6. Minimierung endlicher Automaten

Definition Äquivalenz

Zwei endliche Automaten A_1 und A_2 heißen äquivalent, wenn sie die gleiche Sprache akzeptieren.

Definition Isomorphie

Zwei endliche Automaten A₁ und A₂ heißen isomorph, wenn ihre Zustände und ihre Zustandsübergangsfunktionen bis auf ihre Namen gleich sind.

Satz

Wenn zwei Automaten A_1 und A_2 äquivalent sind, so sind ihre zugehörigen minimalen Automaten min (A_1) und min (A_2) isomorph.

Aufgabe 1

Gegeben sind die folgenden Endlichen Automaten. Entscheiden Sie mithilfe der minimierten Automaten, ob sie äquivalent sind.

$$A_1 = (\{a, b\}, \{S_0, S_1, S_2, S_3, S_4, S_5\}, \{S_0\}, \delta_1 \text{ siehe Graph}, \{S_3, S_4\})$$

$$A_2 = (\{a, b\}, \{Z_0, Z_1, Z_2, Z_3, Z_4\}, \{Z_0\}, \delta_2 \text{ siehe Graph}, \{Z_2, Z_3\})$$

 δ_1

Alexander Bleicher Tutorium

 δ_{2}

Aufgabe 2

 δ_1

a) Minimieren Sie folgenden deterministischen endlichen Automaten $A_2 = \{\{a,b\}, \{S_0,S_1,S_2,S_3,S_4,S_5,S_6,S_7\}, S_0, \delta_1 \text{ siehe Graph, } \{S_3,S_4,S_5\}\}$

a S1 a S3 a, b S6 a, b S6 a, b

- b) Geben Sie einen zu A_1 isomorphen Automaten in Form seines Zustandsübergangsgraphen an
- c) Gegeben seien A₂ und A₃ in Form ihrer Zustandsübergangsfunktionen. Sind sie mit A₁ äquivalent?

A_2 :

A_3 :

c	Ι.	1.
δ_3	a	b
F_0	F_1	\mathbf{F}_2
F_1	F ₃	F_2
F_2	F ₄	F_1
F_3	F ₃	F_2
F ₄	F ₅	F ₅
$\overline{F_5}$	F ₅	F_5

F₃ und F₄ sind Endzustände.