

February 19, 2025

**Theorem 1** Let  $(\mathcal{X}, \mu)$  and  $(\mathcal{Y}, \nu)$  be computable measure spaces. Let  $A : \mathbb{N} \to X$ ,  $B : \mathbb{N} \to Y$  be injective functions with  $\mathbf{I}(\langle A, B \rangle : \mathcal{H}) < \infty$ . For  $s \in \mathbb{N}$ , m < s, there exists  $2^{s-m}$  indices  $t < 2^s$ with  $\max\{\mathbf{G}_{\mu}(A(t)), \mathbf{G}_{\nu}(B(t))\} < -m + O(\log s)$ .

**Theorem 2** Let L be the Lebesgue measure over  $\mathbb{R}$ ,  $(\mathcal{X}, \mu)$ ,  $(\mathcal{Y}, \nu)$  be non-atomic computable measure spaces with  $U = \log \mu(\mathcal{X}) = \log \nu(\mathcal{Y})$ . Let  $A : [0,1] \to \mathcal{X}$  and  $B : [0,1] \to \mathcal{Y}$  be continuous. Let  $\mathbf{I}(\langle A, B \rangle : \mathcal{H}) < \infty$ . There is a constant c with  $L\{t \in [0, 1] : \max\{\mathbf{G}_{\mu}(A(t)), \mathbf{G}_{\nu}(B(t))\} < U - n\} >$  $2^{-n-\mathbf{K}(n)-c}$ 

**Theorem 3** Let  $(\mathcal{X}, \mu)$  and  $(\mathcal{Y}, \nu)$  be non-atomic computable measure spaces with  $U = \log \mu(\mathcal{X}) =$  $\log \nu(\mathcal{Y})$ . Let  $(\mathcal{Z}, \rho)$  be a non-atomic computable probability space. Let  $A: \mathcal{Z} \to \mathcal{X}$  and  $B: \mathcal{Z} \to \mathcal{Y}$ be continuous. Let  $\mathbf{I}(\langle A, B \rangle : \mathcal{H}) < \infty$ . There is a constant c with  $\rho\{\alpha : \max\{\mathbf{G}_{\mu}(A(\alpha)), \mathbf{G}_{\nu}(B(\alpha))\} < \infty$  $U-n\} > 2^{-n-\mathbf{K}(n)-c}.$ 

## Principle of Nonlocality and the Halting Sequence

If one has access to the halting sequence, then information can pass between spacelike events.

## Discrete Example

Given is two computable measure spaces, each being the Cantor space paired with the uniform measure  $\lambda$ . The two sampling methods,  $A: \mathbb{N} \to \{0,1\}^{\infty}$  and  $B: \mathbb{N} \to \{0,1\}^{\infty}$  are defined using a single random infinite sequence  $\alpha$  with  $\mathbf{I}(\alpha:\mathcal{H})<\infty$ . The even bits of  $\alpha$  are used to create an infinite list  $\{\beta_i\}_{i=1}^{\infty}$  in the standard way. Furthermore,  $A(i) = \beta_i$ . In an identical fashion, the odd bits of  $\alpha$  are used to define B. Thus  $\mathbf{I}(\langle A, B \rangle : \mathcal{H}) < \infty$ .

Let  $G_{\lambda}(\beta)$  be the algorithmic entropy of a sequence  $\beta$  in the Cantor space with the uniform measure  $\lambda$ . By properties of universal tests,  $\lambda\{\beta: \mathbf{G}_{\lambda}(\beta) < -n\} < 2^{-n}$ . Let b be a small positive constant. For all  $c \in (0,1)$ , as  $s \to \infty$ ,

$$|\{t \in [1, 2^s] : \mathbf{G}_{\lambda}(A(t)) < -cs + b \log s\}| < 2^{(1-c)s + b \log s}$$
  
 $|\{t \in [1, 2^s] : \mathbf{G}_{\lambda}(B(t)) < -cs + b \log s\}| < 2^{(1-c)s + b \log s}$ 

Furthermore, from Theorem 1,

$$|\{t \in [1, 2^s] : \max\{\mathbf{G}_{\lambda}(A(t)), \mathbf{G}_{\lambda}(B(t))\}| < -cs + b \log s\}| > 2^{(1-c)s}.$$

Assume  $G_{\lambda}$  is computable, fix a rational  $c \in (0,1)$ , and let  $s \to \infty$ . Suppose one computes  $G_{\lambda}(A(t))$ for  $t \in [1, 2^s]$ . One can compute at most  $s^b 2^{(1-c)s}$  indices t such that  $\mathbf{G}_{\lambda}(A(t)) < -cs + b \log s$ . From Theorem 1, one know that there is a subset T of those indices, where  $|T| > 2^{(1-c)s}$  and for each  $t \in T$ ,  $\mathbf{G}_{\lambda}(B(t)) < -cs + b \log s$ . Thus by knowing the **G** values of sequences in the range of A, one knows information about the  $G_{\lambda}$  values in the range of B.

## Continuous Example

Let  $(\mathcal{X}, \mu)$  and  $(\mathcal{Y}, \nu)$  be computable measure spaces and  $(\mathcal{Z}, \rho)$  be a computable probability space. Let  $A: \mathcal{Z} \to \mathcal{X}$  and  $\mathcal{Z} \to \mathcal{Y}$  be computable functions. Let  $\{X_n, Y_n\}_{n=1}^{\infty}$  be random subsets of  $\mathcal{X}$  and  $\mathcal{Y}$  of size n that created from independently sampling  $\mathcal{Z}$  with  $\rho$  and then applying A and B respectively. Let  $X_n^m = \{\alpha \in X_n : \mathbf{G}_{\mu}(\alpha) < -m\}$  and  $Y_n^m = \{\alpha \in Y_n : \mathbf{G}_{\nu}(\alpha) < -m\}$ . Using Theorem 3, there exists a c where

$$\lim_{n \to \infty} |\{t : X_n(t) \in X_n^m \cap Y_n(t) \in Y_n^m\}|/n > 2^{-m-2\log m - c}.$$

Assume **G** is computable, let  $m \in \mathbb{N}$ , and let  $n \to \infty$ . For each n, one can compute  $X_n^m$  and using Theorem 3, one can infer that  $|\{t: X_n(t) \in X_n^m \cap Y_n(t) \in Y_n^m\}|/n > 2^{-m-2\log m-c}$ . Thus with access to the halting sequence, one can learn information across spacelike events.