Architecture de Ordinateurs Module 2

Numération - Codage

Dr. Yannick HERVE V 1.2

Manipulation des valeurs par les ordinateurs

- Nombres entiers
- Nombres entiers signés
- Nombres à virgule
 - Virgule fixe
 - Virgule flottante
- Codes et codage

Quelques définitions

Alphabet : ensemble de symboles utilisables

Mot : Séquence de symboles (alphabet) représentant une information ; Exemples : ordinateur, 2005, XXVIII

Mot binaire: mot constitué avec l'alphabet binaire {1, 0}

Exemple: 1100 1111 1010

Quartet (nibble) : mot binaire de longueur 4

Octet (byte): mot binaire de longueur 8

Code : ensemble de mots auxquels on confère une signification (convention) pour représenter une catégorie de messages ou de concepts.

Nombres en précision finie

Ordinateurs : nombres en précision finie et fixe

Exemple : ensemble des entiers positifs à trois chiffres décimaux

$$A = \{000,001,002, ..., 999\}$$

$$Card(A)=1000$$

Ne peut représenter : > 999

< 0

fractionnaires irrationnels complexes

Arithmétique sur Z : fermeture vis à vis de +,-,x (pas de /)

Soient
$$i, j \in Z$$

$$i+j\in Z$$

$$i - j \in Z$$

$$i \times j \in Z$$

 $i/j \notin Z$ en général

Sur A:
$$600 + 600 = 1200 \notin A$$
 (overflow)
 $003 - 005 = -2 \notin A$ (underflow)
 $050 * 050 = 2500 \notin A$ (overflow)
 $007 / 002 = 3,5 \notin A$ (arrondi)

Conséquences pour les ordinateurs

Possibilités de faux résultats en conditions normales de fct. (pas de panne)

Dans A: a = 700, b = 400, c = 300 a + (b - c) = (a + b) - c commutativité 700 + 100 = 800 Overflow -300 = OverFlow Dans A: a = 5, b = 210, c = 195 $a \times (b - c) = a \times b - a \times c$ distributivité

 $5 \times 15 = 75$ Overflow - 975 = OverFlow

Il faut connaître les méthodes de représentations pour prévoir les problèmes éventuels

Représentation des nombres

Evolution: romaine, grèce (invention du zéro), inde, arabe

Principe de numération : Juxtaposition de symboles appelés chiffres (caillou en arabe)

Système décimal : dix symboles {0,1,2, ...,9} Nombre de symbole = Base de numération

Ecriture d'un nombre : position du chiffre détermine son poids

NUMERATION DE POSITION

$$1578 = 1.10^3 + 5.10^2 + 7.10^1 + 8.10^0$$

(en europe : 970 Gesbert d'Aurillac devenu en 999 Sylvestre II, relayé en 1202 par Fibonnacci)

Ecriture polynomiale

Représentation des nombres

Soit une base b associée à b symboles $\{S_0, S_1, S_2, ..., S_{b-1}\}$

Un nombre positif N dans un système de base b s'écrit sous la forme polynomiale:

$$N = a_{n-1} \cdot b^{n-1} + a_{n-2} \cdot b^{n-2} + \dots + a_1 \cdot b^1 + a_0 \cdot b^0 + a_{-1} \cdot b^{-1} + a_{-2} \cdot b^{-2} + \dots + a_{-m+1} \cdot b^{-m+1} + a_{-m} \cdot b^{-m}$$

La représentation simples de position est la suivante: $(a_{n-1}a_{n-2}a_1a_0, a_{-1}a_{-2}a_{-m+1}a_{-m})$

- a_i est le chiffre de rang i (a_i appartient à un ensemble de b symboles)
- a_{n-1} est le chiffre le plus significatif
- a_{-m} est le chiffre le moins significatif
- $(a_{n-1}a_{n-2}...a_0)$ partie entière
- $(a_{-1}a_{-2}...a_{-m})$ partie fractionnaire (<1)

Les bases usuelles

Système binaire (b=2)

$$a_i \in \{0,1\}$$

 a_{n-1} est le MSB (most significant bit)

 a_{-m} est le LSB (least significant bit)

Système octal (b=8)

$$a_i \in \{0,1,2,3,4,5,6,7\}$$

Système décimal (b=10) (base de l'école primaire)

$$a_i \in \{0,1,2,3,4,5,6,7,8,9\}$$

Système hexadécimal (b=16) (raccourci d'écriture de la base 2)

$$a_i \in \{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F\}$$

Conversions entre bases

Base **b** vers base 10 : il suffit de substituer la valeur b dans l'expression polynomiale par la valeur de la base.

$$(F1C)_{16} = 15 \cdot 16^2 + 1 \cdot 16^1 + 12 \cdot 16^0 = (3868)_{10}$$

Base 10 vers base **b**: division successives du nombre décimal par **b** jusqu'à obtenir un quotient nul. Le nombre dans la base **b** correspond aux restes des divisions faites dans le sens inverse où ils ont été obtenus.

Division	Quotient	Reste		
1836/7	262	2 (<i>a₀</i>)		
262/7	37	3 (<i>a</i> ₁)		
37/7	5	2 (<i>a₂</i>)		
5/7	0	5 (<i>a</i> ₃)		

$$(1836)_{10} = (5232)_7$$

Justification: 123/10 = 12,3

Quotient = 12, Reste = 3

Partie fractionnaire

Pour la partie fractionnaire : algorithme de multiplication

Principe: En base 10
$$0,xyz*10 = x,yz = x + 0,yz$$

$$0,xyz*10 = x,yz$$
 x partie fractionnaire de x,yz $0,yz*10 = y,z$ y partie fractionnaire de y,z $0,z*10 = z$ z

Conversion 10 vers B : exemple

 $(0,45)_{10}$ en base 2?

Une longueur finie en base 10 peut être infinie en base B On conserve la précision relative 10⁻³ est approximée par 2⁻¹⁰ Conversion : de 2^m vers 2 / 2 vers 2^m

2^m vers 2 : expansion d'un digit en m bits

2 vers 2^m: regroupement de bits par paquets de m

$$0 \le a_3.2^3 + a_2.2^2 + a_1.2^1 + a_0.2^0 \le 15$$

Ecriture de $(622,663)_8$ en base 2 et base 16 ?

$(622,663)_8$?

```
6 2 2 , 6 6 3 base 8 110 010 010 , 110 110 011 base 2

1 1001 0010 , 1101 1001 1 base 2 1 9 2 , D 9 8 base 16
```

Conversion base I vers base J

 $si I = B^m et J = B^n$

B^m vers B puis B vers B^m

sinon

I vers 10 puis 10 vers J

Représentations binaires

(nombres entiers naturels et relatifs, nombre fractionnaires)

Définitions : format nb de bit de utilisés

convention protocole de codage

Conséquences dynamique différence entre le max et le min

résolution différence entre deux consécutifs

Exemple: format 8 bits

convention entiers positifs

dynamique 28

résolution 1 (constante sur la dynamique)

$$(255)_{10} = (1111\ 1111)_2$$
 $(7)_{10} = (0000\ 0111)_2$

Le format est important car les mots machines sont à taille finie et fixe

Nombres signés : signe + module

Sur n bits on garde 1 bit pour indiquer le signe

S Msb xxxxxx Lsb

Signe Module (positif)

1 bit n-1 bits

Exemple sur 8 bits : $-23 = (1\ 0010111)_{2,S+M}$

Dynamique : $-(2^{n-1}-1)$ à $(2^{n-1}-1)$

Inconvénient : Deux représentations du zéro

Sur 4 bits +0 = 0000, -0 = 1000

Convention:

S=0 pour positif S=1 pour négatif

Multiplications faciles

$$N_1*N_2$$

Abs(N_1)*Abs(N_2)
 $S = S_1 \text{ xor } S_2$

Additions moins simples

Nombres signés : complément restreint

(complément à B-1, ou complément à 1)

$$Def CR(X) = X$$

Complément chiffre à chiffre
$$(xyz)_b$$
 donne $(x'y'z')_b$ tel que $x + x' = b-1$

On a
$$X + CR(X) = b^n -1$$

```
Dans le format considéré 2^n = 0 Partie interprétée sur 4 bits : 2^4 = 10000 = 0
```

Avec:
$$X + CR(X) = 2^{n} - 1$$

$$d'où : CR(X) + 1 = -X$$

Nombres signés : complément vrai

(complément à B, complément à 2, 2*)

On a:

Avec : $X + CR(X) = 2^{n} - 1$

d'où : CR(X) + 1 = -X On note $X^* = CR(X) + 1 = -X$

Autre méthode : Calcul de l'opposé (sur n bits)

$$N^* = (-N) = 2^n - N = [2^{n-1}] - N + 1$$

= $[N + CR(N)] - N + 1 = CR(N) + 1$

$$N^* = CR(N) + 1 = CV(N)$$

Complément à 2

```
Sur 4 bits: 7 0111 -7 1001 6 0110 -6 1010 ... 0 0000 -0 0000
```

Remarques: le bit de poids fort = signe (0:positif, 1:négatif)

0 n'a qu'un représentation 1000 jamais rencontré car

-(1000) = 0111 + 1 = 1000 (d'où (1000) = 0)

et 1000 + 0001 = 1001 = -7 (d'où (1000) = -8)

Dynamique sur n bits : $-(2^{n-1}-1)$ à $(2^{n-1}-1)$

Nombres signés : binaire décalé sur m bits

(ou excédent 2^{m-1})

On stocke les nombres de m bits comme

$$N_{\text{stock\'e}} = N_{\text{xs}} = N_{\text{m}} + 2^{\text{m-1}}$$
 (translation de la demi-dynamique)

Exemple sur 8 bits : $N_{xs} = N_8 + 128$

Valeur à coder : -128	3 0	127
↓	\downarrow	\downarrow
Valeur stockée: 0	128	255

Opération à la restitution $N_{lu} = N_{xs} - 128$

Avantage: on garde la relation d'ordre

on peut effectuer les comparaisons facilement

Remarque : identique au 2* au signe près

Nombres signés : comparaison

N_{10}	N_2	$(-N)_{S+M}$	$(-N)_{2,CR}$	$(-N)_{2*}$	$(-N)_{2,XS8}$	
mêmes po	sitifs –				,	positifs différents
0	0000	1000	1111	0000	1000	
1	0001	1001	1110	1111	0111	
2	0010	1010	1101	1110	0110	Remarque:
3	0011	1011	1100	1101	0101	relation d'ordre
4	0100	1100	1011	1100	0100	signe du zéro
5	0101	1101	1010	1011	0011	symétrie
6	0110	1110	1001	1010	0010	gestion retenues
7	0111	1111	1000	1001	0001	5
8	1000			(1000)	0000	

2*: propriétés

Propriétés : pas de gestion de retenue intermédiare détection simple d'overflow

sur 4 bits :
$$(-7 \text{ à} + 7)$$

3
+ 6 (9 = 0F)
0110 = 1001
- 5
1011
= 4

hors format

$$X + (-Y) = N \text{ avec} \quad X > N > -Y$$

 $4 + 5 = 9 \text{ (of)} \quad 0100 + 0101 = 1001$
 $-4 - 5 = -9 \text{ (of)} \quad 1100 + 1011 = 0111$

Note: modification de signe Indicateur d'overflow: (dans les microprocesseurs)

$$Fd = S_a.S_b.\overline{S}_r + \overline{S}_a.\overline{S}_b.S_r$$

Nombres non entiers

Dans un calculateur : nombre sous format déterminé (entier, virgule fixe, virgule flottante ...)

TOUT EST QUESTION DE CONVENTION

Quoi associer à 1101100011100110?

Caractère ASCII, pixel d'une image, nombre entier 2* nombre fractionnaire ... ?

Dans l'ordinateur (le système numérique) il n'y a pas de virgule

Virgule fixe

Par convention on place la virgule quelque part et on interprète

```
2^{n-1} 2^0 avant de placer la virgule MSB xxxxxx , xxxx LSB 2^{n-1-k} 2^0, 2^{-k} avec la virgule au rang k
```

Dynamique: 2^{n-1-k}

Résolution: 2-k # 0

Virgule fixe : analyse

Bon format pour l'addition :

Mauvais format pour la multiplication :

Virgule fixe: solution

Problèmes réglés si les nombres sont inférieurs à 1 :

$$0.87$$
* 0.74
= 0.6438

- On place la virgule toujours à gauche
- On utilise un autre groupe de bit pour connaître la position de la virgule

Format virgule flottante

```
M = mantisse en 2* de forme 0,xxx
```

$$N = M.b^E$$
 b = base de l'exponentiation (2 ou 16)

E = exposant en binaire décalé

On stocke la chaine de bit ME dans le calculateur

Exemple : codage de PI sur 5 chiffres de mantisse et 2 chiffres d'exposant (en décimal)

$$\longrightarrow$$
 0,3141.10¹ = 0,0003.10⁴ !!! PI*10000=3

On dit qu'un flottant est normalisé quand le premier chiffre significatif est juste derrière la virgule (précision maximum)

Assure unicité et précision maximale

Virgule flottante : calcul/stockage

Multiplication :
$$M_1.b^{E_1} * M_2.b^{E_2} = M_1.M_2.b^{(E_1+E_2)}$$

dénormalisation du plus petit nombre (vers la droite)

Addition:

$$\begin{split} M_1.b^{E_1} + M_2.b^{E_2} &= M_1.b^{(E_1-E_2)}.b^{E_2} + M_2.b^{E_2} \\ &= (M_1.b^{(E_1-E_2)} + M_2).b^{E_2} \\ \text{puis renormalisation} \end{split}$$
 Si E₂ > E₁

il faut comparer facilement

Exposant codé en binaire décalé

S_M EXPOSANT MANTISSE

Virgule flottante : IEEE 754/854

Norme internationale : IEEE 754 flottant sur 32 bits (simple précision (32), sp étendue (≥43), double précision (64), dp étendue ≥79)

IEEE 854 flottant généralisé

 b_{31} b_0 signe mantisse, exposant, mantisse 1 bit 8 bit 23 bits

Le bit de signe est 1 pour négatif et 0 pour positif La mantisse vaut toujours 1,xxxx et on ne stocke que xxxx L'exposant est en excédent 127 La valeur 0 correspond à des 0 partout (en fait 1,0.2⁻¹²⁷)

Virgule flottante : performances

Exemple : (10) Mantisse 3 chiffres 0.999 > |M| > 0.1Exposant 2 chiffres -99 à 99

convention spéciale (non normalisé)

ON NE MANIPULE JAMAIS L'ENSEMBLE DES REELS

Codage

Code : correspondance conventionnelle entre un objet et un mot binaire

Analytique : code calculable

Conventionnel: pas de correspondance logique

Code analytique : BCD

Attention: BCD = Décimal Codé en binaire

Utilisé quand la précision doit être la même en binaire et en décimal (comptabilité, fiscalité, banque ...)

Utilisé dans les machines à calculer.

Facilité de conversion pour l'affichage (humains)

Le code BCD encode le nombre à représenter de façon très directe : Chaque chiffre est encodé sur 4 bits. Les possibilités binaires de 10 à 15 ne sont pas utilisées.

Peut être stocké et transmis en chaîne séquentiellement

9	6	5	
1001	0110	0101	

```
Addition BCD
6 0110
+6 +0110 addition binaire
=12 =1100 > 1001 test
Si test =oui ajustement +6
= 0001 0010 lu en BCD
33
```

Code analytique: Gray

Evite les problèmes de transition Un seul bit modifié d'une code au suivant (adjacence) De plus, ce code est cyclique et à symétries multiples

```
000
001
011
010 Construction au tableau noir
110
111
101
100
```

Codes analytiques (p parmi n)

Chiffre	Télécommunications 01236	POSTNET 74210	IBM 7070, 7072, 7074 01234
0	01100	11000	01100
1	11000	00011	11000
2	10100	00101	10100
3	10010	00110	10010
4	01010	01001	01010
5	00110	01010	00110
6	10001	01100	10001
7	01001	10001	01001
8	00101	10010	00101
9	00011	10100	00011
Α	N/A	N/A	1—10
•	N/A	N/A	1—01
+	N/A	N/A	0—11

Chaque nombre décimal codé sur n bits, dont p valent 1 et n-p valent 0

Permet de détecter jusqu'à une erreur.

Exemple: 2 parmi 5

Autres codes

Codes à bit de parité : dans ces codes un bit est rajouté à l'information transmise de sorte que le nombre total de 1 soit pair (ou impair), selon le type convenu de parité. Il y a plusieurs définitions possible de la parité (longitudinale, transversale, orthogonale).

Codes à redondance : des codes où l'information est transmise en plusieurs exemplaire. On augmente ainsi la probabilité de détecter une erreur de transmission et de pouvoir éventuellement la corriger (Hamming).

CODES CONVENTIONNELS (ASSOCIATION OBJET⇔CODE PAR CONVENTION)

Code Baudot (5 bits): historique

Code télégraphique Alphabet International (AI) nº 1 ou Alphabet International (AI) nº 2 ou code CCITT nº 2 (remplace le morse : de 1000 à 3000 mots par heure)

Deux plages de 28 caractères et 4 codes de contrôle

NULL: repos ou espace

LTRS : → mode lettres

FIGS : → mode chiffres

DEL : annule le précédent

Baudot → baud (unité de débit)

1874, Code Baudot

Code EBCDIC

Extended Binary Coded Decimal Interchange Code Porté par IBM (extension du code 5 bits, 1964, 6 versions)

Code ASCII

American Standard Code for Information Interchange (1960)

Dec	Hex	Name	Char	Ctrl-char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char
0	0	Null	NUL	CTRL-@	32	20	Space	64	40	0	96	60	
1	1	Start of heading	SOH	CTRL-A	33	21	1	65	41	A	97	61	а
2	2	Start of text	STX	CTRL-B	34	22	110	66	42	В	98	62	b
3	3	End of text	ETX	CTRL-C	35	23	#	67	43	C	99	63	c
4	4	End of xmit	EOT	CTRL-D	36	24	\$	68	44	D	100	64	d
5	5	Enquiry	ENQ	CTRL-E	37	25	%	69	45	E	101	65	е
5	6	Acknowledge	ACK	CTRL-F	38	26	8.	70	46	F	102	66	f
7	7	Bell	BEL	CTRL-G	39	27	•	71	47	G	103	67	g
3	8	Backspace	BS	CTRL-H	40	28	(72	48	н	104	68	h
9	9	Horizontal tab	HT	CTRL-I	41	29)	73	49	I	105	69	i
10	OA.	Line feed	LF	CTRL-J	42	2A		74	4A	3	106	6A	j
11	OB	Vertical tab	VT	CTRL-K	43	2B	+	75	4B	K	107	6B	k
12	OC.	Form feed	FF	CTRL-L	44	2C	x 1	76	4C	L	108	6C	1
13	OD	Carriage feed	CR	CTRL-M	45	2D	-	77	4D	M	109	6D	m
14	0E	Shift out	SO	CTRL-N	46	2E	4.5	78	4E	N	110	6E	n
15	OF	Shift in	SI	CTRL-O	47	2F	1	79	4F	0	111	6F	0
16	10	Data line escape	DLE	CTRL-P	48	30	0	80	50	P	112	70	p
17	11	Device control 1	DC1	CTRL-Q	49	31	1	81	51	Q	113	71	q
18	12	Device control 2	DC2	CTRL-R	50	32	2	82	52	R	114	72	r
19	13	Device control 3	DC3	CTRL-S	51	33	3	83	53	S	115	73	s
20	14	Device control 4	DC4	CTRL-T	52	34	4	84	54	Т	116	74	t
21	15	Neg acknowledge	NAK	CTRL-U	53	35	5	85	55	U	117	75	u
22	16	Synchronous idle	SYN	CTRL-V	54	36	6	86	56	V	118	76	٧
23	17	End of xmit block	ETB	CTRL-W	55	37	7	87	57	W	119	77	W
24	18	Cancel	CAN	CTRL-X	56	38	8	88	58	X	120	78	×
25	19	End of medium	EM	CTRL-Y	57	39	9	89	59	Y	121	79	y
26	1A	Substitute	SUB	CTRL-Z	58	ЗА	:	90	5A	Z	122	7A	z
27	18	Escape	ESC	CTRL-[59	38	;	91	5B	1	123	7B	{
28	1C	File separator	FS	CTRL-\	60	3C	<	92	5C	1	124	7C	1
29	1D	Group separator	GS	CTRL-]	61	3D	-	93	5D	j	125	7D	}
30	1E	Record separator	RS	CTRL-^	62	3E	>	94	5E	^	126	7E	~
31	1F	Unit separator	US	CTRL	63	3F	?	95	5F		127	7F	DEL

7 bits

Code ANSI (Latin 1 Windows)

American National Standards Institute

Ref: http://ascii-table.com/ansi-table.php

	8	9	Α	В	С	D	E	F
0	€			۰	À	Đ	à	ð
1		1	İ	±	Á	Ñ	á	ñ
2			¢	2	Â	Ò	â	ò
3	f	"	£	3	Ã	Ó	ã	ó
4		ш	Ø	,	Ä	Ô	ä	ô
5		•	¥	μ	A	Ő	å	ő
6	†	_	1	¶	Æ	Ö	æ	Ö
7	‡		§		Ç	×	ç	÷
8	^	~		د	È	Ø	è	Ø
9	‰	TM	0	1	É	Ù	é	ù
Α	Š	š	а	0	Ê	Ú	ê	ú
В	<	>	« «	>>	Ë	Û	ë	û
С	Œ	œ	7	1/4	ì	Ü	ì	ü
D				1/2	Ĺ	Ý	ĺ	ý
Е	Ž	Ž	R	3/4	Î	Þ	î	þ
F		Ÿ	-	٤	Ï	ß	Ï	ÿ

Poids faible

Poids fort

Extension de l'ASCII

→ 8 bits

Code UNICODE

Lié à ISO/CEI 10646 (évolution UTF-8)

Un répertoire de 137 929 caractères (une centaine d'écritures) Un ensemble de tableaux de codes pour référence visuelle Une méthode de codage et plusieurs codages de caractères Une énumération des propriétés de caractère

lettres majuscules, minuscules, APL, symboles, ponctuation, etc.

APL : langage de description de traitement de l'information Un ensemble de fichiers de référence des données informatiques

et Un certain nombre d'éléments liés : Règles de normalisation, de décomposition, de tri, de rendu et d'ordre d'affichage bidirectionnel

Unicode + transformation = UTF

Universal Character Set Transformation Format (UTF8/16/32)

Codage : de 1 à 4 octets (extrait de la table d'interprétation)

Caractères codés	Représentation binaire UTF-8	Premier octet valide (hexadécimal)	Signification	
U+0000 à U+007F	∅ xxxxxx	00 à 7F	1 octet, codant 7 bits	
U+0080 à U+07FF	110xxxxx 10xxxxxx	C2 à DF	2 octets, codant 11 bits	
U+0800 à U+0FFF	1110 <mark>0000</mark> 101xxxxx 10xxxxxx	E0 (le 2 ^e octet est restreint de A0 à BF)		
U+1000 à U+1FFF	11100001 10xxxxxx 10xxxxxx	E1		
U+2000 à U+3FFF	11100001x 10xxxxxx 10xxxxxx	E2 à E3		
U+4000 à U+7FFF	111001xx 10xxxxxx 10xxxxxx	E4 à E7	3 octets, codant 16	
U+8000 à U+BFFF	111010xx 10xxxxxx 10xxxxxx	E8 à EB	bits	
U+C000 à U+CFFF	11101100 10xxxxxx 10xxxxxx	EC		
U+D000 à U+D7FF	11101101 1000xxxxx 10xxxxxx	ED (le 2 ^e octet est restreint de 80 à 9F)		
U+E000 à U+FFFF	1110111x 10xxxxxx 10xxxxxx	EE à EF		

Code de Huffmann

Longueur du code associé à la probabilité d'apparition : dynamique

« this is an example of a huffman tree ».

- Analyse
- Construction table
- Codage

En cas de transmission il faut envoyer la table

« *Wikipédia* » : 101 11 011 11 100 010 001 11 000

24 bits au lieu de 63 en ASCII

