

Comparison with DK1.1_RF_mmW model(s)

Please use the bookmark to navigate

General information on EGRVT models

- Maximum supply voltage is 1.5 V.
- Validity domain is defined as follows:
 - ✓ Drawn gate length varies from 100nm to 10um.
 - ✓ Drawn transistor width varies from 0.16um to 10um.
 - ✓ Device temperature varies from -40 °C to 125 °C.

dormieub

Output parameters definitions

- Model(s): egvnfet_acc, egvpfet_acc
 - ✓ Vt_lin: Threshold voltage defined as Vgs value for which drain current is ivt*M*1*W/(1*L+0+1*p_la) at Vds = 0.05V.
 - ✓ Ig_on: Gate current at Vds = 0V and Vgs = 1.5V.
 - ✓ Gm_c: Drain transconductance at Vgs = Vt_lin + 0.2, Vds = Vdd/2V, f = 100kHz.
 - ✓ Gd_c: Drain conductance at Vgs = Vt_lin + 0.2, Vds = Vdd/2V, f = 100kHz.
 - ✓ Ig_off: Gate current at Vds = VddV, Vgs = 0V.
 - ✓ Logioff : log10(Ioffsat).
 - ✓ Gain_c: Voltage gain defined as Gm_c / Gd_c.
 - ✓ Ieff: Average drain current (Ilow + Ihigh) / 2.
 - ✓ Ilin : Drain current at Vgs = 1.5V, Vds = 0.05V.
 - ✓ Dibl: Vt_lin Vt_sat.
 - ✓ Ioff_s : Source current at Vgs = 0V, Vds = vds_satV.
 - ✓ Ioffsat : Drain current at Vgs = 0V, Vds = vds_satV.
 - ✓ Ioff_g : Gate current at Vgs = 0V, Vds = vds_satV.
 - ✓ Vt_sat: Threshold voltage defined as Vgs value for which drain current is ivt*M*1*W/(1*L+0+1*p_la) at Vds = vds_satV.
 - ✓ Cgg_inv: Total gate capacitance at Vgs = 1.5V, Vds = 0V, f = 100kHz.
 - ✓ Isat : Drain current at Vgs = 1.5V, Vds = VddV.
 - ✓ Cgd_0v: Gate-to-Drain capacitance at Vgs = 0V, Vds = 0V, f = 100kHz.
 - ✓ Vtgmmax : Threshold voltage at Vds = 0.05 derived from Gm max method.

ST Confidential

egvnfet_acc Electrical characteristics per geometry

egvnfet_acc@ w=2e-06, l=1.0e-07, swshe=0, pre_layout_local=1, sa=1.80e-6, sb=1.80e-6, devtype=PT, as=3.6e-12, ad=3.6e-12, ps=7.6e-06, pd=7.6e-06, vbs=0, vdd=1.5, temp=25.0

DK1.2_RF_mmW wrt DK1.1_RF_mmW

	SSF	SS	TT	FF	FFF
Vt_lin [mV]	590.6 0.0mV	568 0.0mV	506.7 0.0mV	445.9 0.0mV	427.1 0.0mV
Vt_sat [mV]	562.9 0.0mV	542.2 0.0mV	480.5 0.0mV	419.4 0.0mV	402.1 0.0mV
Isat [mA]	0.92 0.0%	0.97 0.0%	1.08 0.0%	1.2 0.0%	1.24 0.0%
Ilin [μA]	148.8 0.0%	176 0.0%	190 0.0%	203 0.0%	224.8 0.0%
Gm_c [mS]	0.8 0.0%	0.87 0.0%	0.92 0.0%	0.97 0.0%	1.02 0.0%
Gd_c [µS]	12.17 0.0%	12.9 0.0%	14.93 0.0%	16.99 0.0%	17.24 0.0%
Gain_c []	65.73 0.0%	67.27 0.0%	61.61 0.0%	57.34 0.0%	59.36 0.0%
VtGmmax [mV]	555.5 0.0mV	540.9 0.0mV	481.6 0.0mV	422.4 0.0mV	408.2 0.0mV
Cgd_0v [aF]	426.1 0.0%	450.6 0.0%	450.9 0.0%	443.7 0.0%	475.1 0.0%
Cgg_inv [fF]	2.34 0.0%	2.42 0.0%	2.42 0.0%	2.41 0.0%	2.52 0.0%
Ieff [μA]	480.3 0.0%	520.8 0.0%	606.8 0.0%	702 0.0%	742.6 0.0%
Ig_on [fA]	2.63e-02 0.0%	7.34e-02 0.0%	0.28 0.0%	1.8 0.0%	3.67 0.0%
Ioffsat [pA]	0.13 0.0%	0.23 0.0%	1.49 0.0%	10.52 0.0%	17.25 0.0%
Ioff_g [aA]	-1.44e-02 -0.0%	-4.09e-02 -0.0%	-0.14 -0.0%	-0.55 -0.0%	-1.46 -0.0%
Ioff_s [pA]	-0.13 -0.0%	-0.23 -0.0%	-1.49 -0.0%	-10.52 -0.0%	-17.25 -0.0%

egvnfet_acc @ w=2e-06, l=2.0e-06, swshe=0, pre_layout_local=1, sa=2.26e-6, sb=2.26e-6, devtype=PT, as=4.52e-12, ad=4.52e-12, ps=8.52e-06, pd=8.52e-06, vbs=0, vdd=1.5, temp=25.0

DK1.2_RF_mmW wrt DK1.1_RF_mmW

	SSF	SS	TT	FF	FFF
Vt_lin [mV]	603.5 0.0mV	592 0.0mV	532.2 0.0mV	472.9 0.0mV	460.5 0.0mV
Vt_sat [mV]	593.2 0.0mV	581.9 0.0mV	522.2 0.0mV	463.1 0.0mV	450.9 0.0mV
Isat [μA]	114.4 0.0%	120.8 0.0%	140.4 0.0%	161.5 0.0%	169.6 0.0%
Ilin [μA]	13.97 0.0%	14.58 0.0%	15.91 0.0%	17.2 0.0%	17.82 0.0%
Gm_c [µS]	57.97 0.0%	59.88 0.0%	61.81 0.0%	63.79 0.0%	65.62 0.0%
Gd_c [nS]	35.6 0.0%	36.65 0.0%	40.06 0.0%	43.11 0.0%	44.12 0.0%
Gain_c []	1628 0.0%	1634 0.0%	1543 0.0%	1479 0.0%	1487 0.0%
VtGmmax [mV]	607.8 0.0mV	597.5 0.0mV	539.3 0.0mV	481.3 0.0mV	470 0.0mV
Cgd_0v [aF]	425.5 0.0%	450 0.0%	450.2 0.0%	442.9 0.0%	474.2 0.0%
Cgg_inv [fF]	29.79 0.0%	30.54 0.0%	31.13 0.0%	31.82 0.0%	32.61 0.0%
Ieff [μA]	58.46 0.0%	61.86 0.0%	72.74 0.0%	84.65 0.0%	89.1 0.0%
Ig_on [fA]	0.31 0.0%	0.84 0.0%	3.29 0.0%	22.4 0.0%	43.89 0.0%
Ioffsat [fA]	10 0.0%	16.19 0.0%	71.66 0.0%	448.5 0.0%	800.9 0.0%
Ioff_g [aA]	-0.26 -0.0%	-0.74 -0.0%	-2.6 -0.0%	-9.88 -0.0%	-26.4 -0.0%
Ioff_s [fA]	-10 -0.0%	-16.19 -0.0%	-71.66 -0.0%	-448.5 -0.0%	-800.9 -0.0%

egvpfet_acc Electrical characteristics per geometry

egvpfet_acc@ w=2e-06, l=1.0e-07, swshe=0, pre_layout_local=1, sa=1.80e-6, sb=1.80e-6, devtype=PT, as=3.6e-12, ad=3.6e-12, ps=7.6e-06, pd=7.6e-06, vbs=0, vdd=1.5, temp=25.0

DK1.2_RF_mmW wrt DK1.1_RF_mmW

	SSF	SS	TT	FF	FFF
Vt_lin [mV]	587.4 0.0mV	567.8 0.0mV	463.3 0.0mV	365.3 0.0mV	341.1 0.0mV
Vt_sat [mV]	506.1 0.0mV	489.5 0.0mV	392.2 0.0mV	300 0.0mV	277.7 0.0mV
Isat [μA]	442.1 0.0%	454.1 0.0%	535.4 0.0%	612.7 0.0%	629.2 0.0%
Ilin [μA]	51.59 0.0%	54.15 0.0%	57.91 0.0%	60.5 0.0%	64.21 0.0%
Gm_c [µS]	210.2 0.0%	213.6 0.0%	211 0.0%	205.7 0.0%	203.6 0.0%
Gd_c [μS]	9.24 0.0%	9.07 0.0%	8.29 0.0%	7.46 0.0%	7.11 0.0%
Gain_c []	22.75 0.0%	23.55 0.0%	25.47 0.0%	27.57 0.0%	28.64 0.0%
VtGmmax [mV]	652.8 0.0mV	635.1 0.0mV	529.8 0.0mV	431.8 0.0mV	417.5 0.0mV
Cgd_0v [aF]	530.5 0.0%	560.5 0.0%	555.6 0.0%	544.1 0.0%	584.7 0.0%
Cgg_inv [fF]	2.34 0.0%	2.43 0.0%	2.44 0.0%	2.43 0.0%	2.53 0.0%
Ieff [μA]	205.6 0.0%	214.2 0.0%	260.8 0.0%	308.2 0.0%	322.3 0.0%
Ig_on [aA]	2.08 0.0%	8.35 0.0%	23.31 0.0%	77.45 0.0%	269.7 0.0%
Ioffsat [pA]	1.07 0.0%	1.64 0.0%	22.64 0.0%	325.4 0.0%	628.3 0.0%
Ioff_g [aA]	-5.51 -0.0%	-17.94 -0.0%	-48.85 -0.0%	-149.6 -0.0%	-432 -0.0%
Ioff_s [pA]	-1.07 -0.0%	-1.64 -0.0%	-22.64 -0.0%	-325.4 -0.0%	-628.3 -0.0%

egvpfet_acc @ w=2e-06, l=2.0e-06, swshe=0, pre_layout_local=1, sa=2.26e-6, sb=2.26e-6, devtype=PT, as=4.52e-12, ad=4.52e-12, ps=8.52e-06, pd=8.52e-06, vbs=0, vdd=1.5, temp=25.0

DK1.2_RF_mmW wrt DK1.1_RF_mmW

	SSF	SS	TT	FF	FFF
Vt_lin [mV]	604.5 0.0mV	586.3 0.0mV	484.4 0.0mV	388.7 0.0mV	367.6 0.0mV
Vt_sat [mV]	584 0.0mV	566.2 0.0mV	464.9 0.0mV	369.5 0.0mV	348.6 0.0mV
Isat [μA]	23.06 0.0%	24.58 0.0%	30.54 0.0%	36.34 0.0%	38.24 0.0%
Ilin [μA]	3.07 0.0%	3.18 0.0%	3.5 0.0%	3.78 0.0%	3.89 0.0%
Gm_c [µS]	9.23 0.0%	9.44 0.0%	9.53 0.0%	9.47 0.0%	9.58 0.0%
Gd_c [nS]	8.62 0.0%	8.61 0.0%	8.62 0.0%	8.36 0.0%	8.18 0.0%
Gain_c []	1071 0.0%	1097 0.0%	1105 0.0%	1134 0.0%	1171 0.0%
VtGmmax [mV]	690.1 0.0mV	670.8 0.0mV	567.8 0.0mV	474.6 0.0mV	454.9 0.0mV
Cgd_0v [aF]	528 0.0%	557.9 0.0%	552.2 0.0%	539.9 0.0%	579.9 0.0%
Cgg_inv [fF]	28.74 0.0%	29.52 0.0%	30.38 0.0%	31.2 0.0%	31.98 0.0%
Ieff [μA]	11.69 0.0%	12.49 0.0%	15.69 0.0%	18.83 0.0%	19.85 0.0%
Ig_on [fA]	3.99e-03 0.0%	1.73e-02 0.0%	6.59e-02 0.0%	0.29 0.0%	1.09 0.0%
Ioffsat [pA]	9.21e-02 0.0%	0.21 0.0%	0.87 0.0%	4.57 0.0%	9.88 0.0%
Ioff_g [fA]	-9.98e-02 -0.0%	-0.32 -0.0%	-0.88 -0.0%	-2.71 -0.0%	-7.82 -0.0%
Ioff_s [pA]	-9.20e-02 -0.0%	-0.21 -0.0%	-0.86 -0.0%	-4.57 -0.0%	-9.87 -0.0%

egvnfet_acc Electrical characteristics scaling

Scaling versus Width (L=0.10u,Temp=25,Vbs=0V)

dormieub

egvnfet_acc, Vt_lin [mV] vs W [m]

egvnfet_acc, Ilin/W [A/m] vs W [m]

egvnfet_acc, VtGmmax [mV] vs W [m]

egvnfet_acc, DIBL [mV] vs W [m]

egvnfet_acc, Vt_sat [mV] vs W [m]

egvnfet_acc, Isat/W [A/m] vs W [m]

egvnfet_acc, Ioffsat [A] vs W [m]

egvnfet_acc, LogIoff [A] vs W [m]

egvnfet_acc, Ig_on/(L*W) [A/m2] vs W [m]

egvnfet_acc, Ig_off/(W) [A/m] vs W [m]

egvnfet_acc, Gd_c/W [s/m] vs W [m]

egvnfet_acc, Gm_c/W [s/m] vs W [m]

l==0.10e-6 and Temp==25 and w>0.135e-6 and devType=="PCELLwoWPE"

dormieub

egvnfet_acc, Gain_c [] vs W [m]

egvnfet_acc, Cgd_0v/W [F/m] vs W [m]

egvnfet_acc, Cgg_inv/(L*W) [F/m2] vs W [m]

l==0.10e-6 and Temp==25 and w>0.135e-6 and devType=="PCELLwoWPE"

dormieub

Scaling versus Temp @ L=0.1u, W=2u

egvnfet_acc, Vt_lin [mV] vs Temp [degC]

egvnfet_acc, Ilin/W [A/m] vs Temp [degC]

egvnfet_acc, VtGmmax [mV] vs Temp [degC]

egvnfet_acc, DIBL [mV] vs Temp [degC]

egvnfet_acc, Vt_sat [mV] vs Temp [degC]

egvnfet_acc, Isat/W [A/m] vs Temp [degC]

egvnfet_acc, Ioffsat [A] vs Temp [degC]

egvnfet_acc, LogIoff [A] vs Temp [degC]

egvnfet_acc, Ig_on/(L*W) [A/m2] vs Temp [degC]

egvnfet_acc, Ig_off/(W) [A/m] vs Temp [degC]

egvnfet_acc, Gd_c/W [s/m] vs Temp [degC]

egvnfet_acc, Gm_c/W [s/m] vs Temp [degC]

egvnfet_acc, Gain_c [] vs Temp [degC]

egvnfet_acc, Cgd_0v/W [F/m] vs Temp [degC]

egvnfet_acc, Cgg_inv/(L*W) [F/m2] vs Temp [degC]

Normalized scaling versus Temp @ L=0.1u, W=2u

dormieub

egvnfet_acc, Vt_lin [mV] vs Temp [degC]

egvnfet_acc, Ilin/W [A/m] vs Temp [degC]

egvnfet_acc, VtGmmax [mV] vs Temp [degC]

egvnfet_acc, DIBL [mV] vs Temp [degC]

egvnfet_acc, Vt_sat [mV] vs Temp [degC]

egvnfet_acc, Isat/W [A/m] vs Temp [degC]

egvnfet_acc, Ioffsat [A] vs Temp [degC]

egvnfet_acc, LogIoff [A] vs Temp [degC]

egvnfet_acc, Ig_on/(L*W) [A/m2] vs Temp [degC]

egvnfet_acc, Ig_off/(W) [A/m] vs Temp [degC]

egvnfet_acc, Gd_c/W [s/m] vs Temp [degC]

egvnfet_acc, Gm_c/W [s/m] vs Temp [degC]

egvnfet_acc, Gain_c [] vs Temp [degC]

egvnfet_acc, Cgd_0v/W [F/m] vs Temp [degC]

egvnfet_acc, Cgg_inv/(L*W) [F/m2] vs Temp [degC]

egvpfet_acc Electrical characteristics scaling

Scaling versus Width (L=0.10u,Temp=25,Vbs=0V)

egvpfet_acc, Vt_lin [mV] vs W [m]

egvpfet_acc, Ilin/W [A/m] vs W [m]

egvpfet_acc, VtGmmax [mV] vs W [m]

egvpfet_acc, DIBL [mV] vs W [m]

egvpfet_acc, Vt_sat [mV] vs W [m]

egvpfet_acc, Isat/W [A/m] vs W [m]

egvpfet_acc, Ioffsat [A] vs W [m]

l==0.10e-6 and Temp==25 and w>0.135e-6 and devType=="PCELLwoWPE"

dormieub

egvpfet_acc, LogIoff [A] vs W [m]

egvpfet_acc, Ig_on/(L*W) [A/m2] vs W [m]

egvpfet_acc, Ig_off/(W) [A/m] vs W [m]

egvpfet_acc, Gd_c/W [s/m] vs W [m]

egvpfet_acc, Gm_c/W [s/m] vs W [m]

egvpfet_acc, Gain_c [] vs W [m]

egvpfet_acc, Cgd_0v/W [F/m] vs W [m]

egvpfet_acc, Cgg_inv/(L*W) [F/m2] vs W [m]

Scaling versus Temp @ L=0.1u, W=2u

dormieub

egvpfet_acc, Vt_lin [mV] vs Temp [degC]

egvpfet_acc, Ilin/W [A/m] vs Temp [degC]

egvpfet_acc, VtGmmax [mV] vs Temp [degC]

egvpfet_acc, DIBL [mV] vs Temp [degC]

egvpfet_acc, Vt_sat [mV] vs Temp [degC]

egvpfet_acc, Isat/W [A/m] vs Temp [degC]

egvpfet_acc, Ioffsat [A] vs Temp [degC]

egvpfet_acc, LogIoff [A] vs Temp [degC]

egvpfet_acc, Ig_on/(L*W) [A/m2] vs Temp [degC]

egvpfet_acc, Ig_off/(W) [A/m] vs Temp [degC]

egvpfet_acc, Gd_c/W [s/m] vs Temp [degC]

egvpfet_acc, Gm_c/W [s/m] vs Temp [degC]

egvpfet_acc, Gain_c [] vs Temp [degC]

egvpfet_acc, Cgd_0v/W [F/m] vs Temp [degC]

egvpfet_acc, Cgg_inv/(L*W) [F/m2] vs Temp [degC]

Normalized scaling versus Temp @ L=0.1u, W=2u

egvpfet_acc, Vt_lin [mV] vs Temp [degC]

egvpfet_acc, Ilin/W [A/m] vs Temp [degC]

egvpfet_acc, VtGmmax [mV] vs Temp [degC]

egvpfet_acc, DIBL [mV] vs Temp [degC]

egvpfet_acc, Vt_sat [mV] vs Temp [degC]

egvpfet_acc, Isat/W [A/m] vs Temp [degC]

egvpfet_acc, Ioffsat [A] vs Temp [degC]

egvpfet_acc, LogIoff [A] vs Temp [degC]

egvpfet_acc, Ig_on/(L*W) [A/m2] vs Temp [degC]

egvpfet_acc, Ig_off/(W) [A/m] vs Temp [degC]

egvpfet_acc, Gd_c/W [s/m] vs Temp [degC]

egvpfet_acc, Gm_c/W [s/m] vs Temp [degC]

egvpfet_acc, Gain_c [] vs Temp [degC]

egvpfet_acc, Cgd_0v/W [F/m] vs Temp [degC]

egvpfet_acc, Cgg_inv/(L*W) [F/m2] vs Temp [degC]

Annex

Conditions of simulations

The simulations were done with SBenchLSF Alpha using Eldo simulator 2018.3.

- Model egvnfet_acc (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - **x** vds_off = vds_sat V
 - \times vds_cgd = 0 V
 - \times vds_cgg = 0 V
 - \times mc_sens = 0
 - \times vds lin = 0.05 V
 - \times ivt = 300e-9 A
 - **x** model version = 1.2.c
 - \times ams_release = 2018.3
 - \times vgs_stop = vdd V
 - X dlshrink ivt = 0
 - **x** sbenchlsf_release = Alpha
 - \times vds_sat = Vdd V
 - **x** mc_nsigma = 3
 - **x** shrink_ivt = 1

Sep 21, 2018

ST Confidential

- X dlshrink tinv = 0
- \times vgs_start = -0.5 V
- **✗** plashrink_ivt = 1
- \star ithslwi = 10e-9 A
- \times vds_cbd = 0 V
- \mathbf{x} vddmax = vdd
- \times voffset = 0.2 V
- \times mc runs = 1000
- \times vstep_ivt = 0.005 V
- \mathbf{x} vgs_off = 0 V
- \times temp = 25 °C
- \star f_ext = 100k Hz
- \mathbf{x} vbs = 0 V
- \times vdd = 1.5 V
- \star shrink tinv = 0.9
- **x** vds_gmgd = Vdd/2 V
- ✓ Sweep Parameters
 - **x** temp = -40.0, 0.0, 25.0, 85.0, 125.0
- ✓ Extra parameters
 - \mathbf{x} eg_dev = 0
 - \mathbf{x} eglvt_dev = 0
 - **✗** gflag_noisedev_eg_cmos028fdsoi = 0
 - **✗** gflag_noisedev_eglvt_cmos028fdsoi = 0
- Model egvpfet_acc (DK1.2_RF_mmW)
 - ✓ Input Parameters

Sep 21, 2018

- **x** vds_off = vds_sat V
- \times vds_cgd = 0 V
- \times vds_cgg = 0 V
- \mathbf{x} mc_sens = 0
- \times vds_lin = 0.05 V
- **x** ivt = 70e-9 A
- **✗** model_version = 1.2.c
- **x** ams_release = 2018.3
- \times vgs_stop = vdd V
- **✗** dlshrink_ivt = 0
- **✗** sbenchlsf_release = Alpha
- \times vds_sat = Vdd V
- **x** mc_nsigma = 3
- **x** shrink_ivt = 1
- **✗** dlshrink_tinv = 0
- \times vgs_start = -0.5 V
- **✗** plashrink_ivt = 1
- \star ithslwi = 10e-9 A
- \times vds_cbd = 0 V
- \times vddmax = vdd
- \times voffset = 0.2 V
- **x** mc_runs = 1000
- \mathbf{X} vstep_ivt = 0.005 V
- \mathbf{x} vgs_off = 0 V
- \times temp = 25 °C

- \star f_ext = 100k Hz
- \mathbf{x} vbs = 0 V
- \times vdd = 1.5 V
- \star shrink_tinv = 0.9
- \times vds_gmgd = Vdd/2 V
- ✓ Sweep Parameters
 - **x** temp = -40.0, 0.0, 25.0, 85.0, 125.0
- ✓ Extra parameters
 - \mathbf{x} eg_dev = 0
 - \mathbf{x} eglvt_dev = 0
 - **✗** gflag_noisedev_eg_cmos028fdsoi = 0
 - **✗** gflag_noisedev_eglvt_cmos028fdsoi = 0
- Model egvnfet_acc (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - \times vds off = vds sat V
 - \times vds_cgd = 0 V
 - \times vds_cgg = 0 V
 - \mathbf{x} mc_sens = 0
 - \times vds lin = 0.05 V
 - \times ivt = 300e-9 A
 - **✗** model_version = 1.2.b
 - \mathbf{x} ams_release = 2018.3
 - x vgs_stop = vdd V
 - X dlshrink ivt = 0
 - **x** sbenchlsf_release = Alpha

- \times vds_sat = Vdd V
- **x** mc_nsigma = 3
- \times shrink ivt = 1
- **✗** dlshrink_tinv = 0
- \times vgs_start = -0.5 V
- **✗** plashrink_ivt = 1
- \star ithslwi = 10e-9 A
- \times vds_cbd = 0 V
- \times vddmax = vdd
- \times voffset = 0.2 V
- **x** mc_runs = 1000
- \mathbf{X} vstep_ivt = 0.005 V
- \mathbf{x} vgs_off = 0 V
- \times temp = 25 °C
- \star f_ext = 100k Hz
- \mathbf{x} vbs = 0 V
- \times vdd = 1.5 V
- \star shrink_tinv = 0.9
- **x** vds_gmgd = Vdd/2 V
- ✓ Sweep Parameters
 - \mathbf{x} temp = -40.0, 0.0, 25.0, 85.0, 125.0
- ✓ Extra parameters
 - \mathbf{x} eg_dev = 0
 - \mathbf{x} eglvt_dev = 0
 - **✗** gflag_noisedev_eg_cmos028fdsoi = 0

- **✗** gflag_noisedev_eglvt_cmos028fdsoi = 0
- Model egvpfet_acc (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - **x** vds_off = vds_sat V
 - \times vds_cgd = 0 V
 - \times vds_cgg = 0 V
 - \mathbf{x} mc_sens = 0
 - \times vds_lin = 0.05 V
 - \times ivt = 70e-9 A
 - **✗** model_version = 1.2.b
 - \times ams_release = 2018.3
 - \times vgs_stop = vdd V
 - **✗** dlshrink_ivt = 0
 - **x** sbenchlsf_release = Alpha
 - \times vds_sat = Vdd V
 - **x** mc_nsigma = 3
 - **✗** shrink_ivt = 1
 - **✗** dlshrink_tinv = 0
 - \times vgs_start = -0.5 V
 - **✗** plashrink_ivt = 1
 - \star ithslwi = 10e-9 A
 - \times vds_cbd = 0 V
 - \mathbf{X} vddmax = vdd
 - \times voffset = 0.2 V
 - **x** mc_runs = 1000

- \mathbf{X} vstep_ivt = 0.005 V
- \mathbf{x} vgs_off = 0 V
- **x** temp = $25 \, ^{\circ}$ C
- \star f_ext = 100k Hz
- \mathbf{x} vbs = 0 V
- \times vdd = 1.5 V
- \star shrink_tinv = 0.9
- \times vds_gmgd = Vdd/2 V
- ✓ Sweep Parameters
 - \mathbf{x} temp = -40.0, 0.0, 25.0, 85.0, 125.0
- ✓ Extra parameters
 - \mathbf{x} eg_dev = 0
 - \mathbf{x} eglvt_dev = 0
 - **✗** gflag_noisedev_eg_cmos028fdsoi = 0
 - **x** gflag_noisedev_eglvt_cmos028fdsoi = 0

Sep 21, 2018