L04.02 AVL Trees

50.004 Introduction to Algorithm

Gemma Roig
(slides adapted from Dr. Simon LUI)

ISTD, SUTD

L04.02 AVL Trees

Chapter 13 CLRS book

Overview

BST review

- Each node x has:
 - key[x]
 - Pointers: left[x], right[x], p[x]

– For all nodes y in the left subtree of x:

$$key[y] \le key[x]$$

– For all nodes y in the right subtree of x:

$$key[y] \ge key[x]$$

Parent[x]

BST for runway reservation system

• R = (37, 41, 46, 49, 56) current landing times

remove t from the set when a plane lands
 R = (41, 46, 49, 56)

5-1

- add new t to the set if no other landings are scheduled within < 3 minutes from t
 - 40 => reject (41 in R)
 - 42 => reject (41 in R)
 - 53 => ok
- delete, insert take O(h), h=height of the tree

The importance of being balanced

Perfectly Balanced

Path

$$h = \Theta(\log n)$$

$$h = \Theta(n)$$

Balanced BST strategy

- Augment every node with some property
- Define a invariant on the property
- Show that the invariant guarantees
 Θ(log n) height
- Design algorithms to maintain the property and the invariant

AVL Trees: Definition

[Adelson-Velskii and Landis'62]

• **Property:** for every node, <u>store</u> its own height ("augmentation")

- Leaves have height 0
- NIL has "height" -1

 Invariant: for every node x, the heights of its left child and right child differ by at most 1

Now the proof.... AVL Tree's height is $\Theta(\log n)$

AVL trees have height $\Theta(\log n)$

- Let n_h be the minimum number of nodes of an AVL tree of height h
- We have

$$\underline{n}_{h} \ge 1 + \underline{n}_{h-1} + \underline{n}_{h-2}$$

$$> 2\underline{n}_{h-2} > 2 \cdot 2\underline{n}_{h-4} > \cdots$$

$$> 2^{h/2}$$

$$\Leftrightarrow h < 2\log \underline{n}_{h} \le 2\log n$$

$$\Leftrightarrow h = O(\log n)$$

Why
$$h = \Omega(\log n)$$
?

- Let m_h be the max
 number of nodes of an
 AVL tree of height h
- $m_h <= 2^h$
- $log(m_h) <= h$

Exercise

Insertions/Deletions

- Insert new node u as in the simple BST
 - Can create imbalance
- Similar issue/solution when deleting a node

Balancing

- Let x be the lowest "violating" node (we will try to correct that)
- Assume that x is "right-heavy" (hence we analyze more the right subtree of x)
 - y = right child of x
- Scenarios:
 - Case 1: y is right-heavy
 - Case 2: y is balanced
 - Case 3: y is left-heavy

Case 1: y is right-heavy

Case 2: y is balanced

Same as Case 1

Case 3: y is left-heavy

Need to do more ...

Case 3: y is left-heavy

Conclusions

- In balanced BSTs all operations take O(logn) time
- Can maintain balanced BSTs using O(logn) time per insertion

Exercise

Let's look at AVL tree exercise.ppt