Minimap and other things

Alex Ledger

What we're going to talk about

- Minimap
- What Minimap does
 - How minimap fits into the literature and pipeline
- Go over the Minimap algorithm
 - Walk through the pseudocode
- Reflect on the algorithm

Mapping an individual genome (Big Picture)

- 1. Input: a person
- 2. Person goes to lab, has some tests done
 - a. short reads
 - b. long reads
- 3. Plug reads + reference genome into an algorithm
 - a. Map the genome to the reference genome (Minimap!)
 - b. For each read, find where the location where it is best associated on the reference genome
- 4. Output: A person's genome
 - a. along with how the individual is the same/different from the reference genome
 - b. i.e., a list of structural of variants

What is Minimap?

- Minimap is a new, popular mapping algorithm
 - Created by Heng Li
 - Input: list of reads and reference genome
 - Output: An assignment to every read to a location on the reference genome
- What's new about it?
 - designed for SMRT sequencing technologies
 - Minimap uses the following:
 - Hash table
 - BLAST (1997) and BLAT (2002)
 - Merging and sorting lists (highly cache efficient operations)
 - DALINGER (2014)
 - Minimizing hashes
 - MHAP (2015)
 - Best feature: it's fast
- Not actually published preprint on Arxiv (http://arxiv.org/abs/1512.01801)

Terminology

- Read
 - A string of DNA-bases that are unmapped
 - Looks like: ACGGTACCACTTG
- K-mer
 - A string of k DNA-bases (aka a substring)
 - K = 3 gives ACG
- Reference Genome
 - A huge sequence of DNA-bases whose order (we are confident) is correct
- Mapping
 - The most likely position that a k-mer corresponds to on the reference genome

On Hash Tables

- Hash table = your python dictionary
- Key-value pair <k,v>
- Dict["John Smith"] = 521-8976
- H["AAAC"] = 4
- <"CAGT", 1>

Hash Table for read: "AAACAGTA"

Minimap in clipart: (Parameters: k = 2, w = 1)

Compute Minimizers

Aka, Make-Hash-Table

- Inputs:
 - Read s
 - o integer w: window size
 - o integer k: substring size
- Loop over read s
 - Loop over window
 - find min hash of k-mers in window
 - Save min hash of window

Algorithm 1: Compute minimizers

Input: Parameter w and k and sequence s with $|s| \ge w + k - 1$ **Output**: (w,k)-minimizers, their positions and strands

 $\mathcal{M} \leftarrow \mathcal{M} \cup \{(m, i+j, 0)\}$

else if v < u and v = m then $M \leftarrow M \cup \{(m, i + j, 1)\}$

Function MINIMIZER SKETCH(s, w, k) begin

return M

Map it

- Inputs:
 - Hashtable H
 - reference genome hashes saved here
 - Query sequence q
 - string being mapped to genome
 - o integer w: window size
 - o integer k: substring size
 - integer g: cluster variance (they set to 4)
 - How different
- For each tuple in HashTable[q]
 - For each corresponding hash in H
 - save to array A
- b = 1
- # inspired by Hough Transformation
- For each element A[e] in A
 - o if A[e] is different in any from A[e+1]
 - Add A[b..e] to C
 - Print
 - b = e + 1 # reset b to this location

Algorithm 4: Map a query sequence

Input: Hash table \mathcal{H} and query sequence q

Output: Print matching query and target intervals

Function MAP $(\mathcal{H}, q, w, k, g)$ begin

$$A \leftarrow$$
 empty array

$$\mathcal{M} \leftarrow \text{MINIMIZERSKETCH}(q, w, k)$$

foreach
$$(h, i, r) \in \mathcal{M}$$
 do

▷ Collect minimizer hits

foreach
$$(t, i', r') \in \mathcal{H}[h]$$
 do

if
$$r = r'$$
 then \triangleright Minimizers on the same strand Append $(t, 0, i - i', i')$ to \mathcal{A}

 \triangleright On different strands

Append
$$(t, 1, i + i', i')$$
 to A

Sort $\mathcal{A} = [(t, r, c, i')]$ in the order of the four values in tuples

$$b \leftarrow 1$$

for
$$e = 1$$
 to $|\mathcal{A}|$ do \triangleright Cluster

▷ Cluster minimizer hits

if
$$e = |\mathcal{A}|$$
 or $\mathcal{A}[e+1].t \neq \mathcal{A}[e].t$ or $\mathcal{A}[e+1].r \neq \mathcal{A}[e].r$

or
$$\mathcal{A}[e+1].c - \mathcal{A}[e].c > g$$
 then

$$C \leftarrow$$
 the maximal colinear subset of $A[b..e]$

Print the left- and right-most query/target positions in ${\cal C}$

$$b \leftarrow e + 1$$

2

My Hypotheses

- 1. Statistical bias in read mappings because comparing hash function
 - certain k-mers are more likely to be mapped than others
 - Minimap addresses this by:
 - Picking good parameters (specifically, the ratio w:k)
 - Also sorting A based on hash function
- Hash functions aren't great for highly erroneous reads
 - Good when error rates was 99%, but SMRT reads have 15% error rates
 - if two k-mers are different by one base, their hashes are totally different
 - because hash is pseudorandom (if it's good)
 - Weird because Minimap is specifically designed for SMRT sequencing
 - Minimap addresses this by:
 - Using windows
 - "Maximal collinear subset" of mapped k-mers

My current thinking

- Use a distance-preserving hash function
 - A hash function that preserves distances between strings
 - Then finding similar subsequences is achievable with hashing
- Is comparing hash values critical?
 - It seems unintuitive to me.
 - If there is a distance preserving hash value, maybe you can take the mean of a window?
- Understand the usage of a window
 - O What is the point of a window?
 - I think it relates to the high error rate
- Some questions are answerable in two ways:
 - Run experiments on Minimap
 - Look at MHAP

Assembly

- Miniasm
 - Start with two reads u and v.
 - Trying mapping u to v and v to u
 - If they map, then we say they overlap
 - Make a graph
 - Treat all reads as nodes
 - Two reads/nodes share an edge if they overlap
 - Run some graph algorithm on this graph to generate genome

End

Extra slides beyond here

Auxiliary Algorithm (don't even talk about these)

Algorithm 3: Index target sequences **Input**: Set of target sequences $\mathcal{T} = \{s_1, \dots, s_T\}$ Output: Minimizer hash table \mathcal{H} Function INDEX (\mathcal{T}, w, k) begin $\mathcal{H} \leftarrow$ empty hash table for $t \leftarrow 1$ to T do $\mathcal{M} \leftarrow \text{MINIMIZERSKETCH}(s_t, w, k)$ foreach $(h, i, r) \in \mathcal{M}$ do $\mid \ \mathcal{H}[h] \leftarrow \mathcal{H}[h] \cup \{(t,i,r)\}$ return \mathcal{H}