RLC 各元件伏安特性相量形式

电路	B 时域 时域		 相量	相量	电压、电流关系		
参数	模型	VCR	VCR	模型	有效值	相量图	瞬时值
R	<i>i</i> + <i>u</i>	u = Ri	$\dot{U} = R\dot{I}$	<i>i</i> + <i>i</i> + <i>i</i> −	U = RI	$i \cup U$ $u, i \cup \Pi$	设 $i = \sqrt{2}I\cos\omega t$ 则 $u = \sqrt{2}U\cos\omega t$
L	<i>i</i> + <i>u</i> } <i>L</i>	$u = L \frac{\mathrm{d}i}{\mathrm{d}t}$	$\dot{U} = jX_L\dot{I}$	i $+$ \dot{U} $j\omega L$ $-$	$U = X_L I$ $X_L = \omega L$	Ů i u超前i90°	
C	+	$i = C \frac{\mathrm{d}u}{\mathrm{d}t}$	$\dot{U} = -jX_C \dot{I}$	$ \begin{array}{c} \dot{I} \\ + \\ \dot{U} \end{array} - j\frac{1}{\omega C} $	$U = X_C I$ $X_C = 1/\omega C$	<i>i</i> <i>i</i> <i>i</i> <i>u</i> 滞后 <i>i</i> 90°	设 $i = \sqrt{2}I\cos\omega t$