Conjuntos: noções básicas - IV

Thaís Jordão*

March 12, 2020

PIF: Princípio da indução finita

Para proposições aplicáveis a \mathbb{N} .

PIF. Uma proposição P(n) é verdadeira para todo $n \ge n_0$, $n \in \mathbb{N}$, se

- 1. $P(n_0)$ é verdadeira;
- 2. Se P(k), com $k \ge n_0$, é verdadeira, então P(k+1) é verdadeira.

PIF: exemplos

1.
$$n^2 = 1 + 3 + \ldots + (2n - 1), n \ge 1$$
;

2.
$$1+2+\ldots+n=n(n+1)/2, n \in \mathbb{N};$$

PIF: exemplos

1.
$$n^2 = 1 + 3 + \ldots + (2n - 1), n \ge 1$$
;

2.
$$1+2+\ldots+n=n(n+1)/2, n \in \mathbb{N};$$

3.
$$2|(n^2+n), n \in \mathbb{N};$$

PIF: exemplos

1.
$$n^2 = 1 + 3 + \ldots + (2n - 1), n \ge 1$$
;

2.
$$1+2+\ldots+n=n(n+1)/2, n \in \mathbb{N};$$

3.
$$2|(n^2+n), n \in \mathbb{N};$$

4.
$$2^n > n, n \in \mathbb{N}$$
.

Conjunto das partes

Seja A um conjunto, o conjunto das partes de A é

$$\mathcal{P}(A) := \{X : X \subset A\}$$

Conjunto das partes

Seja A um conjunto, o conjunto das partes de A é

$$\mathcal{P}(A) := \{X : X \subset A\}$$

$$A \neq \emptyset \Longrightarrow \#\mathcal{P}(A) \geq 2.$$

$$A = \emptyset \Longrightarrow \#\mathcal{P}(A) = ??$$

5. $2\mathbb{Z} \in \mathcal{P}(\mathbb{Z})$;

- 5. $2\mathbb{Z} \in \mathcal{P}(\mathbb{Z})$;
- 6. Se A é unitário, então $\mathcal{P}(A)$ possui somente 2 elementos;

- 5. $2\mathbb{Z} \in \mathcal{P}(\mathbb{Z})$;
- 6. Se A é unitário, então $\mathcal{P}(A)$ possui somente 2 elementos;
- 7. Se A possui 2 elementos, então $\mathcal{P}(A)$ possui somente 4 elementos.

- 5. $2\mathbb{Z} \in \mathcal{P}(\mathbb{Z})$;
- 6. Se A é unitário, então $\mathcal{P}(A)$ possui somente 2 elementos;
- 7. Se A possui 2 elementos, então $\mathcal{P}(A)$ possui somente 4 elementos.
- 8. Se A possui n elementos, então $\mathcal{P}(A)$ possui somente 2^n elementos.

- 5. $2\mathbb{Z} \in \mathcal{P}(\mathbb{Z})$;
- 6. Se A é unitário, então $\mathcal{P}(A)$ possui somente 2 elementos;
- 7. Se A possui 2 elementos, então $\mathcal{P}(A)$ possui somente 4 elementos.
- 8. Se A possui n elementos, então $\mathcal{P}(A)$ possui somente 2^n elementos.
- 9. Se A possui 2 elementos e B possui 3, então $\mathcal{P}(A \times B)$ possui quantos elementos?