Signals and Systems Midterm

10:20a.m. ~ 12:20p.m., May 2, Fri., 2008

- Closed book, but open 1 sheet (both sides, 2 pages) of personal notes of A4 size
- Total score: 120
- Total 4 pages in one B4 sheet
- 1. **[10]** Consider a system H to be tested as being **memoryless**, **causal**, **linear**, **time invariant**, and **invertible**. Three signals $x_1(t)$, $x_2(t)$, and $x_3(t)$ are sent to the system, and the corresponding output signals $y_1(t)$, $y_2(t)$, and $y_3(t)$ are obtained as shown in Figure 1.

Based on the three input-output pairs, is it possible to determine each of the five properties for system H? If yes, what is it? If no, why? Justify your answer.

Figure 1

2. Consider a system as shown in Figure 2, where h(t) is the impulse response of the LTI sub-system in the block, and 2D is the operation of time delay for 2 units.

Figure 2

- (a) [4] Plot the impulse response of the overall system.
- (b) [7] Plot the output y(t) of the system for input x(t) shown in Figure 2.
- (c) [5] Repeat x(t) in time with a period of 6, and let $\tilde{x}(t)$ be the corresponding periodic version of x(t). Plot the output $\tilde{y}(t)$ of the system for input $\tilde{x}(t)$.
- 3. **[6]** Let x[n] be a periodic discrete-time sequence with period N=8 and Fourier series coefficients $a_k = -a_{k-4}$. Now generate a sequence

$$y[n] = \left(\frac{1 + (-1)^n}{2}\right) x[n-1]$$

with period N=8 based on x[n]. Denoting the Fourier series coefficients of y[n] as b_k , find a function f[k] such that $b_k = f[k] a_k$.

- 4. Consult tables of Fourier transform pairs and answer the following questions:
 - (a) **[4]** $x(t) = te^{-3|t-1|}$, what is $X(j\omega)$?
 - (b) [4] $x[n] = \frac{\sin(\frac{\pi}{4}n)}{\pi n} * \frac{\sin[\frac{\pi}{4}(n-8)]}{\pi(n-8)}$, what is $X(e^{j\omega})$? (Note: * denotes convolution.)
 - (c) **[6]** $X(j\omega) = \frac{d}{d\omega} \left[\frac{4\sin(4\omega)\sin(2\omega)}{\omega} \right]$, what is x(t)?
 - (d) [6] What is $\int_{-\infty}^{\infty} t^2 \left(\frac{\sin t}{\pi t} \right)^4 dt ?$
- 5. **[10]** Let $r_{xy}[n] = \sum_{m=-\infty}^{\infty} x[m+n]y^*[m]$ be the cross-correlation of two discrete-time sequences x[n] and y[n], where $y^*[n]$ denotes the complex conjugate of y[n]. Let $X(e^{j\omega})$ and $Y(e^{j\omega})$ be the Fourier transform of x[n] and y[n], respectively. Find the Fourier transforms of $r_{xx}[n]$, $r_{xy}[n]$, $r_{yx}[n]$, and $r_{yy}[n]$.

Note: There are problems in the back.

6. The continuous-time Fourier transform pair is sometimes defined using the ordinary frequency f instead of the angular frequency ω (that is, $\omega = 2\pi f$) as follows:

$$F\{x(t)\} = X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt, \text{ and}$$

$$F^{-1}{X(f)} = x(t) = \int_{-\infty}^{\infty} X(f)e^{j2\pi ft}df$$
.

- (a) [4] Derive the multiplication property for the new Fourier transform.
- (b) [4] Derive the duality property for the new Fourier transform:

if
$$x(t) \stackrel{F}{\longleftrightarrow} X(f)$$
, then $X(t) \stackrel{F}{\longleftrightarrow}$?

(c) **[4]** Let $F^2\{x(t)\} = F\{F\{x(t)\}|_{f=t}\}$, and $F^n\{x(t)\} = F\{F^{n-1}\{x(t)\}|_{f=t}\}$ for $n \in \mathbb{N}$ and n > 2. Using the duality property of the Fourier transform, show that

$$F^{2}\{x(t)\}\Big|_{t=t} = x(-t), \quad F^{3}\{x(t)\}\Big|_{t=t} = F^{-1}\{x(f)\}, \quad \text{and} \quad F^{4}\{x(t)\}\Big|_{t=t} = x(t).$$

- 7. **[8]** Consider a discrete-time sequence x[n] and its time-expanded version $x_k[n] = x[\lfloor n/k \rfloor]$, where $\lfloor z \rfloor$ is the greatest integer less than or equal to z. Let $X(e^{j\omega})$ be the Fourier transform of x[n]. Find the Fourier transform $X_k(e^{j\omega})$ for $x_k[n]$.
- 8. A causal and stable continuous-time LTI system H has the following frequency response

$$H(j\omega) = \frac{j\omega + 4}{6 - \omega^2 + 5j\omega}.$$

- (a) [4] Determine a differential equation relating the input x(t) to the output y(t) of the system.
- (b) [6] What is the output y(t) when the input is $x(t) = e^{-4t}u(t) te^{-4t}u(t)$?
- 9. Consider the following transform for a continuous-time signal x(t):

$$H\{x(t)\} = X(\omega) = \int_{-\infty}^{\infty} x(t) [\cos(\omega t) + \sin(\omega t)] dt.$$

- (a) **[6]** Show that $X(j\omega) = X_e(\omega) jX_o(\omega)$, where $X_e(\omega)$ and $X_o(\omega)$ are the even and odd parts of $X(\omega)$, and $X(j\omega)$ is the continuous-time Fourier transform of x(t).
- (b) **[6]** If x(t) is a real-valued function, show that $X(\omega) = \Re\{X(j\omega)\} \Im\{X(j\omega)\}$, where $\Re\{X(j\omega)\}$ and $\Im\{X(j\omega)\}$ is the real and imaginary part of $X(j\omega)$, respectively.
- (c) **[4]** Evaluate $H\{t^2e^{-3t}u(t)\}$.

10. Let x[n] be a discrete-time sequence of finite duration N_1 such that x[n] = 0 outside the interval $0 \le n \le N_1 - 1$. The N-point discrete Fourier transform (DFT) of x[n] is defined as

$$\tilde{X}[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-jk(2\pi/N)n}, \quad k \in \mathbb{Z},$$

where N is an integer larger than N_1 .

- (a) **[4]** Find the relation between $\widetilde{X}[k]$ and $X(e^{j\omega})$, where $X(e^{j\omega})$ is the discrete-time Fourier transform (DTFT) of x[n]. Show that $\widetilde{X}[k]$ can be considered as samples of $X(e^{j\omega})$ taken at discrete values of ω .
- (b) [4] If $\tilde{X}[k]$ instead of $X(e^{j\omega})$ is used to recover x[n] using the inverse discrete-time Fourier series (DTFS)

$$\tilde{x}[n] = \sum_{k=0}^{N-1} \tilde{X}[k] e^{jk(2\pi/N)n}, \quad n \in \mathbb{Z},$$

describe the difference between the resultant $\tilde{x}[n]$ and the original sequence x[n].

(c) [4] Based on the results in (a) and (b), discuss the implication of recovering a finite-duration sequence x[n] using the continuous-time function $X(e^{j\omega})$ and its discrete-time version $\widetilde{X}[k]$.