

Computer Networks II

Test 2

Escuela Superior de Informática

This test consists of 35 question totalling 35 points. The maximum duration is 90 minutes. Three wrong answers substract a point. Only an answer if correct if otherwise not stated. Calculator use is forbidden. Write legibly and similar to the size of the printed text using only the reserved space.

Apellidos:	SOLUCIÓN	Nombre:	Grupo:
1. (1p) C	heck the false statement regarding VPN:		
\Box a)	It is a private network that uses public infras	tructure to create links bet	tween sites.
\Box b)	Tunnels used to create links between sites.		
c)	It requires specific transport protocols.		
☐ d)	You may use the same block of addresses fo	r all sites.	
2. (1p) W	Thy the <i>port redirection</i> is required when a round	iter with NAPT is used?	
a)	To get LAN servers be accessible from the p	ublic network.	
\Box b)	Because the NAPT table can not include the	private network ports.	
\Box c)	The port forwarding has no relation to NATH).	
□ d)	To avoid connections to the outside by LAN	users.	
3. (1p) W	/hat is an IP tunnel?		
a)	A point to point virtual channel carrying IP of	latagrams between two di	stant networks.
\Box b)	A security issue that allows access to a port	of a computer within a pri	vate network.
\Box c)	A type of Ethernet switch that allows you to	define links between their	ports through administrative rules.
□ d)	A virtual point-to-point link resulting of ac increase the bandwidth, for example a server		ss between two devices given as to
4. (1p) W	hat it is a VPN?		
\Box a)	A type of logic LAN. It is possible by mean LANs over a single network infrastructure.	ns of special switches that	t may create the illusion of isolated
b)	A private network consisting of several sites	connected through tunnel	ls on a foreign network.
\Box c)	VPN means <i>Valuable Public Network</i> , ie, a each group of people or services.	network capable of apply	arbitrary application protocols for
\Box d)	A private network that can not be reached if	no valid credentials are pr	rovided for each user.
in the p	host in the private network in picture estable bublic network is determined by the tuple (20 ents is true.		*
	Client		WEB Server
		33	
	<u>Ja</u>	PT Router	
	192.168.1.2/24	P1 Router	80.100.100.2/24
a)	The exterior router interface has the IP addre	ess 200 100 100 1	
	The port corresponding to the host 192.168.		
_	The host socket is (192.168.1.2, 4000).	25 1000.	
	None of the other		

23 de mayo de 2016 1/5

Computer Networks II

Test 2

Escuela Superior de Informática

6.) What is the relationship between the ISN (Initial Sequence on a TCP connection?	quence Number) chosen by the client and the one chosen by	
		a) Both must always be equal.		
		b) The ISN chosen by the server is the chosen by the	e client plus one.	
			sen by the client plus data sent in the first segment; if the	
		d) The ISN chosen by the server has no relation to the		
7.	(1p)	1p) What does the <i>sequence number</i> field (of the TCP header) means?		
		a) It counts messages (from zero) that the server has s		
			om the ISN + 1, from the beginning of the connection.	
		c) It counts the first byte of the segment, counting from		
	Ш	d) It counts the payload byte indicated by the <i>offset</i> , c	counting from the ISN, for the current connection.	
8.	(1p) What does the <i>window size</i> (at the header of a TCP segment) means?			
		a) The number of bytes of data that leads this segmen		
		b) The number of bytes of data carrying the last segment. The remaining buffer space (in bytes), swellable for	•	
		c) The remaining buffer space (in bytes), available ford) The number of bytes that remains in the pending b		
		u) The number of bytes that remains in the pending of	buffer to send to the other peer.	
9.	(1p)	Which of the following TCP features are also present	nt in UDP?	
		a) Connection/Disconnection	c) Multiplexing	
		b) Flow control	☐ d) Lost data retransmission	
10.		When a client tries to establish a TCP connection to a segments SYN. What TCP header field is modified in	a server and it does not receive response, keep trying sending n each sent connection attempt?	
	П	a) The source port number	c) The acknowledgement number	
		b) the sequence number	d) None	
11	(1)	•		
11.	_) What field of the TCP header it is used to establish the gestion avoidance?	the control congestion mechanism known as slow-start and	
		a) Window size	\Box c) Fields sequence number and ACK	
	Ш	b) MSS	d) It use no header fields	
12.	(1p)	The sending window of a TCP process is calculated a	as:	
		a) The maximum between the congestion and reception		
		b) The minimum between congestion and reception w		
		c) Half of the congestion window after the slow start.	t.	
		d) Double of the receive window.		
12	(1n)) How TCP sender mechanism calculates the size of the	ha destination receive window?	
13.	(1p)	a) The sum of the congestion and sending windows.		
	П	b) Half of the congestion window if no selective retra		
	\Box	c) The sender does not consider the receiving window		
		d) It is not calculated, the receiver explicitly notifies i		
14.	(1p)	Who can terminate a TCP connection?		
		a) Only the server if the connection was initiated by it	_	
	Ш	b) Only the client.	d) Any of them.	

23 de mayo de 2016 2/5

Computer Networks II Test 2

Escuela Superior de Informática

15.	(1p) What is NOT a retransmission situation in TCP?	
	a) The segment has reached the destination but it	's corrupt.
	b) The segment has not reached the destination.	
	c) Three duplicated ACKs are received (total: 4)	
	d) The <i>keep alive</i> timer is enabled.	
	, , , , , , , , , , , , , , , , , , ,	
16.		with same ACK sequence number and receive window (2 MMS)
	are received. What is the network state?	
	a) Nothing undesirable.	
	b) Congestion detected, congestion avoidance ph	ase initiated.
	c) Receiver saturation, flow control active.	
	d) Congestion detected, slow-start phase initiated	l.
17	(1n) A host receives TCP segments with sequence nur	mbers 100, 100, 100, 100, 110 and ack 4001, 5001, 6001, 7001,
17.	8001 respectively. And then, it sends another segment	
	a) 4000 bytes	c) 1000 bytes
	b) 8000 bytes	☐ d) 100 bytes
18.	(1p) A client connects to a TCP server. Their ISNs are	3000 and 4000 respectively. After connecting, the server sends
10.	a first data segment:	A server series
	\Box a) seq = 3000 y ack = 4001	\Box c) seq = 3001 y ack = 4001
	b) seq = 4000 y ack = 3001	d) seq = 4001 y ack = 3001
	b) scq = 4000 y ack = 3001	u) seq = 4001 y ack = 3001
19.	•	ce numbers of the last TCP segments for client and server are
	· · · · · · · · · · · · · · · · · · ·	d with ack 4101 and 3101 respectively. The server initiates the
		sequence number and final ack was sent by the server?
	□ a) 3001 4001	<u> </u>
	b) 3002 4002	d) 4102 3102
20.	(1p) A TCP server has requested a disconnection wit	h sequence number 3000 and receives a disconnection request
	with sequence number 4000. But it has not received the	•
	a) The server sends the ack 4001	
	b) The server queries the retransmission of segme	ent 3900.
	c) The server sends a FIN + ack 4001.	
	d) None	
	,	
21.	(1p) A TCP client receives an duplicated ACK 3000.	What next?
	a) It retransmit the segment.	
	b) The server is failing and an ICMP error packet	t is sent.
	c) This time he ignored, but if it get two additions	al ack it will retransmit the segment.
	d) None of the other.	
22.	(1p) In a TCP connection, a retransmission occurs due	e a segment timeout.
	a) The receiving window is reduced to minimum	c) The receiving window is reduced by half.
	b) The congestion window is reduced to minimum	n. d) The congestion window is reduced by half.
23.	(1p) A given TCP segment is known to belong to a pa	rticular connection due to:
- 1	a) The segment identifier field.	
	b) The sequence number is consecutive to the pre	evious one
	_	
	c) The combination of certain fields of datagram	and segment

23 de mayo de 2016 3/5

Computer Networks II Test 2

Escuela Superior de Informática

24.	(1p)	What is the goal of the dynamic routing protocols?
		a) Recalculate the routing tables of the routers as subnet conditions change.
		b) Coordinate routers to avoid congestion.
		c) Generate topology maps for the ISP network management tools.
		d) To get latency, delay and performance measures of the subnet.
25.	(1p)	In the context of dynamic routing. What the expression <i>sink tree</i> means?
		a) The set of optimal routes to a given router from the other routers in the subnet.
		b) The tree used by routers to discard traffic that can not be delivered on time.
		\mathbf{c}) It is the set of metrics that is applied to calculate the route table of a node after the fail of one or more links.
	Ш	d) It does not apply in the context of dynamic routing.
26	(1n)	What is the main feature of <i>vector distance</i> protocols?
20.	(1p)	
		a) It stores and distributes the distance (hop metric) of each router to all others.
		b) It scales perfectly to networks with many thousands of routers.
		c) Each router creates its table considering only the information provided by its neighbors.
	Ш	d) It can route IP packets of any size.
27.	(1p)	What is the main feature of protocols <i>state link</i> protocols?
		a) The only metric that it supports is the hop count.
		b) Each router builds a topology of the entire subnet and calculates optimal routes to all other routes.
		c) It is functionally equivalent to the distance vector protocols.
		d) It can route IP packets of any size.
28.	(1p)	In relation to link state protocols. Which of the following statements is false?
		a) A package including link states is created for each router.
		b) Infinity is defined for each router.
		c) Status packets to each router link are spread
	Ш	d) A shortest-path tree is built for each router.
29	(1n)	What is the cause of the <i>count to infinity</i> effect of <i>distance vector</i> routing protocols?
		a) it is produced by the overflowing of the variable that counts the number of hops.
		b) The routers indirectly use reachability data that provide themselves.
		c) When a RIP router sends a test message it still counts indefinitely after receiving the answer.
	\Box	d) The count to infinity is a routing problem by <i>link-state</i> , not <i>distance vector</i> .
	_	a) The sound to imminish a roading problem by twice state, not dissaurce vector.
30.	(1p)	The distance vector protocols respect to the link state ones
		a) They generate larger messages.
		b) They generate more messages.
		c) They are less likely to create routing loops.
		d) They require more computing power.
31.	(1p)	Check the false statemente regarding the RIP protocol
		a) It is a distance vector routing protocol.
		b) It is an internal gateway protocol.
		c) Version 1 does not support <i>classless addressing</i> .
		d) It is a complex protocol that was never applied on the Internet.
	_	a, 10 to a complete protocol that the never applies on the internet

23 de mayo de 2016 4/5

Computer Networks II Test 2

Escuela Superior de Informática

32.	(1p)	What is the hierarchical routing based on?
		a) Routers with more number of links group other routers with less links.
		b) Routers are grouped according to the number of hosts that offer access.
		c) Regions are defined. Routers only have information to get to the other routers in their region and to each other regions.
	Ш	d) There is a root router, all others will forward their packages but have direct links to their neighbors.
33.	(1p)	What are the OSI layers that OSPF and RIP belong to? (multiple answers possible)
		a) layer 3
	\sqcup	b) application
		c) red
		d) Transportation
34.		In view of the next execution of ping, makes the right choice:
		ng -c1 192.168.0.0 ; 192.168.0.0 (192.168.0.0) 56(84) bytes of data.
		192.168.0.0 ping statistics ckets transmitted, 0 received, 100% packet loss, time 0ms
		a) The command has succeeded but it could not calculate the RTT.
		b) The response reaches after the indicated maximum time.
		c) The command makes no sense.
		d) The command failed because you have not included the network mask.
35.	(1p)	What are the minimum requirements to have a dynamic IP on a host?
		a) It should request to IANA or correspondiente regional agency a global address dynamic address.
		b) You will need to have a DHCP server within the same network. It will provide an IP address once it makes the request.
		c) You will need to have configured the network interface to the host requesting IP dynamically using DHCP.
		d) A DHCP server is required in the network and a client on the host.

5/5 23 de mayo de 2016