

What's inside the black-box? A genetic programming method for interpreting complex machine learning models

mwj7@aber.ac.uk Department of Computer Science Aborrotter the University (

Department of Computer Science, Aberystwyth University, Aberystwyth, Wales, UK

Introduction

The most useful machine learning techniques are also the least interpretable but for AI to be adopted into more areas it needs to be explainable and it's decisions justified.

Model extraction functions as an unobtrusive addition that can provide insight into a complex model's predictions. Decision trees are most naturally interpretable, although current approaches are flawed (greedy tree-construction)

Using multi-objective Genetic Programming we can extract models that provide the reconstruction ability seen previously but ensure human readability by keeping tree complexity to a minimum.

The New Method

We propose a novel model agnostic approach to XAI model extraction. We use NSGA-II paired with strongly typed GP (STGP) to evolve decision tree-like structures which simultaneously balance the complexity and accuracy of the trees. Complexity is minimised and accuracy maximised by our objective functions below.

$$maximise \frac{1}{k} \sum_{i=1}^{k} f1(predict(fold(i)), blackbox_predict(fold(i)))$$

$$f1(predicted, real) = (\sum_{C \in C} |C| \times \frac{2 \times precision \times recall}{precision + recall}) / \sum_{C \in C} |C|$$

F1 metric is result of an internal 3 fold cross-validation (k=3).

$$minimise \sum split_points$$

We use subtrees to construct features as mathematical expressions, these implicit features allow our trees to learn simpler rules.

Evolutionary training process of our algorithm shown above alongside diagram of non-dominated sorting in NSGA-II.

Experiments & Results

4 Current Model Extraction methods:

- Bayesian Rule Lists
- Logistic Regression
- Decision Tree
- Simplified Decision Tree

3 Black-Box Models:

- Random Forests
- Gradient Boosting
- Deep Neural Network

A broad range of 30 datasets from the OpenML repository [7] were used for comparison. The datasets were restricted to less than 15000 instances, less than 5 classes, and no missing values.

The reconstruction ability was an f1 measure result of a 10 fold cross-validation across averaged across all three black-box classifiers. For each model extraction method this was done for each dataset.

Table 1: Summary of dataset characteristics					Table 2: Summary of the results. The average testing performance is presented.													
	Numeric Features	Categorical Features	Classes	Instances		Black-box Test Accuracy			·				y	Model Complexity				
Dataset						RF	GB	DL	GP	BRL	SDT	\mathbf{DT}	LR	GP	BRL	SDT	DT	LF
analcatdata	70	0	4	841	Analcatdata_Authorship	99.40	98.70	99.80	83.21	92.33	92.3	91.71	98.81	5	17	6	59	12
autoUniv-au7-500	8	4	5	500	Autouniv-Au7-500	47.50	44.52	38.30	55.69	36.83	49.49	50.64	46.57	7	1	18	163	25
balance-scale	4	0	3	625	Balance-Scale	82.70	86.40	96.90	72.9	73.06	77.6	81.44	80.68	6	9	13	127	12
blood-transfusion	4	0	2	748	Blood-Transfusion	66.70	73.70	70.50	81.65	79.24	86.34	87.71	78.73	4	5	8	35	4
climate-model	20	0	2	540	Climate-Model	86.90	85.30	88.20	88.44	92.47	90.66	89.72	91.09	3	3	6	22	13
cmc	2	7	3	1473	Cmc	54.30	54.20	45.90	60.58	51.84	58.6	68.62	67.81	6	7	11	123	15
credit-g	7	13	2	1000	Credit-G	73.60	75.70	72.40	76.61	57.3	76.92	77.12	80.19	7	2	8	46	76
diabetes	8	0	2	768	Diabetes	74.20	73.40	71.00	77.5	79.56	78.72	78.15	79.26	4	9	9	39	8
eeg-eye-state	14	0	2	14980	Eeg-Eye-State	93.10	87.50	78.90	54.26	77.65	71.86	74.3	49.28	4	120	8	50	14
GesturePhase	32	0	5	9873	GesturePhase	67.00	62.80	60.00	47.51	53.16	55.94	61.35	47.14	5	81	10	270	23
hill-valley	100	0	2	1212	Hill-Valley	35.70	52.70	64.10	80.57	76.68	84.96	82.26	81.4	4	3	18	27	10
ilpd	9	1	2	583	Ilpd	65.40	66.60	70.00	67.2	51.29	63.98	70.13	67.19	4	1	8	32	11
iris	4	0	3	150	Iris	93.30	94.64	98.30	98.93	97.37	98.46	96.89	95.4	3	3	3	15	10
kc1	21	0	2	2109	Kc1	82.30	84.30	82.70	85.19	83.98	85.8	86.14	85.34	4	10	5	39	21
kc2	21	0	2	522	Kc2	77.80	80.06	86.10	86.79	86.38	87.33	85.96	85.7	3	5	6	27	18
kr-vs-kp	0	36	2	3196	Kr-Vs-Kp	98.80	99.40	99.00	94.22	92.25	96.62	94.48	96.8	6	15	8	16	57
monks-problems-1	0	6	2	556	Monks-Problems-1	99.80	98.90	99.10	86.63	72.44	92.9	86.34	72.44	7	2	15	14	10
monks-problems-2	0	6	2	601	Monks-Problems-2	92.30	97.10	99.80	55.11	52.85	86.3	89.93	52.42	10	0	28	43	1
ozone-level-8hr	72	0	2	2534	Ozone-Level-8Hr	93.70	93.20	93.60	93.44	93.76	94.82	94.52	95.55	3	11	5	36	6
pc1	21	0	2	1109	Pc1	91.90	92.80	91.50	92.95	93.26	93.45	94.6	92.46	4	5	6	26	20
phoneme	5	0	2	5404	Phoneme	91.10	88.50	90.71	81.77	85.02	82.17	88.36	76.96	6	35	6	47	5
qsar-biodeg	41	0	2	1055	Qsar-Biodeg	87.00	86.60	84.70	81.14	86.52	85.81	87.1	89.59	4	18	8	38	31
spambase	57	0	2	4601	Spambase	95.20	95.40	93.90	81.59	94.27	89.27	92.42	94.65	4	45	5	33	54
splice	0	60	3	3190	Splice	97.30	96.20	95.10	82.09	89.66	93.62	95.47	96.99	6	24	10	100	4
steel-plates-fault	33	0	2	1941	Steel-Plates-Fault	99.70	94.50	99.80	88.21	99.67	99.78	99.8	99.74	5	7	6	7	2
tic-tac-toe	0	9	2	958	Tic-Tac-Toe	98.80	97.40	97.60	73.07	61.3	91.1	92.25	97.83	6	3	18	33	2
vehicle	18	0	4	846	Vehicle	75.20	77.30	84.30	61.14	66.36	72.65	77.9	80.59	6	17	15	112	7
wall-robot-navigation	24	0	4	5456	Wall-Robot-Navigation	99.20	99.69	92.50	78.63	96.23	95.33	97.4	68.53	5	58	8	79	9
waveform-5000	40	0	3	5000	Waveform-5000	85.30	83.80	83.20	72.64	79.48	76.91	83.51	92.5	6	71	8	168	11
wdbc	30	0	2	569	Wdbc	95.40	94.40	98.70	95.21	95.13	94.14	94.2	95.48	4	8	4	17	11

Pareto front of trees to choose from.

Method not dominated on any dataset.

Significantly simpler interpretable models with equivalent accuracy.

Further Analysis

Morgan Jones

The proposed method's resulting tree and the Bayesian rule list are by far the simplest interpretable models, both condense a 200 layer neural-network into small human readable form. Although the BRL just predicts 1 class so is considered overly simplistic.

Looking into our evolved tree we can see its splitting points make sense when considering the hill-valley dataset, which "when plotted in order the Y coordinate will create either a Hill or a Valley [13]. We can see the tree is checking the first point, and comparing to the point at 30\%, or the point at 70\%, where the tree is trying to distinguish between classes by finding the common points for the hills/valleys and checking if these are high or low relative to the training data (e.g. a high point at the start, a low point at 30\%, then a high point at 57\% indicates a valley based on this tree).

Datasets of particular difficulty:

- Autonuniv-Au7-500 and GesturePhase datasets have 5 classes.
 Perhaps relax push for simple trees on datasets with many classes.
- onks-Problems-2 is entirely categorical features. Combining categorical features into a single branch for future work.
- For eeg-eye-state, the data is sequential/time-series. The proposed method is not designed for such datasets

Conclusion & Future Work

The new method was compared to existing approaches for model extraction, and was found to offer drastically simpler models, with statistically equivalent test accuracy. To our best knowledge, this is the first utilisation of multi-objective optimisation in explainable AI. We also believe this is the first application of GP for model extraction, and shows a promising direction for future developments.

Three focus areas for future work:

- Can recreation ability be improved without sacrificing simplicity?
- Can we find a more suitable measure of complexity to describe human interpretability?
- Is it possible to guide the evolution of the models based on human feedback?