Claims

- A process for synthesizing biopolymers by stepwise 1. from synthesis building blocks which assembly least carry protective groups, where at 5 synthesis building block which carries a two-stage protective group is used, where the two-stage protective group is activated by an illumination eliminated by a subsequent chemical step and characterized in that the treatment step, 10 elimination of а activation takes place by group photoactivatable protective selected from triplet-sensitized photoactivatable photoactivatable labeled groups and groups, triplet-sensitized and labeled photoactivatable 15 groups.
- The process as claimed in claim 1, characterized in that the chemical treatment step comprises a treatment with base, a treatment with acid, an oxidation, a reduction or/and a catalyzed, e.g. enzymatic, reaction.
- 3. The process as claimed in claim 2, characterized in that the chemical treatment step comprises an acid treatment.
- The process as claimed in any of claims 1 to 3, characterized in that a derivatized trityl group
 is used as two-stage protective group.

35

5. The process as claimed in claim 4, characterized in that the synthesis building block with the two-stage protective group has the general formula (I):

$$R_2$$
 M_m
 M_m
 M_m
 M_m

where R_1 and R_2 are each independently selected from hydrogen, (L)- R_3 , -O-(L)- R_3 , N(R_3)₂, NHZ and M,

 R_3 is a C_1 - C_8 alkyl group, a C_2 - C_8 -alkenyl group, a C_2 - C_8 -alkynyl group, a C_6 - C_{25} -aryl group or/and a C_5 - C_{25} -heteroaryl group, which may optionally have substituents,

L is a linker group which is optionally present, X is the synthesis building block,

5

M is in each case independently a label optionally linked via a linker group, and m is in each case independently an integer from 0 to 4,

- Y is in each case independently a photoactivatable protective group as claimed in claim 1, Z is an amino protective group, and where R_1 or/and R_2 may optionally be replaced by Y.
- 20 6. The process as claimed in any of claims 1 to 5, characterized in that a photoactivatable group of the general formula (II) is used

in which Ar is a fused polycyclic fluorescent aryl or heteroaryl,

 S_1 and S_2 are each independently selected from hydrogen, a C_1 - C_8 -alkyl group, a C_2 - C_8 -alkenyl group, a C_2 - C_8 -alkynyl group, a C_6 - C_{25} -aryl group or a C_5 - C_{25} -heteroaryl group, each of which may optionally have substituents, and Q is a group for linking the photolabile component to the component which can be eliminated

to the component which can be eliminated chemically.

5

25

7. The process as claimed in any of claims 1 to 5, characterized in that a photoactivatable group of the general formula (III) is used:

$$T_{5}$$

$$T_{7}$$

$$T_{1}$$

$$T_{2}$$

$$Q_{1}$$

$$Z_{1}$$

$$Z_{2}$$
(IIII)

in which T_1 , T_2 , T_3 , T_4 , T_5 and T_6 are each independently selected from hydrogen, C_1 - C_8 -alkyl, C_2 - C_8 -alkenyl, C_2 - C_8 -alkynyl, C_1 - C_8 -alkoxy, C_2 - C_8 -alkoxycarbonyl, C_6 - C_{20} -aryl or aryloxy or/and C_5 - C_{25} -heteroaryl or heteroaryloxy, each of which may optionally have substituents,

and T_1 or/and T_2 may additionally be trialkylsilyl, and one of T_3 and T_4 may be NO_2 , with the proviso that the other is then H,

 Q_1 is hydrogen, optionally substituted C_1-C_4 -alkoxy or di(C_1-C_4 -alkyl)amino,

30 Z_1 and Z_2 together are -OC(0)-, $-NT_7C(0)-$ or $-CT_8=CT_9$, where T_8 and T_9 are defined as T_3-T_6 , and T_9 may additionally be NO_2 , and adjacent groups T may optionally form a 5- or

6-membered carbocyclic or heterocyclic, saturated or unsaturated ring, and Q is a group for linking the photolabile component to the component which can be eliminated chemically.

8. The process as claimed in any of claims 1 to 5, characterized in that a photoactivatable group of the general formula (IV) is used:

10

5

$$U_3$$
 U_2
 U_5
 Q
 (V)

in which U_1 , U_2 , U_4 and U_5 are each independently selected from hydrogen, halogen, NO2, U6, (L)-U6, $O-(L)-U_6$, $N(U_6)_2$ and NHZ, U_6 is $C_1-C_8-alkyl$, 15 C_2-C_8 -alkynyl, C_6-C_{25} -aryl C_2-C_8 -alkenyl, C₅₋C₂₅-heteroaryl, each of which may optionally have substituents, L is a linker group which is optionally present, U3 is a label optionally linked via a linker group, and 20 Q is a group for linking the photolabile component be eliminated which can to the component chemically.

25 9. The process as claimed in any of claims 1 to 5, characterized in that a photoactivatable group of the general formula (V) is used:

$$V_4$$
 V_2
 V_5
 V_6
 V_8
 V_8
 V_8
 V_8
 V_9
 V_9

in which V_1 , V_2 , V_3 , V_4 , V_5 and V_6 are each independently selected from hydrogen, halogen, NO_2 , V_7 , $(L)-V_7$, $O_-(L)-V_7$, $N(V_7)_2$, NHZ and M, where V_7 is C_1-C_8 -alkyl, C_2-C_8 -alkenyl, C_2-C_8 -alkynyl, C_6-C_{25} -aryl or C_5-C_{25} -heteroaryl, each of which may optionally have substituents, L is a linker group which is optionally present and V_5 and V_6 may additionally be trialkylsilyl, M is a label optionally linked via a linker group, and Q is a group for linking the photolabile component to the component which can be eliminated chemically.

- 15 10. The process as claimed in any of claims 1 to 9, characterized in that the two-stage protective group carries a plurality of labeling groups which can be detected independently of one another.
- 20 11. The process as claimed in claim 10, characterized in that a first label is linked to the photolabile component and a second label is linked to the component which can be eliminated chemically.
- 25 12. The process as claimed in any of claims 5 to 11, characterized in that the two-stage protective group comprises at least one fluorescent label.
- 13. The process as claimed in claim 12, characterized in that a fluorescent label is introduced on the trityl framework of a compound (I).
 - 14. The process as claimed in any of claims 1 to 13, characterized in that the biopolymers are selected

from nucleic acids, nucleic acid analogs, peptides and saccharides.

- 15. The process as claimed in claim 14, characterized in that the biopolymers are selected from nucleic acids and nucleic acid analogs.
- 16. The process as claimed in claim 15, characterized in that phosphoramidites are used as synthesisbuilding blocks.
 - 17. The process as claimed in claim 16, characterized in that phosphoramidite building blocks carrying the two-stage protective group on the 5'-0 atom are used.

15

20

25

30

35

- 18. The process as claimed in any of claims 1 to 17, characterized in that the synthesis of the biopolymers includes the use of spacer and/or linker building blocks.
- 19. The process as claimed in any of claims 1 to 18, characterized in that the synthesis of the biopolymers is carried out on a solid phase.
- 20. The process as claimed in claim 19, characterized in that a location-dependent synthesis of a plurality of biopolymers is carried out with in each case a different sequence of synthesis building blocks on a single support.
 - 21. The process as claimed in any of claims 1 to 20, characterized in that a synthesis building block with two-stage protective group is used for quality control.
 - 22. Compounds of the general formula (I)

$$R_2$$
 M_{in}
 M_{in}
 M_{in}
 M_{in}
 M_{in}
 M_{in}

where R_1 , Y, M and m are defined as in claim 1, and X is a synthesis building block or a leaving group, where R_1 or/and R_2 may optionally be replaced by Y.

5

15

20

- 23. Compounds as claimed in claim 22, characterized in that they carry a plurality of labels detectable independently of one another.
 - 24. Compounds as claimed in claim 22 or 23, characterized in that they carry at least one fluorescent label.
- 25. The use of compounds of the general formula (I) as synthesis building blocks or for preparing synthesis building blocks for the synthesis of biopolymers.
 - 26. The use as claimed in claim 25 for quality control during the synthesis of biopolymers on a solid support.