Optimizació Numérica

Manuel Sarmiento Navarro

5 de noviembre de 2019

Tarea 1

1. Sea C un cono convexo cerrado. Si $S \subset C$, entonces $S^{**} \subset C$.

$$S^* = \{y | y^T x \ge 0 \forall x \in S\} S^{**} = \{w | w^T y \ge 0 \forall y \in S^x\}$$

si existiera $z \in S^{**}$ y que no estuviera en C, querría decir que existen $a \in \mathbb{R}^n$ y $b \in \mathbb{R}$ tales que $a^Tz \geq b$ y $a^Tx < b \quad \forall x \in C.$ C es un cono, por lo que podemos encontrar planos que pasen por el origen que separen a los puntos dentro y fuera de C, lo cual implica que $a^Tz \geq 0$ y $a^Tx < 0 \quad \forall x \in C.$

De lo anterior $(a^Tz \ge 0)$ y la definición de S^{**} tenemos que $a \in S^*$; igualmente tenemos (por $a^Tx < 0$) que $a \notin S^*$. Llegamos a una contradicción, por lo tanto $S^{**} \subset C$.

- 2. Un conjunto es convexo ssi su intersección con cualquier línea es convexa
 - ⇒) Sea C convexo. La intersección de conjuntos convexos es convexa y una línea es convexa, por lo tanto la intersección de C y cualquier línea es convexa.
 - \Leftarrow) Tomemos $y_1,y_2\in C$ y veamos que el segmento de recta que los conecta esta completamente contenido en C porque está contenida en la intersección de la recta que pasa por ambos puntos con el mismo conjunto C.

3. La cubierta convexa de un conjunto S es la intersección de todos los conjuntos convexos que contienen a S.

Def: La *cubierta convexa* de un conjunto C es el conjunto de todas las combinaciones convexas de puntos en C.

$$conv(C) = \{ \sum_{i=1}^{k} \theta_i x_i | x_i \in C, \theta_i \ge 0, \sum_{i=1}^{k} \theta_i = 1 \}$$

Sea $x \in conv(C)$ y sea K un conjunto convexo que contiene a C. Por la definición de cubierta convexa tenemos que x es una combinación convexa de puntos de C que están contenidos en K que es convexo, por lo tanto $x \in K$.

- 4. Sea X una variable aleatoria en $\mathbb R$ con $PX=a_i=p_i, i\in [n]$ y $a_1< a_2<\ldots< a_n.$ Si $p\in \mathbb R^n$, ¿cuál de las siguientes condiciones es convexa en p?
 - a) $\alpha \leq E[f(X)] \leq \beta$ Sean $p,q \in P = \{p \in \mathbb{R}^n | \alpha \leq E[f(x)] \leq \beta\}$, ¿será que la combinación convexa de p y q está en P? Sí.
 - b) $cuartil(X) \leq \alpha$ Sean $p,q \in P = \{p \in \mathbb{R}^n | \alpha \leq cuartil(f(x)) \leq \beta\}$, ¿será que la combinación convexa de p y q está en P? Sí.
- 5. Sea $A \in \mathbb{R}^{m \times n}$, $b \in Im(A)$. Se cumple que $c^T x = d$ para todo x tal que Ax = b ssi existe un vector λ tal que $c = A^T \lambda$ y $d = b^T \lambda$
- 6. Una función continua $f:\mathbb{R}^n \to \mathbb{R}$ es convexa ssi $2\int_0^1 f(x+\lambda(y-x))d\lambda \le f(x)+f(y)$ para todo $x,y\in\mathbb{R}^n$
- 7. Demuestre que una función f es convexa ssi para todo $x \in dom(f)$ y todo v, g(t) = f(x+tv) es convexa en su dominio $dom(g) = \{t: x+tv \in dom(f)\}$
- 8. Verifique que f(X) = log det X es cóncava en $dom(f) = S_{++}^n$
- 9. Adapte su demostración para demostrar que $f(X)=traza(X^{-1})$ es convexa en $dom(f)=\mathbf{S}^n_{++}$
- 10. Derive el conjugado de $f(x) = \max_i x_i$ en \mathbb{R}^n

11. Demuestre que el conjugado de $f(X)=traza(X^{-1})$ en $dom(f)=\mathrm{S}^n_{++}$ está dado por $f^*(Y)=-2traza(-Y)^{-\frac{1}{2}}$ con $dom(f^*)=-\mathrm{S}^n_+$