Math Binder - AMC/AIME

Hansel Grimes

December 6, 2020

Contents

1	§ P	olynomials	2
	1.1	Definition and Basics	2
	1.2	Synthetic Division	3
	1.3	Rational Root Theorem	3
	1.4	Remainder Theorem	3
	1.5	Practice Problems	4

1 § Polynomials

1.1 Definition and Basics

A polynomial is defined as $P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_2 x^2 + a_1 x + a_0$ with names corresponding to their degree (constant, linear, quadratic, cubic, quartic).

The factored form is written as $P(x) = a(x-r)(x-p)\cdots(x-q)$. The simplest and most useful polynomial is the quadratic. It can be written as $ax^2 + bx + c$ and factored respectively. The formula to solve for x is $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$. The most important formula for polynomials is the Vieta Formulas.

Formula 1.1 (Vieta Formulas) Sum of roots $(r_1+r_2+r_3+\cdots+r_n)$: $-\frac{a_{n-1}}{a_n}$ Product of roots $(r_1r_2r_3\cdots r_n)$: $(-1)^n\cdot\frac{a_0}{a_n}$ Pairwise sums of p (p=2): $r_1r_2+r_1r_3+r_1r_4+\cdots+r_{n-1}r_n)$: $(-1)^p\cdot\frac{a_{n-p}}{a_n}$

Theorem 1.1 (Fundamental theorem of algebra) It states that a single variable polynomial with degree n has exactly n complex roots.

Problem 1.1 Let r, s, and t be the roots of $3x^3 - 4x^2 + 5x + 7 = 0$. (IA 8.20 p.249)

- 1. Find $r + s + t \left(\frac{4}{3}\right)$.
- 2. Find $r^2 + s^2 + t^2 \left(\frac{-14}{9}\right)$.
- 3. Find $\frac{1}{r} + \frac{1}{s} + \frac{1}{t} \left(\frac{-5}{7} \right)$.

1.2 Synthetic Division

A simplification of traditional polynomial division. Note this only works when the coefficients of the linear term in the divisor is 1. It is also know as the **Ruffini's Rule**.

Example:
$$\begin{vmatrix} 3 & 1 & -3 & 7 & -1 & 5 \\ & 3 & 0 & 21 & 60 \\ \hline & 1 & 0 & 7 & 20 & 65 \\ \end{vmatrix}$$

Which is the same as $(x^4 - 3x^3 + 7x^2 - x + 5) \div (x - 3) =$. Notice you work from left to right, and multiply to get the next number in the second row. If your divisor doesn't have 1 as its coefficient in the linear term, you can divide it by 1/n and in the end also multiply the quotient and remainder by 1/n.

Usually, you write the result of polynomial division as $\frac{f(x)}{d(x)} = q(x) + \frac{r(x)}{d(x)}$.

1.3 Rational Root Theorem

Theorem 1.2 (Rational Root Theorem) A rational root of a polynomial in the form $\pm \frac{p}{q}$ where p and q are relatively prime must follow the condition $p|a_0$ and $q|a_n$.

1.4 Remainder Theorem

Theorem 1.3 (Remainder Theorem) When a polynomial f(x) is divided by x - a, the remainder is determined by f(a).

Theorem 1.3 can be proven using the form $\frac{f(x)}{d(x)} = q(x) + \frac{r(x)}{d(x)}$ and synthetic division.

Proof 1.1 (Remainder Theorem)

$$f(x) = (x - a)q(x) + r(x)$$
$$= (x - a)q(x) + c.$$
$$f(a) = (a - a)q(a) + c$$
$$= 0 \cdot q(a) + c = c$$

Thus, f(a) always returns the remainder of $f(x) \div (x - a)$.

1.5 Practice Problems

Problems from Intermediate Algebra, AoPS.

- 1. 6.11, pg.181
- 2. 6.21 pg. 191
- 3. 6.17, pg. 187
- 4. 6.22, pg. 191
- 5. 6.27, pg. 191
- 6. 6.29, pg. 192
- 7. * Challenge Problems, pg. 192