Name: _____ Algebra II
Date: Homework 29

Problem 1. Write the following functions in the form $f(x) = (x \pm h)^2 \pm k$ by completing the square. Describe how x^2 is shifted to obtain f(x). Graph f(x), label the vertex, label all axis intersections. An example of what I expect is given below.

(a)
$$f(x) = x^2 + 2x - 1$$

(b)
$$f(x) = x^2 - 7x + 10$$

(c)
$$f(x) = x^2 + x + 1$$

(d)
$$f(x) = x^2 - 8x + 15$$

(e)
$$f(x) = x^2 + 3x$$

(f)
$$f(x) = x^2 - 4x + 7$$

(g)
$$f(x) = x^2 + \frac{3}{2}x + \frac{1}{4}$$

(h)
$$f(x) = x^2 - x - 1$$

(i)
$$f(x) = x^2 + 3x + \frac{17}{36}$$

Example. $f(x) = x^2 - 2x - 2$

$$f(x) = x^{2} - 2x - 2$$

$$= (x^{2} - 2x + (1)^{2} - (1)^{2}) - 2$$

$$= ((x - 1)^{2} - 1) - 2$$

$$= (x - 1)^{2} - 3$$

Then $f(x) = (x-1)^2 - 3$ is the function x^2 shifted right one unit, and shifted down 3 units. To find x-intercepts, we set f(x) = 0 and solve for x:

$$(x-1)^{2} - 3 = 0$$
$$(x-1)^{2} = 3$$
$$\sqrt{(x-1)^{2}} = \pm \sqrt{3}$$
$$x - 1 = \pm \sqrt{3}$$
$$x = 1 + \sqrt{3}$$

Note that $1 + \sqrt{3}$ is positive and $1 - \sqrt{3}$ is negative. To find the y-intercept, we set x = 0 and find f(0):

$$f(0) = (0-1)^{2} - 3$$
$$= (-1)^{2} - 3$$
$$= 1 - 3$$
$$= -2$$

Note that if may have been easier to use the function as originally written to obtain this since

$$f(x) = x^2 - 2x - 2 \implies f(0) = 0^2 - 2(0) - 2 = -2$$

In any case we have f(0) = -2 so that our y-intercept is at y = -2. Be sure that all intercepts are labeled and that the vertex is indicated as in the graph below.

