

Laboratorio de: Inteligencia de negocios

Práctica No.: 1

Tema: Operaciones multidimensionales

Nombre: Danny Sebastián Díaz Padilla Fecha: 30/10/2019

1. Objetivos:

1.1. Objetivo General

 Realizar las operaciones OLAP sobre el cubo de ventas de adventureWorksDW.

1.2. Objetivos Específicos

- Utilizar las operaciones: slice, dice, drilldown, rollup y pivote en SQL.
- Definir los operadores.
- Usar las consultas Cube y Roll Up propias de SQL

2. Marco teórico:

Cubo OLAP

El cubo OLAP es una estructura de datos optimizada para un análisis de datos muy rápido. Consiste en hechos numéricos llamados medidas que se clasifican por dimensiones. [1]

Roll-up

El roll-up también se conoce como "consolidación" o "agregación". La operación de roll-up se puede realizar de 2 maneras

- 1. Dimensiones reducidas
- 2. Subiendo la jerarquía del concepto. La jerarquía conceptual es un sistema de agrupación de cosas en función de su orden o nivel.

Drill Down

En el desglose, los datos se fragmentan en partes más pequeñas. Es lo opuesto al proceso de acumulación. Se puede hacer a través de

- Descendiendo por la jerarquía conceptual
- Aumentando una dimensión

Página 2 de 9

Slice

Aquí, se selecciona una dimensión y se crea un nuevo sub-cubo.

El siguiente diagrama explica cómo se realizó la operación de corte:

Dice

Esta operación es similar a una rebanada. La diferencia en Dice es que selecciona 2 o más dimensiones que dan como resultado la creación de un subcubo.

Pivot

En Pivot, gira los ejes de datos para proporcionar una presentación sustituta de datos.

En el siguiente ejemplo, el pivote se basa en los tipos de elementos.

3. Desarrollo de la práctica:

use AdventureWorksDW2017;

La table de hechos a analizar tiene el siguiente aspecto:

SELECT * from dbo.FactInternetSales;

	ProductKey	OrderDateKey	DueDateKey	Ship Date Key	CustomerKey	Promotion Key	CurrencyKey	SalesTerritoryKey	SalesOrderNumber	SalesOrderLineNumber	Revisio
1	310	20101229	20110110	20110105	21768	1	19	6	SO43697	1	1
2	346	20101229	20110110	20110105	28389	1	39	7	SO43698	1	1
3	346	20101229	20110110	20110105	25863	1	100	1	SO43699	1	1
4	336	20101229	20110110	20110105	14501	1	100	4	SO43700	1	1
5	346	20101229	20110110	20110105	11003	1	6	9	SO43701	1	1
6	311	20101230	20110111	20110106	27645	1	100	4	SO43702	1	1
7	310	20101230	20110111	20110106	16624	1	6	9	SO43703	1	1
8	351	20101230	20110111	20110106	11005	1	6	9	SO43704	1	1
9	344	20101230	20110111	20110106	11011	1	6	9	SO43705	1	1
10	312	20101231	20110112	20110107	27621	1	100	4	SO43706	1	1

Roll-up

Se obtiene el nombre de los clientes, el producto y el PAÍS.

```
SELECT dc.FirstName, dc.LastName, dp.EnglishProductName, dst.SalesTerritoryCountry, sum(fis.TotalProductCost) as SumaCostoTotal, fis.CustomerKey from dbo.FactInternetSales as fis,dbo.DimCustomer as dc, dbo.DimProduct as dp, dbo.DimSalesTerritory as dst where dc.CustomerKey = fis.CustomerKey and dp.ProductKey = fis.ProductKey and dst.SalesTerritoryKey = fis.SalesTerritoryKey group by dp.EnglishProductName, dc.FirstName, dc.LastName, dst.SalesTerritoryCountry, fis.SalesTerritoryKey, fis.CustomerKey;
```

	FirstName	LastName	English Product Name	Sales Territory Country	SumaCosto Total	CustomerKey
1	Andrea	Morris	All-Purpose Bike Stand	United States	59,466	11197
2	Kaitlyn	Hall	All-Purpose Bike Stand	United States	59,466	11682
3	Olivia	Peterson	All-Purpose Bike Stand	United States	59,466	11862
4	Alexandria	Rogers	All-Purpose Bike Stand	United States	59,466	12161
5	Jennifer	Campbell	All-Purpose Bike Stand	United States	59,466	12958
6	Lauren	Cox	All-Purpose Bike Stand	United States	59,466	13337
7	Ricardo	Shen	All-Purpose Bike Stand	United States	59,466	14905
8	Gabrielle	Collins	All-Purpose Bike Stand	United States	59,466	15975
9	Joe	Martinez	All-Purpose Bike Stand	United States	59,466	16004
10	Caleb	Evans	All-Purpose Bike Stand	United States	59,466	16072
11	Fernando	Thomas	All-Purpose Bike Stand	United States	59,466	23671

Drill-down

Se agrega un nivel de detalle, en este caso el color del producto

```
SELECT dp.EnglishProductName, dst.SalesTerritoryCountry, dp.Color,
sum(fis.TotalProductCost) as SumaCostoTotal, fis.CustomerKey
from dbo.FactInternetSales as fis, dbo.DimCustomer as dc, dbo.DimProduct as dp,
dbo.DimSalesTerritory as dst
where dc.CustomerKey = fis.CustomerKey and dp.ProductKey = fis.ProductKey and
dst.SalesTerritoryKey = fis.SalesTerritoryKey
group by dp.EnglishProductName, dc.FirstName, dc.LastName,
dst.SalesTerritoryCountry, dp.Color, fis.SalesTerritoryKey, fis.CustomerKey;
```

	English Product Name	SalesTerritoryCountry	Color	SumaCosto Total	CustomerKey
2	Mountain-200 Silver,	United States	Silver	1265,6195	12921
2	Mountain-200 Silver,	United States	Silver	1265,6195	13220
2	Mountain-200 Silver,	United States	Silver	1265,6195	13246
2	Mountain-200 Silver,	United States	Silver	1265,6195	13455
2	Mountain-200 Silver,	United States	Silver	1265,6195	13866
2	Mountain-200 Silver,	United States	Silver	1265,6195	14374
2	Mountain-200 Silver,	United States	Silver	1265,6195	14451
2	Mountain-200 Silver,	United States	Silver	1265,6195	14464
2	Mountain-200 Silver,	United States	Silver	1265,6195	15328
2	Mountain-200 Silver,	United States	Silver	1265,6195	15399
2	Mountain-200 Silver,	United States	Silver	1265,6195	15521

Pivot

Solo cambia el orden de las columnas.

```
SELECT dp.EnglishProductName, dc.FirstName, dc.LastName, dst.SalesTerritoryCountry, dp.Color, sum(fis.TotalProductCost) as SumaCostoTotal, fis.CustomerKey from dbo.FactInternetSales as fis, dbo.DimCustomer as dc, dbo.DimProduct as dp, dbo.DimSalesTerritory as dst where dc.CustomerKey = fis.CustomerKey and dp.ProductKey = fis.ProductKey and dst.SalesTerritoryKey = fis.SalesTerritoryKey group by dp.EnglishProductName, dc.FirstName, dc.LastName, dst.SalesTerritoryCountry, dp.Color, fis.SalesTerritoryKey, fis.CustomerKey;
```

	EnglishProductName	FirstName	LastName	SalesTerritoryCountry	Color	SumaCostoTotal	CustomerKey
1	All-Purpose Bike Stand	Jasmine	Taylor	United States	NA	59,466	11137
2	All-Purpose Bike Stand	Rebecca	Young	United States	NA	59,466	14418
3	All-Purpose Bike Stand	Rachel	Lee	United States	NA	59,466	14575
4	All-Purpose Bike Stand	Hailey	Morgan	United States	NA	59,466	22753
5	All-Purpose Bike Stand	Jodi	Becker	United States	NA	59,466	26043
6	All-Purpose Bike Stand	Jonathan	Patterson	United States	NA	59,466	29034
7	All-Purpose Bike Stand	Chloe	Young	United States	NA	59,466	11015
8	All-Purpose Bike Stand	Tamara	Chander	United States	NA	59,466	11741
9	All-Purpose Bike Stand	Kevin	Butler	United States	NA	59,466	14450
10	All-Purpose Bike Stand	Jerry	Ferrier	United States	NA	59,466	14730
11	All-Purpose Bike Stand	Samuel	Ross	United States	NA	59,466	15957

Slice

Se parte de acuerdo al producto y a la promoción:

SELECT dp.EnglishProductName, dpr.EnglishPromotionName, fis.SalesAmount,
dpr.DiscountPct
from dbo.FactInternetSales as fis, dbo.DimProduct as dp, dbo.DimPromotion as dpr
where dp.ProductKey = fis.ProductKey and dpr.PromotionKey = fis.PromotionKey;

	EnglishProductName	English Promotion Name	SalesAmount	DiscountPct
1	Road-150 Red, 62	No Discount	3578,27	0
2	Mountain-100 Silver, 44	No Discount	3399,99	0
3	Mountain-100 Silver, 44	No Discount	3399,99	0
4	Road-650 Black, 62	No Discount	699,0982	0
5	Mountain-100 Silver, 44	No Discount	3399,99	0
6	Road-150 Red, 44	No Discount	3578,27	0
7	Road-150 Red, 62	No Discount	3578,27	0
8	Mountain-100 Black, 48	No Discount	3374,99	0
9	Mountain-100 Silver, 38	No Discount	3399,99	0
10	Road-150 Red, 48	No Discount	3578,27	0
11	Road-150 Red, 48	No Discount	3578,27	0

Cube (SQL Server)

Función de SQL que agrupa como un cubo a los datos

```
SELECT dp.EnglishProductName, dst.SalesTerritoryCountry, sum(fis.SalesAmount) as SumaVentasTotal from dbo.FactInternetSales as fis,dbo.DimCustomer as dc, dbo.DimProduct as dp, dbo.DimSalesTerritory as dst where dc.CustomerKey = fis.CustomerKey and dp.ProductKey = fis.ProductKey and dst.SalesTerritoryKey = fis.SalesTerritoryKey group by CUBE(dp.EnglishProductName, dc.FirstName, dc.LastName, dst.SalesTerritoryCountry, fis.SalesTerritoryKey, fis.CustomerKey);
```


ROLL-UP (SQL Server)

Es la función que ya trae integrada SQL Server

```
SELECT dp.EnglishProductName, dst.SalesTerritoryCountry, sum(fis.SalesAmount) as SumaVentasTotal from dbo.FactInternetSales as fis,dbo.DimCustomer as dc, dbo.DimProduct as dp, dbo.DimSalesTerritory as dst where dc.CustomerKey = fis.CustomerKey and dp.ProductKey = fis.ProductKey and dst.SalesTerritoryKey = fis.SalesTerritoryKey group by ROLLUP(dp.EnglishProductName, dc.FirstName, dc.LastName, dst.SalesTerritoryCountry, fis.SalesTerritoryKey, fis.CustomerKey);
```

	EnglishProductName	SalesTerritoryCountry	Suma Ventas Total
1	All-Purpose Bike Stand	United States	159,00
2	All-Purpose Bike Stand	United States	159,00
3	All-Purpose Bike Stand	United States	159,00
4	All-Purpose Bike Stand	NULL	159,00
5	All-Purpose Bike Stand	NULL	159,00
6	All-Purpose Bike Stand	United States	159,00
7	All-Purpose Bike Stand	United States	159,00
8	All-Purpose Bike Stand	United States	159,00
9	All-Purpose Bike Stand	NULL	159,00
10	All-Purpose Bike Stand	United Kingdom	159,00
11	All-Purpose Bike Stand	United Kingdom	159,00

4. Análisis de resultados:

Se usó una versión del 2017 de la base de datos de Data warehouse debido a su disponibilidad y compatibilidad con sistemas y entornos cercanos.

Utilizar varios join para obtener la juntura que necesitamos, sobrecarga el desempeño.

5. Conclusiones y recomendaciones:

- OLAP pre-procesa la información y nos da ventajas en futuros análisis.
- SQL Server ya trae integrado algunas funciones para el cubo de ventas.
- Es necesario agrupar los datos cuando realizamos operaciones sobre toda una columna.
- Se logró utilizar las operaciones: slice, dice, drilldown, rollup y pivote en SQL.
- Los operadores quedaron definidos de una forma más clara.
- Se logró usar las consultas Cube y Roll Up propias de SQL
- Se recomienda no considerar datos nulos para evitar pérdidas de calidad en futuros análisis de datos.
- Es recomendable verificar la granularidad con la que traba la tabla o las tablas de hechos.

6. Bibliografía:

[1] «Guru99,» [En línea]. Available: https://www.guru99.com/online-analytical-processing.html. [Último acceso: 30 Octubre 2019].