IMPERIAL

Spatio-temporal trends and socioenvironmental determinants of suicides in England (2002 – 2022): an ecological population-based study

- Introduction
- 2 Methods
- **Results**

2

4 Conclusion

- **Introduction**
- 2 Methods
- **Results**

3

4 Conclusion

30/06/2025

Background

- In the UK, an average of 11.0 per 100,00 yearly suicides. In the EU this is 10.2 per 100,000.
- One suicide costs the NHS £1.46 million.
- Historical regional variation in suicide is rarely explored sub-regionally.
- Understanding local socio-environmental determinants is vital for prevention.

Aim 1:

Develop high spatio-temporal model suitable to model suicides in England from 2002 to 2022.

Aim 2:

Understand the effect of local socio-environmental determinants on suicides in England.

5

- 1 Introduction
- 2 Methods
- **Results**
- 4 Conclusion

6

Data

- Suicide outcome:
 - Intentional self harm (ICD-10 Codes: X60-X84).
 - Events of undetermined intent (ICD-10 Codes: Y10.0-Y33.8, Y40, Y87.0, and Y87.2).
- Population at risk:
 - Mid-year from ONS.
- Stratification:
 - Age: [15, 25), [25, 35), [35, 45), [45, 55), [55, 65), [65, 75), [75, 85), 85+.
 - Sex: Male, Female.
 - Middle layer Super Output Area (MSOA).

Covariates

- Deprivation:
 - ONS IMD in 2004, 2007, 2010, 2015, and 2019.
- Ethnic density:
 - ONS ethnic population totals in 2001, 2011, and 2021.
- Population density:
 - ONS mid-year population totals.
- Light pollution:
 - Yearly 1km x 1km satellite data.
- Railway network density:
 - OpenStreetMap.
- Road network density:
 - Ordnance Survey Open Map.
- Greenspace:
 - 16-day 250m x 250m satellite data.

Statistical Model: Age-Sex Standardisation

For MSOA i, year t, sex s, and age a let Y_{itas} and N_{itas} be the observed number of suicides and population at risk.

1. Define reference using whole study domain (England) and period (2002-2022):

$$R_{as} = \sum_{it} \frac{Y_{itas}}{N_{itas}}$$

2. Calculate expected suicides:

$$E_{itas} = N_{itas} \times R_{as}$$

3. Marginalise out age and sex:

$$Y_{it} = \sum_{as} Y_{itas}$$

$$E_{it} = \sum_{as} E_{itas} = \sum_{as} N_{itas} \times R_{as}$$

Statistical Model: Hurdle Model

For MSOA i, and year t let Y_{it} and E_{it} be the observed and (age-sex adjusted) expected number of suicides.

Let
$$Y_{it} = (z_{it}, o_{it})$$
 where:
$$z_{it} = \begin{cases} 1, & \text{if } y_{it} \neq 0 \\ 0, & \text{otherwise} \end{cases}$$

$$o_{it} = \begin{cases} \text{NA, if } y_{it} = 0 \\ y_{it}, & \text{otherwise} \end{cases}$$

$$\begin{cases} Y_{1,2002} \\ Y_{1,2003} \\ \vdots \\ Y_{6791,2002} \end{cases} \rightarrow Z_{6791,2002}$$

$$\begin{bmatrix} Y_{1,2002} \\ Y_{1,2003} \\ \vdots \\ Y_{6791,2002} \end{bmatrix} \rightarrow \begin{bmatrix} Z_{6791,2002} \\ X_{6791,2002} \\ \vdots \\ X_{6791,2002} \end{bmatrix}$$

$Z_{1,2002}$	NA		Г 1	N
$Z_{1,2003}$	NA		0	N
•	:		•	
Z _{6791,2022}	NA		1	N
		\rightarrow		
NA	$o_{1,2002}$		NA	
NA	0 _{1,2003}		NA	N
•	:		•	
NA	0 _{6791,2022}		NA	

Therefore.

- z_{it} is a binary vector of suicide occurring or not.
- o_{it} is a non-zero integer of the number of suicides.

Let $Y_{it} \sim \text{HurdlePoisson}(\pi_{it}, \lambda_{it} = \rho_{it} E_{it})$ where:

$$z_{it}$$
~Binomial (π_{it}) and o_{it} ~zt-Poisson $(\lambda_{it} = \rho_{it}E_{it}|o_{it} \ge 1)$

$$logit(\pi_{it}) = \beta_0^z + X\beta^z + \delta_i + \gamma_t + \xi_{it}$$

$$log(\rho_{it}) = \beta_0^o + X\beta^o + \beta_\delta^o \delta_i + \beta_\gamma^o \gamma_t + \beta_\xi^o \xi_{it} + log(E_{it})$$

- Independent across both Shared across both likelihoods
- zt-Poisson likelihood only Binomial likelihood only

Let $Y_{it} \sim \text{HurdlePoisson}(\pi_{it}, \lambda_{it} = \rho_{it} E_{it})$ where:

$$z_{it}$$
~Binomial (π_{it}) and o_{it} ~zt-Poisson $(\lambda_{it} = \rho_{it}E_{it}|o_{it} \ge 1)$

$$\begin{aligned} \log &\mathrm{it}(\pi_{it}) = \beta_0^z + X \boldsymbol{\beta}^z + \delta_i + \gamma_t + \xi_{it} \\ &\log(\rho_{it}) = \beta_0^o + X \boldsymbol{\beta}^o + \beta_\delta^o \delta_i + \beta_\gamma^o \gamma_t + \beta_\xi^o \xi_{it} + \log(E_{it}) \\ &\beta_0 = \mathrm{intercept} \end{aligned}$$

- Independent across both Shared across both likelihoods
- zt-Poisson likelihood only Binomial likelihood only

Let Y_{it} ~HurdlePoisson $(\pi_{it}, \lambda_{it} = \rho_{it}E_{it})$ where:

$$z_{it}$$
~Binomial (π_{it}) and o_{it} ~zt-Poisson $(\lambda_{it} = \rho_{it}E_{it}|o_{it} \ge 1)$

$$\begin{aligned} \log &\mathrm{it}(\pi_{it}) = \beta_0^z + X \boldsymbol{\beta}^z + \delta_i + \gamma_t + \xi_{it} \\ &\log(\rho_{it}) = \beta_0^o + X \boldsymbol{\beta}^o + \beta_0^o \delta_i + \beta_\gamma^o \gamma_t + \beta_\xi^o \xi_{it} + \log(E_{it}) \\ &\beta_0 = \mathrm{intercept} \\ &X \boldsymbol{\beta} = \mathrm{Socio-environmental\ terms} \end{aligned}$$

- Independent across both Shared across both likelihoods
- zt-Poisson likelihood only Binomial likelihood only

Let $Y_{it} \sim \text{HurdlePoisson}(\pi_{it}, \lambda_{it} = \rho_{it} E_{it})$ where:

$$z_{it}$$
~Binomial (π_{it}) and o_{it} ~zt-Poisson $(\lambda_{it} = \rho_{it}E_{it}|o_{it} \ge 1)$

$$\begin{aligned} \log &\mathrm{it}(\pi_{it}) = \beta_0^z + X \pmb{\beta}^z + \delta_i + \gamma_t + \xi_{it} \\ &\log(\rho_{it}) = \beta_0^o + X \pmb{\beta}^o + \beta_\delta^o \delta_i + \beta_\gamma^o \gamma_t + \beta_\xi^o \xi_{it} + \log(E_{it}) \\ &\beta_0 = \mathrm{intercept} \\ &X \pmb{\beta} = \mathrm{Socio-environmental\ terms} \\ &\delta_i = \mathrm{Spatial\ random\ effects} \end{aligned}$$

- Independent across both Shared across both likelihoods
- zt-Poisson likelihood only Binomial likelihood only

Let $Y_{it} \sim \text{HurdlePoisson}(\pi_{it}, \lambda_{it} = \rho_{it} E_{it})$ where:

$$z_{it}$$
~Binomial (π_{it}) and o_{it} ~zt-Poisson $(\lambda_{it} = \rho_{it}E_{it}|o_{it} \ge 1)$

$$\begin{aligned} \log &\mathrm{it}(\pi_{it}) = \beta_0^z + X \pmb{\beta}^z + \delta_i + \gamma_t + \xi_{it} \\ &\log(\rho_{it}) = \beta_0^o + X \pmb{\beta}^o + \beta_0^o \delta_i + \beta_\gamma^o \gamma_t + \beta_\xi^o \xi_{it} + \log(E_{it}) \\ &\beta_0 = \mathrm{intercept} \\ &X \pmb{\beta} = \mathrm{Socio-environmental\ terms} \\ &\delta_i = \mathrm{Spatial\ random\ effects} \\ &\gamma_t = \mathrm{Temporal\ random\ effects} \end{aligned}$$

- Independent across both Shared across both likelihoods
- zt-Poisson likelihood only Binomial likelihood only

Let $Y_{it} \sim \text{HurdlePoisson}(\pi_{it}, \lambda_{it} = \rho_{it} E_{it})$ where:

$$z_{it}$$
~Binomial (π_{it}) and o_{it} ~zt-Poisson $(\lambda_{it} = \rho_{it}E_{it}|o_{it} \ge 1)$

$$\begin{aligned} \log &\mathrm{it}(\pi_{it}) = \beta_0^z + X \pmb{\beta}^z + \delta_i + \gamma_t + \xi_{it} \\ &\log(\rho_{it}) = \beta_0^o + X \pmb{\beta}^o + \beta_0^o \delta_i + \beta_\gamma^o \gamma_t + \beta_\xi^o \xi_{it} + \log(E_{it}) \\ &\beta_0 = \mathrm{intercept} \\ &X \pmb{\beta} = \mathrm{Socio-environmental\ terms} \\ &\delta_i = \mathrm{Spatial\ random\ effects} \\ &\gamma_t = \mathrm{Temporal\ random\ effects} \\ &\xi_{it} = \mathrm{Spatio-temporal\ random\ effects} \end{aligned}$$

- Independent across both Shared across both likelihoods
- zt-Poisson likelihood only Binomial likelihood only

Let Y_{it} ~HurdlePoisson $(\pi_{it}, \lambda_{it} = \rho_{it}E_{it})$ where:

$$z_{it}$$
~Binomial (π_{it}) and o_{it} ~zt-Poisson $(\lambda_{it} = \rho_{it}E_{it}|o_{it} \ge 1)$

```
\begin{aligned} \log &\mathrm{it}(\pi_{it}) = \beta_0^z + X \pmb{\beta}^z + \delta_i + \gamma_t + \xi_{it} \\ &\log(\rho_{it}) = \beta_0^o + X \pmb{\beta}^o + \beta_0^o \delta_i + \beta_\gamma^o \gamma_t + \beta_\xi^o \xi_{it} + \log(E_{it}) \\ &\beta_0 = \mathrm{intercept} \\ &X \pmb{\beta} = \mathrm{Socio-environmental\ terms} \\ &\delta_i = \mathrm{Spatial\ random\ effects} \\ &\gamma_t = \mathrm{Temporal\ random\ effects} \\ &\xi_{it} = \mathrm{Spatio-temporal\ random\ effects} \\ &\beta_*^o = \mathrm{Scale\ parameters} \end{aligned}
```

- Independent across both Shared across both likelihoods
- zt-Poisson likelihood only Binomial likelihood only

Let Y_{it} ~HurdlePoisson $(\pi_{it}, \lambda_{it} = \rho_{it}E_{it})$ where:

$$z_{it}$$
~Binomial (π_{it}) and o_{it} ~zt-Poisson $(\lambda_{it} = \rho_{it}E_{it}|o_{it} \ge 1)$

```
logit(\pi_{it}) = \beta_0^z + X\beta^z + \delta_i + \gamma_t + \xi_{it}
  \log(\rho_{it}) = \beta_0^o + X\beta^o + \beta_0^o \delta_i + \beta_{\nu}^o \gamma_t + \beta_{\varepsilon}^o \xi_{it} + \log(E_{it})
          \beta_0 = intercept
        X\beta = Socio-environmental terms
          \delta_i = Spatial random effects
          \gamma_t = Temporal random effects
         \xi_{it} = Spatio-temporal random effects
         \beta_*^o = Scale parameters
  \log(E_{it}) = \log-\text{offset}
- Independent across both - Shared across both likelihoods
- zt-Poisson likelihood only - Binomial likelihood only
```

- **1** Introduction
- 2 Methods
- **3** Results
- 4 Conclusion

National and Regional Trends

National Suicide Risk

Regional Suicide Risk

Spatio-Temporal Trends

MSOA Suicide Risk

P(MSOA Suicide Risk > 1)

Socio-Environmental Factors and Profiles

22

- 1 Introduction
- 2 Methods
- **Results**
- 4 Conclusion

Conclusions

Spatio-temporal

- Overall National Change: None from 2002 to 2022.
- Subnational variation: London has 38.8% lower suicide risk than North East. (-)

Socio-environmental determinants

- Risk Factors: Deprivation, Railway network density and road network density.
- Protective factors: Ethnic density, population density, light pollution, and greenspace.
- Interpretation: can change when considering full area profile.

IMPERIAL

Thank you

In general, all code-related files are designed to be as automated as possible. However, a few manual steps are

Each .R file includes a section titled ## 0.1. packages . This section will attempt to load or install the necessary R

Running the Code

1. Installing Required Packages

required to get everything working after cloning the repository

The Lancet Regional Health - Europe

Volume 56, September 2025, 101386

Articles

Spatio-temporal trends and socioenvironmental determinants of suicides in England (2002–2022): an ecological population-based study

Connor Gascoigne ^a $\overset{\triangle}{\sim}$, Annie Jeffery ^b, Ioannis Rotous ^c, Xuewen Yu ^d, Sara Geneletti ^d, Bethan Davies ^{a e}, Gianluca Baio ^c, James B. Kirkbride ^b, Alexandra Pitman ^{b f}, Marta Blangiardo ^a

