EXPERIMENT-4

AIM:

Estimate the precision recall accuracy f-measure of the decision classifier on a breast cancer dataset using 10 fold cross validation.

ALGORITHM:

- 1. Select the best attribute using Attribute Selection Measures (ASM) to split the records.
- 2. Make that attribute a decision node and breaks the dataset into smaller subsets.
- 3. Starts tree building by repeating this process recursively for each child until one of the conditions will match:
 - a. All the tuples belong to the same attribute value.
 - b. There are no more remaining attributes.
 - c. There are no more instances.

PROGRAM CODE SNIPPET:

LOADINGDATA SET:

In [1]:	import numpy as np												
In [2]: Out[2]:													
		id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	concave points_mean		
	0	842302	М	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.30010	0.14710		
	1	842517	М	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.08690	0.07017		
	2	84300903	М	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.19740	0.12790		
	3	84348301	M	11.42	20.38	77.58	386.1	0.14250	0.28390	0.24140	0.10520		
	4	84358402	М	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.19800	0.10430		
					544			Con-			9444		
	564	926424	М	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390	0.13890		
	565	926682	M	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	0.09791		
	566	926954	M	16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	0.05302	-	
	567	927241	M	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	0.15200	١,	
	568	92751	В	7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000	0.00000		

PREPROCESSING:

]:	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	concave points_mean
0	842302	M	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.30010	0.14710
1	842517	M	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.08690	0.07017
2	84300903	М	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.19740	0.12790
3	84348301	М	11.42	20.38	77.58	386.1	0.14250	0.28390	0.24140	0.10520
4	84358402	М	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.19800	0.10430
		11.0								
564	926424	M	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390	0.13890
565	926682	M	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	0.09791
566	926954	M	16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	0.05302
567	927241	M	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	0.15200
568	92751	В	7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000	0.00000

```
In [4]: from sklearn.model_selection import train_test_split, cross_val_score
In [5]: x= bc_data.drop('diagnosis', axis=1)
    y=bc_data.diagnosis

In [6]: x_train, x_test, y_train, y_test = train_test_split(x,y, test_size=0.2)
In [7]: from sklearn.tree import DecisionTreeClassifier as dt

In [8]: classify=dt(random_state=0)
    classify
Out[8]: DecisionTreeClassifier(random_state=0)
In [9]: classify.fit(x_train, y_train)
Out[9]: DecisionTreeClassifier(random_state=0)
```

ML ALGORITHM IMPLEMENTATION:

10 Cross Validation

Precision

```
In [16]: precision = tp/(tp+fp)
precision
```

Out[16]: 0.7619047619047619

Recall

```
In [17]: recall = tp/(tp+fn)
recall
```

Out[17]: 0.8648648648648649

F-Measure

```
In [18]: f1= (2*precision*recall)/(precision+recall)
f1
Out[18]: 0.810126582278481
In []:
```

GITHUB LINK:

https://github.com/tejpalsingh1999/Machine-Learning/tree/master/Exp%204