Normalizzazione Forte per il Sistema F

Alessio Marchetti

Definizione 0.1 Un termine t si dice neutrale se è in una delle seguenti forme: x, vu o vU, in cui x è una variabile, v e u sonod termini e U è un tipo.

Definizione 0.2 Un candidato di riducibilità (o semplicemente candidato) di tipo U è un insieme \mathcal{R} di termini di tipo U per cui valgono:

- (CR1) Se $t \in \mathcal{R}$ allora t è fortemente normalizzabile.
- (CR2) Se $t \in \mathcal{R}$ e t' è un termine ottenuto da una riduzione di t, cioè $t \rightsquigarrow t'$, allora $t' \in \mathcal{R}$.
- (CR3) Se t è neutrale, e per ogni conversione di uno step di t si ottiene un termine $t' \in \mathcal{R}$, allora anche $t \in \mathcal{R}$.

Definizione 0.3 Dato un termine t, si definisce $\nu(t)$ come la massimo numero di step di conversione necessari a portare t in forma normale. In particolare $\nu(t) = \infty$ se e solo se t non è fortemente normalizzabile.

Definizione 0.4 Se \mathcal{R} e \mathcal{S} sono insiemi di termini di tipo rispettivamente U e V, si definisce l'insieme $\mathcal{R} \to \mathcal{S}$ come l'insieme dei termini di tipo $U \to V$ per cui per ogni termine $u \in \mathcal{R}$ si ha che $tu \in \mathcal{S}$.

Lemma 0.5 Se \mathcal{R} e \mathcal{S} sono candidati per i tipi U e V, allora $\mathcal{R} \to \mathcal{S}$ è candidato di tipo $U \to V$.

Dimostrazione. Per mostrare (CR1) prendiamo $t \in \mathcal{R} \to \mathcal{S}$ e una variabile x di tipo U. Poiché le variabili sono sia normali che che neutrali, $x \in \mathcal{R}$ e quindi $tx \in \mathcal{S}$. Inoltre $\nu(t) < \nu(tx)$, e quindi siccome tx è fortemente normalizzabile, anche t lo è.

Per (CR2),se $t \rightsquigarrow t'$, per ogni $u \in \mathcal{R}$ si ha che $tu \rightsquigarrow t'u$. Usando la (CR2) su \mathcal{S} , si ottiene che $t'u \in \mathcal{S}$. Allora $t'\mathcal{R} \to \mathcal{S}$.

Infine consideriamo t neutrale di tipo $U \to V$ per cui per tutte le conversioni di uno step $t \leadsto t'$ si ha che $t' \in \mathcal{R} \to \mathcal{S}$. Sia $u \in \mathcal{R}$, e per induzione su $\nu(u)$ dimostriamo che tu si riduce in uno step a termini in \mathcal{S} . Infatti poiché t è normale, tu si può ridurre solo a t'u o a tu' per opportuni termini t' e u'. Ma il primo appartiene a \mathcal{S} perchè $t' \in \mathcal{R} \to \mathcal{S}$, e il secondo ci appartiene per ipotesi induttiva in quanto $\nu(u') < \nu(u)$. Per (CR3) su \mathcal{S} allora $tu \in \mathcal{S}$. \square

Definizione 0.6 Sia $T[\underline{X}]$ un tipo con variabili libere in \underline{X} . Sia \underline{U} un vettore di tipi della stessa lunghezza e siano \mathcal{R} dei rispettivi candidati. Possiamo allora definire l'insieme $\text{RED}_T[\underline{\mathcal{R}}/\underline{X}]$ di termini riducibili parametrici di tipo $T[\underline{U}/\underline{X}]$ nel modo seguente:

- (1) Se $T = X_i$ per qualche indice i, allora $\text{RED}_T[\underline{\mathcal{R}}/\underline{X}] = \mathcal{R}_i$.
- (2) Se $T = V \to U$, allora $\text{RED}_T[\underline{\mathcal{R}}/\underline{X}] = \text{RED}_V[\underline{\mathcal{R}}/\underline{X}] \to \text{RED}_W[\underline{\mathcal{R}}/\underline{X}]$.
- (3) Se $T = \Pi Y.W$, allora $\text{RED}_T[\underline{\mathcal{R}}/\underline{X}]$ è l'insieme dei termini t di tipo $[\underline{U}/\underline{X}]$ tali che per ogni tipo V e per ogni candidato \mathcal{S} di tale tipo vale che $tV \in \text{RED}_W[\underline{\mathcal{R}}/\underline{X}][\mathcal{S}/Y]$.

Lemma 0.7 RED_T[$\underline{\mathcal{R}}/\underline{X}$] è un candidato di riducibilità di tipo $T[\underline{U}/\underline{X}]$.

Dimostrazione. Lo facciamo per induzione sulla complessità del tipo T. Il caso in cui T è una variabile individuale, il teorema è una tautologia. Il caso in cui $T=V\to W$ lo abbiamo già fatto. Manca solo il caso in cui $T=\Pi Y.W.$

Verifichiamo (CR1). Sia $t \in \text{RED}_T[\underline{\mathcal{R}}/\underline{X}]$, V un tipo e \mathcal{S} un suo candidato. Allora $tV \in \text{RED}_W[\underline{\mathcal{R}}/\underline{X}][\mathcal{S}/Y]$ per definizione. Usando l'ipotesi induttiva sul tipo W si ha che tV è fortemente normalizzabile. Ma vale anche che $\nu(t) < \nu(tV)$. Quindi anche t è fortemente normalizzabile.

Per (CR2), supponiamo di avere $t \rightsquigarrow t'$ con uno step di conversione. Allora, $tV \rightsquigarrow t'V$, per cui $t'V \in \text{RED}_W[\underline{\mathcal{R}}/\underline{X}][\mathcal{S}/Y]$ e quindi $t' \in \text{RED}_T[\underline{\mathcal{R}}/\underline{X}]$.

Infine, per (CR3), consideriamo t un qualunque termine di tipo T neutrale. Supponiamo che per ogni t' ottenuto dalla conversione di t in un singolo step si abbia t' riducibile parametrico. Allora per ogni tipo V e relativo condidato S, le uniche conversioni di tV sono della forma $tV \leadsto t'V$. Usando l'ipotesi induttiva allora anche tV è riducibile parametrico, e quindi si ha la tesi.

Lemmma 0.8 Sia T un tipo con variabili libere $Y \in \underline{X} \in V$ un tipo. Siano $\underline{\mathcal{R}}$ candidati per \underline{X} . Allora vale che $\text{RED}_{T[V/Y]}[\underline{\mathcal{R}}/\underline{X}] = \text{RED}_T[\underline{\mathcal{R}}/\underline{X}][\text{RED}_V[\underline{\mathcal{R}}/\underline{X}]/Y]$.

Dimostrazione. Come prima, facciamo un'induzione sulla complessità del tipo T. Per comodità, usiamo l'abbreviazione $A = \text{RED}_V[\mathcal{R}/X]$.

Iniziamo con il caso in cui T=Z è una variabile individuale diversa da Y. Allora vale che

$$RED_{T[V/Y]}[\underline{\mathcal{R}}/\underline{X}] = RED_{Z}[\underline{\mathcal{R}}/\underline{X}] = RED_{Z}[\underline{\mathcal{R}}/\underline{X}][A/Y].$$

Se invece T = Y si ha che

$$RED_{T[V/Y]}[\underline{\mathcal{R}}/\underline{X}] = RED_{V}[\underline{\mathcal{R}}/\underline{X}] = RED_{Y}[\underline{\mathcal{R}}/\underline{X}][[V/[\underline{\mathcal{R}}/\underline{X}]]/Y].$$

Consideriamo ora il caso in cui $T = U \rightarrow W$. Vale che

$$\begin{aligned} \operatorname{RED}_{T[V/Y]}[\underline{\mathcal{R}}/\underline{X}] = & \operatorname{RED}_{U[V/Y] \to W[V/Y]}[\underline{\mathcal{R}}/\underline{X}] = \\ & \operatorname{RED}_{U[V/Y]}[\underline{\mathcal{R}}/\underline{X}] \to \operatorname{RED}_{W[V/Y]}[\underline{\mathcal{R}}/\underline{X}] = \\ & \operatorname{RED}_{U}[\underline{\mathcal{R}}/\underline{X}][A/Y] \to \operatorname{RED}_{W}[\underline{\mathcal{R}}/\underline{X}][A/Y] = \\ & \operatorname{RED}_{U \to W}[\underline{\mathcal{R}}/\underline{X}][A/Y]. \end{aligned}$$

Sia Z come prima e svolgiamo il caso $T=\Pi Z.W$. Per definizione, $\text{RED}_{\Pi Z.W[V/Y]}[\underline{\mathcal{R}}/\underline{X}]$ è l'insieme di tutti i termini t per cui per ogni tipo U e relativo candidato $\mathcal S$ vale che

$$tU \in \text{RED}_{W[V/Y]}[\underline{\mathcal{R}}/\underline{X}][\mathcal{S}/Z] = \text{RED}_{W}[\underline{\mathcal{R}}/\underline{X}][\mathcal{S}/Z][A/Y].$$

Dunque si ottiene la tesi per la definizione di $RED_{\Pi Z,W}$.

Infine il caso in cui $T=\Pi Y.W$ è semplice perchè Y non occorre libera in T.

Lemma 0.9 Se per ogni tipo V e per ogni candidato di riducibilità \mathcal{S} per V vale che $w[V/Y] \in \text{RED}_W[\underline{\mathcal{R}}/\underline{X}][\mathcal{S}/Y]$, allora $\Lambda Y.w \in \text{RED}_{\Pi Y.W}[\underline{\mathcal{R}}/\underline{X}]$.

Dimostrazione. Dimostriamo per induzione su $\nu(w)$ che tutte le conversioni in uno step di $(\Lambda Y.w)V$ sono in $\text{RED}_W[\underline{\mathcal{R}}/\underline{X}][\mathcal{S}/Y]$. Una conversione di tali conversioni possono essere soltanto di due forme. La prima è $(\Lambda Y.w')V$, con w' una conversione di w. Ma allora $\nu(w') < \nu(w)$ e si usa l'ipotesi induttiva. La seconda forma è del tipo w[V/Y], e questa è riducibile parametrico per ipotesi del lemma.

Allora la dimstrazione si conclude per (CR3).

Lemma 0.10 Se $t \in \text{RED}_{\Pi Y.W}[\underline{\mathcal{R}}/\underline{X}]$, allora $tV \in \text{RED}_{W[V/Y]}[\underline{\mathcal{R}}/\underline{X}]$ per ogni tipo V.

Dimostrazione. Per la definizione di $\operatorname{RED}_{\Pi Y.W}$, per ogni candidato \mathcal{S} per V vale che $tV \in \operatorname{RED}_W[\underline{\mathcal{R}}/\underline{X}][\mathcal{S}/Y]$. Allora vale anche per $\mathcal{S} = \operatorname{RED}_V[\underline{\mathcal{R}}/\underline{X}]$ e la tesi segue per il lemma XXX.

Lemma 0.11 Se per ogni $u \in \text{RED}_U[\underline{\mathcal{R}}/\underline{X}]$ vale che $v[u/x] \in \text{RED}_V[\underline{\mathcal{R}}/\underline{X}]$, allora $\lambda x^U \cdot v \in \text{RED}_{U \to V}[\underline{\mathcal{R}}/\underline{X}]$.

Dimostrazione. Dimostriamo per induzione su $\nu(u)+\nu(v)$ che tutte le conversioni di $(\lambda x^U.v)u$ sono riducibili parametrici. Infatti tale termine si converte in $(\lambda x^U.v)u'$, con u' conversione di u, oppure in $(\lambda x^U.v')u$ con v' conversione di v, oppure in v[u/x]. I primi due casi si risolvono con l'ipotesi induttiva, il terzo con l'ipotesi del lemma.

Infine il teorema si dimostra per la proprietà (CR3).

Definizione 0.12 Un termine t di tipo T è riducibile se è in $\text{RED}_T[\underline{\mathcal{SN}}/\underline{X}]$ dove X_1, \ldots, X_m sono le variabili libere di T e $\underline{\mathcal{SN}}_i$ è l'insieme dei termini fortemente normalizzabili di tipo X_i .

Proposizione 0.13 Sia t un termine di tipo T le cui variabili libere sono x_1, \ldots, x_n di tipo rispettivamente U_1, \ldots, U_n . Supponiamo che le variabili libere dei tipi T e di tutti gli U_i siano X_1, \ldots, X_m . Siano $\mathcal{R}_1, \ldots, \mathcal{R}_m$ candidati di riducibilità per dei tipi V_1, \ldots, V_m e siano inoltre u_1, \ldots, u_n termini di tipo $U_1[\underline{V}/\underline{X}], \ldots U_n[\underline{V}/\underline{X}]$ presi nei rispettivi $\text{RED}_{U_i}[\underline{\mathcal{R}}/\underline{X}]$. Allora $t[\underline{V}/\underline{X}][\underline{u}/\underline{x}] \in \text{RED}_T[\underline{\mathcal{R}}/\underline{X}]$.

Dimostrazione. Per induzione sulla complessità di t. Distinguiamo allora i seguenti casi:

- (i) $t = x_i$. Questo caso è una tautologia.
- (ii) t = wv, con w di tipo $W \to T$ e v di tipo W. Per ipostesi induttiva vale che $w[\underline{V}/\underline{X}][\underline{u}/\underline{x}] \in \text{RED}_{W\to T}[\underline{\mathcal{R}}/\underline{X}]$ e che $v[\underline{V}/\underline{X}][\underline{u}/\underline{x}] \in \text{RED}_W[\underline{\mathcal{R}}/X]$. In questo caso la tesi segue dalla definizione di $\text{RED}_{W\to T}$.
- (iii) t = wS. Questo caso è una diretta conseguenza del lemma XXX sull'istanziazione.

- (iv) $t = \Lambda Z.Y$. Questo discende dal lemma XXX sulla generalizzazione.
- (v) $t = \lambda y^P \cdot w$. Questo caso si fa con il lemma XXX sui tipi freccia.

Proposizione 0.14 Tutti i termini del sistema F sono riducibili.

4

Dimostrazione. Basta usare la proposizione precedente e prendere $\mathcal{R}_i = \mathcal{SN}_i$ e $u_i = x_i$.