

Electrophysiological recordings and analysis

Day 2 Extracellular recordings

Purpose of the course

- The principles underlying neural signals
- Electrophysiological recording methods, in particular extracellular recordings
- Enable basic comprehension of neuroscience data and results

Goals of neuroscience

- Understand the mechanisms by which the brain/nervous system carries out all functions (e.g. sensory processing, cognition, motor functions, etc.).
- 2. Understand what failures in those mechanisms lead to particular disorders of the brain.
- Develop treatments for those disorders in order to restore function.

Neural acquisition methods: Electrophysiology

- Acquisition of electrical signals of biological origin over time
- Various spatial scales:
 - Patch-clamp
 - Intracellular electrode recordings
 - Extracellular electrode recordings
 - Electrocorticography (ECoG)
 - Electroencephalography (EEG)

Electrophysiology: Patch-clamp

- Glass pipette seals membrane patch by suction.
- Measures voltage changes in solution inside pipette (electrolyte)
- Used to study properties of a small patch of membrane, even individual ion channels!

Electrophysiology: Intracellular recordings

- Sharp glass pipette filled with electrolyte solution
- Pipette tip penetrates cell membrane of a single neuron
- Measure ionic currents across cell membrane of the cell body (for somatic patching)
- Current clamp & voltage clamp configurations

Electrophysiology: Extracellular recordings

- Microelectrode made of metal (e.g. tungsten) coated with insulating material but with an exposed tip
- Acquires voltage readings in extracellular space
- Voltage signal has several components:
 - Noise
 - o LFP
 - Single-unit spiking activity
 - Multi-unit spiking activity

Types of microelectrodes

Single microelectrode

Tetrode

Linear electrode array

2D matrix electrode array

3D matrix electrode array

Electrophysiology: LFP

ECoG (electro-corticogram)

Recorded from the surface of the brain using large subdural electrodes

LFP (local field potential)

- · Recorded in depth, from within the cortical tissue
- Electric potential in the extracellular space around neurons
- Current theory: LFPs are generated by synchronized synaptic currents arising on cortical neurons
- Filtered compound signal as electrode is separated from the sources by portions of cortical tissue
- Spatial resolution: 100s of microns

"Utah array" in human medial temporal cortex Delta waves recorded during sleep

Extracellular recording

Extracellular recording - Stereotrode

Fig. 1. Scanning electronmicrograph of a 'stereotrode' constructed by twisting together two lengths of 25 μ m teflon-insulated wire, and cutting the ends with sharp scissors. Original magnification 240×. Calibration bar 20 μ m.

Extracellular recording - Tetrode

Extracellular recording – Neuropixels probe

Extracellular recording – Neuropixels 2.0

Extracellular recording – Neuropixels probe

Optogenetic tagging ("opto-tagging)

- Photostimulation-assisted identification of neuronal populations
- Combining electrophysiology with opsins targeted to defined subsets of neurons

Connectivity examination

Optogenetic tagging ("opto-tagging)

Light-induced activation of genetically-defined interneurons in behaving mice

SOM-IRES-Cre mouse (green, ChR2; red, DAPI

Spikes plotted in waveform energy space from two tetrode channels

Spike raster (top) and peri-stimulus time histogram (PSTH) (bottom) for the light-activated cell in **b**

Setup configuration

Micro manipulator

Probe

Head stage + adapter

Acquisition board

External inputs

Spike sorting pipeline

Einevoll, .., K. Harris (2012), Curr. Opin. Neurobiol.

Automatic sorters

SpikeDetekt, KlustaKwik

Kilosort, (1,2,2.5,3,4)

MountainSort

YASS

SpyKING CIRCUS

Herding Spikes, Herding Spikes 2

JRCLUST, IronClust

Tridesclous

WaveClus

(Rossant, .., K. Harris 2016 Nat Neuro)

(Pichatariu, .., K. Harris, 2016 NIPS)

(Chung, .., Greengard 2017 Neuron)

(Lee, .., Paninski 2017 NIPS)

(Yger, .., Marre 2018 eLife)

(Hilgen, .., Hennig 2018 Cell Reports)

(Jun, .., T. Harris, 2017 bioRxiv)

(Garcia, Pouzat)

(Chaure, .., Quian Quiroga 2018 J Neurophys)

Different spike sorters – different results

Spike sorting outputs are variable, i.e. not perfect

SpikeInterface, a unified framework for spike sorting

Alessio P Buccino [™], Cole L Hurwitz, Samuel Garcia, Jeremy Magland, Joshua H Siegle, Roger Hurwitz, Matthias H Henniq

Nov 10, 2020 • https://doi.org/10.7554/eLife.61834 👌 💿

Different spike sorters – different results

HS = HerdingSpikes2 KS = Kilosort2 IC = IronClust TDC = Tridesclous

SC = SpyKING Circus

HDS = HDSort

Different spike sorters – different results

HS = HerdingSpikes2

KS = Kilosort2

IC = IronClust

TDC = Tridesclous

SC = SpyKING Circus

HDS = HDSort

- Spike sorting outputs are variable, i.e. not perfect
- → Curation and experimenter judgement are important!

- 1. Preprocessing
- 2. Kilosort2
- 3. Postprocessing
- 4. Noise cluster detection
- 5. Waveform metrics
- 6. Quality metrics

Separation of clusters "noise" clusters:

- 1. Spatial spread of waveform peak
- 2. Waveform shape
- 3. Multiple spatial peaks

- 1. Preprocessing
- 2. Kilosort2
- 3. Postprocessing
- 4. Noise cluster detection
- 5. Waveform metrics
- 6. Quality metrics

Waveform metrics:

Amplitude
Peak channel
Duration
Halfwidth
Spread (channels)
Peak-trough ratio

Quality metrics:

Quality metrics

Presence ratio Amplitude cutoff ISI violations Maximum drift Signal-to-noise ratio Isolation distance L-ratio d-prime Nearest neighbours hit/miss rate (Firing rate)

Presence ratio

Amplitude cutoff

Quality metrics:

- 1. Preprocessing
- 2. Kilosort2
- 3. Postprocessing
- 4. Noise cluster detection
- 5. Waveform metrics
- Quality metrics

Quality metrics:

Presence ratio
Amplitude cutoff

ISI violations

Maximum drift
Signal-to-noise ratio
Isolation distance
L-ratio
d-prime
Nearest neighbours hit/miss rate
(Firing rate)

ISI violations

"Rate of contaminating spikes as a fraction of overall rate"

- 1. Preprocessing
- 2. Kilosort2
- 3. Postprocessing
- 4. Noise cluster detection
- 5. Waveform metrics
- Quality metrics

Maximum drift

Quality metrics:

Presence ratio
Amplitude cutoff
ISI violations
Maximum drift
Signal-to-noise ratio
Isolation distance
L-ratio
d-prime
Nearest neighbours hit/miss rate
(Firing rate)

Average max drift across all clusters if > 80 um, discard whole recording

- Preprocessing
 Kilosort2
 Postprocessing
 Noise cluster detection
 Waveform metrics

 Preprocess
 Noise removal Median subtraction
 Noise removal Median subtraction
 Noise removal Median subtraction
 Noise removal Median subtraction
- 6. Quality metrics

Signal-to-noise ratio

Quality metrics:

Presence ratio
Amplitude cutoff
ISI violations
Maximum drift

Signal-to-noise ratio

Isolation distance
L-ratio
d-prime

Nearest neighbours hit/miss rate (Firing rate)

SNR = Amp / 2*std

- 1. Preprocessing
- 2. Kilosort2
- 3. Postprocessing
- 4. Noise cluster detection
- 5. Waveform metrics
- Quality metrics

Quality metrics:

Presence ratio
Amplitude cutoff
ISI violations
Maximum drift
Signal-to-noise ratio

Isolation distance

L-ratio d-prime Nearest neighbours hit/miss rate (Firing rate)

Isolation distance

- 1. Preprocessing
- 2. Kilosort2
- 3. Postprocessing
- 4. Noise cluster detection
- 5. Waveform metrics
- Quality metrics

Quality metrics:

Presence ratio
Amplitude cutoff
ISI violations
Maximum drift
Signal-to-noise ratio

Isolation distance

L-ratio d-prime Nearest neighbours hit/miss rate (Firing rate)

 N_c = # spikes in cluster Isolation distance = Mahalanobis distance of N_c th spike not in cluster

- 1. Preprocessing
- 2. Kilosort2
- 3. Postprocessing
- 4. Noise cluster detection
- 5. Waveform metrics
- Quality metrics

Quality metrics:

Presence ratio
Amplitude cutoff
ISI violations
Maximum drift
Signal-to-noise ratio
Isolation distance

L-ratio

d-prime
Nearest neighbours hit/miss rate
(Firing rate)

L-ratio

"In any report including these cluster quality measures, it is important to clearly describe how features were calculated, in order that results from different labs can be more directly compared."

- 1. Preprocessing
- 2. Kilosort2
- 3. Postprocessing
- 4. Noise cluster detection
- 5. Waveform metrics
- Quality metrics

d-prime

Quality metrics:

Presence ratio
Amplitude cutoff
ISI violations
Maximum drift
Signal-to-noise ratio
Isolation distance
L-ratio

d-prime

Nearest neighbours hit/miss rate (Firing rate)

Linear discriminant analysis to project cluster spikes and noise spikes onto one dimension.

Then:

$$\mathbf{d}' = \frac{(\mu_C - \mu_O)}{\sqrt{\frac{1}{2}(\sigma_C^2 + \sigma_O^2)}}$$

- 1. Preprocessing
- 2. Kilosort2
- 3. Postprocessing
- 4. Noise cluster detection
- 5. Waveform metrics
- Quality metrics

Quality metrics:

Presence ratio
Amplitude cutoff
ISI violations
Maximum drift
Signal-to-noise ratio
Isolation distance
L-ratio
d-prime
Nearest neighbours hit/miss rate
(Firing rate)

Nearest neighbours

Curation

Einevoll, .., K. Harris (2012), Curr. Opin. Neurobiol.

Curation

Einevoll, .., K. Harris (2012), Curr. Opin. Neurobiol.

Phy – brief demonstration

Summary

- Different extracellular signals (ranging from EEG to single units)
- Rapid development of recording probes (high-density electrodes)
- Recordings can be combined with behaviour
- Target cells can be genetically defined
- Spike sorting outputs are variable and need curation

Resources

- Repository for practical part <u>https://github.com/ackels-lab/BIGS-ephys2024</u>
- Data resource by the Allen Institute
 https://allensdk.readthedocs.io/en/latest/visual_behavior_neuropixels.html
- Phy (Automated curation) <u>https://phy.readthedocs.io/</u>
- Lecture material https://software-skills.neuroinformatics.dev/courses/extracellular-analysis.html