Arrays and Structures

Data Structures

Ching-Fang Hsu

Department of Computer Science and Information Engineering

National Cheng Kung University

The Array As An Abstract Data Type

- An array is a set of pairs, <index, value>, such that each index that is defined has a value associated with it.
 - ☐ A correspondence or a mapping
 - ☐ A homogeneous aggregate of data elements
- Standard operations provided by most languages (p.52, ADT 2.1)
 - □ Array creation
 - □ Value retrieval
 - □ Value setting

The Array As An Abstract Data Type (contd.)

- The implementation of one-dimensional arrays in C
 - When the compiler encounters an declaration for an array with type t and size n, it allocates n aconsecutive memory locations, where each one is large enough to hold a type t value.
 - \Box The base address α -- the address of the first element of an array
 - ◆ The address of the *i*-th element = α + (*i*-1) * sizeof (t)
 - lacktriangle In C, we do not multiply the offset i and size of (t) to get the appropriate element of the array.

The Array As An Abstract Data Type (contd.)

- \$ list[i] $\equiv *(list + i)$
- Dereferencing -- the pointer is interpreted as an indirect reference
 - □ p. 54, Program 2.2

The Polynomial Abstract Data Type

- Ordered / linear lists
 - \square (item₀, item₁, ..., item_{n-1})
 - ☐ Operations on lists (p. 65)
- Representing an ordered list as an array
 - ☐ Associate $item_i$ with the array index i. \Rightarrow a sequential mapping
 - ☐ Sequential mapping works well for most operations listed in page 65 in constant time, except insertion and deletion.
 - A motivation that leads us to consider nonsequential mappings

The Polynomial Abstract Data Type (contd.)

- Example: Build a set of functions for manipulation of symbolic polynomials
 - □ ADT (p.67, ADT 2.2)
- For simplifying operations, exponents are arranged in decreasing order.
 - ☐ Operation Add can be achieved by comparing terms from the two polynomials until one or both of the polynomials becomes empty.
 - ◆ Initial version of padd function (p. 68, Program 2.5)

- ❖ Option 1 (p. 66~68)
 - ☐ Maximum degree is restricted by MAX_DEGREE.

```
#define MAX_DEGREE 101
typedef struct {
    int degree;
    float coef[MAX_DEGREE];
} polynomial;
```

- ☐ The main drawback : lower flexibility on space requirement
 - ◆ Wasting a lot of space when the degree of the polynomial is much less then MAX_DEGREE or the polynomial is sparse

- ❖Option 2 (p. 68~69)
 - □ Representing $a_i x^i$ as a structure and using only one global array of this structure to store all polynomials (p. 68~69)

```
#define MAX_TERMS 100
typedef struct {
    float coef;
    int expon;
    } polynomial;
polynomial terms[MAX_TERMS];
int avail = 0;
```

$$A(x) = 2x^{1000} + 1$$
 $B(x) = x^4 + 10x^3 + 3x^2 + 1$

	startA	finishA	startB			finishB	avail
	\	\downarrow	\			\downarrow	\downarrow
coef	2	1	1	10	3	1	
expon	1000	0	4	3	2	0	
	0	1	2	3	4	5	6

- No limit on the number of polynomials stored in the global array
- ☐ The index of the first (last) term of polynomial A is given by starta (finisha).
 - \Box finisha = starta + n 1, if A has n nonzero terms
- ☐ The index of the next free location in the array is given by avail.
- ☐ The main drawback: About twice as much space as option 1 is needed when all the terms are nonzero.
- ☐ The revised function padd (p. 70, Program 2.6)

- Analysis of Program 2.6
 - \Box Each iteration of the while-loop: O(1)
 - ☐ The number of iterations: bounded by $m + n 1 \Rightarrow O(n + m)$
 - ◆ The worst case (p. 71)
 - \Box The time for two for-loops: bounded by O(n + m)
 - \Rightarrow The asymptotic time of the algorithm for operation Add is O(n+m).

The Sparse Matrix Abstract Data Type

- ❖ A matrix containing many zero entries is called a sparse matrix.
 - ☐ Difficult to determine exactly whether a matrix is sparse or not
- The standard representation of a matrix is a two-dimensional array, but not appropriate for a sparse matrix due to a waste of space.
 - ☐ Storing only non-zero elements is a feasible solution for a sparse matrix.

The Sparse Matrix Abstract Data Type (contd.)

- ❖ A minimal set of matrix operations
 - ☐ Creation
 - □ Addition
 - □ Transpose
 - Multiplication
- ❖ The ADT of a sparse matrix (p. 74, ADT 2.3)
- ❖ Using the triple <*row*, *col*, *value*> to characterize an element within a matrix.
 - \Box A sparse matrix \equiv an array of triples

The Sparse Matrix Abstract Data Type (contd.)

- ❖ For efficient transpose operation, the triples are ordered by rows and within rows by columns.
- ❖ With the triple definition, the number of rows and columns, and the number of nonzero elements, the Create operation can be derived (p. 75).

The Sparse Matrix Abstract Data Type -- Transposing a Matrix

A simple algorithm for transposing

```
for all elements in column j
  place element <i, j, value> in
  element <j, i, value>
```

- □ p. 77, Program 2.8
- \Box Time complexity: O(columns · elements)
- \Box cf. $O(rows \cdot columns)$ with a two-dimensional array representation

```
for (j = 0; j < columns; j++)
  for (i = 0; i < rows; i++)
   b[j][i] = a[i][j];</pre>
```

$$A = \begin{bmatrix} 15 & X & X & 22 & X & -15 \\ X & 11 & 3 & X & X & X \\ X & X & X & -6 & X & X \\ X & X & X & X & X & X \\ 91 & X & X & X & X & X \\ X & X & 28 & X & X & X \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 15 & X & X & X & 91 & X \\ X & 11 & X & X & X & X \\ X & 3 & X & X & X & 28 \\ 22 & X & -6 & X & X & X \\ X & X & X & X & X & X \\ -15 & X & X & X & X \end{bmatrix}$$

	row	col	value			row	(col	V	alue	
a[0]	6	6	8	b[0]		6		6		8	
[1]	0	0 🕶	15	(1)	ſ	0		0		15	
[2]	0	3	22	[2]	1	. 0		4		91	
[3]	0	5	-15	[3]		1		1		11	
[4]	1	1 😽	11	[4]	ſ	2		1		3	
[5]	1	2	3	[5]	J	. 2		5		28	
[6]	2	3	-6	(6)	ſ	3		0		22	
[7]	4	0	91	[7]	l	. 3		2		-6	
[8]	5	2 \	28	[8]		5		0		-15	
					[0]	[1]	[2]	[3]	[4]	[5]	
			rowTern	ns =	2	1	2	2	0	1	
			startingP	Pos =	1	3	4	6	8	8	16

The Sparse Matrix Abstract Data Type -- Transposing a Matrix (contd.)

- The $O(columns \cdot elements)$ time becomes $O(columns^2 \cdot rows)$ when the number of elements is of the order *columns* · *rows*.
 - ⇒An improved version: *fast_transpose* (p. 78, Program 2.9) with O(*columns* + *elements*) complexity

The Sparse Matrix Abstract Data Type -- Transposing a Matrix (contd.)

- Analysis of Program 2.9
 - \Box The 1st for-loop: O(columns)
 - ◆row_terms initialization
 - \Box The 2nd for-loop: O(*elements*)
 - calculating # of non-zero elements within each column
 - \Box The 3rd for-loop: O(columns)
 - starting positions calculations
 - ☐ The 4th for-loop: O(elements)
 - ◆ value setting for array b
- \Rightarrow The time complexity of fast_transpose is O(columns + elements).

The Sparse Matrix Abstract Data Type -- Matrix Multiplication

❖ Definition: Given A and B where A is $m \times n$ and B is $n \times p$, the < i, j > element of the product matrix D is n - 1

$$d_{ij} = \sum_{k=0}^{n-1} a_{ik} b_{kj}$$

- ❖ Step 1: Compute the transpose of *B*.
- Step 2: Do a merge operation similar to that used in the polynomial addition.
- ❖ p. 81~82, Program 2.10, 2.11

The for-loop:
$$O(\sum_{row} (colsB \bullet termsRow + totalB))$$

= $O(colsB * totalA + rowsA * totalB)$

Representation of Multidimensional Arrays

- Two common ways
 - □ Row major order
 - ◆ Storing multidimensional arrays by rows
 - ☐ Column major order
- Assume that α is the starting address of a n-dimensional array $A[upper_0][upper_1]...[upper_{n-1}].$
 - \Box The address for $A[i_0][i_1]...[i_{n-1}]$ is:

$$\alpha + \sum_{j=0}^{n-1} i_j a_j \text{ where } a_j = \begin{cases} \prod_{k=j+1}^{n-1} upper_k & 0 \le j < n-1 \\ 1 & j = n-1 \end{cases}$$

Row major

 $\mathbf{A}[i_0][i_1][i_2] \rightarrow \alpha + i_0 * upper_1 * upper_2 + i_1 * upper_2 + i_2 * 1$

Representation of Multidimensional Arrays (contd.)

- ❖ A compiler will initially take the declared bounds (i.e., $upper_k$, $0 \le k \le n-1$) and use them to compute the constants a_j , $0 \le j \le n-2$.
- ❖ The computation of the address of $A[i_0][i_1]...[i_{n-1}]$ requires n-1 more multiplications and n additions.