Formal Query Languages: Relational Algebra

- Set Theory Operations
- Specific Relational Operations
- Write Queries in Relational Algebra

CS1555/2055. Panos K. Chrysanthis - University of Pittsburgh

- Operations on entire relations
 - Operands are (constant or variable) relations
 - Result is a relation
- Set theory operations:
 - Union, Intersection, Difference and Cartesian Product (product for short)
- Specific relational operations:
 - Selection, Projection, Join and Division
- Complete set of relational algebra operations:
 - Select, project, product, union and difference
- SQL is based on concepts from relational algebra

CS1555/2055. Panos K. Chrysanthis - University of Pittsburgh

Selection

Unary operator <u>Select</u>, σ:

$\sigma_{\text{selection-condition}}(r)$

- \square E.g., $\sigma_{Name= 'John' \vee Name = 'Susan'}$ (STUDENT)
 - result = {t | t∈r and (t[Name] = 'John' or t[Name] = 'Susan')}
- □ Selection condition any logical expression on attributes of r involving any applicable comparison operator {=,<,≤,>,≥,≠}

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

Example of Selection

- \Box σ Name='Bob' \vee Major = 'Math' (S) = ?
- How can I get a copy of S?

SID	Name	Major
1	Bob	CS
3	Ann	CoE
4	Bob	Math

Relation **S**

■ How can I get an empty copy of S?

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

Projection

 π

- Unary operator <u>Project</u>, п:
 - Π_{attribute-list} (r)
 - Attribute-list ⊆ R

Relation S

- **Ξ** E.g., Π Name, Major (STUDENT)
 - result = {t | t∈r and t[Name, Major]}
- □ What about $\pi_{SID, Major}(S) = ?$

SID	Name	Major
1	Bob	CS
3	Ann	CoE
4	Bob	Math
5	Bob	CS

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

5

Relational Algebra Expressions

- Query: List the QPA of all students (SID) in CSD whose QPA is greater than 3.5
- □ STUDENT (SID, FName, SName, Dept, Major, QPA)
- **Nesting** the operations

 $\Pi_{SID, OPA}$ ($\sigma_{Dept = 'CSD' \land OPA>3.5}$ (STUDENT))

□ **Sequence** of operations

$$\begin{aligned} & \text{HS} \leftarrow \sigma_{\text{ Dept = 'CSD'}} \land \text{QPA>3.5 (STUDENT)} \\ & \text{RESULT} \leftarrow \Pi_{\text{ SID, OPA}} \text{ (HS)} \end{aligned}$$

- Query tree
 - *leaves* nodes are relations and *internal* nodes are operations

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

_

Renaming Operator

- □ Renaming attributes of the result RSLT(StudentID, GPA) \leftarrow Π SID, OPA (HS)
- □ Change the name of Attributes (in general): $\rho(a1,a2,a3,..an)(r)$
- Example:

$$\rho(StudentID, GPA)$$
 ($\Pi_{SID, OPA}$ ($\sigma_{Dept='CSD' \land OPA>3.5}$ (STUDENT))

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

Properties of σ and π

- $\Box \ \sigma_{cond1} (\sigma_{cond2} (R)) = \sigma_{cond2} (\sigma_{cond1} (R))$
- $\Box \ \sigma_{cond1} (\sigma_{cond2} (R)) = \sigma_{cond2} \wedge_{cond1} (R)$ $= \sigma_{cond1} \wedge_{cond2} (R)$
- \Box Π_{list1} (Π_{list2} (R)) = Π_{list1} (R) When?

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

Efficient / Optimized Queries

- □ Reduce cost of computing (a.k.a, *time-complexity*)
 - Short-circuit (fast computing logical expressions)
 - Execute faster comparisons first
- □ Reduce memory needs (a.k.a., *space-complexity*)
 - Execute Selections with high selectivity (i.e., with more strict conditions) to reduce the size of intermediate tables.
 - Execute Projects as early as possible to reduce tuple size

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

9

Selectivity

- □ Selectivity = The **ratio** of the number of records that satisfy a condition to the total number of records
- □ Let assume that Students
 - Female = 55% & Male 45%
 - CS majors = 5% & Non-CS majors = 95%
- Which is more efficient?
 - σ Major= 'Non-CS' Δ Gender = 'Female' (STUDENT)
 - σ Gender = 'Female' Δ Major= 'Non-CS' (STUDENT)
 - σ_{Major= 'CS' Δ} Gender = 'Female'</sub> (STUDENT)

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

10