

Recommendation System for Farmers

Azure GenAI Hackathon

Names:

Faisal, Siva, Syrin, Umar

Table of contents

01 Introduction

03 Our MVP

Features & Architecture

04 Conclusion

- Difficulty making quality decisions for optimal farming practices.
- 2. Limited tools to diagnose plant diseases effectively.
- 3. Lack of accessible, real-time advice for improving crop health and yield.
- 4. High Level of Required Tribal Knowledge in Farming Practices
- 5. Research backed farming advice is not readily available

Impact:

- 1. Reduced productivity
- 2. Increased losses due to delayed or incorrect decisions.
- 3. High barrier of entry for new farmers

102 Features & Architecture

Vision Based Disease Detection

Goal:

- Help Farmers identify different diseases that affect their Crop in order to find solutions

Approach:

- Utilize Azure Al Custom Vision
- Finetune the image detection capabilities of Al vision to be focused on identifying diseases within crops
 Finetune the model to detect Healthy Crops

ęsources :

Kaggle Dataset CCMT: https://www.kaggle.com/datasets/armaanoajay/ccmt-crop-pest-an d-disease-detection

RAG Tuned ChatBot

Goal:

- Provide farmers with quality information that would assist them in improving the overall crop yield based on their scenario

Approach:

- Extract relevant research papers that could provide valuable insights
 - Convert the Research Papers into a simplified JSON format using a script
 - Utilise Azure Al Search to Index the documents to be a readable format
 - Utilise Azure AI Search to Augment the results of your chatbot

Technology Architecture

Our MVP Minimal Viable Product

Data Conversion

∨ articles	0	1 import os
▶ Article-2.pdf	U	2 import json
Crop_Yield_Forecasting_Methods_and	U	3 from PyPDF2 import PdfReader
		4
♣ Investigation-of-the-effects-of-cultur		5
On-optimization-of-enzymatic-proces		<pre>6 def extract_text_from_pdf(pdf_path):</pre>
Seasonal-Forecast.pdf	U	8 Extract text from a PDF file.
↓ stallings1961.pdf	U	9
∨ output	0	:param pdf_path: Path to the PDF file
{} Article-2.json	U	11 :return: Extracted text as a string
{} Crop_Yield_Forecasting_Methods_and	U	12
		reader = PdfReader(pdf_path)
{} Improved-low-water-solubility-of-fise		14 text = ""
{} Investigation-of-the-effects-of-cultur	U	for page in reader.pages:
{} On-optimization-of-enzymatic-proces	U	<pre>text += page.extract_text()</pre>
{} Seasonal-Forecast.json	U	17 return text
{} stallings1961.json	U	Debug Console (Ctrl+Shift+Y)
◆ .gitignore		PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS
custom_vision.py	U	TOTAL TOTAL
pdf_to_ai.py	U	○ @StarvedHawk →/workspaces/GenAI_Hackathon_Farm_Bot
e search.py	U	

The Chatbot

Disease Vision

Detected attributes JSON

miaze_leaf_blight (99.96%) maize_leaf_spot (0.04%) maize_healthy (0.00%)

Detected attributes

maize_leaf_spot (99.98%) miaze_leaf_blight (0.02%) maize_healthy (0.01%)

MAIZE IMAGE ANALYSIS

Health Status: Healthy Confidence: 99.0%

Analysis: Leaf appears to be healthy

Detected Features: green, outdoor, terrestrial plant, grass, plant stem, vascular plant, leaf, plant

The Dashboard

HYDROPONIC FARM CONTROL CENTER

Impact

- 1. Enhanced Decision-Making a. Automatic and Early Plant Disease Detection
- 2. Time Efficiency
 a. Instant Results
 b. Reduced Dependency on Experts
- 3. Cost Reduction
 a. Reduction in Input costs (fertilizers, pesticides)
 b. Better Resource Allocation
- 4. Improved Crop Yield and Quality a. Better Crop Management b. Improved Quality of Produce
- 5. Data-driven and Research-based insights a. Collection of Plant Health Data

Future Work

Including more crop types to analyze and detect.

Improve the Database of knowledge that is utilised to deliver the required information

More Crops Better Features Inclusion

Thanks!

