Cinematica Relativistica

Pietro Garofalo

April 4, 2022

Contents

1	Le trasformazioni di Lorentz	3
	1.1 Trasformazione delle coordinate	. 4
	1.2 Trasformazione delle velocità	. 5
2	Il quadrivettore energia-impulso	7

Mettere icona GitHub Relatività Ristretta

Chapter 1

Le trasformazioni di Lorentz

In relatività le trasformazioni di Galileo sono sostituite dalle trasformazioni di Lorentz, prima di vederle nel dettaglio bisogna ricordarsi che le grandezze che ci interessano non sono più i semplici vettori ma i **quadrivettori contravarianti** che definiamo nel seguente modo:

$$\mathbf{X}^{\mu} = \begin{pmatrix} ct \\ \vec{\mathbf{x}} \end{pmatrix}$$

Tale notazione evidenzia come i quadrivettori siano divisi in una parte temporale (la prima componente) e componenti spaziali (vettore tridimensionale), tali quaterne di valori trasformano, nel passaggio da un sistema di riferimento ad un altro, tramite le trasformazioni di Lorentz.

La metrica dei quadrivettori non è la metrica Euclidea bensì quella di **Minkowski**, se definiamo infatti due quadrivettori

$$\mathbf{A}^{\mu} = \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} \; \mathbf{B}^{\mu} = \begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

Allora il prodotto fra i due si definisce come :

$$\mathbf{A}^{\mu} \cdot \mathbf{B}_{\mu} = a_0 b_0 - a_1 b_1 - a_2 b_2 - a_3 b_3$$

dove \mathbf{B}_{μ} non è altro che il **quadrivettore covariante** ossia il quadrivettore contravariante ma con il segno della parte spaziale opposto .

D'ora in avanti indicheremo $\mathbf{X} \equiv \mathbf{X}^{\mu}$.

1.1 Trasformazione delle coordinate

Supponiamo di avere un sistema di riferimento \mathbb{O} fermo (sistema del laboratorio) e un sistema \mathbb{O}' in movimento con velocità V come in figura.

Figure 1.1: Sistemi di riferimento

Indichiamo con \mathbf{X} il quadrivettore posizione del punto \mathbf{P} rispetto a \mathbb{O} e \mathbf{X}' rispetto a \mathbb{O}' , le coordinate di \mathbf{X}' si trovano rispetto alle coordinate misurate in \mathbb{O}' nel seguente modo :

$$\mathbf{X}' = \mathbf{\Lambda}^{\mu}_{\nu} \mathbf{X}$$

dove Λ^{μ}_{ν} rappresenta la matrice della trasformazione di Lorentz lungo asse x data da :

$$\mathbf{\Lambda}^{\mu}_{\nu} = \begin{pmatrix} \gamma & -\gamma\beta & 0 & 0 \\ -\gamma\beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad \beta = \frac{V}{c} \quad \gamma = \frac{1}{\sqrt{1-\beta^2}}$$

si ottiene quindi il seguente sistema :

$$\begin{cases} ct' = \gamma(ct - \beta x) \\ x' = \gamma(x - ct\beta) \\ y' = y \\ z' = z \end{cases}$$

ATTENZIONE!

Se il cambio di sistema di riferimento si fa dal sistema in moto al sistema di riferimento del laboratorio allora β cambia di segno

Mettere icona GitHub Relatività Ristretta

1.2 Trasformazione delle velocità

Per capire bene le trasformazioni delle velocità conviene vedere un esercizio.

Esercizio

Un uomo in automobile viaggia ad una velocità di $\frac{3}{4}c$, viene inseguito da un'altra automobile che va alla velocità di $\frac{1}{2}c$ la quale spara un proiettile che va alla velocità di $\frac{1}{3}c$. Il proiettile raggiunge l'auto?

Soluzione

La questione è tutta basata sulle trasformazioni delle velocità in relatività, le troveremo tramite le trasformazioni di Lorentz viste prima, un commento prima di trovarle :

ATTENZIONE!

Bisogna capire bene i sistemi di riferimento, nel nostro caso stiamo osservando le macchine che corrono, noi siamo il laboratorio (sistema fermo) il problema è che la velocità del proiettile è calcolata nel sistema di riferimento in moto (ossia la macchina che spara), il gioco è tutto quì : trasformare la velocità del proiettile dal sistema di riferimento in moto a quello del laboratorio .

Partiamo dalla trasformazione di Lorentz per la posizione, come al solito identifichiamo con x' le coordinate del sistema di riferimento in moto :

$$\begin{cases} ct = \gamma(ct' + \beta x') \\ x = \gamma(x' + ct\beta) \\ y = y' \\ z = z' \end{cases}$$

Notare come c'è il cambio di segno dovuto al fatto che passiamo da sistema in moto a quello del laboratorio.

Passiamo ora agli infinitesimi:

$$\begin{cases} c dt = \gamma c dt' + \beta \gamma dx' \\ dx = \gamma dx' + c\gamma \beta dt' \\ dy = dy' \\ dz = dz' \end{cases}$$

Dividiamo ora ciascuna componente per dt la cui espressione l'abbiamo ricavata sopra, dividiamo poi numeratore e denominatore per dt', sostiuiamo $\frac{\mathrm{d}x'}{\mathrm{d}t'} \equiv \mathrm{d}v'_x$ eccetera, inoltre $\beta \equiv \frac{V}{c}$ dove V è la velocità del proiettile nel sistema in moto, si ottiene :

Mettere icona GitHub

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} \equiv v_x &= \frac{\gamma v_x' + \gamma V}{\gamma (c + \frac{V}{c} v_x')} \\ \frac{\mathrm{d}y}{\mathrm{d}t} \equiv v_y &= \frac{v_y'}{\gamma (c + \frac{V}{c} v_x')} \\ \frac{\mathrm{d}z}{\mathrm{d}t} \equiv v_z &= \frac{v'}{\gamma (c + \frac{V}{c} v_x')} \end{cases}$$

Abbiamo così ottenuto le trasformazioni delle velocità :

ATTENZIONE!

$$\begin{cases} v_x = \frac{V + v_x'}{c + \frac{V}{c^2}v_x'/} \\ v_y = \frac{v_y'}{\gamma(c + \frac{V}{c}v_x')} \\ v_z = \frac{v'}{\gamma(c + \frac{V}{c}v_x')} \end{cases}$$

Ricorda sempre che stiamo passando dal moto al fermo !!!!!

Mettere icona GitHub Relatività Ristretta

Chapter 2

Il quadrivettore energia-impulso

In meccanica relativistica non esiste il semplice vettore impulso ma esiste il vettore **quadrimpulso**, che ha come componenti energia e impulso e lo definiamo come :

$$\mathbf{P} \equiv p^{\mu} = \left(\frac{E}{c}, \vec{\mathbf{p}}\right)$$