Package 'MGSDA'

September 3, 2023
Type Package
Title Multi-Group Sparse Discriminant Analysis
Version 1.6.1
Date 2023-09-03
Author Irina Gaynanova
Maintainer Irina Gaynanova <irinagn@umich.edu></irinagn@umich.edu>
Description Implements Multi-Group Sparse Discriminant Analysis proposal of I.Gaynanova, J.Booth and M.Wells (2016), Simultaneous sparse estimation of canonical vectors in the p>>N setting, JASA doi:10.1080/01621459.2015.1034318 >.
Imports MASS, stats
License GPL (>= 2)
RoxygenNote 7.2.3
NeedsCompilation yes
Repository CRAN
Date/Publication 2023-09-03 21:00:05 UTC
R topics documented:
classifyV 1 cv.dLDA 3 dLDA 4
Index 6
classifyV Classification for MGSDA
Description Classify observations in the test set using the supplied matrix of canonical vectors V and the training

set.

2 classify V

Usage

```
classifyV(Xtrain, Ytrain, Xtest, V, prior = TRUE, tol1 = 1e-10)
```

Arguments

Xtrain	A Nxp data matrix; N observations on the rows and p features on the columns.
Ytrain	A N vector containing the group labels. Should be coded as 1,2,,G, where G is the number of groups.
Xtest	A Mxp data matrix; M test observations on the rows and p features on the columns.
V	A pxr matrix of canonical vectors that is used to classify observations.
prior	A logical indicating whether to put larger weights to the groups of larger size; the default value is TRUE.
tol1	Tolerance level for the eigenvalues of V^tWV . If some eigenvalues are less than tol, the low-rank version of V is used for classification.

Details

For a new observation with the value x, the classification is performed based on the smallest Mahalanobis distance in the projected space:

$$\min_{1 \le g \le G} (V^t x - Z_g)(V^t W V)^{-1} (V^t x - Z_g)$$

where Z_g are the group-specific means of the training dataset in the projected space and W is the sample within-group covariance matrix.

If prior=T, then the above distance is adjusted by $-2\log\frac{n_g}{N}$, where n_g is the size of group g.

Value

Returns a vector of length M with predicted group labels for the test set.

Author(s)

Irina Gaynanova

References

I.Gaynanova, J.Booth and M.Wells (2016) "Simultaneous Sparse Estimation of Canonical Vectors in the p»N setting.", JASA, 111(514), 696-706.

Examples

```
### Example 1
# generate training data
n=10
p=100
G=3
ytrain=rep(1:G,each=n)
```

cv.dLDA 3

```
set.seed(1)
xtrain=matrix(rnorm(p*n*G),n*G,p)
# find V
V=dLDA(xtrain,ytrain,lambda=0.1)
sum(rowSums(V)!=0)
# generate test data
m=20
set.seed(3)
xtest=matrix(rnorm(p*m),m,p)
# perform classification
ytest=classifyV(xtrain,ytrain,xtest,V)
```

cv.dLDA

Cross-validation for MGSDA

Description

Chooses optimal tuning parameter lambda for function dLDA based on the m-fold cross-validation mean squared error

Usage

Arguments

Xtrain	A Nxp data matrix; N observations on the rows and p features on the columns
Ytrain	A N vector containing the group labels. Should be coded as 1,2,,G, where G is the number of groups
lambdaval	Optional user-supplied sequence of tuning parameters; the default value is NULL and ${\tt cv.dLDA}$ chooses its own sequence
nl	Number of lambda values; the default value is 50
msep	Number of cross-validation folds; the default value is 5
eps	Tolerance level for the convergence of the optimization algorithm; the default value is 1e-6
l_min_ratio	Smallest value for lambda, as a fraction of lambda.max, the data-derived value for which all coefficients are zero; the default value is 0.1 if the number of samples n is larger than the number of variables p, and is 0.001 otherwise.
myseed	Optional specification of random seed for generating the folds; the default value is NULL.
prior	A logical indicating whether to put larger weights to the groups of larger size; the default value is TRUE.
rho	A scalar that ensures the objective function is bounded from below; the default value is 1.

4 dLDA

Value

lambdaval	The sequence of tuning parameters used
error_mean	The mean cross-validated number of misclassified observations - a vector of length length(lambdaval)
error_se	The standard error associated with each value of error_mean
lambda_min	The value of tuning parameter that has the minimal mean cross-validation error
f	The mean cross-validated number of non-zero features - a vector of length length(lambdaval)

Author(s)

Irina Gaynanova

References

I.Gaynanova, J.Booth and M.Wells (2016). "Simultaneous sparse estimation of canonical vectors in the p»N setting", JASA, 111(514), 696-706.

Examples

```
### Example 1
n=10
p=100
G=3
ytrain=rep(1:G,each=n)
set.seed(1)
xtrain=matrix(rnorm(p*n*G),n*G,p)
# find optimal tuning parameter
out.cv=cv.dLDA(xtrain,ytrain)
# find V
V=dLDA(xtrain,ytrain,lambda=out.cv$lambda_min)
# number of non-zero features
sum(rowSums(V)!=0)
```

dLDA	Estimate the matrix of discriminant vectors using L_1 penalty on the
	rows

Description

Solve Multi-Group Sparse Discriminant Anlalysis problem for the supplied value of the tuning parameter lambda.

Usage

```
dLDA(xtrain, ytrain, lambda, Vinit = NULL,eps=1e-6,maxiter=1000,rho=1)
```

dLDA 5

Arguments

xtrain	A Nxp data matrix; N observations on the rows and p features on the columns.
ytrain	A N-vector containing the group labels. Should be coded as 1,2,,G, where G is the number of groups.
lambda	Tuning parameter.
Vinit	A $px(G-1)$ optional initial value for the optimization algorithm; the default value is NULL.
eps	Tolerance level for the convergence of the optimization algorithm; the default value is 1e-6.
maxiter	Maximal number of iterations for the optimization algorithm; the default value is 1000.
rho	A scalar that ensures the objective function is bounded from below; the default value is 1.

Details

Solves the following optimization problem:

$$\min_{V} \frac{1}{2} Tr(V^{t}WV + \rho V^{t}DD^{t}V) - Tr(D^{t}V) + \lambda \sum_{i=1}^{p} \|v_{i}\|_{2}$$

Here W is the within-group sample covariance matrix and D is the matrix of orthogonal contrasts between the group means, both are constructed based on the supplied values of xtrain and ytrain. When G=2, the row penalty reduces to vector L_1 penalty.

Value

Returns a px(G-1) matrix of canonical vectors V.

Author(s)

Irina Gaynanova

References

I.Gaynanova, J.Booth and M.Wells (2016) "Simultaneous Sparse Estimation of Canonical Vectors in the p»N setting", JASA, 111(514), 696-706.

Examples

```
# Example 1
n=10
p=100
G=3
ytrain=rep(1:G,each=n)
set.seed(1)
xtrain=matrix(rnorm(p*n*G),n*G,p)
V=dLDA(xtrain,ytrain,lambda=0.1)
sum(rowSums(V)!=0) # number of non-zero rows
```

Index

```
classifyV, 1
cv.dLDA, 3
dLDA, 4
```