he Role of Syntax in Inductive Inference: A Property-Based Study

Jesse Heyninck^{1,3}, Richard Booth², Tommie Meyer³

November 1, 2024

¹Open Universiteit, the Netherlands

²Cardiff University, UK

³University of Cape Town and CAIR, South-Africa

Logic is (only) concerned with LOGICAL STRUCTURE

- Does this also hold for non-monotonic (conditional) logic?
- And what does this even mean?

Birds and Flying: Syntax Splitting

```
Let \Delta = \Delta_{\text{birds}} \cup \Delta_{\text{geography}} with:

\Delta_{\text{birds}} : \quad \text{(birds|penguins), (fly|birds), (\neg fly|penguins)}
\Delta_{\text{geography}} : \quad \text{(polar|antarctic), (africa|westernCape)}
```

Birds and Flying: Syntax Splitting

```
Let \Delta = \Delta_{\text{birds}} \cup \Delta_{\text{geography}} with:

\Delta_{\text{birds}} : \quad \text{(birds|penguins), (fly|birds), (\neg fly|penguins)}
\Delta_{\text{geography}} : \quad \text{(polar|antarctic), (africa|westernCape)}
```

```
penguins \land westernCape \hspace{0.2cm} \hspace{0
```

Birds and Flying: Syntax Splitting

```
Let \Delta = \Delta_{\text{birds}} \cup \Delta_{\text{geography}} with:

\Delta_{\text{birds}} : \quad \text{(birds|penguins), (fly|birds), (\neg fly|penguins)}
\Delta_{\text{geography}} : \quad \text{(polar|antarctic), (africa|westernCape)}
```

penguins
$$\land$$
 westernCape $\ \ \sim_\Delta \ \neg fly$ just as well as
$$\text{penguins} \ \ \ \sim_\Delta \ \neg fly$$

$$\text{penguins} \ \ \ \ \sim_{\Delta_{\text{birds}}} \ \neg fly$$
 just as well as
$$\text{penguins} \ \ \ \ \sim_\Delta \ \ \neg fly$$

Birds and Mamals: Language Independence

```
\Delta_{birds}: (birds|penguins), (fly|birds), (\negfly|penguins)

\Delta_{bats}: (mamals|bats), (\negfly|mamals), (\neg\negfly|bats)
```

Birds and Mamals: Language Independence

```
\begin{split} &\Delta_{birds}: & \text{(birds|penguins), (fly|birds), (}\neg \text{fly|penguins)} \\ &\Delta_{bats}: & \text{(mamals|bats), (}\neg \text{fly|mamals}), (}\neg \neg \text{fly|bats}) \end{split}
```

$$\begin{array}{ccc} penguins & \swarrow_{\Delta_{birds}} & \neg fly \\ \\ \text{just as well as} & \\ & \text{bats} & \swarrow_{\Delta_{bats}} & \neg \neg fly \\ \end{array}$$

Birds and Mamals: Equivalence

```
\begin{split} \{\Delta_{birds}: & \text{ (birds|penguins), (fly|birds), (}\neg \text{fly|penguins)}\} \\ \Delta_{birds'}: & \Delta_{birds} \cup \{\text{(birds} \land \text{fly|birds)}\} \end{split}
```

Birds and Mamals: Equivalence

```
\begin{split} \{\Delta_{birds}: & \text{ (birds|penguins), (fly|birds), ($\neg$fly|penguins)} \} \\ \Delta_{birds'}: & \Delta_{birds} \cup \{\text{(birds} \land \text{fly|birds)}\} \end{split}
```

$$\begin{array}{ccc} \text{penguins} & \swarrow_{\Delta_{\mathsf{birds}}} & \neg \text{fly} \\ \\ \text{just as well as} & \\ & \text{penguins} & \swarrow_{\Delta_{\mathsf{birds}'}} & \neg \text{fly} \end{array}$$

Structure

Preliminaries

Conditionals

System Z

Lexicographic Inference

Postulates

(Conditional) Syntax Splitting

Respect for Equivalence

Language-Independence

Conclusion

Preliminaries

Conditionals

Background on Propositional Logic and Conditionals

 ${\mathcal L}$ constructed on the basis of Σ and \wedge , \vee , \neg and \rightarrow .

Possible worlds $\omega \in \Omega(\Sigma)$. Mod(A) consists of the models of ϕ .

Background on Propositional Logic and Conditionals

 $\mathcal L$ constructed on the basis of Σ and \wedge , \vee , \neg and \rightarrow .

Possible worlds $\omega \in \Omega(\Sigma)$. Mod(A) consists of the models of ϕ .

Conditionals are constructed on the basis of \mathcal{L} as follows $(\mathcal{L}|\mathcal{L}) = \{(B|A) \mid A, B \in \mathcal{L}\}.$

$$((B|A))(\omega) = \begin{cases} 1 & \omega \models A \land B \\ 0 & \omega \models A \land \neg B \\ u & \omega \models \neg A \end{cases}$$

Inductive Inference Operators

Definition ([KIBB20])

An inductive inference operator (from conditional belief bases) is a mapping $\mathbf{C}: 2^{(\mathcal{L}|\mathcal{L})} \mapsto 2^{\mathcal{L}^2}$ (or, more readable: $\Delta \to \sim_\Delta$) that satisfies:

DI
$$(B|A) \in \Delta$$
 implies $A \sim_{\Delta} B$.

Inductive Inference Operators

Definition ([KIBB20])

An inductive inference operator (from conditional belief bases) is a mapping $\mathbf{C}: 2^{(\mathcal{L}|\mathcal{L})} \mapsto 2^{\mathcal{L}^2}$ (or, more readable: $\Delta \to \sim_\Delta$) that satisfies:

DI
$$(B|A) \in \Delta$$
 implies $A \sim_{\Delta} B$.

Examples of inductive inference operators are system P, system Z (aka rational closure) and lexicographic closure.

Total Preorders [KLM90]

Given a total preorder (in short, TPO) \leq on possible worlds:

$$A \preceq B \text{ iff } \omega \preceq \omega' \text{ for an } \omega \in \min_{\preceq} (\mathsf{Mod}(A)) \text{ and an } \omega' \in \min_{\preceq} (\mathsf{Mod}(B)).$$

$$A \triangleright_{\preceq} B \text{ iff } (A \wedge B) \prec (A \wedge \neg B).$$

$$\overline{p}bf$$
, $\overline{p}\overline{b}f$, $\overline{p}\overline{b}\overline{f}$ \prec $pb\overline{f}$, $\overline{p}b\overline{f}$ $\prec \dots$

$$\begin{array}{cccc}
\top & \swarrow_{\preceq} & \neg p \\
p & \swarrow_{\preceq} & b
\end{array}$$

System Z

A conditional (B|A) is tolerated by a finite set of conditionals Δ if there is a possible world ω with:

- 1. $(B|A)(\omega) = 1$, and
- 2. $(B'|A')(\omega) \neq 0$ for all $(B'|A') \in \Delta$.

A conditional (B|A) is tolerated by a finite set of conditionals Δ if there is a possible world ω with:

- 1. $(B|A)(\omega) = 1$, and
- 2. $(B'|A')(\omega) \neq 0$ for all $(B'|A') \in \Delta$.

The *Z*-partitioning $(\Delta_0, \ldots, \Delta_n)$ of Δ is defined as:

- $\Delta_0 = \{ \delta \in \Delta \mid \Delta \text{ tolerates } \delta \};$
- $\Delta_1, \ldots, \Delta_n$ is the Z-partitioning of $\Delta \setminus \Delta_0$.

$$Z_{\Delta}(\delta) = i \text{ iff } \delta \in \Delta_i.$$

A conditional (B|A) is tolerated by a finite set of conditionals Δ if there is a possible world ω with:

- 1. $(B|A)(\omega) = 1$, and
- 2. $(B'|A')(\omega) \neq 0$ for all $(B'|A') \in \Delta$.

The *Z*-partitioning $(\Delta_0, \ldots, \Delta_n)$ of Δ is defined as:

- $\Delta_0 = \{ \delta \in \Delta \mid \Delta \text{ tolerates } \delta \};$
- $\Delta_1, \ldots, \Delta_n$ is the Z-partitioning of $\Delta \setminus \Delta_0$.

$$Z_{\Delta}(\delta) = i \text{ iff } \delta \in \Delta_i.$$

Example (
$$\Delta = \{(f|b), (b|p), (\neg f|p)\}$$
) $\Delta_0 = \{(f|b)\}$ (in view of $\overline{p}bf$),

A conditional (B|A) is tolerated by a finite set of conditionals Δ if there is a possible world ω with:

- 1. $(B|A)(\omega) = 1$, and
- 2. $(B'|A')(\omega) \neq 0$ for all $(B'|A') \in \Delta$.

The *Z*-partitioning $(\Delta_0, \ldots, \Delta_n)$ of Δ is defined as:

- $\Delta_0 = \{ \delta \in \Delta \mid \Delta \text{ tolerates } \delta \};$
- $\Delta_1, \ldots, \Delta_n$ is the Z-partitioning of $\Delta \setminus \Delta_0$.

$$Z_{\Delta}(\delta) = i \text{ iff } \delta \in \Delta_i.$$

Example (
$$\Delta = \{(f|b), (b|p), (\neg f|p)\}$$
) $\Delta_0 = \{(f|b)\}$ (in view of $\overline{p}bf$), and $\Delta_1 = \{(b|p), (\neg f|p)\}$

- $\kappa_{\Delta}^{Z}(\omega) = \max\{Z(\delta) \mid \delta(\omega) = 0, \delta \in \Delta\} + 1$, with $\max \emptyset = -1$.
- $A \triangleright_{\Delta}^{Z} B$ iff $A \triangleright_{\kappa_{\Delta}^{Z}} B$.

- $\kappa_{\Delta}^{Z}(\omega) = \max\{Z(\delta) \mid \delta(\omega) = 0, \delta \in \Delta\} + 1$, with $\max \emptyset = -1$.
- $A \triangleright_{\Delta}^{Z} B$ iff $A \triangleright_{\kappa_{\Delta}^{Z}} B$.

Recall:
$$\Delta_0 = \{(f|b)\}\$$
and $\Delta_1 = \{(b|p), (\neg f|p)\}.$

- $\kappa_{\Delta}^{Z}(\omega) = \max\{Z(\delta) \mid \delta(\omega) = 0, \delta \in \Delta\} + 1$, with $\max \emptyset = -1$.
- $A \triangleright_{\Delta}^{Z} B$ iff $A \triangleright_{\kappa_{\Delta}^{Z}} B$.

Recall:
$$\Delta_0 = \{(f|b)\}\$$
and $\Delta_1 = \{(b|p), (\neg f|p)\}.$

$$\overline{p}bf, \quad \overline{p}\overline{b}f, \quad \overline{p}\overline{b}\overline{f} \quad \prec \quad pb\overline{f}, \quad \overline{p}b\overline{f} \quad \prec \quad pbf, \quad p\overline{b}\overline{f}, \quad p\overline{b}f$$

- $\kappa_{\Delta}^{Z}(\omega) = \max\{Z(\delta) \mid \delta(\omega) = 0, \delta \in \Delta\} + 1$, with $\max \emptyset = -1$.
- $A \triangleright_{\Delta}^{Z} B$ iff $A \triangleright_{\kappa_{\Delta}^{Z}} B$.

Recall:
$$\Delta_0 = \{(f|b)\}\$$
and $\Delta_1 = \{(b|p), (\neg f|p)\}.$

$$\overline{p}bf$$
, $\overline{p}\overline{b}f$, $\overline{p}\overline{b}\overline{f}$ \prec $pb\overline{f}$, $\overline{p}b\overline{f}$ \prec pbf , $p\overline{b}\overline{f}$, $p\overline{b}f$

Lexicographic Inference

- Basic idea: compare worlds by the number of falsified conditionals in each Z-partition.
- Given $\omega \in \Omega$ and $\Delta' \subseteq \Delta$, $V(\omega, \Delta') = |(\{(B|A) \in \Delta' \mid (B|A)(\omega) = 0\}|.$
- The lexicographic vector for ω is: $lex(\omega) = (V(\omega, \Delta_0), \dots, V(\omega, \Delta_n)).$
- Given two vectors (x_1, \ldots, x_n) and (y_1, \ldots, y_n) , $(x_1, \ldots, x_n) \leq^{\text{lex}} (y_1, \ldots, y_n)$ iff there is some $j \leq n$ s.t. $x_k = y_k$ for every k > j and $x_j \leq y_j$.
- $\omega \preceq_{\Delta}^{\text{lex}} \omega'$ iff $\text{lex}(\omega) \preceq^{\text{lex}} \text{lex}(\omega')$.

Example ($\Delta = \{(f|b), (b|p), (\neg f|p)\}$)

The lex-vectors are ordered as follows:

$$(0,0) \prec^{\mathsf{lex}} (1,0) \prec^{\mathsf{lex}} (0,1) \prec^{\mathsf{lex}} (0,2).$$

Example ($\Delta = \{(f|b), (b|p), (\neg f|p)\}$)

The lex-vectors are ordered as follows:

$$(0,0) \prec^{\mathsf{lex}} (1,0) \prec^{\mathsf{lex}} (0,1) \prec^{\mathsf{lex}} (0,2).$$

$$\top \sim \stackrel{\mathsf{lex}}{\Delta} \neg p$$
.

Example ($\Delta = \{(f|b), (b|p), (\neg f|p)\}$)

The lex-vectors are ordered as follows:

$$(0,0) \prec^{\mathsf{lex}} (1,0) \prec^{\mathsf{lex}} (0,1) \prec^{\mathsf{lex}} (0,2).$$

$$\top \hspace{-.2em}\sim \hspace{-.2em} \stackrel{\mathsf{lex}}{\vartriangle} \neg p.$$

$$p \wedge f \sim_{\Delta}^{\mathsf{lex}} b$$
.

Postulates

(Conditional) Syntax Splitting

Splitting Conditional Belief Bases [KIBB20]

We assume a conditional belief base Δ that can be split into subbases Δ_1, Δ_2 s.t. $\Delta_i \subset (\mathcal{L}_i | \mathcal{L}_i)$ with $\mathcal{L}_i = \mathcal{L}(\Sigma_i)$ for i = 1, 2 s.t. $\Sigma_1 \cap \Sigma_2 = \emptyset$ and $\Sigma_1 \cup \Sigma_2 = \Sigma$, writing:

$$\Delta = \Delta^1 \bigcup_{\Sigma_1, \Sigma_2} \Delta^2.$$

$$\{(a|\top),(b|\top)\} = \{(a|\top)\} \bigcup_{\{a\},\{b\}} \{(b|\top)\}$$

Syntax Splitting= Independence + Relevance [KIBB20]

Definition (Independence (Ind))

An inductive inference operator **Ć** satisfies (Ind) if for any

$$\Delta=\Delta_1\bigcup_{\Sigma_1,\Sigma_2}\Delta_2$$
 and for any $A,B\in\mathcal{L}_i$, $C\in\mathcal{L}_j$ $(i,j\in\{1,2\},\ j
eq i)$,

$$A \sim_{\Delta} B$$
 iff $AC \sim_{\Delta} B$

Syntax Splitting= Independence + Relevance [KIBB20]

Definition (Independence (Ind))

An inductive inference operator **Ć** satisfies (Ind) if for any

$$\Delta = \Delta_1 \bigcup_{\Sigma_1, \Sigma_2} \Delta_2$$
 and for any $A, B \in \mathcal{L}_i$, $C \in \mathcal{L}_j$ $(i, j \in \{1, 2\}, j \neq i)$,

$$A \sim_{\Delta} B$$
 iff $AC \sim_{\Delta} B$

Inferences about Σ_1 are independent form information about Σ_2 .

Syntax Splitting= Independence + Relevance [KIBB20]

Definition (Independence (Ind))

An inductive inference operator **Ć** satisfies (Ind) if for any

$$\Delta = \Delta_1 \bigcup_{\Sigma_1, \Sigma_2} \Delta_2$$
 and for any $A, B \in \mathcal{L}_i$, $C \in \mathcal{L}_j$ $(i, j \in \{1, 2\}, j \neq i)$,

$$A \sim_{\Delta} B$$
 iff $AC \sim_{\Delta} B$

Inferences about Σ_1 are independent form information about Σ_2 .

Definition (Relevance (Rel))

An inductive inference operator **C** satisfies (Rel) if for any

$$\Delta = \Delta_1 \bigcup_{\Sigma_1,\Sigma_2} \Delta_2$$
 and for any $A,B \in \mathcal{L}_i$ $(i \in \{1,2\})$,

$$A \sim_{\Delta} B \text{ iff } A \sim_{\Delta_i} B.$$

Syntax Splitting= Independence + Relevance [KIBB20]

Definition (Independence (Ind))

An inductive inference operator **C** satisfies (Ind) if for any

$$\Delta = \Delta_1 \bigcup_{\Sigma_1, \Sigma_2} \Delta_2$$
 and for any $A, B \in \mathcal{L}_i$, $C \in \mathcal{L}_j$ $(i, j \in \{1, 2\}, j \neq i)$,

$$A \sim_{\Delta} B$$
 iff $AC \sim_{\Delta} B$

Inferences about Σ_1 are independent form information about Σ_2 .

Definition (Relevance (Rel))

An inductive inference operator **C** satisfies (Rel) if for any

$$\Delta = \Delta_1 \bigcup_{\Sigma_1, \Sigma_2} \Delta_2$$
 and for any $A, B \in \mathcal{L}_i$ $(i \in \{1, 2\})$,

$$A \sim_{\Delta} B$$
 iff $A \sim_{\Delta_i} B$.

Derivations about Σ_1 only depend on conditionals in Δ about Σ_1 .

Syntax Splitting= Independence + Relevance [KIBB20]

Definition (Independence (Ind))

An inductive inference operator **C** satisfies (Ind) if for any

$$\Delta = \Delta_1 \bigcup_{\Sigma_1, \Sigma_2} \Delta_2$$
 and for any $A, B \in \mathcal{L}_i$, $C \in \mathcal{L}_j$ $(i, j \in \{1, 2\}, j \neq i)$,

$$A \sim_{\Delta} B$$
 iff $AC \sim_{\Delta} B$

Inferences about Σ_1 are independent form information about Σ_2 .

Definition (Relevance (Rel))

An inductive inference operator **C** satisfies (Rel) if for any

$$\Delta = \Delta_1 \bigcup_{\Sigma_1,\Sigma_2} \Delta_2$$
 and for any $A,B \in \mathcal{L}_i$ $(i \in \{1,2\})$,

$$A \sim_{\Delta} B$$
 iff $A \sim_{\Delta_i} B$.

Derivations about Σ_1 only depend on conditionals in Δ about Σ_1 .

An inductive inference operator **C** satisfies (SynSplit) if it satisfies (Ind) and (ReI).

Proposition

 C^{lex} and C^Z satisfy **Rel**.

Proposition

 C^{lex} satisfies **Ind**.

Proposition

 C^Z does not satisfy **Ind**.

Proposition

 C^{lex} and C^Z satisfy **Rel**.

Proposition

 C^{lex} satisfies **Ind**.

Proposition

 C^Z does not satisfy **Ind**.

Example

Let $\Delta = \{(a|\top), (b|\top)\}$. Then:

Respect for Equivalence

 $(B_1|A_1) \equiv (B_2|A_2)$ iff $\omega(B_1|A_1) = \omega(B_2|A_2)$ for every $\omega \in \Omega$. This is equivalent to $A_1 \equiv A_2$ and $B_1 \wedge A_1 \equiv B_2 \wedge A_2$.

 $(B_1|A_1) \equiv (B_2|A_2)$ iff $\omega(B_1|A_1) = \omega(B_2|A_2)$ for every $\omega \in \Omega$. This is equivalent to $A_1 \equiv A_2$ and $B_1 \wedge A_1 \equiv B_2 \wedge A_2$.

Two conditional knowledge bases Δ_1 and Δ_2 are:

- bijective pairwise equivalent if there is a bijection $f: \Delta_1 \to \Delta_2$ s.t. $\delta \equiv f(\delta)$ for every $\delta \in \Delta_1$
- pairwise equivalent if for every $\delta_1 \in \Delta_1$ there is some $\delta_2 \in \Delta_2$ s.t. $\delta_1 \equiv \delta_2$, and vice versa.
- globally equivalent if for every tpo \preceq , Δ_1 is valid w.r.t. \preceq iff Δ_2 is valid w.r.t. \preceq .

 $(B_1|A_1) \equiv (B_2|A_2)$ iff $\omega(B_1|A_1) = \omega(B_2|A_2)$ for every $\omega \in \Omega$. This is equivalent to $A_1 \equiv A_2$ and $B_1 \wedge A_1 \equiv B_2 \wedge A_2$.

Two conditional knowledge bases Δ_1 and Δ_2 are:

- bijective pairwise equivalent if there is a bijection $f: \Delta_1 \to \Delta_2$ s.t. $\delta \equiv f(\delta)$ for every $\delta \in \Delta_1$
- pairwise equivalent if for every $\delta_1 \in \Delta_1$ there is some $\delta_2 \in \Delta_2$ s.t. $\delta_1 \equiv \delta_2$, and vice versa.
- globally equivalent if for every tpo \preceq , Δ_1 is valid w.r.t. \preceq iff Δ_2 is valid w.r.t. \preceq .

 $\Delta_{\mathsf{birds}}: \ (\mathsf{birds}|\mathsf{penguins}), (\mathsf{fly}|\mathsf{birds}), (\neg \mathsf{fly}|\mathsf{penguins})$

 $\Delta_{\mathsf{birds'}}$: $\Delta_{\mathsf{birds}} \cup \{(\mathsf{birds} \land \mathsf{fly}|\mathsf{birds})\}$

 $(B_1|A_1) \equiv (B_2|A_2)$ iff $\omega(B_1|A_1) = \omega(B_2|A_2)$ for every $\omega \in \Omega$. This is equivalent to $A_1 \equiv A_2$ and $B_1 \wedge A_1 \equiv B_2 \wedge A_2$.

Two conditional knowledge bases Δ_1 and Δ_2 are:

- bijective pairwise equivalent if there is a bijection $f: \Delta_1 \to \Delta_2$ s.t. $\delta \equiv f(\delta)$ for every $\delta \in \Delta_1$
- pairwise equivalent if for every $\delta_1 \in \Delta_1$ there is some $\delta_2 \in \Delta_2$ s.t. $\delta_1 \equiv \delta_2$, and vice versa.
- globally equivalent if for every tpo \preceq , Δ_1 is valid w.r.t. \preceq iff Δ_2 is valid w.r.t. \preceq .

```
\Delta_{\text{birds}}: (birds|penguins), (fly|birds), (\negfly|penguins)

\Delta_{\text{birds}}: \Delta_{\text{birds}} \cup \{(\text{birds} \land \text{fly}|\text{birds})\}
```

Not bijective pairwise equivalent, but pairwise equivalent, and globally equivalent.

Proposition

If Δ_1 and Δ_2 are pairwise equivalent, they are globally equivalent. The other direction does not hold.

 $\Delta_1 = \{(q|p), (r|p)\}$ and $\Delta_2 = \{(q \wedge r|p)\}$. Then clearly Δ_1 and Δ_2 are globally equivalent but not pairwise equivalent.

Proposition

If Δ_1 and Δ_2 are pairwise equivalent, they are globally equivalent. The other direction does not hold.

 $\Delta_1 = \{(q|p), (r|p)\}$ and $\Delta_2 = \{(q \wedge r|p)\}$. Then clearly Δ_1 and Δ_2 are globally equivalent but not pairwise equivalent.

Definition

Let an inductive inference operator \mathbf{C} be given and $x \in \{\text{bijective pariwse, pairwise, global}\}$. Then \mathbf{C} respects x equivalence if for any x equivalent knowledge bases Δ_1 and Δ_2 , $\mathbf{C}(\Delta_1) = \mathbf{C}(\Delta_1)$.

Proposition

If Δ_1 and Δ_2 are pairwise equivalent, they are globally equivalent. The other direction does not hold.

 $\Delta_1 = \{(q|p), (r|p)\}$ and $\Delta_2 = \{(q \wedge r|p)\}$. Then clearly Δ_1 and Δ_2 are globally equivalent but not pairwise equivalent.

Definition

Let an inductive inference operator \mathbf{C} be given and $x \in \{\text{bijective pariwse, pairwise, global}\}$. Then \mathbf{C} respects x equivalence if for any x equivalent knowledge bases Δ_1 and Δ_2 , $\mathbf{C}(\Delta_1) = \mathbf{C}(\Delta_1)$.

Proposition

System Z respects global equivalence.

Proposition

Lexicographic inference does not respect pairwise equivalence.

Proof.

Consider the following pairwise equivalent conditional KBs:

$$\Delta_1 = \{(p|q), (r|q)\}$$
 $\Delta_2 = \Delta_1 \cup \{(r \land q|q)\}$

The lexicographic vectors for $\overline{p}qr$ and $pq\overline{r}$ are:

$$\begin{split} V(\overline{p}qr,\Delta_1) &= 1 \ V(\overline{p}qr,\Delta_2) = 1 \ (\text{as} \ \overline{p}qr \vdash q \land \neg p) \\ V(pq\overline{r},\Delta_1) &= 1 \ V(pq\overline{r},\Delta_2) = 2 \ (\text{as} \ pq\overline{r} \vdash q \land \neg r \land \neg (r \land q)) \end{split}$$

Which means that

$$\overline{p}qr pprox_{\Delta_1}^{\mathsf{lex}} pq\overline{r}$$
 whereas $\overline{p}qr \prec_{\Delta_2}^{\mathsf{lex}} pq\overline{r}$

Fixing Lexicographic Entailment

$$[(B|A)] = \{(D|C) \in (\mathcal{L}|\mathcal{L}) \mid (B|A) \equiv (C|D)\}.$$

Fixing Lexicographic Entailment

$$[(B|A)] = \{(D|C) \in (\mathcal{L}|\mathcal{L}) \mid (B|A) \equiv (C|D)\}.$$

We count the violations of conditionals in Δ by ω up to equivalence as:

$$V^{\equiv}(\omega,\Delta) := |\{ [(B|A)] \mid ((B|A))(\omega) = 0, (B|A) \in \Delta\}|$$

We can now define, for Δ with Z-ranking $(\Delta_0, \ldots, \Delta_n)$, $\text{lex}^{\equiv}(\omega) = (V^{\equiv}(\omega, \Delta_0), \ldots, V^{\equiv}(\omega, \Delta_n))$.

 $\omega_1 \preceq_{\Delta}^{\text{lex},\equiv} \omega_2$ iff $\text{lex}^{\equiv}(\omega_1) \preceq^{\text{lex}} \text{lex}^{\equiv}(\omega_2)$. We denote the corresponding inductive inference relation by $C^{\text{lex},\equiv}$

Fixing Lexicographic Entailment: Example

$$\Delta_1 = \{(p|q), (r|q)\}$$
 $\Delta_2 = \Delta_1 \cup \{(r \wedge q|q)\}$ $[(p|q)] = \{(p|q)\}$ and $[(r|q)] = \{(r|q), (r \wedge q|q)\}.$

$$egin{aligned} V^{\equiv}(\overline{p}qr,\Delta_1) &= 1 \ V(\overline{p}qr,\Delta_2) = 1 \ (ext{as } \overline{p}qr \vdash q \land \neg p) \ V^{\equiv}(pq\overline{r},\Delta_1) &= 1 \ V(pq\overline{r},\Delta_2) = rac{1}{2} \ (ext{as } pq\overline{r} \vdash q \land \neg r \land \neg (r \land q) \ &= 1 \ (r|q)] \ni (r|q), (r \land q|q)) \end{aligned}$$

We can't have it all

Proposition

There exists no conditional-based inductive inference operation that respects global equivalence and satisfies syntax splitting.

Proof.

Suppose that **C** satisfies syntax splitting.

Consider first $\Delta_1 = \{(a|\top), (b|\top)\}$. With \mathbf{DI} , $\top \triangleright_{\Delta_1}^{\mathbf{C}} a$ and $\top \triangleright_{\Delta_1}^{\mathbf{C}} b$ (which implies $ab \prec \omega$ for any $\omega \in \Omega \setminus \{ab\}$). Then since $\Delta_1 = \{(a|\top)\} \bigcup_{\{a\}, \{b\}} \{(b|\top)\}$, $\neg b \triangleright_{\Delta_1}^{\mathbf{C}} a$. This means that $a\overline{b} \prec_{\Delta_1}^{\mathbf{C}} \overline{a}\overline{b}$. With symmetry, we establish that $\overline{a}b \prec_{\Delta_1}^{\mathbf{C}} \overline{a}\overline{b}$.

Consider now $\Delta_2 = \{(a \wedge b | \top)\}$. Notice that Δ_1 and Δ_2 are globally equivalent. Thus, by global equivalence, $\prec_{\Delta_1}^{\mathbf{C}} = \prec_{\Delta_2}^{\mathbf{C}}$. As $((a \wedge b | \top))(a\overline{b}) = ((a \wedge b | \top))(\overline{a}b) = ((a \wedge b | \top))(\overline{a}\overline{b}) = 0$ (with conditional-basedness), we see that $a\overline{b} \approx_{\Delta_2}^{\mathbf{C}} \overline{a}b \approx_{\Delta_2}^{\mathbf{C}} \overline{a}\overline{b}$, contradiction.

Language-Independence

Symbol Translations

```
\begin{split} &\Delta_{birds}: \quad \text{(birds|penguins), (fly|birds), ($\neg$fly|penguins)} \\ &\Delta_{bats}: \quad \text{(mamals|bats), ($\neg$fly|mamals), ($\neg$\neg$fly|bats)} \end{split}
```

Symbol Translations

```
\begin{split} &\Delta_{birds}: & \text{ (birds|penguins), (fly|birds), (}\neg \text{fly|penguins)} \\ &\Delta_{bats}: & \text{ (mamals|bats), (}\neg \text{fly|mamals}), (}\neg \neg \text{fly|bats)} \end{split}
```

Definition

```
A mapping \sigma: \Sigma \to \mathcal{L}(\Sigma') is belief-amount preserving symbol translation (in short, a BAP-translation) if there is a bijection \gamma: \Omega(\Sigma) \to \Omega(\Sigma') s.t. for every \phi \in \mathcal{L}(\Sigma) \mathrm{Mod}(\sigma(\phi)) = \{\gamma(\omega) \mid \omega \in \mathrm{Mod}(\phi)\}.
```

Symbol Translations

```
\begin{split} &\Delta_{birds}: & \text{ (birds}|penguins), (fly|birds), (\neg fly|penguins) \\ &\Delta_{bats}: & \text{ (mamals}|bats), (\neg fly|mamals), (\neg \neg fly|bats) \end{split}
```

Definition

A mapping $\sigma: \Sigma \to \mathcal{L}(\Sigma')$ is belief-amount preserving symbol translation (in short, a BAP-translation) if there is a bijection $\gamma: \Omega(\Sigma) \to \Omega(\Sigma')$ s.t. for every $\phi \in \mathcal{L}(\Sigma)$ $\mathsf{Mod}(\sigma(\phi)) = \{\gamma(\omega) \mid \omega \in \mathsf{Mod}(\phi)\}.$

Language-Independence

Definition

An inductive inference operator ${\bf C}$ satisfies language-independence if for every BAP-translation σ , $\psi \triangleright_{\Delta} \phi$ iff $\sigma(\phi) \triangleright_{\sigma(\Delta)} \sigma(\psi)$.

Language-Independence

Definition

An inductive inference operator ${\bf C}$ satisfies language-independence if for every BAP-translation σ , $\psi \triangleright_{\Delta} \phi$ iff $\sigma(\phi) \triangleright_{\sigma(\Delta)} \sigma(\psi)$.

A vector mass distribution (VMD) is a function $F:\{1,0,u\}^n\mapsto \mathbb{N}$ s.t. $\Sigma_{\overrightarrow{\alpha}\in\{1,0,u\}^n}F(\overrightarrow{\alpha})=2^{|\Sigma|}$.

An inductive inference operator \mathbf{C} is *conditional-functional* iff there is a function D that returns, for any VMD F, (V_F^D, \sqsubseteq_F^D) where $V_F^D \subseteq \{1,0,u\}^n$, and \sqsubseteq_F^D is a TPO on V_F^D such that:

- $\overrightarrow{\alpha} \in V_F^D$ implies $F(\overrightarrow{\alpha}) > 0$, and
- for any permutation σ on $\{1,\ldots,n\}$, $V^D_{\sigma(F)} = \sigma(V^D_F)$ and $\overrightarrow{\alpha} \sqsubseteq^D_{\sigma(F)} \overrightarrow{\beta}$ iff $\sigma^{-1}(\overrightarrow{\alpha}) \sqsubseteq^D_F \sigma^{-1}(\overrightarrow{\beta})$

and such that $\omega_1 \preceq_{\Delta} \omega_2$ iff $\langle \delta_1(\omega_1), \dots, \delta_n(\omega_1) \rangle \sqsubseteq_{F_{\Delta}}^D \langle \delta_1(\omega_2), \dots, \delta_n(\omega_2) \rangle$, where $\Delta = \{\delta_1, \dots, \delta_n\}$ and $F_{\Delta}(\overrightarrow{\alpha}) = |\{\omega \mid \overrightarrow{\alpha} = \delta_1(\omega), \dots, \delta_n(\omega)\}|$.

Results

Proposition

A TPO-based inductive inference operator ${\bf C}$ is conditional-functional iff it respects bijective pairwise equivalence and satisfies language independence.

Conclusion

Postulates Satisfaction

	System Z	System W	Lex	Lex^\equiv	C-rep	System $J(LZ)$
Independence	×	V	V	V	V	?
Relevance	V	\vee	\vee	\vee	\vee	?
Global Eq.	V	×	×	×	×	?
Pairwise Eq.	V	\vee	×	\vee	?	?
Condbased	\ \	\vee	\vee	\vee	?	?
Language-ind.	V	V	\vee	\vee	?	?

This complements the mainly example-driven history predomindant in the literature.

Modularity: wider narrative (Tin foil hat time?)

Formalism	Horizontal	Vertical	
Logic Programming	Conditional Independence (AFT)	Splitting	
	Treewidth decompositions (?)	Stratification	
Argumentation	Non-interference	SCC-recursiviness	
Belief revision	Conditional syntax splitting	G. ranking kinematics	
Defeasible Conditionals	Conditional syntax splitting	G. ranking kinematics	
Probabilistic Reasoning	Conditional Independence	Subset Independence	

Conclusion

- "Logicality" can be formalized in different ways:
 - Syntax-Splitting (inference allows modularisation)
 - Respect for Equivalence (inference respects basic semantics)
 - Language-Independence (inference independent of linguistic peculiarities)
- Interesting enough, these notions are not independent:
 - Syntax-splitting and respect for global equivalence are impossible,

Thank you for your attention. Questions?

Bibliography i

Moisés Goldszmidt and Judea Pearl.

Qualitative probabilities for default reasoning, belief revision, and causal modeling.

AI, 84(1-2):57-112, 1996.

Gabriele Kern-Isberner, Christoph Beierle, and Gerhard Brewka.

Syntax splitting= relevance+ independence: New postulates for nonmonotonic reasoning from conditional belief bases.

In Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning, volume 17, pages 560–571, 2020.

Bibliography ii

Sarit Kraus, Daniel Lehmann, and Menachem Magidor. Nonmonotonic reasoning, preferential models and cumulative logics.

Artificial intelligence, 44(1-2):167–207, 1990.

Daniel Lehmann.

Another perspective on default reasoning.

Annals of mathematics and artificial intelligence, 15(1):61–82, 1995.