HEG-796-22-030 PREMIS et SHACL

Jan Krause-Bilvin

2023-05-04

Thème de cette session

- Lien avec le cours de module précédent
- Ontologie de préservation (PREMIS)
- Schémas de grahes RDF (SHACL)

Cours précédents

- Linked Data Platform (LDP):
 - Ressources (ldp:Ressource) de type RDF et non-RDF
 - Conteneurs (ldp:Container), peuvent être emboîtés.
 - Manipulation via verbes HTTP:
 - GET: lire
 - POST / PUT : créer / mettre à jour
 - DELETE : effacer
- Les conteneurs LDP permettent de délimiter les ressources représantant des objets (métier, archivistiques).
 - Combinaison d'ontologies, p.ex. RiC-O, SKOS et autres
 - Fedora Commons accepte tout turtle valide (ressources RDF)

Cours de module précédent

Quel est le lien entre LDP et ce que vous avez vu avec M. Ehrler et Mme. Mottaz ?

PREMIS

 $\operatorname{PREservation}$ Metadata : Implementation Strategies (PREMIS) permet de représenter:

- les objets (p.ex. records),
- les événements (de préservation),
- les agents (personnes, logiciels) impliqués dans ces événement,
- les droits.

en RDF.

FIGURE 1 – PREMIS overview

Une représentation fine des objets numériques est disponible.

FIGURE 2 – PREMIS overview

Exemple / demonstration : docuteam Packer (logiciel libre)

Exemples de concepts PREMIS:

- premis:hasMessageDigest (checksum)
- premis:signature (signature numérique)
- premis:hasSize (taille en octets)
- premis:orginalName (nom original)
- premis:rights (droits)
- premis:formatRegistry (format de fichier)
- premis:creatingApplication (application)
- premis:environmentDesignation (système)
- premis:inhibitors (inhibiteurs t.q. DRM ou chiffrement, cf. DLCM)
- premis:hasCompositionLevel (composition)

PREMIS peut être combiné aux ontologies descriptives pour assurer la préservation numérique. Par exemple:

PREMIS	RiC-O
-	RecordSet RiC-E03
Intellectual entity	Record RiC-E04
Representation	Instantiation RiC-E06

PREMIS	RiC-O
File	-
Datastream	-

Mais comment faire en pratique?

SHACL (Core)

SHape and Constraint Language (W3C)

- Il s'agit d'un langage de validation de graphe RDF.
- Les graphes sont compsés de noeuds (ensembles de triplets).
- Validation porte sur la structure et le contenu des noeuds.

Exemple:

```
ex:Alice
    a ex:Person;
    ex:ssn "987-65-432A" .
ex:Bob
   a ex:Person;
    ex:ssn "987-65-432B";
    ex:birthDate "1971-07-07"^^xsd:date;
SHACL
ex:PersonShape
    a sh:NodeShape ;
    sh:targetClass ex:Person ;
                                  # toutes les pesonnes
    sh:property [
                                  # _:b1
        sh:path ex:ssn ;
                                  # contraintes ex:ssn
        sh:maxCount 1 ;
        sh:minCount 1 ;
        sh:datatype xsd:string ;
   ];
    sh:property [
                                  # _:b2
        sh:path ex:birthDate ;
        sh:maxCount 1 ;
        sh:datatype xsd:date ;
   ];
```

Nous allons nous focaliser sur
 Nombre d'occurences: sh:minCount , sh:maxCount Type de noeud: sh:NodeKind sh:IRI , sh:NodeKind sh:BlankNode Type de donnés: sh:datatype xsd:date, sh:datatype xsd:string Format sh:maxlength 50 sh:pattern "^\d{3}\.\d{4}\.\d{4}\.\d{2}\\$"
Mode de validation fermé
Pour un noeud donné, le mode fermé (sh : $closed\ true$), requiert que chaque triplet satisfasse au moins une condition énoncée.
Par défaut, le mode est ouvert. En d'autre termes, les triplets non concernés pas les conditions sont ignorés.
Démonstration
Validateurs en ligne:
— SHACL Play— SHACL.js
Ou avec un module python (fournit avec le TP3).
Syntaxe pour valider le RDF $dossier.ttl$ en utilisant le SHACL shacl.ttl:
python shacl.py dossier.ttl shacl.ttl