Cryptography Day 2

Brandon Hernandez

September 17, 2020

Overview

Brief Review

Diffie-Hellman

RSA

The RSA Problem

Construction

Encryption

Decryption

Construction Example

Closing Thoughts

Brief Review

In crypto, we utilize hard problems in mathematics to ensure that breaking the cryptosystem is not trivial.

Diffie-Hellman

The RSA Cryptosystem

Public-key cryptosystem based around the difficulty in factoring a composite integer into primes.

The RSA Problem

- ► Consider two large primes, *p* and *q*
- \triangleright N = pq
- ▶ Consider e, m, and c, where e, C, $m \in \mathbb{Z}$
- $ightharpoonup C \equiv m^e \pmod{N}$

Construction

- Consider two large primes, p and q
- ▶ Let our modulus, N = pq ($\mathbb{Z}/N\mathbb{Z}$)
- Our public key, e, where $gcd(\phi N, e) = 1$ and $1 < e < \phi N$
- ▶ The private key, d, where $d * e \equiv 1 \pmod{\phi N}$

Encryption

- ▶ Given *N*, *m*, and *e*
- $ightharpoonup C \equiv m^e (mod N)$

Decryption

- ► Given N, C, and d
- $ightharpoonup m \equiv C^d \equiv m^{e*d} (modN)$
- ▶ Remeber: $e * d \equiv 1 \pmod{\phi N}$

Construction Example

Basic Exploit Example 1

Refer to Day2/Examples/cube

Basic Exploit Example 2 (Factoring)

Refer to Day2/Examples/multiPrime

Basic Exploit Example 3 (Hastad)

Refer to Day2/Examples/hastad

What's left?

- ► Elliptic Curve Cryptography
- ► Post Quantum Cryptography
 - Lattice-Based Cryptography
 - ► LWE
 - ► Multivariate Cryptograhy