Université Abdelmalek Essaadi ENS Tétouan LEM, M2 Année 2023-2024

TD 1 – Suites réelles

Exercice 1

1. En utilisant la définition de la limite, montrer que

$$\lim_{n \to +\infty} \frac{2}{n+2}, \quad \lim_{n \to +\infty} \ln(n+1) = +\infty, \quad \lim_{n \to +\infty} \lim_{n \to +\infty} \frac{n-1}{n+1}, \quad \lim_{n \to +\infty} q^n \text{ où } 0 < q < 1$$

2. Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle qui converge vers un réel l>0. Montrer que

$$\exists n_0 \in \mathbb{N} \quad \forall n \ge n_0 \quad u_n > \frac{1}{2}.$$

3. Soit x un réel. Montrer que la suite $(u_n)_n := (\frac{E(nx)}{n})_n$ converge vers x. conclure

Exercice 2

Étudier la convergence des suites des termes générales suivants en déterminant leur limites s'ils existent :

$$u_n = \frac{n^2 - n + 1}{n^3 + 2n + 1}, \quad v_n = \sqrt{n + 1} - \sqrt{n}, \quad w_n = \frac{a^n - b^n}{a^n + b^n} a, b > 0,$$
$$r_n = \frac{\ln(n!)}{n}, \quad s_n = (1 + \frac{1}{n})^n, \quad t_n = \frac{\sin(n) + 3\cos(n^2)}{\sqrt{n}}$$

Exercice 3

- 1. Montrer qu'une suite d'entiers qui converge est constante à partir d'un certain rang.
- 2. Montrer qu'une suite monotone dont une suite extraite converge est convergente.
- 3. Soit $(u_n)_{n\in\mathbb{N}}$ une suite telle que les suites extraites $(u_{2n})_n$ et $(u_{2n+1})_n$ convergent vers une même limite l. Montrer alors que (u_n) converge vers l.
- 4. Trouver une suite (v_n) telle que pour tout $k \geq 2, (v_{kn})$ converge mais (v_n) ne converge pas.

Exercice 4

Montrer que les suites (u_n) suivantes sont convergentes, et calculer leurs limites :

$$u_n = \sum_{k=1}^n \frac{n}{\sqrt{n^4 + k}}; u_n = \sum_{k=1}^n \frac{1}{k^2 + k}; u_n = \sum_{k=1}^n \frac{1}{k\sqrt{k+1} + (k+1)\sqrt{k}}; u_n = \sum_{k=1}^n \frac{k}{(k+1)!}$$

Exercice 5

Soit $(U_n)_n$ une suite croissante et convergente. Pour tout n dans \mathbb{N}^* , posons $V_n = \frac{1}{n} \sum_{k=1}^n U_k$.

- 1. Montrer que $(V_n)_{n\geq 1}$ est croissante.
- 2. Montrer que $(V_n)_{n\geq 1}$ est bornée.
- 3. Déduire que $(V_n)_{n\geq 1}$ est convergente.

Exercice 6

Soient 0 < a < b et $(U_n), (V_n)$ définies par $U_0 = a, V_0 = b$ et pour tout n dans \mathbb{N}

$$V_{n+1} = \frac{U_n + V_n}{2}, U_n V_n = ab.$$

- 1. Montrer que pour tout n dans $\mathbb{N}, U_n > 0$ et $V_n > 0$.
- 2. Montrer que pour tout n dans $\mathbb{N}, U_n \leq V_n$ et en déduire que (U_n) est croissante.
- 3. Montrer que (V_n) est décroissante.
- 4. Montrer que pour tout n dans $\mathbb{N}, 0 \leq V_n U_n \leq \frac{b-a}{2^n}$, et en déduire que (U_n) et (V_n) sont deux suites adjacentes.
- 5. Montrer qu'elles convergent vers \sqrt{ab} .

Exercice 7

Soit (r_n) la suite définie par : $r_n = \sum_{k=0}^n \frac{1}{k!}, (n \in \mathbb{N}).$

- 1. Montrer que pour tout $n \ge 1$ et $k \ge 1$, $\frac{1}{(n+1+k)!} \le \frac{1}{(n+1)!} \frac{1}{(n+2)^k}$.
- 2. En déduire que pour tout m > n > 2, on a

$$|r_m - r_n| \le \frac{1}{(n+1)!} \left(1 + \frac{1}{n+2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(n+2)^{m-n-1}} \right).$$

- 3. En déduire que pour tout m > n > 2, on a : $|r_m r_n| \le \frac{1}{n}$. Indication : $\frac{n+2}{(n+1)^2} \le \frac{1}{2}$.
- 4. En déduire que la suite (r_n) est convergente.

Exercice 8

Soit (a_n) une suite décroissante de limite nulle. On définie les deux suites (U_n) et (V_n) par :

$$U_n = \sum_{k=1}^{2n+1} (-1)^k a_k \text{ et } V_n = U_n + a_{2n+1}, (n \in \mathbb{N}^*).$$

- 1. Montrer que les suites (U_n) et (V_n) sont adjacentes.
- 2. Application : étudier la convergence de la suite $S_n = \sum_{k=1}^n \frac{(-1)^k}{k^{\alpha}}$, où $\alpha \in]0, +\infty[$. Indication : Poser $U_n = S_{2n+1}$ et $V_n = S_{2n}$.

Exercice 9

Soit n dans \mathbb{N}^* . On considère la suite $(u_n)_{n\geq 1}$ définie par $u_n=\sum\limits_{k=1}^n\frac{1}{k}$.

- 1. Montrer que $(u_n)_{n\geq 1}$ est croissante.
- 2. Montrer que $(u_n)_{n\geq 1}$ n'est pas une suite de Cauchy.
- 3. Déduire que $\lim u_n = +\infty$.