Curso de Cálculo Numérico

| <u>Home</u> | <u>Programa</u> | <u>Exercícios</u> | <u>Provas</u> | <u>Professor</u> | <u>Links</u> |

Capítulo 5 - Birge Vieta

Cálculo de Raízes Reais de um Polinômio

Professor Raymundo de Oliveira

Introdução

Não se precisa de Cálculo Numérico para calcular as raízes de uma equação do segundo grau. É de todos conhecida a fórmula $-b \pm (b^2 - 4ac)/2a$.

Entretanto, se temos polinônios de ordem maior que 2, as dificuldades aumentam. Há soluções para casos particulares, como as biquadradas, faltando soluções analíticas gerais para polinômios de ordem elevada.

O problema é enfrentado com o Método de Newton, já apresentado, onde se usa a expressão xi+1 = xi - f(xi) / f'(xi).

Para cálculo do valor de f(xi) e f' (xi), usa-se o algoritmo de Ruffini ou Briot-Ruffini, com o objetivo de minimizar os cálculos necessários, permitindo maior precisão.

Algoritmo de Briot-Ruffini.

Para se calcular o valor de um polinômio num ponto x0, faz-se a divisão de P(x) por x - x0 e acha-se o resto R, da divisão. R = p(x0).

Vejamos: seja Q(x) o quociente da divisão de P(x) por $x-x^{\scriptscriptstyle 0}$.

Tem-se: $P(x) = (x - x^0) Q(x) + R$.

$$P(x^0) = (x^0 - x^0) Q(x^0) + R \cdot Logo: R = P(x^0)$$
.

Seja o dividendo $P(x) = a^4 x^4 + a^3 x^3 + a^2 x^2 + a^1 x + a^0$

e o quociente Q(x) = $b^4 x^3 + b^3 x^2 + b^2 x + b^1$, sendo R o resto.

$$P(x) = (x - x^0) Q(x) + R$$
, logo:

$$a^4 x^4 + a^3 x^3 + a^2 x^2 + a^1 x + a^0 = (x - x^0) (b^4 x^3 + b^3 x^2 + b^2 x + b^1) + R = b^4 x^4 + (b^3 - x^0 b^4) x^3 + (b^2 - x^0 b^3) x^2 + (b^1 - x^0 b^2) x + (R - x^0 b^1)$$

Tratando-se de identidade de polinômios, pois essa igualdade vale para qualquer valor de x , tem-se:

$$b^4 = a^4$$

$$b^3 - x^0 b^4 = a^3 \text{ ou } b^3 = a^3 + x^0 b^4$$

$$b^2 - x^0 b^3 = a^2 \text{ ou } b^2 = a^2 + x^0 b^3$$

$$b^1 - x^0 b^2 = a^1 \text{ ou } b^1 = a^1 + x^0 b^2$$

$$R - x^0 b^1 = a^0 \text{ ou } R = a^0 + x^0 b^1$$

	a ⁴	a ³	a ²	a ¹	a ⁰
x ₀	b ⁴	p ₃	b ²	b ¹	R

Dessa forma tem-se o quociente Q(x) e o valor de $P(x^0)$ = R.Cálculo das raízes Voltemos ao cálculo das raízes do polinômio, pelo método de Newton-Raphson.Partindo de x^0 , vamos calcular $x^1 = x^0 - P(x^0)/P'(x^0)$, onde $P(x^0)$ e $P'(x^0)$ serão calculados usando-se Briot-Ruffini.

Entretanto, lembrando que $P(x) = (x-x^0)Q(x) + R$, tem-se que :

 $P'(x) = (x-x^0)Q'(x) + Q(x) e logo, P'(x^0) = (x^0 - x^0)Q'(x^0) + Q(x^0) = Q(x^0)$ Assim, $P'(x^0) = Q(x^0)$.

Logo, $x^1 = x^0 - P(x^0)/Q(x^0)$.

Quando se calcula $R = P(x^0)$, logo abaixo da linha está o Q(x). Assim, basta repetir a operação que se fez com o P(x), para o Q(x), cujo grau é o de P(x) menos 1, e se terá, à direita,

 $R^* = Q(x^0) = P'(x^0)$, da mesma maneira como se calculou o R, anterior.

	a ⁴	a ³	a ²	a ¹	a ⁰
x ⁰	b ⁴	b ³	b ²	b¹	R
x 0	C ⁴	C 3	C ²	R*	

Assim, $x^1 = x^0 - R/R^*$.

Repetindo-se o processo, tem-se: $x^{i+1} = x^i - R / R^*$, até que $|x^{i+1} - x^i| < e$, onde e é a tolerância.

Este método para cálculo de raízes de polinômios, usando-se o algoritmo de Briot-Ruffini, associado ao método de Newton-Raphson, recebe o nome de Método de Birge-Vieta. Vejamos um exemplo numérico:

Calcular as raízes reais de P(x) = x^3 - $6x^2$ - 45 x + 50 = 0

Seja $x^0 = 0$

	1	-6	-45	50
0	1	-6	-45	R=50
0	1	-6	R*=-45	

$$x^1 = 0 - 50 / (-45) = 1,11$$

	1	-6	-45	50
1,11	1	-4,89	-50,43	R=-5,98
1,11	1	-3,78	R*=-54,63	

$$x^2 = 1,11 - (-5,98)/(-54,63) = 1,00$$

	1	-6	-45	50
1,00	1	-5	-50	R=0
1,00	1			

Sendo R=0, a primeira raiz vale 1,00.

 $r_1 = 1,00$

Na verdade, não se tinha chegado a exatamente R = 1,00, mas a R = 1,00058, que, sendo aproximado para duas casas, vale 1,00.

Por outro lado, se colocássemos 1,00058 o valor de P(1,00058) não daria exatamente 0, mas - 0,0023.

Neste caso, os números foram escolhidos para que dessem resultados próximos a valores inteiros, daí o 1,00.

Na vida real, isso raramente acontece, os valores serão fracionários e os resultados não serão exatos.

Vamos procurar as duas outras raízes.

Sendo P(x) = (x-xi) Q(x) + R, quando R \approx 0 , tem-se que r1 \approx xi . Chegamos à primeira raiz.

Assim, $P(x) \approx (x - r^1) Q(x)$.

As demais raízes de P(x) serão raízes de Q(x), tem será um polinômio 1 grau inferior a P(x).

Resta procurar as raízes de Q(x) que teremos as demais raízes de P(x).

Tomam-se os coeficiente de Q(x) e passamos esses coeficientes para a linha de cima do quadro de Briot-Ruffini e recomeçamos.

	1	-5	-50
1,00	1	-4	R = -54
1,00	1	$\boxed{R^* = -3}$	

Toma-se como x^0 o valor encontrado para a raiz, isto é: 1,00 . $x^1 = 1,00 - (-54) / (-3) = -17,00$

$$x^2 = -17,00 - 324,00/(-39,00) = -8,69$$

	1	-5	-50
-8,69	1	-13,69	R = 68,97
-8,69	1	$R^* = -22,38$	

$$x^3 = -8,69 - 68,97 / (-22,38) = -5,61$$

	1	-5	-50
-5,61	1	-10,61	R = 9,53
-5,61	1	$R^* = -16,22$	

$$x^4 = -5,61 - 9,53 / (-16,22) = -5,02$$

	1	-5	-50
-5,02	1	-10,02	R = 0.30
-5,02	1	R* = -15,04	

$$x^4 = -5.02 - 0.30 / (-15.04) = -5.00$$

	1	-5	-50
-5,00	1	-10,00	R = 0.00
-5,00	1		

$$r^2 = -5,00$$

A última raiz está no polinômio que sobrou em Q(x), isto é: x - 10,0 = 0.

	1	-10,00
-5,00	1	R = -15,00
-5,00	R* = 1	

Toma-se
$$x^0 = -5,0$$
.
 $x^1 = -5,0 - (-15,00) / 1 = 10,00$

	1	-10,00
10,00	1	R = 0.00
10,00	1	

Logo
$$r^3 = 10,00$$

As três raízes são: - 5 , 1 e 10 .

Se você tiver dúvidas sobre a matéria, meu e-mail é:

raymundo.oliveira@terra.com.br

Home | Programa |
Exercícios | Provas |
Professor | Links |