УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа _	P3110	К работе допущен
Студент	Романов Артём Максимович	Работа выполнена
Препод	аватель Коробков М. П.	Отчет принят

Рабочий протокол и отчет по лабораторной работе № 1.03

Изучение центрального соударения двух тел.

Проверка второго закона Ньютона

1. Цель работы.

- 1. Исследование упругого и неупругого центрального соударения тел на примере тележек, движущихся с малым трением
- 2. Исследование зависимости ускорения тележки от приложенной силы и массы тележки

2. Схема установки

- 1. Рельс с сантиметровой шкалой на лицевой стороне
- Тележка
- 3. Воздушный насос
- 4. Источник питания насоса ВС 4-12
- 5. Опоры рельса
- 6. Опорная плоскость (поверхность стола)
- 7. Фиксирующий электромагнит
- 8. Оптические ворота
- 9. Цифровой измерительный прибор ПКЦ-3
- 10. Пульт дистанционного управления прибором ПКЦ-3
- 11. Линейка угольник

3. Измерительные приборы

Nº	Наименование	Предел	Цена	Класс	۸
IN⊇	Паименование	измерений	деления	точности	Δ
1	Линейка на рельсе	1,3 м	1 см/дел	-	5 мм
2	ПКЦ-3 в режиме	9,99 м/с	0.01г	_	0.01
	измерения скорости	3,33 W/C	0.011		м/с
3	Лабораторные весы	250 г	0.01г	-	0,01г

4. Объект исследования

- Упругое, неупругое соударение тележек на горизонтальном рельсе
- Ускорение тележки под действием постоянной силы

5. Метод экспериментального исследования.

- 1. Многократные прямые измерения
- 2. Косвенные измерения

6. Рабочие формулы и исходные данные

$$p_{10x} = m_1 v_{10x}$$
, - импульс системы до соударения

$$p_{1x} = m_1 v_{1x}, p_{2x} = m_2 v_{2x}$$

 $p = (m_1 + m_2)v$ - импульс системы после соударения

$$\delta_p = \Delta p_x/p_{10x} = rac{(p_{1x} + p_{2x})}{p_{10x}} - 1$$
 - относительные изменения импульса

$$\delta_W = rac{\Delta W_{
m k}}{W_{
m no}} = rac{m_1 v_{1x}^2 + m_2 v_{2x}^2}{m_1 v_{10x}^2} - 1$$
 - относительные изменения кинетической энергии

системы

$$ar{\delta_p} = rac{\sum_{i=1}^N \delta_{pi}}{N}$$
 $ar{\delta_W} = rac{\sum_{i=1}^N \delta_{Wi}}{N}$ - средние значения относительных

изменений импульса и энергии

$$\Delta ar{\delta}_p = t_{a_{ ext{man}}}$$
, $N \sqrt{rac{\sum_{i=1}^N \left(\delta_{pi} - \overline{\delta}_p
ight)^2}{N(N-1)}}$ $\Delta ar{\delta}_W = t_{lpha_{ ext{aca}}}$, $N \sqrt{rac{\sum_{i=1}^N \left(\delta_{W_i} - \overline{\delta}_W
ight)^2}{N(N-1)}}$ - погрешности их средних

значений

$$\delta_w^{(3)} = \Delta W_{\rm x}/W_{{
m x}0} = \frac{(m_1+m_2)v_2^2}{m_1v_{10}^2} - 1$$
 — экспериментальное значение относительного

изменения механической энергии

$$\delta_W^{({
m T})} = -rac{W_{
m nor}}{rac{m_1 v_{10}^2}{2}} = -rac{m_2}{m_1 + m_2}$$
 -1 - теоретическое значение относительного изменения

механической энергии

$$a=rac{(v_2)^2-(v_1)^2}{2(x_2-x_1)}$$
 – ускорение тележки

$$T = m(g - a)$$
 — сила натяжения нити

РЗ110 Романов Артём Максимович

Таблица 1.Р_

. № опыта	m_1 , Γ	т2, г	v_{10x} , m/c	v_{1x} , m/c	v_{2x} , m/c
1			0,49	-0,15	0,31
2	52,1	99,5	0,49	-0,13	0,32
3	2011	33,2	0,49	-0,09	0,30
4			0,49	-0,09	0,31
5			0,48	-0,15	0,31

Таблица 2.Р_

№ опыта	m_1 , Γ	т2, г	<i>v</i> ₁₀ , м/с	v , m/c
1		-	0,47	0,11
2	1 11 1	1010	0,48	0,16
3	54,6	102,6	0,48	0,16
4			0,46	0,15
5			0,48	0,16

Таблица 3.𝔻 Разгоняемое тело − тележка 1. M_1 =. 50.6

№ опыта	Состав гирьки	т, г	v_1 , M/c	v ₂ , м/с
1	подвеска	2,1	0,26	0,60
2	подвеска + одна шайба	2,9	0,28	0,69
3	подвеска + две шайбы	37	0,40	0,87
4	подвеска + три шайбы	4,5	0,43	0,94
5	подвеска + четыре шайбы	513	0,49	1,08
6	подвеска + пять шайб	6,1	0,51	1,15
7	подвеска + шесть шайб	6.9	0,52	1,09

P3110 POMAHOB APTEM MAKEUMOBUY

Таблица 1.1

№ опыта	m_1 , Γ	т2, г	v_{10x} , M/c	v_{1x} , m/c	v_{2x} , m/c
1			0,48	0	0,46
2		600	0,49	0	0,47
3	52,1	20,0	0,49	0	0,46
4			0,48	0	0,46
5			0,48	0	0,46

Таблица 2.1

№ опыта	m_1 , Γ	<i>т</i> 2, г	v_{10} , m/c	υ , м/c
1			0,48	0,21
2	110	1000	0,45	0,21
3	24,6	53,6	0,48	0,21
4			0,48	0,22
5			0,46	0,20

Таблица 3.1. Разгоняемое тело – тележка 1. M_1 =...99,6

№ опыта	Состав гирьки	т, г	v₁, м/c	v2, м/c
1	подвеска	2,1	0,12	0,30
2	подвеска + одна шайба	2,9	0,24	0,56
3	подвеска + две шайбы	3,7	0,24	0,55
4	подвеска + три шайбы	4,5	0,26	0,63
5	подвеска + четыре шайбы	57.3	0,30	0,73
6	подвеска + пять шайб	6,1	0,32	0,77
7	подвеска + шесть шайб	6,9	0,37	0,87

7. Расчёт результатов косвенных измерений Задание 1

1) Расчёт импульсов тел по данным таблицы 1.1

Таблица 4.1

№ опыта	<i>р</i> _{10х} мН⋅с	p_{1x} м $\mathbf{H}\cdot\mathbf{c}$	<i>р</i> _{2<i>x</i>} мН ⋅ с	δ_p	δ_W
1	25,01	0	23,23	-0,07	-0,11
2	25,53	0	23,74	-0,07	-0,11
3	25,53	0	23,23	-0,09	-0,15
4	25,01	0	23,23	-0,07	-0,11
5	25,01	0	23,23	-0,07	-0,11

$$\delta_p = \frac{\Delta p_x}{p_{10x}} = \frac{(p_{1x} + p_{2x})}{p_{10x}} - 1 = \frac{(0 + 23,23)}{25,008} - 1 = -0,07$$

$$\delta_W = \frac{\Delta W_k}{W_{n0}} = \frac{m_1 v_{1x}^2 + m_2 v_{2x}^2}{m_1 v_{10x}^2} - 1 = \frac{52,1 * 0^2 + 50,5 * 0,46^2}{52,1 * 0,48^2} - 1 = -0,11$$

2) Расчёт средних значений $\bar{\delta}_p$, $\bar{\delta}_w$ относительных изменений импульса и энергии по двум соседним колонкам таблицы 4.1

$$\bar{\delta}_p = \frac{\sum_{i=1}^N \delta_{pi}}{N} = \frac{-0.37}{5} = -0.074$$

$$\bar{\delta}_W = \frac{\sum_{i=1}^N \delta_{Wi}}{N} = \frac{-0.59}{5} = -0.118$$

3) Нахождение погрешностей их средних значений

 $t_{lpha_{
m дов}$, $N}$ — коэффициент Стьюдента для доверительной вероятности $lpha_{
m дов}=0.95$ и количества измерений N. $t_{lpha_{
m дов}}$, N=2.8

$$\Delta \bar{\delta}_p = t_{a_{\text{man}}}, N \sqrt{\frac{\sum_{i=1}^{N} (\delta_{pi} - \bar{\delta}_p)^2}{N(N-1)}} = 2.8 \sqrt{\frac{\sum_{i=1}^{N} (-0.07 + 0.37)^2}{5(5-1)}} = 0.011$$

$$\Delta \bar{\delta}_W = t_{\alpha_{\text{aca}}}, N \sqrt{\frac{\sum_{i=1}^{N} (\delta_{W_i} - \bar{\delta}_W)^2}{N(N-1)}} = 2.8 \sqrt{\frac{\sum_{i=1}^{N} (-0.11 + 0.11)^2}{5(5-1)}} = 0.02$$

4) Аналогично по данным из таблицы 1.2 заполняем следующую таблицу по предыдущим формулам. Результат представлен в таблице 4.2

Таблица 4.2

Nº	p_{10x} , мН \cdot с	p_{1x} , мН·с	p_{2x} , мН·с	σ_p	σ_W
1	25,53	-7,812	30,85	-0,09	-0,14
2	25,53	-6,77	31,84	-0,02	-0,11
3	25,53	-4,69	29,85	-0,01	-0,25
4	25,53	-4,69	30,85	0,02	-0,2
5	25,008	-7,82	30,85	-0,08	-0,11

$$\begin{split} \bar{\delta}_p &= \frac{\sum_{i=1}^N \delta_{pi}}{N} = \frac{-0.18}{5} = -0.036 \\ \Delta \bar{\delta}_p &= t_{a_{\text{man}}}, N \sqrt{\frac{\sum_{i=1}^N \left(\delta_{pi} - \bar{\delta}_p\right)^2}{N(N-1)}} = 2.8 \sqrt{\frac{\sum_{i=1}^N \left(-0.07 + 0.37\right)^2}{5(5-1)}} = 0.06 \\ \bar{\delta}_W &= \frac{\sum_{i=1}^N \delta_{Wi}}{N} = \frac{-0.118}{5} = -0.16 \\ \Delta \bar{\delta}_W &= t_{\alpha_{\text{aca}}}, N \sqrt{\frac{\sum_{i=1}^N \left(\delta_{Wi} - \bar{\delta}_W\right)^2}{N(N-1)}} = 2.8 \sqrt{\frac{\sum_{i=1}^N \left(-0.11 + 0.11\right)^2}{5(5-1)}} = 0.08 \end{split}$$

5) По данным таблицы 2.1 заполняем следующую таблицу

Таблица 5.1

Nº опыта	<i>р</i> ₁₀ , мН∙с	<i>р,</i> мН · с	δ_p	$\delta_W^{(\mathfrak{I})}$	$\delta_W^{(\mathrm{T})}$
1	26,21	11,47	-0,56	-0,62	
2	24,57	11,47	-0,53	-0,57	
3	26,21	11,47	-0,56	-0,62	-0,50
4	26,21	12,01	-0,54	-0,58	
5	25,12	10,92	-0,57	-0,63	

Аналогично по формулам вычислим значения $\bar{\delta}_p$ и $\bar{\delta}_W$ и их погрешности по ранее использованным формулам

$$\bar{\delta}_p = \frac{\sum_{i=1}^N \delta_{pi}}{N} = -0.55$$

$$\bar{\delta}_W = \frac{\sum_{i=1}^N \delta_{Wi}}{N} = -0.6$$

$$\Delta \bar{\delta}_{p} = t_{a_{\text{man}}}, N \sqrt{\frac{\sum_{i=1}^{N} \left(\delta_{pi} - \bar{\delta}_{p}\right)^{2}}{N(N-1)}} = 0,02$$

$$\Delta \bar{\delta}_{W} = t_{a_{\text{aca}}}, N \sqrt{\frac{\sum_{i=1}^{N} \left(\delta_{W_{i}} - \bar{\delta}_{W}\right)^{2}}{N(N-1)}} = 0,03$$

6) По данным таблицы 2.2 заполняем следующую таблицу

Таблица 5.2

№ опыта	<i>р</i> _{10<i>x</i>} , мН∙с	<i>р,</i> мН · с	σ_p	$\sigma_W^{(\mathfrak{g})}$	$\sigma_W^{(ext{r})}$
1	25,66	6,01	-0,77	-0,84	
2	26,21	8,74	-0,67	-0,68	
3	26,21	8,74	-0,67	-0,68	-0.65
4	25,12	8,19	-0,67	-0,69	
5	26,21	8,74	-0,67	-0,68	

$$\bar{\delta}_{p} = \frac{\sum_{i=1}^{N} \delta_{pi}}{N} = -0.69$$

$$\bar{\delta}_{W} = \frac{\sum_{i=1}^{N} \delta_{Wi}}{N} = -0.72$$

$$\bar{\delta}_{W} = \frac{\sum_{i=1}^{N} \delta_{Wi}}{N} = -0.72$$

$$\Delta \bar{\delta}_{p} = t_{a_{\text{man}}}, N \sqrt{\frac{\sum_{i=1}^{N} (\delta_{pi} - \bar{\delta}_{p})^{2}}{N(N-1)}} = 0,05 \qquad \Delta \bar{\delta}_{W} = t_{\alpha_{\text{aca}}}, N \sqrt{\frac{\sum_{i=1}^{N} (\delta_{W_{i}} - \bar{\delta}_{W})^{2}}{N(N-1)}} = 0,09$$

Задание 2

Исследование зависимости ускорения тележки от приложенной силы и массы тележки. Проверка второго закона Ньютона

1) Используя значения координат оптических ворот ($x_1=0.150$ m, $x_2=0.800$ m) и данные из таблицы 3.1 вычисляем ускорение a тележки и силу T натяжения нити: Ускорение свободного падения берём g=9.82 m/c² (на широте C-Петербурга)

Таблица 6.1

№ опыта	т, г	а, м/с ²	<i>Т,</i> мН
1	2,1	0,22	20,13
2	2,9	0,31	27,56
3	3,7	0,46	34,6
4	4,5	0,58	41,53
5	5,3	0,71	48,21
6	6,1	0,82	54,86
7	6,9	0,96	62,82

Используя данную таблицу, нанесём на график точки экспериментальной зависимости T от a. См. в приложении 1.1

Найдём массу M_I тележки (как коэффициент наклона экспериментальной зависимости T(a)), величину силы трения (как свободный коэффициент) и погрешность массы тележки методом наименьших квадратов.

$$M_1 = \frac{\sum (a_i - \hat{a})(T_i - \dot{T})}{\sum (a_i - \hat{a})^2} = 63,96$$
 $F_{\rm rp} = \dot{T} - M_1 \hat{a} = -1,12$

Таблица 6.2

№ опыта	т, г	а, м/с ²	<i>Т,</i> мН
1	2,1	0,09	20,48
2	2,9	0,16	27,88
3	3,7	0,20	35,57
4	4,5	0,25	43,01
5	5,3	0,34	50,19
6	6,1	0,38	57,54
7	6,9	0,48	64,40

Используя данную таблицу, нанесём на график точки экспериментальной зависимости T от a. См. в приложении 1.2

$$M_1 = \frac{\sum (a_i - \hat{a})(T_i - \dot{T})}{\sum (a_i - \hat{a})^2} = 112,18$$
 $F_{\rm rp} = \dot{T} - M_1 \hat{a} = 12,23$

11. Графики

12. Окончательные результаты.

1) Доверительные интервалы для относительных изменений импульса и энергии при упругом соударении двух легких тележек и соударении легкой тележки с утяжеленной.

Две легкие тележки

$$\bar{\delta}_p = -0.074 \pm 0.011$$

 $\bar{\delta}_W = -0.118 \pm 0.02$

Легкая и утяжеленная

$$\bar{\delta}_p = -0.36 \pm 0.06$$

$$\bar{\delta_W} = -0.16 \pm 0.08$$

2) Доверительные интервалы для относительных изменений импульса и энергии при неупругом соударении двух легких тележек и соударении легкой тележки с утяжеленной.

При неупругом соударении

$$\bar{\delta}_p = -0.55 \pm 0.02$$

$$\delta_W^{(3)} = -0.6 \pm 0.03$$

При соударении легкой с тяжелой

$$\bar{\delta}_p = -0.69 \pm 0.05$$

$$\delta_p = -0.69 \pm 0.05$$
 $\delta_W^{(3)} = -0.72 \pm 0.09$

3) Теоретические значения относительного изменения энергии при неупругом соударении двух легких тележек и соударении легкой тележки с утяжеленной. Вывод: попадает или нет теоретическое значение в указанные в п.2 экспериментальные доверительные интервалы

При неупругом соударении

$$\delta_w^{(T)} = -0.5$$

 $\delta_w^{(T)} = -0.5$ При соударении легкой с тяжелой $\delta_w^{(T)} = -0.65$

$$\delta_w^{(T)} = -0.65$$

Можно сделать вывод о том, что теоретические и экспериментальные значения не совпадают

4) Доверительные интервалы для масс легкой и утяжеленной тележек, найденные из экспериментальной зависимости силы натяжения от ускорения тележки. Вывод о согласии табличных значений масс тележек с этими доверительными интервалами.

$$M_1 = 63,96 \pm 18,47$$

Утяжеленная тележка

$$M_1 = 112,18 \pm 11,03$$

13. Выводы и анализ результатов работы.

В данной лабораторной работе я исследовал упругое и неупругое центральное соударения тел на примере тележек, движущихся с малым трением, а также исследовал зависимость ускорения тележки от приложенной силы и массы тележки. Все полученные мною результаты указаны в результатах работы.