C심화과정 프로젝트 (카메라를 활용한 로봇 시뮬레이션) 결과보고서

1. 서론

1.1 요구사항

카메라 calibration 이용하여 Scale 값을 추출 후 가상의 작업대 공간의 물체를 UNIVERSAL ROBOTS UR5e 제어하여 가상의 도형의 중심좌표로 이동시키고 다른 작업대 공간으로 이동하는 시뮬레이션 시스템

1.2 과제설계의 목표

C++ MFC를 이용하여 사용자 UI 및 로봇 제어프로그램 설계 및 구현 (Client) Delfoi Premium 4.1 프로그램을 이용하여 가상로봇 시뮬레이션 (Server)

1.3 현실적 제한 요건

- 1) 카메라 측정에서 환경적인 요인 문제
- 2) 정확한 좌표값에 대한 보정작업이 필요 ex) 원하는 위치의 좌표값과 실제 동작 시 움직여간 위치값을 보정필요
- 3) 다른 작업대 위치 좌표는 임의 값으로 세팅

2. 본론

2.1 문제 정의

로봇 시스템에 범용적인 기구학 적용하여 위치제어 시스템 및 MFC를 활용하여 도형의 좌표값 이랑 동일하게 로봇의 위치가 적용되는지 보기 위한 시스템 개발

2.2 개념설계

- 계발 환경

구분	개발 환경	
운영체제	Windows 10	
언어	C++ / Python	
로봇 시뮬레이터	Delfoi Premium 4.1	
개발툴	Microsoft Visual Studio 2017	
장비	웹캠	

- 목표 시스템 입력 및 출력

1) MFC

- 스케일 버튼 클릭시 스케일 값 측정 및 intricsics.yml파일 저장
- 도형중심좌표 검출 버튼 클릭시 도형중심 좌표 검출 및 centerScalePoint.yml파일 저장
- 서버연결 버튼 클릭시 Delfoi 서버로 접속
- 도형이동위치 버튼 클릭시 조인트 (J1 ~ J6) Delfoi로 각도 전달
- 도형좌표 Listbox 도형중심 좌표 표기 (스케일 값을 곱한 실제 좌표)
- 목표좌표 Listbox 목표좌표 표기 (도형이 있는 위치의 좌표)
- 조인트각도 Listbox 조인트 각도 표기 및 델포이 연결상태 표시

2.3 설계 제작 과정

- 기능 요구사항 (기능 리스트)

유형	기능		
식별자	MFC_스케일 버튼	요구사항 명	스케일 측정
개요	스케일 값 측정 및 저장		
상세설명	1. 스케일 값 측정		
이게 같이	2. 값 저장		
ㅇ쉉	l 기느		

유형	기능	
식별자	MFC_도형중심좌표검출버튼 요구사항 명 중심좌표검출	
개요	도형 중심좌표 검출 및 실제 좌표계 변환	
	1. 도형 외각선 검출 및 중심점 검출	
사비서대	2. 도형 중심좌표 검출	
상세설명	3. 중심좌표 실제 좌표계 계산	
	4. 계산된 좌표계 값 저장	

유형	기능		
식별자	MFC_서버연결 버튼	요구사항 명	서버연결
개요	Delfoi 서버 연결		
상세설명	1. IP 입력		
6세달6	2. 서버 연결		

유형	기능		
식별자	MFC_도형좌표 List Box	요구사항 명	도형좌표 표기
개요	도형 실제 좌표 표기		
	1. 1번도형 좌표위치 표기		
상세설명	2. 2번도형 좌표위치 표기		
	3. 3번도형 좌표위치 표기		

유형	기능			
식별자	MFC_목표좌표 List Box	요구사항	명	목표 좌표 표기
개요	목표좌표 표기			
상세설명	1. 목표좌표			
0 #1				
유형	기능			
식별자	MFC_조인트 각도 List Box	요구사항	명	조인트 각도 출력
개요	조인트 각도 및 Delfoi 연결	여부 표기		
상세설명	1. 조인트 각도 표기			
이게 큰 이	2. Delfoi 여부 표기			

유형	기능	
식별자	MFC_도형1위치로이동 버튼 요구사항 명 조인트 각도 전달	
개요	도형1 위치로 이동 버튼	
상세설명	1. Delfoi로 도형1위치 좌표 계산된 조인트 각도 전달	
유형	기능	
식별자	MFC_도형2위치로이동 버튼 요구사항 명 조인트 각도 전달	
개요	도형2 위치로 이동 버튼	
상세설명	1. Delfoi로 도형2위치 좌표 계산된 조인트 각도 전달	
유형	기능	
식별자	MFC_도형3위치로이동 버튼 요구사항 명 조인트 각도 전달	
개요	도형3 위치로 이동 버튼	
상세설명	1. Delfoi로 도형3위치 좌표 계산된 조인트 각도 전달	

- 유스케이스 다이어그램

- 유스케이스 명세

Use case Name	스케일
Use case	이 Use case는 사용자가 스케일 버튼 클릭 시 호출
Description	이 Ose Case는 사용자가 드개글 미슨 글릭 시 오돌
Primary Acrtor	사용자
Goal	사용자가 스케일 버튼 클릭 시 동작 수행
	1. 사용자가 스케일 버튼 클릭
Basic Flow	2. 영상 프레임 출력
Dasic Flow	3. 영상 프레임에 스케일 값 표기
	4. 영상 프레임 종료시 스케일 값 저장

Use case Name	도형중심좌표검출
Use case	이 Use case는 사용자가 도형중심좌표검출 버튼 클릭 시
Description	호출
Primary Acrtor	사용자
Goal	사용자가 도형중심좌표검출 버튼 클릭 시 동작 수행
	1. 사용자가 도형중심좌표검출 버튼 클릭
Basic Flow	2. 영상 프레임 출력
	3. 영상 프레임에 도형중심좌표 값 표기
	4. 영상 프레임 종료시 도형중심좌표검출 값 저장

Use case Name	서버연결
Use case Description	이 Use case는 사용자가 서버연결 버튼 클릭 시 호출
Primary Acrtor	사용자
Goal	사용자가 서버연결 버튼 클릭 시 동작 수행
	1. 사용자가 서버연결 버튼 클릭
Basic Flow	2. IP 입력
220	1. 사용자가 서버연결 버튼 클릭

Use case Name	로봇 구동(도형위치버튼)	
Use case	이 Use case는 사용자가 로봇 구동 버튼 클릭 시 호출	
Description	9 03C Casce 14 8 4 1 2 2 4 1 2 2 4 1 2 2 4 1 2 2	
Primary Acrtor	사용자	
Goal	사용자가 로봇 구동 버튼 클릭 시 동작 수행	
Basic Flow	1. Delfoi로 (각 J01 ~ J06 각도) 값 전달	

- Class 다이어그램

- 사용자 인터페이스

- 프로그램 사용방법
 - 1. MFC 및 Delfoi Premium 4.1 를 이용하여 로봇 제어사용방법
 - 1) Delfoi Premium 4.1 실행 하여 로봇중에 "UNIVERSAL ROBOTS UR5e" 선택
 - 2) 오프셋 값 설정 (오프셋 설정 화면 보고 기록하기)
 - 3) 파이선 스크립트 추가 (서버)
 - 4) Delfoi Premium 4.1 프로그램 실행
 - 5) MFC 실행 (클라이언트)
 - * 참고 (저장고 구역에 물체를 놓아야하는 위치는 임의로 정해두었습니다)
 - 5-1) 서버연결 버튼 클릭 "본인 컴퓨터 IP입력"연결시도
 - 5-2) IP검색 방법 CMD창에서 ipconfig 입력 해서 IP확인체크 필요
 - 5-3) 작업대 X Y Z 좌표 입력 / 저장고 X Y Z 좌표 입력
 - 5-4) 로봇 구동 버튼 실행
 - 5-5) 각 List box에서 사용자가 목표로하는 위치값 및 조인트 각도, 도형의 위치 값 확인가능
 - 주요 함수 기능 (스케일 값 추출, 외각선 검출, 중심점 좌표 검출, 목표지점) [스케일 값 구하는 식]
 - (0,0) 좌표 x y / (10,10) 좌표 x y 추출
 - 두 점사이의 거리를 구하는 공식을 이용하여 d를 구함
 - (0,0) ~ (10,10) 까지의 실제 거리 200mm
 - D = 실제거리 = 200 / d(두점사이의 거리)
 - D = 실제 한칸의 거리 값이 추출 및 저장

```
// 코너 x1 , x2 값 추출
int x1 = corners[0].x;
int y1 = corners[0].y;
int x2 = corners[10].x;
int y2 = corners[10].y;

pt1.x = x1;
pt1.y = y1;
pt2.x = x2;
pt2.y = y2;

// x1,y1 x2,y2 사이의 거리 구하기 픽셀상
float d = sqrt(pow((x1 - x2), 2) + pow((y1 - y2), 2));

// 0.0 ~ 10.10 까지 실거리 측정하면 200MM

// 스케일 10칸에 한 실제 거리값
float a = 200; // 실거리 측정값

// 실거리 측정값 / 픽셀상의 거리 나누어서 스케일 값 구하기
D = a / d;

// 스케일 값을 이용하여 거리 측정 = 스케일 (D1)
D1 = d * D;
```


[중심점 좌표 검출 및 월드 좌표계 변환 방법]

- 센터 중심 좌표를 vector<Point> center1 저장
- center1.push_back(center) 값을 push_back 저장
- 스케일 값을 가져와서 각 도형의 중심좌표 X Y값에 곱해서 (실제 좌표계로 변환)
- 실제 좌표계 값을 파일로 저장

vector<Point> center1;

center1.push_back(center);

```
// 영상이 출력될때 처음 백터에 쓰레기 값이 들어가는 경우가 발생하여 딱 3개 잡은경우만 백터에 넣는 방식 if (contours.size() > 3) {
    pt1 = center1[0];
    pt2 = center1[1];
    pt3 = center1[2];

// 스케일 값 가져오기
FileStorage fsFrontRead("intricsics.yml", cv::FileStorage::READ);
    float scaleReuslt;
    fsFrontRead("Scale"] >> scaleReuslt;
    fsFrontRead.release();

//text = "scale x:" + to_string(scaleReuslt);
    //putText(dst, text, Point(100, 100), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 0, 255), 1);
    text = "center Point1 x:" + to_string(pt1.x) + "y:" + to_string(pt1.y);
    putText(dst, text, pt1, FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 0, 255), 1);
    text = "center Point2 x:" + to_string(pt2.x) + "y:" + to_string(pt3.y);
    putText(dst, text, pt2, FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 0, 255), 1);
    text = "center Point3 x:" + to_string(pt3.x) + "y:" + to_string(pt3.y);
    putText(dst, text, pt3, FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 0, 255), 1);

// 픽셀상의 중심 좌표를 실제 xy 값으로 변환 데이터 저장
FileStorage < "Point3" < pt3, x * scaleReuslt;
    fsStorage < "Point1x" < pt1.x * scaleReuslt;
    fsStorage < "Point2x" < pt2.x * scaleReuslt;
    fsStorage < "Point2x" < pt2.x * scaleReuslt;
    fsStorage < "Point2x" < pt2.x * scaleReuslt;
    fsStorage < "Point3y" < pt3.x * scaleReuslt;
    fsStorage < "Point3y" < pt3.x * scaleReuslt;
    fsStorage : release();
```


[원하는 위치의 목표 값을 구하기위한 식]

MATLAB을 이용하여 월드 좌표계 와 카메라 좌표 사이의 변환 행렬 - x축 으로 180도 회전 변환

$$\begin{bmatrix} Xw \\ Yw \\ Zw \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & tx \\ 0 & \cos\theta - \sin\theta & ty \\ 0 & \sin\theta & \cos\theta & tz \\ 0 & 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} Xc \\ Yc \\ Zc \\ 1 \end{bmatrix}$$

다음과 같이 식을 풀면 밑에 식이완성됩니다.

```
xw = tx + xc;

yw = ty + yc * cos(180 * CV_PI / 180) - zc * sin(180 * CV_PI / 180);

zw = tz + zc * cos(180 * CV_PI / 180) + yc * sin(180 * CV_PI / 180);
```

Xw, Yw, Zw (목표로 하는 위치좌표값)

Tx, Ty, Tz (작업대 위치, 저장고 위치 좌표값)

Xc, Yc, Zc (물체 도형 중심 좌표)

자코비안식을 이용하여 각도를 구하게 되고 이 각도로 원하는 위치로 이동

- 저장고 위치 원하는 임의 좌표 x -723 y 490.549011 z 0.0

- 저장고 위치 원하는 임의 좌표 2번째 x -748.705 y 178.03700 z 0.0

- 저장고 위치 원하는 임의 좌표 2번째 x -903 v 387 z 0.0

3. 결론

- 3.1 설계보완점 및 목표구현 정도
 - 1) 목표 구현 정도

스케일 측정: 100%

도형중심점, 중심좌표, 월드좌표계 변환 : 100 %

회전행렬 및 로봇중심 좌표 변환 : 100% 원하는 좌표 위치로 로봇움직임 : 100%

- 2) 보완 할점 : 정확한 위치로 로봇 움직임 필요(오차 차이가 조금 있음)
- 3.2 작품 개발과정에서 활용한 공학적 도구
 - 1. MATLAB R2019B
 - 2. Delfoi Premium 4.1
- 3.3 향후 개선사항
 - 1. 로봇의 정확한 위치를 위한 보간 작업 및 피드백 알고리즘 고안 필요