

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA ESCUELA DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE MATEMÁTICA LICENCIATURA EN CIENCIAS DE LA COMPUTACIÓN CÁTEDRA DE ANÁLISIS MATEMÁTICO II

UNIDAD N°2: CALCULO INTEGRAL

SUMAS DE RIEMANN. DEFINICIÓN DE INTEGRAL DEFINIDA.

- 1. Sea $f: [-3,1] \to \mathbb{R}$ definida por $f(x) = x^2$. a) Calcular $U_4(f)$ y $L_6(f)$. b) Calcular la suma de Riemann de f asociada a la partición regular P_6 , tomando como puntos muestra los puntos medios de cada subintervalo. c) Dar expresiones para $U_n(f)$ y $L_n(f)$. d) Calcular $\int_{-3}^{1} f(x) dx$.
- 2. Calcular las siguientes integrales definidas:

a)
$$\int_{-1}^{5} (1+x)dx$$

c) $\int_0^5 2x^3 dx$

b)
$$\int_{1}^{4} (x^2 + x - 1) dx$$

Sugerencia: utilizar los siguientes resultados $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}, \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}, \sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$

3. Sea f(x) = x, mostrar que $\int_a^b f(x)dx = \frac{b^2 - a^2}{2}$.

Sugerencia: a) Considerar una partición regular P_n donde cada $x_i = a + i \frac{b-a}{n}$ para i = 0, ..., n. b) Probar que $L_n(f) = a(b-a) + \frac{(b-a)^2}{n^2} \sum_{i=1}^n (i-1)$ y $U_n(f) = a(b-a) + \frac{(b-a)^2}{n^2} \sum_{i=1}^n i$. c) Calcular los límites $\lim_{n \to \infty} L_n(f)$ y $\lim_{n \to \infty} U_n(f)$.

PROPIEDADES DE LAS INTEGRALES DEFINIDAS.

- 4. Propiedad de homogeneidad de la integral: Si $c \in \mathbb{R}$ demostrar que cf es integrable y además que $\int_a^b cf$ = $c \int_a^b f$.
- 5. Propiedad de aditividad respecto del intervalo de integración. Sabiendo que $\int_1^3 f(x)dx = -2$, $\int_1^6 f(x)dx = 5$ y $\int_1^6 g(x)dx = 4$, calcular:

a)
$$\int_{2}^{2} f(x)dx$$

d) $\int_{6}^{1} g(x)dx$

$$b) \int_1^3 4f(x)dx$$

$$c) \int_3^6 f(x) dx$$

e)
$$\int_{1}^{6} (2f(x) - g(x))dx$$

- 6. El teorema del valor medio del cálculo integral. Sea $f:[a,b] \to \mathbb{R}$ integrable y sean m,M los respectivos mínimo y máximo de f en [a,b]. Demostrar que $m(b-a) \le \int_a^b f \le M(b-a)$. Probar que si f continua en [a,b] existe $c \in [a,b]$ tal que $\int_a^b f(x) dx = f(c)(b-a)$. Este número f(c) suele ser denominado el valor medio de la función f en [a,b].
- 7. Hallar el valor medio de f en el intervalo indicado y determinar en qué puntos la función alcanza dicho valor:

a)
$$f(x) = x^2 - 1$$
 en $[0, \sqrt{3}]$

b)
$$f(x) = |x^2 - 2x| \text{ en } [1,3]$$

8. Analizar si las siguientes funciones son integrables en [0,2] y calcular su integral cuando sea posible:

a)
$$f(x) = \begin{cases} x & \text{si } 0 \le x < 1\\ 2 - x & \text{si } 1 \le x < 2 \end{cases}$$

c)
$$f(x) = \begin{cases} x + [x] & \text{si } x \in \mathbb{Q} \\ 0 & \text{si } x \notin \mathbb{Q} \end{cases}$$

$$b) \ f(x) = x + [x]$$

9. Calcular cada de las integrales intepreténdolas en términos de áreas:

a)
$$\int_0^4 (3+x)dx$$

c)
$$\int_0^3 (\sqrt{9-x^2}+2)dx$$

b)
$$\int_{-3}^{3} \sqrt{9-x^2} dx$$

d)
$$\int_{-1}^{2} (3x-1)dx$$

10. Dada la función f(x) = -3x, se pide:

a) Calcular
$$\int_{-2}^{3} f$$
, $\int_{-2}^{3} |f|$, $\int_{2}^{0} f$.

b) Hallar x tal que
$$\int_{-2}^{x} f(t)dt = 0$$

FUNCIONES INTEGRALES. TEOREMA FUNDAMENTAL DEL CALCULO.

11. Dada $f(x) = x^2$ se definen las funciones

$$F(x) = \int_{1}^{x} f(t)dt$$
 $G(x) = \int_{0}^{x} f(t)dt$ $H(x) = \int_{1}^{x} f(t)dt$

Se pide:

- a) Analizar la relación entre F, G y H.
- b) Representar gráficamente a F, G y H.
- c) Analizar la realción entre F', G' y H'.

12. Para cada una de las funciones f definidas en [0,4] trazar un croquis aproximado de la función f y de la función g definida por $g(x) = \int_c^x f(t)dt$.

a)
$$f(x) = \begin{cases} 1 & \text{si } 0 \le x \le d \\ 2 & \text{si } d \le x \le 4 \end{cases}$$
 siendo $c = 0$ y $0 < d < 4$.

$$b) \ \ f(x) = -1 + \tfrac{x}{c} \quad \text{siendo } 0 < c < 4.$$

13. Probar que si f es integrable en [a,b] y $c \in (a,b]$, la función $G:[a,b] \to \mathbb{R}$ donde $G(x) = \int_x^c f(t)dt$ resulta continua y derivable en cada punto de continuidad de f valiendo además que G'(x) = -f(x).

14. Si f integrable en (a,b) y $g:[c,d] \to \mathbb{R}$ es derivable en (c,d), con $a < g(x) < b \ \forall x \in [c,d]$ y $\alpha \in [a,b]$ entonces la función $H:[c,d] \to \mathbb{R}$ definida por $H(x) = \int_{\alpha}^{g(x)} f(t) dt$ es continua y además derivable en cada x tal que g(x) sea un punto de continuidad de f, valiendo además que H'(x) = f(g(x))g'(x). Sin intentar el cálculo de las integrales hallar las derivadas de las siguientes funciones:

a)
$$H(x) = \int_{\pi}^{x} \frac{dt}{1+t^3}$$

$$d) \ H(x) = \int_x^2 \cos t^3 dt$$

b)
$$H(x) = \int_{x^2}^{\pi} \frac{\sin t}{t} dt$$

c)
$$H(x) = \int_{-2}^{x} x \cos t dt$$

e)
$$H(x) = \int_{x}^{x^2} (7t - 5) dt$$

2

15. Hallar una función f continua y un número a tal que $\int_a^x f(t)dt = \cos x - \frac{1}{2}$.

16. Sea $f(x) = 3 + \int_0^x \frac{1+\sin t}{2+t^2} dt$, sin intentar el cálculo de la integral, hallar un polinomio de grado no mayor que 2 tal que P(0) = f(0), P'(0) = f'(0) y P''(0) = f''(0).

17. Sea $f(x) = \int_0^x \frac{1}{1+t+t^2} dt$, hallar el intervalo donde f es convexa.

18. Sea $f(x) = 2 + \int_1^x \frac{1}{1+t} dt$, hallar la ecuación de la recta tangente a la gráfica de f en el punto de abscisa x-1

LA REGLA DE BARROW.

19. Aplicando la regla de Barrow calcular las siguientes integrales:

a)
$$\int_{0}^{1} 2x(\sqrt{x} + \sqrt[5]{x})dx$$
d)
$$\int_{1}^{\sqrt{3}} \frac{x^{2}}{x^{2} + 1}dx$$
b)
$$\int_{1}^{\sqrt{3}} \frac{\sqrt{x} - 2x^{2} + 5}{x^{2}}dx$$
e)
$$\int_{-1}^{2} |x - x^{2}|dx$$
c)
$$\int_{-2}^{4} f(x)dx \text{ siendo } f(x) = \begin{cases} 4 - x^{2} & \text{si } -2 \le x \le 2\\ x - 2 & \text{si } 2 < x \le 4 \end{cases}$$

20. Calcular el área de las regiones acotadas por las curvas que se indican en cada caso: a) $y=x^2, \ y=2x-x^2;$ b) $y=\sin x, \ y=\cos x, \ x=0, \ x=\pi/2;$ c) $y=\frac{1}{x}, \ y=\frac{1}{x^2}, \ x=1, \ x=2;$ d) $y=x^2-2x, \ y=x+4.$

LAS FUNCIONES LOGARITMO Y EXPONENCIAL.

21. Hallar el número real ξ tal que si $x > 0 \Rightarrow \ln x = \xi + \int_{e}^{x} \frac{1}{t} dt$.

22. Dadas las funciones definidas en \mathbb{R}^+ por $f(x) = x - 1 - \ln x$ y $g(x) = \ln x - 1 - \frac{1}{x}$ se pide: a) analizando las derivadas de éstas, demostrar que si $x > 0 \Rightarrow 1 - \frac{1}{x} \le \ln x \le x - 1$ y que la igualdad v ale únicamente para x = 1. Interpretar geométricamente las desigualdades. b) Utilizando la definición de derivada de $\ln x$ en x = 1 demostrar que $\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$.

23. Hallar los números reales a,b tales que $e^x=b+\int_a^x e^s ds$ para todo $x\in\mathbb{R}.$

24. Demostrar las siguientes igualdades (para los valores de a, b en que sean posibles las expresiones):

a)
$$\lim_{x \to 0} \frac{\ln(1+x)}{e^{3x} - 1} = \frac{1}{3}$$
 d) $\lim_{x \to 0} \frac{\ln(1+x) - x}{1 - \cos x} = -1$ g) $\lim_{x \to 0} \frac{\ln(\cos ax)}{\ln(\cos bx)} = \frac{a^2}{b^2}$ b) $\lim_{x \to 0} \frac{a^x - 1}{b^x - 1} = \frac{\ln a}{\ln b}$ e) $\lim_{x \to 1} \frac{\sin \frac{\pi}{2x} \ln x}{(x^3 + 1)(x - 1)} = \frac{1}{2}$ h) $\lim_{x \to 1^+} \frac{x^x - x}{1 - 2x + \ln x} = 0$ c) $\lim_{x \to 1} \frac{\ln x}{x^2 - x} = 1$ f) $\lim_{x \to 0^+} x^x = 1$ i) $\lim_{x \to 0} (1 + x)^{\frac{1}{x}} = e$

25. Dadas las siguientes funciones:

a)
$$f(x) = e^{-x^2}$$

b) $f(x) = x \ln^2 x$
c) $f(x) = 2xe^{-x}$
d) $f(x) = \frac{\ln x}{x}$
e) $f(x) = e^{-x} \sin x$
g) $f(x) = e^{-x} \cos x$

Se pide: determinar dominio y recorrido, hallar intervalos de monotonía y de concavidad (o convexidad), hallar sus extremos relativos y/o absolutos, esbozar las gráficas, calculando los límites necesarios para justificar las mismas.