

Gift This Course

A-Z Machine Learning using Azure Machine Learning (AzureML)

Hands on AzureML: From Azure Machine Learning Introduction to Advance Machine Learning Algorithms. No Coding Required.

BEST SELLER ★★★★ 4.3 (215 ratings) 1,597 students enrolled

Created by Jitesh Khurkhuriya Last updated 3/2018 Denglish English

Logistic Regression

@ litesh 10

What is Logistics Regression?

- Used to predict the probability of an outcome
- Can be binary Yes/No or Multiple
- Supervised learning method
- Must provide a dataset that already contains the outcomes to train the model.

Plotting Logistics Regression

$$Log(\frac{P}{1-P}) = b0 + b1X$$

Logistic Regression in Azure ML

© litesh khur

Properties Project

▲ Two-Class Logistic Regression

Create trainer mode	
Single Parameter	•
Optimization tolerance	
1E-07	
L1 regularization weight	=
1	
L2 regularization weight	
1	
Memory size for L-BFGS	
20	
Random number seed	=
Allow unknown categorical levels	

Parameters to Logistic Regression

@ litesh 10

Parameters to Logistic Regression

- Create Trainer Mode
 - Single Parameter Provide specific set of values
 - Parameter Range specify multiple values and get the optimum set for given configuration
- Optimization Tolerance Threshold Value to stop the model iterations on trained dataset
- Memory Size for L-BFGS Amount of memory to use for next steps and direction
- Random Number Seed Random integer number that is used for reproducing the same results
- Allow Unknown Categorical Levels Creates an additional "Unknown" level

Regularization

Regularization

Regularization Weight

b2 and other such coefficients/weights

© Jitesh KALTAULIA EALLE AND COMMENTS the model to over-fit

Regularization Weight

What if the effect of such weights is reduced significantly Or reduced. Significantly Or reduced significantly on the course of the effect of such weights is reduced significantly.

Regularization Weights

- L2 (Ridge) shrinks all the coefficient by the same proportions but eliminates none
- L1 (Lasso) can shrink some coefficients to zero, performing variable selection.

b0 +
$$b1X_1^2 + b2X_2$$
.....

- Both L1 and L2 regularization prevents overfitting by shrinking (imposing a penalty) on the coefficients.
- With L2, you tend to end up with many small weights, while with L1, you tend to end up with larger weights, but more zeros.

line Course

Understanding the results

@ litesh K.

	Predicted Positives	Predicted Negatives
Actual Positives	True Positives	False Negatives
Actual Negative	False Positives	True Negatives

	Predicted Positives	Predicted Negatives	
Actual Positives	8	2	10
Actual Negative	1	4	5
	g	6	

	Predicted Positives	Predicted Negatives
Actual Positives	True Positives	False Negatives
Actual Negative	False Positives	True Negatives

	Predicted Positives	Predicted Negatives	Me
Actual Positives	8	2	10
Actual Negative	1	4	5
	9	6	

Accuracy – Proportions of total number of correct results

Accuracy =
$$(8 + 4) / 15 = 0.8$$
 or 80%

	Predicted Positives	Predicted Negatives	
Actual Positives	True Positives	False Negatives	
Actual Negative	False Positives	True Negatives	
	Predicted Positives	Predicted Negatives	Me
Actual Positives	8	2	10
Actual Negative	1	4	5
	9	6	

Precision – Proportion of correct positive results out of all predicted positive results

	Predicted Positives	Predicted Negatives
Actual Positives	True Positives	False Negatives
Actual Negative	False Positives	True Negatives

	Predicted Positives	Predicted Negatives	
Actual Positives	8	2	10
Actual Negative	1	4	5
	9	6	

Recall – Proportion of actual positive cases

Recall =
$$8 / (8 + 2) = 0.8$$
 or 80%

	Predicted Positives	Predicted Negatives		
Actual Positives	True Positives	False Negatives		4
Actual Negative	False Positives	True Negatives		
				Ulju
	Predicted Positives	Predicted Negatives	M	
Actual Positives	8	2	10	
Actual Negative	1	4	5	

F1-Score – Weighted Average (Harmonic Mean) of Precision and Recall

9

F1Score = 2 * Precision * Recall / (Precision + Recall) = 0.84

6

	Predicted Positives	Predicted Negatives
Actual Positives	True Positives	False Negatives
Actual Negative	False Positives	True Negatives

	Predicted Positives	Predicted Negatives	Me
Actual Positives	6	4	10
Actual Negative	0	5	5
	6	6	

In the Previous example

Precision =
$$0.889$$

Recall =
$$0.8$$

Average =
$$0.84$$

Precision =
$$6 / 6 = 1$$
 or 100%
Recall = $6 / (6 + 4) = 0.6$ or 60%

Average =
$$0.8$$

May lead to false interpretation

	Predicted Positives	Predicted Negatives
Actual Positives	True Positives	False Negatives
Actual Negative	False Positives	True Negatives

	Predicted Positives	Predicted Negatives	
Actual Positives	6	4	10
Actual Negative	0	5	5
	6	6	

Precision = 6 / 6 = 1 or 100%Recall = 6 / (8 + 2) = 0.6 or 60%

F1Score = 0.75

Recall =
$$0.8$$

F1Score = 0.84

AUC ROC

AUC – Area Under the Curve

ROC – Receiver Operating Characteristics

First used during World War II for the analysis of radar signals

Following the attack on Pearl Harbor in 1941, the United States army began new research to increase the prediction of correctly detected Japanese aircraft from their radar signals.

For this purposes they measured the ability of radar receiver operators to make these important distinctions, which was called the Receiver Operating Characteristics

Provides a single number that lets you compare models of different types.

course

Thank You and Have a Great Time!

@ litesh 10