### THE PROBLEM OF DETERMINING AGE FROM TWEETS

- ▶ Different roles in the society determine the language use ¹
- ► Age are shaped depending on the societal context <sup>2</sup>
- ► On twitter depending of the context users may emphasize specific aspects which leads to linguistic variation <sup>3</sup>

<sup>1 (</sup>Eckert, 2008)

<sup>&</sup>lt;sup>2</sup>(Bucholtz and Hall, 2005

<sup>3 (</sup>Nguyen, 2014)

# The problem of determining Age from Tweets

- ▶ Different roles in the society determine the language use <sup>1</sup>
- Age are shaped depending on the societal context <sup>2</sup>
- ► On twitter depending of the context users may emphasize specific aspects which leads to linguistic variation <sup>3</sup>

<sup>1(</sup>Eckert, 2008)

<sup>&</sup>lt;sup>2</sup>(Bucholtz and Hall, 2005

<sup>3 (</sup>Nguyen, 2014)

### THE PROBLEM OF DETERMINING AGE FROM TWEETS

- ▶ Different roles in the society determine the language use <sup>1</sup>
- ► Age are shaped depending on the societal context <sup>2</sup>
- ► On twitter depending of the context users may emphasize specific aspects which leads to linguistic variation <sup>3</sup>

<sup>1(</sup>Eckert, 2008)

<sup>&</sup>lt;sup>2</sup>(Bucholtz and Hall, 2005)

<sup>&</sup>lt;sup>3</sup>(Nguyen,2014)

# The problem of determining Age from Tweets

- ▶ Different roles in the society determine the language use <sup>1</sup>
- ► Age are shaped depending on the societal context <sup>2</sup>
- ► On twitter depending of the context users may emphasize specific aspects which leads to linguistic variation <sup>3</sup>

<sup>1(</sup>Eckert, 2008)

<sup>&</sup>lt;sup>2</sup>(Bucholtz and Hall, 2005)

<sup>&</sup>lt;sup>3</sup>(Nguyen,2014)

#### Three Approaches were tested:

- ► A quantification of the tweet elements (CtTweets)
- ► A Convolutional neural network trained from scracth (CNN)
- ► A Transfer learning model using the BERT model (BERT)

### Three Approaches were tested:

- ► A quantification of the tweet elements (CtTweets)
- A Convolutional neural network trained from scracth (CNN)
- ► A Transfer learning model using the BERT model (BERT)

 $F(x) = [ \ \ \text{#hashtags}, \ \text{#words}, \ \text{#users}, \ \text{#upper letters}, \ \text{# low} \\ \text{letters}, \ \text{# symbols}, \text{bool}(\text{url}), \ \text{tweet length}, \ \text{length short word}, \\ \text{length large word} ]$ 

#### Three Approaches were tested:

- ► A quantification of the tweet elements (CtTweets)
- ► A Convolutional neural network trained from scracth (CNN)
- ► A Transfer learning model using the BERT model (BERT)

### Three Approaches were tested:

- ► A quantification of the tweet elements (CtTweets)
- ► A Convolutional neural network trained from scracth (CNN)
- ► A Transfer learning model using the BERT model (BERT)

embedding,normalization,convolutional layer, max pooling,average,dense layer with softmax

#### Three Approaches were tested:

- ► A quantification of the tweet elements (CtTweets)
- ► A Convolutional neural network trained from scracth (CNN)
- ► A Transfer learning model using the BERT model (BERT)

# Three Approaches were tested:

- ► A quantification of the tweet elements (CtTweets)
- A Convolutional neural network trained from scracth (CNN)
- ► A Transfer learning model using the BERT model (BERT)

Using the english vocab weights in a BERT model

### THE BERT MODEL



#### EXPERIMENTS

- ▶ The data is separated in Train (65%), Validation(10.5%) and Test (24.5%)
- ► The data is clean, hashtags are word separated, symbols removed, lower case is used, stop words and URLs eliminated, words are lemmatized (18 min)
- ► A data augmentation process was performed in the CtTweets model

#### EXPERIMENTS

- ▶ The data is separated in Train (65%), Validation(10.5%) and Test (24.5%)
- ► The data is clean, hashtags are word separated, symbols removed, lower case is used, stop words and URLs eliminated, words are lemmatized (18 min)
- A data augmentation process was performed in the CtTweets model

#### EXPERIMENTS

- ▶ The data is separated in Train (65%), Validation(10.5%) and Test (24.5%)
- ► The data is clean, hashtags are word separated, symbols removed, lower case is used, stop words and URLs eliminated, words are lemmatized (18 min)
- ► A data augmentation process was performed in the CtTweets model

# Results

|                          | Multiclass Problem |          | Binary Problem |          |
|--------------------------|--------------------|----------|----------------|----------|
|                          | Accuracy           | F1-Score | Accuracy       | F1-Score |
| CtTweet (3.7seg)         | 0.380              | 0.215    | 0.695          | 0.691    |
| CtTweet (Data-augmented) | 0.351              | 0.251    | 0.695          | 0.690    |
| CNN (7.3seg)             | 0.371              | 0.284    | 0.700          | 0.71     |
| BERT (31min)             | 0.420              | 0.243    | 0.765          | 0.798    |

#### Conclusions

- ► Results using a single tweet are still weak. The binary group is promising
- ► Future improvements include translating emojis to words
- ► Training a model per group could improve the results
- Build a supervised vocabulary would improve current approaches also as more variables

Thanks...