2. Grupy

Zadania

- 1. Sprawdzić, które z operacji * określają grupę na zbiorze A. Które z tych grup są przemienne?
 - (a) $A = \{a \in \mathbb{R} \mid a \neq 1\}, a * b := a + b ab;$
 - (b) $A = \mathbb{Q}, * = -;$
 - (c) $A = \mathcal{P}(X), * = \cup;$
 - (d) $A = \{a \in \mathbb{R} \mid a > 0, \ a \neq 1\}, \ a * b := a^{\ln b};$
 - (e) $A = \mathcal{P}(X)$, $a * b = (a \setminus b) \cup (b \setminus a)$.
- 2. Niech (G, \cdot) będzie grupą. Pokazać, że
 - (a) w (G, \cdot) istnieje dokładnie jeden element neutralny;
 - (b) dla każdego elementu $a \in G$ istnieje dokładnie jeden element do niego odwrotny;
 - (c) $\forall (a \in G), (a^{-1})^{-1} = a;$
 - (d) $\forall (a, b \in G), (ab)^{-1} = b^{-1}a^{-1}.$
- 3. Podać tabelkę działania grupy $(\{1,-1,i,-i\},\cdot)$ oraz grupy (D_3,\circ) izometrii trójkąta równobocznego.
- 4. Niech n będzie ustaloną liczbą naturalną i niech $Z_n := \{0, 1, \dots, n-1\}$. Określimy w Z_n binarne działanie w następujący sposób:

$$a+_n b := (a+b)_n$$

gdzie $(x)_n$ oznacza resztę z dzielenia liczby x przez n. Pokazać, że $(Z_n, +_n)$ jest grupą. Podać tabelkę działania grup $(Z_2, +_2), (Z_3, +_3)$ i $(Z_4, +_4)$. Która z tych grup jest cykliczna?

- 5. Niech n będzie ustaloną liczbą naturalną i niech $E_n:=\{\cos\frac{2k\pi}{n}+i\sin\frac{2k\pi}{n}\mid k=0,1,\ldots,n-1\}$ będzie zbiorem wszystkich zespolonych pierwiastków stopnia n z 1. Pokazać, że (E_n,\cdot) jest grupą.
- 6. Niech n będzie ustaloną liczbą naturalną i niech $Z_n^\star := \{k \in \mathbb{N} \mid 1 \le k \le n-1, \text{ NWD}(k,n) = 1\}$ będzie zbiorem liczb naturalnych mniejszych od n i względnie pierwszych z n. Określmy w Z_n^\star binarne działanie w następujący sposób:

$$a \cdot_n b := (a \cdot b)_n$$
.

Pokazać, że (Z_n^{\star}, \cdot_n) jest grupą. Podać tabelki działania grup (Z_6^{\star}, \cdot_6) i (Z_8^{\star}, \cdot_8) . Sprawdzić, czy $(\mathbb{Z}_6^{\star}, \cdot)$ jest grupą cykliczną.

- 7. Znaleźć wszystkie podgrupy grupy $(Z_8, +_8)$. Znaleźć wszystkie warstwy grupy $(Z_8, +_8)$ względem jej podgrup.
- 8. Znaleźć wszystkie podgrupy grupy ($\{1,-1,i,-i\},\cdot$). Znaleźć wszystkie warstwy grupy ($\{i,-1,i,-i\},\cdot$) względem jej podgrup.
- 9. Znaleźć wszystkie podgrupy grupy Kleina. Znaleźć wszystkie warstwy grupy Kleina względem jej podgrup.
- 10. Znaleźć wszystkie podgrupy grupy $(\mathbb{Z}, +)$.
- 11. Pokazać, że grupa (G,\cdot) jest przemienna wtedy i tylko wtedy, gdy dla wszystkich $a,b\in G$ zachodzi $(a\cdot b)^2=a^2\cdot b^2$.
- 12. Policzyć rzędy następujących elementów:
 - (a) 60 w grupie $(Z_{64}, +_{64})$,
 - (b) 18 w grupie $(Z_{37}, +_{37})$,
 - (c) 7 w grupie (Z_{17}^*, \cdot_{17}) ;
 - (d) 11 w grupie (Z_{122}^*, \cdot_{122}) .
- 13. Pokazać, że każda grupa rzędu p, gdzie p jest liczbą pierwszą, jest cykliczna.
- 14. Pokazać, że jeśli dana grupa posiada tylko elementy rzędu co najwyżej 2 (tzn. dla każdego elemenu $a \in G$, $a^2 = e$), to jest abelowa.
- 15. * Podać przykład grupy nieskończonej, w której każdy element ma skończony rząd.
- 16. Niech $h:G\to K$ będzie homomorfizmem skończonych grup (G,\cdot) i (K,\cdot) . Pokazać, że dla dowolnego elementu $a\in G$, rząd elementu h(a) jest dzielnikiem rzędu elementu a.
- 17. Niech $h: G \to K$ będzie izomorfizmem grupy (G, \cdot) na grupę (K, \cdot) . Wykazać, że dla każdego $a \in G$ elementy a i h(a) mają równy rząd. Czy grupy $(Z_8, +_8)$ i $(Z_4, +_4) \times (Z_2, +_2)$ są izomorficzne?
- 18. Niech (G,\cdot) i (K,\cdot) będą grupami. Pokazać, że jeżeli $(G,\cdot)\times (K,\cdot)$ jest grupą cykliczną, to grupy (G,\cdot) i (K,\cdot) również muszą być cykliczne.
- 19. Ile jest wszystkich nieizomorficznych grup abelowych rzędu 24? Wymienić wszystkie parami nieizomorficzne niecykliczne grupy abelowe rzędu 24.
- 20. Niech p będzie liczbą pierwszą. Wyznaczyć liczbę nieizomorficznych abelowych grup rzędu p^4 i p^5 . Ile jest nieizomorficznych grup abelowych rzędu 1000?