

Universidade de Aveiro Exame Final de Cálculo II

24 de Junho de 2013 Duração: 2h 30 min

	ID	ENTIFICAÇÃO	\mathbf{DO}	ALUNO
--	----	-------------	---------------	-------

 $Nome: _ N^{\circ} \ Mec.: _$

Questão	1	2	3	4	5	6	7
Cotações	20	30	60	15	30	20	25
Classificação							

Classificação Final

DECLARO QUE DESISTO

N° FOLHAS SUPLEMENTARES:

1. Indique o valor lógico de cada uma das afirmações seguintes:

- (b) Se a série de potências $\sum_{n=0}^{\infty} a_n x^n$ é convergente em x=2, então a série é absolutamente convergente em x=-1.
- (c) Se a série de MacLaurin de uma função f é $\sum_{n=1}^{+\infty} \frac{(-1)^n}{2n} x^n$, então $f^{(15)}(0) = -\frac{1}{30}$
- (d) A soma da série trigonométrica de Fourier da função 2π -periódica definida por f(x)=x em $]-\pi,\pi]$ vale π em $x=\pi$.

2. Determine:

- (a) uma função $f: \mathbb{R}_0^+ \to \mathbb{R}$ cuja transformada de Laplace é $F(s) = \frac{s+1}{(s+3)(s+2)}$;
- (b) a solução da equação diferencial $y'' + 4y' + 3y = e^{-2t}$ que satisfaz as condições y(0) = 1, y'(0) = -4.
- 3. Determine o integral geral das seguintes equações diferenciais:

(a)
$$y' + \frac{1}{x-1}y = (x-1)^{-3}$$
;

(b)
$$(1+x^2)y' - xy = 0;$$

(c)
$$2y'' - 4y' - 6y = 3xe^{2x}$$
.

- 4. Estude a natureza da seguinte série numérica $\sum_{n=0}^{+\infty} \frac{2n+1}{n^3+4}.$
- 5. Determine o raio e o domínio de convergência da série de potências $\sum_{n=1}^{+\infty} \frac{1}{\sqrt{n}} (2x-1)^n.$

6. Sabe-se que
$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n$$
, para qualquer $x \in]-1,1[$.

Determine uma representação em série de potências de $f(x) = \frac{x}{2-3x}$ e indique o maior intervalo onde essa representação seja válida.

7. Considere a função 2π -periódica f tal que

$$f(x) = \begin{cases} 1 - x, & 0 \le x < \pi \\ 1 + x, & -\pi \le x < 0 \end{cases}.$$

Verifique que a função f é par e determine a série de Fourier associada a f.

Tabela de Transformadas de Laplace

f(t)	1	t^n	e^{at}	sen(at)	$\cos(at)$	$\sinh(at)$	$\cosh(at)$
$F(s) = \mathcal{L}\{f(t)\}$ $s > s_f$	$\frac{1}{s}$ $s > 0$	$\frac{n!}{s^{n+1}}$ $n \in \mathbb{N}, \ s > 0$	$ \frac{1}{s-a} $ $ s > a $	$ \frac{a}{s^2 + a^2} $ $ s > 0 $	$ \begin{array}{c} s \\ s^2 + a^2 \\ s > 0 \end{array} $	$ \begin{array}{c} a \\ s^2 - a^2 \\ s > a \end{array} $	$ \frac{s}{s^2 - a^2} \\ s > a $