博弈

2019年度南京大学"专创融合"特色示范课程培育项目

高阳

http://cs.nju.edu.cn/rl, 2019.11.19

博弈

从极小极大到博弈均衡

高阳

http://cs.nju.edu.cn/gaoy, 2019.11.19

大 纲

极小极大搜索

α-β剪枝

帕里托优和纳什均衡

协商(投票,拍卖和谈判)

大 纲

极小极大搜索

α-β剪枝

帕里托优和纳什均衡

协商(投票,拍卖和谈判)

极小极大过程

强化学习: 与环境的交互

博弈:对对手行为/策略的建模

MAX: 代表一方玩家,最大化其收益(赢得博弈)

MIN: 代表对手,最小化MAX的收益

MIN总是移动到使MAX收益最坏的状态

余一棋

规则:将其分为两个不相等的两堆

MAX获胜: 值函数为1 MIN获胜: 值函数为0

极小极大搜索

□ 将启发值自底向上传播

- ✓ 如果父状态是MAX节点,将孩子节点中最大值传给它
- ✓ 如果父状态是MIN节点,将孩子节点中最小值传给它

固定层深的极小极大过程

Three wins through a corner square

Four wins through the center square

Two wins through a side square

定义启发式函数

X has 6 possible win paths:

O has 5 possible wins:

$$E(n) = 6 - 5 = 1$$

X		1
-		
-,4	φ.	

X	0	

X has 4 possible win paths; O has 6 possible wins

$$E(n) = 4 - 6 = -2$$

	0
X	

X has 5 possible win paths; O has 4 possible wins

$$E(n) = 5 - 4 = 1$$

□ 启发式评估: E(n)=M(n)-O(n)

✓ M(n)是当前玩家可能获胜的行数

✓ O(n)是对手可能获胜的行数

例: MAX开局移动

例: MAX第二步移动

例: MAX第三步移动

大 纲

极小极大搜索

α-β剪枝

帕里托优和纳什均衡

协商(投票,拍卖和谈判)

□极小极大过程

- ✓ 在预判层应用启发式评估
- ✓ 展开所有的后继分支
- ✓ 沿树向上传播评估值

□α-β剪枝

- ✓ 当确定是一个dead end时,停止展开其后继节点
- ✓ 是对博弈树的深度优先搜索,且维护
- ✓ Alpha: 与MAX节点关联, 从不减小
- ✓ Beta: 与MIN节点关联,从不增大

A has $\beta = 3$ (A will be no larger than 3)

B is β pruned, since 5 > 3

C has $\alpha = 3$ (C will be no smaller than 3)

D is α pruned, since 0 < 3

E is α pruned, since 2 < 3

A has $\beta = 3$ (A will be no larger than 3)

B is β pruned, since 5 > 3

C has $\alpha = 3$ (C will be no smaller than 3)

D is α pruned, since 0 < 3

E is α pruned, since 2 < 3

A has $\beta = 3$ (A will be no larger than 3)

B is β pruned, since 5 > 3

C has $\alpha = 3$ (C will be no smaller than 3)

D is α pruned, since 0 < 3

E is α pruned, since 2 < 3

A has $\beta = 3$ (A will be no larger than 3)

B is β pruned, since 5 > 3

C has $\alpha = 3$ (C will be no smaller than 3)

D is α pruned, since 0 < 3

E is α pruned, since 2 < 3

剪枝规则

A has $\beta = 3$ (A will be no larger than 3)

B is β pruned, since 5 > 3

C has $\alpha = 3$ (C will be no smaller than 3)

D is α pruned, since 0 < 3

E is α pruned, since 2 < 3

C is 3

□剪枝规则

- ✓ Alpha剪枝: 任一MIN节点,如果其Beta值小于等于其祖先 MAX节点的Alpha值,则停止搜索
- ✓ Beta剪枝: 任一MAX节点,如果 其Alpha值大于等于其祖先MIN 节点的Beta值,则停止搜索

大 纲

极小极大搜索

α-β剪枝

帕里托优和纳什均衡

协商(投票,拍卖和谈判)

囚徒困境

		囚犭	СВ
		坦白	抗拒
	坦白	(-5,-5)	(0,-10)
囚犯A	抗拒	(-10,0)	(-1,-1)

- □ 每个囚徒如果只考虑自身的利益,则会选择'坦白'行为;
- □ 而囚徒困境的最优策略是双方都选择'抗拒'行为。

布雷斯悖论 Braess's paradox

- □ 考虑上图中的交通网,有4000辆车打算在其中路上通行。其中边上的数值表示通行时间,T表示边上的车辆数目。
- □ A到B的近路不存在
 - ✓ 2000辆从起点到A到终点,2000辆从起点到B到终点,65分钟
- □ A到B存在一条通行时间接近于0的近路
 - ✓ 所有司机都会选择从起点到A到B到终点,80分钟
 - ✓ 假如约定好不走近路?

最优策略

- □社会福利(Social Welfare)
 - ✓ 最大化所有参与者的收益和
- □帕里托优(Pareto Efficiency)
- □纳什均衡(Nash Equilibrium)
- □优超 (Dominant)
 - ✓ 不依赖其他参与者

帕里托优

- \Box 一个方案x是帕利脱最优,当且仅当 $\overline{}$ 存在另一个方案x'满足
 - \square \exists agent $ag: ut_{ag}(x') > ut_{ag}(x)$
 - \square \forall agent ag': $ut_{ag'}(x') \ge ut_{ag'}(x)$
- □ 帕利脱最优:不考虑跨Agent效益比较的情况下满足一个全局最优
- □ 帕利脱改善: 在不减少一方利益的同时,通过改变现有的资源配置 而提高另一方的利益
- □ 社会福利是帕利脱最优的一个子集
 - □一个agent要想提高自己的利益,必然存在其他agent的利益受损

纳什均衡

□Agent 的策略依赖于其他agent

如果 $S_A^* = \langle S_1^*, S_2^*, \dots, S_{|A|}^* \rangle$ 为纳什均衡策略, 当且仅当对agent i: S_i^* 对于 agent i 是最优策略当其他agent选择以下策略时 $\langle S_1^*, S_2^*, \dots, S_{|A|}^* \rangle$ $S_{i+1}^* \dots, S_{|A|}^* \rangle$

□没有参与者可以独自行动而增加收益

□问题

- ✓ 无纯Nash均衡解
- ✓ 多个Nash均衡解

无纯策略NASH均衡解

		女孩		
		剪刀	石头	布
	剪刀	(0,0)	(-1,1)	(1,-1)
男孩	石头	(1,-1)	(0,0)	(-1,1)
	布	(-1,1)	(1,-1)	(0,0)

多个Nash均衡解

		女	孩
		球赛	电影
田7法	球赛	(2,1)	(0,0)
男孩	电影	(0,0)	(1,2)

□恋爱博弈问题

- ✓男孩喜欢看比赛
- ✓ 女孩喜欢看电影
- ✓两人都希望一起度过周末

结婚后…

		女	孩
		球赛	电影
男孩	球赛	(2,0)	(3,3)
力核	电影	(-3,-3)	(0,2)

□恋爱博弈问题

- ✓男孩喜欢看比赛
- ✓ 女孩喜欢看电影
- ✓ 两人倾向于周末分道扬镳…

不同准则下的最优策略

		囚犭	СВ
		坦白	抗拒
	坦白	(-5,-5)	(0,-10)
囚犯A	抗拒	(-10,0)	(-1,-1)

□ 社会福利: 〈抗拒, 抗拒〉

□ 帕里托优:除了〈坦白,坦白〉之外的其他情况

□纳什均衡:〈坦白,坦白〉

□ 优超: 〈坦白, 坦白〉

非共享支付的博弈

(A,B)	b_1	b_2
a_1	(0, 0)	(1, 1)
a_2	(2, 2)	(3, 3)

Original Game Matrix

值表在多智能体间共享, 为公共知识

- ✓透露太多信息,不安全
- ✓适用范围有限,分布决策环境中难适用
- ✓空间复杂度高

信息分布环境下的博弈形式

Distributed Game Matrix

(A,B)	b_1	b_2	(A,B)	b_1	b_2
a_1	(0, ?)	(1, ?)	a_1	(?, 0)	(?, 1)
a_2	(2, ?)	(3, ?)	a_2	(?, 2)	(?, 3)

非共享支付的博弈

分布式决策下的博弈,绝对理性 的纳什均衡未必最适用

餐能体A

A	Confess	Deny
Confess	-9	0
Deny	-10	-1

(D, I)	D)比 (C,C)	()更
	有利	

智能体B

В	Confess	Deny
Confess	-9	-10
Deny	0	-1

策略组(D,D) 帕里托优超 $(Pareto\ dominates)$ 于纳什均衡策略(C,C)。

一个有趣的博弈

$\overline{(A,B)}$	b_1	b_2	b_3
a_1	(20,40)	(4,22)	(29,30)
$\overline{a_2}$	(18,9)	(36,19)	(7,4)
$\overline{a_3}$	(17,26)	(15,38)	(27,38)

 (a_1,b_3) : (29,30) (a_3,b_3) : (27,38)

分布式决策下的博弈矩阵

A	b_1	b_2	b_3
a_1	20	4	29
a_2	18	36	7
a_3	17	15	27

В	b_1	b_2	b_3
a_1	40	22	30
$\overline{a_2}$	9	19	4
$\overline{a_3}$	26	38	38

智能体A

智能体B

$$(a_1,b_3)$$
 (a_3,b_3) (a_2,b_2)

大 纲

极小极大搜索

α-β剪枝

帕里托优和纳什均衡

协商(投票,拍卖和谈判)

协商(投票)

□ 投票机制

- ✓ Agents给予一个投票机输入,投票机结果作为Agents的解决方案
- ✓ 设A为所有Agent的集合, O为所有投票结果的集合
- ✓ 一个agent i的投票结果可以被描述为 $\succ_i \subseteq O \times O$

阿罗不可能定理!

投票机制的六原则

- □ 对所有可能的输入组合,都存在一个社会偏序>*
- □ >*对任意候选人的二元组 $o, o' \in O$ 都有定义
- □ >*在0上是非对称且传递的
- □ 结果满足帕利脱最优,即 $\forall i \in A, o >_i o', 则o >^* o'$
- □ 投票方案对不相关的候选人是独立的
- □ 没有Agent可以是独裁的

多数投票

陈水扁39% 宋楚瑜36% 连战为22%

□ 投票协议

- ✓ 所有候选人同时进行比较,得票最高者获胜
- ✓ 不满足无关方案独立原则
- □ 例: 60%的agents支持a > b, 40%的agents支持b > a

a胜出!

口引入候选人c, 30%的agents支持a > c > b, 30%的agents 支持c > a > b, 40%的agents支持b > a > c

b胜出!

二叉投票

- □ 投票协议
 - ✓ 候选人成对PK
 - ✓ 胜者和其他候选人继续PK
 - ✓ 败者淘汰
- □ 不满足无关方案独立原则!
- □ 投票的结果依赖于比较的次序!

- □ 35% agents 支持c > d > b > a
- □ 33% agents 支持a > c > d > b
- □ 32% agents 支持b > a > c > d

计分投票

- □ 投票协议
 - ✓ 设置一个分值|0|
 - ✓ 排名第一的得|O|分,排名第二的得|O|-1分,依次类推
 - ✓ 累加所有候选人的得分
- □ 不满足无关方案独立原则!
- □ 投票的结果依赖于分值!

计分投票

Agent	投票	a b c d 得分	
1	a > b > c > d	4 3 2 1	
2	b > c > d > a	1 4 3 2	
3	c > d > a > b	2 1 4 3	
4	a > b > c > d	4 3 2 1	
5	b > c > d > d	1 4 3 2	
6	c > d > a > b	2 1 4 3	
7	a > b > c > d	4 3 2 1	
记分结果	c 20, b 19, a 18, d 13		
记分结果(排除d)	a 15, b 14, c 13		

协商(拍卖)

□ 拍卖机制

- ✓ 投票机制的设计,其目的是使结果帕里托优
- ✓ 拍卖机制的设计,其目的是使拍卖者增加自己的利益

- ✓ 拍卖者尽可能高价卖出物品!
- ✓ 竞拍者尽可能使自己以低价获得物品!

拍卖机制

□拍卖协议

- ✓ 英格兰拍卖 first-price open-cry
- ✓ 密封拍卖 first-price sealed-bid
- ✓ 荷兰式拍卖
- ✓ Vickery拍卖second-price sealed-bid

通过博弈论计算其NASH均衡!

相关资源的拍卖

两个物流任务和两个骑手

相关资源的拍卖

- If a1 have t1, c1(t1+t2)-c1(t1)=2-2=0. else c1(t2)=1
- If a2 have t1, c2(t1+t2)-c2(t1)=2.5-1.5=1 else c2(t2)=1.5
- So when a1 have t1, it bids t2 will get extra profit 1.5-0=1.5
- when a2 have t1, it bids t2 will get extra profit 1-1=0
- \square So when a1 bids t1, it will bid c1(t1)-extra profit=2-1.5=0.5
- \blacksquare when a2 bids t1, it will bid c2(t1)-extra profit=1.5-0=1.5
- □ A1 wins!

协商(谈判)

□谈判机制

✓ 公理谈判机制

不变性、对称性、无关性、帕里托优

✓ 策略谈判机制

物品的折扣因素、谈判的代价因素

公理谈判机制

□谈判机制

✓ 公理谈判机制

不变性、对称性、无关性、帕里托优

策略谈判机制

□谈判机制

✓ 策略谈判机制

有限轮博弈,假设折扣=0.9,输出依赖于谈判的轮次#

物品的折扣因素、谈判的代价因素

Round	I's share	2' s share	Total value	Offerer
 n-3	0.819	0.181	 0.9 ⁿ⁻⁴	2
n-2	0.91	0.09	0.9 ⁿ⁻³	1
n-1	0.9	0.1	0.9 ⁿ⁻²	2
n	1	0	0.9 ⁿ⁻¹	1

策略谈判机制

□谈判机制

✓ 策略谈判机制

无限轮博弈,假设Agent1折扣为δ1, Agent1折扣为δ2

Round	1's share	2's share	Offerer
•••	•••	•••	•••
t-2	1- $δ_2$ (1- $δ_1$ $π_1$)		1
t-1		1- δ ₁ π ₁	2
t	π_1		1
			•••

纳什均衡
$$\pi_1 = 1 - \delta_2 \left(1 - \delta_1 \pi_1 \right) \Leftrightarrow \pi_1 = \frac{1 - \delta_2}{1 - \delta_1 \delta_2}$$

策略谈判机制

- □ 谈判的代价(Bargaining Costs)
 - ☐ Agent 1 pays c1, agent 2 pays c2.
- ☐ Time t: 1 get p, 2 get 1-p;
- \square Time t-1: 2 thinks: 1 get p+c2, 2 get 1-p-c2;
- ☐ Time t-2: 1 thinks: 1get p+c2-c1, 2 get 1-p-c2+c1;
- \square Time t-2k: 1 thinks: 2 get 1-p-k(c2-c1).

c1=c2: Any split is in Nash-equilibrium.

c1<c2: Agent 1 gets all.

c1>c2: Agent 1 gets c2, agent 2 gets 1-c2.

思考和讨论

- 1. 极小极大过程
- 2. ALPHA-BETA剪枝
- 3. 帕里托优和NASH均衡的区别
- 4. 进一步阅读拍卖和谈判理论

谢 谢!