NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS with credits to Lau Tze Siong

MA2108 Mathematical Analysis 1

AY 2006/2007 Sem 2

Question 1

(a) (i)

$$\lim_{n \to \infty} \left(\frac{n+3\ln n - 6n^2}{3n^2 - 2n + 6} \right) = \lim_{n \to \infty} \left(\frac{n}{3n^2 - 2n + 6} + \frac{3\ln n}{3n^2 - 2n + 6} - \frac{6n^2}{3n^2 - 2n + 6} \right)$$

$$= \lim_{n \to \infty} \left(\frac{\frac{1}{n}}{3 - \frac{2}{n} + \frac{6}{n^2}} + \frac{\frac{3}{n}\ln n^{\frac{1}{n}}}{3 - \frac{2}{n} + \frac{6}{n^2}} - \frac{6}{3 - \frac{2}{n} + \frac{6}{n^2}} \right)$$

$$= 0 + 0 - 2$$

$$= -2$$

(ii)

$$\lim_{n \to \infty} \left(\frac{n \sin(2n+1)}{n^2 + 1} \right) = \lim_{n \to \infty} \left(\frac{n}{n^2 + 1} \sin(2n+1) \right)$$

Since $-1 \le \sin(2n+1) \le 1$ for all $n \in \mathbb{N}$, we have $\frac{-n}{n^2+1} \le \frac{n}{n^2+1} \sin(2n+1) \le \frac{n}{n^2+1}$. By Squeeze Theorem, we have

$$\begin{split} \lim_{n \to \infty} \frac{-n}{n^2 + 1} & \leq & \lim_{n \to \infty} \frac{n}{n^2 + 1} \sin(2n + 1) & \leq \lim_{n \to \infty} \frac{n}{n^2 + 1} \\ \lim_{n \to \infty} \frac{\frac{-1}{n}}{1 + \frac{1}{n^2}} & \leq & \lim_{n \to \infty} \frac{n}{n^2 + 1} \sin(2n + 1) & \leq \lim_{n \to \infty} \frac{\frac{1}{n}}{1 + \frac{1}{n^2}} \\ 0 & \leq & \lim_{n \to \infty} \frac{n}{n^2 + 1} \sin(2n + 1) & \leq 0. \end{split}$$

Hence we have $\lim_{n\to\infty} \frac{n}{n^2+1} \sin(2n+1) = 0.$

(iii) Let m=3n+1. Hence we have,

$$\lim_{n \to \infty} \left(1 + \frac{1}{3n+1} \right)^n = \lim_{m \to \infty} \left(1 + \frac{1}{m} \right)^{\frac{m-1}{3}}$$

$$= \lim_{m \to \infty} \left(\left(1 + \frac{1}{m} \right)^m \right)^{\frac{1}{3}} \cdot \left(1 + \frac{1}{m} \right)^{\frac{1}{3}}$$

$$= \left(\lim_{m \to \infty} \left(1 + \frac{1}{m} \right)^m \right)^{\frac{1}{3}}$$

$$= e^{\frac{1}{3}}$$

(b) $\sup S = 1 \text{ and inf } S = -\frac{1}{2}$ Proof:

Claim: 1 is a upper bound for S and $-\frac{1}{2}$ is a lower bound for S For all $n,m\in\mathbb{N},\,\frac{1}{n}\leq 1,$ hence $\frac{1}{n}-\frac{1}{2m}\leq 1.$ Also, for all $m,n\in\mathbb{N},\,-\frac{1}{2m}\geq -\frac{1}{2},$ hence $\frac{1}{n}-\frac{1}{2m}\geq -\frac{1}{2}$

Claim: $\sup S = 1$ and $\inf S = -\frac{1}{2}$

Suppose for some $\epsilon_1 \in \mathbb{R}_{>0}$, that $\sup S = 1 - \epsilon_1$. Since there exist $p \in \mathbb{N}$ such that $\frac{1}{p} < \epsilon_1$, we have $\frac{1}{2p} < \epsilon_1$.

Hence $1 - \frac{1}{2p} > 1 - \epsilon_1$ which is a contradiction since $1 - \frac{1}{2p} \in S$.

Suppose again for some $\epsilon_2 \in \mathbb{R}_{>0}$, that inf $S = -\frac{1}{2} + \epsilon_2$. Since there exists a $q \in \mathbb{N}$ such that $\frac{1}{q} < \epsilon_2$.

Hence $-\frac{1}{2} + \frac{1}{q} < -\frac{1}{2} + \epsilon_2$ which is again a contradiction since $-\frac{1}{2} + \frac{1}{q} \in S$.

Question 2

(a) (i)

$$\sum_{n=1}^{M} \frac{n^2 + 8n}{n^3 + 2n + 1} > \sum_{n=1}^{M} \frac{n^2 + n}{n^3 + 2n + 1}$$

$$> \sum_{n=1}^{M} \frac{n^2 + n}{n^3 + 3n^2 + 3n + 1}$$

$$= \sum_{n=1}^{M} \frac{n}{(n+1)^2}$$

$$= \sum_{n=1}^{M} \left(\frac{1}{n+1} - \frac{1}{(n+1)^2}\right)$$

$$= \sum_{n=1}^{M} \frac{1}{n+1} - \sum_{n=1}^{M} \frac{1}{(n+1)^2}$$

Since $\sum_{n=1}^{\infty} \frac{1}{n+1}$ is divergent, $\sum_{n=1}^{\infty} \frac{n^2+8n}{n^3+2n+1}$ is divergent by Comparison Test.

$$\lim_{n \to \infty} \left(\left(\frac{2n}{2n+1} \right)^{n^2} \right)^{\frac{1}{n}} = \lim_{n \to \infty} \left(\frac{2n+1}{2n} \right)^{-n}$$

$$= \lim_{n \to \infty} \left(1 + \frac{1}{2n} \right)^{-n}$$

$$= \lim_{m \to \infty} \left(\left(1 + \frac{1}{m} \right)^m \right)^{-\frac{1}{2}}$$

$$= (e)^{-\frac{1}{2}}$$

$$< 1$$

Hence the $\sum_{n=0}^{\infty} \left(\frac{2n}{2n+1}\right)^{n^2}$ is convergent by the Root Test.

(iii)

$$\lim_{n \to \infty} \left(\frac{\frac{(n+1)^{2n+2}}{(2n+2)!}}{\frac{n^{2n}}{(2n)!}} \right) = \lim_{n \to \infty} \left(\frac{(n+1)^{2n+2}}{n^{2n}} \frac{(2n)!}{(2n+2)!} \right)$$

$$= \lim_{n \to \infty} \left(\left(\frac{n+1}{n} \right)^{2n} \frac{(n+1)^2}{(2n+2)(2n+1)} \right)$$

$$= \frac{e^2}{4}$$

$$> 1$$

Hence the sum $\sum_{n=1}^{\infty} \frac{n^{2n}}{(2n)!}$ is divergent by the Ratio Test.

(iv) Since sin is a strictly increasing function from 0 to $\frac{\pi}{2}$. We have $\sin(\frac{\pi}{n+1}) < \sin(\frac{\pi}{n})$ for all $n \in \mathbb{N}_{\geq 2}$.

Hence by Alternating Series Test, the sum $\sum_{n=1}^{\infty} (-1)^n \sin\left(\frac{\pi}{n}\right) = \sum_{n=1}^{\infty} (-1)^n \sin\left(\frac{\pi}{n}\right)$ converges.

(b) Since $x_{n+2} = \frac{2}{3+2x_{n+1}} = \frac{6+4x_n}{13+6x_n} = \frac{2}{3} - \frac{2}{3} \left(\frac{4}{13+6x_n}\right)$, we have $0 < x_n < \frac{2}{3}$ for all $n \in \mathbb{N}_{\geq 2}$. Claim: For $n \in \mathbb{N}$, (x_{2n}) is either strictly increasing or strictly decreasing.

Suppose $0 < x_0 \le \frac{1}{2}$, then $x_0 \le x_2$. Suppose again for some $k \in \mathbb{N}$ we have $x_k \le x_{k+2}$. Then we have $\frac{2}{3} - \frac{2}{3} \left(\frac{4}{13+6x_k} \right) \le \frac{2}{3} - \frac{2}{3} \left(\frac{4}{13+6x_{k+2}} \right)$, hence we have $x_{k+2} \le x_{k+4}$

Suppose $\frac{1}{2} < x_0$, then $x_2 < x_0$.

Suppose $\frac{2}{3} < x_0$, then $x_2 < x_0$. Suppose again for some $k \in \mathbb{N}$ we have $x_k > x_{k+2}$. Then we have $\frac{2}{3} - \frac{2}{3} \left(\frac{4}{13+6x_k} \right) > \frac{2}{3} - \frac{2}{3} \left(\frac{4}{13+6x_{k+2}} \right)$, hence we have $x_{k+2} > x_{k+4}$. Hence by induction, for $n \in \mathbb{N}$, (x_{2n}) is either strictly increasing or strictly decreasing.

By a similar argument, for $n \in \mathbb{N}$, (x_{2n+1}) is either strictly increasing or strictly decreasing.

Page: 3 of 8

Hence by Completeness of
$$\mathbb{R}$$
, $\lim_{n\to\infty} x_{2n} = y$ and $\lim_{n\to\infty} x_{2n+1} = y'$ exist.
Since $y = \frac{2}{3} - \frac{2}{3} \left(\frac{4}{13+6y} \right)$ and $y' = \frac{2}{3} - \frac{2}{3} \left(\frac{4}{13+6y'} \right)$, we have $y = \frac{1}{2} = y'$.

Hence, (x_n) converges and its limit is $\frac{1}{2}$

Question 3

(i) Since $-1 \le \cos\left(\frac{1}{x^2}\right) \le 1$, we have $\frac{x}{x+1} \le \frac{x}{x+1}\cos\left(\frac{1}{x^2}\right) \le -\frac{x}{x+1}$. Hence we have $\lim_{x\to 0} \frac{x}{x+1} \le \lim_{x\to 0} \frac{x}{x+1} \cos\left(\frac{1}{x^2}\right) \le \lim_{x\to 0} -\frac{x}{x+1}$ Therefore $\lim_{x\to 0} \frac{x}{x+1} \cos\left(\frac{1}{x^2}\right) = 0.$

(ii) Suppose $\lim_{x\to 0^+} \left| \sin\left(\frac{1}{x}\right) \right| = a$ exist. Let $\epsilon = \frac{1}{4}$. For any $\delta \in \mathbb{R}_{>0}$, we can choose a $n_1 \in \mathbb{N}$ such that $x_1 = \frac{2}{\pi + 4n_1\pi} < \delta$. We can also choose $n_2 \in \mathbb{N}$ such that $x_2 = \frac{1}{2n_2\pi} < \delta$.

Hence we have $\left| \left| \sin \left(\frac{1}{x_1} \right) \right| - a \right| < \epsilon$ and $\left| \left| \sin \left(\frac{1}{x_2} \right) \right| - a \right| < \epsilon$. Therefore we have, $|1 - a| < \epsilon$ and $|0 - a| < \epsilon$.

Which leads us to $|1| < 2\epsilon = \frac{1}{2}$ a contradiction.

(iii)

$$\lim_{x \to \infty} \frac{\sqrt{x} - 2x}{\sqrt{x} + 2x} = \lim_{y \to \infty} \frac{y - 2y^2}{y + 2y^2}$$
$$= \lim_{y \to \infty} \frac{\frac{1}{y} - 2}{\frac{1}{y} + 2}$$
$$= -1$$

(b) For any given $\epsilon \in \mathbb{R}_{>0}$, choose $\delta = \min(1, \frac{3\epsilon}{4})$. Then $|x-1| < \delta$ gives us,

$$|3x - 2| < 4$$

and

$$\left| \frac{1}{2x+1} \right| < 1$$

Hence we have,

$$\left| \frac{x^2 - x + 1}{2x + 1} - \frac{1}{3} \right| = \left| \frac{3x^2 - 5x + 2}{3(2x + 1)} \right|$$

$$= \left| \frac{(x - 1)(3x - 2)}{3(2x + 1)} \right|$$

$$= \left| (x - 1) \right| \left| \frac{3x - 2}{3(2x + 1)} \right|$$

$$< \frac{4}{3} \left| (x - 1) \right|$$

$$< \epsilon$$

whenever
$$|x-1| < \delta$$
.
Hence $\lim_{x \to 1} \frac{x^2 - x + 1}{2x + 1} = \frac{1}{3}$.

(c) The function |x| is continuous at $x \in \mathbb{R} \setminus \mathbb{Z}$. The function $\cos x$ is continuous on \mathbb{R} . So f(x) is continuous on $\mathbb{R}\setminus\mathbb{Z}$.

It remains to check continuity at x when $\cos x = 0, 1, -1$.

Case 1: $\cos x = 0$ when $x = \frac{pi}{2} + n\pi$, $n \in \mathbb{Z}$.

Note that if $c = \frac{\pi}{2} + 2n\pi$, $n \in \mathbb{Z}$. Then

$$\lim_{x \to c^{+}} \lfloor \cos x \rfloor = -1$$
$$\lim_{x \to c^{-}} \lfloor \cos x \rfloor = 0$$

If $c = \frac{3\pi}{2} + 2n\pi$, $n \in \mathbb{Z}$. Then

$$\lim_{x \to c^{+}} \lfloor \cos x \rfloor = 0$$
$$\lim_{x \to c^{-}} \lfloor \cos x \rfloor = -1$$

So f(x) is not continuous at $x = \frac{\pi}{2} + n\pi$ for $n \in \mathbb{Z}$.

Case 2: $\cos x = 1$

Then $x = 2n\pi$ for $n \in \mathbb{Z}$.

Let $c = 2n\pi$ for $n \in \mathbb{Z}$.

$$\lim_{x \to c^{+}} \lfloor \cos x \rfloor = 0$$
$$\lim_{x \to c^{-}} \lfloor \cos x \rfloor = 0$$

But f(c) = 1. So f(x) is not continuous at $x = 2n\pi$, $n \in \mathbb{Z}$.

Case 3: $\cos x = -1$.

Then $x = (2n+1)\pi$ for $N \in \mathbb{Z}$.

Let $c = (2n+1)\pi$ for $n \in \mathbb{Z}$. if $c = (2n+1)\pi$, $n \in \mathbb{Z}$. Then

$$\lim_{x \to c^{+}} \lfloor \cos x \rfloor = -1$$
$$\lim_{x \to c^{-}} \lfloor \cos x \rfloor = -1$$

So f(x) is continuous at $x = (2n+1)\pi$ for $n \in \mathbb{Z}$.

In conclusion, f(x) is continuous at $\mathbb{R}\setminus\{\frac{\pi}{2}+n\pi,2n\pi:n\in\mathbb{Z}\}$. The points of continuity are $\mathbb{R}\setminus\{2n\pi+\frac{m\pi}{2}|n\in\mathbb{Z},m\in\{1,3,4\}\}$.

Question 4

(a) Since f is continuous at x=0, for $\epsilon=\frac{1}{10}$, there exists a $\delta\in\mathbb{R}_{>0}$ such that $|f(x)-f(0)|<\frac{1}{10}$ whenever $|x| < \delta$.

Hence we have $f(x) - (-1) < \frac{1}{10}$ for $|x| < \delta$. Therefore there exist a $\delta > 0$ such that $f(x) < -\frac{9}{10}$.

- (b) Since $x_n \in S$ for all $n \in \mathbb{N}$, we have $\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} g(x_n)$. Since f and g are continuous, we have $f(\lim_{n \to \infty} x_n) = g(\lim_{n \to \infty} x_n)$. Hence we have f(x) = g(x) and $x \in S$.
- (c) Suppose $a_n < 0$ for some $n \in \mathbb{N}$. Since (a_n) is decreasing.

$$a_m \leq a_n$$
 for all $m \geq n$

Hence

$$\lim_{m \to \infty} a_m \le a_n < 0.$$

Therefore $\lim_{n\to\infty} n < 0$.

Since $\sum_{n=1}^{\infty} a_n$ is convergent, $\lim_{a\to\infty} a_n = 0$ which contradicts the result. Hence $a_n \geq 0$ for all $n \in \mathbb{N}$.

Since $\sum_{n=1}^{\infty} a_n$ is convergent, the sequence of its partial sums is Cauchy. Let $\epsilon > 0$. Then there exists N such that for all $m, n \geq N$,

$$a_n + \ldots + a_m < \epsilon$$
.

In particular we have,

$$a_n + \dots + a_{2n} < \epsilon$$
$$a_n + \dots + a_{2n+1} < \epsilon.$$

Since (a_n) is decreasing,

$$\frac{1}{2}(2n)a_{2n} = na_{2n} \le a_n + \dots + a_{2n} < \epsilon$$

$$\frac{1}{2}(2n+1)a_{2n+1} \le (n+1)a_{2n+1} \le a_n + \dots + a_{2n+1} < \epsilon$$

Hence we have

$$\lim_{n \to \infty} (2n)a_{2n} = 0 = \lim_{n \to \infty} (2n+1)a_{2n+1}$$

So $\lim_{n\to\infty} na_n = 0$.

Question 5

(a) We first show that g(x) is not continuous at $x \neq 1$.

Let
$$c \in \mathbb{R}$$
, $c \neq 1$.

Let
$$c \in \mathbb{R}$$
, $c \neq 1$.

Let (x_n) be a sequence of rational numbers converging to c.

Let (y_n) be a sequence of irrational numbers converging to c.

If g is continuous at c, then

$$(g(x_n)) \rightarrow 3c$$

 $(g(y_n)) \rightarrow -c+4$

Hence we have 3c = -c + 4. Therefore we have c = 1 which contradicts our assumption that $c \neq 1$.

Now we shall prove that g is continuous at x = 1.

Let $\epsilon > 0$.

Set $\delta = \frac{\epsilon}{3}$. Let x be such that

$$|x-1| < \delta$$

If x is rational then

$$|g(x) - 3| = |3x - 3|$$

$$= 3|x - 1|$$

$$< 3\delta$$

$$= \epsilon$$

If x is irrational then

$$\begin{array}{rcl} |g(x)-3| & = & |-x+4-3| \\ & = & |x-1| \\ & < & \delta \\ & = & \frac{\epsilon}{3} < \epsilon \end{array}$$

Therefore $\lim_{x\to 1} g(x) = 3 = g(1)$.

SO g is continuous at x = 1.

(b) Since (x_{3k}) , (x_{3k+1}) and (x_{3k+2}) converges to the same limit a.

For any $\epsilon \in \mathbb{R}_{>0}$ there exist $M \in \mathbb{N}$ such that for all $3k, 3k+1, 3k+2 \geq M$, we have $|x_{3k}-a| < \epsilon$ and $|x_{3k+1} - a| < \epsilon$ and $|x_{3k+2} - a| < \epsilon$.

Hence, given any $\epsilon \in \mathbb{R}_{>0}$, let N=M such that for all $n \in \mathbb{N}$ and $n \geq N$, we have $|x_n-a| < \epsilon$. Hence (x_n) is convergent and converges to a.

(c) Since $\lim_{n\to\infty} a_n = \infty$. We can choose a increasing subsequence (b_n) such that $\lim_{n\to\infty} b_n = \infty$.

Then for any $x \in \mathbb{R}$ we can construct the sequence (c_n) such that $c_n = \max\{n \in \mathbb{Z} | n < xb_n\}$.

Therefore $xb_n - 1 \le c_n \le xb_n$. Hence we have $\lim_{n \to \infty} \frac{c_n}{b_n} \le x$ and

$$\lim_{n \to \infty} \frac{c_n}{b_n} \geq \lim_{n \to \infty} \frac{xb_n - 1}{b_n}$$

$$= x$$

Page: 8 of 8

Hence
$$\lim_{n\to\infty} \frac{c_n}{b_n} = x$$
.

Therefore we have
$$f(x) = f(\lim_{n \to \infty} \frac{c_n}{b_n})$$

Hence
$$\lim_{n\to\infty}\frac{c_n}{b_n}=x$$
.
Therefore we have $f(x)=f(\lim_{n\to\infty}\frac{c_n}{b_n})$.
Since f is continuous, we have $f(x)=\lim_{n\to\infty}f(\frac{c_n}{b_n})=\lim_{n\to\infty}0=0$.

Hence
$$f(x) = 0$$
 for all $x \in \mathbb{R}$