БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ

Методы численного анализа Лабораторная работа №3 "Метод сеток решения граничной задачи ОДУ"

работу выполнил Малыщик Аким Андреевич студент 3 курса 3б группы

научный руководитель ассистент кафедры вычислительной математики Горбачёва Юлия Николаевна

Постановка задачи

Дана линейная граничная задача. Необходимо на равномерной сетке построить для граничной задачи разностную схему второго порядка аппроксимации на минимальном шаблоне и с помощью метода прогонки с шагами h=0.02 и h/2=0.01 найти численное решение y^h и $y^{h/2}$ соответственно. Проверить выполняются ли достаточные условия корректности и устойчивости метода прогонки. Сравнить найденное численное решение $y^{h/2}$ с точным решением u(x), т.е. найти $max|u(x_i)-y_i^{h/2}|$.

В одной системе координат построить график функции u(x) и график полученного численного решения $y^{h/2}.$

Найти $rac{1}{3} \cdot max |y_i^h - y_{2i}^{h/2}|$.

Граничная задача

$$\left\{egin{array}{l} u''+rac{3x}{x^2+1}u'-rac{2}{x^2+1}u=-rac{4x^2+8}{(x^2+1)^3}\ 5u(0.5)=8\ 3u(1)+2u'(1)=1 \end{array}
ight.$$

Точное решение

$$u(x)=\frac{2}{x^2+1}$$

```
In [1]:
    def f(x):
        return -((4 * x ** 2 + 8) / ((x ** 2 + 1) ** 3))

def p(x):
        return (3 * x) / (x ** 2 + 1)

def q(x):
        return -2 / (x ** 2 + 1)

def solution(x):
        return 2 / (x ** 2 + 1)

a, b = 0.5, 1
h, h2 = 0.02, 0.01
```

Краткая теория, реализация метода Задача в общем виде:

Индексная форма:

$$\left\{egin{aligned} u''(x) + p(x)u'(x) + q(x)u(x) &= f(x) \ u(0.5) &= \sigma_0 \ u(1) &= \sigma_1 y(1) + \mu_1, \end{aligned}
ight.$$

Сетка узлов:

$$w_h = \{x_i = 0.5 + ih, i = 0...N, N = rac{b-a}{h}\}$$
Разностная схема второго порядка аппроксимации:

 $egin{cases} y_{\overline{x}x}(x)+p(x)y_{\overset{\circ}{x}}(x)+q(x)y(x)=arphi(x)\ y(0.5)=\sigma_0\ y_{\overline{x}}(1)=\sigma_1y(1)+\mu_1, \end{cases}$

$$\left\{ egin{array}{l} rac{y_{i+1}-2y_i+y_{i-1}}{h^2}+rac{3x_i}{x_i^2+1}rac{y_{i+1}-y_{i-1}}{2h}-rac{2}{x_i^2+1}y_i=-rac{4x_i^2+8}{(x_i^2+1)^3} \ y_0=rac{8}{5} \ rac{y_N-y_{N-1}}{h}=(-rac{3}{2}-rac{13h}{8})y_N+rac{1}{2}+rac{9h}{8} \end{array}
ight.$$

 $\left(x_{i+1} \left(\frac{1}{2} \perp \frac{3x_i}{2} \right) \right)$

Система уравнений (трёхдиагональная матрица):

$$\begin{cases} y_{i+1}(\frac{1}{h^2} + \frac{3x_i}{x_i^2 + 1} \frac{1}{2h}) + y_i(\frac{-2}{h^2} - \frac{2}{x_i^2 + 1}) + y_{i-1}(\frac{1}{h^2} + \frac{3x_i}{x_i^2 + 1} \frac{1}{2h}) = -\frac{4x_i^2 + 8}{(x_i^2 + 1)^3} \\ y_0 = \frac{8}{5} \\ y_N(\frac{1}{h} + \frac{3}{2} + \frac{13h}{8}) + y_{N-1}(\frac{-1}{h}) = \frac{1}{2} + \frac{9h}{8} \end{cases}$$

```
In [2]:
         import numpy as np
         def get_diagonals(h):
             N = int(round((b - a) / h))
             x = np.linspace(a, b, N + 1)
             b0, c0 = 1, 0
             aN = -1 / h
             bN = 1 / h + 3 / 2 + 13 * h / 8
             c_d = np.zeros(N + 1)
             c_d[0] = c0
             for i in range(1, N):
                 c_d[i] = 1 / (h ** 2) + p(x[i]) / (2 * h)
             b_d = np.zeros(N + 1)
             b_d[0] = b0
             b_d[N] = bN
             for i in range(1, N):
                 b_d[i] = -2 / (h ** 2) + q(x[i])
             a_d = np.zeros(N + 1)
             a_d[N] = aN
             for i in range(1, N):
                 a_d[i] = 1 / (h ** 2) - p(x[i]) / (2 * h)
             return a_d, b_d, c_d
         def get_column(h):
             N = int(round((b - a) / h))
             x = np.linspace(a, b, N + 1)
             return np.array([8 / 5, *[f(x[i]) for i in range(1, N)], 1 / 2 + 9 * h / 8])
         def get_exact_solution_vector(h):
             N = int(round((b - a) / h))
             x = np.linspace(a, b, N + 1)
             return np.array([solution(x[i]) for i in range(N + 1)])
         def solve_tridiagonal_system(diagonals, f):
             n = len(f)
             res = np.zeros(n)
             for i in range(n - 1):
                 coef = diagonals[0][i + 1] / diagonals[1][i]
                 diagonals[0][i + 1] = 0
                 diagonals[1][i + 1] -= coef * diagonals[2][i]
                 f[i + 1] -= coef * f[i]
             for i in range(n - 1, 0, -1):
                 res[i] = f[i] / diagonals[1][i]
                 coef = diagonals[2][i - 1] / diagonals[1][i]
                 diagonals[2][i - 1] = 0
                 f[i - 1] -= coef * f[i]
                 res[0] = f[0] / diagonals[1][0]
         def is_diag_dominant(diagonals):
             return all([abs(b_diag) >= abs(a_diag) + abs(c_diag) for a_diag, b_diag, c_diag in zip(*diagonals)])
         def get_solution(h):
             N = int(round((b - a) / h))
             x = np.linspace(a, b, N + 1)
             diagonals = get_diagonals(h)
             f = get_column(h)
             if(is_diag_dominant(diagonals)):
                 u = solve_tridiagonal_system(diagonals, f)
             raise ValueError("Нет диагонального преобладания")
         u = get_exact_solution_vector(h2)
         y = get_solution(h)
         y2 = get_solution(h2)
```

4.6152838664159646e-06

from matplotlib import pyplot as plt

Оценка точности метода

np.array(abs(u - y2)).max()

In [3]:

Out[3]:

In [5]:

```
In [4]: 1 / 3 * np.array(abs(y - y2[::2])).max()
Out[4]: 4.615511669821733e-06

График метода сеток рядом с точным решением
```

x = np.linspace(a, b, int(round((b - a) / h2)) + 1) plt.figure(figsize=(20, 10)) plt.plot(x, u, label='u(x) (точное решение)') plt.plot(x, u, label='u(x) (точное решение)')

```
plt.plot(x, y2, '.', label='y (peweнue методом сеток)', markersize=8)
plt.legend()
plt.show()

16-
15-
14-
13-
```

Выводы

1.0

Метод сеток — достаточно эффективный метод решения обыкновенных дифференциальных уравнений второго порядка, обеспечивающий адекватную точность приближённого решения.