Ejercicios Clase 3

Michelle Wachs

- (1) Recuerde que $H(z):=\sum_{n\geq 0}h_nz^n$ y que p
s denota la especialización principal estable.
 - (a) Muestre que

$$ps(H(z)) = \sum_{n>0} \frac{z^n}{(1-q)\dots(1-q^n)}.$$

(b) Muestre que tomando la especialización principal estable de

$$\frac{(1-t)H(z)}{H(zt)-tH(z)}$$

y luego reemplazando z por z(1-q), se obtiene

$$\frac{(1-t)\exp_q(z)}{\exp_q(tz) - t\exp_q(z)}.$$

(2) Verifique que

(1)
$$\sum_{i \in DEX(\sigma)} i = maj(\sigma) - exc(\sigma)$$

para cada una de las siguientes permutaciones.

- (a) $\sigma = 41637852$
- (b) $\sigma = 54321$
- (c) para todo \mathfrak{S}_3
- (d) para todo $\mathfrak{S}_{(4)}$.
- (3) Demuestre (1) para todo $\sigma \in \mathfrak{S}_n$.
- (4) Explique porque h-positividad implica Schur-positividad and p-positividad.
- (5) (a) Muestre que si una función simétrica homogenea f de grado n es Schur-positiva y

$$ps(f) = \frac{g(q)}{(1-q)\dots(1-q^n)}$$

entonces g(q) es un polinomio con coeficientes positivos.

- (b) Porque Schur-unimodalidad de $\sum_{j>0} Q_{\lambda,j} t^j$ implica q-unimodalidad de $A_{\lambda}(q,t)$?.
- (6) Dibuje todos los ornamentos de tipo $\lambda = (4)$, peso $x_2x_3x_6^2$, con dos letras rojas.
- (7) Para $\sigma=32675814$ y la sucesión s=(9,9,8,7,7,3,3,1), dé el ornamento que corresponde usando la biyección.
- (8) Sea $\Gamma_{n,i}$ el coeficiente de $t^i(1+t)^{n-1-2i}$ en la expansión de $\sum_{j=0}^{n-1}Q_{n,j}t^j$. Muestre que

$$ps(\Gamma_{n,i}) = \frac{\sum_{\sigma} q^{maj(\sigma^{-1})}}{(1-q)(1-q^2)\dots(1-q^n)}$$

donde la suma en el numerador es sobre todas las permutaciones que no tengan descensos dobles ni descenso al final y con i descensos.

(9) Encuentre una demostración combinatoria del hecho que $Q_{\lambda,j}$ es una función simétrica para todo λ y j. Sugerencia: Use la caracterización de ornamentos.