Homework Assignment 1

Exercise 1. Let X_1, X_2, \ldots be independent Bernoulli r.v.'s r.v with

 $P(X_n = 1) = p$ and $P(X_n = 0) = q = 1 - p$ for all n. The collection of r.v.'s $\{X_n, n \ge 1\}$ is a stochastic process, and it is called a Bernoulli process.

- a) Describe the Bernoulli process.
- b) Construct a typical sample sequence of the Bernoulli process.
- c) Determine the probability of occurrence of the sample sequence obtained in part b).

Exercise 2. Let $Z_1, Z_2, ...$ be independent identically distributed r.v.'s with $P(Z_n = 1) = p$ and $P(Z_n = -1) = q = 1 - p$ for all n. Let

$$X_n = \sum_{i=1}^n Z_i, \ n = 1, 2, \dots$$

and $X_0 = 0$. The collection of r.v.'s $\{X_n, n > 0\}$ is a stochastic process, and it is called the simple random walk X_n .

- a) Describe the simple random walk X_n .
- b) Construct a typical sample sequence (or realization) of X_n .
- c) Derive the first-order probability distribution of the simple random walk X_n
- d) Find the probability that $X_n = -2$ after four steps.
- e) Find the mean and variance of the simple random walk X_n .
- f) Find the autocorrelation function $R_X(n,m)$ of the simple random walk X_n
- g) Now let the random process X(t) be defined by

$$X(t) = X_n, \ n < t < n+1$$

Describe X(t). Construct a typical sample function of X(t).

Exercise 3. Consider a random process X(t) defined by

$$X(t) = Y \cos \omega t, \ t \ge 0$$

where ω is a constant and Y is a uniform r.v. over (0,1).

- a) Describe X(t).
- b) Sketch a few typical sample functions of X(t).
- c) Find E[X(t)].

- d) Find the autocorrelation function $R_X(t,s)$ of X(t).
- e) Find the autocovariance function $K_X(t,s)$ of X(t).

Exercise 4. Consider a discrete-parameter random process $X(n) = \{X_n, n \ge 1\}$ where the X_i 's are iid r.v.'s with common cdf $F_X(x)$, mean p, and variance σ^2 .

- a) Find the joint cdf of X(n).
- b) Find the mean of X(n).
- c) Find the autocorrelation function $R_X(m,n)$ of X(n).
- d) Find the autocovariance function $K_X(m,n)$ of X(n).