Trigonometry Review

1. Sketch each angle listed below in standard position on the unit circle. Then give the exact coordinates of each of the angle.

(a)
$$\theta = \pi$$
; (,)

(b)
$$\theta = \frac{2\pi}{3}$$
; $(,)$

(c)
$$\theta = -\frac{\pi}{4}$$
; $(,)$

2. Suppose θ is an angle whose terminal edge intersections the unit circle at the point (x,y). If $x=-\frac{1}{5}$ and (x,y) is in the third quadrant, find each of the following:

(a)
$$\cos \theta =$$

(c)
$$\tan \theta =$$

(e)
$$\csc \theta =$$

(b)
$$\sin \theta =$$

(d)
$$\sec \theta =$$

(f)
$$\cot \theta =$$

3. What is the difference between $\sin^2 x$, $\sin x^2$, $(\sin x)^2$, and $\sin(\sin(x))$? Consider using a graphing utility to check your reasoning.

4. Consider the sinusoidal graph below.

- (a) Determine an equation of a cosine function that produces the graph below. You mind find it helpful to determine things like the amplitude, period, and midline of the function. Double-check your answer by graphing it or testing a few points.
- (b) Now find a sine function that produces the same graph.

5. Find all values of x in the interval $[0, 2\pi]$ that satisfy the following equations. If you deleted the condition that your answer must lie in the interval $[0, 2\pi]$, would your answer change? If yes, how?

(a)
$$\sin(x) = \frac{\sqrt{3}}{2}$$

(b)
$$5\tan(x) + 3 = -2$$

(c)
$$\sin(2x) = \cos x$$