1 Полином, Ньютона

1.1 Что такое полином Ньютона?

Полином Ньютона — это способ найти полином, который проходит через заданные точки. То есть, у нас есть несколько точек на графике, и нам нужно найти формулу, которая описывает линию, проходящую через эти точки. Для этого используются разделённые разности — это способ вычисления коэффициентов для полинома.

Вот основные формулы и шаги для построения полинома Ньютона, которые подойдут для конспекта:

1.1.1 Полином Ньютона

Полином Ньютона для набора точек $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$ записывается в виде:

$$P_n(x) = f(x_0) + \sum_{i=1}^n f[x_0, x_1, \dots, x_i] \cdot \prod_{j=0}^{i-1} (x - x_j)$$

Где $f[x_0, x_1, \dots, x_i]$ — разделённые разности, которые вычисляются рекурсивно.

1.1.2 Разделенные разности

Для вычисления разделённых разностей используется следующая рекурсивная формула:

$$f[x_i] = y_i$$

$$f[x_i, x_{i+1}] = \frac{f[x_{i+1}] - f[x_i]}{x_{i+1} - x_i}$$

$$f[x_i, x_{i+1}, \dots, x_{i+k}] = \frac{f[x_{i+1}, \dots, x_{i+k}] - f[x_i, \dots, x_{i+k-1}]}{x_{i+k} - x_i}$$

1.1.3 Алгоритм вычисления полинома Ньютона

1. Задать точки $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$. 2. Вычислить разделённые разности по рекурсивной формуле. 3. Построить полином Ньютона, используя формулу:

$$P_n(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \dots$$

1.1.4 Пример для трёх точек

Если заданы три точки $(x_0, y_0), (x_1, y_1), (x_2, y_2),$ полином второго порядка будет:

$$P_2(x) = y_0 + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1)$$

Где:

$$f[x_0, x_1] = \frac{y_1 - y_0}{x_1 - x_0}, \quad f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$$

Это основные формулы и шаги для понимания метода Ньютона для интерполяции.

Интерполяция методом разделённых разностей Ньютона

Для построения интерполяционного многочлена Ньютона необходимо использовать разделённые разности, которые позволяют поэтапно строить многочлен для заданного набора точек.

Исходные данные

Допустим, у нас есть следующие точки:

$$(x_0, y_0) = (0, 12), \quad (x_1, y_1) = (1, 13), \quad (x_2, y_2) = (2, 20)$$

Цель — построить интерполяционный многочлен Ньютона, используя разделённые разности, и затем вычислить значения многочлена в промежуточных точках, таких как x=0.5, x=1.5 и x=2.5.

Вычисление разделённых разностей

Для начала вычислим разделённые разности.

Первая разделённая разность

Первая разделённая разность между точками x_0 и x_1 вычисляется по формуле:

$$f[x_0, x_1] = \frac{y_1 - y_0}{x_1 - x_0} = \frac{13 - 12}{1 - 0} = 1.0$$

Аналогично для точек x_1 и x_2 :

$$f[x_1, x_2] = \frac{y_2 - y_1}{x_2 - x_1} = \frac{20 - 13}{2 - 1} = 7.0$$

Вторая разделённая разность

Для вычисления второй разделённой разности между точками x_0 , x_1 и x_2 , используем формулу:

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} = \frac{7.0 - 1.0}{2 - 0} = \frac{6.0}{2} = 3.0$$

Таким образом, разделённые разности следующие:

$$f[x_0, x_1] = 1.0, \quad f[x_1, x_2] = 7.0, \quad f[x_0, x_1, x_2] = 3.0$$

Построение интерполяционного многочлена Ньютона

Интерполяционный многочлен Ньютона второго порядка для трёх точек $(x_0, y_0), (x_1, y_1)$ и (x_2, y_2) имеет вид:

$$P_2(x) = y_0 + f[x_0, x_1] \cdot (x - x_0) + f[x_0, x_1, x_2] \cdot (x - x_0)(x - x_1)$$

Подставим известные значения:

$$P_2(x) = 12 + 1.0 \cdot (x - 0) + 3.0 \cdot (x - 0)(x - 1)$$

Упростим выражение:

$$P_2(x) = 12 + (x - 0) + 3.0 \cdot (x - 0)(x - 1)$$
$$P_2(x) = 12 + x + 3.0 \cdot x(x - 1)$$

Вычисление значений многочлена

Теперь можем вычислить значения многочлена $P_2(x)$ в точках x=0.5, x=1.5 и x=2.5.

Вычисление $P_2(0.5)$

Подставим x = 0.5 в многочлен:

$$P_2(0.5) = 12 + 0.5 + 3.0 \cdot 0.5 \cdot (0.5 - 1)$$

$$P_2(0.5) = 12 + 0.5 + 3.0 \cdot 0.5 \cdot (-0.5)$$

$$P_2(0.5) = 12 + 0.5 - 0.75 = 11.75$$

Вычисление $P_2(1.5)$

Подставим x = 1.5 в многочлен:

$$P_2(1.5) = 12 + 1.5 + 3.0 \cdot 1.5 \cdot (1.5 - 1)$$

$$P_2(1.5) = 12 + 1.5 + 3.0 \cdot 1.5 \cdot 0.5$$

$$P_2(1.5) = 12 + 1.5 + 2.25 = 15.75$$

Вычисление $P_2(2.5)$

Подставим x = 2.5 в многочлен:

$$P_2(2.5) = 12 + 2.5 + 3.0 \cdot 2.5 \cdot (2.5 - 1)$$
$$P_2(2.5) = 12 + 2.5 + 3.0 \cdot 2.5 \cdot 1.5$$
$$P_2(2.5) = 12 + 2.5 + 11.25 = 25.75$$

Заключение

Таким образом, значения многочлена Ньютона во введённых точках:

$$P_2(0.5) = 11.75, \quad P_2(1.5) = 15.75, \quad P_2(2.5) = 25.75$$

Эти значения были вычислены с использованием метода разделённых разностей и построения интерполяционного многочлена Ньютона.