Asymptotic Notations

Acknowledgements: Dr. Saleena N, CSED

Rate of Growth or Order of Growth

- Rate/Order of growth Considering the leading term of a formula
- Ignoring the lower order terms insignificant for large values of n
- Ignoring leading term's constant coefficient constant factors are less significant

Rate of Growth or Order of Growth

- $T(n) = an^2 + bn + c$
- we say T(n) is $\Theta(n^2)$ ("theta of *n*-squared")
 - simplifying abstraction
 - consider only the leading term of a formula
 - lower order terms- relatively insignificant for large values of n
 - ignore the leading term's constant coefficients

Asymptotic Efficiency

- input size is large enough, only the order of growth is relevant
- asymptotic efficiency how the running time increases with the size of the input in the limit

asymptotically more efficient - best choice for all but very small inputs

Asymptotic Notations

- Domain of functions Set of Natural Numbers N = 0, 1, 2... (as given by CLRS)
 - T(n) usually defined only on integer input sizes

$$T(n) = an^2 + bn + c$$

- T(n) is $\Theta(n^2)$ ("theta of *n*-squared")
- T(n) is $O(n^2)$ ("Big Oh of *n*-squared")
- T(n) is $\Omega(n^2)$ ("Omega of *n*-squared")

O notation (big-Oh)

- $T(n) = n^2 + 2n + 1$ for n > 1, T(1) = 4
- $T(n) \leq 4n^2$, for $n \geq 1$
- ► $T(n) \le cn^2$, for $n \ge n_0$ (c=4 and n_0 =1)
- we say T(n) is $O(n^2)$

O notation (big-Oh)

- $T(n) = n^2 + 2n + 1$ for n > 1, T(1) = 4
- ▶ How to get c and n_0 such that $T(n) \le cn^2$, for $n \ge n_0$
 - c should be such that $n^2 + 2n + 1 \le cn^2$
 - divide by n^2 , $1 + \frac{2}{n} + \frac{1}{n^2} \le c$
 - for $n \ge 1$, we can choose $c \ge 4$
- ► $T(n) \le cn^2$, for $n \ge n_0$ (c=4 and $n_0=1$)
- we say T(n) is $O(n^2)$
- $n^2 + 2n + 1$ is $O(n^2)$

O notation

- ightharpoonup T(n) is $O(n^2)$
 - There are positive constants c and n_0 such that $T(n) \le cn^2$ for $n \ge n_0$

Some functions:

$$T_1(n) = 5n^2$$
 $T_2(n) = n^2 + 2n$

 $T_3(n) = n+5$

•
$$T_1(n) \leq 5n^2$$
 for $n \geq 1$

•
$$T_2(n) \le 2n^2 \text{ for } n \ge 2$$

•
$$T_3(n) \le n^2$$
 for $n \ge 3$

Generalizing.....

- There exists positive constants c=5 and $n_0=1$ such that $T_1(n) \le cn^2$ for $n \ge n_0$
- There exists positive constants c=2 and $n_0=2$ such that $T_2(n) \le cn^2$ for $n \ge n_0$
- There exists positive constants c=1 and $n_0=3$ such that $T_3(n) \le cn^2$ for $n \ge n_0$ There exists positive constants c and n_0 such

There exists positive constants c and n_0 such that $f(n) \le cn^2$ for $n \ge n_0$

The set $O(n^2)$ (read "big oh of n^2 " or "oh of n^2 ")

Set of all f(n) such that there exists positive constants c and n_0 such that $f(n) \le cn^2$ for all $n \ge n_0$ Set is denoted by $O(n^2)$ $T_1(n) \in O(n^2)$ $T_2(n) \in O(n^2)$ $T_3(n) \in O(n^2)$

 $O(n^2)$ is a set of functions.

 $O(n^2) = \{f(n): \text{ there exists positive constants } c \text{ and } n_0 \}$ $such that \ 0 \le f(n) \le cn^2 \text{ for all } n \ge n_0 \}$

The set $O(n^2)$ – contd.

Give some more functions that belong to the set $O(n^2)$.

$$f_1(n) = 100n^2 + n + 5$$

 $f_2(n) = 6n + 3$
 $f_3(n) = 10000n^2$

The set $O(n^3)$

- $O(n^3) = \{f(n): \text{ there exists positive constants}$ $c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cn^3 \text{ for all}$ $n \ge n_0 \}$
- Some of the elements of $O(n^3)$

$$f_4(n) = 100n^3 + 3n^2 + 2$$

 $f_5(n) = 6n + 3$
 $f(n) = 10000n^2$

Generalizing....

- $O(n) = \{f(n): \text{ there exists positive constants } c \text{ and } n_0 \}$ such that $0 \le f(n) \le c \text{ n for all } n \ge n_0 \}$
- O(n lg n) = { f(n): there exists positive constants c and n_0 such that $0 \le f(n) \le c$ n lg n for all $n \ge n_0$ }
- $O(g(n)) = \{f(n): \text{ there exists positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le c. \ g(n) \text{ for all } n \ge n_0 \}$

O-notation gives an **upper bound for a function** to within a constant factor.

f(n)=O(g(n)), if there are positive constants c and n_0 such that to the right of n_0 , the value of f(n) always lies on or below cg(n).

Source: http://www.cs.unc.edu/~plaisted/comp122/02-asymp.ppt

Going back

Insertion Sort

Worst Case Running time is $O(n^2)$

■ Worst Case Running time, $T_f(n) \le cn^2$ for all values of $n \ge n_0$ where c and n_0 are positive constants.

Normally we write f(n) is O(g(n)) or f(n)=O(g(n)) to mean "f(n) is a member of O(g(n))"

Prove $T(n) = n^3 + 20n + 1$ is $O(n^3)$

- by the Big-Oh definition, T(n) is $O(n^3)$ if $T(n) \le c \cdot n^3$ for some $n \ge n_0$
- Find out c and n_0

Exercises

1. Is
$$2n + 10 \in O(n^2)$$
?

2. Is $n^3 \in O(n^2)$?

The set $\Omega(n)$ (Read big-omega of n)

An example

```
T(n) = 2n + 3

2n \le T(n) \text{ for } n \ge 1

cn \le T(n) \text{ for } n \ge 1 \text{ and } c = 2

T(n) \text{ belongs to } \Omega(n)
```

 $\Omega(n) = \{f(n): \text{ there exists positive constants } c \text{ and } n_0 \}$ $\text{such that } 0 \le c \text{ } n \le f(n) \text{ for all } n \ge n_0 \}$

Exercises

- 1. Is $2n + 1 \in \Omega(n)$?
- 2. Is $2n^2 + 10 \in \Omega(n^2)$?
- 3. Is $n^3 \subseteq \Omega(n^2)$?

The set $\Omega(g(n))$

```
\Omega(g(n)) = \{ f(n) : \text{ there exists positive constants } c \text{ and } n_0 \}
such that 0 \le c g(n) \le f(n) \text{ for all } n \ge n_0 \}
```

 Ω -notation gives **a lower bound** for a function to within a constant factor

 $f(n) = \Omega(g(n))$, if there are positive constants c and n_0 such that to the right of n_0 , the value of f(n) always lies on or above cg(n).

Source: http://www.cs.unc.edu/~plaisted/comp122/02-asymp.ppt

The set $\Theta(n)$

An example T(n) = 2n + 3 $T(n) \le 6n$ for $n \ge 1$ T(n) is O(n) $2n \le T(n)$ for $n \ge 1$ T(n) is $\Omega(n)$ T(n) belongs to $\Theta(n)$

 $\Theta(n) = \{ f(n) : \text{ there exists positive constants } c_1, c_2 \text{ and } n_0 \text{ such that } 0 \le c_1 n \le f(n) \le c_2 n \text{ for all } n \ge n_0 \}$

The set $\Theta(g(n))$

 $\Theta(g(n)) = \{ f(n): \text{ there exists positive } constants \ c_1, \ c_2 \ and \ n_0 \ such that \ 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$

O-notation gives **tight bound** for a function to within constant factors

 $f(n) = \Theta(g(n))$, if there exists positive constants c_1 , c_2 and n_0 such that to the right of n_0 , the value of f(n) always lies between $c_1 g(n)$ and $c_2 g(n)$ inclusive.

Source: http://www.cs.unc.edu/~plaisted/comp122/02-asymp.ppt

Asymptotic notations – Formal definitions

• $O(g(n)) = \{ f(n) : \text{ there exists positive constants } c$ and $n_0 \text{ such that } 0 \le f(n) \le c \ g(n) \text{ for all } n \ge n_0 \}$

■ $\Omega(g(n)) = \{ f(n) : \text{ there exists positive constants } c \text{ and } n_0 \text{ such that } 0 \le c \ g(n) \le f(n) \text{ all } n \ge n_0 \}$

■ $\Theta(g(n)) = \{ f(n) : \text{ there exists positive constants } c_1, c_2 \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$

To make it more clear

- $f(n) = \Theta(g(n))$ g(n) is an asymptotically tight bound for f(n)
- f(n) = O(g(n)) g(n) is an asymptotic upper bound for f(n)
- $f(n) = \Omega(g(n))$ g(n) is an asymptotic lower bound for f(n)

Theorem

For any two functions f(n) and g(n), we have $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

$$\Theta(f(n)) = O(f(n)) \cap \Omega(f(n)).$$

Examples

- $f(n) = an^2 + bn + c$, where a, b, and c are constants and a > 0
- $f(n) = \Theta(n^2) \longrightarrow f(n) = \Omega(n^2) \text{ and } f(n) = O(n^2)$

- For any polynomial, p(n) of degree k we have $p(n) = \Theta(n^k)$
- Any constant function is $\Theta(n^0)$, or $\Theta(1)$.

Insertion Sort – Running Time

- Best Case running Time is $\Omega(n)$. Implies Running time on any input is $\Omega(n)$.
- Running time is not $\Omega(n^2)$.
- Worst Case running time is $\Omega(n^2)$.
- Is it correct to say best case running Time is $\Theta(n)$?

Is $O(n \lg n)$ algorithm preferred over $O(n^2)$?

- Suppose $T_1(n) \le 50 n \lg n$ and $T_2(n) \le 2n^2$
- Check the values of $T_1(n)$ and $T_2(n)$ when n=2 and n=1024
- For small input sizes, the $O(n^2)$ algorithm may run faster.
- Once the input size becomes large enough, O (n lgn) runs faster
 - irrespective of the constant factors irrespective of the implementation.

Read the corresponding Sections in CLRS.

References

- (1) Thomas H. Cormen, Charles E. Leiserson, Ronald
- L. Rivest and Clifford Stein Introduction to Algorithms, PHI, 2001.
- (2) Sara Baase and Allen Van Gelder *Computer Algorithms: Introduction to Design & Analysis*, Pearson Education, third edition, 2000.
- (3) Donald E Knuth. Big omicron and big omega and big theta. *ACM SIGACT News*, 1976.
- (4) Gilles Brassard, Paul Bratley, Fundamentals of Algorithmics, PHI, 1997.