

Trường Đại học Nha Trang Khoa Công nghệ Thông tin

CƠ SỞ DỮ LIỆU

Chủ đề 5: Khoá (Key)

TS. Phạm Thị Thu Thúy thuthuy@ntu.edu.vn

Khóa của quan hệ

Dinh nghĩa:

Cho một quan hệ r(R), khóa tối tiểu của quan hệ r(R) là tập thuộc tính khác rỗng K, K \subseteq R thỏa :

- 1) \forall t1, t2 \in r(R): $t_1(K) = t_2(K) \Rightarrow t_1 \equiv t_2$
- 2) \forall K' \subset K: K' không có tính chất 1)

Khóa của lược đồ quan hệ

Định nghĩa:

Cho lđqh s=(U, F), khóa tối tiểu của lđqh s là tập thuộc tính khác rỗng K, K⊆U, K là khóa của bất kỳ quan hệ nào xác định trên s.

* Có thể phát biểu lại định nghĩa trên :

- Cho lđqh s = (U, F), Ø≠K⊆U, K là một khóa của s nếu ∀ r(U) thỏa F thì:
- 1) \forall t1, t2 \in r(R): $t_1(K) = t_2(K) \Rightarrow t_1 \equiv t_2$
- 2) ∀ K' ⊂ K: K' không có tính chất 1

Nếu K thỏa điều kiện 1, k được gọi là một siêu khóa (supper key)

- Cho lđqh s = (U, F), Ø≠K⊆U, K là một khóa của s nếu:
- 1) K → U ∈ F+
- 2) Không tồn tại K' ⊂ K: K' → U ∈ F+

Khóa của lược đồ quan hệ

VD: R(ABCD), F = {AB \rightarrow C, C \rightarrow B}

Thì: ABD là 1 siêu khóa của R vì $(ABD)_F^+$ = ABCD.

ABD là 1 khóa của R.

ACD là 1 khoá của R.

Nhận xét:

- Khóa là siêu khóa bé nhất.
- Ứng với một lđqh s = (U, F) bất kỳ, U luôn là siêu khóa (siêu khóa tầm thường)
- Một lđợh có thể có nhiều khóa.

3. Thuộc tính khóa, thuộc tính không khóa

- Thuộc tính khóa: thuộc tính tham gia ít nhất một khóa của lđqh.
- Thuộc tính không khóa: không tham gia bất kỳ khóa nào của lđqh.
- VD: R(ABCDE), F = {AB \rightarrow C, C \rightarrow BE}

❖ Nhập: s = (R, F)

Xuất: K là một khóa tối tiểu của lđqh s

❖ Ý tưởng (Lucchesi & Osborn (1979)): Từ siêu khóa tầm thường U, lần lượt bỏ từng thuộc tính, nếu bỏ đi mà các thuộc tính còn lại vẫn suy ra được U thì bỏ, ngược lại giữ lại.

- ◆ *VD*: R(ABCDE), F = {AB \rightarrow C, C \rightarrow BE} Hãy thử:
 - Bỏ A: (BCDE)+=
 - Bỏ B:
 - Bỏ C
 - Bỏ D
 - Bỏ E
 - → Một khóa là:
 - → Xây dựng thuật toán?


```
Nhập: s = (R, F)
Xuất: K là một khóa tối tiểu của lđqh s
Thuật toán: thuật toán Lucchesi & Osborn (1979)
Bước 1: K₀ := R = A₁, A₂, ..., Aₙ
Bước 2: Lặp lại quá trình loại phần tử A ra khỏi Kᵢ₁ mà (K - {A})⁺ = U.
Với i = 1 đến n
Nếu (Kᵢ₁ \ {Aᵢ})⁺ = R thì Kᵢ = Kᵢ₁ \ {Aᵢ}
Ngược lại: Kᵢ = Kᵢ₁
i := i+1;
```

Nếu khóa – $\{A_i\}$ là một siêu khóa thì gán khoá := khoá - $\{A_i\}$

Vd1: Cho lđqh R(A B C D E) và F là tập pth định nghĩa trên R như sau: $F = \{AB \rightarrow C, C \rightarrow DE\}$ Hãy xác định một khóa của R.

Bài làm:

$$\star K_0 = ABCDE$$

$$♦$$
 i = 3: (ABDE)⁺ = ABCDE = R \rightarrow K₃ = ABDE.

$$i = 4$$
: (ABE)⁺ = ABCDE = R $\rightarrow K_4$ = ABE

$$•$$
 i = 5: (AB)⁺ = ABCDE = R \rightarrow K₅ = AB

Vây AB là một khóa của R.

$$\rightarrow$$
 K₁ = ABCDE.

$$\rightarrow$$
 K₂ = ABCDE.

$$\rightarrow$$
 K₃ = ABDE.

$$\rightarrow$$
 K₄ = ABE

$$\rightarrow$$
 K₅ = AB


```
Vd2: Tìm khóa của R(U,F), với U = ABCDEGHI
F = \{AC \rightarrow B (1) \quad BI \rightarrow ACD (2) \quad ABC \rightarrow D (3) \}
  H \rightarrow I (4) ACE\rightarrowBCD (5) CG\rightarrowAE (6) }
B1: K = U = ABCDEGHI
B2: Lần lượt loại bỏ các thuộc tính có trong K:
Xét phần tử A: ta có (BCDEGHI)+ = U (6) nên K = BCDEGHI
Xét phần tử B: ta có (CDEGHI)+ = U (6,1) ) nên K = CDEGHI
Xét phần tử C, ta có (DEGHI)+ \neq U nên K = CDEGHI
Xét phần tử D, ta có (CEGHI)+ = U (6,1,3) nên K = CEGHI
Xét phần tử E, ta có (CGHI)+ = U (6,1,3) nên K = CGHI
Xét phần tử G, ta có (CHI)+ \neq U,
                                        nên K = CGHI
Xét phần tử H, ta có (CGI)+ \neq U,
                                                  n\hat{e}n K = CGHI
Xét phần tử I, ta có (CGH)+ = U, (6,1,3,4) nên K = CGH
V_{ay}^2 K = CGH là khóa của R.
```


Q&A

- ❖ Vậy làm sao tìm được những khóa còn lại?
- → Thuật toán tìm tất cả các khóa.

5. Tìm tất cả các khóa của lđqh

Tìm ý tưởng:

 $\red{}$ $\red{$

Thì: ABD là 1 khóa của R. ACD là 1 khoá của R.

Nhận xét:

? Khóa phải có thuộc tính nào ?

- \rightarrow D
- \rightarrow A

?? Yêu cầu SV nhận xét: D là thuộc tính có đặc điểm gì (trong trong tập pth F?)

- → Không có mặt trong pth nào cả.
- ?? Yêu cầu SV nhận xét: A là thuộc tính có đặc điểm gì (trong tập pth F?)
- → Chỉ xuất hiện ở vế trái.
- → Kết luận gì?
- Khóa phải chứa thuộc tính Không có mặt trong pth nào cả và Chỉ xuất hiện ở về trái.

5. Tìm tất cả các khóa của lđqh

Tìm ý tưởng:

- ? Thêm thuộc tính nào nữa?
- B hoặc C
- ?? B hoặc C là thuộc tính có đặc điểm gì (trong tập pth F?)
- → ? Xuất hiện trong cả về trái và phải
- → Ý tưởng tìm tất cả các khóa:
- Tìm L, R

?? Nếu DA đã đủ làm khóa thì có thêm B hoặc C không?
→ Không

5. Tìm tất cả các khóa của lđqh

Tìm ý tưởng:

- → Ý tưởng tìm tất cả các khóa:
- *Tìm L, R*
- Thuộc tính phải có mặt trong khóa là ?

Vẽ hình

Thuộc tính phải có mặt trong khóa là ? U - R

- ❖ Nhập: Cho lđqh s=(U,F), F = {L_i → R_i, i= 1..k}.
- Xuất: Tất cả các khóa lđqh s

Ý tưởng:

- ❖ Đặt:
 - L: tập các thuộc tính ở vế trái các pth,
 - R: tập các thuộc tính ở vế phải các pth,
 - S = U-R: là những thuộc tính chỉ xuất hiện ở vế trái các pth hoặc không xuất hiện trong bất kỳ pth nào.
 - D = U_R U_L : là những thuộc tính *chỉ xuất hiện ở vế phải* các pth.
 - M = U_R ∩ U_I: là những thuộc tính xuất hiện xuất hiện ở về trái và phải.
- Nhân xét:
 - S: phải xuất hiện trong khóa.
 - D: không xuất hiện trong khoá.
 - M: có thể xuất hiện trong khóa (nếu S chưa đủ làm khoá)
 - ⇒ Xây dựng các tổ hợp để xét khóa:
 - S ∪ {một tổ hợp của các thuộc tính M}

- **Nhập:** Cho lđqh s=(U,F), F = {L_i \rightarrow R_i, i= 1..k}.
- * Xuất: Tất cả các khóa lđạh s
- Phương pháp:

Xác đinh:

- L: tập các thuộc tính ở vế trái các pth,
- R: tập các thuộc tính ở vế phải các pth,
- S = U-R: là những thuộc tính chỉ xuất hiện ở vế trái các pth hoặc không xuất hiện trong bất kỳ pth nào.

Nếu S_F^+ = U, thì S là khóa duy nhất của R, dừng, ngược lại, tính:

- M = L ∩ R: là những thuộc tính xuất hiện xuất hiện ở vế trái và phải.
- Xây dựng các tổ hợp để xét khóa: S ∪ {một tổ hợp của các thuộc tính M} bằng cách lập bảng để xét.

<u>Lưu ý:</u> Nếu X ⊆ M tham gia vào khoá rồi thì không **xét các thuộc tính chứa X.**

- ❖ Input: <Q,F>; Output: K {Tập các khóa của Q}
- Begin
 - b1: Xây dựng tập N và M.
 - b2: Xây dựng 2^m tập con của tập M với m = Card(M)
 - b2: Xây dựng tập K chứa các khóa
 - K = ∅;
 - For i:=0 to 2^m-1 do
 - begin
 - $-K_i := N \cup M_i$;
 - Nếu K_i không chứa các khóa đã xác định trước đó và $K_{i,F}^+$ = Q+ thì K_i là 1 khóa của Q: **K** = **K** \cup **K**_i.
 - end;
- End;

❖ Ví dụ: Cho R=(U,F) U=(ABCDEFG) và

- FQ = { f1: EC \rightarrow B; f2: AB \rightarrow C; f3: EB \rightarrow A; f4: BG \rightarrow A; f5:AE \rightarrow G}.
- Xác định các khóa của lược đồ quan hệ R.
- \bullet Giải: N = {D,E, F}; M = {A,B,C,G}

ABCG	M _i	$K_i = N \cup K_i$	K ⁺ _{I,F}
0000	Ø	DEF	DEF
0001	G	DEFG	DEFG
0010	C	<u>DEFC</u>	DEFGBAC= Q ⁺
0011	CG		Loai
0100	В	<u>DEFB</u>	DEFBACG= Q ⁺
0101	BG		Loai
0110	BC		Loai
0111	BCG		Loai
1000	A	ADEF	ADEFG
1001	AG	ADEFG	ADEFG
1010	AC		Loai
1011	ACG		Loai
1100	AB		Loai
1101	ABG		Loai
1110	ABC		Loai
1111	ARCG		Loai

Ví dụ

❖ s(U, F), U = ABCDEGH $F = \{AB \rightarrow GD, CE \rightarrow D, C \rightarrow A, DGH \rightarrow C, G \rightarrow A, G \rightarrow B\}$ Xác định tất cả các khoá của s.

Bài tập

- * Xem ví dụ: Tài liệu Phương pháp giải bài tập/48
- **&** Bài tập: 16/80, 17/82, 19/85, 23/89.

