

Automated deformation assessment of masonry lined tunnels

Authors: Jack Smith, Dr. Chrysothemis Paraskevopoulou

Co-Supervised by Professor Anthony Cohn, Dr. Ryan Kromer,

with support from Bedi Consulting Ltd.

Funded by EPSRC doctoral training programme

EWSHM 2024

Masonry lined tunnels

Figure 1: Typical masonry lined tunnel entrance Figure 2: Typical masonry tunnel defects

Visual condition assessment

- Reports are standardised in Tunnel Condition Marking Index (TCMI)
- Defect identification is manual
- Lining damage map is generated
- Structural condition score is calculated

Figure 3: Extract of TCMI report (NR_L3_CIV_006_4c)

Tunnel lining deformation

- Lining bulging can lead to arch instability
- Lidar enables more accurate measurements
- Depth of deformation is still difficult to determine manually

Masonry tunnel spalling severity

Figure 4: Typical masonry spalling

Figure 5: Spalling severities

Masonry tunnel spalling severity

Figure 4: Typical masonry spalling

Figure 5: Spalling severities

Assessment challenges

Figure 5: a) Typical masonry damage

b) Lining profile without surface damage

c),d) Lining surface best fit attempts

Condition assessment workflow

Case study tunnels

Figure 6: Case study 3D point clouds obtained by lidar

Synthetic masonry

- Synthetic data can further improve generalisability
- Large variety of masonry geometries possible
- Damaged areas modelled with random Bezier curves
- Spalling depths given random profiles

Figure 17: randomly generated wall depth map

Tunnel generator

- Synthetic tunnel point clouds were generated to augment the dataset
- Ideal tunnel geometry was defined as a three-centred arch on vertical sidewalls
- Offsets were applied using randomised synthetically generated masonry.

Ground truth creation

- Gaussian processes used to fit different tunnel cross-sections
- Smoothing and filtering applied with trial and error to isolate spalling from lining deformations
- Joints manually masked out

Automated damage assessment

Automated damage assessment

Semantic segmentation

Figure 11: Semantic segmentation example (Pascal VOC2011 from host.robots.ox.ac.uk)

U-Net Encoder-Decoder CNN

Figure 12: U-Net architecture (Ronneberger et al.)

Tunnel unwrapping

- Cylinder fit to tunnel using PCA
- Tunnel unwrapped around cylinder
- Offset from cylinder set as scalar field

Figure 13: Unwrapped tunnel point cloud

Joint Segmentation

- U-Net style neural networks trained for joint segmentation
- Dice loss function
- 10m section of each tunnel used as training set.
- Tunnel rasters split into 512x512 patches

a) Input Raster b) Joint mask Figure 15: Expanded view of training data

Data augmentations

- Data augmentation synthetically increases size of dataset
- Augmentations given range of magnitudes and probabilities
- Augmentations need to be realistic

Figure 16: Effect of image augmentation

Performance assessment

$$IOU = Intersection Over Union FP = False Positives$$

TP = True Positives

$$FP = False Positives$$

$$FN = False Negatives$$

$$IOU = \frac{Intersection}{Union} = -\frac{1}{2}$$

$$= \frac{TP}{TP + FP + FN}$$

Joint segmentation performance

Tunnel 1 (Stone)

Output	IOU	Blocks identified
Dice Loss	0.569	71%
Warp loss	0.609	77%

Tunnel 2 (Brick)

Output	IOU	Blocks identified
Dice Loss	0.510	51%
Warp loss	0.568	59%

Damage detection

- U-Net style neural networks trained for damage segmentation
- Training masks created by taking offset of cloud from manually defined undamaged surface

Surface Fitting

Find joint

locations

Spalling severity segmentation

locations

Spalling severity segmentation

Spalling performance assessment

Tunnel 1 (Stone)

Severity level	Depth of spalling	IOU
S1	>100mm	0.648
S2	>40mm	0.507
S3	>10mm	0.498

Tunnel 2 (Brick)

Severity level	Depth of spalling	IOU
S1	>50mm	N/A
S2	>20mm	0.237
S 3	>10mm	0.432

Visualisation of offset areas

Visualisation of offset areas

Machine learning potential

Capability	Status
Can reduce analysis time	✓
Improves assessment reproducibility	✓
Improves inspection health and safety	✓
Replaces a human engineer	X
Can be used 'off the shelf'	•••
Requires advanced data collection equipment	•••

Questions?

Thank you for Listening

Spalling severity segmentation

Spalling severity segmentation

Upcoming Research

Automated masonry spalling severity segmentation in historic railway tunnels using deep learning and a block face plane fitting approach, (under review)

Smith, J., Paraskevopoulou, C., Cohn, A., Kromer, R., Bedi, A., Invernici, M., 2023.