Mechatronics2

Positive Position Feedback (PPF)

Ahmad Paknejad

Email: ahmad.paknejad@ulb.ac.be

Content

- 1. Theory
- 2. Exercise

1. Theory

Primary system

Primary system

$$G = \frac{V_s}{V_a} = g_0 \frac{\frac{s^2}{\omega_z^2} + 1}{\frac{s^2}{\omega_p^2} + 1}$$

$$PPF = \frac{g_f \omega_f^2}{s^2 + 2\xi_f \omega_f s + \omega_f^2}$$

Feedback analysis

$$G = \frac{V_s}{V_a} = g_0 \frac{\frac{s^2}{\omega_z^2} + 1}{\frac{s^2}{\omega_p^2} + 1}$$

$$PPF = \frac{g_f \omega_f^2}{s^2 + 2\xi_f \omega_f s + \omega_f^2}$$

Loop Gain:
$$-G \times PPF$$

Sensitivity:
$$\frac{1}{1 - G \times PPF}$$

Closed loop:
$$\frac{G}{1 - G \times PPF}$$

How does PPF work?

Mathematical model

Characteristic Eq. from merged poles
$$\rightarrow (s^2 + 2\zeta_c\omega_c s + \omega_c^2)^2$$

$$= s^4 + 4\zeta_c\omega_c s^3 + (4\zeta_c^2\omega_c^2 + 2\omega_c^2)s^2 + 4\zeta_c\omega_c^3 s + \omega_c^4$$

Mathematical Model

$$I \ and \ II \qquad \begin{cases} Eq. \ a: \quad 4\zeta_c \omega_c = 2\zeta_f \alpha \omega_p \\ Eq. \ b: \quad (4\zeta_c^2 + 2)\omega_c^2 = (\alpha^2 + 1)\omega_p^2 - \frac{\beta\alpha^2}{\gamma^2} g_0^2 \omega_p^2 \\ Eq. \ c: \quad 4\zeta_c \omega_c^3 = 2\zeta_f \alpha \omega_p^3 \\ Eq. \ d: \quad \omega_c^4 = \alpha^2 \omega_p^4 - \beta\alpha^2 g_0^2 \omega_p^4 \end{cases}$$

The resonance frequency of the closed-loop system is the same as the resonance frequency of the primary system.

Mathematical model

$$Simplified \begin{cases} Eq.\,\alpha\colon & 4\zeta_c=2\zeta_f\alpha\\ Eq.\,b\colon & 4\zeta_c^2+1=\alpha^2-\frac{\beta\alpha^2}{\gamma^2}g_0^2 & \text{4 Unknowns}\\ & \text{3 Equations} \end{cases}$$

$$Eq.\,d\colon & 1=\alpha^2-\beta\alpha^2g_0^2$$

Designing a PPF control which realizes equal poles for each value of the target damping

$$\alpha = \sqrt{\frac{4\gamma^2 \xi_c^2}{\gamma^2 - 1} + 1} \qquad \qquad \xi_f = 2\xi_c \sqrt{\frac{\gamma^2 - 1}{4\gamma^2 \xi_c^2 + \gamma^2 - 1}} \qquad \beta = \frac{1}{g_0^2} \frac{4\gamma^2 \xi_c^2}{4\gamma^2 \xi_c^2 + \gamma^2 - 1}$$

lightly damped structure

Undamped primary system

Lightly damped primary system

Stability analysis

Low value of the target damping = 0.1

High value of the target damping = 0.6

- The closed-loop system is stable because the phase is always bounded between 180 and -180.
- One trade-off in the system is that the higher value of the target damping, the lower value of the phase margin and gain margin are.

Stability analysis

By increasing the value of the feedback gain, one pole of the closed-loop system crosses the imaginary axis and makes the system unstable.

Optimal PPF

The other trade-off in the system is that the more damping is added to the system, the more amplification of the static response the closed-loop system has.

Limitation

$$\alpha = \sqrt{\frac{4\gamma^2 \xi_c^2}{\gamma^2 - 1} + 1}$$

The more damping is added to the system, the farther the pole of the PPF is placed.

$$\omega_f = \alpha \omega_p < \omega_{p2}$$

Conclusions

- Maximum damping happens when the two loops in Root-Locus are intersecting
- For each value of closed-loop damping, there is one controller which causes merged poles of closed-loop and subsequently maximum damping
- More damping requires higher control frequency! This results in some problems
 - The amplification at low frequency
- Although the formula has been developed for undamped primary system, they can be used for lightly damped structure as well

2. Exercise

How the code works

```
clear all
        clc
                                            Frequency of the pole of the primary system
        global Wp Wz g0 G
        s = tf('s');
                                               Frequency of the zero of the primary system
        Wp = 22.4*2*pi;
        Wz = 25.6*2*pi;
        q0 = 0.0305;
                                            Constant gain of the primary system
10 -
11
        G = q0*(s^2/Wz^2+2*0.001/Wz*s+1)/(s^2/Wp^2+2*0.001/Wp*s+1);
12 -
13
        PPF = MAXDPPF(0.2)
14 -
```

Loop-Gain

Sensitivity

Closed-Loop

Checking the compatibility

figure; rlocus(-G*PPF)

 $H = g0*(s^2/Wz^2+1)/(s^2/Wp^2+1)$; % Remove the damping ratio

figure; rlocus(-H*PPF)

