Prova scritta del corso di Fisica Nucleare e Subnucleare 1 - AA 2017/2018

18 Giugno 2018

NOME E COGNOME:	CANALE:

Gli studenti che devono recuperare il I esonero devono risolvere i problemi 1 e 2 in due ore.

Gli studenti che devono recuperare il II esonero devono risolvere i problemi 3 e 4 in due ore.

Gli studenti che devono sostenere lo scritto devono risolvere i problemi 1, 3 e 4 in tre ore.

- 1. Un fascio di elettroni di energia 600 MeV collide con un fascio di positroni che viaggiano in direzione opposta, al fine di produrre la risonanza ϕ , che può decadere nel canale $\phi \to K^+K^-$.
 - a. Si determini l'energia del fascio di positroni necessaria per produrre la ϕ al picco della risonanza.

Nelle condizioni del punto (a), si calcolino nel sistema di riferimento del laboratorio:

- b. il fattore $\beta \gamma$ della ϕ ;
- c. la distanza percorsa in media dalla ϕ prima di decadere;
- d. Il valore massimo e minimo dell'angolo formato dalle direzioni del K^+ e del K^- .

$$[m_{\phi} = 1019.5 \text{ MeV}/c^2, \Gamma_{\phi} = 4.3 \text{ MeV}, m_K = 493.7 \text{ MeV}/c^2]$$

Soluzione:

a. Trascurando la massa dell'elettrone, il quadrato dell'energia nel centro di massa si scrive come:

$$s = |(E_{-} + E_{+}, (E_{-} - E_{+})\hat{z})|^{2} = (E_{+} + E_{-})^{2} - (E_{+} - E_{-})^{2} = 4E_{+}E_{-}$$
(1)

dove \hat{z} è il versore dell'asse dei fasci. Poiché deve essere $\sqrt{s} = m_{\phi}$, segue:

$$E_{+} = \frac{m_{\phi}^{2}}{4E} = 433 \text{ MeV}$$
 (2)

b. Il fattore $\beta \gamma$ e la β della ϕ si calcolano come

$$\beta_{\phi}\gamma_{\phi} = \frac{|\vec{p}_{\phi}|}{m_{\phi}} = \frac{|\vec{p}_{\text{tot}}|}{m_{\phi}} = \frac{E_{-} - E_{+}}{m_{\phi}} = 0.164$$
 (3)

$$\beta_{\phi} = \frac{|\vec{p}_{\phi}|}{E_{\phi}} = \frac{|\vec{p}_{\phi}|}{\sqrt{|\vec{p}_{\phi}|^2 + m_{\phi}^2}} = 0.162 \tag{4}$$

c. La vita media della ϕ si ricava considerando che, per una risonanza di larghezza Γ :

$$\tau = \frac{\hbar}{\Gamma} \Longrightarrow c\tau = \frac{\hbar c}{\Gamma} \tag{5}$$

e che $\hbar c = 197 \text{ MeV/fm}$. Segue:

$$c\tau_{\phi} = \frac{197 \text{ MeV/fm}}{\Gamma_{\phi}} = 45.8 \text{ fm}$$
 (6)

$$\tau_{\phi} = 1.53 \times 10^{-22} \text{ s}$$
 (7)

e quindi la distanza per corsa nel sistema di riferimento del laboratorio è $\beta_{\phi}\gamma_{\phi}c\tau_{\phi}=7.5$ fm.

d. Nel sistema del centro di massa i K sono prodotti con pari energia, pari a $E_K^* = m_\phi/2 =$ 509.8 MeV. Il modulo dell'impulso sarà $|\bar{p}_K^*| = \sqrt{E_K^{*2} - m_K^2} = 126.9 \text{ MeV}/c$ e la velocità sarà $\beta_K^* = |\bar{p}_K^*|/E_K^* = 0.249$. Poiché $\beta_K^* > \beta_\phi$, i K emessi all'indietro nel CM rispetto alla direzione di volo della ϕ sono emessi all'indietro anche nel laboratorio. L'altro K sarà emesso in avanti e l'angolo relativo risulta quindi pari a 180°, che rappresenta quindi l'angolo massimo tra i due K. Per simmetria, la configurazione di angolo minimo si ha quando i due K vengono emessi a 90° rispetto alla linea di volo della ϕ . In questa configurazione, per ciascuno dei due K, l'angolo di emissione rispetto all'asse dei fasci nel laboratorio è:

$$\tan \theta_K = \frac{\sin \theta_K^*}{\gamma_\phi (\beta_\phi / \beta_K^* + \cos \theta_K^*)} = \frac{1}{\beta_\phi \gamma_\phi / \beta_K^*} = 1.521$$

$$\theta_K = 0.989 \text{ rad}$$
(9)

$$\theta_K = 0.989 \text{ rad} \tag{9}$$

e quindi l'angolo massimo è pari a $2\theta_K = 1.978$ rad.

- 2. La sezione d'urto totale per interazione di protoni su carbonio ad una data energia è pari a 330 mb. Si consideri un fascio di protoni di tale energia e corrente I = 1 nA.
 - a. Si determini la rate di interazioni su un bersaglio di grafite (C, $\rho = 2.1 \text{ g/cm}^3$, A = 12) di spessore $d_{\rm g} = 1$ mm.
 - b. Quale spessore deve avere un bersaglio di polietilene (C_2H_4 , $\rho = 0.9$ g/cm³) per ottenere la stessa rate di interazioni?
 - c. Si determini la corrente residua del fascio nel caso di un bersaglio di grafite da 10 cm.

Soluzione:

a. L'intensità del è:

$$\frac{dN_p}{dt} = \frac{I}{e} = 6.25 \times 10^9 \text{ s}^{-1} \tag{10}$$

La densità di bersagli di carbonio nella grafite è:

$$n_{\rm g} = \rho_{\rm g} \frac{N_A}{A} = 1.05 \times 10^{23} \,{\rm cm}^{-3}$$
 (11)

La rate di interazioni è quindi

$$\frac{dN}{dt} = \frac{dN_p}{dt} n_{\rm g} d_{\rm g} \sigma = 2.17 \times 10^7 \,\,{\rm s}^{-1}$$
 (12)

b. Lo spessore del bersaglio di polietilene deve essere tale che:

$$\frac{dN}{dt} = \frac{dN_p}{dt} n_{\rm g} d_{\rm g} \sigma = \frac{dN_p}{dt} n_{\rm p} d_{\rm p} \sigma \tag{13}$$

$$d_{\rm p} = \frac{n_{\rm g} d_{\rm g}}{n_{\rm p}} \tag{14}$$

dove, considerando che la molecola di poli
etilene ha $A_p=12*2+4=28$ e ci sono due bersagli carbonio per molecola:

$$n_{\rm p} = \rho_{\rm p} \frac{N_A}{A_p} \cdot 2 = 3.87 \times 10^{22} \,\,{\rm cm}^{-3}$$
 (15)

e quindi $d_{\rm p}=2.72$ mm.

c. Il coefficiente di assorbimento è pari a:

$$\mu = n_{\rm g}\sigma = 0.034 \text{ cm}^{-1}$$
 (16)

e quindi la corrente residua è $I' = Ie^{-\mu \cdot 10 \text{ cm}} = 0.7 \text{ nA}.$

Figure 1: Ring Imaging Cherenkov Detector

- 3. Un Ring Imaging Cherenkov Detector è un dispositivo nel quale la radiazione Cherenkov prodotta dalle particelle che attraversano uno spessore d di materiale avente indice di rifrazione n forma delle immagini a forma di anello su una superficie posta ad una distanza L dallo stesso, come in figura.
 - Si supponga che un fascio di π e K carichi attraversi un rivelatore di questo tipo, in cui d=2 cm, L=1 m, n=1.46 e il materiale abbia una lunghezza di radiazione $X_0=12.3$ cm. Si determinino:
 - a. gli impulsi minimi di π e K necessari a produrre luce Cherenkov nel rivelatore;
 - b. i raggi medi degli anelli prodotti al passaggio di π e K aventi impulso $p=1~{\rm GeV}/c;$
 - c. l'angolo medio di diffusione coulombiana multipla a cui sono soggetti i K di impulso $p=1~{\rm GeV}/c$ nell'attraversare il rivelatore.
 - d. la risoluzione σ_R sulla misura del raggio che è necessaria per separare K e π a $3\sigma_R$, trascurando l'effetto della diffusione coulombiana multipla.

$$[m_{\pi} = 139.6 \text{ MeV}/c^2; m_K = 493.7 \text{ MeV}/c^2]$$

Soluzione:

a. La velocità di soglia è data da:

$$\beta_{\text{thr}} = \frac{1}{n} = 0.685$$
 (17)

$$\gamma_{\text{thr}} = \frac{1}{\sqrt{1 - \beta_{\text{thr}}^2}} = 1.372$$
(18)

Gli impulsi di soglia sono quindi $p_{\pi}^{\rm thr}=m_{\pi}\beta_{\rm thr}\gamma_{\rm thr}=131.2~{\rm MeV}/c$ e $p_{K}^{\rm thr}=m_{K}\beta_{\rm thr}\gamma_{\rm thr}=464.1~{\rm MeV}/c$.

b. Il raggio medio del cerchio prodotto da particelle di massa m e impulso p è pari a:

$$R = L \tan \theta_C = L \tan \left(\arccos \left(\frac{1}{n\beta_{\pi}} \right) \right) = L \tan \left(\arccos \left(\frac{\sqrt{p^2 + m^2}}{np} \right) \right)$$
 (19)

da cui, per π e K di impulso $p=1~{\rm GeV}/c$, si ha $R_\pi=104.4~{\rm cm}$ e $R_K=84.5~{\rm cm}$.

c. L'angolo medio di diffusione coulombiana multipla è dato da:

$$\langle \theta_{MS} \rangle = 21 \text{ MeV} \frac{1}{\beta p} \sqrt{\frac{d}{X_0}}$$
 (20)

ed è pari a 8.55 mrad per i π e 9.4 mrad per i K.

d. π e K sono separati a $3\sigma_R$ se $R_{\pi} - R_K = 3\sigma_R$, e quindi $\sigma_R = (R_{\pi} - R_K)/3 = 6.7$ cm.

4. Stabilire quali delle reazioni e decadimenti sotto indicati sono permessi e quali sono proibiti. Per quelli proibiti, indicare tutti i numeri quantici (o le leggi di conservazione) che sono violati. Per quelli permessi, indicare la forza che media l'interazione.

a)
$$\pi^{+} + p \to \Lambda + \pi^{+} + K^{+}$$

b)
$$\bar{\nu}_e + {}^{7}_{4} \text{Be} \rightarrow {}^{6}_{3} \text{Li} + e^{-}$$

c)
$$p + p \to \pi^+ + \pi^- + \pi^0$$

d)
$$\gamma + p \rightarrow \Omega^- + \pi^+$$

e)
$$K^- + n \rightarrow \Lambda + \pi^-$$

f)
$$e^- + p \to \nu_{\mu} + \pi^-$$

g)
$$\Xi^- \to \Lambda + \pi^+$$

h)
$$e^- \rightarrow \pi^- + \nu_e$$

i)
$$\pi^+ \to e^- + \mu^- + \mu^+ + \nu_e$$

1)
$$K^- \to \pi^0 + e^- + \bar{\nu}_e$$

m)
$$\Delta^+ \to p + \gamma$$

n)
$$\eta \rightarrow e^+ + \mu^-$$

Soluzione:

a) si, forte

g) no, Q, S

b) no, B, L_e

h) no, M

c) no, B, Q

i) no, M, Q, L_e

d) no, Q, S

l) si, debole

e) si, forte

m) si, e.m.

, ,

111) 51, 0.111.

f) no, B, Q, L_e , L_μ

n) no, L_e , L_μ