System of Linear Equations

Part-1: Introduction

Lecturer:

T. Basaruddin & Heru S

What is it?

• Definition: Ax=b

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

- Classification of Linear System
 - Over-determined: m > n
 - Square system: m = n
 - Under-determined: m < n</p>
- This chapter will deal with square system

Why is it important?

- Ubiquity of linear equations system
 - Mathematical models of numerous real world problems
 - Linearization of more complex/non-linear model
- Accuracy is in some cases very critical
 - Very limited margin for error
- Sizes or scale can be so large
 - Order of 10⁹ is not uncommon

Review Linear Algebra

- Existence of solution
 - A is invertible (non-singular)
 - b inside the space spanned by cols of A
- The solution is unique, i.e. $x = A^{-1} b$
- However
 - the inverse is not easily available, if it is, it is not economical to compute
 - analytically a square matrix is either singular or non-singular, but numerically a matrix can be nearly singular

Norms

Vector norms

$$\left|\left|x\right|\right|_{p} = \left(\sum_{i=1}^{n} \left|x_{i}\right|^{p}\right)^{1/p}$$

particularly

$$||x||_1 = \sum_{i=1}^n |x_i|$$

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

$$||x||_{\infty} = \max_{\substack{1 \le i \le n \\ \text{Applicis Numerik}}} |x_i|$$

Unit circle in p - norms

Matrix Norms

$$||A||_p = \sup_{x \neq 0} \frac{||Ax||_p}{||x||_p}$$

$$= \sup_{\|x\|_p = 1} \|Ax\|_p$$

particularly

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|;$$

$$||A||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}|;$$

$$||A||_2 = \sqrt{\rho(A^T A)}$$

$$\rho(A^T A) = \text{max eigenvalue}$$
of $A^T A$

Condition Number and Sensitivity

$$K(A) = \parallel A \parallel \parallel A^{-1} \parallel$$
 for some norms

- It measures the degree of departure from non-singularity
 Matlab: cond(A) or rcond(A)
- •The bigger the value of K(A) the closer A to singularity
 - If A is singular then $K(A) = \infty$
- If K(A) is large, the linear system Ax=b is ill-conditioned.
 In this case

$$\frac{\|\Delta x\|}{\|x\|} \le K(A) \frac{\|\Delta b\|}{\|b\|} \quad \text{and} \quad \frac{\|\Delta x\|}{\|x\|} \le K(A) \in_{mach}$$

Where Δ represent the deviation to the actual value

Caveat! III-conditioned system -> more difficult to get accurate solution

Triangular System

Lower triangular system: *Lx*=*b*

$$\begin{pmatrix} l_{11} & 0 & \cdots & 0 \\ l_{21} & l_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ l_{n1} & l_{n2} & \cdots & l_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

Upper triangular system: *Ux=b*

$$\begin{pmatrix} u_{11} & u_{12} & \cdots & u_{1n} \\ 0 & u_{22} & \cdots & u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & u_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

Forward Elimination

Given a linear system Lx=b where L is a non-singular lower triangular matrix, then x can be computed through:

$$x_1 = b_1 / l_{11};$$

 $x_2 = (b_2 - l_{21}x_1) / l_{22};$
 \vdots

$$x_n = (b_n - \sum_{j=1}^{n-1} l_{nj} x_j) / l_{nn}$$

Complexity

$$\sum_{i=2}^{n} (i-1) = \sum_{i=1}^{n-1} i = n(n-1)/2 \text{ flops}$$

Algorithm: Matlab-Implementation

Potential sources of errors:

- small value of L(i,i)
- LSD in case of b(i) is very close to L(i,1:i-1)*x(1:i-1)

How to avoid them?

Backward Substitution

Given a linear system Ux=b where U is a non-singular upper triangular matrix, then x can be computed through:

$$x_{n} = b_{n} / u_{nn};$$

$$x_{n-1} = (b_{n-1} - u_{n-1,n} x_{n}) / u_{n-1,n-1};$$

$$\vdots$$

$$x_{1} = (b_{1} - \sum_{j=n}^{i+1} u_{1j} x_{j}) / u_{11}$$

Complexity is the same as the forward elimination

Back-sub: Matlab Implementation

```
function [x] = Backsub(U,b)
%Input: matriks U dan vector b
%Output : vektor solusi x
    n = length(b);
    x = zeros(n,1);
    x(n) = b(n)/U(n,n);
    for i=n-1:1
        x(i) = (b(i)-U(i,i+1:n)*x(i+1:n))/U(i,i);
    end
```


Closing Remarks

- Non-singularity is the necessary and sufficient conditions for the existence and uniqueness of solution → numerically there are more to it
- The linear system Ax=b can easily be solved if the matrix coefficient is triangular
 - Would it be possible to transform a general matrix into a triangular one?

System of Linear Equations Triangular Factorization

Motivation

- As previously discussed, some form of linear equation systems are easier to solve (e.g. triangular system)
- There are ways for transforming a matrix into some desirable form
- For the system Ax=b and linear transformation T
 - T preserves the integrity of the solution i.e.
 T*Ax=T*b
 - T has to be invertible

Gaussian Matrix

Given a non-zero vector $a = (a_1, a_2, \dots, a_k, \dots a_n)^T$ where $a_k \neq 0$ There exists matrix M_k so that

$$M_{k}a = \begin{pmatrix} 1 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \cdots & \vdots \\ 0 & \cdots & 1 & 0 & \cdots & 0 \\ 0 & \cdots & -m_{k+1} & 1 & \cdots & 0 \\ \vdots & \cdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & -m_{n} & 0 & \cdots & 1 \end{pmatrix} \begin{pmatrix} a_{1} \\ \vdots \\ a_{k} \\ a_{k+1} \\ \vdots \\ a_{n} \end{pmatrix} = \begin{pmatrix} a_{1} \\ \vdots \\ a_{k} \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

In this case

$$m_i = a_i / a_k$$
, $i = k + 1, \dots, n$

The multiplication of M with a matrix A = elementary row operation

Gaussian Elimination

Given M_k is the Gaussian matrix and let $A^k = M_k A^{k-1}$ where $A^0 = A$ then $A^{(n-1)}$ is an upper triangular system provided that $A_{kk}^{k-1} \neq 0$

$$M_{n-1}M_{n-2}\cdots M_1A = U$$

$$A = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 10 \end{pmatrix}$$

and

$$M_{12} = \begin{pmatrix} 1 & 0 & 0 \\ -02 & 1 & 0 \\ -03 & -03 & 1 \end{pmatrix}$$

Thus

Example

$$MAx = Mb$$

$$Ux = \tilde{b}$$

Algorithm – GE - Matlab

```
Function [U,bt]=ge(A,b)
%Input: square matrix A and right hand side vektor b
%Output: upper triangular matrix U and associated rhs bt
[n,n]=size(A);
A=[A b] % Augmenting b in the last column of A
for k=1:n-1
 for i=k+1:n
         m=A(i,k)/A(k,k); %assume A(k,k)\neq 0
         A(i.:) = A(i.:) -m*A(k.:):
 end
end
U=triu(A(1:n,1:n));
bt=A(:,n+1)
```

Complexity:
$$\sum_{k=1}^{n-1} (n-k)^2 \approx n^3/3$$

Note: No matrix M is needed

Summing up

- The Gaussian matrix is a lower triangular matrix
- Multiplication of two lower triangular matrix
 lower triangular matrix
- The inverse of a non-singular lower triangular matrix is a lower triangular matrix
- The Gaussian matrix is non-singular ->
 invertible

$$MA = U \rightarrow A = M^{-1}U = LU$$

Inverse of M

Let $a_k = (0, \dots, 0, m_{k+1}, \dots, m_n)$ and e_k be the k-th unit vector, then the Gaussian matrix M can be written as

$$\boldsymbol{M}_{k} = (\boldsymbol{I} - \boldsymbol{a}_{k} \boldsymbol{e}_{k}^{T})$$

Further more it can easily be shown that $\boldsymbol{M}_k^{-1} = (\boldsymbol{I} + \boldsymbol{a}_k \boldsymbol{e}_k^T)$ since

$$(I - a_k e_k^T)(I + a_k e_k^T) = I - (a_k e_k^T)(a_k e_k^T)$$
$$= I - (e_k^T a_k)a_k e_k^T = I$$

Thus, the inverse of M is also a Gaussian matrix \rightarrow lower triangular

LU Factorization

Recall that
$$(M_{n-1}M_{n-2}\cdots M_1)A = U$$

$$A = (M_{n-1}M_{n-2}\cdots M_1)^{-1}U$$

$$= (M_1^{-1}M_2^{-1}\cdots M_{n-1}^{-1})U$$

But it is already shown that the inverse of M is also a lower triangular matrix, thus $(M_1^{-1}M_2^{-1}\cdots M_{n-1}^{-1})$ must be a lower triangular matrix, say L

$$A = L U$$

Conclusion:

Given that the Gaussian elimination process is succeeded, there exists a lower triangular matrix L and an upper triangular U so that A = LU

se Leis a unit lower triangular matrix (diagonal element is 1)

Algorithm

```
Function [L,U]=lufactor(A)
%Input matrix A
%output matrices L & U
[n,n]=size(A);
L=eye(n) % an identity matrix of order nxn
for k=1:n-1
 L(k+1:n,k)=A(k+1:n,k)/A(k,k); %assumed A(k,k)\neq 0
 for i=k+1:n
         A(i,k:n)=A(i,k:n)-L(i,k)*A(k,k:n);
 end
end
U=triu(A);
```

Cost is exactly the same as the GE

Solving the *Ax*=*b* through LU

Let A can be factorized as A = LU, then the solution x of Ax=b can be found as follows:

- 1. Solve Ly = b using the forward elimination
- 2. Solve Ux = y using the backward substitution

Note that, the factorization of A is independent of the right hand side b.
It is more attractive than the GE in case of multiple right hand sides

Pivoting

The Gaussian elimination process breaks down if the pivot element $A^k(k,k)=0$.

This however does not necessarily mean A is singular, e.g.

$$A = \begin{pmatrix} 0 & 4 & 3 \\ 1 & 3 & 1 \\ 3 & 4 & 3 \end{pmatrix}$$

The problem can easily be resolved by interchanging the Rows or columns. This strategy is called "pivoting". Row/column interchanges do not change the system.

Problem will also occur if the pivot element is small. In this case the pivoting is also needed for accuracy.

Permutation Matrix

Pivoting can mathematically be presented using the permutation matrix. A permutation matrix is an identity matrix with some row/col interchanges. E.g.

$$P = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Effect of permutation

$$PA = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 4 & 3 \\ 1 & 3 & 1 \\ 3 & 4 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 1 \\ 0 & 4 & 3 \\ 3 & 4 & 3 \end{pmatrix}$$
$$AP = \begin{pmatrix} 0 & 4 & 3 \\ 1 & 3 & 1 \\ 3 & 4 & 3 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 0 & 3 \\ 3 & 1 & 1 \\ 4 & 3 & 3 \end{pmatrix}$$

Pivoting strategy

- Partial pivoting
 - Searching the max element in the pivot column $\max\{abs(A_{ik}^{k-1})\}$
- Diagonal pivoting
 - Searching the max element in the diagonal;
 preserve symmetry
- Total pivoting
 - Searching the max in the entire sub-matrix;
 this is actually unnecessary.

Algorithm: LU Factorization with partial pivoting

```
%Input matriks A
%output matriks L & U dan vektor pivot p
[n,n]=size(A);
L=eye(n);
p=1:n; % vector pivot
for k=1:n-1
 % choose pivot
 [c,m]=max(abs(A(k:n,k))); % max in k-th col
 if c==0
  quit; % A is singular
 end
 tmpA=A(k,:); tmpp=p(k); tmpl=L(k,1:k-1); tempA=A;
 tempA(k,:)=tempA(m,:); p(k)=p(m); L(k,1:k-1)=L(m,1:k-1);
 A(m,:)=tmpA;p(m)=tmpp; L(m,1:k-1)=tmpl; L(p(k),k)=1.0;
for i=k+1:n
  L(p(i),k)=tempA(i,k)/tempA(k,k);
  for j=k:n
    tempA(i,i)=tempA(i,i)-L(p(i),k)*tempA(k,i);
  end
 end
end
U=triu(A);
```

No additional flops

Retrieving the Solution x

- Partial pivoting with the pivot P
 - $-PAx=Pb \rightarrow \text{ with } PA = LU$
 - Solve Ly=Pb (b is to be reordered)
 - − Solve Ux=y
- Diagonal pivoting with the pivot P
 - $-PAPPx = Pb \rightarrow PAP = LU$
 - − Solve Ly=Pb
 - − Solve Uw=y
 - -x = Pw

Error Analysis of LU

Let

$$\hat{L}\hat{U} = A + H$$

Then

$$|H| \le 3nu\{|A| + |\hat{L}||\hat{U}|\} + O(u^2)$$

Error analysis of solution thru LU

Let LU be the computed LU-factorization of A and \hat{x} be the computed solution to the linear equation Ax = b thru the LU factorization.

Then \hat{x} satisfies $(A+E)\hat{x}=b$ where

$$|E| \le n\mu \{3 |A| + 5 |\widehat{L}| |\widehat{U}| \}$$

 $\rho = \max_{i,j,k} \frac{|a_{ij}^k|}{\|A\|_{\infty}}$ Define now the growth factor

Then

$$||E||_{\infty} \leq 8n^3 \rho ||A||_{\infty} \mu$$

Thus, pivoting improves accuracy!

Semester Genap 2011/2012

Analisis Numerik

System of Linear Equations Special Linear System

Motivation

- GE or LU factorization can be used to solve a general linear system (with nonsingular matrix coefficient)
- The cost is reasonably expensive of O(n³)
- Need to exploit matrix structure for efficiency
 - Symmetric, Definite Positive, Banded, etc.

Symmetric Matrix

- Consider the linear system Ax=b
- A is a symmetric matrix, i.e. $A^T = A$
- Need to consider a symmetric factorization $A = LU \rightarrow A^T = (LU)^T = U^TL^T$

This is in general not a symmetric factor. Consider now

$$A = LDL^{T}$$

Where *D* is a diagonal matrix. This is definitely a symmetric factorization.

$$A^{T} = (LDL^{T})^{T} = (L^{T})^{T}D^{T}L^{T} = LDL^{T} = A$$

We need to compute *L* and *D* only.

LDL^T - Factorization

Example

$$A = \begin{pmatrix} 2 & 4 & 6 \\ 4 & 9 & 14 \\ 6 & 14 & 19 \end{pmatrix}$$

- 1. D(1,1)=2; $L(:,1)=(1,2,3)^T$;
- 2. Note that elimination of *i*-th row = update *i*-th col

3.
$$D(2,2)=9-4*2=1$$
; $L(:,2)=(0,1,2)^T$;

4.
$$D(3,3)=1-2*2=-3$$

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix}; \quad D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -3 \end{pmatrix}$$

Cost ≈ 0.5 LU; but pivoting may be needed

Symmetric & Positive Definite

- A is defined as positive definite iff for any non-zero vector x, x^TAx>0
- Properties of symmetric & positive definite matrix
 - The eigen values are all positive
 - Non-singular
 - Strictly diagonally dominant

Cholesky Factorization

$$GG^T = A$$

$$\begin{pmatrix} g_{11} & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ g_{i1} & \cdots & g_{ii} & \cdots & 0 \\ \vdots & \cdots & \vdots & \ddots & \vdots \\ g_{n1} & \cdots & g_{ni} & \cdots & g_{nn} \end{pmatrix} \begin{pmatrix} g_{11} & \cdots & g_{j1} & \cdots & g_{n1} \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & \cdots & g_{jj} & \cdots & g_{nj} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & g_{nn} \end{pmatrix} = \begin{pmatrix} a_{11} & \cdots & a_{1i} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{ni} & \cdots & a_{nn} \end{pmatrix}$$

So

$$g_{i1}^2 + g_{i2}^2 + \dots + g_{i,i-1}^2 + g_{ii}^2 = a_{ii} \implies g_{ii} = \sqrt{a_{ii} - \sum_{j=1}^{i-1} g_{ij}^2}$$

And

$$g_{i1}g_{j1} + g_{i2}g_{j2} + \dots + g_{ij}g_{jj} = a_{ij}$$

$$g_{ij} = \frac{a_{ij} - \sum_{k=1}^{J-1} g_{ik} g_{jk}}{g_{ii}}$$

An Example

Let

$$A = \begin{pmatrix} 4 & 4 & 6 \\ 4 & 5 & 8 \\ 6 & 8 & 22 \end{pmatrix}$$

Then

$$G(1,1) = \sqrt{4} = 2$$

$$G(2,1) = (4-0)/2 = 2$$

$$G(3,1) = (6-0)/2 = 3$$

$$G(2,2) = \sqrt{5-2*2} = 1$$

$$G(3,2) = (8-3*2)/1 = 2$$

$$G(3,3) = \sqrt{22-(3*3+2*2)} = 3$$

Cholesky - Algorithm

```
Algorithm 2.6: Cholesky Factorization %Input: A symmetric and positive definite matrix A %Output: A lower triangular matrix G [n,n]=size(A); G(1,1)=sqrt(A(1,1)); for j=1:n-1 for i=j+1:n G(i,j)=(A(i,j)-G(i,1:j-1)'*G(j,1:j-1))/G(j,j); end G(j+1,j+1)=sqrt(A(j+1,j+1)-G(j+1,1:j)'*G(j+1,1:j)); end
```

Overall Cost ≈ 0.5 LU; no pivoting is needed

Caveat: the function *sqrt* is rather costly

Banded System

p= upper-bandwidth; q= lower-bandwidth Total-bandwidth = p+q+1

$$A(i, j) = 0 \text{ if } |i - j| > p + q + 1$$

Algorithm: LU Fact for banded

```
%Input: A and bandwidth p,q
%Output: L and U
[n,n]=size(A); %p
L=I % matrik identitas
for k=1:n-1
  for i=k+1:min\{k+q,n\}
                                      Assume no pivoting
     L(i,k)=A(i,k)/A(k,k);
     for j=k+1:min{k+p,n}
        A(i,j)=A(i,j)-L(i,k)*A(k,j);
     end
   end
end
U=A;
```

Cost

$$C(p,q) = \begin{cases} npq - \frac{1}{2} pq^2 - \frac{1}{6} p^3 + pn; & p \le q \\ npq - \frac{1}{2} qp^2 - \frac{1}{6} q^3 + qn; & p > q \end{cases}$$
Genan 2011/2012

Analysis Numerik

Iterative refinement

Let $\hat{\mathcal{X}}$ be the computed solution of Ax=b. Let also

$$e = x - \hat{x}$$
 and $r = b - A\hat{x}$

then

$$Ae = A(x - \hat{x}) = Ax - A\hat{x} = b - A\hat{x} = r$$

Thus

- 1. Compute r
- 2. Solve Ae=r
- 3. Update x=x+e
- 4. Re-iterate

will increase accuracy

