空間分析方法與應用 (Geog 5069) | 台大地理系 Spatial Analysis: Methods and Applications

3. 互動式資料視覺化

Interactive Data Visualization

https://ceiba.ntu.edu.tw/1062_Geog5016

授課教師:溫在弘

E-mail: wenthung@ntu.edu.tw

本週課程

- Interactive Data Visualization in R
- Introduction to R Shiny
- Understanding file structure for R Shiny apps
- Building my first R Shiny app
- Deploying Shiny apps to the web

Interactive Data Visualization in R

https://shiny.rstudio.com/gallery/

Running the First R Shiny app

library(shiny)

runExample("01_hello")

Hello Shiny!


```
# show with app
Hello Shiny!
                                                           app.R
by RStudio, Inc.
                                                          library(shiny)
This small Shiny application demonstrates Shiny's
automatic UI updates.
                                                          # Define UI for app that draws a histogram ----
Move the Number of bins slider and notice how the
                                                          ui <- fluidPage(
renderPlot expression is automatically re-evaluated
                                                            # App title ----
when its dependant, input$bins, changes, causing a
                                                            titlePanel("Hello Shiny!"),
histogram with a new number of bins to be rendered.
                                                             # Sidebar Layout with input and output definitions ----
                                                             sidebarLayout(
                                                              # Sidebar panel for inputs ----
                                                              sidebarPanel(
                                                                # Input: Slider for the number of bins ----
```

- Shiny applications have two components:
 - a user-interface definition (UI) file called Ui. R
 - This source code is used to set-up what the user will
 actually see in the web app, i.e. the layout of the web page
 - Title, sliders, widgets, plots, location of items on the page, etc.
 - This source code is also used to accept input from the user
 - e.g. It recognizes what the user has entered in the slider
 - a server script file called server.R
 - This source code does the computational R work "under the hood" with familiar functions such as hist(), plot(), etc.
 - This source code contains the instructions that your computer needs to build your app
- These two source files work together to create your R Shiny web application

Folder/File structure for R shiny app

To make an R Shiny app, start with this folder/file/filename structure. Put both files (named exactly ui.R and server.R) into a single folder named for your app.

This is the 'bare-bones' structure for a Shiny app. As you get more complex, you may include other things in this folder, such as a data file, or the 'global.R' file, but that's further down the road.

Creating ui.R and server.R

Example ui.r file from tutorial "Hello Shiny!"

(setting-up the structure of the web page)

(1/3 space of page) and main ui.R area (2/3 space of page). library(shiny) Define sidebar: # Define UI for application that draws a histogram shinyUI(fluidPage(Put the slider for input in the sidebar # Application title titlePanel("Hello Shiny!" panel and name the input as "bins". # Sidebar with a stider sidebarLayout(sidebarPanel(Define your slider sliderInput("bins", "Number of bins:" and set initial min = 1, settings for slider max = 50, value = 30)(value=30).), # Show a plot of the generated distribution mainPanel(Define main panel: plotOutput("distPlot") Put the generated plot in the main panel.

Create a layout with a sidebar

Give your output plot a name, such as "distPlot".

This name will also be used in the server or file.

Example server.r file from tutorial "Hello Shiny!"

(the "under the hood" computations)

Name of output plot stated in the Ui.r file, or server.R "distPlot". library(shiny) # Define server logic required to draw a histogram shinyServer(function(input, output) { # Expression that generates a histogram. The expression is wrapped in a call to renderPlot to indicate that: 1) It is "reactive" and therefore should re-execute automatically when inputs change 2) Its output type is a plot Set-up arguments for the hist() function based on output\$distPlot <- renderPlot({ <- faithful[, 2] # Old Faithful Geyser data user-input "bins" from bins <- seq(min(x), max(x), length.out = input\$bins + web app. # draw the histogram with the specified number of bins hist(x, breaks = bins, col = 'darkgray', border = 'white' 3) }) Generate the hist() plot with given arguments.

Running an R Shiny App

- Every Shiny app has the same structure:
 - two R scripts saved together in a directory. At a minimum, a Shiny app has ui.R and server.R files.
- You can create a Shiny app by making a new file directory and saving a ui.R and server.R file inside it. Each app will need its own unique directory (or folder).
- You can run a Shiny app by giving the name of its directory to the function runApp().
 - > library(shiny)
 - > runApp("my_app")

Running the "Hello shiny" app directly from the ui.R and server.R files

Shiny App Server http://www.shinyapps.io/

Deploying Shiny apps to the web

https://shiny.rstudio.com/articles/deployment-web.html

範例程式說明

https://spatiallab.shinyapps.io/my_app1/

ui.R

```
shinyUI(fluidPage(
  titlePanel("Data Viz Lab"),
  sidebarLayout(
   sidebarPane
      selectInput("variable1", label = h4("X-Variable"),
                  choices = c("Structure.Cost", "Land.Value", "Home.Value", "Home.Price.Index"),
                  selected = "Land.Value").
      checkboxInput("x_checkbox", label = "log-sclae?", value = FALSE),
      selectInput("variable2", label = h4("Y-Variable"),
                  choices = c("Structure.Cost","Land.Value","Home.Value","Home.Price.Index"),
                  selected = "Structure.Cost").
      sliderInput("circlesize", label = h4("Circle-Size"), min = 1, max = 10, value = 3),
      radioButtons("mapstyle", label = h4("Map Style"),
                   choices = list("Unique Color" = 1, "Graduate Color" = 2), selected = 1),
      selectInput("mapcolor", label = h4("Fill Color/ Lowest"),
                  choices = c("brown","yellow","green","blue","red"), selected = "brown"),
     selectInput("mapcolor2", label = h4("Outline Color/ Highest"),
                  choices = c("white","yellow","green","blue","red"), selected = "white")
    mainPanel
      plotOutput("distPlot")
```



```
shinyUI(fluidPage(
  titlePanel("Data Viz Lab"),
  sidebarLayout(
                                                                Data Viz Lab
    sidebarPanel
      selectInput("variable1", label = h4("X-Variable")
                    choices = c("Structure.Cost", "Land.Val
                                                                 X-Variable
                    selected = "Land.Value").
                                                                  Land Value
      checkboxInput("x_checkbox", label = "log-sclae?",
                                                                 log-sclae?
                                                                 Y-Variable
      selectInput("variable2", label = h4("Y-Variable")
                    choices = c("Structure.Cost", "Land.Val
                                                                  Structure.Cost
                    selected = "Structure.Cost").
                                                                 Circle-Size
      sliderInput("circlesize", label = h4("Circle-Size"
       radioButtons("mapstyle", label = h4("Map Style"),
                                                                 Map Style
                     choices = list("Unique Color" = 1, "@
                                                                 Unique Color

    Graduate Color

      selectInput("mapcolor", label = h4("Fill Color/ Lo
                                                                 Fill Color/ Lowest
                    choices = c("brown","yellow","green","
                                                                  brown
      selectInput("mapcolor2", label = h4("Outline Color
                    choices = c("white","yellow","green","
                                                                 Outline Color/ Highest
                                                                  white
    mainPanel
```

plotOutput("distPlot")

```
mainPanel(
    #plotOutput("distPlot")
    tabsetPanel(
        tabPanel("Histogram", plotOutput("hisPlot")),
        tabPanel("Scatter Plot", plotOutput("distPlot")),
        tabPanel("Map", plotOutput("spatial"))
)
```



```
mainPanel(
                                                            ui.R
   #plotOutput("distPlot")
   tabsetPanel(
     <del>tabPanel("Histogram", plotOutput</del>("hisPlot")),
     tabPanel("Scatter Plot", plotOutput("distPlot")),
     tabPanel("Map", plotOutput("spatial"))
                                                 server.R
# Plotting
shinyServer(function(input, output) {
 ###
 output$distPlot <- renderPlot({
   if (input$x_checkbox == TRUE ){
     ggplot(hp2001Q1, aes_string(y = input\suriable2. x = input\suriable1)) +
       geom_point(size=input$circlesize) + scale_x_log10(input$variable1)
   } else {
     ggplot(hp2001Q1, aes_string(y = input$variable2, x = input$variable1)) +
       geom_point(size=input$circlesize)
 output$hisPlot <- renderPlot({
   ggplot(housing, aes_string(x = input$variable1)) + geom_histogram()
```

server.R

```
###
output$spatial <- renderPlot({</pre>
  map1<- ggplot() +</pre>
    geom_polygon(data =Taipei_Vill.f, aes(x=long, y = lat, group = group), fill=input$mapcolor , color=input$mapcolor2) +
    coord_fixed(1.0)
  map2<- ggplot(Taipei_Vill.f, aes_string("long", "lat", group = "group", fill = "density" )) +</pre>
        geom_polygon() + coord_equal() + scale_fill_continuous(low = input$mapcolor, high = input$mapcolor2)
  if (input$mapstyle == 1 ){
    map1
  } else {map2}
  })
                                                      Map Style
                                                           Unique Color
                                                           Graduate Color
```

Path of Files

server.R

```
# Data source
housing <- read.csv("landdata.csv")</pre>
hp2001Q1 \leftarrow subset(housing, Date == 2001.25)
Taipei_Vill <- readOGR(dsn = "GIS", layer = "Taipei_Vill", encoding="utf8")</pre>
Taipei_Vill$area<- poly.areas(Taipei_Vill)/10^6
Taipei_Vill$density<- as.numeric(Taipei_Vill$CENSUS) / as.numeric(Taipei_Vill$area)</pre>
Taipei_Vill.f <- fortify(Taipei_Vill, region="VILLAGE")</pre>
Taipei_Vill.f <- merge(Taipei_Vill.f, Taipei_Vill@data, by.x = "id", by.y = "VILLAGE")
    ATA (D:) \triangleright R_Labs \triangleright R_app \triangleright my_app1
     名稱
       GIS
        rsconnect
     Ianddata.csv
     server.R
     📵 ui.R
```

More Examples

R shiny provides 11 specific examples each highlighting a certain ability:

> runExample()

Valid examples are "01_hello", "02_text", "03_reactivity", "04_mpg", "05_sliders", "06_tabsets", "07_widgets", "08_html", "09_upload", "10_download", "11_timer"

Diamonds Explorer

Different page layout other than sidebar/mainplot setting rows and columns:

See R studio website gallery:

https://shiny.rstudio.com/gallery/

R Shiny 速查表

https://shiny.rstudio.com/images/shiny-cheatsheet.pdf

Interactive Web Apps with shiny Cheat Sheet

learn more at shiny.rstudio.com

Basics

A **Shiny** app is a web page (**UI**) connected to a computer running a live R session (**Server**)

Users can manipulate the UI, which will cause the server to update the UI's displays (by running R code).

App template

Begin writing a new app with this template. Preview the app by running the code at the R command line.


```
library(shiny)
ui <- fluidPage()
server <- function(input, output){}
shinyApp(ui = ui, server = server)</pre>
```

 ui - nested R functions that assemble an HTML user interface for your app

Building an App - Complete the template by adding arguments to fluidPage

Save your template as app.R. Alternatively, split your template into two files named ui.R and server.R.

ui.R contains everything you would save to ui.

server.R ends with the function you would save to server.

No need to call **shinyApp()**.

Save each app as a directory that contains an app.R file (or a server.R file and a ui.R file) plus optional extra files.

實習

- ■修改範例程式檔案
 - □ 在Scatter plot的面板,新增線性迴歸的趨勢線。
 - □ 在Map的面板,新增 Tpe_Fastfood圖資;並在介面新增 radioButton,可切換檢視
 - 1.) MIC/KFC 類別、
 - 2.) Type90 銷售等級 (bubble map)
 - 3.) Type99 銷售等級 (bubble map)

繳交規定:上傳 pdf 檔,包括 app 網址超連結 以及上述新增功能的截圖畫面

口頭報告的相關時程規劃

- 3/29: consulting TA and Q&A
- 4/05: No class
- 4/12: oral presentation

- Due: 4/06 (Fri.) 11:59 pm
 - 繳交規定:以組為單位,上傳 pdf 檔,包括:app 網址超連結 以及1-page的資料視覺化說明。以應用程式與1-page書面說明評分。(總成績 10%)
- 4/09 公告入選 前10 組名單,準備 ppt 簡報檔。
- 4/12上課前,須完成上傳 ppt。口頭發表資料視覺化的網路應用程式。(10 min,含現場系統展示)

口頭報告的獎勵方式

- 擬邀請系上老師與研究生,與助教共同評分。
- 第 1 名:期中考+90分或作業總成績 A+
- 第2-3名:期中考+60分
- 第3-6名: 期中考+40分
- 第7-9名:期中考+20分
- 第10名:期中考+10分

■ 修課同學票選前3名:期中考+20分