Master Program in Biostatistics www.biostat.uzh.ch

Simulation Case 1: Fully Observed

Setup:

- n = 20,000
- $T \sim \text{Bernoulli}(0.5)$
- $\mathbf{X} = (X_1, \dots, X_5)^{\top} \sim \mathcal{N}(\mathbf{0}, \Sigma)$
- $\mathbf{X}_{\mathbf{TX}} = (X_1, X_2)^{\top}$ interaction

Outcome model:

$$\mathbb{P}(Y = 1 \mid \mathbf{X}, T) = \mathsf{logit}^{-1} \left(\beta_0 + \beta_T T + \boldsymbol{\beta}_X^\top \mathbf{X} + \underline{T} \cdot \boldsymbol{\beta}_{TX}^\top \mathbf{X}_{\mathsf{TX}}\right)$$

Simulation Case 1: Fully Observed

Results with T-learner logistic regression (glm):

Simulation Case 1: Fully Observed

Results with T-learner Random Forest (comets package):

Simulation Case 2: Unobserved Interaction

Setup:

- n = 20,000
- − T ~ Bernoulli(0.5)
- $\mathbf{X} = (X_1, \dots, X_5)^{\top} \sim \mathcal{N}(\mathbf{0}, \Sigma)$
- $\mathbf{X}_{\mathbf{TX}} = (X_1, X_2)^{\top}$ interaction

Outcome model:

$$\mathbb{P}(\textit{Y} = 1 \mid \textbf{X}, \textit{T}) = \mathsf{logit}^{-1} \left(\beta_{0} + \beta_{\textit{T}}\textit{T} + \boldsymbol{\beta}_{\textit{X}}^{\top}\textbf{X} + \boldsymbol{T} \cdot \boldsymbol{\beta}_{\textit{TX}}^{\top}\textbf{X}_{\textbf{TX}}\right)$$

Note: Same DGP, but X_1 is not observed!

Simulation Case 2: Unobserved Interaction

Results with T-learner logistic regression (glm):

Simulation Case 2: Unobserved Interaction

Results with T-learner Random Forest (comets):

Simulation Case 3: Fully Observed, Small Effects

Setup:

- n = 20,000
- $T \sim Bernoulli(0.5)$
- $\mathbf{X} = (X_1, \dots, X_5)^{\top} \sim \mathcal{N}(\mathbf{0}, \Sigma)$
- $\mathbf{X}_{\mathbf{TX}} = (X_1, X_2)^{\top}$ interaction

Outcome model:

$$\mathbb{P}(Y = 1 \mid \mathbf{X}, T) = \mathsf{logit}^{-1} \left(\beta_0 + \beta_T T + \boldsymbol{\beta}_X^\top \mathbf{X} + \underline{T} \cdot \boldsymbol{\beta}_{TX}^\top \mathbf{X}_{\mathsf{TX}} \right)$$

Note: Same DGP, but weak treatment effects!

Simulation Case 3: Fully Observed, Small Effects

Results with T-learner logistic regression (glm):

Simulation Case 3: Fully Observed, Small Effects

Results with T-learner Random Forest (comets package):

ITE simulation: Interpretation

My interpretation:

- When a high predicted treatment effect (ITE) corresponds to a high observed effect in the train set (strong discrimination), but not in the test set, it might be due to unobserved interaction variables or weak treatment effects.
- This is more likely to occur with complex models, as they tend to overfit when the interaction is not observed.

TRAM-DAGs for ITE Estimation

Paper "Interpretable Neural Causal Models with TRAM-DAGs" (Sick and Dürr, 2025):

- Framework to model causal relationships
- Based on transformation models
- Rely on (deep) neural networks
- Compromise between interpretability and flexibility

Our Claim: We can use TRAM-DAGs for ITE estimation, as long as the DAG is known and fully observed!

TRAM-DAGs: Structural Equations

TRAM-DAGs estimate the structural equations with transformation functions *h_i*:

$$Z_i = h_i(X_i \mid pa(X_i))$$

 $X_i = h_i^{-1}(Z_i, pa(X_i)) = f_i(Z_i, pa(X_i))$

- $pa(X_i)$: causal parents of X_i
- Z_i: noise distribution (e.g. standard logistic)

TRAM-DAGs: Example for ITE estimation

DGP:

- $X5 = h_5^{-1} (\epsilon 0.8 X4)$ → (depends on treatment)
- $X6 = h_6^{-1}(\epsilon + 0.5X5) \rightarrow \text{(depends on treatment through X5)}$
- $Y = h_7^{-1} (\epsilon \beta_1 X 1 \beta_2 X 2 \beta_3 X 3 \beta_4 X 4 \beta_5 X 5 \beta_6 X 6 Tr \cdot (\beta_{2Tr} X 2 + \beta_{3Tr} X 3))$

TRAM-DAGs: Example for ITE estimation

$$\mathsf{ITE} = \mathsf{median}(Y \mid \mathsf{do}(T=1), X) - \mathsf{median}(Y \mid \mathsf{do}(T=0), X)$$

TRAM-DAGs: Example for ITE estimation

$$ITE = median(Y \mid do(T = 1), X) - median(Y \mid do(T = 0), X)$$

TRAM-DAGs: Estimate Potential Outcomes

If we observe a X5 under Tr = 0, we can determine the counterfactual X5 under Tr = 1 with the observed latent value z_j :

TRAM-DAGs: Estimate Potential Outcomes

- 1. Estimate each $h_i(X_i \mid pa(X_i))$ fully flexible (deep-NN / complex intercept)
- 2. Take the train set or a test set
- 3. $Z_i = h(X_i \mid pa(X_i))$ gives us the (observed) latent variable for each X_i
- 4. Determine counterfactuals for X5 and X6 with the (observed) latent variables *Z*_i
- 5. Determine medians of potential outcomes Y(1) and Y(0)
- 6. ITE = median($Y(1) \mid X_{tx}$) median($Y(0) \mid X_{ct}$)

TRAM-DAGs: Example for ITE estimation (Results)

TRAM-DAGs: Example for ITE estimation (Results)

ATE TRAM-DAG: estimated as mean(ITE_{predicted}):

-0.619 (-0.627 to -0.617)

ATE from RCT (randomized:) estimated as observed median($Y \mid T = 1$) - median($Y \mid T = 0$):

-0.637 (-0.662 to -0.610)

confidence intervals obtained by bootstrapping

References

Sick, B. and Dürr, O. (2025). Interpretable neural causal models with tram-dags. Accepted at the CLeaR 2025 Conference.