9. Compilación, carga y depuración de programas

Elena García-Morato, Felipe Ortega

GSyC, ETSIT. URJC.

Laboratorio de Sistemas (LSIS)

8 mayo, 2023

(cc) 2014-2023 Elena García-Morato, Felipe Ortega Algunos derechos reservados. Este trabajo se entrega bajo la licencia Creative Commons Reconocimiento - NoComercial - SinObraDerivada (by-nc-nd). Para obtener la licencia completa, véase https://creativecommons.org/licenses/by-nc-nd/3.0/es/.

Contenidos

9.1 Introducción

9.1 Introducción

9.2 Contenedores

• 9.3 Publicación de aplicaciones

- Algunos sistemas operativos permiten un método de virtualización que consiste en crear múltiples espacios de usuario (donde ejecutan los programas) que funcionan sobre el mismo kernel.
- Cada uno de estos espacios se suele denominar contenedor.
- Es una tecnología que ofrece ventajas similares a las VMs pero con mejor aprovechamiento de los recursos:
 - Tardan milisegundos en arrancar.
 - Solo consumen la memoria que necesita la aplicación o aplicaciones en ejecución. Una VM reserva de forma previa toda la memoria que lleve configurada (se use luego o no).

- Tras 10 años de existencia, Docker se ha convertido en la opción más popular.
- Funciona sobre Linux, aunque también existe un toolbox de herramientas para desarrolladores en Windows y macOS.
 - https://docs.docker.com/desktop/install/windows-install/
- Docker Hub es un repositorio público de imágenes Docker en el que se pueden publicar contenedores pre-configurados.

- Para ejecutar contenedores no es preciso usar un hypervisor.
- Esencialmente, un contenedor es un paquete que contiene la aplicación o aplicaciones a ejecutar más todas las dependencias necesarias (lenguaje, bibliotecas, etc.).
- Al ser un espacio de usuario, see ejecuta directamente en el kernel, de forma aislada (sin ver al resto).

Máquinas Virtuales	Contenedores
Más pesadas	Más ligeras
Varios procesos	Un único proceso
Conexión por ssh (aunque esté en local)	Acceso directo al contenedor
Más seguridad porque están más aisladas del host	Potencialmente menor seguridad porque se ejecutan como procesos en el host

9.2 Contenedores

- Ejecución de contenedores en Linux.
 - Tecnología muy madura.
 - Disponible en cualquier distribución Linux.
- Ejecución de contenedores en Windows.
 - Tecnología mucho más reciente.
 - Disponible en última versión de Windows server o Windows 10 Profresional.
- Cuidado: una imagen Linux solo se puede ejecutar en Windows bajo ciertas restricciones (viceversa no funciona).

- Desarrollo con contenedores
 - En Linux se ejecutan de forma nativa.
 - En Windows y macOS se crea un Linux virtualizado. Dos versiones:
 - Docker Toolbox (basada en VirtualBox).
 - Docker for Windows o Mac: solo válida en versiones muy recientes de estos SS.OO.

15 / 22

8-05-2023

Docker

- Docker engine: permite gestionar imágenes y contenedores.
 - Acceso desde línea de comandos o mediante API REST.
 - Puede gestionar Docker localmente, en VM o en plataforma cloud.
- Docker image: plantilla básica para un contenedor.
 - Normalmente contiene el S.O., bibliotecas o framework básico y la aplicación.
 - Se puede utilizar para ejecutar un contenedor.
 - En Docker Hub hay muchas imágenes disponibles.
- Docker container: se crea partiendo de una imagen. Equivale a una VM. Cuando actualizamos algo dentro del contenedor no se modifica la imagen original, solo el contenedor.

16 / 22

9.3 Publicación de aplicaciones

18 / 22

8-05-2023

- Un contenedor se puede iniciar, parar, mover y borrar.
- Cuando reanuda la ejecución se conservan los cambios (en disco) de la ejecución anterior, pero no se puede pausar y mantener en memoria (como una VM).
- Contenedores para servicios: Puede tener sentido pararlos y reanudar después la ejecución, ya que se usan constantemente.
 - Accesibles en un puerto en IP local o localhost.
- Contenedores para comandos: ejecutan un comando y guardan los resultados en el host.
 Se borran al finalizar la ejecución.
 - Obtienen ficheros del host los procesan y el resultado queda en el propio host.

- Al contrario que las VMs, los contenedores no consumen tanto espacio de almacenamiento porque no se copia la imagen por cada contenedor.
- La imagen se accede directamente (read-only), y las modificaciones o nuevos ficheros se auardan en disco (como cambios respecto al original).
- Docker Registry: es un repositorio de imágenes Docker. Pueden ser públicos o privados.
- Docker Hub es un ejemplo de repositorio público, pero también podemos tener uno privado.

- Tutorial oficial Docker Desktop: https://docs.docker.com/desktop/.
- Otros tutoriales:
 - https://www.adictosaltrabajo.com/tutoriales/docker-for-dummies/
 - Resumen:

https://github.com/wsargent/docker-cheat-sheet/blob/master/README.md

20 / 22

21 / 22

Para saber más

Referencias I

B. Ward. How Linux Works: What Every Superuser Should Know. 3^a ed. No Starch Press, abr. de 2021.

22 / 22