References

- Adorni, N., Peterlongo, G., Ravetta, R. and Tacconi, F. A., 1964, Large Scale Experiments on Heat Transfer and Hydrodynamics with Steam-water Mixtures, *CISE Report* R-91, Italy.
- Akiyama, M. and Aritomi, M., 2002, Advanced Numerical Analysis of Two-phase Flow Dynamics—Multi-dimensional Flow Analysis-, Corona Publishing Co. Ltd., Tokyo, Japan
- Alia, P., Cravarolo, L., Hassid, A. and Pedrocchi, E., 1965, Liquid Volume Fraction in Adiabatic Two-phase Vertical Upflow-round Conduit, CISE Report-105, Italy.
- Antal, S. P., Lahey Jr, R. T. and Flaherty, J. E., 1991, Analysis of Phase Distribution in Fully Developed Laminar Bubbly Two-phase Flow, *Int. J. Multiphase Flow* 17: 635-652.
- Aris, R., 1962, Vectors, Tensors and the Basic Equations of Fluid Mechanics, Prentice-Hall, Englewood Cliffs, N.J.
- Arnold, G. S., Drew, D. A. and Lahey Jr., R. T., 1989, Derivation of Constitutive Equations for Interfacial Force and Reynolds Stress for a Suspension of Spheres Using Ensemble Cell Averaging, Chem. Eng. Comm. 86: 43-54.
- Auton, T. R., 1987, The Lift Force on a Spherical Body in a Rotational Flow, J. Fluid Mech. 183: 199-218.
- Azbel, D., 1981, Two-phase Flows in Chemical Engineering, Cambridge University Press, Cambridge, UK.
- Azbel, D. and Athanasios, I. L., 1983, A Mechanism of Liquid Entrainment. *Handbook of Fluids in Motion*, Ann Arbor Sci. Pub., Ann Arbor, MI.
- Baker, J. L. L., 1965, Flow-regime Transitions at Elevated Pressure in Vertical Two-phase Flow, *Argonne National Lab. Report*, ANL-7093.
- Bankoff, S. G., 1960, A Variable Density Single-fluid Model for Two-phase Flow with Particular Reference to Steam Water Flow, J. Heat Transfer 82: 265-272.
- Bello, J. K., 1968, Turbulent Flow in Channel with Parallel Walls, Moskva, Mir, in Russian.
- Bergonzoli, F. and Halfen, F. J., 1964, Heat Transfer and Void Formation during Forced Circulation Boiling of Organic Coolants, NAA-SR-8906, Atomics International.
- Bilicki, A. and Kestin, J., 1987, Transition Criteria for Two-phase Flow Patterns in Vertical Upward Flow, *Int. J. Multiphase Flow* 13: 283-294.
- Bird, R. B., Stewart, W. E. and Lightfoot, E. N., 1960, *Transport Phenomena*, John Wiley and Sons, Inc., New York.
- Bornhorst, W. J. and Hatsopoulos, G. N., 1967, Analysis of a Liquid Vapor Phase Change by the Methods of Irreversible Thermodynamics, J. Applied Mech. 89: 847-853.

- Boure, J. and Réocreux, M., 1972, General Equations of Two-phase Flows: Application to Critical Flows and to Non Steady Flows, 4th All Union Heat and Mass Transfer Conference, Minsk.
- Boure, J., 1973, Dynamique des Écoulements Diphasiques: Propagation des Petites Perturbations, CEA-R-4456.
- Bowen, R. M., 1967, Toward a Thermodynamics and Mechanics of Mixtures, *Arch. Rational Mech. Anal.* 24: 370-403.
- Bridge, A. G., Lapidus, L and Elgin, J. C., 1964, The Mechanics of Vertical Gas-Liquid Fluidized System I: Counter-current Flow, AIChE J. 10: 819-827.
- Brinkman, H., 1952, The Viscosity of Concentrated Suspensions and Solutions, J. Chem. Phys. 20: 571.
- Brodkey, R. S., 1967, The Phenomena of Fluid Motion, Addison-Wesley.
- Brodkey, R. S., 1971, Transport Phenomena at the Liquid-Vapor Interface of Mercury Using a Radioactive Tracer, *International Symposium on Two-phase Systems*, Haifa.
- Burgers, J. M., 1941, On the Influence of the Concentration of a Suspension upon the Sedimentation Velocity (in Particular for a Suspension of Spherical Particles) *Proc. K. Med. Akad. Wet.* 44: 1045-1051 (1941); 45: 9-16 (1942)
- Buevich, I., 1969, A Hydrodynamic Model of Disperse Systems, J. Applied Math. Mech. 33: 466-479.
- Buyevich, Y., 1972, Statistical Hydrodynamics of Disperse Systems. Part.I. Physical Background and General Equations, *J. Fluid Mech.* 49: 489-507.
- Carrier, G. F., 1958, Shock Waves in Dusty Gas, J. Fluid Mech. 4: 376-382.
- Callen, H. B., 1960, Thermodynamics, Wiley.
- Chao, B., 1962, Motion of Spherical Gas Bubbles in a Viscous Liquid at Large Reynolds Numbers, *Phys. Fluids* 5: 69-79.
- Clift, R., Grace, J. R. and Weber, M. E., 1978, Bubbles, Drops, and Particles, Academic Press, New York.
- Coleman, B. and Noll, W., 1960, An Approximate Theorem for Functionals with Applications in Continuum Mechanics, *Arch. Rational Mech. Anal.* 6: 355-370.
- Coleman, B. D., 1964, Thermodynamics of Materials with Memory, *Arch. Rational Mech. Anal.* 17: 1-46.
- Collier, J., 1972, Convective Boiling and Condensation, McGraw Hill, London.
- Coulaloglou, C. A. and Tavlarides, L. L., 1976, Drop Size Distributions and Coalescence Frequencies of Liquid-liquid Dispersion in Flow Vessels, *AIChE J.* 22: 289-297.
- Coulaloglou, C. A. and Tavlarides, L. L., 1977, Description of Interaction Processes in Agitated Liquid-liquid Dispersions, Chem. Eng. Sci. 32: 1289-1297.
- Cravarolo, L., Giorgini, A., Hassid, A. and Pedrocchi, E., 1964, A Device for the Measurement of Shear Stress on the Wall of a Conduit; Its Application in the Mean Density Determination in Two-phase Flow; Shear Stress Data in Two-phase Adiabatic Vertical Flow, CISE Report-82, Italy.
- Culick, F., 1964, Boltzman Equation Applied to a Problem of Two-phase Flow, *Phys. Fluid* 7: 1898-1904.
- De Groot, S. B. and Mazur, P., 1962, Non-equilibrium Thermodynamics, North Holland.
- De Jarlais, G., Ishii and M., Linehan, J., 1986, Hydrodynamic Stability of Inverted Annular Flow in an Adiabatic Simulation, *J. Heat Transfer* 108: 84-91.
- Delhaye, J. M., 1968, Equations of Fondamentales des Écoulements Diphasiques, Part 1 and 2, CEA-R-3429.
- Delhaye, J. M., 1969, General Equations of Two-phase Systems and their Application to Airwater Bubble Flow and to Steam-water Flashing Flow, ASME Paper 69-HT-63, 11th Heat Transfer Conference, Minneapolis.

- Delhaye, J. M., 1970, Contrubution à L'étude des Écoulements Diphasiques Eau-air et Eauvapeur, *Ph.D. Thesis*, University of Grenoble.
- Delhaye, J. M., 1974, Jump Conditions and Entropy Sources in Two-phase Systems. Local Instant Formulation, Int. J. Multiphase Flow 1: 395-409.
- Dinh, T. N., Li, G. J. and Theofanous, T. G., 2003, An Investigation of Droplet Breakup in High Mach, Low Weber Number Regime, *Proc.* 41st Aerospace Sci. Mtg and Exh., Paper AIAA 2003-317, Reno, Nevada.
- Diunin, A. K., 1963, On the Mechanics of Snow Storms, Siberian Branch, Akademii Nauk SSSR, Novosibirsk.
- Drew, D. A., 1971, Averaged Field Equations for Two-phase Media, *Studies Appl. Math.* 1: 133-166.
- Dumitrescu, D. T., 1943, Stomung an einer Luftblase in Senkrechten Rohr, Z. Angew, Math. Mech. 23: 139-149.
- Eilers, H., 1941, The Viscosity of the Emulsion of Highly Viscous Substances as Function of Cencentration, *Kolloid Z* 97: 313-321.
- Ervin, E. A. and Tryggvason, G., 1997, The Rise of Bubbles in a Vertical Shear Flow, J. Fluids Eng. 119: 443-449.
- Fauske, H., 1962, Critical Two-phase, Steam Water Flow, *Proc. Heat Transfer and Fluid Mechanics Institute*, Stanford Univ. Press, pp.78.
- Fick, A., 1855, Über Diffusion, Ann. Der Phys. 94: 59-86.
- Frankl, F. I., 1953, On the Theory of Motion of Sediment Suspensions, Soviet Physics Doklady, Academii Nauk SSSR, 92: 247-250.
- Frankel, N. A. and Acrivos, A., 1967, On the Viscosity of a Concentrated Suspension of Solid Spheres, *Chem. Eng. Sci.* 22: 847-853.
- Friedlander, S. K., 1977, Smoke, Dust and Haze, Wiley, New York.
- Fu, X. Y. and Ishii, M., 2002a, Two-group Interfacial Area Transport in Vertical Air-water Flow I. Mechanistic Model, *Nucl. Eng. Des.* 219: 143-168.
- Fu, X. Y. and Ishii, M., 2002b, Two-group Interfacial Area Transport in Vertical Air-water Flow II. Model Evaluation, *Nucl. Eng. Des.* 219: 169-190.
- Goda, H., Hibiki, T. Kim, S., Ishii, M. and Uhle, J., 2003, Drift-flux Model for Downward Two-phase Flow, *Int. J. Heat Mass Transfer* 46: 4835-4844.
- Gibbs, J. W., 1948, Collected Work of J. W. Gibbs, Yale University Press, Vol.1, New York.
- Goldstein, S., 1938, Modern Developments in Fluid Dynamics, Oxford University Press, London.
- Govier G. W. and Aziz, K, 1972, The Flow of Complex Mixtures in Pipes, Van Nostrant-Reinhold Co., New York.
- Grace, J. R., Wairegi, T. and Brophy, J., 1978, Break-up of Drops and Bubbles in Stagnant Media, Can. J. Chem. Eng. 556: 3-8.
- Hadamard, J., 1911, Mouvement Permanent Lent d'une Sphere Liquide Visqueuse dans un Liquid Visqueux, C. R. Acad. Sci. Paris Sér A-B 152: 1735-1739.
- Hancox, W. T., and Nicoll, W. B., 1972, Prediction of Time-dependent Diabatic Two-phase Water Flows, *Prog. Heat Mass Transfer* 6: 119-135.
- Happel, J. and Brinner, H., 1965, Low Reynolds Number Hydrodynamics, Prentice-Hall.
- Harmathy, T. Z., 1960, Velocity of Large Drops and Bubbles in Media of Infinite and Restricted Extent, AIChE J. 6: 281-288.
- Hawksley, P. G. W., 1951, The Effect of Concentration on the Settling of Suspensions and Flow through Porous Media, *Some Aspect of Fluid Flow*, pp.114, Edward Arnold, London.
- Hayes, W. D., 1970, Kinematic Wave Theory, Proc. Royal Soc. London Ser. A Math. Phys. Sci. 320: 209-226.

- Helmhotz, H., 1868, Uber Discontinuirliche Flüssigkeitsbewegungen, *Monatsber. Dtsch. Akad. Wiss. Berlin* pp.215-228.
- Hewitt, G. and Hall Taylor, N. S., 1970, Annular Two-phase Flow, Pergamon Press, Oxford.
- Hibiki, T. and Ishii, M., 1999, Experimental Study on Interfacial Area Transport in Bubbly Two-phase Flows, *Int. J. Heat Mass Transfer* **42**: 3019-3035.
- Hibiki, T. and Ishii, M., 2000a, One-group Interfacial Area Transport of Bubbly Flows in Vertical Round Tubes, *Int. J. Heat Mass Transfer* **43**: 2711-2726.
- Hibiki, T. and Ishii, M., 2000b, Two-group Interfacial Area Transport Equations at Bubbly-to-slug Flow Transition, *Nucl. Eng. Des.* 202: 39-76.
- Hibiki, T., Ishii, M. and Xiao, Z., 2001a, Axial Interfacial Area Transport of Vertical Bubbly Flows, *Int. J. Heat Mass Transfer* 44: 1869-1888.
- Hibiki, T., Takamasa, T. and Ishii, M., 2001b, Interfacial Area Transport of Bubbly Flow in a Small Diameter Pipe, J. Nucl. Sci. Technol. 38: 614-620.
- Hibiki, T. and Ishii, M., 2002a, Interfacial Area Concentration of Bubbly Flow Systems, Chem. Eng. Sci. 57: 3967-3977.
- Hibiki, T. and Ishii, M., 2002b, Distribution Parameter and Drift Velocity of Drift-flux Model in Bubbly Flow, *Int. J. Heat Mass Transfer* **45**: 707-721.
- Hibiki, T. and Ishii, M., 2002c, Development of One-group Interfacial Area Transport Equation in Bubbly Flow Systems, *Int. J. Heat Mass Transfer* **45**: 2351-2372.
- Hibiki, T. and Ishii, M., 2003a, One-dimensional Drift-flux Model for Two-phase Flow in a Large Diameter Pipe, *Int. J. Heat Mass Transfer* **46**: 1773-1790.
- Hibiki, T. and Ishii, M., 2003b, One-dimensional Drift-flux Model and Constitutive Equations for Relative Motion between Phases in Various Two-phase Flow Regimes, *Int. J. Heat Mass Transfer* 46: 4935-4948; Erratum, 48: 1222-1223 (2005).
- Hibiki, T., Situ, R., Mi, Y. and Ishii, M., 2003a, Modeling of Bubble-layer Thickness for Formulation of One-dimensional Interfacial Area Transport Equation in Subcooled Boiling Two-phase Flow, *Int. J. Heat Mass Transfer* 46: 1409-1423; Erratum, 46: 3549-3550 (2003).
- Hibiki, T., Situ, R., Mi, Y. and Ishii, M., 2003b, Local Flow Measurements of Vertical Upward Bubbly Flow in an Annulus, *Int. J. Heat Mass Transfer* **46**: 1479-1496.
- Hibiki, T., Takamasa, T. and Ishii, M., 2004, One-dimensional Drift-flux Model and Constitutive Equations for Relative Motion between Phases in Various Two-phase Flow Regimes at Microgravity Conditions, *Proc. 12th Int. Conf. Nucl. Eng.*, Arlington, VA, USA, ICONE12-49037.
- Hirschfelder, J. V., Curtiss, C. F. and Bird, R. B., 1954, *Molecular Theory of Gases and Liquids*, John Wiley and Sons, Inc., New York.
- Hinze, J. W., 1959, Turbulence, McGraw-Hill, New York.
- Hughes, T. A., 1958, Steam-water Mixture Density Studies in a Natural Circulation High Pressure System, *Babcock and Wilcox, G. Report* No. 5435.
- Ishii, M. and Zuber, N., 1970, Thermally Induced Flow Instabilities in Two-phase Mixtures, Proc. 4th International Heat Transfer Conference, Paris.
- Ishii, M., 1971, Thermally Induced Flow Instabilities in Two-phase Mixture in Thermal Equilibrium, *Ph.D. Thesis*, Georgia Institute of Technology.
- Ishii, M., 1975, Thermo-fluid Dynamic Theory of Two-phase Flow, Collection de la Direction des Etudes et Researches d'Electricite de France, Eyrolles, Paris, France, 22.
- Ishii, M. and Grolmes, M. A., 1975, Inception Criteria for Droplet Entrainment in Two-phase Concurrent Film Flow, AIChE J. 21: 308-318.
- Ishii, M., Jones, O. C. and Zuber, N., 1975, Thermal Non-equilibrium Effects in Drift Flux Model of Two-phase Flow, *Trans. Am. Nucl. Soc.* 22: 263-264.

- Ishii, M., 1976, One-dimensional Drift-flux Modeling: One-dimensional Drift Velocity of Dispersed Flow in Confined Channel, *Argonne National Lab. Report*, ANL-76-49.
- Ishii, M., Chawla, T. C. and Zuber, N., 1976, Constitutive Equation for Vapor Drift Velocity in Two-phase Annular Flow, *AIChE J.* 22: 283-289.
- Ishii, M. and Chawla, T. C., 1979, Local Drag Laws in Dispersed Two-phase Flow, Argonne National Lab. Report, ANL-79-105.
- Ishii, M., 1977, One-dimensional Drift-flux Model and Constitutive Equations for Relative Motion between Phases in Various Two-phase Flow Regimes, *Argonne National Lab. Report*, ANL-77-47.
- Ishii, M. and Zuber, N., 1979, Drag Coefficient and Relative Velocity in Bubbly, Droplet or Particulate Flows, AIChE J. 25: 843-855.
- Ishii, M. and Mishima, K., 1981, Study of Two-fluid Model and Interfacial Area, Argonne National Lab Report ANL-80-111.
- Ishii, M. and Mishima, K., 1984, Two-fluid Model and Hydrodynamic Constitutive Relations, Nucl. Eng. Des. 82: 107-126.
- Ishii, M. and De Jarlais, G., 1987, Flow Visualization Study of Inverted Annular Flow of Post Dryout Heat Transfer Region, *Nucl. Eng. Des.* **99:** 187-199.
- Ishii, M., Kim, S. and Uhle, J., 2002, Interfacial Area Transport Equation: Model Development and Benchmark Experiments, *Int. J. Heat Mass Transfer* **45**: 3111-3123.
- Ishii, M. and Kim, S., 2004, Development of One-group and Two-group Interfacial Area Transport Equation, *Nucl. Sci. Eng.* **146**: 257-273.
- Kalinin, A. V., 1970, Derivation of Fluid Mechanics Equations for a Two-phase Medium with Phase Changes, Heat Transfer Soviet Res. 2: 83-96.
- Kataoka, I. and Ishii, M. 1987, Drift Flux Model for Large Diameter Pipe and New Correlation for Pool Void Fraction, Int. J. Heat Mass Transfer 30: 1927-1939.
- Kataoka, I. and Serizawa, A., 1995, Modeling and Prediction of Turbulence in Bubbly Twophase Flow, *Proc. 2nd Int. Conf. Multiphase Flow '95 – Kyoto*, pp. MO2-11-MO2-16.
- Kelly, F. D., 1964, A Reacting Continuum, Int. J. Engng. Sci. 2: 129-153.
- Kelvin, W., 1871, Hydrokinetic Solutions and Observations, London, Edinburgh and Dublin Philosophical Magazine and Journal of Science Ser. 4 42: 362-377.
- Kim, W. K. and Lee, K. L., 1987, Coalescence Behavior of two Bubbles in Stagnant Liquids, J. Chem. Eng. Jpn. 20: 449-453.
- Kirkpatrick, R. D. and Lockett, M. J., 1974, The Influence of Approach Velocity on Bubble Coalescence, *Chem. Eng. Sci.* 29: 2363-2373.
- Kocamustafaogullari, G., 1971, Thermo-fluid Dynamics of Separated Two-phase Flow, *Ph.D. Thesis*, Georgia Institute of Technology.
- Kocamustafaogullari, G., Chen, I. Y. and Ishii, M., 1984, Unified Theory for Predicting Maximum Fluid Particle Size for Drops and Bubbles, Argonne National Lab. Report, ANL-84-67.
- Kocamustafaogullari, G. and Ishii, M., 1995, Foundation of the Interfacial Area Transport Equation and its Closure Relations, *Int. J. Heat Mass Transfer* 38: 481-493.
- Kolev, N., 2002, Multiphase Flow Dynamics 1 Fundamentals, 2: Mechanical and Thermal Interactions, Springer-Verlag.
- Kordyban, E., 1977, Some Characteristics of High Waves in Closed Channels Approaching Kelvin-Helmholtz Instability, J. Fluids Eng. 99: 389-346.
- Kotchine, N. E., 1926, Sur la Théorie des Ondes De-choc dans un Fluide, *Bend. Circ. Mat. Palermo* 50: 305-344.
- Kutateladze, S. S., 1952, Heat Transfer in Condensation and Boiling, Moscow, AEC-TR-3770, USAEC Technical Information Service.
- Kynch, G. J., 1952, A Theory of Sedimentation, Trans. Faraday Soc. 48: 166-176.

- Lackme, C., 1973, Two Regimes of a Spray Column in Counter-current Flow, AIChE Symp. Heat Transfer R. D. 70: 59-63.
- Lahey Jr., R. T., Cheng, L. Y., Drew, D. A. and Flaherty, J. E., 1978, The Effect of Virtual Mass on the Numerical Stability of Accelerating Two-phase Flows, AIChE 71st Annual Meeting, Miami Beach, Florida.
- Lahey Jr, R. T., Lopez de Bertodano, M. and Jones Jr., O. C., 1993, Phase Distribution in Complex Geometry Conduits, *Nucl. Eng. Des.* 141: 117-201.
- Lamb, H., 1945, Hydrodynamics, Dover, New York.
- Landau, L. D., 1941, Theory of Super Fluidity of Helium II, Physical Review 60: 166-176.
- Landel, R. F., Moser, B. G. and Bauman, A. J., 1965, Rheology of Concentrated Suspensions: Effects of a Surfactant, *Proc. 4th Int. Congress on Rheology*, Brown University, Part 2, pp.663.
- Letan, R. and Kehat, E., 1967, Mechanics of a Spray Column, AIChE J. 13: 443-449.
- Levich, V. G., 1962, Physicochemical Hydrodynamics, Prentice-Hall.
- Levy, S., 1960, Steam Slip-theoretical Prediction from Momentum Model, J. Heat Transfer 82: 113-124.
- Lighthill, M. J. and Whitham, G. B., 1955, On the Kinematic Waves I. Flood Movement in Long Rivers, *Proc. Royal Soc. London* 229: 281-316.
- Liu, T. J., 1993, Bubble Size and Entrance Length Effects on Void Development in a Vertical Channel, *Int. J. Multiphase Flow* 19: 99-113.
- Loeb, L. B., 1927, The Kinetic Theory of Gases, Dover, New York.
- Lopez de Bertodano, M., Lahey Jr., R. T. and Jones, O. C., 1994, Development of a k-ε Model for Bubbly Two-phase Flow, J. Fluids Eng. 116: 128-134.
- Loth, E., Taeibi-Rahni, M. and Tryggvason, G., 1997, Deformable Bubbles in a Free Shear Layer, Int. J. Multiphase Flow 23: 977-1001.
- Lumley, J., 1970, Toward a Turbulent Constitutive Relation, J. Fluid Mech. 41: 413-434.
- Marchaterre, J. F., 1956, The Effect of Pressure on Boiling Density in Multiple Rectangular Channels, *Argonne National Lab. Report*, ANL-5522.
- Martinelli, R. C. and Nelson, D. B., 1948, Prediction of Pressure Drop during Forced Circulation Boiling of Water, *Trans. ASME* 70: 695-702.
- Maurer, G. W., 1956, A Method of Predicting Steady State Boiling Vapour Fractions in Reactor Coolant Channels, WAPD-BT-19.
- Maxwell, J., 1867, On the Dynamical Theory of Gases, *Phil. Trans. Roy. Soc. London* 157: 49-88.
- McConnell, A. S., 1957, Application of Tensor Analysis, Dover.
- Mei, R. and Klausner, J. F., 1994, Shear Lift Force on Spherical Bubbles, *Int. J. Heat Fluid Flow* 15: 62-65.
- Meyer, J. E., 1960, Conservation Laws in One-dimensional Hydrodynamics, Bettis Technical Review 61: WAPD-BT-20.
- Miles, J. W., 1957, On the Generation of Surface Waves by Shear Flows, I-IV, J. Fluid Mech. 3: 185-204 (1957); 6: 568-582 (1959); 6: 583-598 (1959); 13: 433-448 (1962).
- Mishima, K. and Ishii, M., 1980, Theoretical Prediction of Onset of Slug Flow, J. Fluid Eng. 102: 441-445.
- Mishima, K. and Ishii, M., 1984, Flow Regime Transition Criteria for Upward Two-phase Flow in Vertical Tubes, *Int. J. Heat Mass Transfer* 27: 723-737.
- Miller, J. W., 1993, An Experimental Analysis of Large Spherical Cap Bubbles Rising in an Extended Liquid, M. S. Thesis, Purdue University.
- Mokeyev, Yu. G., 1977, Effect of Particle Concentration on their Drag and Induced Mass, Fluid Mech.-Soviet Res. 6: 161-168.

- Muller, I., 1968, A Thermodynamics Theory of Mixtures of Fluids, *Arch. Rational Mech. Anal.* 28: 1-39.
- Murray, S. O., 1954, On the Mathematics of Fluidization I, Fundamental Equations and Wave Propagation, *J. Fluid Mech.* **21:** 465-493.
- Neal, L. G., 1963, An Analysis of Slip in Gas-liquid Flow Applicable to the Bubble and Slug Flow Regimes, *Kjeller Research Establishment Report, Norway* KR-2.
- Nicklin, D. J., Wilkes, J. O. and Davidson, J. F., 1962, Two-phase Flow in Vertical Tubes, *Trans. Inst. Chem. Eng.* 40: 61-68.
- Nikuradse, J., 1932, Gesetzmäsigkeit der Turbulenten Strömung in Glatten Rohre, Forsch. Arb. Ing.-Wes. pp.356.
- Oolman, T. O. and Blanch, H. W., 1986a, Bubble Coalescence in Air-Sparged Bioreactors, *Biotech. Bioeng.* 28: 578-584.
- Oolman, T. O. and Blanch, H. W., 1986b, Bubble Coalescence in Stagnant Liquids, *Chem. Eng. Commun.* 43: 237-261.
- Otake, T., Tone, S., Nakao, K., and Mitsuhashi, Y., 1977, Coalescence and Breakup of Bubbles in Liquids, *Chem. Eng. Sci.* 32: 377-383.
- Pai, S. I., 1962, Magnetogasdynamics and Plasma Dynamics, Wien Springer-Verlag.
- Pai, S. I., 1971, Fundamental Equations of a Mixture of Gas and Small Spherical Solid Particles from Simple Kinetic Theory, Int. Sym. on Two-phase Systems, Paper 6-6, Haifa, Israel.
- Pai, S. I., 1972, A New Classification of Two-phase Flows, J. Mach. Phys. Sci. 6: 137-161.
- Panton, R., 1968, Flow Properties for the Continuum View-point of a Non-Equilibrium Gas-Particle Mixture, J. Fluid Mech. 31: 273-303.
- Peebles, F. N. and Garber, H. J., 1953, Studies on the Motion of Gas Bubbles in Liquid, *Chem. Eng. Prog.* 49: 88-97.
- Petrick, M., 1962, A Study of Vapor Carryunder and Associated Problems, *Argonne National Lab. Report*. ANL-65-81.
- Phillips, M. C. and Riddiford, A. C., 1972, Dynamic Contact Angles 2. Velocity and Relaxation Effects for Various Liquids, J. Colloid Interface Sci. 41: 77-85.
- Pierre, C. C. St., 1965, Frequency-response Analysis of Steam Voids to Sinusoidal Power Modulation in a Thin-walled Boiling Water Coolant Channel, Argonne National Lab. Report, ANL-7041.
- Prigogine, I. and Mazur, P., 1951, On Two-phase Hydrodynamic Formulations and the Problem of Liquid Helium II, *Physica* 17: 661-679.
- Prince, M. J. and Blanch, H. W., 1990, Bubble Coalescence and Break-up in Air-Sparged Bubble Columns, AIChE J. 36: 1485-1497.
- Prosperetti, A., 1999, Some Considerations on the Modeling of Disperse Multiphase Flows by Averaged Equations, *JSME Intl. J.*, Ser. B, **42:** 573-585.
- Réocreux, M., Barriere, G. and Vernay, B., 1973, Etude Expérimentale des Débits Critiques en Écoulement Diphasique Eau-vapeur à Faible Titre sur un Canal à Divergent de 7 Degrés, Cen. G, Rapport TT 115.
- Réocreux, M., 1974, Contribution à l'étude des Débits Critiques en Éulement Diphasique eau Vapeur, *Ph. D. Thesis*, University of Grenoble.
- Richardson, J. F. and Zaki, W. N., 1954, Sedimentation and Fluidization: Part 1, *Trans. Inst. Chem. Eng.* 32: 35-53.
- Roscoe, R., 1952, The Viscosity of Suspensions of Rigid Spheres, Br. J. Appl. Phys. 3: 267-269.
- Rose, S. C. and Griffith, P., 1965, Flow Properties of Bubbly Mixtures, ASME Paper 65-HT-8
- Rotta, J. C., 1972, Turbulence Stromungen, B. G. Teubner, Stuttgart, Germany.

- Rouhani, S. Z. and Becker, K. M., 1963, Measurement of Void Fractions for Flow of Boiling Heavy Water in a Vertical Round Duct, AE-106, Aktiebolaget Atomenergi, Sweden.
- Rybczynski, W., 1911, Über die Fortschreitende Bewegung einer Flüssigen Kugel in einem Zähen Medium, Bull. Int. Acad. Sci. Cracov. 1911A: 40-46.
- Saffman, P. G., 1965, The Lift on a Small Sphere in a Slow Shear Flow, J. Fluid Mech. 22: 385-400.
- Sato, Y., Sadatomi, M. and Sekoguchi, K., 1981, Momentum and Heat Transfer in Two-phase Bubble Flow 1. Theory, *Int. J. Multiphase Flow* 7: 167-177.
- Schlichting, H., 1979, Boundary Layer Theory, McGraw-Hill Book Co.
- Schwartz, K., 1954, Investigation of Distribution of Density, Water and Steam Velocity and of the Pressure Drop in Vertical Horizontal Tubes, VDI Forschungsh. 20, Series B, 445.
- Schwartz, A. M. and Tejada, S. B., 1972, Studies of Dynamic Contact Angles on Solids, *J. Colloid Interface Sci.* 38: 359-375.
- Scriven, L. E., 1960, Dynamics of Fluid Interface, Equation of Motion for Newtonian Surface Fluids, *Chem. Eng. Sci.* 2: 98-108.
- Serizawa, A., Kataoka, I. and Michiyoshi, I., 1975, Turbulence Structure of Air-water Bubbly Flow, I, II and III, Int. J. Multiphase Flow 2: 221-259.
- Serizawa, A. and Kataoka, I., 1988, Phase Distribution in Two-phase Flow, *Transient Phenomena in Multiphase Flow*, Hemisphere, Washington DC, pp.179-224.
- Serizawa, A. and Kataoka, I., 1994, Dispersed Flow-I., *Multiphase Science and Technology*, Vol. 8, Begell House Inc., New York, pp.125-194.
- Serrin, J., 1959, Handbuch der Physik, Vol.8/I, Springer-Verlag.
- Sevik, M. and Park, S. H., 1973, The Splitting of Drops and Bubbles by Turbulent Fluid Flow, *J. Fluids Eng.* **95**: 53-60.
- Slattery, J. C., 1964, Surface I. Momentum and Moment-of-momentum Balance for Moving Surfaces, *Chem. Eng. Sci.* **19**: 379-385.
- Slattery, J. C., 1972, Momentum, Energy and Mass Transfer in Continua, McGraw-Hill Book
- Smissaert, G. E., 1963, Two-component Two-phase Flow Parameters for Low Circulation Rages, *Argonne National Lab. Report*, ANL-67-55.
- Soo, S. L., 1967, Fluid Dynamics of Multiphase Systems, Ginn Blaisdell.
- Sridhar, G. and Katz, J., 1995, Drag and Lift Forces on Microscopic Bubbles Entrained by a Vortex, *Phys. Fluids* 7: 389-399.
- Standart, G., 1964, The Mass, Momentum and Energy Equations for Heterogeneous Flow Systems, *Chem. Eng. Sci.* 19: 227-236.
- Standart, G., 1968, The Second Law of Thermodynamics for Heterogeneous Flow Systems III. Effect of Conditions of Mechanical Equilibrium and Electroneutrally on Simulataneous Heat and Mass Transfer and Prigogine Theorem, *Chem. Eng. Sci.* 23: 279-285.
- Stefan, J., 1871, Uber das Gleichgewicht und die Bewegung, Insbesondere die Diffusion von Gasmengen, Sitzgsber, Akad. Wiss. Wien 63: 63-124.
- Stewart, C. W., 1995, Bubble Interaction in Low-viscosity Liquids, *Int. J. Multiphase Flow* 21: 1037-1046.
- Stokes, G. G., 1851, On the Effect of Internal Friction of Fluids on the Motion of Pendulums, Trans. Cambr. Phil. Soc. 9, Part II: 8-106 or Coll. Papers III: 55.
- St. Pierre, C. C., 1965, Frequency-response Analysis of Steam Voids to Sinusoidal Power Modulation in a Thin-walled Boiling Water Coolant Channel, Argonne National Lab. Report, ANL-7041.
- Sun, X., Ishii, M. and Kelly, J. M., 2003, Modified Two-fluid Model for the Two-group Interfacial Area Transport Equation, Annals Nucl. Energy 30: 1601-1622.

- Sun, X., Kim, S., Ishii, M. and Beus, S. G., 2004a, Modeling of Bubble Coalescence and Disintegration in Confined Upward Two-phase Flow, *Nucl. Eng. Des.* 230: 3-26.
- Sun, X., Kim, S., Ishii, M. and Beus, S. G., 2004b, Model Evaluation of Two-group Interfacial Area Transport Equation for Confined Upward Flow, *Nucl. Eng. Des.* 230: 27-47.
- Taylor, G. I., 1932, The Viscosity of a Fluid Containing Small Drops of Another Fluid, Proc. R. Soc. A138: 41-48.
- Taylor, G. I., 1934, The Formation of Emulsions in Definable Fields of Flow, Proc. Royal Soc. London A146: 501-523.
- Teletov, S. G., 1945, Fluid Dynamic Equations for Two-phase Fluids, Soviet Physics Doklady, Akademii Nauk SSSR 50: 99-102.
- Teletov, S. G., 1957, On the Problem of Fluid Dynamics of Two-phase Mixtures, I. Hydrodynamic and Energy Equations, *Bull. the Moscow University* 2: 15.
- Theofanous, T. G., Li, G. J. and Dinh, T. N., 2004, Aerobreakup in Rarefied Supersonic Gas Flows, J. Fluid Eng. 126: 516-527.
- Thomas, D. G., 1965, Transport Characteristics of Suspension: VIII A Note on Viscosity of Newtonian Suspensions of Uniform Spherical Particles, J. Colloid Sci. 20: 267-277.
- Thome, R. J., 1964, Effect of a Transverse Magnetic Field and Vertical Two-phase Flow through a Rectangular Channel, *Argonne National Lab. Report*, ANL-6854.
- Tomiyama, A., Zun, I., Sou, A. and Sakaguchi, T., 1993, Numerical Analysis of Bubble Motion with the VOF method, *Nucl. Eng. Des.* 141: 69-82.
- Tomiyama, A., Sou, A., Zun, I., Kanami, N. and Sakaguchi, T., 1995, Effects of Eötvös Number and Dimensionless Liquid Volumetric Flux on Lateral Motion of a Bubble in a Laminar Duct Flow, Advances in Multiphase Flow, Elsevier, pp.3-15.
- Tomiyama, A., Tamai, H., Zun, I. and Hosokawa, S., 2002, Transverse Migration of Single Bubbles in Simple Shear Flows, *Chem. Eng. Sci.* 57: 1849-1858.
- Tong, L. S., 1965, Boiling Heat Transfer and Two-phase Flow, John Wiley and Sons, Inc., New York.
- Truesdell, C. and Toupin, R., 1960, The Classical Field Theories, *Handbuch der Physic*, Vol.3/I, Springer-Verlag.
- Truesdell, C., 1969, Rational Thermodynamics, McGraw-Hill Book Co.
- Tsouris, C. and Tavlarides, L. L., 1994, Breakage and Coalescence Models for Drops in Turbulent Dispersions, *AIChE J.* 40: 395-406.
- Tsuchiya, K., Miyahara, T. and Fan, L. S., 1989, Visualization of Bubble-wake Interactions for a Stream of Bubbles in a Two-dimensional Liquid-solid Fluidized Bed, *Int. J. Multiphase Flow* 15: 35-49.
- Vernier, P. and Delhaye, J. M., 1968, General Two-phase Flow Equations Applied to the Thermohydrodynamics of Boiling Nuclear Reactors, *Energie Primaire* 4: No.1.
- Von Karman, 1950, Unpublished Lectures (1950-1951) at Sorbonne and Published by Nachbar et al. in *Quart. Appl. Math.* 7: 43 (1959).
- Wallis, G. B., Steen, D. A., Brenner, S. N. and Turner T. M., 1964, Joint U. S. Euratom Research and Development Program, *Quarterly Progress Report*, January, Dartmouth College.
- Wallis, G. B., 1969, One-dimensional Two-phase Flow, McGraw-Hill Book Co.
- Wallis, G. B., 1974, The Terminal Speed of Single Drops or Bubbles in an Infinite Medium, Int. J. Multiphase Flow 1: 491-511.
- Wang, S. K., Lee, S. J., Jones Jr., O. C. and Lahey Jr. R. T., 1987, 3-D Turbulence Structure and Phase Distribution Measurements in Bubbly Two-phase Flows, *Int. J. Heat Mass Transfer* 13: 327-343.

- Weatherburn, C. E., 1927, Differential Geometry of Three Dimensions, Cambridge University Press.
- Werther, J., 1974, Influence of the Bed Diameter on the Hydrodynamics of Gas Fluidized Beds, AIChE Symp. Ser. No. 141 70: 53.
- Whitaker, S., 1968, Introduction to Fluid Mechanics, Prentice-Hall, Inc.
- White, E. T. and Beardmore, R. H., 1962, The Velocity of Rise of Single Cylindrical Air Bubbles through Liquid Contained in Vertical Tubes, *Chem. Eng. Sci.* 17: 351-361.
- Wu, Q. and Ishii, M., 1996, Interfacial Wave Instability of Co-current Two-phase Flow in Horizontal Channel, *Int. J. Heat Mass Transfer* 39: 2067-2075.
- Wu, Q., Kim, S., Ishii, M. and Beus, S. G., 1998, One-group Interfacial Area Transport in Vertical Bubbly Flow, *Int. J. Heat Mass Transfer* 41: 1103-1112.
- Wundt, H., 1967, Basic Relationships in n-components Diabatic Flow, EUR 3459e.
- Yoshida, F. and Akita, K., 1965, Performance of Gas Bubble Columns: Volumetric Liquidphase Mass Transfer Coefficient and Gas Holdup, *AIChE J.* 11: 9-13.
- Zhang, D. Z., 1993, Ensemble Phase Averaged Equations for Multiphase Flows, Ph D. Thesis, Johns Hopkins University.
- Zhang, D. Z., Prosperetti, A., 1994a, Averaged Equations for Inviscid Disperse Two-phase Flow, J. Fluid Mech. 267: 185-219.
- Zhang, D. Z., Prosperetti, A., 1994b, Ensemble Phase-averaged Equations for Bubbly Flows, Phys. Fluids 6: 2956-2970.
- Zuber, N., 1964a, On the Dispersed Flow in the Laminar Flow Regime, Chem. Eng. Sci. 19: 897-917.
- Zuber, N., 1964b, On the Problem of Hydrodynamic Diffusion in Two-phase Flow Media, Proc. 2nd All Union Conference on Heat and Mass Transfer, Minsk, USSR, 3: 351.
- Zuber, N., Staub, F. W. and Bijwaard, G., 1964, Steady state and Transient Void Fraction in Two-phase Flow Systems, Vol.1, GEAP 5417.
- Zuber, N. and Findlay, J. A., 1965, Average Volumetric Concentration in Two-phase Flow Systems, J. Heat Transfer 87: 453-468.
- Zuber, N. and Staub, F. W., 1966, Propagation and the Wave Form of the Volumetric Concentration in Boiling Water Forced Convection Systems under Oscillatory Conditions, Int. J. Heat Mass Transfer 9: 871-895.
- Zuber, N., 1967, Flow Excursions and Oscillations in Boiling, Two-phase Flow Systems with Heat Addition, *Proc. Symp. Two-phase Flow Dynamics*, 1: 1071.
- Zuber, N. and Dougherty, D. E., 1967, Liquid Metals Challenge to the Traditional Methods in Two-phase Flow Investigations, Proc. EURATOM Symposium on Two-phase Flow Dynamics, pp.1085.
- Zuber, N., Staub, F. W., Bijwaard, G. and Kroeger, P. G., 1967, Steady State and Transient Void Fraction in Two-phase Flow Systems, General Electric Co. Report GEAP-5417, vol.1
- Zuber, N., 1971, Personal Communication at Georgia Institute of Technology.
- Zun, I., 1988, Transition from Wall Void Peaking to Core Void Peaking in Turbulent Bubbly Flow, Transient Phenomena in Multiphase Flow, Hemisphere, Washington DC, pp.225-245.

Nomenclature

Latin

4	
A	surface of a volume
A	frontal area of bubble
$A^{lphaeta}$	surface metric tensor (Aris, 1962)
A	turbulence anisotropy tensor
A_d	projected area of a typical particle
A_{i}	mathematical surface between A_1 and A_2
A_{i}	surface area
A_k	surface bounding the interfacial region and adjacent to
	phase k
A_{m}	surface of fixed mass volume
A_p	projected area of a particle
a	cross sectional radius of cap or slug bubble
a_c^i	mobility of the fluid at the interface
a_i	interfacial area concentration
$a_{sk},\;a_{tk}$	isentropic and isothermal sound velocities based on the average thermodynamic properties
B_d	volume of a typical particle
$B_{\scriptscriptstyle S}$	balance at an interface
B_{V}	balance in each phase
$b_k^{ \Gamma}$, $b_k^{ M}$, $b_k^{ E}$	Transport coefficients associated with interfacial

transfer of mass, momentum and energy

C wave velocity
C constant

 C_{D} drag coefficient

 $C_{D\infty}$ ideal drag coefficient

 C_g variable defined by $\sqrt{2g\Delta
ho/
ho_f}$

 C_{hk} distribution parameter

 $C_{\it hm}$ mixture-enthalpy-distribution parameter

 C_i closed curve on an interface C_K kinematic wave velocity

 C_{LW} coefficient of lift force caused by slanted wake

 $egin{array}{lll} C_M & ext{virtual mass constant} \\ C_T & ext{adjustable parameter} \\ C_{vk} & ext{distribution parameter} \\ C_{vm} & ext{virtual volume coefficient} \\ \end{array}$

 C_{m} mixture-momentum-distribution parameter

 C_{π} distribution parameter

 $C_{\psi k}$ distribution parameter for flux

 C^i shape factor

 C_0 distribution parameter C_{∞} propagation velocity

 C_{∞} asymptotic value of distribution parameter

 c_k mass concentration of phase k

 c_{vk} , c_{vk} specific heat at constant pressure and density based on

averaged properties

D hydraulic-equivalent diameter

 $D_{c.max}$ maximum diameter of stable bubble

 D_{crit} volume-equivalent diameter of a bubble at boundary

between groups 1 and 2

 $D_{d,max}$ maximum distorted bubble limit

D_d^*	ratio of bubble diameter to bubble diameter at distorted
\mathcal{D}_d	bubble limit
D_{e}	volume-equivalent diameter of a fluid particle
D_e	eddy diameter
$D_{\scriptscriptstyle E}$	effective diameter of mixture volume that contains one
— E	bubble
$D_{\!\scriptscriptstyle H}$	hydraulic-equivalent diameter
D_H^*	non-dimensional hydraulic-equivalent diameter
D_k	diffusion coefficient
D_{k}	total deformation tensor of phase k
D_{kb}	bulk deformation tensor
D_{ki}	interfacial extra deformation tensor
D_k^{lpha}	drift coefficient
D_{Sm}	Sauter mean diameter
D_s	surface-equivalent diameter of a fluid particle
d_B	bubble diameter
$\widehat{d_{\scriptscriptstyle B}}$	cross-sectional mean diameter of bubbles
$E_{\scriptscriptstyle B}$	average energy required for bubble breakup
E_d	area fraction of liquid entrained in gas core from total
	liquid area at any cross section
E_e	average energy of a single eddy
E_k	total energy gain through interfaces for phase k
$E_{\scriptscriptstyle m}$	mixture total energy source from interfaces
E_m^H	mixture energy gain due to changes in mean curvature
Eo	Eötvös number
$\widehat{e_k}$, $\widehat{e_{ki}}$	weighted mean virtual internal energy (with turbulent
	kinetic energy included) at the bulk phase and at the
T(1)	interfaces
$F(oldsymbol{x},t)$	general function
$oldsymbol{F}^B$	Basset force
$oldsymbol{F}^D$	standard drag force
$oldsymbol{F}^L$	lift force
$oldsymbol{F}^T$	turbulent dispersion force
\boldsymbol{F}^V	virtual mass force

$oldsymbol{F}^W$	wall lift force
$F_{\scriptscriptstyle D}$	drag force
F_k , \mathscr{F}_k	general function associated with phase k
$f\left(oldsymbol{x},t ight)$	function for interface position
$f(oldsymbol{x},t,oldsymbol{\xi})$	molecular density function
f	collision frequency
f	friction factor
$f \\ f^*$	correction factor for drag coefficient
f_{i}	interfacial friction factor
f_k	Helmholtz potential
$f_{\!\scriptscriptstyle kn}\left(oldsymbol{x},t,oldsymbol{\xi} ight)$	particle density function of the n th -kind particles
f_{TW}	two-phase friction factor
G	mass velocity
G	cap bubble thickness
G_s	non-dimensional velocity gradient
\boldsymbol{g}	gravity field
$oldsymbol{g}_k$	body force field
g_k , $\widehat{g_k}$, $\widehat{g_{ki}}$	Gibbs free energy: local instant, bulk mean and
	interfacial mean values
g_{ln}	space metric tensor (Aris, 1962)
$g_N = \overline{\overline{}}$	normal gravitational acceleration
H_{21} , $\overline{H_{21}}$	local instant and averaged mean curvature ($H_{\rm 21}>0$ if
7	phase 2 is the dispersed phase)
h	bubble height
$h_{\scriptscriptstyle 1},\;h_{\scriptscriptstyle 2}$	average thickness of upper (1) and lower (2) fluid
$\widehat{h_{\!k}}$, $\widehat{h_{\!k\!i}}$	layers weighted mean virtual enthalpy (with turbulent kinetic
n_k , n_{ki}	
h_m	energy included) at the bulk phase and at the interfaces mixture virtual enthalpy
I .	unit tensor
I_k	interfacial source term in the balance equations for
7	phase k
I_m	interfacial source term for mixture balance equations
I_{ka} , I_{ma}	interfacial source terms in the shock conditions for

phase k and for mixture local instant and mean enthalpies mean enthalpy of phase k at interfaces mixture enthalpy local instant surface enthalpy per area flux \mathcal{J}^D drift flux \mathcal{I}_a line flux for interface surface flux for phase kturbulent fluxes Jacobians based on macroscopic field J_k, J_m volumetric fluxes of phase k and mixture j_k , j j^* non-dimensional mixture volumetric flux i^+ non-dimensional mixture volumetric flux Kconstant K_{k} thermal conductivity thermal conductivity tensor turbulent conductivity thermal mixing length coefficient wave number k^{SI} turbulent kinetic energy due to shear-induce turublence k_{e} wave number of eddy Lpitch of slug unit $L_{\!\scriptscriptstyle h}$ cylindrical bubble length area concentration of jth-interface $1/L_j$ $1/L_s$ total area concentration L_{T} mean traveling distance between two bubbles for one collision L_{w} effective wake length

 l_{SP} mixing length of single-phase flow l_{TP} mixing length of two-phase flow

mixing length due to bubble-induced turbulence

mixing length

 m_e mass per a single eddy

1

 $l_{\scriptscriptstyle R}$

 \dot{m}_k , $\overline{\dot{m}}_k$ local instant and mean mass transfer rates per unit area

(mass loss)

M Morton number

 M_F frictional pressure gradient in multi-particle system $M_{F_{\infty}}$ frictional pressure gradient in single particle system

 M_{ik} generalized interfacial drag

 M_k , M_s state density functions for phase k and interface M_k , M_m momentum sources for phase k and mixture

 M_m^H force due to changes in mean curvature

 M_k^n, M_k^t, M_k^d form, skin and total drag forces

 M_{rm} force associated with mixture transverse stress gradient

N unit normal vector to a curve on an interface

 $egin{array}{ll} N & & {
m number\ of\ samples} \ N_b & & {
m number\ of\ bubbles} \ N_D & & {
m drift\ number} \ \end{array}$

 N_{drag} drift number drag number

 N_e number of eddies of wave number k_e per volume of

fluid

 $egin{array}{ll} N_{Ec} & & ext{Eckert number} \ N_{Eu} & & ext{Euler number} \ N_{Fr} & & ext{Froude number} \ \end{array}$

 N_i converted enthalpy ratio

 N_{Jk} Jakob number

 N_{nch} phase change number

 N_{pch}^{i} interfacial phase change effect number

 N_{P_a} Peclet number

 N_{Prk}^{T} turbulent Prandtl number N_{a} interface heating number

 N_{Re} Reynolds number

 N_{Re}^{i} interfacial Reynolds number

 $egin{array}{ll} N_{Sl} & ext{Strouhal number} \ N_{We} & ext{Weber number} \end{array}$

 N_{σ} surface tension number

 N_{Pr} Prandtl number

 N_w number of bubbles inside effective volume

 N_{μ} viscosity number N_{α} density ratio

n fluid particle number per unit mixture volume

 $egin{array}{ll} oldsymbol{n} & & & \mbox{unit normal vector} \ n_b & & \mbox{bubble number density} \end{array}$

 n_e number of eddies of wave number per volume of two-

phase mixture

 $m{n}_k$ outward unit normal vector for phase k P^{SI} production of shear-induced turbulence

 P_{c} probability for a bubble to move toward neighboring

bubble

 $\overline{\mathbb{P}_k}$ partial pressure tensor

P_i interfacial wetted perimeter

 P_{wf} wall wetted perimeter

p pressure

 p_{a} critical pressure

 p_k , $\overline{\overline{p_k}}$, $\overline{\overline{p_{ki}}}$ partial, bulk mean and interfacial mean pressure

 p_m mixture pressure

q heat flux

 q^D diffusion (drift) heat flux

 $\overline{\overline{q}_k}$, q_k^T mean conduction and turbulent heat fluxes \overline{q} , q_k^T mixture conduction and turbulent heat fluxes

 \dot{q}_k local instant body heating

 $\frac{\overline{q}''_{k}}{q_{k}''}$ average heat transfer pert interfacial area (energy gain)

 q_k^C mean conduction heat flux

R ideal gas constant
R radius of a pipe
R radius of curvature

 R^+ variable defined by Rv_f^*/ν_f

 $\overline{\overline{R_d}}$ mean radius of fluid particles

 R_i particle number source and sink rate

∙8	
R_w	tube radius
Re	Reynolds number
$(Re)_d$	particle Reynolds number
r	radial coordinate
r_d^*	non-dimensional radius
$S_{\scriptscriptstyle B}$, $S_{\scriptscriptstyle C}$	surface available to collision
S_{j}	particle source and sink rates per unit mixture volume
C	due to j-th particle interactions such as disintegration or coalescence
$S_{\it ph}$	particle source and sink rates per unit mixture volume
	due to phase change
s	entropy
$rac{S_a}{\widehat{S_k}} \ , \widehat{S_{ki}}$	surface entropy per area
	weighted mean entropy at bulk phase and at interfaces mixture entropy
$rac{s_m}{T}$	
	temperature
$T_i, \overline{\overline{T_i}}$	instant and mean interface temperature
$\overline{\overline{T_k}}$, $\overline{\overline{T_{ki}}}$	mean temperature at bulk phase and at interface
\mathscr{T}_k	stress tensor
t	time
t_{C}	time required for bubble coalescence
t_{j}	time when the j^{th} -interface passes the point
t_{α}^{m} (or t_{α})	hybrid tensor of interface, see Aris (1962)
$oldsymbol{U}_{oldsymbol{0}}$	velocity of shock in mixture velocity of stream
$U_{\scriptscriptstyle B}$, $U_{\scriptscriptstyle C}$	volume available to collision
u	internal energy
u_a	surface energy per area
u_{b}	mean fluctuation velocity
$u_{\scriptscriptstyle B}$, $u_{\scriptscriptstyle C}$	bubble velocity
u_e	eddy velocity
$\widehat{u_k}$, $\widehat{u_{ki}}$	weighted mean internal energy at bulk phase and at

interfaces

 $u_{\scriptscriptstyle m}$

mixture internal energy

averaged relative velocity between leading bubble and u_{rW}

bubble in wake region

root-mean-square approaching velocity of two bubbles $u_{\scriptscriptstyle t}$

critical fluctuation velocity $u_{t,crit}$

Vvolume

 \dot{V} time derivative of volume V critical bubble volume

non-dimensional drift velocity

 V_{i} interfacial region $oldsymbol{V}_{kj}$ drift velocity

 V_{lm} diffusion velocity V_{m} fixed mass volume V_s^* ratio of $V_{s,min}$ to $V_{s,max}$

 V_{w} V_{1n} peak bubble volume in group 1

 \boldsymbol{v} velocity

 $v_{\scriptscriptstyle f}'$ liquid velocity fluctuation independent of bubble

effective wake volume

agitation

 $v''_{\mathfrak{s}}$ liquid velocity fluctuation dependent on bubble

agitation

friction velocity

 \boldsymbol{v}_a average center-of-volume velocity of dispersed phase

velocity of interface \boldsymbol{v}_{i}

 $\widehat{oldsymbol{v}_{k}}$, $\widehat{oldsymbol{v}_{ki}}$ weighted mean velocity at bulk phase and at interfaces

mean turbulent kinetic energy mixture center of mass velocity \boldsymbol{v}_{m}

average local particle velocity weighted by particle $oldsymbol{v}_{pm}$

number

relative velocity v_r

difference between area averaged mean velocities of $\overline{v_r}$

phases

relative velocity of a single particle in an infinite $v_{r\infty}$

medium

 v_s velocity of interfacial particles

 W_{ki}^{T} work due to fluctuations in drag forces

We Weber number

 We_{crit} critical Weber number $m{X}$ convective coordinates $m{x}$ spatial coordinates x spatial coordinate y spatial coordinate

 y^+ variable defined by yv_f^*/ν_f

z spatial coordinate

Greek

 α_b void fraction in slug bubble section

 $lpha_{core}$ ratio of liquid-film cross-sectional area to total cross-

sectional area

 α_d average overall void fraction

 $lpha_{{\scriptscriptstyle drop}}$ ratio of cross-sectional area of drops to cross-sectional

area of core

 $lpha_{\it a.crit}$ critical void fraction when center bubble cannot pass

through free space among neighboring bubbles

 $\alpha_{q,max}$ maximum void fraction

 α_k time (void) fraction of phase k

 β ratio of mixing length and width of wake

 β_c variable to take account of overlap of excluded volume

 β_k thermal expansivity based on averaged properties

 Γ constant

 Γ_k mass generation for phase k

 γ constant

 γ_k ratio of specific heats

 Δ_a interfacial entropy generation per area

 Δ_{k} entropy generation for phase k

 $\Delta \dot{m}_1$, inter-group mass transfer rates from group 1 to group 2

 Δt time interval of averaging

 $\Delta t_{\rm p}$ time interval to drive daughter bubble apart with

characteristic length of D_b Δt_c time interval for one collision

 Δt_k , Δt_s time intervals associated with phase k and interfaces Δt_W average time interval for a bubble in wake region to

catch up with preceding bubble

 δ thickness of interface

 δ film thickness

 δ' collective parameter

 δ_{crit} critical film thickness where rapture occurs

 δ_{init} initial film thickness

 δp_k pressure deviation from saturation pressure

 $\delta\mu$ volume element in μ space

 ε energy dissipation rate per unit mass 2ε (or $2\varepsilon_j$) time associated with the j^{th} -interface

 ε^{SI} dissipation of shear-induced turbulence

 ε' , ε'' eddy diffusivity

 η_{vh} rate of volume generated by nucleation source per unit

mixture volume

 η_0 amplitude Θ contact angle

 θ angle in cylindrical coordinates

 θ_w wake angle

λ

λ

 κ_{fr} variable defined by $1 - exp \left(-C_{\mathit{fr}} V_{s}^{*1/2} \middle/ D^{1/2} \right)$

 κ_{Sk} , κ_{Tk} isentropic and isothermal compressibilities of phase k Λ_k interfacial thermal energy transfer term in the averaged

equation wavelength constant

 $\overline{\overline{\mu_k}}$, μ_k^T mean molecular and turbulent viscosities

∕n*	
$\mu_k^{T^*}$	mixing length coefficient
$\mu_{\scriptscriptstyle m}$	mixture viscosity
ν	kinematic viscosity
$ u_t $	turbulent kinematic viscosity
ξ	particle (phase) velocity in Boltzmann statistical
ξ	average ratio of V_{1p} to V_c
ξ	variable defined by $2\left(1-0.2894D_{c1}^{*3}\right)^2$
ξ	variable defined by $\left.P_i\middle/P_{w\!f}\right.$
ho	density
$ ho_a$	surface mass per area
$\frac{ ho_a}{ ho_k}$, $\overline{\overline{ ho_k}}$	partial and mean densities
$ ho_k'$	modified density defined by $ ho_k \mathrm{coth} \left(k h_{\!\scriptscriptstyle k} ight)$
$ ho_{\it m}$	mixture density
σ	surface tension
σ	viscous stress tensor
${\mathfrak T}^{\scriptscriptstyle D}$	diffusion (or drift) stress tensor
$\mathscr{U}_{\!f}^{BI}$	bubble-induced turbulent stress tensor
$\mathscr{U}_{\!f}^{SI}$	shear-induced turbulent stress tensor
$\overline{\mathscr{Z}}$, \mathscr{Z}^T	mixture viscous and turbulent stress tensors
$\overline{\overline{\mathscr{U}_{k}}}$, \mathscr{U}_{k}^{T}	average viscous and turbulent stress tensor
$\mathscr{U}_{k}^{\;\mu}$	average viscous stress
$\overline{\overline{\mathcal{C}}_{\!k\!i}}$, $\mathcal{C}_{\!k\!i}$	interfacial shear stress
$ au_C$	contact time for two bubbles
τ_i	interfacial shear stress
τ_{o}	reference time constant
$oldsymbol{ au}_{tk}, oldsymbol{ au}_{nk}$	tangential and normal stresses at interface
$ au_{w\!f}$	wall shear
Φ	velocity potential
Φ^T_{ι}	turbulent work effect in enthalpy energy equation
$egin{aligned} \Phi_k^T \ \Phi_m^i \end{aligned}$	interfacial mechanical energy exchange effect in the
m	mixture thermal energy equation
$arPhi_k^\mu$	viscous dissipation

mixture viscous dissipation
surface tension effect in the mixture thermal energy
equation
source term
interfacial source per area
source and sink rate for interfacial area concentration
velocity potential
coefficient accounting for contribution from inter-
group transfer
property of extensive characteristics
shape factor
mass weighted mean values for mixture and phase k
property per interfacial area
potential function

Subscripts and Superscripts

surface (property per area)
continuous phase
dispersed phase
liquid phase
vapor phase
interface
j th -interface
each phase : (k=1 & 2), (k=c & d), (k=f & g)
k^{th} -phase at interfaces
mixture (in macroscopic formulation)
fixed mass (in local instant formulation)
normal to interface
reference
random collision
cylindrical coordinate
saturation
surface (surface property per mass) solid phase

SIsurface instability SOshearing off TIturbulent impact WEwake entrainment ttangential to interface wall wx, y, zrectangular coordinate +,-+ and - side of shock in macroscopic field 1,2 phase 1 and phase 2

Symbols and Operators

A	tensor
$oldsymbol{A}$	vector
\boldsymbol{A}	scalar
$m{A}\cdot m{B}$	dot product
AB	dyadic product of two vectors (=tensor)
A: B	double dot product of two tensors (=scalar)
abla .	divergence operator
∇	gradient operator
$ abla_s$.	surface divergence operator (Aris, 1962)
$(A)^+$	transposed tensor
$rac{D_k}{Dt}$	$=rac{\partial}{\partial t}+\widehat{v_k}\cdot abla$
$rac{D}{Dt}$	$=rac{\partial}{\partial t}+oldsymbol{v}_{\scriptscriptstyle m}\cdot abla$
$rac{D_c}{Dt}$	$egin{aligned} &= rac{\partial}{\partial t} + oldsymbol{C}_k \cdot abla \ &= rac{\partial}{\partial t} + \widehat{oldsymbol{v}_i} \cdot abla \end{aligned}$
$egin{array}{c} rac{D_i}{Dt} \ rac{d_s}{dt} \ \overline{F}^w \ \overline{F}^{w_k} \end{array}$	$=rac{\partial}{\partial t}+\widehat{m{v_i}}\cdot abla$
$rac{d_s}{dt}$	surface convective derivative with $\widehat{v_s}$ (Aris, 1962)
F_{-}	time average
\overline{F}^w	weighted mean value
\overline{F}^{w_k}	k th -phase weighted mean value
$\overline{\overline{F}}$	phase average

$\widehat{\psi_{\pmb{k}}}$	k^{th} -phase mass weighted mean value
$\widehat{\psi}$	mixture mass weighted mean value
F_k'	fluctuating component with respect to mean value
F_{ki}^{\prime}	fluctuation component with respect to surface mean
	value
$\overline{\overline{F_{(i)}}}$, $\overline{\overline{F_{ki}}}$	surface average
$\widehat{F_{ki}}$	mass flux weighted mean value at interfaces
(),β	surface covariant derivative (Aris, 1962)
$[{\it \Delta}t]_{k}$	with $(k=T,S,1,2)$; sets of time intervals
\sum_{k}	summation on both phases
\sum_{i}	summation on the interfaces passing in Δt at $oldsymbol{x}$

Index

Α

Angular momentum (Conservation of in sing Area averaging,	gle-phase flow), 16 63-65
Area concentration (Surface),	108-109, 192-195
Averaged fields (Kinematics of),	129-141
Averaging (Area),	62-65
Averaging (Botlzmann),	58-61, 120-128
Averaging (Ensemble cell),	66
Averaging (Eulerian),	58-61
Averaging (Lagrangian),	58-61
Averaging (Statistical),	58-61, 65-66, 119-128
Averaging (Time),	64-65
Averaging (Various in connection with two-	- · · · · · · · · · · · · · · · · · · ·
Averaging (Various methods of),	55-66
Averaging (Volumetric),	62-63
В	
Balance equation (Single-phase flow general),	13-15
Balance equation (Surface),	30
Balance equation (Time averaged),	93-117
Basset force,	256, 302-308
Boltzmann averaging,	58-61, 120-128
С	
Center of mass velocity,	86
Change (Phase boundary condition),	37-38
Chemical boundary condition,	37-38
Churn-turbulent-flow regime,	6-8, 228, 281, 290, 307-308, 315, 325-327
	330, 361, 396,404-405, 417-418

Classification of two-phase flows,	5
Clausius-Clapeyron equation,	40
Concentration,	82-86
Concentration (Surface area),	108-109, 192-195
Conservation equation (Single-phase),	13-24
Constitutive axioms,	18
Constitutive laws (Drift-flux model),	355-372
Constitutive laws (Two-fluid model),	169-197
Constitutive laws or equations,	12, 18-24
Contact angle,	43-46
Continuity equation (Single-phase),	15
Convective coordinates,	129-132
•	
Convective derivatives,	129-132
Coordinates (Convective),	129-132
Covariance,	406-411, 423-426
Creeping flow,	46
D	
Density propagation equation,	138
Density propagation model,	378-379
Derivatives (Convective),	129-132
Derivatives (Time average of),	78-82
Diffusion flux,	90
Dilatation,	140
Discontinuities (Shock),	110-112
Dispersed flows,	5-7
Displacement velocity,	80
Distorted-fluid-particle regime,	323-325, 361
Distribution parameter,	257, 328, 387-395, 403, 408, 412-418, 425
Distribution parameter (for a flux),	407, 424
Distribution parameter (for enthalpy flux),	426
Distribution parameter (for k -phase enthalp	
- '	• //
Distribution parameter (for k-phase momen	· · · · · · · · · · · · · · · · · · ·
Distribution parameter (Mixture-momentum	,,
Drag force in multiparticle system,	308-329
Drag force acting on a spherical particle in a ver	-
Drag force (Interfacial),	189-191
Drift-flux model,	62, 345-379
Drift-flux model constitutive laws,	345-372
Drift-flux model field equations,	103-108, 346-354
Drift-flux model formulation,	372-379
Drift velocity,	88, 136-137, 372
Е	
Energy (Conservation of in single-phase flo	
Enthalpy equation (Single-phase flow),	18
Entropy inequality (Interfacial),	34-35
Entropy inequality (Single-phase flow),	18-20

Eulerian averaging,	58-61
Eulerian statistical average,	119-120
External boundary condition,	43
Extra deformation tensor (Interfacial),	179
F	
Field equations,	12
Field equations (Diffusion model),	103-108, 346-354
Field equations (Two-fluid model),	98-103, 156-169
Field equations (Two-phase based on time average),	55-128
Fields (Kinematics of averaged),	129-141
Fluctuating component,	78
Flux (Diffusion),	90
Flux (Volumetric),	87, 135-136
Fundamental identity,	89-92
G	
Green's theorem,	14
Green's theorem (Surface),	28
often s medicin (surface),	20
н	
Heat flux (Interfacial),	191-192
Homogeneous flow model,	376-378
I	
Identity (Fundamental),	89-91
Instant (Local formulation),	11-46
Interface (Quasi-stationary),	108-110
Interfacial area transport equation,	10, 195, 217-299
Interfacial area transport equation (One-group),	227-228, 257-276
Interfacial area transport equation (Two-group),	228-242, 246-248, 276-299
Interfacial boundary condition,	13, 32-38
Interfacial conditions,	12
Interfacial drag force,	190-191
Interfacial energy balance,	32
Interfacial energy source,	196-197
Interfacial energy transfer,	149-154
Interfacial entropy inequality,	34-36
Interfacial extra deformation tensor,	179
Interfacial heat flux,	191-192
Interfacial mass balance,	31
Interfacial mass transfer,	143-144, 188-190
Interfacial momentum balance,	32
Interfacial momentum source,	192-195
Interfacial momentum transfer,	145-149

Interfacial shear term, Interfacial structure, Interfacial transfer condition, Interfacial transport, Internal energy equation (Single-phase flow),	428-430 3 95 143-145 18
J	
Jump conditions, Jump conditions (Macroscopic),	13, 24-32 110-113
K	
k-ε model, Kelvin-Helmholtz instability, Kinematic shock wave, Kinematic wave, Kinematics of averaged fields,	341-343 48-52, 313 138-140 136-138 129-141
L	
Lagrangian averaging, Leibnitz rule, Lift force, Local instant formulation,	58-61 14 331-335 11-46
M	
Mass weighted mean values, Material derivative (Transformation on), Mean values (Mass weighted), Mean values (Weighted), Mechanical energy equation (Single-phase flow), Mixed flows, Mixture properties, Mixture viscosity, Momentum equation (Single-phase), Momentum source (Interfacial), Motion (Equation of in single-phase flow),	75-76 17 75-76 73-77 17 4-6 82-86 303, 316-320, 367, 376, 396 15 192-195
N	
Newton's regime, Normal vector, Number transport equation, O	315, 320-323 80 219-220, 229-230
One-dimensional drift-flux model, One-dimensional two-fluid model,	381-418 419-430

	102
One-equation model,	339-341
P	
Phase average, Phase change boundary condition, Propagation (Density equation), Propagation (Density model), Propagation (Void equation),	75 37-38 138 378-379 136-138
R	
Rayleigh-Taylor instability, Reynolds transport theorem,	52-53 14
S	
Scaling parameters, Scaling parameters (Drift-flux model), Scaling parameters (Two-fluid model), Second law of thermodynamics (Single-phase systems), Separated flows, Shock (Kinematic wave), Shock discontinuities, Similarity groups, Single-phase flow conservation equations, Slip (No condition), Slug-flow regime, Source and sink terms in one-group interfacial area transport equation, Source and sink terms in two-group interfacial area transport equation, State (Equation of), Stationary (Quasi interface), Statistical averaging, Streamline, Structure (Interfacial), Surface area concentration,	
T	100-105, 152-155
Thermal boundary condition, Three-dimensional model based on time-averaged, Time average, Time average (Three-dimensional model based on), Time average (Two-phase field equations based on), Time average of derivatives, Time averaged balance equation, Time averaging, Time fraction (Local), Transfer condition (Interfacial),	36 129-216, 345-379 73-77 129-216, 345-379 55-128 78-82 93-117 64-65 72-73 95

Transitional flow, Transport (Interfacial), Transport theorem, Transport theorem (Surface), Turbulence in multiparticle system, Turbulent dispersion force, Two-equation model, Two-fluid model, Two-fluid model (Modified),	5-7 143-154 14 28 336-343 336 341-343 62, 155-216 245-257
Two-fluid model constitutive laws, Two-fluid model field equations,	169-197 98-103, 156-169
Two-fluid model formulation, Two-group void fraction transport equation,	198-205 230-234, 246
V	
Velocity (Center of mass), Velocity (Diffusion), Velocity (Displacement), Velocity (Drift), Velocity field, Virtual mass force, Viscous regime, Void fraction (Local), Void propagation equation, Volume transport equation, Volumetric averaging, Volumetric flux,	86 87 80 136-137, 372 86-89 256, 302-308 310-311, 315-320, 322, 330, 360 72-73 136-138 220-222 62 87, 135-136
W	
Wall lift force, Wave (Kinematic), Weighted mean values,	302, 335-336 136-138 73-77
Z Zero-equation model,	337-339
1	