

Ultra Low Power sub 1GHz Multichannels Radio Transceiver

The **RC-S2LP-868** module is based on STMicroelectronics S2-LP transceiver. This device is a high performance ultra low power RF transceiver designed for RF wireless application in the sub 1GHz band.

Operative Frequency bands: 868MHz.

The module is designed for maximum performance in a minimal space, with 4 programmable I/O pins.

Programmable from external microcontroller via SPI interface. Ready for use SMD mounting (15x 22mm) - Metal shield.

For more information and details, please refer to the S2-LP datasheet (www.st.com).

Module Information:

RC-S2LP-868 Standard Version (UFL Connector)

RC-S2LP-868-HA — Helica Antenna Version

Sub-1GHz technology is becoming one of the chief driving forces behind the **Internet of Things** (**lot**), in particular this type of module is ideal for this applications basically for the following reasons:

Ultra low power consumption, the consumption of this device is 7mA when receiving and 20mA when transmitting at +14dBm (11mA at +10dBm) in sleep mode the consumption is 0.7μA.

Long range operations, the sensitivity parameter is -109dBm at data rates of 38.4 kbps and down to -128dBm when the data rate is 0.3kbps.

Interference from other wireless communications can be overcome with 90dB of blocking. The RF output power levels can reach up to +16dBm.

All this ensure a robust signaling for long range communications.

Applications:

- Low-Power Wireless Systems
- Home and Building Automation
- Smart Grid and Automatic Meter Reading
- Wireless Sensor Network
- 6LoWPAN systems

Features

- Ultra Low consumption technology
- Easy to Use
- Small Dimension SMD mounting
- CE CERTIFIED

Techical Characteristics					
Parameter	Symbol	Min.	Тур.	Max.	Units
Supply Voltage	V _{cc}	1.8	3.00	3.6	VDC
Supply Current RX Mode	I _{CRX}		7.20		mA
Supply Current TX Mode +10dBm	I _{CTX1}		11.00		mA
Supply Current TX Mode +16dBm	I _{CTX2}		20.00		mA
Supply Current Standby Mode	I _{CTXAV}		0.50		μA
Supply Current Shut Down Mode	I _{CTXAV1}		2.50		nA
Operative Frequency	F		868.0		MHz
RF Power Output 50ohm(*)	P _{oo}	-30.0		+15.5	dBm
RF Sensibility 38.4 kbps 2GFSK	S _d		-109		dBm
RF Sensibility 0.3 kbps 2GFSK	S _{cc}		-128		dBm
Operative Temperature	T ₁	-30.0		+75.0	°C

(*) It's possible to reach the max value if the device (S2LP) is programmed in Boost Mode (see the STMicroelectronics S2LP datasheet).

Block Diagram

Reference Schematics

Pin out device

Pin Description	ns		
Pin Number	Name	I/O	Description
13,14	VCC	_	Supply Voltage
9,11,12,15,16 17,18,19,21	GND	_	Ground
01	SDO	0	SPI slave data output
02	SDI	ı	SPI slave data input
03	SCLK	I	SPI slave clock input
04	CSn	1	SPI chip select
05	GPIO-0	I/O	General purpose I/O may be configured throught the SPI registers to perform various functions.
06	GPIO-1	I/O	General purpose I/O may be configured throught the SPI registers to perform various functions.
07	GPIO-2	I/O	General purpose I/O may be configured throught the SPI registers to perform various functions.
08	GPIO-3	I/O	General purpose I/O may be configured throught the SPI registers to perform various functions.
10	SDN	I	Shutdown input pin. SDN should be = 0 in all modes, except in shtdown mode.
20	ANT		Connect to an external Antenna

RC-S2LP-868

Mechanical dimensions

868MHz version with Helical Antenna

Sub-1 GHz transceiver development kit based on RC-S2LP-868

To make immediate usable this module with STMicroelectronics development system, has been realized the following board adapter (see picture below).

The main board to use is the NUCLEO-L152RE development board, equipped with a low power microcontroller STM32L to control the S2-LP and the ST-LINK/V2-1 debugger and programmer for firmware updating.

The RC-S2LP-868-EK is equipped with Antenna (with SMA connector) and UFL-SMA cable.

RC-S2LP - 868 - EK

NUCLEO L152RE

Recommended Reflow Profile for Lead Free Solder

REEL DIMENSIONS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width	15.5mm	± 0.10mm
В0	Dimension designed to accommodate the component length	23.0mm	± 0.10mm
K0	Dimension designed to accommodate the component thickness	3.5mm	± 0.10mm
W	Overall width of the carrier tape	44.0mm	± 0.30mm
Р	Pitch between successive cavity centers	20.0mm	± 0.10mm