Hierarchical Clustering

- Two main types:
 - Agglomerative
 - Start with the points as individual clusters
 - Merge clusters until only one is left
 - Divisive
 - Start with all the points as one cluster
 - Split clusters until only singleton clusters remain
 - Agglomerative is more popular
- Traditional hierarchical algorithms use a similarity or distance matrix.
 - Merge or split one cluster at a time

Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree.
- Can be visualized as a dendrogram
 - Tree like diagram
 - Records the sequences of merges or splits

Can 'cut' the dendrogram to get a partitional clustering

Basic Agglomerative Clustering Algorithm

- Algorithm is straightforward
 - Compute the proximity matrix, if necessary
 - Let each data point be a cluster
 - Repeat
 - Merge the two closest clusters
 - Update the proximity matrix
 - Until only a single cluster remains
- Key operation is the computation of the proximity of two clusters.
- Different approaches to defining the distance between clusters distinguishes the different algorithms.

Agglomerative Hierarchical Clustering: Starting Situation

 For agglomerative hierarchical clustering we start with clusters of individual points

and a proximity matrix.

	p1	p2	р3	p4	p5	<u> </u>
p1						
<u>p2</u>						
р3						
p4						
p5						
	7					

Agglomerative Hierarchical Clustering: Intermediate Situation

• After some merging steps, we have some clusters.

Agglomerative Hierarchical Clustering: Intermediate Situation

 We want to merge the two closest clusters (C2 and C5) and update the proximity

matrix.

Agglomerative Hierarchical Clustering: After Merging

• The question is "How do we update the proximity matrix?"

	p1	p2	р3	p4	p5	<u> </u>
p1					17	
1						
<u>p</u> 2						
р3						
<u>p4</u> p5						
-						

- MIN
- MAX
- Group Average
- Distance Between Centroids

- Other methods driven by an objective function
 - Ward's Method uses squared error

- MIN
- MAX
- Group Average
- Distance Between Centroids

- Other methods driven by an objective function
 - Ward's Method uses squared error

	p1	p2	p3	p4	p5	<u> </u>
p1						
p2	ł					
p3						
<u>p4</u> p5						
1			- 10			

- MIN
- MAX
- Group Average
- Distance Between Centroids

- Other methods driven by an objective function
 - Ward's Method uses squared error

	p1	p2	р3	p4	p5	<u> </u>
p1						
p2						
<u>p2</u> p3						Ī
<u>p4</u>						
<u>p5</u>						

- MIN
- MAX
- Group Average
- Distance Between Centroids

- Other methods driven by an objective function
 - Ward's Method uses squared error

Cluster Similarity: MIN or Single Link

- Similarity of two clusters is based on the two closest points in the different clusters.
 - Determined by one pair of points, i.e., by one link in the proximity graph.
- Can handle non-elliptical shapes.
- Sensitive to noise and outliers.

Hierarchical Clustering: MIN

Nested Clusters

Dendrogram

Strength of MIN

Original Points

Two Clusters

Limitations of MIN

Original Points

Two Clusters

Cluster Similarity: MAX or Complete Linkage

- Similarity of two clusters is based on the two most distant points in the different clusters.
 - Determined by all pairs of points in the two clusters.
- Tends to break large clusters.
- Less susceptible to noise and outliers.
- Biased towards globular clusters.

Hierarchical Clustering: MAX

Nested Clusters

Dendrogram

Strength of MAX

Original Points

Two Clusters

Limitations of MAX

Original Points

Two Clusters

Cluster Similarity: Group Average

Distance of two clusters is the average of pairwise distance between points in the two clusters.
 \(\sum_{\text{distance}(\pri_i, \pri_i)}\)

```
distance(Cluster<sub>i</sub>, Cluster<sub>j</sub>) = \frac{p_i \in Cluster_i}{|Cluster_i|} * |Cluster_i|
```

- Compromise between Single and Complete Link.
- Need to use average connectivity for scalability since total connectivity favors large clusters.
- Less susceptible to noise and outliers.
- Biased towards globular clusters.

Hierarchical Clustering: Group Average

Nested Clusters

Dendrogram

Cluster Similarity: Ward's Method

- Similarity of two clusters is based on the increase in squared error when two clusters are merged.
 - Similar to group average if distance between points is distance squared.
- Less susceptible to noise and outliers.
- Biased towards globular clusters.
- Hierarchical analogue of K-means
 - But Ward's method does not correspond to a local minimum
 - Can be used to initialize K-means

Hierarchical Clustering: Ward's method

Nested Clusters

Dendrogram

Hierarchical Clustering: Comparison

Ward's Method

Group Average

Hierarchical Clustering: Time and Space requirements

- O(N²) space since it uses the proximity matrix.
 - N is the number of points.
- $O(N^3)$ time in many cases.
 - There are N steps and at each step the proximity matrix (size N²) must be updated and searched.
 - By being careful, the complexity can be reduced to O(N² log N) time for some approaches.

Hierarchical Clustering: Problems and Limitations

- Once a decision is made to combine two clusters, it cannot be undone.
- No objective function is directly minimized.
- Different schemes have problems with one or more of the following:
 - Sensitivity to noise and outliers.
 - Difficulty handling different sized clusters and convex shapes.
 - Breaking large clusters.