Introduction to Algorithms

Network Flows

Soviet Rail Network

Reference: *On the history of the transportation and maximum flow problems.*Alexander Schrijver in Math Programming, 91: 3, 2002.

Network Flow Applications

Max flow and min cut.

- Two very rich algorithmic problems.
- Cornerstone problems in combinatorial optimization.
- Beautiful mathematical duality.

Nontrivial applications / reductions.

- Data mining.
- Open-pit mining.
- Project selection.
- Airline scheduling.
- Bipartite matching.
- Baseball elimination.
- Image segmentation.
- Network connectivity.

Minimum s-t Cut Problem

Given a directed graph G = (V, E) =directed graph and two distinguished nodes: s =source, t =sink.

Suppose each directed edge e has a nonnegative capacity c(e) Goal: Find a cut separating $s,\ t$ that cuts the minimum capacity

s-t cuts

Def. An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.

Def. The capacity of a cut (A, B): $cap(A, B) = \sum_{e \text{ out of } A} c(e)$

s-t cuts

Def. An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.

Def. The capacity of a cut (A, B): $cap(A, B) = \sum_{(u, v) : u \in A, v \in B} c(u, v)$

Minimum s-t Cut Problem

Given a directed graph G = (V, E) =directed graph and two distinguished nodes: s =source, t =sink.

Suppose each directed edge e has a nonnegative capacity c(e) Goal: Find a s-t cut of minimum capacity

s-t Flows

Def. An s-t flow is a function that satisfies:

- For each $e \in E$: $0 \le f(e) \le c(e)$ (capacity)
- For each $v \in V \{s,t\}$: $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$ (conservation)

Def. The value of a flow f is: $v(f) = \sum_{e \text{ out of s}} f(e)$

s-t Flows

Def. An s-t flow is a function that satisfies:

- For each $e \in E$: $0 \le f(e) \le c(e)$ (capacity)
- For each $v \in V \{s,t\}$: $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$ (conservation)

Def. The value of a flow f is: $v(f) = \sum_{e \text{ out of s}} f(e)$

Maximum s-t Flow Problem

Goal: Find a s-t flow of largest value.

Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

Pf of Flow value Lemma

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f)$$

Pf.

$$v(f) = \sum_{e \text{ out of } s} f(e)$$

By conservation of flow, all terms except v=s are 0 = $\sum_{v \in A} \left(\sum_{e \text{ out of } v} f(e) - \sum_{e \text{ in to } v} f(e) \right)$

All contributions due to internal edges cancel out $= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$

Weak Duality of Flows and Cuts

Cut Capacity lemma. Let f be any flow, and let (A, B) be any s-t cut. Then the value of the flow is at most the capacity of the cut.

$$v(f) \leq cap(A, B)$$

Weak Duality of Flows and Cuts

Cut capacity lemma. Let f be any flow, and let (A, B) be any s-t cut. Then the value of the flow is at most the capacity of the cut.

$$v(f) \leq cap(A, B)$$

Pf.

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$

$$\leq \sum_{e \text{ out of } A} f(e)$$

$$\leq \sum_{e \text{ out of } A} c(e) = cap(A, B)$$

Certificate of Optimality

Corollary: Suppose there is a s-t cut (A,B) such that v(f) = cap(A,B)

Then, f is a maximum flow and (A,B) is a minimum cut.

A Greedy Algorithm for Max Flow

- Start with f(e) = 0 for all edge e ∈ E.
- Find an s-t path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.

A Greedy Algorithm for Max Flow

- Start with f(e) = 0 for all edge e ∈ E.
- Find an s-t path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.

Local Optimum ≠ Global Optimum

