WHAT IS CLAIMED IS:

i	1. An apparatus for alerting a pilot of a rotary wing aircraft of proximity							
2	to terrain, the apparatus comprising:							
3	an input for receiving signals representative of a position of the aircraft, a							
4	flight path angle of the aircraft and a speed of the aircraft, and coupled to a database of s							
5	terrain information;							
6	an output;							
7	a signal processing device, coupled to said input, and coupled to said outpu							
8	for:							
9	(a) defining a look ahead distance;							
	(b) defining a first alert envelope, indicative of a first severity of terrain threat							
4 1 1	wherein boundaries of said first alert envelope are determined as a first function of the							
012 U13	flight path angle, said look ahead distance, and a terrain floor boundary; wherein said							
<u>L</u> j3	terrain floor boundary comprises a function of an aircraft altitude and said speed;							
₩ 4	(c) defining a second alert envelope, indicative of a second severity of terrain							
	threat, wherein boundaries of said second alert envelope are determined as a second							
15 16 17 18	function of the flight path angle, said look ahead distance and said terrain floor							
117 U	boundary; and							
	(d) outputting an alert signal when a subset of the stored terrain information is							
- 19	located within the boundaries of at least one of said first and said second alert							
20	envelopes.							
1	2. The apparatus of claim 1 wherein at least one of said first and second							
2	alert envelopes is further bounded by a cut-off envelope.							
•								
1	3. The apparatus of claim 1 wherein said signals representative of the							
2	position of an aircraft include a first signal received from a satellite navigation system							
3	indicative of the aircraft altitude and a second signal representative of the aircraft altitude							
4	received from a source other than the satellite navigation system, and wherein said signal							
5	processing device further comprises a means for determining a compound altitude signal.							
1	4. The apparatus of claim 1 wherein the boundaries of at least one of said							
2	first and second alert envelopes is further determined as a function of a configurable datum.							

N

1 2

phases are defined as a function of said speed of the aircraft.

The apparatus of claim 11 wherein said cruise, approach and landing

The apparatus of claim 1 wherein said look ahead distance is a function

1

2

13.

comprises outputting an audio control signal to generate an aural alert.

1	19. The method of claim 14 further comprising the step of outputting a								
2	video control signal to control representation of terrain in a first color for terrain located more								
3	than a predefined amount relative to current altitude of the aircraft and in a second color for								
4	terrain located less than said predefined amount relative to said current altitude wherein said								
5	predefined amount is a first value for a cruise phase of flight, a second value for an approach								
6	phase of flight, and a third value for a landing phase of flight.								
1	20. A computer program product for alerting a pilot of a rotary wing								
2	aircraft of proximity to terrain comprising:								
3	a computer readable storage medium having computer readable program code								
4	means embodied in said medium, said computer readable program code means comprising:								
[] 5	a first computer instruction means for accessing a database of terrain								
ፈ) ጠ 6	information;								
۵ ₇	a second computer instruction means for accessing signals representative of a								
L.J. 8	position of the aircraft, a flight path angle of the aircraft and a speed of the aircraft;								
니 니 9	a third computer instruction means for defining a look ahead distance;								
a fourth computer instruction means for defining a first alert envelo									
10 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1	indicative of a first severity of terrain threat, wherein boundaries of said first alert envelope								
[]2	are determined as a first function of the flight path angle, said look ahead distance, and a								
E1 3	terrain floor boundary;								
14	a fifth computer instruction means for defining a second alert envelope,								
15	indicative of a second severity of terrain threat, wherein boundaries of said second alert								
16	envelope are determined as a second function of the flight path angle, said look ahead								
17	distance and said terrain floor boundary;								
18	a sixth computer instruction means for defining said terrain floor boundary as								
19	a function of an aircraft altitude and a said speed; and								
20	a seventh computer instruction means for outputting an alert signal when a								
21	subset of the stored terrain information is located within the boundaries of at least one of said								
22	first and said second alert envelopes.								
1	21. The computer program product of claim 20 further comprising an								

eighth computer instruction means for outputting a video control signal to control display of

2

3

terrain on a display device.

distinct first and second sources respectively to obtain a compound altitude signal

- 24. The computer program product of claim 20 wherein said seventh computer instruction means further comprises a means for outputting an audio control signal to generate an aural alert.
- 25. The computer program product of claim 20 further comprising an eighth computer instruction means for outputting a video control signal to control representation of terrain in a first color for terrain located more than a predefined amount relative to a current altitude of the aircraft and in a second color for terrain located less than said predefined amount relative to said current altitude wherein said predefined amount is a first value for a cruise phase of flight, a second value for an approach phase of flight, and a third value for a landing phase of flight.
- 26. An apparatus for alerting a pilot of a hover-capable aircraft of proximity to terrain, the apparatus comprising:

an input for receiving signals representative of a position of the aircraft, a flight path angle of the aircraft and a speed of the aircraft, and coupled to a database of stored terrain information;

6 an output;

representative of the aircraft altitude.

a signal processing device, coupled to said input, and coupled to said output,

8 for:

3

4

1

2

W3

<u>∟</u>] 4

5 46

ក) ក្រុ

2

3

4

5

7

9

10

11

12

13

를 뉴 1

- (a) defining a look ahead distance as a function of a distance to transition from a first phase of flight to a hover phase of flight;
- (b) defining a first alert envelope, indicative of a first severity of terrain threat, wherein boundaries of said first alert envelope are determined as a first function of the flight path angle, said look ahead distance, and a terrain floor boundary;

33. The apparatus of claim 26 further comprising a voice warning generator coupled to said signal processor and wherein said alert signal output from said

various colors according to a degree of terrain threat.

4

1

2

3	signal processing device comprises an audio control signal to command said voice warning				
4	generator to output an aural alert.				
1	34. The apparatus of claim 26 wherein said speed comprises a				
2	groundspeed of the aircraft.				
1	35. The apparatus of claim 26 wherein the aircraft is an airship.				
1	36. The apparatus of claim 26 wherein the aircraft is a tilt rotor.				
_ 1	37. The apparatus of claim 26 wherein said signal processing device				
2	further comprises a means for outputting a video control signal to control representation of a				
3	background terrain data proximate the aircraft:				
4	in a first color for terrain located more than a predetermined amount relative to				
5	a current altitude of the aircraft wherein said predetermined amount is a first value for a				
6	cruise phase of flight and a second value for an approach phase of flight and a third value for				
7	a landing phase of flight; and				
8	in a second color for terrain located less than said predetermined amount				
9	relative to said current altitude.				
<u>-</u> 1	38. The apparatus of claim 26 wherein said cruise, approach and landing				
2	phases are defined as a function of said speed of the aircraft.				
1	39. A method for alerting a pilot of a hover-capable aircraft of proximity to				
2	terrain comprising the steps of:				
3	accessing a database of terrain information;				
4	receiving signals representative of a position of the aircraft, a flight path angle				
5	of the aircraft and a speed of the aircraft;				
6	defining a look ahead distance as a function of a distance to transition from a				
7	first phase of flight to a hover phase of flight;				
8	defining a first alert envelope, indicative of a first severity of terrain threat,				
9	wherein boundaries of said first alert envelope are determined as a first function of the flight				
10	path angle, said look ahead distance, and a terrain floor boundary;				
11	defining a second alert envelope, indicative of a second severity of terrain				
12	threat, wherein boundaries of said second alert envelope are determined as a second function				
13	of the flight path angle, said look ahead distance and said terrain floor boundary; and				

14

15

1

2

3

1

2

1

2

[] 5

1

2

3

4

7

8

- 40. The method of claim 39 wherein said step of outputting an alert signal further comprises the step of outputting a video control signal to control display of terrain on a display device.
- 41. The method of claim 39 further comprising the step of defining a cutoff envelope to form a boundary of at least one of said first and second alert envelopes.
- 42. The method of claim 39 further comprising the step of receiving a first and a second altitude signal from a distinct first and second sources respectively to obtain a compound altitude signal representative of the aircraft altitude.
- 43. The method of claim 39 wherein said step of outputting an alert signal comprises outputting an audio control signal to generate an aural alert.
- 44. The method of claim 39 further comprising the step of outputting a video control signal to control representation of terrain in a first color for terrain located more than a predefined amount relative to a current altitude of the aircraft and in a second color for terrain located less than said predefined amount relative to said current altitude wherein said predefined amount is a first value for a cruise phase of flight, a second value for an approach phase of flight, and a third value for a landing phase of flight.
- 45. A computer program product for alerting a pilot of a hover-capable aircraft of proximity to terrain comprising:
- a computer readable storage medium having computer readable program code means embodied in said medium, said computer readable program code means comprising:
- 5 a first computer instruction means for accessing a database of terrain 6 information;
 - a second computer instruction means for accessing signals representative of a position of the aircraft, a flight path angle of the aircraft and a speed of the aircraft;
- 9 a third computer instruction means for defining a look ahead distance as a 10 function of a distance to transition from a first phase of flight to a hover phase of flight;
- 11 a fourth computer instruction means for defining a first alert envelope, 12
 - indicative of a first severity of terrain threat, wherein boundaries of said first alert envelope

are determined as a first function of the flight path angle, said look ahead distance, and a terrain floor boundary;

13

14

15

16

17

18

19

20

21

1

2

(1) (1) (1) (1) (1)

1 1 2

U13

⊑ 4

1

2

3

1

2

3

4

5

6

7

a fifth computer instruction means for defining a second alert envelope, indicative of a second severity of terrain threat, wherein boundaries of said second alert envelope are determined as a second function of the flight path angle, said look ahead distance and said terrain floor boundary; and

a sixth computer instruction means for outputting an alert signal when a subset of the stored terrain information is located within the boundaries of at least one of said first and said second alert envelopes.

- 46. The computer program product of claim 45 further comprising a seventh computer instruction means for outputting a video control signal to control display of terrain on a display device.
- 47. The computer program product of claim 45 further comprising a seventh computer instruction means for defining a cut-off envelope to form a boundary of at least one of said first and second alert envelopes.
- 48. The computer program product of claim 45 further comprising a seventh computer instruction means for accessing a first and a second altitude signal from a distinct first and second sources respectively to obtain a compound altitude signal representative of the aircraft altitude.
- 49. The computer program product of claim 45 wherein said sixth computer instruction means further comprises a means for outputting an audio control signal to generate an aural alert.
- 50. The computer program product of claim 45 further comprising a seventh computer instruction means for outputting a video control signal to control representation of terrain in a first color for terrain located more than a predefined amount relative to a current altitude of the aircraft and in a second color for terrain located less than said predefined amount relative to said current altitude wherein said predefined amount is a first value for a cruise phase of flight, a second value for an approach phase of flight, and a third value for a landing phase of flight.

1	51. An apparatus for alerting a pilot of a rotary wing aircraft of proximity					
2	to terrain comprising:					
3	an input for receiving signals representative of a position of the					
4	aircraft, a flight path angle of the aircraft and a speed of the aircraft, and coupled to a					
5	database of stored terrain information;					
6	an output; and					
7	a signal processor, coupled to said input and to said output for:					
8	(a) defining a look ahead/look down alert envelope, wherein					
9	boundaries of said alert envelope are determined as a function of the flight path ang					
10	a look ahead distance, and a terrain floor boundary; wherein said terrain floor					
11	boundary comprises a function of an aircraft altitude and said speed, and wherein sa					
[] []12	look ahead distance comprises a function of a distance to transition from a first phase					
9 13	of flight to a hover phase of flight; and					
J14	(b) outputting an alert signal when a subset of the stored terrain					
	information is located within the boundaries of said alert envelope.					
· 1	52. The apparatus of claim 51 wherein said look ahead/look down alert					
	envelope further comprises a first, caution, envelope and a second, warning, envelope.					
1	53. The apparatus of claim 52 wherein said signal processor outputs a first					
== 2	alert signal when said subset of the stored terrain information is located within the boundaries					
3	of said caution envelope and a second alert signal when said subset of the stored terrain					
4	information is located within the boundaries of said warning envelope.					
1	54. The apparatus of claim 51 wherein said signal processor comprises a					
2	microprocessor.					
1	55. The apparatus of claim 51 wherein said speed comprises a					
2	groundspeed of the aircraft.					
1	56. The apparatus of claim 51 wherein said signal processing device					
2	comprises a means for outputting said alert signal as a video control signal, wherein said					
3	video control signal is useful for controlling representation of terrain on a video display in					
4	various colors according to a degree of terrain threat.					

L.

11

located within said alert envelope.

- 62. The method of claim 61 wherein said look ahead/look down alert envelope further comprises a first caution envelope and a second warning envelope.
- 63. The method of claim 62 further comprising the steps of outputting a first alert signal when said subset of the stored terrain information is located within the boundaries of said caution envelope and outputting a second alert signal when said subset of the stored terrain information is located within the boundaries of said warning envelope.
- 64. The method of claim 61 further comprising the step of outputting a video control signal, wherein said video control signal is useful for controlling representation of terrain on a video display in various colors according to a degree of terrain threat.
- 65. The method of claim 61 further comprising the step of outputting an aural alert.
- 66. The method of claim 61 further comprising the step of outputting a video control signal to control representation on a display of a background terrain data proximate the aircraft:

in a first color for terrain located more than a predetermined amount relative to a current altitude of the aircraft wherein said predetermined amount is a first value for a cruise phase of flight and a second value for an approach phase of flight and a third value for a landing phase of flight; and

in a second color for terrain located less than said predetermined amount relative to said current altitude.

- 67. The method of claim 66 further comprising the step of defining said cruise, approach and landing phases as a function of said speed of the aircraft.
- 68. The method of claim 61 further comprising the step of defining a look up envelope and outputting said alert signal when said subset of terrain is located within said look up envelope.
 - 69. A computer program product for alerting a pilot of a rotary wing aircraft of proximity to terrain comprising:
- a computer readable storage medium having computer readable program code means embodied in said medium, said computer readable program code means comprising:

ñ) U)

[] 5 |--

1

2

3

4

1

2

1

2

3

4

5

- 70. The computer program product of claim 69 wherein said second computer instruction means further defines said look ahead/look down alert envelope as comprising a first caution envelope and a second warning envelope.
- 71. The computer program product of claim 70 further comprising a fourth computer instruction means for outputting a first alert signal when said subset of the stored terrain information is located within the boundaries of said caution envelope and outputting a second alert signal when said subset of the stored terrain information is located within the boundaries of said warning envelope.
- 72. The computer program product of claim 69 further comprising a fourth computer instruction means for outputting a video control signal, wherein said video control signal is useful for controlling representation of terrain on a video display in various colors according to a degree of terrain threat.
- 73. The computer program product of claim 69 further comprising a fourth computer instruction means for outputting an aural alert.
- 74. The computer program product of claim 69 further comprising a fourth computer instruction means for outputting a video control signal to control representation on a display of a background terrain data proximate the aircraft:
- in a first color for terrain located more than a predetermined amount relative to a current altitude of the aircraft wherein said predetermined amount is a first value for a

6 cruise phase of flight and a second value for an approach phase of flight and a third value for 7 a landing phase of flight; and 8 in a second color for terrain located less than said predetermined amount 9 relative to said current altitude. 1 75. The computer program product of claim 74 further comprising a fifth 2 computer instruction means for defining said cruise, approach and landing phases as a 3 function of said speed of the aircraft. 1 76. The computer program product of claim 69 further comprising a fourth 2 computer instruction means for defining a look up envelope and wherein said third computer 3 instruction means outputs said alert signal when said subset of terrain is located within said **C)** 4 look up envelope. 77. A ground proximity warning system for rotary wing aircraft Ш2 Ц/ comprising: **L**. 3 a warning computer including: 14 15 15 15 16 (a) an input for receiving signals representative of a position of the aircraft, a flight path angle of the aircraft and a speed of the aircraft, and coupled to a database of stored terrain information; (b) an output; and **⊨** 8 (c) a signal processor, coupled to said input and to said output for: 9 (i) defining an alert envelope, wherein boundaries of said alert envelope are determined as a function of the flight path angle, a look ahead distance, 10 11 and a terrain floor boundary; wherein said terrain floor boundary comprises a 12 function of an aircraft altitude and said speed, and wherein said look ahead 13 distance comprises a function of a distance to transition from a first phase of 14 flight to a hover phase of flight; and 15 (ii) outputting an alert signal when a subset of the stored terrain 16 information is located within the boundaries of said alert envelope; and 17 a display, having an display input coupled to said output of said warning 18 computer, for displaying said terrain data proximate the aircraft in various colors 19

according to a degree of terrain threat.

1		78.	The system of claim 77 wherein said warning computer comprises a			
2	general purpos	al purpose processor.				
1		79.	The system of claim 77 wherein said speed comprises a groundspeed			
2	of the aircraft.					
1		80.	The system of claim 77 wherein the aircraft is a tilt rotor.			
1		81.	A ground proximity warning system for rotary wing aircraft			
2	comprising:		5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			
3		a warn	ing computer including:			
4		(a) an	input for receiving signals representative of a position of the aircraft, a			
다 5 설 5	flight p	ath ang	gle of the aircraft and a speed of the aircraft, and coupled to a database			
4 6	of store	ed terra	in information;			
መ ሀ1 7		(b) an	output; and			
LJ 8		gnal processor, coupled to said input and to said output for:				
빏 9		(i)	defining an alert envelope, wherein boundaries of said alert envelope			
		are det	ermined as a function of the flight path angle, a look ahead distance,			
Uh 1		and a t	errain floor boundary; wherein said terrain floor boundary comprises a			
<u>j</u> 12		function	on of an aircraft altitude and said speed, and wherein said look ahead			
		distanc	ce comprises a function of a distance to transition from a first phase of			
14		flight t	to a hover phase of flight; and			
15		(ii) outputting an alert signal when a subset of the stored terrain			
16	information is located within the boundaries of said alert envelope; and					
17		a displ	ay, having an display input coupled to said output of said warning			
18	computer, for:					
19		(a) dis	playing said terrain data located in the boundaries of said alert envelope			
20	in vario	in various colors according to a degree of terrain threat; and				
21		(b) dis	playing terrain data proximate the aircraft:			
22		(i)	in a first color for terrain located more than a predetermined amount			
23		relativ	e to a current altitude of the aircraft wherein said predetermined amount			
24		is a fir	st value for a cruise phase of flight and a second value for an approach			
25		phase of	of flight and a third value for a landing phase of flight; and			

2	6	(ii) in a second color for terrain located less than said predetermined				
2	7	amount relative to said current altitude.				
	1		82.	The system of claim 77 wherein the aircraft is a tilt rotor.		
	1		83.	The method of claim 14 wherein said speed comprises a groundspeed		
	2	of the aircraft.				
	1		84.	The computer program product of claim 20 wherein said speed		
	2	comprises a groundspeed of the aircraft.				
!	1		85.	The method of claim 39 wherein said speed comprises a groundspeed		
grossi .	2	of the aircraft.				
	1		86.	The computer program product of claim 45 wherein said speed		
	2	comprises a gr	oundsp	eed of the aircraft.		
	1		87.	The method of claim 61 wherein said speed comprises a groundspeed-		
	2	of the aircraft.				
	1		88.	The computer program product of claim 69 wherein said speed		
	2	comprises a gr	oundsp	eed of the aircraft.		
	1		89.	The method of claim 1 wherein said look ahead distance comprises a		
	2	function of a d	ictance	to a negrect runnyay		