Week 10: Interpolating Data

Common problems in data analysis are

1. Missing data: want to fill in gaps

2. Unevenly-spaced data: would like evenly spaced data

3. Differently spaced data in two data sets: want to compare data from same time, place

This requires *estimating* data at locations or times where we *don't* have a measurement

Week 11: Interpolating Data

Same underlying issue: want to fill in the gaps or re-grid onto an even sampling interval!

One way to handle this is BINNING your data and then taking the mean / median / mode in each bin – we have indirectly used this approach in Assignment 2 (annual averages)

This is not always practical since don't always have many repeat or nearby measurements

INTERPOLATION: Estimating data between some known measurement points

Done all the time, care needed

EXTRAPOLATION: Estimating data beyond the end of your measurement set

This is VERY dangerous, and should be avoided

Why interpolate or re-grid data?

- 1. Comparing / overlaying multiple data sets (maps especially)
- 2. Create evenly spaced data so we can use our running-mean code for example
- 3. If we have lots of observations in one time interval and few in another any statistics will be biased toward the time period w/ more observations want evenly gridded data
- 4. Doing spectral analysis (fourier transforms etc)

How to do this? The first thing is to define a new, evenly spaced x-axis:

Our original x-axis has a uneven spacing of data points

Our new x-axis has an even spacing: $\Delta = x_{\text{new}(j+1)} - x_{\text{new}(j)}$

Next, we want to estimate our quantity of interest, y, (e.g. temperature) at our new points, x_{new} .

There are many ways to do this.....

Let's say our original measurements are temperature, T, versus distance, x

We could estimate the temperature at each of our new points, $x_{new(i)}$ by assigning

1. The value of temp at the nearest point $x_{(i)}$ in the original time series, e.g., x_3 is closest to x_{new3} , so we could put Temperature(x_{new3}) = T_3

Name: nearest neighbor interpolation

Advantage: fast

Disadvantage: produces a "step-like" function, i.e., discontinuous

2. We could average the values of temperature at the two points x_3 and x_4

Not so great, but

3. We could add a percentage of the difference T_4 - T_3 to the value T_3 , and the % would be based on the fractional distance xnew₃ is toward x_4 from x_3

Name: linear interpolation

Advantage: (1) still pretty fast, (2) produces continuous function Disadvantage: "corners" at data points, discontinuous first derivative Let's say our original measurements are temperature, T, versus distance, x

4. We might want our estimates to be more smoothly varying and fit a polynomial. A better version of this approach involves the use of functions called **splines**.

Name: cubic splines

Advantage: smooth function, continuous second derivative

Disadvantage: slower (not big deal), can produce "overshoots" in large data gaps