Chapter 3.2: Definition of Trigonometric Functions

Expected Skills:

- Be able to define $\sin \theta$, $\cos \theta$, $\tan \theta$, $\sec \theta$, $\csc \theta$, and $\cot \theta$.
- Be able to determine the domain and range of the 6 trigonometric functions.
- Be able to evaluate the 6 trig functions (if defined) at the quadrantal angles or angles related to 30°, 45°, and 60°.
- Be able to use the trigonometric identity $\sin^2 \theta + \cos^2 \theta = 1$ and other given information to evaluate all 6 trigonometric functions.

Practice Problems:

1. Label all of the indicated points on the unit circle, shown below. Also, convert all of the angles from radian measurement to degree measurement.

- 2. Use your results from question (1) to evaluate each of the following without using a calculator.
 - (a) $\sin 225^{\circ}$
 - (b) $\cos 240^{\circ}$
 - (c) $\tan 30^{\circ}$
 - (d) $\sec \frac{11\pi}{6}$
 - (e) $\cot \frac{\pi}{2}$
 - (f) $\sin\left(-\frac{4\pi}{3}\right)$
 - (g) $\csc(-690^{\circ})$
 - (h) $\cos \frac{23\pi}{3}$
- 3. Use your results from question (1) to find all solutions in the interval $[0,2\pi)$ to the following equations.
 - (a) $\sin \theta = 1$
 - (b) $\cos \theta = \frac{1}{2}$
 - (c) $\sec \theta = 2$
 - (d) $\csc \theta = \sqrt{2}$
 - (e) $\tan \theta = 0$
- 4. Repeat question (3) providing all solutions in the interval $[2\pi, 4\pi)$.
 - (a) $\sin \theta = 1$
 - (b) $\cos \theta = \frac{1}{2}$
 - (c) $\sec \theta = 2$
 - (d) $\csc \theta = \sqrt{2}$
 - (e) $\tan \theta = 0$
- 5. Suppose $\sin \theta = \frac{5}{13}$ and $\frac{\pi}{2} \le \theta \le \pi$. Compute the values of $\cos \theta$, $\tan \theta$, $\sec \theta$, $\csc \theta$, and $\cot \theta$.
- 6. Suppose $\cos \theta = \frac{5}{13}$ and $\tan \theta < 0$. Compute the values of $\sin \theta$, $\tan \theta$, $\sec \theta$, $\csc \theta$, and $\cot \theta$.

- 7. Recall that for any angle θ it follows that $\cos^2 \theta + \sin^2 \theta = 1$.
 - (a) Suppose $\theta \neq \pi k$ (where k is an integer). Divide the original identity by $\cos^2 \theta$ to derive a trigonometric identity involving tangent and secant.
 - (b) Suppose $\theta \neq (2k+1)\frac{\pi}{2}$ (where k is an integer). Divide the original identity by $\sin^2 \theta$ to derive a trigonometric identity involving cotangent and cosecant.
- 8. Fill in the following table:

	Domain	Range
$\sin \theta$		
$\cos \theta$		
$\tan \theta$		
$\csc \theta$		
$\sec \theta$		
$\cot \theta$		

- 9. For each of the following functions, determine the domain.
 - (a) $f(\theta) = \frac{\theta}{1 \tan \theta}$
 - (b) $f(\theta) = \sqrt{\sin \theta}$