论文速读: SwinOCSR - Optical Chemical **Structure Recognition with Swin Transformer and Transformer Decoder**

参考文献: https://link.springer.com/content/pdf/10.1186/s13321-022-00624-5.pdf

★ 一、研究背景与任务定义

ਊ任务定义:

OCSR (Optical Chemical Structure Recognition): 将科学出版物中的化学结构图像(如 JPEG/PNG) 转换为机器可读的化学表示,如 SMILES 或 DeepSMILES。

♣ OCSR 类似于"图像字幕生成任务":

- 图像 → 文本序列(分子描述语言)
- 本质是 图像到序列的翻译任务

▲ 挑战:

- 1. 化学结构图形复杂
- 2. SMILES 表达式较长,容易积累错误
- 3. Token (元素字符) 分布极度不均衡(如: C/H/O 频繁, Br/Cl 稀有)

♀ 技术路线创新点(贡献):

- 1. 使用 Swin Transformer 替代传统 CNN, 提取更全面图像特征
- 2. 采用 Transformer 解码器 生成 DeepSMILES (结构合法性更高)
- 3. 引入 多标签 Focal Loss 处理 token 不均衡问题
- 4. 构建了500万分子图合成数据集(4类结构)

架构概览(SwinOCSR)

模块分为三层:

模块名称	功能描述
Swin Transformer	局部+全局注意力提取图像特征
Transformer Encoder	融合上下文语义
Transformer Decoder	自回归地生成结构语言 DeepSMILES 表达式

模型架构与技术实现

✔ 原理:

Swin Transformer 是一种分层的 Vision Transformer,用**局部窗口 + 平移窗口**提取局部与全局特征,解决 CNN 只能感知局部的局限。

√ (1) Patch 分割与嵌入:

输入图像 $I\in\mathbb{R}^{H imes W imes 3}$,划分为 P imes P 大小的非重叠 patch,形成 token 序列。 每个 patch 映射为向量 $x_i\in\mathbb{R}^{P^2\cdot 3}$,通过线性变换 $W\in\mathbb{R}^{(P^2\cdot 3) imes d}$ 得到嵌入向量:

$$z_i=Wx_i+b$$

输出为 token 序列 $Z=\{z_1,z_2,...,z_N\}$

🧠 (2) Swin Block(见 Fig.3 图示)

每个 Swin Block 包括两个注意力阶段:

- 局部注意力,仅在小窗口中进行
- 对每个窗口中的 tokens:

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}\left(rac{QK^ op}{\sqrt{d_k}}
ight)V$$

• 多头版本为:

$$\operatorname{MultiHead}(Q,K,V) = \operatorname{Concat}(\operatorname{head}_1,...,\operatorname{head}_h)W^O$$

◆ 第二阶段: Shifted Window Multi-head Self-Attention (SW-MSA)

• 对窗口做平移,捕捉跨窗口的长距离依赖

两阶段 attention 的输出通过残差连接和前馈网络:

$$x' = \text{W-MSA}(x), \quad x'' = \text{MLP}(\text{LayerNorm}(x + x'))$$

警 2. Transformer Encoder (见 Fig.4)

输入为 Swin 提取的 patch 特征序列,加上位置编码:

$$S_e = \operatorname{Encoder}(S_b + \operatorname{PosEmbedding})$$

每层 Transformer Encoder 包含:

1. 多头自注意力层:

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}\left(rac{QK^ op}{\sqrt{d}}
ight)V$$

2. 前馈网络 (MLP):

$$\mathrm{MLP}(x) = W_2 \cdot \mathrm{GELU}(W_1 x + b_1) + b_2$$

3. LayerNorm + 残差连接:

$$x' = \text{LayerNorm}(x + \text{Attention}(x)), \quad x'' = \text{LayerNorm}(x' + \text{MLP}(x'))$$

♦ 3. Transformer Decoder (见 Fig.5)

作用是逐步生成 DeepSMILES 字符串。结构与 Encoder 类似,但包含:

- Masked Multi-Head Attention: 防止当前 token 看到未来信息
- Cross-Attention: 与 Encoder 输出交互(融合图像上下文)

解码器中的三重注意力层:

1. Masked Self Attention:

$$\mathrm{Mask}(i,j) = egin{cases} 0, & j \leq i \ -\infty, & j > i \end{cases}$$

注意力权重被遮蔽掉未来位置。

- 2. Encoder-Decoder Attention:
- Query 来自 decoder token, Key 和 Value 来自 encoder 输出。
- 3. MLP 和输出层:

最终输出通过:

$$y_t = \operatorname{softmax}(W_o h_t + b_o)$$

每一步预测一个字符 token, 直到结束符为止。

4. DeepSMILES 表达与 Tokenization

相比传统 SMILES, DeepSMILES 避免使用括号和数字标记环结构,能减小语法出错率。

示例:

• SMILES: C1=CC=CC=C1

• DeepSMILES: C=CC=CC=

整个预测序列是字符级生成的,使用了76个唯一字符,每个字符作为一个token。

Q1.问题背景: Token 不均衡

DeepSMILES 表达中出现的字符(token)分布极度不均衡(典型的长尾分布):

• 高频 token 如:), C, c, =

• 低频 token 如: [Li], #, Cl, Br

II 总 token 数: **234,706,822**

这种情况下使用普通 交叉熵(Cross-Entropy, CE) 会导致:

- 高频 token 的损失主导整个目标函数
- 低频 token 预测错误对总损失贡献小 → 模型"懒得学"低频 token

★原始损失函数: Cross Entropy Loss

传统 CE 定义如下:

$$\mathcal{L}_{ ext{CE}} = -\sum_{i=1}^n y_i \log(p_i)$$

• y_i : 真实标签 (one-hot)

• p_i : 模型预测的 softmax 概率

• n: token 的总类别数 (共 76 个)

□ 问题: 所有 token 权重一致,无法处理频率不均问题。

☑ 2. 解决方案: 多标签 Focal Loss (Multi-label Focal Loss, MFL)

Focal Loss 是为目标检测中解决类不平衡设计的,SwinOCSR 将其改造为适用于字符级多分类的**多标签** 版本。

多标签转换机制

作者将 token 分类任务视为 多标签二分类,即每个类别都输出一个 logit,做独立判断。

- 1. 对每个类别 i,输出一个 logit o_i
- 2. 经 sigmoid 激活得概率:

$$p_i = \sigma(o_i) = rac{1}{1+e^{-o_i}}$$

3. 构建 Focal Loss:

$$\mathcal{L}_{ ext{MFL}} = rac{1}{n} \sum_{i=1}^n -lpha_i (1-p_i)^\gamma \log(p_i)$$

☑ 参数定义:

符号	含义
$lpha_i$	类别 i 的权重(低频 token 给更高权重)
γ	聚焦参数(常用 2)抑制容易分类样本的影响
p_i	模型预测的概率
y_i	真实标签 (0 或 1)
n	类别数(本任务中为 76)

数据构建与训练实验设计

₫1.数据来源与预处理流程

🔍 来源:

- 下载自 PubChem (前 850 万条 SMILES)
- 处理后得到 698 万个唯一 SMILES
- 最终构建了 500 万条用于训练的数据(每类 125 万)

▶ 步骤:

- 1. SMILES → DeepSMILES
 - 使用 RDKit 进行 Aromatic 转换与结构标准化
- 2. 图像渲染:
 - 使用 CDK (Chemistry Development Kit) 生成分子结构图
 - 采用字体调整、角距、下标控制等,贴近真实文献风格
- 3. 图像转为灰度 + 二值图:
 - 二值图复制 3 通道 → 模拟 RGB 输入格式
 - 图片尺寸统一为 224×224

₹ 2. 分子结构的四种类别

构建数据集时,分子被划分为以下四类(每类125万):

类别	环结构类型	是否包含取代基
1	Kekule	×无
2	Aromatic	×无
3	Kekule	▼有
4	Aromatic	☑有

• Kekule:使用单/双键显示环结构,形状不明显

• Aromatic: 使用圆形环表示,视觉上更清晰

• 取代基: 附加的官能团、原子符号如 [Si] 、 [NH] 等,出现在专利数据中较多

★ 目标: 覆盖真实出版物中常见的化学结构图表达方式

/ 3. 训练设置

项目	设置
图像输入	224×224, 3 通道(复制二值图)
Batch Size	256
Optimizer	Adam
初始学习率	$5 imes10^{-4}$
Token嵌入维度	256
学习率调度器	Swin 使用 Cosine Decay, Transformer 使用 Step Decay
Epoch	30
GPU	NVIDIA Tesla V100

🏙 4. 数据集划分

比例为 18:1:1:

训练集: 4,500,000验证集: 250,000

• 测试集: 250,000

■ 5. 多维度实验设计

▼ (A) 分子结构类型影响(Table 5)

类别	准确率表现	分析原因
3, 4	更高	▼取代基在图中显著
2, 4	高于 1, 3	✓ Aromatic 圆环形状更清晰
总体差异	不大	☑ 模型鲁棒性强,对不同结构适应性好

☑ (B) DeepSMILES 长度影响(Fig. 12)

字符长度范围	准确率表现
[1–75]	准确率稳定 ✓
[76–100]	轻微下降(94.76%) ▼

🖈 说明:即使序列很长,模型也能稳定预测,体现 Transformer 解码器的 长序列建模能力。

☑ (C) 真实文献数据测试 (Real-world Test)

- 构建 100 张真实分子图(来源于出版物),手动标注 SMILES
- 模型在真实数据上准确率: 25%

່ \ 说明:

- 模型主要训练于合成图像, 缺少文献图的字体变形、扫描噪声等特征
- 暗示需要后续引入 领域自适应、数据增强或微调机制

Backbone	Accuracy	Tanimoto	BLEU	ROUGE
SwinOCSR	97.36%	99.65%	99.46%	99.64%
ResNet-50	89.17%	-	-	-
EfficientNet-B3	86.70%	-	-	-

🖈 SwinOCSR 在 所有指标 上均优于使用 CNN 的 Image2SMILES、DECIMER 等方法:

- Tanimoto 相似度几乎完美(>99.6%)
- BLEU 和 ROUGE 分别显示文本一致性和覆盖率极高
- 准确率提升明显(比 ResNet-50 高 8.19%,比 EfficientNet-B3 高 10.66%)

🧠 3. 性能关键影响因素回顾

因素	正向影响说明
Swin Transformer	具备更强图像语义建模能力,层次结构支持大分子解析
Transformer 解码器	优于 GRU,长序列建模更稳健
Focal Loss	解决 token 长尾分布,提升稀有字符识别
数据增强策略	多结构覆盖(Kekule/Aromatic + 有/无取代基)提升泛化性

4. 限制与改进方向

△ 真实文献图像准确率仅 25%

说明 SwinOCSR 尚未完全适应真实世界的图像分布差异。

★ 潜在改进方向:

- 引入 领域自适应(Domain Adaptation)
- 合成图与真实图混合训练
- 使用 OCR 噪声模拟、图像风格迁移等方法扩展鲁棒性

☑ 最终结论汇总

论文核心贡献	内容简述
技术创新	首次使用 Swin Transformer + Transformer 解码器用于 OCSR
表达优化	使用 DeepSMILES 替代 SMILES,提高预测合法性
损失优化	多标签 Focal Loss 解决 token 不均衡问题
数据集构建	构建 500 万分子图像合成数据集,含四种结构类型
性能提升	所有评估指标均优于现有方法,准确率达 97.36%,BLEU > 99.4%