# Interfacing Accelerometer MMA7361with ATmega2560 in Firebird V Robot

Shantanu Sengupta Chayatan Mukilan

Embedded Real-Time Systems Lab Indian Institute of Technology-Bombay

IIT Bombay July 10, 2014



#### Agenda for Discussion

- Accelerometer
  - Introduction
  - Working Principle
- Interfacing of Accelerometer with FireBird V
  - Pin Diagram
  - Pin Connections of MMA7361 Accelerometer.
  - Connection Details
- C Code
- Applications using Accelerometer





e-Yantra



• As the name indicates this sensor is used to measure acceleration.





- As the name indicates this sensor is used to measure acceleration.
- Acceleration here does not mean rate of change in velocity in a particular axis but the g-force acting on the body.





- As the name indicates this sensor is used to measure acceleration.
- Acceleration here does not mean rate of change in velocity in a particular axis but the g-force acting on the body.
- For example, an accelerometer at rest on the surface of the earth will measure an acceleration g= 9.81 m/s2 straight upwards, due to its weight. By contrast, accelerometers in free fall or at rest in outer space will measure zero.





- As the name indicates this sensor is used to measure acceleration.
- Acceleration here does not mean rate of change in velocity in a particular axis but the g-force acting on the body.
- For example, an accelerometer at rest on the surface of the earth will measure an acceleration g= 9.81 m/s2 straight upwards, due to its weight. By contrast, accelerometers in free fall or at rest in outer space will measure zero.
- This type of acceleration that accelerometers can measure is g-force acceleration.







 Accelerometer consists of a surface micromachined capacitive sensing cell (g-cell).



Figure : Structure of a g-cell



- Accelerometer consists of a surface micromachined capacitive sensing cell (g-cell).
- This consist of a moveable plate in the center of two fixed beams such that its movement depends on the g force acting on the accelerometer.



Figure : Structure of a g-cell



- Accelerometer consists of a surface micromachined capacitive sensing cell (g-cell).
- This consist of a moveable plate in the center of two fixed beams such that its movement depends on the g force acting on the accelerometer.
- As the center beam moves with acceleration, the distance between the beams changes and each capacitor's value will change,  $(C = A\epsilon/D)$ . Where A is the area of the beam,  $\epsilon$  is the dielectric constant, and D is the distance between the beams.



 ${\color{red}\textbf{Figure}}: \ {\color{gray}\textbf{Structure}} \ {\color{gray}\textbf{of a g-cell}}$ 



Pin Diagram
Pin Connections of MMA7361 Acceleromete
Connection Details

## Interfacing of Accelerometer with FireBird V





## Interfacing of Accelerometer with FireBird V







e-Yantra

#### Interfacing of Accelerometer with FireBird V





#### Interfacing of Accelerometer with FireBird V



Pin Diagram
Pin Connections of MMA7361 Acceleromete
Connection Details

#### Connection Details



#### Connection Details

|   | Pins of MMA7361 | Pins of FireBird V | Description                                                    |
|---|-----------------|--------------------|----------------------------------------------------------------|
| L | Accelerometer   | Expansion slot     |                                                                |
|   | X out           | ADC Channel 14     | Connected to Servo Pod 1 slot of<br>FireBird V(Port K)         |
|   | Y out           | ADC Channel 15     | Connected to Servo Pod 1 slot of<br>FireBird V(Port K)         |
|   | Z out           | ADC Channel 11     | Connected to FireBird V (Port K)<br>inplace of sharp IR Sensor |
|   | Vss             | GND                | Common ground pin                                              |
|   | Vdd             | 3.3V               | Power supply and reference voltage for ADC                     |
|   | Sleep           | 3.3V               | Connected to Vdd                                               |
|   | g-select        | NC                 | Input Pin to change the sensitivity of the sensor              |
|   | 0g-detect       | NC                 | Output Pin                                                     |
|   | Self Test       | NC                 | Input Pin                                                      |





#### C Code

# C Code





Can be used for simulating driver training.







- Can be used for simulating driver training.
- For Robot Movement similar to the walking support system as shown in the picture to the right.







- Can be used for simulating driver training.
- For Robot Movement similar to the walking support system as shown in the picture to the right.
- Accelerometers measuring dynamic forces such as vibrations can be used for designing Virtual Keyboards





