

Problème discret

Systèmes linéaire

Difficulte

Exemples

Kererences

MODÉLISATION ET INVERSION EN GÉOPHYSIQUE 4 - Inversion: Introduction

Bernard Giroux (bernard.giroux@ete.inrs.ca)

Institut national de la recherche scientifique Centre Eau Terre Environnement

> Version 1.0.1 Hiver 2018

oblème discret

Systèmes linéaires

Difficulté

Exemples

References

Données et modèles

Aperçu

Données et modèles

Problème direct

```
estimé des paramètres du modèle →
                                       modèle quantitatif \rightarrow
                   prédiction des données
```

Problème inverse

```
données observées \rightarrow
                           modèle quantitatif \rightarrow
      estimé des paramètres du modèle
```


Données et modèles

Problème discret

Difficulté

Exemple

Référen

- Les données mesurées, notées *d*, constituent le point de départ de l'inversion.
- L'objectif est d'obtenir une information caractérisant l'objet étudié;
 - Cette information prends la forme de valeurs numériques : les paramètres du modèle, notés *m*.
- Les lois de la physique permettent de relier *m* et *d*;
 - Ces lois sont décrites par une fonction *G*, telle que

$$G(m) = d. (1)$$

• Les données peuvent être fonction du temps et/ou de l'espace, et sont généralement une série d'observations *discrètes*.

Données et modèles

Problème discret

mice ... lice

Exemples

- En pratique, les données mesurées contiennent une erreur expérimentale.
- On assume que les données sont la somme des mesures obtenues d'une expérience "parfaite", notées d_{vrai} , et d'un bruit η , i.e.

$$d = G(m_{\text{vrai}}) + \eta \tag{2}$$

$$=d_{\text{vrai}}+\eta,\tag{3}$$

où

- d_{vrai} satisfait l'éq. (1) lorsque m est égal au modèle vrai m_{vrai} ;
- la fonction *G* représente exactement la réalité.
- La présence de η , même faible, peut faire en sorte que m retrouvé par inversion soit très différent de m_{vrai} .
- En général, il existe un infinité de modèles *m* différents de *m*_{vrai} qui s'ajustent à *d*_{vrai}.

Problème discret

Creetamae linániros

Difficultá

Escape a la

Ráfáronco

Keterences

Problème discret

Problème discret

Problème discret

obleme dis

Difficultes

Référenc

• La plupart du temps, le modèle est décrit par un nombre fini, *M*, de paramètres, i.e.

$$\mathbf{m} = [m_0, m_1, m_2, \dots, m_{M-1}] \tag{4}$$

• De façon similaire, on dispose d'un nombre fini, *N*, de données

$$\mathbf{d} = [d_0, d_1, d_2, \dots, d_{N-1}] \tag{5}$$

• On a alors affaire à un problème inverse discret de la forme

$$G(\mathbf{m}) = \mathbf{d}.\tag{6}$$

- Dans le cas contraire où le modèle et les données sont des fct continues, l'estimation de *m* à partir de *d* est un problème inverse continu;
 - On peut souvent approximer un problème continu par un problème discret.

Problème discret

Données et modèles

Problème discret

Systèmes linéai

Dáfáran

- Lorsque le nombre de paramètres *M* est faible, on parle d'estimation de paramètres;
- A contrario, lorsque M est élevé et qu'il est nécessaire d'appliquer des contraintes pour stabiliser la solution, on parle de problème inverse;
 - On verra plus loin que des contraintes sont nécessaires lorsque le système à résoudre est *mal conditionné*.

Problème disci

Systèmes linéaires

Difficultés

Exemples

References

Systèmes linéaires

Systèmes linéaires

Problème discret

Systèmes linéaires

Référenc

- Les systèmes linéaires sont un type de modèle mathématique trouvant plusieurs applications;
 - Les systèmes linéaires obéissent au principe de superposition :

$$G(m_1 + m_2) = G(m_1) + G(m_2)$$
 (7)

et à la mise à l'échelle :

$$G(\alpha m) = \alpha G(m). \tag{8}$$

 Dans le cas des problèmes inverses discrets, le problème devient un système linéaire d'équations algébriques :

$$G(\mathbf{m}) = \mathbf{G}\mathbf{m} = \mathbf{d}.\tag{9}$$

Systèmes linéaires

Systèmes linéaires

- En géophysique, les modèles linéaires sont souvent utilisables;
- La raison principale est que l'objet d'étude varie peu par rapport à son état d'équilibre;
- Une relation linéaire permet de décrire adéquatement le phénomène;
- Par exemple en sismique, les contraintes générées par le passage des ondes sont très faibles p/r aux modules d'élasticité;
 - La relation contrainte/déformation est alors quasi linéaire.
- La gravimétrie et le magnétisme sont d'autres exemples où les champs sont faibles et où des modèles linéaires s'appliquent.

Problème discret

Systèmes linéaires

Difficultés

Exemples

References

Difficultés

Difficultés du problème inverse

Difficultés

- Il est crucial de demeurer critique face aux résultats de l'inversion:
- La raison principale est qu'il peut y avoir plusieurs modèles qui s'ajustent aussi bien aux données;
- Les éléments à l'origine de ce phénomène sont :
 - l'existence d'une solution;
 - la non unicité de la solution;
 - l'instabilité du système.

Existence de la solution

Données et modèles Problème discret

Systèmes linéaire Difficultés

Exemple

Référenc

- Il est possible qu'aucun modèle ne s'ajuste *parfaitement* aux données;
- Les raisons sont :
 - le modèle physique est approximatif;
 - les données contiennent du bruit.
- Si l'ajustement n'est pas parfait, il est fort probable que le modèle estimé ne soit qu'une approximation du modèle réel.

Non unicité de la solution

Problème discret Systèmes linéaires

Difficultés

Exemple

 Advenant que des solutions exactes existent, elles peuvent être non uniques, même pour un nombre infini de données;

- L'exemple classique est la réponse d'une sphère en gravimétrie, qui dépend de la masse de la sphère et non de la distribution de densité.
 - Deux sphères donneront exactement la même réponse si

$$\rho_1 \frac{4}{3} \pi r_1^3 = \rho_2 \frac{4}{3} \pi r_2^3$$

- La non unicité est une caractéristique des systèmes linéaires pour lesquelles les équations ne sont pas toutes linéairement indépendantes;
 - Le degré d'indépendance peut être évalué par l'analyse de la résolution du modèle.

Instabilité

Problème discret

Systèmes linéaires

Difficultés Exemples

- Une solution est instable lorsqu'un faible changement dans une mesure (e.g., un faible bruit η) produit une variation importante du modèle estimé;
- De tels problèmes sont dits *mal conditionnés* dans le cas des problèmes discrets, ou *mal posés* dans le cas continu;
- Il est possible de stabiliser la solution en imposant des contraintes qui vont biaiser (d'une façon souhaitée) la solution;
 - on parle alors de *régularisation*.

roblème discret

Systèmes linéaires

Difficult

Exemples

Références

Exemples

Exemple 1 : Ajuster une droite

Données et modèles Problème discret

• On dispose d'un certain nombre (N) de mesures de température prises à des temps t_i dans l'atmosphère.

• Ces données contsituent le vecteur $\mathbf{d} = [T_0, T_1, T_2, \dots, T_{N-1}]^T$.

- On assume que la température obéit à un modèle linéaire en fonction du temps : T = a + bt;
 - L'ordonnée à l'origine a et la pente b sont les deux paramètres du modèle, i.e. $\mathbf{m} = [a, b]^T$.

Exemples

Exemple 1 : Ajuster une droite

Domices et modele

oblème disc

Systèmes lin

Difficulté

Exemples

Keletein

• Selon le modèle linéaire, la température doit satisfaire

$$T_0 = a + bt_0 \tag{10}$$

$$T_0 = a + bt_0 \tag{11}$$

$$T_{N-1} = a + bt_{N-1} (13)$$

Sous forme matricielle, on a

$$\begin{bmatrix}
T_0 \\
T_1 \\
\vdots \\
T_{N-1}
\end{bmatrix} = \begin{bmatrix}
1 & t_0 \\
1 & t_1 \\
\vdots & \vdots \\
1 & T_{N-1}
\end{bmatrix} \underbrace{\begin{bmatrix} a \\ b \end{bmatrix}}_{\mathbf{m}}$$
(14)

Exemple 2: Profilage sismique vertical

Problème discret

Systèmes linéaires

Difficultés

Exemples

- Avec le profilage sismique vertical, on cherche à déterminer la distribution verticale de la vitesse sismique V;
- Des géophones sont placés dans un forage et une source est actionnée à la surface;
- L'onde sismique est enregistrée aux géophones, ce qui permet de déterminer le temps de parcours t.

Exemple 2 : Profilage sismique vertical

Problème discret
Systèmes linéaires

Exemples

- Le problème est non linéaire lorsque défini en terme de vitesse;
- Le problème devient linéaire si exprimé en terme de *lenteur* (s), l'inverse de la vitesse, i.e. s = 1/V.
- Le temps de parcours à une profondeur *z* vaut

$$t(z) = \int_{0}^{z} s(l)dl \tag{15}$$

$$= \int_0^\infty s(l)H(z-l)dl \tag{16}$$

où H est la fonction de Heaviside, qui vaut 1 si $z-l \geq 0$ et 0 si z-l < 0.

Exemple 2: Profilage sismique vertical

Données et modèl Problème discret Systèmes linéaires

Exemples

- Le problème est résolu en discrétisant le milieu en couches
- Si le modèle compte M couches et le levé compte N géophones, l'intégrale devient, pour un i^e géophone à une position y_i

$$t_{i} = \sum_{j=0}^{M-1} H(y_{i} - z_{j}) s_{j} \Delta z$$
 (17)

où $N/M = \Delta y/\Delta z$ est un entier.

- Le vecteur des données est $\mathbf{d} = [t_0, t_1, t_2, \dots, t_{N-1}]^T$;
- Les paramètres du modèle est sont regroupés dans le vecteur $\mathbf{m} = [s_0, s_1, s_2, \dots, s_{M-1}]^T$;
- La matrice **G** sera alors de dimension $N \times M$ et contiendra les termes $H(y_i z_j)\Delta z$.

Exemple 2 : Profilage sismique vertical

Problème discret

Exemples

Référence

Exemple 2 : Profilage sismique vertical

Exemples

Sous forme matricielle, pour l'ensemble des données de la figure, on obtient

$$\begin{bmatrix}
t_0 \\
t_1 \\
\vdots \\
t_{10} \\
t_{11}
\end{bmatrix} = \Delta z \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\vdots & \vdots \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{bmatrix} \begin{bmatrix}
s_0 \\
s_1 \\
s_2 \\
\vdots \\
s_9
\end{bmatrix}$$
(18)

m

Exemple 3: Tomographie

Données et modèles Problème discret

Systèmes linéaire

Difficultés

Exemples Référence

- En tomographie, on cherche à évaluer la vitesse de propagation ou l'atténuation des ondes dans un milieu.
- Soit l'exemple d'un mur de briques de vitesses différentes :

Exemple 3: Tomographie

Problème discret
Systèmes linéaires
Difficultés

Exemples

- Deux séries de mesures sont faites, une première le long des lignes et la seconde le long des colonnes, pour un total de N=8 mesures.
- Le vecteur des données est $\mathbf{d} = [t_0, t_1, t_2, \dots, t_7]^T$
- On suppose que chaque brique est de vitesse *V* uniforme;
- Le temps de parcours dans une brique j est proportionnel à la distance parcourue dans la brique, h, et vaut $t_j = hs_j$, où s est la lenteur.
- Le modèle comporte M=16 paramètres, et est dans ce cas $\mathbf{m} = [s_0, s_1, s_2, \dots, s_{15}]^T$

Exemple 3: Tomographie

Donnees et modele

oblème disc

Systèmes lin

Difficultés

Exemples

Référence

• On relie les données aux paramètres du modèle par

ligne 1:
$$t_0 = hs_0 + hs_1 + hs_2 + hs_3$$

ligne 2: $t_1 = hs_4 + hs_5 + hs_6 + hs_7$
:
colonne 3: $t_6 = hs_2 + hs_6 + hs_{10} + hs_{14}$
colonne 4: $t_7 = hs_3 + hs_7 + hs_{11} + hs_{15}$

• Sous forme matricielle, nous avons

(19)

Problème discret

Systèmes linéaires

Difficulté

Exemples

Références

Références

Références

Références

- - Aster, R. C., Borchers, B., and Thurber, C. H. (2013). Parameter Estimation and Inverse Problems. Academic Press, 2nd edition
 - Menke, W. (2012). Geophysical Data Analysis: Discrete Inverse Theory. Academic Press, 3rd edition