Unit 5MINING DATA STREAM

When do you want to know?

- Whether individual or Business
- Important things are always happening NOW
- Maximize data value □ process and act in real time

Real-time insight preserves or creates value

Searching

Recommendations

Real-time financial activities Fraud Detection

OpsClarity Report Summary:

- 92% plan to increase their investment in stream processing applications in the next year
- 79% plan to reduce or eliminate investment in batch processing
- 32% use real time analysis to power core customer-facing applications

http://info.opsclarity.com/2016-fast-data-streaming-applications-report.html

Businesses, crave ever more timely data, and switching to streaming is a good way to achieve lower latency.

Data Stream

Data stream [7] is nothing but sequence of data objects with respect to time and can be ordered pair (S, T) where:

- •S is a sequence of tuples and
- •T is a sequence of positive real time intervals.

There are some typical characteristics of data streams:

- Continuous arrival of data objects
- •Disordered arrival of data objects
- •Potentially unbounded size of a stream

Techniques Stream Data Mining

- Sampling
- Sketching
- Load Shedding
- Synopsis Data Structures
- Aggregation
- Sliding Window

Figure: Windowing Techniques for Stream Data

Stream Bigdata Mining

- "V" (Volume, Velocity, and Variety)
- Sampling
- Clustering
- Compression
- Wavelets
- Histogram
- Micro-clustering

Lambda Architecture

Figure: Lambda Architecture [42]

Lambda Architecture—Requirements

- Fault-tolerant against both hardware failures and human errors
- Support variety of use cases that include **low latency** querying as well as updates
- Scalability

• Extensible, so that the system is manageable and can accommodate **newer features** easily

Lambda Architecture—Layers

Batch layer

Managing the master dataset, an immutable, append-only set of raw data

Serving layer

Indexes batch views so that they can be queried in ad hoc with low latency

Speed layer

Accommodates all requests that are subject to low latency requirements. Using fast and incremental algorithms deals with recent data only

10

Applications

- Intelligent transport Systems
- Stock market
- Network monitoring
- Intelligence and surveillance
- E-commerce
- Social Media

Social Media Data

- Social media is defined as a group of Internet-based applications that allow the creation and exchanges of user-generated content.
- Social media gives users an easy-to-use way to communicate and network with each other on an unprecedented scale.

Kaplan, Andreas M., and Michael Haenlein. "Social media: back to the roots and back to the future." *Journal of Systems and Information Technology* 14.2 (2012): 101-104.

Techniques for Social Media Mining

Architecture Data input (Twitter Tweets, Facebook Cluster 1 post etc) **Data Ingestion Layer Message Filtering** Crawlers and **Stream Processor API's Storage** Layer **Data Summarization** Cluster 2 **Data Pre-Processing Layer** Cluster 3 Data Cleaning **Dimension Reduction Data Integration Data Processing Layer Batch In-Memory** Models/ **Algorith Data Visualization layer** ms

Figure: Proposed Real Time Architecture for Streaming Bigdata

Table: Review of Real Time Platforms for Stream Bigdata

Syste m/ Tools	Process ing Model	Stre am type	Operat ing system	Open source	Built in languag e	Supportive Langauage s	Current release/ version	Developed at	Available on	Functio n	Features
Storm	Batch and Real time	Tupl es	OS indepen dant	Yes	Clojure	Any language	0.9.6	BackType	Apache Software Foundatio n	Distribut ed real- time computa tion	Secure Multi-Tenant Deployment
Flink	Batch and Real time	Strin gs	OS indepen dant	Yes	Java and Scala	Java, Scala, and Python	0.10.2	DataArtisa ns	Apache Software Foundatio n	Distribut ed real- time computa tion	Low-latency stream processor flexible operator state and streaming windows
Spark	Batch and streami ng	discr etize d strea m	Windo ws and Limux	Yes	Scala	Scala, Java, Python, R	1.6.0	UC, Berkeley	Apache Software Foundatio n	Large- scale Data Processi ng	Decentralized hides all cluster management tasks. Checkpointing and recovery minimize state loss
Samz	Batch and Real time	Mes sage s	OS indepen dant	Yes	Scala, Java	CQL, Pig	0.10.0	LinkedIn	Apache Software Foundatio n	Processi ng continuo us Stream	Simple API Managed state, Fault tolerance Durability, Pluggable Processor isolation
Kafka	Real time	Mes sage s	OS indepen dant	Yes	Scala	Python,Go, C/C++,.net, Clojure, Ruby	0.9.0.1	LinkedIn	Apache Software Foundatio n	Data integrati on	Distributed by Design Fast Scalable Durable

Summary

- •Bigdata needs extraordinary techniques to efficiently process large volume of data within limited run times
- •Social media growth and diversity have profoundly affected how people process and interpret new knowledge
- •Architecture for real time stream Bigdata has been proposed
- •Investigated into the current popular platforms and techniques that can be useful in implementing real-time systems for Bigdata
- •Plan to implement and evaluate the proposed approach to perform sentiment analysis with real-time data stream on social networking sites like Twitter

• References as per report

Publication

Bharat Tidke and Rupa Mehta, "A Comprehensive Review and Open Challenges of Stream Big Data," **Springer** International Conference on Soft Computing: Theories and Applications 27-29 December 2016 Jaipur, India.

(Accepted)

Thank You