Feature engineering

Data Science in a Box datasciencebox.org

Feature engineering

Feature engineering

- We prefer simple models when possible, but parsimony does not mean sacrificing accuracy (or predictive performance) in the interest of simplicity
- Variables that go into the model and how they are represented are just as critical to success of the model
- **Feature engineering** allows us to get creative with our predictors in an effort to make them more useful for our model (to increase its predictive performance)

Same training and testing sets as before

```
# Fix random numbers by setting the seed
# Enables analysis to be reproducible when random numbers are used
set.seed(1116)

# Put 80% of the data into the training set
email_split <- initial_split(email, prop = 0.80)

# Create data frames for the two sets:
train_data <- training(email_split)
test_data <- testing(email_split)</pre>
```

A simple approach: mutate()

```
train_data %>%
  mutate(
    date = lubridate::date(time),
    dow = wday(time),
    month = month(time)
    ) %>%
  select(time, date, dow, month) %>%
  sample_n(size = 5) # shuffle to show a variety
```

Modeling workflow, revisited

- Create a recipe for feature engineering steps to be applied to the training data
- Fit the model to the training data after these steps have been applied
- Using the model estimates from the training data, predict outcomes for the test data
- Evaluate the performance of the model on the test data

Building recipes

Initiate a recipe

```
## # A tibble: 21 × 4
      variable
                   tvpe
                           role
                                     source
      <chr>
                   <chr>
                          <chr>
                                    <chr>
   1 to multiple nominal predictor original
## 2 from
                  nominal predictor original
## 3 cc
                  numeric predictor original
## 4 sent email
                  nominal predictor original
## 5 time
                          predictor original
                  numeric predictor original
## 6 image
                  numeric predictor original
## 7 attach
## 8 dollar
                  numeric predictor original
                  nominal predictor original
## 9 winner
## 10 inherit
                  numeric predictor original
                  numeric predictor original
## 11 viagra
## 12 password
                  numeric predictor original
## 13 num char
                  numeric predictor original
## 14 line breaks numeric predictor original
## 15 format
                  nominal predictor original
## 16 re subi
                  nominal predictor original
## 17 exclaim subj numeric predictor original
## 18 urgent subj nominal predictor original
## 19 exclaim mess numeric predictor original
## 20 number
                  nominal predictor original
## 21 spam
                   nominal outcome original
```

Remove certain variables

```
email_rec <- email_rec %>%
   step_rm(from, sent_email)
```

```
## Recipe
##
## Inputs:
##
## role #variables
## outcome 1
## predictor 20
##
## Operations:
##
## Variables removed from, sent_email
```

Feature engineer date

```
email_rec <- email_rec %>%
  step_date(time, features = c("dow", "month")) %>%
  step_rm(time)
```

```
## Recipe
##
## Inputs:
##
## role #variables
## outcome 1
## predictor 20
##
## Operations:
##
## Variables removed from, sent_email
## Date features from time
## Variables removed time
```

Discretize numeric variables

```
email_rec <- email_rec %>%
  step_cut(cc, attach, dollar, breaks = c(0, 1)) %>%
  step_cut(inherit, password, breaks = c(0, 1, 5, 10, 20))
```

```
## Recipe
##
## Inputs:
##
## role #variables
## outcome 1
## predictor 20
##
## Operations:
##
## Variables removed from, sent_email
## Date features from time
## Variables removed time
## Cut numeric for cc, attach, dollar
## Cut numeric for inherit, password
```

Create dummy variables

```
email_rec <- email_rec %>%
  step_dummy(all_nominal(), -all_outcomes())
```

```
## Recipe
##
## Inputs:
##
## role #variables
## outcome 1
## predictor 20
##
## Operations:
##
## Variables removed from, sent_email
## Date features from time
## Variables removed time
## Cut numeric for cc, attach, dollar
## Cut numeric for inherit, password
## Dummy variables from all_nominal(), -all_outcomes()
```

Remove zero variance variables

Variables that contain only a single value

```
email_rec <- email_rec %>%
  step_zv(all_predictors())
```

```
## Recipe
##
## Inputs:
##
## role #variables
## outcome 1
## predictor 20
##
## Operations:
##
## Variables removed from, sent_email
## Date features from time
## Variables removed time
## Cut numeric for cc, attach, dollar
## Cut numeric for inherit, password
## Dummy variables from all_nominal(), -all_outcomes()
## Zero variance filter on all_predictors()
```

All in one place

```
email_rec <- recipe(spam ~ ., data = email) %>%
  step_rm(from, sent_email) %>%
  step_date(time, features = c("dow", "month")) %>%
  step_rm(time) %>%
  step_cut(cc, attach, dollar, breaks = c(0, 1)) %>%
  step_cut(inherit, password, breaks = c(0, 1, 5, 10, 20)) %>%
  step_dummy(all_nominal(), -all_outcomes()) %>%
  step_zv(all_predictors())
```

Building workflows

Define model

```
email_mod <- logistic_reg() %>%
    set_engine("glm")

email_mod

## Logistic Regression Model Specification (classification)
##
## Computational engine: glm
```

Define workflow

Workflows bring together models and recipes so that they can be easily applied to both the training and test data.

```
email_wflow <- workflow() %>%
  add_model(email_mod) %>%
  add_recipe(email_rec)
```

```
## == Workflow =
## Preprocessor: Recipe
## Model: logistic reg()
##
## — Preprocessor
## 7 Recipe Steps
## • step rm()
## • step date()
## • step rm()
## • step cut()
## • step cut()
## • step dummy()
## • step zv()
## -- Model -
## Logistic Regression Model Specification (classification)
## Computational engine: glm
```

Fit model to training data

```
email_fit <- email_wflow %>%
  fit(data = train_data)
```

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

##	# 4	A tibble: 32 × 5				
##		term	estimate	std.error	statistic	p.value
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	(Intercept)	-0.707	0.252	-2.80	5.04e- 3
##		image	-1.65	0.949	-1.74	8.27e- 2
##	3	viagra	2.42	300.	0.00806	9.94e- 1
##	4	num_char	0.0475	0.0243	1.95	5.11e- 2
##	5	line_breaks	-0.00514	0.00138	-3 . 72	2.03e- 4
##	6	exclaim_subj	-0.205	0.277	-0.740	4.59e- 1
##	7	exclaim_mess	0.00879	0.00186	4.72	2.31e- 6
##	8	to_multiple_X1	-2.56	0.354	-7.24	4.61e-13
##		cc_X.1.68.	-0.289	0.490	-0.590	5.55e- 1
##	10	attach_X.1.21.	2.03	0.369	5.51	3 . 67e- 8
##		dollar_X.1.64.	0.246	0.216	1.14	2.56e- 1
##		winner_yes	2.15	0.430	5.00	5.64e- 7
##	13	inherit_X.1.5.	-10.5	1241.	-0.00843	9 . 93e- 1
##		inherit_X.5.10.	2.48	1.47	1.69	9.16e- 2
##	15	password_X.1.5.	-1 . 73	0.747	-2 . 31	2.08e- 2
##		password_X.5.10.	-13.5	776.	-0.0174	9.86e- 1
##	17		-14.9	1322.	-0.0112	9.91e- 1
##		<pre>password_X.20.22.</pre>	-15.0	1697.	-0.00886	
##		format_X1	-0.904	0.159	-5 . 69	1.29e- 8
##		re_subj_X1	-2 . 89	0.437	-6 . 63	3.37e-11
##		urgent_subj_X1	3.50	1.07	3 . 28	1.05e- 3
##		number_small	-0.892	0.167	-5 . 34	9.41e- 8
##		number_big	-0.183	0.250	-0.731	4.65e- 1
##		time_dow_Mon	-0.340	0.295	-1 . 15	2.49e- 1
##		time_dow_Tue	-0.00277	0.275	-0.0101	9.92e- 1
##		time_dow_Wed	-0.223	0.269	-0.830	4.06e- 1
##		time_dow_Thu	-0.328	0.277	-1.18	2.36e- 1
##		time_dow_Fri	-0.0534	0.270	-0.198	8.43e- 1
##		time_dow_Sat	0.0536	0.290	0.185	8.53e- 1
##		time_month_Feb	0.800	0.181	4.42	9.85e- 6
##		time_month_Mar	0 . 587	0.181	3.24	1.18e- 3
OF CHERT	<u></u>	. with 1 more row				

Make predictions for test data

```
email pred <- predict(email fit, test data, type = "prob") %>%
  bind cols(test data)
## Warning: There are new levels in a factor: NA
 email pred
## # A tibble: 785 × 23
    .pred_0 .pred_1 spam to_multiple from cc sent_email
##
    ##
## 1 0.994 0.00602 0 1
                                             0 1
## 2 0.998 0.00164 0
## 3 0.972 0.0281 0
                                             1 1
                                             0 0
## 4 0.999 0.000652 0
                                             1 0
## 5 0.995 0.00546 0
## 6 0.881 0.119
## # ... with 779 more rows, and 16 more variables: time <dttm>,
## #
      image <dbl>, attach <dbl>, dollar <dbl>, winner <fct>,
## #
      inherit <dbl>, viagra <dbl>, password <dbl>, num_char <dbl>,
      line_breaks <int>, format <fct>, re_subj <fct>,
      exclaim subj <dbl>, urgent_subj <fct>, exclaim_mess <dbl>,
```

Evaluate the performance

```
email_pred %>%
  roc_curve(
    truth = spam,
    .pred_1,
    event_level = "second"
) %>%
  autoplot()
```


Evaluate the performance

```
email_pred %>%
  roc_auc(
    truth = spam,
    .pred_1,
    event_level = "second"
)
```

```
## # A tibble: 1 × 3
## .metric .estimator .estimate
## <chr> <chr> ## 1 roc_auc binary 0.856
```


Making decisions

Output Code

Suppose we decide to label an email as spam if the model predicts the probability of spam to be **more than 0.5**.

	Email is not spam	Email is spam
Email labelled not spam	705	57
Email labelled spam	11	11
NA	1	NA

Output

Code

Output Code

Suppose we decide to label an email as spam if the model predicts the probability of spam to be **more than 0.25**.

	Email is not spam	Email is spam
Email labelled not spam	660	34
Email labelled spam	56	34
NA	1	NA

Output

Code

Output Code

Suppose we decide to label an email as spam if the model predicts the probability of spam to be **more than 0.75**.

	Email is not spam	Email is spam
Email labelled not spam	715	65
Email labelled spam	1	3
NA	1	NA

Output

Code