Análisis Tarea 4

Sergio Montoya Ramírez

Contents

Chapter 1	Problema 1	_ Page 2	
1.1	Enunciado	2	
1.2	Solución	2	
Chapter 2	Problema 2	_ Page 4	
2.1	Enunciado	4	
	$\mathrm{I} - 4 \bullet \mathrm{II} - 4 \bullet \mathrm{III} - 4 \bullet \mathrm{IV} - 4$		
2.2	Solución	5	
	$I-5 \bullet II-5 \bullet III-5 \bullet IV-6$		
Chapter 3	Problema 3	_ Page 7	
3.1	Enunciado	7	
3.2	Solución	7	
Chapter 4	Problema 4	_ Page 8	
4.1	Enunciado	8	
4.2	Solución	8	
Chapter 5	Problema 5	_ Page 9	
5.1	Enunciado	9	

5.2 Solución

Problema 1

1.1 Enunciado

Theorem 1.1.1 Teorema del valor fijo de Banach

Sea (X,d) un espacio métrico completo. Decimos que $f:X\to X$ es una contracción si existe $0<\eta<1$ tal que

$$d\left(f\left(x\right),f\left(y\right)\right)\leq\left(1-\eta\right)d\left(x,y\right).$$

Muestre que la sucesión definida por $x_{n+1}=f\left(x_{n}\right),\ x_{0}\in X$ un punto arbitrario, converge a un punto x^{*} y ademas que

$$x^* = f(x^*).$$

esto es, que x^* es un punto fijo de f. El Teorema del Punto Fijo de Banach es una herramienta básica para encontrar soluciones de ecuaciones.

Ayuda: Demuestre que

$$d\left(x_{n+1},x_{n}\right)\leq\left(1-\eta\right)^{n}d\left(x_{1},x_{0}\right).$$

use lo anterior y la desigualdad triangular para estimar

$$d(x_{n+k},x_n)$$
.

1.2 Solución

Siguiendo la Ayuda planteada lo primero que debemos mostrar es

$$d(x_{n+1}, x_n) \le (1 - \eta)^n d(x_1, x_0).$$

para lo cual utilizaremos una inducción.

Caso Base: En este caso necesitamos mostrar que $d(x_2, x_1) \le (1 - n)^n d(x_1, x_0)$. Sin embargo por la definición de x_{n+1} tenemos $x_2 = f(x_1)$ y por lo tanto

$$d(x_2, x_1) = d(f(x_1), f(x_0)).$$

Ademas, dado que f es una contracción entonces tenemos que

$$d(x_2, x_1) = d(f(x_1), f(x_0)) \le (1 - \eta) d(x_1, x_0)$$
$$d(x_2, x_1) \le (1 - \eta) d(x_1, x_0).$$

Hipótesis: Asuma

$$d(x_{n+1}, x_n) \le (1 - \eta)^n d(x_1, x_0).$$

Demostración: Para mostrar esto tomemos:

$$d(x_{n+2}, x_{n+1}) = d(f(x_{n+1}), f(x_n))$$

$$\leq (1 - \eta) d(x_{n+1}, x_n)$$

Ahora bien, por la hipótesis de inducción $d(x_{n+1}, x_n) \le (1-n)^n d(x_1, x_0)$ lo que quiere decir:

$$d(x_{n+2}, x_{n+1}) \le (1 - \eta) (1 - \eta)^n d(x_1, x_0)$$

$$\le (1 - \eta)^{n+1} d(x_1, x_0).$$

Ahora, con esta desigualdad vamos a demostrar que la sucesión $\{x_{n+1}\}$ es de Cauchy. Para esto lo primero es mostrar que la distancia disminuye. En este caso solo hace falta darnos cuenta que $(1-\eta)^{n+1} < (1-\eta)^n$ dado que $0 < \eta < 1$. Por lo tanto

$$d(x_{n+1}, x_n) \le (1 - \eta)^n d(x_1, x_0)$$

$$\le (1 - n)^{n-1} d(x_1, x_0)$$

$$\le \dots$$

$$\le (1 - n) d(x_1, x_0).$$

Ahora tomemos en consideración la desigualdad triangular para definir $d(x_{n+k}, x_n)$ con esto seria:

$$d(x_{n+k}, x_n) \le d(x_{n+1}, x_n) + d(x_{n+2}, x_{n+1}) + \dots + d(x_{n+k}, x_{n+k-1})$$

$$= (1 - \eta)^n d(x_1, x_0) + (1 - \eta)^{n+1} d(x_1, x_0) + \dots + (1 - \eta)^{n+k-1} d(x_1, x_0)$$

$$= (1 - \eta)^n d(x_0, x_1) \left(1 + (1 - \eta) + \dots + (1 - \eta)^{k-1}\right)$$

Tome en consideración que : $\left(1-\eta\right)^m \leq 1 \ \forall m>0$ $\leq \left(1-\eta\right)^n d\left(x_0,x_1\right)k.$

Ahora sea $\epsilon > 0$. Sabemos por el teorema Arquimediano que existe un N tal que para cualquier $\epsilon > 0$ se cumple que $\left(1-\eta\right)^n < \frac{\epsilon}{d(x_0,x_1)k}$ con lo cual mostramos que la distancia tiende a 0 cuando n tiende a infinito. Por lo tanto la sucesión $\{x_n\}$ es una sucesión de Cauchy.

Ahora bien, sabemos que esta sucesión vive en X que es un espacio métrico completo y por lo tanto converge a un limite. Sea x^* el limite de esta sucesión.

Ademas, dado que f es continua por la propia definición de contracción sabemos que

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} x_{n+1}$$

$$f(x^*) = f\left(\lim_{n \to \infty} x_{n+1}\right) = \lim_{n \to \infty} f(x_{n+1}) = \lim_{n \to \infty} x_n = x^*$$

$$f(x^*) = x^*.$$

Problema 2

2.1 Enunciado

En este ejercicio vamos a demostrar que

$$\lim_{n\to\infty}\frac{F_{n+1}}{F_n}=\Phi=\frac{1+\sqrt{5}}{2}.$$

donde F_n es la sucesión de fibonacci definida por

$$F_0 = F_1 = 1, \ F_{n+1} = F_n + F_{n-1} \text{ para } n \ge 2.$$

2.1.1 I

Considere la función

$$f\left(x\right) =1+\frac{1}{x}.$$

Demuestre que $f:\left[\frac{3}{2},2\right]\to\left[\frac{3}{2},2\right]$ es una biyección.

2.1.2 II

Demuestre que f es una contracción. Idea: use El Teorema del Valor Medio.

2.1.3 III

Sea $x_1=2$ y defina la sucesión x_n mediante la recurrencia

$$x_{n+1} = f(x_n) = 1 + \frac{1}{x_n}.$$

Muestre que $\{x_n\}$ converge.

2.1.4 IV

Calcule

$$\lim_{n\to\infty}x_n.$$

2.2 Solución

2.2.1 I

Note:-

Solo vamos a demostrar que la función f(x) es inyectiva en ese intervalo por instrucciones del profesor.

Suponga por contradicción que f no es inyectiva. Por lo tanto, existen $x_1, x_2 \in \left[\frac{3}{2}, 2\right]$ tal que $x_1 \neq x_2$ y $f(x_1) = f(x_2)$. Por lo tanto:

$$f(x_1) = f(x_2)$$

$$1 + \frac{1}{x_1} = 1 + \frac{1}{x_2}$$

$$1 + \frac{1}{x_1} - 1 = 1 + \frac{1}{x_2} - 1$$

$$\frac{1}{x_1} = \frac{1}{x_2}$$

$$\frac{1}{x_1} \cdot (x_1 \cdot x_2) = \frac{1}{x_2} \cdot (x_1 \cdot x_2)$$

$$x_2 = x_1$$

$$\Longrightarrow$$

2.2.2 II

Theorem 2.2.1 Teorema del Valor Medio

Sea f una función continua en el intervalo [a,b]y diferenciable en (a,b). Entonces, existe al menos un punto $c \in (a,b)$ de manera que

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Ahora bien, considerando que por un lado sabemos que esta función es continua en el intervalo planteado y ademas que es diferenciable (dado que es la suma de funciones diferenciable) entonces podemos sacar la derivada de esta función que en este caso es:

$$f'(x) = -\frac{1}{x^2}.$$

ahora bien, dado que esto es una igualdad podemos poner todo en valor absoluto y nos queda

$$\left| f'(c) \right| = \frac{\left| f(b) - f(a) \right|}{\left| b - a \right|}$$
$$\left| f(b) - f(a) \right| = \left| f'(c) \right| \left| b - a \right|.$$

Ahora podemos definir en cada caso esto pero podemos tomar que el valor máximo es $\frac{1}{c^2} < \frac{4}{9}$ con lo cual esto queda como

$$\left| f\left(b\right) -f\left(a\right) \right| \leq \frac{4}{9}\left| b-a\right|.$$

ademas podemos definir $a, b \in [a, b]$

2.2.3 III

Para demostrar esto podemos hacer uso del capitulo 1. Esto pues f es una contracción y tenemos definido un $x_1 = 2$ y ademas de eso sigue la misma forma de este capitulo. Entonces podemos utilizar el teorema del punto fijo de Banach y saber que esta sucesión converge a un punto $x^* \in \left[\frac{3}{2}\right]$

5

2.2.4 IV

Partiendo del punto anterior donde ya demostramos que esta sucesión converge y continuando con lo que sabemos por el capitulo 1. Sabemos que, este limite tiene que cumplir $x^* = f(x^*)$ por lo tanto

$$x^* = 1 + \frac{1}{x^*}$$

$$x^* - 1 = \frac{1}{x^*}$$

$$x^{2^*} - x^* = 1$$

$$x^{2^*} - x^* - 1 = 0$$

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{1 \pm \sqrt{1 + 4}}{2}$$

$$x^* = \frac{1 + \sqrt{5}}{2}$$
 Dado que es lo que pertenece al intervalo.

Problema 3

3.1 Enunciado

Suponga

- 1. f es continua para $x \ge 0$
- 2. f'(x) existe para x > 0
- 3. f(0) = 0
- 4. f' es monotonicamente incrementando

Ponga

$$g(x) = \frac{f(x)}{x} (x > 0).$$

y pruebe que g es monotonicamente incrementando

3.2 Solución

Lo primero es que tenemos que mostrar que g' aumenta por lo tanto nos interesa saber que

$$g'(x) = \frac{xf(x) - f(x)}{x^2}.$$

aumenta monotónicamente. Por lo tanto nos interesa mostrar que x f(x) > f(x).

Para esto utilizaremos que la función f cumple con todos los requerimientos para aplicarle el teorema del valor medio y por tanto

$$f(x) = f(x) - f(0) = f'(c)x$$
.

para cualquier intervalo de [0, x]. Ademas, sabemos por el propio teorema del valor medio que 0 < c < x y por f ser monotonicamente creciente f'(c) < f'(x) y por lo tanto f(x) = f(x) - f(0) = f'(c)x < f'(x)x. Con lo cual completamos ya la demostración.

Problema 4

4.1 Enunciado

Suponga f y g son funciones complejas diferenciables en (0,1), $f(x) \to 0$, $g(x) \to 0$, $f'(x) \to A$, $g'(x) \to B$ con $x \to 0$, donde A y B son números complejos, $B \neq 0$. Pruebe que

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \frac{A}{B}.$$

4.2 Solución

Sean f y g funciones complejas diferenciables en (0,1) con todo lo enunciado previamente. Por lo tanto de ahí podemos deducir que ambas funciones son continuas en [0,) pues f(x) = 0 = g(x) con lo cual podemos utilizar el teorema de L'Hopital para llegar al resultado:

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{f'(x)}{g'(x)}$$
$$= \frac{A}{B}$$
$$B \neq 0$$

Problema 5

5.1 Enunciado

Suponga f es una función real en [a,b], n es un entero positivo y $f^{(n-1)}$ existe para todo $t \in [a,b]$. Sea α,β y P que sean como en el teorema de Taylor. Defina

$$Q(t) = \frac{f(t) - f(\beta)}{t - \beta}.$$

para $t \in [a, b], t \neq \beta$, diferenciados

$$f(t) - f(\beta) = (t - \beta) Q(t).$$

n-1 veces en $t=\alpha$, y derive la siguiente versión del teorema de Valor:

$$f(\beta) = P(\beta) + \frac{Q^{(n-1)}(\alpha)}{(n-1)!} (\beta - \alpha)^{n}.$$

5.2 Solución

Dada la definición de Q(t) esta es una función derivable hasta (n-1) (pues f es derivable esa cantidad de veces) con la posible excepción del punto $t = \beta$ por lo cual podemos hacer inducción fuerte en $t = \alpha$.

Caso Base: En este caso tenemos

$$P(\beta) = \sum_{k=0}^{0} \frac{f^{(k)}(\alpha)}{k!} (\beta - \alpha)^{k} = f(\alpha)$$

$$Q^{0}(\alpha) = Q(\alpha) = \frac{f(\alpha) - f(\beta)}{\alpha - \beta}.$$

Con lo cual:

$$P(\beta) + \frac{Q^{0}(\alpha)}{0!} (\beta - \alpha) = f(\alpha) + \frac{f(\alpha) - f(\beta)}{(\alpha - \beta)} (-1) (\alpha - \beta)$$
$$= f(\alpha) + (-1) (f(\alpha) - f(\beta))$$
$$= f(\beta).$$

Hipotesis: Suponga para todo m < n:

$$f(\beta) = P(\beta) + \frac{Q^{m-1}(\alpha)}{(m-1)!} (\beta - \alpha)^{m}.$$

Demostración: Con esto entonces tenemos:

$$f^{(n-1)} = (n-1) Q^{(n-2)}(t) + (t-\beta) Q^{(n-1)}(t)$$

$$P(\beta) = \sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!} (\beta - \alpha)^k$$

$$Q^{(n-1)}(\alpha) = \frac{f^{(n-1)}(\alpha) - (n-1) Q^{(n-2)}(\alpha)}{\alpha - \beta}.$$

Con esto entonces se sigue:

$$P(\beta) + \frac{Q^{n-1}(\alpha)}{(n-1)!} (\beta - \alpha)^{n} = \sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!} (\beta - \alpha)^{k} + \frac{f^{(n-1)}(\alpha) - (n-1)Q^{(n-2)}(\alpha)}{(\alpha - \beta)(n-1)!} (\beta - \alpha)^{n}$$

$$= \sum_{k=0}^{n-2} \frac{f^{(k)}(\alpha)}{k!} (\beta - \alpha)^{k} + \frac{f^{n-1}(\alpha)}{((n-1)!)} (\beta - \alpha)^{n-1} + \frac{f^{(n-1)}(\alpha) - (n-1)Q^{(n-2)}(\alpha)}{(n-1)!} (-1) (\beta - \alpha)^{n-1}$$

$$= \sum_{k=0}^{n-2} \frac{f^{(k)}(\alpha)}{k!} (\beta - \alpha)^{k} + \frac{f^{n-1}(\alpha)}{((n-1)!)} (\beta - \alpha)^{n-1} + \frac{(-1)(\beta - \alpha)^{n-1}}{(n-1)!} (f^{(n-1)}(\alpha) - (n-1)Q^{(n-2)}(\alpha))$$

$$= \sum_{k=0}^{n-2} \frac{f^{(k)}(\alpha)}{k!} (\beta - \alpha)^{k} + \frac{Q^{n-2}(\alpha)}{(n-1)!} (\beta - \alpha)^{n-1} + \frac{f^{n-1}(\alpha)}{((n-1)!)} (\beta - \alpha)^{n-1} - \frac{f^{n-1}(\alpha)}{((n-1)!)} (\beta - \alpha)^{n-1}$$

$$= \sum_{k=0}^{n-2} \frac{f^{(k)}(\alpha)}{k!} (\beta - \alpha)^{k} + \frac{Q^{n-2}(\alpha)}{(n-1)!} (\beta - \alpha)^{n-1} + \frac{f^{n-1}(\alpha)}{((n-1)!)} (\beta - \alpha)^{n-1} - \frac{f^{n-1}(\alpha)}{((n-1)!)} (\beta - \alpha)^{n-1}$$

Con esto podemos utilizar la hipótesis inductiva y llegamos al resultado buscado.