Static Analysis by Abstract Interpretation and Decision Procedures

Julien Henry

Université Joseph Fourier

Advisors: David Monniaux, Matthieu Moy

January 24th 2013

Summary

- Introduction
- Weakness of the Standard Approach
- Contributions

Static Analysis

- Discover properties on programs
- Find program invariants, bugs...
- Allow compile-time optimizations
- blablabla

Over-approximation

• $\phi_1 \cap S \neq \emptyset$ and $\phi_1 \cap S_{approx} \neq \emptyset$ S is unsafe w.r.t ϕ_1 and the analyser emits an alarm.

S : set of reachable states

 ϕ_1, ϕ_2, ϕ_3 : error states

 S_{approx} : over-approximation of S

(not computable)

(computable) (computable)

Over-approximation

- $\phi_1 \cap S \neq \emptyset$ and $\phi_1 \cap S_{approx} \neq \emptyset$ S is unsafe w.r.t ϕ_1 and the analyser emits an alarm.
- $\phi_2 \cap S = \emptyset$ and $\phi_2 \cap S_{approx} = \emptyset$ S is safe w.r.t ϕ_2 and the analyser proves it.

S : set of reachable states

 ϕ_1, ϕ_2, ϕ_3 : error states

over-approximation of S

(not computable) (computable)

(computable)

 S_{approx}

Over-approximation

- $\phi_1 \cap S \neq \emptyset$ and $\phi_1 \cap S_{approx} \neq \emptyset$ S is unsafe w.r.t ϕ_1 and the analyser emits an alarm.
- $\phi_2 \cap S = \emptyset$ and $\phi_2 \cap S_{approx} = \emptyset$ S is safe w.r.t ϕ_2 and the analyser proves it.
- $\phi_3 \cap S = \emptyset$ and $\phi_3 \cap S_{approx} \neq \emptyset$ S is safe w.r.t ϕ_3 but the analyser emits a false alarm.

S : set of reachable states (not computable) ϕ_1,ϕ_2,ϕ_3 : error states (computable)

 S_{approx} : over-approximation of S (computable)

- Compute an increasing sequence of the set X of reachable states of the program.
- Fixpoint computation : X grows until $F(X) \subseteq X$.

```
x = 0;
while (x < 100) {
    x++;
}
```


- Compute an increasing sequence of the set X of reachable states of the program.
- Fixpoint computation : X grows until $F(X) \subseteq X$.

$$X_1 = \{x \mid x = 0 \lor \exists x' \in X_2, x = x' + 1\}$$

 $X_2 = \{x \mid x \in X_1 \land x < 100\}$

- Compute an increasing sequence of the set X of reachable states of the program.
- Fixpoint computation : X grows until $F(X) \subseteq X$.

$$X_1 = \{x \mid x = 0 \lor \exists x' \in X_2, x = x' + 1\} \supseteq \{0\}$$

 $X_2 = \{x \mid x \in X_1 \land x < 100\} \supseteq \emptyset$

- Compute an increasing sequence of the set X of reachable states of the program.
- Fixpoint computation : X grows until $F(X) \subseteq X$.

$$X_1 = \{x \mid x = 0 \lor \exists x' \in X_2, x = x' + 1\} \supseteq \{0\}$$

 $X_2 = \{x \mid x \in X_1 \land x < 100\} \supseteq \{0\}$

- Compute an increasing sequence of the set X of reachable states of the program.
- Fixpoint computation : X grows until $F(X) \subseteq X$.

$$X_1 = \{x \mid x = 0 \lor \exists x' \in X_2, x = x' + 1\} \supseteq \{0, 1\}$$

 $X_2 = \{x \mid x \in X_1 \land x < 100\} \supseteq \{0\}$

- Compute an increasing sequence of the set X of reachable states of the program.
- Fixpoint computation : X grows until $F(X) \subseteq X$.

$$X_1 = \{x \mid x = 0 \lor \exists x' \in X_2, x = x' + 1\} \supseteq \{0, 1\}$$

 $X_2 = \{x \mid x \in X_1 \land x < 100\} \supseteq \{0, 1\}$

- Compute an increasing sequence of the set X of reachable states of the program.
- Fixpoint computation : X grows until $F(X) \subseteq X$.

$$X_1 = \{x \mid x = 0 \lor \exists x' \in X_2, x = x' + 1\} \supseteq \{0, 1, 2, \dots\}$$

 $X_2 = \{x \mid x \in X_1 \land x < 100\} \supseteq \{0, 1\}$

- Compute an increasing sequence of the set X of reachable states of the program.
- Fixpoint computation : X grows until $F(X) \subseteq X$.

$$X_1 = \{x \mid x = 0 \lor \exists x' \in X_2, x = x' + 1\} \supseteq \{0, 1, 2, \dots\}$$

 $X_2 = \{x \mid x \in X_1 \land x < 100\} \supseteq \{0, 1, 2, \dots, 99\}$

- Compute an increasing sequence of the set X of reachable states of the program.
- Fixpoint computation : X grows until $F(X) \subseteq X$.

$$X_1 = \{x \mid x = 0 \lor \exists x' \in X_2, x = x' + 1\} \supseteq \{0, 1, 2, \dots 100\}$$

 $X_2 = \{x \mid x \in X_1 \land x < 100\} \supseteq \{0, 1, 2, \dots, 99\}$

Cousot & Cousot 1977

Abstract domain to represent the set of possible states:

Intervals

Octagons

Convex Polyhedra

Cousot & Cousot 1977

Abstract domain to represent the set of possible states:

Intervals

Octagons

Convex Polyhedra

⇒ Over-approximation of the set of states

Exact set that can't be expressed in the abstract domain

- Exact set that can't be expressed in the abstract domain
- Widening operator
 - Ensure termination
 - BUT: may induce huge imprecisions
 - Narrowing tends to recover some precision...

- Exact set that can't be expressed in the abstract domain
- Widening operator
 - Ensure termination
 - BUT: may induce huge imprecisions
 - Narrowing tends to recover some precision...
- Consider paths that are actually unfeasible
 - because of control flow merges
 - ▶ $X_1, X_2 \in A$ but $X_1 \cup X_2 \notin A \Rightarrow$ Least Upper Bound computation

- Exact set that can't be expressed in the abstract domain
- Widening operator
 - Ensure termination
 - BUT: may induce huge imprecisions
 - Narrowing tends to recover some precision...
- Consider paths that are actually unfeasible
 - because of control flow merges
 - ▶ $X_1, X_2 \in A$ but $X_1 \cup X_2 \notin A \Rightarrow$ Least Upper Bound computation

< 7 / 25 >

Ph.D topic

Improve precision of Abstract Interpretation, by combining it with Decision Procedures (SMT-solving).

< 8 / 25 >

Summary

Introduction

- Weakness of the Standard Approach
- 3 Contributions

Summary

- Introduction
- Weakness of the Standard Approach
- Contributions

```
x = 0;
v = 0;
while (true) {
         if (x <= 50)
         else
                  V--;
         if (y < 0) break;
         x++;
```


- x and y incremented during 51 iterations
- x incremented and y decremented during 51 iterations

Ascending iterations

Ascending iterations

 n_1

 n_1

 n_4

n₄

 n_1

Ascending iterations

 n_4

Descending iterations

Descending iterations

 n_1

 n_4

Summary

- Introduction
- Weakness of the Standard Approach
- 3 Contributions

Improving precision of Abstract Interpretation

Principle:

- Avoid as much as possible Least Upper Bound operations
- In practice, it consists in distinguishing every paths inside loops

Path Focusing

D. Monniaux & L. Gonnord - SAS 2011

- Take a set P_R of nodes (loop headers)
- Distinguish all the paths between 2 nodes of P_R
- Compute the fixpoint iterations on the resulting "expansed" graph

Path Focusing

D. Monniaux & L. Gonnord - SAS 2011

- Take a set P_R of nodes (loop headers)
- Distinguish all the paths between 2 nodes of P_R
- Compute the fixpoint iterations on the resulting "expansed" graph

Exponential number of paths \Rightarrow

- We don't construct this graph explicitly
- We use SMT-solving to find interesting paths

Example: Expanded Graph

"Interesting" paths

- Abstract Interpretation : we update an invariant candidate X until it becomes an inductive invariant.
- The only "interesting" paths are those that make this invariant computation progress.

Finding Paths Using SMT-solving

We encode the semantics of the control flow graph into an SMT formula:

- 1 boolean predicate per control point and transition
- semantics of the transitions are coded w.r.t a certain theory (e.g Linear Integer Arithmetic, ...)

We then find interesting paths using SMT queries :

"Does there exist a path starting in the invariant candidate X, that arrives in a state outside the candidate X?"

Standard Approach

Abstract Interpretation & SMT

Contributions

Introduction

PAGAI Static Analyser

PAGAI is a prototype of static analyser implementing state-of-the-art techniques, including our techniques using SMT.

- LLVM IR as input
- Apron Library for the abstract domains
- SMT-lib 2 interface, Microsoft Z3

In TAPAS'12:

PAGAI: a Path Sensitive Static Analyser; Henry, Monniaux, Moy

Experiments on GNU programs and WCET benchmarks

Example

For each loop header, Pagai returns an invariant:

```
int main() {
        int x = 0;
        int y = 0;
        while (1) {
                 /* invariant:
                 102 + -1 * x + -1 * y >= 0
                 V >= 0
                 x + -1 * y >= 0
                 */
                 if (x \le 50) y++;
                 else y--;
                 if (y < 0) break;
                 X++;
```

Assert

```
int main() {
        int x = 0;
        int y = 0;
        while (1) {
                 /* invariant:
                 */
                 if (x \le 50) y++;
                 else y--;
                 if (y < 0) break;
                 x++;
        /* assert OK */
        assert (x == 102);
```

Assume

```
void rate limiter() {
  int x_old;
  int x;
  x \text{ old} = 0;
  while (1) {
     /* invariant:
       1000000 + -1 * x >= 0
       1000000 + x >= 0
     */
    x = input();
    assume (x \ge -100000 \&\& x \le 100000);
     if (x > x \text{ old+10}) x = x \text{ old+10};
     if (x < x \text{ old}-10) x = x \text{ old}-10;
    x \text{ old} = x;
/* UNREACHABLE */}
```


Time

	Size		Execution time (seconds)				
Name	kLOC	$ P_R $	S	G	PF	G+PF	DIS
a2ps-4.14	55	2012	23	74	34	115	162
gawk-4.0.0	59	902	15	46	12	40	50
gnuchess-6.0.0	38	1222	50	220	81	312	351
gnugo-3.8	83	2801	77	159	92	766	1493
grep-2.9	35	820	41	85	22	65	122
gzip-1.4	27	494	22	268	91	303	230
lapack-3.3.1	954	16422	294	3740	3773	8159	10351
make-3.82	34	993	67	108	53	109	257
tar-1.26	73	1712	37	218	115	253	396

Table: Execution times