

Question 31. How many significant figures should be present in the answer of the following?

(i)
$$\frac{0.02856 \times 298.15 \times 0.112}{0.5785}$$
 (ii) 5×5.364 (iii) $0.0125 + 0.7864 + 0.0215$

Answer:

(i) The least precise term has 3 significant figures (i.e., in 0.112). Hence, the answer should have 3 significant figures.

(ii) Leaving the exact number (5), the second term has 4 significant figures. Hence, the answer should have 4 significant figures.

(iii) In the given addition, the least number of decimal places in the term is 4. Hence, the answer should have 4 significant.

Question 32. Use the data given in the following table to calculate the molar mass of naturally occurring argon.

Isotope	Isotopic molar mass	Abundance	
^{36}Ar	35.96755 g mol ⁻¹	0.337	
^{38}Ar	37.96272 g mol ⁻¹	0.063	
^{40}Ar	39.9624 g mol ⁻¹	99.600	

Answer:

Molar mass of Ar = $35.96755 \times 0.00337 + 37.96272 \times 0.00063 + 39.96924 \times 0.99600 = 39.948 \text{ g mol}^{-1}$

Question 33. Calculate the number of atoms in each of the following:

- (i) 52 moles of He (ii) 52 $\,\mathrm{u}$ of He (iii) 52 $\,\mathrm{g}$ of He Answer:
- (i) 1 mol of He = 6.022×10^{23} atoms

:. 52 mol of He =
$$52 \times 6.022 \times 10^{23}$$
 atoms = 3.131 × 10^{25} atoms

(ii) 1 atom of He = 4 u of He 4 u of He = 1 atom of He

$$\therefore$$
 52 u of He = $\frac{1}{4}$ × 52 atoms = **13 atoms**

(iii) 1 mole of He = 4 g =
$$6.022 \times 10^{23}$$
 atoms

$$\therefore 52 \text{ g of He} = \frac{6.022 \times 10^{23}}{4} \times 52 \text{ atoms}$$
$$= 7.8286 \times 10^{24} \text{ atoms}.$$

Question 34. A welding fuel gas contains carbon and hydrogen only. Burning a small sample of it in oxygen gives 3.38 g carbon dioxide, 0.690 g of water and no other products. A volume of 10.0 L (measured at S.T.P.) of this welding gas is found to weigh 11.6 g. Calculate (i) empirical formula, (ii) molar mass of the gas, and (iii) molecular formula.

Answer:

Amount of carbon in 3.38 g $CO_2 = \frac{12}{44} \times 3.38 \text{ g} = 0.9218 \text{ g}$

Amount of hydrogen in 0.690 g $H_2O = \frac{2}{18} \times 0.690$ g = 0.0767 g

As compound contains only C and H, therefore, total mass of the compound = 0.9218 + 0.0767 g = 0.9985 g

% of C in the compound =
$$\frac{0.9218}{0.9985} \times 100 = 92.32$$

% of H in the cmpound =
$$\frac{0.0767}{0.9985} \times 100 = 7.68$$

Calculation of Empirical Formula

Element	% by mass	Atomic mass	Moles of the element	Simplest molar ratio	Simplest whole no. molar ratio
С	92.32	12	$\frac{92.32}{12} = 7.69$	1	1
н	7.68	1	$\frac{7.68}{1} = 7.68$	1	1

:. Empirical formula = CH

10.0 L of the gas at STP weight = 11.6 g

$$\therefore$$
 22.4 L of the gas at S.T.P will weight = $\frac{11.6}{10.0}$ × 22.4 = 25.984 g ≈ 26 g

:. Molar mass = 26 g mol^{-1} Empirical formula mass of CH = 12 + 1 = 13

$$\therefore n = \frac{\text{Molecular mass}}{\text{E.F. mass}} = \frac{26}{13} = 2 \quad \therefore \text{ Molecular formula} = 2 \times \text{CH} = \text{C}_2\text{H}_2$$

Question 35. Calcium carbonate reacts with aqueous HCl according to the reaction

$$CaCO_3(s) + 2HCI(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(l)$$

What mass of $CaCO_3$ is required to react completely with 25 mL of 0.75 M HCl?

Answer: Step 1. To calculate mass of HCl in 25 mL of 0.75 m HCl 1000 mL of 0.75 M HCl contain HCl = 0.75 mol = 0.75 x 36.5 g = 24.375 g

$$\therefore$$
 25 mL of 0.75 HCl will contain HCl = $\frac{24.375}{1000} \times 25$ g = 0.6844 g.

Step 2. To calculate mass of ${\rm CaCO_3}$ reacting completely with 0.9125 g of HCl

 $CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O$

2 mol of HCl, i.e., 2 x 36.5 g = 73 g HCl react completely with $CaCO_3$ = 1 mol = 100 g

$$\therefore$$
 0.6844 g HCl will react completely with CaCO₃ = $\frac{100}{73} \times 0.6844$ g = **0.938 g.**

Question 36. Chlorine is prepared in the laboratory by treating manganese dioxide (MnO_2) with aqueous hydrochloric acid according to the reaction.

 $4 \text{ HCl } (aq) + MnO_2(s) \rightarrow 2 \text{ H}_2O(l) + MnCl_2(aq) + Cl_2(g)$

How many grams of HCl react with 5.0 g of manganese dioxide? (Atomic mass of Mn = 55 u)

Answer: 1 mole of MnO₂, i.e., 55 + 32 = 87 g MnO₂ react with 4 moles of HCl, i.e., 4×36.5 g = 146 g of HCl.

$$\therefore$$
 5.0 g of MnO₂ will react with HCl = $\frac{146}{87} \times 5.0$ g = 8.40 g

******* END *******