

3 a plurality of fiber optic cables for illuminating volumes of the plurality of samples,
4 a plurality of lenses, each co-axially disposed with a first end of a fiber optic cable for
5 focusing an excitation beam into a sample, and
6 a fiber optic multiplexer which couples the detection and analysis mechanism to a
7 second end of each of the plurality of fiber optic cables.

1 16. 4 The apparatus according to claim 13 wherein the sample holder includes a
2 removable reaction chamber for holding the sample.

1 17. The apparatus according to claim 16 wherein the removable reaction chamber is
2 sealable.

1 18. 6 The apparatus according to claim 13 wherein the sample holder includes a sealable
2 reaction chamber for holding the sample.

1 19. 7 The apparatus according to claim 13 wherein the sample holder includes an optical
2 interface through which the excitation beam is transmitted from the lens into the sample.

1 20. 8 The apparatus according to claim 19 wherein the sample holder includes a sealable
2 reaction chamber for holding the sample, the optical interface forming a wall of the reaction
3 chamber.

1 21. 9 The apparatus according to claim 19 wherein the apparatus further includes a
2 mechanism for heating the optical interface to prevent condensation of the sample on the
3 optical interface.

1 22. 10 The apparatus according to claim 21 wherein the sample holder includes a sealable
2 reaction chamber for holding the sample, the optical interface forming a wall of the reaction
3 chamber.

1 23. 11 The apparatus according to claim 19 wherein the sample holder includes a

2 removable reaction chamber for holding the sample, the optical interface forming a wall of
3 the reaction chamber which covers at least a portion of the sample and which is separated
4 from the sample by an air gap.

1 24. A method for monitoring the formation of a nucleic acid amplification reaction product
2 in real time comprising:
3 adding a sample to a sample holder which contains a nucleic acid sequence to be
4 amplified,
5 transmitting an excitation beam into the sample which illuminates a volume of the
6 sample, the sample including a first fluorescent indicator which produces a first fluorescent
7 signal when illuminated by the excitation beam whose intensity is proportional to the
8 concentration of amplification reaction product in the sample and the volume of the sample
9 illuminated by the excitation beam, and a second fluorescent indicator homogeneously
10 distributed throughout the sample which produces a second fluorescent signal when
11 illuminated by the excitation beam whose intensity is proportional to the volume of the
12 sample illuminated by the excitation beam; and
13 measuring the intensities of the first and second fluorescent signals.

1 25. The method according to claim 24 wherein the first and second fluorescent signals
2 each have an intensity and the detection, the step of measuring the intensities of the first
3 and second fluorescent signals including calculating a ratio between the intensity of the first
4 fluorescent signal and the intensity of the second fluorescent signal.

1 26. The method according to claim 24 wherein the first fluorescent indicator is a
2 complex-forming dye.

1 27. The method according to claim 24, further including the step of sealing the sample
2 within the sample holder prior to transmitting an excitation beam into the sample.

1 28. The method according to claim 24 wherein the sample holder includes an optical
2 interface through which the excitation beam is transmitted from the lens to the sample,

*Seal
Conc*

3 sample holder also including an air gap separating the optical interface from the sample, the
4 method further including the step of heating the optical interface to prevent condensation of
5 the sample on the optical interface.

16 15
1 29. The method according to claim 28, further including the step of sealing the sample
2 within the sample holder prior to transmitting an excitation beam into the sample.

Cut

1 30. The method according to claim 24 wherein the step of adding a sample to a sample
2 holder includes
3 adding a sample to a reaction chamber which is removable from the sample holder;
4 and
5 adding the removable reaction chamber to the sample holder.

18 17
1 31. The method according to claim 30, further including the step of sealing the sample
2 within the removable reaction chamber.

1 32. 19 17
The method according to claim 30 wherein the removable reaction chamber includes
2 an optical interface through which the excitation beam is transmitted from the lens to the
3 sample and an air gap separating the optical interface from the sample, the method further
4 including the step of heating the optical interface to prevent condensation of the sample on
5 the optical interface.

1 33. The method according to claim 24 wherein the nucleic acid amplification reaction is a
2 polymerase chain reaction.

1 34. The method according to claim 24 wherein the nucleic acid amplification reaction is a
2 ligase chain reaction.

1 35. The method according to claim 24 wherein the nucleic acid amplification reaction is a
2 polymerase chain reaction and wherein the first and second fluorescent indicators are
3 covalently attached to an oligonucleotide having a nucleotide sequence complementary to a

4 portion of a strand of the amplification reaction product, the second fluorescent indicator
5 quenching the fluorescence of the first fluorescent indicator.

1 36. A method for monitoring the formation of nucleic acid amplification reaction products
2 in a plurality of samples in real time comprising:
3 adding samples containing a nucleic acid sequence to be amplified to a plurality of
4 sample holders;
5 transmitting excitation beams into the plurality of sample holders which illuminate a
6 volume of each sample, each sample including a first fluorescent indicator which produces a
7 first fluorescent signal when illuminated by the excitation beam whose intensity is
8 proportional to the concentration of amplification reaction product in the sample and the
9 volume of the sample illuminated by the excitation beam, and a second fluorescent indicator
10 homogeneously distributed throughout the sample which produces a second fluorescent
11 signal when illuminated by the excitation beam whose intensity is proportional to the volume
12 of the sample illuminated by the excitation beam; and
13 measuring the intensities of the first and second fluorescent signals of each of the
14 samples.

1 37. The method according to claim 36 wherein at least two different first fluorescent
2 indicators having different first fluorescent signals are used amongst the plurality of
3 samples, the step of measuring the intensity of the first fluorescent signal including
4 measuring the different first fluorescent signals of the at least two different first fluorescent
5 indicators.

1 38. A method for monitoring the formation of a plurality of nucleic acid amplification
2 reaction products in a sample in real time comprising:
3 adding to a sample holder a sample containing a plurality of different nucleic acid
4 sequences to be amplified,
5 transmitting an excitation beam into the sample which illuminates a volume of the
6 sample, the sample including a plurality of first fluorescent indicators which each produce a

7 first fluorescent signal when illuminated by the excitation beam whose intensity is
8 proportional to the concentration of a particular amplification reaction product in the sample
9 and the volume of the sample illuminated by the excitation beam, and a second fluorescent
10 indicator homogeneously distributed throughout the sample which produces a second
11 fluorescent signal when illuminated by the excitation beam whose intensity is proportional to
12 the volume of the sample illuminated by the excitation beam; and
13 measuring the intensities of the first and second fluorescent signals. --.

*Acted
Cle*