Sistemas de ecuaciones lineales: Métodos directos

Análisis numérico (75.12/95.04/95.12)

Facultad de ingeniería – Universidad de Buenos Aires

Objetivos

- Resolver cualquier SEL de la misma manera
- Resolución sin error de truncamiento
- Poder mejorar la solución obtenida

Eliminación de Gauss

 Reducir el SEL a una expresión conocida usando operaciones permitidas

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \qquad \begin{pmatrix} a'_{11} & a'_{12} & a'_{13} \\ 0 & a'_{22} & a'_{23} \\ 0 & 0 & a'_{33} \end{pmatrix}$$

Solución conocida

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{pmatrix} \times \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}, \quad a_{ii} \neq 0$$

$$x_1 = \frac{b_1 - (a_{12}x_2 + a_{13}x_3)}{a_{11}}$$

$$x_2 = \frac{b_2 - a_{23}x_3}{a_{22}}$$

$$x_3 = \frac{b_3}{a_{22}}$$

Ejemplo I: Gauss sin pivoteo

Precisión t=6

$$\begin{pmatrix} 0.001 & 1 & 30 & 1 \\ 5 & 21 & 9 & 2 \\ 20 & 0.5 & 3 & 3 \end{pmatrix} \qquad \begin{pmatrix} a'_{11} & a'_{12} & a'_{13} \\ 0 & a'_{22} & a'_{23} \\ 0 & 0 & a'_{33} \end{pmatrix}$$

Ejemplo I: Primer paso

$$\begin{pmatrix} 0,001 & 1 & 30 & 1 \\ 5 & 21 & 9 & 2 \\ 20 & 0,5 & 3 & 3 \end{pmatrix}$$

$$(5 - 0,001\alpha)x_1 + (21 - \alpha)x_2 + (9 - 30\alpha)x_3 = 2 - \alpha$$
$$(20 - 0,001\beta)x_1 + (0,5 - \beta)x_2 + (3 - 30\beta)x_3 = 3 - \beta$$

$$\alpha = \frac{5}{0,001} = m_{21}$$
$$\beta = \frac{20}{0.001} = m_{31}$$

Ejemplo I: Multiplicadores

$$m_{ij} = \frac{a_{ij}}{P_j}$$

$$\begin{pmatrix}
0,001 & 1 & 30 & 1 \\
5 & 21 & 9 & 2 \\
20 & 0,5 & 3 & 3
\end{pmatrix}
\xrightarrow{F_2 - \frac{5}{0,001}F_1}
\begin{pmatrix}
0,001 & 1 & 30 & 1 \\
0,001 & 1 & 30 & 1 \\
[5000] & -4979 & -149991 & -4998 \\
[20000] & -19999,5 & -599997 & -19997
\end{pmatrix}$$

Ejemplo I: Segundo paso

Ejemplo I:Segundo paso

$$\begin{pmatrix} 0,001 & 1 & 30 & 1 \\ [5000] & -4979 & -149991 & -4998 \\ [20000] & -19999,5 & -599997 & -19997 \end{pmatrix} \xrightarrow{F_3 - \frac{-19999,5}{-4979}} F_2 \begin{pmatrix} 0,001 & 1 & 30 & 1 \\ [5000] & -4979 & -149991 & -4998 \\ [20000] & [4,01667] & 2467,35 & 78,3167 \end{pmatrix}$$

Ejemplo I: Solución

$$\begin{pmatrix}
0,001 & 1 & 30 & 1 \\
[5000] & -4979 & -149991 & -4998 \\
[20000] & [4,01667] & 2467,35 & 78,3167
\end{pmatrix}$$

$$x_{1} = \frac{b_{1} - (a_{12}x_{2} + a_{13}x_{3})}{a_{11}}$$

$$x_{2} = \frac{b_{2} - a_{23}x_{3}}{a_{22}}$$

$$x_{3} = \frac{b_{3}}{a_{33}}$$

$$x_{4} = \frac{1 - x_{2} - 30x_{3}}{0,001} = 0,1378$$

$$x_{5} = \frac{-4998 + 149991x_{3}}{-4979} = 0,0488412$$

$$x_{6} = \frac{78,2167}{2467,35} = 0,0317007$$

Ejemplo I: Solución de referencia vs solución obtenida

$$X_{EG} = \begin{pmatrix} 0,1378 \\ 0,0488412 \\ 0,0317007 \end{pmatrix} \qquad X_{ref} = \begin{pmatrix} 0,144054 \\ 0,0473320 \\ 0,0317508 \end{pmatrix}$$

Propagación de errores de redondeo

$$0.0003x_1 + 3.0000x_2 = 2.0001 \\ 1.0000x_1 + 1.0000x_2 = 1.0000 \implies x_1 = \frac{1}{3} \\ x_2 = \frac{2}{3}$$

$$0.0003x_1 + 3.0000x_2 = 2.0001 \\ -9999x_2 = -6666$$

$$x_1 = \frac{2,0001 - \frac{2}{3}3}{0,0003}$$

$$x_2 = \frac{2}{3}$$
Cancelación de términos
$$x_2 = \frac{2}{3}$$

Ejemplo II: Eliminación de Gauss con pivoteo parcial

Pivote lo más grande posible dentro de la misma columna

Ejemplo II: Primer paso

$$\begin{pmatrix}
0,001 & 1 & 30 & 1 \\
5 & 21 & 9 & 2 \\
\hline
20 & 0,5 & 3 & 3
\end{pmatrix}
\xrightarrow{F_3 \times F_1}
\begin{pmatrix}
20 & 0,5 & 3 & 3 \\
5 & 21 & 9 & 2 \\
0,001 & 1 & 30 & 1
\end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0,001 & 1 & 30 \\ 5 & 21 & 9 \\ 20 & 0,5 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

Ejemplo II: Segundo paso

$$\begin{pmatrix} 20 & 0.5 & 3 & 3 \\ 5 & 21 & 9 & 2 \\ 0.001 & 1 & 30 & 1 \end{pmatrix} \xrightarrow{F_2 - \frac{5}{20}F_1} \begin{pmatrix} 20 & 0.5 & 3 & 3 \\ [0.25] & 20.875 & 8.25 & 1.25 \\ [0.0005] & 0.999975 & 29.9985 & 0.998500 \end{pmatrix}$$

$$\begin{pmatrix} 20 & 0,5 & 3 & 3 \\ [0,25] & 20,875 & 8,25 & 1,25 \\ [0,00005] & 0,999975 & 29,9985 & 0,998500 \end{pmatrix}$$

Ejemplo II: Segundo paso

$$\begin{pmatrix} 20 & 0.5 & 3 & 3 \\ [0,25] & 20.875 & 8.25 & 1.25 \\ [0,00005] & 0.999975 & 29.9985 & 0.998500 \end{pmatrix} \xrightarrow{F_3 - \frac{0.999975}{20.875}} F_2 \begin{pmatrix} 20 & 0.5 & 3 & 3 \\ [0,25] & 20.875 & 8.25 & 1.25 \\ [0,00005] & [0,0479030] & 29.6047 & 0.939971 \end{pmatrix}$$

$$x_1 = \frac{b_1 - (a_{12}x_2 + a_{13}x_3)}{a_{11}}$$

$$x_2 = \frac{b_2 - a_{23}x_3}{a_{22}}$$

$$X_{EGPP} = \begin{pmatrix} 0,144054\\0,0473321\\0,0317507 \end{pmatrix}$$

$$x_3 = \frac{b_3}{a_{33}}$$

$$X_{ref} = \begin{pmatrix} 0.144054 \\ 0.0473320 \\ 0.0317508 \end{pmatrix}$$

Ejemplo III: Eliminación de Gauss con pivoteo total

$$\begin{pmatrix} 0,001 & 1 & 30 & 1 \\ 5 & 21 & 9 & 2 \\ 20 & 0,5 & 3 & 3 \end{pmatrix}$$

$$\begin{pmatrix} 0,001 & 1 & 30 \\ 5 & 21 & 9 \\ 20 & 0,5 & 3 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} 30 & 1 & 0,001 \\ 9 & 21 & 5 \\ 3 & 0,5 & 20 \end{pmatrix} \begin{pmatrix} x_3 \\ x_2 \\ x_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

Ejemplo III: Resolución

$$\begin{pmatrix}
30 & 1 & 0,001 & 1 \\
9 & 21 & 5 & 20 & 3
\end{pmatrix}
\xrightarrow{F_2 - \frac{9}{30}F_1}
\begin{pmatrix}
30 & 1 & 0,001 & 1 \\
F_3 - \frac{3}{30}F_1 & 0,01 & 1,7 \\
0,3] & 20,7 & 4,9997 & 1,7 \\
0,1] & 0,4 & 19,9999 & 2,9
\end{pmatrix}
\xrightarrow{F_3 - \frac{0,4}{20,7}F_2}
\begin{pmatrix}
30 & 1 & 0,001 & 1 \\
[0,3] & 20,7 & 4,9997 & 1,7 \\
[0,3] & 20,7 & 4,9997 & 1,7 \\
[0,4] & [0,3] & 20,7 & 4,9997 & 1,7 \\
[0,1] & [0,0193237] & 19,9033 & 2,84783
\end{pmatrix}$$

$$X_{EGPT} = \begin{pmatrix} 0,144054 \\ 0,0473320 \\ 0,0317508 \end{pmatrix}$$

Comparación de soluciones

$$X_{ref} = \begin{pmatrix} 0.144054 \\ 0.0473320 \\ 0.0317508 \end{pmatrix}$$

$$X_{EG} = \begin{pmatrix} 0,1378\\0,0488412\\0,0317007 \end{pmatrix}$$

$$X_{EGPP} = \begin{pmatrix} 0,144054 \\ 0,0473321 \\ 0,0317507 \end{pmatrix}$$

$$X_{EGPT} = \begin{pmatrix} 0,144054 \\ 0,0473320 \\ 0,0317508 \end{pmatrix}$$

Refinamiento iterativo

- Acotar el error sin tener una solución de referencia
- Poder estimar el número de condición
- Mejorar solución hasta la precisión de trabajo

Ejemplo IV: Refinamiento iterativo mediante descomposición LU

$$Ax = b \iff x : \text{Solución exacta}$$

$$A\tilde{x} = b'$$

$$A(x - \tilde{x}) = b - b'$$

$$A(\delta_x) = R$$
Doble precisión

$$\tilde{x}^{(2)} = \tilde{x}^{(1)} + \tilde{\delta_x}^{(1)}$$

Descomposición LU

- Evaluar el mismo sistema con distintos términos independientes
- Pivotear una única vez

Ejemplo IV: Refinamiento iterativo mediante descomposición LU

$$Ax = LUx$$

$$L = \begin{pmatrix} 1 & 0 & 0 \\ m_{21} & 1 & 0 \\ m_{31} & m_{32} & 1 \end{pmatrix}, \quad U = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a'_{22} & a'_{23} \\ 0 & 0 & a''_{33} \end{pmatrix}$$

$$A(x - \tilde{x}) = b - b'$$

$$A(\delta_x) = R$$

$$A\delta_x = LU\delta_x \quad U\delta_x \in \mathbb{R}^n$$

$$U\delta_x = y$$

$$Ly = R$$

Ejemplo IV: Descomposición LU de A obtenida sin pivoteo

$$L = \begin{pmatrix} 1 & 0 & 0 \\ m_{21} & 1 & 0 \\ m_{31} & m_{32} & 1 \end{pmatrix}, \quad U = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a'_{22} & a'_{23} \\ 0 & 0 & a''_{33} \end{pmatrix}$$

$$Ax = LUx$$

Ejemplo IV: Refinamiento iterativo utilizando descomposición LU

$$A_{EG} = \begin{pmatrix} 1 & 0 & 0 \\ 5000 & 1 & 0 \\ 20000 & 4,01667 & 1 \end{pmatrix} \begin{pmatrix} 0,001 & 1 & 30 \\ 0 & -4979 & -149991 \\ 0 & 0 & 2467,35 \end{pmatrix}$$

$$\begin{cases} U\delta_x = y \\ Ly = R \end{cases}, \quad R = b - A\tilde{x} = \begin{pmatrix} 1 - 1 \\ 2 - 1,9999715 \\ 3 - 2,8755227 \end{pmatrix}$$

Resolver Ax=b implica resolver dos sistemas triangulares

Ejemplo IV: Primer sistema

$$Ly = R$$

$$\begin{pmatrix}
1 & 0 & 0 \\
5000 & 1 & 0 \\
20000 & 4,01667 & 1
\end{pmatrix}
\begin{pmatrix}
0 \\
2,8499999445 \times 10^{-5} \\
0,1243628
\end{pmatrix}
\implies y = \begin{pmatrix}
0 \\
2,85 \times 10^{-5} \\
0,124363
\end{pmatrix}$$

Ejemplo IV: Segundo sistema

$$U\delta_x = y$$

$$U\delta_x = y \implies \begin{pmatrix} 0,001 & 1 & 30 \\ 0 & -4979 & -149991 \\ 0 & 0 & 2467,35 \end{pmatrix} \begin{pmatrix} \delta_{x_1} \\ \delta_{x_2} \\ \delta_{x_3} \end{pmatrix} = \begin{pmatrix} 0 \\ 2,85 \times 10^{-5} \\ 0,124363 \end{pmatrix}$$

$$\begin{pmatrix} \delta_{x_1} \\ \delta_{x_2} \\ \delta_{x_3} \end{pmatrix} = \begin{pmatrix} 6,29 \times 10^{-3} \\ -1,52 \times 10^{-3} \\ 5 \times 10^{-5} \end{pmatrix}$$

Ejemplo IV: Resultados

$$X_{EG} = \begin{pmatrix} 0,1378\\ 0,0488412\\ 0,0317007 \end{pmatrix}$$

$$X_{EG} = \begin{pmatrix} 0,1378 \\ 0,0488412 \\ 0,0317007 \end{pmatrix} \qquad \begin{pmatrix} \delta_{x_1} \\ \delta_{x_2} \\ \delta_{x_3} \end{pmatrix} = \begin{pmatrix} 6,29 \times 10^{-3} \\ -1,52 \times 10^{-3} \\ 5 \times 10^{-5} \end{pmatrix}$$

$$X_{EG} = \begin{pmatrix} 0,14 \pm 0,01 \\ 0,049 \pm 0,002 \\ 0,0317 \pm 0,0001 \end{pmatrix} \qquad X_{ref} = \begin{pmatrix} 0,144054 \\ 0,0473320 \\ 0,0317508 \end{pmatrix}$$

$$X_{ref} = \begin{pmatrix} 0.144054 \\ 0.0473320 \\ 0.0317508 \end{pmatrix}$$

Ejemplo IV: Número de condición de la matriz

$$K[A] = \|A\| \cdot \|A^{-1}\|, \quad K[A] \in [1, \infty)$$

$$\frac{\|\delta_x^{(1)}\|}{\|\tilde{x}^{(1)}\|} \le K[A] \frac{\|R^{(1)}\|}{\|b\|}$$

- Noción acerca de que tan grande es el error relativo
- K[A] depende únicamente de A

$$K[A] \approx \frac{||\delta_x^{(1)}||}{||\tilde{x}^{(1)}||} 10^t$$

Estimación obtenida en una sola iteración

Ejemplo IV: Cantidad de dígitos obtenidos al mejorar la solución

$$K[A] pprox rac{||\delta_x^{(1)}||}{|| ilde{x}^{(1)}||} 10^t$$
 t: Precisión

$$K[A] \approx \frac{\sqrt{(6,29 \times 10^{-3})^2 + (-1,52 \times 10^{-3})^2 + (5 \times 10^{-5})^2}}{\sqrt{(0,14378)^2 + (0,0488412)^2 + (0,0317007)^2}} 10^6 \approx 4,1 \times 10^3$$

$$q = t - p$$
, $p = log(K[A])$

$$q = t - \log(4 \times 10^4) \approx 1,4$$

Ejemplo IV: Refinamiento de la solución

$$X_{EG} = \begin{pmatrix} 0,1378 \\ 0,0488412 \\ 0,0317007 \end{pmatrix} \qquad \begin{pmatrix} \delta_{x_1} \\ \delta_{x_2} \\ \delta_{x_3} \end{pmatrix} = \begin{pmatrix} 6,29 \times 10^{-3} \\ -1,52 \times 10^{-3} \\ 5 \times 10^{-5} \end{pmatrix}$$

$$x^{(2)} = x^{(1)} + \delta_x^{(1)} = \begin{pmatrix} 0,14409\\0,0473212\\0,0317507 \end{pmatrix}$$

$$X_{ref} = \begin{pmatrix} 0.144054 \\ 0.0473320 \\ 0.0317508 \end{pmatrix}$$

Cuadro comparativo

No pivoteo		Pivoteo	
Ventajas	Desventajas	Ventajas	Desventajas
Veloz	Puede amplificar errores de redondeo	Disminuye la propagación de errores de redondeo	Replicar y considerar permutaciones en b y x según corresponda
Fácil implementación	Si algún pivote tomado es cero el método falla por <i>overflow</i>		Difícil implementación
Descomposición LU		Refinamiento iterativo	
Ventajas	Desventajas	Ventajas	Desventajas
La eliminación se realiza una única vez Útil para evaluar muchas veces un único SEL	No versátil	Puede mejorar los resultados hasta la precisión de trabajo	Su utilidad depende de la condición de la matriz Se necesita el doble de precisión para el residuo Se debe elegir un criterio de corte