TD2: Mathématiques pour la 3D

- 1) Convertissez les coordonnées polaires 2D suivantes en forme canonique :
 - (a) $(4,207^{\circ})$
 - (b) $(-5, -720^{\circ})$
 - (c) $(0,45.2^{\circ})$
 - (d) $(12.6, 11\pi/4 \text{ rad})$
- 2) Convertissez les coordonnées polaires 2D suivantes en coordonnées cartésiennes :
 - (a) $(1,45^{\circ})$
 - (b) $(3,0^{\circ})$
 - $(c) (4,90^{\circ})$
 - (d) $(10, -30^{\circ})$
 - (e) $(5.5, \pi \text{ rad})$
- 3) Convertissez les coordonnées cartésiennes 2D suivantes en forme polaire canonique :
 - (a) (10, 20)
 - (b) (-12, -5)
 - (c) (0,4.5)
 - (d) (-3,4)
 - (e) (0,0)
 - (f) (-5280,0)

- 4) Convertissez les coordonnées cartésiennes 3D suivantes en coordonnées sphériques canoniques :
 - (a) $(\sqrt{2}, 2\sqrt{3}, -\sqrt{2})$
 - (b) $(2\sqrt{3}, 6, -4)$
 - (c) (-1, -1, -1)
 - (d) $(2, -2\sqrt{3}, 4)$
 - (e) $(-\sqrt{3}, -\sqrt{3}, 2\sqrt{2})$
 - (f) (3,4,12)
- 5) Construisez un quaternion qui effectue une rotation de 30° autour de l'axe des x.
 - (a) Quelle est la magnitude de ce quaternion?
 - (b) Quel est son conjugué?
 - (c) Quelle est son orientation en angles d'Euler?
- 6) Calculez un quaternion qui effectue 2 fois la rotation du quaternion suivant : [0.965 (0.149 0.149 0.149)].
- 7) Considérez les quaternions suivants :

$$\mathbf{a} = \begin{bmatrix} 0.233 & \begin{pmatrix} 0.060 & -0.257 & -0.935 \end{pmatrix} \end{bmatrix}$$

$$\mathbf{b} = \begin{bmatrix} -0.752 & (0.286 & 0.374 & 0.459) \end{bmatrix}$$

- (a) Calculez le produit scalaire de quaternions ${\bf a}\cdot{\bf b}$
- (b) Calculez le produit de quaternions ab
- (c) Calculez la différence de a à b