Metastability of Contact Processes

Younghun Jo Seoul National University

Cornell Probability Summer School July 26, 2024

Contact process

- G = (V, E) (locally) finite connected graph
- $\lambda > 0$ infection rate
- \bullet Configurations of the contact process: $\eta \in \{0,1\}^V$

For
$$x \in V$$
, $\eta(x) = \begin{cases} 0 & x \text{ is healthy} \\ 1 & x \text{ is infected} \end{cases}$

 \bullet Abuse of notation: identify η with $\{x \in V: \eta(x) = 1\}$

• The all-healthy state $\eta = \emptyset$ is the unique absorbing state.

Metastability of contact processes

The extinction time of the contact process is

$$\tau_G = \inf\{t \ge 0 : \eta_t = \emptyset\}.$$

Q. Fix a (increasing) sequence of graphs $(G_N)_{N\geq 1}$, and study the growth of au_{G_N} .

Finite-volume phase transition for boxes ('84-'99)

On $\mathbb{Z}_N^d = [1, N]^d$ with free boundary, we have

$$au_{\mathbb{Z}_N^d} \sim egin{cases} \log |\mathbb{Z}_N^d| & \text{if } \lambda < \lambda_c, \\ \expig(c_\lambda |\mathbb{Z}_N^d|ig) & \text{if } \lambda > \lambda_c \end{cases}$$

where |G| denotes the number of vertices.

The latter case is a clear demonstration of the metastable behavior.

Metastability of contact processes

More generally, the following theorem holds.

Theorem (MMYV '16, SV '17)

Suppose that $\lambda > 0$ is sufficiently large.

(a) For all D > 0, there exists $c = c(\lambda, D)$ such that

$$\mathbb{E} \tau_G \geq \exp(c|G|) \quad \text{for all } G \text{ with degrees} \leq D.$$

(b) For all $\varepsilon > 0$, there exists $c = c(\lambda, \varepsilon)$ such that

$$\mathbb{E}\tau_G \ge \exp\Bigl(c \cdot \frac{|G|}{(\log |G|)^{1+\varepsilon}}\Bigr)$$
 for all G .

Precise estimate for mean extinction time

Levels of precision for mean transition time estimate:

- $\begin{tabular}{ll} \hline \end{tabular} \begin{tabular}{ll} \end{tabular} & \end{tabular} \begin{tabular}{ll} \end{tabular} \begin{tabular}{ll}$
 - 1 holds for graphs of uniformly bounded degree. (MMYV '16)
 - ② holds for \mathbb{Z}_N^d with free boundary. (Mountford '99) However, ② is open for even \mathbb{Z}_N^d with periodic boundary.
 - ② holds for a variety of random graph models. (Shapira-Valesin '21)
 - ③ is open only except for two cases.
 - 1. The triviality: complete graph K_N
 - 2. Main Result: star graph S_N (J. '24)

Main result

Eyring-Kramers law (J. '24)

Let S_N be the star graph with one hub and N leaves. Then, we have

$$\mathbb{E}\tau_{S_N} \simeq \kappa_{\lambda} N^{-\frac{1}{1+2\lambda}} \left(\frac{(1+\lambda)^2}{1+2\lambda} \right)^N.$$

In particular, we have

$$\frac{1}{N}\log \mathbb{E}\tau_{S_N} \xrightarrow{N\to\infty} c_{\lambda} = 2\log(1+\lambda) - \log(1+2\lambda).$$

Main ingredients:

- Special function theory for precise estimation of quasi-stationary measure
- The potential theoretic approach to metastability of non-reversible processes

These methodologies have not previously been used in the study of the contact process.