Savoir-faire

1 Démontrer que deux droites sont parallèles

Énoncé

En utilisant les informations portées sur la figure, démontrer que les droites (xy) et (zt) sont parallèles.

Solution

Les angles yAv et uBz sont des angles alternes-internes définis par les droites (xy) et (zt), et la sécante (uv).

Les angles \widehat{yAv} et \widehat{uBz} sont de même mesure : 42°.

• Or, si deux droites coupées par une sécante déterminent deux angles alternes-internes de même mesure, alors ces droites sont parallèles. Donc les deux droites (xy) et (zt) sont parallèles.

de la figure :

yAv et uBz sont non adjacement dans la bande formée par les deux droites (xy) et (zt et de part et d'autre de la

On énonce la propriété utilisée.

J'applique

10 Démontrer que les droites (xy) et (uw) de la figure ci-dessous sont parallèles.

Démontrer que les droites (st) et de la figure ci-dessous sont parallèles.

sécante (uv).

Je m'entraîne → Exercices 48 à 51 page 215.

2 Calculer la mesure d'un angle dans un triangle rectangle

Énoncé

Calculer la mesure de l'angle AMR du triangle AMR.

Solution

Le triangle MAR est rectangle en A : $\widehat{MAR} = 90^{\circ}$. Si un triangle est rectangle, alors ses angles aigus sont complémentaires.

L'angle AMR mesure 67°.

On résout l'équation obtenen sachant que MRA = 23°

J'applique

12 1. Le triangle ABC est rectangle en A et ÂCB mesure 67°. Quelle est la mesure de ÂSC 2. Le triangle HIK est rectangle en K et ĤIK mesure 14°. Quelle est la mesure de KHI?

Je m'entraîne → Exercices 55 et 56 page 216.

3 Calculer la mesure d'un angle dans un triangle quelconque

Calculer la mesure de l'angle ÎTR du triangle RTI.

Solution

La somme des mesures des angles d'un triangle est égale à 180°.

$$\widehat{IRT} + \widehat{RIT} + \widehat{ITR} = 180^{\circ}$$
.
d'où $62^{\circ} + 22^{\circ} + \widehat{ITR} = 180^{\circ}$
 $84^{\circ} + \widehat{ITR} = 180^{\circ}$
 $\widehat{ITR} = 180^{\circ} - 84^{\circ}$
 $\widehat{ITR} = 96^{\circ}$

L'angle ÎTR mesure 96°.

On énonce la propriété utilisée.

On résout l'équation obtenue en remplacant ÎRT et RIT par leurs mesures :

ÎRT = 62° et RÎT = 22°.

J'applique

13 Calculer la mesure de l'angle ABC des triangles ci-dessous.

Je m'entraîne → Exercices 53 et 54 page 216.

Calculer la mesure d'un angle dans un triangle isocèle

Énoncé

Calculer les mesures des angles $\widehat{\text{SIB}}$ et $\widehat{\text{ISB}}$ du triangle SBI.

Solution

La somme des mesures des angles d'un triangle est égale à 180°.

$$\widehat{SIB} + \widehat{ISB} + \widehat{SBI} = 180^{\circ}.$$

 $\widehat{SIB} + \widehat{ISB} = 180^{\circ} - \widehat{SBI}$

$$\widehat{SIB} + \widehat{ISB} = 180^{\circ} - 53^{\circ}$$

$$SIB + ISB = 127^{\circ}$$

Le triangle SBI est isocèle en B.

Si un triangle est isocèle, alors ses angles

à la base sont de même mesure.

$$\widehat{SIB} = \widehat{ISB} = 127 : 2 = 63,5^{\circ}$$

Chacun des angles SIB et ISB mesure 63,5°.

J'applique

14 1. Calculer les mesures des angles à la base d'un triangle GHI isocèle en H tel que : GHI = 54°.

2. Calculer la mesure de l'angle MKL d'un triangle KLM isocèle en K tel que : $\widehat{\text{KML}} = 29^{\circ}$.

On énonce la propriété utilisée

On résout l'équation obtenue

en remplacant SBI par sa mesure :

SBI = 53°

On énonce la propriété utilisée.

Je m'entraîne → Exercices 67 à 60 page 216.