

WHAT IS CLAIMED IS:

- 1 1. A spectral label identification method comprising:
2 spatially restraining a first spectrally labeled body;
3 generating a first spectrum from the first body while the first body is spatially
4 restrained;
5 dispersing the first spectrum from the first body across a sensor surface; and
6 identifying the first body from the dispersed first spectrum.

- 1 2. The method of claim 1, wherein a plurality of bodies are released in a
2 fluid, and further comprising spatially separating the first body from other released bodies
3 while the first spectrum is generated.

- 1 3. The method of claim 1, wherein the positioning step comprises
2 advancing the first body into an opening, the opening sized to accommodate a single body
3 therein.

- 1 4. The method of claim 1, further comprising:
2 spatially restraining a second spectrally labeled body;
3 generating a second spectrum from the second body while positioning the
4 second body, the first spectrum being different than the second spectrum; and
5 identifying the second body from the second spectrum.

- 1 5. The method of claim 4, wherein a plurality of spectrally labeled bodies
2 are simultaneously spatially restrained at an array of sites.

- 1 6. The method of claim 5, wherein a plurality of the spectra from the
2 bodies are simultaneously dispersed across the sensor surface.

- 1 7. The method of claim 6, wherein the array of sites are spaced to avoid
2 excessive overlap of the dispersed spectra such that each of the bodies can be identified from
3 the associated spectrum.

- 1 8. The method of claim 5, further comprising sequentially sensing the
2 first and second spectra with a scanning sensor system by moving a sensing field between the
3 bodies.

1 9. The method of claim 4, wherein the first and second body are
2 sequentially spatially restrained.

1 10. The method of claim 9, further comprising drawing the first body into
2 an opening by drawing fluid into the opening, expelling the body from the first opening, and
3 drawing the second body into the opening by drawing fluid into the opening, the signal
4 generating steps being performed while the first and second bodies are sequentially disposed
5 within the opening.

1 11. The method of claim 10, further comprising drawing fluid into an array
2 of openings and expelling fluid from the array of opening so as to sequentially restrain a
3 plurality of arrays of bodies.

1 12. The method of claim 9, wherein the first and second bodies are
2 spatially restrained by an energy beam.

1 13. The method of claim 4, further comprising sensing first and second
2 assay signals from the first and second bodies, each assay signal indicating results of an assay
3 associated with the body.

1 14. The method of claim 4, further comprising restraining and identifying
2 at least 100 different bodies from different spectra generated by the bodies.

1 15. The method of claim 14, further comprising restraining and identifying
2 at least 1000 different bodies from different spectra generated by the bodies.

1 16. A method comprising:
2 spatially restraining a plurality of spectrally labeled bodies so as to define an
3 array;
4 directing a spectrally dispersed image of the array of bodies onto a sensor to
5 sense spectra generated by the bodies;
6 identifying the bodies from the spectra sensed by the sensor.

1 17. A method as claimed in claim 16, wherein the bodies are restrained
2 within an array of openings affixed in a multi-well plate.

1 18. A method as claimed in claim 16, further comprising drawing the array
2 of bodies into the array of opening by drawing fluid into the openings, expelling the array of
3 bodies from the opening by expelling fluid from the openings, and drawing another array of
4 bodies into the array of openings by again drawing fluid into the openings.

1 19. The method of claim 16, wherein the bodies are restrained in the array
2 by an array of discrete binding sites, the binding sites comprising a material capable of
3 binding to the bodies.

1 20. A method comprising:
2 releasing a plurality of bodies in a fluid;
3 spatially restraining a first body within the fluid by transmitting restraining
4 energy through the fluid toward the body;
5 generating a first spectrum from the spatially restrained first body; and
6 identifying the first body from the first spectrum.

1 21. The method of claim 20, wherein the spatially restraining step is
2 performed with a focused laser beam, the laser beam acting as an optical tweezers.

1 22. The method of claim 21, wherein the focused laser beam is sized and
2 configured to restrain a single body.

1 23. The method of claim 22, wherein the focused laser beam defines a trap,
2 and wherein a size of the bodies is at least about half the size of the trap so as to inhibit
3 restraining a plurality of the beads within the trap.

1 24. The method of claim 21, wherein the focussed laser beam is configured
2 to restrain a plurality of the bodies simultaneously.

1 25. The method of claim 24, wherein the trap is elongated so that the
2 restrained bodies are arranged along a line.

1 26. The method of claim 20, further comprising directing excitation energy
2 toward the restrained body, the body generating the spectrum in response to the excitation
3 energy.

1 27. The method of claim 20, wherein the restrained body generates the
2 spectrum in response to the restraining energy.

1 28. The method of claim 20, further comprising transmitting the spectrum
2 toward a sensor along an optical path, and transmitting the restraining energy toward the
3 body along at least a portion of the optical path.

1 29. The method of claim 20, further comprising moving the restrained
2 body within the fluid by moving the restraining energy or the fluid.

1 30. The method of claim 29, further comprising sweeping the restraining
2 energy through the fluid to move the first body toward a first site.

1 31. The method of claim 30, further comprising sweeping the restraining
2 energy through the fluid to move a second body toward a second site.

1 32. The method of claim 31, further comprising inhibiting transmission of
2 the restraining energy between the first and second sites.

1 33. The method of claim 30, further comprising sweeping the restraining
2 energy through the fluid to move a second body toward the first site.

1 34. A multiplexed assay system comprising:
2 a support structure having an array of sites;
3 a plurality of bodies, each body having a label for generating an identifiable
4 spectrum in response to excitation energy, the bodies being restrainingly receivable at the
5 sites; and
6 an optical train imaging at least one site on a sensor surface, the optical train
7 including a wavelength dispersive element.

1 35. The assay system of claim 34, wherein the sites comprise openings in
2 the support structure.

1 36. The assay system of claim 35, wherein the openings are sized to
2 receive a single body therein so as to separate the individual bodies for discrete imaging.

1 37. The assay system of claim 36, wherein the bodies and support structure
2 are exposed to a fluid, and further comprising means for restraining the bodies within the
3 openings.

1 38. The assay system of claim 37, wherein the restraining means
2 releasably restrains the bodies within the openings, releasing of the bodies allowing the
3 bodies to move with the fluid and out of the openings.

1 39. The assay system of claim 35, further comprising a pump coupled to
2 the openings for at least one of:

3 drawing fluid and the bodies into the openings, and
4 expelling fluid and the bodies out of the openings.

1 40. The assay system of claim 34, wherein the sites comprise a discrete
2 array of a material capable of bonding to the bodies.

1 41. The assay system of claim 34, wherein the optical train comprises a
2 scanner for moving a sensing field among the sites.

1 42. The assay system of claim 34, wherein the sites are separated
2 sufficiently along a dispersive axis of the dispersive element to avoid excessive overlap of
3 dispersed spectra generated simultaneously by the bodies at the sites.

1 43. A multiplexed assay system comprising:
2 a plurality of bodies released in a fluid, the bodies having labels for generating
3 identifiable spectra;
4 an energy transmitter coupled to the fluid so as to spatially restrain at least one
5 body with a restraining energy beam; and
6 a sensor oriented to receive the spectrum from the at least one body.

1 44. The multiplexed assay system of claim 43, wherein the energy
2 transmitter generates a focussed laser beam, energy transmitter comprising an optical
3 tweezers.

1 45. The multiplexed assay system of claim 43, wherein the at least one
2 body generates the spectrum in response to the restraining energy beam.

1 46. The multiplexed assay system of claim 43, further comprising an
2 excitation energy source transmitting an excitation energy toward the at least one body, the at
3 least one body generating the spectrum in response to the excitation energy.

1 47. The multiplexed assay system of claim 43, further comprising a
2 scanner coupled to the restraining energy beam so as to move the restraining energy beam
3 within the fluid.

1 48. The multiplexed assay system of claim 47, wherein an optical train
2 images the site toward the sensor, the energy transmitter configured to move the at least one
3 body toward the site.

1 49. The multiplexed assay system of claim 43, further comprising an
2 optical train coupling the sensor to the at least one body.

1 50. The multiplexed assay system of claim 49, wherein at least a portion of
2 the optical path also directs the restraining energy beam toward the at least one body.

1 51. The multiplexed assay system of claim 43, wherein the restraining
2 energy beam is configured to restrain a single body.

1 52. The multiplexed assay system of claim 51, wherein a size of the body
2 is at least about half the size of a trap defined by the restraining energy beam.

1 53. The multiplexed assay system of claim 43, wherein the restraining
2 energy beam is configured to restrain a plurality of the bodies along a line.

1 54. The multiplexed assay system of claim 53, wherein an optical train
2 directs a dispersed image of the bodies from along the line onto the sensor surface, the
3 dispersed image having a dispersion axis at an angle to the line.