AEEM 3042 – Aircraft Performance & Design

Aircraft Design Fuselage Design

Aircraft Design Process

Cincinnati

<u>Airliner Fuselage Design Drivers</u>

Number of Passengers Seating Arrangements (Class, Seat Pitch) Cargo Requirements

Long-Range vs Short-Range
Number of Lavatories (1/20 vs 1/50)
Number of Aisles (2 vs 1)
Baggage Storage (60 lb vs 40 lb)
25 vs 15 ft³ checked baggage
3 ft³ overhead storage

UNIVERSITY OF CINCINNATI

Fineness Ratio (L/D)_{fuse}

Aircraft Length (L_{fuse}) / Fuselage Diameter (D_{fuse}) Higher values = more streamlined body Airliners: $7 < (L/D)_{fuse} < 14$

Fuselage Diameter

Boeing series of airliners

777 has a 244" diameter

Fuselage Diameter

Boeing series of airliners

Fuselage Diameter

Airbus series of airliners

Fuselage Diameter

Airbus series of airliners

Fuselage Shapes

Power Series Cylinder

Constant diameter cylinder mid-section Nose and tail sections defined by:

$$d(nose) = D\left(\frac{x}{l_c}\right)^n$$
 where n = 0.80 and l_c = 0.14 L

$$d(tail) = D\left(\frac{L-x}{l_c}\right)^n \qquad S_{wet} = \int_0^L \pi \ d \ dx$$

Fuselage Shaping

HW #23 – Fuselage Design

FUSELAGE.XLS

"Design of Aircraft"
- Thomas C. Corke

Input data from fact sheet and previous spreadsheets

Input data for fuselage diameter shaping

HW #23 – Fuselage Design

Viscous	Viscous Drag Calculations:				Power Series Cylinder						
	x/L	x (ft)	x-L/2 (ft)	D (ft)	P (ft)	Sw(ft^2)	Re _x	C_F	Drag (lbf)	+y (ft)	-y (ft)
	0.00	0.00	-50.10	0.0000	0.0					0.0000	0.0000
	0.02	2.00	-48.10	2.6002	8.2	16.4	3.1E+06	3.47E-03	12	1.3001	-1.3001
	0.04	4.01	-46.09	4.5272	14.2	28.5	6.3E+06	3.08E-03	19	2.2636	-2.2636
	0.06	6.01	-44.09	6.2618	19.7	39.4	9.4E+06	2.89E-03	24	3.1309	-3.1309
	0.08	8.02	-42.08	7.8822	24.8	49.6	1.3E+07	2.76E-03	29	3.9411	-3.9411
= 0.14 L	0.10	10.02	-40.08	9.4228	29.6	59.3	1.6E+07	2.66E-03	34	4.7114	-4.7114
	0.12	12.02	-38.08	10.9024	34.3	68.6	1.9E+07	2.59E-03	38	5.4512	-5.4512
	0.14	14. <u>0</u> 3	- <u>36.0</u> 7	<u> 1</u> 2.33 <u>3</u> 3	38.7	77.6	2.2E+07	2.53E-03	42	6.1667	<u>-6.1667</u>
	0.16	16.03	-34.07	12.3333	38.7	77.6	2.5E+07	2.48E-03	41	6.1667	-6.1667
	0.18	18.04	-32.06	12.3333	38.7	77.6	2.8E+07	2.43E-03	40	6.1667	-6.1667
	0.20	20.04	-30.06	12.3333	38.7	77.6	3.1E+07	2.40E-03	40	6.1667	-6.1667
	0.22	22.04	-28.06	12.3333	38.7	77.6	3.4E+07	2.36E-03	39	6.1667	-6.1667
	0.24	24.05	-26.05	12.3333	38.7	77.6	3.8E+07	2.33E-03	39	6.1667	-6.1667
	0.26	26.05	-24.05	12.3333	38.7	77.6	4.1E+07	2.30E-03	38	6.1667	-6.1667
	0.28	28.06	-22.04	12.3333	38.7	77.6	4.4E+07	2.28E-03	38	6.1667	-6.1667
	0.30	30.06	-20.04	12.3333	38.7	77.6	4.7E+07	2.26E-03	37	6.1667	-6.1667
	0.32	32.06	-18.04	12.3333	38.7	77.6	5.0E+07	2.24E-03	37	6.1667	-6.1667
	0.34	34.07	-16.03	12.3333	38.7	77.6	5.3E+07	2.22E-03	37	6.1667	-6.1667
	0.36	36.07	-14.03	12.3333	38.7	77.6	5.6E+07	2.20E-03	36	6.1667	-6.1667
	0.38	38.08	-12.02	12.3333	38.7	77.6	6.0E+07	2.18E-03	36	6.1667	-6.1667
	0.40	40.08	-10.02	12.3333	38.7	77.6	6.3E+07	2.16E-03	36	6.1667	-6.1667
	0.42	42.08	-8.02	12.3333	38.7	77.6	6.6E+07	2.15E-03	36	6.1667	-6.1667

HW #23 – Fuselage Design

Use these values later!!

Homework Assignments

HW #22 – Wing Design HW #23 – Fuselage Design (due by 11:59 pm ET on Monday)

HW Help Session

Monday 4:00 – 5:00 pm ET

Posted to Canvas:

HW #22/23 assignments with instructions, tips, and checklists Excel files WING.XLS, FUSELAGE.XLS

Questions?