

Avaliação de Desempenho de Programas Paralelos

Programação Paralela Avançada - PPA

Mestrado em Computação Aplicação – MCA Programa de Pós-Graduação em Computação Aplicada – PPGCA Centro de Ciências Tecnólogicas - CCT Universidade do Estado de Santa Catarina – UDESC

Profs Maurício A. Pillon e Guilherme P. Koslovski

Linha de Sistemas Computacionais Grupo de Pesquisa de Redes de Computadore e Sistemas Distribuídos Laboratório de Pesquisa LabP2D

Agenda

- Projeto de programas paralelos
 - Metodologia de particionamento

• Exemplo: Multiplicação de matrizes

Avaliação de desempenho de aplicações paralelas

Considerações finais

Multiplicação de Matrizes

Avaliação de desempenho de aplicações paralelas

- Mensurar o impacto do paralelismo sob uma determinada aplicação/algoritmo
- Conceitos
 - Aceleração
 - Eficiência
 - Escalabilidade

#UDESC

Avaliação de desempenho de aplicações paralelas

- Algoritmos sequenciais são avaliados em função de seus tempos de execução, normalmente expressos em função do tamanho de sua entrada
- Algoritmos paralelos não dependem exclusivamente do tamanho da entrada sendo também influenciados por suas computações relativas e velocidades de comunicação entre os processos
- Usando-se duas vezes mais recursos de hardware espera-se que um programa seja executado duas vezes mais rápido!
- Em programas paralelos isto raramente acontece devido a perdas associadas (overheads) com o paralelismo

Overhead de paralelismo

- Tempo necessário para coordenar as tarefas paralelas
- Tempo para iniciar uma tarefa
 - Identificação da tarefa
 - Procura de um processador
 - Carregamento da tarefa
 - Carregamento dos dados
- Tempo para terminar uma tarefa
- Sincronização
- Uma quantificação precisa destas perdas é essencial para compreender a performance de programas paralelos

Execução sequencial x paralela

Fontes de perdas

Fontes de perdas

Fontes de perdas

- Interação entre processos
 - Qualquer sistema paralelo n\u00e3o trivial necessita que suas tarefas interajam (comunica\u00e7\u00e3o)
 - Geralmente a fonte mais significativa de perdas em processamento paralelo é o tempo gasto em comunicações de dados
- Ociosidade de processadores
 - Desbalanceamento de carga
 - Sincronização
 - Presença de componentes seriais em um programa
- Em muitas aplicações paralelas é impossível predizer o tamanho das subtarefas

Tempo de execução

- Tempo de execução serial (TS)
 - É o tempo decorrido entre o início e o final de sua execução em um computador sequencial
- Tempo de execução paralelo (TP)
 - É o tempo transcorrido entre o início de uma computação paralela até o término do último elemento de processamento
- Aceleração (speedup)
- S(n) = TS/TP

Speedup: ideal

Speedup: limites

Eficiência

- É a medida da fração de tempo para o qual um elemento de processamento é empregado de forma proveitosa.
- Razão do speedup e do número de elementos de processamento
- S(n) = speedup
- n = número de processadores
- E = (S(n) / n) * 100

Speedup máximo

Speedup

- S(n) > n (superlinear)
 - Algoritmo sequencial sub-ótimo
 - Característica particular da arquitetura da máquina paralela
- S(n) < n (sub-ótimo)
 - Lei de Amdahl
 - Sobrecarga do paralelismo

Amdahl's law

- Considera que o tamanho do problema é fixo
- Speedup é limitado pela fração serial

```
Speedup = 1 / (s + p/N)
    s = fração sequencial
    p = fração paralela
    N = número de processadores
    s + p = 1
    Max speed up = 1/s
```


Amdahl's law

Mesmo com número infinito de processadores a aceleração é limitada a 1/ s

Escalabilidade

- Escalabilidade de hardware ou de arquitetura
 - Aumento do tamanho do sistema impacta no desempenho
 - Facilidade de agregar processadores
- Escalabilidade do algoritmo paralelo
 - Algoritmo pode suportar um aumento do tamanho do problema
 - Exemplo: adição de matrizes: duplica o tamanho da matriz, duplica o número de passos
 - Exemplo: multiplicação de matrizes: duplica o tamanho da matriz, quadruplica o número de passos
 - Exemplo: aumentar a precisão do tempo

Lei de Gustafson (1988)

- Análise da Lei de Amdahl considerando escalabilidade
- Considera que o tempo de execução paralela é fixo, assim como ft
 - Parte serial é fixa sendo independente da carga
 - "pode-se resolver problemas maiores no mesmo intervalo de tempo"
- Speed up = s + Np

Lei de Gustafson (1988)

FIGURE 2a. Fixed-Sized Model for Speedup = 1/(s + p/N)

FIGURE 2b. Scaled-Sized Model for Speedup = s + Np

Considerações finais

- Teoricamente, o speedup nunca pode exceder o número de elementos de processamento p
- Na prática ocorre o fenômeno conhecido como superlinear speedup
 - O trabalho realizado por um algoritmo sequencial é maior que sua formulação paralela
 - Características de hardware (exemplo: cache)
- Somente um sistema paralelo ideal contendo p elementos de processamento pode fornecer um speedup igual a p
- Na prática não é atingido pois os elementos de processamento não dedicam 100% de tempo para a execução do programa