

On Skyline Groups

Chengkai Li Naeemul Hassan Gautam Das University of Texas at Arlington Nan Zhang Sundaresan Rajasekaran

George Washington University

Motivation Question-Answer Platforms

Matthieu M.

dasblinkenlight

Expert's Name

Rohit Jain

arshajii

Goal: Find a group of experts who can answer this question

Showing 1 to 10 of 4,654 entries

Previous Next

Motivation Journal/Paper Review

Keywords (7)

Data Exploration

Experimental Evaluation

Faceted Search

Information Discovery

Internal Structure

Semantic Information

User Study

Skills

Goal: Find a group of experts who can review this paper

Motivation Fantasy Games

Goal: Find a group of players for Fantasy Basketball

Problem Definition What is Skyline Group?

NBA Players Score

	Points	Rebounds	Blocks		
P1	3	4	5		
P2	4	2	3		
P3	4	5	3		
P4	/\2	1	2		
P5	4	1	2		

Skyline Players

Skyline Groups

Find a group of 3 players

5 Choose 3 = 10 possible groups

	SUM				MIN		MAX		
	Р	R	В	Р	R	В	Р	R	В
P1, P2, P3	11	11	11	3	2	3	4	5	5
P1, P2, P4	9	7	10	2	1	2	4	4	5
P1, P2, P5	11	7	10	3	1	2	4	4	5
P1, P3, P4	9	10	10	2	1	2	4	5	5
P1, P3, P5	11	10	10	3	1	2	4	5	5
P1, P4, P5	9	6	9	2	1	2	4	4	5
P2, P3, P4	10	8	8	2	1	2	4	5	3
P2, P3, P5	_12	8	8	4	1	2	4	5	3
P2, P4, P5	10	4	7	2	1	2	4	2	3
P3, P4, P5	10	7	7	2	1	2	4	5	3

Problem Definition Why Skyline Group?

NBA Players Score

	Points	Rebounds	Blocks		
P1	3	4	5		
P2	4	2	3		
P3	4	5	3		
P4	2	1	2		
P5	4	1	2		

What's wrong with taking most expert in each field?

Any other group is dominated by a Skyline

	SUM				MIN		MAX		
	Р	R	В	Р	R	В	Р	R	В
P1, P2, P3	11	11	11	3	2	3	4	5	5
P1, P2, P4	9	7	10	2	1	2	4	4	5
P1, P2, P5	11	7	10	3	1	2	4	4	5
P1, P3, P4	9	10	10	2	1	2	4	5	5
P1, P3, P5	11	10	10	3	1	2	4	5	5
P1, P4, P5	9	6	9	2	1	2	4	4	5
P2, P3, P4	10	8	8	2	1	2	4	5	3
P2, P3, P5	12	8	8	4	1	2	4	5	3
P2, P4, P5	10	4	7	2	1	2	4	2	3
P3, P4, P5	10	7	7	2	1	2	4	5	3
		-			-				4

Solution Framework Baseline Method

<u>Input</u>

- n players/tuples
- group size k
- aggregate function (sum/min/max)

Problems

- Exponential group generation. We may not afford to compute or store them.
 - \circ Example: For n = 2000, k = 3.
 - 1331334000 groups
 - 30 GB space [assuming 24B for each group]
 - 15 days time [assuming 1 millisecond for each group]

Solution Framework Advanced Method: WCM

Weak Candidate Generation Property: If G is a k tuple skyline group, then there is at least one (k-1) tuple subset of G such that it is a (k-1) tuple skyline group.

Example:

Does this property sound familiar?

Aprioi Principle: If an itemset is frequent, then **all of its subsets** must also be frequent

Comparison Between Apriori & WCM Property

WCM Algorithm

Input: n tuples, group size k, aggregate function = min/max (not sum)

- 1. Let, i = 1
- 2. Generate 1 tuple Candidate groups, C₁ = all n tuples
- 3. Generate 1 tuple Skyline groups, S₁ = skyline_operation(C₁)
- 4. for i = 2 to k
 - a. Generate i tuple Candidate groups, Ci from Si-1
 - b. Generate i tuple Skyline groups, Si = skyline operation(Ci)
- 5. Return Sk

WCM Algorithm Explained with Example

<u>Input</u>: n tuple {P1, P2, P3, P4, P5}, group size k = 3, aggregate function = min

Question

CrewScout System

http://idir.uta.edu/crewscout

Thank You!