2. ELEKTRINIŲ DYDŽIŲ MATAVIMAS IR MATAVIMO PAKLAIDOS

Lukas Šivickas, IFF-6/8 gr.

Data: 2017-03-29

Dėstytojas: lekt. Marius Kaminskas

- 1. Darbo užduotis. Išmokti įvertinti elektrinių dydžių matavimo sistemines paklaidas.
- 2. Teorinė dalis.
 - Darbe naudotos formulės:
 - a) Matavimo prietaiso vienos padalos vertė $n_0 = \frac{x_{rib}}{N}$.

 x_{rib} – ribinė vertė, N padalų skaičius.

- b) Išmatuoto dydžio skaitinė vertė $x = n_0 * n$.
 - n rodyklės rodomų padalų skaičius.
- c) Rodyklinio prietaiso absoliutinė sisteminė matavimo paklaida $\Delta x = \frac{r * x_{rlb}}{100}$.
 - r prietaiso tikslumo klasė.
 - x matuojamas dydis (U arba I).
- d) Skaitmenino prietaiso absoliutinė paklaida $\Delta x = \frac{P}{100\%} * x_{išmatuota} + Z * s$.
 - x matuojamas dydis (U arba I).
 - P procentais išreikštas prietaiso tikslumas.
 - Z jauniausios skilties vieneto vertė arba rezoliucija.
 - s prietaiso tikslumą apibūdinančių skaitmenų vertė.
- e) Santykinė paklaida $\delta x = \frac{\Delta x}{x}$.
 - x- matuojamas dydis (R arba I arba U).
 - Δx matuojamo dydžio absoliutinė paklaida.
- f) Omo dėsnis $I = \frac{U}{R}$.
 - I srovės stipris.
 - U srovės įtampa.
 - R varža.

3. Aparatūra ir darbo metodas.

- Darbe pateiktos 4 schemos. Kiekvienam variantui "išmatavę" srovės stiprį I bei įtampą U, apskaičiuojame rezistoriaus varžą R = U/I.
- Kiekvienam variantui įvertinę srovės stiprio bei įtampos nustatymo absoliutines paklaidas ΔI ir ΔU , apskaičiuojame santykines paklaidas $\Delta I/I$ bei $\Delta U/U$.
- Dydžio z = f(x, y) ribinės paklaidos formulė

$$\Delta z = \left| \frac{\partial f}{\partial x} \right| \Delta x + \left| \frac{\partial f}{\partial y} \right| \Delta y;$$

čia Δx ir Δy yra tiesiogiai matuojamų dydį ių x ir y paklaidos. Pagal šią formulę gauname varţ os R=U/I ribinės paklaidos formulę ir kiekvienam atvejui įvertiname $\Delta R/R$. Matavimų bei skaičiavimų rezultatus surašome lentelėje.

Nr.	I, A	U, V	R,Ω	Δ <i>I</i> , <i>A</i>	$\frac{\Delta I}{I}$	$\Delta U, \mathrm{V}$	$\frac{\Delta U}{U}$	$\frac{\Delta R}{R}$	ΔR , Ω

- Remdamiesi matavimo prietaisų tikslumo klase, analizuojame paklaidas $\Delta R/R$.
- Braižome rezistoriaus, su kuriuo "atlikome" matavimus, voltamperinę charakteristiką I = f (U).

4. Darbo rezultatai.

Mat. Nr.	Ampermetro padalos ribinė vertė	Ampermetro vienos padalos vertė	Voltmetro padalos ribinė vertė	Voltmetro vienos padalos vertė	
	x_{rib}	n_0	x_{rib}	n_0	
4.	150	1	10	0,1	

¹ lentelė: Ampermetro ir voltmetro padalos ribinės ir vienos padalos vertės.

Mat. Nr.	I,A	U,V	R,Ω	$\Delta I, A$	$\frac{\Delta I}{I}$	$\Delta U, V$	$\frac{\Delta U}{U}$	$\frac{\Delta R}{R}$	$\Delta R, \Omega$
1.	9.05*10 ⁻³	3.75	414.4	3*10 ⁻⁵	3.3*10 ⁻³	0.01	2.7*10 ⁻³	6.01*10 ⁻³	2.5
2.	2.62*10 ⁻²	10.8	412.2	2.6*10-4	9.9*10 ⁻³	0.01	9.3*10-4	0.01	4.12
3.	0.21	88	419.1	6.2*10-4	3*10-3	0.3	3.4*10 ⁻³	6.4*10-3	2.69
4.	0.1335	55	412	15*10-	1.1*10-3	0.5	9.1*10 ⁻³	0.02	8.24

² lentelė: Išmatuotos srovės stiprio ir įtampos vertės bei paskaičiuotos jų absoliutinės ir santykinės paklaidos.

1 grafikas. Rezistoriaus voltamperinė charakteristika I = f(U).

5. **Išvados.** Išmatuotos vertės ne visada yra tikslios, nes prietaisai nėra tobuli yra visada yra tam tikros paklaidos. Tas paklaidas galime apskaičiuoti pasinaudoję prietaiso tikslumą.

6. Literatūra:

- 1. Fizikinės mechanikos laboratoriniai darbai /V. Ilgūnas, K. V. Bernatonis, L. Augulis, S. Joneliūnas, S. Tamulevičius. Kaunas: Konspektas, 1988.
- 2. Tamašauskas A. Fizika 1. Vilnius: Mokslas, 1987.