NN Jax Poisson

June 18, 2022

1 Solving PDEs with Jax - Poisson

1.1 Description

This file contains our first approach to solve PDEs with neural networks on Jax Library.

Average time of execution # Average time of execution Between 2 and 3 minutes on GPU

1.1.1 PDE

We will try to solve the poisson Equation : $-\Delta \psi(x,y) = f(x,y)$ on $\Omega = [0,1]^2$

1.1.2 Boundary conditions

$$\psi|_{\partial\Omega} = 0$$
 and $f(x,y) = 2\pi^2 sin(\pi x)sin(\pi y)$

1.1.3 Loss function

The loss to minimize here is $\mathcal{L} = ||\Delta \psi(x, y) + f(x, y)||_2$

1.1.4 Analytical solution

The true function ψ should be $\psi(x,y) = \sin(\pi x)\sin(\pi y)$

1.1.5 Approximated solution

```
We want find a solution \psi(x,y) = F(x,y)N(x,y) + A(x,y) s.t: F(x,y) = \sin(x-1)\sin(y-1)\sin(x)\sin(y) A(x,y) = 0
```

2 Importing libraries

```
[1]: # Jax libraries
from jax import value_and_grad,vmap,jit,jacfwd
from functools import partial
from jax import random as jran
from jax.example_libraries import optimizers as jax_opt
from jax.nn import tanh
from jax.lib import xla_bridge
import jax.numpy as jnp
```

```
# Others libraries
from time import time
import matplotlib.pyplot as plt
import numpy as np
import os
import pickle
print(xla_bridge.get_backend().platform)
```

3 Multilayer Perceptron

```
[2]: class MLP:
         nnn
             Create a multilayer perceptron and initialize the neural network
             A SEED number and the layers structure
         # Class initialization
         def __init__(self,SEED,layers):
             self.key=jran.PRNGKey(SEED)
             self.keys = jran.split(self.key,len(layers))
             self.layers=layers
             self.params = []
         # Initialize the MLP weigths and bias
         def MLP create(self):
             for layer in range(0, len(self.layers)-1):
                 in_size,out_size=self.layers[layer], self.layers[layer+1]
                 std_dev = jnp.sqrt(2/(in_size + out_size ))
                 weights=jran.truncated_normal(self.keys[layer], -2, 2, __
      →shape=(out_size, in_size), dtype=np.float32)*std_dev
                 bias=jran.truncated_normal(self.keys[layer], -1, 1, shape=(out_size,,,
      →1), dtype=np.float32).reshape((out_size,))
                 self.params.append((weights, bias))
             return self.params
         # Evaluate a position XY using the neural network
         Opartial(jit, static_argnums=(0,))
         def NN_evaluation(self,new_params, inputs):
             for layer in range(0, len(new_params)-1):
                 weights, bias = new_params[layer]
                 inputs = tanh(jnp.add(jnp.dot(inputs, weights.T), bias))
             weights, bias = new_params[-1]
             output = jnp.dot(inputs, weights.T)+bias
             return output
```

```
# Get the key associated with the neural network
def get_key(self):
    return self.key
```

4 PDE operators

```
[3]: class PDE_operators:
             Class with the most common operators used to solve PDEs
         Input:
             A function that we want to compute the respective operator
         # Class initialization
         def __init__(self,function):
             self.function=function
         # Compute the two dimensional laplacian
         def laplacian_2d(self, params, inputs):
             fun = lambda params, x, y: self.function(params, x, y)
             @partial(jit)
             def action(params,x,y):
                 u_xx = jacfwd(jacfwd(fun, 1), 1)(params,x,y)
                 u_yy = jacfwd(jacfwd(fun, 2), 2)(params,x,y)
                 return u_xx + u_yy
             vec_fun = vmap(action, in_axes = (None, 0, 0))
             laplacian = vec_fun(params, inputs[:,0], inputs[:,1])
             return laplacian
         # Compute the derivative in x
         @partial(jit, static_argnums=(0,))
         def du_dx(self,params,inputs):
             fun = lambda params,x,y: self.function(params, x,y)
             @partial(jit)
             def action(params,x,y):
                 u_x = jacfwd(fun, 1)(params,x,y)
                 return u_x
             vec_fun = vmap(action, in_axes = (None, 0, 0))
             return vec_fun(params, inputs[:,0], inputs[:,1])
         # Compute the derivative in y
         @partial(jit, static_argnums=(0,))
         def du_dy(self,params,inputs):
             fun = lambda params,x,y: self.function(params, x,y)
             @partial(jit)
```

```
def action(params,x,y):
    u_y = jacfwd(fun, 2)(params,x,y)
    return u_y
vec_fun = vmap(action, in_axes = (None, 0, 0))
return vec_fun(params, inputs[:,0], inputs[:,1])
```

5 Physics Informed Neural Networks

```
[4]: class PINN:
         nnn
         Solve a PDE using Physics Informed Neural Networks
             The evaluation function of the neural network
         11 11 11
         # Class initialization
         def __init__(self,NN_evaluation):
             self.operators=PDE_operators(self.solution)
             self.laplacian=self.operators.laplacian_2d
             self.NN_evaluation=NN_evaluation
             self.dsol_dy=self.operators.du_dy
         # Definition of the function A(x,y) mentioned above
         @partial(jit, static_argnums=(0,))
         def A_function(self,inputX,inputY):
             return jnp.zeros_like(inputX).reshape(-1,1)
         # Definition of the function F(x,y) mentioned above
         Opartial(jit, static_argnums=(0,))
         def F_function(self,inputX,inputY):
             F1=jnp.multiply(jnp.sin(inputX),jnp.sin(inputX-jnp.ones_like(inputX)))
             F2=jnp.multiply(jnp.sin(inputY),jnp.sin(inputY-jnp.ones_like(inputY)))
             return jnp.multiply(F1,F2).reshape((-1,1))
         # Definition of the function f(x,y) mentioned above
         @partial(jit, static_argnums=(0,))
         def target_function(self,inputs):
             return (2*jnp.pi**2*jnp.sin(jnp.pi*inputs[:,0])*jnp.sin(jnp.pi*inputs[:
      \rightarrow,1])).reshape(-1,1)
         # Compute the solution of the PDE on the points (x,y)
         @partial(jit, static_argnums=(0,))
         def solution(self,params,inputX,inputY):
             inputs=jnp.column_stack((inputX,inputY))
             NN = vmap(partial(jit(self.NN_evaluation), params))(inputs)
             F=self.F_function(inputX,inputY)
```

6 Initialize neural network

```
[5]: # Neural network parameters
SEED = 351
n_features, n_targets = 2, 1  # Input and output dimension
layers = [n_features,30,30,n_targets] # Layers structure

# Initialization
NN_MLP=MLP(SEED,layers)
params = NN_MLP.MLP_create()  # Create the MLP
NN_eval=NN_MLP.NN_evaluation  # Evaluate function
solver=PINN(NN_eval)
key=NN_MLP.get_key()
```

7 Train parameters

```
[6]: batch_size = 10000
num_batches = 5000
report_steps=100
loss_history = []
```

8 Adam optimizer

It's possible to continue the last training if we use options=1

```
[7]: opt_init, opt_update, get_params = jax_opt.adam(0.0005)
```

```
options=0
if options==0: # Start a new training
    opt_state=opt_init(params)

else: # Continue the last training
    # Load trained parameters for a NN with the layers [2,30,30,1]
    best_params = pickle.load(open("./NN_saves/NN_jax_params.pkl", "rb"))
    opt_state = jax_opt.pack_optimizer_state(best_params)
    params=get_params(opt_state)
```

9 Solving PDE

Epoch n°100: 673.6737060546875 Epoch n°200: 505.8928527832031 Epoch n°300: 394.48870849609375 Epoch n°400: 313.5435791015625 Epoch n°500: 259.1355285644531 Epoch n°600: 229.37533569335938 Epoch n°700: 217.2259521484375 Epoch n°800: 213.3198699951172 Epoch n°900: 212.01670837402344 Epoch n°1000: 211.15426635742188 Epoch n°1100: 209.9100341796875 Epoch n°1200: 207.41326904296875 Epoch n°1300: 201.66140747070312 Epoch n°1400: 193.5465850830078 Epoch n°1500: 187.15386962890625 Epoch n°1600: 184.02920532226562 Epoch n°1700: 181.86134338378906

```
Epoch n°1800: 175.73419189453125
Epoch n°1900: 156.1564483642578
Epoch n°2000: 139.15335083007812
Epoch n°2100: 109.80931091308594
Epoch n°2200: 52.870853424072266
Epoch n°2300: 17.989492416381836
Epoch n°2400: 7.996098518371582
Epoch n°2500: 3.72841739654541
Epoch n°2600: 2.632183313369751
Epoch n°2700: 1.995606780052185
Epoch n°2800: 1.59634268283844
Epoch n°2900: 1.372849702835083
Epoch n°3000: 1.2082157135009766
Epoch n°3100: 1.0947226285934448
Epoch n°3200: 0.9832468032836914
Epoch n°3300: 0.8891815543174744
Epoch n°3400: 0.8169487118721008
Epoch n°3500: 0.7565268278121948
Epoch n°3600: 0.7112950682640076
Epoch n°3700: 0.6710832715034485
Epoch n°3800: 0.6246097683906555
Epoch n°3900: 0.5940172672271729
Epoch n°4000: 0.5544905662536621
Epoch n°4100: 0.5367295742034912
Epoch n°4200: 0.5019344091415405
Epoch n°4300: 0.48238810896873474
Epoch n°4400: 0.4735819697380066
Epoch n°4500: 0.44664886593818665
Epoch n°4600: 0.43133780360221863
Epoch n°4700: 0.4237716794013977
Epoch n°4800: 0.40775978565216064
Epoch n°4900: 0.3930644690990448
Epoch n°5000: 0.38667407631874084
```

10 Plot loss function

```
[9]: fig, ax = plt.subplots(1, 1)
    __=ax.plot(np.log10(loss_history))
    xlabel = ax.set_xlabel(r'${\rm Step}$')
    ylabel = ax.set_ylabel(r'$\log_{10}{\rm (loss_function)}$')
    title = ax.set_title(r'${\rm Training}$')
    plt.show
```

[9]: <function matplotlib.pyplot.show(close=None, block=None)>

11 Approximated solution

We plot the solution obtained with our NN

12 True solution

We plot the true solution, its form was mentioned above

13 Absolut error

We plot the absolut error, it's |true solution - neural network output|

14 Save NN parameters

```
[13]: trained_params = jax_opt.unpack_optimizer_state(opt_state)
pickle.dump(trained_params, open("./NN_saves/NN_jax_params.pkl", "wb"))
```