Preprocessing Sequential Data for Machine Learning Facilitation using Curriculum Learning

Project Proposal

Maxim K. Surkov, group BPM171

Research Advisors: Ivan P. Yamshchikov

Linguistic Advisor: Department of Foreign Languages

Saint Petersburg School of Physics, Mathematics, and Computer Science Department of Computer Science

6 april 2021

Outline

- Motivation and definitions
- Literature Review
- Methodology
- Results

Motivation

- social networks
- voice assistants
- translators
- chatbots

- classification
- machine translation
- natural language understanding

- tiny language models
- GPT-3
 - extremely large
- BERT
 - high quality

Motivation

- pre-training
 - required time: from 1-2 days to 1-2 weeks
 - world record: 47 minutes using 1472 GPUs

Dataset	Samples		
Wikipedia	3-600M		
BooksCorpus	74M		

- fine-tuning
 - required time: 1-2 days

Dataset	Samples
HND	600k-2M
s140	1.6M
IWSLT	200-230k
QQP	364k
MNLI	393k

Curriculum Learning. Definition

- task: machine translation
- Models: BERT, LSTM
- Datasets: IWSLT'15, IWSLT'16, WMT'16
- Algorithm:
- sort samples by text complexity (length, log-likelihood)
- 2 for T steps (consider t-th step)
 - calculate $c(t) \in [0,1]$
 - form the batch from c(t) easiest samples
 - do training step

Difficulty

Research Field

metric	classification	МТ	pre-training	NLU
length		√		
language features ¹				
entropy				
model-based				\checkmark
word frequency based		\checkmark		
log-likelihood		\checkmark		
?				

- length is the best metric now
- there is no universal approach
- classification and pre-training is not investigated

¹van der Sluis et al. (2010) showed that there is poor correlation with real text complexity

Problem Statement

Goal: speed up the BERT model's training process at the expense of applying effective text complexity estimation metrics within the framework of curriculum learning on pre-training and classification tasks **Problems:**

- Suggest alternative text complexity metrics
- Implement a practical algorithm for metrics calculation on large datasets
- Carry out comparative analysis between the proposed metrics and the existing ones
- Study the impact of the found metrics on the BERT training time

Literature Review

Bengio et al. (2009)	it was first shown that curriculum has a
	great potential for improving ML models
Hacohen and Weinshall (2019)	application of curriculum learning in
riaconen and weinshan (2019)	
	computer vision
Mermer et al. (2017)	
Platanios et al. (2019)	the first application of curriculum
	learning in machine translation
Xu et al. (2020)	model-based metric investigation
Tom Kocmi et al. (2017)	good results on the machine translation
	task were shown using curriculum learning
	with length and word frequency rank
	metrics
Xuan Zhang et al. (2018)	
Nihat Ay et al. (2006)	Excess Entropy and TSE metrics
,	description

Methodology: metrics

- filtered metrics
 - length
 - word frequency rank
 - log-likelihood
 - language metrics are **not** used
- Information Retrieval
 - TF-IDF
- Information Theory
 - Excess Entropy
 - TSE

Methodology: metrics calculation

Information Theory metrics adaption to texts

$$T = (t_1, t_2, \dots, t_{i-1}, t_i, \dots, t_n)$$

$$t_i \to \xi_{t_i}^i =: \mu_i - \text{binary random value}$$

$$\downarrow$$

$$\xi = (\xi_{t_1}^1, \xi_{t_2}^2, \dots, \xi_{t_{i-1}}^{i-1}, \xi_{t_i}^i, \dots, \xi_{t_n}^n)$$

- Statistics collection
 - divide the dataset into parts
 - 2 collect statistics on multiple processors in parallel
 - join
- Excess Entropy and TSE metrics calculation
 - **1** $\mathcal{O}^*(2^n)$
 - 2 $\mathcal{O}(n^2)$ dynamic programming
 - 3 $\mathcal{O}(n)$ math equations and text's far-placed parts' independence assumption

Methodology: comparison method

- fix the dataset, model, and sampling algorithm
- train BERT model
- fix a sufficiently large accuracy value
 - train BERT model without curriculum learning until convergence
 - ullet take the best accuracy value $\pm arepsilon$
- compare average number of steps required to reach this threshold

Results

dataset	HND (92.9%)		s140 (85.5%)			
sampler	СВ	DB	Нур	СВ	DB	Нур
length	55k	23k	22.5k	112.5k	20k	19k
TF-IDF	∞	19.5k	24k	115.5k	21.5k	19.5k
TSE	56.5k	21k	23k	95.5k	16.5k	20.5k
EE	71.5k	25.5k	22.5k	59k	16.5k	23k
max wf rank	∞	22k	20.5k	70k	18.5k	19.5k
log-likelihood	∞	20k	24k	112k	17.5k	21.5k
		22k			18k	

References