Table des matières

1	TD1	: Rappels (Stats. descrt. / Theo. probabilités)	. 2
	1.1	Exercice : Stats. Descriptives / indicateurs, visualisation	. 2
	1.2	Exercice : Notion de probabilité	. 2
	1.3	Exercice : Variables aléatoires discrètes	. 2
	1.4	Exercice : Variables aléatoires continues	. 2
	1.5	Exercice : Loi normale	. 2
2	TD2	: lois et limites	. 3
	2.1	Exercice (mise en pratique des lois)	. 3
	2.2	Exercice (mise en pratique des lois)	. 3
	2.3	Exercice (mise en pratique des lois)	. 3
	2.4	Exercice (mise en pratique des lois)	. 3
	2.5	Exercice (mise en pratique des lois)	. 3
	2.6	Exercice (mise en pratique des lois)	. 4
	2.7	Exercice	. 4
	2 0	Evercice	1

1 TD1: Rappels (Stats. descrt. / Theo. probabilités)

1.1 Exercice: Stats. Descriptives / indicateurs, visualisation

On observe 100 fois le nombre d'arrivées (variable X) de clients à un bureau de poste pendant un intervalle de temps (10 minutes) et on obtient les valeurs suivantes :

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	4	4	4	4	4
4	4	4	4	4	4	5	5	5	5	5	5	5	6	6	6	6	6	6	6

- 1. Dresser le tableau statistique de la distribution de la variable X (effectifs cumulés, ...).
- 2. Calculer les valeurs de tendance centrale de la distribution : la moyenne, le mode et les trois quartiles Q1, Q2 et Q3.
- 3. Calculer les valeurs de la dispersion de la distribution : variance, l'écart type et l'intervalle interquartile.
- 4. Tracer le diagramme en bâtons et la boite à moustaches de cette distribution.

1.2 Exercice : Notion de probabilité

Trois joueurs α , β et γ jettent une pièce à tour de rôle. Le premier qui obtient pile a gagné. Nous admettrons que α joue d'abord, puis β et enfin γ . L'univers Ω associé à cette expérience aléatoire peut être décrit comme suit :

$$\Omega = \{1,01,001,0001,\ldots\} \cup \{0000\ldots\}.$$

- **1.** Donnez une interprétation des points de Ω .
- 2. Décrivez les événements suivants en terme de ces points :
- a) premier événement : $A = \alpha$ gagne »;
- **b)** deuxième événement : $B = \ll \beta$ gagne » ;
- c) troisième événement : $(A \cup B)^c$.

1.3 Exercice : Variables aléatoires discrètes

Soit X une v.a.d. telle que $\mathbb{P}([X=-1]) = \mathbb{P}([X=0]) = \mathbb{P}([X=1]) = 1/3$ et $\mathbb{P}([X=x]) = 0$ pour tout $x \in \mathbb{R} \setminus \{-1,0,1\}$. Soit $Y = X^2$.

Montrez que les variables aléatoires X et Y ne sont pas corrélées. Sont-elles indépendantes ?

1.4 Exercice : Variables aléatoires continues

Soit f la fonction définie par

$$f(t) = \begin{cases} 0 & \text{si } t \notin [0,1] \\ 2t & \text{si } t \in [0,1] \end{cases}$$

- **1.** a) Démontrez que la fonction f est une densité de probabilité.
- b) Démontrez que la loi de probabilité définie par f admet une espérance mathématique et une variance que vous préciserez.
- \mathbf{c}) Déterminez la fonction de répartition associée à f.
- **2.** Soit X une variable aléatoire de densité de probabilité f définie ci-dessus. Nous définissons $Y = 1 + X^2$. Déterminez la fonction de répartition de Y.

1.5 Exercice : Loi normale

Une variable aléatoire X suit la loi normale $\mathcal{N}(5,2;0,8)$.

- **1.** Calculez $\mathbb{P}(X \ge 4|X \le 5,2)$.
- **2.** Une variable aléatoire Y indépendante de la variable X suit la loi normale $\mathcal{N}(\mu;0,8)$.
 - **a.** Quelle est la loi de la variable aléatoire Y 2X?
 - **b.** Déterminez μ sachant que $\mathbb{P}(Y \ge 2X) = 0.516$.

2 TD2 : lois et limites

2.1 Exercice (mise en pratique des lois)

Un questionnaire comporte dix questions. Pour chacune, il y a quatre réponses possibles. Un individu répond au hasard à toutes ces questions.

- a) Quelle est la probabilité qu'il réponde juste à toutes les questions ?
- b) Quelle est la probabilité qu'il réponde juste à 5 questions ?
- c) Quelle est la probabilité qu'il réponde juste à au moins 8 questions ?
- d) En moyenne, à combien de questions va-t-il répondre juste ?

2.2 Exercice (mise en pratique des lois)

Une entreprise dispose d'une machine dont la probabilité de tomber en panne en une journée est de 1/500.

- a) Quelle est la probabilité que cette machine tombe en panne au moins une fois en 20 jours ?
- **b**) Quelle est la probabilité que cette machine tombe strictement plus d'une fois en panne sur cette période ?

2.3 Exercice (mise en pratique des lois)

Une entreprise dispose d'une machine dont la probabilité de tomber en panne en une journée est de 1/500.

- a) Quelle est la probabilité que cette machine tombe en panne au moins une fois en 20 jours ?
- **b)** Quelle est la probabilité que cette machine tombe strictement plus d'une fois en panne sur cette période ?

2.4 Exercice (mise en pratique des lois)

Un magasin possède 4 caisses. Le nombre de clients qui attendent à chacune de ces caisses suit une loi de Poisson de paramètre 3,2. Un nombre de clients supérieur ou égal à 4 par caisse risque de ne pas plaire à la clientèle. Il faudrait alors ouvrir une nouvelle caisse.

Quelle est la probabilité d'ouvrir une nouvelle caisse ?

2.5 Exercice (mise en pratique des lois)

La moyenne des notes à un examen suit une loi normale de moyenne 9,5 et d'écart-type 4,5. Les étudiants ayant une moyenne inférieure à 7 ne sont pas admissibles. Les étudiants ayant une moyenne entre 7 et 9 doivent repasser une des épreuves pour être admissible. Les étudiants ayant entre 9 et 13 sont admissibles et doivent passer un oral. Les étudiants ayant plus de 13 sont directement admis.

Sur un ensemble de 400 000 étudiants qui se présentent à cet examen, déterminer une estimation du nombre d'étudiants de chaque catégorie.

2.6 Exercice (mise en pratique des lois)

Un avion décolle à 5h25 du matin. On note que 10 % des passagers arrivent avant l'heure d'enregistrement des bagages et 5 % d'entre eux arrivent après la fermeture de l'enregistrement et ne peuvent pas embarquer. L'heure d'ouverture de l'enregistrement est 3h50 et l'heure de fermeture de l'enregistrement est 5h.

- a) Déterminer les paramètres de la loi normale qui représente l'heure d'arrivée d'un passager.
- **b**) Combien la compagnie doit-elle enregistrer de réservations pour s'assurer qu'un avion de 200 places soit complet ?
- c) Que se passe-t-il si l'avion a 10 minutes de retard et que la fermeture de l'enregistrement prend aussi 10 minutes de retard ?

2.7 Exercice

Le nombre de personnes à une caisse suit une loi de Poisson de moyenne 12.

Quelle est la probabilité de trouver plus de 20 personnes à cette caisse ?

2.8 Exercice

Une usine a produit des pièces dont 2 % ont un défaut. On teste un ensemble de 10 000 pièces.

- a) Que dire de l'utilisation de la loi Binomiale pour cette étude ?
- **b)** À l'aide d'une approximation de loi, déterminer la probabilité de trouver plus de 2,2 % de pièces défectueuses dans l'ensemble des 10 000 pièces.