

WEBENCH® Design Report

Design: 3867961/15 LM2675M-5.0/NOPB LM2675M-5.0/NOPB 9.0V-9.0V to 5.0V @ 0.75A VinMin = 9.0V VinMax = 9.0V Vout = 5.0V Iout = 0.75A Device = LM2675M-5.0/NOPB Topology = Buck Created = 10/14/13 11:25:40 AM BOM Cost = \$2.98 Total Pd = 0.39W Footprint = 324.0mm2 BOM Count = 7

Electrical BOM

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
1.	Cb	MuRata	GRM216R71H103KA01D Series= X7R	Cap= 10.0 nF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0805 7mm2
2.	Cin	Kemet	C1206C475K4PACTU Series= X5R	Cap= 4.7 µF ESR= 13.0 mOhm VDC= 16.0 V IRMS= 4.9 A	1	\$0.04	1206 11mm2
3.	Cinx	AVX	08053C104KAT2A Series= X7R	Cap= 100.0 nF ESR= 280.0 mOhm VDC= 25.0 V IRMS= 0.0 A	1	\$0.01	0805 7mm2
4.	Cout	Vishay-Sprague	594D686X0010C2T Series= 594D	Cap= 68.0 μF ESR= 95.0 mOhm VDC= 10.0 V IRMS= 1.05 A	1	\$0.99	CC_CASEC 47mm2
5.	D1	Diodes Inc.	B130-13-F	VF@Io= 500.0 mV VRRM= 30.0 V	1	\$0.06	SMA 37mm2
6.	L1	Bourns	SDR1006-470KL	L= 47.0 μH DCR= 170.0 mOhm	1	\$0.27	SDR1006 139mm2
7.	U1	Texas Instruments	LM2675M-5.0/NOPB	Switcher	1	\$1.60	M08A 55mm2

Operating Values

operating values							
#	Name	Value	Category	Description			
BOM Count		7		Total Design BOM count			
2.	Total BOM	\$2.976		Total BOM Cost			
3.	Cin IRMS	369.058 mA	Current	Input capacitor RMS ripple current			
4.	Cout IRMS	55.623 mA	Current	Output capacitor RMS ripple current			
5.	IC lpk	846.343 mA	Current	Peak switch current in IC			
6.	lin Avg	460.01 mA	Current	Average input current			
7.	L lpp	192.685 mA	Current	Peak-to-peak inductor ripple current			
8.	M1 Irms	575.428 mA	Current	Q lavg			
9.	FootPrint	324.0 mm2	General	Total Foot Print Area of BOM components			
10.	Frequency	260.0 kHz	General	Switching frequency			
11.	IC Tolerance	0.0 V	General	IC Feedback Tolerance			
12.	M Vds Act	156.633 mV	General	Voltage drop across the MosFET			
13.	Pout	3.75 W	General	Total output power			
14.	D1 Tj	68.564 degC	Op_Point	D1 junction temperature			
15.	Vout OP	5.0 V	Op_Point	Operational Output Voltage			
16.	Cross Freq	32.088 kHz	Op_point	Bode plot crossover frequency			
17.	Duty Cycle	58.865 %	Op_point	Duty cycle			
18.	Efficiency	90.578 %	Op_point	Steady state efficiency			
19.	IC Tj	43.502 degC	Op_point	IC junction temperature			
20.	ICThetaJA	105.0 degC/W	Op_point	IC junction-to-ambient thermal resistance			
21.	IOUT_OP	750.0 mA	Op_point	lout operating point			
22.	Phase Marg	80.631 deg	Op_point	Bode Plot Phase Margin			
23.	VIN_OP	9.0 V	Op_point	Vin operating point			
24.	Vout p-p	18.356 mV	Op_point	Peak-to-peak output ripple voltage			
25.	Cin Pd	1.771 mW	Power	Input capacitor power dissipation			
26.	Cout Pd	293.926 μW	Power	Output capacitor power dissipation			
27.		154.255 mW	Power	Diode power dissipation			
28.	IC Pd	128.59 mW	Power	IC power dissipation			
29.	L Pd	105.188 mW	Power	Inductor power dissipation			
30.	Total Pd	390.079 mW	Power	Total Power Dissipation			

Design Inputs

	0 1		
#	Name	Value	Description
1.	lout	750.0 mA	Maximum Output Current
2.	lout1	750.0 mAmps	Output Current #1
3.	VinMax	9.0 V	Maximum input voltage
4.	VinMin	9.0 V	Minimum input voltage
5.	Vout	5.0 V	Output Voltage
6.	Vout1	5.0 Volt	Output Voltage #1
7.	base_pn	LM2675	Base Product Number
8.	source	DC	Input Source Type
9.	Та	30.0 degC	Ambient temperature

Design Assistance

 $1. \ \textbf{LM2675} \ Product \ Folder: http://www.ti.com/product/lm2675: contains \ the \ data \ sheet \ and \ other \ resources.$

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.