TALLER GRUPAL

Estudiantes: Juan Pablo Landi y Flor Valdivieso

EJERCICIO 01

------ANALISIS------

- Variables a utilizar
 - * Limite de notas, limite de estudiantes, promedio, suma del promedio, nota máxima, nota mínima, Arreglo de los promedios, Matriz para las notas.

DATOS DE ENTRADA	PROCESO	SALIDA
(Todos los datos se deben	Generamos notas aleatorias para	Tabla con los nombres de los
incorporar en los sitemas asi	28 estudiantes en el rango de 0	estudiantes, sus notas en tres
que no hay datos que el usuario	a 9 y las almacena en la matriz.	categorías, y su promedio y
coloque)		también el promedio general
	Calculamos el promedio para	
	cada estudiante y el promedio	Muestra los estudiantes que
	general multiplicando las notas	tienen notas por encima y por
	por 0.35 , 0.35 , 0.30 para sumar	debajo del promedio general.
	después el resultado y asi	
	obtener el promedio de cada	Encuentra y muestra al
	estudiante	estudiante con la nota más alta y
		más baja.

------PSEUDOCODIGO------

Algoritmo ejercicio_1

Definir limEst, limNotas como Entero

Definir promedio, sumaPro, notaMax, notaMin como Real

Definir matNotas como Matriz de Real

Definir arrProm como Arreglo de Real

limEst = 28

limNotas = 3

matriz matNotas[limEst][limNotas]

arreglo arrProm[limEst]

promedio = 0

```
sumaPro = 0
Para (i = 0; i < limEst; i+1) hacer
  Para (int j = 0; j < limNotas; j+1) hacer
    matNotas[i][j] = GenerarNumeroAleatorio(0, 9)
  Fin Para
Fin Para
Para ( i = 0; i < limEst; i+1)
                               hacer
  arrProm[i] = (matNotas[i][0] * 0.35) + (matNotas[i][1] * 0.35) + (matNotas[i][2] * 0.30)
  sumaPro = sumaPro + arrProm[i]
  promedio = sumaPro / limEst
Fin Para
Escribir "Nombres | ACD | APE | AA | Promedio"
Para t i = 0; i < limEst; i+1) hacer
  Escribir "Estudiante ", i
  Para (j = 0; j < limNotas; j+1) hacer
    Escribir "| ", matNotas[i][j]
  Fin Para
  Escribir " | ", arrProm[i]
  Salto de línea
Fin Para
Escribir "Promedio: "
Escribir promedio
Salto de línea
Escribir "Estudiantes encima del promedio"
Salto de línea
Para ( i = 0; i < limEst; i+1) hacer
```

```
Si arrProm[i] > promedio entonces
    Escribir "Estudiante ", i
    Escribir "| ", arrProm[i]
    Salto de línea
  Fin Si
Fin Para
Escribir Salto de linea
Escribir "Estudiantes debajo del promedio"
Salto de línea
Para ( i = 0; i < limEst; i+1) hacer
  Si arrProm[i] < promedio entonces
    Escribir "Estudiante ", i
    Escribir "| ", arrProm[i]
    Salto de línea
  Fin Si
Fin Para
notaMax = arrProm[0]
notaMin = arrProm[0]
Para (i = 0; i < limEst; i+1) hacer
  Si arrProm[i] > notaMax entonces
    notaMax = arrProm[i]
  Fin Si
  Si arrProm[i] < notaMin entonces
    notaMin = arrProm[i]
  Fin Si
```

Escribir Salto de linea

Escribir "Estudiante con la nota Mayor: "

Escribir notaMax

Escribir "Estudiante con la nota Menor: "

Escribir notaMin

Fin Algoritmo

Nombres ACD APE AA Promedio	Promedio:	Estudiantes encima del promedio	Estudiantes debajo del promedio	Estudiante con la nota Mayor:	Estudiante con la nota Menor:
Estudiante 0 7.02	5.18	Estudiante 0 6.43	Estudiante 1 3.79	9.88	1.97
2.89					
8.47		Estudiante 4 5.63	Estudiante 2 3.22		
6.43					
		Estudiante 6 6.58	Estudiante 3 4.93		
Estudiante 1 4.46					
5.35		Estudiante 8 9.88	Estudiante 5 3.60		
1.01		Faturdia ata 10	F-4di4- 7 2 22		
3.79		Estudiante 10 5.79	Estudiante 7 3.33		
Estudiante 2 1.66		5.79	Estudiante 9 4.41		
2.37		Estudiante 17	Estudiante 9 4.41		
5.18		8.26	Estudiante 11		
3.22		1 0.20	3.69		
1		Estudiante 18			
Estudiante 3 3.82		7.52	Estudiante 12		
5.94		,	2.75		
4.32		Estudiante 20			
4.93		5.24	Estudiante 13		
			4.31		
Estudiante 4 0.69		Estudiante 21			
7.46		5.76	Estudiante 14		
7.92			3.88		
5.63		Estudiante 23			
5-tdit 5 4 67		7.61	Estudiante 15		
Estudiante 5 4.67 3.44		Estudiante 24	4.44		
2.16		5.45	Estudiante 16		
3.60		1 3.43	4.76		
5.00		Estudiante 26	14.70		
Estudiante 6 8.12		5.84	Estudiante 19		
0.99			1.97		
9.68		Estudiante 27	· ·		
6.58		6.17	Estudiante 22		
			4.90		
Estudiante 7 0.64					
8.77			Estudiante 25		
0.09			5.03		
3.33					

Estudiante 8 9	9.99			
19	9.41			
l is	8.83			
	9.88			
1 3	9.00			
5 · 1 · · · · · · · · · · · ·	0.00			
Estudiante 9 8	8.99			
2	2.60			
1	1.01			
4	4.41			
'				
Estudiante 10				
	2.57			
	2.57			
	8.09			
5	5.89			
5	5.79			
Estudiante 11				
	1.69			
	1.96			
	6.90			
3	3.69			
Estudiante 12				
	2.24			
l in	0.45			
	5.15			
1 2	2.75			
14	2.75			
l				
Estudiante 13				
5	5.30			
4	4.88			
	2.12			
l i 4	4.31			
1				
Estudiante 14				
	2.02			
	2.83			
	6.44			
1	1.81			
3	3.88			
Estudiante 15				
1.9	9.38			
1 1	1.98			
	1.33			
4	4.44			
Estudiante 16				
6	6.00			
	5.96			
į i 1	1.63			
	4.76			
'"				
Estudiante 17				
Estudidite 1/	0.20			
1 18	8.39			
] 9	9.15			
6	6.06			
8	8.26			
Estudiante 18				
	8.66			
	6.05			
	6.03			
1	6.77			
17	7.52			
Estudiante 19				
13	3.03			
i 2	2.23			
	0.37			
	1.97			
''	1.31			
Estudiante 20				
6	6.51			
3	3.84			
4	4.64			

1524			
5.24			
Estudiante 21			
4.78			
7.38			
4.31			
5.76			
Estudiante 22			
2.55			
4.07			
7.39			
4.90			
Estudiante 23			
4.44			
7.30			
10.00			
7.61			
Faturdia ata 24			
Estudiante 24			
8.71			
2.06			
4.81			
5.45			
Estudiante 25			
1.85			
4.55			
4.55 7.97			
5.03			
5.03			
Estudiante 26			
6.10			
1.05			
9.53			
5.84			
Estudiante 27			
5.52			
6.67			
5.45			
6.17			

------ANALISIS------

DATOS DE ENTRADA	PROCESO	SALIDA
Nombre	Nombre del producto y verificar	Catalogo
Precio	si hay disponible	
Cantidad	Precio y Cantidad	

PSEUDOCODIGO

Algoritmo ejercicio_2

Definir nomProducto (6) como cadena [Gaseosas, picaditas, alcohol, aliños, granos secos, embutidos]

Definir limProducto =6, columnas=2, productoIng como enteros

Definir matriz llamada matPreCan (6)(2) como real [limProductos][columnas]

```
Para (i=0; ilimProductos;i+1)
     Escribir "Aquí ingrese los precios señor emprendedor"
     matPreCan [0][0] = 1.00
     matPreCan [1][0] = 0.50
     matPreCan [2][0] = 2.50
     matPreCan [3][0] = 0.50
     matPreCan [4][0] = 0.75
     matPreCan [5][0] = 1.50
     Para (j=0; j<columnas;j+1)
          Escribir "Aquí ingrese la cantidad señor emprendedor"
          matPreCan [0][1] = 100
          matPreCan [1][1] = 10
          matPreCan [2][1] = 50
          matPreCan [3][1] = 50
          matPreCan [4][1] = 75
           matPreCan [5][1] = 80
     Fin Para
Fin Para
Escribir "¿Qué producto busca?"
Leer nomProducto
Si (productoIng == nomProducto )
   Escribir "Si tenemos ese producto, aquí tiene nuestro catalogo"
Sino
   Escribir "Producto no disponible"
FinSi
Para (i=0; ilimProductos;i+1)
     nomProdcuto[i]
     Para (j=0; j<columnas;j+1)
           matPreCan[i][j]
```

Fin Para

Fin Para

Fin Algortimo

-----PRUEBA DE ESCRITORIO------

Producto	Respuesta	Catalogo		
Gaseosa	Si tenemos ese producto,	Gaseosa	1.00	100
	aquí nuestro catalogo.	Picaditas	0.50	10
		Alcohol	2.50	50
		Aliños	0.50	50
		Granos	0.75	75
		Embutidos	1.50	80

EJERCICIO 03

------ANALISIS------

- Para los datos de la tienda o los productos tenemos que incorporarlos directamenet al sistema y en el programa lo hicimos asi

-	01	Gaseosas	1.0	100
-	002	Picaditas	1.0	100
_	003	Alcohol	2.5	100

ENTRADA	PROCESO	SALIDA
Codigo	Comparación si el producto	Nombre del producto
Cantidad	existe	Cantidad
	Comparamos si la cantidad es	Precio por unidad
	menor a la existente	Total
	Calculamos el total	Descuento
	multiplicando la cantidad por el	Total con el iva
	precio unitario	
	Calculamos el iva multiplicando	
	el total por 1.12	
	Comprobamos si hay algún	
	descuento solo si la compra	
	supera la cantidad de 100 ,	
	multiplicando por 0.1	

-----PSEUDOCODIGO------

```
Algoritmo ejercicio_3
  Definir total, totalConIVA, descuento como Real
  Definir matriz llamda "inventario" como Cadena
  Definir codigoProducto como Cadena
  Definir cantidadDeseada como Entero
  Definir productoEncontrado como Booleano
  total = 0
  totalConIVA = 0
  descuento = 0
  inventario = (
    ["001", "Gaseosas", "1.0", "100"],
    ["002", "Picaditas", "1.0", "100"],
    ["003", "Alcohol", "2.5", "100"]
  )
  Escribir "CÓDIGO | PRODUCTO | PRECIO | CANTIDAD"
  Para (Cadena[] producto: inventario (para que sirve para recorrer los productos ya dados)) hacer
    Escribir producto[0], producto[1], producto[2], producto[3]
  Fin Para
  Escribir "Ingrese el código del producto:"
  Leer codigoProducto
  Escribir "Ingrese la cantidad deseada:"
  Leer cantidadDeseada
  productoEncontrado = Falso
    Si producto[0] igual a codigoProducto entonces
      productoEncontrado = Verdadero
      precioUnitario = ConvertirADecimal(producto[2])
      cantidadDisponible = ConvertirAEntero(producto[3])
      Si cantidadDeseada > cantidadDisponible entonces
        Escribir "Disculpe, se ha agotado este producto"
```

```
Fin Si
      total = total + (cantidadDeseada * precioUnitario)
      Si total > 100.0 entonces
         descuento = total * 0.1
      Fin Si
      totalConIVA = total * 1.12
    Fin Si
  Fin Para
  Si no(expresión booleana) productoEncontrado entonces
    Escribir "Disculpe, no poseemos este producto"
  Sino
    Escribir "FACTURA"
    Escribir "Producto: ", inventario[0][1]
    Escribir "Cantidad: ", cantidadDeseada
    Escribir "Precio por unidades: $", inventario[0][2]
    Escribir "Total: $", total
    Escribir "Descuento: $", descuento
    Escribir "Total Con IVA: $", totalConIVA
  Fin Si
Fin Algoritmo
```

ENTRADA	CANTIDAD	Buscar	TOTAL	Descuento	Total con	FACTURA
CODIGO	DESEADA	según el			Iva	
		código el				
001	10	Producto	0+	10 > 100	10*1.12=	Producto: Gaseosas
		existente	(10*1)=10	(no)	11.20	Cantidad: 10
				No hay		Precio por unidades:
				descuento		\$1.0
						Total: \$10.0
						Descuento: \$0.0
						Total Con IVA:
						\$11.2000000000000001

------ANALISIS------

- Para la prueba este programa tendremos que hacer un análisis básico de que nomas tenemos que colocar
- Antes de todo definimos el tablero en el sistema
- tablero =[['','',''], ['','',''], ['','','']]

ENTRADA	PROCESO	SALIDA
Coordenadas de cada posición	Comprobación de todo	El tablero de cada posición
en el tablero		puesta

```
Para ( i = 0; i < 3; i+1) hacer

Escribir "| "

Para ( j = 0; j < 3; j+1) hacer

Escribir tablero[i][j], " | "
```

Fin Para

```
Escribir ""(para hacer un salto de linea)
      Escribir "-----"
    Fin Para
    Hacer {
         Escribir "Jugador ", jugadorActual, ", ingrese fila (0-2) y columna (0-2) separadas por espacio:"
         Leer fila, columna
   } Mientras (fila < 0 o fila >= 3 o columna < 0 o columna >= 3 o tablero[fila][columna] diferente de ' ' )
    tablero[fila][columna] = jugador Actual
    Para ( i = 0; i < 3; i+1) hacer
      Si (tablero[i][0] igual a jugadorActual y tablero[i][1] igual a jugadorActual y tablero[i][2] igual a
      jugadorActual) o (tablero[0][i] igual a jugadorActual y tablero[1][i] igual a jugadorActual
tablero[2][i] igual a jugadorActual) entonces
         juegoEnCurso = Falso
         Detener
      Fin Si
    Fin Para
    Si (tablero[0][0] igual a jugadorActual y tablero[1][1] igual a jugadorActual y tablero[2][2] igual a
jugadorActual) o (tablero[0][2] igual a jugadorActual y tablero[1][1] igual a jugadorActual y tablero[2][0]
igual a jugadorActual) entonces
      juegoEnCurso = Falso
      Escribir "Alguien ganó, que bien ñaño"
    Fin Si
    empate = Verdadero
    Para (i = 0; i < 3; i++) hacer
      Para (j = 0; j < 3j++) hacer
         Si tablero[i][j] igual a ' ' entonces
           empate = Falso
           Detener
         Fin Si
```

Fin Para
Si no empate entonces
Detener
Fin Si
Fin Para
Si empate entonces
juegoEnCurso = Falso
Escribir "Nadie ha ganado, jueguen una más"
Fin Si
Si jugadorActual igual a 'X' entonces
jugadorActual = 'O'
Sino
jugadorActual = 'X'
Fin Si
Fin Mientras
Fin Algoritmo

ENTRADA	PROCESO	SALIDA
2,1	Verficiacion de las coordenadas	
	correctas	
	Comprobación de el jugador	
	que esta turnando	
	Colocación de la letra según el	
	jugador	X
1,1	Verficiacion de las coordenadas	
	correctas	
	Comprobación de el jugador	
	que esta turnando	0
	Colocación de la letra según el	
	jugador	X
2,0	Verficiacion de las coordenadas	
	correctas	
	Comprobación de el jugador	
	que esta turnando	0

1, 1	Colocación de la letra según el jugador Verficiacion de las coordenadas correctas (coordenada ya ocupada, volvemos al ciclo repetitivo) Comprobación de el jugador que esta turnando Colocación de la letra según el jugador	 X X N/A
0,0	Verficiacion de las coordenadas correctas Comprobación de el jugador que esta turnando Colocación de la letra según el jugador	
2,2	Verficiacion de las coordenadas correctas Comprobación de el jugador que esta turnando Colocación de la letra según el jugador	Alguien ganó, que bien ñaño

Algoritmo multiplicar Matrices

ANIALICIC
ANALISIS

- Para la multiplicación de las matrices es colocar ambas matrices son sus miembros y dar los números a cada una de ellas
- Para esto hacemos una generación automática de cada numero
- Por lo tanto no habrá datos de entrada

ENTRADA	PROCESO	SALIDA
n/a	Generacion de cada numero	Mostrar la matriz de
	en un rango de -9 ,9	respuesta
	Multipliacion de ambas	
	matrices y mostrar el	
	resultado como una matriz	
	tercera	

PSEUDOCODIGO	

```
Definir limMatriz como Entero
Definir primeraMat como Matriz de Enteros
Definir segundaMat como Matriz de Enteros
Definir solucion como Matriz de Enteros
limMatriz =3
primeraMat[limMatriz][limMatriz]
segundaMat[limMatriz][limMatriz]
solucion[limMatriz][limMatriz]
Para ( i = 0; i < limMatriz; i+1)hacer
  Para (j = 0; j < limMatriz; j+1)hacer
    primeraMat[i][j] = GenerarNumeroAleatorio(-9, 9)
  Fin Para
Fin Para
Escribir "Primera Matriz: "
Para ( i = 0; i < primeraMat; i+1)hacer
  Para (j = 0; j < limMatriz; j+1)hacer
    Escribir primeraMat[i][j]
  Fin Para
  Escribir ""
Fin Para
Para ( i = 0; i < limMatriz; i+1)hacer
  Para (j = 0; j < limMatriz; j+1)hacer
    segundaMat[i][j] = GenerarNumeroAleatorio(-9, 9)
  Fin Para
Fin Para
Escribir "Segunda Matriz: "
Para (i = 0; i < segundaMat; i+1)hacer
  Para (j = 0; j < limMatriz; j+1)hacer
```

```
Escribir segundaMat[i][j],
    Fin Para
    Escribir ""
  Fin Para
  Para ( i = 0; i < limMatriz; i+1) hacer
    Para ( j = 0; j < limMatriz; j+)hacer
      Para ( k = 0; k < limMatriz; k+1)hacer
         solucion[i][j] = 0
         solucion[i][j] = solucion[i][j] + primeraMat[i][k] * segundaMat[k][j]
      Fin Para
    Fin Para
  Fin Para
  Escribir "Resultado: "
  Para (i = 0; i < limMatriz; i+1)hacer
    Para ( j = 0; j < limMatriz; j+1)hacer
      Escribir solucion[i][j]
    Fin Para
    Escribir ""
  Fin Para
Fin Algoritmo
```

ENTRADA	GENER LA PRII	ACION [MERA	DE	GENER LA SEG	ACION E	DE	MULTIPLICACION	SALIDA
	MATRI	Z		MATRI	Z			
N/A	-5	-6	8	-4	5	1	primeraMat[i][k] *	-72 29 39
							segundaMat[k][j]	17 -44 8
	-6	7	7	6	-5	-2		27 -19 -13
	-3	-1	-3	-7	3	4		

------ANALISIS------

- Debemos generar un limite de las matrices cuadradas
- Una vez generado esto debemos generar números aleatorios entre -9,9

INICIO	INTERMEDIO	FIN
El limite de la matriz ya esta	Sumar o restar ambas matrices	Presentar el resultado de la
colocado	según el usuario lo pida	mariz ya sea sumada o restada
Generamos las matrices con		
números -9,9		

-----PSEUDOCODIGO------

Algoritmo operacionesMatrices

Definir limMatriz como Entero

Definir primeraMat como Matriz de Enteros

Definir segundaMat como Matriz de Enteros

Definir solucion como Matriz de Enteros

Definir opcion como Entero

limMatriz = 3

primeraMat[limMatriz][limMatriz]

segundaMat[limMatriz][limMatriz]

solucion[limMatriz][limMatriz]

Para (i = 0; i < limMatriz; i+1)hacer

Para (j = 0; j < limMatriz; j+1)hacer

primeraMat[i][j] = GenerarNumeroAleatorio(-9, 9)

Fin Para

Fin Para

Escribir "Primera Matriz: "

```
Para (i = 0; i < primeraMat; i+1)hacer
  Para (j = 0; j < limMatriz; j+1)hacer
    Escribir primeraMat[i][j]
  Fin Para
  Escribir ""
Fin Para
Para (i = 0; i < limMatriz; i+1)hacer
  Para ( j = 0; j < limMatriz; j+1)hacer
    segundaMat[i][j] = GenerarNumeroAleatorio(-9, 9)
  Fin Para
Fin Para
Escribir "Segunda Matriz: "
Para ( i = 0; i < segundaMat; i+1)hacer
  Para (j = 0; j < limMatriz; j+1)hacer
    Escribir segundaMat[i][j]
  Fin Para
  Escribir ""
Fin Para
Escribir "Si desea sumar las matrices ingrese 1"
Escribir "Si desea restar las matrices ingrese 2"
Leer opcion
Si opcion ==1 Entonces
    Escribir "Resultado"
    Para ( i = 0; i < solucion; i+1)hacer
      Para (j = 0; j < solution; j+1) hacer
         solucion[i][j] = primeraMat[i][j] + segundaMat[i][j]
         Escribir solucion[i][j]
      Fin Para
      Escribir ""
```

```
Sino Si opción == 2 Entonces

Escribir "Resultado: "

Para ( i = 0; i < solucion; i+1)hacer

Para (int j = 0; j < solucion; j+1)hacer

solucion[i][j] <- primeraMat[i][j] - segundaMat[i][j]

Escribir solucion[i][j]

Fin Para

Escribir ""

Fin Para

Fin Si
```

Fin Para

Fin Algoritmo

	eración d as matric		Numero de la operación ingresado	Realización de la operación correspondiente	Impre soluc	esión de ion	la
Prim	imera Matriz: Resta de las matrices		3	4	-4		
-1	2	0		primeraMat[i][j]-segundaMat[i][j]			
					10	-9	8
7	-2	8					
	6	0			1	-13	15
3	-6	8					
Segu	nda Mat	riz·					
_	-2						
-4	-2	4					
-3	7	0					
	•	Ū					
2	7	-7					
Dulina	N.A-+-	·	4	Company de combana machina		2	
	era Matr		1	Suma de ambas matrices:	9	-3	7
1	-6	6		primeraMat[i][j]+segundaMat[i][j]			•
_	C	0			6	10	8
5	6	8			1	11	c
					-4	-11	-6

-6	-7	-5
Segur	nda Mat	riz:
8	3	1
1	4	0
2	-4	-1

------ANALISIS------

- No habrá ningún dato de entrada porque todo lo genera automáticamente el programa
- Tenemos que hacer se muestre la diagonal secundaria que es la contraria a la diagonal principal

ENTRADA	PROCESO	SALIDA
n/a	Se utiliza un bucle anidado para imprimir cada elemento de la matriz en filas y columnas Se utiliza un bucle para recorrer la matriz en orden ascendente en las filas y descendente en las columnas, imprimiendo los elementos de la diagonal secundaria. Se utiliza un bucle anidado para recorrer cada fila y cada columna Se imprimen los elementos que están por encima de la diagonal secundaria Se utiliza un bucle anidado para recorrer cada fila y cada columna Se imprimen los elementos que están debajo de la diagonal secundaria	La diagonal secundaria (invertida) Los elementos que están arriba de esta y los q están debajo de esta.

```
Algoritmo operacionesMatriz
  Definir limMat como Entero
  Definir mat como Matriz de Enteros
  limMat = 3
  matriz mat[limMat][limMat]
  Para ( i = 0; i < limMat; i+1)hacer
    Para (j = 0; j < limMat; j+1)hacer
      mat[i][j] = GenerarNumeroAleatorio(-9, 9)
    Fin Para
  Fin Para
  Para ( i = 0; i < mat; i+1) hacer
    Para (j = 0; j < limMat; j+1)hacer
      Escribir mat[i][j]
    Fin Para
    Escribir ""
  Fin Para
  Para (int i = 0; i < mat; i+1)hacer
     Para (int j = 0; j < mat; j+1) hacer
        Si i == j
     Fin Para
Fin Para
Escribir "Diagonal Secundaria: "
  j = (limMat) - 1
  Para ( i = 0; i < mat; i++)hacer
    Escribir mat[i][j--]
  Fin Para
  Escribir "Elementos encima de la diagonal Secundaria"
  Para (i = 0; i < mat; i+1)hacer
    Para (k = 0; k < mat; k+1)hacer
```

```
Escribir mat[i][k]

Fin Para

Escribir ""

Fin Para

Escribir "Elementos debajo de la diagonal Secundaria "

Para (i = 1; i < mat; i+1)hacer

Para (k = mat - i; k < mat; k+1)hacer

Escribir mat[i][k]

Fin Para

Escribir ""

Fin Para

Fin Algoritmo
```

Generar elementos de		entos de	Comprobar la diagonal	Elementos encima	Elemtos debajo
la matriz con limite de		limite de	secundaria		
3					
0	-5	-5	los elementos de la	Utilizamos dos bucles	Utilizamos dos bucles
			diagonal secundaria	para recorrer y	para recorrer y
8	5	-2	de la matriz van en	verificar los	verificar los
1	C	1	orden ascendente de	elementos por	elementos por
-2	6	1	las filas y van en	encima de la	debajo de la diagonal
			descendente de las	diagonal secundaria,	secundaria, y se
			columnas, lo que es	y se imprime cada	imprime cada
			consistente con la	elemento	elemento
			definición de la	correspondiente a	correspondiente a
			diagonal secundaria	esa condición. La	esa condición. La
			en una matriz	variable k en el bucle	variable k en el bucle
			cuadrada.	interior se encarga de	interior se encarga de
			Y aquí el resultado	ajustar la posición en	ajustar la posición en
			-5 -	la fila para que solo	la fila para que solo
			5	se consideren las	se consideren las
			-2	columnas por encima	columnas por debajo
				de la diagonal	de la diagonal
				secundaria.	secundaria.
				Aquí la solución	Aquí la solución
				0 -5	-2

	8	6	1

------ANALISIS------

- No habrá ningún dato de entrada porque todo lo genera automáticamente el programa
- Tenemos que hacer que mmuestre la diagonal principal la cual es una representación de las coodernadas repetidas ejemplo (0,0)(1,1,)(2,2)

```
-----PSEUDOCODIGO------
```

```
Algoritmo operacionesMatriz
```

Definir limMat como Entero

Definir mat como Matriz de Enteros

```
limMat = 3
```

matriz mat[limMat][limMat]

```
Para ( i = 0; i < limMat; i+1)hacer
```

```
Para (j = 0; j < limMat; j+1) hacer
```

mat[i][j] <- GenerarNumeroAleatorio(-9, 9)</pre>

Fin Para

Fin Para

```
Para (i = 0; i < mat; i+1)hacer
```

Para (j = 0; j < limMat; j+1)hacer

Escribir mat[i][j]

Fin Para

Escribir ""

Fin Para

Para
$$(j = 0; j < mat; j+1)$$
hacer

```
Fin Para

Fin Para

Escribir "Diagonal Principal: "

Para ( i = 0; i < limMat; i+1)hacer

Escribir mat[i][i]

Fin Para

Escribir "Elementos debajo de la diagonal Principal"

Para ( i = 0; i < mat; i+1)hacer

Para ( j = 0; j < i; j+1)hacer

Escribir mat[i][j]

Fin Para

Escribir ""

Fin Para

Escribir "Elementos encima de la diagonal Principal"

Para ( j = 0; j < mat; j+1)hacer
```

Para (i = 0; i < j; i+1)hacer

Escribir mat[i][j]

Fin Para

Fin Para

Fin Algoritmo

Generar elementos de la matriz con limite de			Comprobar la diagonal	Elementos encima	Elemtos debajo
3					
2	2 -1 -6		La condición I == j en	el bucle PARA doble	el bucle PARA doble
_	2	_	la instrucción mat[i][j]	anidado for i y for j se	anidado for i y for j se
-5 -3 5		5	asegura que solo se	encarga de recorrer y	encarga de recorrer y
5	7 -1		acceda a los	verificar los	verificar los
_			elementos de la	elementos por	elementos por
			diagonal principal.	encima de la	debajo de la diagonal
			Los elementos de la	diagonal principal, y	principal, y cada
			diagonal principal se	cada elemento	elemento

:	an was an an alianta a	an was a san di a sata a		
imprimen uno por	correspondiente a	correspondiente a		
uno en una nueva	esa condición se	esa condición se		
línea. Tal y como ves	imprime en la misma	imprime en una		
aqui	línea. La condición i <j< td=""><td colspan="2">nueva línea. La</td></j<>	nueva línea. La		
2	en el bucle interno	condición j <i el<="" en="" td=""></i>		
-3	asegura que solo se	bucle interno asegura		
-1	recorran las filas por	que solo se recorran		
	encima de la	las columnas por		
	diagonal principal	debajo de la diagonal		
	para cada columna j.	principal para cada		
	Como lo ves aqui	fila i		
	5	Como lo ves aqui		
	5 7			
		-1 -6 5		

------ANALISIS------

- Para la pirámide definir la altura de la pirámide en el programa lo que significa que no habrá datos de entrada

ENTRADA	PROCESO	SALIDA
n/a	El limite esta en el programa	Piramide
	Ejecutar las veces según el	
	limite de la pirámide	
	Uno que controle el numero de	
	asteriscos	
	Luego imprimir los asteriscos	

------PSEUDOCODIGO------

Algoritmo imprimirPiramide

Definir limPiramide como Entero

limPiramide = 4

Para (i = 0; i < limPiramide; i+1)hacer

Para (j = 0; j < i; j+1)hacer

Escribir "* "

Fin Para
Escribir ""

Fin Para

Fin Algoritmo

-----PRUEBA DE ESCRITORIO------

Declaracion de limite	Para externo	Para interno	Impresión de asteriscos y saltos de linea
4	Controla las filas y repite el bucle 4 veces	controla las columnas de cada fila. El límite del bucle interno j<=i asegura que se impriman asteriscos en una cantidad igual al número de la fila actual i.	Después de imprimir los asteriscos en una fila, se agrega un salto de línea para pasar a la siguiente fila. Este proceso se repite hasta que se haya completado la pirámide con la altura deseada. Al ejecutar el programa, verás una salida similar a la siguiente: * * * * * * * * * * * * * * * * * * *

EJERCICIO 10

------ANALISIS------

- Para esta pirámide completa se puede hacer una pirámide normal y una invertida justo adebajo para poder completar un rombo

ENTRADA	PROCESO	SALIDA
El limite de la pirámide(base)	Tenemos que crear dos	La pirámide completa
	pirámides una acendente y	acendente y desendente
	una desendente para cada	
	uno de estos ocupamos 3	
	para , con las variables i,j,k	

-----PSEUDOCODIGO------

```
Algoritmo imprimirFigura
  Definir tamaño como Entero
  Escribir "Ingrese el tamaño de la figura: "
  Leer tamaño
  Para ( i = 0; i <= tamaño; i+1)hacer
    Para (j = tamaño-i; j > 0; j-1) hacer
      Escribir " "
    Fin Para
    Para (k = 0; k < i; k+1)hacer
      Escribir " *"
    Fin Para
    Escribir ""
  Fin Para
  Para ( i = 0; i <= tamaño; i+1)hacer
    Para ( j = 0; j \le i; j+1)hacer
      Escribir " "
    Fin Para
    Para (k = tamaño - i - 1; k > 0; k-1) hacer
      Escribir " *"
    Fin Para
    Escribir ""
  Fin Para
Fin Algoritmo
```

Entrada	Para(i) A	Para(j) A	Para (k) A	Para(i) D	Para(j) D	Para(k) D	Salida
5	para	imprime	imprime los	para	imprime	imprime los	*
	controlar	espacios	asteriscos	controlar las	espacios en	asteriscos en	* *
	las filas de	en blanco	en orden	filas de la	blanco	orden	* * *
		antes de	ascendente.		antes de	descendente.	* * * *
							* * * * *

la pirámide	los	pirámide	los	* * * *
ascendente		descendente	asteriscos,	* * *
	creando la		creando la	* *
	forma		forma	*
	triangular.		triangular	
			invertida.	