

# Team Q-Harmonics

#### Team Members

Abdullah K B Akash Reddy Bruno Rijsman Kiran Kaur Sai Ganesh Manda Tyler Cowan

### Project

### DQFT

Distributed Quantum Fourier Transformation







Implementation, Validation, Benchmarking, Documentation

GitHub

https://github.com/brunorijsman/quantum-internet-hackathon-2022

### How did we do it?

#### DQFT circuit generation

- Python classes and scripts
- Cluster and processor abstractions
- Teleportation and cat state abstractions
- QFT and DQFT algorithms

#### DQFT circuit validation

- Python classes and scripts
- Use states and counts from simulator
- Compare histograms
- Compare state vectors
- Compare density matrices



## Some example non-distributed QFT circuits

### 2-qubit non-distributed QFT



### 4-qubit non-distributed QFT



### Some example distributed QFT circuits

### 2-qubit distributed QFT using teleportation



### 2-qubit distributed QFT using cat states



## How far did we get?

|                                     | Qiskit | Quantum Network Explorer By QuTech | PENNYLANE |
|-------------------------------------|--------|------------------------------------|-----------|
| Non-distributed QFT                 |        |                                    |           |
| Distributed QFT using teleportation |        |                                    |           |
| Distributed QFT using cat-states    |        |                                    |           |
| Validation using histograms         |        |                                    |           |
| Validation using state vector / DM  |        |                                    |           |
| Documentation and visualization     |        |                                    |           |