Powders & 'Peer-Pressure': Pitfalls & Progress

Maryjane Tremayne

School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK.

Cultural Differential Evolution

Using social evolution to guide biological evolution

Direct Space Methods for SDPD

Positions

Indexing

Unit cell

Intensities

Optimum structure solution

Rietveld refinement

Structure solution

Predict trial structure

Compare simulated & exp data, R_{wp}

Global optimisation locates best structure

Structural Model

Position:

X, Y, Z

Orientation:

$$\theta$$
, ϕ , ψ

Molecular conformation:

$$\tau_1 \dots \tau_n$$

Structural Model

Position:

 X_i, Y_i, Z

Orientation:

 θ_{i} ϕ_{i} ψ

• Molecular conformation:

 $\tau_1 \dots \tau_n$

Structural Model

- Position:
 X, Y, Z
- Orientation: θ , ϕ , ψ
- Molecular conformation:

$$\tau_1 \dots \tau_n$$

Global Optimisation

- Multi-dimensional search problem:
 (x,y,z,θ,φ,γ,τ₁...τ_n) per molecule or fragment
- Single objective minimum in R_{wp}

- simulated annealing
- Monte Carlo
- parallel tempering
- hybrid MC/MD

Evolutionary Algorithms in SDPD

- Evolutionary algorithms population of trial structures; mating, mutation and natural selection until global minimum found
- Each member of the population defined by genetic code $(x,y,z)[0-1](\theta,\phi,\gamma,\tau_1,...,\tau_n)[0-360]$
 - genetic algorithms

Kariuki et al., *Chem Phys Lett.*, <u>280</u>, 189, (1997) Harris, Johnston & Kariuki, *Acta Cryst.*, <u>A54</u>, 632, (1998)

differential evolution

Seaton & Tremayne, *Chem Commun*, 880, (2002) Tremayne, Seaton & Glidewell, *Acta Cryst.*, <u>B58</u>, 823, (2002) Chong, Seaton, Kariuki & Tremayne, *Acta Cryst.*, <u>B62</u>, 862, (2006)

<u>Differential Evolution (DE)</u>

Mating and mutation in one step:

```
Trial = Parent + K(Random<sub>1</sub> - Parent)
+ F(Random<sub>2</sub> - Random<sub>3</sub>)
```

- \circ 3 control parameters: N_p , K and F
- No mutants needed
- Best of child/parent added to population;
 deterministic selection fast convergence
- New members used within the generation

Price, New Ideas in Optimization, McGraw-Hill, London, UK, 77, (1999)

Trial = Parent + K(Random₁ - Parent) + F(Random₂ - Random₃)

DE Calculation Cycle

Natural selection

Population of size N_p

Recombination & Mutation

Parent & offspring compared

Offspring created for each individual

Fitness of offspring assessed

Structures Solved Using DE

Effect of Mutation Rate F

Evolution of Offspring Parameters

Differential Evolution

- Models biological evolution based on genetic inheritance
- Genetic evolution is a slow process
- Individuals behave independently
- Population space

Cultural Evolution

- Based on human social evolution
- Society adapts to change at a faster rate
- Models behavioural traits of all individuals
- Belief space

Reynolds, New Ideas in Optimization, McGraw-Hill, London, UK, 367, (1999)

Cultural Differential Evolution

- A 'dual inheritance guidance' system
- Uses information gained by previous generations to guide optimisation and influence adaption of population
- Belief space used to 'prune' population space

Implemented using 'dynamic' DE boundaries

DE Boundary Conditions

- Each parameter in genetic code $(x,y,z,\theta,\phi,\gamma,\tau_1.....\tau_n)$ has associated high & low bounds
- Child reset at boundary/parent median
- Implementation of dynamic boundaries, updated with each generation
 - Cultural Differential Evolution (CDE)

Use of Static Boundaries

Use of Static Boundaries

Effect of Dynamic Boundaries

Effect of Dynamic Boundaries

Implementation of Dynamic Boundaries

4 structure threshold (+1 bin)

Importance of 'fully' dynamic boundaries - allowing expansion and contraction

Effect on Convergence

Rate of Convergence

$$N_p = 70$$

Number of structures in threshold

	static	1	2	3	4	5	8	
F = 0.3	207	171	210		203	228		successful solutions
F = 0.4	408	371	373	392	288	284	190	0 1
<i>F</i> = 0.5	695	690	656	571	440	422	200	2 3 4
F = 0.6	762	1028	975	845	616	486		5

Convergence efficiency (%)

$$N_p = 70$$

Number of structures in threshold

	static	1	2	3	4	5	8	
F = 0.3	207	17	-1		2	-10		successful solutions
F = 0.4	408	9	9	4	19	30	53	0 1 2
<i>F</i> = 0.5	695	1	6	18	37	39	71	3 4
F = 0.6	762	-35	-28	-11	19	36		5

		static	3	4		5	6	7	8
	0.3	211	229	21	1 2	04	286	197	221
105	0.4	488	456	47.	2 4	04	442	280	297
105	0.5	946	997	78	1 5	63	575	496	404
	0.6	1365	1211	129	9	82	756	629	554
		static	3	4	5	8	9	10	11
	0.3	355	305	332	268	228	3 205	224	262
140	0.4	642	634	587	551	377	357	383	307
	0.5	1125	1096	1264	1194	678	525	527	438
	0.6	1403	1489	1124		110	5 784	654	540

		static	3	4		5	6	7	8
	0.3	211	-9	0		3	-36	7	-5
105	0.4	488	7	3	1	7	9	43	39
105	0.5	946	-5	17	_ ∠	Ю	39	48	5 <i>7</i>
	0.6	1365	11	5	2	28	45	54	59
(%)		static	3	4	5	8	9	10	11
	0.3	355	14	6	25	36	42	37	26
140	0.4	642	1	9	14	41	44	40	52
	0.5	1125	3	-12	-6	40	53	53	61
	0.6	1403	-6	20		21	44	53	62

1,3,5-tris-(2-hydroxyethyl) cyanuric acid

Chong, Seaton, Kariuki & Tremayne, Acta Cryst B58, 823, (2006)

- CDE parameters: K=0.99, F=0.5, $N_p=120$ 4 structure threshold
- © Convergence: DE → 860, CDE → 653

α -Methyl- α -Propyl Succinimide

- © CDE model: $(x,y,z,\theta,\phi,\gamma,\tau_1,\tau_2)$
- CDE parameters: K=0.99, F=0.4, N_p=80 4 structure threshold CDE 461, DE 988

CDE parameters:
 K=0.99, F=0.3, N_p=80
 2 structure threshold
 CDE 163, DE failed

Oxamic Acid ——

- Structure determined from lab PXRD (DE)
- Synchrotron PXRD data to distinguish C=O
- Deuteration gives new polymorph!
- Structure now confirmed

Oxamic Acid with ... Isonicotinamide

(1/1) salt adduct — Single-crystal structure

Oxamic Acid with ... Nicotinamide

- Poor quality crystals
- Structure determination from lab PXRD (CDE)

- Solid state IR salt or cocrystal
- GC & EA stoichiometry (NMR not conclusive)

(1/1) salt adduct: distinct layers of components but no oxamic acid H bond network

Better crystal growth Single-crystal structure

Oxamic acid not resolved in SDPD structure

Pitfalls....Preferred Orientation?

Triethyl-1,3,5benzene tricarboxylate

- Structure determined from lab PXRD (DE)
- but ... conformational change with refinement ls structure solution correct?

Chong, Seaton, Kariuki & Tremayne, Acta Cryst B62,864 (2006)

Pitfalls....Preferred Orientation?

- Structure solution minimum differs from refinement minimum
- Effect of po parameter (& model relaxation)

Chong, Seaton, Kariuki & Tremayne, Acta Cryst B62,864 (2006)

Conclusions

- Dynamic boundaries improve search efficiency by up to ~50%.
- 'Dual inheritance' system applicable to evolutionary algorithms used in other fields?
- Optimisation of CDE related to % structure threshold?

Chong & Tremayne, Chem Comm 4078, (2006)

Chemistry World, 3(11), 27, 2006; Chemical Science, 11, 2006

Nature: Research Highlights 443, 375, 2006; www.SpectroscopyNOW.com

Materials Research Society Bulletin, 31, 967, 2006

Acknowledgements

Dr Colin Seaton
Dr Samantha Chong
Dr Harry Chana
Adam Cowell
Tuba Mahmud
Liana Vella-Zarb

Dr Benson Kariuki
Dr Elizabeth Shotton
Dr Robert Lancaster

The Royal Society EPSRC, ICDD GSK, Pfizer, MSD

Duncan Bell

