UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

VIZUÁLNY SYSTÉM PRE INTERAKCIU ĽUDSKÉHO UČITEĽA S ROBOTOM Diplomová práca

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

VIZUÁLNY SYSTÉM PRE INTERAKCIU ĽUDSKÉHO UČITEĽA S ROBOTOM Diplomová práca

Študijný program: Aplikovaná informatika Študijný odbor: Aplikovaná informatika

Školiace pracovisko: Katedra aplikovanej informatiky

Školiteľ: Ing. Viktor Kocur

Bratislava, 2021 Angelika Fedáková

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Bc. Angelika Fedáková

Študijný program: aplikovaná informatika (Jednoodborové štúdium,

magisterský II. st., denná forma)

Študijný odbor:informatikaTyp záverečnej práce:diplomováJazyk záverečnej práce:slovenskýSekundárny jazyk:anglický

Názov: Vizuálny systém pre interakciu ľudského učiteľa s robotom

Visual system for interaction of a human teacher with a robot

Anotácia: Toto zadanie je súčasťou projektu interakcie ľudského učiteľa s robotom. Robot

pri tejto interakcii manipuluje jednoduchými objektmi na základe pokynov od ľudského učiteľa. Pre tento účel je tak vhodné aby robot dokázal správne detegovať pozíciu jednoduchých, objektov pomocou, učiteľovej ruky a svojho

robotického ramena pomocou svojej RGB-D kamery.

Ciel': Ciel'om tejto práce je navrhnúť, implementovať a otestovať systém ktorý

na základe vstupnéh RGB-D dat z Intel RealSense kamery deteguje pozíciu jednoduchých objektov, učiteľovej ruky a robotického ramena. Súčasťou práce bude prehľad existujúcich riešení detekcie objektov v RGB-D snímkach. Navrhnutý algoritmus bude vyhodnotený v kontexte prebiehajúceho projektu

interakcie ľudského učiteľa s robotom.

Vedúci: Ing. Viktor Kocur

Katedra: FMFI.KAI - Katedra aplikovanej informatiky

Vedúci katedry: prof. Ing. Igor Farkaš, Dr.

Dátum zadania: 07.10.2020

Dátum schválenia: 08.10.2020 prof. RNDr. Roman Ďurikovič, PhD.

garant študijného programu

študent	vedúci práce

 $\bf Poďakovanie: \check{\rm D}$ akujem všetkým, ktorí ma pri tvorbe tejto prace podporovali.

Abstrakt

Abstrakt prace.

Kľúčové slová: klucove slova

Abstract

English abstract.

Keywords: keywords

Obsah

Úvod		1
1	Úvod do problematiky	3
2	Prečítané články	5
Záver		7
Prílohy		11

viii OBSAH

Zoznam obrázkov

Zoznam tabuliek

$\mathbf{\acute{U}vod}$

Uvod

 \dot{V} vod

Kapitola 1 Úvod do problematiky

V tejto kapitole zavedieme základné pojmy.

Kapitola 2

Prečítané články

Článok o rgbd kamerách[1]

Článok o 3D detekcii objektov[4]

Článok o detekcii pomocou rgbd kamery[5]

Článok o detekcii z point cloudu (využitie bird eye view)[6]

Článok o detekcii z point cloudu[7]

Článok o detekcii trénovanej na syntetických dátach[3] Článok o vytváraní syntetických dát a ich použití na trénovanie siete.[2]

Záver

Zaver

8 Záver

Literatúra

- [1] Krystof Litomisky. Consumer rgb-d cameras and their applications. Rapport technique, University of California, 20:28, 2012.
- [2] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Domain randomization for transferring deep neural networks from simulation to the real world. In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), pages 23–30. IEEE, 2017.
- [3] Jonathan Tremblay, Thang To, Balakumar Sundaralingam, Yu Xiang, Dieter Fox, and Stan Birchfield. Deep object pose estimation for semantic robotic grasping of household objects. arXiv preprint arXiv:1809.10790, 2018.
- [4] Yilin Wang and Jiayi Ye. An overview of 3d object detection. arXiv preprint arXiv:2010.15614, 2020.
- [5] Isaac Ronald Ward, Hamid Laga, and Mohammed Bennamoun. Rgb-d image-based object detection: From traditional methods to deep learning techniques. In RGB-D Image Analysis and Processing, pages 169–201. Springer, 2019.
- [6] Bin Yang, Wenjie Luo, and Raquel Urtasun. Pixor: Real-time 3d object detection from point clouds. In *Proceedings of the IEEE conference on Computer Vision and Pattern Recognition*, pages 7652–7660, 2018.
- [7] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Objects as points. arXiv preprint arXiv:1904.07850, 2019.

 $LITERAT\acute{U}RA$

Prílohy

Prilohy prace