

POLITECHNIKA WARSZAWSKA

WYDZIAŁ: Mechaniczny Energetyki I Lotnictwa

Metoda Elementów Skończonych II

SPRAWOZDANIE

Ćwiczenie nr 1 (ANSYS)

Wspornik stalowy

Drgania własne (Modal Analysis)

Wykonał: Adam Nowak (indeks 304250)

(magisterskie niestacjonarne)

WARSZAWA, kwiecień 2024

1. Cel ćwiczenia

Celem przeprowadzonego ćwiczenia była analiza modalna belki wspornikowej, koncentrująca się na częstotliwościach drgań własnych w warunkach braku obciążeń zewnętrznych. Na pierwszym etapie belka została zamocowana na jednym końcu, a następnie badano jej zachowanie, gdy posiadała pełną swobodę ruchu.

2. Obiekt – dane

2a. Przyjęty układ.

Przyjęty układ odniesienia został umieszczony w płaszczyźnie symetrii przekroju belki, z jego początkiem na końcu belki. Układ ten został przedstawiony na Rysunku 1.

Rysunek 1 Układ odniesienia

2b. Wymiary, gabaryty, kształt

Na Rys 2. przedstawiono ogólny układ oraz gabaryty belki (60 x 40 x 1000 mm) .

Rysunek 2 Wymiary belki, utwierdzenie belki

2c. Dane materialowe:

Stal
$$E = 200 \ GPa, v = 0.3, \ \rho = 8000 \frac{kg}{m^3}$$

Zastosowano model liniowy izotropowy.

2d. Warunki brzegowe i obciążenie.

Odebranie stopni swobody zostało ukazane na drugim rysunku nr 2. Dwa przypadki:

- 1) Brak obciążeń zewnętrznych oraz zablokowanie wszystkich stopni swobody.
- 2) Brak obciążeń zewnętrznych, belka nie została utwierdzona, nie zablokowano żadnych stopni swobody.

3. Model MES

3a. Użyte oprogramowanie.

Do przeprowadzenia symulacji wykorzystano oprogramowanie Ansys Mechanical Enterprise z wykorzystaniem aplikacji wewnętrznej APDL.

3b. Zastosowane elementy skończone.

Zastosowano model typu solid 186.

3c. Siatka podziału, liczby elementów / węzłów

Siatka została podzielona poprzez linie kolejno na każdej powierzchni. Na rys 5 został przedstawiony schemat podziału linii na ilość komórek.

Cechy siatki		
Ilość węzłów	6800	
Ilość elementów	33485	

Tabela 1 Cechy siatki

Rysunek 3 ustawienie podziału elementów w celu utworzenia siatki

4. Wyniki belki utwierdzonej na jednym końcu

SET	Freq [Hz]
1	34,829
2	52,913
3	122,16
4	215,19
5	228,52
6	469,91
7	588,35
8	588,46
9	817,43
10	1108,1
11	1228,2
12	1250,9
13	1414,2
14	1485
15	1519,3
16	1589,7
17	1639,2
18	1663,8
19	1722,1
20	1876,9

Tabela 2 Częstotliwości drgań własnych belki

5. Postacie drgań belki

Rysunek 4 Pierwsza postać drgań

Rysunek 5 Piąta postać drgań

Rysunek 6 Dziesiąta postać drgań

Wraz ze wzrostem drgań własnych, odkształcenia belki stają się coraz większe.

Deformacje UY belki

Rysunek 7 Deformacje UY przy pierwszej postaci drgań

Rysunek 8 Deformacje UY przy piątej postaci drgań

Rysunek 9 Deformacje UY przy dziesiątej postaci drgań

Rysunek 10 Deformacje UY przy piętnastej postaci drgań

6. Naprężenia w kierunku osi Z

Rysunek 11 Mapa naprężeń σ_z przy pierwszej postaci drgań

Rysunek 12 Mapa naprężeń σ_z przy piątej postaci drgań

Rysunek 13 Mapa naprężeń σ_z przy dziesiątej postaci drgań

Rysunek 14 Mapa naprężeń σ_z przy piętnastej postaci drgań

Rysunek 15 Mapa naprężeń σ_z przy osiemnastej postaci drgań

Rysunek 16 Mapa naprężeń σ_z przy dziewiętnastej postaci drgań

Rysunek 17 Mapa naprężeń σ_z przy dwudziestej postaci drgań

7. Belka bez utwierdzenia – drugi przypadek

SET	Freq [Hz]
1	0
2	0
3	0
4	0
5	0,00070636
6	0,0096813
7	175,08
8	219,86
9	256,88
10	512,64
11	593,77
12	626,79
13	855,71
14	1123,3
15	1265,6
16	1474
17	1480,8
18	1495,6
19	1545,1
20	1620,7

W przypadku belki utwierdzonej, deformacje stają się coraz większe wraz z kolejnymi częstotliwościami drgań. Mod 1 to podstawowa częstotliwość drgań własnych danej belki.

W przypadku belki nieutwierdzonej, z nieograniczonymi stopniami swobody, pierwsze sześć częstotliwości wynosi w przybliżeniu zero. Wynika to z faktu, że belka posiada sześć stopni swobody. Wykresy naprężeń pozwalają na określenie najbardziej obciążonego miejsca w konstrukcji, gdzie może dojść do uszkodzenia.