Automne 2004 - 29 septembre 2004

Université Laval, Département de Génie Électrique/Génie Informatique

Cours: GEL-21948 Électronique des composants discrets GIF-21947 Électronique pour ingénieurs informaticiens Professeur : Maxime Dubois

Mini test #1 (100 points)

Ouestion #1 (20 points)

- a) Quel est le code de couleurs qui est utilisé pour indiquer les valeurs des résistances. Lister les chiffres de 0 à 9 et leur couleur correspondante.
- Soit la résistance suivante. Quelle est la valeur de cette résistance et quelle est sa précision en %.

Ouestion #2 (40 points)

Soit une diode PN rectifieuse au silicium.

- a) Dessiner son symbole électrique, identifier le nom de chacune des bornes de la diode.
- b) Dessiner sa courbe i(v) réelle en identifiant les paramètres I_R, V_F et V_{RRM} de la courbe.
- c) Dessiner sa courbe i(v) de 2^{ème} approximation.
- d) Selon l'hypothèse de V_F constant pour $i_D > 0$ A, indiquer la valeur de V_F typique d'une telle diode.

Question #3 (40 points)

Soit le circuit suivant, où il n'y a aucune charge branchée à la sortie (impédance de sortie infinie):

- a) Indiquer s'il s'agit d'un écrêteur positif ou négatif
- b) En faisant l'hypothèse que l'impédance Z_Z de la diode Zener D1 est nulle et que la diode D2 a un voltage de 0,3 V pour $i_{D2} > 0$ A, calculer le courant qui circule dans les diodes lorsque $V_{en} = 10$.
- Calculer la puissance dissipée par chacune des deux diodes et par la résistance lorsque V_{en} =10 V. c)
- d) Déterminer la valeur de V_s lorsque $V_{en} = 10V$.
- e) Indiquer quelles valeurs de V_{en} sont nécessaires pour que D2 soit bloquée.
- Lorsque la diode D2 est bloquée, quelle sera la valeur V_s dans ce cas.

Question BONUS (pour les ambitieux et les rapides) (20 points)

Soit un signal alternatif d'entrée v_{en} de fréquence variant entre 1 kHz et 10 kHz, d'amplitude 5 V et de valeur moyenne 5 V. Avant d'arriver jusqu'à vous, le signal d'entrée v_{en} est transmis par câble et sujet à des perturbations électromagnétiques importantes. Concevoir un circuit qui permettra de repolariser ce signal autour d'une valeur moyenne de 10 V, tout en maintenant l'amplitude alternative du signal de sortie à 5 V. Assurez-vous que votre circuit sera protégé en écrêtant à l'entrée toute perturbation supérieure à 10 V ou inférieure à -0.7 V. Vous disposez d'une alimentation 15 V. Dessiner le circuit et dimensionner tous les composants.