Układy konstrukcyjne

Konstrukcja budowlana jest układem wzajemnie połączonych elementów. Awaria jednego z elementów nie jest równoznaczna z awarią całego układu.

- ✓ Rodzaje elementów (materiałów):
 - elementy kruche
 - elementy ciagliwe.
- ✓ Rodzaj układów:
 - układy szeregowe
 - układy równoległe
 - układy mieszane.
- ✓ Korelacja między elementami:
 - elementy nieskorelowane
 - elementy częściowo skorelowane
 - elementy całkowicie skorelowane.

Elementy kruche i elementy ciągliwe

Element kruchy (idealnie kruchy)

 traci zdolność przenoszenia obciążenia po przekroczeniu stanu granicznego nośności, przykład: element betonowy, belka drewniana.

Element ciągliwy (idealnie ciągliwy)

 zachowuje zdolność przenoszenia obciążenia po przekroczeniu stanu granicznego nośności, przykład: element ze stali niskowęglowej (po osiągnięciu granicy plastyczności)

Element kruchy

Element ciągliwy

Układy szeregowe i układy równoległe

Układ szeregowy (układ najsłabszego ogniwa)

 ulegnie awarii, jeżeli ulegnie awarii jeden z jego elementów; awaria jednego elementu powoduje awarię całego układu; przykład: łańcuch złożony z wielu ogniw.

Układ równoległy

 ulegnie awarii, jeżeli ulegną awarii wszystkie jego elementy; do awarii całego układu konieczna jest awaria wszystkich elementów; przykład: lina spleciona z wielu drutów.

Układy szeregowe

Układy statycznie wyznaczalne

- awaria jednego elementu powoduje awarię układu.

Jeżeli ulegnie awarii jeden z prętów, cała kratownica ulegnie awarii.

Jeżeli powstanie przegub plastyczny A, B lub C, cała belka ulegnie awarii.

Jeżeli powstanie przegub plastyczny A lub B, cała rama ulegnie awarii.

Układy równoległe

Układy statycznie niewyznaczalne

- aby nastąpiła awaria układu potrzebna jest awaria wszystkich jego elementów.

Aby nastąpiła awaria belki, konieczne jest powstanie przegubów plastycznych A, B i C.

Aby nastąpiła awaria ramy, konieczne jest powstanie przegubów plastycznych A i B.

Układy mieszane

Układy statycznie niewyznaczalne

- awaria jednego z elementów nie powoduje awarii układu.

Aby nastąpiła awaria kratownicy, musi ulec awarii każdy z dwóch elementów przekątnych.

Aby nastąpiła awaria ramy, muszą powstać albo dwa przeguby plastyczne A i B albo przegub plastyczny C.

Układy równoległe i układy mieszane

Nośność układu jest sumą nośności jego elementów.

Układy równoległe:

- lina

- pręty zbrojeniowe w elemencie żelbetowym
- połączenie nitowe, śrubowe

Układ mieszany

 kratownica statycznie wyznaczalna o prętach wykonanych z więcej niż jednego kształtownika

Układ szeregowy; elementy nieskorelowane

n - liczba elementów

R – nośność układu; zmienna losowa

R_i – nośność i-tego elementu; zmienna losowa

q – wielkość obciążenia działającego na układ; stała

q_i – efekt obciążenia w i-tym elemencie; stała

Prawdopodobieństwo awarii układu:

$$\begin{split} P_f &= P\big(R < q\big) \\ &= 1 - P\big(R \ge q\big) \\ &= 1 - P\big(\left(R_1 \ge q_1\right) \cap \left(R_2 \ge q_2\right) \cap \ldots \cap \left(R_n \ge q_n\right)\big) \quad \xrightarrow{\text{Niezaležne}} \\ &= 1 - P\big(R_1 \ge q_1\big) \cdot P\big(R_2 \ge q_2\big) \cdot \ldots \cdot P\big(R_n \ge q_n\big) \\ &= 1 - \big(1 - P\big(R_1 < q_1\big)\big) \cdot \Big(1 - P\big(R_2 < q_2\big)\big) \cdot \ldots \cdot \Big(1 - P\big(R_n < q_n\big)\Big) \\ &= 1 - \Big(1 - P_{f_1}\Big) \cdot \Big(1 - P_{f_2}\Big) \cdot \ldots \cdot \Big(1 - P_{f_n}\Big) \\ &= 1 - \prod_{i=1}^n \Big(1 - P_{f_i}\Big) \end{split}$$

Przykład

Obliczyć prawdopodobieństwo awarii układu szeregowego *n* niezależnych elementów. Prawdopodobieństwo awarii elementu P_{fi}=0,05

$$P_f = 1 - \prod_{i=1}^{n} (1 - P_{f_i}) = 1 - (1 - 0.05)^n = 1 - 0.95^n$$

n	P _f	$\beta = -\Phi^{-1}(P_f)$
1	0,050	1,64
2	0,098	1,29
3	0,142	1,07
5	0,227	0,75
 10	 0 401	 0.25

Układ szeregowy jest mniej niezawodny niż każdy z jego elementów.

W miarę jak rośnie liczba elementów układu, prawdopodobieństwo jego awarii rośnie, a wskaźnik niezawodności maleje.

Układ równoległy; elementy nieskorelowane

- n liczba elementów
- R nośność układu; zmienna losowa
- R_i nośność i-tego elementu; zmienna losowa
- q wielkość obciążenia działającego na układ; stała
- q_i efekt obciążenia w i-tym elemencie; stała

Prawdopodobieństwo awarii układu:

$$\begin{split} P_f &= P\big(R < q\big) \\ &= P\big(\left(R_1 < q_1\right) \cap \left(R_2 < q_2\right) \cap \ldots \cap \left(R_n < q_n\right)\big) \\ &= P\big(R_1 < q_1\big) \cdot P\big(R_2 < q_2\big) \cdot \ldots \cdot P\big(R_n < q_n\big) \\ &= P_{f_1} \cdot P_{f_2} \cdot \ldots \cdot P_{f_n} \\ &= \prod_{i=1}^n P_{f_i} \end{split}$$

Przykład

Obliczyć prawdopodobieństwo awarii układu równoległego *n* niezależnych elementów. Prawdopodobieństwo awarii elementu P_{fi}=0,05

$$P_f = \prod_{i=1}^n P_{f_i} = (P_{f_i})^n = (0.05)^n$$

n	P _f	$\beta = -\Phi^{-1}(P)$
1	5,000×10 ⁻²	1,64
2	2,500×10 ⁻³	2,81
3	1,250×10 ⁻⁴	3,66
5	3,125×10 ⁻⁷	4,98
 10	 9,766×10 ⁻¹⁴	 7,35

Układ równoległy jest bardziej niezawodny niż każdy z jego elementów.

W miarę jak rośnie liczba elementów układu, prawdopodobieństwo jego awarii maleje, a wskaźnik niezawodności rośnie.

Układ równoległy; elementy doskonale ciągliwe nieskorelowane

Nośność układu R jest sumą nośności poszczególnych elementów R_i.

$$R = \sum_{i=1}^{n} R_{i}$$

$$\mu_R = \sum_{i=1}^n \mu_{R_i}$$

$$\sigma_R = \sqrt{\sum_{i=1}^n \sigma_{R_i}^2}$$

Jeżeli nośności elementów R_i są nieskorelowane i mają jednakowe rozkłady:

$$\mu_R = \sum_{i=1}^n \mu_{R_i} = n \mu_{R_i}$$

$$\sigma_R = \sqrt{\sum_{i=1}^n \sigma_{R_i}^2} = \sqrt{n\sigma_{R_i}^2} = \sqrt{n}\sigma_{R_i}$$

$$V_{R} = \frac{1}{\sqrt{n}} \, V_{R_{i}}$$

Układ równoległy; elementy doskonale ciągliwe nieskorelowane

Jeżeli:

- obciążenie działające na układ q jest sumą efektów obciążeń w elementach q
- efekty obciążeń q. są wielkościami deterministycznymi
- wskaźniki niezawodności poszczególnych elementów β_i są jednakowe:

efekt obciążenia całkowitego:

$$q = \sum_{i=1}^n q_i = nq_i$$

wskaźnik niezawodności i-tego elementu:

$$\beta_i = \frac{\mu_{R_i} - \mu_{Q_i}}{\sqrt{\sigma_{R_i}^2 + \sigma_{Q_i}^2}} = \frac{\mu_{R_i} - q_i}{\sigma_{R_i}}$$

wskaźnik niezawodności układu:

$$\beta = \frac{\mu_R - \mu_Q}{\sqrt{\sigma_R^2 + \sigma_Q^2}} = \frac{\mu_R - q}{\sigma_R} = \frac{n\mu_{R_i} - nq_i}{\sqrt{n}\sigma_{R_i}} = \sqrt{n} \Bigg(\frac{\mu_{R_i} - q_i}{\sigma_{R_i}}\Bigg)$$

$$\beta = \sqrt{n}\beta_i$$

Przykład

Obliczyć prawdopodobieństwo awarii układu równoległego n niezależnych elementów. Prawdopodobieństwo awarii elementu P_{fi}=0,05

$$\beta = \sqrt{n} \beta_i$$

n	β	$P_f = \Phi(-\beta)$
1	1,64	5,000×10 ⁻²
2	2,33	1,000×10 ⁻²
3	2,85	2,193×10 ⁻³
5	3,68	1,175×10 ⁻⁴
10	5,20	9,885×10 ⁻⁸

Układ równoległy jest bardziej niezawodny niż każdy z jego elementów.

W miarę jak rośnie liczba elementów układu, prawdopodobieństwo jego awarii maleje, a wskaźnik niezawodności rośnie.

Układ równoległy; elementy kruche nieskorelowane

Nośność układu R jest sumą nośności poszczególnych elementów R_i.

$$R = \sum_{i=1}^{n} R$$

n – liczba elementów R – nośność układu; losowa R_i – nośność i-tego elementu; losowa

Nośność układu:

$$\begin{split} R = \text{max} \big[\, n \, R_{_{\! 1}} \text{,} \big(n \, - 1 \big) R_{_{\! 2}} \text{,} \big(n \, - 2 \big) R_{_{\! 3}} \text{,} \dots 3 R_{_{\! n \! - \! 2}} \text{,} 2 R_{_{\! n \! - \! 1}} \text{,} R_{_{\! n}} \, \big] \\ \text{gdzie} : \quad R_{_{\! 1}} < R_{_{\! 2}} < R_{_{\! 3}} < \dots < R_{_{\! n}} \end{split}$$

Układy szeregowe i układy równoległe					
Układ:	Korelacja:				
szeregowy	ρ = 0	niezawodność układu < niezawodność elementu			
	ρ = 1	niezawodność układu = niezawodność elementu			
równoległy	ρ = 0	niezawodność układu > niezawodność elementu			
Układ szeregowy Układ równoległy					
nieskorelowany całkowicie skorelowany nieskorelowany niezawodność					
	(niezawodność elementu			
Nie dotyczy sumy nośności elementów kruchych.					

Zadanie

Siły działające na kratownicę są wielkościami deterministycznymi (nie są losowe).

Poszczególne pręty kratownicy wykonano ze stali idealnie ciągliwej, a ich nośności są zmiennymi losowymi o rozkładach normalnych.

Nośności prętów pasów dolnych oraz prętów pasów górnych są ze sobą całkowicie skorelowane, a ich wskaźnik niezawodności $\beta=3$.

Nośności prętów ukośnych są ze sobą i z pozostałymi prętami całkowicie nieskorelowane, a każdy z nich wykonano:

- a) z jednego kształtownika stalowego o β = 3
- b) z dwóch równoległych nieskorelowanych kształtowników stalowych, każdy o β = 3.

Obliczyć prawdopodobieństwo awarii i wskaźnik niezawodności kratownicy.

Zadanie

Linę ze stali idealnie ciągliwej wykonano z n drutów o jednakowych przekrojach, o łącznym polu powierzchni przekroju A=20 cm².

Granica plastyczności stali f jest zmienną losową o rozkładzie normalnym, o parametrach: $\mu_f=400$ MPa, $\sigma_f=40$ MPa.

Siła rozciągająca linę P jest:

- a) wartością deterministyczną,
- P = 500 kN
- b) zmienną losową o rozkładzie normalnym,
- $\mu_P = 500 \text{ kN}, \quad \sigma_P = 75 \text{ kN}.$

Sporządzić wykres zależności między wskaźnikiem β liny a liczbą drutów, n = 1, 2, ... 10.

Zadanie

Nośność pręta na rozciąganie R jest zmienną losową o rozkładzie normalnym, o parametrach: $\mu_R=200$ kN, $\sigma_R=20$ kN

Jak zmienią się te parametry, jeżeli jeden pręt zastąpimy dwoma prętami równoległymi, których nośności $R_{\rm i}$ są niezależnymi zmiennymi losowymi o rozkładach normalnych, o parametrach:

$$\mu_{Ri}$$
 = 100 kN, σ_{Ri} = 10 kN

- i jeżeli wykonano je z materiału:
- a) doskonale ciągliwego
- b) doskonale kruchego.