Simutech Winter Project

Modelling Of IC Engine Using MATLAB

Week-2 Assignment (Deadline 27th Dec)

1. Naive Problem

An ideal Otto cycle operates with a compression ratio of 8. At the start of the compression process conditions are:

- Initial pressure $P_1 = 100 \text{ kPa}$
- Initial temperature $T_1 = 30$ °C
- Initial volume $V_1 = 0.0038 \ m^3$

The peak temperature in the cycle is 1200°C.

Tasks:

- 1. Write a MATLAB and/or OCTAVE code to calculate the following for one cycle:
 - Heat Rejection (Q_{out}) in kj
 - Net work output (W_{net}) in kj
 - Thermal efficiency of the cycle (η)
 - Mean Effective Pressure (MEP) in kPa
- 2. Plot the P-V diagram of the cycle using **MATLAB**:
 - Assume the compression and expansion processes are adiabatic.
 - Generate intermediate pressure and volume values during compression and expansion using the adiabatic conditions.

Submissions:

- 1. A script file (.m) containing:
 - All calculation done.
 - The P-V plot and processes clearly labeled.
- 2. Numerical results of Q_{out} , W_{net} , η and MEP

2. Otto Cycle Simulation & Code Implementation

Write a MATLAB and/or OCTAVE script to simulate the pressure-volume (P-V) diagram of an ideal Otto cycle based on the given data below. Additionally, compare the results with and without considering pistion kinematics.

Input Parameter:

- 1. Specific heat ratio $(\gamma) = 1.35$
- 2. Initial pressure $(P_1) = 110 \text{ kPa}$
- 3. Initial temperature $(T_1) = 400 \text{ K}$
- 4. Max. temperature $(T_3) = 2800 \text{ K}$
- 5. Bore = 0.09m, Stroke = 0.1m, Connecting rod length = 0.14m
- 6. Compression Ratio (CR) = 8.5

Engine Geometry and Volumes:

1. Swept volume V_{swept} and clearance volume $V_{clearance}$:

$$V_{swept} = \frac{3.14}{4} * bore^2 * stroke$$

$$V_{clearance} = \frac{V_{swept}}{CR - 1}$$

Tasks:

Write code to compute:

- 1. Compute volume, pressure and temperature at each state.
- 2. Compute the thermal efficiency of the otto cycle
- 3. Plot P-V diagram each processes for:
 - Without considering piston kinematics (use a linear volume change between V_1 and V_2 for compression, and V_3 and V_4 for expansion).
 - With considering pistion kinematics (use the **pison kinematics** function discussed in the class to compute volumes during compression and expansion).

Another Task:

Write a function to analyze the impact of changing compression ratios (CR= 7,9,and 11) on the thermal efficiency. Plot the results using **MATLAB** and/or **Octave** and write your inferences from the plots.

Submissions:

- 1. Submit a script file (.m) implementing the above tasks.
- 2. Include your inferences comparing the P-V diagrams with and without considering piston kinematics. Write your results and findings.

ALL THE BEST!