file system
- Full support for the SMB protocol, Windows NTFS, and Microsoft Active Directory (AD) integration
- Supports Windows-native file system features:
 - Access Control Lists (ACLs), shadow copies, and user quotas.
 - NTFS file systems that can be accessed from up to thousands of compute instances using the SMB protocol
- High availability: replicates data within an Availability Zone (AZ)
- Multi-AZ: file systems include an active and standby file server in separate AZs

Amazon FSx for Lustre

- High-performance file system optimized for fast processing of workloads such as:
 - Machine learning
 - High performance computing (HPC)
 - Video processing
 - Financial modeling
 - Electronic design automation (EDA)
- Works natively with S3, letting you transparently access your S3 objects as files
- Your S3 objects are presented as files in your file system, and you can write your results back to S3
- Provides a POSIX-compliant file system interface

AWS Storage Gateway – File Gateway

- File gateway provides a virtual on-premises file server
- Store and retrieve files as objects in Amazon S3
- Use with on-premises applications, and EC2-based applications that need file storage in S3 for object-based workloads
- File gateway offers SMB or NFS-based access to data in Amazon S3 with local caching

AWS Storage Gateway - Volume Gateway

- The volume gateway supports block-based volumes
- Block storage iSCSI protocol
- Cached Volume mode the entire dataset is stored on S3 and a cache of the most frequently accessed data is cached on-site
- Stored Volume mode the entire dataset is stored on-site and is asynchronously backed up to S3 (EBS point-in-time snapshots). Snapshots are incremental and compressed

AWS Storage Gateway - Tape Gateway

- Used for backup with popular backup software
- Each gateway is preconfigured with a media changer and tape drives.
 Supported by NetBackup, Backup Exec, Veeam etc.
- When creating virtual tapes, you select one of the following sizes: 100
 GB, 200 GB, 400 GB, 800 GB, 1.5 TB, and 2.5 TB
- A tape gateway can have up to 1,500 virtual tapes with a maximum aggregate capacity of 1 PB
- All data transferred between the gateway and AWS storage is encrypted using SSL
- All data stored by tape gateway in S3 is encrypted server-side with Amazon S3-Managed Encryption Keys (SSE-S3)

EXAM CRAM

Docker Containers and ECS

Amazon ECS Key Features

- Serverless with AWS Fargate managed for you and fully scalable
- Fully managed container orchestration control plane is managed for you
- Docker support run and manage Docker containers with integration into the Docker Compose CLI
- Windows container support ECS supports management of Windows containers
- Elastic Load Balancing integration distribute traffic across containers using ALB or NLB
- Amazon ECS Anywhere (NEW) enables the use of Amazon ECS control plane to manage on-premises implementations

Amazon ECS Components

Elastic Container Service (ECS)	Description
Cluster	Logical grouping of EC2 instances
Container instance	EC2 instance running the the ECS agent
Task Definition	Blueprint that describes how a docker container should launch
Task	A running container using settings in a Task Definition
Service	Defines long running tasks – can control task
	count with Auto Scaling and attach an ELB

ECS Launch Types

- An ECS launch type determines the type of infrastructure on which your tasks and services are hosted
- There are two launch types:

Amazon EC2	Amazon Fargate	
You explicitly provision EC2 instances	The control plane asks for resources and Fargate	
	automatically provisions	
You're responsible for upgrading, patching,	Fargate provisions compute as needed	
care of EC2 pool		
You must handle cluster optimization	Fargate handles cluster optimization	
More granular control over infrastructure	Limited control, as infrastructure is automated	

ECS Images

- Containers are created from a read-only template called an image which has the instructions for creating a Docker container
- Images are built from a Dockerfile
- Only Docker containers are currently supported
- An image contains the instructions for creating a Docker container
- Images are stored in a registry such as DockerHub or AWS Elastic Container Registry (ECR)
- ECR is a managed AWS Docker registry service that is secure, scalable and reliable

ECS Tasks

- A task definition is required to run Docker containers in Amazon ECS
- A task definition is a text file in JSON format that describes one or more containers, up to a maximum of 10
- Task definitions use Docker images to launch containers
- You specify the number of tasks to run (i.e. the number of containers)

ECS Clusters

- ECS Clusters are a logical grouping of container instances the you can place tasks on
- ECS allows the definition of a specified number (desired count) of tasks to run in the cluster
- Clusters can contain tasks using the Fargate and EC2 launch type
- Each container instance may only be part of one cluster at a time
- You can create IAM policies for your clusters to allow or restrict users' access to specific clusters

ECS Container Agent

- The ECS container agent allows container instances to connect to the cluster
- The container agent runs on each infrastructure resource on an ECS cluster
- The ECS container agent is included in the Amazon ECS optimized AMI
- Linux and Windows based
- For non-AWS Linux instances to be used on AWS you must manually install the ECS container agent

Auto Scaling for ECS

Two types of scaling:

- 1. Service auto scaling
- 2. Cluster auto scaling
- Service auto scaling automatically adjusts the desired task count up or down using the Application Auto Scaling service
- Service auto scaling supports target tracking, step, and scheduled scaling policies
- Cluster auto scaling uses a Capacity Provider to scale the number of EC2 cluster instances using EC2 Auto Scaling

Service Auto Scaling

- Amazon ECS Service Auto Scaling supports the following types of scaling policies:
 - Target Tracking Scaling Policies—Increase or decrease the number of tasks that your service runs based on a target value for a specific CloudWatch metric
 - Step Scaling Policies—Increase or decrease the number of tasks that your service runs in response to CloudWatch alarms. Step scaling is based on a set of scaling adjustments, known as step adjustments, which vary based on the size of the alarm breach
 - Scheduled Scaling—Increase or decrease the number of tasks that your service runs based on the date and time

Cluster Auto Scaling

- Uses an ECS resource type called a Capacity Provider
- A Capacity Provider can be associated with an EC2 Auto Scaling Group (ASG)
- ASG can automatically scale using:
 - Managed scaling with an automatically-created scaling policy on your ASG
 - Managed instance termination protection which enables containeraware termination of instances in the ASG when scale-in happens

Amazon EKS Use Cases

- Use when you need to standardize container orchestration across multiple environments using a managed Kubernetes implementation
- Hybrid Deployment manage Kubernetes clusters and applications across hybrid environments (AWS + On-premises)
- Batch Processing run sequential or parallel batch workloads on your EKS cluster using the Kubernetes Jobs API. Plan, schedule and execute batch workloads
- Machine Learning use Kubeflow with EKS to model your machine learning workflows and efficiently run distributed training jobs using the latest EC2 GPU-powered instances, including Inferentia
- Web Applications build web applications that automatically scale up and down and run in a highly available configuration across multiple Availability Zones

Amazon ECS vs EKS

Amazon ECS	Amazon EKS			
Managed, highly available, highly scalable container platform				
AWS-specific platform that supports Docker	Compatible with upstream Kubernetes so it's easy to			
containers	lift and shift from other Kubernetes deployments			
Considered simpler to learn and use	Considered more feature-rich and complex with a			
	steep learning curve			
Leverages AWS services like Route 53, ALB, and	A hosted Kubernetes platform that handles many			
CloudWatch	things internally			
"Tasks" are instances of containers that are run	"Pods" are containers collocated with one another and			
on underlying compute but more or less isolated	can have shared access to each other			
Limited extensibility	Extensible via a wide variety of third-party and			
	community add-ons			

EXAM CRAM

Serverless Applications

Serverless Services

- With serverless there are no instances to manage
- You don't need to provision hardware
- There is no management of operating systems or software
- Capacity provisioning and patching is handled automatically
- Provides automatic scaling and high availability
- Can be very cheap!

AWS Lambda

- AWS Lambda runs code as "functions"
- AWS Lambda executes code only when needed and scales automatically
- You pay only for the compute time you consume (you pay nothing when your code is not running)
- You specify the amount of memory you need allocated to your Lambda functions
- AWS Lambda allocates CPU power proportional to the memory you specify using the same ratio as a general purpose EC2 instance type

AWS Lambda

- There is a maximum execution timeout
 - Max is 15 minutes (900 seconds), default is 3 seconds
 - Lambda terminates the function at the timeout
- Lambda is an event-driven compute service
- An event source is an AWS service application that produces events that trigger an AWS Lambda function
- Event sources are mapped to Lambda functions
- For stream-based services Lambda performs the polling (e.g. DynamoDB or Kinesis)

AWS Lambda

- Benefits of AWS Lambda:
 - No servers to manage
 - Continuous scaling
 - Millisecond billing
 - Integrates with almost all other AWS services
- Primary use cases for AWS Lambda:
 - Data processing
 - Real-time file processing
 - Real-time stream processing
 - Build serverless backends for web, mobile, IOT, and 3rd party API requests

Lambda Function Invocations

Synchronous:

- CLI, SDK, API Gateway
- Result returned immediately
- Error handling happens client side (retries, exponential backoff etc.)

Asynchronous:

- S3, SNS, CloudWatch Events etc.
- Lambda retries up to 3 times
- Processing must be idempotent (due to retries)

Event source mapping:

- SQS, Kinesis Data Streams, DynamoDB Streams
- Lambda does the polling (polls the source)
- Records are processed in order (except for SQS standard)

SQS can also trigger Lambda

Application Integration Services Overview

Service	What it does	Example use cases
Simple Queue Service	Messaging queue; store and forward	Building distributed / decoupled applications
	patterns	
Simple Notification Service	Set up, operate, and send notifications	Send email notification when CloudWatch alarm is
	from the cloud	triggered
Step Functions	Out-of-the-box coordination of AWS	Order processing workflow
	service components with visual	
	workflow	
Simple Workflow Service	Need to support external processes or	Human-enabled workflows like an order fulfilment
	specialized execution logic	system or for procedural requests
		Note: AWS recommends that for new applications
		customers consider Step Functions instead of SWF
Amazon MQ	Message broker service for Apache	Need a message queue that supports industry
	Active MQ and RabbitMQ	standard APIs and protocols; migrate queues to AWS
Amazon Kinesis	Collect, process, and analyze streaming	Collect data from IoT devices for later processing
	data.	

Kinesis vs SQS vs SNS

Amazon Kinesis	Amazon SQS	Amazon SNS
Consumers pull data	Consumers pull data	Push data to many subscribers
As many consumers as you need	Data is deleted after being consumed	Publisher / subscriber model
Routes related records to same record processor	Can have as many workers (consumers) as you need	Integrates with SQS for fan-out architecture pattern
Multiple applications can access stream	No ordering guarantee (except with FIFO	Up to 10,000,000 subscribers
concurrently	queues)	
Ordering at the shard level	Provides messaging semantics	Up to 100,000 topics
Can consume records in correct order at	Individual message delay	Data is not persisted
later time		
Must provision throughput	Dynamically scales	No need to provision throughput

SQS Queue Types

Standard Queue	FIFO Queue
Unlimited Throughput: Standard queues support a	High Throughput: FIFO queues support up to 300
nearly unlimited number of transactions per second	messages per second (300 send, receive, or delete
(TPS) per API action.	operations per second). When you batch 10 messages per
	operation (maximum), FIFO queues can support up to
	3,000 messages per second
Best-Effort Ordering: Occasionally, messages might be	First-In-First-out Delivery: The order in which messages are
delivered in an order different from which they were	sent and received is strictly preserved
sent	
At-Least-Once Delivery: A message is delivered at	Exactly-Once Processing: A message is delivered once and
least once, but occasionally more than one copy of a	remains available until a consumer processes and deletes
message is delivered	it. Duplicates are not introduced into the queue

SQS Queue Types

FIFO queues require the Message Group ID and Message
 Deduplication ID parameters to be added to messages

Message Group ID:

 The tag that specifies that a message belongs to a specific message group Messages that belong to the same message group are guaranteed to be processed in a FIFO manner

Message Deduplication ID:

The token used for deduplication of messages within the deduplication interval

SQS – Dead Letter Queue

- The main task of a dead-letter queue is handling message failure
- A dead-letter queue lets you set aside and isolate messages that can't be processed correctly to determine why their processing didn't succeed
- It is not a queue type, it is a **standard** or **FIFO** queue that has been specified as a dead-letter queue in the configuration of **another** standard or FIFO queue

SQS Long Polling vs Short Polling

- SQS Long polling is a way to retrieve messages from SQS queues waits for messages to arrive
- SQS Short polling returns immediately (even if the message queue is empty)
- SQS Long polling can lower costs
- SQS Long polling can be enabled at the queue level or at the API level using WaitTimeSeconds
- SQS Long polling is in effect when the Receive Message Wait Time is a value greater than 0 seconds and up to 20 seconds

Amazon SNS

- Amazon SNS is a highly available, durable, secure, fully managed pub/sub messaging service
- Amazon SNS provides topics for high-throughput, push-based, many-to-many messaging
- Publisher systems can fan out messages to a large number of subscriber endpoints
- Endpoints include:
 - Amazon SQS queues
 - AWS Lambda functions
 - HTTP/S webhooks
 - Mobile push
 - SMS
 - Email

Amazon SNS

- Multiple recipients can be grouped using Topics
- A topic is an "access point" for allowing recipients to dynamically subscribe for identical copies of the same notification
- One topic can support deliveries to multiple endpoint types
- Simple APIs and easy integration with applications
- Flexible message delivery over multiple transport protocols

Amazon SNS + Amazon SQS Fan-Out

- You can subscribe one or more Amazon SQS queues to an Amazon SNS topic
- Amazon SQS manages the subscription and any necessary permissions
- When you publish a message to a topic, Amazon SNS sends the message to every subscribed queue

AWS Step Functions

- AWS Step Functions is used to build distributed applications as a series of steps in a visual workflow
- You can quickly build and run state machines to execute the steps of your application
- Managed workflow and orchestration platform
- Scalable and highly available
- Define your app as a state machine
- Create tasks, sequential steps, parallel steps, branching paths or timers

Amazon EventBridge

- Serverless event bus for building event-driven applications
- Events are generated by custom applications, SaaS applications, and AWS services
- An event is a signal that a system's state has changed
- Route events to AWS service targets and API destinations (via HTTP endpoints)
- AWS service targets include Lambda, SNS, SQS and API Gateway

API Gateway

- API Gateway is a fully managed service for publishing, maintaining, monitoring, and securing APIs
- An API endpoint type refers to the hostname of the API
- All of the APIs created with Amazon API Gateway expose
 HTTPS endpoints only
- The API endpoint type can be:
 - Edge-optimized for global user base
 - Regional for regional user base
 - Private within VPC or across DX connection

API Gateway - Caching

- You can add caching to API calls by provisioning an Amazon API Gateway cache and specifying its size in gigabytes
- Caching allows you to cache the endpoint's response
- Caching can reduce number of calls to the backend and improve latency of requests to the API

API Gateway - Throttling

 API Gateway sets a limit on a steady-state rate and a burst of request submissions against all APIs in your account

• Limits:

- By default API Gateway limits the steady-state request rate to 10,000 requests per second
- The maximum concurrent requests is 5,000 requests across all APIs within an AWS account
- If you go over 10,000 requests per second or 5,000 concurrent requests you will receive a 429 Too Many Requests error response
- Upon catching such exceptions, the client can resubmit the failed requests in a way that is rate limiting, while complying with the API Gateway throttling limits

EXAM CRAM

Databases and Analytics

AWS Databases

Data Store	Use Case
Database on EC2	Need full control over instance and database
	Third-party database engine (not available in RDS)
Amazon RDS	Need traditional relational database
	e.g. Oracle, PostgreSQL, Microsoft SQL, MariaDB, MySQL
	Data is well-formed and structured
Amazon DynamoDB	NoSQL database
	In-memory performance
	High I/O needs
	Dynamic scaling
Amazon RedShift	Data warehouse for large volumes of aggregated data
Amazon ElastiCache	Fast temporary storage for small amounts of data
	In-memory database
Amazon EMR	Analytics workloads using the Hadoop framework

Amazon RDS

- RDS uses EC2 instances, so you must choose an instance family/type
- Relational databases are known as Structured Query Language (SQL) databases
- RDS is an Online Transaction Processing (OLTP) type of database
- Easy to setup, highly available, fault tolerant, and scalable
- Common use cases include online stores and banking systems
- You can encrypt your Amazon RDS instances and snapshots at rest by enabling the encryption option for your Amazon RDS DB instance (during creation)
- Encryption uses AWS Key Management Service (KMS)

Amazon RDS

- Amazon RDS supports the following database engines:
 - SQL Server
 - Oracle
 - MySQL Server
 - PostgreSQL
 - Aurora
 - MariaDB
- Scales up by increasing instance size (compute and storage)
- Read replicas option for read heavy workloads (scales out for reads/queries only)
- Disaster recovery with Multi-AZ option

Amazon RDS Multi-AZ and Read Replicas

Multi-AZ Deployments	Read Replicas
Synchronous replication – highly durable	Asynchronous replication – highly scalable
Only database engine on primary instance is active	All read replicas are accessible and can be used for read
	scaling
Automated backups are taken from standby	No backups configured by default
Always span two Availability Zones within a single	Can be within an Availability Zone, Cross-AZ, or Cross-Region
Region	
Database engine version upgrades happen on	Database engine version upgrade is independent from source
primary	instance
Automatic failover to standby when a problem is	Can be manually promoted to a standalone database
detected	instance

Amazon RDS Manual Backups (Snapshot)

- Backs up the entire DB instance, not just individual databases
- For single-AZ DB instances there is a brief suspension of I/O
- For Multi-AZ SQL Server, I/O activity is briefly suspended on primary
- For Multi-AZ MariaDB, MySQL, Oracle and PostgreSQL the snapshot is taken from the standby
- Snapshots do not expire (no retention period)

Amazon RDS Maintenance Windows

- Operating system and DB patching can require taking the database offline
- These tasks take place during a maintenance window
- By default a weekly maintenance window is configured
- You can choose your own maintenance window

Amazon RDS Security

- Encryption at rest can be enabled includes DB storage, backups, read replicas and snapshots
- You can only enable encryption for an Amazon RDS DB instance when you create it, not after the DB instance is created
- DB instances that are encrypted can't be modified to disable encryption
- Uses AES 256 encryption and encryption is transparent with minimal performance impact
- RDS for Oracle and SQL Server is also supported using Transparent Data Encryption (TDE) (may have performance impact)
- AWS KMS is used for managing encryption keys

Amazon RDS Security

- You can't have:
 - An encrypted read replica of an unencrypted DB instance
 - An unencrypted read replica of an encrypted DB instance
- Read replicas of encrypted primary instances are encrypted
- The same KMS key is used if in the same Region as the primary
- If the read replica is in a different Region, a different KMS key is used
- You can't restore an unencrypted backup or snapshot to an encrypted DB instance

Amazon Aurora

- Amazon Aurora is an AWS database offering in the RDS family
- Amazon Aurora is a MySQL and PostgreSQL-compatible relational database built for the cloud
- Amazon Aurora is up to five times faster than standard MySQL databases and three times faster than standard PostgreSQL databases
- Amazon Aurora features a distributed, fault-tolerant, self-healing storage system that auto-scales up to 128TB per database instance

Amazon Aurora Key Features

Aurora Feature	Benefit
High performance and scalability	Offers high performance, self-healing storage that scales up to 128TB, point-in-time recovery and continuous backup to S3
DB compatibility	Compatible with existing MySQL and PostgreSQL open source databases
Aurora Replicas	In-region read scaling and failover target – up to 15 (can use Auto Scaling)
MySQL Read Replicas	Cross-region cluster with read scaling and failover target – up to 5 (each can have up to 15 Aurora Replicas)
Global Database	Cross-region cluster with read scaling (fast replication / low latency reads). Can remove secondary and promote
Multi-Master	Scales out writes within a region
Serverless	On-demand, autoscaling configuration for Amazon Aurora - does not support read replicas or public IPs (can only access through VPC or Direct Connect - not VPN)

Amazon Aurora Replicas

Feature	Aurora Replica	MySQL Replica
Number of replicas	Up to 15	Up to 5
Replication type	Asynchronous (milliseconds)	Asynchronous (seconds)
Performance impact on primary	Low	High
Replica location	In-region	Cross-region
Act as failover target	Yes (no data loss)	Yes (potentially minutes of data loss)
Automated failover	Yes	No
Support for user-defined replication delay	No	Yes
Support for different data or schema vs. primary	No	Yes

Aurora Serverless Use Cases

- Infrequently used applications
- New applications
- Variable workloads
- Unpredictable workloads
- Development and test databases
- Multi-tenant applications

When NOT to use Amazon RDS (anti-patterns)

- Anytime you need a DB type other than:
 - MySQL
 - MariaDB
 - SQL Server
 - Oracle
 - PostgreSQL
- You need root access to the OS (e.g. install software such as management tools)

When NOT to use Amazon RDS (anti-patterns)

Requirement	More Suitable Service
Lots of large binary objects (BLOBs)	S3
Automated Scalability	DynamoDB
Name/Value Data Structure	DynamoDB
Data is not well structured or unpredictable	DynamoDB
Other database platforms like IBM DB2 or SAP HANA	EC2
Complete control over the database	EC2

Database on Amazon EC2

- You can run any database you like with full control and ultimate flexibility
- You must manage everything like backups, redundancy, patching and scaling

Amazon ElastiCache

- Fully managed implementations Redis and Memcached
- ElastiCache is a key/value store
- In-memory database offering high performance and low latency
- Can be put in front of databases such as RDS and DynamoDB
- ElastiCache nodes run on Amazon EC2 instances, so you must choose an instance family/type

Amazon ElastiCache

Feature	Memcached	Redis (cluster mode disabled)	Redis (cluster mode enabled)
Data persistence	No	Yes	Yes
Data types	Simple	Complex	Complex
Data partitioning	Yes	No	Yes
Encryption	No	Yes	Yes
High availability (replication)	No	Yes	Yes
Multi-AZ	Yes, place nodes in multiple AZs. No failover or replication	Yes, with auto-failover. Uses read replicas (0-5 per shard)	Yes, with auto-failover. Uses read replicas (0-5 per shard)
Scaling	Up (node type); out (add nodes)	Up (node type); out (add replica)	Up (node type); out (add shards)
Multithreaded	Yes	No	No
Backup and restore	No (and no snapshots)	Yes, automatic and manual snapshots	Yes, automatic and manual snapshots

Amazon ElastiCache Use Cases

- Data that is relatively static and frequently accessed
- Applications that are tolerant of stale data
- Data is slow and expensive to get compared to cache retrieval
- Require push-button scalability for memory, writes and reads
- Often used for storing session state

Amazon DynamoDB

- Fully managed NoSQL database service
- Key/value store and document store
- Fully serverless service
- Push button scaling
- Can achieve ACID compliance with DynamoDB Transactions
- Data is synchronously replicated across 3 facilities (AZs) in a region
- DynamoDB is schema-less
- DynamoDB can be used for storing session state

Amazon DynamoDB

- Provides two read models.
 - Eventually consistent reads (Default)
 - Strongly consistent reads
- There are two pricing models for DynamoDB:
 - On-demand capacity mode: DynamoDB charges you for the data reads and writes your application performs on your tables
 - Provisioned capacity mode: you specify the number of reads and writes per second that you expect your application to require (can use Auto Scaling)

DynamoDB Time to Live (TTL)

- TTL lets you define when items in a table expire so that they can be automatically deleted from the database
- With TTL enabled on a table, you can set a timestamp for deletion on a per-item basis
- No extra cost and does not use WCU / RCU
- Helps reduce storage and manage the table size over time

Amazon DynamoDB

DynamoDB Feature	Benefit
Serverless	Fully managed, fault tolerant, service
Highly available	99.99% availability SLA – 99.999% for Global Tables!
NoSQL type of database with Name / Value structure	Flexible schema, good for when data is not well structured or unpredictable
Horizontal scaling	Seamless scalability to any scale with push button scaling or Auto Scaling
DynamoDB Streams	Captures a time-ordered sequence of item-level modifications in a DynamoDB table and durably stores the information for up to 24 hours. Often used with Lambda and the Kinesis Client Library (KCL)
DynamoDB Accelerator (DAX)	Fully managed in-memory cache for DynamoDB that increases performance (microsecond latency)
Transaction options	Strongly consistent or eventually consistent reads, support for ACID transactions
Backup	Point-in-time recovery down to the second in last 35 days; On-demand backup and restore
Global Tables	Fully managed multi-region, multi-master solution

DynamoDB Streams

- Captures a time-ordered sequence of item-level modifications in any DynamoDB table and stores this information in a log for up to 24 hours
- Can configure the information that is written to the stream:
 - KEYS_ONLY Only the key attributes of the modified item
 - NEW_IMAGE The entire item, as it appears after it was modified
 - OLD_IMAGE The entire item, as it appeared before it was modified
 - NEW_AND_OLD_IMAGES Both the new and the old images of the item

DynamoDB Accelerator (DAX)

- DAX is a fully managed, highly available, in-memory cache for DynamoDB
- Improves performance from milliseconds to microseconds
- Can be a read-through cache and a write-through cache
- Used to improve READ and WRITE performance
- DAX is updated only if DynamoDB is successfully updated first
- You do not need to modify application logic, since DAX is compatible with existing DynamoDB API calls

DAX vs ElastiCache

- DAX is optimized for DynamoDB
- With ElastiCache you have more management overhead (e.g. invalidation)
- With ElastiCache you need to modify application code to point to cache
- ElastiCache supports more datastores

Amazon RedShift

- RedShift is a SQL based data warehouse used for analytics applications
- Analyze data using standard SQL and existing Business Intelligence (BI) tools
- RedShift is a relational database that is used for Online Analytics
 Processing (OLAP) use cases
- RedShift uses Amazon EC2 instances, so you must choose an instance family/type
- RedShift always keeps three copies of your data
- RedShift provides continuous/incremental backups

RedShift Use Cases

- Perform complex queries on massive collections of structured and semi-structured data and get fast performance
- Frequently accessed data that needs a consistent, highly structured format
- Use Spectrum for direct access of S3 objects in a data lake
- Managed data warehouse solution with:
 - Automated provisioning, configuration and patching
 - Data durability with continuous backup to S3
 - Scales with simple API calls
 - Exabyte scale query capability

Amazon EMR

- Managed cluster platform that simplifies running big data frameworks including Apache Hadoop and Apache Spark
- Used for processing data for analytics and business intelligence
- Can also be used for transforming and moving large amounts of data
- Performs extract, transform, and load (ETL) functions

Amazon Kinesis Data Streams

- Kinesis Data Streams enables real-time processing of streaming big data
- Used for rapidly moving data off data producers and then continuously processing the data
- Producers send data to Kinesis, data is stored in Shards for 24 hours (by default, up to 7 days)
- Consumers then take the data and process it data can then be saved into another AWS service
- Kinesis Data Streams stores data for later processing by applications (key difference with Firehose which delivers data directly to AWS services)
- Real time (~200ms)

Kinesis Client Library (KCL)

- The Kinesis Client Library (KCL) helps you consume and process data from a Kinesis data stream
- Each shard is processed by exactly one KCL worker and has exactly one corresponding record processor
- One worker can process any number of shards, so it's fine if the number of shards exceeds the number of instances

Kinesis Data Firehose

- Captures, transforms, and loads streaming data
- Producers send data to Firehose
- There are no Shards, completely automated (scalability is elastic)
- Firehose data is sent to another AWS service for storing, data can be optionally processed/transformed using AWS Lambda
- Enables near real-time analytics with existing business intelligence tools and dashboards
- Near real-time delivery (~60 seconds latency)

Kinesis Data Firehose

Kinesis Data Firehose destinations:

- RedShift (via an intermediate S3 bucket)
- Elasticsearch
- Amazon S3
- Splunk
- Datadog
- MongoDB
- New Relic
- HTTP Endpoint

Kinesis Data Analytics

- Provides real-time SQL processing for streaming data
- Provides analytics for data coming in from Kinesis Data Streams and Kinesis Data Firehose
- Destinations can be Kinesis Data Streams, Kinesis Data Firehose, or AWS Lambda
- Quickly author and run powerful SQL code against streaming sources
- Can ingest data from Kinesis Streams and Kinesis Firehose

Amazon Athena

- Athena queries data in S3 using SQL
- Can be connected to other data sources with Lambda
- Data can be in CSV, TSV, JSON, Parquet and ORC formats
- Uses a managed Data Catalog (AWS Glue) to store information and schemas about the databases and tables

Optimizing Athena for Performance

- Partition your data
- Bucket your data bucket the data within a single partition
- Use Compression AWS recommend using either Apache Parquet or Apache ORC
- Optimize file sizes
- Optimize columnar data store generation Apache Parquet and Apache ORC are popular columnar data stores
- Optimize ORDER BY and Optimize GROUP BY
- Use approximate functions
- Only include the columns that you need

AWS Glue

- Fully managed extract, transform and load (ETL) service
- Used for preparing data for analytics
- AWS Glue runs the ETL jobs on a fully managed, scaleout Apache Spark environment
- AWS Glue discovers data and stores the associated metadata (e.g. table definition and schema) in the AWS Glue Data Catalog
- Works with data lakes (e.g. data on S3), data warehouses (including RedShift), and data stores (including RDS or EC2 databases)

AWS Glue

- You can use a crawler to populate the AWS Glue Data Catalog with tables
- A crawler can crawl multiple data stores in a single run
- Upon completion, the crawler creates or updates one or more tables in your Data Catalog.
- ETL jobs that you define in AWS Glue use the Data Catalog tables as sources and targets

EXAM CRAM

Deployment and Management

AWS CloudFormation

- CloudFormation deploys infrastructure using code (JSON or YAML)
- Infrastructure is provisioned consistently, with fewer mistakes (less human error)
- Less time and effort than configuring resources manually
- You can use version control and peer review for your CloudFormation templates
- Free to use (you're only charged for the resources provisioned)
- Can be used to manage updates and dependencies
- Can be used to rollback and delete the entire stack as well

AWS CloudFormation

Component	Description	
Templates	The JSON or YAML text file that contains the instructions for building out	
	the AWS environment	
Stacks	The entire environment described by the template and created, updated,	
	and deleted as a single unit	
StackSets	AWS CloudFormation StackSets extends the functionality of stacks by	
	enabling you to create, update, or delete stacks across multiple accounts	
	and regions with a single operation	
Change Sets	A summary of proposed changes to your stack that will allow you to see	
	how those changes might impact your existing resources before	
	implementing them	

- AWS Elastic Beanstalk can be used to quickly deploy and manage applications in the AWS Cloud
- Considered a Platform as a Service (PaaS) solution
- Developers upload applications and Elastic Beanstalk handles the deployment details of capacity provisioning, load balancing, autoscaling, and application health monitoring
- Supports Java, .NET, PHP, Node.js, Python, Ruby, Go, and Docker web applications

There are several layers

Applications:

- Contain environments, environment configurations, and application versions
- You can have multiple application versions held within an application

Application version

- A specific reference to a section of deployable code
- The application version will point typically to an Amazon S3 bucket containing the code

Environments:

- An application version that has been deployed on AWS resources
- The resources are configured and provisioned by AWS Elastic Beanstalk
- The environment is comprised of all the resources created by Elastic Beanstalk and not just an EC2 instance with your uploaded code

Web Servers and Workers

- Web servers are standard applications that listen for and then process HTTP requests, typically over port 80
- Workers are specialized applications that have a background processing task that listens for messages on an Amazon SQS queue
- Workers should be used for long-running tasks

AWS SSM Parameter Store

- Parameter Store provides secure, hierarchical storage for configuration data and secrets
- Highly scalable, available, and durable
- Store data such as passwords, database strings, and license codes as parameter values
- Store values as plaintext (unencrypted data) or ciphertext (encrypted data)
- Reference values by using the unique name that you specified when you created the parameter
- No native rotation of keys (difference with AWS Secrets Manager which does it automatically)

AWS Config

- Evaluate your AWS resource configurations for desired settings
- Get a snapshot of the current configurations of resources that are associated with your AWS account
- Retrieve configurations of resources that exist in your account
- Retrieve historical configurations of one or more resources
- Receive a notification whenever a resource is created, modified, or deleted
- View relationships between resources

AWS Secrets Manager

- Stores and rotate secrets safely without the need for code deployments
- Secrets Manager offers automatic rotation of credentials (builtin) for:
 - Amazon RDS (MySQL, PostgreSQL, and Amazon Aurora)
 - Amazon Redshift
 - Amazon DocumentDB
- For other services you can write your own AWS Lambda function for automatic rotation

AWS Secrets Manager vs SSM Parameter Store

	Secrets Manager	SSM Parameter Store
Automatic Key Rotation	Yes, built-in for some services, use	No native key rotation; can use custom
	Lambda for others	Lambda
Key/Value Type	String or Binary (encrypted)	String, StringList, SecureString (encrypted)
Hierarchical Keys	No	Yes
Price	Charges apply per secret	Free for standard, charges for advanced

AWS OpsWorks

- AWS OpsWorks is a configuration management service that provides managed instances of Chef and Puppet
- Updates include patching, updating, backup, configuration and compliance management

AWS RAM

- Shares resources:
 - Across AWS accounts
 - Within AWS Organizations or OUs
 - IAM roles and IAM users
- Resource shares are created with:
 - The AWS RAM Console
 - AWS RAM APIs
 - AWS CLI
 - AWS SDKs

AWS RAM

RAM can be used to share:

- AWS App Mesh
- Amazon Aurora
- AWS Certificate Manager Private Certificate Authority
- AWS CodeBuild
- Amazon EC2
- EC2 Image Builder
- AWS Glue
- AWS License Manager
- AWS Network Firewall
- AWS Outposts
- Amazon S3 on Outposts
- AWS Resource Groups
- Amazon Route 53
- AWS Systems Manager Incident Manager
- Amazon VPC

EXAM CRAM

Monitoring, Logging, and Auditing

Amazon CloudWatch

CloudWatch is used for performance monitoring, alarms, log collection and automated actions

Use cases / benefits include:

- Collect performance metrics from AWS and onpremises systems
- Automate responses to operational changes
- Improve operational performance and resource optimization
- Derive actionable insights from logs
- Get operational visibility and insight

Amazon CloudWatch

CloudWatch Core Features:

- CloudWatch Metrics services send time-ordered data points to CloudWatch
- CloudWatch Alarms monitor metrics and initiate actions
- CloudWatch Logs centralized collection of system and application logs
- CloudWatch Events stream of system events describing changes to AWS resources and can trigger actions

Amazon CloudWatch Metrics

- Metrics are sent to CloudWatch for many AWS services
- EC2 metrics are sent every 5 minutes by default (free)
- Detailed EC2 monitoring sends every 1 minute (chargeable)
- Unified CloudWatch Agent sends system-level metrics for EC2 and on-premises servers
- System-level metrics include memory and disk usage

Amazon CloudWatch Metrics

- Can publish custom metrics using CLI or API
- Custom metrics are one of the following resolutions:
 - Standard resolution data having a one-minute granularity
 - High resolution data at a granularity of one second
- AWS metrics are standard resolution by default

Amazon CloudWatch Alarms

Two types of alarms

- Metric alarm performs one or more actions based on a single metric
- Composite alarm uses a rule expression and takes into account multiple alarms
- Metric alarm states:
 - OK Metric is within a threshold
 - ALARM Metric is outside a threshold
 - INSUFFICIENT_DATA not enough data

Amazon CloudWatch Logs

- Gather application and system logs in CloudWatch
- Define expiration policies and KMS encryption
- Send to:
 - Amazon S3 (export)
 - Kinesis Data Streams
 - Kinesis Data Firehose

The Unified CloudWatch Agent

The unified CloudWatch agent enables you to do the following:

- Collect internal system-level metrics from Amazon EC2 instances across operating systems
- Collect system-level metrics from on-premises servers
- Retrieve custom metrics from your applications or services using the StatsD and collectd protocols
- Collect logs from Amazon EC2 instances and onpremises servers (Windows / Linux)

The Unified CloudWatch Agent

- Agent must be installed on the server
- Can be installed on:
 - Amazon EC2 instances
 - On-premises servers
 - Linux, Windows Server, or macOS

AWS CloudTrail

- CloudTrail logs API activity for auditing
- By default, management events are logged and retained for 90 days
- A CloudTrail Trail logs any events to S3 for indefinite retention
- Trail can be within Region or all Regions
- CloudWatch Events can triggered based on API calls in CloudTrail
- Events can be streamed to CloudWatch Logs

CloudTrail – Types of Events

- Management events provide information about management operations that are performed on resources in your AWS account
- Data events provide information about the resource operations performed on or in a resource
- Insights events identify and respond to unusual activity associated with write API calls by continuously analyzing CloudTrail management events

EXAM CRAM

Security in the Cloud

AWS Managed Microsoft AD

- Fully managed AWS service
- Best choice if you have more than 5000 users and/or need a trust relationship set up
- Can perform schema extensions
- Can setup trust relationships with on-premises
 Active Directories:
 - On-premise users and groups can access resources in either domain using SSO
 - Requires a VPN or Direct Connect connection
- Can be used as a standalone AD in the AWS cloud

AD Connector

- Redirects directory requests to your on-premises Active Directory
- Best choice when you want to use an existing Active Directory with AWS services
- AD Connector comes in two sizes:
 - Small designed for organizations up to 500 users
 - Large designed for organizations up to 5000 users
- Requires a VPN or Direct Connect connection
- Join EC2 instances to your on-premises AD through AD Connector
- Login to the AWS Management Console using your on-premises AD DCs for authentication

Simple AD

- Inexpensive Active Directory-compatible service with common directory features
- Standalone, fully managed, directory on the AWS cloud
- Simple AD is generally the least expensive option
- Best choice for less than 5000 users and don't need advanced AD features
- Features include:
 - Manage user accounts / groups
 - Apply group policies
 - Kerberos-based SSO
 - Supports joining Linux or Windows based EC2 instances

Identity Providers and Federation

- With an identity provider (IdP), you can manage user identities outside of AWS and give these identities permissions to use AWS resources in your account.
- For example:
 - Your organization already has its own identity system, such as a corporate user directory
 - You're creating a mobile app or web application that requires access to AWS resources
- With an IAM identity provider, there's no need to create custom sign-in code or manage your own user identities. The IdP provides that for you
- External users sign in through a well-known IdP, such as Login with Amazon, Facebook, or Google.
- IAM supports IdPs that are compatible with OpenID Connect (OIDC) or SAML 2.0 (Security Assertion Markup Language 2.0)

IAM Identity Center

- Used to be called AWS SSO (it's the same)
- Centrally manage access to multiple AWS accounts and business applications
- Easily manage SSO access and user permissions to all your accounts in AWS Organizations centrally
- IAM Identity Center also includes built-in integrations to many business applications, such as Salesforce, Box, and Office 365
- Create and manage user identities in IAM identity center
- Or connect to existing identity store such as Microsoft AD or Azure

Amazon Cognito

- Add user sign-up, sign-in, and access control to your web and mobile apps
- A User Pool is a directory for managing sign-in and sign-up
- Users can be stored in a User Pool or can sign in using social IdPs
- Supports SAML and OIDC IdPs
- Cognito acts as an Identity Broker between the IdP and AWS
- Identity pools are used to obtain temporary, limited-privilege credentials for AWS services (using STS)
- An IAM role is assumed, providing access to the AWS services

AWS Key Management Service (KMS)

- Fully-managed service that enables you to create and manage cryptographic keys
- Can control key usage across AWS services and in applications
- AWS KMS allows you to centrally manage and securely store your keys
- Supports symmetric and asymmetric encryption
- KMS keys are the primary resources in AWS KMS (used to be called customer master keys, or CMKs)

KMS Keys

- The KMS keys also contain the key material used to encrypt and decrypt data
- KMS keys are created in AWS KMS
- Symmetric KMS keys and the private keys of asymmetric KMS keys never leave AWS
 KMS unencrypted
- By default, AWS KMS creates the key material for a KMS keys
- Can also import your own key material
- A KMS keys can encrypt data up to 4KB in size
- A KMS keys can generate, encrypt and decrypt Data Encryption Keys
- Data Encryption Keys can be used for encrypting large amounts of data

AWS Managed KMS keys

- Created, managed, and used on your behalf by an AWS service that is integrated with AWS KMS
- You cannot manage these KMS keys, rotate them, or change their key policies
- You also cannot use AWS managed KMS keys in cryptographic operations directly; the service that creates them uses them on your behalf

Data Encryption Keys

- Data keys are encryption keys that you can use to encrypt data, including large amounts of data and other data encryption keys
- You can use AWS KMS keys to generate, encrypt, and decrypt data keys
- AWS KMS does not store, manage, or track your data keys,
 or perform cryptographic operations with data keys
- You must use and manage data keys outside of AWS KMS

AWS KMS keys

Type of KMS keys	Can view	Can manage	Used only for my AWS account	Automatic rotation
Customer managed KMS	Yes	Yes	Yes	Optional. Every 365 days
keys				
AWS managed KMS keys	Yes	No	Yes	Required. Every 365 days
AWS owned KMS keys	No	No	No	Varies

AWS CloudHSM

- AWS CloudHSM is a cloud-based hardware security module (HSM)
- Generate and use your own encryption keys on the AWS
 Cloud
- CloudHSM runs in your Amazon VPC
- Uses FIPS 140-2 level 3 validated HSMs
- Managed service and automatically scales
- Retain control of your encryption keys you control access (and AWS has no visibility of your encryption keys)

AWS CloudHSM Use Cases

- Offload SSL/TLS processing from web servers
- Protect private keys for an issuing certificate authority (CA)
- Store the master key for Oracle DB Transparent Data Encryption
- Custom key store for AWS KMS retain control of the HSM that protects the master keys

AWS CloudHSM vs KMS

	CloudHSM	AWS KMS	
Tenancy	Single-tenant HSM	Multi-tenant AWS service	
Availability	Customer-managed durability and	Highly available and durable key storage	
	available	and management	
Root of Trust	Customer managed root of trust	AWS managed root of trust	
FIPS 140-2	Level 3	Level 2 / Level 3	
3 rd Party Support	Broad 3 rd Party Support	Broad AWS service support	

AWS Certificate Manager (ACM)

- Create, store and renew SSL/TLS X.509 certificates
- Single domains, multiple domain names and wildcards
- Integrates with several AWS services including:
 - Elastic Load Balancing
 - Amazon CloudFront
 - AWS Elastic Beanstalk
 - AWS Nitro Enclaves
 - AWS CloudFormation

AWS Certificate Manager (ACM)

- Public certificates are signed by the AWS public Certificate Authority
- You can also create a Private CA with ACM
- Can then issue private certificates
- You can also import certificates from third-party issuers

- AWS WAF is a web application firewall
- WAF lets you create rules to filter web traffic based on conditions that include IP addresses, HTTP headers and body, or custom URIs
- WAF makes it easy to create rules that block common web exploits like SQL injection and cross site scripting

- Web ACLs You use a web access control list (ACL) to protect a set of AWS resources
- Rules Each rule contains a statement that defines the inspection criteria, and an action to take if a web request meets the criteria
- Rule groups You can use rules individually or in reusable rule groups

- IP Sets An IP set provides a collection of IP addresses and IP address ranges that you want to use together in a rule statement
- Regex pattern set A regex pattern set provides a collection of regular expressions that you want to use together in a rule statement

A rule action tells AWS WAF what to do with a web request when it matches the criteria defined in the rule:

- Count AWS WAF counts the request but doesn't determine whether to allow it or block it. With this action, AWS WAF continues processing the remaining rules in the web ACL
- Allow AWS WAF allows the request to be forwarded to the AWS resource for processing and response
- Block AWS WAF blocks the request and the AWS resource responds with an HTTP 403 (Forbidden) status code

Match statements compare the web request or its origin against conditions that you provide

Match Statement	Description
Geographic match	Inspects the request's country of origin
IP set match	Inspects the request against a set of IP addresses and address ranges
Regex pattern set	Compares regex patterns against a specified request component
Size constraint	Checks size constraints against a specified request component
SQLi attack	Inspects for malicious SQL code in a specified request component
String match	Compares a string to a specified request component
XSS scripting attack	Inspects for cross-site scripting attacks in a specified request component

AWS Shield

- AWS Shield is a managed Distributed Denial of Service (DDoS) protection service
- Safeguards web application running on AWS with always-on detection and automatic inline mitigations
- Helps to minimize application downtime and latency
- Two tiers
 - Standard no cost
 - Advanced monthly fee and 1 year commitment
- Integrated with Amazon CloudFront (standard included by default)

EXAM CRAM

Migration and Transfer Services

AWS Server Migration Service (SMS)

- Agentless service for migrating on-premises and cloudbased VMs to AWS
- Source platforms can be VMware, Hyper-V or Azure
- AWS Server Migration Service Connector is installed on the source platform
- Server volumes are replicated (encrypted with TLS) and saved as AMIs which can then be launched as EC2 instances
- Can use application groupings and SMS will launch servers in a CloudFormation stack
- You can replicate your on-premises servers to AWS for up to 90 days (per server)
- Provides automated, live incremental server replication and AWS Console support

AWS Database Migration Service (DMS)

- Use to migrate databases from on-premises, Amazon EC2 or Amazon RDS
- Supports homogenous (e.g. Oracle to Oracle) as well as heterogenous (e.g. Oracle to Amazon Aurora)
- Data is continuously replicated while the application is live, minimizing downtime
- Pay based on compute resources used during the migration and log storage
- Fully managed migration process
- Use with the Schema Conversion tool for converting schemas

AWS DMS Use Cases

- Cloud to Cloud EC2 to RDS, RDS to RDS, RDS to Aurora
- On-Premises to Cloud
- Homogeneous migrations Oracle to Oracle, MySQL to RDS MySQL, Microsoft SQL to RDS for SQL Server
- Heterogeneous migrations Oracle to Aurora,
 Oracle to PostgreSQL, Microsoft SQL to RDS MySQL
 (must convert schema first wit the Shema
 Conversion Tool (SCT))

AWS DMS Use Cases

- Development and Test use the cloud for dev/test workloads
- Database consolidation consolidate multiple source DBs to a single target DB
- Continuous Data Replication use for DR, dev/test, single source multi-target or multi-source single target

AWS DataSync

- DataSync software agent connects to on-premises
 NAS storage systems
- The NAS can use NFS or SMB protocols
- Synchronizes data into AWS using a Scheduled, automated data transfer with TLS encryption
- Destination can be Amazon S3, Amazon EFS or Amazon FSx for Windows File Server
- Can improve performance for data transfers up to 10x faster than traditional tooling
- Permissions and metadata are preserved
- Pay per-GB transferred

AWS Snowball Family

- AWS Snowball and Snowmobile are used for migrating large volumes of data to AWS
- Snowball Edge Compute Optimized
 - Provides block and object storage and optional GPU
 - Use for data collection, machine learning and processing, and storage in environments with intermittent connectivity (edge use cases)
- Snowball Edge Storage Optimized
 - Provides block storage and Amazon S3-compatible object storage
 - Use for local storage and large-scale data transfer

Snowcone

- Small device used for edge computing, storage and data transfer
- Can transfer data offline or online with AWS DataSync agent

AWS Snowball Family

- Uses a secure storage device for physical transportation
- Snowball Client is software that is installed on a local computer and is used to identify, compress, encrypt, and transfer data
- Uses 256-bit encryption (managed with the AWS KMS) and tamperresistant enclosures with TPM
- Snowball (80TB) (50TB) "petabyte scale"
- Snowball Edge (100TB) "petabyte scale"
- Snowmobile "exabyte scale" with up to 100PB per Snowmobile

AWS Snowball Family

Ways to optimize the performance of Snowball transfers:

- 1. Use the latest Mac or Linux Snowball client
- 2. Batch small files together
- 3. Perform multiple copy operations at one time
- 4. Copy from multiple workstations
- 5. Transfer directories, not files

AWS Snowball Use Cases

- Cloud data migration migrate data to the cloud
- Content distribution send data to clients or customers
- Tactical Edge Computing collect data and compute
- Machine learning run ML directly on the device
- Manufacturing data collection and analysis in the factory
- Remote locations with simple data pre-processing, tagging, compression etc.

