§ 10 Der Satz von Fubini

Die Bezeichnungen seien wie in den Paragraphen 8 und 9.

Satz 10.1 (Satz von Tonelli)

Es sei $f: \mathbb{R}^{\hat{d}} \to [0, +\infty]$ messbar. (Aus §8 folgt dann, dass f^x, f_y messbar sind, wobei klar ist, dass $f^x, f_y \geq 0$ sind.)

Für $x \in \mathbb{R}^k$:

$$F(x) := \int_{\mathbb{R}^l} f(x, y) \, dy = \int_{\mathbb{R}^l} f^x(y) \, dy$$

Für $y \in \mathbb{R}^l$:

$$G(y) := \int_{\mathbb{R}^k} f(x, y) \, dx = \int_{\mathbb{R}^k} f_y(x) \, dx$$

Dann sind F, G messbar und

$$\int_{\mathbb{R}^d} f(z) dz = \int_{\mathbb{R}^k} F(x) dx = \int_{\mathbb{R}^l} G(y) dy$$

also

$$\int_{\mathbb{R}^d} f(x,y) \, d(x,y) = \int_{\mathbb{R}^k} \left(\int_{\mathbb{R}^l} f(x,y) \, dy \right) dx = \int_{\mathbb{R}^l} \left(\int_{\mathbb{R}^k} f(x,y) \, dx \right) dy \tag{*}$$

(iterierte Integrale)

Beweis

Fall 1: Sei $C \in \mathfrak{B}_d$ und $f = \mathbb{1}_C$. Die Behauptungen folgen dann aus 9.1.

Fall 2: Sei $f \ge 0$ und einfach. Die Behauptungen folgen aus Fall 1, 3.6 und 4.5.

Fall 3 - Der allgemeine Fall:

Sei (f_n) zulässig für f, also: $0 \le f_n \le f_{n+1}$, f_n einfach und $f_n \to f$ auf \mathbb{R}^d . Für $x \in \mathbb{R}^k$ und $n \in \mathbb{N}$ gilt:

$$F_n(x) := \int_{\mathbb{R}^l} f_n(x, y) \, dy$$

und nach Fall 2 ist F_n messbar.

Aus $0 \le f_n \le f_{n+1}$ folgt $0 \le F_n \le F_{n+1}$ und 4.6 liefert $F_n \to F$ auf \mathbb{R}^k . Dann gilt

$$\int_{\mathbb{R}^d} f(z) dz = \lim \int_{\mathbb{R}^d} f_n(z) dz \stackrel{Fall2}{=} \lim \int_{\mathbb{R}^k} F_n(x) dx \stackrel{\text{4.6}}{=} \int_{\mathbb{R}^k} F(x) dx$$

Genauso zeigt man

$$\int_{\mathbb{R}^d} (f(z) \, dz = \int_{\mathbb{R}^l} G(y) \, dy$$

Satz 10.2 (Satz von Fubini (Version I))

Es sei $f: \mathbb{R}^d \to \overline{\mathbb{R}}$ integrierbar. Dann existieren Nullmengen $M \subseteq \mathbb{R}^k$ und $N \subseteq \mathbb{R}^l$ mit

$$f^x \colon \mathbb{R}^l \to \overline{\mathbb{R}}$$
 ist integrierbar für jedes $x \in \mathbb{R}^k \setminus M$
 $f_y \colon \mathbb{R}^k \to \overline{\mathbb{R}}$ ist integrierbar für jedes $y \in \mathbb{R}^l \setminus N$

Setze

$$F(x) := \begin{cases} \int_{\mathbb{R}^l} f^x(y) \, dy = \int_{\mathbb{R}^l} f(x, y) \, dy &, \text{ falls } x \in \mathbb{R}^k \setminus M \\ 0 &, \text{ falls } x \in M \end{cases}$$

und

$$G(y) := \begin{cases} \int_{\mathbb{R}^k} f_y(x) \, dx = \int_{\mathbb{R}^k} f(x, y) \, dx &, \text{ falls } y \in \mathbb{R}^l \setminus N \\ 0 &, \text{ falls } y \in N \end{cases}$$

Dann sind F und G integrierbar und es gelten folgende zwei Gleichungen

$$\int_{\mathbb{R}^d} f(z) dz = \int_{\mathbb{R}^k} F(x) dx = \int_{\mathbb{R}^l} G(y) dy$$

Es gilt also wieder (*) aus 10.1.

Beweis

Wir zeigen nur die Aussagen über f^x , F und die erste der obigen beiden Gleichungen. Genauso zeigt man die Aussagen über f_n , G und die zweite Gleichung.

Aus 8.1 folgt, dass f^x messbar ist. Definiere

$$\Phi(x) := \int_{\mathbb{R}^l} |f^x(y)| \, dy = \int_{\mathbb{R}^l} |f(x,y)| \, dy \quad \text{für } x \in \mathbb{R}^k$$

Nach 10.1 ist Φ messbar und

$$\int_{\mathbb{R}^k} \Phi(x) \, dx = \int_{\mathbb{R}^k} \left(\int_{\mathbb{R}^l} |f(x,y)| \, dy \right) dx \stackrel{\text{10.1}}{=} \int_{\mathbb{R}^d} |f(z)| \, dz < \infty$$

(denn mit f ist nach 4.9 auch |f| integrierbar). Somit ist Φ integrierbar. Setze $M := \{\Phi = \infty\}$ was nach 4.10 eine Nullmenge ist. Also gilt:

$$\int_{\mathbb{R}^l} |f^x(y)| \, dy = \Phi(x) < \infty \quad \text{für jedes } x \in \mathbb{R}^k \setminus M$$

Das heißt, $|f^x|$ ist für jedes $x \in \mathbb{R}^k \setminus M$ integrierbar und es gilt nach 4.9 auch

$$f^x$$
 ist integrierbar für jedes $x \in \mathbb{R}^k \setminus M$

Aus 9.2 folgt, dass $M \times \mathbb{R}^l$ eine Nullmenge ist. Setze

$$\tilde{f}(z) := \begin{cases} f(z) & \text{, falls } z \in \mathbb{R}^d \setminus (M \times \mathbb{R}^l) \\ 0 & \text{, falls } z \in M \times \mathbb{R}^l \end{cases}$$

Aus 9.3 folgt, dass \tilde{f} messbar ist. Klar ist, dass fast überall $f = \tilde{f}$ gilt. Es ist

$$\tilde{f}^x = \left(\mathbb{1}_{(M \times \mathbb{R}^l)^C} \cdot f\right)^x$$

Das heißt \tilde{f}^x ist integrierbar für jedes $x \in \mathbb{R}^k$. Dann gilt

$$F(x) \stackrel{\text{5.3}}{=} \int_{\mathbb{R}^l} \tilde{f}(x,y) \, dy = \underbrace{\int_{\mathbb{R}^l} \tilde{f}_+(x,y) \, dy}_{=:F^+(x)} - \underbrace{\int_{\mathbb{R}^l} \tilde{f}_-(x,y) \, dy}_{=:F^-(x)}$$

Nach $10.1 \ {\rm sind} \ F^+$ und F^- messbar. Die Dreiecksungleichung liefert nun

$$|F(x)| \le \int_{\mathbb{R}^l} |\tilde{f}(x,y)| \, dy \stackrel{5.3}{=} \int_{\mathbb{R}^l} |f(x,y)| \, dy = \Phi(x) \quad \text{für } x \in \mathbb{R}^k$$

Also ist $|F| \leq \Phi$ und Φ ist integrierbar. Aus 4.9 folgt, dass F und |F| integrierbar sind und dann sind auch F^+ und F^- integrierbar (zur Übung). Es folgt

$$\int_{\mathbb{R}^k} F(x) dx = \int_{\mathbb{R}^k} F^+(x) dx - \int_{\mathbb{R}^k} F^-(x) dx$$

$$= \int_{\mathbb{R}^k} \left(\int_{\mathbb{R}^l} \tilde{f}_+(x, y) dy \right) dx - \int_{\mathbb{R}^k} \left(\int_{\mathbb{R}^l} \tilde{f}(x, y) dy \right) dx$$

$$\stackrel{10.1}{=} \int_{\mathbb{R}^d} \tilde{f}_+(z) dz - \int_{\mathbb{R}^d} \tilde{f}_-(z) dz$$

$$= \int_{\mathbb{R}^d} \tilde{f}(z) dz$$

$$= \int_{\mathbb{R}^d} f(z) dz$$

Satz 10.3 (Satz von Fubini (Version II))

Sei $\emptyset \neq X \in \mathfrak{B}_k$, $\emptyset \neq Y \in \mathfrak{B}_l$ und $D := X \times Y$ (nach §8 ist $D \in \mathfrak{B}_d$). Es sei $f : D \to \overline{\mathbb{R}}$ messbar. Ist f > 0 auf D oder ist f integrierbar, so gilt

$$\int_D f(x,y) \, d(x,y) = \int_X \left(\int_Y f(x,y) \, dy \right) dx = \int_Y \left(\int_X f(x,y) \, dx \right) dy$$

Beweis

Definiere \tilde{f} wie in 9.3 und wende 10.1 beziehungsweise 10.2 an.

Bemerkung: 10.1, 10.2 und 10.3 gelten natürlich auch für mehr als zwei iterierte Integrale.

"Gebrauchsanweisung" für Fubini:

Gegeben: $\emptyset \neq D \subseteq \mathfrak{B}_d$ und messbares $f \colon D \to \overline{\mathbb{R}}$. Setze f auf \mathbb{R}^d zu einer messbaren Funktion \tilde{f} fort (zum Beispiel wie in 9.3). Aus 3.8 folgt dann, dass $\mathbb{1}_D \tilde{f}$ messbar ist und 10.1 liefert

$$\int_{\mathbb{R}^d} |\mathbb{1}_D \tilde{f}| \, dz = \int_{\mathbb{R}^k} \left(\int_{\mathbb{R}^l} |\mathbb{1}_D \tilde{f}| \, dy \right) dx = \int_{\mathbb{R}^l} \left(\int_{\mathbb{R}^k} |\mathbb{1}_D \tilde{f}| \, dx \right) dy$$

Ist eines der drei obigen Integrale endlich, so ist $|\mathbb{1}_D \tilde{f}|$ integrierbar und damit ist nach 4.9 auch $\mathbb{1}_D \tilde{f}$ integrierbar.

Dann ist f integrierbar und es folgt

$$\begin{split} \int_D f(z) \, dz &= \int_{\mathbb{R}^d} \left(\mathbbm{1}_D \tilde{f} \right)(z) \, dz \\ &\stackrel{\text{10.2}}{=} \int_{\mathbb{R}^k} \left(\int_{\mathbb{R}^l} \left(\mathbbm{1}_D \tilde{f} \right)(x,y) \, dy \right) dx \\ &= \int_{\mathbb{R}^l} \left(\int_{\mathbb{R}^k} \left(\mathbbm{1}_D \tilde{f} \right)(x,y) \, dx \right) dy \end{split}$$

Beispiel

(1) Sei $D = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_d, b_d]$ mit $a_i \leq b_i$ (i = 1, ..., d). Es sei $f: D \to \mathbb{R}$ stetig. D ist kompakt, also gilt $D \in \mathfrak{B}_d$. Nach 4.12(2) ist $f \in \mathfrak{L}^1(D)$ und aus obiger Bemerkung folgt

$$\int_{D} f(x_{1}, \dots, x_{d}) d(x_{1}, \dots, x_{d}) = \int_{a_{d}}^{b^{d}} \left(\dots \left(\int_{a_{2}}^{b^{2}} \left(\int_{a_{1}}^{b^{1}} f(x_{1}, \dots, x_{d}) dx_{1} \right) dx_{2} \right) \dots \right) dx_{d}$$

Die Reihenfolge der Integrationen darf beliebig vertauscht werden. Aus 4.13 folgt

$$\int_{a_i}^{b_i} \cdots \, \mathrm{d}x_i = R - \int_{a_i}^{b_i} \cdots \, \mathrm{d}x_i$$

Konkretes Beispiel

Sei $D := [a, b] \times [c, d] \subseteq \mathbb{R}^2$, $f \in C([a, b])$ und $g \in C([c, d])$.

$$\int_{D} f(x)g(y) d(x,y) = \int_{c}^{d} \left(\int_{a}^{b} f(x)g(y) dx \right) dy$$
$$= \int_{c}^{d} \left(g(y) \left(\int_{a}^{b} f(x) dx \right) \right) dy$$
$$= \left(\int_{a}^{b} f(x) dx \right) \left(\int_{c}^{d} g(y) dy \right)$$

(2) Wir rechtfertigen die "Kochrezepte" aus Analysis II, Paragraph 15. Seien $a, b \in \mathbb{R}$ mit a < b und I := [a, b]. Weiter seien $h_1, h_2 \in C(I)$ mit $h_1 \le h_2$ auf I und

$$A := \{(x, y) \in \mathbb{R}^2 : x \in I, h_1(x) \le y \le h_2(x)\}$$

Sei $f: A \to \mathbb{R}$ stetig. Da h_1 und h_2 stetig sind, ist A kompakt und somit gilt $A \in \mathfrak{B}_2$. Aus 4.12(2) folgt dann $f \in \mathfrak{L}^1(A)$. Definiere

$$\tilde{f}(x,y) = \begin{cases} f(x,y) & \text{, falls } (x,y) \in A \\ 0 & \text{, falls } (x,y) \notin A \end{cases}$$

Nach 9.3 ist \tilde{f} messbar. Setze

$$M := \max\{|f(x,y)| : (x,y) \in A\}$$

Dann gilt $|\tilde{f}| \leq M \cdot \mathbb{1}_A$. Wegen $\lambda_2(A) < \infty$ ist $M \cdot \mathbb{1}_A$ integrierbar und nach 4.9 ist $|\tilde{f}|$ und damit auch \tilde{f} integrierbar. Dann ist

$$\begin{split} \int_A f(x,y) \, d(x,y) &= \int_{\mathbb{R}^2} \tilde{f}(x,y) \, d(x,y) \\ &\stackrel{\textbf{10.3}}{=} \int_{\mathbb{R}} \left(\int_{\mathbb{R}} \tilde{f}(x,y) \, dy \right) dx \\ &= \int_a^b \left(\int_{h_1(x)}^{h_2(x)} f(x,y) \, dy \right) dx \end{split}$$

Damit ist 15.1 aus Analysis II bewiesen. Genauso zeigt man 15.3.

(3) Sei $D:=\{(x,y)\in\mathbb{R}^2:x\geq 1,0\leq y\leq \frac{1}{x}\}$ und $f(x,y):=\frac{1}{x}\cos(xy).$ D ist abgeschlossen und somit ist $D\in\mathfrak{B}_2$. Außerdem ist f stetig, also messbar. **Behauptung:**

$$f \in \mathfrak{L}^1(D)$$
 und $\int_D f(x,y) d(x,y) = \sin(1)$

Beweis: Setze $X:=(0,\infty),\,Y:=[0,\infty)$ und $Q:=X\times Y.$ Sei nun

$$\tilde{f}(x,y) := \frac{1}{r}\cos(xy) \text{ für } (x,y) \in Q$$

 \tilde{f} ist eine Fortsetzung von f auf $X \times Y$. \tilde{f} ist also messbar. Es ist

$$\int_{D} |f| d(x,y) = \int_{Q} \mathbb{1}_{D} \cdot |\tilde{f}| d(x,y)$$

$$\stackrel{10.1}{=} \int_{X} \left(\int_{Y} \mathbb{1}_{D}(x,y) \frac{1}{x} |\cos(xy)| dy \right) dx$$

$$\int_{1}^{\infty} \left(\int_{0}^{\frac{1}{x}} \frac{1}{x} |\cos(xy)| dy \right) dx$$

$$\leq \int_{1}^{\infty} \left(\int_{0}^{\frac{1}{x}} \frac{1}{x} dy \right) dx$$

$$= \int_{1}^{\infty} \frac{1}{x^{2}} dx = 1 < \infty$$

Also ist |f| integrierbar und dann nach 4.9 auch f, also $f \in \mathfrak{L}^1(D)$. Dann:

$$\int_{D} f d(x, y) = \int_{X} \left(\int_{Y} \mathbb{1}_{D}(x, y) \frac{1}{x} \cos(xy) \, dy \right) dx$$

$$\stackrel{\text{wie oben}}{=} \int_{1}^{\infty} \left(\int_{0}^{\frac{1}{x}} \frac{1}{x} \cos(xy) \, dy \right) dx$$

$$= \int_{1}^{\infty} \left(\frac{1}{x} \cdot \frac{1}{x} \sin(xy) \Big|_{y=0}^{y=\frac{1}{x}} \right) dx$$

$$= \int_{1}^{\infty} \frac{1}{x^{2}} \sin(1) \, dx$$

$$= \sin(1)$$

Vorbemerkung: Sei x > 0. Für b > 0 gilt

$$\int_{0}^{b} e^{-xy} \, dy = -\frac{1}{x} e^{-xy} \bigg|_{0}^{b} = -\frac{1}{x} e^{-xb} + \frac{1}{x} \xrightarrow{b \to \infty} \frac{1}{x}$$

und daraus folgt $\int_0^\infty e^{-xy} dy = \frac{1}{x}$

Beispiel

(4) Sei

$$g := \begin{cases} \frac{\sin x}{x} & \text{, falls } x > 0\\ 1 & \text{, falls } x = 0 \end{cases}$$

g ist stetig auf $[0,\infty)$. Aus Analysis 1 ist bekannt, dass $\int_0^\infty g(x)\,dx$ konvergent, aber **nicht** absolut konvergent ist. Aus 4.14 folgt, dass $g \notin \mathfrak{L}^1([0,\infty))$ Behauptung: $\int_0^\infty g(x) dx = \frac{\pi}{2}$

Beweis: Setze X := [0, R] mit R > 0, $Y := [0, \infty)$ und $D := X \times Y$, sowie

$$f(x,y) := e^{-xy} \sin x \text{ für } (x,y) \in D$$

Es ist $D \in \mathfrak{B}_2$ und f stetig, also messbar. Es ist weiter $f \in \mathfrak{L}^1(D)$ (warum?) und

$$\int_{D} f(x,y) d(x,y) \stackrel{\text{10.3}}{=} \int_{X} \left(\int_{Y} f(x,y) dy \right) dx$$

$$= \int_{0}^{R} \left(\int_{0}^{\infty} e^{-xy} \sin x dy \right) dx$$

$$= \int_{0}^{R} \sin x \left(\int_{0}^{\infty} e^{-xy} dy \right) dx$$

$$\stackrel{\text{Vorbemerkung}}{=} \int_{0}^{R} \frac{\sin x}{x} dx =: I_{R}$$

Dann gilt

$$I_R \stackrel{\textbf{10.3}}{=} \int_Y \left(\int_X f(x,y) \, dx \right) dy = \int_0^\infty \underbrace{\left(\int_0^R e^{-xy} \sin x \, dx \right)}_{=:\varphi(y)} dy$$

Zweimalige partielle Integration liefert (nachrechnen!):

$$\varphi(y) = \frac{1}{1+y^2} - \frac{1}{1+y^2} e^{-yR} (y \sin R + \cos R)$$

Damit gilt

$$I_R = \int_0^\infty \frac{dy}{1+y^2} - \int_0^\infty \frac{1}{1+y^2} e^{-yR} (y \sin R + \cos R) \, dy$$

Aus Analysis 1 ist bekannt, dass das erste Integral gegen $\frac{\pi}{2}$ konvergiert und das zweite Integral setzen wir gleich \tilde{I}_{R} .

Es gilt

$$\begin{split} |\tilde{I}_R| &\leq \int_0^\infty \frac{1}{1+y^2} e^{-yR} (y|\sin R| + |\cos R|) \, dy \\ &\leq \int_0^\infty \frac{y+1}{y^2+1} e^{-yR} \, dy \\ &\leq 2 \int_0^\infty e^{-yR} \, dy \\ &\stackrel{\text{Vorbemerkung}}{=} \frac{2}{R} \end{split}$$

Das heißt also $\tilde{I}_R \to 0 \ (R \to \infty)$ und damit folgt die Behauptung durch

$$I_R = \frac{\pi}{2} - \tilde{I}_R \to \frac{\pi}{2} \ (R \to \infty)$$