- 一、选择题(共50分,每答对一道小题得5分)
- 1. (工数) 微分方程 $y' + 2xy = xe^{-x^2}$ 的通解为 ()
- (A) $y = \frac{x^2}{2}e^{-x^2} + ce^{-x^2}$ (c为任意常数).
- **(B)** $y = -\frac{1}{4}e^{-3x^2} + ce^{-x^2}$ (c 为任意常数).
- (C) $y = \frac{x^2}{2} e^{x^2} + c e^{x^2}$ (c 为任意常数).
- **(D)** $y = -\frac{1}{4}e^{-x^2} + ce^{x^2}$ (c 为任意常数).

- 1. (高数)设曲面 $z = x^2 + y^2$ 在点(1,1,2)处的切平面为 Π ,则点(3,4,3)到 Π 的距 离为()

- (A) 3. (B) 11. (C) 9. (D) $\frac{11}{3}$.

 $f(x,y) = f(0,0) + x + 2y + o(\sqrt{x^2 + y^2})$, 则 f(x,y) 在点 O(0,0) 处 (

- (A) 可微.
- (B) 不连续, 可偏导.
- (C) 可偏导,不可微. (D) 连续,不可偏导.

2. 设 $D = \{(x,y) | x^2 + y^2 \le 1, y \ge 0 \}$, 贝 $\iint_D (x-3y)^2 d\sigma = ($

- (A) $\frac{5\pi}{2}$. (B) $\frac{5\pi}{3}$. (C) $\frac{5\pi}{4}$. (D) $\frac{10\pi}{3}$.

3. 设平面曲线 $L: (x-1)^2 + y^2 = 1$,	则 $\oint_L \left(x^2 + y^2\right) \mathrm{d}s = $ ()
-----------------------------------	---	---

- (A) -4π . (B) 4π . (C) -2π . (D) 2π .

4. 设
$$V = \{(x, y, z) | x^2 + y^2 + (z - 1)^2 \le 1 \}$$
,则∭ $\{2x^2 + (z - 1)^2\} dV = ($

- (A) $\frac{2\pi}{3}$. (B) $\frac{2\pi}{5}$. (C) $\frac{4\pi}{3}$. (D) $\frac{4\pi}{5}$.

5. 设函数 f(x) 以 2π 为周期,且 $f(x) = x(-\pi \le x < \pi)$,在其 Fourier 级数

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$
之中,Fourier 系数(

- **(A)** $a_2 = 0, b_2 = 1$.
- **(B)** $a_2 = 0, b_2 = -1$.
- (C) $a_2 = 1, b_2 = 0$. (D) $a_2 = -1, b_2 = 0$.

- 6. 在以下四个数项级数之中,发散的是(
- $(\mathbf{A}) \quad \sum_{n=1}^{\infty} \frac{\cos n}{n^2} \ .$
- **(B)** $\sum_{n=1}^{\infty} \frac{n^2}{3^n 2^n}$.
- (C) $\sum_{n=2}^{\infty} \frac{1}{n \ln^2 n} .$
- **(D)** $\sum_{n=1}^{\infty} \frac{1}{2^{\ln n}} .$

7. 函数 ln(2-x) 的 Maclaurin 级数是 ()

(A)
$$\ln 2 - \sum_{n=1}^{\infty} \frac{1}{n \cdot 2^n} x^n \ (x \in [-2, 2)).$$

(B)
$$\ln 2 + \sum_{n=1}^{\infty} \frac{(-1)^n}{n \cdot 2^n} x^n \ (x \in [-2, 2)).$$

(C)
$$\ln 2 + \sum_{n=1}^{\infty} \frac{1}{n \cdot 2^n} x^n \ (x \in [-2, 2)).$$

(D)
$$\ln 2 + \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n \cdot 2^n} x^n \ (x \in [-2, 2)).$$

8. 设函数 $f(x,y) = 3x - x^3 + y^2 + 2y$, 则 f(x,y)有一个 ()

- (A) 极大值 -3.
- (B) 极大值 1.
- (C) 极小值 -3.
- **(D)** 极小值 1.

	9.	设函数 f(x,y)	$= \ln\left(1 + \sqrt{x^2 + y^4}\right)$,	则(()
--	----	------------	--	---	----	-----

- (A) $f_x'(0,0)$ 存在, $f_y'(0,0)$ 不存在.
- **(B)** $f_x'(0,0)$ 和 $f_y'(0,0)$ 都存在.
- (C) $f_x'(0,0)$ 不存在, $f_y'(0,0)$ 存在.
- **(D)** $f'_x(0,0)$ 和 $f'_v(0,0)$ 都不存在.

10. 设Oxy 面内的有向曲线 $C: y = x^2 (x: 2 \rightarrow 0)$,I 为 C 在点(1,1) 处的切向量,其 方向与曲线 C 的方向一致, $f(x,y) = xy^2$,则 $\frac{\partial f}{\partial l}\Big|_{(1,1)} = ($)

- (A) $\sqrt{5}$. (B) $-\sqrt{5}$. (C) 5 . (D) -5 .

二 (工数)、(10 分) 求微分方程 $y'' + y' - 6y = xe^{2x}$ 的通解.

三、(10分)设函数z = f(x, y)具有二阶连续偏导数,且满足偏微分方程

$$4\frac{\partial^2 z}{\partial x^2} + 12\frac{\partial^2 z}{\partial x \partial y} + 5\frac{\partial^2 z}{\partial y^2} = 0,$$

利用变换 $\begin{cases} u = x - 2y \\ 2 & \text{将上述方程化为以} u, v \text{为自变量的方程.} \end{cases}$

