Aufgabe 6

Der Hauptsatz der Laufzeitfunktionen ist bekanntlich folgendermaßen definiert:

1. Fall:
$$T(n) \in \Theta\left(n^{\log_b a}\right)$$

$$ext{falls } f(n) \in \mathcal{O}\Big(n^{\log_b a - arepsilon}\Big) ext{für } arepsilon > 0$$

2. Fall:
$$T(n) \in \Theta\left(n^{\log_b a} \cdot \log n\right)$$

falls
$$f(n) \in \Theta(n^{\log_b a})$$

3. Fall:
$$T(n) \in \Theta(f(n))$$

falls
$$f(n) \in \Omega\left(n^{\log_b a + \varepsilon}\right)$$
 für $\varepsilon > 0$ und ebenfalls für ein c mit $0 < c < 1$ und alle hinreichend großen n gilt: $a \cdot f(\frac{n}{b}) \le c \cdot f(n)$

Bestimmen und begründen Sie formal mit Hilfe dieses Satzes welche Komplexität folgende Laufzeitfunktionen haben.

(a)
$$T(n) = 8 \cdot T(\frac{n}{2}) + 5n^2$$

Allgemeine Rekursionsgleichung:

$$T(n) = a \cdot T(\frac{n}{b}) + f(n)$$

Anzahl der rekursiven Aufrufe (a):

8

Anteil Verkleinerung des Problems (*b*):

um
$$\frac{1}{2}$$
 also $b = 2$

Laufzeit der rekursiven Funktion (f(n)):

$$5n^2$$

Ergibt folgende Rekursionsgleichung:

$$T(n) = 8 \cdot T\left(\frac{n}{2}\right) + 5n^2$$

1. Fall:
$$f(n) \in \mathcal{O}\left(n^{\log_b a - \varepsilon}\right)$$
:

für
$$\varepsilon = 4$$
:
 $f(n) = 5n^2 \in \mathcal{O}\left(n^{\log_2 8 - 4}\right) = \mathcal{O}\left(n^{\log_2 4}\right) = \mathcal{O}(n^2)$

2. Fall:
$$f(n) \in \Theta(n^{\log_b a})$$
:

$$f(n) = 5n^2 \notin \Theta\left(n^{\log_2 8}\right) = \Theta(n^3)$$

3. Fall:
$$f(n) \in \Omega(n^{\log_b a + \varepsilon})$$
:

$$f(n) = 5n^2 \notin \mathcal{O}\left(n^{\log_2 8 + \varepsilon}\right)$$

Berechne die Rekursionsgleichung auf WolframAlpha: WolframAlpha

(b) $T(n) = 9 \cdot T(\frac{n}{3}) + 5n^2$

Allgemeine Rekursionsgleichung:

$$T(n) = a \cdot T(\frac{n}{h}) + f(n)$$

Anzahl der rekursiven Aufrufe (a):

Anteil Verkleinerung des Problems (b):

um
$$\frac{1}{3}$$
 also $b = 3$

Laufzeit der rekursiven Funktion (f(n)):

$$5n^2$$

Ergibt folgende Rekursionsgleichung:

$$T(n) = 9 \cdot T\left(\frac{n}{3}\right) + 5n^2$$

1. Fall: $f(n) \in \mathcal{O}\left(n^{\log_b a - \varepsilon}\right)$:

$$f(n) = 5n^2 \notin \mathcal{O}\left(n^{\log_3 9 - \varepsilon}\right) \text{ für } \varepsilon > 0$$

2. Fall: $f(n) \in \Theta(n^{\log_b a})$:

$$f(n) = 5n^2 \in \Theta\left(n^{\log_3 9}\right) = \Theta(n^2)$$

3. Fall: $f(n) \in \Omega(n^{\log_b a + \varepsilon})$:

$$f(n) = 5n^2 \notin \mathcal{O}\left(n^{\log_3 9 + \varepsilon}\right)$$
 für $\varepsilon > 0$

$$\Rightarrow T(n) \in \Theta(n^2 \cdot \log n)$$

Berechne die Rekursionsgleichung auf WolframAlpha: WolframAlpha