EXAMEN DE MATEMÁTICA DISCRETA 2

Nombre	C.I	No. de prueba
--------	-----	---------------

Duración: 3:00 horas. Sin material y sin calculadora.

Es necesario mostrar la resolución de los ejercicios, presentar únicamente la respuesta final carece de valor.

Ejercicio 1.

- **A.** Probar que 30 divide a $10^n 10$, $\forall n \in \mathbb{N}$.
- **B.** Hallar el resto de dividir 10^{10^n} entre 31, $\forall n \in \mathbb{N}$.
- C. Hallar el resto de dividir 10^{9999} entre 31, $\forall n \in \mathbb{N}$.

Ejercicio 2.

- **A.** Sea G un grupo con neutro e y $g \in G$ un elemento de orden m.
 - a) Probar que si $a \in \mathbb{Z}$, $q^a = e$ si y sólo si $m \mid a$.
 - b) Probar que si $a, b \in \mathbb{Z}$, $q^a = q^b$ si y sólo si $a \equiv b \pmod{m}$
- **B.** Sea g una raíz primitiva módulo n y x un entero coprimo con n. Probar que para a y b enteros, $x^a \equiv g^b \pmod{n}$ si y sólo si, existe un entero c tal que $ac \equiv b \pmod{\varphi(n)}$.
- C. Sabiendo que $7^{10}\equiv 23\pmod{242}$ y que $7^{55}\equiv 241\pmod{242}$ probar que 7 es raíz primitiva módulo 242.
- **D.** Sabiendo que 7 también es raíz primitiva módulo 41, investigar si existe algún $x \in \mathbb{Z}$ que verifique el siguiente sistema de ecuaciones (en caso de que exista no es necesario hallarlo).

$$\begin{cases} x^3 \equiv 23 \pmod{242} \\ x^{11} \equiv 40 \pmod{41}. \end{cases}$$

Ejercicio 3.

- **A.** Sea G un grupo y H un subgrupo de G. Definimos en G la siguiente relación: si $x, y \in G$, $x \sim y \Leftrightarrow xy^{-1} \in H$. Probar que \sim es una relación de equivalencia en G y que la clase de equivalencia de $g \in G$ es gH, donde $gH = \{gh : h \in H\}$.
- **B.** Sea $G = S_4$ el grupo de permutaciones y sea $H = \{Id, (12)(34), (13)(24), (14)(23)\}$. Tomamos en G la relación de equivalencia de la parte A.
 - a) Probar que si $a, b \in \{1, 2, 3, 4\}, a \neq b$ entonces $(a b)H = \{(a b), (c d), (a c b d), (c a d b)\};$ donde $\{c, d\} = \{1, 2, 3, 4\} \setminus \{a, b\}$
 - b) Hallar todas las clases de equivalencia; es decir, hallar gH para todo $g \in S_4$.
 - c) Asumiendo que H es un subgrupo de S_4 , probar que $H \leq S_4$.
 - d) ¿Existe algún isomorfismo $f: \mathbb{Z}_6 \to S_4/H$? Justificar.