

الاعتمانات والتوجيه الدورة الاستدراكية 2013

الموضوع RS22

3	مدة الإنجاز	الرياضيات	المادة
7	المعامل	شعبة العلوم التجريبية بمسالكها وشعبة العلوم والتكنولوجيات بمسلكيها	الشعب(ة) أو المسلك

معلومات عامة

- يسمح باستعمال الآلة الحاسبة غير القابلة للبرمجة ؛
 - مدة إنجاز موضوع الامتحان : 3 ساعات ؛
- عدد الصفحات : 3 صفحات (الصفحة الأولى تتضمن معلومات والصفحتان المتبقيتان تتضمنان تمارين الامتحان)؟
 - يمكن للمترشح إنجاز تمارين الامتحان حسب الترتيب الذي يناسبه ؟
- في حالة عدم تمكن المترشح من الإجابة عن سؤال ما ، يمكنه استعمال نتيجة هذا السؤال لمعالجة الأسئلة الموالية ؛
 - ينبغى تفادي استعمال اللون الأحمر عند تحرير الأجوبة ؟
 - بالرغم من تكرار بعض الرموز في أكثر من تمرين ، فكل رمز مرتبط بالتمرين المستعمل فيه ولا علاقة له بالتمارين السابقة أو اللاحقة .

معلومات خاصة

يتكون الموضوع من خمسة تمارين مستقلة فيما بينها و تتوزع حسب المجالات كما يلي :

النقطة الممنوحة	المجال	التمرين
3 نقط	الهندسة الفضائية	التمرين الأول
3 نقط	الأعداد العقدية	التمرين الثاني
3 نقط	المتتاليات العددية	التمرين الثالث
3 نقط	حساب الاحتمالات	التمرين الرابع
8 نقط	دراسة دالة وحساب التكامل	التمرين الخامس

- بالنسبة للتمرين الخامس ، In يرمز لدالة اللوغاريتم النبيري

RS22

الامتحان الوطني الموحد للبكالوريا -الدورة الاستدراكية كالحك الموضوع- مادة: الرياضيات- شعبة العلوم التجريبية بمساكها وشعبة العلوم والتكنولوجيات بمسلكيها

الموضوع

التمرين الأول (3ن)

C(2,1,2) و B(1,1,1) و A(0,0,1) النقط A(0,0,1) النقط A(0,0,1) و أعتبر ، في الفضاء المنسوب إلى معلم متعامد ممنظم مباشر $\sqrt{3}$ و شعاعها هو $\sqrt{3}$

$$(S)$$
 بين أن (S) وتحقق من أن (S) هي معادلة ديكارتية للفلكة (S) وتحقق من أن (S) تنتمي إلى (S)

$$(ABC)$$
 و استنتج أن $x-y-z+1=0$ و استنتج أن $\overrightarrow{AB} \wedge \overrightarrow{AC} = \overrightarrow{i} - \overrightarrow{j} - \overrightarrow{k}$ هي معادلة ديكارتية للمستوى \overrightarrow{AB}

$$A$$
 في $d(\Omega,(ABC))$ مماس للفلكة $d(\Omega,(ABC))$ ب- احسب المسافة في $d(\Omega,(ABC))$

(ABC) ليكن (Δ) المستقيم المار من Ω والعمودي على (3

$$(\Delta)$$
 مثیل بارامتر $x=1+t$ $y=-1-t$ $(t\in IR)$ امتر ی للمستقیم $z=-t$

ب- استنتج مثلوثي إحداثيات نقطتي تقاطع المستقيم (Δ) و الفلكة (S)

التمرين الثاني (3ن)

 $z^2 - 8z + 25 = 0$: المعادلة C الأعداد العقدية الأعداد العقدية المعادلة المعادلة

لتي $(0, \vec{u}, \vec{v})$ ، النقط $(0, \vec{u}, \vec{v})$) النقط $(0, \vec{u}, \vec{v})$) النقط $(0, \vec{u}, \vec{v})$

 \overrightarrow{BC} التي متجهتها c=10+3i و b=4-3i و a=4+3i التي متجهتها d=10+9i التي متجهتها d=10+9i متجهتها d=10+9i متجهتها d=10+9i التي متجهتها التي متجهتها d=10+9i

ب- تحقق من أن
$$\frac{b-a}{d-a} = -\frac{1}{2}(1+i)$$
 ثم اكتب العدد العقدي $\frac{b-a}{d-a} = -\frac{1}{2}(1+i)$ على المثلثي.

$$\left(\overline{\overrightarrow{AD}}, \overline{\overrightarrow{AB}}\right) \equiv \frac{5\pi}{4} [2\pi]$$
 بين أن $= 6.5$

التمرين الثالث (3ن)

IN من $u_{n+1} = \frac{1}{5}u_n + \frac{4}{5}$ و $u_0 = 2$: نعتبر المتتالية العددية (u_n) المعرفة بما يلي

$$IN$$
 من n لكل $u_{n+1} - 1 = \frac{1}{5}(u_n - 1)$ كن (1 0.5

$$IN$$
 من n لكل $u_n > 1$ أ- بين بالترجع أن (2 | 0.5

ب بين أن المتتالية
$$(u_n)$$
 تناقصية . 0.5

ج- استنتج أن المتتالية
$$(u_n)$$
 متقاربة .

$$IN$$
 من $v_n = u_n - 1$ لتكن $v_n = u_n - 1$ لعددية بحيث (3)

$$n$$
 بدلالة بين أن المتتالية (v_n) هندسية أساسها أم ين أن المتتالية v_n بدلالة م

$$(u_n)$$
 لكل $u_n = \left(\frac{1}{5}\right)^n + 1$ نين أن ب- بين أن $u_n = \left(\frac{1}{5}\right)^n$

0.75

0.5

0.75

1

الوطني الموحد للبكالوريا -الدورة الاستدراكية كالحك الموضوع- مادة: الرياضيات- شعبة العلوم التجريبية RS22 الصفحة الليام والتكنولوجيات بمسلكيها	الامتحان
التمرين الرابع (3 ن) العلوم والتكنولوجيات بمسلكيها	$oxed{oxed}$
يحتوي كيس على 9 بيدقات : أربع بيدقات بيضاء و ثلاث بيدقات سوداء و بيدقتان خضراوان . (لا يمكن التمييز بين البيدقات باللمس)	
نسحب عشوائيا وفي آن واحد ثلاث بيدقات من الكيس .	
1) نعتبر الحدثين A : " الحصول على ثلاث بيدقات من نفس اللون" و B : " الحصول على ثلاث بيدقات مختلفة اللون مثنى ".	1
$P(B) = \frac{2}{7}$ و $P(A) = \frac{5}{84}$ بين أن	
2) ليكن X المتغير العشوائي الذي يساوي عدد البيدقات السوداء المسحوبة . 1 المتغير العشوائي 1 هي 1 و	0.25
$P(X=1) = \frac{15}{28}$ و $P(X=2) = \frac{3}{14}$ بـ بين أن	1
X ج - أعط قانون احتمال المتغير العشوائي X الـتمريـن الـخامـس (8 ن)	0.75
$g(x) = x^2 - x - \ln x$: بعتبر الدالة العددية g المعرفة على $g(x) = 0, +\infty$ بما يلي $g(x) = 0, +\infty$	
اً- تحقق من أن $(2x+1)(x-1)=2x^2-x-1$ لكل x من $(2x+1)(x-1)$ لكل $(2x+1)(x-1)$	0.25
$[1,+\infty[$ بين أن $rac{2x^2-x-1}{x}$ لكل x من g من g با g واستنتج أن الدالة g تناقصية على g الدية على و g الدين أن	1
. ($g(1)=0$) يين أن $g(x) \geq 0$ لكل x من $g(x) = 0$. (لاحظ أن $g(x) \geq 0$	0.5
$f(x) = x^2 - 1 - (\ln x)^2$: بما يلي $[0,+\infty[$ بما يلي $f(x) = x^2 - 1 - (\ln x)^2$ بما يلي $f(x) = x^2 - 1 - (\ln x)^2$	
. (1 cm : المنحنى الممثل للدالة f في معلم متعامد ممنظم $O,ec{i},ec{j}$ (الوحدة O	
$\lim_{\substack{x \to 0 \ x>0}} f(x) = -\infty$ أ- بين أن $\lim_{\substack{x \to 0 \ x>0}} f(x) = \infty$ أ- بين أن أن أب المنابعة المنابعة أب المنابعة أب المنابعة المنابع	0.5
$\left(f(x) = x^2 \left(1 - \frac{1}{x^2} - \left(\frac{\ln x}{x} \right)^2 \right) \right) \lim_{x \to +\infty} \frac{f(x)}{x} = +\infty \lim_{x \to +\infty} f(x) = +\infty $ ب- بین أن	0.5
. استنتج أن المنحنى (C) يقبل فرعا شلجميا بجوار $+\infty$ يتم تحديد اتجاهه	0.25
$f'(x)=2\left(rac{x^2-\ln x}{x} ight)$ اً- بین أن $f'(x)=2\left(rac{x^2-\ln x}{x} ight)$ لكل الكل عن أن	1
$]0,+\infty[$ ب- تحقق من أن $rac{x^2-\ln x}{x}+1=rac{g(x)}{x}+1$ لكل x من $]0,+\infty[$ و استنتج أن الدالة f تزايدية على	0.75
A(1,0) أ- بين أن $y=2x-2$ هي معادلة ديكارتية للمستقيم $y=2x-2$ المماس للمنحنى $y=2x-2$	0.5
ب- أنشئ في نفس المعلم $(C,ec{i},ec{j})$ المستقيم (T) والمنحنى (C) (نقبل أن للمنحنى (C) نقطة انعطاف وحيدة هي A)	1
$\int_1^e \ln x dx = 1$ أ- تحقق من أن $H: x \mapsto x (\ln x - 1)$ دالة أصلية للدالة $h: x \mapsto \ln x$ على $h: x \mapsto x (\ln x - 1)$ ثم بين أن	0.75
$\int_1^e (\ln x)^2 dx = e - 2$: بين أن بين أن بين أن	0.5
x=1 بين أن مساحة حيز المستوى المحصور بين (C) ومحور الأفاصيل و المستقيمين اللذين معادلتاهما	0.5
$\frac{1}{3}(e^3 - 6e + 8) cm^2$ هي $x = e$ و	

الامتحال الوطني الموحد للبكالوريا المفحة المعادية الامتحال الوطني الموحد للبكالوريا

الدورة الاستدراكية **2013** عناصر الإجابة RR22

3	مدة الإنجاز	الرياضيات	المادة
7	المعامل	شعبة العلوم التجريبية بمسالكها وشعبة العلوم والتكنولوجيات بمسلكيها	الشعب(ة) أو المسلك

تة خذ بعين الاعتبار مختلف مراحا الحا وتقبا كا طريقة صحيحة تؤدى إلى الحا

تؤخد بعين الاعتبار مختلف مراحل الحل وتقبل كل طريقة صحيحة تؤدي إلى الحل		
	الأول (3 ن)	التمرين
كلمعادلة و 0.25 للتحقق من انتماء A ل A	(1	0.75
أ- 0.5 لحساب الجداء المتجهي و 0.25 لمعادلة المستوى	(2	1.5
ب- 0.25 لحساب المسافة و 0.25 للمستوى مماس للفلكة و 0.25 ل A هي نقطة التماس	,	
0.25 – 1	(3	0.75
ب- 0.25 لمثلوث إحداثيات كل نقطة		
	الثاني (3ن	التمرين
0.25 لحساب المميز و 0.25 لكل حل من الحلين (تمنح 0.75 للتوصل إلى الحلين بطريقة أخرى)	(1	0.75
d التوصل إلى $d-a=c-b$ أو $z'=z+6+6i$ و 0.5 لتحديد d	(2	2.25
ب- 0.5 لحساب $\frac{b-a}{d-a}$ لمعيار العدد و 0.25 لعمدة العدد		
ج- $\frac{5\pi}{4}$ الكتابة $\frac{5\pi}{4}$ قياس للزاوية $\left(\overline{\overline{AD},\overline{AB}}\right) \equiv \arg\left(\frac{b-a}{d-a}\right)$ قياس للزاوية 0.25		
· · · · · · · · · · · · · · · · · · ·	الثالث (3 ن	<u>التمرين</u>
0.5	(1	0.5
0.5 -	(2	1.25
ب- 0.5		
چ- 0.25		
n المتتالية هندسية و 0.25 لكتابة $v_{_{_{n}}}$ بدلالة $v_{_{_{n}}}$	(3	1.25
$\lim_{n \to +\infty} u_n = 1$ ل 0.25 و $\lim_{n \to +\infty} \left(\frac{1}{5}\right)^n = 0$ ل 0.25 و 0.25 لكتابة u_n بدلالة u_n		
	الرابع (3ن)	التمرين
التوصل إلى أن الاحتمال هو $\frac{C_4^3 + C_3^3}{C_9^3}$ و 0.25 للتوصل إلى أن الاحتمال هو 0.25 للحساب	(1	1
و 0.25 للتوصل إلى أن الاحتمال هو $rac{C_4^1 imes C_3^1 imes C_2^1}{C_9^3}$ و 0.25 للحساب		
0.25 -	(2	2
ب- 0.25 للتوصل إلى أن $\frac{C_3^2 \times C_6^1}{C_9^3}$ و 0.25 للحساب 0.25		
و 0.25 للتوصل إلى أن $P(X=1) = \frac{C_3^1 \times C_6^2}{C_9^3}$ و 0.25 للحساب و 0.25 و 0.25 للحساب		
ج- 0.25 ل $P(X=0)$ و 0.25 ل و 0.25 و $P(X=3)$ و $P(X=0)$		
	-	•

