Matematika II

Rang matrike

Rang matrike $A \in Mat(m \times n, \mathbb{F})$ je število neničelnih vrstic v Reducirani vrstični kanonični formi matrike A (oz. število pivotov), ki ga označimo rank(A)

Bolj teoretično je to dimenzija vektorskega prostora, ki ga generirajo stolpci matrike $\dim(Im(A))$ (oz. max stevilo linerarno neodvisnih stolpcev v matriki)

Za poljubno kvadratno matriko $A \in Mat(n \times n, \mathbb{F})$ so si ekvivalentne naslednje trditve,

- (i) A je **obrnljiva**
- (ii) rank(A) = n
- (iii) A lahko zapišemo kot produkt elementarnih matrik
- (iv) RVKF matrike A je identična matrika

Naj bo $A \in Mat(m \times n. \mathbb{F})$ poljubna nenicelna matrika in naj bo r njen rang. Tedaj velja:

- (i) Obstaja $(r \times r)$ poddeterminanta matrike A, ki je različna od 0
- (ii) $k \in \mathbb{N}, \forall k > r$ so vse $(k \times k)$ poddeterminante matrike enake 0.

Sistem linearnih enačb

Je sistem enačb oblike AX = B

Dva sistema enačb za n neznank sta si med sabo <u>ekvivalentna</u> če imata enaki množici rešitev. Sistem enačb je **homogen** če je B=0

Sistem enačb sestavljajo:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ a_{m1} & a_{32} & \dots & a_{nn} \end{bmatrix} \quad B = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix} \quad X = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \quad C = \begin{bmatrix} A & B \end{bmatrix}$$

Kjer je A matrika sistema, B stolpec desne strani sistema, X stolpec neznank in C razširjena matrika sistema.

Naj bo AX = 0 homogen sistem linearnih enačb.

- (i) Ta sistem ima vsaj eno rešitev X = 0
- (ii) Ce sta X' in X'' rešitvi sistema, je $\alpha'X' + \alpha''X''$ tudi rešitev sistema za $\forall \alpha', \alpha'' \in \mathbb{F}$
- (iii) Ce ima sistem kakšno neničelno rešitev ima neskončno rešitev.

Naj bo AX = B sistem m linearnih enačb za n naznak in naj bo $C = \begin{bmatrix} A & B \end{bmatrix}$ razširjena matrika tega sistema. Tedaj je bodisi rank(C) = rank(A) + 1 $ali \ rank(C) = \leq n$

- (i) Ce je rank(C) = rank(A) + 1 potem sistem AX = B <u>nima</u> rešitev
- (ii) Ce je rank(C) = rank(A) = n potem ima sistem <u>natanko eno</u> rešitev
- (iii) Ce je rank(C) = rank(A) < n potem ima sistem <u>neskončno</u> rešitev, ki jih lahko parametriziramo z (n rank(A)) neodvisnimi parametri.

Determinanta

Determinanta matrike $A \in Mat(n \times n, \mathbb{F})$ je število:

$$\det(A) = \sum_{\sigma \in Sym(n)} A_{1,\sigma(1)} A_{2,\sigma(2)} A_{3,\sigma(3)} \dots A_{n,\sigma(n)} sgn(\sigma)$$

Bolj domače:

Determinanta je vsota vseh različnih možnih izbir elementov matrike. (Tako da iz vsake vrstice in stolpca vzameš en element)

Lastnosti determinante

$$A, B = Mat(n \times n, \mathbb{F})$$

- 1. det(I) = 1
- 2. $det(A^T) = det(A)$
- 3. $\det(A^{-1}) = \frac{1}{\det(A)}$
- 4. det(AB) = det(A) det(B)
- 5. $det(\alpha A) = \alpha^n det(A)$
- 6. Za trikotno ali pa diagonalno matriko je $\det(A) = \det(\operatorname{diag}(\lambda_1, ..., \lambda_n)) = \lambda_1 ... \lambda_n$

Kvadratna matrika je obrnljiva, če in samo, če je njena determinanta neničelna.

Razvoja determinante po vrstici ali stolpcu

Determinanto pod matrike $\det\left(sub^{ij}(A)\right) \in \mathbb{F}$ imenujemo tudi **(i,j)-ti minor matrike A**. Ce ga pomnožimo z $(-1)^{i+j}$ dobimo **(i,j)-ti kofaktor matrike A**: $co_{ij}(A) = (-1)^{i+j}\det(sub^{ij}(A))$. Iz njih lahko sestavimo matriko kofaktorjev matrike A $co(A) \in Mat(n \times n, \mathbb{F})$

Naj bo $A \in Mat(n \times n, \mathbb{F})$ kvadratna matrika:

(i) Za vsako naravno število $i \le n$ velja (razvoj determinante po vrstici):

$$\det(A) = \sum_{k=1}^{n} A_{ik} co_{ik}(A)$$

(ii) Za vsako naravno število $j \le n$ velja (razvoj determinante po stolpcu):

$$\det(A) = \sum_{k=1}^{n} A_{kj} co_{kj}(A)$$

Gaussova metoda

$$\det(A) = \frac{\det(A')}{\det(E^{(p)}) \dots \det(E^{(1)})}$$

Z uporabo vrstični operacij (pazi, kako se spreminja determinanta pri njih) spremeni matriko v trikotno obliko(A') in zmnoži njene diagonalne elemente.

Poddeterminane

Determinantam kvadratnih podmatrik ne nujno kvadratne matrike A pravimo poddeterminante matrike A.

Elementarne vrstične operacije in elementarne matrike

1. $(V_i \leftarrow \alpha V_i)$ i-to vrstico pomnožimo z neničelnim skalarjem $\alpha \in \mathbb{F} \backslash \{0\}$

To je matrika, ki zgleda kot identična matrika ampak ima vi i-ti vrstici lpha

2. $(V_i \leftarrow V_i + \beta V_j)$ i-ti vrstici pristejemo β -kratnik j-te vrstice $\beta \in \mathbb{F}, i \neq j$

To je matrika, ki zgleda kot identična matrika ampak ima v j-tem stolpcu na i-ti vrstici β

3. $(V_i \leftrightarrow V_i)$ zamenjamo i-to in j-to vrstico $i \neq j$

To je matrika, ki zgleda kot identična matrika ampak ima na diagonali na i-tem in j-tem mestu 0 in na i,j in j,1 mestu 1 (npr. za 4x4)

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Naj bosta $A, B \in Mat(m \times n, \mathbb{F})$. B je <u>vrstično ekvivalentna</u> matriki A, če obstajajo elementarne matrike $E^{(1)}, ..., E^{(p)}$ velikosti $m \times n$ da je $B = E^{(p)} ... E^{(1)} A$

Sprememba determinante pri elementarnih vrstičnih operacijah

$$A \in Mat(n \times n, \mathbb{F}), \alpha \in \mathbb{F} - \{0\}, \beta \in \mathbb{F}$$

- (i) $\det([V_i \leftarrow \alpha V_i]A) = \alpha \det(A)$
- (ii) $\det([V_i \leftarrow \beta V_i]A) = \det(A)$
- (iii) $\det([V_i \leftrightarrow V_i]A) = -\det(A)$
- (iv) Ce je ena od vrstic A večkratnik (oz. sta enaki) druge njene vrstice je det A = 0
- (v) Ce je eden od stolpcev A skalaren večkratnik drugega (oz. sta enaka) det A = 0

Končno-dimenzionalni vektorski prostor

Vektorski prostor nad \mathbb{F} je mnozica V, opremljena z operacijo **seštevanja** in **množenja s skalarji**:

$$V \times V \to V$$
, $(v, w) \mapsto v + w$ $\mathbb{F} \times V \to V$ $(\alpha, v) \mapsto \alpha v$

Velja:

- (i) u + (v + w) = (u + v) + w
- (ii) v + w = w + v
- (iii) $\exists 0 \in V: v + 0 = v$
- (iv) $\forall v \in V \ \exists (-v) \in V : \ v + (-v) = 0$
- (v) $\alpha(v+w) = \alpha v + \alpha w$
- (vi) $(\alpha + \beta)v = \alpha v + \beta v$
- (vii) $(\alpha\beta)v = \alpha(\beta v)$
- (viii) 1v = v

Vektorski podprostor

Naj boV vektorski prostor nad \mathbb{F} . Vektorski podprostor prostora V je neprazna podmnožica U prostora V, za katero velja:

- (i) Za poljubna $u, u' \in U$ je $u + u' \in U$
- (ii) Za vsak $u \in U$ in vsak $\alpha \in \mathbb{F}$ je $\alpha u \in U$

Linearno neodvisni vektorji, ogrodje in baza vektorskega prostora

Ogrodje

Naj bo V vektorski prostor nad \mathbb{F} . Podmnožica $O \in V$ je **ogrodje** vektorskega prostora V, ce velja:

$$Span(O) = V$$

Vektorji $v_1, ..., v_k \in V$ sestavljajo ogrodje vektorskega prostora V, če je:

$$Span\{v_1, ..., v_k\} = V$$

Takrat rečemo da množica O oz. vektorji v_1, \dots, v_n generirajo cel prostor V.

Vektorji $v_1, \dots, v_k \in \mathbb{F}^n$ sestavljajo ogrodje prostora \mathbb{F}^n , če in samo, če velja: $rank[v_1 \quad v_2 \quad \dots \quad v_k] = n$

Linearna odvisnost in neodvisnost

Vektorji $v_1, ..., v_k \in V$ so med seboj **linearno odvisni**, če obstajajo taksni skalarji $\alpha_1, ..., \alpha_k \in \mathbb{F}$, da je vsaj eden od teh skalarjev neničelen in da velja: $\alpha_1 v_1 + \cdots + \alpha_k v_k = 0$

Vektorji $v_1, ..., v_k \in V$ so med seboj <u>linearno neodvisni</u>, če niso linearno odvisni. (En vektor se ne da zapisati kot linearna kombinacija drugih). Oz. so linearno neodvisni če velja:

$$rank[v_1 \quad v_2 \quad \dots \quad v_k] = k \quad k \leq n$$

Baza vektorskega prostora

Vektorji $v_1, \dots, v_k \in V$ sestavljajo <u>bazo</u> vektorskega prostora V, če sestavljajo ogrodje prostora in so linearno neodvisni.

Vektorji $v_1, ..., v_k \in \mathbb{F}^n$ sestavljajo bazo, če in samo, če $rank[v_1 \quad v_2 \quad ... \quad v_k] = k = n$

Redukcija ogrodia do baze

Ce vektorji $v_1,\ldots,v_s\in V$ sestavljajo ogrodje vektorskega prostora V, potem lahko izberemo naravna stevila $i_1< i_2< \cdots < i_n \leq s$ tako da vektorji v_{i_1},\ldots,v_{i_n} sestavljajo bazo prostora V.

Inverz

Naj bosta $A, B \in Mat(n \times n, \mathbb{F})$. Matrika B je <u>inverz</u> matrike A, če velja:

$$AB = I_{n \times n} = BA$$

Ce ima matrika A inverz (obojestranski) pravimo, da je obrnljiva.

Za poljubni $A, B \in GL(n, \mathbb{F})$ je $AB \in GL(n, \mathbb{F})$ in $A^{-1} \in GL(n, \mathbb{F})$ in velja:

- (i) $(AB)^{-1} = B^{-1}A^{-1}$
- (ii) $(A^{-1})^{-1} = A$

Cramerjevo pravilo:

Za poljubno obrnljivo matriko $A \in GL(n, \mathbb{F})$ velja:

$$A^{-1} = \frac{1}{\det(A)} (co(A))^t$$

Gauss-Jordanov algoritem

Matriki bločno pripišemo se identiteto enake velikosti in potem spremenimo matriko v RVKF z vrstičnimi operacijami E in tisti blok (ki se zaradi vrstičnih operacij spremeni) je inverz.

$$P = \begin{bmatrix} A & I_{n \times n} \end{bmatrix} \in Mat(n \times 2n, \mathbb{F})$$

$$E[A & I_{n \times n}] = \begin{bmatrix} I & E \end{bmatrix} = \begin{bmatrix} I & A^{-1} \end{bmatrix} \ zato \ I = A' = EA \rightarrow E = A^{-1}$$

Linearna preslikava

Naj bosta V, W vektorska prostora nad \mathbb{F} . Preslikava $T: V \to W$ je **linearna**, če velja:

(i)
$$T(v+v') = T(v) + T(v')$$
 Aditivnost

(ii) $T(\alpha v) = \alpha T(v)$ Homogenost

Linearna preslikava je enolično določena s svojimi vrednostmi na bazi.

Slika, praslika, jedro, rang, defekt

Za vsak vektorski podprostor $U \subset V$ je slika $T(U) = \{Tu : u \in U\}$ vektorski podprostor WZa vsak vektorski podprostor $Z \subset W$ je praslika $T^{-1}(Z) = \{v \in V; Tv \in Z\}$ vektorski podprostor V

<u>Jedro</u> linearne preslikave T je vektorski podprostor $\ker(T) = T^{-1}(\{0\}) \subset V$

Slika linearne preslikave T je vektorski podprostor $im(T) = T(V) \subset W$

Rang preslikave T je rank(T) = dim(im(T))

 $\underline{\mathsf{Defekt}} \text{ linearne preslikave T je } null(T) = \dim(\ker(T))$

 $T \in Lin(V, W)$ je monomorfizem, če in samo, če je $\ker(T) = \{0\}$

Vsaka matrika nam da linearno preslikavo in ker se izkaze, da je to bijekcija, je vsaka linearna preslikava dana z neko matriko.

$$Mat(m \times n, \mathbb{F}) = Lin(\mathbb{F}^n, \mathbb{F}^m)$$

Presek, vsota in direktna vsota vektorskih prostorov

Presek: $(U \cap W) \subset V$

Vsota: $U + W = Span(U \cup W) = \{u + w; u \in U, w \in W\} \subset V$

Presek je največji vektorski podprostor, ki je podprostor vsakega **Vsota** je najmanjši vektorski podprostor, ki vsebuje unijo.

<u>Direktna vsota:</u> V vektorski pr. In $U, W \subset V$

Ce velja, da je U+W=V in hkrati, da je $U\cap W=\{0\}$ pravimo, da je vektorski prostor V **direktna vsota** podprostorov U in W, in to zapišemo:

$$V = U \oplus W$$

Tedaj pravimo, da sta si podprostora U in W komplementarna v V

Dimenzija vektorskega prostora

Vektorski prostor V nad \mathbb{F} je **končno dimenzionalen**, če ima kakšno končno urejeno bazo ali pa če ima le en element. **Dimenzija** vektorskega prostora V je stevilo $n \in \mathbb{N} \cup \{0\}$, da je:

$$V \cong \mathbb{F}^n$$

Oz. je število vektorjev v poljubni bazi vektorskega prostora.

Ce sta $U, W \subset V$ velja: $\dim(U) + \dim(W) = \dim(U + W) + \dim(U \cap W)$

Endomorfizmi

$$End(V) = Lin(V, V)$$
 oz. $End(\mathbb{F}^n) = Lin(\mathbb{F}^n, \mathbb{F}^n) = Mat(n \times n, \mathbb{F})$

Podobnost matrik

 $A, B \in Mat(n \times n, \mathbb{F})$ Matrika B je **podobna** matriki A, če obstaja obrnljiva matrika $P \in GL(n, \mathbb{F})$ da velja: $B = P^{-1}AP$

Oz. Matrika B je podobna matriki A, če in samo ,če obstaja taksna baza \mathcal{B} , da je $B=[A]_{\mathcal{B}}^{\mathcal{B}}$ Ce sta si matriki podobni potem velja: detA=detB trA=trB $p_A=p_B$

Za vsak endomorfizem $T \in End(V)$ so si ekvivalentne trditve:

- (i) T je avtomorfizem
- (ii) rank(T) = dim(V)
- (iii) null(T) = 0
- (iv) $det(T) \neq 0$

Karakteristični polinom

Naj bo $T \in End(V)$, V koncno-dimenzionalni vektorski prostor nad \mathbb{F} , $dimV = n \ge 1$. Karakteristični polinom endomorfizma T je polinom p_T s koeficienti v \mathbb{F} , dan s predpisom:

$$p_T(t) = \det(T - t \cdot id_V) \quad \forall t \in \mathbb{F}$$

Lastne vrednosti in lastni vektorji

Skalar $\lambda \in \mathbb{F}$ jw <u>lastna vrednost</u> endomorfizma T ce obstaja tak nenicelen vektor $v \in V$, da je:

$$Tv = \lambda v$$

Za vsak $T \in End(V)$ in vsak $\lambda \in \mathbb{F}$ so si ekvivalentne naslednje trditve:

- (i) λ je lastna vrednoti endomorfizma T
- (ii) $\ker(T \lambda \cdot id_V) \neq \{0\}$
- (iii) $T \lambda i d_V$ ni avtomorfizem
- (iv) $p_T(\lambda) = 0$

<u>Lastni vektor endomorfizma T, za lastno vrednost</u> λ so nenicelni vektorji iz $E_T(\lambda)$ oz. neničelni vektorji v, ki zadoščajo enačbi $Tv=\lambda v$

Lastni vektorji so med sabo *linearno neodvisni*.

Algebraična in geometrična kratnost

Algebraična kratnost: $kr_{p_T}(\lambda) = akr_T(\lambda)$ Stopnja ničle v karakterističnem polinomu Geometrična kratnost: $\dim(\ker(T-\lambda id_V)) = gkr_T(\lambda)$ Dimenzija lastnega podprostora $1 \leq gkr_T(\lambda) \leq akr_T(\lambda)$

Invariantnost

 $T \in End(V)$. Vektorski podprostor $U \subset V$ je **T-invarianten**, če velja $T(U) \subset U$

Diagonalizabilnost

 $T \in End(V)$ je <u>diagonalizabilen</u>, če obstaja taksna baza \mathcal{B} vektorskega prostora V, da je $[T]_{\mathcal{B}}^{\mathcal{B}}$ diagonalna matrika.

Pogoj za diagonalizabilnost:

 $T \in End(V)$ V koncno-dimenzionalni vektorski prostor nad \mathbb{F} $n = \dim_{\mathbb{F}} V \ge 1$

- (i) Za vsak $\lambda \in \mathbb{F}$ je $gkr_T(\lambda) \leq akr_T(\lambda)$
- (ii) Ce je $\mathbb{F} = \mathbb{C}$, potem je T **diagonalizabilen**, če in samo, če velja:

$$akr_T(\lambda) = gkr_T(\lambda) \quad \forall \lambda \in \mathbb{F}$$

(iii) Ce je $\mathbb{F} = \mathbb{R}$, potem je T <u>diagonalizabilen</u>, če in samo, če velja:

$$akr_T(\lambda) = gkr_T(\lambda) \quad \forall \lambda \in \mathbb{F}$$

Poleg tega mora pa se veljati, da je karakteristični polinom p_T razcepen na realne linearne faktorje (nima kompleksnih ničel)

Ekvivalentne so si naslednje trditve:

- (i) T je diagonalizabilen
- (ii) Obstaja baza prostora V, ki je sestavljena iz lastnih vektorjev endomorfizma T
- (iii) $\sum_{\lambda \in \mathbb{F}} E_T(\lambda) = V$
- (iv) $\sum_{\lambda \in \mathbb{F}} gkr_T(\lambda) = \dim_{\mathbb{F}} V$

Schurov izrek

Naj bo V <u>kompleksen</u> končno-dimenzionalen vektorski prostor dimenzije $n=\dim V\geq 1$ in naj bo $T\in End(V)$. Tedaj obstaja taksna baza $\mathcal B$ vektorskega prostora V, da je koordinatna matrika $[T]^{\mathcal B}_{\mathcal B}$ **zgornje trikotna** matrika.

Pomembna posledica:

 $\lambda_1, \dots, \lambda_m$ vse paroma različne lastne vrednosti endomorfizma T (ni nujno diagonalizabilen). Tedaj velja:

(i)
$$\det(T) = \lambda_1^{akr_T(\lambda_1)} \cdot \lambda_2^{akr_T(\lambda_2)} \cdot \dots \cdot \lambda_m^{akr_T(\lambda_m)}$$

(ii)
$$tr(T) = akr_T(\lambda_1)\lambda_1 + \dots + akr_T(\lambda_m)\lambda_m$$

Jordanova kanonična forma oz. Jordanova kletka je skoraj diagonalna oblika matrike.

Cayley-Hamiltonov izrek

Naj bo $T \in End(V)$, kjer je V <u>kompleksen</u> končno-dimenzionalen vektorski prostor pozitivne dimenzije. Tedaj velja:

$$p_T(T) = 0$$

Prevedeno: Vsaka kvadratna matrika zadostuje lastnemu karakterističnemu polinomu.

Cayley-Hamiltonov izrek nam omogoča, da potenco A^n izrazimo s potencami $I, A, A^2, ..., A^{n-1}$ oz. računanje eksponentov in omogoči nam tudi način, da izračunamo inverz matrike.

$$T^{-1} = \frac{1}{\det(T)}((-T)^{n-1} + tr(T)(-T)^{n-2} + c_{n-2}(-T)^{n-3} + \dots + c_1T^0)$$

Kako se izračuna funkcijo nad endomorfizmom ali matriko:

 $T \in End(V)$ diagonalizabilen endomorfizem in naj bodo $\lambda_1, \ldots, \lambda_m$ vse paroma razilcne lastne vrednosti endomorfizma T. Za poljubno funkcijo $f: \sigma(T) \to \mathbb{F}$, definiramo **vrednost** $f(T) \in End(V)$ **funkcije** f v endomorfizmu T. s predpisom:

$$f(T) = f(\lambda_1)id_{E_T(\lambda_1)} \oplus ... \oplus f(\lambda_m)id_{E_T(\lambda_m)}$$

Krajše:

$$\begin{split} & [f(T)]_{\mathcal{B}}^{\mathcal{B}} = diag\big(f(\eta_1), \dots, f(\eta_n)\big) \\ & A = PDP^{-1} \quad f(A) = Pf(D)P^{-1} = P \; diag\big(f(\eta_1), \dots, f(\eta_n)\big) \, P^{-1} \end{split}$$

Skalarni produkt

Naj bo V vektorskio prostor nad \mathbb{F} Preslikavi:

$$V \times V \to \mathbb{F}$$
, $(v, w) \mapsto \langle v, w \rangle$

pravimo **skalarni produkt na prostoru V**, če za vse $u, v, w \in V$ in za vsak $\alpha \in \mathbb{F}$ velja:

- (i) $\langle v, w \rangle = \overline{\langle w, v \rangle}$ Konjugirano komutativen
- (ii) $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$
- (iii) $\langle \alpha v, w \rangle = \alpha \langle v, w \rangle$
- (iv) $\langle v, v \rangle \geq 0$
- (v) Ce je $\langle v, v \rangle = 0$, potem je v = 0

Norma vektorja

$$||v|| = \langle v, v \rangle^{\frac{1}{2}} > 0$$

Paralelogramsko pravilo, Trikotniška in Cauchy-Schwartzeva neenakost

Paralelogramsko pravilo: $||v + w||^2 + ||v - w||^2 = 2||v||^2 + 2||w||^2$

<u>Trikotniška neenakost</u>: $|||v|| - ||w||| \le ||v + w|| \le ||v|| + ||w||$

Cauchy-Schwartzeva neenakost: $|\langle v, w \rangle| \le ||v|| \, ||w||$

Polarizacijska enačba

Naj bo V vektorski prostor s skalarnim produktom nad $\mathbb F$

(i) Ce je $\mathbb{F} = \mathbb{R}$, potem velja:

$$\langle v, w \rangle = \frac{1}{4} (\|v + w\|^2 - \|v - w\|^2)$$

(ii) Ce je $\mathbb{F} = \mathbb{C}$, potem velja:

$$\langle v, w \rangle = \frac{1}{4} (\|v + w\|^2 - \|v - w\|^2 + i\|v + iw\|^2 - i\|v - iw\|^2)$$

Skratka pravi nam, da je skalarni produkt definiran z normo, ki jo naredi. Oz. da če vemo normo, lahko izračunamo pripadajoči skalarni produkt.

Ortonormirana baza

Naj bo V vektorski prostor nad $\mathbb F$ s skalarnim produktom. Vektor $u \in V$ je <u>normiran</u>, če je $\|u\| = 1$. Neničelni vektor $v \in V - \{0\}$ lahko <u>normiramo</u>, tako, da ga pomnožimo s skalarjem $\frac{1}{\|v\|}$.

Vektorji $v_1, \dots, v_k \in V$ <u>sestavljajo ortonormiran sistem</u> vektorskega prostora V, če velja:

$$\langle v_i, v_j \rangle = \begin{cases} 1 & ; i = j \\ 0 & ; i \neq j \end{cases}$$

Ce vektorji $v_1, ..., v_k \in V$ sestavljajo ortonormiran sistem in hkrati sestavljajo bazo prostora V, potem pravimo, da sestavljajo **kompleten ortonormiran sistem oz. otronormirano bazo**.

Ce imamo vektorski produkt in bazo, vedno obstaja nek skalarni produkt glede na katerega bo ta baza ortonormirana.

Gram-Schmidtova ortonormalizacija

Naj bo V vektorski prostor s skalarnim produktom. Za poljubne vektorje $v_1, \dots, v_k \in V$, ki so med seboj linearno neodvisni, lahko rekurzivno izracunamo vektorje $u_1, \dots, u_k \in V$ s predpisom:

$$u_{1} = \frac{1}{\|v_{1}\|} v_{1}$$

$$u_{j} = \frac{1}{\|v_{j} - \sum_{i=1}^{j-1} \langle v_{i}, u_{i} \rangle u_{i} \|} \left(v_{j} - \sum_{i=1}^{j-1} \langle v_{j}, u_{i} \rangle u_{i} \right)$$

Dobljeni vektorji u_1, \dots, u_k sestavljajo ortonormiran sistem, poleg tega pa velja:

$$Span\{v_1, \dots, v_k\} = Span\{u_1, \dots, u_k\}$$

(Vektorje malo drugače orientirali in skrajšali/podaljšali ampak se vedno generirajo isti prostor)

Ortogonalni komplement

Naj bo V vektorski prostor nad \mathbb{F} s skalarnim produktom. Naj bo \mathcal{O} podmnožica vektorskega prostora V. Definirajmo:

$$\mathcal{O}^{\perp} = \{ v \in V : \langle v, u \rangle = 0 \ \forall u \in \mathcal{O} \}$$

Podmnožico \mathcal{O}^{\perp} imenujemo <u>ortogonalni kompliment</u> množice \mathcal{O} . To je množica vseh vektorjev iz V, ki so pravokotni na vse vektorje iz \mathcal{O}

Lastnosti:

(i)
$$\mathcal{O}^{\perp}$$
 je vektorski podprostor prostora V

(ii)
$$\mathcal{O} \subset (\mathcal{O}^{\perp})^{\perp}$$

(iii)
$$\mathcal{O}^{\perp} = Span(\mathcal{O})^{\perp}$$

(iv)
$$\mathcal{O} \subset \mathcal{O}' = > (\mathcal{O}')^{\perp} \subset \mathcal{O}^{\perp}$$

$$(v) V = \mathcal{O} \oplus \mathcal{O}^{\perp}$$

(vi)
$$(\mathcal{O}^{\perp})^{\perp} = \mathcal{O}$$

Linearni funkcional

Linearnim preslikavam $V \to \mathbb{F}$ pravimo tudi <u>linearni funkcionali</u> na V.

$$Lin(V, \mathbb{F}) = Lin_{\mathbb{F}}(V, \mathbb{F}) = V^*$$

Dualni vektorski prostor prostora V

Rieszov representacijski izrek

Naj bo V koncno-dimenzionalen vektorski prostor nad \mathbb{F} s skalarnim produktom. Preslikava:

$$V \to V^*$$
 $v \mapsto \langle \cdot, v \rangle$

je konjugirano linearna bijekcija.

Za poljubni linearni funkcional $\phi \in V^*$ torej obstaja natanko en tak vektor $v \in V$, da je:

$$\phi(u) = \langle u, v \rangle \quad \forall u \in V$$

Adjungirana preslikava

Naj bosta V,W končno-dimenzionalna vektorska prostora nad \mathbb{F} s skalarnim produktom. $T \in Lin(V,W)$ Za poljuben $w \in W$ je preslikava:

$$\langle T \cdot, w \rangle : V \to \mathbb{F}$$
 $v \mapsto \langle Tv, w \rangle$

linearen funkcional na prostoru V. (Obstaja natanko en vektor iz V, ki reprezentira ta linearni funkcional) Ta vektor bomo označili z:

$$T^*w \in V$$

 $T^*w \in V$ je enolicno dolocen s pogojem, da je:

$$\langle Tv, w \rangle_W = \langle v, T^*w \rangle_V$$

S tem smo dobili linearno preslikavo:

$$T^*: W \to V \qquad w \mapsto T^*w \qquad T^* \in Lin(W, V)$$

Lastnosti

Naj bodo V, W, Z koncno-dimenzionalni vektorski prostori nad \mathbb{F} s skalarnim produktom. Za vse $T, T' \in Lin(V, W)$, za vse $S \in Lin(W, Z)$ in za vse $\alpha \in \mathbb{F}$ velja:

(i)
$$(T + T')^* = T^* + T'^*$$

(ii)
$$(\alpha T)^* = \overline{\alpha}(T^*)$$

(i) in (ii) => Konjugirana linearnost

(iii)
$$(T^*)^* = T$$

(iv)
$$(ST)^* = T^*S^*$$

Antidistributivnost

$$(v) \qquad (id_V)^* = id_V$$

(vi)
$$\ker(T^*) = (im(T))^{\perp}$$

(vii)
$$im(T^*) = (\ker(T))^{\perp}$$

Kako se praktično adjungira?

V,W vektorska prostora nad \mathbb{F} s skalarnim produktom, oba končno-dimenzionalna s pozitivno dimenzijo. Naj bo \mathcal{B} ortonormirana baza prostora V in naj bo \mathcal{B}' ortonormirana baza prostora W. Za poljubno linearno preslikavo $T \in Lin(V,W)$ velja:

$$[T^*]_{\mathcal{B}}^{\mathcal{B}'} = \left([T]_{\mathcal{B}'}^{\mathcal{B}}\right)^h$$

Dodatne lastnosti:

- (i) $p_{T^*} = \overline{p_T}$
- (ii) $\det(T^*) = \overline{\det(T)}$
- (iii) $tr(T^*) = \overline{tr(T)}$
- (iv) $\sigma(T^*) = \overline{\sigma(T)} = \{ \overline{\lambda} \in \mathbb{F}; \lambda \in \sigma(T) \}$
- (v) $akr_{T^*}(\lambda) = akr_T(\overline{\lambda})$
- (vi) $gkr_{T^*}(\lambda) = gkr_T(\overline{\lambda})$
- (vii) $E_{T^*}(\lambda) = \left(im(T \overline{\lambda}id)\right)^{\perp}$

Linearna izometrije

V, W vektorska prostora nad \mathbb{F} s skalarnim produktom. Linearna preslikava $T \in Lin(V, W)$ je <u>linearna izometrija</u>, če velja:

$$||Tv - Tv'|| = ||v - v'||$$

Če je poleg tega T tudi izomorfizem, pravimo, da je <u>izometrični izomorfizem</u>. Naslednje trditve so si ekvivalentne:

- (i) T je linearna izometrija
- (ii) $||Tv|| = ||v|| \quad \forall v \in V$
- (iii) $\langle Tv, Tv' \rangle = \langle v, v' \rangle \quad \forall v, v' \in V$

Ugotavljanje ali je preslikava izometrija

- (i) T je **linearna izometrija**, če in samo, če velja $T^*T = id$
- (ii) T je <u>izometrični izomorfizem</u>, če in samo, če je izomorfizem in velja, da je $T^{-1} = T^*$

Unitarne in ortogonalne preslikave

Matrika $U \in Mat(n \times n, \mathbb{F})$ je <u>unitarna</u>, če je $U^hU = I$ Realnim unitarnim matrikam pravimo, da so **ortogonalne**.

- (i) Ce je T izometrični izomorfizem $\mathcal B$ ortonormirana baza prostora V in $\mathcal B'$ ortonormirana baza prostora W potem je $[T]_{\mathcal B'}^{\mathcal B}$ unitarna
- (ii) Ce obstajata taksna ortonormirana baza $\mathcal B$ prostora V in taksna ortonormirana baza prostora W $\mathcal B'$, da je $[T]_{\mathcal B'}^{\mathcal B}$ unitarna, potem je T izometrični izomorfizem.

Izometrični izomorfizmi med realnimi vekt. Prostori so <u>ortogonalne preslikave</u>, med kompleksnimi vekt. prostori pa jim pravimo <u>unitarne preslikave</u>. Velja se:

$$|\det(T)| = 1$$
 $|\lambda| = 1$ $\forall \lambda \in \sigma(T)$

Unitarna/Ortogonalna diagonalizabilnost

 $T \in End(V)$ je <u>unitarno(oz. ortogonalno) diagonalizabilen</u>, če obstaja ortonormirana baza \mathcal{B} prostora V, da je $[T]_{\mathcal{B}}^{\mathcal{B}}$ diagonalna.

A je, kot endomorfizem prostora \mathbb{C}^n unitarno diagonalizabilna, ce in samo, ce obstaja taksna unitarma matrika U, da je U^hAU diagonalna

Unitarna/Ortogonalna podobnost

 $B \in Mat(n \times n, \mathbb{C})$ je <u>unitarno podobna</u> matriki $A \in Mat(n \times n, \mathbb{C})$, ce obstaja taksna unitarna matrika U, da je $B = U^h A U$

Normalni endomorfizem

Endomorfizem $T \in End(V)$ je <u>normalen</u>, če zanj velja $T^*T = TT^*$ $A \in Mat(n \times n, \mathbb{F})$ je <u>normalna</u>, če in samo, če je $A^hA = AA^h$

Pomembno si zapomnit:

- (i) Vsaka diagonalna matrika je normalna
- (ii) Vsaka unitarna (oz. ortogonalna) matrika je normalna
- (iii) Vsak unitaren (oz. ortogonalen) endomorfizem je normalen
- (iv) Vsaka realna matrika, ki je ortogonalno podobna normalni matriki, je normalna matrika
- (v) Vsaka kompleksna matrika, ki je unitarno podobna normalni matriki, je normalna matrika
- (vi) Kvadratna kompleksna matrika je normalna, če in samo, če je unitarno podobna diagonalni matriki.

Dodatek: $T \in End(V)$ normalen endomorfizme. Za vsak $\lambda \in \mathbb{F}$ je $E_T(\lambda)^{\perp}$ T-invarianten.

Za poljuben diagonalizabilen endomorfizem $T \in End(V)$ obstaja tak skalarni produkt, na prostoru V, da je T glede na ta skalarni produkt normalen.

Izrek o diagonalizabilnosti normalnih endomorfizmov

Naj bo *V* končno-dimenzionalen **kompleksen** vektorski prostor pozitivne dimenzije s skalarnim produktom. Vsak normalen endomorfizem vektorskega prostora V, je tedaj **unitarno diagonalizabilen**.

Sebi-adjungirani endomorfizmi

Endomorfizem $T\in End(V)$ je <u>sebi-adjungiran</u>, če velja: $T^*=T$ Če je sebi-adjungiran, je tudi normalen. Matrika $A\in Mat(n\times n,\mathbb{F})$ je sebi-adjungirana, če je hermitska $A=A^h$

Projektor je vedno sebi-adjungiran: $\ker(P^*) = (im(P))^{\perp} im(P^*)(\ker(P))^{\perp}$

- (i) Ce je $T \in End(V)$ sebi-adjungiran, potem je za vsako ortonormirano bazo prostora V matrika $[T]^{\mathcal{B}}_{\mathcal{B}}$ hermitska
- (ii) Ce je $\mathcal B$ taksna ortonormirana baza prostora V, da je $[T]^{\mathcal B}_{\mathcal B}$ hermitska, je T sebiadjungiran

- (i) Za vsak vektor $v \in V$ je $\langle Tv, v \rangle \in \mathbb{R}$
- (ii) Vse lastne vrednosti endomorfizma T so realne
- (iii) $\det T \in \mathbb{R}$ $tr(T) \in \mathbb{R}$
- (iv) Karakteristični polinom p_T endomorfizma T je realen polinom in je razcepen na same realne faktorje.

Izrek o diagonalizabilnosti sebi-adjungiranih endomorfizmov

V končno-dimenzionalen **realen** vektorski prostor s skalarnim produktom, pozitivne dimenzije. Za poljuben sebi-adjungiran endomorfizem $T \in End(V)$ obstaja ortonormirana baza \mathcal{B} vektorskega prostora V, da je matrika $[T]_{\mathcal{B}}^{\mathcal{B}}$ **realna diagonalna matrika**.

Pomeni: Vsak sebi-adjungiran endomorfizem je <u>ortogonalno diagonalizabilen</u>. (Velja očitno tudi za $\mathbb C$)

Posledica tega:

- (i) Vsaka realna simetrična matrika, je ortogonalno podobna neki realni diagonalni matriki
- (ii) Vsaka kompleksna <u>hermitska</u> matrika je unitarno podobna neki realni diagonalni matriki.

Pozitivno definitni endomorfizmi

Endomorfizem $T \in End(V)$ je **pozitivno definiten**, če je **sebi-adjungiran** in velja:

$$\langle Tv, v \rangle > 0 \quad \forall v \in V - \{0\}$$

V tem primeru označimo T > 0

Endomorfizem $T \in End(V)$ je <u>pozitivno definiten</u>, če in samo, če je sebi-adjungiran in so poleg tega vse njegove lastne vrednosti pozitivna realna števila.

Matrika $A \in Mat(n \times n, \mathbb{F})$ je **pozitivno definitna**, če je **hermitska** in velja $v^h A v > 0 \quad \forall v \in \mathbb{F}^n - \{0\}$

- (i) Vsaka realna/kompleksna matrika, ki je ortogonalno/unitarno podobna realni/kompleksni pozitivno definitni matriki, je pozitivno definitna
- (ii) Ce je T pozitivno definiten, potem za vsako ortonormirano bazo \mathcal{B} prostora V velja, da je $[T]_{\mathcal{B}}^{\mathcal{B}}$ pozitivno definitna matrika (in vice versa)

Sylvestrov kriterij za pozitivno definitnost

Matrika $A \in Mat(n \times n, \mathbb{F})$ je **pozitivno definitna**, če in samo , če je **hermitska** in velja:

$$\det\left(sub_{\{1,2,...,k\}\{1,2,...,k\}}(A)\right) > 0$$
 $za\ vse\ k = 1,2,...,n$

(To pomeni, da so glavne poddeterminante pozitivne)

Dodatne »definitnosti«

T je <u>negativno definiten</u> (T < 0), ce je sebi-adjungiran in velja $\langle Tv, v \rangle < 0 \quad \forall v \in V - \{0\}$

T je **pozitivno semi-definiten** $(T \ge 0)$, ce je sebi-adjungiran in velja $\langle Tv, v \rangle \ge 0 \quad \forall v \in V - \{0\}$

T je **negativno semi-definiten** $(T \le 0)$, ce je sebi-adjungiran in velja $\langle Tv, v \rangle \le 0 \quad \forall v \in V - \{0\}$

Kvadratne forme

$$\mathbb{F} = \mathbb{R}$$

Naj bo V končno-dimenzionalni **realni** vektorski prostor. <u>Bilinearna forma</u> na V je prslikava:

$$g: V \times V \to \mathbb{R}$$

Za katero velja:

- (i) g(u+v,w)=g(u,w)+g(v,w) Aditivnost v 1. faktorju (ii) g(v,u+w)=g(v,u)+g(v,w) Aditivnost v 2. faktorju (iii) g(v,u+w)=g(v,w) Aditivnost v 2. faktorju
- (iii) $g(\alpha v, w) = g(v, \alpha w) = \alpha g(v, w)$ Homogenost

Taksni linearni formi g pravimo, da je **simetrična**, če velja se:

(iv)
$$g(v,w) = g(w,v)$$

Preslikava $f:V \to \mathbb{R}$ je **kvadratna forma** na V, ce obstaja taksna **bilinearna simetrična forma** na V, da je:

$$f(u) = g(u, u)$$

Tedaj je f kvadratna forma prirejena simetrični bilinearni formi g.

Vsak skalarni produkt na V je simetrična bilinearna forma na V.

Ne vem kako nujno, ampak mogoče smiselno:

Naj bo V koncno-dimenzionalen realen vektorski prostor s skalarim prodkuktom. Preslikava:

$$\{sebi-adrungirani\ endomorfizmi: V \to V\} \to \{simetricne\ bilinearne\ forme\ na\ V\}$$
 $T\mapsto \Gamma_T$

je izomorfizem realnih vektorskih prostorov.

Ce je dimenzija $dimV = n \ge 1$ in je g simetricna bilinearna forma:

- (i) Obstaja ortonormirana baza prostora V v kater ima simetricna bilinearna forma diagonalno obliko.
- (ii) Naj bo $\mathcal{B}=[v_1,\ldots,v_n]$ ortonormirana baza prostora V v kateri ima g diagonalno obliko. Ce je $T\in End(V)$ tisti sebi-adjungiran endomorfizem, za katerega je $\Gamma_T=g$ potem: $[T]_{\mathcal{B}}^{\mathcal{B}}=diag\big(g(v_1,v_1),\ldots,g(v_n,v_n)\big)$

Vedno obstaja taksna baza, da bo simetrična bilinearna forma v njej imela po diagonali samo elemente $\{-1,0,1\}$ izven diagonale pa vedno 0

Ce najdemo se kakšno taksno bazo kjer to velja, se število pozitivnih, negativnih in ničelnih elementov ne spremeni.

$$\begin{array}{ll} ind^-(g) = \#\{i \in \{1,\dots,n\}; g(v_i,v_i) < 0\} & \text{indeks negativnosti forme g} \\ ind^+(g) = \#\{i \in \{1,\dots,n\}; g(v_i,v_i) > 0\} & \text{indeks pozitivnosti forme g} \\ \left(ind^+(g),ind^-(g)\right) & \text{Signatura forme g} \\ rank(g) = ind^+(g) + ind^-(g) & \text{Rang forme g} \end{array}$$

Velja:

$$ind^+(g) = \sum_{\lambda > 0} akr_T(\lambda)$$
 $ind^-(g) = \sum_{\lambda < 0} akr_T(\lambda)$ $ind^0(g) = akr_T(0)$ $rank(g) = rank(T)$

Krivulje, ploskve in hiperploskve drugega reda

Homogeni del realnega polinoma stopnje 2 v n spremenljivkah je kvadratna forma na \mathbb{R}^n . Mnozici resitev (mnozici nicel) splosne enačbe 2. reda pravimo **hiperploskev 2. reda**.

$$\sum_{i=1}^{n} a_{ii} x_i^2 + 2 \sum_{1 \le i < j \le n} a_{ij} x_i x_j + \sum_{i=1}^{n} b_i x_i + c_0 = 0$$

Splošni enačbi 2. reda lahko priredimo simetrično matriko $A \in Mat(n \times n, \mathbb{R})$, kjer je $A_{ij} = a_{ij} = A_{ji}$ Stolpec

$$B = \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_n \end{bmatrix}$$

In vektor neznank:

$$X = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}$$

Tako lahko zapišemo splošno enačbo 2. reda v obliki:

$$X^tAX + B^tX + C_0 = 0$$

Ker je A simetrična realna matrika je ortogonalno diagonalizabilna.

Z rotacijo se lahko znebimo morebitnih mešanih kvadratnih členov. S translacijo, pa se lahko znebimo linearnih členov.

Totalni odvod

Naj bo $g: \epsilon \to \mathbb{R}^m \quad \epsilon \subset \mathbb{R}^n \quad g(x_1, \dots, x_n)$ vektorska funkcija. Naj bo $a \in \epsilon$ notranja točka množice ϵ . Ce je g totalno odvedljiva v tocki a, matriki:

$$(Dg)(a) = \begin{bmatrix} \frac{\partial g_1}{\partial x_1}(a) & \frac{\partial g_1}{\partial x_2}(a) & \dots & \frac{\partial g_1}{\partial x_n}(a) \\ \frac{\partial g_2}{\partial x_1}(a) & \frac{\partial g_2}{\partial x_2}(a) & \dots & \frac{\partial g_2}{\partial x_n}(a) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial g_m}{\partial x_1}(a) & \frac{\partial g_m}{\partial x_2}(a) & \dots & \frac{\partial g_m}{\partial x_n}(a) \end{bmatrix}$$

Pravimo Jacobijeva matrika funkcije g v točki a

Drugi načini zapisa se:

$$(Dg)(a) = \begin{bmatrix} \left((\nabla g_1)(a) \right)^t \\ \left((\nabla g_2)(a) \right)^t \\ \vdots \\ \left((\nabla g_m)(a) \right)^t \end{bmatrix} = \begin{bmatrix} \frac{\partial g}{\partial x_1}(a) & \frac{\partial g}{\partial x_2}(a) & \dots & \frac{\partial g}{\partial x_n}(a) \end{bmatrix}$$

Za $w \in \mathbb{R}^n$:

$$(Dg)(a)w = \begin{bmatrix} ((\nabla g_1)(a))^t w \\ ((\nabla g_2)(a))^t w \\ \vdots \\ ((\nabla g_m)(a))^t w \end{bmatrix} = \begin{bmatrix} (\nabla g_1)(a) \cdot w \\ (\nabla g_2)(a) \cdot w \\ \vdots \\ (\nabla g_m)(a) \cdot w \end{bmatrix}$$

$$\lim_{w \to 0} \frac{g_i(a+w) - g_i(a) - (\nabla g_i)(a) \cdot w}{|w|} = 0$$

$$\lim_{w \to 0} \frac{g(a+w) - g(a) - (Dg)(a)w}{|w|} = 0$$

Ce je $h: \epsilon \to \mathbb{R}^m$ in, če je $A \in Mat(m \times n, \mathbb{R})$, da velja da je:

$$\lim_{w \to 0} \frac{h(a+w) - h(a) - Aw}{|w|} = 0$$

Potem je h totalno odvedljiva v točki a in A = (Dh)(a).

 $\epsilon^{odp} \subset \mathbb{R}^n$, $g:\epsilon \to \mathbb{R}^m$ totalno odvedljiva v vseh točkah potem je Dg preslikava:

$$Dg: \epsilon \to Mat(m \times n, \mathbb{R})$$

Verižno pravilo

Naj bosta $g: \epsilon \to \mathbb{R}^m, \epsilon \subset \mathbb{R}^n$ in $f: D \to \mathbb{R}^p, D \subset \mathbb{R}^m$ vektorski funkciji. $a \in \epsilon$ je notranja točka. $g(a) \in D$ pa je notranja točka množice D. Vse komponente kompozituma $f \circ g: g^{-1}(D) \to \mathbb{R}^p$ so totalno odvedljive. Torej je tudi $f \circ g$ totalno odvedljiva v točki a.

$$D(f \circ g)(a) = \left[(\nabla f_k) (g(a))^t \frac{\partial g}{\partial x_j}(a) \right]_{k=1,\dots,p} \int_{j=1,\dots,n} dy$$

$$= \begin{bmatrix} (\nabla f_1) (g(a))^t \\ (\nabla f_2) (g(a))^t \\ \dots \\ (\nabla f_p) (g(a))^t \end{bmatrix} \left[\frac{\partial g}{\partial x_1}(a) \dots \frac{\partial g}{\partial x_n}(a) \right] = (Df) (g(a)) \cdot (Dg)(a)$$

Ekstremi funkcij več spremenljivk

Stacionarna točka

Naj bo $f: D \to \mathbb{R}$, $D^{odp} \subset \mathbb{R}^n$ totalno odvedljiva vektorska funkcija. Točka $a \in D$ je <u>stacionarna točka</u> funkcije f, ce velja:

$$(\nabla f)(a) = 0$$

Ce ima f v tocki a lokalni ekstrem potem je a stacionarna točka.

Hessejeva matrika

Naj bo f dvakrat zvezno odvedljiva na množici D. Matriki:

$$(Hf)(a) = \left[\frac{\partial^2 f}{\partial x_i \partial x_j}(a)\right]_{i=1,\dots,n} \in Mat(n \times n, \mathbb{R})$$

pravimo Hessejeva matrika funkcije f v točki a.

Hessejeva matrika je simetrična.

Pogoj za ekstrem

Naj bo $f: D \to \mathbb{R}$ dvakrat zvezno odvedljiva funkcija n spremenljivk definirana na odprti podmnozici $D^{odp} \subset \mathbb{R}^n$, in naj bo $a \in D$ stacionarna točka funkcije f. Velja:

- (i) Če je (Hf)(a) > 0 (pozitivno definitna) potem ima f v točki a strogi lokalni minimum
- (ii) Ce je (Hf)(a) < 0 (negativno definitna) potem ima f v točki a strogi lokalni maksimum
- (iii) Ce (Hf)(a) ni niti pozitivno semi-definitna niti negativno semi-definitna potem f v točki a **nima** lokalnega ekstrema.

Vezani ekstremi

Naj bo $f\colon D\to\mathbb{R}$ funkcija definirana na $D^{odp}\subset\mathbb{R}^n$. Naj bo R podmnožica $R\subset\mathbb{R}^n$ poljubna in naj bo $a\in R\cap D$. Ce ima zožitev $f|_{R\cap D}$ lokalni ekstrem v točki a potem pravimo, da ima funkcija f v tocki a vezan ekstrem na podmnožici R.

Vez

Navadno R podajamo kot množico ničel neke funkcije $g: \epsilon \to \mathbb{R}^m$, ki je definirana na $\epsilon^{odp} \subset \mathbb{R}^n$, torej: $R = g^{-1}(\{0\}) = \{v \in \epsilon; g(v) = 0\} \subset \epsilon \subset \mathbb{R}^n$

Ce ima zožitev $f|_{R\cap D}=f|_{g^{-1}(0)\cap D}$ lokalni ekstrem v točki $a\in g^{-1}(0)\cap D$, pravimo, da ima f v tocki a vezan ekstrem pri vezi g.

Lagrangeeva metoda multiplikatorjev

Naj bo $f:D\to\mathbb{R}$ **totalno odvedljiva** skalarna funkcija n spremenljivk, definirana na odprti podmnožici $D\subset\mathbb{R}^n$, in naj bo $g:\epsilon\to\mathbb{R}^m$ zvezno odvedljiva vektorska funkcija n spremenljivk, definirana na odprti podmnožici $\epsilon\subset\mathbb{R}^n$. Naj bo $a\in\epsilon\cap D$ taksna tocka, da je:

$$g(a) = 0$$

in da velja:

$$rank(Dg)(a) = m$$

Ce ima funkcija f v tocki a vezan ekstrem pri vezi g, potem obstajajo taksne realne konstante $\lambda_1, \dots, \lambda_m$, da velja:

$$(\nabla f)(a) = \sum_{i=1}^{m} \lambda_i(\nabla g_i)(a)$$

Pomeni, da lahko gradient v okolici točke α izrazimo kot linearno kombinacijo gradientov vezi. To je kot da bi rekli, da je smerni odvod f v poljubni tangentni smer je enak 0.

Na vajah smo napisali $F(x,y,z,\lambda)=f(x,y,z)-\lambda g(x,y,z)$ in gledali, da so vsi odvodi te pomozne funkcije enaki nič oz. $\nabla F=0$

Izrek o inverzni funkciji

Naj bo $f: D \to \mathbb{R}^n$ **zvezno odvedljiva** funkcija n spremenljivk, definirana na odprti podmnožici $D \subset \mathbb{R}^n$, in naj bo $a \in D$ taksna tocka, da je v njej Jacobijeva matrika obrnljiva:

$$det(Df)(a) \neq 0$$

Tedaj velja:

- (i) Obstaja taksna odprta podmnožica $U \subset \mathbb{R}^n$, da je $a \in U \subset D$, da je zozitev funckije $f|_U$ injektivna in da je podmnožica f(U) odprta v \mathbb{R}^n (Zožitev **je bijekcija**)
- (ii) Inverz $(f|_U)^{-1}$: $f(U) \to U$ bijekcije $f|_U: U \to f(U)$ je **zvezno odvedljiva** funkcija in velja: $D((f|_U)^{-1}) \big(f(a) \big) = (Df)(a)^{-1}$

Pomeni, da če je funkcija zvezno odvedljiva in injektivna v okolici točke a obstaja v okolici te točke inverz, ki je injektiven(?) in zvezno odvedljiv.

Izrek o implicitni funkciji

Naj bo $g: D \to \mathbb{R}^m$ zvezno odvedljiva funkcija, definirana na odprti podmnožici $D \subset \mathbb{R}^{n+m}$. Naj bosta $a \in \mathbb{R}^n$ in $b \in \mathbb{R}^m$ taksni točki, da je $(a,b) \in D$, da je g(a,b) = 0 in da so vektorji:

$$\frac{\partial g}{\partial x_{n+1}}(a,b), \frac{\partial g}{\partial x_{n+2}}(a,b), \dots, \frac{\partial g}{\partial x_{n+m}}(a,b)$$

med seboj **linearno neodvisni**. Tedaj obstajata taksni odprti podmnožici $U \subset D$ in $W \subset \mathbb{R}^n$, da je $(a,b) \in U$ ter tocka $a \in W$ in da velja:

(i) Za vsako točko $x \in W$ obstaja natanko ena točka $y \in \mathbb{R}^m$ za katero velja

$$(x,y) \in U$$
 $g(x,y) = 0$

To točko y, ki je odvisna od izbire točke x označimo z f(x)

(ii) Tako definirana funkcija $f: W \to \mathbb{R}^m$ je **zvezno odvedljiva**, zanjo velja:

$$f(a) = b \quad g(x, f(x)) = 0$$

$$(Df)(a) = -\left[\frac{\partial g}{\partial x_{n+1}}(a, b) \quad \dots \quad \frac{\partial g}{\partial x_{n+m}}(a, b)\right]^{-1} \left[\frac{\partial g}{\partial x_1}(a, b) \quad \dots \quad \frac{\partial g}{\partial x_n}(a, b)\right]$$

Pomeni, da lahko iz enačbe g(x,y)=0 lokalno, v okolici neke nicle (a,b) izrazimo spremenljivko y, kot zvezno odvedljivo funkcijo spremenljivke x, ce je izpolnjen pogoj $\frac{\partial g}{\partial y}(a,b)\neq 0$. To pomeni, da lahko rešitev te enačbe lokalno zapišemo kot graf zvezno odvedljive funkcije spremenljivke x

V splošnem nam pa ta izrek pove, kdaj lahko rešitve te enačbe g(x,y)=0 lokalno zapisemo kot graf zvezno odveldljive vektorske funkcije vektorja spremenljivk x.

Iz vaj: Ce je gradient ∇g neničelen vzdolž množice M rešitev enačbe g(x,y)=0, je M gladka funkcija.

Norma in operatorska norma

Norma

Preslikavi $V \to \mathbb{R}$ $v \mapsto ||v||$, pravimo norma na prostoru V, če zanjo velja:

- (i) $\|\alpha v\| = |\alpha| \|v\|$
- (ii) $||v + w|| \le ||v|| + ||w||$
- (iii) $||v|| \ge 0$
- (iv) ||0|| = 0
- (v) $||v|| > 0 \text{ if } v \neq 0$

Operatorska norma

$$||A|| = \sup\{|Au|; u \in \mathbb{F}^n, |u| = 1\}$$

- (i) Ta prelikava $\|\cdot\|: Mat(m \times n, \mathbb{F}) \to \mathbb{R}$ je norma
- $(ii) \qquad |Av| \le ||A|||v|$
- (iii) $||A|| = \inf\{\kappa \in \mathbb{R}; \quad \kappa \ge 0, |Av| \le \kappa |v| \quad \forall v \in \mathbb{F}^n\}$
- (iv) $||AB|| \le ||A|| ||B||$
- (v) $||A||_{\infty} \le ||A|| \le ||A||_2$

Banachovo skrčitve no načelo

Naj bosta $\{M,d\}$ in $\{M',d'\}$ metrična prostora. Preslikava $f:M\to M'$ je **skrčitev**, če obstaja taksna realna konstanta $0\leq q<1$, da velja:

$$d'(f(x), f(y)) \le q \cdot d(x, y)$$

(točke preslika nekoliko bližje)

Banachov izrek o negibni točki

Naj bo M **poln** neprazen metrični prostor in naj bo $f: M \to M'$ skrcitev. Tedaj obstaja natanko ena točko $b \in M$ za katero velja, da je negibna točka:

$$f(b) = b$$

Bonus terminologija:

Linearna ogrinjača

Pomeni množico vseh linearnih kombinacij neke množice vektorjev

Nilpotent

 $T \in End(V)$ je <u>nilpotenten</u>, če obstaja taksno število $k \in \mathbb{N}$, da je $T^k = 0$

Projektor

<u>Projektor</u> na podprostoru U, vzdolz podprostora W je endomorfizem $pr_U^W \in End(V)$, ki je enolično določen z:

$$pr_U^w|_U = id$$
 $pr_U^W|_W = 0$

Različni endomorfizmi

- (i) Hermitski/Simetrični: $A^* = A$ so raztegi
- (ii) Unitarni/Ortogonalni: $A^* = A^{-1}$ so rotacije in zrcaljenja
- (iii) Antihermitski/Antisimetrični: $A^* = -A$ so infinitezimalne rotacije

Tipi in izmi

$$Q^tQ=I$$
 Ortogonalna $U^hU=I$ Unitarna

$$T \in Lin(V, W)$$

T je monomorfizem = T je injektivna (f(x) = f(y) if x = y)

T je **epimorfizem** = T je **surjektivna** (vsak element iz kodomene je slika vsaj enega elementa iz domene)

T je izomorfizem = T je bijektivna

T je **endomorfizem**, če $T: V \rightarrow V$

T je avtomorfizem, če je endomorfizem in izomorfizem