

Report number: Z071C-09410

Page 1 of 55

# **TEST REPORT**

Report number: Z071C-09410

Issue Date: March 16, 2010

The device, as described herewith, was tested pursuant to applicable test procedure indicated below and complies with the requirements of;

### FCC Part15 Subpart C / IC RSS-210

The test results are traceable to the international or national standards.

Applicant

: NIKON-TRIMBLE CO., LTD.

Equipment under test (EUT)

Bluetooth Module

FCC ID

: W4LNT0003

IC Certification Number

: 8170A-NT0003

Model Number

BTunit03

Serial Number

N/A

**EUT Condition** 

Production

Test procedure

: ANSI C63.4-2003

Date of test

: February 25, March 1,2,3, 2010

Test place

3m Semi-anechoic chamber, Shielded room

Test results

Complied

Zacta Technology Corporation certifies that no party to the application is subject to a denial of federal benefits that include FCC benefits, pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988,21U.S.C. 853(a).

The results in this report are applicable only to the samples tested.

This report shall not be re-produced except in full without the written approval of ZACTA Technology Corporation.

This test report must not be used by client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

Tested by:

Hiroaki Suzuki

Taiki Watanahe

Authorized by:

Katsumi Sumiyoshi

Manager of Quality Control Division

NVLAP LAB CODE 200306-0

FCC ID: W4LNT0003 IC Certification Number: 8170A-NT0003

FCC ID: W4LNT0003

IC Certification Number: 8170A-NT0003

## Table of contents

|                                                                  | Page |
|------------------------------------------------------------------|------|
| 1. Summary of Test                                               | 4    |
| 1.1 Purpose of test                                              | 4    |
| 1.2 Standards                                                    | 4    |
| 1.3 Summary of test results                                      | 4    |
| 1.4 Deviation from the standard                                  | 4    |
| 1.5 Modification to the EUT by laboratory                        | 4    |
| 2. Equipment description                                         | 5    |
| 2.1 General Description of equipment                             | 5    |
| 2.2 EUT information                                              | 5    |
| 2.3 Operating channels and frequencies                           | 6    |
| 2.4 Operating mode                                               | 7    |
| 3. Configuration information                                     | 8    |
| 3.1 EUT and Peripheral(s) used                                   | 8    |
| 3.2 System configuration                                         |      |
| 4. Test Type and Results                                         | 9    |
| 4.1 20dB Bandwidth / Occupied Bandwidth                          | 9    |
| 4.1.1 Test Procedure [FCC 15.247(a)(1), IC RSS-210 A8.1(a)]      |      |
| 4.1.2 Measurement Setup                                          |      |
| 4.1.3 Limit of Bandwidth at 20 dB below                          |      |
| 4.1.4 Measurement Result                                         | 9    |
| 4.1.5 Trace Data                                                 | 9    |
| 4.2 Carrier Frequency Separation                                 | 11   |
| 4.2.1 Test Procedure [FCC 15.247(a)(1), IC RSS-210 A8.1(b)]      | 11   |
| 4.2.2 Measurement Setup                                          | 11   |
| 4.2.3 Limit of Carrier Frequency Separation                      | 11   |
| 4.2.4 Measurement Result                                         | 11   |
| 4.2.5 Trace Data                                                 | 11   |
| 4.3 Number of Hopping Frequencies                                |      |
| 4.3.1 Test Procedure [FCC 15.247(a)(1)(iii), IC RSS-210 A8.1(d)] | 13   |
| 4.3.2 Measurement Setup                                          | 13   |
| 4.3.3 Limit of Number of Hopping Frequencies                     | 13   |
| 4.3.4 Measurement Result                                         | 13   |
| 4.3.5 Trace Data                                                 | 13   |
| 4.4 Time of Occupancy (Dwell Time)                               |      |
| 4.4.1 Test Procedure [FCC 15.247(a)(1)(iii), IC RSS-210 A8.1(d)] |      |
| 4.4.2 Measurement Setup                                          |      |
| 4.4.3 Limit of Time of Occupancy (Dwell Time)                    |      |
| 4.4.4 Measurement Result                                         |      |

FCC ID: W4LNT0003

IC Certification Number: 8170A-NT0003

| 4.4.5 Trace Data                                                                | 15 |
|---------------------------------------------------------------------------------|----|
| 4.5 Maximum Peak Output Power - Conducted                                       | 17 |
| 4.5.1 Test Procedure [FCC 15.247(b)(1), 15.31(e), IC RSS-210 A8.4(2)]           | 17 |
| 4.5.2 Test Instruments and Measurement Setup                                    |    |
| 4.5.3 Limit of Maximum Peak Output Power                                        | 17 |
| 4.5.4 Measurement Result                                                        | 17 |
| 4.5.5 Trace Data                                                                | 17 |
| 4.6 Band Edge Compliance of RF Conducted Emissions                              | 19 |
| 4.6.1 Test Procedure [FCC 15.247 (d), IC RSS-210 A8.5 ]                         | 19 |
| 4.6.2 Test Instruments and Measurement Setup                                    | 19 |
| 4.6.3 Limit of Band-edge Compliance of RF Conducted Emissions                   | 19 |
| 4.6.4 Measurement Results of Band-edge                                          | 19 |
| 4.6.5 Trace Data                                                                | 20 |
| 4.7 Spurious Emissions - Conducted -                                            | 22 |
| 4.7.1 Test Procedure [FCC 15.247(d), IC RSS-210 A8.5, RSS-Gen 4.9&4.10]         | 22 |
| 4.7.2 Measurement Setup                                                         | 22 |
| 4.7.3 Limit of Spurious Emissions - Conducted -                                 | 22 |
| 4.7.4 Measurement Results of Spurious Emissions - Conducted -                   | 22 |
| 4.7.5 Trace Data                                                                | 22 |
| 4.8 Spurious Emissions - Radiated - (9kHz - 25GHz)                              | 25 |
| 4.8.1 Test Procedure [FCC 15.205/209/247(d), IC RSS-210 A8.5, RSS-Gen 4.9&4.10] | 25 |
| 4.8.2 Measurement Setup                                                         | 25 |
| 4.8.3 Limit of Spurious Emission Measurement                                    | 26 |
| 4.8.4 Sample of field strength calculation                                      | 26 |
| 4.8.5 Measurement Results                                                       | 26 |
| 4.9 Restricted Band of Operation                                                | 35 |
| 4.9.1 Test Procedure [ FCC 15.205, 15.209, 15.247(d), IC RSS-210 2.2 ]          | 35 |
| 4.9.2 Measurement Setup                                                         | 35 |
| 4.9.3 Limit of Restricted Band of Operation                                     | 35 |
| 4.9.4 Measurement Result                                                        | 35 |
| 4.9.5 Trace Data                                                                | 36 |
| 5. Uncertainty of measurement                                                   | 53 |
| 6. Laboratory description.                                                      | 54 |
| 6.1 Location:                                                                   | 54 |
| 6.2 Facility filing information:                                                |    |
| Appendix A: Test equipment.                                                     | 55 |

Report number: Z071C-09410 Page 4 of 55

## 1. Summary of Test

### 1.1 Purpose of test

It is the original test in order to verify conformance to standards listed in section 1.2.

### 1.2 Standards

CFR47 FCC Part 15 Subpart C, RSS-210

### 1.3 Summary of test results

Table-A presents the list of the measurement items for Spread Spectrum, Frequency hopping devices under FCC Part 15 Subpart C and Industry Canada RSS-210 Issue 7.

Table-A: List of the measurements

| Test Items                                     | Test Items                                     | Condition             | Result |
|------------------------------------------------|------------------------------------------------|-----------------------|--------|
| Section                                        | Transmit mode [Tx]:                            | Condition             | Kesuit |
| 15.247(a)(1)<br>RSS-210 A8.1(a)                | Occupied Bandwidth (20dB Bandwidth)            | Conducted             | Pass   |
| RSS-Gen 4.6.1                                  | 99% Occupied bandwidth                         | Conducted             | Pass   |
| 15.247(a)(1)<br>RSS-210 A8.1(b)                | Carrier Frequency Separation                   | Conducted             | Pass   |
| 15.247(a)(1)(iii)<br>RSS-210 A8.1(d)           | Number of Hopping Frequencies                  | Conducted             | Pass   |
| 15.247(a)(1)(iii)<br>RSS-210 A8.1(d)           | Time of Occupancy (Dwell Time)                 | Conducted             | Pass   |
| 15.247(b)(1)<br>15.31(e)<br>RSS-210 A8.4(2)    | Maximum Peak Output Power - Conducted -        | Conducted             | Pass   |
| 15.247(d)<br>RSS-210 A8.5                      | Band Edge Compliance of RF Conducted Emissions | Conducted             | Pass   |
| 15.247(d)<br>RSS-210 A8.5<br>RSS-Gen 4.9, 4.10 | Spurious Emissions                             | Conducted<br>Radiated | Pass   |
| 15.247(d)<br>15.205<br>15.209<br>RSS-210.2.2   | Restricted Bands of Operation                  | Radiated              | Pass   |

Note: Conducted Emissions measurement is not applicable because the EUT is powered by dry batteries.

### 1.4 Deviation from the standard

None

### 1.5 Modification to the EUT by laboratory

None

Report number: Z071C-09410 Page 5 of 55

### 2. Equipment description

### 2.1 General Description of equipment

EUT is the Bluetooth Module

### 2.2 EUT information

Applicant : NIKON-TRIMBLE CO., LTD.

20, Shin-oyoke, Miya, Zao-machi, Katta-gun, Miyagi, 989-0701 Japan

Phone: +81-224-32-2240 Fax: +81-224-32-2242

Equipment under test (EUT) : Bluetooth Module Trade name : NIKON-TRIMBLE

Model number : BTunit03
Serial number : N/A
EUT condition : Production

Max. frequency : BTunit03: 13MHz (Host device: 624MHz)

Power ratings : DC 3.3V

Size : (W) 25 x (D) 45 x (H) 3.2 mm Environment : Indoor and Outdoor use

Thermal limitation : -30°C to 50°C Operating mode : Tx mode / Rx mode

Host device

Variation of the : There are Thirteen electrically identical host devices as follows;

family model(s) Model No. Brand name Modification(s) From Nivo<sup>2.C</sup>

Nivo<sup>3.C</sup>
Nikon

Nivo<sup>3.C</sup>
Nikon

Nikon

telescope, angle precision

Nivo<sup>5.C</sup>
Nikon

telescope, angle precision

Nivo<sup>1.C</sup> Nikon angle precision, clamping of moving parts

Trimble M3 DR 2" Trimble body-color shape

Trimble M3 DR 3" Trimble telescope, angle precision, body-color shape telescope, angle precision, body-color shape telescope, angle precision, body-color shape

Trimble M3 DR 5"W Trimble telescope, angle precision, body-color shape, lubricating oil

TS835 Trimble telescope, angle precision, body-color shape

TS862 Trimble body-color Shape FOCUS 8 2" Spectra Precision body-color shape

FOCUS 8 5" Spectra Precision telescope, angle precision, body-color shape

FOCUS 8 1" Spectra Precision angle precision, body-color shape, clamping of moving parts

[RF Specification]

Protocol : Bluetooth

Spread method : Frequency hopping spread spectrum (FHSS)

Communication method : TDD

Frequency Range : 2402MHz - 2480MHz

Number of FR Channels : 79 Channels

Modulation Method/Data rate : GFSK (1Mbps), π/4-DQPSK (2Mbps), 8-DPSK (3Mbps)

Nominal Bit Rates : 1600hops/s
Channel Separation : 1MHz
Output power : 0.662mW
Antenna (Rx and Tx) : Chip antenna
Antenna gain : 2.00dBi
RF type : Transceiver
Intended use : Data transmission

RF emission type designator : 893KF1D (GFSK), 1M19G1D (8-DPSK)

ZACTA Technology Corp. FCC ID: W4LNT0003 FCC 15C Rev.3.0 IC Certification Number: 8170A-NT0003

### 2.3 Operating channels and frequencies

| Channel | Frequency<br>[MHz] | Channel | Frequency<br>[MHz] | Channel | Frequency<br>[MHz] |
|---------|--------------------|---------|--------------------|---------|--------------------|
| 0       | 2402               | 27      | 2429               | 54      | 2456               |
| 1       | 2403               | 28      | 2430               | 55      | 2457               |
| 2       | 2404               | 29      | 2431               | 56      | 2458               |
| 3       | 2405               | 30      | 2432               | 57      | 2459               |
| 4       | 2406               | 31      | 2433               | 58      | 2460               |
| 5       | 2407               | 32      | 2434               | 59      | 2461               |
| 6       | 2408               | 33      | 2435               | 60      | 2462               |
| 7       | 2409               | 34      | 2436               | 61      | 2463               |
| 8       | 2410               | 35      | 2437               | 62      | 2464               |
| 9       | 2411               | 36      | 2438               | 63      | 2465               |
| 10      | 2412               | 37      | 2439               | 64      | 2466               |
| 11      | 2413               | 38      | 2440               | 65      | 2467               |
| 12      | 2414               | 39      | 2441               | 66      | 2468               |
| 13      | 2415               | 40      | 2442               | 67      | 2469               |
| 14      | 2416               | 41      | 2443               | 68      | 2470               |
| 15      | 2417               | 42      | 2444               | 69      | 2471               |
| 16      | 2418               | 43      | 2445               | 70      | 2472               |
| 17      | 2419               | 44      | 2446               | 71      | 2473               |
| 18      | 2420               | 45      | 2447               | 72      | 2474               |
| 19      | 2421               | 46      | 2448               | 73      | 2475               |
| 20      | 2422               | 47      | 2449               | 74      | 2476               |
| 21      | 2423               | 48      | 2450               | 75      | 2477               |
| 22      | 2424               | 49      | 2451               | 76      | 2478               |
| 23      | 2425               | 50      | 2452               | 77      | 2479               |
| 24      | 2426               | 51      | 2453               | 78      | 2480               |
| 25      | 2427               | 52      | 2454               |         |                    |
| 26      | 2428               | 53      | 2455               |         |                    |

Report number: Z071C-09410 Page 7 of 55

FCC ID: W4LNT0003

IC Certification Number: 8170A-NT0003

### 2.4 Operating mode

### [Tx mode]

i) Bluetooth test program set up

ii) Select a test mode

Operating mode: Tx mode

Operating frequency: No hopping (CH.0, 39, 78), Hopping

Packet type: DH5, 3-DH5

iii) Start test mode

Note: Tests were performed in DH5 and 3-DH5 which have the maximum bandwidth.

### [ Rx mode ]

i) Bluetooth test program set up

ii) Select a test mode

Operating mode: Rx mode

Operating frequency: No hopping (CH.0, 39, 78), Hopping

Packet type: DH5, 3-DH5

iii) Start test mode

Note: Tests were performed in DH5 and 3-DH5 which have the maximum bandwidth.

Report number: Z071C-09410 Page 8 of 55

## 3. Configuration information

### 3.1 EUT and Peripheral(s) used

| No. | Equipment        | Company             | Model No.                                    | Serial No.        | FCC ID/DoC                               | Comment     |
|-----|------------------|---------------------|----------------------------------------------|-------------------|------------------------------------------|-------------|
| 1   | Bluetooth Module | NIKON-TRIMBLE       | BTunit03                                     | N/A               | FCC ID: W4LNT0003<br>IC ID: 8170A-NT0003 | EUT         |
| 2   | Total Station    | NIKON-TRIMBLE       | Nivo <sup>2.C</sup><br>Nivo <sup>5.C</sup> * | C050301<br>020211 | -                                        | Host device |
| 3   | Battery pack     | Tripod Data Systems | 2908                                         | N/A               | -                                        | Accessory   |
| 4   | Battery pack     | Tripod Data Systems | 2908                                         | N/A               | -                                        | Accessory   |

<sup>\*:</sup> Only the radiated test was performed.

### 3.2 System configuration

[RF Conducted test / RF Radiated test]



Note1: Numbers assigned to equipment on this diagram are corresponded to the list in "3.1 EUT and Peripheral(s) used".

FCC ID: W4LNT0003 IC Certification Number: 8170A-NT0003

Report number: Z071C-09410 Page 9 of 55

### 4. Test Type and Results

### 4.1 20dB Bandwidth / Occupied Bandwidth

### 4.1.1 Test Procedure [FCC 15.247(a)(1), IC RSS-210 A8.1(a)]

The bandwidth at 20 dB down from the highest inband spectral density is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to:

- RBW=30kHz, VBW=300kHz, Span=3MHz, Sweep=auto

The EUT was set to operate with following conditions.

- No hopping [ch 0 (low), ch 39 (mid) and ch 78 (high)]

The test mode of EUT is as follows.

- Tx mode

### 4.1.2 Measurement Setup



### 4.1.3 Limit of Bandwidth at 20 dB below

None

#### 4.1.4 Measurement Result

| Channel | Center<br>Frequency<br>(MHz) | Packet<br>type | 20dB<br>Bandwidth<br>(MHz) | Occupied<br>Bandwidth<br>(MHz) |
|---------|------------------------------|----------------|----------------------------|--------------------------------|
| 0       | 2402.00                      | DH5            | 1.032                      | 0.893                          |
|         |                              | 3-DH5          | 1.322                      | 1.189                          |
| 39      | 2441.00                      | DH5            | 1.035                      | 0.892                          |
| 39      |                              | 3-DH5          | 1.321                      | 1.190                          |
| 78      | 2480.00                      | DH5            | 1.033                      | 0.892                          |
|         |                              | 3-DH5          | 1.323                      | 1.191                          |

### 4.1.5 Trace Data

Test Personnel:

Tested by:

Taiki Watanabe

Date : Feb. 25, 2010

Temperature : 22.0 [°C]

Humidity : 65.0 [%]

Test place : Shielded room

### 20dB Bandwidth/Occupied Bandwidth

### **Channel 0: 2402.0MHz**



### **Channel 39: 2441.0MHz**



### Channel 78: 2480.0MHz



Report number: Z071C-09410 Page 11 of 55

### 4.2 Carrier Frequency Separation

### 4.2.1 Test Procedure [FCC 15.247(a)(1), IC RSS-210 A8.1(b)]

The adjacent channel interval is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to:

- RBW=30kHz, VBW=30kHz, Span=3MHz, Sweep=auto

The EUT was set to operate with following conditions.

- Hopping [ch 39 (mid)]

The test mode of EUT is as follows.

- Tx mode

### 4.2.2 Measurement Setup



### 4.2.3 Limit of Carrier Frequency Separation

Systems shall have hopping channel carrier frequencies separated by a minimum of; 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

### 4.2.4 Measurement Result

| Packet type | Channel separation (MHz) | Limit<br>(MHz)                            | Result |
|-------------|--------------------------|-------------------------------------------|--------|
| DH5         | 1.01                     | >two-thirds of the 20dB Bandwidth =690kHz | PASS   |
| 3-DH5       | 1.005                    | >two-thirds of the 20dB Bandwidth =882kHz | PASS   |

### 4.2.5 Trace Data

| <b>Test Personnel:</b> |                 | Date        | : | Feb. 25, 2009 |
|------------------------|-----------------|-------------|---|---------------|
| Tagtad by              | Toilei Watanaha | Temperature | : | 22.0 [°C]     |
| Tested by:             | Taiki Watanabe  | Humidity    | : | 65.0 [%]      |
|                        |                 | Test place  | : | Shielded room |

### Carrier Frequency Separation

**Channel** 39: 2441.0MHz

DH5



### 3-DH5



Report number: Z071C-09410 Page 13 of 55

### 4.3 Number of Hopping Frequencies

### 4.3.1 Test Procedure [FCC 15.247(a)(1)(iii), IC RSS-210 A8.1(d)]

The number of hopping channels is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to:

- RBW=100kHz, VBW=300kHz, Span=Arbitrary setting, Sweep=auto

The EUT was set to operate with following conditions.

- Hopping

The test mode of EUT is as follows.

- Tx mode

### 4.3.2 Measurement Setup



### 4.3.3 Limit of Number of Hopping Frequencies

Shall have more than 15 channels.

### 4.3.4 Measurement Result

| Number of channels | Limit       | Result |
|--------------------|-------------|--------|
| 79                 | ≥15 channel | PASS   |

### 4.3.5 Trace Data

| <b>Test Personnel:</b> |                | Date        | : | Feb. 25, 2010 |
|------------------------|----------------|-------------|---|---------------|
| Tooted by:             | Taiki Watanabe | Temperature | : | 22.0 [°C]     |
| Tested by:             | Taiki Watanabe | Humidity    | : | 65.0 [%]      |
|                        |                | Test place  | : | Shielded room |

## Number of Hopping Frequencies

### Low



### High



Report number: Z071C-09410 Page 15 of 55

### 4.4 Time of Occupancy (Dwell Time)

### 4.4.1 Test Procedure [FCC 15.247(a)(1)(iii), IC RSS-210 A8.1(d)]

The time occupancy of hopping channel is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to:

- RBW=1MHz, VBW=1MHz, Span=0MHz, Sweep=10ms

The EUT was set to operate with following conditions.

- Hopping [ch 0 (low), ch 39 (mid) and ch 78 (high)]

The test mode of EUT is as follows.

- Tx mode

### 4.4.2 Measurement Setup



### 4.4.3 Limit of Time of Occupancy (Dwell Time)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

#### 4.4.4 Measurement Result

| Channel | Frequency (MHz) | Packet<br>type | Dwell time (ms) | Occupancy time of 31.6 seconds (s) | Limit | Result |
|---------|-----------------|----------------|-----------------|------------------------------------|-------|--------|
| 0       | 2402.00         | DH5            | 2.900           | 0.309                              | <0.4s | PASS   |
| U       | 2402.00         | 3-DH5          | 2.900           | 0.309                              | <0.4s | PASS   |
| 39      | 2441.00         | DH5            | 2.883           | 0.308                              | <0.4s | PASS   |
| 39      | 2441.00         | 3-DH5          | 2.883           | 0.308                              | <0.4s | PASS   |
| 70      | 2480.00         | DH5            | 2.900           | 0.309                              | <0.4s | PASS   |
| 78      | 2480.00         | 3-DH5          | 2.900           | 0.309                              | <0.4s | PASS   |

The hopping rates of Bluetooth devices change with different types of payload. The longer the payload is, the slower the hopping rate. The hopping rate scenario is defined in Bluetooth core specification.

### Calculation:

Occupancy time of 31.6 seconds \* = time domain slot length x hop rate / number of hopper channel / 79 x 31.6 EX.) For Ch. 0, DH5 = 2.900 ms x 1600 / 6 / 79 x 31.6 = 309 ms

### 4.4.5 Trace Data

|                        |                | Date        |   | reb. 23, 2010 |
|------------------------|----------------|-------------|---|---------------|
| <b>Test Personnel:</b> |                | Temperature | : | 22.0 [°C]     |
| Tooted by              | Taiki Watanabe | Humidity    | : | 65.0 [%]      |
| Tested by:             | Taiki Watanaoe | Test place  | : | Shielded room |

Data

· Eab 25 2010

### Dwell Time

### **Channel 0: 2402.0MHz**





### Channel 39: 2441.0MHz

DH5 3-DH5



### **Channel 78: 2480.0MHz**

DH5 3-DH5



ZACTA Technology Corp.

FCC 15C Rev.3.0

FCC ID: W4LNT0003 IC Certification Number: 8170A-NT0003

Report number: Z071C-09410 Page 17 of 55

### 4.5 Maximum Peak Output Power - Conducted -

### 4.5.1 Test Procedure [FCC 15.247(b)(1), 15.31(e), IC RSS-210 A8.4(2)]

The peak power is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to:

- RBW=3MHz, VBW=3MHz, Span=10MHz, Sweep=auto

The EUT was set to operate with following conditions.

- No hopping [ch 0 (low), ch 39 (mid) and ch 78 (high)]

The test mode of EUT is as follows.

- Tx mode in Battery operation. (Full charge)

### 4.5.2 Test Instruments and Measurement Setup



### 4.5.3 Limit of Maximum Peak Output Power

0.125 watt or less.

### 4.5.4 Measurement Result

### [Tx mode in Battery operation. (Full charge)]

| Channel | Center<br>Frequency<br>(MHz) | Packet<br>type | Reading (dBm) | Factor (dB) | Antenna<br>Gain<br>(dBi) | Level (dBm) | Peak<br>Output Power<br>(mW) | Limit<br>(mW) | Result |
|---------|------------------------------|----------------|---------------|-------------|--------------------------|-------------|------------------------------|---------------|--------|
| 0       | 2402.00                      | DH5            | -14.81        | 10.20       | 2.00                     | -2.61       | 0.548                        | <b>≦</b> 125  | PASS   |
| U       | 2402.00                      | 3-DH5          | -14.43        | 10.20       | 2.00                     | -2.23       | 0.598                        | <b>≦</b> 125  | PASS   |
| 39      | 2441.00                      | DH5            | -14.32        | 10.20       | 2.00                     | -2.12       | 0.614                        | <b>≦</b> 125  | PASS   |
| 39      | 2441.00                      | 3-DH5          | -13.99        | 10.20       | 2.00                     | -1.79       | 0.662                        | <b>≦</b> 125  | PASS   |
| 78      | 2480.00                      | DH5            | -15.31        | 10.20       | 2.00                     | -3.11       | 0.489                        | <b>≦</b> 125  | PASS   |
| /6      | 2480.00                      | 3-DH5          | -14.91        | 10.20       | 2.00                     | -2.71       | 0.536                        | <b>≦</b> 125  | PASS   |

#### Calculation:

Reading (dBm) + Factor (dB) + Antenna Gain of EUT (dBi) = Level (dBm) 10logP = Level (dBm) P = 10<sup>(Maximum Peak Output Power (dBm)/10)</sup> (mW)

#### 4.5.5 Trace Data

**Test Personnel:** Date Feb. 25, 2010 Temperature 22.0  $[^{\circ}C]$ Tested by: Taiki Watanabe Humidity [%] 65.0 Test place Shielded room

Span 10 MHz ms (601 pts)

### Maximum Peak Output Power - Conducted -

### [Battery operation Full charge]

**Channel 0: 2402.0MHz** 





Channel 39: 2441.0MHz

### DH5

3-DH5

Center 2.402 00 GHz #Res BW 3 MHz

3-DH5



### Channel 78: 2480.0MHz

DH5

#### 3-DH5



Report number: Z071C-09410 Page 19 of 55

### 4.6 Band Edge Compliance of RF Conducted Emissions

### 4.6.1 Test Procedure [FCC 15.247 (d), IC RSS-210 A8.5]

The Band Edge is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to:

- RBW=100kHz, VBW=100kHz, Span=15MHz, Sweep=Auto

The EUT was set to operate with following conditions.

- Hopping [ch 0 (low) and ch 78 (high)]
- No hopping [ch 0 (low) and ch 78 (high)]

The test mode of EUT is as follows.

- Tx mode (Hopping)
- Tx mode (No hopping)

### 4.6.2 Test Instruments and Measurement Setup



### 4.6.3 Limit of Band-edge Compliance of RF Conducted Emissions

In any 100KHz bandwidth outside the frequency band the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100KHz bandwidth within the band that contains the highest level of the desired power.

### 4.6.4 Measurement Results of Band-edge

### [Tx mode (Hopping)]

| Channel | Frequency<br>(MHz) | Packet<br>type | RF Power<br>Level<br>(dBm) | Band-edge<br>Frequency<br>(MHz) | Band-edge<br>Level<br>(dBm) | Difference<br>Level<br>(dBm) | Limit<br>(dBm)           | Result |
|---------|--------------------|----------------|----------------------------|---------------------------------|-----------------------------|------------------------------|--------------------------|--------|
| 0       | 2402.00            | DH5            | -15.44                     | 2400.55                         | -60.71                      | 45.27                        | A + 1 + 20 ID            | PASS   |
| U       | 2402.00            | 3-DH5          | -19.71                     | 2395.50                         | -70.21                      | 50.50                        | At least 20dB below from | PASS   |
| 70      | 2490.00            | DH5            | -15.84                     | 2481.52                         | -61.60                      | 45.76                        | peak of RF               | PASS   |
| 78      | 2480.00            | 3-DH5          | -18.45                     | 2482.70                         | -68.39                      | 49.94                        | peak of Ki               | PASS   |

### [Tx mode (No hopping)]

| Channel | Frequency<br>(MHz) | Packet<br>type | RF Power<br>Level<br>(dBm) | Band-edge<br>Frequency<br>(MHz) | Band-edge<br>Level<br>(dBm) | Difference<br>Level<br>(dBm) | Limit<br>(dBm) | Result |
|---------|--------------------|----------------|----------------------------|---------------------------------|-----------------------------|------------------------------|----------------|--------|
| 0       | 2402.00            | DH5            | -15.20                     | 2399.42                         | -62.62                      | 47.42                        | At least 20dB  | PASS   |
|         | 2402.00            | 3-DH5          | -17.71                     | 2399.42                         | -64.90                      | 47.19                        | below from     | PASS   |
| 78      | 2480.00            | DH5            | -15.74                     | 2481.50                         | -60.61                      | 44.87                        | peak of RF     | PASS   |
| 78      | 2400.00            | 3-DH5          | -18.19                     | 2482.60                         | -65.74                      | 47.55                        | peak of Ki     | PASS   |

### 4.6.5 Trace Data

Test Personnel:

Tested by:

Taiki Watanabe

Date : Feb. 25, 2010

Temperature : 22.0 [°C]

Humidity : 65.0 [%]

Test place : Shielded room

### Band Edge Compliance of RF Conducted Emissions

[Tx mode (Hopping)] Channel 0: 2402.0MHz

DH5

### 3-DH5



### **Channel 78: 2480.0MHz**

DH5

### 3-DH5



### Band Edge Compliance of RF Conducted Emissions

[Tx mode (No hopping)] Channel 0: 2402.0MHz

DH5

### 3-DH5



### Channel 78: 2480.0MHz

DH5

### 3-DH5



Report number: Z071C-09410 Page 22 of 55

### 4.7 Spurious Emissions - Conducted -

### 4.7.1 Test Procedure [FCC 15.247(d), IC RSS-210 A8.5, RSS-Gen 4.9&4.10]

The spurious emissions (Conducted) are measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to:

- RBW=100kHz, VBW=300kHz, Span=Arbitrary setting, Sweep=Auto

The EUT was set to operate with following conditions.

- No hopping [ch 0 (low), ch 39 (mid) and ch 78 (high)]

The test mode of EUT is as follows.

- Tx mode

### 4.7.2 Measurement Setup



### 4.7.3 Limit of Spurious Emissions - Conducted -

In any 100KHz bandwidth outside the frequency band the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100KHz bandwidth within the band that contains the highest level of the desired power.

### 4.7.4 Measurement Results of Spurious Emissions - Conducted -

| Channel | Frequency<br>[MHz] | Limit<br>[dBm]                       | Results Chart      | PASS / FAIL |
|---------|--------------------|--------------------------------------|--------------------|-------------|
| 0       | 2402.0             | At least 20dB below from peak of RF. | See the Trace Data | PASS        |
| 39      | 2441.0             | At least 20dB below from peak of RF. | See the Trace Data | PASS        |
| 78      | 2480.0             | At least 20dB below from peak of RF. | See the Trace Data | PASS        |

#### 4.7.5 Trace Data

| Test Personnel: |                | Date        | : | Feb. 25, 2010 |
|-----------------|----------------|-------------|---|---------------|
| Tagtad by:      | Taiki Watanabe | Temperature | : | 22.0 [°C]     |
| Tested by:      | Taiki Watanabe | Humidity    | : | 65.0 [%]      |
|                 |                | Test place  | : | Shielded room |

### Spurious Emissions - Conducted -

DH5

Channel 0: 2402.0MHz



### Channel 39: 2441.0MHz



### 3GHz-26.5GHz



### Channel 78: 2480.0MHz

### 30MHz-3GHz

### **3GHz-26.5GHz**



### Spurious Emissions - Conducted -

3-DH5

Channel 0: 2402.0MHz



### Channel 39: 2441.0MHz





### Channel 78: 2480.0MHz



ZACTA Technology Corp. FCC 15C Rev.3.0

FCC ID: W4LNT0003 IC Certification Number: 8170A-NT0003

### 4.8 Spurious Emissions - Radiated - (9kHz - 25GHz)

### 4.8.1 Test Procedure [FCC 15.205/209/247(d), IC RSS-210 A8.5, RSS-Gen 4.9&4.10]

Radiated emission measurements are performed at 3m distance with the broadband antenna (Loop antenna, TRILOG antenna, and double-ridged guide antenna). The antenna is positioned both the horizontal and vertical planes of polarization and height is varied 1 to 4 meters and stopped at height producing the maximum emission. As for the Loop antenna, it is positioned with its plane vertical, and the center of the Loop is 1.0meter above the ground plane. Frequency Range: 9kHz –1GHz is scanned and investigated with the test receiver, and above 1GHz, with the spectrum analyzer. The detector function of the test receiver is set to CISPR Quasi-peak mode and the bandwidth is set to 120kHz. Peak and average detectors are used for measurements above 1GHz. The bandwidth of the spectrum analyzer is set to 1MHz.

The EUT and support equipment are placed on a 1meter x 2meter surface, 0.8meter height FRP table. The turntable is rotated by 360 degrees and stopped at azimuth of producing the maximum emission.

Interconnecting cables, which hanging closer than 40cm to the horizontal metal ground plane are bundled its excess in center. The highest fundamental frequency generated in the EUT is 2402-2480MHz, therefore the frequency was investigated up to 25GHz, as specified in CFR section 15.33, and at least six highest emissions are reported. The test results represent the worst-case emission for each emission with manipulating the EUT, support equipment, interconnecting cables and varying the mode of operation.

Sufficient time for the EUT, support equipment, and test equipment are allowed in order for them to warm up to their normal operating condition.

The spectrum analyzer is set to:

- Peak: RBW=1MHz, VBW=1MHz, Span=0Hz, Sweep=auto
- Average: RBW=1MHz, VBW=10Hz, Span=0Hz, Sweep=auto

The EUT was set to operate with following conditions.

- No hopping [ch 0 (low), ch 39 (mid), ch 78 (high)]

The test mode of EUT is as follows.

- Tx mode, Rx mode

#### 4.8.2 Measurement Setup

### Test configuration for Spurious emissions



ZACTA Technology Corp. FCC 15C Rev.3.0

FCC ID: W4LNT0003 IC Certification Number: 8170A-NT0003

### 4.8.3 Limit of Spurious Emission Measurement

| Frequency     | Field Str       | ength         |
|---------------|-----------------|---------------|
| [MHz]         | [uV/m]          | [dBuV/m]      |
| 0.009 - 0.490 | 2400 / F [kHz]  | 20logE [uV/m] |
| 0.490 - 1.705 | 24000 / F [kHz] | 20logE [uV/m] |
| 1.705-30      | 30              | 29.5          |
| 30 – 88       | 100             | 40.0          |
| 88 – 216      | 150             | 43.5          |
| 216 – 960     | 200             | 46.0          |
| Above 960     | 500             | 54.0          |

#### NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level  $[dBuV/m] = 20 \log Emission [uV/m]$
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

### 4.8.4 Sample of field strength calculation

Spurious Emission  $dB\mu V/m = 20log_{10} (\mu V/m)$ 

Limit @147.6MHz =  $150\mu V/m = 43.5dB\mu V/m$ Reading =  $42.8dB\mu V$ Ant. Factor + Cable Loss - Amp. Gain = 14.2 + 3.0 - 30.0 = -12.8dBTotal =  $42.8 - 12.8 = 30.0dB\mu V/m$ Margin = 43.5 - 30.0 = 13.5dB

### 4.8.5 Measurement Results

| Test Personnel:        |                 | Date                    | : Mar. 1, 2010             |
|------------------------|-----------------|-------------------------|----------------------------|
| Tested by:             | Hiroaki Suzuki  | Temperature<br>Humidity | : 24.2 [°C]<br>: 55.0 [%]  |
|                        |                 | Test place              | : 3m Semi-anechoic chamber |
| Test Personnel:        |                 | Date                    | : Mar. 2, 2010             |
| Tested by:             | Hiroaki Suzuki  | Temperature             | : 22.2 [°C]                |
| ,                      |                 | Humidity                | : 57.0 [%]                 |
|                        |                 | Test place              | : 3m Semi-anechoic chamber |
| <b>Test Personnel:</b> |                 | Date                    | : Mar. 3, 2010             |
| Tooted by:             | Hiroaki Suzuki  | Temperature             | : 21.1 [°C]                |
| Tested by:             | IIIIOAKI SUZUKI | Humidity                | : 55.8 [%]                 |
|                        |                 | Test place              | : 3m Semi-anechoic chamber |

## Spurious Emissions - Radiated- Host device: Nivo<sup>2.C</sup>

### DH5 Tx Channel 0: 2402.0MHz

| No. | Freque                | ncy             | (P) I         | Reading<br>QP                         | c.f                     | Res<br>Q         |                 | Limit                      | Margi<br>QP            | n Hei        | ght              | Angle             |
|-----|-----------------------|-----------------|---------------|---------------------------------------|-------------------------|------------------|-----------------|----------------------------|------------------------|--------------|------------------|-------------------|
| 1 2 | [MHz]<br>165.<br>283. | $\frac{1}{439}$ | Н             | <sup>1</sup> Β(μV)]<br>26. 4<br>24. 7 | [dB(1/r<br>-8.3<br>-8.3 | m)] [dB(µ<br>3 1 |                 | [dB(μV/m)]<br>43.5<br>46.0 | [dB]<br>25. 4<br>29. 4 | 17           | m]<br>9.0<br>2.0 | [°]<br>3.0<br>0.0 |
| No. | Frequency             | (P)             | Reading<br>AV | Reading<br>PK                         | c. f                    | Result<br>AV     | Result<br>PK    | Limit                      | Margin<br>AV           | Margin<br>PK | Height           | Angle             |
|     | [MHz]                 |                 | $[dB(\mu V)]$ | $[dB(\mu V)]$                         | [dB(1/m)]               | $[dB(\mu V/m)]$  | $[dB(\mu V/m)]$ | )] [dB(μV/m)]              | [dB]                   | [dB]         | [cm]             | [°]               |
| 1   | 4804.000              | Н               |               | 44.0                                  | 2.8                     |                  | 46.8            | 74. 0                      |                        | 27.2         | 100.0            | 260.0             |
| 2   | 4804, 000             | Н               | 36.0          |                                       | 2.8                     | 38.8             |                 | - 54.0                     | 15. 2                  |              | 100.0            | 260.0             |
| 3   | 4804, 000             | V               |               | 43.6                                  | 2.8                     |                  | 46. 4           | 74.0                       |                        | 27.6         | 100.0            | 253.0             |
| 4   | 4804, 000             | V               | 35. 7         |                                       | 2.8                     | 38. 5            |                 | - 54.0                     | 15.5                   |              | 100.0            | 253.0             |
| 5   | 7206, 000             | Н               |               | 41.8                                  | 6.6                     |                  | 48.4            | 74.0                       |                        | 25.6         | 100.0            | 279.0             |
| 6   | 7206, 000             | Н               | 34. 4         |                                       | 6.6                     | 41.0             |                 | - 54.0                     | 13.0                   |              | 100.0            | 279.0             |
| 7   | 7206, 000             | V               |               | 42. 2                                 | 6.6                     |                  | 48.8            | 74.0                       |                        | 25. 2        | 100.0            | 286.0             |
| 8   | 7206, 000             | V               | 34. 5         |                                       | 6.6                     | 41.1             |                 | - 54.0                     | 12.9                   |              | 100.0            | 286.0             |

### **Tx Channel 39: 2441.0MHz**

| No. | Frequency     | 7 (I | ) F  | Reading       | c. f      | Res             | ult     | Limit      |      | Margi  | n Hei | ght    | Angle  |
|-----|---------------|------|------|---------------|-----------|-----------------|---------|------------|------|--------|-------|--------|--------|
|     |               | ,    | ,    | QP            |           | Q               | P       |            |      | QP     |       |        | 0      |
|     | [MHz]         |      | Γc   | $B(\mu V)$    | [dB(1/n   | n)] [dB(μ       | ι V/m)] | [dB(μV/    | m)]  | [dB]   | Γc    | ml     | [°]    |
| 1   | 165, 458      | 8 I  |      | 26. 3         | -8.3      |                 | 8. 0    | 43. 5      |      | 25. 5  | 18    | 4.0    | 0.0    |
| 2   | 283. 912      | 2 1  | 7    | 24.7          | -8. 1     | l 10            | 6. 6    | 46.0       | )    | 29.4   | 19    | 2.0    | 0.0    |
| No. | Frequency (P) | Rea  | ding | Reading       | c. f      | Result          | Result  | Limi       | t    | Margin |       | Height | Angle  |
|     |               | Α    | V    | PK            |           | AV              | PK      |            |      | AV     | PK    |        |        |
|     | [MHz]         | [dB( | μV)] | $[dB(\mu V)]$ | [dB(1/m)] | $[dB(\mu V/m)]$ | [dB(μV/ | m)] [dB(μV | /m)] | [dB]   | [dB]  | [cm]   | [°]    |
| 1   | 4882, 000 H   |      |      | 45. 1         | 3.0       |                 | 48. 1   | 74.        | 0    |        | 25. 9 | 102.0  | 241.0  |
| 2   | 4882, 000 H   |      | 7. 5 |               | 3, 0      | 40, 5           |         | 54.        | 0    | 13.5   |       | 102.0  | 241.0  |
| 3   | 4882, 000 V   |      |      | 43, 9         | 3, 0      |                 | 46, 9   | 74.        | 0    |        | 27. 1 | 106, 0 | 276, 0 |
| 4   | 4882, 000 V   | 3    | 5. 6 |               | 3.0       | 38.6            |         | 54.        | 0    | 15.4   |       | 106.0  | 276.0  |
| 5   | 7323, 000 H   |      |      | 41.4          | 7.3       |                 | 48, 7   | 74.        | 0    |        | 25, 3 | 100, 0 | 298. 0 |
| 6   | 7323, 000 H   | 3    | 4. 2 |               | 7.3       | 41.5            |         | 54.        | 0    | 12.5   |       | 100.0  | 298, 0 |
| 7   | 7323, 000 V   |      |      | 42.0          | 7.3       |                 | 49.3    | 74.        | 0    |        | 24.7  | 100, 0 | 289. 0 |
| 8   | 7323. 000 V   | 3    | 4. 2 |               | 7.3       | 41.5            |         | 54.        |      | 12.5   |       | 100.0  | 289. 0 |

### **Tx Channel 78: 2480.0MHz**

| No. | Freque        | ncy | (P) I            | Reading<br>QP  | c.f           |                  | ult<br>P        | Limit              | Margi<br>QP | n Hei      | ght         | Angle       |
|-----|---------------|-----|------------------|----------------|---------------|------------------|-----------------|--------------------|-------------|------------|-------------|-------------|
| 1   | [MHz]<br>165. |     | H [6             | Β(μV)]<br>26.6 | [dB(1/<br>-8. | m)] [dB(/        |                 | [dB(µV/m)]<br>43.5 |             |            | m]<br>84. 0 | [°]<br>22.0 |
| 2   | 283.9         | 915 | V                | 24.7           | -8.           | 1 1              | 6.6             | 46.0               | 29. 4       | 18         | 86.0        | 0.0         |
| No. | Frequency     | (P) | Reading          | Reading        | c. f          | Result           | Result          | Limit              | Margin      | Margin     | Height      | Angle       |
|     | [MHz]         |     | AV<br>[dB (μ V)] | PK<br>[dB(μV)] | [dB(1/m)]     | AV<br>[dB(μV/m)] | PK<br>[dB(μV/m) | ] [dB(μV/m)]       | AV<br>[dB]  | PK<br>[dB] | [cm]        | [°]         |
| 1   | 4960.000      | Н   |                  | 45. 1          | 3. 1          |                  | 48. 2           | 74. 0              |             | 25.8       | 100.0       | 254.0       |
| 2   | 4960, 000     | Н   | 37. 6            |                | 3. 1          | 40.7             |                 | - 54.0             | 13. 3       |            | 100.0       | 254.0       |
| 3   | 4960.000      | V   |                  | 42.4           | 3. 1          |                  | 45. 5           | 74.0               |             | 28. 5      | 100.0       | 281.0       |
| 4   | 4960.000      | V   | 34. 7            |                | 3. 1          | 37.8             |                 | - <b>54.</b> 0     | 16. 2       |            | 100.0       | 281.0       |
| 5   | 7440.000      | Н   |                  | 42.0           | 7.4           |                  | 49.4            | 74.0               |             | 24.6       | 100.0       | 295.0       |
| 6   | 7440, 000     | H   | 34. 5            |                | 7.4           | 41.9             |                 | - 54.0             | 12. 1       |            | 100.0       | 295.0       |
| 7   | 7440.000      | V   |                  | 42.4           | 7.4           |                  | 49.8            | 74. 0              |             | 24. 2      | 100.0       | 287.0       |
| 8   | 7440,000      | V   | 34. 5            |                | 7.4           | 41.9             |                 | 54.0               | 12. 1       |            | 100.0       | 287.0       |

#### Note

<sup>1.</sup> Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

<sup>2.</sup> No emissions were detected in frequency range 9kHz to 30MHz at the 3 meters distance.

| 3-DI                                 | H5                                                                                              |                                          |                                                |                                                                      |                                                               | <u>_</u>                                |                                                                                                                                             |                        |                                                                                                                                                                                                                                    |                                                                    |
|--------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Tx C                                 | Channel 0: 2                                                                                    | 402.0MI                                  | Hz                                             |                                                                      |                                                               |                                         |                                                                                                                                             |                        |                                                                                                                                                                                                                                    |                                                                    |
| No.                                  | Frequenc                                                                                        | y (P)                                    | Reading<br>QP                                  | c. f                                                                 | Resu<br>QF                                                    |                                         | Limit                                                                                                                                       | Margin<br>QP           | Height                                                                                                                                                                                                                             | Angle                                                              |
| 1<br>2<br>No.                        | [MHz]<br>165.47<br>304.42<br>Frequency (I                                                       | 0 V                                      | [dB (μV)]<br>26. 5<br>25. 3                    | [dB(1/m)<br>-8.3<br>-7.6<br>c.f                                      | ] [dB(μ<br>18                                                 |                                         | dB(μ V/m)]<br>43.5<br>46.0<br>Limit                                                                                                         | [dB]<br>25. 3<br>28. 3 | [cm]<br>196.0<br>185.0<br>Margin Height                                                                                                                                                                                            | [°]<br>15.0<br>0.0<br>Angle                                        |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | [MHz] 4804.000 H 4804.000 H 4804.000 H 7206.000 H 7206.000 H 7206.000 H                         | AV [dB (μ] H 36. V 35. H 34. V 34. V 34. | PK V)] [dB(µV)]                                |                                                                      | AV                                                            | PK                                      | 74. 0<br>- 54. 0<br>- 74. 0<br>- 54. 0<br>- 74. 0<br>- 54. 0<br>- 74. 0<br>- 74. 0<br>- 74. 0<br>- 74. 0<br>- 74. 0                         | AV [dB]                | PK [dB] [cm] 27. 5 103. 0                                                                                                                                                                                                          | [°] 261.0 261.0 261.0 272.0 272.0 272.0 295.0 295.0 286.0          |
| Tx C                                 | Channel 39:                                                                                     | 2441.0M                                  | <u>IHz</u>                                     |                                                                      |                                                               |                                         |                                                                                                                                             |                        |                                                                                                                                                                                                                                    |                                                                    |
| No.                                  | Frequenc                                                                                        | y (P)                                    | Reading<br>QP                                  | c. f                                                                 | Resu<br>QF                                                    |                                         | Limit                                                                                                                                       | Margin<br>QP           | Height                                                                                                                                                                                                                             | Angle                                                              |
| $\frac{1}{2}$                        | [MHz]<br>165.47<br>304.42                                                                       |                                          | [dB (μV)]<br>26. 4<br>25. 4                    | [dB(1/m)<br>-8.3<br>-7.6                                             | ] [dB(μ<br>18                                                 |                                         | dB(μV/m)]<br>43.5<br>46.0                                                                                                                   | [dB]<br>25. 4<br>28. 2 | [cm]<br>206.0<br>185.0                                                                                                                                                                                                             | [°]<br>14.0<br>0.0                                                 |
| No.                                  | Frequency (I                                                                                    | P) Readi                                 | ng Reading<br>PK                               | c. f                                                                 | Result<br>AV                                                  | Result<br>PK                            | Limit                                                                                                                                       | Margin M<br>AV         | largin Height<br>PK                                                                                                                                                                                                                |                                                                    |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | 4882. 000 H<br>4882. 000 H<br>4882. 000 H<br>7323. 000 H<br>7323. 000 H<br>7323. 000 H          | [dB(µ] H 37. V 35. H 34. V 34.           | V)] [dB(\(\mu\)V)] 45.1 4 43.2 2 42.3 4 41.4   | [dB(1/m)] [d<br>3.0<br>3.0<br>3.0<br>3.0<br>7.3<br>7.3<br>7.3<br>7.3 |                                                               |                                         | $ \begin{bmatrix} (dB (\mu V/m)) \\ 74.0 \\ -54.0 \\ 74.0 \\ -54.0 \\ -54.0 \\ -54.0 \\ -74.0 \\ -54.0 \\ -54.0 \\ -54.0 \\ \end{bmatrix} $ |                        | [dB] [cm] 25. 9 100. 0 100. 0 27. 8 105. 0 100. 0 24. 4 100. 0 100. 0 25. 3 100. 0                                                                                                                                                 | 258. 0<br>269. 0<br>269. 0<br>269. 0<br>293. 0<br>293. 0<br>286. 0 |
| Tx C                                 | Channel 78:                                                                                     | 2480.0M                                  | ΙΗz                                            |                                                                      |                                                               |                                         |                                                                                                                                             |                        |                                                                                                                                                                                                                                    |                                                                    |
| No.                                  | Frequenc                                                                                        | y (P)                                    | Reading<br>QP                                  | c.f                                                                  | Rest<br>Qi                                                    |                                         | Limit                                                                                                                                       | Margin<br>QP           | Height                                                                                                                                                                                                                             | Angle                                                              |
| 1 2                                  | [MHz]<br>165.47<br>304.41                                                                       |                                          | [dB(μV)]<br>26.3<br>25.5                       | [dB(1/m)<br>-8.3<br>-7.6                                             | ] [dB( $\mu$                                                  |                                         | [dB(μV/m)]<br>43.5<br>46.0                                                                                                                  | [dB]<br>25. 5<br>28. 1 | [cm]<br>206.0<br>197.0                                                                                                                                                                                                             | [°]<br>14.0<br>0.0                                                 |
| No.  1 2 3 4 5 6 7 8                 | 4960. 000   1<br>4960. 000   1<br>4960. 000   7<br>440. 000   7<br>440. 000   7<br>440. 000   7 | AV                                       | PK<br>V)] [dB(μV)]<br>44. 5<br>0<br>42. 4<br>5 | c.f [dB(1/m)] [43.1 3.1 3.1 3.1 7.4 7.4 7.4 7.4 7.4                  | Result<br>AV<br>dB(µV/m)]<br>-40.1<br>-37.6<br>-41.9<br>-41.9 | Result PK [dB(µV/m) 47.6 45.5 50.3 49.4 | Limit )] [dB( $\mu$ V/m)] 74.0 - 54.0 - 54.0 - 54.0 - 54.0 - 74.0 - 54.0 - 54.0 - 54.0                                                      | AV [dB]                | fargin PK         Height PK           [dB]         [cm]           26.4         100.0           28.5         105.0           23.7         100.0           23.7         100.0           24.6         100.0           100.0         0 | [°] 0 248.0 0 248.0 0 271.0 0 271.0 0 297.0 0 297.0 0 284.0        |

Spurious Emissions - Radiated - Host device: Nivo<sup>2.C</sup>

### Note:

<sup>1.</sup> Emission Level (Margin) = Limit – [Reading + Factor (Antenna + Cable - Amp)]
2. No emissions were detected in frequency range 9kHz to 30MHz at the 3 meters distance.

| Spurious Emissions | - Radiated - | Host device: Nivo <sup>2.C</sup> |
|--------------------|--------------|----------------------------------|
|                    |              |                                  |

### DH5

### Rx Channel 0: 2402.0MHz

| No.              | Freque                                                    | ncy         | (P) I                        | Reading<br>OP              | c. f                                  | Res<br>Q                     | ult<br>P                       | Limit                                      | Margi<br>QP            | in Hei                 | ght                              | Angle                                       |
|------------------|-----------------------------------------------------------|-------------|------------------------------|----------------------------|---------------------------------------|------------------------------|--------------------------------|--------------------------------------------|------------------------|------------------------|----------------------------------|---------------------------------------------|
| 1 2              | [MHz<br>165.<br>230.                                      | 521         | H<br>V                       | dB (μV)]<br>26. 1<br>26. 1 | [dB(1/s<br>-8.4<br>-10.               | m)] [dB( <sub>1</sub><br>4 1 | _                              | dB(μV/m)]<br>43.5<br>46.0                  |                        | 8 19                   | em]<br>93. 0<br>90. 0            | [°]<br>20.0<br>327.0                        |
| No.              | Frequency                                                 | (P)         | Reading<br>AV                | Reading<br>PK              | c. f                                  | Result<br>AV                 | Result<br>PK                   | Limit                                      | Margin<br>AV           | Margin<br>PK           |                                  | Angle                                       |
| 1<br>2<br>3<br>4 | [MHz]<br>4802. 000<br>4802. 000<br>4802. 000<br>4802. 000 | H<br>H<br>V | [dB (μ V)]<br>37. 0<br>35. 3 | [dB(µV)]<br>44.1<br>       | [dB(1/m)]<br>2.8<br>2.8<br>2.8<br>2.8 | 39. 8<br><br>38. 1           | [dB ( μ V/m)<br>46. 9<br>45. 4 | [dB(μV/m)]<br>74.0<br>54.0<br>74.0<br>54.0 | [dB]<br>14. 2<br>15. 9 | [dB]<br>27. 1<br>28. 6 | 104.0<br>104.0<br>100.0<br>100.0 | [°]<br>256. 0<br>256. 0<br>271. 0<br>271. 0 |

### **Rx Channel 39: 2441.0MHz**

| IIA | manner 37. 2 | <b>41110</b> |      | <u> </u>      |           |                 |         |                 |               |        |        |       |
|-----|--------------|--------------|------|---------------|-----------|-----------------|---------|-----------------|---------------|--------|--------|-------|
| No. | Frequenc     | y (P         | ) F  | Reading       | c.f       | Rest            | ult     | Limit           | Margi         | n Heig | ght    | Angle |
|     |              |              |      | QP            |           | QI              | P       |                 | $\mathbf{QP}$ |        |        |       |
|     | [MHz]        |              | [d   | $B(\mu V)$    | [dB(1/n   | n)] [dB(μ       | V/m     | $[dB(\mu V/m)]$ |               | [cı    | n]     | [°]   |
| 1   | 165.52       | 1 H          |      | 26. 1         | -8.4      | 1'              | 7. 7    | 43.5            | 25.8          | 196    | 6. 0   | 19.0  |
| 2   | 230, 29      | 1 V          |      | 26.2          | -10.1     | . 16            | 6. 1    | 46.0            | 29.9          | 100    | 0.0    | 327.0 |
| No. | Frequency (P | ) Read       | ding | Reading       | c. f      | Result          | Result  | Limit           | Margin        | Margin | Height | Angle |
|     |              | A'           | V    | PK            |           | AV              | PK      |                 | AV            | PK     |        |       |
|     | [MHz]        | [dB(         | μV)] | $[dB(\mu V)]$ | [dB(1/m)] | $[dB(\mu V/m)]$ | [dB(μV/ | $[dB(\mu V/m)]$ | [dB]          | [dB]   | [cm]   | [°]   |
| 1   | 4880, 000 H  | I            |      | 44. 2         | 3.0       |                 | 47. 2   | 74. 0           |               | 26.8   | 102, 0 | 241.0 |
| 2   | 4880, 000 H  | I 3'         | 7. 9 |               | 3.0       | 40.9            |         | 54. 0           | 13. 1         |        | 102.0  | 241.0 |
| 3   | 4880, 000 V  |              |      | 41. 1         | 3.0       |                 | 44. 1   | 74.0            |               | 29.9   | 100.0  | 272.0 |
| 4   | 4880.000 V   | 3            | 4.0  |               | 3.0       | 37.0            |         | 54. 0           | 17.0          |        | 100.0  | 272.0 |

### **Rx Channel 78: 2480.0MHz**

| No. | Frequen   | су  | (P) F         | Reading<br>OP | c. f      | Res             |                 | Limit                | Margi<br>QP  | n Hei        | ght    | Angle |
|-----|-----------|-----|---------------|---------------|-----------|-----------------|-----------------|----------------------|--------------|--------------|--------|-------|
| ,   | [MHz]     |     |               | $B(\mu V)$    | [dB(1/r   | n)] [dB( µ      | υ V/m)]         | [dB(µV/m)]           | [dB]         |              | m]     | [°]   |
| 1   | 165. 5    |     | Н             | 26.0          | -8.       |                 | 7. 6            | 43.5                 | 25. 9        |              | 6.0    | 19.0  |
| 2   | 230. 2    | 291 | V             | 26.3          | -10.      | 1               | 6. 2            | 46.0                 | 29.8         | 10           | 0.0    | 343.0 |
| No. | Frequency | (P) | Reading<br>AV | Reading<br>PK | c. f      | Result<br>AV    | Result<br>PK    | Limit                | Margin<br>AV | Margin<br>PK | Height | Angle |
|     | [MHz]     |     | $[dB(\mu V)]$ | $[dB(\mu V)]$ | [dB(1/m)] | $[dB(\mu V/m)]$ | $[dB(\mu V/m)]$ | $]$ [dB( $\mu$ V/m)] | [dB]         | [dB]         | [cm]   | [°]   |
| 1   | 4958.000  | Н   |               | 45. 7         | 3. 1      |                 | 48.8            | 74. 0                |              | 25. 2        | 100.0  | 252.0 |
| 2   | 4958, 000 | Н   | 38. 3         |               | 3. 1      | 41.4            |                 | - 54.0               | 12.6         |              | 100.0  | 252.0 |
| 3   | 4958, 000 | V   |               | 42. 2         | 3. 1      |                 | 45.3            | 74. 0                |              | 28.7         | 100.0  | 282.0 |
| 4   | 4958, 000 | V   | 34. 4         |               | 3. 1      | 37.5            |                 | - 54.0               | 16.5         |              | 100.0  | 282.0 |

#### Note

<sup>1.</sup> Emission Level (Margin) = Limit – [Reading + Factor (Antenna + Cable - Amp)]

<sup>2.</sup> No emissions were detected in frequency range 9kHz to 30MHz at the 3 meters distance.

| Spurious Emissions | - Radiated – Host device: Nivo <sup>2.C</sup> |
|--------------------|-----------------------------------------------|

### 3-DH5

| $\mathbf{R}\mathbf{v}$ | Chann | el A• | 2402 | OMHz. |
|------------------------|-------|-------|------|-------|

| No. | Freque           | ency | (P) I               | Reading        | c. f      | Res              | ult              | Limit           | Marg       | in Hei     | ght    | Angle            |
|-----|------------------|------|---------------------|----------------|-----------|------------------|------------------|-----------------|------------|------------|--------|------------------|
|     |                  |      |                     | $\mathbf{QP}$  |           | Q                | P                |                 | QP         |            |        |                  |
|     | [MH <sub>2</sub> | z]   | [(                  | $B(\mu V)$     | [dB(1/i   | m)] [dB(,        | μV/m)] [         | $[dB(\mu V/m)]$ | [dB]       | ] [c       | m]     | [°]              |
| 1   | 165.             | 524  | Н                   | 26.0           | -8.       | 4 1              | 7. 6             | 43.5            | 25.        | 9 18       | 37. 0  | 17.0             |
| 2   | 230.             | 291  | V                   | 26.3           | -10.      | 1 1              | 6. 2             | 46.0            | 29.        | 8 10       | 0.0    | 343.0            |
| No. | Frequency        | (P)  | Reading             | Reading        | c. f      | Result           | Result           | Limit           | Margin     | Margin     | Height | Angle            |
|     | [MHz]            |      | AV<br>$[dB(\mu V)]$ | PK<br>[dB(μV)] | [dB(1/m)] | AV<br>[dB(μV/m)] | PK<br>[dB(uV/m)] | ] [dB(μV/m)]    | AV<br>[dB] | PK<br>[dB] | [cm]   | L <sub>o</sub> J |
| 1   | 4802.000         | Н    |                     | 43.8           | 2.8       |                  | 46.6             | 74. 0           |            | 27. 4      | 100.0  | 256. 0           |
| 2   | 4802.000         | Н    | 36. 7               |                | 2.8       | 39. 5            |                  | 54. 0           | 14. 5      |            | 100.0  | 256.0            |
| 3   | 4802.000         | V    |                     | 41.8           | 2.8       |                  | 44.6             | 74. 0           |            | 29.4       | 100.0  | 290.0            |
| 4   | 4802,000         | V    | 34. 5               |                | 2.8       | 37.3             |                  | 54. 0           | 16.7       |            | 100.0  | 290.0            |

### **Rx Channel 39: 2441.0MHz**

| 111 | Juanine 37. 2 | <del>/                                    </del> |            | <u>u</u>      |           |                 |                |                   |        |        |        |        |
|-----|---------------|--------------------------------------------------|------------|---------------|-----------|-----------------|----------------|-------------------|--------|--------|--------|--------|
| No. | Frequency     | y                                                | (P) R      | leading       | c. f      | Rest            | ılt            | Limit             | Margi  | n Heig | ght    | Angle  |
|     |               |                                                  |            | $\mathbf{QP}$ |           | QI              | •              |                   | QP     |        |        |        |
|     | [MHz]         |                                                  | [d         | $B(\mu V)$    | [dB(1/n   | n)] [dB(μ       | V/m] [         | $[dB(\mu V/m)]$   | [dB]   | [ci    | n]     | [°]    |
| 1   | 165, 530      | )                                                | H          | 26.0          | -8.4      | 17              | 7. 6           | 43.5              | 25.9   | 18'    | 7. 0   | 17.0   |
| 2   | 230, 296      | 3                                                | V          | 26.3          | -10.1     | 16              | 5. 2           | 46.0              | 29.8   | 100    | 0.0    | 350.0  |
| No. | Frequency (P  | ) R                                              | eading     | Reading       | c.f       | Result          | Result         | Limit             | Margin | Margin | Height | Angle  |
|     |               |                                                  | AV         | PK            |           | AV              | PK             |                   | AV     | PK     |        |        |
|     | [MHz]         | [dl                                              | $B(\mu V)$ | $[dB(\mu V)]$ | [dB(1/m)] | $[dB(\mu V/m)]$ | [dB( $\mu$ V/m | $] [dB(\mu V/m)]$ | [dB]   | [dB]   | [cm]   | [°]    |
| 1   | 4880, 000 H   | -                                                |            | 44. 9         | 3.0       |                 | 47. 9          | 74. 0             |        | 26. 1  | 100.0  | 256. 0 |
| 2   | 4880.000 H    |                                                  | 38. 2      |               | 3.0       | 41.2            |                | - 54.0            | 12.8   |        | 100.0  | 256.0  |
| 3   | 4880.000 V    | _                                                |            | 41.4          | 3.0       |                 | 44. 4          | 74. 0             |        | 29.6   | 100.0  | 276.0  |
| 4   | 4880.000 V    |                                                  | 34. 2      |               | 3.0       | 37.2            |                | - 54.0            | 16.8   |        | 100.0  | 276.0  |

### **Rx Channel 78: 2480.0MHz**

| No. | Freque           | ency | (P) 1          | Reading        | c. f      | Res          | ult                 | Limit         | Margi      | in Hei     | ght    | Angle |
|-----|------------------|------|----------------|----------------|-----------|--------------|---------------------|---------------|------------|------------|--------|-------|
|     |                  |      |                | $\mathbf{QP}$  |           | Q            | P                   |               | QP         |            |        |       |
|     | [MH <sub>2</sub> | :]   | [6             | $dB(\mu V)$    | [dB(1/i   | m)] [dB(µ    | ιV/m)] [            | $dB(\mu V/m)$ | [dB]       | ] [c       | m]     | [°]   |
| 1   | 165.             | 523  | Н              | 26. 1          | -8.       | 4 1          | 7. 7                | 43.5          | 25. 8      | 8 18       | 37. 0  | 16.0  |
| 2   | 230.             | 290  | V              | 26.3           | -10.      | 1 1          | 6. 2                | 46.0          | 29.8       | 3 10       | 0.0    | 350.0 |
| No. | Frequency        | (P)  | Reading        | Reading        | c. f      | Result<br>AV | Result              | Limit         | Margin     | Margin     | Height | Angle |
|     | [MHz]            |      | ΑV<br>[dB(μV)] | PK<br>[dB(μV)] | [dB(1/m)] |              | PK<br>[dB ( μ V/m)] | ] [dB(μV/m)]  | AV<br>[dB] | PK<br>[dB] | [cm]   | [°]   |
| 1   | 4958, 000        | Н    |                | 44.8           | 3. 1      |              | 47.9                | 74.0          |            | 26. 1      | 100.0  | 255.0 |
| 2   | 4958.000         | Н    | 38. 2          |                | 3. 1      | 41.3         |                     | 34. 0         | 12.7       |            | 100.0  | 255.0 |
| 3   | 4958, 000        | V    |                | 42.6           | 3. 1      |              | 45. 7               | 74. 0         |            | 28.3       | 100.0  | 281.0 |
| 4   | 4958, 000        | V    | 35. 0          |                | 3. 1      | 38. 1        |                     | 54. 0         | 15.9       |            | 100.0  | 281.0 |

### Note:

<sup>1.</sup> Emission Level (Margin) = Limit – [Reading + Factor (Antenna + Cable - Amp)]

<sup>2.</sup> No emissions were detected in frequency range 9kHz to 30MHz at the 3 meters distance.

## Spurious Emissions - Radiated- Host device: Nivo<sup>5.C</sup>

### DH5 Tx Channel 0: 2402.0MHz

| No. | Frequenc    | су  | (P) F         | Reading<br>QP | c. f      | Res             |             | Limit           | Margi:<br>QP | n Hei  | ght    | Angle |
|-----|-------------|-----|---------------|---------------|-----------|-----------------|-------------|-----------------|--------------|--------|--------|-------|
|     | [MHz]       |     | [d            | $B(\mu V)$    | [dB(1/n   |                 |             | $[dB(\mu V/m)]$ | [dB]         | [c     | m]     | [°]   |
| 1   | 215. 44     | 44  | H             | 31.9          | -10.7     | 7 2             | 1. 2        | 43. 5           | 22. 3        | 14     | 0.0    | 274.0 |
| 2   | 235, 23     | 38  | H             | 33.4          | -9.9      | 9 2             | 3. 5        | 46.0            | 22.5         | 10     | 0.0    | 77.0  |
| No. | Frequency ( | (P) | Reading       | Reading       | c. f      | Result          | Result      | Limit           | Margin       | Margin | Height | Angle |
|     |             |     | AV            | PK            |           | AV              | PK          |                 | AV           | PK     |        |       |
|     | [MHz]       |     | $[dB(\mu V)]$ | $[dB(\mu V)]$ | [dB(1/m)] | $[dB(\mu V/m)]$ | [dB ( μ V/n | $[dB(\mu V/m)]$ | [dB]         | [dB]   | [cm]   | [°]   |
| 1   | 4804.000    | Н   |               | 44. 1         | 2.8       |                 | 46.9        | 74.0            |              | 27. 1  | 104.0  | 243.0 |
| 2   | 4804.000    | Н   | 36. 4         |               | 2.8       | 39. 2           |             | 54.0            | 14.8         |        | 104.0  | 243.0 |
| 3   | 4804.000    | V   |               | 42.1          | 2.8       |                 | 44. 9       | 74.0            |              | 29. 1  | 100.0  | 255.0 |
| 4   | 4804.000    | V   | 34. 9         |               | 2.8       | 37.7            |             | - 54.0          | 16.3         |        | 100.0  | 255.0 |
| 5   | 7206, 000   | Н   |               | 41.8          | 6, 6      |                 | 48, 4       | 74.0            |              | 25.6   | 102.0  | 251.0 |
| 6   | 7206, 000   | Н   | 34. 4         |               | 6.6       | 41.0            |             | - 54.0          | 13.0         |        | 102.0  | 251.0 |
| 7   | 7206, 000   | V   |               | 42.7          | 6.6       |                 | 49.3        | 74.0            |              | 24.7   | 113.0  | 264.0 |
| 8   | 7206, 000   | V   | 35.0          |               | 6.6       | 41.6            |             | - 54. 0         | 12.4         |        | 113.0  | 264.0 |

### **Tx Channel 39: 2441.0MHz**

| No. | Frequenc     | у ( | P) I      | Reading<br>QP | c. f      | Res<br>Q        |                 | Limit                        | Margi<br>QP | n Hei      | ght    | Angle  |
|-----|--------------|-----|-----------|---------------|-----------|-----------------|-----------------|------------------------------|-------------|------------|--------|--------|
|     | [MHz]        |     | [6        | dB(μV)]       | [dB(1/i   | ~               |                 | $[dB(\mu V/m)]$              | [dB]        | [c         | m]     | [°]    |
| 1   | 215. 44      | 4   | Η         | 32.0          | -10.      |                 | 1.3             | 43. 5                        | 22. 2       | $\bar{10}$ | 0.0    | 272.0  |
| 2   | 235. 23      | 3   | Н         | 33.4          | -9.9      | 9 2             | 3.5             | 46.0                         | 22. 5       | 5 10       | 0.0    | 77.0   |
| No. | Frequency (P |     | ading     | Reading       | c. f      | Result          | Result          | Limit                        | Margin      | Margin     | Height | Angle  |
|     |              |     | AV        | PK            |           | AV              | PK              |                              | AV          | PK         |        |        |
|     | [MHz]        | [dB | $(\mu V)$ | $[dB(\mu V)]$ | [dB(1/m)] | $[dB(\mu V/m)]$ | $[dB(\mu V/m]]$ | $\left[ dB(\mu V/m) \right]$ | [dB]        | [dB]       | [cm]   | [°]    |
| 1   | 4882, 000 H  |     |           | 44.0          | 3.0       |                 | 47.0            | 74.0                         |             | 27.0       | 100.0  | 236. 0 |
| 2   | 4882.000 H   |     | 36. 7     |               | 3.0       | 39. 7           |                 | - 54.0                       | 14.3        |            | 100.0  | 236.0  |
| 3   | 4882, 000 V  |     |           | 42.6          | 3.0       |                 | 45.6            | 74.0                         |             | 28. 4      | 104.0  | 270.0  |
| 4   | 4882.000 V   |     | 34. 5     |               | 3.0       | 37.5            |                 | - 54. 0                      | 16.5        |            | 104.0  | 270.0  |
| 5   | 7323, 000 H  |     |           | 43.0          | 7.3       |                 | 50.3            | 74.0                         |             | 23.7       | 105.0  | 251.0  |
| 6   | 7323, 000 H  |     | 34. 7     |               | 7.3       | 42.0            |                 | - 54.0                       | 12.0        |            | 105.0  | 251.0  |
| 7   | 7323, 000 V  |     |           | 42.3          | 7.3       |                 | 49.6            | 74. 0                        |             | 24.4       | 100.0  | 252. 0 |
| 8   | 7323.000 V   |     | 34. 5     |               | 7.3       | 41.8            |                 | - 54. 0                      | 12.2        |            | 100.0  | 252.0  |

### **Tx Channel 78: 2480.0MHz**

| No. | Freque    | псу | (P) F         | Reading<br>QP       | c.f       | Rest            |             | Limit                | Margii<br>QP | n Hei  | ght    | Angle |
|-----|-----------|-----|---------------|---------------------|-----------|-----------------|-------------|----------------------|--------------|--------|--------|-------|
|     | [MHz]     | ]   | [d            | $\mathbb{B}(\mu V)$ | [dB(1/n   |                 |             | $[dB(\mu V/m)]$      | [dB]         | [c     | m]     | [°]   |
| 1   | 215. 4    | 444 | Н             | 32.1                | -10.7     | 7 2             | 1.4         | 43.5                 | 22. 1        | 14     | 7.0    | 273.0 |
| 2   | 235. 2    | 238 | Н             | 33.2                | -9.9      | 9 2             | 3. 3        | 46.0                 | 22.7         | 10     | 0.0    | 67.0  |
| No. | Frequency | (P) | Reading       | Reading             | c.f       | Result          | Result      | Limit                | Margin       | Margin | Height | Angle |
|     |           |     | AV            | PK                  |           | AV              | PK          |                      | AV           | PK     |        |       |
|     | [MHz]     |     | $[dB(\mu V)]$ | $[dB(\mu V)]$       | [dB(1/m)] | $[dB(\mu V/m)]$ | [dB ( μ V/n | n)] [dB( $\mu$ V/m)] | [dB]         | [dB]   | [cm]   | [°]   |
| 1   | 4960,000  | Н   |               | 44. 2               | 3. 1      |                 | 47. 3       | 74. 0                |              | 26. 7  | 100.0  | 239.0 |
| 2   | 4960.000  | H   | 36. 5         |                     | 3. 1      | 39.6            |             | 54. 0                | 14. 4        |        | 100.0  | 239.0 |
| 3   | 4960.000  | V   |               | 42.8                | 3. 1      |                 | 45. 9       | 74.0                 |              | 28. 1  | 100.0  | 303.0 |
| 4   | 4960,000  | V   | 34. 7         |                     | 3. 1      | 37.8            |             | 54. 0                | 16. 2        |        | 100.0  | 303.0 |
| 5   | 7440,000  | H   |               | 43.4                | 7.4       |                 | 50.8        | 74.0                 |              | 23. 2  | 100.0  | 260.0 |
| 6   | 7440.000  | H   | 35.0          |                     | 7.4       | 42.4            |             | 54. 0                | 11.6         |        | 100.0  | 260.0 |
| 7   | 7440,000  | V   |               | 42.9                | 7.4       |                 | 50.3        | 74.0                 |              | 23.7   | 100.0  | 250.0 |
| 8   | 7440.000  | V   | 35.0          |                     | 7.4       | 42.4            |             | 54. 0                | 11.6         |        | 100.0  | 250.0 |

- Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
   No emissions were detected in frequency range 9kHz to 30MHz at the 3 meters distance.

| H5                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                          |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| hannel 0: 2                                                                            | 2402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.0MHz                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                          |
| Frequen                                                                                | су                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (P)                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | c. f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Limit                                                                                                                                                                                                                                                                                                                                                                                   | Margin<br>QP                                          | Height                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Angle                                                    |
| 225.3                                                                                  | 93<br>49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H<br>H                                                                                                                                                             | dB ( μ V) ]<br>29. 6<br>33. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -11. 0<br>-10. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dB(µ) [dB(µ) 1 2                                        | ι V/m)]<br>8.6<br>3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43. 5<br>46. 0                                                                                                                                                                                                                                                                                                                                                                          | [dB]<br>24. 9<br>23. 0                                | [cm]<br>114.0<br>100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [°]<br>266. 0<br>281. 0                                  |
| Frequency (                                                                            | (P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | c. f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Limit                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Angle                                                    |
| 4804. 000<br>4804. 000<br>4804. 000<br>7206. 000<br>7206. 000<br>7206. 000             | H<br>V<br>V<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $   \begin{bmatrix}       \text{dB}(\mu \text{ V}) \\       \hline       37.0 \\       \hline       34.7 \\       \hline       34.9 \\       \hline       34.9   $ | $\begin{bmatrix} [dB(\mu V)] \\ -44.6 \\ -42.0 \\ -42.8 \\ -43.2 \\ -3.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\ -43.2 \\$ | [dB(1/m)]<br>2.8<br>2.8<br>2.8<br>2.8<br>6.6<br>6.6<br>6.6<br>6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                         | [dB(μV/<br>47. 4<br><br>44. 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 74. 0<br>54. 0<br>74. 0<br>54. 0<br>74. 0<br>54. 0                                                                                                                                                                                                                                                                                                                                      | [dB]<br>                                              | [dB] [cm]<br>26. 6 101. 0<br>101. 0<br>29. 2 100. 0<br>100. 0<br>24. 6 100. 0<br>100. 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 241. 0<br>254. 0<br>254. 0<br>264. 0<br>264. 0<br>262. 0 |
| hannel 39:                                                                             | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 41.0MH                                                                                                                                                             | $\mathbf{z}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                          |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                  | Reading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | c. f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Limit                                                                                                                                                                                                                                                                                                                                                                                   |                                                       | Height                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Angle                                                    |
| 225. 33 Frequency (MHz] 4882.000 4882.000 4882.000 4882.000 7323.000 7323.000 7323.000 | 39<br>(P)<br>H<br>H<br>V<br>V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H<br>H<br>Reading<br>AV<br>[dB(μV)]<br>37. 2<br>34. 2<br>34. 7                                                                                                     | dB(μV)]<br>30.0<br>33.1<br>Reading<br>PK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -11.0<br>-10.3<br>c.f<br>[dB(1/m)]<br>3.0<br>3.0<br>3.0<br>3.0<br>7.3<br>7.3<br>7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n) ] [dB(µ) 1 1 3 2 Result AV [dB(µV/m)] 40.2 37.2 42.0 | 4 V/m)] 9. 0 12. 8 Result PK [dB(μV/ 47. 8 44. 8 49. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 43.5 \\ 46.0 \\ \text{Limit} \\ \\ \text{m)} \hspace{0.2cm} \left[ \hspace{0.2cm} \left( \hspace{0.2cm} \text{dB} (\mu  \text{V/m}) \hspace{0.2cm} \right) \right. \\ - \hspace{0.2cm} 54.0 \\ - \hspace{0.2cm} 54.0 \\ - \hspace{0.2cm} 54.0 \\ - \hspace{0.2cm} 54.0 \\ - \hspace{0.2cm} 74.0 \\ - \hspace{0.2cm} 74.0 \\ - \hspace{0.2cm} 74.0 \\ \end{array}$     | [dB]<br>24. 5<br>23. 2<br>Margin M<br>AV<br>[dB]<br>  | PK [dB] [cm] 26. 2 101. 0 101. 0 29. 2 107. 0 107. 0 24. 6 100. 0 24. 1 100. 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [°] 238. 0 238. 0 255. 0 255. 0 251. 0 251. 0 250. 0     |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                          |
| Frequen                                                                                | су                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (P)                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | c. f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Limit                                                                                                                                                                                                                                                                                                                                                                                   |                                                       | Height                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Angle                                                    |
| 225. 33<br>Frequency (MHz]<br>4960.000<br>4960.000<br>4960.000<br>4960.000<br>7440.000 | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H<br>H<br>Reading                                                                                                                                                  | dB(μV)]<br>29.9<br>33.3<br>Reading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -11. 0<br>-10. 3<br>c. f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (dB( \(\mu\)) [dB( \(\mu\)) (dB( \(\mu\))               | υ V/m)]<br>8.9<br>3.0<br>Result<br>PK<br>[dB(μV/<br>47.7<br>46.2<br>50.2                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 43.5 \\ 46.0 \\ \text{Limit} \\ \\ \text{m)} \hspace{0.2cm} \left[ \hspace{0.2cm} \left( \hspace{0.2cm} \text{dB} \hspace{0.2cm} \left( \hspace{0.2cm} \mu \hspace{0.2cm} \text{V/m} \right) \hspace{0.2cm} \right] \\ - \hspace{0.2cm} 54.0 \\ - \hspace{0.2cm} 54.0 \\ - \hspace{0.2cm} 74.0 \\ - \hspace{0.2cm} 54.0 \\ - \hspace{0.2cm} 54.0 \end{array} \right.$ | [dB] 24.6 23.0  Margin M AV [dB]                      | PK [dB] [cm] 26.3 100.0 100.0 27.8 115.0 23.8 100.0 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [°] 255. 0 255. 0 272. 0 272. 0 262. 0 262. 0 271. 0     |
|                                                                                        | MHz   200. 5   225. 3   200. 5   225. 3   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. 5   200. | Mannel 0: 240    Frequency                                                                                                                                         | Mannel 0: 2402.0MHz     Frequency (P)     MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | The prequency   P   Reading   QP   [MHz]   [dB (μ V)]   200.593   H   29.6   225.349   H   33.3   3   225.349   H   37.0   44.6   4804.000   H   4804.000   W   37.0   42.8   7206.000   H   34.9   7206.000   H   34.9   7206.000   W   34.10   33.1   7206.000   W   34.2   33.3   7206.000   W   34.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   37.2   3 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$   | hannel 0: 2402.0MHz           Frequency         (P)         Reading Reading Reading Reading PK         C. f Result Result Reading PK           200. 593 H         29. 6         -11. 0         1           225. 349 H         33. 3         -10. 3         2           Frequency (P)         Reading Reading PK         C. f Result Reading PK         AV           (MHz]         AV         PK         AV           (MHz)         (dB(μV)] [dB(μV)] [dB(1/m)] [dB(μV/m)]         [dB(μV/m)]           4804.000 H | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | hannel 0: 2402.0MHz           Frequency         (P)         Reading QP         c. f         Result Result Limit QP         Margin QP           [MHz]         [dB (μ V)]         [dB (1/m)]         [dB (μ V/m)]         [dB (μ V/m | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $  |

Spurious Emissions - Radiated - Host device: Nivo<sup>5.C</sup>

#### Note

<sup>1.</sup> Emission Level (Margin) = Limit – [Reading + Factor (Antenna + Cable - Amp)]

<sup>2.</sup> No emissions were detected in frequency range 9kHz to 30MHz at the 3 meters distance.

## Spurious Emissions - Radiated - Host device: Nivo<sup>5.C</sup>

### DH5

### Rx Channel 0: 2402.0MHz

| No. | Freque    | ency | (P) I         | Reading       | c. f      | Res             | ult             | Limit             | Margi  | n Hei  | ght    | Angle |
|-----|-----------|------|---------------|---------------|-----------|-----------------|-----------------|-------------------|--------|--------|--------|-------|
|     |           |      |               | $\mathbf{QP}$ |           | Q.              | P               |                   | QP     |        |        |       |
|     | [MHz      | z]   | [6            | $B(\mu V)$    | [dB(1/r   | n)] [dB(μ       | $\iota V/m)$ [  | $dB(\mu V/m)$     | [dB]   | [c     | m]     | [°]   |
| 1   | 235.      | 241  | Н             | 33.1          | -9.9      | 9 2             | 3. 2            | 46.0              | 22.8   | 12     | 4.0    | 85.0  |
| 2   | 240.      | 187  | H             | 32.7          | -9.       | 7 2             | 3. 0            | 46.0              | 23.0   | 11     | 9.0    | 70.0  |
| No. | Frequency | (P)  | Reading       | Reading       | c. f      | Result          | Result          | Limit             | Margin | Margin | Height | Angle |
|     |           |      | AV            | PK            |           | AV              | PK              |                   | AV     | PK     |        |       |
|     | [MHz]     |      | $[dB(\mu V)]$ | $[dB(\mu V)]$ | [dB(1/m)] | $[dB(\mu V/m)]$ | $[dB(\mu V/m)]$ | $] [dB(\mu V/m)]$ | [dB]   | [dB]   | [cm]   | [°]   |
| 1   | 4802,000  | Н    |               | 44.5          | 2.8       |                 | 47.3            | 74.0              |        | 26.7   | 100.0  | 241.0 |
| 2   | 4802.000  | Н    | 37.0          |               | 2.8       | 39.8            |                 | 54.0              | 14. 2  |        | 100.0  | 241.0 |
| 3   | 4802.000  | V    |               | 42.4          | 2.8       |                 | 45. 2           | 74.0              |        | 28.8   | 100.0  | 256.0 |
| 4   | 4802,000  | V    | 34. 4         |               | 2.8       | 37. 2           |                 | 54. 0             | 16.8   |        | 100.0  | 256.0 |

### **Rx Channel 39: 2441.0MHz**

| No. | Frequer        | псу | (P)           | Reading<br>QP   | c. f           |                 | ult<br>P        | Limit              | Marg              | in Hei       | ight         | Angle       |
|-----|----------------|-----|---------------|-----------------|----------------|-----------------|-----------------|--------------------|-------------------|--------------|--------------|-------------|
| 1   | [MHz]<br>235.2 |     | -             | dB(μV)]<br>33.5 | [dB(1/1<br>-9. | m)] [dB(,       | _               | [dB(µV/m)]<br>46.0 | QP<br>[dB]<br>22. |              | em]<br>20. 0 | [°]<br>56.0 |
| 2   | 240. 1         | 194 | H             | 32.7            | -9.            | 7 2             | 3. 0            | 46.0               | 23. (             | 0 12         | 22.0         | 52.0        |
| No. | Frequency      | (P) | Reading<br>AV | Reading<br>PK   | c. f           | Result<br>AV    | Result<br>PK    | Limit              | Margin<br>AV      | Margin<br>PK | Height       | Angle       |
|     | [MHz]          |     | $[dB(\mu V)]$ |                 | [dB(1/m)]      | $[dB(\mu V/m)]$ | $[dB(\mu V/m)]$ | ] [dB( $\mu$ V/m)] | [dB]              | [dB]         | [cm]         | [°]         |
| 1   | 4880.000       | Н   |               | 44. 5           | 3.0            |                 | 47.5            | 74. 0              |                   | 26.5         | 100.0        | 231.0       |
| 2   | 4880.000       | Н   | 37. 3         |                 | 3.0            | 40.3            |                 | 54. 0              | 13.7              |              | 100.0        | 231.0       |
| 3   | 4880, 000      | V   |               | 41.8            | 3.0            |                 | 44.8            | 74. 0              |                   | 29.2         | 100.0        | 263.0       |
| 4   | 4880.000       | V   | 34.0          |                 | 3.0            | 37.0            |                 | 54.0               | 17.0              |              | 100.0        | 263.0       |

### **Rx Channel 78: 2480.0MHz**

| No. | Frequenc     | су | (P) I         | Reading       | c. f      | Res             | ult             | Limit             | Margi        | in Heig      | ght    | Angle |
|-----|--------------|----|---------------|---------------|-----------|-----------------|-----------------|-------------------|--------------|--------------|--------|-------|
|     |              |    | _             | QP            |           | Q               | -               |                   | QP           | _            | _      |       |
|     | [MHz]        |    | [0            | B(μV)]        | [dB(1/r)] | n)] [dB(μ       | ιV/m)] [        | $[dB(\mu V/m)]$   | [dB]         | [cr          | n]     | [°]   |
| 1   | 235.23       | 37 | Н             | 33.5          | -9.9      | 9 2             | 3.6             | 46.0              | 22.4         | 117          | 7.0    | 72.0  |
| 2   | 240.18       | 39 | Н             | 32.7          | -9.       | 7 2             | 3. 0            | 46.0              | 23.0         | 122          | 2. 0   | 57.0  |
| No. | Frequency (I | P) | Reading<br>AV | Reading<br>PK | c. f      | Result<br>AV    | Result<br>PK    | Limit             | Margin<br>AV | Margin<br>PK | Height | Angle |
|     | [MHz]        |    | $[dB(\mu V)]$ | $[dB(\mu V)]$ | [dB(1/m)] | $[dB(\mu V/m)]$ | $[dB(\mu V/m)]$ | $] [dB(\mu V/m)]$ | [dB]         | [dB]         | [cm]   | [°]   |
| 1   | 4958. 000 I  | H  |               | 43.8          | 3. 1      |                 | 46. 9           | 74. 0             |              | 27. 1        | 100.0  | 253.0 |
| 2   | 4958, 000 I  | H  | 36. 9         |               | 3. 1      | 40.0            |                 | 54. 0             | 14.0         |              | 100.0  | 253.0 |
| 3   | 4958. 000    | V  |               | 42.6          | 3. 1      |                 | 45. 7           | 74. 0             |              | 28. 3        | 100.0  | 281.0 |
| 4   | 4958. 000    | V  | 34. 7         |               | 3. 1      | 37.8            |                 | 54. 0             | 16.2         |              | 100.0  | 281.0 |

### Note:

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emissions were detected in frequency range 9kHz to 30MHz at the 3 meters distance.

## Spurious Emissions - Radiated – Host device: Nivo<sup>5.C</sup>

| Rx | Channel | 0: | 2402 | .0MHz |
|----|---------|----|------|-------|
|    |         |    |      |       |

| No. | Freque    | ncy | (P) F         | Reading       | c. f          | Res             | ult      | Limit             | Margi  | in Hei | ght    | Angle |
|-----|-----------|-----|---------------|---------------|---------------|-----------------|----------|-------------------|--------|--------|--------|-------|
|     |           |     |               | $\mathbf{QP}$ |               | Q               | P        |                   | QP     |        |        |       |
|     | [MHz      | ]   | [6            | $B(\mu V)$    | [dB(1/r)]     | n)] [dΒ(μ       | ι V/m)]  | $[dB(\mu V/m)]$   | [dB]   | [cı    | n]     | [°]   |
| 1   | 235.      | 244 | Н             | 33.6          | -9.9          | 9 2             | 3. 7     | 46.0              | 22.3   | 120    | 0.0    | 71.0  |
| 2   | 240.      | 189 | Н             | 32.7          | -9.           | 7 2             | 3. 0     | 46.0              | 23. (  | 123    | 2.0    | 57.0  |
| No. | Frequency | (P) | Reading       | Reading       | c. f          | Result          | Result   | Limit             | Margin | Margin | Height | Angle |
|     | Free 3    |     | AV            | PK            | F 1D (4 ( ) 3 | AV              | PK       | \3 FID( #/\3      | AV     | PK     |        | F0 7  |
|     | [MHz]     |     | $[dB(\mu V)]$ | $[dB(\mu V)]$ | [dB(1/m)]     | $[dB(\mu V/m)]$ | LdB(μV/m | $] [dB(\mu V/m)]$ | [dB]   | [dB]   | [cm]   | [°]   |
| 1   | 4802.000  | Н   |               | 43.9          | 2.8           |                 | 46. 7    | 74. 0             |        | 27.3   | 100.0  | 241.0 |
| 2   | 4802.000  | Н   | 37. 2         |               | 2.8           | 40.0            |          | - 54.0            | 14.0   |        | 100.0  | 241.0 |
| 3   | 4802,000  | V   |               | 42.7          | 2.8           |                 | 45. 5    | 74. 0             |        | 28. 5  | 100.0  | 254.0 |
| 4   | 4802.000  | V   | 34. 9         |               | 2.8           | 37.7            |          | - 54.0            | 16.3   |        | 100.0  | 254.0 |

### **Rx Channel 39: 2441.0MHz**

|     |           |     | 120011222     | =             |           |                 |                 |                              |        |        |        |        |
|-----|-----------|-----|---------------|---------------|-----------|-----------------|-----------------|------------------------------|--------|--------|--------|--------|
| No. | Freque    | ncy | (P) 1         | Reading       | c. f      | Res             | ult             | Limit                        | Margi  | in Hei | ght    | Angle  |
|     |           |     |               | $\mathbf{QP}$ |           | Q               | P               |                              | QP     |        |        |        |
|     | [MHz      |     | [6            | dΒ(μV)]       | [dB(1/i   | m)] [dB(μ       | ιV/m)] [        | $[dB(\mu V/m)]$              | [dB]   | [c     | m]     | [°]    |
| 1   | 235.      | 243 | Н             | 33.6          | -9.       | 9 2             | 3. 7            | 46.0                         | 22.3   | 3 12   | 0.0    | 65.0   |
| 2   | 240.      | 190 | Н             | 32.8          | -9.       | 7 2             | 3. 1            | 46.0                         | 22. 9  | 9 12   | 3.0    | 57.0   |
| No. | Frequency | (P) | Reading       | Reading       | c. f      | Result          | Result          | Limit                        | Margin | Margin | Height | Angle  |
|     |           |     | AV            | PK            |           | AV              | PK              |                              | AV     | PK     |        |        |
|     | [MHz]     |     | $[dB(\mu V)]$ | $[dB(\mu V)]$ | [dB(1/m)] | $[dB(\mu V/m)]$ | $[dB(\mu V/m)]$ | $\left[ dB(\mu V/m) \right]$ | [dB]   | [dB]   | [cm]   | [°]    |
| 1   | 4880, 000 | Н   |               | 44. 1         | 3, 0      |                 | 47. 1           | 74. 0                        |        | 26, 9  | 100, 0 | 236, 0 |
| 2   | 4880.000  | Н   | 37. 2         |               | 3.0       | 40.2            |                 | 54.0                         | 13.8   |        | 100.0  | 236.0  |
| 3   | 4880, 000 | V   |               | 41.6          | 3.0       |                 | 44.6            | 74. 0                        |        | 29.4   | 100.0  | 261.0  |
| 4   | 4880.000  | V   | 34.0          |               | 3.0       | 37.0            |                 | 54.0                         | 17.0   |        | 100.0  | 261.0  |

### **Rx Channel 78: 2480.0MHz**

| No. | Freque    |     |                | Reading             | c. f      | Rest            | ult              | Limit         | Margi      | n Heig     | ght    | Angle  |
|-----|-----------|-----|----------------|---------------------|-----------|-----------------|------------------|---------------|------------|------------|--------|--------|
|     |           |     |                | QP                  |           | Q]              | P                |               | QP         |            |        |        |
|     | [MHz]     | ]   | [d             | $\mathbb{B}(\mu V)$ | [dB(1/n   | n)] [dB(μ       | (V/m)] [         | $dB(\mu V/m)$ | [dB]       | [cn        | n]     | [°]    |
| 1   | 235.      | 251 | Н              | 33.5                | -9.9      | 9 2             | 3. 6             | 46.0          | 22.4       | 119        | 9. 0   | 68.0   |
| 2   | 240.      | 190 | H              | 32.7                | -9.7      | 7 2             | 3. 0             | 46.0          | 23.0       | 120        | 0.0    | 57.0   |
| No. | Frequency | (P) | Reading        | Reading             | c. f      | Result          | Result           | Limit         | Margin     | Margin     | Height | Angle  |
|     | [MHz]     |     | ΑV<br>[dB(μV)] | PK<br>[dB(μV)]      | [dB(1/m)] | $[dB(\mu V/m)]$ | PK<br>[dB(μV/m)] | ] [dB(μV/m)]  | AV<br>[dB] | PK<br>[dB] | [cm]   | [°]    |
| 1   | 4958, 000 | Н   |                | 44. 1               | 3.1       |                 | 47. 2            | 74. 0         |            | 26.8       | 100.0  | 254.0  |
| 2   | 4958.000  | Н   | 37. 0          |                     | 3. 1      | 40. 1           |                  | 54. 0         | 13. 9      |            | 100.0  | 254. 0 |
| 3   | 4958, 000 | V   |                | 42.0                | 3. 1      |                 | 45. 1            | 74. 0         |            | 28.9       | 100.0  | 282.0  |
| 4   | 4958, 000 | 3.7 | 34. 7          |                     | 3. 1      | 37.8            |                  | 54. 0         | 16. 2      |            | 100.0  | 282, 0 |

### Note:

Emission Level (Margin) = Limit – [Reading + Factor (Antenna + Cable - Amp)]
 No emissions were detected in frequency range 9kHz to 30MHz at the 3 meters distance.

Report number: Z071C-09410 Page 35 of 55

### 4.9 Restricted Band of Operation

### 4.9.1 Test Procedure [FCC 15.205, 15.209, 15.247(d), IC RSS-210 2.2]

The peak power is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to:

- Peak: RBW=1MHz, VBW=1MHz, Span=40MHz, Sweep=auto
- Average: RBW=1MHz, VBW=10Hz, Span=40MHz, Sweep=auto

The EUT was set to operate with following conditions.

- No hopping [ch 0 (low), ch 78 (high)]

The test mode of EUT is as follows.

- Tx mode

### 4.9.2 Measurement Setup



### 4.9.3 Limit of Restricted Band of Operation

Emission at the boundary of the restricted band provided by 15.205 shall be lower than 15.209 limit.

### 4.9.4 Measurement Result

## [Tx mode (Host device: Nivo<sup>2.C</sup>)] DH5

| No. | Frequency | (P) | Reading       | Reading       | c. f      | Result          | Result          | Limit           | Margin | Margin |
|-----|-----------|-----|---------------|---------------|-----------|-----------------|-----------------|-----------------|--------|--------|
|     |           |     | AV            | PK            |           | AV              | PK              |                 | AV     | PK     |
|     | [MHz]     |     | $[dB(\mu V)]$ | $[dB(\mu V)]$ | [dB(1/m)] | $[dB(\mu V/m)]$ | $[dB(\mu V/m)]$ | $[dB(\mu V/m)]$ | [dB]   | [dB]   |
| 1   | 2390.000  | H   |               | 43.7          | -4.4      |                 | 39. 3           | 74.0            |        | 34. 7  |
| 2   | 2390.000  | Н   | 31.0          |               | -4.4      | 26.6            |                 | 54.0            | 27.4   |        |
| 3   | 2390, 000 | V   |               | 44.6          | -4.4      |                 | 40.2            | 74. 0           |        | 33.8   |
| 4   | 2390, 000 | V   | 31. 9         |               | -4.4      | 27. 5           |                 | 54.0            | 26. 5  |        |
| 5   | 2483.500  | H   |               | 44. 1         | -4.3      |                 | 39.8            | 74. 0           |        | 34. 2  |
| 6   | 2483.500  | Н   | 33. 7         |               | -4.3      | 29.4            |                 | 54.0            | 24.6   |        |
| 7   | 2483.500  | V   |               | 48. 1         | -4.3      |                 | 43.8            | 74.0            |        | 30. 2  |
| 8   | 2483.500  | V   | 39. 4         |               | -4.3      | 35. 1           |                 | 54.0            | 18.9   |        |

### 3-DH5

| No. | Frequency | (P) | Reading       | Reading       | c. f      | Result          | Result          | Limit           | Margin | Margin |
|-----|-----------|-----|---------------|---------------|-----------|-----------------|-----------------|-----------------|--------|--------|
|     |           |     | AV            | PK            |           | AV              | PK              |                 | AV     | PK     |
|     | [MHz]     |     | $[dB(\mu V)]$ | $[dB(\mu V)]$ | [dB(1/m)] | $[dB(\mu V/m)]$ | $[dB(\mu V/m)]$ | $[dB(\mu V/m)]$ | [dB]   | [dB]   |
| 1   | 2390.000  | Н   |               | 42.8          | -4.4      |                 | 38. 4           | 74.0            |        | 35. 6  |
| 2   | 2390,000  | Н   | 31. 2         |               | -4.4      | 26.8            |                 | 54.0            | 27.2   |        |
| 3   | 2390,000  | V   |               | 45. 4         | -4.4      |                 | 41.0            | 74.0            |        | 33.0   |
| 4   | 2390, 000 | V   | 33. 5         |               | -4.4      | 29. 1           |                 | 54.0            | 24.9   |        |
| 5   | 2483.500  | Н   |               | 44. 4         | -4.3      |                 | 40.1            | 74.0            |        | 33.9   |
| 6   | 2483.500  | Н   | 32.8          |               | -4.3      | 28.5            |                 | 54.0            | 25.5   |        |
| 7   | 2483.500  | V   |               | 46.9          | -4.3      |                 | 42.6            | 74.0            |        | 31.4   |
| 8   | 2483.500  | V   | 38. 2         |               | -4.3      | 33.9            |                 | 54.0            | 20.1   |        |

# [Tx mode (Host device: Nivo<sup>5,C</sup>)] DH5

| No. | Frequency | (P) | Reading<br>AV | Reading<br>PK | c. f      | Result<br>AV    | Result<br>PK    | Limit           | Margin<br>AV | Margin<br>PK |
|-----|-----------|-----|---------------|---------------|-----------|-----------------|-----------------|-----------------|--------------|--------------|
|     | [MHz]     |     | $[dB(\mu V)]$ | $[dB(\mu V)]$ | [dB(1/m)] | $[dB(\mu V/m)]$ | $[dB(\mu V/m)]$ | $[dB(\mu V/m)]$ | [dB]         | [dB]         |
| 1   | 2390,000  | Н   |               | 43.6          | -4.4      |                 | 39. 2           | 74.0            |              | 34.8         |
| 2   | 2390,000  | Н   | 31. 1         |               | -4.4      | 26.7            |                 | 54.0            | 27.3         |              |
| 3   | 2390,000  | V   |               | 44.0          | -4.4      |                 | 39.6            | 74.0            |              | 34. 4        |
| 4   | 2390,000  | V   | 31. 7         |               | -4.4      | 27.3            |                 | 54.0            | 26.7         |              |
| 5   | 2483.500  | Н   |               | 44.6          | -4.3      |                 | 40.3            | 74.0            |              | 33. 7        |
| 6   | 2483.500  | Н   | 34. 3         |               | -4.3      | 30.0            |                 | 54.0            | 24.0         |              |
| 7   | 2483.500  | V   |               | 48.3          | -4.3      |                 | 44.0            | 74.0            |              | 30.0         |
| 8   | 2483.500  | V   | 38. 4         |               | -4.3      | 34. 1           |                 | 54.0            | 19.9         |              |

### 3-DH5

| .10       |                                                                               |                                                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |
|-----------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| Frequency | (P)                                                                           | Reading                                                                                |                                                        | c. f                                                   | Result                                                 | Result                                                 | Limit                                                  | Margin                                                 | Margin                                                 |
|           |                                                                               | AV                                                                                     | PK                                                     |                                                        | AV                                                     | PK                                                     |                                                        | AV                                                     | PK                                                     |
| [MHz]     |                                                                               | $[dB(\mu V)]$                                                                          | $[dB(\mu V)]$                                          | [dB(1/m)]                                              | $[dB(\mu V/m)]$                                        | $[dB(\mu V/m)]$                                        | $[dB(\mu V/m)]$                                        | [dB]                                                   | [dB]                                                   |
| 2390.000  | Н                                                                             |                                                                                        | 43.6                                                   | -4.4                                                   |                                                        | 39. 2                                                  | 74.0                                                   |                                                        | 34.8                                                   |
| 2390.000  | Н                                                                             | 31. 4                                                                                  |                                                        | -4.4                                                   | 27.0                                                   |                                                        | 54.0                                                   | 27.0                                                   |                                                        |
| 2390.000  | V                                                                             |                                                                                        | 45.0                                                   | -4.4                                                   |                                                        | 40.6                                                   | 74.0                                                   |                                                        | 33.4                                                   |
| 2390,000  | V                                                                             | 32.8                                                                                   |                                                        | -4.4                                                   | 28.4                                                   |                                                        | 54.0                                                   | 25.6                                                   |                                                        |
| 2483.500  | Н                                                                             |                                                                                        | 44.3                                                   | -4.3                                                   |                                                        | 40.0                                                   | 74.0                                                   |                                                        | 34.0                                                   |
| 2483.500  | Н                                                                             | 33. 2                                                                                  |                                                        | -4.3                                                   | 28.9                                                   |                                                        | 54.0                                                   | 25. 1                                                  |                                                        |
| 2483.500  | V                                                                             |                                                                                        | 48.0                                                   | -4.3                                                   |                                                        | 43.7                                                   | 74. 0                                                  |                                                        | 30.3                                                   |
| 2483.500  | V                                                                             | 37. 0                                                                                  |                                                        | -4.3                                                   | 32.7                                                   |                                                        | 54.0                                                   | 21.3                                                   |                                                        |
|           | [MHz] 2390.000 2390.000 2390.000 2390.000 2390.000 2483.500 2483.500 2483.500 | Frequency (P)  [MHz] 2390.000 H 2390.000 V 2390.000 V 2483.500 H 2483.500 H 2483.500 V | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

### 4.9.5 Trace Data

 Test Personnel:
 Date
 : Mar. 2, 2010

 Tested by:
 Hiroaki Suzuki
 Temperature
 : 22.2 [°C]

 Humidity
 : 57.0 [%]

Test place : 3m Semi-anechoic chamber

# Frequency: 2390.0MHz -Horizontal- [DH5]

**Peak** 



Date: 2.MAR.2010 09:52:46

#### Average



Date: 2.MAR.2010 09:53:44

Frequency: 2390.0MHz -Vertical- [DH5]





Date: 2.MAR.2010 09:56:22

#### Average



Date: 2.MAR.2010 09:57:30

# Frequency: 2483.5MHz -Horizontal- [DH5]

**Peak** 



Date: 2.MAR.2010 10:00:30

#### Average



Date: 2.MAR.2010 10:01:32

Frequency: 2483.5MHz -Vertical- [DH5]

**Peak** 



Date: 2.MAR.2010 10:03:40

#### Average



Date: 2.MAR.2010 10:09:15

# Frequency: 2390.0MHz -Horizontal- [3DH5]

**Peak** 



Date: 2.MAR.2010 10:22:10

#### Average



Date: 2.MAR.2010 10:23:07

# Frequency: 2390.0MHz -Vertical- [3DH5]

**Peak** 



Date: 2.MAR.2010 10:25:02

#### Average



Date: 2.MAR.2010 10:26:22

# Frequency: 2483.5MHz -Horizontal- [3DH5]

**Peak** 



Date: 2.MAR.2010 10:15:12

#### Average



Date: 2.MAR.2010 10:19:22

Frequency: 2483.5MHz -Vertical-[3DH5]





Date: 2.MAR.2010 10:12:22

#### Average



Date: 2.MAR.2010 10:13:27

# Frequency: 2390.0MHz -Horizontal- [DH5]

**Peak** 



Date: 2.MAR.2010 08:10:45

#### Average



Date: 2.MAR.2010 08:13:00

Frequency: 2390.0MHz -Vertical- [DH5]





Date: 2.MAR.2010 08:16:35

#### Average



Date: 2.MAR.2010 08:18:01

# Frequency: 2483.5MHz -Horizontal- [DH5]

**Peak** 



Date: 2.MAR.2010 08:22:32

#### Average



Date: 2.MAR.2010 08:24:03

Frequency: 2483.5MHz -Vertical- [DH5]

**Peak** 



Date: 2.MAR.2010 08:27:56

#### Average



Date: 2.MAR.2010 08:59:40

# Frequency: 2390.0MHz -Horizontal- [3DH5]

**Peak** 



Date: 2.MAR.2010 08:37:16

#### Average



Date: 2.MAR.2010 08:44:31

Frequency: 2390.0MHz -Vertical-[3DH5]

**Peak** 



Date: 2.MAR.2010 08:41:35

#### Average



Date: 2.MAR.2010 08:42:54

# Frequency: 2483.5MHz -Horizontal- [3DH5]

**Peak** 



Date: 2.MAR.2010 08:48:18

#### Average



Date: 2.MAR.2010 08:50:38

# Frequency: 2483.5MHz -Vertical-[3DH5]

**Peak** 



Date: 2.MAR.2010 08:53:34

#### Average



Date: 2.MAR.2010 08:54:58

# 5. Uncertainty of measurement

Expanded uncertainties stated were calculated with a coverage Factor k=2.

Please note that these results are not taken into account when determining compliance or non-compliance with test result.

| Test item                                         | Measurement uncertainty |  |  |
|---------------------------------------------------|-------------------------|--|--|
| Conducted emission at mains port (150kHz - 30MHz) | ±2.9dB                  |  |  |
| Radiated emission (9kHz - 30MHz)                  | ±4.4dB                  |  |  |
| Radiated emission (30MHz – 1000MHz)               | ±5.2dB                  |  |  |
| Radiated emission (1000MHz – 26GHz)               | ±3.6dB                  |  |  |

Report number: Z071C-09410 Page 54 of 55

# 6. Laboratory description

**6.1 Location:** ZACTA Technology Corporation Yonezawa Testing Center

4149-7 Hachimanpara 5-chome Yonezawa-shi Yamagata 992-1128 Japan

Phone: +81-238-28-2880 Fax: +81-238-28-2888

#### 6.2 Facility filing information:

1) NVLAP accreditation: NVLAP Lab. code: 200306-0

#### 2) FCC filing:

| Site name                 | Registration Number | Expiry Date       |
|---------------------------|---------------------|-------------------|
| Site 2, Site3             | 91065               | November 19, 2011 |
| 3m Semi-anechoic chamber  |                     |                   |
| 10m Semi-anechoic chamber | 540072              | February 16, 2013 |
| Shielded room No.1        |                     |                   |

#### 3) Industry Canada Oats site filing:

| Site name                 | Sites on file:<br>Oats 3m/10m | Expiry Date       |  |
|---------------------------|-------------------------------|-------------------|--|
| Site 2                    | 4224A-2                       | February 16, 2012 |  |
| Site 3                    | 4224A-3                       | February 16, 2012 |  |
| 3m Semi-anechoic chamber  | 4224A-4                       | February 16, 2012 |  |
| 10m Semi-anechoic chamber | 4224A-5                       | February 16, 2012 |  |

#### 4) VCCI site filing:

| Site name                 | Radiated emission | Conducted<br>Emission<br>for mains<br>port | Expiry Date   | Conducted<br>emission for<br>telecom port | Expiry Date  |
|---------------------------|-------------------|--------------------------------------------|---------------|-------------------------------------------|--------------|
| Site 2                    | R-137             | C-133                                      | Nov. 16, 2011 | T-1477                                    | Oct. 8, 2011 |
| Site 3                    | R-138             | C-134                                      | Nov. 16, 2011 | T-1478                                    | Oct. 8, 2011 |
| 10m Semi-anechoic chamber | R-2480            | C-2722                                     | Jul. 3, 2011  | T-1474                                    | Oct. 8, 2011 |
| 3m Semi-anechoic chamber  | R-2481            | C-2723                                     | Jul. 3, 2011  | T-1475                                    | Oct. 8, 2011 |
| Shielded room No.1        | -                 | C-2724                                     | Jul. 3, 2011  | T-1476                                    | Oct. 8, 2011 |

#### 5) Intertek authorization:

Authorized as an EMC test laboratory.

#### 6) TUV Rheinland authorization:

Authorized as an EMC test laboratory.

#### 7) BUREAU VERITAS certification:

Certified as an EMC test laboratory.

FCC ID: W4LNT0003 IC Certification Number: 8170A-NT0003

FCC ID: W4LNT0003

IC Certification Number: 8170A-NT0003

# Appendix A: Test equipment

**List of Measuring Instruments** 

| Equipment                          | Company              | Model No.                | Serial No.    | Cal. due  | Cal. date     |
|------------------------------------|----------------------|--------------------------|---------------|-----------|---------------|
| Spectrum Analyzer (3Hz – 42.98GHz) | Agilent Technologies | E4447A                   | MY46180188    | Feb. 2010 | Feb. 27, 2009 |
| Spectrum Analyzer (9kHz – 26.5GHz) | ADVANTEST            | R3271                    | 35050045      | Jul. 2011 | Jul. 1, 2009  |
| Preamplifier<br>(100kHz-1.2GHz)    | ANRITSU              | MH648A                   | M08067        | Jun. 2010 | Jun. 13, 2009 |
| Preamplifier (1GHz-26.5GHz)        | Agilent Technologies | 8449B                    | 3008A00589    | Nov. 2010 | Nov. 5, 2009  |
| EMI Receiver                       | ROHDE&SCHWARZ        | ESCI                     | 100765        | May. 2010 | May. 27, 2009 |
| Loop antenna                       | ROHDE&SCHWARZ        | HFH2-Z2                  | 892246/010    | Feb.2011  | Feb. 25, 2010 |
| TRILOG Antenna                     | Schwarzbeck          | VULB9160                 | 9160-3221     | Apr. 2010 | Apr. 13, 2009 |
| Attenuator (6dB)                   | TDC                  | TAT-43B-06               | N/A           | Jun. 2010 | Jun. 13, 2009 |
| Double Ridged<br>Guide Antenna     | EMCO                 | 3115                     | 4328          | Dec. 2010 | Dec. 10, 2008 |
| Broad-Band Horn antenna            | Schwarzbeck          | BBHA9170                 | BBHA9170189   | Mar. 2010 | Mar. 23, 2008 |
| Preamplifier                       | TSJ                  | MLA-1840-B03-35          | 1240332       | Mar. 2010 | Mar. 23, 2008 |
| Microwave cable                    | SUHNER               | SUCOFLEX 106             | 60929/6 (15m) | Nov. 2010 | Nov. 5, 2009  |
| Wilciowave cable                   | SUHNER               | SUCOFLEX 106             | 60959/6 (1m)  | Nov. 2010 | Nov. 5, 2009  |
| Coaxial cable                      |                      | 5D-2W/10m                | #AEC3R-001    | Feb. 2011 | Feb. 5, 2010  |
|                                    | Fujikura             | 5D-2W/1.5m               | #AEC3R-003    | Feb. 2011 | Feb. 5, 2010  |
|                                    |                      | 5D-2W/0.5m               | #AEC3R-004    | Feb. 2011 | Feb. 5, 2010  |
|                                    | SUHNER               | SUCOFLEX_106/7m          | #AEC3R-002    | Feb. 2011 | Feb. 5, 2010  |
| Microwave cable                    | SUHNER               | SUCOFLEX104              | 199511/4      | Nov. 2010 | Nov. 12, 2009 |
| Attenuator                         | Weinschel            | 56-10                    | J4180         | Nov. 2010 | Nov. 12, 2009 |
| PC                                 | DELL                 | DIMENSION E521           | 85465BX       | N/A       | N/A           |
| Software                           | TOYO Corporation     | EP5/RE-AJ                | 0611193/V3.4  | N/A       | N/A           |
| Site attenuation                   | ZACTA Technology     | 3m Semi-anechoic chamber | 5192Z         | May. 2010 | May. 18, 2009 |

<sup>\*</sup>The calibrations of the above equipment are traceable to NIST or equivalent standards of the reference organizations.