Modèle linéaire et extension Régression linéaire multiple

M1 Math et Interactions - UEVE/ENSIIE

semestre d'automne 2016

http://julien.cremeriefamily.info/teachings_M1MINT_Reg.html

Recommandations bibliographiques

- The Element of Statistical Learning: chapitre 2, T. Hastie, R. Tibshirani, J. Friedman.

 http://statweb.stanford.edu/~tibs/ElemStatLearn/
- Résumé du cours de modèle de régression, Y. Tillé

 https://www2.unine.ch/files/content/sites/statistics/files/shared/
 documents/cours_modeles_regression.pdf
- Bases du modèle linéaire, J.-J. Daudin, S. Robin, C. Vuillet http://moulon.inra.fr/~mag/modelstat/ModLin_2007.pdf
- Exemples d'applications du modèle linéaire, É. Lebarbier, S. Robin https:

//www.agroparistech.fr/IMG/pdf/ExemplesModeleLineaire-AgroParisTech.pdf

Modèle

Prérequis (rappels!)

Estimation

Analyse de la variance

Diagnostic

Un exemple: les processionaires de pins

Sélection de variables

Modèle

Prérequis (rappels!

Estimation

Analyse de la variance

Diagnostic

Un exemple: les processionaires de pins

Sélection de variables

Régression multiple Objectif général I

Idée/Principe

Expliquer les variations

- ▶ d'une variable quantitative Y,
- ightharpoonup par plusieurs variables quantitatives $x=(x_1,x_2,\ldots,x_p)$

Vocabulaire

- Y est la variable réponse, à expliquer
- Les x_j sont les variables **explicatives**, **covariables**, **régresseurs** ou **prédicteurs**

Régression multiple Objectif général II

Exemples

- ▶ taux de DDT = f(age du brochet, age du brochet au carré)
- ▶ progression du diabète = f(age, indice masse corporelle, tension artérielle, concentration sanguine en diverses protéines)
- ▶ action au temps t = f(autres actions du marché à <math>t 1)
- rendement d'une plante = f(expression de ses gènes)
- ► [VIH] à l'inclusion = f(variations du génotype)
- → potentiellement beaucoup de prédicteurs. . .

On suppose que la vraie relation entre Y et x est linéaire:

$$Y = \beta_0 + \sum_{j=1}^p \beta_j x_j + \varepsilon,$$

- β_0 est la constante (intercept)
- \triangleright β_j sont les coefficients de régression
- \triangleright ε est le **résidu** (variable aléatoire)
 - → erreur de mesure, variabilité individuelle, facteur(s) non expliqué(s)

Hypothèses minimales sur le résidu

Centré et de variance finie:

- $ightharpoonup \mathbb{E}(\varepsilon) = 0$,
- $\blacktriangleright \ \mathbb{V}(\varepsilon) = \sigma^2.$

Échantillonnage et écriture matricielle

Collecte de données / échantillonnage aléatoire

Soit $\{(Y_i, x_i)\}_{i=1}^n$ un n-échantillon avec $Y_i \in \mathbb{R}$ et $x_i \in \mathbb{R}^p$. On a

$$Y_i = \beta_0 + \sum_{j=1}^p \beta_j x_{ij} + \varepsilon_i,$$

avec $\{\varepsilon_i\}_{i=1}^n$ indépendants, identiquement distribués.

Notations

- $Y=(Y_1,\ldots,Y_n)^\intercal\in\mathbb{R}^n$ le vecteur des v.a. de réponse,
- $\mathbf{y}=(y_1,\ldots,y_n)^\intercal\in\mathbb{R}^n$ le vecteur d'observation de la réponse,
- $\mathbf{x}_j = (x_{1j}, \dots, x_{nj})^\intercal$ le vecteur d'observation du j^e prédicteur.
- $m{\varepsilon} = (\varepsilon_i, \dots, \varepsilon_n)^{\intercal}$ le vecteur des résidus.

Écriture matricielle

$$Y = (\mathbf{1}_{n}, \mathbf{x}_{1}, \dots, \mathbf{x}_{p}) \begin{pmatrix} \beta_{0} \\ \beta_{1} \\ \dots \\ \beta_{p} \end{pmatrix} + \varepsilon = \underbrace{\begin{pmatrix} 1 & x_{11} & \dots & x_{1p} \\ 1 & x_{21} & \dots & x_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n1} & \dots & x_{np} \end{pmatrix}}_{\left\{\begin{matrix} \beta_{0} \\ \beta_{1} \\ \vdots \\ \beta_{p} \end{matrix}\right\}} + \begin{pmatrix} \varepsilon_{1} \\ \vdots \\ \varepsilon_{n} \end{pmatrix}$$

 ${f X}$, une matrice n imes (p+1)

En résumé,

$$Y = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

Écriture matricielle

$$Y_{i} = \beta_{0} + \sum_{j=1}^{p} \beta_{j} x_{ij} + \varepsilon_{i} \quad i = 1, \dots, n$$

$$Y = \mathbf{1}_{n} \beta_{0} + \sum_{j=1}^{p} \beta_{j} \mathbf{x}_{j} + \varepsilon$$

$$\begin{pmatrix} \beta_{0} \\ \beta_{1} \end{pmatrix} \qquad \begin{pmatrix} 1 & x_{11} & \dots & x_{1p} \\ 1 & x_{21} & \dots & x_{2p} \end{pmatrix}$$

 \mathbf{X} , une matrice $n \times (p+1)$

En résumé

$$Y = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

Écriture matricielle

$$\begin{split} Y_i &= \beta_0 + \sum_{j=1}^p \beta_j x_{ij} + \varepsilon_i \quad i = 1, \dots, n \\ Y &= \mathbf{1}_n \beta_0 + \sum_{j=1}^p \beta_j \mathbf{x}_j + \varepsilon \\ Y &= (\mathbf{1}_n, \mathbf{x}_1, \dots, \mathbf{x}_p) \begin{pmatrix} \beta_0 \\ \beta_1 \\ \dots \\ \beta_p \end{pmatrix} + \varepsilon = \underbrace{\begin{pmatrix} 1 & x_{11} & \dots & x_{1p} \\ 1 & x_{21} & \dots & x_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n1} & \dots & x_{np} \end{pmatrix}}_{\mathbf{X}, \text{ une matrice } n \times (p+1)} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix} \end{split}$$

En résumé,

$$Y = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

Écriture matricielle

$$\begin{split} Y_i &= \beta_0 + \sum_{j=1}^p \beta_j x_{ij} + \varepsilon_i \quad i = 1, \dots, n \\ Y &= \mathbf{1}_n \beta_0 + \sum_{j=1}^p \beta_j \mathbf{x}_j + \varepsilon \\ Y &= (\mathbf{1}_n, \mathbf{x}_1, \dots, \mathbf{x}_p) \begin{pmatrix} \beta_0 \\ \beta_1 \\ \dots \\ \beta_p \end{pmatrix} + \varepsilon = \begin{pmatrix} 1 & x_{11} & \dots & x_{1p} \\ 1 & x_{21} & \dots & x_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n1} & \dots & x_{np} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix} \end{split}$$

En résumé,

$$Y = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}.$$

a

Régression linéaire multiple l Linéarité en les paramètres

Le modèle est **linéaire en ses paramètres** (pas nécessairement en les x_j)

Exemple: régression sur base polynomiale

Un modèle de régression linéaire multiple représentable en 2D

```
## vrais paramètres: polynôme d'ordre 3
beta \leftarrow c(3, 1, 2, -1)
sigma <- 5
p <- length(beta)</pre>
## simulation des observations
n < -100
x <- rnorm(n)
X \leftarrow cbind(1, x, x^2, x^3)
epsilon <- rnorm(n,0,sigma)
y <- X %*% beta + epsilon
ggplot(data.frame(x=x,y=y), aes(x,y)) + geom_point() +
    geom_smooth(method="lm", formula=y~poly(x,3))
```

Régression linéaire multiple II Linéarité en les paramètres

Régression linéaire multiple En résumé

Objectifs statistiques

- 1. Estimer les paramètres β et σ^2
- 2. Tester la nullité des paramètres $\{\beta_j\}_{j=1}^p$, i.e. l'influence de chacune des variables
- 3. Prédire Y_0 pour une nouvelle observation x_0
- 4. Tester la pertinence générale du modèle
- 5. Si p est grand, contrôler la complexité du modèle

Modèle

Prérequis (rappels!)

Projection orthogonale Dérivée par rapport à un vecteur Vecteur aléatoire Gaussien

Estimation

Analyse de la variance

Diagnostic

Un exemple: les processionaires de pins

Modèle

Prérequis (rappels!)

Projection orthogonale

Dérivée par rapport à un vecteur Vecteur aléatoire Gaussien

Estimation

Analyse de la variance

Diagnostic

Un exemple: les processionaires de pins

Sous espaces orthogonaux

Définition (sous espaces vectoriels orthogonaux)

- ▶ Les sous espaces V et W sont orthogonaux si tous les vecteurs de V sont orthogonaux à tous les vecteurs de W.
- ▶ L'ensemble de tous les vecteurs orthogonaux à V est appelé l'orthogonal de V et est noté V^{\perp} .

Théorème

Soit V un sous-espace vectoriel de \mathbb{R}^n , alors tout vecteur de \mathbb{R}^n se décompose de manière unique en une somme de vecteurs de V et de V^{\perp} .

Projection orthogonale

Définition (Projection orthogonale)

Soit V un sous espace de \mathbb{R}^n , l'application linéaire qui à un vecteur $\mathbf{u} \in \mathbb{R}^n$ fait correspondre un vecteur $\mathbf{u}^\star \in V$ tel que $\mathbf{u} - \mathbf{u}^\star$ appartienne à V^\perp est appelée projection orthogonale de \mathbf{u} dans V.

Définition (Projecteur orthogonal et matrice)

Soit **X** une matrice $n \times p$ de plein rang telle que n < p.

Projection orthogonale

Définition (Projection orthogonale)

Soit V un sous espace de \mathbb{R}^n , l'application linéaire qui à un vecteur $\mathbf{u} \in \mathbb{R}^n$ fait correspondre un vecteur $\mathbf{u}^\star \in V$ tel que $\mathbf{u} - \mathbf{u}^\star$ appartienne à V^\perp est appelée projection orthogonale de \mathbf{u} dans V.

Définition (Projecteur orthogonal et matrice)

Soit X une matrice $n \times p$ de plein rang telle que n < p.

lacktriangle La projection orthogonale de $\mathbf{u} \in \mathbb{R}^n$ dans l'image de \mathbf{X} vaut

$$proj_{\mathbf{X}}(\mathbf{u}) = \underbrace{\mathbf{X} (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}}}_{\mathbf{P}_{\mathbf{X}}} \mathbf{u}.$$

La projection orthogonale de $\mathbf{u} \in \mathbb{R}^n$ dans le noyau de \mathbf{X} vaut

$$\textit{proj}_{\mathbf{X}}^{\perp}(\mathbf{u}) = \underbrace{\left(\mathbf{I} - \mathbf{X} \left(\mathbf{X}^{\intercal} \mathbf{X}\right)^{-1} \mathbf{X}^{\intercal}\right)}_{\mathbf{u}} \ \mathbf{u}$$

Projection orthogonale

Définition (Projection orthogonale)

Soit V un sous espace de \mathbb{R}^n , l'application linéaire qui à un vecteur $\mathbf{u} \in \mathbb{R}^n$ fait correspondre un vecteur $\mathbf{u}^\star \in V$ tel que $\mathbf{u} - \mathbf{u}^\star$ appartienne à V^\perp est appelée projection orthogonale de \mathbf{u} dans V.

Définition (Projecteur orthogonal et matrice)

Soit X une matrice $n \times p$ de plein rang telle que n < p.

lacktriangleq La projection orthogonale de $\mathbf{u} \in \mathbb{R}^n$ dans l'image de \mathbf{X} vaut

$$proj_{\mathbf{X}}(\mathbf{u}) = \underbrace{\mathbf{X} (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}}}_{\mathbf{P}_{\mathbf{X}}} \mathbf{u}.$$

lacktriangleq La projection orthogonale de $\mathbf{u} \in \mathbb{R}^n$ dans le noyau de \mathbf{X} vaut

$$\textit{proj}_{\mathbf{X}}^{\perp}(\mathbf{u}) = \underbrace{\left(\mathbf{I} - \mathbf{X} \left(\mathbf{X}^{\intercal} \mathbf{X}\right)^{-1} \mathbf{X}^{\intercal}\right)}_{\mathbf{I} - \mathbf{P}_{\mathbf{X}}} \ \mathbf{u}.$$

Modèle

Prérequis (rappels!)

Projection orthogonale

Dérivée par rapport à un vecteur

Vecteur aléatoire Gaussier

Estimation

Analyse de la variance

Diagnostic

Un exemple: les processionaires de pins

Gradient

Définition (gradient)

Soit f une application de \mathbb{R}^p dans \mathbb{R} . On appelle gradient de f le vecteur des dérivées partielles

$$\nabla f(\mathbf{x}) = \frac{\partial}{\partial \mathbf{x}} f(\mathbf{x}) = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_p}\right)^{\mathsf{T}}.$$

De cette définition, on déduit en particulier la dérivée par rapport à un vecteur d'une forme linéaire, d'une application linéaire et d'une forme quadratique.

Dérivée par rapport à un vecteur

Proposition (dérivée par rapport à un vecteur)

Soit
$$\mathbf{u}, \mathbf{x} \in \mathbb{R}^p$$
 et $\mathbf{A} \in \mathcal{M}_{mp}$ et $\mathbf{S} \in \mathcal{M}_{pp}$.

$$\begin{split} &\frac{\partial}{\partial \mathbf{x}} \mathbf{u}^\mathsf{T} \mathbf{x} = \mathbf{u} \\ &\frac{\partial}{\partial \mathbf{x}} \mathbf{A} \mathbf{x} = \mathbf{A} \\ &\frac{\partial}{\partial \mathbf{x}} \mathbf{x}^\mathsf{T} \mathbf{S} \mathbf{x} = \mathbf{S} \mathbf{x} + \mathbf{S}^\mathsf{T} \mathbf{x} \end{split}$$

Si de plus S est symétrique, alors

$$\frac{\partial}{\partial \mathbf{x}} \mathbf{x}^{\mathsf{T}} \mathbf{S} \mathbf{x} = 2 \mathbf{S} \mathbf{x}$$

Modèle

Prérequis (rappels!)

Projection orthogonale Dérivée par rapport à un vecteur

Vecteur aléatoire Gaussien

Estimation

Analyse de la variance

Diagnosti

Un exemple: les processionaires de pins

Vecteur aléatoire, espérance et variance-covariance

Soit $X=(X_1,\ldots,X_p)^{\mathsf{T}}$ un vecteur de variables aléatoires dont la distribution est définie par la densité jointe $f(\mathbf{x})=f(x_1,\ldots,x_p)$.

Définition (Espérance)

L'espérance de X est le vecteur d'espérance de chaque composant:

$$\mathbb{E}X = (\mathbb{E}(X_1), \dots, \mathbb{E}(X_p))^{\mathsf{T}}$$
.

Définition (Variance)

La variance de X est la matrice (de variance-covariance) définie par

$$\mathbb{V}(X) = \mathbb{E}\left[(X - \mathbb{E}X)(X - \mathbb{E}X)^{\mathsf{T}} \right]$$

Propriétés

Soit A une matrice $m \times p$ de constantes, alors

$$\mathbb{E}(\mathbf{A}X) = \mathbf{A}\mathbb{E}(X), \quad \mathbb{V}(\mathbf{A}X) = \mathbf{A}\mathbb{V}(X)\mathbf{A}^{\mathsf{T}}$$

Vecteur aléatoire, espérance et variance-covariance

Soit $X = (X_1, \dots, X_p)^{\mathsf{T}}$ un vecteur de variables aléatoires dont la distribution est définie par la densité jointe $f(\mathbf{x}) = f(x_1, \dots, x_p)$.

Définition (Espérance)

L'espérance de X est le vecteur d'espérance de chaque composant:

$$\mathbb{E}X = (\mathbb{E}(X_1), \dots, \mathbb{E}(X_p))^{\mathsf{T}}.$$

Définition (Variance)

La variance de X est la matrice (de variance-covariance) définie par

$$\mathbb{V}(X) = \begin{pmatrix} \mathbb{V}(X_1) & \dots & \cos(X_1, X_j) & \dots & \cos(X_1, X_p) \\ \vdots & & \vdots & & \vdots \\ \cos(X_1, X_j) & \dots & \mathbb{V}(X_j) & \dots & \cos(X_j, X_p) \\ \vdots & & \vdots & & \vdots \\ \cos(X_1, X_p) & \dots & \cos(X_j, X_p) & \dots & \mathbb{V}(X_p) \end{pmatrix}$$

Vecteur aléatoire, espérance et variance-covariance

Soit $X = (X_1, \dots, X_p)^{\mathsf{T}}$ un vecteur de variables aléatoires dont la distribution est définie par la densité jointe $f(\mathbf{x}) = f(x_1, \dots, x_p)$.

Définition (Espérance)

L'espérance de X est le vecteur d'espérance de chaque composant:

$$\mathbb{E}X = (\mathbb{E}(X_1), \dots, \mathbb{E}(X_p))^{\mathsf{T}}.$$

Définition (Variance)

La variance de X est la matrice (de variance-covariance) définie par

$$\mathbb{V}(X) = \mathbb{E}\left[(X - \mathbb{E}X)(X - \mathbb{E}X)^{\mathsf{T}} \right]$$

Propriétés

Soit **A** une matrice $m \times p$ de constantes, alors

$$\mathbb{E}(\mathbf{A}X) = \mathbf{A}\mathbb{E}(X), \quad \mathbb{V}(\mathbf{A}X) = \mathbf{A}\mathbb{V}(X)\mathbf{A}^{\mathsf{T}}$$

Définition

Le vecteur $X\in\mathbb{R}^p$ suit une distribution normale multivariée de moyenne μ et de variance Σ si la fonction densité d'une réalisation de $\mathbf x$ est données par

$$f(\mathbf{x}) = (2\pi)^{-p/2} |\mathbf{\Sigma}|^{-1/2} \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}.$$

On note $X \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ un vecteur gaussien de \mathbb{R}^p .

Log-vraisemblance

Soit ${\bf X}$ la matrice $n \times p$ dont les lignes, notées ${\bf x}_i$, sont des réalisation indépendantes de X.

$$\log L(\boldsymbol{\mu}, \boldsymbol{\Sigma}; \mathbf{X}) = -\frac{np}{2} \log(2\pi) - \frac{n}{2} \log |\boldsymbol{\Sigma}| - \frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_i - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_i - \boldsymbol{\mu})$$

Exemples bivariés

```
library(mvtnorm)
mu <- c(3,3)
Sigma.id <- matrix(c(1,0,0,1), 2, 2)
Sigma.diag <- matrix(c(.5,0,0,5), 2, 2)
Sigma.cov1 <- matrix(c(1,0.5,0.5,1), 2, 2)
Sigma.cov2 <- matrix(c(.5,-0.75,-0.75,3), 2, 2)

X.id <- rmvnorm(1000,mu,Sigma.id)
X.diag <- rmvnorm(1000,mu,Sigma.diag)
X.cov1 <- rmvnorm(1000,mu,Sigma.cov1)
X.cov2 <- rmvnorm(1000,mu,Sigma.cov2)</pre>
```

Exemples bivariés (I)

Exemples bivariés (II)

Exemples bivariés (III)

Vecteur gaussien Exemples bivariés (IV)

Modèle

Prérequis (rappels!)

Estimation

Estimateur des moindres carrés ordinaires Estimateur du maximum de vraisemblance Propriétés des estimateurs Tests sur les paramètres Résidus et prédiction

Analyse de la variance

Diagnosti

Modèle

Prérequis (rappels!)

Estimation

Estimateur des moindres carrés ordinaires

Estimateur du maximum de vraisemblance Propriétés des estimateurs Tests sur les paramètres Résidus et prédiction

Analyse de la variance

Diagnostic

- La "vraie" "droite" de \mathbb{R}^{p+1} (un <u>hyperplan</u>) passe au plus près des points de la **population**.
- On cherche l'hyperplan passant au plus près des point de l'échantillon

Moindres carrés ordinaires Intuition (II)

Figure: OLS: géométrie dans l'espace des variables \mathbb{R}^{p+1}

Moindres carrés ordinaires Le critère

Formalisation

Trouver le plan de \mathbb{R}^{p+1} de la forme

$$\beta_1 x_1 + \dots + \beta_p x_p - y_i + \beta_0 = 0$$

telle que la distance à l'ensemble des points soit la plus petite possible.

Estimateurs OLS

Les valeurs estimées $\{\beta_j, j=0,\ldots,p\}$ par OLS vérifient

$$(\hat{\beta}_0^{\mathsf{ols}}, \hat{\beta}_j^{\mathsf{ols}}) = \underset{\beta_0, \beta_j \in \mathbb{R}}{\min} \left\{ \sum_{i=1}^n \left(y_i - \sum_{j=1}^p x_{ij} \beta_j - \beta_0 \right)^2 \right\}$$

32

Moindres carrés ordinaires Le critère

Formalisation

Trouver le plan de \mathbb{R}^{p+1} de la forme

$$\beta_1 x_1 + \dots + \beta_p x_p - y_i + \beta_0 = 0$$

telle que la distance à l'ensemble des points soit la plus petite possible.

Estimateurs OLS

Les valeurs estimées $\{\beta_j, j=0,\ldots,p\}$ par OLS vérifient

$$(\hat{\beta}_0^{\mathsf{ols}}, \hat{\beta}_j^{\mathsf{ols}}) = \underset{\beta_0, \beta_j \in \mathbb{R}}{\operatorname{arg min}} \left\{ \sum_{i=1}^n \left(y_i - \sum_{j=1}^p x_{ij} \beta_j - \beta_0 \right)^2 \right\}.$$

32

Espace des observations (I)

Soit $\mathbf{X}_{i\cdot}=(\mathbf{1},\mathbf{x}_1,\ldots,\mathbf{x}_p)$ la i^{e} ligne de \mathbf{X}_{\cdot} Alors la valeur estimée est

$$\hat{\boldsymbol{\beta}}^{\mathsf{ols}} = \underset{\boldsymbol{\beta}_0, \boldsymbol{\beta}_j \in \mathbb{R}}{\operatorname{arg min}} \sum_{i=1}^n (y_i - \mathbf{X}_i \cdot \boldsymbol{\beta})^2$$
$$= \underset{\boldsymbol{\beta} \in \mathbb{R}^{p+1}}{\operatorname{arg min}} \left\| \mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right\|^2.$$

 \leadsto On cherche $\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}} \in \mathrm{vec}(\mathbf{x}_1, \dots, \mathbf{x}_p)$ minimisant $\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2$.

Espace des observations (II)

Figure: OLS: géométrie dans l'espace des observations \mathbb{R}^n

Théorème

L'estimateur des MCO vérifie les équations normales :

$$\mathbf{X}^{\mathsf{T}}\mathbf{X}\hat{\boldsymbol{\beta}}^{\mathrm{ols}} = \mathbf{X}^{\mathsf{T}}Y$$

Si $X^{T}X$ est inversible, alors

$$\hat{\boldsymbol{\beta}}^{\text{ols}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\,\mathbf{X}^{\mathsf{T}}\,Y$$

Preuve

- ightharpoonup montrer que $\hat{oldsymbol{eta}}^{\mathrm{ols}}$ est tel que $\mathbf{X}\hat{oldsymbol{eta}}^{\mathrm{ols}} = \mathrm{proj}_{\mathbf{X}}(Y)$
- lacktriangleq utiliser que $Y-\mathbf{X}\hat{oldsymbol{eta}}^{\mathrm{ois}}$ est orthogonal à \mathbf{x}_j , pour tout $j=1,\ldots,p$.

Moindres carrés ordinaires Estimateurs

Théorème

L'estimateur des MCO vérifie les équations normales :

$$\mathbf{X}^{\mathsf{T}}\mathbf{X}\hat{\boldsymbol{\beta}}^{\mathrm{ols}} = \mathbf{X}^{\mathsf{T}}Y$$

Si $X^{T}X$ est inversible, alors

$$\hat{\boldsymbol{\beta}}^{\text{ols}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\,\mathbf{X}^{\mathsf{T}}\,Y$$

Preuve

- lacktriangleright montrer que $\hat{oldsymbol{eta}}^{\mathrm{ols}}$ est tel que $\mathbf{X}\hat{oldsymbol{eta}}^{\mathrm{ols}} = \mathrm{proj}_{\mathbf{X}}(Y)$
- lacksquare utiliser que $Y-\mathbf{X}\hat{oldsymbol{eta}}^{\mathrm{ols}}$ est orthogonal à \mathbf{x}_j , pour tout $j=1,\ldots,p$.

Projection orthogonale et matrice chapeau

Projection orthogonale dans l'image de ${f X}$

Si X^TX est inversible, la valeur prédite s'écrit

$$\hat{Y} = \mathbf{X}\hat{\boldsymbol{\beta}}^{\text{ols}} = \mathbf{X} (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} Y = \mathbf{P}_{\mathbf{X}} Y.$$

 P_X est parfois notée H et appelée "hat matrix" (put a hat on y).

Projection orthogonale dans le noyau de ${f X}$

$$\hat{\varepsilon} = Y - \hat{Y} = (\mathbf{I} - \mathbf{P}_X) Y = \mathbf{P}_X^{\perp} Y.$$

 \leadsto les projecteurs \mathbf{P}_X et \mathbf{P}_X^\perp sont idempotents. Ils facilitent l'interprétation et les calculs !

Interprétation géométrique de l'OLS

Propriétés découlant de l'interprétation géométrique

Proposition

Le vecteur des résidus estimés est orthogonal à la droite $\mathbf{1}_n$. On en déduit

$$\hat{\boldsymbol{\varepsilon}} \perp \bar{Y} \Rightarrow \sum_{i=1}^{n} \hat{\varepsilon}_{i} = 0$$

De plus, $\hat{Y} \perp \hat{\varepsilon}$.

Corollaire

- La projection orthogonale de Y sur $\mathbf{1}_n$ a pour coordonnées \bar{Y} :

$$\operatorname{proj}_{\mathbf{1}}(Y) = \mathbf{1}_{n}(\mathbf{1}_{n}^{\mathsf{T}}\mathbf{1}_{n})^{-1}\mathbf{1}_{n}^{\mathsf{T}}Y = \mathbf{1}_{n}\,\bar{Y}.$$

Moindres carrés ordinaires Remarques

Méthode purement géométrique

- ne repose pas sur l'hypothèse gaussienne des résidus
- ightharpoonup ne dit **rien sur** σ^2 ...

Condition d'inversibilité de X^TX

Il faut et il suffit que X soit de plein rang.

- Aucune colonne n'est une combinaison linéaire des autres.
- → Chaque variable doit apporter "un peu d'information originale".
- Les fortes corrélations induisent des instabilités numériques.

Plan

Modèle

Prérequis (rappels!)

Estimation

Estimateur des moindres carrés ordinaires Estimateur du maximum de vraisemblance

Propriétés des estimateurs

Tests sur les paramètres

Analyse de la variance

Diagnostic

Maximum de vraisemblance critère

Formalisation

Sous l'hypothèse où $\varepsilon_i \sim \mathcal{N}(0, \sigma)$,

- $Y \sim \mathcal{N}(\mathbf{X}\boldsymbol{\beta}, \sigma \mathbf{I}_n)$
- ightharpoonup log-vraisemblance : $\log L(\mathbf{y}) = \log f(\mathbf{y})$

Estimateurs du MV

Les valeurs estimées (estimations) de β et σ vérifient

$$(\hat{\boldsymbol{\beta}}^{\mathsf{mv}}, \hat{\boldsymbol{\sigma}}^{\mathsf{mv}}) = \underset{\boldsymbol{\beta} \in \mathbb{R}^{p+1}, \sigma > 0}{\arg\min} \left\{ -\frac{n}{2} \log(2\pi) - n \log(\sigma) - \frac{1}{2\sigma^2} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 \right\}$$

Maximum de vraisemblance critère

Formalisation

Sous l'hypothèse où $\varepsilon_i \sim \mathcal{N}(0, \sigma)$,

- $Y \sim \mathcal{N}(\mathbf{X}\boldsymbol{\beta}, \sigma \mathbf{I}_n)$
- ▶ log-vraisemblance : $\log L(\mathbf{y}) = \log f(\mathbf{y})$

Estimateurs du MV

Les valeurs estimées (estimations) de β et σ vérifient

$$(\hat{\boldsymbol{\beta}}^{\mathsf{mv}}, \hat{\boldsymbol{\sigma}}^{\mathsf{mv}}) = \mathop{\arg\min}_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}, \sigma > 0} \left\{ -\frac{n}{2} \log(2\pi) - n \log(\sigma) - \frac{1}{2\sigma^2} \left\| \mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right\|^2 \right\}$$

Maximum de vraisemblance critère

Formalisation

Sous l'hypothèse où $\varepsilon_i \sim \mathcal{N}(0, \sigma)$,

- $Y \sim \mathcal{N}(\mathbf{X}\boldsymbol{\beta}, \sigma \mathbf{I}_n)$
- ▶ log-vraisemblance : $\log L(\mathbf{y}) = \log f(\mathbf{y})$

Estimateurs du MV

Les valeurs estimées (estimations) de β et σ vérifient

$$(\hat{\boldsymbol{\beta}}^{\mathsf{mv}}, \hat{\boldsymbol{\sigma}}^{\mathsf{mv}}) = \operatorname*{arg\ min}_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}, \boldsymbol{\sigma} > 0} \left\{ -\frac{n}{2} \log(2\pi) - n \log(\boldsymbol{\sigma}) - \frac{1}{2\sigma^2} \left\| \mathbf{y} - \mathbf{X}\boldsymbol{\beta} \right\|^2 \right\}$$

Maximum de vraisemblance Estimateurs

Théorème

Pour n > p, les estimateurs du maximum de vraisemblance sont

$$\hat{\boldsymbol{\beta}}^{\text{mv}} = (\mathbf{X}^{\intercal} \mathbf{X})^{-1} \mathbf{X}^{\intercal} Y$$

$$\hat{\sigma}^{2} = \frac{1}{n} \| Y - \mathbf{X} \hat{\boldsymbol{\beta}}^{\text{mv}} \|^{2} = \frac{\hat{\varepsilon}^{\intercal} \hat{\varepsilon}}{n}$$

Preuve:

En annulant les dérivées de la fonction objectif, qui est concave.

Maximum de vraisemblance

Estimation pratique de la variance des résidus

Théorème

Soit
$$\hat{arepsilon}=Y-\mathbf{X}\hat{oldsymbol{eta}}^{\mathrm{mv}}=\mathbf{P}_{\mathbf{X}}^{\perp}Y$$
, alors
$$\mathbb{E}[\hat{arepsilon}^{\mathsf{T}}\hat{arepsilon}]=(n-p-1)\times\sigma^{2}.$$

Corollaire

Un estimateur non biaisé de la variance résiduelle est donné par

$$\hat{\sigma}^2 = \frac{1}{n - p - 1} \|\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}^{\text{mv}}\|^2$$

Vocabulaire

La quantité n-p-1 est le nombre de degrés de liberté des résidus, égal au rang de $\mathbf{P}_{\mathbf{X}}^{\perp}$.

Maximum de vraisemblance

Estimation pratique de la variance des résidus

Théorème

Soit
$$\hat{\varepsilon}=Y-\mathbf{X}\hat{\boldsymbol{\beta}}^{\mathrm{mv}}=\mathbf{P}_{\mathbf{X}}^{\perp}Y$$
, alors
$$\mathbb{E}[\hat{\varepsilon}^{\mathsf{T}}\hat{\varepsilon}]=(n-p-1)\times\sigma^{2}.$$

Corollaire

Un estimateur non biaisé de la variance résiduelle est donné par

$$\hat{\sigma}^2 = \frac{1}{n-p-1} \|\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}^{\text{mv}}\|^2$$

Vocabulaire

La quantité n-p-1 est le nombre de degrés de liberté des résidus, égal au rang de $\mathbf{P}_{\mathbf{X}}^{\perp}$.

Maximum de vraisemblance

Estimation pratique de la variance des résidus

Théorème

Soit
$$\hat{\varepsilon} = Y - \mathbf{X}\hat{\boldsymbol{\beta}}^{\mathrm{mv}} = \mathbf{P}_{\mathbf{X}}^{\perp}Y$$
, alors
$$\mathbb{E}[\hat{\varepsilon}^{\mathsf{T}}\hat{\varepsilon}] = (n - p - 1) \times \sigma^{2}.$$

Corollaire

Un estimateur non biaisé de la variance résiduelle est donné par

$$\hat{\sigma}^2 = \frac{1}{n-p-1} \|\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}^{\text{mv}}\|^2$$

Vocabulaire

La quantité n-p-1 est le nombre de degrés de liberté des résidus, égal au rang de ${\bf P}_{\bf X}^{\perp}.$

Plan

Modèle

Prérequis (rappels!)

Estimation

Estimateur des moindres carrés ordinaires Estimateur du maximum de vraisemblance

Propriétés des estimateurs

Tests sur les paramètres Résidus et prédiction

Analyse de la variance

Diagnostic

Estimation des paramètres

Propriétés des estimateurs

Cas général

 $\hat{oldsymbol{eta}}$ sont des estimateurs sans biais de eta de variance

$$\mathbb{V}(\hat{\boldsymbol{\beta}}) = \sigma^2(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}.$$

Cas gaussien

Si les résidus sont gaussien, i.e. $arepsilon \sim \mathcal{N}(0,\sigma^2)$, alors

$$\hat{\boldsymbol{\beta}} \sim \mathcal{N} \left(\boldsymbol{\beta}, \sigma^2 (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \right)$$
$$(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})^{\mathsf{T}} \frac{\mathbf{X}^{\mathsf{T}} \mathbf{X}}{\sigma^2} (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \sim \chi_{p+1}^2$$
$$(n - p - 1)\hat{\sigma}^2 \sim \sigma^2 \sim \chi_{n-p-1}^2$$

Estimation des paramètres

Propriétés des estimateurs

Cas général

 $\hat{\beta}$ sont des estimateurs sans biais de β de variance

$$\mathbb{V}(\hat{\boldsymbol{\beta}}) = \sigma^2(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}.$$

Cas gaussien

Si les résidus sont gaussien, i.e. $\varepsilon \sim \mathcal{N}(0, \sigma^2)$, alors

$$\hat{\boldsymbol{\beta}} \sim \mathcal{N} \left(\boldsymbol{\beta}, \sigma^2 (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \right)$$
$$(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})^{\mathsf{T}} \frac{\mathbf{X}^{\mathsf{T}} \mathbf{X}}{\sigma^2} (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \sim \chi_{p+1}^2$$
$$(n - p - 1)\hat{\sigma}^2 \sim \sigma^2 \sim \chi_{n-p-1}^2$$

Estimation des paramètres

Propriétés des estimateurs (II)

Théorème de Gauss-Markov

- ► Cas gaussien: $\hat{\boldsymbol{\beta}}^{\text{ols}}$ est le meilleur estimateur sans biais (i.e. de variance minimale).
- ► Cas non gaussien: $\hat{\beta}^{\text{ols}}$ est le meilleur estimateur linéaire sans biais (i.e. de variance minimale).
- ightarrow On dit que $\hat{oldsymbol{eta}}^{\mathrm{ols}}$ est le <code>BLUE</code> (best linear unbiased estimator)

Plan

Modèle

Prérequis (rappels!)

Estimation

Estimateur des moindres carrés ordinaires Estimateur du maximum de vraisemblance Propriétés des estimateurs

Tests sur les paramètres

Résidus et prédiction

Analyse de la variance

Diagnosti

Un exemple: les processionaires de pins

Tests et intervalle de confiance sur les paramètres β_j Sous hypothèse de normalité des résidus

Hypothèse testée: nullité de β_i

Est-ce que la j^e variable apporte une information supplémentaire?

$$\begin{cases} H_0: & \beta_j = 0 \\ H_1: & \beta_j \neq 0 \end{cases}$$

Comme $\hat{\beta} \sim \mathcal{N}\left(\beta, \sigma^2(\mathbf{X}^\intercal\mathbf{X})^{-1}\right)$, on a

Statistique de test et règle de décision

$$T_{\beta_j} = \frac{\dot{\beta}_j}{\hat{\sigma}\sqrt{[(\mathbf{X}^\intercal\mathbf{X})^{-1}]_{jj}}} \underset{H_0}{\sim} \mathcal{T}_{n-p-1}, \text{ on rejette } H_0 \text{ si } |T_{\beta_j}| \geq t_{n-p-1,1-\frac{\alpha}{2}}$$

Intervalle de confiance sur les \hat{eta}_j

$$IC_{1-\alpha}(\hat{\boldsymbol{\beta}}_j) = \left[\hat{\beta}_j \pm q_{t_{n-p-1},1-\frac{\alpha}{2}} \hat{\sigma} \sqrt{[(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}]_{jj}}\right]$$

Tests et intervalle de confiance sur les paramètres β_j Sous hypothèse de normalité des résidus

Hypothèse testée: nullité de β_j

Est-ce que la j^e variable apporte une information supplémentaire?

$$\begin{cases} H_0: & \beta_j = 0 \\ H_1: & \beta_j \neq 0 \end{cases}$$

Comme $\hat{m{\beta}} \sim \mathcal{N}\left(m{\beta}, \sigma^2(\mathbf{X}^\intercal\mathbf{X})^{-1}\right)$, on a

Statistique de test et règle de décision

$$T_{\beta_j} = rac{\hat{eta}_j}{\hat{\sigma}\sqrt{[(\mathbf{X}^\intercal\mathbf{X})^{-1}]_{jj}}} \overset{\sim}{\sim} \mathcal{T}_{n-p-1}, ext{ on rejette } H_0 ext{ si } |T_{eta_j}| \geq t_{n-p-1,1-rac{lpha}{2}}$$

Intervalle de confiance sur les \hat{eta}_j

$$IC_{1-\alpha}(\hat{\boldsymbol{\beta}}_j) = \left[\hat{\beta}_j \pm q_{t_{n-p-1},1-\frac{\alpha}{2}} \hat{\sigma} \sqrt{[(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}]_{jj}}\right]$$

Tests et intervalle de confiance sur les paramètres β_j Sous hypothèse de normalité des résidus

Hypothèse testée: nullité de β_j

Est-ce que la j^e variable apporte une information supplémentaire?

$$\begin{cases} H_0: & \beta_j = 0 \\ H_1: & \beta_j \neq 0 \end{cases}$$

Comme $\hat{\boldsymbol{\beta}} \sim \mathcal{N}\left(\boldsymbol{\beta}, \sigma^2(\mathbf{X}^{\intercal}\mathbf{X})^{-1}\right)$, on a

Statistique de test et règle de décision

$$T_{\beta_j} = rac{\hat{eta}_j}{\hat{\sigma}\sqrt{[(\mathbf{X}^\intercal\mathbf{X})^{-1}]_{jj}}} \overset{\sim}{\sim} \mathcal{T}_{n-p-1}, ext{ on rejette } H_0 ext{ si } |T_{eta_j}| \geq t_{n-p-1,1-rac{lpha}{2}}$$

Intervalle de confiance sur les \hat{eta}_j

$$IC_{1-\alpha}(\hat{\boldsymbol{\beta}}_j) = \left[\hat{\beta}_j \pm q_{t_{n-p-1},1-\frac{\alpha}{2}} \hat{\sigma} \sqrt{[(\mathbf{X}^{\intercal}\mathbf{X})^{-1}]_{jj}}\right]$$

Plan

Modèle

Prérequis (rappels!)

Estimation

Estimateur des moindres carrés ordinaires Estimateur du maximum de vraisemblance Propriétés des estimateurs Tests sur les paramètres

Résidus et prédiction

Analyse de la variance

Diagnostic

Résidus et prédiction

Soit $\mathbf{x}_0 \in \mathbb{R}^p$ une nouvelle observation et $\hat{Y}_0 = \mathbf{x}_0 \hat{\boldsymbol{\beta}}$ le prédicteur associé.

Proposition

Soit $\hat{\varepsilon}_0 = Y_0 - \hat{Y}_0$ l'erreur de prévision au nouveau point. On a :

$$\mathbb{E}(\hat{\varepsilon}_0) = 0$$

$$\mathbb{V}(\hat{\varepsilon}_i) = \sigma^2 \left(1 + \mathbf{x}_0 \left(\mathbf{X}^{\mathsf{T}} \mathbf{X} \right)^{-1} \mathbf{x}_0 \right)$$

Intervalle de confiance

$$IC_{1-\alpha}(\hat{Y}_0) = \left[\hat{Y}_0 \pm q_{t_{n-p-1},1-\frac{\alpha}{2}} \hat{\sigma} \sqrt{\mathbf{x}_0 \left(\mathbf{X}^{\intercal} \mathbf{X}\right)^{-1} \mathbf{x}_0}\right]$$

Résidus et prédiction

Soit $\mathbf{x}_0 \in \mathbb{R}^p$ une nouvelle observation et $\hat{Y}_0 = \mathbf{x}_0 \hat{\boldsymbol{\beta}}$ le prédicteur associé.

Proposition

Soit $\hat{\varepsilon}_0 = Y_0 - \hat{Y}_0$ l'erreur de prévision au nouveau point. On a :

$$\mathbb{E}(\hat{\varepsilon}_0) = 0$$

$$\mathbb{V}(\hat{\varepsilon}_i) = \sigma^2 \left(1 + \mathbf{x}_0 \left(\mathbf{X}^{\mathsf{T}} \mathbf{X} \right)^{-1} \mathbf{x}_0 \right)$$

Intervalle de prévision

$$IC_{1-\alpha}(Y_0) = \left[\hat{Y}_0 \pm q_{t_{n-p-1}, 1-\frac{\alpha}{2}} \hat{\sigma} \sqrt{1 + \mathbf{x}_0 \left(\mathbf{X}^{\intercal} \mathbf{X} \right)^{-1} \mathbf{x}_0} \right]$$

Plan

Modèle

Prérequis (rappels!)

Estimation

Analyse de la variance

Diagnostic

Un exemple: les processionaires de pins

Sélection de variables

Décomposition de la variance

Théorème fondamental (Pythagore)

Comme $\hat{oldsymbol{arepsilon}} = \mathbf{Y} - \hat{\mathbf{Y}}$ est orthogonal à $\hat{\mathbf{Y}} - \bar{\mathbf{Y}}$, on a

$$SCT = SCR + SCM$$
$$\|\mathbf{Y} - \bar{\mathbf{Y}}\|_2^2 = \|\mathbf{Y} - \hat{\mathbf{Y}}\|_2^2 + \|\hat{\mathbf{Y}} - \bar{\mathbf{Y}}\|_2^2,$$

avec

- ➤ SCT = Somme des carrés totale → variabilité totale à expliquer
- SCR = Somme des carrés résiduelle
 → variabilité non expliquée par le modèle

Rappel: Interprétation géométrique

Coefficient d'ajustement Définition

 R^2

Le coefficient de détermination est défini par :

$$R^2 = \frac{SCM}{SCT} = 1 - \frac{SCR}{SCT}$$

 \mathbb{R}^2 ajusté

Le coefficient de détermination ajusté est défini par :

adjusted-
$$R^2 = 1 - \frac{SCR/(n-p-1)}{SCT/(n-1)}$$

Remarque

Le coefficient d'ajustement peut être interprété comme le pourcentage de variance expliquée par le modèle.

54

Test du modèle (I)

Hypothèse testée

$$\begin{cases} \mathcal{M}_0 : \text{ modèle le plus simple} \\ \mathcal{M}_1 : \text{ modèle le plus complexe} \end{cases} \Leftrightarrow \begin{cases} \mathcal{M}_0 : Y_i = \beta_0 + \varepsilon_i \\ \mathcal{M}_1 : Y_i = \mathbf{X}\boldsymbol{\beta} + \varepsilon_i \end{cases}$$

Loi des sommes de carrés sous $H_{
m 0}$

- $ightharpoons SCR = (n-p-1)\hat{\sigma}^2 \sim \sigma^2 \chi^2_{n-p-1}.$
- ► Comme $SCT = \|\mathbf{Y} \bar{\mathbf{Y}}\|^2$, on a $SCT \stackrel{n_0}{\sim} \sigma^2 \chi_{n-1}^2$

Test du modèle (I)

Hypothèse testée

$$\begin{cases} \mathcal{M}_0 : \text{ modèle le plus simple} \\ \mathcal{M}_1 : \text{ modèle le plus complexe} \end{cases} \Leftrightarrow \begin{cases} \mathcal{M}_0 : Y_i = \beta_0 + \varepsilon_i \\ \mathcal{M}_1 : Y_i = \mathbf{X}\boldsymbol{\beta} + \varepsilon_i \end{cases}$$

Loi des sommes de carrés sous H_0

- ► $SCR = \hat{\varepsilon}^{\mathsf{T}}\hat{\varepsilon}$, donc $SCR = (n-p-1)\hat{\sigma}^2 \sim \sigma^2 \chi^2_{n-p-1}$.
- \blacktriangleright Comme $SCT = \|\mathbf{Y} \bar{\mathbf{Y}}\|^2$, on a $SCT \stackrel{H_0}{\sim} \sigma^2 \chi_{n-1}^2$

Test du modèle (II)

Statistique de test: Fisher

On rejette lorsque F, mesurant la part de variabilité expliquée par le modèle, est "grande":

$$F = \frac{SCM/\mathsf{ddl}(SCM)}{SCR/\mathsf{ddl}(SCR)} \underset{H_0}{\sim} \mathcal{F}_{p,n-p-1}.$$

Règle de décision

On rejette
$$H_0$$
 si $F \geq f_{p,n-p-1;1-\alpha}$

p-valeur

$$p - \mathsf{val} = \mathbb{P}_{H_0} \left(\mathcal{F}_{p,n-p-1} \ge f(\mathsf{obs}) \right)$$

Analyse de la variance

Tableau de synthèse

Source	Degrés de liberté	Sommes des carrés	Carrés moyens	F
Modèle	p	SCM	SCM/p	$F = \frac{(n-p-1)SCM}{SCR/p}$
Résiduelle	n-p-1	SCR	$\frac{SCR}{(n-p-1)}$	2 0 - 0/ F
Total	n-1	SCT	(·- P - 1)	

Comparaison de modèles

Une question légitime lorsque l'on considère un modèle est

Est-ce que toutes les variables explicatives sont nécessaires pour expliquer la variable de sortie ?

Une façon de poser la question consiste à considérer le test d'hypothèse suivant

 $\begin{cases} \mathcal{M}_{\omega} : & \text{modèle le plus simple} \\ \mathcal{M}_{\Omega} : & \text{modèle le plus complexe} \end{cases},$

où $\mathcal{M}_{\omega} \subset \mathcal{M}_{\Omega}$: les modèles sont dits "emboîtés".

Comparaison de modèles Aperçu géométrique

Figure: Source: Pratical regression and anova using R, J. Faraway

Intuition

On choisira H_1 (le modèle le plus grand Ω) si les résidus de Ω sont vraiment petits comparés au modèle ω , *i.e.*,

$$SCR_{\Omega} < SCR_{\omega} \quad {
m ou} \quad {SCR_{\omega} - SCR_{\Omega} \over SCR_{\Omega}} \gg 1$$

Sous H_0

$$> SCR_{\omega} - SCM_{\Omega} \sim \sigma \chi_{\mathsf{ddl}_{\omega} - \mathsf{ddl}_{\Omega}}^{2}$$

Statistique de test

$$F = \frac{(SCR_{\omega} - SCR_{\Omega})}{SCR_{\Omega}} \times \frac{(n - \mathrm{ddl}_{\Omega})}{(\mathrm{ddl}_{\omega} - \mathrm{ddl}_{\Omega})} \underset{H_0}{\sim} \mathcal{F}_{n - \mathrm{ddl}_{\Omega}, \mathrm{ddl}_{\omega} - \mathrm{ddl}_{\Omega}}$$

Intuition

On choisira H_1 (le modèle le plus grand Ω) si les résidus de Ω sont vraiment petits comparés au modèle ω , *i.e.*,

$$SCR_{\Omega} < SCR_{\omega} \quad \text{ou} \quad \frac{SCR_{\omega} - SCR_{\Omega}}{SCR_{\Omega}} \gg 1$$

Sous H_0

- $SCR_{\omega} SCM_{\Omega} \sim \sigma \chi_{\mathsf{ddl}_{\omega} \mathsf{ddl}_{\Omega}}^{2}$
- $\qquad \qquad SCR_{\Omega} \sim \sigma \chi^2_{n-\mathrm{ddl}_{\Omega}}$

Statistique de test

$$F = \frac{(SCR_{\omega} - SCR_{\Omega})}{SCR_{\Omega}} \times \frac{(n - \mathsf{ddl}_{\Omega})}{(\mathsf{ddl}_{\omega} - \mathsf{ddl}_{\Omega})} \underset{H_0}{\sim} \mathcal{F}_{n - \mathsf{ddl}_{\Omega}, \mathsf{ddl}_{\omega} - \mathsf{ddl}_{\Omega}}$$

Intuition

On choisira H_1 (le modèle le plus grand Ω) si les résidus de Ω sont vraiment petits comparés au modèle ω , *i.e.*,

$$SCR_{\Omega} < SCR_{\omega} \quad \text{ou} \quad \frac{SCR_{\omega} - SCR_{\Omega}}{SCR_{\Omega}} \gg 1$$

Sous H_0

- $SCR_{\omega} SCM_{\Omega} \sim \sigma \chi_{\mathsf{ddl}_{\omega} \mathsf{ddl}_{\Omega}}^{2}$
- $\qquad \qquad SCR_{\Omega} \sim \sigma \chi^2_{n-\mathsf{ddl}_{\Omega}}$

Statistique de test

$$F = \frac{(SCR_{\omega} - SCR_{\Omega})}{SCR_{\Omega}} \times \frac{(n - \mathsf{ddl}_{\Omega})}{(\mathsf{ddl}_{\omega} - \mathsf{ddl}_{\Omega})} \underset{H_0}{\sim} \mathcal{F}_{n - \mathsf{ddl}_{\Omega}, \mathsf{ddl}_{\omega} - \mathsf{ddl}_{\Omega}}.$$

Tableau de synthèse

Source	Degrés de	Sommes	Carrés
Source	liberté	des carrés	moyens
Modèle ω	$n-ddl_\omega$	SCR_{ω}	$SCR_{\omega}/ddl_{\omega}$
Modèle Ω	$n-ddl_\Omega$	SCR_{Ω}	$\mathit{SCR}_\Omega/ddl_\Omega$

$$F = \frac{(SCR_{\omega} - SCR_{\Omega})}{SCR_{\Omega}} \times \frac{(n - \mathsf{ddl}_{\Omega})}{(\mathsf{ddl}_{\omega} - \mathsf{ddl}_{\Omega})}$$

Plan

Modèle

Prérequis (rappels!

Estimation

Analyse de la variance

Diagnostic

Vérification des hypothèses: analyse des résidus

Points aberrants: distance de Cook

Un exemple: les processionaires de pins

Objectifs du diagnostic

- 1. Vérification des hypothèses du modèles
 - ► linéarité/modèle adéquat
 - homoscédasticité des résidus
 - ▶ indépendance des résidus
 - normalité des résidus
- 2. Détection d'observations atypiques

Plan

Modèle

Prérequis (rappels!)

Estimation

Analyse de la variance

Diagnostic

Vérification des hypothèses: analyse des résidus

Points aberrants: distance de Cook

Un exemple: les processionaires de pins

Analyse des résidus

Les hypothèses du modèle sont toutes liées aux résidus

- 1. Résidus centrés: $\mathbb{E}(Y) = \mathbf{X}\boldsymbol{\beta}$, soit $\mathbb{E}(\varepsilon_i) = 0$
- 2. Résidus homoscédastiques : $\mathbb{V}(\varepsilon_i) = \sigma^2$ pour tout i,
- 3. Résidus indépendents, $cov(\varepsilon_i, \varepsilon_{i'}) = 0$
- 4. Résidus gaussiens: $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$.

Diagnostic

À défaut de disposer de ε_i , on diagnostique $\hat{\varepsilon}_i$

- 1. Analyse du graphe des résidus, détaillé dans la suite
- 2. Test d'indépendance (Durbin-Watson)
- 3. Test de normalité (Shapiro, Kolmogorov, χ^2)

Points leviers

Définition (Levier)

La variance de la prédiction de la ie observations vérifie

$$\mathbb{V}(\hat{Y}_i) = \sigma^2 h_i,$$

où $h_i = (\mathbf{P}_{\mathbf{X}})_{ii}$ est appelé levier de l'observation i.

- ▶ Plus h_i est grand, plus l'observation y_i contribue à \hat{Y}_i .
- $ightharpoonup \sum_{i=1}^n h_i = p$, donc la moyenne des leviers est p/n.

Définition (Point levier)

L'individu i est un point levier si

$$h_i > \frac{2p}{n}$$

Points leviers

Définition (Levier)

La variance de la prédiction de la ie observations vérifie

$$\mathbb{V}(\hat{Y}_i) = \sigma^2 h_i,$$

où $h_i = (\mathbf{P}_{\mathbf{X}})_{ii}$ est appelé levier de l'observation i.

- ▶ Plus h_i est grand, plus l'observation y_i contribue à \hat{Y}_i .
- $ightharpoonup \sum_{i=1}^n h_i = p$, donc la moyenne des leviers est p/n.

Définition (Point levier)

L'individu i est un point levier si

$$h_i > \frac{2p}{n}.$$

Résidus standardisés et studentisés

Il est utile de normaliser $\hat{\varepsilon}_i$ afin de s'affranchir des facteurs d'échelle.

Définition (Résidus standardisés)

La variance des résidus estimés s'écrit $\mathbb{V}(\hat{\varepsilon}_i) = \sigma^2(1 - h_i)$. Ainsi, on définit la forme standardisée des résidus par

$$r_i = \frac{\hat{\varepsilon}_i}{\hat{\sigma}\sqrt{1 - h_i}}.$$

- \triangleright $\hat{\varepsilon}_i$ n'étant pas indépendant de $\hat{\sigma}$, on ne connait pas leur distribution
- la forme dite studentisé corrige ce problème.

Définition (Résidus studentisé)

On appelle résidus studentisés les statistiques définies par

$$\dot{\varepsilon}_i = \frac{\dot{\varepsilon}_i}{\hat{\sigma}^{(-i)}\sqrt{1 - h_i}},$$

pù $\hat{\sigma}^{(-i)}$ est la variance estimée sur les données sans la i^{e} observation.

Résidus standardisés et studentisés

Il est utile de normaliser $\hat{\varepsilon}_i$ afin de s'affranchir des facteurs d'échelle.

Définition (Résidus standardisés)

La variance des résidus estimés s'écrit $\mathbb{V}(\hat{\varepsilon}_i) = \sigma^2(1 - h_i)$. Ainsi, on définit la forme standardisée des résidus par

$$r_i = \frac{\hat{\varepsilon}_i}{\hat{\sigma}\sqrt{1 - h_i}}.$$

- ightharpoonup $\hat{arepsilon}_i$ n'étant pas indépendant de $\hat{\sigma}$, on ne connait pas leur distribution.
- la forme dite **studentisé** corrige ce problème.

Définition (Résidus studentisé)

On appelle résidus studentisés les statistiques définies par

$$t_i = \frac{\hat{\varepsilon}_i}{\hat{\sigma}^{(-i)}\sqrt{1 - h_i}},$$

où $\hat{\sigma}^{(-i)}$ est la variance estimée sur les données sans la i^e observation.

Résidus standardisés et studentisés

Il est utile de normaliser $\hat{\varepsilon}_i$ afin de s'affranchir des facteurs d'échelle.

Définition (Résidus standardisés)

La variance des résidus estimés s'écrit $\mathbb{V}(\hat{\varepsilon}_i) = \sigma^2(1 - h_i)$. Ainsi, on définit la forme standardisée des résidus par

$$r_i = \frac{\hat{\varepsilon}_i}{\hat{\sigma}\sqrt{1 - h_i}}.$$

- ightharpoonup $\hat{arepsilon}_i$ n'étant pas indépendant de $\hat{\sigma}$, on ne connait pas leur distribution.
- la forme dite **studentisé** corrige ce problème.

Définition (Résidus studentisé)

On appelle résidus studentisés les statistiques définies par

$$t_i = \frac{\hat{\varepsilon}_i}{\hat{\sigma}^{(-i)}\sqrt{1 - h_i}},$$

où $\hat{\sigma}^{(-i)}$ est la variance estimée sur les données sans la i^{e} observation.

Analyse des résidus

```
Cas idéal
```

```
n <- 100; x <- rnorm(n,10,3); y <- 5 + 3 * x + rnorm(n,0,1)
par(mfrow=c(1,2)); plot(lm(y~x), which=1:2)</pre>
```


Analyse des résidus I

Variance proportionnelle au prédicteur

Transformer Y en log/racine peut corriger l'hétéroscédasticité

Analyse des résidus II

Variance proportionnelle au prédicteur

Analyse des résidus III

Variance proportionnelle au prédicteur

Analyse des résidus

Résidus non gaussiens

Le modèle linéaire est robuste aux résidus non gaussiens s'ils sont symétriques

```
n <- 100; x <- rnorm(n,10,3); y <- 5 + 3 * x + rt(n,2)
par(mfrow=c(1,2)); plot(lm(y~x), which=1:2)</pre>
```


Analyse des résidus l

Une tendance forte dans les résidus peut indiquer un mauvais modèle.

```
n <- 100; x <- rnorm(n,10,3); y <- 5 + 3*x - x^3+rnorm(n,0,1)
par(mfrow=c(1,2)); plot(lm(y~x), which=1:2); plot(lm(y~x+I(x^3)), which=1:2)
```

Analyse des résidus II

Analyse des résidus III Mauvais modèle

Plan

Modèle

Prérequis (rappels!)

Estimation

Analyse de la variance

Diagnostic

Vérification des hypothèses: analyse des résidus

Points aberrants: distance de Cook

Un exemple: les processionaires de pins

Sélection de variables

Distance de Cook

Idée

Mettre en évidence l'influence "anormale" de certains points.

Définition (Distance de Cook)

La quantité D_i caractérise l'influence de l'observation i sur le résultat de la régression, une valeur élevée pouvant révéler une influence "anormale"

$$D_{i} = \frac{\|\hat{\mathbf{Y}} - \hat{\mathbf{Y}}^{(-i)}\|^{2}}{(p+1)\hat{\sigma}^{2}} = \frac{(\hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\beta}}^{(-i)})'\mathbf{X}^{\mathsf{T}}\mathbf{X}(\hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\beta}}^{(-i)})}{(p+1)\hat{\sigma}^{2}}$$

 $\leadsto D_i$ peut s'interpréter comme le carré d'une distance entre $\hat{m{eta}}$ et $\hat{m{eta}}^{(-i)}$.

Proposition (Calcul pratique)

On peut calculer D_i sans réajuster de modèle car

$$D_i = \frac{\hat{\varepsilon}_i^2}{(p+1)\hat{\sigma}^2} \times \frac{h_i}{(1-h_i)^2}$$

Distance de Cook

Idée

Mettre en évidence l'influence "anormale" de certains points.

Définition (Distance de Cook)

La quantité D_i caractérise l'influence de l'observation i sur le résultat de la régression, une valeur élevée pouvant révéler une influence "anormale"

$$D_{i} = \frac{\|\hat{\mathbf{Y}} - \hat{\mathbf{Y}}^{(-i)}\|^{2}}{(p+1)\hat{\sigma}^{2}} = \frac{(\hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\beta}}^{(-i)})'\mathbf{X}^{\mathsf{T}}\mathbf{X}(\hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\beta}}^{(-i)})}{(p+1)\hat{\sigma}^{2}}$$

 $\leadsto D_i$ peut s'interpréter comme le carré d'une distance entre $\hat{m{eta}}$ et $\hat{m{eta}}^{(-i)}$.

Proposition (Calcul pratique)

On peut calculer D_i sans réajuster de modèle car

$$D_i = \frac{\hat{\varepsilon}_i^2}{(p+1)\hat{\sigma}^2} \times \frac{h_i}{(1-h_i)^2}.$$

Distance de Cook Quelle valeur de seuil choisir ?

Règle standard

On considère qu'une valeur > 1 signifie un point aberrant.

Approche par test

On montre que \mathcal{D}_i est une statistique de décision du test de Wald

$$H_0: \boldsymbol{\beta} = \boldsymbol{\beta}_0^{-i},$$

où $m{\beta}_0^{-i}$ est la vrai valeur estimée sans la $i^{\rm e}$ observation. La statistique de test est une $F_{p+1,n-p-1,1-\alpha}$

Distance de Cook Quelle valeur de seuil choisir ?

Règle standard

On considère qu'une valeur > 1 signifie un point aberrant.

Approche par test

On montre que D_i est une statistique de décision du test de Wald

$$H_0: \boldsymbol{\beta} = \boldsymbol{\beta}_0^{-i},$$

où \mathcal{B}_0^{-i} est la vrai valeur estimée sans la $i^{\rm e}$ observation. La statistique de test est une $F_{p+1,n-p-1,1-lpha}$

Distance de Cook

```
x \leftarrow seq(1,10,len=10); y \leftarrow 5+.4*x+rorm(10,0,1); x \leftarrow c(x,9); y \leftarrow c(y,100)

par(mfrow=c(1,2)); plot(lm(y^x), which=4:5)
```


Plan

Modèle

Prérequis (rappels!)

Estimation

Analyse de la variance

Diagnostic

Un exemple: les processionaires de pins

Étude descriptives

Sélection de variables

Plan

Modèle

Prérequis (rappels!)

Estimation

Analyse de la variance

Diagnosti

Un exemple: les processionaires de pins Étude descriptives

Sélection de variables

Données de processionnaires du pin I

Données

On dispose de 33 échantillons de parcelles forestière de 10 hectares. Chaque parcelle est coupée en placette de 5 ares sur lesquelles sont calculées les moyennes des mesures suivantes

```
chenilles <- read.table(file='Chenilles.txt',header=TRUE)
colnames(chenilles)

## [1] "Altitude" "Pente" "NbPins" "Hauteur" "Diametre" "Densite"
## [7] "Orient" "HautMax" "NbStrat" "Melange" "NbNids"</pre>
```

Objectif

Prédire le **nombre de nids** par les autres variables.

```
source:https:
//www.agroparistech.fr/IMG/pdf/ExemplesModeleLineaire-AgroParisTech.pdf
```

Données de processionnaires du pin II

L'entête du tableau de données donne

```
head(chenilles)
   Altitude Pente NbPins Hauteur Diametre Densite Orient HautMax NbStrat
##
## 1
      1200
           22
                     4.0
                         14.8
                               1.0 1.1
                                            5.9
                                                 1.4
     1342 28
                     4.4
                               1.5 1.5
                                            6.4
                                                 1.7
                         18.0
    1231 28 5 2.4
                        7.8 1.3 1.6
                                            4.3 1.5
    1254 28 18 3.0 9.2 2.3 1.7
                                            6.9 2.3
## 5
     1357 32
                7 3.7 10.7 1.4 1.7 6.6 1.8
## 6
     1250
           27
                     4.4 14.8 1.0 1.7
                                            5.8
                                                 1.3
##
   Melange NbNids
## 1
      1.4
          2.37
    1.7 1.47
## 3
   1.7 1.13
    1.6 0.85
   1.3 0.24
     1.4 1.49
## 6
```

Données de processionnaires du pin III

Corrélation entre prédicteurs

De fortes corrélations induisent une estimation difficile des paramètres corrélés

heatmap(cor(chenilles[, -ncol(chenilles)]), symm=TRUE)

Plan

Modèle

Prérequis (rappels!)

Estimation

Analyse de la variance

Diagnostic

Un exemple: les processionaires de pins

Etude descriptives

Analyse

Moindres carrés ordinaires

Simple vérification

```
X <- cbind(1, as.matrix(chenilles[, -ncol(chenilles)]))</pre>
v <- chenilles[, ncol(chenilles)]</pre>
beta.ols <- solve(crossprod(X), crossprod(X,y))</pre>
print(t(beta.ols))
                   Altitude Pente NbPins Hauteur Diametre
##
## [1,] 8.561849 -0.002956282 -0.03482086 0.03538525 -0.5015637 0.1087387
                      Orient HautMax NbStrat Melange
##
           Densite
## [1.] -0.03271541 -0.2039587 0.02818019 -0.8624094 -0.4481242
coefficients(lm(NbNids~., data=chenilles)) ## sanity check
   (Intercept) Altitude Pente NbPins Hauteur
##
   8.561848740 -0.002956282 -0.034820858 0.035385252 -0.501563729
  Diametre Densite Orient HautMax NbStrat
##
## 0.108738715 -0.032715407 -0.203958683 0.028180190 -0.862409366
## Melange
## -0.448124198
```

Modèle linéaire multiples "brute"

Graphe des résidus

Le graphe des résidus suggèrent une transformation logarithmique de la réponse.

```
model <- lm(NbNids~.,data=chenilles)
qplot(fitted(model),residuals(model), geom='point')</pre>
```


Graphe des résidus

```
model <- lm(log(NbNids)~.,data=chenilles)
qplot(fitted(model),residuals(model), geom='point')</pre>
```


Le diagnostic complet

par(mfrow=c(2,2)); plot(model, which=c(1,2,4,5))

Modèle log-transformé Lnormalité des résidus

```
shapiro.test(residuals(model))

##

## Shapiro-Wilk normality test

##

## data: residuals(model)

## W = 0.97572, p-value = 0.6517
```

indépendance des résidus

```
library(car)
durbinWatsonTest(model)

## lag Autocorrelation D-W Statistic p-value
## 1 -0.1208374 2.051547 0.906
## Alternative hypothesis: rho != 0
```

Test des paramètres

```
summary(model)$coefficients
                  Estimate Std. Error t value Pr(>|t|)
##
  (Intercept) 11.300912256 3.156550408 3.5801463 0.001669442
  Altitude -0.004505222 0.001563014 -2.8823938 0.008647574
## Pente -0.053605957 0.021842576 -2.4541957 0.022502117
## NbPins 0.074581111 0.100232834 0.7440786 0.464702763
## Hauteur -1.328276893 0.570060846 -2.3300616 0.029375766
  Diametre
            0.236101193 0.104611127 2.2569415 0.034280797
## Densite -0.451118399 1.572915841 -0.2868039 0.776946247
## Orient -0.187809689 1.007950218 -0.1863283 0.853894734
## HautMax
          0.185636485 0.236343928 0.7854506 0.440566985
## NbStrat
              -1.266028388 0.861235074 -1.4700149 0.155715201
## Melange
              -0.537203283 \ 0.773372382 \ -0.6946243 \ 0.494561933
```

Test du modèle

```
anova(lm(log(NbNids)~1,chenilles), model)

## Analysis of Variance Table

##
# Model 1: log(NbNids) ~ 1

## Model 2: log(NbNids) ~ Altitude + Pente + NbPins + Hauteur + Diametre +

## Densite + Orient + HautMax + NbStrat + Melange

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 32 49.596

## 2 22 15.039 10 34.557 5.0553 0.0007441 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Modèle log-transformé et prédicteurs normalisés Prédicteurs corrélés

```
chenilles.scaled <- data.frame(scale(chenilles[,-ncol(chenilles)]),NbNids=chenilles
model.scaled <- lm(log(NbNids)~., chenilles.scaled)
```


Modèle log-transformé et prédicteurs normalisés l Test du modèle

Constat

- les paramètres mal estimés (grande variance) sont ceux dont les corrélations sont élevées (densité, nb pins, nb strates, hauteur)
 - → S'il y a un effet, il est caché par la redondance
- les variables faiblement corrélées (pente, orientation, mélange) sont mieux estimées
 - → On peut conclure sur leur effets sur le nombre de nids.
- → attention, ce constat n'est possible que sur données normalisées car on compare les variances.

Modèle log-transformé et prédicteurs normalisés II

```
summary(model.scaled)$coefficients
##
                Estimate Std. Error t value
                                             Pr(>|t|)
  (Intercept) -0.81328069 0.1439262 -5.6506788 1.107569e-05
  Altitude
           -0.58134027 0.2016866 -2.8823938 8.647574e-03
## Pente -0.39151731 0.1595298 -2.4541957 2.250212e-02
## NbPins 0.71123631 0.9558617 0.7440786 4.647028e-01
## Hauteur -1.38242983 0.5933018 -2.3300616 2.937577e-02
## Diametre 1.01583758 0.4500948 2.2569415 3.428080e-02
## Densite -0.32361332 1.1283435 -0.2868039 7.769462e-01
## Orient
        -0.03514548 0.1886212 -0.1863283 8.538947e-01
## HautMax 0.43658971 0.5558462 0.7854506 4.405670e-01
## NbStrat
         -0.71719038 0.4878797 -1.4700149 1.557152e-01
## Melange
          -0.13358672 0.1923151 -0.6946243 4.945619e-01
```

Modèle log-transformé et prédicteurs normalisés III

Test du modèle

```
anova (model.scaled)
## Analysis of Variance Table
##
## Response: log(NbNids)
           Df Sum Sq Mean Sq F value Pr(>F)
##
## Altitude 1 14.1222 14.1222 20.6589 0.0001593 ***
## Pente 1 6.7095 6.7095 9.8152 0.0048376 **
## NbPins 1 1.4175 1.4175 2.0736 0.1639516
## Hauteur 1 1.8035 1.8035 2.6383 0.1185567
## Diametre 1 8.0480 8.0480 11.7732 0.0023866 **
## Densite 1 0.1353 0.1353 0.1979 0.6608026
## Orient 1 0.0385 0.0385 0.0563 0.8146664
## HautMax 1 0.0001 0.0001 0.0001 0.9910625
## NbStrat 1 1.9528 1.9528 2.8567 0.1051153
## Melange 1 0.3298 0.3298 0.4825 0.4945619
## Residuals 22 15.0389 0.6836
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
M0 <- lm(log(NbNids)~1, chenilles)
M11 <- lm(log(NbNids)~Pente, chenilles)
anova(M0, M11)

## Analysis of Variance Table
##
## Model 1: log(NbNids) ~ 1
## Model 2: log(NbNids) ~ Pente
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 32 49.596

## 2 31 40.450 1 9.1464 7.0097 0.01263 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
M12 <- lm(log(NbNids)~Altitude, chenilles)
anova(M0, M12)

## Analysis of Variance Table

##
## Model 1: log(NbNids) ~ 1

## Model 2: log(NbNids) ~ Altitude

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 32 49.596

## 2 31 35.474 1 14.122 12.341 0.001384 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
M13 <- lm(log(NbNids)~Diametre, chenilles)
anova(M0, M13)

## Analysis of Variance Table

##
## Model 1: log(NbNids) ~ 1

## Model 2: log(NbNids) ~ Diametre

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 32 49.596

## 2 31 47.594 1 2.0025 1.3043 0.2622
```

```
M21 <- lm(log(NbNids)~Altitude+Pente, chenilles)
anova (MO, M12, M21)
## Analysis of Variance Table
##
## Model 1: log(NbNids) ~ 1
## Model 2: log(NbNids) ~ Altitude
## Model 3: log(NbNids) ~ Altitude + Pente
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 32 49.596
## 2 31 35.474 1 14.1222 14.7288 0.0005951 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
M22 <- lm(log(NbNids)~Altitude+Diametre, chenilles)
anova (MO, M12, M22)
## Analysis of Variance Table
##
## Model 1: log(NbNids) ~ 1
## Model 2: log(NbNids) ~ Altitude
## Model 3: log(NbNids) ~ Altitude + Diametre
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 32 49.596
## 2 31 35.474 1 14.1222 11.9877 0.001632 **
## 3 30 35.342 1 0.1322 0.1122 0.739932
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
M3 <- lm(log(NbNids)~Altitude+Diametre+Pente, chenilles)
anova(M22, M3)

## Analysis of Variance Table

##
## Model 1: log(NbNids) ~ Altitude + Diametre

## Model 2: log(NbNids) ~ Altitude + Diametre + Pente

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 30 35.342

## 2 29 28.742 1 6.5994 6.6586 0.0152 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
anova(M21, M3)

## Analysis of Variance Table

##

## Model 1: log(NbNids) ~ Altitude + Pente

## Model 2: log(NbNids) ~ Altitude + Diametre + Pente

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 30 28.764

## 2 29 28.742 1 0.022081 0.0223 0.8824
```

Modèle final I

```
summary (M21)
##
## Call:
## lm(formula = log(NbNids) ~ Altitude + Pente, data = chenilles)
##
## Residuals:
##
      Min 10 Median 30 Max
## -2.2783 -0.8041 0.2387 0.7057 1.6412
##
## Coefficients:
      Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 7.225158 1.836220 3.935 0.000457 ***
## Altitude -0.004717 0.001351 -3.491 0.001512 **
## Pente -0.063155 0.023874 -2.645 0.012864 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9792 on 30 degrees of freedom
## Multiple R-squared: 0.42, Adjusted R-squared: 0.3814
## F-statistic: 10.86 on 2 and 30 DF, p-value: 0.0002826
```

Modèle final II

```
par(mfrow=c(2,2)); plot(M21, which=c(1,2,4,5))
```

Modèle final III

Plan

Modèle

Prérequis (rappels!

Estimation

Analyse de la variance

Diagnostic

Un exemple: les processionaires de pins

Sélection de variables

Algorithmes de sélection de sous-ensembles Illustration: données chenilles

Motivation: compromis Biais/Variance

À un nouveau point X = x,

$$\operatorname{err}(\hat{f}(x)) = \underbrace{\sigma^2}_{\substack{\text{incompressible} \\ \text{error}}} + \underbrace{\operatorname{bias}^2(\hat{f}(x)) + \mathbb{V}(\hat{f}(x))}_{\substack{\text{MSE}(\hat{f}(x))}}.$$

Cas de la régression linéaire

Erreur de prédiction

On peut montrer pour X fixé que

$$\hat{\operatorname{err}}(\mathbf{X}\hat{\boldsymbol{\beta}}^{\operatorname{ols}}) = \sigma^2 \frac{(p+1)}{n} + \sigma^2.$$

Thérorème de Gauss-Markov

 $\hat{Y}=X^{\rm T}\hat{\boldsymbol{\beta}}^{\rm ols}$ est le meilleur modèle (i.e. de plus faible variance) pour les estimateurs sans biais de $\boldsymbol{\beta}$.

→ Y a-t-il des situations où l'on a intérêt à utiliser un estimateur biaisé
de plus faible variance ?

Sélection de variable

Problématique

En augmentant le nombre de variables

- on intègre de plus en plus d'information dans le modèle ;
- lacktriangle on augmente le nombre de paramètres à estimer et $\mathbb{V}(\hat{Y}_i)$ \nearrow .

Idée

On recherche un (petit) ensemble ${\cal S}$ de k variables parmi p telles que

$$Y \approx X_{\mathcal{S}}^T \hat{\boldsymbol{\beta}}_{\mathcal{S}}.$$

Ingrédients

Pour trouver un compromis, on a besoin

- 1. d'un critère pour évaluer la qualité du modèle;
- 2. d'un algorithme pour déterminer les k variables optimisant le critère

Sélection de variable

Problématique

En augmentant le nombre de variables

- on intègre de plus en plus d'information dans le modèle ;
- ightharpoonup on augmente le nombre de paramètres à estimer et $\mathbb{V}(\hat{Y}_i)$ \nearrow .

Idée

On recherche un (petit) ensemble ${\mathcal S}$ de k variables parmi p telles que

$$Y \approx X_{\mathcal{S}}^T \hat{\boldsymbol{\beta}}_{\mathcal{S}}.$$

Ingrédients

Pour trouver un compromis, on a besoin

- 1. d'un critère pour évaluer la qualité du modèle;
- 2. d'un algorithme pour déterminer les k variables optimisant le critère.

Critères pénalisés Principe général

Idée

Plutôt que d'estimer l'erreur de prédiction par l'erreur de test, on estime de combien l'erreur d'entraînement sous-estime la vraie erreur.

Forme générique des critères

Sans ajuster d'autres modèles, on calcule

$$\hat{\text{err}} = \text{err}_{\mathcal{D}} + \text{"optimisme"}.$$

Remarques

- beaucoup moins coûteux que la validation croisée
- revient à "pénaliser"les modèles trop complexes.

Critères pénalisés Principe général

Idée

Plutôt que d'estimer l'erreur de prédiction par l'erreur de test, on estime de combien l'erreur d'entraînement sous-estime la vraie erreur.

Forme générique des critères

Sans ajuster d'autres modèles, on calcule

$$\hat{\text{err}} = \text{err}_{\mathcal{D}} + \text{"optimisme"}.$$

Remarques

- beaucoup moins coûteux que la validation croisée
- revient à "pénaliser"les modèles trop complexes.

Critères pénalisés

Les plus populaires en régression

Soit k la dimension du modèle (le nombre de prédicteurs utilisés).

Critères pour le modèle de régression linéaire σ connue

On choisit le modèle de taille k minimisant un des critères suivants.

 $ightharpoonup C_p$ de Mallows

$$C_p = \frac{\operatorname{err}_{\mathcal{D}}}{\sigma^2} - n + 2\frac{k}{n}$$

ightharpoonup Akaïke Information Criteria équivalent au C_p quand σ est connue

$$AIC = -2loglik + 2k = \frac{n}{\sigma^2}err_{\mathcal{D}} + 2k.$$

Bayesian Information Criterion

BIC =
$$-2 \log \operatorname{lik} + k \log(n) = \frac{n}{\sigma^2} \operatorname{err}_{\mathcal{D}} + k \log(n)$$
.

Critères pénalisés

Les plus populaires en régression

Soit k la dimension du modèle (le nombre de prédicteurs utilisés).

Critères pour le modèle de régression linéaire σ inconnue

On choisit le modèle de taille k minimisant un des critères suivants.

 $lackbox{ } C_p$ de Mallows σ estimée par l'estimateur sans biais $\hat{\sigma}$

$$C_p = \frac{\operatorname{err}_{\mathcal{D}}}{\hat{\sigma}^2} - n + 2\frac{k}{n}$$

Akaïke Information Criteria σ^2 estimée par $\mathrm{err}_{\mathcal{D}}/n$

$$AIC = -2 \log lik + 2k = n \log(err_{\mathcal{D}}) + 2k.$$

Bayesian Information Criterion σ^2 estimée par $\mathrm{err}_{\mathcal{D}}/n$

$$BIC = -2 \log lik + k \log(n) = n \log(err_{\mathcal{D}}) + k \log(n).$$

C_p/AIC : preuve

L'idéal serait de minimiser l'espérance de la distance entre le vrai modèle $\mathbf{X}\boldsymbol{\beta}=\boldsymbol{\mu}$ et celui de l'OLS. La distance se décompose comme suit:

$$\|\boldsymbol{\mu} - \mathbf{X}\hat{\boldsymbol{\beta}}^{\text{ols}}\|^{2} = \|\mathbf{y} - \boldsymbol{\varepsilon} - \mathbf{P}_{\mathbf{X}}\mathbf{y}\|^{2}$$

$$= \|\mathbf{y} - \hat{\mathbf{y}}\|^{2} + \|\boldsymbol{\varepsilon}\|^{2} - 2\boldsymbol{\varepsilon}^{\mathsf{T}}(\mathbf{y} - \mathbf{P}_{\mathbf{X}}\mathbf{y})$$

$$= n \operatorname{err}_{\mathcal{D}} + \|\boldsymbol{\varepsilon}\|^{2} - 2\boldsymbol{\varepsilon}^{\mathsf{T}}(\mathbf{I} - \mathbf{P}_{\mathbf{X}})(\boldsymbol{\mu} + \boldsymbol{\varepsilon})$$

$$= n \operatorname{err}_{\mathcal{D}} - \|\boldsymbol{\varepsilon}\|^{2} + 2\boldsymbol{\varepsilon}^{\mathsf{T}}\mathbf{P}_{\mathbf{X}}\boldsymbol{\varepsilon} - 2\boldsymbol{\varepsilon}^{\mathsf{T}}(\mathbf{I} - \mathbf{P}_{\mathbf{X}})\boldsymbol{\mu}$$

En espérance, on a

- $\mathbb{E}[\|\varepsilon\|^2] = n\sigma^2$
- $\mathbb{E}[\varepsilon^{\mathsf{T}}(\mathbf{I} \mathbf{P}_{\mathbf{X}})\boldsymbol{\mu}] = 0$
- $\mathbb{E}[2\varepsilon^{\mathsf{T}}\mathbf{P}_{\mathbf{X}}\varepsilon] = 2\mathbb{E}[\operatorname{trace}(\varepsilon^{\mathsf{T}}\mathbf{P}_{\mathbf{X}}\varepsilon)] = 2\operatorname{trace}(\mathbf{P}_{\mathbf{X}})\sigma^{2}$

Si k est la dimension de l'espace où l'on projette, on trouve

$$\mathbb{E}\|\boldsymbol{\mu} - \mathbf{X}\hat{\boldsymbol{\beta}}^{\text{ols}}\|^2 = n\text{err}_{\mathcal{D}} - n\sigma^2 + 2k\sigma^2$$

Il suffit alors de diviser par $n\sigma^2$.

Plan

Modèle

Prérequis (rappels!)

Estimation

Analyse de la variance

Diagnostic

Un exemple: les processionaires de pins

Sélection de variables Algorithmes de sélection de sous-ensembles Illustration: données chenilles

Recherche exhaustive (best-subset)

Algorithme

Pour $k=0,\ldots,p$, trouver le sous-ensemble de k variables qui donne le plus petit SCR parmi les 2^k modèles.

- ▶ Peut être généralisé à d'autres critères (R², AIC, BIC...)
- Existence d'un algorithme efficace ("Leaps and Bound")
- impossible dès que p > 30.

Sélection avant (Forward regression)

Algorithme

- 1. Commencer avec $S = \emptyset$
- 2. À l'étape k trouver la variable qui ajoutée à ${\mathcal S}$ donne le meilleur modèle
- À l'étape k trouver le meilleur modèle lorsqu'une variable est ajoutée ou enlevée.
 - $3\,$ etc. jusqu'au modèle à $p\,$ variables

- ▶ le meilleur modèle est compris en terme de SCR ou \mathbb{R}^2 , AIC, BIC...
- approprié lorsque p est grand
- biais important, mais variance/complexité contrôlée.
- algorithme dit "glouton" (greedy)

Sélection avant Pas à pas (Forward-stepwise)

Algorithme

- 1. Commencer avec $S = \emptyset$
 - 2. À l'étape k trouver la variable qui ajoutée à ${\mathcal S}$ donne le meilleur modèle
- 2'. À l'étape k trouver le meilleur modèle lorsqu'une variable est ajoutée ou enlevée.
 - $3\,$ etc. jusqu'au modèle à $p\,$ variables

- ightharpoonup le meilleur modèle est compris en terme de SCR ou \mathbb{R}^2 , AIC, BIC. . .
- approprié lorsque p est grand
- biais important, mais variance/complexité contrôlée.
- ► algorithme dit "glouton" (greedy)

Sélection arrière

Algorithm

- 1 Commencer avec le modèle plein $S = \{1, \dots, p\}$
- 2 À l'étape k, enlever la variable ayant le moins d'influence sur l'ajustement.
- 3 etc. jusqu'au modèle nul.

- ightharpoonup le meilleur modèle est compris en terme de SCR ou \mathbb{R}^2 , AIC, BIC...
- ightharpoonup ne fonctionne pas si n < p
- ► algorithme dit "glouton" (greedy)

Plan

Modèle

Prérequis (rappels!

Estimation

Analyse de la variance

Diagnostic

Un exemple: les processionaires de pins

Sélection de variables

Algorithmes de sélection de sous-ensembles

Illustration: données chenilles

Recherche exhaustive I

```
library(leaps)
```

On calcule tous les modèles possibles

Extraction de la taille et des SCR. Ajout du modèle nul (juste l'intercept)

```
bss.size <- as.numeric(rownames(bss$which))
intercept <- lm(NbNids ~ 1, data=chenilles)
bss.best.rss <- c(sum(resid(intercept)^2), tapply(bss$rss , bss.size, min))</pre>
```

Recherche exhaustive II

Recherche exhaustive III

Recherche exhaustive VI

Recherche exhaustive V

Forward-Stepwise dans R (I)

Création du modèle nul et du modèle plein

```
null <- lm(NbNids ~ 1, data=chenilles)
full <- lm(NbNids ~ ., data=chenilles)</pre>
```

Création de l'ensemble des modèles à parcourir ("scope")

```
lower <- ~1
upper <- ~Altitude+Pente+NbPins+Hauteur+Diametre+Densite+Orient+HautMax+NbStrat+Mel
scope <- list(lower=lower,upper=upper)</pre>
```

Stepwise avec AIC: forward, backward, both

```
fwd <- step(null, scope, direction="forward", trace=FALSE)
bwd <- step(full, scope, direction="backward", trace=FALSE)
both <- step(null, scope, direction="both" , trace=FALSE)</pre>
```

Forward regression

```
fwd
##
## Call:
## lm(formula = NbNids ~ NbStrat + Altitude + Pente + Densite +
##
      Orient, data = chenilles)
##
## Coefficients:
  (Intercept) NbStrat Altitude
                                           Pente
                                                     Densite
##
     7.898605
               -1.286964 -0.002612 -0.034727
                                                    0.660826
##
       Orient
## -0.770365
fwd$anova
         Step Df Deviance Resid. Df Resid. Dev AIC
##
              NΑ
                       NA
                                32 20.800152 -13.23106
  2 + NbStrat -1 8.4101815
                                31 12.389970 -28.32747
  3 + Altitude -1 2.1421673
                                30 10.247803 -32.59166
## 4 + Pente -1 1.4271671
                                29 8.820636 -35.54065
## 5 + Densite -1 0.7991552
                                28 8.021480 -36.67469
## 6 + Orient -1 0.5851813
                                27 7.436299 -37.17443
```

Backward regression

```
hwd
##
## Call:
## lm(formula = NbNids ~ Altitude + Pente + Hauteur + Diametre +
##
      NbStrat, data = chenilles)
##
## Coefficients:
  (Intercept) Altitude Pente
                                         Hauteur
                                                    Diametre
##
     5.998179 -0.002292 -0.033809 -0.521596
                                                    0.124145
## NbStrat
## -0.384935
bwd$anova
        Step Df Deviance Resid. Df Resid. Dev AIC
##
             NΑ
                         NΑ
                                  22
                                      6.636926 -30.92734
  2 - Densite 1 0.0002957245
                                  23 6.637222 -32.92587
  3 - HautMax 1 0.0101799535
                                  24
                                      6.647402 -34.87529
  4 - Orient 1 0.0367720062
                                  25
                                      6.684174 -36.69324
## 5 - Melange 1 0.4016781476
                                  26
                                      7.085852 -36.76745
## 6 - NbPins 1 0.3522123842
                                  27
                                      7.438064 -37.16660
```

Stepwise regression

```
bot.h
##
## Call:
## lm(formula = NbNids ~ NbStrat + Altitude + Pente + Densite +
##
      Orient, data = chenilles)
##
## Coefficients:
  (Intercept) NbStrat Altitude
                                           Pente
                                                     Densite
##
     7.898605
               -1.286964 -0.002612 -0.034727
                                                    0.660826
##
       Orient
## -0.770365
both$anova
         Step Df Deviance Resid. Df Resid. Dev AIC
##
              NΑ
                       NΑ
                                32 20.800152 -13.23106
  2 + NbStrat -1 8.4101815
                                31 12.389970 -28.32747
  3 + Altitude -1 2.1421673
                                30 10.247803 -32.59166
## 4 + Pente -1 1.4271671
                                29 8.820636 -35.54065
## 5 + Densite -1 0.7991552
                                28 8.021480 -36.67469
## 6 + Orient -1 0.5851813
                                27 7.436299 -37.17443
```

Stepwise en R: modification pour le BIC Modèle plus parcimonieux

```
BIC <- step(null, scope, k=log(n <- nrow(chenilles)), trace=FALSE)

##

## Call:

## lm(formula = NbNids ~ NbStrat + Altitude + Pente, data = chenilles)

##

## Coefficients:

## (Intercept) NbStrat Altitude Pente

## 5.711169 -0.598567 -0.002148 -0.030582
```