Черкаський національний університет імені Богдана Хмельницького

Навчально-науковий інститут фізики, математики та комп'ютерно-інформаційних систем

Кафедра прикладної математики та інформатики

КУРСОВА РОБОТА МЕТОДИ МАТЕМАТИЧНОГО МОДЕЛЮВАННЯ БІОЛОГІЧНИХ СИСТЕМ

Виконав: студент 3 курсу, групи ПМ-3 напряму підготовки 6.040301 Прикладна математика Петров П. П.

Керівник: Богатирьов О. О.

3MICT

ПЕРЕЛІК УМОВНИХ ПОЗНАЧЕНЬ	4
ВСТУП	5
РОЗДІЛ 1. ПОСТАНОВКА ТА ТРАДИЦІЙНЕ РОЗВ'ЯЗУВАННЯ	
ЗАДАЧІ <i>N</i> -ТІЛ	6
1.1 Математична постановка задачі	6
1.2 Задача двох тіл	7
1.3 Задача трьох тіл	7
1.4 Чисельний метод розв'язування задачі <i>N</i> -тіл	8
РОЗДІЛ 2. АЛГОРИТМ БАРНСА-ХАТА	12
2.1 Призначення та загальна ідея алгоритму	12
2.2 Опис основних етапи алгоритму Барнса-Хата	13
2.2.1 Побудова дерева з тіл	14
2.2.2 Розрахунок результуючої сили	16
2.3 Розпаралелювання алгоритму Барнса-Хата	19
2.3.1 Паралельне обчислення сил і переміщення	21
2.3.2 Паралельна побудова дерева та синхронізація потоків	22
РОЗДІЛ З. ОБЧИСЛЮВАЛЬНІ ЕКСПЕРИМЕНТИ	23
3.1 Визначення похибки	23
3.2 Графічна візуалізація	25
3.3 Результати комп'ютерного моделювання	27
висновки	40
СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ	
ДОДАТОК А	42
ДОДАТОК Б	43

ПЕРЕЛІК УМОВНИХ ПОЗНАЧЕНЬ

 a_i – прискорення i-го тіла, м·с $^{-2}$

G – гравітаційна стала (≈6.67384(80)10⁻¹¹), м³•кг -1•с -2

ВСТУП

Актуальність теми. Коротко обґрунтовується актуальність та доцільність обраної теми

...

Метою курсової роботи є ... формулюється мета роботи

Для досягнення поставленої мети необхідно виконати наступні *завдання*:

- 1) розглянути ...;
- 2) реалізувати ...;
- 3) розробити ...;
- 4) дослідити ...;

...

РОЗДІЛ 1

ПОСТАНОВКА ТА ТРАДИЦІЙНЕ РОЗВ'ЯЗУВАННЯ ЗАДАЧІ N-ТІЛ

1.1 Математична постановка задачі

Гравітаційна задача *N*-тіл (англ. *N*-body problem) була вперше сформульована Ньютоном в його монументальній праці «Математичні початки натуральної філософії», яка вперше була видана друком у 1687 році.

•••

Зразок малюнка у тексті курсової роботи наведено на рис. 1.6.

Рис. 1.6 Робота функції вставки на площині (зліва) та за допомогою дерева (справа)

Зразок формули у тексті курсової роботи виглядає наступним чином:

$$\frac{dr}{dt} = V_{i}, \frac{dV_{i}}{dt} = \sum_{j \neq i}^{N} \frac{r_{j} - r_{i}}{\left| r_{j} - r_{i} \right|^{3}}$$
 (1.3)

де r_i – координата i -ого тіла, v_i – швидкість i -ого тіла (м·с-1), t – час (с), m_i – маса i -ого тіла (кг), G – гравітаційна стала (м³·кг-1·с-2).

•

Зразок таблиці у тексті курсової роботи виглядає наступним чином:

Tаблиця 2.1 Порівняльний аналіз часу розв'язування задачі N-тіл

Кількість тіл	Базовий варіант, с	Варіант із застосуванням РК4, с
100	0,533	2,804
1000	12,82	71,92
2000	27,96	151,45
5000	78,32	391,5

Посилання у тексті роботи

```
... у роботах [1-7] наведено ...
```

... як зазначено у [4] ...

... у розділі 4 ...

... на рис. 1.3 ...

... у табл. 3.2 ... або (див. табл. 3.2)

... за формулою (3.1) ...

... у рівняннях (1.7) - (1.9) ...

... у додатку Б ...

висновки

У курсовій роботі ... описати, що зроблено.

Основні результати проведеної роботи полягають у наступному.

- 1. Наведено
- 2. Розглянуто
- 3. Реалізовано
- 4. Розроблено та реалізовано

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

- 1. Мэтьюз Д. Численные методы. Использование MATLAB / Д. Г. Мэтьюз, К. Д. Финк ; пер. с англ. М.: Изд. дом «Вильямс», 2001. 720 с.
- 2. Пантелеев А.В. Методы оптимизации в примерах и задачах : [учеб. пособие] / Пантелеев А.В., Летова Т.А. [2-изд.]. М.: Высш. шк., 2005. 544 с.
- 3. Barnes-Hut Galaxy Simulator [Електронний ресурс] // Курс 126 Комп'ютерних наук Прінстонського університету. Режим доступу: http://introcs.cs.princeton.edu/java/assignments/barnes-hut. Назва з екрану.

додаток б

Реалізація паралельного алгоритму Барнса-Хата

```
void add_body(node_t *node, const body_t body, const point_t min, const point_t max){
  omp_set_lock(&node->lock);
  if ( node->mass < EPS ){
    memcpy ( node, &body, sizeof(body_t) );
    node->is_body = true;
    omp_unset_lock(&node->lock);
    return;
}

if ( node->is_body ){
    node->is_body = false;
    push_to_children( node, *node, min, max );
}

node->x *= node->mass;
    node->y *= node->mass;
    node->y += body.x * body.mass;
    node->y += body.y * body.mass;
    node->x /= node->mass;
    node->y /= node->nass;
    node-y /= node->nass;
    node-y /= n
```