Introduction

Computer Science

Isaac Griffith

CS 4458 and CS 5558 Department of Informatics and Computer Science Idaho State University

Introduction

What we will do today

- Course Introductions
- Syllabus Review
- Introduce the Course

Who Am I?

Isaac Griffith
Assistant Professor of Computer Science

Education at Montana State University:

- PhD, MS, BS in Computer Science
- Graduate Certificate in Applied Statistics
- BA in Philosophy at Montana State University

Research Interests:

- Empirical Software Engineering
- Augmented and Mixed Reality
- Software Quality
- Software Architecture

Student Introductions

Round-Robin Style

- Your (preferred) Name
- Your year in school
- Your major
- Something interesting about you

Student Participation Expectations

- Your success in this course relies heavily on your own participation in class.
- You are expected to bring a laptop or other computation device to class each day.
- Each class session will have 1-2 participation activities in which students will work either in groups or individually to solve problems

Academic Integrity

• ISU Academic Integrity and Dishonesty Policy can be found at:

```
http://coursecat.isu.edu/undergraduate/academic_integrity_and_
dishonesty_policy/
```

- Academic Dishonesty is broken down into two groups:
 - Cheating
- Instructor-Level Penalties:
 - Written Warning
 - Re-submission of work
 - Grade reduction
 - Fail the course
- My Policy
 - First-time: Grade Reduction (i.e., fail the associated graded item)
 - Second-time: Fail the Course

- University-Level Penalties:
 - Suspension
 - Expulsion

How We Will Spend Class Time

Each Session will contain:

- Lecture covering 2 or 3 major topics
- Individual/Group Active Learning exercises related to a major concept.

How to Study and Prepare for Class

- Before each Lecture
 - Complete the Readings
 - Complete the Quiz
 - Review Lecture Notes
 - Write down any questions you have
- Come to lecture
- During lecture
 - Listen
 - Participate by asking questions
 - Participate in in-class activities
 - Take notes

- After Lecture
 - Review notes
 - Stop by my Office Hours or make an Appointment
 - Complete the assignments

Computer Graphics: The study of creating, manipulating, and using visual images in the computer

Computer Graphics: What you need to show other people your dreams

- Entertainment
 - Film production
 - Film effects
 - Games
- Science and Engineering
 - Computer-aided design
 - Visualization (scientific, information)
- Virtual Prototyping
- Cultural Heritage
- Training & Simulation
- Graphic Arts, Fine Art

- Entertainment
 - Film production
 - Film effects
 - Games

The Hobbit: An Unexpected Journey (New Line Cinema, 2012) – visual effects by Weta Digital

πυΑΚ

- Science and Engineering
 Computer-aided design

 - Visualization (scientific, information)

Blender Sintel Test

Virtual Prototyping

• Graphic Arts, Fine Arts

Think-Pair-Share

Take 2 minutes and think about the following question:

Given the nature of software and the changes that have happened in your lifetime, what can we say about the changes we may see in the future? How do you think we will be building software in the next 5 years?

Pair up with your neighbor and take the next few minutes to discuss your thoughts.

Course Overview

Course Mechanics

You will:

- Explore fundamental ideas
- Utilize mathematics to generate graphics
- Implement key algorithms
- Write awesome programs
- Learn the basics of OpenGL

You will not:

write very big programs

General Topics

- Images, image processing, color science
- Modeling in 2D and 3D
- Rendering 3D scenes
 - Using the GPU and possibly ray tracing
- Geometric transformations
- The graphics pipeline
- Animation

Prerequisites

Programming

- Ability to read, write, and debug small C++ programs (10s of classes)
- Understanding of very basic data structures
- No serious software design will be required

Mathematics

- Vector geometry (dot/cross products, etc.)
- Linear algebra (just simple matrices in 2-4D)
- Basic calculus (simple derivatives)
- Graphics is a good place to pick up some, but not all, of this.

Assignments

Through the assignments you will:

- Go deeper into OpenGL
- Propose and implement an independent project
- Learn more about
 - OpenGL
 - Architecting good-sized interactive Programs
 - Graphics topics of your choosing!

Workload

- 5 Assignments (written + programming)
- 2 Exams
- One open-ended project

Are there any questions?

For Next Time

- Review the Syllabus and Schedule
- Read Chapter 1
- Install OpenGL on your System
- Install CLion (if you don't already have it)

