CLAIM AMENDMENTS

Please amend the claims as indicated:

1	1. (currently amended) A computer system comprising In a computer system
2	that includes:
3	at least one hardware processor; <u>and</u>
4	a first operating system (COS) initially installed to run on the hardware processor
5	at a most-privileged, system level, the system level being defined as an operational
6	state with permission to directly access predetermined physical resources of the
7	computer,
8	a method comprising:
9	initializing the computer with the COS;
10	the COS forming means for initializing the computer;
11	a kernel that forms a second operating system;
12	loading means for loading the kernel via the COS, loading and for starting
13	execution of the <u>a</u> kernel, the kernel thereupon substantially displacing the COS from
14	the system level and itself running at the system level; and
15	the kernel forming means for handling requests for system resources via the
16	kernel, including scheduling execution of the COS on the hardware processor(s).
1	2. (original) A method as in claim 1, in which the step of loading the kernel
2	comprises:
3	loading a load call module within the COS;
4	upon initialization of the computer, calling a loading module from the load call
5	module, whereupon the loading module loads the kernel.
1	3. (original) A method as defined in claim 2, in which the step of loading the
2	load call module within the COS comprises installing the load call module as a driver
3	within the COS.

1	4. (currently amended) In a computer system that includes:
2	at least one hardware processor that has a hardware instruction pointer; and
3	a first operating system (COS) initially installed to run on the hardware processor
4	at a most-privileged, system level, the system level being defined as an operational
5	state with permission to directly access predetermined physical resources of the
6	computer;
7	a method comprising:
8	initializing the computer with the COS;
9	loading a load call module within the COS;
10	upon initialization of the computer, calling a loading module from the load call
11	module, whereupon the loading module loads a kernel, which forms a second operating
12	system;
13	via the COS starting execution of the kernel, the kernel thereupon substantially
14	displacing the COS from the system level and itself running at the system level;
15	A method as in claim 2, in which the computer includes at least one processor,
16	which has a hardware instruction pointer, and the step of loading the kernel including
17	the following sub-steps:
18	via the loading module, setting the hardware instruction pointer and forwarding of
19	interrupts and faults generated by the processor and by predetermined ones of the
20	system resources to point into a memory address space allocated to and controlled by
21	the kernel, the kernel thereby handling requests for system resources.
1	5. (original) A method as in claim 4, further including the following steps:
2	after initialization of the computer, transferring from the COS to the kernel a list
3	of devices initially controlled by the COS, the devices being included among the system
4	resources; and
5	classifying the devices and control of the devices into the following groups (which
6	may be empty):
7	host-managed devices, which are controlled by the COS;
8	reserved devices, which are controlled by the kernel;
9	and shared devices, which may be controlled by either the COS or the
10	kernel.

Art Unit 2126

- 6. (original) A method as defined in claim 5, further comprising including a mass storage controller as one of the shared devices.
- 7. (original) A method as defined in claim 6, in which the mass storage controller is a SCSI device.
- 8. (original) A method as defined in claim 5, further comprising including a network adapter as one of the shared devices.
- 9. (original) A method as defined in claim 5, further comprising the steps of forwarding interrupts generated by host-managed devices to the COS via the kernel, and handling such interrupts within the COS.
- 10. (original) A method as defined in claim 9, further including the step of delaying handling of interrupts that are forwarded to the COS and that are generated by host-managed devices until a subsequent instance of running of the COS.
 - 11. (original) A method as defined in claim 10, further including the step, upon sensing, in the kernel, an interrupt raised by any host-managed device, of masking the interrupt until the subsequent instance of running of the COS, thereby avoiding multiple recurrences of the interrupt.
- 12. (original) A method as defined in claim 1, further including the step of installing at least one virtual machine (VM) to run on the kernel via a virtual machine monitor (VMM).

1	13. (currently amended) <u>In a computer system that includes:</u>
2	at least one hardware processor;
3	a first operating system (COS) initially installed to run on the hardware processor
4	at a most-privileged, system level, the system level being defined as an operational
5	state with permission to directly access predetermined physical resources of the
6	computer;
7	a method comprising:
8	initializing the computer with the COS;
9	via the COS, loading and starting execution of a kernel, which forms a second
10	operating system, the kernel thereupon substantially displacing the COS from the
11	system level and itself running at the system level, the kernel thereby handling requests
12	for system resources;
13	A method as defined in claim 12, further including the following steps:
14	installing at least one virtual machine (VM) to run on the kernel via a virtual
15	machine monitor (VMM);
16	in the kernel, separately scheduling the execution of the COS and of each VM,
17	the COS and the VM's VMs thereby forming separately schedulable and separately
18	executing entities; and
19	within the kernel, representing each schedulable entity as a corresponding world
20	each world comprising a world memory region with a respective world address space
21	and storing a respective world control thread.
1	14. (original) A method as defined in claim 13, further including the step of
2	switching worlds, which step comprises:
3	under control of the kernel, storing current state data for a currently executing
4	schedulable entity in a kernel-controlled memory region;
5	disabling exceptions;
6	loading state data for a subsequently executing schedulable entity;
7	starting execution of the subsequently executing schedulable entity; and
8	enabling exceptions.

1	15. (original) A method as defined in claim 14, in which the state data for each
2	schedulable entity includes exception flags, memory segments, an instruction pointer,
3	and descriptor tables, which are loaded into an exception flags register, memory
4	segment registers, an instruction pointer register, and descriptor tables, respectively.
1	16. (original) A method as defined in claim 14, in which the computer includes
2	a plurality of hardware processors, further including the following steps:
3	in the kernel, separately scheduling the execution of each processor, the
4	processors thereby also forming separately schedulable entities;
5	within the kernel, representing each processor as a corresponding system world,
6	each system having a respective system world address space and a respective system
7	world control thread.
1	17. (original) A method as defined in claim 16, further including the step of
2	allocating, for each processor, a separate memory mapping cache.
1	18. (original) A method as defined in claim 13, in which each VM includes a
2	virtual processor, a virtual operating system (VOS), and an I/O driver, loaded within the
3	VOS, for an I/O device, the method further comprising the following steps:
4	allocating a shared memory space that is addressable by both the kernel and the
5	VM's I/O driver,
6	transferring an output set of data from the VM to the I/O device according to the
7	following sub-steps:
8	via the VM's I/O driver, setting a pointer to the output set of data in the
9	shared memory region and generating a request for transmission;
10	in the kernel, upon sensing the request for transmission:
11	retrieving the output set of data from a position in the shared memory region
12	indicated by the pointer and transferring the retrieved output set of data to a physical
13	transmit buffer portion of the shared memory region;
14	transferring the output data set from the physical transmit buffer portion to the

I/O device;

16	transferring an input set of data from the I/O device to the VM according to the
17	following sub-steps:
18	in the kernel,
19	copying the input set of data into a physical receive buffer portion
20	of the shared memory region;
21	setting the pointer to the physical receive buffer portion;
22	issuing to the VMM an instruction to raise an interrupt;
23	in the VM, upon sensing the interrupt raised by the VMM, retrieving the
24	input set of data from the physical receive buffer portion of the shared memory region
25	indicated by the pointer;
26	whereby the input and output data sets may be transferred between the VM and
27	the I/O device via only the kernel.
1	19. (original) A method as defined in claim 18, further comprising completing
2	the sub-steps for transferring the output set of data upon sensing only a single request
3	for transmission.
1	20. (original) A method as defined in claim 18, in which:
2	the I/O device is a network connection device for data transfer to and from a
3	network; and
4	the input and output data sets are network packets.
1	21. (original) A method as defined in claim 12, further including the following
2	steps:
3	mapping a kernel address space, within which the kernel is stored and is
4	addressable by the kernel, into a VMM address space, within which the VMM is stored
5	and which is addressable by the VMM.

1	22. (original) A method as defined in claim 21, in which the computer has a
2	segmented memory architecture, the memory being addressable via segment registers,
3	further including the step of setting a segment length for the VMM larger than a
4	minimum length necessary to fully contain both the VMM and the kernel, whereby the
5	step of mapping the kernel address space within the VMM address space may be
6	performed free of any need to change a corresponding segment register.
1	23. (original) A method as defined in claim 12, in which each VM includes a
2	virtual processor, a virtual operating system (VOS), and a virtual disk (VDISK), the
3	method further including carrying out the following steps within the kernel:
4	partitioning the VDISK into VDISK blocks;
5	maintaining an array of VDISK block pointers, the array comprising a plurality of
6	sets of VDISK block pointers;
7	maintaining a file descriptor table in which is stored file descriptors, each file
8	descriptor storing block identification and allocation information, and at least one pointer
9	block pointer;
10	each pointer block pointer pointing to one of the sets of VDISK block pointers;
11	and
12	each VDISK block pointer identifying the location of a respective one of the
13	VDISK blocks.
1	24. (original) A method as defined in claim 1, further including the following
2	steps:
3	halting execution of the kernel;
4	reinstating a state of the first operating system that existed before the loading of
5	the kernel; and
6	resuming execution of the first operating system at the most-privileged system
7	level;
	- · - · ,

the kernel thereby being functionally removed from the computer.

9

1	25. (currently amended) In a computer system that includes:
2	at least one hardware processor, which has a hardware instruction pointer;
3	a first operating system (COS) initially installed to run on the hardware processor
4	at a most-privileged, system level, the system level being defined as an operational
5	state with permission to directly access predetermined physical resources of the
6	computer;
7	a method comprising:
8	initializing the computer with the COS;
9	via the COS, loading and starting execution of a kernel, which forms a second
10	operating system, the kernel thereupon substantially displacing the COS from the
11	system level and itself running at the system level, the kernel thereby handling requests
12	for system resources;
13	halting execution of the kernel;
14	reinstating a state of the first operating system that existed before the loading of
15	the kernel; and
16	resuming execution of the first operating system at the most-privileged system
17	<u>level;</u>
18	the kernel thereby being functionally removed from the computer;
19	A method as defined in claim 24, in which:
20	A) the computer includes at least one processor, which has a hardware
21	instruction pointer;
22	용 A) the step of loading the kernel includes the following sub-steps:
23	 i) loading a load call module within the COS;
24	ii) upon initialization of the computer, calling a loading module from the
25	load call module, whereupon the loading module loads the kernel;
26	iii) after initialization of the computer, transferring from the COS to the
27	kernel a list of devices initially controlled by the COS; and
28	iv) classifying the devices and control of the devices into the following
29	groups (which may be empty):
30	 a) host-managed devices, which are controlled by the COS;
31	b) reserved devices, which are controlled by the kernel; and

32	c) shared devices, which may be controlled by either the COS or
33	the kernel;
34	v) via the loading module, setting the hardware instruction pointer and
35	forwarding of interrupts and faults generated by the processor and by predetermined
36	ones of the physical resources to point into a memory address space allocated to and
37	controlled by the kernel;
38	Θ B) the step of reinstating the state of the first operating system includes the
39	following steps:
40	 i) restoring interrupt and fault handling from the kernel to the first
41	operating system;
42	ii) transferring control of host-managed and shared devices from the
43	kernel to the first operating system; and
44	iii) removing the kernel from an address space of the first operating
45	system.
1	26. (Original) A method for managing resources in a computer, which includes
2	at least one processor that has a hardware instruction pointer, the method comprising
3	the following steps:
4	A) initializing the computer using a first operating system (COS), the COS itself
5	running at a most-privileged, system level, the system level being defined as an
6	operational state with permission to directly access predetermined physical resources
7	of the computer, the physical resources including physical devices;
8	B) loading a kernel via the COS, the kernel forming a second operating system,
9	this step of loading the kernel comprising:
10	 i) loading a load call module within the COS;
11	ii) upon initialization of the computer, calling a loading module from the
12	load call module, whereupon the loading module loads the kernel;
13	iii) via the loading module, setting the hardware instruction pointer and
14	forwarding interrupts and faults generated by the processor and by predetermined ones
15	of the physical resources to point into a memory address space allocated to and
16	controlled by the kernel;

17	C) starting execution of the kernel, the kernel thereupon substantially displacing
18	the COS from the system level and itself running at the system level; and
19	D) submitting requests for system resources via the kernel;
20	E) after initialization of the computer, transferring from the COS to the kernel a
21	list of the devices initially controlled by the COS; and
22	F) classifying the devices and control of the devices into the following groups
23	(which may be empty):
24	 i) host-managed devices, which are controlled by the COS;
25	ii) reserved devices, which are controlled by the kernel; and
26	iii) shared devices, which may be controlled by either the COS or the
27	kernel; and
28	G) forwarding interrupts generated by host-managed devices to the COS via the
29	kernel, and handling such interrupts within the COS.
1	27. (currently amended) A method for managing resources in a computer,
2	which includes at least one processor that has a hardware instruction pointer, the
3	method comprising the following steps:
4	 A) initializing the computer using a first operating system (COS), the COS itself
5	running at a most-privileged, system level, the system level being defined as an
6	operational state with permission to directly access predetermined physical resources
7	of the computer, the physical resources including physical devices;
8	B) loading a kernel via the COS, the kernel forming a second operating system,
9	this step of loading the kernel comprising:
10	 i) loading a load call module within the COS;
11	ii) upon initialization of the computer, calling a loading module from the
12	load call module, whereupon the loading module loads the kernel;
13	iii) via the loading module, setting the hardware instruction pointer and
14	forwarding interrupts and faults generated by the processor and by predetermined ones
15	of the physical resources to point into a memory address space allocated to and
16	controlled by the kernel;
17	C) starting execution of the kernel, the kernel thereupon substantially displacing

the COS from the system level and itself running at the system level; and

9	D) submitting requests for system resources via the kerner;
20	E) after initialization of the computer, transferring from the COS to the kernel a
21	list of the devices initially controlled by the COS; and
22	F) classifying the devices and control of the devices into the following groups
23	(which may be empty):
24	 i) host-managed devices, which are controlled by the COS;
25	ii) reserved devices, which are controlled by the kernel; and
26	iii) shared devices, which may be controlled by either the COS or the
27	kernel; and
28	G) forwarding interrupts generated by host-managed devices to the COS via the
29	kernel, and handling such interrupts within the COS;
30	H) installing at least one virtual machine (VM) to run on the kernel via a virtual
31	machine monitor (VMM); and
32	 in the kernel, separately scheduling the execution of the COS and of each
33	VM, the COS and the VM's <u>VMs</u> thereby forming separately schedulable and separately
34	executing entities.
1	28. (currently amended) A computer system comprising:
2	at least one hardware processor;
3	a first operating system (COS) initially installed to run on the hardware processor
4	at a most-privileged, system level, the system level being defined as an operational
5	state with permission to directly access predetermined physical resources of the
6	computer, the COS forming means for initializing the computer;
7	a kernel means that forms a second operating system;
8	a loading means loader comprising computer-executable code for loading the
9	kernel means via the COS and for starting execution of the kernel means, the kernel
10	means thereupon substantially displacing the COS from the system level and itself
11	running at the system level; <u>and</u>
12	the kernel means is provided including a software module for handling requests
13	for system resources, including scheduling execution of the COS on the hardware
14	processor(s).

2	loader includes a loading driver installed within the COS.
1	30. (currently amended) A computer system comprising:
2	at least one hardware processor that has a hardware instruction pointer;
3	a first operating system (COS) initially installed to run on the hardware processor
4	at a most-privileged, system level, the system level being defined as an operational
5	state with permission to directly access predetermined physical resources of the
6	computer, the COS initializing the computer;
7	a kernel that forms a second operating system;
8	a loader comprising computer-executable code for loading the kernel via the
9	COS and for starting execution of the kernel, the kernel thereupon substantially
10	displacing the COS from the system level and itself running at the system level;
11	the kernel including a software module for handling requests for system
12	resources;
13	A system as in claim 28, in which:
14	the processor has a hardware instruction pointer;
15	the loading means is <u>loader being</u> further provided for setting the hardware
16	instruction pointer and forwarding interrupts and faults generated by the processor and
17	by predetermined ones of the system resources to point into a memory address space
18	allocated to and controlled by the kernel means.
1	31. (currently amended) A system as in claim 30, in which:
2	the system resources include devices initially controlled by the COS;
3	the loading means loader is further provided for transferring, after initialization of
4	the computer, from the COS to the kernel means a list of the devices initially controlled
5	by the COS and for classifying the devices and control of the devices into the following
6	groups (which may be empty):
7	host-managed devices, which are controlled by the COS;
8	reserved devices, which are controlled by the kernel means; and
9	shared devices, which may be controlled by either the COS or the kernel
10	means.

29. (currently amended) A system as in claim 28, in which the loading means

٠.

1

1	32. (original) A system as in claim 31, in which at least one of the shared
2	devices is a mass storage controller.
1	33. (currently amended) A system as defined in claim 28, further comprising:
2	at least one virtual machine (VM); and
3	a virtual machine monitor (VMM);
4	in which the VM is installed to run on the kernel means via the VMM.
1	34. (currently amended) A system as defined in claim 33, A computer system
2	comprising:
3	at least one hardware processor;
4	a first operating system (COS) initially installed to run on the hardware processor
5	at a most-privileged, system level, the system level being defined as an operational
6	state with permission to directly access predetermined physical resources of the
7	computer, the COS forming means for initializing the computer;
8	a kernel that forms a second operating system;
9	a loader comprising computer-executable code for loading the kernel means via
10	the COS and for starting execution of the kernel means, the kernel thereupon
11	substantially displacing the COS from the system level and itself running at the system
12	level;
13	a virtual machine monitor (VMM);
14	at least one virtual machine (VM) installed to run on the kernel via the VMM;
15	the kernel including software modules
16	for handling requests for system resources;
17	in which the kernel means is further provided:
18	for separately scheduling the execution of the COS and of each VM, the
19	COS and the VM's VMs thereby forming separately schedulable and separately
20	executing entities; and
21	for representing each schedulable entity as a corresponding world, each
22	world comprising a world memory region with a respective world address space and
23	storing a respective world control thread.

٠.

I	35. (currently amended) A system as defined in claim 34, in which the kerner
2	means is further provided:
3	for storing current state data for a currently executing schedulable entity in a
4	kernel-controlled memory region;
5	for disabling exceptions;
6	for loading state data for a subsequently executing schedulable entity;
7	for starting execution of the subsequently executing schedulable entity; and
8	for enabling exceptions;
9	the kernel means thereby being provided for switching worlds.
1	36. (original) A system as defined in claim 35, in which the state data for each
2	schedulable entity includes exception flags, memory segments, an instruction pointer,
3	and descriptor tables, which are loaded into an exception flags register, memory
4	segment registers, an instruction pointer register, and descriptor tables, respectively.
1	37. (currently amended) A system as defined in claim 34, in which:
2	the computer includes a plurality of hardware processors;
3	the kernel means is further provided:
4	for separately scheduling the execution of each processor, the processors
5	thereby also forming separately schedulable entities;
6	for representing each processor as a corresponding system world, each
7	system having a respective system world address space and a respective system world
8	control thread.
1	38. (original) A system as defined in claim 37, further comprising a separate
2	memory mapping cache for each processor.

I	39. (currently amended) A <u>computer system as defined in claim 33, further</u>
2	comprising:
3	at least one hardware processor;
4	a first operating system (COS) initially installed to run on the hardware processo
5	at a most-privileged, system level, the system level being defined as an operational
6	state with permission to directly access predetermined physical resources of the
7	computer, the COS forming means for initializing the computer;
8	a kernel that forms a second operating system;
9	a loader comprising computer-executable code for loading the kernel means via
10	the COS and for starting execution of the kernel means, the kernel thereupon
11	substantially displacing the COS from the system level and itself running at the system
12	<u>level;</u>
13	the kernel handling requests for system resources;
14	a virtual machine monitor (VMM);
15	at least one virtual machine (VM) installed to run on the kernel via the VMM;
16	within each VM, a virtual processor, a virtual operating system (VOS), and an I/C
17	driver for an I/O device loaded within the VOS;
18	a shared memory space that is addressable by both the kernel means and the
19	VM's I/O driver, the shared memory space storing input data and output data for
20	transfer between the VM and the I/O device;
21	in which:
22	the VM's I/O driver forms means comprises computer-executable code for
23	setting a pointer to output data in the shared memory region and generating a request
24	for transmission;
25	the kernel means is further provided, upon sensing the request for transmission:
26	for retrieving the output data from a position in the shared memory region
27	indicated by the pointer and transferring the retrieved output data to a physical transmit
28	buffer portion of the shared memory region;
29	for outputting the output data from the physical transmit buffer portion to
30	the I/O device;
31	for receiving the input data from the I/O device;

32	for copying the input data into a physical receive buffer portion of the
33	shared memory region;
34	for setting the pointer to the physical receive buffer portion;
35	for issuing to the VMM an instruction to raise an interrupt;
36	the VM's I/O driver forming means is further provided, upon sensing the interrupt
37	raised by the VMM, for retrieving the input data from the physical receive buffer portion
88	of the shared memory region indicated by the pointer;
39	whereby the input and output data may be transferred between the VM and the
10	I/O device via only the kernel means .
1	40. (original) A system as defined in claim 39, in which:
2	the I/O device is a network connection device for data transfer to and from a
3	network; and
4	the input and output data are network packets.
1	41. (currently amended) A system as defined in claim 33, further comprising:
2	a kernel address memory portion, within which the kernel means is stored and is
3	addressable by the kernel means;
4	means a mapping module comprising computer-executable code for mapping
5	the kernel address memory portion into a VMM address space, within which the VMM is
6	stored and which is addressable by the VMM.
1	42. (currently amended) A system as defined in claim 41, in which:
2	the computer has a segmented memory architecture;
3	segment registers via which the memory is addressed; and
4	a segment length for the VMM that is larger than a minimum length necessary to
5	fully contain both the VMM and the kernel means .

1	43. (currently amended) A system as defined in claim 33, in which:
2	each VM includes a virtual processor, a virtual operating system (VOS), and a
3	virtual disk (VDISK);
4	the VDISK is partitioning into VDISK blocks;
5	the kernel means is further provided:
6	for maintaining an array of VDISK block pointers, the array comprising a
7	plurality of sets of VDISK block pointers;
8	for maintaining a file descriptor table in which is stored file descriptors,
9	each file descriptor storing block identification and allocation information, and at least
10	one pointer block pointer;
11	each pointer block pointer pointing to one of the sets of VDISK block pointers;
12	and
13	each VDISK block pointer identifying the location of a respective one of the
14	VDISK block.
1	44. (original) A computer system comprising:
2	at least one hardware processor;
3	a first operating system (COS) initially installed to run on the hardware processor
4	at a most-privileged, system level, the system level being defined as an operational
5	state with permission to directly access predetermined physical resources of the
6	computer, the COS forming means for initializing the computer;
7	a kernel means that forms a second operating system;
8	loading means for loading the kernel via the COS and for starting execution of
9	the kernel, the kernel thereupon substantially displacing the COS from the system level
10	and itself running at the system level;
11	the kernel means is provided for handling requests for system resources;
12	in which:
13	the processor has a hardware instruction pointer;
14	the loading means is further provided for setting the hardware instruction pointer
15	and forwarding interrupts and faults generated by the processor and by predetermined
16	ones of the system resources to point into a memory address space allocated to and
17	controlled by the kernel means;

18	the system resources include devices initially controlled by the COS;
19	the loading means is further provided for transferring, after initialization of the
20	computer, from the COS to the kernel means a list of the devices initially controlled by
21	the COS and for classifying the devices and control of the devices into the following
22	groups (which may be empty):
23	host-managed devices, which are controlled by the COS;
24	reserved devices, which are controlled by the kernel means; and
25	shared devices, which may be controlled by either the COS or the kernel
26	means.
1	45. (currently amended) A computer system comprising:
2	at least one hardware processor;
3	a first operating system (COS) initially installed to run on the hardware processor
4	at a most-privileged, system level, the system level being defined as an operational
5	state with permission to directly access predetermined system resources of the
6	computer, the COS forming means for initializing the computer;
7	a kernel means that forms a second operating system;
8	loading means for loading the kernel means via the COS and for starting
9	execution of the kernel means, the kernel means thereupon substantially displacing the
10	COS from the system level and itself running at the system level;
11	at least one virtual machine (VM); and
12	a virtual machine monitor (VMM);
13	in which:
14	the VM is installed to run on the kernel means via the VMM;
15	the kernel means is provided for handling requests for system resources;
16	the processor has a hardware instruction pointer;
17	the loading means is further provided for setting the hardware instruction pointer
18	and forwarding interrupts and faults generated by the processor and by predetermined
19	ones of the system resources to point into a memory address space allocated to and
20	controlled by the kernel means;
21	the system resources include devices initially controlled by the COS;

22	the loading means is further provided for transferring, after initialization of the
23	computer, from the COS to the kernel means a list of the devices initially controlled by
24	the COS and for classifying the devices and control of the devices into the following
25	groups (which may be empty):
26	host-managed devices, which are controlled by the COS;
27	reserved devices, which are controlled by the kernel means; and
28	shared devices, which may be controlled by either the COS or the kernel
29	means;
30	for separately scheduling the execution of the COS and of each VM, the COS
31	and the VM's VMs thereby forming separately schedulable and separately executing
32	entities; and
33	the kernel means is further provided:
34	for representing each schedulable entity as a corresponding world, each
35	world comprising a world memory region with a respective world address space and
36	storing a respective world control thread;
37	for storing current state data for a currently executing schedulable entity in
38	a kernel means-controlled memory region;
39	for disabling exceptions;
40	for loading state data for a subsequently executing schedulable entity;
41	for starting execution of the subsequently executing schedulable entity;
42	and
43	for enabling exceptions;
44	the kernel means thereby being provided for switching worlds.

٠.