Homework 6 – STAT 5430

Due Monday, March 31 by midnight in gradescope;

- 1. An ecologist takes data (x_i, Y_i) , i = 1, ..., n, where $x_i > 0$ is the size of an area and Y_i is the number of moss plants. The data are modeled assuming $x_1, ..., x_n$ are fixed; $Y_1, ..., Y_n$ are independent; and Y_i is $Poisson(\theta x_i)$ distributed with parameter θx_i . Suppose that $\sum_{i=1}^n x_i = 5$ is known. Find an exact form of the most powerful (MP) test of size $\alpha = 9e^{-10}$ for testing $H_0: \theta = 2$ vs $H_1: \theta = 1$.
- 2. Problem 8.19, Casella and Berger (2nd Edition): Just show the form of the MP test involves rejecting H_0 if $e^{y-\sqrt{y}}/\sqrt{y} > k$ for some k > 1 (skip the $\alpha = 0.1$ part or Type II error part of the problem statement)
- 3. Problem 8.20, Casella and Berger (2nd Edition). Hint: It holds that $f(x|H_1)/f(x|H_0) = 7 x + 79/94I(x=7)$ over the support $x=1,2,\ldots,7$, where $I(\cdot)$ denotes an indicator function.
- 4. Recall Method I for finding Uniformly Most Powerful (UMP) tests:

To find a UMP size α test for $H_0: \theta \in \Theta_0$ vs $H_1: \theta \notin \Theta_0$, suppose we can fix $\theta_0 \in \Theta_0$ suitably & then use the Neyman-Pearson lemma to find a MP size α test $\varphi(\tilde{X})$ for $H_0: \theta = \theta_0$ vs $H_1: \theta = \theta_1$, where

- (a) $\varphi(X)$ does not depend on $\theta_1 \notin \Theta_0$ and
- (b) $\max_{\theta \in \Theta_0} E_{\theta} \varphi(X) = \alpha$

Show that if (a) and (b) both hold, then $\varphi(X)$ must be a UMP size α test for $H_0: \theta \in \Theta_0$ vs $H_1: \theta \notin \Theta_0$.

Hint: From (b), the size of the test rule $\varphi(X)$ is correct. So, by definition of a UMP test, it is necessary to prove that: if $\bar{\varphi}(X)$ is any other test of $H_0: \theta \in \Theta_0$ vs $H_1: \theta \notin \Theta_0$ with size $\max_{\theta \in \Theta_0} E_{\theta} \bar{\varphi}(X) \leq \alpha$ then $\varphi(X)$ has more power over the parameter subspace of H_1 than $\bar{\varphi}(X)$, i.e.,

$$E_{\theta}\varphi(X) \ge E_{\theta}\bar{\varphi}(X)$$
 any $\theta \not\in \Theta_0$.

In other words, pick/fix some $\theta_1 \notin \Theta_0$ and try to argue that $E_{\theta_1}\varphi(X) \geq E_{\theta_1}\bar{\varphi}(X)$ must hold... the way to do this is to take the test $\bar{\varphi}(X)$ and simply apply it to testing $H_0: \theta = \theta_0$ vs. $H_1: \theta = \theta_1$.)

5. Problem 8.23, Casella and Berger (2nd Edition)