Section 4.10 A Closer Look at Forced Mechanical Vibrations

Problem A mass m is attached to the free end of a linear spring of constant k which hangs vertically in a medium with viscous damping 3. Find the d.e. which describes the system if the mass is acted upon by an external force

Solut; on I tre direction Equilibrium

Equilibrium

[X(t)]

Motion

[X(t)]

mg + F(t) mg + F(+)

(P) -> d (mx) = mg +F(+) - k(x+E) - px mdi = mg+Flt) - kx-k/E - Bx $\therefore m\ddot{x} + \beta \dot{x} + kx = F(t)$

General Solution: X = Xc(t) + Xp(t) Apply I.C.'s: Trunsient Steady-State
Response Response

Example A 16-16 weight is placed upon the lower end of a coil spring suspended from a rigid beam. The spring constant is known to be 10 lbl ft. The weight comes to rest in it's equilibrium position. Beginning at t=0, an external force given by FIt1 = 5 cos 2t is applied to the system. The medium offers a resistance in pounds numer-ically equal to 2½, where is the instantaneous velocity in ft sec.

- 6) Octomine the displacement of the weight as a function of the time.
- (b) Determine the amplitude, period, and frequency of the steady-state terms.

Solution mx + Bx + kx = F(t)

W= mg= 16 => m= 16 = 1

k = 10, $\beta = 2$, $F(t) = 5 \cos 2t$

 $\frac{1}{2}x^{2} + 2x^{2} + 10x = 5 \cos 2t$

: x + 4x + 20x = 10 cos 2t

C.F. X + 4 x + 20 x = 0

A.E. $m^2 + 4m + 20 = 0$ $(m+2)^2 + 16 = 0$

$$(m+2)^2 = -16$$

 $m+2 = \pm 4i$
 $m = -2 \pm 4i$

= xc(t) = e - 2t [c, cos4t + c2 sm4t]

P.I. Try xp = a cos2t + bsin2t

xp = -2a sin 2t + 26 cos 2t

xp = -4acos 2t - 4bs = 2t

Substitute xp + 4 xp + 20 xp = 10 cos 2 t

 $(\cos 2t)(-4a + 8b + 20a) = 10 \cos 2t$ + $(\sin 2t)(-4b - 8a + 20b)$

Match: 16a + 8b = 10 } -8a + 16b = 0

40b = 10 a = 2b $b = \frac{1}{4}$ $a = \frac{1}{2}$

:. xp = \frac{1}{2} cos2t + \frac{1}{4} sm2t

Gen. Soln. X = e^2+[c, cos4+ + c2 sin 4+]
+ \frac{1}{2} cos2+ + \frac{1}{4} sin 2+

$$t=0, \ \lambda=0$$
 $0=1\left[4c_{2}\right]-2\left[c_{1}\right]+\frac{1}{2}$
 $0=4c_{2}+\frac{3}{2}$
 $c_{3}=-\frac{3}{8}$

Transient Response Stendy-State

Response

and
$$sm \theta = \frac{1/2}{A} = \frac{1/2}{\sqrt{5}} = \frac{5}{\sqrt{5}}$$

$$cos\theta = \frac{1/4}{A} = \frac{114}{\sqrt{5}} = \frac{5}{\sqrt{5}}$$

$$sm \theta = \frac{1}{\sqrt{5}} = \frac{5}{\sqrt{5}} = \frac{5}{\sqrt{5}}$$

1 = 15 cos9

Amplitude = $\sqrt{5}$

Period = 21 = 1

Frequency = 1

AM 1 1 20,21, 11 12

	Undamped Forced Motion
	Example
	Solve: X + WZX = Fosmxt
	Solve: x + w2x = Fo smxt where: x 10 20, x 10 = 0, Fo = constant and \$ \$\frac{1}{7} \tau -
	Gen. Sohn = XIt) = c, coswt + c2 smwt + Fo w2-82 smxt
-	M=8
-	Part som: X = Fo (-V sinut + w sin xt) x = w.
Street, Square, or other Persons.	Part som: X = Fo (-V sinut + w sin xt), x = w.
	Egn is not defined for 0=W.
The second second	What happens as Y > w that is "tune is"
	the bregnency of the driving fine (8/217) to
Name and Address of the Owner, where	the frequency of the free vibrations (w/21)
The second second	
1000	XIt) = Im Fo - Vsmut + wsm Yt
The same	8-2M M(M2-25)
-	
	= Fo lon it (-tsmut + wsmrt)
The same of	4x m(m2-23)
1	Yg
Section in the last	= Fo Im - sinut + ut cos 8t
1	12mg
	- 55 - sinut + wt coswt
1	-2 w2

= Fo sunt - Fo t cosut

As tow displacements will become large.

The above phenomenon is called resonance.

The tendency of a system to coscillate with greater amplitude at some tragmencies than at others.

HW Pages 230-231, #1's 3,9,11,13