## Greedy Algorithms

Lecture 11

#### Optimization Problems

#### Optimization Problem

- Problem with an objective function to either:
  - Maximize some profit
  - Minimize some cost

#### Optimization problems appear in so many applications

- Maximize the number of jobs using a resource [Activity-Selection Problem]
- Encode the data in a file to *minimize* its size [Huffman Encoding Problem]
- Collect the maximum value of goods that fit in a given bucket [knapsack Problem]
- Select the smallest-weight of edges to connect all nodes in a graph [Minimum Spanning Tree]

#### Solving Optimization Problems

- Two techniques for solving optimization problems:
  - Greedy Algorithms ("Greedy Strategy")
  - Dynamic Programming

Greedy algorithms can solve some problems optimally

Dynamic programming can solve more problems optimally (superset)

We still care about Greedy Algorithms because for some problems:

- Dynamic programming is overkill (slow)
- Greedy algorithm is simpler and more efficient

Space of optimization problems



#### Greedy Algorithms

- Main Concept
  - Divide the problem into multiple steps (sub-problems)
  - For each step take the best choice at the current moment (Local optimal) (Greedy choice)
  - A greedy algorithm always makes the choice that looks best at the moment
  - <u>The hope:</u> A locally optimal choice will lead to a globally optimal solution
    - For some problems, it works. For others, it does not

#### Greedy Algorithms

- A greedy algorithm always makes the choice that looks best at the moment
  - The hope: a locally optimal choice will lead to a globally optimal solution
  - For some problems, it works
- Dynamic programming can be overkill (slow); greedy algorithms tend to be easier to code
  - Activity-Selection Problem
  - Huffman Codes

# The Greedy Method Technique

- The greedy method is a general algorithm design paradigm, built on the following elements:
  - configurations: different choices, collections, or values to find
  - objective function: a score assigned to configurations, which we want to either maximize or minimize
- It works best when applied to problems with the **greedy-choice** property:
  - a globally-optimal solution can always be found by a series of local improvements from a starting configuration.

#### Elements Of Greedy Algorithms

#### Greedy-Choice Property

At each step, we do a greedy (local optimal) choice

#### Top-Down Solution

- The greedy choice is usually done independent of the sub-problems
- Usually done "before" solving the sub-problem

#### Optimal Substructure

 The global optimal solution can be composed from the local optimal of the sub-problems

#### Activity-Selection Problem

- Problem: get your money's worth out of a carnival
  - Buy a wristband that lets you onto any ride
  - Lots of rides, each starting and ending at different times
  - Your goal: ride as many rides as possible
    - Another, alternative goal that we don't solve here: maximize time spent on rides
- Welcome to the activity selection problem

### Activity-Selection

- Formally:
  - Given a set S of n activities  $S = \{a_1, ..., a_n\}$   $s_i$  = start time of activity i $f_i$  = finish time of activity i
  - Find max-size subset A of compatible (non-overlapping) activities



■ Assume that  $f_1 \le f_2 \le ... \le f_n$ 

#### Example

S sorted by finish time:



- Maximum-size mutually compatible set:  $\{a_1, a_3, a_6, a_8\}$ .
- Not unique: also {a<sub>2</sub>, a<sub>5</sub>, a<sub>7</sub>, a<sub>9</sub>}.

### Activity Selection:

Optimal Substructure  
• 
$$S_{ij} = \{a_k \in S : fi \leq sk < fk \leq sj\}$$

= activities that start after  $a_i$  finishes and finish before  $a_j$  starts



- In words, activities in  $S_{ij}$  are compatible with:
  - All activities that finish by  $f_i$
  - All activities that start no earlier than  $s_i$

### Activity Selection:

- Optimal Substructure  $\cdot$  Let  $A_{ii}$  be a maximum-size set of compatible activities in  $S_{ij}$ 
  - Let  $a_k \in A_{ij}$  be some activity in  $A_{ij}$ . Then we have two subproblems:
    - Find compatible activities in  $S_{ik}$  (activities that start after  $a_i$  finishes and that finish before  $a_k$  starts)
    - Find compatible activities in  $S_{ki}$  (activities that start after  $a_k$  finishes and that finish before  $a_i$  starts)
  - $A_{ij} = A_{ik} \cup \{a_k\} \cup Akj$
  - $\bullet \to |A_{ii}| = |A_{ik}| + |A_{ki}| + 1$

#### **Activity Selection:**

Dynamic Programming
• Let c[i,j] be the size of optimal solution for  $S_{ij}$ . Then, c[i,j] = c[i,k] + c[k,j] + 1

$$c[i,j] = \begin{cases} 0 & \text{if } S_{ij} = \emptyset, \\ \max_{a_k \in S_{ij}} \left\{ c[i,k] + c[k,j] + 1 \right\} & \text{if } S_{ij} \neq \emptyset. \end{cases}$$

### Greedy Choice Property

- Dynamic programming
  - Solve all the sub-problems
- Activity selection problem also exhibits the greedy choice property:
  - We should choose an activity that leaves the resource available for as many other activities as possible
  - The first greedy choice is  $a_{1}$ , since  $f_1 \le f_2 \le ... \le f_n$

### Activity Selection: A Greedy Algorithm

- So actual algorithm is simple:
  - Sort the activities by finish time
  - Schedule the first activity
  - Then schedule the next activity in sorted list which starts after previous activity finishes
  - Repeat until no more activities
- Intuition is even more simple:
  - Always pick the shortest ride available at the time

### Activity Selection: A Greedy Algorithm

**Greedy Choice:** Select the next best activity (Local Optimal)

- Select the activity that ends first (smallest end time)
  - Intuition: it leaves the largest possible empty space for more activities
- Once selected an activity
  - Delete all non-compatible activities
  - They cannot be selected
- Repeat the algorithm for the remaining activities
  - Either using iterations or recursion

Sub-problem: We created one sub-problem to solve (Find the optimal schedule after the selected activity)

Hopefully when we merge the local optimal + the subproblem optimal solution → we get a global optimal

#### Greedy Algorithm Correctness

- Theorem:
  - If  $S_k$  (activities that start after  $a_k$  finishes) is nonempty and  $a_m$  has the earliest finish time in  $S_k$ , then  $a_m$  is included in some optimal solution.
- How to prove it?
  - We can convert any other optimal solution (S') to the greedy algorithm solution (S)
- Idea:
  - Compare the activities in S' and S from left-to-right
  - If they match in the selected activity → skip
  - If they do not match, we can replace the activity in S' by that in S because the one in S finishes first

#### Example

S sorted by finish time:



- $S: \{a_1, a_3, a_6, a_8\}.$
- $S':\{a_2, a_5, a_7, a_9\}.$

We mapped S' to S and

S':{a<sub>2</sub>, a<sub>5</sub>, a<sub>7</sub>, a<sub>9</sub>}.
showed that S is even better
a<sub>2</sub>, a<sub>5</sub>, a<sub>7</sub>, a<sub>9</sub> in S' can be replaced by a<sub>1</sub>, a<sub>8</sub> from S (finishes earlier)

#### **Recursive Solution**



Time Complexity: O(n) (Assuming arrays are already sorted, otherwise we add O(n Log n)

#### **Iterative Solution**

Two arrays containing the start and end times (Assumption: they are sorted based on end times)

```
Iterative-Activity-Selection(s, f)
    n = s.length
    A = {a<sub>1</sub>}
    k = 1

for (m = 2 to n)
    if (S[m] >= f[k])
        A = A U {a<sub>m</sub>}
    k = m
Return A
```

#### Elements Of Greedy Algorithms

- Proving a greedy solution is optimal
  - Remember: Not all problems have optimal greedy solution
  - If it does, you need to prove it
  - Usually the proof includes mapping or converting any other optimal solution to the greedy solution