#Bui Duc Manh 19521822

#linkgithub:https://github.com/DucManh75/MKTG5883.N22.CTTT.git

19521822

%matplotlib inline
import numpy as np
import pandas as pd

df = pd.read\_csv("PastHires.csv")
df.head()

| ₽ |   | Years<br>Experience | Employed? | Previous<br>employers | Level of Education | Top-tier<br>school | Interned | Hired |
|---|---|---------------------|-----------|-----------------------|--------------------|--------------------|----------|-------|
|   | 0 | 10                  | Υ         | 4                     | BS                 | N                  | N        | Υ     |
|   | 1 | 0                   | N         | 0                     | BS                 | Υ                  | Υ        | Υ     |
|   | 2 | 7                   | N         | 6                     | BS                 | N                  | N        | Ν     |
|   | 3 | 2                   | Υ         | 1                     | MS                 | Υ                  | N        | Υ     |
|   | 4 | 20                  | N         | 2                     | PhD                | Υ                  | N        | Ν     |

df.head(10)

|   | Years<br>Experience | Employed? | Previous<br>employers | Level of Education | Top-tier<br>school | Interned | Hired |
|---|---------------------|-----------|-----------------------|--------------------|--------------------|----------|-------|
| 0 | 10                  | Υ         | 4                     | BS                 | N                  | N        | Υ     |
| 1 | 0                   | N         | 0                     | BS                 | Υ                  | Υ        | Υ     |
| 2 | 7                   | N         | 6                     | BS                 | N                  | N        | N     |
| 3 | 2                   | Υ         | 1                     | MS                 | Υ                  | N        | Υ     |
| 4 | 20                  | N         | 2                     | PhD                | Υ                  | N        | Ν     |

df.tail(4)

|    | Years Experience | Employed? | Previous employers | Level of Education | Top-tier school | Interned | Hired |
|----|------------------|-----------|--------------------|--------------------|-----------------|----------|-------|
| 9  | 0                | N         | 0                  | BS                 | N               | N        | N     |
| 1  | 0 1              | N         | 1                  | PhD                | Υ               | N        | Ν     |
| 1  | 1 4              | Υ         | 1                  | BS                 | N               | Υ        | Υ     |
| 1: | 2 0              | N         | 0                  | PhD                | Υ               | N        | Υ     |

df.shape

(13, 7)

df.size

91

len(df)

13

```
df.columns
     Index(['Years Experience', 'Employed?', 'Previous employers',
            'Level of Education', 'Top-tier school', 'Interned', 'Hired'],
           dtype='object')
df['Hired']
     0
          Υ
          Υ
     1
     2
          Ν
     3
          Υ
     4
           N
     5
          Υ
     6
           Υ
     7
          Υ
          Υ
          Ν
     9
     10
          Ν
     11
           Υ
           Υ
     12
    Name: Hired, dtype: object
df['Hired'][:5]
     0
         Υ
     1
         Υ
         Ν
     2
         Υ
     3
    Name: Hired, dtype: object
df['Hired'][5]
     'Y'
```

df[['Years Experience', 'Hired']]

|    | Years | Experience | Hired |
|----|-------|------------|-------|
| 0  |       | 10         | Υ     |
| 1  |       | 0          | Υ     |
| 2  |       | 7          | Ν     |
| 3  |       | 2          | Υ     |
| 4  |       | 20         | N     |
| 5  |       | 0          | Υ     |
| 6  |       | 5          | Υ     |
| 7  |       | 3          | Υ     |
| 8  |       | 15         | Υ     |
| 9  |       | 0          | N     |
| 10 |       | 1          | N     |
| 11 |       | 4          | Υ     |
| 12 |       | 0          | Υ     |

df[['Years Experience', 'Hired']][:5]

|   | Years | Experience | Hired |
|---|-------|------------|-------|
| 0 |       | 10         | Υ     |
| 1 |       | 0          | Υ     |
| 2 |       | 7          | Ν     |
| 3 |       | 2          | Υ     |
| 4 |       | 20         | N     |

df.sort\_values(['Years Experience'])

|    | Years<br>Experience | Employed? | Previous<br>employers | Level of Education | Top-tier<br>school | Interned | Hired |
|----|---------------------|-----------|-----------------------|--------------------|--------------------|----------|-------|
| 1  | 0                   | N         | 0                     | BS                 | Υ                  | Υ        | Υ     |
| 5  | 0                   | N         | 0                     | PhD                | Υ                  | Υ        | Υ     |
| 9  | 0                   | N         | 0                     | BS                 | N                  | N        | Ν     |
| 12 | 0                   | N         | 0                     | PhD                | Υ                  | N        | Υ     |
| 10 | 1                   | N         | 1                     | PhD                | Υ                  | N        | N     |
| 3  | 2                   | Υ         | 1                     | MS                 | Υ                  | N        | Υ     |
| 7  | 3                   | N         | 1                     | BS                 | N                  | Υ        | Υ     |
| 11 | 4                   | Υ         | 1                     | BS                 | N                  | Υ        | Υ     |
| 6  | 5                   | Υ         | 2                     | MS                 | N                  | Υ        | Υ     |
| 2  | 7                   | N         | 6                     | BS                 | N                  | N        | Ν     |
| 0  | 10                  | Υ         | 4                     | BS                 | N                  | N        | Υ     |
| 8  | 15                  | Υ         | 5                     | BS                 | N                  | N        | Υ     |
| 4  | 20                  | N         | 2                     | PhD                | Υ                  | N        | Ν     |

degree\_counts = df['Level of Education'].value\_counts()
degree\_counts

BS 7 PhD 4 MS 2

Name: Level of Education, dtype: int64

degree\_counts.plot(kind='bar')





import numpy as np

#### import pandas as pd

```
labels = ['a','b','c']
my_list = [10,20,30]
arr = np.array([10,20,30])
d = {'a':10,'b':20,'c':30}
```

```
10
     0
     1
          20
          30
     dtype: int64
pd.Series(data=my_list,index=labels)
          10
     а
          20
     b
          30
     dtype: int64
pd.Series(my_list,labels)
          10
     а
          20
          30
     dtype: int64
pd.Series(arr)
         10
     0
     1
          20
          30
     dtype: int64
pd.Series(arr,labels)
          10
          20
          30
     dtype: int64
pd.Series(d)
          10
          20
     b
```

```
30
     С
     dtype: int64
pd.Series(data=labels)
     0
          а
     1
          b
          С
     dtype: object
#Even functions (although unlikely that you will use this)
pd.Series([sum,print,len])
     0
            <built-in function sum>
          <built-in function print>
            <built-in function len>
     dtype: object
serl = pd.Series([1,2,3,4],index = ['USA','Germany','USSR','Japan'])
serl
     USA
                1
     Germany
                2
    USSR
     Japan
     dtype: int64
ser2 = pd.Series([1,2,3,4],index = ['USA','Germany','USSR','Japan'])
ser2
     USA
                1
     Germany
                2
     USSR
                3
```

```
Japan
                4
     dtype: int64
serl['USA']
    1
serl+ser2
    USA
               2
     Germany
               4
    USSR
     Japan
                8
     dtype: int64
#DataFrame
import numpy as np
import pandas as pd
import random as randn
from numpy.random import randn
np.random.seed(101)
df = pd.DataFrame(randn(5,4),index='A B C D E'.split(),columns='W X Y Z'.split())
df
```

|   | W        | Х         | Υ         | Z        |
|---|----------|-----------|-----------|----------|
| Α | 2.706850 | 0.628133  | 0.907969  | 0.503826 |
| В | 0.651118 | -0.319318 | -0.848077 | 0.605965 |

# df['W']

A 2.706850

B 0.651118

C -2.018168

D 0.188695

E 0.190794

Name: W, dtype: float64

# df[['W','Z']]

|   | W         | Z         |
|---|-----------|-----------|
| Α | 2.706850  | 0.503826  |
| В | 0.651118  | 0.605965  |
| С | -2.018168 | -0.589001 |
| D | 0.188695  | 0.955057  |
| Ε | 0.190794  | 0.683509  |

#### df.W

A 2.706850

B 0.651118

C -2.018168

D 0.188695

E 0.190794

Name: W, dtype: float64

```
type(df['W'])
```

pandas.core.series.Series

df['new'] = df['W'] + df['Y']

df

| new       | Z         | Υ         | Х         | W         |   |
|-----------|-----------|-----------|-----------|-----------|---|
| 3.614819  | 0.503826  | 0.907969  | 0.628133  | 2.706850  | A |
| -0.196959 | 0.605965  | -0.848077 | -0.319318 | 0.651118  | В |
| -1.489355 | -0.589001 | 0.528813  | 0.740122  | -2.018168 | С |
| -0.744542 | 0.955057  | -0.933237 | -0.758872 | 0.188695  | D |
| 2.796762  | 0.683509  | 2.605967  | 1.978757  | 0.190794  | Ε |

df.drop('new',axis=1)

|   |   | W         | X         | Υ         | Z         |
|---|---|-----------|-----------|-----------|-----------|
| A | Ą | 2.706850  | 0.628133  | 0.907969  | 0.503826  |
| E | 3 | 0.651118  | -0.319318 | -0.848077 | 0.605965  |
| ( | ) | -2.018168 | 0.740122  | 0.528813  | -0.589001 |
| [ | ) | 0.188695  | -0.758872 | -0.933237 | 0.955057  |
| E | Ξ | 0.190794  | 1.978757  | 2.605967  | 0.683509  |

|     | W                             | X         | Υ         | Z         | new       |  |  |
|-----|-------------------------------|-----------|-----------|-----------|-----------|--|--|
| Α   | 2.706850                      | 0.628133  | 0.907969  | 0.503826  | 3.614819  |  |  |
| В   | 0.651118                      | -0.319318 | -0.848077 | 0.605965  | -0.196959 |  |  |
| С   | -2.018168                     | 0.740122  | 0.528813  | -0.589001 | -1.489355 |  |  |
| D   | 0.188695                      | -0.758872 | -0.933237 | 0.955057  | -0.744542 |  |  |
| on( | on('new'.axis=1.inplace=True) |           |           |           |           |  |  |

df.drop('new',axis=1,inplace=True)

df

|   | W         | X         | Υ         | Z         |
|---|-----------|-----------|-----------|-----------|
| Α | 2.706850  | 0.628133  | 0.907969  | 0.503826  |
| В | 0.651118  | -0.319318 | -0.848077 | 0.605965  |
| С | -2.018168 | 0.740122  | 0.528813  | -0.589001 |
| D | 0.188695  | -0.758872 | -0.933237 | 0.955057  |
| E | 0.190794  | 1.978757  | 2.605967  | 0.683509  |

df.drop('E',axis=0)

|   | W         | X         | Υ         | Z         |
|---|-----------|-----------|-----------|-----------|
| Α | 2.706850  | 0.628133  | 0.907969  | 0.503826  |
| В | 0.651118  | -0.319318 | -0.848077 | 0.605965  |
| С | -2.018168 | 0.740122  | 0.528813  | -0.589001 |
| D | 0.188695  | -0.758872 | -0.933237 | 0.955057  |

W 2.706850

X 0.628133

Y 0.907969

Z 0.503826

Name: A, dtype: float64

# df.iloc[2]

W -2.018168

X 0.740122

Y 0.528813

Z -0.589001

Name: C, dtype: float64

# df.loc['B','Y']

-0.8480769834036315

df.loc[['A','B'],['W','Y']]

|   | W        | Υ        |
|---|----------|----------|
| Α | 2.706850 | 0.907969 |

**B** 0.651118 -0.848077

df>0

|   | W     | X              | Υ    | Z     |
|---|-------|----------------|------|-------|
| Α | True  | True           | True | True  |
| В | True  | ie False False |      | True  |
| С | False | se True 1      |      | False |
| D | True  | ue False Fals  |      | True  |
| Е | True  | True           | True | True  |

df[df>0]

|   | W        | X        | Υ        | Z        |
|---|----------|----------|----------|----------|
| Α | 2.706850 | 0.628133 | 0.907969 | 0.503826 |
| В | 0.651118 | NaN      | NaN      | 0.605965 |
| С | NaN      | 0.740122 | 0.528813 | NaN      |
| D | 0.188695 | NaN      | NaN      | 0.955057 |
| Е | 0.190794 | 1.978757 | 2.605967 | 0.683509 |

df[df['W']>0]

W X Y Z

df[df['W']>0]['Y']

A 0.907969

B -0.848077

D -0.933237

E 2.605967

Name: Y, dtype: float64

df[df['W']>0][['Y','X']]

Y X

**A** 0.907969 0.628133

**B** -0.848077 -0.319318

**D** -0.933237 -0.758872

**E** 2.605967 1.978757

df[(df['W']>0) & (df['Y']>1)]

W X Y Z

**E** 0.190794 1.978757 2.605967 0.683509

# W X Y Z A 2.706850 0.628133 0.907969 0.503826

df.reset\_index()

|   | index | W         | X         | Υ         | Z         |
|---|-------|-----------|-----------|-----------|-----------|
| 0 | А     | 2.706850  | 0.628133  | 0.907969  | 0.503826  |
| 1 | В     | 0.651118  | -0.319318 | -0.848077 | 0.605965  |
| 2 | С     | -2.018168 | 0.740122  | 0.528813  | -0.589001 |
| 3 | D     | 0.188695  | -0.758872 | -0.933237 | 0.955057  |
| 4 | Е     | 0.190794  | 1.978757  | 2.605967  | 0.683509  |

newind = 'CA NY WY OR CO'.split()
df['States'] = newind
df

|   | W         | Х         | Υ         | Z         | Status | States |
|---|-----------|-----------|-----------|-----------|--------|--------|
| Α | 2.706850  | 0.628133  | 0.907969  | 0.503826  | CA     | CA     |
| В | 0.651118  | -0.319318 | -0.848077 | 0.605965  | NY     | NY     |
| С | -2.018168 | 0.740122  | 0.528813  | -0.589001 | WY     | WY     |
| D | 0.188695  | -0.758872 | -0.933237 | 0.955057  | OR     | OR     |
| Е | 0.190794  | 1.978757  | 2.605967  | 0.683509  | CO     | CO     |

df.set\_index('States')

| W | X | Υ | Z | Statu |
|---|---|---|---|-------|
|   |   |   |   |       |

| CA | 2.706850  | 0.628133  | 0.907969  | 0.503826  | CA |
|----|-----------|-----------|-----------|-----------|----|
| NY | 0.651118  | -0.319318 | -0.848077 | 0.605965  | NY |
| WY | -2.018168 | 0.740122  | 0.528813  | -0.589001 | WY |
| ΩP | N 188605  | _೧ 752272 | _Ი        | N 055N57  | ΛP |

df

|   | W         | X         | Υ         | Z         | Status | States |
|---|-----------|-----------|-----------|-----------|--------|--------|
| Α | 2.706850  | 0.628133  | 0.907969  | 0.503826  | CA     | CA     |
| В | 0.651118  | -0.319318 | -0.848077 | 0.605965  | NY     | NY     |
| С | -2.018168 | 0.740122  | 0.528813  | -0.589001 | WY     | WY     |
| D | 0.188695  | -0.758872 | -0.933237 | 0.955057  | OR     | OR     |
| Е | 0.190794  | 1.978757  | 2.605967  | 0.683509  | СО     | СО     |

df.set\_index('States',inplace=True)
df

|        | W         | Х         | Υ         | Z         | Status |
|--------|-----------|-----------|-----------|-----------|--------|
| States |           |           |           |           |        |
| CA     | 2.706850  | 0.628133  | 0.907969  | 0.503826  | CA     |
| NY     | 0.651118  | -0.319318 | -0.848077 | 0.605965  | NY     |
| WY     | -2.018168 | 0.740122  | 0.528813  | -0.589001 | WY     |
| OR     | 0.188695  | -0.758872 | -0.933237 | 0.955057  | OR     |
| СО     | 0.190794  | 1.978757  | 2.605967  | 0.683509  | СО     |

```
outside = ['G1','G1','G1','G2','G2','G2']
inside = [1,2,3,1,2,3]
hier_index = list(zip(outside,inside))
hier_index = pd.MultiIndex.from_tuples(hier_index)
hier_index
     MultiIndex([('G1', 1),
                ('G1', 2),
                ('G1', 3),
                ('G2', 1),
                ('G2', 2),
                ('G2', 3)],
df = pd.DataFrame(np.random.randn(6,2),index=hier_index,columns=['A','B'])
df
                    Α
                              В
     G1 1 -0.497104 -0.754070
          2 -0.943406 0.484752
          3 -0.116773 1.901755
     G2 1 0.238127 1.996652
          2 -0.993263 0.196800
          3 -1.136645 0.000366
df.loc['G1']
```

```
A B
```

**1** -0.497104 -0.754070

df.loc['G1'].loc[1]

A -0.497104

B -0.754070

Name: 1, dtype: float64

df.index.names
df.index.names = ['Group','Num']
df

A B

| Group | Num |           |           |
|-------|-----|-----------|-----------|
| G1    | 1   | -0.497104 | -0.754070 |
|       | 2   | -0.943406 | 0.484752  |
|       | 3   | -0.116773 | 1.901755  |
| G2    | 1   | 0.238127  | 1.996652  |
|       | 2   | -0.993263 | 0.196800  |
|       | 3   | -1.136645 | 0.000366  |

df.xs('G1')

```
Α
                            В
df.xs(['G1',1])
     <ipython-input-91-c549ee06ce91>:1: FutureWarning: Passing lists as key for xs is deprecated and will be removed in a fu
       df.xs(['G1',1])
     A -0.497104
        -0.754070
    Name: (G1, 1), dtype: float64
df.xs(1,level='Num')
                   Α
                              В
      Group
            -0.497104 -0.754070
       G1
       G2
             0.238127 1.996652
#Missing Data
import numpy as np
import pandas as pd
df = pd.DataFrame({'A':[1,2,np.nan],'B':[5,np.nan,np.nan],'C':[1,2,3]})
df
                в с
           Α
```

1.0

5.0 1

2.0 NaN 2

2 NaN NaN 3

df.dropna()

df.dropna(axis=1)

**0** 1

1 2

**2** 3

df.dropna(thresh=2)

1 2.0 NaN 2

df.fillna(value='FILL VALUE')

|   | Α   | В          | C |
|---|-----|------------|---|
| 0 | 1.0 | 5.0        | 1 |
| 1 | 2.0 | FILL VALUE | 2 |

2 FILL VALUE FILL VALUE 3

df['A'].fillna(value=df['A'].mean())

|   | Company | Person  | Sales |
|---|---------|---------|-------|
| 0 | GOOG    | Sam     | 200   |
| 1 | GOOG    | Charlie | 120   |
| 2 | MSFT    | Amy     | 340   |
| 3 | MSFT    | Vanessa | 124   |
| 4 | FB      | Carl    | 243   |
| 5 | FB      | Sarah   | 350   |

```
Sales
```

#### Company

**FB** 296.5

df.groupby('Company').mean()

# Sales

#### Company

FB 296.5
GOOG 160.0
MSFT 232.0

by\_comp.std()

#### Sales

#### Company

FB 75.660426
GOOG 56.568542
MSFT 152.735065

by\_comp.min(
)

Person Sales

ED Carl 2/12

by\_comp.max()

#### Person Sales

# Company

| FB   | Sarah   | 350 |
|------|---------|-----|
| GOOG | Sam     | 200 |
| MSFT | Vanessa | 340 |

by\_comp.count()

#### Person Sales

| Ċ | റ | m | n | а | n | v   |
|---|---|---|---|---|---|-----|
| _ | v |   | ч | ч | ш | ı y |

| FB   | 2 | 2 |
|------|---|---|
| GOOG | 2 | 2 |
| MSFT | 2 | 2 |

by\_comp.describe()

Sales count mean std min 25% 50% 75%

max

by\_comp.describe().transpose()

|       | Company | FB         | GOOG       | MSFT       |
|-------|---------|------------|------------|------------|
| Sales | count   | 2.000000   | 2.000000   | 2.000000   |
|       | mean    | 296.500000 | 160.000000 | 232.000000 |
|       | std     | 75.660426  | 56.568542  | 152.735065 |
|       | min     | 243.000000 | 120.000000 | 124.000000 |
|       | 25%     | 269.750000 | 140.000000 | 178.000000 |
|       | 50%     | 296.500000 | 160.000000 | 232.000000 |
|       | 75%     | 323.250000 | 180.000000 | 286.000000 |
|       | max     | 350.000000 | 200.000000 | 340.000000 |

by\_comp.describe().transpose()['GOOG']

| Sales | coun  | t 2.000000     |
|-------|-------|----------------|
|       | mean  | 160.000000     |
|       | std   | 56.568542      |
|       | min   | 120.000000     |
|       | 25%   | 140.000000     |
|       | 50%   | 160.000000     |
|       | 75%   | 180.000000     |
|       | max   | 200.000000     |
| Name: | GOOG, | dtype: float64 |

#Merging, Joining and Concatenating

df1

|   | Α  | В  | С  | D  |
|---|----|----|----|----|
| 0 | A0 | В0 | C0 | D0 |
| 1 | A1 | B1 | C1 | D1 |
| 2 | A2 | B2 | C2 | D2 |
| 3 | А3 | ВЗ | C3 | D3 |

df3

|    | Α   | В   | С   | D   |
|----|-----|-----|-----|-----|
| 8  | A8  | В8  | C8  | D8  |
| 9  | A9  | В9  | C9  | D9  |
| 10 | A10 | B10 | C10 | D10 |
| 11 | A11 | B11 | C11 | D11 |

pd.concat([df1,df2,df3])

|    | Α   | В   | С   | D   |
|----|-----|-----|-----|-----|
| 0  | A0  | В0  | C0  | D0  |
| 1  | A1  | B1  | C1  | D1  |
| 2  | A2  | B2  | C2  | D2  |
| 3  | А3  | ВЗ  | C3  | D3  |
| 4  | A4  | B4  | C4  | D4  |
| 5  | A5  | B5  | C5  | D5  |
| 6  | A6  | В6  | C6  | D6  |
| 7  | A7  | В7  | C7  | D7  |
| 8  | A8  | В8  | C8  | D8  |
| 9  | A9  | В9  | C9  | D9  |
| 10 | A10 | B10 | C10 | D10 |
| 11 | A11 | B11 | C11 | D11 |

|    | Α   | В   | С   | D   | Α   | В   | С   | D   | Α   | В   | С   | D   |
|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0  | A0  | В0  | C0  | D0  | NaN |
| 1  | A1  | В1  | C1  | D1  | NaN |
| 2  | A2  | B2  | C2  | D2  | NaN |
| 3  | A3  | В3  | C3  | D3  | NaN |
| 4  | NaN | NaN | NaN | NaN | A4  | B4  | C4  | D4  | NaN | NaN | NaN | NaN |
| 5  | NaN | NaN | NaN | NaN | A5  | B5  | C5  | D5  | NaN | NaN | NaN | NaN |
| 6  | NaN | NaN | NaN | NaN | A6  | В6  | C6  | D6  | NaN | NaN | NaN | NaN |
| 7  | NaN | NaN | NaN | NaN | A7  | В7  | C7  | D7  | NaN | NaN | NaN | NaN |
| 8  | NaN | A8  | В8  | C8  | D8  |
| 9  | NaN | A9  | В9  | C9  | D9  |
| 10 | NaN | A10 | B10 | C10 | D10 |
| 11 | NaN | A11 | B11 | C11 | D11 |

```
left = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
'A': ['A0', 'A1', 'A2', 'A3'],
'B': ['B0', 'B1', 'B2', 'B3']})
right = pd.DataFrame ({ 'key': ['K0', 'K1', 'K2', 'K3'],
'C': ['C0', 'C1', 'C2', 'C3'],
'D': ['D0', 'D1', 'D2', 'D3']})
```

left

|   | key | Α  | В  |
|---|-----|----|----|
| 0 | K0  | A0 | В0 |
| 1 | K1  | A1 | В1 |
| 2 | K2  | A2 | B2 |
| - |     |    |    |

right

|   | key | С  | D  |
|---|-----|----|----|
| 0 | K0  | C0 | D0 |
| 1 | K1  | C1 | D1 |
| 2 | K2  | C2 | D2 |
| 3 | K3  | C3 | D3 |

pd.merge(left,right,how='inner',on='key')

|   |   | key | Α  | В  | C  | D  |
|---|---|-----|----|----|----|----|
| ( | ) | K0  | A0 | B0 | C0 | D0 |
| • | 1 | K1  | A1 | B1 | C1 | D1 |
| 2 | 2 | K2  | A2 | B2 | C2 | D2 |
| 3 | 3 | K3  | АЗ | ВЗ | C3 | D3 |

pd.merge(left,right,on=['key1','key2'])

|   | key1 | key2 | Α  | В  | С  | D  |  |
|---|------|------|----|----|----|----|--|
| 0 | K0   | K0   | A0 | В0 | C0 | D0 |  |
| 1 | K2   | KΩ   | Δ2 | B2 | C2 | Π2 |  |

pd.merge(left,right,how='outer',on=['key1','key2'])

|   | key1 | key2 | Α   | В   | С   | D   |
|---|------|------|-----|-----|-----|-----|
| 0 | K0   | K0   | A0  | В0  | C0  | D0  |
| 1 | K1   | K1   | A1  | В1  | NaN | NaN |
| 2 | K2   | K0   | A2  | B2  | C2  | D2  |
| 3 | K3   | K1   | А3  | В3  | NaN | NaN |
| 4 | K1   | K0   | NaN | NaN | C1  | D1  |
| 5 | K3   | K0   | NaN | NaN | C3  | D3  |

pd.merge(left,right,how='left',on=['key1','key2'])

```
key1 key2 A B C D

0 K0 K0 A0 B0 C0 D0

1 K1 K1 A1 B1 NaN NaN

pd.merge(left,right,how='right',on=['key1','key2'])
```

|   | key1 | key2 | Α   | В   | С  | D  |
|---|------|------|-----|-----|----|----|
| 0 | K0   | K0   | A0  | В0  | C0 | D0 |
| 1 | K1   | K0   | NaN | NaN | C1 | D1 |
| 2 | K2   | K0   | A2  | B2  | C2 | D2 |
| 3 | K3   | K0   | NaN | NaN | СЗ | D3 |

left.join(right)

|            | Α  | В  | С   | D   |
|------------|----|----|-----|-----|
| K0         | A0 | В0 | C0  | D0  |
| <b>K</b> 1 | A1 | B1 | NaN | NaN |
| K2         | A2 | B2 | C1  | D1  |

left.join(right,how='outer')

```
Α
         В
              C
                D
    Α0
         B0
             C0
K0
                 D0
K1
    Α1
         B1 NaN NaN
K2
    A2
             C1
         B2
                 D1
K3 NaN NaN
            C2
                 D2
```

#Operations

```
df = pd.DataFrame({'coll':[1,2,3,4],'col2':[444,555,666,444],'col3':['abc','def','ghi','xyz']})
```

df.head()

|   | coll | col2 | col3 |
|---|------|------|------|
| 0 | 1    | 444  | abc  |
| 1 | 2    | 555  | def  |
| 2 | 3    | 666  | ghi  |
| 3 | 4    | 444  | xyz  |

3

```
df['col2'].value_counts()
     444
           2
     555
           1
           1
     666
    Name: col2, dtype: int64
newdf = df[(df['col1']>2) & (df['col2']==444)]
newdf
        coll col2 col3
           4 444 xyz
     3
def time2(x):
  return x*2
df['coll'].apply(time2)
     0
         2
         4
    1
     2
         6
    Name: coll, dtype: int64
df['col3'].apply(len)
     0
         3
     1
         3
         3
          3
    Name: col3, dtype: int64
```

df.columns

df.index

RangeIndex(start=0, stop=4, step=1)

df

|   | col2 | col3 |
|---|------|------|
| 0 | 444  | abc  |
| 1 | 555  | def  |
| 2 | 666  | ghi  |
| 3 | 444  | xyz  |

```
df.sort_values(by='col2')
        col2 col3
         444
               abc
         444
               xyz
         555
               def
     2
         666
                ghi
df.isnull()
         col2 col3
     0 False False
     1 False False
     2 False False
      3 False False
df.dropna
     <bound method DataFrame.dropna of col2 col3</pre>
        444 abc
        555 def
        666
             ghi
        444 xyz>
import numpy as np
df = pd.DataFrame({'coll':[1,2,3,np.nan],
```

'col2':[np.nan,555,666,444],

df.head()

'col3':['abc','def','ghi','xyz']})

|   | coll | col2  | col3 |
|---|------|-------|------|
| 0 | 1.0  | NaN   | abc  |
| 1 | 2.0  | 555.0 | def  |
| 2 | 3.0  | 666.0 | ghi  |
| 3 | NaN  | 444.0 | xyz  |

# df.isnull()

|   | coll  | col2  | col3  |
|---|-------|-------|-------|
| 0 | False | True  | False |
| 1 | False | False | False |
| 2 | False | False | False |
| 3 | True  | False | False |

# df.dropna()

|   | coll | col2  | col3 |
|---|------|-------|------|
| 1 | 2.0  | 555.0 | def  |
| 2 | 3.0  | 666.0 | ghi  |

df.fillna('FILL')

df.pivot\_table(values='D',index=['A','B'],columns=['C'])

#Data Input Ouput
import numpy as np
import pandas as pd

df = pd.read\_csv('example.csv')
df

|   | а  | b  | C  | d  |
|---|----|----|----|----|
| 0 | 0  | 1  | 2  | 3  |
| 1 | 4  | 5  | 6  | 7  |
| 2 | 8  | 9  | 10 | 11 |
| 3 | 12 | 13 | 14 | 15 |

df.to\_csv('example.csv',index=False)