Universidad del Valle de Guatemala

Departamento de Matemática

Estudiante: Rudik Roberto Rompich

Correo: rom19857@uvg.edu.gt

Carné: 19857

MM2033 - Teoría de Conjuntos - Catedrático: Nancy Zurita 10 de septiembre de 2021

Ejercicio en clase 5

Problema 0.1. Si A es un conjunto entonces existe una función biyectiva entre 2^A y $\mathcal{P}(A)$.

Definición 1. (Función característica) Sea A un conjunto $y B \subseteq A$ entonces se define la función característica de B de la siguiente manera:

$$C_B: A \to 2 \ni$$

$$C_B(x) = \begin{cases} 0, & x \in B \\ 1, & x \notin B \end{cases}, \quad x \in A.$$

Demostración. Sea $\gamma: \mathcal{P}(A) \to 2^A$ y supóngase $B \in \mathcal{P}(A)$, tal que

$$\gamma(B) = \underbrace{\{C_B\}_{B \in A}}_{\text{función}}, \quad \forall B \in \mathcal{P}(A).$$

Nótese que $\{C_B\}_{B\in A}\subseteq 2^A$. Comprobaremos que γ es una función y posteriormente que es una función biyectiva:

- 1. Función, tal que por el teorema de caracterización para funciones:
 - a) $B \in \mathcal{P}(A) \ni \gamma(B) = \{C_B\}_{B \in A}$.
 - b) Inyectividad en el inciso 2.a.
- 2. Biyectividad, tal que
 - a) Inyectividad. Supóngase X y $Y \in \mathcal{P}(A) \ni$

$$\gamma(X) = \gamma(Y)$$

$$\{C_X\}_{X \in A} = \{C_Y\}_{Y \in A}$$

$$\{x \in A \ni C_X(x) = 0\} = \{x \in A \ni C_Y(x) = 0\}$$

$$X = Y$$

Por lo tanto, γ es inyectiva.

b) Sobreyectividad. Supóngase que tenemos una función $f \in 2^A$ y ahora dígase que $f^{-1}(0) = B \implies f = \{C_B\}_{B \in A} = \gamma(B)$. Por lo tanto, γ es sobreyectiva.

Por lo tanto, γ es función biyectiva.

Entonces, $2^A \subseteq \{C_B\}_{B \in A}$ tal que $2^A = \{C_B\}_{B \in A}$. Por lo tanto, existe una función γ biyectiva entre 2^A y $\mathcal{P}(A)$.