

May, 2017 – Under NDA

## **CEVA's Imaging & Vision Technology**



- Comprehensive vision platform
- Centered on CEVA-XM Vision DSP
- Enables embedded neural networks for mass market intelligent vision applications
- Simplifies delivery of powerful deep learning solutions on low-power embedded devices





## **CEVA Imaging & Vision Market Adoption**



- ► CEVA-XM6
  - ▶ 5<sup>th</sup> generation
  - ▶ 5+ design wins
- ► CEVA-XM4
  - ▶ 4<sup>th</sup> generation, in production
  - ▶ 30+ design wins
  - Available open vision DSP in the market
     By Rockchip, Novatek and Brite Semi
- ► CEVA-MM3101
  - ▶ 3<sup>rd</sup> generation, in production
  - ▶ 20+ design wins
  - Available open vision DSP in the market
     By Socionext, Inuitive and Novatek

| CEVA Vision DSP Public Customers |           |  |  |  |  |  |  |
|----------------------------------|-----------|--|--|--|--|--|--|
| <b>LG</b>                        | Rockchip  |  |  |  |  |  |  |
| <b>€ N@VATEK</b>                 | Panasonic |  |  |  |  |  |  |
| ON Semiconductor®                | altek     |  |  |  |  |  |  |
| socionext.                       | XIX       |  |  |  |  |  |  |
| VATICS                           | INUITIVE  |  |  |  |  |  |  |
| iCatch Technology, Inc.          | Brote     |  |  |  |  |  |  |

CEVA processors are **de-facto standard** for Imaging & Vision

### **Outline**



- Neural Network Introduction and Embedded Challenges
- ► CEVA Deep Neural Network (CDNN) Toolkit
- CDNN2 SW Framework
- CNN HWA
- CDNN Performance
- CDNN Roadmap

## **Hype Cycle for Emerging Technologies**



#### 2016: Machine Learning at the hype peak



## **Neural Network Embedded Challenges**



Implementing a deep neural network in an embedded systems is an extremely

challenging task!

Very high bandwidth consuming and computing bottleneck





Porting and optimization capabilities

Stringent power budget and system cost



Long "Time-To-Market"

## **CEVA's Imaging & Vision Technology**





Comprehensive and Scalable Vision and Deep Learning Solution

#### **CDNN2 – CEM 2016 Editor's Choice Awards**



#### ► About China Electronic Market (CEM)

- ► Monthly magazine founded in 1995
- ▶ Focus on electronics and semiconductors in China
- Provides coverage of new products, technical and market trends, and market data
- Supported by China's Ministry of Industry and Information Technology (MIIT) and has a circulation of around 28,000







March, 2017

#### **Outline**



- Neural Network Introduction and Embedded Challenges
- ► CEVA Deep Neural Network (CDNN) Toolkit
- CDNN2 SW Framework
- **CNN HWA**
- ► CDNN Performance
- ► CDNN Roadmap

## **CDNN2** Usage Flow





## **CEVA Deep Neural Network (CDNN2)**





- ► 2<sup>nd</sup> gen SW framework support
  - Caffe and TensorFlow Frameworks
  - Various networks\*
  - All network topologies
  - All the leading layers
  - Variable ROI
  - "Push-button" conversion from pre-trained networks to optimized real-time
  - Accelerates machine learning deployment for embedded systems
  - Optimized for CEVA-XM vision DSP together with CDNN HW accelerator

(\*) Including AlexNet, GoogLeNet, ResNet, SegNet, VGG, NIN and others

## **Real-Time CDNN2 Application Flow**





### **CDNN2** Feature Set



# CEVA Network Generator (offline)

- Auto converts for power-efficiency
- Floating to fixed point conversion
- Adapts for embedded constraints
- Keeps high accuracy, 1% deviation
- Caffe & TensorFlow support

# Neural Network Libraries (real-time)

- RT algo development and deployment
- Optimized for CEVA-XM vision DSP
- Various network structures and layers
- Fixed or variable input sizes
- On-the-fly bandwidth optimizations

Deliverables include real-time example models for image classification, localization, object detection

#### AlexNet Probabilities – Float vs. Fixed





| Object                       | AlexNet PC Probability (floating point) | AlexNet on XM4 Probability (fixed point) |  |  |  |  |  |
|------------------------------|-----------------------------------------|------------------------------------------|--|--|--|--|--|
| Labrador retriever           | 90.44%                                  | 91.01%                                   |  |  |  |  |  |
| Golden retriever             | 4.45%                                   | 3.98%                                    |  |  |  |  |  |
| Beagle                       | 0.21%                                   | 0.18%                                    |  |  |  |  |  |
| Kuvasz                       | 0.12%                                   | 0.10%                                    |  |  |  |  |  |
| Classification Probabilities |                                         |                                          |  |  |  |  |  |



See additional video comparing floating point to CDNN

https://www.youtube.com/watch?v=VnbCVFyuWYk



### Caffe (32bit PC) Vs. CDNN2 (16bit Embedded)





https://youtu.be/VnbCVFyuWYk

## **CDNN2** Supported Topologies



► All network topologies are supported



### **CDNN2 Supported Networks**



- CDNN2 supports the most advanced neural network including
  - ► Public Networks
    - Alexnet
    - CaffeNet
    - GoogleNet
    - ResNet
    - Yolo
    - Faster RCNN
    - Cifar10, Cifar10\_nin
    - finetune\_flickr\_style
    - googlenet\_finetune\_web\_car\_iter\_10000
    - googlenet\_places205
    - ► KevinNet CIFAR10 48
    - ► NIN
    - Pascal VOC
    - VGG 16,19, CNN\_F, CNN\_M, CNN\_M\_1024, CNN\_M\_128,CNN\_M\_20148, CNN\_S, S

- Proprietary Networks
  - From customers and partners under NDA

CDNN2 Supports over 80 advanced networks

## **CEVA-XM** Advantages for Deep Learning



#### **Architectural Advantages**

- CNN combines 2D convolutions, 2D max and 1D MAC operations
  - Efficient DSP can achieve great performance and power
- 2-Dimension data reuse fits 2D convolutions in CNN, enables high MACs/cycle utilization
- Neural Network entry point utilizes data reuse for lowering memory BW
- Parallel Random Memory Access used for activation layer (Sigmoid, TanH)
- High precision accumulation required for fully connected layer

#### **General Advantages**

- CEVA-XM supplies flexible and scalable solution
  - Multi-cores scaling for higher requirements
  - Connectivity to additional accelerators (CEVA-Connect, AXI)
- Programmable solution ideal for evolving algorithms



## **CDNN2 PC Simulation Package**



- Install CEVA-XM SDT CDNN Evaluation SW package
- Launch visual studio SW
- ► Import 2 example projects
  - There are 2 different projects, one is for windows and the other is for Linux
- ▶ Project → Build All to build the project
- Open pre defined 'CDNN Debug Simulation' debug configuration and push 'Debug' button to execute



Enable user getting neural network's cycle count accuracy on PC without having a dedicated HW

### **CDNN** – Developer Flow



### Simplicity of running an application using CDNN

- a. Create CDNN CEVA handle
  - CDNNCreate()
- b. Create the network model (based on CDNN conversion tool outputs)
  - CDNNCreateNetwork()
- c. Initialize CDNN library (by creating a network and a memory database)
  - CDNNInitialize()
- d. Execute the network (no need for re-initialization)
  - CDNNNetworkClassify()

### Real-Time CNN Object Recognition Demo CEVA®





### **CEVA Network Generator**





### **Real-Time Network Generator Demo**





#### Live CDNN2 demo:

https://www.youtube.com/watch?v=SXINFryLM3Q&feature=youtu.be

#### Age and Gender Classification using Convolutional Neural Networks

il Levi Tal Hassn

The Open University of Israel



Figure 1. Faces from the <u>Adience benchmark</u> for age and gender classification. These images represent some of the challenges of age and gender estimation from real-word, unconstrained images. Most notably, extreme blur (low-resolution), occlusions, out-of-plane pose variations, expressions and more.

Abstract: Automatic age and gender classification has become relevant to an increasing amount of applications, particularly since the rise of social platforms and social media. Nevertheless, performance of existing methods on real-world images is still significantly lacking, especially when compared to the tremendous leaps in performance recently reported for the related task of face recognition. In this paper we show that by learning representations through the use of deep-convolutional neural networks (CNNI), a significant increase in performance can be obtained on these tasks. To this end, we propose a simple convolutional net architecture that can be used even when the amount of learning data is limited. We evaluate our method on the recent Adience benchmark for age and gender estimation and show it to dramatically outperform current state-of-the-art methods.

Reference: Gil Levi and Tal Hassner, Age and Gender Classification using Convolutional Neural Networks, IEEE Workshop on Analysis and Modeling of Faces and Gestures (AMFG), at the IEEE Confi. on Computer Vision and Pattern Recognition (CVPR). Boston. June 2015

Click here for the PDF Click here for the BibTex

> Downloading Age classification Neural Network from the internet



Passing it via CEVA Network Generator and running it on the XM4 FPGA <u>under 10 min !</u>

## **Example: AlexNet PC Profiler**







| ayer ID:                             | 0        |          | 1 2        |          |          | 4        | 5 (      | 3 7      | . 8      | 9          | 10              | - 11     | 12       | 13       | 3 14     |                 |
|--------------------------------------|----------|----------|------------|----------|----------|----------|----------|----------|----------|------------|-----------------|----------|----------|----------|----------|-----------------|
|                                      | _        |          |            |          |          |          |          |          | _        | -          |                 |          | FullyCon |          |          |                 |
|                                      |          |          |            |          |          |          | PoolLaye |          |          | ConvLay F  | oolLaye         | nectedLa | nectedLa | nectedLa |          |                 |
| ayer Type:                           |          | er       | -          | r        | er       | er       | r        | er       |          | er r       |                 | yer      |          | yer      |          | elOperationLaye |
| ayer Name:                           |          | conv1    |            | pool1    | conv2    | norm2    | pool2    | conv3    |          |            |                 |          |          | fc8      | prob     |                 |
| put Number:                          | 1        |          |            | 1        |          |          | 1 1      |          | 1        | 1          | 1               | 1        |          | 1        |          |                 |
| put Dimension X:                     | 612      |          |            |          |          |          |          |          |          |            | 13              |          |          | 1        |          |                 |
| put Dimension Y:                     | 612      |          |            |          |          |          |          |          |          |            | 13              |          |          | 1        |          |                 |
| um. of input maps:                   | 3        |          | 3 96       |          |          |          |          |          |          | 384        | 256             |          |          |          |          |                 |
| ernel Dimension X:                   | 0        | 11       | 1 5        |          |          | -        | 5 3      |          | -        |            | 3               | 0        |          |          | 0        |                 |
| ernel Dimension Y:                   | 0        | 11       | 1 5        | 3        |          |          | 5 3      | 3 3      | 3        | 3          | 3               | 0        | 0        |          | 0        |                 |
| adding Dimension X:                  | 0        | (        | ) (        | 0        | ) :      | 2        | 0 (      | ) 1      | 1        | 1          | 0               | 0        | 0        |          | 0        |                 |
| adding Dimension Y:                  | 0        | (        | ) (        |          |          | 2        | 0 (      | ) 1      | 1        | 1          | 0               | 0        | 0        |          | 0        |                 |
| ride Dimension X:                    | 0        | 4        | <b>4</b> 0 | . 2      |          | 1 (      | 0 2      | 2 1      | 1        | 1          | 2               | 0        | 0        |          | 0        |                 |
| ride Dimension Y:                    | 0        | 4        | 4 0        | . 2      |          | 1        | 0 2      | 2 1      | 1        | 1          | 2               | 0        | 0        |          | 0 0      |                 |
| utput Number:                        | 1        |          | 1 1        | 1        |          | 1        | 1 1      | 1 1      | 1        | 1          | 1               | 1        | 1        | 1        | 1 1      |                 |
| utput Dimension X:                   | 227      | 55       | 5 55       | 27       | . 2      | 7 2      | 7 13     | 3 13     | 13       | 13         | 6               | 1        | 1        | 1        | 1 1      |                 |
| utput Dimension Y:                   | 227      | 55       |            | 27       | . 2      | 7 2      | 7 13     | 3 13     | 13       |            | 6               | 1        | 1        | 1        | 1 1      |                 |
| um. of output maps:                  | 3        |          |            |          |          |          |          |          |          | 256        | 256             |          | 4096     | 1000     | 1000     |                 |
| poling Mode:                         | _        | -        |            | max      |          |          | max      |          | -        |            | nax             |          |          |          |          |                 |
| ctivation Mode:                      |          | Relu     |            | -        | Relu     |          |          | Relu     | Relu     | Relu       |                 | Relu     | Relu     |          |          |                 |
| Savadori Mode.                       | 0        |          | ) 1        | 0        |          | 0        | 1 (      |          |          |            | 0               | 0        |          |          | 0        |                 |
| pha:                                 | 0        |          | 0.0001     | 0        |          | 0.000    |          |          | -        |            | 0               | 0        |          |          |          |                 |
| eta:                                 | 0        |          | 0.0001     | -        |          | 0 0.000  |          |          |          |            | 0               |          |          |          |          |                 |
| opout Factor:                        | 0        |          | 0.75       |          |          |          | 0 (      |          |          |            | 0               |          |          |          |          |                 |
| >> Network Statistics                |          |          |            |          |          |          |          |          |          |            |                 |          |          |          |          |                 |
|                                      |          |          |            |          |          |          |          |          |          |            |                 |          |          |          |          |                 |
| W Reduction                          | 0.1      |          |            |          |          |          |          |          |          |            |                 |          |          |          |          |                 |
| umberOfInputChannels                 | 3        |          | 3 96       | 96       | 9        | 6 25     | 6 256    | 5 256    | 384      | 384        | 256             | 256      | 4096     | 4096     | 1000     |                 |
| umberOfInputZeroChannels             | 0        | (        | ) (        |          |          | 0 .      | 4 4      | 1 4      | 1        | 1          | 13              | 121      | 3545     | 3857     | 7 0      |                 |
| umberOfInputNonZeroElements          | 1123619  | 154576   | 143937     | 143736   | 6345     | 2 3557   | 2 3554   | 20048    | 21327    | 20096      | 3856            | 706      | 551      | 239      | 1000     |                 |
| ·                                    |          |          |            |          |          |          |          |          |          |            |                 | 3774873  |          |          |          |                 |
| umberOfLayerWeights                  | 0        |          |            |          |          |          | 0 (      |          |          |            | 0               |          |          |          |          |                 |
| umberOfBytesPerWeight                | 0        |          | 2 0        |          |          |          | 0 (      |          | _        |            | 0               | 1        | 1        | 1        |          |                 |
| umberOfLoadedWeights                 | 0        | 35712    | 2 0        | 0        | 49152    | 0        | 0 (      | 1179648  | 884736   | 589824     | 0               | 2891776  | 2256896  | 239000   | 0        |                 |
| eights BW                            | 0        |          | <b>4</b> 0 |          | 98304    | 0        | 0 (      | 2359296  | 1769472  | 1179648    | 0               | 2891776  | 2256896  | 239000   | 0 0      |                 |
|                                      | 1175055  |          |            |          |          |          |          |          |          |            |                 |          |          |          |          |                 |
| otal Weight BW                       | 2        |          |            |          |          |          |          |          |          |            |                 |          |          |          |          |                 |
| ernal memory size[B]                 | 524288   |          |            |          |          |          |          |          |          |            |                 |          |          |          |          |                 |
| put memory type internal/external    |          | External | External   | External | Internal | External | External | Internal |          |            |                 | Internal |          | Internal | Internal |                 |
| umberOfInputElements                 | 1123632  | 154587   | 7 290400   | 290400   | 9225     | 6 18662  | 4 186624 | 57600    | 86400    | 86400      | 43264           | 9216     | 4096     | 4096     | 1000     |                 |
| umberOfBytesPerElement               | 1        |          | 2 2        | . 2      | ! :      | 2 :      | 2 2      | 2 2      | 2        | 2          | 2               | 2        | 2        | 2        | 2 2      |                 |
| put BW                               | 1123632  | 309174   | 580800     | 580800   |          | 0 37324  | 8 373248 | 3 (      | 172800   | 172800     | 86528           | 0        | 0        |          | 0        |                 |
| otal Input BW                        | 3773030  |          |            |          |          |          |          |          |          |            |                 |          |          |          |          |                 |
| struct memory type internal/external | External | External | External   | Internal | External | External | Internal | External | External | External I | nternal         | Internal | Internal | Internal | Internal |                 |
| utput memory type internal/external  | 154587   | 290400   |            |          |          |          |          |          |          | 43264      | nternai<br>9216 |          |          |          |          |                 |
| umberOfOutputElements                |          |          |            |          |          |          |          |          |          |            | 9216            |          |          | 1000     |          |                 |
| umberOfBytesPerElement               | 2        |          |            | _        |          |          |          |          | _        |            | _               | . 2      |          | _        | -        |                 |
| utput BW                             | 309174   |          | 580800     | 0        | 37324    | 8 37324  | в (      | 172800   | 172800   | 86528      | 0               | 0        | 0        |          | 0        |                 |
| otal Output BW                       | 2649398  |          |            |          |          |          |          |          |          |            |                 |          |          |          |          |                 |
| otal input/output BW                 | 6422428  |          |            |          |          |          |          |          |          |            |                 |          |          |          |          |                 |
|                                      | 1817298  |          |            |          |          |          |          |          |          |            |                 |          |          |          |          |                 |

## **Example: GoogleNet Challenge**





## **Example: FasterRCNN Challenge**



Full automatic network analysis and optimization without any user involvement

Before High BW

After Low BW



### **Outline**



- Neural Network Introduction and Embedded Challenges
- ► CEVA Deep Neural Network (CDNN) Toolkit
- CDNN2 SW Framework
- **CNN HWA**
- CDNN Performance
- ► CDNN Roadmap

### **CEVA-CNN HW Accelerator**



28

#### Motivation

- Convolutions are the major and most cycles consuming layers
- Dedicated HW engine for executing the convolutions layers in CNN
- Provides the flexibility to cope with future Neural Network development



Compatibility: CEVA-XM vision processors

### Flexible Embedded CNN Solution



# **CEVA-XM Vision DSP**

#### **CDNN2 Real-Time SW Library**

- Controls Full network execution
- Invoke CNN HWA
- Executes all other layers:
   Normalization,
   Pooling,
   Deconvolution,
   Etc.
- Supports Multiple CNN HWAs

# CNN Hardware Accelerator

#### **CNN HWA V1**

- Up to 520 MACs units (130/260/520 MACs)
- 16b x 16b Support
- Executes Convolutions
- Internal Memories
- Internal DMA units
- Autonomous execution

Flexible embedded solution and 16bit support are required to cope with the evolving and leading neural networks

### **Automatic Usage of Multiple HWAs**





Transparent to the user

#### **CNN HWA Schedule**



- RTL
  - ▶ Beta version by Feb 2017
  - ► Final version by April 2017
- SW Support (CDNN2 V3.0.0.F)
  - ➤ XM4 and XM6 June 2017

#### **Outline**



- Neural Network Introduction and Embedded Challenges
- ► CEVA Deep Neural Network (CDNN) Toolkit
- CDNN2 SW Framework
- CDNN HWA
- **CDNN** Performance
- ► CDNN Roadmap

32

### **CDNN2** Performance



|                  |                          | AlexNet Perf<br>(1000 classes, 227 x 227) |                    |     |                     | Tiny Y<br>(16x16b , 4 |                        |                    | Small YOLO<br>(16x16b , 448 x 448) |                       |                        |                    |  |
|------------------|--------------------------|-------------------------------------------|--------------------|-----|---------------------|-----------------------|------------------------|--------------------|------------------------------------|-----------------------|------------------------|--------------------|--|
| Core             | L1 Data<br>Size          | MC/<br>Image                              | I Image I          |     | MC/<br>Image        | BW /<br>Image (MB)    | Ext.<br>memory<br>(MB) | ROI/SEC<br>@600MHz | MC/<br>Image                       | BW /<br>Image<br>(MB) | Ext.<br>memory<br>(MB) | ROI/SEC<br>@600MHz |  |
| XM4              | 512KB                    | 20                                        | 18                 | 30  | 75                  | 425                   | 82.7                   | 8                  | 580                                | 4GB                   | 82.9                   | 1                  |  |
| XM6              | 512KB                    | 11.5                                      | 18                 | 52  | 38                  | 425                   | 82.7                   | 15                 | 290                                | 4GB                   | 82.9                   | 2                  |  |
| XM4 +<br>520 HWA | 256KB +<br>1152KB<br>HWA | 4.8 core<br>1.3 HWA                       | 11 core<br>5.6 HWA | 125 | 5 core<br>5.5 HWA   | 38 core<br>68 HWA     | 82.7                   | 109                | 17.1 core<br>45 HWA                | 64 core<br>199 HWA    | 82.9                   | 13                 |  |
| XM6 +<br>520 HWA | 256KB +<br>1152KB<br>HWA | 3.4 core<br>1.3 HWA                       | 11 core<br>5.6 HWA | 176 | 4.2 core<br>5.5 HWA | 38 core<br>68 HWA     | 82.7                   | 109                | 12.2 core<br>45 HWA                | 64 core<br>199 HWA    | 82.9                   | 13                 |  |
| XM4 +<br>520 HWA | 256KB +<br>2MB<br>HWA    | 4.8 core<br>1.3 HWA                       | 11 core<br>5.6 HWA | 125 | 5 core<br>5.5 HWA   | 38 core<br>67.8 HWA   | 82.7                   | 109                | 17.1 core<br>45 HWA                | 64 core<br>172 HWA    | 82.9                   | 13                 |  |
| XM6 +<br>520 HWA | 256KB +<br>2MB<br>HWA    | 3.4 core<br>1.3 HWA                       | 11 core<br>5.6 HWA | 176 | 4.2 core<br>5.5 HWA | 38 core<br>67.8 HWA   | 82.7                   | 109                | 12.2 core<br>45 HWA                | 64 core<br>172 HWA    | 82.9                   | 13                 |  |

## CEVA-XM6 Platform vs. NVidia TX1 GPU for Implementing Deep Learning



Single CEVA-XM6 based platform is



#### **Assumptions:**

- Based on the implementations of AlexNet and GoogleNet (single batch)
- ► TSMC 20nm technology and core @690MHz
- (\*) ROI/Sec/Watt (\*\*) ROI/Sec
- Nvidia TX1 information: https://www.nvidia.com/content/tegra/embedded-systems/pdf/jetson\_tx1\_whitepaper.pdf

#### **Outline**



- Neural Network Introduction and Embedded Challenges
- ► CEVA Deep Neural Network (CDNN) Toolkit
- CDNN2 SW Framework
- CDNN HWA
- ► CNN Performance
- CDNN Roadmap

## **CEVA CNN Roadmap**



| Release Version                                                                          | Target Date                |
|------------------------------------------------------------------------------------------|----------------------------|
| CEVA-XM4 CDNN2 v2.2.1 - Repack with license                                              | Available                  |
| CEVA-XM6 CDNN2 v2.2.2 - XM6 Support                                                      | Available                  |
| CNN HWA RTL v1.0.0                                                                       | Available                  |
| CEVA-XM4 CDNN2 v3.0.0 – see separate slide<br>CEVA-XM6 CDNN2 v3.0.0 – see separate slide | Jun 20 <sup>th</sup> ,2017 |
| CEVA-XM6 CDNN2 v3.0.1 – XM6 Optimized                                                    | Aug 31 <sup>th</sup> ,2017 |
| CEVA-XM4 CDNN2 v4.0.0 – see separate slide<br>CEVA-XM6 CDNN2 v4.0.0 – see separate slide | Dec 31 <sup>th</sup> ,2017 |

### **CEVA-XM CDNN2 v3.0.0 – June 20th, 2017**



- ► Integration with CNN HWA
- ► Enhanced TensorFlow support
- ► Real-time Dynamic Precision
- Faster RCNN Optimized

### XM CDNN2 v4.0.0 – December 2017



- ▶ Weights compression
- ▶8 bit networks
- Additional layers support
- **RNN**
- ► Custom Layer Support
- Multicore support

## **CEVA-XM CDNN Toolkit Summary**



39

#### **Key Differentiation**

#### **Comprehensive Solution**

Best balanced solution between HWA, DSP and SW to allow most efficient and progressive solution in terms of area, performance efficiency and short time to market

#### **SW Support**

- · CDNN SW framework allows short "time-to market"
  - CEVA Network Generator 2nd generation
  - CDNN2 real-time library 2nd generation

#### **Configurable Solution**

130/260/520 16x16b MACs units options

#### **Flexible and Optimized Solution**

- Support variable kernel sizes and input dimensions
- New layers can be added and executed easily on the XM
- Compression/decompression technique are on the roadmap as well as many others improvements
- CNN HWA is working directly with the memory → no need for additional accumulators / resources and no impact on the utilization

#### **Maturity and Availability**

- Supports and runs the most advanced NNs layers and networks
- Available today





### **Thank You**

#### Resources



- The Ultimate Deep Learning & Artificial Intelligence Platform for Low-power Embedded Devices
- ► CEVA Deep Neural Network (CDNN) product page
- ► CEVA CDNN live AlexNet demonstration
- ► CEVA CDNN2 Network Generator live demonstration
- Automotive "Free Space" using CDNN2 demonstration
- Caffe (32bit PC) Vs. CDNN2 (16bit Embedded)
- CDNN2 Webinar