Київський національний університет імені Тараса Шевченка Факультет комп'ютерних наук та кібернетики Кафедра системного аналізу та теорії прийняття рішень

Звіт з лабораторної роботи № 1 на тему:

«Генерування псевдовипадкових чисел»

Студента другого курсу групи К-23(2) Міщука Романа Андрійовича Факультету комп'ютерних наук та кібернетики

1. Опис методів генерування рівномірно розподілених чисел

1. Лінійний конгруентний метод

$$X_{n+1} = (aX_n + c) \operatorname{mod} m,$$

$$U_{n+1} = \frac{X_{n+1}}{m}, n \ge 0,$$

де m — модуль, m > 0, a — множник, $0 \le a < m$, c — приріст, $0 \le c < m$, X_0 — початкове значення, $0 \le X_0 < m$.

Вибір модуля. Модуль повинен бути достатньо великим, оскільки період не може містити більше m чисел. Нехай w — довжина комп'ютерного слова, наприклад, 2^{32} . В якості m рекомендується брати найбільше просте число, яке не перевищує w.

Вибір множника. Цей вибір визначається наступною теоремою: лінійна конгруентна послідовність, визначена числами m, a, c і X_0 має період m тоді і лише тоді, коли виконуються три умови:

- 1. числа c і m є взаємно простими;
- 2. число b = a 1 є кратним числу p для кожного простого числа p, яке є дільником числа m;
- 3. число b ϵ кратним 4, якщо число m ϵ кратним 4.

Обрані коефіцієнти:

- $X_0 = 42949672$;
- m = 4294967291;
- c = 4294967279:
- a = 4294967231.

2. Квадратичний конгруентний метод

$$X_{n+1} = \left(dX_n^2 + aX_n + c\right) \mod m,$$

$$U_{n+1} = \frac{X_{n+1}}{m}, n \ge 0.$$

Вибір параметрів. Цей вибір визначається наступною теоремою: квадратична конгруентна послідовність, визначена числами m, a, c, d і X_0 , має період m тоді і лише тоді, коли виконуються чотири умови:

- 1. числа c і m ϵ взаємно простими;
- 2. числа d і a—l ϵ кратними числу p для всіх чисел p, які ϵ простими непарними дільниками числа m;
- 3. число $d \in \text{парним i } d \equiv a-1 \mod 4$, якщо число $m \in \text{кратним 4}$; число $d \equiv a-1 \mod 2$, якщо число $m \in \text{кратним 2}$;
- 4. $d \not\equiv 3c \mod 9$, якщо число $m \in \text{кратним } 3$.

Обрані коефіцієнти:

- $X_0 = 42949672$;
- m = 4294967291;
- c = 4294967279;
- d = 4294967231:
- a = 4294967197.

```
C:\Users\mario\Documents\Documents\University\OOP\LABS\LAB1\x64\Release\LAB1.exe
Enter index of method (from 1 to 10 or q): 2
Chose one of the presets, or enter own numbers:
1) m2_32b
2 or d) m2_p
o) Own numbers
Enter number of elements: 1000
Interval | Frequency
[0.00;0.10)
                0.11
[0.10;0.20)
                 0.12
[0.20;0.30)
                 0.11
[0.30; 0.40)
                0.08
[0.40;0.50)
[0.50;0.60)
                 0.10
                 0.09
[0.60;0.70)
                 0.10
[0.70; 0.80)
                 0.10
[0.80; 0.90)
                 0.10
[0.90;1.00)
                 0.11
Enter index of method (from 1 to 10 or q):
```

3. Числа Фібоначчі

$$X_{n+1} = (X_n + X_{n-1}) \mod m, n \ge 0.$$

Обрані коефіцієнти:

- $X_0 = 1247437$;
- $X_1 = 224743647$;
- m = 4294967291.

```
C:\Users\mario\Documents\Documents\University\OOP\LABS\LAB1\x64\Release\LAB1.exe
Enter index of method (from 1 to 10 or q): 3
Chose one of the presets, or enter own numbers:
1 or d) m3_p
o) Own numbers
: d
Enter number of elements: 1000
Interval
             Frequency
[0.00;0.10)
[0.10;0.20)
[0.20;0.30)
[0.30;0.40)
[0.40;0.50)
[0.50;0.60)
                  0.10
                   0.11
                   0.10
                   0.10
                   0.10
                   0.09
[0.60;0.70)
                   0.09
[0.70;0.80)
                   0.10
[0.80; 0.90)
                   0.11
[0.90;1.00)
                   0.09
Enter index of method (from 1 to 10 or q): _
```

4. Обернена конгруентна послідовність

$$X_{n+1} = (aX_n^{-1} + c) \mod p$$
,
 $U_{n+1} = \frac{X_{n+1}}{m}, n \ge 0$,

де p – просте число, число $X_{\rm n}$ набуває значень із множини $\{0,1,\dots,p-1,\infty\}$, а обертання визначається за правилами $0^{-1}=\infty,\infty^{-1}=0$. В інших випадках $XX^{-1}\equiv 1 \bmod p$.

Вибір параметрів. Обернена конгруентна послідовність

$$X_{n+1} = (aX_n^{-1} + c) \mod 2^e, \ X_0 = 1, \ e \ge 3$$

має період 2^{e-1} , якщо $a \mod 4 = 1$ і $c \mod 4 = 2$.

Обрані коефіцієнти:

- $X_0 = 42949672$;
- m = 4294967197;
- c = 4294967291;
- a = 4294967157.

```
C:\WINDOWS\system32\cmd.exe
Enter index of method (from 1 to 10 or q): 4
Chose one of the presets, or enter own numbers:
1) m4_32b
2 or d) m4_p
o) Own numbers
Enter number of elements: 1000
Interval
          Frequency
[0.00;0.10)
                0.10
[0.10;0.20)
                0.10
[0.20;0.30)
                0.10
[0.30;0.40)
                0.10
[0.40;0.50)
                0.10
[0.50;0.60)
                0.09
[0.60;0.70)
                0.10
                0.10
[0.70;0.80)
                0.10
[0.80;0.90)
[0.90;1.00)
                0.11
Enter index of method (from 1 to 10 or q): _
```

5. Метод об'єднання

$$Z_{n} = (X_{n} - Y_{n}) \mod m,$$

$$0 \le X_{n} < m, \ 0 \le Y_{n} < m' \le m,$$

$$U_{n+1} = \frac{X_{n+1}}{m}, \ n \ge 0.$$

Обрані коефіцієнти:

- m = 4294967197;
- Послідовність X (другий метод):
 - $X_0 = 42949672;$
 - m = 4294967291:
 - \circ c = 4294967279;
 - o d = 4294967231;
 - a = 4294967197.
- Послідовність *Y* (четвертий метод):
 - $X_0 = 42949672;$
 - om = 4294967197;
 - c = 4294967291;
 - \circ a = 4294967157.

```
    C:\Users\mario\Documents\Documents\University\OOP\LABS\LAB1\x64\Release\LAB1.exe

Enter index of method (from 1 to 10 or q): 5
Chose one of the presets, or enter own numbers:
1 or d) m5_p
o) Own numbers
Chose one of the presets, or enter own numbers:
1 or d) m5_p
o) Own numbers
: d
Enter number of elements: 1000
Interval
             Frequency
[0.00;0.10)
                  0.10
                  0.10
[0.10;0.20)
[0.20;0.30)
[0.30;0.40)
[0.40;0.50)
[0.50;0.60)
                  0.10
                  0.12
                  0.13
                  0.10
[0.60;0.70)
                  0.09
[0.70;0.80)
                  0.08
[0.80;0.90)
[0.90;1.00)
                  0.09
Enter index of method (from 1 to 10 or q):
```

2. Опис методів генерування нормально розподілених чисел

$$N(0,1): F(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{\frac{-t^2}{2}} dt$$

6. Правило «3-сігма»

$$X_n = m + (sum - 6)\sigma,$$

де m — медіана, σ — дисперсія, sum — сума дванадцяти випадкових чисел, рівномірно розподілених на інтервалі [a, b]. Якщо [a, b] = [0; 1], то m = 0, а $\sigma = 1$. Правило 3-сігма стверджує, на проміжку $[m-3\sigma; m+3\sigma]$ міститься 99,7% всіх випадкових чисел, що мають розподіл $N(m, \sigma^2)$. Отже для побудови гістограми розподілу N(0,1) достатньо обмежитись інтервалом [-3;3].

Обрані коефіцієнти:

- Рівномірний розподіл за четвертим методом.
- m = 0;
- $\sigma = 1$.

```
C:\Users\mario\Documents\Documents\University\OOP\LABS\LAB1\x64\Release\LAB1.exe
Enter index of method (from 1 to 10 or q): 6
Chose one of the presets, or enter own numbers:
1 or d) m6_p
o) Own numbers
Enter number of elements: 1000
 Interval | Frequency
[-3.00;-2.40)
                       0.01
                       0.03
[-2.40;-1.80)
[-2.40;-1.80)
[-1.80;-1.20)
[-1.20;-0.60)
[-0.60; 0.00)
[ 0.00; 0.60)
[ 0.60; 1.20)
[ 1.20; 1.80)
[ 1.80; 2.40)
[ 2.40; 3.00)
                        0.07
                        0.15
                        0.23
                        0.23
                        0.17
                        0.07
                        0.03
                        0.01
Enter index of method (from 1 to 10 or q):
```

7. Метод полярних координат

7.1. Нехай U_1 і U_2 — випадкові числа, взяті із генеральної сукупності всіх чисел, рівномірно розподілених на інтервалі [0; 1]. Виконати такі перетворення.

$$V_1 \leftarrow 2U_1 - 1$$
,
 $V_2 \leftarrow 2U_2 - 1$.

Числа V_1 і V_2 належать генеральній сукупності чисел, рівномірно розподілених на інтервалі [-1; 1].

7.2.
$$S \leftarrow V_1^2 + V_2^2$$
.

- 7.3. Якщо $S \ge 1$, виконати пункти 7.1 і 7.2.
- 7.4. Виконати такі перетворення.

$$X_1 \leftarrow V_1 \sqrt{\frac{-2\ln S}{S}},$$

$$X_2 \leftarrow V_2 \sqrt{\frac{-2\ln S}{S}}.$$

7.5. Видати числа X_1 і X_2 .

```
C:\Users\mario\Documents\Documents\University\OOP\LABS\LAB1\x64\Release\LAB1.exe
Enter index of method (from 1 to 10 or q): 7
Chose one of the presets, or enter own numbers:
L or d) m7_p
o) Own numbers
Enter number of elements: 1000
 Interval
                Frequency
-3.00; -2.40)
                     0.00
[-2.40;-1.80)
[-1.80;-1.20)
[-1.20;-0.60)
[-0.60; 0.00)
                     0.02
                     0.07
  0.00; 0.60)
  0.60; 1.20)
 1.20; 1.80)
1.80; 2.40)
2.40; 3.00)
                     0.05
                     0.00
Enter index of method (from 1 to 10 or q):
```

8. Метод співвідношень

8.1. Згенерувати дві незалежні випадкові величини, рівномірно розподілені на інтервалі $[0; 1]: U \neq 0$ і V.

$$X \leftarrow \sqrt{\frac{8}{e}} \frac{V - \frac{1}{2}}{U}.$$
8.2.

- 8.3. (Необов'язкова перевірка верхньої грані.) Якщо $X^2 \le 5 4e^{\frac{1}{4}}U$, то результатом є число X. Завершити алгоритм.
- 8.4. (Необов'язкова перевірка нижньої грані.) Якщо $X^2 \ge \frac{4e^{-135}}{U} + 1.4$, то повернутися на крок 8.1.
- 8.5. (Остаточна перевірка.) Якщо $X^2 \le -4 \ln U$, то видати число X і завершити алгоритм, інакше повернутися на крок 8.1.

Обрані випадкові послідовності:

- Послідовність U (перший метод).
- Послідовність V (четвертий метод).

```
C:\Users\mario\Documents\Documents\University\OOP\LABS\LAB1\x64\Release\LAB1.exe
Enter index of method (from 1 to 10 or q): 8
Chose one of the presets, or enter own numbers:
1 or d) m8_p
o) Own numbers
Enter number of elements: 1000
 Interval
               Frequency
-3.00;-2.40)
                   0.01
 -2.40; -1.80)
                   0.03
 -1.80; -1.20)
                   0.08
 -1.20; -0.60)
-0.60; 0.00)
0.00; 0.60)
                   0.16
                   0.21
 0.60; 1.20)
 1.20; 1.80)
                   0.07
 1.80; 2.40)
                   0.03
 2.40; 3.00)
                   0.01
Enter index of method (from 1 to 10 or q):
```

3. Опис методів генерування розподілів інших типів

9. Метод логарифму для генерування показового розподілу

$$F(x)=1-e^{-\frac{x}{\mu}}, x \ge 0.$$

Якщо $y=F(x)=1-e^{-\frac{x}{\mu}}$, то $x=F^{-1}(y)=-\mu \ln(1-y)$. Таким чином, величина

$$x = -\mu \ln(1 - U),$$

має експоненційний розподіл, якщо число U належить генеральній сукупності випадкових величин, рівномірно розподілених на інтервалі [0; 1]. Оскільки величина 1-U має той же самий розподіл, формулу можна спростити:

$$x = -\mu \ln(U)$$
.

Обрані випадкові послідовності:

• Послідовність U (четвертий метод).

```
C:\Users\mario\Documents\Documents\University\OOP\LABS\LAB1\x64\Release\LAB1.exe
Enter index of method (from 1 to 10 or q): 9
Chose one of the presets, or enter own numbers:
1 or d) m9_p
o) Own numbers
Enter number of elements: 1000
     Interval
                     | Frequency
 Interval

0.00; 10.00)

10.00; 20.00)

20.00; 30.00)

30.00; 40.00)

40.00; 50.00)

50.00; 60.00)

60.00; 70.00)

70.00; 80.00)

80.00; 90.00)
                           0.23
                           0.15
                           0.06
                           0.01
                           0.01
                           0.01
  90.00;100.00)
                           0.00
 nter index of method (from 1 to 10 or q):
```

10. Метод Аренса для генерування гамма-розподілу порядку а > 1

$$F(x) = \frac{1}{\Gamma(a)} \int_{0}^{x} t^{a-1} e^{-t} dt, x \ge 0, a > 0.$$

10.1. (Генерування кандидата.) Згенерувати випадкове число U, що належить генеральній сукупності випадкових величин, рівномірно розподілених на інтервалі [0; 1]. Виконати операції

$$Y \leftarrow tg(\pi U),$$

 $X \leftarrow \sqrt{2a-1}Y + a - 1.$

- 10.2. (Перша перевірка.) Якщо $X \le 0$, повернутися на крок 10.1.
- 10.3. (Остаточна перевірка). Згенерувати випадкове число V, що належить генеральній сукупності випадкових величин, рівномірно озподілених на інтервалі [0; 1].

$$V > \left(1 + Y^2\right) \exp\left(\left(a - 1\right) \ln\left(\frac{X}{a - 1}\right) - \sqrt{2a - 1}Y\right),$$
 повернутися на крок 10.1.

10.4. Видати число *X*.

Обрані випадкові послідовності:

• Послідовність U (четвертий метод).