Формат

В контрольной работе будет 6 задач. Задачи имеют равный вес. Продолжительность работы 120 минут. Пользоваться справочными материалами нельзя. В ноябре 2024 в контрольную работу могут войти любые темы пройденные до зачётной недели, за исключением: условной функции плотности и преобразование совместной функции плотности с помощью якобиана.

Демо «Тыква»

- 1. Погода завтра может быть ясной с вероятностью 0.3 и пасмурной с вероятностью 0.7. Вне зависимости от того, какая будет погода, Маша даёт верный прогноз с вероятностью 0.8. Вовочка, не разбираясь в погоде, делает свой прогноз по принципу: с вероятностью 0.9 копирует Машин прогноз, и с вероятностью 0.1 меняет его на противоположный.
 - а) Какова вероятность того, что Маша спрогнозирует ясный день?
 - б) Какова вероятность того, что Машин и Вовочкин прогнозы совпадут?
 - в) Какова вероятность того, что день будет ясный, если Маша спрогнозировала ясный?
 - г) Какова вероятность того, что день будет ясный, если Вовочка спрогнозировал ясный?
- 2. В корзине лежат 10 не отличимых на ощупь яблок: 2 красных и 8 зелёных. Я наугад равновероятно на ощупь достаю одно из яблок. Красное я сразу съедаю, а зелёное возвращаю обратно в корзину. Затем я снова и снова достаю яблоки по данным правилам до тех пор, пока не съем оба красных. Найдите математическое ожидание и дисперсию количества извлечений яблок.
- 3. Илон Маск подбрасывает монетку 30 раз. За каждые две решки подряд он получает выигрыш 100 рублей.

Найдите математическое ожидание и дисперсию суммарного выигрыша Илона.

- 4. Случайная величина X имеет функцию плотности f(x) = x/2 на отрезке [0;2].
 - а) Найдите $\mathbb{E}(X)$, $\mathbb{P}(X < 1)$ и $\mathbb{E}(X \mid X < 1)$.
 - б) Найдите функцию производящую моменты m(t) для величины X.
 - в) Найдите фукнцию распределения величины Y = 2X.
- 5. Величина X это число очков, которое выпадет на правильном игральном кубике. При прогнозировании X аналитик Василий равновероятно ошибается на ± 0.5 вне зависимости от X. Обозначим прогноз Василия буквой Y.
 - а) Найдите $\mathbb{C}ov(X,Y)$.
 - б) Найдите энтропии $\mathbb{H}(X)$, $\mathbb{H}(Y)$ и условные энтропии $\mathbb{H}(Y\mid X)$ и $\mathbb{H}(X\mid Y)$.
- 6. Пара величин (X,Y) имеет совместную функцию плотности $f(x,y)=1.5x^2+y$ на квадрате $[0;1]\times[0;1].$
 - а) Найдите $\mathbb{P}(X>Y), \mathbb{E}(X), \mathbb{V}\mathrm{ar}(Y).$
 - б) Найдите совместную функцию распределения F(x,y).
 - в) Найдите функцию плотности $f_X(x)$ величины X.

«Тыква» решение

- 1. a) $\mathbb{P}(\text{Маша спрогнозирует ясно}) = 0.3 \cdot 0.8 + 0.7 \cdot 0.2 = 0.38.$
 - б) $\mathbb{P}(\text{прогнозы совпадут}) = 0.9.$
 - в) $\mathbb{P}(\text{ясно} \mid \text{Маша спрогнозировала ясно}) = 0.3 \cdot 0.8 / 0.38 \approx 0.63.$
 - г) $\mathbb{P}(\text{ясно} \mid \text{Вовочка спрогнозировал ясно}) = 111/202.$

2.

3. Пусть величина X_i — индикатор события «i-я и (i+1)-я монетки выпали решкой». Тогда $X_i \sim$ Вегn(1/4), $\mathbb{E}(X_i)=1/4$, \mathbb{V} ar($X_i)=3/16$. Заметим, что $X=X_1+X_2+\ldots+X_{29}$ — количество пар решек подряд. Для количества выплат получаем $\mathbb{E}(X)=29/4$, \mathbb{V} ar($X_i)=29\cdot 3/16+\ldots$

Для суммы выплат Y = 100X, $\mathbb{E}(Y) = 725$, $\mathbb{V}ar(Y) = ...$

- 4. a) $\mathbb{E}(X) = \int_0^2 x^2/2 \, dx = 4/3$, $\mathbb{P}(X < 1) = \int_0^1 x/2 \, dx = 1/4$, $\mathbb{E}(X \mid X < 1) = \int_0^1 x^2/2 \, dx / \mathbb{P}(X < 1) = 2/3$.
 - б) $m(t)=\mathbb{E}(e^{tX})=\int_0^2 e^{tx}x/2\,dx= egin{cases} (2te^{2t}-e^{2t}+1)/2t^2,\ \text{если}\ t\neq 0 \ 1,\ \text{если}\ t=0 \end{cases}$.
 - в) $F_Y(y)=\mathbb{P}(Y< y)=\mathbb{P}(X< y/2)= egin{cases} 0,\ \text{если}\ y<0,\ y^2/16,\ \text{если}\ y\in[0;4],\ 1,\ \text{если}\ y>4. \end{cases}$

Демо «Летучая мышь»

- 1. В колоде 53 карты: один джокер, которого можно засчитать за любую карту, и 13 достоинств от двойки до туза по 4 масти. Игрок случайным образом получает 5 карт из колоды.
 - а) Какова вероятность того, что полученную комбинацию можно интепретировать как фуллхаус (три карты разных мастей одного достоинства и ещё две карты разных мастей другого достоинства)?
 - б) Какова вероятность того, что полученную комбинацию можно интепретировать как стритфлэш (пять идущих подряд карт одной масти)?
- 2. На побережье одна за одной набегают волны. Высота каждой волны равномерная на [0;1] случайная величина. Высоты волн независимы. Пираты называют волну «большой», если она больше предыдущей и больше следующей. Пираты называют волну «рекордной», если она больше всех предыдущих волн от начала наблюдения. Обозначим события $B_i = \{i \mathbf{g}\}$ волна была большой и $R_i = \{i \mathbf{g}\}$ волна была рекордной.
 - а) Найдите $\mathbb{P}(B_1 \mid B_2)$, $\mathbb{P}(B_1 \mid B_3)$.
 - б) Найдите $\mathbb{P}(R_{2024} \mid R_{2025})$, $\mathbb{P}(R_{2024} \mid B_{2024})$.
 - в) Укажите любую функцию a(n) такую, что $a(n) = O(\mathbb{E}(X_n))$, где X_n количество рекордных волн среди n волн.

- 3. Глеб Жеглов каждый день ловит одного преступника. Однако с вероятностью 0.05 вместо одного пойманного на преступный путь встают w новых граждан. Изначально в городе живёт n преступников. Сколько дней в среднем пройдёт до полного искоренения преступности в городе?
 - а) Решите задачу при n = 1 и w = 1.
 - б) Решите задачу при произвольных n и w.
- 4. На единичной окружности с центром в начале координат (не внутри!) в случайные точки приползли три муравья. Три точки независимы и равномерно распределены по окружности. Два муравья могут общаться друг с другом, если угол между ними меньше прямого.
 - а) Какова вероятность того, что все три муравья смогут не перемещаясь общаться друг с другом (возможно через посредника)?
 - б) Какова вероятность того, что все три муравья смогут не перемещаясь общаться друг с другом через посредника, если угол между муравьём один и муравьём два больше прямого?
 - в) Найдите функцию плотности координат первого муравья.
- 5. Величины X_n независимы и равны (+1) с вероятностью 1/2n, (-1) с вероятностью 1/2n, 0 с вероятностью 1-1/n. Определим $Y_n = \sum_{i=1}^n \sqrt{i} X_i/n$.

Оцените вероятность $\mathbb{P}(|Y_n| \geq 1)$ с помощью неравенства Чебышёва.

- 6. Пара величин (X,Y) имеет совместную функцию плотности f(x,y) = x + by на квадрате $[0;1] \times [0;1]$.
 - а) Найдите значение параметра b.
 - б) Найдите функцию плотности величины X и энтропию $\mathbb{H}(X)$.
 - в) Найдите корреляцию $\mathbb{C}\mathrm{orr}(X,Y)$.