Planning

Chapter 5

The blocks world

How to achieve the goal from the start?

• Problem-solving is a search through a state space.

- Planning is the process of computing several steps of a problem-solving procedure before executing them.
- Planning = problem solving in advance.

- Planning is important if solutions cannot be undone.
- If the universe is not predictable, then a plan can fail
 ⇒ dynamic plan revision.

Planning = generating a sequence of actions to achieve the goal from the start

Actions:

- UNSTACK(A, B)
- STACK(A, B)
- PICKUP(A)
- PUTDOWN(A)

Conditions and results:

- ON(A, B)
- ONTABLE(A)
- CLEAR(A)
- HOLDING(A)
- ARMEMPTY

Specification of actions:

- PRECONDITION: list of predicates that must be true for an operator to be applied.
- ADD: list of new predicates that an operator causes to become true.
- DELETE: list of old predicates that an operator causes to become false.
- Predicates not in ADD nor DELETE are unaffacted.

Specification of actions:

```
STACK(x, y):
```

P: CLEAR(y) \wedge HOLDING(x)

D: $CLEAR(y) \wedge HOLDING(x)$

A: ARMEMPTY \land ON(x, y)

UNSTACK(x, y):

P: $ON(x, y) \wedge CLEAR(x) \wedge ARMEMPTY$

D: $ON(x, y) \wedge ARMEMPTY$

A: $HOLDING(x) \land CLEAR(y)$

Specification of actions:

PICKUP(x):

P: $CLEAR(x) \land ONTABLE(x) \land ARMEMPTY$

D: ONTABLE(x) ∧ ARMEMPTY

A: HOLDING(x)

PUTDOWN(x):

P: HOLDING(x)

D: HOLDING(x)

A: ONTABLE(x) ∧ ARMEMPTY

start: ON(B, A) ∧
ONTABLE(A) ∧
ONTABLE(C) ∧
ONTABLE(D) ∧
ARMEMPTY

goal: $ON(C, A) \land$ $ON(B, D) \land$ $ONTABLE(A) \land$ $ONTABLE(D) \land$

Stack

Goals

Operators to satisfy the Goals

Database

Current situation

Specification of Operators/Actions

Push the original goal to the stack. Repeat until the stack is empty:

- If stack top is a compound goal, push its unsatisfied subgoals to the stack.
- If stack top is a single unsatisfied goal, replace it by an operator that makes it satisfied and push the operator's precondition to the stack.
- If stack top is an operator, pop it from the stack, execute it and change the database by the operation's affects.
- If stack top is a satisfied goal, pop it from the stack.

start: ON(B, A) ∧
ONTABLE(A) ∧
ONTABLE(C) ∧
ONTABLE(D) ∧
ARMEMPTY

goal: $ON(C, A) \land$ $ON(B, D) \land$ $ONTABLE(A) \land$ $ONTABLE(D) \land$

Stack

ON(C, A)

ON(B, D)

 $ON(C, A) \wedge ON(B, D) \wedge OTAD$

CLEAR(A)

HOLDING(C)

 $CLEAR(A) \wedge HOLDING(C)$

STACK(C, A)

 $ON(B, D) \wedge$

 $ON(C, A) \wedge ON(B, D) \wedge OTAD$

Database

ON(B, A)

OTACD

ARMEMPTY

ON(B, A)

OTACD

ARMEMPTY

Plan

- 1. UNSTACK(B, A)
- 2. STACK(B, D)
- 3. PICKUP(C)
- 4. STACK(C, A)

Sussman Anomaly (1975)

Plan

- UNSTACK(C, A)
- 2. PUTDOWN(C)
- 3. PICKUP(A)
- 4. STACK(A, B)
- 5. UNSTACK(A, B)
- 6. PUTDOWN(A)
- 7. PICKUP(B)
- 8. STACK(B, C)
- 9. PICKUP(A)
- 10. STACK(A, B)

Plan

- 1. UNSTACK(C, A)
- 2. PUTDOWN(C)
- 3. PICKUP(A)
- 4. STACK(A, B)
- 5. UNSTACK(A, B)
- 6. PUTDOWN(A)
- 7. PICKUP(B)
- 8. STACK(B, C)
- 9. PICKUP(A)
- 10. STACK(A, B)

Questions

- Why stacks used?
- Why a compound goal retained in the stack with its subgoals?.
- Does the order of subgoals in the stack matter?.

Homework

Excercises: 1-4 (Chapter 13)