Assignment 5

Ojjas Tyagi - CS20BTECH11060

Download latex-tikz codes from

https://github.com/tyagio/AI1103/tree/main/ assignment5/assignment5.tex

1 Problem

Let $X \ge 0$ be a random variable on (Ω, \mathcal{F}, P) with E(X) = 1 .Let $A \in \mathcal{F}$ be an event with 0 < P(A) < 1. Which of the following defines another probability measure on (Ω, \mathcal{F}) ?

1)
$$Q(B) = P(A \cap B) \quad \forall B \in \mathcal{F}$$

2)
$$Q(B) = P(A \cup B) \quad \forall B \in \mathcal{F}$$

3)
$$Q(B) = E(XI_B) \quad \forall B \in \mathcal{F}$$

3)
$$\widetilde{Q}(B) = E(XI_B)$$
 $\forall B \in \mathcal{F}$
4) $Q(B) = \begin{cases} P(A|B), & \text{if } P(B) > 0\\ 0, & \text{if } P(B) = 0 \end{cases}$

2 Solution

Any probability measure \mathbb{P} on (Ω, \mathcal{F}) is a function from \mathcal{F} to [0,1] with the following properties

$$\mathbb{P}(\phi) = 0 \tag{2.0.1}$$

$$\mathbb{P}(\Omega) = 1 \tag{2.0.2}$$

If A_1, A_2 are disjoint \mathcal{F} -measurable sets

$$\Longrightarrow \mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mathbb{P}(A_i) \tag{2.0.3}$$

Now we know that $E(XI_B) \ge 0 \ \forall B$ as $X \ge 0$ also

$$E(XI_R) = E(X \times 1) = 1$$
 when $B = \Omega$ (2.0.4)

$$E(XI_B) = E(X \times 0) = 0$$
 when $B = \phi$ (2.0.5)

Let $B = \bigcup_{i=1}^{\infty} A_i$, where A_i are disjoint sets $\in \mathcal{F}$

$$\Longrightarrow E(XI_B) = \sum_{i=1}^{\infty} E(XI_{A_i})$$
 (2.0.6)

(2.0.6) is true because Indicator function I_B is 1 when element within B and 0 otherwise due to this the summation in the RHS is equivalent to $E(XI_B)$ but calculated for smaller intervals where X is set to 0 when it is not in disjoint subinterval of B and

then summed up over all subintervals to get same value as LHS.

Now we can state that

$$Q(B) = E(XI_B) \quad \forall B \in \mathcal{F}$$

is a well defined probability measure.

 \implies option 3 is correct answer.