Probability Density?

Let f(x) and g(x) be two probability density functions. Then 0.2f(x)+0.8g(x) is also a probability density function.

- (a) False
- (b) True

Save & Grade

Save only

New variant

Case 1 If
$$a f(x) + (1-a) g(x)$$
 is given

(for example, $a=0.2$ and $1-a=0.8$)

then $h(x) > 0$ for all x and

 $\int h(x) dx = \int (a f(x) + (1-a) f(x)) dx$
 $= a \int f(x) dx + (1-a) \int g(x) dx$
 $= a \int f(x) dx + (1-a) \int g(x) dx$
 $= a \int f(x) dx + (1-a) \int g(x) dx$
 $= a \int f(x) dx + (1-a) \int g(x) dx$
 $= a \int f(x) dx + (1-a) \int g(x) dx$
 $= a \int f(x) dx + (1-a) \int g(x) dx$

Then $f(x) = \int a \int f(x) dx + (1-a) \int g(x) dx$

Then $f(x) = \int a \int f(x) dx + (1-a) \int g(x) dx$

Then $f(x) = \int a \int f(x) dx + (1-a) \int g(x) dx$

Then $f(x) = \int a \int f(x) dx + (1-a) \int g(x) dx$

Then $f(x) = \int a \int f(x) dx + (1-a) \int g(x) dx$

Then $f(x) = \int a \int f(x) dx + (1-a) \int g(x) dx$

Then $f(x) = \int a \int f(x) dx + (1-a) \int g(x) dx$

Then $f(x) = \int a \int f(x) dx + (1-a) \int g(x) dx$

Then $f(x) = \int a \int f(x) dx + (1-a) \int g(x) dx$

Then $f(x) = \int a \int f(x) dx + (1-a) \int g(x) dx$

Then $f(x) = \int a \int f(x) dx + (1-a) \int g(x) dx$

Then $f(x) = \int a \int f(x) dx + (1-a) \int g(x) dx$

Then $f(x) = \int a \int f(x) dx + (1-a) \int g(x) dx$

Then $f(x) = \int a \int f(x) dx + (1-a) \int g(x) dx$

Then $f(x) = \int a \int f(x) dx + (1-a) \int g(x) dx$

Then $f(x) = \int a \int f(x) dx + (1-a) \int g(x) dx$

Then $f(x) = \int a \int f(x) dx + (1-a) \int g(x) dx$

Then $f(x) = \int a \int f(x) dx + (1-a) \int g(x) dx$

Then $f(x) = \int a \int f(x) dx + (1-a) \int g(x) dx$

Random Circle

A circle with a random radius $R \sim U(1,2)$ is generated. Let X be its area.

Find $\mathbb{E}[X]$.

Answer = number (3 significant figures)

Save & Grade

Save only

New variant

$$X = \pi R^{2}$$

$$E[X] = \pi E[R^{2}] = \pi \cdot \frac{1}{3} (1^{2} + 1 \cdot 2 + 2^{2})$$

$$= \pi \cdot \frac{7}{3}$$
(Note: If $\forall \sim \text{unif}(\alpha, b) + b$

$$E[\forall^{2}] = \frac{1}{3} (a^{2} + ab + b^{2})$$

Density Function

Let f(x) be a probability density function given by

$$f(x) = egin{cases} cx^3(4-x), & 0 < x < 4, \ 0, & ext{otherwise.} \end{cases}$$

Find the value of c?

Answer = number (3 significant figures)

0

Save & Grade

Save only

New variant

Since
$$f = 5$$
 for $f = 5$ $f = 5$ $f = 5$ $f = 6$ f

