你好, world!

ZTL

2018年2月14日

目录

1	你好中国			
	1.1	Hello Beijing	2	
		1.1.1 Hello Dongcheng District	2	
	1.2	Hello 山东	2	
2	math math			
3	grap	phics	4	
4	tabl	\mathbf{e}	6	

1 你好中国

中国在 East Asia.

1.1 Hello Beijing

北京是 capital of China.

1.1.1 Hello Dongcheng District

Tian'anmen Square is in the center of Beijing

Chairman Mao is in the center of 天安门广场。

1.2 Hello 山东

山东大学 is one of the best university in 山东。

2 math

Einstein 's $E = mc^2$.

$$E = mc^2$$
.

$$E = mc^2. (1)$$

 \sqrt{x} , $\frac{1}{2}$.

$$\sqrt{x}$$
,

$$\frac{1}{2}$$

$$\sum_{i=1}^{n} i \quad \prod_{i=1}^{n} \sum_{i=1}^{n} i \quad \prod_{i=1}^{n}$$

$$\lim_{x \to 0} x^2 \quad \int_a^b x^2 dx$$

$$\lim_{x \to 0} x^{2} \int_{a}^{b} x^{2} dx$$

$$\left(\left(\left(\left((x)\right)\right)\right)\right)$$

$$\left[\left[\left[\left[x\right]\right]\right]\right]$$

$$\left\{\left\{\left\{\left\{\left\{x\right\}\right\}\right\}\right\}\right\}$$

$$\left\langle\left\langle\left\langle\left\langle\left\langle x\right\rangle\right\rangle\right\rangle\right\rangle$$

$$\left|\left|\left|\left|x\right|\right|\right|\right|$$

$$\left|\left|\left|\left|\left|x\right|\right|\right|\right|\right|$$

$$\left|\left|\left|\left|\left|x\right|\right|\right|\right|\right|$$

$$x_1, x_2, \ldots, x_n \quad 1, 2, \cdots, n \quad \vdots \quad \ddots$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad \begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad \begin{cases} a & b \\ c & d \end{cases} \quad \begin{vmatrix} a & b \\ c & d \end{vmatrix} \quad \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

Marry has a little matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

$$x = a + b + c + d + e + f + g$$

$$x = a + b + c +$$

$$d + e + f + g \quad (2)$$

$$a = b + c + d \tag{3}$$

$$x = y + z \tag{4}$$

$$a = b + c + d \tag{5}$$

$$x = y + z \tag{6}$$

$$y = \begin{cases} -x, & x \le 0 \\ x, & x > 0 \end{cases}$$

3 graphics

如图 1所示

图 1: 有图有真相

4 table

操作系统	发行版	编辑器
Windows	MikTeX	TexMakerX
Unix/Linux	teTeX	Kile
Mac OS	MacTeX	TeXShop
通用	TeX Live	TeXworks

```
1 %Script file ball.m
  %
3 %Purpose:
4 \% This program calculates the distance traveled by a ball
  %throw at a specified angle "theta" and a specified velocity
  %"vo" from a point, ignoring air friction. It calculates the angle
7 % yeileding maximun range, and also plots selected trajectories.
8 %
  \%Define\ variable:
10 \ \% conv
                degrees to radians conv factor
11 \quad \% grav
                The gravity accel
12 \% ii , jj
                Loop index
13 \% index
                The maximum range in array
14 \ \% maxangle
                The angle that gives the maximum range
15 %maxrange
                Maximum range
16 \ \% range
                ranghe for a specified angle
17 \% time
                Time
18 % theta
                Inital angle
19 \%fly\_time
                the totle trajectory time
20 %vo
                The initial velocity
21 \%vxo
                x-component of the initial velocity
22 %vyo
                y-component of the initial velocity
  %x
                x-position of ball
23
24 \% y
                y-position of ball
25 %¶" 峣
  conv = pi / 180;
```

```
grav = -9.82;
   vo=input('Enter the initial velocity:');
28
29
   range=zeros(1,91);
30
     %1/4
                  3/4
31
    for ii =1:91
32
         theta = ii - 1;
33
         vxo=vo*cos(theta*conv);
34
        vyo=vo*sin(theta*conv);
35
        \max_{\text{time}}=-2*vyo/grav;
36
        range(ii)=vxo*max_time;
37
   end
38
   % 21/4
                3/4
39
   fprintf('Range versus angle theta"\n');
40
    for ii = 1:5:91
41
         theta=ii-1;
42
         fprintf('%2d %8.4f\n', theta, range(ii));  % %4.2f± °
                                                                                         \pounds \neg \breve{I}
43
   end
44
   %1/4
              Ľ
                     3/4
45
   [maxrange, index]=max(range);
   maxangle = index -1;
47
    fprintf('\n Max range is %8.4f at %2d degress.\n', maxrange, maxangle);
48
49
   for ii = 5:10:80
50
         theta=ii;
51
        vxo=vo*cos(theta*conv);
52
        vyo=vo*sin(theta*conv);
53
        \max_{\text{time}}=-2*\text{vyo}/\text{grav};
54
        %1/4
                   \square \mu \quad x, y \quad \pm
55
        x = zeros(1,21);
56
        y = zeros(1,21);
57
         for jj = 1:21
58
              time = (jj - 1)*max\_time / 20;
59
```

```
x(jj)=vxo*time;
60
              y(jj)=vyo*time+0.5*grav*time^2;
61
         end
62
         plot (x,y, 'g');
63
         if ii==5
64
              hold on;
         end
66
   end
67
                           \pm
68
         title ('\bf Trajectory of Ball vs Inital Angle\theta');
69
         xlabel(' \setminus bf \setminus itx \setminus rm \setminus bf(meters)');
70
         vlabel('\bf\ity \rm\bf(meters)');
71
         axis ([0 \text{ max}(\text{range})+5 \ 0 \ -\text{vo}^2/2/\text{grav}]);
72
         grid on;
73
         %»
                     \mu \hat{L} \square
74
         vxo=vo*cos(maxangle*conv);
         vyo=vo*sin(maxangle*conv);
76
         max_time=-2*vyo/grav;
77
              %Calculate the (x,y)
78
              x = zeros(1,21);
79
              y = zeros(1,21);
80
              for jj = 1:21
81
                   time = (jj -1)*max\_time / 20;
82
                   x(jj)=vxo*time;
83
                   y(jj)=vyo*time+0.5*grav*time^2;
84
85
              end
              plot(x,y,'r','Linewidth',2);
86
              hold off
87
```