

Appl. No. 10/618,012
Amdt. Dated January 16, 2006
Reply to Office Action of October 18, 2005

AMENDMENTS TO THE SPECIFICATION:

On pages 8 - 9 of the Specification, please amend the last full paragraph of page 8 to read:

Marked-up version:

An example of each pixel 20 in the pixel section 12 is shown in Fig. 12 2. The pixel 20 includes a pixel transistor 21 as an active element (e.g., a thin film transistor (TFT)), a liquid crystal cell 22 having a pixel electrode connected to the drain electrode of the TFT 21, and a storage capacitor 23 having one electrode connected to the drain electrode of the TFT 21. The liquid crystal cell 22 represents a liquid crystal capacitance generated between the pixel electrode and a common electrode formed opposing the pixel electrode.

Clean version:

An example of each pixel 20 in the pixel section 12 is shown in Fig. 2. The pixel 20 includes a pixel transistor 21 as an active element (e.g., a thin film transistor (TFT)), a liquid crystal cell 22 having a pixel electrode connected to the drain electrode of the TFT 21, and a storage capacitor 23 having one electrode connected to the drain electrode of the TFT 21. The liquid crystal cell 22 represents a liquid crystal capacitance generated between the pixel electrode and a common electrode formed opposing the pixel electrode.

On page 12 of the Specification, please amend the second full paragraph to read:

Appl. No. 10/618,012
Amdt. Dated January 16, 2006
Reply to Office Action of October 18, 2005

Marked-up version:

In Fig. 3, a shift register 31_{n-1} in the stage $n-1$, a shift register 31_n in the stage n , and a shift register 31_{n+1} in the stage $n+1$ are cascade-connected. An Output pulse from each of the shift registers 31_{n-1} , 31_n , and 31_{n+1} is supplied as one input to each of AND gates 32_{n-1} , 32_n , and 32_{n+1} . Each of the AND gates 32_{n-1} , 32_n , and 32_{n+1} is supplied with an output pulse as the other input from each of next-stage shift registers 32_{n-1} , 32_n , and 32_{n+1} . An output pulse from each of the AND gates 32_{n-1} , 32_n , and 32_{n+1} is supplied as one input to each of the AND gates 33_{n-1} , 33_n , and 33_{n+1} .

Clean version:

In Fig. 3, a shift register 31_{n-1} in the stage $n-1$, a shift register 31_n in the stage n , and a shift register 31_{n+1} in the stage $n+1$ are cascade-connected. An Output pulse from each of the shift registers 31_{n-1} , 31_n , and 31_{n+1} is supplied as one input to each of AND gates 32_{n-1} , 32_n , and 32_{n+1} . Each of the AND gates 32_{n-1} , 32_n , and 32_{n+1} is supplied with an output pulse as the other input from each of next-stage shift registers 31_n , 31_{n+1} , and 31_{n+2} . An output pulse from each of the AND gates 32_{n-1} , 32_n , and 32_{n+1} is supplied as one input to each of the AND gates 33_{n-1} , 33_n , and 33_{n+1} .

On pages 12 - 13 of the Specification, please amend the last full paragraph of page 12 to read:

Appl. No. 10/618,012
Amdt. Dated January 16, 2006
Reply to Office Action of October 18, 2005

Marked-up version:

Each of the AND gates 33n-1, 33n, and 33n+1 receives, as the other ~~output~~ input, an enable pulse ENB for permitting row selection. An output pulse from each of the AND gates 33n-1, 33n, and 33n+1 is supplied as one input to each of OR gates 34n-1, 34n, and 34n+1. Each of the OR gates 34n-1, 34n, and 34n+1 receives, as the other input, the control signal C1 output when the power-off state is detected by the power-off detection circuit 18. An output pulse from each of the OR gates 34n-1, 34n, and 34n+1 is supplied as a scanning pulse (gate pulse) to each of gate lines 24n-1, 24n, and 24n+1 through each of buffers 35n-1, 35n, and 35n+1.

Clean version:

Each of the AND gates 33n-1, 33n, and 33n+1 receives, as the other input, an enable pulse ENB for permitting row selection. An output pulse from each of the AND gates 33n-1, 33n, and 33n+1 is supplied as one input to each of OR gates 34n-1, 34n, and 34n+1. Each of the OR gates 34n-1, 34n, and 34n+1 receives, as the other input, the control signal C1 output when the power-off state is detected by the power-off detection circuit 18. An output pulse from each of the OR gates 34n-1, 34n, and 34n+1 is supplied as a scanning pulse (gate pulse) to each of gate lines 24n-1, 24n, and 24n+1 through each of buffers 35n-1, 35n, and 35n+1.