

https://www.youtube.com/shorts/XCcPUDrcOQ8

1. Nguyên lý và thiết bị

Để điều khiển máy bay, bộ điều khiển cần 2 thiết bị gồm:

- Transmitter (TX) : Bộ phát sóng, là thiết bị sử dụng điều khiển máy bay.
- Receiver (RX) : Bộ thu sóng đặt trên máy bay.

Bài viết này mình sẽ hướng dẫn tạo bộ Transmitter và Receiver với Arduino.

1.1 Nguyên lý

- TX: Gồm 2 Joy sticks (Núm điều khiển), tín hiệu sẽ được truyền từ Joy Sticks tới Arduino, từ Arduino sẽ truyền thông tin qua mạch Wifi.
- RX : Nhận sóng truyền tới, xử lý tại mạch Arduino Nano, sau đó truyền tín hiệu tới Servo, Motor

2.2 Thiết bị

Thiết bị cần cho Transmitter

Thiết bị cần cho Receiver

Thiết bị điện cho máy bay

2. Nối mạch điện

2.1 Transmitter

Lưu ý:

- Mạch wifi sử dụng nguồn 3.3V. Chú ý sử dụng đúng nguồn 3.3V
- Joy stick sử dụng nguồn 5V.

• Mạch Arduino có thể dùng nguồn 3.3V lấy từ cục xạc dự phòng

2.2 Receiver

3. Lập trình

Tham khảo bài viết tại đây để biết cách nạp chương trình cho mạch

http://arduino.vn/bai-viet/402-huong-dan-nap-chuong-trinh-don-gian-cho-arduino-uno-r3

3.1 Lập trình cho TX

3.1 Xử lý tín hiệu từ Joy Stick

Lưu ý với Joy Stick

- Joy Stick truyền tín hiệu Analog, vì vậy cần sử dụng Port A0 A5 trên mạch Arduino.
- 1 Joy Stick gửi 2 tín hiệu tương ứng trục X và Y, với Joy Stick 1 ta dùng cổng A0 A1, Joy Stick 2 dùng A3 và A4
- Joy Stick trả về giá trị từ 0 1024, khi ở vị trí thấp nhất, giá trị ta nhận được là 0 và khi
 ở vị trí cao nhất, ta nhận được giá trị 1024

```
#define STICK1 X A0 // Arduino pin connected to VRX pin
#define STICK1 Y A1 // Arduino pin connected to VRY pin
#define STICK2 X A2 // Arduino pin connected to VRX pin
#define STICK2 Y A3 // Arduino pin connected to VRY pin
// Tạo stuck lưu thông tin của 1 joy stick
struct JoyStick{
 byte x;
 byte y;
};
// Function nhận tín hiệu từ Joy Stick, lưu vào biến stick
JoyStick read_joy_stick(int stick_num){
 struct JoyStick stick;
 switch (stick_num){
    case 1:
     stick.x = map(analogRead(STICK1_X), 0, 1023, 0, 255);
     stick.y = map(analogRead(STICK1_Y), 0, 1023, 0, 255);
     break;
    case 2:
      stick.x = map(analogRead(STICK2_X), 0, 1023, 0, 255);
     stick.y = map(analogRead(STICK2_Y), 0, 1023, 0, 255);
     break;
```

// Định nghĩa port sử dụng nhận tín hiệu từ Joy Stick

```
}
return stick;
}
```

2.2 Gửi tín hiệu Radio

Ta sử dụng module nRF24L01 để truyền tín hiệu từ TX tới RX

```
#include <RF24.h>
// Khai báo port sử dung truyền tín hiệu tới Radio
RF24 radio(8, 10); // nRF24L01 (CE, CSN)
// Dữ liệu của stick 1 và stick 2 sẽ được lưu vào biến struct Data, sau đó gửi
qua Radio
struct Data{
  JoyStick joy stick 1;
  JoyStick joy_stick_2;
 Spin spin;
};
void setup()
  Serial.begin(9600);
  // Setup Radio
  radio.begin();
  radio.openWritingPipe(address);
  radio.setAutoAck(false);
  radio.setDataRate(RF24 250KBPS);
  radio.setPALevel(RF24_PA_LOW);
}
// Function gửi tín hiệu
void send_data(){
  struct Data data;
  data.joy_stick_1 = read_joy_stick(1);
  data.joy_stick_2 = read_joy_stick(2);
  data.spin = read_spin();
  radio.write(&data, sizeof(Data));
}
```

Code hoàn chỉnh của TX các bạn tham khảo tại đây

https://github.com/easyautoml/arduino/blob/main/rc_airplane/transmitter/transmitter.ino

3.2 Lập trình cho RX

3.2.1 Nhận dữ liệu truyền từ TX

Tại RX, ta cũng sử dụng mạch NRFL01 để nhận tín hiệu, để tránh sự cố đáng tiếc, bạn chú ý tới xử lý khi máy bay bị mất tín hiệu từ TX, bắt buộc phải cho motor ngừng quay

```
#include <RF24.h>
RF24 radio(9, 10); // nRF24L01 (CE, CSN)
const byte address[6] = "00001";
unsigned long lastReceiveTime = 0;
unsigned long currentTime = 0;
void setup()
 // Setup Radio
 radio.begin();
 radio.openReadingPipe(0, address);
 radio.setAutoAck(false);
 radio.setDataRate(RF24_250KBPS);
 radio.setPALevel(RF24 PA LOW);
 radio.startListening(); // Set the module as receiver
}
void loop()
 // Nhận tín hiệu được gửi từ TX
 Data data;
 if (radio.available()) {
    radio.read(&data, sizeof(Data)); // Read the whole data and store it into the
'data' structure
    lastReceiveTime = millis(); // At this moment we have received the data
 }
 // Xử lý khi bị mất tín hiệu
 currentTime = millis();
 boolean lost_signal = currentTime - lastReceiveTime > 1000;
```

```
if ( lost_signal ) {
    // khi bị mất tín hiệu, set motor về 0 để motor ngừng hoạt động
    motor_control(0);
}
```

3.3 Điều khiển cánh máy bay

- Để điều hướng máy bay, ta sử dụng 2 Servo (1 dạng motor nhưng có thể lập trình để quay 1 góc nhất định)
- Servo mình sử dụng là loại đặc biệt, nên chỉ nhận giá trị từ 30-180 thay vì 0-180 như các servo khác.
- Servo sử dụng tín hiệu Digital PWM , vì vậy ta cần dùng các Port Digital có kí hiệu ~ như 3,5,6,9,10,11.

```
void servo control(JoyStick joy stick, Spin spin){
  /*
   * MINI SERVO ANGLE FROM 30 - 180. NOT FROM 0 - 180
  * NEED PMW PINOUT TO CONTROL SERVO. ARDUINO MINI PMW OUTPUT PIN : D3, D5, D6,
D9, D10, D11
  */
 byte left_right = map(joy_stick.y, 0, 255, 30, 180);
 joy_stick.x = joy_stick_convert_direction(joy_stick.x);
 byte up down = map(joy stick.x, 0, 255, 30, 180);
 byte midle_place = 124;
 if (joy_stick.y != midle_place){
   SERVO1.write(left_right);
    SERVO2.write(left_right);
  }
 else{
   // Up and down
   SERVO1.write(up down);
  up_down = map(up_down, 30, 180, 180, 30);
  Serial.print(" UP DOWN : ");
  Serial.println(joy_stick.y);
```

```
SERVO2.write(up_down);
}
```

3.4 Điều khiển động cơ (Motor)

TODO: Add code điều khiển motor

4. Tạo mô hình máy bay

TODO: Nội dung sẽ được update sớm