



## Conteúdo Prático - PED



Aluno: João Eduardo Pereira Rabelo

Matrícula: 180053299

\_\_\_\_\_

- Módulos da Disciplina
- □-1 Introdução à disciplina
- □-2 Combinacionais 1
- □-3 Combinacionais 2
- ☐-4 Combinacionais 3
- ☐ 5 Combinacionais 4
- ☐ 6 Combinacionais 5
- ☐ 7 Combinacionais 6
- □ 8 Aritméticos 1
- ☐ 9 Aritméticos 2
- □ 10 Sequenciais 1
- ☐ 11 Sequenciais 2
- ☐ 12 Sequenciais 3
- ☐ 13 Sequenciais 4





## **ProtoBoard**



- Barramentos: Parte Superior e Inferior da Protoboard que é responsável pela passagem de energia (polo + para o polo -).
  - Não são interligadas, geralmente, necessitando 2 "jumpers" para serem usados em conjunto, um no positivo de um lado e no positivo de outro e outro no negativo de um lado no negativo do outro.
  - No meio de cada barramento, geralmente são separados nas protoboards, necessitando "jumpers" para ligar um lado ao outro.
- Cl's s\u00e3o geralmente acoplados no v\u00e3o do meio da placa
- A numeração dos slots da protoboard, seguem o seguinte padrão:



Sendo cada coluna e linha separada das do lado oposto, mas entre si interligadas em suas respectivas linhas (Ex: A1, B1, C1, D1 e E1).



# Multímetro



- Medidor de tensão.
  - o Utilizado para medir a tensão (V) correndo pelo sistema.



### Amperímetro

 Apenas para medir corrente (A), NÃO usar com tensão correndo pelo sistema, pois irá queimar a ferramenta.





#### Ohmímetro

 $\circ$  Apenas para medir a resistência ( $\Omega$ ), NÃO deve ser usado com corrente passando no circuito.



### • Teste de Continuidade

 Para testar LED's ou outro circuito, serve para verificar se tem continuidade entre os dois terminais do multímetro.



## Resistor



- Calcular a medida do Resistor
  - o Verificar a tensão da corrente e dos componentes do circuito.
  - Vr = R \* I
    - Vr: Tensão da Corrente Tensão do Circuito.
    - I: Corrente em Miliamperes.
    - R: Resistor
- Leitura do Resistor



o (1ª Faixa + 2ª Faixa) \* 3ª Faixa – Com tolerância da 4º Faixa.

Obs: (Não é somatória (Ex: 1+5=15))



## LED



- Sentido Padrão: + / (ou caso queira inverter a tabela verdade / +)
- Tensão (Máxima):
  - Vermelho, Amarelo e Verde: 2V
  - Azul e Branco: 3V
  - Se a tensão foi maior que 5V é NECESSÁRIO um resistor
- Terminal Positivo -> Chanfro ou a perna mais longa.
- Terminal Negativo -> Circunferência normal ou a perna mais curta.



# Circuitos Integrados



### • DIP

 Os pinos são inseridos em furos que podem ser soldados na trilha do lado oposto da placa



#### • SMT

 Não precisa de furos na placa, os pinos são soldados diretamente na trilha das placas



### Pinagem

o Contagem a partir do entalhe do circuito, no sentido ante horário







# Subfamília TTL e CMOS



- Não se pode misturar circuitos TTL e CMOS devido a diferença de tensão para definir estado "0" e "1".
  - o TTL
    - Alto entre 5V e 2,4V
    - Proibida entre 2,4V e 0,5V
    - Baixo entre 0,5V e 0,3V
  - o CMOS
    - Alto entre 13,5V e 12,5V
    - Proibida entre 12,5V e 2,5V
    - Baixo entre 2,5V e 1,5V



# Portas Lógicas



• Quando tratamos um circuito com portas lógicas, podem ser demonstrados em desenho, conforme acima, ou escrita para utilização da tabela verdade.

$$\circ \quad \mathsf{Ex:} \, S \, = \, a \, + \, \overline{b}$$

- Ou seja, a saída do circuito seria positiva caso exista, uma entrada positiva "a" ou uma entrada não positiva "b".
- Conforme a Tabela Verdade:

| Α | В | S |
|---|---|---|
| ٧ | V | V |
| V | F | V |
| F | V | F |
| F | F | ٧ |