Experiment Run

Experiment Run Report

Experiment Title: Numerosity-Based Categorization – Silhouettes Dataset

Date: 4/04/2025

Researcher: Karoki Evans Njogu

1. Experiment Details

Parameter	Value				
Seed	42				
Dataset Size	3000 samples				
Image Size	128x128 pixels				
Categories	Few (1-5), Medium (6-15), Many (>16)				
Batch Size	256				
Learning Rate	0.0001				
Epochs	20				
Optimizer	AdamW				
Dropout Rate	0.4				
Weight Decay	5e-4				
Loss Function	CrossEntropyLoss				
Early Stopping	Yes (Patience = 5)				
Device Used	GPU – NVIDIA L4				
eps	1e-6				
betas	0.9, 0.98				
Accumulation steps	2				

2. Experiment Setup

• **Dataset:** Synthetic Dot Patterns

• Model Architecture: CNN-Transformer architecture

• Training Strategy:

o Train on 70% of data.

o Validate on 15%.

o Test on 15%.

• Evaluation Metrics:

- Accuracy
- Loss Curves
- o Confusion Matrix
- o Precision, Recall, and F1-Score

3. Training & Validation Performance

3.1 Loss and Accuracy Trends

Epoch Train Loss Validation Loss Validation Accuracy (%)

1	0.8440	2.6334	17.78%
2	0.5575	3.5014	18.00%
3	0.5048	2.2426	28.00%
4	0.4485	0.7734	66.22%
5	0.4696	0.5100	76.22%
6	0.4386	0.4345	78.89%
7	0.4046	0.4297	78.89%
8	0.3930	0.4684	79.11%
9	0.4004	0.4536	79.33%
10	0.3511	0.4137	81.78%

Epoch Train Loss Validation Loss Validation Accuracy (%)

11	0.3269	0.4871	78.67%
12	0.3652	0.5743	76.67%
13	0.3480	0.5269	78.89%
14	0.2800	0.4147	82.89%
15	0.2442	0.4251	81.56%

3.2 Loss Curve & Accuracy Plot

4. Test Set Evaluation

Final Test Accuracy: 82.22%

4.1 Confusion Matrix

4.2 Classification Report

Class	Precision	Recall	F1-Score	Support
Few	0.83	0.89	0.86	71
Medium	0.74	0.75	0.75	156
Many	0.88	0.85	0.87	351

5. Observations & Insights

• Key Findings:

- o Model performance improved noticeably over the CNN-only setup.
- Validation accuracy steadily increased, peaking at 82.89%, indicating good learning and generalization.
- The final test accuracy is 82.22%, a solid result for categorizing abstract numerosity from silhouettes.
- The loss trends in both training and validation loss curves are smoother, indicating better convergence and reduced overfitting.
- All three classes ("Few", "Medium", "Many") were correctly learned to some degree, with the model being particularly strong on the "Few" and "Many" categories.
- Improved Generalization: The CNN+Transformer model generalizes better than the CNNonly version. Despite earlier training instability (spikes in validation loss), performance stabilized and improved in later epochs.
- Strong Accuracy in Extremes:
 - Few (Precision: 0.83, Recall: 0.89): High precision and recall suggest the model can easily recognize small object counts.
 - Many (Precision: 0.88, Recall: 0.85): The model reliably identifies cluttered scenes with high object counts.
- Moderate Handling of Medium:
 - Medium (Precision: 0.74, Recall: 0.75) is slightly weaker, reflecting natural ambiguity in mid-range quantities, which are less visually distinct.

Error Analysis:

- Confusion between "Medium" and both extremes:
 - 16.67% of "Medium" samples were misclassified as "Many".
 - 8.33% were misclassified as "Few".
- "Many" misclassified as "Medium" (14.8%): These errors could stem from object overlap, shape complexity, or edge occlusion making dense images appear less populated.
- No "Few" misclassified as "Many": Indicates model learned a strong separation between lowest and highest counts.

6. Conclusion

The CNN+Transformer model demonstrates strong capability in abstract numerosity categorization, achieving over 82% accuracy on complex silhouette compositions. Compared to the CNN-only version, it shows:

- Improved accuracy in both validation and test sets.
- Better generalization across numerosity levels, especially at extremes.
- Moderate errors in ambiguous middle cases, which is a known challenge in cognitive-inspired quantification.