Linear Regression Model (1)

Statistical Research Methods I

Seongsoo Choi (최성수)

This week: Linear Regression Model (1)

- Bivariate linear Regression model
- What is the linear regression model?
- How does it look?
- What is it for? (parameters)
- How could it possible? (assumptions)
- How can we estimate the parameters of the linear regression model?
- Ordinary Least Squares (OLS) estimation
- Statistical inference

What is the linear regression model?

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

- $\cdot y$ and x are two variables, representing some population
- · We are interested in "explaining y in terms of x or in "studying how y varies with changes in x"
 - How hourly wage is related to years of education
 - How *political orientation* is explained by *gender*
 - How *crime rate* varies by *the number of CCTV* across neighborhoods
- $\cdot y$: dependent variable, outcome variable, response variable, etc.
- $\cdot x$: indepedent variable, predictor, explanatory variable, regressor, etc.

What is the linear regression model?

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

- $\dot{}$ The linear regression model is a model in which we describe how y is related to x
- The key assumption of the model is: y and x are linearly related
 - Their relationship is summarized by one parameter, β_1 , which describes their linear relationship (slope in other words)
 - We can easily extend this simple regression model to a multivariate one simply by adding other independent variables ($x_2, x_3,...$) additively
 - Note that the slope, β_1 (or β_k), is a (partial) derivative of y with regard to x (or x_k)

Modeling is like map-making

Two parameters characterizing a linear regression model

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

- eta_1 (a linear slope) and eta_0 (an intercept): how much units of y increases when one unit of x increases
- ε_i : Part of y_i that is not explained by x_i (called *error* or *error term*)
 - The relationship between x and y is not deterministic but probabilistic
- · The linear regression model breaks y_i into two parts:
 - explained by x: $\hat{y}_i = eta_o + eta_1 x_i$
 - unexplained by x: $arepsilon_i = y_i eta_0 eta_1 x_i$

Two parameters characterizing a linear regression model

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

- In the linear regression model, there are two parameters of our interest (what we want to know)
 - 1. the relationship between y and x: β_1 and β_0 (or more simply, β as a vector)
 - 2. how much of y remains unexplained by x: $\sigma_{arepsilon}^2 = Var(arepsilon)$
- Once we know these two parameters, we can reproduce the linear regression model

$y_i = 0.2 + 0.3x_i + \varepsilon_i$

Key assumptions in the linear regression model

- · Linearity: essential model assumption about x and y
- · Zero conditional mean: E(arepsilon) = E(arepsilon|x) = 0
 - We need to make assumptions about the unknown part arepsilon
 - Its mean is zero (so we can get rid of it easily by taking expectation)
 - Its mean conditional on x is zero
 - This is also called *conditional independence*
 - x and ε are independent of each other ($x\perp \varepsilon$)
 - Since $\varepsilon_i=y_i-E(y_i|x)$ by design, this assumption means that x covers all the systematic part of y and the remaining part, ε , is just pure random

Estimation of the parameters

Ordinary Least Squares (OLS) Estimation

- There can be innumerable slopes (that is, β) we can draw, but what is the best one?
- OLS estimator of β (or $\hat{\beta}_{ols}$ or more simply $\hat{\beta}$) is the slope that minimizes the total sum of error terms (in other words, the difference between \hat{y}_i and actual y_i)

$$\min \hat{eta_0}, \hat{eta_1} \sum_{i=1}^N arepsilon_i^2 = \min \hat{eta_0}, \hat{eta_1} \sum_{i=1}^N (y_i - eta_0 - eta_1 x_i)^2$$

Ordinary Least Squares (OLS) Estimation

• The OLS estimators of β_1 and β_0 are

$$\hat{eta_1} = rac{\sum_{i=1}^{N} (x_i - ar{x})(y_i - ar{y})}{\sum_{i=1}^{N} (x_i - ar{x})^2} = rac{Cov(x,y)}{Var(x)} \ \hat{eta_0} = ar{y} - \hat{eta_1}ar{x}$$

· Note that:

$$\hat{eta_1} = rac{Cov(x,y)}{Var(x)} = Corr(x,y) rac{SD(y)}{SD(x)}$$

Ordinary Least Squares (OLS) Estimation

- · The OLS estimator of σ_{ε}^2 : the variance of *residual*
 - Residual: $e_i = y_i \hat{eta_0} \hat{eta_1} x_i = \hat{arepsilon_i}$
 - Residual sum of squares (RSS) is the unbiased estimator of $\sigma_arepsilon^2$

$$RSS = \hat{\sigma}_{arepsilon}^2 = \sum_{i=1}^N e_i^2 = \sum_{i=1}^N (y_i - \hat{eta_0} - \hat{eta_1} x_i)^2$$

Mean square of Error (MSE)

$$\hat{MSE} = rac{RSS}{N-k-1} = rac{RSS}{df}$$

· Stata reports the estimated RMSE ($\sqrt{\hat{MSE}}$)

Stata outcome table

. reg y x

Source	SS	df	MS	Number of obs		30 49.83
Model Residual	2.84623978 1.59938664	1 28	2.84623978 .057120951	R-squared	= = =	0.0000 0.6402 0.6274
Total	4.44562642	29	.153297463	- Adj R-squared Root MSE	=	.239
У	Coef.	Std. Err.	t	P> t [95% (Conf.	Interval]
x _cons	.3017595 .2218985	.0427487 .0446451		0.000 .21419 0.000 .1304		.3893263 .3133499

R-squared as model's goodness of fit statistic

- · R-squared (R^2) shows how much our model explains the variance of the dependent variable y_i
 - This is an intuitive indicator of the estimated error variance, $\hat{\sigma_{arepsilon}^2} = Var(e)$
 - The proportion of the explained sum of squares (ESS or Model SS) out of the total sum of squares (TSS) of y_i
 - in other words, it is the proportion of $Var(\hat{y}_i)$ out of $Var(y_i)$

$$R^2 = rac{ESS}{TSS} = rac{\sum_{i=1}^{N}(\hat{y}_i - ar{y})^2}{\sum_{i=1}^{N}(y_i - ar{y})^2} = 1 - rac{RSS}{TSS}$$

 $\cdot \; R^2$ falls between 0 and 1

R-squared

- · R-squared: the proportion of variance in the dependent variable, y, that is explained by our model (x)
 - e.g., $R^2=0.3$ means that our model (or independent variables) explains 30% of variation in \boldsymbol{y}
- · In social sciences, R^2 is often very low (e.g., $R^2=0.03$)
- ' In a bivariate linear regression, $R^2=(corr(x,y))^2$, but in multivariate regression, they become apart

R-squred

- ' We can also think this way; in $y_i = \hat{eta_0} + \hat{eta_1} x_i + e_i$
 - $ag{Var}(y_i) = \hat{eta_1}^2 Var(x_i) + Var(e_i)$
 - where $\hat{eta_1}^2 Var(x_i)$ captures "between x variation" and $Var(e_i)$ "within x variation"
- This is a basic concept of "Analysis of Variance" (ANOVA) (especially when x is a categorical variable)
 - whether wage inequality lies between education groups or within education groups
 - whether math score gap emerges mainly between boys and girls or within each of them

Two parameter estimates of our interest in the OLS model estimation

- \hat{eta} : explained (model) part; the relationship between y and x
- \cdot R^2 : unexplained part: how much of y remains unexplained (more precisely, 1- R^2); model fit
- \hat{eta} and R^2 are related to different, separate interests
 - e.g., SES gradient in education or educational reproduction?
 - the relationship between educational achievement and parents' SES measure
 - how much of variation in educational achievement is explained by parents' SES measure

$y_i = 0.2 + 0.3x_i + \varepsilon_i$

Stata outcome table

. reg y x

Source	ss	df	MS	Number		s =	30
Model Residual	2.84623978 1.59938664	1 28	2.84623978 .057120951	R-squar	F	= = =	49.83 0.0000 0.6402 0.6274
Total	4.44562642	29	.153297463	Adj R-s Root MS	_	a – =	.239
У	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
x _cons	.3017595 .2218985	.0427487 .0446451		0.000 0.000	.2141 .1304		.3893263 .3133499

Exercise

- Let's think of a linear regression model in which we regress change in math score (y) on change in reading score (x)
- · In other words, we predict change in math score using change in reading score

	Change in math score	Change in reading score
Chris	1	3
Jamal	-2	2
Jieun	3	4
Yingyao	0	6
Sho	3	0

Exercise

	Change in math score	Change in reading score
Chris	1	3
Jamal	-2	2
Jieun	3	4
Yingyao	0	6
Sho	3	0

- · Build a linear regression model
- Estimate all the parameters of the model
- Draw a scatterplot with the fitted line

Statistical Inference of $\hat{\beta}$

Statistical Inference of \hat{eta}

- We want to learn whether our estimate, $\hat{\beta}$ is a chance product or reflects a statistical tendency generalizable to the population
- Two ways (as we learned previously)
 - to construct the CI (e.g., 95%)
 - to use p-value
- For both ways, the key statistic we need is the *standard error (SE)* of $\hat{\beta}$
- Two things we need to be sure about
 - Whether $\hat{\beta}$ has a normal distribution (e.g., Central Limit Theorem)
 - How can we get $SE(\hat{\beta})$

Whether $\hat{\beta}$ has a normal distribution

- 'Yes, we can apply the CLT to \hat{eta}
 - Using jargon, we can say " \hat{eta} is asymptotically normal" (normal when N is large enough, e.g., N>30)
 - $\hat{eta} \sim N(eta, Var(\hat{eta}))$ where $Var(\hat{eta}) = SE(\hat{eta})^2$
- How can we get $SE(\hat{\beta})$? Under the assumption of homoskedasticity,

$$\hat{m Var}(\hat{meta}) \equiv \hat{SE}(\hat{meta})^2 = rac{Var(e)}{\sum_{i=1}^N (x_i - ar{x})^2}$$

where
$$Var(e)=rac{\sum_{i=1}^N e_i^2}{(N-k-1)}=rac{RSS}{(N-k-1)}$$
 , So $\hat{SE}(\hat{eta})=\sqrt{rac{Var(e)}{\sum_{i=1}^N (x_i-ar{x})^2}}$

. Note that $\hat{SE(\hat{\beta})}$ decreases as N increases

Homoskedasticity and heteroskedasticity

・ The assumption of homoskedasticity (등분산성) affects our estimate of Var(e) and $\hat{SE(\hat{\beta})}$ (but not $\hat{\beta}$)

Homoskedasticity and heteroskedasticity

- The default setting for STATA is to assume homoskedasticity but easily can relax it
- The rule of thumb suggested by Angrist and Pischke (2009) is to choose the conservative one:
 - A larger $\hat{SE(\beta)}$ between the one under the homoskedasticity assumption and the one without assuming it

Homoskedasticity

. reg y x

Source	ss	df	MS	Number of obs	=	30
Model Residual Total	2.84623978 1.59938664 4.44562642	1 28 29	2.84623978 .057120951 .153297463	R-squared Adj R-squared	= = = =	49.83 0.0000 0.6402 0.6274 .239
У	Coef.	Std. Err.	t	P> t [95% C	onf.	Interval]
x _cons	.3017595 .2218985	.0427487 .0446451		0.000 .21419 0.000 .13044		.3893263 .3133499

Heteroskedasticity

```
reg y x, vce(robust)
```

Linear regression

Number of obs = 30 F(1, 28) = 74.20 Prob > F = 0.0000 R-squared = 0.6402 Root MSE = .239

У	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
x _cons	.3017595 .2218985	.0350314	8.61 5.11	0.000	.2300011 .1329963	.373518 .3108007

Statistical inference: using p-value

- Once we get $\hat{SE(\hat{\beta})}$, next steps are quite straightforward:
 - Compute the test statistic (t or z-statistic):

$$z=rac{\hat{eta}-eta}{\hat{SE}(\hat{eta})}$$

- The true β is set based on our hypothesis:
 - Usually, $H_0: \beta=0$ (No relationship between x and y; when x increases by one unit, we find no statistical evidence that y also changes systematically)
 - In that case, $z=\frac{\hat{\beta}}{SE(\hat{\beta})}$, and go to the z(or t) table to get the p-value that correponds to the z value

Confidence intervals

- $\hat{eta} \pm 1.96 imes \hat{SE(eta)}$ for 95% CI
 - If we conduct the same analysis repeatedly with different samples that are randomly sampled in the exactly same way from our population many times,
 - the true β will fall into this CI with a 95% of probability
 - or our CI will miss the true β with a 5 in 100 chance
- $\hat{eta} \pm 2.58 imes \hat{SE(eta)}$ for 99% CI

Regression result table

. reg y x

Source	ss	df	MS	Number of obs		30
Model Residual	2.84623978 1.59938664	1 28	2.84623978 .057120951	R-squared	= =	49.83 0.0000 0.6402 0.6274
Total	4.44562642	29	.153297463	Adj R-squared Root MSE	=	.239
У	Coef.	Std. Err.	t	P> t [95% C	onf.	Interval]
x _cons	.3017595 .2218985	.0427487 .0446451		0.000 .21419 0.000 .13044		.3893263 .3133499

Exercise

	Change in math score	Change in reading score
Chris	1	3
Jamal	-2	2
Jieun	3	4
Yingyao	0	6
Sho	3	0

- ' Under homoskedasticity, get the standard error of \hat{eta} , t , and p-value
- · Report 95% CI
- What can we say about the statistical inference of our estimate $\hat{\beta}$?

Several important cautions about statistical significance

- · Statistical significance is not practical (or substantive) significance
 - Any small differences can be statistically significant if N is very large
 - Statistical significance doesn't guarantee practical significance of a finding
- ' Statistically insignificant \hat{eta} doesn't mean no relationship between x and y
 - It just tells us that we can't be certain enough about the presence of a systematic relationship between \boldsymbol{x} and \boldsymbol{y}
 - Statistical significance (p-value) is a continuous measure, not a all-ornothing measure ("The difference between statistical significance and insignificance is statistically insignificant")

Useful Stata commands

- regress y x
- predict
 - without an option: it generates a new variable for the predicted value

-
$$\hat{y}_i = \hat{eta} x_i$$

- with the option (, residual): it generate a new variable for the residual

-
$$y_i - \hat{y}_i = y_i - \hat{eta} x_i = e_i$$

Next

- · Let's extend the bivariate linear regression model to the multivariate one
- How can we link our theory to a linear regression model?
 - Modeling strategy: building nesting and nested models
 - Confounders and mediators
- How can we incorporate categorical independent variables? (answer: dummy variables)
- · How can we incorporate nonlinear relationships between x and y?
- How can we incorporate interactions between two independent variables?