## Resolución: >



Note que:

$$T = \frac{\overline{BP}}{\overline{PD}} \text{ es la razón en que divide a la diagonal } \overline{BD}. \text{ Por tanto las coordenadas del punto} \left\{ \begin{array}{l} x = \frac{-2+6r}{1+r} \\ y = \frac{-1+11r}{1+r} \end{array} \right. \text{(*)}$$

• 
$$r_1 = \frac{\overline{AP}}{\overline{BC}}$$
 es la razón en que divide a la diagonal  $\overline{AC}$ . Por tanto las coordenadas del punto 
$$\begin{cases} x = -\frac{-4 + 8r_1}{1 + r_1} \\ y = \frac{6 + 0r_1}{1 + r_1} \end{cases}$$
 (\*\*) 
$$De (*) y (**) se tiene$$
 
$$x = \frac{-2 + 6r}{1 + r} = \frac{-4 + 8r_1}{1 + r_1}, \quad y = \frac{-1 + 11r}{1 + r} = \frac{6 + 0r_1}{1 + r_1}$$

$$x = \frac{-2+6r}{1+r} = \frac{-4+8r_1}{1+r_1}, \ \ y = \frac{-1+11r}{1+r} = \frac{6+0r_1}{1+r_1}$$

de donde  $r_1 = \frac{5r+1}{r+5} = \frac{5r-7}{1-11r}$  de esto se llega a  $5r^2 + 2r - 3 = 0$  de aquí  $r = \frac{3}{5}$  ◀

## 1.2.1. Ejercicios Propuestos

- 1. Marque los puntos siguientes en el plano coordenado A(2,3), B(-5,8), C(-1,-5), D(2,-7). Luego especifique en qué cuadrante se localiza cada punto.
- 2. Grafique el conjunto siguiente  $S = \{(1, -2), (0, 4), (3, \frac{3}{4}), (-3, -1)\}$
- 3. Trace el conjunto de puntos (x, y) en el plano que satisfaga:

(i) 
$$xy = 0$$
, (ii)  $xy < 0$ , (iii)  $xy > 0$ , (iv)  $\frac{x}{y} = 0$ 

4. Localice los puntos dados, si (a, b) esta en el primer cuadrante.

$$(i) (a,-b)$$
  $(ii) (a,a),$   $(iii) (b,-b)$   $(iv) (b,-a)$ 

5. La abscisa de un punto es -6 y su distancia al punto A(1,3) es  $\sqrt{74}$ . Hallar la ordenada del punto (dos soluciones).

- 6. Demostrar que los puntos A(-3,10), B(1,2) C(4,-4) son colineales, es decir, que están sobre una misma linea recta.
- 7. Demostrar que el cuadrilátero cuyos vértices son A(-2,6), B(4,3), C(1,-3), D(-5,0) es un cuadrado.
- 8. Hallar las coredenadas del punto que equidista de los puntos fijos a(4,3), B(2,7), C(-3,-8).
- 9. Demostrar que el cusdrilátero cuyos vértices son A(-6,-2), B(-2,-1), C(-1,3), D(-5,2). es un rombo.
- 10. Dos de los vértices de un triángulo equilátero son los puntos A(-1,1), B(3,1). Hallar las coordenadas del tercer vértice.
- 11. Hallar la distancia que separa a los puntos A;B.

(i) 
$$A(3,3\sqrt{3}), B(7,3\sqrt{3})$$

(*ii* )
$$A(m,n), \ B\left(\frac{m-n\sqrt{3}}{2}, \frac{n+m\sqrt{3}}{2}\right) \ \text{Rp. } \sqrt{n^2+m^2}$$

Rp. 8.

12. La ordenada de un punto es 8 y su distancia al punto B(5,-2) es  $2\sqrt{41}$ . Hallar la abscisa del punto.

Rp. 
$$x = 13$$
, ó  $x = -3$ 

13. Determinar el valor de b si la distancia entre los puntos A(7,1), B(3,b) es 5.

Rp. 
$$b = -2$$
, ó  $b = 4$ 

- 14. Usando la formula de distancia demuestre que los puntos A(-3,10), B(1,2), C(4,-4) son colineales, es decir que están sobre una misma recta.
- 15. Hallar las coordenadas de los vértices de un triángulo sabiendo que las coordenadas de los puntos medios de sus lados son M(-2,1), N(5,2), P(2,-3).
- 16. El segmento que une A(-2,-1), con B(2,2) se prolonga hasta C. Sabiendo que  $\overline{BC}=3\overline{AB}$ , hallar las coordenadas de C.
- 17. Los puntos extremos de un segmento son A(2,4) y B(8,-4). Hallar el punto P(x,y) que divide a este segmento en dos partes tales que  $\frac{\overline{BP}}{\overline{PA}} = -2$
- 18. El punto P(16,9) divide al segmento  $A(x_1,y_1)$  y B(4,5) en razón  $r=\frac{-3}{2}$ , hallar las coordenadas de A.

- 19. Dados los puntos P(2,1) y Q(5,3) tales que  $\overline{PB} = 2\overline{AP}$ ,  $3\overline{AQ} = 4\overline{AB}$ ; hallar las coordenadas de los puntos A,B.
- 20. En el triángulo de vértices  $A(x_1, y_1)$ ,  $B(x_2, y_2)$ ,  $C(x_3, y_3)$ , demostrar que las coordenadas del baricentro son

$$x = \frac{x_1 + x_2 + x_3}{3}$$
  $y = \frac{y_1 + y_2 + y_3}{3}$ 

- 21. El segmento de extremos (A(-2,3), B(12,8)), se devide en cinco partes iguales. Hallar las suma de las absisas y las ordenadas de los puntos de división.
- 22. Sea el triángulo de vértices en los puntos A(1,1), B(1,3), C(-2,-3). Hallar la longitud de los lados, el centro de gravedad y la longitud de la bisectriz del ángulo A.
- 23. Los vértices de un cuadrilátero son A(-4,6), B(-2,-1), C(8,0), D(6,11). Hallar la razón  $r = \frac{\overline{BP}}{\overline{PD}}$  en que la diagonal  $\overline{AC}$  divide a  $\overline{BD}$ , donde P es el punto de intersección de las diagonales.
- 24. La abscisa de un punto es -6 y su distancia al punto A(1,3) es  $\sqrt{74}$
- 25. Hallar las coordenadas del extremo C(x,y) del segmento que une este punto con A(2,-2), sabiendo que el punto B(-4,1) está situado auna distancia de A igual a las  $\frac{3}{5}$  partes de la longitud total del segmento.
- 26. Sean los puntos A(0,0), B(4,2), C(12,2), D(8,0) vértices de un paralelogramo. M es un punto medio de  $\overline{AB}$ ,  $\overline{BM}$  y  $\overline{AC}$  se intersecan en el punto P de modo que se cumple  $\frac{\overline{MP}}{\overline{PD}} = \frac{\overline{AP}}{\overline{PC}}$ . Hallar las coordenadas de P



Probaremos que sus lados opuestos son paralelos, y que sus lados opuestos tienen la misma longitud, para ellos vamos a probar que  $\overline{AB} \parallel \overline{DC}$  y  $\overline{AD} \parallel \overline{BC}$  entonces bastará probar que sus pendientes respectivas son iguales, es decir

$$\begin{aligned} & \frac{decir}{m_{\overline{AB}}} = \frac{1+5}{2+1} = 2 = m_{\overline{DC}} = \frac{5+1}{1+2} \\ & y \ que \\ & m_{\overline{AD}} = \frac{-1+5}{-2+1} = -4 = m_{\overline{BC}} = \frac{5-1}{1-2} \ esto \ demuestra \ que \ la \ figura \ es \ un \ paralelogramo. \end{aligned}$$

**Ejemplo 1.4.7.** Si A(-3,2), B(2,5) son dos vértices de un triángulo rectángulo ABC, recto en B, y el vértice C está en el eje x, hallar la medida del ángulo A.



## 1.4.1. Ejercicios Propuestos

- 1. Una recta de pendiente -2 pasa por el punto P(2,7) y por los puntos A(x,3), B(6,y). Hallar la d(A,B).
- 2. Demostrar que los puntos A(1,-1), B(3,2), C(7,8) son colineales en dos formas
  - (a) Usando la fórmula de la distancia

- (b) Usando pendientes
- 3. Un punto P(x, y) equidista de los puntos A(-2,3), B(6,1) y la pendiente de la recta que une dicho punto a C(5,10) es 2. Hallar sus coordenadas.
- 4. Si la recta  $L_1$  que contiene a los puntos A(a,2), B(0,2a) es paralela a la recta  $L_2$ , que contiene a los puntos C(-a,3), D(1,-2a). Hallar el valor de a.

- 5. Si la recta  $L_1$  de pendiente  $m_1$  la que contiene a los puntos A(1,-2), B(3,a) es perpendicular a la recta  $L_2$  de pendiente  $m_2$ , que contiene a los puntos C(-3,1), D(a,4). Calcule  $5m_1 + m_2$
- 6. Demostrar que los puntos A(-1,-5), B(2,1), C(1,5), D(-2,-1) son los vértices de un paralelogramo.
- 7. Una recta de pendiente  $\frac{7}{3}$  pasa por P(1,2). Hllar las coordenadas de dos puntos sobre la recta que distan  $\sqrt{58}$  unidades de P.
- 8. El punto A(-2,1) es el vértice corespondiente al ángulo recto de un triángulo rectángulo isósceles. El punto P(1,4) divide al cateto  $\overline{AC}$  en la relación  $\overline{AP}$ :  $\overline{AC} = 1:2$ . Hallar las coordenadas del vértice B.
- 9. Sean A(-2,1), B(4,-7) los vértices de un  $\triangle ABC$ , sabiendo que las altura se cortan en el punto  $P(\frac{4}{3},\frac{5}{3})$ , hallar las coordenadas del vértice C.
- 10. Dado el triángulo de vértices en A(-10,-13), B(-2,3), C(2,1). Hallar la longitud de la perpendicular bajada desde el vértice B a la mediana trazada desde el vértice C
- 11. Por el punto A(2,3) se trazan dos rectas que cortan al eje x en los puntos B, C la pendiente de la recta  $\overline{AC}$  es igual -1. Hallar el perímetro del triángulo ABC.
- 12. Sean A(3,12), B(8,1), C(-2,-5) y D los vértices de un paralelogramo. Hallar las coordenadas de todos los posibles vértices D.
- 13. Hallar el ángulo obtuso que forman las rectas  $L_1$  con pendiente m y la recta  $L_2$  con pendiente  $\frac{m-1}{m+1}$ .
- 14. El ángulo que forman la recta  $L_1$  que pasa por A(2,-1) y B(x,3), con la recta  $L_2$  que pasa por C(-1,5), D(8,2) es  $135^{\circ}$ . Hallar la abscisa de B.
- 15. Dos rectas se cortan formando una ángulo  $\alpha$  tal que  $\tan(\alpha) = \frac{3}{2}$ . Hallar la pendiente de la otra recta.
- 16. Hallar las tangentes de los ángulos interiores del triángulo de vértices A(-3,-1), B(4,4), C(-1,3).
- 17. Hallar la pendiente de la recta L, que biseca el ángulo que la recta  $L_1$ , que pasa por A(10,9) y B(3,-15), hace con la recta  $L_2$  que pasa por A(10,9) y C(2,3)
- 18. Hallar un punto situado en la parte positiva del eje x, desde el cual se ve el segmento  $\overline{AB}$  con A(-3,4), B(3,8) bajo un ángulo de  $45^{\circ}$
- 19. Si la hipotenusa de un triángulo rectángulo isósceles tiene pendiente *m*. Hallar la suma de las pendientes de los catetos.

- 20. Si A(-3,2), B(2,5) son dos vértices de un triángulo rectángulo ABC, recto en B, y el vértice C está en el eje x, hallar la medida del ángulo A.
- 21. Los vértices de un triángulo son A(3,3), B(1,-3), C(-1,2). Hallar el valor del ángulo agudo que forma la mediana que corresponde al lado  $\overline{AB}$  con la mediatriz del lado  $\overline{AC}$ .
- 22. Dado los vértices opuestos A(3,0), C(-4,1) de un cuadrado, hallar las coordenadas de los otros dos vértices.

## 1.4.2. Distintas formas de representar ecuaciones para una recta

Las rectas tienen propiedades geométricas especiales, las que se pueden asociar con ecuaciones que tienen algunas propiedades algebraicas especiales.

**Observación 1.4.8.** Supongamos que L es una recta y que P(x, y) es un punto cualquiera del plano.

¿ Cómo saber si P(x, y) pertenece o no a la recta L?.

Para que P(x, y) esté en la recta L sus coordenadas x e y deben satisfacer alguna condición que se expresa por medio de una ecuación. Esta es llamada la ecuación de la recta L. Es claro que si x e y no satisfacen tal condición entonces P(x, y) no pertenece a L. Esta ecuación puede presentarse en varias formas como veremos a continuación.

1. Si Una recta es paralela al eje y, su abscisa es constante y la ecuación es de la forma

$$L = \{(x, y) \in \mathbb{R}^2 : x = a\}$$

donde a dá la distancia y dirección desde el eje y

2. Si Una recta es paralela al eje x, su ordenada es constante y la ecuación es de la forma

$$L = \{(x, y) \in \mathbb{R}^2 : y = b\}$$

donde b dá la distancia y dirección desde el eje x

Teorema 1.4.9. [Ecuación de la recta en la forma punto-pendiente]

Sea L una recta de pendiente m supongamos que  $P_1(x_1, y_1)$  es un punto dado de la recta entonces la ecuación de L es

$$y - y_1 = m(x - x_1)$$

## Teorema 1.4.14. [Distancia un punto a una recta]

Sea L una recta cuya ecuación general es L: ax + by + c = 0. Si  $P(x_0, y_0)$  es un punto cualquiera entonces

$$d(P,L) = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$

de define distancia de P a la recta L.

**Ejemplo 1.4.15.** Entre las rectas que pasan por P(6,4) hallar una de manera que el segmento comprendido entre las rectas  $L_1: x-y+2=0, L_2: x+3y-10=0$  sea dividido por la mitad por el punto P.



Supongamos los puntos de intersección  $A(x_1,y_1)$  y  $B(x_2,y_2)$  (ver figura). Si P es punto medio de  $\overline{AB}$ , entonces  $x_1+x_2=12$ ,  $y_1+y_2=8$ . Además como  $A \in L_1 \Longrightarrow x_1-y_1+2=0$ ,  $B \in L_2 \Longrightarrow x_2+3y_2-10=0$  de esto  $3y_2-y_1=8$  y con lo anterior  $y_2=1$ ,  $x_2=7 \Longrightarrow B(7,1)$ . Luego la ecuación L: 3x+y-22=0

**Ejemplo 1.4.16.** Hallar en la recta que pasa por C(0,-5) y D(4,3) un punto P de manera que la suma de sus distancias a los puntos A(-7,1), B(-5,5) sea mínima.



Construyendo B', simétrica de B, respecto de la recta  $L_1$  que pasa por C y D. Es evidente que  $\overline{AP} + \overline{PB'}$  es mínima. La pendiente de  $\overline{CD}$ :  $\frac{3+5}{4-0} = 2$ , así la ecuación de la recta que contiene a  $\overline{CD}$  es  $L_1$ : y+5=2(x-0). La ecuación de la recta  $L \perp L_1$  que pasa por B es L: x+2y-5=0, como  $M \in L \cap L_1 \Longrightarrow M(3,1)$  y M es punto medio de BB' luego B'(11,-3). Así la ecuación de la recta que pasa por A y B' es  $y-1=\frac{-3-1}{11+7}(x+7) \Longleftrightarrow L_2$ : 2x+9y+5=0 por tanto  $si\ P \in L_1 \cap L_2 \Longrightarrow P(2,-1)$ 

#### **Ejercicios Propuestos**

1. Hallar, por dos métodos diferentes, la ecuación de la mediatriz del segmento que une los puntos A(-3,-4), B(5,2)

- 2. El punto P de oredenada 10 está sobre la recta que pasa por los puntos A(7,-2), B(9,4). Hallar la abscisa de P.
- 3. Dado el triángulo de vértices A(-2,1), B(4,7), C(6,-3), hallar las ecuaciones d elas medianas relativas a los lados  $\overline{AC}$ ,  $\overline{BC}$  y las coordenadas del baricentro.
- 4. Hallar las ecuaciones de las mediatrices relativas a los lados  $\overline{AC}$ ,  $\overline{BC}$  y las coordenadas del triángulo del ejemplo anterior.
- Hallar las ecuaciones de dos alturas y las coordenadas del ortocentro del triángulo del ejemplo anterior.
- 6. Hallar las coordenadas del punto P de la recta  $L_1$ : 3x y + 3 = 0 que equidista de los puntos A(2,4), B(6,-2)
- 7. Sean las rectas  $L_1: 2x-3y+6=0$ ,  $L_2: y-4=0$ . La recta L interseca a  $L_1$  en B y a  $L_2$  en C. Si L pasa por A(9,6) y  $\overline{BA}: \overline{AC}=2:3$ , hallar la ecuación de la recta L
- 8. Hallar las ecuaciones de las rectas que pasan por el punto P(-5,3) y que forman cada una un ángulo de  $45^{\circ}$  con la recta L que pasa por A(2,-3), B(4,-2)
- 9. Una recta cuya ordenada en el origen es el doble que la de  $L_1$ : 7x 4y + 3 = 0 es paralela a la recta que pasa por A(3,1), B(1,6). Hallar su ecuación.
- 10. Hallar la ecuación de la recta cuuya ordenada en el origen es -5 y que pasa por el punto P que está  $\frac{2}{3}$  de distancia de  $\overline{AB}$ , siendo A(-2,5), B(7,2).
- 11. Hallar la ecuación de la recta de pendiente  $-\frac{3}{4}$  y que forma con los ejes coordenados un triángulo de área  $24u^2$ .
- 12. Hallar la ecuación de la recta que pasa por P(1,-6) si el producto de sus intersecciones con los ejes coordenados es 1.
- 13. Hallar la ecuación de la recta cuya abscisa y ordenada en el origen suman 7 y cuya pendiente es  $-\frac{11}{3}$

#### 1.5. Cónicas

## 1.5.1. Circunferencia

**Definición 1.5.1.** Una circunferencia es el conjunto de todos los puntos P(x, y) que están en el plano, tal que la distancia fija r llamada radio, desde P(x, y) a un punto fijo C(h, k) dado, llamado centro, es constante, simbólicamente

$$C = \{(x, y) \in \mathbb{R}^2 : d(P, C) = r\}$$

**Ejemplo 1.5.6.** Hallar la ecuación de la circunferencia que tiene como diámetro la porción de la recta L: 2x-3y+12=0 comprendida en el segundo cuadrante.



Al intersectar L con los ejes coordenados los intersectos son (ver figura)  $x=0, y=4 \Longrightarrow A(0,4) \ y \ y=0, \ x=-6 \Longrightarrow B(-6,0).$  Ahora el centro C(h,k) de la circunferencia es el punto medio de  $\overline{AB}$  es decir  $(h,k)=(\frac{0-6}{2},\frac{4+0}{2})=(-3,2).$  Luego el radio es  $r=d(C,A)=\sqrt{(0+3)^2+(4-2)^2}=\sqrt{13}.$  Finalmente la ecuación de la circunferencia es

$$(x+3)^2 + (y-2)^2 = 13$$

**Ejemplo 1.5.7.** Hallar la ecuación de la circunferencia de centro el punto C(4, -3) y que pase por el punto P(2, 1)



## 1.5.2. Ejercicios Propuestos

- 1. Hallar la ecuación de la circunferencia cuyo centro es C(-4,-1) y es tangente a L: 3x+2y-12=0.
- 2. Hallar la ecuación de la circunferencia cuyo centro está en la recta L: x+2y-6=0 y que pasa por los puntos A(7,3), B(-3,-7).
- 3. Hallar la ecuación de la circunferencia que es tangente al eje x en T(4,0) y pasa por P(7,1).
- 4. El punto C(3,1) es el centro de una cicunferencia que intercepta a la recta L: 2x-5y+18=0 una cuerda de longitud 6 unidades. Hallar la ecuación de esta circunferencia.

- 5. Hallar la ecuación de la circunferencia que es tangente a la dos rectas  $L_1$ : 2x + y 5 = 0,  $L_2$ : 2x + y + 15 = 0 y a una de ellas en el punto A(2,1).
- 6. Halla la ecuación de la circunferencia que tiene su centro en la recta L: 2x+y=0 y es tangente a las rectas  $L_1: 4x-3y+10=0$ ,  $L_2: 4x-3y-30=0$ .
- 7. Hallar la ecuación de la circunferencia que pasa por A(0,2) y es tangente en el origen a la recta L = 2x + y = 0.
- 8. Hallar la ecuación de la circunferencia que pasando por los puntos A(1,1), B(5,5) tiene su centro ene el eje x.
- 9. Hallar la ecuación de la circunferencia que pasa por P(12,7) y es tangente a la recta  $L_1$ : x-2y-2=0 en el punto T(8,3).
- 10. Hallar la ecuación de la circunferencia que es tangente a la recta  $L_1$ : x-4y+3=0 en el punto A(5,2) y también a la recta  $L_2$ : 4x+y-5=0 en el punto B(2,3).
- 11. Hallar la ecuación de la circunferencia que es tangente a la recta  $L_1$ : 2x-y+6=0 en el punto S(-1,4) y tiene radio  $3\sqrt{5}$
- 12. Hallar la ecuación de la circunferencia tangente al eje x, con centro en la recta L: x+y-7=0 y que pasa por el punto A(5,4).
- 13. Hallar la ecuación de la circunferencia que pasa por el punto P(6,1) y es tangente a las rectas  $L_1: 4x-3y+6=0, L_2: 12x+5y-2=0.$
- 14. Hallar la ecuación de la circunferencia que pasa por los puntos A(-3,-1), B(5,3) y es tangente a la recta L: x+2y-13=0.
- 15. Hallar la ecuación de la circunferencia cuyo centro está en la recta L: 6x + 7y 16 = 0 y es tangente a cada una de las rectas  $L_1$ : 8x + 15y + 7 = 0,  $L_2$ : 3x 4y 18 = 0.
- 16. Hallar la ecuación de la circunferencia que pasa por P(2,3), es tangente a la recta  $L_1: x+y-7=0$  y con centro en  $L_2: 3x-y-7=0$ .
- 17. Hallar la ecuación de la circunferencia inscrita al triángulo cuyos lados son  $L_1$ : 24x 7y = 30,  $L_2$ : 5x 12y = 70,  $L_3$ : 3x + 4y = 14.
- 18. Hallar las ecuaciones de las ecuaciones que son tangentes a las rectas  $L_1$ : 7x-y-5=0,  $L_2$ : x+y+13=0 y a una de ellas, en el punto M(1,2).
- 19. Hallar la ecuación de la circunferencia que pasa por los puntos A(5,4), B(4,-3), C(-2,5).

- 20. Determinar la naturaleza de las gráficas, indicando el centro y el radio, si se trata de una circunferencia, o si es un sólo punto o un conjunto vacío.
  - a)  $9x^2 + 9y^2 144x + 12y + 580 = 0$
  - b)  $4x^2 + 4y^2 12x + 8y + 77 = 0$
  - c)  $36x^2 + 36y^2 48x 36y + 16 = 0$
- 21. Determine el valor de k de modo que la ecuación  $x^2 + y^2 7x 3y = k 16,5$  represente una circunferencia..
- 22. Determinar el valor de k para que la recta L: 3x 2y + k = 0 sea tangente a la circunferencia  $x^2 + y^2 4x + 6y 39 = 0$ .
- 23. Hallar la longitud de la tangente trazada desde el punto P(6,4) a la circunferencia  $x^2 + y^2 + 4x + 6y = 19$ .
- 24. Hallar la máxima y mínima distancia del punto P(10,7) a la circunferencia  $x^2 + y^2 4x 2y 20 = 0$ .
- 25. Hallar la máxima y mínima distancia del punto P(-7,2) a la circunferencia  $x^2 + y^2 10x 14y 151 = 0$ .
- 26. Hallar la ecuación de la circunferencia circunscrita al triángulo de vértices P(-4,-1), Q(12,7), R(-10,11). Además determinar el centro y el radio.
- 27. Hallar la ecuación de la circunferencia cuyo diámetro es la cuerda común a las circunferencias  $C_1: x^2+y^2-18x-16y+45=0, C_2: x^2+y^2+6x-4y-27=0$
- 28. Determinar la ecuación de la familia de circunferencias con centro en  $L_1: 2x-y=0$  y tangente a la recta  $L_2: x+y=0$ . De esa familia elegir una con centro en  $L_3: 5x-y-6=0$
- 29. Hallar la ecuación de la familia de circunferencias con centro en la curva  $P: x^2 = 4y$  y tangente al eje x. Luego seleccionar aquellos con centro en L: 2x y 3 = 0.
- 30. Hallar la familia de circunferencias con centro en  $L_1$ : x + 3y 7 = 0 y radio 3 unidades. Seleccioar aquellos que son tangentes a la recta  $L_2$ : 5x + 12y 5 = 0.
- 31. Demostrar que la familia de circunferencias  $x^2 + y^2 6x 2y 159 + k(x^2 + y^2 18x 18y + 153) = 0$  son tangentes internamente.
- 32. Hallar la ecuación de la circunferencia que pasa por A(-10, -2) y por las intersecciones de la circunferencia  $C_1$ :  $x^2 + y^2 + 2x 2y 32 = 0$  y a recta L: x y + 4 = 0

- 33. Desde el punto P(2,-3) se trazan tangentes a la circunferencia  $C: x^2+y^2-2x+10y+22=0$ . Hallar la ecuación de la cuerda que une los puntos de contacto.
- 34. Hallar la ecuación de la tangente a la circunferencia C:  $x^2 + y^2 2x 6y 3 = 0$  en el punto T(-1,6).
- 35. Hallar las ecuaciones de las tangentes trazadas del punto P(-2,7) a la circunferencia C:  $x^2 + y^2 + 2x 8y + 12 = 0$ .
- 36. Hallar las ecuaciones de las tangentes a la circunferencia C:  $x^2 + y^2 + 6x 8 = 0$  que son perpendiculares a la recta L: 4x y + 31 = 0

## 1.5.3. Parábola

## Definición 1.5.4.

1. Una parábola es el conjunto de puntos en el plano que equidistan de una recta fija L llamada directriz, y de un punto fijo denominado foco, que no pertenece a la recta L, es decir el conjunto de puntos de la parábola está representada por

$$P = \{P \in \mathbb{R}^2 : d(P, F) = d(P, L)\}$$

- 2. *Vértice*, es el punto de intersección de la parábola con el eje de simetría.
- 3. Foco, es el punto fijo, situado sobre el eje de simetría a p unidades del vértice.
- 4. *Eje de simetría*, es la recta perpendicular a la directriz que pasa por el vértice y foco.
- 5.  ${\it Cuerda}$ , es el segmento de recta que une dos puntos cualesqueira de la parábola.
- 6. *Directriz*, esla recta fija, que es perpendicular al eje de simetría.
- 7. *Cuerda focal*, es el segmento de recta que une dos puntos de la parábola pasando por el foco.
- 8. *Lado recto*, es una cuerda focal perpendicular al eje de simetría.
- 9. *Radio vector*, es el segmento de recta que une el foco con un punto de la parábola.



- 1. Eje de simetría:  $L_1$
- 2. Cuerda:  $\overline{EC}$
- 3. Cuerda focal:  $\overline{AB}$
- 4. Lado recto:  $\overline{LR}$
- 5. Directriz: L
- 6. Radio vector:  $\overline{PF}$

# 1.5.4. Elementos de la parábola cuando es de la forma $(x-h)^2 = 4p(y-k)$

#### Definición 1.5.5.

- 1. Vértice es V(h,k)
- 2. Foco es F(h, k+p).
- 3. Longitud del lado recto es LR = |4p|.
- 4. Ecuación de la directriz es L: y = k p

Es recomendable hacer el gráfico para encontrar los puntos y longitudes mencionados.

- 5. Ecuación del eje de simetría es  $L_1$ : x = h
- 6. Coordenadas de los extremos del lado recto: L(h+|2p|,k+p), R(h-|2p|,k+p)
- 7. Longitud del radio vector:  $r = |y_1 k + p|$ , donde  $(x_1, y_1)$  está en la parábola.



Elementos de la parábola cuando es de la forma  $(y-k)^2 = 4p(x-h)$ 

## Definición 1.5.6.

- 1. Vértice es V(h,k)
- 2. Foco es F(h+p,k).
- 3. Longitud del lado recto es LR = |4p|.
- 4. Ecuación de la directriz es L: x = h p
- 5. Ecuación del eje de simetría es  $L_1$ : y = k
- 6. Coordenadas de los extremos del lado recto: L(h+p,k+|2p|), R(h+p,k-|2p|)
- 7. Longitud del radio vector:  $r = |x_1 h + p|$ donde  $(x_1, y_1)$  está en la parábola.

Es recomendable hacer el gráfico para encontrar los puntos y longitudes mencionados.

**Ejemplo 1.5.8.** Hallar la ecuación de la parábola cuyo foco y directriz son F(3,2) y x=-2 respectivamente.



La fórmula que corresponde al gráfico es  $(y-k)^2 = 4p(x-h)$ 

Como la distancia de la directriz al foco es 5,y sabemos que la distancia del foco al vértice es la misma que la distancia de la directriz al vértice,  $\triangleleft$  entonces las coordenadas del vértice es V = (0,5,2), por tanto la ecuación de la parábola es:

$$(y-2)^2 = 4 \cdot 2.5(x-0.5) \implies [(y-2)^2 = 10(x-0.5)]$$

**Ejemplo 1.5.9.** Suponga que dos torres de un puente estan separados 100 metros y ambos sostienen un cable de forma parabólica, y que por las bases de las torres hay una carretera que representa la directriz. La parte mas baja del cable esta a 20 metros de la carretera.

- (a) Realice un gráfico de tal situación.
- (b) Exprese una ecuación adecuada utilizando los datos que representa tal situación.
- (c) ¿Cuál es la altura de las torres?
- (d) Si la altura desde un punto del cable a la carretera es de 30 metros ¿Cuál es la distancia que hay entre la parte más baja del cable a la altura ?



# 1.6. La Elipse

**Definición 1.6.1.** Una elipse E es el conjunto de todos los puntos del plano colocados de tal manera que la suma de sus distancias de cada uno de ellos a dos puntos fijos, llamados focos, es constante.

## 1.2.1. Ejercicios Propuestos

- 1. Marque los puntos siguientes en el plano coordenado A(2,3), B(-5,8), C(-1,-5), D(2,-7). Luego especifique en qué cuadrante se localiza cada punto.
- 2. Grafique el conjunto siguiente  $S = \{(1,-2),(0,4),(3,\frac{3}{4}),(-3,-1)\}$
- 3. Trace el conjunto de puntos (x, y) en el plano que satisfaga:

(i) 
$$xy = 0$$
, (ii)  $xy < 0$ , (iii)  $xy > 0$ , (iv)  $\frac{x}{y} = 0$ 

4. Localice los puntos dados, si (a, b) esta en el primer cuadrante.

$$(i) (a,-b)$$
  $(ii) (a,a),$   $(iii) (b,-b)$   $(iv) (b,-a)$ 

5. La abscisa de un punto es -6 y su distancia al punto A(1,3) es  $\sqrt{74}$ . Hallar la ordenada del punto (dos soluciones).



- 6. Demostrar que que los puntos A(-3,10), B(1,2) C(4,-4) son colineales, es decir, que están sobre una misma linea recta.
- 7. Demostrar que el cuadrilátero cuyos vértices son A(-2,6), B(4,3), C(1,-3), D(-5,0) es un cuadrado.
- 8. Hallar las coredenadas del punto que equidista de los puntos fijos a(4,3), B(2,7), C(-3,-8).
- 9. Demostrar que el cus drilátero cuyos vértices son A(-6,-2), B(-2,-1), C(-1,3), D(-5,2). es un rombo.
- 10. Dos de los vértices de un triángulo equilátero son los puntos A(-1,1), B(3,1). Hallar las coordenadas del tercer vértice.

