Definition 2.7.

1. With every sequence (a_n) which is bounded above, we can associate the sequence of numbers $\sup\{a_k : k \ge n\}$. Since

 ${a_k : k \ge n} = {a_n} \cup {a_k : k \ge n+1} \supset {a_k : k \ge n+1},$ this sequence is decreasing, and we denote its limit by $\lim_{\substack{n\to\infty\\ \text{if }(a_n)}}\sup a_n=\lim_{\substack{n\to\infty\\ \text{ounded above, we put }\lim_{\substack{n\to\infty\\ n\to\infty}}\sup a_n=\infty}\,.$

2. Similarly, if the sequence (a_n) is bounded below, the sequence of numbers $\inf\{a_k : k \ge n\}$ is increasing, and we denote its limit by $\lim_{n\to\infty}\inf a_n=\lim_{n\to\infty}\inf\{a_k:k\geq n\}$. If (a_n) is not bounded below, we put $\lim_{n\to\infty}\inf a_n=-\infty$.

Note.

- 1. Since $\inf S \leq \sup S$ for every nonempty set S, it follows that $\lim_{n\to\infty}\inf a_n\leq \lim_{n\to\infty}\sup a_n$, where we write $-\infty < x$ and $x<\infty$ for each $x\in\mathbb{R}$.
- 2. (a_n) is bounded iff both $\lim_{n\to\infty}\inf a_n$ and $\lim_{n\to\infty}\sup a_n$ are real numbers (also called finite).

We have now the following characterization of the convergence of a sequence and its limit when it exists.

Theorem 2.11.

1. The sequence (a_n) converges iff $\lim_{n\to\infty}\inf a_n$ and $\lim_{n\to\infty}\sup a_n$ are finite and equal, and then

$$\lim_{n\to\infty}\inf a_n = \lim_{n\to\infty}a_n = \lim_{n\to\infty}\sup a_n$$

- 2. $\lim_{n \to \infty} a_n = \infty \Leftrightarrow \lim_{n \to \infty} \inf a_n = \infty$ and $\lim_{n \to \infty} \sup a_n = \infty$ 3. $\lim_{n \to \infty} a_n = -\infty \Leftrightarrow \lim_{n \to \infty} \inf a_n = -\infty$ and $\lim_{n \to \infty} \sup a_n = -\infty$

Proof. For a sequence (a_n) , denote $b_n = \inf \{a_k : k \ge n\}$ and $c_n = \sup \{a_k : k \ge n\}$.

1. Assume that (a_n) converges to L. Let $\epsilon \geq 0$. Then there is $K \in \mathbb{N}$ such that $\forall k \geq K, L - \frac{\epsilon}{3} < a_k < L + \frac{\epsilon}{2}$ Hence, for $n \geq K$,

$$L - \frac{\epsilon}{3} \le b_n \le a_n \le c_n \le L + \frac{\epsilon}{3}$$
.

Since (b_n) is increasing and (c_n) is decreasing, we have

$$L - \frac{\epsilon}{3} \le \lim_{n \to \infty} \inf a_n \le \lim_{n \to \infty} \sup a_n \le L + \frac{\epsilon}{3}$$
.

Hence

$$0 \le \lim_{n \to \infty} \sup a_n - \lim_{n \to \infty} \sup a_n \le \frac{2\epsilon}{3} < \epsilon$$
.

From Lemma 2.1, we obtain that $\lim_{n\to\infty}\inf a_n=\lim_{n\to\infty}\sup a_n$.

Conversely, if $\lim_{n\to\infty}\inf a_n=\lim_{n\to\infty}\sup a_n$, then it follows from $b_n\leq a_n\leq c_n$ and the Sandwich Theorem that (a_n) converges and that

$$\lim_{n\to\infty}\inf a_n=\lim_{n\to\infty}a_n=\lim_{n\to\infty}\sup a_n.$$

Another important concept is that of a Cauchy sequence:

Definition 2.8 (Cauchy sequence). A sequence (a_n) is called a Cauchy sequence if $\forall \epsilon > 0 \ \exists K \in \mathbb{R}$ such that $\forall n, m \in \mathbb{N}$ with $n, m \geq K, |a_n - a_m| < \epsilon$.

Theorem 2.12.

A sequence (a_n) converges iff it is a Cauchy sequence.

Proof. Let (a_n) be a convergent sequence with limit L. Let $\epsilon > 0$ and let K such that $|a_n - L| < \frac{\epsilon}{2}$ for $n \geq K$. Then it follows for $n, m \geq K$ that

$$|a_n - a_m| = |(a_n - L) - (a_m - L)| \le |a_n - L| + |a_m - L| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Conversely, assume that (a_n) is a Cauchy sequence. Let $\epsilon>0$ and choose K such that $|a_n-a_m|<\frac{\epsilon}{3}$ for all $n,m\geq K$. Then

$$a_m - \frac{\epsilon}{3} < a_n < a_m + \frac{\epsilon}{3}.$$

In particular, choosing m = K,

$${a_n : n \ge K} \subset \left(a_K - \frac{\epsilon}{3}, a_K + \frac{\epsilon}{3}\right).$$

Thus (a_n) is bounded and

$$a_K - \frac{\epsilon}{3} \le \lim_{n \to \infty} \inf a_n \le \lim_{n \to \infty} \sup a_n \le a_K + \frac{\epsilon}{3}$$

for $n \ge K$, which gives

$$0 \le \lim_{n \to \infty} \sup a_n - \lim_{n \to \infty} \inf a_n \le \left(a_K + \frac{\epsilon}{3} \right) - \left(a_K - \frac{\epsilon}{3} \right) = \frac{2\epsilon}{3} < \epsilon.$$

By Lemma 2.1, $\lim_{n\to\infty}\inf a_n=\lim_{n\to\infty}\sup a_n$, and an application of Theorem 2.11, part 1, completes the proof. \square