離散最適化基礎論 第 11 回 幾何ハイパーグラフ (3): ε ネット定理の証明

岡本 吉央 okamotoy@uec.ac.jp

電気通信大学

2018年1月19日

最終更新: 2018年1月20日 14:57

主題

離散最適化のトピックの1つとして<mark>幾何的被覆問題</mark>を取り上げ、 その<mark>数理</mark>的側面と計算的側面の双方を意識して講義する

なぜ講義で取り扱う?

- ▶ 「離散最適化」と「計算幾何学」の接点として重要な役割を 果たしているから
- ▶ 様々なアルゴリズム設計技法・解析技法を紹介できるから
- ▶ 応用が多いから

スケジュール 前半

1 幾何的被覆問題とは?	(10/6)
★ 国内出張のため休み	(10/13)
2 最小包囲円問題 (1):基本的な性質	(10/20)
③ 最小包囲円問題 (2): 乱択アルゴリズム	(10/27)
★ 文化の日のため休み	(11/3)
4 クラスタリング (1): k-センター	(11/10)
5 幾何ハイパーグラフ (1): VC 次元	(11/17)
★ 調布祭 のため 休み	(11/24)

6 幾何ハイパーグラフ $(2): \varepsilon$ ネット

(12/1)

スケジュール 後半 (予定)

7 幾何的被覆問題 (1):線形計画法の利用	(12/8)
` '	(12/0)
8 幾何的被覆問題 (2):シフト法	(12/15)
9 幾何的被覆問題 (3):局所探索法 (準備)	(12/22)
🔟 幾何的被覆問題 (4):局所探索法	(1/5)
⋆ センター試験準備 のため 休み	(1/12)
💶 幾何ハイパーグラフ (3): $arepsilon$ ネット定理の証明	(1/19)
ldell 幾何アレンジメント (1) :合併複雑度と $arepsilon$ ネット	(1/26)
📧 幾何アレンジメント (2):合併複雑度の例	(2/2)
14 最近のトピック	(2/9)
15 期末試験	(2/16?)

注意:予定の変更もありうる

① ε ネット定理:復習

② ε ネット定理の証明:第1段階

③ ε ネット定理の証明:第2段階

4 今日のまとめ

ハイパーグラフ H = (V, E), 実数 $\varepsilon \in [0, 1]$

定義: ハイパーグラフに対する ε ネット (ε -net)

H に対する ε ネットとは、次を満たす集合 $N \subseteq V$ のこと $|e| \ge \varepsilon \cdot |V|$ を満たす任意の $e \in E$ に対して、 $N \cap e \ne \emptyset$

$$|V|=$$
 204, $arepsilon=1/8$ とすると, $arepsilon\cdot|V|=$ 25.5

ハイパーグラフ H = (V, E), 実数 $\varepsilon \in [0, 1]$

定義: $\Lambda \Lambda$ アプラフに対する ε ネット $(\varepsilon$ -net)

H に対する ε ネットとは、次を満たす集合 $N \subseteq V$ のこと $|e| \ge \varepsilon \cdot |V|$ を満たす任意の $e \in E$ に対して、 $N \cap e \ne \emptyset$

$$|V|=$$
 204, $arepsilon=1/8$ とすると, $arepsilon\cdot|V|=$ 25.5

ハイパーグラフ H = (V, E), 実数 $\varepsilon \in [0, 1]$

定義: ハイパーグラフに対する ε ネット (ε -net)

H に対する ε ネットとは、次を満たす集合 $N \subseteq V$ のこと $|e| \ge \varepsilon \cdot |V|$ を満たす任意の $e \in E$ に対して、 $N \cap e \ne \emptyset$

$$|V|=204$$
, $\varepsilon=1/8$ とすると, $\varepsilon\cdot |V|=25.5$

ハイパーグラフ H = (V, E), 実数 $\varepsilon \in [0, 1]$

定義: $\Lambda \Lambda$ アプラフに対する ε ネット $(\varepsilon$ -net)

H に対する ε ネットとは,次を満たす集合 $N \subseteq V$ のこと $|e| \ge \varepsilon \cdot |V|$ を満たす任意の $e \in E$ に対して, $N \cap e \ne \emptyset$

$$|V|=$$
 204, $arepsilon=1/8$ とすると, $arepsilon\cdot|V|=$ 25.5

ハイパーグラフ H = (V, E), 実数 $\varepsilon \in [0, 1]$

定義: $\Lambda \Lambda$ アプラフに対する ε ネット $(\varepsilon$ -net)

H に対する ε ネットとは、次を満たす集合 $N \subseteq V$ のこと $|e| \ge \varepsilon \cdot |V|$ を満たす任意の $e \in E$ に対して、 $N \cap e \ne \emptyset$

$$|V|=$$
 204, $\varepsilon=1/8$ とすると, $\varepsilon\cdot |V|=$ 25.5

ハイパーグラフH = (V, E), 実数 $\varepsilon \in [0, 1]$

問題

Hの ε ネットとして、どれくらい小さいものが作れるか?

- 小さければ小さいほどよい
- ▶ 小ささは *ε* に依存する?

問題に対する解答

ハイパーグラフ H = (V, E), 実数 $\varepsilon \in (0, 1]$

定理:小さな ε ネットの存在性

— 第6回講義で証明済

要素数 $O\left(\frac{1}{\varepsilon}\log|E|\right)$ の ε ネットが存在する

定理: ε ネット定理

(Haussler, Welzl '87)

要素数 $O\left(\frac{d}{\varepsilon}\log\frac{d}{\varepsilon}\right)$ の ε ネットが存在する

ただし、d = vc-dim(H)

:: VC 次元が定数 $\Rightarrow \varepsilon$ ネットの最小要素数は |V| や |E| に依存しない!

注意

これらは多項式時間で構成できる (O(|V||E|)時間)

ハイパーグラフとその射影

ハイパーグラフ H = (V, E), 部分集合 $X \subseteq V$

定義:ハイパーグラフの射影 (projection)

 $H \cap X$ の上への射影とは、ハイパーグラフ $H|_X = (X, E|_X)$ で、

$$E|_X = \{e \cap X \mid e \in E\}$$

 $V = \{v_1, v_2, v_3, v_4\}, E = \{e_1, e_2, e_3, e_4\}, X = \{v_1, v_4, v_5\},$ $e_1 = \{v_1, v_2, v_3\}, e_2 = \{v_1, v_4\}, e_3 = \{v_2, v_3\}, e_4 = \{v_3, v_4, v_5\}$ のとき

 $H|_{\{v_1,v_4,v_5\}}$

Sauer の補題とその系

ハイパーグラフ
$$H = (V, E)$$

Sauer の補題

n = |V|, d = vc-dim(H) とするとき,

$$|E| \le \sum_{i=0}^d \binom{n}{i} \le \left(\frac{e \, n}{d}\right)^d$$

Sauer の補題:系

 $X \subseteq V \ge \bigcup T$, $m = |X| \ge J$

$$|E|_X| \le \sum_{i=0}^d {m \choose i} \le \left(\frac{\operatorname{e} m}{d}\right)^d$$

1 ε ネット定理:復習

 2ε ネット定理の証明:第1段階

③ ε ネット定理の証明:第2段階

4 今日のまとめ

ε ネットの証明:何を証明するか?

ハイパーグラフ H = (V, E), 実数 $\varepsilon \in (0, 1]$

今から証明すること

要素数
$$O\left(\frac{d}{\varepsilon}\log\frac{1}{\varepsilon}\right)$$
 の ε ネットが存在する ただし、 $d=\mathrm{vc\text{-}dim}(H)$

これは次の論文に出ている

▶ Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, Manfred K. Warmuth: Learnability and the Vapnik-Chervonenkis dimension. J. ACM 36(4): 929-965 (1989)

ε ネット定理の証明:アルゴリズム

構成法

次の乱択アルゴリズムを考える

- (1) $|e| < \varepsilon \cdot |V|$ を満たす辺 e を E から除去する (残った辺の集合を E' とする)
- (2) $s = \left\lceil \frac{Cd}{\varepsilon} \ln \frac{2}{\varepsilon} \right\rceil$ とする (C は大きな定数)
- (3) V の各要素を一様復元抽出により、s 個選び、多重集合 N を作る
- (4) Nを出力

目標

ε ネット定理の証明:アルゴリズム (続)

構成法

次の乱択アルゴリズムを考える

- (1) $|e| < \varepsilon \cdot |V|$ を満たす辺 e を E から除去する (残った辺の集合を E' とする)
- (2) $s = \left\lceil \frac{Cd}{\varepsilon} \ln \frac{2}{\varepsilon} \right\rceil$ とする (C は大きな定数)
- (3) V の各要素を一様復元抽出により、s 個選び、多重集合 N を作る
- (4) N を出力

ステップ (3) の詳細

- ▶ V の要素を一様分布に従って選んで x_i とする
- ▶ $N = \{x_1, x_2, ..., x_s\}$ とする

(N は多重集合)

ε ネット定理の証明:考えるべき事象

「N が ε ネットではない」という事象 \mathcal{E}_0 を考える

 \mathcal{E}_0 : ある $e \in E'$ に対して, $N \cap e = \emptyset$

目標(改)

$$\Pr(\mathcal{E}_0) \leq \frac{1}{2}$$

この確率 $\Pr(\mathcal{E}_0)$ を次の思考実験を通して考える

ε ネット定理の証明:第1段階 (1)

- ▶ N と同じ方法で、要素数 s の多重集合 M を作成する
- ▶ 次の事象 E₁ を考える

$$\mathcal{E}_1$$
: ある $e\in E'$ に対して, $N\cap e=\emptyset$ かつ $|M\cap e|\geq rac{arepsilon}{2}s$

ightharpoonup このとき, $\Pr(\mathcal{E}_1) \leq \Pr(\mathcal{E}_0)$ $(\because \mathcal{E}_1 ext{ が生起するとき,必ず } \mathcal{E}_0 ext{ が生起する})$

証明すること:第1段階

$$\Pr(\mathcal{E}_0) \leq 2\Pr(\mathcal{E}_1)$$

ちなみに,第2段階は $\Pr(\mathcal{E}_1) \leq \frac{1}{4}$

ε ネット定理の証明:第1段階 (2)

▶ まず, 計算

$$\Pr(\mathcal{E}_1 \mid \mathcal{E}_0) = \frac{\Pr(\mathcal{E}_1 \text{ tho } \mathcal{E}_0)}{\Pr(\mathcal{E}_0)} = \frac{\Pr(\mathcal{E}_1)}{\Pr(\mathcal{E}_0)}$$

▶ つまり,

証明すること:第1段階(改)

$$\Pr(\mathcal{E}_1 \mid \mathcal{E}_0) \geq \frac{1}{2}$$

- ▶ \mathcal{E}_0 が生起すると仮定すると、ある $e \in E'$ が存在して $N \cap e = \emptyset$
- ▶ この e に対して,

$$\Pr(\mathcal{E}_1 \mid \mathcal{E}_0) \geq \Pr(|M \cap e| \geq \frac{\varepsilon}{2}s)$$

= $1 - \Pr(|M \cap e| < \frac{\varepsilon}{2}s)$

ε ネット定理の証明:第1段階 (3)

ightharpoonup ここで, $|M\cap e|$ は二項分布 $B(s, \frac{|e|}{|V|})$ に従うので,

$$\begin{aligned} & \mathsf{E}[|M \cap e|] &= s \frac{|e|}{|V|} \\ & \mathsf{V}[|M \cap e|] &= s \frac{|e|}{|V|} \left(1 - \frac{|e|}{|V|}\right) \le s \frac{|e|}{|V|} = \mathsf{E}[|M \cap e|] \end{aligned}$$

二項分布 B(n,p) に従う確率変数 X とは?

確率pで表が出る硬貨をn回独立に投げたとき、表が出る総数

▶ 性質:E[X] = pn, V[X] = p(1-p)n

ε ネット定理の証明:第1段階 (4)

▶ したがって、チェビシェフの不等式より

$$\begin{split} \Pr\left(|M\cap e| < \frac{\varepsilon}{2}s\right) & \leq & \Pr\left(|M\cap e| < \frac{s}{2}\frac{|e|}{|V|}\right) \\ & \leq & \Pr\left(\left||M\cap e| - s\frac{|e|}{|V|}\right| \geq \frac{s}{2}\frac{|e|}{|V|}\right) \\ & \leq & \frac{V[|M\cap e|]}{\left(\frac{s|e|}{2|V|}\right)^2} \qquad (\texttt{\textit{F}} \texttt{\textit{T}} \, \texttt{\textit{E}} \, \texttt{\textit{Y}} \texttt{\textit{T}} \, \texttt{\textit{T}}) \\ & \leq & \frac{s\frac{|e|}{|V|}}{\left(\frac{s|e|}{2|V|}\right)^2} = \frac{4|V|}{s|e|} \leq \frac{4\varepsilon}{s} \end{split}$$

チェビシェフの不等式

確率変数 X,実数 t>0 に対して $\Pr(|X-\mathsf{E}[X]|\geq t)\leq rac{\mathsf{V}[X]}{t^2}$

ε ネット定理の証明:第1段階 (5)

したがって、C≥16とすると、

$$\begin{split} \Pr(\mathcal{E}_1 \mid \mathcal{E}_0) & \geq 1 - \Pr\left(|M \cap e| < \frac{\varepsilon}{2}s\right) \\ & \geq 1 - \frac{4\varepsilon}{s} \\ & \geq 1 - \frac{4}{C} \frac{\varepsilon^2}{\ln \frac{2}{\varepsilon}} \frac{1}{d} \\ & \geq 1 - \frac{8}{C} \geq 1 - \frac{8}{16} = \frac{1}{2} \end{split}$$

注

- $lacksymbol{b}$ $d\geq 1$ なので、 $rac{1}{d}\leq 1$
- ト $\varepsilon \in (0,1]$ なので、 $0 < \frac{\varepsilon^2}{\ln \frac{2}{\varepsilon}} < 2$

ε ネット定理:復習

② ε ネット定理の証明:第1段階

3 ε ネット定理の証明:第2段階

4 今日のまとめ

ε ネット定理の証明:第2段階 (1)

- ▶ N と同じ方法で、要素数 s の多重集合 M を作成する
- ▶ 次の事象 E₁ を考える

$$\mathcal{E}_1$$
: ある $e\in E'$ に対して, $N\cap e=\emptyset$ かつ $|M\cap e|\geq rac{arepsilon}{2}s$

ightharpoonup このとき, $\Pr(\mathcal{E}_1) \leq \Pr(\mathcal{E}_0)$ $(\because \mathcal{E}_1 \ infty$ 生起するとき,必ず $\mathcal{E}_0 \ infty$ 生起する)

証明すること:第2段階

$$\Pr(\mathcal{E}_1) \leq \frac{1}{4}$$

第1段階 $Pr(\mathcal{E}_0) \leq 2Pr(\mathcal{E}_1)$ と合わせて、次が得られる

$$\Pr(\mathcal{E}_0) \le 2\Pr(\mathcal{E}_1) \le 2 \cdot \frac{1}{4} = \frac{1}{2}$$

これで証明が終わる

ε ネット定理の証明:第2段階 (2)

Nと M を次の方法で作ったと見なす

- ▶ V の要素を一様分布に従って選んで x_i とする
- $ightharpoonup A = \{x_1, x_2, \dots, x_{2s}\}$ とする

(A は多重集合)

- ▶ *A* から非復元抽出により,一様に *s* 個の要素を選び,*N* とする
- ▶ Aの要素の中で N に選ばれなかったもの全体を、M とする
- ▶ *A* の作り方は |*V*|^{2s} 通り
- ▶ A から N を作る方法は、 $\binom{2s}{s}$ 通り

A が作られたときに, \mathcal{E}_1 が生起する確率 $\mathsf{Pr}(\mathcal{E}_1 \mid A)$ を考える

ε ネット定理の証明:第2段階 (3)

A が作られたときに, \mathcal{E}_1 が生起する確率 $\Pr(\mathcal{E}_1 \mid A)$ を考える

- ▶ 任意の e ∈ E' を考える
- ▶ $|A \cap e| < \frac{\varepsilon}{2}s$ であるならば,

$$\Pr\left(N \cap e = \emptyset, |M \cap e| \ge \frac{\varepsilon}{2}s \mid A\right) = 0$$

▶ 一方, $|A \cap e| \ge \frac{\varepsilon}{2}s$ であるならば,

$$\Pr\left(N \cap e = \emptyset, |M \cap e| \ge \frac{\varepsilon}{2}s \mid A\right) \le \Pr(N \cap e = \emptyset \mid A)$$

ト このとき、 $Pr(N \cap e = \emptyset \mid A)$ は 2s 個の要素を持つ A から s 個選んで N を作るとき、 $A \cap e$ の要素をどれも選ばない確率

ε ネット定理の証明:第2段階 (3)

▶ つまり, $|A \cap e| \ge \frac{\varepsilon}{2} s$ であるならば,

$$\Pr(N \cap e = \emptyset \mid A) = \frac{\binom{2s - |A \cap e|}{s}}{\binom{2s}{s}}$$

$$= \frac{(2s - |A \cap e|)(2s - |A \cap e| - 1) \cdot \dots \cdot (s - |A \cap e| + 1)}{2s(2s - 1) \cdot \dots \cdot (s + 1)}$$

$$= \frac{s(s - 1) \cdot \dots \cdot (s - |A \cap e| + 1)}{2s(2s - 1) \cdot \dots \cdot (2s - |A \cap e| + 1)}$$

$$\leq \left(\frac{1}{2}\right)^{|A \cap e|} \leq \left(\frac{1}{2}\right)^{es/2}$$

- ▶ 特に、Pr(N∩e=∅|A)はAではなく、A∩eのみに依存
- ▶ 取り得る A ∩ e の種類はいくつか? → VC 次元が関係する

ε ネット定理の証明:第2段階 (4)

- ▶ 与えられるハイパーグラフは H = (V, E)
- ▶ 考えているハイパーグラフは H' = (V, E')

$$E' = \{e \in E \mid |e| \ge \varepsilon \cdot |V|\}$$

▶ それの射影 H'|_A を考える (|A| = 2s)

$$H'|_A$$
 の辺集合 = $\{A \cap e \mid e \in E'\}$

▶ 部分ハイパーグラフを作ることと、射影により、 VC 次元は増えないので (第5回の演習問題)、Sauerの補題より、

$$H'|_A$$
 の辺の総数 $\leq \sum_{i=0}^d {2s \choose i} \leq \left(\frac{e \cdot 2s}{d}\right)^d$

ε ネット定理の証明:第2段階 (5)

▶ したがって、合併上界を使うと、次が得られる

$$\Pr(\mathcal{E}_1 \mid A) \le \left(\frac{e \cdot 2s}{d}\right)^d \Pr(N \cap e = \emptyset \mid A)$$

 $\le \left(\frac{e \cdot 2s}{d}\right)^d \left(\frac{1}{2}\right)^{\varepsilon s/2}$

▶ したがって,

$$\Pr(\mathcal{E}_1) = \sum_A \Pr(\mathcal{E}_1 \mid A) \Pr(A)$$
 $= \Pr(\mathcal{E}_1 \mid A) \quad (A は任意に固定)$
 $\leq \left(\frac{e \cdot 2s}{d}\right)^d \left(\frac{1}{2}\right)^{\varepsilon s/2}$

ε ネット定理の証明:第2段階 (6)

▶ 続き

これで証明が終わった

ε ネット定理:復習

② ε ネット定理の証明:第1段階

③ ε ネット定理の証明:第2段階

4 今日のまとめ

今日のまとめ

今日の内容

- ε ネット定理の証明
 - ▶ 乱択アルゴリズムによる

より詳細な議論を行うと以下の定理が証明できる

ε ネット定理 (詳細版)

講義で紹介した乱択アルゴリズムにおいて、

$$s \geq \max\left\{\frac{4}{\varepsilon}\log_2\frac{4}{p}, \frac{8d}{\varepsilon}\log_2\frac{16}{\varepsilon}\right\}$$

とすると、確率 1-p以上で N は ε ネットになる

(0

残った時間の使い方

- ▶ 演習問題をやる
 - ▶ 相談推奨 (ひとりでやらない)
- ▶ 質問をする
 - ▶ 教員は巡回
- ▶ 退室時, 小さな紙に感想など書いて提出する ← 重要
 - ▶ 内容は何でも OK
 - ▶ 匿名で OK

 \odot ネット定理:復習

2 ε ネット定理の証明:第1段階

③ ε ネット定理の証明:第2段階

4 今日のまとめ