Final Examination on Calculus 2 - 20222

Course code: MI1121E. Duration: 90 minutes Caution: Unauthorized materials are not allowed

Q1. Find the curvature of the curve $y = x^2 - 1$ at A(1,0).

Q2. Find the directional derivative of the function $u(x,y,z) = x^2 + 2xy^2 - yz^3$ in the direction of $\vec{\ell} = (1,-2,2)$ at the point A(1,1,1).

Q3. Evaluate $\iint_D (1 + x + y^2) dx dy$, where $D: x^2 + y^2 \le 1$.

Q4. Evaluate $\iiint\limits_V (3x+z) dx dy dz$, where $V: x^2+y^2+z^2 \le 2z$.

Q5. Evaluate $\int_{0}^{+\infty} \frac{\sqrt{x}}{(1+x^2)^3} dx.$

Q6. Evaluate $\int_C (x+2y)ds$, where $C: y = \sqrt{2x-x^2}$.

Q7. Evaluate $\oint_C (xy + 3x + 2y)dx + (xy - 2y)dy$, where *C* is the circle $x^2 + y^2 = 2x$ with counterclockwise orientation.

Q8. Evaluate $\iint_S (2x - y + z^2) dS$, where S is the hemisphere $S: x^2 + y^2 + z^2 = 1, x \ge 0$.

Q9. Find the flux of the vector field $\vec{F} = x\vec{i} + y\vec{j} + (z^2 - 1)\vec{k}$ across S, where S is the part of the ellipsoid $x^2 + \frac{y^2}{4} + z^2 = 1$, $z \ge 0$, with upward orientation.

Q10. Find the circulation of the vector field

$$\vec{F} = (2xze^{x^2} + y^2 - z)\vec{i} + (y - 3z)\vec{j} + (e^{x^2} + x + 2y)\vec{k}$$

around *C*. Here *C* is the curve of intersection of the plane x + y + z = 1 and the cylinder $x^2 + y^2 = 2y$, oriented counterclockwise as viewed from above.

Final Examination on Calculus 2 - 20222

Course code: MI1121E. Duration: 90 minutes Caution: Unauthorized materials are not allowed

Q1. Find the curvature of the curve $y = x^2 + 1$ at A(1,2).

Q2. Find the directional derivative of the function $u(x,y,z) = x^2 + 2xy^2 - yz^3$ in the direction of $\vec{\ell} = (1,2,-2)$ at the point A(1,1,1).

Q3. Evaluate $\iint_D (1+x-y^2)dxdy$, where $D: x^2+y^2 \le 1$.

Q4. Evaluate $\iiint\limits_V (2y+z) dx dy dz$, where $V: x^2+y^2+z^2 \leq 2z$.

Q5. Evaluate $\int_{0}^{+\infty} \frac{\sqrt{x}}{(1+x^2)^2} dx.$

No. 2

Q6. Evaluate $\int_C (x-2y)ds$, where $C: y = \sqrt{2x-x^2}$.

Q7. Evaluate $\oint_C (xy + 2x + y)dx + (xy - 3y)dy$, where *C* is the circle $x^2 + y^2 = 2x$ with counterclockwise orientation.

Q8. Evaluate $\iint_S (x + 2y + z^2) dS$, where S is the hemisphere $S: x^2 + y^2 + z^2 = 1, x \ge 0$.

Q9. Find the flux of the vector field $\vec{F} = x\vec{i} + y\vec{j} + (z^2 + 1)\vec{k}$ across S, where S is the part of the ellipsoid $x^2 + \frac{y^2}{4} + z^2 = 1$, $z \ge 0$, with upward orientation.

Q10. Find the circulation of the vector field

$$\vec{F} = (2xye^{x^2} + y^2 - z)\vec{i} + (e^{x^2} + y - 3z)\vec{j} + (x + 2y)\vec{k}$$

around *C*. Here *C* is the curve of intersection of the plane x + y + z = 1 and the cylinder $x^2 + y^2 = 2y$, oriented counterclockwise as viewed from above.