Advanced Machine Learning

Bogdan Alexe,

bogdan.alexe@fmi.unibuc.ro

University of Bucharest, 2nd semester, 2019-2020

Assignment 1

Deadline: Friday, 17th of April

- 1. **(0.5 points)** Consider $\mathcal{H} = \{h_{\theta_1} : \mathbb{R} \to \{0,1\}, h_{\theta_1}(x) = \mathbf{1}_{[x \ge \theta_1]}(x) = \mathbf{1}_{[\theta_1, +\infty)}(x), \theta_1 \in \mathbb{R} \} \cup \{h_{\theta_2}(x) = \mathbf{1}_{[x < \theta_2]}(x) = \mathbf{1}_{(-\infty, \theta_2)}(x), \theta_2 \in \mathbb{R} \}.$ Compute VCdim(\mathcal{H}).
- 2. (0.75 points) Consider \mathcal{H} to be the class of all centered in origin sphere classifiers in the 3D space. A centered in origin sphere classifier in the 3D space is a classifier h_r that assigns the value 1 to a point if and only if it is inside the sphere with radius r > 0 and center given by the origin O(0,0,0).

Material for assignment 1 (updated on 2nd of April).

Recap - VCdim(\mathcal{H}_{sin})

$$VCdim(\mathcal{H}_{thresholds}) = 1, VCdim(\mathcal{H}_{intervals}) = 2, VCdim(\mathcal{H}_{lines}) = 3, VCdim(\mathcal{H}_{rec}^{2}) = 4$$

Consider $\mathcal{H} = \mathcal{H}_{sin}$ be the set of sin functions:

$$\mathcal{H}_{\sin} = \{ \mathbf{h}_{\theta} : \mathbf{R} \to \{0,1\} | \mathbf{h}_{\theta}(\mathbf{x}) = \left[\sin(\theta \mathbf{x}) \right], \theta \in \mathbf{R} \}, \left[-1 \right] = 0$$

Show that VCdim(\mathcal{H}_{sin}) = ∞ based on the following lemma:

Let $x \in (0, 1)$ and let $0.x_1x_2x_3...$ be the binary representation of x. Then, for any natural number m, provided that there exist $k \ge m$ such that $x_k = 1$, we have:

$$\left[\sin(2^m\pi x)\right] = 1 - x_m$$

$$\mathcal{H}S_0^{n} = \{h_{w,0} : \mathbf{R}^n \to \{-1, 1\}, h_{w,0}(x) = sign\left(\sum_{i=1}^n w_i x_i\right) \mid w \in \mathbf{R}^n\}$$

For n = 2 we have:

$$\mathcal{H}S_0^2 = \{h_{w1,w2} \colon \mathbf{R}^2 \to \{-1, 1\}, h_{w1,w2}(x) = \text{sign}(w_1 x_1 + w_2 x_2) | (w_1, w_2) \in \mathbf{R}^2 \}$$

What is the $VCdim(HS_0^2)$?

Does HS_0^2 shatter a set A of three points?

Difficult to reason geometrically... choose the algebraic proof.

We will show that $VCdim(\mathcal{H}S_0^n) = n$.

Proof: 1st part

We first show that $VCdim(\mathcal{H}S_0^n) \ge n$.

We find a set A consisting of *n* points in \mathbb{R}^n that is shattered by $\mathcal{H}S_0^n$.

Take $A = \{e_1, e_2, ..., e_n\}$ to be the orthonormal basis of \mathbb{R}^n .

$$e_1 = (1, 0, 0, ..., 0); e_2 = (0, 1, 0, ..., 0);; e_n = (0, 0, 0, ..., 1)$$

We want to proof that $\mathcal{H}S_0^n$ shatters A, so that $VCdim(\mathcal{H}S_0^n) \ge n$. This is equivalent to proof that for every $B \subseteq A$, there is a function $h_B \in \mathcal{H}S_0^n$ such that h_B gives label +1 to all elements in B and label -1 to all elements of $A \setminus B$.

Pick B subset of A, B \subseteq {e₁, e₂, ..., e_n}. Choose w = (w₁,w₂,...,w_n) such that:

$$w_i = \begin{cases} 1, & \text{if } e_i \in B \\ -1, & \text{if } e_i \notin B \end{cases}$$

Then, $h_B(e_i) = sign(\langle w, e_i \rangle) = w_i$ will generate the labels +1 for elements in B, -1 for elements not in B

Proof: 2nd part

We now show that $VCdim(\mathcal{H}S_0^n) < n + 1$.

We will prove that given any set $A = \{x_1, x_2, ..., x_{n+1}\}$ of n+1 points in \mathbb{R}^n , A cannot be shattered by $\mathcal{H}S_0^n$.

The points $\{x_1, x_2, ..., x_{n+1}\}$ "live" in \mathbb{R}^n , a vector space with dimension n. So, $\{x_1, x_2, ..., x_{n+1}\}$ are linearly dependent and there exist coefficients $a_1, a_2, ...$ a_{n+1} not all of them 0 such that: $\sum_{i=0}^{n+1} a_i x_i = 0$

Take $P \subseteq \{1, 2, ..., n+1\}$ the set of strictly positive coefficients a_i and $N \subseteq \{1, 2, ..., n+1\}$ the set of negative coefficients of a_i . So we have:

$$\sum_{i \in P} a_i x_i = \sum_{j \in N} |a_j| x_j$$

Take $P \subseteq \{1, 2, ..., n+1\}$ the set of positive coefficients a_i and $N \subseteq \{1, 2, ..., n+1\}$ the set of negative coefficients of a_i . Both P and N cannot be at the same time empty. So we have:

$$\sum_{i \in P} a_i x_i = \sum_{j \in N} |a_j| x_j$$

Assume that A is shattered by $\mathcal{H}S_0^n$ and take $B = \{x_i | i \in P\}$. In particular, there exist h_B such that it realizes the label consisting of +1 for all $x_i \in B$ and -1 for all $x_i \notin B$.

So, we have that $h_B(x_i) = 1$, if $x_i \in B$, meaning that $w_B, x_i \ge 0$ if $x_i \in B$ and $h_B(x_i) = -1$, if $x_i \notin B$, meaning that $w_B, x_i \ge 0$ if $x_i \notin B$

So, we have that
$$h_B\left(\sum_{i\in P} a_i x_i\right) = sign(\left\langle w_B, \sum_{i\in P} a_i x_i\right\rangle) = sign(\sum_{i\in P} a_i \left\langle w_B, x_i\right\rangle)$$

But $a_i > 0$ (because $i \in P$) and also $w_B, x_i > 0$ as $x_i \in B$, so we obtain that:

$$h_{B}\left(\sum_{i\in P}a_{i}x_{i}\right)=sign\left(\left\langle w_{B},\sum_{i\in P}a_{i}x_{i}\right\rangle \right)=sign\left(\sum_{i\in P}a_{i}\left\langle w_{B},x_{i}\right\rangle \right)=1$$

Take $P \subseteq \{1, 2, ..., n+1\}$ the set of positive coefficients a_i and $N \subseteq \{1, 2, ..., n+1\}$ the set of negative coefficients of a_i . Both P and N cannot be at the same time empty. So we have:

$$\sum_{i \in P} a_i x_i = \sum_{j \in N} |a_j| x_j$$

Assume that A is shattered by $\mathcal{H}S_0^n$ and take $B = \{x_i | i \in P\}$. In particular, there exist h_B such that it realizes the label consisting of +1 for all $x_i \in B$ and -1 for all $x_i \notin B$.

So, we have that $h_B(x_i) = 1$, if $x_i \in B$, meaning that $w_B, x_i \ge 0$ if $x_i \in B$ and $h_B(x_i) = -1$, if $x_i \notin B$, meaning that $w_B, x_i \ge 0$ if $x_i \notin B$

On the other hand, we have that
$$h_B\left(\sum_{j\in N}|a_j|x_j\right) = sign\left(\left\langle w_B,\sum_{j\in N}|a_j|x_j\right\rangle\right) = sign\left(\sum_{j\in N}|a_j|\left\langle w_B,x_j\right\rangle\right)$$

But $|a_i| > 0$ and also $< w_B, x_i > < 0$ as $x_i \notin B$, so we obtain that:

$$h_{B}\left(\sum_{j\in N}\left|a_{j}\right|x_{j}\right) = sign\left(\left\langle w_{B},\sum_{j\in N}\left|a_{j}\right|x_{j}\right\rangle\right) = sign\left(\sum_{j\in N}\left|a_{j}\right|\left\langle w_{B},x_{j}\right\rangle\right) = -1$$

Take $P \subseteq \{1, 2, ..., n+1\}$ the set of positive coefficients a_i and $N \subseteq \{1, 2, ..., n+1\}$ the set of negative coefficients of a_i . Both P and N cannot be at the same time empty. So we have:

 $\sum_{i \in P} a_i x_i = \sum_{j \in N} |a_j| x_j$

Assume that A is shattered by $\mathcal{H}S_0^n$ and take $B = \{x_i | i \in P\}$. In particular, there exist h_B such that it realizes the label consisting of +1 for all $x_i \in B$ and -1 for all $x_i \notin B$. So $h_B(x_i) = 1$, if $x_i \in B$ and $h_B(x_i) = 1$, if $x_i \notin B$

$$\sum_{i \in P} a_i x_i = \sum_{i \in N} |a_j| x_j \qquad h_B\left(\sum_{i \in P} a_i x_i\right) = sign\left(\left\langle w_B, \sum_{i \in P} a_i x_i\right\rangle\right) = sign\left(\sum_{i \in P} a_i \left\langle w_B, x_i\right\rangle\right) = 1$$

$$h_{B}\left(\sum_{j\in N}\left|a_{j}\right|x_{j}\right) = sign\left(\left\langle w_{B},\sum_{j\in N}\left|a_{j}\right|x_{j}\right\rangle\right) = sign\left(\sum_{j\in N}\left|a_{j}\right|\left\langle w_{B},x_{j}\right\rangle\right) = -1$$

So, this is a contradiction.

Proof:

*1*st part − show that $VCdim(\mathcal{H}S_0^n) \ge n$

 $A = \{e_1, e_2, ..., e_n\}$, the orthonormal basis of \mathbb{R}^n is shattered by $\mathcal{H}S_0^n$.

 2^{nd} part – show that $VCdim(\mathcal{H}S_0^n) < n+1$

Any set $A = \{x_1, x_2, ..., x_{n+1}\}$ of n+1 points in \mathbb{R}^n cannot be shattered by $\mathcal{H}S_0^n$. Provide an algebraic proof, based on the fact that $\{x_1, x_2, ..., x_{n+1}\}$ are linearly dependent in \mathbb{R}^n .

So,
$$VCdim(\mathcal{H}S_0^n) = n$$

Similarly, it can be shown that $VCdim(\mathcal{HS}^n) = n + 1$

The fundamental theorem of statistical learning

The fundamental theorem of statistical learning

Theorem (The Fundamental Theorem of Statistical Learning).

Let \mathcal{H} be a hypothesis class of functions from a domain \mathcal{X} to $\{0,1\}$ and let the loss function be the 0-1 loss. Then, the following statements are equivalent:

- 1. \mathcal{H} has the uniform convergence property.
- 2. Any ERM rule is a successful agnostic PAC learner for \mathcal{H} .
- 3. \mathcal{H} is agnostic PAC learnable.
- 4. \mathcal{H} is PAC learnable.
- 5. Any ERM rule is a successful PAC learner for \mathcal{H} .
- 6. \mathcal{H} has a finite VC-dimension.

A finite VC- dimension guarantees learnability. Hence, the VC-dimension characterizes PAC learnability.

Proof

- \mathcal{H} has the uniform convergence property.
- 2. Any ERM rule is a successful agnostic PAC learner for H.
- 3. \mathcal{H} is agnostic PAC learnable.
- 4. H is PAC learnable.
- 5. Any ERM rule is a successful PAC learner for H.
- \mathcal{H} has a finite VC-dimension.

Proof:

- $1 \rightarrow 2$ follows from lecture 4: uniform convergence property \rightarrow every sample S is ϵ -representative \rightarrow ERM is a successful agnostic PAC learner
- $2 \rightarrow 3, 3 \rightarrow 4$ (lecture 5), $2 \rightarrow 5$ follow immediately
- $4 \rightarrow 6$ (lecture 5), $5 \rightarrow 6$ follow from the No-Free Lunch theorem
- Need to prove $6 \rightarrow 1$ (the hardest part)

Remember – lecture 3: uniform convergence property

Definition (uniform convergence)

A hypothesis class \mathcal{H} has the *uniform convergence property* wrt a domain \mathcal{Z} , loss function ℓ if:

- there exists a function $m_H^{UC}:(0,1)^2 \to N$
- such that for all $(\varepsilon, \delta) \in (0,1)^2$
- and for any probability distribution \mathcal{D} over \mathcal{Z}

if S is a sample of $m \ge m_H^{UC}(\varepsilon, \delta)$ examples drawn i.i.d. according to \mathcal{D} , then, with probability of at least $1 - \delta$, S is ε -representative.

Definition (ε – representative sample)

A sample S is called ε – representative wrt domain Z, hypothesis class \mathcal{H} , loss function ℓ and distribution \mathcal{D} if: $\forall h \in \mathcal{H}, |L_S(h) - L_{\mathcal{D}}(h)| \leq \epsilon$.

Lemma

Let S be a sample that is $\varepsilon/2$ – representative wrt domain \mathcal{Z} , hypothesis class \mathcal{H} , loss function ℓ and distribution \mathcal{D} . Then any output of $\mathrm{ERM}_{\mathcal{H}}(S)$ i.e any $h_S \in \mathrm{argmin}_h \, \mathrm{L}_S(h)$ satisfies:

$$L_{\mathcal{D}}(A(S)) \le \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon$$

Proof for $6 \rightarrow 1$

We want to prove that finite VC-dimension \rightarrow uniform convergence property

Two steps:

- 1. (Sauer's lemma) If $VCdim(\mathcal{H}) \leq d < \infty$, then even though \mathcal{H} might be infinite, when restricting it to a finite set $C \subseteq \mathcal{X}$, its "effective" size, $|\mathcal{H}_C|$, is only $O(|C|^d)$. That is, the size of \mathcal{H}_C grows polynomially rather than exponentially with |C|.
- 2. we have shown in lecture 4 that finite hypothesis classes enjoy the uniform convergence property. We generalize this result and show that uniform convergence holds whenever the hypothesis class has a "small effective size." By "small effective size" we mean classes for which $|\mathcal{H}_C|$ grows polynomially with |C|.

The Growth function

Definition

Let \mathcal{H} be a hypothesis class. Then the growth function of \mathcal{H} , denoted by τ_H , where $\tau_{\mathcal{H}} \colon N \to N$, is defined as:

$$\tau_H(m) = \max_{C \subseteq X: |C| = m} |H_C|$$

In other words, $\tau_H(m)$ is the maximum number of different functions from a set C of size m to $\{0,1\}$ that can be obtained by restricting \mathcal{H} to C.

Observation: if $VCdim(\mathcal{H}) = d$ then for any $m \le d$ we have $\tau_{\mathcal{H}}(m) = 2^m$. In such cases, \mathcal{H} induces all possible functions from C to $\{0,1\}$.

What happens when m becomes larger than the VC-dimension? Answer given by the Sauer's lemma: the growth function $\tau_{\mathcal{H}}$ increases polynomially rather than exponentially with m.

The Sauer's lemma

Lemma (Sauer – Shelah – Perles)

Let \mathcal{H} be a hypothesis class with $VCdim(\mathcal{H}) \leq d < \infty$. Then, for all m, we have that:

 $\tau_H(m) \leq \sum_{i=0}^d C_m^i$

In particular, if m > d + 1 then $\tau_{\mathcal{H}}(m) \le (em/d)^d = O(m^d)$

Lemma (Sauer – Shelah – Perles)

Let \mathcal{H} be a hypothesis class with $VCdim(\mathcal{H}) \leq d < \infty$. Then, for all m, we have that:

$$\tau_H(m) \le \sum_{i=0}^a C_m^i$$

In particular, if m > d + 1 then $\tau_{\mathcal{H}}(m) \le (em/d)^d = O(m^d)$

Proof

To prove the lemma it suffices to prove the following stronger claim:

For any
$$C = \{c_1, c_2, ..., c_m\}$$
 we have:
 $|\mathcal{H}_C| \le |\{B \subseteq C: \mathcal{H} \text{ shatters B}\}|$, for all \mathcal{H} a hypothesis class

The reason why this claim is sufficient to prove the lemma is that if $VCdim(\mathcal{H}) \le d$ then no set B whose size is larger than d is shattered by \mathcal{H} and therefore:

$$\tau_H(m) = \max_{C \subseteq X: |C| = m} \left| H_C \right| \le \max_{C \subseteq X: |C| = m} \left| \{ B \subseteq C: \left| B \right| \le d \} \right| \le \sum_{i=0}^{d} C_m^i$$

We will employ induction over the size of C

First step: Fix \mathcal{H} and consider |C| = 1.

If $|\mathcal{H}_C| = 1 \le |\{B \subseteq C : \mathcal{H} \text{ shatters B}\}| = 1$ ($\mathcal{H} \text{ shatters the empty set}$).

If $|\mathcal{H}_C| = 2 \le |\{B \subseteq C: \mathcal{H} \text{ shatters } B\}| = 2 \ (\mathcal{H} \text{ shatters the empty set and } C)$

Induction step:

So, $Y_0 = \mathcal{H}_C$

Assume the claim holds for $|C| \le m$ and prove it for |C| = m+1.

Fix \mathcal{H} and consider $C = \{c_1, c_2, \dots, c_m, c_{m+1}\}$ and $C' = \{c_1, c_2, \dots, c_m\}$.

Take $Y_0 = \{g: C' \rightarrow \{0, 1\} \text{ exists } h \in \mathbb{R} \}$	Hsuch
that $h(c) = g(c)$ for all $c \in C$ ' and $h(c_m)$	$_{n+1}) = 0$
$OR h(c_{m+1}) = 1\}$	$\mathbf{Y_0}$
	V

	1			111	IIII±T
	1	1	0	1	0
1	1	1	0	1	1
	0	1	1	1	1
	1	0	0	1	0
	1	0	0	0	1
					•••

We will employ induction over the size of C

First step: Fix \mathcal{H} and consider |C| = 1.

If $|\mathcal{H}_C| = 1 \le |\{B \subseteq C : \mathcal{H} \text{ shatters B}\}| = 1$ ($\mathcal{H} \text{ shatters the empty set}$).

If $|\mathcal{H}_C| = 2 \le |\{B \subseteq C : \mathcal{H} \text{ shatters } B\}| = 2 \ (\mathcal{H} \text{ shatters the empty set and } C)$

Induction step:

Assume the claim holds for $|C| \le m$ and prove it for |C| = m+1.

Fix \mathcal{H} and consider $C = \{c_1, c_2, \dots, c_m, c_{m+1}\}$ and $C' = \{c_1, c_2, \dots, c_m\}$.

Take $Y_0 = \{g: C' \to \{0, 1\} | \text{ exists } h \in \mathcal{H} \text{ such that } h(c) = g(c) \text{ for all } c \in C' \text{ and } h(c_{m+1}) = 0 \text{ OR } h(c_{m+1}) = 1\} = \mathcal{H}_{C'}$

If there exists two different function h_1 and h_2 in \mathcal{H} that agree with g on C' then they will disagree on c_{m+1} : $h_1(c_{m+1}) \neq h_2(c_{m+1})$. They are two different functions in \mathcal{H} but they will be counted only once in Y_0 .

Take $Y_0 = \{g: C' \to \{0, 1\} | \text{ exists } h \in \mathcal{H} \text{ such that } h(c) = g(c) \text{ for all } c \in C' \text{ and } h(c_{m+1}) = 0 \text{ OR } h(c_{m+1}) = 1\} = \mathcal{H}_{C'}$

Take $Y_1 = \{g: C' \to \{0, 1\} | \text{ exists } h_I, h_2 \in \mathcal{H} \text{ such that } h_I(c) = g(c) \text{ for all } c \in C' \text{ and } h_I(c_{m+1}) = 0 \text{ AND } h_2(c) = g(c) \text{ for all } c \in C' \text{ and } h_2(c_{m+1}) = 1\}$

Take $Y_0 = \{g: C' \to \{0, 1\} | \text{ exists } h \in \mathcal{H} \text{ such that } h(c) = g(c) \text{ for all } c \in C' \text{ and } h(c_{m+1}) = 0 \text{ OR } h(c_{m+1}) = 1\} = \mathcal{H}_{C'}$

Take
$$Y_1 = \{g: C' \to \{0, 1\} | \text{ exists } h_1, h_2 \in \mathcal{H} \text{ such that } h_1(c) = g(c) \text{ for all } c \in C' \text{ and } h_1(c_{m+1}) = 0 \text{ AND } h_2(c) = g(c) \text{ for all } c \in C' \text{ and } h_2(c_{m+1}) = 1\}$$

- We have that $Y_1 \subseteq Y_0$
- Y_1 contains only those restriction h_{C} , that come from two different functions h_1 and h_2 from \mathcal{H}
- Y_0 might contain restrictions h_C , that come from a single h from H.
- For simplicity let's assume that C = X, X is the domain of \mathcal{H} .
- We have that $|H| = |Y_0| + |Y_1|$

Take $Y_0 = \{g: C' \to \{0, 1\} | \text{ exists } h \in \mathcal{H} \text{ such that } h(c) = g(c) \text{ for all } c \in C' \text{ and } h(c_{m+1}) = 0 \text{ OR } h(c_{m+1}) = 1\} = \mathcal{H}_{C'}$

Take $Y_1 = \{g: C' \to \{0, 1\} | \text{ exists } h_I, h_2 \in \mathcal{H} \text{ such that } h_I(c) = g(c) \text{ for all } c \in C' \text{ and } h_I(c_{m+1}) = 0 \text{ AND } h_2(c) = g(c) \text{ for all } c \in C' \text{ and } h_2(c_{m+1}) = 1\}$

Now, we will apply our induction hypothesis on Y₀

$$|Y_0| = |\mathcal{H}_{C'}| \leq |\{B \subseteq C' \colon \mathcal{H} \text{ shatters } B\}| = |\{B \subseteq C \colon \mathcal{H} \text{ shatters } B \text{ and } c_{m+1} \notin B\}|$$

Take
$$\mathcal{H}' = \{h_1 \in \mathcal{H} \text{ such that there exists } h_2 \in \mathcal{H} \text{ s. t. for all } c \in \mathbb{C}' \text{ we have } h_1(c) = h_2(c) \text{ but } h_1(c_{m+1}) \neq h_2(c_{m+1})\}$$

Then
$$Y_1 = \mathcal{H}'_{C'}$$
 = set of function on C' with two extensions on c_{m+1}

Use the induction hypothesis here, on Y_1 :

$$|Y_1| = |\mathcal{H'}_{C'}| \le |\{B \subseteq C' : \mathcal{H'} \text{ shatters B}\}| = |\{B \subseteq C : \mathcal{H} \text{ shatters B and } c_{m+1} \in B\}|$$

So, we have that
$$|\mathcal{H}| = |\mathcal{H}_C| \le |\{B \subseteq C : \mathcal{H} \text{ shatters B}\}|$$

$\tau_{\mathcal{H}}$ grows polynomially

Corollary

Let H be a hypothesis class with VCdim(H) = d. Then for all $m \ge d$:

$$\tau_H(m) \le \left(\frac{em}{d}\right)^d = O(m^d)$$

Proof:

From the Sauer lemma we have:

$$\tau_{H}(m) \leq \sum_{i=0}^{d} C_{m}^{i} \leq \sum_{i=0}^{d} \left(C_{m}^{i} \times \left(\frac{m}{d} \right)^{d-i} \right) \leq \sum_{i=0}^{m} \left(C_{m}^{i} \times \left(\frac{m}{d} \right)^{d-i} \right) = \left(\frac{m}{d} \right)^{d} \sum_{i=0}^{m} \left(C_{m}^{i} \times \left(\frac{d}{m} \right)^{i} \right)$$

$$m \geq d$$

$$\tau_{H}(m) \leq \left(\frac{m}{d}\right)^{d} \sum_{i=0}^{m} \left(C_{m}^{i} \times \left(\frac{d}{m}\right)^{i}\right) = \left(\frac{m}{d}\right)^{d} \left(1 + \frac{d}{m}\right)^{m} \leq \left(\frac{m}{d}\right)^{d} \left(e^{\frac{d}{m}}\right)^{m} = \left(\frac{em}{d}\right)^{d}$$
Newton's binomial formula

Proof for $6 \rightarrow 1$

We want to prove that finite VC-dimension \rightarrow *uniform convergence property*

Two steps:

- 1. (Sauer's lemma) If $VCdim(\mathcal{H}) = d < \infty$, then even though \mathcal{H} might be infinite, when restricting it to a finite set $C \subseteq X$, its "effective" size, $|\mathcal{H}_C|$, is only $O(|C|^d)$. That is, the size of \mathcal{H}_C grows polynomially rather than exponentially with |C|.
- 2. we have shown in lecture 4 that finite hypothesis classes enjoy the uniform convergence property. We generalize this result and show that uniform convergence holds whenever the hypothesis class has a "small effective size." By "small effective size" we mean classes for which $|\mathcal{H}_C|$ grows polynomially with |C|.

Uniform converge holds for \mathcal{H} with small effective size

Theorem

Let \mathcal{H} be a class and let $\tau_{\mathcal{H}}$ be its growth function. Then, for every \mathcal{D} and every $\delta \in (0,1)$, with probability of at least $1 - \delta$ over the choice of $S \sim \mathcal{D}^m$ we have:

$$\left| L_D(h) - L_S(h) \right| \le \frac{4 + \sqrt{\log(\tau_H(2m))}}{\delta\sqrt{2m}}$$

Proof:

- in the book, is beyond the scope of this lecture

Proof for $6 \rightarrow 1$

We want to prove that finite VC-dimension \rightarrow *uniform convergence property.*

Combine the last result with Sauer lemma: $\tau_{\mathcal{H}}(m) \le (em/d)^d = O(m^d)$ to obtain: for every \mathcal{D} and every $\delta \in (0,1)$, with probability of at least $1 - \delta$ over the choice of S ~ \mathcal{D}^m we have:

$$\left|L_{D}(h) - L_{S}(h)\right| \leq \frac{4 + \sqrt{\log(\tau_{H}(2m))}}{\delta\sqrt{2m}} \leq \frac{4 + \sqrt{d\log(2em/d)}}{\delta\sqrt{2m}} \leq \frac{2\sqrt{d\log(2em/d)}}{\delta\sqrt{2m}} \leq \frac{2\sqrt{d\log(2em$$

$$|L_D(h) - L_S(h)| \le \frac{1}{\delta} \frac{\sqrt{2d \log(2em/d)}}{\sqrt{m}} < \varepsilon$$

This leads (see the calculation in the book) to:

$$m \ge 4 \frac{2d}{(\delta \varepsilon^2)} \log(\frac{2d}{\delta \varepsilon^2}) + \frac{4d \log(2\varepsilon/d)}{(\delta \varepsilon^2)}$$

Proof for $6 \rightarrow 1$

We want to prove that finite VC-dimension \rightarrow *uniform convergence property*.

for every \mathcal{D} and every $\delta \in (0,1)$, with probability of at least $1 - \delta$ over the choice of S ~ \mathcal{D}^m we have that if:

$$m \ge 4 \frac{2d}{(\delta \varepsilon^2)} \log(\frac{2d}{\delta \varepsilon^2}) + \frac{4d \log(2\varepsilon/d)}{(\delta \varepsilon^2)}$$

then the sample S is ε -representative

$$|L_D(h) - L_S(h)| \le \frac{1}{\delta} \frac{\sqrt{2d \log(2em/d)}}{\sqrt{m}} < \varepsilon$$

So, we have that:
$$m_H^{UC}(\varepsilon, \delta) \le 4 \frac{2d}{(\delta \varepsilon^2)} \log(\frac{2d}{\delta \varepsilon^2}) + \frac{4d \log(2\varepsilon/d)}{(\delta \varepsilon^2)}$$

The derived bound is not the tightest possible, there exist another bound much tighter (see next).

The fundamental theorem of statistical learning – quantitative version

Theorem

Let \mathcal{H} be a hypothesis class of functions from a domain \mathcal{X} to $\{0,1\}$ and let the loss function be the 0–1 loss. Assume that $VCdim(\mathcal{H}) = d < \infty$. Then, there are absolute constants C_1 , C_2 such that:

1. \mathcal{H} has the uniform convergence property with sample complexity:

$$C_1 \frac{d + \log(1/\delta)}{\epsilon^2} \le m_{\mathcal{H}}^{UC}(\epsilon, \delta) \le C_2 \frac{d + \log(1/\delta)}{\epsilon^2}$$

2. \mathcal{H} is agnostic PAC learnable with sample complexity:

$$C_1 \frac{d + \log(1/\delta)}{\epsilon^2} \le m_{\mathcal{H}}(\epsilon, \delta) \le C_2 \frac{d + \log(1/\delta)}{\epsilon^2}$$

3. \mathcal{H} is PAC learnable with sample complexity:

$$C_1 \frac{d + \log(1/\delta)}{\epsilon} \le m_{\mathcal{H}}(\epsilon, \delta) \le C_2 \frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon}$$

The VC dimension determines (along with ε , δ) the samples complexities of learning a class. It gives us a lower and an upper bound.

Intuition for deriving the lower bounds

The PAC case (realizable case)

$$C_1 \frac{d + \log(1/\delta)}{\epsilon} \le m_{\mathcal{H}}(\epsilon, \delta) \le C_2 \frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon}$$

Pick a set $A = \{x_1, x_2, ..., x_d\}$ of size $d = VCdim(\mathcal{H})$ that is shattered by \mathcal{H} . Choose the following (adversarial) probability distribution \mathcal{D} over \mathcal{X} :

$$\mathcal{D}(x_1) = 1-4\epsilon$$
, $\mathcal{D}(x_i) = 4\epsilon/(d-1)$, $i = 2,3,...,d$, $\mathcal{D}(x) = 0$, for all x in $X \setminus A$

By the No Free Lunch theorem as long as a sample S hits $B = \{x_2, ..., x_d\}$ at most (d-1)/2 times, the probability of making an error over B is $\geq 1/4$. This happens because we see less then half of the domain B points. So, our expected error with respect to \mathcal{D} is $4\epsilon/4 = \epsilon$.

If the sample S has size m, then roughly $4m\varepsilon$ points will hit $B = \{x_2, ..., x_d\}$. So, to make less than ε errors we need to have $4m\varepsilon > (d-1)/2$, $m > (d-1)/8\varepsilon$