An Introduction to Algebraic Number Theory

Alistair Pattison

November 2, 2023

$$z^2 = x^2 + y^2$$

$$z^{2} = x^{2} + y^{2}$$

$$= \underbrace{(x + iy)}_{\alpha} \underbrace{(x - iy)}_{\beta}$$
 over $\mathbb{Z}[i]$

Goal: find all relatively prime $x, y, z \in \mathbb{Z}$ such that

$$z^{2} = x^{2} + y^{2}$$

$$= \underbrace{(x + iy)}_{\alpha} \underbrace{(x - iy)}_{\beta}$$
 over $\mathbb{Z}[i]$

 ${\it x}$ and ${\it y}$ relatively prime $\Longrightarrow \alpha$ and β relatively prime

$$z^{2} = x^{2} + y^{2}$$

$$= \underbrace{(x + iy)}_{\alpha} \underbrace{(x - iy)}_{\beta}$$
 over $\mathbb{Z}[i]$

x and y relatively prime
$$\Longrightarrow \alpha$$
 and β relatively prime
$$z^2 = \alpha\beta \implies \alpha = u\gamma^2$$

$$\gamma \in \mathbb{Z}[i], \, u \in \{\pm 1, \pm i\}$$

$$z^{2} = x^{2} + y^{2}$$

$$= \underbrace{(x + iy)}_{\alpha} \underbrace{(x - iy)}_{\beta}$$
 over $\mathbb{Z}[i]$

$$\alpha = \gamma^2$$

$$z^{2} = x^{2} + y^{2}$$

$$= \underbrace{(x + iy)}_{\alpha} \underbrace{(x - iy)}_{\beta}$$
 over $\mathbb{Z}[i]$

$$\alpha = \gamma^2$$
$$= (a + bi)^2$$

$$z^{2} = x^{2} + y^{2}$$

$$= \underbrace{(x + iy)}_{\alpha} \underbrace{(x - iy)}_{\beta}$$
 over $\mathbb{Z}[i]$

$$\alpha = \gamma^{2}$$

$$= (a + bi)^{2}$$

$$= \underbrace{(a^{2} - b^{2})}_{x} + \underbrace{2ab}_{y} i$$

$$z^{2} = x^{2} + y^{2}$$

$$= \underbrace{(x + iy)}_{\alpha} \underbrace{(x - iy)}_{\beta}$$
 over $\mathbb{Z}[i]$

$$\alpha = \gamma^{2}$$

$$= (a + bi)^{2}$$

$$= \underbrace{(a^{2} - b^{2})}_{y} + \underbrace{2ab}_{y} i$$

$$x = a^{2} - b^{2}$$

$$y = 2ab$$

$$z = a^{2} + b^{2}$$

$$z^2 = x^2 + y^2$$

a	Ь	
2	1	$3^2 + 4^2 = 5^2$
3	2	$5^2 + 12^2 = 13^2$
4	3	$7^2 + 24^2 = 25^2$
4	2	$12^2 + 16^2 = 20^2$
4	1	$15^2 + 8^2 = 17^2$

ALGEBRAIC NUMBER THEORY

Algebraic Number Theory

Using tools from algebra like rings and field extensions

Algebraic Number Theory

Using tools from algebra like rings and field extensions

Generating insight about the integers and the primes

ALGEBRAIC NUMBER THEORY

Using tools from algebra like rings and field extensions

Generating insight about the integers and the primes

OUTLINE

1. MATH 342 IN 3:42

OUTLINE

1. MATH 342 IN 3:42

2. Number Fields and Number Rings

OUTLINE

1. MATH 342 IN 3:42

2. Number Fields and Number Rings

3. The Ideal Class Group

MATH 342 IN 3:42

DEFINITION (COMMUTATIVE RING)

DEFINITION (COMMUTATIVE RING)

DEFINITION (COMMUTATIVE RING)

"Things like the integers"

- Addition/subtraction: $a+b, a-b \in R$

DEFINITION (COMMUTATIVE RING)

- Addition/subtraction: $a + b, a b \in R$
- Multiplication: $ab = ba \in R$

DEFINITION (COMMUTATIVE RING)

- Addition/subtraction: $a + b, a b \in R$
- Multiplication: $ab = ba \in R$
- Distributive property: a(b+c) = ab + bc

DEFINITION (COMMUTATIVE RING)

- Addition/subtraction: $a + b, a b \in R$
- Multiplication: $ab = ba \in R$
- Distributive property: a(b+c) = ab + bc
- *Not* division: $a/b \notin R$

DEFINITION (IDEAL)

An (additive) subgroup, I, such that $ra \in I$ for all $r \in R$, $a \in I$.

DEFINITION (IDEAL)

An (additive) subgroup, I, such that $ra \in I$ for all $r \in R$, $a \in I$.

- **Example**: Even integers (8 · 7 is even)

DEFINITION (IDEAL)

An (additive) subgroup, I, such that $ra \in I$ for all $r \in R$, $a \in I$.

- **Example**: Even integers (8 · 7 is even)
- **Non-example**: Odd integers (7 · 8 is not odd)

DEFINITION (IDEAL)

An (additive) subgroup, I, such that $ra \in I$ for all $r \in R$, $a \in I$.

- **Example**: Even integers (8 · 7 is even)
- Non-example: Odd integers (7 · 8 is not odd)

DEFINITION (PRIME IDEAL)

An ideal, P, such that $ab \in P$ implies $a \in P$ or $b \in P$.

DEFINITION (IDEAL)

An (additive) subgroup, I, such that $ra \in I$ for all $r \in R$, $a \in I$.

- **Example**: Even integers (8 · 7 is even)
- Non-example: Odd integers (7 · 8 is not odd)

DEFINITION (PRIME IDEAL)

An ideal, P, such that $ab \in P$ implies $a \in P$ or $b \in P$.

- This is a generalization of Euclid's Lemma

DEFINITION

A commutative ring is an *integral domain* if ab=0 implies a=0 or b=0. (No zero divisors.)

DEFINITION

A commutative ring is an *integral domain* if ab=0 implies a=0 or b=0. (No zero divisors.)

- Example: \mathbb{Z} , $\mathbb{Z}[i]$

DEFINITION

A commutative ring is an *integral domain* if ab=0 implies a=0 or b=0. (No zero divisors.)

- Example: \mathbb{Z} , $\mathbb{Z}[i]$
- **Non-example**: in $\mathbb{Z}/8\mathbb{Z}$, we have $4 \cdot 2 = 0$

DEFINITION (INTEGRALLY CLOSED DOMAIN)

A ring R is integrally closed if for all $\alpha/\beta \in \operatorname{Frac} R$ that are integral over R, then $\beta \mid \alpha$, i.e., $\alpha/\beta \in R$.

DEFINITION (INTEGRALLY CLOSED DOMAIN)

A ring R is integrally closed if for all $\alpha/\beta \in \operatorname{Frac} R$ that are integral over R, then $\beta \mid \alpha$, i.e., $\alpha/\beta \in R$.

- Frac $\mathbb{Z} = \mathbb{Q}$; Frac $\mathbb{C}[x]$ is the field of rational functions, $\mathbb{C}(x)$

DEFINITION (INTEGRALLY CLOSED DOMAIN)

A ring R is integrally closed if for all $\alpha/\beta \in \operatorname{Frac} R$ that are integral over R, then $\beta \mid \alpha$, i.e., $\alpha/\beta \in R$.

- Frac $\mathbb{Z} = \mathbb{Q}$; Frac $\mathbb{C}[x]$ is the field of rational functions, $\mathbb{C}(x)$
- If f(p/q)=0 with monic $f\in\mathbb{Z}[x]$, then $q\mid p$

DEFINITION (INTEGRALLY CLOSED DOMAIN)

A ring R is integrally closed if for all $\alpha/\beta \in \operatorname{Frac} R$ that are integral over R, then $\beta \mid \alpha$, i.e., $\alpha/\beta \in R$.

- Frac $\mathbb{Z} = \mathbb{Q}$; Frac $\mathbb{C}[x]$ is the field of rational functions, $\mathbb{C}(x)$
- If f(p/q)=0 with monic $f\in\mathbb{Z}[x]$, then $q\mid p$
- Example: \mathbb{Z}

DEFINITION (UFD)

A commutative ring R is a *unique factorization domain* if every element factors uniquely into irreducible elements.

- Example: $\mathbb Z$
- Non-example: $\mathbb{Z}[i\sqrt{5}]$:

$$6 = 2 \cdot 3 = (1 + i\sqrt{5})(1 - i\sqrt{5})$$

DEFINITION (PID)

A commutative ring R is a *principal ideal domain* if every ideal is generated by a single element.

DEFINITION (PID)

A commutative ring R is a *principal ideal domain* if every ideal is generated by a single element.

- **Example**: \mathbb{Z} , $\mathbb{Q}[x]$, $\mathbb{Z}[i]$

DEFINITION (PID)

A commutative ring R is a *principal ideal domain* if every ideal is generated by a single element.

- **Example**: \mathbb{Z} , $\mathbb{Q}[x]$, $\mathbb{Z}[i]$
- **Non-example**: $\mathbb{Z}[x]$ because of (2,x)

DEFINITION (FIELD)

"Things like the rationals" or "rings where you can divide".

DEFINITION (FIELD)

"Things like the rationals" or "rings where you can divide".

- Example: \mathbb{Q} , \mathbb{C} , \mathbb{R}

DEFINITION (FIELD)

"Things like the rationals" or "rings where you can divide".

- Example: \mathbb{Q} , \mathbb{C} , \mathbb{R}

- Non-example: \mathbb{Z} , $\mathbb{Z}[x]$

$$f(x) = x^2 + 5$$

$$f(x) = x^2 + 5$$

- Over \mathbb{Q} , f is irreducible

$$f(x) = x^2 + 5$$
$$= (x - i\sqrt{5})(x + i\sqrt{5})$$

- Over \mathbb{Q} , f is irreducible
- Over \mathbb{C} , f factors

e
$$\pi$$
 $\sqrt{7}$ $1+2\sqrt{17}$

$$f(x) = x^2 + 5$$
$$= (x - i\sqrt{5})(x + i\sqrt{5})$$

- Over \mathbb{Q} , f is irreducible
- Over \mathbb{C} , f factors

$$e \qquad \pi \qquad \sqrt{7} \qquad 1 + 2\sqrt{17}$$

- But f is equally happy living in

$$Q(i\sqrt{5}) = \{a + bi\sqrt{5} : a, b \in \mathbb{Q}\}\$$

Number Fields and Number Rings

DEFINITION (NUMBER FIELD)

A number field $K \subset \mathbb{C}$ is a finite extension of \mathbb{Q} .

DEFINITION (NUMBER FIELD)

A number field $K \subset \mathbb{C}$ is a finite extension of \mathbb{Q} .

THEOREM

Any number field can be written in the form

$$K = \mathbb{Q}[\alpha] = \operatorname{span}_{\mathbb{Q}}\{1, \alpha, \alpha^2, \dots, \alpha^{n-1}\}$$

where n is the degree of the minimal polynomial of α .

DEFINITION (NUMBER FIELD)

A number field $K \subset \mathbb{C}$ is a finite extension of \mathbb{Q} .

THEOREM

Any number field can be written in the form

$$K = \mathbb{Q}[\alpha] = \operatorname{span}_{\mathbb{Q}}\{1, \alpha, \alpha^2, \dots, \alpha^{n-1}\}$$

where n is the degree of the minimal polynomial of α .

-
$$\mathbb{Q}[i\sqrt{5}] = \{a + ib\sqrt{5} : a, b \in \mathbb{Q}\}$$

DEFINITION (NUMBER FIELD)

A number field $K \subset \mathbb{C}$ is a finite extension of \mathbb{Q} .

THEOREM

Any number field can be written in the form

$$K = \mathbb{Q}[\alpha] = \operatorname{span}_{\mathbb{Q}}\{1, \alpha, \alpha^2, \dots, \alpha^{n-1}\}$$

where n is the degree of the minimal polynomial of α .

- $\mathbb{Q}[i\sqrt{5}] = \{a + ib\sqrt{5} : a, b \in \mathbb{Q}\}\$
- $\mathbb{Q}[\omega]$, $\omega=e^{2\pi i/p}$ (cyclotomic fields)

DEFINITION (NUMBER FIELD)

A number field $K \subset \mathbb{C}$ is a finite extension of \mathbb{Q} .

THEOREM

Any number field can be written in the form

$$K = \mathbb{Q}[\alpha] = \operatorname{span}_{\mathbb{Q}}\{1, \alpha, \alpha^2, \dots, \alpha^{n-1}\}$$

where n is the degree of the minimal polynomial of α .

- $\mathbb{Q}[i\sqrt{5}] = \{a + ib\sqrt{5} : a, b \in \mathbb{Q}\}\$
- $\mathbb{Q}[\omega]$, $\omega=e^{2\pi i/p}$ (cyclotomic fields)
- $\mathbb{Q}[\sqrt{m}]$, m squarefree (quadratic fields)

DEFINITION (NUMBER FIELD)

A number field $K \subset \mathbb{C}$ is a finite extension of \mathbb{Q} .

THEOREM

Any number field can be written in the form

$$K = \mathbb{Q}[\alpha] = \operatorname{span}_{\mathbb{Q}}\{1, \alpha, \alpha^2, \dots, \alpha^{n-1}\}$$

where n is the degree of the minimal polynomial of α .

- $\mathbb{Q}[i\sqrt{5}] = \{a + ib\sqrt{5} : a, b \in \mathbb{Q}\}\$
- $\mathbb{Q}[\omega]$, $\omega=e^{2\pi i/p}$ (cyclotomic fields)
- $\mathbb{Q}[\sqrt{m}]$, m squarefree (quadratic fields)

DEFINITION (NUMBER FIELD)

A number field $K \subset \mathbb{C}$ is a finite extension of \mathbb{Q} .

THEOREM

Any number field can be written in the form

$$K = \mathbb{Q}[\alpha] = \operatorname{span}_{\mathbb{Q}}\{1, \alpha, \alpha^2, \dots, \alpha^{n-1}\}$$

where n is the degree of the minimal polynomial of α .

Examples

- $\mathbb{Q}[i\sqrt{5}] = \{a + ib\sqrt{5} : a, b \in \mathbb{Q}\}\$
- $\mathbb{Q}[\omega]$, $\omega=e^{2\pi i/p}$ (cyclotomic fields)
- $\mathbb{Q}[\sqrt{m}]$, m squarefree (quadratic fields)

Non-examples

- $\mathbb{Q}[\pi]$ because π is transcendental

DEFINITION (ALGEBRAIC INTEGER)

An algebraic integer is a complex number α that is the root of some monic polynomial $f \in \mathbb{Z}[x]$.

DEFINITION (ALGEBRAIC INTEGER)

An algebraic integer is a complex number α that is the root of some monic polynomial $f \in \mathbb{Z}[x]$.

We use \mathbb{A} to denote the set of all algebraic integers.

- Any integer is an algebraic integer

DEFINITION (ALGEBRAIC INTEGER)

An algebraic integer is a complex number α that is the root of some monic polynomial $f \in \mathbb{Z}[x]$.

We use \mathbb{A} to denote the set of all algebraic integers.

- Any integer is an algebraic integer
- $i\sqrt{5} \in \mathbb{A}$ because of $f(x) = x^2$

DEFINITION (ALGEBRAIC INTEGER)

An algebraic integer is a complex number α that is the root of some monic polynomial $f \in \mathbb{Z}[x]$.

We use \mathbb{A} to denote the set of all algebraic integers.

- Any integer is an algebraic integer
- $i\sqrt{5} \in \mathbb{A}$ because of $f(x) = x^2$
- $2 + \sqrt[3]{17} \in \mathbb{A}$ because of $f(x) = x^3 6x^2 + 12x 25$

DEFINITION (ALGEBRAIC INTEGER)

An algebraic integer is a complex number α that is the root of some monic polynomial $f \in \mathbb{Z}[x]$.

We use \mathbb{A} to denote the set of all algebraic integers.

- Any integer is an algebraic integer
- $i\sqrt{5} \in \mathbb{A}$ because of $f(x) = x^2$
- $2 + \sqrt[3]{17} \in \mathbb{A}$ because of $f(x) = x^3 6x^2 + 12x 25$
- $\mathbb A$ is a subring of $\mathbb C$

DEFINITION (NUMBER RING)

$$\mathfrak{O}_K = \mathbb{A} \cap K$$
.

DEFINITION (NUMBER RING)

$$\mathfrak{O}_K = \mathbb{A} \cap K$$
.

-
$$\mathcal{O}_{\mathbb{Q}} = \mathbb{A} \cap \mathbb{Q} = \mathbb{Z}$$

DEFINITION (NUMBER RING)

$$\mathfrak{O}_K = \mathbb{A} \cap K$$
.

- $\mathcal{O}_{\mathbb{Q}} = \mathbb{A} \cap \mathbb{Q} = \mathbb{Z}$
- $\mathfrak{O}_{\mathbb{Q}[i]} = \mathbb{Z}[i]$

DEFINITION (NUMBER RING)

$$\mathfrak{O}_K = \mathbb{A} \cap K$$
.

- $\mathcal{O}_{\mathbb{Q}} = \mathbb{A} \cap \mathbb{Q} = \mathbb{Z}$
- $\mathcal{O}_{\mathbb{Q}[i]} = \mathbb{Z}[i]$
- $\mathfrak{O}_{\mathbb{Q}[\zeta]} = \mathbb{Z}[\zeta]$ for primitive roots ζ

DEFINITION (NUMBER RING)

$$\mathfrak{O}_K = \mathbb{A} \cap K$$
.

- $\mathcal{O}_{\mathbb{O}} = \mathbb{A} \cap \mathbb{Q} = \mathbb{Z}$
- $\mathcal{O}_{\mathbb{Q}[i]} = \mathbb{Z}[i]$
- $\mathbb{O}_{\mathbb{Q}[\zeta]}=\mathbb{Z}[\zeta]$ for primitive roots ζ
- $\mathcal{O}_{\mathbb{Q}[\sqrt{5}]} = Z[1, \frac{1}{2} + \frac{1}{2}\sqrt{5}]$

DEDEKIND DOMAINS

THEOREM

Number rings are Dedekind domains.

DEFINITION (DEDEKIND DOMAIN)

A Dedekind domain is an integrally closed domain R such that

- 1. every ideal is finitely generated and
- 2. every nonzero prime ideal is maximal.

Dedekind Domains

FACTORING IDEALS

THEOREM

DEDEKIND DOMAINS

FACTORING IDEALS

THEOREM

Every ideal of a Dedekind domain R uniquely factors into prime ideals.

- Allows replacing unique factorization of elements with unique factorization of ideals.

DEDEKIND DOMAINS

Factoring ideals

THEOREM

- Allows replacing unique factorization of elements with unique factorization of ideals.
- In $R = \mathbb{Z}[i\sqrt{5}]$,

$$6 = 2 \cdot 3$$

= $(1 + i\sqrt{5})(1 - i\sqrt{5})$

- Allows replacing unique factorization of elements with unique factorization of ideals.
- In $R = \mathbb{Z}[i\sqrt{5}]$,

$$6 = 2 \cdot 3$$

= $(1 + i\sqrt{5})(1 - i\sqrt{5})$

(6) =
$$(2, 1 + i\sqrt{5})^2 (3, 1 + i\sqrt{5}) (3, 1 - i\sqrt{5})$$

- Allows replacing unique factorization of elements with unique factorization of ideals.
- In $R = \mathbb{Z}[i\sqrt{5}]$,

$$6 = \frac{2}{3} \cdot 3$$
$$= (1 + i\sqrt{5})(1 - i\sqrt{5})$$

$$(6) = (2, 1 + i\sqrt{5})^{2} (3, 1 + i\sqrt{5}) (3, 1 - i\sqrt{5})$$

- Allows replacing unique factorization of elements with unique factorization of ideals.
- In $R = \mathbb{Z}[i\sqrt{5}]$,

$$6 = 2 \cdot \frac{3}{3}$$

= $(1 + i\sqrt{5})(1 - i\sqrt{5})$

(6) =
$$(2, 1 + i\sqrt{5})^2 (3, 1 + i\sqrt{5}) (3, 1 - i\sqrt{5})$$

- Allows replacing unique factorization of elements with unique factorization of ideals.
- In $R = \mathbb{Z}[i\sqrt{5}]$,

$$6 = 2 \cdot 3$$

= $(1 + i\sqrt{5})(1 - i\sqrt{5})$

$$(6) = (2, 1 + i\sqrt{5})^2 (3, 1 + i\sqrt{5}) (3, 1 - i\sqrt{5})$$

- Allows replacing unique factorization of elements with unique factorization of ideals.
- In $R = \mathbb{Z}[i\sqrt{5}]$,

$$6 = 2 \cdot 3$$

= $(1 + i\sqrt{5})(1 - i\sqrt{5})$

$$(6) = (2, 1 + i\sqrt{5})^2 (3, 1 + i\sqrt{5}) (3, 1 - i\sqrt{5})$$

Dedekind Domains

IN THE CLASS HIERARCHY

THEOREM

A UFD is a PID iff it's a Dedekind domain.

DEDEKIND DOMAINS

In the class hierarchy

THEOREM

A UFD is a PID iff it's a Dedekind domain.

Integrally Closed Domains

DEDEKIND DOMAINS

In the class hierarchy

THEOREM

A UFD is a PID iff it's a Dedekind domain.

Integrally Closed Domains

- DD, not UFD

 $\mathbb{Z}[i\sqrt{5}]$

Dedekind Domains

In the class hierarchy

THEOREM

A UFD is a PID iff it's a Dedekind domain.

Integrally Closed Domains

- **DD**, not **UFD** $\mathbb{Z}[i\sqrt{5}]$
- **UFD**, **not DD** $\mathbb{R}[x_1, x_2, \ldots], \mathbb{Q}[x, y]$

DEFINITION (IDEAL CLASS GROUP)

Let $K=\mathbb{Q}[\alpha]$ be a number field. The *class group* of K is the set of ideals of \mathfrak{O}_K , modulo the equivilence relation

 $I \sim J$ iff $\alpha I = \beta J$ for some nonzero $\alpha, \beta \in R$.

DEFINITION (IDEAL CLASS GROUP)

Let $K = \mathbb{Q}[\alpha]$ be a number field. The *class group* of K is the set of ideals of \mathfrak{O}_K , modulo the equivilence relation

$$I \sim J$$
 iff $\alpha I = \beta J$ for some nonzero $\alpha, \beta \in R$.

- Back to
$$K=\mathbb{Q}[i\sqrt{5}]$$
 and $\mathbb{O}_K=\mathbb{Z}[i\sqrt{5}]$

(2)
$$\sim$$
 (3) $2(3) = (6) = 3(2)$

DEFINITION (IDEAL CLASS GROUP)

Let $K = \mathbb{Q}[\alpha]$ be a number field. The *class group* of K is the set of ideals of \mathcal{O}_K , modulo the equivilence relation

$$I \sim J$$
 iff $\alpha I = \beta J$ for some nonzero $\alpha, \beta \in R$.

- Back to
$$K=\mathbb{Q}[i\sqrt{5}]$$
 and $\mathbb{O}_K=\mathbb{Z}[i\sqrt{5}]$

(2)
$$\sim$$
 (3) $2(3) = (6) = 3(2)$

(2)
$$\not\sim$$
 (2, 1 + $i\sqrt{5}$)

DEFINITION (IDEAL CLASS GROUP)

Let $K = \mathbb{Q}[\alpha]$ be a number field. The *class group* of K is the set of ideals of \mathfrak{O}_K , modulo the equivilence relation

$$I \sim J$$
 iff $\alpha I = \beta J$ for some nonzero $\alpha, \beta \in R$.

- Back to
$$K=\mathbb{Q}[i\sqrt{5}]$$
 and $\mathbb{O}_K=\mathbb{Z}[i\sqrt{5}]$

(2)
$$\sim$$
 (3) $2(3) = (6) = 3(2)$

(2)
$$\not\sim$$
 (2, 1 + $i\sqrt{5}$)

- That's it.

DEFINITION (IDEAL CLASS GROUP)

Let $K = \mathbb{Q}[\alpha]$ be a number field. The *class group* of K is the set of ideals of \mathfrak{O}_K , modulo the equivilence relation

$$I \sim J$$
 iff $\alpha I = \beta J$ for some nonzero $\alpha, \beta \in R$.

- Back to
$$K=\mathbb{Q}[i\sqrt{5}]$$
 and $\mathbb{O}_K=\mathbb{Z}[i\sqrt{5}]$

(2)
$$\sim$$
 (3) $2(3) = (6) = 3(2)$

(2)
$$\not\sim$$
 (2, 1 + $i\sqrt{5}$)

- That's it.
- The class group of $\mathbb{Q}[i\sqrt{5}]$ is \mathbb{Z}_2 .

THE CLASS NUMBER

DEFINITION (CLASS NUMBER)

The class number of a number field $K=\mathbb{Q}[\alpha]$ is the size of its ideal class group.

THE CLASS NUMBER

Definition (Class Number)

The class number of a number field $K = \mathbb{Q}[\alpha]$ is the size of its ideal class group.

- $\mathbb{Q}[i\sqrt{5}]$ has class number 2
- K has class number 1 iff \mathcal{O}_K is a UFD
- Measures "how far away" O_K is from achieving unique factorization

THE CLASS NUMBER

Definition (Class Number)

The class number of a number field $K = \mathbb{Q}[\alpha]$ is the size of its ideal class group.

- $\mathbb{Q}[i\sqrt{5}]$ has class number 2
- K has class number 1 iff O_K is a UFD
- Measures "how far away" O_K is from achieving unique factorization

THEOREM

Class numbers are always finite.

THANK YOU!

THANK YOU!

Slides