LUTs

Uncertainty and spatial diversity

Javier Pacheco-Labrador

Max Plank Institute for Biogeochemistry

COST Action CA17134 SENSECO WG4&1 Training School November 18 -21, 2019. CETAL – INFLPR, Măgurele, România

Layout

- 1. Look-up tables
 - Concept
 - Methods
- 2. Uncertainty and spatial variability

"array that replaces runtime computation with a simpler array indexing operation"

X ₁	X ₂		<i>X</i> _n	Y ₁	Y ₂		Y _m
1	2	8	32	5	3	74	1
74	3	28	3	9	9	4	4
5	36	38	69	3	9	3	4
6	4	13	9		9	14	36
74	66	96	16	47	4	5	51
6	8	6	198	6	1	75	1
6	4	6	9	1	97	6	7

■RTM
$$\{X_1, X_2, ... X_n\} \xrightarrow{f_{\text{slow}}(X_1, X_2, ... X_n)} \{Y_1, Y_2, ... Y_n\}$$

- In Remote Sensing
 - Traditionally used to invert RTM

$$\{X_1, X_2, \dots X_n\} \xrightarrow{find(X_p \mid Y_p \sim Y_{\text{obs}})} \{Y_1, Y_2, \dots Y_n\}$$

Train statistical predictive models (Hybrid models)

$$\{X_1, X_2, \dots X_n\} \xrightarrow{f_{\text{fast}}(X_1, X_2, \dots X_n)} \{Y_1, Y_2, \dots Y_n\}$$
 Forward
$$\{Y_1, Y_2, \dots Y_n\} \xrightarrow{f_{\text{fast}}(Y_1, Y_2, \dots Y_n)} \{X_1, X_2, \dots X_n\}$$
 Inverse

Coverage of variable space

Uniform random distribution


```
n = 100;
X1 = rand([n, 1]);
X2 = rand([n, 1]);
```


Coverage of variable space

```
Regular
                                                  LUT
                                                            Obs.
  = 100;
  = round(sqrt(n));
[x1, x2] = ...
   meshgrid(linspace(0, 1, nr), ...
   linspace(0, 1, nr ));
```


Coverage of variable space

Uncorrelated multivariate


```
n = 100;
mu = .5
sigma = .15
```

```
X1 = nor m nd (mu, sigma, [n, 1]);
X2 = nor m nd (mu, sigma, [n, 1]);
```


Coverage of variable space

```
n = 100;
mu = [.5.5];
Sigma = [1.5; .51];
X = m \cdot n \cdot r \cdot n \cdot d(m \cdot u, Sigman);
X1 = X(:,1); X2 = X(:,2);
Uncorrelated case...
n = 100;
mu = [.5.5];
Si gma = [1 \ 0; 0 \ 1];
X = mvnrnd(mu, Sigman);
```

Correlated multivariate

Coverage of variable space

Latin hypercube sampling


```
n = 100;

X = I hsdesi gn ([n, 2]);

X1 = X(:,1); X2 = X(:,2);
```

Coverage of variable space

LHS optimizes coverage for a given *n* size:

- Split cumulative density function into n disjoint intervals of equal probability
- One value is selected at random from each interval
- X1 paired at random with X2
- [X1,X2] paired at random with X3
- ...
- Additional criteria can be iteratively optimized (e.g. minimize correlation, maximize distances...)

While ~criteria OR iter<itmax

- Combining LHS & Conditional Probability
 - The joint probability / dependence of some of the parameters (X) is known for some of the parameters.
 - LHS to simulate parameters with no prior information about their dependence on other parameters ($X_{\rm ind}$)
 - Use prior knowledge to define values of parameters that depend on other parameters ($X_{\text{dep}} = f(X_{\text{ind}}) + \varepsilon$)

Reduce / Avoid unrealistic combinations

- Combining LHS & Conditional Probability
 - Example: PROSPECT model

$\mathcal{C}_{ m ab}$	$\mathcal{C}_{ m ar}$	\mathcal{C}_{m}	$C_{ m w}$	N
20.3	6.8	0.0019	0.018	1.65
40.5	14.5	0.0025	0.0090	1.30

- Truncated distributions
 - Prevent unrealistic / physically impossible values

Truncation modifiesPDF

- Look for methods already developped
 - Botev, Z.I., & Ecuyer, P.L. (2015). Efficient probability estimation and simulation of the truncated multivariate student-t distribution. In, 2015 Winter Simulation Conference (WSC) (pp. 380-391)
 - Botev, Z.I. (2017). The normal law under linear restrictions: simulation and estimation via minimax tilting. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79, 125-148

 Alternatively, iteratively sample values within ranges

- While any(/)
 - Sample from the distributions $x = \mathcal{N}(\text{params})$
 - / = x < LB | x > UB
 - Keep results within range (isfalse(/))
 - Can be inefficient!!

2. Uncertainty and spatial variability

- The approaches seen for LUT generation are not but ways to design a Monte Carlo scheme for run a model over a given distribution of parameters
 - This can be used to propagate uncertainties
 - Can be also used to estimate the effect of parameters' variability in a integrated signal (e.g., remote sensing pixel)

2. Uncertainty and spatial variability

- Considerations
 - Covariance of uncertainties
 - e.g., dark current and instrument sensitivity are function of temperature
 - e.g., chlorophyll and carotenoids are correlated; and can correlate with leaf area or water content in some ecosystems
 - Realistic ranges
 - Physically plausible
 - Instrument / Ecosystem / time specific
 - If the LUT will be / train an estimator, is better envelope the expected ranges. Avoid extrapolation

THANKS!