Examen de fin d'études secondaires 2006

(Septembre)

section C, D

branche: mathématiques 2

Exercice 1:

a.
$$\lim_{x \to 0^+} x^{\frac{1}{x}} = \lim_{x \to 0^+} e^{\frac{\ln x}{x}} = e^{-\infty} = 0$$
 en effet $\lim_{x \to 0^+} \frac{\ln x}{x} = e^{-\infty} = -\infty$

$$\lim_{x \to +\infty} x^{\frac{1}{x}} = \lim_{x \to +\infty} e^{\frac{\ln x}{x}} = e^{0} = 1 \qquad \text{en effet } \lim_{x \to +\infty} \frac{\ln x}{x} = \lim_{x \to +\infty} \frac{1}{1} = \lim_{x \to +\infty} \frac{1}{x} = 0$$

b.
$$\log_4(x^2 - x - 2) < \log_2(x - 1)$$

conditions d'existence: $x^2 - x - 2 > 0$ et $x - 1 > 0 \Leftrightarrow (x < -1 \text{ ou } x > 2)$ et $x > 1 \Leftrightarrow x > 2$

$$\frac{\ln(x^2 - x - 2)}{2\ln 2} < \frac{\ln(x - 1)}{\ln 2} \Big| \cdot 2\ln 2 \iff x^2 - x - 2 < (x - 1)^2 \iff x < 3$$

donc S=]2;3[

c.
$$2^{x+2} + 2^{1-x} = 9$$

conditions d'existence: ---

$$2^{x+2} + 2^{1-x} = 9 | \bullet 2^x \iff 4 \cdot 2^{2x} - 9 \cdot 2^x + 2 = 0$$

posons $y = 2^x$: $4y^2 - 9y + 2 = 0 \Leftrightarrow y = \frac{1}{4} = 2^{-2}$ ou $y = 2^1 \Leftrightarrow x = -2$ ou x = 1 done $S = \{-2; 1\}$

Exercice 2:

$$f(x) = xe^{x+1}$$

a.
$$dom f = IR$$

$$\lim_{x \to +\infty} f(x) = "(+\infty) \bullet (+\infty)" = +\infty \qquad \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x}{e^{-x-1}} = \lim_{x \to -\infty} \frac{1}{-e^{-x-1}} = \lim_{x \to -\infty} (-e^{x+1}) = 0 \text{ donc A.H. y=0}$$

b.
$$f'(x) = (x+1)e^{x+1}$$
 $f''(x) = (x+2)e^{x+1}$

tableau des variations

X		-2		-1		+∞
f'(x)	-		-	0	+	
f''(x)	-	0	+		+	
f(x)	0	-2e ⁻¹		-1		+∞

minimum: m(-1;-1) point d'inflexion I(-2;-2e⁻¹)

d.
$$V(t) = \pi \int_{t}^{0} (f(x))^{2} dx = \pi \int_{t}^{0} x^{2} e^{2x+2} dx$$

intégration par parties : $u(x) = x^2$ u'(x) = 2x $v'(x) = e^{2x+2}$ $v(x) = \frac{1}{2}e^{2x+2}$

$$V(t) = \pi \left(\left[\frac{1}{2} x^2 e^{2x+2} \right]_t^0 - \int_t^0 x e^{2x+2} dx \right)$$

intégration par parties : u(x) = x u'(x) = 1 $v'(x) = e^{2x+2}$ $v(x) = \frac{1}{2}e^{2x+2}$

$$V(t) = \pi \left(\left[\frac{1}{2} x^2 e^{2x+2} - \frac{1}{2} x e^{2x+2} \right]_t^0 + \frac{1}{2} \int_t^0 e^{2x+2} dx \right) = \pi \left(\left[\frac{1}{2} x^2 e^{2x+2} - \frac{1}{2} x e^{2x+2} + \frac{1}{4} e^{2x+2} \right]_t^0 \right)$$

$$= \frac{\pi}{4}e^2 - \pi\left(\frac{1}{2}t^2 - \frac{1}{2}t + \frac{1}{4}\right)e^{2t+2}$$

$$\lim_{x \to -\infty} \left(-\frac{1}{2}t^2 + \frac{1}{2}t - \frac{1}{4} \right) e^{2t+2} = \lim \frac{\left(-\frac{1}{2}t^2 + \frac{1}{2}t - \frac{1}{4} \right)}{e^{-2t-2}} = \lim_{H} \frac{-t + \frac{1}{2}}{-2e^{-2t-2}} = \lim_{H} \frac{-1}{4e^{-2t-2}} = 0 \text{ done } \lim_{x \to -\infty} V(t) = \frac{\pi}{4}e^{-2t}$$
5,80u.v.

Exercice 3:

$$f(x) = \ln(4 - x^2)$$

a) dom f =]-2;2[f pair
 $\lim_{x \to 2^+} f(x) = \lim_{x \to 2^-} f(x) = -\infty$

donc A.V. x=-2 et x=2

b)
$$f'(x) = \frac{-2x}{4-x^2}$$
 $f''(x) = \frac{-2(x^2+4)}{(4-x^2)^2}$

X	-	2	0 .		2
f'(x)		+	0	-	
f''(x)	7	-		-	
f(x)			ln4	-0	

maximum M(0; ln4)

$$g(x) = \ln(x^2 + 2)$$
a. dom g = IR g pair
$$\lim_{x \to \infty} g(x) = \lim_{x \to \infty} g(x) = +\infty$$

$$\lim_{x \to +\infty} \frac{g(x)}{x} = \lim_{x \to -\infty} \frac{g(x)}{x} = \lim_{H \to +\infty} \frac{\frac{2x}{x^2 + 2}}{1} = 0$$
done pas d'A O

b.
$$g'(x) = \frac{2x}{x^2 + 2}$$
 $g''(x) = \frac{-2(x^2 - 2)}{(x^2 + 2)^2}$

X	-∞	-√2	()	$\sqrt{2}$		$+\infty$
g'(x)	-		- , () +		+	
g''(x)	-	0	+	+	0		
g(x)	+∞	ln4	× lı	 n2	√ln4	/	*+∞

minimum m(0;ln2) points d'inflexion $I_1(-\sqrt{2};ln4)$ $I_2(\sqrt{2};ln4)$ c.

$$f(x) = g(x) \Leftrightarrow 4 - x^2 = x^2 + 2 \Leftrightarrow 2x^2 = 2 \Leftrightarrow x = 1 \text{ ou } x = -1$$
points d'intersection $P_1(-\sqrt{2};\ln 3)$ $P_2(\sqrt{2};\ln 3)$

d.
$$A = \int_{-1}^{1} (f(x) - g(x)) dx \qquad u(x) = \ln(4 - x^{2}) - \ln(x^{2} + 2) \quad u'(x) = \frac{-2x}{4 - x^{2}} - \frac{2x}{x^{2} + 2} = \frac{-12x}{(4 - x^{2})(x^{2} + 2)}$$

$$v'(x) = 1 \qquad v(x) = x$$

$$= \left[x \ln \frac{4 - x^{2}}{x^{2} + 2} \right]_{-1}^{1} + \int_{-1}^{1} \frac{12x^{2}}{(4 - x^{2})(x^{2} + 2)} dx \qquad (V200 \text{ expand!})$$

$$= 0 + \int_{-1}^{1} (\frac{-4}{x^{2} + 2} - \frac{2}{x - 2} + \frac{2}{x + 2}) dx = \int_{-1}^{1} (-2\sqrt{2} \frac{\frac{1}{\sqrt{2}}}{\left(\frac{x}{\sqrt{2}}\right)^{2} + 1} - \frac{2}{x - 2} + \frac{2}{x + 2}) dx =$$

$$= \left[-2 \ln|x - 2| + 2 \ln|x + 2| - 2\sqrt{2} \arctan(\frac{x}{\sqrt{2}}) \right]_{-1}^{1} = -4\sqrt{2} \arctan(\frac{1}{\sqrt{2}}) + 4 \ln 3 = 0,91 \text{u.a.}$$

Correction flétan du Pacifique

La longueur (en cm) de beaucoup de poissons de t années communément mis en vente peut être donnée par une fonction de croissance de von Bertalanffy de la forme:

$$f(t) = a \cdot (1 - b \cdot e^{-k \cdot t})$$

où $a,b\in\mathbb{R}$ et $k\in\mathbb{R}_+^*$ sont des constantes.

Le poids (en kg) d'un flétan du Pacifique en fonction de sa longueur (en m) est donné par la formule:

$$p(l) = 10,375 \cdot l^3$$

1. Déterminer a,b et k sachant qu'à la limite un flétan atteindra une longueur de 2 m, un flétan de 10 ans a une longueur de 168,4 cm et la vitesse de croissance d'un flétan de 10 ans est de $5,69 \ cm/année$.

On a:
$$\lim_{t \to +\infty} \left(a \cdot \underbrace{\left(1 - b \cdot e^{-k \cdot t}\right)}_{\to 1} \right) = a \text{ donc } a = 200$$

On a: f'(10) = vitesse de croissance d'un flétan de 10 ans. Il faut donc résoudre le système d'équations $\begin{cases} f(10) = 168.4 \\ f'(10) = 5.69 \end{cases}$

 $\iff b = 0,956449 \text{ et } k = 0,180063$

2. Pour la suite de l'exercice prendre a=200; b=0,956 et k=0,18. Estimer l'âge et la vitesse de croissance d'un flétan dont la longueur est de $100\ cm$.

Il faut résoudre l'équation $f(t) = 100 \iff t = 3,60083$

Donc le flétan atteint une longueur de 100 cm après 3,6 années et sa vitesse de croissance est de $f'(3,6) \simeq 18 \ cm/ann\'ee$

3. Calculer le poids et la vitesse de croissance du poids d'un flétan de 5 ans.

Il faut calculer $p\left(\frac{f(5)}{100}\right) \simeq 19 \ kg$

4. Quelle est la limite du poids atteint par un flétan du Pacifique?

On a
$$\lim_{t \to +\infty} 10.375 \left(\frac{200 \cdot (1 - 0.956 \cdot e^{-0.18 \cdot t})}{100} \right)^3 = 10.375 \cdot 8 = 83 \ kg$$

a) Exprimer le poids d'un flétan en fonction de son âge. 5.

Exprimer le poids d'un fietan en fonction de son age.

On a
$$p(t) = 10.375 \left(\frac{200 \cdot (1 - 0.956 \cdot e^{-0.18 \cdot t})}{100} \right)^3 = 83 \cdot 0.582748^t \cdot (1.19722^t - 0.956)^3$$

- b) Quand la vitesse de croissance du poids est-elle maximale et qu'elle est alors sa valeur? (Utiliser l'expression de 5)a))
 - $p'\left(t\right)$ représente la vitesse de croissance à l'instant t et $p''\left(t\right)$ représente les variations de la vitesse de croissance.

On a donc une vitesse de croissance maximale à l'instant $t_0 \iff p''(t_0) = 0$ et $\int p''(t) > 0 \quad \text{si } t < t_0$ $\int p''(t) < 0 \quad \text{si } t > t_0$

ou si
$$p''(t_0) = 0$$
 et $p'''(t_0) < 0$

On a $p''(t) = 0 \iff t \simeq -0.25$ à écarter ou $t \simeq 5.85$

donc $t_0 = 5.85$ et comme $p''\left(3\right) \simeq 1.34$ et $p''\left(8\right) \simeq -0.45$ la vitesse de croissance maximale est atteinte à 5.85~ans

et on a $p'(5.85) = 6.64 \ kg/ann\'{e}e$