

CÍCERO MIGUEL DA SILVA FELIPE SANTOS ROCHA GUILHERME FONTES DE JESUS LUAN FABRICIO DE CARVALHO NICEU SANTOS BIRIBA

ATIVIDADE_2_DEFINITIVA
DADOS DE SERGIPE NO ENEM

SÃO CRISTÓVÃO 2023

Plano de Projeto	3
Introdução	3
Objetivos do Projeto	3
Diagramas	4
1. Diagrama de casos de uso	4
2. Diagrama de classes	5
3. Diagrama de sequência	6
Modelo de dados	8
Modelo conceitual	8
Identificação de Entidades	8
Identificação de Atributos	
Diagrama conceitual	10
Modelo Físico	
Link GitHub:	
https://github.com/Luan-F/es2-documentos	11

Plano de Projeto

Introdução

Objetivo

Desenvolver um sistema para análise e visualização dos microdados do ENEM do Estado de Sergipe de forma que aprimore significativamente a usabilidade dessa visualização de dados.

Escopo

O sistema abrangerá desde a importação dos dados até a visualização intuitiva por meio de tabelas e gráficos.

Objetivos do Projeto

- Desenvolver um sistema robusto e eficiente.
- Garantir acessibilidade e usabilidade.
- Implementar funcionalidades de importação, processamento, filtragem, ordenação, exportação e geração de gráficos.

Diagramas

1. Diagrama de casos de uso

Justificativa: Esse diagrama é essencial para representar as interações entre os atores (usuários e sistemas) e o sistema em questão. Ele fornece uma visão clara e compreensível dos requisitos funcionais do sistema, mostrando as funcionalidades que serão disponibilizadas para os usuários e como essas funcionalidades se relacionam.

2. Diagrama de classes

Justificativa: O Diagrama de Classes é utilizado para representar a estrutura estática do sistema, mostrando as classes, seus atributos, métodos e os relacionamentos entre elas. Ele é fundamental para compreender a organização das entidades no sistema, facilitando a modelagem e o entendimento do domínio do problema.

3. Diagrama de sequência

Justificativa: Esse diagrama facilita a comunicação entre a equipe ao mostrar a ordem das mensagens trocadas entre objetos, proporcionando uma visão temporal das operações.

Ator Principal:

Usuário Comum

Cenário:

O Usuário Comum acessa o sistema para visualizar os microdados do ENEM do Estado de Sergipe.

Diagrama:

Ator Principal:

Administrador

Cenário:

O Administrador acessa o sistema para realizar a importação dos dados do ENEM.

Diagrama:

Modelo de dados

Para o modelo de dados escolhemos representar de 2 formas (Conceitual e Físico).

Justificativa: Esses modelos são essenciais para representar a estrutura de dados do sistema. O modelo conceitual ajuda a entender as entidades e relacionamentos de alto nível, enquanto o modelo físico detalha a implementação real do banco de dados, incluindo tipos de dados, chaves primárias, chaves estrangeiras, restrições de integridade, índices e outras características específicas do banco de dados. Esses modelos proporcionam uma visão abrangente do sistema, facilitando o processo de design, implementação e manutenção do banco de dados, garantindo consistência e eficiência na manipulação dos dados.

Modelo conceitual

Identificação de Entidades

Participante; Usuario; Escolaridade; LocalDeAplicacao; ProvaPorArea; Redacao.

Identificação de Atributos

Participante

- Atributos:

NumeroInscricao: string

AnoEnem: int FaixaEtaria: string

Sexo: string

EstadoCivil: string

Raca: string

Nacionalidade: string Treineiro: boolean

Usuario

- Atributos:

IsAdministrador: bool

Nome: string Email: string Senha: char

Escolaridade

- Atributos:

NumeroInscricao: string SituacaoConclusao: string

AnoConclusao: int
TipoEscola: string
TipoEnsino: string
CodigoEscola: string
NomeMunicipio string:
CodigoMunicipio: int

CodigoUF: int

SiglaUF: string

DependenciaAdministrativa: string

ZonaLocalizacao: string

SitucaoFuncionamento: string

LocalDeAplicacao

- Atributos:

NumeroInscricao: string NomeMunicipio: string CodigoMunicipio: int

CodigoUF: int SiglaUF: string

ProvaAreaConhecimento

- Atributos:

NumeroInscricao: string PresencaCN: boolean PresencaCH: boolean PresencaLC: boolean PresencaMT: boolean CodTipoProvaCN: int CodTipoProvaCH: int CodTipoProvaLC: int CodTipoProvaMT: int

NotaCN: real NotaCH: real NotaLC: real NotaMT: real

VetRespCN: string VetRespCH: string VetRespLC: string VetRespMT: string VetGabCN: string VetGabCH: string VetGabLC: string VetGabMT: string

LinguaEstrangeira: string

Redacao

- Atributos:

NumInscricao

StatusRedacao - string

NotaComp1 - real

NotaComp2 - real

NotaComp3 - real

NotaComp4 - real

NotaComp5 - real

NotaRedacao - real

Diagrama conceitual

Modelo Físico

Justificativa: O modelo físico de dados é crucial para representar a estrutura de dados de forma detalhada e específica para um sistema de banco de dados. Ele inclui informações como tipos de dados, chaves primárias, chaves estrangeiras, restrições de integridade, índices e outras características específicas do banco de dados. Ao transformar o modelo conceitual em um modelo físico, estamos traduzindo a visão de alto nível em algo que pode ser implementado diretamente no sistema de gerenciamento de banco de dados (SGBD).

Link GitHub:

https://github.com/Luan-F/es2-documentos