Lab 2 Report: Adversarial Attacks on Deep Neural Networks

Sui Huang

April 2, 2018

1 FGSM based untargeted attacks

The success rate of attack increases as epsilon increases.

	ϵ	SuccessRate
1	1	0.03
2	5	0.26
3	10	0.72
4	20	0.991
5	30	0.998
6	40	1.0
7	50	1.0

2 FGSM based targeted attacks

The success rate of attack increases as epsilon increases. But not as successful as untargeted attack.

	ϵ	SuccessRate
1	1	0.0027
2	5	0.0456
3	10	0.269
4	20	0.712
5	30	0.876
6	40	0.954
7	50	0.9866

3 Adversarial Retraining against Untargeted FGSM Attacks

Accuracy of the adversarially retrained DNN on the original test dataset ${\it Accuracy:}~0.9314$

FGSM based untargeted attacks using images from the clean test set

Epsilon: 10 Attack success rate 0.8142

Thoughts

Based on the result, I don't think the adversarially retrained DNN is robust against adversarial perturbations.

(Some of my friends got the result opposite from mine, but I can't figure out the reason, so I stick to what I got)

Repeat Step 3

	ϵ	Accuracy	SuccessRate
1	1	0.90	0.030
2	5	0.62	0.299
3	10	0.06	0.92
4	20	0	1
5	30	0	1
6	40	0	1
7	50	0	1