ST758, Homework 5

Due Oct 21, 2014

- 1. (Maggie's question) Assume $X \in \mathbb{R}^{n \times p}$ has full column rank. Gram-Schmidt or modified Gram-Schmidt algorithm yields $X = Q_1 R_1$ and Household algorithm (without pivoting) yields $X = Q_2 R_2$, where $Q_1, Q_2 \in \mathbb{R}^{n \times p}$, $Q_1^T Q_1 = Q_2^T Q_2 = I_p$, and $R_1, R_2 \in \mathbb{R}^{p \times p}$ are upper triangular with positive diagonal entries. Show that $Q_1 = Q_2$ and $R_1 = R_2$.
- 2. (Ridge regression revisited) In ridge regression, we minimize

$$\|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|_2^2 + \lambda \|\boldsymbol{\beta}\|_2^2$$

where $\lambda \geq 0$ is a tuning parameter.

- (a) Express ridge solution $\widehat{\beta}(\lambda)$ in terms of the singular value decomposition (SVD) of X.
- (b) Show that (i) the ℓ_2 norms of ridge solution $\|\widehat{\boldsymbol{\beta}}(\lambda)\|_2$ and corresponding fitted values $\|\hat{\boldsymbol{y}}(\lambda)\|_2 = \|\boldsymbol{X}\hat{\boldsymbol{\beta}}(\lambda)\|_2$ are non-increasing in λ and (ii) the ℓ_2 norm of the residual vector $\|\boldsymbol{y} \hat{\boldsymbol{y}}(\lambda)\|_2$ is non-decreasing in λ .
- (c) Re-compute and plot the ridge solution for the Longley data in HW4 at $\lambda = 5, 10, 15, 20, \dots, 100$ using the SVD approach.
- (d) Comment on the computation efficiency of SVD approach compared to the approach you used in HW4.
- 3. (Matching images) Below figure displays two 3s my son wrote on a piece of paper and I want to properly align them.

Let matrices $X, Y \in \mathbb{R}^{n \times p}$ record n points on the two shapes. In this case n = 10 and p = 2. Mathematically we consider the problem

minimize_{$$\beta, O, \mu$$} $\|X - (\beta YO + \mathbf{1}_n \mu^T)\|_{\mathrm{F}}^2$,

where $\beta > 0$ is a scaling factor, $\mathbf{O} \in \mathbb{R}^{p \times p}$ is an orthogonal matrix, and $\boldsymbol{\mu} \in \mathbb{R}^p$ is a vector of shifts. Here $\|\boldsymbol{M}\|_{\mathrm{F}}^2 = \sum_{i,j} m_{ij}^2$ is the squared Frobenius norm. Intuitively we want to rotate, stretch, and shift the shape \boldsymbol{Y} to match the shape \boldsymbol{X} as much as possible.

(a) Let \bar{x} and \bar{y} be the column mean vectors of the matrices and \tilde{X} and \tilde{Y} be the versions of these matrices with means removed. Show that the solution $(\hat{\beta}, \hat{O}, \hat{\mu})$ satisfies

$$\hat{\boldsymbol{\mu}} = \bar{\boldsymbol{x}} - \hat{\boldsymbol{\beta}} \widehat{\boldsymbol{O}}^T \bar{\boldsymbol{y}}.$$

Therefore we can center each matrix at its column centroid and then ignore the location completely.

(b) Derive the solution to

minimize_{$$\beta, O$$} $\|\tilde{\boldsymbol{X}} - \beta \tilde{\boldsymbol{Y}} \boldsymbol{O}\|_{\mathrm{F}}^2$

using the SVD of $\tilde{\boldsymbol{Y}}^T\tilde{\boldsymbol{X}}$.

(c) Implement your method and solve the alignment problem in the figure. Display your solution together with the original two 3s.