```
Due 4/9:
G1 (present): page 150: 1, 7, 8
G2 (present): page 150: 3, 6, 9, 12, 14 (me: 3, 14)
All (turn in): page 150: 17, 19, 29, 36 (me)
Due 4/11:
Present: page 167: 20
All (turn in): page 167: 1, 22
```

Page 150

Exercise 3

Let $H = \{0, \pm 3, \pm 6, \pm 9...\}$. Rewrite the condition $a^{-1}b \in H$ given in property 6 of the lemma on page 139 in additive notation. Assume that the group is Abelian. Use this to decide whether or not the following cosets of H are the same.

```
Property 6: aH = bH iff a^{-1}b \in H
Rewritten: a + H = b + H iff a^{-1} + b \in H
a. \mathbf{11} + \mathbf{H} and \mathbf{17} + \mathbf{H}: -11 + 17 = 6 \in H, so yes.
b. -\mathbf{1} + \mathbf{H} and \mathbf{5} + \mathbf{H}: 1 + 5 = 6 mem H, so yes.
c. \mathbf{7} + \mathbf{H} and \mathbf{23} + \mathbf{H}: -7 + 23 = 16 \notin H, so no.
```

Exercise 14

Let C^* be the group of nonzero complex numbers under multiplication and let $H = \{a + bi \in C^* : a^2 + b^2 = 1\}$. Give a geometric description of the cosets (3 + 4i)H and (c + di)H. Well,

```
 \begin{array}{l} (3+4\mathrm{i})\mathrm{H} = \{(3+4\mathrm{i})\mathrm{h}: \mathrm{h} \in \mathrm{H}\} \\ (3+4\mathrm{i})\mathrm{H} = \{(3+4\mathrm{i})(\mathrm{a}+\mathrm{b}\mathrm{i}): \mathrm{a}+\mathrm{b}\mathrm{i} \in \mathrm{C}^*, \, \mathrm{a}^2+\mathrm{b}^2=1\} \\ (3+4\mathrm{i})\mathrm{H} = \{3\mathrm{a}+4\mathrm{a}\mathrm{i}+3\mathrm{b}\mathrm{i}-4\mathrm{b}: \, \mathrm{a}+\mathrm{b}\mathrm{i} \in \mathrm{C}^*, \, \mathrm{a}^2+\mathrm{b}^2=1\} \\ (3+4\mathrm{i})\mathrm{H} = \{3\mathrm{a}+(4\mathrm{a}+3\mathrm{b})\mathrm{i}-4\mathrm{b}: \, \mathrm{a}+\mathrm{b}\mathrm{i} \in \mathrm{C}^*, \, \mathrm{a}^2+\mathrm{b}^2=1\} \\ \mathrm{thus}, \\ (\mathrm{c}+\mathrm{d}\mathrm{i})\mathrm{H} = \{\mathrm{ca}+(\mathrm{da}+\mathrm{cb})\mathrm{i}-\mathrm{db}: \, \mathrm{a}+\mathrm{b}\mathrm{i} \in \mathrm{C}^*, \, \mathrm{a}^2+\mathrm{b}^2=1\} \\ (\mathrm{c}+\mathrm{d}\mathrm{i})\mathrm{H} = \{(\mathrm{ca}-\mathrm{db})+(\mathrm{da}+\mathrm{cb})\mathrm{i}: \, \mathrm{a}+\mathrm{b}\mathrm{i} \in \mathrm{C}^*, \, \mathrm{a}^2+\mathrm{b}^2=1\} \\ \end{array}
```

It looks like the subset H just indicates the elements that create a unit circle.

When we multiply by some real constant > 1, we just get a coset that represents a bigger circle.

When we multiply by some complex constant (e.g. 2i), we just get a coset that represents a flipped circle (where x, y becomes y, x), and if the complex constant has a scaling factor (e.g. 2), then the circle grows by that factor.

As far as the description of a coset with a positive real and positive complex part, I think it transforms it into an ellipse.

Exercise 17

Let G be a group with |G| = pq: p, q are prime. Prove that every proper subgroup of G is cyclic.

Let H be a proper subgroup of G. Since G is finite, |H| divides |G|.

Case:

- i) |H| = 1: Then H is cyclic by default.
- ii) $|H| \neq 1$: Then by the fundamental theorem of arithmetic, |H| = t: $t \in \{p, q\}$

Notice: |H| > 1.

Let $h \in H$: $h \neq e$.

Then $1 < |< h>| \le |H|$.

Since H is finite, $|\langle h \rangle|$ divides |H|.

Since |H| is prime, its factors are only 1 and |H|.

Since $|\langle h \rangle| \neq 1$, this implies that $|\langle h \rangle| = |H|$.

Hence, H must be cyclic.

Exercise 19

Compute $5^{15} \mod 7$ and $7^{13} \mod 11$.

Fermat's Little Theorem: For every integer a and prime p, $a^p \mod p = a \mod p$

$$5^{15} \mod 7 = 5^{15*7} \mod 7$$

= $(5^{15})^7 \mod 7$

Exercise 29

Let |G| = 33. What are the possible orders for the elements of G? Show that G must have an element of order 3.

Exercise 36

Let G be a group and |G| = 21. If $g \in G$ and $g^{14} = e$, what are the possibilities for |g|?

Well, since g is a generator for H, a cyclic subgroup of G, that means that |H| must be a factor of |G|. Since |G| = 21 and 14 doesn't divide 21, |H| must be some factor of both 21 and 14, but lower than 14. Those possibilities are: 1, 7

Page 167

Exercise 1

Prove that the external direct product of any finite number of groups is a group.

Exercise 20

Find a subgroup of \mathbb{Z}_{12} (+) \mathbb{Z}_{18} that is isomorphic to \mathbb{Z}_9 (+) \mathbb{Z}_4 .

Exercise 22

Determine the number of elements of order 15 and the number of cyclic subgroups of order 15 in \mathbb{Z}_{30} (+) \mathbb{Z}_{20} .