Math 1300: Calculus I, Spring 2008; Instructor: Dana Ernst Section 5.3: Curve Sketching (Part 1)

We are interested in the following features of the graph of a function:

- symmetries
- x-intercepts
- y-intercepts
- vertical asymptotes
- behavior as $x \to \infty$ and $x \to -\infty$ (asymptotes)
- intervals of increase, intervals of decrease
- relative extrema
- intervals of concavity
- inflection points

In general, we will be given a function and asked to sketch its graph. To do this, we will have to identify some or all of the features above. Let's first try to sketch the graph of a function where all of the above information is given.

Example 1: Sketch the graph of the function that has the following properties.

1.
$$f(-5) = 0, f(-3) = -3, f(-2) = 0$$

2.
$$f(-1.5) = .5, f(-.5) = 1, f(1.5) = 2.5$$

3.
$$\lim_{x\to 0} f(x) = \infty$$
 and $\lim_{x\to 3} f(x) = \infty$

4.
$$\lim_{x\to\infty} f(x) = 1$$
 and $\lim_{x\to-\infty} f(x) = 1$

5.
$$f'(-3)$$
 undefined

6.
$$f'(1.5) = 0, f'(-1.5) = 0$$

7.
$$f'(x) > 0$$
 on $(-3, 0)$ and $(1.5, 3)$

8.
$$f'(x) < 0$$
 on $(-\infty, -3), (0, 1.5)$, and $(3, \infty)$

9.
$$f''(x) > 0$$
 on $(-1.5, 0), (0, 3)$, and $(3, \infty)$

10.
$$f''(x) < 0$$
 on $(-\infty, -3)$ and $(-3, -1.5)$

Guidelines for Sketching Graphs of Functions

- 1. Determine whether there is symmetry about the y-axis or the origin.
- 2. Find x and y-intercepts.
- 3. Identify vertical asymptotes.
- 4. Determine end behavior by computing limits of f(x) as $x \to \infty$ and $x \to -\infty$ (Does graph have any horizontal asymptotes?).
- 5. Find critical points, determine intervals of increase and decrease, and identify any relative extrema.
- 6. Find x-values where f''(x) = 0 or is undefined, determine intervals of concavity, and identify any inflection points

Let's start by sketching the graphs of some rational functions.

Example 2: Sketch the graph of the following functions.

(a) $f(x) = \frac{2(x^2 - 9)}{x^2 - 4}$

(b)
$$g(x) = \frac{-x}{(x^2 - 1)^2}$$

g'