Teoría de Circuitos

Boletín de Problemas 7: CIRCUITOS DE CORRIENTE ALTERNA SINUSOIDAL

Problema 1. Una resistencia de $100~\Omega$ se conecta en paralelo con un inductor de 50~mH. Esta combinación en paralelo se conecta en serie con una resistencia de $10~\Omega$ y un condensador de $10~\mu\text{F}$. a) Calcular la impedancia de esta conexión si la frecuencia es 1000~rad/s. b) Repita el apartado anterior para una frecuencia de 4000~rad/s. c) ¿Para qué frecuencia se hace puramente resistiva la impedancia de la conexión? d) ¿Cuál es la impedancia a la frecuencia determinada en el apartado anterior?

Solución: a)
$$Z = 30 - 60j$$
; b) $Z = 90 + 15j$; c) $f = 2000 \text{ rad/s}$; d) $Z = 60 \Omega$

Problema 2. El siguiente circuito se encuentra en régimen permanente de corriente alterna. Encontrar la lectura de V_2 sabiendo que V_1 marca 100 V.

Solución: $V_2 = 50\sqrt{10} \text{ V}$

Problema 3. El siguiente circuito se encuentra en régimen permanente de corriente alterna. Determinar los valores eficaces de la tensión y de la intensidad en la bobina. Datos: $i_a(t) = 3\sqrt{2}\cos(1000t)$ A, $C = 10\,\mu\text{F}$, $L = 50\,\text{mH}$

Solución: $U_L = 300 \text{ V}$; $I_L = 6 \text{ A}$

Problema 4. El circuito de la figura se encuentra en régimen permanente de corriente alterna. Sabiendo que $i_g(t)=10\sqrt{2}\cos(100t)$ y que $v_g(t)=4\sqrt{2}\cos(50t)$, determinar el valor de $i_L(t)$. Datos: L=1 mH, $R_1=0.5$ Ω

Solución: $i_L(t) = \sqrt{2}\,9,806\,\cos(100t - 0.197) + \sqrt{2}\,7,96\,\cos(50t - 0.1)$

Problema 5. El circuito de la figura se encuentra en régimen permanente. Determinar i(t). Datos: $u_g(t)=8$ V, $i_g(t)=4\sqrt{2}\cos(100t)$ A, L=20 mH y R=4 Ω .

Solución: $i(t) = 2 + \sqrt{2} \, 3,\!578 \, \cos(100t - 0,\!464)$

Problema 6. El circuito de la figura se encuentra en regimen permanente. Calcular la intensidad i(t) que circula por el amperímetro. Datos: $v_g(t) = 4 + 4\cos(10t)$, $i_g(t) = 4\cos(100t)$, $R_1 = 2\Omega$, $R_2 = 2\Omega$, L = 2 H.

Solución: $i(t) = 2 + 0.1990 \cos(10t - 1.47) - 4 \cos(100t)$

Problema 7. El circuito de la figura se encuentra en régimen permanente de corriente alterna. Determinar la intensidad i(t). Datos $v_q(t)=10\sqrt{2}\cos(10t)$, $i_q(t)=\sqrt{2}\cos(50t)$, L=1 H, C=1 F y R=10 Ω .

Solución: $i(t) = \cos(10t - \pi/4) + 0.98\sqrt{2}\cos(50t + 0.197)$

Problema 8. En el circuito de la figura, determinar las lecturas del amperímetro y del voltímetro 1. Datos: $V_2=4$ V, $R_3=1$ Ω , $X_L=4$ Ω , $X_{C1}=2$ Ω y $X_{C2}=1$ Ω .

Solución: A = 2.5 A; $V_1 = 3 \text{ V}$

Problema 9. Encontrar el equivalente Thevenin entre los terminales A y B del circuito de alterna de la figura. Datos: $\mathcal{E}_g = 10 \text{ V}$, $\mathcal{Z}_1 = 2j \Omega$, $\mathcal{Z}_2 = 5j \Omega$ y $\mathcal{Z}_c = -10j \Omega$.

Solución: $E_{Th} = \frac{50}{6} \angle 0$; $Z_{eq} = \frac{5}{3}j$

Problema 10. Determinar las intensidades de malla del circuito de la figura. Datos: $\omega=10$ rad/s, L=1 H, $L_1=0.2$ H, $L_2=0.1$ H, C=10 mF, R=1 Ω , $\mathcal{U}_g=5_{\geq 0}$, $\mathcal{I}_g=0.2_{\leq -90^{\circ}}$.

Solución: $\mathcal{I}_a = 0.625_{\angle -90^{\circ}}$; $\mathcal{I}_b = 0.272_{\angle -84^{\circ}}$

Problema 11. Determinar las tensiones de los nudos del circuito de la figura. Datos: $R_1 = R_2 = R_3 = 1 \,\Omega$, $\mathcal{I}_g = 2_{\angle 45^{\circ}}$, $\mathcal{U}_g = 3_{\angle 0}$, $\mathcal{X}_C = 0.25 \,\Omega$, $\mathcal{X}_L = 2 \,\Omega$.

Solución: $U_A = 1,73_{\angle 128,5}$; $U_B = 2,35_{\angle 35,24}$; $U_C = 2,84_{\angle 23,8}$ °

Problema 12. En el circuito de la figura, donde la fuente sinusoidal vale $e(t)=100\sqrt{2}\cos(50t)$ V, se encuentra en régimen permanente cuando en t=0 se cambia el estado de los interruptores. Calcular i(t) para t>0.

Solución: $i(t) = (5 - 5\sqrt{2}) e^{-50t} + 10 \cos(50t - 45^{\circ}) A$

Problema 13. En el circuito de la figura, con $i_g(t) = 2\cos(100t + 45^\circ)$ A, y $v_g(t) = 2\sqrt{2}\cos(100t)$ V, encontrar la expresión de la intensidad i(t) sabiendo que la tensión inicial del condensador de 10 mF, con las referencias indicadas, es de 2 V en t = 0.

Solución: i(t)= -0.1198 $e^{-t/0.0075} + 0.2828 \sqrt{2} \cos(100t + 8.13^{\circ})$ A

Problema 14. El circuito de la figura está en régimen permanente cuando en t=0 los interruptores pasan de la posición 1 a la 2. Calcular la intensidad i_L para t > 0, siendo e(t)=70 $\cos(40t)$ V.

Solución: $i_L(t) = -2.39 e^{-10t} - 1.67 e^{-40t} + 2.4 \cos(40t - 30.96^{\circ}) \text{ V}$

Problema 15. En el esquema de la figura, el circuito H contiene tan solo resistencias y fuentes sinusoidales de frecuencia 100 rad/s. Sabiendo que la intensidad en la inductancia L=4 mH vale $i(t)=3,88\sqrt{2} \exp(-30t) \cos(40t-48,24^\circ)+2,34\sqrt{2} \cos(100t-141,34^\circ))$, se pide la resistencia equivalente del Thevenin para el circuito H y la lectura del voltímetro en régimen permanente.

Solución: $R_{Th} = 0.166\Omega$; $V = 0.936 \, \text{V}$