第四章

习题 4. 2. 1: 考虑上下文无关文法: S->S S + | S S * | a 以及串 aa + a* (1)给出这个串的一个最左推导

 $S \rightarrow S S *$

 \rightarrow S S + S *

 \rightarrow a S + S *

-> a a + S *

-> aa + a*

(3)给出这个串的一棵语法分析树

习题 4.3.1: 下面是一个只包含符号 a 和 b 的正则表达式的文法。它使用+替代表示并运算的符号 | , 以避免和文法中作为元符号使用的竖线相混淆:

rexpr→ rexpr + rterm | rterm rterm→rterm rfactor | rfactor rfactor→ rfactor * | rprimary rprimary→a | b

- 1) 对这个文法提取公因子
- 2) 提取公因子的变换使这个文法适用于自顶向下的语法分析技术吗?
- 3) 提取公因子之后,原文法中消除左递归
- 4) 得到的文法适用于自顶向下的语法分析吗?

解

1) 提取左公因子之后的文法变为

rexpr→ rexpr + rterm | rterm
rterm→rterm rfactor | rfactor
rfactor→ rfactor * | rprimary
rprimary→a | b

- 2) 不可以, 文法中存在左递归, 而自顶向下技术不适合左递归文法
- 3) 消除左递归后的文法

```
rexpr -> rterm rexpr' rexpr'-> + rterm rexpr'|\varepsilon rterm-> rfactor rterm' rterm'-> rfactor rterm'|\varepsilon rfactor-> rprimay rfactor' rfactor'-> *rfactor'|\varepsilon rprimary-> a | b 4)该文法无左递归,适合于自顶向下的语法分析
```

习题 4.4.1: 为下面的每一个文法设计一个预测分析器,并给出预测分析表。可能要先对文法进行提取左公因子或消除左递归

- $(3) S \rightarrow S(S) S \mid \varepsilon$
- $(5) S \rightarrow (L) | a \qquad L \rightarrow L, S | S$

解

(3)

①消除该文法的左递归后得到文法

S->S' S'->(S)SS' | ε

```
用类 Pascal 语言构造的一个预测分析器:
PROCEDURE S
BEGIN
S;
WHILE (lookahead==' (')
THEN BEGIN
match ('(');
S;
match (')');
END;
ELSE IF (lookahead=='a')
THEN match('a')
ELSE error
END;
```

②计算 FIRST 和 FOLLOW 集合

```
FIRST(S) = \{(, \varepsilon)\} FOLLOW(S) = \{\}, \{\}
FIRST(S') = \{(, \varepsilon)\} FOLLOW(S') = \{\}, \{\}
```

③构建预测分析表

非终结符号	输入符号					
	()	\$			
S	S->S'	S->S'	S->S'			
S'	S' ->(S)SS'	S' → ε	S' →ε			

(5)

①消除该文法的左递归得到文法

 $S\rightarrow (L) \mid a$

```
L->SL'
L'->, SL' | ε
```

```
用类 Pascal 语言的一个预测分析器:
PROCEDURE S
    BEGIN
      if (lookahead==' (')
      THEN BEGIN
          match ('(');
          L;
          match (')');
        END;
      ELSE IF (lookahead=='a')
          THEN match ('a')
          ELSE error
    END;
  PROCEDURE L;
    BEGIN
      S;
      WHILE (lookahead ==', ');
        BEGIN
          match (', ');
          S;
        END;
    END;
```

②计算 FIRST 与 FOLLOW 集合

```
FIRST(S) = \{ (, a) \quad FOLLOW(S) = \{ ),,,, \$ \}
FIRST(L) = \{ (, a) \quad FOLLOW(L) = \{ ) \}
FIRST(L') = \{ ,, \varepsilon \} \quad FOLLOW(L') = \{ ) \}
```

③构建预测分析表

非终结符号	输入符号							
	()	,	a	\$			
S	S->(L)			S->a				
L	L->SL'			L->SL'				
L'		L' →ε	L' ->, SL'					

习题 4. 4. 4 计算练习 4. 2. 2 的文法的 FIRST 和 FOLLOW 集合

$$FIRST(L) = \{ (,a) FOLLOW(L) = \{),, \}$$

习题 4.6.2 为练习 4.2.1 中的增广文法构造 SLR 项集,计算这些项集的 GOTO 函数,给出这个文法的语法分析表。这个文法是 SLR 文法吗?

 $S \rightarrow SS + |SS*|a$

解:

①构造该文法的增广文法如下

S' ->S

S->SS+

S->SS*

S−>a

②构造该文法的 LR(0) 项集如下

10	I1	12	13	14	15
s' ->.s	S' ->S.	S−>a.	S->SS. +	S->SS+.	S->SS*.
S->. SS+	S->S. S+		S->SS.*		
S->. SS*	S->S. S*		S->S. S+		
S->. a	S->. SS+		S->S. S*		
	S->. SS*		S->. SS+		
	S->. a		S->. SS*		
			S−>. a		

③G0T0 函数如下

GOTO(IO, S)=I1 GOTO(IO, a)=I2

GOTO(I1, S)=I3 GOTO(I1, a)=I2 GOTO(I1, \$)=acc

 $GOTO(I3, S) = I3 \quad GOTO(I3, +) = I4 \quad GOTO(I3, *) = I5 \quad GOTO(I3, a) = I2$

④构造该文法的语法分析表

状态		GOTO			
	+	*	a	\$	S
0			S2		1
1			S2	acc	3
2	R3	R3	R3	R3	
3	S4	S5	S2		3
4	R1	R1	R1	R1	
5	R2	R2	R2	R2	

注: FOLLOW(S')=FOLLOW(S)={+,*,a,\$}

这个文法是 SLR 文法, 因为语法分析表中没有重复的条目

习题 4.6.6 说明下面文法

S→SA | A

A→a

是 SLR(1)的,而不是 LL(1)的。

证明:

- 1) 可以求得 FIRST (SA)=FIRST (A)={a}, 故该文法不是 LL(1) 文法
- 2) 构造该文法的增广文法的语法分析表如下

①构造增广文法

S' ->S

S->SA

S->A

A−>a

②构造 LR(0) 项集族

10	I1	12	13	14
s' ->.s	s' ->s.	S->A.	A->a.	S->SA.
S->. SA	S->S. A			
S->. A	A->. a			
A->. a				

③G0T0 函数如下

GOTO(IO, S) = I1 GOTO(IO, A) = I2 GOTO(IO, a) = I3

GOTO(I1, A)=I4 GOTO(I1, a)=I3 GOTO(I1,\$)=acc

④构建语法分析表如下(FOLLOW(A)=FOLLOW(S)={a,\$})

状态	ACT	ION	GOTO					
	a \$		S	A				
0	S3		1	2				
1	S3	acc		4				
2	R2	R2						
3	R3	R3						
4	R1	R1						

可以看到该语法分析表中没有重复的条目故该文法是 SLR(1) 文法

习题 4.7.4 说明下面的文法

S->Aa | bAc | dc | bda

A->d

是 LALR(1)的, 但不是 SLR(1)的

证明:

- 1、构造该文法的 SLR(1) 语法分析表
- ①构造增广文法

S' ->S

S->Aa

S->bAc

S->dc

S->bda

A->d

②构造 LR(0) 项集族

10 S'->.S	I1 S'->S.	I2 S−>A. a	I5 S−>Aa.	18 S−>dc.
S->. Aa S->. bAc S->. dc	I3 S−>b. Ac	14 S−>d. c	16 S−>bA. c	19 S−>bAc.
S->. bda A->. d	S->b. da A->. d	A−>d.	I7 S−>bd. a A−>d.	I10 S->bda.

③G0T0 函数

GOTO(IO, S)=I1 GOTO(IO, A)=I2 GOTO(IO, b)=I3 GOTO(IO, d)=I4 GOTO(II, \$)=acc GOTO(I2, a)=I5 GOTO(I3, A)=I6 GOTO(I3, d)=I7

GOTO(I4, c)=I8 GOTO(I6, c)=I9 GOTO(I7, a)=I10

④构建 SLR 语法分析表如下(FOLLOW(A)={a, c})

状态				GC	OTO		
	a	b	С	d	\$	S	A
0		S3		S4		1	2
1					acc		
2	S5						
3				S7			6
4	R5		S8 R5				
5					R1		
6			S9				
7	S10 R5		R5				
8					R3		
9					R2		
10					R4		

可以看到在图中存在二义性的条目,故该文法不是 SLR(1) 文法

2、构造该文法的 LALR(1) 语法分析表

①构造该增广文法的 LR(1) 项集族如下

10	I1	13	15	17	19
S' ->. S, \$	S' ->S.,\$	S->b. Ac, \$	S->Aa.,\$	S->bd. a., \$	S->bAc.,\$
S->. Aa, \$		S->b. da, \$		A−>d., c	
S->. bAc, \$	12	A->. d, c	16		
S->. dc, \$	S->A. a, \$		S->bA. c., \$	18	I10
S->. bda, \$		14		S->dc.,\$	S−>bda.,\$
A->. d, a		S->d. c, \$			
A /. u, a		A->d.,\$			

②项集合并:没有可以合并的项集

③GOTO 函数

GOTO(IO, S)=I1 GOTO(IO, A)=I2 GOTO(IO, b)=I3 GOTO(IO, d)=I4 GOTO(II, \$)=acc GOTO(I2, a)=I5 GOTO(I3, A)=I6 GOTO(I3, d)=I7

GOTO(I4, c)=I8 GOTO(I6, c)=I9 GOTO(I7, a)=I10

④构造 LALR(1)分析表如下

状态				GO	TO		
	a	b	С	d	\$	S	A
0		S3		S4		1	2
1					acc		
2	S5						
3				S7			6
4	R5		S8		R5		
5					R1		
6			S9				
7	S10		R5				
8					R3		
9					R2		
10					R4		

可见该分析表中不存在二义性的条目,故该文法是 LALR(1) 文法

习题 4.7.5 说明下面的文法

S->Aa|bAc|Bc|bBa

A->d

B->d

是 LR(1)的, 但不是 LALR(1)的

证明:

- 1、构造该文法的 LR(1) 语法分析表
- ①构造该文法的增广文法

S' ->S

S->Aa

S->bAc

S->Bc

S−>bBa

A->d

B−>d

②构造该增广文法的 LR(1) 项集族如下

10 S'->. S, \$	I1 S'->S.,\$	12 S->A. a, \$	16 S−>Aa.,\$	I10 S->Bc.,\$	I12 S−>bBa.,\$
S->. Aa, \$ S->. bAc, \$ S->. Bc, \$		14 S->B. c, \$	17 S−>bA. c. , \$		19
S->. bBa, \$ A->. d, a B->. d, c	S->b. Ba, \$ A->. d, c B->. d, a	I5 A−>d., a B−>d., c	18 S−>bB. a. , \$		A->d., c B->d., a

②项集合并:没有可以合并的项集

③G0T0 函数

④构造 LR(1)分析表如下

状态			ACTION				GOTO	
	a	b	С	d	\$	S	A	В
0		S3		S5		1	2	4
1					acc			
2	S6							
3				S9			7	8
4			S10					
5	R5		R6					
6					R1			
7			S11					
8	S12							
9	R6		R5					
10					R3			
11					R2			
12					R4			

可见该分析表中不存在二义性的条目,故该文法是 LR(1) 文法

2、构造该文法的 LALR(1) 语法分析表

①合并 LR(1) 项集族

159

I5 和 I9 可以合并为 I59

A->d., a/c B->d., c/c

②构造 LALR(1) 语法分析表如下

状态	ACTION					GOTO		
	a	b	С	d	\$	S	A	В
0		S3		S59		1	2	4
1					acc			
2	S6							
3				S9			7	8
4			S9					
59	R5 R6		R6 R6					
6					R1			
7			S10					
8	S11							
9					R3			
10					R2			
11					R4			

可见该语法分析表中存在有二义性的条目,故该文法不是LALR(1)文法