Regression Models Project

Harshad B.

07/09/2020

Tasks

Take the *mtcars* data set and write up an analysis to answer their question using regression models and exploratory data analyses.

Executive Summary

The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel consumption and 10 aspects of automobile design and performance for 32 automobiles (1973–74 models).

A data frame with 32 observations on 11 (numeric) variables.

[, 1] mpg Miles/(US) gallon [, 2] cyl Number of cylinders [, 3] disp Displacement (cu.in.) [, 4] hp Gross horsepower [, 5] drat Rear axle ratio [, 6] wt Weight (1000 lbs) [, 7] qsec 1/4 mile time [, 8] vs Engine (0 = V-shaped, 1 = straight) [, 9] am Transmission (0 = automatic, 1 = manual) [,10] gear Number of forward gears [,11] carb Number of carburetors

Loading the dataset:

```
data(mtcars)
summary(mtcars)
```

```
##
                           cyl
                                            disp
                                                               hp
         mpg
##
    Min.
           :10.40
                     Min.
                             :4.000
                                       Min.
                                               : 71.1
                                                        Min.
                                                                : 52.0
##
    1st Qu.:15.43
                     1st Qu.:4.000
                                       1st Qu.:120.8
                                                        1st Qu.: 96.5
                     Median :6.000
                                       Median :196.3
##
    Median :19.20
                                                        Median :123.0
##
    Mean
            :20.09
                     Mean
                             :6.188
                                       Mean
                                               :230.7
                                                        Mean
                                                                :146.7
    3rd Qu.:22.80
                                       3rd Qu.:326.0
##
                     3rd Qu.:8.000
                                                        3rd Qu.:180.0
##
    Max.
            :33.90
                     Max.
                             :8.000
                                       Max.
                                               :472.0
                                                                :335.0
                                                        Max.
##
         drat
                            wt
                                            qsec
                                                               vs
##
            :2.760
                                               :14.50
                                                                :0.0000
    Min.
                     Min.
                             :1.513
                                       Min.
                                                        Min.
                     1st Qu.:2.581
##
    1st Qu.:3.080
                                       1st Qu.:16.89
                                                        1st Qu.:0.0000
##
    Median :3.695
                     Median :3.325
                                       Median :17.71
                                                        Median :0.0000
##
            :3.597
                     Mean
                             :3.217
                                       Mean
                                               :17.85
                                                        Mean
                                                                :0.4375
                                       3rd Qu.:18.90
                                                        3rd Qu.:1.0000
##
    3rd Qu.:3.920
                     3rd Qu.:3.610
##
    Max.
            :4.930
                             :5.424
                                               :22.90
                                                                :1.0000
                                                        Max.
                                              carb
##
                            gear
          am
                              :3.000
    Min.
            :0.0000
                      Min.
                                        Min.
                                                :1.000
##
    1st Qu.:0.0000
                       1st Qu.:3.000
                                        1st Qu.:2.000
    Median :0.0000
                      Median :4.000
                                        Median :2.000
##
            :0.4062
##
    Mean
                      Mean
                              :3.688
                                        Mean
                                                :2.812
    3rd Qu.:1.0000
                       3rd Qu.:4.000
                                        3rd Qu.:4.000
    Max.
##
            :1.0000
                              :5.000
                                                :8.000
                      Max.
                                        Max.
```

```
mtcars$drat <- factor(mtcars$drat)
mtcars$cyl <- factor(mtcars$cyl)
mtcars$vs <- factor(mtcars$vs)
mtcars$gear <- factor(mtcars$gear)
mtcars$carb <- factor(mtcars$carb)
mtcars$am <- factor(mtcars$am,labels=c('Automatic','Manual'))</pre>
```

Regression Model

```
full.model <- lm(mpg ~ ., data = mtcars)</pre>
best.model <- step(full.model, direction = "backward")</pre>
## Start: AIC=25.34
## mpg ~ cyl + disp + hp + drat + wt + qsec + vs + am + gear + carb
##
## Step: AIC=25.34
## mpg ~ cyl + disp + hp + drat + wt + qsec + vs + am + gear
##
##
## Step: AIC=25.34
## mpg ~ cyl + disp + hp + drat + wt + qsec + vs + gear
##
## Step: AIC=25.34
## mpg ~ cyl + disp + hp + drat + wt + qsec + gear
##
         Df Sum of Sq
                         RSS
                                AIC
## - qsec 1 0.083 11.615 23.571
## <none>
                      11.532 25.340
                2.963 14.495 30.658
## - wt 1
## - disp 1
               4.773 16.305 34.423
## - hp 1
               5.044 16.576 34.951
## - gear 1
             5.984 17.516 36.715
## - cyl 2
              9.582 21.113 40.694
## - drat 20
             135.570 147.102 66.812
##
## Step: AIC=23.57
## mpg ~ cyl + disp + hp + drat + wt + gear
##
         Df Sum of Sq
##
                         RSS
                                AIC
## <none>
                       11.615 23.571
                3.569 15.184 30.144
## - wt 1
## - disp 1
             4.873 16.489 32.782
## - hp 1
              5.169 16.784 33.350
## - gear 1
              6.222 17.838 35.299
## - cyl 2 12.344 23.959 42.740
## - drat 20 139.637 151.253 65.703
```

```
##
##
  Call:
   lm(formula = mpg ~ cyl + disp + hp + drat + wt + gear, data = mtcars)
##
   Residuals:
##
             Mazda RX4
                              Mazda RX4 Wag
                                                       Datsun 710
                                                                        Hornet 4 Drive
##
             6.305e-01
                                  -6.305e-01
                                                        2.776e-17
                                                                             -1.205e-01
##
                                                       Duster 360
                                                                             Merc 240D
     Hornet Sportabout
                                     Valiant
            -9.637e-02
                                   1.205e-01
                                                        1.665e-16
                                                                             -3.053e-16
##
##
              Merc 230
                                    Merc 280
                                                        Merc 280C
                                                                            Merc 450SE
##
             1.305e-15
                                   7.000e-01
                                                       -7.000e-01
                                                                             -9.385e-01
##
            Merc 450SL
                                 Merc 450SLC
                                              Cadillac Fleetwood Lincoln Continental
##
             1.643e+00
                                  -7.044e-01
                                                        2.776e-17
                                                                             -5.551e-17
##
     Chrysler Imperial
                                    Fiat 128
                                                      Honda Civic
                                                                        Toyota Corolla
##
             0.000e+00
                                   1.686e+00
                                                       -3.608e-16
                                                                             -4.718e-16
##
         Toyota Corona
                           Dodge Challenger
                                                      AMC Javelin
                                                                            Camaro Z28
##
            -1.943e-16
                                  -1.205e-01
                                                        9.637e-02
                                                                             -2.776e-16
##
      Pontiac Firebird
                                   Fiat X1-9
                                                    Porsche 914-2
                                                                          Lotus Europa
##
              1.205e-01
                                  -1.686e+00
                                                                             0.000e+00
                                                        1.388e-16
##
        Ford Pantera L
                                Ferrari Dino
                                                    Maserati Bora
                                                                             Volvo 142E
##
             8.327e-17
                                   0.000e+00
                                                        5.551e-17
                                                                            -2.498e-16
##
##
   Coefficients: (1 not defined because of singularities)
                Estimate Std. Error t value Pr(>|t|)
                                               0.2051
                  31.038
                             20.528
                                       1.512
## (Intercept)
                 -59.745
                             40.381
                                      -1.480
                                               0.2131
## cy16
## cy18
                 -79.839
                             49.838
                                      -1.602
                                               0.1844
## disp
                  -1.389
                              1.072
                                      -1.295
                                               0.2649
                              2.443
                                       1.334
## hp
                   3.259
                                               0.2530
## drat2.93
                  20.944
                             27.242
                                       0.769
                                               0.4849
## drat3
                 -29.174
                             13.566
                                      -2.151
                                               0.0979
## drat3.07
                -157.389
                            119.891
                                      -1.313
                                               0.2595
## drat3.08
                                       1.369
                                               0.2427
                 34.305
                             25.051
## drat3.15
                 -19.546
                             16.086
                                      -1.215
                                               0.2911
## drat3.21
                -252.792
                            187.756
                                      -1.346
                                               0.2494
## drat3.23
                                      -1.453
                -101.149
                             69.620
                                               0.2199
## drat3.54
                -627.339
                            470.801
                                      -1.332
                                                0.2535
## drat3.62
                -334.116
                            254.614
                                      -1.312
                                               0.2597
## drat3.69
                -225.129
                            157.636
                                      -1.428
                                               0.2264
## drat3.7
                -170.968
                            130.460
                                      -1.311
                                               0.2602
## drat3.73
                -269.020
                            199.065
                                      -1.351
                                                0.2479
## drat3.77
                -244.231
                            194.278
                                      -1.257
                                               0.2771
## drat3.85
                -377.210
                            272.852
                                      -1.382
                                                0.2390
## drat3.9
                                               0.2373
                -304.535
                            219.304
                                      -1.389
## drat3.92
                -342.264
                            244.439
                                      -1.400
                                               0.2340
## drat4.08
                -321.424
                            237.585
                                      -1.353
                                               0.2475
## drat4.11
                -414.963
                            299.015
                                      -1.388
                                               0.2375
## drat4.22
               -323.732
                            242.931
                                      -1.333
                                               0.2535
## drat4.43
                -145.031
                            114.904
                                      -1.262
                                               0.2755
## drat4.93
                -277.391
                                      -1.348
                            205.793
                                               0.2490
                                               0.3298
## wt
                   4.945
                              4.461
                                       1.109
```

A test to determine the difference in mpg between the automatic and manual transmissions.

```
t.test(mpg ~ am, data = mtcars)
```

```
##
## Welch Two Sample t-test
##
## data: mpg by am
## t = -3.7671, df = 18.332, p-value = 0.001374
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -11.280194 -3.209684
## sample estimates:
## mean in group Automatic mean in group Manual
## 17.14737 24.39231
```

Boxplot for the same

```
boxplot(mpg ~ am, data = mtcars, ylab = "mpg")
```


The boxplot confirms the result.

Conclusion

Therefore, in conclusion, it can be state that number of cylinders and displacement are good predictors of fuel efficiency, but transmission type is not.