Modulo II - Introdução à Estatística Básica

Umberto Mignozzetti

6/1/2020

- Objetivo Stat é analisar dados.
- ► Três etapas:
 - 1. Entender os dados: análise descritiva
 - 2. Modelar os dados: probabilidade
 - 3. Formular hipóteses: inferencia estatística

Modelagem: propor uma representação que explique a maior parte da variabilidade dos dados

Figura 1.1: Relação entre consumo e rendimento.

Podemos, então, escrever de modo esquemático:

Dados = Modelo + Resíduos

Figure 1: f1

- Gráficos: visualizar os dados que temos.
- Objetivos:
 - Buscar padrões
 - Checar expectativas
 - Descobrir fenômenos
 - Confirmar suposições
 - Apresentar resultados
- Altamente recomendável!

- Softwares estatísticos:
 - ► R / S+
 - ► SPSS / PSPP
 - Excel / Calc
 - ► SAS
 - Stata
- ▶ Qual usar? Qual vc preferir. (Esse tipo de pergunta importa?!)
- Eu uso R. Motivo: de graça e bom!

Medidas Resumo

Tipos de variáveis

- Qualitativas: descrevem atributos dos casos:
 - Pessoa casada
 - Votou no Bolsonaro
 - Cidade com mais Corona no Brasil
 - Superior completo...
- Quantitativas: realizações de uma contagem / mensuração
 - Idade
 - Renda
 - Numero de ligações

Tipos de variáveis

Qualitativas:

► Nominais: sexo

Ordinais: escolaridade

Quantitativas:

Discretas: numero de filhos

Contínuas: salário

Tipos de variáveis

##

Classifique o banco:

```
dat <- read.csv('https://raw.githubusercontent.com/umberton
head(dat)
```

```
##
    N Estado. Civil Grau. de. Instrução N. de. Filhos Salario
           solteiro ensino fundamental
## 1 1
                                                 NΑ
## 2.2
             casado ensino fundamental
## 3 3
             casado ensino fundamental
## 4 4
           solteiro
                          ensino médio
                                                 NA
## 5 5
           solteiro ensino fundamental
                                                 NA
## 6 6
             casado ensino fundamental
##
```

Região.de.Procedência ## 1 interior

2 capital

capital ## 3

4 outra

outra

interior

Tabela de frequência

- Contagem de valores para cada um dos níveis pré-definidos
- ► E.g., Grau de Instrução:

Tabela 2.2: Freqüências e porcentagens dos 36 empregados da seção de orçamentos da Companhia MB segundo o grau de instrução.

Grau de instrução	Freqüência n _i	Proporção $f_{_{\!f}}$	Porcentagem 100 f _i
Fundamental Médio Superior	12 18 6	0,3333 0,5000 0,1667	33,33 50,00 16,67
Total	36	1,0000	100,00

Figure 2: f2

Tabela de frequência

Tabela 2.2: Freqüências e porcentagens dos 36 empregados da seção de orçamentos da Companhia MB segundo o grau de instrução.

Grau de	Freqüência	Proporção	Porcentagem $100 f_i$
instrução	n _i	f _i	
Fundamental	12	0,3333	33,33
Médio	18	0,5000	50,00
Superior	6	0,1667	16,67
Total	36	1,0000	100,00

Figure 3: f2

Stats:

Contagem

► Frequencia (relativa): $f_i = \frac{n_i}{n}$ ► Porcentagem: $prop_i = 100 \times \frac{n_i}{n}$

Tabela de frequência

- Para uma variável quanti, temos o seguinte:
 - 1. Criamos intervalos
 - 2. Contamos valores nos intervalos

Tabela 2.4: Freqüências e porcentagens dos 36 empregados da seção de orçamentos da Companhia MB por faixa de salário.

Classe de salários	Freqüência n ₁	Porcentagem $100 f_i$
4,00 ⊢ 8,00	10	27,78
8,00 ← 12,00	12	33,33
12,00 ← 16,00	8	22,22
16,00 ⊢ 20,00	5	13,89
20,00 ← 24,00	1	2,78
Total	36	100,00

Fonte: Tabela 2.1.

Figure 4: f3

Gráficos

▶ Basta colocar as tabelas que montamos em figuras!?

Figura 2.2: Gráfico em barras para a variável Y: grau de instrução.

Figure 5: f4

Gráficos

Basta colocar as tabelas que montamos em figuras!?

Figura 2.3: Gráfico em setores para a variável Y: grau de instrução.

1 = Fundamental, 2 = Médio e 3 = Superior

Figure 6: f5

Gráficos

▶ Basta colocar as tabelas que montamos em figuras!?

Figura 2.7: Histograma da variável S: salários.

Figure 7: f6

Exercício

 As taxas médias geométricas de incremento anual (por 100 habitantes) dos 30 maiores municípios do Brasil estão dadas abaixo.

3,67	1,82	3,73	4,10	4,30
1,28	8,14	2,43	4,17	5,36
3,96	6,54	5,84	7,35	3,63
2,93	2,82	8,45	5,28	5,41
7,77	4,65	1,88	2,12	4,26
2,78	5,54	0,90	5,09	4,07

(a) Construa um histograma.

Figure 8: f7

Medidas-Resumo

Medidas Resumo

- Dois tipos mais importantes:
 - Posição
 - Dispersão
- Além dessas, temos algumas outras que são boas para analisar os dados.

Medidas de posição

Média:

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

► Média (com frequências relativas):

$$\bar{x} = \frac{\sum_{i=1}^{k} f_i x_i}{n}$$

Exercício: calcule a média dos dados: 1,5,2,3,2,4,10

Medidas de posição

Posição e medidas de ordem: em que lugar está o dado se ordenarmos?

Consideremos, agora, as observações ordenadas em ordem crescente. Vamos denotar a menor observação por $x_{(p)}$, a segunda por $x_{(p)}$, e assim por diante, obtendo-se

$$X_{(1)} \le X_{(2)} \le \dots \le X_{(n-1)} \le X_{(n)}.$$
 (3.4)

Por exemplo, se $x_1=3,\,x_2=-2,\,x_3=6,\,x_4=1,\,x_5=3,\,$ então $-2\le 1\le 3\le 3\le 6,\,$ de modo que $x_{(1)}=-2,\,x_{(2)}=1,\,x_{(3)}=3,\,x_{(4)}=3$ e $x_{(5)}=6.$

Figure 9: f8

Ex.:

$$x <- c(3,-2,6,1,3)$$

Medidas de posição

► Mediana:

 $x \leftarrow c(3,-2,6,1,3)$

[1] 3 -2 6 1 3 sort(x)

[1] -2 1 3 3 6

median(x)

[1] 3

$$\operatorname{md}(X) = \begin{cases} \frac{X_{\left(\frac{n+1}{2}\right)}}{2}, & \text{se } n \text{ impar;} \\ \frac{X_{\left(\frac{n}{2}\right)} + X_{\left(\frac{n}{2} + 1\right)}}{2}, & \text{se } n \text{ par.} \end{cases}$$

Medidas de dispersão

Suponha as notas dos alunos em cinco grupos:

```
grupo A (variável X): 3, 4, 5, 6, 7 grupo B (variável Y): 1, 3, 5, 7, 9 grupo C (variável Z): 5, 5, 5, 5, 5 grupo D (variável W): 3, 5, 5, 7 grupo E (variável V): 3, 5, 5, 6, 6
```

Figure 11: f10

Exercício: quais são as médias? Elas ajudam a diferenciar esses dados?

Medidas de dispersão

- Não ajudam nesses casos: os dados acima eram claramente diferentes!
- Duas medidas mais usadas: desvio-médio absoluto e variância.

$$dm(X) = \frac{\sum_{i=1}^{n} |X_i - \overline{X}|}{n},$$

$$var(X) = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n},$$

Figure 12: f11

 Exercício: vamos fazer no R? Considere os dados do exercício acima.

Medidas de dispersão: exercício

- Quer se estudar o número de erros de impressão de um livro. Para isso escolheu-se uma amostra de 50 páginas, encontrando-se o número de erros por página da tabela abaixo.
 - (a) Qual o número médio de erros por página?
 - (b) E o número mediano?
 - (c) Qual é o desvio padrão?
 - (d) Faça uma representação gráfica para a distribuição.
 - (e) Se o livro tem 500 páginas, qual o número total de erros esperado no livro?

Erros	Freqüência	
0	25	
1	20	
2	3	
3	1	
4	1	

Figure 13: f12

- Apenas com média e desvio-padrão não temos ideia do que está acontecendo nos dados:
 - Valores extremos?
 - Assimetria?
- Quantís: boas medidas de resumo dos dados
- Posição e medidas de ordem: em que lugar está o dado se ordenarmos?

Consideremos, agora, as observações ordenadas em ordem crescente. Vamos denotar a menor observação por $x_{(1)}$, a segunda por $x_{(2)}$, e assim por diante, obtendo-se

$$X_{(1)} \le X_{(2)} \le \dots \le X_{(n-1)} \le X_{(n)}.$$
 (3.4)

Por exemplo, se $x_1=3, x_2=-2, x_3=6, x_4=1, x_5=3$, então $-2 \le 1 \le 3 \le 3$, de modo que $x_{(1)}=-2, x_{(2)}=1, x_{(3)}=3, x_{(4)}=3$ e $x_{(5)}=6$.

Figure 14: f8

Ex.:

- Quantís: medidas de posição, para uma dada ordem nos dados.
- ▶ E.g.: mediana: q(0.5): valor que divide os dados pela metade.
- ▶ E.g.: percentil 0.95: q(0.95): valor que divide os dados com 95% dos casos abaixo e 5% acima desse valor.

```
x \leftarrow c(15, 5, 3, 8, 10, 2, 7, 11, 12)
sort(x)
## [1] 2 3 5 7 8 10 11 12 15
quantile(x)
## 0% 25% 50% 75% 100%
## 2 5 8 11 15
quantile(x, probs = 0.95)
## 95%
## 13.8
summary(x)
##
     Min. 1st Qu. Median Mean 3rd Qu. Max.
##
    2.000 5.000 8.000
                          8.111 11.000 15.000
```

- Box-plot: jeito de apresentar os quantís que dá uma noção da distribuição e disperção dos dados.
- \blacktriangleright LS = MD + 1.5 × IIQ
- $ightharpoonup LI = MD 1.5 \times IIQ$
- IIQ = q(0.75) q(0.25)

Figura 3.4: Box Plot.

Motivo estatístico

Figura 3.8: Área sob a curva normal entre LI e LS.

Figure 16: f14

Exercício

Faça uma análise dos dados da empresa MB.

Análise bidimensional

Análise Bidimensional

- ► Três tipos:
 - Quali x Quali
 - Quali x Quant
 - Quant x Quant

Associação Quali-Quali

Tabela 4.2: Distribuição conjunta das freqüências das variáveis grau de instrução (Y) e região de procedência (V).

V	Ensino Fundamental	Ensino Médio	Superior	Total
Capital Interior	4	5	2	11
Interior	3	7	2	12
Outra	5	6	2	13
Total	12	18	6	36

Fonte: Tabela 2.1.

Figure 17: f15

Associação Quali-Quali

Tabela 4.3: Distribuição conjunta das proporções (em porcentagem) em relação ao total geral das variáveis Y e V definidas no texto.

V	Fundamental	Médio	Superior	Total
Capital	11%	14%	6%	31%
Interior	8%	19%	6%	33%
Outra	14%	17%	5%	36%
Total	33%	50%	17%	100%

Fonte: Tabela 4.2.

Figure 18: f16

Tabela 4.4: Distribuição conjunta das proporções (em porcentagem) em relação aos totais de cada coluna das variáveis Ye V definidas no texto.

V	Fundamental	Médio	Superior	Total
Capital	33%	28%	33%	31%
Interior	25%	39%	33%	33%
Outra	42%	33%	34%	36%
Total	100%	100%	100%	100%

Fonte: Tabela 4.2.

Figure 19: f17

Tabela 4.7: Distribuição conjunta das freqüências e proporções (em porcentagem), segundo o sexo (X) e o curso escolhido (Y).

X	Masculino	Feminino	Total
Física	100 (71%)	20 (33%)	120 (60%)
Ciências Sociais	40 (29%)	40 (67%)	80 (40%)
Total	140 (100%)	60 (100%)	200 (100%)

Fonte: Dados hipotéticos.

Figure 20: f18

Tabela 4.8: Cooperativas autorizadas a funcionar por tipo e estado, junho de 1974.

Estado		T . I			
	Consumidor	Produtor	odutor Escola		Total
São Paulo	214 (33%)	237 (37%)	78 (12%)	119 (18%)	648 (100%)
Paraná	51 (17%)	102 (34%)	126 (42%)	22 (7%)	301 (100%)
Rio G. do Sul	111 (18%)	304 (51%)	139 (23%)	48 (8%)	602 (100%)
Total	376 (24%)	643 (42%)	343 (22%)	189 (12%)	1.551 (100%)

Fonte: Sinopse Estatística da Brasil — IBGE, 1977.

Figure 21: f19

Tabela 4.9: Valores esperados na Tabela 4.8 assumindo a independência entre as duas variáveis.

Estado		T . I			
	Consumidor	Produtor	Escola	Outras	Total
São Paulo	157 (24%)	269 (42%)	143 (22%)	79 (12%)	648 (100%)
Paraná	73 (24%)	124 (42%)	67 (22%)	37 (12%)	301 (100%)
Rio G. do Sul	146 (24%)	250 (42%)	133 (22%)	73 (12%)	602 (100%)
Total	376 (24%)	643 (42%)	343 (22%)	189 (12%)	1.551 (100%)

Fonte: Tabela 4.8.

Figure 22: f20

Tabela 4.10: Desvios entre observados e esperados.

Estado	Tipo de Cooperativa								
	Consumidor	Produtor	Escola	Outras					
São Paulo	57 (20,69)	-32 (3,81)	-65 (29,55)	40 (20,25)					
Paraná	-22 (6,63)	-22 (3,90)	59 (51,96)	-15 (6,08)					
Rio G. do Sul	-35 (8,39)	54 (11,66)	6 (0,27)	-25 (8,56)					

Fonte: Tabelas 4.8 e 4.9.

Figure 23: f21

6. Uma companhia de seguros analisou a freqüência com que 2.000 segurados (1.000 homens e 1.000 mulheres) usaram o hospital. Os resultados foram:

	Homens	Mulheres
Usaram o hospital	100	150
Não usaram o hospital	900	850

- (a) Calcule a proporção de homens entre os indivíduos que usaram o hospital.
- (b) Calcule a proporção de homens entre os indivíduos que não usaram o hospital.
- (c) O uso do hospital independe do sexo do segurado?

Figure 24: f22b

Quanti x Quanti

- A medida principal de associação entre duas variáveis quanti é o coeficiente de correlação.
- O coeficiente de correlação é uma medida que varia entre -1 e 1 onde:
 - Mais próximo de -1 significa correlação negativa
 - Mais próximo de 0 significa ausência de correlação
 - Mais próximo de 1 significa correlação positiva
- Mas como funciona a correlação?

- Diagrama de dispersão: ajuda a observar os dados.
 - Como fazer: colocar os dados em dois eixos coordenados.

Figura 4.2: Gráfico de dispersão para as variáveis *X*: anos de serviço e *Y*: número de clientes.

- Como correlação aparece no diagrama de dispersão:
 - Na esquerda temos uma correlação positiva.
 - No centro, correlação negativa.
 - Na direita, correlação zero.
- Para calcular correlação precisamos medir a concentração dos dados nos quadrantes.

Figura 4.6: Tipos de associações entre duas variáveis.

Figure 26: f23

- Para isso, fazemos os seguintes passos:
 - 1. Subtraímos a média do valor de cada variável. Isso centraliza a variável no zero (fig. esquerda).
 - Dividimos pelo desvio-padrão: isso faz com que a unidade de variação da variável desapareça (fig. direita).

Figura 4.7: Mudança de escalas para o cálculo do coeficiente de correlação.

Figure 27: f25

Olha como fica na tabela:

Tabela 4.15: Cálculo do coeficiente de correlação.

Agente	Anos X	Clientes y	$X - \overline{X}$	$y-\bar{y}$	$\frac{X - \overline{X}}{dp(x)} = Z_x$	$\frac{y - \overline{y}}{dp(y)} = Z_y$	$Z_x \cdot Z_y$
Α	2	48	-3,7	-8,5	-1,54	-1,05	1,617
В	3	50	-2,7	-6,5	-1,12	-0,80	0,846
C	4	56	-1,7	-0,5	-0,71	-0,06	0,043
D	5	52	-0,7	-4,5	-0,29	-0,55	0,160
Е	4	43	-1,7	-13,5	-0,71	-1,66	1,179
F	6	60	0,3	3,5	0,12	0,43	0,052
G	7	62	1,3	5,5	0,54	0,68	0,367
Н	8	58	2,3	1,5	0,95	0,19	0,181
1	8	64	2,3	7,5	0,95	0,92	0,874
J	10	72	4,3	15,5	1 <i>,</i> 78	1,91	3,400
Total	57	565	0	0			8,769

 $\bar{x} = 5.7$, dp(X) = 2.41, $\bar{y} = 56.5$, dp(Y) = 8.11

Figure 28: f24

E essa é a fórmula:

Definição. Dados n pares de valores (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n) , chamaremos de coeficiente de correlação entre as duas variáveis X e Y a

$$\operatorname{corr}(X, Y) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i - \overline{X}}{dp(X)} \right) \left(\frac{y_i - \overline{y}}{dp(\overline{Y})} \right), \tag{4.7}$$

ou seja, a média dos produtos dos valores padronizados das variáveis.

Não é difícil provar que o coeficiente de correlação satisfaz

$$-1 \le \operatorname{corr}(X, Y) \le 1. \tag{4.8}$$

Figure 29: f26

Exercício

11. Abaixo estão os dados referentes à porcentagem da população economicamente ativa empregada no setor primário e o respectivo índice de analfabetismo para algumas regiões metropolitanas brasileiras.

Regiões metropolitanas	Setor primário	Índice de analfabetismo
São Paulo	2,0	17,5
Rio de Janeiro	2,5	18,5
Belém	2,9	19,5
Belo Horizonte	3,3	22,2
Salvador	4,1	26,5
Porto Alegre	4,3	16,6
Recife	7,0	36,6
Fortaleza	13,0	38,4

Fonte: Indicadores Sociais para Áreas Urbanas — IBGE — 1977.

- (a) Faça o diagrama de dispersão.
- (b) Você acha que existe uma dependência linear entre as duas variáveis?
- (c) Calcule o coeficiente de correlação.
- (d) Existe alguma região com comportamento diferente das demais? Se existe, elimine o valor correspondente e recalcule o coeficiente de correlação.

Figure 30: f26b

- Cruzar uma quali versus uma quanti é mais complicado.
- ▶ Note esse cruzamento, entre salário e escolaridade:

Figura 4.8: Box plots de salário segundo grau de instrução.

Figure 31: f34

Tabela 4.16: Medidas-resumo para a variável salário,	segundo o grau de instrução, na Companhia MB.
--	---

Grau de instrução	п	3	dp(S)	var(S)	s ₁₀	$q_{_1}$	$q_{_2}$	$q_{_3}$	Sini
Fundamental Médio Superior	12 18 6	7,84 11,54 16,48	2,79 3,62 4.11	7,77 13,10 16.89	4,00 5,73 10,53	6,01 8,84 13.65	7,13 10,91 16,74	9,16 14,48 18.38	13,65 19,40 23.30
Todos	36	11,12	4,52	20,46	4,00	7,55	10,17	14,06	23,30

Figure 32: f35

Compare agora com esse cruzamento, entre salário e região de procedência:

Tabela 4.17: Medidas-resumo para a variável salário segundo a região de procedência, na Companhia MB.

Região de procedência	n	īs	dp(S)	var(S)	S ₍₁₎	$q_{_1}$	$q_{_{2}}$	$q_{_3}$	S _(n)
Capital	-11	11,46	5,22	27,27	4,56	7,49	9,77	16,63	19,40
Interior	12	11,55	5,07	25,71	4,00	7,81	10,64	14,70	23,30
Outra	13	10,45	3,02	9,13	5,73	8,74	9,80	12,79	16,22
Todos	36	11,12	4,52	20,46	4,00	7,55	10,17	14,06	23,30

Figura 4.9: Box plots de salário segundo região de procedência.

Figure 33: f36

- ► Salário x Idade: aparentemente mais relacionadas
- Salário x região: aparentemente menos relacionadas
- Como medir a associação? Note as variâncias!

- Se compararmos as variâncias dentro dos grupos, com a variância total, temos uma medida!
 - Essa medida é o quanto a nossa quali consegue explicar nossa quanti.
 - O nome disso é ANOVA: ANalysis Of VAriance.
 - Como fazer?

- A variância intra grupo é a média ponderada da variância em cada grupo.
- ► A gente calcula assim:
 - Variância intra-grupo:

$$\overline{var(X)} = \frac{\sum_{i=1}^{k} n_i var_i(S)}{\sum_{i=1}^{k} n_i}$$

▶ Variância total: variância dos dados: *var*(*X*)...

► Associação entre as variáveis: R²:

$$0 \le R^2 = 1 - \frac{\overline{var(X)}}{var(X)} \le 1$$

Exemplo 4.9. Voltando aos dados do Exemplo 4.8, vemos que para a variável S na presença de grau de instrução, tem-se

$$\overline{\text{var}(S)} = \frac{12(7,77) + 18(13,10) + 6(16,89)}{12 + 18 + 6} = 11,96,$$
$$\text{var}(S) = 20,46,$$

de modo que

$$R^2 = 1 - \frac{11,96}{20,46} = 0,415,$$

e dizemos que 41,5% da variação total do salário é *explicada* pela variável grau de instrução.

Para S e região de procedência temos

$$\overline{\text{var}(S)} = \frac{11(27,27) + 12(25,71) + 13(9,13)}{11 + 12 + 13} = 20,20,$$

e, portanto,

$$R^2 = 1 - \frac{20,20}{20,46} = 0,013,$$

Figure 34: f37

Exercício

- Calcule no banco MB a associação entre estado civil e idade.
- ► Faça análises uni e bidimensional de uma das bases de dados que temos na pasta (escolha sua):
 - ► MB
 - voteincome
 - PErisk

- Axiomas
- Probabilidade Condicional
- ► Teorema de Bayes
- Distribuições de probabilidade
- Lei dos Grandes Numeros e Teorema do Limite Central

- Está em todo lugar
- Mas nós somos muito ruins em interpretar probabilidade
- Ainda piores em estimar probabilidades. . .
- Exemplo:
 - Qual a chance de chover amanhã?
 - Qual a chance de você ganhar na loteria?
- Monty Hall problem: (https://www.youtube.com/embed/_X5erR9LKUs)

- ► Mas o que é probabilidade?
 - Modelo matemático da incerteza
- Linguagem:
 - Experimento aleatório: uma ação ou conjunto de ações que produz eventos aleatórios de interesse
 - Jogar moedas, bolinha na urninha, dados, etc
 - ightharpoonup Espaço Amostral: (Ω): possíveis resultados do experimento
 - ► {cara, coroa}, {1,2,3,4,5,6}, {bolinha vermelha, bolinha azul}
 - Evento: subconjunto do espaço amostral

Exemplo

Qual o espaço amostral do experimento: você joga uma moeda. Se der cara, você retira uma carta e anota o naipe. Se der coroa, você começa novamente?

- Probabilidade do evento $A = P(A) = \frac{Casos\ favoráveis}{Casos\ possíveis}$
- ▶ Probabilidade de Cara = $P(H) = \frac{heads}{heads + tails} = \frac{1}{2}$
- Qual a probabilidade de 3 caras em 3 jogadas de moeda?
 - Espaço amostral?

$$\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}$$

Qual evento estamos interessados?

$$\{HHH\}$$

Qual essa chance?

▶ Qual a chance de pelo menos 2 caras em tres lançamentos?

Axiomas da probabilidade

- Três axiomas:
 - ► A probabilidade de qualquer evento está entre zero e um:

$$0 \leq P(A) \leq 1$$

► A probabilidade do espaço amostral é 1:

$$P(\Omega) = 1$$

Dois eventos mutuamente exclusivos:

$$P(A \text{ or } B) = P(A) + P(B)$$

Permutação: ordem importa

- Quantas possiveis maneiras temos de arranjar as letras A,B,C?
 3 x 2 x 1
- Permutações contam de quantos modos podemos ordenar k objetos num conjunto com n objetos únicos.

$$_{n}P_{k} = n \times (n-1) \times (n-2) \times ... \times (n-k+1) = \frac{n!}{(n-k)!}$$

▶ De quantos modos podemos arranjar quatro cartas das 13 de espadas de um deck?

Combinações

- Combinações: ordem não importa
- ▶ ABC, BAC, CAB, etc são a mesma extração!
- Sempre temos menos combinações que permutações
- E.g.: duas letras de ABC:
 - Permutações:
 - ► AB, AC, BA, BC, CA, CB = $\frac{3!}{1!}$
 - Combinações:
 - ► AB, AC, BC

Como calcular combinações

- Estamos contando sempre a mais!
- ▶ Basta retirar alguns elementos: mesmas permutações dos elementos: dividir por k!
- $_{n}C_{k} = \binom{n}{k} = \frac{nP_{k}}{k!} = \frac{n!}{k!(n-k)!}$

Exemplo: ganhar na mega-sena!

▶ Qual a chance de ganhar na mega-sena?

Probabilidade Condicional

Probabilidade Condicional

- As vezes, informações sobre um evento ajudam a mudar as expectativas sobre outros eventos.
- Exemplos?
 - Qual a probabilidade de rolar um 5 e depois um 6, se você rolou um 5 primeiro?
 - If it is cloudy outside, gives us additional information about likelihood of rain.
 - If we know that one party will win the House, makes it more likely that party will win certain Senate races

Independencia

- ▶ If the occurrence of one event (A) gives us information about the likelihood of another event, then the two events are not independent.
- Independencia of two events implies that information about one event does not help us in knowing whether the second event will occur.
- For many real world examples, independence does not hold
- Knowledge about other events allows us to improve guesses/probability calculations

Independence

- When two events are independent, the probability of both happening is equal to the individual probabilities multiplied together
- And what is the probability of one event when it is conditional to each another?

- ightharpoonup P(A|B)
- Probability of A given/conditional that B has happened
- $P(A|B) = \frac{P(A \text{and} B)}{P(B)}$
- Probability of A and B happening (joint) divided by probability of B happening (marginal)
- Definitions:
 - ▶ P(AandB) joint probability
 - ightharpoonup P(A) marginal probability

- ightharpoonup P(rolled 5 then 6) = ?
- $P(\text{rolled 5 then 6}) = \frac{1}{36}$
- ▶ P(rolled 5 then 6 | 5 first) = $\frac{P(5then6)}{P(5)}$
- $\frac{\frac{1}{36}}{\frac{1}{6}} = \frac{1}{6}$

- ➤ The probability that it is Friday and that a student is absent is 0.03. What is the probability that student is absent, given that it is Friday?
- ightharpoonup P(absent|Friday) = ?

- ► The probability that it is Friday and that a student is absent is 0.03. What is the probability that student is absent, given that it is Friday?
- ightharpoonup P(absent|Friday) =?
- $P(absent|Friday) = \frac{0.03}{0.2} = 0.15$

- $P(A|B) = \frac{P(A \text{and} B)}{P(B)}$
- ► Also means:
- ightharpoonup P(A|B)P(B)
- ▶ Just multiply both sides by P(B) to get rid of the denominator
- If A and B are independent, then

$$P(A|B) = P(A)\&P(B|A) = P(B)$$

- $ightharpoonup P(A = P(A) \times P(B))$
- ▶ If A|C and B|C are independent, then
 - $P(AandB|C) = P(A|C) \times P(B|C)$

Example

Annual income	Didn't Take Stats	Took Stats	TOTAL
Under 50,00	36	24	60
50,000 to 100,000	109	56	165
Over 100,000	35	40	75
Total	180	120	300

- What is the probability of any student making over \$100,000?
- ▶ What is the probability of a student making over \$100,000, conditional that she took Stats?
- ▶ What is the probability of a having taken Stats, conditional on making over \$100,000?

A Slightly Harder Example

- ▶ John's two favourite foods are bagels and pizza. A represents the event he eats bagel for breakfast and B represents the event that he eats pizza for lunch.
- ▶ On a random day, the probability John will eat a bagel, P(A), is 0.6, the probability he will eat pizza is P(B) = 0.5, and the conditional probability that he eats a bagel for breakfast, given that he eats pizza for lunch is P(A|B) = 0.7
- ▶ Based on this information, what is P(B|A), that is, the probability that John will eats pizza for lunch given that he eats a bagel for breakfast?

Bayes' Theorem

- ightharpoonup P(A) = prior probability
- \triangleright P(A|B): posterior probability of event A given observed data B
- ▶ P(B|A): probability of observing B given A
- \triangleright P(B): probability of observing B.... including both true and false positives!
- ▶ Imagine you have a serious disease. It is a rare disease, it happens only to 0.1% of the population. The test identifies the disease correctly in 99% of the cases, but incorrectly in 1% of them. If your test is positive, what is the probability you actually have the disease?

Medical Test

$$P(H|E) = \frac{P(E|H) \times P(H)}{P(E)}$$

$$P(H|E) = \frac{P(E|H) \times P(H)}{P(E|H) \times P(H) + P(E|H^c) \times P(H^c)}$$

$$P(disease|test+) = \frac{P(test + |disease) \times Prior(disease)}{P(test+) = true and false positives}$$

Medical Test

▶ Imagine you have a serious disease. It is a rare disease, it happens only to 0.1% of the population. The test identifies the disease correctly in 99% of the cases, but incorrectly in 1% of them. If your test is positive, what is the probability you actually have the disease?

$$P(H|E) = \frac{.99 \times .001}{.001 \times .99 + .999 \times .01} \approx .09 \approx 9\%$$

- ▶ Out of 1,000 people, 1 will actually have the disease
- ▶ But 10 people will be tested positive and will not have the disease
- ▶ Which means that 11 people will be tested positive overall
- ► So we have $\frac{1}{11} \approx .09 \approx 9\%$

Random Variables

Variáveis aleatórias

- What is a random variable? We assign a number to an event
 - ightharpoonup Coin flip: tail = 0; heads = 1
 - ▶ Mayor's election: Bruno Covas = 0; Joyce Hasselman = 1
 - Voting: vote = 1; not vote = 0
- ► The values of random variables must represent *mutually* exclusive and exhaustive events
- Probability distribution: Probability that a random variable takes a certain value
 - ightharpoonup P(coin = 1); P(coin = 0)
 - ► P(election = 1); P(election = 0)
- ➤ Your turn: A fair coin is tossed two times. Consider the random variable: number of heads. What is its distribution?

Random Variables and Probability Distributions

- ▶ Probability density function (PDF): f(x)
 - Probability that a random variable X takes a particular value.
 - Associated with continuous variables, must be integrated over an interval
- Probability mass function (PMF): when X is discrete, f(x) = P(X = x). Only discrete random variables have PMFs
- ▶ Cumulative distribution function (CDF): $f(x) = P(X \le x)$
 - ▶ What is the probability that a random variable *X* takes a value equal to or less than *x*?
 - Area under the density curve (we use \sum or \int)

Statistics of a Random Variable: Mean

- ▶ A random variable has support where the density function is defined. For example: the die has support in the numbers {1,2,3,4,5,6}.
- ► The support for the die is: $S = \{1, 2, 3, 4, 5, 6\}$.
- Mean: the mean of a random variable x, with distribution f(x) is defined as:

$$\mathbb{E}(x) = \sum_{x_i \in S} x_i f(x_i)$$

The mean is a measure of centrality in the data!

Statistics of a Random Variable: Variance

Variance: the variance of a random variable x, with distribution f(x) is defined as:

$$\mathbb{V}(x) = \sum_{x_i \in S} (x_i - \mathbb{E}(x))^2 f(x_i)$$

- Variance: measures the dispersion in the data.
- ▶ The **standard deviation** is the square-root of the variance.
- Your turn: consider the random variable die face number. What is the mean and variance of this random variable?

Discrete distributions

Uniform distribution

- ▶ Uniform distribution: all values in the (discrete) support have the same chance of get selected.
- Examples:
 - Coin toss.
 - Dice.
 - Put the 26 letters in a box and select one letter.
- ▶ Definition: If the support is $\{x_1, \dots x_k\}$, the variable has uniform distribution iff:

$$\mathbb{P}(x_i) = \frac{1}{k}$$

Bernoulli trial

- Bernoulli trial is a distribution named after the mathematician Jacob Bernoulli.
- ▶ A trial consists in a binary event with two possible outcomes: success (1) or failure (0).
- The probability distribution is equal to:

$$\mathbb{P}(Success) = \mathbb{P}(1) = p$$

With $p \in [0, 1]$.

Your turn: what is the mean and variance of a Bernoulli trial?

- The binomial distribution shows the number of successes in repeated Bernoulli trials.
- ▶ What is a repeated trial?
- ► E.g. suppose 90% of people in a given town likes the mayor. If we randomly select 100 people, what is the chance that at least 80 people out of 100 like the mayor?
 - ▶ 100 Bernoulli trials!

▶ PMF: for $x \in \{0, 1, ..., n\}$,

$$f(x) = P(X = x) = \binom{n}{x} p^{x} (1 - p)^{n-x}$$

- ▶ PMF tells us what is the probability of x successes given n trials with with P(x) = p
- ▶ In R:

```
# prob of 2 successes in 4 trials
dbinom(2, size = 4, prob = 0.5)
```

```
## [1] 0.375
```

► CDF: for $x \in \{0, 1, ..., n\}$

$$f(x) = P(X \le x) = \sum_{k=0}^{x} {n \choose k} p^k (1-p)^{n-k}$$

- ▶ CDF tells us what is the probability of x or fewer successes given n trials with P(x) = p
- ► In R:

```
# prob of 2 or fewer (= 0,1,2) successes in 4 trials pbinom(2, size = 4, prob = 0.5)
```

```
## [1] 0.6875
```

PMF and CDF

- ightharpoonup CDF of F(x) is equal to the sum of the results from calculating the PMF for all values smaller and equal to x
- ► In R

```
pbinom(2, size = 4, prob = 0.5) # CDF

## [1] 0.6875

sum(dbinom(c(0, 1, 2), 4, 0.5)) # summing up the PDFs

## [1] 0.6875
```

Example: flip a fair coin 3 times

$$f(x) = P(X = x) = \binom{n}{x} p^{x} (1 - p)^{n - x}$$

$$f(x) = P(X = 1) = \binom{3}{1} 0.5^{1} (1 - 0.5)^{3 - 1} = 0.375$$

dbinom(1, 3, 0.5)

[1] 0.375


```
x < -1.4
pb \leftarrow pbinom(x, size = 3, prob = 0.5)
plot(x[1:2], rep(pb[1], 2), ylim = c(0, 1), type = "s",
     xlim = c(-1, 4), xlab = "x", ylab = "Probability",
     main = "Cumulative distribution function")
for (i in 2:(length(x)-1)) {
    lines(x[i:(i+1)], rep(pb[i], 2))
}
points(x[2:(length(x)-1)], pb[2:(length(x)-1)], pch = 19)
points(x[2:(length(x)-1)], pb[1:(length(x)-2)])
```

Cumulative distribution function

Continuous Distributions

Continuous Distributions

- ▶ A function X defined in the sample space Ω , and assuming values in real line intervals is said a continuous probability distribution.
- Properties:
 - ▶ Integral in the support equals to 1:

$$\int_{-\infty}^{\infty} f(x) dx = 1$$

► The probability of an event in [a, b] is:

$$\mathbb{P}([a,b]) = \int_a^b f(x) dx$$

► The mean of the random variable is equal to:

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x f(x) dx$$

Uniform Distribution

- A distribution is uniform between the numbers α and β iff any number in the interval has the same chance of happening.
- ▶ The PDF in $[\alpha, \beta]$ is equal to:

$$f(x; \alpha, \beta) = \frac{1}{\beta - \alpha}$$

- ► Your turn: compute the
 - Mean
 - Variance

- ► The normal distribution is also called the Gaussian distribution
- ▶ Takes on values from $-\infty$ to ∞
- ▶ Defined by two parameters: μ and σ^2
 - ► Mean and variance (standard deviation squared)
- ▶ Mean defines the location of the distribution
- Variance defines the spread

- lacktriangle Normal distribution with mean μ and standard deviation σ
- PDF: $f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$
- ► CDF: $F(x) = P(X \le x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(t-\mu)^2}{2\sigma^2}\right) dt$

- Normal distribution is symmetric around the mean
- ► Mean = Median

Probability density function

Normal Distribution

- Curve of any normal distribution:
- Symmetric around the mean
- ► Total area under the curve is 1.00
- ▶ Area between -1SD and +1SD is \sim 0.68
- ightharpoonup Area between -2SD and +2SD is \sim 0.95
- \blacktriangleright Area between -3SD and +3SD is \sim 0.997

Normal Distribution

```
x \leftarrow seq(from = -7, to = 7, by = 0.01)
1 \text{wd} < -1.5
plot(x, dnorm(x), xlab = "x", ylab = "density",
     type = "l", main = "Probability density function",
     vlim = c(0, 0.9)
abline(v = -1, col = "red")
abline(v = 1, col = "red")
abline(v = -2, col = "blue")
abline(v = 2, col = "blue")
abline(v = -3, col = "black")
abline(v = 3, col = "black")
```

Normal Distribution

Expectations, Means, and Variances

- ► For probability distributions, means *should not be confused* with sample means
- Expectations or means of a random variable have specific meaning for the probability distribution
- A sample mean varies from sample to sample
- Mean of a probability distribution is a theoretical construct and constant
- Example: Age of undergraduates at FGV

Law of Large Numbers

- In many probabilistic models, certain patterns emerge as the sample size increases
- ▶ Law of Large Numbers: If we have a sample of i.i.d. observations from random variable X with expectation $\mathbb{E}(X)$, then

$$\bar{X}_n = \frac{1}{N} \sum_{i=1}^N X_i \to \mathbb{E}(X)$$

- ▶ i.i.d.: independent and identically distributed random variable.
- ▶ In English: As the number of draws increases, the sample mean \bar{X}_n approaches \to the variable's distribution expectation $\mathbb{E}(X)$

Law of Large Numbers

- Examples
 - ► Rolling a die, 500 times
 - Flipping a coin, also many times
 - Drawing respondents from a population of supporters and non-supporters for politician A
 - Statistical simulations

Simulation: Coin Tossing

```
draws <- seq(from = 1, to = 500) # coin tosses
avgs <- rep(NA, length(draws)) # empty vector
for(i in 1:length(draws)){
    samp \leftarrow sample(c(0, 1), draws[i], replace = T)
    avgs[i] <- mean(samp) # sampling w/ replacement</pre>
plot(draws, avgs, type = "l", ylim = c(0, 1),
     main = "Bernoulli with Prob. 0.5") # plot
abline(h = 0.5, col = "red", lwd = 2) # expectation
```

Simulation: Coin Tossing

Bernoulli with Prob. 0.5

Simulation: Rolling a Die

```
draws <- seq(from = 1, to = 500) # number of draws
avgs <- rep(NA, length(draws)) # empty vector
for(i in 1:length(draws)){
    samp <- sample(c(1:6), draws[i], replace = T)</pre>
    avgs[i] <- mean(samp) # sampling w/ replacement</pre>
plot(draws, avgs, type = "1", ylim = c(0, 6),
     main = "Uniform [1, 6]") # plot
abline(h = 3.5, col = "red", lwd = 2)
                                               # expectation
```

Simulation: Rolling a Die

- In practice we observe only the sample mean and do not know the expectation
- ► The central limit theorem shows that the distribution of the sample mean approaches the normal distribution as the sample size increases
- Again, not the sample itself approaches the normal distribution, but only the sample means
- ightharpoonup Z-score of the sample mean converges in distribution to the standard normal distribution or $\mathcal{N}(0,1)$ as the sample size increases
- ▶ Interestingly the result is true for almost any distribution!

- Experiment: flip a coin 10 times and record the number of heads
- ▶ Repeat experiment above 1000 times

```
avgs <- rep(NA, 1000)
for(i in 1:1000){
   samp <- rbinom(1000, 10, p=0.5)
   avgs[i] <- mean(samp)
}
plot(density(avgs))</pre>
```

density.default(x = avgs)

- Why do we care about it?
- Hypothetically repeated polls with sample size N
- ▶ As the number of polls increase, we get closer and closer to the true population mean, regardless of the distribution of the each particular poll
- Since we are taking the means of each poll, rare events become even more rare
- It is really hard to get a "weird average" versus to get a "weird individual." That difficulty in getting a weird average is what pulls the plot into a nice tight bell curve.