reguläre Grammatik	z.B. a^*b^*
DEA	
NEA (mit und ohne ε)	
regulärer Ausdruck	
LR-Grammatik	
deterministischer Kellerautomat (DKellerA)	
kontextfreie Grammatik	a^nb^n
Kellerautomat (NKellerA)	
kontextsensitive Grammatik	$a^nb^nc^n$
linear beschränkter Automat (NLBTM)	
Typ 0 - Grammatik (rek. aufz. Spr.)	\overline{L}^d
Turingmaschine (TM)	
	DEA NEA (mit und ohne ε) regulärer Ausdruck LR-Grammatik deterministischer Kellerautomat (DKellerA) kontextfreie Grammatik Kellerautomat (NKellerA) kontextsensitive Grammatik linear beschränkter Automat (NLBTM) Typ 0 - Grammatik (rek. aufz. Spr.)

Tabelle 1: Beschreibungsmittel

Nichtdet. Automat	Determ. Automat	äquivalent?
NEA	DEA	ja
NKellerA	DKellerA	nein
NLBTM	DLBTM	???
NTM	DTM	Ja

Tabelle 2: Determinismus und Nichtdeterminismus

	Schnitt	Vereinigung	Komplement	Produkt	Stern
Typ 3	ja	ja	ja	ja	ja
Det. KF	nein	nein	ja	nein	nein
Typ 2	nein	ja	nein	ja	ja
Typ 1	ja	ja	ja	ja	ja
Typ 0	ja	ja	nein	ja	ja
semient. Spr.	ja	ja	nein	nein	nein
ent. Spr.	ja	ja	ja	nein	nein

Tabelle 3: Abschlusseigenschaften

Die Nerode-Relation \mathbf{R}_L zu einer Sprache ist def. durch:

$$R_L = \{(x, y) : xz \in L \ gdw. \ yz \in L \ \forall z \in \Sigma^* \}$$

Die Nerode-Relation \mathbf{R}_M zu einem Automaten ist def. durch:

$$R_M = \{(x,y) : \delta^*(s,x) = \delta^*(s,y)\}$$

Algorithmisch entscheidbare Eigenschaften von Automaten:

- 1. $L(A) = \{\}$
- 2. Endlichkeit von L(A)

```
Typ Komp.

3 O(n)

Det. KF O(n)

2 O(n^3)

1 |\Sigma|^{O(n)}, NP-Hart

0 semientscheidbar
```

Tabelle 4: Komplexität des Wortproblems

Typ	Wort	Leerheit	Äquivalenz	Schnitt
3	Ja	Ja	Ja	Ja
Det. KF	Ja	Ja	Ja	Nein
2	Ja	Ja	Nein	Nein
1	Ja	Nein	Nein	Nein
0	Nein	Nein	Nein	Nein

Tabelle 5: Entscheidbarkeit

3.
$$L(A) = \Sigma^*$$

Endscheidbarkeit(rekursiv): Es ex. eine TM, die alle Wörter aus L akzeptiert und auf jede Eingabe hält.

Semi-Endscheidbarkeit(rekursiv aufzählbar): Es ex. eine TM, die alle Wörter aus L akzeptiert. Das Verhalten für Wörter $\omega \notin L$ ist undefiniert.

Kodierungsvorschrift Gödelnummer

1. Kodiere δ :

```
code(\delta(q_i, a_j) = (q_r, a_s, d_t)) = 0^i 10^j 10^r 10^s 10^t mit d_t \in \{d_1 = L, d_2 = R, d_3 = N\}
2. Die TM wird dann kodiert durch: 111code_1 11code_2 11... 11code_z 111 mit code_i für i = 1, 2, ..., z in bel. Reihenfolge.
```

Pumping Lemma

L regulär
$$\Rightarrow$$
 $(\exists n \in \mathbf{N})(\forall z \in L, |z| \ge n)(\exists u, v, w)$
 $[(z = uvw) \land (|v| \ge 1) \land (|uv| \le n) \land (uv^i w \in L, \forall i \ge 0)]$
L kontextfrei \Rightarrow
 $(\exists n \in \mathbf{N})(\forall z \in L, |z| \ge n)(\exists u, v, w, x, y)$

$$[(z = uvwxy) \land (|vx| \ge 1) \land (|vwx| \le n) \land (uv^iwx^iy \in L, \forall i \ge 0)]$$

Automatenminimierung:

- 1. nicht ereichbare Zustände entfernen.
- 2. Tabelle aller Zustandspaare $\{z, z'\}$ mit $z \neq z'$

 $(z_1 - z_k \text{ links}, z_0 - z_{k-1} \text{ unten})$

- 3. Markieren der Zustandspaare mit $z \in F$ und $z \notin F$ oder umgekehrt.
- 4. Betrachte unmakrierte Paare $\{z, z'\}$.

Wenn $\{\delta(z,a),\delta(z',a)\}$ für mind. ein $a \in \Sigma$ bereits makiert, markiere $\{z,z'\}$.

- 5. (4) Wiedenholen bis keine Änderung mehr.
- 6. Unmarkierte Paare können verschmolzen werden.

Chomsky-Normalform

- 1. $r \in V^* \cup \Sigma$
- 2. $|r| \le 2$
- 3. ε -Produktionen entfernen
- 4. Kettenregeln ersetzen

Problem	Gegeben	Gesucht	polyn. red. von
SAT	aussagenlog. Formel	Wahrheitsbelegung	TM
3SAT	boolesche Formel in KNF mit 3 Literalen pro Klau- sel	Erfüllbarkeit	SAT
Set Cover	Mengensystem über endl. Grundmenge M, also $T_1,, T_k \subseteq M$, Zahl $n \le k$	Auswahl n Mengen $T_{i_1},,T_{i_n}$, in denen alle Elemente aus M vorkommen	3SAT
Steiner-Tree	Graph $G = (V, E)$ mit positiven Kantenge- wichten $c : E \rightarrow \mathbf{R}$, V = R(Pflichtknoten) $\cup F(Steinerknoten)$	Baum $T \subseteq E$ der mit minimalen Kosten alle Pflichtknoten verbindet	3SAT
Clique	ungerichteter Graph $G = (V, E)$ und Zahl $k \in \mathbb{N}$	Clique $V' \subseteq V$, so- dass $\forall i, j \in V', i \neq j$, gilt: $\{i, j\} \in E$, mit $ V' \geq k$	3SAT
Vertex Cover	ungerichteter Graph $G = (V, E)$ und Zahl $k \in \mathbb{N}$	überdeckende Kno- tenmenge $V' \subseteq V$ mit $ V' \ge k$, sodass $\forall \{u,v\} \in E : u \in V'$ oder $v \in V'$	Clique
Subset Sum (Rucksack)	Zahlen $a_1,,a_k \in \mathbb{N}$ und $b \in \mathbb{N}$	Teilmenge $I \subseteq \{1,,k\}$ mit $\sum_{i \in I} a_i = b$	3SAT
Partition	Zahlen $a_1,,a_k \in \mathbf{N}$	Teilmenge $J \subseteq \{1,,k\}$ mit $\sum_{i \in J} a_i = \sum_{i \notin J} a_i$	Subset Sum
Bin Packing	Behältergröße $b \in \mathbb{N}$, Behälteranzahl $k \in \mathbb{N}$, Objekte $a_1,a_k \leq b$	Abb. $f: \{1,,n\} \rightarrow \{1,,k\}$,sodass $\forall j = 1,,k: \sum_{f(i)=j} a_i \leq b$	Partition
Knapsack	endl. Menge M , Gewichsfkt. $w: M \to \mathbf{N_0}$, Kostenfkt. $c: M \to \mathbf{N_0}$, $W, C \in \mathbf{N_0}$	$M' \subseteq M \text{ mit } \sum_{a \in M'} w(a) \le W \text{ und } \sum_{a \in M'} c(a) \ge C$	Subset Sum
ILP	?????????	?????????	Subset Sum
Directed Hamilton Circle	gerichteter Graph $G = (V, E)$	Hamiltonkreis: einfacher Kreis der jeden Knoten genau einmal enthält	3SAT
Hamilton Circle	ungerichteter Graph $G = (V, E)$	Hamiltonkreis	Directed Hamilton Circle
TSP	$n \times n$ -Matrix M_{ij} und Zahl	Rundreise mit max. Länge k	Hamilton Circle
Coloring	ungerichteter Graph $G = (V, E)$ und Zahl $k \in \mathbb{N}$	Färbung der Knoten in V mit k versch. Farben, mit je 2 unterschiedlich ge- färbten Nachbarn	3SAT

Tabelle 6: **NP-Vollst. Probleme**