武汉大学计算机学院 2010-2011 学年第一学期 "信息安全数学基础"(A卷)答案

一. 计算题 (每小题 10 分, 共 80 分)。

1.试用两种方法计算乘法逆元素 329-1mod667。 解:方法一 667=329*2+9,329=9*36+5,9=5*2-1; 所以 1=5*2-9=329*2-73*9=329*148-667*73 即 329-1mod667=148。

方法二 因为 667 的欧拉函数为 22*28=616, 所以

 $329^{-1} \mod 667 = 329^{615} \mod 667 = 148$.

2. 求解同余式组

$$\begin{cases} 5x \equiv 4 \pmod{11} \\ 87x \equiv 16 \pmod{61} \end{cases}$$

解: 原同余式等价于

$$\begin{cases} x \equiv 3 \pmod{11} \\ x \equiv 10 \pmod{61} \end{cases}$$

利用中国剩余定理可以求出该同余式组的解为

 $x \equiv 498 \mod 671$.

3. 求解同余式 $f(x) \equiv x^4 + 7x + 1 \equiv 0 \pmod{27}$ 。

解: 容易验证 $f(x) \equiv x^4 + 7x + 1 \equiv 0 \pmod{3}$ 的解为 $x \equiv 1 \pmod{3}$,因为 $f'(x) = 4x^3 + 7$,f'(1) = 11,所以可以得到 $f(x) \equiv x^4 + 7x + 1 \equiv 0 \pmod{9}$ 的解为 $x \equiv 1 \pmod{9}$, $f(x) \equiv x^4 + 7x + 1 \equiv 0 \pmod{27}$ 的解为 $x \equiv 1 \pmod{27}$

4. 求解同余式 $7x^7 \equiv 8 \pmod{41}$ 。

解:原同余式等价于 $x^7 \equiv 7 \pmod{41}$,先求出模 41 的最小原根为 6,建立 6 的指标表,查表可以得到 $7=6^{39} \mod{41}$,令 $x=6^{9} \mod{41}$,则得到同余式 $7y \equiv 39 \pmod{40}$,于是得到该一次同余式的解为 $y \equiv 17 \pmod{40}$,再次查表得到原同余式的解为 $x \equiv 26 \pmod{41}$ 。

满绩小铺: 1433397577, 搜集整理不易, 自用就好, 谢谢!

5. 求群 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} (关于模 12 的加法)的所有子群。

解: 因为该群 G 的阶为 12, 12 的所有正因数为 1, 2, 3, 4, 6, 12, 于是该群的所有子群为 $G_1=\{0\}$, $G_2=\{0,6\}$, $G_3=\{0,4,8\}$, $G_4=\{0,3,6,9\}$, $G_5=\{0,2,4,6,8,10\}$, $G_6=G$ 。

6. 构造有限域 GF(9), 并且给出其加法和乘法表。

解: GF(9)={0,1,2,3,4,5,6,7,8}, 先找一个GF(3)[x]的一个2次不可约多项式 x²+x+2, 加 法表为

+	0	1	2	3	4	5	6	7	8
0	0	1	2	3	4	5	6	7	8
1	1	2	3	4	5	6	7	8	0
2	2	3	4	5	6	7	8	0	1
3	3	4	5	6	7	8	0	1	2
4	4	5	6	7	8	0	1	2	3
5	5	6	7	8	0	1	2	3	4
6	6	7	8	0	1	2	3	4	5
7	7	8	0	1	2	3	4	5	6
8	8	0	1	2	3	4	5	6	7

乘法表为

		_		Y.	_	_		_	
*	0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8
2	0	2	1	6	8	7	3	5	4
3	0	3	6	7	1	4	5	8	2

4	0	4	8	1	5	6	2	3	7
5	0	5	7	4	6	2	8	1	3
6	0	6	3	5	2	8	7	4	1
7	0	7	5	8	3	1	4	2	6
8	0	8	4	2	7	3	1	6	5

7. 对于由 GF(2)上的不可约多项式 x^4+x+1 扩成的有限域 $GF(2^4)$,设 α 是一个本原元,求 α 的最小多项式。

解: 因为 | α 3 | =5, 24mod5=1, 所以最小多项式为

$$M(x) = (x - \alpha^{3}) (x - \alpha^{6}) (x - \alpha^{9}) (x - \alpha^{12}) = x^{4} + x^{3} + x^{2} + x + 1$$

8. 求解递推关系

$$\begin{cases} f(n) = 5f(n-1) - 8f(n-2) + 4f(n-3) \\ f(0) = 0, f(1) = 1, f(2) = 2 \end{cases}$$

解:特征方程 $x^3-5x^2+8x-4=0$ 的根为 1,2,2,x=2 对应的根为 $f_1(n)=c_12^n+c_2n2^n$,对应 x=1 的根为 $f_2(n)=c_3$,因此递推关系的通解为 $f(n)=c_12^n+c_2n2^n+c_3$,代入初始值得到方程组 $c_1+c_3=0$, $2c_1+2c_2+c_3=1$, $4c_1+8c_2+c_3=2$,于是解得 $c_1=2$, $c_2=-1/2$, $c_3=-2$,所以原递推关系的解为 $f(n)=2^{n+1}-n*2^{n-1}-2$ 。

二. 证明: 形如 4k+1 的素数有无穷多个。(10 分)

证明 反证法。如果形如 4k+1 的素数只有有限多个。设这些素数为 $p_1,p_2,\cdots p_k$, 考虑整数

$$N = (2p_1p_2\cdots p_k)^2 + 1$$

因为 N 形如 4k+1, $N>p_i,1\leq i\leq k$,所以 N 为合数,设 p 为其任意一个素因数,则 p 为奇数,且 $(p,p_i)=1,i=1,2,\cdots k$ 。

满绩小铺: 1433397577, 搜集整理不易, 自用就好, 谢谢!

$$\left(\frac{-1}{p}\right) = \left(\frac{-1+N}{p}\right) = \left(\frac{(2p_1p_2\cdots p_k)^2}{p}\right) = 1 = (-1)^{\frac{p-1}{2}},$$

则存在整数 a 使得 $\frac{p-1}{2}=2a$,即 p 是形如 4k+1 的素数,所以存在整数 $1\leq j\leq k$,使得 $p=p_j$,这与 $(p,p_i)=1, i=1,2,\cdots k$ 矛盾。

三. 简述对有限域概念的理解。(10分)

答: 一个有限集合 F 上面定义了两种二元运算加法和乘法,如果对于加法而言,(F,+) 是一个交换群,关于加法的单位元为 0,对于乘法, $(F-\{0\},*)$ 也是一个交换群,且关于加法和乘法满足左右分配律,则称(F,+,*)是一个有限域。

满绩小铺: 1433397577, 搜集整理不易, 自用就好, 谢谢!