# **Theory of Computation**

## Regular Languages & Non Regular Languages

DPP-01

#### [MCQ]

1. Let  $L_1 = \phi$ ,  $L_2 = \{\epsilon\}$ ,  $L_3 = \{a, \epsilon\}$ .

 $L_1, L_2, L_3$  are languages defined over  $\Sigma = \{a\}$ 

then,  $L_3.L_2.L_1^* + L_1.L_3$  is\_\_\_\_\_.

- (a) \$\phi\$
- (b)  $\{a\}$
- (c)  $\{a, \varepsilon\}$
- (d)  $\{a^n \mid n \geq 2\}$

#### [MCQ]

**2.** Consider the following given grammar

 $S \rightarrow AB$ 

 $A \rightarrow AS \mid a$ 

 $B \rightarrow BA \mid SB \mid b$ 

Which of the following string generated by above grammar?

- (a) bbaa
- (b) baba
- (c) aabb
- (d) baab

#### [MCQ]

- 3. If the finite automaton M has 100 states and all the states are Non final except initial state over the alphabet  $\Sigma = \{0, 1\}$  then the set L(M) can be:
  - (a) \$\phi\$
  - (b)  $\Sigma^*$
  - (c)  $\{\epsilon\}$
  - (d) Subset of  $\Sigma^*$

### [MCQ]

**4.** Consider the following finite automata.



Find the language accepted by above FA.

- (a) a\*
- (b) aa\*
- (c) aaa\*
- (d) a(aa)\*

#### [MCQ]

- **5.** Which of the following language does not satisfy the prefix property?
  - (a)  $L = \{a^n b^n \mid n \ge 1\}$
  - (b)  $L = \{wxw^R \mid w \in (0+1)^*\}$
  - (c)  $L = \{a^m b^{2m} | m \ge 1\}$
  - (d)  $L = \{w \in (0+1)^* \mid n_0(w) = n_1(w)\}$

#### [MCQ]

**6.** Consider the following left linear Grammar.

S→Sa|Sb|A

 $A \rightarrow Aab|\epsilon$ 

Choose the correct language generated by the above grammar.

- (a)  $(a+b)^*$
- (b)  $(a+b)^+$
- (c)  $(a+b)^*$  ab
- (d)  $(a+b)^+$  ab

#### [NAT]

7. Consider a language  $L = \{w \mid w \in \{a, b\}^*, 5^{th} \text{ symbol from end is 'a'}\}$ 

If number of state in NFA is P and Number of states in MDFA (minimal DFA) is Q then the value of P \* Q is

### [MCQ]

**8.** Consider the following finite automaton:



Which one of the following is correct representation of above finite automaton?

- (a) Second symbol from ends is 'b'.
- (b) Containing (b + ab + ba) as a substring.
- (c) Third symbol from ends is 'b'
- (d) None of these.

## **Answer Key**

(c) 1.

2. **(c)** 

3. **(d)** 

**4. (b)** 

5. (d)

6. (a) 7. (192)

8. (c)



## **Hints and Solutions**

1. (c)

$$L_1 = \phi \Longrightarrow L_1^* = \varepsilon$$

$$L_2 = \varepsilon \Rightarrow L_2 = \varepsilon$$

$$L_3 = \{a, \epsilon\}$$

$$L_3.L_2.L_1^* + L_1.L_3 = L_3.\epsilon.\epsilon + \phi.L_3$$
  
=  $L_3 + \phi$   
=  $L_3$   
=  $\{a, \epsilon\}$ 

2. (c)



S always generates the strings starting with a so, option (a), (b), (d) is not possible.

3. (d)

M is a DFA with 100 states only initial state in final and all other states Non final.

So, language is defined only at initial state and it can be part of  $\Sigma^*$ .

$$\therefore$$
 L(M)  $\subseteq \Sigma^*$ .

4. (b)

$$L = \{a, aa, aaa, ...\}$$
  
=  $a^+$ 

Given FA accepts a<sup>+</sup>.

5. (d)

$$L = \{w \in (0+1)^* \mid n_0(w) = n_1(w)\}$$

Let 
$$x, y \in L$$

$$x = 10, y = 1010$$

x is a proper prefix of y. If it is possible to find two different strings in L such that one is proper prefix of other, then L has no prefix property.

6. (a)

$$S \rightarrow Sa|Sb|A$$

$$A \rightarrow Aab|\epsilon$$

It can generate all strings when A is substituted with null production.

 $S \rightarrow Sa|Sb|\epsilon$  is enough to generate  $(a + b)^*$ .

7. (192)

$$L = \{w \mid w \in \{a, b\}^*, n^{th} \text{ symbol from ends is a}\}\$$

$$NFA = n + 1$$
 states

$$MDFA = 2^n$$
 states

$$P * Q = (5 + 1) * (25)$$
  
= 6 \* 32

$$= 192$$

Hence, (192) is correct answer.

8. (c)

Regular expression of FA

Regular expression =  $(a + b)^*b (a + b)^2$ 

This RE represents third symbol from ends must be b.

Hence, option (c) is correct.



Any issue with DPP, please report by clicking here: <a href="https://forms.gle/t2SzQVvQcs638c4r5">https://forms.gle/t2SzQVvQcs638c4r5</a>
For more questions, kindly visit the library section: Link for web: <a href="https://smart.link/sdfez8ejd80if">https://smart.link/sdfez8ejd80if</a>



PW Mobile APP: https://smart.link/7wwosivoicgd4