Learning Outcomes

- Small signal analysis and transistor biasing
- Apply small signal models to the solution of complex circuits (e.g. cascodes, current conveyors), including pole-zero calculations;
- Design circuits to bias transistors in the correct operating regime;
- Fundamental circuit design blocks and their performance
- Perform analyses for fundamental circuit blocks, including **current mirrors** (for low-voltage, wide swing application), amplifiers (2 stage folded cascode, source degeneration etc.), bandgap references, **switched capacitor networks**, **Gm-C filters**, and drivers;
- Evaluate the benefits of specific circuit blocks to design solutions, given a range of non-orthogonal system specifications;
- Frequency Response
- Analog-to-Digital Conversion(ADC) and Digital-to-Analog Conversion(DAC)
- Layout design

Learning Outcomes

BEHZAD RAZAVI Fundamentals of Microelectronics

SECOND EDITION

WILEY

Fundamental of Microelectronics Behzad Razavi 2nd Edition

Design of Analog CMOS Integrated Circuits Behzad Razavi 2nd Edition

IC Design Overview

Global Integrated Circuit (IC) design Market

Cray-2 Supercomputer

1985

2015

Mostly Silicon (CMOS) based devices

Source:
Forbes, IC Insights
http://blogs-images.forbes.com/greatspeculations/files/2015/09/IoT-PWC-Gartner-Graphic1.png

Why Analog

- Real-world signals are analog: continuous in amplitude, and continuous in time.
- Modern signal processing has evolved to be digital or discrete-time.
 Most signal processing is performed in the digital domain.
- Most analog systems perform the sensing, amplification, transmission and reception of *real-world* signals, before they can be processed by digital systems.

Why Analog?

Moor's law and analog design

Moore's Law and Beyond

A little history

- ... vacuum tubes, discrete components
- 1947: First integrated transistor
- 1953: Sonotone (hearing aid) contained 5 transistors
- 1950s: Fairchild, Texas instruments
- 1958: First Integrated circuits
- 1960s: MOS became popular
- 1965: Moore's Law ...

Used even in 1960s!

William Shockley, John Bardeen and Walter H.Brattein

First IC (Fairchild)

MOS IC (Intel)

A little history

William Shockley, John Bardeen and Walter H.Brattein

From lot's of Quantum mechanics to few simple equations

Carver Mead Lyn Conway

Formal rules of IC design

Transistor Abstraction

Device

Circuit

- Switching between levels of abstraction is necessary for
 - understanding the details of operation.
 - optimizing the overall performance.
- Interaction between all groups in industry is essential for high performance and low cost designs.

Basic semiconductor devices

Diode

Forward Bias

Reverse Bias

Diode: Real

- As V_G increases from zero, holes in p-substrate are repelled leaving negative ions behind to form a depletion region.
- There are no charge carriers, so no current flow.

- Increasing V_G further increases the width of the depletion region and the potential at the oxidesilicon interface.
- Structure resembles voltage divider consisting of gate-oxide capacitor and depletion region capacitor in series.

- When interface potential reaches sufficiently positive value, electrons flow from the source to the interface and eventually to the drain.
- This creates a channel of charge carriers (inversion layer) beneath the gate oxide.
- The value of V_G at which the inversion layer occurs is the threshold voltage (V_{TH}).

Transistor: NMOS

- overdrive voltage: V_{GS} V_{TH}
- With the condition, V_{DS} <<2(V_{GS} V_{TH}), we say the device operates in the deep triode region.

Transistor Switch

$$R_{eq} = \text{average}_{t = t_1 \dots t_2} (R_{on}(t)) = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} R_{on}(t) dt$$

$$\approx \frac{1}{2}(R_{on}(t_1) + R_{on}(t_2))$$

Transistor Switch

$$\approx \frac{1}{2}(R_{on}(t_1) + R_{on}(t_2))$$

$$R_{eq} = \frac{1}{2} \left(\frac{V_{DD}}{I_{DSAT}(1 + \lambda V_{DD})} + \frac{V_{DD}/2}{I_{DSAT}(1 + \lambda V_{DD}/2)} \right) \approx \frac{3}{4} \frac{V_{DD}}{I_{DSAT}} \left(1 - \frac{5}{6} \lambda V_{DD} \right)$$

$$V_{out} = V_{DD} - I_D R_D$$

= $V_{DD} - \frac{1}{2} \mu_n C_{ox} \frac{W}{L} R_D (V_{in} - V_{TH})^2$,

$$V_{out,min} = V_{DD} - R_D I_{D,max}$$

$$= V_{DD} - \frac{1}{2} \mu_n C_{ox} \frac{W}{L} R_D [2(V_{DD} - V_{TH}) V_{out,min} - V_{out,min}^2].$$

$$V_{out} = V_{DD} - I_D R_D$$

= $V_{DD} - \frac{1}{2} \mu_n C_{ox} \frac{W}{L} R_D (V_{in} - V_{TH})^2$,

$$V_{out,min} = V_{DD} - R_D I_{D,max}$$

$$= V_{DD} - \frac{1}{2} \mu_n C_{ox} \frac{W}{L} R_D [2(V_{DD} - V_{TH}) V_{out,min} - V_{out,min}^2].$$

$$V_{out,min} \approx -\frac{V_{DD}}{1 + \mu_n C_{ox} \frac{W}{L} R_D (V_{DD} - V_{TH})}.$$

Infinite Transition Region Gain

Finite Transition Region Gain

Inverter VTC

$$I_{sat} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2$$

$$\begin{split} I_{DSp} &= -I_{DSn} \\ V_{GSn} &= V_{in} \;\; ; \;\; V_{GSp} = V_{in} - V_{DD} \\ V_{DSn} &= V_{out} \;\; ; \;\; V_{DSp} = V_{out} - V_{DD} \end{split}$$

$$I_{DN} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH})^2$$
 $I_{DP} = \frac{1}{2} \mu_p C_{ox} \frac{W}{L} ((V_{in} - V_{DD}) - V_{TH})^2$

Inverter VTC

Voltage Transfer Characteristics(VTC) of CMOS Inverter

$$V_{\mathrm{inv}} = \frac{V_{DD} + V_{tp} + V_{tn} \sqrt{\frac{1}{r}}}{1 + \sqrt{\frac{1}{r}}}$$

$$V_{\text{inv}} = \frac{V_{DD} + V_{tp} + V_{tn} \frac{1}{r}}{1 + \frac{1}{r}}$$

Including velocity saturation

Inverter VTC

Reducing V_{DD} improves gain.... but up to a certain limit

Inverter Noise Margin

Inverter Power

$$P_{total} = P_{dyn} + P_{stat}$$

= $P_{tran} + P_{sc} + P_{stat}$

Inverter Power

$$E_{VDD} = \int_{0}^{\infty} i_{VDD}(t) V_{DD} dt = V_{DD} \int_{0}^{\infty} C_{L} \frac{dv_{out}}{dt} dt$$

$$= C_{L} V_{DD} \int_{0}^{\infty} dv_{out} = C_{L} V_{DD}^{2}$$

$$E_{C} = \int_{0}^{\infty} i_{VDD}(t) v_{out} dt = \int_{0}^{\infty} C_{L} \frac{dv_{out}}{dt} v_{out} dt = C_{L} \int_{0}^{V_{DD}} v_{out} dv_{out} = \frac{C_{L} V_{DD}^{2}}{2}$$

$$P_{dyn} = C_L V_{DD}^2 f_{0 \to 1}$$

Voltage scaling is the most popular

Inverter Delay

$$C_{lumped} \frac{dV_{out}}{dt} + \frac{V_{out} - V_{in}}{R_{driver}} = 0 \qquad V_{out}(t) = (1 - e^{-t/\tau}) V$$

$$t = \ln(2)\tau = 0.69\tau$$

Time needed to rise 50% of final value

Inverter Delay

$$t_{pHL} = \ln(2)R_{eqn}C_L = 0.69R_{eqn}C_L$$

$$t_{pLH} = 0.69 R_{eqp} C_L$$

$$t_p = \frac{t_{pLH} + t_{pHL}}{2}$$

Inverter Delay

Ring Oscillator

$$T = 2 \times t_p \times N$$

Analog again!

Current Source

 \triangleright Do not operate as current sources because variation of V_x or V_y directly changes the gate-source voltage of each transistor, thus changing the drain current considerably

Small signal models

$$g_m = \frac{\partial I_D}{\partial V_{GS}}.$$

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2$$

[in saturation]

$$g_m = \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})$$

$$g_m = \sqrt{2\mu_n C_{ox} \frac{W}{L} I_D}.$$

$$g_m = \frac{2I_D}{V_{GS} - V_{TH}}$$

 \triangleright g_m represents the sensitivity of the device: for a high g_m , a small change in V_{GS} results in a large change in I_D .

Small signal models

- $I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{I} (V_{GS} V_{TH})^2 (1 + \lambda V_{DS})$ $=\frac{1}{\partial I_D/\partial V_{DS}}$ $g_{mb} = \frac{\partial I_D}{\partial V_{RS}}$ $= \mu_{\pi} C_{ox} \frac{W}{L} (V_{GS} - V_{TH}) \left(-\frac{\partial V_{TH}}{\partial V_{RS}} \right)$ $g_{mb} = g_m \frac{\gamma}{2\sqrt{2\Phi_E + V_{SB}}}$
- Owing to channel-length modulation, the drain current also varies with the drain-source voltage
- The bulk potential influences the threshold voltage and hence the gate-source overdrive

Complete MOS small-signal

Common Source Amplifier

$$v_o = -g_m v_{in} R_D$$

$$A_{v} = \frac{v_{out}}{v_{in}} = -g_{m}R_{D}, \qquad R_{in} = \infty \qquad R_{out} = R_{D}$$

$$R_{in} = \infty$$

$$R_{out} = R_D$$

Common Source Amplifier

 $(1/2)\mu_n C_{ox}(W/L)(V_{in} - V_{TH})^2 \lambda = 1/r_O$

$$A_v = -R_D g_m - \frac{R_D}{r_O} A_v$$

For large values of R_D , the effect of channel-length modulation in M_1 becomes

$$A_v = -g_m \frac{r_O R_D}{r_O + R_D}$$

$$\begin{split} V_{out} &= V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH})^2 (1 + \lambda V_{out}) \\ \frac{\partial V_{out}}{\partial V_{in}} &= -R_D \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH}) (1 + \lambda V_{out}) \\ -R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH})^2 \lambda \frac{\partial V_{out}}{\partial V_{in}} \end{split}$$

$$A_v = -g_m(R_D||r_O)$$

$$R_{in} = \infty$$

$$R_{out} = R_D||r_O.$$

$$v_{1} \longrightarrow g_{m}v_{1} \nearrow r_{0} \nearrow R_{D} \longrightarrow v_{X}$$

CS Amplifier: Current-Source Load

In applications requiring a large voltage gain in a single stage, the relationship $A_v = -g_m R_D$ suggests that we should increase the load impedance of the CS stage. With a resistor or diode-connected load, however, increasing the load resistance translates to a large dc drop across the load, thereby limiting the output voltage swing.

CS Amplifier: Active Load

$$A_v = -g_{m1}(r_{O1}||r_{O2})$$

$$R_{out} = r_{O1}||r_{O2}.$$

The PMOS device serves as a constant current

PMOS Amplifier

$$A_v = -g_{m2}(r_{O1}||r_{O2})$$

PMOS *M*₂ to operate as an *amplifying* device

CS Amplifier: Diode Load

In some CMOS technologies, it is difficult to fabricate resistors with tightly controlled values or a reasonable physical size. Consequently, it is desirable to replace R_D with a MOS transistor

CS Amplifier: Example

$$I_D = 1 \text{mA}, \ \mu C_{ox} = 100 \ \mu \text{A/V}^2, \ V_{TH} = 0.5 \text{V}$$

Find the gain and operating region of M₁

CS Amplifier: Example

How?

$$I_D = 1 \text{mA}, \ \mu C_{ox} = 100 \ \mu \text{A/V}^2, \ V_{TH} = 0.5 \text{V}$$

Find the gain and operating region of M₁

$$g_m = \sqrt{2\mu_n C_{ox} \frac{W}{L} I_D}$$

$$= \frac{1}{300 \Omega}.$$

$$A_v = -g_m R_D$$

$$= 3.33.$$

$$V_{GS} = V_{TH} + \sqrt{\frac{2I_D}{\mu_n C_{ox} \frac{W}{L}}}$$
 $V_{DS} = V_{DD} - I_D R_D = 0.8V$ $V_{GS} - V_{TH} = 0.6$ $V_{DS} > V_{GS} - V_{TH}$ In saturation!

Source Follower

$$g_m v_1(r_O||R_L) = v_{out}.$$

$$v_{in} = v_1 + v_{out}$$

Source Follower

$$\frac{v_{out}}{v_{in}} = \frac{g_m(r_O||R_L)}{1 + g_m(r_O||R_L)}$$
$$= \frac{r_O||R_L}{\frac{1}{g_m} + r_O||R_L}. \approx 1$$

Increase R_L (and r_o)

Source Follower

$$\frac{v_{out}}{v_{in}} = \frac{g_m(r_O||R_L)}{1 + g_m(r_O||R_L)}$$
$$= \frac{r_O||R_L}{\frac{1}{g_m} + r_O||R_L}.$$

Source Follower: Active Load

Find the gain and output impedance using small signal analysis

$$A_v = \frac{r_{O1}||r_{O2}|}{\frac{1}{g_{m1}} + r_{O1}||r_{O2}|}$$

If $r_{O1}||r_{O2}\gg 1/g_{m1}$, then $A_v\approx 1$

Source Follower: Application

Our analysis of the common-source stage indicates that, to achieve a high voltage gain with limited supply voltage, the load impedance must be as large as possible. If such a stage is to drive a lowimpedance load, then a "buffer" must be placed after the amplifier so as to drive the load with negligible reduction in gain. The source follower (also called the "common-drain" stage) can operate as a voltage buffer.

Amplifier Biasing: CS

When $V_{in}=0$, $V_{GS}=?$, $V_{DS}=?$

Amplifier Biasing: SF

Vhen
$$V_{in}=0$$
, $V_{GS}=?$, $V_{DS}=?$

Current Mirror biasing

$$I_1 = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2$$
$$= \frac{1}{2} \underline{\mu_n} C_{ox} \frac{W}{L} \left(\frac{R_2}{R_1 + R_2} \underline{V_{DD}} - \underline{V_{TH}} \right)^2$$

Not a constant biasing! I_1 depends on temperature and supply variation

Current Mirror

$$V_{GS} = V_{DS} = V_X$$

 M_{RFF} is always in saturation

$$I_{D,REF} = \frac{1}{2}\mu_n C_{ox} \left(\frac{W}{L}\right)_{REF} (V_X - V_{TH})^2 \qquad I_{copy} = \frac{1}{2}\mu_n C_{ox} \left(\frac{W}{L}\right)_1 (V_X - V_{TH})^2$$

$$V_X = \sqrt{\frac{2I_{REF}}{\mu_n C_{ox} \left(\frac{W}{L}\right)}} + V_{TH1}$$

$$I_{copy} = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right)_1 (V_X - V_{TH})^2$$

$$I_{copy} = \frac{\left(\frac{W}{L}\right)_1}{\left(\frac{W}{L}\right)_{REF}} I_{REF}$$

Current Mirror biasing

➤ This circuit is not a current mirror because only a diode-connected device can establish and hence a copy current independent of device parameters and temperature. Since the gates of M_{REF} and M_1 are floating, they can assume any voltage, e.g., an initial condition created at node X when the power supply is turned on. In other words, I_{copy} is very poorly defined.

Current Mirror biasing

➤ An integrated circuit employs the source follower and the common-source stage shown below. Design a current mirror that produces I₁ and I₂ from a 0.3-mA

reference

Cascode Gain Stage

$$A_{v} = -G_{m}R_{out}$$
 $\approx -g_{m1}[(1+g_{m2}r_{O2})r_{O1} + r_{O2}]$
 $\approx -g_{m1}r_{O1}g_{m2}r_{O2}.$
 $R_{on} \approx g_{m2}r_{O2}r_{O1}$
 $R_{op} \approx g_{m3}r_{O3}r_{O4}$
 $R_{out} = (1+g_{m1}r_{O2})r_{O1} + r_{O2}$
 $\approx g_{m1}r_{O1}r_{O2},$
 $R_{v} \approx -g_{m1}[(g_{m2}r_{O2}r_{O1})||(g_{m3}r_{O3}r_{O4})]$

Cascode stages can have quite large gain for a single stage due to the large impedances at the output. To enable this high gain, the current sources connected to the output nodes are realised using high-quality cascode current mirrors. Normally this high gain is obtained without any degradation in speed.

Cascode Gain Stage: Example

The cascode amplifier incorporates the following device parameters: $(W/L)_{1,2} = 30$, $(W/L)_{3,4} = 40$, $I_{D1} = \cdot \cdot \cdot = I_{D4} = 0.5$ mA. If $\mu_n C_{ox} = 100 \ \mu \text{A/V}^2$, $\mu_p C_{ox} = 50 \ \mu \text{A/V}^2$, $\lambda_n = 0.1 \ \text{V}^{-1}$ and $\lambda_p = 0.15 \ \text{V}^{-1}$, determine the voltage

Galsalution With the particular choice of device parameters here, $g_{m1} = g_{m2}$, $r_{O1} = r_{O2}$, $g_{m3} = g_{m4}$, and $r_{O3} = r_{O4}$. We have

$$g_{m1,2} = \sqrt{2\mu_n C_{ox} \left(\frac{W}{L}\right)_{1,2} I_{D1,2}}$$
$$= (577 \Omega)^{-1}$$

and

$$g_{m3,4} = (707 \Omega)^{-1}$$
.

Also,

$$r_{O1,2} = \frac{1}{\lambda_n I_{D1,2}}$$
$$= 20 \,\mathrm{k}\Omega$$

and

$$r_{O3.4} = 13.3 \text{ k}\Omega.$$

$$R_{on} \approx 693 \text{ k}\Omega$$

 $R_{op} \approx 250 \text{ k}\Omega$

and

$$A_v = -g_{m1}(R_{on}||R_{op})$$
$$\approx -318.$$