

Skolemizarea este o procedură prin care se elimină cuantificatorii existențiali din formule de ordinul întâi în formă normală prenex, prin introducerea de noi simboluri de funcții/constante, numite simboluri de funcții/constante Skolem.

Fie $\mathcal L$ un limbaj de ordinul întâi și φ un enunț al lui $\mathcal L$ care este în formă normală prenex:

$$\varphi = Q_1 x_1 Q_2 x_2 \dots Q_n x_n \theta,$$

unde $n \in \mathbb{N}$, $Q_1, \ldots, Q_n \in \{\forall, \exists\}$, x_1, \ldots, x_n sunt variabile distincte două câte două și θ este formulă liberă de cuantificatori.

Asociem lui φ un enunț universal φ^{Sk} într-un limbaj extins $\mathcal{L}^{Sk}(\varphi)$: Dacă φ este liberă de cuantificatori sau universală, atunci $\varphi^{Sk}=\varphi$ și $\mathcal{L}^{Sk}(\varphi)=\mathcal{L}$.

Altfel, φ are una din formele:

- $\varphi = \exists x \, \psi$. Introducem un nou simbol de constantă c și considerăm $\varphi^1 = \psi_x(c)$, $\mathcal{L}^1 = \mathcal{L} \cup \{c\}$.
- $\varphi = \forall x_1 \dots \forall x_k \exists x \, \psi \ (k \ge 1)$. Introducem un nou simbol de funcție f de aritate k și considerăm $\varphi^1 = \forall x_1 \dots \forall x_k \, \psi_x (fx_1 \dots x_k), \, \mathcal{L}^1 = \mathcal{L} \cup \{f\}.$

În ambele cazuri, φ^1 are cu un cuantificator existențial mai puțin decât φ .

Dacă φ^1 este liberă de cuantificatori sau universală, atunci $\varphi^{Sk}=\varphi^1$. Dacă φ^1 nu este universală, atunci formăm $\varphi^2,\varphi^3,\ldots$, până ajungem la o formulă universală și aceasta este φ^{Sk} .

 φ^{Sk} este o formă normală Skolem a lui φ .

Forma normală Skolem

Exemple

- Fie θ o formulă liberă de cuantificatori a.î. $FV(\theta) = \{x\}$ și $\varphi = \exists x \, \theta$. Atunci $\varphi^1 = \theta_x(c)$, unde c este un nou simbol de constantă. Deoarece φ^1 este un enunț liber de cuantificatori, rezultă că $\varphi^{Sk} = \varphi^1 = \theta_x(c)$.
- Fie R un simbol de relație de aritate 3 și $\varphi = \exists x \forall y \forall z \ R(x,y,z)$. Atunci $\varphi^1 = \forall y \forall z \ (R(x,y,z))_x(c) = \forall y \forall z \ R(c,y,z)$, unde c este un nou simbol de constantă. Deoarece φ^1 este un enunț universal, rezultă că $\varphi^{Sk} = \varphi^1 = \forall y \forall z \ P(c,y,z)$.
- Fie P un simbol de relație de aritate 2 și $\varphi = \forall y \exists z \, P(y,z)$. Atunci $\varphi^1 = \forall y \, (P(y,z))_z(f(y)) = \forall y \, P(y,f(y))$, unde f este un simbol nou de funcție unară. Deoarece φ^1 este un enunț universal, rezultă că $\varphi^{Sk} = \varphi^1 = \forall y \, P(y,f(y))$.

Forma normală Skolem

Exemplu

Fie $\mathcal L$ un limbaj care conține un simbol de relație binară R și un simbol de funcție unară f. Fie

$$\varphi := \forall y \exists z \forall u \exists v (R(y, z) \land f(u) = v).$$

$$\varphi^{1} = \forall y \forall u \exists v (R(y,z) \land f(u) = v)_{z}(g(y))$$

=
$$\forall y \forall u \exists v (R(y,g(y)) \land f(u) = v),$$

unde g este un nou simbol de funcție unară

$$\varphi^2 = \forall y \forall u (R(y, g(y)) \land f(u) = v)_{v} (h(y, u))$$

 $= \forall y \forall u (R(y,g(y)) \land f(u) = h(y,u)),$

unde *h* este un nou simbol de funcție binară.

Deoarece φ^2 este un enunț universal, rezultă că $\varphi^{Sk} = \varphi^2 = \forall y \forall u (R(y, g(y)) \land f(u) = h(y, u)).$

Teorema 2.43 (Teorema de formă normală Skolem)

Fie φ un enunț în formă normală prenex.

- (i) $\vDash \varphi^{Sk} \to \varphi$, deci $\varphi^{Sk} \vDash \varphi$ în $\mathcal{L}^{Sk}(\varphi)$.
- (ii) φ este satisfiabilă ddacă φ^{Sk} este satisfiabilă.

Dem.:

- (i) Se aplică faptul că $\vDash \varphi_x(t) \to \exists x \varphi, \vDash \varphi$ implică $\vDash \forall x \varphi$ și $\vDash \forall x (\varphi \to \psi) \to (\forall x \varphi \to \forall x \psi)$ pentru a conclude că $\vDash \varphi^1 \to \varphi, \vDash \varphi^2 \to \varphi^1$, etc..
- (ii) "←" Se aplică (i). "⇒" Exercițiu suplimentar.

Forma normală Skolem

Observație

În general, φ și φ^{sk} nu sunt logic echivalente ca enunțuri în $\mathcal{L}^{Sk}(\varphi)$.

Dem.: Fie $\mathcal{L}=(R)$, unde R este simbol de relație binară și $\varphi=\forall v_1\exists v_2R(v_1,v_2)$. Atunci $\varphi^{Sk}=\forall v_1R(v_1,f(v_1))$ (unde f este un nou simbol de funcție unară) și $\mathcal{L}^{Sk}(\varphi)=(f,R)$. Fie $\mathcal{L}^{Sk}(\varphi)$ -structura $\mathcal{A}=(\mathbb{Z},<,f^{\mathcal{A}})$, unde $f^{\mathcal{A}}(n)=n-1$ pentru orice $n\in\mathbb{Z}$. Atunci $\mathcal{A}\models\varphi$, deoarece pentru orice număr întreg m există un număr întreg n a.î. m< n. Pe de altă parte, $\mathcal{A}\not\models\varphi^{Sk}$, deoarece pentru orice $n\in\mathbb{Z}$, avem că $n>f^{\mathcal{A}}(n)=n-1$.

Mulțimi de enunțuri

Fie φ enunț al lui $\mathcal L$ și Γ o mulțime de enunțuri.

Definiția 2.44

Spunem că Γ este satisfiabilă dacă există o \mathcal{L} -structură \mathcal{A} a.î.

 $A \vDash \gamma$ pentru orice $\gamma \in \Gamma$.

Spunem și că A este un model al lui Γ . Notație: $A \models \Gamma$

Definitia 2.45

Spunem că φ este consecință semantică a lui Γ dacă pentru orice \mathcal{L} -structură \mathcal{A} ,

$$\mathcal{A} \models \Gamma \implies \mathcal{A} \models \varphi$$
.

Notație: $\Gamma \models \varphi$

Mulțimi de enunțuri

Notație: Pentru orice mulțime de enunțuri Γ, notăm

Mod(Γ):= clasa modelelor lui Γ.

Notăm $Mod(\varphi_1, \ldots, \varphi_n)$ în loc de $Mod(\{\varphi_1, \ldots, \varphi_n\})$.

Lema 2.46

Pentru orice mulțimi de enunțuri Γ, Δ și orice enunț ψ ,

- (i) $\Gamma \vDash \psi \iff Mod(\Gamma) \subseteq Mod(\psi)$.
- (ii) $\Gamma \subseteq \Delta \implies Mod(\Delta) \subseteq Mod(\Gamma)$.
- (iii) Γ este satisfiabil $\check{a} \iff Mod(\Gamma) \neq \emptyset$.

Dem.: Exercițiu ușor.

Definiția 2.47

O \mathcal{L} -teorie este o mulțime T de enunțuri ale lui \mathcal{L} care este închisă la consecința semantică, adică:

pentru orice enunț
$$\varphi$$
, $T \models \varphi \implies \varphi \in T$.

Definiția 2.48

Pentru orice mulțime de enunțuri Γ , teoria generată de Γ este mulțimea

$$Th(\Gamma) := \{ \varphi \mid \varphi \text{ este enunt } \text{$\vec{\varphi}$} \mid \Gamma \vDash \varphi \}$$
$$= \{ \varphi \mid \varphi \text{ este enunt } \text{$\vec{\varphi}$} \mid Mod(\Gamma) \subseteq Mod(\varphi) \}.$$

Propoziția 2.49

- (i) $Mod(\Gamma) = Mod(Th(\Gamma))$.
- (ii) $Th(\Gamma)$ este cea mai mică teorie T a.î. $\Gamma \subseteq T$.

Dem.: Exercițiu.

- O teorie prezentată ca $Th(\Gamma)$ se numește teorie axiomatică sau teorie prezentată axiomatic. Γ se numește mulțime de axiome pentru $Th(\Gamma)$.
- Orice teorie poate fi prezentată axiomatic, dar suntem interesați de mulțimi de axiome care satisfac anumite condiții.

Teorii

Definiția 2.50

O teorie T este finit axiomatizabilă dacă $T = Th(\Gamma)$ pentru o mulțime de enunțuri finită Γ .

Definiția 2.51

O clasă K de L-structuri este axiomatizabilă dacă $K = Mod(\Gamma)$ pentru o mulțime de enunțuri Γ . Spunem și că Γ axiomatizează K.

Definiția 2.52

O clasă K de L-structuri este finit axiomatizabilă dacă $K = Mod(\Gamma)$ pentru o mulțime finită de enunțuri Γ .

Exemple - Teoria grafurilor

Un graf este o pereche G = (V, E) de mulțimi a.î. E este o mulțime de submulțimi cu 2 elemente ale lui V. Elementele lui V se numesc vârfuri, iar elementele lui E se numesc muchii.

- $ightharpoonup \mathcal{L}_{Graf} = (\dot{E}, \emptyset, \emptyset) = (\dot{E})$
- $ightharpoonup \mathcal{L}_{Graf}$ -structurile sunt $\mathcal{A}=(A,E)$, unde E este relație binară.

Fie
$$\Gamma := \{(IREFL), (SIM)\}$$
, unde

$$(IREFL) := \forall x \neg \dot{E}(x, x)$$

$$(SIM) := \forall x \forall y (\dot{E}(x, y) \rightarrow \dot{E}(y, x)).$$

Definiție

Teoria grafurilor este $T := Th(\Gamma)$.

- T este finit axiomatizabilă.
- ► modelele lui *T* sunt grafurile.
- Γ axiomatizează clasa grafurilor. Prin urmare, clasa grafurilor este finit axiomatizabilă.

Exemple - Teoria ordinii parțiale

- $ightharpoonup \mathcal{L}_{\dot{<}}$ -structurile sunt $\mathcal{A}=(A,\leq)$, unde \leq este relație binară.

Fie
$$\Gamma := \{(REFL), (ANTISIM), (TRANZ)\}, \text{ unde}$$

$$(REFL) := \forall x (x \leq x)$$

$$(ANTISIM) := \forall x \forall y (x \leq y \land y \leq x \rightarrow x = y)$$

$$(TRANZ) := \forall x \forall y \forall z (x \leq y \land y \leq z \rightarrow x \leq z)$$

Definiție

Teoria ordinii parțiale este $T := Th(\Gamma)$.

- T este finit axiomatizabilă.
- ▶ modelele lui T sunt mulțimile parțial ordonate.
- Γ axiomatizează clasa mulţimilor parţial ordonate. Prin urmare, clasa mulţimilor parţial ordonate este finit axiomatizabilă.

Exemple - Teoria ordinii totale

Fie
$$\Gamma := \{(ANTISIM), (TRANZ), (TOTAL)\}, \text{ unde}$$

$$(TOTAL) := \forall x \forall y (x \leq y \lor y \leq x)$$

Definiție

Teoria ordinii totale este $T := Th(\Gamma)$.

- T este finit axiomatizabilă.
- modelele lui T sunt mulțimile total ordonate.
- Γ axiomatizează clasa mulțimilor total ordonate. Prin urmare, clasa multimilor total ordonate este finit axiomatizabilă.

Exemple - Teoria ordinii stricte

- $ightharpoonup \mathcal{L}_{\stackrel{.}{<}}$ -structurile sunt $\mathcal{A}=(A,<)$, unde < este relație binară.

Fie
$$\Gamma := \{(IREFL), (TRANZ)\}$$
, unde
$$(IREFL) := \forall x \neg (x \dot{<} x)$$
$$(TRANZ) := \forall x \forall y \forall z (x \dot{<} y \land y \dot{<} z \rightarrow x \dot{<} z)$$

Definiție

Teoria ordinii stricte este $T := Th(\Gamma)$.

- ▶ T este finit axiomatizabilă.
- modelele lui T sunt mulțimile strict ordonate.
- Γ axiomatizează clasa mulțimilor strict ordonate. Prin urmare, clasa mulțimilor strict ordonate este finit axiomatizabilă.

Exemple - Teoria ordinii dense

Fie
$$\Gamma := \{(IREFL), (TRANZ), (TOTAL), (DENS)\}, \text{ unde}$$

$$(TOTAL) := \forall x \forall y (x = y \lor x \dot{<} y \lor y \dot{<} x)$$

$$(DENS) := \forall x \forall y (x \dot{<} y \to \exists z (x \dot{<} z \land z \dot{<} y)).$$

Definiție

Teoria ordinii dense este $T := Th(\Gamma)$.

- T este finit axiomatizabilă.
- modelele lui T sunt mulțimile dens ordonate.
- Γ axiomatizează clasa mulțimilor dens ordonate. Prin urmare, clasa mulțimilor dens ordonate este finit axiomatizabilă.

Exemple - Teoria relațiilor de echivalență

- $ightharpoonup \mathcal{L}_{\stackrel{.}{\equiv}} = (\stackrel{.}{\equiv}, \emptyset, \emptyset) = (\stackrel{.}{\equiv})$
- $ightharpoonup \mathcal{L}_{\stackrel{.}{=}}$ -structurile sunt $\mathcal{A}=(A,\equiv)$, unde \equiv este relație binară.

Fie $\Gamma := \{(\textit{REFL}), (\textit{SIM}), (\textit{TRANZ})\}$, unde

$$(REFL) := \forall x(x \stackrel{.}{\equiv} x)$$

$$(SIM) := \forall x \forall y (x = y \rightarrow y = x)$$

$$(TRANZ) := \forall x \forall y \forall z (x \stackrel{.}{=} y \land y \stackrel{.}{=} z \rightarrow x \stackrel{.}{=} z)$$

Definiție

Teoria relațiilor de echivalență este $T := Th(\Gamma)$.

- T este finit axiomatizabilă.
- Fie \mathcal{K} clasa structurilor (A, \equiv) , unde \equiv este relație de echivalență pe A.
- $\mathcal{K} = Mod(\Gamma)$, așadar Γ axiomatizează \mathcal{K} . Prin urmare, \mathcal{K} este finit axiomatizabilă.

Exemple - Teoria relațiilor de echivalență

• Dacă adăugăm axioma:

$$\forall x \exists y (\neg (x = y) \land x \stackrel{.}{=} y \land \forall z (z \stackrel{.}{=} x \rightarrow (z = x \lor z = y))),$$

obținem teoria relațiilor de echivalență cu proprietatea că orice clasă de echivalență are exact două elemente.

70

Exemple - Teoria egalității

Pentru orice $n \ge 2$, notăm următorul enunț cu $\exists \ge n$:

$$\exists x_1 \dots \exists x_n (\neg (x_1 = x_2) \land \neg (x_1 = x_3) \land \dots \land \neg (x_{n-1} = x_n)),$$

pe care îl scriem mai compact astfel:

$$\exists^{\geq n} = \exists x_1 \dots \exists x_n \left(\bigwedge_{1 \leq i < j \leq n} \neg (x_i = x_j) \right).$$

Propozitia 2.53

Pentru orice \mathcal{L} -structură \mathcal{A} și orice $n \geq 1$,

$$A \vDash \exists^{\geq n} \iff A \text{ are cel puţin } n \text{ elemente.}$$

Dem.: Exercițiu ușor.

Exemple - Teoria egalității

Notații

- ▶ Pentru uniformitate, notăm $\exists^{\geq 1} := \exists x(x = x)$.
- ightharpoonup $\exists \leq^n := \neg \exists \geq^{n+1}$
- $ightharpoonup \exists^{=n} := \exists^{\leq n} \wedge \exists^{\geq n}$

Propoziția 2.54

Pentru orice \mathcal{L} -structură \mathcal{A} și orice $n \geq 1$,

$$A \models \exists^{\leq n} \iff A \text{ are cel mult } n \text{ elemente}$$

 $A \models \exists^{=n} \iff A \text{ are exact } n \text{ elemente}.$

Dem.: Exercițiu ușor.

Propoziția 2.55

Fie $T := Th(\{\exists^{\geq n} \mid n \geq 1\})$. Atunci pentru orice \mathcal{L} -structură \mathcal{A} , $\mathcal{A} \models T \iff A$ este multime infinită.

Dem.: Exercitiu usor.