2019--2020 第二学期大作业

一.(10分)判断正误

(1) **列向量** X 的模长 |X| 满足公式 $X^H X = |X|^2$,也有 $X^H A^H A X = |AX|^2$. ()

而且如果 $A^H AX = 0$,则有可能 $AX \neq 0$ ()

(2)设 $A = (a_{ij})_{m \times n}$ 则有迹公式: $tr(A^H A) = tr(AA^H) = \sum |a_{ij}|^2$ ()

而且若 $tr(A^HA)=0$,则可能有 $A\neq 0$ ()

- (3)若B是列满秩(高阵), C是行满秩,则 $B^+ = (B^H B)^{-1}B^H$, $C^+ = C^H (CC^H)^{-1}$ ()
- (4) 若 A = BC 是满秩分解(高低分解),则 $A^+ = C^+B^+$ (
- (5) 若矩阵 $A = (a_{ij})$ 的秩为 rank(A) = 1,则 $A^+ = (\sum |a_{ij}|^2)^{-1} A^H$ (
- (6)设 $A = (a_{ij})_{n,n}$ 特征值为 $\lambda_1, \dots, \lambda_n$,则有**许尔不等式**: $\sum_{k=1}^n \left| \lambda_k \right|^2 \le \sum_{i,j=1}^n \left| a_{ij} \right|^2$ ()
- (7)若 A 是**酉矩阵**($A^{H}A = AA^{H} = I$), 则 $A^{+} = A^{-1} = A^{H}$ ()
- (8)若 A 是正规阵,P 是同阶酉矩阵,则 P^HAP 也是正规阵. ()
- (9)若 A 是正规阵,则**存在酉矩阵** P 使 $P^HAP = D$ 为对角阵. ()
- (10) <mark>若正规阵 A 特征根为 $\{\lambda_1, \dots, \lambda_n\}$,则它的全体奇异值为 $\{|\lambda_1|, \dots, |\lambda_n|\}$ ()</mark>
- (11)若 A 是 n 阶方阵,则行列式 $\det(e^A) = e^{tr(A)}$ 且 $e^{-A}e^A = I$ (单位阵) ()
- (12) A,B 是任意矩阵,则 $(A \otimes B)^H = A^H \otimes B^H$, $(A \otimes B)^+ = A^+ \otimes B^+$ (
- (13)方阵 A 的特征根 λ ,谱半径 $\rho(A)$ 满足 $|\lambda| \le \rho(A) \le |A|$,且 $[\rho(A)]^3 = \rho(A^3)$ (
- (14)设 $A = A_{n \times p}$, $B = B_{p \times n}$, 则AB, BA 有相同的非 $\mathbf{0}$ 特征根,且tr(BA) = tr(AB) (
- (15) $\| \bullet \|$ 是矩阵范数, I 是单位阵, 则可能有 $\| I \| < 1$ ()
- (16)<mark>许尔定理说</mark>: 若 A 是 n 阶方阵,则存在酉矩阵 P 使 $P^HAP = D$ 为对角阵. ()
- (17) Ax = b **无解** $(不相容), 则 <math> A^H Ax = A^H b$ 也无解(不相容)

- 二. 化简与计算(10分)
- 1.设A的QR分解是A = QR,其中 $Q^HQ = I$,化简 $R Q^HA$
- 2. 已知 $A^2 = A$,化简 $e^A = I + A + \frac{A^2}{2} + \frac{A^3}{3!} + \dots = ?$
- 3. $c \neq 0$ **为复数,**求正规阵 $A = \begin{pmatrix} 0 & c \\ c & 0 \end{pmatrix}$ 谱半径 $\rho(A)$; 写出 $\sum_{k=0}^{\infty} A^k$ 收敛的条件
- 4. 已知 $(A-I)^2 = 0$,化简 $e^{t(A-I)} = I + t(A-I) + \frac{(t(A-I))^2}{2} + \frac{(t(A-I))^3}{3!} + \dots = ?$ 目 $e^{tA} = e^{t(A-I)+tI} = e^{t(A-I)}e^{tI} = ?$
- 5. $A = \begin{pmatrix} 3 & -1 \\ 1 & 1 \end{pmatrix}$,化简 $(A 2I)^2$, $e^{t(A 2I)}$, $e^{tA} = e^{t(A 2I)}e^{2tI} = ?$
- 二. 计算(15分)
- 1. $A = \begin{pmatrix} 2 & 1 \\ 1 & -4 \\ 2 & 1 \end{pmatrix}$. 求 A 的正 SVD(正奇值分解)与奇异值分解.
- 2. $A = \begin{pmatrix} 1 & 2i \\ i & 1 \end{pmatrix}, (i^2 = -1)$ $\Re QR \mathcal{H} A = QR$
- 三. 计算(15分)
- **1.**已知 $e^{tA} = \begin{pmatrix} \cos 3t & -\sin 3t \\ \sin 3t & \cos 3t \end{pmatrix}$, 求 e^{-tA} , $\left(\frac{de^{tA}}{dt}\right)_{t=0} = ?$, A = ?
- **2.**求解微分方程: $\frac{dX}{dt} = AX$, $X(0) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, 其中 $A = \begin{pmatrix} 0 & -3 \\ 3 & 0 \end{pmatrix}$
- $\mathbf{3.}A = \begin{pmatrix} i & 1 \\ i & 1 \end{pmatrix}$ $(i = \sqrt{-1})$ 求: A^+ ,特征根 $\lambda(A^HA)$,谱范数 $\|A\|_2$
- **4.**用盖尔圆盘定理估计 $A = \begin{pmatrix} 2 & \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & 4 & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{4} & \frac{1}{16} & 6 & \frac{1}{16} \\ \frac{1}{10} & \frac{1}{10} & \frac{1}{10} & 8 \end{pmatrix}$ 的谱半径 $\rho(A)$ 的范围
- 四. (15 分)说明 $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix}$ 是否正规阵? 并求 $A 与 A^{-1}$ 的谱分解,计算 A^{100}

五. (10 分) 设列向量 $X = (x_1, \dots, x_n)^T \neq 0$,

令(镜面阵)
$$P = I - \frac{2XX^{H}}{|X|^{2}}$$
,其中 $|X|^{2} = X^{H}X$.

- (1) 计算: $P^H P$, $P^2 I$, $P^{-1} P$, PX = ?, P是否酉阵(优阵)?
- (2)用秩 1 方法求 XX^H 的特征根 $\lambda(XX^H)$,求P的全体特征根 $\lambda(P)$;

(3)已知
$$\alpha = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$
, $\beta = \begin{pmatrix} |\alpha| \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix}$, $\diamondsuit X = \alpha - \beta = \begin{pmatrix} -2 \\ 2 \\ 2 \end{pmatrix}$

求
$$P = I - \frac{2XX^H}{|X|^2} = ?$$
 型证 $P\alpha = \beta$, $P\beta = \alpha$

六.计算与证明(13分)

1.设
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
, 求一个矩阵 B , 使 $B^{10} = A$

- 2.若 n 阶 Hermite 阵 A 的互异特征值只有 1, -1, 计算 A^{2020} 与 A^{2021}
- 3. 证明: 若列向量x, y满足 $A^H A x = A^H A y$, 则必有A x = A y

七. 简述题(12 分)

写出你对正奇值分解(正 SVD)或奇异值分解(SVD)的理解; 试用一个例子说明它的应用.