Class core values

- 1. Be **respect**ful to yourself and others
- 2. Be **confident** and believe in yourself
- 3. Always do your **best**
- 4. Be **cooperative**
- 5. Be **creative**
- 6. Have **fun**
- 7. Be **patient** with yourself while you learn
- 8. Don't be shy to **ask "stupid" questions**

Week 2, Lecture 2

Learning Objectives

- Describe the concept of rational design
- 2. Identify potential mutations to increase stability
- 3. Describe different methods for rational design
- Apply tools for structure analysis, evolutionary information, and computational techniques to design
- 5. Identify the limitations of rational design approaches

Rational design

Rational design is often guided by prior knowledge, often structure

Rational design is often guided by prior knowledge, often structure

Advantage	Disadvantage
We're building off of what works → higher chance of success	Limited to what we know
Simpler if you have a good guess	Limited by what exists in nature
Requires fewer resources	You need to know the structure

The next step is to consider the features we want to improve (the what)

Enhancing proteins stability is one of the most commonly used engineering applications

Structure-guided mutagenesis based on prior knowledge to improve features

Thermal stability

pH stability

Oxidant stability

Another commonly used application of rational design is enhancement of function/activity

Structure-guided mutagenesis based on prior knowledge to improve features

Improved activity

Substrate specificity

Binding selectivity

Rational design can also be used to design biomimetics or create new function

Structure-guided mutagenesis based on prior knowledge to improve features

Mimicking other proteins

Changing substrates

Changing cofactors

Oral Enzyme Therapy

to Treat Celiac Disease

In-class activity:

Enhancing stability of PelN using Rational Design

Many databases are available that include protein structures with statistics about quality

```
Experimental structure (X-ray, NMR, cryo EM)
PDB
CSD
EMBL-EBI
```


Computational modeling methods offer great insight about proteins without validated structure

For more challenging cases, experimental data can provide a powerful intuition

In-class activity:

Enhancing stability of PelN using Rational Design

PelN

PDB: 5GT5

The engineering process is often guided by some prior knowledge

Our biophysical/biochemical knowledge can guide us in finding beneficial mutations

Structure-guided mutagenesis based on **prior knowledge** to improve features

Biophysical and Biochemical knowledge (aka physics-based)

Observations about amino acid properties can lead to significant outcome: the case of <u>Subtilisin</u>

Observations about amino acid properties can lead to significant outcome: the case of <u>Subtilisin</u>

Our biophysical/biochemical knowledge can guide us in finding beneficial mutations

Structure-guided mutagenesis based on **prior knowledge** to improve features

Biophysical and Biochemical knowledge (aka physics-based)

- Burying polar residues in the core of a protein has a huge energy cost
- New hydrogen bonds are energetically favorable
- The size of an enzyme pocket affects its substrate scope
- ...

In-class activity:

Enhancing stability of PelN using Rational Design

Cavities in PelN PDB: 5GT5

Evolutionary data and close relatives contain rich information about protein fold/function

```
Biophysical and Biochemical knowledge

Statistical and evolutionary information

(aka heuristic)
```


Ancestral sequence reconstitution can be used for enhancing stability of a protein

anc IPMDH-IQ M-MTYKI AVLPGDGI GPEVVAEAVKVLEAVAE-KYGLEFEFEEAL VGGAAI DATGTPLPE anc IPMDH-ML M-MTYKI AVLPGDGI GPEVVAEAVKVLEAVAE-KFGLEFEFEEAL IGGAAI DATGTPLPE T. thermophilus IPMDH M---KVAVLPGDGI GPEVTEAALKVLRALDE-AEGLGLAYEVFPFGGAAI DAFGEPFPE B. subtilis IPMDH M-KKRI ALLPGDGI GPEVLESATDVLKSVAE-RFNHEFEFEYGL IGGAAI DEHHNPLPE S. cerevisiae IPMDH MSAPKKI VVLPGDHVGQEI TAEAIKVLKAI SDVRSNVKFDFENHL IGGAAI DATGVPLPD

Part of an MSA (Multiple Sequence Alignment)

Ancestral sequence reconstitution can be used for enhancing stability of a protein

Evolutionary data and close relatives contain rich information about protein fold/function

```
Biophysical and Biochemical knowledge

Statistical and evolutionary information

(aka heuristic)
```

- Multiple Sequence Alignment
 - o NCBI, JackHmmer, Pfam

In-class activity:

Enhancing stability of PelN using Rational Design

Structural features from one protein can be grafted onto other proteins to exert new function

Structure-guided mutagenesis based on **prior knowledge** to improve features

Biophysical and Biochemical knowledge
(aka physics-based)

Statistical and evolutionary information
(aka heuristic)

Grafting known motifs

- Grafting loops onto structures
- Adding binding ligands inside other cavities
- Placing binding motifs onto other scaffolds
- ...

Loop grafting was used to change metal binding features of Azurin

Visual or computational screening can help narrow down the number of experiments

Structure-guided mutagenesis based on prior knowledge to **improve** features

Virtual screening •

Visual observations Computational Methods

In-class activity:

Enhancing stability of PelN using Rational Design

Experimental testing is the ultimate method for assessing the effectiveness of our designs

```
Virtual screening

Experimental testing
```


In-class activity: <u>Enhancing stability</u> of PelN using Rational Design

Possible search space is extremely large

Possible search space is extremely large =>

Computational methods can be used to speed up the rational design process

Automated search can be used to fill in core cavities and enhance stability

MSA information can be automatically used to find stabilizing mutations

MSA information can be automatically used to find stabilizing mutations

Designed

AChE

Secondary structure motif grafting can be fully automated (Rosetta motif graft)

Secondary structure motif grafting can be fully automated (Rosetta motif graft)

Interacting residues required for binding can also be placed in new scaffolds in an automated way

Rosetta matcher

Interacting residues required for binding can also be placed in new scaffolds in an automated way

Define ligand binding interactions

place ligand and interacting residues in scaffolds & design binding site sequence

select pre-organised sites with high shape complementarity

For the next lecture:

- 1. Proposal draft: Due next week (discussion in class)
- 2. First journal: Will be discussed next week
- 3. Post-class assignment for this lecture: Rosetta-guided SSM
 - a. Due next week

Next lecture: A designed heme-[4FE-4S] metalloenzyme

