Surd (HKMO Classified Questions by topics)

1987 FI5.3

若
$$\frac{\sqrt{3}}{2\sqrt{7}-\sqrt{3}}=\frac{2\sqrt{21}+3}{c}$$
 ,求 c 的值。

If
$$\frac{\sqrt{3}}{2\sqrt{7}-\sqrt{3}} = \frac{2\sqrt{21}+3}{c}$$
, find the value of c .

1988 FI3.1

若
$$\frac{\sqrt{3}}{2\sqrt{7}-\sqrt{3}} = \frac{2\sqrt{21}+h}{25}$$
 , 求 h 的值。

If
$$\frac{\sqrt{3}}{2\sqrt{7}-\sqrt{3}} = \frac{2\sqrt{21}+h}{25}$$
, find the value of h.

1989 FG10.1

已知
$$\frac{6\sqrt{3}}{3\sqrt{2}-2\sqrt{3}}=3\sqrt{a}+6$$
 , 求 a 的值。

If
$$\frac{6\sqrt{3}}{3\sqrt{2}-2\sqrt{3}} = 3\sqrt{a} + 6$$
, find the value of a .

1990 HI1

求下式的值:
$$\frac{1}{3-\sqrt{8}} - \frac{1}{\sqrt{8}-\sqrt{7}} + \frac{1}{\sqrt{7}-\sqrt{6}} - \frac{1}{\sqrt{6}-\sqrt{5}} + \frac{1}{\sqrt{5}-2}$$
 °

Find the value of $\frac{1}{3-\sqrt{8}} - \frac{1}{\sqrt{8}-\sqrt{7}} + \frac{1}{\sqrt{7}-\sqrt{6}} - \frac{1}{\sqrt{6}-\sqrt{5}} + \frac{1}{\sqrt{5}-2}$.

2000 HG9

設
$$x = \sqrt{3 + \sqrt{3}}$$
 及 $y = \sqrt{3 - \sqrt{3}}$, 求 $x^2(1 + y^2) + y^2$ 的值。

Let $x = \sqrt{3+\sqrt{3}}$ and $v = \sqrt{3-\sqrt{3}}$, find the value of $x^2(1+v^2)+v^2$.

2000 FI3.3

已知
$$\frac{2}{\sqrt{2}+\sqrt{4}}+\frac{2}{\sqrt{4}+\sqrt{6}}+\cdots+\frac{2}{\sqrt{1998\times2}+\sqrt{1999\times2}}=\frac{R}{\sqrt{2}+\sqrt{1999\times2}}$$
 , 求 R 的值。

Given that
$$\frac{2}{\sqrt{2}+\sqrt{4}} + \frac{2}{\sqrt{4}+\sqrt{6}} + \dots + \frac{2}{\sqrt{1998\times 2}+\sqrt{1999\times 2}} = \frac{R}{\sqrt{2}+\sqrt{1999\times 2}}, \quad \text{if } c = 2\sqrt{3} \times \sqrt[3]{1.5} \times \sqrt[6]{12}, \text{ find the value of } c.$$

find the value of R.

2000 FG1.2

設
$$x = \frac{1-\sqrt{3}}{1+\sqrt{3}}$$
 及 $y = \frac{1+\sqrt{3}}{1-\sqrt{3}}$ 。如果 $b = 2x^2 - 3xy + 2y^2$,求 b 的值。

Let
$$x = \frac{1 - \sqrt{3}}{1 + \sqrt{3}}$$
 and $y = \frac{1 + \sqrt{3}}{1 - \sqrt{3}}$. If $b = 2x^2 - 3xy + 2y^2$, find the value of b.

設
$$x = \sqrt{3 - \sqrt{5}} + \sqrt{3 + \sqrt{5}}$$
 及 $y = x^2$,求 y 的值。

Let $x = \sqrt{3 - \sqrt{5}} + \sqrt{3 + \sqrt{5}}$ and $y = x^2$, find the value of y.

2002 FG3.4

已知
$$x-y=1+\sqrt{5}$$
 , $y-z=1-\sqrt{5}$ 。 若 $x^2+y^2+z^2-xy-yz-zx=d$,求 d 的 值 。

Given that
$$x - y = 1 + \sqrt{5}$$
, $y - z = 1 - \sqrt{5}$.

If $x^2 + v^2 + z^2 - xv - vz - zx = d$, find the value of d.

2002 FG4.2

設
$$x > 0$$
, $y > 0$ 且 $\sqrt{x}(\sqrt{x} + \sqrt{y}) = 3\sqrt{y}(\sqrt{x} + 5\sqrt{y})$ 。

若
$$b = \frac{2x + \sqrt{xy} + 3y}{x + \sqrt{xy} - y}$$
 , 求 b 的 值 。

It is given that x > 0, y > 0 and $\sqrt{x}(\sqrt{x} + \sqrt{y}) = 3\sqrt{y}(\sqrt{x} + 5\sqrt{y})$.

If
$$b = \frac{2x + \sqrt{xy} + 3y}{x + \sqrt{xy} - y}$$
, find the value of b.

若
$$\frac{\sqrt{3}-\sqrt{5}+\sqrt{7}}{\sqrt{3}+\sqrt{5}+\sqrt{7}} = \frac{c\sqrt{21}-18\sqrt{15}-2\sqrt{35}+b}{59}$$
 , 求 c 的值。

If
$$\frac{\sqrt{3} - \sqrt{5} + \sqrt{7}}{\sqrt{3} + \sqrt{5} + \sqrt{7}} = \frac{c\sqrt{21} - 18\sqrt{15} - 2\sqrt{35} + 9}{59}$$
, find the value of c .

2005 FG4.3

若
$$c = 2\sqrt{3} \times \sqrt[3]{1.5} \times \sqrt[6]{12}$$
 ,求 c 的值。

2006 FG3.1

已知
$$r=2006\times\frac{\sqrt{8}-\sqrt{2}}{\sqrt{2}}$$
 ,求 r 的值。Given that $r=2006\times\frac{\sqrt{8}-\sqrt{2}}{\sqrt{2}}$, find the

value of r.

2007 FI1.1

設
$$a$$
 為實數,且 $\sqrt{a} = \sqrt{7 + \sqrt{13}} - \sqrt{7 - \sqrt{13}}$,求 a 的值。

2008 FI2.1

已知
$$P = \left[\sqrt[3]{6} \times \left(\sqrt[3]{\frac{1}{162}}\right)\right]^{-1}$$
,求 P 的值。

Given that $P = \left[\sqrt[3]{6} \times \left(\sqrt[3]{\frac{1}{162}} \right) \right]^{-1}$, find the value of P.

2008 FI2.3

設
$$R = \left(\sqrt{\sqrt{3} + \sqrt{2}}\right)^4 + \left(\sqrt{\sqrt{3} - \sqrt{2}}\right)^4$$
。求 R 的值。

Let
$$R = \left(\sqrt{\sqrt{3} + \sqrt{2}}\right)^4 + \left(\sqrt{\sqrt{3} - \sqrt{2}}\right)^4$$
. Find the value of R .

2009 FI3.1

已知
$$\frac{4}{\sqrt{6}+\sqrt{2}} - \frac{1}{\sqrt{3}+\sqrt{2}} = \sqrt{a} - \sqrt{b}$$
。若 $m = a - b$,求 m 的值。

Given that $\frac{4}{\sqrt{6}+\sqrt{2}} - \frac{1}{\sqrt{3}+\sqrt{2}} = \sqrt{a} - \sqrt{b}$. If m = a - b, find the value of m.

2011 HI3

已知 $a+b=\sqrt{2011}+\sqrt{2010}$ 及 $a-b=\sqrt{2011}-\sqrt{2010}$, 求 ab 的值。 (答案以根式表示)

Given that $a + b = \sqrt{2011} + \sqrt{2010}$ and $a - b = \sqrt{2011} - \sqrt{2010}$,

find the value of ab. (Give your answer in surd form)

2012 HG4

求
$$\frac{1}{\sqrt{2012} + \sqrt{2011}} + \frac{1}{\sqrt{2011} + \sqrt{2010}} + \dots + \frac{1}{\sqrt{3} + \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{1}}$$
 的值。
(答案可以根式表示。)

Evaluate
$$\frac{1}{\sqrt{2012} + \sqrt{2011}} + \frac{1}{\sqrt{2011} + \sqrt{2010}} + \dots + \frac{1}{\sqrt{3} + \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{1}}$$
.

(Answer can be expressed in surd form.)

2012 FG3.1

設
$$x = \frac{\sqrt{7} + \sqrt{3}}{\sqrt{7} - \sqrt{3}}$$
 , $y = \frac{\sqrt{7} - \sqrt{3}}{\sqrt{7} + \sqrt{3}}$ 及 $192z = x^4 + y^4 + (x + y)^4$, 求 z 的 值 。

Let
$$a$$
 be a real number and $\sqrt{a} = \sqrt{7 + \sqrt{13}} - \sqrt{7 - \sqrt{13}}$. Find the value of a . Let $x = \frac{\sqrt{7} + \sqrt{3}}{\sqrt{7} - \sqrt{3}}$, $y = \frac{\sqrt{7} - \sqrt{3}}{\sqrt{7} + \sqrt{3}}$ and $192z = x^4 + y^4 + (x + y)^4$, find the value of z . **2008 FI2.1**

求正整數 γ 的最小值,以使得方程 $\sqrt{x} - \sqrt{24\gamma} = 4\sqrt{2}$ 對 x 有正整數解。

Determine the smallest positive integer γ such that the equation

$$\sqrt{x} - \sqrt{24\gamma} = 4\sqrt{2}$$
 has an integer solution in x.

2014 FI4.1

若
$$\frac{6\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}=3\sqrt{\alpha}-6$$
,求 α 的值。

If
$$\frac{6\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}=3\sqrt{\alpha}-6$$
, determine the value of α .

2014 FG4.2

若
$$x = \frac{\sqrt{5}+1}{2}$$
 及 $y = \frac{\sqrt{5}-1}{2}$, 求 $x^3y + 2x^2y^2 + xy^3$ 的值。

If
$$x = \frac{\sqrt{5} + 1}{2}$$
 and $y = \frac{\sqrt{5} - 1}{2}$, determine the value of $x^3y + 2x^2y^2 + xy^3$.

若
$$\sqrt{b} = \sqrt{8 + \sqrt{15}} + \sqrt{8 - \sqrt{15}}$$
 , 求 b 的實數值。

If $\sqrt{b} = \sqrt{8 + \sqrt{15}} + \sqrt{8 - \sqrt{15}}$, determine the real value of b.

2016 FI3.3, 2017 FG3.2

若
$$0 < x < 1$$
 ,求 $c = \left(\frac{\sqrt{1+x}}{\sqrt{1+x} - \sqrt{1-x}} + \frac{1-x}{\sqrt{1-x^2} + x - 1}\right) \cdot \left(\sqrt{\frac{1}{x^2} - 1} - \frac{1}{x}\right)$ 的值。

If 0 < x < 1, determine the value of

$$c = \left(\frac{\sqrt{1+x}}{\sqrt{1+x} - \sqrt{1-x}} + \frac{1-x}{\sqrt{1-x^2} + x - 1}\right) \times \left(\sqrt{\frac{1}{x^2} - 1} - \frac{1}{x}\right).$$

2019 FI2.1

若
$$\sqrt{A} = \sqrt{11 + \sqrt{21}} - \sqrt{11 - \sqrt{21}}$$
 , 求 A 的值。

If $\sqrt{A} = \sqrt{11 + \sqrt{21}} - \sqrt{11 - \sqrt{21}}$, determine the value of A.

2019 FG1.4

設
$$x = \frac{\sqrt{5} + \sqrt{7}}{\sqrt{5} - \sqrt{7}}$$
 和 $y = \frac{\sqrt{5} - \sqrt{7}}{\sqrt{5} + \sqrt{7}}$ 。若 $d = 3x^2 - 7xy + 3y^2$,求 d 的值。

Let
$$x = \frac{\sqrt{5} + \sqrt{7}}{\sqrt{5} - \sqrt{7}}$$
 and $y = \frac{\sqrt{5} - \sqrt{7}}{\sqrt{5} + \sqrt{7}}$. If $d = 3x^2 - 7xy + 3y^2$, determine the value of d .

2019 FG3.1

若 $\sqrt{32\times81\times343}=b\sqrt{a}$, 其中 a 和 b 是正整數 , 求 a 的最小值。

If $\sqrt{32 \times 81 \times 343} = b\sqrt{a}$, where a and b are positive integers, determine the least value of a.

2023 HG2

對於
$$0 < x < 2$$
, 求 $\left(\frac{\sqrt{2+x}}{\sqrt{2+x}-\sqrt{2-x}} + \frac{2-x}{\sqrt{4-x^2}+x-2}\right) \left(\sqrt{\frac{4}{x^2}-1} - \frac{2}{x}\right)$ 的值。

For
$$0 < x < 2$$
, find the value of $\left(\frac{\sqrt{2+x}}{\sqrt{2+x} - \sqrt{2-x}} + \frac{2-x}{\sqrt{4-x^2} + x - 2}\right) \left(\sqrt{\frac{4}{x^2} - 1} - \frac{2}{x}\right)$.

2023 HG8

已知 x 及 y 為正實數且滿足 $x^2 - y^2 = 4$ 及 $xy = 2 \circ$ x + y 可寫成

$$a\sqrt{b+\sqrt{c}}$$
 ,其中 $a \cdot b$ 及 c 均為正整數 ,求 $100a+10b+c$ 的最小值。

Given that x and y are positive real numbers satisfying $x^2 - y^2 = 4$ and xy = 2.

If the value of x + y can be expressed in the form of $a\sqrt{b + \sqrt{c}}$,

where a, b and c are positive integers, find the least value of 100a + 10b + c.

Answers

1987 FI5.3	1988 FI3.1	1989 FG10.1	1990 HI1	2000 HG9
25	3	6	5	12
2000 FI3.3	2000 FG1.2	2001 HG3	2002 FG3.4	2002 FG4.2
3996	25	10	8	2
2005 FI4.3	2005 FG4.3	2006 FG3.1	2007 FI1.1	2008 FI2.1
20	6	2006	2	3
2008 FI2.3 10	2009 FI3.1 3	$\frac{2011 \text{ HI3}}{\frac{1}{2}\sqrt{2010}}$	2012 HG4 $2\sqrt{503} - 1$	2012 FG3.1 6
2014 FI2.3	2014 FI4.1	2014 FG4.2	2016 FI1.2	2016 FI3.3, 2017 FG3.2
3	6	5	30	-1
2019 FI2.1	2019 FG1.4	2019 FG3.1	2023 HG2	2023 HG8
2	419	14	-1	172