Добин Илья Д3-4

Задание 1

 $lbwght_i = \beta_0 + \beta_1 \cdot male_i + \beta_2 \cdot parity_i + \beta_3 \cdot lfaminc_i + \beta_4 \cdot cigs_i + \varepsilon_i.$

a)

Проблема при использовании OLS: *cigs* может быть эндогенна. Скорее всего существуют неучтенные факторы, которые влияют как на вес новорожденного, так и на курение матери. Поэтому оценки могут быть несостоятельны.

b)

Средняя цена сигарет в стране может быть полезной информацией только в том случае, когда она коррелирует с количеством выкуренных сигарет матерями. Но на мой взгляд увеличение цены не обязательно будет сильно снижать потребление сигарет, так как этот товар вызывает сильную зависимость и зависимый человек готов покупать товар даже если он будет переоценен.

Но если же корреляция достаточная, то эта переменная может решать проблему эндогенности *cigs*, так как логично, что она не влияет на другие факторы, т. е. экзогенна и вследствие наличия корреляции - релевантна.

Хотя экзогенность все-таки не очевидна. Возможно цена на сигареты как-то связана с условиями жизни в стране, что может влиять на например здоровье матери.

c)

			egress: ======				
Dep. Varial	ole:	lby	wght	R-squared:			0.035
Model:			OLS	Adj.	R-squared:		0.032
Method:		Least Squa	ares	F-sta	atistic:		12.55
Date:	Sı	ın, 16 Mar 2	2025	Prob	(F-statistic)	:	4.90e-10
Time:		20:12	2:16	Log-I	Likelihood:		356.03
No. Observa	ations:	:	1388	AIC:			-702.1
Df Residua	ls:	:	1383	BIC:			-675.9
Df Model:			4				
Covariance	Type:	nonrol	oust				
	coef	std err		t	P> t	[0.025	0.975]
const	4.6756	0.022	213	.681	0.000	4.633	4.719
male	0.0262	0.010	2	.601	0.009	0.006	0.046
parity	0.0147	0.006	2	.600	0.009	0.004	0.026
lfaminc	0.0180	0.006	3	.233	0.001	0.007	0.029
cigs	-0.0042	0.001	-4	.890	0.000	-0.006	-0.003
Omnibus:		614	 .841	Durb	in-Watson:		1.931
Prob(Omnib	ıs):	0	.000	Jarqı	ie-Bera (JB):		6025.606
Skew:	•	-1	.799	Prob	(JB):		0.00
Kurtosis:		12	.552	Cond	NO.		29.2

Все коэффициенты стат. значимы на уровне 1%. Курение отрицательно влияет на вес ребенка. Мальчики в среднем весят больше девочек. Порядковый номер родов *parity* и семейный доход *lfaminc* положительно влияют на вес. Но R^2 всего 0.035.

d) Результаты первого шага:

OLS Regression Results								
Dep. Variabl	.e :		_	 uared:		0.030		
Model:			_	R-squared:		0.028		
Method:		Least Squa		atistic:		10.86		
Date:	Sı	ın, 16 Mar 2		(F-statistic)	:	1.14e-08		
Time:		20:31	:00 Log-	Likelihood:		-4428.2		
No. Observat	ions:	1	388 AIC:			8866.		
Df Residuals	s :	1	383 BIC:			8892.		
Df Model:			4					
Covariance T	lype:	nonrob	ust					
=========								
	coef	std err	t	P> t	[0.025	0.975]		
Intercept	2.7482	2.080	1.321	0.187	-1.332	6.828		
cigprice	0.0155	0.016	1.001	0.317	-0.015	0.046		
male	-0.0945	0.317	-0.298	0.766	-0.717	0.527		
parity	0.3630	0.178	2.044	0.041	0.015	0.711		
lfaminc	-1.0527	0.174	-6.051	0.000	-1.394	-0.711		
=========			=======					
Omnibus:				in-Watson:		1.945		
Prob(Omnibus	3):		-	ue-Bera (JB):		14470.841		
Skew:		3.	423 Prob	(JB):		0.00		
Kurtosis:		17.	260 Cond	. No.		1.72e+03		

F-статистика = 10.86, значит инструмент не слабый. Также интересно, что цена сигарет *cigprice* положительно влияет на количество выкуренных сигарет *cigs*, но этот эффект не стат. значим.

Результаты второго шага:

=========						=======
	coef	std err	t	P> t	[0.025	0.975]
Intercept	4.4679	0.153	29.231	0.000	4.168	4.768
cigs_hat	0.0399	0.032	1.243	0.214	-0.023	0.103
male	0.0298	0.010	2.840	0.005	0.009	0.050
parity	-0.0012	0.013	-0.096	0.924	-0.027	0.024
lfaminc	0.0636	0.034	1.890	0.059	-0.002	0.130
=========	========	========	========	========		=======

Наблюдаем положительный эффект курения на вес ребенка (в 2SLS коэффициент 0.0399, а в OLS был -0.0042), но коэффициент не значим. Видимо все-таки инструмент оказался слабым, а оценки 2SLS ненадежными.

е)
Уже упоминал в пункте а) - инструментальная переменная должна обладать 1. релевантностью - инструмент должен быть хорошо коррелированным с эндогенным регрессором, и 2. экзогенностью - инструмент не должен коррелировать с ошибкой в основном уравнении регрессии.

Проверка релевантности:

t-статистика инструмента 1.001 с pvalue 0.317, следовательно на уровне значимости 5% мы не отвергаем гипотезу о том, что коэффициент при инструменте равен нулю. => инструмент слабый.

Проверка экзогенности:

=======	coef	std err	t	P> t	[0.025	0.975]
const	4.5890	0.066	69.256	0.000	4.459	4.719
male	0.0257	0.010	2.541	0.011	0.006	0.045
parity	0.0148	0.006	2.606	0.009	0.004	0.026
lfaminc	0.0172	0.006	3.073	0.002	0.006	0.028
cigs	-0.0042	0.001	-4.928	0.000	-0.006	-0.003
cigprice	0.0007	0.000	1.385	0.166	-0.000	0.002

Включили в модель cigprice. pvalue коэффициента 0.0007 равна 0.166 => на уровне значимости 5% не можем отвергнуть гипотезу о практически отстутствии влияния cigprice на вес ребенка. => инструмент экзогенный.

f)
2SLS оценки ненадежны, так как инструмент нерелевантный.
Следовательно надо применять методы, устойчивые к слабым инструментам, или искать сильные инструменты. Очевидно, можно увеличить выборку, тогда инструменты станут мощнее и улучшить основную регрессию, то есть добавить новых признаков, чтобы R^2 был повыше и модель объясняла вес ребенка лучше.

Задание 5

a)

Регрессия 1:

OLS Regression Results						
=======================================						
Dep. Variable:	avgmath	R-squared:	0.024			
Model:	OLS	Adj. R-squared:	0.022			
Method:	Least Squares	F-statistic:	17.03			
Date:	Sun, 16 Mar 2025	Prob (F-statistic):	4.13e-05			
Time:	21:42:16	Log-Likelihood:	-2620.5			
No. Observations:	699	AIC:	5245.			
Df Residuals:	697	BIC:	5254.			
Df Model:	1					
Covariance Type:	nonrobust					
			.0.025			

	coef	std err	t	P> t	[0.025	0.975]
const classize	56.6124 0.3141	1.982 0.076	28.557 4.127	0.000	52.720 0.165	60.505
========						=======

Размер класса *classize* положительно влияет на успеваемость. R^2 очевидно низкий и равен 0.024, то есть модель слабо объясняет разброс результатов.

OLS Regression Results

			:======	=======			
Dep. Variabl	e:		avgmat	h R-sq	uared:		0.311
Model:			OI	S Adj.	R-squared:		0.308
Method:		Least	Square	s F-st	atistic:		104.7
Date:		Sun, 16	Mar 202	5 Prob	(F-statisti	c):	6.26e-56
Time:			21:42:5	3 Log-	Likelihood:		-2498.6
No. Observat	ions:		69	9 AIC:			5005.
Df Residuals	:		69	5 BIC:			5023.
Df Model:				3			
Covariance T	ype:	r	onrobus	t			
========	=======						========
	coef	std	err	t	P> t	[0.025	0.975]
const	66.9999		050	32.689	0.000	62.976	71.024
classize	0.1313		066	1.997	0.046	0.002	0.260
disadv	-0.3323	3 0.	020	-16.863	0.000	-0.371	-0.294
enrollment	0.0234	0.	029	0.821	0.412	-0.033	0.079
========	=======			======		========	=======

classize по прежнему положительно влияет на успеваемость, однако pvalue выросло до 0.046 и коэффициент уже будет не значим на уровне значимости 1%. *enrollment* также оказывает положительный эффект, однако коэффициент точно не значим. *disadv* отрицательно влияет на результаты, что логично. R^2 увеличился до 0.311.

b)

OLS	Regression	Results
-----	------------	---------

Den Venieble:	=======			:======== . J .	======	0 221	
Dep. Variable:		avgmath	-	R-squared:		0.321	
Model: OLS			-		0.317		
Method: Least Squares		F-statis	tic:		82.09		
Date: Sun, 16 Mar 2025		Prob (F-	statistic):		4.71e-57		
Time: 21:59:07		Log-Like	lihood:		-2493.6		
No. Observation	ns:	699	AIC:			4997.	
Df Residuals:		694	BIC:			5020.	
Df Model:		4	ļ				
Covariance Type	e:	nonrobust	:				
========	coef	std err	t	P> t	[0.025	0.975]	
Intercept	68.8815	2.120	32.486	0.000	64.718	73.045	
large_cohort	4.7644	1.497	3.183	0.002	1.826	7.703	
classize	0.2192	0.071	3.090	0.002	0.080	0.358	
disadv	-0.3319	0.020	-16.954	0.000	-0.370	-0.293	
enrollment	-0.1467	0.060	-2.425	0.016	-0.265	-0.028	

Коэффициент при large_cohort равен 4.764. Это значит, что при переходе через порог в 40 учеников средний балл по математике увеличивается на 5.69 баллов. Логично, так как при переходе размер классов становится меньше, следовательно учитель может уделить больше внимания каждому ученику. Коэффициент при classize остается положительным.

c)

Синяя линия - тренд для школ с численность учащихся до 40 и красная соответственно от 40. Слева у нас школы с одним классом, справа с двумя. Соответственно слева среднее число учеников в классе равно абсциссе, а справа абсциссе/2. Замечаем, что и слева, и справа: чем меньше среднее число учеников в классе, тем в среднем лучше результаты тестов.

d) RDD без контрольных переменных:

	coef	std err	t	P> t	[0.025	0.975]	
Intercept	54.6491	2.072	26.377	0.000	50.581	58.717	
large_cohort	2.5500	0.831	3.069	0.002	0.919	4.181	
classize	0.3230	0.076	4.266	0.000	0.174	0.472	

коэффициент large_cohort равен 2.55

RDD c enrollment:

==========	=======	========		========		=======
	coef	std err	t	P> t	[0.025	0.975]
Intercept	56.3565	2.362	23.861	0.000	51.719	60.994
large_cohort	4.9115	1.779	2.761	0.006	1.419	8.404
classize	0.3763	0.084	4.503	0.000	0.212	0.540
enrollment	-0.1078	0.072	-1.501	0.134	-0.249	0.033

коэффициент large_cohort равен 4.9115

RDD c disadv:

	coef	std err	t	P> t	[0.025	0.975]
Intercept	66.4940	1.885	35.283	0.000	62.794	70.194
large_cohort	1.5569	0.703	2.213	0.027	0.176	2.938
classize	0.1477	0.065	2.281	0.023	0.021	0.275
disadv	-0.3301	0.020	-16.816	0.000	-0.369	-0.292

коэффициент large_cohort равен 1.5569

В полной модели же коэффициент large_cohort равен 4.7644 Видим, что коэффициент сильно меняется.

Коэффициент везде значим, но меняется при добавлении контрольных переменных. Все доверительные интервалы > 0. То есть гарантированно наблюдается положительная связь между large_cohort и результатами тестов.

f)

·)							
		OLS Regres	sion Result	s			
Dep. Variable:		avgmath	R-squared:		0.329		
Model:		OLS Adj. R-squared:		0.324			
Method: Least Squares		F-statistic:		67.95			
Date:	ate: Sun, 16 Mar 2025 Pro		Prob (F-s	<pre>Prob (F-statistic):</pre>		8.62e-58	
Time:	ime: 22:45:04		Log-Likelihood:		-2489.5		
No. Observation	ıs:	699		AIC:		4991.	
Df Residuals:		693		BIC:		5018.	
Df Model:		5					
Covariance Type	: 	nonrobust					
	coef	std err	t	P> t	[0.025	0.975]	
Intercept	80.7790	4.694	17.209	0.000	71.563	89.995	
large_cohort	6.3771	1.594	4.001	0.000	3.247	9.507	
classize	0.2541	0.072	3.547	0.000	0.113	0.395	
disadv	-0.3297	0.019	-16.910	0.000	-0.368	-0.291	
enrollment	-0.8249	0.246	-3.347	0.001	-1.309	-0.341	
enrollment_sq	0.0077	0.003	2.837	0.005	0.002	0.013	

Коэффициент при large_cohort увеличился до 6.37. Значит результаты устойчивы к изменению функциональной формы зависимости от enrollment. enrollment_sq статзначимый => реально нелинейная форма зависимости. При этом успеваемость сначала снижаются с ростом enrollment, а затем начинают расти.

OLS Regression Results

==========						=======
Dep. Variable: disadv		disadv	R-squared:		0.033	
Model: OLS		Adj. R-squared:		0.029		
Method: Least Squares		F-statistic:		7.928		
Date: Sun, 16 Mar 2025		Prob (F-statistic):		3.33e-05		
Time: 22:59:43		Log-Likelihood:		-2956.4		
No. Observations:		699	AIC:			5921.
Df Residuals: 695		BIC:			5939.	
Df Model:		3				
Covariance Type: nonrobust						
=========	coef	std err	t	P> t	[0.025	0.975]
Intercept	37.7362	3.851	9.799	0.000	30.175	45.297
large cohort	-0.4432	2.900	-0.153	0.879	-6.137	5.251
classize	-0.4733	0.136	-3.474	0.001	-0.741	-0.206
enrollment	-0.1171	0.117	-1.000	0.318	-0.347	0.113

коэффициент large_cohort не стат. значим. Такой результат показывает, что наш RDD подход является валидным

N3. St; = X,42; + X1=1; + 82=0; +E1; (1) (2: = By: + /3 Z3; +Ec; (2) a) fi: = X/ By: + 8 = = 3: + Ez;) + 81 Z1; + f2 Z2: + E1; J1: (1-dB) = d(ys =3:+Ez:)+8121; + J222:+E1; => Y =: = B (X (83 23: + Ez: + & 21: + & 21: + & 21: + & 21: + E1;) · 1- KB) + \ 823: + E2; MUSIE $\exists \int_{\gamma_{1}} \frac{y_{1}}{y_{2}} = \frac{x_{1}z_{1} + x_{2}z_{2} + x_{3}z_{3}}{1 - x_{\beta}} + \frac{x_{1} + x_{2}z_{2}}{1 - x_{\beta}} + \frac{x_{1} + x_{2}z_{2}}{1 - x_{\beta}}$ $y_{2} = \frac{x_{1}z_{1} + x_{2}z_{2} + x_{3}z_{3}}{1 - x_{\beta}} + \frac{x_{2}z_{1} + x_{2}z_{2}}{1 - x_{\beta}}$ 6) y: эпрогенный. Он порелирован С Ег; уг. токие эндогенний (порреледие с Е:) С) режими условие уравнений выполнено, => rugo euse spolipums parroboe - рактовое тоше выполнень

(2): Vk(-f,-f2) = 2 => оба уговнения идентифицируены di Z: u Z: m.u. our ne brogen b (2); bræssom na y1; repez njenbegënnyno условил приведенной доргию для 3 вамидного инструмента:

- мутна мори поррельния метру инструментом и эндогениой у1:

3 1, 40 или 82 60

SUR: $\{y_1 = X_1 P_1 + E_1\}$ $\{y_1 = X_1 P_1 + E_1\}$ (GCS = (X'Ω'X)'(X'Ω'Y), 29e Ω = ŜΘIn [= | Til Til ... $e_{n} = y_{n} - \chi_{n} \hat{\beta}_{i}^{ous}$ $\hat{\sigma}_{i:} = \frac{Rss_{i}}{n} = \frac{e_{i}e_{i}}{n}$ $e_{m} = y_{m} - \chi_{m} \hat{\beta}_{n}^{ous}$ $\hat{\sigma}_{i:} = \frac{Rss_{i}}{n} = \frac{e_{i}e_{i}}{n}$ $\hat{\sigma}_{i:} = \frac{e_{i}e_{i}}{n}$ 12'= E'DI Th: X1 = ... = Xm => OGEHUN OLS NGLS colnagarom 1 X1= ... = Xm => X = Im @ Xo 1) $X'IZ^{-1}X = (I_m \otimes X_0)'(\Sigma^{-1} \otimes I_n)(I_m \otimes X_0)' = (I_m' \otimes X_0')(\Sigma^{-1} \otimes I_n)(I_m \otimes X_0) = (I_m' \Sigma^{-1}I_n) \otimes (I_m' \Sigma^$ => (X'12-1X)-1 = Z & (Xo'Xo)-1 2) X'_IZ'y = (Im & Xo)'(E' & In) y = (Im' & Xo')(E' & In) y => Becs = (20 Ro'X) / In' @ Xo')(I' @ In)y) (*) ((In'E-)@(K.'In)/4

 $(x) = \left(\sum \emptyset \left(X_{o}'X_{o}\right)'\right) \left(\sum \emptyset X_{o}'\right) y = \left(\sum \sum \emptyset \emptyset \left(X_{o}'X_{o}\right)'X_{o}'\right) y = \left(\sum \emptyset$