Parabeln und Quadratische Funktionen

Schnittprobleme

Lukas Semrau

lukas@lukas-semrau.de

12 Juli 2021

Was ist eine quadr. Funktion

Definition 1.1

Eine quadratische Funktion hat die Form

$$f(x) = y = ax^2 + bx + c,$$
 (1.1)

wobei in meisten a=1 gilt.

Was ist eine quadr. Funktion

Definition 1.1

Eine quadratische Funktion hat die Form

$$f(x) = y = ax^2 + bx + c, (1.1)$$

wobei in meisten a=1 gilt.

Für eine Funktion $h(x) = x^2 - 4x + 3$ gelten folgende Parameter:

Was ist eine quadr. Funktion

Definition 1.1

Eine quadratische Funktion hat die Form

$$f(x) = y = ax^2 + bx + c, (1.1)$$

wobei in meisten a=1 gilt.

Für eine Funktion $h(x) = x^2 - 4x + 3$ gelten folgende Parameter:

$$a = 1;$$
 $b = -4;$ $c = 3$

Lukas Semrau 12 Juli 2021

Was ist eine Parabel?

Definition 1.2

Graph d. quadratischen Funktion

Was ist eine Parabel?

Definition 1.2

- Graph d. quadratischen Funktion
- Für $f(x) = x^2$ heißt der Graph **Normalparabel.**

Was ist eine Parabel?

Definition 1.2

- Graph d. quadratischen Funktion
- Für $f(x) = x^2$ heißt der Graph **Normalparabel.**

Abbildung 1: Schnitte zweier Parabeln

Scheitelpunkt

Definition 1.3

Der unterste höchste Punkt heißt Scheitelpunkt $S(x_E \mid y_E)$ mit x_E als Extremstelle.

Scheitelpunkt

Definition 1.3

Der unterste höchste Punkt heißt Scheitelpunkt $S(x_E \mid y_E)$ mit x_E als Extremstelle.

Abbildung 2: Schnitte zweier Parabeln

Scheitelpunktform

Definition 1.4

Der Scheitel einer Funktion

$$y = (x - d)^2 + e$$

| Scheitelpunktform

(1.2)

liegt bei $S(d \mid e)$.

Von der Normalform zur Scheitelpunktform

$$y = x^{2} + bx + c = x^{2} + 2 \cdot x \cdot \frac{b}{2} + \left(\frac{b}{2}\right)^{2} - \left(\frac{b}{2}\right)^{2} + c$$

$$= \left(x + \frac{b}{2}\right)^{2} - \left(\frac{b}{2}\right)^{2} + c$$

$$x_{E} = -\frac{b}{2}$$
(1.3)

Lösungsformel

Für die Gleichung $x^2 + bx + c = 0$ gilt für x:

$$x = \frac{-b \pm \sqrt{b^2 - 4c}}{2} \tag{1.4}$$

oder
$$= -\frac{b}{2} \pm \sqrt{\left(\frac{b}{2}\right)^2 - c}$$
 (1.5)

Schnittpunkte zweier Parabeln

Schnittpunkte zweier Parabeln

Abbildung 3: Schnitte zweier Parabeln

Schnittpunkte

Schnittpunkte

Schnittpunkte

Schnittpunkte

