République Islamique de Mauritanie Ministère de l'Education Nationale Direction des Examens et de l'Evaluation Service des Examens

Baccalauréat 2004

Séries : C & TMGM Epreuve: Mathématiques Durée: 4 heures coefficients: 9 & 6

Honneur - Fraternité - Justice

Session normale

Déterminer	r le rapport de h et montrer que h(J) = K. 11 2004 Session Normale Epreuve de mathématiques Séries : C & TMGM	1/3			
Déterminer	le rapport de h et montrer que h(J) = K	4			
2 Cale 1. 1"	homothétie de centre B et qui transforme A en E	(0,5pt)			
	se $r(K) = L$, déterminer le point L puis le construire et montrer que $\overline{BL} = \frac{1}{3}\overline{BK}$	(0,23)1			
c) Déteri	miner r(C), en déduire l'image de la droite (BC) par r puis la construire.	(0,25pt)			
b) Montr	er que $r(1) = J$.	(0,5pt)			
	niner r(E), en déduire l'image de la droite (EK) par r	(0,5pt) (0,25pt)			
	dère la rotation r de centre. A et d'angle. $-\frac{\pi}{2}$.				
L'objectif de cet exercice est l'étude de la configuration précédente. 1 Faire une figure illustrant les données précédentes que l'on complétera au fur et à mesure.					
	x respectifs des points A et E sur (BC) et I le projeté orthogonal du point A sur (EK)				
segment AI	B], E le symétrique de H par rapport à A. Les points J et K sont les projetés				
On consider	(5 points) e un triangle direct ABC rectangle en A avec AB = 2AC et soient H le milieu du				
5					
ABJL par r_2 .					
	la nature de r ₂ , donner ses éléments caractéristiques et préciser l'image du rectangle	1			
	la transformation définie par : $r_1 = S_{(IL)} \circ S_{(AC)}$.	(0,5pt)			
b) Soit g l'antidéplacement qui transforme K en J et laisse C invariant. Reconnaître g et préciser l'image du rectangle ABJL par g					
a) Déterminer r. (B). Déduire des questions précédentes l'image du rectangle ABJL par r.					
3. Caractéris	sation de quelques transformations et étude de leurs actions sur le rectangle ABJL.	36 31			
	soit le barycentre du système $\{(A,\alpha);(C,\gamma)\}$.	(0,75pt)			
iii)	réflexion par rapport à l'axe associé) puis déterminer deux réels α et γ tels que Ω	17			
****	précisant sa position sur (Π_r) . Méthode 3 : Déterminer une droite (Δ) telle que $r_i = S_{(AC)} \circ S_{(\Delta)}$, $(où S \text{ est la})$				
ii)	Méthode 2 : Déterminer $r_1(L)$ puis $r_1or_1(L)$ et monter que Ω appartient à (IL) en	(0,5pt)			
1022500	D'd'autre part sont cocycliques en déduire une construction de \$2.	(0,5pt)			
i)	Methode 1 : Montrer que les points Ω , A, Het I d'une part et 12, J, Het	(0.5nt)			
c) On se pro	pose dans cette question de déterminer le centre Ω de la rotation r ₁ par trois méthodes.				
h) Soit R le	quart de tour vectoriel direct, montrer que R(AJ) = ID, en déduire l'angle de la rotation r,	(0,5pt)			
a) Montrer o	qu'il existe une unique rotation r, qui transforme A en I et J en D.	(0,5pt)			
ourra prendr	The AB = $a = 8$ cm et la droite (AB) horizontale) the rotation r_1 .	(0,7571)			
Faire une fi	oure illustrant les données précedentes que l'on complétera du lais de 2 milles	(0,75pt)			
0	des droites (AJ) et (DI) cet exercice est l'étude de quelques propriétés de la configuration précédente.				
STATES INCOMPANIES AS IN	Land Lines (A.D. et (DD)				
pient I, J, K	et L les milieux respectits des segments [AB], [20], [10]				
oient I, J, K	rienté, on considère un carré direct ABCD de centre O et de coté a et L les milieux respectifs des segments [AB], [BC], [CD] et [DA] et soit H				

- 4. On pose s = hor et on se propose de caractériser s.
 - a) Montrer que s'est une similitude directe. Donnera son rapport et son angle

- (0,5pt)
- b) Soit Ω le centre de s, déterminer s(I) et s(A), montrer que Ω appartient aux deux cercles de diamètre respectif [AE] et [IK], construire Ω .
- (0,75pt)

- 5. Soit (P) une parabole de directrice (BC) et qui passe par les deux points A et 1
- a) Démonter qu'ils existent deux paraboles (P_1) et (P_2) vérifiant la condition précèdente, on note F_1 et F_2 leur foyer respectif, où F_1 est le foyer le plus proche de la directrice (BC). Construire les foyers F_2 et F_2 en justifiant cette construction.
- (0,5pt)
- b) Construire, en le justifiant, l'axe focal et le sommet de chacune des paraboles (P_1) et (P_2) puis représenter (P_1) et (P_2) sur la figure.
- (0,25pt)
- c) Déterminer le foyer, le sommet et la directrice de la parabole (P_i) image de (P_i) par la similitude s puis construire (P_i) .
- (0,25pt)

Problème(10 points)

Partic A

Soit f, la fonction numérique définie par :

$$\begin{cases} f_n(x) = x^n (1 + \ln x); & x > 0 \\ f_n(0) = 0 \end{cases}$$

où n'est un entier naturel tel que $n \ge 1$ et x est une variable réelle.

Soit (Ca) la courbe représentative de fa dans un repère orthogonal (O; u, v).

- 1. Etudier la continuité et la dérivabilité de f_n au point $\mathbf{x}_0=0$, interpréter géométriquement (distinguer le cas particulier où $\mathbf{n}=1$).
- (1pt)

2. Etudier les variations de f_n et dresser son tableau de variations.

- (1pt)
- 3. Montrer, par le calcul que toutes les courbes (C_n) passent par trois points communs que l'on déterminera.
- (0,75pt)

4. Etudier la position relative de (C_n) et (C_{n-1}) (faire in tableau).

(0,5pt)

5. Les courbes (E), (F) et (G) ci-contre représentent les fonctions f_1 , f_2 et f_3 .

(0,75pt)

Associer à chaque courbe sa fonction puis justifier votre réponse (on ne demande pas de reproduire les cette igure).

Partie B

						*
Le plan est	rannorté à	un	repère	ort	honormė	(O; i, j)

Soit le point	$M_n(x_u; y_u)$ de la courbe	(Cn) d'abscisse	$x_n = e^{-(3 - \epsilon)^n}$, où n'est un entier
surel non nul				

Calculer y_n en fonction de n et montrer que tous les points $M_n(x_n; y_n)$ appartiennent à une tranche de courbe d'une fonction numérique φ que l'on déterminera.

. Montrer que la suite (x,) est croissante et majorée.

3. Calculer $\lim_{n\to\infty} x_n$ et $\lim_{n\to\infty} y_n$, en déduire que quand n tend vers $+\infty$, le point M_n tend vers une osition donnée que l'on déterminera.

Soit U_n l'aire du domaine plan délimité par la courbe (C_n) , l'axe des abscisses et les deux droites d'équation $x = e^{-1}$ et x = 1.

a) En utilisant une intégration par parties, écrire U_n en fonction de n puis calculer $\lim_{n\to\infty}$ U_n et interpréter graphiquement.

b) Montrer que la suite (U,) est décroissante et positive, donner une interprétation graphique.

Partie C

In considère la fonction g définie sur]0; +∞[par

genme sur
$$[0; +\infty[$$
 par]
$$\begin{cases}
g(x) = (1 + \ln x)e^{\frac{-\ln x}{1 + \ln x}}; & x \in]0, \frac{1}{e}[\smile] \frac{1}{e}, +\infty[\\
g(\frac{1}{e}) = 0
\end{cases}$$

Calculer $\lim_{x\to \frac{1}{2}} g(x)$ et $\lim_{x\to \frac{1}{2}} g(x)$ puis étudier la continuité et la dérivabilité de g au point

 $r_a = \frac{1}{6}$, donner une interprétation géométrique.

Calculer $\lim_{x \to \infty} g(x)$, $\lim_{x \to \infty} \frac{g(x)}{x}$ et $\lim_{x \to 0^+} g(x)$ puis interpréter géométriquement. (0,75pt)

3. Calculer g'(x) puis étudier son signe.

*. Dresser le tableau de variations de g et construire sa courbe Γ dans un nouveau repère

a) Montrer que pour tout entier naturel n ≥ 1, les courbes Γ et (C_n) ont trois points
 d'intersection d'ont deux sont indépendants de n que l'on déterminera et donner les coordonnées u troisième point en fonction de n.

s) Reconnaître le troisième point cité en 5 a). Déterminer ses coordonnés et le placer sur Γ dans es deux cas: n = 1 et n = 2.

Fin.

taccalauréat 2004 Session Normale Epreuve de mathématiques Séries : C & TMGM 3/3

(0,75pt)

(0,5pt)

(0,5pt)

(0,75pt)

(0,5pt)

(0,75pt)

(0.5pt)

(0,5pt)

(0,25pt)

(0,25pt)