15.3.4 Illustration

On rappelle que l'on avait vu qu'une interprétation possible des notions de filtration, processus adaptés... était la suivante : n représente le temps et \mathcal{F}_n l'information dont on dispose au temps n. $(X_n)_n$ est $(\mathcal{F})_n$ -adapté signifie qu'au temps n, je connais X_n et $(X_n)_n$ est prévisible signifie qu'au temps n-1, je connais X_n . Avant de passer à l'interprétation de la notion de martingale, faisons un bref rappel sur la notion d'espérance conditionnelle.

Si X est dans $\mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ et Y est une variable aléatoire alors $\mathbb{E}(X|\sigma(Y))$ est la meilleure fonction f(Y) de Y qui approche X au sens \mathcal{L}^2 .

Supposons donc maintenant que $X_n - X_{n-1}$ représente le profit que l'on fait au temps n en misant 1 euro dans un jeu de hasard (X_n représente donc le profit cumulé au temps n). Il est assez naturel de supposer que $X_n - X_{n-1}$ est \mathcal{F}_n -mesurable (au temps n, on a vu le résultat du jeu et l'on sait le profit que l'on a obtenu).

Si le jeu est parfaitement équitable, on ne doit rien pouvoir prévoir. On peut traduire cette hypothèse de la manière suivante. L'approximation de $(X_n - X_{n-1})$ au vu de l'information disponible au temps n-1, qui compte-tenu de ce qui précède est égale à $\mathbb{E}(X_n - X_{n-1} | \mathcal{F}_{n-1})$, doit être nulle. Autrement dit, on demande à $(X_n)_n$ d'être une martingale. Si $(X_n)_n$ est une sur-martingale alors le jeu est favorable au casino et si c'est une sous-martingale, le jeu est favorable au joueur.

Admettons que le casino se débrouille pour faire de $(X_n)_n$ une martingale (ou une sur-martingale). Est-ce que je peux me débrouiller pour gagner de l'argent en variant à chaque instant la mise (au lieu de mettre un euro à chaque fois)? Appelons C_n la mise placée au temps n. L'hypothèse naturelle à faire sur $(C_n)_n$ est de supposer que c'est un processus prévisible : on mise au vu de l'information dont on dispose au temps précédent de celui de la mise. Au temps n, on gagne donc

$$Y_n = \sum_{k=1}^{n} C_k (X_k - X_{k-1})$$

On appelle Y la transformée de X par C et l'on note $Y_n = (C \cdot X)_n$ (c'est la version discrétisée de l'intégrale stochastique relativement à une martingale).

Proposition 15.3.2. Supposons pour simplifier que X soit une sur-martingale et C un processus prévisible borné (pour tout n, $|C_n(\omega)| \leq K$). Alors $C \cdot X$ est une sur-martingale.

Ainsi, au temps n, mon esérance de gain est $\mathbb{E}(Y_n) \leq \mathbb{E}(Y_0) = 0$ et l'on est toujours perdant!

15.3.5 Temps d'arrêt

Définition 15.3.5. Soit $(\Omega, \mathcal{F}, (\mathcal{F}_n)_n, \mathbb{P})$ un espace probabilisé. Une application T de Ω dans $\bar{\mathbb{N}} = \{0, 1, \ldots, \infty\}$ est un temps d'arrêt ssi

$$\forall n \in \bar{\mathbb{N}}, \{T \leq n\} \in \mathcal{F}_n$$

Remarque 15.3.4. Un peu de manipulation ensembliste montre que cette condition est équivalente à l'une des conditions suivantes :

- 1) $\forall n \in \mathbb{N}, \{T = n\} \in \mathcal{F}_n.$
- 2) $\forall n \in \mathbb{N}, \{T \leq n\} \in \mathcal{F}_n$.
- 3) $\forall n \in \mathbb{N}, \{T = n\} \in \mathcal{F}_n.$

Si on reprend à nouveau la modélisation précédente, on comprend aisément l'introduction de la notion de temps d'arrêt. On a vu que l'on ne pouvait gagner en variant la mise. Peut-être peut on gagner en s'arrêtant non plus à un temps donné n mais à un temps aléatoire. Cependant on doit faire un certain nombre d'hypothèses sur ce temps aléatoire T. En effet, il est réaliste de supposer que je m'arrêterai au temps n au vu de l'information dont je dispose au temps n (et non pas au temps n+1 par exemple...). Autrement dit, on doit imposer à T de satisfaire $\{T=n\} \in \mathcal{F}_n$, c'est-à-dire d'être un temps d'arrêt.

Exemple : Soit $(A_n)_n$ un processus adapté et $B \in \mathcal{B}(\mathbb{R})$. On définit $T_B = \inf\{n \geq 0; A_n \in B\}$ comme le premier temps d'entrée dans B (éventuellement infini si l'ensemble est vide). T_B est un temps d'arrêt car

$$\{T \le n\} = \bigcup_{k \le n} \{A_k \in B\} \in \mathcal{F}_n$$

Contre-exemple : Le temps de sortie de B noté $L_B = \sup\{n, A_n \in B\}$ n'est pas un temps d'arrêt (en général).

15.3.6 Sur-martingales arrêtées

Théorème 15.3.1. Si X est une martingale (resp. sur-martingale, sous-martingale) et T un temps d'arrêt alors $X^T = (X_{T \wedge n})_{n \geq 0}$ est appelée martingale (resp. sur-martingale, sous-martingale) arrêtée en T. C'est une martingale (resp. sur-martingale, sous-martingale). En particulier, on

a pour tout entier n,

$$\mathbb{E}(X_n^T) = \mathbb{E}(X_{T \wedge n}) = \mathbb{E}(X_0), \quad (resp. \leq, \geq)$$

Remarque 15.3.5. Ce théorème dit en outre que pour tout $n \in \mathbb{N}$, $X_{T \wedge n}$ est dans \mathcal{L}^1 . Il ne suppose aucune condition sur le temps d'arrêt.

Démonstration. On a juste à montrer le théorème pour X surmartingale puisque X sous-martingale équivaut à -X sur-martingale et X est une martingale ssi c'est à la fois une surmartingale et une sous-martingale.

1) $X_{T \wedge n}$ est \mathcal{F}_n -mesurable car

$$X_{T \wedge n}(\omega) = \sum_{k=0}^{n-1} X_k(\omega) 1_{T(\omega)=k} + X_n(\omega) 1_{\{T(\omega) \geq n\}}$$

C'est une somme de variables aléatoires \mathcal{F}_n -mesurables.

2) Pour tout $n \in \mathbb{N}$, $X_{T \wedge n}$ est intégrable car $|X_{T \wedge n}| \leq \left(\sum_{k=0}^{n-1} |X_k|\right) + |X_n|$. 3)On a :

$$\mathbb{E}(X_{T \wedge n} | \mathcal{F}_{n-1}) = \sum_{k=0}^{n-1} \mathbb{E}(X_k 1_{T=k} | \mathcal{F}_{n-1}) + \mathbb{E}(X_n 1_{T \geq n} | \mathcal{F}_{n-1})$$

$$= \sum_{k=0}^{n-1} 1_{T=k} \mathbb{E}(X_k | \mathcal{F}_{n-1}) + 1_{T \geq n} \mathbb{E}(X_n | \mathcal{F}_{n-1})$$

$$\leq \sum_{k=0}^{n-1} 1_{T=k} X_k + 1_{T \geq n} X_{n-1} = X_{T \wedge n-1}$$

Si $(X_n)_n$ est une martingale et si T est un temps d'arrêt alors pour tout entier n, on a

$$\mathbb{E}(X_{T\wedge n}) = \mathbb{E}(X_0)$$

A-t-on $\mathbb{E}(X_T) = \mathbb{E}(X_0)$? Un contre exemple est le suivant. Soit $(X_n)_n$ une marche aléatoire telle que $X_0 = 0$ et $\mathbb{E}(X_{n+1} - X_n) = 0$. $(X_n)_n$ est une martingale. Soit $T = \inf\{n \in \mathbb{N}; X_n = 1\}$ le temps d'entrée en 1. On a vu que c'était un temps d'arrêt (par rapport à la filtration naturelle de X). Pourtant, on a

$$\mathbb{E}(X_T) = 1 \neq \mathbb{E}(X_0) = 0$$

15.3.7 Théorème d'arrêt de Doob

Théorème 15.3.2. (Théorème d'arrêt de Doob)

a) Soit T un temps d'arrêt et X une sur-martingale. Alors X_T est bien définie et intégrable avec

$$\mathbb{E}(X_T) \leq \mathbb{E}(X_0)$$

dans l'une des 3 conditions suivantes :

- 1) T est bornée (i.e. : $\exists N \geq 0, \forall \omega \in \Omega |T(\omega)| \leq N$).
- 2) X est bornée (i.e. $\exists K \in \mathbb{R}_+, \forall n \in \mathbb{N}, \forall \omega \in \Omega, |X_n(\omega)| \leq K$) et T est \mathbb{P} p.s. fini.
- 3) $\mathbb{E}(T) < +\infty$ (donc T fini p.s.) et il existe $K \in \mathbb{R}_+$ tel que

$$\forall n \in \mathbb{N}, \forall \omega \in \Omega, |X_{n+1}(\omega) - X_n(\omega)| \leq K$$

b) En particulier, si 1), 2) ou 3) a lieu et si X est une martingale alors $\mathbb{E}(X_T) = \mathbb{E}(X_0)$.

Démonstration. b) est évident compte-tenu du fait que X est une martingale ssi X et -X sont des sur-martingales.

a) On sait que $(X_{T \wedge n})_n$ est une sur-martingale donc

$$\mathbb{E}(X_{T\wedge n}-X_0)\leq 0$$

Pour 1), on prend n = N et on a le résultat.

Pour 2), on utilise le théorème de convergence dominée vu que

$$|X_{T \wedge n}| \leq K \text{ et } \lim_{n \to +\infty} X_{T \wedge n} = X_T \text{ (T fini)}$$

Pour 3), on remarque que

$$|X_{T \wedge n} - X_0| \le \sum_{k=1}^{T \wedge n} |X_k - X_{k-1}| \le TK$$

et $\mathbb{E}(T) < +\infty$ d'où le résultat par le théorème de convergence dominée.

Corollaire 15.3.1. Soit M une martingale à incréments bornés (i.e. $\forall n \geq 1, |M_n - M_{n-1}| \leq K$ pour une constante K > 0) et soit C un processus prévisible borné par une constante et T un temps d'arrêt intégrable $\mathbb{E}(T) < +\infty$. On a alors

$$\mathbb{E}((C\cdot M)_T)=0$$

Démonstration. On a vu que $Y_n = (C \cdot M)_n$ était une martingale et d'autre part, on a

$$|Y_n - Y_{n-1}| \le |C_n(M_n - M_{n-1})| \le K_2 K_1$$

On conclut par le cas 3) du théorème précédent.

Proposition 15.3.3. Soit X une sur-martingale positive et T un temps d'arrêt $\mathbb P$ p.s. fini alors

$$\mathbb{E}(X_T) \leq \mathbb{E}(X_0)$$

Démonstration. $(X_n)_n$ est une sur-martingale de \mathcal{L}^1_+ et $x \in \mathbb{R}_+ \to x \wedge K$ est concave croissante bornée. Il est facile de montrer que si $(X_n)_n$ est une surmartingale positive et $\phi : \mathbb{R}_+ \to \mathbb{R}_+$ est croissante concave bornée alors $(\phi(X_n))_n$ est une surmartingale positive bornée (utiliser le théorème de Jensen version conditionnelle). On en déduit que $(X_n \wedge K)_n$ surmartingale positive bornée et d'après le théorème de Doob, cas 2),

$$\mathbb{E}(X_T \wedge K) \leq \mathbb{E}(X_0)$$

On conclut par le théorème de convergence monotone en faisant tendre K vers l'infini. \Box