_السلسلة الأولى_____الوحدة_4_____ باك 2020_____ المستوى : 3 (ر+ت ر+ع ت)_

ىباك ع ت 2008<u>ـ</u>

التمرين الأول :

اننمذج التحول الكيميائي المحدود لحمض الإيثانويك (حمض الخل) مع الماء بتفاعل كيميائي معادلته:

 $CH_{3}COOH(aq) + H_{2}O(l) = CH_{3}COO^{-}(aq) + H_{3}O^{+}(aq)$

- 1 أعط تعريفا للحمض وفق نظرية برونستد.
- 2_ اكتب الثنائيتين (acide / base) الداخلتين في التفاعل الحاصل.
 - اكتب عبارة ثابت التوازن K الموافق للتفاعل الكيميائي السابق K
- $c=2,7.10^{-3}\,mol\ /\ L$ وتركيزه المولي المحمض الإيثانويك حجمه $V=100\,m$ وتركيزه المولي المحمض الإيثانويك حجمه ،وقيمة الـ pH له في درجة الحرارة $2^{\circ}C$ تساوي 3.7

 - $x_{ ext{max}}$ أنشئ جدولا لتقدم التفاعل، ثم احسب كل من التقدم النهائي x_f والتقدم الأعظمي $x_{ ext{max}}$
 - النسبة النهائية au_f لتقدم التفاعل ،ماذا تستنتج ؟. au_f
 - <mark>4</mark> ـ احسب قيمت :

. $[CH_3COOH_3]_f$ و $[CH_3COO^-]_f$ التركيز المولي النهائي لكل من

 $(CH_3COOH(aq)/CH_3COO^-(aq))$ بـقيمة pKa للثنائية

استنتج النوع الكيميائي المتغلب، برر إجابتك.

لتمرين الثاني_____باك (ت ر+ر)2010__

بغرض تحضير محلول (S_1) لغاز النشادر NH_3 ، نحل 1.2L منه في $500\,m$ من الماء المقطر.

 $V_M = 24L \ / \ mol$ للمحلول (S_1) ، علما أن الحجم المولي في شرطي التجريب $V_M = 24L \ / \ mol$. ب-اكتب المعادلة الكيميائية للتفاعل المنمذج للتحول الكيميائي الحاصل.

ياس pH المحلول (S_1) في درجة حرارة $2^\circ C$ أعطى القيمة 11,1 أـ أنشئ جدولا لتقدم التفاعل.

بـاحسب نسبت التقدم النهائي au_{1f} . ماذا تستنتج ؟

V=50mL حجمه (S_2) حجمه الأعمال المخبرية فوج من التلاميذ لتحضير محلولا و (S_2) حجمه و و تركيزه المولي و (S_1) انطلاقا من المحلول (S_1) .

أ_ما هي الخطوات العملية المتبعة لتحضير المحلول (S_2) ؟

. ب_إن قيمة pH المحلول (S_2) المحضر تساوي (S_2) المحضر تساوي (S_2) المحضر تساوي على النهائي المتقدم المتقدم النهائي المتقدم النهائي المتقدم النهائي المتقدم النهائي المتقدم المتقدم

 $NH_4^+(aq)/NH_3(aq)$ الثنائية Ka المنائية الحموضة Ka المنائية أحسب قيمة ثابت الحموضة المنائية المنائية المحموضة المنائية المنائية المحموضة المنائية ا

. $Ke = 10^{-14} \cdot 25^{\circ}C$ يعطى عند

 $c_0 = 0.01 mol\ /\ L$ وتركيزه المولى V_0 محلول مائي و V_0 محلول مائي وتركيزه المولى كالإيثانويك في الماء . $CH_3COOH\left(aq
ight)$

. أنشئ جدولا لتقدم التفاعل. نرمزب x_{eq} إلى تقدم التفاعل عند التوازن $\frac{2}{2}$

3 اكتب عبارة كل من:

. $\left[H_3O^+
ight]_f$ و روم بدلالت مالنهائي au_f بدلالت

$$Q_{r,\acute{e}q} = rac{\left[H_3O^+
ight]_{\acute{e}q}^2}{c_0 - \left[H_3O^+
ight]_{\acute{e}q}}:$$
 بـ كسر التفاعل عند التوازن ،وبيّن أنه يمكن كتابته على الشكل $\left[H_3O^+
ight]_{\acute{e}q}$ عند التوازن بدلالة $\left[H_3O^+
ight]_{\acute{e}q}$ عند التوازن بدلالة $\left[H_3O^+
ight]_{\acute{e}q}$ ، $\lambda(CH_3COO^-)$ ، $\lambda(H_3O^+)$. $\left[OH^-
ight]_{\acute{e}q}$ عند التوازن بدلالة $\left[OH^-
ight]_{\acute{e}q}$.

4 أـ باستخدام العلاقات المستنتجة سابقا، أكمل الجدول الموالى:

 $\lambda(CH_3COO^-) = 3.6mS.m^2.mol^{-1}$, $\lambda(H_3O^+) = 34.9mS.m^2.mol^{-1}$. علما أن

$Q_{r.\acute{e}q}$	$ au_f(\%)$	$H_3O^+_{\acute{e}q}(mol.L^{-1})$	$\sigma_{\acute{e}q}(S.m^{-1})$	$c(mol.L^{-1})$	المحلول
			0,016	$1,0 \times 10^{-2}$	(S_0)
			0,036	$5,0 \times 10^{-2}$	(S_1)

ب-استنتج تأثير التركيز المولي للمحلول على كل من:

. au_f نسبة التقدم النهائي

 $Q_{r.\acute{e}q}$. كسر التفاعل عند التوازن

التمرين الرابع: ______اك (ت ر+ر)2008

- نقيس عند C_6H_5COOH ين ليمنيا (S_1) لحمض البنزويك C_6H_5COOH تركيزه المولي $\sigma=0.86\times 10^{-3}$. نقيس عند التوازن في درجة الحرارة $\sigma=0.86\times 10^{-3}$ فنجدها $\sigma=0.86\times 10^{-3}$.
 - 1 كتب معادلة التفاعل المنمذجة لتحول حمض البنزويك في الماء.
 - 2_انشئ جدولا لتقدم التفاعل.
 - للأنواع الكيميائية المتواجدة في المحلول (S_1) عند التوازن . 3
 - جد النسبة النهائية au_{1f} لتقدم التفاعل. ماذا تستنتج ؟. $oldsymbol{4}$
 - K_1 احسب ثابت التوازن الكيميائي ا K_1 .
 - نعتبر محلولا مائيا (S_2) لحمض الساليسيليك نرمز له HA تركيزه المولي $c_2=c_1$ وله $S_2=D$ في درجة حرارة S_2 0.
 - النسبة النهائية au_{2f} لتقدم تفاعل حمض الساليسيليك مع الماء . au_{2f}
 - . قارن بين au_{1f} و au_{2f} ، استنتج أي الحمضين أقوى .

 $25^{\circ}C$ عند الناقلية المولية للشوارد عند

 $\lambda(C_6H_5COO^-) = 4mS.m^2.mol^{-1}, \lambda(H_3O^+) = 35mS.m^2.mol^{-1}$

تمرين الخامس:_____باك ع ت 2016_

 \sim القياسات مأخوذة في درجة الحرارة $^\circ C$.

حمض البنزويك جسم صلب أبيض اللون يستعمل كحافظ للمواد الغذائية صيغته $C_6H_5COOH\left(aq
ight)$. $C_6H_5COO^-(aq)$

نطلاقا من محلولا مائيا $c_1=0.01$ حجمه $V_1=50$ ، تركيزه المولي $c_1=0.01$ انطلاقا من محلول ينجاري ذي التركيز المولي $c_0=0.025$ من محلول من محلول تجاري ذي التركيز المولي على المحلول المحل

أ_ما هو حجم المحلول التجاري V_0 الواجب استعماله للتحضير ؟

ب اكتب البروتوكول التجريبي لتحضير المحلول (S_1) مبينا الزجاجيات المستعملة من بين ما يلي:

 $100 \, mL$, $100 \, mL$, $500 \, mL$) . حوجلات عيارية

. (5mL, 10mL, 20mL) ماصات عيارية

جــماذا يعني مصطلح عيارية المقترن بالماصات والحوجلات المذكورة في السؤال <mark>1</mark>ـأ.

. 3,12 إن قياس pH المحلول (S_1) أعطى القيمة ${\color{red} 2}$

أـ اكتب معادلة تشرد حمض البنزويك في الماء موضعا الثنائيتين ($acide \ / base$) المشاركتين في هذا التحول . بـ احسب كسر التفاعل النهائي Q_{rf} .

نسكب 10mL من المحلول (S_1) في بيشر ونضع هذا الأخير فوق مخلاط مغناطيسي ونضيف له كل مرة حجما من الماء المقطر ثم نقيس pH المحلول الناتج فنحصل على النتائج المدونة في الجدول التالي:

• • •	_		- 1 -
$V_{H_2O}(\mathit{mL})$ الماء المضاف	0	10	40
c(mol/L)			
рН	3,12	3,28	3,49
$ au_f$			

أما الفائدة من استعمال المخلاط المغناطيسي في هذه العملية؟

ب أكمل الجدول أعلاه واستنتج تأثير إضافة الماء المقطر للمحاليل الحمضية على c و c

لتمرين السادس:______الله (ت ر+ر) 2013____

من $m=0.72\,g$ لحمض الإيثانويك $CH_3COOH\left(aq
ight)$ وذلك بانحلال كتلة : S_1 له من S_2 من الماء المقطر , في درجة الحرارة S^2 كانت قيمة ال S_3 له S_4 من الماء المقطر , في درجة الحرارة S_3 كانت قيمة ال

. S_1 التركيز المولي للمحلول أ-1

ب- اكتب المعادلة المنمذجة لتفاعل حمض الإيثانويك مع الماء.

ج_أنشئ جدولا لتقدم التفاعل.

 S_1 عند التوازن بدلالة: PH و pH عند التوازن بدلالة عن التقدم عن التقدم عن التوازن بدلالة التوازن بدلالة عن التقدم

. 4,76 . هي: pKa الثنائية pKa الثنائية pKa الثنائية والمائية pKa الثنائية والمائية والمائية المائية والمائية والمائية المائية والمائية والمائية

. n_0 من المحلول S_1 من المحلول أن المحلول النشادر له نفس كمية المادة و V_2 من محلول النشادر له نفس كمية المادة و V_1 . CH_3 من المحادث بين: CH_3

. K بـ احسب ثابت التوازن

. $au_{eq}=rac{\sqrt{K}}{1+\sqrt{K}}$: جـبين أن النسبة النهائية au_{eq} لتقدم التفاعل يمكن كتابتها على الشكل au_{eq}

احسب au_{eq} ماذا تستنتج ؟.

 $M(C)=12g\ /\ mol\ ,\ M(O)=16g\ /\ mol\ ,\ M(H)=1g\ /\ mol\ ,$ $pKa\left(NH_4^+\ /\ NH_3\right)=9,2$

نحضرمحلولا مائيا $C_6H_5COOH~(aq)$ بترڪيزمولي $V_1=200$ حجمه $V_1=200$ بترڪيزمولي نحضرمحلولا مائيا $c_1=10^{-2}~mol~/L$ له فنجده $pH_1=3,1$ هنجده $pH_1=3,1$

- 1_ اكتب معادلة تفاعل حمض البنزويك مع الماء .
 - 2 أنشئ جدولا لتقدم هذا التفاعل.
- احسب نسبة التقدم لهذا التفاعل au_{1f} لهذا التفاعل , ماذا تستنتج au_{1f}
- $(C_6H_5COOH(aq)/C_6H_5COO^-(aq))$ اكتب عبارة ثابت الحموضة (Ka_1) للثنائية (Ka_1)
 - . ثم احسب قيمته , $Ka_1=c_1\,rac{ au_{1f}^2}{(1- au_{1f})}$ عطى بالعلاقة Ka_1 . ثم احسب قيمته . 5
- نَاخذ حجما 20m من المحلول S_1 ونمدده عشر مرات بالماء فنحصل على محلول S'_1 لحمض البنزويك بتركيز مولي C'_1 , ثم نقيس الـ $DH'_1=3$ لهذا المحلول فنجده $DH'_1=3$.
 - $.c'_1 = 1 \times 10^{-3} \, mol \, / \, L$ أـ أثبت أن

. احسب القيمة الجديدة لنسبة التقدم النهائي au_{2f} لتفاعل حمض البنزويك مع الماء .

جــما هو تأثير تخفيف المحاليل على نسبة التقدم النهائي ؟.

<u>التمرين الثامن .</u>

حمض الميثانويك HCOOH(aq) أو حمض النمل من وسائل الدفاع الذاتي للنمل، يتميز ببعض الخواص التي تميزه ولمعرفتها نقوم بما يلي :

- نحضر S_1 محلول لحمض الميثانويك تركيزه المولي $C_1=10^{-2}\,mol\,/\,L$ وذلك بإذابة كتلة m من الحمض النقي في حجم $V_1=100\,mL$ من الماء المقطر .
 - أ_احسب قيمة الكتلة m .
 - ب- اكتب معادلة التفاعل المنمذجة لا نحلال حمض الميثانويك في الماء.
 - جـ انشئ جدول تقدم التفاعل.
 - $\sigma_1 = 5 imes 10^{-2} \, S \, / \, m$ إن قياس الناقلية النوعية للمحلول S_1 عند درجة الحرارة $25^{\circ}C$ أعطي $25^{\circ}C$

أ_اكتبعبارة النسبة النهائية لتقدم التفاعل au_{1f} بدلالة إ c_1 و c_1 ثم احسب قيمته ،ماذا تستنج ؟.

 $(HCOOH(aq)/HCOO^{-}(aq))$ بـاحسب قيمة الثابت pKa للثنائية

. $\sigma_2=0.17S/m$ خرلحمض الميثانويك تركيزه المولي، $c_2=10c_1$ حيث ناقليته النوعية S_2 آخر لحمض الميثانويك تركيزه المولي، $\sigma_2=0.17S/m$. $\sigma_2=0.17S/m$. احسب النسبة النهائية للتقدم $\sigma_2=0.17S/m$ ، ماذا تستنتج ؟ .

 $\lambda (HCOO^-) = 5,46 \, mS \, .m^2 \, .mol^{-1}$, $M (HCOOH^-) = 46 \, g \, / \, mol^{-1}$. $\lambda (H_3O^+) = 35,0 \, mS \, .m^2 \, .mol^{-1}$