Lecture Note 6

Dr. Jeff Chak-Fu WONG

Department of Mathematics
Chinese University of Hong Kong

jwong@math.cuhk.edu.hk

MATH1020 General Mathematics

Recall that a one—to—one function y=f(x) has an inverse function that is defined (implicitly) by the equation x=f(y). In particular, the exponential function

$$y = f(x) = a^x, \ a > 0, \ a \neq 1,$$

is one-to-one and hence has an inverse function that is defined implicitly by the equation

$$x = a^y, \ a > 0, \ a \neq 1.$$

This inverse function is so important that it is given a name, the **logarithmic function**.

Exercises 1 Relating Logarithms to Exponents

(a) If $y = \log_3 x$, then $x = 3^y$. For example, $2 = \log_3 9$ is equivalent to $9 = 3^2$.

(b) If
$$y = \log_7 x$$
, then $x = 7^y$. For example, $-1 = \log_7 \left(\frac{1}{7}\right)$ is

equivalent to $\frac{1}{7} = 7^{-1}$.

Definition 1 The logarithmic function to the base a, where a>0 and $a\neq 1$ is denoted by $y=log_ax$ (read as "y is the logarithmic to the base a of x") and is defined by

$$y = \log_a x$$
 if and only if $x = a^y$

The domain of the logarithmic function $y = \log_a x$ is x > 0.

Exercises 2 Changing Exponential Statements to Logarithmic Statements

Change each exponential statement to an equivalent statement involving a logarithm.

(a)
$$1.4^3 = k$$

(b)
$$e^m = 9$$

(c)
$$a^4 = 25$$

Exercises 3 Changing Logarithmic Statements to Exponential **Statements**

Change each logarithmic statement to an equivalent statement involving an exponent.

(a)
$$\log_a 4 = 5$$

(a)
$$\log_a 4 = 5$$
 (b) $\log_e b = -3$ (c) $\log_3 5 = c$

$$(c) \log_3 5 = c$$

Evaluate Logarithmic Expression

To find the extra value of a logarithm, we write the logarithm in exponential notation and use the fact that if $a^u = a^v$, then u = v.

Exercises 4 Finding the Exact Value of a Logarithmic Expression

Find the exact value of:

(a)
$$\log_2 16$$

(b)
$$\log_3\left(\frac{1}{27}\right)$$

Determine the Domain of a Logarithmic Function

The logarithmic function $y = \log_a x$ has been defined as the inverse of the exponential function $y = a^x$. That is, if $f(x) = a^x$, then $f^{-1}(x) = \log_a x$. According to the discussion given in Lecture 4 on inverse functions, for a function f and its inverse f^{-1} , we have

Domain of f^{-1} =Range of f and Range of f^{-1} =Domain of f

Consequently, it follows that

Domain of the logarithmic function= Range of the exponential function = $(0, \infty)$.

Range of the logarithmic function = Domain of the exponential function = $(-\infty, \infty)$.

10

We summarize some properties of the logarithmic function:

$$y = \log_a x$$
 (defining equation: $x = a^y$);

Domain:
$$0 < x < \infty$$
 Range: $-\infty < y < \infty$.

The domain of a logarithmic function consists of the *positive* real numbers, so the argument of a logarithmic function must be greater than zero.

Exercises 5 Finding the Domain of a Logarithmic Function

Find the domain of each logarithmic function.

(a)
$$F(x) = \log_2(x+3)$$

(a)
$$F(x) = \log_2(x+3)$$
 (b) $g(x) = \log_5\left(\frac{1+x}{1-x}\right)$ (c) $h(x) = \log_{1/2}|x|$

(c)
$$h(x) = \log_{1/2} |x|$$

Graph Logarithmic Functions

Since exponential functions and logarithmic functions are inverse of each other, the graph of the logarithmic function $y = \log_a x$ is the reflection about the line y = x of the graph of the exponential function $y = a^x$, as shown in Figure 1.

Figure 1:

For example, to graph $y = \log_2 x$ (in red), graph $y = 2^x$ (in blue) and reflect it about the line y = x. See Figure 2.

Figure 2:

To graph $y=\log_{1/3}x$ (in red), graph $y=\left(\frac{1}{3}\right)^x$ (in blue) and reflect it about the line y=x. See Figure 3.

Figure 3:

LOGARITHMIC FUNCTIONS

15

The graphs of $y = \log_a x$ in Figure 1(a) and 1(b) lead to the following properties.

Properties of the Logarithmic Function $f(x) = \log_a x$

- 1. The domain is the set of positive real numbers; the range is the set of all real numbers.
- 2. The x-intercept of the graph is 1. There is no y-intercept.
- 3. The y-axis (x = 0) is a vertical asymptote of the graph.
- 4. A logarithmic function is decreasing if 0 < a < 1 and increasing if a > 1.
- 5. The graph of f contains the point (1,0), (a,1), and $\left(\frac{1}{a},-1\right)$.
- 6. The graph is smooth and continuous, with no corners or gaps.

If the base of a logarithmic function is the number e, then we have the **natural logarithm function**. This function occurs so frequently in applications that it is given a special symbol, \ln (from the Latin, logarithmus naturalis). That is,

$$y = \ln x$$
 if and only if $x = e^y$ (1)

Since $y = \ln x$ and the exponential function $y = e^x$ are inverse functions, we can obtain the graph of $y = \ln x$ by reflecting the graph of $y = e^x$ about the line y = x. See Figure 4.

Figure 4:

Graphing a Logarithmic Function and Its Inverse

Exercises 6 (a) Find the domain of the logarithmic function $f(x) = -\ln(x-2)$.

- (b) Graph f.
- (c) From the graph, determine the range and vertical asymptote of *f*.
- (d) Find f^{-1} , the inverse of f.
- (e) Use f^{-1} to confirm the range of f found in part (c). From the domain of f, find the range of f^{-1} .
- (f) Graph f^{-1} .

Exercises 7 Graphing a Logarithmic Function and Its Inverse

- (a) Find the domain of the logarithmic function $f(x) = 3 \log(x 1)$.
- (b) Graph f.
- (c) From the graph, determine the range and vertical asymptote of f.
- (d) Find f^{-1} , the inverse of f.
- (e) Use f^{-1} to confirm the range of f found in part (c). From the domain of f, find the range of f^{-1} .
- (f) Graph f^{-1} .

Solve Logarithmic Equations

Equations that contain logarithms are called logarithmic equations. Care must be taken when solving logarithmic equations algebraically. In the expression $\log_a M$, remember that a and M are positive and $a \neq 1$. Be sure to check each apparent solution in the original equation and discard any that are extraneous.

Some logarithmic equation can be solved by changing from a logarithmic expression to an exponential expression.

Exercises 8 Solving a Logarithmic Equation

Solve: (a)
$$\log_3(4x - 7) = 2$$
 (b) $\log_x 64 = 2$

(b)
$$\log_x 64 = 2$$

Exercises 9 Using Logarithms to Solve Exponential Equations

Solve: $e^{2x} = 5$