Selección Dependiente Aleatoria

Luis Felipe González Rivas

April 17, 2025

Contents

1.	Introducción	5
2.	El Método Probabilístico	7
	2.1. Gráficas Aleatorias	. 7
	2.2. El método básico	
	2.3. La linealidad del valor esperado	
	2.4. Selección Dependiente Aleatoria	
3.	Teoría Extremal	9
	3.1. La Subgráfica Prohibida	. 9
	3.2. Teorema de Turán	
	3.3. Teorema de Erdős-Stone	
	3.4. Números de Ramsey	. 9
4.	Aplicaciones del Selección Dependiente Aleatoria	11
	4.1. Números de Turán para Gráficas Bipartitas	. 11
	4.2. Números de Ramsey para Cubos	. 11
	4.3. Un Problema del tipo Turán-Ramsey para Gráficas libres de K_4	
5.	Comparación de Selección Dependiente Aleatoria con otros Mo	éto-
	dos	13
	5.1. Gráficas Bipartitas	. 13

4 CONTENTS

Introducción

El Método Probabilístico

- 2.1. Gráficas Aleatorias
- 2.2. El método básico
- 2.3. La linealidad del valor esperado
- 2.4. Selección Dependiente Aleatoria

Teorema 2.4.1. (Lema Básico) Sean d, m, n, r, u enteros positivos. Sea G una gráfica en n vértices y grado promedio d. Si existe entero positivo t tal que

$$\frac{d^t}{n^{t-1}} - \binom{n}{r} \left(\frac{m}{n}\right)^t \ge u$$

entonces G contiene un conjunto $U \subset V(G)$ de vértices tal que $|U| \ge u$ y tal que todo subconjunto S de U con |S| = r tiene al menos m vecinos en común.

Teoría Extremal

3.1. La Subgráfica Prohibida

Dada una gráfica H, el número de Turán o extremal ex(n, H), representa el número máximo de aristas de una gráfica en n vértices que no contiene a H, subgráfica prohibida, como subgráfica.

3.2. Teorema de Turán

Una gráfica k— partita es aquella cuyo conjunto de vértices puede ser particionado en k subconjuntos, o partes, de tal manera que ninguna arista tiene como extremos a vértices de una misma parte. Una gráfica k—partita es completa si cualesquiera dos vértices en diferentes partes son adyacentes. Una gráfica completa k-partita en n vértices cuyas partes tienen tamaños que difieren a lo más en un vértice se les conoce como gráficas de Turán y se denotan como $T_{k,n}$.

Teorema 3.2.1. Sea G una gráfica simple que no contiene a K_k , para $k \geq 2$. Entonces $e(G) \leq e(T_{k-1,n})$, con igualdad si g solo si $G \simeq T_{k-1,n}$.

Demostración. Procederemos por inducción sobre k. El teorema se satisface trivialmente para k=2. Suponga que se satisface para cualquier entero menor que k, y sea G una gráfica simple que no contiene a K_k . Seleccione un vértice v con grado máximo Λ en G. Haga A=N(v) y $B=V\setminus A$. Entonces

$$e(G) = e(A) + e(A, B) + e(B).$$

Dado que G no contiene a ningún K_k , la gráfica inducida G[A] no contiene a K_{k-1} . Por tanto, por inducción,

$$e(A) \le e(T_{k-2,\Lambda}),$$

con igualdad si y solo si $G[A] \simeq T_{k-2,\Lambda}$. Además, dado que toda arista de G incidente a un vértice de B pertence a E[A,B] o E(B),

$$e(A, B) + e(B) \le \Lambda(n - \Lambda),$$

con igualdad si y solo si B es un conjunto independiente y cuyos miembros tienen grado Λ . Luego, $e(G) \leq e(H)$, donde H es una gráfica obtenida de una copia de $T_{k-2,\Lambda}$ y añadiendo una copia de un conjunto independiente de $n-\Lambda$ vértices y uniendo cada uno de estos vértices con cada vértice de $T_{k-2,\Lambda}$. Observe que H es una gráfica completa (k-1)-partita en n vértices. Entonces $e(H) \leq e(T_{k-1,n})$ con igualdad si y solo si $H \simeq T_{k-1,n}$. Se sigue que $e(G) \leq e(T_{k-1,n})$, con igualdad si y solo si $G \simeq T_{k-1,n}$.

3.3. Teorema de Erdős-Stone

3.4. Números de Ramsey

Un clique de una gráfica es un conjunto de vértices todos de ellos advacentes.

Aplicaciones del Selección Dependiente Aleatoria

4.1. Números de Turán para Gráficas Bipartitas

Teorema 4.1.1. Si $H = (A \cup B, F)$ es una gráfica bipartita en la que todos los vértices de B tienen grado a lo más r, entonces $ex(n, H) \le cn^{2-1/r}$, donde c = c(H) es una constante que solo depende de H.

Demostración. Sean |A|=a, |B|=b, m=a+b, t=r y $c=\max(a^{1/r},\frac{3(a+b)}{r})$. Sea G una gráfica con $e(G)>2cn^{2-1/r}$. De manera que $d=2e(G)/n>2cn^{1-1/r}$. Entonces

$$\frac{d^t}{n^{t-1}} - \binom{n}{r} \left(\frac{m}{n}\right)^t = \frac{(2cn^{1-1/r})^r}{n^{r-1}} - \binom{n}{r} \left(\frac{a+b}{n}\right)^r$$

$$\geq (2c)^r - \frac{n^r}{r!} \left(\left(\frac{a+b}{n}\right)^r\right)$$

$$\geq (2c)^r - \left(\frac{e(a+b)}{r}\right)^r$$

$$\geq c^r \geq a$$

Por tanto, el Teorema 2.4.1 establece que existe un subconjunto U de V(G) tal que |U| = a y en el que todos sus subconjuntos de tamaño r tienen al menos a + b vecinos en común.

Sea $f:A\to U$ una función inyectiva cualquiera. Demostraremos que f se puede extender a B de tal manera que esta extensión es un encaje de H en G. Etiquete los vértices de B como v_1,\ldots,v_b . Suponga que el vértice por encajar es $v_i\in B$. Sea $N_i\subset A$ la vecindad de v_i en H; por lo que $|N_i|\leq r$. Dado que $f(N_i)$ es un subconjunto de U de cardinalidad a lo más r, existen al menos a+b vértices adyacentes a todos los vértices en $f(N_i)$. Como el total de vértices por encajar es a+b, existe un vértice $v\in V(G)$ que no se ha usado en el encaje y que es adyacente a $f(N_i)$ en G. Haga $f(v_i)=v$. Se observa que este procedimiento puede continuar hasta terminar de definir $f(v_i)$ para todo $i=1,\ldots,b$. Por tanto f es un encaje de H en G.

4.2. Números de Ramsey para Cubos

Para una gráfica H, el número de Ramsey r(H), es el mínimo entero positivo N tal que cualquier 2-coloración de las aristas de la gráfica completa en N vértices contiene una copia monocrómatica de H.

Teorema 4.2.1. $r(Q_r) \leq 2^{3r}$.

Demostración. En cualquier 2-coloración de las aristas de una gráfica comleta en $N=2^{3r}$ vértices, el conjunto más denso entre los dos colores tiene al menos $\frac{1}{2}\binom{N}{2} \geq 2^{-7/3}N^2$ aristas. Sea G la gráfica del color más denso.

De manera que el grado promedio d de G es al menos $2^{-4/3}N$. Aplicando el Teorema 2.4.1 con $t=\frac{3}{2}r, m=2^r$ y $a=2^{r-1}$. Tenemos que

$$\frac{d^t}{N^{t-1}} - \binom{N}{r} \left(\frac{m}{N}\right)^t \geq$$

4.3. Un Problema del tipo Turán-Ramsey para Gráficas libres de ${\cal K}_4$

Comparación de Selección Dependiente Aleatoria con otros Métodos

5.1. Gráficas Bipartitas