Основы наивной теории множеств.

Станислав Олегович Сперанский

Материалы лекций: ссылка Литература:

- K. Hrbacek and T. Jech. Introduction to Set Theory. 3rd ed., revised and expanded. Marcel Dekker, Inc., 1999.
- T. Jech. Set Theory. 3rd ed., revised and expanded. Springer, 2002.

Будем рассматривать как базовые выражения "x равен (совпадает с) y" ("x = y") "x лежит в y" (" $x \in y$ ").

Определение 1 (Наиваная схема аксиом выделения). Пусть $\Phi(x)$ — произвольное условие на объекты. Тогда существует X, что $\forall u(\Phi(u) \leftrightarrow u \in X)$. В этом случае X обозначается как $\{u \mid \Phi(u)\}$.

Утверждение 1 (парадокс Рассела). Пусть $R = \{u \mid u \notin u\}$. Тогда R не может лежать в себе u не может не лежать в себе одновременно.

Из-за данного парадокса будем рассматривать только условия, образованные переменными $u \in = \neg, \land, \lor, \leftarrow, \leftrightarrow, \forall, \exists$.

Определение 2 (аксиомы ZFC (= ZF (аксиомы Цермело-Френкеля) + C (аксиома выбора))).

Ext) "Аксиома экстенциональности":

$$\forall X \forall Y (\forall u (u \in X \leftrightarrow u \in Y) \leftrightarrow X = Y)$$

Empty) "Аксиома пустого множества":

$$\exists \varnothing \ \forall u \ (u \notin \varnothing)$$

Pair) "Аксиома пары":

$$\forall X \,\forall Y \,\exists Z (\forall u \,(u \in Z \leftrightarrow (u = X \lor u = Y)))$$

Обозначение: $Z = \{X, Y\}$.

Sep) "Схема аксиом выделения":

$$\forall \Phi(x) \quad \forall X \exists Y \ \forall u \ (u \in Y \leftrightarrow (u \in X \land \Phi(u)))$$

Обозначение: $Y = \{u \in X \mid \Phi(u)\}.$

Следствие. Операторы

$$X \cap Y := \{ u \mid u \in X \land u \in Y \}$$
$$X \setminus Y := \{ u \in X \mid u \notin Y \}$$
$$\bigcap X := \{ u \mid \forall v \in X \quad u \in v \}$$

определены корректно.

Union) "Аксиома объединения":

$$\forall X \exists Y \ \forall u \ (u \in Y \leftrightarrow \exists v \ (v \in X \land u \in v))$$

Обозначение: $Y = \bigcup X$.

Следствие. Оператор

$$X \cup Y := \bigcup \{X, Y\} = \{u \mid u \in X \land u \in Y\}$$

определён корректно.

Power) Пусть $x \subseteq y := \forall v \{v \in x \to v \in y\}$. "Аксиома степени":

$$\forall X \,\exists Y \,\forall u \,(u \in Y \leftrightarrow u \subseteq X)$$

Обозначение: $Y = \mathcal{P}(X) := \{u \mid u \subseteq X\}$. $\mathcal{P}(X)$ — "множество-степень X" или "булеан X".

Определение 3. Упорядоченная пара — это объект от некоторых X_1 и Y_1 , который равен другому такому объекту от X_2 и Y_2 тогда и только тогда, когда $X_1 = X_2 \wedge Y_1 = Y_2$.

Определение 4. Декартово произведение X и Y $(X \times Y) - \{(x;y) \mid x \in X \land y \in Y\}$.

Замечание 1. Можно нелсожно показать, что декартово произведение определено корректно.

Inf) Пусть $\operatorname{Ind}(X) := \varnothing \in X \land \forall u \, (u \in X \land u \cup \{u\} \in X)$. Если $\operatorname{Ind}(X)$, то X называется индуктивным. "Аксиома бесконечности": существует индуктивное множество.

Repl) "Схема аксиом подстановки":

$$\forall \Phi(x, y)$$

$$\forall x \, \forall y_1 \, \forall y_2 \, ((\Phi(x, y_1) \land \Phi(x, y_2)) \rightarrow y_1 = y_2) \rightarrow$$

$$\forall X \, \exists Y \, \forall y \, (y \in Y \leftrightarrow \exists x (x \in X \land \Phi(x, y)))$$

Reg) "Аксиома регулярности":

$$\forall X \, (X \neq \varnothing \to \exists u \, (u \in X \land X \cap u = \varnothing))$$

1 Отношения.

Определение 5. Бинарное (или двухместное) отношение R между X и Y — подмножество $X \times Y$. Если Y = X, R называется бинарным (или двухместным) отношением на X. Обозначение: $(x,y) \in R \Leftrightarrow xRy$.

Определение 6.

$$\mathrm{dom}(R) := \{u \in X \mid \exists v \quad uRv\}$$
 "область определения R " $\mathrm{range}(R) := \{v \in Y \mid \exists u \quad uRv\}$ "область значений R " $R[U] := range(R \cap (U \times Y))$ $R^{-1} := \{(y,x) \mid (x,y) \in R\}$

Замечание 2.

range
$$(R) = dom(R^{-1}) = R[X]$$

range $(R^{-1}) = dom(R) = R^{-1}[Y]$

Определение 7. Бинарные отношнения можно естественным образом комбинировать: для любых отношений R и Q между X и Y, Y и Z соответственно отношение

$$S = R \circ Q := \{(x, z) \in X \times Z \mid \exists y : xRy \land yQz\}$$

называется композицией R и Q.

Определение 8. Тождественное отображение на $X - id_X := \{(x, x) \mid x \in X\}.$

Замечание 3. Тождественное отображение при композиции (не важно, правой или левой) с другим отношением не меняет его.

Определение 9. Отношение R между X и Y называется функциональным, если

$$\forall x \ \forall y_1 \ \forall y_2 \left((xRy_1 \land xRy_2) \rightarrow y_1 = y_2 \right).$$

Определение 10. Функция из X в Y — функциональное отношение R между X и Y, в котором $\mathrm{dom}(R) = X$. Обозначение: $R: X \to Y$.

Определение 11. Ограничение или сужение функции $f: X \to Y$ на $U \subseteq X$ — функция $f \upharpoonright_U := f \cap (U \times Y)$.

Если $f: X \to Y$ и $g: U \to Y$, где $U \subseteq X$, таковы, что $f \upharpoonright_U = g$, то f называется расширением g, а g-opганичением f.

Определение 12. $Y^X := \{f : X \to Y\}.$

Определение 13. Функция $f: X \to Y$ называется

- сюръекцией, если range(f) = Y;
- *инъекцией*, если f^{-1} функционально;
- $\mathit{биекцией}$, если f сюръективно и инъективно.
- С) "Аксиома выбора":

$$\forall X(\varnothing \not\in X \to \exists f(f:X \to \bigcup X \land \forall u \in X(f(u) \in u)))$$

2 Натуральные числа и индукция

Важным следствием Inf является

$$\exists X (\operatorname{Ind}(X) \land \forall Y (\operatorname{Ind}(Y) \to X \subseteq Y)) \tag{Nat}$$

Nat описывает минимальное по включению индуктивное множество — \mathbb{N} , \aleph_0 или ω .

Доказательство. Пусть есть какое-то индуктивное X_0 . Тогда рассмотрим

$$\mathbb{N} := \{ x \in X_0 \mid \forall X (\operatorname{Ind}(X) \to x \in X) \}$$

По построению $\operatorname{Ind}(X) \to \mathbb{N} \subseteq X$. Также $\operatorname{Ind}(\mathbb{N})$.

Определение 14. Определим функцию последователя $s: \mathbb{N} \to NN$ как

$$s := \{(n, m) \in \mathbb{N} \times \mathbb{N} \mid m = n \cup \{n\}\}\$$

Вместо s(n) часто пишут n+1.

Определение 15. (Естественный) порядок на $\mathbb{N} - <:= \{(n,m) \in \mathbb{N}^2 \mid n \in m\}$.

Замечание 4. Для всех $n, m \in \mathbb{N}$ верно:

- 1. $\neg (n < 0)$;
- $2. \ n < m+1 \leftrightarrow (n < m \lor n = m).$

Теорема 2 (принцип индукции). Пусть Х удовлетворяет условию

$$0 \in X \land \forall n \in \mathbb{N} (n \in X \to n + 1 \in X).$$

 $Tor \partial a \mathbb{N} \subseteq X.$

Доказательство. Из условия на X следует, что $\mathbb{N} \cap X$ индуктивно. Тогда из определения \mathbb{N} следует, что $\mathbb{N} \subseteq \mathbb{N} \cap X \subseteq X$, значит $\mathbb{N} \subseteq X$.

Замечание 5. В качестве X могут быть $\{n \in \mathbb{N} \mid \Phi(n)\}$.

Следствие 2.1. $\forall n \in \mathbb{N}$ верно $n \subseteq \mathbb{N}$.

Теорема 3 (возвратная индукция). Пусть дан X, что $\forall n \in \mathbb{N} (\forall m < n \ m \in X \to n \in X)$. $Torda \ \mathbb{N} \subseteq X$.

Доказательство. Докажем, что $\forall n \in \mathbb{N} n \subseteq X$, по индукции. База для 0 очевидна. Шаг очевиден, так как $n \subseteq X$, значит $n \in X$, значит $n + 1 \subseteq X$.

Определение 16. $Min(X) := \{x \in X \mid \neg \exists u \in X u \in x\}.$

Теорема 4 (принцип минимального элемента). $Ecnu\ X\subset \mathbb{N}\ u\ X\neq\varnothing,\ mo\ \mathrm{Min}(X)\neq\varnothing.$

Доказательство. Пусть $Min(X) = \emptyset$. Возьмём $Y := \mathbb{N} \setminus X$. Заметим, что

$$\forall n \in \mathbb{N} (\forall m < n \ m \in Y \to n \in Y)$$

Тогда по принципу возвратной индукции $Y=\mathbb{N}$, а тогда $X=\varnothing$ — противоречие.

Теорема 5 (о рекурсии). Пусть есть $y_0 \in Y$ и $h : \mathbb{N} \times Y \to Y$. Тогда существует и единственная $f : \mathbb{N} \to Y$ такая, что для любого $n \in \mathbb{N}$

$$f(n) = \begin{cases} y_0 & ecnu \ n = 0 \\ h(m, f(m)) & ecnu \ n = m + 1 \end{cases}$$

Доказательство. Пусть $k \in \mathbb{N}$. Тогда будем называть функцию $f: k+1 \to Y$ правильной, если условие в определении рекурсии верно для всех $n \in k+1$. Также рассмотрим

$$S:=\{k\in\mathbb{N}\mid$$
 сущесвтует единственная правильная $f:k+1\to Y\}$

Будем обозначать для каждого $k \in S$ через f_k соответствующую правильную функцию из k+1 в Y.

Докажем по индукции, что $S = \mathbb{N}$.

База. Очевидно, $\{(0, y_0)\}$ — единственная правильная функция из 0+1 в Y. Поэтому $0 \in S$. **Шаг.** Легко заметить, что сужение любой правильной функции на k+2 на множество k+1 правильно. Поэтому все правильные функции на k+2 определены на k+1 как f_k . Тогда значение в k+1 определяется однозначно, значит правильная функция на k+2 существует и единственна.

Теорема 6 (о рекурсии, парамметризованная). Пусть $g_0 \in Y^X$ и $h: X \times \mathbb{N} \times Y \to Y$. Тогда существует и единственна $f: X \times \mathbb{N} \to Y$, что $\forall x \in X, n \in \mathbb{N}$

$$f(x,n) = \begin{cases} g_0(x) & ecnu \ n = 0 \\ h(x,m,f(x,m)) & ecnu \ n = m+1 \end{cases}$$

Доказательство. Рассмотрим для каждого $x \in X$ функцию $h_x : \mathbb{N} \times Y \to Y, (n, y) \mapsto h(x, n, y)$. Тогда по теореме о рекурсии есть $f_x : \mathbb{N} \to Y$, что

$$f_x(n) = egin{cases} g_0(x) & ext{если } n = 0 \ h_x(m, f_x(m)) & ext{если } n = m+1 \end{cases}$$

Тогда определим $f: X \times \mathbb{N} \to Y, (x, n) \mapsto f_x(n)$. В этом случае

$$f(x,n) = f_x(n) = egin{cases} g_0(x) & \text{если } n = 0 \\ h_x(m,f_x(m)) & \text{если } n = m+1 \end{cases} = egin{cases} g_0(x) & \text{если } n = 0 \\ h(x,m,f(x,m)) & \text{если } n = m+1 \end{cases}$$

Замечание 6. Заметим, что с помощью ткоремы о параметризованной рекурсии можно определить сложение, умножение и возведение в степень на натуральных числах.

Определение 17. Несложно заметить, что функциональные отношения $R \subseteq X \times Y$ — функции из подмножества X в Y. Поэтому будем называть их *частичными функциями* и обозначать как $R : \subseteq X \to Y$.

Теорема 7 (о рекурсии, частичной). Пусть $y_0 \in Y$ и $h :\subseteq \mathbb{N} \times Y \to Y$. Тогда существует и единственна $f :\subseteq \mathbb{N} \to Y$, что

• ∂n любого $n \in \text{dom}(f)$,

$$f(n) = \begin{cases} y_0 & ecnu \ n = 0 \\ h(m, f(m)) & ecnu \ n = m + 1 \end{cases}$$

5

• либо $dom(f) = \mathbb{N}$, либо dom(f) = k+1 для некоторого $k \in \mathbb{N}$, что $(k, f(k)) \notin dom(h)$.

Доказательство. Зафиксируем некоторое ы $\notin Y$ и положим $Y' := Y \cup \{ \text{ы} \}$. Теперь расширим h до $h' : \mathbb{N} \times Y' \to Y'$ следующим образом:

$$h'(n,y') := egin{cases} h(n,y') & ext{если } (n,y') \in ext{dom}(h) \ & & ext{иначе} \end{cases}$$

В силу теоремы о рекурсии существует и единственна $f': \mathbb{N} \to Y'$ такая, что для любого $n \in \mathbb{N}$,

$$f'(n) = \begin{cases} y_0 & \text{если } n = 0 \\ h'(m, f'(m)) & \text{если } n = m + 1 \end{cases}$$

Возьмём $f := f' \cup (\mathbb{N} \times Y)$. Несложно убедиться, что f будет искомой.

Определение 18. Конечными последовательностями элементов X называются элементы множества $X^* := \{f \mid \exists n \in \mathbb{N} (f : n \to X)\}.$

Теорема 8 (о возвратной индукции). Пусть $h : \mathbb{N} \times Y^* \to Y$. Тогда существует единственная $f : \mathbb{N} \to Y$ такая, что для любого $n \in \mathbb{N}$, $f(n) = h(n, f \upharpoonright_n)$.

Доказательство. По аналогии с доказательством теоремы о рекурсии, однако вместообычной индукции тут используется возвратная. [...]

3 Мощности

Определение 19. X и Y *равномощны*, если существует биекция $f:X \to Y$. Обозначение: $X \sim Y$.

Теорема 9. Для всех X, Y u Z верно следующее:

- 1. $X \sim X$;
- 2. $X \sim Y \Leftrightarrow Y \sim X$:
- 3. $X \sim Y \sim Z \Rightarrow X \sim Z$.

 $\mathit{Пример}\ 1.\ \mathcal{P}(X) \sim 2^X.$ Действительно, рассмотрим для каждого $Y \subseteq X$ функцию $\chi_Y: X \to 2,$ что

$$\chi_Y(x) := \begin{cases} 1 & \text{если } x \in Y \\ 0 & \text{если } x \in X \setminus Y \end{cases}$$

Несложно заметить, что отображение, сопоставляющее Y функцию χ_Y есть биекция из $\mathcal{P}(x)$ в 2^X .

Определение 20. Множество X по мощности менее или равно Y ($X \leq Y$), если существует инъекция из X в Y.

Множество X по мощности (строго) менее Y ($X \prec Y$), если $X \preccurlyeq Y \land X \nsim Y$.

3амечание 7. Тогда очевидно, что $X \leq Y$ тогда и только тогда, когда X равномощно некоторому подмножеству Y.

Теорема 10.

1. $X \leq X$.

2.
$$X \sim Y \Rightarrow X \preccurlyeq Y$$
.

3.
$$X \preceq Y \sim Z \Rightarrow X \preceq Z$$
.

4.
$$X \sim Y \preceq Z \Rightarrow X \preceq Z$$
.

5.
$$X \preceq Y \preceq Z \Rightarrow X \preceq Z$$
.

Теорема 11 (Кантора, обобщённая). $X \prec \mathcal{P}(X)$.

Доказательство. Очевидно, что $f: X \to \mathcal{P}(X, x \mapsto \{x\})$ есть инъекция, поэтому $X \preccurlyeq \mathcal{P}(X)$. Покажем, что между ними нет биекции.

Предположим противное, т.е. есть биекция $f: X \to \mathcal{P}(X)$. Рассмотрим $Y:= \{x \in X \mid x \notin f(x)\}$. Поскольку f — биекция, то f(y) = Y для некоторого Y. В итоге мы получаем

$$y \in Y \iff y \notin f(Y) \iff y \notin Y$$

Получаем противоречие.

Теорема 12 (Кантора-Шрёдера-Бернштейна). Если $X \preccurlyeq Y$ и $Y \preccurlyeq X$, то $X \sim Y$.

Доказательство.

Лемма 12.1. Если $X \supset Y \supset X'$ и $X \sim X'$, то $X \sim Y \sim X'$.

Доказательство. Пусть $f: X \to X'$ — биекция. Определимм по рекурсии $\{X_i\}_{i=0}^{\infty}$ и $\{Y_i\}_{i=0}^{\infty}$:

$$X_n := egin{cases} X & ext{ если } n = 0 \ f[X_m] & ext{ если } n = m+1 \end{cases}$$
 $Y_n := egin{cases} Y & ext{ если } n = 0 \ f[Y_m] & ext{ если } n = m+1 \end{cases}$

По условию $X_0 = X \supseteq Y = Y_0$ и $Y_0 = Y \supseteq X' = f(X) = X_1$. Тогда несложно убедиться по индукции по n, что $X_n \supseteq Y_n \supseteq X_{n+1}$, так как $X_{n-1} \supseteq Y_{n-1} \supseteq X_n$, значит $f(X_{n-1}) \supseteq f(Y_{n-1}) \supseteq f(X_n)$, что буквально означает, что $X_n \supseteq Y_n \supseteq X_{n+1}$.

Тогда для каждого $n \in \mathbb{N}$ определим $U_n := X_n \setminus Y_n$. Пусть также $U := \bigcup_{n=0}^{\infty} U_n$, $Z := X \setminus U$. Несложно видеть, что

$$X = \bigcup_{n=0}^{\infty} U_n \cup Z \qquad Y = \bigcup_{n=1}^{\infty} U_n \cup Z$$

Также несложно видеть, что $f[U_n] = f[X_n \setminus Y_n] = f[X_n] \setminus f[Y_n] = X_{n+1} \setminus Y_{n+1} = U_{n+1}$, а потому $f[U] = U \setminus U_0$.

Тогда определим $g: X \to X$ по правилу

$$g(x) := egin{cases} f(x) & ext{если } x \in U \\ x & ext{если } x \in Z \end{cases}$$

Несложно видеть, что это инъекция. Действительно, g на U равна f, а значит есть бииекция из U в $U\setminus U_0$, также является биекцией из Z в себя, а поскольку U и Z дизъюнктны, то g является биекцией из $U\cup Z$ в $U\setminus U_0\cup Z$, т.е. из X в Y. Значит $Y\sim X$.

Пусть $f: X \to Y$ и $g: Y \to X$ — инъекции. Несложно видеть, что $g[Y] \subseteq X$, а $f[X] \subseteq Y$, значит $g[f[X]] \subseteq g[Y]$. Т.е. $X \supseteq g[Y] \supseteq g[f[X]]$. При этом $X \sim f[X] \sim g[f[X]]$, поэтому применяя лемму 12.1, имеем, что $X \sim g[Y] \sim Y$, значит $X \sim Y$.