OptiFit: an improved method for fitting amplicon sequences to existing OTUs

2021-09-15

Kelly L. Sovacool¹, Sarah L. Westcott², M. Brodie Mumphrey¹, Gabrielle A. Dotson¹, Patrick D. Schloss²†

- 1 Department of Computational Medicine and Bioinformatics, University of Michigan
 - $2\ \mbox{Department}$ of Microbiology and Immunology, University of Michigan

† To whom correspondence should be addressed: pschloss@umich.edu

Abstract

Assigning amplicon sequences to operational taxonomic units (OTUs) is often an important step in characterizing the composition of microbial communities across large datasets. OptiClust, a de novo OTU clustering method, has been shown to produce higher quality OTU assignments than other methods and at comparable or faster speeds. A notable difference between de novo clustering and database-dependent reference clustering methods is that OTU assignments from de novo methods may change when new sequences are added to a dataset. However, in some cases one may wish to incorporate new samples into a previously clustered dataset without performing clustering again on all sequences, such as when comparing across datasets or deploying machine learning models where OTUs are features. Existing reference-based clustering methods produce consistent OTUs, but they only consider the similarity of each query sequence to a single reference sequence in an OTU, thus resulting in OTU assignments that are significantly 13 worse than those generated by de novo methods. To provide an efficient and robust method to fit amplicon sequence data to existing OTUs, we developed the OptiFit algorithm. 15 Inspired by OptiClust, OptiFit considers the similarity of all pairs of reference and query 16 sequences in an OTU to produce OTUs of the best possible quality. We tested OptiFit 17 using four microbiome datasets with two different strategies: by clustering to an external reference database or by splitting the dataset into a reference and query set and clustering 19 the query sequences to the reference set after clustering it using OptiClust. The result is 20 an improved implementation of closed and open-reference clustering. OptiFit produces 21 OTUs of similar quality as OptiClust and at faster speeds when using the split dataset 22 strategy, although the OTU quality and processing speed depends on the database chosen when using the external database strategy. OptiFit provides a suitable option for users who require consistent OTU assignments at the same quality afforded by de novo clustering methods.

27 Importance

Advancements in DNA sequencing technology have allowed researchers to affordably generate millions of sequence reads from microorganisms in diverse environments. 29 Efficient and robust software tools are needed to assign microbial sequences into taxonomic groups for characterization and comparison of communities. The OptiClust 31 algorithm produces high quality groups by comparing sequences to each other, but the assignments can change when new sequences are added to a dataset, making it difficult to compare different studies. Other approaches assign sequences to groups by comparing them to sequences in a reference database to produce consistent assignments, but the quality of the groups produced is reduced compared to OptiClust. We developed OptiFit, a 36 new reference-based algorithm that produces consistent yet high quality assignments like OptiClust. OptiFit allows researchers to compare microbial communities across different studies or add new data to existing studies without sacrificing the quality of the group 39 assignments.

1 Introduction

Amplicon sequencing is a mainstay of microbial ecology. Researchers can affordably generate millions of sequences to characterize the composition of hundreds of samples 43 from microbial communities without the need for culturing. In many analysis pipelines, 16S rRNA gene sequences are assigned to operational taxonomic units (OTUs) to facilitate comparison of taxonomic composition between communities to avoid the need for taxonomic classification. A distance threshold of 3% (or sequence similarity of 97%) is commonly used to cluster sequences into OTUs based on pairwise comparisons of the sequences within the dataset. The method chosen for clustering affects the quality of OTU assignments and thus may impact downstream analyses of community composition (1–3). There are two main categories of OTU clustering algorithms: de novo and reference-based. 51 OptiClust is a de novo clustering algorithm which uses the distance score between all 52 pairs of sequences in the dataset to cluster them into OTUs by maximizing the Matthews 53 Correlation Coefficient (MCC) (1). This approach takes into account the distances between all pairs of sequences when assigning query sequences to OTUs, in contrast to other de novo methods such as the greedy clustering algorithms implemented in USEARCH and VSEARCH, which only consider the distance between the guery sequence and a representative centroid sequence in the OTU (4, 5). In methods employing greedy clustering algorithms, only the distance between each sequence and the centroid sequence is considered while clustering. As a result, distances between pairs of sequences in the same OTU are frequenty larger than the specified threshold, i.e. they are false positives. 61 In contrast, the OptiClust algorithm takes into account the distance between all pairs of 62 sequences when considering how to cluster sequences into OTUs and is thus less willing to 63 take on false positives. A limitation of de novo clustering is that different OTU assignments will be produced when new sequences are added to a dataset, making it difficult to use de novo clustering to compare OTUs between different studies. Furthermore, since de

novo clustering requires calculating and comparing distances between all sequences in a dataset, the execution time can be slow and memory requirements can be prohibitive for very large datasets. Reference clustering attempts to overcome the limitations of de novo clustering methods by using a representative set of sequences from a database, with each reference sequence seeding an OTU. Commonly, the Greengenes set of representative full 71 length sequences clustered at 97% similarity is used as the reference with VSEARCH (5–7). Query sequences are then clustered into OTUs based on their similarity to the reference sequences. Any query sequences that are not within the distance threshold to any of the reference sequences are either thrown out (closed reference clustering) or clustered de novo to create additional OTUs (open reference clustering). While reference-based clustering is generally fast, it is limited by the diversity of the reference database. Novel sequences in the sample will be lost in closed reference mode if they are not represented by a similar sequence in the database. Previous studies found that the OptiClust de novo clustering algorithm created the highest quality OTU assignments of all clustering methods (1). 81

To overcome the limitations of current reference-based and *de novo* clustering algorithms while maintaining OTU quality, we developed OptiFit, a reference-based clustering algorithm. While other tools represent reference OTUs with a single sequence, OptiFit uses multiple sequences in existing OTUs as the reference and fits new sequences those reference OTUs. In contrast to other tools, OptiFit considers all pairwise distance scores between reference and query sequences when assigning sequences to OTUs in order to produce OTUs of the highest possible quality. Here, we tested the OptiFit algorithm with the reference as a public database (e.g. Greengenes) or *de novo* OTUs generated using a reference set from the full dataset and compared the performance to existing tools. To evaluate the OptiFit algorithm and compare to existing methods, we used four published datasets isolated from soil (8), marine (9), mouse gut (10), and human gut (11) samples. OptiFit is available within the mothur software program.

4 Results

55 The OptiFit algorithm

OptiFit leverages the method employed by OptiClust of iteratively assigning sequences to OTUs to produce the highest quality OTUs possible, and extends this method for 97 reference-based clustering. OptiClust first seeds each sequence into its own OTU as a 98 singleton. Then for each sequence, OptiClust considers whether the sequence should move to a different OTU or remain in its current OTU, choosing the option that results 100 in a better Matthews correlation coefficient (MCC) (1). The MCC uses all values from 101 a confusion matrix and ranges from zero to one, with a score of one occurring when all 102 sequence pairs are true positives and true negatives, and a score of zero when all pairs are 103 false positives and false negatives. Sequence pairs that are similar to each other (i.e. within 104 the distance threshold) are counted as true positives if they are clustered into the same 105 OTU, and false negatives if they are not in the the same OTU. Sequence pairs that are not 106 similar to each other are true negatives if they are not clustered into the same OTU, and 107 false positives if they are not in the same OTU. OptiClust iterations continue until the MCC stabilizes or until a maximum number of iterations is reached. This process produces de novo OTU assignments with the most optimal MCC given the input sequences.

OptiFit begins where OptiClust ends, starting with a list of reference OTUs and their sequences, a list of query sequences to cluster to the reference OTUs, and the sequence pairs that are within the distance threshold (e.g. 0.03) (Figure 1). Initially, all query sequences are placed into separate OTUs. Then, the algorithm iteratively reassigns the query sequences to the reference OTUs to optimize the MCC. Alternatively, a sequence will remain unassigned if the MCC value is maximized when the sequence is a singleton rather than clustered into a reference OTU. All query and reference sequence pairs are considered when calculating the MCC. This process is repeated until the MCC changes by no more than 0.0001 (default) or until a maximum number of iterations is reached (default:

Figure 1: The OptiFit Algorithm. Here we present a toy example of the OptiFit algorithm fitting query sequences to existing OTUs, given the list of all sequence pairs that are within the distance threshold (here 3% is used). The goal of OptiFit is to assign the query sequences W through Z (colored green) to the reference OTUs created by clustering Sequences A through Q (colored orange) which were previously clustered *de novo* with OptiClust (see the OptiClust supplemental text (1)). Initially, OptiFit places each query sequence in its own OTU. Then, for each query sequence (**bolded**), OptiFit determines what the new MCC score would be if that sequence were moved to one of the OTUs containing at least one other similar sequence. The sequence is then moved to the OTU which would result in the best MCC score. OptiFit stops iterating over sequences once the MCC score stabilizes (in this example; only one iteration over each sequence is needed).

100). In the closed reference mode, any query sequences that cannot be clustered into reference OTUs are discarded, and the results only contain OTUs that exist in the original reference. In the open reference mode, unassigned query sequences are clustered *de novo* using OptiClust to generate new OTUs. The final MCC is reported with the best OTU assignments. There are two strategies for generating OTUs with OptiFit: 1) cluster the query sequences to reference OTUs generated by *de novo* clustering an independent database, or 2) split the dataset into a reference and query fraction, cluster the reference sequences *de novo*, then cluster the query sequences to the reference OTUs.

Reference clustering with public databases

To test how OptiFit performs for reference-based clustering, we clustered each dataset to 129 three databases of reference OTUs: the Greengenes database, the SILVA non-redundant database, and the Ribosomal Database Project (RDP) (6, 12, 13). Reference OTUs for 131 each database were created by performing de novo clustering with OptiClust at a distance threshold of 3% using the V4 region of each sequence (see Figure 2). The de novo MCC scores were 0.72, 0.74, and 0.73 for Greengenes, RDP, and SILVA, respectively. Clustering sequences to Greengenes and SILVA in closed reference mode performed similarly, with median MCC scores of 0.80 and 0.72 respectively, while the median MCC 136 was 0.33 when clustering to RDP (Figure 3). For comparison, clustering datasets with 137 OptiClust produced an average MCC score of 0.83. This gap in OTU quality mostly 138 disappeared when clustering in open reference mode, which produced median MCCs of 139 0.82 with Greengenes, 0.81 with SILVA, and 0.82 with the RDP. Thus, open reference 140 OptiFit produced OTUs of very similar quality as de novo clustering, and closed reference 141 OptiFit followed closely behind as long as a suitable reference database was chosen.

Since closed reference clustering does not cluster query sequences that could not be clustered into reference OTUs, an additional measure of clustering performance to consider

Figure 2: The Analysis Workflow. Reference sequences from Greengenes, the RDP, and SILVA were downloaded, preprocessed with mothur by trimming to the V4 region, and clustered *de novo* with OptiClust for 100 repetitions. Datasets from human, marine, mouse, and soil microbiomes were downloaded, preprocessed with mothur by aligning to the SILVA V4 reference alignment, then clustered *de novo* with OptiClust for 100 repetitions. Individual datasets were fit to reference databases with OptiFit; OptiFit was repeated 100 times for each dataset and database combination. Datasets were also randomly split into a reference and query fraction, and the query sequences were fit to the reference sequences with OptiFit for 100 repetitions. The final MCC score was reported for all OptiClust and OptiFit repetitions.

is the fraction of query sequences that were able to be clustered. On average, more sequences were clustered with Greengenes as the reference (43.1%) than with SILVA (36.4%) or with the RDP (7.1%) (Figure 3). This mirrored the result reported above that Greengenes produced better OTUs in terms of MCC score than either SILVA or RDP. Note that *de novo* and open reference clustering methods always cluster 100% of sequences into OTUs. The database chosen affects the final closed reference OTU assignments considerably in terms of both MCC score and fraction of query sequences that could be clustered into the reference OTUs.

Despite the drawbacks, closed reference methods have been used when fast execution speed is required, such as when using very large datasets (14). To compare performance 154 in terms of speed, we repeated each OptiFit and OptiClust run 100 times and measured 155 the execution time. Across all dataset and database combinations, closed reference OptiFit 156 outperformed both OptiClust and open reference OptiFit (Figure 3). For example, with 157 the human dataset fit to SILVA reference OTUs, the average run times in seconds were 158 549.1 for closed reference OptiFit, 800.3 for de novo clustering the dataset, and 886.0 for 159 open reference OptiFit. Thus, the OptiFit algorithm continues the precedent that closed 160 reference clustering sacrifices OTU quality for execution speed. 161

To compare to the reference clustering methods used by QIIME2, we clustered each dataset with VSEARCH against the Greengenes database of OTUs previously clustered 163 at 97% sequence similarity. Each reference OTU from the Greengenes 97% database 164 contains one reference sequence, and VSEARCH maps sequences to the reference 165 based on each individual query sequence's similarity to the single reference sequence. 166 In contrast, OptiFit accepts reference OTUs which each may contain multiple sequences, 167 and the sequence similarity between all query and reference sequences is considered 168 when assigning sequences to OTUs. In closed reference mode, OptiFit produced 25.9% 169 higher quality OTUs than VSEARCH, but VSEARCH was able to cluster 35.1% more query

Figure 3: Benchmarking Results. The median MCC score, fraction of query sequences that mapped in closed-reference clustering, and runtime in seconds from repeating each clustering method 100 times. Each dataset underwent *de novo* clustering using OptiClust or reference-based clustering using OptiFit with one of two strategies; splitting the dataset and fitting 50% the sequences to the other 50%, or fitting the dataset to a reference database (Greengenes, SILVA, or RDP). Reference-based clustering was repeated with open and closed mode. For additional comparison, VSEARCH was used for *de novo* and reference-based clustering against the Greengenes database.

sequences than OptiFit to the Greengenes reference database (Figure 3). This is because VSEARCH only considers the distances between each query sequence to the single reference sequence, while OptiFit considers the distances between all pairs of reference 173 and query sequences in an OTU. When open reference clustering, OptiFit produced higher 174 quality OTUs than VSEARCH against the Greengenes database, with median MCC scores 175 of 0.82 and 0.54, respectively). In terms of run time, OptiFit outperformed VSEARCH in 176 both closed and open reference mode by 74.3% and 135.3% on average respectively. Thus, 177 the more stringent OTU definition employed by OptiFit, which prefers the query sequence 178 to be similar to all other sequences in the OTU rather than to only one sequence, resulted 179 in fewer sequences being clustered to reference OTUs than when using VSEARCH, but 180 caused OptiFit to outperform VSEARCH in terms of both OTU quality and execution time. 181

182 Reference clustering with split datasets

When performing reference clustering against public databases, the database chosen greatly affects the quality of OTUs produced. OTU quality may be poor when the reference database consists of sequences that are too unrelated to the samples of interest, such as 185 when samples contain novel populations. While de novo clustering overcomes the quality limitations of reference clustering to databases, OTU assignments are not consistent when 187 new sequences are added. Researchers may wish to cluster new sequences to existing 188 OTUs or to compare OTUs across studies. To determine how well OptiFit performs for 189 clustering new sequences to existing OTUs, we employed a split dataset strategy, where 190 each dataset was randomly split into a reference fraction and a query fraction. Reference 191 sequences were clustered de novo with OptiClust, then guery sequences were clustered 192 to the de novo OTUs with OptiFit. 193

First, we tested whether OptiFit performed as well as *de novo* clustering when using the split dataset strategy with half of the sequences selected for the reference by a simple

random sample (a 50% split) (Figure 3; self-split). OTU quality was similar to that from OptiClust regardless of mode (-4.62% difference in median MCC [TODO: why is opticlust worse than optifit now?!?!]). In closed reference mode, OptiFit was able to cluster 85.2% 198 of guery sequences to reference OTUs with the split strategy, a great improvement over 199 the average 43.1% of sequences clustered to the Greengenes database. In terms of run 200 time, closed and open reference OptiFit performed faster than OptiClust on whole datasets by 39.1% and 31.8 respectively. The split dataset strategy also performed 4.0% faster than 202 the database strategy in closed reference mode and 40.5% faster in open reference mode. 203 Thus, reference clustering with the split dataset strategy creates as high quality OTUs as 204 de novo clustering yet at a faster run time, and fits far more query sequences than the 205 database strategy. 206

197

201

207

208

209

211

217

221

While we initially tested this strategy using a 50% split of the data into reference and query fractions, we next investigated whether there was an optimal reference fraction size. To identify the best reference size, reference sets with 10% to 90% of the sequences were created, with the remaining sequences used for the query (Figure 4). OTU quality was 210 remarkably consistent across reference fraction sizes. For example, splitting the human dataset 100 times yielded a coefficient of variation (i.e. the standard deviation divided by 212 the mean) of 0.00045 for the MCC score across all fractions. Run time generally decreased 213 as the reference fraction increased; for the human dataset, the median run time was 214 470.1 seconds with 10% of sequences in the reference and 305.8 seconds with 90% of 215 sequences in the reference. In closed reference mode, the fraction of sequences that 216 mapped increased as the reference size increased; for the human dataset, the median fraction mapped was 0.92 with 10% of sequences in the reference and 0.97 with 90% of 218 sequences in the reference. These trends held for the other datasets as well. Thus, the 219 reference fraction did not affect OTU quality in terms of MCC score, but did affect the run 220 time and the fraction of sequences that mapped during the closed reference clustering.

Figure 4: Split dataset strategy. The median MCC score, fraction of query sequences that mapped in closed-reference clustering, and runtime in seconds from repeating each clustering method 100 times. Each dataset was split into a reference and query fraction. References sequences were selected via a simple random sample, weighting sequences by relative abundance, or weighting by similarity to other sequences in the dataset. With the simple random sample method, dataset splitting was repeated with reference fractions ranging from 10% to 90% of the dataset and for 100 random seeds. *De novo* clustering each dataset is also shown for comparison.

14

After testing the split strategy using a simple random sample to select the reference sequences, we then investigated other methods of splitting the data. We tested three methods for selecting the fraction of sequences to be used as the reference at a size of 50%: a simple random sample, weighting sequences by relative abundance, and 225 weighting by similarity to other sequences in the dataset (Figure 4). OTU quality in terms 226 of MCC was similar with the simple and abundance-weighted sampling (median MCCs of 227 0.87 and 0.87, respectively), but worse for similarity-weighted sampling (median MCC of 228 0.78). In closed-reference clustering mode, the fraction of sequences that mapped were 229 similar for simple and abundance-weighted sampling (median fraction mapped of 0.97 and 230 0.97, respectively), but worse for similarity-weighted sampling (median fraction mapped of 231 0.90). While simple and abundance-weighted sampling produced better quality OTUs than 232 similarity-weighted sampling. OptiFit performed faster on similarity-weighted samples with 233 a median runtime of 99.4 seconds compared to 143.3 and 140.2 seconds for simple and 234 abundance-weighted sampling, respectively. Thus, employing more complicated sampling 235 strategies such as abundance-weighted and similarity-weighted sampling did not confer 236 any advantages over selecting the reference via a simple random sample, and in fact 237 decreased OTU quality in the case of similarity-weighted sampling. 238

39 Discussion

We developed a new algorithm for clustering sequences to existing OTUs and have demonstrated its suitability for reference-based clustering. OptiFit makes the iterative method employed by OptiClust available for tasks where reference-based clustering is required. We have shown that OTU quality is similar between OptiClust and OptiFit in open reference mode, regardless of strategy employed. Open reference OptiFit performs slower than OptiClust due to the additional *de novo* clustering step, so users may prefer OptiClust for tasks that do not require reference OTUs.

When clustering to public databases, OTU quality dropped in closed reference mode to different degrees depending on the database and dataset source, and no more than half of query sequences were able to be clustered into OTUs across any dataset/database combination. This may reflect limitations of reference databases, which are unlikely 250 to contain sequences from novel microbes. This drop in quality was most notable 251 with the RDP reference, which contained only 16,192 sequences compared to 173,648 252 sequences in SILVA and 174,979 in Greengenes. Note that Greengenes has not been 253 updated since 2013 at the time of this writing, while SILVA and the RDP are updated 254 regularly. We recommend that users who require an independent reference database 255 opt for large databases with regular updates and good coverage of microbial diversity for 256 their environment. Since OptiClust still performs faster than open reference OptiFit and 257 creates higher quality OTUs than closed reference OptiFit with the database strategy, we 258 recommend using OptiClust rather than clustering to a database whenever consistent 259 OTUs are not required. 260

The OptiClust and OptiFit algorithms produced higher quality OTUs than VSEARCH in 261 open reference, closed reference, or de novo modes. However, VSEARCH was able 262 to cluster more sequences to OTUs than OptiFit in closed reference mode. While both 263 OptiFit and VSEARCH use a distance or similarity threshold for determining how to cluster 264 sequences into OTUs, VSEARCH is more permissive than OptiFit regardless of mode. 265 The OptiFit and OptiClust algorithms use all of the sequences to define an OTU, preferring 266 that all pairs of sequences (including reference and query sequences) in an OTU are within 267 the distance threshold in order to maximize the MCC. In contrast, VSEARCH only requires 268 each query sequence to be similar to the single centroid sequence that seeded the OTU. 269 Because of this, VSEARCH sacrifices OTU quality by allowing more dissimilar sequences 270 to be clustered into OTUs.

When clustering with the split dataset strategy, OTU quality was remarkably similar when

reference sequences were selected by a simple random sample or weighted by abundance,
but quality was slightly worse when sequences were weighted by similarity. We recommend
using a simple random sample since the more sophisticated reference selection methods
do not offer any benefit. The similarity in OTU quality between OptiClust and OptiFit with
this strategy demonstrates the suitability of using OptiFit to cluster sequences to existing
OTUs, such as when comparing OTUs across studies. However, when consistent OTUs
are not required, we recommend using OptiClust for *de novo* clustering over the split
strategy with OptiFit since OptiClust is simpler to execute but performs similarly in terms of
both run time and OTU quality.

Unlike existing reference-based methods that cluster query sequences to a single centroid sequence in each reference OTU, OptiFit considers all sequences in each reference OTU when clustering query sequences, resulting in OTUs of a similar high quality as those produced by the *de novo* OptiClust algorithm. Potential applications include clustering sequences to reference databases, comparing taxonomic composition of microbiomes across different studies, or using OTU-based machine learning models to make predictions on new data. OptiFit fills the missing option for clustering query sequences to existing OTUs that does not sacrifice OTU quality for consistency of OTU assignments.

90 Materials and Methods

Data Processing Steps

We downloaded 16S rRNA gene amplicon sequences from four published datasets isolated from soil (8), marine (9), mouse gut (10), and human gut (11) samples. These datasets contain sequences from the V4 region of the 16S rRNA gene and represent a selection of the broad types of natural communities that microbial ecologists study. We processed the raw sequences using mothur according to the Schloss Lab MiSeq SOP (15) and accompanying study by Kozich *et al.* (16). These steps included trimming and filtering

for quality, aligning to the SILVA reference alignment (12), discarding sequences that aligned outside the V4 region, removing chimeric reads with UCHIME (17), and calculating distances between all pairs of sequences within each dataset prior to clustering.

301 Reference database clustering

To generate reference OTUs from independent databases, we downloaded sequences from the Greengenes database (v13 8 99) (6), SILVA non-redundant database (v132) 303 (12), and the Ribosomal Database Project (v16) (13). These sequences were processed 304 using the same steps outlined above followed by clustering sequences into de novo OTUs 305 with OptiClust. Processed reads from each of the four datasets were clustered with OptiFit 306 to the reference OTUs generated from each of the three databases. When reference 307 clustering with VSEARCH, processed datasets were clustered directly to the unprocessed 308 Greengenes 97% OTU reference alignment, since this method is how VSEARCH is typically 309 used by the QIIME2 software reference-based clustering (7, 18). 310

311 Split dataset clustering

For each dataset, a fraction of the sequences was selected to be clustered *de novo* into reference OTUs with OptiClust. We used three methods for selecting the fraction of sequences to be used as the reference: a simple random sample, weighting sequences by relative abundance, and weighting by similarity to other sequences in the dataset. Dataset splitting was repeated with reference fractions ranging from 10% to 90% of the dataset and for 100 random seeds. For each dataset split, the remaining query sequences were clustered into the reference OTUs with OptiFit.

Benchmarking

Since OptiClust and OptiFit employ a random number generator to break ties when OTU assignments are of equal quality, they produce slightly different OTU assignments when

repeated with different random seeds. To capture any variation in OTU quality or execution time, clustering was repeated with 100 random seeds for each combination of parameters and input datasets. We used the benchmark feature provided by Snakemake to measure the run time of every clustering job. We calculated the MCC on each set of OTUs to quantify the quality of clustering, as described by Westcott *et al.* (1).

Data and Code Availability

We implemented the analysis workflow in Snakemake (19) and wrote scripts in R (20),
Python (21), and GNU bash (22). Software used includes mothur v1.45.0 (23), VSEARCH
v2.13.3 (5), numpy (24), the tidyverse metapackage (25), R Markdown (26), ggtext (27),
the SRA toolkit (28), and the conda environment manager (29). The complete workflow,
manuscript, and conda environment are available at https://github.com/SchlossLab/Sova
cool_OptiFit_2021.

Acknowledgements

We thank members of the Schloss Lab for their feedback on the figures.

KLS received support from the NIH Training Program in Bioinformatics (T32 GM070449).

Salary support for PDS came from NIH grants R01CA215574 and U01AI124255. The

funders had no role in study design, data collection and interpretation, or the decision to

339 submit the work for publication.

40 Author Contributions

KLS wrote the analysis code, evaluated the algorithm, and wrote the original draft of the manuscript. SLW designed and implemented the OptiFit algorithm and assisted in debugging the analysis code. MBM and GAD contributed analysis code. PDS conceived

the study, supervised the project, and assisted in debugging the analysis code. All authors reviewed and edited the manuscript.

References

- Westcott SL, Schloss PD. 2017. OptiClust, an Improved Method for Assigning Amplicon-Based Sequence Data to Operational Taxonomic Units. mSphere
 2:e00073–17. doi:10.1128/mSphereDirect.00073-17.
- Schloss PD. 2016. Application of a Database-Independent Approach To Assess the Quality of Operational Taxonomic Unit Picking Methods. mSystems 1:e00027–16.
 doi:10.1128/mSystems.00027-16.
- Westcott SL, Schloss PD. 2015. De novo clustering methods outperform reference-based methods for assigning 16S rRNA gene sequences to operational taxonomic units. PeerJ 3:e1487. doi:10.7717/peerj.1487.
- Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST.
 Bioinformatics 26:2460–2461. doi:10.1093/bioinformatics/btq461.
- Rognes T, Flouri T, Nichols B, Quince C, Mahé F. 2016. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4:e2584. doi:10.7717/peerj.2584.
- DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL. 2006. Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB. AEM 72:5069–5072. doi:10.1128/AEM.03006-05.
- ³⁵⁹ 7. Clustering sequences into OTUs using Q2-vsearch QIIME 2 2021.2.0 documentation. https://docs.qiime2.org/2021.2/tutorials/otu-clustering/.

- Johnston ER, Rodriguez-R LM, Luo C, Yuan MM, Wu L, He Z, Schuur EAG, Luo Y, Tiedje JM, Zhou J, Konstantinidis KT. 2016. Metagenomics Reveals Pervasive Bacterial Populations and Reduced Community Diversity across the Alaska Tundra Ecosystem. Front Microbiol 7. doi:10.3389/fmicb.2016.00579.
- Henson MW, Pitre DM, Weckhorst JL, Lanclos VC, Webber AT, Thrash JC.
 2016. Artificial Seawater Media Facilitate Cultivating Members of the Microbial
 Majority from the Gulf of Mexico. mSphere 1. doi:10.1128/mSphere.00028-16.
- Schloss PD, Schubert AM, Zackular JP, Iverson KD, Young VB, Petrosino JF.
 2012. Stabilization of the murine gut microbiome following weaning. Gut Microbes
 3:383–393. doi:10.4161/gmic.21008.
- Baxter NT, Ruffin MT, Rogers MAM, Schloss PD. 2016. Microbiota-based model improves the sensitivity of fecal immunochemical test for detecting colonic lesions.
 Genome Med 8:37. doi:10.1186/s13073-016-0290-3.
- Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2013. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research 41:D590–D596. doi:10.1093/nar/gks1219.
- 371 13. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM. 2014. Ribosomal Database Project: Data and tools for high throughput rRNA analysis. Nucl Acids Res 42:D633–D642. doi:10.1093/nar/gkt1244.

- Navas-Molina JA, Peralta-Sánchez JM, González A, McMurdie PJ, Vázquez-Baeza Y, Xu Z, Ursell LK, Lauber C, Zhou H, Song SJ, Huntley J, Ackermann GL, Berg-Lyons D, Holmes S, Caporaso JG, Knight R. 2013.
 Chapter Nineteen Advancing Our Understanding of the Human Microbiome Using
 QIIME, p. 371–444. *In* DeLong, EF (ed.), Methods in Enzymology. Academic Press.
- 375 15. Schloss PD, Westcott SL. MiSeq SOP. https://mothur.org/MiSeq SOP.

376

- Mozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. 2013. Development of a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence Data on the MiSeq Illumina Sequencing Platform. Appl Environ Microbiol 79:5112–5120. doi:10.1128/AEM.01043-13.
- Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200.
 doi:10.1093/bioinformatics/btr381.

- 18. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, 381 Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu Y-X, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. doi:10.1038/s41587-019-0209-9. 382
- ³⁸³ 19. **Köster J**, **Rahmann S**. 2012. Snakemake a scalable bioinformatics workflow engine. Bioinformatics **28**:2520–2522. doi:10.1093/bioinformatics/bts480.
- R Core Team. 2020. R: A language and environment for statistical computing.

 Manual, R Foundation for Statistical Computing, Vienna, Austria.
- ³⁸⁷ 21. **Van Rossum G**, **Drake FL**. 2009. Python 3 Reference Manual | Guide books.

22. Bash Reference Manual. https://www.gnu.org/software/bash/manual/bash.html. 389

390

392

400

402

- 23. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, 391 Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF. 2009. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing
- microbial communities. Applied and Environmental Microbiology 75:7537-7541. doi:10.1128/AEM.01541-09.
- 24. Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau 393 D. Wieser E. Taylor J. Berg S. Smith NJ. Kern R. Picus M. Hoyer S. van Kerkwijk MH, Brett M, Haldane A, del Río JF, Wiebe M, Peterson P, Gérard-Marchant P, Sheppard K, Reddy T, Weckesser W, Abbasi H, Gohlke C, Oliphant TE. 2020. Array programming with NumPy. Nature 585:357–362. doi:10.1038/s41586-020-2649-2. 394
- 25. Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, 395 Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Pedersen TL, Miller E, Bache SM, Müller K, Ooms J, Robinson D, Seidel DP, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H. 2019. Welcome to the Tidyverse. Journal of Open Source Software 4:1686. doi:10.21105/joss.01686. 396
- 26. Xie Y, Allaire JJ, Grolemund G. 2018. R Markdown: The Definitive Guide. Taylor 397 & Francis, CRC Press. 398
- 27. Wilke CO. 2020. Ggtext: Improved text rendering support for 'Ggplot2'. Manual.
- 28. SRA-Tools - NCBI. http://ncbi.github.io/sra-tools/.

⁴⁰³ 29. 2016. Anaconda Software Distribution. Anaconda Documentation. Anaconda Inc.