

Time Series with Applications on Big Data

Number of Aircraft Departing

University of L'Aquila

Department of Information Engineering and Computer Science and Mathematics

Muhammad Ahmed - 287068

Masters Applied Data Science

Contents

1	Introduction							
2	Preliminary Analysis							
3	B Data Transformation							
4	Mo	del Identification	6					
	4.1	Information Criteria	7					
	4.2	Model Estimation and Checking	10					
		4.2.1 First Model: ARIMA (2,1,0)	10					
		4.2.2 Second Model ARIMA (2,1,1)	12					
	4.3 Forecast on test set							
5	For	ecast of future values	17					
6	Cor	nclusion	18					

1 Introduction

This report takes you on a comprehensive journey to develop the optimal model for analyzing time series data. The dataset used consists of the number of aircraft departures in Italy from 1948 to 2014 [Istituto Nazionale di Statistica (ISTAT)].

The process begins with an in-depth analysis of the dataset, assessing its stationarity and variance. If the series is found to be non-stationary, transformations are applied to achieve stationarity. Subsequently, model selection is performed using ACF and PACF plots, along with Information Criteria methods such as AIC, BIC, and HQC.

Once the most suitable models are identified, they are constructed and thoroughly evaluated, ensuring that the residuals conform to the characteristics of a Gaussian white noise process.

The final stage involves generating forecasts, with the model demonstrating the lowest RMSE being selected as the best-performing model. This model is then employed to forecast future values with enhanced accuracy.

All analyses and computations were conducted using Gretl, ensuring robust and reliable results.

2 Preliminary Analysis

Upon plotting the series, we obtained the following result:

Figure 1: Number of aircraft departures in Italy from 1948 to 2014

Examining plot in Figure 1 reveals a clear upward trend. However, to build an ARIMA

model, it is essential for the series to be stationary. Therefore, a transformation is required to achieve stationarity.

3 Data Transformation

If x_t represents our original time series and $\Delta = 1 - L$, where L is the lag operator, the transformed series is given by $y_t = \Delta x_t = x_t - x_{t-1}$. The plot y_t is shown in Figure 2

Figure 2: Plot of Δx_t , the first difference of the original plot

Parameter	Value
ADF Test Statistics	-4.88
p-value	3.90×10^{-5}
No. of Lags Used in ADF Test	0
No. of Obs in Time Series	65
Critical Values (1%,5%,10%)	-3.54, -2.91, -2.59
Max Eigenvalue Stats	1456.08

Summary Stats	Value
Mean	9258.28
Min	-39587.30
Max	65687.00
Standard Deviation	19279.20
Missing Obs	1

Table 2: Descriptive statistics of y_t

Table 1: ADF stationary test results of y_t

To assess stationarity, the Augmented Dickey-Fuller (ADF) test was conducted using Python, with the results displayed in Table 1. The evidence of stationarity is sufficient, as the ADF test statistic is negative and exceeds the critical values at the 1%, 5%, and 10% levels. Additionally, the p-value is less than 0.05, allowing us to reject the null hypothesis of non-stationarity.

However, Table 2 also reveals a higher standard deviation, indicating significant variation that needs to be addressed.

To address this, I will first apply a logarithmic transformation to the original dataset and then compute the first difference to stabilize variance and ensure stationarity.

If x_t represents our original time series, the new logarithmic series is given by $z_t = \log x_t$. The plot of z_t is in Figure 3

Figure 3: Plot of z_t , log of original plot

Similarly, if $\Delta = 1 - L$, where L is the lag operator, the new transformed logarithmic series is given by

$$\Delta z_t = \Delta \log x_t = \log x_t - \log x_{t-1}$$
.

The plot of Δz_t is shown in the Figure 4

Figure 4: Plot of Δz_t , the first difference of the log of original values

Parameter	Value
ADF Test Statistics	-4.41
p-value	2.85×10^{-4}
No. of Lags Used in ADF Test	0
No. of Obs in Time Series	65
Critical Values (1%,5%,10%)	-3.54, -2.91, -2.59
Max Eigenvalue Stats	-193.31

Summary Stats	Value
Mean	0.0465
Min	-0.0878
Max	0.2046
Standard Deviation	0.0627
Missing Obs	1

Table 4: Description statistics of Δz_t

Table 3: ADF stationary test results of Δz_t

Examining the plot of the first difference of the logarithm of the original values (Δz_t) in Figure 4, it is evident that the variation around the mean has significantly decreased. This observation is supported by the statistics in Table 3, which indicate that the standard deviation is close to zero.

The graph also demonstrates stationarity, as confirmed by Table 4. The p-value is less than 0.05, rejecting the null hypothesis of non-stationarity. Furthermore, the ADF test statistic is negative and even more negative than the critical values at 1%, 5%, and 10%, further reinforcing confidence in the stationarity of the series.

This newly transformed series, z_t , will now be the focus for the next step: Model Identification.

Before proceeding, the data is split into training and testing sets. The training set includes values from 1948 to 2000, comprising 53 observations, while the testing set consists of values

from 2001 to 2014, totaling 14 observations.

4 Model Identification

The initial analysis is conducted by examining the correlogram of Δz_t using the training dataset as shown in the Figure 5

Figure 5: Autocorrelogram of Δz_t

Examining the correlogram suggests that a potential model for this series could be $\mathbf{AR}(2)$, as it exhibit a significant spike at the second lag in PACF, while for ACF there are many significant lags that occur at different orders and can be disregarded. Hence, we have:

1.
$$\Delta z_t \sim ARMA(2,0) \implies z_t \sim ARIMA(2,1,0)$$

The model has the following equations:

$$(1 - \phi_1 L - \phi_2 L^2) \Delta z_t = c + u_t \tag{4.1}$$

$$(1 - \phi_1 L - \phi_2 L^2)(1 - L)z_t = c + u_t \tag{4.2}$$

$$(1 - \phi_1 L - \phi_2 L^2)(1 - L)\log x_t = c + u_t \tag{4.3}$$

However, the correlogram alone does not provide sufficient certainty for building the ARIMA model. To ensure robustness, Information Criteria methods are applied using three estimators—AIC, BIC, and HQC—to identify the most appropriate model.

4.1 Information Criteria

The Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and Hannan-Quinn Criterion (HQC) are measures used to evaluate the fit of a statistical model while penalizing for model complexity to prevent overfitting. These criteria are particularly useful in selecting the best ARIMA model by balancing goodness-of-fit and simplicity. A description is provided in Table 5.

1. AIC	2. BIC	3. HQC
$-2\ln(L) + 2k$	$-2\ln(L) + k\ln(n)$	$-2\ln(L) + 2k\ln(\ln(n))$
 L: Maximum likelihood of the model. k: Number of estimated parameters. 	 n: Number of observations in the data. L: Maximum likelihood of the model. k: Number of estimated parameters. 	 n: Number of observations. L: Maximum likelihood of the model. k: Number of estimated parameters.
The model with the lowest AIC is preferred. AIC penalizes complexity less heavily than BIC, making it more prone to overfitting.	BIC imposes a stronger penalty for model complexity compared to AIC, as the penalty term $k \ln(n)$ increases with the sample size.	HQC penalizes complexity less heavily than BIC but more than AIC, and is useful when the sample size n is large.

Table 5: Brief Description of Information Criteria Used

In Gretl, the armax function is utilized to identify the appropriate models. The parameter settings for this function are represented in Figure 6.

Figure 6: The maximum lags for p and q are set to 5, and a constant is included.

The obtained result is as follows:

gretl output for Ahmed 2024-12-23 18:01 page 1 of 1

? armax(5, 5, d_l_Dept_Aircraft__, null, 1, 1, 0, 1, 0)

Information Criteria of ARMAX(p,q) for d_l_Dept_Aircraft__

p,	q	AIC	BIC	HQC	
		-137.9814			
		-143.7520			
		-158.1300			
0,	3	-156.1867	-146.4305	-152.4464	
0,	4	-157.3948	-145.6873	-152.9064	
0,	5	-157.3948 -155.4203 -151.3354	-141.7616	-150.1838	
1,	0	-151.3354	-145.4817	-149.0912	
1,	1	-153.1311	-145.3261	-150.1389	
		-156.7886			
1,	3	-155.1000	-143.3926	-150.6117	
1.	4	-155.5791	-141.9204		
1,	5	-153.7125	-138.1025	-147.7280	
2,	0	-156.6507	-148.8457	-153.6584	
2,	1	-166.2901*	-156.5338*	-162.5498*	
2,	2	-164.6634	-152.9559	-160.1750	
2,	3	-162.6714	-149.0127	-157.4350	
2,	4	-160.6725	-145.0626	-154.6880	
2,	5	-158.9551	-141.3939	-152.2226	
3.	0	-159.6044	-149.8482 -152.9603	-155.8641	
3,	1	-164.6678	-152.9603	-160.1794	
		-162.6684			
		-162.1728			
3,	4	-158.6958	-141.1346	-151.9632	
3,	5	-161.7937	-142.2813		
4,	0	-160.7662	-149.0588	-156.2779	
4,	1	-162.6688	-149.0101	-15/.4324	
4,			-145.0734		
			-144.4950		
		-160.1370			
4,	5	-156.3631			
5,	0	-159.3898	-145.7311	-154.1534	
5,	1	-160.7066	-145.0967 -142.7916	-154.7221	
5,	2	-160.3528	-142./916	-153.6203	
5,		-159.9257			
5,			-138.5265		
5,	5	-159.4006	-135.9857	-150.4239	
====	===			=========	

^{*} indicates best models.

Figure 7: Result of armax function

By looking at the figure X, it's evident that the best model for all three criteria is an ARMA(2, 1).

$$\Delta z_t \sim \text{ARMA}(2,1) \Rightarrow z_t \sim \text{ARIMA}(2,1,1)$$

The model has the following equations:

$$(1 - \phi_1 L - \phi_2 L^2) \Delta z_t = c + (1 + \theta_1 L) u_t \tag{4.4}$$

$$(1 - \phi_1 L - \phi_2 L^2)(1 - L)z_t = c + (1 + \theta_1 L)u_t$$
(4.5)

$$(1 - \phi_1 L - \phi_2 L^2)(1 - L)\log x_t = c + (1 + \theta_1 L)u_t$$
(4.6)

^{&#}x27;9999.9999' suggests failures to estimate the models.

4.2 Model Estimation and Checking

4.2.1 First Model: ARIMA (2,1,0)

The estimation of this model yields the following results:

```
Function evaluations: 25
Evaluations of gradient: 7
Model 1: ARIMA, using observations 1949-2000 (T = 52)
Estimated using AS 197 (exact ML)
Dependent variable: (1-L) 1 Dept Aircraft
Standard errors based on Hessian
               coefficient std. error z p-value

    const
    0.0625774
    0.0203169
    3.080
    0.0021
    ***

    phi_1
    0.319861
    0.126327
    2.532
    0.0113
    **

    phi_2
    0.360468
    0.127728
    2.822
    0.0048
    ***

Mean dependent var 0.058556 S.D. dependent var 0.062385
Mean of innovations -0.000769 S.D. of innovations 0.049412
R-squared 0.996584 Adjusted R-squared 0.996516
Log-likelihood 82.32533 Akaike criterion -156.6507
                        82.32533 Akaike criterion -156.6507
Schwarz criterion -148.8457 Hannan-Quinn
                                                                -153.6584
                             Real Imaginary Modulus Frequency
    Root 1 1.2800 0.0000 1.2800 0.0000
Root 2 -2.1673 0.0000 2.1673 0.5000
```

Figure 8: Model Estimation Results - ARIMA (2,1,0)

Thus, Equation (4.3) becomes:

$$(1 - 0.32L - 0.36L^2)(1 - L)\log x_t = 0.06 + u_t \tag{1}$$

The next step is *Model Checking*, which involves verifying whether the residuals can be considered a realization of Gaussian White Noise. To begin, let's examine the plot of residuals versus time.

Figure 9: Residual Plot

Figure 10: Correlogram of Residuals

From the plot in Figure 9, it can be observed that the residuals appear stationary, suggesting they may represent a realization of white noise. To further confirm this, we examine the correlogram of the residuals in Figure 10. Based on these observations, we conclude that the residuals are indeed a realization of white noise.

Next, to verify whether the residuals are a realization of Gaussian White Noise, we analyze their normality and review the Q-Q plot.

Figure 11: Histogram Plot

Figure 12: Q-Q Plot

From Figure 11, it is evident that the residuals do not follow a Gaussian distribution (the p-value = 0.0175, which is less than 0.05). Similarly, Figure 12, which shows the Q-Q plot of the residuals versus the actual data of the time series, suggests that the data points do not

align perfectly with the straight line.

Overall, while the model isn't the Gaussian White Noise, it can still be considered a potential candidate for forecasting on the test set.

4.2.2 Second Model ARIMA (2,1,1)

Function evaluations: 109

The results of the second model estimation are shown in Figure 13.

Evaluations of gradient: 29

Model 2: ARIMA, using observations 1949-2000 (T = 52)
Estimated using AS 197 (exact ML)
Dependent variable: (1-L) 1_Dept_Aircraft__
Standard errors based on Hessian

	coeffi				z z	-		
	0.062							***
phi_1	-0.286	379	0.100	0217	-2.858	0.0	043	***
phi_2	0.698	265	0.09	79702	7.127	1.0	2e-12	***
theta_1	0.877	042	0.070	08382	12.38	3.3	32e-35	***
Mean of i R-squared Log-likel	ndent var nnovations ihood riterion	-0.00099 0.99733 88.1450 -156.533	90 54 03 38	S.D. Adjus Akaik Hanna	dependent of innove sted R-squ se criters un-Quinn ary Mod	ations mared ion	0.043 0.997 -166.2 -162.5	3571 7246 2901 5498
AR								
Root	1	-1.009	1	0.00	000 1.	0091	0.5	5000
Root	2	1.419	2	0.00	000 1.	4192	0.0	0000
MA								
Root	1	-1.140	2	0.00	000 1.	1402	0.5	5000

Figure 13: Model Estimation Results - ARIMA (2,1,1)

Thus, Equation (4.6) becomes:

$$(1 + 0.29L - 0.70L^{2})(1 - L)\log x_{t} = 0.06 + (1 + 0.88L)u_{t}$$
(2)

The plot of the residuals versus time and its correlogram are shown below:

Figure 14: Residual Plot

Figure 15: Correlogram of Residuals

From Figure 14, it is evident that the residuals appear to represent a realization of White Noise. To verify whether these residuals also follow a Gaussian distribution, we examine their normality using a histogram and Q-Q plot.

Figure 16: Histogram Plot

Figure 17: Q-Q Plot

From Figure 16, the p-value for the normality test is 0.0665, which is greater than the significance level of 0.05. This suggests that we accept the null hypothesis, meaning there is strong evidence against the assumption that the residuals follow a Gaussian distribution. Furthermore, as observed in the Q-Q plot in Figure 17, the data points closely align with the reference line, further supporting the conclusion that the residuals exhibit characteristics of Gaussian White Noise. Based on these findings, we consider this model to be a valid candidate

for forecasting on the test set.

The next step is to use these selected models for forecasting on the test set.

4.3 Forecast on test set

The prediction on the test set ranges in our dataset from 2001-2014.

By doing the forecast on the test set, the following results are obtained:

Figure 18: Prediction on Test set ARIMA (2,1,0)

Figure 19: Readings of Prediction on Test set ARIMA (2,1,0)

By looking at the prediction on test set Figure 18 we can clearly see that the readings of 2013 and 2014 are out of the confidence interval also highlighted the exact values in Figure 19. The registered RMSE value for z_t is 0.56.

Figure 20: Prediction on Test set ARIMA (2,1,1)

Figure 21: Readings of Prediction on Test set ARIMA (2,1,1)

Examining the predictions on the test set in Figure 20, it is observed that the readings for 2013 and 2014 also fall outside the confidence interval similar to the previous. However, they are not as far outside as they were with the previous model. The actual values, highlighted along with their exact figures in Figure 21, indicate that the difference between the observed values and the lower bound of the confidence interval is smaller than in the first model. This model achieves an RMSE value of 0.50 for z_t , which is lower than that of the previous model.

In the evaluations above, the forecasts were based on $z_t = \log x_t$. However, to obtain forecasts for x_t , the values need to be transformed back using $x_t = \exp(z_t)$. To calculate the necessary indicators for x_t , an Excel sheet containing the predicted and actual values of z_t 's forecasts on the test set was utilized, enabling the computation of x_t 's indicators. This process was essential for selecting the best model.

CASE 1 =>	ARIMA(2,1,0)					
YEAR	yt	yt hat	Error = yt hat -yt	xt = exp(yt)	xt hat = exp (yt hat)	Error = xt hat - xt
2001	13.335605	13.434559	0.098954	618841.833729	683210.984949	64369.151220
2002	13.318147	13.514890	0.196743	608131.852438	740358.642647	132226.790209
2003	13.357201	13.593582	0.236381	632351.696402	800972.585403	168620.889000
2004	13.356096	13.667713	0.311617	631653.333694	862605.724926	230952.391232
2005	13.381385	13.739795	0.358410	647830.910048	927079.869545	279248.959496
2006	13.434994	13.809577	0.374583	683508.246377	994084.010825	310575.764448
2007	13.516221	13.877885	0.361664	741344.716087	1064360.811551	323016.095464
2008	13.471262	13.944893	0.473631	708752.740016	1138125.307904	429372.567888
2009	13.422170	14.010953	0.588783	674798.900310	1215848.810126	541049.909815
2010	13.447312	14.076242	0.628930	691979.769953	1297879.062867	605899.292914
2011	13.450700	14.140942	0.690242	694328.173362	1384627.903812	690299.730450
2012	13.417256	14.205175	0.787919	671491.072503	1476485.264358	804994.191855
2013	13.356492	14.269047	0.912555	631903.517948	1573868.249186	941964.731238
2014	13.370352	14.332636	0.962284	640722.676295	1677199.506436	1036476.830141
		ME	-0.498764		ME	-468504.806812
		MSE	0.315971		MSE	308035493491.921000
		RMSE	0.562113		RMSE	555009.453516
		MPE	-3.719818		MPE	-70.424716
		MAPE	3.719817912		MAPE	70.42471601

Figure 22: Excel ARIMA(2,1,0)

CASE 2 =>	ARIMA(2,1,1)					
YEAR	yt	yt hat	Error = yt hat -yt	xt = exp(yt)	xt hat = exp (yt hat)	Error = xt hat - xt
2001	13.335605	13.413810	0.078205	618841.833729	669181.096642	50339.262913
2002	13.318147	13.490310	0.172163	608131.852438	722382.459557	114250.607119
2003	13.357201	13.554446	0.197245	632351.696402	770231.193452	137879.497050
2004	13.356096	13.626117	0.270021	631653.333694	827460.788821	195807.455127
2005	13.381385	13.686997	0.305612	647830.910048	879401.639442	231570.729393
2006	13.434994	13.756229	0.321235	683508.246377	942441.379921	258933.133544
2007	13.516221	13.815534	0.299313	741344.716087	1000023.442310	258678.726224
2008	13.471262	13.883514	0.412252	708752.740016	1070368.992721	361616.252705
2009	13.422170	13.942078	0.519908	674798.900310	1134925.990314	460127.090004
2010	13.447312	14.009396	0.562084	691979.769953	1213957.206524	521977.436571
2011	13.450700	14.067632	0.616932	694328.173362	1286752.293615	592424.120252
2012	13.417256	14.134581	0.717325	671491.072503	1375848.239043	704357.166540
2013	13.356492	14.192694	0.836202	631903.517948	1458171.774837	826268.256889
2014	13.370352	14.259421	0.889069	640722.676295	1558790.877233	918068.200938
		ME	-0.442683		ME	-402306.995376
		MSE	0.255342		MSE	232008722804.419000
		RMSE	0.505313		RMSE	481672.837935
		MPE	-3.301688		MPE	-60.510770
		MADE	3 301687817		MADE	60 51077004

Figure 23: Excel ARIMA(2,1,1)

Indicator	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$oxed{f Model 2-ARIMA~(2,1,1)}$
Mean Error	$-4.69 imes10^{5}$	-4.02×10^5
Mean Square Error	3.08×10^{11}	$2.32 imes10^{11}$
Root Mean Square Error	5.55×10^{5}	$4.82 imes10^{5}$
Mean Percentage Error	-70.4	-60.5
Mean Absolute Percentage Error	70.4	60.5

Table 6: Comparison of different models

Based on the comparison of the different indicators in Table 6, it is evident that the second model, ARIMA(2,1,1), achieves the best performance. The second model consistently has lower values across the majority of key indicators.

Thus, ARIMA(2,1,1) is selected as the better model and will be used to forecast new values.

5 Forecast of future values

After having restored the full range of the time series (from 1948 to 2014), it is possible to forecast 20 future values (from 2015 to 2034).

The result obtained is the following:

Figure 24: Next 20 years prediction plot

Figure 25: Next 20 years prediction reading

Future forecasts indicate that the number of aircraft departures in Italy is expected to increase after 2014. However, this prediction does not account for exogenous factors that might influence this trend.

For instance, while the forecast suggests a "linear" growth, real-world events such as the SARS-CoV-2 pandemic in 2019 led to a drastic reduction in aircraft departures. Other factors that may significantly impact this trend include weather and climatic conditions, changes in aviation regulations, international relations, shifts in population mobility, and, most importantly, geopolitical conflicts and security issues.

Therefore, it is important to recognize that this growth trajectory will not continue indefinitely and is subject to substantial variability.

6 Conclusion

In this project, a time series analysis was conducted to study and forecast the number of aircraft departures in Italy from 1948 to 2014. The data was analyzed and modeled using various ARIMA configurations, and the best-performing model was selected based on evaluation criteria. The chosen model was then employed to predict the next 20 observations, offering insights into potential future trends in aircraft departures.

The forecast indicated an expected increase in departures after 2014, though it is important to note that this model does not account for exogenous factors. Nonetheless, the project provided a comprehensive understanding of historical trends and demonstrated the utility of ARIMA models for forecasting in aviation.

This project served as a valuable exercise in bridging theoretical knowledge with practical application, addressing challenges that often arise in real-world data analysis scenarios. The results highlight the importance of combining statistical modeling with domain knowledge to achieve robust and meaningful predictions.

Bibliography

Istituto Nazionale di Statistica (ISTAT). Commercial air traffic, scheduled and non-scheduled, at italian airports - years 1926-2014. Web link: https://shorturl.at/VSOpj and actual data available at: https://seriestoriche.istat.it/fileadmin/documenti/Table_17. 14.xls. Accessed: 2024-12-22.