课程编号: 100172003

2019 级概率与数理统计试题 (A卷)

座号	班级	学号	姓名	
(本试卷共八	个大题,满分 100 分	; 将每道题的答案写在答	答题卡对应的位置上,	答题卡共 8
页,需要分别	在第1页和第5页上	方填写座号、姓名、学员	号、班级等信息,并序	月 2B 铅笔在
相应的位置填	涂学号;本试卷最后-	一页空白纸为草稿纸,可	「撕下;考试结束后证	式卷及草稿纸
不用上交,答:	案写在草稿纸及试卷_	上无效)		
附表: Φ(1.96)	=0.975,Φ(1.64)=0.95,	$t_{0.05}(36) = 1.6883, t_{0.05}(36)$	5) = 1.6896	
$t_{0.025}(35) = 2.03$	$301, t_{0.025}(36) = 2.0281$			
一、填空题(14分)			
1. 设事件 A,	B, C 相互独立, 且 P	$P(A) = P(B) = \frac{1}{2}, P(C) = \frac{1}{2}$	$\frac{1}{3}$, $\emptyset P(\overline{A} \cup \overline{B} \cup \overline{C})$)=
2. 设随机变量	Y服从期望为1的指	数分布,则方程 $x^2 + Yx +$	-1=0有实根的概率为	₹
3. 设随机变量	X 服从均匀分布 U(0,3), Y 服从均匀分布 (ソ(0,2), 且 X 与 Y ホ	目互独立,则
$P(X \leq Y) = \underline{\hspace{1cm}}$				
4. 设随机变量	X 和 Y 的数学期望分	别为-2和 2, 方差分别	为1和4,而相关系	数为-0.5,
则根据切比雪	夫不等式 $P\{ X+Y \ge 0$	6}≤		
5. 己知某厂生	产的晶体管寿命服从	均值为 100 小时的指数分	· 分布,现从该厂的产品	占中随机抽
取 64 只,假设	设这些晶体管的寿命是	相互独立的. 利用中心相	汲限定理计算这 64 只	· 晶体管的
寿命总和超过	7000 小时的概率为	(结果用标准〕	E态分布的分布函数c	⊅(⋅) 表示)
$6.$ 设 X_1, X_2, \cdots ,	X_n 为总体 $N(\mu, \sigma^2)$ 的	一个样本,其中 $\mu \in R$,	$\sigma > 0$ 未知, \bar{X}, S^2 允	分别是样本均
值和样本方差	,给定 0<α<1,则区间	$ \int \left[\overline{X} - \frac{S}{\sqrt{n}} t_{\alpha/2}(n-1) + 1, \overline{X} \right] $	$+\frac{S}{\sqrt{n}}t_{\alpha/2}(n-1)+1]$ 包含	含 $\theta = \mu + 1$ 的
概率是				
7.设总体 X~1	$V(\mu, 1)$,其中 $\mu \in R$ 未	E知, x ₁ ,, x ₉ 是总体 X	的样本值,对假设检	验问题
$H_0: \mu=2, H_1:$	$: \mu = 3$,取拒绝域 W	$=\{\bar{x} \ge 2.6\}$,则该检验犯]第二类错误的概率是	₫•
(结果用标准)	正态分布的分布函数。	Φ(⋅) 表示)		
二、(12分)				
某种产品分为	正品和次品,次品不能	能出厂. 出厂的产品 4 件	装一箱,检验前装入	、0,1,2,3,4 件

正品是等可能的,并以箱为单位出售.由于疏忽,有一批产品未经检验就直接装箱出厂,某客户打开其中一箱,从中任意取出一件.

1. 求取出的一件是正品的概率; 2. 若取出的是1件正品, 求这一箱里没有次品的概率.

三、(12分)

某仪器的工作寿命用随机变量 X 表示,且 X 服从数学期望为 2 的指数分布. 令 $Y=1-e^{-X/2}$.

1. 写出 X 的概率密度函数和分布函数; 2. 证明: P(X>s+t|X>s)=P(X>t), 其中 s>0, t>0 为常数; 并叙述指数分布的无记忆性的含义; 3. 证明: $Y\sim U(0,1)$.

四、(12分)

在袋中有 3 个球,分别标记号码 1、2、3,从中有放回地取两次,每次取一个球. 令随机变量 X 表示第一次取到的球的号码,随机变量 Y 表示两次取到的球的号码的较大值.

- 1. 求 X 和 Y 的联合分布律; 2. 求 X 和 Y 的边缘分布律;
- 3. 判断 X 和 Y 是否独立; 4. 求 U=Y-X 的分布律.

五、(8分)

总体X服从正态分布 $N(0,\sigma^2)$, $X_1,X_2,...,X_6$ 是来自总体X的简单随机样本,令

$$Y = \frac{(X_1 + X_2 + X_3)^2}{X_4^2 + X_5^2 + X_6^2}$$

试判断 Y 服从什么分布(指出参数),并给出证明.

六、(16分)

- 1. 一工厂生产的某种设备的寿命 *X* (以年计) 服从数学期望为 4 的指数分布,工厂规定,出售的设备若一年之内损坏可予以调换. 已知工厂售出一台设备赢利 1 万元,调换一台设备则需花费 2 万元. 试求厂方出售一台设备赢利的数学期望(单位:万元).
- 2. 设随机变量 (X, Y) 具有概率密度

$$f(x,y) = \begin{cases} \frac{1}{8}(x+y), & 0 < x < 2, 0 < y < 2 \\ 0, & \text{ 其它} \end{cases}$$

求 1. E(X), E(Y), DX, DY; 2. E(XY), Cov(X, Y), ρ_{XY} ; 3. D(X+Y).

七、(12分)

总体X的概率密度函数为

$$f(x,\theta) = \begin{cases} (\theta - 1)e^{-(\theta - 1)x}, & x > 0 \\ 0, & \text{ 其它} \end{cases}$$

其中 $\theta>1$ 为未知参数. $X_1,X_2,...,X_n$ 为取自该总体的样本, $x_1,x_2,...,x_n$ 为相应的样本观测值.

1. 求参数 θ 的矩估计量; 2.求参数 θ 的最大似然估计量;3. 求 R=P(X>1)的最大似然估计. 八、(14 分)

- 1. 在假设检验问题中, (1) 原假设 H_0 不真, 但被接受, 这种判断错误称为第几类错误?
- (2) 原假设 H_0 正确, 但被拒绝, 这种判断错误又称为第几类错误?
- 2.某零件的长度服从正态分布 $N(\mu,\sigma^2)$, 按标准要求均值为 10.5. 今测得 36 个长度数据, 计算得样本均值 $\bar{x}=11.08$,样本标准差 s=0.516. 问在显著性水平 $\alpha=0.05$ 下,该零件的长度是否符合要求?