Decision Trees, Support Vector Machine and Metrics for Classification Problems

Ryan Zhang

November 10, 2015

What Happened....

- For those who did not come last two sections....
- We talked about:
 - Logistic Regression:
 - a classification method
 - Cross Validation:
 - \bullet a resampling method used to measure out of sample perfomance of model
 - 8 Bootstrap:
 - \bullet a resampling method can be used to estimate statistics without need for standard error
 - ullet e.g. 95% bootstrap confidence interval of R^2
 - data.table, dplyr, sqldf:
 - packages help you to perform fast data manipulation in R

Topics Today

- Information Gain
- Decision Tree
- Support Vector Machine
- Classification Performance Metrics
- ROCR curve

Dataset

• Drinking red wine again

str(wine)

```
## 'data.frame': 1599 obs. of 12 variables:
##
    $ fixed.acidity
                          : num 7.4 7.8 7.8 11.2 7.4 7.4 7.9 7.3 7.8 7.5 ...
                                0.7 0.88 0.76 0.28 0.7 0.66 0.6 0.65 0.58 0.5
##
    $ volatile.aciditv
                          : num
##
    $ citric.acid
                                 0 0 0.04 0.56 0 0 0.06 0 0.02 0.36 ...
                          : num
##
    $ residual.sugar
                          : num
                                1.9 2.6 2.3 1.9 1.9 1.8 1.6 1.2 2 6.1 ...
    $ chlorides
                                0.076 0.098 0.092 0.075 0.076 0.075 0.069 0.06
##
                          : niim
##
    $ free.sulfur.dioxide : num 11 25 15 17 11 13 15 15 9 17 ...
    $ total.sulfur.dioxide: num
                                34 67 54 60 34 40 59 21 18 102 ...
##
##
    $ density
                          : num
                                 0.998 0.997 0.997 0.998 0.998 ...
##
    #q #
                                3.51 3.2 3.26 3.16 3.51 3.51 3.3 3.39 3.36 3.3
                          : num
##
    $ sulphates
                                 0.56 0.68 0.65 0.58 0.56 0.56 0.46 0.47 0.57 0
                          : num
##
    $ alcohol
                                 9.4 9.8 9.8 9.8 9.4 9.4 9.4 10 9.5 10.5 ...
                          : num
##
    $ quality
                          : Factor w/ 2 levels "0", "1": 1 1 1 2 1 1 1 2 2 1 ...
```

Quick Example of a Classification Tree

```
library(rpart); library(rpart.plot)
rp <- rpart(quality~., data = wine); prp(rp)</pre>
```


Quick Example of a Classification Tree

```
rp.predict <- predict(rp,wine,type = "class")</pre>
contingency_table <- table(rp.predict, wine$quality)</pre>
contingency_table
##
## rp.predict 0 1
##
            0 604 222
            1 140 633
##
accuracy = sum(diag(contingency_table))/sum(contingency_table)
accuracy
## [1] 0.7736085
```

Question

 \bullet Why First Split With Alcohol <10?

```
table(wine$alcohol < 10, wine$quality)</pre>
```

Untitled

• Remember the Visualization I Showed You Two Weeks Back?

Entropy

• Formula for entropy:

•

$$\Sigma_i - (p_i)log_2(p_i)$$

• Initially, it is almost total chaos (50% 50%), so entropy is very close to 1.

```
table(wine$quality)
##
##
## 744 855
p1 <- 855/(855+744)
p0 <- 744/(855+744)
p1
## [1] 0.5347092
```

[1] 0.4652908

```
(-p1*log(p1,2) + -p0*log(p0,2))
```

[1] 0.9965211

Entropy

• Wrap in a function

```
calculateEntropy <- function(t){
   p1 <- t[1]/sum(t); p2 <- t[2]/sum(t)
   return (-p1*log(p1,2) + -p2*log(p2,2))}
pEntropy <- calculateEntropy(table(wine$quality))
pEntropy</pre>
```

```
## 0.9965211
```

Information Gain

- We want to determine which feature is most useful for discriminating between the classes of interest.
- Parent Entropy is 0.9965211
- Calculate entropy for the two child branches.

```
ct1 <- with(wine[wine$alcohol < 10,], table(quality))
ct2 <- with(wine[wine$alcohol >= 10,], table(quality))
ct1
ct2
```

```
## quality
## 0 1
## 476 204
## quality
## 0 1
## 268 651
```

Information Gain

• Calculate entropy for the two child branches.

```
c1Entropy <- calculateEntropy(ct1)
c2Entropy <- calculateEntropy(ct2)
c1Entropy
c2Entropy</pre>
```

```
## 0.8812909
## 0.8708064
```

Information Gain

- Formula for information gain
- IG = Parent Entropy Weighted Average of Children Entropies

```
IG1 <- pEntropy - sum(ct1)/nrow(wine)*c1Entropy - sum(ct2)/nrow(wine)*c2Entropy
IG1</pre>
```

```
## 0.121256
```

Information Gain from Another Split

```
ct1 <- with(wine[wine$alcohol < 11,], table(quality))
ct2 <- with(wine[wine$alcohol >= 11,], table(quality))
c1Entropy <- calculateEntropy(ct1)
c2Entropy <- calculateEntropy(ct2)
IG2 <- pEntropy - sum(ct1)/nrow(wine)*c1Entropy - sum(ct2)/nrow(wine)*c2Entropy
IG2</pre>
```

```
## 0.1008797
```

Information Gain from Another Split

```
ct1 <- with(wine[wine$alcohol < 10.5,], table(quality))
ct2 <- with(wine[wine$alcohol >= 10.5,], table(quality))
c1Entropy <- calculateEntropy(ct1)
c2Entropy <- calculateEntropy(ct2)
IG3 <- pEntropy - sum(ct1)/nrow(wine)*c1Entropy - sum(ct2)/nrow(wine)*c2Entropy
IG3</pre>
```

```
## 0.119883
```

Information Gain from Yet Another Split

```
ct1 <- with(wine[wine$alcohol < 9.5,], table(quality))
ct2 <- with(wine[wine$alcohol >= 9.5,], table(quality))
c1Entropy <- calculateEntropy(ct1)
c2Entropy <- calculateEntropy(ct2)
IG4 <- pEntropy - sum(ct1)/nrow(wine)*c1Entropy - sum(ct2)/nrow(wine)*c2Entropy
IG4</pre>
```

```
## 0.0451193
```

Find Split that Maximize the Information Gain

 Split using alcohol ≥ 10 is better than other three choices, in terms of information gain.

```
IG1 > IG2
##
## TRUE
##
## TRUE
IG1 > IG4
##
      0
## TRUE
```

Decision Tree

- Iterativly Finding the best split to nodes
- Dynamic Programming?
- At each stage(level of the tree), for each state(the data in the node) we try to make the decision(how to split) and leads to optimal(maximum information gain).

prp(rp)

Decision Tree

Hyper Parameters for Decision Tree

- More correctly, for rpart package in R
- minsplit: minimial number of datapoints in the node that we will attemp to find a split.
 - When to stop splitting.
- minbucket: the minimal number of nodes in each leaf.
 - Also affect when to stop.
- maxdepth: the maximum height of the tree.
 - Also affect when to stop....
- cp: If the best split is not good enough, then we don't split.
 - Again... affect when to stop split.
- Why we should tune these parameters?
 - Trees are easy to build and easy to be overfitting.
 - Avoid tall tree with small leaves = avoid overfitting.

How cp Affects the Tree?

• Higher cp -> Simpler Tree

```
rp <- rpart(quality~., data = wine, control = rpart.control(cp = 0.1))
prp(rp)</pre>
```


How cp Affects the Tree?

• Smaller cp -> more complicated tree

```
rp <- rpart(quality-., data = wine, control = rpart.control(cp = 0.00001))
prp(rp)</pre>
```


Million Dollar Question for Decision Trees

 \bullet How to choose these hyper parameters?

Million Dollar Question for Decision Trees

- How to choose these hyper parameters?
- Cross Validation

Tuning Hyper Parameters Via Cross Validation

Tuning Hyper Parameters Via Cross Validation

Fit the Model Using the Tuned CP

rp <- rpart(quality~., data = wine, control = rpart.control(cp = rp.train*bestT
prp(rp)</pre>

rp.predict <- predict(rp, wine, type = "class")</pre>

Fit the Model Using the Tuned CP

 Not only insample accuracy is higher, we also think it will be more generalizable.

```
contingency_table <- table(rp.predict, wine$quality)
contingency_table

##
## rp.predict 0 1
## 0 635 163
## 1 109 692

accuracy = sum(diag(contingency_table))/sum(contingency_table)
accuracy</pre>
```

```
## [1] 0.8298937
```

A Note On the Short Comming of train

- Not every hyper parameter can be tuned using it ==>link to the list of tunable hyper parameters<==
- What if you want to tune minsplit, maxdept as well?

An Alternative Tuning Function

- Tuning parameters can be slow.
- Set it up before you go to sleep.

```
library(e1071)
rp.train <- tune.rpart(quality~., data = wine,
                        minsplit = 1:5,
                         \overline{\text{maxdepth}} = 5:15,
                         \overline{cp} = (1:50)*0.0001,
                         tunecontrol = tune.control(sampling = "cross", cross = 1
## Time difference of 1.264259 hours
print(rp.train$best.parameters)
##
        minsplit cp maxdepth
## 2176
               1 0.0036
                                13
```

Plot the Tree

rp <- rp.train\$best.model
prp(rp)</pre>

A Little Flavor of Scikit-Learn in Python

- Example use scikit learn in python
- GridSearchCV in scikit learn is more powerful IMPO
- This is python code:

Separation Hyperplane

- What a split really means?
- What is the split alcohol < 10 really means?
- Sign(10 + 0 × x_1 + 0 × x_2 + ... + -1 × $x_{alcohol}$ + ... + 0 × x_m)
- [10,0,0,...,-1,...,0] and $x_0=1$ define a hyperplane that devide the feature space into two half spaces.

Which Hyperplane is Better

• They all correctly classifer the points

Support Vector Machine

- If we encode high quality wine with 1 and low quality wine with -1
- That is let y_i take values -1, 1
- When will $y_i(\hat{y_i}) = y_i(b + W^T X_i) \ge 1$ for all n ?
- SVM formula(hard margin version):

$$\max_{b,W} \frac{1}{\sqrt{W^T W}} = \min_{b,w} \frac{1}{2} W^T W$$

subject to
$$y_i(W^T X_i + b) \ge 1$$
 for i =1,2,...n

- It is a quadratic programming problem
- And the original objective function measure the margin from the classifier to the support vectors.

Large Margin Classifer

- The points/vectors on the boundaries are called support vectors
- You only need these support vectors to determine the line/hyperplane

Support Vector Machine

 There is soft version SVM as well, which is just like hard ones but allow small errors.

Support Vector Machine

```
library(e1071)
SVM <- svm(quality~., data = wine, kernel = "radial")</pre>
contingency_table <- table(SVM$fitted, wine$quality)</pre>
contingency_table
##
##
             1
##
     0 597 180
##
     1 147 675
accuracy = sum(diag(contingency_table))/sum(contingency_table)
accuracy
## [1] 0.7954972
```

Hyper Parameters For SVM

- Kernel: linear, polynomial, radial, sigmoid
 - Determine the complexity of SVM
 - linear is the simplest one
- degree of polynomial is Kernel is polynomial
- gamma: for nonlinear Kernel
- cost: the C constant of the regularization term
 - higher C means no regularization and leads to overfit
 - lower C means strong regularization and leads to underfit

Tuning a SVM

```
SVM.train <- tune.svm(quality~., data = wine, kernel = "radial",
                      gamma = 2^{(-2:2)}, cost = 2^{(-2:4)},
                      tunecontrol = tune.control(sampling = "cross", cross = 10
## Time difference of 4.606935 mins
print(SVM.train$best.parameters)
##
      gamma cost
## 17
        0.5
```

Overfit?

```
SVM <- SVM.train$best.model</pre>
contingency_table <- table(SVM$fitted, wine$quality)</pre>
contingency_table
##
##
##
     0 693 45
##
     1 51 810
accuracy = sum(diag(contingency_table))/sum(contingency_table)
## [1] 0.9399625
```

Issue With Overfitting

Unfortunately, the performance of the SVM can be quite sensitive to the selection of the regularisation and kernel parameters, and it is possible to get over-fitting in tuning these hyper-parameters via e.g. cross-validation. The theory underpinning SVMs does nothing to prevent this form of over-fitting in model selection. See my paper on this topic:

G. C. Cawley and N. L. C. Talbot, Over-fitting in model selection and subsequent selection bias in performance evaluation, Journal of Machine Learning Research, 2010. Research, vol. 11, pp. 2079-2107, July 2010.

Link to the Source

Metrics for Classification Problems

- Accuracy: In general how often I got it right
 - I predict it is good and it is really good
 - I predict it is bad and it is really bad
- Precision:
 - When I predict it is good, how often it is really good
- Recall:
 - For the good wines, what what percentage of them is correctly identified.
- Other metrics:
 - f1
 - Kappa
 - TPR, FPR
 - etc

ROC Curve

- Let you make decision on decision cut offs for some classifier
- Trade off between TPR and FPR.
- Access how good the classifier is

```
library(ROCR)
pred <- prediction(predict(rp, wine, type = "prob")[,2], wine$quality)
perf <- performance(pred, "tpr", "fpr")
plot(perf)</pre>
```


What to Use?

- Remember I said that machine learning is a two stages optimization
- These classifiers are 'Mathematically Optimized'
- How to choose one is up to your goal.
- Choice or make you only metric to pick the classifer you will be using in future.

Example

- You are designing a finger print id entrance system for a bank's vault...
- Your system's task is to allow those authorized person to enter and reject all other peoples
- accuracy is useless, becauese you only have a handful person that can enter
- precision should better be as high as possible, otherwise....
- we can relax requirement on recall really, since they are employees...

Next time

- Ensemble Models
 - randomForest
 - Boosting Trees
- Dimension Reduction
 - PCA