

SEQUENCE LISTING

<110> Zhou, Ming-Ming
Aggarnal, Aneel K

<120> METHODS OF IDENTIFYING MODULATORS OF BROMODOMAINS

<130> 2459-1-003

<140> UNASSIGNED
<141> 2000-02-22

<160> 44

<170> PatentIn Ver. 2.0

<210> 1
<211> 3014
<212> DNA
<213> Homo sapiens

<400> 1
ggggccgcgt cgacgcggaa aagaggccgt gggggcctc ccagcgctgg cagacaccgt 60
gaggctggca gccgcggca cgacacaccta gtccgcagtc ccgaggaaca tgtccgcage 120
cagggcgcgg agcagagtcc cgggcaggag aaccaaggga gggcgtgtgc tggcggcggcg 180
gcggcagcgg cagcggagcc gctagtcccc tccctcctgg gggagcagct gcccggcgt 240
ccgcggccgc caccaccatc agcgcgccgg gcccggccag agcgagccgg gcgagcggcg 300
cgctaggggg agggcggggg cggggagggg ggtggcgaa gggggcggga gggcgtgggg 360
ggagggtctc gctctccga ctaccagagc cggagggaga ccctggcggc ggccggcggcg 420
cctgacactc ggccgcctcct gccgtgctcc gggggccat gtccgaggct ggcggggccg 480
ggccggccgg ctgcggggca ggagccgggg cagggggccgg gcccggggcg ctgcggggccg 540
agcctgcggc gcttcggccc gcgcggggcc agggctcccc ctgcggcgt gcccgggggg 600
gctcggcgcg ctcgggtccg gcgacggcag tggctgcagc gggcacggcc gaaggaccgg 660
gaggcggtgg ctcggccga atcggcgtga agaaagcgca actacgctcc gctccgggg 720
ccaagaaaact ggagaaaactc ggagtgtact ccgcctgcaa ggccgaggag tcttgtaat 780
gtaatggctg gaaaaaccct aaccctcacc ccactcccc cagagccgac ctgcagcaaa 840
taattgtcag tctaacagaa tcctgtcggg gtttagcca tgccctagct gctcatgttt 900
cccacctgga gaatgtgtca gaggaagaaa tgaacagact cctggaaata gtattggatg 960
tggaatatct ctttacctgt gtccacaagg aagaagatgc agataccaaa caagtttatt 1020
tctatctatt taagctcttg agaaaagtcta ttttacaaag aggaaaacct gtggttgaag 1080
gctcttgga aaagaaaacc ccatggaaa aaccttagcat tgaacaggggt gtgaataact 1140
ttgtgcagta caaatttagt cacctgccag caaaagaaaag gcaaacaata gttgagttgg 1200
caaaaatgtt cctaaaccgc atcaactatt ggcatttggg ggcaccatct caacgaagac 1260
tgcgatctcc caatgtatgat atttctggat acaaagagaa ctacacaagg tggctgtgtt 1320
actgcaacgt gcccacgttc tgccgacagtc tacctggta cgaaaccaca caggtgtttg 1380
ggagaacatt gcttcgtcg gtcttcactg ttatgaggcg acaactcctg gaacaagcaa 1440
gacagggaaaa agataaaactg cctctgaaa aacgaactct aatcctcaact catttcccaa 1500
aatttctgtc catgctagaa gaagaagat atagtcaaaa ctctccatc tggatcagg 1560

attttcttc agcctttcc agaaccagcc agctaggcat ccaaacagtt atcaatccac 1620
ctcctgtggc tggacaatt tcatacaatt caacctcatc ttcccttgag cagccaaacg 1680
cagggagcag cagtcctgcc tgcaaagctt cttctggact tgaggcaaac ccaggagaaa 1740
agaggaaaat gactgattct catgttctgg aggaggccaa gaaaccccga gttatggggg 1800
atattccat ggaattaatc aacgaggta tgtctaccat cacggaccct gcagcaatgc 1860
ttggaccaga gaccaattt ctgtcagcac actcggccag ggatgaggcg gcaaggttgg 1920
aagagcgcag gggtaattt gaatttcacg tggttggcaa ttccctcaac cagaaaccaa 1980
acaagaagat cctgatgtgg ctggttggcc tacagaacgt tttctccac cagctgccc 2040
gaatgc当地 agaatacatac acacggctcg tctttgaccc gaaacacaaa acccttgctt 2100
taattaaaga tggccgtgtt attgggttga tctgtttccg tatgttcca tctcaaggat 2160
tcacagagat tgtcttctgt gctgttaacct caaatgagca agtcaaggc tatggaacac 2220
acctgatgaa tcatttggaaa gaatatcaca taaagcatga catcctgaac ttccctcacat 2280
atgcagatga atatgcaatt ggatacttta agaaacaggg tttctccaaa gaaattaaaa 2340
tacctaaaac caaatatgtt ggctatatca aggattatga aggagccact ttaatggat 2400
gtgagctaaa tccacggatc ccgtacacag aattttctgt catcattaaa aagcagaagg 2460
agataattaa aaaactgatt gaaagaaaaac aggacacaaat tcgaaaagtt taccctggac 2520
tttcatgttt taaagatgaa gttcgacaga ttcctataga aagcattccct ggaatttagag 2580
agacaggctg gaaaccgagt ggaaaagaga aaagtaaaga gcccagagac cctgaccagc 2640
tttacagcac gctcaagagc atcctccagc aggtgaagag ccatcaaagc gcttggccct 2700
tcatggaacc tgtgaagaga acagaagctc caggatatta tgaagttata aggttcccc 2760
tggatctgaa aaccatgagt gaacgcctca agaataaggta ctacgtgtct aagaaattat 2820
tcatggcaga cttacagcga gtctttacca attgcaaaga gtacaacgccc gctgagagtg 2880
aatactacaa atgtgccaat atcctggaga aattttctt cagtaaaattt aaggaagctg 2940
gattaattga caagtgattt ttttcccccc tctgcttctt agaaactcac caagcagtgt 3000
gcctaaagca aggt 3014

<210> 2
<211> 832
<212> PRT
<213> Homo sapiens

<400> 2
Met Ser Glu Ala Gly Gly Ala Gly Pro Gly Gly Cys Gly Ala Gly Ala
1 5 10 15

Gly Ala Gly Ala Gly Pro Gly Ala Leu Pro Pro Gln Pro Ala Ala Leu
20 25 30

Pro Pro Ala Pro Pro Gln Gly Ser Pro Cys Ala Ala Ala Gly Gly
35 40 45

Ser Gly Ala Cys Gly Pro Ala Thr Ala Val Ala Ala Gly Thr Ala
50 55 60

Glu Gly Pro Gly Gly Ser Ala Arg Ile Ala Val Lys Lys Ala
65 70 75 80

Gln Leu Arg Ser Ala Pro Arg Ala Lys Lys Leu Glu Lys Leu Gly Val

85

90

95

Tyr Ser Ala Cys Lys Ala Glu Glu Ser Cys Lys Cys Asn Gly Trp Lys			
100	105	110	
Asn Pro Asn Pro Ser Pro Thr Pro Pro Arg Ala Asp Leu Gln Gln Ile			
115	120	125	
Ile Val Ser Leu Thr Glu Ser Cys Arg Ser Cys Ser His Ala Leu Ala			
130	135	140	
Ala His Val Ser His Leu Glu Asn Val Ser Glu Glu Glu Met Asn Arg			
145	150	155	160
Leu Leu Gly Ile Val Leu Asp Val Glu Tyr Leu Phe Thr Cys Val His			
165	170	175	
Lys Glu Glu Asp Ala Asp Thr Lys Gln Val Tyr Phe Tyr Leu Phe Lys			
180	185	190	
Leu Leu Arg Lys Ser Ile Leu Gln Arg Gly Lys Pro Val Val Glu Gly			
195	200	205	
Ser Leu Glu Lys Lys Pro Pro Phe Glu Lys Pro Ser Ile Glu Gln Gly			
210	215	220	
Val Asn Asn Phe Val Gln Tyr Phe Ser His Leu Pro Ala Lys Glu			
225	230	235	240
Arg Gln Thr Ile Val Glu Leu Ala Lys Met Phe Leu Asn Arg Ile Asn			
245	250	255	
Tyr Trp His Leu Glu Ala Pro Ser Gln Arg Arg Leu Arg Ser Pro Asn			
260	265	270	
Asp Asp Ile Ser Gly Tyr Lys Glu Asn Tyr Thr Arg Trp Leu Cys Tyr			
275	280	285	
Cys Asn Val Pro Gln Phe Cys Asp Ser Leu Pro Arg Tyr Glu Thr Thr			
290	295	300	
Gln Val Phe Gly Arg Thr Leu Leu Arg Ser Val Phe Thr Val Met Arg			
305	310	315	320
Arg Gln Leu Leu Glu Gln Ala Arg Gln Glu Lys Asp Lys Leu Pro Leu			
325	330	335	
Glu Lys Arg Thr Leu Ile Leu Thr His Phe Pro Lys Phe Leu Ser Met			

	340	345	350
Leu Glu Glu Glu Val Tyr Ser Gln Asn Ser Pro Ile Trp Asp Gln Asp			
355	360	365	
Phe Leu Ser Ala Ser Ser Arg Thr Ser Gln Leu Gly Ile Gln Thr Val			
370	375	380	
Ile Asn Pro Pro Pro Val Ala Gly Thr Ile Ser Tyr Asn Ser Thr Ser			
385	390	395	400
Ser Ser Leu Glu Gln Pro Asn Ala Gly Ser Ser Ser Pro Ala Cys Lys			
405	410		415
Ala Ser Ser Gly Leu Glu Ala Asn Pro Gly Glu Lys Arg Lys Met Thr			
420	425	430	
Asp Ser His Val Leu Glu Glu Ala Lys Lys Pro Arg Val Met Gly Asp			
435	440	445	
Ile Pro Met Glu Leu Ile Asn Glu Val Met Ser Thr Ile Thr Asp Pro			
450	455	460	
Ala Ala Met Leu Gly Pro Glu Thr Asn Phe Leu Ser Ala His Ser Ala			
465	470	475	480
Arg Asp Glu Ala Ala Arg Leu Glu Glu Arg Arg Gly Val Ile Glu Phe			
485	490		495
His Val Val Gly Asn Ser Leu Asn Gln Lys Pro Asn Lys Lys Ile Leu			
500	505	510	
Met Trp Leu Val Gly Leu Gln Asn Val Phe Ser His Gln Leu Pro Arg			
515	520	525	
Met Pro Lys Glu Tyr Ile Thr Arg Leu Val Phe Asp Pro Lys His Lys			
530	535	540	
Thr Leu Ala Leu Ile Lys Asp Gly Arg Val Ile Gly Gly Ile Cys Phe			
545	550	555	560
Arg Met Phe Pro Ser Gln Gly Phe Thr Glu Ile Val Phe Cys Ala Val			
565	570		575
Thr Ser Asn Glu Gln Val Lys Gly Tyr Gly Thr His Leu Met Asn His			
580	585	590	
Leu Lys Glu Tyr His Ile Lys His Asp Ile Leu Asn Phe Leu Thr Tyr			

595 600 605
Ala Asp Glu Tyr Ala Ile Gly Tyr Phe Lys Lys Gln Gly Phe Ser Lys
610 615 620

Glu Ile Lys Ile Pro Lys Thr Lys Tyr Val Gly Tyr Ile Lys Asp Tyr
625 630 635 640

Glu Gly Ala Thr Leu Met Gly Cys Glu Leu Asn Pro Arg Ile Pro Tyr
645 650 655

Thr Glu Phe Ser Val Ile Ile Lys Lys Gln Lys Glu Ile Ile Lys Lys
660 665 670

Leu Ile Glu Arg Lys Gln Ala Gln Ile Arg Lys Val Tyr Pro Gly Leu
675 680 685

Ser Cys Phe Lys Asp Gly Val Arg Gln Ile Pro Ile Glu Ser Ile Pro
690 695 700

Gly Ile Arg Glu Thr Gly Trp Lys Pro Ser Gly Lys Glu Lys Ser Lys
705 710 715 720

Glu Pro Arg Asp Pro Asp Gln Leu Tyr Ser Thr Leu Lys Ser Ile Leu
725 730 735

Gln Gln Val Lys Ser His Gln Ser Ala Trp Pro Phe Met Glu Pro Val
740 745 750

Lys Arg Thr Glu Ala Pro Gly Tyr Tyr Glu Val Ile Arg Phe Pro Met
755 760 765

Asp Leu Lys Thr Met Ser Glu Arg Leu Lys Asn Arg Tyr Tyr Val Ser
770 775 780

Lys Lys Leu Phe Met Ala Asp Leu Gln Arg Val Phe Thr Asn Cys Lys
785 790 795 800

Glu Tyr Asn Ala Ala Glu Ser Glu Tyr Tyr Lys Cys Ala Asn Ile Leu
805 810 815

Glu Lys Phe Phe Phe Ser Lys Ile Lys Glu Ala Gly Leu Ile Asp Lys
820 825 830

<210> 3
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: peptide

<220>
<221> VARIANT
<222> (2)
<223> It represents 2 to 3 undesignated amino acids.
They can be any amino acids.

<220>
<221> VARIANT
<222> (4)
<223> It represents 5 to 8 undesignated amino acids.
They can be any amino acids.

<220>
<221> VARIANT
<222> (6)
<223> It represents one undesignated amino acid. It can
be any amino acid.

<220>
<221> VARIANT
<222> (9)
<223> It represents 5 undesignated amino acids. They can
be any amino acids.

<220>
<221> VARIANT
<222> (5)
<223> It can be any amino acid from the group of: P, K,
or H.

<220>
<221> VARIANT
<222> (8)
<223> It can be any amino acid from the group of: Y, F,
or H.

<220>
<221> VARIANT
<222> (11)
<223> It can be any amino acid from the group of: M, I,

or V.

<400> 3
Phe Xaa Pro Xaa Xaa Xaa Tyr Xaa Xaa Pro Xaa Asp
1 5 10

<210> 4
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: peptide

<220>
<221> SITE
<222> (6)
<223> It is acetyl-lysine.

<400> 4
Ile Ser Tyr Gly Arg Xaa Lys Arg Arg Gln Arg Arg
1 5 10

<210> 5
<211> 14
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: peptide.

<220>
<221> SITE
<222> (8)
<223> It is acetyl-lysine.

<400> 5
Ala Arg Lys Ser Thr Gly Gly Xaa Ala Pro Arg Lys Gln Leu
1 5 10

<210> 6
<211> 14
<212> PRT
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: peptide

<220>

<221> SITE

<222> (8)

<223> It is acetyl-lysine.

<400> 6

Gln Ser Thr Ser Arg His Lys Xaa Leu Met Phe Lys Thr Glu
1 5 10

<210> 7

<211> 110

<212> PRT

<213> Homo sapiens

<400> 7

Ser Lys Glu Pro Arg Asp Pro Asp Gln Leu Tyr Ser Thr Leu Lys Ser
1 5 10 15

Ile Leu Gln Gln Val Lys Ser His Gln Ser Ala Trp Pro Phe Met Glu
20 25 30

Pro Val Lys Arg Thr Glu Ala Pro Gly Tyr Tyr Glu Val Ile Arg Ser
35 40 45

Pro Met Asp Leu Lys Thr Met Ser Glu Arg Leu Lys Asn Arg Tyr Tyr
50 55 60

Val Ser Lys Lys Leu Phe Met Ala Asp Leu Gln Arg Val Phe Thr Asn
65 70 75 80

Cys Lys Glu Tyr Asn Ala Pro Glu Ser Glu Tyr Tyr Lys Cys Ala Asn
85 90 95

Ile Leu Glu Lys Phe Phe Ser Lys Ile Lys Glu Ala Gly
100 105 110

<210> 8

<211> 110

<212> PRT

<213> Homo sapiens

<400> 8

Gly Lys Glu Leu Lys Asp Pro Asp Gln Leu Tyr Thr Leu Lys Asn

1	5	10	15
Leu Leu Ala Gln Ile Lys Ser His Pro Ser Ala Trp Pro Phe Met Glu			
20	25	30	
Pro Val Lys Lys Ser Glu Ala Pro Asp Tyr Tyr Glu Val Ile Arg Phe			
35	40	45	
Pro Ile Asp Leu Lys Thr Met Thr Glu Arg Leu Arg Ser Arg Tyr Tyr			
50	55	60	
Val Thr Arg Lys Leu Phe Val Ala Asp Leu Gln Arg Val Ile Ala Asn			
65	70	75	80
Cys Arg Glu Tyr Asn Pro Pro Asp Ser Glu Tyr Cys Arg Cys Ala Ser			
85	90	95	
Ala Leu Glu Lys Phe Phe Tyr Phe Lys Leu Lys Glu Gly Gly			
100	105	110	
<210> 9			
<211> 109			
<212> PRT			
<213> Tetrahymena thermophila			
<400> 9			
Leu Lys Lys Ser Lys Glu Arg Ser Phe Asn Leu Gln Cys Ala Asn Val			
1	5	10	15
Ile Glu Asn Met Lys Arg His Lys Gln Ser Trp Pro Phe Leu Asp Pro			
20	25	30	
Val Asn Lys Asp Asp Val Pro Asp Tyr Tyr Asp Val Ile Thr Asp Pro			
35	40	45	
Ile Asp Ile Lys Ala Ile Glu Lys Lys Leu Gln Asn Asn Gln Tyr Val			
50	55	60	
Asp Lys Asp Gln Phe Ile Lys Asp Val Lys Arg Ile Phe Thr Asn Ala			
65	70	75	80
Lys Ile Tyr Asn Gln Pro Asp Thr Ile Tyr Tyr Lys Ala Ala Lys Glu			
85	90	95	
Leu Glu Asp Phe Val Glu Pro Tyr Leu Thr Lys Leu Lys			
100	105		

<210> 10
<211> 109
<212> PRT
<213> *Saccharomyces cerevisiae*

<400> 10
Ala Gln Arg Pro Lys Arg Gly Pro His Asp Ala Ala Ile Gln Asn Ile
1 5 10 15

Leu Thr Glu Leu Gln Asn His Ala Ala Ala Trp Pro Phe Leu Gln Pro
20 25 30

Val Asn Lys Glu Glu Val Pro Asp Tyr Tyr Asp Phe Ile Lys Glu Pro
35 40 45

Met Asp Leu Ser Thr Met Glu Ile Lys Leu Glu Ser Asn Lys Tyr Gln
50 55 60

Lys Met Glu Asp Phe Ile Tyr Asp Ala Arg Leu Val Phe Asn Asn Cys
65 70 75 80

Arg Met Tyr Asn Gly Glu Asn Thr Ser Tyr Tyr Lys Tyr Ala Asn Arg
85 90 95

Leu Glu Lys Phe Phe Asn Asn Lys Val Lys Glu Ile Pro
100 105

<210> 11
<211> 112
<212> PRT
<213> *Homo sapiens*

<400> 11
Lys Lys Ile Phe Lys Pro Glu Glu Leu Arg Gln Ala Leu Met Pro Thr
1 5 10 15

Leu Glu Ala Leu Tyr Arg Gln Asp Pro Glu Ser Leu Pro Phe Arg Gln
20 25 30

Pro Val Asp Pro Gln Leu Leu Gly Ile Pro Asp Tyr Phe Asp Ile Val
35 40 45

Lys Ser Pro Met Asp Leu Ser Thr Ile Lys Arg Lys Leu Asp Thr Gly
50 55 60

Gln Tyr Gln Glu Pro Trp Gln Tyr Val Asp Asp Ile Trp Leu Met Phe

65

70

75

80

Asn Asn Ala Trp Leu Tyr Asn Arg Lys Thr Ser Arg Val Tyr Lys Tyr
85 90 95

Cys Ser Lys Leu Ser Glu Val Phe Glu Gln Glu Ile Asp Pro Val Met
100 105 110

<210> 12

<211> 112

<212> PRT

<213> Homo sapiens

<400> 12

Lys Lys Ile Phe Lys Pro Glu Glu Leu Arg Gln Ala Leu Met Pro Thr
1 5 10 15

Leu Glu Ala Leu Tyr Arg Gln Asp Pro Glu Ser Leu Pro Phe Arg Gln
20 25 30

Pro Val Asp Pro Gln Leu Leu Gly Ile Pro Asp Tyr Phe Asp Ile Val
35 40 45

Lys Asn Pro Met Asp Leu Ser Thr Ile Lys Arg Lys Leu Asp Thr Gly
50 55 60

Gln Tyr Gln Glu Pro Trp Gln Tyr Val Asp Asp Val Trp Leu Met Phe
65 70 75 80

Asn Asn Ala Trp Leu Tyr Asn Arg Lys Thr Ser Arg Val Tyr Lys Phe
85 90 95

Cys Ser Lys Leu Ala Glu Val Phe Glu Gln Glu Ile Asp Pro Val Met
100 105 110

<210> 13

<211> 112

<212> PRT

<213> Mus musculus

<400> 13

Lys Lys Ile Phe Lys Pro Glu Glu Leu Arg Gln Ala Leu Met Pro Thr
1 5 10 15

Leu Glu Ala Leu Tyr Arg Gln Asp Pro Glu Ser Leu Pro Phe Arg Gln
20 25 30

Pro Val Asp Pro Gln Leu Leu Gly Ile Pro Asp Tyr Phe Asp Ile Val
35 40 45

Lys Asn Pro Met Asp Leu Ser Thr Ile Lys Arg Lys Leu Asp Thr Gly
50 55 60

Gln Tyr Gln Glu Pro Trp Gln Tyr Val Asp Asp Val Arg Leu Met Phe
65 70 75 80

Asn Asn Ala Trp Leu Tyr Asn Arg Lys Thr Ser Arg Val Tyr Lys Phe
85 90 95

Cys Ser Lys Leu Ala Glu Val Phe Glu Gln Glu Ile Asp Pro Val Met
100 105 110

<210> 14

<211> 111

<212> PRT

<213> Caenorhabditis elegans

<400> 14

Asp Thr Val Phe Ser Gln Glu Asp Leu Ile Lys Phe Leu Leu Pro Val
1 5 10 15

Trp Glu Lys Leu Asp Lys Ser Glu Asp Ala Ala Pro Phe Arg Val Pro
20 25 30

Val Asp Ala Lys Leu Leu Asn Ile Pro Asp Tyr His Glu Ile Ile Lys
35 40 45

Arg Pro Met Asp Leu Glu Thr Val His Lys Lys Leu Tyr Ala Gly Gln
50 55 60

Tyr Gln Asn Ala Gly Gln Phe Cys Asp Asp Ile Trp Leu Met Leu Asp
65 70 75 80

Asn Ala Trp Leu Tyr Asn Arg Lys Asn Ser Lys Val Tyr Lys Tyr Gly

85

90

95

Leu Lys Leu Ser Glu Met Phe Val Ser Glu Met Asp Pro Val Met
 100 105 110

<210> 15
 <211> 110
 <212> PRT
 <213> Homo sapiens

<400> 15
 Arg Arg Arg Thr Asp Pro Met Val Thr Leu Ser Ser Ile Leu Glu Ser
 1 5 10 15

Ile Ile Asn Asp Met Arg Asp Leu Pro Asn Thr Tyr Pro Phe His Thr
 20 25 30

Pro Val Asn Ala Lys Val Val Lys Asp Tyr Tyr Lys Ile Ile Thr Arg
 35 40 45

Pro Met Asp Leu Gln Thr Leu Arg Glu Asn Val Arg Lys Arg Leu Tyr
 50 55 60

Pro Ser Arg Glu Glu Phe Arg Glu His Leu Glu Leu Ile Val Lys Asn
 65 70 75 80

Ser Ala Thr Tyr Asn Gly Pro Lys His Ser Leu Thr Gln Ile Ser Gln
 85 90 95

Ser Met Leu Asp Leu Cys Asp Glu Lys Leu Lys Glu Lys Glu
 100 105 110

<210> 16
 <211> 110
 <212> PRT
 <213> Mesocricetus auratus

<400> 16
 Arg Arg Arg Thr Asp Pro Met Val Thr Leu Ser Ser Ile Leu Glu Ser
 1 5 10 15

Ile Ile Asn Asp Met Arg Asp Leu Pro Asn Thr Tyr Pro Phe His Thr
 20 25 30

Pro Val Asn Ala Lys Val Val Lys Asp Tyr Tyr Lys Ile Ile Thr Arg
 35 40 45

Pro Met Asp Leu Gln Thr Leu Arg Glu Asn Val Arg Lys Arg Leu Tyr
50 55 60

Pro Ser Arg Glu Glu Phe Arg Glu His Leu Glu Leu Ile Val Lys Asn
65 70 75 80

Ser Ala Thr Tyr Asn Gly Pro Lys His Ser Leu Thr Gln Ile Ser Gln
85 90 95

Ser Met Leu Asp Leu Cys Asp Glu Lys Leu Lys Glu Lys Glu
100 105 110

<210> 17

<211> 111

<212> PRT

<213> Homo sapiens

<400> 17

Leu Leu Asp Asp Asp Asp Gln Val Ala Phe Ser Phe Ile Leu Asp Asn
1 5 10 15

Ile Val Thr Gln Lys Met Met Ala Val Pro Asp Ser Trp Pro Phe His
20 25 30

His Pro Val Asn Lys Lys Phe Val Pro Asp Tyr Tyr Lys Val Ile Val
35 40 45

Asn Pro Met Asp Leu Glu Thr Ile Arg Lys Asn Ile Ser Lys His Lys
50 55 60

Tyr Gln Ser Arg Glu Ser Phe Leu Asp Asp Val Asn Leu Ile Leu Ala
65 70 75 80

Asn Ser Val Lys Tyr Asn Gly Pro Glu Ser Gln Tyr Thr Lys Thr Ala
85 90 95

Gln Glu Ile Val Asn Val Cys Tyr Gln Thr Leu Thr Glu Tyr Asp
100 105 110

<210> 18

<211> 111

<212> PRT

<213> Mesocricetus auratus

<400> 18

Leu Leu Asp Asp Asp Gln Val Ala Phe Ser Phe Ile Leu Asp Asn
1 5 10 15

Ile Val Thr Gln Lys Met Met Ala Val Pro Asp Ser Trp Pro Phe His
20 25 30

His Pro Val Asn Lys Lys Phe Val Pro Asp Tyr Tyr Lys Val Ile Val
35 40 45

Ser Pro Met Asp Leu Glu Thr Ile Arg Lys Asn Ile Ser Lys His Lys
50 55 60

Tyr Gln Ser Arg Glu Ser Phe Leu Asp Asp Val Asn Leu Ile Leu Ala
65 70 75 80

Asn Ser Val Lys Tyr Asn Gly Ser Glu Ser Gln Tyr Thr Lys Thr Ala
85 90 95

Gln Glu Ile Val Asn Val Cys Tyr Gln Thr Leu Thr Glu Tyr Asp
100 105 110

<210> 19

<211> 111

<212> PRT

<213> Homo sapiens

<400> 19

Lys Pro Gly Arg Val Thr Asn Gln Leu Gln Tyr Leu His Lys Val Val
1 5 10 15

Met Lys Ala Leu Trp Lys His Gln Phe Ala Trp Pro Phe Arg Gln Pro
20 25 30.

Val Asp Ala Val Lys Leu Gly Leu Pro Asp Tyr His Lys Ile Ile Lys
35 40 45

Gln Pro Met Asp Met Gly Thr Ile Lys Arg Arg Leu Glu Asn Asn Tyr
50 55 60

Tyr Trp Ala Ala Ser Glu Cys Met Gln Asp Phe Asn Thr Met Phe Thr
65 70 75 80

Asn Cys Tyr Ile Tyr Asn Lys Pro Thr Asp Asp Ile Val Leu Met Ala
85 90 95

Gln Thr Leu Glu Lys Ile Phe Leu Gln Lys Val Ala Ser Met Pro
100 105 110

<210> 20
<211> 111
<212> PRT
<213> Homo sapiens

<400> 20
Lys Pro Gly Arg Lys Thr Asn Gln Leu Gln Tyr Met Gln Asn Val Val
1 5 10 15

Val Lys Thr Leu Trp Lys His Gln Phe Ala Trp Pro Phe Tyr Gln Pro
20 25 30

Val Asp Ala Ile Lys Leu Asn Leu Pro Asp Tyr His Lys Ile Ile Lys
35 40 45

Asn Pro Met Asp Met Gly Thr Ile Lys Lys Arg Leu Glu Asn Asn Tyr
50 55 60

Tyr Trp Ser Ala Ser Glu Cys Met Gln Asp Phe Asn Thr Met Phe Thr
65 70 75 80

Asn Cys Tyr Ile Tyr Asn Lys Pro Thr Asp Asp Ile Val Leu Met Ala
85 90 95

Gln Ala Leu Glu Lys Ile Phe Leu Gln Lys Val Ala Gln Met Pro
100 105 110

<210> 21
<211> 111
<212> PRT
<213> Drosophila melanogaster

<400> 21
Arg Pro Gly Arg Asn Thr Asn Gln Leu Gln Tyr Leu Ile Lys Thr Val
1 5 10 15

Met Lys Val Ile Trp Lys His His Phe Ser Trp Pro Phe Gln Gln Pro
20 25 30

Val Asp Ala Lys Lys Leu Asn Leu Pro Asp Tyr His Lys Ile Ile Lys
35 40 45

Gln Pro Met Asp Met Gly Thr Ile Lys Lys Arg Leu Glu Asn Asn Tyr
50 55 60

Tyr Trp Ser Ala Lys Glu Thr Ile Gln Asp Phe Asn Thr Met Phe Asn
65 70 75 80

Asn Cys Tyr Val Tyr Asn Lys Pro Gly Glu Asp Val Val Val Met Ala
85 90 95

Gln Thr Leu Glu Lys Val Phe Leu Gln Lys Ile Glu Ser Met Pro
100 105 110

<210> 22

<211> 109

<212> PRT

<213> *Saccharomyces cerevisiae*

<400> 22

Asn Pro Ile Pro Lys His Gln Gln Lys His Ala Leu Leu Ala Ile Lys
1 5 10 15

Ala Val Lys Arg Leu Lys Asp Ala Arg Pro Phe Leu Gln Pro Val Asp
20 25 30

Pro Val Lys Leu Asp Ile Pro Phe Tyr Phe Asn Tyr Ile Lys Arg Pro
35 40 45

Met Asp Leu Ser Thr Ile Glu Arg Lys Leu Asn Val Gly Ala Tyr Glu
50 55 60

Val Pro Glu Gln Ile Thr Glu Asp Phe Asn Leu Met Val Asn Asn Ser
65 70 75 80

Ile Lys Phe Asn Gly Pro Asn Ala Gly Ile Ser Gln Met Ala Arg Asn
85 90 95

Ile Gln Ala Ser Phe Glu Lys His Met Leu Asn Met Pro
100 105

<210> 23

<211> 113

<212> PRT

<213> *Homo sapiens*

<400> 23

Lys Lys Gly Lys Leu Ser Glu Gln Leu Lys His Cys Asn Gly Ile Leu
1 5 10 15

Lys Glu Leu Leu Ser Lys Lys His Ala Ala Tyr Ala Trp Pro Phe Tyr

20

25

30

Lys Pro Val Asp Ala Ser Ala Leu Gly Leu His Asp Tyr His Asp Ile
 35 40 45

Ile Lys His Pro Met Asp Leu Ser Thr Val Lys Arg Lys Met Glu Asn
 50 55 60

Arg Asp Tyr Arg Asp Ala Gln Glu Phe Ala Ala Asp Val Arg Leu Met
 65 70 75 80

Phe Ser Asn Cys Tyr Lys Tyr Asn Pro Pro Asp His Asp Val Val Ala
 85 90 95

Met Ala Arg Lys Leu Gln Asp Val Phe Glu Phe Arg Tyr Ala Lys Met
 100 105 110

Pro

<210> 24

<211> 113

<212> PRT

<213> Homo sapiens

<400> 24

Lys Lys Gly Lys Leu Ser Glu His Leu Arg Tyr Cys Asp Ser Ile Leu
 1 5 10 15

Arg Glu Met Leu Ser Lys Lys His Ala Ala Tyr Ala Trp Pro Phe Tyr
 20 25 30

Lys Pro Val Asp Ala Glu Ala Leu Glu Leu His Asp Tyr His Asp Ile
 35 40 45

Ile Lys His Pro Met Asp Leu Ser Thr Val Lys Arg Lys Met Asp Gly
 50 55 60

Arg Glu Tyr Pro Asp Ala Gln Gly Phe Ala Ala Asp Val Arg Leu Met
 65 70 75 80

Phe Ser Asn Cys Tyr Lys Tyr Asn Pro Pro Asp His Glu Val Val Ala
 85 90 95

Met Ala Arg Lys Leu Gln Asp Val Phe Glu Met Arg Phe Ala Lys Met
 100 105 110

Pro

<210> 25

<211> 113

<212> PRT

<213> Drosophila melanogaster

<400> 25

Asn Lys Glu Lys Leu Ser Asp Ala Leu Lys Ser Cys Asn Glu Ile Leu
1 5 10 15

Lys Glu Leu Phe Ser Lys Lys His Ser Gly Tyr Ala Trp Pro Phe Tyr
20 25 30

Lys Pro Val Asp Ala Glu Met Leu Gly Leu His Asp Tyr His Asp Ile
35 40 45

Ile Lys Lys Pro Met Asp Leu Gly Thr Val Lys Arg Lys Met Asp Asn
50 55 60

Arg Glu Tyr Lys Ser Ala Pro Glu Phe Ala Ala Asp Val Arg Leu Ile
65 70 75 80

Phe Thr Asn Cys Tyr Lys Tyr Asn Pro Pro Asp His Asp Val Val Ala
85 90 95

Met Gly Arg Lys Leu Gln Asp Val Phe Glu Met Arg Tyr Ala Asn Ile
100 105 110

Pro

<210> 26

<211> 113

<212> PRT

<213> Saccharomyces cerevisiae

<400> 26

Lys Ser Lys Arg Leu Gln Gln Ala Met Lys Phe Cys Gln Ser Val Leu
1 5 10 15

Lys Glu Leu Met Ala Lys Lys His Ala Ser Tyr Asn Tyr Pro Phe Leu
20 25 30

Glu Pro Val Asp Pro Val Ser Met Asn Leu Pro Thr Tyr Phe Asp Tyr

35

40

45

Val Lys Glu Pro Met Asp Leu Gly Thr Ile Ala Lys Lys Leu Asn Asp
 50 55 60

Trp Gln Tyr Gln Thr Met Glu Asp Phe Glu Arg Glu Val Arg Leu Val
 65 70 75 80

Phe Lys Asn Cys Tyr Thr Phe Asn Pro Asp Gly Thr Ile Val Asn Met
 85 90 95

Met Gly His Arg Leu Glu Glu Val Phe Asn Ser Lys Trp Ala Asp Arg
 100 105 110

Pro

<210> 27

<211> 108

<212> PRT

<213> Homo sapiens

<400> 27

Met Glu Met Gln Leu Thr Pro Phe Leu Ile Leu Leu Arg Lys Thr Leu
 1 5 10 15

Glu Gln Leu Gln Glu Lys Asp Thr Gly Asn Ile Phe Ser Glu Pro Val
 20 25 30

Pro Leu Ser Glu Val Pro Asp Tyr Leu Asp His Ile Lys Lys Pro Met
 35 40 45

Asp Phe Phe Thr Met Lys Gln Asn Leu Glu Ala Tyr Arg Tyr Leu Asn
 50 55 60

Phe Asp Asp Phe Glu Glu Asp Phe Asn Leu Ile Val Ser Asn Cys Leu
 65 70 75 80

Lys Tyr Asn Ala Lys Asp Thr Ile Phe Tyr Arg Ala Ala Val Arg Leu
 85 90 95

Arg Glu Gln Gly Gly Ala Val Val Arg Gln Ala Arg
 100 105

<210> 28

<211> 113

<212> PRT
<213> Homo sapiens

<400> 28

Ser Glu Asp Gln Glu Ala Ile Gln Ala Gln Lys Ile Trp Lys Lys Ala
1 5 10 15

Ile Met Leu Val Trp Arg Ala Ala Asn His Arg Tyr Ala Asn Val
20 25 30

Phe Leu Gln Pro Val Thr Asp Asp Ile Ala Pro Gly Tyr His Ser Ile
35 40 45

Val Gln Arg Pro Met Asp Leu Ser Thr Ile Lys Lys Asn Ile Glu Asn
50 55 60

Gly Leu Ile Arg Ser Thr Ala Glu Phe Gln Arg Asp Ile Met Leu Met
65 70 75 80

Phe Gln Asn Ala Val Met Tyr Asn Ser Ser Asp His Asp Val Tyr His
85 90 95

Met Ala Val Glu Met Gln Arg Asp Val Leu Glu Gln Ile Gln Gln Phe
100 105 110

Leu

<210> 29
<211> 106
<212> PRT
<213> Gallus gallus

<400> 29

Asn Leu Pro Thr Val Asp Pro Ile Ala Val Cys His Glu Leu Tyr Asn
1 5 10 15

Thr Ile Arg Asp Tyr Lys Asp Glu Gln Gly Arg Leu Leu Cys Glu Leu
20 25 30

Phe Ile Arg Ala Pro Lys Arg Arg Asn Gln Pro Asp Tyr Tyr Glu Val
35 40 45

Val Ser Gln Pro Ile Asp Leu Met Lys Ile Gln Gln Lys Leu Lys Met
50 55 60

Glu Glu Tyr Asp Asp Val Asn Val Leu Thr Ala Asp Phe Gln Leu Leu

65

70

75

80

Phe Asn Asn Ala Lys Ala Tyr Tyr Lys Pro Asp Ser Pro Glu Tyr Lys
 85 90 95

Ala Ala Cys Lys Leu Trp Glu Leu Tyr Leu
 100 105

<210> 30

<211> 112

<212> PRT

<213> Gallus gallus

<400> 30

Ser Ser Pro Gly Tyr Leu Lys Glu Ile Leu Glu Gln Leu Leu Glu Ala
 1 5 10 15

Val Ala Val Ala Thr Asn Pro Ser Gly Arg Leu Ile Ser Glu Leu Phe
 20 25 30

Gln Lys Leu Pro Ser Lys Val Gln Tyr Pro Asp Tyr Tyr Ala Ile Ile
 35 40 45

Lys Glu Pro Ile Asp Leu Lys Thr Ile Ala Gln Arg Ile Gln Asn Gly
 50 55 60

Thr Tyr Lys Ser Ile His Ala Met Ala Lys Asp Ile Asp Leu Leu Ala
 65 70 75 80

Lys Asn Ala Lys Thr Tyr Asn Glu Pro Gly Ser Gln Val Phe Lys Asp
 85 90 95

Ala Asn Ala Ile Lys Lys Ile Phe Asn Met Lys Lys Ala Glu Ile Glu
 100 105 110

<210> 31

<211> 112

<212> PRT

<213> Gallus gallus

<400> 31

Thr Ser Phe Met Asp Thr Ser Asn Pro Leu Tyr Gln Leu Tyr Asp Thr
 1 5 10 15

Val	Arg	Ser	Cys	Arg	Asn	Asn	Gln	Gly	Gln	Leu	Ile	Ser	Glu	Pro	Phe
20							25					30			
Phe	Gln	Leu	Pro	Ser	Lys	Lys	Tyr	Pro	Asp	Tyr	Tyr	Gln	Gln	Ile	
35					40						45				
Lys	Thr	Pro	Ile	Ser	Leu	Gln	Gln	Ile	Arg	Ala	Lys	Leu	Lys	Asn	His
50					55				60						
Glu	Tyr	Glu	Thr	Leu	Asp	Gln	Leu	Glu	Ala	Asp	Leu	Asn	Leu	Met	Phe
65				70				75				80			
Glu	Asn	Ala	Lys	Arg	Tyr	Asn	Val	Pro	Asn	Ser	Ala	Ile	Tyr	Lys	Arg
85					90						95				
Val	Leu	Lys	Met	Gln	Gln	Val	Met	Gln	Ala	Lys	Lys	Lys	Glu	Leu	Ala
100						105					110				

<210> 32
<211> 113
<212> PRT
<213> Gallus gallus

<400> 32															
Ser	Lys	Lys	Asn	Met	Arg	Lys	Gln	Arg	Met	Lys	Ile	Leu	Tyr	Asn	Ala
1				5				10				15			
Val	Leu	Glu	Ala	Arg	Glu	Ser	Gly	Thr	Gln	Arg	Arg	Leu	Cys	Asp	Leu
20								25				30			
Phe	Met	Val	Lys	Pro	Ser	Lys	Lys	Asp	Tyr	Pro	Asp	Tyr	Tyr	Lys	Ile
35						40						45			
Ile	Leu	Glu	Pro	Met	Asp	Leu	Lys	Met	Ile	Glu	His	Asn	Ile	Arg	Asn
50						55					60				
Asp	Lys	Tyr	Val	Gly	Glu	Glu	Ala	Met	Ile	Asp	Asp	Met	Lys	Leu	Met
65					70					75			80		
Phe	Arg	Asn	Ala	Arg	His	Tyr	Asn	Glu	Glu	Gly	Ser	Gln	Val	Tyr	Asn
85						90						95			
Asp	Ala	His	Met	Leu	Glu	Lys	Ile	Leu	Lys	Glu	Lys	Arg	Lys	Glu	Leu

100

105

110

Gly

<210> 33
<211> 115
<212> PRT
<213> Gallus gallus

<400> 33
Lys Lys Ser Lys Tyr Met Thr Pro Met Gln Gln Lys Leu Asn Glu Val
1 5 10 15

Tyr Glu Ala Val Lys Asn Tyr Thr Asp Lys Arg Gly Arg Arg Leu Ser
20 25 30

Ala Ile Phe Leu Arg Leu Pro Ser Arg Ser Glu Leu Pro Asp Tyr Tyr
35 40 45

Ile Thr Ile Lys Lys Pro Val Asp Met Glu Lys Ile Arg Ser His Met
50 55 60

Met Ala Asn Lys Tyr Gln Asp Ile Asp Ser Met Val Glu Asp Phe Val
65 70 75 80

Met Met Phe Asn Asn Ala Cys Thr Tyr Asn Glu Pro Glu Ser Leu Ile
85 90 95

Tyr Lys Asp Ala Leu Val Leu His Lys Val Leu Leu Glu Thr Arg Arg
100 105 110

Glu Ile Glu
115

<210> 34
<211> 112
<212> PRT
<213> Unknown

<220>
<223> Description of Unknown Organism: Cited from
Jeanmougin et al., Trends in Biochemical Sciences,
22:151-153 (1997)

<400> 34

His Asn Ala Pro Phe Asp Lys Thr Lys Phe Asp Glu Val Leu Glu Ala
1 5 10 15

Leu Val Gly Leu Lys Asp Asn Glu Gly Asn Pro Phe Asp Asp Ile Phe
20 25 30

Glu Glu Leu Pro Ser Lys Arg Tyr Phe Pro Asp Tyr Tyr Gln Ile Ile
35 40 45

Gln Lys Pro Ile Cys Tyr Lys Met Met Arg Asn Lys Ala Lys Thr Gly
50 55 60

Lys Tyr Leu Ser Met Gly Asp Phe Tyr Asp Asp Ile Arg Leu Met Val
65 70 75 80

Ser Asn Ala Gln Thr Tyr Asn Met Pro Gly Ser Leu Val Tyr Glu Cys
85 90 95

Ser Val Leu Ile Ala Asn Thr Ala Asn Ser Leu Glu Ser Lys Asp Gly
100 105 110

<210> 35
<211> 113
<212> PRT
<213> Unknown

<220>
<223> Description of Unknown Organism: Cited from
Jeanmougin et al., Trends in Biochemical Sciences,
22:151-153 (1997)

<400> 35
Gly Thr Asn Glu Ile Asp Val Pro Lys Val Ile Gln Asn Ile Leu Asp
1 5 10 15

Ala Leu His Glu Glu Lys Asp Glu Gln Gly Arg Phe Leu Ile Asp Ile
20 25 30

Phe Ile Asp Leu Pro Ser Lys Arg Leu Tyr Pro Asp Tyr Tyr Glu Ile
35 40 45

Ile Lys Ser Pro Met Thr Ile Lys Met Leu Glu Lys Arg Phe Lys Lys
50 55 60

Gly Glu Tyr Thr Thr Leu Glu Ser Phe Val Lys Asp Leu Asn Gln Met
65 70 75 80

Phe Ile Asn Ala Lys Thr Tyr Asn Ala Pro Gly Ser Phe Val Tyr Glu
85 90 95

Asp Ala Glu Lys Leu Ser Gln Leu Ser Ser Ser Leu Ile Ser Ser Phe
100 105 110

Ser

<210> 36

<211> 113

<212> PRT

<213> Homo sapiens

<400> 36

Gly Thr Asn Glu Ile Asp Val Pro Lys Val Ile Gln Asn Ile Leu Asp
1 5 10 15

Ala Leu His Glu Glu Lys Asp Glu Gln Gly Arg Phe Leu Ile Asp Ile
20 25 30

Phe Ile Asp Leu Pro Ser Lys Arg Leu Tyr Pro Asp Tyr Tyr Glu Ile
35 40 45

Ile Lys Ser Pro Met Thr Ile Lys Met Leu Glu Lys Arg Phe Lys Lys
50 55 60

Gly Glu Tyr Thr Thr Leu Glu Ser Phe Val Lys Asp Leu Asn Gln Met
65 70 75 80

Phe Ile Asn Ala Lys Thr Tyr Asn Ala Pro Gly Ser Phe Val Tyr Glu
85 90 95

Asp Ala Glu Lys Leu Ser Gln Leu Ser Ser Ser Leu Ile Ser Ser Phe
100 105 110

Ser

<210> 37

<211> 114

<212> PRT

<213> Homo sapiens

<400> 37

Ser Pro Asn Pro Pro Asn Leu Thr Lys Lys Met Lys Lys Ile Val Asp
1 5 10 15

Ala Val Ile Lys Tyr Lys Asp Ser Ser Ser Gly Arg Gln Leu Ser Glu
20 25 30

Val Phe Ile Gln Leu Pro Ser Arg Lys Glu Leu Pro Glu Tyr Tyr Glu
35 40 45

Leu Ile Arg Lys Pro Val Asp Phe Lys Lys Ile Lys Glu Arg Ile Arg
50 55 60

Asn His Lys Tyr Arg Ser Leu Asn Asp Leu Glu Lys Asp Val Met Leu
65 70 75 80

Leu Cys Gln Asn Ala Gln Thr Phe Asn Leu Glu Gly Ser Leu Ile Tyr
85 90 95

Glu Asp Ser Ile Val Leu Gln Ser Val Phe Thr Ser Val Arg Gln Lys
100 105 110

Ile Glu

<210> 38

<211> 113

<212> PRT

<213> Gallus gallus

<400> 38

Ser Pro Asn Pro Pro Lys Leu Thr Lys Gln Met Asn Ala Ile Ile Asp
1 5 10 15

Thr Val Ile Asn Tyr Lys Asp Ser Ser Gly Arg Gln Leu Ser Glu Val
20 25 30

Phe Ile Gln Leu Pro Ser Arg Lys Glu Leu Pro Glu Tyr Tyr Glu Leu
35 40 45

Ile Arg Lys Pro Val Asp Phe Lys Lys Ile Lys Glu Arg Ile Arg Asn
50 55 60

His Lys Tyr Arg Ser Leu Gly Asp Leu Glu Lys Asp Val Met Leu Leu
65 70 75 80

Cys His Asn Ala Gln Thr Phe Asn Leu Glu Gly Ser Gln Ile Tyr Glu
85 90 95

Asp Ser Ile Val Leu Gln Ser Val Phe Lys Ser Ala Arg Gln Lys Ile
100 105 110

Ala

<210> 39
<211> 114
<212> PRT
<213> Gallus gallus

<400> 39
Ser Pro Asn Pro Pro Asn Leu Thr Lys Lys Met Lys Lys Ile Val Asp
1 5 10 15

Ala Val Ile Lys Tyr Lys Asp Ser Ser Ser Gly Arg Gln Leu Ser Glu
20 25 30

Val Phe Ile Gln Leu Pro Ser Arg Lys Glu Leu Pro Glu Tyr Tyr Glu
35 40 45

Leu Ile Arg Lys Pro Val Asp Phe Lys Lys Ile Lys Glu Arg Ile Arg
50 55 60

Asn His Lys Tyr Arg Ser Leu Asn Asp Leu Glu Lys Asp Val Met Leu
65 70 75 80

Leu Cys Gln Asn Ala Gln Thr Phe Asn Leu Glu Val Ser Leu Ile Tyr
85 90 95

Glu Asp Ser Ile Val Leu Gln Ser Val Phe Thr Ser Val Arg Gln Lys
100 105 110

Ile Glu

<210> 40
<211> 105
<212> PRT
<213> Homo sapiens

<400> 40
Ala Lys Leu Ser Pro Ala Asn Gln Arg Lys Cys Glu Arg Val Leu Leu

1	5	10	15
Ala Leu Phe Cys His Glu Pro Cys Arg Pro Leu His Gln Leu Ala Thr			
20	25	30	
Asp Ser Thr Phe Ser Leu Asp Gln Pro Gly Gly Thr Leu Asp Leu Thr			
35	40	45	
Leu Ile Arg Ala Arg Leu Gln Glu Lys Leu Ser Pro Pro Tyr Ser Ser			
50	55	60	
Pro Gln Glu Phe Ala Gln Asp Val Gly Arg Met Phe Lys Gln Phe Asn			
65	70	75	80
Lys Leu Thr Glu Asp Lys Ala Asp Val Gln Ser Ile Ile Gly Leu Gln			
85	90	95	
Arg Phe Phe Glu Thr Arg Met Asn Glu			
100	105		
<210> 41			
<211> 105			
<212> PRT			
<213> Mus musculus			
<400> 41			
Ala Lys Leu Ser Pro Ala Asn Gln Arg Lys Cys Glu Arg Val Leu Leu			
1	5	10	15
Ala Leu Phe Cys His Glu Pro Cys Arg Pro Leu His Gln Leu Ala Thr			
20	25	30	
Asp Ser Thr Phe Ser Met Glu Gln Pro Gly Gly Thr Leu Asp Leu Thr			
35	40	45	
Leu Ile Arg Ala Arg Leu Gln Glu Lys Leu Ser Pro Pro Tyr Ser Ser			
50	55	60	
Pro Gln Glu Phe Ala Gln Asp Val Gly Arg Met Phe Lys Gln Phe Asn			
65	70	75	80
Lys Leu Thr Glu Asp Lys Ala Asp Val Gln Ser Ile Ile Gly Leu Gln			
85	90	95	
Arg Phe Phe Glu Thr Arg Met Asn Asp			
100	105		

<210> 42
<211> 108
<212> PRT
<213> Mus sp.

<400> 42

Thr	Lys	Leu	Thr	Pro	Ile	Asp	Lys	Arg	Lys	Cys	Glu	Arg	Leu	Leu	Leu
1				5			10						15		

Phe Leu Tyr Cys His Glu Met Ser Leu Ala Phe Gln Asp Pro Val Pro

Phe	Leu	Tyr	Cys	His	Glu	Met	Ser	Leu	Ala	Phe	Gln	Asp	Pro	Val	Pro
					20					25			30		

Leu Thr Val Pro Asp Tyr Tyr Lys Ile Ile Lys Asn Pro Met Asp Leu

Leu	Thr	Val	Pro	Asp	Tyr	Tyr	Lys	Ile	Ile	Lys	Asn	Pro	Met	Asp	Leu
					35			40			45				

Ser Thr Ile Lys Lys Arg Leu Gln Glu Asp Tyr Cys Met Tyr Thr Lys

Ser	Thr	Ile	Lys	Lys	Arg	Leu	Gln	Glu	Asp	Tyr	Cys	Met	Tyr	Thr	Lys
					50		55				60				

Pro Glu Asp Phe Val Ala Asp Phe Arg Leu Ile Phe Gln Asn Cys Ala

Pro	Glu	Asp	Phe	Val	Ala	Asp	Phe	Arg	Leu	Ile	Phe	Gln	Asn	Cys	Ala
					65		70			75			80		

Glu Phe Asn Glu Pro Asp Ser Glu Val Ala Asn Ala Gly Ile Lys Leu

Glu	Phe	Asn	Glu	Pro	Asp	Ser	Glu	Val	Ala	Asn	Ala	Gly	Ile	Lys	Leu
					85			90					95		

Glu Ser Tyr Phe Glu Glu Leu Leu Lys Asn Leu Tyr

Glu	Ser	Tyr	Phe	Glu	Glu	Leu	Leu	Lys	Asn	Leu	Tyr				
						100			105						

<210> 43
<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: consencus

<220>
<221> VARIANT
<222> (1)
<223> It represents 2 amino acids. They can be any amino acids.

<220>
<221> VARIANT
<222> (3)
<223> It represents 2 to 3 amino acids. They can be any amino acids.

<220>
<221> VARIANT
<222> (5)
<223> It represents 5 to 8 amino acids. They can be any amino acids.

<220>
<221> VARIANT
<222> (7)
<223> It represents one amino acids. It can be any amino acid.

<220>
<221> VARIANT
<222> (10)
<223> It represents 5 amino acids. They can be any amino acids.

<220>
<221> VARIANT
<222> (6)
<223> It represents any amino acid from the group of: P, K, or H.

<220>
<221> VARIANT
<222> (9)
<223> It represents any amino acid from the group of: Y, F, or H.

<220>
<221> VARIANT
<222> (12)
<223> It represents any amino acid from the group of: M, I, or V.

<400> 43
Xaa Phe Xaa Pro Xaa Xaa Xaa Tyr Xaa Xaa Pro Xaa Asp
1 5 10

<210> 44
<211> 20
<212> PRT
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: consencus

<400> 44

Trp Pro Phe Met Glu Pro Val Lys Arg Thr Glu Ala Pro Gly Tyr Tyr
1 5 10 15

Glu Val Ile Arg

20