Última Edición: 20/09/2017

### De ER a AFN

- Es útil en particular para utilitarios como el lex, que a partir de la descripción del LR mediante una ER genera el autómata para su reconocimiento.
- Si bien hay veces que la conversión se puede hacer de modo simple e intuitivo lo que queremos es un algoritmo genérico (para poder usarlo en un utilitario).
- Ken Thompson (co-autor de unix, el lenguaje Go y autor de la codificación utf-8) en 1968 desarrolló el algoritmo que vamos a explicar.
- Una de las particularidades a resaltar es que mantiene siempre un único estado final

- Casos elementales
  - Para cada símbolo del alfabeto construye el autómata que lo reconoce, con un estado inicial, un arco con el símbolo en cuestión y un estado final
    - Lo mismo hace con ε



#### Concatenación

- El nodo inicial del autómata de la izquierda pasa a ser el nodo inicial de la concatenación
- El nodo final del autómata de la derecha pasa a ser el nodo final del la concatenación
- Desde nodo final del autómata de la izquierda agrego un arco etiquetado con ε al nodo inicial autómata de la derecha.
- El nodo final del autómata de la izquierda y el inicial del autómata de la derecha pierden su condición especial.



#### Unión

- Se crea un nuevo nodo inicial que se une con arcos etiquetados con  $\epsilon$  a los anteriores nodos iniciales (que pierden esta condición)
- Se crea un nuevo nodo final y se unen los anteriores nodos finales (que pierden esta condición) al nodo creado con arcos etiquetados con ε



#### Clausura de Kleen

- Nuevo nodo inicial que se une a anterior nodo inicial con arco ε.
- Nuevo nodo final y se une con arco ε desde el anterior nodo final.
- Uno con arco ε desde el nuevo nodo inicial al nuevo nodo final.
- Uno con arco ε desde el viejo nodo final al viejo nodo inicial.



(a+b)\*ab



### Del AFN-ε al AFD

- La idea es "simular" todas las posibles transiciones en el AFN "en paralelo" en un AFD
- Para ello veo el conjunto de estados a donde puedo ir con un carácter y eso lo tomo como un estado del AFD equivalente que voy construyendo
- Para avanzar debemos definir dos conceptos previos
  - Función Clausura-ε
  - Función Conjunto Hacia

### Clausura-ε

- Clausura-ε **de un estado** es el **conjunto** de estados al que puedo llegar a través de arcos etiquetados con ε (0, 1 o varios) incluyendo al estado del cual parto.
  - Ejemplo: clausura- $\varepsilon(e_2) = \{e_2, e_3, e_4\}$
- Algunos lo representan como ε\* ya que es el conjunto de estados que puedo visitar con cero, uno o más arcos etiquetados con ε
- Clausura-ε de un conjunto de estados es la unión de los conjuntos clausura-ε de cada unos de los estados del conjunto de partida

## Conjunto Hacia

- Conjunto Hacia: es una función que va del par (conjunto de estados, carácter) en conjunto de estados
  - Formalmente Hacia:  $P(Q)x\Sigma \rightarrow P(Q)$
- Sea R un conjunto de estados y x un carácter del alfabeto, el conjunto Hacia(R,x) es el conjunto de estados a donde puedo llegar atravesando un arco etiquetado con x desde cada estado perteneciente a R

## Algoritmo de conversión

- Se toma como estado inicial la clausura-ε del estado inicial original
- Para cada símbolo del alfabeto se calcula el conjunto Hacia desde estado inicial, a dicho conjunto se le hace la clausura-ε y se lo coloca en la columna correspondiente.
- Para cada conjunto creado, se agrega una fila etiquetada con ese conjunto y se calculan los conjuntos Hacia desde dicho conjunto y sobre el conjunto obtenido se hace la clausura-ε
- El proceso finaliza cuando al calcular los conjuntos Hacia de una fila no aparecen conjuntos nuevos
- Se marca como estados finales a TODOS aquellos conjuntos que contienen al menos un estado final del autómata original
- Para simplificar se renombran los conjuntos de estados a un nro de estado nuevo

| TT | а     | b           | ε           |
|----|-------|-------------|-------------|
| 0- | {3}   | {0,2}       | <b>{4</b> } |
| 1  | -     | {2}         | -           |
| 2  | {3}   | -           | -           |
| 3  | {0,2} | <b>{4</b> } | {1}         |
| 4+ | -     | {2}         | -           |

```
Clausura-\varepsilon(\{0\}) = \{0,4\}
Hacia(\{0,4\},a) = \{3\}
Clausura-\varepsilon(\{3\}) = \{1,3\}
Hacia(\{0,4\},b) = \{0,2\}
Clausura-\varepsilon(\{0,2\}) = \{0,2,4\}
```

| Hacia( $\{1,3\},a$ ) = $\{0,2\}$           |
|--------------------------------------------|
| Hacia $(\{1,3\},b) = \{2,4\}$              |
| Clausura- $\varepsilon(\{2,4\}) = \{2,4\}$ |

| Hacia $(\{0,2,4\},a) = \{3\}$ |
|-------------------------------|
| Hacia $({0,2,4},b) = {0,2}$   |

| Hacia $({2,4},a) = {3}$                |
|----------------------------------------|
| Hacia $(\{2,4\},b) = \{2\}$            |
| Clausura- $\varepsilon(\{2\}) = \{2\}$ |

| $Hacia({2},a) = {$     | 3} |
|------------------------|----|
| Hacia( $\{2\}$ ,b) = - |    |

| TT           | а       | b       |
|--------------|---------|---------|
| $\{0,4\}\pm$ | {1,3}   | {0,2,4} |
| {1,3}        | {0,2,4} | {2,4}   |
| {0,2,4}+     | {1,3}   | {0,2,4} |
| {2,4}+       | {1,3}   | {2}     |
| {2}          | {1,3}   | -       |

| TT | а | b |
|----|---|---|
| 0± | 1 | 2 |
| 1  | 2 | 3 |
| 2+ | 1 | 2 |
| 3+ | 1 | 4 |
| 4  | 1 | - |

### Del AFD a la ER

- Básicamente 3 algoritmos
  - Método de la clausura transitiva, provisto por Stephen Kleene (el mismo del operador \*) al demostrar la equivalencia entre AFD y ER
    - Es complicado
    - Usa método propios de grafos, enfoque similar al problema de camino más corto
    - Quedan ER muy largas
  - Método de eliminación de estados
    - Medianamente intuitivo para hacer a mano a partir del diagrama de transición.
    - Hay que tener cuidado de no "olvidar" ningún camino del grafo al hacer la reducción
  - Método algebraico (de Janusz Brzozowski 1964)
    - Es el que se explica en el libro de la cátedra
    - Genera ER razonables

### Eliminación de estado erróneos

- Hay dos tipos de estados erróneos
  - Los que no conducen a un estado final (estados de error)
    - Los absorbentes que queda en si mismos
    - Los no finales que tienen todas las columnas como indefinidos
    - Los cíclicos (de 2 a 3 a 5 a 2 pero ninguno es final)
  - Los estados inalcanzables, es decir aquellos a los que no puedo llegar desde el estado inicial (típicamente no figuran en ninguna columna de la tabla de transición (eliminarlos recursivamente)

#### Erróneos Inalcazables

| TT      | а      | b      |
|---------|--------|--------|
| 0-      | 1      | 2      |
| 1       | 1      | 4      |
| 2       | 4      | 5      |
| 3       | 4      | 6      |
|         |        |        |
| 4+      | 5      | 4      |
| 4+<br>5 | 5<br>5 | 4<br>5 |
|         |        |        |
| 5       | 5      | 5      |

| TT | а | b |
|----|---|---|
| 0- | 1 | 2 |
| 1  | 1 | 4 |
| 2  | 4 | - |
| 4+ | - | 4 |
| 6  | 2 | 0 |

| TT | а | b |
|----|---|---|
| 0- | 1 | 2 |
| 1  | 1 | 4 |
| 2  | 4 | - |
| 4+ | - | 4 |
|    |   |   |

### Armado de las ecuaciones

- Se plantea una ecuación por cada fila
- El lado izquierdo es el estado de la fila
- El lado derecho se forma con la unión para cada columna del carácter que realiza la transición seguido del estado al que pasa.
  - Error habitual: poner estado-letra, o sea, al revés
- Si el estado es un estado final se agrega además ε
- El objetivo es despejar la ecuación del estado inicial

### Reducciones

- Cuando hay ciclos o bucles en la ecuación vemos que el estado que figura a izquierda aparece también a derecha.
- Este tipo de ecuaciones se denominan recursivas, la forma general de estas ecuaciones es:
  - $e = \alpha e + \beta \qquad (1)$
  - Donde e es el estado considerado,  $\alpha$  es un ER y  $\beta$  es una expresión que puede estar formada por caracteres del alfabeto terminal, estados y  $\epsilon$
- Se resuelve (según por la regla o lema de Arden):

$$- e = \alpha^* \beta \qquad (2)$$

Notar que si reemplazo (2) en (1)

$$- \mathbf{e} = \alpha(\alpha^*\beta) + \beta = \alpha\alpha^*\beta + \beta = (\alpha^*\alpha + \mathbf{\epsilon}) \beta = \alpha^*\beta$$

| TT | а | b |
|----|---|---|
| 0- | 1 | 2 |
| 1  | 1 | 4 |
| 2  | 4 | - |
| 4+ | - | 4 |

#### **Ecuaciones**

$$0 = a1 + b2$$

$$1 = a1 + b4$$

$$2 = a4$$

$$4 = b4 + \epsilon$$

#### **Desarrollo**

$$4 = b^*.\epsilon \Rightarrow 4 = b^*$$

$$2 = a4 \Rightarrow 2 = ab^*$$

$$1 = a1 + bb*$$

$$1 = a*bb*$$

$$0 = a1 + b2 = aa*bb* + bab*$$

## Otro Ejemplo

| TT | а   | b     |
|----|-----|-------|
| 0- | {1} | -     |
| 1+ | -   | {2}   |
| 2  | {2} | {1,2} |

#### **Ecuaciones**

$$0 = a1$$
  
 $1 = b2 + \epsilon$   
 $2 = a2 + b1 + b2$ 

#### **Desarrollo**

$$2 = (a+b)2 + b1$$
  
 $2 = (a+b)*b1$   
 $1 = b2 + \varepsilon = b(a+b)*b1 + \varepsilon = (b(a+b)*b)*\varepsilon$   
 $1 = (b(a+b)*b)*$   
 $0 = a1 = a(b(a+b)*b)*$ 

### Licencia

Esta obra, © de Eduardo Zúñiga, está protegida legalmente bajo una licencia Creative Commons, Atribución-CompartirDerivadas Igual 4.0 Internacional.

http://creativecommons.org/licenses/by-sa/4.0/

Se permite: copiar, distribuir y comunicar públicamente la obra; hacer obras derivadas y hacer un uso comercial de la misma.

Siempre que se cite al autor y se herede la licencia.

