MQNR/RS - 23 / 1173

Fourth Semester B. Tech. (Computer Science and Engineering / Artificial Intelligence and Machine Learning) Examination

DESIGN AND ANALYSIS OF ALGORITHMS

Time: 3 Hours [Max. Marks: 60

Instructions to Candidates :-

- (1) Assume suitable data wherever necessary.
- (2) All questions carry marks as indicated.
- 1. (a) Solve the below recurrence relation using substitution method:

- (b) Show that the following equalities are correct:
 - (i) $35n3 + n2 = \theta(n3)$,

(ii)
$$2n2 + 3n + 6 = \theta(n3)$$
. 5(CO1)

- 2. (a) Find the Maximum sum sub array for the given data sets using divide and conquer method. Explain the complete procedure on given array [13, -3, -25, 20, -3, -16, -23, 18, 20, -7]. Also comment on the complexity of the algorithm.
 - (b) Multiply the given matrices A and B using Strassen's matrix multiplication algorithm:

5(CO2)

MQNR/RS-23 / 1173

Contd.

- 3. (a) Compute the optimal solution for knapsack problem using greedy method $N=3,\ M=20,\ (p1,\ p2,\ p3)=(25,\ 24,\ 15),\ (w1,\ w2,\ w3)=(18,\ 15,\ 10).$ 5(CO2)
 - (b) Explain the general principle of Greedy method and also list the applications of Greedy method. Obtain a set of optimal Huffman codes for the following 6 character given below:

Symbol	Frequency		
a	45		
b	13		
С	12 16		
d			
e	09		
f	05		

5(CO2)

4. (a) Find the solution to the travelling salesman problem for the graph whose adjacency matrix is shown below :

Vertex	1	2	3	4
1	0	10	15	20
2	5	0	9	10
3	6	13	0	12
4	8	8	9	0

5(CO3)

(b) Using all pairs shortest path algorithm find the length of shortest path from all vertices to all other vertices of the given graph.

	1	2	3	4
1	0	9	-4	∞
2	6	0	∞	2
3	∞	5	0	∞
4	∞	∞	1	0

5(CO3)

- 5. (a) Give the solution to the 8 Queen's problems using backtracking. 5(CO3)
 - (b) Implement sum of subset on the following data using backtracking formulation : $W = \{5,\ 10,\ 12,\ 13,\ 15,\ 18\}$ M = 30 5(CO3)
- 6. (a) Compare NP-hard and NP-completeness. How are P and NP problems related ? 6(CO4)
 - (b) Devise an algorithm to find clique cover with the help of suitable example. 4(CO4)

