Template of Manipulator Short project: Skull tumor surgery

Authors: Ana Siesto Pérez and Xavier Marti Llull

Team: G11-A

Shared Link with the teacher: https://drive.matlab.com/sharing/5ad6e326-a326-4433-8939-c068f5f932cd

Table of Contents

The Robotic environment (10%)	1
Operating table	1
Cube of reference	2
Creating the top of the table	3
Creating the table's legs	
Creating a representation of the human body	4
Creating a representation of the human skull	4
Creating a tools table	4
Transformations	5
Operating vertices	7
Plotting parts	
Reference frames	10
3D model of a human body	10
Fiducials	12
Dicom image vs Image Reference frame {I}	13
Fiducials wrt {I}	15
Tumor points wrt {I}	18
Fiducials and Tumor wrt Human Reference Frame	19
First approach (10%)	24
Robot manipulator	24
Reference Frames	26
Surgery (55%)	27
Biospy	28
Trepanation	30
Tumor burning	34
Second approach: (25%)	
Biospy	44
Trepanation	44
Tumor burning	45

The Robotic environment (10%)

Think that later on the environment will move to any place in a Univers Reference Frame {U}

Use: 'c = uisetcolor' to chose your prefered colors

Operating table

It can be raised, lowered, and tilted in any direction, and an auxiliary table for the tools. Define: Vertices and Faces and use 'patch' functions to model it. See help patch to find and example.

Think that later on the environment will move to any place in a Univers Reference Frame {U}

Expected results

Cube of reference

```
% In this section of code we represent the cube that we will use as reference to create all the
clear
close all
clf
v_cubo = [0 0 0; 1 0 0; 1 1 0; 0 1 0; 0 0 1; 1 0 1; 1 1 1; 0 1 1]
```

```
v_cubo = 8 \times 3
             0
                    0
      1
             0
                    0
      1
             1
                    0
      0
             1
                    0
      0
             0
                    1
      1
             0
                    1
      1
             1
                    1
```

```
f = [1 2 6 5; 2 3 7 6; 3 4 8 7; 4 1 5 8; 1 2 3 4; 5 6 7 8]
```

```
f = 6 \times 4
     1
             2
                    6
                           5
     2
             3
                    7
                           6
     3
             4
                    8
                           7
     4
             1
                    5
                           8
             2
                    3
     1
                           4
                    7
```

```
patch('Vertices', v_cubo, 'Faces', f, 'FaceVertexCData', hsv(6), 'FaceColor', 'black', 'FaceAlgoriew(30, 45)
axis equal
```

Creating the top of the table

```
% We create all the parts by scaling propperly the initial cube and then we represent
 % them separately
            % x
 H = 2
 H = 2
 W = 0.9
            % y
 W = 0.9000
 D = 0.08 \% z
 D = 0.0800
 v_tabla = [H 0 0;0 W 0;0 0 D]*v_cubo'
 v_{tabla} = 3 \times 8
              2.0000
                                     0
                                              0
                                                   2.0000
         0
                       2.0000
                                                            2.0000
         0
                  0
                       0.9000
                                 0.9000
                                              0
                                                       0
                                                            0.9000
                                                                     0.9000
                   0
                            0
                                          0.0800
                                                   0.0800
                                                            0.0800
                                                                     0.0800
 patch('Vertices',v_tabla(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','black','FaceA
 grid on
 xyzlabel
 axis equal
 view(3)
Creating the table's legs
 H = 0.1 \% x
 H = 0.1000
 W = 0.1 \% y
 W = 0.1000
 D = 0.8 \% z
 D = 0.8000
 v_pata = [H 0 0;0 W 0;0 0 D]*v_cubo'
 v_pata = 3 \times 8
         0
              0.1000
                       0.1000
                                     0
                                              0
                                                   0.1000
                                                            0.1000
                                                                          0
                       0.1000
         0
                   0
                                 0.1000
                                              0
                                                        0
                                                            0.1000
                                                                     0.1000
                                          0.8000
                                                   0.8000
                                                            0.8000
                                                                     0.8000
 figure
 patch('Vertices', v_pata(1:3,:)', 'Faces', f, 'FaceVertexCData', hsv(6), 'FaceColor', 'black', 'FaceAl
 view(3)
 xyzlabel
 axis equal
```

Creating a representation of the human body

```
H = 1.6 \% x
 H = 1.6000
 W = 0.6 \% y
 W = 0.6000
 D = 0.2 \% z
 D = 0.2000
 v_torso = [H 0 0;0 W 0;0 0 D]*v_cubo'
 v_torso = 3×8
         0
              1.6000
                       1.6000
                                    0
                                             0
                                                  1.6000
                                                           1.6000
                                0.6000
         0
                  0
                       0.6000
                                             0
                                                      0
                                                           0.6000
                                                                    0.6000
                                                                    0.2000
                                    0
                                         0.2000
                                                  0.2000
                                                           0.2000
 figure
 patch('Vertices',v_torso(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor',[0.95,0.87,0.7]
 view(3)
 xyzlabel
 axis equal
Creating a representation of the human skull
 H = 0.15 \% x
 H = 0.1500
 W = 0.20 \% y
 W = 0.2000
 D = 0.17 \% z
 D = 0.1700
 v_craneo = [H 0 0;0 W 0;0 0 D]*v_cubo'
 v_{craneo} = 3 \times 8
         0
            0.1500
                       0.1500
                                    0
                                             0
                                                  0.1500
                                                           0.1500
                                                                         0
         0
                0
                       0.2000
                                0.2000
                                             0
                                                      0
                                                           0.2000
                                                                    0.2000
                                                           0.1700
                  0
                                         0.1700
                                                  0.1700
                                                                    0.1700
 figure
 patch('Vertices',v_craneo(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor',[0.89,0.77,0.9]
 view(30,45)
 xyzlabel
 axis equal
```

Creating a tools table

```
H = 0.3
            % x
 H = 0.3000
 W = 0.3
            % y
 W = 0.3000
 D = 0.08
            % z
 D = 0.0800
 v_tablaherramientas = [H 0 0;0 W 0;0 0 D]*v_cubo'
 v_tablaherramientas = 3×8
          0
              0.3000
                       0.3000
                                     0
                                               0
                                                    0.3000
                                                             0.3000
                                                                           0
          0
                   0
                       0.3000
                                 0.3000
                                               0
                                                        0
                                                             0.3000
                                                                      0.3000
          0
                   0
                                                    0.0800
                            0
                                     0
                                          0.0800
                                                             0.0800
                                                                      0.0800
 figure
 patch('Vertices',v_tablaherramientas(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','b
 grid on
 xyzlabel
 axis equal
 view(3)
Transformations
 close all
 % We move the top of the table to (-0.3, -0.5, 0.8) and then we rotate the
 \% z axis 60^{\circ}. Then, we situate all the other elements in function of this and
 % take advantage of T_table_0 to represent them with respect to the origin.
 T_tabla_0 = transl(-0.3,-0.5,0.8)*trotz(pi/3) % IF YOU WANNA MOVE THE WHOLE SCENE CHANGE THIS
 T tabla 0 = 4 \times 4
     0.5000
            -0.8660
                            0
                                -0.3000
              0.5000
                                -0.5000
     0.8660
                            0
                       1.0000
         0
                   0
                                 0.8000
          0
                   0
                            0
                                 1.0000
 T_pata1_tabla = transl(0.05, 0.05, -0.8)
 T_pata1_tabla = 4 \times 4
     1.0000
                   0
                            0
                                 0.0500
              1.0000
          a
                            a
                                 0.0500
          а
                       1.0000
                                -0.8000
                   0
          0
                   0
                            0
                                 1.0000
 T_pata1_0 = T_tabla_0*T_pata1_tabla
 T pata1 0 = 4 \times 4
     0.5000
             -0.8660
                            0
                                -0.3183
     0.8660
              0.5000
                            0
                                -0.4317
         0
                   0
                       1.0000
                                     0
                   0
                                 1.0000
 T_pata2_tabla = transl(1.85, 0.05, -0.8)
```

```
T_pata2_tabla = 4 \times 4
    1.0000
                              0
                                   1.8500
         0
              1.0000
                              0
                                   0.0500
         0
                                  -0.8000
                   0
                         1.0000
         0
                    0
                                   1.0000
T_pata2_0 = T_tabla_0*T_pata2_tabla
T_pata2_0 = 4 \times 4
    0.5000
             -0.8660
                              0
                                   0.5817
    0.8660
              0.5000
                              0
                                   1.1271
         0
                   0
                         1.0000
         0
                    0
                                   1.0000
T_pata3_tabla = trans1(0.05, 0.75, -0.8)
T pata3 tabla = 4 \times 4
    1.0000
                              0
                                   0.0500
         0
              1.0000
                              0
                                   0.7500
                                  -0.8000
         0
                   0
                         1.0000
         0
                   0
                                   1.0000
T_pata3_0 = T_tabla_0*T_pata3_tabla
T_pata3_0 = 4 \times 4
    0.5000
             -0.8660
                              0
                                  -0.9245
    0.8660
              0.5000
                                  -0.0817
                              0
         0
                   0
                         1.0000
                                         0
         0
                    0
                              0
                                   1.0000
T_pata4_tabla = transl(1.85, 0.75, -0.8)
T_pata4_tabla = 4 \times 4
    1.0000
                              0
                                   1.8500
              1.0000
         0
                              0
                                   0.7500
         0
                   0
                         1.0000
                                  -0.8000
         0
                                   1.0000
T_pata4_0 = T_tabla_0*T_pata4_tabla
T_pata4_0 = 4 \times 4
    0.5000
             -0.8660
                                  -0.0245
    0.8660
              0.5000
                              0
                                   1.4771
         0
                    0
                         1.0000
         0
                    0
                                   1.0000
T_{torso_tabla} = transl(0.4, 0.15, 0.08)
T_{torso_{tabla} = 4 \times 4}
    1.0000
                                   0.4000
                    0
                              0
              1.0000
         0
                              0
                                   0.1500
         0
                    0
                         1.0000
                                   0.0800
         0
                                   1.0000
                    0
T_torso_0 = T_tabla_0*T_torso_tabla
T_{torso_0} = 4 \times 4
    0.5000
             -0.8660
                              0
                                  -0.2299
    0.8660
              0.5000
                                  -0.0786
                              0
         0
                   0
                         1.0000
                                   0.8800
         0
                    0
                                   1.0000
```

```
T_{craneo_tabla} = transl(2.1,0.35,0.08)
 T_craneo_tabla = 4 \times 4
     1.0000
                             0
                                  2.1000
          0
               1.0000
                             0
                                  0.3500
          0
                   0
                        1.0000
                                  0.0800
          0
                   0
                             0
                                  1.0000
 T_craneo_0 = T_tabla_0*T_craneo_tabla
 T_craneo_0 = 4 \times 4
     0.5000
              -0.8660
                             0
                                  0.4469
     0.8660
               0.5000
                             0
                                  1.4937
          0
                    0
                        1.0000
                                  0.8800
          0
                    0
                                  1.0000
 T_tablaherramientas_tabla = trans1(2.5,-0.5,0)
 T_tablaherramientas_tabla = 4x4
     1.0000
                             0
                   0
                                  2.5000
               1.0000
          0
                             0
                                 -0.5000
          0
                    0
                        1.0000
                                       0
          0
                                  1.0000
 T_tablaherramientas_0 = T_tabla_0*T_tablaherramientas_tabla
 T_{tablaherramientas_0} = 4 \times 4
     0.5000
              -0.8660
                             0
                                  1.3830
                                  1.4151
     0.8660
               0.5000
                             0
                        1.0000
                   0
                                  0.8000
          0
          0
                    0
                                  1.0000
                             0
 T pataherramientas tablaherramientas = transl(0.1,0.1,-0.8)
 T_pataherramientas_tablaherramientas = 4×4
     1.0000
                   0
                             0
                                  0.1000
               1.0000
          0
                             0
                                  0.1000
          0
                   0
                        1.0000
                                 -0.8000
          0
                    0
                             0
                                  1.0000
 T_pataherramientas_0 = T_tablaherramientas_0*T_pataherramientas_tablaherramientas
 T_pataherramientas_0 = 4 \times 4
     0.5000
              -0.8660
                             0
                                  1.3464
     0.8660
               0.5000
                             0
                                  1.5517
          0
                   0
                        1.0000
          0
                                  1.0000
Operating vertices
 % It's time to transform the vertexs of every part so they will be
 % represented where corresponds. We also agroupate the different sets of
 % vertices in a general vector so if we have to move the whole scene it
```

```
v_tabla = 4 \times 8
               2.0000
                          2.0000
                                                            2.0000
                                           0
                                                       0
                                                                        2.0000
          0
                                                                                        0
          0
                          0.9000
                                      0.9000
                                                       0
                                                                                   0.9000
                     0
                                                                        0.9000
                                                                  0
          0
                     0
                                0
                                                 0.0800
                                                                        0.0800
                                                                                   0.0800
                                                            0.0800
```

% will be more practical

 $v_{tabla}(4,:) = 1$

1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
v_tabla_0	= T_tabl	 La_0*v_ta	bla					
+-1-1- 0	40							
v_tabla_0 =		0.0704	1 0704	0. 2000	0.7000	0.0704	1 0704	
-0.3000	0.7000	-0.0794	-1.0794	-0.3000	0.7000	-0.0794	-1.0794	
-0.5000	1.2321	1.6821	-0.0500	-0.5000	1.2321	1.6821	-0.0500	
0.8000	0.8000	0.8000	0.8000	0.8800	0.8800	0.8800	0.8800	
1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
v_pata(4,:) = 1							
v_pata = 4×8	}							
	0.1000	0.1000	0	0	0.1000	0.1000	0	
0	0	0.1000	0.1000	0	0	0.1000	0.1000	
0	0	0	0	0.8000	0.8000	0.8000	0.8000	
1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
v_pata1_0	= T_pata	a1_0*v_pa	ta					
v_pata1_0 =	4×8							
-0.3183	-0.2683	-0.3549	-0.4049	-0.3183	-0.2683	-0.3549	-0.4049	
-0.4317	-0.3451	-0.2951	-0.3817	-0.4317	-0.3451	-0.2951	-0.3817	
0	0	0	0	0.8000	0.8000	0.8000	0.8000	
1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
v_pata2_0	= T_pata	a2_0*v_pa	ta					
v_pata2_0 =	4×8							
0.5817	0.6317	0.5451	0.4951	0.5817	0.6317	0.5451	0.4951	
1.1271	1.2137	1.2637	1.1771	1.1271	1.2137	1.2637	1.1771	
0	0	0	0	0.8000	0.8000	0.8000	0.8000	
1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
v_pata3_0	- T nata	3 0*v na	ıt a					
v_paca5_0	- 1_paca	12_6 . v_be	ıca					
v_pata3_0 =								
-0.9245	-0.8745	-0.9611	-1.0111	-0.9245	-0.8745	-0.9611	-1.0111	
-0.0817	0.0049	0.0549	-0.0317	-0.0817	0.0049	0.0549	-0.0317	
0	0	0	0	0.8000	0.8000	0.8000	0.8000	
1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
v_pata4_0	= T_pata	a4_0*v_pa	ta					
v_pata4_0 =	4×8							
-0.0245	0.0255	-0.0611	-0.1111	-0.0245	0.0255	-0.0611	-0.1111	
1.4771	1.5637	1.6137	1.5271	1.4771	1.5637	1.6137	1.5271	
0	1.3037	0	0	0.8000	0.8000	0.8000	0.8000	
1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
				1.0000	1.0000	1.0000	1.0000	
v_tablaher	ramienta	as(4,:) =	: 1					
v_tablaherra								
0	0.3000	0.3000	0	0	0.3000	0.3000	0	
0	0	0.3000	0.3000	0	0	0.3000	0.3000	
0	0	0	0	0.0800	0.0800	0.0800	0.0800	
1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
v_tablaher	ramienta	as_0 = T_	tablaher	ramienta	s_0*v_tal	blaherram	nientas	

 $v_{tablaherramientas_0} = 4 \times 8$

```
1.2732
    1.3830
               1.5330
                         1.2732
                                    1.1232
                                               1.3830
                                                          1.5330
                                                                               1.1232
    1.4151
               1.6749
                         1.8249
                                               1.4151
                                                          1.6749
                                                                     1.8249
                                                                               1.5651
                                    1.5651
    0.8000
               0.8000
                         0.8000
                                    0.8000
                                               0.8800
                                                          0.8800
                                                                     0.8800
                                                                               0.8800
    1.0000
               1.0000
                         1.0000
                                    1.0000
                                               1.0000
                                                          1.0000
                                                                     1.0000
                                                                               1.0000
v_pataherramientas_0 = T_pataherramientas_0*v_pata
v_pataherramientas_0 = 4x8
    1.3464
               1.3964
                         1.3098
                                    1.2598
                                               1.3464
                                                          1.3964
                                                                     1.3098
                                                                               1.2598
    1.5517
               1.6383
                                                                     1.6883
                         1.6883
                                    1.6017
                                               1.5517
                                                          1.6383
                                                                               1,6017
                                               0.8000
                                                          0.8000
                                                                     0.8000
                                                                               0.8000
    1.0000
               1.0000
                         1.0000
                                    1.0000
                                               1.0000
                                                          1.0000
                                                                     1.0000
                                                                               1.0000
v_{torso}(4,:) = 1
v_{torso} = 4 \times 8
               1.6000
                         1.6000
         0
                                         0
                                                    0
                                                          1.6000
                                                                     1.6000
                                                                                    0
         0
                    0
                         0.6000
                                    0.6000
                                                    0
                                                                     0.6000
                                                                               0.6000
                                                               0
         0
                    0
                                                          0.2000
                                                                     0.2000
                                                                               0.2000
                               0
                                         0
                                               0.2000
    1.0000
               1.0000
                         1.0000
                                    1.0000
                                               1.0000
                                                          1.0000
                                                                     1.0000
                                                                               1.0000
v_torso_0 = T_torso_0*v_torso
v_{torso_0} = 4 \times 8
   -0.2299
               0.5701
                         0.0505
                                   -0.7495
                                              -0.2299
                                                          0.5701
                                                                     0.0505
                                                                              -0.7495
                                              -0.0786
                                                                               0.2214
   -0.0786
               1.3071
                         1.6071
                                    0.2214
                                                          1.3071
                                                                     1.6071
    0.8800
               0.8800
                         0.8800
                                    0.8800
                                               1.0800
                                                          1.0800
                                                                     1.0800
                                                                               1.0800
    1.0000
               1.0000
                         1.0000
                                    1.0000
                                               1.0000
                                                          1.0000
                                                                     1.0000
                                                                               1.0000
v_{craneo}(4,:) = 1
v craneo = 4 \times 8
               0.1500
                                                          0.1500
         0
                         0.1500
                                         0
                                                    0
                                                                     0.1500
                                                                                    0
         0
                    0
                         0.2000
                                    0.2000
                                                    0
                                                               0
                                                                     0.2000
                                                                               0.2000
         0
                    0
                                               0.1700
                                                          0.1700
                                                                     0.1700
                                                                               0.1700
    1.0000
               1.0000
                         1.0000
                                    1.0000
                                               1.0000
                                                          1.0000
                                                                     1.0000
                                                                               1.0000
v_craneo_0 = T_craneo_0*v_craneo
v_craneo_0 = 4 \times 8
    0.4469
               0.5219
                         0.3487
                                    0.2737
                                               0.4469
                                                          0.5219
                                                                     0.3487
                                                                               0.2737
    1.4937
               1.6236
                         1.7236
                                    1.5937
                                               1.4937
                                                          1.6236
                                                                     1.7236
                                                                               1.5937
    0.8800
               0.8800
                         0.8800
                                    0.8800
                                               1.0500
                                                          1.0500
                                                                     1.0500
                                                                               1.0500
    1.0000
               1.0000
                         1.0000
                                    1.0000
                                               1.0000
                                                          1.0000
                                                                     1.0000
                                                                               1.0000
```

Plotting parts

```
% Finally we plot the whole scene and the reference frames of the principal
% objects
figure
hold on
patch('Vertices',v_tabla_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','black',
patch('Vertices',v_pata1_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','black',
patch('Vertices',v_pata2_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','black',
patch('Vertices',v_pata3_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','black',
patch('Vertices',v_pata4_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','black',
patch('Vertices',v_tablaherramientas_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor',
patch('Vertices',v_pataherramientas_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','Datch('Vertices',v_torso_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','Datch('Vertices',v_torso_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','Datch('Vertices',v_torso_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','Datch('Vertices',v_torso_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','Datch('Vertices',v_torso_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','Datch('Vertices',v_torso_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','Datch('Vertices',v_torso_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','Datch('Vertices',v_torso_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','Datch('Vertices',v_torso_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','Datch('Vertices',v_torso_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','Datch('Vertices',v_torso_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','Datch('Vertices',v_torso_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','Datch('Vertices',v_torso_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','Datch('Vertices',v_torso_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','Datch('Vertices',v_torso_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','Datch('Vertices',v_torso_0(1:3,:)','Faces',f,'FaceV
```

```
patch('Vertices',v_craneo_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor',[0.89,0.77,0]
view(30,45)
grid on
xyzlabel
axis equal
axis([-2.5 2.5 -1.5 3.5 0.0 3.5])
```

Reference frames

```
trplot(T_tabla_0,'frame','T' ,'color', 'red','arrow','width',0.4)
trplot(T_torso_0,'frame','H' ,'color', 'red','arrow','width',0.4)
trplot(T_tablaherramientas_0,'frame','t','color','red','arrow','width',0.4)
trplot(T_craneo_0*transl(0.15,0,0.17)*trotz(pi/2)*trotx(-pi/2),'frame','S','color','red','arrow'
```


3D model of a human body

Situate the human model on the operating table.

Expected results


```
close all
% We load the human model to plot it together with the other elements
Human = load('F_V_HumanBody.mat')

Human = struct with fields:
    Fh: [48918×3 double]
    Vh: [24461×3 double]
```

```
v_humano = Human.Vh'
```

```
v_humano = 3 \times 24461
   -0.1143
              -0.1268
                         -0.1191
                                    -0.1107
                                               -0.1146
                                                          -0.1083
                                                                      -0.1237
                                                                                 -0.1162 ...
    0.1432
               0.1385
                          0.1450
                                     0.1474
                                                0.1484
                                                           0.1504
                                                                      0.1452
                                                                                  0.1491
    1.3110
               1.3149
                          1.3238
                                     1.3206
                                                 1.3289
                                                            1.3286
                                                                       1.3305
                                                                                  1.3344
```

```
v_humano(4,:) = 1
```

```
v_humano = 4 \times 24461
   -0.1143
              -0.1268
                         -0.1191
                                    -0.1107
                                               -0.1146
                                                          -0.1083
                                                                    -0.1237
                                                                               -0.1162 ...
    0.1432
               0.1385
                          0.1450
                                    0.1474
                                               0.1484
                                                           0.1504
                                                                     0.1452
                                                                                0.1491
    1.3110
               1.3149
                          1.3238
                                    1.3206
                                                1.3289
                                                           1.3286
                                                                     1.3305
                                                                                1.3344
    1.0000
               1.0000
                                     1.0000
                          1.0000
                                                1.0000
                                                           1.0000
                                                                     1.0000
                                                                                1.0000
```

```
T_humano_tabla = transl(0.45,0.45,0.205)*trotx(-pi/2)*troty(pi/2)
```

```
T_humano_tabla = 4 \times 4
          0
                      0
                            1.0000
                                       0.4500
   -1.0000
                      0
                                       0.4500
                                 0
               -1.0000
                                 0
                                       0.2050
          0
          0
                                  0
                                        1.0000
```

T_humano_0 = T_tabla_0*T_humano_tabla

```
v_humano_0 = T_humano_0*v_humano
```

 $v_humano_0 = 4 \times 24461$

```
0.0917
          0.0829
                     0.0940
                               0.0997
                                          0.1005
                                                    0.1058
                                                               0.0934
                                                                         0.1019 ...
1.3072
          1.3168
                     1.3207
                               1.3138
                                          1.3229
                                                    1.3195
                                                               1.3288
                                                                          1.3285
0.8618
          0.8665
                     0.8600
                               0.8576
                                          0.8566
                                                    0.8546
                                                               0.8598
                                                                         0.8559
1.0000
          1.0000
                     1.0000
                               1.0000
                                          1.0000
                                                     1.0000
                                                               1.0000
                                                                          1.0000
```

```
figure
hold on
patch('Vertices',v_tabla_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','black','Face
patch('Vertices',v_pata1_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','black','Face
patch('Vertices',v_pata2_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','black','Face
patch('Vertices',v_pata3_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','black','Face
patch('Vertices',v_pata4_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor',
patch('Vertices',v_tablaherramientas_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor',
patch('Vertices',v_pataherramientas_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','patch('Vertices',v_humano_0(1:3,:)','Faces',Human.Fh,'FaceVertexCData',hsv(6),'FaceColor','patch('Vertices',v_humano_0(1:3,:)','Faces',Human.Fh,'FaceVertexCData',hsv(6),'FaceColor','patch('Vertices',v_humano_0(1:3,:)','Faces',Human.Fh,'FaceVertexCData',hsv(6),'FaceColor','patch('Vertices',v_humano_0(1:3,:)','Faces',Human.Fh,'FaceVertexCData',hsv(6),'FaceColor','patch('Vertices',v_humano_0(1:3,:)','Faces',Human.Fh,'FaceVertexCData',hsv(6),'FaceColor','patch('Vertices',v_humano_0(1:3,:)','Faces',Human.Fh,'FaceVertexCData',hsv(6),'FaceColor','patch('Vertices',v_humano_0(1:3,:)','Faces',Human.Fh,'FaceVertexCData',hsv(6),'FaceColor','patch('Vertices',v_humano_0(1:3,:)','Faces',Human.Fh,'FaceVertexCData',hsv(6),'FaceColor','patch('Vertices',v_humano_0(1:3,:)','Faces',Human.Fh,'FaceVertexCData',hsv(6),'FaceColor','patch('Vertices',v_humano_0(1:3,:)','Faces',Human.Fh,'FaceVertexCData',hsv(6),'FaceColor','patch('Vertices',v_humano_0(1:3,:)','Faces',Human.Fh,'FaceVertexCData',hsv(6),'FaceColor','patch('Vertices',v_humano_0(1:3,:)','Faces',Human.Fh,'FaceVertexCData',hsv(6),'FaceColor','patch('Vertices',v_humano_0(1:3,:)','Faces',Human.Fh,'FaceVertexCData',hsv(6),'FaceColor','patch('Vertices',v_humano_0(1:3,:)','Faces',Humano_0(1:3,:)','Faces',Humano_0(1:3,:)','Faces',Humano_0(1:3,:)','Faces',Humano_0(1:3,:)','Faces',Humano_0(1:3,:)','Faces',Humano_0(1:3,:)','Faces
```


Fiducials

The Radiology Department before to take a Computer Tomography (CT) of the brain, fix three fiducials in the head of the patient for registering purpose, visit: https://en.wikipedia.org/wiki/Fiducial

Dicom image vs Image Reference frame {I}

Get familiar with Dicom Images, Visit: https://www.imaios.com/en/Imaios-Dicom-Viewer#!

Use a container Box of the skull to infer the Image Reference Frame {I}

See: 6_Plot_Box_Cone.mlx and 7_Help_Image_RF_Containig_Box.fig to inspire yourselt

Expected results

close all

% We represent an scaled box with we can work with together with dicomm image's

% coordinates and load an skull to place it in, and then we rotate them to

% place them as they will be placed in the surgery

H = 2.55

H = 2.5500

W = 2.55

```
W = 2.5500
D = 1.568
D = 1.5680
v_contenedor = [H 0 0; 0 W 0; 0 0 D]*v_cubo'
v_contenedor = 3 \times 8
              2.5500
                        2.5500
                                                        2.5500
                                                                  2.5500
         0
                                        0
                                                  0
         0
                   0
                        2.5500
                                   2.5500
                                                  0
                                                                  2.5500
                                                                            2.5500
                                                            0
         0
                   0
                             0
                                             1.5680
                                                       1.5680
                                                                  1.5680
                                                                            1.5680
                                        0
Skull = load("F_V_Skull.mat")
Skull = struct with fields:
    Fs: [80016×3 double]
    Vs: [40062×3 double]
H = 9.7
H = 9.7000
W = 9.7
W = 9.7000
D = 9.7
D = 9.7000
v_craneo = [H 0 0; 0 W 0; 0 0 D]*Skull.Vs'
v craneo = 3 \times 40062
                                            -0.0634
                                                      -0.0615
                                                                           -0.0890 ...
   -0.1231
             -0.0939
                       -0.0913
                                  -0.1202
                                                                 -0.0596
                                                      -1.1242
   -1.1068
             -1.1194
                                  -1.1024
                                            -1.1296
                                                                           -1.1079
                        -1.1144
                                                                 -1.1172
              0.0799
    0.0821
                        0.1070
                                   0.1085
                                             0.0775
                                                       0.1049
                                                                  0.1359
                                                                            0.1378
v_{craneo}(4,:) = 1
v_craneo = 4 \times 40062
   -0.1231
             -0.0939
                        -0.0913
                                  -0.1202
                                            -0.0634
                                                      -0.0615
                                                                 -0.0596
                                                                           -0.0890 ...
             -1.1194
                       -1.1144
                                  -1.1024
   -1.1068
                                            -1.1296
                                                      -1.1242
                                                                 -1.1172
                                                                           -1.1079
    0.0821
              0.0799
                        0.1070
                                   0.1085
                                             0.0775
                                                       0.1049
                                                                  0.1359
                                                                            0.1378
    1.0000
              1.0000
                        1.0000
                                   1.0000
                                             1.0000
                                                       1.0000
                                                                  1.0000
                                                                            1.0000
T_{craneo\_contenedor} = transl(1.25, 1.3, -0.50)
T craneo contenedor = 4 \times 4
    1.0000
                             0
                                   1.2500
         0
              1.0000
                             0
                                   1.3000
         0
                   0
                        1.0000
                                  -0.5000
         0
                   0
                                   1.0000
v_craneo_0 = T_craneo_contenedor*v_craneo
```

```
v_craneo_0 = 4 \times 40062
    1.1269
              1.1561
                         1.1587
                                    1.1298
                                               1.1866
                                                         1.1885
                                                                    1.1904
                                                                               1.1610 ...
    0.1932
              0.1806
                         0.1856
                                    0.1976
                                               0.1704
                                                          0.1758
                                                                    0.1828
                                                                               0.1921
   -0.4179
             -0.4201
                        -0.3930
                                   -0.3915
                                              -0.4225
                                                         -0.3951
                                                                   -0.3641
                                                                              -0.3622
```

```
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
```

```
figure
hold on
patch('Vertices', v_contenedor(1:3,:)', 'Faces', f, 'FaceVertexCData', hsv(6), 'FaceColor', [0
patch('Vertices',v_craneo_0(1:3,:)','Faces',Skull.Fs,'FaceVertexCData',hsv(6),'FaceColor', [0.5
view(30, 45)
grid on
axis equal
axis([-1.0 4.0 -1.0 3.0 -1.0 4.0])
T_contenedor_0 = transl(3,-0.2,2)*trotz(pi)*trotx(pi)
```

```
T_contenedor_0 = 4×4
-1.0000 0 0 3.0000
0 1.0000 0 -0.2000
0 0 -1.0000 2.0000
0 0 1.0000
```

```
trplot(T_contenedor_0,'frame','I','color', 'r','arrow','width',0.4)
```


Fiducials wrt {I}

Use the Dicom images to place the fiducial relative to Image Reference Frame {I}.

See: 5_Skull_pose_estimation.mlx and use the skull to make the exercise.

Expected results


```
close all
```

v_contenedor(4,:) = 1

```
v_{contenedor} = 4 \times 8
               2.5500
                                                            2.5500
         0
                          2.5500
                                           0
                                                      0
                                                                       2.5500
          0
                          2.5500
                                     2.5500
                                                                       2.5500
                                                                                  2.5500
                    0
                                                      0
         0
                                                 1.5680
                                                            1.5680
                                                                       1.5680
                                                                                  1.5680
    1.0000
               1.0000
                          1.0000
                                     1.0000
                                                 1.0000
                                                            1.0000
                                                                       1.0000
                                                                                  1.0000
```

T_contenedor_0 = trotx(-pi/2)

```
T_contenedor_0 = 4×4

1 0 0 0

0 0 1 0

0 -1 0 0

0 0 1
```

v_contenedor_0 = T_contenedor_0 * v_contenedor

```
v_contenedor_0 = 4 \times 8
              2.5500
                                                         2.5500
                                                                    2.5500
         0
                         2.5500
                                         0
                                                   0
                                                                                    0
                                                                              1.5680
         0
                   0
                                         0
                                              1.5680
                                                         1.5680
                                                                    1.5680
                             0
         0
                   0
                        -2.5500
                                   -2.5500
                                                              0
                                                                   -2.5500
                                                                              -2.5500
    1.0000
              1.0000
                         1.0000
                                    1.0000
                                              1.0000
                                                         1.0000
                                                                    1.0000
                                                                              1.0000
```

T_craneo_contenedor = transl(1.25,1.35,-0.50)

```
T_{craneo\_contenedor} = 4 \times 4
    1.0000
                                 0
                                       1.2500
                     0
          0
                1.0000
                                 0
                                       1.3500
          0
                      0
                            1.0000
                                      -0.5000
          0
                      0
                                       1.0000
```

T_craneo_0 = T_contenedor_0 * T_craneo_contenedor

```
T_craneo_0 = 4×4
1.0000 0 0 1.2500
0 0 1.0000 -0.5000
0 -1.0000 0 -1.3500
0 0 0 1.0000
```

```
v_craneo_0 = T_craneo_0*v_craneo
v_craneo_0 = 4 \times 40062
                                                               1.1610 ...
   1.1269
          1.1561
                   1.1587
                             1.1298
                                     1.1866
                                              1.1885
                                                       1.1904
  -0.4179
          -0.4201
                  -0.3930 -0.3915
                                   -0.4225
                                             -0.3951 -0.3641
                                                              -0.3622
  -0.2432 -0.2306
                  -0.2356 -0.2476
                                    -0.2204
                                             -0.2258 -0.2328
                                                               -0.2421
   1.0000
          1.0000
                   1.0000
                           1.0000
                                      1.0000
                                              1.0000
                                                       1.0000
                                                               1.0000
% We move the fiducials to the coordinates that we have analyzed in the
% dicomm images
triangulo_fiducials = [2.55-1.22 1.568-0.252 -0.62; 2.55-0.7 1.568-1.12 -2.14; 2.55-1.86 1.568
triangulo_fiducials = 3×3
                   -0.6200
   1.3300
          1.3160
   1.8500
            0.4480
                  -2.1400
   0.6900
            0.9100
                  -2.1000
caras_triangulo_fiducials = [1 2 3]
caras triangulo fiducials = 1×3
         2
[X,Y,Z] = sphere;
r=0.08
r = 0.0800
figure
hold on
surf(X*r+2.55-1.22,Y*r+1.568-0.252,Z*r-0.62,'FaceColor',[1 0 0])
surf(X*r+2.55-0.70,Y*r+1.568-1.12,Z*r-2.14,'FaceColor',[1 0 0])
surf(X*r+2.55-1.86,Y*r+1.568-0.658,Z*r-2.10,'FaceColor',[1 0 0])
patch('Vertices', v_contenedor_0(1:3,:)', 'Faces', f, 'FaceVertexCData', hsv(6), 'FaceColdr',
patch('Vertices', v_craneo_0(1:3,:)', 'Faces', Skull.Fs, 'FaceVertexCData', hsv(6), 'FaceColor', [0.5]
patch('Vertices',triangulo_fiducials,'Faces',caras_triangulo_fiducials,'FaceColor', [1 0 0], '
view(30, 45)
grid on
axis equal
axis([-2.0 4.0 -2.0 3.0 -4.0 4.0])
```


Tumor points wrt {I}

Use the Dicom images to get the points of the outer perimeter of the tumor relative to Image Reference Frame {I}.

You can simplify the tumor information by defining the center of mass and estimate an equivalent diameter.

Expected results


```
close all
% We place the tumor in scale
r2 = 0.145
```

r2 = 0.1450

```
figure
hold on
surf(X*r+2.55-1.22,Y*r+1.568-0.252,Z*r-0.62,'FaceColor',[1 0 0])
surf(X*r+2.55-0.70,Y*r+1.568-1.12,Z*r-2.14,'FaceColor',[1 0 0])
surf(X*r+2.55-1.86,Y*r+1.568-0.658,Z*r-2.10,'FaceColor',[1 0 0])
surf(X*r2+2.55-1.32,Y*r2+1.568-0.49,Z*r2-0.97,'FaceColor',[1 0 0])
patch('Vertices', v_contenedor_0(1:3,:)', 'Faces', f, 'FaceVertexCData', hsv(6), 'FaceColor',
patch('Vertices',v_craneo_0(1:3,:)','Faces',Skull.Fs,'FaceVertexCData',hsv(6),'FaceColor',[0.5
patch('Vertices',triangulo_fiducials,'Faces',caras_triangulo_fiducials,'FaceColor', [1 0 0], 'I
view(30, 45)
grid on
axis equal
axis([-2.0 4.0 -2.0 3.0 -4.0 4.0])
```


Fiducials and Tumor wrt Human Reference Frame

Place fiducial and tumor in the head of the human. You will have to re-do the containing box secction.

Expected results


```
close all
```

% We translate what we have done before to our concrete case, using an % smaller scale. In addition, we plot a cone in parallel with the zy plane % of the table that goes from the center of the tumor to outside the skull H = 0.255

H = 0.2550

W = 0.255

W = 0.2550

D = 0.1568

D = 0.1568

v_contenedor = [H 0 0; 0 W 0; 0 0 D]*v_cubo'

 $v_{contenedor} = 3 \times 8$

0.2550 0.2550 0 0.2550 0 0 0.2550 0 0.2550 0 0.2550 0 0.2550 0.2550 0 0 0.1568 0.1568 0.1568 0.1568

v_contenedor(4,:) = 1

v_contenedor = 4×8

0.2550 0.2550 0 0.2550 0 0.2550 0 0.2550 0 0.2550 0 0.2550 0.2550 0 0.1568 0.1568 0.1568 0.1568 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

 $T_{contenedor_tabla} = transl(2.25, 0.3225, 0.33)*trotz(pi/2)*trotx(-pi/2)$

 $T_contenedor_tabla = 4 \times 4$

0 0 -1.0000 2.2500 1.0000 0 0 0.3225 0 -1.0000 0 0.3300 0 0 0 1.0000

```
T_contenedor_0 = T_tabla_0*T_contenedor_tabla
T_contenedor_0 = 4 \times 4
   -0.8660
                       -0.5000
                                  0.5457
   0.5000
                   0
                       -0.8660
                                  1.6098
        0
             -1.0000
                             0
                                  1.1300
         0
                   0
                             0
                                  1.0000
v_contenedor_0 = T_contenedor_0 * v_contenedor
v_contenedor_0 = 4 \times 8
   0.5457
              0.3249
                        0.3249
                                  0.5457
                                            0.4673
                                                      0.2465
                                                                 0.2465
                                                                           0.4673
    1.6098
              1.7373
                        1.7373
                                  1.6098
                                            1.4740
                                                      1.6015
                                                                 1.6015
                                                                           1.4740
    1.1300
              1.1300
                        0.8750
                                  0.8750
                                            1.1300
                                                       1.1300
                                                                 0.8750
                                                                           0.8750
    1.0000
              1.0000
                        1.0000
                                  1.0000
                                            1.0000
                                                       1.0000
                                                                 1.0000
                                                                           1.0000
T_fiducial1_contenedor = transl(0.122,0.064,0.0252)
T_fiducial1_contenedor = 4 \times 4
    1.0000
                             0
                   0
                                  0.1220
              1.0000
        0
                             0
                                  0.0640
         0
                   0
                        1.0000
                                  0.0252
         0
                                  1.0000
                   0
T_fiducial1_0 = T_contenedor_0 * T_fiducial1_contenedor
T_fiducial1_0 = 4 \times 4
   -0.8660
                       -0.5000
                                  0.4275
   0.5000
                       -0.8660
                                  1.6490
                   0
             -1.0000
        0
                             0
                                  1.0660
         0
                             0
                                  1.0000
T fiducial2 contenedor = transl(0.07,0.214,0.112)
T_fiducial2_contenedor = 4 \times 4
                             0
    1.0000
                   0
                                  0.0700
              1.0000
        0
                             0
                                  0.2140
         0
                   0
                        1.0000
                                  0.1120
         0
                   0
                                  1.0000
T_fiducial2_0 = T_contenedor_0 * T_fiducial2_contenedor
T_fiducial2_0 = 4x4
   -0.8660
                       -0.5000
                                  0.4291
   0.5000
                   0
                       -0.8660
                                  1.5478
        0
             -1.0000
                             0
                                  0.9160
         0
                             0
                                  1.0000
T_fiducial3_contenedor = transl(0.186,0.210,0.0658)
T_fiducial3_contenedor = 4 \times 4
    1.0000
                   0
                             0
                                  0.1860
         0
              1.0000
                             0
                                  0.2100
         0
                   0
                        1.0000
                                  0.0658
         0
                   0
                             0
                                  1.0000
T_fiducial3_0 = T_contenedor_0 * T_fiducial3_contenedor
T_fiducial3_0 = 4 \times 4
  -0.8660
                   0
                       -0.5000
                                  0.3517
   0.5000
                   0
                       -0.8660
                                  1.6458
```

```
0
             -1.0000
                             0
                                  0.9200
                                  1.0000
         0
                             0
T_{tumor_contenedor} = transl(0.132, 0.099, 0.050)
T_{tumor_{contenedor}} = 4 \times 4
    1.0000
                             0
                                  0.1320
              1.0000
         0
                             0
                                  0.0990
         0
                   0
                        1.0000
                                  0.0500
         0
                   0
                             0
                                   1.0000
T_tumor_0 = T_contenedor_0 * T_tumor_contenedor
T tumor 0 = 4 \times 4
                   0
                       -0.5000
   -0.8660
                                  0.4064
    0.5000
                   0
                       -0.8660
                                  1.6325
         0
             -1.0000
                             0
                                  1.0310
         0
                             0
                                  1.0000
                   0
Cono = load('F_V_Cone.mat')
Cono = struct with fields:
   fvc: [1x1 struct]
H = 0.01
H = 0.0100
W = 0.01
W = 0.0100
D = 0.0495
D = 0.0495
v_cono = [H 0 0; 0 W 0; 0 0 D]*Cono.fvc.vertices'
v\_cono = 3 \times 42
    0.0100
                   0
                        0.0095
                                       0
                                             0.0081
                                                            0
                                                                 0.0059
                                                                                 0 . . .
                        0.0031
                                             0.0059
                                                                  0.0081
         0
                   0
                                        0
                                                            0
                                                                                 0
              0.0495
                             0
                                  0.0495
                                                  0
                                                       0.0495
                                                                       0
                                                                            0.0495
v_{cono}(4,:) = 1
v cono = 4 \times 42
                                                                                 0 . . .
    0.0100
                   0
                        0.0095
                                        0
                                             0.0081
                                                            0
                                                                 0.0059
         0
                   0
                        0.0031
                                        0
                                             0.0059
                                                            0
                                                                  0.0081
                                                                                 0
         0
              0.0495
                             0
                                  0.0495
                                                  0
                                                       0.0495
                                                                       0
                                                                            0.0495
              1.0000
    1.0000
                                  1.0000
                                                       1.0000
                        1.0000
                                             1.0000
                                                                  1.0000
                                                                            1.0000
T_{cono} contenedor = transl(0.132,0.099,0.0)
T_{cono}=4 \times 4
    1.0000
                   0
                             0
                                  0.1320
         0
              1.0000
                             0
                                  0.0990
         0
                   0
                        1.0000
                                        0
         0
                   0
                             0
                                   1.0000
```

```
T_cono_0 = T_contenedor_0 * T_cono_contenedor
T_{cono}0 = 4 \times 4
  -0.8660
                 0
                    -0.5000
                              0.4314
   0.5000
                 0
                    -0.8660
                              1.6758
       0
           -1.0000
                          0
                              1.0310
       0
                          0
                              1.0000
v\_cono_0 = T\_cono_0 * v\_cono
v\_cono\_0 = 4 \times 42
   0.4227
            0.4066
                     0.4232
                              0.4066
                                       0.4244
                                                0.4066
                                                         0.4263
                                                                  0.4066 ...
   1.6808
            1.6329
                     1.6806
                              1.6329
                                       1.6799
                                                1.6329
                                                         1.6787
                                                                  1.6329
   1.0310
                     1.0279
            1.0310
                              1.0310
                                       1.0251
                                                1.0310
                                                         1.0229
                                                                  1.0310
   1.0000
            1.0000
                     1.0000
                              1.0000
                                       1.0000
                                                1.0000
                                                         1.0000
                                                                  1.0000
r = 0.008
r = 0.0080
r2 = 0.0145
r2 = 0.0145
figure
hold on
patch('Vertices',v_tabla_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','black','Face
patch('Vertices',v_pata1_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','black','Face
patch('Vertices',v_pata2_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','black','Face
patch('Vertices',v_pata3_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','black','Face
patch('Vertices',v_pata4_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','black','Face
patch('Vertices',v_tablaherramientas_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor',
patch('Vertices',v_pataherramientas_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColdr','
patch('Vertices', v_cono_0(1:3,:)', 'Faces', Cono.fvc.faces, 'FaceVertexCData', hsv(6), 'FaceColor',
patch('Vertices', v_humano_0(1:3,:)', 'Faces', Human.Fh, 'FaceVertexCData', hsv(6), 'FaceColor', [0.9]
```

surf(X*r+T_fiducial1_0(1,4),Y*r+T_fiducial1_0(2,4),Z*r+T_fiducial1_0(3,4),'FaceColor',[1 0 0],
surf(X*r+T_fiducial2_0(1,4),Y*r+T_fiducial2_0(2,4),Z*r+T_fiducial2_0(3,4),'FaceColor',[1 0 0],
surf(X*r+T_fiducial3_0(1,4),Y*r+T_fiducial3_0(2,4),Z*r+T_fiducial3_0(3,4),'FaceColor',[1 0 0],
surf(X*r2+T_tumor_0(1,4),Y*r2+T_tumor_0(2,4),Z*r2+T_tumor_0(3,4),'FaceColor',[1 0 0], 'EdgeColor'

view(30,45)
grid on
xyzlabel
axis equal

axis([-2.5 2.5 -1.5 3.5 0.0 3.5])

First approach (10%)

Asume that the ZX plane of the Robot is aligned with the plane of symmetry of the human body.

Robot manipulator

Consider the best position of manipulator to be nearby the operating table to warranty that the head is in the reachable work space. Use a Puma 560. Use p560.teach to play.

Use: p560.base & p560.tool to locate the Puma and add the tools.

Expected results


```
% Now we place a puma560 with respect to the table in a place that the head
% is reachable to do the surgery
mdl_puma560
% (11-12)^2 <= (x^2+y^2) <= (11+12)^2
T_p560_tabla = transl(3,0.45,0.08)*trotz(pi)</pre>
```

```
T_p560_tabla = 4×4

-1.0000 0 0 3.0000

0 -1.0000 0 0.4500

0 0 1.0000 0.0800

0 0 0 1.0000
```

```
T_p560_0 = T_tabla_0*T_p560_tabla
```

```
T_p560_0 = 4 \times 4
               0.8660
   -0.5000
                                0
                                      0.8103
   -0.8660
               -0.5000
                                      2.3231
                                0
                           1.0000
                                      0.8800
         0
                     0
          0
                     0
                                      1.0000
```

```
p560.base = T_p560_0
```

p560 =

Puma 560 [Unimation]:: 6 axis, RRRRRR, stdDH, slowRNE

- viscous friction; params of 8/95;

++ j	theta	d	a	 alpha	offset
++ 1 2 3 4 5 6	q1 q2 q3 q4 q5 q6	0,15005 0.4318 0.430 0			

base: t = (0.81, 2.32, 0.88), RPY/xyz = (-120, 0, 0) deg

p560.tool=transl(0.05,0,0.2)

p560 =

Puma 560 [Unimation]:: 6 axis, RRRRRR, stdDH, slowRNE

- viscous friction; params of 8/95;

++	4				
 j	theta	d	a	alpha	offset
++ 1 2 3 4	q1 q2 q3 q4	0.15005 0.4318	0	-1.5708 1.5708	0 0 0
5	q5	0	0	-1.5708	0
6 ++	q6 	0	0	0	0

base: t = (0.81, 2.32, 0.88), RPY/xyz = (-120, 0, 0) deg

tool: t = (0.05, 0, 0.2), RPY/xyz = (0, 0, 0) deg

```
p560.plot(qr, 'workspace', [-2.5 2.5 -1.5 3.5 0.0 3.5], 'scale', 0.5);
p560.teach('approach')
```


Reference Frames

Display all necessary reference frame. Use best scale to see it.

- {U} Univers [0 0 0]
- {R} Robot
- {I} Image
- {Tb} Table_body
- {Tt} Table tool
- {EE} End Efector
- others
- ...

trplot(T_contenedor_0,'frame','I' ,'color', 'r','arrow','width',0.4,'length',0.5)
trplot(transl(0,0,0),'frame','U','color','r','arrow','width',0.4,'length',0.5)
trplot(T_p560_0,'frame', 'R', 'color', 'r','arrow','width',0.4,'length',0.5)
trplot(T_tabla_0,'frame', 'T', 'color', 'r', 'arrow','width',0.4,'length',0.5)
trplot(T_tablaherramientas_0,'frame','t','color','r','arrow','width',0.4,'length',0.5)

Surgery (55%)

Biospy

Prepare a script that perform a biopsy. Zoom in the scene and record a video with the best view.

Use a tool that has the following Transformation: transl(0.05 0 0.25)

Let us see the 'trail' option of plot to visualize the trajectory.

```
close all
figure
hold on
patch('Vertices',v tabla 0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','black','Face
patch('Vertices',v_pata1_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','black','Face
patch('Vertices',v_pata2_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','black','Face
patch('Vertices',v_pata3_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','black','Face
patch('Vertices',v_pata4_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','black','Face
patch('Vertices',v_tablaherramientas_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor',
patch('Vertices',v_pataherramientas_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColdr','
patch('Vertices', v_humano_0(1:3,:)', 'Faces', Human.Fh, 'FaceVertexCData', hsv(6), 'FaceColor', [0.9]
surf(X*r+T_fiducial1_0(1,4),Y*r+T_fiducial1_0(2,4),Z*r+T_fiducial1_0(3,4),'FaceColor',[1 0 0],
surf(X*r+T fiducial2 0(1,4),Y*r+T fiducial2 0(2,4),Z*r+T fiducial2 0(3,4),'FaceColor',[1 0 0],
surf(X*r+T_fiducial3_0(1,4),Y*r+T_fiducial3_0(2,4),Z*r+T_fiducial3_0(3,4),'FaceColor',[1 0 0],
surf(X*r2+T_tumor_0(1,4),Y*r2+T_tumor_0(2,4),Z*r2+T_tumor_0(3,4),'FaceColor',[1 0 0], 'EdgeColor'
view(30,45)
grid on
xyzlabel
axis equal
axis([-2.5 2.5 -1.5 3.5 0.0 3.5])
% We set the appropriate tool to do the biopsy and then we set the frames
% that will divide our trajectories
p560.tool = transl(0.05,0,0.25)
```

```
p560 =
```

Puma 560 [Unimation]:: 6 axis, RRRRRR, stdDH, slowRNE - viscous friction; params of 8/95;

++		, , +			
j	theta	a	a	alpha	offset
1 1	q1	0	0	1.5708	0
2	q2	0	0.4318	0	0
3	q3	0.15005	0.0203	-1.5708	0
4	q4	0.4318	0	1.5708	0
5	q5	0	0	-1.5708	0
6	q6	0	0	0	0
++		+	+-	+	+

base: t = (0.81, 2.32, 0.88), RPY/xyz = (-120, 0, 0) degtool: t = (0.05, 0, 0.25), RPY/xyz = (0, 0, 0) deg

T1 = T_contenedor_0*(T_tumor_contenedor*transl(0.0,0.0,-0.3)*trotz(pi/2)) % From robot initial

```
T1 = 4 \times 4
                      -0.5000
        0
             0.8660
                                 0.5564
        0
            -0.5000
                      -0.8660
                                 1.8923
  -1.0000
                  0
                         0
                                 1.0310
                  0
                            0
                                 1.0000
T2 = T_contenedor_0*(T_tumor_contenedor*trotz(pi/2)) % From T1 final point to tumor
T2 = 4 \times 4
        0
             0.8660
                      -0.5000
                                 0.4064
        0
            -0.5000
                      -0.8660
                                 1.6325
   -1.0000
                           0
                                 1.0310
        0
                  0
                                 1.0000
T0 = p560.fkine(qr)
T0 =
  -0.5000
             0.8660
                            0
                                 0.6452
   -0.8660
            -0.5000
                            0
                                 2.337
                                  1.994
        0
                  0
                            1
        0
                  0
q_0 = p560.ikine6s(T0, 'run');
q_1 = p560.ikine6s(T1, 'run');
t_0 = linspace(0.0, 3.0, 30)
t_0 = 1 \times 30
             0.1034
                       0.2069
                                 0.3103
                                           0.4138
                                                     0.5172
                                                              0.6207
                                                                        0.7241 ...
Q_0 = jtraj(q_0,q_1,t_0); % For the first trajectory we follow an eliptic path
t_1 = linspace(0.0, 5.0, 50);
S = tpoly(0,1,t_1);
S(1) = 0
S = 50 \times 1
   0.0001
   0.0006
   0.0021
   0.0048
   0.0091
   0.0152
   0.0233
   0.0336
   0.0461
S(50) = 1
S = 50 \times 1
   0.0001
   0.0006
   0.0021
   0.0048
   0.0091
   0.0152
   0.0233
```

```
0.0336
0.0461
:
```


Trepanation

Prepare a script that perform trepanation. Zoom in the scene and record a video with the best view.

Use a tool that has the following Transformation: transl(0 0 0.2)

Let us see the 'trail' option of plot to visualize the trajectory. Place a 45° cone on top of the trepanation to better understand. See: 6 Plot Box Cone.mlx. You will have to scale it. Play with transparency.

```
close all

% We plot a cone in top of the skull forming 45 degrees with its
% longitudinal axis
Cono = load('F_V_Cone.mat')
```

Cono = struct with fields:

```
fvc: [1x1 struct]
H = 0.2
H = 0.2000
W = 0.2
W = 0.2000
D = 0.2
D = 0.2000
v_cono = [H 0 0; 0 W 0; 0 0 D]*Cono.fvc.vertices'
v_{cono} = 3 \times 42
                                                                                 0 . . .
    0.2000
                   0
                        0.1902
                                        0
                                             0.1618
                                                             0
                                                                  0.1176
                                             0.1176
                   0
                        0.0618
                                        0
                                                             0
                                                                  0.1618
                                                                                 a
         0
         0
              0.2000
                              0
                                   0.2000
                                                  0
                                                        0.2000
                                                                       0
                                                                            0.2000
v_{cono}(4,:) = 1
v\_cono = 4 \times 42
                                                                                 0 . . .
    0.2000
                        0.1902
                                             0.1618
                   0
                                        0
                                                                  0.1176
                                                             0
                                             0.1176
         0
                   0
                        0.0618
                                        0
                                                                  0.1618
                                                                                 0
                                                             0
         0
                                                                            0.2000
              0.2000
                              0
                                   0.2000
                                                  0
                                                        0.2000
                                                                       0
    1.0000
              1.0000
                         1.0000
                                   1.0000
                                             1.0000
                                                        1.0000
                                                                  1.0000
                                                                            1.0000
T_{cono} contenedor = transl(0.132,0.099,-0.2)
T_{cono}=4 \times 4
    1.0000
                              0
                                   0.1320
         0
              1.0000
                              0
                                   0.0990
                         1.0000
         0
                   0
                                  -0.2000
         0
                   0
                                   1.0000
T_cono_0 = T_contenedor_0 * T_cono_contenedor
T cono 0 = 4 \times 4
   -0.8660
                   0
                        -0.5000
                                   0.5314
    0.5000
                        -0.8660
                   0
                                   1.8490
         0
             -1.0000
                             0
                                   1.0310
         0
                   0
                              0
                                   1.0000
v\_cono\_0 = T\_cono\_0 * v\_cono
v_cono_0 = 4×42
    0.3582
              0.4314
                        0.3667
                                   0.4314
                                             0.3913
                                                       0.4314
                                                                  0.4296
                                                                            0.4314 ...
    1.9490
              1.6758
                        1.9441
                                   1.6758
                                             1.9299
                                                        1.6758
                                                                  1.9078
                                                                            1.6758
    1.0310
              1.0310
                        0.9692
                                   1.0310
                                             0.9134
                                                        1.0310
                                                                  0.8692
                                                                            1.0310
    1.0000
              1.0000
                        1.0000
                                   1.0000
                                             1.0000
                                                        1.0000
                                                                  1.0000
                                                                            1.0000
figure
```

patch('Vertices',v_tabla_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','black','Face
patch('Vertices',v_pata1_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','black','Face
patch('Vertices',v_pata2_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','black','FaceVertexCData',hsv(6),'FaceColor','black','FaceVertexCData',hsv(6),'FaceColor','black','black','blac

```
patch('Vertices',v_pata3_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','black','Face
patch('Vertices',v_pata4_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','black','Face
patch('Vertices', v_cono_0(1:3,:)', 'Faces', Cono.fvc.faces, 'FaceVertexCData', hsv(6), 'FaceColor',
patch('Vertices',v_tablaherramientas_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor',
patch('Vertices',v_pataherramientas_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColdr','
patch('Vertices', v_humano_0(1:3,:)', 'Faces', Human.Fh, 'FaceVertexCData', hsv(6), 'FaceColor', [0.9]
surf(X*r+T_fiducial1_0(1,4),Y*r+T_fiducial1_0(2,4),Z*r+T_fiducial1_0(3,4),'FaceColor',[1 0 0],
surf(X*r+T_fiducial2_0(1,4),Y*r+T_fiducial2_0(2,4),Z*r+T_fiducial2_0(3,4),'FaceColor',[1 0 0],
surf(X*r+T_fiducial3_0(1,4),Y*r+T_fiducial3_0(2,4),Z*r+T_fiducial3_0(3,4),'FaceColor',[1 0 0],
surf(X*r2+T tumor 0(1,4),Y*r2+T tumor 0(2,4),Z*r2+T tumor 0(3,4),FaceColor',[1 0 0],FedgeColor'
view(30,45)
grid on
xyzlabel
axis equal
axis([-2.5 2.5 -1.5 3.5 0.0 3.5])
% We set the appropriate tool to do the trepanation and then we set the frames
% that will divide our trajectories
p560.tool = transl(0.0,0,0.2)
```

p560 =

Puma 560 [Unimation]:: 6 axis, RRRRRR, stdDH, slowRNE
- viscous friction; params of 8/95;

++ j	theta	d	a	alpha	offset
1	q1	0	0	1.5708	0
2 3	q2 q3	0 0.15005	0.4318 0.0203	0 -1.5708	0 0
4	q4	0.4318	0 j 0 j	1.5708 -1.5708	0
6	q5 q6	0 0	0	-1.5708 0	0 0

base: t = (0.81, 2.32, 0.88), RPY/xyz = (-120, 0, 0) deg

tool: t = (0, 0, 0.2), RPY/xyz = (0, 0, 0) deg

```
T1 = T_{contenedor_0*}(T_{tumor_contenedor*transl(0.0,-0.00725,-0.05)*trotz(pi/2)*troty(pi/4)}) %
T1 = 4 \times 4
```

```
T0 = p560.fkine(qr)
```

```
T0 =
   -0.5000
               0.8660
                               0
                                    0.6702
   -0.8660
              -0.5000
                               0
                                     2.381
                                      1.944
         0
                    0
                               1
         0
                    0
                               0
```

```
q_0 = p560.ikine6s(T0,'run');
```

```
q_1 = p560.ikine6s(T1, 'run');
t_0 = linspace(0.0, 3.0, 30)
t_0 = 1 \times 30
            0.1034
                     0.2069
                               0.3103
                                        0.4138
                                                 0.5172
                                                          0.6207
                                                                   0.7241 ...
\% We do the trepanation always perforing the skull with 45 degrees wrt the
% longitudinal axis of the human
for i=1:50
Trepanation_Pose(:,:,i)= T_contenedor_0*(T_tumor_contenedor*transl(0.0,0.0,-0.05)*trotz((2*pi*)
end
Q = jtraj(q 0, q 1, t 0); % For the first trajectory we follow an eliptic path
Q_1 = p560.ikine6s(Trepanation_Pose, 'run'); % For the trepanation we follow constant velocity
Q_2 = jtraj(q_1,q_0,t_0) % We return to initial position
Q 2 = 30 \times 6
   0.2417
                    -2.9213
            1.1693
                               2.8538
                                        0.6389
                                                -2.7357
   0.2416
            1.1695
                    -2.9208
                               2.8539
                                        0.6387
                                                -2.7334
   0.2410
            1.1705
                    -2.9174
                               2.8546
                                        0.6370
                                                -2.7183
                    -2.9086
   0.2394
            1.1731
                               2.8565
                                        0.6329
                                                -2.6803
   0.2366
            1.1778
                    -2.8928
                               2.8599
                                        0.6254
                                                -2.6116
   0.2323
            1.1849
                    -2.8688
                               2.8650
                                        0.6140
                                                -2.5070
                                                -2.3633
                    -2.8358
   0.2264
            1.1948
                               2.8720
                                        0.5984
                    -2.7935
                                        0.5784
   0.2189
            1.2073
                               2.8810
                                                -2.1795
   0.2097
            1.2226
                     -2.7422
                                        0.5542
                                                -1.9561
                               2.8920
   0.1989
            1.2404
                    -2.6823
                               2.9047
                                        0.5258
                                                -1.6952
QT = [Q_0;Q_1;Q_2];
p560.plot(QT,'zoom',2,'trail',{'r', 'LineWidth', 1.5});
```


Tumor burning

Prepare a script that perform tumor burning with the laser. Zoom in the scene and record a video with the best view.

You ought to think in an algorithm, that in order, fill up the tumor's equivalent sphere with small burning spheres of 4m diameter.

Use a tool that has the following Transformation: transl(0 0 0.2)

```
close all
figure
hold on

% We plot the tumor subdivided in little spheres with radius = 4mm
esferas = zeros(33, 3)
```

```
esferas = 33×3
0 0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
```

```
0 0 0
:
```

i = 1

```
i = 1
```

```
rpeq = 0.004;
rgran = 0.0145;
[x, y, z] = sphere;
w = linspace(-rgran + rpeq, rgran - rpeq, 4);
light('Position',[2 3 1])
for ix = w
                 for iy = w
                                   for iz = w
                                                             if (ix)^2 + (iy)^2 + (iz)^2 < rgran^2
                                                                                     esferas(i,:) = [ix iy iz];
                                                                                     surf(x * rpeq + ix + T_tumor_0(1,4), y * rpeq + iy + T_tumor_0(2,4), z * rpeq + ix + T_tumor
                                                                                                               'FaceColor',[1 0 0], 'EdgeColor', 'none', 'FaceLighting', 'gouraud');
                                                                                     i = i + 1
                                                             end
                                    end
                  end
end
```

```
i = 2
i = 3
i = 4
i = 5
i = 6
i = 7
i = 8
i = 9
i = 10
i = 11
i = 12
i = 13
i = 14
i = 15
i = 16
i = 17
i = 18
i = 19
i = 20
i = 21
i = 22
i = 23
i = 24
i = 25
i = 26
i = 27
i = 28
```

i = 29

```
i = 30

i = 31

i = 32

i = 33
```

```
patch('Vertices',v_tabla_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','black','Face
patch('Vertices',v_pata1_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','black','Face
patch('Vertices',v_pata2_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','black','Face
patch('Vertices',v_pata3_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','black','Face
patch('Vertices',v_pata4_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor','black','Face
patch('Vertices',v_tablaherramientas_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColor',
patch('Vertices',v_pataherramientas_0(1:3,:)','Faces',f,'FaceVertexCData',hsv(6),'FaceColdr','
patch('Vertices',v_humano_0(1:3,:)','Faces',Human.Fh,'FaceVertexCData',hsv(6),'FaceColor',[0.9]
surf(X*r+T_fiducial1_0(1,4),Y*r+T_fiducial1_0(2,4),Z*r+T_fiducial1_0(3,4),'FaceColor',[1 0 0],
surf(X*r+T_fiducial2_0(1,4),Y*r+T_fiducial2_0(2,4),Z*r+T_fiducial2_0(3,4),'FaceColor',[1 0 0],
surf(X*r+T_fiducial3_0(1,4),Y*r+T_fiducial3_0(2,4),Z*r+T_fiducial3_0(3,4),'FaceColor',[1 0 0],
view(30,45)
grid on
xyzlabel
axis equal
axis([-2.5 2.5 -1.5 3.5 0.0 3.5])
% We set the appropriate tool to do the burning and then we set the frames
% that will divide our trajectories
p560.tool = transl(0.0,0,0.2)
```

p560 =

Puma 560 [Unimation]:: 6 axis, RRRRRR, stdDH, slowRNE
- viscous friction; params of 8/95;

++ j		d	a	alpha	offset
1 1	q1	0	0	1.5708	0
2	q2	0	0.4318	0	0
3	q3	0.15005	0.0203	-1.5708	0
4	q4	0.4318	0	1.5708	0
5	q5	0	0	-1.5708	0
6	q6	0	0	0	0
++		+-	+	+	+

base: t = (0.81, 2.32, 0.88), RPY/xyz = (-120, 0, 0) deg

tool: t = (0, 0, 0.2), RPY/xyz = (0, 0, 0) deg

```
T1 = T_contenedor_0*(T_tumor_contenedor*transl(0.0,0.0,-0.3)*trotz(pi/2)) % From robot initial
```

```
T1 = 4 \times 4
          0
                0.8660
                           -0.5000
                                        0.5564
                                         1.8923
               -0.5000
                           -0.8660
          a
   -1.0000
                      0
                                  0
                                         1.0310
                      0
                                  0
                                         1.0000
```

```
T0 = p560.fkine(qr)
```

```
T0 =
   -0.5000
                           0
                                0.6702
             0.8660
   -0.8660
            -0.5000
                           0
                                 2.381
        0
                  0
                           1
                                 1.944
        0
                  0
q_0 = p560.ikine6s(T0, 'run');
q_1 = p560.ikine6s(T1, 'run');
t_0 = linspace(0.0, 3.0, 30)
t_0 = 1 \times 30
                                          0.4138
                                                                       0.7241 ...
        0
             0.1034
                       0.2069
                                0.3103
                                                    0.5172
                                                             0.6207
Q = jtraj(q_0,q_1,t_0); % For the first trajectory we follow an eliptic path
T_ini = T_contenedor_0*(T_tumor_contenedor*trans1(0.0,0.0,-0.075)*trotz(pi/2))
T_{ini} = 4 \times 4
                      -0.5000
                                0.4439
        0
             0.8660
        0
            -0.5000
                      -0.8660
                                1.6975
   -1.0000
                  0
                           0
                                1.0310
                  0
                           0
                                1.0000
t_1 = linspace(0.0, 5.0, 50);
S = tpoly(0,1,t_1);
S(1) = 0
S = 50 \times 1
   0.0001
   0.0006
   0.0021
   0.0048
   0.0091
   0.0152
   0.0233
   0.0336
   0.0461
S(50) = 1
S = 50 \times 1
   0.0001
   0.0006
   0.0021
   0.0048
   0.0091
   0.0152
   0.0233
   0.0336
   0.0461
T_1_ini = ctraj(T1,T_ini,S); % For the second trajectory we follow an straight path with non co
```

 $Q_1 = p560.ikine(T_1_ini);$

```
p560.plot([Q_0;Q_1],'zoom',2,'trail',{'r', 'LineWidth', 1.5});
q_ini = p560.ikine6s(T_ini)
q_{ini} = 1 \times 6
   2.8432
             1.9319
                      0.3109
                                2.6827
                                         0.7258
                                                   0.3540
t_2 = linspace(0.0, 0.5, 5);
\% Between each point to burn we create a trajectory, so we point one sphere
% and then we move the tool rotating it to point another
for i=1:33
    dy = sqrt((0.0-esferas(i,1))^2 + (-0.075-esferas(i,2))^2)
    dx = sqrt((0.0-esferas(i,3))^2 + (-0.075-esferas(i,2))^2)
    ax = asin(esferas(i,1)/dy)
    ay = asin(esferas(i,3)/dx)
    T_i = T_contenedor_0*(T_tumor_contenedor*transl(0.0,0.0,-0.075)*trotz(pi/2)*trotx(-ax)*tro
    q_i = p560.ikine6s(T_i, 'lun');
    Q_i = jtraj(q_ini,q_i,t_2);
    p560.plot(Q_i,'zoom',2,'trail',{'r', 'LineWidth', 1.5});
    surf(x * rpeq + esferas(i,1) + T_tumor_0(1,4), y * rpeq + esferas(i,2) + T_tumor_0(2,4), z
                     'FaceColor','#006400', 'EdgeColor','none', 'FaceLighting', 'gouraud');
    q_{ini} = q_{i}
end
dy = 0.0723
dx = 0.0716
ax = -0.1458
ay = -0.0489
q_{ini} = 1 \times 6
             1.9244
                      0.2940
                                2.9726
                                         0.6052
                                                   0.1347
   2.8999
dy = 0.0723
dx = 0.0716
ax = -0.1458
ay = 0.0489
q_{ini} = 1 \times 6
   2.8999
             1.9517
                      0.3103
                                3.0001
                                         0.7454
                                                   0.1090
dy = 0.0792
dx = 0.0786
ax = -0.1330
ay = -0.0446
q_{ini} = 1 \times 6
                      0.2962
             1.9246
                                2.9435
                                         0.6144
                                                   0.1575
   2.8948
dy = 0.0792
dx = 0.0786
ax = -0.1330
ay = 0.0446
q_{ini} = 1 \times 6
   2.8948
             1.9494
                      0.3111
                                2.9729
                                         0.7417
                                                   0.1300
dv = 0.0646
dx = 0.0646
ax = -0.0542
ay = -0.0542
q_{ini} = 1 \times 6
   2.8641
             1.9183
                      0.2997
                                2.7555
                                         0.6275
                                                   0.3056
dy = 0.0646
```

dx = 0.0646

ax = -0.0542					
ay = 0.0542					
q ini = 1×6					
2.8641	1 9486	0 3179	2 8209	0.7774	0 2447
dy = 0.0716	1.5 .00	0.31,3	2.0203	0.,,,	0.2117
dx = 0.0713					
ax = -0.0489					
ay = -0.1458					
q_ini = <i>1×6</i>					
2.8629	1.8981	0.2774	2.6572	0.5051	0.3976
dy = 0.0716					
dx = 0.0716					
ax = -0.0489					
ay = -0.0489					
q_ini = <i>1×6</i>					
2.8621	1.9194	0.3010	2.7476	0.6371	0.3110
dy = 0.0716					
dx = 0.0716					
ax = -0.0489					
ay = 0.0489					
q_ini = 1×6					
2.8621	1 9/69	0 317/	2 8081	0.7720	0 25/8
dy = 0.0716	1.9409	0.31/4	2.0001	0.7720	0.2346
•					
dx = 0.0723					
ax = -0.0489					
ay = 0.1458					
q_ini = <i>1×6</i>					
2.8629	1.9793	0.3260	2.8510	0.9051	0.2166
dy = 0.0786					
dx = 0.0792					
ax = -0.0446					
ay = -0.1330					
q_ini = <i>1×6</i>					
2.8611	1.9005	0.2811	2.6607	0.5247	0.3923
dy = 0.0786					
dx = 0.0786					
ax = -0.0446					
ay = -0.0446					
q ini = 1×6					
2.8604	1.9204	0 3021	2.7413	0 6449	0.3153
dy = 0.0786	1.5204	0.3021	2.,413	0.0443	0.5155
dx = 0.0786					
ax = -0.0446					
ay = 0.0446					
q_ini = 1×6	4 0454	0 2470	2 7075	0.7676	0 2624
2.8604	1.9454	0.3170	2.7975	0.7676	0.2631
dy = 0.0786					
dx = 0.0792					
ax = -0.0446					
ay = 0.1330					
q_ini = <i>1×6</i>					
2.8611	1.9746	0.3255	2.8385	0.8889	0.2265
dy = 0.0856					
dx = 0.0856					
ax = -0.0409					
ay = -0.0409					
q_ini = 1×6					
2.8589	1.9213	0.3029	2.7361	0.6515	0.3188
dy = 0.0856	,,	3.3023	,,,,,,	3.0313	3.3100
dx = 0.0856					
ax = -0.0409					
ay = 0.0409					
q_ini = 1×6	1 0443	0 2166	2 7005	0.7630	0 2702
2.8589	1.9442	0.3166	2.7885	0.7639	0.2702

dy = 0.0646					
dx = 0.0646					
ax = 0.0542					
ay = -0.0542					
q ini = 1×6					
2.8231	1.9186	0.2992	2.5290	0.6846	0.4774
dy = 0.0646	1.5100	0.2332	2.3230	0.00.0	0.1771
dx = 0.0646					
ax = 0.0542					
ay = 0.0542					
q_ini = 1×6					
2.8231	1 9/19/1	0 3173	2 6232	0.8241	a 3008
dy = 0.0716	1.5450	0.51/5	2.0232	0.0241	0.5500
dx = 0.0713					
ax = 0.0489					
ax = 0.0489 $ay = -0.1458$					
q ini = 1×6					
2.8263	1 0005	0 2770	2 4267	0.5676	0 5765
dy = 0.0716	1.0903	0.2770	2.4207	0.3070	0.5765
dx = 0.0716 dx = 0.0716					
ax = 0.0489					
ay = -0.0489					
q_ini = 1×6	1 0100	0 2005	2 5446	0 (001	0 4640
2.8250	1.9198	0.3005	2.5446	0.6881	0.4648
dy = 0.0716					
dx = 0.0716					
ax = 0.0489					
ay = 0.0489					
q_ini = 1×6	4 0470	0.0460			
2.8250	1.94/2	0.3169	2.6286	0.8145	0.38/6
dy = 0.0716					
dx = 0.0723					
ax = 0.0489					
ay = 0.1458					
q_ini = 1×6	4 0706				
2.8263	1.9/96	0.3255	2.6904	0.9411	0.3333
dy = 0.0786					
dx = 0.0792					
ax = 0.0446					
ay = -0.1330					
q_ini = 1×6					
2.8277	1.9008	0.2807	2.4542	0.5801	0.5521
dy = 0.0786					
dx = 0.0786					
ax = 0.0446					
ay = -0.0446					
q_ini = <i>1×6</i>					
2.8266	1.9208	0.3016	2.5574	0.6911	0.4545
dy = 0.0786					
dx = 0.0786					
ax = 0.0446					
ay = 0.0446					
q_ini = <i>1×6</i>					
2.8266	1.9457	0.3165	2.6330	0.8067	0.3849
dy = 0.0786					
dx = 0.0792					
ax = 0.0446					
ay = 0.1330					
q_ini = <i>1×6</i>					
2.8277	1.9749	0.3250	2.6901	0.9225	0.3345
dy = 0.0856					
dx = 0.0856					
ax = 0.0409					
ay = -0.0409					

```
2.8279
              1.9216
                         0.3025
                                   2.5680
                                              0.6936
                                                         0.4459
dy = 0.0856
dx = 0.0856
ax = 0.0409
ay = 0.0409
q ini = 1 \times 6
              1.9445
                        0.3162
                                   2.6368
                                              0.8001
                                                         0.3826
    2.8279
dy = 0.0723
dx = 0.0716
ax = 0.1458
ay = -0.0489
q_{ini} = 1 \times 6
              1.9254
    2.7902
                         0.2925
                                   2.3705
                                              0.7527
                                                         0.5903
dy = 0.0723
dx = 0.0716
ax = 0.1458
ay = 0.0489
q_{ini} = 1 \times 6
    2.7902
              1.9527
                         0.3089
                                   2.4681
                                              0.8692
                                                        0.5022
dy = 0.0792
dx = 0.0786
ax = 0.1330
ay = -0.0446
q_{ini} = 1 \times 6
              1.9255
                         0.2949
                                   2.3970
                                              0.7487
                                                        0.5707
    2.7946
dy = 0.0792
dx = 0.0786
ax = 0.1330
ay = 0.0446
q_{ini} = 1 \times 6
    2.7946
              1.9503
                         0.3098
                                   2.4846
                                              0.8560
                                                         0.4913
dy = 0.0750
dx = 0.0750
ax = 0
ay = 0
q_{ini} = 1 \times 6
    2.8432
              1.9319
                         0.3109
                                   2.6827
                                              0.7258
                                                         0.3540
T_ini_1 = ctraj(T_ini, T1, S); % Finally we return to T1 with a cartesian trajectory
Q_2 = p560.ikine(T_ini_1);
```

Second approach: (25%)

 $q_{ini} = 1 \times 6$

Modify your code to repeat the exercise if the table with the patient is given as happend in the Rosa video.

To know the head relative pose with respect to the Puma Robot ...

p560.plot(Q_2,'zoom',2,'trail',{'r', 'LineWidth', 1.5});

See: '4_Sckeching_Key_ideas_students.mlx', '5_Skull_pose estimation.mlx' for inspiration and Second_approach_SPM.pdf

```
close all
open('3_Second_approach_Patient_pose.fig')
hold on

T_fiducial1_p560 = inv(T_p560_0)*T_fiducial1_0
```

```
T_fiducial1_p560 = 4 \times 4
                  0
                       1.0000
                                 0.7752
   -1.0000
                  0
                       0.0000
                                 0.0055
        0
            -1.0000
                            0
                                 0.1860
         0
                            0
                                 1.0000
T fiducial2 p560 = inv(T p560 0)*T fiducial2 0
T_fiducial2_p560 = 4 \times 4
                       1.0000
                                 0.8620
   -1.0000
                  0
                       0.0000
                                 0.0575
             -1.0000
                            0
                                 0.0360
        0
         0
                  0
                            0
                                 1.0000
T_fiducial3_p560 = inv(T_p560_0)*T_fiducial3_0
T fiducial3 p560 = 4 \times 4
                       1.0000
                  0
                                 0.8158
   -1.0000
                  0
                       0.0000
                                -0.0585
        0
            -1.0000
                            0
                                 0.0400
        0
                            0
                                 1.0000
Fi_R = [T_fiducial1_p560(1:3,4) T_fiducial2_p560(1:3,4) T_fiducial3_p560(1:3,4); ones(1,3)]
Fi R = 4 \times 3
    0.7752
             0.8620
                       0.8158
    0.0055
             0.0575
                       -0.0585
    0.1860
             0.0360
                       0.0400
    1.0000
              1.0000
                       1.0000
Yf = (Fi_R(1:3,2)-Fi_R(1:3,1))/norm(Fi_R(1:3,2)-Fi_R(1:3,1));
b=(Fi_R(1:3,3)-Fi_R(1:3,1))/norm(Fi_R(1:3,3)-Fi_R(1:3,1));
Zf = cross(Yf,b)/norm(cross(Yf,b));
Xf = cross(Yf,Zf)/norm(cross(Yf,Zf));
T_{fiducials_p560} = [[Xf;0] [Yf;0] [Zf;0] [Fi_R(:,1)]]
T_fiducials_p560 = 4 \times 4
    0.1632
             0.4797
                       -0.8621
                                 0.7752
    0.8991
             0.2874
                       0.3301
                                 0.0055
    0.4061
             -0.8290
                       -0.3844
                                 0.1860
                                 1.0000
det(T fiducials p560)
ans = 1
T_fiducials_0 = T_p560_0 * T_fiducials_p560
T_fiducials_0 = 4 \times 4
             0.0090
                       0.7169
                                 0.4275
    0.6971
   -0.5909
             -0.5592
                       0.5816
                                 1.6490
             -0.8290
    0.4061
                       -0.3844
                                 1.0660
        0
                  0
                            0
                                 1.0000
trplot(T_fiducials_0, 'Frame', 'F', 'color', 'b', 'length', 0.4)
```

```
RPY = tr2rpy(T_fiducials_p560,'zyx')
RPY = 1 \times 3
   -2.0050
            -0.4182
                       1.3913
T_fiducial1_0 = T_p560_0*transl(Fi_R(1:3,1))*trotz(RPY(3))*troty(RPY(2))*trotx(RPY(1))
T_fiducial1_0 = 4 \times 4
   0.6971
             0.0090
                       0.7169
                                 0.4275
   -0.5909
             -0.5592
                       0.5816
                                 1.6490
   0.4061
             -0.8290
                      -0.3844
                                 1.0660
        0
                  0
                            0
                                 1.0000
T_fiducials_0
T fiducials 0 = 4 \times 4
   0.6971
             0.0090
                       0.7169
                                 0.4275
   -0.5909
            -0.5592
                       0.5816
                                 1.6490
   0.4061
            -0.8290
                      -0.3844
                                 1.0660
                                 1.0000
F1D = T_fiducial1_contenedor(1:3,4)
F1D = 3 \times 1
   0.1220
   0.0640
   0.0252
F2D = T_fiducial2_contenedor(1:3,4)
F2D = 3 \times 1
   0.0700
   0.2140
   0.1120
F3D = T_fiducial3_contenedor(1:3,4)
F3D = 3 \times 1
   0.1860
   0.2100
   0.0658
YfD = (F2D-F1D)/norm(F2D-F1D);
bD = (F3D-F1D)/norm(F3D-F1D);
ZfD = cross(YfD,bD)/norm(cross(YfD,bD));
XfD = cross(YfD,ZfD)/norm(cross(YfD,ZfD));
T_F_I = [[XfD;0] [YfD;0] [ZfD;0] [F1D;1]]
T_F_I = 4 \times 4
   -0.8991
             -0.2874
                       -0.3301
                                 0.1220
   -0.4061
             0.8290
                       0.3844
                                 0.0640
   0.1632
             0.4797
                      -0.8621
                                 0.0252
                                 1.0000
                  0
det(T_F_I)
```

```
RPY=tr2rpy(T_F_I,'zyx')
RPY = 1 \times 3
    2.6338
             -0.1639
                       -2.7173
T_F_U2=trans1(F1D)*trotz(RPY(3))*troty(RPY(2))*trotx(RPY(1))
T_F_U2 = 4 \times 4
   -0.8991
             -0.2874
                        -0.3301
                                   0.1220
   -0.4061
              0.8290
                        0.3844
                                   0.0640
   0.1632
              0.4797
                        -0.8621
                                   0.0252
                                   1.0000
T_F_I
T F I = 4 \times 4
   -0.8991
             -0.2874
                        -0.3301
                                   0.1220
   -0.4061
              0.8290
                        0.3844
                                   0.0640
              0.4797
                        -0.8621
                                   0.0252
   0.1632
         0
                   0
                                   1.0000
                              0
T_I_U=T_fiducials_0*inv(T_F_I)
T_IU = 4 \times 4
   -0.8660
              0.0000
                        -0.5000
                                   0.5457
   0.5000
              0.0000
                       -0.8660
                                   1.6098
    0.0000
                        -0.0000
             -1.0000
                                   1.1300
                                   1.0000
         0
                   0
                              0
T_I_R=inv(T_p560_0)*T_fiducials_0*inv(T_F_I)
T I R = 4 \times 4
   -0.0000
             -0.0000
                        1.0000
                                   0.7500
   -1.0000
             -0.0000
                        -0.0000
                                   0.1275
   0.0000
             -1.0000
                        -0.0000
                                   0.2500
         0
                   0
                             0
                                   1.0000
```

Biospy

Prepare a script that perform a biopsy. Zoom in the scene and record a video with the best view.

Use a tool that has the following Transformation: transl(0.05 0 0.25)

Let us see the 'trail' option of plot to visualize the trajectory.

```
%% put your code Here
```

Trepanation

Prepare a script that perform trepanation. Zoom in the scene and record a video with the best view.

Use a tool that has the following Transformation: transl(0 0 0.2)

Let us see the 'trail' option of plot to visualize the trajectory. Place a 45° cone on top of the trepanation to better understand. See: 6 Plot Box Cone.mlx. You will have to scale it. Play with transparency.

%% put your code Here

Tumor burning

Prepare a script that perform tumor burning with the laser. Zoom in the scene and record a video with the best view.

You ought to think in an algorithm, that in order, fill up the tumor's equivalent sphere with small burning spheres of 4m diameter.

Use a tool that has the following Transformation: transl(0 0 0.2)

%% put your code Here