NHL Salary Analysis

Project Overview

Data: NHL data on players and teams.

Questions:

Can we predict player salaries based on stats?

Should teams hire superstars?

Should the Vancouver Canucks hire Quinn Hughes?

Data Cleaning

- Handling NA values
 - Providence/State
 - Draft Year, Round, and Overall
 - Average Shot Distance
 - Removal of players with high NA count
 - Replaced with mean values
- Remove Rookies
 - o Matthews: 40 goals, 69 points
- Remove long-term injured players
 - Stamkos: 17 GP, \$9.5 Million

- The United State does not produce the highest paid Hockey players
- Highest paid players come from Europe
- USA/Canada are the only North American countries

Exploratory- Age

- A player's salary is likely to increase until their early 30's
- No dramatic dip in salary as age increases
- Peaks at age 33

Average Salary by Player Height

- Any two-way player is classified as an offensive player
- Offensive players can get away with being shorter
- Defensive players
 average salary peaks
 at a shorter height

Building the Model

```
set.seed(45)
cv_5 = trainControl(method = "cv", 5)
best_elastic_regression = train(
    form = Salary ~ ..
    data = stat_trn,
   method = "glmnet",
    trControl = cv_5,
    tuneLength = 10
```

- Additional Data Cleaning
 - Categorical Data: Last Name,
 Country, City, etc
 - Face-Off Statistics
 - Double-counted statistics
 - \circ Position \rightarrow D and F only
- Penalized Regression
- Transformations attempted
 - Log, cube root, etc
- Lowest RMSE achieved:

\$1,436,393

Using the Model

Quinn Hughes Predicted Salary:

\$2,967,417

(We believe this is a huge underestimate)

Reasons for Shortfall - Skewed Data

Reasons for Shortfall - Noisy Data

Team Analysis

Salary Cap versus wins

2015 wins versus wins

Regression

These two variables explain about 10-15 percent of the variance between teams.

Team Analysis

Superstar count versus wins

Salary Variance versus wins

Regression

Bringing in these additional variables we are able to explain around 15-25 percent of the variance.

Each additional superstar is associated with 1.5 more wins.

Quinn Hughes

Directions for Improvement

- Increase Sample Size to multiple seasons
- Split data into baskets of similar playing styles
- Explore non-linear relationships further

Questions?