Physics 681-481; CS 483: Discussion of #1

I. Tensor products and positional notation.

We represent the digits 5, 3, and 2 by 10-component column vectors \mathbf{c} , \mathbf{b} , and \mathbf{a} , given by

Now the rule for forming the tensor product of two 10-dimensional column vectors

$$\mathbf{u} = \begin{pmatrix} u_0 \\ u_1 \\ u_2 \\ \vdots \end{pmatrix} \text{ and } \mathbf{v} = \begin{pmatrix} v_0 \\ v_1 \\ v_2 \\ \vdots \end{pmatrix}$$
 (2)

is that $\mathbf{u} \otimes \mathbf{v}$ is the $10 \times 10 = 100$ -dimensional column vector given by

$$\mathbf{u} \otimes \mathbf{v} = \begin{pmatrix} u_0 \mathbf{v} \\ u_1 \mathbf{v} \\ u_2 \mathbf{v} \\ u_3 \mathbf{v} \\ \vdots \\ u_9 \mathbf{v} \end{pmatrix} = \begin{pmatrix} u_0 v_0 \\ u_0 v_1 \\ u_0 v_2 \\ \vdots \\ u_1 v_0 \\ u_1 v_1 \\ u_1 v_2 \\ \vdots \\ u_9 v_9 \end{pmatrix}, \tag{3}$$

Since only b_3 and a_2 are non-zero, and both of these are 1, the tensor product $\mathbf{b} \otimes \mathbf{a}$ is a 100-dimensional column vector with all components 0 except the one 32 down from the top. Since only c_5 is non-zero, repeating this for $\mathbf{c} \otimes (\mathbf{b} \otimes \mathbf{a})$ establishes that $\mathbf{c} \otimes \mathbf{b} \otimes \mathbf{a}$ is indeed a 1000-dimensional column vector with all components 0 except the one 532 down from the top.

More generally, this establishes that for 10-vectors

$$c_i b_j a_k = (\mathbf{c} \otimes \mathbf{b} \otimes \mathbf{a})_{100i+10i+k}. \tag{4}$$

So if only c_5 , b_3 , and a_2 are nonzero, then only component 532 of $\mathbf{c} \otimes \mathbf{b} \otimes \mathbf{a}$ will be nonzero.

II. Manipulating elementary operators.

If

$$\mathbf{C}_{ij} = \overline{\mathbf{n}}_i + \mathbf{X}_i \mathbf{n}_i, \tag{5}$$

then

$$C_{ij}C_{ji}C_{ij} = (\overline{\mathbf{n}}_i + \mathbf{X}_j\mathbf{n}_i)(\overline{\mathbf{n}}_j + \mathbf{X}_i\mathbf{n}_j)(\overline{\mathbf{n}}_i + \mathbf{X}_j\mathbf{n}_i)$$
(6)

Consider first the 4 terms in (6) containing either one **X** or three:

$$(\mathbf{X}_{j}\mathbf{n}_{i})\overline{\mathbf{n}}_{j}\overline{\mathbf{n}}_{i}, \quad \overline{\mathbf{n}}_{i}(\mathbf{X}_{i}\mathbf{n}_{j})\overline{\mathbf{n}}_{i}, \quad \overline{\mathbf{n}}_{i}\overline{\mathbf{n}}_{j}(\mathbf{X}_{j}\mathbf{n}_{i}), \quad (\mathbf{X}_{j}\mathbf{n}_{i})(\mathbf{X}_{i}\mathbf{n}_{j})(\mathbf{X}_{j}\mathbf{n}_{i}).$$
 (7)

Every one of these terms vanishes as a consequence of these facts: $\mathbf{n}_i \overline{\mathbf{n}}_i = 0$, \mathbf{n}_i and $\overline{\mathbf{n}}_i$ commute with all the operators appearing in (6) other than \mathbf{X}_i , and

$$\mathbf{X}_i \mathbf{n}_i = \overline{\mathbf{n}}_i \mathbf{X}_i, \quad \mathbf{X}_i \overline{\mathbf{n}}_i = \mathbf{n}_i \mathbf{X}_i.$$
 (8)

The remaining 4 terms in (6) can be simplified using these facts together with

$$\mathbf{n}_i^2 = \mathbf{n}_i, \quad \overline{\mathbf{n}}_i^2 = \overline{\mathbf{n}}_i, \quad \mathbf{X}_i^2 = 1.$$
 (9)

One has:

$$\overline{\mathbf{n}}_i \overline{\mathbf{n}}_j \overline{\mathbf{n}}_i = \overline{\mathbf{n}}_i \overline{\mathbf{n}}_j, \tag{10}$$

$$\overline{\mathbf{n}}_i(\mathbf{X}_i \mathbf{n}_j)(\mathbf{X}_j \mathbf{n}_i) = \mathbf{X}_i \mathbf{X}_j \mathbf{n}_i \overline{\mathbf{n}}_j, \tag{11}$$

$$(\mathbf{X}_j \mathbf{n}_i) \overline{\mathbf{n}}_j (\mathbf{X}_j \mathbf{n}_i) = \mathbf{n}_i \mathbf{n}_j, \tag{12}$$

$$(\mathbf{X}_{j}\mathbf{n}_{i})(\mathbf{X}_{i}\mathbf{n}_{j})\overline{\mathbf{n}}_{i} = \mathbf{X}_{i}\mathbf{X}_{j}\overline{\mathbf{n}}_{i}\mathbf{n}_{j}. \tag{13}$$

Adding together the four terms in (10)-(13) gives the SWAP operator S_{ij} in the form

$$\mathbf{S}_{ij} = \mathbf{n}_i \mathbf{n}_j + \overline{\mathbf{n}}_i \overline{\mathbf{n}}_j + (\mathbf{X}_i \mathbf{X}_j) (\mathbf{n}_i \overline{\mathbf{n}}_j + \overline{\mathbf{n}}_i \mathbf{n}_j), \tag{14}$$

III. The Toffoli gate.

 \mathbf{T}_{210} acts as the identity on all eight 3-Cbit states $|0\rangle_3, \ldots, |7\rangle_3$ except that it exchanges $|110\rangle = 6_3$ and $|111\rangle = |7\rangle_3$ Therefore its matrix is

$$\mathbf{T}_{210} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}. \tag{15}$$

Similarly, the Toffoli gate \mathbf{T}_{201} interchanges $|101\rangle = |5\rangle_3$ and $|111\rangle = |7\rangle_3$, so its matrix is

and \mathbf{T}_{102} interchanges $|011\rangle=|3\rangle_3$ and $|111\rangle=|7\rangle_3$, so its matrix is