Función jacobi_paralelo

Entradas:

A: matriz mxm

b:vector de tamaño m

npc: número de procesadores disponibles

Salidas:

x_k: vector solución

k: número de iteraciones ocurridas

error: numero de error dado al finalizar la ejecución de la función

Pasos

1)Fijar:

- La variable "tol" que corresponde a la tolencia mínima para este caso 1e-10
- La variable "iter_max" que corresponde a la numero máxima de iteraciones para este caso 1000
- La variable "m" que corresponde al tamaño del vector b, x_k y la matriz A
- 2) Crear la matriz x_k de tamaño mx1 ocupada por ceros en cada posición
- 3) ciclo k=1: iter_max
 - 3.1) error = norma($A^* x_k-b$)
 - 3.2) Pregunta: error<tol

√:Fin ciclo

X: x_k = transposición(proceso multiprocesador(npc, "función" calculo_elemento(A, b, x_k, m, n), n=rango de 1 a m))

Fin ciclo

Fin función

Función calculo_elemento para el proyecto se llama parte1_p3

Entradas:

A: matriz mxm

b:vector de tamaño m

x_k: vector solución anterior

m: tamaño del los vectores y matriz

n: posición actual de la iteración (bandera del proceso multiprocesador)

Salidas:

x_n: vector solución actual

Pasos

- 1) Crear variable "sum_aux" como auxiliar del para la formula de calculo del x_k en la posición de la iteración n
- 2) Ciclo j=1:m
 - a. Preguntaj≠i
 - i. $\sqrt{:}$ incremento de sum_aux en A(n,j)*x_k(j)
 - ii. X: continue

Fin de ciclo

3) $x_n=1/A(n,n)*(b(n)-sum)$

Fin función

Autores

Yordi Brenes Roda

Gabriel Conejo Valerio

Ricardo Gatgens Rodríguez

Ignacio Morales Chang