Período: 2014.2 **Disciplina**: D279 – Otimização Combinatória e em Redes

Atividade computacional

Instruções:

- 1. A atividade deve ser realizada individualmente.
- 2. Implementações semelhantes estarão sujeitas a anulação imediata e definitiva.
- 3. A avaliação será progressiva através de acompanhamento pelo professor.

Parte I – Implementação de um modelo para Fixed Charge Capacitated Network Design Problem.

Formulação. Seja G = (N, A) uma rede orientada, onde N é o conjunto de nós e A é o conjunto de arcos. Seja K o conjunto de demandas, cada uma delas caracterizada por uma origem s^k , um destino t^k , e uma quantidade d^k que deve ser transportada da origem para o destino. Seja f_{ij} o custo fixo de utilização do arco ij, c_{ij} o custo variável para transportar uma unidade de fluxo através do arco ij, e u_{ij} a capacidade do arco ij. Considere a variável x_{ij}^k que indica a quantidade de fluxo referente à demanda k no arco ij, e a variável binária y_{ij} que indica se o arco ij é utilizado ou não. O objetivo é minimizar os custos fixos e os custos variáveis.

$$\begin{aligned} & \min & \sum_{k \in K} \sum_{ij \in A} c_{ij} x_{ij}^{k} + \sum_{ij \in A} f_{ij} y_{ij} \\ & \text{s.t.} & \sum_{ij \in A} x_{ij}^{k} - \sum_{ji \in A} x_{ji}^{k} = \begin{cases} d^{k}, & \text{for } i = s^{k} \\ -d^{k}, & \text{for } i = t^{k} \end{cases} & \forall i \in N, \forall k \in K \\ & \sum_{k \in K} x_{ij}^{k} \leq u_{ij} y_{ij} & \forall ij \in A \\ & x_{ij}^{k} \geq 0 & \forall ij \in A, \forall k \in K \\ & y_{ij} \in \{0, 1\} & \forall ij \in A \end{aligned}$$

Implementação. Implementar um modelo de programação matemática utilizando Java Concert para o problema. Uma instância deve ser lida de um arquivo de entrada (FCND.dat). Devem ser gerados 3 arquivos de saída: um arquivo com a saída padrão do CPLEX (FCND.log), um arquivo com a formulação matemática (FCND.lp), e um arquivo de solução (FCND.out) conforme especificado abaixo.

Entrada. A primeira linha contém um inteiro n, indicando a quantidade de nós (rotulados de 1 a n), e um inteiro m, indicando a quantidade de arcos. Cada uma das m linhas seguintes possui uma quintupla que caracteriza um arco: $(i, j, f_{ij}, c_{ij}, u_{ij})$. A linha seguinte contém um inteiro k indicando a quantidade de demandas. Cada uma das k linhas seguintes possui uma tripla que caracteriza uma demanda: (s^k, t^k, d^k) .

Saída. O arquivo de solução deve apresentar o custo total, o tempo e os arcos efetivamente utilizados.

Exemplo de entrada:

_	0			
6	8			
1	2	100	1	100
2	3	50	1	60
2	4	100	1	100
3	1	100	1	100
4	6	100	1	100
5	3	100	1	100
5	4	50	1	60
6	5	100	1	100
10				
1	3	10		
1 1	3 4	10 10		
1	4	10		
1 2	4 1	10 10		
1 2 2	4 1 5	10 10 10		
1 2 2 3	4 1 5 6	10 10 10 10		
1 2 2 3 4	4 1 5 6 1	10 10 10 10 10		
1 2 2 3 4 4	4 1 5 6 1 5	10 10 10 10 10 10		
1 2 2 3 4 4 5	4 1 5 6 1 5	10 10 10 10 10 10		

Exemplo de saída:

Objetive:		950,00	
Lower bound	l:	950,00	
Gap:		0,0000	
Status:		Optimal	
Time:		0,03	
	1	2	100
	2	3	50
	2	4	100
	3	1	100
	4	6	100
	5	3	100
	6	5	100

Parte II - Implementação de uma relaxação lagrangeana para o problema.

Relaxação. Relaxar a restrição de capacidade de cada arco ij e associar um multiplicador lagrangeano μ_{ij} , conforme modelo abaixo.

$$\min_{y} \sum_{k \in K} \sum_{ij \in A} c_{ij} x_{ij}^{k} + \sum_{ij \in A} f_{ij} y_{ij} + \sum_{ij \in A} \mu_{ij} \left(\sum_{k \in K} x_{ij}^{k} - u_{ij} y_{ij} \right)$$
s.t.
$$\sum_{ij \in A} x_{ij}^{k} - \sum_{ji \in A} x_{ji}^{k} = \begin{cases} d^{k}, & \text{for } i = s^{k} \\ -d^{k}, & \text{for } i = t^{k} \\ 0, & \text{otherwise} \end{cases} \quad \forall i \in N, \forall k \in K$$

$$x_{ij}^{k} \geq 0 \quad \forall ij \in A, \forall k \in K$$

$$y_{ij} \in \{0, 1\} \quad \forall ij \in A$$

Implementação. Implementar o algoritmo do subgradiente conforme ilustrado abaixo. UB deve ser obtido pela resolução do modelo original onde todos os links são utilizados ($y_{ij}=1, \forall ij \in A$). Em cada iteração, o subproblema lagrangeano deve ser resolvido, os limites inferiores e superiores devem ser adequadamente atualizados. Considere os parâmetros $K=1000, \beta=10, \varepsilon=0.000001$. Note que a cada iteração apenas a função objetivo deve ser modificada de acordo com os multiplicadores lagrangeanos. Deve ser gerado um arquivo de saída FCND.lgr conforme especificado abaixo.

```
Algorithm 1 Subgradient algorithm
   {Input}
   An upper bound UB
   {Initialization}
  \mu^0 = 0
  \lambda_0 = 2
   {Subgradient iterations}
  k = 0
   while k \le K do {stopping criterion}
     \gamma^k = Ax^k - b {gradient of L(\mu^k)}
     \theta_k = \lambda_k (UB - L(\mu^k)) / ||\gamma^k||^2 \{\text{step size}\} \{||\gamma|| = (\sum_i \gamma_i^2)^{1/2}\}
      \mu^{k+1} = \max\{0, \mu^k + \theta_k \gamma^k\}
      if ||\mu^{k+1} - \mu^{k}|| < \varepsilon then
         Stop
      if no progress in more than \beta iterations then
         \lambda_{k+1} = \lambda_k/2
         \lambda_{k+1} = \lambda_k
      end if
      k = k + 1
   end while
```

Saída. Para cada iteração do algoritmo, o arquivo de saída deve apresentar o limite superior, o limite inferior, o gap e o tempo decorrido. Ao final, deve ser também apresentado o limite inferior obtido pela relaxação linear do modelo original.