Licence de Mécanique UE 3A005 : Méthodes Numériques pour la mécanique Examen du 8 novembre 2017, durée 2 h

Sans document papier Sans équipement électronique

Exercice I (/8=2+2+2+2): Racines d'équations

Soit la fonction $f(x) = x^2 - 7x + 12$. On cherche à calculer par la méthode du point fixe ses deux racines réelles $r_1 = 3$ et $r_2 = 4$.

- 1. Soit la suite $x_{k+1} = \phi_1(x_k) = (x_k^2 + 12)/7$. Montrer que cette suite est bien valide pour résoudre f(x) = 0 et qu'elle ne peut converger que vers r_1 .
- 2. Soit la suite $x_{k+1} = \phi_2(x_k) = (7x_k 12)/(x_k)$. Montrer que cette suite est bien valide pour résoudre f(x) = 0 et qu'elle ne peut converger que vers r_2 .
- 3. Soit la suite $x_{k+1} = \phi_3(x_k) = (-12)/(x_k 7)$. Montrer que cette suite est bien valide pour résoudre f(x) = 0 et montrer vers laquelle des deux racines $(r_1$ ou $r_2)$ elle peut converger.
- 4. On introduit une nouvelle suite $x_{k+1} = x_k (x_k^2 7x_k + 12) \psi(x_k)$. Montrer que les suites des questions 1., 2. et 3. se mettent sous cette forme et donner les fonctions $\psi(x)$ correspondantes.

Exercice II (/10=4+6): Méthodes directes

On souhaite résoudre le système linéaire A x=b. Soient α et β des réels, la matrice $A\in\mathbb{R}^{3,3}$ est définie par :

$$A = \left[\begin{array}{ccc} \alpha & 0 & 1 \\ 0 & \alpha & \beta \\ 1 & \beta & \alpha \end{array} \right]$$

1. On définit les vecteurs $x \in \mathbb{R}^3, y \in \mathbb{R}^3, b \in \mathbb{R}^3$, par :

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \qquad b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

- 1.1 Calculer y = A x, puis le produit scalaire $c = y^t x$.
- 1.2 Mettre le scalaire c sous la forme $c = (x_1 + x_3)^2 + (x_2 + \beta x_3)^2 + a_1 x_1^2 + a_2 x_2^2 + a_3 x_3^2$ et donner les valeurs des constantes a_1, a_2, a_3 .
- 1.3 En déduire une relation entre α et β pour que la matrice A soit définie positive.

- 2. On souhaite résoudre le système linéaire Ax = b en prenant $\alpha = 2, \beta = 1$ et $b = (1, 3, 1)^t$. On utilise la décomposition de Cholesky $A = LL^t$ où L est une matrice triangulaire inférieure (on note l_{ij} les éléments de L).
 - 2.1 Calculer les valeurs numériques de tous les éléments de la matrice L.
 - 2.2 Vérifier que le produit des matrices L et L^t donne bien la matrice A.
 - 2.3 Résoudre le système Ax = b en utilisant la décomposition $A = LL^t$ obtenue.

Exercice III (/12=4+6+1+1): Méthodes itératives

On souhaite résoudre le système linéaire Ax = b par des méthodes itératives. La matrice $A \in \mathbb{R}^{3,3}$ et les vecteurs $x \in \mathbb{R}^3$, $b \in \mathbb{R}^3$, définis par :

$$A = \begin{bmatrix} \alpha & 0 & 1 \\ 0 & \alpha & \beta \\ 1 & \beta & \alpha \end{bmatrix} \qquad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Les données sont α et β avec $\alpha>0$. Pour résoudre le système $A\,x=b$ on applique la méthode itérative $M\,x^{k+1}=N\,x^k+b$, avec A=M-N en utilisant la décomposition classique A=D-E-F. On rappelle que la matrice d'itération est définie par $\Omega=M^{-1}\,N$.

- 1. Méthode de Jacobi : M = D
 - 1.1 Ecrire la méthode itérative de Jacobi en remplaçant M et N par leurs expressions en fonction de D, E, F.
 - 1.2 Calculer la matrice d'itération Ω_J en fonction de α et β .
 - 1.3 Calculer les valeurs propres de Ω_J et en déduire un critère de convergence de la méthode.
- 2. Méthode de Gauss-Seidel : M = D E
 - 2.1 Ecrire la méthode itérative de Gauss-Seidel en remplaçant M et N par leurs expressions en fonction de D, E, F.
 - 2.2 Afin de calculer M^{-1} , résoudre par descente les systèmes suivants : $Me^1=(1,0,0)^t$, $Me^2=(0,1,0)^t$, $Me^3=(0,0,1)^t$. En déduire la matrice M^{-1} en fonction de α et β .
 - 2.3 Calculer la matrice d'itération Ω_{GS} en fonction de α et β .
 - 2.4 Calculer les valeurs propres de Ω_{GS} et en déduire un critère de convergence de la méthode.
- 3. Comparer les rayons spectraux des deux méthodes et en déduire leur rapidité de convergence.
- 4. Est-ce que la relation trouvée à l'exercice II 1.3 permet d'assurer la convergence des méthodes de Jacobi et de Gauss-Seidel ? Justifier mathématiquement la réponse.