MRI muscle segmentation and muscle disease diagnosis with deep learning

Verdú-Díaz J, Bacardit J, Bolaño Díaz C, Clutterbuck S, González Chamorro A, Díaz-Manera J

Muscle disease and quantitative MRI

- Genetic Muscle Diseases → Fat Replacement in Muscles
- Muscle MRI → Differentiate Muscle from Fatty Tissue
- Lamminen-Mercuri Scale → Quantify Fat Replacement
- Pattern of Fat Replacement → Guide the Muscle Disease Diagnosis

Limitations

Deconstructing the Problem:

Give a Diagnosis

Accuracy of a machine learning muscle MRI-based tool for the diagnosis of muscular dystrophies

José Verdú-Díaz, 10 Jorge Alonso-Pérez, Claudia Nuñez-Peralta, Giorgio Tasca, John Vissing, Volker Straub, Roberto Fernández-Torrón, Jaume Llauger, Isabel Illa, Jordi Díaz-Manera

First published February 6, 2020, DOI: https://doi.org/10.1212/WNL.00000000000009068

Already done!

- Random Forest Machine Learning model → MYO-Guide
- Presented in the paper above
- 976 MRI from 10 different Muscular Dystrophies (MDs)
- 95.7% accuracy

Improvements:

- Include more MRI
- Include more MDs

Dark Grey
(Muscle)
Light Grey /
White
(Fat)

Create the Mercuri Score

- Simple Image Processing solution
 - Find Muscle Pixel Intensity (1)
 - Find Fat Pixel Intensity (1)
 - Binarize image (2)
 - Find Fat Fraction (FF) (3)
 - Assign a Mercuri Score (4)

	Muscle A:	5%
(3)	Muscle B:	42%
	Muscle C:	86%

FF range	Mercuri Score
0% - 10%	0
10% - 30%	1
30% - 50%	2
50% - 70%	3
70% - 100%	4 (4)

Identify Muscles in MRI

- Difficult problem:
 - Diverse Muscle Morphology
 - Highly Replaced Muscles
 are Hard to Segment
 - Training Data is Hard to
 Generate

- Current Methodologies have Some Limitations:
 - Only Segment a Range of Slices
 - Trained and Tested Only with MRI from One Source
 - Don't Work with Highly Replaced Muscles

Segmentation Objectives

- Segment any Slice Under Pelvis and Over Ankle
- Segment MRI from any source
 - Different image quality
 - Different image resolution
 - Different image contrast

Methodology

- V-Net based Convolutional Neural Network
- Semiautomatic Algorithm to Split Legs
 - Double the Amount of Data
 - Lower the Segmentation Complexity
- Data Augmentation
- Transfer Learning using Pre-Trained Weights on ImageNet

Collaboration

- Currently 16 collaborating centres
- Currently 187 MRI collected → Segmentation
- Currently 1249 (+187) Mercuri Scores → Diagnosis

- Integrate all AI Tools into MYO-Share
- Open Portal with the Aim of:
 - Collecting and Sharing MRI
 - Offering Tools for Segmenting MRI
 - Offering Tools for Diagnosing Muscle Diseases

