Method Description

General Information

Type of Entry (Academic, Practitioner, Researcher, Student)	Practitioner
First Name	Remo
Last Name	Fritschi
Country	Switzerland
Type of Affiliation (<i>University, Company-Organization, Individual</i>)	Individual
Affiliation	-

Team Members (if applicable):

to the transfer of the approximation.					
1 st Member					
First Name					
Last Name					
Country					
Affiliation					
2 nd Member					
First Name					
Last Name					
Country					
Affiliation					

Information about the method utilized

Name of Method	Out-sample validated ARIMA
Type of Method (Statistical, Machine Learning, Combination, Other)	Statistical
Short Description (up to 200 words)	Simulation of different ARIMA models up to max ARMA(10,10) and selection using Ljungbox statistics and ACF. For the statistical top 3 models plus models up to ARMA(4,4) an outsample simulation is calculated. The model with the smallest error (calculated with SMAPE and MASE) is selected as the final model.

Extended Description:

Main idea:

For each time series, I create a model table: (example series W1)

AR		MA		LB_out	LB_height	ACF_in	ACF_mean	cv_mse	cv_smape	cv_mase
	10		2	1	0,9780404	0,8181818	-0,0294579	0,0003584	1,7525374	1,0796457
	3		9	1	0,9458985	0,8484848	-0,0285917	0,0003613	1,7512703	1,095053
	2		10	1	0,9977312	0,7878788	-0,0272689	0,0003893	1,7356896	1,1063391
	4		1	0,6923077	0,6223803	0,7878788	-0,0352829	0,0003539	1,8381223	1,091733
	4		2	0,6923077	0,6443045	0,7575758	-0,0349566	0,0003537	1,8051984	1,0838248
	4		3	0,6923077	0,6438413	0,7575758	-0,0350152	0,0003538	1,805284	1,0839271
	1		4	0,5384615	0,2968972	0,7575758	-0,0407692	0,0003457	1,8573543	1,083296
	2		4	0,5384615	0,3698392	0,6969697	-0,0389164	0,0003546	1,8687037	1,0924669
	3		4	0,5384615	0,3902882	0,6969697	-0,0382141	0,0003545	1,8684607	1,0957512
	4		4	0.6923077	0.678667	0.7575758	-0.0345563	0.0003543	1.8060596	1.0843517

The final model for the prediction in this case is the ARMA(10,2)

How to get this table:

- 1. Simulate models from ARMA(1,1) up to ARMA(10,10)
- 2. Calculate the statistical values (yellow)
 - a. LB out: Ljungbox-Values over 0.05 (share)
 - b. LB height: mean of Ljungbox-Values
 - c. ACF in: ACF-Values inside 0.05 (share)
 - d. ACF mean: calculate the mean of the ACF
- 3. With the values in section 2, I take to sum. This gives me the best statistical model I believe.
- 4. A former teacher said, ARMA models up to 4,4 are good enough. So, I include also this models.
- 5. "Crossvalidation": I do an out-sample validation. Meaning, how well would the model have performed in the past.
- 6. For the Error-Functions, I take your functions: smape and mase.
- 7. Finally, the Model with the lowest error wins.

Each time series was calculated parallel. I used the google cloud platform with an 8-core processor. Each series calculation writes a file with the prediction, a log file and and the table you have seen before.

Program-Files:

parallel.R – The actuall Run-File where you have to specify the paths and you will find a parameter-cockpit

functions.R – all the functions, which are run in parallel createSubmission.R – takes all the output-files and creates a submission.csv