

Dados e Aprendizagem Automática Feature Engineering

DAA @ MEI-1º/MiEI-4º – 1º Semestre Bruno Fernandes, César Analide, Dalila Alves, Filipa Ferraz, Victor Alves

Contents

2

- Feature Engineering
- Hands On

Exercise:

- Dataset: table with information regarding the *incidents* on the road with 5000 entries and 13 features, including:
 - city_name
 - magnitude_of_delay
 - delay_in_seconds
 - affected_roads
 - record_date
 - luminosity
 - avg_temperature
 - avg_atm_pressure
 - avg_humidity
 - avg_wind_speed
 - avg_precipitation
 - avg_rain
 - incidents

Get the data

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 13 columns):
     Column
                        Non-Null Count Dtype
                         -----
     city name
                         5000 non-null
                                        object
     magnitude_of_delay
                        5000 non-null
                                        object
     delay in seconds
                         5000 non-null
                                        int64
     affected roads
                         4915 non-null
                                        object
     record date
                         5000 non-null
                                        object
     luminosity
                                        object
                         5000 non-null
     avg temperature
                         5000 non-null
                                        float64
     avg atm pressure
                         5000 non-null
                                        float64
     avg_humidity
                                        float64
                         5000 non-null
     avg wind speed
                         5000 non-null
                                        float64
    avg_precipitation
                        5000 non-null
                                        float64
 11 avg_rain
                                        object
                         5000 non-null
 12 incidents
                        2972 non-null
                                        object
```

dtypes: float64(5), int64(1), object(7)

memory usage: 507.9+ KB

data.head()

city_name mag	gnitude_of_delay	delay_in_seconds	affected_roads	record_date	luminosity	avg_temperature	avg_atm_pressure	avg_humidity	avg_wind_speed	${\color{red}avg_precipitation}$	avg_rain	incidents
0 Guimaraes	UNDEFINED	0	,	2021-03-15 23:00	DARK	12.0	1013.0	70.0	1.0	0.0	Sem Chuva	NaN
1 Guimaraes	UNDEFINED	385	N101,	2021-12-25 18:00	DARK	12.0	1007.0	91.0	1.0	0.0	Sem Chuva	NaN
2 Guimaraes	UNDEFINED	69		2021-03-12 15:00	LIGHT	14.0	1025.0	64.0	0.0	0.0	Sem Chuva	Low
3 Guimaraes	MAJOR	2297 N10	01,R206,N105,N101,N101,N101,N101,N101,N101,N	2021-09-29 09:00	LIGHT	15.0	1028.0	75.0	1.0	0.0	Sem Chuva	Very_High
4 Guimaraes	UNDEFINED	0	N101,N101,N101,N101,N101,	2021-06-13 11:00	LIGHT	27.0	1020.0	52.0	1.0	0.0	Sem Chuva	High

Handling missing data and possible data transformations

- Remove missing values, outliers, and unnecessary rows/ columns
- · Check and impute null values
- · Check Imbalanced data
- · Re-indexing and reformatting our data

data.isnull().sum() city name 0 magnitude of delay 0 delay_in_seconds 0 85 affected roads record date 0 luminosity avg_temperature avg_atm_pressure avg humidity avg_wind_speed avg_precipitation 0 avg rain 0 incidents 2028 dtype: int64

1. Missing Values

sns.heatmap(data.isnull(),yticklabels=False,cbar=False,cmap='viridis')

Drop or fill

Let's verify how the data is presented in the feature affected_roads

	city_name	$magnitude_of_delay$	delay_in_seconds	affected_roads	record_date	luminosity	avg_temperature	avg_atm_pressure	avg_humidity	avg_wind_speed	avg_precipitation	avg_rain	incidents
29	Guimaraes	UNDEFINED	64	NaN	2021-01-22 09:00	LIGHT	8.0	1012.0	91.0	4.0	0.0	Sem Chuva	Medium
76	Guimaraes	UNDEFINED	223	NaN	2021-01-29 08:00	LIGHT	11.0	1022.0	92.0	1.0	0.0	Sem Chuva	High
79	Guimaraes	MAJOR	80	NaN	2021-12-24 21:00	DARK	11.0	1004.0	92.0	0.0	0.0	Sem Chuva	NaN
91	Guimaraes	UNDEFINED	52	NaN	2021-03-02 13:00	LIGHT	13.0	1024.0	78.0	2.0	0.0	Sem Chuva	Low
109	Guimaraes	UNDEFINED	139	NaN	2021-12-27 13:00	LIGHT	15.0	1014.0	88.0	5.0	0.0	Sem Chuva	NaN
4785	Guimaraes	MAJOR	298	NaN	2021-12-22 13:00	LIGHT	16.0	1015.0	71.0	3.0	0.0	Sem Chuva	NaN
4811	Guimaraes	UNDEFINED	96	NaN	2021-03-11 15:00	LIGHT	13.0	1025.0	89.0	3.0	0.0	chuva fraca	Medium
4838	Guimaraes	UNDEFINED	36	NaN	2021-03-10 13:00	LIGHT	14.0	1025.0	65.0	2.0	0.0	Sem Chuva	Low
4854	Guimaraes	UNDEFINED	233	NaN	2021-01-29 20:00	DARK	11.0	1017.0	92.0	1.0	0.0	Sem Chuva	High
4910	Guimaraes	UNDEFINED	324	NaN	2021-02-03 08:00	LIGHT	10.0	1012.0	90.0	2.0	0.0	Sem Chuva	Low

Copy of the data to experiment the options

```
data_m1 = data.copy()
data_m2 = data.copy()
```

a) Drop

```
data_m1.drop(['affected_roads'], axis = 1, inplace = True)
data_m1.head()
```

	city_name	magnitude_of_delay	delay_in_seconds	record_date	luminosity	${\color{red} \text{avg_temperature}}$	avg_atm_pressure	${\color{red} \text{avg_humidity}}$	avg_wind_speed	avg_precipitation	avg_rain	incidents
0	Guimaraes	UNDEFINED	0	2021-03-15 23:00	DARK	12.0	1013.0	70.0	1.0	0.0	Sem Chuva	NaN
1	Guimaraes	UNDEFINED	385	2021-12-25 18:00	DARK	12.0	1007.0	91.0	1.0	0.0	Sem Chuva	NaN
2	Guimaraes	UNDEFINED	69	2021-03-12 15:00	LIGHT	14.0	1025.0	64.0	0.0	0.0	Sem Chuva	Low
3	Guimaraes	MAJOR	2297	2021-09-29 09:00	LIGHT	15.0	1028.0	75.0	1.0	0.0	Sem Chuva	Very_High
4	Guimaraes	UNDEFINED	0	2021-06-13 11:00	LIGHT	27.0	1020.0	52.0	1.0	0.0	Sem Chuva	High

b) Fill with zero

```
data_m2.fillna(0, inplace = True)
data_m2.head()
```

city_name ma	agnitude_of_delay	delay_in_seconds	affected_roads	record_date	luminosity	avg_temperature	avg_atm_pressure	${\color{red}avg_humidity}$	avg_wind_speed	avg_precipitation	avg_rain	incidents
0 Guimaraes	UNDEFINED	0	,	2021-03-15 23:00	DARK	12.0	1013.0	70.0	1.0	0.0	Sem Chuva	0
1 Guimaraes	UNDEFINED	385	N101,	2021-12-25 18:00	DARK	12.0	1007.0	91.0	1.0	0.0	Sem Chuva	0
2 Guimaraes	UNDEFINED	69	,	2021-03-12 15:00	LIGHT	14.0	1025.0	64.0	0.0	0.0	Sem Chuva	Low
3 Guimaraes	MAJOR	2297 N101,R206,	N105,N101,N101,N101,N101,N101,N101,N	2021-09-29 09:00	LIGHT	15.0	1028.0	75.0	1.0	0.0	Sem Chuva	Very_High
4 Guimaraes	UNDEFINED	0	N101,N101,N101,N101,N101,	2021-06-13 11:00	LIGHT	27.0	1020.0	52.0	1.0	0.0	Sem Chuva	High

We need to choose one of the options to keep going. We will choose to drop the column since it does not bring added value to our goal.

```
data.drop(['affected_roads'], axis = 1, inplace = True)
```

Let's see if there are still missing values

data.isnull().sum()

city_name 0
magnitude_of_delay 0
delay_in_seconds 0
record_date 0
luminosity 0
avg_temperature 0
avg_atm_pressure 0
avg_humidity 0
avg_wind_speed 0
avg_precipitation 0
avg_rain 0
incidents 2028
dtype: int64

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	city_name	5000 non-null	object
1	magnitude_of_delay	5000 non-null	object
2	delay_in_seconds	5000 non-null	int64
3	record_date	5000 non-null	object
4	luminosity	5000 non-null	object
5	avg_temperature	5000 non-null	float64
6	avg_atm_pressure	5000 non-null	float64
7	avg_humidity	5000 non-null	float64
8	avg_wind_speed	5000 non-null	float64
9	avg_precipitation	5000 non-null	float64
10	avg_rain	5000 non-null	object
11	incidents	2972 non-null	object
dtyp	es: float64(5), int6	4(1), object(6)	

atypes: 110at64(5), 11164(1), 00jec

memory usage: 468.9+ KB

data.head()

	city_name	$magnitude_of_delay$	delay_in_seconds	record_date	luminosity	avg_temperature	avg_atm_pressure	${\color{red} \textbf{avg_humidity}}$	avg_wind_speed	avg_precipitation	avg_rain	incidents
0	Guimaraes	UNDEFINED	0	2021-03-15 23:00	DARK	12.0	1013.0	70.0	1.0	0.0	Sem Chuva	NaN
1	Guimaraes	UNDEFINED	385	2021-12-25 18:00	DARK	12.0	1007.0	91.0	1.0	0.0	Sem Chuva	NaN
2	Guimaraes	UNDEFINED	69	2021-03-12 15:00	LIGHT	14.0	1025.0	64.0	0.0	0.0	Sem Chuva	Low
3	Guimaraes	MAJOR	2297	2021-09-29 09:00	LIGHT	15.0	1028.0	75.0	1.0	0.0	Sem Chuva	Very_High
4	Guimaraes	UNDEFINED	0	2021-06-13 11:00	LIGHT	27.0	1020.0	52.0	1.0	0.0	Sem Chuva	High

There are features that are of the type object: city_name, magnitude_of_delay, record_date, luminosity, avg_rain and incidents.

Let's see how many different values each feature has.

data.nunique()

```
city_name
                        1
magnitude_of_delay
                        3
delay_in_seconds
                     1186
record_date
                     5000
luminosity
                        3
avg_temperature
                       35
avg_atm_pressure
                       36
avg_humidity
                        83
avg_wind_speed
                       11
avg_precipitation
                        1
avg_rain
                        4
incidents
                        4
dtype: int64
```

The features city_name and avg_precipitation have only one value. We will start with avg_precipitation:

```
data.nunique()
city name
                          1
magnitude_of_delay
                          3
delay_in_seconds
                      1186
record date
                                                                           data['avg_precipitation'].describe()
                       5000
luminosity
                         3
avg_temperature
                        35
                                                                                     5000.0
                                                                            count
avg atm pressure
                         36
                                                                                        0.0
                                                                            mean
avg_humidity
                        83
                                                                                        0.0
                                                                            std
avg_wind_speed
                        11
                                                                            min
                                                                                        0.0
avg precipitation
                          1
                                                                            25%
                                                                                        0.0
avg_rain
                          4
                                                                            50%
                                                                                        0.0
incidents
                          4
                                                                            75%
                                                                                        0.0
dtype: int64
                                                                                        0.0
                                                                           Name: avg_precipitation, dtype: float64
data['avg_precipitation'].nunique()
                                                                           Since 0 is the unique value of avg_precipitation and all entries have the same value, we will drop this feature.
                                                                           data.drop(['avg_precipitation'], axis = 1, inplace = True)
```

2. Handling categoric data

Feature city_name

data['city_name'].head()

```
Guimaraes
     Guimaraes
     Guimaraes
     Guimaraes
     Guimaraes
Name: city_name, dtype: object
The unique value of city_name is Guimarães. We can drop this feature as well.
data.drop('city_name',axis=1,inplace=True)
data.dropna(inplace=True)
Let's see the feature incidents:
print(data['incidents'].value_counts())
incidents
High
             1073
              718
Low
              603
Very High
Medium
              578
Name: count, dtype: int64
print(data['incidents'].value_counts().count())
```

```
incidents_count = data['incidents'].value_counts()
sns.set(style="darkgrid")
sns.barplot(x=incidents_count.index, y=incidents_count.values)
plt.title('Frequency Distribution of Incidents')
plt.ylabel('Number of Occurrences', fontsize=12)
plt.xlabel('Incidents', fontsize=12)
plt.show()
```



```
labels = data['incidents'].astype('category').cat.categories.tolist()
counts = data['incidents'].value_counts()
sizes = [counts[var_cat] for var_cat in labels]
fig1, ax1 = plt.subplots()
ax1.pie(sizes, labels=labels, autopct='%1.1f%%', shadow=True)
ax1.axis('equal')
plt.show()
```


We have several options how to deal with qualitative data:

a) Replace Values

Again, we are using data copies to experiment all options.

```
data_r1=data.copy()
data_r1.head()
```

	$magnitude_of_delay$	delay_in_seconds	record_date	luminosity	$avg_temperature$	avg_atm_pressure	${\color{red} \textbf{avg_humidity}}$	avg_wind_speed	avg_rain	incidents
2	UNDEFINED	69	2021-03-12 15:00	LIGHT	14.0	1025.0	64.0	0.0	Sem Chuva	Low
3	MAJOR	2297	2021-09-29 09:00	LIGHT	15.0	1028.0	75.0	1.0	Sem Chuva	Very_High
4	UNDEFINED	0	2021-06-13 11:00	LIGHT	27.0	1020.0	52.0	1.0	Sem Chuva	High
5	UNDEFINED	0	2021-12-07 23:00	DARK	9.0	1015.0	94.0	0.0	Sem Chuva	Medium
6	UNDEFINED	0	2021-12-05 05:00	DARK	8.0	1026.0	87.0	1.0	Sem Chuva	Low

We need to create a dictionary assigning the string to a numeric value:

None - 0, Low - 1, Medium - 2, High - 3, Very_High - 4

```
replace_map = {'incidents': {'None': 0, 'Low': 1, 'Medium': 2, 'High': 3, 'Very_High': 4}}
```

We can create a replacement map in other way:

```
labels = data_r1['incidents'].astype('category').cat.categories.tolist()
replace_map_comp = {'incidents' : {k: v for k,v in zip(labels,list(range(1,len(labels)+1)))}}
print(replace_map_comp)
{'incidents': {'High': 1, 'Low': 2, 'Medium': 3, 'Very_High': 4}}
```

data_r1.head()

	$magnitude_of_delay$	delay_in_seconds	record_date	luminosity	avg_temperature	avg_atm_pressure	avg_humidity	avg_wind_speed	avg_rain	incidents
2	UNDEFINED	69	2021-03-12 15:00	LIGHT	14.0	1025.0	64.0	0.0	Sem Chuva	Low
3	MAJOR	2297	2021-09-29 09:00	LIGHT	15.0	1028.0	75.0	1.0	Sem Chuva	Very_High
4	UNDEFINED	0	2021-06-13 11:00	LIGHT	27.0	1020.0	52.0	1.0	Sem Chuva	High
5	UNDEFINED	0	2021-12-07 23:00	DARK	9.0	1015.0	94.0	0.0	Sem Chuva	Medium
6	UNDEFINED	0	2021-12-05 05:00	DARK	8.0	1026.0	87.0	1.0	Sem Chuva	Low

Now we need to replace with the new values:

data_r1.replace(replace_map_comp, inplace=True)
data_r1.head()

	magnitude_of_delay	delay_in_seconds	record_date	luminosity	avg_temperature	avg_atm_pressure	avg_humidity	avg_wind_speed	avg_rain	incidents
2	UNDEFINED	69	2021-03-12 15:00	LIGHT	14.0	1025.0	64.0	0.0	Sem Chuva	2
3	MAJOR	2297	2021-09-29 09:00	LIGHT	15.0	1028.0	75.0	1.0	Sem Chuva	4
4	UNDEFINED	0	2021-06-13 11:00	LIGHT	27.0	1020.0	52.0	1.0	Sem Chuva	1
5	UNDEFINED	0	2021-12-07 23:00	DARK	9.0	1015.0	94.0	0.0	Sem Chuva	3
6	UNDEFINED	0	2021-12-05 05:00	DARK	8.0	1026.0	87.0	1.0	Sem Chuva	2

```
print(data_r1['incidents'].dtypes)
```

b) Label encoding

```
data_r2=data.copy()
data_r2.head()
```

	$magnitude_of_delay$	delay_in_seconds	record_date	luminosity	avg_temperature	avg_atm_pressure	avg_humidity	avg_wind_speed	avg_rain	incidents
2	UNDEFINED	69	2021-03-12 15:00	LIGHT	14.0	1025.0	64.0	0.0	Sem Chuva	Low
3	MAJOR	2297	2021-09-29 09:00	LIGHT	15.0	1028.0	75.0	1.0	Sem Chuva	Very_High
4	UNDEFINED	0	2021-06-13 11:00	LIGHT	27.0	1020.0	52.0	1.0	Sem Chuva	High
5	UNDEFINED	0	2021-12-07 23:00	DARK	9.0	1015.0	94.0	0.0	Sem Chuva	Medium
6	UNDEFINED	0	2021-12-05 05:00	DARK	8.0	1026.0	87.0	1.0	Sem Chuva	Low

```
print(data_r2.dtypes)
```

magnitude_of_delay object delay_in_seconds int64 record_date object luminosity object avg_temperature float64 float64 avg_atm_pressure float64 avg_humidity avg_wind_speed float64 avg_rain object incidents object dtype: object

Similar to the previous examples, each string will be assigned a number. Instead of replacing the values under the column incidents, we are going to create a new colum to each created label.

data_r2['None'] = np.where(data_r2['incidents'].str.contains('None'), 1, 0)
data_r2.head()

	$magnitude_of_delay$	delay_in_seconds	record_date	luminosity	avg_temperature	avg_atm_pressure	avg_humidity	avg_wind_speed	avg_rain	incidents	None
2	UNDEFINED	69	2021-03-12 15:00	LIGHT	14.0	1025.0	64.0	0.0	Sem Chuva	Low	0
3	MAJOR	2297	2021-09-29 09:00	LIGHT	15.0	1028.0	75.0	1.0	Sem Chuva	Very_High	0
4	UNDEFINED	0	2021-06-13 11:00	LIGHT	27.0	1020.0	52.0	1.0	Sem Chuva	High	0
5	UNDEFINED	0	2021-12-07 23:00	DARK	9.0	1015.0	94.0	0.0	Sem Chuva	Medium	0
6	UNDEFINED	0	2021-12-05 05:00	DARK	8.0	1026.0	87.0	1.0	Sem Chuva	Low	0

To complete the process, it is needed to replicate for each label and then drop the column *incidents*.

Let's see another way to label encoding. This uses the LabelEncoder from sklearn.

```
data_r2_skl = data.copy()
data_r22=data.copy()

from sklearn.preprocessing import LabelEncoder

lb_make = LabelEncoder()
data_r2_skl['incidents_code'] = lb_make.fit_transform(data_r22['incidents'])

data_r2_skl.head()
```

	magnitude_of_delay	delay_in_seconds	record_date	luminosity	avg_temperature	avg_atm_pressure	avg_humidity	avg_wind_speed	avg_rain	incidents	incidents_code
2	UNDEFINED	69	2021-03-12 15:00	LIGHT	14.0	1025.0	64.0	0.0	Sem Chuva	Low	1
3	MAJOR	2297	2021-09-29 09:00	LIGHT	15.0	1028.0	75.0	1.0	Sem Chuva	Very_High	3
4	UNDEFINED	0	2021-06-13 11:00	LIGHT	27.0	1020.0	52.0	1.0	Sem Chuva	High	0
5	UNDEFINED	0	2021-12-07 23:00	DARK	9.0	1015.0	94.0	0.0	Sem Chuva	Medium	2
6	UNDEFINED	0	2021-12-05 05:00	DARK	8.0	1026.0	87.0	1.0	Sem Chuva	Low	1

It creates a new column, incidents_code, with the labels assigned to feature incidents. The numeric values were assigned randomly, being the crescent order not apllicable to the meaning of the qualifying words.

c) One-Hot encoding

This alternative uses LabelBinarizer of sklearn and creates a matrix with bits regarding each label.

```
data_r3 = data.copy()

from sklearn.preprocessing import LabelBinarizer

lb = LabelBinarizer()
lb_results = lb.fit_transform(data_r3['incidents'])
lb_results_df = pd.DataFrame(lb_results, columns=lb.classes_)

lb_results_df.head()
```

	High	Low	Medium	Very_High
0	0	1	0	0
1	0	0	0	1
2	1	0	0	0
3	0	0	1	0
4	0	1	0	0

```
result_df = pd.concat([data_r3, lb_results_df], axis=1)
```

result_df.head()

	magnitude_of_delay	delay_in_seconds	record_date	luminosity	avg_temperature	avg_atm_pressure	avg_humidity	avg_wind_speed	avg_rain	incidents	High	Low	Medium	Very_High
2	UNDEFINED	69.0	2021-03-12 15:00	LIGHT	14.0	1025.0	64.0	0.0	Sem Chuva	Low	1.0	0.0	0.0	0.0
3	MAJOR	2297.0	2021-09-29 09:00	LIGHT	15.0	1028.0	75.0	1.0	Sem Chuva	Very_High	0.0	0.0	1.0	0.0

d) Binary Encoding

Similar to the previous technique, it creates a matrix of the status of the values, but this time with binary values. See the comparison between techniques below:

Level	"Decimal encoding"	Binary encoding	One-Hot encoding
None	0	000	000001
Low	1	001	000010
Medium	2	010	000100
High	3	011	001000
Very_High	4	100	010000

For this technique it is needed to have the *category_encoders* installed: !pip install category_encoders

```
data_r4 = data.copy()
import category_encoders as ce
encoder = ce.BinaryEncoder(cols=['incidents'])
df_binary = encoder.fit_transform(data_r4)
df binary.head()
```

	magnitude_of_delay	delay_in_seconds	record_date	luminosity	avg_temperature	avg_atm_pressure	avg_humidity	avg_wind_speed	avg_rain	incidents_0	incidents_1	incidents_2
2	UNDEFINED	69	2021-03-12 15:00	LIGHT	14.0	1025.0	64.0	0.0	Sem Chuva	0	0	1
3	MAJOR	2297	2021-09-29 09:00	LIGHT	15.0	1028.0	75.0	1.0	Sem Chuva	0	1	0
4	UNDEFINED	0	2021-06-13 11:00	LIGHT	27.0	1020.0	52.0	1.0	Sem Chuva	0	1	1
5	UNDEFINED	0	2021-12-07 23:00	DARK	9.0	1015.0	94.0	0.0	Sem Chuva	1	0	0
6	LINDEEINED	0	2021-12-05 05:00	DARK	8.0	1026.0	87.0	1.0	Sem Chuva	0	0	1

e) Backward difference encoding

The values are normalized in the range of -1 to 1.

```
data_r5 = data.copy()
encoder = ce.BackwardDifferenceEncoder(cols=['incidents'])
df_bd = encoder.fit_transform(data_r5)
df_bd.head()
```

	intercept	magnitude_of_delay	delay_in_seconds	record_date	luminosity	avg_temperature	avg_atm_pressure	${\bf avg_humidity}$	avg_wind_speed	avg_rain	incidents_0	incidents_1	incidents_2
2	1	UNDEFINED	69	2021-03-12 15:00	LIGHT	14.0	1025.0	64.0	0.0	Sem Chuva	-0.75	-0.5	-0.25
3	1	MAJOR	2297	2021-09-29 09:00	LIGHT	15.0	1028.0	75.0	1.0	Sem Chuva	0.25	-0.5	-0.25
4	1	UNDEFINED	0	2021-06-13 11:00	LIGHT	27.0	1020.0	52.0	1.0	Sem Chuva	0.25	0.5	-0.25
5	1	UNDEFINED	0	2021-12-07 23:00	DARK	9.0	1015.0	94.0	0.0	Sem Chuva	0.25	0.5	0.75
6	1	UNDEFINED	0	2021-12-05 05:00	DARK	8.0	1026.0	87.0	1.0	Sem Chuva	-0.75	-0.5	-0.25

f) Factorize

This technique encodes the object as an enumerated type or categorical variable.

```
data_r6 = data.copy()

data_r6['incidents'] = pd.factorize(data_r6['incidents'])[0] + 1
data_r6.head()
```

	magnitude_of_delay	delay_in_seconds	record_date	luminosity	avg_temperature	avg_atm_pressure	${\color{red} \textbf{avg_humidity}}$	avg_wind_speed	avg_rain	incidents
2	UNDEFINED	69	2021-03-12 15:00	LIGHT	14.0	1025.0	64.0	0.0	Sem Chuva	1
3	MAJOR	2297	2021-09-29 09:00	LIGHT	15.0	1028.0	75.0	1.0	Sem Chuva	2
4	UNDEFINED	0	2021-06-13 11:00	LIGHT	27.0	1020.0	52.0	1.0	Sem Chuva	3
5	UNDEFINED	0	2021-12-07 23:00	DARK	9.0	1015.0	94.0	0.0	Sem Chuva	4
6	UNDEFINED	0	2021-12-05 05:00	DARK	8.0	1026.0	87.0	1.0	Sem Chuva	1

We will choose the factorize technique to keep going.

data['incidents'] = pd.factorize(data['incidents'])[0] + 1
data.head()

	magnitude_of_delay	delay_in_seconds	record_date	luminosity	avg_temperature	avg_atm_pressure	avg_humidity	avg_wind_speed	avg_rain	incidents
2	UNDEFINED	69	2021-03-12 15:00	LIGHT	14.0	1025.0	64.0	0.0	Sem Chuva	1
3	MAJOR	2297	2021-09-29 09:00	LIGHT	15.0	1028.0	75.0	1.0	Sem Chuva	2
4	UNDEFINED	0	2021-06-13 11:00	LIGHT	27.0	1020.0	52.0	1.0	Sem Chuva	3
5	UNDEFINED	0	2021-12-07 23:00	DARK	9.0	1015.0	94.0	0.0	Sem Chuva	4
6	LINDEEINED	0	2021 12 05 05:00	DAPK	9.0	1026.0	97.0	1.0	Som Chuya	1

Other option would it be to filter the NaN values when reading the CSV file:

```
data = pd.read_csv('incidents.csv', na_filter=False)
```

Regarding the features magnitude_delay, luminosity and avg_rain, we will factorize for now.

```
data['magnitude_of_delay'] = pd.factorize(data['magnitude_of_delay'])[0] + 1
data['luminosity'] = pd.factorize(data['luminosity'])[0] + 1
data['avg_rain'] = pd.factorize(data['avg_rain'])[0] + 1
data.head()
```

	magnitude_of_delay	delay_in_seconds	record_date	luminosity	avg_temperature	avg_atm_pressure	avg_humidity	avg_wind_speed	avg_rain	incidents
2	1	69	2021-03-12 15:00	1	14.0	1025.0	64.0	0.0	1	1
3	2	2297	2021-09-29 09:00	1	15.0	1028.0	75.0	1.0	1	2
4	1	0	2021-06-13 11:00	1	27.0	1020.0	52.0	1.0	1	3
5	1	0	2021-12-07 23:00	2	9.0	1015.0	94.0	0.0	1	4
6	1	0	2021-12-05 05:00	2	8.0	1026.0	87.0	1.0	1	1

3. Handling dates

Datetime Properties and Methods (https://pandas.pydata.org/pandas-docs/version/0.23/api.html#datetimelike-properties)

```
data_dt = data.copy()
data_dt['record_date'].head()
     2021-03-12 15:00
     2021-09-29 09:00
     2021-06-13 11:00
     2021-12-07 23:00
     2021-12-05 05:00
Name: record date, dtype: object
We are going to convert the dates from object to datetime, specifying the format we want:
data_dt['record_date'] = pd.to_datetime(data_dt['record_date'], format = '%Y-%m-%d %H:%M', errors='coerce')
assert data_dt['record_date'].isnull().sum() == 0, 'missing record date'
data_dt['record_date'].head()
    2021-03-12 15:00:00
    2021-09-29 09:00:00
    2021-06-13 11:00:00
    2021-12-07 23:00:00
    2021-12-05 05:00:00
Name: record_date, dtype: datetime64[ns]
```

26

We can extract parts of the date and create new columns with that:

```
data_dt['record_date_year'] = data_dt['record_date'].dt.year
data_dt['record_date_month'] = data_dt['record_date'].dt.month
data_dt['record_date_day'] = data_dt['record_date'].dt.day
data_dt['record_date_hour'] = data_dt['record_date'].dt.hour
data_dt['record_date_minute'] = data_dt['record_date'].dt.minute

data_dt.head()
```

	magnitude_of_delay	delay_in_seconds	record_date	luminosity	avg_temperature	avg_atm_pressure	avg_humidity	avg_wind_speed	avg_rain	incidents	record_date_year	${\sf record_date_month}$	record_date_day	record_date_hour	record_date_minute
2	1	69	2021-03-12 15:00:00	1	14.0	1025.0	64.0	0.0	1	1	2021	3	12	15	0
3	2	2297	2021-09-29 09:00:00	1	15.0	1028.0	75.0	1.0	1	2	2021	9	29	9	0
4	1	0	2021-06-13 11:00:00	1	27.0	1020.0	52.0	1.0	1	3	2021	6	13	11	0
5	1	0	2021-12-07 23:00:00	2	9.0	1015.0	94.0	0.0	1	4	2021	12	7	23	0
6	1	0	2021-12-05 05:00:00	2	8.0	1026.0	87.0	1.0	1	1	2021	12	5	5	0

```
data_dt.nunique()
magnitude_of_delay
                         3
delay_in_seconds
                      1167
record date
                      2972
luminosity
                         3
avg_temperature
                        34
avg_atm_pressure
                        34
avg_humidity
                        80
avg_wind_speed
                        11
avg rain
incidents
record_date_year
                         1
record date month
                        11
record_date_day
                        31
record_date_hour
                        24
record date minute
                         1
dtype: int64
Since the year and the minute have only one value, we will drop it.
data_dt.drop('record_date_year',axis=1,inplace=True)
data_dt.drop('record_date_minute',axis=1,inplace=True)
data_dt.drop('record_date',axis=1,inplace=True)
data_dt.dropna(inplace=True)
```

Other functions to deal with dates

```
data_dt2 = data.copy()
data_dt2['record_date'] = pd.to_datetime(data_dt2['record_date'])
data dt2.info()
<class 'pandas.core.frame.DataFrame'>
Index: 2972 entries, 2 to 4995
Data columns (total 10 columns):
                       Non-Null Count Dtype
     Column
    magnitude of delay 2972 non-null int64
                       2972 non-null int64
    delay_in_seconds
    record date
                       2972 non-null datetime64[ns]
    luminosity
                       2972 non-null int64
    avg_temperature
                       2972 non-null float64
                      2972 non-null float64
    avg atm pressure
    avg humidity
                       2972 non-null float64
    avg_wind_speed
                       2972 non-null float64
    avg_rain
                        2972 non-null
                                       int64
    incidents
                        2972 non-null int64
dtypes: datetime64[ns](1), float64(4), int64(5)
memory usage: 319.9 KB
data_dt2['record_date'].head()
   2021-03-12 15:00:00
   2021-09-29 09:00:00
   2021-06-13 11:00:00
   2021-12-07 23:00:00
   2021-12-05 05:00:00
Name: record_date, dtype: datetime64[ns]
```

We can use datetime.today and fetch the actual date.

```
import datetime

today = datetime.datetime.today()

today
```

datetime.datetime(2023, 10, 24, 15, 55, 29, 768074)

It can be measured the time elapsed between the dates on the dataset and today.

```
today - data_dt2['record_date']
       956 days 00:55:29.768074
      755 days 06:55:29.768074
3
      863 days 04:55:29.768074
4
      685 days 16:55:29.768074
      688 days 10:55:29.768074
      759 days 21:55:29.768074
4991
4992
      898 days 04:55:29.768074
      852 days 23:55:29.768074
4993
      852 days 17:55:29.768074
4994
      924 days 15:55:29.768074
4995
Name: record date, Length: 2972, dtype: timedelta64[ns]
```

```
(today - data_dt2['record_date']).dt.days
        956
        755
        863
        685
        688
       . . .
4991
        759
4992
        898
4993
        852
4994
        852
        924
4995
Name: record_date, Length: 2972, dtype: int64
```

And we can also separate each component of the date by day, month, hour, time, etc.

```
data_dt2['day'] = data_dt2['record_date'].dt.day
data_dt2['month'] = data_dt2['record_date'].dt.month
data_dt2['hour'] = data_dt2['record_date'].dt.hour
data_dt2['time'] = data_dt2['record_date'].dt.time
data_dt2.head()
```

	magnitude_of_delay	delay_in_seconds	record_date	luminosity	avg_temperature	avg_atm_pressure	avg_humidity	avg_wind_speed	avg_rain	incidents	day	month	hour	time
2	1	69	2021-03-12 15:00:00	1	14.0	1025.0	64.0	0.0	1	1	12	3	15	15:00:00
3	2	2297	2021-09-29 09:00:00	1	15.0	1028.0	75.0	1.0	1	2	29	9	9	09:00:00
4	1	0	2021-06-13 11:00:00	1	27.0	1020.0	52.0	1.0	1	3	13	6	11	11:00:00
5	1	0	2021-12-07 23:00:00	2	9.0	1015.0	94.0	0.0	1	4	7	12	23	23:00:00
6	1	0	2021-12-05 05:00:00	2	8.0	1026.0	87.0	1.0	1	1	5	12	5	05:00:00

Now we need to choose how to deal with the record date.

```
data['record_date'] = pd.to_datetime(data['record_date'], format = '%Y-%m-%d %H:%M', errors='coerce')
data.info()
<class 'pandas.core.frame.DataFrame'>
Index: 2972 entries, 2 to 4995
Data columns (total 10 columns):
    Column
                       Non-Null Count Dtype
                       -----
    magnitude of delay 2972 non-null int64
    delay_in_seconds
                      2972 non-null int64
    record_date
                      2972 non-null datetime64[ns]
    luminosity
                      2972 non-null int64
    avg temperature
                      2972 non-null float64
    avg_atm_pressure 2972 non-null float64
    avg humidity
                      2972 non-null float64
    avg_wind_speed
                      2972 non-null float64
    avg_rain
                       2972 non-null int64
   incidents
                       2972 non-null int64
dtypes: datetime64[ns](1), float64(4), int64(5)
memory usage: 319.9 KB
```

There are other features that need to be worked on, but it's up to you now!

Exploratory Data Analysis

Time to put your data viz skills to the test! Try to recreate the following plots, make sure to import the libraries you'll need!

data.head()

	magnitude_of_delay	delay_in_seconds	record_date	luminosity	avg_temperature	avg_atm_pressure	avg_humidity	avg_wind_speed	avg_rain	incidents
2	1	69	2021-03-12 15:00:00	1	14.0	1025.0	64.0	0.0	1	1
3	2	2297	2021-09-29 09:00:00	1	15.0	1028.0	75.0	1.0	1	2
4	1	0	2021-06-13 11:00:00	1	27.0	1020.0	52.0	1.0	1	3
5	1	0	2021-12-07 23:00:00	2	9.0	1015.0	94.0	0.0	1	4
6	1	0	2021-12-05 05:00:00	2	8.0	1026.0	87.0	1.0	1	1

33

Let's analyze through a heatmap

```
fig = plt.figure( figsize = (10,10))
incidents_corr = data.corr( method = 'pearson')
sns.heatmap(incidents_corr, linecolor='black', linewidths=0.5)
```

We can see that there is a relation between

- magnitude_of_delay and delay_in_seconds
- magnitude_of_delay and record_date
- avg_humidity and luminosity

magnitude of delay delay_in_seconds record_date luminosity avg temperature avg_atm_pressure avg humidity avg_wind_speed avg_rain incidents

<Axes: >

sns.pairplot(data)

It's hard to analyze the relation of all features. Let's create jointplots between the features with notice a relationship.

Jointplot of Magnitude_of_delay vs. Delay_in_seconds

```
sns.set_palette("GnBu_d")
sns.set_style('whitegrid')
sns.jointplot(x='magnitude_of_delay',y='delay_in_seconds',data=data)
```


Jointplot Luminosity vs. Avg_temperature

sns.jointplot(x='luminosity',y='avg_temperature',data=data)

It seems there are a relation between Avg_temperature and Avg_humidity. Let's create a Implot Avg_temperature vs. Avg_humidity

sns.lmplot(x='avg_temperature',y='avg_humidity',data=data)

data.info()

<class 'pandas.core.frame.DataFrame'>
Index: 2972 entries, 2 to 4995
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	magnitude_of_delay	2972 non-null	int64
1	delay_in_seconds	2972 non-null	int64
2	record_date	2972 non-null	datetime64[ns]
3	luminosity	2972 non-null	int64
4	avg_temperature	2972 non-null	float64
5	avg_atm_pressure	2972 non-null	float64
6	avg_humidity	2972 non-null	float64
7	avg_wind_speed	2972 non-null	float64
8	avg_rain	2972 non-null	int64
9	incidents	2972 non-null	int64

dtypes: datetime64[ns](1), float64(4), int64(5)

memory usage: 319.9 KB

data.head(
------------	--

	magnitude_of_delay	delay_in_seconds	record_date	luminosity	avg_temperature	avg_atm_pressure	avg_humidity	avg_wind_speed	avg_rain	incidents
2	1	69	2021-03-12 15:00:00	1	14.0	1025.0	64.0	0.0	1	1
3	2	2297	2021-09-29 09:00:00	1	15.0	1028.0	75.0	1.0	1	2
4	1	0	2021-06-13 11:00:00	1	27.0	1020.0	52.0	1.0	1	3
5	1	0	2021-12-07 23:00:00	2	9.0	1015.0	94.0	0.0	1	4
6	1	0	2021-12-05 05:00:00	2	8.0	1026.0	87.0	1.0	1	1