Componentes estructurales de una computadora

Memoria

E/S

Procesador

Tipos de transferencias de datos

- Memoria a procesador.
- · Procesador a memoria.
- E/S a procesador.
- · Procesador a E/S.
- E/S a o desde memoria.

Bus del sistema

Clasificación de las líneas del bus

Bus del sistema

Líneas de datos

Líneas de dirección

Líneas de control

Líneas de control típicas

- · Escritura a memoria.
- · Lectura a memoria.
- · Escritura a E/S.
- · Lectura a E/S.
- · ACK de transferencia.
- · Petición del bus.
- · Otorgamiento de bus.
- · Petición de interrupción.
- · ACK de interrupción.
- · Reloj.
- · Reinicio.

Interconexión punto-a-punto

Registros

ALU

Contador de Programa

Programa en ejecución

Instrucciones

Opcode Dirección/Operando/Valor inmediato

Mnemónico	Opcode	Descripción
SUMA	0000 0000	Acumulador = Acumulador + [Dirección]
ALMACENAR	0000 0001	[Dirección] = Acumulador
INTERCAMBIAR	0000 0010	[Dirección] = Acumulador Acumulador = [Dirección] _{valor_anterior}
SALTAR_SI_ACARREO	0000 0011	Si (Acarreo = 1) entonces Contador_Programa = Dirección

Ejemplo 1

a) Características de una máquina hipotética.

b) Ejemplo de ejecución de un programa.

Ejemplo 2

Programa

- 1. Leer un dato del puerto 85H (Teclado)
- 2. Sumar 07H a ese dato
- 3. Sacar el resultado por el puerto 92H (7-Seg)

MEMORIA

1. Obtener la instrucción de Memoria

1A: El CPU pone el contenido de PC (0x00) en el Bus de Direcciones.

1B: El CPU pone en el Bus de Control la señal de lectura.

1C: La memoria pone el dato almacenado en esa dirección (0x30) en el **Bus de Datos**.

El CPU toma el dato colocándolo en el Registro de Instrucción.

Se incrementa el valor de PC.

El CPU decodifica la instrucción, determinando que es una instrucción de E/S y que requiere leer otro dato de memoria.

1. Obtener la instrucción de Memoria

1D : El CPU pone el contenido de PC (0x01) en el Bus de Direcciones.

1E : El CPU pone en el Bus de Control la señal de lectura.

1F: La memoria pone el dato almacenado en esa dirección (0x85) en el **Bus de Datos**. El CPU toma el dato.

Se incrementa el valor de PC.

La instrucción esta completa.

1. Ejecutar la instrucción

Ejecución de la instrucción:

1G : El CPU pone en el **Bus de Direcciones** la dirección del puerto de E/S (0x85).

1H : El CPU pone en el Bus de Control la señal de lectura.

11 : Se coloca el dato del puerto en el Bus de Datos.

El CPU toma el dato, colocándolo en el registro A

Se ha terminado de ejecutar la instrucción.

