Computer and Network Security: Modern Cryptography Overview

Kameswari Chebrolu

Some figures/text taken from wikipedia.com

Outline

- Modern Cryptography
 - Overview
 - Confidentiality
 - Crypto-analysis, One Time Pads
 - Symmetric key encryption, Block modes
 - Asymmetric key encryption
 - Integrity (includes Authentication)
 - Hashes, MAC, Digital signature

Overview Outline

- Classic vs Modern Cryptography
- History
- Goals of Modern Cryptography

Cryptography

- Crypto: Hidden/Secret; Graphy: Writing
- Secure communication in presence of adversaries
 - Practiced by cryptographers

Classical vs Modern

Confidentiality

- Plain text
- Military

Classical

 Secrecy of protocol/algorithm

Modern

- Confidentiality, Integrity
 - Further digital cash, secure voting etc
- Deals with bits
- Every one
- Provable security based on mathematics (protocol /algorithm often open)

Confidentiality Set-up

Cipher/Cryptographic Algorithm: Mathematical function used for encryption and decryption

Classical Cryptography

- Restricted algorithm
 - Keep the algorithm secret
 - Not used today. Why?
 - Difficult to manage churn in group
 - More scope for accidental leaks
 - No quality control
 - Cannot use off-the-shelf hardware or software

Updated Set-up

Algorithm public, Key secret

Modern Cryptography

- Works with bits instead of alphabet
- Introduces the notion of key
 - Key: one of a large number of values
 - Keyspace: Range of possible keys
 - Security is based on key, not algorithm

Modern Cryptography

- Based on complex mathematics and/or combines elements of substitution and transposition
 - Focuses on provable security
- Advantages:
 - Algorithm analyzed by world's best cryptographers
 - Mass production

Outline

- Classic vs Modern Cryptography
- History
- Goals of Modern Cryptography

History

- Cryptography usage dates to ~ 1500 BCE
- Substitution Ciphers (500BCE) ☐ Transposition
 Ciphers (3BCE) ☐ Polyalphabetic Ciphers (1500s)
 ☐ Mechanization (1800s) ☐ Modern
 Cryptography (1950+)
- Confidentiality

 Much more (Integrity, anonymity, digital cash etc)

Substitution Cipher

- Replace a character with another
- Algorithm: Monoalphabetic cipher
- Key: substitution table
- How strong?
 - Brute Force (26! Combinations, 4 * 10²⁶)
 - Very large key space but not very strong. Why?
 - Susceptible to frequency analysis

ROT13: Caesar cipher (alphabet rotated by 13 steps)

Use: Online forums for hiding spoilers, puzzle solutions etc

Grasping Large Numbers

Number	
9.46×10^{15}	Distance (in metres) travelled by light in one year (1 light year or 9.46 trillion kilometres).
4.32×10^{17}	Estimated age (in seconds) of the universe (assuming 13.7 billion years since the Big Bang).
8.8×10^{26}	Approximate diameter (in metres) of the visible universe (93 billion light years).
3×10^{52}	Estimated mass (in kilograms) of the observable universe.
1×10^{80}	Estimate the total number of fundamental particles in the observable universe (other estimates go up to 10 ⁸⁵).

From:

http://www.physicsoftheuniverse.com/numbers.html

Frequency Analysis

LIVITCSWPIYVEWHEVSRIQMXLEYVEOIEWHRXEXIPFEMVEWHKVSTYLXZIXLIKIIXPIJVSZEYPERRGERIM WQLMGLMXQERIWGPSRIHMXQEREKIETXMJTPRGEVEKEITREWHEXXLEXXMZITWAWSQWXSWEXTVEPMRXRSJ GSTVRIEYVIEXCVMUIMWERGMIWXMJMGCSMWXSJOMIQXLIVIQIVIXQSVSTWHKPEGARCSXRWIEVSWIIBXV IZMXFSJXLIKEGAEWHEPSWYSWIWIEVXLISXLIVXLIRGEPIRQIVIIBGIIHMWYPFLEVHEWHYPSRRFQMXLE PPXLIECCIEVEWGISJKTVWMRLIHYSPHXLIQIMYLXSJXLIMWRIGXQEROIVFVIZEVAEKPIEWHXEAMWYEPP XLMWYRMWXSGSWRMHIVEXMSWMGSTPHLEVHPFKPEZINTCMXIVJSVLMRSCMWMSWVIRCIGXMWYMX

- I most common single letter
- XL most common <u>bigram</u>
- XLI most common <u>trigram</u>
- E second most common letter

- 'e' most common in English
- 'th' most common bigram
- 'the' most common trigram
- 'a' second most common in English

Strongly suggests X~t, L~h, I~e and E~a

heVeTCSWPeYVaWHaVSReQMthaYVaOeaWHRtatePFaMVaWHKVSTYhtZetheKeetPeJVSZaYPaRRGaReMWQhMGhMtQaReWGPSReHMtQaRaKeaTtMJTPRGaVaKaeTRaWHatthattMZeTWAWSQWtSWatTVaPMRtRSJGSTVReaYVeatCVMUeMWaRGMeWtMJMGCSMWtSJOMeQtheVeQeVetQSVSTWHKPaGARCStRWeaVSWeeBtVeZMtFSJtheKaGAaWHaPSWYSWeWeaVtheStheVtheRGaPeRQeVeeBGeeHMWYPFhaVHaWHYPSRRFQMthaPPtheaCCeaVaWGeSJKTVWMRheHYSPHtheQeMYhtSJtheMWReGtQaROeVFVeZaVAaKPeaWHtaAMWYaPPthMWYRMWtSGSWRMHeVatMSWMGSTPHhaVHPFKPaZeNTCMteVJSVhMRSCMWMSWVeRCeGtMWYMt

Rtate --> State (R~s)
atthattMZe --> at that time (M~i and Z~m)
and so on....

Other Types

- Make frequency analysis difficult
- Goal: Flatten frequency distribution
- Homophonic Substitution Cipher (1400CE)
 - A character can map to one of several characters of ciphertext
 - Ciphertext alphabet larger than plaintext alphabet
 - Ciphertext alphabet can be numeric or upper/lower case or whole new alphabet
 - E.g. A can map to 12 or 34 or 45 or 77; B can map to 6 or 64;

- Polygram substitution cipher (1850CE): Blocks of characters are encrypted in groups
 - E.g. THE □ ABC; ORA □ LMB

History

- Cryptography usage dates to ~ 1500 BCE
- Substitution Ciphers (500BCE) ☐ Transposition Ciphers (3BCE) ☐ Polyalphabetic Ciphers (1500s)
 - ☐ Mechanization (1800s)☐ ModernCryptography (1950+)
- Confidentiality

 Much more (Integrity, anonymity, digital cash etc)

Polyalphabetic Cipher (1568CE)

- Made up of multiple mono-alpabetic ciphers
- Key decides which cipher to use
 - Keys recycled after use
 - Key length: period of cipher
- E.g. Vigenere Cipher

Example: Vigenère cipher (1553CE)

Plaintext:ATTACKATDAWN

Key:LEMONLEMONLE

Ciphertext:LXFOPVEFRNHR

```
ABCDEFGHIJKLMNOPQRSTUVWXYZ
AABCDEFGHIJKLMNOPQRSTUVWXYZ
B B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
 C D E F G H I J K L M N O P Q R S T U V W X Y Z A B
  E F G H I J K L M N O P Q R S T U V W X Y Z A B C
 GHIJKLMNOPQRSTUVWXYZABCDE
G G H I J K L M N O P Q R S T U V W X Y Z A B C D E F
   IJKLMNOPQRSTUVWXYZABCDEFG
    K L M N O P Q R S T U V W X Y Z A B C D E F G H
    LMNOPQRSTUVWXYZABCDEFGHI
K L M N O P Q R S T U V W X Y Z A B C D E F G H I J
L L M N O P Q R S T U V W X Y Z A B C D E F G H I J K
MMNOPQRSTUVWXYZABCDEFGHIJK L
  O P Q R S T U V W X Y Z A B C D E F G H I J K L M
O O P Q R S T U V W X Y Z A B C D E F G H I J K L M N
 PQRSTUVWXYZABCDEFGHIJKLMNO
QQRSTUVWXYZABCDEFGHIJKLMNOP
R R S T U V W X Y Z A B C D E F G H I J K L M N O P Q
SSTUVWXYZABCDEFGHIJKLMNOPQR
 T U V W X Y Z A B C D E F G H I J K L M N O P Q R S
U U V W X Y Z A B C D E F G H I J K L M N O P Q R S T
V V W X Y Z A B C D E F G H I J K L M N O P Q R S T U
W W X Y Z A B C D E F G H I J K L M N O P Q R S T U V
XXYZABCDEFGHIJKLMNOPQRSTUVW
YYZABCDEFGHIJKLMNOPQRSTUVWX
ZZABCDEFGHIJKLMNOPQRSTUVWXY
```

Polyalphabetic Cipher (1568CE)

- Running-key or Book Cipher: Key can be a book or long poem
- Seed of Modern Cryptography
 - Make key as long and unpredictable as possible

Running Key Cipher

• Page 63, line 1 is selected as the running key:

"errors can occur in several places. A label has...."

Plaintext: flee at once we are discovered

Running key: ERRORSCANOCCURI NSE VERALPL

Ciphertext: JCVSRLQNPSYGUI MQAWXSMECTO

Indicator block specifies key: 3 characters for page , 2 for line number Encoding: A=0, B=1 etc \square {06301 maps to AGDAB}

Final message: JCVSR LQNPS YGUIM QAWXS AGDAB MECTO

History

- Cryptography usage dates to ~ 1500 BCE
- Substitution Ciphers (500BCE) ☐ Transposition
 Ciphers (3BCE) ☐ Polyalphabetic Ciphers (1500s)
 ☐ Mechanization (1800s) ☐ Modern
 Cryptography (1950+)
- Predominantly military use □ Everyday use
- Confidentiality

 Much more (Integrity, anonymity, digital cash etc)

Transposition Cipher

- Same letters but order shuffled
- Example:
 - Message: WE ARE DISCOVERED. FLEE AT ONCE.
 - Key: ZEBRAS (632415; alphabetical order)
 - Cipher text: EVLNE ACDTK ESEAQ ROFOJ DEECU WIREE
- Double transposition increases security even further
- Shortcoming: Requires memory

Scytale (used by Greeks/Spartans) "mary had a little lamb"

```
6 3 2 4 1 5
W E A R E D
I S C O V E
R E D F L E
E A T O N C
E Q K J E U
```

Null characters

History

- Cryptography usage dates to ~ 1500 BCE
- Substitution Ciphers (500BCE) ☐ Transposition
 Ciphers (3BCE) ☐ Polyalphabetic Ciphers (1500s)
 - ☐ Mechanization (1800s)☐ Modern Cryptography (1950+)
- Predominantly military use □ Everyday use
- Confidentiality

 Much more (Integrity, anonymity, digital cash etc)

Mechanization: Rotor machines

- Automate the process of encryption and decryption
- Rotor machine: series of rotors that implement a version of Vigenere cipher
- Example: Enigma used by Germans in WWII; broken by Polish cryptographers

German Enigma Machine

Outline

- Classic vs Modern Cryptography
- History
- Goals of Modern Cryptography

Modern Cryptography Goals

- Confidentiality (Encryption)
 - Symmetric key
 - Asymmetric key
- Integrity (includes authentication)
 - Hashes (message)
 - MACs (message/source identity)
 - Digital signature (message/source identity)
- Other areas
 - Currency, voting systems, anonymity etc

Crypto Cipher Examples

- Data Encryption Standard (DES), Advanced Encryption Standard (AES): Popular symmetric key algorithms
 - Used for encryption, MAC
- Rivest, Shamir, Adleman (RSA): Popular public-key algorithm
 - Used for encryption and digital signatures
- Digital Signature Algorithm (DSA): Public key algorithm
 - Cannot be used for encryption, only digital signatures
- SHA-1, SHA-2, SHA-3, MD4, MD5: Popular Hash functions
 - Only SHA-2 and SHA-3 safe currently

Building Block-1: Confusion and Diffusion

- Applicable to symmetric key algorithms
 - Encryption (confidentiality) and MACs (authentication + integrity)

• Confusion: Transform information in plaintext so that it is not easy to extract

SBLC

- Hide plaintext symbols
- Achieved by substitution
- Diffusion: Spread information from a region of plaintext much wider in cipher text
 - Achieved by transposition
- Symmetric ciphers use a combination of both

Building Block-2: One Way Functions

- Applicable to hashes (integrity)
- Applicable to asymmetric key algorithms
 - Encryption (confidentiality), Digital signatures (integrity + authentication)

One Way Functions

- Easy to compute but difficult to invert (hashes)
- One way functions with trapdoor: Easy to invert but with a key (asymmetric key algo.)
- Example:
 - Easy to multiple two large primes p1 * p2
 - Difficult to factor (p1*p2) to recover p1 and p2
 - Given (p1*p2) and p1; easy to recover p2

Background: Computational Complexity

- Algorithms classified according to time and space complexity; n is the input size
- Focus: Time complexity
 - E.g. $n^2 + 12n + 5 \square O(n^2)$
- Different classes of algorithms
 - Constant: O(1) (independent of n)
 - Polynomial: O(n^m), m is a constant
 - Exponential: O(c^{f(n)})
 - c is a constant > 1 and f(n) polynomial function in n

Complexity of Problems

- Characterize complexity of a problem, not just a particular algorithm to solve the problem
- Minimum time required to solve problem on a turing machine
 - Machine with finite state but infinite read-write memory tape
- Nondeterministic turing machine: A machine that can make guesses and check the guess in polynomial time

Complexity Classes

- P: Solvable in polynomial time (e.g. sorting a list)
 - verifying solution also polynomial
- NP: Solvable in polynomial time on a non-deterministic turing machine(e.g. traveling salesman problem)
 - Can verify solution in polynomial time
 - Finding solution may not be polynomial
 - Polynomial if machine can guess the solution or try all guesses in parallel

Complexity Classes

- NP-complete: Hardest problems in NP
 - If any NP-complete problem can be solved in polynomial time, then every problem in NP can also be solved
- EXP: solvable in exponential time
 - verifying solution may not be polynomial
- Is P = NP? Open question

Relevance to Cryptography

- Focus on encryption
- Attacker has to solve an NP complete problem to recover plain text
- NP complete problem examples:
 - Integer factorization: Find the prime factors of number n
 - Discrete logarithm: Find x where $a^x = b$ (mod n)

(deal with very large numbers, thousands of bits)

One way functions with trapdoor

```
f(m,k) \square c (P)
f^{-1}(c) \square m(NP)
```

• Elliptic curve: Uses elliptic curves over finite fields

Summary

- Modern crypto more rigorous and achieves lot more than classical crypto
- Provides confidentiality and integrity (and much more)
- Goals achieved via symmetric, asymmetric key algorithms and hashes
- Building blocks:
 - Confusion and Diffusion
 - One-way functions (with trapdoors)
 - Based on computationally hard NP complete problems