

6G時代のネットワーク・コンピューティングインフラ実現に向けた取り組み

2023/11/10 富士通株式会社 6Gインフラ戦略企画統括部 アーキ&インテグレーション部 深野 晴久

自己紹介

FUJITSU

○ **名前** :深野 晴久

○ **所属** :富士通株式会社 富士通研究所

先端技術開発本部 6Gインフラ戦略企画統括部 アーキ&インテグレーション部

経歴

○ NW装置向けのFPGA開発 : 10年

○ ヘテロジニアスコンピューティングの研究開発 : 3年

○現在の仕事内容

- 6G時代に向けたNW・コンピューティングインフラのPoC遂行
- オープンコミュニティにおける6Gインフラの訴求

○ コミュニティ活動

- LF(Linux Foundation) EdgeのAkrainoプロジェクト
 - TSC(Technical Steering Committee) Co-chair
 - □ コントリビューション: ロボット向けのセンサーNWを構築するためのソフトスタック

目次

- OLF Edgeについて
- OLF Edge Akrainoについて
- ○エッジコンピューティングにおける課題
- ○解決に向けた取り組み IOWN GF技術の活用
- ○光ディスアグリゲーテッドコンピューターについて
- ○LF Edge/IOWN GF Joint PoC構想について
- OJoint PoCの詳細
- ○今後の予定

LF Edgeについて (1/2)

○LF Edgeの概要

- ○Linux Foundation配下のエッジコンピューティングに関するアンブレラ組織
- ○エッジコンピューティングのためのオープンソースのフレームワークを作ることが目的

配下のプロジェクト

IMPACT STAGE

GROWTH STAGE

AT LARGE STAGE

協賛メンバー(プレミア)

LF Edgeについて (2/2)

5

LF Edge Akrainoについて (1/3)

- ○エッジのユースケースとそれを実現するためのOSSスタック(Blueprint)を開発・公開
- Akraino Blueprintとは? インテグレート、テスト済みでデプロイ可能なエンドtoエンドのOSSスタック

LF Edge Akrainoについて (2/3)

○User/On premからMetro エッジまで幅広い領域で30以上のBlueprintを公開

LF Edge Akrainoについて (3/3)

- ○2024年度の活動
 - ○活動方針
 - ○エッジAI(エッジでの低遅延推論など)にフォーカス
 - OCP/ESTI/LF Edgeハッカソン入賞3チーム案件のBlueprint化 https://www.opencompute.org/blog/2023-ocp-global-summit-hackathon-was-amazing

エッジのユースケースを実現したい方、エッジのソフトスタックを公開したい方など、 興味がある方はご相談ください。

- ○イベント関連
 - OAkraino summit(2024年3月頃と10月頃)

登壇等に興味がある方はご相談ください。

○ONE(Open Networking Edge) Summit出展(4/29~5/1)

コンピューティング(エッジ含む)の動向

AIモデル規模の推移

AIモデル大規模化の加速(35倍/年) →システムの大規模化

電力効率が高く、柔軟なコンピューティングインフラが必要

解決に向けた動き:

IOWN GFとLinux Foundationが基本合意書締結

© 2023 Fujitsu Limited

目的

より高性能、低遅延、高電力効率を実現する共通基盤を開発すること。

IOWN GFのプラットフォームにLinux Foundationのソフトウェアを統合

10

IOWN GF(Innovative Optical and Wireless Network)

- ・将来のデータおよびコンピューティング要件に対応する 新しい通信インフラのイノベーションと導入
- ・フォトニクスR&D、分散コンピューティング、ユースケース、 ベストプラクティスなどの分野における新技術、 フレームワーク、仕様、リファレンスデザインの開発

Linux Foundation

- ・オープンソース ソフトウェア/ハードウェア/スタンダード/ データに関するコラボレーションのための世界有数の拠点
- ・オープンソースネットワーク、IoTソフトウェアに関わる 下記プロジェクトが参画
 - LF Networking
 - ·LF Edge
 - •Open Programmable Infrastructure

解決に向けた取り組み: IOWN GF/LF Edge Joint PoC

○IOWN GFのインフラ上にLF Edgeのソフトスタックを実装し、ユースケースベースで電力効率と柔軟性の向上を実証するIOWN GF/LF Edge Joint PoCを提案

IOWN GFのインフラ技術の紹介 光ディスアグリゲーティッドコンピューター

12

汎用HW/SW

特徴①ディスアグリゲーション

デバイスを柔軟に組み替え

- ✓利用効率向上
- ✓迅速な環境構築・変更

特徴②デバイス間直接通信/ 光接続

- ✓CPU負荷低減、低消費電力
- ✓処理遅延削減

光ディスアグリゲーテッドコンピューターの特徴① ディスアグリゲーション

・アプリ3に必要なリソース

従来(サーバーオリエンティッド)の場合

サーバー単位でリソースを追加

→未使用なデバイスが存在し、利用効率が低下

ディスアグリゲーションの場合

リソースプールから必要なデバイスを選択し、論理ノードを構成 →様々なアプリの要件に高い利用効率で対応可能

フォトニックディスアグリゲーテッドコンピューターの特徴② デバイス間直接通信/光接続

従来(CPUセントリック)の場合

デバイス間のデータ転送をCPUが介在 →CPUが性能のボトルネックとなりやすい

デバイス間直接通信/光接続の場合

共有メモリや光Switchを介してデバイス間で直接データ通信 →・コスト/消費電力の削減

・処理遅延の低減

IOWN GF/LF Edge Joint PoCの詳細

映像推論&配信を光ディスアグリゲーティッドコンピューターとAkraino Blueprintを活用し、エンドtoエンドで実装

Joint PoCの今後の計画

	Step1:2023年度	Step2:2024年度
PoCの狙い (実証内容)	 ・IOWN GFのインフラに関するコンセプト/技術 とLF Edgeのソフトスタックの融合 ・既存のユースケースの性能の向上 (消費電力、柔軟性) 	・LF Edge/IOWN GFの提唱するユースケースの性能(消費電力、柔軟性)の向上
開発内容	・既存の映像推論&配信を題材として、 光ディスアグリゲーティッドコンピューター上に Akraino Blueprintを活用し実装	・PoC対象のユースケース選定 ・ユースケースの実装 (アクセラレーターへのオフロードなど)
オープンコミュニティ 活動	・LF Edge Akrainoホワイトペーパー投稿・LF Edge solution showcase投稿・IOWN GF PoCドキュメント提案	・ONE(Open Network Edge) Summit出展

16

PoCの成果はコミュニティにて発信していきます。 活動に興味がある方は気軽にお声掛けください。(fukano.haruhisa@fujitsu.com)

