Math 110: Linear Algebra Done Wrong

Albert Ye

February 16, 2023

CONTENTS

Contents			
1	Week 1		
	1.1	Lecture 1	5
		1.1.1 Logistics	5
		1.1.2 Complex Numbers	5
	1.2	Lecture 2	5
		1.2.1 Fields	5
		1.2.2 Vector Spaces	6
	1.3	Discussion 1	6
		1.3.1 Complex Numbers	6
2	Week 2		9
	2.1	Lecture 3	9
		2.1.1 Vector Spaces with Infinite Vectors	9
		2.1.2 Structure of a Vector Space	10
		2.1.3 Subspaces	10
	2.2	Lecture 4	10
		2.2.1 Sums (possibly direct)	11
3	3 Week3		13
	3.1	Lecture 5	13
			13

CHAPTER 1

WEEK 1

1.1 Lecture 1

1.1.1 Logistics

- 30% HW, 30% MT, 40% final
- or if two midterms, 20% HW, 20+20% MT, 40% final
- OH Saturday 2-3 @ Free Speech Cafe, Friday 6-7PM online
- If in doubt, refer to the book

1.1.2 Complex Numbers

Definition 1.1 (Complex Number). A complex number is an ordered pair of real numbers (a, b), which can be then represented as a + bi where $i = \sqrt{-1}$.

A complex number can also be represented in exponential form, so $z=pe^{i\varphi}$, where φ is the angle / **argument** of z.

Theorem 1.2 (DeMoivre's). Complex numbers can be written both in the form of $pe^{i\varphi}$ or $p(\cos\varphi+i\sin\varphi)$.

The proof for this uses Taylor expansion but I forgot / I am too lazy to actually write it down and it doesn't matter much for this course regardless.

1.2 Lecture 2

1.2.1 Fields

Definition 1.3 (Field). A **field** is a set and two operations of addition and multiplication that also satisfies a number of properties.

Addition must be closed, be commutative, have an additive identity, be invertible, and be associative.

Multiplication excludes the additive identity, but it must also be **closed**, be **commutative**, have a **multiplicative identity**, be **associative**, be **invertible** (once again excluding the additive identity), and be **distributive**.

Common examples of fields include $\mathbb R$ and $\mathbb C$, but we can also prove that $\mathbb Z/p\mathbb Z$ is a field for prime p under modular addition and multiplication.

Lemma 1.4. $\mathbb{Z}/2\mathbb{Z}$ is a field.

Proof, fill in later lol

However, for non-primes, $\mathbb{Z}/p\mathbb{Z}$ is not a field. Consider the case for $\mathbb{Z}/6\mathbb{Z}$. $3x=1 \implies 2(3 \cdot x) = 2 \cdot 1 = 2$, but $2 \cdot (3 \cdot x) = (2 \cdot 3) \cdot x = 0 \cdot x = 0$. This means that $\mathbb{Z}/6\mathbb{Z}$ isn't a field. More generally, for pq, we can use the case of qx=1 and then try associativity on $p \cdot q \cdot x$.

1.2.2 Vector Spaces

Definition 1.5 (Vector Space). A vector space can be written as $(V, \mathbb{F}, +, \cdot)$ where V is a set, \mathbb{F} is the field over which the space is defined, + is a function $+: V \to V$ (in other wodes, V should be closed under vector addition), and \cdot is a function $\cdot: \mathbb{F} \to V$ which represents scalar multiplication.

From this definition, we gather that V is an abelian group under +, and \cdot is associative with regards to scalar multiplication in \mathbb{F} . Also, + and \cdot must be distributive, or $(a+b)\cdot x=ax+bx$ and $a\cdot (x+y)=ax+ay$. Be careful as to which operations are numerical multiplication and which ones are scalar multiplication.

1.3 Discussion 1

 \mathbb{F}^n is the coordinate space. The reason \mathbb{F} must be a field is because it would be much more difficult otherwise because both working addition and working multiplication are needed in a vector space.

An example of a coordinate space is $\mathbb{R}^3 = \{(a, b, c) : a, b, c \in \mathbb{R}\}.$

1.3.1 Complex Numbers

Complex numbers exist because some equations are not closed in the real numbers (i.e. $x^2 + 1$ not closed for $x \in \mathbb{R}$).

Problem 1.1. Show that $\mathbb C$ is an $\mathbb R$ -vector space with usual definitions of + and \cdot .

We need to check all conditions.

• Commutativity, associativity, and invertibility in + is pretty much given by the definition of the operation.

- Commutativity and invertibility for \cdot are also given by the operation. We also know from definition that \cdot is distributive in the form of $\lambda(u+v)=\lambda u+\lambda v$, $(\lambda_1+\lambda_2)u=\lambda_1 u+\lambda_2 u$, and that \cdot is associative in $(\lambda_1\lambda_2)v=\lambda_1(\lambda_2v)$.
- Remember which multiplication operations are scalar and which multiplication operations are vector.
- Closure: Note that $(a+bi)+(c+di)=(a+c)+(b+d)i\in\mathbb{C}$, and that a+c and b+d are reals by definition. Moreover, note that $\lambda(a+bi)=(\lambda a)+(\lambda b)i\in\mathbb{C}$, as λa and λb are in \mathbb{R} by definition as well.
- Additive identity: the value 0+0i represents the $\vec{0}$ vector in this case. If $\vec{v}=a+bi$, then $\vec{0}+\vec{v}=(0+0i)+(a+bi)=(0+a)+(0+b)i=a+bi=\vec{v}$.
- "Multiplicative identity": $1 \cdot (a + bi) = a + bi$. This follows because $1 \cdot (a + bi) = 1 \cdot a + 1 \cdot bi = a + bi$.

Problem 1.2. If V is a \mathbb{F} -vector space and $\mathbb{F}' \subset \mathbb{F}$, then V is an \mathbb{F}' -vector space.

Proof. Addition, and its properties, make no reference to the field.

All other axioms are carried over from V being an \mathbb{F} -vector space, because \mathbb{F}' is a subfield of \mathbb{F} . We know that invertibility, associativity, and distributivity are guaranteed within \mathbb{F} by the property of being a field. Closure of multiplication is also given in V because \mathbb{F}' is a subset of \mathbb{F} so $f \in \mathbb{F}'$ must also be an element of \mathbb{F} .

CHAPTER 2

WEEK 2

2.1 Lecture 3

Given a field \mathbb{F} and $n \in \mathbb{N}$, consider $\mathbb{F}^n = \{(f_1, f_2, \dots, f_n)\}$ with componentwise addition and multiplication.

2.1.1 Vector Spaces with Infinite Vectors

Countable

If we take $n \to \infty$, then we have an infinitely long list $\mathbb{F}^{\infty} : \{(x_1, x_2, \ldots) : x_j \in \mathbb{F}\}$ for a countably infinite number of elements in the list.

Problem 2.1. Consider this with componentwise addition and componentwise scalar multiplication. Is this a space?

Solution. We would need to prove five axioms given componentwise addition and multiplication, as the rest follow from the nature of the operation.

There is guaranteed to be a zero in the list (0, 0, ...).

The additive inverse of $(x_1, x_2, ...)$ is $(-x_1, -x_2, ...)$.

The multiplicative inverse of $c(x_1, x_2, ...)$ is $\frac{1}{c}(x_1, x_2, ...)$.

Associativity and distributivity are extrapolatable from shorter sequences because the addition and multiplication schemes are the same.

Uncountable

If we now consider the case of $\mathbb{F}^{\mathbb{R}}$, we see that traditional list format breaks. Thus, we can try defining by function. \mathbb{F}^S is defined as the set of functions $f: \mathbb{F} \to S$. Notice that \mathbb{F}^{∞} is equivalent to $\mathbb{F}^{\mathbb{N}}$ in this format.

If addition and multiplication are component-wise for squares, we can think of them as point-wise for functions. Thus, we have $h=f:g\implies h(a)=f(a)+g(a)$ for $a\in S$. For $a\in \mathbb{F}$ and $f\in \mathbb{F}^S$, we have that $\lambda f\in \mathbb{F}^S$ is define by $(\lambda f)(a)=\lambda\cdot f(a)$ for $a\in S$.

2.1.2 Structure of a Vector Space

Ignoring all tangible formations of a vector space as a set of lists or functions, what information do we have?

- The 0 element/vector of a vector space is unique. Suppose there are two zeroes, 0 and 0'. Then, 0' = 0 + 0' = 0.
- Additive inverses must thus be unique. If a+b=0 and a+c=0, then $b=b+0 \implies b=b+a+c=0+c=c$.
- Also notice that additive inverse is actually always $-1 \cdot v$.

2.1.3 Subspaces

A subspace is a vector space defined inside another vector space, with the same rules for addition and multiplication applied over a subset of the values in the space.

Theorem 2.1. $W \subseteq V$ is a vector subspace of V wrt $+, \cdot$ iff

- a) $0 \in W$
- b) $\lambda v \in W \forall v \in W, \lambda \in \mathbb{F}$
- c) $w_1 + w_2 \in W \forall w_1, w_2 \in W$

2.2 Lecture 4

Continuing from previuos lecture...

Example 2.1. If W_1, W_2 are subspaces of a vector space V, is $W_1 \cap W_2$ a subspace?

Solution. Yes. For zero, we have that $0 \in W_1, W_2$ by definition. Now, all there is to check is if $W_1 \cap W_2$ is additively and multiplicatively closed.

Additive Closure. If we have $u,v\in W_1\cap W_2$, this means that $u,v\in W_1$ must hold AND $u,v\in W_2$ must hold. Therefore, we have that W_1 is a subspace, so $u+v\in W_1$; and W_2 is a subspace, so $u+v\in W_2$. Therefore, $u+v\in W_1\cap W_2$ as well, so $W_1\cap W_2$ is additively closed.

Multiplicative Closure. Similarly, note that if $u \in W_1 \cap W_2$, then $u \in W_1$ and $u \in W_2$. Therefore, $\lambda u \in W_1$ and $\lambda u \in W_2$, so $\lambda u \in W_1 \cap W_2$.

Example 2.2. If W_1, W_2 are subspaces of a vector space V, is $W_1 \cup W_2$ a subspace?

Solution. No. Consider $a \in W_1$ but $a \notin W_2$, and $b \in W_2$, $b \notin W_1$. Then, a+b is not closed because it takes an element solely of W_1 and an element solely of W_2 , so the result cannot be of W_1 because one of the summands isn't in W_1 and the result cannot be of W_2 because one of the summands isn't in W_2 . Therefore, $W_1 \cup W_2$ is not additively closed, so it cannot be a subspace.

So how are we going to restrict W_1, W_2 ? The only case is if one of the spaces is a subspace of the other.

2.2.1 Sums (possibly direct)

How are we going to replace the union? With a sum!

Definition 2.2. The sum $W_1 + W_2$ is defined as $W_1 + W_2 = \{w_1 + w_2 : w_1 \in W_1, w_2 \in W_2\}$.

Theorem 2.3. The sum of two vector spaces W_1 and W_2 is itself a vector space.

Proof. Zero: $0 \in W_1 + 0 \in W_2 = 0$ must hold by definition.

Additive closurse: Take two already-summed vectors $u=w_1+w_2, v=y_1+y_2$. Therefore, our total is $u+v=(w_1+y_1)+(w_2+y_2)$. Our first term must be in W_1 , and our second term must be in W_2 , so u must be in W_1+W_2 .

Multiplicative closer: Given a scalar λ and a vector $u=w_1+w_2$, we have that the product is $\lambda u=\lambda(w_1+w_2)=\lambda w_1+\lambda w_2$, where $w_1\in W_1,w_2\in W_2$. Note that the first term is once again in W_1 and the second term in W_2 , so u must be in W_1+W_2 .

A special case is the **direct sum**, which is if any vector $u \in W_1 \oplus W_2$ can be split uniquely as $u = w_1 + w_2$, where the summands belong to their corresponding spaces.

How do we determine if $W_1 + W_2$ is direct?

- 1. Our sum is direct iff $0 = 0 \in W_1 + 0 \in W_2$ is the **only** way to get 0 in $W_1 + W_2$.
- 2. Our sum is direct iff $W_1 \cap W_2 = \{0\}$.

Notice that Criterion 1 generalizes to more than 2 subspaces, but Criterion 2 doesn't. Consider the example of (x, y, 0), (0, 0, z), (0, y, y). The pairwise intersections are trivial, but it's still not a direct sum.

CHAPTER 3

WEEK 3

3.1 Lecture 5

3.1.1 Linear Independence