Lecture 2: Advanced R

Zhentao Shi

Feb 18, 2017

Introduction

In this lecture, we will talk about how to efficiently compute in R.

- R is a vector-operation language. In most case, vectorization speeds up computation.
- When a piece of code is already optimized, we resort to more CPUs for parallel execution.
- Clusters are accessed remotely. Communicating with a remote cluster is different from oprating a local PC. For Windows users, PuTTY and WinSCP help access remote servers.

Packages

The following packages are useful for parallel computing.

```
library(plyr)
library(foreach)
library(doParallel)

## Loading required package: iterators
## Loading required package: parallel
```

Speed

Mathematically equivalent though, different calculation methods perform very differently in terms of computational speed.

example: The heteroskedastic-robust variance for the OLS regression is

$$(X'X)^{-1}X'\hat{e}\hat{e}'X(X'X)^{-1}$$

The difficult part is $X'\hat{e}\hat{e}'X = \sum_{i=1}^{n} \hat{e}_{i}^{2}x_{i}x'_{i}$. We propose four ways.

- 1. literally do the summation i = 1, ..., n one by one.
- 2. $X' \operatorname{diag}(\hat{e}^2) X$, with a dense central matrix.
- 3. $X' \operatorname{diag}(\hat{e}^2) X$, with a sparse central matrix.
- 4. Do cross product to X*ehat. This is different from the matrix formulation. It takes advantage of the element-by-element operation in R.

```
# an example of robust matrix, sparse matrix. Vecteroization.
rm(list = ls())
library(Matrix)

set.seed(111)

# n = 6000; Rep = 10; # 'Matrix' is quick, 'matrix' is slow, adding is OK
n = 50; Rep = 1000; # 'Matrix' is slow, 'matrix' is quick, adding is OK
for (opt in 1:4){
```

```
pts0 = Sys.time()
  for (iter in 1:Rep){
    # set the parameters
    b0 = matrix(c(-1,1), nrow = 2)
    # generate the data
    e = rnorm(n)
    X = cbind( 1, rnorm(n) )
    Y = (X \% *\% b0 + e >=0)
    # note that in this regression b0 is not converge to b0
    # because the model is changed.
    # OLS estimation
    bhat = solve( t(X) \% \% X, t(X)\% \% Y)
    # calculate the t-value
    bhat2 = bhat[2] # parameter we want to test
    e_hat = Y - X %*% bhat
    XXe2 = matrix(0, nrow = 2, ncol = 2)
    if (opt == 1){
      for ( i in 1:n){
       XXe2 = XXe2 + e_{hat[i]^2} * X[i,] %*% t(X[i,])
    } else if (opt == 2) {
      e_hat2_M = matrix(0, nrow = n, ncol = n)
     diag(e_hat2_M) = e_hat^2
     XXe2 = t(X) %*% e_hat2_M %*% X
    } else if (opt == 3) {
      e_hat2_M = Matrix( 0, ncol = n, nrow = n)
      diag(e_hat2_M) = e_hat^2
     XXe2 = t(X) \%*\% e_hat2_M \%*\% X
    } else if (opt == 4) {
     Xe = X * e
     XXe2 = t(Xe) \% \% Xe
   XX_{inv} = solve(t(X) %*% X)
   sig_B = XX_inv %*% XXe2 %*% XX_inv
  cat("n = ", n, ", Rep = ", Rep, ", opt = ", opt, ",
  time = ", Sys.time() - pts0, "\n")
## n = 50 , Rep = 1000 , opt = 1 ,
## time = 1.124578
## n = 50 , Rep = 1000 , opt = 2 ,
## time = 0.2126548
## n = 50 , Rep = 1000 , opt = 3 ,
## time = 1.983931
## n = 50 , Rep = 1000 , opt = 4 ,
```

```
## time = 0.121784
```

Efficient loop

```
plyr is an R package developed by Hadley Wickham.
example: calculate the empirical coverage probability of a poisson distribution of degree of freedom 2.
CI = function(x){ # construct confidence interval
  # x is a vector of random variables
  n = length(x)
  mu = mean(x)
  sig = sd(x)
  upper = mu + 1.96/sqrt(n) * sig
  lower = mu - 1.96/sqrt(n) * sig
  return( list( lower = lower, upper = upper) )
}
The standard loop
Rep = 10000
sample_size = 1000
# a standard loop
out = rep(0, Rep)
pts0 = Sys.time() # check time
mu = 2
for (i in 1:Rep){
  x = rpois(sample_size, mu)
 bounds = CI(x)
  out[i] = ( ( bounds$lower <= mu  ) & (mu <= bounds$upper) )</pre>
}
cat( "empirical coverage probability = ", mean(out), "\n") # empirical size
## empirical coverage probability = 0.9504
pts1 = Sys.time() - pts0 # check time elapse
print(pts1)
## Time difference of 0.9076478 secs
A plyr loop. It saves book keeping chores, and easier to parallelize.
library(plyr)
capture = function(i){
  x = rpois(sample_size, mu)
  bounds = CI(x)
  return( ( bounds$lower <= mu ) & (mu <= bounds$upper) )</pre>
}
pts0 = Sys.time() # check time
```

```
out = ldply( .data = 1:Rep, .fun = capture )
cat( "empirical coverage probability = ", mean(out$V1), "\n") # empirical size

## empirical coverage probability = 0.9533

pts1 = Sys.time() - pts0 # check time elapse
print(pts1)
```

Time difference of 1.121264 secs

Parallel computing

The basic structure for parallel computing.

In this comparative example, we try

Time difference of 6.058157 secs

The above block indeed takes more time, because each loop runs very fast.

The code below shows a different story. Each loop takes more time, which dominates the overhead of the CPU communication.

```
Rep = 200
sample_size = 2000000
pts0 = Sys.time() # check time
out = ldply(.data = 1:Rep, .fun = capture, .parallel = FALSE)
cat( "empirical coverage probability = ", mean(out$V1), "\n") # empirical size
pts1 = Sys.time() - pts0 # check time elapse
print(pts1)
```

Econ Super

Try out this script on our econ super computer.

- 1. Log in econsuper;
- 2. Save the code block below as loop_server.R, and upload it to the server;
- 3. In a terminal, run R --vanilla <loop_server.R> result_your_name.out;
- 4. To run a command in the background, add & at the end of the above command. To keep it running after closing the console, add nohup at the beginning of the command.