<u>LAB – 2 : INTERPOLATION / EXTRAPOLATION USING NEWTON'S</u> <u>FORWARD AND BACKWARD DIFFERENCE FORMULA</u>

Let y = f(x) be a function of 'x' in the given interval

х	X_0	\mathcal{X}_1	X_2	X_3	• • •	\mathcal{X}_n
у	\mathcal{Y}_0	\mathcal{Y}_1	y_2	y_3	•••	\mathcal{Y}_n

FORWARD DIFFERENCE TABLE

x	у	Δy	$\Delta^2 y$	$\Delta^3 y$	•••	$\Delta^n y$
x_0	<i>y</i> ₀	$\Delta y_0 = y_1 - y_0$	$\Delta^2 y_0 = \Delta y_1 - \Delta y_0$	$\Delta^3 y_0 = \Delta^2 y_1 - \Delta^2 y_0$		$\Delta^{n} y_{0} = \Delta^{n-1} y_{1} - \Delta^{n-1} y_{0}$
X_1	\mathcal{Y}_1	$\Delta y_1 = y_2 - y_1$	$\Delta^2 y_1 = \Delta y_2 - \Delta y_1$:	•••	
X_2	y_2	$\Delta y_2 = y_3 - y_2$:	$\Delta^{3} y_{n-3} = \Delta^{2} y_{n-2} - \Delta^{2} y_{n-3}$		
X_3	y_3	:	$\Delta^2 y_{n-2} = \Delta y_{n-1} - \Delta y_{n-2}$			
:		$\Delta y_{n-1} = y_n - y_{n-1}$				
\mathcal{X}_n	y_n)				

NEWTON'S FORWARD INTERPOLATION FORMULA

$$y = y_0 + p \Delta y_0 + \frac{p(p-1)}{2!} \Delta^2 y_0 + \frac{p(p-1)(p-2)}{3!} \Delta^3 y_0 + \dots + \frac{p(p-1)(p-2) \dots (p-n+1)}{n!} \Delta^n y_0$$

Where
$$p = \frac{x - x_0}{h}$$
 and $h = x_n - x_{n-1}$

BACKWARD DIFFERENCE TABLE

x	у	∇y	$\nabla^2 y$	$\nabla^3 y$	•••	$\Delta^n y$
X_0	y_0	$\nabla y_1 = y_1 - y_0$	$\nabla^2 y_2 = \nabla y_2 - \nabla y_1$	$\nabla^3 y_3 = \nabla^2 y_3 - \nabla^2 y_2$	•••	$\nabla^n y_n = \nabla^{n-1} y_n - \nabla^{n-1} y_{n-1}$
\mathcal{X}_1	\mathcal{Y}_1	$\nabla y_2 = y_2 - y_1$	$\nabla^2 y_3 = \nabla y_3 - \nabla y_2$::		
x_2	y_2	$\nabla y_3 = y_3 - y_2$:	$\nabla^3 y_n = \nabla^2 y_n - \nabla^2 y_{n-1}$		
X_3	y_3	:	$\nabla^2 y_n = \nabla y_n - \nabla y_{n-1}$			
:	:	$\nabla y_n = y_n - y_{n-1}$)			
\mathcal{X}_n	y_n					

NEWTON'S BACKWARD INTERPOLATION FORMULA

$$y = y_n + p \nabla y_n + \frac{p(p+1)}{2!} \nabla^2 y_n + \frac{p(p+1)(p+2)}{3!} \nabla^3 y_0 + \dots + \frac{p(p+1)(p+2) \cdots (p+n-1)}{n!} \nabla^n y_n$$

Where $p = \frac{x - x_n}{h}$ and $h = x_n - x_{n-1}$

Program 1: Program to find the interpolating polynomial and y(4) using the following data

х	1	2	3	4	5
у	10	26	58	112	194

```
#Newton forward difference formula
from sympy import *
from numpy import *
n=int(input('Enter the number of data points: '))
x=zeros(n)
y=zeros((n,n))
f=[]
for i in range(0,n):
    x[i]=float(input(f'x{i}='))
    y[0][i]=float(input(f'y{i}='))
for j in range(0,n-1):
    for i in range(0, n-1-j):
        y[j+1][i]=y[j][i+1]-y[j][i]
for i in range(0,n):
   print(x[i], end=' ')
    for j in range(0,n-i):
        print('\t\t',y[j][i], end=' ')
    print()
h=x[1]-x[0]
t=Symbol('t')
p=(t-x[0])/h
pterms=1
for k in range (0,n-1):
    pterms=((p-k)/(k+1))*pterms
    f.append(pterms)
rhs=y[0][0]
for j in range (1,n):
    rhs = (rhs + f[j-1] * y[j][0])
print('The interpolating polynomial is:')
display(simplify(rhs))
xi=float(input('Enter value of x at which y should be determined: '))
print(f'y({xi}) = \%0.4f'\%rhs.subs(t,xi))
```

OUTPUT

```
Enter the number of data points: 5
x0=1
y0=10
x1=2
y1=26
x2 = 3
y2=58
x3 = 4
y3 = 112
x4=5
y4=194
1.0
                                                                     6.0
                  10.0
                                   16.0
                                                    16.0
0.0
                  26.0
                                   32.0
2.0
                                                                     6.0
                                                    22.0
3.0
                  58.0
                                   54.0
                                                    28.0
4.0
                  112.0
                                   82.0
5.0
                  194.0
The interpolating polynomial is:
```

$$1.0t^3 + 2.0t^2 + 3.0t + 4.0$$

Enter value of x at which y should be determined: 1.4 y(1.4) = 14.8640

Program 2: Program to find the interpolating polynomial and y(4) using the following data

х	0	1	2	3
у	1	2	1	10

```
#Newton backward difference formula
from sympy import *
from numpy import *
n=int(input('Enter the number of data points: '))
x=zeros(n)
y=zeros((n,n))
f=[]
for i in range(0,n):
    x[i]=float(input(f'x{i}='))
    y[0][i]=float(input(f'y{i}='))
for j in range(0,n-1):
    for i in range(0,n-1-j):
        y[j+1][i]=y[j][i+1]-y[j][i]
for i in range(0,n):
    print(x[i], end=' ')
    for j in range(0,n-i):
        print('\t\t',y[j][i], end=' ')
    print()
h=x[1]-x[0]
t=Symbol('t')
p=(t-x[n-1])/h
pterms=1
for k in range (0,n-1):
    pterms=((p+k)/(k+1))*pterms
    f.append(pterms)
rhs=y[0][n-1]
for j in range (1,n):
    rhs=(rhs+f[j-1]*y[j][n-1-j])
print('The interpolating polynomial is:')
display(simplify(rhs))
xi=float(input('Enter value of x at which y should be determined: '))
print(f'y({xi}) = \%0.4f'\%rhs.subs(t,xi))
```

OUTPUT

```
Enter the number of data points: 4
x0=0
y0=1
x1=1
y1 = 2
x2 = 2
y2=1
x3 = 3
y3 = 10
0.0
                   1.0
                                      1.0
                                                        -2.0
                                                                           12.0
1.0
                   2.0
                                      -1.0
                                                        10.0
2.0
                   1.0
                                      9.0
3.0
                   10.0
```

The interpolating polynomial is:

$$2.0t^3 - 7.0t^2 + 6.0t + 1.0$$

Enter value of x at which y should be determined: 4y(4.0) = 41.0000

EXERCISE PROBLEMS

1. The area 'y' of the circle for different diameter 'x' are given below

X	80	85	90	95	100
у	5026	5674	6362	7088	7854

Find y(82) and y(98).

2. The population of a city is given by the table

year	1980	1990	2000	2010	2020
Population In	19.96	39.65	58.81	77.21	94.61
thousand					

Find the population in the year 1985 and 2015.