HMS 520 Final Project: Predicting High Blood Pressure in USA using NHANES data

Nikki DeCleene & Aisha Twalibu

CVD mortality attributable to high systolic blood pressure per 100,000 in 2022

https://www.jacc.org/doi/10.1016/j.jacc.2023.11.007

Despite large burden of high blood pressure, many locations do not have population-representative data on measured blood pressure Project goal: predict measured high blood pressure from interview responses alone

National Health and Nutrition Examination Survey (NHANES)

- Nationally representative study in the United States designed to study health and nutrition
- Began in the early 1960s, became a continuous program
- Combines interviews and physical examinations
 - Including systolic and diastolic blood pressure measurements
- Limitation: does not report data at the state-level

https://www.cdc.gov/nchs/images/nhanes/nhanes_apple_color_tagline.jpg

Part 1: Data processing

Demographics data

- Label codes for:
 - Sex
 - Race/ethnicity
 - Education
 - Marital status
- Create:
 - Proportion of time lived in US
- Subset:
 - Age

Examination data

Create:

- Average of 3 systolic blood pressure readings
- Average of 3 diastolic blood pressure readings

- If only one blood pressure reading was obtained, that reading is the average. If there is more than one blood pressure reading, the first reading is always excluded from the average.
- If only two blood pressure readings were obtained, the second blood pressure reading is the average.
- If all diastolic readings were zero, then the average would be zero.
 Exception: If there is one diastolic reading of zero and one (or more) with a number above zero, the diastolic reading with zero is not used to calculate the diastolic average.
- If two out of three diastolic readings are zero, the one diastolic reading that is not zero is used to calculate the diastolic average.

References

 Perloff. D. Grim. Carlene. G. Flack J. et al. Human blood pressure determination by sphygmomanometry. Circulation. 1993; 88:2460-2469

https://wwwn.cdc.gov/Nchs/Nhanes/1999-2000/BPX.htm

```
avgbp <- function(x, diastolic) {</pre>
  drop_first <- T</pre>
  x \leftarrow na.omit(x)
  if(diastolic & (0 %in% x)){
    if(length(x[x!=0]) > 0){
      if(x[1] == 0)
        drop_first <- F</pre>
      x \leftarrow x[x!=0]
  if(length(x) == 0){
    # return NA if there are no measurements
    return(as.double(NA))
  ellipse if (length(x) == 1){
    return(x)
  } else {
    if(drop_first){
      # if there are multiple measurements, drop the first reading
      x \leftarrow x[2:length(x)]
    return(mean(x))
```

Questionnaire data

- Label codes for:
 - Diagnosed high cholesterol
 - Diagnosed diabetes
 - Food security
 - Insurance status
 - Healthcare utilization
- Create:
 - Number of alcoholic drinks consumed in a year
 - Blood pressure history
 - Smoking status
 - Self-reported BMI
- Deal with missing codes:
 - Minutes of sedentary activity
- Rename:
 - Poverty index

```
data[ALQ111 == 2 | ALQ121 == 0, num_days_drank := 0]
data[ALQ121 == 1, num_days_drank := 365]
data[ALQ121 == 2, num_days_drank := (5.5/7) * 365]
data[ALQ121 == 3, num_days_drank := (3.5/7) * 365]
data[ALQ121 == 4, num_days_drank := (2/7) * 365]
data[ALQ121 == 5, num_days_drank := (1/7) * 365]
data[ALQ121 == 6, num_days_drank := 2.5 * 12]
data[ALQ121 == 7, num_days_drank := 12]
data[ALQ121 == 8, num_days_drank := (7 + 11)/2]
data[ALO121 == 9. num_days_drank := (3 + 6)/2]
data[ALQ121 == 10, num_days_drank := (1 + 2)/2]
setnames(data, 'ALQ130', 'avg_drinks_per_day')
data[avg_drinks_per_day %in% c(777, 999), avg_drinks_per_day := NA]
data[ALQ111 == 2 \mid ALQ121 == 0, avg\_drinks\_per\_day := 0]
data[, num_drinks_per_yr := num_days_drank * avg_drinks_per_day]
data[, num_drinks_per_yr := as.factor(cut(num_drinks_per_yr, c(0, 1, 30, 300, 5500),
                   include.lowest = T))]
```

Part 2: Exploratory analysis

Part 3: Prediction

Fitting logistic regression model on training data

```
high_measured_bp =

ifelse(systolic_bp >= 140 | diastolic_bp >= 90, 1,

ifelse(systolic_bp < 140 | diastolic_bp < 90, 0, NA))
```

```
glm(high_measured_bp ~ sex + age + race_ethnicity + education + marital_status + prop_life_in_us + num_drinks_per_yr + bp_hist + diagnosed_high_chol + diagnosed_diabetes + food_security + insurance + healthcare_util_year + poverty_index + min_sedentary_act + smoking_status + reported_bmi, family = binomial(link='logit'), data = data[test == 0])
```

```
Coefficients:
                                         Estimate Std. Error z value Pr(>|z|)
(Intercept)
                                       -3.4208250 0.4235673 -8.076 6.68e-16 ***
sexMale
                                        0.1018145 0.0817531 1.245 0.212989
                                        0.0502889 0.0033333 15.087 < 2e-16 ***
age
race_ethnicityNon-Hispanic Asian
                                        0.3100764 0.2069421 1.498 0.134036
race_ethnicityNon-Hispanic Black
                                        0.5166725 0.1654794 3.122 0.001795 **
race_ethnicityNon-Hispanic White
                                       -0.0950453 0.1642887 -0.579 0.562909
race_ethnicityOther Hispanic
                                        0.1339837 0.1922304 0.697 0.485806
race_ethnicityOther or Multi-Racial
                                        0.1633541 0.2320126 0.704 0.481387
education9-11th grade
                                       -0.3016727 0.1995761 -1.512 0.130644
educationHigh school graduate
                                       -0.4531578 0.1857923 -2.439 0.014726 *
educationSome college
                                       -0.3444588 0.1845061 -1.867 0.061912 .
educationCollege graduate
                                       -0.5409684 0.1973912 -2.741 0.006133 **
marital_statusNever married
                                        0.2610096 0.1214595 2.149 0.031639 *
marital_statusWidowed/Divorced/Separated 0.0515478 0.0933308 0.552 0.580734
prop_life_in_us
                                        0.4581333 0.2472798 1.853 0.063927 .
num_drinks_per_yr(1,30]
                                       -0.0267692 0.0979566 -0.273 0.784641
num_drinks_per_yr(30,300]
                                       -0.0202755 0.1116934 -0.182 0.855953
num_drinks_per_yr(300,5.5e+03]
                                        0.3377602 0.1249693 2.703 0.006877 **
bp_histDiagnosed, on meds
                                       -0.5106574  0.1512255  -3.377  0.000733 ***
bp_histNot diagnosed
                                       -1.3362291 0.1483811 -9.005 < 2e-16 ***
diagnosed_high_cholYes
                                       -0.1657506 0.0845748 -1.960 0.050018 .
diagnosed_diabetesYes
                                       -0.0979090 0.1013885 -0.966 0.334204
food_securityMarginal
                                        0.0565296 0.1209213 0.467 0.640148
food_securityLow
                                       -0.1564641 0.1314336 -1.190 0.233873
food_securityVery low
                                        0.0830001 0.1420022 0.584 0.558885
insuranceYes
                                        0.0628119 0.1310889 0.479 0.631828
healthcare_util_year1
                                       -0.4474173 0.1506056 -2.971 0.002970 **
healthcare_util_year2-3
                                       -0.5553645 0.1403108 -3.958 7.55e-05 ***
healthcare_util_year4-5
                                       -0.5025630 0.1555758 -3.230 0.001236 **
healthcare_util_year6+
                                       -0.6992901 0.1512854 -4.622 3.79e-06 ***
poverty_index
                                       -0.0339062 0.0315153 -1.076 0.281988
                                       -0.0001526 0.0001974 -0.773 0.439713
min_sedentary_act
smoking_statusFormer
                                        0.0778065 0.1239533
                                                              0.628 0.530195
smoking_statusNever
                                        0.1319236 0.1153604 1.144 0.252799
reported_bmi
                                        0.0171334 0.0056916
                                                              3.010 0.002610 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Assessing model performance

- In-sample RMSE: 0.537
- Out-of-sample RMSE: 0.5441
- Measured prevalence of high blood pressure: 22.79%
- Predicted prevalence of high blood pressure:
 20.69%

