| UNIVERSITY NEW ZEALAND  NEW ZEALAND | Student's full name: |               |
|-------------------------------------|----------------------|---------------|
| DATA STRUCTURES                     | FINAL EXA            | MINATION      |
| Date: 20 April, 2021                |                      |               |
| Duration: 120 minutes               | Invigilator 1        | Invigilator 2 |

- Writing test consists of 6 PAGES (Answer Sheet included).
- Students are required to use provided <u>blue-color</u> pens to write responses.
- Learning materials, dictionaries and any kinds of electronic devices are **NOT** allowed during the test time.



| CMUS Studer    | nt ID:    |
|----------------|-----------|
| udent's class: | •••••     |
| Result         | Examiners |

ANSWER SHEET

FINAL EXAMINATION

Given list A of integer numbers below:

22, 1, 13, 11, 24, 33, 18, 42, 31, 32

## **Question 1. BINARY SEARCH TREE**

Consider a balanced binary search tree AVL.

| a. | (1 point) | Draw | the | AVL | tree | step-b | y-step | with | the | keys | from | list | A | above | in | the | exact |
|----|-----------|------|-----|-----|------|--------|--------|------|-----|------|------|------|---|-------|----|-----|-------|
|    | order:    |      |     |     |      |        |        |      |     |      |      |      |   |       |    |     |       |

| b. | (0.5 point) What is the post-order traversal (Ll       | <b>RN</b> ) result of the tree in question 1a?      |
|----|--------------------------------------------------------|-----------------------------------------------------|
|    |                                                        |                                                     |
|    |                                                        |                                                     |
|    | (0.5 point) From the tree in question 1a, delete tree? | the node with key <b>24</b> . What is the resulting |
|    | Notice: if you delete a two-child node, the repl       | lacing node is the node with the biggest key        |
|    | of the subtree to the left.                            |                                                     |
|    |                                                        |                                                     |
|    |                                                        |                                                     |
|    |                                                        |                                                     |
|    |                                                        |                                                     |
|    |                                                        |                                                     |
| d. | (0.75 point) Write a function that prints the k        | keys of the leaf nodes that contain an even         |
|    | value.                                                 |                                                     |
|    |                                                        |                                                     |
|    |                                                        |                                                     |
|    |                                                        |                                                     |
|    |                                                        |                                                     |
|    |                                                        |                                                     |
|    |                                                        |                                                     |
|    |                                                        |                                                     |
|    |                                                        |                                                     |

## **Question 2. SORTING ALGORITHMS**

a. (1 point) Indicate the result of MAX-HEAP creation from list A above.



b. (1 point) Demonstrate step-by-step the process of first partitioning list A above into 2 parts using Quick Sort algorithm for **descending sorting** with a **pivot element of 32**.

| STEP | 22 | 1 | 13 | 11 | 24 | 33 | 18 | 42 | 31 | 32 |
|------|----|---|----|----|----|----|----|----|----|----|
| 1    |    |   |    |    |    |    |    |    |    |    |
| 2    |    |   |    |    |    |    |    |    |    |    |
| 3    |    |   |    |    |    |    |    |    |    |    |
| 4    |    |   |    |    |    |    |    |    |    |    |
| 5    |    |   |    |    |    |    |    |    |    |    |

## **Question 3. HASH TABLE**

Initialize an empty hash table of m = 12 elements. Given a hash function  $h(k) = k \mod 12$ , provide the result of the hash table after adding keys from list A above in the exact order. In case of a collision, resolve by:

a. (1 point) Quadratic probing

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
|---|---|---|---|---|---|---|---|---|---|----|----|
|   |   |   |   |   |   |   |   |   |   |    |    |

b. (1 point) Double hashing with a second hash function  $h2(k) = [k \mod (m-2)] + 1$ 

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
|---|---|---|---|---|---|---|---|---|---|----|----|
|   |   |   |   |   |   |   |   |   |   |    |    |

## **Question 4. GRAPH**

Given a graph (G) below:



a. (1 point) List the edges of (G) in the exact order to be inserted into a minimum spanning tree using Prim's algorithm.

| # | Edge | Weight |
|---|------|--------|
| 1 |      |        |
| 2 |      |        |
| 3 |      |        |
| 4 |      |        |
| 5 |      |        |

| #  | Edge | Weight |
|----|------|--------|
| 6  |      |        |
| 7  |      |        |
| 8  |      |        |
| 9  |      |        |
| 10 |      |        |

b. (0.25 point) Draw the minimum spanning tree from the result of question 4a.



| gra | aph (G) a | bove usii | ng <b>Dijks</b> | tra's alg | orithm. |   |   |   |   |   |
|-----|-----------|-----------|-----------------|-----------|---------|---|---|---|---|---|
|     | a         | b         | c               | d         | e       | f | g | h | i | j |
| 1   |           |           |                 |           |         |   |   |   |   |   |
| 2   |           |           |                 |           |         |   |   |   |   |   |
| 3   |           |           |                 |           |         |   |   |   |   |   |
| 4   |           |           |                 |           |         |   |   |   |   |   |
| 5   |           |           |                 |           |         |   |   |   |   |   |
| 6   |           |           |                 |           |         |   |   |   |   |   |
| 7   |           |           |                 |           |         |   |   |   |   |   |
| 8   |           |           |                 |           |         |   |   |   |   |   |
| 9   |           |           |                 |           |         |   |   |   |   |   |
| 10  |           |           |                 |           |         |   |   |   |   |   |
| 11  |           |           |                 |           |         |   |   |   |   |   |
| 12  |           |           |                 |           |         |   |   |   |   |   |
|     |           |           |                 |           |         |   |   |   |   |   |

-The end-