Práct

I.E.S. POLITÉCNICO JESÚS MARÍN

Fecha: CURSO 202_-202_

Práctica Nº11(CEA) – El transistor bipolar II.

(1º GS Mantenimiento electrónico)

Alumno/a: Dragos Cornel Ivan

Fecha: 19/04/2022

OBJETIVOS

- Conocer el comportamiento de los transistores
- Perfeccionarse en el manejo y conexionado de los aparatos de medida.
- Simulación de circuitos con transistores.

Enunciado

1ªParte:

Explica los distintos sistemas de nomenclatura de los transistores.

Identifica mediante sus data sheet u hoja de características los siguientes transistores, BD138, BC107, 2N3055, BC550, BD136, BD227, BC304, BC148, BC140, BD510 y completa una tabla con las siguientes características: Tipo, símbolo, encapsulado y h_{FE} .

Tres tipos:

-Americano (JEDEC)

Joint Electron Device Engineering Council:

Dígito, letra, numero de serie, [sufijo]

El primer dígito es uno menor al número de terminales; excepto para el caso de "4N" y "5N".

El número de serie va desde '100' hasta '9999'

El sufijo (opcional) indica el grupo de ganancia (hfe) a la que pertenece el dispositivo.

Ejemplos: 2N3819, 2N2221A, 2N904

-Japonesa (JIS)

Japanese Industrial Standard:

dígito, dos letras, número de serie, [sufijo] el dígito es uno menos que el número de terminales.

Las letras indican el área de aplicación

El sufijo (opcional) indica que el tipo está aprobado por varias organizaciones japonesas.

Ejemplo: 2SA1187, 2SB646, 2SC733

-Europea (Pro-Electrón)

dos letras, [letra], número de serie, [sufijo]

La primera letra indica el material:

A = Ge

B = Si

C = GaAs

R = Materiales compuestos.

La segunda letra indica la aplicación del dispositivo.

La tercera letra indica que el dispositivo está pensado para aplicaciones industriales.

El sufijo indica el agrupamiento de ganancia

Ejemplos: BC108A, BAW68, BF239, BFY51

Identifica mediante sus data sheet u hoja de características los siguientes transistores, BD138, BC107, 2N3055, BC550, BD136, BD227, BC304, BC148, BC140, BD510 y completa una tabla con las siguientes características: Tipo, símbolo, encapsulado y h_{FF}

Nombre	Tipo	Símbolo	Encapsulado	hFE
BD138	PNP	2 Collector Base 1 Emitter	TO 126	40
BC107	NPN	B	TO-18	110
2N3055	NPN	B E	TO-3	70

BC550	NPN	B C	TO-92-3	240
BD136	PNP	2 Collector Base 1 Emitter	TO 126	40
BD227	PNP	3——————————————————————————————————————	TO 126	40
BC304	PNP	C (2) B (1) E (3)	TO-39	40

BC148	NPN	NPN C	X09	110
BC140	NPN	NPN E	T39	40
BD510	PNP	2 Collector Base 1 Emitter	TO202	40

Proceso: En principio tomamos como primer valor cuando las dos fuentes están a cero voltios y partimos del origen de coordenadas.

Seguidamente actuamos sobre V_{BB} hasta conseguir las distintas I_B de 50, 100, 150, 200 y 250 μA .

Para cada uno de los valores de I_B deberás obtener los siguiente valores de V_{CE} variando la fuente V_{CC} , 0, 2, 4, 6, 8, 10, 12, 14, y 16 V.

Por último tendrás que rellenar la siguiente tabla con los correspondientes valores de $I_{\rm C}$.

2ª Parte:

Monta y simula el siguiente circuito (si no disponemos del potenciómetro, podríamos sustituirlo por una resistencia de base fija de 2K2) y obtén las curvas características de salida del transistor BJT que estimes oportuno.

Proceso: En principio tomamos como primer valor cuando las dos fuentes están a cero voltios y partimos del origen de coordenadas.

Seguidamente actuamos sobre V_{BB} hasta conseguir las distintas I_B de 50, 100, 150, 200 y 250 μA .

Para cada uno de los valores de I_B deberás obtener los siguiente valores de V_{CE} variando la fuente V_{CC} , 0, 2, 4, 6, 8, 10, 12, 14, y 16 V.

I (mA)	Vce (V)				
	0	2	4	6	8
0	0	0	0	0	0
X2	0	4.8	5.13	5.98	6.8
X1	0	2.1	2.15	2.26	2.38
X3	0	12.36	13.6	15	17.2

Por último tendrás que rellenar la siguiente tabla con los correspondientes valores de $I_{\rm C}$.

Con los valores obtenidos de la tabla, dibuja las familias de las curvas $I_C = f(V_{CE})$, con I_B constante, e identifica las zonas de funcionamiento corte, activa y saturación del transistor que has utilizado.

De todo lo anterior se realizará una memoria de la práctica incluyendo los siguientes apartados:

Materiales utilizados.

Procesos llevados a cabo para finalizar la práctica con éxito.

Esquemas, fotografías, gráficas y pantallazos.

Observaciones, dificultades encontradas y posibles mejoras.