Formal Concept Analysis III Knowledge Discovery

Robert Jäschke Asmelash Teka Hadgu

FG Wissensbasierte Systeme/L3S Research Center Leibniz Universität Hannover

slides based on a lecture by Prof. Gerd Stumme

Agenda

5 Attribute Exploration

Attribute Exploration: Goals

- compute the stem base interactively,
- without knowing the context beforehand,
- or knowing only parts of the context

Attribute Exploration: Approach

We modify $Next\ Closure\ for\ computing\ the\ stem\ base:$

The context can be *modified* while the list \mathcal{L} of implications is computed by taking into account *new objects*. If these objects *respect all implications* that have been computed so far, then the computation can be continued with the results obtained so far. This is the result of the following Lemma:

Lemma: Let \mathbb{K} be a context and let P_1, P_2, \ldots, P_n be the first n pseudo-intents of \mathbb{K} with respect to the lectic order. If \mathbb{K} is extended by an object g the object intent g' of which respects the implications $P_i \to P_i''$, $i \in \{1, \ldots, n\}$, then P_1, P_2, \ldots, P_n are also the lectically first n pseudo-intents of the extended context.

Attribute Exploration: Approach

Therefore, if we have found a new pseudo-intent P, we can stop the algorithm and ask, whether the implication $P \to P''$ should be added to \mathcal{L} ?

user answers yes: continue

user answers no: add counter example which does not contradict already confirmed implications

In the extreme case, the procedure can be started with a context the object set of which is empty. In this case, the user will have to enter all counter-examples, thereby creating a concept system with a given "attribute logic".

Attribute Exploration: Example

Instead of a detailed algorithm description:

Example

We compute the concept lattice for

$$G = \mathbb{N}$$

 $M = \{ \mathsf{even}, \ \mathsf{odd}, \ \mathsf{prime}, \ \mathsf{square}, \ \mathsf{cubic}, \ \mathsf{not} \ \mathsf{prime}, \ \mathsf{not} \ \mathsf{square}, \ \mathsf{not} \ \mathsf{cubic} \}$

Suggestions for other contexts to play around with:

$$G = \{ river, lagoon, puddle \}$$

 $M = \{ \text{natural, inland, flowing, temporary, stagnant, constant, artificial,} \\ \text{maritime} \}$

$$G = \{\Box, \bullet\}$$

 $M = \{ \text{overlap, parallel, disjoint, common vertex, common edge, } \\ \text{common segment} \}$

Attribute Exploration: Example

The accepted implications, i.e., the stem base, which holds for all natural numbers, looks this way:

```
1.: cubic \rightarrow not prime
2.: square \rightarrow not prime
3.: prime \rightarrow not square, not cubic
4.: cubic, not cubic \rightarrow \bot
5.: square, not square \rightarrow \bot
6.: prime, not prime \rightarrow \bot
7.: even, odd \rightarrow \bot
```

Attribute Exploration: Example

The corresponding concept lattice. All implications that can be read off hold for *all* natural numbers.

Attribute Exploration

On the blackboard: another example

country	EU	€	Schengen	NATO	monarchy	inland	$> 10 \mathrm{M}$ inhab.
Ireland							
Italy							
UK							