Project Title: NetPath Illuminator – The Network Odyssey

Submitted By:

Student Name: Kaviya M

Register No: 923322106019

Branch: Electronics and Communication Engineering

Email id: kaviyamahadev@gmail.com

College Name: Government College of Engineering, Bodinayakanur

AICTE ID:1-2181710931

LEVEL 1: Direct PC to PC Communication

Objective:

To establish a basic network between two PCs and study ARP (Address Resolution Protocol), MAC & IP addressing.

Topology Used:

• PC0 ↔ PC1 (via copper cross cable)

IP Configuration:

PC0: 10.1.1.1 /8PC1: 10.1.1.2 /8

Commands Used:

- ping 10.1.1.2
- arp -a
- arp -d
- ipconfig

Observations:

- Ping successful.
- ARP table shows IP-MAC mapping.
- After arp -d, cache is cleared and repopulated on next ping.

Flow Diagram:

Source MAC: PC0 Destination MAC: PC1

Source IP: 10.1.1.1 Destination IP: 10.1.1.2

Commands Captured:

Conclusion:

Learned how ARP resolves IP to MAC. Understood the role of IP and MAC addresses in direct communication.

LEVEL 2: PC to PC via Switch

Objective:

To connect multiple PCs using a switch and understand MAC address learning.

Topology Used:

• PC0, PC1, PC2, PC3 ↔ Switch0

IP Configuration:

PC0: 10.1.1.1 /8

PC1: 10.1.1.2 /8

• PC2: 10.1.1.3 /8

• PC3: 10.1.1.4 /8

Commands Used:

- ping 10.1.1.2
- arp -a

In Switch0

show mac address-table

Observations:

- Switch learns MAC addresses dynamically.
- Verified MAC entries and port mappings.
- Learned about flooding and forwarding.

Flow Diagram:

Simulation Panel					
Eve	Event List				
Vis	i.	Time(sec)	Last Device		
		2.012			
		2.013	PC0		
		2.014	Switch0		
		2.015	PC1		
		2.016	Switch0		
		3.019			
		3.020	PC0		
		3.021	Switch0		
		3.022	PC1		
	(9)	3.023	Switch0		

Commands Captured:

Conclusion:

Switching works at Layer 2 using MAC. Learned how switches build MAC address tables.

LEVEL 3: PC to PC (Different Subnets, No Router)

Objective:

To understand failed communication due to subnet mismatch.

Topology Used:

• PC0 ↔ PC1 (via copper cross cable)

IP Configuration:

PC0: 10.1.1.1 /8PC1: 20.1.1.1 /8

Commands Used:

• ping 20.1.1.1

arp -a

Observation:

• Ping fails.

• ARP entry not created.

• ARP broadcasts do not cross subnets.

Flow Diagram:

Source MAC: PC0 Destination MAC: PC1

Source IP: 10.1.1.1 Destination IP: 20.1.1.1

Commands Captured:

```
Cisco Packet Tracer PC Command Line 1.0
C:\>ping 20.1.1.1

Pinging 20.1.1.1 with 32 bytes of data:

Request timed out.
Request timed out.
Request timed out.
Request timed out.
Ping statistics for 20.1.1.1:
Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),

C:\>arp -a
No ARP Entries Found
C:\>
```

Conclusion:

Router is needed for communication across different subnets.

LEVEL 4: PC to PC via Router

Objective:

Enable inter-subnet communication using a router.

Topology Used:

PC0↔ Router ↔ PC1

IP Configuration:

PC0: 10.1.1.10 /8

Router: Interfaces for both subnets

• PC1: 20.1.1.10 /8

Commands Used:

ping

• show ip route

• show ip interface brief

Observation:

• Ping successful.

• Routing table shows connected networks.

• Default gateway plays a vital role.

Flow Diagram:

Gateway: 20.1.1.1

Simulation Panel

vent List		
Time(sec)	Last Device	At Device
10.037	_	PC0
10.038	PC0	Router0
10.039	Router0	PC1
10.040	PC1	Router0
10.041	Router0	PC0
11.041	-	PC0
11.042	PC0	Router0
11.043	Router0	PC1
11.044	PC1	Router0

Commands Captured:

Ping Test: From PC0 to PC1

```
Pinging 20.1.1.10 with 32 bytes of data:

Reply from 20.1.1.10: bytes=32 time=4ms TTL=127

Ping statistics for 20.1.1.10:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 4ms, Maximum = 4ms, Average = 4ms
```

From Router0

```
Router>enable
Router#show ip interface brief
GigabitEthernet0/0/0 10.3 1 1
                                                                               OK? Method Status
                                                                                                                                                     Protocol
                                               10.1.1.1
                                                                                 YES manual up
                                                                               YES manual up up
YES unset administratively down down
YES unset administratively down down
GigabitEthernet0/0/2
                                               unassigned
                                               unassigned
Viani

Router#show ip route

Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area

* - candidate default, U - per-user static route, o - ODR

D - periodic downloaded static route
               P - periodic downloaded static route
Gateway of last resort is not set
          10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks 10.0.0.0/8 is directly connected, GigabitEthernet0/0/0
          10.1.1.1/32 is directly connected, GigabitEthernet0/0/0 20.0.0.0/8 is variably subnetted, 2 subnets, 2 masks 20.0.0.0/8 is directly connected, GigabitEthernet0/0/1
L
                 20.1.1.1/32 is directly connected, GigabitEthernet0/0/1
Router#exit
```

Conclusion:

Router connects different subnets using Layer 3 routing.

LEVEL 5: Router + Switch + Multiple PCs

Objective:

Test routing between two networks with switch and router

Topology Used:

• Multiple PCs ↔ Switch ↔ Router ↔ Other Switch ↔ Other PCs.

IP Configuration:

Network 1

PC0: 192.168.1.10 /24

PC1: 192.168.1.11 /24

• PC2: 192.168.1.12/24

• Default Gateway: 192.168.1.1

Network 2

PC0: 192.168.2.10 /24

• PC1: 192.168.2.11 /24

• PC2: 192.168.2.12/24

Default Gateway: 192.168.2.1

Commands Used:

- ping from PC0 to PC5
- show ip route
- show ip arp
- show mac address-table

Observation:

- Verified inter-network routing.
- Observed ARP table and MAC learning.

Flow Diagram:

Simulation Panel Event List			
	3.031	PC0	Switch0
	3.032	Switch0	Router0
	3.033	Router0	Switch1
	3.034	Switch1	PC5
	3.035	PC5	Switch1
	3.036	Switch1	Router0
	3.037	Router0	Switch0
	3.038	Switch0	PC0

Commands Captured:

Ping Test: From PC0 to PC5

```
C:\>ping 192.168.2.10

Pinging 192.168.2.10 with 32 bytes of data:

Reply from 192.168.2.10: bytes=32 time=lms TTL=127
Reply from 192.168.2.10: bytes=32 time=lms TTL=127
Reply from 192.168.2.10: bytes=32 time<lms TTL=127
Reply from 192.168.2.10: bytes=32 time<lms TTL=127

Ping statistics for 192.168.2.10:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = lms, Average = 0ms

C:\>
```

From Router0

```
Router>enable
Router#show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
        * - candidate default, U - per-user static route, o - ODR
        P - periodic downloaded static route
Gateway of last resort is not set
     192.168.1.0/24 is variably subnetted, 2 subnets, 2 masks
         192.168.1.0/24 is directly connected, GigabitEthernet0/0/0
         192.168.1.1/32 is directly connected, GigabitEthernet0/0/0
     192.168.2.0/24 is variably subnetted, 2 subnets, 2 masks
        192.168.2.0/24 is directly connected, GigabitEthernet0/0/1
        192.168.2.1/32 is directly connected, GigabitEthernet0/0/1
Router#show ip arp
Protocol Address
                             Age (min) Hardware Addr
                                                            Type
                                                                    Interface
Internet 192.168.1.1
Internet 192.168.1.10
Internet 192.168.2.1
Internet 192.168.2.10
                                     - 000C.8516.1B01 ARPA
0 0040.0BD6.4877 ARPA
                                                                    GigabitEthernet0/0/0
                                                                  GigabitEthernet0/0/0
                                     - 000C.8516.1B02 ARPA GigabitEthernet0/0/1
                                    0 0001.96E9.D436 ARPA GigabitEthernet0/0/1
Router#exit
```

From Switch0

	>enable #show mac address- Mac Address Ta		
Vlan	Mac Address	Type	Ports
1	000c.8516.1b01	DYNAMIC	Fa0/24
1	0040.0bd6.4877	DYNAMIC	Fa0/1

Conclusion:

Understood full Layer 2 & Layer 3 behaviour in a mixed network.

Level 6 – Static Routing

Objective:

Enable network communication via manually configured static routes.

Topology Used:

PC's

Switch0

Router0

Router1

Router2

Switch1

PC's

Commands Used:

- ip route <destination> <mask> <next-hop>
- show ip route
- show running-config

Observations:

- · Ping successful after static route added.
- Routing table updated manually.

Flow Diagram:

Simulation Panel

Event List				
Vis.	Time(sec)	Last Device	At Device	Туре
	0.001	PC0	Switch0	ICMP
	0.002	Switch0	Router0	ICMP
	0.003	Router0	Router1	ICMP
	0.004	Router1	Router2	ICMP
	0.005	Router2	Switch2	ICMP
	0.006	Switch2	PC5	ICMP
	0.007	PC5	Switch2	ICMP
	0.008	Switch2	Router2	ICMP
	0.009	Router2	Router1	ICMP
	0.010	Router1	Router0	ICMP
	0.011	Router0	Switch0	ICMP
	0.012	Switch0	PC0	ICMP

Commands Captured:

Ping Test: From PC0 to PC5

```
C:\>ping 20.1.1.2
Pinging 20.1.1.2 with 32 bytes of data:

Reply from 20.1.1.2: bytes=32 time=12ms TTL=125
Ping statistics for 20.1.1.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 12ms, Maximum = 12ms, Average = 12ms
```

From Router0


```
Router > enable
Router # configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router (config) #
Router (config) # interface GigabitEthernet0/0
Router (config-if) #
Router (config-if) # exit
Router (config) #
Router (config) #
Router (config) #
Router (config) #
Router (config) # proute 20.0.0.0 255.0.0.0 50.1.1.1
Router (config) # exit
Router # exit
```

```
Router>enable
```

```
Router#show ip route
```

```
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route
```

Gateway of last resort is not set

```
10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks

C 10.0.0.0/8 is directly connected, GigabitEthernet0/0

L 10.1.1.100/32 is directly connected, GigabitEthernet0/0

S 20.0.0.0/8 [1/0] via 50.1.1.1

S 30.0.0.0/8 [1/0] via 50.1.1.1

S 40.0.0.0/8 [1/0] via 50.1.1.1

50.0.0.0/8 is variably subnetted, 2 subnets, 2 masks

C 50.0.0.0/8 is directly connected, GigabitEthernet0/1

L 50.1.1.2/32 is directly connected, GigabitEthernet0/1
```

• From Switch0

Switch>enable Switch#show mac address-table Mac Address Table

Vlan	Mac Address	Туре	Ports
1	0001.c7a4.788e	DYNAMIC	Fa0/1
l Switch#	00e0.b0d8.bb01	DYNAMIC	Fa0/3

From Switch1

Switch>enable Switch#show mac address-table Mac Address Table

Vlan Mac Address Type Ports
---- 1 000a.f354.a311 DYNAMIC Fa0/2
1 0090.2b0c.8802 DYNAMIC Fa0/3

Conclusion:

Static routing is manual but effective for small networks.

Level 7 – Dynamic Routing using OSPF

Objective:

Enable automatic route discovery using OSPF.

Topology Used:

• PC's ↔ Switch0 ↔ Router0 ↔ Router1 ↔ Router2 ↔ Switch1 ↔ PC's.

Commands Used:

- router ospf 1
- network <ip> <wildcard> area 0
- show ip route

Observations:

- OSPF dynamically builds routing table.
- Routers exchange routing info.

Flow Diagram:

Simulation Panel

vent List				
/is.	Time(sec)	Last Device	At Device	Туре
	0.000	-	PC0	ICMP
	0.001	PC0	Switch0	ICMP
	0.002	Switch0	Router0	ICMP
	0.003	Router0	Router1	ICMP
	0.004	Router1	Switch1	ICMP
	0.005	Switch1	PC3	ICMP
	0.006	PC3	Switch1	ICMP
	0.007	Switch1	Router1	ICMP
	0.008	Router1	Router0	ICMP
	0.009	Router0	Switch0	ICMP
	0.010	Switch0	PC0	ICMP
(9)	0.085	_	Switch0	STP

Commands Used:

Ping Test: From PC0 to PC3

```
C:\>ping 30.1.1.2

Pinging 30.1.1.2 with 32 bytes of data:

Reply from 30.1.1.2: bytes=32 time<lms TTL=126
Reply from 30.1.1.2: bytes=32 time=lms TTL=126
Reply from 30.1.1.2: bytes=32 time=29ms TTL=126
Reply from 30.1.1.2: bytes=32 time=23ms TTL=126

Ping statistics for 30.1.1.2:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 29ms, Average = 13ms

C:\>
```

From Router0

```
Router>enable
Router#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#
Router(config) #router ospf 1
Router(config-router) #network 10.1.1.100 0.0.0.255 area 0
Router(config-router) #network 50.1.1.2 0.0.0.255 area 0
Router(config-router) #exit
Router(config) #exit
Router#
Router#show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
        10.0.0.0/8 is directly connected, GigabitEthernet0/0
        10.1.1.100/32 is directly connected, GigabitEthernet0/0
     20.0.0.0/8 [110/3] via 50.1.1.1, 00:03:45, GigabitEthernet0/1
     30.0.0.0/8 [110/2] via 50.1.1.1, 00:03:45, GigabitEthernet0/1
     40.0.0.0/8 [110/2] via 50.1.1.1, 00:03:45, GigabitEthernet0/1
     50.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
C
        50.0.0.0/8 is directly connected, GigabitEthernet0/1
        50.1.1.2/32 is directly connected, GigabitEthernet0/1
```

Conclusion:

Router#exit

Dynamic routing like OSPF is scalable and efficient.

Level 8 - OSPF with Primary and Backup Path

Objective:

Observe dynamic path switching using OSPF upon link failure.

Topology Used:

Routers with primary and secondary paths to server

Commands Used:

- show ip route
- tracert <PC2 ip_address>
- interface Fa0/1 → shutdown
- show ip ospf neighbor
- · show ip ospf interface brief

Observations:

- · Before shutdown: packets use primary path
- After shutdown: OSPF reroutes traffic via backup
- Convergence delay observed.

Flow Diagram:

PRIMARY PATH NETWORK2 NETWORK1 Gig0/1 IP: 30.1.1.2 Gig0/0 IP: 10.1.1.100 Gig0/1 IP: 30.1.1.1 ROUTER0 Source IP: 10.1.1.1 SWITCH1 Destination IP: 20.1.1.2 SWITCH0 ROUTER2 Gateway: 20.1.1.100 Gateway: 10.1.1.100 **BACKUP PATH** Gig0/1 IP: 40.1.1.1 ROUTER2 Gig0/1 IP: 40.1.1.2 Gig0/1 IP: 50.1.1.1 ROUTER1 Gig0/0 IP: 10.1.1.100 SWITCHO Gateway: 20.1.1.100 Gateway: 10.1.1.100

Simulation Panel

vent Li	ist		
Vis.	Time(sec)	Last Device	At Device
	8.029	PC0	Switch0
	8.030	Switch0	Router0
	8.031	Router0	Router2
	8.032	Router2	Switch1
	8.033	Switch1	PC2
	8.034	PC2	Switch1
	8.035	Switch1	Router2
	8.036	Router2	Router0
	8.037	Router0	Switch0
	8.038	Switch0	PC0

Commands Captured:

• From PC0 to PC2


```
Desktop
Physical
         Config
                                       Attributes
                          Programming
Command Prompt
Cisco Packet Tracer PC Command Line 1.0
C:\>ping 20.1.1.2
Pinging 20.1.1.2 with 32 bytes of data:
Request timed out.
Reply from 20.1.1.2: bytes=32 time=10ms TTL=126
Reply from 20.1.1.2: bytes=32 time=10ms TTL=126
Reply from 20.1.1.2: bytes=32 time=10ms TTL=126
Ping statistics for 20.1.1.2:
     Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
 Approximate round trip times in milli-seconds:
    Minimum = 10ms, Maximum = 10ms, Average = 10ms
 C:\>
```

From Router1:

```
Router>enable
Router#show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     10.0.0.0/8 [110/102] via 40.1.1.1, 00:03:03, GigabitEthernet0/1
     20.0.0.0/8 [110/2] via 40.1.1.1, 00:03:03, GigabitEthernet0/1
   30.0.0.0/8 [110/101] via 40.1.1.1, 00:03:03, GigabitEthernet0/1
0
    40.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
        40.0.0.0/8 is directly connected, GigabitEthernet0/1
        40.1.1.2/32 is directly connected, GigabitEthernet0/1
Router#show ip ospf neighbor
Neighbor ID Pri State
40.1.1.1 1 FULL/BDR
                                      Dead Time Address
                                                                  Interface
                                     00:00:30
                                                  40.1.1.1
                                                                  GigabitEthernet0/1
Router#show ip ospf interface brief
                                                  ddress/Mask Cost State Nbrs F/C 40.1.1.2/255.0.0.0 1 DR 0/0
Interface PID Area
Gig0/1 1 0
                                            IP Address/Mask
```

Conclusion:

OSPF dynamically adjusts to topology changes, ensuring fault tolerance.

.pkt Files

- 1. <u>LEVEL1 Direct PC to PC Communication</u>
- 2. LEVEL 2: PC to PC via Switch
- 3. LEVEL 3: PC to PC (Different Subnets, No Router)
- 4. LEVEL 4: PC to PC via Router
- 5. LEVEL 5: Router + Switch + Multiple PCs
- 6. LEVEL 6 Static Routing
- 7. LEVEL 7 Dynamic Routing using OSPF
- 8. <u>LEVEL 8 OSPF with Primary and Backup Path</u>