

Semester Project Final Presentation

TEST AND EVALUATION OF A SIMULATION MODEL OF UPPER BODY MOVEMENT WITH KINETIC ASSISTANCE

BIOROB

Supervisors:

Amy Wu Vivek Ramachandran <u>Professor:</u>
Auke Ijspeert

Author: Hugo Grall Lucas

Contents

1. Introduction

- 2. External Forces
- 3. Open-loop
- 4. Closed-loop
- 5. Conclusion

[1] Illustration: https://media.istockphoto.com/photos/question-mark-blue-3d-interrogation-point-punctuation-mark-asking-picture-id943657262

[visited: 11.06.2018]

Fly Jacket

Goals:

- Control drone with upper body movements
- ➤ Implement haptic feedback
- > Be comfortable for users

Open questions:

- ➤ Determine where to apply the forces
- Find the right force magnitude

Needed:

Experimental data from real setup on human subjects

▶ A model to simulate human upper body

[2] Illustration: Alaa Bakr Maghrabi. Simulation model of upper body movement with kinetic assistance, 2017, p.10

Objectives

- Model and simulate the Fly Jacket setup
- Implement haptic guidance forces by the Fly Jacket on users
- Implement internal forces exerted by users (muscles)
- Observe the effect of varying the different force parameters
- ☐ Identify the human-in-the-loop upper body dynamics

OpenSim

Limitation:

- External loads cannot be changed during a simulation
- ➤ Specific controller law to activate target muscles cannot be directly implemented

[3] Illustration [left]: https://www.cfn.group.cam.ac.uk/images/1428080879907.png/image_view_fullscreen [visited: 11.06.2018]
[4] Illustration [right]: https://simtk-confluence.stanford.edu/display/OpenSim/OpenSim+and+NCSRR+Logos [visited: 11.06.208]

Fly Jacket: Real Setup

Fly Jacket: Simulation Setup

Contents

- 1. Introduction
- 2. External Forces
- 3. Open-loop
- 4. Closed-loop
- 5. Conclusion

Torso Placement: Low, Medium, High

- ➤ Three sets of Markers {1;2;3}
- Four move with the torso
- Four others are fixed (based on the placement of motors)

Left/Right side	Front	Back	Тор
(1) = 27 cm	(1) = 30 cm	(1) = 30 cm	(A) = 43 cm
(2) = 43 cm	(2) = 20 cm	(2) = 20 cm	(B) = 23 cm
(3) = 52 cm	(3) = 20 cm	(3) = 20 cm	

Types of Movement - Extension/Flexion

Types of Movement - Lateral Bending

Contents

- 1. Introduction
- 2. External Forces
- 3. Open-loop

- 4. Closed-loop
- 5. Conclusion

Type of movement

Magnitude

Frequency

Markers set

time [s]

0.1

0.2

time [s]

- External load shape

Type of movement

Magnitude

Frequency

Type of movement

Magnitude

Frequency

Type of movement

Magnitude

Frequency

Type of movement

Magnitude

Frequency

Contents

- 1. Introduction
- 2. External Forces
- 3. Open-loop
- 4. Closed-loop
- 5. Conclusion

 $\kappa_{ext} < 0$

Controller law

$$\kappa_{ext}[n] = K_{p}e[n] + K_{d} \frac{e[n] - e[n-1]}{T_{s}}$$
 $K_{p} = 10 \quad K_{d} = 4 \quad T_{s} = 0.01 \, s$

		Extension	$\mathbf{controller}$	\mid Bending ϵ	${ m controller} \mid$
Muscles Name	Shortened	$\kappa_{ext} < 0$	$\kappa_{ext} > 0$	$\kappa_{bend} < 0$	$\kappa_{bend} > 0$
Erector spinal left	ercspn left	Activated	0	0	Activated
Erector spinal right	ercspn right	Activated	0	Activated	0
External oblique muscle left	extobl left	0	Activated	0	Activated
External oblique muscle right	extobl right	0	Activated	Activated	0
Internal oblique muscle left	intobl left	0	Activated	0	Activated
Internal oblique muscle right	intobl right	0	Activated	Activated	0

First Experiment

Relative extension

Muscles activations

First Experiment

Relative extension

Muscles activations

First Experiment

Relative extension

Muscles activations

OpenSim visualisation

Gains:

$$K_p = 10$$

$$K_d = 4$$

□ Unstable

Gains:

$$K_{p1} = \frac{\kappa_p}{16}$$

$$K_{d1} = \frac{K_d}{16}$$

	,/*\	+	 Marker 1: Linear interpolation Marker 1: Measured values Marker 2: Linear interpolation Marker 2: Measured values
*		+	Marker 3: Linear interpolation Marker 3: Measured values
*			`
10-3			
-			
-			

	Markers 1			
Frequency [Hz]	2	5	10	25
Measured peak value [Rad/N]	3,06E-03	1,70E-03	3,04E-03	1,04E-04

	Markers 2				
Frequency [Hz]	2	5	10	25	
Measured peak value [Rad/N]	4,65E-03	2,68E-03	3,92E-03	2,03E-04	

	Markers 3			
Frequency [Hz]	2	5	10	25
Measured peak	5,40E-03	3,07E-03	7,72E-03	2,23E-04
value [Rad/N]		·		

Approach

Measures

Measures

	Markers 1					
Frequency [Hz]	2	2 5 10 25				
Measured peak	3,06E-03	1,70E-03	3,04E-03	1,04E-04		
value [Rad/N]	-,	= ,	_,	_,		

	Markers 2			
Frequency [Hz]	2	5	10	25
Measured peak	4 655 03	2 695 02	2 025 02	2.025.04
value [Rad/N]	4,65E-03	2,68E-03	3,92E-03	2,03E-04

	Markers 3			
Frequency [Hz]	2	5	10	25
Measured peak value [Rad/N]	5,40E-03	3,07E-03	7,72E-03	2,23E-04

Approach

Measures

Approach

Measures

Contents

- 1. Introduction
- 2. External Forces
- 3. Open-loop
- 4. Closed-loop
- 5. Conclusion

[5] Illustration: http://permisautomoto.com/wp-content/uploads/sites/88/2016/05/Fotolia_10083216_Subscription_XL.jpg

[visited: 11.06.2018]

Objectives - Results

- Model and simulate the Fly Jacket setup
- ☑ Implement haptic guidance forces by the Fly Jacket on users
- ☑ Implement internal forces exerted by users (muscles)
- ☑Observe the effect of varying the different force parameters
- ★ Identify the human-in-the-loop upper body dynamics → in future work
- Simplify the use of the OpenSim2Matlab toolbox

OpenSim2Matlab toolbox

Questions?

[6] Illustration: https://learn-marketing.org/wp-content/uploads/2017/07/question-mark.jpg

[visited: 11.06.2018]

References

[1] Illustration p. 2: https://media.istockphoto.com/photos/question-mark-blue-3d-interrogation-point-punctuation-mark-asking-picture-id943657262 [visited: 11.06.2018]

[2] Illustration p. 3:

Alaa Bakr Maghrabi. Simulation model of upper body movement with kinetic assistance, 2017, p.10

[3] Illustration p. 5 [left]:

https://www.cfn.group.cam.ac.uk/images/1428080879907.png/image_view_fullscreen [visited: 11.06.2018]

[4] Illustration p. 5 [right]:

https://simtk-confluence.stanford.edu/display/OpenSim/OpenSim+and+NCSRR+Logos [visited: 11.06.208]

- [5] Illustration p. 28: http://permisautomoto.com/wp-
- content/uploads/sites/88/2016/05/Fotolia_10083216_Subscription_XL.jpg [visited: 11.06.2018]
- [6] Illustration p. 31: https://learn-marketing.org/wp-content/uploads/2017/07/question-mark.jpg [visited: 11.06.2018]

Simulation

Real

Simulation

Real

Stable Controller

Relative extension

Muscles activations

Frequency

Analysis

Muscles group: extension

Stable Controller

Relative extension

Muscles activations

Frequency Analysis

Stable Controller

0 5 10 15 20 25 30 35 40 45

**Torsion of the least of th

frequency [Hz]

Relative extension

Muscles activations

Frequency Analysis

