Séquence 06 - TP01 - Îlot 02

Lycée Dorian Renaud Costadoat Françoise Puig

La cinématique des mécanismes

Référence S06 - TP01 - I02

Compétences Mod2-C10-1: Modèle de solide indéformable

Mod2-C11: Modélisation géométrique et cinématique des mouvements

entre solides indéformables

Rés-C1: Loi entrée sortie géométrique et cinématique

Rés-C6: Utilisation d'un solveur ou d'un logiciel multi physique Com1-C1: Différents descripteurs introduits dans le programme

Com2-C4: Outils de communication

Description Lois E/S de fermeture géométrique et cinématique. Simulation du com-

portement de modèles. Proposer des lois de commande en fonction d'exi-

gences. Présenter les modèles acausaux

Système Barrière

Problématique du TP:

Modéliser la loi d'entrée/sortie cinématique d'un système

MODELISER

Détermination de la loi d'entrée/sortie géométrique

L'objectif de cette partie est de déterminer la loi de fermeture géométrique du système barrière et de la comparer avec celle obtenue par extraction de données expérimentales.

- L'angle de rotation de la barrière sera appelé θ_1 ,
- L'angle de rotation du moteur sera appelé θ_2 .

- **Question 1** Déterminer θ_2 en fonction de θ_1 et des paramètres géométriques du système, en utilisant la loi de fermeture géométrique. Les dimensions seront mesurées sur le système afin d'effectuer l'application numérique.
- **Question 2** A l'aide du script python, faire varier θ_1 de $\frac{\pi}{4}$ à $\frac{3 \cdot \pi}{4}$. Et tracer θ_2 .
- **Question 3** Après avoir mesuré le déplacement total de l'arbre moteur, comparer ce résultat avec celui obtenu par la simulation.

MODELISER

Détermination de la loi d'entrée/sortie cinématique

Cette partie permettra de déterminer la loi d'entrée à imposer au moteur électrique afin de permettre d'obtenir un déplacement souhaité de la barrière.

- La vitesse de rotation du moteur sera appelée $\omega_m = \dot{\theta}_2$,
- La vitesse de rotation du bras sera appelée $\omega_b = \dot{\theta}_1$.

- **Question 4** Déterminer ω_m en fonction de ω_b et des paramètres géométriques du système, en utilisant la loi de fermeture cinématique. Les dimensions seront mesurées sur le système afin d'effectuer l'application numérique.
- **Question 5** Utiliser le script python afin de tracer ω_m .

L'objectif est d'obtenir le profil suivant pour la vitesse de rotation de la barrière par rapport au bâti.

Question 6 Déterminer t_1 , t_2 , t_{total} , et ω_{bmax} afin de parcourir le déplacement le plus rapide de la barrière réelle. En déduire le profil de vitesse à imposer au moteur ω_m . Vous utiliserez le script python pour effectuer les calculs.

EXPERIMENTER

Modélisation sur un modeleur 3D

Le logiciel Solidworks va permettre de déterminer les lois d'entrée sortie géométrique et cinématique du système barrière.

Le fichier à ouvrir pour cette étude est le fichier SW_Sympact.SLDASM.

- La vitesse de rotation du moteur sera appelée $\omega_m = \dot{\theta_1}$,
- La vitesse de rotation du bras sera appelée $\omega_b = \dot{\theta}_2$.

Question 7 Sur Solidworks, paramétrer le modèle de la barrière sur le logiciel Meca3d afin de pouvoir simuler son comportement.

- Tracer $\theta_2 = f(\theta_1)$,
- Tracer $\omega_b = f(\omega_m)$,

Question 8 Générer cette courbe sur Meca3d à l'aide de l'utilitaire de tracé de coubes. Un tutoriel Meca3d est disponible dans une archive avec un exemple ici.

Question 9 Utiliser cette courbe comme donnée d'entrée pour calculer la vitesse ω_m en fonction du temps. Comparer ce résultat avec celui de l'activité 2.

Avec : $t_1,\,t_2,\,t_{total},\,\omega_{bmax}$ déterminés en parallèle de l'activité 2.

ANALYSER

Activité 4 : Système acausal

Cette partie va permettre d'introduire le modèle « acausal » afin de déterminer si celui qui a été mis en place pour la barrière en est un. Un modèle « acausal » est un modèle qui ne possède pas de lien cause à effet. Il revient à des équations implicites sans ordre entre les variables et sans spécification d'entrée et de sortie.

- **Question 10** A la vue de la définition précédente, pensez-vous que ce système puisse être modélisé par un modèle « acausal » ?
- **Question 11** Vous effectuerez la liaison entre les activités afin de récupérer les résultats de l'activité 2 pour les utiliser sur Solidworks durant l'activité 3.
- **Question 12** Vous montrerez l'influence sur les résultat des dimensions géométriques du système afin de déterminer si leur choix dépend des données cinématiques.

1 Correction

1.1 Fermeture géométrique

$$\overrightarrow{AC} + \overrightarrow{CB} = \overrightarrow{AB}$$

$$\begin{cases} l(t).cos\theta_1 - R.cos\theta_2 = 0 \\ l(t).sin\theta_1 - R.si\theta_2 = e \end{cases}$$

 $tan\theta_1 = \frac{e + R.sin\theta_2}{R.cos\theta_2}$, donc $\theta_1 = arctan\left(\frac{e + R.sin\theta_2}{R.cos\theta_2}\right)$, il faut ajouter π dans le code pour avoir le même sens de rotation.

$$l = R.\frac{\cos\theta_2}{\cos\theta_1}$$

1.2 Fermeture cinématique

$$\overrightarrow{V_{C\in 2/0}} = \overrightarrow{V_{C\in 2/1}} + \overrightarrow{V_{C\in 1/0}} = V.\overrightarrow{x_1} + \overrightarrow{CA} \wedge \overrightarrow{\Omega_{1/0}} = V.\overrightarrow{x_1} + l.\omega_b.\overrightarrow{y_1}.$$

$$\overrightarrow{V_{C\in 2/0}} = \overrightarrow{CB} \wedge \overrightarrow{\Omega_{2/0}} = R.\omega_m.\overrightarrow{y_2}.$$
 Donc,
$$\omega_m = \frac{l}{R.sin(\theta_2 - \theta_1)}.\omega_b$$

