Maximum Acyclic Subgraph

Никита Лансков

22 декабря 2021 г.

Содержание

1	Осн	овная часть	
	1.1	Формулировка задачи распознавания, доказательство ее NP-полноты	
		1.1.1 Формулировка задачи распознавания	
		1.1.2 Доказательство NP-полноты	
	1.2	Частные случаи	
		1.2.1 Регулярный граф степени < 3	
		1.2.2 Регулярный граф степени 3	
	1.3	Точный экспоненциальный алгоритм	
	1.4	Полиномиальный приближенный алгоритм	
2	Дог	полнительные исследования	
	2.1	Нижние оценки погрешности для приближенных алгоритмов	
	2.2	Вероятностные алгоритмы	
		Исследование вариаций формулировки	1

Введение

Курсовой проект по теории алгоритмов.

1 Основная часть

1.1 Формулировка задачи распознавания, доказательство ее NP-полноты

1.1.1 Формулировка задачи распознавания

Задача 1 (Задача MAS)

Дан конечный ориентированный граф D=(V,A) и константа $B\in\mathbb{N}$. Существует ли подмножество $A'\in A$, такое, что подграф D=(V,A') не содержит циклов $u\mid A'\mid>=B$.

1.1.2 Доказательство NP-полноты

Чтобы показать, что задача MAS является NP-полной, требуется:

- 1. Показать, что $MAS \in NP$
- 2. Свести к MAS другую известную задачу, чья NP-полнота уже установлена

Определение 1

Задача распознавания P принадлежит классу NP при схеме кодирования c, если $L\left[P,c\right]\in NP$

Определение 2

Язык L принадлежит классу NP, если существует HMT M, распознающая L, u многочлен $p \in \mathbb{Z}[x]$, такие, что время работы M на любом входе $x \in \Sigma^*$ не превосходит p(|x|)

Таким образом, чтобы доказать что задача MAS является NP полной, нам достаточно убедиться в существовании недетерминированной машины тьюринга, которая бы распознавала язык этой задачи.

Действительно, в качестве подсказки достаточно взять набор нулей и единиц длины |V|, где каждое значение соответствует конкретной вершине $v \in V$, и единицы стоят на местах вершин, которые входят в максимальный ациклический подграф, а на местах оставшихся вершин - нули. Для этого предлагаю свести к задаче MAS задачу о независимом множестве.

Определение 3

G - конечный граф. $W \in V(G)$ - независимое множество, если $\forall u,v \in W(uv \notin E(G))$

Задача 2 (О независимом множестве)

Дан конечный неориентированный граф G и число $B \in \mathbb{N}$. Есть ли в G независимое множество размера не менее B.

Преобразуем неориентированный граф из зачачи о независимом множестве G к ориентированному D следующим образом:

$$V(D) = V(G)$$

$$A(D) = \{\{uv, vu\} \mid \forall uv \in E(G)\}$$

Таким образом, мы строим граф на тех же вершинах, и для каждого ребра исходного графа добавляем две разнонаправленные дуги в наш новый ориентированный граф.

При таком построении, если мы найдем в графе G независимое множество W, то мы также нашли бы максимальный ациклический подграф в D. Это правда, так как добавление любой из оставшихся вершин в подграф появился бы цикл, так как в графе G добавленная вершина была бы связана c одной или несколькими вершинами из независимого множества W.

1.2 Частные случаи

Определение 4

Степень вершины графа - количество ребер, инцидентных этой вершине.

Определение 5

Регулярный граф степени <math>k - это граф, все вершины которого имеют степень k.

1.2.1 Регулярный граф степени < 3

Самый простой частный случай - если мы имеем дело с регулярным графом степени меньше 3. Если в таком графе и есть цикл - то это цикл, в который входят все вершины. Чтобы это проверить, достаточно пройтись по всем ребрам, что можно сделать за полиномиальное время.

1.2.2 Регулярный граф степени 3

Если же регулярный граф имеет степень 3 - то все не так однозначно. В общем случае - задача MAS остается NP трудной для таких графов, но для некоторых особых ситуаций мы можем найти приближение с точностью как минимум $\frac{8}{9}$, или даже точное решение за полиномиальное время. [1]

Пусть дан регулярный граф степени 3: G = (V, E), для которого мы хотим найти максимальный ациклический подграф $S \subseteq E$. Будем проводить рассуждения в рамках следующих предположений.

Определение 6

Длина цикла - число ребер, входящих в цикл.

Определение 7

Положительная (отрицательная) степень вершины графа - это число всех исходящих (входящих) ребер. Обозначения: $d^+\{v\}, (d^-\{v\})$

Предположение 1.2.2.1

Все вершины в графе G имеют положительную и отрицательную степени не меньше 1 и суммарную степень 3.

Доказательство. Если в G содержится вершина, у которой положительная или отрицательная степень равна нулю, то мы можем сразу включить все смежные с ней ребра в S, так как они будут содержаться в любом максимальном ациклическом подграфе.

Предположение 1.2.2.2

 Γ раф G не содержит циклов длины 2 и 3.

Доказательство. Если мы имеем дело с неориентированными циклами, то мы можем договориться для каждого такого цикла включать в S все ребра цикла, при этом сами циклы удалить из рассмотрения. Удаление цикла длины три не добавит новых циклов, так как мы работаем в рамках предположения 1.2.2.1. В случае ориентированных циклов длины 2 и 3, нам достаточно не включать в S какое-то одно ребро цикла.

Определение 8

lpha-ребро - ребро (i,j), такое, что

$$d^-\{i\} = 2, d^+\{i\} = 1$$
 $d^-\{j\} = 1, d^+\{j\} = 2$

Если в графе нет α -ребер, то мы можем найти максимальный ациклический подграф за полиномиальное время следующим алгоритмом:

...

Если в графе есть α -ребра, то делаем следующее.

. . .

Понятно, что последний приведенный алгоритм будет давать апроксимацию $\frac{8}{9}$ в регулярном графе степени 3.

В [1] также показано, что если более аккуратно выбирать α -ребра, то мы можем получить алгоритм с точностью $\frac{11}{12}$.

1.3 Точный экспоненциальный алгоритм

Ссылки: [2]

1.4 Полиномиальный приближенный алгоритм

Ссылки: [3], [4]

- 2 Дополнительные исследования
- 2.1 Нижние оценки погрешности для приближенных алгоритмов

2.2 Вероятностные алгоритмы

Алгоритм отсюда: [4]

2.3 Исследование вариаций формулировки

Ссылки: [5]

Список литературы

- [1] Alantha Newman. The maximum acyclic subgraph problem and degree-3 graphs. pages 147–158, 01 2001.
- [2] Henning Fernau and Daniel Binkele-Raible. Exact algorithms for maximum acyclic subgraph on a superclass of cubic graphs. pages 144–156, 02 2008.
- [3] Alantha Newman. Approximating the maximum acyclic subgraph. 05 2014.
- [4] Refael Hassin and Shlomi Rubinstein. Approximations for the maximum acyclic subgraph problem. *Information Processing Letters*, 51:133–140, 08 1994.
- [5] Mourad Baïou and Francisco Barahona. Maximum weighted induced bipartite subgraphs and acyclic subgraphs of planar cubic graphs. SIAM Journal on Discrete Mathematics, 30:1290–1301, 01 2016.