Insper

Lógica da Computação - 2020/1

Aula 14/T07 - 13/Apr/2020

Raul Ikeda - rauligs@insper.edu.br

Objetivos

- 1. Linguagens Recursivas
- 2. Linguagens Recursivamente Enumeráveis
- 3. Máquina de Turing

Linguagens Recursivas e Recursivamente Enumeráveis:

A última classe de linguagens da Hierarquia de Chomsky diz respeito às linguagens ditas Recursivamente Enumeráveis. Tais linguagens são representadas por uma Gramática Irrestrita, que possui regras de produção do tipo:

$$\alpha \to \beta$$
$$\alpha \in V^*NV^*, \ \beta \in V^*$$

>> Ver Ramos et al. Pag 594.

Reconhecedor: Máquina de Turing

$$M = (Q, \Sigma, \Gamma, \delta, q_0, <, B, F)$$

Onde:

- ullet Q é o conjunto de estados finitos
- Σ é o alfabeto finito de símbolos de entrada
- Γ é um conjunto, também finito, de todos os símbolos que podem ser lidos ou gravados na fita. $\Sigma \subseteq \Gamma$.
- δ é a função parcial de transição. $Q \times \Gamma \to Q \times \Gamma \times \{E, D\}$.
- q_0 é o estado inicial.
- <, $B \notin \Gamma$ são símbolos que delimitam a fita à esquerda e uma posição em branco, respectivamente.
- $F \subseteq Q$ é o conjunto de estados finais.

Apesar de ser conhecida como Máquina de Turing de fita infinita, a fita é infinita à direita apenas.

Critérios de aceitação:

>> Ver Ramos et al. Pag. 556.

Diferença entre LRec e LRE

Definição: Uma Linguagem é dita Recursiva se existe pelo menos uma Máquina de Turing M tal que:

- Para toda cadeia $w \in L$, M para e aceita w.
- Para toda cadeia $z \in \Sigma^* L$, M para e rejeita z.
- >> Ver Ramos et al. Pag 553.

Definição: Uma Linguagem é dita Recursivamente Enumerável se for aceita por pelo menos uma Máquina de Turing M. Ou seja:

- Para toda cadeia $w \in L, M$ para e aceita w.
- Para toda cadeia $z \in \Sigma^* L$, M para e rejeita z ou executa uma sequência infinita de movimentações.
- >> Ver Ramos et al. Pag 583.

Como consequência as Linguagens Recursivas estão contidas no conjunto das Linguagens Recursivamente Enumeráveis. As Linguagens Recursivas também são denominadas **Turing decidíveis**, ao passo que as linguagens Recursivamente Enumeráveis são denominadas **Turing reconhecíveis**.

Extensões da MT

Existem algumas extensões da Máquina de Turing, contudo nenhuma das extensões demonstrou-se ser superior computacionalmente à formulação anterior:

- Múltiplas Trilhas
- Múltiplas Fitas
- Múltiplos Cursores
- Fita Ilimitada em ambos os sentidos
- Transições que deslocam o cursor um número variável de posições
- Transição sem leitura ou sem gravação de símbolo.
 - >> Ver Ramos et al. Pag. 558.

Linguagens que não são Recursivas

Quem quer ser um milionário? Parte I

Definição: Cardinalidade é uma medida acerca do tamanho de um conjunto. A medida é óbvia para conjuntos finitos, mas não tão óbvia para conjuntos infinitos.

Definição: Um conjunto é dito Enumerável, ou Contável se ele for finito ou se ele possuir a mesma cardinalidade de N. Uma forma simples de verificar é se existe uma função bijetora que mapeia todos os elementos no conjunto alvo aos elementos de N. Ou seja, se é possível parear o conjunto alvo com

Consequências:

- $\begin{array}{ll} \bullet & |\mathbb{Z}| = |\mathbb{Q}| = |\mathbb{N}|. \\ \bullet & |\mathbb{R}| > |\mathbb{N}|. \end{array}$

Definição: (Ramos et al. Pag 54) "Os números transfinitos representam quantidades não-finitas ordenadas de forma crescente. Tais quantidades são representadas por $\aleph_0, \aleph_1, ..., \aleph_n$ de tal forma que $\aleph_{i-1} < \aleph_i < \aleph_{i+1}$."

Portanto:

- $\aleph_0 = |\mathbb{N}|$
- $\aleph_1 = |\mathbb{R}|$

Teorema de Cantor: "Seja A um conjunto qualquer, $|A| = \aleph_i$. Então $|2^A| > |A|$ e $|2^A| = \aleph_{i+1}$ ". Ramos et al. Pag 55.

Pergunta do milhão: Existe algum conjunto X, tal que $\aleph_0 < |X| < \aleph_1$?

Linguagens que não são Recursivamente Enumeráveis

Teorema: "O conjunto 2^{Σ^*} (conjunto de todas as **linguagens** definidas sobre o alfabeto Σ) não é enumerável;". Ramos et al. Pag 611.

Teorema: "O conjunto de todas as gramáticas definíveis sobre sobre um certo alfabeto Σ é enumerável;". Ramos et al. Pag 611.

Portanto podemos concluir que existem linguagens que não podem ser representadas por uma gramática e portanto está fora to tipo 0 da Hierarquia de Chomsky.

Teorema: "Se L é uma linguagem recursiva, então \bar{L} também o é." Ver Hopcroft et. al. Pag. 404.

Teorema: "Se uma linguagem L e seu complemento são ambas RE, então L é uma linguagem recursiva." Ver Hopcroft et. al. Pag. 405.

Exemplos:

>> Ver Ramos et al. Pag. 610.

Hierarquia de Chomsky 2.0

>> Ver Ramos et al. Pag. 629.

Resumo das Propriedades de Fechamento

	LReg	LLC	LSC	LRec	LRE
União	./	./	./	./	./
Concatenação	V	V	V	V	V
_	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
Intersecção	1/		1/	1/	1/
Complementação	v .		v	v .	V
-	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	
Fechamento	$\sqrt{}$	$\sqrt{}$			\checkmark

Resumo das Questões Decidíveis

	LReg	LLC	LSC	LRec	LRE
$\overline{w \in L}$./	./	./	./	
$L=\emptyset$	V /	V /	V	V	
$L=\Sigma^*$	V /	V			
$L_{1} = L_{2}$	√				
$L_1 \subseteq L_2$	√				
$L_1 \cap L_2 = \emptyset$	$\sqrt{}$				
$\underline{\underline{\underline{L}_1 \cap \underline{L}_2 = \emptyset}}$	$\sqrt{}$				

Lista de Exercícios

Ramos et al Cap. 6.9: Exercício 1.

Ramos et al Cap. 7.12: Exercícios 8, 9 e 10.

Próxima aula:

- Computabilidade e Decidibilidade
- Problema da Parada

Referências:

- Boolos et al. Cap. 3
- $\bullet\,$ Hopcroft et al. Cap. 7
- Sipser Cap 2.3