# Time Series as Stochastic Processes

Juan Garbayo

Forecasting & Time Series Analysis – Fall 2023





- O1 TS as stochastic processes
- O2 TS and time correlation
- O3 Key takeaways

# **Modelling Time Series as a Stochastic Process**

Time Series Data: sequential observations of one or several variables over time



### For modelling purposes lets consider:

- Future values of the time series: a random variable that has not yet been realized.
- Past values of the time series: realizations of a random variable



# **Modelling Time Series as a Stochastic Process**

Time Series Data: sequential observations of one or several variables over time



### For modelling purposes lets consider:

- Future values of the time series: a random variable that has not yet been realized.
- Past values of the time series: realizations of a random variable



# **Example**



In this particular time series all the random variables are identically distributed (follow the same distribution).



# Gaussian Distribution with low crest factor

Gaussian Distribution with high crest factor







### **Modelling Time Series as a Stochastic Process**

Stochastic vs Random: these two words are many times used interchangeably. However, it is normally the case that:

- Random is reserved to refer to random variables.
- **Stochastic** is reserved to refer to <u>processes</u> involving a <u>family of random variables</u> indexed by a set. <u>In the case of time series, indexed over time</u>.

#### In our previous example:

- For each value of time  $t_1$ ,  $t_2$ ,  $t_3$ ... we had a random variable  $y_1$ ,  $y_2$ ,  $y_3$ ...
- This collection of random variables {y<sub>t</sub>} indexed by time is a stochastic process

#### **NOTE**

• There are different kinds of stochastic processes. Time series are just one of these.





# Time series, correlation and independence



Since **past events** tend to **influence future events**, there is a <u>correlation between the values of the time series at different points in time</u>.

The random variables of the time series process are correlated in general (and therefore NOT independent).



## **Key takeway 1**

Time series as stochastic processes (a collection of random variables indexed in time):

- Past values: <u>realizations</u> of random variables.
  - > They are no longer random, they are a specific number, an outcome of the random variable.
- Forecast or future values: forecasting a random variable that has not yet realized.
  - > The concept of confidence Intervals therefore applies to time series forecasting.
  - > You should think of the values to forecast as a random variable.









## **Key takeway 2**

The random variables of a time series process are in general:

- Correlated (and therefore not independent).
  - In most phenomena studied in time series, past values tend to affect future values.
- Not identically distributed.

The independent and identically distributed hypothesis used in most convential statistical methods (e.g. Central Limit Theorem) does not apply.

**Time Series** can be referred to as the <u>systematic approach to answer the mathematical and statistical</u> <u>questions posed by these time correlations</u>.



