

Прогнозирование продаж товаров категории FMCG на основе ежедневных данных с помощью методов машинного обучения

Выполнила DS-16 В.И. Вербицкая Научный руководитель E.A. Паточенко

Основные положения

Цель исследования: Разработать надежную модель, предсказывающую продажи товаров, учитывающую сезонные колебания, наличие товаров на складе, цены и промоакции. Модель должна демонстрировать хорошую обобщающую способность как во времени, так и по категориям.

Предмет исследования: Продажи товаров категории FMCG в регионах Польши

Подход:

- Разведывательный анализ (EDA)
- Предиктивный анализ
- Предложения по дальнейшему развитию исследования

Результаты исследования могут быть полезны при планировании продаж, управлении запасами и организации маркетинговый акций

2025

Данные

Источник данных: Kaggle - FMCG Daily Sales Data 2022-2024

Набор синтетических данных о ежедневных продажах товаров повседневного спроса (FMCG)

Размер датасета: 190 757 строк х 14 колонок

Временной интервал: с 21.01.2022 по 31.12.2024

Целевой показатель: units_sold (int)

Нет пропущенных значений

Нет повторяющихся строк

Есть отрицательные значения: stock_available, delivered_qty, units_sold

Поромонно

23 августа

2025

4

Переменная	Описание
date	дата продажи
sku	идентификатор товара
brand	бренд товара
segment	сегмент товара
category	категория товара
channel	канал сбыта
region	регион продажи
pack_type	тип упаковки
price_unit	цена ед. товара
promotion_flag	флаг промоакции
delivery_days	доставка, дн.
stock_available	доступный запас, ед.
delivered_qty	доставлено, ед.
units_sold	продано, ед

```
RangeIndex: 190757 entries, 0 to 190756
Data columns (total 14 columns):
    Column
                     Non-Null Count
                                     Dtype
                     190757 non-null object
    date
    sku
                     190757 non-null
                                     object
    brand
                     190757 non-null
                                     object
    segment
                     190757 non-null
                                     object
    category
                                     object
                     190757 non-null
    channel
                     190757 non-null
                                     object
    region
                     190757 non-null
                                     object
    pack type
                                     object
                     190757 non-null
    price unit
                     190757 non-null
                                     float64
    promotion flag
                     190757 non-null
                                     int64
    delivery days
                     190757 non-null int64
    stock available
                     190757 non-null
                                     int64
    delivered qty
                     190757 non-null
                                     int64
    units sold
                     190757 non-null int64
dtypes: float64(1), int64(5), object(8)
memory usage: 20.4+ MB
(190757, 14)
```

<class 'pandas.core.frame.DataFrame'>

Необходимо перевести data из строкового типа в datetime

	date	price_unit	promotion_flag	delivery_days	stock_available	delivered_qty	units_sold
count	190757	190757.000000	190757.000000	190757.000000	190757.000000	190757.000000	190757.000000
mean	2023-10-28 04:11:33.514785536	5.251979	0.149200	3.004860	157.697652	179.333655	19.919709
min	2022-01-21 00:00:00	1.500000	0.000000	1.000000	-12.000000	-11.000000	-25.000000
25%	2023-04-16 00:00:00	3.380000	0.000000	2.000000	124.000000	152.000000	12.000000
50%	2023-11-12 00:00:00	5.250000	0.000000	3.000000	155.000000	179.000000	18.000000
75 %	2024-06-07 00:00:00	7.130000	0.000000	4.000000	192.000000	206.000000	25.000000
max	2024-12-31 00:00:00	9.000000	1.000000	5.000000	405.000000	366.000000	139.000000
std	NaN	2.166705	0.356287	1.414626	52.736104	40.037475	11.770077

	sku	brand	segment	category	channel	region	pack_type
count	190757	190757	190757	190757	190757	190757	190757
unique	30	14	13	5	3	3	3
top	MI-006	SnBrand2	Yogurt-Seg1	Yogurt	Retail	PL-North	Carton
freq	8221	26775	26851	72707	63688	63645	63671

23 августа

	<u>а</u>	TA .		
Признак	Корреляция	Доменная значимость (+/-)	Визуальный тренд	Оставить?
price_unit	~ 0.0	+	?	? ?
promotion_fl ag	0.50	+	нет	?
delivery_day s	0.01	+	нет	? ?
stock_availa ble	0.58	+	положит.	✓ Да
delivered_qt y	0.39	+	положит.	✓ Да

Daily Transaction Volume (Smoothed) — SKU: MI-006

Daily Events - SKU: MI-006

Новые переменные

- 1. Преобразование формата data из строкового типа в datetime
- 2. Преобразование категориальных переменных 'sku', 'segment', 'category'
- Создание новых переменных «календарь»: 'day', 'month', 'year', 'is_start_of_month', 'is_end_of_month', 'day_of_week', 'is_weekend', 'week_of_month'
- 4. Кодирование запаздываний: лаг целевой переменной lag_1, lag_2, lag_3, lag_7, lag_14, lag_28, lag_1, lag_2, lag_3, lag_7, lag_14, lag_28 лаг целевой переменной, 'momentum_7_1', 'momentum_14_7' коэффициент запаздывания, 'price_lag_1', 'promo_lag_1', 'promo_effect' = 'promotion_flag'* 'lag_1', 'delivery_lag_7', 'stock_lag_1', 'category_rolling_mean_7', 'category_rolling_std_7', 'price_rolling_mean_7', 'promo_rolling_7', 'stockout_flag', 'rolling_stockouts_7', 'time_since_promo', 'time_since_delivery'
- 5. Сезонность: 'month_sin', 'month_cos', 'dow_sin', 'dow_cos'
- 6. Перекрестный эффект: 'promo_dow' = 'promotion_flag'* 'day_of_week'; 'price_x_stock' = 'price_unit'* 'stock available'

Модели

- Наивный прогноз
- MXGBoost / LightGBM
- Random Forest
- LSTM Sequence model

Наивный прогноз

Модель временного ряда, в которой его текущее значение равно предыдущему наблюдаемому значению этого ряда. «Наивная» модель — самый примитивный метод прогнозирования.

Описывается выражением:

y(t+1)=y(t),

где y(t) — последнее наблюдаемое значение, y(t+1) — прогнозируемое значение.

baseline_df1 = df1.dropna(subset=['lag_1', 'units_sold']).copy()
baseline_df1['pred_baseline'] = baseline_df1['lag_1']

Baseline Model (Naive Forecast):

MAE: 10.86 RMSE: 15.24

R²: -0.674

Отрицательный R² говорит о том, что выбранная модель не подходит для данных. Она не может уловить закономерности и предсказывает значения хуже, чем просто использование среднего значения целевой переменной. Поэтому применю для предсказания более сложную модель.

LightGBM была описана Голинь К., и соавт. в статье 2017 года под названием «LightGBM: A Highly Efficient Gradient Boosting Decision Tree».

LightGBM

Столбцы, которые не будут использованы в качестве признаков для модели:

exclude_cols = ['date', 'sku', 'brand', 'segment', 'channel', 'region', 'pack_type', 'delivered_qty', 'units_sold', 'category']

Столбцы, которые будут использованы в качестве признаков для модели:

features = [col for col in df1.columns if col not in exclude_cols and not np.issubdtype(df1[col].dtype, np.datetime64)]

Из них являются категориальными:

categorical_features = ['sku_cat', 'segment_cat', 'category_cat','day_of_week', 'month', 'is_weekend', 'promotion_flag', 'is_start_of_month', 'is_end_of_month']

Целевая переменная:

target = 'units_sold'

LightGBM

```
def train_and_evaluate_lgbm(X_train, X_test, y_train, y_test):
    model = lgb.LGBMRegressor(n_estimators=100, learning_rate=0.05, max_depth=5, random_state=42,
    verbose=-1)
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)
```

LightGBM Regressor Results:

MAPE: 0.22

SMAPE: 0.23

MAE: 3.54

RMSE: 5.00

R²: 0.774

• LightGBM дополненная лагами и скользящими переменными:

LightGBM Regressor Results:

MAPE: 0.22

SMAPE: 0.23

MAE: 3.57

RMSE: 5.03

R²: 0.771

• Улучшения метрик не произошло

LightGBM Extended Log-Transformed Target:

```
def train_lgbm_log_target(X_train, X_test, y_train,
y_test):
    y_train_log = np.log1p(y_train)
    y_test_log = np.log1p(y_test)
    model = LGBMRegressor(random_state=42)
    model.fit(X_train, y_train_log)
    y_pred_log = model.predict(X_test)
    y_pred = np.expm1(y_pred_log)
```

LightGBM with Log1p Target:

MAPE: 0.21

SMAPE 0.23

MAE: 3.38

RMSE: 4.85

R²: 0.788

2025

LightGBM

LightGBM+avg_by_channel_region

df1['avg_by_channel_region'] = (df1.groupby(['channel', 'region', 'date'])['units_sold'].transform('mean'))

LightGBM Regressor Results:

MAPE: 0.20 SMAPE: 0.22

MAE: 2.78

RMSE: 3.99

R²: 0.751

• Модель показала наилучшую среди LightGBM производительность

Random Forest

Random Forest

```
rf_model = RandomForestRegressor(n_estimators=100,
    random_state=42)
rf_model.fit(X_train_rf, y_train_rf)
y_pred_rf = rf_model.predict(X_test_rf)
```

Random Forest with Log1p Target:

MAPE: 0.5 SMAPE 0.39 MAE: 5.71

RMSE: 6.86 R²: 0.263 Random Forest GridSearchCV

2025

```
y_train_rf_log = np.log1p(y_train_rf)
param_grid = {
  'n_estimators': [100, 200],
   'max_depth': [5, 10, None],
   'min_samples_split': [2, 5],
  'min_samples_leaf': [1, 2],
   'max_features': ['sqrt', 0.8]
rf = RandomForestRegressor(random_state=42, n_jobs=-1)
grid_search = GridSearchCV(
  estimator=rf,
  param_grid=param_grid,
  scoring='neg_mean_absolute_error',
  cv=3,
  verbose=1,
  n jobs=-1
grid_search.fit(X_train_rf, y_train_rf_log)
grid_search.best_params_, grid_search.best_score_best_rf_log =
        grid_search.best_estimator_
y_pred_best_rf_log = best_rf_log.predict(X_test_rf)
y pred_best_rf = np.expm1(y_pred_best_rf_log)
```

Best Random Forest (GS):

MAPE: 0.44 SMAPE 0.33 MAE: 4.99

RMSE: 6.22 R²: 0.393

LSTM Sequence model

LSTM Results:

MAE: 7.25

RMSE: 10.24

R²: 0.053

Результаты исследования

23 августа

Вариант модели	MAE	RMSE	R^2
Наивный прогноз	10.86	15.24	-0.674
LightGBM Regressor	3.54	5.00	0.774
LightGBM Extended	3.57	5.03	0.771
LightGBM Extended Log-Transformed Target	3.38	4.85	0.788
LightGBM+avg_by_cha nnel_region	2.78	3.99	0.751
	5.71	6.86	0.751
nnel_region			

Результаты исследования

2025

Выводы

- Предсказанные моделями значения в разной степени отражают тенденции продаж
- Лучшую производительность среди примененных показала модель вида LightGBM
- Лучший результат среди моделей LightGBM у модели с дополнительным параметром avg_by_channel_region
- Худший результат у наивного прогноза и LSTM
- Чтобы исключить отрицательные значения в прогнозных данных модели LSTM необходимо использовать функцию активации ReLU (Rectified Linear Unit) в последнем слое модели

Продолжение исследования

- Изменить глубину прогноза до еженедельных и ежеквартальных продаж.
- Для улучшения качества прогноза LSTM более детально подбирать параметры модели
- Применить гибридные модели, которые основаны на усредненных предсказаниях ранее используемых мной моделей.
- Использовать возможности библиотеки Prophet для прогнозирования (Sean J. Taylor, Benjamin Letham "Forecasting at scale")
- Выполнить прескриптивный анализ, используя машинное обучение с подкреплением (RL), для автоматизации процесса принятия решений на основе созданных прогнозов

