1. Domácí úloha do diskrétní matematiky

Skupina 1.

- 1. Cieslar Michal
- 2. Čábera Jakub
- 3. Drengubiak Martin
- 4. Eis Pavel
- 5. Farský Janci

Úloha 1.

Zjistěte, zda pro libovolné množiny A, B, C platí:

$$(A \cup B) - C = (A - C) \cup (B - C)$$

V případě kladné odpovědi proveďte důkaz, v opačném případě najděte kontrapříklad.

Řešení:

$$x \in (A \cup B) - C \Leftrightarrow x \in (A \cup B) \land \notin C \Leftrightarrow (x \in A \lor x \in B) \land x \notin C \Leftrightarrow$$

 $\Leftrightarrow (x \in A \land x \notin C) \lor (x \in B \land x \notin C) \Leftrightarrow (A - C) \cup (B - C)$

$$(A-C) \cup (B-C)$$

Úloha 2.

Na množině $A=\{a,b,c,d\}$ je tabulkou dána operace \circ a na množině $B=\{1,2,3,4\}$ operace \star . Zjistěte, zda-li existuje isomorfismus mezi grupoidy (A, \circ) a (B, \star). V případě kladné odpovědi isomorfismus najděte, v opačném případě zdůvodněte jeho neexistenci.

0	а	b	С	d
а	d	c c b	а	b
b	С	С	b	С
С	а	b	С	d
d	b	С	d	b

*	1	2	3	4
1				4
2	2	2 3 4	4	1
3	3	4	4	1
4	4	1	1	1

Řešení:

С

Neutrální prvek = c

b inverzní a, b, d

a inverzní b

d inverzní b

*

Neutrální prvek = 1

2 inverzní 4

3 inverzní 4

4 inverzní 2, 3, 4

*	1	2	3	4
1	1	2 4 4	3	4
2	2	4	4	1
3	3	4	2	1
4	4	4 1	1	1

*	1	2	3	4	
1 2 3	1	2	3	4	
2	2	3	4	1	
3	3	4	4	1	
4	4	1	1	1	

Zobrazení 1 není isomorfní.

Zobrazení 2 je isomorfní.

Úloha 3.

Pomocí metody Karnaughovy mapy minimalizujte funkci:

$$f(x_1, x_2x_3, x_4,) = x_1x_3x_4 + \bar{x}_1x_2\bar{x}_3x_4 + x_1\bar{x}_2\bar{x}_3x_4 + x_1x_2x_3$$

Řešení:

$$f(x_1, x_2x_3, x_4) = x_1x_2x_3 + x_1\bar{x}_2x_4 + \bar{x}_1x_2\bar{x}_3x_4$$

Úloha 4.

Nad množinou prvotních formulí $\{p,q,r\}$ je dána formule

$$f = (\neg p \rightarrow q) \ \lor \ r$$
 a množina T tří formulí

$$T = \{ (p \vee \neg q \vee \neg r) \wedge (\neg p \vee (\neg q \rightarrow r)), (p \rightarrow \neg q) \vee r \vee ((\neg p \rightarrow \neg q) \wedge r), p \vee (\neg q \wedge p) \vee r \}$$

Zjistěte a svoje odpovědi zdůvodněte:

- Je množina T splnitelná? = Ano
- Je formule f tautologie? = Ano
- Je formule f kontradikce? = Ne
- Je formule f tautologickým důsledkem množiny T? = Ano
- Formulou predikátového počtu zapište:

Rovnice $x^3 - 6x + 4 = 0$ má alespoň jeden reálný kořen.

Řešení:

$$f_1 = (p \lor \neg q \lor \neg r) \land (\neg p \lor (\neg q \to r))$$

$$f_2 = (p \rightarrow \neg q) \lor r \lor ((\neg p \rightarrow \neg q) \land r)$$

$$f_3 = p \lor (\neg q \land p) \lor r$$

р	q	r	$(\neg p \to q) \lor r$	f_1	f_2	f_3
1	1	1	1	1	1	1
1	1	0	1			
1	0	1	1			
1	0	0	1			
0	1	1	1			
0	1	0	1			
0	0	1	1			
0	0	0	1			

 $(\neg p \rightarrow q) \lor r$ je vždy 1 \rightarrow *f je tautologie* a *není to kontradikce* (Musely by vycházet samé 0).

T je splnitelná, jelikož $f_1 \wedge f_2 \wedge f_3$ je alespoň jednou rovná 1.

 $f_1 \wedge f_2 \wedge f_3 => f$, $1 \wedge 1 \wedge 1 => 1$. Z toho vyplývá, že f je tautologickým důsledkem množiny T.

Predikátový počet

$$\exists x \in R : x^3 - 6x + 4 = 0$$

Úloha 5.

Dokažte, že pro každé nenulové přirozené číslo n platí:

$$1 * 2 * 3 + 2 * 3 * 4 + \dots + n * (n + 1) * (n + 2) = \frac{1}{4}n(n + 1)(n + 2)(n + 3)$$

Řešení:

Pro n = 1

L. S.:
$$1 * (1 + 1) * (1 + 2) = 2 * 3 = 6$$

P. S.:
$$\frac{1}{4} * 1 * (1 + 1) * (1 + 2) * (1 + 3) = 2 * 3 = 6$$

$$L = P$$

Předpoklad:

Výraz ze zadání (dále už jen jako A) platí pro n = k, potom lze dokázat, že taky platí pro n = k+1.

$$1 * 2 * 3 + 2 * 3 * 4 + \dots + k(k+1)(k+2) + (k+1)(k+2)(k+3)$$

= $V(k+1)$

Lze vidět, že $1*2*3+2*3*4+\cdots+k(k+1)(k+2)$ se rovná Levé straně výrazu A, potom se nahradí pravou stranou výrazu A.

$$\frac{1}{4} * k(k+1)(k+2)(k+3) + (k+1)(k+2)(k+3) = (k+1)(k+2)(k+3)\left(\frac{1}{4}k+1\right)$$
$$= L.S. v \acute{y} r a z u V(k+1)$$

Porovná se s Pravou stranou výrazu V(k+1)

$$(k+1)(k+2)(k+3)\left(\frac{1}{4}k+1\right) = \frac{1}{4}(k+1)(k+2)(k+3)(k+4)$$
$$(k+1)(k+2)(k+3)\left(\frac{1}{4}k+1\right) = (k+1)(k+2)(k+3)\left(\frac{1}{4}k+1\right)$$

Z toho vyplývá, že Levá strana = Pravé straně → Předpoklad o výrazu A byl správný.