0.1 TrÄgheitsmoment I eines KĶrpers

Das Tr Āgheitsmoment Ieines K Ā
¶rpers wird im Kontinuum anschaulich durch die Gleichung

 $I = \int_{V} \mathbf{r}_{\perp}^{2} \rho(\mathbf{r}) dV \tag{0.1}$

dargestellt und gibt die TrÄgheit eines starren Körpers gegenÃ $\frac{1}{4}$ ber einer WinkelgeschwindigkeitsÃnderung bei einer Drehung um eine vorrausgesetzte Achse an. Dabei ist \mathbf{r}_{\perp} der Ortsvektor, welcher senkrecht auf ω steht und $\rho(\mathbf{r})$ die Dichte des Körpers in AbhÃngigkeit zum Ortsvektor \mathbf{r} , wobei die Dichte ρ sich bei homogenen Körper aus den Integral ziehen lÃsst, da diese in diesem Fall nicht mehr vom Ortsvektor \mathbf{r} abhÃngt.

 $F\tilde{A}_{4}^{\frac{1}{4}}$ r einen starren $K\tilde{A}$ ¶rper aus N Massepunkten der Masse m_{i} hat (2.1) die Form

$$I = \sum_{i=1}^{N} m_i r_{i,\perp}^2 \tag{0.2}$$