Iniziato	martedì, 7 gennaio 2020, 15:04
Stato	Completato
Terminato	martedì, 7 gennaio 2020, 15:32
Tempo impiegato	28 min. 15 secondi
Punteggio	13,00/15,00
Valutazione	26,00 su un massimo di 30,00 (87%)

Domanda 1

Risposta corretta

Punteggio ottenuto 1,00 su 1,00 In data preprocessing, which of the following are the objectives of the aggregation of attributes

Scegli una o più alternative:

- ✓ a. Obtain a less detailed scale
 ✓
- b. Obtain a more detailed description of data
- c. Reduce the variability of data
- d. Reduce the number of attributes or distinct values

Risposta corretta.

Le risposte corrette sono: Reduce the number of attributes or distinct values, Obtain a less detailed scale, Reduce the variability of data

Domanda 2

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Which is the effect of the curse of dimensionality

Scegli un'alternativa:

- a. When the number of dimensions increases the computing power necessary to compute the distances becomes too high
- b. When the number of dimensions increases the results tend to be prone to overfitting
- c. When the number of dimensions increases the euclidean distance becomes less effective to discriminate between points in the space
- d. When the number of dimensions increases the classifiers cannot be correctly tuned

Risposta corretta.

La risposta corretta è: When the number of dimensions increases the euclidean distance becomes less effective to discriminate between points in the space

Domanda 3

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Which of the statements below is true? (One or more)

Scegli una o più alternative:

- a. K-means is very sensitive to the initial assignment of the centers

 No, being based on distances, if the number of attributes is very large k-means is prone to the curse of dimensionality
- **b.** K-means always stops to a configuration which gives the minimum distortion for the chosen value of the number of clusters.
- d. Sometimes k-means stops to a configuration which does not give the minimum distortion for the chosen value of the number of clusters.

 ✓

Your answer is correct.

Le risposte corrette sono: Sometimes k-means stops to a configuration which does not give the minimum distortion for the chosen value of the number of clusters., K-means is quite efficient even for large datasets, K-means is very sensitive to the initial assignment of the centers

Domanda 4

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Consider the transactional dataset below

ID Items

- 1 A,B,C
- 2 A,B,D
- 3 B,D,E
- 4 C,D
- 5 A,C,D,E

Which is the *support* of the rule $A,C \Rightarrow B$?

Scegli un'alternativa:

- a. 40%
- **b.** 50%
- © c. 20% ✓ 1/5
- d. 100%

Risposta corretta.

La risposta corretta è: 20%

Domanda 5
Risposta
corretta
Punteggio
ottenuto 1,00

su 1,00

What does K-means try to minimise?

Scegli un'alternativa:

- a. The separation, that is the sum of the squared distances of each point with respect to its centroid
- b. The distortion, that is the sum of the squared distances of each point with respect to its centroid
- c. The *distortion*, that is the sum of the squared distances of each point with respect to the points of the other clusters
- d. The *separation*, that is the sum of the squared distances of each cluster centroid with respect tho the global centroid of the dataset

Risposta corretta.

La risposta corretta è: The distortion, that is the sum of the squared distances of each point with respect to its centroid

Domanda 6
Risposta errata
Punteggio
ottenuto 0,00
su 1,00

Which is the main purpose of smoothing in Bayesian classification?

Scegli un'alternativa:

- a. Dealing with missing values X
- b. Classifying an object containing attribute values which are missing from some classes in the training set
- c. Reduce the variability of the data
- d. Classifying an object containing attribute values which are missing from some classes in the test set

Risposta errata.

La risposta corretta è: Classifying an object containing attribute values which are missing from some classes in the training set

Domanda **7**Risposta errata
Punteggio
ottenuto 0,00

su 1,00

In a decision tree, the number of objects in a node...

Scegli un'alternativa:

- a. ...is smaller than the number of objects in its ancestor
- **b.** ...is not related to the number of objects in its ancestor
- c. ...is bigger than the number of objects in its ancestor
- d. ...is smaller than or equal to the number of objects in its ancestor **×** It cannot be equal, if you split the decrease in size is at least one

Risposta errata.

La risposta corretta è: ...is smaller than the number of objects in its ancestor

Domanda 8
Risposta
corretta
Punteggio
ottenuto 1,00

su 1,00

Which of the following measure can be used as an alternative to the Information Gain?

Scegli un'alternativa:

- a. Silhouette Index
- b. Rand Index
- c. Jaccard Index
- d. Gini Index ✓

Your answer is correct.

La risposta corretta è: Gini Index

Domanda 9

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Why do we prune a decision tree?

Scegli un'alternativa:

- a. To eliminate parts of the tree where the decision could generate underfitting
- b. To eliminate attributes which could be influenced by random effects
- c. To eliminate rows of the dataset which could be influenced by random effects
- d. To eliminate parts of the tree where the decisions could be influenced by random effects

Your answer is correct.

La risposta corretta è: To eliminate parts of the tree where the decisions could be influenced by random effects

Domanda 10

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Which of the following is not an objective of feature selection

Scegli un'alternativa:

- a. Reduce the effect of noise
- b. Avoid the curse of dimensionality
- c. Select the features with higher range, which have more influence on the computations
- d. Reduce time and memory complexity of the mining algorithms

Risposta corretta.

La risposta corretta è: Select the features with higher range, which have more influence on the computations

Domanda 11
Risposta
corretta
Punteggio

ottenuto 1,00

su 1,00

Which of the following clustering methods is not based on distances between objects?

Scegli un'alternativa:

- a. Expectation Maximization
- b. Hierarchical Agglomerative
- c. DBSCAN
- d. K-Means

Your answer is correct.

La risposta corretta è: Expectation Maximization

Domanda 12

Risposta corretta

Punteggio ottenuto 1,00 su 1,00 Which of the following characteristic of data can reduce the effectiveness of DBSCAN?

Scegli un'alternativa:

- a. Presence of outliers
- b. Clusters have concavities
- c. Presence of clusters with different densities
- d. All the variables are the same range of values

Your answer is correct.

La risposta corretta è: Presence of clusters with different densities

Domanda 13

Risposta corretta

Punteggio ottenuto 1,00 su 1,00 Which of the following types of data allows the use of the euclidean distance?

Scegli un'alternativa:

- a. Ordered data
- b. Document representations
- c. Transactional data
- d. Points in a vector space ✓

Your answer is correct.

La risposta corretta è: Points in a vector space

Domanda 14

Risposta corretta

Punteggio ottenuto 1,00 su 1,00 **Given the definitions below:**

- TP = True Positives
- TN = True Negatives
- FP = False Positives
- FN = False Negatives

which of the formulas below computes the precision of a binary classifier?

Scegli un'alternativa:

- a. TP / (TP + FN)
- b. TP / (TP + FP)

 This is also called positive predictive value, which is the number of detected true positives divided by the total number of elements predicted as positive
- c. TN / (TN + FP)
- d. (TP + TN) / (TP + FP + TN + FN)

Risposta corretta.

La risposta corretta è: TP / (TP + FP)

Domanda 15 Risposta corretta **Punteggio** ottenuto 1,00 su 1,00

Match the rule evaluation formulas with their names

$$\frac{conf(A \Rightarrow C)}{sup(C)}$$

Lift

$$\frac{sup(A \Rightarrow C)}{sup(A)}$$

Confidence

$$\frac{1 - sup(C)}{1 - conf(A \Rightarrow C)}$$

Conviction

$$sup(A \cup C) - sup(A)sup(C)$$

Leverage

Your answer is correct.

La risposta corretta è:
$$\cfrac{conf(A\Rightarrow C)}{sup(C)}$$
 $\cfrac{sup(A\Rightarrow C)}{sup(A)}$
 $\cfrac{confidence,}{sup(A)}$
 $\cfrac{1-sup(C)}{1-conf(A\Rightarrow C)}$
 $\cfrac{confidence,}{sup(A)}$
 $\cfrac{confidence,}{sup(C)}$
 $\cfrac{confidence,}{sup(A)}$