AUTOSAR

SoSE 2015

27. Mai 2015

Beitragende:

Daniel Tatzel (DT) Florian Laufenböck (FL) Markus Wildgruber (MW) Philipp Eidenschink (PE) Tim Schmiedl (TimS) Tobias Schwindl (TobiS)

VersionsNr	Datum	Auslöser	Beschreibung
1.0	21.04.2015	DT	Erster Entwurf

1 Projekt Beschreibung

1.1 Vernetzte Ballschussanlage

- 1-2 Bricks
- Ausgabe(durch Display,LEDs etc.)
- Stop-Trigger
- Variable Aufteilung unter den Bricks: Stopp-Taste, Auslösung Taste(auch über Ultraschall), Ausgabe

1.2 Benötigte VFB-Komponenten und Schnittstellen (DT)

- Komponenten
 - Application Software Component
 - Sensor-Actuator Software Component
 - ECU Abstraction Software Component
- Schnittstellen
 - Client/Server
 - Events
 - Sender/Receiver (auch mit synchronisierung)

1.3 Namenskonventionen und Standardrückgabtyp (Alle)

 $\label{lem:rection} \mbox{F\"{u}r RTE-Funktionen:} \quad \mbox{RTE}_<\mbox{Funktionsname}>_<\mbox{Portname}>_<\mbox{Direction}>$

Für den Rest: Komponente Funktionsname

Standardrückgabtyp: uint32_t

Abbildung 1.1: Komponentendiagramm der Ballschussanlage (DT)

2 Komponenten-Beschreibung

Schussanlage (FL)

- Besteht aus einer Task mit zwei Runnables
- erste Runnable prüft periodische die Abbruchbedinung(hier: Taster)
- zweite Runnable managt den Schussmotor
- Kein Autostart des Tasks, wird über den Trigger gestartet
- Ports siehe Komponentendiagramm

Benötigt: Task und Event

Trigger (PE)

- Ein Task
- Wird zu beginn gestartet (Autostart)
- Wartet auf Event vom Input

Benötigt: Task und Event

Output (MW)

- Autostart
- Wird durch Event von Schussanlage getriggert
- Prüft nach Event die empfangene Nachricht
- Zeigt Nachricht in Abhängigkeit der empfangen Nachricht an

Benötigt: Task und Event

SchussMotor (TimS)

- Kein Autostart
- Servertask wird durch Schussanlage (client) gestartet
- Steuert Motor zum schießen an

StopSensor (TobiS)

- \bullet Autostart
- Prüft Taster
- Setzt Event für Schussanlage

Benötigt: Task, Timer und Event

StartTrigger (TobiS)

- Task zum Erkennen von Zielen
- Autostart
- Sendet Event an Trigger
- Erkennung durch periodische Abfrage

Benötigt: Task und Timer

2.1 Architekturschicht und Funktionsapi

2.1.1 Funktionapi

- 1.) System Services keine Funktionen
- 2.) Communication Services
 - Abstraktionsebene um Nachrichten zu verschicken
 - StdReturnType TransmitMessage(char* message)
 - StdReturnType ReceiveMessage(char* message)
- 3.) I/O Hardware Abstraction
 - StdReturnType ReadDigitalInput(PortName)
 - StdReturnType ReadAnalogInput(PortName)
 - StdReturnType DriveMotor(Port Name, Direction, speed, angle)
- 4.) Communication Hardware Abstraction
 - Für unser Projekt eigentlich unnötig, da wir nur eine Kommunikationsebene haben (theoretisch mehr durch I2C, aber hier uninteressant)
 - StdReturnType SendMessageBT(char* message)
 - StdReturnType GetMessageBT(char* message)
- 5.) Communication Drivers
 - es wird nur ein Treiber für das Hardware BT gebraucht:
 - StdReturnType BT Write(char* message)
 - StdReturnType BT Read(char* message)
- 6.) I/O Drivers
 - benötigt für den zusätzlichen I2C expander
 - StdReturnType ReadI2C(PortName)
 - StdReturnType WriteI2C(PortName)