測度論ゼミ

notation

- ℝ : 実数
- \bullet \mathbb{R}^N : N次元ユークリッド空間
- $I=(a_1,b_1] imes\cdots imes(a_N,b_N]$: \mathbb{R}^n の区間
- ullet $(a_1,b_1) imes\cdots imes(a_N,b_N)$: \mathbb{R}^n の開区間
- $E = \underbrace{I_1}_{ extsf{Cl} 1} + \cdots + \underbrace{I_N}_{ extsf{Cl} N}$: \mathbb{R}^N の区間塊(互いに素なものの和)
- ullet $F_N:\mathbb{R}^N$ の区間塊全体

導入

• 有限加法族

 \downarrow

• 外測度

 \downarrow

• 可測性

 \downarrow

• 可測集合族 $\Leftrightarrow \sigma$ -加法族

測度が**完備**という条件が欲しい

Def(有限加法族)

X : set

空間Xの部分集合族 $F\subset P(\lambda)$ が

(1) $\phi \in F$

- (2) $\mathbb{A} \in F$ ならば $A^c \, (= X A) \in F$
- (3) $A,B\in F$ ならば $\underbrace{A\cup B\in F}_{\cup_n A_n\in F}$ で帰納法より

mesurable.md 2020/6/5

定理(4.1)

Z = X imes Yとして $\mathbb{E} \subset P(X), \mathbb{F} \subset P(Y)$ を有限加法族とする。

この時、K=E imes F ($E\in\mathbb{E},F\in\mathbb{F}$) なる形の集合の有限個の直和として表されるものの全体Aは有限加法族

(4.1) 証明

まず、 $\phi imes\phi=(x,y)|x\in\phi,y\in\phi$ でどちらも満たす元はないので

任意のZに対して, $Z \in \phi \times \phi$ 従って、

「 $Z \in \phi \Leftrightarrow Z \in \phi \times \phi$ 」が真のため $\phi = \phi \times \phi$ (外延性定理のため)

$$K=E imes F$$
 $(E\in \mathbb{E}, F\in \mathbb{F})$ ならば

 $K^c\in\mathbb{A}$ $(K^c=Z-K\in\mathbb{A})$ で、また

$$egin{cases} E^c = X - E \ F^c = Y - F \end{cases}$$

であることから

$$egin{aligned} Z &= \underbrace{(E + E^c)}_X imes \underbrace{(F + F^c)}_Y \ &= (E imes F) + (E^c imes F) + (E imes F^c) + (E^c imes F^c) \end{aligned}$$

だから、 $K^c=Z-K$ より

$$egin{aligned} K^c &= (E imes F)^c \ &= (E^c imes F) + (E imes F^c) + (E^c imes F^c) \in \mathbb{A} \end{aligned}$$

mesurable.md 2020/6/5

また $A=A_1+A_2$ で $(A_1,A_2\in \mathbb{A})$ ならば $A\in \mathbb{A}$

参考

• 「ルベーグ積分入門」: 伊藤清三