# DE Mathématiques pour l'Informatique

**Exercice 1**.  $A = \{a,b\}$  est l'alphabet.

Soit l'automate fini A<sub>init</sub>:

|        | état | a          | b    |
|--------|------|------------|------|
| Entrée | A    | -          | В    |
| Sortie | В    | A, B, C, E | B,D  |
| Entrée | C    | C, E       | E    |
| Entrée | D    | D          |      |
| Sortie | Е    | A          | C, E |



a) L'automate  $A_{init}$  est-il déterministe ? pourquoi ? Si la réponse est « non », donnez <u>toutes</u> les raisons.

**Réponse :** il n'est pas déterministe car 1) il y a 3 entrées, 2) il y a plusieurs transitions marquées par les mêmes caractères sortant du même état :

BaA, BaB, BaC, BaE

BbB, BbD

CaC,CaE

EbC, EbE

b) Construisez un automate standard  $A_{st}$  en standardisant  $A_{init}$ .

**Solution :** on ajoute un nouvel état initial i, avec les transitions induites par les transitions de  $A_{init}$  partant de ses entrées :

L'état i n'est pas terminal, car aucun état initial de A<sub>init</sub> ne l'est.

Voici l'automate A<sub>st</sub>:





- Si vous pensez que A<sub>init</sub> reconnaît le mot vide, expliquez pourquoi et construisez un autre automate standard B<sub>st</sub> qui ne reconnaît le mot vide mais reconnaît tout le reste du langage reconnu par A<sub>init</sub>.
- Si vous pensez que A<sub>init</sub> ne reconnaît pas le mot vide, expliquez pourquoi et construisez un autre automate standard C<sub>st</sub> qui reconnaît et le mot vide, et tout le langage reconnu par A<sub>init</sub>.

**Solution :**  $A_{init}$  ne reconnaît pas le mot vide car aucune de ses entrées n'est un état terminal. Voici l'automate  $C_{st}$ :

|     | état | a          | b    |
|-----|------|------------|------|
| E/S | i    | C,D,E      | B,E  |
|     | A    | -          | B    |
| S   | B    | A, B, C, E | B,D  |
|     | C    | C, E       | E    |
|     | D    | D          |      |
| S   | E    | A          | C, E |



c) Indépendamment des questions (a) et (b), obtenir un automate déterministe complet équivalent à A<sub>init</sub>.

## **Solution:**

|              | <mark>état</mark> | <mark>a</mark> | <mark>b</mark> |
|--------------|-------------------|----------------|----------------|
| $\mathbf{E}$ | <b>ACD</b>        | CDE            | ${f BE}$       |
| S            | CDE               | <b>ACDE</b>    | CE             |
| S            | <b>BE</b>         | <b>ABCE</b>    | <b>BCDE</b>    |
| S            | <b>ACDE</b>       | <b>ACDE</b>    | <b>BCE</b>     |
| S            | CE                | <b>ACE</b>     | <b>CE</b>      |
| S            | <b>ABCE</b>       | <b>ABCE</b>    | <b>BCDE</b>    |
| S            | <b>BCDE</b>       | <b>ABCDE</b>   | <b>BCDE</b>    |
| S            | <b>BCE</b>        | <b>ABCE</b>    | <b>BCDE</b>    |
| S            | <b>ACE</b>        | <b>ACE</b>     | <b>BCE</b>     |
| S            | <b>ABCDE</b>      | <b>ABCDE</b>   | <b>BCDE</b>    |

L'automate déterministe est trop grand pour qu'il y ait un sens de le dessiner.

### **Exercice 2**

Minimiser l'automate suivant :

|               | État | а | b |
|---------------|------|---|---|
| Entrée/sortie | Α    | В | С |
| Sortie        | В    |   | - |
| Sortie        | С    | F | D |
| Sortie        | D    | E | В |
| Sortie        | E    | F | D |
| Sortie        | F    | В | С |

**Solution**: Partition initiale:  $\Theta_0 = \{T, NT\}, NT=P, T=\{A,B,C,D,E,F\}.$ 

|                 | <mark>État</mark> | <mark>a</mark> | <mark>b</mark> | <mark>a</mark>   | <mark>b</mark>  |                  |
|-----------------|-------------------|----------------|----------------|------------------|-----------------|------------------|
| <mark>NT</mark> | A                 | B              | C              | NT               | <mark>NT</mark> |                  |
|                 | B                 | P              | P              | P                | P               | <mark>fin</mark> |
|                 | C                 | F              | D              | <mark>NT</mark>  | <mark>NT</mark> |                  |
|                 | D                 | E              | B              | <mark>NT</mark>  | <mark>NT</mark> |                  |
|                 | E                 | F              | D              | <mark>NT</mark>  | <mark>NT</mark> |                  |
|                 | F                 | B              | C              | <mark>NT</mark>  | <mark>NT</mark> |                  |
|                 |                   |                |                |                  |                 |                  |
| T               | P                 | P              | P              | <mark>fin</mark> |                 |                  |

 $\Theta_1 = \{(P),(B), I\}, \text{où j'ai appelé } I = \{A,C,D,E,F\}.$ 

|                   |   |                | <mark>sou:</mark> | <mark>s Θ<sub>1</sub></mark> |
|-------------------|---|----------------|-------------------|------------------------------|
| <mark>État</mark> | a | <mark>b</mark> | a                 | <mark>b</mark>               |
| A                 | B | C              | B                 | <u>l</u>                     |
| C                 | F | D              | <u> </u>          | <u> </u>                     |
| D                 | E | В              | <mark>l</mark>    | В                            |
| E                 | F | D              | <u> </u>          | <u> </u>                     |
| F                 | В | C              | В                 | <mark>l</mark>               |

 $\Theta_2 = \{(P), (B), (A, F), (C,E), (D)\}.$ 

On note que A et F ont les mêmes transitions (vers B en a et vers C en B), et C et E ont les mêmes transitions (vers F en a et vers D en b). Donc ils ne se sépareront pas. Donc  $\Theta_{\text{fin}} = \Theta_2 = \{(P), (B), (A, F), (C, E), (D)\}$ .

La table de transitions de l'automate minimisé :

|     | <mark>État</mark> | <mark>a</mark>  | <mark>b</mark> |
|-----|-------------------|-----------------|----------------|
| E/S | <mark>AF</mark>   | B               | CE             |
| S   | В                 | P               | P              |
| S   | CE                | <mark>AF</mark> | D              |
| S   | D                 | CE              | B              |
|     | P                 | P               | P              |



### Exercice 3

a) Donner le système d'équations permettant de trouver l'expression rationnelle correspondant au langage reconnu par cet automate.



## Solution:

$$\begin{cases}
0 = \varepsilon + 0a \\
1 = \varepsilon + 1b \\
2 = 0a + 3a \\
3 = 1b + 2b
\end{cases}$$

$$L = 2 + 3$$

b) Résoudre ce système d'équations et obtenir le langage reconnu par l'automate.

# Solution:

```
0 = \varepsilon a^* = a^*; \qquad 1 = \varepsilon b^* = b^*;
2 = 0a + 3a = 0a + (1b + 2b)a = a^*a + b^*ba + 2ba = (a^*a + b^*ba)(ba)^*
3 = 1b + 2b = 1b + (0a + 3a)b = b^*b + a^*ab + 3ab = (b^*b + a^*ab)(ab)^*
L = 2 + 3 = (a^*a + b^*ba)(ba)^* + (b^*b + a^*ab)(ab)^*
```

(Il est possible que vous ayez obtenu une expression équivalente, donc correcte, mais d'une forme différente). Entre autres, on peut beaucoup jouer sur l'identité  $a(ba)^* = (ab)^*a$ :

 $\frac{a(ba)^* = a(\varepsilon + ba + baba + bababa + ...) = a + aba + ababa + abababa + ...) = (\varepsilon + ab + abab + ababab + ...)a}{=(ab)^*a}$ 

## **Exercice 4**

a) Construire un automate asynchrone reconnaissant le langage

$$L = \{ ((a + b)(a + b))^* + ((a + b)(a + b)(a + b)(a + b))^* \}$$

### **Solution:**



## Ensuite, soit

- b) déterminiser et
- c) minimiser l'automate obtenu en (a) (c'est assez compliqué!),

soit

b) simplifier graphiquement et déterminiser et

l'automate simplifié graphiquement.

c) minimiser
La deuxième proposition est bien plus simple à réaliser.

## Solution: J'ai choisi de déterminiser un automate simplifié graphiquement:



Attention! Si vous avez produit un automate simplifié correct mais sans effectuer une déterminisation, ce dessin ne vous donne aucun point.

## **Déterminisation:**

|     | <mark>état</mark>  | <mark>a,b</mark>   |
|-----|--------------------|--------------------|
| E/S | 013489             | <mark>25</mark>    |
|     | <mark>25</mark>    | <mark>1369</mark>  |
| S   | <mark>1369</mark>  | <mark>27</mark>    |
|     | <mark>27</mark>    | <mark>13489</mark> |
| S   | <mark>13489</mark> | <mark>25</mark>    |



### **Minimisation:**



**Remarque**. Vous avez aussi le droit de produire directement l'automate déterministe complet minimal que vous devriez obtenir en (c), si vous savez le faire <u>et si vous savez l'expliquer</u>. Dans ce cas, vous n'êtes pas obligés de faire le (b) et le (c), mais vous devez toujours faire le (a).

**Réalisation de la remarque**: Nous avons vu que l'automate minimal dont le langage est (c<sup>n</sup>)\*+ (c<sup>n</sup>)\* consiste en un cycle de PCEM(n,m) états si l'un des nombres n'est pas un multiple de l'autre, et de n états si m=kn. Ici, nous avons ce dernier cas, car 4=2\*2. La ou les sorties sont dans les états multiples de n ; ici, c'est uniquement l'état 0, que l'on a appelé T lors de la minimisation. Il en sort l'automate minimal ci-dessus.

### Exercice 5

Construire un automate reconnaissant le complémentaire du langage reconnu par cet automate :



Vous donnerez votre résultat sous forme d'un schéma (un dessin).

**Solution :** il faut d'abord compléter l'automate :



Ce n'est que maintenant qu'on peut faire l'opération  $T \leftrightarrow NT$ :



# **Exercice 6**

Prouver par récurrence : 
$$\forall n \ge 1$$
,  $\sum_{i=1}^{n} i(i+1) = \frac{n(n+1)(n+2)}{6}$ .

### **Solution**:

En fait, la formule est fausse. Déjà pour 
$$n = 1$$
,  $\sum_{i=1}^{n} i(i+1) = 1 \times (1+1) = 2 \neq \frac{1(1+1)(1+2)}{6} = 1$ 

Toute personne ayant vu que la formule est fausse, obtient le point pour cet exo; mais ceux qui ont pu corriger la formule pour qu'elle soit vraie, et qui ont prouvé la formule correcte, obtiennent plus.

On voit que pour corriger la formule pour n=1, il suffit de la modifier ainsi :

$$\forall n \ge 1$$
,  $\sum_{i=1}^{n} i(i+1) = \frac{n(n+1)(n+2)}{3}$ . La base est donc assurée.

$$\frac{\text{H\'er\'edit\'e}: \text{Soit } P(n) = \left(\sum_{i=1}^{n} i(i+1) = \frac{n(n+1)(n+2)}{3}\right) = TRUE. \text{ Alors}$$

$$\text{Si } P(n) = \text{TRUE}$$

$$\sum_{i=1}^{n+1} i(i+1) = \sum_{i=1}^{n} i(i+1) + (n+1)(n+2) = \frac{n(n+1)(n+2)}{3} + (n+1)(n+2) = (n+1)(n+2)\left(\frac{n}{3}+1\right)$$

$$= (n+1)(n+2)\frac{n+3}{3} = \frac{(n+1)(n+2)(n+3)}{3}$$

ce qui est le contenu de la proposition P(n+1).

# **Questions de cours**

a) Quel est l'automate minimal équivalent à l'automate suivant :

|     | etat | a | b | c |
|-----|------|---|---|---|
| E/S | 0    | 1 | 2 | 3 |
| S   | 1    | 2 | 3 | 4 |
| S   | 2    | 3 | 0 | 1 |
| S   | 3    | 0 | 1 | 2 |
| S   | 4    | 4 | 0 | 1 |

Donnez une réponse immédiate, <u>sans effectuer la procédure de minimisation par des partitions successives</u>, mais avec une explication!

**Réponse :** c'est un automate déterministe complet dont tous les états sont terminaux. Donc il reconnait le langage A\*, et son automate déterministe complet minimal est



- b) Pour un langage donné, un automate déterministe complet qui le reconnaît est-il unique ? **NON**
- c) Pour un langage donné, un automate déterministe complet minimal qui le reconnaît est-il unique ? **OUI**
- d) Peut-on toujours construire un automate déterministe équivalent à un automate non déterministe ? **OUI**
- e) Un automate standard est-il toujours déterministe? NON
- f) Un automate déterministe est-il toujours standard? NON
- g) Le langage reconnu par l'automate B, est-il le complément  $\overline{L}$  du langage L reconnu par l'automate A ? Expliquer votre réponse (pas de points s'il n'y a pas d'explication correcte). Si la réponse est « non », essayez de trouver un mot qui fait partie de  $\overline{L}$  mais qui n'est pas reconnu par l'automate B, ou un mot qui ne fait pas partie de  $\overline{L}$  mais qui est reconnu par B.



**Réponse : Non,** car l'automate A n'est pas déterministe (il ne faut pas dire qu'il n'est pas complet parce qu'on ne parle pas d'un automate non déterministe complet). Exemple : le mot 'ab' est reconnu et par l'automate A, et par l'automate B.