

Lecture 4: Topological Sort

CSC 226: Algorithms and Data Structures II

Topological Ordering

• Number vertices so that having edge (v_i, v_j) implies i < j in numbering

DAGs and Topological Ordering

• A directed acyclic graph (DAG) is a digraph that has no directed cycles

Directed acyclic graph G

• A **topological ordering** of a digraph is a numbering $v_1, ..., v_n$ of the vertices such that for every directed edge (v_i, v_j) , we have i < j in the numbering.

Theorem: A digraph admits a topological ordering if and only if it is a DAG

No topological ordering

If it has a cycle, you get atuch in

Topological Sort

- A directed acyclic graph defines a partial order (way to compare vertices <, =, >)
- Hence, a graph can be partially sorted
- Applications:
 - Nodes are tasks or work assignments
 - **Edges** represent dependencies among tasks (precedence relationships)

- Task b cannot start until task a is completed
- Course prerequisites
- Inheritance between Java classes
- Compilation dependency graph

- If a digraph is **acyclic**, then there must exist a node v_1 with $indeg(v_1) = 0$
- Remove v_1 and all its outgoing edges
- The resulting graph must also be acyclic
 - Removing a vertex from an acyclic graph can't create a cycle
- Remove the next vertex v_2 with $indeg(v_2) = 0$
- Repeat until all vertices are removed

or, a node that only has OUT connections, no IN rommetions A base node.

```
Output: Topological ordering of G or an indication of a directed cycle
S \leftarrow \text{empty stack}
for each vertex u in G do
     if deg(u) = 0 then
          S.push(u)
i \leftarrow 1
while S is not empty do
     u \leftarrow S.pop()
     Number u as vertex v_i
     i \leftarrow i + 1
     for each vertex v adjacent to u do
          \deg(v) \leftarrow \deg(v) - 1
          if deg(v) = 0 then
               S.push(v)
if i > n then
     return v_1, v_2, ..., v_n
return "G has a directed cycle"
```

TopologicalSort(G):

Input: Digraph *G* with *n* vertices


```
Topological Sort(G):
```

Input: Digraph *G* with *n* vertices

Output: Topological ordering of *G* or an indication of a directed cycle

```
S \leftarrow \text{empty stack}
for each vertex u in G do
     if deg(u) = 0 then
          S.push(u)
i \leftarrow 1
while S is not empty do
     u \leftarrow S.pop()
     Number u as vertex v_i
     i \leftarrow i + 1
     for each vertex v adjacent to u do
           \deg(v) \leftarrow \deg(v) - 1
          if deg(v) = 0 then
               S.push(v)
if i > n then
     return v_1, v_2, ..., v_n
return "G has a directed cycle"
```


TopologicalSort(G):

Input: Digraph *G* with *n* vertices

Output: Topological ordering of *G* or an indication of a directed cycle

```
S \leftarrow \text{empty stack}
for each vertex u in G do
     if deg(u) = 0 then
           S.push(u)
i \leftarrow 1
while S is not empty do
     u \leftarrow S.pop()
     Number u as vertex v_i
     i \leftarrow i + 1
     for each vertex v adjacent to u do
           \deg(v) \leftarrow \deg(v) - 1
           if deg(v) = 0 then
if i > n then push(v)
     return v_1, v_2, ..., v_n
return "G has a directed cycle"
```


Topological Sort(G):

Input: Digraph *G* with *n* vertices

Output: Topological ordering of *G* or an indication of a directed cycle

```
S \leftarrow \text{empty stack}
for each vertex u in G do
     if deg(u) = 0 then
          S.push(u)
i \leftarrow 1
while S is not empty do
     u \leftarrow S.pop()
     Number u as vertex v_i
     i \leftarrow i + 1
     for each vertex v adjacent to u do
           \deg(v) \leftarrow \deg(v) - 1
          if deg(v) = 0 then
                S.push(v)
if i > n then
     return v_1, v_2, ..., v_n
```

return "G has a directed cycle"

Topological Sort (G) :

Input: Digraph *G* with *n* vertices

Output: Topological ordering of *G* or an indication of a directed cycle

```
S \leftarrow \text{empty stack}
for each vertex u in G do
     if deg(u) = 0 then
          S.push(u)
i \leftarrow 1
while S is not empty do
     u \leftarrow S.pop()
     Number u as vertex v_i
     i \leftarrow i + 1
     for each vertex v adjacent to u do
           \deg(v) \leftarrow \deg(v) - 1
          if deg(v) = 0 then
               S.push(v)
if i > n then
     return v_1, v_2, ..., v_n
return "G has a directed cycle"
```



```
TopologicalSort(G):
```

Input: Digraph *G* with *n* vertices

Output: Topological ordering of *G* or an indication of a directed cycle

```
S \leftarrow \text{empty stack}
for each vertex u in G do
     if deg(u) = 0 then
          S.push(u)
i \leftarrow 1
while S is not empty do
     u \leftarrow S.pop()
     Number u as vertex v_i
     i \leftarrow i + 1
     for each vertex v adjacent to u do
          \deg(v) \leftarrow \deg(v) - 1
          if deg(v) = 0 then
                S.push(v)
if i > n then
     return v_1, v_2, ..., v_n
```

return "G has a directed cycle"


```
Input: Digraph G with n vertices
Output: Topological ordering of G or an indication of a directed cycle
S \leftarrow \text{empty stack}
for each vertex u in G do
     if deg(u) = 0 then
          S.push(u)
i \leftarrow 1
while S is not empty do
     u \leftarrow S.pop()
     Number u as vertex v_i
     i \leftarrow i + 1
     for each vertex v adjacent to u do
          \deg(v) \leftarrow \deg(v) - 1
          if deg(v) = 0 then
               S.push(v)
if i > n then
     return v_1, v_2, ..., v_n
```

return "G has a directed cycle"

TopologicalSort(G):

TopologicalSort(G):

Input: Digraph *G* with *n* vertices

Output: Topological ordering of *G* or an indication of a directed cycle

```
S \leftarrow \text{empty stack}
for each vertex u in G do
     if deg(u) = 0 then
          S.push(u)
i \leftarrow 1
while S is not empty do
     u \leftarrow S.pop()
     Number u as vertex v_i
     i \leftarrow i + 1
     for each vertex v adjacent to u do
          \deg(v) \leftarrow \deg(v) - 1
          if deg(v) = 0 then
               S.push(v)
if i > n then
     return v_1, v_2, ..., v_n
return "G has a directed cycle"
```



```
TopologicalSort(G):
Input: Digraph G with n vertices
Output: Topological ordering of G or an indication of a directed cycle
S \leftarrow \text{empty stack}
for each vertex u in G do
    if deg(u) = 0 then
          S.push(u)
i \leftarrow 1
while S is not empty do
     u \leftarrow S.pop()
     Number u as vertex v_i
     i \leftarrow i + 1
     for each vertex v adjacent to u do
          \deg(v) \leftarrow \deg(v) - 1
          if deg(v) = 0 then
               S.push(v)
if i > n then
     return v_1, v_2, ..., v_n
```

return "G has a directed cycle"


```
Input: Digraph G with n vertices
Output: Topological ordering of G or an indication of a directed cycle
S \leftarrow \text{empty stack}
for each vertex u in G do
     if deg(u) = 0 then
          S.push(u)
i \leftarrow 1
while S is not empty do
     u \leftarrow S.pop()
     Number u as vertex v_i
     i \leftarrow i + 1
     for each vertex v adjacent to u do
          \deg(v) \leftarrow \deg(v) - 1
          if deg(v) = 0 then
               S.push(v)
if i > n then
     return v_1, v_2, ..., v_n
```

return "G has a directed cycle"

TopologicalSort(G):


```
Input: Digraph G with n vertices
Output: Topological ordering of G or an indication of a directed cycle
S \leftarrow \text{empty stack}
for each vertex u in G do
     if deg(u) = 0 then
          S.push(u)
i \leftarrow 1
while S is not empty do
     u \leftarrow S.pop()
     Number u as vertex v_i
     i \leftarrow i + 1
     for each vertex v adjacent to u do
          \deg(v) \leftarrow \deg(v) - 1
          if deg(v) = 0 then
               S.push(v)
if i > n then
     return v_1, v_2, ..., v_n
```

return "G has a directed cycle"

TopologicalSort(G):


```
Input: Digraph G with n vertices
Output: Topological ordering of G or an indication of a directed cycle
S \leftarrow \text{empty stack}
for each vertex u in G do
     if deg(u) = 0 then
          S.push(u)
i \leftarrow 1
while S is not empty do
     u \leftarrow S.pop()
     Number u as vertex v_i
     i \leftarrow i + 1
     for each vertex v adjacent to u do
          \deg(v) \leftarrow \deg(v) - 1
          if deg(v) = 0 then
if i > n then push(v)
     return v_1, v_2, ..., v_n
return "G has a directed cycle"
```

TopologicalSort(G):


```
Input: Digraph G with n vertices
Output: Topological ordering of G or an indication of a directed cycle
S \leftarrow \text{empty stack}
for each vertex u in G do
     if deg(u) = 0 then
          S.push(u)
i \leftarrow 1
while S is not empty do
     u \leftarrow S.pop()
     Number u as vertex v_i
     i \leftarrow i + 1
     for each vertex v adjacent to u do
          \deg(v) \leftarrow \deg(v) - 1
          if deg(v) = 0 then
               S.push(v)
if i > n then
     return v_1, v_2, ..., v_n
return "G has a directed cycle"
```

TopologicalSort(G):


```
Input: Digraph G with n vertices
Output: Topological ordering of G or an indication of a directed cycle
S \leftarrow \text{empty stack}
for each vertex u in G do
     if deg(u) = 0 then
          S.push(u)
i \leftarrow 1
while S is not empty do
     u \leftarrow S.pop()
     Number u as vertex v_i
     i \leftarrow i + 1
     for each vertex v adjacent to u do
          \deg(v) \leftarrow \deg(v) - 1
          if deg(v) = 0 then
               S.push(v)
if i > n then
     return v_1, v_2, ..., v_n
```

return "G has a directed cycle"

TopologicalSort(G):

Topological Sort Algorithm (Iterative) Running Time

TopologicalSort(G):

Input: Digraph *G* with *n* vertices

Output: Topological ordering of *G* or an indication of a directed cycle

```
S \leftarrow \text{empty stack}
for each vertex u in G do
    if deg(u) = 0 then
         S.push(u)
i \leftarrow 1
while S is not empty do 0 (n)
    u \leftarrow S.pop()
     Number u as vertex v_i
    i \leftarrow i + 1
                                                                 O(m) since sum of all degrees is O(m)
    for each vertex v adjacent to u do
         deg(v) \leftarrow deg(v) - 1
         if deg(v) = 0 then
              S.push(v)
```

if i > n then

return $v_1, v_2, ..., v_n$

return "G has a directed cycle"

```
Input: Digraph G with n vertices
Output: Topological ordering of G or an indication of a directed cycle
S \leftarrow \text{empty stack}
for each vertex u in G do
     if deg(u) = 0 then
          S.push(u)
i \leftarrow 1
while S is not empty do
     u \leftarrow S.pop()
     Number u as vertex v_i
     i \leftarrow i + 1
     for each vertex v adjacent to u do
          deg(v) \leftarrow deg(v) - 1
          if deg(v) = 0 then
               S.push(v)
if i > n then
     return v_1, v_2, ..., v_n
return "G has a directed cycle"
```

TopologicalSort(G):

Example if it is not a DACr. A cycle exist.


```
TopologicalSort(G):
Input: Digraph G with n vertices
Output: Topological ordering of G or an indication of a directed cycle
S \leftarrow \text{empty stack}
for each vertex u in G do
     if deg(u) = 0 then
          S.push(u)
i \leftarrow 1
while S is not empty do
     u \leftarrow S.pop()
     Number u as vertex v_i
     i \leftarrow i + 1
     for each vertex v adjacent to u do
          \deg(v) \leftarrow \deg(v) - 1
          if deg(v) = 0 then
              S.push(v)
if i > n then
     return v_1, v_2, ..., v_n
```

return "G has a directed cycle"


```
Input: Digraph G with n vertices
Output: Topological ordering of G or an indication of a directed cycle
S \leftarrow \text{empty stack}
for each vertex u in G do
     if deg(u) = 0 then
          S.push(u)
i \leftarrow 1
while S is not empty do
     u \leftarrow S.pop()
     Number u as vertex v_i
     i \leftarrow i + 1
     for each vertex v adjacent to u do
          \deg(v) \leftarrow \deg(v) - 1
          if deg(v) = 0 then
               S.push(v)
if i > n then
     return v_1, v_2, ..., v_n
```

return "G has a directed cycle"

TopologicalSort(G):


```
Input: Digraph G with n vertices
Output: Topological ordering of G or an indication of a directed cycle
S \leftarrow \text{empty stack}
for each vertex u in G do
     if deg(u) = 0 then
          S.push(u)
i \leftarrow 1
while S is not empty do
     u \leftarrow S.pop()
     Number u as vertex v_i
     i \leftarrow i + 1
     for each vertex v adjacent to u do
          \deg(v) \leftarrow \deg(v) - 1
          if deg(v) = 0 then
               S.push(v)
if i > n then
     return v_1, v_2, ..., v_n
return "G has a directed cycle"
```

TopologicalSort(G):

- **DFS Postorder:** Assign a vertex numbering when it has no more unexplored outgoing edges
- Reverse postorder numbering is when numbering starts at n
- The DFS reverse postorder numbering is a topological order numbering

- **DFS Postorder:** Assign a vertex numbering when it has no more unexplored outgoing edges
- Reverse postorder numbering is when numbering starts at n
- The DFS reverse postorder numbering is a topological order numbering

- **DFS Postorder:** Assign a vertex numbering when it has no more unexplored outgoing edges
- Reverse postorder numbering is when numbering starts at n
- The DFS reverse postorder numbering is a topological order numbering

- **DFS Postorder:** Assign a vertex numbering when it has no more unexplored outgoing edges
- Reverse postorder numbering is when numbering starts at n
- The DFS reverse postorder numbering is a topological order numbering

- **DFS Postorder:** Assign a vertex numbering when it has no more unexplored outgoing edges
- Reverse postorder numbering is when numbering starts at n
- The DFS reverse postorder numbering is a topological order numbering

- **DFS Postorder:** Assign a vertex numbering when it has no more unexplored outgoing edges
- Reverse postorder numbering is when numbering starts at n
- The DFS reverse postorder numbering is a topological order numbering

- **DFS Postorder:** Assign a vertex numbering when it has no more unexplored outgoing edges
- Reverse postorder numbering is when numbering starts at n
- The DFS reverse postorder numbering is a topological order numbering

Topological Sort and SCCs

- Compute the strongly connected components to produce a reduced directed acyclic graph
- Sort the directed acyclic graph using topological sort
- Note: both post order numberings and topological numberings may not be unique

Time Complexity of DFS Applications

Theorem: The time complexity of DFS traversal for a graph G = (V, E) for

- Testing whether G is connected
- Computing a spanning forest of G
- Computing a path between two vertices in G or reporting no path exists
- Computing a cycle in G or reporting that no cycles exist
- Identifying the strongly connected components of G
- Computing a topological sort of G

```
is O(n+m) where n = |V| and m = |E|.
```