

© 2019 Pablo Vinuesa; http://www.ccg.unam.mx/~vinuesa/

Intoducción a la filoinformática – pan-genómica y filogenómica. LEG-UM5, Rabat, Junio 2019

Un tutorial sobre el uso de Modeltest3.7 y jModelTest2 para la selección de modelos usando LRTs, AICs y BICs

- Conviene que leas este tutorial después de haber estudiado el tutorial de manejo de PAUP* desde la línea de comandos y el tema de teoría sobre el uso del criterio de máxima verosimilitud en filogenética.
- (j)Modeltest es una aplicación escrita por David Posada y colegas, que seleccionan el modelo mejor ajustado de la familia GTR para un alineamiento de DNA, usando dos tipos de estrategias: tests pareados de razones de verosimilitud (LRTs, hLRTs = hierarchical LRTs) y criterios de información (AIC y BIC).
 Para ello necesita que PAUP* o PhyML calculen los -InL scores de un subconjunto (56) de todos los posibles modelos de la familia GTR (203). Estos scores de -InL se calculan corriendo un "batch file" de comandos PAUP*. Lo primero que se estima es un árbol (rápido) NJ-JC69. Se usa la topología resultante para evaluar los distintos modelos y obtener estimas de ML de los parámetros correspondientes.

```
# >>>>>> Tutoral de uso de jmodeltest2 <<<<<<<
# Pablo Vinuesa; http://www.ccg.unam.mx:/~vinuesa/
# 23 Nov. 2015.
# Para: Curso de Introduccion a la Bioinformatica
# Posgrado UNAM; semestre 2016-1
# 1. Instalacion: en tu $HOME, a~nade estas lineas al archivo .bashrc
# Aliases and ENV_VAR for JMODELTEST2.1.7
         # te lleva a tu $HOME
pico .bashrc # edita el archivo con pico
# al final del archivo copia estas dos lineas y guarda el archivo
export JMODELTEST_HOME=/home/vinuesa/intro2bjoinfo/imodeltest-2.1.7
alias jmodeltest="java -jar $JMODELTEST_HOME/jModelTest.jar"
# teclea: (para hacer un sourcing al archivo de configuracion .bashrc, es decir,
      que el sistema lo vuelva a leer para cargar las nuevas instrucciones)
. .bashrc
# Ahora comprobamos que podemos acceder a jmodeltest2 tecleando:
imodeltest -help # debe desplegar la ayuda de imodeltest2
```

```
# genera el un directorio de trabajo para este ejercicio mkdir practica_imodeltest && cd practica_imodeltest

# haz liga simbolica al set de datos primate-mtDNA-interleaved1.phy en este directorio de trabajo In -s /home/vinuesa/intro2bioinfo/seq_data/primate-mtDNA-interleaved1.phy .

# explora el archivo less primate-mtDNA-interleaved1.phy

# corre jmodeltest2 con los parametros abajo indicados

# -d datos

# -d usa modelos que asumen una proporcion de sitios invariantes

# -f usa modelos que asumen diferentes frecuencias de bases

# -g usa distribucion gamma con 4 clases discretas de tasas para modelar

# - la heterogeneidad de tasas de sustitucion intre sitios

# -AIC usa criterio de informacion de Akaike para la seleccion de modelos

jmodeltest -d primate-mtDNA-interleaved1.phy -i -f -g 4 -AIC

# Ahora corremos phyml bajo el mejor modelo seleccionado

phyml -i primate-mtDNA-interleaved1.phy -d nt -m 010010 -b -4 -f e -c 4 -a e -no_memory_check -o ttr -s

BEST
```

```
- interpretación de la salida de modeltest: 1. hLRTs (Continuación)
   Only two Tv rates
     Null model = K81uf
                                  -InL0 = 5973,2393
     Alternative model = TVM
                                 -lnL1 = 5938.5615
     2(lnL1-lnL0) = 69.3555
                                              df = 2
     P-value = <0.000001
    Equal rates among sites
     Null model = TVM
                                  -InL0 = 5938.5615
     Alternative model = TVM+G -lnL1 = 5709.6323
     2(InL1-InL0) = 457.8584
     Using mixed chi-square distribution
     P-value = <0.000001
    No Invariable sites
     Null model = TVM+G
                                  -InL0 = 5709.6323
     Alternative model = TVM+I+G -InL1 = 5709.6323
     2(lnL1-lnL0) = 0.0000
     Using mixed chi-square distribution
     P-value = >0.999999 es decir, no rechazo la H_0 !!! El modelo seleccionado es TVM+G
```

© 2019 Pablo Vinuesa; http://www.ccg.unam.mx/~vinuesa/

Intoducción a la filoinformática – pan-genómica y filogenómica. LEG-UM5, Rabat, Junio 2019

```
- interpretación de la salida de modeltest: 1. hLRTs
        HIERARCHICAL LIKELIHOD RATIO TESTS (hLRTs)
  Confidence level = 0.01
   Equal base frequencies
                                 -InL0 = 6424.2026
   Null model = JC
   Alternative model = F81
                                 -lnL1 = 6284.9956
   2(InL1-InL0) = 278.4141
                                             df = 3
   P-value = <0.000001
   Ti=Tv
   Null model = F81
                                 -lnL0 = 6284.9956
   Alternative model = HKY
                                 -InL1 = 5981.7202
   2(lnL1-lnL0) = 606.5508
   P-value = <0.000001
  Equal Ti rates
   Null model = HKY
                                 -Inl 0 = 5981 7202
   Alternative model = TrN
                                 -lnL1 = 5978.8550
   2(lnL1-lnL0) = 5.7305
   P-value = 0.016673
   Equal Tv rates
   Null model = HKY
                                 -InL0 = 5981.7202
   Alternative model = K81uf
                                -InL1 = 5973,2393
   2(lnL1-lnL0) = 16.9619
                                            df = 1
   P-value = 0.000038
                                                          (continúa en la siguiente página)
```

```
- interpretación de la salida de modeltest: 1. hLRTs (Continuación)
             Model selected: TVM+G
              -lnL = 5709.6323
               K = 8
               Base frequencies:
                freqA =
                               0.3581
                freqC =
                               0.3186
                               0.0846
                freqG =
                fregT =
                               0.2387
               Substitution model:
                Rate matrix
                R(a)[A-C] =
                               3.9989
                R(b)[A-G] =
                              40.5788
                R(c) [A-T] =
                               3.4119
                R(d)[C-G] =
                               2.3909
                R(e) [C-T] =
                              40.5788
                R(f)[G-T] = 1.0000
               Among-site rate variation
                Proportion of invariable sites = 0
                Variable sites (G)
                 Gamma distribution shape parameter =
```

```
-interpretación de la salida de modeltest: 2. AIC = -2 ln L + 2 K; Akaike 1974
   (cantidad de información perdida cuando la realidad es aproximada por un modelo)
                           AKAIKE INFORMATION CRITERION (AIC)
                    Model selected: TrN+G
                    -lnL = 5710.5513
                    K = 6
                    AIC = 11433.1025
                    Base frequencies:
                     freqA =
                                      0.3252
                      freqC =
                      freqG =
                                      0.0765
                     freqT =
                                      0.2402
                     Substitution model:
                     Rate matrix
                                      1 0000
                      R(a)[A-C] =
                      R(b)[A-G] =
                                      16 0043
                      R(c)[A-T] =
                                      1.0000
                      R(d) [C-G] =
                                      1.0000
                      R(e)[C-T] =
                                      11.6796
                     R(f) [G-T] =
                                      1 0000
                     Among-site rate variation
                      Proportion of invariable sites = 0
                      Variable sites (G)
                      Gamma distribution shape parameter = 0.3566
```


© 2019 Pablo Vinuesa; http://www.ccg.unam.mx/~vinuesa/

Intoducción a la filoinformática – pan-genómica y filogenómica. LEG-UM5, Rabat, Junio 2019

```
- interpretación de la salida de modeltest: 2. AIC (continuación)

PAUP* Commands Block: If you want to implement the previous estimates as likelihod settings in PAUP*, attach the next block of commands after the data in your PAUP file:

[!
Likelihood settings from best-fit model (TrN+G) selected by AIC in Modeltest 3.7 on Sat May 20 17:12:56 2006
]

BEGIN PAUP;
Lset Base=(0.3581 0.3252 0.0765) Nst=6 Rmat=(1.0000 16.0043 1.0000 1.0000 11.6796) Rates=gamma Shape=0.3566
Pinvar=0;
END;
```

- interpretación de la salida de modeltest: 2. AIC (continuación)
- * MODEL AVERAGING AND PARAMETER IMPORTANCE (using Akaike Weights)
 Including all 56 models (indices normalizados y relativos de Akaike)

Parameter	Importance	Model-averaged estimates		 Interpretación de la importancia de parámetros 		
 f <i>A</i>	1,0000	0.3596	1.	los params. de frec. son		
fC	1.0000	0.3223		un componenete esencial		
fG	1.0000	0.0794		del modelo		
fΤ	1,0000	0.2387				
TiTv	0.2287	5.4113	2.	Ti/Tv también es		
rAC	0.1998	3.7999		significativa		
rAG	0.5615	19.9668				
rAT	0.1998	3.2371	3.	El pto. 2 se ratifica en la		
rCG	0.1998	2,3657		import. de rAG y rCT res-		
rCT	0.5615	14.9960		pecto a tasas de Tv		
pinv(I)	0.0000	0.3717		· ·		
alpha(G)	0.7311	0.3621	4.	El parámetro alpha (uso de		
pinv(IG)	0.2689	0.0000		distrib. gamma) es mucho		
alpha(IG)	0.2689	0.3621		más imp. que asumir sólo		
Values have bee	an nounded			pinv.		
(I):	averaged using only +I models.					
(G):	averaged using only +G models.					
(IG):	averaged using only +1+6 models.					

Modelos de base evaluados por Modeltest

Table 1. Model names. Some models have no reference (TNef, K81uf, TIMef, TIM, TVMef, TVM), they are just some variations of some existing models, and they were no developed, only named, by Devada.

Model	Name				
JC	ukes and Cantor (Jukes and Cantor, 1969)				
F81	Felsenstein 81 (Felsenstein, 1981)				
K80	Kimura 80 (=K2P) (Kimura, 1980)				
HKY	Hasegawa, Kishino, Yano 85 (Hasegawa, Kishino and Yano, 1985)				
TNef	Tamura-Nei equal frequencies				
TN	Tamura-Nei (Tamura and Nei, 1993)				
K81	Two transversion-parameters model 1 (=K81=K3P) (Kimura, 1981)				
K81uf	Two transversion-parameters model 1 unequal frecuencies				
TIMef	Transitional model equal frequencies				
TIM	Transitional model				
TVMef	Transversional model equal frequencies				
TVM	Transversional model				
SYM	Symmetrical model (Zharkihk, 1994)				
GTR	General time reversible (=REV) (Tavaré, 1986)				

© 2019 Pablo Vinuesa; http://www.ccg.unam.mx/~vinuesa/

Intoducción a la filoinformática – pan-genómica y filogenómica. LEG-UM5, Rabat, Junio 2019

Modelos de base evaluados por Modeltest

Table 2. Model parameters. The substitution codes are just two ways of indicating the substitution scheme. Any of these models can ignore rate variation or include invariable sites (+I), rate variation among sites (+G), or both (+I+G).

Model	Free parameters	Base frequencies	Substitution rates	Substitution code 1	Substitution code 2
JC	0	equal	a=b=c=d=e=f	000000	aaaaaa
F81	3	unequal	a=b=c=d=e=f	000000	aaaaaa
K80	1	equal	a=c=d=f, b=e	010010	abaaba
HKY	4	unequal	a=c=d=f, b=e	010010	abaaba
TNef	2	equal	a=c=d=f, b, e	010020	abaaca
TN	5	unequal	a=c=d=f, b, e	010020	abaaca
K81	2	equal	a=f, c=d, b=e	012210	abccba
K81uf	5	unequal	a=f, c=d, b=e	012210	abccba
TIMef	3	equal	a=f, c=d, b, e	012230	abccda
TIM	6	unequal	a=f, c=d, b, e	012230	abccda
TVMef	4	equal	a, c, d, f, b=e	012314	abcdbe
TVM	7	unequal	a, c, d, f, b=e	012314	abcdbe
SYM	5	equal	a, c, d, f, b, e	012345	abcdef
GTR	8	unequal	a, c, d, f, b, e	012345	abcdef