variable X with range \mathbb{R} has pdf $f(x) = \frac{1}{x\sqrt{2\pi}} \exp \{-\frac{(x-\mu)^2}{2\pi^2}\}$, for some $\mu, \sigma \in \mathbb{R}, \sigma > 0$. X hash mean μ and variance σ^2 , and $X \sim N(\mu, \sigma^2)$.

Linear Transformations of Normal Random Variables: To standardise any Normal random variable: $X \sim N(\mu, \sigma^2) \implies$ $\frac{x-\mu}{\sigma} \sim N(0, 1)$. Cdf: $F_X(x) = P\left(Z \leq \frac{x-\mu}{\sigma}\right) = \Phi\left(\frac{x-\mu}{\sigma}\right)$.

Normal distribution $N(\mu, \sigma^2)$: A Normal (or Gaussian) random

 $\phi_X(t) = e^{itu-\frac{1}{2}\sigma^2t^2}, M_X(t) = e^{t\mu+\frac{1}{2}\sigma^2t^2}$ The cdf of X does not have an analytically tractable form for any

 (μ, σ) , so we can only write: $F(x) = \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^{x} \exp\left\{-\frac{(t-\mu)^2}{2\sigma^2}\right\} dt$. Setting $\mu = 0$, $\sigma = 1$, $Z \sim N(0, 1)$ gives the special case of the

standard Normal random variable, with simplified pdf $f(z) \equiv$

 $\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{z} e^{-t^2/2} dt$.

 $\phi(z) = \frac{1}{m} e^{-z^2/2}$. Again for cdf we can only write: $F(z) \equiv \Phi(z)$