ENGR 13300 Fall 2021

Maximilian Drach Purdue login mdrach@purdue.edu Section number Assignment Ind HW13 MA5 Task 4

Contributors Name of Contributor Purdue login of Contributor Name of Contributor Purdue login of Contributor Contributors Name of Contributor Purdue login of Contributor Name of Contributor Purdue login of Contributor

Academic Integrity Statement: I/We have not used material obtained from any other unauthorized source, either modified or unmodified. Neither have I/we provided access to my/our work to another. The solution I/we am/are submitting is my/our own original work.

Problem Description

This problem charts the riverhight and its correlation to streamflow, then it analyzes the plotting results from it.

River Height (ft)

<insert log-linear plot here>

<insert linear-log plot here>

<insert log-log plot here>

0.399673721 3.3521825

0.514547753 3.5010593

0.562292864 3.5646661

0.632457292 3.6589648

0.622214023 3.6444386

0.600972896 3.6159501

0.567026366 3.5705429

0.565847819 3.5693739

0.530199698 3.5211381

0.498310554 3.4800069

0.481442629 3.4578819

0.469822016 3.4424798 0.440909082 3.4048337

0.45331834 3.4216039

0.45331834 3.4216039

0.428134794 3.3891661

0.482873584 3.4593925

0.519827994 3.5078559

0.549003262 3.5465427

0.534026106 3.5263393

0.534026106 3.5263393

0.591064607 3.6031444

0.883093359 4.0086002

0.838219222 3.9444827

0.767897616 3.845718

0.678518379 3.7218106

0.644438589 3.6748611

0.661812686 3.69897

0.620136055 3.6424645

0.609594409 3.6283889

0.547774705 3.544068 0.5132176 3.4983106

0.59439255 3.607455 0.550228353 3.5477747

0.586587305 3.5965971

0.567026366 3.5705429

0.611723308 3.6304279 0.603144373 3.6190933

0.572871602 3.5786392

0.561101384 3.5622929

0.539076099 3.5327544

0.530199698 3.5211381 0.537819095 3.5314789

0.534026106 3.5263393

0.551449998 3.5502284

0.547774705 3.5453071 0.522444234 3.510545

0.521138084 3.5092025

0.517195898 3.5037907

0.523746467 3.5132176

0.507855872 3.4913617

0.514547753 3.5010593

0.51054501 3.4955443

0.550228353 3.5477747

0.606381365 3.6232493

0.686636269 3.7331973

0.71432976 3.770852 0.655138435 3.6893089

0.639486489 3.6683859 0.746634199 3.8162413

0.913813852 4.0530784

0.868644438 3.9876663 0.783188691 3.8668778

0.695481676 3.7450748

0.626340367 3.6503075

0.609594409 3.6273659

0.51054501 3.4955443

4.07	4240	0.614897216	3.6344773
4.12	4310	0.625312451	
4.22	4460	0.614897216	
4.12	4310	0.604226053	
4.02	4170	0.57863921	
3.79	3850	0.587710965	
3.87	3960	0.567/1036 0.559906625	
		0.53940928 0.55144998	
3.63	3640 3550	U.31440.0 494154594	
3.56			
3.12	2980	0.39451681	
2.48	2210	0.445604203	
2.79	2570	0.494154594	
3.12	2970	0.503790683	
3.19	3060	0.511883361	
3.25	3150	0.51851394	
3.3	3210	0.477121255	
3	2830	0.485721426	
3.06	2910	0.484299839	
3.05	2890	0.487138375	
3.07	2920	0.498310554	
3.15	3020	0.702430536	
5.04	5680	1.087071206	
12.22	20100	1.089551883	
12.29	20200	1.041392685	
11	17200	0.959041392	
9.1	13100	0.898176483	
7.91	10700	0.77815125	
6	7250	0.7355989	
5.44	6320	0.721810615	
5.27	6050	1.079904468	4.2922561
12.02	19600	1.043362278	
11.05	17300	0.974511693	4.1398791
9.43	13800	0.875061263	3.9969492
7.5	9930	0.773054693	3.85248
5.93	7120	0.767897616	3.845718
5.86	7010	0.781755375	3.8645111
6.05	7320	0.797959644	3.8876173
6.28	7720	0.984077034	4.1522883
9.64	14200	1.133858125	4.3710679
13.61	23500	1.089198367	4.3053514
12.28	20200	1.063708559	
11.58	18600	1.022840611	
10.54	16200	1.120902818	4.3521825
13.21	22500	1.184123354	
15.28	28200	1.15715444	4.40824
14.36	25600	1.245512668	
17.6	36700	1.264109156	
18.37	40400	1.222716471	
16.7	32900	1.170848204	
14.82	26800	1.127428778	
13.41	23000	1.112605002	
12.96	21900	1.072249898	
11.81	19100	1.046104787	
11.12	17500	1.000434077	
10.01	15000	0.969415912	
9.32	13600	0.937517892	
8.66	12200	0.93717692 0.913813852	
8.2	11300	0.860338007	
7.25	9460	0.840733235	
6.93	8870	0.820201459	
6.61	8300	0.802773725	
6.35	7840	0.796574333	
6.26	7690	0.76715866	
5.85	6990	0.7012360	
6.57	8230	1.05623724	
11.39	18100	1.0505251624 1.056941624	
10.64	16400	1.0209-1026 0.957128198	
9.06	13000	U.557.126.136 0.90202891	
7.98	10800	0.911157609 0.911157609	
7.98 8.15	11200	0.911.157609 1.026533265	
10.63	16400	.1.02053-250 0.978636948	
		0.97605948 0.89707703	
9.52	14000	0.83707/003 0.832508913	
7.89	10700		
6.8	8640	0.783188910	
6.07	7360	0.75383039	
5.67	6690	0.73399237	
5.42	6290	0.699837726	
5.01	5640	0.693726949	
4.94	5530	0.675778342	
4.74	5220	0.665580991	
4.63	5060	0.655138435	3.6893089

4.52	4890	0.663700925	
4.61	5030	0.640481437	
.37	4670	0.638489257	3
35	4640	0.656098202	3.
53	4910	0.698100546	
99	5610	0.892094603	4.
7.8	10500	0.865103975	
33	9610	0.819543936	
6.6	8280	0.760422483	
.76	6840	0.72427587	
5.3	6090	0.726727209	3.
33	6140	0.715167358	
19	5920	0.788875116	
15	7500	0.813580989	
51	8120	0.730782276	
38	6220	0.685741739	
85	5390	0.652246341	
49	4850	0.631443769	
28	4540	0.626340367	
23	4470	0.589949601	
89	3990	0.596597096	
95	4080	0.580924976	
81	3880	0.589949601	
89	3990	0.625312451	
22	4460	0.85672889	
.19	9350	0.994756945	
88	14700	0.985875357	
68	14300	0.906873535	
07	11000	0.790988475	
18	7550	0.848804701	
.06	9110	0.970811611	
35	13600	0.967547976	
28	13500	0.915927212	
.24	11400	0.945960704 1.154728207	
83	12500	54/252/ 1.124/7805	
28	25300 22700	1.1241/30/5 1.074084689	
31 86	19200	1.07-00-105 1.011570445	
86 27	15600		
82	12500	13400408.0 13400088.0	
02 75	14500	0.5550-04.0 1.21654401	
75 28	31500	1.226342087	
84	33400	1.164352856	
1.6	26200	1.07077645	
77	19000	1.008174188	
19	15400	0.95568775	
03	12900	0.935507266	
62	12100	0.927370363	
46	11800	0.881954971	
.62	10200	0.849419414	
.07	9130	0.8162413	
55	8190	0.781036939	
04	7310	0.738780558	
48	6380	0.729974286	
1 0 37	6210	0.7253/4260 0.75635(18)	
	6760	0.72916479	
	6190	0.7041501917	
	5710	0.681241237 0.681241237	
.36		0.05124127 0.055098202	
.71 .36 .06 4.8			
.36 .06 4.8	5310		3
36 06 4.8 53	5310 4910	0.63447727	
36 06 1.8	5310		3.

Q1: Which type of function do you think best represents the data, after plotting the data using the four different scaling options? Provide a reason for your selection.

I belive function is best suited by a power function, since it look the most linear when the both the x-axis and y-axis were both on log scale. Hence the function would be best suited by using a linear fuction while using the logarithmic scaling on both axises. There for to linearize the data, I will plot the log of both y and x values.

Q2: Determine the model (i.e., the general form) of the function you diagnosed in Q1. Show work as necessary. Manage the decimal precision of the coefficients.

Work	flow(ft^3/s)	height(ft)	log 10 flow	log 10 height
log 10 flow = log10(flow)	2250	2.51	3.3521825	0.399673721
log 10 height = log10(h)	3170	3.27	3.5010593	0.514547753
	3670	3.65	3.5646661	0.562292864
	4560	4.29	3.6589648	0.632457292
	4410	4.19	3.6444386	0.622214023

Model

log10flow = 1.4077(log 10 h)+2.7711 flow = 10^(1.4077(log(h)+2.7711)

Q3: Use your model to predict the streamflow for the river heights listed below.

Height (ft) Streamflow (ft^3/s)

- **2** 1566.24582
- 6 7353.65947
- **12** 19510.2772
- **18** 34526.0667
- **26** 57937.2639