

Universidade Federal do Ceará Centro de Tecnologia Departamento de Engenharia de Teleinformática Sistemas de Comunicações Digitais - TI0069

Trabalho 01: Modulação Digital

Aluno:

Lucas de Souza Abdalah 385472

Professor: André Almeida

Data de Entrega do Relatório: 28/03/2021

Fortaleza 2021

Sumário

1	Mo	dulação M-QAM	2
	1.1	Introdução	2
	1.2	Energia da Constelação	2
	1.3	Distância Mínima entre Símbolos	
	1.4	Modulador (Codificação de Gray)	
	1.5	Demodulador	
2	Pro	babilidade de Erro: M -QAM	8
3	Car	nal RAGB: M -QAM	9
	3.1	Modelo	9
	3.2	Experimento de Transmissão	11
4	Mo	dulação M-PSK	12
	4.1	- .	12
		4.1.1 Energia da Constelação	
		4.1.2 Distância Mínima entre Símbolos	
		4.1.3 Modulador (Codificação de Gray)	
		4.1.4 Demodulador	
	4.2	Probabilidade de Erro: M -PSK	
	4.3	Canal RAGB: M-PSK	
		4.3.1 Modelo	
		4.3.2 Experimento de Transmissão	16
5	Cor	mparativo M -QAM vs. M -PSK	18
\mathbf{R}_{i}	eferê	ncias	20

1 Modulação M-QAM

1.1 Introdução

Na modulação, quadrature amplitude modulation (QAM) os símbolos de informação são mapeados nas amplitudes das portadoras em fase e quadratura. Um modelo simplificado do sinal transmitido é visto como a equação 1.

$$s_m(t) = \left(A_m^{\text{(real)}} + jA_m^{\text{(imag)}}\right)g(t) \tag{1}$$

No caso especial em que amplitudes $A_m^{(\mathrm{real})}$ e $A_m^{(\mathrm{imag})}$ assumem valores discretos no conjunto da equação 2, a constelação é chamada QAM retangular. O QAM retangular se aplica ao caso estudado a seguir, pois a quantidade de símbolos utilizados ($M = \{4, 16, 64\}$) se encaixam na condição e é utilizado para construção do alfabeto da modulação [1]. A função const_MQAM.m foi

desenvolvida de modo a construir o alfabeto como uma matriz para ordenar os símbolos da esquerda para direita em linhas de símbolos ímpares e, da direita para esquerda em linhas pares.

$$A_m = \{(2m - \sqrt{M} - 1)d\}_{m=1}^{\sqrt{M}}$$
 (2)

1.2 Energia da Constelação

Para calcular a energia média, é suficiente de calcular a equação 3, desenvolvida em [1], [2].

$$\mathcal{E}_{media} = \frac{M-1}{3} \mathcal{E}_g \tag{3}$$

Sendo g(t) o pulso de energia unitária, $\mathcal{E}_g = 1$. O resultado é computado pela função função energia_MQAM.m para cada constelação QAM e é registrado na Tabela 1.

A relação entre $\mathcal{E}_{media} = \mathcal{E}_b \log_2 M$ permite calcular diretamente a energia média de bit (\mathcal{E}_b) , resultando na equação 4

$$\mathcal{E}_b = \frac{M-1}{3\log_2 M} \mathcal{E}_{media} \tag{4}$$

1.3 Distância Mínima entre Símbolos

O parâmetro d é a distância entre os símbolos adjacentes, e pode ser obtido com o cálculo da distância euclidiana entre estes, como na equação 5.

$$d = \sqrt{\frac{\mathcal{E}_g}{2}[(A_{mi} - A_{ni})^2 + (A_{mq} - A_{nq})^2]}$$

$$= \sqrt{\frac{3\mathcal{E}_{media}}{2(M-1)}}$$
(5)

Essa distância é computada pela função d_MQAM.m e registrada na Tabela 1.

M-QAM	\mathcal{E}_{media}	\mathcal{E}_b	d
M	$rac{M-1}{3}\mathcal{E}_g$	$rac{M-1}{3\log_2 M}\mathcal{E}_g$	$\sqrt{rac{3\mathcal{E}_{media}}{2(M-1)}}$
4	1	1.67×10^{-1}	$\sqrt{2}/2$
16	5	4.67×10^{-1}	$\sqrt{2}/2$
64	21	1.17×10^{0}	$\sqrt{2}/2$

Tabela 1: Informações gerais calculadas para a modulação $M\text{-}\mathrm{QAM}.$

1.4 Modulador (Codificação de Gray)

O mapeador da constelação M-QAM consiste em uma função que recebe uma sequência de bits e retorna o símbolo equivalente: mapping_MQAM.m . Dentro desta função, é criado um alfabeto de código binário e na sequência ele é convertido convertido em Gray com gray_const.m .

Esta codificação é baseada em um algoritmo recursivo 1, cujo recebe uma sequência de bits orientadas pelo bit mais importante (MSB) [3]. A recursão está na operação "ou exlusivo" (xor), denotada pelo símbolo (\otimes) . Este cálculo é executado na função mybin2gray.m.

```
Algorithm 1: Codificação de Gray
```

```
Entrada: Sequência de Bits (b) - MSB

Saída: Sequencia em Código Gray (g) - LSB

n=0;

K=\operatorname{length}(b);

while K>n do

if K==n then

g_{(K-n)}=b_{(K-n)};

else

g_{(K-n)}=b_{(K-n+1)}\otimes b_{(K-n)};

end

g=flip(g);
```

Tabela 2 mostra um exemplo de conversão para código Gray de uma sequência de 2 bits. Seguindo o mesmo procedimento um alfabeto de qualquer tamanho pode ser criado.

Decimal	Binário	Gray	Decimal
0	00	00	0
1	01	01	1
2	10	11	3
3	11	10	2

Tabela 2: Tabela de tradução de binário para Gray com 2 bits.

As constalações M-QAM para $M = \{4, 16, 64\}$ são apresentadas nas figuras 1, 2 e 3, respectivamente. É possível observar os valores dos símbolos em fase e quadratura, além do equivalente em binário.

Figura 1: Constelação 4-QAM plot.

Figura 2: Constelação 16-QAM plot.

Figura 3: Constelação 64-QAM plot.

1.5 Demodulador

A função que decodifica um símbolo tem como entrada o próprio símbolo: $A_n^{\text{(real)}}$ e $A_n^{\text{(imag)}}$, M e d.

O alfabeto da constelação M-QAM é gerada e uma vez estes definidos, a área de decisão é desenhada a partir em função de M e d. Basicamente, o símbolo selecionado é aquele que minimiza a distância euclidiana entre o símbolo recebido e o do alfabeto, como mostra a equação 6.

$$d_{mn} = \sqrt{||s_m - s_n||^2} \tag{6}$$

A função que executa estes comando é a demapping_MQAM.m e ela retorna o símbolo decodificado e os bits equivalente do alfabeto de Gray.

As figuras 4 e 5 mostram uma geração de sequência de 50 símbolos aleatórios (i.i.d) passando pelo demodulador com o traçado da distância euclidiana entre o símbolo recebido e o equivalente escolhido na constelação.

Figura 4: Exemplo de 4-QAM plot.

Figura 5: Exemplo de 16-QAM plot.

2 Probabilidade de Erro: M-QAM

Para calcular a probabilidade de erro P(e) de cada constelação 7 é necessário computar a energia da cosnstelação e do ruído, respectivamente, E_s e N_o , que é desenvolvida em [1]. A função Pe_MQAM.m é utilizada para calcular a probabilidade de erro.

$$P(e) = 4\left(1 - \frac{1}{\sqrt{M}}\right)Q\left(\sqrt{\frac{3}{M-1}\frac{E_s}{N_0}}\right) - 4\left(1 - \frac{1}{\sqrt{M}}\right)^2Q^2\left(\sqrt{\frac{3}{M-1}\frac{E_s}{N_0}}\right)$$
(7)

Para valores mais elevados de relação sinal-ruído(SNR), a equação 7 pode ser reduzida para 8, pois o segundo termo ao quadrado se torna irrelevante.

$$P(e) = 4\left(1 - \frac{1}{\sqrt{M}}\right)Q\left(\sqrt{\frac{3}{M-1}}\frac{E_s}{N_0}\right) \tag{8}$$

Figura 6: Probabilidade de erro (P(e)) teórico M-QAM.

Nas simulações realizadas, os resultados são semelhantes, além de reduzir o custo computacional.

Entretanto, para manter uma fidedignidade númerico aos resultados, o gráfico mostrado na figura 6 a probabilidade P(e) é caculada a partir da equação completa 7, variando a SNR de 0:2:20 dB.

3 Canal RAGB: M-QAM

3.1 Modelo

Considerando que um sinal (s_m) de mensagem passa por um canal de Ruído Adivitivo Gaussiano Branco (RAGB), o modelo da Equação 9, onde como uma variável aleatoria, $\mathcal{CN}(0, N_0)$, Gaussiana complexa com média zero e variância N_0 .

$$y_m = s_m + n_m \tag{9}$$

A variância é dada por $\sigma_n^2 = \frac{N_0}{2}$, representando a potência média do ruído que afeta cada dimensão do sinal em banda base [2]. Consequentemente, o desvio padrão do ruído corresponde a $\sqrt{\frac{N_0}{2}}$, poderando parte real e imaginária. Portanto, tendo um valor de SNR $(E_s_N_0)$ em dB, o termo N_0 pode ser calculado por $N_0 = E_s 10^{-\frac{E_s_N_0}{10}}$, tendo enfim o termo n_m é obtido na equação 10.

$$n_m = \sqrt{\frac{N_0}{2}} \left(\operatorname{randn}(1) + 1 j \operatorname{randn}(1) \right)$$
 (10)

Para ilustrar a implementação do modelo, as constelações M-QAM recebem uma sequência de símbolos com SNR de 25dB gerados no script script_AWGN.m, como mostrado na figura 7, 8 e 9.

Figura 7: Simulação de transmissão 4-QAM, com *SNR* de 25dB.

Figura 8: Simulação de transmissão 16-QAM, com $S\!N\!R$ de 25dB.

Figura 9: Simulação de transmissão 64-QAM, com SNR de 25dB.

3.2 Experimento de Transmissão

O experimento consiste em realizar uma transmissão de uma sequência s_m de tamanho L=264000bits pelo modelo do canal RAGB com as constelações M-QAM, variando a SNR de 0 a 20 dB com passo 2.

Ao traçar as curvas teóricas de probabilidade de erro de símbolo P(e) e a taxa de erro de símbolo SER na figura 10 é possível observar que os valores teóricos e simulados são idênticos, corroborando o embasamento desenvolvido nas seções anteriores.

Estes resultados são gerados com a rotina script_teoricaxAWGN.m , que chama os dados já computados nas seções anteriores e traça as curvas em um mesmo gráfico.

Figura 10: Probabilidade teórica de erro vs. simulação de transmissão M-QAM em canal RAGB.

4 Modulação M-PSK

4.1 Introdução

O esquema de modulação phase-shift keying (PSK) tem os símbolos de seu alfabeto com mesma amplitude, mas com fases diferentes para cada mensagem, podendo ser escrito para M>2 de acordo com a equação 11

$$s_i(t) = \sqrt{\frac{2\mathcal{E}_{media}}{\mathcal{E}_g}} g(t) \cos\left(2\pi f_c t + \frac{(2i-1)\pi}{M}\right), \ 0 \le t \le T, \ i = 1, 2, \dots, M,$$
(11)

Assumindo a energia do pulso de transmissão g(t) unitária, $\mathcal{E}_g = 1$, o sinal também pode ser expresso através de uma combinação linear [1], de modo que $s_i(t)$ é reescrito como na equação 12.

$$s_{i} = \begin{bmatrix} \sqrt{\mathcal{E}_{media}} cos(\frac{(2i-1)\pi}{M}) \\ \sqrt{\mathcal{E}_{media}} sin(\frac{(2i-1)\pi}{M}) \end{bmatrix}, i = 1, \dots, M$$
 (12)

Esta construção facilita a geração dos símbolos da constelação, dado que ao construir os símbolos de parte superior (imaginária positiva), se faz suficiente apenas rebatê-los em função do eixo das componentes reais.

4.1.1 Energia da Constelação

Para calcular a energia média, é suficiente de calcular a equação 13, desenvolvida em [1], [2].

$$\mathcal{E}_{media} = \frac{1}{2}\mathcal{E}_g \tag{13}$$

Sendo g(t) o pulso de energia unitária, $\mathcal{E}_g = 1$. O resultado é computado pela função função energia_MPSK.m para cada constelação PSK e é registrado na Tabela 3.

Ao recuperar a relação entre $\mathcal{E}_{media} = \mathcal{E}_b \log_2 M$ que resulta na equação 4, o cálculo da energia média de bit (\mathcal{E}_b) na equação 14.

$$\mathcal{E}_b = \frac{1}{2\log_2 M} \mathcal{E}_g \tag{14}$$

4.1.2 Distância Mínima entre Símbolos

O parâmetro d é a distância euclidiana entre dois simbolos de uma constelação M-PSK, e é obtido através da equação 15.

$$d = 2\sqrt{\mathcal{E}_{media}\sin^2\left(\frac{\pi}{M}\right)} \tag{15}$$

Essa distância é computada pela função d_MPSK.m e registrada na Tabela 3.

M-PSK	\mathcal{E}_{media}	\mathcal{E}_b	d
M	$rac{1}{2}\mathcal{E}_g$	$rac{1}{2\log_2 M}\mathcal{E}_g$	$2\sqrt{\mathcal{E}_{media}\sin^2\left(\frac{\pi}{M}\right)}$
4	0.5	8.33×10^{-2}	1
8	0.5	5.56×10^{-2}	5.41×10^{-1}

Tabela 3: Informações gerais calculadas para a modulação M-PSK.

4.1.3 Modulador (Codificação de Gray)

A função const_MPSK.m trabalha gerando apenas para gerar os coeficientes dos símbolos: $r_i \exp(j\varphi_i)$, com o $0 < \varphi_i < \pi$. Na sequência basta rebatê-los em torno do eixo das componentes reais(x), gerando toda a constelação M-PSK.

O mapeador da constelação M-PSK consiste em uma função que recebe uma sequência de bits e retorna o símbolo equivalente: mapping_MPSK.m. Seguindo a mesma lógica do mapeador utilizado no M-QAM, dentro desta função, é criado um alfabeto de código binário e na sequência ele é convertido convertido em Gray com gray_const.m.

Para esta codificação basta resgatar o procedimento do algoritmo 1, já citado: mybin2gray.m .

As constalações M-PSK para $M = \{4, 8\}$ são apresentadas nas figuras 1, 11 e 12, respectivamente. É possível observar os valores dos símbolos, além dos equivalentes em binário.

4.1.4 Demodulador

A função que decodifica um símbolo tem como entrada o próprio símbolo: $A_n^{(\text{real})}$ e $A_n^{(\text{imag})}$, M e \mathcal{E}_{media} .

O alfabeto da constelação M-PSK é gerado e uma vez que estes símbolos são definidos, a área de decisão é desenhada em função de M e \mathcal{E}_{media} . Basicamente, o símbolo selecionado é aquele que minimiza a distância euclidiana

Figura 11: Constelação 4-PSK com codificação de Gray.

Figura 12: Constelação 8-PSK com codificação de Gray.

entre o símbolo recebido e o do alfabeto, como mostra a equação 6 discutida nas seções anteriores.

A função que executa estes comando é a demapping_MQAM.m e ela retorna o símbolo decodificado e os bits equivalente do alfabeto de Gray.

4.2 Probabilidade de Erro: M-PSK

Para calcular a probabilidade de erro P(e) de cada constelação 16 é necessário computar a energia da cosnstelação e do ruído, respectivamente, E_s e N_o , que é desenvolvida em [1].

$$P(e) \approx 2Q \left(\sqrt{\frac{2\mathcal{E}_{media}}{N_0}} \sin\left(\frac{\pi}{M}\right) \right)$$
 (16)

A função Pe_MPSK.m é utlizada para calcular a probabilidade de erro. O gráfico mostrado na figura 13 mostra a probabilidade P(e) caculada a partir da equação 16, variando a SNR de 0:2:20 dB.

Figura 13: Probabilidade de erro (P(e)) teórico M-PSK.

4.3 Canal RAGB: M-PSK

4.3.1 Modelo

Seguindo o mesmo modelo utilizado para o caso M-QAM da equação 9, o modelo M-PSK, com M=4 recebe uma sequência de símbolos com SNR de 25dB gerados no script script AWGN.m para ilustrar a implementação a passagem dos símbolos pelo canal, como mostrado na figura 14.

Figura 14: Simulação de transmissão 4-PSK, com *SNR* de 25dB..

4.3.2 Experimento de Transmissão

O experimento consiste em realizar uma transmissão de uma sequência s_m de tamanho L=264000bits pelo modelo do canal RAGB com as constelações M-PSK, variando a SNR de 0 a 20 dB com passo 2.

Ao traçar as curvas teóricas de probabilidade de erro de símbolo P(e) e a taxa de erro de símbolo SER na figura 15 é possível observar que os valores teóricos e simulados são idênticos, corroborando o embasamento desenvolvido nas seções anteriores.

Estes resultados são gerados com a rotina script_teoricaxAWGN.m , que chama os dados já computados nas seções anteriores e traça as curvas em um mesmo gráfico.

Figura 15: Probabilidade teórica de erro v
s. simulação de transmissão $M\textsubscript{\textsc{PSK}}$ em canal RAGB.

5 Comparativo M-QAM vs. M-PSK

- Para o caso do M-QAM é possível observar que ao aumentar o número de símbolos na constalação, há o ganho de símbolos transmitidos por símbolos. Ao manter a energia \mathcal{E}_g fixa, a energia média da constelação cresce porporcionalmente. Sendo igual 1, 10 e 21 para os casos de M =4,16,64, respectivamente. Isso implicada que a distância d entre os símbolos adjacentes é a mesma, acarretando limiares que exigem atenção do engenheiro. É possível observar na figura 16 que para M = $\{16,64\}$, é necessária a $SNR \geq \{12,20\}$ dB para ter uma taxa de erro de símbolo menor que 0.1.
- O item anterior indica que há uma exigência de um sistema de transmissão mais robusto ao ruído, pois aumentando a quantidade de símbolos, há uma maior influência do ruído, de forma a deteriorar totalmente a informação enviada dado a proximidade dos símbolos. A transmissão é totalmente prejudicada e equivale ao experimento de jogar uma moeda para saber se o símbolo recebido está correto ou não, já que chega ao ponto de o receptor errar a taxa de 0.5 dos símbolos enviados no caso 64-QAM para 0dB.
- Interessante notar a diferença entre a taxa de erro de bit (BER) e a taxa de símbolo (SER), pois ao utilizar a codificação de Gray o símbolos decidido apresenta apenas um bit de diferença símbolos vizinhos, garantindo que mesmo ao decodificar um símbolo equivocado, a mensagem será afetada de apenas um bit.
- Vale notar que há uma diferença entre a energia média (\mathcal{E}_{media}) das constelações M-QAM e MPSK para M=4, sendo que estas são identicas, entretanto a segunda apresenta uma (\mathcal{E}_{media}) duas vezes menor que a primeira.
- As figuras 16 e 17 indicam que há uma melhor eficiência espectral para constelações menores, pois estas necessitam de menos energia para alcançar taxas de erros desprezíveis. Entretanto, isto vem com a limitação do número de bits enviados por símbolo e o desafiador é encontrar a relação ideal entre eficiência espectral e bits/símbolo para garantir o o melhor resultado.

Figura 16: Probabilidade teórica de erro v
s. simulação de transmissão $M\textsubscript{\textsc{PSK}}$ em canal RAGB.

Figura 17: Probabilidade teórica de erro v
s. simulação de transmissão $M\textsubscript{\textsc{PSK}}$ em canal RAGB.

Referências

- [1] C. Pimentel, Comunicação Digital, $1^{\underline{a}}$ ed. 2007.
- [2] J. G. Proakis e M. Salehi, *Digital Communications*, 5^a ed. 1995.
- [3] A. Reddy, Conversion of Binary to Gray Code, https://www.tutorialspoint.com/conversion-of-binary-to-gray-code, Accessed: 2021-03-26.