CSCB63

Design and Analysis of Data Structures

Worksheet 3 – Augmented AVL Trees

Augment the tree Take 2

Q: How can we <i>augment the nodes</i> of AVL trees so that we can perform all our <i>queries</i> efficiently?
Q: What <i>property of subtrees</i> could help us with questions about <i>rank</i> ?
A. size of subtrees to compute rank.
Q: How is this related to 'rank'? A. the number of keys we skip over while searching for our key is the the rank (+1 for our key) of our given key. Relative Rank rank (x) = 1 + # keys that come that come
suppose x=35
Q: Now with respect to the left subtree rooted at a, what is the relative RANK (x)? A. relative rank of a key x is the size of the left Subtree +1. rank (35) = size (tree rooted 17) +1 +1 For example, add size fields to each node and then calculate the rank of 62. = 3
rank(62) = size(44's eff-child) + 1 + size(50's eff-child) + 1 = 3 + 1 + 2 + 1 + 1 = 8 So the rank of a node is related to the size of the subtrees rooted at neighbouring nodes.
Computing RANK (k): Given $key k$, do a
• SEARCH (k) keeping track of the rank of the current node.
• Each time you go down a level you must: Add to our rank (so far all the left subtrees and nodes we pass by because they are less than • Think of this as the "relative" rank of the key to the left of the subtree you are exploring.
Computing Rank as we Search
each node v has: key field size field: has # of hodes in tree rooted at v.

Week 3 Lecture 2 Worksheet Interval Trees

Collections of Intervals

Scenario. You have a set of *time intervals* representing when TA's have office hours.

Closed time intervals: $\{x \in \mathbb{R} \mid l \le x \le h\} = [l,h]$.

Representation: Just use l and h.

Operations:

- insert(l,h): Store [l,h] in the collection.
- delete(l,h): Delete [l,h].
- search(l,h): Return a stored interval that overlaps with [l,h].

Search represents finding when a TA is available when you are.

Goal. Want $O(\lg n)$ time each.

The data structure

- **Q.** How can we do this?
- A. Use a balanced binary search tree (AVL, Red Black Tree, weight balanced tree ...) to store the intervals.
- **Q.** For BST order, how do we *compare* [l,h] with [l',h']?
 - If l < l', then [l, h] < [l', h'].
 - If l = l' and h < h', then [l, h] < [l', h'].
- **Q.** Is this *sufficient*?

A.

Each node x_i stores:

• l_i and h_i : interval's two ends, and the key

CSCB63 WINTER 2021 WEEK 6 LECTURE 1

DIJKSTRA'S SHORTEST PATH
ALGORITHM

Anna Bretscher

March 16, 2021

CSCB63 WINTER 2021 WEEK 7 LECTURE 1 - AMORTIZED ANALYSIS

Anna Bretscher

March 3, 2021

CSCB63 WINTER 2021

WEEK 8 LECTURE 1 - DISJOINT SETS

Anna Bretscher

March 8, 2021