MÉTRO ET GRAPHES

SOMMAIRE

Présentation de l'étude

Génération de graphes

Analyse et comparaison des graphes

Conclusion

PRÉSENTATION DE L'ÉTUDE

MODÈLES ALÉATOIRES

Modèle purement aléatoire

MODÈLES ALÉATOIRES

Modèle binomial ou modèle d'Erdös-Renyi

MODÈLES SEMI-ALÉATOIRES

Modèle aléatoire prenant en compte les distances

$$p_{i,j} = (\frac{m}{D_{i,j}})^k$$

Où $D_{i,j}$ est la distance réelle entre les gares i et j

et m =
$$min_{i,j \in V} D_{i,j}$$

MODÈLES SEMI-ALÉATOIRES

Modèle aléatoire prenant en compte les distances

MODÈLES SEMI-ALÉATOIRES

Modèle petit monde (ou modèle de Watts-Strogatz)

$$k = 3$$
 et $p = 0.05$

MODÈLES DÉTERMINISTES

Modèle petit monde ou modèle de Watts-Strogatz

MODÈLES DÉTERMINISTES

Modèle géométrique:

$$R = K \times R_{min}$$

Où K est un réel supérieur à I

Et R_{min} le rayon minimal pour que le graphe soit connexe

MODÈLES DÉTERMINISTES

Modèle géométrique

Modèle purement aléatoire

Modèle petit monde (k=3 et p=0,1)

Modèle binomial (p=0,05)

Modèle petit monde (k=3 et p=0)

Modèle semi-aléatoire (k=4)

Modèle géométrique (K=I)

ANALYSE DES GRAPHES

Coût du graphe:

L x 150 millions d'euros

Où L est la longueur totale des arêtes (en km)

ANALYSE DES GRAPHES

Efficacité du graphe :

Efficacité:
$$E(G) = \frac{1}{N(N-1)} \sum_{i \neq j \in V} \frac{1}{d_{i,j}}$$

Efficacité globale:
$$E_{glob}(G) = \frac{E(G)}{E(G^{complet})}$$

Où $d_{i,j}$ est la distance dans le graphe entre les gares i et j

ANALYSE DES GRAPHES

■ Robustesse du graphe: (par stratégie d'attaque aléatoire)

$$R = \frac{E_{glob}(G_{après attaque})}{E_{glob}(G_{avant attaque})}$$

COMPARAISON DES GRAPHES

Coût: 23 milliards d'euros

Efficacité globale: 0,81

Robustesse: 0,89

Modèle purement aléatoire

Modèle binomial

Modèle semi-aléatoire

Coût: 350 milliards d'euros

Coût: 400 milliards d'euros

Efficacité globale: 0,30

Coût : 120 milliards d'euros

Efficacité globale: 0,25

Efficacité globale: 0,9 l

Robustesse: 0,978

Robustesse: 0,982

Robustesse: 0,992

Modèle petit monde aléatoire

Coût: 48 milliards d'euros

Efficacité globale: 0,76

Robustesse: 0,962

Modèle petit monde déterministe

Coût: 27 milliards d'euros

Efficacité globale: 0,79

Robustesse: 0,949

Modèle géométrique

Coût: 58 milliards d'euros

Efficacité globale: 0,92

Robustesse: 0,965

CONCLUSION

- Avantages et inconvénients de chaque modèle
- Limites du développement du métro avec ce modèle


```
def métro_aléa(gares, dist):
    global nbg
    nbg = len(gares)
    adj = adj vide(gares)
    while connexe(adj):
        a = rd.randint(0,nbg-1)
        b = rd.randint(0,nbg-1)
        while (b==a \text{ or } adj[a][b]== 1):
            a = rd.randint(0,nbg-1)
            b = rd.randint(0,nbg-1)
        mod arete(adj,a,b)
        mod_arete(adj,b,a)
    afficher(gares,adj)
    #amélio s(gares,adj,dist,50000)
    #amélio_c(gares,adj,dist,150)
    stats(adj,dist)
```

```
def métro_bino(gares, dist, p):
    global nbg
    nbg = len(gares)
    adj = adj_bino(gares, p)
    while connexe(adj):
        adj = adj_bino(gares,p)
    afficher(gares, adj)
    #afficher2(gares, adj)
    stats(adj,dist)
```

```
def métro_semi(gares, dist, k):
    global nbg
   nbg = len(gares)
    adj = adj_vide(gares)
    m = ppe(dist)
   while connexe(adj):
        for i in range (nbg):
            for j in range (nbg):
                if i != i :
                    d = (m**k/(dist[i][j]**k))
                    r = rd.random()
                    if r < d:
                        if adj[i][j]==0:
                            mod_arete(adj,i,j)
                            mod_arete(adj,j,i)
    afficher(gares, adj)
    #afficher2(gares, adj)
    stats(adj,dist)
```

```
def métro_ptit(gares, dist, k, p):
    global nbg
    nbg = len(gares)
    adj = adj_vide(gares)
    for i in range(nbg):
        l = kmin(list(dist[i]), k)
        for j in range(k):
            if adj[i][l[j]] == 0:
                mod arete(adj,i,l[j])
                mod_arete(adj,l[j],i)
    are = aretes(adj)
    for k in range(len(are)):
        a = are[k][0]
        b = are[k][1]
        c = rd.randint(0,nbg-1)
        r = rd.random()
        if r < p:
            while [a,c] in are:
                c = rd.randint(0,nbg-1)
            adj[a][b]=0
            adj[b][a]=0
            adj[a][c]=1
            adj[c][a]=1
    afficher(gares, adj)
    #afficher2(gares, adj)
    stats(adj,dist)
```

```
def effi_glob(adj, dist):
    global nbg
    nbg = len(adj)
    adp = adj comp(adj)
    f = effi norm(adp, dist)
    e = effi norm(adj, dist)
    return e/f
def effi_norm(adj, dist):
    traj = trajet(adj, dist)
    e = 0
    for i in range(nbg):
        for j in range(i+1,nbg):
            if traj[i][j] > 0:
                e = e + 1/traj[i][j]
    eff = e / (nbg*(nbg-1))
    return eff
```

```
def dijkstra(adj, dist, s):
   P = [s]
   Q = []
   a = nbg-1
   for k in range(nbg):
       Q.append(a)
       a = a-1
   0.remove(s)
   d = [np.inf]*nbg
   d[s] = 0
   for k in retire(voisins(s, adj), P):
       d[k] = dist[s][k]
   while Q != [] :
       i = mini(d,Q)
       Q.remove(i)
       P.append(i)
       for j in retire(voisins(i, adj),P):
           if d[j] > d[i] + dist[i][j]:
               d[j] = d[i] + dist[i][j]
   return d
```

```
def trajet(adj, dist):
    global nbg
    nbg = len(adj)
    traj = []
    for k in range(nbg):
        traj.append(dijkstra(adj,dist,k))
    return traj
```

```
def robust_aléa(adj, dist, tours, t, e):
    m = 0
    for k in range(tours):
        ade = enlevare(adj, dist, t)
        f = effi_norm(ade, dist)
        m=m+f/e
    m = m/tours
    return m
```