Algebra II: Homework 11

Due on April 21, 2021

Professor Walton

Gabriel Gress Last edited April 21, 2021

Collaborated with the Yellow group.

PROBLEM 1

Claim. Determine the Galois group of $f(x) = (x^2 - 2)(x^2 - 3)(x^2 - 5)$. Determine all the subfields of the splitting field of this polynomial. Write down the corresponding lattice of Galois groups.

Proof. The roots of f are $\{\pm\sqrt{2},\pm\sqrt{3},\pm\sqrt{5}\}$. There are no repeated roots and so f is separable, hence the splitting field over f is a Galois extension. Thus the Galois group is

Aut(
$$\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})/\mathbb{Q}$$
).

Of course the automorphisms must send each root to either itself or its corresponding negative root. Hence the Galois group is given simply by

$$\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$$
.

The subfields of the splitting field are then

$$\mathbb{Q}$$
, $\mathbb{Q}(\sqrt{2})$, $\mathbb{Q}(\sqrt{3})$, $\mathbb{Q}(\sqrt{5})$, $\mathbb{Q}(\sqrt{2},\sqrt{3})$, $\mathbb{Q}(\sqrt{2},\sqrt{5})$, $\mathbb{Q}(\sqrt{3},\sqrt{5})$.

The lattice is given below:

PROBLEM 2

Claim. Let $K = \mathbb{Q}(\sqrt[8]{2},i)$ and let $F_1 = \mathbb{Q}(i)$, $F_2 = \mathbb{Q}(\sqrt{2})$, $F_3 = \mathbb{Q}(\sqrt{-2})$. Prove that $Gal(K/F_1) \cong \mathbb{Z}_8$, $Gal(K/F_2) \cong D_8$, $Gal(K/F_3) \cong Q_8$.

Proof. We use the subfield lattice described in the book. This shows that F_1 corresponds to $\langle \sigma \rangle$, F_2 corresponds to $\langle \sigma^2, \tau \rangle$, and F_3 corresponds to $\langle \sigma^2, \tau \sigma^3 \rangle$. We have from the book that:

$$\sigma = \begin{cases} \theta \mapsto \zeta \theta \\ i \mapsto i \\ \zeta \mapsto \zeta^5 \end{cases}, \sigma^2 = \begin{cases} \theta \mapsto \zeta^6 \theta \\ i \mapsto i \\ \zeta \mapsto \zeta \end{cases}$$

$$\tau = \begin{cases} \theta \mapsto \theta \\ i \mapsto -i \\ \zeta \mapsto \zeta^7 \end{cases}, \tau \sigma^3 = \begin{cases} \theta \mapsto \zeta \theta \\ i \mapsto -i \\ \zeta \mapsto \zeta^3 \end{cases}$$
 Now we check that
$$\zeta \mapsto \zeta^3$$

$$\sigma^8(\theta) = \sigma^7(\zeta\theta) = \sigma^6(\zeta^6\theta) = \sigma^5(\zeta^7\theta) = \sigma^4(\zeta^4\theta) = \sigma^3(\zeta^5\theta) = \sigma^2(\zeta^2\theta) = \sigma(\zeta^3\theta) = \theta$$

So θ generates every element in the group and it is then isomorphic to \mathbb{Z}_8 .

Then we check that

$$(\sigma^{2})^{4}(\theta) = (\sigma^{2})^{3}(\zeta^{6}\theta) = (\sigma^{2})^{2}(\zeta^{4}\theta) = \sigma^{2}(\zeta^{2}\theta) = \theta$$

And so we can see from this that σ^2 corresponds exactly to D_8 .

Finally we see that

$$(\sigma^2)^4 = e$$
$$(\sigma^2)^2 = \sigma^4 = (\tau\sigma^3)^2$$
$$\tau\sigma^3\sigma^2 = \tau\sigma^5 = (\sigma^2)^{-1}\tau\sigma^3$$

And these elements exactly correspond to $a^4 = e$, $a^2 = b^2$, $ba = a^{-1}b$, as expected of the group Q_8 .

PROBLEM 3

Claim. Determine all the subfields of the splitting field of $x^8 - 2$ which are Galois over Q.

Proof. Let K be the splitting field of x^8-2 . K is then $\mathbb{Q}(\sqrt[8]{2},i)$. By a claim from class, we are interested only in subgroups of K which are normal. Referencing the lattice on page 580 of DF, we simply check which groups are fixed under conjugation by σ, τ . A presentation for K is $\langle \sigma, \tau : \sigma^8 = \tau^2 = 1, \sigma\tau = \tau\sigma^3 \rangle$, which allows us to check:

$$\sigma(\tau\sigma^{2k})\sigma^{-1} = \sigma\tau\sigma^{2k-1} = \tau\sigma^{2k+2}$$

$$\neq \tau\sigma^{2k}$$

so all subgroups of G of degree 2 are not normal. Next, we check normality of subgroups of G of degree 4:

• $\langle \sigma^4, \tau \sigma^6 \rangle$ Conjugating by σ yields

$$\sigma \langle \sigma^4, \tau \sigma^6 \rangle \sigma^{-1} = \langle \sigma^4, \sigma \tau \sigma^5 \rangle$$
$$= \langle \sigma^4, \sigma^2 \tau \sigma^2 \rangle$$

• $\langle \sigma^4, \tau \rangle$ Conjugating by σ yields

$$\sigma \langle \sigma^4, \tau \rangle \sigma^{-1} = \langle \sigma^4, \sigma \tau \sigma^{-1} \rangle = \langle \sigma^4, \tau \sigma^2 \rangle$$

...

We know K/\mathbb{Q} is Galois, and by part 3 of the Fundamental Theorem of Galois Theory, the "top level" of extensions (those of order 8) will be Galois as well. Therefore $K/\mathbb{Q}(\sqrt[4]{2},i)$, $K/\mathbb{Q}(\sqrt[8]{2}i)$, $K/\mathbb{Q}(\sqrt[8]{2}\zeta^3)$, $K/\mathbb{Q}(\sqrt[8]{2}\zeta^3)$, $K/\mathbb{Q}(\sqrt[8]{2}\zeta^3)$ are all Galois.

Problem 4

Claim. Give an example of fields F_1 , F_2 , F_3 with $\mathbb{Q} \subset F_1 \subset F_2 \subset F_3$, with $[F_3 : \mathbb{Q}] = 8$ and each field is Galois over all its subfields with the exception that F_2 is not Galois over \mathbb{Q} .

Proof. Let $F_1 = \mathbb{Q}(\sqrt{2})$, $F_2 = \mathbb{Q}(\sqrt[4]{2})$, $F_3 = \mathbb{Q}(\sqrt[4]{2},i)$. It is obvious that $\mathbb{Q} \subset F_1 \subset F_2 \subset F_3$, and immediately clear that $[\mathbb{Q}(\sqrt[4]{2},i):\mathbb{Q}]=8$. The minimal polynomials are:

$$F_1=x^2-2$$

$$F_2 = x^4 - 2$$

$$F_3 = x^8 - 4$$

We have already seen that F_1 is Galois over \mathbb{Q} . F_2 is Galois over F_1 because $\sqrt[4]{2} = \sqrt{\sqrt{2}}$, and F_3 is Galois over both because it is the splitting field of $x^8 - 4$. But F_2 is not Galois over \mathbb{Q} as it has duplicate roots in \mathbb{Q} .

PROBLEM 5

Claim.

- (a). Prove that $x^4 2x^2 2$ is irreducible over \mathbb{Q} .
- (b). Show that the roots of this quartic are

$$\alpha_1 = \sqrt{1 + \sqrt{3}}$$

$$\alpha_2 = \sqrt{1 - \sqrt{3}}$$

$$\alpha_3 = -\sqrt{1 + \sqrt{3}}$$

$$\alpha_4 = -\sqrt{1 - \sqrt{3}}$$

- (c). Let $K_1=\mathbb{Q}(\alpha_1)$ and $K_2=\mathbb{Q}(\alpha_2)$. Show that $K_1\neq K_2$ and $K_1\cap K_2=\mathbb{Q}(\sqrt{3})=F$.
- (d). Prove that K_1 , K_2 and K_1K_2 are Galois over F with $Gal(K_1K_2/F)$ congruent to the Klien 4-group. Write out the elements of $Gal(K_1K_2/F)$ explicitly. Determine all the subgroups of the Galois group and give their corresponding fixed subfields of K_1K_2 containing F.
- (e). Prove that the splitting field of $x^4 2x^2 2$ over Q is of degree 8 with dihedral Galois group.

Proof. (a). We can factor this as $x^4 - 2x^2 - 2 = (x^2 + \sqrt{3} - 1)(x^2 - \sqrt{3} - 1)$ which clearly has irrational roots, and hence must be irreducible in \mathbb{Q} .

- (b). This is clear based on the factored form of $(x^2 + \sqrt{3} 1)(x^2 \sqrt{3} 1)$
- (c).
- (d).
- (e).

Problem 6

Claim. Determine all the Galois group of the splitting field over Q of $x^4 - 14x^2 + 9$.

Proof. We can expand the polynomial as

$$(x^2-7)^2-40$$

which gives us roots

$$\sqrt{7 + 2\sqrt{10}} = \sqrt{5} + \sqrt{2}$$
$$\sqrt{7 - 2\sqrt{10}} = \sqrt{5} - \sqrt{2}$$
$$-\sqrt{7 + 2\sqrt{10}} = -\sqrt{5} - \sqrt{2}$$
$$-\sqrt{7 - 2\sqrt{10}} = -\sqrt{5} + \sqrt{2}$$

And hence we can see that the splitting field is $\mathbb{Q}(\sqrt{5},\sqrt{2})$. By previous problems we can see that the Galois group will be exactly $\mathbb{Z}_2 \times \mathbb{Z}_2$.