1 Locally trivial fibrations

Definition 1.1 — A fiber bundle (or a locally trivial fibration or a twisted **product** or a fibration) is a 4-tuple (E, B, F, p) where E, B, F are topological spaces and $p: E \to B$ continuous s.t. $\forall x \in B$, there exists an open set $U \subseteq B$ containing x and a homeomorphism

$$\phi: p^{-1}(U) \to U \times F$$

s.t. $\pi_1 \circ \phi = p$ where π_1 is projection onto first factor. Here E is called the **total space**, B is **base space**, F is the **fiber**, p is the **projection**, ϕ is a **local trivialization**.

Example 1.2

(1) $E = B \times F$.

(2) Mobius band: $M = \mathbb{R}^2/(x,y) \sim (x+1,-y)$. Let $q: \mathbb{R}^2 \to M$ be the quotient map.

(3) S^{2n-1} be the unit sphere in \mathbb{C}^n . Recall S^1 the unit circle in \mathbb{C} acts on \mathbb{C}^{2n-1} by

$$S^1 \times S^{2n-1} \to S^{2n-1}, (\lambda(z_1, \dots, z_n)) \mapsto (\lambda z_1, \dots, \lambda z_n).$$

Exercise: $S^{2n-1}/S^1 \cong \mathbb{C}P^{n-1}$.

Exercise: show $(S^{2n-1}, \mathbb{C}P^{n-1}, S^1, p)$ is a fiber bundle.

(4) If G is a Lie group, and H a compact subgroup of G, then (G, G/H, H, p) is a fiber bundle where p is canonical projection. Exercise.

Example 1.3 (1) $O(n) = \{A \in GL(n, \mathbb{R}) : \langle Av, Aw \rangle = \langle v, w \rangle \} = \{A \in GL(n, \mathbb{R}) : A^T = A^{-1} \}$. And $SO(n) = \{A \in O(n) : \det A = 1 \}$. Recall from diff top that they are smooth manifold of dimension n(n-1)/2. O(n) has two components and SO(n) is the component containing the identity. Exercise: $SO(1) = \{1\}$. $SO(2) \cong S^1$. $SO(3) \cong \mathbb{R}P^3$.

Notice $SO(n) \leq SO(n+1)$. Exercise: prove that $SO(n+1)/SO(n) \cong S^n$. Hint:

note the 1st column of $B \in SO(n+1)$ is a unit vector in \mathbb{R}^{n+1} .

- (2) Let $V_{n,k}$ be orthonormal k-frames (ordered k vectors) in \mathbb{R}^n . Exercise: Steifel manifold $V_{n,k} = O(n)/O(n-k)$. So $V_{n,n} \cong O(n)$. $V_{n,1} = S^{n-1}$. $V_{n,n-1} \cong SO(n)$. Exercise: if k < n, then $V_{n,k} \cong SO(n)/SO(n-k)$.
- (3) $G_{n,k}$ is the k-dimensional subspaces in \mathbb{R}^n . Exercise: $G_{n,k} = O(n)/O(n-k) \times O(k)$.
- (4) Recall the unitary group $U(n) = \{A \in GL_{n,\mathbb{C}} : \langle Av, Au \rangle = \langle v, u \rangle \}$ where $\langle v, u \rangle = \overline{v} \cdot u$. Alternatively, $U(n) = \{A \in GL(n,\mathbb{C}) : \overline{A}^T = A^{-1}\}$. The special unitary group is $SU(n) = \{A \in U(n) : \det A = 1\}$. From diff top, these are manifolds and $\dim U(n) = n^2$ and $\dim SU(n) = n^2 1$. Exercise: $U(n)/SU(n) \cong S^1$. Exercise: $U(1) \cong S^1$, $SU(2) \cong S^3$, $U(2) \cong S^3 \times S^1$. $SU(n+1)/SU(n) \cong S^{2n+1}$.
- (5) $V_{n,k}(\mathbb{C}) \cong U(n)/U(n-k)$.
- (6) $G_{n,k}(\mathbb{C}) \cong = U(n)/U(k) \times U(n-k).$
- (7) If $f: M \to N$ a smooth map, s.t.
 - (i) f is surjective
 - (ii) f is a submersion
 - (iii) f is proper i.e. preimage of compact set is compact.

Then $f^{-1}(p)$ where p is any point is a fiber bundle. This is Ehresmann's Theorem.

- (8) vector bundles are fiber bundles with fiber \mathbb{R}^k or \mathbb{C}^k with extra structure on the fibers. This includes the tangent bundles, cotangent bundles, normal bundles.
- (9) covering space is a bundle with discrete fiber.

Definition 1.4 — Given a fiber bundle $E \xrightarrow{p} B$ and a map $f: A \to B$, the **pull-back** of E to A is

$$f^*(E) = \{(a, e) \in A \times E : f(a) = p(e)\}.$$

$$p: f^*E \to A: (a, e) \mapsto a.$$

Exercise:

- (1) Show $f^*E \to A$ is a fiber bundle with the same fiber as $E \to B$.
- (2) If A is a subset of B and $f: A \to B$ is inclusion, then show $f^*(E) \cong E|_A$ i.e. $E|_A = p^{-1}(A)$.
- (3) $\tilde{f}: f^*E \to E, (a, e) \mapsto e$ is a bundle map so the diagram commutes.
- (4) If $f: A \to B$ is constant and fiber of E is F, then $f^*E \cong A \times F$.
- (5) If $E = B \times F$ then $f^*E \cong A \times F$.

Definition 1.5 — If $E \xrightarrow{p} B$ are $E' \xrightarrow{p'} B$ are bundles, we say they are **bundle** isomorphic if there exists a homeomorphism $h: E \to E'$ s.t. the diagram commutes. We denote $E \cong E'$.

Theorem 1.6

If $f_i: A \to B$, i = 0, 1 are homotopic and A is locally compact and normal (e.g. a CW complex), then $f_0^*E \cong f_1^*E$.

Proof. Let $f_i:A\to B$ and homotopy $H:A\times I\to B$. Diagrams. Theorem 2 says there exists a homotopy \widetilde{H} :

 $H^*E = \{(x, t, e) \in A \times I \times E : H(x, t) = p(e)\}.$ Define

$$\overline{H}((x,e),t) = (x,t,\widetilde{H}(x,e,t)).$$

Exercise: \overline{H} is a bundle isomorphism.

Restricting \overline{H} to $f_0^*E \times \{1\}$ yields a bundle isomorphism. Notice $\overline{H}(f_0^*E \times \{1\}) = \{(x,1,e) \in A \times I \times E : H(x,1) = f_1(x) = p(e)\} = f_1^*E$. Hence $f_0^*E \cong f_1^*E$.

Theorem 1.7 (covering homotopy property)

Let $p_0: E \to B$ and $q: Z \to Y$ be fiber bundles with the same fiber. Suppose B is locally compact and normal. Given $\widetilde{h}_0: E \to Z, h_0: B \to Y$ s.t. the diagram commutes, and a homotopy $H: B \times I \to Y$ of h_0 , then there exists a homotopy $\widetilde{H}: E \times I \to Z$ of bundle maps covering H.

Proof. We assume B is compact (locally compact case is an exercise). Idea: break E into pieces where bundle is trivial $U \times F$. Here the theorem is clear. Then we put the homotopies together.

Let $\{V_{\beta}\}\$ be a cover of Y by locally trivializing charts so we have an isomorphism

$$q^{-1}(V_{\beta}) \xrightarrow{\phi_{\beta}} V_{\beta} \times F$$

 $\{H^{-1}(V_{\beta}\})$ is an open cover of $B \times I$ since $B \times I$ is compact, we have a finite subcover $\{U_{\alpha} \times I_{j}\}$ covering $B \times I$ s.t. $H(U_{\alpha} \times I_{j}) \subseteq V_{\beta}$ for some β . Note: $H^{*}Z$ is trivial over $U_{\alpha} \times I_{j}$ since Z is trivial over V_{β} . We can take the I_{j} to be segements. We will inductively lift H to $\widetilde{H}: E \times [0, t_k] \to Z$. For each $x \in B$ there exists neighborhoods W, W' s.t. $x \in W \subseteq \overline{W} \subseteq W'$ and $\overline{W}' \subseteq U_i$ for some i by normal. There are finite number of $\{W_i, W_i'\}_{i=1}^s$ s.t. $\{W_i\}$ cover B. By Urysohn's lemma, there exist maps $u_i: B \to [t_k, t_{k+1}]$ s.t. $u_i(\overline{W}_i) = t_{k+1} \text{ and } u_i(B - W_i') = t_k. \text{ Set } \tau_0(x) = t_k \ \forall \ x \text{ and } \tau_i(x) = \max\{u_1(x), \dots, u_i(x)\}.$ So $t_k = \tau_0(x) \le \tau_1(x) \le \ldots \le \tau_s(x) = t_{k+1}$. Set $B_i = \{(x,t) \in B \times I : t_k \le t \le \tau_i(x)\}$. Let E_i be the part of $E \times I$ above B_i . So $E_0 = E \times \{t_k\} \subseteq E_1 \subseteq \ldots \subseteq E_s = E \times [t_k, t_{k+1}]$. Assume we have \widetilde{H} defined on $E \times [0, t_k]$ so it is defined on $E \times \{t_k\} = E_0$. We inductively extend \widetilde{H} over E_i . Note if $(x,t) \in B_i - B_{i-1}$, then $\tau_{i-1} < t \le \tau_i(x)$. So $u_i(x) > \tau_{i-1}(x)$. Thus $x(t) \in W_i' \times \{t_k, t_{k+1}\}$. By definition $W_i' \times [t_k, t_{k+1}] \subseteq U_\alpha \times I_j$. So $H(B_i - B_{i-1}) \subseteq V_\beta$ for some β and $q^{-1}(V_{\beta}) \xrightarrow{\phi_{\beta}} V_{\beta} \times F$. Let $\rho_{\beta} : q^{-1}(V_{\beta}) \to F$ be ϕ_{β} composed with projection. For $(e,t) \in E_i - E_{i-1}$, let $p(e) = x \in B$. Set $\widetilde{H}(e,t) = \phi_{\beta}^{-1}(H(x,t), \rho_{\beta}(\widetilde{H}(e,\tau_{i-1}(x))))$. Exercise: show this extends \widetilde{H} over E_i .

Corollary 1.8

If X is contractible and locally compact and normal, then any fiber bundle over X is trivial, i.e. $E \cong X \times F$.

Proof. X contractible means the identity map f_0 is homotopy to the constant map f_1 . Therefore, $f_0^*E \cong E \cong f_1^*E \cong X \times F$.