CS M51A Logic Design of Digital Systems Winter 2021

Some slides borrowed and modified from:

M.D. Ercegovac, T. Lang and J. Moreno, Introduction to Digital Systems.

SEQUENTIAL SYSTEMS

DEFINITION

REPRESENTATION OF STATE-TRANSITION AND OUTPUT FUNCTIONS WITH STATE DIAGRAM

Simplified state diagram

What is the state diagram for this example?

Input: $x(t) \in \{a, b, c\}$

Output: $z(t) \in \{0, 1\}$

State: $s(t) \in \{S_0, S_1, S_2, S_3\}$

Initial state: $s(0) = S_0$

Functions: Transition and output functions:

PS	Input			
	a	b	c	
S_0	S_0	S_1	S_1	0
S_1	S_2	S_0	S_1	1
S_2	S_2	S_3	S_0	1
S_3	S_0	S_1	S_2	0
		NS		Output

• k-DISTINGUISHABLE STATES: DIFF. OUTPUT SEQUENCES

$$z(x(t, t+k-1), S_v) \neq z(x(t, t+k-1), S_w)$$

- k-EQUIVALENT STATES: NOT DISTINGUISHABLE FOR SEQUENCES OF LENGTH k
- P_k : PARTITION OF STATES INTO k-EQUIVALENT CLASSES

Input: $x(t) \in \{a, b, c\}$

Output: $z(t) \in \{0, 1\}$

State: $s(t) \in \{A, B, C, D, E, F\}$

Initial state: s(0) = A

Functions: TRANSITION AND OUTPUT

PS	x = a	x = b	x = c
\overline{A}	E,0	D, 1	B,0
B	F, 0	D, 0	A, 1
C	E, 0	B, 1	D, 0
D	F, 0	B, 0	C, 1
E	C, 0	F, 1	F, 0
F	B,0	C, 0	F, 1
		\overline{NS} , z	

Input: $x(t) \in \{a, b, c\}$

Output: $z(t) \in \{0, 1\}$

State: $s(t) \in \{A, B, C, D, E, F\}$

Initial state: s(0) = A

Functions: TRANSITION AND OUTPUT

PS	x = a	x = b	x = c
\overline{A}	E, 0	D, 1	B,0
B	F, 0	D, 0	A, 1
C	E, 0	B, 1	D, 0
D	F, 0	B, 0	C, 1
E	C, 0	F, 1	F, 0
F	B, 0	C, 0	F, 1
		NS, z	

A and B ARE 1-DISTINGUISHABLE BECAUSE

$$z(b, A) \neq z(b, B)$$

A and C ARE 1-EQUIVALENT BECAUSE

$$z(x(t), A) = z(x(t), C), \quad for \ all \ x(t) \in I$$

Input: $x(t) \in \{a, b, c\}$

Output: $z(t) \in \{0, 1\}$

State: $s(t) \in \{A, B, C, D, E, F\}$

Initial state: s(0) = A

Functions: TRANSITION AND OUTPUT

A and C ARE ALSO 2-EQUIVALENT BECAUSE

PS	x = a	x = b	x = c
\overline{A}	E, 0	D, 1	B,0
B	F, 0	D, 0	A, 1
C	E, 0	B, 1	D, 0
D	F, 0	B, 0	C, 1
E	C, 0	F, 1	F, 0
F	B, 0	C, 0	F, 1
		NS, z	

$$z(aa, A) = z(aa, C) = 00$$

 $z(ab, A) = z(ab, C) = 01$
 $z(ac, A) = z(ac, C) = 00$
 $z(ba, A) = z(ba, C) = 10$
 $z(bb, A) = z(bb, C) = 10$
 $z(bc, A) = z(bc, C) = 11$
 $z(ca, A) = z(ca, C) = 00$
 $z(cb, A) = z(cb, C) = 00$
 $z(cc, A) = z(cc, C) = 01$

Clicker Question

Which one is correct?

PS	x = a	x = b	x = c
\overline{A}	E,0	D, 1	B, 0
B	F, 0	D, 0	A, 1
C	E, 0	B, 1	D, 0
D	F, 0	B, 0	C, 1
E	C, 0	F, 1	F, 0
F	B, 0	C, 0	F, 1
		NS, z	

- a) E and F are 1-Distinguishable
- b) E and F are 1-Equivalent
- c) B and F are 1-Equivalent
- d) B and F are 2-Equivalent
- e) Both a, and c are correct

PS	x(t) = a	x(t) = b	x(t) = c
Α	0	1	0
В	0	0	1
C	0	1	0
D	0	0	1
Ε	0	1	0
F	0	0	1
		NS, z	

• 1-EQUIVALENT IF SAME "row pattern"

$$P_1 = (A, C, E) \quad (B, D, F)$$

- NUMBER THE CLASSES IN P_1
- ullet TWO STATES ARE IN THE SAME CLASS OF P_2 IF THEIR SUCCESSOR COLUMNS HAVE THE SAME NUMBERS

PS	x = a	x = b	x = c
\overline{A}	E,0	D, 1	B,0
B	F, 0	D, 0	A, 1
C	E, 0	B, 1	D, 0
D	F, 0	B, 0	C, 1
E	C, 0	F, 1	F, 0
F	B, 0	C, 0	F, 1
		NS, z	

		1			2	
P_1	(A,	C,	E)	(B,	D,	F)
	1			2	2	2
b	2	2	2	2	2	1
c	2	2	2	1	1	2

BY IDENTIFYING IDENTICAL COLUMNS OF SUCCESSORS, WE GET

$$P_2 = (A, C, E) (B, D) (F)$$

SAME PROCESS TO OBTAIN THE NEXT PARTITION:

PS	x = a	x = b	x = c
\overline{A}	E,0	D, 1	B,0
B	F, 0	D, 0	A, 1
C	E, 0	B, 1	D, 0
D	F, 0	B, 0	C, 1
E	C, 0	F, 1	F, 0
F	B, 0	C, 0	F, 1
		NS, z	

		1		2		3
P_2	(A,	C,	E)	(B,	D),	(<i>F</i>)
\overline{a}	1	1	1	3	3	
b	2	2	3	2	2	
c	2	2	3	1	1	

$$P_3 = (A, C) (E) (B, D) (F)$$

• SIMILARLY, WE DETERMINE $P_4 = (A, C) (E) (B, D) (F)$

BECAUSE $P_4 = P_3$ THIS IS ALSO THE EQUIVALENCE PARTITION P

THE MINIMAL SYSTEM:

PS	x = a	x = b	x = c
\overline{A}	E,0	D, 1	B, 0
B	F, 0	D, 0	A, 1
C	E, 0	B, 1	D, 0
D	F, 0	B, 0	C, 1
E	C, 0	F, 1	F, 0
F	B,0	C, 0	F, 1
		NS, z	

PS	x = a	x = b	x = c
\overline{A}	E,0	B, 1	B,0
B	F, 0	B, 0	A, 1
E	A, 0	F, 1	F, 0
F	B,0	A, 0	F, 1
		\overline{NS} , z	

PS	a	b	С
A	E , 0	B, 1	B , 0
В	F , 0	$\mathbf{B}, 0$	A, 1
E	$\mathbf{A}, 0$	F , 1	$\mathbf{F}, 0$
F	B , 0	$\mathbf{A}, 0$	F , 1
		NS, z	

What is the state diagram for this system?

Input code

x(t)	$x_1(t)x_0(t)$
a	00
b	01
\mathbf{c}	10

Output code

	z(t)
0	0
1	1

State assignment

)
s(t)	$s_1(t)s_0(t)$
A	00
B	01
E	10
F	11

Input code

<u>.</u>		
x(t)	$x_1(t)x_0(t)$	
a	00	
b	01	
c	10	

Output code

	z(t)
0	0
1	1

State assignment

s(t)	$s_1(t)s_0(t)$
A	00
B	01
E	10
F	11

PS	a	b	С
A	E , 0	B, 1	B , 0
В	F, 0	$\mathbf{B}, 0$	A, 1
E	$\mathbf{A}, 0$	F , 1	$\mathbf{F}, 0$
F	$\mathbf{B}, 0$	$\mathbf{A}, 0$	F , 1
		NS, z	

THE RESULTING BINARY SPECIFICATION:

$s_1(t)s_0(t)$	$x_1 x_0 = 00$	$x_1 x_0 = 01$	$x_1 x_0 = 10$
00	10,0	01, 1	01,0
01	11,0	01, 0	00, 1
10	00,0	11, 1	11,0
11	01,0	00, 0	11, 1
	$s_1(t)$	$+1)s_0(t+1)$	1), z

$s_1(t)s_0(t)$	$x_1 x_0 = 00$	$x_1 x_0 = 01$	$x_1 x_0 = 10$
00	10,0	01, 1	01,0
01	11,0	01, 0	00, 1
10	00,0	11, 1	11,0
11	01,0	00, 0	11, 1
	$s_1(t)$	$+1)s_0(t+1)$	1), z

What is the state diagram for this system?

Sequential System Implementation

State-transition function
$$s(t+1) = G(s(t), x(t))$$
 Output function $z(t) = H(s(t), x(t))$

MEALY AND MOORE MACHINES

Mealy machine

$$z(t) = H(s(t), x(t))$$

$$s(t+1) = G(s(t), x(t))$$

Moore machine

$$z(t) = H(s(t))$$

$$s(t+1) = G(s(t), x(t))$$

MEALY AND MOORE MACHINES

MEALY AND MOORE MACHINES

How to implement the state register?

SR Latch with NOR gates

• SR Latch with NOR gates

Functional Description of SR Latch

S	R	Q	\overline{Q}	
0	0	Q	\overline{Q}	Latch state (no change)
				Reset state
				Set state
1	1	?	?	Undefined

. .

Functional Description of SR Latch

• Advantages:

- Can "remember" value
- Natural "reset" and "set" signals
 (SR=01 is "reset" to 0, SR=10 is "set" to 1)

• Disadvantages:

- SR=11 input has to be avoided
- No notion of a clock or change at discrete points in time yet

The D Latch

CD Next state of Q

0 X No change

1 0
$$Q = 0$$
 (Reset)

1 1
$$|Q| = 1$$
 (Set)

Graphical example:

The D Flip-Flop

• We want state to be affected only at discrete points in time; a master-slave design achieves this.

• Graphical example:

D Flip-Flop

Clicker Question

Flipflops

Which of the following is a trace of *QI* and *QE* of a D-flipflop for the given D and Clock traces?

Clicker Question

Question on previous midterm:

How many bits can you store in one flipflop? Circle one.

1 2 4 8 16

A) 1

B) 2

C) 4

D) 8

E) 16