DGP-Homework2

高悟恒

2020-10-11

一. 问题描述:

对三角网格进行双边去噪,其好处在于能够尽可能保留尖锐特征的同时对网格进行去噪。

二. 算法:

1.Bilateral Normal Filtering:

对每个三角形面 f_i 的所有相邻三角形 $f_j \in \Omega(f_i)$,取其法向的加权平均为三角形面 f_i 的新法向。

$$n^{(k+1)}(f_i) = \frac{1}{K_p} \sum_{f_j \in \Omega(f_i)} A_j W_c(\|c_i - c_j\|) W_s(\|n^{(k)}(f_i) - n^{(k)}(f_j)\|) \cdot n(f_j)$$
 (1)

其中 c_i 为面 f_i 的中心, A_i 为面 f_i 的面积, W_c, W_s 为高斯函数, K_p 为权重的和。

$$W_c(t) = exp(-t^2/(2\delta_c)), W_s(t) = exp(-t^2/(2\delta_s))$$
 (2)

其中 δ_c 根据论文可以选取为三角网格中相邻三角面的平均距离。

计算出新法向后需要进行归一化为单位向量。

这一过程可以迭代多次,具体次数由用户控制。

2.update vertices:

对于新的法向,需要调整结点位置以使得新结点组成的三角形尽可能与法向垂直。利用 Gauss-Seidel 迭代法,每次固定其余结点,更新一个结点有:

$$x_{i}' = x_{i} + \frac{1}{N_{i}} \sum_{f_{i} \in \Omega(i)} (n_{j} \cdot (c_{j} - x_{i})) n_{j}$$
 (3)

其中 N_i 为与顶点 x_i 相邻的三角面的个数。

3.keep volume:

通过保持体积不变,可以防止网格收缩或扩张。三角网格的体积可以通过计算所有三角面 与原点构成的四面体的有向体积之和得到。

三. 实验结果:

图 1: 网格去噪