Transizione di deconfinamento in 3D Yang-Mills con gruppo di gauge Sp(2) e studio degli effetti di stringa

Studente: **Pini Nicholas** Relatore: prof. **Giusti Leonardo** Correlatore: prof. **Pepe Michele**

Facoltà di Fisica Magistrale Università degli Studi di Milano Bicocca

Anno Accademico 2021/2022

Introduzione

- ► Teorie di Yang-Mills presentano confinamento di colore
- ► A temperature finite → transizione di deconfinamento
- Congettura di Svetisky e Yaffe
- Effective String Theory: modello efficace che descrive il potenziale

Obiettivo: studio della transizione di deconfinamento con gruppo di gauge Sp(2) con simulazioni su reticolo.

Teorie di gauge non abeliane

Azione di Yang-Mills di pura gauge nell'Euclideo:

$$S_E = rac{1}{2g^2} \int \mathrm{d}^D x \, \mathrm{Tr}[F_{\mu
u} F_{\mu
u}]$$

Path integral:

$$\mathcal{Z} = \int \, \mathcal{D} A \, e^{-S_E[A]} \implies \langle \mathcal{O}
angle = rac{1}{\mathcal{Z}} \int \, \mathcal{D} A \, e^{-S_E[A]} \mathcal{O}$$

 $\mathcal{Z} o ext{funzione di partizione}$ di un sistema statistico con fattore di Boltzmann $e^{-S_E[A]}$

Lattice gauge theory

Spaziotempo su reticolo con passo reticolare $a \rightarrow$ cutoff al momento p.

Azione di Wilson:

$$S_W = rac{eta}{N} \sum_x \sum_{\mu <
u} \operatorname{Re} \operatorname{Tr} (\mathbb{1} - U_{\mu
u}(x)), \quad eta = rac{2N}{g^2}$$

- ▶ per $a \rightarrow 0$, $S_W \rightarrow S_F$
- ▶ gauge invariante per a > 0
- ▶ libertà asintotica: $a \rightarrow 0 \implies g(a) \rightarrow 0$

Placchetta $U_{\mu\nu}$:

Figura: Gattringer, Christof, Lang, *Quantum chromodynamics on the lattice*

Potenziale d'interazione

Temperatura finita e Polyakov loop

Condizioni periodiche sul tempo ightarrow temperatura $T=1/(aN_t)$

Loop di Polyakov:

$$\phi(\vec{\mathbf{x}}) = \mathsf{Tr} \left[\prod_{j=0}^{N_t-1} U_0(j, \vec{\mathbf{x}}) \right]$$

$$\left\langle \phi(\vec{\mathbf{x}})\phi(\vec{\mathbf{y}})^{\dagger} \right\rangle \sim e^{-\frac{1}{T}V(R,T)}$$

 $\sigma(T) o$ tensione di stringa a temperatura finita

Figura: Suganuma et al., *Interplay between Deconfinement and Chiral Properties*

$$\langle \phi \rangle = 0 \implies F_q \to \infty \to$$
fase confinata $(T < T_c)$

Congettura di Svetisky e Yaffe

Simmetria di centro

 $z \in$ centro gruppo gauge. Simmetria di centro:

$$\phi(\vec{\mathbf{x}}) o z\phi(\vec{\mathbf{x}})$$

- $\langle \phi \rangle = 0 \implies$ simmetria mantenuta
- $\blacktriangleright \langle \phi \rangle \neq 0 \implies$ simmetria rotta spontaneamente

Congettura di Svetisky e Yaffe: se transizione di deconfinamento è di 2° ordine

Teoria di gauge (d+1) dimensionale

Modello spin *d*

- ► correlatore di Polyakov loop ← correlatore fra spin
- fase deconfinata, $T > T_c \iff$ fase ordinata, $T^{\rm spin} < T_c^{\rm spin}$

Effective string theory

EST: tubo di flusso \rightarrow stringa vibrante

- modello effettivo a lunghe distanze
- \triangleright termine di Lüscher in V(R)
- estremamente predittivo

Per $R > \xi$, EST e congettura sono in accordo:

$$\langle \phi(0)\phi(R) \rangle \sim K_0(E_0R)$$
 in 3D

EST vs modello di Ising

Trans. 2° ordine
$$\implies \xi \sim \left(1 - \frac{T}{T_c}\right)^{-\nu}$$
 Vicino al punto critic $\xi \to \infty \implies R < \xi$

Vicino al punto critico:

In 3 dimensioni:

Congettura prevede
$$u=1$$
 (modello di Ising)

EST prevede $\nu = 1/2$

A $T \lesssim T_c$, EST non è più predittiva \rightarrow stringa dissolta da fluttuazioni e potenziale schermato.

Per $R < \xi$, congettura prevede

$$\begin{split} \langle \phi(0)\phi(R)\rangle &= \frac{\textit{k}_{\textrm{s}}}{\textit{R}^{\,1/4}} \left[1 + \frac{\textit{R}}{2\xi} \ln \left(\frac{e^{\gamma_{e}}\textit{R}}{8\xi} \right) + \frac{\textit{R}^{2}}{16\xi^{2}} \right. \\ &\left. + \frac{\textit{R}^{3}}{32\xi^{3}} \ln \left(\frac{e^{\gamma_{e}}\textit{R}}{8\xi} \right) + \textit{O} \left(\frac{\textit{R}^{4}}{\xi^{4}} \ln^{2} \frac{\textit{R}}{\xi} \right) \right] \end{split}$$

Scopo: studiare $\langle \phi(0)\phi(R)\rangle$ per $T \lesssim T_c$ con gruppo di gauge Sp(2)

Misura loop di Polyakov

Reticolo 3D con $N_s = 40, 60, 80, 100$ e $N_t = 5, 6, 7, 8$.

Comportamento tipico di transizione di fase di secondo ordine:

- fase confinata: $\langle |\phi| \rangle = 0$
- ▶ fase deconfinata: $\langle |\phi| \rangle \neq 0$ e eventi di tunneling

Misura temperatura critica

 $T=1/(aN_t) \implies$ cerchiamo $\beta_c(N_t)$ tale che il sistema è nel punto critico.

Suscettività: misura la larghezza della distribuzione del loop di Polyakov.

$$\chi = \sum_{\vec{\mathbf{x}}} \left\langle \phi(\vec{\mathbf{0}}) \phi(\vec{\mathbf{x}}) \right\rangle = N_s^2 \left\langle \phi^2 \right\rangle$$

$$\chi(\beta) \sim a + b \left(\beta^{(0)} - \beta\right)^2 + c \left(\beta^{(0)} - \beta\right)^3 + d \left(\beta^{(0)} - \beta\right)^4$$

Figura: $N_t = 6$

β critici

N _t	Ns	eta_c	χ^2	
5	40	23.312(14)	1.0933	
	60	23.2748(52)	1.2741	
	80	23.2886(64)	0.5137	
	100	23.2817(46)	1.4615	
6	40	27.589(30)	0.781	
	60	27.547(10)	0.7684	
	80	27.537(12)	0.559	
	100	27.566(13)	1.6649	
7	40	32.103(31)	0.1255	
	60	31.8149(92)	0.7616	
	80	31.8190(97)	0.6526	
	100	31.8299(99)	1.328	
8	40	36.275(68)	0.7747	
	60	36.103(22)	0.8324	
	80	36.065(19)	1.3907	
	100	36.065(14)	1.0921	

Per $N_s = 100$, effetti di volume finito sono piccoli \rightarrow valori di β_c validi nel limite termodinamico.

Finite size scaling

Finite size scaling \rightarrow osservabili riscalate a volume finito descrivono la stessa curva

Figura: $N_t = 6$. β_c non aggiustati.

Figura: $N_t = 6$. β_c aggiustati.

 β_c in funzione di N_t

Fissato $N_s=100$, fittiamo β_c al variare di N_t usando una retta.

$$\beta_c(N_t) \sim a + bN_t$$
$$\chi^2 = 2.5612$$

Lunghezza di correlazione

N_t	Ns	T/T_c	R	ξ	χ^2
5	100	0.95	(2, 13)	14.157(66)	1.433
			(12,50)	14.26(58)	1.4986
6	100	0.95	(2, 17)	17.42(11)	0.8582
			(14, 42)	16.86(12)	0.513
7	100	0.95	(2, 20)	20.97(15)	0.5012
			(17, 50)	20.66(17)	0.4379
8	100	0.95	(1, 24)	24.95(22)	2.9113
			(18, 50)	24.26(28)	0.4311

Misura complicata dalla scelta limita di valori di R se ξ è troppo grande o troppo piccolo.

Figura: $N_t = 6$

Sia per $R < \xi$ che per $R > \xi$, misure compatibili di $\xi \implies$ congettura di Svetisky e Yaffe prevede correttamente andamento di $\langle \phi(0)\phi(R)\rangle$ nelle vicinanze del punto critico.

Inoltre, come ci aspettavamo:

- ► teoria di Yang-Mills 3D con gruppo di gauge Sp(2) presenta una transizione di deconfinamento del secondo ordine
- ▶ andamento di $\langle \phi(0)\phi(R)\rangle$ per $R>\xi$ previsto da EST
- ▶ EST a $R < \xi$ non è più valida

Conclusioni

Possibili ricerche future:

- ightharpoonup studiare $\sigma(T)$ in V(R,T)
- studiare come si passa da descrizione EST a descrizione della congettura

Grazie per l'attenzione!