Feuille 2: Fonctions arcsin, arccos, arctan

Exercice 1-1

- 1. Montrer que $0 < \arccos \frac{3}{4} < \frac{\pi}{4}$
- 2. Résoudre $\arccos x = 2\arccos \frac{3}{4}$

Exercice 1-2 Calculer $\arcsin(\sin a)$, $\arccos(\cos a)$, $\arctan(\tan a)$, $\arccos(\sin a)$ pour $a \in \left\{\frac{61\pi}{5}, \frac{76\pi}{5}, \frac{83\pi}{5}\right\}$.

Exercice 1-3 Que vaut $\arccos(\cos x)$ si $x \in [6\pi, 7\pi]$ puis si $x \in [25\pi, 26\pi]$?

Exercice 1-4 Votre calculatrice affirme que l'argument de z = -3 + 4i est $-\arctan\frac{4}{3} + \pi$ ou arctan $\frac{3}{4} + \frac{\pi}{2}$. Ces deux valeurs sont-elles cohérentes?

Exercice 1-5 L'application cos : $[2\pi, 3\pi] \rightarrow [-1, 1]$ est-elle bijective? Si oui, donner une expression de sa fonction réciproque.

Exercice 1-6 On étudie la fonction f définie pour $x \in \mathbb{R}$ par

$$f(x) = \cos^3 x + \sin^3 x$$

- 1. Soit $x \in \mathbb{R}$. Calculer $f(x+\pi)$. Quelle conclusion sur le graphe de f peut-on en tirer?
- 2. Etudier le signe de $\sin x \cos x$ pour $x \in [0, \pi]$. On pourra raisonner géométriquement (sur les courbes des fonctions ou le cercle unité) ou chercher A et ϕ tels que $\sin x \cos x = A\sin(t + \phi)$.
- 3. Terminer l'étude de f.

Exercice 1-7 Représenter graphiquement sans l'aide de la calculatrice la fonction $x \mapsto \arcsin(\sin x)$.

Exercice 1-8 Simplifier les expressions $\tan(\arcsin x)$, $\cos(\arctan x)$ après avoir donné leur ensemble de définition.

Exercice 1-9 On pose $f: x \mapsto \arcsin\left(\frac{x+1}{x-1}\right)$.

- 1. Montrer que l'ensemble de définition de f est \mathbb{R}^- .
- 2. Déterminer le ou les points de la courbe d'ordonnée nulle et préciser la tangente en ce ou ces points.
- 3. Etudier la fonction.

Exercice 1-10 Simplifier les expressions $\arccos x + \arcsin x$ et $\arccos x + \arccos(-x)$ après avoir donné leur ensemble de définition. On pourra dériver.

Exercice 1-11 Dans ce qui suit, on dit que f est équivalent à g en 0 si $\lim_{x\to 0} \frac{f(x)}{g(x)} = 1$. Trouver une fonction g de la forme g(x) = ax + b telle que f soit équivalent à g en 0 dans chaque cas suivant : $f(x) = \arctan x$, $f(x) = \arcsin(x)$, $f(x) = \arccos(x)$.

Exercice 1-12 Soit x, y des réels tels que $xy \neq 1$. Simplifier $\arctan \frac{x+y}{1-xy} - \arctan x - \arctan y$. On pourra dériver.

Exercice 1-13 Soit f la fonction définie sur $[\pi/2, \pi[$ par $f(x) = \frac{1}{\sin x}$. Montrer que f réalise une bijection de $[\pi/2, \pi[$ sur un ensemble à préciser. Déterminer f^{-1} à l'aide de la fonction arcsin.

Exercice 1-14 On cherche à résoudre l'équation (E) : $\arctan 2x + \arctan x = \frac{\pi}{4}$.

- 1. Démontrer que $f: x \mapsto \arctan 2x + \arctan x$ réalise une bijection de \mathbb{R} sur un intervalle à préciser. En déduire que l'équation (E) admet une unique solution α .
- 2. Déterminer α en utilisant la formule d'addition de la tangente.

Exercice 1-15 Résoudre sur $\mathbb R$ les équations suivantes :

$$\arcsin\frac{1}{1+x^2} + \arccos\frac{3}{5} = \frac{\pi}{2}, \qquad \arccos\cos x = \arccos\frac{1}{4}, +\arccos\frac{1}{3}$$

$$\arccos x = 2\arccos(-1), \qquad \arccos x = \arcsin 2x$$

$$\arcsin x + \arcsin\sqrt{1-x^2} = \frac{\pi}{2}, \qquad 2\arcsin x = \arcsin(2x\sqrt{1-x^2})$$

Exercice 1-16 Soit f la fonction définie par

$$f(x) = \arccos(1 - 2x^2)$$

- 1. Déterminer l'ensemble de définition de f et préciser en quels points f est continue.
- 2. Dériver f en prenant soin d'étudier l'ensemble où f est dérivable.
- 3. Dresser le tableau de variations de f et tracer son graphe.
- 4. Sur chaque ensemble où f est dérivable, donner une expression plus simple de f.

Exercice 1-17 Soit f la fonction définie par

$$f(x) = \arccos(1 - 2\cos^4(x))$$

- 1. Montrer que f est définie et continue sur \mathbb{R} .
- 2. Montrer que f est 2π périodique. Quelle est la parité de f? En déduire un intervalle d'étude I.
- 3. Partout où cela ne pose pas de problème, calculer la dérivée de f. On l'exprimera sous la forme la plus simple possible.
- 4. Sur chaque ensemble où f est dérivable, donner une expression plus simple de f.
- 5. Sur quel sous-ensemble de I la fonction f est-elle dérivable? Préciser la valeur des limites de f'(x) à droite au point d'abscisse 0 et à gauche au point d'abscisse π .
- 6. Dresser le tableau de variations de f.
- 7. Tracer son graphe sur trois périodes.