Let E be a vector space over \mathbb{C} .

Definition 1 (Hermitian) A map $A \in \text{End E}$ is Hermitian iff

$$\langle Ax, y \rangle = \langle x, Ay \rangle$$

Theorem 2 (finite spectral theorem) Suppose $E \cong \mathbb{C}^n$ is hermitian. Then

- E has eigenvectors that are an orthonormal basis of E.
- All eigenvalues of E are real.

Proof. By the fundamental theorem of algebra, the characterestic polynomial

$$|A - xI|$$

has a root. Hence A has an eigenvalue-eigenvector pair λ , e. But

$$\lambda \langle e, e \rangle = \langle e, Ae \rangle = \langle Ae, e \rangle = \overline{\lambda} \langle e, e \rangle$$

thus $\lambda = \overline{\lambda}$. Ergo, $\lambda \in \mathbb{R}$.

Now consider $A|e^{\perp}$. Suppose $\langle x,e\rangle=0$. Then

$$0 = \lambda \langle x, e \rangle = \langle x, Ae \rangle = \langle Ax, e \rangle$$

Hence $A|e^{\perp} \in End(e^{\perp})$. Induction on dimension proves the theorem.

1

Let • denote pointwise multiplication.

Corollary 3 (diagonalization) If $A \in End E$, then

$$A = P^{-1}(v \bullet)P$$

where P is unitary and $v \in P(E)$ is real.

Definition 4 (standard part of operator)

$$\begin{array}{cccc} st: & End \ E & \rightarrow & E \\ & (st \ T)(x) & := & st(T(*x)) \end{array}$$

Theorem 5 (infinite spectral theorem) Suppose E is a Hilbert space. If $A \in \text{End E}$ is hermitian, then

$$A = P^{-1}(v \bullet _)P$$

with P unitary and $v \in \tilde{E}$ real.

Proof. Consider a nonstandard model of functional analysis. Fix a hyperfinite-dimensional subspace F such that

$${}^{\sigma}E\subset F\subset {}^{*}E$$

There is some hermitian $B \in End\ F$ such that $B|^{\sigma}E = {}^*A|^{\sigma}E$. This B simultaneously satisfies hermitian-ness and $B({}^*e) = {}^*(Ae)$ for each e in some (standard) basis of E. Such a B exists, internal to a sufficiently saturated model.

By *-transferring diagonalization, there is some unitary $P:F\stackrel{\sim}{\longrightarrow} \tilde{F}$ and real $\nu\in\tilde{F}$ such that

$$B = P^{-1}(\nu \bullet _)P \tag{1}$$

By construction, $B({}^{\sigma}E) \subseteq {}^{\sigma}E$. Permuting rows of the matrices $v \bullet _$ and P if necessary, assume (without loss of generality) that $P({}^{\sigma}E) \subseteq {}^{\sigma}E$.

Then

$$(st P)^{-1} = st(P^{-1})$$

similarly,

$$(\operatorname{st}(v \bullet _))(x) = \operatorname{st}(v \bullet ^*x) = \operatorname{st}v \bullet x = (\operatorname{st}v \bullet _)x$$

By construction, st B = A, hence eq. (1) becomes

$$A = st(P)^{-1}(stv \bullet _) st(P)$$