Lógica El

	Logica Li							
	1.° teste — 3 de abril de 2018 ———		duração: 2 horas —					
	1. teste 5 de dom de 2010		duração. 2 noras					
Nome:				_ Número				
		~	_					

Grupo I

Este grupo é constituído por 2 questões. Responda, <u>sem justificar</u>, no espaço disponibilizado para o efeito no enunciado.

1. Defina uma valoração v tal que $v((p_0 \land \neg p_1) \leftrightarrow (p_2 \lor p_1)) = 1$.

2. Sejam $\Gamma = \{p_0 \vee p_1, \neg(p_1 \wedge p_2)\}\$ e $\Delta = \{p_1 \vee \neg p_0, p_2, \neg(p_1 \rightarrow \neg p_2)\}\$. Indique uma fórmula $\varphi \in \Delta$ tal que $\Gamma \cup \{\varphi\}$ é um conjunto semanticamente inconsistente.

Grupo II

Este grupo é constituído por 3 questões. Em cada questão, deve dizer se a afirmação indicada é verdadeira (V) ou falsa (F), assinalando o respetivo quadrado. Em cada questão, a cotação atribuída será 1 valor, -0,5 valores ou 0 valores, consoante a resposta esteja certa, errada, ou não seja assinalada resposta, respetivamente. A cotação total neste grupo é no mínimo 0 valores.

		V	F
1.	Para quaisquer $\varphi, \psi \in \mathcal{F}^{CP}$, se $\varphi \wedge \psi$ é tautologia, então $\varphi \to \psi$ é tautologia.		
2.	Para qualquer fórmula φ e qualquer conjunto de fórmulas Γ , se $\Gamma \cup \{\varphi\}$ é inconsistente, então $\Gamma \not\models \varphi$.		
3.	Para qualquer fórmula φ , existe uma fórmula ψ cujos conetivos pertencem a $\{\land, \bot\}$ e tal que $\varphi \Leftrightarrow \psi$.		

Grupo III

Este grupo é constituído por 3 questões. Responda na folha de exame, justificando todas as suas respostas.

- 1. Seja $X \subseteq \mathcal{F}^{CP}$ definido indutivamente por:
 - (i) $p_n \in X$, para todo $n \in \mathbb{N}_0$;
 - (ii) Se $\varphi \in X$ então $(\varphi \to p_0) \in X$;
 - (iii) Se $\varphi, \psi \in X$ então $((\neg \varphi) \land \psi) \in X$.

Seja $f: X \to \mathbb{N}_0$ a função tal que $f(\varphi)$ é o menor índice i de entre todas as variáveis p_i que ocorrem em φ .

- a) Seja $\psi = ((\neg (p_1 \to p_0)) \land p_0)$. Mostre que $\psi \in X$ e indique $f(\psi)$.
- b) Dê exemplo de uma fórmula σ em X com mais de duas ocorrências de conetivos e tal que $f(\sigma) = 4$.
- c) Defina a função f por recursão estrutural em X.
- d) Enuncie o Princípio de Indução Estrutural para X.
- e) Prove por indução estrutural que: para todo $\varphi \in X$, se \to ocorre em φ , então $f(\varphi) = 0$.
- 2. Indique, justificando, uma forma normal conjuntiva logicamente equivalente à fórmula $(p_0 \land \neg p_1) \to ((\neg p_1 \to p_2) \to \bot).$
- 3. Mostre que, para quaisquer $\varphi, \psi, \sigma \in \mathcal{F}^{CP}$, se $\{\varphi, \psi, \sigma\}$ é consistente então $\varphi \wedge \psi \wedge \sigma$ não é uma contradição.

Cotações	I.	II.	III.
Cotações	2,5	3	14,5