Discrete Mathematics

Tutorial sheet

Funtions

Question 1.

Let A and B be two sets with $A = \{x, y, z\}$ and $B = \{1, 2, 3, 4\}$. Which of the following arrow diagrams define functions from A to B?

Question 2.

Let A and B be two sets with $A = \{x, y, z\}$ and $B = \{1, 2, 3, 4\}$. Let f from A to B defined by the following arrow diagram:

- 1. Write the domain, the co-domain and the range of f.
- 2. Find f(x) and f(y).
- 3. Write down the set of pre-images of 3 and the set of pre-images of 1.
- 4. represent f as a set of ordered pairs.

Question 3.

The Hamming distance function is very important in coding theory. It gives a measure of the difference between two strings of 0's and 1's that have the same length. Let S_n be the set of all strings of 0's and 1's of length n. The Humming function H is defined as follows:

 $H: S_n \times S_n \to \mathbb{N} \cup \{0\}$

 $(s,t) \to H(s,t) =$ The number of positions in which s and t have different values. For n=5, Find $H(11111,00000),\ H(11000,00000)$, H(00101,01110) and H(10001,01111).

Question 4.

Digital messages consist of a finite sequence of 0's and 1's. When they are communicated across a transmission channel, they are frequently coded in special ways to reduce the chance that they will be garbled by interfering noise in the transmission lines. A simple way to encode a message of 0's and 1's is to write each bit three times, for example: the message 0010111 would be encoded as 000 000 111 000 111 111 111.

Let A be the set of all strings of 0's and 1's and let E and D be the encoding and the decoding function on the set A defined for each string, s, in A as follows:

E(s) = The string obtained from s by replacing each bit of s with the same bit written three times.

D(s) = The string obtained from s by replacing each consecutive triple of three identical bits of s by a single copy of that bit.

Find E(0110), E(0101), D(000111000111000111111) and D(1111111000111000111000000)

Question 5.

Let $A = \{1, 2, 3, 4, 5, 6\}$, $B = \{a, b, c, d\}$ and $C = \{w, x, y, z\}$ be three sets. Let f and g be two functions defined as follows: $f: A \to B$ is defined by the following table.

 $g: B \to C$ is defined by the following table.

- 1. Draw arrow diagrams to represent the function f and g.
- 2. List the domain; the co-domain and the range of f and g.
- 3. Find f(1), the ancestor (pre-image) of d. and (g o f)(3)
- 4. Show that f is not a one to one function.
- 5. Show that f is an onto function.

6. Show that g is both one to one and onto.

Question 6.

Suppose you read that a function $f: \mathbb{Z} \times \mathbb{Z}^+ \to \mathbb{Q}$ is defined by the formula $f(m,n) = \frac{m}{n}$ for all $(m,n) \in \mathbb{Z} \times \mathbb{Z}^+$.

- 1. Is f a one to one function?
- 2. Is f an onto function?

Question 7.

Given a function f definted by $f(x) = \lfloor x \rfloor$ where $f : \mathbb{R} \to \mathbb{Z}$,

- 1. Plot the graph of the function f(x) for $x \in [-3, 3]$.
- 2. Use this graph to find $\lfloor \pi \rfloor$, $\lfloor -2.5 \rfloor$, $\lfloor -1 \rfloor$.
- 3. Use the graph in (1) to show that f is not a one to one (not injective) function.
- 4. Is f onto (surjective)? Justify your answer.

Question 8.

Let S denote the set of all 3 bit binary strings and B = (0, 1, 2, 3). The function $f: S \to B$ is defined by the rule

f(x) = the number of zeros in x for each $x \in S$.

Find the following.

- 1. The domain of f.
- 2. f(001) and f(101).
- 3. The set of ancestors of 2.
- 4. The range of f.
- 5. Say whether or not f is one to one, giving a reason for your answer.
- 6. Say whether or not f is onto, giving a reason for your answer.

Question 9.

Let $f(x) = x \mod 3$, where f(x) is the remainder when x is divided by 3, and $f: \mathbb{Z}^+ \to \{0, 1, 2\}$.

- 1. Find f(7) and f(12).
- 2. Find the ancestors of 2.
- 3. Say whether or not f(x) is one to one, justifying your answer.
- 4. Say whether or not f(x) is onto, justifying your answer.

Question 10.

Given the following function $f: \mathbb{R} \to \mathbb{R}$ with f(x) = 4x - 1, for any real number x.

- 1. Is f a one to one function? Prove or give a counter-example.
- 2. Is f an onto function? Prove or give a counter-example.
- 3. Is f invertible? and why? if the answer yes define f^{-1} .

Question 11.

Given the following function $f: \mathbb{Z} \to \mathbb{Z}$ with g(x) = 4x - 1, for any real number x.

- 1. Is g a one to one function? Prove or give a counterexample.
- 2. Is q an onto function? Prove or give a counterexample.
- 3. Is g invertible? and why? if the answer yes define g^{-1} .

Question 12.

Given the following function $h: \mathbb{R} \to \mathbb{R}$ with $h(x) = x^2 - 1$, for any real number x.

- 1. What is co-domain and the range of h
- 2. Is h a one to one function? Prove or give a counterexample.
- 3. Is h an onto function? Prove or give a counterexample.
- 4. Is h invertible? and why? if the answer yes define h^{-1} .

Question 13.

Given the following function $h: [0, +\infty[\to [-1, +\infty[$ with $h(x) = x^2 - 1,$ for any real number x.

1. What is co-domain and the range of h

- 2. Is h a one to one function? Prove or give a counterexample.
- 3. Is h an onto function? Prove or give a counterexample.
- 4. Is h invertible? and why? if the answer yes define h^{-1} .
- 5. On the same graph, plot the curve of h and that of h^{-1} if it exists.

Question 14.

Consider the following function $f: \mathbb{R} \to \mathbb{R}^+$ with $f(x) = 2^{x+3}$.

- 1. Show that f is a bijective function.
- 2. Find the inverse function f^{-1} .
- 3. Plot the both curves of f and of f^{-1} on the same graph.

Question 15.

Consider the following function $f: \mathbb{R} - \{-1\} \to \mathbb{R}$ with $f(x) = \frac{2x}{x+1}$.

- 1. Show that f is a one to one function.
- 2. Show that f is not an onto function.

Question 16.

Find the inverse of the following functions:

- 1. $f(x) = e^{x^2-5}$
- 2. $g(x) = e^x + 5$

Question 17.

Find the inverse of the following functions:

- 1. $f(x) = \ln(x+2) + 2$
- 2. $g(x) = \log_2(x-5) + 3$

Question 18.

Let A, B and C be three sets/and $f: A \to B$ and $g: B \to C$ be two functions. Prove that if $g \circ f$ is an onto function then g must be onto.

Question 19.

Let A, B and C be three sets and $f: A \to B$ and $g: B \to C$ be two functions. Prove that if $g \circ f$ is a one to one function then f must be one to one.

Question 20.

Let $f: \mathbb{Q} \times \mathbb{Q} \to \mathbb{R}$ with $f(x,y) = x + \sqrt{2}y$ for all $x,y \in \mathbb{Q}$ Is f a one to one function? Prove or give a counter-example.

End of questions