Computer Networks

Explicit Congestion Notification (§5.3.4, §6.5.10)

Topic

- How routers can help hosts to avoid congestion
 - Explicit Congestion Notification

Congestion Avoidance vs. Control

- Classic TCP drives the network into congestion and then recovers
 - Needs to see loss to slow down
- Would be better to use the network but avoid congestion altogether!
 - Reduces loss and delay
- But how can we do this?

Feedback Signals

Delay and router signals can let us avoid congestion

	Signal	Example Protocol	Pros / Cons
>	Packet loss	Classic TCP Cubic TCP (Linux)	Hard to get wrong Hear about congestion late
	Packet delay	Compound TCP (Windows)	Hear about congestion early Need to infer congestion
¥	Router indication	TCPs with Explicit Congestion Notification	Hear about congestion early Require router support

ECN (Explicit Congestion Notification)

- Router detects the onset of congestion via its queue
 - When congested, it <u>marks</u> affected packets (IP header)

ECN (2)

- Marked packets arrive at receiver; treated as loss
 - TCP receiver reliably informs TCP sender of the congestion

ECN (3)

- Advantages:

 - Congestion is detected early, no loss
 - No extra packets need to be sent
- Disadvantages:
 - Routers and hosts must be upgraded

END

© 2013 D. Wetherall

Slide material from: TANENBAUM, ANDREW S.; WETHERALL, DAVID J., COMPUTER NETWORKS, 5th Edition, © 2011. Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New Jersey