Report_Kenyan_Political_Tweets

December 4, 2018

Note: code is included if it prints an important output or if it is otherwise relevant to the report Full code can be found at https://github.com/crazyfrogspb/kenya

1 User groups

First, we load the user data and create group mappings based on two TXT files

As it turns out, the followers of two accounts haven't been collected (@mavunochurchorg is suspended, @HouseofGraceHQ is just not in the dataset for some reason, can recollect if necessary)

Over 85% of the users belong to single group according to our mapping

```
In [8]: group_cols = list(users.filter(regex='group_', axis=1).columns)
       users[group_cols] = users[group_cols].fillna(0)
       users['number_of_groups'] = users[group_cols].sum(axis=1).astype(int)
       print(users.groupby('number_of_groups').size())
       print(
           pd.DataFrame({
                'Percentage':
               users.groupby(('number_of_groups')).size() / len(users)
       fig, ax = plt.subplots(figsize=(8, 4))
        ax.set_xlabel('Number of groups per user')
       ax.set_ylabel('Number of users')
       users['number_of_groups'].hist(bins=[0, 1, 2, 3, 4, 5], ax=ax)
number_of_groups
       649
     19972
1
      2251
2
3
       355
```

```
4 3
dtype: int64

Percentage
number_of_groups
0 0.027938
1 0.859750
2 0.096901
3 0.015282
4 0.000129
```

Out[8]: <matplotlib.axes._subplots.AxesSubplot at 0x7f96b125c358>

Among users with multiple groups, the most popular combinations are Mainline Protestant + nan, Mainline Protestant + Pentecostal, Pentecostal + nan and Mainline Protestant + Pentecostal + nan

Out[9]:							users_num
	<pre>group_Mainline</pre>	${\tt Protestant}$	group_	Pentecostal	<pre>group_Catholic</pre>	<pre>group_nan</pre>	
	1.0		0.0		0.0	1.0	971
			1.0		0.0	0.0	746
	0.0		1.0		0.0	1.0	479
	1.0		1.0		0.0	1.0	344
			0.0		1.0	0.0	35
	0.0		0.0		1.0	1.0	14
	1.0		0.0		1.0	1.0	7
	0.0		1 0		1 0	0 0	6

1.0	1.0	1.0	1.0	3
0.0	1.0	1.0	1.0	2
1.0	1.0	1.0	0.0	2

2 Tweets

For now, let's keep only users who belong to a single group. Let's also create user-group mappings and calculate the number of users by group. Note that there are a lot of nan (JCCKenya) users

Next, we load all tweets, remove duplicates and tweets that are out of time range; we also drop tweets for which we couldn't identify a single group

```
In [12]: tweets_file = os.path.join(DATA_DIR, 'processed', 'tweets.csv')
        tweets = pd.read_csv(
            tweets_file,
            lineterminator='\n',
            error_bad_lines=False,
            usecols=['created_at', 'screen_name', 'id', 'retweet', 'text'])
        tweets['created_at'] = pd.to_datetime(
            tweets['created_at'], infer_datetime_format=True, errors='coerce')
        tweets['mnth_yr'] = tweets['created_at'].dt.to_period('M')
        tweets = tweets.loc[(tweets.created_at >= '2013-03-01')
                            \& (tweets.created_at < '2017-12-01')]
        tweets['id'] = pd.to_numeric(tweets['id'])
        tweets.drop_duplicates('id', inplace=True)
        tweets['group'] = tweets['screen_name'].map(user_mapping)
        tweets.dropna(subset=['group'], inplace=True)
/home/crazyfrogspb/.local/share/virtualenvs/kenya/lib/python3.6/site-
packages/IPython/core/interactiveshell.py:3020: DtypeWarning: Columns (1,3) have mixed
types. Specify dtype option on import or set low_memory=False.
  interactivity=interactivity, compiler=compiler, result=result)
```

Some descriptive statistics and graphs

```
In [14]: fig, ax = plt.subplots(figsize=(8, 4))
    ax.set_xlabel('Month')
    ax.set_ylabel('Number of tweets')
    ax.set_title('Number of tweets over time')
    tweets.groupby('mnth_yr').size().plot(ax=ax)
```

Out[14]: <matplotlib.axes._subplots.AxesSubplot at 0x7f96b12f4438>


```
In [15]: fig, ax = plt.subplots(figsize=(8, 4))
          ax.set_xlabel('Number of tweets')
          ax.set_ylabel('Number of users')
          ax.set_title('Histogram of number of tweets per user')
          tweets.groupby('screen_name').size().hist(bins=50)
```

Out[15]: <matplotlib.axes._subplots.AxesSubplot at 0x7f96b12a52b0>

2.1 Politicalness

Let's load Word2Vec model pretrained on the sample of 500000 Kenyan tweets and define functions that we need for calculating political scores. Here, we use snowballing technique: starting with a small sample of politicall related words, we then gradually add more words that are most similar to the current dictionary

Let's generate expanded list of political words

```
In [18]: political_words = [
            'politics', 'government', 'campaign', 'election', 'vote', 'ideology',
            'political', 'democracy', 'president', 'partisan', 'corruption', 'reform'
        political_words.extend(['kenyatta', 'uhuru', 'ruto', 'raila', 'odinga'])
        political_words_aug = snowball(w2v_model, political_words)
        print(political_words_aug)
/home/crazyfrogspb/.local/share/virtualenvs/kenya/lib/python3.6/site-
packages/gensim/matutils.py:737: FutureWarning: Conversion of the second argument of
issubdtype from `int` to `np.signedinteger` is deprecated. In future, it will be
treated as `np.int64 == np.dtype(int).type`.
 if np.issubdtype(vec.dtype, np.int):
['politics', 'government', 'campaign', 'election', 'vote', 'ideology', 'political',
'democracy', 'president', 'partisan', 'corruption', 'reform', 'kenyatta', 'uhuru',
'ruto', 'raila', 'odinga', 'presidency', 'opposition', 'coalition', 'referendum',
'handshake', 'regime', 'electorate', 'legitimacy', 'rao', 'uhuruto', 'majority',
'2022', 'rigging', 'despots', 'uthamaki', 'dictatorship', 'opposed', 'tribal',
'politicians', 'democratic', 'parties', 'sycophants', 'jubilee', 'odm', 'cord',
'intimidation', "gov't", 'rallies', 'oppose', 'nusu', 'illegitimate',
'unconstitutional', 'elites', 'dismissed', 'judiciary', 'electoral', 'legally',
'politically', 'negotiated', 'minority', 'hypocrisy', 'opposing', 'interference',
```

```
'allegations', 'impasse', 'threaten', 'incompetent', 'bribery', 'complicit',
'constitutional', 'intolerance', 'defended', 'squarely', 'incompetence', 'purported',
'purport', 'anarchy', 'jurisdiction', 'jsc', 'removal', 'suspend', 'outright',
'govt', 'stance', 'tribunal', 'prosecute', 'impeachment', 'parliamentary',
'fraudulent', 'advises', 'baseless', 'stalemate', 'rejecting', 'duplicitous',
'accuse', 'unfit', 'interfering', 'dissent', 'duress', 'irreducible', 'disbanded',
'scork', 'prosecution', 'reiterated', 'irregularities', 'illegalities',
'embarrassment', 'lapdogs', 'incitement', 'blatant', 'castigated', 'sharad',
'restructure', 'candidature', 'pnu', 'perennial', 'abuses', 'scrutinize', 'delegated',
'pseudo', 'undermining', 'jailing', 'aden', 'scotus', 'petitioners', 'guliye',
'abolish', 'subvert', 'dissidents', 'charade', 'malpractices', 'commision',
'outlawed', 'dismissal', 'revoked', 'caretaker', 'onslaught', 'repressive',
'prosecuting', 'politcal', 'disbandment', 'despotism', 'criminality', 'engineered',
'perpetuate', 'unions', 'condone', 'slogans', 'harrassing', 'mischief', 'agitating',
'violate', 'allied']
```

Now we load validation data and generate political scores Correlation of political scores with coder_1 is 0.65, with coder_2 - 0.73

```
In [21]: validated_tweets.corr()
```

Let's choose threshold for political score that gives the highest accuracy (according to coder_2). We can achieve 87% accuracy. Precision is 90% (meaning that 90% of tweets identified as political are indeed political), recall is 81% (we can successfully identify 81% of political tweets from the validation dataset)

2.1.1 Analysis

Now we can apply these rules to all tweets to calculate different statistics for the different group of users

Let's look at some descriptive stats

```
8710773.000000
count
             0.226505
mean
              0.201107
std
             -0.466819
25%
              0.089854
50%
               0.201244
75%
              0.339705
              0.933720
max
Name: W2V_political, dtype: object
             political_tweets
is_political
                       6823394
0
                       2174345
1
```

Now we can finally look at the mean and median values of:

- 1) percentage of political tweets by group
- 2) political scores

group_nan

```
Out [28]:
                                   is political
                                                        W2V_political
                                           mean median
                                                                 mean
                                                                         median
         group
                                       0.279237
                                                      0
                                                             0.247214 0.219846
         group_Catholic
         group_Mainline Protestant
                                       0.280528
                                                      0
                                                             0.247286
                                                                       0.223539
                                                                       0.181588
         group_Pentecostal
                                       0.195158
                                                      0
                                                             0.203159
```

Mainline Protesant and Catholic are significantly more political than Pentercostal group (can perform statistical tests if necessary)

0.223486

0

0.215702 0.187788

We can also calculate mean values, but averaging on the user level first

In [28]: tweets.groupby('group')[['is_political', 'W2V_political']].agg(['mean', 'median'])

```
In [29]: tweets.groupby(['screen_name', 'group'])[['is_political',
       'W2V_political']].mean().reset_index().groupby('group').mean()
Out [29]:
                                         is_political W2V_political
          group
          group_Catholic
                                              0.270294
                                                               0.240474
          group_Mainline Protestant
                                              0.247475
                                                               0.231318
          group_Pentecostal
                                              0.193971
                                                               0.202099
          group nan
                                              0.208377
                                                               0.208057
```

Same picture - Pentecostal group is the least politically active What abouts absolute counts of tweets?

```
Out[30]:
                                num_tweets
        group
                                595.762745
        group_Catholic
        group_Mainline Protestant 699.544065
        group_Pentecostal
                                474.073928
        group_nan
                                492.983748
]).size().to_frame(name='num_tweets').reset_index().groupby('group').mean()
Out[31]:
                                num_tweets
        group
        group_Catholic
                                184.041215
        group_Mainline Protestant 214.740443
        group_Pentecostal
                                111.407715
        group_nan
                                124.895489
```

Mainline Protestant are much more active in general, and tweet more about politics