ANALYSE 4: FONCTIONS DE PLUSIEURS VARIABLES

Université Internationale de Casablanca Classes Préparatoires Intégrées Hassan EL AMRI

2018-2019

- Distance et normes
- Ouverts et fermés
- Adhérence, intérieur d'un ensemble
- 4 Fonctions de plusieurs variables

Distance

Définition 1.1

Soit E un ensemble. On appelle distance sur E toute application $d: E \times E \mapsto \mathbb{R}^+$ telle que:

- $\forall x, y \in E: d(x, y) = d(y, x)$ symétrie

Exemples de distances

Exemple 1.2

• $E = \mathbb{R}$ et

$$d(x,y) = |x - y|$$

• $E = \mathbb{R} \times \mathbb{R}$ et

$$d((x_1,x_2),(y_1,y_2)) = \sqrt{(x_1-y_1)^2 + (x_2-y_2)^2}$$

• $E = \mathbb{R}^N$, $x = (x_1, x_2, ...x_N)$ et $y = (y_1, y_2, ...y_N)$

$$d(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_N - y_N)^2}$$

Norme

Définition 1.3

Soit E un espace vectoriel sur \mathbb{R} , on appelle norme sur E toute application $N: E \mapsto \mathbb{R}^+$ telle que:

$$N(\lambda x) = |\lambda| N(x)$$

$$N(x+y) \le N(x) + N(y)$$

Exemples de normes

Exemple 1.4

- $E = \mathbb{R}$, N(x) = |x|
- ullet $E=\mathbb{R} imes\mathbb{R}$, $N(x_1,x_2)=\sqrt{x_1^2+x_2^2}$
- D'une manière générale: Pour $E = \mathbb{R}^N$ on note $x = (x_1, x_2, ...x_N)$
 - $||x||_2 = \sqrt{x_1^2 + x_2^2 + \dots + x_N^2}$
 - $||x||_1 = |x_1| + |x_2| + \dots + |x_N|$
 - $||x||_{\infty} = \max_{i=1,N} |x_i|$

sont des normes sur \mathbb{R}^N . Elles vérifient pour tout $x \in \mathbb{R}^N$:

$$||x||_{\infty} \le ||x||_2 \le ||x||_1 \le N \, ||x||_{\infty} \le N \, ||x||_2$$

Produit scalaire

Définition 1.5

Pour tous $x, y \in \mathbb{R}^N$ on note le produit scalaire (euclidien) de x et y par:

$$x.y = x_1y_1 + x_2y_2 + ... + x_Ny_N$$

Donc

$$||x||_2 = \sqrt{x_1^2 + x_2^2 + \dots + x_N^2} = \sqrt{x.x}$$

On munit \mathbb{R}^N d'une de ses normes qu'on note ||.||, en général la norme euclidienne (naturelle) $||.||_2$. Soient $a \in \mathbb{R}^N$ et r > 0.

On munit \mathbb{R}^N d'une de ses normes qu'on note ||.||, en général la norme euclidienne (naturelle) $||.||_2$. Soient $a \in \mathbb{R}^N$ et r > 0.

Définition 2.1

On appelle **boule ouverte** de centre a et de rayon r l'ensemble

$$B(a,r) = \left\{ x \in \mathbb{R}^N, ||x - a|| < r \right\}$$

On munit \mathbb{R}^N d'une de ses normes qu'on note ||.||, en général la norme euclidienne (naturelle) $||.||_2$. Soient $a \in \mathbb{R}^N$ et r > 0.

Définition 2.1

On appelle **boule ouverte** de centre a et de rayon r l'ensemble

$$B(a,r) = \left\{ x \in \mathbb{R}^N, ||x - a|| < r \right\}$$

Définition 2.2

On appelle **boule fermée** de centre a et de rayon r l'ensemble

$$B_f(a, r) = \left\{ x \in \mathbb{R}^N, ||x - a|| \le r \right\}$$

On munit \mathbb{R}^N d'une de ses normes qu'on note ||.||, en général la norme euclidienne (naturelle) $||.||_2$. Soient $a \in \mathbb{R}^N$ et r > 0.

Définition 2.1

On appelle **boule ouverte** de centre a et de rayon r l'ensemble

$$B(a,r) = \left\{ x \in \mathbb{R}^N, ||x - a|| < r \right\}$$

Définition 2.2

On appelle **boule fermée** de centre a et de rayon r l'ensemble

$$B_f(a, r) = \left\{ x \in \mathbb{R}^N, ||x - a|| \le r \right\}$$

Définition 2.3

On appelle **sphère** (cercle pour N=2) de centre a et de rayon r l'ensemble

$$S(a,r) = \left\{ x \in \mathbb{R}^N, ||x - a|| = r \right\}$$

On munit \mathbb{R}^N d'une de ses normes qu'on note ||.||, en général la norme euclidienne (naturelle) $||.||_2$. Soient $a \in \mathbb{R}^N$ et r > 0.

Définition 2.1

On appelle **boule ouverte** de centre a et de rayon r l'ensemble

$$B(a,r) = \left\{ x \in \mathbb{R}^N, ||x - a|| < r \right\}$$

Définition 2.2

On appelle **boule fermée** de centre a et de rayon r l'ensemble

$$B_f(a, r) = \left\{ x \in \mathbb{R}^N, ||x - a|| \le r \right\}$$

Définition 2.3

On appelle **sphère** (cercle pour N=2) de centre a et de rayon r l'ensemble

$$S(a,r) = \left\{ x \in \mathbb{R}^N, ||x - a|| = r \right\}$$

Ensemble ouvert

Définition 2.4

Une partie A de \mathbb{R}^N est dite ouverte si

$$\forall a \in A, \exists r > 0 \text{ tel que} : B(a, r) \subset A$$

Ensemble ouvert

Définition 2.4

Une partie A de \mathbb{R}^N est dite ouverte si

$$\forall a \in A$$
, $\exists r > 0$ tel que : $B(a, r) \subset A$

Exemple 2.5

- ullet \mathbb{R}^N est un ouvert,
- ② L'ensemble Ø est un ouvert,
- Toute boule ouverte est un ouvert (exo).
- ullet A =]0,1] n'est pas ouvert dans \mathbb{R} , car $1 \in A$ mais il n'existe pas de réel r > 0 tel que

$$]1-r, 1+r[\subset]0, 1]$$

Définition 3.1

Soit F une partie de \mathbb{R}^N . On dit que F est fermé dans \mathbb{R}^N si son complémentaire $A=\mathbb{C}F=\mathbb{C}^F_{\mathbb{R}^N}$ est ouvert.

Définition 3.1

Soit F une partie de \mathbb{R}^N . On dit que F est fermé dans \mathbb{R}^N si son complémentaire $A=\mathbb{C}F=\mathbb{C}^F_{\mathbb{R}^N}$ est ouvert.

Théorème 3.2

Un ensemble F est fermé **si et seulement** si toute suite convergente d'éléments de F admet sa limite dans F.

Définition 3.1

Soit F une partie de \mathbb{R}^N . On dit que F est fermé dans \mathbb{R}^N si son complémentaire $A=\mathbb{C}F=\mathbb{C}^F_{\mathbb{R}^N}$ est ouvert.

Théorème 3.2

Un ensemble F est fermé **si et seulement** si toute suite convergente d'éléments de F admet sa limite dans F.

Définition 3.3

Soit $A \subset \mathbb{R}^N$. On appelle **adhérence** de A le plus petit fermé (pour l'inclusion) contenant A. On la note \bar{A} .

Définition 3.1

Soit F une partie de \mathbb{R}^N . On dit que F est fermé dans \mathbb{R}^N si son complémentaire $A=\mathbb{C}F=\mathbb{C}^F_{\mathbb{R}^N}$ est ouvert.

Théorème 3.2

Un ensemble F est fermé **si et seulement** si toute suite convergente d'éléments de F admet sa limite dans F.

Définition 3.3

Soit $A \subset \mathbb{R}^N$. On appelle **adhérence** de A le plus petit fermé (pour l'inclusion) contenant A. On la note \bar{A} .

Exemple 3.4

L'adhérence de]0,1[est [0,1].

L'adhérence de [0,1] est [0,1].

L'adhérence de la boule ouverte B(a, r) est la boule fermée $B_f(a, r)$

Intérieur

Définition 3.5

Soit $A \subset \mathbb{R}^N$. On appelle **intérieur** de A le plus grand ouvert (pour l'inclusion) contenu dans A. On le note $\overset{\circ}{A}$.

Intérieur

Définition 3.5

Soit $A \subset \mathbb{R}^N$. On appelle **intérieur** de A le plus grand ouvert (pour l'inclusion) contenu dans A. On le note $\overset{\circ}{A}$.

Exemple 3.6

L'intérieur de [0,1] est]0,1[. L'intérieur de]0,1] est]0,1[.

L'intérieur de la boule fermée $B_f(a, r)$ est la boule ouvert B(a, r)

- 1 L'intersection d'un nombre fini d'ouverts est un ouvert
- La réunion d'un nombre quelconque (même infini) d'ouverts est un ouvert.

- **1** L'intersection d'un nombre fini d'ouverts est un ouvert
- **2** La réunion d'un nombre quelconque (même infini) d'ouverts est un ouvert.
- **3** A est ouvert si et seulement si A = A

$$\overset{\circ}{A} \subset A \quad et \quad \overset{\circ}{A} = \overset{\circ}{A}$$

- 1 L'intersection d'un nombre fini d'ouverts est un ouvert
- **2** La réunion d'un nombre quelconque (même infini) d'ouverts est un ouvert.
- 3 A est ouvert si et seulement si A = A
- $\overset{\circ}{A} \subset A \quad et \quad \overset{\circ}{A} = \overset{\circ}{A}$

- 1 L'intersection d'un nombre fini d'ouverts est un ouvert
- **2** La réunion d'un nombre quelconque (même infini) d'ouverts est un ouvert.
- **3** A est ouvert si et seulement si A = A

$$\overset{\circ}{A} \subset A \quad et \quad \overset{\circ}{A} = \overset{\circ}{A}$$

$$\bullet \ \widehat{A \cap B} = \stackrel{\circ}{A} \cap \stackrel{\circ}{B} \quad \text{et} \ \stackrel{\circ}{A} \cup \stackrel{\circ}{B} \subset \widehat{A \cup B}$$

Propriétés des fermés

- 1 La réunion d'un nombre fini de fermés est un fermé
- L'intersection d'un nombre quelconque (même infini) de fermés est fermée.

Propriétés des fermés

- **1** La réunion d'un nombre fini de fermés est un fermé
- **②** L'intersection d'un nombre quelconque (même infini) de fermés est fermée.
- **3** Si $A \subset B$ alors $\bar{A} \subset \bar{B}$
- $\bar{\bar{A}} = \bar{A}$

Propriétés

Les ensembles \emptyset et \mathbb{R}^n sont ouverts et fermés à la fois.

Propriétés

Les ensembles \emptyset et \mathbb{R}^n sont ouverts et fermés à la fois.

Théorème 3.9

Les trois propriétés suivantes sont équivalentes:

- \mathbf{o} $a \in \bar{A}$
- ullet il existe une suite $(x_n)_n$ d'éléments de A convergente vers a: $\lim_{n \to +\infty} x_n = a$
- **3** Toute boule B(a, r) de centre a et de rayon quelconque (non nul) r rencontre A:

$$\forall r > 0, \ B(a, r) \cap A \neq \emptyset$$

FONCTIONS DE PLUSIEURS VARIABLES

On appelle fonction de plusieurs variables toute application

$$\begin{cases}
f: D \longrightarrow \mathbb{R} \\
x = (x_1, ..., x_n) \longrightarrow f(x)
\end{cases} \tag{1}$$

Exemple 4.2

• $f(x,y) = x^2 + y^2$ est une fonction de deux variables définie sur \mathbb{R}^2 tout entier

On appelle fonction de plusieurs variables toute application

$$\begin{cases}
f: D \longrightarrow \mathbb{R} \\
x = (x_1, ..., x_n) \longrightarrow f(x)
\end{cases} \tag{1}$$

Exemple 4.2

- $f(x,y) = x^2 + y^2$ est une fonction de deux variables définie sur \mathbb{R}^2 tout entier
- ② $f(x,y) = \frac{x}{y}$ est une fonction de deux variables définie sur $\mathbb{R} \times \mathbb{R}^*$.

On appelle fonction de plusieurs variables toute application

$$\begin{cases}
f: D \longrightarrow \mathbb{R} \\
x = (x_1, ..., x_n) \longrightarrow f(x)
\end{cases} \tag{1}$$

Exemple 4.2

- $f(x,y) = x^2 + y^2$ est une fonction de deux variables définie sur \mathbb{R}^2 tout entier
- **②** $f(x,y) = \frac{x}{y}$ est une fonction de deux variables définie sur $\mathbb{R} \times \mathbb{R}^*$.
- $f(x, y, z) = \left(y + \frac{1}{z}\right) \log x$ est une fonction de 3 variables définie sur $\mathbb{R}^{+*} \times \mathbb{R} \times \mathbb{R}^*$.

On appelle fonction de plusieurs variables toute application

$$\begin{cases}
f: D \longrightarrow \mathbb{R} \\ x = (x_1, ..., x_n) \longrightarrow f(x)
\end{cases}$$
(1)

Exemple 4.2

- $f(x,y) = x^2 + y^2$ est une fonction de deux variables définie sur \mathbb{R}^2 tout entier
- **3** $f(x,y) = \frac{x}{y}$ est une fonction de deux variables définie sur $\mathbb{R} \times \mathbb{R}^*$.
- $f(x, y, z) = \left(y + \frac{1}{z}\right) \log x$ est une fonction de 3 variables définie sur $\mathbb{R}^{+*} \times \mathbb{R} \times \mathbb{R}^*$.

Définition 4.3

Soit f une fonction de n variables. On appelle domaine de définition de f l'ensemble des $x \in \mathbb{R}^n$ pour lesquels f(x) existe.

$$D_f = \{x \in \mathbb{R}^n, \text{ tel que } f(x) \in \mathbb{R}\}$$

Exercice 4.4

Donner les domaines de définition des fonctions suivantes:

Exercice 4.4

Donner les domaines de définition des fonctions suivantes:

- $2 f_2(x,y) = \frac{xy}{\sqrt{1-x^2-y^2}}$

$$D_{f_1} = \{(x, y) \in \mathbb{R}^2, x \neq y\}$$

$$D_{f_2} = \{(x, y) \in \mathbb{R}^2, \ x^2 + y^2 < 1\} = B(0, 1)$$

$$D_{f_3} = \{ x \in \mathbb{R}, -\frac{\pi}{2} + 2k\pi < x < \frac{\pi}{2} + 2k\pi, k \in \mathbb{Z} \}$$

2018-2019, Hassan EL AMRI

Soit f définie sur un domaine $D \subset \mathbb{R}^n$ soit $x_0 \in \overline{D}$.

O On dit que f converge vers $l \in \mathbb{R}$ quand x tend vers x_0 et on note $\lim_{x \to x_0} f(x) = l$, si:

$$\forall \varepsilon > 0, \quad \exists \eta > 0 , \quad \forall x \in D, \quad ||x - x_0|| < \eta \Rightarrow |f(x) - I| < \varepsilon$$
 (2)

9 On dit que f converge vers $+\infty$ quand x tend vers x_0 et on note $\lim_{x\to x_0} f(x) = +\infty$, si:

$$\forall \alpha > 0, \quad \exists \eta > 0 , \quad \forall x \in D, \quad \|x - x_0\| < \eta \Rightarrow f(x) > \alpha$$
 (3)

9 On dit que f converge vers $-\infty$ quand x tend vers x_0 et on note $\lim_{x\to x_0} f(x) = -\infty$, si:

$$\forall \alpha < 0, \quad \exists \eta > 0 , \quad \forall x \in D, \quad ||x - x_0|| < \eta \Rightarrow f(x) < \alpha$$
 (4)

Exercice 5.2

Soit f la fonction définie par $f(x,y) = \frac{xy}{x^2+y^2}$.

- Donner le domaine de définition de f
- 2 f admet-elle une limite quand (x, y) tend vers (0, 0)?

Solution.

- **1** Le domaine de définition est $D_f = \{(x, y) \in \mathbb{R}^2, (x, y) \neq (0, 0)\}$
- **9** Sur la première bissectrice $f(x,x)=\frac{1}{2}$ et sur la deuxième bissectrice $f(x,-x)=-\frac{1}{2}$

La limite obtenue dépend du chemin suivi. Donc pas de limite.

Quelques propriétés

Théorème 5.3

Soit $f: D_1 \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ et $g: D_2 \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ deux fonctions définies sur deux domaines D_1 et D_2 tels que $D_1 \cap D_2$ contient une boule. Soit $x_0 \in \overline{D_1 \cap D_2}$.

Si
$$\lim_{x \to x_0} f(x) = I$$
 et $\lim_{x \to x_0} g(x) = I'$

alors

$$\lim_{x \to x_0} (f+g)(x) = I + I', \quad \lim_{x \to x_0} (fg)(x) = II'$$

et si $l' \neq 0$ alors

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{1}{l'}$$

Continuité

Définition 5.4

Soit f définie sur un domaine $D \subset \mathbb{R}^n$ soit $x_0 \in D$. On dit que f est continue en x_0 si $\lim_{x \to x_0} f(x) = f(x_0)$, c'est à dire :

$$\forall \varepsilon > 0, \quad \exists \eta > 0 , \quad \forall x \in D, \quad ||x - x_0|| < \eta \Rightarrow |f(x) - f(x_0)| < \varepsilon$$
 (5)

Exercice 5.5

Soit $f:(x,y)\in\mathbb{R}^2\longrightarrow x+y$. Montrer que $\forall (x_0,y_0)\in\mathbb{R}\times\mathbb{R}$ on a

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$$

c'est à dire que la fonction f est continue sur $\mathbb{R} \times \mathbb{R}$.

Applications partielles

Définition 6.1

Soit $f: D \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ une fonction de n variables. Si on fixe les n-1 variables $x_1, x_2, ..., x_{i-1}, x_{i+1}, ..., x_n$ on peut définir les n applications dites applications partielles :

 $f_i: x \in \mathbb{R} \longrightarrow \mathbb{R}, f_i(x) = f(x_1, ..., x_{i-1}, x, x_{i+1}, ..., x_n) \in \mathbb{R}$

Exemple 6.2

Dans le cas n=2 $f:\mathbb{R}^2\longrightarrow\mathbb{R}$ on a deux applications partielles $f_1:x\longrightarrow f_1(x)=f(x,y)$ et $f_2:y\longrightarrow f_2(y)=f(x,y)$ Par exemple, si $f(x,y)=\frac{xy}{x^2+y^2}$

$$f_1: x \longrightarrow f_1(x) = \frac{xy}{x^2 + y^2}$$

$$f_2: y \longrightarrow f_2(y) = \frac{xy}{x^2 + y^2}$$

←ロト→団ト→重ト→重・ 9へ○

Théorème 6.3

Si $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ est continue en $x_0 = (x_{01}, x_{02}, ..., x_{0n})$, les n applications partielles f_i de \mathbb{R} dans \mathbb{R} sont continues en x_{0i} .

Théorème 6.3

Si $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ est continue en $x_0 = (x_{01}, x_{02}, ..., x_{0n})$, les n applications partielles f_i de \mathbb{R} dans \mathbb{R} sont continues en x_{0i} .

Remarque 6.4

La réciproque de ce théorème est fausse comme le prouve l'exemple suivant : Soit $f(x,y) = \frac{xy}{x^2 + v^2}$ pour tout $(x,y) \neq (0,0)$ et f(0,0) = 0.

Au point O(0,0) les deux fonctions partielles $f_1(x) = f(x,0)$ et $f_2(y) = f(0,y)$ qui sont égales à 0 sont continues ; cependant f n'est pas continue en (0,0) : Si

I'on pose y=tx la limite en (0,0) est $\frac{t}{1+t^2}\neq f(0,0)$ pour $(t\neq 0)$.

DÉRIVÉE D'UNE FONCTION DE PLUSIEURS VARIABLES

Définition 6.5

Soit $f:D\subset\mathbb{R}\to\mathbb{R}$ une fonction. Soit $a\in D$ tel que $\exists r>0$ vérifiant $]a-r,a+r[\subset D.$ On dit que f est différentiable en a si:

Définition 6.5

Soit $f: D \subset \mathbb{R} \to \mathbb{R}$ une fonction. Soit $a \in D$ tel que $\exists r > 0$ vérifiant]a - r, $a + r[\subset D$. On dit que f est différentiable en a si: $\exists l \in \mathbb{R}$ tel que: $\forall h \in \mathbb{R}$ vérifiant $a + h \in D$ on a :

$$f(a+h)=f(a)+lh+h\varepsilon(h)$$
 avec $\lim_{h\to 0}\varepsilon(h)=0.$

Définition 6.5

Soit $f: D \subset \mathbb{R} \to \mathbb{R}$ une fonction. Soit $a \in D$ tel que $\exists r > 0$ vérifiant $]a - r, a + r[\subset D$. On dit que f est différentiable en a si: $\exists l \in \mathbb{R}$ tel que: $\forall h \in \mathbb{R}$ vérifiant $a + h \in D$ on a:

$$f(\mathbf{a}+\mathbf{h})=f(\mathbf{a})+\mathbf{l}\mathbf{h}+\mathbf{h}\varepsilon(\mathbf{h}) \ \ \text{avec} \ \lim_{h\to 0}\!\! \varepsilon(\mathbf{h})=0.$$

Le réel I est appelé la dérivée de la fonction f au point a. On le note I = f'(a).

Définition 6.5

Soit $f: D \subset \mathbb{R} \to \mathbb{R}$ une fonction. Soit $a \in D$ tel que $\exists r > 0$ vérifiant $]a-r, a+r[\subset D$. On dit que f est différentiable en a si: $\exists l \in \mathbb{R}$ tel que: $\forall h \in \mathbb{R}$ vérifiant $a+h \in D$ on a :

$$f(a+h) = f(a) + lh + h\varepsilon(h)$$
 avec $\lim_{h\to 0} \varepsilon(h) = 0$.

Le réel I est appelé la dérivée de la fonction f au point a. On le note I=f'(a). Et la fonction

$$\left\{\begin{array}{c} f': D \subset \mathbb{R} \to \mathbb{R} \\ a \to f'(a) \end{array}\right..$$

est appelée la fonction dérivée de la fonction f.

Définition 6.5

Soit $f: D \subset \mathbb{R} \to \mathbb{R}$ une fonction. Soit $a \in D$ tel que $\exists r > 0$ vérifiant $]a-r, a+r[\subset D$. On dit que f est différentiable en a si: $\exists l \in \mathbb{R}$ tel que: $\forall h \in \mathbb{R}$ vérifiant $a+h \in D$ on a :

$$f(a+h) = f(a) + lh + h\varepsilon(h)$$
 avec $\lim_{h\to 0} \varepsilon(h) = 0$.

Le réel I est appelé la dérivée de la fonction f au point a. On le note I=f'(a). Et la fonction

$$\left\{ \begin{array}{c} f': D \subset \mathbb{R} \to \mathbb{R} \\ a \to f'(a) \end{array} \right..$$

est appelée **la fonction dérivée** de la fonction f . On a aussi pour tout $x \in D$:

$$f(x) = f(a) + I(x - a) + (x - a)\varepsilon(x - a)$$
 avec $\lim_{x \to a} \varepsilon(x - a) = 0$.

4□ > 4□ > 4 = > 4 = > = 900

Remarque 6.6

• Si une fonction f est dérivable en un point a alors

Remarque 6.6

• Si une fonction f est dérivable en un point a alors

•
$$\lim_{h\to 0} \frac{f(a+h)-f(a)-lh}{h} = \lim_{h\to 0} \varepsilon(h) = 0$$

Remarque 6.6

• Si une fonction f est dérivable en un point a alors

•
$$\lim_{h\to 0} \frac{f(a+h)-f(a)-lh}{h} = \lim_{h\to 0} \varepsilon(h) = 0$$

•
$$\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} = I + \lim_{h\to 0} \varepsilon(h) = I = f'(a)$$

Remarque 6.6

- Si une fonction f est dérivable en un point a alors
- $\lim_{h\to 0} \frac{f(a+h)-f(a)-lh}{h} = \lim_{h\to 0} \varepsilon(h) = 0$
- $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} = I + \lim_{h\to 0} \varepsilon(h) = I = f'(a)$
- f est continue en a: En effet

$$\lim_{x\to a} f(x) = \lim_{x\to a} (f(a) + I(x-a) + (x-a)\varepsilon(x-a)) = f(a).$$

Définition 7.1

Soient $f:D\subset\mathbb{R}^n\to\mathbb{R}$ une fonction et $a\in D$ tel que $\exists r>0$ vérifiant $B(a, r) \subset D$.

Définition 7.1

Soient $f: D \subset \mathbb{R}^n \to \mathbb{R}$ une fonction et $a \in D$ tel que $\exists r > 0$ vérifiant $B(a,r) \subset D$.

On dit que f est différentiable en a si:

Définition 7.1

Soient $f: D \subset \mathbb{R}^n \to \mathbb{R}$ une fonction et $a \in D$ tel que $\exists r > 0$ vérifiant $B(a,r) \subset D$.

On dit que f est différentiable en a si: $\exists L \in \mathbb{R}^n$ tel que $\forall h \in \mathbb{R}^n$ vérifiant $a + h \in D$ on a :

Définition 7.1

Soient $f: D \subset \mathbb{R}^n \to \mathbb{R}$ une fonction et $a \in D$ tel que $\exists r > 0$ vérifiant $B(a, r) \subset D$.

On dit que f est différentiable en a si: $\exists L \in \mathbb{R}^n$ tel que $\forall h \in \mathbb{R}^n$ vérifiant $a + h \in D$ on a :

$$f(\mathbf{a}+\mathbf{h}) = f(\mathbf{a}) + L.\mathbf{h} + \|\mathbf{h}\| \, \varepsilon(\mathbf{h}) \;, \; \; \text{avec } \lim_{h \to 0} \varepsilon(h) = 0.$$

Définition 7.1

Soient $f: D \subset \mathbb{R}^n \to \mathbb{R}$ une fonction et $a \in D$ tel que $\exists r > 0$ vérifiant $B(a, r) \subset D$.

On dit que f est différentiable en a si: $\exists L \in \mathbb{R}^n$ tel que $\forall h \in \mathbb{R}^n$ vérifiant $a + h \in D$ on a :

$$f(a+h) = f(a) + L.h + \|h\| \, \varepsilon(h) \;, \quad \text{avec } \lim_{h \to 0} \varepsilon(h) = 0.$$

Le vecteur L est appelé dérivée de la fonction f au point a. On le note $L=f^{\prime}(a)$.

Définition 7.1

Soient $f: D \subset \mathbb{R}^n \to \mathbb{R}$ une fonction et $a \in D$ tel que $\exists r > 0$ vérifiant $B(a,r)\subset D$.

On dit que f est différentiable en a si: $\exists L \in \mathbb{R}^n$ tel que $\forall h \in \mathbb{R}^n$ vérifiant $a+h\in D$ on a:

$$f(\mathbf{a}+\mathbf{h}) = f(\mathbf{a}) + \mathbf{L}.\mathbf{h} + \|\mathbf{h}\| \, \epsilon(\mathbf{h}) \ , \quad \text{avec } \lim_{h \to 0} \epsilon(\mathbf{h}) = 0.$$

Le vecteur L est appelé dérivée de la fonction f au point a. On le note L = f'(a). On aura aussi $\forall x \in D$,

$$f(x) = f(a) + L(x - a) + ||x - a|| \varepsilon(x - a), \lim_{x \to a} \varepsilon(x - a) = 0.$$

Définition 7.1

Soient $f: D \subset \mathbb{R}^n \to \mathbb{R}$ une fonction et $a \in D$ tel que $\exists r > 0$ vérifiant $B(a,r) \subset D$.

On dit que f est différentiable en a si: $\exists L \in \mathbb{R}^n$ tel que $\forall h \in \mathbb{R}^n$ vérifiant $a + h \in D$ on a :

$$f(\mathbf{a}+\mathbf{h}) = f(\mathbf{a}) + \mathbf{L}.\mathbf{h} + \|\mathbf{h}\| \, \epsilon(\mathbf{h}) \ , \quad \text{avec } \lim_{h \to 0} \epsilon(\mathbf{h}) = 0.$$

Le vecteur L est appelé dérivée de la fonction f au point a. On le note L=f'(a). On aura aussi $\forall x \in D$,

$$f(x) = f(a) + L(x - a) + ||x - a|| \varepsilon(x - a), \lim_{x \to a} \varepsilon(x - a) = 0.$$

On note:
$$f'(a) = \nabla f(a)$$

(4日) (個) (注) (注) (注) (20)

Remarque 7.2

Si une fonction f est dérivable en un point a alors :

Remarque 7.2

Si une fonction f est dérivable en un point a alors :

On a

$$\lim_{h\to 0}\frac{|f(a+h)-f(a)-L.h|}{\|h\|}=\lim_{h\to 0}|\varepsilon(h)|=0$$

Remarque 7.2

Si une fonction f est dérivable en un point a alors :

On a

$$\lim_{h\to 0} \frac{|f(a+h)-f(a)-L.h|}{\|h\|} = \lim_{h\to 0} |\varepsilon(h)| = 0$$

2 f est continue en a: En effet

$$\lim_{x \to a} f(x) = \lim_{x \to a} (f(a) + L(x - a) + ||x - a|| \varepsilon(x - a)) = f(a).$$

Exemples:

Exemple 7.3

On considère la fonction f définie par f(x, y) = xy

Exemples:

Exemple 7.3

On considère la fonction f définie par f(x, y) = xyf(a+h, b+k) = (a+h)(b+k) = ab+bh+ak+hk

$$= f(a, b) + bh + ak + \sqrt{h^2 + k^2} \frac{hk}{\sqrt{h^2 + k^2}}$$

Et puisque $\frac{hk}{\sqrt{h^2+k^2}}$ tend vers 0 quand (h,k) tend vers (0,0) alors f est dérivable au point (a,b) et on :

$$f'(a,b)=(b,a)$$

et

$$f'(a,b)(h,k) = bh + ak$$

$$f(a+h, b+k) = (a+h)(b+k)$$

=
$$ab + ak + bh + hk$$

= $f(a, b) + bh + ak + \sqrt{h^2 + k^2} \frac{hk}{\sqrt{h^2 + k^2}}$

$$= f(a,b) + bh + ak + \sqrt{h^2 + k^2} \varepsilon(h,k)$$

$$f(a+h, b+k) = (a+h)(b+k)$$

=
$$ab + ak + bh + hk$$

= $f(a, b) + bh + ak + \sqrt{h^2 + k^2} \frac{hk}{\sqrt{h^2 + k^2}}$

$$= f(a,b) + bh + ak + \sqrt{h^2 + k^2} \varepsilon(h,k)$$

avec :
$$\varepsilon(h, k) = \frac{hk}{\sqrt{h^2 + k^2}}$$

•

•

$$f(a+h, b+k) = (a+h)(b+k)$$

=
$$ab + ak + bh + hk$$

= $f(a, b) + bh + ak + \sqrt{h^2 + k^2} \frac{hk}{\sqrt{h^2 + k^2}}$

$$= f(a,b) + bh + ak + \sqrt{h^2 + k^2} \varepsilon(h,k)$$

avec :
$$\varepsilon(h, k) = \frac{hk}{\sqrt{h^2 + k^2}}$$

Conclusion

•

•

$$f'(a,b) = \nabla f(a,b) = \begin{pmatrix} b \\ a \end{pmatrix}$$

Exemple 7.4

On considère la fonction f définie par
$$f(x, y) = \sin(xy)$$

 $f(a+h, b+k) = \sin(a+h)(b+k) = \sin(ab+bh+ak+hk)$
 $= \sin(ab) + (bh+ak+hk)\cos(ab) - \frac{1}{2}(bh+ak+hk)^2\sin\theta_{(h,k)}$

Exemple 7.4

On considère la fonction f définie par
$$f(x, y) = \sin(xy)$$

 $f(a+h, b+k) = \sin(a+h)(b+k) = \sin(ab+bh+ak+hk)$
 $= \sin(ab) + (bh+ak+hk)\cos(ab) - \frac{1}{2}(bh+ak+hk)^2\sin\theta_{(h,k)}$

Donc

$$f'(a,b).(h,k) = (bh + ak)\cos(ab) = (b\cos(ab))h + (a\cos(ab))k$$

et

$$f'(a, b) = (bcos(ab), acos(ab))$$

Exemple 7.5

On considère la fonction f définie par
$$f(x,y) = x^2y + xy$$

 $f(a+h,b+k) = (a+h)^2(b+k) + (a+h)(b+k)$
 $= (a^2 + 2ah + h^2)(b+k) + (a+h)(b+k)$
 $= a^2b + a^2k + 2abh + 2ahk + bh^2 + h^2k + ab + ak + bh + hk$
 $= f(a,b) + (2ab+b)h + (a^2 + a)k + bh^2 + h^2k + 2ahk$
 $= f(a,b) + (2ab+b,a^2 + a)(h,k) + bh^2 + h^2k + 2ahk$
 $= f(a,b) + (2ab+b,a^2 + a)(h,k) + \sqrt{h^2 + k^2} \frac{bh^2 + h^2k + 2ahk}{\sqrt{h^2 + k^2}}$
 $= f(a,b) + (2ab+b,a^2 + a)(h,k) + \sqrt{h^2 + k^2} \varepsilon(h,k)$

Donc:
$$f'(a, b) = \nabla f(a, b) = (2ab + b, a^2 + a) = (2ab, a^2) + (b, a)$$

On pose $h = r\cos(\theta) = rc$, $k = r\sin(\theta) = rs$ et on fait tendre r vers 0:

$$\frac{bh^2 + h^2k + 2ahk}{\sqrt{h^2 + k^2}} = r(bc^2 + rc^2s + 2acs) \rightarrow 0 \text{ quand } r \rightarrow 0$$

Gradient, Divergence, Rotationnel

Définition 7.6

Soit f une fonction diférentiable en $a=(a_1,a_2,...,a_n)$. On définit **le gradient** et **la divergence** de f en a par:

$$\nabla f(a) = \left(\frac{\partial f}{\partial x_1}(a), \frac{\partial f}{\partial x_2}(a), ..., \frac{\partial f}{\partial x_n}(a)\right)$$

$$div \ f(a) = \frac{\partial f}{\partial x_1}(a) + \frac{\partial f}{\partial x_2}(a) + \dots + \frac{\partial f}{\partial x_n}(a)$$

Soit $V(x, y, z) = (P(x, y, z), Q(x, y, z), R(x, y, z)) \in \mathbb{R}^3$. On définit la divergence et le rotationnel de V par:

$$div(V) = \nabla . V = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$

$$rot(V) = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)$$

Théorème

Théorème 7.7

- Si f est diférentiable en $a = (a_1, a_2, ..., a_n)$ alors elle est continue en a.
- **3** Si f est diférentiable en $a = (a_1, a_2, ..., a_n)$ alors f admet des dérivées partielles en a et on a:

$$f'(a) = \nabla f(a) = \left(\frac{\partial f}{\partial x_1}(a), \frac{\partial f}{\partial x_2}(a), ..., \frac{\partial f}{\partial x_n}(a)\right)$$

Dérivée selon une direction

Définition 7.8

Soit $f:D\subset\mathbb{R}^N\mapsto\mathbb{R}$ une fonction. Soit $a=(a_1,a_2,...,a_n)\in D$. Soit \vec{u} le vecteur directeur unitaire d'une droite dans \mathbb{R}^N passant par a.

Si $\frac{f(a+t\vec{u})-f(a)}{t}$ admet une limite quant t tend vers 0 alors on dit que f admet une dérivée au point a selon la direction \vec{u} . On la note $f'_{\vec{u}}(a)$.

$$f'_{\vec{u}}(a) = \lim_{t \to 0} \frac{f(a+t\vec{u}) - f(a)}{t}$$

Dérivée selon une direction

Définition 7.8

Soit $f: D \subset \mathbb{R}^N \mapsto \mathbb{R}$ une fonction. Soit $a = (a_1, a_2, ..., a_n) \in D$. Soit \vec{u} le vecteur directeur unitaire d'une droite dans \mathbb{R}^N passant par a.

Si $\frac{f(a+t\vec{u})-f(a)}{t}$ admet une limite quant t tend vers 0 alors on dit que f admet une dérivée au point a selon la direction \vec{u} . On la note $f'_{\vec{u}}(a)$.

$$f'_{\vec{u}}(a) = \lim_{t \to 0} \frac{f(a + t\vec{u}) - f(a)}{t}$$

Théorème 7.9

Si f est différentiable en a, alors la la dérivée selon toute direction $v = (v_1, v_2, ..., v_n)$ de f en a existe et on a:

$$f_{v}'(a) = v \cdot \nabla f(a) = v_{1} \frac{\partial f}{\partial x_{1}}(a) + v_{2} \frac{\partial f}{\partial x_{2}}(a) + ... + v_{n} \frac{\partial f}{\partial x_{n}}(a)$$

Théorème 7.10

Si f est de classe C^1 dans un voisinage de a (c'est à dire les dérivées partielles existent et sont continues) alors f est différentiable en a.

Opérations sur les dérivées

Théorème 7.11

Soient f et g deux fonctions différentiables en un point a. Alors:

 \bullet f + g est différentiable en a, et on a

$$\nabla(f+g)(a) = \nabla f(a) + \nabla g(a) \tag{6}$$

g fg est différentiable en a, et on a

$$\nabla(fg)(a) = g(a)\nabla f(a) + f(a)\nabla g(a) \tag{7}$$

3 Si de plus $g(a) \neq 0$ alors $\frac{f}{g}$ est différentiable en a et on a:

$$\nabla\left(\frac{f}{g}\right)(a) = \frac{g(a)\nabla f(a) - f(a)\nabla g(a)}{g(a)^2} \tag{8}$$

Composées de fonctions différentiables

Théorème 7.12

Soient $f:D\subset\mathbb{R}^n\to\mathbb{R}$ différentiable en $a\in D$ et $\varphi:\mathbb{R}\to\mathbb{R}$ différentiable en $f(a)\in f(D)$ Alors $\varphi of:D\subset\mathbb{R}^n\to\mathbb{R}$ est différentiable en a et on a

$$(\varphi \circ f)'(a) = \nabla(\varphi \circ f)(a) = \varphi'(f(a))f'(a) = \varphi'(f(a))\nabla f(a)$$

EXTREMUMS ET POINTS CRITIQUES

Définition d'un point critique

Définition 8.1

Soit $f:D\subset\mathbb{R}^N\longrightarrow\mathbb{R}$ une fonction dérivable. On dit que $a\in D$ est un point critique de f si

$$\nabla f(a) = O$$
,

c'est à dire que: $\frac{\partial f}{\partial x_i}(a) = 0, \forall i = 1, ..., N$

Définition d'un point critique

Définition 8.1

Soit $f:D\subset\mathbb{R}^N\longrightarrow\mathbb{R}$ une fonction dérivable. On dit que $a\in D$ est un point critique de f si

$$\nabla f(a) = O$$
,

c'est à dire que: $\frac{\partial f}{\partial x_i}(a) = 0, \forall i = 1, ..., N$

Pour N = 2, (a, b) est un point critique de f si:

$$\frac{\partial f}{\partial x}(a, b) = 0$$
 et $\frac{\partial f}{\partial y}(a, b) = 0$

Définition d'un point critique

Définition 8.1

Soit $f:D\subset\mathbb{R}^N\longrightarrow\mathbb{R}$ une fonction dérivable. On dit que $a\in D$ est un point critique de f si

$$\nabla f(a) = O$$
,

c'est à dire que: $\frac{\partial f}{\partial x_i}(a) = 0, \forall i = 1, ..., N$

Pour N = 2, (a, b) est un point critique de f si:

$$\frac{\partial f}{\partial x}(a, b) = 0$$
 et $\frac{\partial f}{\partial y}(a, b) = 0$

Exemple 8.2

 $f(x,y) = x(y-1) \ \nabla f(x,y) = (y-1,x)$ est nul pour y=1 et x=0. Le point (0,1) est un point critique de la fonction f.

Définition 8.3

Soient $f:D\subset\mathbb{R}^N\longrightarrow\mathbb{R}$ une fonction et $a\in D$. a est un maximum local (relatif) de f si: $\exists V$ voisinage de a tel que

$$f(x) \le f(a) \ \forall x \in V$$

Définition 8.3

Soient $f:D\subset\mathbb{R}^N\longrightarrow\mathbb{R}$ une fonction et $a\in D$. a est un maximum local (relatif) de f si: $\exists V$ voisinage de a tel que

$$f(x) \le f(a) \ \forall x \in V$$

a est un maximum (global) de f si:

$$f(x) \le f(a) \ \forall x \in D$$

Définition 8.3

Soient $f:D\subset\mathbb{R}^N\longrightarrow\mathbb{R}$ une fonction et $a\in D$. a est un maximum local (relatif) de f si: $\exists V$ voisinage de a tel que

$$f(x) \le f(a) \ \forall x \in V$$

a est un maximum (global) de f si:

$$f(x) \le f(a) \ \forall x \in D$$

a est un minimum local (relatif) de f si: $\exists V$ voisinage de x_0 tel que

$$f(x) \ge f(a) \ \forall x \in V$$

Définition 8.3

Soient $f: D \subset \mathbb{R}^N \longrightarrow \mathbb{R}$ une fonction et $a \in D$. a est un maximum local (relatif) de f si: $\exists V$ voisinage de a tel que

$$f(x) \le f(a) \ \forall x \in V$$

a est un maximum (global) de f si:

$$f(x) \le f(a) \ \forall x \in D$$

a est un minimum local (relatif) de f si: $\exists V$ voisinage de x_0 tel que

$$f(x) \ge f(a) \ \forall x \in V$$

a est un minimum (global) de f si:

$$f(x) \ge f(a) \ \forall x \in D$$

DEF: Extremum = maximum ou minimum

Développement limité de Taylor-Young

Théorème 8.4

Soit f une fonction de deux variables définie au voisinage de (a,b). On suppose que f admet des dérivées partielles secondes $\frac{\partial^2 f}{\partial x^2}(a,b)$, $\frac{\partial^2 f}{\partial y^2}(a,b)$, $\frac{\partial^2 f}{\partial x \partial y}(a,b)$, continues au voisinage de (a,b). Alors f admet un développement limité à l'ordre f de la forme:

$$f(a+h,b+k) = f(a,b) + \frac{\partial f}{\partial x}(a,b)h + \frac{\partial f}{\partial y}(a,b)k$$
$$+ \frac{1}{2} \left(\frac{\partial^2 f}{\partial x^2}(a,b)h^2 + 2\frac{\partial^2 f}{\partial x \partial y}(a,b)hk + \frac{\partial^2 f}{\partial y^2}(a,b)k^2 \right)$$
$$+ (h^2 + k^2)\varepsilon(h,k)$$

900 E (E) (E) (B) (D)

Plan tangent à une surface

Définition 9.1

Soit $f:D\subset\mathbb{R}^2\longrightarrow R$ une fonction dérivable en un point $(a,b)\in D$. On appelle plan tangent au graphe de f au point (a,b) le plan défini par :

$$z - f(a, b) = \frac{\partial f}{\partial x}(a, b)(x - a) + \frac{\partial f}{\partial y}(a, b)(y - b)$$

Exemple 9.2

$$f(x, y) = xy$$

Si on pose

$$\alpha = \frac{\partial^2 f}{\partial x^2}(a, b)$$
, $\beta = \frac{\partial^2 f}{\partial y^2}(a, b)$, $\gamma = \frac{\partial^2 f}{\partial x \partial y}(a, b)$

alors Young-Taylor devient

$$f(a+h,b+k) - f(a,b) = \nabla f(a,b) \cdot \binom{h}{k} + \frac{1}{2} \left(\alpha h^2 + 2\gamma h k + \beta k^2 \right)$$
$$+ \|(h,k)\|^2 \varepsilon(h,k)$$

ou encore :

$$f(a+h,b+k) - f(a,b) = \nabla f(a,b) \cdot \begin{pmatrix} h \\ k \end{pmatrix} + \frac{1}{2} \begin{pmatrix} \alpha & \gamma \\ \gamma & \beta \end{pmatrix} \begin{pmatrix} h \\ k \end{pmatrix} \cdot \begin{pmatrix} h \\ k \end{pmatrix}$$
$$+ (h^2 + k^2)\varepsilon(h,k)$$

maximum, minimum, point selle

Remarque 9.4

Soit $f:D\subset\mathbb{R}^2\longrightarrow\mathbb{R}$ deux fois différentiable. Soit (a,b) un point critique de f. On a donc $\nabla f(a,b) = (0,0)$. Donc

$$f(a+h, b+k) - f(a, b) = \frac{1}{2} \left(\alpha h^2 + 2\gamma h k + \beta k^2 \right) + \|(h, k)\|^2 \varepsilon(h, k)$$

La position de f(a+h,b+k) par rapport à celle de f(a,b) ne dépend que du signe de $\alpha h^2 + 2\gamma hk + \beta k^2$ Si $k \neq 0$ alors

$$\alpha h^{2} + 2\gamma hk + \beta k^{2} = k^{2} \left(\alpha \left(\frac{h}{k} \right)^{2} + 2\gamma \frac{h}{k} + \beta \right)$$

maximum, minimum, point selle

Remarque 9.4

Soit $f:D\subset\mathbb{R}^2\longrightarrow\mathbb{R}$ deux fois différentiable. Soit (a,b) un point critique de f. On a donc $\nabla f(a,b)=(0,0)$. Donc

$$f(a+h, b+k) - f(a, b) = \frac{1}{2} \left(\alpha h^2 + 2\gamma h k + \beta k^2 \right) + \|(h, k)\|^2 \varepsilon(h, k)$$

La position de f(a + h, b + k) par rapport à celle de f(a, b) ne dépend que du signe de $\alpha h^2 + 2\gamma hk + \beta k^2$ Si $k \neq 0$ alors

$$\alpha h^{2} + 2\gamma hk + \beta k^{2} = k^{2} \left(\alpha \left(\frac{h}{k} \right)^{2} + 2\gamma \frac{h}{k} + \beta \right)$$

On pose $r = \frac{h}{k} \alpha h^2 + 2\gamma hk + \beta k^2 = k^2 (\alpha r^2 + 2\gamma r + \beta)$. On calcule $d = \alpha \beta - \gamma^2$.

4D > 4A > 4E > 4E > E 999

(suite) Si d > 0 alors le polynôme $\alpha h^2 + 2\gamma hk + \beta k^2$ garde un signe constant: celui de α (et de β).

(suite) Si d > 0 alors le polynôme $\alpha h^2 + 2\gamma hk + \beta k^2$ garde un signe constant: celui de α (et de β).

Si
$$d > 0$$
 et $\alpha < 0$ alors $f(a+h, b+k) - f(a, b) \le 0$ et donc

$$f(a+h,b+k) \le f(a,b)$$
, pour h et k assez petits

c'est à dire on a un maximum relatif.

(suite) Si d > 0 alors le polynôme $\alpha h^2 + 2\gamma hk + \beta k^2$ garde un signe constant: celui de α (et de β).

Si
$$d > 0$$
 et $\alpha < 0$ alors $f(a+h, b+k) - f(a, b) \le 0$ et donc

$$f(a+h,b+k) \le f(a,b)$$
, pour h et k assez petits

c'est à dire on a un maximum relatif.

Si
$$d > 0$$
 et $\alpha > 0$ alors $f(a+h,b+k) - f(a,b) \ge 0$ et donc

$$f(a+h,b+k) \ge f(a,b)$$
, pour h et k assez petits

c'est à dire on a un minimum relatif.

2018-2019, Hassan EL AMRI

2018-2019

Théorème 9.6

On distingue les cas suivants :

- $Si \gamma^2 \alpha \beta < 0$ et $\alpha > 0$, f admet un minimum relatif au point (a, b).
- $Si \gamma^2 \alpha \beta < 0$ et $\alpha < 0$, f admet un maximum relatif au point (a, b).
- Si $\gamma^2 \alpha \beta > 0$, f n'admet pas d'extremum au point (a, b), on parle de **point col**, ou **point selle**.
- Si $\gamma^2 \alpha \beta = 0$ on ne peut pas conclure.

Théorème 9.6

On distingue les cas suivants :

- $Si \gamma^2 \alpha \beta < 0$ et $\alpha > 0$, f admet un minimum relatif au point (a, b).
- Si $\gamma^2 \alpha \beta < 0$ et $\alpha < 0$, f admet un maximum relatif au point (a, b).
- Si $\gamma^2 \alpha \beta > 0$, f n'admet pas d'extremum au point (a, b), on parle de **point col**, ou **point selle**.
- Si $\gamma^2 \alpha \beta = 0$ on ne peut pas conclure.

Le récapitulatif est donné dans le tableau suivant:

$\gamma^2 - \alpha\beta > 0$	$\gamma^2 - \alpha \beta < 0$		$\gamma^2 - \alpha \beta = 0$
Point Col	$\alpha > 0$	$\alpha < 0$	On ne peut
Point selle	Minimum	Maximum	rien dire

INTÉGRALE DE FONCTION DE PLUSIEURS VARIABLES

Intégrales sur un "pavé" D de \mathbb{R}^N

Définition 10.1

Soit $f:D\subset\mathbb{R}^N:\longrightarrow\mathbb{R}$, on suppose ici que D est un produit d'intervalles de \mathbb{R} :

$$D = [a_1, b_1] \times [a_2, b_2] \times ... \times [a_i, b_i] \times ... \times [a_N, b_N]$$

On appelle intégrale de f sur D le nombre réel noté

$$\int_{D} f(x_{1}, x_{2}, ..., x_{N}) dx_{1} dx_{2} ... dx_{N}$$

$$= \int_{a_1}^{b_1} \left(\int_{a_2}^{b_2} ... \left(\int_{a_i}^{b_i} ... \left(\int_{a_N}^{b_N} f(x_1, x_2, ..., x_N) dx_N \right) ... \right) dx_i ... \right) dx_2 \right) dx_1$$

ロト (個) (重) (重) (重) の90

Exemple 10.2

$$f: D \subset \mathbb{R}^2 \longrightarrow \mathbb{R}, \ D = [a, b] \times [c, d] \ f(x, y) = \sin(x + y)$$

$$\int_D \sin(x + y) dx dy = \int_a^b \left(\int_c^d \sin(x + y) dy \right) dx$$

$$= \int_a^b \left([\cos(x + y)]_c^d \right) dx$$

$$= \int_a^b \left(\cos(x + d) - \cos(x + c) \right) dx$$

$$= [-\sin(x + d) + \sin(x + c)]_a^b$$

$$= \sin(a + d) - \sin(b + d) + \sin(b + c) - \sin(a + c)$$

D défini par des inéquations:

Définition 10.3

Si D est défini par des inéquations:

$$D = \{(x,y); \text{ tels que } a \leq x \leq b, \text{ et } \varphi(x) \leq y \leq \psi(x)\}$$

Alors
$$\int_D f(x,y) dx dy = \int_a^b \left(\int_{\phi(x)}^{\psi(x)} f(x,y) dy \right) dx$$

Exemple 10.4

$$D = \left\{ (x, y); \text{ tels que } 0 \le x \le 1, \text{ et } -x^2 \le y \le x^2 \right\}$$

Suite de l'exemple

$$\int_{D} f(x,y) dx dy = \int_{0}^{1} \left(\int_{-x^{2}}^{x^{2}} f(x,y) dy \right) dx$$

L'aire par exemple de D est le résultat obtenu quand on prend f(x,y)=1 :

$$Aire(D) = \int_{D} 1 dx dy = \int_{0}^{1} \left(\int_{-x^{2}}^{x^{2}} dy \right) dx$$
$$= \int_{0}^{1} 2x^{2} dx = \frac{2}{3}$$

52 / 94

2018-2019, Hassan EL AMRI 2018-2019

Aire et volume

Soit $D \subset \mathbb{R}^2$, l'aire du domaine D est donnée par :

$$\mathit{Aire}(D) = \int_{D} 1 \mathit{dxdy}$$

Soit $D \subset \mathbb{R}^3$, le volume du domaine D est donné par:

$$Vol(D) = \int_{D} 1 dx dy dz$$

Exemple 10.5

$$Aire(D) = \int_D 1 dx dy = \int_0^a \left(\int_0^{f(x)} 1 dy \right) dx = \int_0^a f(x) dx$$

Formes différentielles

Définition 11.1

On appelle forme différentielle dans $U \subset \mathbb{R}$ toute quantité mathématique s'écrivant sous la forme

$$\omega(x) = f(x)dx$$

Définition 11.2

On appelle forme différentielle dans $U \subset \mathbb{R}^2$ toute quantité mathématique s'écrivant sous la forme (ici $x=(x_1,x_2)$)

$$\omega(x) = \begin{cases} f_1(x)dx_1 + f_2(x)dx_2 & d^{\circ} 1\\ ou\\ \omega(x) = f_1(x)dx_1 \wedge dx_2 & d^{\circ} 2 \end{cases}$$

Définition 11.3

On appelle forme différentielle sur $U \subset \mathbb{R}^3$ toute quantité mathématique s'écrivant sous la forme (ici $x = (x_1, x_2, x_3)$)

$$\omega(x) = \begin{cases} f_1(x) dx_1 + f_2(x) dx_2 + f_3(x) dx_3 , & d^o 1 \\ ou \\ \omega(x) = f_1(x) dx_1 \wedge dx_2 + f_2(x) dx_2 \wedge dx_3 + f_3(x) dx_3 \wedge dx_1 , d^o 2 \\ ou \\ \omega(x) = f_1(x) dx_1 \wedge dx_2 \wedge dx_3 , & d^o 3 \end{cases}$$

Définition 11.4

La quantité $dx_1 \wedge dx_2$ s'appelle produit tensoriel de dx_1 et dx_2 . Il vérifie

$$(dx_1 \wedge dx_2) \wedge dx_3 = dx_1 \wedge (dx_2 \wedge dx_3) = dx_1 \wedge dx_2 \wedge dx_3$$

$$et$$

$$dx_1 \wedge dx_2 = -dx_2 \wedge dx_1$$

D'où

$$dx_1 \wedge dx_1 = 0$$

Théorème 11.5

Toute forme différentielle définie sur $U \subset \mathbb{R}^N$ et de degré supérieur à N **est nulle.** Par exemple dans \mathbb{R}^2 on a: $dx_1 \wedge dx_2 \wedge dx_1 = -dx_1 \wedge dx_1 \wedge dx_2 = 0$

Exemple 11.6

Soit $f: U \subset \mathbb{R}^N \longrightarrow \mathbb{R}$ une fonction de classe $C^1(U)$. $df = \frac{\partial f}{\partial x_1} dx_1 + \frac{\partial f}{\partial x_2} dx_2 + ... + \frac{\partial f}{\partial x_N} dx_N = \sum_{i=1}^{i=N} \frac{\partial f}{\partial x_i} dx_i$ est une forme différentielle de degré 1.

forme différentielle exacte

Définition 11.7

Une forme différentielle sur un ouvert $U \subset \mathbb{R}^N$, $\omega(x) = f_1(x)dx_1 + f_2(x)dx_2 + ... + f_N(x)dx_N$ est dite **exacte** si il existe une fonction $f: U \longrightarrow \mathbb{R}$ de classe $C^1(U)$ telle que

$$\omega(x) = df(x)$$
, $\forall x \in U$

c'est à dire telle que

$$\frac{\partial f}{\partial x_i}(x) = f_i(x)$$
, $\forall i = 1, ..., N$

La fonction f est dite une **primitive** de ω .

Exercice 11.8

 $\omega(x, y) = ydx + xdy$ définie dans \mathbb{R}^2 est-elle exacte?

Solution. On cherche f(x, y) telle que

$$\begin{cases} \frac{\partial f}{\partial x}(x, y) = y \\ et \\ \frac{\partial f}{\partial y}(x, y) = x \end{cases}$$

donc

$$\begin{cases} f(x,y)(=yx+c(y)) \\ et \\ x+c'(y)=x \end{cases}$$

c'est à dire c'(y) = 0 et donc c(y) = k = constante

$$f(x,y) = xy + k$$
, k constante quelconque

Exercice 11.8

 $\omega(x,y) = ydx + xdy$ définie dans \mathbb{R}^2 est-elle exacte?

Solution. On cherche f(x, y) telle que

$$\begin{cases} \frac{\partial f}{\partial x}(x, y) = y \\ et \\ \frac{\partial f}{\partial y}(x, y) = x \end{cases}$$

donc

$$\begin{cases} f(x,y)(=yx+c(y)) \\ et \\ x+c'(y)=x \end{cases}$$

c'est à dire c'(y) = 0 et donc c(y) = k = constante

$$f(x,y) = xy + k$$
, k constante quelconque

On conclut que la forme différentielle $\omega(x,y)=y\mathrm{d}x+x\mathrm{d}y$ est exacte dans \mathbb{R}^2 . \blacksquare

Exercice 11.9

Exercice : $\omega(x, y) = xdx + ydy$ définie dans \mathbb{R}^2 est-elle exacte?

Forme différentielle fermée

Définition 11.10

Une forme différentielle $\omega(x)=f_1(x)dx_1+f_2(x)dx_2+...+f_N(x)dx_N$ est dite fermée si

$$\frac{\partial f_i}{\partial x_j}(x) = \frac{\partial f_j}{\partial x_i}(x)$$
, $\forall i, j = 1, ..., N$

Exemple 11.11

Dans \mathbb{R}^2 une forme différentielle $\omega(x,y)=P(x,y)dx+Q(x,y)dy$ est fermée si

$$\frac{\partial P}{\partial y}(x,y) = \frac{\partial Q}{\partial x}(x,y)$$

Exemple 11.12

Dans \mathbb{R}^3 une forme différentielle

$$\omega(x,y,z) = P(x,y,z)dx + Q(x,y,z)dy + R(x,y,z)dz$$
 est fermée si

$$\frac{\partial P}{\partial y}(x, y, z) = \frac{\partial Q}{\partial x}(x, y, z)$$

$$\frac{\partial P}{\partial z}(x, y, z) = \frac{\partial R}{\partial x}(x, y, z)$$

$$\frac{\partial Q}{\partial z}(x, y, z) = \frac{\partial R}{\partial v}(x, y, z)$$

2018-2019, Hassan EL AMRI

Théorème 11.13

Théorème de Schwarz : ω exacte $\Rightarrow \omega$ fermée

Remarque 11.14

La réciproque est fausse. Étudier le cas de la FD suivante :

$$\omega(x,y) = \frac{-ydx + xdy}{x^2 + y^2}$$

$$\frac{\partial P}{\partial y}(x,y) = \frac{\partial Q}{\partial x}(x,y) = \frac{y^2 - x^2}{(x^2 + y^2)^2}$$

La forme différentielle ω est donc fermée.

2018-2019, Hassan EL AMRI

Chemin

Définition 11.15

On appelle chemin dans \mathbb{R}^2 toute application continue

$$\gamma: t \in [0,1] \to \gamma(t) \in \mathbb{R}^2$$

Chemin

Définition 11.15

On appelle chemin dans \mathbb{R}^2 toute application continue

$$\gamma: t \in [0,1] \to \gamma(t) \in \mathbb{R}^2$$

 $\gamma([0,1])\subset\mathbb{R}^2$ est aussi appelé **chemin**. C'est une courbe dans le plan d'extrémité les points $\gamma(0)$ et $\gamma(1)$.

Chemin

Définition 11.15

On appelle chemin dans \mathbb{R}^2 toute application continue

$$\gamma: t \in [0,1] \to \gamma(t) \in \mathbb{R}^2$$

 $\gamma([0,1]) \subset \mathbb{R}^2$ est aussi appelé **chemin**. C'est une courbe dans le plan d'extrémité les points $\gamma(0)$ et $\gamma(1)$.

Exemple 11.16

$$\gamma(t) = (x(t), y(t)) \in \mathbb{R}^2$$
 avec $x(t) = 1 + t$, et $y(t) = \sin(2\pi t)$

Intégrale d'une FD le long d'un chemin

Définition 12.1

Soient ω une FD exacte et f une primitive de ω . Si $\gamma:[0,1]\to U\subset\mathbb{R}^2$ est un arc paramétré (chemin) de U alors

$$\int_{\gamma} \omega = f(\gamma(1)) - f(\gamma(0))$$

Remarque 12.2

On en déduit que si le chemin est fermé, c'est dire $\gamma(1)=\gamma(0)$ alors $\int_{\gamma}\omega=0$. Le chemin défini par $\gamma(t)=(\cos 2\pi t,\sin 2\pi t)$ vérifie $\gamma(0)=(1,0)$ et $\gamma(1)=(1,0)$

Calculer
$$\int_C \omega$$
 pour $\omega(x, y) = \frac{-ydx + xdy}{x^2 + y^2}$.
$$\int_C \omega = \int_C \frac{-ydx + xdy}{x^2 + y^2}$$

Sur C

$$\begin{cases} x(t) = \cos(2\pi t) & \Rightarrow dx = -2\pi \sin(2\pi t) dt \\ et \\ y(t) = \sin(2\pi t) & \Rightarrow dy = 2\pi \cos(2\pi t) dt \end{cases}$$

$$\int_C \frac{-ydx + xdy}{x^2 + y^2} = \int_0^1 \frac{2\pi \sin^2(2\pi t) + 2\pi \cos^2(2\pi t)}{1} dt$$

$$= 2\pi \int_0^1 \left(\cos^2(2\pi t) + \sin^2(2\pi t)\right) dt$$

 $=2\pi$

Elle n'est donc pas exacte, car si elle l'était, son intégrale sur le contour C serait nulle. Pourtant elle est fermée.

Exercice 12.3

Déterminer si les formes différentielles suivantes sont exactes, dans ce cas les intégrer (En trouver des primitives):

- $2 \omega_2 = xydx zdy + xzdz$
- $\omega_4 = yz^2dx + (xz^2 + z)dy + (2xyz + 2z + y)dz$

2018-2019, Hassan EL AMRI

Solution de 1: . Pour la première P(x,y)=2xy et $Q(x,y)=x^2$. On voit que ω_1 est fermée. En effet $\frac{\partial P}{\partial y}=2x$ et $\frac{\partial Q}{\partial x}=2x$.

Cherchons une fonction f(x,y) de classe C^1 sur \mathbb{R}^2 telle que $df=\omega_1$, c'est à dire telle que

$$\begin{cases} \frac{\partial f}{\partial x}(x, y) = 2xy \\ et \\ \frac{\partial f}{\partial y}(x, y) = x^2 \end{cases}$$

La deuxième identité donne $f(x,y)=x^2y+c(x)$. Reporté dans la première 2xy+c'(x)=2xy et donc c'(x)=0 qui veut dire que c(x)=k.

$$f(x,y) = x^2y + k$$

 ω_1 est donc exacte.

2018-2019, Hassan EL AMRI

Solution de 2 et 3. On voit que ω_2 n'est pas fermée. Elle n'a aucune chance d'être exacte (parce que exacte \Rightarrow fermée).

On voit que ω_3 n'est pas fermée. Elle n'a aucune chance d'être exacte (parce que exacte \Rightarrow fermée).

Solution de 4 . On vérifie facilement que f est fermée. Elle peut être exacte. Cherchons donc f(x,y,z) telle que

$$\begin{cases} \frac{\partial f}{\partial x}(x, y, z) = yz^2\\ \frac{\partial f}{\partial y}(x, y, z) = xz^2 + z\\ \frac{\partial f}{\partial z}(x, y, z) = 2xyz + 2z + y \end{cases}$$

La première équation donne $f(x, y, z) = xyz^2 + g(y, z)$

On remplace dans la deuxième : $xz^2 + \frac{\partial g}{\partial y}(y, z) = xz^2 + z$.

C'est à dire $\frac{\partial g}{\partial y}(y,z) = z$. On l'intègre g(y,z) = yz + c(z) et f(x,y,z) devient $f(x,y,z) = xyz^2 + yz + c(z)$. On reporte dans la troisième équation:

$$2xyz + y + c'(z) = 2xyz + 2z + y$$
$$c'(z) = 2z \implies c(z) = z^2 + k$$

Conclusion: $f(x, y, z) = xyz^2 + yz + z^2 + k$

En coordonnées polaires on a

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases}$$

- Calculer dx et dy et fonction de dr et $d\theta$
- **2** Calculer $dx \wedge dy$

Définition: Différentielle extérieure d'une forme différentielle

DEF 1: Si $\omega = f(x_1, x_2, ..., x_N)$ est une fonction de classe C^1 (c'est à dire une forme différentielle de degré 0) sur un ouvert $U \subset \mathbb{R}^N$, alors la différentielle extérieure de ω est la forme différentielle de degré 1 définie par:

$$d\omega = df = \frac{\partial f}{\partial x_1} dx_1 + \frac{\partial f}{\partial x_2} dx_2 + \dots + \frac{\partial f}{\partial x_N} dx_N$$

Définition: Différentielle extérieure d'une forme différentielle

DEF 1: Si $\omega=f(x_1,x_2,...,x_N)$ est une fonction de classe C^1 (c'est à dire une forme différentielle de degré 0) sur un ouvert $U\subset\mathbb{R}^N$, alors la différentielle extérieure de ω est la forme différentielle de degré 1 définie par:

$$d\omega = df = \frac{\partial f}{\partial x_1} dx_1 + \frac{\partial f}{\partial x_2} dx_2 + \dots + \frac{\partial f}{\partial x_N} dx_N$$

DEF 2: Soit $\omega = Pdx$ une forme différentielle sur $U \subset \mathbb{R}^2$ de degré 1. La différentielle extérieure de ω est la forme différentielle de degré 2:

$$d\omega = \left(\frac{\partial P}{\partial x}dx + \frac{\partial P}{\partial y}dy\right) \wedge dx = \frac{\partial P}{\partial y}dy \wedge dx = -\frac{\partial P}{\partial y}dx \wedge dy$$

Définition: Différentielle extérieure d'une forme différentielle

DEF 1: Si $\omega=f(x_1,x_2,...,x_N)$ est une fonction de classe C^1 (c'est à dire une forme différentielle de degré 0) sur un ouvert $U\subset\mathbb{R}^N$, alors la différentielle extérieure de ω est la forme différentielle de degré 1 définie par:

$$d\omega = df = \frac{\partial f}{\partial x_1} dx_1 + \frac{\partial f}{\partial x_2} dx_2 + \dots + \frac{\partial f}{\partial x_N} dx_N$$

DEF 2: Soit $\omega = Pdx$ une forme différentielle sur $U \subset \mathbb{R}^2$ de degré 1. La différentielle extérieure de ω est la forme différentielle de degré 2:

$$d\omega = \left(\frac{\partial P}{\partial x}dx + \frac{\partial P}{\partial y}dy\right) \wedge dx = \frac{\partial P}{\partial y}dy \wedge dx = -\frac{\partial P}{\partial y}dx \wedge dy$$

DEF 3: Soit $\omega = Qdy$ une forme différentielle sur $U \subset \mathbb{R}^2$ de degré 1. La différentielle extérieure de ω est la forme différentielle de degré 2:

$$d\omega = \left(\frac{\partial Q}{\partial x}dx + \frac{\partial Q}{\partial y}dy\right) \wedge dy = \frac{\partial Q}{\partial x}dx \wedge dy$$

Si $\omega = Pdx + Qdy$ est une forme différentielle de degré 1 sur $U \subset \mathbb{R}^2$ alors

$$d\omega = d(Pdx) + d(Qdy) = -\frac{\partial P}{\partial y}dx \wedge dy + \frac{\partial Q}{\partial x}dx \wedge dy$$

c'est à dire

$$d\omega = \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx \wedge dy$$

2018-2019, Hassan EL AMRI

Si $\omega = Pdx$ est une FD de degré 1 sur $U \subset \mathbb{R}^3$

$$d\omega = \left(\frac{\partial P}{\partial x}dx + \frac{\partial P}{\partial y}dy + \frac{\partial P}{\partial z}dz\right) \wedge dx = \left(\frac{\partial P}{\partial y}dy + \frac{\partial P}{\partial z}dz\right) \wedge dx$$

c'est à dire : $d(Pdx) = \frac{\partial P}{\partial z}dz \wedge dx - \frac{\partial P}{\partial y}dx \wedge dy$ de même pour les FD de la forme Qdy et Rdz

$$d\left(Qdy\right) = \frac{\partial Q}{\partial x}dx \wedge dy - \frac{\partial Q}{\partial z}dy \wedge dz; \ d\left(Rdz\right) = \frac{\partial R}{\partial y}dy \wedge dz - \frac{\partial R}{\partial x}dz \wedge dx$$

$$d(Pdx) = \frac{\partial P}{\partial z} dz \wedge dx - \frac{\partial P}{\partial y} dx \wedge dy$$
$$d(Qdy) = \frac{\partial Q}{\partial x} dx \wedge dy - \frac{\partial Q}{\partial z} dy \wedge dz$$
$$d(Rdz) = \frac{\partial R}{\partial y} dy \wedge dz - \frac{\partial R}{\partial x} dz \wedge dx$$

←□ → ←□ → ← 亘 → □ ● の へ ○

2018-2019, Hassan EL AMRI

2018-2019

Si $\omega = Pdx + Qdy + Rdz$ est une FD de degré 1 sur $U \subset \mathbb{R}^3$ alors

Si $\omega = Pdx + Qdy + Rdz$ est une FD de degré 1 sur $U \subset \mathbb{R}^3$ alors

$$d\omega = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right) dy \wedge dz$$
$$+ \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right) dz \wedge dx$$
$$+ \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx \wedge dy$$

Dans $U \subset \mathbb{R}^2$ on a pour $\omega = Pdx + Qdy$

$$d\omega = \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx \wedge dy$$

2018-2019, Hassan EL AMRI

2018-2019

$$x(r, \theta) = r \cos \theta, \quad y(r, \theta) = r \sin \theta$$

Écrire $dx \wedge dy$ en fonction de $dr \wedge d\theta$

$$dx = \cos\theta dr - r\sin\theta d\theta$$
, $dy = \sin\theta dr + r\cos\theta d\theta$

D'où

$$dx \wedge dy = (\cos \theta dr - r \sin \theta d\theta) \wedge (\sin \theta dr + r \cos \theta d\theta)$$
$$= r \cos^2 \theta dr \wedge d\theta - r \sin^2 \theta d\theta \wedge dr$$
$$= r \left(\cos^2 \theta + \sin^2 \theta\right) dr \wedge d\theta$$

C'est à dire

$$dx \wedge dy = rdr \wedge d\theta$$

Lemme de Poincaré

Pour toute forme ω définie sur un ouvert $U \subset \mathbb{R}^N$ on a : $d(d\omega) = 0$

Par exemple si f est une fonction de classe C^1 sur un ouvert $U \subset \mathbb{R}^2$ $df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy$ et donc d'après Schwarz :

$$d(df) = \left(\frac{\partial^2 f}{\partial x \partial y} - \frac{\partial^2 f}{\partial y \partial x}\right) dx \wedge dy = 0$$

Corollaire 1

• Soit f une fonction de classe C^2 sur un ouvert $U \subset \mathbb{R}^3$. Alors

$$rot(\nabla f) = 0$$

② Soit V un champ de vecteurs de classe C^2 sur un ouvert $U \subset \mathbb{R}^3$. Alors

$$div(rotV) = 0$$

Définition + corollaire 2

Un ouvert $U \subset \mathbb{R}^N$ est dit **étoilé** (en $a \in U$)si

$$\forall x \in U$$
, $[a, x] \subset U$

Corollaire 2 : Soit $U\subset\mathbb{R}^N$ un ouvert étoilé en un point $a\in U$. Soit ω une FD de degré $p\geq 1$ de classe C^1 sur U. Alors on a l'équivalence suivante

$$d\omega = 0 \Leftrightarrow \omega$$
 exacte.

$$x(r, \theta) = r \cos \theta, \quad y(r, \theta) = r \sin \theta$$

Écrire $dx \wedge dy$ en fonction de $dr \wedge d\theta$

2018-2019, Hassan EL AMRI

$$x(r, \theta) = r \cos \theta, \quad y(r, \theta) = r \sin \theta$$

Écrire $dx \wedge dy$ en fonction de $dr \wedge d\theta$

$$dx = \cos\theta dr - r\sin\theta d\theta$$
, $dy = \sin\theta dr + r\cos\theta d\theta$

D'où

$$dx \wedge dy = (\cos\theta dr - r\sin\theta d\theta) \wedge (\sin\theta dr + r\cos\theta d\theta)$$
$$= r\cos^2\theta dr \wedge d\theta - r\sin^2\theta d\theta \wedge dr$$
$$= r\left(\cos^2\theta + \sin^2\theta\right) dr \wedge d\theta$$

C'est à dire

$$dx \wedge dy = rdr \wedge d\theta$$

$$x(r, \theta, \varphi) = r \sin \theta \cos \varphi, \quad y(r, \theta) = r \sin \theta \sin \varphi, \quad z = r \cos \theta$$

Écrire $dx \wedge dy \wedge dz$ en fonction de $dr \wedge d\theta \wedge d\varphi$

$$x(r, \theta, \varphi) = r \sin \theta \cos \varphi$$
, $y(r, \theta) = r \sin \theta \sin \varphi$, $z = r \cos \theta$

Écrire $dx \wedge dy \wedge dz$ en fonction de $dr \wedge d\theta \wedge d\varphi$

$$dx = \cos\theta dr - r\sin\theta d\theta$$
, $dy = \sin\theta dr + r\cos\theta d\theta$

D'où

$$dx \wedge dy = (\cos\theta dr - r\sin\theta d\theta) \wedge (\sin\theta dr + r\cos\theta d\theta)$$
$$= r\cos^2\theta dr \wedge d\theta - r\sin^2\theta d\theta \wedge dr$$
$$= r\left(\cos^2\theta + \sin^2\theta\right) dr \wedge d\theta$$

C'est à dire

$$dx \wedge dy = rdr \wedge d\theta$$

Formule de Green-Riemann

Soit $\omega=P\mathrm{d}x+Q\mathrm{d}y$ une FD de degré 1, de classe C^1 sur $U\subset\mathbb{R}^2$ Soit D un domaine compact de U délimité par un lacet simple C, orienté dans le sens trigonométrique et C^1 par morceaux. Alors

$$\int_{C} P dx + Q dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy.$$

Calculer la circulation du champ vectoriel V(x,y)=(3x,x+y) le long du cercle C de centre O et de rayon 1, parcouru dans le sens direct.

Calculer la circulation du champ vectoriel V(x, y) = (3x, x + y) le long du cercle C de centre O et de rayon 1, parcouru dans le sens direct. Solution:

lci

$$P(x, y) = 3x$$
, $Q(x, y) = x + y$

La circulation du vecteur V est donnée par:

$$I = \int_C 3x dx + (x+y) dy.$$

Calculer la circulation du champ vectoriel V(x, y) = (3x, x + y) le long du cercle C de centre O et de rayon 1, parcouru dans le sens direct. Solution:

lci

$$P(x,y) = 3x, \quad Q(x,y) = x + y$$

La circulation du vecteur V est donnée par:

$$I = \int_C 3x dx + (x+y) dy.$$

On pose pour
$$\theta \in [0:2\pi]$$
 $\begin{cases} x = \cos \theta \\ y = \sin \theta \end{cases}$

Calculer la circulation du champ vectoriel V(x, y) = (3x, x + y) le long du cercle C de centre O et de rayon 1, parcouru dans le sens direct. Solution:

lci

$$P(x,y) = 3x, \quad Q(x,y) = x + y$$

La circulation du vecteur V est donnée par:

$$I = \int_C 3x dx + (x+y) dy.$$

On pose pour
$$\theta \in [0:2\pi]$$
 $\begin{cases} x = \cos \theta \\ y = \sin \theta \end{cases} =====\Rightarrow \begin{cases} dx = -\sin \theta d\theta \\ dy = \cos \theta d\theta \end{cases}$

Calculer la circulation du champ vectoriel V(x, y) = (3x, x + y) le long du cercle C de centre O et de rayon 1, parcouru dans le sens direct. Solution:

lci

$$P(x, y) = 3x, \quad Q(x, y) = x + y$$

La circulation du vecteur V est donnée par:

$$I = \int_C 3x dx + (x+y) dy.$$
On pose pour $\theta \in [0:2\pi]$ $\begin{cases} x = \cos \theta \\ y = \sin \theta \end{cases} = = = = \Rightarrow \begin{cases} dx = -\sin \theta d\theta \\ dy = \cos \theta d\theta \end{cases}$

$$I = \int_0^{2\pi} \left(-3\cos \theta \sin \theta + (\cos \theta + \sin \theta) \cos \theta \right) d\theta$$

$$= \int_0^{2\pi} \left(-\sin 2\theta + \cos^2 \theta \right) d\theta = \pi$$

Autre méthode:

 $\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} = 1$ et donc, d'après le formule de Green-Riemann, il suffit de calculer $\int_{B(O,1)} 1 dx dy$ qui n'est autre le volume de la boule unité.

Calculer le travail W de la force F(x, y, z) = (yz, zx, xy) le long de l'hélice H paramétrée par $(x = \cos t, y = \sin t, z = t)$ où $t \in [0, \frac{\pi}{4}]$.

Définition: Le travail d'une force $\vec{F}=(P,Q,R)$ le long d'un chemin H est donné par

$$\int_{H} \vec{F} . \vec{dl} = \int_{H} P dx + Q dy + R dz$$

lci:

$$dx = -\sin t dt$$
; $dy = \cos t dt$; $dz = dt$

et donc

$$W = \int_0^{\frac{\pi}{4}} \left(-t \sin^2 t + t \cos^2 t + \sin t \cos t \right) dt$$
$$= \int_0^{\frac{\pi}{4}} \left(t \cos(2t) + \frac{1}{2} \sin(2t) \right) dt = \frac{\pi}{8}$$

En utilisant la formule de Green-Riemann, calculer $I=\int_D xydxdy$ où $D=\{(x,y)\in\mathbb{R}^2, |x\geq 0; y\geq 0; x+y\leq 1\}.$

En utilisant la formule de Green-Riemann, calculer $I=\int_D xydxdy$ où $D=\{(x,y)\in\mathbb{R}^2, |x\geq 0; y\geq 0; x+y\leq 1\}.$

On cherche une forme différentielle de degré 1 telle que

$$\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = xy.$$

On peut choisir par exemple P=0 et il reste $\frac{\partial Q}{\partial x}=xy$ c'est à dire:

2018-2019, Hassan EL AMRI 2018-2019 83/9

En utilisant la formule de Green-Riemann, calculer $I=\int_D xydxdy$ où $D=\{(x,y)\in\mathbb{R}^2,|x\geq0;y\geq0;x+y\leq1\}.$

On cherche une forme différentielle de degré 1 telle que

$$\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = xy.$$

On peut choisir par exemple P=0 et il reste $\frac{\partial Q}{\partial x}=xy$ c'est à dire: $Q(x,y)=\frac{1}{2}x^2y$.

(ロ) (回) (目) (目) (目)

2018-2019, Hassan EL AMRI

En utilisant la formule de Green-Riemann, calculer $I=\int_D xydxdy$ où $D=\{(x,y)\in\mathbb{R}^2, |x\geq 0; y\geq 0; x+y\leq 1\}.$

On cherche une forme différentielle de degré 1 telle que

$$\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = xy.$$

On peut choisir par exemple P=0 et il reste $\frac{\partial Q}{\partial x}=xy$ c'est à dire: $Q(x,y)=\frac{1}{2}x^2y$. Green-Riemann donne

$$I = \frac{1}{2} \int_0^1 x^2 (1 - x) dx = \frac{1}{24}$$

2018-2019. Hassan EL AMRI
2018-2019. White the second of the second of

Transformée de Laplace

Soit f une fonction définie sur \mathbb{R}^+ et à valeurs dans \mathbb{C} telle que

- C1: f est continue par morceaux sur \mathbb{R}^+ ,
- C2: $\exists \beta \in]0,1[$ tel que

$$\lim_{t\to 0}t^{\beta}\left|f(t)\right|=0$$

C3: il existe une constante M positive telle que le produit $e^{-Mt}|f(t)|$ reste borné pour toutes les valeurs de t assez grandes (i.e. pour $t>t_0$ avec $t_0\in\mathbb{R}^+$, t_0 dépendant de M et de f):

$$|f(t)| \leq Ce^{Mt}$$

Définition

On appelle transformée de Laplace d'une fonction f vérifiant les trois conditions C1, C2 et C3 ci dessus, la fonction F définie sur $\mathbb C$ par :

$$F(p) = \mathcal{L}(f)(p) = \int_0^{+\infty} f(t)e^{-pt}dt$$

Remarque:

La fonction

$$\begin{cases}
f: \mathbb{R}^{+*} \to \mathbb{R} \\
t \mapsto \frac{1}{t}
\end{cases} \tag{9}$$

n'admet pas de transformée de Laplace. Elle ne vérifie pas la condition C2.

De même pour la fonction

$$\begin{cases}
g: \mathbb{R}^+ \to \mathbb{R} \\
t \mapsto e^{t^2}
\end{cases}$$
(10)

Cette fonction ne vérifie pas la condition C3.

2018-2019, Hassan EL AMRI

Exemple 1: La fonction d'Heaviside sur \mathbb{R}^+

$$U(t) = \begin{cases} 1 & \text{si } t \ge 0 \\ 0 & \text{si } t < 0 \end{cases}$$

Exemple 1: La fonction d'Heaviside sur \mathbb{R}^+

$$U(t) = \begin{cases} 1 & \text{si } t \ge 0 \\ 0 & \text{si } t < 0 \end{cases}$$

$$\mathcal{L}(U)(p) = \int_0^{+\infty} U(t)e^{-pt}dt = \int_0^{+\infty} e^{-pt}dt = \frac{1}{p}$$
, si $\Re(p) > 0$

Exemple 1: La fonction d'Heaviside sur \mathbb{R}^+

$$U(t) = \begin{cases} 1 & \text{si } t \ge 0 \\ 0 & \text{si } t < 0 \end{cases}$$

$$\mathcal{L}(U)(p) = \int_0^{+\infty} U(t)e^{-pt}dt = \int_0^{+\infty} e^{-pt}dt = \frac{1}{p}$$
, si $\Re(p) > 0$

Exemple 2: $f(t) = U(t)e^{\alpha t}$, $\alpha \in \mathbb{C}$

$$\mathcal{L}(f)(p) = \int_0^{+\infty} \mathrm{e}^{(lpha - p)t} dt = rac{1}{p - lpha} \quad ext{, } \quad \mathrm{si} \quad \Re(p) > \Re(lpha)$$

Exemple 1: La fonction d'Heaviside sur \mathbb{R}^+

$$U(t) = \begin{cases} 1 & \text{si } t \ge 0 \\ 0 & \text{si } t < 0 \end{cases}$$

$$\mathcal{L}(U)(p) = \int_0^{+\infty} U(t)e^{-pt}dt = \int_0^{+\infty} e^{-pt}dt = \frac{1}{p}$$
 , $si \Re(p) > 0$

Exemple 2: $f(t) = U(t)e^{\alpha t}$, $\alpha \in \mathbb{C}$

$$\mathcal{L}(f)(p) = \int_0^{+\infty} \mathrm{e}^{(lpha - p)t} dt = rac{1}{p - lpha} \quad ext{, } \quad \mathrm{si} \quad \Re(p) > \Re(lpha)$$

En particulier la transformée de Laplace de la fonction $f(t)=e^{i eta t}$ $(eta \in \mathbb{R})$ est

$$F(p) = \frac{1}{p - i\beta}$$
, pour $\Re(p) > 0$.

Exemple 3:
$$\alpha \in \mathbb{R}$$
, $f(t) = \begin{cases} t^{\alpha} & \text{si } t \geq 0 \\ 0 & \text{si } t < 0 \end{cases}$

Exemple 3:
$$\alpha \in \mathbb{R}$$
, $f(t) = \begin{cases} t^{\alpha} & \text{si } t \geq 0 \\ 0 & \text{si } t < 0 \end{cases}$

$$\mathcal{L}(f)(p) = \int_0^{+\infty} t^{\alpha} e^{-pt} dt$$

Si on pose u=pt et donc $dt=\frac{1}{p}du$, cette intégrale devient

$$\mathcal{L}(f)(p) = rac{1}{p^{lpha+1}} \int_0^{+\infty} u^{lpha} e^{-u} du = rac{\Gamma(lpha+1)}{p^{lpha+1}} \ , \quad si \ \Re(p) > 0.$$

2018-2019, Hassan EL AMRI 2018-

Opérations sur les transformées de Laplace

1) Linéarité: Soient $f,g:\mathbb{R}^+\to\mathbb{C}$ deux fonctions vérifiant les trois conditions C1, C2 et C3. Alors

$$\forall \alpha, \beta \in \mathbb{R}$$
 , $\mathcal{L}(\alpha f + \beta g) = \alpha \mathcal{L}(f) + \beta \mathcal{L}(g)$

2) Transformée d'une translation:

Soit f une fonction vérifiant les conditions C1, C2 et C3. Soit $a \in \mathbb{R}$. On pose

$$f_{a}(t) = \left\{ \begin{array}{ll} f(t-a) & \text{si } t \geq a \\ 0 & \text{si } t < a \end{array} \right.$$

Alors

$$\mathcal{L}(f-a)(p) = \int_0^{+\infty} f(t-a)e^{-pt}dt$$

On pose s = t - a

$$\mathcal{L}(f_a)(p) = \int_0^{+\infty} f(s)e^{-p(a+s)}ds = e^{-ap}\mathcal{L}(f)(p)$$

$$\mathcal{L}(f_a)(p) = e^{-ap}\mathcal{L}(f)(p)$$

Opérations sur les transformées de Laplace

3) Transformée d'une homothétie :

Soit f une fonction vérifiant les conditions C1, C2 et C3. Soit k>0. On pose g(t)=f(kt)

$$\mathcal{L}(g)(p) = \int_0^{+\infty} f(kt)e^{-pt}ds$$

On pose s = kt donc $dt = \frac{1}{k}ds$

$$\begin{split} \mathcal{L}(g)(p) &= \frac{1}{k} \int_0^{+\infty} f(s) e^{-\frac{p}{k}s} ds = \frac{1}{k} \mathcal{L}(f) \left(\frac{p}{k}\right) \\ \mathcal{L}(g)(p) &= \frac{1}{k} \mathcal{L}(f) \left(\frac{p}{k}\right) \end{split}$$

Opérations sur les transformées de Laplace

3) Transformée d'une homothétie :

Soit f une fonction vérifiant les conditions C1, C2 et C3. Soit k>0. On pose g(t)=f(kt)

$$\mathcal{L}(g)(p) = \int_0^{+\infty} f(kt)e^{-pt}ds$$

On pose s = kt donc $dt = \frac{1}{k}ds$

$$\mathcal{L}(g)(p) = \frac{1}{k} \int_0^{+\infty} f(s) e^{-\frac{p}{k}s} ds = \frac{1}{k} \mathcal{L}(f) \left(\frac{p}{k}\right)$$

$$\mathcal{L}(g)(p) = \frac{1}{k}\mathcal{L}(f)\left(\frac{p}{k}\right)$$

Théorème:

L'application $\mathcal L$ qui à une fonction vérifiant les conditions C1, C2 et C3 associe sa transformée de Laplace $\mathcal L(f)$ est donc linéaire. Elle est injective (son noyau est réduit 0)

Soit f une fonction vérifiant les conditions C1, C2 et C3. On suppose que f est continûment dérivable.

$$\mathcal{L}(f')(p) = \int_0^{+\infty} f'(t)e^{-pt}dt.$$

On fait une intégration par parties

$$\mathcal{L}(f')(p) = [f(t)e^{-pt}]_0^{+\infty} + p \int_0^{+\infty} f(t)e^{-pt}dt = p\mathcal{L}(f)(p) - f(0^+)$$

2018-2019, Hassan EL AMRI

Soit f une fonction vérifiant les conditions C1, C2 et C3. On suppose que f est continûment dérivable.

$$\mathcal{L}(f')(p) = \int_0^{+\infty} f'(t)e^{-pt}dt.$$

On fait une intégration par parties

$$\mathcal{L}(f')(p) = [f(t)e^{-pt}]_0^{+\infty} + p \int_0^{+\infty} f(t)e^{-pt}dt = p\mathcal{L}(f)(p) - f(0^+)$$

$$\mathcal{L}(f')(p) = p\mathcal{L}(f)(p) - f(0^+)$$

Soit f une fonction vérifiant les conditions C1, C2 et C3. On suppose que f est continûment dérivable.

$$\mathcal{L}(f')(p) = \int_0^{+\infty} f'(t)e^{-pt}dt.$$

On fait une intégration par parties

$$\mathcal{L}(f')(p) = [f(t)e^{-pt}]_0^{+\infty} + p \int_0^{+\infty} f(t)e^{-pt}dt = p\mathcal{L}(f)(p) - f(0^+)$$

$$\mathcal{L}(f')(p) = p\mathcal{L}(f)(p) - f(0^+)$$

Par récurrence on définit la transformée de Laplace des dérivées successives: Si :

- (i): $f \in C^n(\mathbb{R}^+, \mathbb{C})$
- (ii): $\exists M > 0$, $\exists a \in \mathbb{R}$ tels que

$$\forall t \in \mathbb{R}^+, \quad \left| f^{(k)}(t) \right| \leq Me^{at} \quad \forall k \leq n$$

Alors

Soit f une fonction vérifiant les conditions C1, C2 et C3. On suppose que f est continûment dérivable.

$$\mathcal{L}(f')(p) = \int_0^{+\infty} f'(t) e^{-pt} dt.$$

On fait une intégration par parties

$$\mathcal{L}(f')(p) = [f(t)e^{-pt}]_0^{+\infty} + p \int_0^{+\infty} f(t)e^{-pt}dt = p\mathcal{L}(f)(p) - f(0^+)$$

$$\mathcal{L}(f')(p) = p\mathcal{L}(f)(p) - f(0^+)$$

Par récurrence on définit la transformée de Laplace des dérivées successives: Si :

- (i): $f \in C^n(\mathbb{R}^+, \mathbb{C})$
- (ii): $\exists M>0$, $\exists a\in\mathbb{R}$ tels que

$$\forall t \in \mathbb{R}^+$$
, $\left|f^{(k)}(t)\right| \leq Me^{at} \quad \forall k \leq n$

Alors

$$\mathcal{L}(f^{(n)})(p) = p^n \mathcal{L}(f)(p) - \sum_{k=1}^n p^{k-1} f^{(n-k)}(0^+)$$

5) Transformée d'une primitive: Soit f une fonction vérifiant les conditions C1, C2 et C3. Soit h la fonction définie par

$$h(t) = \int_0^t f(s) ds$$

On a h'(t) = f(t) et donc d'après ce qui précède

$$\mathcal{L}(h')(p) = p\mathcal{L}(h)(p) - h(0^+) = p\mathcal{L}(h)(p)$$

D'où

$$\mathcal{L}(f)(p) = p\mathcal{L}(h)(p)$$

Et donc

$$\mathcal{L}(h)(p) = \frac{1}{p}\mathcal{L}(f)(p)$$

6) Transformée primitive n^{eme} : D'une manière plus générale si h est une n^{eme} primitive de f (qui s'annule en 0 avec toutes ses dérivées) alors

$$\mathcal{L}(h)(p) = \frac{1}{p^n} \mathcal{L}(f)(p)$$

Avec la convention $t_0 = t$ la fonction h peut s'écrire:

$$h(t) = \int_0^t dt_1 \int_0^{t_1} dt_2 \int_0^{t_2} \dots \int_0^{t_{n-2}} dt_{n-1} \int_0^{t_{n-1}} f(t_n) dt_n$$

Valeur initiale et valeur finale

Soit f une fonction admettant une transformée de Laplace $\mathcal{L}(f) = F$. Alors si les limites suivantes existent, elles vérifient:

- $\lim_{p \mapsto +\infty} F(p) = 0$
- $\lim_{t \to +\infty} f(t) = \lim_{p \to 0} pF(p)$
- $\lim_{t \to 0^+} f(t) = \lim_{p \to +\infty} pF(p)$

Exercices

Exercice 1:Donner les transformées de Laplace des fonctions

- f(t) = t
- $g(t) = \sin(\beta t)$
- $b(t) = \cos(\beta t)$

Exercice 2 :Soit f vérifiant C1, C2 et C3. On note $F = \mathcal{L}(f)$. On pose $g_n(t) = t^n f(t)$

- Calculer $\mathcal{L}(g_1)$, $\mathcal{L}(g_2)$,, et $\mathcal{L}(g_n)$, n > 0.
- ullet Calculer $\mathcal{L}(te^{2t})$, $\mathcal{L}(t^2e^{2t})$
- f vérifiant C1, C2 et C3 et $\lim_{t\to 0} \frac{f(t)}{t}$ existe. On pose $F=\mathcal{L}(f)$ et

$$g(t) = \frac{f(t)}{t}$$
. Montrer que

$$\mathcal{L}(g)(p) = \int_{p}^{+\infty} F(u) du$$

2018-2019, Hassan EL AMRI