Hung-Yueh Chiang (江泓樂)

Mobile: +1512.825.9352

Email: hungyueh.chiang@gmail.com

Webpage | Github | LinkedIn | Google Scholar

Professional Summary

A machine learning researcher with hands-on expertise in developing **CUDA** kernels and advanced **quantization** and **compression** techniques for large language models, achieving **faster inference** and **reduced memory** usage. Skilled in deploying *optimized* **Transformers** and **State Space Models** across **edge** and **cloud** platforms, with proven gains in *speed* and *efficiency*. Passionate about transforming research innovations into scalable, production-ready AI systems.

Education

The University of Texas at Austin (UT)

Sep. 2021 - 2026 (anticipated)

Ph.D. in electrical and computer engineering

Affiliation: Energy-Aware Computing Group (EnyAC)

Research Direction: Efficient fine-tuning, model quantization, and computer vision

Advisor: Prof. Diana Marculescu

National Taiwan University (NTU)

Sep. 2016 - Sep. 2018

M.S. in computer science (GPA: 3.87/4.3)

Affiliation: NVIDIA-NTU AI Lab

Research Direction: 3D vision and computer vision

Thesis title: A Unified Point-Based Framework for 3D Segmentation

Advisor: Prof. Winston Hsu

ETH Zurich Jan. 2015 - Sep. 2015

Undergraduate exchange student (2 nominees in NYCU CS college)

National Yang Ming Chiao Tung University (NYCU)

Sep. 2011 - Sep. 2015

B.S. in computer science (GPA: 4.08/4.3, rank 2/32) Program of computer and electrical engineering

Industrial Experience

Software Engineering Intern, Rivian, Palo Alto CA, USA

Jun. 2023 – Aug. 2023

• Neural Architecture Search (NAS) for 3D object detection

Research Scientist Intern, Amazon, Seattle (Remote), USA

May 2022 - Nov. 2022

- Image synthesis and generation for shoe virtual try-on with diffusion models
- The intern project was accepted in Amazon Machine Learning Conference (AMLC) as a long presentation: Shoe-ViTON: Detail-Preserving Virtual Shoe Try-On with Dual Conditional Diffusion Models.

Deep Learning Engineer, XYZ Robotics, Shanghai, China

Jun. 2019 - May 2021

• Develop production-level deep learning vision systems on logistic robots

- Deploy a deep learning pipeline (data uploading, downloading, labeling, and model training) on products with two team members
- Develop a multi-modal (image, depth, and normal) segmentation model for predicting picking areas on the objects
- Synthesize training data with Blender for unseen items to improve the model's generalization

Academic Experience

Graduate Research Assistant, UT, Texas, USA

Aug. 2021 – Now

Research Direction: Efficient fine-tuning, model quantization, and computer vision

Research Assistant, NTU AI Research Center, Taipei, Taiwan

Oct. 2018 – Apr. 2019

Research Direction: 3D Vision and computer vision

Master Student, NTU, Taiwan, Taipei

Sep. 2016 - Sep. 2018

3D point cloud semantic segmentation

- Proposed to optimize 2D image and 3D structural features in a unified point-based framework
- Our method was one of the top performing methods on ScanNet benchmark in 2018
- Second Place at the ScanNet benchmark and invited talk at ScanNet Indoor Scene Understanding Challenge workshop in CVPR 2019
- The work was published at 3DV 2019

3D shape retrieval

- Proposed a cross-domain framework for image to 3D shape retrieval
- Proposed a new feature aggregation method to encode a 3D shape
- Our method has won second place at SHREC17 RGB-D to CAD retrieval competition in 2017
- The work was published at 3DV 2018

Netizen style commenting bot

- Proposed NetiLook dataset which contains 300K posts (photos) with 5M comments
- Fused the topic model with the commenting bot to generate netizen style comments
- The work was published at The Web Conference 2018

Honors and Awards

- Engineering fellowship from The University of Texas at Austin graduate school, 2021
- Second place at ScanNet benchmark competition and invited talk at ScanNet Indoor Scene Understanding Challenge workshop in CVPR 2019
- Second place at SHREC17 RGB-D to CAD retrieval competition, 2017
- Taiwan Ministry of Education exchange scholarship, 2014
- Pan Wen-Yuan Foundation undergraduate scholarship (3 nominees in NCTU EE/CS), 2014
- Academic achievement award (for students at the top 5% in the class), 2014
- Research creativity award from the National Science Council, Taiwan, 2014

Programming Skills

- Programming Language: Python, C/C++, CUDA
- Deep Learning Frameworks: Pytorch, Tensorflow, MXNet, ONNX
- Deep Learning Platforms: Nvidia Jetson Series, Google Edge TPU, Intel Neural Compute Stick

- CUDA Libraries: CUTLASS, cuBLAS, cuSPARSE, PTX
- Vision/Robotic Libraries: Robot Operating System (ROS), Point Cloud Library (PCL), OpenCV
- Development Tools: Docker, Cmake, PyLint, Pytest, MyPy, Google Test, Git
- Web Language: HTML, JQuery, Java Script, CSS
- Web Framework: Django, Bootstrap, React
- 3D Rendering Tools: Blender

References

- **Diana Marculescu**, Professor and Chair, Department of Electrical and Computer Engineering at The University of Texas at Austin
- Lizy Kurian John, Professor, Department of Electrical and Computer Engineering at The University of Texas at Austin
- Winston Hsu, Chief Technology Officer (CTO) and Vice President for MobileDrive (富智捷), Director of NVIDIA-NTU AI Lab; Professor, Department of Computer Science and Information Engineering, National Taiwan University, Taiwan
- Kai-Chiang Wu, Professor, Department of Computer Science, National Yang Ming Chiao Tung University, Taiwan
- Peter Kuan-Ting Yu, Chief Technology Officer (CTO) at XYZ Robotics, Shanghai, China

Full Publications (* Equal contribution)

Peer-Reviewed Conference Papers

- [C1] Chiang, H. Y., Chang, C. C., Frumkin, N., Wu, K. C., Abdelfattah, M. S., & Marculescu, D. (2025). Quamba2: A Robust and Scalable Post-training Quantization Framework for Selective State Space Models. In Proceedings of the Forty-Second International Conference on Machine Learning (ICML), Vancouver, British Columbia, Canada.
- [C2] Chiang, H. Y.*, Chang, C. C.*, Frumkin, N., Wu, K. C., & Marculescu, D. (2025). Quamba: A Post-Training Quantization Recipe for Selective State Space Models. In Proceedings of the Thirteenth International Conference on Learning Representations (ICLR), Singapore.
- [C3] Yang, Y., Chiang, H. Y., Li, G., Marculescu, D., & Marculescu, R. (2024). Efficient Low-Rank Backpropagation for Vision Transformer Adaptation. In Advances in Neural Information Processing Systems (NeurIPS), 36, New Orleans, Louisiana, USA.
- [C4] Chiang, H. Y., Frumkin, N., Liang, F., & Marculescu, D. (2023). MobileTL: On-Device Transfer Learning with Inverted Residual Blocks. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 37(6), pp. 7166–7174, Washington, DC, USA. (Oral)
- [C5] Chiang, H. Y., Lin, Y. L., Liu, Y. C., & Hsu, W. H. (2019). A Unified Point-Based Framework for 3D Segmentation. In Proceedings of the 2019 International Conference on 3D Vision (3DV), pp. 155–163, IEEE, Québec City, Québec, Canada.
- [C6] Lee, T., Lin, Y. L., Chiang, H. Y., Chiu, M. W., Hsu, W., & Huang, P. (2018). Cross-Domain Image-Based 3D Shape Retrieval by View Sequence Learning. In Proceedings of the 2018 International Conference on 3D Vision (3DV), pp. 258–266, IEEE, Verona, Italy. (Oral)
- [C7] Lin, W. H., Chen, K. T., Chiang, H. Y., & Hsu, W. (2018). Netizen-Style Commenting on Fashion Photos: Dataset and Diversity Measures. In Companion Proceedings of The Web Conference 2018 (WWW), pp. 395–402, Lyon, France.

- [W1] Menn, D., Liang, F., Chiang, H. Y., & Marculescu, D. (2025). Similarity Trajectories: Linking Sampling Process to Artifacts in Diffusion-Generated Images. In Proceedings of the Winter Conference on Applications of Computer Vision Workshop (WACVW) on Image/Video/Audio Quality in Computer Vision and Generative AI, Tucson, Arizona, USA.
- [W2] Yang, Y., Chiang, H. Y., Li, G., Marculescu, D., & Marculescu, R. (2024). Cache and Reuse: Rethinking the Efficiency of On-Device Transfer Learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshop (CVPRW) on Efficient Deep Learning for Computer Vision, pp. 8040–8049, Seattle, Washington, USA.
- [W3] Liu, C. H., Han, Y. S., Sung, Y. Y., Lee, Y., Chiang, H. Y., & Wu, K. C. (2021). FOX-NAS: Fast, On-Device and Explainable Neural Architecture Search. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshop (ICCVW) on Low-Power Computer Vision, pp. 789–797, Virtual.
- [W4] Hua, B. S., Truong, Q. T., Tran, M. K., Pham, Q. H., Kanezaki, A., Lee, T., Chiang, H. Y., ... & Yeung, S. K. (2017). SHREC'17: RGB-D to CAD Retrieval with ObjectNN Dataset. In Proceedings of the Eurographics Workshop on 3D Object Retrieval, pp. 25–32, Lyon, France.

Peer-Reviewed Workshop Papers (No Published Proceedings)

- [W5] Chi, T. Y., Chiang, H. Y., Chang, C. C., Huang, N. C., Wu, K. C., & Marculescu, D. (2024). QuaterMap: Efficient Post-Training Activation Pruning for Visual State Space Models. In 3rd Workshop on Efficient Systems for Foundation Models in Forty-Second International Conference on Machine Learning (ICMLW), Vancouver, British Columbia, Canada.
- [W6] Chi, T. Y., Chiang, H. Y., Chang, C. C., Huang, N. C., & Wu, K. C. (2024). V"Mean"ba: Visual State Space Models Only Need 1 Hidden Dimension. In Workshop on Machine Learning for Systems at Advances in Neural Information Processing Systems (NeurIPSW), Vancouver, British Columbia, Canada.
- [W7] Chiang, H. Y., & Marculescu, D. (2024). SCAN-Edge: Finding MobileNet-Speed Hybrid Networks for Commodity Edge Devices. In 5th Workshop on Practical Machine Learning for Limited/Low Resource Settings at International Conference on Learning Representations (ICLRW), Vienna, Austria.
- [W8] Lee, K. Y., Huang, H. F., Chiang, H. Y., Lee, H. C., Hsu, W. H., & Chen, W. C. (2019). Metadata-Augmented Neural Networks for Cross-Location Solar Irradiation Prediction from Satellite Images. In 5th Workshop on Mining and Learning from Time Series at the Conference on Knowledge Discovery and Data Mining (KDDW), Anchorage, Alaska, USA.

Technical Reports (No Published Proceedings)

[T1] Liu, Y. C., Huang, Y. K., Chiang, H. Y., Su, H. T., Liu, Z. Y., Chen, C. T., Tseng, C. Y., & Hsu, W. H. (2021). Learning from 2D: Contrastive Pixel-to-Point Knowledge Transfer for 3D Pretraining. arXiv preprint arXiv:2104.04687. (105 citations)