MP*: Suites et Séries

Coralie Renault

7 octobre 2014

Exercice

- On pose $H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$, $\forall n \geq 1$.

 Démontrer que si $\alpha > 1$ alors $\sum_{k=n+1}^{\infty} \frac{1}{k^{\alpha}} \sim \frac{1}{\alpha-1} \frac{1}{n^{\alpha-1}}$.

 Déterminer un développement asymptotique de H_n à quatres termes.
- Indication: on pourra introduire les suites $u_n = H_n \ln(n)$ et $v_n = u_n \frac{1}{n}$ On pose $k_n = \min\{k \in \mathbb{N}, H_k \ge n\}$. Déterminer la limite lorsque n tend vers l'infinie de $\frac{k_{n+1}}{k_n}$

Exercice

Démontrer que : Soit $f: \mathbb{R}^+ \mapsto \mathbb{R}^+$ une fonction positive, continue par morceaux et décroissante sur \mathbb{R}^+ alors la suite U_n définie par :

$$\forall n \in \mathbb{N}, U_n = f(0) + f(1) + \dots + f(n) - \int_0^n f(t)dt$$

- est convergente.
- Le résultat est-il encore vrai si f est décroissante uniquement à partir d'un certain x?
- Redémontrer le critère sur les séries de Bertrand :

$$\left(\sum_{n\geq 2}\frac{1}{n^{\alpha}ln^{\beta}(n)}\text{converge}\right)\Leftrightarrow ((\alpha>1)\text{ ou }(\alpha=1\text{ et }\beta>1))$$

Déterminer la nature de la série de terme général

$$u_n = \frac{1}{(\ln 2)^2 + \dots + (\ln n)^2}$$

Exercice

Discuter en fonction du paramètre $\alpha>0$ la nature de la série $\sum_{n\in\mathbb{N}}u_n$ où :

$$\forall n \in \mathbb{N}^*, u_n = \frac{(-1)^{n-1}}{n^{\alpha} + (-1)^n}$$

Exercice

Soit $\sum u_n$ une série à termes positifs. Comparer la nature des séries $\sum u_n$ et $\sum v_n$ où :

$$\forall n \in \mathbb{N}^*, \, v_n = \frac{1}{1 + n^2 u_n}$$

Exercice

Soient $\alpha \in \mathbb{R}$ et $f \in \mathcal{C}^0([0,1],\mathbb{R})$ telle que $f(0) \neq 0$. Etudier la convergence de la série de terme général

$$u_n = \frac{1}{n^{\alpha}} \int_0^{1/n} f(t^n) \, \mathrm{d}t$$

Exercice

- Soit $f:]0; +\infty[\to \mathbb{C}$ une application \mathcal{C}^1 telle que l'intégrale $\int_0^\infty |f'(t)|dt$ converge. Montrer que la série $\sum_{n\in\mathbb{N}^*} f(n)$ a même nature que la suite $\left(\int_1^n f(t)dt\right)_{n\in\mathbb{N}}$.

 Donner la nature lorsque $\alpha > \frac{1}{2}$ puis lorsque $0 < \alpha \leq \frac{1}{2}$ de la série :

$$\sum_{n \in \mathbb{N}^*} \frac{\exp(i\sqrt{n})}{n^{\alpha}}$$

Exercice

Etudier

$$\lim_{n \to +\infty} n \sum_{k=n}^{+\infty} \left(\frac{1}{k^2} e^{\frac{n}{k}} \right)$$

Exercice

Déterminer la nature de

$$\sum_{n\geqslant 1} \frac{(-1)^n}{\sqrt[n]{n!}}$$

Exercice

Soit $f: \mathbb{R} \to \mathbb{R}$ continue. Pour $a \in \mathbb{R}$, on définit $v_o(a) = a$ et $\forall n \in \mathbb{N}, v_{n+1}(a) = f(v_n(a))$. On pose:

$$u_n(a) = \frac{v_o(a) + v_1(a) + \dots + v_n(a)}{n+1}$$

- On suppose qu'il existe $a \in \mathbb{R}$ tel que $(u_n(a))_{n \in \mathbb{N}}$ soit bornée. Montrer que f admet un
- Trouver un exemple de fonction continue f
 définie sur $\mathbb R$ ayant un point fixe unique a et telle que $\forall x \neq a$, $((u_n(x))_{n \in \mathbb{N}}$ converge vers une limite distincte de a.