

Predicting Rental Prices with Machine Learning:Insights and Applications

Hung-Cheng Chang, 張宏正(Jack)

Outline

- 1. Motivation
- 2. Flow Chart
- 3. Data
- 4. Method
- 5. Result

Motivation

□ In recent years, the housing issue in Taiwan has become a hot topic, which has led to a sharp rise in housing prices.

- Rent plays an important role in the housing market, directly reflecting the supply and demand relationship.
- It is hoped that the model can serve as a benchmark for both landlords and tenants in deciding rental prices.

Flow Chart

Data

- Source:不動產成交案件(Dept of Land Administration M. O. I.)
- Release Date:240811~240921(Total 5 periods)
- Size:n=36498, p=35

Data

- Drop nan ratio>0.5 features
- Drop note type features

Data

Method

- Linear Regression(benchmark)
- Dicision Tree
- Random Forest
- XGBoost

Method

- Linear Regression(benchmark)No hyperparameter
- Dicision Tree
- Random Forest
- XGBoost
- Using GridSearchCV scoring:MSE, CV=5

Dicision Tree				
max_depth	None	10	20	30
min_samples_leaf		1	5	10
min_samples_split		2	10	20
Random Forest				
n_estimators		50	100	200
max_depth	None	10	20	30
min_samples_split		2	10	20
XGBoost				
n_estimators		50	100	200
learning_rate		0.01	0.1	0.2
max_depth		3	5	10

- Linear Regression(benchmark)No hyperparameter
- Dicision Tree
- Random Forest
- XGBoost

Dicision Tree				
max_depth	None	10	20	30
min_samples_leaf		1	5	10
min_samples_split		2	10	20
Random Forest				
n_estimators		50	100	200
max_depth	None	10	20	30
min_samples_split		2	10	20
XGBoost				
n_estimators		50	100	200
learning_rate		0.01	0.1	0.2
max_depth		3	5	10

Result - Validation & Test

	Validation		TEST	
	MSE	R2	MSE	R2
Linear Regression	63668686.28	0.55	71618550.41	0.52
Dicision Tree	57766098.56	0.59	91632634.07	0.38
Random Forest	30186153.49	0.79	42628068.83	0.71
XGBoost	31570006.62	0.78	32161241.09	0.78

	Validation		TEST	
	MSE	R2	MSE	R2
Linear Regression	63668686.28	0.55	71618550.41	0.52
Dicision Tree	57766098.56	0.59	91632634.07	0.38
Random Forest	30186153.49	0.79	42628068.83	0.71
XGBoost	31570006.62	0.78	32161241.09	0.78

