Ex 1 - Recopier et compléter le tableau ci-dessous :

Enoncé	Intervalle	Représentation graphique
-1≤ <i>x</i> <3	$x \in$	
4> <i>x</i> >0	$x \in$	
$-7 \ge x > -8$	$x \in$	
$x \in \mathbb{R}^+$	$x \in$	
<i>x</i> ≠5	$x \in$	

Ex 2 - Simplifier chacune des expressions ci-dessous, puis recopier le tableau et mettre une croix en face du plus petit ensemble auquel elle appartient.

	ID	Z	IR	Q	IN
$\sqrt{2}$					
$\frac{7^{-1} \times (7^3)^2}{7^3 \times 7^2}$					
$\sqrt{36}$					
$(\pi - 1)^2$					
$(1-\sqrt{2})(1+\sqrt{2})$					
$\frac{\sqrt{3^2 + 4^2}}{\frac{1}{3} - \frac{1}{4}}$					

Ex 3 - Traduire sous forme d'intervalle :

- 1) y > -3 et y < 42) y > -3 ou y < 43) $y \le \frac{1}{3}$ et $y \le \frac{1}{2}$ 4) $y \le \frac{1}{3}$ ou $y \le \frac{1}{2}$

Ex 4 - Compléter avec les symboles ∈ ou ∉ :

- 1) 7 ...] 0; 7 [
- 2) 5,9 ...] 5,8; +∞ [
- 3) $-0.25 \dots]-0.3;-0.2$
- 4) 2 ...] 1; 2]
- 5) $-0.199 \dots] -0.2 ; -0.19 [$
- 6) π ... [3,14; 3,141 [

Ex 5 - Vrai ou faux ?

- 1) Si $x \in [6,7; +\infty[$ alors $x \in [6; +\infty[$
- 2) Si $x \in]-3$; 4 [alors $x \in [-2; 5[$
- 3) Si $x \notin [-5; 2 [alors x \in] -\infty; -3 [\cup [2; +\infty [$
- 4) L'intervalle] 0 ; 4[est inclus dans [0 ; 4 [
- 5) $\mathbb{N} \subset \mathbb{Q}^+$
- 6) Si $x \notin \mathbb{Q}$ alors $x \notin \mathbb{D}$

Ex 6 - Simplifier les notations suivantes lorsque c'est possible.

$$A = [-5; 7[\cup [-2; 12[$$

$$\mathbf{B} = [\ 0\ ; +\infty\ [\ \cup\] - 2\ ; +\infty\ [$$

$$C =] -\infty ; 0 [\cup [0 ; +\infty [$$

$$D = \left| -\infty; \frac{4}{3} \right| \cap \left[-10; 10 \right]$$

$$E = [-4; 1, 5[\cup] \frac{\pi}{2}; 10]$$

Ex 7 - Représenter I et J sur une droite graduée, puis déterminer $I \cap J$ et $I \cup J$.

- 1) I = [2; 5,5] et J = [1; 3]
- 2) $I = [-1; +\infty [et J =]-2; 3]$
- 3) I =]-1;3] et $J = [-1,5;\pi[$
- 4) $I = \mathbb{R}^{*+} \text{ et } J =]-4; 5] \cup [17; 20[$
- 5) $I = \mathbb{R}^- \text{ et } J = \mathbb{R}^+$
- 6) $I = \{1; 2; 3; 4\}$ et J = [-5; 5]