INTELIGENCIA ARTIFICIAL Y SISTEMAS EXPERTOS Probabilidad Condicionada —Ejemplo—

ULISES C. RAMIREZ

{ulir19, ulisescolrez}@gmail.com

Universidad Nacional de Misiones Facultad de Ciencias Exactas, Químicas y Naturales

8 de Octubre, 2018

Vista Preliminar

Presentación del Problema

Solución propuesta

Inventario Placas Madre

Se ha recibido una embarcación con contenedores que poseen placas madre para ordenadores, en total la cantidad de items que se tienen es de 18800, luego de un análisis del inventario se encontró que los items pertenecían a las marcas M1, M2, M3 y M4. Otra de las cuestiones que fueron de interés en el análisis del cargamento fue determinar con que características dentro del abanico de carácteristicas de placas madre contaba cada item, se encontraron las siguientes características C1, C2 y C3.

Inventario Placas Madre

Se ha recibido una embarcación con contenedores que poseen placas madre para ordenadores, en total la cantidad de items que se tienen es de **18800**, luego de un análisis del inventario se encontró que los items pertenecían a las **marcas M1**, **M2**, **M3** y **M4**. Otra de las cuestiones que fueron de interés en el análisis del cargamento fue determinar con que **características** dentro del abanico de carácteristicas de placas madre contaba cada item, se encontraron las características **C1**, **C2** y **C3**.

Datos de interés

Datos de interés

Marcas

 M_1, M_2, M_3, M_4

Datos de interés

Marcas

 M_1, M_2, M_3, M_4

Características

 C_1, C_2, C_3

Datos del Problema

Datos del problema

Table: Datos tabulados para el contenido recibido

C1	C2	СЗ
3130	502	1244
2325	5351	124
273	2312	14
135	7281	4214
	3130 2325 273	3130 502 2325 5351 273 2312

Consignas

• Encontrar la probabilidad de cada marca si se presenta un item al azar.

Consignas

- Encontrar la probabilidad de cada marca si se presenta un item al azar.
- 2 La probabilidad de que se presente una marca sabiendo que el item tiene todas las características.

• La solución a esta consigna es sencilla, simplemente se solicita la probabilidad a priori de cada marca en el montón de items.

- La solución a esta consigna es sencilla, simplemente se solicita la probabilidad a priori de cada marca en el montón de items.
- Para esto solo se necesita conocer lo siguiente

$$P(M_i) = \frac{\# M_i}{Total}$$

- La solución a esta consigna es sencilla, simplemente se solicita la probabilidad a priori de cada marca en el montón de items.
- Para esto solo se necesita conocer lo siguiente

$$P(M_i) = \frac{\# M_i}{Total}$$

De esta forma se obtienen los valores para:

$$P(M_1) = 0,186170, P(M_2) = 0,292553, P(M_3) = 0,132978, P(M_4) = 0,388297$$

- Consignas estan relacionadas.
- Los datos obtenidos volveran a ser utilizados.

Adelantándonos, lo que se va a necesitar hacer es lo siguiente:

$$P(M_i|C_1, C_2, \dots, C_j) = P(M_i) \prod_{i=1}^{N} P(C_i|M_i)$$

Adelantándonos, lo que se va a necesitar hacer es lo siguiente:

$$P(M_i|C_1, C_2, \dots, C_j) = P(M_i) \prod_{j=1}^{N} P(C_j|M_i)$$

Para el calculo de la parte naranja, procedemos a encontrar las verosimilitudes.

Resultado de $\prod_{j=1}^{N} P(C_j|M_i)$

Teniendo en cuenta que $P(C_i|M_i)$ se calcula de la siguiente manera

$$P(C_j|M_i) = \frac{\#C_j}{\#M_i}$$

Resultado de $\prod_{j=1}^{N} P(C_j|M_i)$

Teniendo en cuenta que $P(C_j|M_i)$ se calcula de la siguiente manera

$$P(C_j|M_i) = \frac{\#C_j}{\#M_i}$$

Table: Verosimilitudes

	C1	C2	C3
M1	0,894285	0,143428	0,355428
M2	0,422727	0,972909	0,022545
МЗ	0,109200	0,924800	0,005600
M4	0,018493	0,997397	0,577260

Soluciones para $P(M_i|C_j)$

$$P(M_1|C_1, C_2, C_3) = 0,008487$$

$$P(M_2|C_1, C_2, C_3) = 0,002712$$

$$P(M_3|C_1, C_2, C_3) = 0,000075$$

$$P(M_4|C_1, C_2, C_3) = 0,004123$$

Si ahora realizamos:

$$\sum_{i=1}^{N=4} P(M_i|C_{1,2,3}) = 0,015397$$

Normalización

Para esto realizamos lo siguiente:

$$\frac{P(M_i|C_1, C_2, C_3)}{\sum_{i=1}^{N=4} P(M_i|C_{1,2,3})}$$

— Ahora todo normalizado ———

$$P(M_1|C_1, C_2, C_3) = 0,551211$$

$$P(M_2|C_1, C_2, C_3) = 0,176138$$

$$P(M_3|C_1,C_2,C_3)=0,004871$$

$$P(M_4|C_1, C_2, C_3) = 0,267779$$

Referencias

