

Natural Language Processing IN2361

PD Dr. Georg Groh

Social Computing Research Group

Chapter 8 Part-of-Speech Tagging

- content is based on [1]
- certain elements (e.g. equations or tables) were taken over or taken over in a modified form from [1]
- citations of [1] or from [1] are omitted for legibility
- errors are fully in the responsibility of Georg Groh
- BIG thanks to Dan and James for a great book!

- Parts-of-Speech (POS, word classes, syntactic categories)
- Examples: noun, pronoun, verb, adjective,
- important for
 - language models ("nouns are preceded by determines or adjectives"),
 - information extraction tasks such as Named Entity Recognition and Classification,
 - o stemming,
 - auto-summarization,
 - pronunciation (e.g. CONtent vs conTENT)
 - o etc.

- POS: based on not primarily semantic categories (adjective ← → property of smth) but rather
 - o syntactic categories / functions (e.g. distributional properties (which other words usually in neighborhood)) and
 - morphological categories/functions (e.g. to carry similar suffixes)

closed class (function words (e.g. of, it); fixed members (e.g. prepositions)) vs.
 open class (nouns, verbs, adjectives, adverbs; e.g. new nouns are continually created)

Nouns:

- o occur with determiners (a goat, its bandwidth)
- can take possessives (husband's house)
- may occur in plural (goats, hounds)
- Proper Nouns: specific entities, no the (Regina, IBM, Colorado) (usually capitalized)
- O Common Nouns:
 - Count Nouns: one goat, two goats
 - Mass Nouns: snow, salt, communism

Verbs:

- ←→ actions, processes, smth. dynamic,...
- may be inflected: eat, eats, eating, eaten

Adjectives

- ←→ properties, qualities,...
- beautiful, tall, small

Adverbs:

- modify something: Unfortunately, John walked home extremely slowly yesterday
- o directional adverbs / locative adverbs: home, here, downhill
- o degree adverbs: extremely, very, somewhat
- o manner adverbs: *slowly, slinkily, delicately*
- o temporal adverbs: *yesterday, Monday*

Prepositions:

- o occur before noun phrases: by the house, on time, with gusto, at the gate
- indicate spatial, or temporal, or other relations

Particle:

- occur with verbs: hand the paper over, throw the ball at
- o together with verb: phrasal verb (with non-compositional meaning): turn down == reject, rule out == eliminate, go on == continue

Determiners:

- o especially articles: definite: the; indefinite: a, an
- o also: this, that, ...

Conjunctions:

- o join phrases, sentences, clauses
- Coordinating conjunctions: and, or
- Subordinating conjunctions (Complementizers): I thought that you might fail

Pronouns:

- shorthand referring to noun phrase etc.
- O Personal pronoun: you, I, he, she, it
- O Posessive pronoun: your, mine, his, her, its, one's
- Wh-pronouns: what, whom, whoever, why

Auxiliary verbs:

- mark semantic features of verbs: can, do, may, should, are, have: whether action is completed, negated, necessary, possible, suggested, desired,
- O Copula be: connects: he is a duck
- Modal verbs: can, must

Other classes:

- Interjections oh, hey, um, hmmm
- Negatives no, not
- Politeness markers please, thank you
- Greetings hello, goodbye
- 0 ...

Penn Treebank POS Tags

Tag	Description	Example	Tag	Description	Examp	le	
CC	coordin. conjunction	and, but, or	SYM	symbol	+,%, &		
CD	cardinal number	one, two	TO	"to"	to		
DT	determiner	a, the	UH	interjection	ah, oop	S	
EX	existential 'there'	there	VB	verb base form	eat		
FW	foreign word	mea culpa	VBD	verb past tense	ate		ne/DT grand/JJ jury/NN
IN	preposition/sub-conj	of, in, by	VBG	verb gerund	eating		mented/VBD on/IN a/DT
JJ	adjective	yellow	VBN	verb past participle	eaten		mber/NN of/IN ner/JJ topics/NNS ./.
JJR	adj., comparative	bigger	VBP	verb non-3sg pres	eat	Oti	101733 topics/14145 #.
JJS	adj., superlative	wildest	VBZ	verb 3sg pres	eats		
LS	list item marker	1, 2, One	WDT	wh-determiner	which, t	that	
MD	modal	can, should	WP	wh-pronoun	what, w	ho	There/EX are/VBP 70/CD
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose		children/NNS there/RB
NNS	noun, plural	llamas	WRB	wh-adverb	how, wh	iere	
NNP	proper noun, sing.	IBM	\$	dollar sign	\$		
NNPS	proper noun, plural	Carolinas	#	pound sign	#	F	Preliminary/JJ
PDT	predeterminer	all, both	"	left quote	" or "		indings/NNS were/VBD
POS	possessive ending	'S	,,	right quote	' or "		eported/VBN in/IN
PRP	personal pronoun	I, you, he	(left parenthesis	[, (, {, <		oday/NN s/POS New/NNP
PRP\$	possessive pronoun	your, one's)	right parenthesis],), }, >		England/NNP
RB	adverb	quickly, never	,	comma	,		ournal/NNP of/IN
RBR	adverb, comparative	faster		sentence-final punc	.!?	N	Medicine/NNP ./.
RBS	adverb, superlative	fastest	:	mid-sentence punc	: ;		
RP	particle	up, off					9

POS Labelled Corpora

- examples:
 - O Brown corpus (1961, 10⁶ words, different genre texts),
 - O Wall Street Journal corpus (1989, 10⁶ words),
 - Switchboard corpus (1991, 2*10⁶ words, telephone conversations)
- slight differences in using POS tags (e.g. in corpora)
 - o e.g.
 - -- Brown, WSJ: to/TO for both uses of to (preposition: *I like to dance;* infinitive: *too dangerous to swim*)
 - -- Switchboard: Well/UH ,/, I/PRP ,/, I/PRP want/VBP to/TO go/VB to/IN a/DT restaurant/NN

POS Labelled Corpora

- POS tag sets: pragmatic decisions:
 - Penn 45 is a subset of larger POS tagsets, leaving off syntactic information recoverable from a parse tree, e.g. in Penn, the tag IN is used for subordinating conjunctions after/IN spending/VBG a/DT day/NN at/IN the/DT beach/NN as well as prepositions: after/IN sunrise/NN
 - Penn 45 assumes tokenization of multipart words:
 a/DT New/NNP York/NNP City/NNP firm/NN (New York City as one word)

POS Tagging

 After tokenization: POS tagging for each word: disambiguation task (book a flight, read a book)
 Not many words ambiguous but ambiguous words are among the most common tokens:

Types:	WS	SJ	Brown	
Unambiguous (1 ta	g) 44,432	(86%)	45,799	(85%)
Ambiguous (2+1	(ags) 7,025	(14%)	8,050	(15%)
Tokens:				
Unambiguous (1 ta	g) 577,421	(45%)	384,349	(33%)
Ambiguous (2+1	tags) 711,780	(55%)	786,646	(67%)

 Most frequent POS tag (class) baseline: always predict the most frequent POS tag among the possible POS tags for an ambiguous word:

on WSJ: accuracy: \approx 0.92 $\leftarrow \rightarrow$ state of the art: accuracy: \approx 0.97

HMM for POS Tagging

- States: tags; observations: words
- training on labelled data: MLE by counting for A and B separately (No Baum Welch necessary):

$$P(t_i|t_{i-1}) = \frac{C(t_{i-1},t_i)}{C(t_{i-1})} \qquad P(w_i|t_i) = \frac{C(t_i,w_i)}{C(t_i)}$$

POS-Tagging via Viterbi algorithm: find:

$$\hat{t}_{1}^{n} = \underset{t_{1}^{n}}{\operatorname{argmax}} P(t_{1}^{n} | w_{1}^{n})$$

$$= \underset{t_{1}^{n}}{\operatorname{argmax}} P(w_{1}^{n} | t_{1}^{n}) P(t_{1}^{n})$$

First oder Markov assumptions for A and B:

$$P(w_1^n|t_1^n) \approx \prod_{i=1}^n P(w_i|t_i)$$

$$P(t_1^n) \approx \prod_{i=1}^n P(t_i|t_{i-1})$$

$$\hat{t}_{1}^{n} = \underset{t_{1}^{n}}{\operatorname{argmax}} P(t_{1}^{n} | w_{1}^{n}) \approx$$

$$\underset{t_{1}^{n}}{\operatorname{argmax}} \prod_{i=1}^{n} \underbrace{P(w_{i} | t_{i})}_{P(t_{i} | t_{i-1})} \underbrace{P(t_{i} | t_{i-1})}_{P(t_{i} | t_{i-1})}$$

example: Janet will back the bill \rightarrow

true POS tags:

Janet/NNP will/MD back/VB the/DT bill/NN

	SININ	M	TID			D.D.	DT
	NNP	MD	VB	JJ	NN	RB	DT
<s></s>	0.2767	0.0006	0.0031	0.0453	0.0449	0.0510	0.2026
NNP	0.3777	0.0110	0.0009	0.0084	0.0584	0.0090	0.0025
MD	0.0008	0.0002	0.7968	0.0005	0.0008	0.1698	0.0041
VB	0.0322	0.0005	0.0050	0.0837	0.0615	0.0514	0.2231
JJ	0.0366	0.0004	0.0001	0.0733	0.4509	0.0036	0.0036
NN	0.0096	0.0176	0.0014	0.0086	0.1216	0.0177	0.0068
RB	0.0068	0.0102	0.1011	0.1012	0.0120	0.0728	0.0479
DT	0.1147	0.0021	0.0002	0.2157	0.4744	0.0102	0.0017

	Janet	will	back	the	bill
NNP	0.000032	0	0	0.000048	0
MD	0	0.308431	0	0	0
VB	0	0.000028	0.000672	0	0.000028
JJ	0	0	0.000340	0.000097	0
NN	0	0.000200	0.000223	0.000006	0.002337
RB	0	0	0.010446	0	0
DT	0	0	0	0.506099	0

Extending HMM to Trigrams

switch to 2^{nd} Markov order for transition model (we then have to add special "end of sentence markers" for t_{-1} , t_0 , t_{n+1}):

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(t_1^n | w_1^n) \approx \underset{t_1^n}{\operatorname{argmax}} \left[\prod_{i=1}^n P(w_i | t_i) P(t_i | t_{i-1}, t_{i-2}) \right] P(t_{n+1} | t_n)$$

problem (as in language modelling chapter): sparse counts for trigrams of tags.
 solution: back off to bigram or unigram + interpolate

Trigrams
$$\hat{P}(t_i|t_{i-1},t_{i-2}) = \frac{C(t_{i-2},t_{i-1},t_i)}{C(t_{i-2},t_{i-1})}$$

Bigrams $\hat{P}(t_i|t_{i-1}) = \frac{C(t_{i-1},t_i)}{C(t_{i-1})}$

Unigrams $\hat{P}(t_i) = \frac{C(t_i)}{N}$
 $P(t_i|t_{i-1}t_{i-2}) = \lambda_3 \hat{P}(t_i|t_{i-1}t_{i-2}) + \lambda_2 \hat{P}(t_i|t_{i-1}) + \lambda_1 \hat{P}(t_i)$

Determine $\lambda_1 \lambda_2 \lambda_3$

• successively delete each trigram from the training corpus and choose the λ s so as to maximize the likelihood of the rest of the corpus

```
function DELETED-INTERPOLATION(corpus) returns \lambda_1, \lambda_2, \lambda_3
   \lambda_1 \leftarrow 0
   \lambda_2 \leftarrow 0
   \lambda_3 \leftarrow 0
   foreach trigram t_1, t_2, t_3 with C(t_1, t_2, t_3) > 0
       depending on the maximum of the following three values
           case \frac{C(t_1,t_2,t_3)-1}{C(t_1,t_2)-1}: increment \lambda_3 by C(t_1,t_2,t_3)
           case \frac{C(t_2,t_3)-1}{C(t_2)-1}: increment \lambda_2 by C(t_1,t_2,t_3)
           case \frac{C(t_3)-1}{N-1}: increment \lambda_1 by C(t_1,t_2,t_3)
       end
   end
   normalize \lambda_1, \lambda_2, \lambda_3
    return \lambda_1, \lambda_2, \lambda_3
```

Beam Search

- no of states N large \rightarrow Viterbi ($O(N^2T)$ inefficient \rightarrow
- instead of keeping all N=45 possibilities at each column, just concentrate on the β most probable ones (prune the possible hidden sequence tree);
- β : beam width

Dealing with Unknown Words

- Unseen words (no POS-tags for these occur in corpus): cannot estimate emission probabilities → use morphological information:
- examples suffixes: -s indicates plural noun, -able indicates adjective etc. \rightarrow consider suffixes of unknown word w of length i with characters l_{n-i+1} , ..., l_n

$$P(t_i|w) \approx P(t_i|l_{n-i+1}...l_n)$$

use Bayes theorem to get the required emission probability $P(w|t_i)$

example capitalization: introduce boolean capitalization feature (effectively doubling tag set):

$$P(t_i|t_{i-1},t_{i-2}) \rightarrow P(t_i,c_i|t_{i-1},c_{i-1},t_{i-2},c_{i-2})$$

use Bayes theorem to get the required probabilities $P(c|t_i|...)$

Maximum Entropy Markov Models (MEMM) for POS Tagging

 switch to discriminative models (multinomial (softmax) logistic regression (maximum entropy models))

HMM (generative):

$$\hat{T} = \underset{T}{\operatorname{argmax}} P(T|W)$$

$$= \underset{T}{\operatorname{argmax}} P(W|T)P(T)$$

$$= \underset{T}{\operatorname{argmax}} \prod_{i} P(w_{i}|t_{i}) \prod_{i} P(t_{i}|t_{i-1})$$

MEMM (discriminative):

$$\hat{T} = \underset{T}{\operatorname{argmax}} P(T|W)$$

$$= \underset{T}{\operatorname{argmax}} \prod_{i} P(t_{i}|w_{i}, t_{i-1})$$

HMM:

MEMM:

Maximum Entropy Markov Models (MEMM) for POS Tagging

 advantage: much easier to incorporate even more features into conditionside (for HMM incorporating more features (like suffixes, capitalization) requires increasingly complex terms from Bayes theorem application)

 idea: use a lot of (often binary) features; use class(==tag)-dependent features & feature templates

Feature Templates

example feature templates:

$$\langle t_i, w_{i-2} \rangle, \langle t_i, w_{i-1} \rangle, \langle t_i, w_i \rangle, \langle t_i, w_{i+1} \rangle, \langle t_i, w_{i+2} \rangle$$

 $\langle t_i, t_{i-1} \rangle, \langle t_i, t_{i-2}, t_{i-1} \rangle,$
 $\langle t_i, t_{i-1}, w_i \rangle, \langle t_i, w_{i-1}, w_i \rangle \langle t_i, w_i, w_{i+1} \rangle,$

example : for Janet/NNP will/MD back/VB the/DT bill/NN and w_i=back:

$$t_i = VB$$
 and $w_{i-2} = Janet$
 $t_i = VB$ and $w_{i-1} = will$
 $t_i = VB$ and $w_i = back$
 $t_i = VB$ and $w_{i+1} = the$
 $t_i = VB$ and $w_{i+2} = bill$
 $t_i = VB$ and $t_{i-1} = MD$
 $t_i = VB$ and $t_{i-1} = MD$ and $t_{i-2} = NNP$
 $t_i = VB$ and $w_i = back$ and $w_{i+1} = the$

Feature Templates

other possible features (especially for unknown words) :

```
w_i contains a particular prefix (from all prefixes of length \leq 4) w_i contains a particular suffix (from all suffixes of length \leq 4) w_i contains a number w_i contains an upper-case letter w_i contains a hyphen w_i is all upper case w_i's word shape w_i's short word shape w_i is upper case and has a digit and a dash (like CFC-12) w_i is upper case and followed within 3 words by Co., Inc., etc.
```

Feature Templates

- furthermore: word shape features: x: letter; X: uppercase letter; d: number; punctuation
- exampe: well-dressed

```
prefix(w_i) = w
prefix(w_i) = we
prefix(w_i) = wel
prefix(w_i) = well
suffix(w_i) = ssed
suffix(w_i) = sed
suffix(w_i) = ed
suffix(w_i) = d
has-hyphen(w_i)
word-shape(w_i) = xxxx-xxxxxx
short-word-shape(w_i) = x-x
```

Maximum Entropy Markov Models (MEMM) for POS Tagging

Given large set of features computed from the word w_i the l previous words w_{i-l}^{i+l} and the k previous tags t_{i-k}^{i-1}

$$\hat{T} = \underset{T}{\operatorname{argmax}} P(T|W)$$

$$= \underset{T}{\operatorname{argmax}} \prod_{i} P(t_{i}|w_{i-l}^{i+l}, t_{i-k}^{i-1})$$

$$= \underset{T}{\operatorname{argmax}} \prod_{i} \frac{\exp\left(\sum_{j} \theta_{j} f_{j}(t_{i}, w_{i-l}^{i+l}, t_{i-k}^{i-1})\right)}{\sum_{t' \in \text{tagset}} \exp\left(\sum_{j} \theta_{j} f_{j}(t', w_{i-l}^{i+l}, t_{i-k}^{i-1})\right)}$$

 θ_i : weights of multiclass logistic regression model

Using MEMMs for POS-Tagging

simple approach: use log. Regr. classifier for each word separately (greedy):

function GREEDY MEMM DECODING(words W, model P) returns tag sequence T

for
$$i = 1$$
 to $length(W)$

$$\hat{t}_i = \underset{t' \in T}{\operatorname{argmax}} P(t' \mid w_{i-l}^{i+l}, t_{i-k}^{i-1})$$

Viterbi:

disadvantage: makes hard decision before moving on, can't use future evidence as Viterbi can ($\leftarrow \rightarrow$ backtrace) \rightarrow don't use it!

significantly better: incorporate decisions on other words: use Viterbi: (assume for simplicity that MEMM uses only Markov order 1 features):

HMM
$$v_t(j) = \max_{i=1}^N v_{t-1}(i) a_{ij} b_j(o_t)$$
 Viterbi:
$$= \max_{i=1}^N v_{t-1}(i) P(s_j|s_i) P(o_t|s_j)$$
 MEMM
$$v_t(j) = \max_{i=1}^N v_{t-1}(i) P(s_j|s_i,o_t)$$
 Viterbi:
$$v_t(j) = \max_{i=1}^N v_{t-1}(i) P(s_j|s_i,o_t)$$

MEMM Viterbi

use ice cream eating example from chapter 9

$$v_t(j) = \max_{i=1}^{N} v_{t-1}(i) P(s_j|s_i, o_t)$$

Disadvantages of MEMM

- HMM and MEMM's computations (the recursion) are uni-directional (left to right). possibly better: incorporate future tags (bi-directionality), e.g. by switching to Conditional Random Fields (CRFs)
- Other way to incorporate bi-directionality implicitly: do multiple passes
 with MEMM. on second and later passes: incorporate features using future
 tags (computed / improved upon by previous passes

Disadvantages of MEMM

- General weakness of MEMM: label bias / observational bias: example: will/NN to/TO fight/VB.
 - fact: to is often preceded by NN but less often by modals MD.
 - o fact: $P(t_{will} | <s>)$ is generally large for t_{will} =MD (e.g. <s>Will you follow me?</s>).
 - o fact: $P(TO|to, t_{will}) \approx 1$ regardless of t_{will}
 - o → $P(TO|to, t_{will}) \approx 1$ explains away the TO for to, disregarding the importance of the previous NN.
 - \rightarrow because $P(t_{will}|<$ s>) is large for $t_{will}=$ MD and because the transition $P(t_{will}=NN,t_{to}=TO)$ is practically ignored due to the explaining away of to by $P(\text{TO}|to,t_{will})\approx 1$ regardless of t_{will} , t_{will} will be wrongfully assigned MD instead of the correct NN

Bibliography

(1) Dan Jurafsky and James Martin: Speech and Language Processing (3rd ed. draft, version Oct2019); Online: https://web.stanford.edu/~jurafsky/slp3/ (URL, Oct 2019) (this slide-set is especially based on chapter 8)

Recommendations for Studying

minimal approach:

work with the slides and understand their contents! Think beyond instead of merely memorizing the contents

standard approach:

minimal approach + read the corresponding pages in Jurafsky [1]

interested students

== standard approach