# Thème : Mouvements et interactions

P6: description d'un mouvement

Activité 2 : A trottinette (durée indicative : 1h)

Objectif: -représenter des vecteurs vitesse

-dire si un mouvement est rectiligne uniforme ou non-uniforme

## Document 1: vecteur vitesse d'un point

La position M du point du système\* à l'instant t et sa position M' à l'instant ultérieur t' définissent le vecteur  $\overrightarrow{MM}$ ' appelé **vecteur déplacement**.

Le **vecteur vitesse moyenne** correspond au rapport du vecteur déplacement **sur l'ensemble du parcours** par **sa durée totale**.

Lorsque les positions sont successives et très rapprochées, le vecteur vitesse moyenne correspond alors au vecteur vitesse du point M.

\* objet dont on étudie le mouvement

## Document 2: chronophotographie d'un point du guidon d'une trottinette

Vecteur vitesse moyenne :  $\vec{v}_{\text{moy}} = \frac{\overrightarrow{M_1 M_6}}{t_6 - t_1}$  Vecteur vitesse du point M à la position 2 :  $\vec{v}_2 = \frac{\overrightarrow{M_2 M_3}}{t_3 - t_2}$ 



Échelle : 1,0 cm  $\longleftrightarrow$  2,0 m Durée entre deux positions successives :  $\Delta t = 0,40$  s

#### Distances sur le schéma :

| segment            | $M_1M_2$ | $M_2M_3$ | M <sub>3</sub> M <sub>4</sub> | $M_4M_5$ | $M_5M_6$ |
|--------------------|----------|----------|-------------------------------|----------|----------|
| Distance<br>schéma | 0,8      | 1,1      | 1,3                           | 1,4      | 1,6      |
| Distance vraie vie |          |          |                               |          |          |

# Document 3 : méthode de tracé d'un vecteur vitesse d'un point

Vidéo disponible en tapant : hatier-clic.fr/pc262

On souhaite tracer le vecteur vitesse  $\vec{v}_2$  du point M à la position 2 du document 2.

- Mesurer la longueur M<sub>2</sub>M<sub>3</sub> sur la chronophotographie\* et utiliser l'échelle pour avoir sa valeur réelle.
- Calculer la valeur de la vitesse du point M à la position 2 :  $v_2 = \frac{M_2 M_3}{t_3 t_2} = \frac{M_2 M_3}{\Delta t}$
- Utiliser une échelle de représentation des vecteurs vitesse.
- Calculer la **norme** (ou longueur) **du vecteur**  $\overrightarrow{v_2}$  en tenant compte de cette échelle.
- Représenter le vecteur  $\overrightarrow{v_2}$  avec les caractéristiques suivantes :
  - direction : celle du segment [M<sub>2</sub>M<sub>3</sub>];
  - sens : celui du mouvement ;
  - norme calculée précédemment.



(lire jusqu'à 3min30)

## Questions

- Quel est le système étudié ?
   Un point du guidon de la trottinette.
- 2. Quel est le référentiel d'étude ? Référentiel lié au sol (terrestre)
- 3. Quelles sont les caractéristiques d'un vecteur vitesse ? (doc3)
  Un vecteur vitesse a : une direction (verticale, horizontale, oblique) , un sens, et une norme.
- 4. Sur votre cahier, recopier les positions successives du point M. (doc2)
- 5. Sur votre cahier, compléter le tableau du document 2.

L'échelle nous indique que 1,0cm sur le schéma = 2,0 m. dans la vraie vie. Il suffit de faire un produit en croix .

| Schéma    | 1,0cm | 0,8 cm |
|-----------|-------|--------|
| Vraie vie | 2,0m  | ?      |

Par exemple, la distance M1M2 vaut, dans la vraie vie : 0,8 x 2,0 /1 = 1,6 m

| segment                   | $M_1M_2$ | $M_2M_3$ | M <sub>3</sub> M <sub>4</sub> | M <sub>4</sub> M <sub>5</sub> | M <sub>5</sub> M <sub>6</sub> |
|---------------------------|----------|----------|-------------------------------|-------------------------------|-------------------------------|
| Distance<br>schéma        | 0,8      | 1,1      | 1,3                           | 1,4                           | 1,6                           |
| Distance vraie vie (en m) | 1,6 m    | 2,2      | 2,6                           | 2,8                           | 3,2                           |

6. Sur ce schéma, grâce aux documents 2 et 3 :

Tracer les vecteurs vitesses  $\overrightarrow{v2}$  et  $\overrightarrow{v5}$ , vecteurs vitesses du point M aux positions 2 et 5.

Etape 1 : on calcule la valeur du vecteur vitesse

Par définition, la vitesse au point 2 vaut  $v_2 = M_2M_3/\Delta t = 2,2/0,40 = 5,5$  m/s

De même , la vitesse au point 5 vaut  $v_5 = M_5M_6/\Delta t = 3,2/0,40 = 8,0$  m/s

#### Etape 2: on trace le vecteur vitesse

On peut prendre pour échelle 1,0 cm pour 2,0 m/s

| 1,0cm  | ?       |
|--------|---------|
| 2,0m/s | 5,5 m/s |

Le vecteur  $\overrightarrow{v2}$  mesurera donc : 5,5 /2,0 = 2,8 cm (2 chiffres significatifs)

De même, le vecteur  $\overrightarrow{v5}$  mesurera : 8,0 /2,0 = 4,0 cm (2 chiffres significatifs)



7. Comparer, pour ces positions, la direction, le sens et la norme de ces vecteurs vitesse.

### On remarque que:

- -la direction et le sens de ces deux vecteurs vitesse est identique.
- la norme de v5> v2.
- 8. En justifiant la réponse, dire si :
  - -le mouvement est rectiligne uniforme ;
  - -le mouvement est rectiligne mais pas uniforme ;
  - -le mouvement n'est ni rectiligne ni uniforme.

Les vecteurs vitesse $\overrightarrow{v2}$  et  $\overrightarrow{v5}$  ont la même direction (horizontale), le même sens (celui du mouvement) et des normes différentes ( $v_2 < v_5$ ) Le mouvement est rectiligne accéléré (rectiligne non uniforme).