Prova scritta di Fisica

Dipartimento DIMES - CdL Ingegneria Informatica Università della Calabria, 11 Febbraio 2016

Esercizio 1

Un corpo di massa $\mathbf{m} = 1$ kg viene lasciato cadere da fermo. Dopo un tempo $\mathbf{t} = 1$ s dall'inizio della caduta, esso urta una molla di massa trascurabile, inizialmente in equilibrio, disposta verticalmente e poggiata al suolo. Sapendo che la molla viene compressa di $\Delta \mathbf{x} = 50$ cm, calcolarne la costante elastica. (Utilizzare il valore $\mathbf{g} = 10$ m/s² per l'accelerazione di gravità)

Esercizio 2

Una particella di massa m_1 è sospesa ad un filo di lunghezza L=32 cm e si trova ferma nella posizione di equilibrio quando viene colpita da una seconda particella di massa $m_2=m_1$, avente velocità di modulo v_0 diretta orizzontalmente. Sapendo che le due particelle rimangono unite dopo l'urto, calcolare il minimo valore di v_0 necessario affinché esse compiano un giro completo intorno al punto di sospensione del filo.

Esercizio 3

Un piano infinito uniformemente carico, con densità superficiale di carica $= 10^{-6}$ C/m², è posto ad una distanza d = 0.1 m da un filo infinito uniformemente carico, con densità lineare di carica . Una carica puntiforme $q = 9 \cdot 10^{-5}$ C è posta inizialmente nel punto A equidistante dal piano e dal filo.

- a) sapendo che la carica \mathbf{q} è in equilibrio in \mathbf{A} , calcolare la densità lineare del filo carico.
- b) la carica viene spostata perpendicolarmente al piano carico, dal punto $\bf A$ al punto $\bf B$ posto sul piano carico: calcolare il lavoro compiuto dalla forza elettrostatica da $\bf A$ a $\bf B$ (utilizzare il valore $_0 = 9 \cdot 10^{-12} \ C^2/Nm^2$)

Esercizio 4

Una spira quadrata **ADEF** di lato $\mathbf{a} = \mathbf{0.5}$ m avente una resistenza $\mathbf{R} = \mathbf{12}$ si muove parallelamente all'asse x con velocità $\mathbf{v_0} = \mathbf{2}$ m/s in un campo magnetico diretto lungo l'asse z, tale che: $\vec{B} = (\mathbf{0;0;B_0})$ per $\mathbf{x} > 0$, e $\vec{B} = (\mathbf{0;0;2B_0})$ per $\mathbf{x} < 0$, con $\mathbf{B_0} = \mathbf{3}$ T. Detta $\mathbf{x_1}$ l'ascissa dei punti D ed E, supponendo che $0 < \mathbf{x_1} < \mathbf{a}$, calcolare:

- a) Il flusso del campo magnetico attraverso la spira, in funzione dell'ascissa x_1 .
- b) La forza elettromotrice indotta nella spira e la corrente i che vi circola, specificandone il verso.