Programming Assignment #2

Geremy Giles

System of Linear Equations

Intersection A Traffic in = X_1 Traffic out = $X_2 + 100$ Traffic in = traffic out $X_1 = X_2 + 100$ $X_1 - X_2 = 100$	Intersection D Traffic in = $X_4 + 150$ Traffic out = X_5 Traffic in = traffic out $X_4 + 150 = X_5$ $X_5 - X_4 = 150$	System $X_1 - X_2 = 100$ $X_3 - X_2 = 50$ $X_3 - X_4 = 120$ $X_5 - X_4 = 150$ $X_5 - X_6 = 80$ $X_1 - X_6 = 100$
Intersection B Traffic in = $X_2 + 50$ Traffic out = X_3 Traffic in = traffic out $X_2 + 50 = X_3$ $50 = X_3 - X_2$ $X_3 - X_2 = 50$	Intersection E Traffic in = X_5 Traffic out = $X_6 + 80$ Traffic in = traffic out $X_5 = X_6 + 80$ $X_5 - X_6 = 80$	Matrix 1 -1 0 0 0 0 100 0 -1 1 0 0 0 50 0 0 1 -1 0 0 120 0 0 0 -1 1 0 150 0 0 0 0 1 -1 80 1 0 0 0 0 -1 100
Intersection C Traffic in = X_3 Traffic out = $X_4 + 120$ Traffic in = traffic out $X_3 = X_4 + 120$ $X_3 - X_4 = 120$	Intersection F Traffic in = $X_6 + 100$ Traffic out = X_1 Traffic in = traffic out $X_6 + 100 = X_1$ $X_1 - X_6 = 100$	

Pseudocode

```
Import numpy
Print linear equations
Matrix = np.matrix([[1, -1, 0, 0, 0, 0, 100],
                     [0, -1, 1, 0, 0, 0, 50],
                     [0, 0, 1, -1, 0, 0, 120],
                     [0, 0, 0, -1, 1, 0, 150],
                     [0, 0, 0, 0, 1, -1, 80],
                     [1, 0, 0, 0, 0, -1, 100]]
Rref_matrix = matrix.rref()
Print rref_matrix
For each row in rref_matrix:
       equation = ""
       For each item in row:
               If item == 1:
                       equation += item
       print(equation)
for each variable in free variables:
       user input = int("Enter a value for x {variable num}"
```

for each row in rref_matrix:

equation = ""

for each item in row: