

Impact of rainfall and weather forecasts on emergency room admissions in Singapore

SELECT members AS dream_team FROM jde07 LIMIT 3;

O1 Introduction & Problem Statement

Project motivation, research questions and data sources

O3 Database Design & Analysis

ERD Schematic, analysis and conclusion / next steps

O2 Data Extraction & Transformation

ELT & ETL Models used and staging database

O4 Q&A Session

Ask us anything!
We'll be happy to answer 😊

O1 Introduction & Project Motivation

0

Introduction

Hospitals need to anticipate surges in ER admissions.

Weather conditions (e.g., heavy rainfall) may affect admission patterns.

Forecast reliability is key for proactive hospital resourcing

Cost & response time impact

Problem Statements

Rainfall & Emergency Admissions

Does rainfall influence emergency room admissions?

Weather Forecast Reliability

Are weather forecasts sufficiently reliable for planning hospital resources?

Data Sources

Historical Rainfall 2023 & 2024 Weather Forecast

Emergency Department Attendances

Weather Station Locations

Hospital Locations

Data Quality

Rainfall records:

Missing dates / 4 fewer weather stations in 2024 vs 2023 (70 vs 74)

Admission records:

KKH data not included in MOH report and Woodlands health has null values for 2023 & 2024 as it was not operational during this time frame

Forecast records:

Missing dates

Focus on data from 2023 to 2024.

Woodlands Health & KKH has been omitted for analysis.

Full Joins used for analysis to overcome missing records where possible.

O2
Data Extraction,
Transformation
and, Loading

Data Flow

Python + PostgreSQL

A combination of ETL & ELT processes to prepare the data for analysis

Staging Database PostgreSQL

Transformation of the tables based on the Database Schema design.

Final Database Schema PostgresQL

Dimensional modeling database design optimized for OLAP queries for analysis

All 7 python jupyter notebook and 2 SQL scripts have been numbered accordingly for anyone to run the queries and recreate this data flow in our submissions.

Transformations - EMD Data

XLSX to CSV

EMD data file

	Date	АН	CGH	KTPH	NTFGH	NUH(A)	SGH	SKH	TTSH	WH
0	Sun, 01/01/23	64	351	286	252	257	309	333	336	NaN
1	Mon, 02/01/23	61	386	326	314	334	342	346	370	NaN
2	Tue, 03/01/23	76	436	401	364	352	343	397	422	NaN
3	Wed, 04/01/23	74	354	311	330	286	305	327	361	NaN
4	Thu, 05/01/23	61	373	335	320	309	337	351	366	NaN

Convert to a vertical table

EMD data was represented in a horizontal table

	date date	hospital_id text	hospital_name text	attendance double precision
1	2023-01-01	AH	Alexandra Hospital	64
2	2023-01-01	CGH	Changi General Hospital	351
3	2023-01-01	KTPH	Khoo Teck Puat Hospital	286
4	2023-01-01	NTFGH	Ng Teng Fong General Hospital	252
5	2023-01-01	NUH(A)	National University Hospital	257

station_id,
station_name,
location_longitude,
location latitude;

--Alter date column type from text to date
ALTER TABLE rainfall_final2023
ALTER COLUMN date TYPE DATE
USING date::DATE;

Transformations - Rainfall Data

Sum of rainfall

Historical rainfall had readings for every 5 minutes per day.

```
-- 1. 2023 Rainfall Data Transformation

CREATE TABLE rainfall_final2023 AS

SELECT

date,
    station_id,
    station_longitude AS longitude,
    location_longitude AS latitude,
    location_latitude AS latitude,
    SUM(reading_value) AS total_rainfall,
    CASE

WHEN SUM(reading_value) > 30.01 THEN 'Heavy Rain'
    WHEN SUM(reading_value) >= 0.09 THEN 'No Rain'
    WHEN SUM(reading_value) >= 0.1 AND SUM(reading_value) <= 10.00 THEN 'Light Rain'
    ELSE 'Moderate Rain'

END AS rain_intensity

FROM rainfall 2023
```

infall Intensity

Add a descriptive text column for the amount of rainfall

Large dataset: 6.7 million rows due to the granularity of the records (every 5 mins of reading) for each weather station.

Loading via API was slow, even with chunking and sending data in batches.

Batching created duplicates when trying to aggregate the data in python before loading to the staging database.

Hence, we used the csv file to extract and performed the **transformation in postgreSQL creating an ELT pipeline.**

	date date	station_id text	station_name text	double precision	double precision	total_rainfall double precision	rain_intensity text
1	2023-01-01	S08	Upper Thomson Road	103.8271	1.3701	0	No Rain
2	2023-01-01	S100	Woodlands Road	103.74855	1.4172	0	No Rain
3	2023-01-01	S102	Semakau Landfill	103.768	1.189	0	No Rain
4	2023-01-01	S104	Woodlands Avenue 9	103.78538	1.44387	0	No Rain
5	2023-01-01	S106	Pulau Ubin	103.9673	1.4168	0	No Rain

Transformations - Forecast Data

Aggregate forecast by date

Condense 3-4 time periods within 24 hour period to 1 date

Time Period Text Text	Q	Time Period Start Text	Q	Time Period End Text	Q	South Forecast Text Text	C
(Null)	0.0%	(Null)	0.0%	(Null)	0.0%	(Null)	0.09
Midday to 6 pm 7 May	0.2%	2023-02-12T06:00:00+08:00	0.2%	2023-02-12T12:00:00+08:00	0.2%	Partly Cloudy (Day)	22.65
6 am to Midday 12 Feb	0.2%	2023-02-12T12:00:00+08:00	0.2%	2023-02-12T18:00:00+08:00	0.2%	Cloudy	21.5
6 am to Midday 28 Dec	0.2%	2023-03-02T18:00:00+08:00	0.2%	2023-03-03T06:00:00+08:00	0.2%	Thundery Showers	20.9
Midday to 6 pm 12 Feb	0.2%	2023-05-07T12:00:00+08:00	0.2%	2023-05-07T18:00:00+08:00	0.2%	Partly Cloudy (Night)	17.4
1651 more values		1326 more values		1326 more values		13 more values	
6 am to Midday 1 Jan		2022-01-01T06:00:00+08:00		2022-01-01T12:00:00+08:00		Windy	
Midday to 6 pm 1 Jan		2022-01-01T12:00:00+08:00		2022-01-01T18:00:00+08:00		Windy	
6 pm 1 Jan to 6 am 2	Jan	2022-01-01T18:00:00+08:00		2022-01-02T06:00:00+08:00		Partly Cloudy (Nig	ht)

Output forecast as binary

Use a function to collapse the predictions to a single binary distinction for each

region as True or False

```
agg_forecasts = pd.DataFrame({'fordate': sorted(df_raw_fcs['fordate'].unique())})
agg_results = []
for col in [c for c in df_raw_fcs.columns if c.endswith('_forecast_text')]:
    target_name = col.replace('_forecast_text', '')
   agg_col = (
        df raw fcs.groupby('fordate')[col]
        .apply(lambda x: x.str.contains('rain|showers', case=False, na=False).any())
        .reset index(name=target name)
    agg_results.append(agg_col)
for agg_col in agg_results:
    agg_forecasts = agg_forecasts.merge(agg_col, on='fordate', how='left')
agg_forecasts['fordate'] = pd.to_datetime(agg_forecasts['fordate'])
#print(agg_forecasts)
agg forecasts = agg forecasts.melt(
    id vars='fordate'.
    value_vars=['south', 'north', 'east', 'central', 'west'],
    var name='region',
    value_name='rain_forecasted'
```


Transformations - Location Mapping

Hospitals by region

	hospital_id text	region text
1	KTPH	Central
2	SKH	Central
3	TTSH	Central
4	CGH	East
5	AH	South

Weather stations to hospitals

Deather stations by region

	region text	station_id text
1	Central	S109
2	Central	S215
3	Central	S43
4	Central	S07
5	Central	S119

_	Singapore Regions by K-Means Clustering
1.45 -	Central East North
1.40 -	North South West
1.35 - 8	×
Patitude 1.30 -	×
1.25 -	•
1.20 -	•
103.	60 103.65 103.70 103.75 103.80 103.85 103.90 103.95 104.00

AH

AH

AH

AH

hospital_id station_id

S77

S120

S223

S226

S102

Geospatial mapping of the hospital locations to nearest weather stations in each region.

This connects data across 3 different data sets - rainfall data, hospital locations and forecast data.

Used python libraries such as **geopandas** and **kmeans** to form the clustering / proximities.

- Haversine function to calculate the nearest hospital to each station
- group of stations near each hospital
 area of rainfall near each hospital

Regions → Stations, Hospitals

K-means clustering to group all stations and hospitals into the 5 regions (north, central, west, south, east) used for NEA's weather forecasts

Staging Database

longtitude

latitude

Historical Rainfall 2023	Historical Rainfall 2024	EMD Attendances	
rainfall_2023	rainfall_2024	emd_data	
date	date	date	
station_id	station_id	hospital_id	
station_name	station_name	hospital_name	
longitude	longitude	attendance	
latitude	latitude		•
total_rainfall	total_rainfall		
rain_intensity	rain_intensity		
Hospital by region	Stations by region	Stations by hospital	Rainfall forecast
hospitals_region	stns_region	stns_hospital	agg_forecasts
hospital_id	region	hospital_id	date
region	station_id	station_id	region
latitude	longitude	(1)	rain forecasted

Dimensional Modelling

Analysis Methods

- 1. Simple aggregations to get an initial overview of the numbers
- 2. Testing if differences in admissions by rainfall intensity is statistically significant
- 3. Direction for further/future analysis:

Could there be an effect of rainfall on hospital emergency visits on the day(s) *following* a rainy day? Run a time-lagged regression to observe potential correlation.

Rainfall Intensity vs. Patient Admissions

We observe Alexandra hospital to have lower admissions regardless of rain intensity compared to other hospitals.

Admissions on Rainy vs. Non-Rainy Days

Compare

- average number of patients admitted to the emergency dept on a rainy day
- average number of patients admitted to the emergency dept on a non-rainy day (abstracting across different hospitals)

Is the difference statistically significant?

perform a two-sample t-test

```
from scipy.stats import ttest_ind

emd_rain_perday['is_rainy'] = emd_rain_perday['reading_value'] >= 0.09
emd_no_rain = emd_rain_perday[emd_rain_perday['is_rainy'] == False]['attendance']
emd_rain = emd_rain_perday[emd_rain_perday['is_rainy'] == True]['attendance']

# Welch's t-test
t_stat, p_val = ttest_ind(emd_no_rain, emd_rain, equal_var=False)

print(f"T-statistic: {t_stat:.3f}, p-value: {p_val:.5f}")

T-statistic: -1.151, p-value: 0.24991
```


Rainfall vs Admissions Correlation

Overall, during days of light and no rain, admissions were slightly higher compared to moderate or heavy rain days.

Trend line (R-squared ~ 0.0007) which shows a weak correlation.

More granular analysis is needed to gain more insights.

Forecast Reliability

Overall, the forecast is about **97%** accurate as it did rain as predicted by the forecast.

Of the 3% of days where it was predicted not to rain, we see that:

- 83% were Light Rain days
- 12% were Moderate Rain days
- 4% were Heavy Rain days

Preliminary Findings

Rain & ER

No conclusive Rainfall linked to a rise in ER admissions

Forecast Accuracy

~97% for region-level predictions

Weather Sensitivity

A hospital's location does **not** influence if/how patient admissions are affected by rain

Conclusions

Rainfall intensity and ER admissions are inconclusive.

Staffing Alerts

Hospitals may consider using other parameters for staffing alerts

Forecast Accuracy

Forecasts provide some predictive power, but not fully reliable

____. **4** Cost - Time

Real cost and response time implications

Next Steps

Spatial granularity

Improve spatial granularity
with microweather models

Machine Learning

Explore machine learning models for ER surge prediction

Real-Time Weather Feeds

Integrate real-time weather feeds into hospital planning dashboards

Thanks!

Do you have any questions?

SELECT members AS dream_team FROM jde07 LIMIT 3;

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon**, and infographics & images by **Freepik**

