

Computational Intelligence

Subject 1: Fundamental Concepts

Instructor: Ali Tourani

A.Tourani1991@gmail.Com

Agenda

- ► What is Computational Intelligence?
- Artificial Neural Networks
- Fuzzy Systems
- Evolutionary Computation
- Swarm Intelligence

- ► A new concept for **advanced information processing**
- ▶ **Biologically** motivated computational paradigms
- Developing successful Intelligent Systems

Artificial Intelligence vs. Computational Intelligence:

- ► Two research efforts working on similar problems
- ► CI → bio-inspired computing
- ► AI → techniques with stronger theoretical guarantees

Computers and Intelligence?

- Alan Mathison Turing
 - An abstract computing machine consisting of a limitless memory and a scanner

"What we want is a machine that can learn from experience,"

Artificial Intelligence (defined by IEEE in 1996)

- Studying how can computers do what humans can do in a better way
- ► *Sample:* Auto-pilot systems in an airplane

CI and Probabilistic Methods

- Almost nothing in our world is not definite
- Powerful tools used for designing efficient randomized algorithms
- Leads to Soft Computing instead of Traditional Computing
 - ► Theories like Fuzzy Systems
 - ▶ Introduced by Dr. Lotfi Ali Asker Zadeh (1921-2017)

Lotfi A. Zadeh

Professor Emeritus, EECS, <u>UC Berkeley.</u>

Verified email at eecs.berkeley.edu - <u>Homepage.</u>

Fuzzy Logic Soft Computing Artificial Intelligence Human-Level Machine Intel...

CI and Soft Computing

- ► In contrast with Hard Computing, where everything is inflexible and definite, in Soft Computing there is:
 - Approximation
 - Uncertainty
 - Imprecision
 - Partial truth
- ► **HC:** precisely state analytics model
- ► SC: multi-valued or fuzzy logic

Core Technologies of CI

Artificial Neural Networks (ANNs)

Evolutionary Computation (EC)

Swarm Intelligence (SI)

Fuzzy Systems (FS)

- ► **Human brain**: non-linear and parallel architecture
- Significantly fast for recognition and matching goals
- The concept of Neural Network
 - A circuit of neurons
- ► The abilities to learn, memorize, and make decision
- ► Inspiration in computers world
 - ► The advent of **Artificial Neural Networks**

Neuron (nerve cell), the main component of nervous system

Signal propagation

- ► Human brain contains **86 billion neurons**
- ► Each neuron has about 7000 connections
- ► How?
- ▶ The axon terminal of one cell contacts another neuron's dendrite
- ► Inspiration: a fantastic way to transmit data!

Artificial Neurons

- ► Elementary units in an artificial neural network
- ▶ One or more inputs are needed to produce an output
- Inputs are weighted separately (often)
 - ► Each input signal has a unique weight
- ▶ **Sum** of the weighted input signals is calculated
- ► Then, the value passes through a non-linear function, called Activation Function
 - ► Common types: Step function, Sigmoid, Rectifier, etc.

Artificial Neurons

Input Layer Hidden Layer Output Layer

Artificial Neural Networks

- ► Consist of several connected neurons
- Layers: input, output, and at least one hidden layer

History of Artificial Neural Networks

- ▶ 1943: McCulloch and Pitts and their basic computational model
- ▶ 1948: Hebb and the unsupervised learning process
- ▶ 1958: Perceptron, a pattern recognition algorithm
- ▶ 1969: Minsky and Papert, improvement of perceptron
- ▶ 1975: Backpropagation for partial training
- ▶ 1985: NNs for prediction and processing complicated structures
- ▶ 1992: Max-pooling for 3D object recognition
- ▶ 2006: deep neural networks with their magnificent outputs

Areas of Application

- Deep Learning
- Image processing
- Prediction
- Data mining
- Speech Recognition
- Human Face Recognition
- Chemical problems

Some students are good at Python!

- Can computers <u>understand</u> this?!
- ► The world is not a **binary** or a **Boolean** system!

"To be, or not to be, that is the question."

- Fuzzy logic
 - An approach to computing based on "degrees of truth"

► Fuzzy logic description

- ► An extension of multi-valued logic
- Conceptually easy to understand
- High flexibility
- Based on natural language
- ► Related to Approximate Reasoning
- Non-statistical uncertainty

How much is it important?!

Significance

Some Fuzzy sentences we use in our lives

- ► The man seems to be very young.
- ► The weather was extremely hot today.
- ► Too many students in the class ...
- ► The painting is magnificent.
- This method is computationally intensive.

Paradox of the heap

- One grain of sugar is not a heap
- It is not the difference between a heap and a non-heap!
- ► Taking one grain of sugar away from the heap
- ▶ Do the above action for 2000 grains
- ▶ After a while, you do not call the remaining grains a heap of sugar

How did it become a non-heap?

How many grains of sugar is needed to call them a heap of sugar?

How can computers understand Fuzzy logic? Definitely hot! Degree of membership cold hot warm 0.5 Cold 0.5 Warm temperature -

- Applications of Fuzzy Systems
 - ► Automatic Transmission Cars
 - Controllers of an elevator
 - Smart TV and washing machine
 - ► Speech recognition software
 - ▶ Decision making in business
 - Train schedules
 - etc.

Darwinism, the theory of biological evolution

- The concept of Natural Selection
- # of produced individuals > # of survived individuals
- Existence of Phenotypic variation
- ▶ Ones better suited to the environment → survival
- Reproduction isolation and new species

Natural Selection and Evolution?

chromosome

telomere

nucleus

Evolutionary Computation

Main concepts in Evolution

Concept	Description	cell
Chromosome	Thread-like structures located inside the nucleus Made of a very long stand of DNA	Cinolitatios
DNA	Contains many genes Stores genetic information	pair histones
Gene	 Segments of DNA Genotype: an individual's collection of genes Phenotype: observable characteristics of an of the collection of several versions of a gene Fitness: the ability of organisms to survive/re 	organism DNA of double helix

The concept of Evolutionary Computation (EC)

- Computational intelligence techniques inspired from natural evolution
- ▶ Individuals (chromosomes) inherit features from their parents
- Fitness: chances for survival and reproduction

The general steps of an EC algorithm

- Creating the population
 - ► AKA solutions to the problem
 - Might be created randomly
- Evaluation with a fitness function
- Selection
- Crossover
- Mutation
- Reproduction
- ▶ Termination criterion

Various EC techniques

- Genetic Programming (GP)
- Genetic Algorithms (GAs)
- Grammatical Evolution (GE)
- Evolutionary Algorithms (EA)
- And so on ...

- ► The discipline that deals with natural and artificial systems
- ► Composed of many individuals that coordinate using:
 - 1. Decentralized Control
 - 2. Self-Organization
- Focuses on the collective behaviors
- Interactions of the individuals:
 - 1. With each other
 - 2. With their environment

Particle Swarm Optimization (PSO)

- One of the most well-known metaheuristics
- ► Inspired from swarm behavior such as bird flocking
 - ► Each group member is a Particle
 - ► A candidate to solve an optimization problem
 - ► The combination makes the Swarm
- ► Applications:
 - ► Travelling Salesman Problem
 - Network routing

Particle Swarm Optimization (PSO)

Evolutionary algorithms based on SI

- Interaction among several agents to find an optimized solution
- ▶ Individuals with a simple behavior, groups with a complicated one
 - Sample: an ant cannot understand how big a colony is

Some famous algorithms of SI

- Ant Colony Optimization
- Honeybee Hive Optimization
- Artificial Bee Colony
- Termite Colony Optimization
- Particle Swarm Optimization
- Cat Swarm Optimization
- Bat Algorithm

What's Next?

Artificial Neural Networks

Questions?

