

Deep Neural Networks

Deep L-layer Neural network

What is a deep neural network?

logistic regression

2 hidden layers

Deep neural network notation

Deep Neural Networks

Forward Propagation in a Deep Network

Deep Neural Networks

Getting your matrix dimensions right

Vectorized implementation

Deep Neural Networks

Why deep representations?

Intuition about deep representation

Circuit theory and deep learning

Informally: There are functions you can compute with a "small" L-layer deep neural network that shallower networks require exponentially more hidden units to compute.

Deep Neural Networks

Building blocks of deep neural networks

Forward and backward functions

Deep Neural Networks

Forward and backward propagation

Forward propagation for layer *l*

⇒ Input
$$a^{[l-1]} \leftarrow \bigcup_{\substack{U^{Ti}, U^{Ti} \\ U^{Ti}, U^{Ti} \\ U^{Ti}, U^{Ti},$$

Backward propagation for layer l

 \bigcirc

Summary

Deep Neural Networks

Parameters vs Hyperparameters

What are hyperparameters?

Parameters: $W^{[1]}$, $b^{[1]}$, $W^{[2]}$, $b^{[2]}$, $W^{[3]}$, $b^{[3]}$...

Hyperparameters: dearning rate \preceq #titerations # hidden lægue L

hidden lægue L

Choice of autivortion fontion

State: Momentum, min-Larth vize, regularjohnes...

Applied deep learning is a very empirical process

Deep Neural Networks

What does this have to do with the brain?

Forward and backward propagation

$$Z^{[1]} = W^{[1]}X + b^{[1]}$$

$$A^{[1]} = g^{[1]}(Z^{[1]})$$

$$Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}$$

$$A^{[2]} = g^{[2]}(Z^{[2]})$$

$$\vdots$$

$$A^{[L]} = g^{[L]}(Z^{[L]}) = \hat{Y}$$

$$\begin{split} dZ^{[L]} &= A^{[L]} - Y \\ dW^{[L]} &= \frac{1}{m} dZ^{[L]} A^{[L]^T} \\ db^{[L]} &= \frac{1}{m} np. \, \text{sum}(dZ^{[L]}, axis = 1, keepdims = True) \\ dZ^{[L-1]} &= dW^{[L]^T} dZ^{[L]} g'^{[L]} (Z^{[L-1]}) \\ &\vdots \\ dZ^{[1]} &= dW^{[L]^T} dZ^{[2]} g'^{[1]} (Z^{[1]}) \\ dW^{[1]} &= \frac{1}{m} dZ^{[1]} A^{[1]^T} \\ db^{[1]} &= \frac{1}{m} np. \, \text{sum}(dZ^{[1]}, axis = 1, keepdims = True) \end{split}$$

