Wiskunde 1 Schakel

DOCENTENTEAM

Giovanni Vanroelen <u>giovanni.vanroelen@uhasselt.be</u>

Andy Snoecx <u>andy.snoecx@uhasselt.be</u>

Sabine Bertho <u>sabine.bertho@kuleuven.be</u>

sabine.bertho@uhasselt.be

Programma Wiskunde 1: grote lijnen

Lesweek	Onderwerpen		
1 → 3	Functies in 1 variabele en 2D-krommen (H1)		
2 → 6	Afgeleiden en toepassingen (H2)		
4 → 6	Taylor benaderingsveeltermen (H3)		
	1 week HERFSTVAKANTIE		

7→8	Gemengde oefeningen (H1 + H2)	
8	PE-TEST WISKUNDE 1	
6 → 9	Functies in meer veranderlijken (H4)	
9 → 11	Integralen en toepassingen (H5)	
11 → 13	11→ 13 Differentiaalvergelijkingen (H6)	

Programma Wiskunde 1: grote lijnen

2 weken KERSTVAKANTIE		
1 week "BLOK"		
3 weken EXAMENS		
LESVRIJE WEEK		

CURSUSMATERIAAL

- THEORIECURSUS (naslagwerk met extra voorbeelden)
- OEFENBUNDEL (meebrengen naar elke werkzitting!)
- TOLEDO (ondersteunende lesvideo's + extra materiaal)
- FORMULARIUM + CAS REKENTOESTEL

Wiskunde 1 Schakel: EVALUATIE

Eerste examenkans

LESWEEK 8 (dinsdag 14/11 om 8u30):

Schriftelijke PE-test (deelname VERPLICHT!)

Leerstof: Hoofdstuk 1 en 2 (focus: oefeningen en

toepassingen met mogelijk een inzichtsbijvraagje)

Toegelaten hulpmiddelen: formularium en CAS rekentoestel

25%

75%

JANUARI 2024: schriftelijk examen (zelfde stramien als in november)

Leerstof: Hoofdstuk 3, 4, 5 en 6

Toegelaten hulpmiddelen: formularium en CAS rekentoestel

Beoordelingscriteria: ZIE eindcompetenties

ECTS-fiche (studiegids)!!

Wiskunde 1 Schakel: EVALUATIE

Tweede examenkans (augustus)

VERPLICHT: schriftelijk examen van de leerstof van hoofdstuk 3, 4, 5 en 6

75%

De punten van de PE-test van de 1^{ste} kans blijven behouden MITS een score van ≥ 20/50 op deze test, tenzij je beslist (op de dag van de 2^{de} examenkans) om deel te nemen aan de herkansingstest (na het schriftelijk herexamen). Dan komen de nieuwe punten van de PE-test in de plaats te staan van de oude.

Is je score op de **PE-test < 20/50** is dus de herkansing van deze test ook **VERPLICHT**!

25%

OPGELET!!

AFSPRAAK: het permanent en het werkgeheugen van het rekentoestel moeten leeg zijn voor de start van de PE-test en het schriftelijk examen !!!

REGEL VAN DRIE

- Durf fouten maken en vragen stellen!
- 2. Focus je eerst op de grote lijnen en dan pas op de details!
- 3. Maak elke week ZELF een aantal oefeningen die <u>niet</u> in de les zijn opgelost en help elkaar!

Hoofdstuk 1: Functies en 2D-krommen

We zullen 4 soorten krommen bestuderen

1. Expliciete krommen (functie):

$$y = f(x)$$

Cartesisch denken

2. Impliciete krommen (relatie) : F(x,y) = 0

$$F(x,y) = 0$$

3. Parameterkrommen : $\begin{cases} x = x1(t) \\ y = y1(t) \end{cases}$

4. Poolkrommen: $r = r1(\theta)$

Verschil tss expliciete en impliciete krommen

Expliciete cartesische functie : y = f(x)

Impliciete cartesische relatie : F(x,y) = 0

GRAFISCH: bij een expliciete kromme zal elke verticale lijn de grafiek in hoogstens 1 punt snijden!

Parametervoorstelling = Dynamisch denken!

Inverteren van functies en krommen

Inverse functies en krommen zijn elkaars spiegelbeeld t.o.v. de eerste bissectrice (y = x)!

Alleen injectieve krommen zijn uniek inverteerbaar!

GRAFISCH: elke horizontale lijn zal de grafiek in hoogstens 1 punt

Inverteren van functies en krommen

Limieten

Conceptueel heel belangrijk!

Twee soorten limieten:

- naar +/- oneindig
- · naar een getal a

 $\lim_{x \to 0} f(x)$ bestaat

$$x \rightarrow a$$

$$\Leftrightarrow f(a-) =$$

$$\lim_{x \to a} f(x) = \lim_{x \to a} f(x) = f(a+)$$

7.04 个 9

Belangrijke functieklassen

Veelterm-Breuk-& Wortelfuncties

	$\sin x$	$\cos x$	$\operatorname{tg} x := \frac{\sin x}{\cos x}$	$\cot g x := \frac{\cos x}{\sin x}$
dom	IR	$ m I\!R$	$\mathbb{R}\setminus\{\pi/2+k\cdot\pi\}$	$\mathbb{R}\setminus\{k\cdot\pi\}$
bld	[-1, 1]	[-1, 1]	$ m I\!R$	$ m I\!R$
Periode	2π	2π	π	π
Nulpunten	$k \cdot \pi$	$\frac{\pi}{2} + k \cdot \pi$	$k \cdot \pi$	$\frac{\pi}{2} + k \cdot \pi$
Limieten			$\lim_{x \to +\infty} \operatorname{tg} x = +\infty$	$\lim \cot g x = -\infty$
			$x \stackrel{\leq}{\rightarrow} \pi/2$	$x \stackrel{\leq}{\to} \pi$
INVER	SE!	! 5	$\lim_{x \to \pi/2} \operatorname{tg} x = -\infty$	$\lim_{x \to \pi} \cot g x = +\infty$

	$\operatorname{Bgsin} x$	$Bg\cos x$	$\operatorname{Bgtg} x$	$\operatorname{Bgcotg} x$
dom	[-1, 1]	[-1, 1]	${ m I\!R}$	${ m I\!R}$
bld	$[-\pi/2,\pi/2]$	$[0, \pi]$	$]-\pi/2,\pi/2[$	$]0,\pi[$
Nulpunten	0	1	0	/
Limieten			$\lim_{x \to -\infty} Bgtg x = -\pi/2$	$\lim_{x \to -\infty} \operatorname{Bgcotg} x = \pi$
			$\lim_{x \to +\infty} Bgtg x = \pi/2$	$\lim_{x \to +\infty} \operatorname{Bgcotg} x = 0$

Goniometrische getallen

 $(\cos \alpha, \sin \alpha)$ ligt op de goniometrische cirkel (α) in radialen)

bgsin(x) $\leftarrow \rightarrow$ Bgsin(x) ?!!?

$$x = \cos y \iff y = \operatorname{bgcos} x \iff y = \pm \operatorname{Bgcos} x + k \cdot 2\pi \ (k \in \mathbb{Z})$$

 $x = \operatorname{tg} y \iff y = \operatorname{bgtg} x \iff y = \operatorname{Bgtg} x + k \cdot \pi \ (k \in \mathbb{Z})$

Belangrijke functieklassen

a^x	a > 1	a < 1]
$dom a^x$	$ m I\!R$	$ m I\!R$	1 .
$\operatorname{bld} a^x$	$]0,+\infty[$	$]0,+\infty[$	
Nulpunten	/		
$\lim_{x \to -\infty} a^x$	0	$+\infty$	
$\lim_{x \to +\infty} a^x$	$+\infty$	0	
$x \rightarrow +\infty$		INVERS	SF II
Α	_		

	$\log_a(x)$	a > 1	a < 1
	$\operatorname{dom} \log_a(x)$	$]0,+\infty[$	$]0,+\infty[$
	$\operatorname{bld}\log_a(x)$	$ m I\!R$	$ m I\!R$
	Nulpunten	1	1
ı	$\lim_{x \to 0} \log_a(x)$	$-\infty$	$+\infty$
<u>-</u>	$\lim_{x \to +\infty} \log_a(x)$	$+\infty$	$-\infty$

	$\sinh(x)$	$\cosh(x)$	tanh(x)
dom	${ m I\!R}$	$ m I\!R$	$ m I\!R$
bld	${ m I\!R}$	$[1,+\infty[$]-1,1[
Nptn	0	/	0
Lim		$\lim \cosh x = +\infty$	
	$\lim_{x \to +\infty} \sinh x = +\infty$	$\lim_{x \to +\infty} \cosh x = +\infty$	$\lim_{x \to +\infty} \tanh x = 1$

HASSELT

KU LEUVEN

Exponentiële en logaritmische functies

Cosinus hyperbolicus

Kegelsneden

Kegelsneden

Kegelsneden

HYPERBOOL

Parametervergelijking?

1 Oost-west
$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$

!!!
$$(\cosh(t))^2 - (\sinh(t))^2 = 1$$

$$\frac{\cancel{x}}{\cancel{x}}$$
 2 Zuid-noord $\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$

$$!!! \left(\frac{1}{\cos(t)}\right)^2 - (\tan(t))^2 = 1$$

KEGELSNEDE

TYPE ?? STEL

1 Algemeen
$$a \cdot x^2 + b \cdot x \cdot y + c \cdot y^2 + d \cdot x + e \cdot y + f = 0$$

$$A = \begin{pmatrix} a & b/2 \\ b/2 & c \end{pmatrix}$$

- (1) $\det(A) = a \cdot c \frac{b^2}{4} = 0$: de kegelsnede is van het parabolische type.
- (2) det(A) > 0: de kegelsnede is van het elliptische type.
- (3) det(A) < 0: de kegelsnede is van het hyperbolische type.

NU ZELF VERDER AAN DE SLAG! TO DO...

- → Hoofdstuk 1 verder nakijken in de theoriecursus.
 - → Ingesproken lesvideo over "functieklassen"
- → Formularium (Toledo) afdrukken om mee te brengen naar de werkzittingen!
- → TOLEDO: 3 pdf-documenten
- Voorbeeld-oefeningen DOMEIN
- Voorbeeld-oefeningen van IMPLICIET naar EXPLICIET
- Voorbeeld-oefeningen INVERSE FUNCTIE

KIJK DEZE NA TEGEN EERSTE WERKZITTING!!

- → 'SPELEN' met het rekentoestel.
 - → Ingesproken introductievideo om aan de slag te gaan

