Bioinformatics CS300 Chapter 1: Using Bioinformatics to study genetic disorders

Fall 2019 Oliver BONHAM-CARTER

Genetic Disorder

- A disorder/disease with a genetic component
- Single gene disorders
- Mutation(s) in the sequence of a single gene
- Alters or eliminates protein product
- Caused by one or more abnormalities in the genome
 - substitutions
 - insertions
 - deletions
 - rearrangements

Mutations and Their Potential Effects

NonSense Mutation: a mutation in which a sense codon that corresponds to one of the twenty amino acids specified by the genetic code is changed to a chain-terminating codon.

- Missense substitutions
- Nonsense substitutions
- Insertions/Deletions

Mutations that Alter Protein Products and

Mutations that Eliminate Protein Products

Nonsense mutation

BioPython Programming

- # install biopython
- python3 -m pip install biopython # global install
- python3 -m pip install biopython -user # local install

import Bio # from python3 shell print(Bio.__version__) # 1.74

General Website:

https://biopython.org/

Getting Started:

https://biopython.org/wiki/

Getting Started

Two Cool Programs To Write!!

sequenceCompare.py

```
Sequence Comparison tool:
    Usage: ./sequenceCompare.py

Note: The entered sequences must be the same length!!
Enter sequence :atcg
Enter sequence :attt

SeqA_str: atcg
SeqB_str: attt

Sequences are different at position: 2
SeqA_str[i] base is: c
SeqB_str[i] base is: t

Sequences are different at position: 3
SeqA_str[i] base is: g
SeqB_str[i] base is: t
```

Compare sequences to find their differences!

Derive protein sequences from DNA code!

smallTranslator.py

```
Original seqDNA : atgcccgctttccccccccc Length : 21
DNA to RNA : augcccgcuuuccccccccc
RNA to DNA : atgcccgctttcccccccc
```

PROT from RNA : MPAFPPP

Where Do Some of These Mutations Come From?

Autosomal Dominanant Inheritance

Possible combinations:

Each child inherits a normal copy from Mom and either a normal or a defective copy from Dad.

Autosomal Recessive Inheritance

Possible combinations:

Each child inherits one copy of the gene from each parent.

Parents:

Possible offspring:

Normal vision

Normal vision (Corblindness carrier)

Normal vision

Colorblind

Single Gene Disorders

- Inheritance patterns are relatively simple
- Chances of inheritance in the text generation can be predicted by studying patterns in past generations.

Single Gene Disorders

- Most genes identified in the 1980s-1990s
 - Pre-Bioinformatics:biological wet-lab work
- Restriction enzymes to cut sequences
- Cut DNA at specific sequence
 - 100s of different patterns
 - Disorder-breading sequences could be studied

Single Gene Disorders

Pedigree analysis + Restriction Digest Analysis

Double bands indicate a carrier of a gene allele

Cytogenetics

 The field of biology concerned with mapping genes to specific locations on chromosomes

Genetic Disorder

- A disease with a genetic component
- Caused by one or more abnormalities in the genome
- Complex or multifactorial disorders
 - Do not have a single genetic cause
 - Likely associated with the effects of multiple genes in combination with lifestyle and environmental factors
 - Do not have a clear cut pattern of inheritance

Genome-Wide Association Studies

- new technology/analysis early 2000s
 - bioinformatics
- screen 1000s of genomes at once for SNPs
 - single nucleotide polymorphisms
 - Some SNPs may indicate disorders

DNA Microarray

Testing for genes of a specific allele

DNA Microarray

Candidate SNPs that May Be Correlated with Disorders Using Genome-Wide Association Studies (GWAS)

Table 2. GWAS results for all SNPs with $p < 10^{-6}$ in the 23andMe cohort.

SNP	Chr	Position	Region	Alleles	MAF	Cohort	OR	p
rs34637584	12	39020469	LRRK2	G/A	0.002	23andMe	9.615 (6.43–14.37)	1.82×10^{-28}
						IPDGC	_	-
i4000416	1	153472258	GBA	T/C	0.005	23andMe	4.048 (3.08-5.32)	5.17×10^{-21}
						IPDGC	-	-
rs356220	4	90860363	SNCA	C/T	0.375	23andMe	1.285 (1.22–1.36)	2.29×10^{-19}
						IPDGC	-	-
rs12185268	17	41279463	MAPT	A/G	0.211	23andMe	0.769 (0.72-0.82)	2.72×10^{-14}
						IPDGC	_	-
rs10513789	3	184242767	MCCC1/LAMP3	T/G	0.201	23andMe	0.803 (0.75-0.86)	2.67×10^{-10}
						IPDGC	0.873 (0.83-0.92)	1.7×10^{-6}
rs6812193	4	77418010	SCARB2	C/T	0.365	23andMe	0.839 (0.79-0.89)	7.55×10^{-10}
						IPDGC	0.90 (0.86-0.94)	3.29×10^{-6}
rs6599389	4	929113	GAK	G/A	0.075	23andMe	1.311 (1.19–1.44)	3.87×10^{-8}
						IPDGC	-	-
rs11868035	17	17655826	SREBF1/RAI1	G/A	0.309	23andMe	0.851 (0.80-0.90)	5.61×10^{-8}
						IPDGC	0.95 (0.91-0.996)	0.033
rs823156	1	204031263	SLC41A1	A/G	0.183	23andMe	0.827 (0.77-0.89)	1.27×10^{-7}
						IPDGC	-	-
rs4130047	18	38932233	RIT2/SYT4	T/C	0.313	23andMe	1.161 (1.10–1.23)	2.44×10^{-7}
						IPDGC	1.077 (1.03-1.13)	0.0014
rs2823357	21	15836776	USP25	G/A	0.376	23andMe	1.149 (1.09–1.21)	6.32×10^{-7}
						IPDGC	0.971 (0.93-1.02)	0.187

Data for Research

- Typically Protein: Uniprot
 - http://www.uniprot.org/
- Search: Pink1 (protein)

- Typically DNA and Genes: National Center for Biotechnology Informatics (NCBI)
 - https://www.ncbi.nlm.nih.gov/
- Search: "orchid" in Nucleotide database
 - (https://www.ncbi.nlm.nih.gov/nuccore/NC_030915.1)

