Terminale

Exercices

Document intégralem	ent écrit par Ismaila	a Mbodji.	
IsmailaMbodji pour p ion à apporter? Rendez-vou	lus de ressources et	t d'informations.	ntactez-moi

Table des matières

1	Composition des applications
2	Exercices sur les Limites
3	Exercices: Limites de fonctions composées
4	Exercices sur les limites (TL)
5	Exercices sur les polynômes

1 Composition des applications

Exercice 1. Recopier et compléter les pointillés :

- 1. Soient f(x) = x + 2 et $g(x) = x^2$ deux applications définies sur \mathbb{R} .
 - $-(f \circ g)(3) = \cdots$
 - $-(g \circ f)(3) = \cdots$
 - $-(f\circ g)(x)=\cdots$
- 2. Si $h(x) = (2x+1)^3$ tel que $h = f \circ g$ alors $g(x) = \cdots$ et $f(x) = \cdots$

Exercice 2. Dans chacun des cas suivants, déterminer l'application $g \circ f$.

- 1. f(x) = 3x et g(x) = x + 5
- 2. f(x) = 2x et g(x) = -7x
- 3. $f(x) = 2x^2$ et g(x) = -7x
- 4. f(x) = 2x + 3 et $g(x) = 2x^2 + 5x + 1$
- 5. f(x) = 1 x et $g(x) = \frac{1}{x}$

Exercice 3. Dans chacun des cas suivants, déterminer l'application $g \circ f$.

- 1. f(x) = 3x et $g(x) = \sqrt{x}$
- 2. $f(x) = 2\sqrt{x+1}$ et $g(x) = 5x^2$
- 3. $f(x) = \sqrt{x}$ et $g(x) = 5x^2 + 1$
- 4. f(x) = x + 1 et $g(x) = 2x^2 + 3x + 4$

Exercice 4. Dans chacun des cas suivants , déterminer une expression de $g \circ f$ en fonction de x. (on simplifiera si possible l'expression de $g \circ f$ obtenue.)

- 1. $f(x) = \frac{x+1}{x-1}$ et $g(x) = \sqrt{x}$
- 2. $f(x) = \sqrt{x}$ et $g(x) = \frac{x+1}{x-1}$
- 3. f(x) = 3x + 1 et $g(x) = x^3$
- 4. f(x) = x + 1 et $g(x) = \frac{x+1}{x-1}$

Exercice 5 (Décomposition). Dans chacun des cas suivants, déterminer deux applications f et g telles que l'application h soit la composée de g par f: c'est à dire $h = g \circ f$.

- 1. $h(x) = \sqrt{7x+1}$
- 2. $f(x) = (5x+6)^2$

3.
$$h(x) = (x-2)^2 - 4$$

4.
$$h(x) = \frac{\sqrt{x+1}}{1-2\sqrt{x}}$$

Exercice 6. 1. Soit deux applications f et g définies par : f(x) = 1 - x et $g(x) = \frac{8x - 4}{3x + 3}$.

- (a) Calculer $(f \circ g)(0)$ et $(g \circ f)(2)$.
- (b) Déterminer une expression de $(g \circ f)(x)$.
- 2. On considère l'application h définie par : $h(x) = 2(5x-2)^2$. Déterminer deux applications u et v telles que : $h(x) = (v \circ u)(x)$ pour tout $x \in \mathbb{R}$.

Exercice 7. Pour chaque item, indiquer le résultat exact parmi les trois proposés.

n°	Items	Résultat A	Résultat B	Résultat C
1.	Si $f(x) = -x^2 + 1$ et $g(x) = (x - 1)^2$ Alors la valeur de $g \circ f(-1)$ est	1	0	4
2.	Soit $f(x) = 3x + 4$. Une expression de $f(2x)$ en fonction de x est	6 <i>x</i> + 8	10	6x + 4
3.	L'application définie par $f(x) = (x+3)^4$ est la composée de $u \circ v$ avec :	u(x) = x + 3 et $v(x) = x^4$	$u(x) = x^4$ et $v(x) = x + 3$	u(x) = x et $v(x) = 3 + x^4$

2 Exercices sur les Limites

Exercice 1. Étudier les limites suivantes.

- 1. $\lim_{x \to +\infty} \sin \frac{\pi}{x}$
- $2. \lim_{x \to \infty} x \sin \frac{\pi}{x}$
- $3. \lim_{x \to -\infty} \sqrt{\frac{2x^2}{1-x}}$
- $4. \lim_{x \to +\infty} \left(x \sqrt{x} + \frac{1}{x} \right)^3$
- $5. \lim_{x \to +\infty} x \left(\sqrt{\frac{x}{x+1} 1} \right)$

Exercice 2. Calculer la limite suivante. $\lim_{x\to 0} \frac{\sqrt{x+4}-2}{x}$ En déduire :

$$\lim_{x \to \frac{\pi}{2}} \frac{\sqrt{4 + \cos x} - 2}{\cos x}$$

$$\lim_{x \to \frac{\pi}{2}} \frac{\sqrt{4 + \sin x} - 2}{x}$$

Exercice 3. On considère la fonction f définie sur $[2, +\infty[$ par $f(x) = \frac{3x + \sin x}{x - 1}$ Montrer que, pour tout $x \ge 2$, $|f(x) - 3| \le \frac{4}{x - 1}$. En déduire la limite de f en $+\infty$?.

/

Exercice 4. Soit la fonction f définie par : $f: x \mapsto x^2 \sin\left(\frac{1}{x}\right) + 1 \quad \forall x \in \mathbb{R}^*$

- 1. Montrer que $\forall x \in \mathbb{R}^* \ 1 x^2 \le f(x) \le 1 + x^2$
- 2. En déduire:
 - (a) $\lim_{x\to 0} f(x)$
 - (b) $\lim_{x \to +\infty} \frac{f(x)}{x^3}$
 - (c) $\lim_{x\to 0} \frac{f(x)-1}{x}$.

Exercice 5. Soi f une fonction définie sur $\mathbb{R} \setminus \{-1\}$ telle que : $\lim_{x \to -\infty} f(x) = 0$, $\lim_{x \to +\infty} f(x) = 1$, $\lim_{x \to -1^-} f(x) = +\infty$ et $\lim_{x \to -1^+} f(x) = -\infty$.

- 1. Interpréter graphiquement ces limites.
- 2. En déduire les limites suivantes.

(a)
$$\lim_{x \to +\infty} f(\sqrt{x})$$

(b)
$$\lim_{x \to +\infty} f\left(-1 + \frac{1}{x}\right)$$

(c)
$$\lim_{x \to 0^-} f\left(\frac{1}{x}\right)$$

(d)
$$\lim_{x \to -\infty} \left(\frac{f(x) - 1}{2f(x) + 1} \right)^2$$

Exercice 6. Étudier les limites suivantes.

1.
$$\lim_{x \to 1} \frac{x^{10} - 1}{x - 1}$$

2.
$$\lim_{x \to -1} \frac{x\sqrt{x+2}+1}{x+1}$$

3.
$$\lim_{x \to \frac{\pi}{6}} \frac{2\sin x - 1}{6x - \pi}$$

4.
$$\lim_{x \to 0} \frac{\cos^5 x + \sin 2x - 1}{x}$$

3 Exercices: Limites de fonctions composées

a, b et c désignent soit un réel soit $\pm \infty$. Rappel: $\lim_{x \to a} f(x) = b$ et $\lim_{x \to b} g(x) = c$ alors par composée $\lim_{x \to a} g(x) = c$

Exercice 1. Justifier les limites suivantes.

1.
$$\lim_{x \to 0} \left(\frac{3x - 1}{x^2} \right)^4 = +\infty$$

$$2. \lim_{x \to -\infty} \sqrt{4 + \frac{1}{x}} = 2$$

$$3. \lim_{x \to +\infty} \cos\left(\frac{\pi x - 2}{x - 4}\right) = -1$$

Exercice 2. Etudier les limites suivantes.

$$1. \lim_{x \to +\infty} \sqrt{x^2 - x - 3}$$

2.
$$\lim_{x \to -2^{-}} \sqrt{\frac{1+x}{4-x^2}}$$

3.
$$\lim_{x \to -\infty} \sin \left(\frac{\pi x - 2}{6x - 4} \right)$$

4.
$$\lim_{x \to +\infty} \left(\sqrt{x} - x \right)^5$$

Exercice 3. Une fonction f définie sur $\mathbb{R} \setminus \{-1\}$ tel que : $\lim_{x \to -\infty} f(x) = 0$, $\lim_{x \to +\infty} f(x) = 1$, $\lim_{x \to -1^-} f(x) = +\infty$ et $\lim_{x \to -1^+} f(x) = -\infty$.

- 1. Interpréter graphiquement ces limites.
- 2. Déterminer les limites suivantes.

$$-\lim_{x \to +\infty} f\left(\sqrt{x}\right)$$

$$-\lim_{x \to +\infty} f\left(-1 + \frac{1}{x}\right)$$

$$-\lim_{x \to -\infty} f\left(-1 + \frac{1}{x}\right)$$

$$-\lim_{x \to 0^{-}} f\left(\frac{1}{x}\right)$$

$$-\lim_{x \to +\infty} f\left(\frac{x^{2} + 1}{2x - 1}\right)$$

$$-\lim_{x \to -\infty} f\left(\frac{2 - x^{2}}{2 + x^{2}}\right)$$

Exercice 4. Une fonction f a pour tableau de variations celui donné ci-dessous.

X	$-\infty$			-1			2		$+\infty$
f(x)	0	/	$-\infty$		$+\infty$	/	0	1	1

Donner en utilisant ce tableau les limites suivantes.

- $1. \lim_{x \to +\infty} f(-x+1)$
- $2. \lim_{x \to +\infty} f\left(2 + \frac{2}{x}\right)$
- 3. $\lim_{x \to -1^-} \frac{x-2}{f(x)}$
- 4. $\lim_{x \to -\infty} \frac{f(x) + x}{f(|x|) 1}$

Exercice 5. Soit f une fonction définie et dérivable sur \mathbb{R} tel que f(1) = 0 et f'(1) = -1. \mathscr{C}_f admet une asymptote d'équation y = 3 en $-\infty$ et une asymptote d'équation y = x + 4 en $+\infty$.

1. Calculer les limites suivantes.

$$-\lim_{x \to 0} f\left(\frac{x-1}{x^2}\right)$$

$$-\lim_{x \to +\infty} \frac{f(x)}{x+f(x)}$$

$$-\lim_{x \to +\infty} \frac{1}{f(x)-x+3}$$

- 2. On considère la limite suivante $\lim_{x \to +\infty} xf\left(1 + \frac{1}{x}\right)$.
 - (a) Justifier qu'il y a une présence de forme indéterminée.
 - (b) En posant $X = 1 + \frac{1}{r}$, calculer cette limite.

4 Exercices sur les limites (TL)

Exercice 1. Reproduire et compléter le tableau suivant.

$\lim_{x\to 0} f(x)$	$+\infty$	-5	2
$\lim_{x\to 0}g(x)$	-3	0-	
$\lim_{x\to 0} (f(x) + g(x))$			
$\lim_{x\to 0} f(x) \times g(x)$			
$\lim_{x \to 0} \frac{f(x)}{g(x)}$			0-

Exercice 2. Calculer les limites suivantes en utilisant la somme, le produit ou le quotient de limites :

1.
$$\lim_{x \to -\infty} 2x + 1 + \frac{3}{x - 1}$$

$$2. \quad \lim_{x \to 0^+} \left(\frac{2}{x} + 3\right) \left(x - \frac{1}{x}\right)$$

3.
$$\lim_{x \to -\infty} (-x+1)(3x-2)$$

4.
$$\lim_{x \to +\infty} \frac{\frac{2}{x} + 3}{2 - \frac{1}{x}}$$

Exercice 3. Calculer les limites de la fonction f en $+\infty$ et en $-\infty$ si elles existent.

1.
$$f(x) = -8x^3 + x - 2$$

2.
$$f(x) = -x^2 + x - 2$$

3.
$$f(x) = (2x - 5)(-5x + 1)$$

4.
$$f(x) = -2(3-2x)^3$$

5.
$$f(x) = \sqrt{2x - 3}$$

$$6. \ f(x) = \sqrt{3-x}$$

Exercice 4. Etudier les limites de la fonction f aux bornes de son domaine de définition en précisant les asymptotes éventuelles de la courbe de f.

1.
$$f(x) = \frac{3x-1}{x-6}$$

$$2. \ f(x) = \frac{-8x + 3}{2x - 4}$$

$$3. \ f(x) = 2 + \frac{3}{x+2}$$

4.
$$f(x) = 1 - \frac{6}{1 - x}$$

Exercice 5. Même question qu'à l'exercice précédent.

1.
$$f(x) = \frac{2x^2 - 7}{x^2 - 9}$$

$$2. \ f(x) = \frac{5x}{x^2 - 4}$$

3.
$$f(x) = \frac{3x^2 - 3}{x^2}$$

4.
$$f(x) = 2 + \frac{x+1}{x^2+2}$$

Exercice 6. Pour chacun des cas suivants, montrer que la droite Δ est une asymptote à la courbe de la fonction f puisétudier la positive relative de \mathscr{C} par rapport à Δ .

1.
$$f(x) = 2x + 1 + \frac{2}{x - 3}$$

$$\Delta: y = 2x + 1$$

2.
$$f(x) = -x + 4 - \frac{5}{x - 1}$$
 $\Delta : y = -x + 4$
3. $f(x) = 4 - x - \frac{5x}{x^2 + 2}$ $\Delta : y = 4 - x$

$$\Delta: y = -x + 4$$

3.
$$f(x) = 4 - x - \frac{5x}{x^2 + 2}$$

$$\Delta: y = 4 - x$$

Exercice 7. Déterminer une équation de l'asymptote oblique de la courbe de f dans chacun des cas suivants.

1.
$$f(x) = \frac{x^2 + 3x - 1}{x - 1}$$

2.
$$f(x) = \frac{2x^2 + x + 1}{x + 1}$$

3.
$$f(x) = \frac{x^2 - x + 3}{2x - 4}$$

4.
$$f(x) = \frac{3x^2 + 4x}{x + 3}$$

Exercice 8. Étudier les limites de la fonction f aux bornes de son D_f .

1.
$$f(x) = -x^4 - 3x^2 + 4$$

2.
$$f(x) = \frac{x^2 - 10x + 24}{x^2 - 3x - 4}$$

3.
$$f(x) = \frac{x^2 - 6x - 7}{-x + 1}$$

4.
$$f(x) = \sqrt{8 - 4x}$$

5 Exercices sur les polynômes

Exercice 1. Résoudre dans \mathbb{R} les équations suivantes :

1.
$$-x^2 - 2x + 3 = 0$$

2.
$$x^2 - 2x = 15$$

3.
$$x(x+3) = x+1$$

4.
$$4x^2 - 3x = 0$$

5.
$$(2x-1)(-3x^2+12x-8)=0$$

6.
$$(x^2-2)(x^2+1)=0$$

7.
$$\frac{30}{x} + \frac{18}{x+3} = 7$$

Exercice 2. Résoudre dans \mathbb{R} les inéquations suivantes :

1.
$$x^2 - 13x - 48 \le 0$$

2.
$$-x^2 + 13x + 48 \le 0$$

3.
$$-x^2 + 13x + 48 > 0$$

4.
$$2x^2 + 2\sqrt{2}x + 1 > 0$$

5.
$$x^2 + 2\sqrt{3}x + 2 < 0$$

6.
$$x^2 + x - 2 \ge 1$$

7.
$$(x+1)(-x^2+x+6) > 0$$

8.
$$(1-4x)(x^2+5x+4) > 0$$

$$9. \ \frac{x^2 - 3x - 4}{x - 3} \ge 0$$

10.
$$\frac{x-1}{x+1} > 2x$$

Exercice 3. On considère le polynôme suivant : $P(x) = -2x^3 + 9x^2 - 7x - 6$.

- 1. (a) Montrer que 2 est une racine de P(x).
 - (b) En déduire que P(x) peut s'écrire sous la forme $P(x) = (x-2)(ax^2 + bx + c)$ où a, b et c sont des réels à préciser.
 - (c) Factoriser P(x) en produit de facteurs de polynômes de premier degré.
- 2. On suppose maintenant que : P(x) = (-2x 1)(x 2)(x 3).
 - (a) Résoudre dans \mathbb{R} l'équation P(x) = 0.
 - (b) Résoudre dans \mathbb{R} l'inéquation P(x) < 0.

Exercice 4. On considère le polynôme suivant : $P(x) = 3x^3 + 17x^2 + 9x - 5$.

- 1. Montrer que P(x) est factorisable par x+1 puis l'écrire sous la forme : P(x)=(x+1)Q(x) où Q(x) est un polynôme à préciser.
- 2. Factoriser Q(x).
- 3. En déduire que P(x) = (3x 1)(x + 5)(x + 1).
- 4. Résoudre dans \mathbb{R} l'inéquation $P(x) \leq 0$.
- 5. Résoudre dans \mathbb{R} l'équation P(x) = 0 puis $3(2x-5)^3 + 17(2x-5)^2 + 9(2x-5) 5 = 0$.

Exercice 5. Soit le polynôme $P(x) = 2x^4 + 5x^3 - 5x^2 - 5x + 3$.

- 1. Calculer P(1) et P(-3). Que peut-on en déduire?
- 2. Montrer que : $P(x) = (x-1)(2x^3 + 7x^2 + 2x 3)$.
- 3. On pose $Q(x) = 2x^3 + 7x^2 + 2x 3$.
 - (a) Trouver trois réels a, b et c tels que : $Q(x) = (x+3)(ax^2+bx+c)$.
 - (b) En déduire une factorisation de P(x).
- 4. Étudier dans \mathbb{R} , le signe de P(x).

Exercice 6. On considère le polynôme suivant : $h(x) = 4x^3 + x^2 - 4x - 1$.

- 1. Vérifier que 1 est une racine de h(x).
- 2. En déduire une factorisation de h(x) par la méthode de HORNER.

3. Soit
$$R(x) = \frac{(4x+1)(x+1)(x-1)}{4x^2 - 7x - 2}$$

- (a) Montrer que $(4x+1)(x-2) = 4x^2 7x 2$.
- (b) Simplifier R(x).
- (c) Étudier, suivant les valeurs du réel x, le signe de R(x).

Exercice 7. On considère le polynôme suivant : $P(x) = 3x^4 + 14x^3 - 8x^2 - 14x + 5$.

- 1. Vérifier que 1 et -5 sont des racines de P(x).
- 2. En utilisant la méthode de HORNER, trouver le quotient Q(x) de la division de P(x) par (x-1).
- 3. Puis en utilisant de nouveau la méthode de HORNER, trouver le quotient Q'(x) de la division de Q(x) par (x + 5).

/

- 4. Factoriser Q'(x) puis P(x).
- 5. Résoudre dans \mathbb{R} l'inéquation $P(x) \ge 0$.

6. Soit
$$F(x) = \frac{(3x-1)(x^2-1)(x+5)}{x^2+x-2}$$
.

(a) Montrer que $x^2 + x - 2 = (x - 1)(x + 2)$.

- (b) Simplifier F(x).
- (c) Étudier, suivant les valeurs du réel x, le signe de F(x).

Exercice 8. 1. Soit $P(x) = x^3 + bx^2 + cx + d$ où b, c et d sont des réels. Sachant que P(1) = 4, P(-1) = -16 et P(3) = 0, déterminer les réels b, c et d.

- 2. On pose $P(x) = x^3 6x^2 + 9x$
 - (a) Factoriser P(x).
 - (b) Etudier suivant les valeurs de x, le signe de P(x).
- 3. Une entreprise vend un produit, et le profit réalisé en fonction du nombre de produits vendusx est donné par la fonction de profit suivante : $P(x) = x^3 6x^2 + 9x$ Combien de produits l'entreprise doit-elle produire au moins pour réaliser un bénéfice?