1 Problem statement

1.1 Version 1

Given a set of tasks \mathcal{T} , a set of resources \mathcal{R} , GPU capacity $c^{(GPU)}$, major frame length h and characteristics of each task $T_i \in \mathcal{T}$, the goal is to find a feasible schedule for tasks to be run on available resources which minimizes energy consumption. The process of finding such a schedule consists of two phases:

Phase 1: assigning tasks to resources.

Phase 2: scheduling tasks into isolation windows.

1.1.1 Phase 1

Input:

- Set $\mathcal{R} = (R_1, R_2, ..., R_m)$ representing available resources, where each resource $R_k \in \mathcal{R}$ has capacity c_k .
- Value $c^{(GPU)}$ representing GPU capacity.
- Set of tasks $\mathcal{T} = (T_1, T_2, ..., T_n)$.
- Values $p_{i,k}$ and $E_{i,k}$ representing processing time and energy consumption of task T_i on resource R_k . If task T_i cannot be executed on resource R_k , then $p_{i,k} = \infty$.
- Values $p_{i,k}^{(GPU)}$ and $E_{i,k}^{(GPU)}$ representing processing time and energy consumption of task T_i on resource R_k if the task is offloaded to GPU. If task T_i cannot be executed on resource R_k , or cannot be offloaded to GPU, then $p_{i,k}^{(GPU)} = \infty$.
- Value h representing major frame length.

Output: The output consists of resource assignment function $a_r: \mathcal{T} \to \mathcal{R}$ and GPU offloading function $a_g: \mathcal{T} \to \{0,1\}$.

ILP Model:

$$\min \sum_{T_i \in \mathcal{T}} \sum_{R_k \in \mathcal{R}} (a_{i,k} \cdot E_{i,k} + a_{i,k}^{(GPU)} \cdot E_{i,k}^{(GPU)}) \quad \text{subject to:}$$
 (1)

$$\sum_{R_k \in \mathcal{R}} (a_{i,k} + a_{i,k}^{(GPU)}) = 1 \quad \forall T_i \in \mathcal{T}$$
 (2)

$$\sum_{T_i \in \mathcal{T}} (a_{i,k} \cdot p_{i,k} + a_{i,k}^{(GPU)} \cdot p_{i,k}^{(GPU)}) \le h \cdot c_k \quad \forall R_k \in \mathcal{R}$$
 (3)

$$\sum_{T_i \in \mathcal{T}} \sum_{R_k \in \mathcal{R}} a_{i,k}^{(GPU)} \cdot p_{i,k}^{(GPU)} \le h \cdot c^{(GPU)} \tag{4}$$

$$a_{i,k} = 0 \quad \forall T_i \in \mathcal{T}, \forall R_k \in \mathcal{R} : p_{i,k} = \infty$$
 (5)

$$a_{i,k}^{(GPU)} = 0 \quad \forall T_i \in \mathcal{T}, \forall R_k \in \mathcal{R} : p_{i,k}^{(GPU)} = \infty$$
 (6)

$$a_{i,k} \in \{0,1\}, a_{i,k}^{(GPU)} \in \{0,1\} \quad \forall T_i \in \mathcal{T}, \forall R_k \in \mathcal{R}$$
 (7)

Note that a feasible solution does not imply that it will be possible to find a feasible schedule in phase 2.

1.1.2 Phase 2

Input:

- Set $\mathcal{R} = (R_1, R_2, ..., R_m)$ representing available resources, where each resource $R_k \in \mathcal{R}$ has capacity c_k .
- Value $c^{(GPU)}$ representing GPU capacity.
- Set $\mathcal{T} = (T_1, T_2, ..., T_n)$ representing tasks to be scheduled. Each task $T_i \in \mathcal{T}$ has processing time p_i .
- Resource assignment function $a_r: \mathcal{T} \to \mathcal{R}$ and GPU offloading function $a_q: \mathcal{T} \to \{0,1\}$.
- Value h representing major frame length.

Output: Let $W = (W_1, W_2, ..., W_\ell)$ be a set of isolation windows, where each window $W_j \in \mathcal{W}$ has length l_j . The goal is to find a triplet $S = (\ell, \boldsymbol{l}, a_w)$, where ℓ is the number of windows, \boldsymbol{l} is the vector capturing the windows' length, and $a_w : \mathcal{T} \to \mathcal{W}$ is the window assignment function. Solution S is feasible, if the following constraints are satisfied:

$$l_j \ge \frac{\max_{T_i \in \mathcal{T}: a_w(T_i) = W_j}(p_i)}{0.6} \quad \forall W_j \in \mathcal{W}$$
 (8)

$$\sum_{W_j \in \mathcal{W}} l_j \le h \tag{9}$$

$$\sum_{T_i \in \mathcal{T}: a_w(T_i) = W_j} \mathbb{1}_{[a_r(T_i) = R_k]} \le c_k \quad \forall R_k \in \mathcal{R}, \forall W_j \in \mathcal{W}$$
(10)

$$\sum_{T_i \in \mathcal{T}: a_w(T_i) = W_j} a_g(T_i) \le c^{(GPU)} \quad \forall W_j \in \mathcal{W}$$
 (11)

Solution S is optimal, if it minimizes the total length of the schedule $\sum_{W_j \in \mathcal{W}} l_j$. **ILP Model:**

$$\min \sum_{W_j \in \mathcal{W}} l_j \quad \text{subject to:} \tag{12}$$

$$\sum_{W_j \in \mathcal{W}} l_j \le h \tag{13}$$

$$l_j \ge \frac{p_i \cdot w_{i,j}}{0.6} \quad \forall T_i \in \mathcal{T}, \forall W_j \in \mathcal{W}$$
 (14)

$$\sum_{W_j \in \mathcal{W}} w_{i,j} = 1 \quad \forall T_i \in \mathcal{T}$$
 (15)

$$\sum_{T_i \in \mathcal{T}} w_{i,j} \cdot \mathbb{1}_{[a_r(T_i) = R_k]} \le c_k \quad \forall W_j \in \mathcal{W}, \forall R_k \in \mathcal{R}$$
 (16)

$$\sum_{T_i \in \mathcal{T}} w_{i,j} \cdot a_g(T_i) \le g \quad \forall W_j \in \mathcal{W}$$
 (17)

$$l_j \in \mathbb{N} \ \forall W_j \in \mathcal{W}$$
 (18)

$$w_{i,j} \in \{0,1\} \quad \forall T_i \in \mathcal{T}, \forall W_j \in \mathcal{W}$$
 (19)