INTELIGÊNCIA ARTIFICIAL & BIG DATA

Prof. Miguel Bozer da Silva

PREPARANDO DADOS COM O PANDAS: FOCO EM IA!

Preparando Dados com o Pandas

- Possíveis problemas para modelos de *Machine Learning*:
 - Dados armazenados como strings:

- Nesses casos, onde temos colunas com dados armazenados como strings, temos que ajustá-los para valores numéricos.
 - Modelos de Machine Learning irão realizar operações matemáticas com os dados de entrada, logo os valores devem ser numéricos

Preparando Dados com o Pandas

- Possíveis problemas para modelos de *Machine Learning*:
 - Dados armazenados como strings:

- Nesses casos, onde temos colunas com dados armazenados como strings, temos que ajustá-los para valores numéricos.
 - Temos duas principais abordagens para quando conseguimos estabelecer uma ordenação dos dados e quando não conseguimos fazer isso.

One Hot Enconding

Quando não conseguimos ordenar os dados usamos o One Hot Enconding

Imagine que uma das colunas do seu conjunto de dados tem o tipo string

FRUTA
MAÇA
BANANA
BANANA
MAÇA
MANGA

Não há como criar uma ordem entre os elementos, por exemplo:

A média entre banana e manga é uma maça?

Se a pergunta de média entre elementos não faz sentido, os mesmos não podem ser ordenados. Logo usamos o One Hot Encoding

One Hot Enconding

MANGA

Quando não conseguimos ordenar os dados usamos o One Hot Enconding

O One Hot Encoding irá transformar uma coluna catagórica em colunas binárias (contendo 0 ou 1):

FRUTA	MAÇA	BANANA
MAÇA	1	0
BANANA	0	1
BANANA	0	1
MAÇA	1	0
MANGA	0	0

one_hot_encoded_data = pd.get_dummies(data, columns = ['Fruta'])

Label Enconding

Quando conseguimos ordenar os dados usamos o Label Enconding

Imagine um outro cenário onde temos uma das colunas do seu conjunto de dados com o tipo string

Há como criar uma ordem entre os elementos, por exemplo:

A média de tamanho entre uma camisa G e P é uma camisa M?

Nesse caso faz sentido ordenarmos os elementos e a verificarmos a sua média. Logo usamos o **Label Encoding**

Conjunto de dados

Label Enconding

O Label Encoding irá transformar uma coluna catagórica em uma coluna numérica

TAMANHO CAMISA				
PP		TAMANHO CAMISA		TAN
М		PP		
G		Р		\vdash
М		М		\vdash
GG		G		\vdash
Р		GG		\vdash
G	,	/alores únicos	, S	

TAMANHO CAMISA
0
2
3
2
4
1
3

Conjunto de dados

data['Tamanho Camisa'].unique()

Valores únicos, forma numérica

MANHO CAMISA

(NUMÉRICO)

Coluna com dados ajustados

Exercício

 No jupyter Notebook: "2. Label Encoding e One Hot Encoding.ipynb" vamos ver como usar os conceitos de Label Encoding e One Hot Encoding

Preparando Dados com o Pandas

- Possíveis problemas para modelos de *Machine Learning*:
 - Dados nulos.
 - Pelo mesmo motivo dos dados armazenados como texto, os valores nulos não podem ser processados durante o treinamento ou o teste.
 - A exclusão das linhas com valores nulos ou a substituição dos valores já foram vistos no semestre passado e serão apresentados posteriormente em outros projetos que iremos trabalhar!

Prof. Miguel Bozer da Silva

APRENDIZADO SUPERVISIONADO

- O que é o aprendizado supervisionado?
- No aprendizado supervisionado temos os dados de entrada do nosso modelo e também conhecemos os *labels* deles, isto é o valor esperado da saída do modelo para cada entrada:

i-ésima entrada do nosso modelo. Aqui temos todas as características diferentes que iremos utilizar para fazermos uma predição da saída $(\hat{y}^{(i)})$

- O que é o aprendizado supervisionado?
- No aprendizado supervisionado temos os dados de entrada do nosso modelo e também conhecemos os *labels* deles, isto é o valor esperado da saída do modelo para cada entrada:

Salario mensal	Nível de educação	Moradia	Aprovação do cartão de crédito
8500,00	Mestrado	Casa/Apartamento Próprio quitado	Aprovado
1950,00	Ensino médio / técnico	Aluguel	Reprovado
:	:	:	:
3500,00	Graduação	Casa/Apartamento Próprio financiado	Reprovado

 Para o caso dos classificadores, conhecemos os nossos dados de entrada (x) e conhecemos os labels dele (y) que são categóricos

altura	peso	Classe
1,83	95	adulto
1,65	77	adulto
1,25	50	criança
:	:	:
1,77	69	adulto

 $\mathbf{x}^{(i)}$ Entrada de dados

 $y^{(i)}$ Saída de dados

 Os modelos classificadores irão estimar parâmetros (θ) que nos indicam a relação entre as nossas entradas (x) e a nossa saída – label (y)

• A etapa de aprendizado no nosso modelo $f(\theta)$ é chamada de treinamento. Nela o modelo aprenderá a relação das entradas com as saídas.

 Após o treinamento, podemos usar o nosso modelo para estimar dados desconhecidos: Caso um novo dado cuja classe é desconhecida for apresentado ao modelo, podemos classifica-lo!

 Após o treinamento, podemos usar o nosso modelo para estimar dados desconhecidos: Caso um novo dado cuja classe é desconhecida for apresentado ao modelo, podemos classifica-lo!

 Podemos também estimar uma saída de valores numéricos contínuos (y) a partir de um conjunto de dados de entrada (x)

		_	\mathcal{Y}	\hat{y} - Previsões d	o modelo
idade	altura				
5	1,00		(cm)		
11	1,43				
7	1,19		Altura		
:	:	,	•		
16	1,73				
$\mathbf{x}^{(i)}$	$y^{(i)}$				
				ldade (anos)	x_1

 Podemos também estimar uma saída de valores numéricos contínuos (y) a partir de um conjunto de dados de entrada (x)

			<i>y</i> '	\hat{y} - Previsões do modelo
idade	altura			
5	1,00		cm)	
11	1,43		Altura (cm)	
7	1,19		Altu	
:	:	·	•	
16	1,73			
$\mathbf{x}^{(i)}$	$y^{(i)}$			-
				Idade (anos) x_1

 Nesses casos temos a necessidade de utilizar modelos regressores para resolver o problema que estamos trabalhando

			У	\hat{y} - Previsões do modelo
idade	altura			
5	1,00		cm)	
11	1,43		Altura (cm)	
7	1,19		Altu	
:	:	,		
16	1,73			
$\mathbf{x}^{(i)}$	$y^{(i)}$			-
				Idade (anos) x_1

Prof. Miguel Bozer da Silva

DIVISÃO DOS CONJUNTOS DE DADOS

Divisão dos Conjuntos de Dados

 Para usarmos modelos de Machine Learning temos que criar os conjuntos de dados para treinamento e teste

Divisão dos Conjuntos de Dados

- Conjunto de treinamento: Utilizado para o modelo aprender as relações entre as entradas e saídas dos meus dados
- Conjunto de teste: Utilizado para verificar se o nosso modelo foi devidamente treinado e checarmos com métricas de desempenho se o nosso

Com a divisão dos dados podemos atuar da seguinte forma:

Modelos treinados : Parâmetros θ estimados para cada modelo!

para cada entrada

Com a divisão dos dados podemos atuar da seguinte forma:

Modelos previamente treinados

– Agora podemos comparar o que os modelos estavam (\hat{y}) prevendo com o que eles deveriam estar prevendo (y_test)

y_test	$\widehat{\mathcal{Y}}_{SVM}$	$\hat{\mathcal{Y}}_{reg}$	$\widehat{\mathcal{Y}}_{KNN}$
Adulto	Criança	Adulto	Criança
Adulto	Adulto	Criança	Adulto
Criança	Criança	Criança	Adulto
Adulto	Adulto	Adulto	Criança
Criança	Criança	Adulto	Adulto
Adulto	Criança	Adulto	Adulto
Adulto	Criança	Adulto	Criança
:	:	:	:
Criança	Adulto	Criança	Adulto

 Podemos comparar os modelos e tentar ver qual deles consegue chegar o mais próximo possível de <u>y_test</u>. Para isso, usamos as métricas de desempenho

y_test	$\widehat{\mathcal{Y}}_{SVM}$	\hat{y}_{reg}	$\widehat{\mathcal{Y}}_{KNN}$
Adulto	Criança	Adulto	Criança
Adulto	Adulto	Criança	Adulto
Criança	Criança	Criança	Adulto
Adulto	Adulto	Adulto	Criança
Criança	Criança	Adulto	Adulto
Adulto	Criança	Adulto	Adulto
Adulto	Criança	Adulto	Criança
:	:	:	:
Criança	Adulto	Criança	Adulto

 Para usarmos modelos de Machine Learning temos que criar os conjuntos de dados para treinamento e teste

Como pudemos ver ao longo da aula, existem muitas formas de agrupar os diferentes algoritmos de Machine Learning. Muito desse processo de classificação ainda está sendo feito agora!

É realmente um Zoológico de Algoritmos!

https://www.youtube.com/watch?v=w6Pw4MOzMuo&list=LL&index=129&ab channel=MichaelBronstein

- Infelizmente, o Zoológico é muito grande para nosso tour: não vamos conseguir conhecer todos os algoritmos que existem esse ano;
- Além disso, muitos outros algoritmos estão sendo propostos todos os meses!
- Vamos estudar alguns dos mais importantes para realizar tarefas básicas de Inteligência Artificial e Ciência de Dados, entre eles:

Aprendizado supervisionado:

- > Regressão: regressão linear, SVR (SVM), Árvore de Decisão e KNR;
- Classificação: KNN, Árvore de Decisão, RandomForest, SVM, Naive Bayes, Regressão Lógistica;

❖ Aprendizado não supervisionado:

- > Agrupamento: k-means, hierárquico, DBSCAN, mistura gaussiana;
- > Redução de dimensionalidade: t-SNE, PCA, kPCA, Isomap;
- No segundo semestre iremos ver outra parte do zoológico que realiza essas mesmas tarefas de maneira diferente: as Redes Neurais Artificiais (Deep Learning).

Avaliação do modelo

SENAI

Porque devemos avaliar o modelo?

• IA PODE ERRAR!

Erros acontecem... overfitting e underfitting

Overfitting

- Modelo que se ajusta aos dados de treinamento muito bem, incluindo outliers
- Impacto negativo na capacidade do modelo em generalizar

Underfitting

 Um modelos que nem se ajusta bem aos dados de treino, nem generaliza para novos dados

Erros acontecem... overfitting e underfitting

Um modelo com **overfitting** tem mais coeficientes do que o necessário. É um modelo com pouca capacidade de generalização: ele terá alta acurácia para os dados de treinamento e acurácia extremamente baixa para os dados de teste.

•

Erros acontecem...

Bias (enviesamento): Precisamos ser éticos na escolha das colunas que iremos usar e no dados que iremos fornecer aos algoritmos para que injustiças e preconceitos prévios não sejam ensinados aos algoritmos!

Overffiting (sobreajuste): Precisamos fazer separação treino/teste para atestar a generalidade de nosso modelo, levando em consideração o tipo de dados e o propósito para escolher tipo de metodologia de separação (80/20, cross validation, data leakage);

Acurácia e Precisão: Precisamos comparar com resultados de sistemas tradicionais (normalmente denominados de Modelo Base);

Prof. Miguel Bozer da Silva

NORMALIZAÇÃO E PADRONIZAÇÃO DOS DADOS

- Alguns modelos de Machine Learning exigem que os valores estejam em escalas similares para que eles não se tornem tendenciosos. Por exemplo:
- Se temos o peso, altura e o tamanho da camisa que uma pessoa usa.
 Podemos tentar usar esses dados para estimar qual o tipo de camisa uma pessoa pode comprar
- Para isso, o nosso modelo recebe os valores do peso e da altura e estima a saída de tamanho da camisa.

id	Peso	Altura(m)	Camisa
1	75	1,77	G
2	80	1,85	G
3	92	1,8	G
4	67	1,69	M
5	88	1,9	GG
6	105	1,95	GG

A escala do peso é muito maior que a altura.

 Caso as grandezas dos dados envolvidos forem muito diferentes, podemos padronizar ou normalizar os nossos dados:

Padronização:

$$z_i = rac{x_i - \mu}{\sigma}$$

Onde:

 z_i é o i-ésimo valor padronizado;

 x_i é o i-ésimo valor original dos nossos dados σ é o desvio padrão dos dados.

Sklearn: StandardScaler()

 μ é a média dos dados

$$ullet$$
 Normalização: $X_{changed} = rac{X - X_{min}}{X_{max} - X_{min}}$

Onde:

 $X_{changed}$ é o valor normalizado

X é o valor antes da normalização

 X_{min} é o menor valor do conjunto de dados

 X_{max} é o maior valor do de dados

Após a padronização dos dados:

id	Peso	Altura(m)	Camisa
1	75	1,77	G
2	80	1,85	G
3	92	1,8	G
4	67	1,69	M
5	88	1,9	GG
6	105	1,95	GG

	6	105	1,95	GG	
2 -					
1,95					
1,9					_
		,			
,-					
1,75					
1,7					
1,65					
60) 7	0 8	30 9	00 10	00 110

Peso

id	Peso	Altura(m)	Camisa
1	-0,71	-0,61	G
2	-0,33	0,25	G
3	0,56	-0,29	G
4	-1,30	-1,46	M
5	0,26	0,78	GG
6	1,52	1,32	GG

 A Padronização dos dados transforma os mesmos em uma distribuição normal padrão

Recomendado quando os dados estão em uma distribuição normal

Após a normalização dos dados:

id	Peso	Altura(m)	Camisa
1	75	1,77	G
2	80	1,85	G
3	92	1,8	G
4	67	1,69	M
5	88	1,9	GG
6	105	1,95	GG

id	Peso	Altura(m)	Camisa
1	0,21	0,31	G
2	0,34	0,62	G
3	0,66	0,42	G
4	0,00	0,00	M
5	0,55	0,81	GG
6	1,00	1,00	GG

 A normalização pode ser aplicada quando a distribuição dos dados não é normal ou se o desvio padrão dos mesmos for muito pequeno.

Exercício

No jupyter Notebook: "2.3 Normalização e Padronização dos Dados.ipynb" vamos ver como aplicar esses conceitos.