

Material Extrusion

Material Extrusion

 FDM (Fused Deposition Modeling) is the most popular material extrusion-based AM method

Raw material – Filament of thermoplastic polymers

- Filament is extruded through a nozzle and heated to its softening temperature
- Preprocessing → production → postprocessing

Process flow of FDM

SLICING PARAMETERS

- > LAYER THICKNESS
- > FLOW RATE
- > DEPOSITION SPEED
- > INFILL PERCENTEGE
- > RASTER ANGLE
- > RASTER PATTERN
- CONTOUR WIDTH
- > AIR GAPS
- > NOZZLE DIAMETER
- > TOP & BOTTOM WIDTH

BUILDING ORIENTATION

- > HORIZONTAL
- > VERTICAL
- > LATERAL
- > OTHERS

TEMPERATURE CONDITION

- > ENVIRONMENTAL
 TEMPERATURE
- > EXTRUSION
 TEMPERATURE
- > BED (or) PLATFORM
 TEMPERATURE

Important process parameters of FDM

Extrusion heads

- Single head
- Dual head
- In-nozzle impregnation

Single Head Method

Printing single materials like polymer, reinforced material, composite filament

Dual Head Method

Printing of layered composites (alternative printing of two materials)

In-Nozzle Impregnation Method

Fibers are directly feeding into the nozzle head to form composite in nozzle

Parameters of FDM

Fishbone diagram of FDM

1. Infill pattern

Commonly found infill types in open software, a 2D infill patterns, b 3D infill patterns, and c various infill density for tri-hexagon/stars pattern

2. Infill density

3. Raster angle

4. Raster width

5. Air gap

6. Build orientation

7. Layer thickness

8. Printing speed

9. Operating temperature

10. Skirt and brim

FDM printed part (blue) with a Brim (yellow) and b skirt (yellow)

FDM – Processing parameters correlation

- Layer thickness, build orientation, raster angle, infill pattern, infill density and air gap are the key parameters having significant effect on mechanical properties of FDM printed parts
- Tensile strength is increased with rise in infill density and perimeters
- Build time is found minimum at higher layer thickness, low infill density, zero raster angle and build orientation having minimum support structure

Processing-structure-property relationships in FDM are complex, nonlinear and poorly understood

FDM – filament materials

FDM – filament materials

Spider web diagram – Ranking of FDM AM of various polymers

FDM – Applications

(b)

(a)

(d)

a Evektor aircraft components and FDM printed duct adapter. **b** FDM-printed electric circuit with LED **c** FDM-printed Ribcage. **d** FDM concrete printing process and the first FDM printed house by WinSun company in 2014

FDM - defects

- a) Non-uniform thermal contraction
- b) Close proximity of the printing nozzle to the build plate
- c) Servo motors with open-loop control system
- d) Retraction settings and extruder temperature
- e) Printer head vibrations and/or loose machine components
- f) Inconsistent extrusion (clogged nozzle/abnormal temperature variations), mechanical issues
- g) Overheating
- h) Poor bonding between the layers

Defects in FDM printed parts, **a** warping, **b** elephant's foot, **c** layer shifting, **d** stringing, **e** ringing, **f** z-wobble, **g** curling, and **h** layer separation

FDM - Advantages

- Compare to other major 3D printing methods, FDM is more affordable, accessible and cost-effective. Due to these reasons it is most used 3DP technology and best suited for beginners.
- FDM printer is relatively simple to operate and maintain.
- The process is relatively clean, safe and doesn't require the use of harsh chemicals.
- Feedstock materials are very diverse, readily available and affordable.
- Broad range of thermoplastic materials and exotic filaments can be printed with no or relatively few alterations on any FDM printer.
- Design of FDM printer can be scaled easily compare to other 3DP technology.

They are available in size that can fit on a desktop to size of large wardrobe.

FDM - Limitations

- The major limitation of FDM is part strength and anisotropy. Parts build by FDM are not fully dense and z-axis anisotropy arises as inter-layer bonding is not as strong as intra-layer bonding.
- Surface quality (including volumetric error, shape deviation and surface finish) of FDM is not as good as other major 3D printing methods.
- High detail prints are hard to achieve.
- Unsuitable for thin-walled products. As per thumb rule, recommended minimum wall thickness for horizontal/vertical wall is 1 mm, while curved and slant wall will require more thickness.
- FDM is primarily limited to thermoplastics based pure- and compositematerials.
 - Metal and ceramic material printing is possible by using thermoplastics based metal/ceramic reinforced filament, but it requires secondary sintering operation and resultant part will not be fully dense.