CHAPTER 3 数学特征与特征函数

ZEYU XIE¹

[1]

1. 数学期望

1.1. 定义.

Definition 1 (离散型随机变量的数学期望). 设离散型随机变量 ξ 的概率分布为 $p_i = P\{\xi = x_i\}, i = 1, 2, ..., 若 <math>\sum_i |x_i| p_i < +\infty$, 则称

(1)
$$E(\xi) = \sum_{i} x_i p_i$$

为随机变量 ξ 的数学期望。

Definition 2 (连续型随机变量的数学期望). 设连续型随机变量 ξ 的概率密度为 p(x),若 $\int_{-\infty}^{+\infty} |x| p(x) dx < +\infty$,则称

(2)
$$E(\xi) = \int_{-\infty}^{+\infty} x p(x) dx$$

为随机变量 ξ 的数学期望。

Definition 3 (数学期望的统一写法). 设 ξ 为随机变量,则定义

(3)
$$E(\xi) = \int_{-\infty}^{+\infty} x dF(x)$$

为随机变量 ξ 的数学期望。

1.2. 基本性质.

Proposition 1 (数学期望的性质). 设 ξ, η 为随机变量,且都有有限的数学期望,则有

- (a) E(c) = c
- (b) $E(c\xi) = cE(\xi)$
- (c) $E(\xi + \eta) = E(\xi) + E(\eta)$
- (d) 若 $\xi \ge 0$,则 $E(\xi) \ge 0$
- (e) 若 $\xi \geq \eta$,则 $E(\xi) \geq E(\eta)$

E-mail address: xie.zeyu20@gmail.com.

Date: 2024 年 4 月 16 日.

¹ Department of Mathematics, Tsinghua University, Beijing, China.

Proposition 2 (Borel 函数下的数学期望). 设 ξ 为随机变量, f(x) 为 Borel 函数,则有

(4)
$$E[f(\xi)] = \int_{-\infty}^{+\infty} f(x)dF(x)$$

此性质在多元随机变量的情况下也成立:设随机变量 $(\xi_1, \xi_2, \dots, \xi_n)$ 有联合分布 函数 $F(x_1, x_2, \dots, x_n)$, f 为 n 元 Borel 函数,则有

(5)
$$E[f(\xi_1, \xi_2, \dots, \xi_n)] = \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} f(x_1, x_2, \dots, x_n) dF(x_1, x_2, \dots, x_n)$$

注:以上性质说明,可直接用 $(\xi_1, \xi_2, \dots, \xi_n)$ 的联合分布计算 $\eta = f(\xi_1, \xi_2, \dots, \xi_n)$ 的数学期望,而不必先求出 η 的分布。

1.3. 独立随机变量的性质.

Proposition 3 (独立随机变量数学期望的性质). 设 ξ , η 为独立随机变量, 且 ξ 与 η 均可积,则乘积 $\xi\eta$ 也可积,且有

(6)
$$E(\xi \eta) = E(\xi)E(\eta)$$

Proposition 4 (独立随机变量数学期望的等价条件). 概率空间 (Ω, \mathcal{F}, P) 中的随机变量 ξ, η 独立的充要条件是: 对任意使得 $f(\xi)$ 和 $g(\eta)$ 可积的 Borel 函数 f, g, η

(7)
$$E[f(\xi)g(\eta)] = E[f(\xi)]E[g(\eta)]$$

1.4. 极限性质. 我们考虑

(8)
$$\lim_{n \to \infty} E(\xi_n) = E(\lim_{n \to \infty} \xi_n)$$

成立的条件。

Proposition 5 (单调收敛定理). 设随机变量序列 $\{\xi_n\}$ 满足条件

(9)
$$0 \le \xi_1(\omega) \le \xi_2(\omega) \le \dots \le \xi_n(\omega) \uparrow \xi(\omega), \quad \forall \omega \in \Omega$$

则 8 成立。

Proposition 6 (Fatou 引理). 设 $\{\xi_n\}$ 是一随机变量序列

(a) 若存在可积随机变量 σ , 使得 $\xi_n \geq \sigma$, 则有

(10)
$$E(\lim_{n\to\infty}\inf \xi_n) \le \lim_{n\to\infty}\inf E(\xi_n)$$

(b) 若存在可积随机变量 τ , 使得 $\xi_n < \tau$, 则有

(11)
$$E(\lim_{n \to \infty} \sup \xi_n) \ge \lim_{n \to \infty} \sup E(\xi_n)$$

Proposition 7 (Lebesgue 控制收敛定理). 设 $\{\xi_n\}$ 是一随机变量序列,若存在可积随机变量 η 使得 $|\xi_n| \leq \eta$,且 $\lim_{n \to \infty} \xi_n = \xi$,则 θ 成立,即

(12)
$$\lim_{n \to \infty} E(\xi_n) = E(\xi)$$

1.5. 常见分布的期望.

Proposition 8 (Bernoulli 分布的数学期望). 设随机变量 ξ 服从参数为 p 的 Bernoulli 分布,则有

$$(13) E(\xi) = p$$

Proposition 9 (二项分布的数学期望). 设随机变量 ξ 服从参数为 (n,p) 的二项分布,则有

(14)
$$E(\xi) = np$$

Proposition 10 (Possion 分布的数学期望). 设随机变量 ξ 服从参数为 λ 的 *Possion* 分布,则有

(15)
$$E(\xi) = \lambda$$

证明:直接计算

Proposition 11 (几何分布的数学期望). 设随机变量 ξ 服从参数为 p 的几何分布,则有

(16)
$$E(\xi) = \frac{1}{p}$$

Proposition 12 (均匀分布的数学期望). 设随机变量 ξ 服从参数为 (a,b) 的均匀分布,则有

(17)
$$E(\xi) = \frac{a+b}{2}$$

Proposition 13 (正态分布的数学期望). 设随机变量 ξ 服从参数为 (μ, σ^2) 的正态分布,则有

$$(18) E(\xi) = \mu$$

Proposition 14 (χ^2 分布的数学期望). 设随机变量 ξ 服从参数为 n 的 χ^2 分布,则有

$$(19) E(\xi) = n$$

Proposition 15 (Cauchy 分布的数学期望). 设随机变量 ξ 有密度函数

(20)
$$p(x) = \frac{1}{\pi(1+x^2)}$$

注意到

(21)
$$\int_{-\infty}^{+\infty} |x| p(x) dx = \int_{-\infty}^{+\infty} \frac{|x|}{\pi (1+x^2)} dx = +\infty$$

故 Cauchy 分布的数学期望不存在。

注: 常见的分布中, 数学期望不存在的仅有 Cauchy 分布。

1.6. 两个引理.

Proposition 16. $E(\xi^2) = 0$ 的充分必要条件为 $\xi = 0$ a.s.

Proposition 17 (Cauchy-Schwarz 不等式). 设 $\xi, \eta \in L^2$, 则

(22)
$$[E(\xi \eta)]^2 \le E(\xi^2) E(\eta^2)$$

2. 方差

Definition 4 (方差). 随机变量 $\xi \in L^2$ 的数学期望为 $E(\xi)$, 则称

(23)
$$D(\xi) = E[(\xi - E(\xi))^2]$$

为随机变量 ξ 的方差。

Definition 5 (标准差). 随机变量 $\xi \in L^2$ 的方差为 $D(\xi)$, 则称

(24)
$$\sigma(\xi) = \sqrt{D(\xi)}$$

为随机变量 ξ 的标准差。

Proposition 18 (方差的基本性质). 设 $\xi \in L^2$, c 为常数,则有

- (a) $D(\xi) \ge 0$,等号成立当且仅当 $\xi = E(\xi)$ a.s.
- (b) $D(c\xi) = E(\xi^2) [E(\xi)]^2$
- (c) $D(c\xi) = c^2 D(\xi)$
- (d) $f(c) = E(\xi c)^2$ 在 $c = E(\xi)$ 处取得最小值 $D(\xi)$

Example 1: 求 Possion 分布的方差

Solution 1: 设随机变量 ξ 服从参数为 λ 的 Possion 分布 $P(\lambda)$,则有

(25)
$$E(\xi) = \lambda, \quad E(\xi^2) = \lambda^2 + \lambda$$

故 Possion 分布的方差为

(26)
$$D(\xi) = E(\xi^2) - [E(\xi)]^2 = \lambda$$

Proposition 19 (常见分布的方差). (a) Possion 分布: 设 $\xi \sim P(\lambda)$, 则 $D(\xi) = \lambda$

- (b) 正态分布:设 $\xi \sim N(\mu, \sigma^2)$,则 $D(\xi) = \sigma^2$
- (c) χ^2 分布: 设 $\xi \sim \chi^2(n)$, 则 $D(\xi) = 2n$
- (d) Cauchy 分布: 方差不存在 (因为数学期望不存在)
- (e) 二项分布: 设 $\xi \sim B(n,p)$, 则 $D(\xi) = np(1-p)$

Definition 6 (标准化随机变量). 设随机变量 ξ 的数学期望为 $E(\xi)$, 方差为 $D(\xi)$, 若 $D(\xi) > 0$, 即 ξ 不为常数,则称

(27)
$$\xi^* = \frac{\xi - E(\xi)}{\sqrt{D(\xi)}}$$

为随机变量 ξ 的标准化随机变量。 ξ^* 具有以下性质:

- (a) $E(\xi^*) = 0$
- (b) $D(\xi^*) = 1$

3. 协方差阵

Definition 7 (协方差). 设随机变量 $\xi, \eta \in L^2$, 则称

(28)
$$cov(\xi, \eta) = E[(\xi - E(\xi))(\eta - E(\eta))]$$

为随机变量 ξ, η 的协方差,协方差反映了 ξ, η 之间的相依程度,是一个有单位的量。

Definition 8 (协方差阵). 设随机向量 $(\xi_1, \xi_2, \dots, \xi_n)$, 则称

(29)
$$B = [b_{ij}] = \begin{pmatrix} cov(\xi_1, \xi_1) & cov(\xi_1, \xi_2) & \cdots & cov(\xi_1, \xi_n) \\ cov(\xi_2, \xi_1) & cov(\xi_2, \xi_2) & \cdots & cov(\xi_2, \xi_n) \\ \vdots & \vdots & \ddots & \vdots \\ cov(\xi_n, \xi_1) & cov(\xi_n, \xi_2) & \cdots & cov(\xi_n, \xi_n) \end{pmatrix}$$

为随机向量 $(\xi_1, \xi_2, \dots, \xi_n)$ 的协方差阵。

Proposition 20 (协方差阵的性质). 设随机向量 $(\xi_1, \xi_2, \dots, \xi_n)$, 则协方差阵 B 具有以下性质:

- (a) $cov(\xi_i, \xi_j) = E(\xi_i \xi_j) E(\xi_i) E(\xi_j)$
- (b) B 为对称半正定阵
- (c) $D(\xi_i + \xi_j) = D(\xi_i) + D(\xi_j) + 2cov(\xi_i, \xi_j)$

Proposition 21 (二维正态分布的协方差阵). 设二维随机向量 (ξ, η) 服从参数为 $(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$ 的二维正态分布,则有

(30)
$$B = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}$$

4. 相关系数

Definition 9 (相关系数). 设随机变量 $\xi, \eta \in L^2$, 则称

(31)
$$\rho(\xi,\eta) = \frac{cov(\xi,\eta)}{\sqrt{D(\xi)}\sqrt{D(\eta)}} = E\left[\frac{\xi - E(\xi)}{\sqrt{D(\xi)}} \cdot \frac{\eta - E(\eta)}{\sqrt{D(\eta)}}\right]$$

为随机变量 ξ, η 的相关系数,相关系数是一个无单位的量。 当 $\rho(\xi, \eta) = 0$ 时,称 ξ, η 不相关。

Proposition 22 (相关系数的范围). 对空间 L^2 中的非退化随机变量 ξ, η 而言, 其相关系数 $\rho \in [-1,1]$ 。

$$ho = 1$$
 当且仅当 $\eta^* = \xi^*$ $a.s.$ $ho = -1$ 当且仅当 $\eta^* = -\xi^*$ $a.s.$

Proposition 23. 对于空间 L^2 中的非退化随机变量,如下四个命题等价:

- (a) ξ 和 η 不相关
- (b) $cov(\xi, \eta) = 0$
- (c) $E(\xi \eta) = E(\xi)E(\eta)$
- (d) $D(\xi + \eta) = D(\xi) + D(\eta)$

Proposition 24 (独立性和相关性的关系). ξ 和 η 独立 \Rightarrow ξ 和 η 不相关,反之不成立。

图 1. 独立性和相关性的关系

5. 条件数学期望

Definition 10 (条件分布函数). 对任何有正概率的事件 B, 定义随机变量 ξ 在事件 B 发生的条件下的条件分布函数为

(32)
$$F(x|B) = P\{\xi \le x|B\} = \frac{P\{\xi \le x, B\}}{P\{B\}}$$

注意到对固定的 B, F(x|B) 也是一个分布函数,因此可以考虑对它的 Lebesgue-Stieltjes 积分

Definition 11 (条件数学期望). 如果相应的积分绝对收敛,则称

(33)
$$E(\xi|B) = \int_{-\infty}^{+\infty} x dF(x|B)$$

为随机变量 ξ 在事件 B 发生的条件下的条件数学期望。

特别地, 当 $B = \{ \eta = y \}$ 时, 称 $E(\xi | \eta = y)$ 为给定 $\eta = y$ 时 ξ 的条件数学期望。

Definition 12 (给定 $\eta = y$ 的条件期望). (a) 若 η 为离散型随机变量,则有

(34)
$$E(\xi|\eta = y_j) = \sum_{i} x_i P\{\xi = x_i|\eta = y_j\}$$

(b) 若 η 为连续型随机变量,则有

(35)
$$E(\xi|\eta=y) = \int_{-\infty}^{+\infty} xp(x|\eta=y)dx$$

当 ξ 和 η 独立时,条件分布等于无条件分布,即 $E(\xi|\eta=y)=E(\xi)$ 。 若 g 为 Borel 函数,则有

(36)
$$E[g(\xi)|\eta = y] = \int_{-\infty}^{+\infty} g(x)dF(x|\eta = y)$$

References

[1] 杨振明. 概率论(第二版). 北京: 科学出版社, 2007.