Collected Problems: Computational

William Dai

Started June 30, 2020

§ 1 Introduction

I use the following scheme: 1 point is roughly AMC 10 8-14 level. 2 points is roughly AMC 10 # 15-17 level, 3 points are AMC 10 # 18-21 level, 4 points are AMC 10 # 22-23 level and 5 points are # 24-25 level. Furthermore, 6 points are #6-8 AIME level, 7 points are # 9-11 AIME level, 8 points are #12-13 AIME level, 9 points are #14-15 AIME level, and 10 points are a hypothetical #16-18 AIME level. 10 pointers are usually olympiad-style problems that require several major lemmas and have very long solutions.

Most of these problems are from more obscure contests that will serve as good AIME and AMC practice.

§ 2 Combinatorics

§ 2.1 Casework

[28] Problem 1 (BmMT 2014) Call a positive integer top-heavy if at least half of its digits are in the set {7, 8, 9}. How many three digit top-heavy numbers exist? (No number can have a leading zero.)

[3] Problem 2 (PuMAC 2019) Suppose Alan, Michael, Kevin, Igor, and Big Rahul are in a running race. It is given that exactly one pair of people tie (for example, two people both get second place), so that no other pair of people end in the same position. Each competitor has equal skill; this means that each outcome of the race, given that exactly two people tie, is equally likely. The probability that Big Rahul gets first place (either by himself or he ties for first) can be expressed in the form m/n, where m, n are relatively prime, positive integers. Compute m+n.

[3] Problem 3 (PuMAC 2019) Prinstan Trollner and Dukejukem are competing at the game show WASS. Both players spin a wheel which chooses an integer from 1 to 50 uniformly at random, and this number becomes their score. Dukejukem then flips a weighted coin that lands heads with probability 3/5. If he flips heads, he adds 1 to his score. A player wins the game if their score is higher than the other player's score. The probability Dukejukem defeats the Trollner to win WASS equals m/n where m, n are co-prime positive integers. Compute m + n.

[4] Problem 4 (Purple Comet 2015 HS) Seven people of seven different ages are attending a meeting. The seven people leave the meeting one at a time in random order. Given that the youngest person leaves the meeting sometime before the oldest person leaves the meeting, the probability that the third, fourth, and fifth people to leave the meeting do so in order of their ages (youngest to oldest) is $\frac{m}{n}$, where m and n are relatively prime positive integers. Find m + n.

[5] **Problem 5** (HMMT November 2014) Consider the set of 5-tuples of positive integers at most 5. We say the tuple $(a_1, a_2, a_3, a_4, a_5)$ is perfect if for any distinct indices i, j, k, the three numbers a_i, a_j, a_k do not form an arithmetic progression (in any order). Find the number of perfect 5-tuples.

[5] Problem 6 (AMC 12B 2017/22) Abby, Bernardo, Carl, and Debra play a game in which each of them starts with four coins. The game consists of four rounds. In each round, four balls are placed in an urn—one green, one red, and two white. The players each draw a ball at random without replacement. Whoever gets the green ball gives one coin to whoever gets the red ball. What is the probability that, at the end of the fourth round, each of the players has four coins?

[5] Problem 7 (HMMT November 2013) Find the number of positive integer divisors of 12! that leave a remainder of 1 when divided by 3.

§ 2.1.1 PIE

[1] Problem 8 How many integers from 1 to 100 (inclusive) are multiples of 2 or 3?

[1] Problem 9 (AMC 10B 2017/13) There are 20 students participating in an after-school program offering classes in yoga, bridge, and painting. Each student must take at least one of these three classes, but may take two or all three. There are 10 students taking yoga, 13 taking bridge, and 9 taking painting. There are 9 students taking at least two classes. How many students are taking all three classes?

[8] Problem 10 (SLKK AIME 2020) Andy the Banana Thief is trying to hide from Sheriff Buffkin in a row of 6 distinct houses labeled 1 through 6. Andy and Sheriff Buffkin each pick a permutation of the 6 houses, chosen uniformly at random. On the n^{th} day, with $1 \leq n \leq 6$, Andy and Sheriff Buffkin visit the n^{th} house in their respective permutations, and Andy is caught by the Sheriff on the first day they visit the same house. For example, if Andy's permutation is 1, 3, 4, 5, 6, 2 and Sheriff Buffkin's permutation is 3, 4, 1, 5, 6, 2, Andy is caught on day 4. Given that Sheriff Buffkin catches Andy within 6 days and the expected number of days it takes to catch Andy can be expressed as $\frac{a}{b}$ for relatively prime positive integers a and b, find the remainder when a + b is divided by 1000.

§ 2.2 Perspectives

[1] Problem 11 (AIME I 2002/1) Many states use a sequence of three letters followed by a sequence of three digits as their standard license-plate pattern. Given that each three-letter three-digit arrangement is equally likely, the probability that such a license plate will contain at least one palindrome (a three-letter arrangement or a three-digit arrangement that reads the same left-to-right as it does right-to-left) is $\frac{m}{n}$, where m and n are relatively prime positive integers. Find

m+n.

- [1] Problem 12 (PuMAC 2019) How many ways can you arrange 3 Alice's, 1 Bob, 3 Chad's, and 1 David in a line if the Alice's are all indistinguishable, the Chad's are all indistinguishable, and Bob and David want to be adjacent to each other? (In other words, how many ways can you arrange 3 A's, 1 B, 3 C's, and 1 D in a row where the B and D are adjacent?)
- [2] Problem 13 (MA θ 2016) The product of any two of the elements of the set $\{30, 54, N\}$ is divisible by the third. Find the number of possible values of N.
- [28] Problem 14 (2017 AMC 10B/17) Call a positive integer monotonous if it is a one-digit number or its digits, when read from left to right, form either a strictly increasing or a strictly decreasing sequence. For example, 3, 23578, and 987620 are monotonous, but 88, 7434, and 23557 are not. How many monotonous positive integers are there?
- [2] Problem 15 (AIME II 2002/9) Let S be the set $\{1, 2, 3, ..., 10\}$ Let n be the number of sets of two non-empty disjoint subsets of S. (Disjoint sets are defined as sets that have no common elements.) Find the remainder obtained when n is divided by 1000.
- [2 \nearrow] **Problem 16** (AMC 10B 2018/22) Real numbers x and y are chosen independently and uniformly at random from the interval [0, 1]. What is the probability that x, y, and 1 are the side lengths of an obtuse triangle?
- [28] **Problem 17** (AMC 10B 2020/23) Square ABCD in the coordinate plane has vertices at the points A(1,1), B(-1,1), C(-1,-1), and D(1,-1). Consider the following four transformations:
 - \bullet L, a rotation of 90° counterclockwise around the origin;
 - \bullet R, a rotation of 90° clockwise around the origin;
 - \bullet H, a reflection across the x-axis; and
 - \bullet V, a reflection across the y-axis.

Each of these transformations maps the squares onto itself, but the positions of the labeled vertices will change. For example, applying R and then V would send the vertex A at (1,1) to (-1,-1) and would send the vertex B at (-1,1) to itself. How many sequences of 20 transformations chosen from $\{L, R, H, V\}$ will send all of the labeled vertices back to their original positions? (For example, R, R, V, H is one sequence of 4 transformations that will send the vertices back to their original positions.)

- [2] Problem 18 (CNCM Online Round 1) Pooki Sooki has 8 hoodies, and he may wear any of them throughout a 7 day week. He changes hishoodie exactly 2 times during the week, and will only do so at one of the 6 midnights. Once he changes out of a hoodie, he never wears it for the rest of the week. The number of ways he can wear his hoodies throughout the week can be expressed as $\frac{8!}{2^k}$. Find k.
- [3] Problem 19 (BmMT 2014) If you roll three regular six-sided dice, what is the probability that the three numbers showing will form an arithmetic sequence? (The order of the dice does matter, but we count both (1, 3, 2) and (1, 2, 3) as arithmetic sequences.)

[4] Problem 20 (PuMAC 2019) Keith has 10 coins labeled 1 through 10, where the ith coin has weight 2^i . The coins are all fair, so the probability of flipping heads on any of the coins is $\frac{1}{2}$. After flipping all of the coins, Keith takes all of the coins which land heads and measures their total weight, W. If the probability that $137 \leq W \leq 1061$ is m/n for coprime positive integers m, n, determine m+n

[4] Problem 21 (PHS HMMT TST 2016) Compute the number of ordered triples of sets (A_1, A_2, A_3) that satisfy the following:

- 1. $A_1 \cup A_2 \cup A_3 = \{1, 2, 3, 4, 5, 6\}$
- 2. $A_1 \cap A_2 \cap A_3 = \emptyset$

[4] Problem 22 (Magic Math AMC 10 2020) The county of Tropolis has five towns, with no roads built between any two of them. How many ways are there for the mayor of Tropolis to build five roads between five different pairs of towns such that it is possible to get from any town to any other town using the roads?

[5] Problem 23 (HMMT February 2014) We have a calculator with two buttons that displays an integer x. Pressing the first button replaces x by $\lfloor \frac{x}{2} \rfloor$, and pressing the second button replaces x by 4x + 1. Initially, the calculator displays 0. How many integers less than or equal to 2014 can be achieved through a sequence of arbitrary button presses? (It is permitted for the number displayed to exceed 2014 during the sequence. Here, byc denotes the greatest integer less than or equal to the real number y.)

§ 2.2.1 Stars and Bars

[1] Problem 24 (AMC 8 2019/25) Alice has 24 apples. In how many ways can she share them with Becky and Chris so that each person (include Alice) has at least 2 apples?

[1] Problem 25 (AMC 10A 2003/21) Pat is to select six cookies from a tray containing only chocolate chip, oatmeal, and peanut butter cookies. There are at least six of each of these three kinds of cookies on the tray. How many different assortments of six cookies can be selected?

[1] Problem 26 (AMC 10A 2018/11) When 7 fair standard 6-sided dice are thrown, the probability that the sum of the numbers on the top faces is 10 can be written as

$$\frac{n}{6^7}$$
,

where n is a positive integer. What is n?

[4 \nearrow] **Problem 27** (AMC 12A 2006/25) How many non- empty subsets S of $\{1, 2, 3, ..., 15\}$ have the following two properties?

- 1. No two consecutive integers belong to S.
- 2. If S contains k elements, then S contains no number less than k.

§ 2.2.2 Expected Value

[3] Problem 28 (Math Prizes For Girls 2018) Maryam has a fair tetrahedral die, with the four faces of the die labeled 1 through 4. At each step, she rolls the die and records which number is on the bottom face. She stops when the current number is greater than or equal to the previous number. (In particular, she takes at least two steps.) What is the expected number (average number) of steps that she takes? Express your answer as a fraction in simplest form.

[5] **Problem 29** (SLKK AIME 2020) Woulard forms a 8 letter word by picking each letter from the set $\{w, o, u\}$ with equal probability. The score of a word is the nonnegative difference between the number of distinct occurrences of the three-letter word "uwu" and the number of distinct occurrences of the three-letter word "owo". For example, the string "owowouwu" has a score of 2 - 1 = 1. If the expected score of Woulard's string can be expressed as $\frac{a}{b}$ for relatively prime positive integers a and b, find the remainder when a + b is divided by 1000.

[6] Problem 30 (PuMAC 2019). Marko lives on the origin of the Cartesian plane. Every second, Marko moves 1 unit up with probability 2/9, 1 unit right with probability 2/9, 1 unit up and 1 unit right with probability 4/9, and he doesn't move with probability 1/9. After 2019 seconds, Marko ends up on the point (A, B). What is the expected value of A · B?

[6] Problem 31 (PuMAC 2019) Kelvin and Quinn are collecting trading cards; there are 6 distinct cards that could appear in a pack. Each pack contains exactly one card, and each card is equally likely. Kelvin buys packs until he has at least one copy of every card, then he stops buying packs. If Quinn is missing exactly one card, the probability that Kelvin has at least two copies of the card Quinn is missing is expressible as m/n for coprime positive integers m, n. Determine m+n.

[7] Problem 32 (2017 AMC 12B/25) A set of n people participate in an online video basketball tournament. Each person may be a member of any number of 5-player teams, but no two teams may have exactly the same 5 members. The site statistics show a curious fact: The average, over all subsets of size 9 of the set of n participants, of the number of complete teams whose members are among those 9 people is equal to the reciprocal of the average, over all subsets of size 8 of the set of n participants, of the number of complete teams whose members are among those 8 people. How many values n, $0 \le n \le 2017$, can be the number of participants?

§ 2.2.3 Recursion

[4 \nearrow] **Problem 33** (Math Prizes For Girls 2019) A 1×5 rectangle is split into five unit squares (cells) numbered 1 through 5 from left to right. A frog starts at cell 1. Every second it jumps from its current cell to one of the adjacent cells. The frog makes exactly 14 jumps. How many paths can the frog take to finish at cell 5?

[7] Problem 34 (CNCM Online Round 2) On a chessboard with 6 rows and 9 columns, the Slow Rook is placed in the bottom-left corner and the Blind King is placed on the top-left corner. Then, 8 Sleeping Pawns are placed such that no two Sleeping Pawns are in the same column, no Sleeping Pawn shares a row with the Slow Rook or the Blind King, and no Sleeping Pawn is in the rightmost column. The Slow Rook can move vertically or horizontally 1 tile at a time, the Slow Rook cannot move into any tile containing a Sleeping Pawn, and the Slow Rook takes the shortest path to reach

the Blind King. How many ways are there to place the Sleeping Pawns such that the Slow Rook moves exactly 15 tiles to get to the space containing the Blind King?

§ 2.3 Miscellaneous

- [1] Problem 35 (Mandelbrot Nationals Sample Test) Michael Jordan's probability of hitting any basketball shot is three times greater than mine, which never exceeds a third. To beat him in a game, I need to hit a shot myself and have Jordan miss the same shot. If I pick my shot optimally, what is the maximum probability of winning which I can attain?
- [2 \nearrow] **Problem 36** (CNCM Online Round 2) Adi the Baller is shooting hoops, and makes a shot with probability p. He keeps shooting hoops until he misses. The value of p that maximizes the chance that he makes between 35 and 69 (inclusive) buckets can be expressed as $\frac{1}{\sqrt[3]{b}}$ for a prime a and positive integer b. Find a + b.
- [2] Problem 37 (PHS ARML TST 2017) Consider a group of eleven high school students. To create a middle school math contest, they must pick a four-person committee to write problems and a four-person committee to proofread. Every student can be on neither committee, one committee, or both committees, except for one student who does not want to be on both. How many combinations of committees are possible?
- [2] Problem 38 (Mandelbrot Regionals 2009) Mr. Strump has formed three person groups in his math class for working on projects. Every student is in exactly two groups, and any two groups have at most one person in common. In fact, if two groups are chosen at random then the probability that they have exactly one person in common is one-third. How many students are there in Mr. Strump's class?
- [3] Problem 39 (AMC 12B 2017/17) A coin is biased in such a way that on each toss the probability of heads is $\frac{2}{3}$ and the probability of tails is $\frac{1}{3}$. The outcomes of the tosses are independent. A player has the choice of playing Game A or Game B. In Game A she tosses the coin three times and wins if all three outcomes are the same. In Game B she tosses the coin four times and wins if both the outcomes of the first and second tosses are the same and the outcomes of the third and fourth tosses are the same. Find the probability of winning game A minus the probability of winning game B. [6] Problem 40 (CRMT Team 2019) A deck of the first 100 positive integers is randomly shuffled. Find the expected number of draws it takes to get a prime number if there is no replacement.
- [6] Problem 41 (CNCM PoTD) Find the remainder when $\sum_{n=0}^{333} \sum_{k=3n}^{999} {k \choose 3n}$ is divided by 70.

§ 3 Number Theory

§ 3.1 Divisors

[1 \nearrow] **Problem 1** (MA θ 2018) How many distinct prime numbers are in the first 50 rows of Pascal's Triangle?

[2 \nearrow] **Problem 2** (AHSME 1984) How many triples (a, b, c) of positive integers satisfy the simultaneous equations:

$$ab + bc = 44$$

$$ac + bc = 23$$

[28] Problem 3 (PHS ARML TST 2017) Compute the greatest prime factor of

$$3^8 + 2 \cdot 3^4 \cdot 4^4 + 2^{16}$$

- [2] Problem 4 (HMMT November 2014) Compute the greatest common divisor of $4^8 1$ and $8^{12} 1$
- [2] Problem 5 (BMT 2018). Suppose for some positive integers, that $\frac{p+\frac{1}{q}}{q+\frac{1}{p}}=17$. What is the greatest integer n such that $\frac{p+q}{n}$ is always an integer?
- [24] Problem 6 (BMT 2018) How many multiples of 20 are also divisors of 17!?
- [3] Problem 7 (HMMT February 2018) Distinct prime numbers p, q, r satisfy the equation

$$2pqr + 50pq = 7pqr + 55pr = 8pqr + 12qr = A$$

for some positive integer A. What is A?

- [3] Problem 8 (Math Prizes For Girls 2019) How many positive integers less than 4000 are not divisible by 2, not divisible by 3, not divisible by 5, and not divisible by 7?
- [3] Problem 9 (MA θ 2018) The number $1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \cdots + 100 \cdot 100!$ ends with a string of 9s. How many consecutive 9s are at the end of the number?
- [3 \nearrow] **Problem 10** (AMC 12B 2017/16) The number 21! = 51,090,942,171,709,440,000 has over 60,000 positive integer divisors. One of them is chosen at random. What is the probability that it is odd?
- [3] Problem 11 (BMT 2015) There exists a unique pair of positive integers k, n such that k is divisible by 6, and $\sum_{i=1}^{k} i^2 = n^2$. Find (k, n).
- [4] Problem 12 (Magic Math AMC 10 2020) Find the number of ordered pairs of positive integers (a, b) with a < b < 2017 such that 10a is divisible by b and 10b is divisible by a.
- [4] Problem 13 (HMMT February 2016) For which integers $n \in \{1, 2, ..., 15\}$ is $n^n + 1$ a prime number?
- [5] **Problem 14** (CNCM Online Round 1) Consider all possible pairs of positive integers (a,b) such that $a \ge b$ and both $\frac{a^2+b}{a-1}$ and $\frac{b^2+a}{b-1}$ are integers. Find the sum of all possible values of the product ab.
- [6] Problem 15 (HMMT February 2017) Find all pairs (a, b) of positive integers such that $a^{2017} + b$ is a multiple of ab.

[7] Problem 16 (HMMT February 2017). Kelvin the Frog was bored in math class one day, so he wrote all ordered triples (a, b, c) of positive integers such that abc = 2310 on a sheet of paper. Find the sum of all the integers he wrote down. In other words, compute

$$\sum_{\substack{abc=2310\\a,b,c\in\mathbb{N}}} (a+b+c),$$

where \mathbb{N} denotes the set of positive integers.

§ 3.2 Modulo

[1] Problem 17 (MA θ 2018) The number $4^{14} - 1$ is divisible by 29 but $2^{14} - 1$ is not. What is the remainder when $2^{14} - 1$ is divided by 29?

[1 \nearrow] **Problem 18** (AMC 12A 2003/18) Let n be a 5-digit number, and let q and r be the quotient and the remainder, respectively, when n is divided by 100. For how many values of n is q + r divisible by 11?

[1 \nearrow] **Problem 19** (BMT 2018) Find the minimal N such that any N-element subset of $\{1, 2, 3, 4, ... 7\}$ has a subset S such that the sum of elements of S is divisible by 7.

[2] Problem 20 (AMC 10B 2019/14) The base-ten representation for 19! is

where T, M, and H denote digits that are not given. What is T + M + H?

[2 \nearrow] **Problem 21** (BMT 2018) What is the remainder when 201820182018... [2018 times] is divided by 15?

[2] Problem 22 (CNCM PoTD) Find the number of positive integer x less than 100 such that

$$3^{x} + 5^{x} + 7^{x} + 11^{x} + 13^{x} + 17^{x} + 19^{x}$$

is prime.

[3] Problem 23 (AMC 10B 2018/16) Let $a_1, a_2, \ldots, a_{2018}$ be a strictly increasing sequence of positive integers such that

$$a_1 + a_2 + \dots + a_{2018} = 2018^{2018}$$
.

What is the remainder when $a_1^3 + a_2^3 + \cdots + a_{2018}^3$ is divided by 6?

[3] Problem 24 (AMC 10A 2020/18) Let (a, b, c, d) be an ordered quadruple of not necessarily distinct integers, each one of them in the set 0, 1, 2, 3. For how many such quadruples is it true that $a \cdot d - b \cdot c$ is odd? (For example, (0, 3, 1, 1) is one such quadruple, because $0 \cdot 1 - 3 \cdot 1 = -3$ is odd.)

[3 \nearrow] **Problem 25** (CNCM Online Round 2) An ordered pair (n, p) is juicy if $n^2 \equiv 1 \pmod{p^2}$ and $n \equiv -1 \pmod{p}$ for positive integer n and odd prime p. How many juicy pairs exist such that $n, p \leq 200$?

[3] **Problem 26** (HMMT February 2018) There are two prime numbers p so that 5p can be expressed in the form $\lfloor \frac{n^2}{5} \rfloor$ for some positive integer n. What is the sum of these two prime numbers?

[3] Problem 27 (BMT 2019) Compute the remainder when the product of all positive integers less than and relatively prime to 2019 is divided by 2019.

[4] Problem 28 (AMC 12B 2017/21) Last year Isabella took 7 math tests and received 7 different scores, each an integer between 91 and 100, inclusive. After each test she noticed that the average of her test scores was an integer. Her score on the seventh test was 95. What was her score on the sixth test?

[4] Problem 29 (BMT 2018) If r_i are integers such that $0 \le r_i < 31$ and r_i satisfies the polynomial $x^4 + x^3 + x^2 + x \equiv 30 \pmod{31}$, find

$$\sum_{i=1}^{4} (r_i^2 + 1)^{-1} \pmod{31}.$$

where x^{-1} is the modulo inverse of x, that is, it is the unique integer y such that 0 < y < 31 and xy - 1 is divisible by 31.

[4 \nearrow] **Problem 30** (SLLKK AIME 2020) Smush is a huge Kobe Bryant fan. Smush randomly draws n jerseys from his infinite collection of Kobe jerseys, each being either the recent #24 jersey or the throwback #8 jersey with equal probability. Let p(n) be the probability that Smush can divide the n jerseys into two piles such that the sum of all jersey numbers in each pile is the same. If

[5] Problem 31 (BMT 2018) Ankit wants to create a pseudo-random number generator using modular arithmetic. To do so he starts with a seed x_0 and a function $f(x) = 2x + 25 \pmod{31}$. To compute the kth pseudo random number, he calls g(k) defined as follows:

$$g(k) = \begin{cases} x_0 & \text{if } k = 0\\ f(g(k-1)) & \text{if } k > 0 \end{cases}$$

If x_0 is 2017, compute $\sum_{j=0}^{2017} g(j) \pmod{31}$.

[5] Problem 32 (PHS HMMT TST 2020) Find the largest integer 0 < n < 100 such that $n^2 + 2n$ divides 4(n-1)! + n + 4.

[7] Problem 33 (HMMT November 2014) Suppose that m and n are integers with $1 \le m \le 49$ and $n \ge 0$ such that m divides $n^{n+1} + 1$. What is the number of possible values of m?

[7] **Problem 34** (BMT 2018) How many $1 < n \le 2018$ such that the set $\{0, 1, 1 + 2, ..., 1 + 2 + 3 + ... + i, ..., 1 + 2 + ... + n - 1\}$ is a permutation of $\{0, 1, 2, 3, 4, ..., n - 1\}$ when reduced modulo n?

[8] Problem 35 (BMT 2018) Determine the number of ordered triples (a, b, c), with $0 \le a, b, c \le 10$ for which there exists (x, y) such that $ax^2 + by^2 \equiv c \pmod{11}$

[8] Problem 36 (BMT 2018) Compute the following:

$$\sum_{i=0}^{99} (x^2 + 1)^{-1} \pmod{199}$$

where x^{-1} is the value $0 \le y \le 199$ such that xy - 1 is divisible by 199

[10] Problem 37 (SLKK AIME 2020): Let p = 991 be a prime. Let S be the set of all lattice points (x, y), with $1 \le x, y \le p - 1$. On each point (x, y) in S, Olivia writes the number $x^2 + y^2$. Let f(x, y) denote the product of the numbers written on all points in S that share at least one coordinate with (x, y). Find the remainder when

$$\sum_{i=1}^{p-2} \sum_{j=1}^{p-2} f(i,j)$$

is divided by p.

§ 3.3 Bases

[4] Problem 38 (HMMT November 2014) Mark and William are playing a game with a stored value. On his turn, a player may either multiply the stored value by 2 and add 1 or he may multiply the stored value by 4 and add 3. The first player to make the stored value exceed 2100 wins. The stored value starts at 1 and Mark goes first. Assuming both players play optimally, what is the maximum number of times that William can make a move? (By optimal play, we mean that on any turn the player selects the move which leads to the best possible outcome given that the opponent is also playing optimally. If both moves lead to the same outcome, the player selects one of them arbitrarily.)

[4] Problem 39 (HMMT November 2013) How many of the first 1000 positive integers can be written as the sum of finitely many distinct numbers from the sequence $3^0, 3^1, 3^2 \cdots$?

[6] Problem 40 (HMMT November 2014) For any positive integers a and b, define $a \oplus b$ to be the result when adding a to b in binary (base 2), neglecting any carry-overs. For example, $20 \oplus 14 = 101002 \oplus 11102 = 110102 = 26$. (The operation \oplus is called the exclusive or.) Compute the sum

$$\sum_{k=0}^{2^{2014}-1} (k \oplus \lfloor \frac{k}{2} \rfloor)$$

[3 ?] Problem 41 (CNCM Online Round 1) Akshar is reading a 500 page book, with odd numbered pages on the left, and even numbered pages on the right. Multiple times in the book, the sum of the digits of the two opened pages are 18. Find the sum of the page numbers of the last time this occurs.

[3] Problem 42 (CNCM Online Round 1) Define S(N) to be the sum of the digits of N when it is written in base 10, and take $S^k(N) = S(S(...(N)...))$ with k applications of S. The stability of a number N is defined to be the smallest positive integer K where $S^K(N) = S^{K+1}(N) = S^{K+2}(N) = ...$ Let T_3 be the set of all natural numbers with stability 3. Compute the sum of the two least entries of T_3 .

§ 3.4 Binomial Theorem

[1 \nearrow] **Problem 43** (BMT 2015) Compute the sum of the digits of 1001¹⁰.

§ 3.5 Miscellenous

[3] Problem 44 (BMT 2015) Find all integer solutions to

$$x^{2} + 2y^{2} + 3z^{2} = 36$$
$$3x^{2} + 2y^{2} + z^{2} = 84$$
$$xy + xz + yz = -7$$

[3] Problem 45 (Magic Math AMC 10 2020) Let s(n) denote the sum of the digits of a positive integer n. Find the number of three-digit positive integers $k \le 500$ satisfying s(k) = s(1000 - k).

[4] Problem 46 (BMT 2019) For a positive integer n, define $\phi(n)$ as the number of positive integers less than or equal to n that are relatively prime to n. Find the sum of all positive integers n such that $\phi(n) = 20$

[5 \nearrow] **Problem 47** (CNCM Online Round 2) Let S be the set of all ordered pairs (x, y) of integer solutions to the equation

$$6x^2 + y^2 + 6x = 3xy + 6y + x^2y.$$

S contains a unique ordered pair (a, b) with a maximal value of b. Compute a + b.

[5] **Problem 48** (PHS HMMT TST 2020) Find the unique triplet of integers (a, b, c) with a > b > c such that a + b + c = 95 and $a^2 + b^2 + c^3 = 3083$.

[5] Problem 49 (BMT 2019) 0. Let S(n) be the sum of the squares of the positive integers less than and coprime to n. For example, $S(5) = 1^2 + 2^2 + 3^2 + 4^2$, but $S(4) = 1^2 + 3^2$. Let $p = 2^7 - 1 = 127$ and $q = 2^5 - 1 = 31$ be primes. The quantity S(pq) can be written in the form

$$\frac{p^2q^2}{6}(a-\frac{b}{c})$$

where a, b, and c are positive integers, with b and c coprime and b < c. Find a.

[6] Problem 50 (CNCM PoTD) How many positive integers k are there such that $101 \le k \le 10000$ and $\lfloor \sqrt{k-100} \rfloor$ is a divisor of k?

§ 4 Algebra

§ 4.1 Polynomials

Generally uses the following techniques: Vieta's, Binomial Theorem, Multinomial Theorem, Remainder Theorem, Newton's Sums, Reciprocal Roots Trick, Quadratic Formula (including using Determinant), Finite Differences, $x + \frac{k}{x}$ substitution, Polynomial Interpolation

[14] Problem 1 (CRMT Math Bowl 2019) Find the sum of all real numbers such that

$$\sqrt[4]{16x^4 - 32x^3 + 24x^2 - 8x + 1} = 5$$

- [2] Problem 2 (TAMU 2019) In the expansion of $(1 + ax x^2)^8$ where a is a positive constant, the coefficient of x^2 is 244. Find the value of a
- [3 \nearrow] **Problem 3** (HMMT November 2014) Let $f(x) = x^2 + 6x + 7$. Determine the smallest possible value of f(f(f(x))) over all real numbers x.
- [3] **Problem 4** (HMMT February 2014) Find the sum of all real numbers x such that $5x^4 + 10x^3 + 10x^2 + 5x + 11 = 0$
- [3] Problem 5 (BmMT 2014) Consider the graph of $f(x) = x^3 + x + 2014$. A line intersects this cubic at three points, two of which have x-coordinates 20 and 14. Find the x-coordinate of the third intersection point
- [3] Problem 6 (ARML 2017) Compute the number of ordered pairs of integers (a, b) such that the polynomials $x^2 ax + 24$ and $x^2 bx + 36$ have one root in common
- [3] Problem 7 (AMC 10A 2015/23) The zeroes of the function $f(x) = x^2 ax + 2a$ are integers. What is the sum of the possible values of a?
- [4] Problem 8 (HMMT February 2017) Let $Q(x) = a_0 + a_1x + a_nx^n$ be a polynomial with integer coefficients, and $0 \le ai < 3$ for all $0 \le i \le n$. Given that $Q(\sqrt{3}) = 20 + 17\sqrt{3}$, compute Q(2)
- [4] Problem 9 (TAMU 2018) Suppose f is a cubic polynomial with roots a, b, c such that

$$a = \frac{1}{3 - bc}$$

$$b = \frac{1}{5 - ac}$$

$$c = \frac{1}{7 - ab}$$

If f(0) = 1, find f(abc + 1).

- [4] Problem 10 (PuMAC 2019) Let $f(x) = x^2 + 4x + 2$. Let r be the difference between the largest and smallest real solutions of the equation f(f(f(f(x)))) = 0. Then $r = a^{\frac{p}{q}}$ for some positive integers a, p, q so a is square-free and p, q are relatively prime positive integers. Compute a + p + q
- [4] Problem 11 (HMMT February 2014) Find all real numbers k such that $r^4 + kr^3 + r^2 + 4kr + 16 = 0$ is true for exactly one real number r.
- [4] Problem 12 (PHS HMMT TST 2020) Let a, b, c be the distinct real roots of $x^3 + 2x + 5$. Find $(8 a^3)(8 b^3)(8 c^3)$.
- [4] Problem 13 (PuMAC 2019) Let Q be a quadratic polynomial. If the sum of the roots of $Q^{100}(x)$ (where $Q^i(x)$ is defined by $Q^1(x) = Q(x), Q^i(x) = Q(Q^{i-1}(x))$ for integers $i \geq 2$) is 8 and the sum of the roots of Q is S, compute $|\log_2(S)|$.
- [7] Problem 14 (HMMT February 2017) A polynomial P of degree 2015 satisfies the equation $P(n) = \frac{1}{n^2}$ for n = 1, 2, ..., 2016. Find $\lfloor 2017P(2017) \rfloor$
- [8] Problem 15 (AIME I 2014/14) Let m be the largest real solution to the equation

$$\frac{3}{x-3} + \frac{5}{x-5} + \frac{17}{x-17} + \frac{19}{x-19} = x^2 - 11x - 4$$

There are positive integers a, b, and c such that $m = a + \sqrt{b + \sqrt{c}}$. Find a + b + c.

§ 4.1.1 Newton's Sums

[3 \nearrow] **Problem 16** (BMT 2015) Let r, s, and t be the three roots of the equation $8x^3 + 1001x + 2008 = 0$. Find $(r+s)^3 + (s+t)^3 + (t+r)^3$

[4] Problem 17 (BMT 2019) Let r_1, r_2, r_3 be the (possibly complex) roots of the polynomial $x^3 + ax^2 + bx + \frac{4}{3}$. How many pairs of integers a, b exist such that $r_1^3 + r_2^3 + r_3^3 = 0$?

[6] Problem 18 (SLKK AIME 2020) Let a, b, and c be the three distinct solutions to $x^3 - 4x^2 + 5x + 1 = 0$. Find

$$(a^3 + b^3)(a^3 + c^3)(b^3 + c^3).$$

§ 4.1.2 Roots of Unity

[28] **Problem 19** (AMC 12B 2017/12) What is the sum of the roots of $z^{12} = 64$ that have a positive real part?

[5] **Problem 20** (BMT 2019) Let a_n be the product of the complex roots of $x^{2n} = 1$ that are in the first quadrant of the complex plane. That is, roots of the form a + bi where a, b > 0. Let $r = a_1 \cdot a_2 \cdot ... \cdot a_{10}$. Find the smallest integer k such that r is a root of $x^k = 1$

[6] Problem 21 (BMT 2015) Evaluate $\sum_{k=0}^{37} (-1)^k {75 \choose 2k}$.

§ 4.1.3 Polynomial Interpolation

[6] Problem 22 (AMC 12B 2017/23) The graph of y = f(x), where f(x) is a polynomial of degree 3, contains points A(2,4), B(3,9), and C(4,16). Lines AB, AC, and BC intersect the graph again at points D, E, and F, respectively, and the sum of the x-coordinates of D, E, and F is 24. What is f(0)?

§ 4.2 Complex Numbers

[4] Problem 23 (HMMT February 2016) Let z be a complex number such that |z| = 1 and |z - 1.45| = 1.05. Compute the real part of z.

[4] Problem 24 (2019 AMC 12B) How many nonzero complex numbers z have the property that 0, z, and z^3 , when represented by points in the complex plane, are the three distinct vertices of an equilateral triangle?

[8] Problem 25 (2015 AIME I/13) With all angles measured in degrees, the product

$$\prod_{k=1}^{45} \csc^2(2k-1)^\circ = m^n,$$

where m and n are integers greater than 1. Find m + n.

§ 4.3 Manipulation

[1] Problem 26 (LMT 2019) If the numerator of a certain simplified fraction is added to the numerator and the denominator of the fraction, the result is $\frac{20}{19}$. What is the fraction?

[1 \nearrow] **Problem 27** (AMC 10A 2020/7) The 25 integers from -10 to 14, inclusive, can be arranged to form a 5-by-5 square in which the sum of the numbers in each row, the sum of the numbers in each column, and the sum of the numbers along each of the main diagonals are all the same. What is the value of this common sum?

[1] Problem 28 (2018 AMC 10A/10) Suppose that real number x satisfies

$$\sqrt{49 - x^2} - \sqrt{25 - x^2} = 3.$$

What is the value of $\sqrt{49-x^2}+\sqrt{25-x^2}$?

[2] Problem 29 (2018 BmMT) Let x be a positive real number so that $x - \frac{1}{x} = 1$. Compute $x^8 - \frac{1}{x^8}$.

[2] Problem 30 (HMMT November 2013) Evaluate

$$\frac{1}{2 - \frac{1}{2 - \frac{1}{2 - \cdots \frac{1}{2 - \frac{1}{2}}}}}$$

where the digit 2 appears 2013 times

[2] Problem 31 (Mandelbrot) If $\frac{x^2}{y^2} = \frac{8y}{x} = z$, find the sum of all possible z.

[28] Problem 32 (AMC 10A 2018/14) What is the greatest integer less than or equal to

$$\frac{3^{100} + 2^{100}}{3^{96} + 2^{96}}?$$

[3] Problem 33 (BMT 2016) Simplify $\frac{1}{\sqrt[3]{81} + \sqrt[3]{72} + \sqrt[3]{64}}$.

[3] **Problem 34** (MA θ 2018) The solutions to $3\sqrt{2x^2 - 5x - 3} + 2x^2 - 5x = 7$ can be written in the form $x = \frac{a \pm \sqrt{b}}{c}$ where a, b, c are positive integers and x is in simplest form. Find a + b + c.

[3] Problem 35 (Mandelbrot Nationals 2008) Find the positive real number x for which $5\sqrt{1-x} + 5\sqrt{1+x} = 7\sqrt{2}$.

[4] Problem 36 (NEMO 2019) Suppose x and y are positive real numbers satisfying

$$\sqrt{xy} = x - y = \frac{1}{x + y} = k$$

Determine k.

[4] Problem 37 (2014 November HMMT) Let a, b, c, x be reals with $(a + b)(b + c)(c + a) \neq 0$ that satisfy

$$\frac{a^2}{a+b} = \frac{a^2}{a+c} + 20, \frac{b^2}{b+c} = \frac{b^2}{b+a} + 14, \text{ and } \frac{c^2}{c+a} = \frac{c^2}{c+b} + x$$

Compute x.

[5] Problem 38 (Magic Math AMC 10 2020) Determine the remainder when $\sum (-1)^{m+n}mn$ is divided by 1009, where the sum is taken over all pairs of integers (m, n)satisfying $1 \le m < n \le 2020$

[5 \nearrow] **Problem 39** (Math Prizes For Girls 2015) Let S be the sum of all distinct real solutions of the equation

$$\sqrt{x + 2015} = x^2 - 2015.$$

Compute $\lfloor 1/S \rfloor$. Recall that if r is a real number, then $\lfloor r \rfloor$ (the floor of r) is the greatest integer that is less than or equal to r

§ 4.4 Series and Sequences

[1] Problem 40 (djmathman Mock AMC 2013/9) Let p and q be numbers with |p| < 1 and |q| < 1 such that

$$p + pq + pq^2 + pq^3 + \dots = 2$$
 and $q + qp + qp^2 + \dots = 3$.

What is 100pq?

[1] **Problem 41** (PHS HMMT TST 2020) What is the value of $\frac{\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} \cdots}{\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} \cdots}$? Remember that $\frac{1}{1^2} + \frac{1}{2^2} \cdots = \frac{\pi^2}{6}$

[4] Problem 42 (Math Prizes For Girls 2019) For each integer from 1 through 2019, Tala calculated the product of its digits. Compute the sum of all 2019 of Tala's products.

[4] Problem 43 (HMMT Feburary 2017) Find the value of

$$\sum_{1 \le a < b < c} \frac{1}{2^a 3^b 5^c}$$

(i.e the sum of $\frac{1}{2^a 3^b 5^c}$ over all triples of positive integers (a,b,c) satisfying a < b < c)

[5] Problem 44 (HMMT Feburary 2016) Let A denote the set of all integers n such that $1 \le n \le 10000$, and moreover the sum of the decimal digits of n is 2. Find the sum of the squares of the elements of A.

[5] Problem 45 (HMMT Feburary 2016) Determine the remainder when

$$\sum_{i=0}^{2015} \lfloor \frac{2^i}{25} \rfloor$$

is divided by 100, where |x| denotes the largest integer not greater than x.

§ 4.4.1 Telescoping

[3 **?**] **Problem 46** (Purple Comet 2015 HS)

$$\left(1 + \frac{1}{1+2^1}\right)\left(1 + \frac{1}{1+2^2}\right)\left(1 + \frac{1}{1+2^3}\right)\cdots\left(1 + \frac{1}{1+2^{10}}\right) = \frac{m}{n},$$

where m and n are relatively prime positive integers. Find m+n.

§ 4.5 Trigonometry

[4] Problem 47 (MA θ 1992) If A and B are both in [0, 2π) and A and B satisfy the equations

$$\sin A + \sin B = \frac{1}{3}$$

$$\cos A + \cos B = \frac{4}{3}$$

find $\cos(A-B)$

[6] Problem 49 (Purple Comet 2015 HS) Let x be a real number between 0 and $\frac{\pi}{2}$ for which the function $3\sin^2 x + 8\sin x\cos x + 9\cos^2 x$ obtains its maximum value, M. Find the value of $M + 100\cos^2 x$.

§ 4.6 Logarithms

[2] Problem 50 (MA θ 1991) Given that $\log_{10} 2 \approx 0.3010$, how many digits are in 5^{44} ?

[3] Problem 51 (PuMAC 2019) If x is a real number so $3^x = 27x$, compute $\log_3(\frac{3^{3^x}}{x^{3^3}})$.

[3] Problem 52 (AMC 12B 2017/20) Real numbers x and y are chosen independently and uniformly at random from the interval (0,1). What is the probability that $|\log_2 x| = |\log_2 y|$?

[4] Problem 53 (MA θ 1991) Suppose a and b are positive numbers for which $\log_{4n} 40\sqrt{3} = \log_{3n} 45$, find n^3

[4] Problem 54 (MA θ 1992) Suppose a and b are positive numbers for which

$$\log_9 a = \log_{15} b = \log_{25} (a + 2b)$$

What is the value of $\frac{b}{a}$?

[42] **Problem 55** (PHS ARML TST 2017) Positive real numbers x, y, and z satisfy the following system of equations:

$$x^{\log(yz)} = 100$$
$$y^{\log(xz)} = 10$$
$$z^{\log(xy)} = 10\sqrt{10}$$

Compute the value of the expression $(\log(xyz))^2$

[4] Problem 56 (If $60^a = 3$ and $60^b = 5$, then find $12^{\frac{1-a-b}{2-2b}}$.)

[5] Problem 57 (SLKK AIME 2020) Let x be a real number in the interval $(0, \frac{\pi}{2})$ such that $\log_{\sin^2(x)} \cos(x) + \log_{\cos^2(x)} \sin(x) = \frac{5}{4}$. If $\sin^2(2x)$ can be expressed as $m\sqrt{n} - p$, where m, n, and p are positive integers such that n is not divisible by the square of a prime, find m + n + p

§ 4.7 Sequences

[3] **Problem 58** (BMT 2015) Let $\{a_n\}$ be a sequence of real numbers with $a_1 = -1, a_2 = 2$ and for all $n \ge 3$, $a_{n+1} - a_n - a_{n+2} = 0$. Find $a_1 + a_2 + a_3 + ... + a_{2015}$.

§ 4.8 Functions

[3] Problem 59 (Mandelbrot Nationals 2009) Let f(x) be a function defined for all positive real numbers satisfying the conditions f(x) > 0 for all x > 0 and $f(x - y) = \sqrt{f(xy) + 1}$ for all x > y > 0. Determine f(2009).

[5] **Problem 60** (HMMT February 2017) Let $f: \mathbb{R} \to \mathbb{R}$ be a function satisfying f(x)f(y) = f(x-y). Find all possible values of f(2017).

§ 4.9 Inequalities

[1] Problem 61 (PuMAC 2019) Let a, b be positive integers such that a + b = 10. Let $\frac{p}{q}$ be the difference between the maximum and minimum possible values of $\frac{1}{a} + \frac{1}{b}$, where p and q are relatively prime positive integers. Compute p + q.

[2 $\mbox{\ensuremath{\mathcal{O}}}$] **Problem 62** (Math Prizes For Girls 2019) The degree measures of the six interior angles of a convex hexagon form an arithmetic sequence (not necessarily in cyclic order). The common difference of this arithmetic sequence can be any real number in the open interval (-D,D). Compute the greatest possible value of D.

[3] Problem 63 (Math Prizes For Girls 2019) Find the least real number K such that for all real numbers x and y, we have $(1 + 20x^2)(1 + 19y^2) \ge Kxy$. Express your answer in simplified radical form.

[4] Problem 64 (HMMT November 2013) Find the largest real number λ such that $a^2 + b^2 + c^2 + d^2 \ge ab + \lambda bc + cd$ for all real numbers a, b, c, d.

- [5] **Problem 65** (HMMT February 2014) Suppose that x and y are positive real numbers such that $x^2 xy + 2y^2 = 8$. Find the maximum possible value of $x^2 + xy + 2y^2$.
- [5] Problem 66 (BMT 2019) Find the number of ordered integer triplets x, y, z with absolute value less than or equal to 100 such that $2x^2 + 3y^2 + 3z^2 + 2xy + 2xz 4yz < 5$

§ 4.10 Fake Algebra

- [3] **Problem 67** (BMT 2019) Find the maximum value of $\frac{x}{y}$ if x and y are real numbers such that $x^2 + y^2 8x 6y + 20 = 0$.
- [3] Problem 68 (BMT 2015) Let x and y be real numbers satisfying the equation $x^2-4x+y^2+3=0$. If the maximum and minimum values of x^2+y^2 are M and m respectively, compute the numerical value of M-m.
- [3] **Problem 69** (Magic Math AMC 10 2020) Find the number of ordered pairs of real numbers (x,y) satisfying $x = \frac{2y}{y^2-1}$ and $y = \frac{2x}{x^2-1}$.
- [4] Problem 70 (PuMAC 2019) Let x and y be positive real numbers that satisfy $(\log x)^2 + (\log y)^2 = \log x^2 + \log y^2$. Compute the maximum possible value of $(\log xy)^2$.
- [7] Problem 71 (HMMT February 2014) Given that a, b, and c are complex numbers satisfying

$$a^{2} + ab + b^{2} = 1 + i$$

 $b^{2} + bc + c^{2} = 2$
 $c^{2} + ca + a^{2} = 1$.

compute $(ab + bc + ca)^2$

§ 5 Geometry

§ 5.1 Coordinate Geometry

- [1 \nearrow] **Problem 1** (BmMT 2014) Find the area of the convex quadrilateral with vertices at the points (-1,5),(3,8),(3,-1), and (-1,-2).
- [2] Problem 2 (CRMT Individuals 2019) Let S be the set of all distinct points in the coordinate plane that form an acute isosceles triangle with the points (32, 33) and (63, 63). Given that a line L crosses S a finite number of times, find the maximum number of times L can cross S.
- [28] Problem 3 (HMMT November 2013) Plot points A, B, C at coordinates (0, 0), (0, 1), and (1, 1) in the plane, respectively. Let S denote the union of the two line segments AB and BC. Let X1 be the area swept out when Bobby rotates S counterclockwise 45 degrees about point A. Let X2 be the area swept out when Calvin rotates S clockwise 45 degrees about point A. Find $\frac{X_1+X_2}{2}$
- [2] Problem 4 (AMC 12B 2017/9) A circle has center (-10, -4) and radius 13. Another circle has center (3, 9) and radius $\sqrt{65}$. The line passing through the two points of intersection of the two circles has equation x + y = c. What is c?

- [3] Problem 5 (Math Prizes For Girls 2019) Two ants sit at the vertex of the parabola $y = x^2$. One starts walking northeast (i.e., upward along the line y = x) and the other starts walking northwest (i.e., upward along the line y = -x). Each time they reach the parabola again, they swap directions and continue walking. Both ants walk at the same speed. When the ants meet for the eleventh time (including the time at the origin), their paths will enclose 10 squares. What is the total area of these squares?
- [5] Problem 6 (BMT 2019) A regular hexagon has positive integer side length. A laser is emitted from one of the hexagon's corners, and is reflected off the edges of the hexagon until it hits another corner. Let a be the distance that the laser travels. What is the smallest possible value of a^2 such that a > 2019? You need not simplify/compute exponents.
- [5] **Problem 7** (SLKK AIME 2020) Mr. Duck draws points A = (a,0), B = (0,b), C = (3,5) and O = (0,0) such that a,b>0 and $\angle ACB = 45^{\circ}$. If the maximum possible area of $\triangle AOB$ can be expressed as $m n\sqrt{p}$ where m,n, and p are positive integers such that p is not divisible by the square of a prime, find m + n + p

§ 5.2 3D Geometry

- [1] Problem 8 (AMC 12A 2009/5) One dimension of a cube is increased by 1, another is decreased by 1, and the third is left unchanged. The volume of the new rectangular solid is 5 less than that of the cube. What was the volume of the cube?
- [1] Problem 9 (AMC 12A 2008/8) What is the volume of a cube whose surface area is twice that of a cube with volume 1?
- [1 \nearrow] **Problem 10** (BMT 2018) A cube has side length 5. Let S be its surface area and V its volume. Find $\frac{S^3}{V^2}$.
- [2 \nearrow] **Problem 11** (AMC 12B 2008/18) On a sphere with a radius of 2 units, the points A and B are 2 units away from each other. Compute the distance from the center of the sphere to the line segment AB.
- [2] Problem 12 (AMC 12B 2005/16) Eight spheres of radius 1, one per octant, are each tangent to the coordinate planes. What is the radius of the smallest sphere, centered at the origin, that contains these eight spheres?
- [3] Problem 13 (AIME 1984/9) In tetrahedron ABCD, edge AB has length 3 cm. The area of face ABC is 15cm^2 and the area of face ABD is 12 cm^2 . These two faces meet each other at a 30° angle. Find the volume of the tetrahedron in cm³.
- [3] Problem 14 (HMMT February 2014) Let C be a circle in the xy plane with radius 1 and center (0,0,0), and let P be a point in space with coordinates (3,4,8). Find the largest possible radius of a sphere that is contained entirely in the slanted cone with base C and vertex P.
- [3] Problem 15 (AMC 12B 2017/14) An ice-cream novelty item consists of a cup in the shape of a 4-inch-tall frustum of a right circular cone, with a 2-inch-diameter base at the bottom and a 4-inch-diameter base at the top, packed solid with ice cream, together with a solid cone of ice cream of height 4 inches, whose base, at the bottom, is the top base of the frustum. What is the total volume of the ice cream, in cubic inches?

§ 5.3 Inequalties

- [2] Problem 16 (Math Prizes For Girls) A paper equilateral triangle with area 2019 is folded over a line parallel to one of its sides. What is the greatest possible area of the overlap of folded and unfolded parts of the triangle?
- [3 \nearrow] **Problem 17** (BMT 2018) If A is the area of a triangle with perimeter 1, what is the largest possible value of A^2 ?

§ 5.4 General

- [1 \nearrow] **Problem 18** (MA θ 2018) A parallelograms has diagonals of length 10 and 20. Find the area inclosed by the circle inscribed in the parallelogram.
- [1 \nearrow] **Problem 19** (TAMU 2019) An acute isosceles triangle ABC is inscribed in a circle. Through B and C, tangents to the circle are drawn, meeting at D. If $\angle ABC = 2\angle CDB$, then find the radian measure of $\angle BAC$.
- [1] Problem 20 (PHS PuMAC TST 2017) In triangle ABC, let D and E be the midpoints of BC and AC. Suppose AD and BE meet at F. If the area of $\triangle DEF$ is 50, then what is the area of $\triangle CDE$?
- [1 \nearrow] **Problem 21** (AMC 10A 2019/13) Let $\triangle ABC$ be an isosceles triangle with BC = AC and $\angle ACB = 40^{\circ}$. Construct the circle with diameter \overline{BC} , and let D and E be the other intersection points of the circle with the sides \overline{AC} and \overline{AB} , respectively. Let F be the intersection of the diagonals of the quadrilateral BCDE. What is the degree measure of $\angle BFC$?
- [2] Problem 22 (AMC 10B 2011/17) In the given circle, the diameter \overline{EB} is parallel to \overline{DC} , and \overline{AB} is parallel to \overline{ED} . The angles AEB and ABE are in the ratio 4:5. What is the degree measure of angle BCD?
- [2] Problem 23 (Brazil 2007) Let ABC be a triangle with circumcenter O. Let P be the intersection of straight lines BO and AC and ω be the circumcircle of triangle AOP. Suppose that BO = AP and that the measure of the arc OP in ω , that does not contain A, is AO° . Determine the measure of the angle $\angle OBC$.
- [24] Problem 24 (BMT 2018) A 1 by 1 square ABCD is inscribed in the circle m. Circle n has radius 1 and is centered around A. Let S be the set of points inside of m but outside of n. What is the area of S?
- [2] Problem 25 (AMC 10B 2011/18) Rectangle ABCD has AB = 6 and BC = 3. Point M is chosen on side AB so that $\angle AMD = \angle CMD$. What is the degree measure of $\angle AMD$?
- [28] **Problem 26** (TAMU 2019) Let AA_1 be an altitude of triangle $\triangle ABC$, and let A_2 be the midpoint of the side BC. Suppose that AA_1 and AA_2 divide angle $\angle BAC$ into three equal angles. Find the product of the angles of $\triangle ABC$ when the angles are expressed in degrees.
- [2] Problem 27 (PHS PuMAC TST 2017) A trapezoid has area 32, and the sum of the lengths of its two bases and altitude is 16. If one of the diagonals is perpendicular to both bases, then what is the length of the other diagonal?

- [28] **Problem 28** (Autumn Mock AMC 10) Equilateral triangle ABC has side length 6. Points D, E, F lie within the lines AB, BC and AC such that BD = 2AD, BE = 2CE, and AF = 2CF. Let N be the numerical value of the area of triangle DEF. Find N^2 .
- [3 \nearrow] **Problem 29** (AHSME 1984/28) Triangle ABC has area 10. Points D, E, and F, all distinct from A, B, and C, are on sides AB, BC, and CA, respectively, and AD = 2, DB = 3. Triangle ABE and quadrilateral DBEF have equal areas s. Find s.
- [3] Problem 30 (HMMT February 2014) In quadrilateral ABCD, $\angle DAC = 98, \angle DBC = 82, \angle BCD = 70$, and BC = AD. Find $\angle ACD$.
- [3] Problem 31 (FARML 2012/6) In triangle ABC, AB = 7, AC = 8, and BC = 10. D is on AC and E is on BC such that $\angle AEC = \angle BED = \angle B + \angle C$. Compute the length AD.
- [3] Problem 32 (HMMT November 2013) Let ABC be an isosceles triangle with AB = AC. Let D and E be the midpoints of segments AB and AC, respectively. Suppose that there exists a point F on ray \overrightarrow{DE} outside of ABC such that triangle BFA is similar to triangle ABC. Compute $\frac{AB}{BC}$.
- [3] Problem 33 (Magic Math AMC 10 2020) Two concentric circles have radii $\sqrt{2}$ and 2. Three points A, B, C are chosen on the larger circle such that $\triangle ABC$ is equilateral. Find the area of the region in the smaller circle that is also inside the triangle.
- [3] Problem 34 (AMC 12B 2017/15) Let ABC be an equilateral triangle. Extend side \overline{AB} beyond B to a point B' so that $BB' = 3 \cdot AB$. Similarly, extend side \overline{BC} beyond C to a point C' so that $CC' = 3 \cdot BC$, and extend side \overline{CA} beyond A to a point A' so that $AA' = 3 \cdot CA$. What is the ratio of the area of $\triangle A'B'C'$ to the area of $\triangle ABC$?
- [3] Problem 35 (CNCM Online Round 2) There is a rectangle ABCD such that AB = 12 and BC = 7. E and F lie on sides AB and CD respectively such that $\frac{AE}{EB} = 1$ and $\frac{CF}{FD} = \frac{1}{2}$. Call X the intersection of AF and DE. What is the area of pentagon BCFXE?
- [3] Problem 36 (AMC 12B 2017/18) The diameter AB of a circle of radius 2 is extended to a point D outside the circle so that BD = 3. Point E is chosen so that ED = 5 and line ED is perpendicular to line AD. Segment AE intersects the circle at a point C between A and E. What is the area of $\triangle ABC$?
- [4] Problem 37 (Mandelbrot Nationals 2009) Triangle ABC has sides of length $AB = \sqrt{41}$, AC = 5, and BC = 8. Let O be the center of the circumcircle of $\triangle ABC$, and let A' be the point diametrically opposite A, as shown. Determine the area of $\triangle A'BC$.
- [4 $\mbox{\ensuremath{\mathcal{O}}}$] **Problem 38** (HMMT February 2014) Triangle ABC has sides AB = 14, BC = 13, and CA = 15. It is inscribed in circle, which has center O. Let M be the midpoint of AB, let B' be the point on diametrically opposite B, and let X be the intersection of AO and MB'. Find the length of AX.
- [4] Problem 39 (AIME 1989) Triangle ABC has an right angle at B and contains a point P such that AP = 10, BP = 6, and $\angle APC = \angle CPB = \angle BPA$. Find CP.
- [4] Problem 40 (106 Geometry Problems) In triangle ABC, medians BB_1 and CC_1 are perepndicular. Given that AC = 19 and AB = 22, find BC.

[4] Problem 41 (PHS ARML TST 2017) An algorithm starts with an equilateral triangle $A_0B_0C_0$ of side length 1. At step k, points A_k , B_k , and C_k are chosen on line segments $B_{k-1}C_{k-1}$, $C_{k-1}A_{k-1}$ and $A_{k-1}B_{k-1}$ respectively, such that

$$B_{k-1}A_k : A_kC_{k-1} = 1 : 1$$

 $C_{k-1}B_k : B_kA_{k-1} = 1 : 2$
 $A_{k-1}C_k : C_kB_{k-1} = 1 : 3$

What is the value of the infinite series:

$$\sum_{i=0}^{\infty} \operatorname{Area}[\triangle A_k B_k C_k]$$

- [4] Problem 42 (AIME 2005) In quadrilateral ABCD, let BC = 8, CD = 12, AD = 10 and $\angle A = \angle B = 60^{\circ}$.
- [4] Problem 43 (HMMT November 2013) Let ABC be a triangle and D a point on BC such that $AB = \sqrt{2}$, $BC = \sqrt{3}$, $\angle BAD = 30^{\circ}$, and $\angle CAD = 45^{\circ}$. Find AD.
- [4] Problem 44 (CMIMC 2020) Let ABC be a triangle with centroid G and BC = 3. If ABC is similar to GAB, compute the area of ABC.
- [4] Problem 45 (Magic Math AMC 10 2020) Isosceles triangle $\triangle ABC$ has AB = AC and circumcenter O. The circle with diameter AO intersects segment BC at P and Q, with P closer to B, such that BP = QC = 4 and PQ = 6. Compute the area of $\triangle A$
- [5 \nearrow] **Problem 46** (PHS HMMT TST 2020) \triangle ABC has side lengths AB = 11, BC = 13, CA = 20. A circle is drawn with diameter AC. Line AB intersects the circle at $D \neq A$, and line BC intersects the circle at $E \neq B$. Find the length of DE.
- [5] Problem 47 (CMIMC 2020) Let ABC be a triangle with centroid G and BC = 3. If ABC is similar to GAB, compute the area of ABC.
- [5] Problem 48 (Magic Math AMC 10 2020) Six points A, B, C, D, E, F are selected on a circle with center O such that ABCDEF is an equiangular hexagon with AB = CD = EF < BC = DE = FA. Diagonals AD, BE, FC are drawn, intersecting at points X, Y, Z. The three circles passing through O and two of X, Y, Z are each internally tangent to O. Find BC/AB.
- [6] Problem 49 (AMC 12B 2017/24) Quadrilateral ABCD has right angles at B and C, $\triangle ABC \sim \triangle BCD$, and AB > BC. There is a point E in the interior of ABCD such that $\triangle ABC \sim \triangle CEB$ and the area of $\triangle AED$ is 17 times the area of $\triangle CEB$. What is $\frac{AB}{BC}$?
- [6] Problem 50 (SLKK AIME 2020) Cyclic quadrilateral AXBY is inscribed in circle ω such that AB is a diameter of ω . M is the midpoint of XY and AM = 13, BM = 5, and AB = 16. If the area of AXBY can be expressed as $m\sqrt{p} + n$, where m, n, and p are positive integers such that m and n are relatively prime and p is not divisible by the square of a prime, find the remainder when m + n + p is divided by 1000.

[8] Problem 51 (SLKK AIME 2020) Squares ABCD and DEFG are drawn in the plane with both sets of vertices A, B, C, D and D, E, F, G labeled counterclockwise. Let P be the intersection of lines AE and CG. If DA = 35, DG = 20, and $BF = 25\sqrt{2}$, find DP^2 .

§ 6 Misc

These are problems that don't really fall into any other category at all.

§ 6.1 General

[2 \nearrow] **Problem 1** (Math Prizes For Girls 2019) Let $a_1, a_2, \ldots, a_{2019}$ be a sequence of real numbers. For every five indices i, j, k, and m from 1 through 2019, at least two of the numbers a_i, a_j, a_k and a_m have the same absolute value. What is the greatest possible number of distinct real numbers in the given sequence?

§ 6.2 Games

[2 \nearrow] **Problem 2** (BmMT 2016) Suppose you have a 20 × 16 bar of chocolate squares. You want to break the bar into smaller chunks, so that after some sequence of breaks, no piece has an area of more than 5. What is the minimum possible number of times that you must break the bar?

[3] Problem 3 (BMT 2015) Two players play a game with a pile with N coins is on a table. On a player's turn, if there are n coins, the player can take at most $\frac{n}{2} + 1$ coins, and must take at least one coin. The player who grabs the last coin wins. For how many values of N between 1 and 100 (inclusive) does the first player have a winning strategy?

§ 6.3 Logic

[2] Problem 4 (BmMT 2014) Alice, Bob, Carl, and Dave are either lying or telling the truth. If the four of them make the following statements, who has the coin?

Alice: I have the coin. Bob: Carl has the coin.

Carl: Exactly one of us is telling the truth. Dave: The person who has the coin is male.

[2 ?] Problem 5 (Berkeley Math Circle 2013) Ten people sit side by side at a long table, all facing the same direction. Each of them is either a knight (and always tells the truth) or a knave (and always lies). Each of the people announces: "There are more knaves on my left than knights on my right." How many knaves are in the line?