

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : C08F 4/646		A1	(11) International Publication Number: WO 94/14856
			(43) International Publication Date: 7 July 1994 (07.07.94)
<p>(21) International Application Number: PCT/US93/12084</p> <p>(22) International Filing Date: 13 December 1993 (13.12.93)</p> <p>(30) Priority Data: 997,421 28 December 1992 (28.12.92) US</p> <p>(71) Applicant: MOBIL OIL CORPORATION [US/US]; 3225 Gallows Road, Fairfax, VA 22037-0001 (US).</p> <p>(72) Inventors: LO, Frederick, Yip-Kwai; P.O. Box 752, Edison, NJ 08818 (US). NOWLIN, Thomas, Edward; 7 Perrine Path, Cranbury, NJ 08512 (US). SHINOMOTO, Ronald, Steven; 406 Rivendell Way, Edison, NJ 08817 (US). SHIRODKAR, Pradeep, Pandurang; 52 Johnson Road, Somerset, NJ 08873 (US).</p> <p>(74) Agents: SUNG, Tak, K. et al.; Mobil Oil Corporation, 3225 Gallows Road, Fairfax, VA 22037-0001 (US).</p>		<p>(81) Designated States: AU, CA, JP, KR, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).</p> <p>Published With international search report.</p>	
<p>(54) Title: A PROCESS FOR FORMING A CARRIER MATERIAL</p> <p>(57) Abstract</p> <p>A support containing methylaluminoxane and derivatives thereof is formed by an incipient impregnation of a silica support so that the solution of the aluminoxane fills the pores in the support with no solution left out. The supported aluminoxane eliminates the problem of fluid bed reactor fouling during gas phase polymerization of olefins in the presence of added metallocenes. The fluid bed reactor (10) is a vertical enclosure with a reaction zone (12), comprising a bed of growing polymer particles and a minor amount of catalyst particles fluidized by the continuous flow of polymerizable and modifying gaseous components, a velocity reduction zone (14), where entrained particles are given opportunity to drop back into the fluidized bed, and a distributor plate (20). The unreacted gas passes through a cyclone separator (22), a filter (24), a compressor (25) and a heat exchanger (26). The distribution plate (20) serves the purpose of diffusing recycle gas through the bed at a rate sufficient to maintain fluidization.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgyzstan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	L1	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LU	Luxembourg	TD	Chad
CS	Czechoslovakia	LV	Latvia	TG	Togo
CZ	Czech Republic	MC	Monaco	TJ	Tajikistan
DE	Germany	MD	Republic of Moldova	TT	Trinidad and Tobago
DK	Denmark	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	US	United States of America
FI	Finland	MN	Mongolia	UZ	Uzbekistan
FR	France			VN	Viet Nam
GA	Gabon				

-1-

A PROCESS FOR FORMING A CARRIER MATERIAL

The invention relates to a process for forming a carrier material. The invention is particularly concerned with 5 improvements in low pressure fluid bed gas phase systems for the polymerization and copolymerization of ethylene, undertaken in the presence of catalysts comprising metallocenes of transition metals. The invention aims to eliminate reactor fouling and to maintaining the continuous operation of the distributor plate 10 in the fluid bed gas phase reactor undertaken in the presence of catalysts comprising metallocenes of transition metals.

Polyethylene is produced commercially in a gas phase reaction in the absence of solvents by employing selected chromium and titanium-containing catalysts under specific 15 operating conditions in a fluid bed process. The products of the early production processes exhibited medium-to-broad molecular weight distribution. To be commercially useful in the gas phase fluid bed process, the catalyst must exhibit high activity, with concomitant high catalyst productivity, because 20 gas phase process systems do not include catalyst residue removal procedures. Accordingly, catalyst residue in the polymer product must be so small that it can be left in the polymer without causing any undue problems in the fabrication and/or to the ultimate consumer. To this end, the patent 25 literature is replete with developments of new catalysts, of high activity, with corresponding high productivity values.

The use of metallocene compounds of transition metals as catalysts for polymerization and copolymerization of ethylene is one of those developments. Metallocenes can be described by 30 the empirical formula $Cp_mMA_nB_p$. These compounds in combination with methylalumoxane (MAO) have been used to produce olefin polymers and copolymers, such as ethylene and propylene homopolymers, ethylene-butene and ethylene-hexene copolymers, e.g., see US-A-4542199 and US-A-4404344. Unlike traditional 35 titanium- and vanadium-based Ziegler-Natta catalysts, a metallocene, e.g. a zirconocene catalyst, free of titanium- and vanadium-components produce resins with very narrow molecular

-2-

weight distributions (determined as MFR(I_{21}/I_2) of 15 to 18, versus MFR of 25 to 30 for titanium-based catalysts) and with homogeneous short-chain branching distributions.

When traditional titanium-based and vanadium-based catalysts are used to copolymerize ethylene and higher alpha-olefins, the olefin is incorporated in polymer chains nonuniformly, and most of the olefin resides in the shortest polymer chains. With zirconocene catalyst, however, the branching distribution is essentially independent of chain length. LLDPE resins produced with zirconocene catalysts have superior properties. These resins can be used to make films with significantly better clarity and impact strength. Extractables of such resins are lower and the balance of properties in the films between the machine and transverse directions is excellent.

More recently, as exemplified in US-A-5032562, metallocene catalysts containing a second transition metal, such as titanium have been developed which produce bimodal molecular weight distribution products, having a high molecular weight component and a relatively lower molecular weight component. The development of a catalyst which can produce bimodal products in a single reactor is significant per se. That development also provides a commercial alternative to processes which require two reactors to produce bimodal production with production of one of the molecular weight components in a first reactor and transfer of that component to a second reactor and completion of the polymerization with production of the other component of different molecular weight.

Methylalumoxane (MAO) is used as co-catalyst with metallocene catalysts. The class of alumoxanes comprises oligomeric linear and/or cyclic alkylalumoxanes represented by the formula:

wherein n is 1-40, preferably 10-20, m is 3-40, preferably 3-20 and R is a C₁-C₈ alkyl group and preferably methyl.

Methylalumoxane is commonly produced by reacting

-3-

trimethylaluminum with water or with hydrated inorganic salts, such as CuSO₄.5H₂O or Al₂(SO₄)₃.5H₂O. Methylalumoxane can be also generated in situ in polymerization reactors by adding to them trimethylaluminum and water or water-containing inorganic salts.

5 MAO is a mixture of oligomers with a very wide distribution of molecular weights and usually with an average molecular weight of about 1200. MAO is typically kept in solution in toluene. While the MAO solutions remain liquid at fluid bed reactor temperatures, the MAO itself is a solid at room temperature.

10 Most of the experiments reported in the literature relating to methylalumoxane used as a cocatalyst with metallocene catalysts are undertaken in a slurry or solution process, rather than in a gas phase fluid bed reactor process.

It was found that the metallocene catalyst must contact the
15 MAO cocatalyst while MAO is in solution in order for the catalyst to be activated in the fluid bed reactor. Moreover, it was discovered that extensive reactor fouling results when MAO solutions are fed directly into the gas phase reactor in large enough quantities to provide this liquid contact. The
20 fouling occurs because the MAO solution forms a liquid film on the interior walls of the reactor.

The catalyst is activated when it comes into contact with this liquid film, and the activated catalyst reacts with ethylene to form a polymer coating which grows larger in size
25 until the reactor is fouled. In addition, since substantially all of the activation takes place on the walls, the MAO is not uniformly distributed to the catalyst particles. The resulting non-homogeneous polymerization gives low catalyst activity and poor product properties.

30 The problems invoked by the use of an alumoxane, particularly methylalumoxane, in catalyst production are addressed by a process for forming a carrier material impregnated with alumoxane and derivatives thereof, comprising

(1) providing silica which is porous and has a particle
35 size of 1 to 200 microns, having pores which have an average diameter of 50 to 500 Angstroms and having a pore volume of 0.5 to 5.0 cc/g;

-4-

(2) providing a volume of a solution comprising alumoxane of formula (a) or (b)

wherein (a) is $R-(Al(R)-O)_n-AlR_2$ for oligomeric, linear alumoxanes and (b) is $(-Al(R)-O-)_m$ for 5 oligomeric cyclic alumoxane wherein n is 1-40, m is 3-40, and R is a C₁-C₈ alkyl group and a solvent for said alumoxane, wherein the volume of solution ranges from less than the pore volume of the silica up to a maximum volume of solution which is equal to the pore volume of 10 the silica, wherein the concentration of alumoxane, expressed as Al weight percent is 5 to 20;

wherein the methylalumoxane provides aluminum in an amount sufficient to provide a molar ratio of Al to silica (wt/wt) from 0.10 to 0.40;

15 (3) contacting the silica with said volume of said solution and allowing the solution to impregnate the pores of silica, having a pore volume of 0.5 to 5.0 cc/g, containing methylalumoxane within said pores, without forming a slurry of the silica in the solvent;

20 (4) after said contacting, recovering dry particles of silica impregnated with solid alumoxane.

Advantageously the alumoxane is methylalumoxane.

Preferably the process further comprises heating the dry 25 particles to remove solvent from the pores, under temperature conditions effective to prevent crosslinking of the alumoxane.

Desirably the temperature ranges from above 30°C to below 60°C.

At least one metallocene compound is preferably added to said volume of solution prior to the contacting of step (3), said 30 metallocene being of the formula: Cp_mMA_nB_p wherein

Cp is a cyclopentadienyl or a substituted cyclopentadienyl group;

m is 1 or 2;

M is zirconium or hafnium; and

35 each of A and B is selected from the group consisting of a halogen atom, a hydrogen atom and an alkyl group, providing that m+n+p is equal to the valence of the metal

-5-

M; wherein the metallocene compound is admixed with an amount of a methylalumoxane effective to activate the metallocene compound to form a catalyst.

The metallocene compound may be selected from the group consisting of bis(cyclopentadienyl)metal dihalides, bis(cyclopenta-dienyl)metal hydridohalides, bis(cyclopentadienyl)metal monoalkyl monohalides, bis(cyclopentadienyl)metal dialkyls and bis(indenyl)metal dihalides, wherein the halide groups are chlorine and the alkyl groups are C₁-C₆ alkyls.

More preferably the metallocene compound is selected from the group consisting of bis(cyclopentadienyl)zirconium dichloride, bis(cyclopentadienyl)hafnium dichloride, bis(cyclopentadienyl)zirconium dimethyl, bis(cyclopentadienyl)hafnium dimethyl, bis(cyclopentadienyl)zirconium hydridochloride, bis(cyclopentadienyl)hafnium hydridochloride, bis(pentamethylcyclopentadienyl)zirconium dichloride, bis(pentamethylcyclopentadienyl)hafnium dichloride, bis(n-butylcyclopentadienyl)zirconium dichloride, cyclopentadienyl-zirconium trichloride, bis(indenyl)zirconium dichloride, bis(4,5,6,7-tetrahydro-1-indenyl)zirconium dichloride, and ethylene-[bis(4,5,6,7-tetrahydro-1-indenyl)] zirconium dichloride

It is preferred that the solution has a composition which provides a molar ratio of alumoxane, expressed as aluminum, to metallocene ranging from 50 to 500.

The dry particles preferably exceed a particle size of 1 micron.

The dry particles are preferably sieved to isolate dry particles characterized by a particle size of 1-200 microns.

The silica preferably contains reactive hydroxyl groups in an amount ranging from 0.1 to 3.0 mmols/g carrier, and preferably the reactive hydroxyl groups are reacted, prior to said contacting of step (3), with an organomagnesium compound, so that the Mg:OH molar ratio ranges from 0.9:1 to 4:1 wherein the organomagnesium compound has the formula R''_m Mg R' _n

-6-

where R" and R' are the same or different C₂-C₈ alkyl groups, and m and n are each 0, 1 or 2, providing that m + n is equal to the valence of Mg; and, after the reactive hydroxyl groups are reacted but prior to said contacting of step (3), a non-
5 metallocene transition metal is preferably added to the slurry.

Both R" and R' are suitably n-butyl groups.

The non-metallocene compound is preferably a tetravalent titanium compound, which is desirably provided in an amount which is sufficient to provide a metallocene:Ti ratio of 0.01
10 to 0.50.

According to another aspect of the invention there is provided a composition produced by the process as described above.

According to a further aspect of the invention there is
15 provided a fluid bed gas phase reactor process for producing resins, under polymerization conditions effective to form said resins comprising pressures ranging from 100 to 350 psi (690 to 2400 KPa), at temperatures ranging from 30°C to 115°C, in the presence of a catalyst, wherein the catalyst comprises an
20 alumoxane, and wherein the fluidized bed comprises a composition as described above, said process comprising introducing a feed polymerizable to form said resins; and introducing as cocatalyst a monomeric trialkylaluminum, free of oligomeric or polymeric reaction products of trialkylaluminum
25 and water.

Reference is now made to the accompanying drawings, in which:

Figure 1 is a schematic drawing of a fluid bed reactor for gas phase polymerization of ethylene.

30 Figure 2 is a gel permeation chromatograph of the product of Example 2.

Figure 3 is a gel permeation chromatograph of a bimodal product produced in two reactors.

Figure 4 is a gel permeation chromatograph of the product
35 of Example 4.

Ethylene polymers, as well as copolymers of ethylene with one or more C₃-C₁₀ alpha-olefins, can be produced in accordance

-7-

with the invention. Thus, copolymers having two monomeric units are possible as well as terpolymers having three monomeric units. Particular examples of such polymers include ethylene/1-butene copolymers, ethylene/1-hexene copolymers and ethylene/4-5 methyl-1-pentene copolymers.

Hydrogen may be used as a chain transfer agent in the polymerization reaction of the present invention. The ratio of hydrogen/ethylene employed will vary between about 0 to about 2.0 moles of hydrogen per mole of ethylene in the gas phase.
10 Any gas inert to the catalyst and reactants can also be present in the gas stream.

Ethylene/1-butene and ethylene/1-hexene copolymers are the most preferred copolymers polymerized in the process of and with the catalyst of this invention. The ethylene copolymers produced
15 in accordance with the present invention preferably contain at least about 80 percent by weight of ethylene units. The cocatalyst of this invention can also be used with the catalyst precursor of this invention to polymerize propylene and other alpha-olefins and to copolymerize them. The structure of alpha-
20 olefin polymers prepared with the cocatalyst and the catalyst precursor of this invention depends on the structure of the cyclopentadienyl ligands attached to the metal atom in the catalyst precursor molecule. The cocatalyst compositions of this
25 invention can also be used with the catalyst precursors of this invention to polymerize cyclo-olefins such as cyclopentene.

In one embodiment, the catalyst used in the invention exhibits high activity for polymerization of ethylene and higher alpha-olefins and allows the synthesis of ethylene polymers and copolymers with a relatively narrow molecular weight distribution and homogeneous branching distribution. The catalyst used in the invention exhibits high activity for copolymerization of ethylene and higher alpha-olefins and allows the synthesis of linear low density polyethylene with a relatively narrow molecular weight distribution and homogeneous
30 branching distribution. The molecular weight distribution is determined as MFR which ranges from 15 to 25. Branching distribution in ethylene copolymers is evaluated on the basis
35

-8-

of the resin's melting point. Relatively homogeneous branching distribution is one which the melting point ranges from 100 to 120°C, depending on comonomer composition. In this embodiment, the catalyst of the invention contains only one source of 5 transition metal, a metallocene.

In another embodiment of the invention, the catalyst of the invention exhibits high activity for polymerization of ethylene and higher alpha-olefins and allows the synthesis of ethylene polymers and copolymers with a broad molecular weight 10 distribution and generally, bimodal molecular weight distribution with a relatively high molecular weight component and with a relatively lower molecular weight component in the resin blend. The molecular weight distribution of the bimodal resin, expressed as MFR, is about 110 to about 140. In this 15 embodiment, the catalyst of the invention comprises two transition metal compounds, only one of the transition metal compounds being a metallocene.

In another embodiment of the invention the catalyst used in the invention exhibits high activity for copolymerization of 20 ethylene and higher alpha-olefins and allows the synthesis of linear low density polyethylene with a relatively narrow molecular weight distribution and homogeneous branching distribution. The molecular weight distribution is determined as MFR which ranges from 14 to 24. In this embodiment, the 25 catalyst of the invention contains only one source of transition metal, a metallocene.

The Fluid Bed Reactor

A fluidized bed reaction system which can be used in the 30 practice of the process according to one aspect of the invention is shown in Fig. 1. With reference thereto, the reactor 10 consists of a reaction zone 12, a velocity reduction zone 14 and the distributor plate 20. Although fouling can occur in all of the cold areas (areas in a reactor at a temperature which is 35 less than the temperature at which any component, in the gas phase reactor is liquid rather than gaseous) distributor plate fouling is the one most easily detected, since it results in a

-9-

rapid increase in the pressure drop across the distributor plate due to flow restriction. Such flow restrictions also result in changing fluidization patterns and contribute to reactor wall fouling. The lowest temperature in the reactor loop is in the 5 reactor inlet beneath the distributor plate. Other areas representing the coldest sections in the fluid bed reactor system include the cooler and piping between the cooler and the bottom head.

The reaction zone 12 comprises a bed of growing polymer 10 particles and a minor amount of catalyst particles fluidized by the continuous flow of polymerizable and modifying gaseous components. To maintain a viable fluidized bed, the mass gas flow rate through the bed must be above the minimum flow required for fluidization, and preferably from about 1.5 to 15 about 10 times G_{mf} and more preferably from about 3 to about 6 times G_{mf} . G_{mf} is used in the accepted form as the abbreviation for the minimum mass gas flow required to achieve fluidization, C. Y. Wen and Y. H. Yu, "Mechanics of Fluidization", Chemical Engineering Progress Symposium Series, Vol. 62, p. 100-111 20 (1966). The distribution plate 20 serves the purpose of diffusing recycle gas through the bed at a rate sufficient to maintain fluidization at the base of the bed. Fluidization is achieved by a high rate of gas recycle to and through the bed, typically in the order of about 50 times the rate of feed of 25 make-up gas.

Make-up gas is fed to the bed at a rate equal to the rate at which particulate polymer product is formed by reaction. The composition of the make-up gas is determined by a gas analyzer 16 positioned above the bed. The composition of the make-up gas 30 is continuously adjusted to maintain an essentially steady state gaseous composition within the reaction zone.

The portion of the gas stream which does not react in the bed (the recycle gas) passes a velocity reduction zone 14 where entrained particles are given an opportunity to drop back into 35 the bed. The unreacted gas stream then passes through a cyclone 22, through a filter 24, through a compressor 25, through a heat exchanger 26, and is then returned to the bed. The distribution

-10-

plate 20 serves the purpose of diffusing recycle gas through the bed at a rate sufficient to maintain fluidization. The plate may be a screen, slotted plate, perforated plate, a plate of the bubble cap type, and the like. The elements of the plate may 5 all be stationary, or the plate may be of the mobile type disclosed in US-A-3298792.

Conditions in the fluid bed reactor for the gas phase polymerization and copolymerization of ethylene

10 It is essential to operate the fluid bed reactor at a temperature below the sintering temperature of the polymer particles. For the production of ethylene copolymers in the process of the present invention an operating temperature of about 30°C to 115°C is preferred, and a temperature of about 15 75°C to 95°C is most preferred. Temperatures of about 75°C to 90°C are used to prepare products having a density of about 0.91 to 0.92, and temperatures of about 80°C to 100°C are used to prepare products having a density of about 0.92 to 0.94, and temperatures of about 90°C to 115°C are used to prepare products 20 having a density of about 0.94 to 0.96.

The fluid bed reactor is operated at pressures of up to about 1000 psi (6.9 MPa), and is preferably operated at a pressure of from about 150 to 350 psi (1 Mpa to 2.4 MPa), with operation at the higher pressures in such ranges favoring heat 25 transfer since an increase in pressure increases the unit volume heat capacity of the gas.

The partially or completely activated catalyst is injected into the bed at a point above the distribution plate at a rate equal to its consumption. Since the catalysts used in the 30 practice of this invention are highly active, injection of the fully activated catalyst into the area below the distribution plate may cause polymerization to begin there and eventually cause plugging of the distribution plate. Injection into the bed, instead, aids in distributing the catalyst throughout the 35 bed and precludes the formation of localized spots of high catalyst concentration.

The production rate of polymer in the bed is controlled by

-11-

the rate of catalyst injection. Since any change in the rate of catalyst injection changes the rate of generation of the heat of reaction, the temperature of the recycle gas is adjusted to accommodate the change in rate of heat generation. Complete instrumentation of both the fluidized bed and the recycle gas cooling system is, of course, necessary to detect any temperature change in the bed so as to enable the operator to make a suitable adjustment in the temperature of the recycle gas.

10 Since the rate of heat generation is directly related to product formation, a measurement of the temperature rise of the gas across the reactor (the difference between inlet gas temperature and exit gas temperature) is determinative of the rate of particulate polymer formation at a constant gas
15 velocity.

Under a given set of operating conditions, the fluidized bed is maintained at essentially a constant height by withdrawing a portion of the bed as product at a rate equal to the rate of formation of the particulate polymer product.

20

Catalyst Composition

Catalysts which contain only one transition metal in the form of a metallocene have an activity of at least about 3,000 g polymer/g catalyst or about 1,000 kg polymer/g transition
25 metal. Catalysts which contain two transition metals, one in the form of a metallocene and one transition metal in the form of a non-metallocene, have an activity of at least about 2,000 g polymer/g catalyst or about 100 kg polymer/g of transition metals.

30 The catalysts used in the invention comprise a cocatalyst comprising an aluminum alkyl compound, such as a trialkyl aluminum free of alumoxane, and a catalyst precursor comprising a carrier, an alumoxane and at least one metallocene; in one embodiment the catalysts further include a non-metallocene
35 transition metal source.

The carrier material is a solid, particulate, porous, preferably inorganic material, such as an oxide of silicon

-12-

and/or of aluminum. The carrier material is preferably used in the form of a dry powder having an average particle size of from about 1 micron to about 250 microns, preferably about 1 to 200 microns, more preferably from about 10 microns to about 150 microns. If necessary, the treated carrier material may be sieved to ensure that the particles of the ultimate carrier-catalyst containing composition has material is also porous and has a mesh size of greater than 150 mesh. This is highly desirable in the embodiment of the invention, in which the catalyst contains only one transition metal in the form of a metallocene and which is used to form narrow molecular weight LLDPE, to reduce gels.

The surface area of the carrier may be at least about 3 m²/g, and preferably is at least about 50 m²/g up to about 350 m²/g. The carrier material should preferably be dry, that is, free of absorbed water. Drying of the carrier material can be effected by heating at about 100°C to about 1000°C, preferably at about 600°C. When the carrier is silica, it is heated to at least 200°C, preferably about 200°C to about 850°C and most preferably at about 600°C.

In the most preferred embodiment, the carrier is silica (with at least some active hydroxyl groups) which, prior to the use thereof in the first catalyst synthesis step, has been dehydrated by fluidizing it with nitrogen and heating at about 600°C for about 16 hours to achieve a surface hydroxyl group concentration of about 0.7 millimoles per gram (mmols/g). The silica of the most preferred embodiment is a high surface area, amorphous silica (surface area = 300 m²/g; pore volume of 1.65 cm³/g), and it is a material marketed under the tradenames of Davison 952 or Davison 955 by the Davison Chemical Division of W.R. Grace and Company. The silica is in the form of spherical particles, e.g., as obtained by a spray-drying process.

To form catalysts of the invention, all catalyst precursor components can be dissolved with alumoxane and impregnated into the carrier. In a unique process, the carrier material is impregnated with a solid alumoxane, preferably methylalumoxane, in a process described below. The class of alumoxanes comprises

-13-

oligomeric linear and/or cyclic alkylalumoxanes represented by the formula:

R-(Al(R)-O)_n-AlR₂ for oligomeric, linear alumoxanes and
(-Al(R)-O-)_m for oligomeric cyclic alumoxane

5 wherein n is 1-40, preferably 10-20, m is 3-40, preferably 3-20 and R is a C₁-C₈ alkyl group and preferably methyl. MAO is a mixture of oligomers with a very wide distribution of molecular weights and usually with an average molecular weight of about 1200. MAO is typically kept in solution in toluene. While the
10 MAO solutions remain liquid at fluid bed reactor temperatures, the MAO itself is a solid.

Although the alumoxane can be impregnated into the carrier at any stage of the process of catalyst preparation, the preferred stage of alumoxane incorporation will depend on the
15 ultimate catalyst sought to be synthesized. The volume of the solution comprising a solid alumoxane and a solvent therefor can vary, depending on the catalyst sought to be produced. In a preferred embodiment, one of the controlling factors in the alumoxane incorporation into the carrier material catalyst
20 synthesis is the pore volume of the silica. In this preferred embodiment, the process of impregnating the carrier material is by infusion of the alumoxane solution, without forming a slurry of the carrier material, such as silica, in the alumoxane solution. The volume of the solution of the alumoxane is
25 sufficient to fill the pores of the carrier material without forming a slurry in which the volume of the solution exceeds the pore volume of the silica; accordingly and preferably, the maximum volume of the alumoxane solution is, does not exceed, the total pore volume of the carrier material sample. That
30 maximum volume of the alumoxane solution ensures that no slurry of silica is formed.

Accordingly, if the pore volume of the carrier material is 1.65 cm³/g, then the volume of alumoxane will be equal to or less than 1.65 cm³/g of carrier material. As a result of this
35 proviso, the impregnated carrier material will appear dry immediately following impregnation although the pores of the carrier will be filled with inter alia solvent.

-14-

Solvent may be removed from the alumoxane impregnated pores of the carrier material by heating and/or under a positive pressure induced by an inert gas, such as nitrogen. If employed, the conditions in this step are controlled to reduce, 5 if not to eliminate, agglomeration of impregnated carrier particles and/or crosslinking of the alumoxane. In this step, solvent can be removed by evaporation effected at relatively low elevated temperatures of above about 40°C and below about 50°C to obviate agglomeration of catalyst particles and crosslinking 10 of the alumoxane. Although solvent can be removed by evaporation at relatively higher temperatures than that defined by the range above about 40°C and below about 50°C, very short heating times schedules must be employed to obviate agglomeration of catalyst particles and crosslinking of the 15 alumoxane.

In a preferred embodiment, the metallocene is added to the solution of the alumoxane prior to impregnating the carrier with the solution. Again the maximum volume of the alumoxane solution also including the metallocene is the total pore volume 20 of the carrier material sample. The mole ratio of alumoxane provided aluminum, expressed as Al, to metallocene metal expressed as M (e.g. Zr), ranges from 50 to 500, preferably 75 to 300, and most preferably 100 to 200. An added advantage of the present invention is that this Al:Zr ratio can be directly 25 controlled. In a preferred embodiment the alumoxane and metallocene compound are mixed together at a temperature of about 20°C to 80°C, for 0.1 to 6.0 hours, prior to use in the infusion step. The solvent for the metallocene and alumoxane can be appropriate solvents, such as aromatic hydrocarbons, 30 halogenated aromatic hydrocarbons, ethers, cyclic ethers or esters, preferably it is toluene.

The metallocene compound has the formula $Cp_mMA_nB_p$ in which Cp is an unsubstituted or substituted cyclopentadienyl group, M is zirconium or hafnium and A and B belong to the group 35 including a halogen atom, hydrogen or an alkyl group. In the above formula of the metallocene compound, the preferred transition metal atom M is zirconium. In the above formula of

-15-

the metallocene compound, the Cp group is an unsubstituted, a mono- or a polysubstituted cyclopentadienyl group. The substituents on the cyclopentadienyl group may be straight-chain C₁-C₆ alkyl groups. The cyclopentadienyl group may also be a 5 part of a bicyclic or a tricyclic moiety such as indenyl, tetrahydroindenyl, fluorenyl or a partially hydrogenated fluorenyl group, as well as a part of a substituted bicyclic or tricyclic moiety. In the case when m in the above formula of the metallocene compound is equal to 2, the cyclopentadienyl groups 10 can be also bridged by polymethylene or dialkylsilane groups, such as -CH₂-, -CH₂-CH₂-, -CR₁R₂- and -CR₁R₂-CR₁R₂- where R₁ and R₂ are short alkyl groups or hydrogen, -Si(CH₃)₂-, Si(CH₃)₂-CH₂-CH₂-Si(CH₃)₂- and similar bridge groups. If the A and B 15 substituents in the above formula of the metallocene compound are halogen atoms, they belong to the group of fluorine, chlorine, bromine or iodine. If the substituents A and B in the above formula of the metallocene compound are alkyl groups, they are preferably straight-chain or branched C₁-C₈ alkyl groups, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, 20 n-pentyl, n-hexyl or n-octyl.

Suitable metallocene compounds include bis(cyclopentadienyl)metal dihalides, bis(cyclopentadienyl)metal hydridohalides, bis(cyclopentadienyl)metal monoalkyl monohalides, bis(cyclopentadienyl)metal dialkyls and 25 bis(indenyl)metal dihalides wherein the metal is zirconium or hafnium, halide groups are preferably chlorine and the alkyl groups are C₁-C₆ alkyls. Illustrative, but non-limiting examples of metallocenes include bis(cyclopentadienyl)zirconium dichloride, bis(cyclopentadienyl)hafnium dichloride, 30 bis(cyclopentadienyl)zirconium dimethyl, bis(cyclopentadienyl)hafnium dimethyl, bis(cyclopentadienyl)zirconium hydridochloride, bis(cyclopentadienyl)hafnium hydridochloride, bis(pentamethylcyclopentadienyl)zirconium dichloride, 35 bis(pentamethylcyclopentadienyl)hafnium dichloride, bis(n-butylcyclopentadienyl)zirconium dichloride, cyclopentadienyl-zirconium trichloride, bis(indenyl)zirconium dichloride,

-16-

bis(4,5,6,7-tetrahydro-1-indenyl)zirconium dichloride, and ethylene-[bis(4,5,6,7-tetrahydro-1-indenyl)] zirconium dichloride.

The metallocene compounds utilized within the embodiment 5 of this art can be used as crystalline solids, as solutions in aromatic hydrocarbons or in a supported form.

As stated above, the alumoxane can be impregnated into the carrier at any stage of the process of catalyst preparation. When the catalyst contains two transition metals components, one 10 of which is a metallocene, and one of which is non-metallocene (free of unsubstituted or substituted cyclopentadienyl groups) the impregnation of the alumoxane in accordance with the unique method described above is preferably undertaken after hydroxyl groups of the carrier material are reacted with an 15 organomagnesium compound and the non-metallocene transition metal compound. In this embodiment, the amount of Al, provided by alumoxane, is sufficient to provide an Al:transition metal (provided by metallocene) mole ratio ranging from 50 to 500, preferably 100 to 300. The carrier material, having said (OH) 20 groups, is slurried in a non-polar solvent and the resulting slurry is contacted with at least one organomagnesium composition having the empirical formula below. The slurry of the carrier material in the solvent is prepared by introducing the carrier into the solvent, preferably while stirring, and 25 heating the mixture to about 25°C to about 70°C, preferably to about 40°C to about 60°C. Temperatures here are critical with respect to the non-metallocene transition metal which is subsequently added; that is temperatures in this slurry of about 90°C result in deactivation of the transition metal added 30 subsequently. The slurry is then contacted with the aforementioned organomagnesium composition, while the heating is continued at the aforementioned temperature.

The organomagnesium composition has the empirical formula

35 where R'' and R' are the same or different C₂-C₁₂ alkyl groups, preferably C₄-C₁₀ alkyl groups, more preferably C₄-C₈ normal alkyl groups, and most preferably both R'' and R' are n-butyl

-17-

groups, and m and n are each 0, 1 or 2, providing that m + n is equal to the valence of Mg.

Suitable non-polar solvents are materials in which all of the reactants used herein, i.e., the organomagnesium composition, and the transition metal compound, are at least partially soluble and which are liquid at reaction temperatures. Preferred non-polar solvents are alkanes, such as hexane, n-heptane, octane, nonane, and decane, although a variety of other materials including cycloalkanes, such as cyclohexane, aromatics, such as benzene, toluene and ethylbenzene, may also be employed. The most preferred non-polar solvent is cyclopentane. Prior to use, the non-polar solvent should be purified, such as by percolation through silica gel and/or molecular sieves, to remove traces of water, oxygen, polar compounds, and other materials capable of adversely affecting catalyst activity.

In the most preferred embodiment of the synthesis of this catalyst it is important to add only such an amount of the organomagnesium composition that will be deposited - physically or chemically - onto the support since any excess of the organomagnesium composition in the solution may react with other synthesis chemicals and precipitate outside of the support. The carrier drying temperature affects the number of sites on the carrier available for the organomagnesium composition - the higher the drying temperature the lower the number of sites. Thus, the exact molar ratio of the organomagnesium composition to the hydroxyl groups on the carrier will vary and must be determined on a case-by-case basis to assure that only so much of the organomagnesium composition is added to the solution as will be deposited onto the support without leaving any excess of the organomagnesium composition in the solution.

Furthermore, it is believed that the molar amount of the organomagnesium composition deposited onto the support is greater than the molar content of the hydroxyl groups on the support. Thus, the molar ratios given below are intended only as an approximate guideline and the exact amount of the organomagnesium composition in this embodiment must be

-18-

controlled by the functional limitation discussed above, i.e., it must not be greater than that which can be deposited onto the support. If greater than that amount is added to the solvent, the excess may react with the non-metallocene transition metal 5 compound, thereby forming a precipitate outside of the support which is detrimental in the synthesis of our catalyst and must be avoided. The amount of the organomagnesium composition which is not greater than that deposited onto the support can be determined in any conventional manner, e.g., by adding the 10 organomagnesium composition to the slurry of the carrier in the solvent, while stirring the slurry, until the organomagnesium composition is detected as a solution in the solvent.

For example, for the silica carrier heated at about 600°C, the amount of the organomagnesium composition added to the 15 slurry is such that the molar ratio of Mg to the hydroxyl groups (OH) on the solid carrier is about 0.5:1 to about 4:1, preferably about 0.8:1 to about 3:1, more preferably about 0.9:1 to about 2:1 and most preferably about 1:1. The organomagnesium composition dissolves in the non-polar solvent to form a 20 solution from which the organomagnesium composition is deposited onto the carrier.

It is also possible to add such an amount of the organomagnesium composition which is in excess of that which will be deposited onto the support, and then remove, e.g., by 25 filtration and washing, any excess of the organomagnesium composition. However, this alternative is less desirable than the most preferred embodiment described above.

After the addition of the organomagnesium composition to the slurry is completed, the slurry is contacted with a non- 30 metallocene transition metal compound, free of substituted or unsubstituted cyclopentadienyl groups. The slurry temperature must be maintained at about 25°C to about 70°C, preferably to about 40°C to about 60°C. As noted above, temperatures in this 35 slurry of about 80°C or greater result in deactivation of the non-metallocene transition metal. Suitable non-metallocene transition metal compounds used herein are compounds of metals of Groups IVA, and VA, of the Periodic Chart of the Elements,

-19-

as published by the Fisher Scientific Company, Catalog No. 5-702-10, 1978, providing that such compounds are soluble in the non-polar solvents. Non-limiting examples of such compounds are titanium and vanadium halides, e.g., titanium tetrachloride, 5 $TiCl_4$, vanadium tetrachloride, VCl_4 , vanadium oxytrichloride, $VOCl_3$, titanium and vanadium alkoxides, wherein the alkoxide moiety has a branched or unbranched alkyl radical of 1 to about 20 carbon atoms, preferably 1 to about 6 carbon atoms. The preferred transition metal compounds are titanium compounds, 10 preferably tetravalent titanium compounds. The most preferred titanium compound is titanium tetrachloride. The amount of titanium or vanadium, in non-metallocene form ranges from a Ti/Mg molar ratio of 0.5 to 2.0, preferably from 0.75 to 1.50.

Mixtures of such non-metallocene transition metal compounds 15 may also be used and generally no restrictions are imposed on the transition metal compounds which may be included. Any transition metal compound that may be used alone may also be used in conjunction with other transition metal compounds.

Incorporation of the alumoxane-metallocene can be directly 20 to this slurry. Alternatively, and in accordance with the unique method of infusion of alumoxane into the pores of the carrier, described above, the carrier slurry can be stripped of solvent, after the addition of the non-metallocene transition metal compound, to form a free-flowing powder. The free flowing 25 powder can then be impregnated by determining the pore volume of the carrier and providing an alumoxane (or metallocene-alumoxane) solution in a volume equal to or less than that of the pore volume of the carrier, and recovering a dry catalyst precursor. The resulting free-flowing powder, referred to 30 herein as a catalyst precursor, is combined with an activator (sometimes referred as a cocatalyst). The cocatalyst can be a trialkylaluminum, free of alumoxane. Preferably, trimethylaluminum (TMA) is the cocatalyst or activator. The amount of the TMA activator is sufficient to give an Al:Ti molar 35 ratio of about 10:1 to about 1000:1, preferably about 15:1 to about 300:1, and most preferably about 20:1 to about 100:1. The catalyst exhibits high activity for long periods of time in the

-20-

pilot plant, and exhibits little deactivation.

The catalyst precursor of this invention comprises a metallocene compound and an alumoxane which is fed to the fluid bed reactor for gas phase polymerizations and copolymerizations 5 of ethylene in particulate form. The cocatalyst or activator is fed to the fluid bed reactor for polymerizations and copolymerizations of ethylene in the absence of alumoxane solution.

The invention will now be exemplified by way of the 10 following examples.

Example 1

The titanium component of the catalyst was prepared using a chemical impregnation technique. The zirconium component of 15 the catalyst was prepared using a physical impregnation method. Solution (A): To a 50 ml serum-bottle 0.140 grams of Cp_2ZrCl_2 was transferred and then 10.2 grams of a methylalumoxane (13.2 wt. % Al) solution were added. The solution remained at room temperature for 60 minutes until the entire contents were 20 transferred to the silica slurry described below.

Into a 100ml pear-flask equipped with a magnetic stirring bar, 3.0 grams of Davison 955 silica calcined at 600°C, was added followed by addition of about 20 ml. dry toluene. The flask was placed into a 59°C oil bath. Next, 2.9 ml. of 25 dibutylmagnesium (0.74 mmol/ml) was added to the silica/toluene slurry. The contents of the flask were stirred for 25 minutes. Then, 2.3 mls of a 0.94 molar titanium tetrachloride solution in heptane was added to the flask. The slurry turned a dark brown color and stirring was continued for 25 minutes. Finally, 30 the entire contents of solution (A) was transferred into the catalyst preparation flask, and the slurry was allowed to stir for 10 minutes. After this time, all solvents were removed by evaporation under a nitrogen purge. Catalyst yield was 5.6 grams of a dark-brown free-flowing powder. The Al/Zr ratio was 35 104.

-21-

Example 2

Ethylene/1-hexene copolymer was prepared with the catalyst of the foregoing example under polymerization conditions to produce high density polyethylene (HDPE), with a flow index 5 (I_{21}) of about 6.

A 1.6 liter stainless steel autoclave, at about 50°C, was filled with 0.750 liters of dry heptane, 0.030 liters of dry 1-hexene and 4.0 mmols of trimethylaluminum (TMA) while under a slow nitrogen purge. The reactor was closed, the stirring rate 10 was set at about 900 rpm, the internal temperature was increased to 85°C, and the internal pressure was raised from 7 psi to 10 psi (48 KPa to 69 KPa) with hydrogen. Ethylene was introduced to maintain the reactor pressure at about 203 psi (1.4 MPa). Next, 0.0639 grams of catalyst was introduced into the reactor 15 with ethylene over pressure and the temperature was increased and held at 95°C. The polymerization was continued for 60 minutes, and then the ethylene supply was stopped and the reactor allowed to cool to room temperature. 78 grams of polyethylene were collected.

20 The molecular weight distribution (MWD) of the polymer was examined by Gel Permeation Chromatography (GPC), and the results clearly show that the polymer has a bimodal MWD (Figure 2). Figure 3 shows the GPC chromatogram for a HDPE polymer prepared in tandem gas phase reactor. Comparison of the two GPC 25 chromatograms clearly shows that the polymer prepared in a single reactor is essentially the same as the polymer prepared in two tandem reactors.

Presently, commercial samples of HDPE with a bimodal MWD are produced in a tandem reactor process. In that process, two 30 reactors are run in series and the catalyst is exposed to ethylene polymerization conditions in one reactor, and the resulting polymer-catalyst particles are transferred to a second reactor for additional polymerization. One of the main process differences in the two different reactors, is that the amount 35 of hydrogen is different in the two different reactors. Relatively lower molecular weight product is produced in the reactor containing more hydrogen, because the hydrogen acts as

-22-

a chain transfer agent; whereas relatively higher molecular weight product is produced in the reactor containing lesser relative amounts of hydrogen.

5 Example 3

This catalyst was prepared in two stages. 495 grams of Davison grade 955 silica, previously calcined with dry nitrogen for about 12 hours at 600°C, was added to a 2 gallon stainless steel autoclave under a slow nitrogen purge to eliminate oxygen 10 and moisture from the catalyst preparation vessel. Then, 4.0 liters of dry isopentane (IC5) was added to the autoclave and the silica/IC5 were slurried at about 100 rpm and the internal temperature was maintained at about 55-60°C. Next, 469 ml of a 0.76 molar solution of dibutylmagnesium in heptane was added 15 to the silica/IC5 slurry and stirring was continued for 60 minutes. Next, 39.1 ml of neat titanium tetrachloride was diluted with about 40 ml of IC5 and this solution was added to the autoclave and stirring was continued for 60 minutes. Finally, the solvents were removed with a nitrogen purge through 20 a vent line and 497 grams of a brown free-flowing powder were obtained. Ti found was 2.62 wt%; Mg found was 1.33 wt% and Ti/Mg molar ratio was 1.0.

492 grams of the product of the first stage was added to a 1.6 gallon glass catalyst preparation vessel fitted with a 25 temperature jacket and an internal stirrer. The product of the first stage had an estimated pore volume of 1.5 cm³/g (i.e. 738 cm³ of pore volume). Then into a stainless steel Hoke bomb was added 13.93 grams of (BuCp)₂ZrCl₂ (34.4 mmol Zr) and 717.5 ml of a methylalumoxane solution (3,444 mmol of Al) in toluene (4.8 30 Molar). Note: The total volume of the methylalumoxane/toluene solution is equal to or less than the total pore volume of the product of the first step. Next, the toluene solution containing the methylalumoxane and the zirconium compound were mixed and then the solution was added to the product of the 35 first step in approximately 5 ml aliquots over 90 minutes; (during this time, the product of the first step remains completely dry and always consists of a free-flowing powder).

-23-

Finally, nitrogen is purged through the glass vessel for about 5 hours with the jacket temperature at about 45°C. Yield: 877 grams of a free-flowing powder. Ti found was 1.85 wt%; Zr found was 0.30 wt%.

5

Example 4

The catalyst described in Example 3 was examined in a pilot plant fluid bed gas phase reactor under the following conditions:

10	ethylene	180 psi (1.2 Mpa)
	hydrogen/ethylene	0.005-0.008
	hexene/ethylene	0.015
	reactor temperature	95°C

15 The resin prepared at a productivity of about 1400 g polymer/g catalyst had the following characteristics:

	average particle size	0.017 inches (0.43 mm)
	resin metal content	13.0 ppm
	HLMI (I21)	5.3
20	MFR (I21/I2.16)	113
	Density	0.949 g/cm ³

The GPC curve of this product is in Figure 4 [solid line] and is compared to a commercially produced tandem unit in a two stage process, in which a different molecular weight component 25 is made in each stage [dotted line in Figure 4.]

Properties of films of the product of Example 4 [solid line in Figure 4] are compared to the commercially produced product [dotted line in Fig. 4] OxyChem L5005.

-24-

<u>Sample</u>	<u>Ti/Zr</u>	<u>OxyChem L5005</u>
I ₂₁	5.3	8.0
MFR	113	160
5 Density	0.949	0.950
Throughput, lb/hr (kg/hr)	98 (44)	120 (54)
Melt Pressure (at 120 lb/hr) psi (MPa)	7550 (52)	6450 (44)
FQR	15	15
10 Dart Drop, 1 mil.g	565	325
0.5 mil.g	410	420
MD Elmendorf Tear, 0.5 mil. g/mil	37	25

15 The results in the GPC curve of Figure 4 show that the Example 4 bimodal product [solid line] has a high molecular weight component with higher molecular weight than that produced in the tandem two reactor process. The film of Example 4 is substantially reduced in, if not free of, gel content. The film
20 of the Example 4 product has improved dart impact.

Comparative Example 1

A zirconium catalyst was tested in a slurry reactor at 85°C with 130 psi (900 KPa) ethylene partial pressure. A
25 hexene/ethylene gas ratio of 0.03 was used. MAO/toluene solution (12 wt.%, 2 ml) was added to the reactor. Productivity of 800 g resin/g catalyst/hr was measured.

The same catalyst system was tested in the fluid bed reactor at 90°C with 200 psi (1.4 MPa) ethylene partial
30 pressure. A 0.025 hexene to ethylene gas ratio was used. A feed rate of 150 to 200 cm³/hr of 2 wt% MAO/toluene solution was employed. The MAO solution was added below the distributor plate. Even at very high MAO/toluene feed rates, catalyst productivity was only 220 g resin/g catalyst/hr. In addition,
35 the reactor had to be shut down due to a fouled plate only 18 hours after the MAO feed was started.

This example illustrates that it is more effective to

-25-

activate zirconium catalysts prior to introduction into a gas phase reactor. It also illustrates the fouling problems experienced when MAO solutions are added to the gas-phase reactor.

5

Comparative Example 2

A titanium/zirconium mixed metal catalyst was tested in the fluid bed reactor. At 150 psi (1 MPa) ethylene partial pressure at 90°C a 0.04 hexene to ethylene gas ratio was employed, and 10 a hydrogen to ethylene gas ratio was 0.045. A 2 wt% solution of MAO in toluene was added beneath the fluid bed distributor plate. Resin flow index and GPC curve analysis showed that the zirconium catalyst sites were active, and the Ti:Zr productivity ratio was 7:3. However, the reactor had to be shut down within 15 24 hours because the distributor plate had fouled.

Comparative Example 3

The same titanium/zirconium catalyst used in Example 2 was tested in the fluid bed reactor. It was run at 90°C with 150 20 psi (1 MPa) ethylene partial pressure. A 0.03 hexene to ethylene gas ratio was used and a hydrogen to ethylene ratio was 0.04. A solution of 2 wt% MAO in toluene was added directly into the bed at the rate of 200 cc/hr. The resin flow index and molecular weight distribution showed definitively that the 25 zirconium sites were active with a Ti:Zr productivity ratio of 3:7. In the process of running this test, though, a very large chunk grew around the injection port causing a shutdown.

This example demonstrates that relative zirconocene catalyst activity is significantly higher when there is better 30 contact between the MAO/toluene droplets and the catalyst sites. It also verifies that fouling also occurs when the MAO solution is added to the reactor directly into the fluid-bed of polymer.

Comparative Example 4

35 The catalyst used in examples 2 and 3 was re-run under the same conditions used in example 3. The MAO feed rate was the same as well. During this test, though, the MAO was dispersed

-26-

into a 10 lb/hr (4.5 Kg/hr) ethylene gas stream using an ultrasonic atomizer. The atomizer dispersed the MAO solution into very small (40 micron) droplets.

Enough gas was used so that the toluene evaporated from the MAO. The gas flow rate was determined in an off-line test using toluene alone. The resin produced during this test showed no evidence of activity from the zirconium sites. In addition, there were no signs of reactor fouling after an extended period of running.

10 This example proves that it is the presence of liquid in the reactor that is responsible both for the activation of the zirconium and the fouling of the reactor.

-27-

Claims

1. A process for forming a carrier material impregnated with alumoxane and derivatives thereof comprising
 - 5 (1) providing silica which is porous and has a particle size of 1 to 200 microns, having pores which have an average diameter of 50 to 500 Angstroms and having a pore volume of 0.5 to 5.0 cc/g;
 - (2) providing a volume of a solution comprising alumoxane
10 of formula (a) or (b)
wherein (a) is $R-(Al(R)-O)_n-AlR_2$ for oligomeric, linear alumoxanes and (b) is $(-Al(R)-O-)_m$ for oligomeric cyclic alumoxane wherein n is 1-40, m is 3-40, and R is a C₁-C₈ alkyl group and
 - 15 a solvent for said alumoxane, wherein the volume of solution ranges from less than the pore volume of the silica up to a maximum volume of solution which is equal to the pore volume of the silica, wherein the concentration of alumoxane, expressed as Al weight percent is 5 to 20;
 - 20 wherein the methylalumoxane provides aluminum in an amount sufficient to provide a molar ratio of Al to silica (wt/wt) from 0.10 to 0.40;
 - (3) contacting the silica with said volume of said solution and allowing the solution to impregnate the pores of silica,
25 having a pore volume of 0.5 to 5.0 cc/g, containing methylalumoxane within said pores, without forming a slurry of the silica in the solvent;
 - (4) after said contacting, recovering dry particles of silica impregnated with solid alumoxane.
- 30 2. A process according to Claim 1, wherein the alumoxane is methylalumoxane.
3. A process according to Claim 1, which further comprises heating the dry particles to remove solvent from the pores, under temperature conditions effective to prevent crosslinking
35 of the alumoxane.
4. A process according to Claim 3, wherein the temperature ranges from above 30°C to below 60°C.

-28-

5. A process according to Claim 1, which further comprises adding, to said volume of solution prior to said contacting, at least one metallocene compound of the formula: $Cp_mMA_nB_p$ wherein
Cp is a cyclopentadienyl or a substituted cyclopentadienyl
5 group;
m is 1 or 2;
M is zirconium or hafnium; and
each of A and B is selected from the group consisting of a halogen atom, a hydrogen atom and an alkyl group,
10 providing that m+n+p is equal to the valence of the metal M; wherein the metallocene compound is admixed with an amount of a methylalumoxane effective to activate the metallocene compound to form a catalyst.
6. A process according to Claim 5, wherein the metallocene compound is selected from the group consisting of bis(cyclopentadienyl)metal dihalides, bis(cyclopentadienyl)metal hydridohalides, bis(cyclopentadienyl)metal monoalkyl monohalides, bis(cyclopentadienyl)metal dialkyls and bis(indenyl)metal dihalides, wherein the halide groups are chlorine and the alkyl groups are C₁-C₆ alkyls.
7. A process according to Claim 6, wherein the metallocene compound is selected from the group consisting of bis(cyclopentadienyl)zirconium dichloride, bis(cyclopentadienyl)hafnium dichloride, bis(cyclopentadienyl)zirconium dimethyl, bis(cyclopentadienyl)hafnium dimethyl, bis(cyclopentadienyl)zirconium hydridochloride, bis(cyclopentadienyl)hafnium hydridochloride, bis(pentamethylcyclopentadienyl)zirconium dichloride, bis(pentamethylcyclopentadienyl)hafnium dichloride, bis(n-butylcyclopentadienyl)zirconium dichloride, cyclopentadienyl-zirconium trichloride, bis(indenyl)zirconium dichloride, bis(4,5,6,7-tetrahydro-1-indenyl)zirconium dichloride, and ethylene-[bis(4,5,6,7-tetrahydro-1-indenyl)] zirconium dichloride
- 35
8. A process according to Claim 7, wherein the solution has a composition which provides a molar ratio of alumoxane,

-29-

expressed as aluminum, to metallocene ranging from 50 to 500.

9. A process according to Claim 1, wherein the dry particles exceed a particle size of 1 micron.

10. A process according to Claim 11, which further comprises 5 sieving the dry particles to isolate dry particles characterized by a particle size of 1-200 microns.

11. A process according to Claim 1, wherein the silica contains reactive hydroxyl groups in an amount ranging from 0.1 to 3.0 mmols/g carrier, and wherein the reactive hydroxyl groups are 10 reacted, prior to said contacting of step (3), with an organomagnesium compound, so that the Mg:OH molar ratio ranges from 0.9:1 to 4:1 wherein the organomagnesium compound has the formula $R''_m Mg R'_n$

where R'' and R' are the same or different C_2-C_8 alkyl groups, 15 and m and n are each 0, 1 or 2, providing that $m + n$ is equal to the valence of Mg; and, after the reactive hydroxyl groups are reacted but prior to said contacting of step (3), adding a non-metallocene transition metal to the slurry.

12. A process according to Claim 11, wherein both R'' and R' are 20 n -butyl groups.

13. A process according to Claim 11, wherein the non-metallocene compound is a tetravalent titanium compound.

14. A process according to Claim 13, wherein the tetravalent titanium compound is provided in an amount which is sufficient 25 to provide a metallocene:Ti ratio of 0.01 to 0.50.

15. A composition produced by the process of claim 1.

16. A fluid bed gas phase reactor process for producing resins, under polymerization conditions effective to form said resins comprising pressures ranging from 100 to 350 psi (690 to 2400 30 KPa), at temperatures ranging from 30°C to 115°C, in the presence of a catalyst, wherein the catalyst comprises an alumoxane, and wherein the fluidized bed comprises a composition according to claim 15, said process comprising introducing a feed polymerizable to form said resins; and 35 introducing as cocatalyst a monomeric trialkylaluminum, free of oligomeric or polymeric reaction products of trialkylaluminum and water.

1/3

Fig.1

SUBSTITUTE SHEET (RULE 26)

2/3

Fig. 2

Fig. 3

SUBSTITUTE SHEET (RULE 26)

3/3

Fig.4

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US93/12084

A. CLASSIFICATION OF SUBJECT MATTER

IPC(S) :C08F 4/646

US CL :502/104,107,113,115,117,120; 526/114,116,160

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 502/104,107,113,115,117,120; 526/114,116,160

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US, A, 4,536,484 (Lacombe et al.) 20 August 1985, all pages	1-16
A	US, A, 4,701,432 (Welborn, Jr.) 20 October 1987, all pages	1-16
A	US, A, 4,874,734 (Kloka et al.) 17 October 1989, all pages	1-16
A	US, A, 4,937,301 (Chang) 26 June 1990, all pages	1-16
A	US, A, 4,937,217 (Chang) 26 June 1990, all pages	1-16
A	US, A, 5,026,797 (Takahashi) 25 June 1991, all pages	1-16

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A"		document defining the general state of the art which is not considered to be part of particular relevance
"E"	"X"	earlier document published on or after the international filing date
"L"	"Y"	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O"		document referring to an oral disclosure, use, exhibition or other means
"P"	"&"	document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search 14 February 1994	Date of mailing of the international search report 14 MAR 1994
---	---

Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231	Authorized officer ASOK PAL
---	--

Facsimile No. NOT APPLICABLE	Telephone No. (703) 308-3809
------------------------------	------------------------------

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US93/12084

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US, A, 5,032,562 (Lo et al.) 16 July 1991, all pages	I-16
A	US, A, 5,077,255 (Welborn, Jr.) 31 December 1991, all pages	I-16