

Reaction Class-Based CHON Combustion Mechanism Development

Mark E. Fuller¹, K. Alexander Heufer¹

¹Physico-Chemical Fundamentals of Combustion RWTH Aachen University

Introduction

- Interactions of NO_x (NO and NO_2) with the combustion process are increasingly relevant in engines with exhaust gas recirculation (EGR) and/or alkyl nitrate cetane enhancers
- ► Low-temperature combustion reactions with nitrogen are not well-studied and may have significant effects
- \blacktriangleright Sustainable fuels, produced from bio-based carbon feedstocks, CO_2 , and renewable electricity, contain additional functional groups whose reactions with NO_x are not well-characterized

Model Development

▶ Pentane isomer mechanism (CHO) of Bugler *et al.* utilized as C_0 - C_5 base mechanism

Modeling results

RO RO₂ \rightarrow QOOH NO₂ NO +O₂ RH (OH +) R \rightarrow β -scission Check this shit out!

Work-in-progress

Ab initio calculations

REFERENCES