DSCI 542: Lab3 Question4

Block 3 Group 15

2025-01-26

Talk outline + Slide submission

rubric: {presentations + outline rubric = 10+3}

Talk Outline

Importance of Diabetic Study [Inder]

- Widespread Condition:
 - Discuss the increasing rates of both type 1 and type 2 diabetes
 - Chronic nature of diabetes can have lifelong impact on individuals and societies.
- Identifying Predictors for Preventive Measures:
 - Importance of early diagnosis and understanding risk factors.
 - Can reduce Healthcare Costs and Improving Quality of Life

Previous Research [Inder]

- Neural Networks:
 - Strengths: ability to capture complex relationships in data
 - Limitations: model interpretability & the need for large datasets.
- Logistic Regression:
 - Strength: Simplicity, efficiency, and good performance
 - Limitation: Outliers in data effect model
- Random Forest:
 - Strengths: Good at dealing with missing data, and less prone to overfitting
 - Limitations: Less interpretability, overly complex model

What makes our study different [Inder]

- Explain the importance of data validation techniques, ensuring robust and reliable results.
- Discuss strategies for handling class imbalance
- Use Logistic Regression to interpret coefficients

Reason of Choosing Logistic Regression [Inder]

- Study designed to predict if patient is diabetic or not which is Binary Classification
- Coefficients tell you the strength and direction of each feature's impact on the outcome
 - (e.g., which factors increase or decrease the likelihood of diabetes)
- Probabilities provide richer information, such as a probability score that quantifies the likelihood of an individual having diabetes

Dataset - Scope

- Dataset origin (National Institute of Diabetes and Digestive and Kidney Diseases)
- Patient demographics (768 female patients, Pima Indian heritage)
- Goal: Predict diabetes
- Data source: Kaggle

Dataset - Feature Descriptions

• Table of dataset features (Pregnancies, Glucose, Blood Pressure, etc.)

Dataset - Class Imbalance

- Explanation of imbalance (500 non-diabetic, 268 diabetic)
- Visualization of class distribution (bar chart)
- Challenges & strategies to address imbalance

Validation - Pandera [Inder]

- Need to validate dataset to get rid of outliers
 - Features had values that were not medically possible i.e. (Gluvose being 0)
- Previous study using Logistic Regression failed to do this
 - should increase the accuracy for our model
- Justification of values chosen for each feature

Validation - Deepchecks [Inder]

- Looking at correlation table see that Age & Pregnancy have Pearon correlation score of 0.56
 - Close to Multicollinearity threshold of 0.7
 - Multicollinearity can lead to unstable model coefficients, overfitting, and reduced interpretability
 - Explain how to use Deepchecks to confirm that feature do not pass correlation threshold

Analysis Methodology [Jenny]

- Data Split:
 - 70\% for training, 30\% for testing to evaluate model performance.
 - Ensures robust training while testing model generalization.

• Features:

 Structured numeric data with no missing values—ensuring the dataset is clean and ready for modeling.

• Preprocessing:

- Standardization applied to all features for consistent scale.
- Ensures stable model performance and easy interpretation of coefficients.

Analysis Methodology (cont'd) [Jenny]

- Evaluation Metric:
 - Accuracy used to measure model performance.
 - Provides a straightforward metric to assess how well the model predicts diabetes.

• Baseline Model:

- DummyClassifier serves as the baseline, providing a simple comparison.

• Logistic Regression:

- Chosen for its ability to handle classification tasks effectively.
- Its coefficients help identify the importance of each feature, offering insight into how each variable influences the model's predictions.
- Provides probability-based predictions for interpretability.

Analysis - Reproducible Data Pipeline

- How a reproducible data pipeline was built
- Custom functions for data preprocessing, feature selection, training, and evaluation
- Outputs stored as tables, plots, models (pickle)
- Dynamic parameter tuning and modular workflow

Analysis - Modular Function Design

- Automation & Interdependency of functions
- Code snippet: Saving models with pickle
- Ensuring traceability and reproducibility
- Hyperparameter Tuning:
 - RandomizedSearchCV used to optimize C (model complexity).
 - The range of ${\tt C}$ spans from 10^{-5} to 10^5 to find the best balance between regularization and data fitting.

Results - Feature Importance [Jenny]

- Feature Importance via Coefficients:
 - Coefficients represent the influence of each feature on the model's predictions.
 - Glucose is the strongest positive influence (0.724), followed by BMI (0.389).
 - Pregnancies, Age, and DiabetesPedigreeFunction also contribute but with smaller effects.
 - SkinThickness has a negative influence (-0.007), indicating minimal impact.

Results - Model Evaluation [Jenny]

• Baseline Model:

- Accuracy of **DummyClassifier**: 0.672, providing a reference for comparison.

• Logistic Regression Performance:

- Training accuracy: **0.743** (cross-validation mean).
- Test accuracy: **0.750** indicating reasonable model generalization.
- The accuracy is solid but leaves room for improvements, especially considering clinical applications.

Results - Confusion Matrix [Jenny]

• Misclassifications:

- Out of 217 total test cases, 54 misclassifications.
- 41 false negatives: Diabetic cases predicted as non-diabetic—critical in clinical settings.
- 13 false positives: Non-diabetic cases predicted as diabetic—less critical but still a concern.
- In a clinical context, reducing false negatives is crucial for patient safety and intervention.

Results - PR and ROC Curve [Jenny]

• Precision-Recall Curve:

- Evaluates the trade-off between true positives and false positives at various thresholds
- No optimal threshold observed that balances both high precision and recall.

• ROC Curve:

- Shows the model's true positive rate vs. false positive rate.
- Similarly, no optimal threshold observed that balances both high true positive and low false positive rates.
- Further model adjustments may be needed to improve performance across all thresholds.

Results - Clinical Utility [Jenny]

• Visualization of Predicted Probabilities:

- Helps clinicians understand the model's confidence in its predictions.
- If probability is not high enough, additional tests may be considered.
- This visualization aids in clinical decision-making, highlighting both correct predictions and false negatives.

Results - Clinical Utility [Jenny]

• Visualization of Predicted Probabilities:

- Helps clinicians understand the model's confidence in its predictions.
- If probability is not high enough, additional tests may be considered.
- This visualization aids in clinical decision-making, highlighting both correct predictions and false negatives.

Discussion - Model Performance [Jessica]

- Clinical Relevance:
 - Model demonstrates potential as an initial screening tool for diabetes detection, especially given its improvement over the baseline.
 - Offers data-driven support for identifying at-risk individuals.
- Enhancement Approaches:
 - Examine 54 misclassified observations and compare with correctly classified examples to identify feature contributions.
 - Example: Combine related features or create new derived metrics (e.g., BMI adjusted for age).

Discussion - Enhancement Opportunities [Jessica]

- Explore feature engineering to improve model predictions.
- Experiment with alternative classifiers:
 - Random Forest: Accounts for feature interactions automatically.
 - k-Nearest Neighbours (k-NN): Offers interpretable and decent predictions.
 - Support Vector Classifier (SVC): Enables non-linear prediction using rbf kernel.

Limitations & Future Directions [Jessica]

- Dataset Limitations: Focuses solely on Pima Indian women aged 21 and older, limiting generalizability.
- Future Data Exploration:
 - Collaborate with data collectors for additional, useable information.
 - Combine with external datasets:
 - * Broaden demographic coverage (age, gender, ethnicity)
 - * Enable comprehensive insights and greater applicability.
 - * Broaden demographic representation (diverse age groups, genders, and ethnicities).

Conclusion - Key Findings [Jessica]

- Logistic regression effectively predicts diabetes among Pima Indian women using features like glucose, BMI, and pregnancies.
- Achieved 0.750 accuracy on the test set, outperforming baseline Dummy Classifier's 0.672.
- Key predictors: Glucose (most influential) BMI, pregnancies.
- Challenges: 54 misclassifications (41 false negatives) present risks of undiagnosed cases, underscoring areas for refinement.

Conclusion - Clinical Implications [Jessica]

- Clinical Potential:
 - Logistic regression shows promise as an initial screening tool for early diabetes detection.
 - Provides a data-driven approach to improve outcomes and reduce complications.

Conclusion - Recommendations [Jessica]

- Recommendations for Improvement:
 - Model Improvement:
 - * Refine predictors through feature engineering and additional data exploration.
 - * Experiment with alternative machine learning models for better performance.
 - Expand Dataset:
 - * Incorporate additional data sources, such as lifestyle or genetic information, to improve accuracy and generalizability.
 - Decision-Making Aid:

8

 $\ast\,$ Include probability estimates to support clinicians in identifying high-risk cases

requiring further diagnostics.