

10/035,932.

CHARLES B. GORDON
 THOMAS P. SCHILLER
 DAVID B. DEIOMA
 JOSEPH J. CORSO
 HOWARD G. SHIMOTA
 JEFFREY J. SOPKO
 JOHN P. MURTAUGH
 JAMES M. MOORE
 MICHAEL W. GARVEY
 RICHARD A. SHARPE
 RONALD M. KACHMAN
 PAUL A. SERBINOWSKI
 BRIAN G. BEMBENICK
 AARON A. FISHMAN

PEARNE & GORDON LLP
 ATTORNEYS AT LAW
 1801 EAST 9th STREET
 SUITE 1200
 CLEVELAND, OHIO 44114-3108
 TEL: (216) 579-1700 FAX: (216) 579-6073
 EMAIL: ip@pearnegordon.com

STEPHEN S. WENTSLER
 ROBERT F. BODI
 SUZANNE B. GAGNON
 UNA L. LAURICIA
 STEVEN J. SOLOMON
 GREGORY D. FERNENGEL

OF COUNSEL
 LOWELL L. HEINKE
 THADDEUS A. ZALENSKI

PATENT, TRADEMARK,
 COPYRIGHT AND RELATED
 INTELLECTUAL PROPERTY LAW

February 8, 2005

Mail Stop Certificate of Corrections Branch
 Commissioner for Patents
 P.O. Box 1450
 Alexandria, VA 22313-1450

Certificate
 FEB 16 2005
 of Correction

Re: U.S. Patent No.: 6,827,805 B2
 Issued: December 7, 2004
 Inventor: Angell et al.
 Our Docket: 31125US2

Sir:

A Certificate of Correction under 35 U.S.C. 254 is hereby requested to correct Patent Office printing errors in the above-identified patent. Enclosed herewith is a proposed Certificate of Correction (Form No. PTO-1050) for consideration along with appropriate documentation supporting the request for correction.

It is requested that the Certificate of Correction be completed and mailed at an early date to the undersigned attorney of record. The proposed corrections are obvious ones and do not in any way change the sense of the application.

We understand that a check is not required since the errors were on the part of the Patent and Trademark Office in printing the patent.

Very truly yours,

Jeffrey J. Sopko, Reg. No. 27676

JJS:vln
 Enclosures

I hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail in an envelope addressed to: Mail Stop Certificate of Corrections Branch, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450 on the date indicated below.

Jeffrey J. Sopko

Name of Attorney for Applicant(s)

February 8, 2005

Date

Signature of Attorney

FEB 17 2005

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 6,827,805 B2

PAGE 1 OF 1

DATED : December 8, 2004

INVENTOR(S) : Angell et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 8

Claim 1, line 56, please delete "web of".

Column 9

Claim 3, line 3, please delete "fiber" and insert therefor --fibers--.

Column 9

Claim 5, line 9, please delete "fiber" and insert therefor --fibers--.

Column 9

Claim 7, line 30, please delete "fiber" and insert therefor --fibers--.

Column 10

Claim 11, line 5, please delete "fiber" and insert therefor --fibers--.

Column 10

Claim 14, line 31, please delete "fiber" and insert therefor --fibers--.

Column 11

Claim 18, line 56, please delete "fiber" and insert therefor --fibers--.

MAILING ADDRESS OF SENDER:

Jeffrey J. Sopko
Pearne & Gordon LLP
1801 East 9th Street
Suite 1200
Cleveland, Ohio 44114-3108

PATENT NO. 6,827,805 B2

No. of additional copies

⇒ 0

FEB 17 2005

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1 1. (currently amended) : A method of making a web of
2 conductive filler, comprising the steps of:
3 placing a core material onto an interior surface of a web
4 of conductive layer material comprised substantially
5 of including substantially non-conductive fibers;
6 and
7 turning first and second edges of the conductive layer
8 material upward, folding the first edge of the
9 conductive layer material over the core material,
10 and folding the second edge of the conductive layer
11 material over the first edge of conductive layer
12 material.
- 1 2. (original) : The method according to claim 1, further
2 comprising the step of placing a web of adhesive layer
3 material onto the interior surface of the web of conductive
4 layer material.
- 1 3. (previously presented) The method according to claim 2
2 wherein said web of conductive layer includes the
3 substantially non-conductive fibers impregnated with a
4 conductive resin.
- 1 4. (currently amended) : The method according to claim 1,
2 further comprising the step of placing a web of adhesive layer
3 material onto the ~~exterior~~ interior of the web of
4 conductive layer material.

- 1 5. (previously presented) The method according to claim 1
2 wherein said web of conductive layer includes the

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1 1. (currently amended) : A method of making a web of
2 conductive filler, comprising the steps of:
3 placing a core material onto an interior surface of a web
4 of conductive layer material comprised substantially
5 of including substantially non-conductive fibers;
6 and
7 turning first and second edges of the conductive layer
8 material upward, folding the first edge of the
9 conductive layer material over the core material,
10 and folding the second edge of the conductive layer
11 material over the first edge of conductive layer
12 material.
- 1 2. (original) : The method according to claim 1, further
2 comprising the step of placing a web of adhesive layer
3 material onto the interior surface of the web of conductive
4 layer material.
- 1 3. (previously presented) The method according to claim 2
2 wherein said web of conductive layer includes the
3 substantially non-conductive fibers impregnated with a
4 conductive resin.
- 1 4. (currently amended) : The method according to claim 1,
2 further comprising the step of placing a web of adhesive layer
3 material onto the ~~exterior~~ surface interior of the web of
4 conductive layer material.
- 1 5. (previously presented) The method according to claim 1
2 wherein said web of conductive layer includes the

3 substantially non-conductive fibers impregnated with a
4 conductive resin.

1 6. (currently amended): A method for making a conductive
2 filler material comprising the steps of:

3 selecting a web of conductive layer material comprised
4 substantially of non-conductive fibers; said web of
5 conductive layer material having an interior surface
6 and an exterior surface;

7 positioning a web of non-conducting core material onto
8 said interior surface of said web of conductive
9 layer material;

10 folding said web of conductive layer material around said
11 web of non-conducting core material, wherein said
12 web of conductive layer material is completely
13 wrapped around said web of non-conducting core
14 material; and

15 pressing said web of non-conducting core material wrapped
16 with said web of conductive layer material by
17 passing through a pair of rollers to form said
18 conductive filler.

1 7. (previously presented): The method according to claim
2 6, wherein said web of conductive layer material includes
3 substantially non-conductive fibers impregnated with a
4 conductive resin.

1 8. (original): The method according to claim 7, wherein
2 said web of conductive layer material is folded around said
3 web of non-conducting core material such that said web of
4 conductive layer material overlaps itself on one side of said
5 web of non-conducting core material, thereby forming a
6 laminated layer of said web of conductive layer material.

3 substantially non-conductive fibers impregnated with a
4 conductive resin.

1 6. (currently amended): A method for making a conductive
2 filler material comprising the steps of:

3 selecting a web of conductive layer material comprised
4 substantially of non-conductive fibers; said web of
5 conductive layer material having an interior surface
6 and an exterior surface;

7 positioning a web of non-conducting core material onto
8 said interior surface of said web of conductive
9 layer material;

10 folding said web of conductive layer material around said
11 web of non-conducting core material, wherein said
12 web of conductive layer material is completely
13 wrapped around said web of non-conducting core
14 material; and

15 pressing said web of non-conducting core material wrapped
16 with said web of conductive layer material by
17 passing through a pair of rollers to form said
18 conductive filler.

1 7. (previously presented): The method according to claim
2 6, wherein said web of conductive layer material includes
3 substantially non-conductive fibers impregnated with a
4 conductive resin.

1 8. (original): The method according to claim 7, wherein
2 said web of conductive layer material is folded around said
3 web of non-conducting core material such that said web of
4 conductive layer material overlaps itself on one side of said
5 web of non-conducting core material, thereby forming a
6 laminated layer of said web of conductive layer material.

27 passing through a pair of rollers to form said
28 conductive filler.

1 11. (previously presented): The method according to claim
2 10, wherein said web of conductive material includes
3 substantially non-conductive fibers impregnated with a
4 conductive resin.

1 12. (original): The method according to claim 11, wherein
2 said web of conductive material is folded around said web of
3 non-conducting core such that said web of conductive material
4 overlaps itself on one side of said web of non-conducting core
5 material, and further wherein one of said first and said
6 second adhesive webs is against a top surface of said web of
7 non-conducting core material and the other of said first and
8 said second adhesive webs is against said exterior surface of
9 said web of conductive material, thereby forming a conductive
10 filler having a laminated layer of said conductive material.

1 13. (original): The method for making a conductive filler
2 material of claim 10, wherein said web of conductive material
3 is folded around said web of non-conducting core such that
4 said web of conductive material overlaps itself on one side of
5 said web of non-conducting core, and further wherein one of
6 said first and said second adhesive webs is against a top
7 surface of said web of non-conducting core material and the
8 other of said first and said second adhesive webs is against
9 said exterior surface of said web of conductive material,
10 thereby forming a conductive filler having a laminated layer
11 of said conductive material.

1 14. (previously presented): A method for making a
2 conductive filler material comprising the steps of:

27 passing through a pair of rollers to form said
28 conductive filler.

1 11. (previously presented): The method according to claim
2 10, wherein said web of conductive material includes
3 substantially non-conductive fibers impregnated with a
4 conductive resin.

1 12. (original): The method according to claim 11, wherein
2 said web of conductive material is folded around said web of
3 non-conducting core such that said web of conductive material
4 overlaps itself on one side of said web of non-conducting core
5 material, and further wherein one of said first and said
6 second adhesive webs is against a top surface of said web of
7 non-conducting core material and the other of said first and
8 said second adhesive webs is against said exterior surface of
9 said web of conductive material, thereby forming a conductive
10 filler having a laminated layer of said conductive material.

1 13. (original): The method for making a conductive filler
2 material of claim 10, wherein said web of conductive material
3 is folded around said web of non-conducting core such that
4 said web of conductive material overlaps itself on one side of
5 said web of non-conducting core, and further wherein one of
6 said first and said second adhesive webs is against a top
7 surface of said web of non-conducting core material and the
8 other of said first and said second adhesive webs is against
9 said exterior surface of said web of conductive material,
10 thereby forming a conductive filler having a laminated layer
11 of said conductive material.

1 14. (previously presented): A method for making a
2 conductive filler material comprising the steps of:

3 selecting a web of conductive material, said conductive
4 material including substantially non-conductive
5 fibers impregnated with a conductive resin; said web
6 of conductive material having an interior surface
7 and an exterior surface;
8 selecting a first adhesive web having a first side and a
9 second side, said first side of said first adhesive
10 web covered by a first release liner,
11 selecting a second adhesive web having a first side and a
12 second side, said first side of said second adhesive
13 web covered by a second release liner;
14 positioning said first adhesive web covered by said first
15 release liner on said first edge of said web of
16 conductive material, wherein said second side of
17 said first adhesive web is in contact with said
18 interior surface of said web of conductive material;
19 positioning said second adhesive web covered by said
20 second release liner on said second edge of said web
21 of conductive material, wherein said second side of
22 said second adhesive web is in contact with said
23 interior surface of said web of conductive material;
24 pressing to secure said first adhesive web and said
25 second adhesive web to said web of conductive
26 material, wherein said pressing is done by passing
27 said web of conductive material with said adhesive
28 webs thereon through a first pair of rollers;
29 removing said first release liner from said first
30 adhesive web;
31 removing said second release liner from said second
32 adhesive web;
33 selecting a web of non-conducting core material including
34 non-woven fibers impregnated with a resin;
35 positioning said web of non-conducting core material onto
36 said interior surface of said web of conductive

37 material between said first and said second adhesive
38 webs;
39 folding said web of conductive material with said first
40 and said second adhesive webs thereon around said
41 web of non-conducting core material at a forming
42 station by upwardly bending or folding said web of
43 conductive material to form an unfinished filler;
44 and
45 pressing said unfinished filler by passing said
46 unfinished filler through said second pair of
47 rollers, wherein sufficient pressure is applied by
48 said pressing to secure said second side of said
49 outer adhesive web to said center portion of said
50 top surface of said unfinished filler, thereby
51 forming said conductive filler[;].

1 15. (previously presented): The method for making a
2 conductive filler material of claim 14, wherein said web of
3 conductive material is folded around said web of non-
4 conducting core such that one of said first and said second
5 adhesive webs is against a surface of said web of non-
6 conducting core material and the other of said first and said
7 second adhesive webs is against said exterior surface of said
8 web of conductive material, said bending or folding forming a
9 laminated layer of said web of conductive material, wherein
10 said web of conductive material is completely wrapped around
11 said web of non-conducting core material, thereby forming said
12 unfinished filler having said laminated layer of said
13 conductive material, said method thereby resulting in a
14 conductive filler having said laminated layer of said
15 conductive material.

1 16. (original): The method according to claim 14, further
2 comprising the steps of:

3 selecting an outer adhesive web having a first side and a
4 second side, said first side of said outer adhesive
5 web covered by an outer release liner; and
6 directing said outer adhesive web with said outer release
7 liner onto a center portion of said top surface of
8 said unfinished filler, and then completing the step
9 directing said unfinished filler toward said second
10 pair of rollers.

1 17. (previously presented): The method for making a
2 conductive filler material of claim 14 , wherein said web of
3 conductive material is folded around said web of non-
4 conducting core such that one of said first and said second
5 adhesive webs is against a top surface of said web of non-
6 conducting core material and the other of said first and said
7 second adhesive webs is against said exterior surface of said
8 web of conductive material, said bending or folding forming a
9 laminated layer of said web of conductive material, wherein
10 said web of conductive material is completely wrapped around
11 said web of non-conducting core material, thereby forming the
12 unfinished filler with a top surface having with said
13 laminated layer of said conductive material, said method
14 thereby resulting in a conductive filler with a top surface
15 having said laminated layer of said conductive material.

1 18. (currently amended): A method for making a conductive
2 filler material comprising the steps of:

3 [[F]]feeding a web of conductive material from a roll of
4 said web of conductive material at a first unwind
5 station, said conductive material including
6 substantially non-conductive fibers impregnated with
7 a conductive resin; said web of conductive material
8 having an interior surface and an exterior surface,

9 with said interior surface including a first edge
10 and a second edge;
11 / directing said web of conductive material to a second
12 unwind station having a first and a second roll of
13 adhesive material, wherein said first roll of
14 adhesive material includes a first adhesive web
15 having a first side and a second side, said first
16 side of said first adhesive web covered by a first
17 release liner, and further wherein said second roll
18 of adhesive material includes a second adhesive web
19 having a first side and a second side, said first
20 side of said second adhesive web covered by a second
21 release liner;
22 unwinding and positioning said first adhesive web covered
23 by said first release liner on said first edge of
24 said web of conductive material, wherein said second
25 side of said first adhesive web is in contact with
26 said interior surface of said web of conductive
27 material;
28 unwinding and positioning said second adhesive web
29 covered by said second release liner on said second
30 edge of said web of conductive material, wherein
31 said second side of said second adhesive web is in
32 contact with said interior surface of said web of
33 conductive material;
34 directing said web of conductive material with both said
35 first adhesive web with said first release liner and
36 said second adhesive web with said second release
37 liner thereon toward a first pair of rollers;
38 pressing to secure said first adhesive web and said
39 second adhesive web to said web of conductive
40 material, wherein said pressing is done by passing
41 said web of conductive material with said adhesive
42 webs thereon through said first pair of rollers;

10.

43 removing said first release liner from said first
44 adhesive web by using a first liner collector;
45 removing said second release liner from said second
46 adhesive web by using one of said first liner
47 collector and a second liner collector;
48 directing said web of conductive material with both said
49 first and said second adhesive webs thereon to a
50 third unwind station containing a roll of a web of a
51 non-conducting core material, said web of non-
52 conducting core material including non-woven fibers
53 impregnated with a resin;
54 feeding and positioning said web of non-conducting core
55 material onto said interior surface of said web of
56 conductive material between said first and said
57 second adhesive webs;
58 directing said web of conductive material with both said
59 first and said second adhesive webs thereon and also
60 with said web of non-conducting core material
61 thereon, to a forming station;
62 folding said web of conductive material with said first
63 and said second adhesive webs thereon around said
64 web of non-conducting core material by upwardly
65 bending or folding said web of conductive material,
66 wherein one of said first and said second adhesive
67 webs is against a top surface of said web of non-
68 conducting core material and the other of said first
69 and said second adhesive webs is against said
70 exterior surface of said web of conductive material,
71 said bending or folding forming a laminated layer of
72 said web of conductive material, wherein said web of
73 conductive material is completely wrapped around
74 said web of non-conducting core material, thereby
75 forming an unfinished filler with a top surface

76 having said laminated layer of said conductive
77 material;
78 directing said unfinished filler toward a second pair of
79 rollers; and
80 pressing said unfinished filler by passing said
81 unfinished filler through said second pair of
82 rollers, wherein sufficient pressure is applied by
83 said pressing to secure said second side of said
84 outer adhesive web to said center portion of said
85 top surface of said unfinished filler, thereby
86 forming said conductive filler.

1 19. (original): The method according to claim 18, further
2 comprising the steps of:

3 before directing said unfinished filler toward said
4 second pair of rollers, directing said unfinished
5 filler material toward a fourth unwind station
6 containing a third roll of adhesive material
7 containing an outer adhesive web having a first side
8 and a second side, said first side of said outer
9 adhesive web covered by an outer release liner; and
10 unwinding and directing said outer adhesive web with said
11 outer release liner onto a center portion of said
12 top surface of said unfinished filler, and then
13 completing the step directing said unfinished filler
14 toward said second pair of rollers.

1 20. (original): The method according to claim 19, further
2 comprising the steps of:

3 directing said conductive filler toward a rewind station;
4 and
5 winding said conductive filler onto a rewind roll using
6 said rewind station, wherein said conductive filler
7 can then be packaged and shipped to a destination.