Project Roadmap

Objective

 Develop robust AI solution to interpret body cues and facial expressions of players to analyze emotional and psychological states in real time.

1. Data Collection

A. Video Footage Acquisition

- Target Sports:
 - Selected a diverse range of College Division 1 Basketball and NBA
 G League videos on YouTube to gather varied data.
- Data Source(s):
 - o YouTube
- Diversity Considerations:
 - o Ensured a diverse sample of player selection

B. Annotation of Emotional States

- Labeling Video Data:
 - Created a structured approach to label video footage with specific emotional cues, e.g., confidence (upright posture, smiles), frustration (slumped shoulders, frowning).

• Annotation Tool:

• Used annotation tool VGG Image Annotator to efficiently label and organize the dataset.

2. Algorithm Development

A. Machine Learning Frameworks

Framework Selection:

 Chose robust machine learning framework PyTorch for developing deep learning models.

• Initial Model Selection:

 Explored Convolutional Neural Networks (CNNs) for image recognition tasks and Long Short-Term Memory (LSTM) networks for temporal data analysis.

B. Feature Engineering

• Identification of Key Features:

• Extracted key features from video frames, focusing on facial landmarks (e.g., eye movements, mouth shape) and body posture (e.g., arm position, stance).

• Techniques:

• Used Histogram of Oriented Gradients (HOG) and facial landmark detection to enhance feature extraction.

C. Development of Recognition Models

Facial Expression Recognition (FER):

 Developed separate models to recognize basic emotions (e.g., happiness, anger, surprise) from facial cues.

Body Language Analysis:

• Created models to interpret body posture and movements that correlate with emotional states.

• Integration of Data Streams:

• Designed a multi-modal approach that combines facial and body language data for more accurate emotion recognition.

3. Model Training

A. Dataset Preparation

• Data Splitting:

• Split the annotated dataset into training, validation, and test sets, using an 80-10-10 split to ensure a robust evaluation.

Data Augmentation:

• Applied data augmentation techniques (flipping, rotation, scaling) to enhance the dataset and improve model generalization.

B. Training Process

Hyperparameter Tuning:

• Experimented with various hyperparameters (e.g., learning rate, batch size, number of layers) to optimize model performance.

Regularization Techniques:

• Implemented techniques like dropout and batch normalization to prevent overfitting during training.

C. Performance Evaluation

Metrics Selection:

• Used metrics such as accuracy, precision, recall, and F1-score to evaluate model performance.

• Confusion Matrix Analysis:

 Analyzed confusion matrices to identify misclassifications and areas for improvement in the models.

4. Feedback Mechanism

• Real-Time Output:

• Designed an output system that provides immediate feedback to coaches, displaying recognized cues and associated metrics.

• User Interface Integration:

• Ensured seamless integration with the user interface, allowing coaches to visualize data instantly during practice or games.

5. Security and Compliance

A. Data Privacy Considerations

• Compliance with Regulations:

• Ensured strict adherence to data privacy regulations (e.g., GDPR, CCPA) regarding the collection and storage of player data.

• Anonymization Techniques:

• Implemented techniques to anonymize player data to protect identities during analysis and storage.

B. Security Measures

• Data Encryption:

• Utilized encryption protocols for data in transit and at rest to safeguard sensitive information.

• Access Controls:

• Established role-based access controls to restrict data access to authorized personnel only.