Communicating with Data – Interactive Visualization

Dr. Ab Mosca (they/them)

Plan for Today

- Interaction: a definition
- Interaction with data and problem space
 - Relationship between interaction and understanding
 - Roles interaction plays
- Interaction with visual interfaces
 - Basic interaction types
 - Sample interaction methods
- Demo: coordinated multiple views

Rewind

Humans and machines have complimentary strengths

Image credit: Ali Ansari

Interaction (def.)

"Interaction for visualization is the interplay between a person and a data interface involving a data-related intent, at least one action from the person and an interface reaction that is perceived as such."

Mandatory Components

- Interplay
- Person
- Data Interface
- Action
- Action-Reaction
- Reaction Perceived as Such
- Data-Related Intent

Interaction

- Methods by which humans **create knowledge** through the manipulation of an interface
- Low level: between human and interface
 - the set of operations available
 - the relationship between the human and the visualization
- High level: between human and problem space
 - a cognitive act *enabled* by the tool
 - does not need to take place exclusively within them
 - might be distributed across multiple tools

Example: Rubik's Cube What **low-level** interactions can you have?

What **high-level** interactions can you have?

Part I: High Level Interaction with Data / Problem Space

Interaction and analysis

- Interaction is the observable result of a cognitive process: "an externalization of thought"
- In visualization, there is a growing belief that interaction and analysis are actually the same thing!
- Analytic discourse: the idea that knowledge is constructed, tested, refined, and shared through the interactive manipulation of an interface¹

Interaction as a reasoning aid

- Interaction happens in the context of a problem or goaldirected activity
- This context helps the human identify relevant concepts and link them into appropriate structures
- Interaction brings together background contexts and current observations
- This is known as "situated cognition"

Hypothesis: the more ways a user can 'touch' their data (by changing their form or exploring them from different perspectives), the more insight will accumulate.

True or False?

Discussion

Reality Check

- Requires human time and attention
- Increases perceptual and exploration costs
- Implementation costs
- Multiple user studies find no increase in performance

Interaction as Distributed Cognition

• Visualization is often used as a tool to "offload" storage or computation from the human's brain

• In order for this to be useful, we have to be able to "reload" parts of the data and operate on it

• Internal (in your head) vs. external (on the screen) representations

 Consider the impact of the affordances of the interface

Distributed Cognition as a Theoretical Framework for Information Visualization Zhicheng Liu, Nancy J. Nersessian, and John T. Stasko

Rule1 Rule2 Rule3

Example: Tower of Hanoi

- 1. Only one disk can be transferred at a time.
- A disk can only be transferred to a pole on which it will be the largest.
- 3. Only the largest disk on a pole can be transferred to another pole.

Example

Is changing the page internal or external?

Pragmatic vs. Epistemic Action

- **Pragmatic actions** move a person and their analysis closer to the desired destination
- **Epistemic actions** enable humans to leverage environmental structures to **link internal structures**
- The purpose of some actions is not for the effect they have on the environment but **for the effect they have on the humans**

Example: Tetris
Behavior

Part II

Interaction with a Visual Interface

So far...

Flashback: interaction as a reasoning aid

- Interaction is situated in the context of a problem or goaldirected activity
- Question: what kinds of things might someone want to do using a visualization?

Yi, Kang, Stasko and Jacko (2007)

- 1. Select: mark something as interesting
- 2. Explore: show me something else
- 3. Reconfigure: show me a different arrangement
- 4. Encode: show me a different representation
- 5. Abstract/Elaborate: show me more or less detail
- 6. Filter: show me something conditionally
- 7. Connect: show me related items

Mark something as interesting: direct

1. Select

1. Select

Mark something as interesting: indirect

2. Explore

Show me something else

- Scroll bars
- Panning
- Direct-Walk (e.g. hyperlink traversal)

3. Reconfigure

Show me a different arrangement: sorting

Show me a different arrangement: baseline adjustment

3. Reconfigure

3. Reconfigure

Show me a different arrangement: reduce occlusion (jitter)

4. Encode

Show me a different representation: visualization type, color, size, orientation, etc.

5. Abstract /Elaborate

Show me more or less detail: drill up/down

5. Abstract / Elaborate

Show me more or less detail: zooming

5. Abstract /Elaborate

Show me more or less detail: tooltips

6. Filter

Show me something conditionally

NameVoyager: Explore baby names and name trends letter by letter Looking for the perfect baby name? Sign up for free to receive access to our expert tools!

7. Connect

Show me related items: build-out

7. Connect

Show me related items: coordinated multiple views (CMV)

Foreshadowing: Multiple views

Systems that use **two or more distinct views** to support the exploration of a single concept or domain

Discussion

What would we need to make this work?

Suggested questions to ask when designing

- 1. What is the goal of the analysis?
 - Decision-making
 - Better understand a domain or a problem
 - Identify the trends of a phenomenon
 - Forecast the future

...etc.

- 2. What kinds of operations do we need to enable?
- 3. How can the visualization support those operations?

Demo: coordinated multiple views

Tableau CMV walkthrough and exploration