Московский государственный технический университет имени Н.Э. Баумана

Факультет «Информатика и системы управления»

Кафедра «Программное обеспечение ЭВМ

и информационные технологии»

Математическая статистика

ЛАБОРАТОРНАЯ РАБОТА №3 Метод наименьших квадратов

Студент: Петухов И.С.

Группа: ИУ7-61

Вариант: 10

Преподаватель: Власов П.А.

Содержание

- 1 Формулы
- 1.1 Вычисление МНК-оценки

2 Определения

2.1 Постановка задачи аппрокисмации неизвестной зависимости по результатам наблюдений

Переменная Y стохастически зависит от переменных $X_1,...,X_p$ если на изменение этих переменных Y реагирует изменением своего закона распределения. Задача, связанная с изучением стохастических зависимостей между слуйчайной величиной Y и детерминированными величинами $X_1,...,X_p$ носящих колличественный характер, составляют премет исследования регрессионного анализа. В регрессионном анализе используют модель черного ящика, как наиболее общую модель, связанную с понятием отображение Ψ . На вход поступает вектор $(X_1,...,X_p)$, который посредством некоторого отображения Ψ и случайных возмущений $(\varepsilon_1,...,\varepsilon_m)$ преобразуется в вектор $(Y_1,...,Y_m)$.

2.2 Понятие МНК-оценки параметров линейной модели

Для простоты ограничемся случаем p=m=1. Предположим, что в нашем распоряжении имеется п результатов наблюдений.

$$\begin{cases} y_1 = \Phi(t_1) + \varepsilon_1 \\ \dots y_n = \Phi(t_n) + \varepsilon_n \end{cases}$$
 (2.1)

Требуется на основании этих данных подобрать функцию $\hat{\Phi}(t)$ таким образом, чтобы она наилучшим образом аппроксимировала (описывала) функцию $\Phi(t)$. Часто в качестве функции $\Phi(t)$ рассматривают линейную комбинацию некоторых функций $\psi_1(t),...,\psi_s(t)$:

$$\Phi(t) = \Theta_1 \psi_1(t) + \dots + \Theta_s \psi_s(t)$$

Оценка $\hat{\Theta}$ вектора $\vec{\Theta}$ называется МНК оценкой если она доставляет минимальное значение функционалу

$$S(\vec{\Theta}) = ???$$

3 Текст программы

Листинг 3.1- Программа на языке MATLAB

```
close all;
1
2
3
   T = csvread('.../data/T.csv');
   Y = csvread('.../data/Y.csv');
4
5
6
   [a] = polyfit(T, Y, 2)
7
   Yt = a(3) + a(2) * T + a(1) * T.^2;
8
9
10
   figure
   hold on;
11
12
   plot(T, Y, '.b');
13
   plot(T, Yt, 'g');
   hold off;
14
   axis tight;
15
16
   grid on;
17
18
   delta = sqrt(sum((Y - Yt).^2));
19
   fprintf('theta(1) = \%.2f \ ', \ a(1));
20
   fprintf('theta(2) = \%.2f \ ', \ a(2));
   fprintf('theta(3) = \%.2f \ ', \ a(3));
21
   fprintf('delta = \%.2f\n', delta);
```

4 Результаты расчетов

$$\Delta = 128.02$$

$$\theta = (\theta_0, \theta_1, \theta_2) = (1.54, 2.54, -0.09)$$

Рисунок 4.1 — Система точек $(y_i,t_i), i=\overline{1;n}$ и график функции y=y(t) для полученной оценки вектора θ