Formule

• Cardinalità spazio delle istanze:

$$|X| = \prod |A_i|$$

• Cardinalità spazio dei concetti:

$$|C| = |\mathcal{P}(X)| = 2^{|X|}$$

• Cardinalità spazio delle ipotesi, semanticamente:

$$|H|_{sem} = 1 + \prod (|A_i| + 1)$$

• Cardinalità spazio delle ipotesi, sintatticamente:

$$|H|_{sint} = \prod (|A_i| + 2)$$

• Aspettativa di G(X) su P(Val(X) = range di valori di X):

$$E_P[g(X)] = \sum_{x \in Val(X)} g(x) \cdot P_X(x)$$

• Entropia di una variabile X:

$$H[X] = -\sum_{i=1}^{n} p_i \cdot \log_2 p_i = E_P[\log_2(p)]$$

• Entropia di una distribuzione condizionale, con target T:

$$H[T|X = x_i] = -\sum_{j=1}^{m} P_{T|X}(t_j|x_i) \cdot \log_2 P_{T|X}(t_j|x_i)$$

• Entropia condizionale, con target T:

$$H[T|X] = \sum P(x) \cdot H(T|X = x)$$

• Information Gain su variabile X e target T:

$$IG[T|X] = H[T] - H[T|X]$$

Definizioni

- learner, la parte di programma che impara dagli esempi in modo automatico
- trainer, il dataset che fornisce esperienza al learner
- esperienza diretta dove il learner può acquisire informazione utile direttamente dagli esempi o dover inferire indirettamente da essi l'informazione necessaria (può essere chiaramente più complicato). Altrimenti è indiretta
- apprendimento supervisionato, dove vengono forniti a priori esempi di comportamento e si suppone che il *trainer* dia la risposta corretta per ogni input (mentre il learner usa gli esempi forniti per apprendere). L'esperienza è fornita da un insieme di coppie:

$$S \equiv \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}\$$

e, per ogni input ipotetico x_i l'ipotetico trainer restituisce il corretto y_i

• apprendimento non supervisionato, dove si riconosce *schemi* nell'input senza indicazioni sui valori in uscita. Non c'è target e si ha *libertà di classificazione*. Si cerca una *regolarità* e una *struttura* insita nei dati. In questo caso si ha:

$$S \equiv \{x_1, x_2, \dots, x_n\}$$

Il clustering è un tipico problema di apprendimento non supervisionato. Non si ha spesso un metodo oggettivo per stabilire le prestazioni che vengono quindi valutate da umani

• apprendimento per rinforzo, dove bisogna apprendere, tramite il learner sulla base della risposta dell'ambiente alle proprie azioni. Si lavora con unaddestramento continuo, aggiornando le ipotesi con l'arrivo dei dati (ad esempio per una macchina che deve giocare ad un gioco). Durante la fase di test bisogna conoscere le prestazioni e valutare la correttezza di quanto appreso. Il learner viene addestrato tramite rewards e quindi apprende una strategia per massimizzare i rewards, detta strategia di comportamento e per valutare la prestazione si cerca di massimizzare "a lungo termine" la ricompensa complessivamente ottenuta

- apprendimento attivo, dove il *learner* può "domandare" sui dati disponibili
- apprendimento passivo, dove il *learner* apprende solo a partire dai dati disponibili
- X, spazio delle istanze, ovvero la collezione di tutte le possibili istanze utili per qualche compito di learning. In termini statistici lo spazio delle istanze non è altro che lo spazio campione (ovvero lo spazio degli esiti fondamentali di un esperimento concettuale)
- x ∈ X, istanza, ovvero un singolo "oggetto" preso dallo spazio delle istanze. Ogni istanza è rappresentata tramite un vettore di attributi unici (un attributo per posizione del vettore)
- c, concetto, c ⊆ X, ovvero un sottoinsieme dello spazio delle istanze che descrive una classe di oggetti (ovvero di istanze) alla quale siamo interessati per costruire un modello di machine learning. In pratica raccolgo quel sottoinsieme di istanze che mi garantiscono, per esempio, uno o più attributi. La nozione statistica equivalente è quella di evento (ovvero un sottoinsieme dello spazio campione). Si ha quindi che, preso un concetto A ⊆ X:

$$f_A: X \to \{0, 1\}$$

$$f_a(x) = \begin{cases} 1 & \text{se } x \in A \\ 0 & \text{altrimenti} \end{cases}$$

- h, ipotesi, $h \subseteq X$
- H, spazio delle ipotesi
- (x, f(x)), esempio, ovvero prendo un'istanza e la vado ad etichettare con la sua classe di appartenenza. La funzione f è detta funzione target
- $D = \{(x_1, f(x_1)), \dots, (x_n, f(x_n))\}$, training set, ovvero è la raccolta degli esempi. Qualora si avesse a che fare con un training non supervisionato si avrebbe: $D = \{x_1, \dots, x_n\}$
- $\{(x'_1, f(x'_1)), \dots, (x'_n, f(x'_n))\}, \text{ test }$

- un modello di machine learning (dove machine learning viene anche definito come lo studio di diverse strategie, più precisamente di ottimizzazione, per cercare ipotesi soddisfacenti/efficienti nello spazio delle ipotesi) è quindi l'ipotesi migliore. Questo modello predittivo viene addestrato tramite il training set e servirà per inferire nuove informazioni mai state osservate nel training set. Lo spazio delle ipotesi può quindi essere chiamato anche spazio dei modelli (come del resto ipotesi e modello intendono la stessa cosa)
- linguaggio delle ipotesi, è il linguaggio che definisce lo spazio delle ipotesi/modelli
- **cross validation**, ovvero ripeto *m* volte la validazione su campioni diversi di input per evitare che un certo risultato derivi dalla fortuna
- ipotesi H, ovvero una congiunzione ∧ di vincoli sugli attributi.
 Tale ipotesi è consistente, ovvero è coerente con tutti gli esempi
- soddisfazione di un'ipotesi: un'istanza x soddisfa un'ipotesi h sse tutti i vincoli espressi da h sono soddisfatti dai valori di x e si indica con:

$$h(x) = 1$$

• concept learning è la ricerca, nello spazio delle ipotesi, di funzioni che assumano valori all'interno di $\{0,1\}$. In altre parole si parla di funzioni che hanno come dominio lo spazio delle ipotesi e come codominio $\{0,1\}$:

$$f: X \to \{0, 1\}$$

Volendo si possono usare insiemi e non funzioni.

Si cerca quindi con opportune procedure la miglior ipotesi che si adatta meglio al concetto implicato dal *training set*. Valori del concept learning:

- specificato

– non importante, che si indica con "?", e che può assumere qualsiasi valore. Avere un'ipotesi con tutti i valori del vettore pari a "?" implica avere l'ipotesi più generale, avendo classificato tutte le istanze solo come esempi positivi

- nullo e si indica con \emptyset . Avere un'ipotesi con tutti i valori del vettore pari a \emptyset implica avere l'ipotesi più specifica, avendo classificato tutte le istanze solo come esempi negativi
- inductive learning quando voglio apprendere una funzione da un esempio (banalmente una funzione target f con esempio (x, f(x)), ovvero una coppia). Si cerca quindi un'ipotesi h, a partire da un insieme d'esempi di apprendimento, tale per cui $h \approx f$
- soddisfacibilità quando un esempio x soddisfa un'ipotesi h, evento indicato con:

$$h(x) = 1$$

a priori sul fatto che x sia un esempio positivo o negativo del $target\ concept$. Si ha quindi che i valori x soddisfano i vincoli h

• Si dice che h è **consistente** con il training set D di concetti target sse:

$$Consistent(h, D) := h(x) = c(x), \ \forall \langle x, c(x) \rangle \in D$$

• Si definisce **version space**, rispetto ad H e D, come il sottoinsieme delle ipotesi da H consistenti con D e si indica con:

$$VS_{H,D} = \{h \in H | Consistent(h, D)\}$$

• Date $h_j, h_k \in H$ booleane e definite su X. Si ha che h_j è **più** generale o uguale a h_k (e si scrive con $h_j \geq h_k$) sse:

$$(h_k(x) = 1) \longrightarrow (h_i(x) = 1), \ \forall x \in X$$

Si impone quindi un ordine parziale.

Si ha che h_j è **più generale di** h_k (e si scrive con $h_j > h_k$) sse:

$$(h_i \ge h_k) \wedge (h_k \not\ge h_i)$$

Riscrivendo dal punto di vista insiemistico si ha che h_j è **più** generale o uguale a h_k sse:

$$h_k \supseteq h_i$$

e che è **più generale di** h_k sse:

$$h_k \supset h_j$$

Dal punto di vista logico si ha che h_j è **più generale di** h_k sse impone meno vincoli di h_k

- Find-S permette di partire dall'ipotesi più specifica (attributi nulli, indicati con \emptyset) e generalizzarla, trovando ad ogni passo un'ipotesi più specifica e consistente con il training set D. L'ipotesi in uscita sarà anche consistente con gli esempi negativi dando prova che il target è effettivamente in H. Con questo algoritmo non si può dimostrare di aver trovato l'unica ipotesi consistente con gli esempi e, ignorando gli esempi negativi non posso capire se D contiene dati inconsistenti. Inoltre non ho l'ipotesi più generale
- Il bias induttivo (con bias che normalmente denota una distorsione o un scostamento dei dati) di L è un insieme minimale di asserzioni B tale che, per ogni concetto target c e D_c corrispondente si ha che:

$$[B \wedge D_c \wedge x_i] \vdash L(x_i, D_c), \ \forall x_i \in X$$

 $con \vdash che rappresenta$ l'implicazione logica

Possiamo quindi distinguere:

- sistema induttivo, dove si hanno in input gli esempi di training e la nuova istanza, viene usato l'algoritmo candidate eliminate con H e si ottiene o la classificazione della nuova istanza nulla
- sistema deduttivo equivalente al sistema induttivo sopra descritto dove in input si aggiunge l'asserzione
 "H contiene il concetto target" e si produce lo stesso output tramite un prover di teoremi

•

Procedimenti comodi

- Per find-S parto da tutti $\emptyset,$ prendo solo esempi positivi e procedo sistemando attributo per attributo