Modéliser le comportement des systèmes mécaniques dans le but d'établir une loi de comportement ou de déterminer des actions mécaniques en utilisant le PFD

Chapitre 4 - Méthodologie : détermination des équations de mouvement

Sciences
Industrielles de

l'Ingénieur

Application 01

Chaîne ouverte - Wheeling moto

Équipe PT La Martinière Monplaisir

Savoirs et compétences :

Modélisation

L'étude proposée concerne l'étude dynamique d'une moto dans une phase de wheeling. Il s'agit d'une figure acrobatique consistant à soulever la roue avant, et de ne garder que l'appui sous la roue arrière. La moto est supposée se déplacer en ligne droite, sur une route horizontale, et l'étude menée est cinématiquement plane. Le modèle d'étude est sur la figure ci-dessous.

- $\mathcal{R}_0 = (O_0; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ est un repère supposé galiléen, où $\overrightarrow{x_0}$ est dirigé suivant la vitesse de la moto et $\overrightarrow{y_0}$ suivant la verticale ascendante;
- $\mathcal{R}_1 = (G_1; \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$ est un repère lié à l'ensemble considéré indéformable {cadre + bras arrière + fourche avant + pilote}. On note $\theta_1 = (\overrightarrow{x_0}, \overrightarrow{x_1})$;
- $\mathcal{R}_2 = (O_2; \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_2})$ est un repère lié à la roue avant (2), de rayon R et de centre O_2 tel que $\overrightarrow{z_2} = \overrightarrow{z_0}$. On note $\theta_2 = (\overrightarrow{x_0}, \overrightarrow{x_2})$;
- $\mathcal{R}_3 = (O_3; \overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_3})$ est un repère lié à la roue arrière (3), de rayon R et de centre O_3 tel que $\overrightarrow{z_3} = \overrightarrow{z_0}$.

On note $\theta_3 = (\overrightarrow{x_0}, \overrightarrow{x_3})$. Les contacts entre les roues (2) et (3) et le sol (0) sont modélisés par des liaisons ponctuelles en H_2 et H_3 .

On note:

- $\overrightarrow{OO_3} = \lambda \overrightarrow{x_0} + R \overrightarrow{y_0}$;
- $\overrightarrow{O_3O_2} = L_1\overrightarrow{x_1}$;
- $\overrightarrow{O_3G_1} = a_1\overrightarrow{x_1} + b_1\overrightarrow{y_1}$;
- $\overrightarrow{H_3O_3} = R\overrightarrow{y_0}$;
- $\overrightarrow{H_2O_2} = R\overrightarrow{y_0}$;
- $G_2 = O_2$ et $G_3 = O_3$.

On note G_i le centre d'inertie, m_i la masse et C_i le moment d'inertie par rapport à l'axe de la pièce (i).

Étude dynamique

La transmission exerce sur la roue arrière un couple moteur $\overrightarrow{C_m} = C_m \overrightarrow{z_0}$. On suppose que l'adhérence roue/sol est suffisante pour assurer le roulement sans glissement de la roue (3) au contact en H avec le sol. La situation initiale est définie au moment où la roue avant quitte le contact avec le sol, avec $\dot{\theta}_1 = 0$ (après $\neq 0$).

Question 1 Construire le graphe de structure de la moto dans la phase de wheeling. Préciser le degré de mobilité de l'ensemble, compte tenu de l'hypothèse de roulement sans glissement en H_3 .

Question 2 En se limitant à l'application des théorèmes généraux de la dynamique, définir quelles équations permettent de déterminer le mouvement de l'ensemble, en précisant :

• élément(s) isolé(s);

1

• théorème appliqué, en précisant quelle projection et quel point de réduction éventuel sont retenus.

Question 3 Mettre en place les équations précédentes. Conclure sur la possibilité d'intégration de ces équations.