# Introduction to Deep Learning

A gentle introduction

Massimiliano Ruocco

Adj. Associate Professor, DART Group, IDI Senior Researcher, Sintef Digital



massimiliano.ruocco@ntnu.no

# Introduction

## Introduction: AI vs ML vs DL



Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

# Introduction: Deep Network



## Introduction: Deep Learning

- (+) Efficiently learning from high-dimensional data
- (+) State of the art in Computer Vision/Speech Recognition/NLP tasks
- (+) Representation learning
- (-) Data-greedy
- (-) Training Computationally intensive
- (-) Hyperparameter tuning



### Introduction: Main Architectures

providing lift for classification and forecasting models

*Deep* Neural Networks



feature extraction and classification of images

Convolutional
Neural
Networks



for sequence of events, language models, time series, etc.

Recurrent
Neural
Networks



# Deep Neural Network

# The Perceptron - Forward Pass



<u>Inputs and Bias b</u>

# The Perceptron - Forward Pass



### **Activation Function**



$$X = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}$$
 and  $W = \begin{bmatrix} w_1 \\ \vdots \\ w_m \end{bmatrix}$ 

<u>Inputs and Bias b</u>

# The Perceptron - Activation Functions



<sup>\*</sup>https://studymachinelearning.com/activation-functions-in-neural-network/

# The Perceptron - Activation Functions and Non-Linearity



<sup>\*</sup>https://studymachinelearning.com/activation-functions-in-neural-network/

# Simplified Perceptron



$$z = w_0 + \sum_{j=1}^m x_j w_j$$

# Multi-Output Perceptron (**Dense Layers**)



$$z_{\underline{i}} = w_{0,\underline{i}} + \sum_{j=1}^{m} x_j \ w_{j,\underline{i}}$$

# Single Layer Neural Network







## Train a Neural Network - The Loss Function

Quantifying the **Loss** (over the entire training set)

$$\mathbf{X} = \begin{bmatrix} 4, & 5 \\ 2, & 1 \\ 5, & 8 \\ \vdots & \vdots \end{bmatrix} \qquad \begin{array}{c} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \end{array} \qquad \begin{array}{c} \mathbf{f}(\mathbf{x}) \\ \mathbf{y} \\ 0.1 \\ 0.8 \\ 0.6 \\ \vdots \end{array} \qquad \begin{array}{c} \mathbf{y} \\ 0 \\ 0 \\ 1 \\ \vdots \end{array}$$

$$J(W) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(f(x^{(i)}; W), y^{(i)})$$
Function

Cost/Loss
Function

Predicted Actual

# Training a Neural Network - Lear

## **Gradient Descent**

- 1. Initialize weights randomly  $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Compute gradient,  $\frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 4. Update weights,  $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 5. Return weights



## Training a Neural Network - Loss Optimization

# **Gradient Descent**

- 1. Initialize weights randomly  $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Compute gradient,  $\frac{\partial J(W)}{\partial W}$
- 4. Update weights,  $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 5. Return weights





# Training a Neural Network - The Loss Landscape



\*Visualizing the Loss Landscape of Neural Nets, Li et Al(2018)

# Training a Neural Network - The importance of Learning Rate

# **Gradient Descent**

- I. Initialize weights randomly  $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Compute gradient,  $\frac{\partial J(W)}{\partial W}$
- 4. Update weights,  $\mathbf{W} \leftarrow \mathbf{W} \underbrace{\eta}_{\partial \mathbf{W}}^{\partial J(\mathbf{W})}$
- 5. Return weights





# Training a Neural Network - The Importance of Learning Rate

# **Gradient Descent**

- I. Initialize weights randomly  $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Compute gradient,  $\frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 4. Update weights,  $\mathbf{W} \leftarrow \mathbf{W} \underbrace{\eta}_{\partial \mathbf{W}}^{\partial J(\mathbf{W})}$

Learning

5. Return weights



Rate \*https://www.kaggle.com/code/ohseokkim/bird-species-standing-on-the-shoulders-of-giant

## Training a Neural Network - Overfitting and Regularization



<sup>\*&</sup>lt;a href="https://curiousily.com/posts/hackers-guide-to-fixing-underfitting-and-overfitting-models/">https://curiousily.com/posts/hackers-guide-to-fixing-underfitting-and-overfitting-models/</a>

# Training a Neural Network - Overfitting and Regularization

Deal with **Overfitting** through **Regularization** (to improve generalization of the model on unseen data)

## **DROPOUT**



# **Quick Summary**

- Perceptron as building block of Deep Neural Network
- Optimization through backpropagation
- Learning Rate
- Regularization

# Convolutional Neural Network

Introduction

Class of Deep **Feed-Forward** ANN Specialized for processing data with a **grid-like** topology (i.e.: time series data, image data, language)

#### 1-D Convolution

$$s(t) = (x * w)(t) = \sum_{a = -\infty}^{\infty} x(a)w(t - a)$$

#### 1-D Convolution



#### 1-D Convolution

$$s(t) = (x * w)(t) = \sum_{a = -\infty}^{\infty} x(a)w(t - a)$$

- Example

x 1 2 4 1

w 1 3 1

### 1-D Convolution

$$s(t) = (x * w)(t) = \sum_{a = -\infty}^{\infty} x(a)w(t - a)$$

- Example

x 1 2 4 1

w 1 3 1

x 1 2 4 1 1 3 s

### 1-D Convolution

$$s(t) = (x * w)(t) = \sum_{a = -\infty}^{\infty} x(a)w(t - a)$$

- Example

$$s(0) = x[-1]*w[0] + x[0]*w[1] + x[1]*w[2] = 0*1 + 1*3 + 2*1 = 3 + 2 = 5$$

### 1-D Convolution

$$s(t) = (x * w)(t) = \sum_{a = -\infty}^{\infty} x(a)w(t - a)$$

- Example

x 1 2 4 1 w 1 3

$$s(1) = \mathsf{x}[0] * \mathsf{w}[0] + \mathsf{x}[1] * \mathsf{w}[1] + \mathsf{x}[2] * \mathsf{w}[2] = 1 * 1 + 2 * 3 + 4 * 1 = 1 + 6 + 4 = \mathbf{11}$$

### - 1-D Convolution

$$s(t) = (x * w)(t) = \sum_{a = -\infty}^{\infty} x(a)w(t - a)$$

- Example

x 1 2 4 1 w

$$s(2) = x[1]*w[0] + x[2]*w[1] + x[3]*w[2] = 2*1 + 4*3 + 1*1 = 2 + 12 + 1 = 15$$

### 1-D Convolution

$$s(t) = (x * w)(t) = \sum_{a = -\infty}^{\infty} x(a)w(t - a)$$

- Example

S

$$s(3) = x[2]*w[0] + x[3]*w[1] + x[4]*w[2] = 4*1 + 1*3 + 0*1 = 4 + 3 = 7$$

#### 2-D Convolution

$$S(i,j) = (I * K)(i,j) = \sum_{m} \sum_{n} I(m,n)K(i-m,j-n)$$

#### 2-D Convolution

$$S(i,j) = (I * K)(i,j) = \sum_{m} \sum_{n} I(m,n)K(i-m,j-n)$$



Credit: http://machinelearninguru.com/computer vision/basics/convolution/convolution layer.html

## **Convolution Operation**

#### 2-D Convolution

$$S(i,j) = (I * K)(i,j) = \sum_{m} \sum_{n} I(m,n)K(i-m,j-n)$$

- Different Kernels/Filters are used in Image processing for revealing characteristics of the input

## **Convolution Operation**

2-D Convolution

$$S(i,j) = (I * K)(i,j) = \sum_{m} \sum_{n} I(m,n)K(i-m,j-n)$$

- Different Kernels/Filters are used in Image processing for revealing characteristics of the input







Edge Detection

## **Convolution Operation**

2-D Convolution

$$S(i,j) = (I * K)(i,j) = \sum_{m} \sum_{n} I(m,n)K(i-m,j-n)$$

- Different Kernels/Filters are used in Image processing for revealing characteristics of the input





\*



**Blurring** 

## Convolution - Properties

- Sparse Interactions
- Parameter sharing
- Equivariant Representation

- **Full Connectivity**: Fully connected NW on the whole image



**200x200** Image → **40.000** Pixels in *input* 

**400.000** *hidden* units → **40Kx400K** = **16B** *parameters* 

Sparse Connectivity: locally connected NW on the whole image



**200x200** Image → **40.000** Pixels in *input* 

**400.000** *hidden* units → **40Kx400K** = **16B** *parameters* 

**200x200** Image → **40.000** Pixels in *input* 

**10x10** *fields* 

**400.000** *hidden* units → **40Kx100** = **40M** *parameters* 

- **Sparse Connectivity**: locally connected NW on the whole image



- Fewer parameters stored for the model
- Reducing memory requirements
- Improving statistical efficiency
- Less operations for computing the output
- $O(mxn) \rightarrow O(kxn)$



Sparse Connectivity

- Fewer parameters stored for the model
- Reducing **memory** requirements
- Improving statistical efficiency
- Less operations for computing the output
- $O(mxn) \rightarrow O(kxn)$



Sparse Connectivity



**Full Connectivity** 

- Fewer parameters stored for the model
- Reducing **memory** requirements
- Improving statistical efficiency
- Less operations for computing the output
- $O(mxn) \rightarrow O(kxn)$



**Sparse Connectivity** 

- Fewer parameters stored for the model
- Reducing **memory** requirements
- Improving statistical efficiency
- Less operations for computing the output
- $O(mxn) \rightarrow O(kxn)$



Sparse Connectivity



**Full Connectivity** 

- Fewer parameters stored for the model
- Reducing **memory** requirements
- Improving statistical efficiency
- Less operations for computing the output
- $O(mxn) \rightarrow O(kxn)$

## **Parameter Sharing**



- Re-used kernel
- Each member of the kernel used at every position of the input
- Only one set of parameters are learned for all the locations
- Less operations for computing the output
- O(mxn) → O(kxn) for the forward propagation

#### **Parameter Sharing** causes **Equivariance** (to Translation)



- Re-used kernel
- Each member of the kernel used at every position of the input
- Only one set of parameters are learned for all the locations
- Less operations for computing the output
- O(mxn) → O(kxn) for the forward propagation
- Translation-Invariant

## Convnets - Layers

- Input
- Convolutional Stage
- Nonlinearity (e.g. *ReLU*)
- Pooling
- ...
- Fully Connected Layer



Convolutional Layer

## Convnets - Layers

- Input
- Convolutional Stage
- Nonlinearity (e.g. *ReLU*)
- Pooling
- ...
- Fully Connected Layer



Convolutional Layer

## Convolutional Layer



\*https://cs.nyu.edu/~fergus/tutorials/deep\_learning\_cvpr12/

#### Nonlinearity - ReLU



- Rectified Linear Unit
- Introducing Non-Linearity to the ConvNet
- Replace all negative input values to zero

## Nonlinearity - ReLU



## **Pooling Layer**



- Applied to a **feature map** after the nonlinearity (ReLU)
- Providing summary statistics of the nearby output
- maximum/average output within a rectangular neighborhood
- Subsampling effect

#### Fully Connected Layer + Softmax

#### **Fully Connected Layer**

- Generally a MLP and every neuron in the previous layer is connected to every neuron in the next
- Use features extracted from the convolutional layers for performing classification

#### **Softmax**

$$P(y = j \mid \mathbf{x}) = rac{e^{\mathbf{x}^\mathsf{T} \mathbf{w}_j}}{\sum_{k=1}^K e^{\mathbf{x}^\mathsf{T} \mathbf{w}_k}}$$

- Applied to the output of the FC layer
- Producing a discrete probability distribution layer



Fully Connected layers

## Convnet in action



## Summary

- Computationally more efficient
- Translation invariance
- Improving memory requirements

## Recurrent Neural Network

#### Recurrent Neural Network: Intro

- RNN: family of NN for processing sequential data
- **Example**: predicting the next word of a sentence
- **Recurrent**: performing the **same task** for every element of the sequence
- Output: dependent on previous computation
- RNN have memory



## Recurrent Neural Network: Intro

- Unfolding RNN



#### Recurrent Neural Network: Intro

- xt: **input** at timestamp t
- st : **hidden** state

$$s_t = f(Ux_t + Ws_{t-1})$$

o<sub>t</sub> : **output** at timestamp t  $o_t = \operatorname{softmax}(Vs_t)$ 



## Recurrent Neural Network: Training

- Learning the parameters: U,V,W
- SGD: Stochastic Gradient Descent
  - Minimizing the **total loss** of the training data
  - **Iterative** process
  - Nudge the parameters in the **directions** of the **gradients**

$$\frac{\partial L}{\partial U}, \frac{\partial L}{\partial V}, \frac{\partial L}{\partial W}$$



- **BPTT:** Backpropagation Through Time
  - Modified version of backpropagation algorithm for computing the gradients

#### Long-Term Dependency Problem

#### - **Example**: Prediction of next word

- "The clouds are in the" → ? ["Sky"]



- "I grew up in Italy (...) I speak fluent"  $\rightarrow$  ? ["Italian"]



#### Vanishing Gradient Problem

- Gradients become too large or too small during the iterative process of parameter learning

#### LSTM - Long Short-Term Memory

- Designed to handle long-term dependency
- **Memory cell** unit
  - Forget Gate: information to throw away (in the cell state)
  - *Input Gate*: information to store (in the cell state)
  - Output Gate: what to output



#### RNN vs CNN

- **CNN**: Neural network able to recognize patterns across the space (i.e.: component of an image)



- RNN: NN able to capture pattern from sequential data



CNN + RNN in joint architectures!

## Recurrent Neural Network: Applications

- Sentence Modelling
- Click Prediction
- Location Prediction
- Language Translation
- Sentiment Analysis
- Image Captioning and Description
- Speech Recognition
- Question/Answering Systems
- Text Generation

#### **EXTRA:** Transformer architecture

- Vanishing and exploding gradient problem
- LSTM struggle in capturing long-term dependencies
- RNN-based architectures prevents efficient parallelization when encoding



Transformer

#### **EXTRA:** Transformer architecture

 Attention mechanism enable Transformer to have very long term memory



#### EXTRA: Transformer architecture

- The Vanilla Transformer

#### Attention Is All You Need

Ashish Vaswani\* Google Brain avaswani@google.com

noam@google.com n.

Aidan N. Gomez\* †

Noam Shazeer\*

Google Brain

Łukasz Kaiser\* Google Brain lukaszkaiser@google.com

Jakob Uszkoreit\*

Google Research

usz@google.com

Niki Parmar\*

Google Research

nikip@google.com

Llion Jones\* Google Research llion@google.com

Illia Polosukhin\* <sup>‡</sup>
illia.polosukhin@gmail.com

University of Toronto

aidan@cs.toronto.edu



#### Conclusion

- Recurrent Neural are able to model sequences
- Training RNN is hard because the vanishing problem
- LSTM tackle the Long-Term Dependency Problem
- Mostly useful in NLP related problems

## Summary

- Deep Neural Network can learn extremely complex patterns
- **CNN** suitable for learning **pattern across space** (i.e., images)
- RNN suitable for sequence-wise kind of data

#### References

- Deep Learning Book [CHAPTER 9 and 10],

  Ian Goodfellow, Yoshua Bengio, and Aaron Courville, MIT Press, 2016, <a href="link">link</a>
- All the links in the slides

#### Extra

- Master Thesis Available! (massimiliano.ruocco@ntnu.no)
   (Integrated PhD?)
  - Where:
    - Sintef Digital / NTNU / Collaboration with industries

#### - Topics:

- Deep Learning,
- Transformers,
- Generative Adversarial Network,
- Attention Mechanism,
- Image-To-Image Translation,
- Self-Supervised Learning,
- Time Series Analysis

#### - Applications:

- Healthcare,
- Smart Building,
- Manufacturing,
- Energy,
- Telco



# Introduction to Deep Learning

A gentle introduction

Massimiliano Ruocco

Adj. Associate Professor, DART Group, IDI Senior Researcher, Sintef Digital



massimiliano.ruocco@ntnu.no