

RESULTS OF THE NIPS 2003 FEATURE SELECTION CHALLENGE

Isabelle Guyon Steve Gunn Asa Ben Hur Gideon Dror

Challenge

- Date started: Monday September 8, 2003.
- **Date ended**: Monday December 1, 2003 (+Dec. 8, entries using validation set labels).
- **Duration**: 12 (13) weeks.
- Estimated number of entrants: 78.
- Number of development entries: 1863.
- Number of ranked participants: 20 (16).
- Number of ranked submissions: 56 (36).

Results

Overall winners for ranked entries:

Radford Neal and Jianguo Zhang with BayesNN-DFT-combo (Dec 1 and 8)

Arcene: (1) Neal&Zhang w. BayesNN-DFT-combo

(8) Radford Neal with BayesNN-small

Dexter: (1) Neal&Zhang w. BayesNN-DFT-combo

(8) Thomas Navin Lal with FS+SVM

Dorothea: (1&8) Neal&Zhang w. BayesNN-DFT-combo

Gisette: (1&8) Yi-Wei Chen with final 2

Madelon: (1&8) Chu Wei with Bayesian + SVMs

Part I

DATASET DESCRIPTION

Domains

- Arcene: cancer vs. normal with massspectrometry analysis of blood serum.
- **Dexter**: filter texts about corporate acquisition from Reuters collection.
- **Dorothea**: predict which compounds bind to Thrombin from KDD cup 2001.
- **Gisette**: OCR digit "4" vs. digit "9" from NIST.
- Madelon: artificial data.

Data preparation

- **Preprocessing** and scaling to numerical range 0 to 999 for continuous data and 0/1 for binary data.
- **Probes**: Addition of "random" features distributed similarly to the real features.
- **Shuffling**: Randomization of the order of the patterns and the features.
- Baseline error rates (errate): Training and testing on various data splits with simple methods.
- Test set size: Number of test examples needed using rule-of-thumb $\mathbf{n}_{\text{test}} = 100/\text{errate}$.

Data statistics

Dataset	Size	Туре	Features	Training Examples	Validation Examples	Test Examples
Arcene	8.7 MB	Dense	10000	100	100	700
Gisette	22.5 MB	Dense	5000	6000	1000	6500
Dexter	0.9 MB	Sparse integer	20000	300	300	2000
Dorothea	4.7 MB	Sparse binary	100000	800	350	800
Madelon	2.9 MB	Dense	500	2000	600	1800

ARCENE is the cancer dataset

- Sources: National Cancer Institute (NCI) and Eastern Virginia Medical School (EVMS).
- Three datasets: 1 ovarian cancer, 2 prostate cancer, all preprocessed similarly.
- Task: Separate cancer vs. normal.

ARCENE

- All SELDI mass-spectra.
- NCI ovarian cancer: 253 spectra (162 cancer, 91 control), 15154 feat.
- NCI prostate cancer: 322 spectra (69 cancer, 253 control), 15154 feat.
- EVMS prostate cancer: 652 spectra from 326 samples (167 cancer, 159 control), 48538 feat.
- Preprocessing including m/z 200-10000, baseline removal, alignment.
- Resulting dataset: 900 spectra (398 cancer, 502 control), 10000 features (7000 real features, 3000 random probes=permuted least-informative feat.).
- Rule-of-thumb: n_{test} =100/errate with errate=15% leads to 667 examples.
- Data split: Training 100, validation 100, test 700.

DEXTER filters texts

- Sources: Carnegie Group, Inc. and Reuters, Ltd.
- Preprocessing: Thorsten Joachims.
- Task: Filter "corporate acquisition" texts.

DEXTER

NEW YORK, October 2, 2001 – Instinet Group Incorporated (Nasdaq: INET), the world's largest electronic agency securities broker, today announced that it has completed the acquisition of ProTrader Group, LP, a provider of advanced trading technologies and electronic brokerage services primarily for retail active traders and hedge funds. The acquisition excludes ProTrader's proprietary trading business. ProTrader's 2000 annual revenues exceeded \$83 million.

- 1300 texts about corporate acquisitions and 1300 texts about other topics.
- Bag-of-words representation prepared by Thorsten Joachims: 9947 features representing frequencies of occurrence of word stems in text.
- Probes: Added 10053 features drawn at random according to Zipf law.
- Rule-of-thumb: n_{test}=100/errate with errate=5.8% leads to 1724 examples.
- Data split: Training 300, validation 300, test 2000.

DOROTHEA

DOROTHEA is the **Thrombin** dataset

- **Sources**: DuPont Pharmaceuticals Research Laboratories and KDD Cup 2001.
- **Task**: Predict compounds that bind to Thrombin.

DOROTHEA

- 2543 compounds tested for their ability to bind to a target site on thrombin, a key receptor in blood clotting; 192 "active" (bind well); the rest "inactive".
- 139,351 binary features, which describe three-dimensional properties of the molecule.
- Preprocessing: Removed all-zero examples (except 1). Selected 100,000 features ranked with Weston et al. criterion, permuted randomly last 50,000 (probes).
- Rule-of-thumb: n_{test}=100/errate with errate=21% leads to 476 examples.
- Data split: Training 800, validation 350, test 800.

GISETTE

GISETTE contains handwritten digits

- Source: National Institute of Standards and Technologies (NIST).
- **Preprocessing**: Yann LeCun and collaborators.
- Task: Separate digits "4" and "9".

GISETTE

- Original data: 13500 digits size-normalized and centered in a fixed-size image of dimension 28x28.
- Constructed features: random selection of subset of products of pairs of variables.
- Feature set: 2500 features (pixels + pairs) + 2500 probes (permuted pairs).
- Rule-of-thumb: n_{test} =100/errate with errate=3.5% leads to 2857 examples.
- Data split: Training 6000, validation 1000, test 6500.

MADELON

MADELON is random data

- **Source**: Isabelle Guyon, inspired by Simon Perkins et al.
- **Type of data**: Clusters on the summits of a hypercube.

MADELON

- Clusters placed on the summits of a five dimensional hypercube.
- 250 points per cluster; 16 clusters per class; 5 "useful" features; 5 "redundant" features; 10 "repeated" features; 480 "useless" features (probes).
- Rule-of-thumb: n_{test} =100/errate with errate=10% leads to 1000 examples.
- Data split: Training 2000, validation 600, test 1800.

Difficulties

All 2-class classification problems.

	Arcene	Dexter	Dorothea	Gisette	Madelon
Sparsity	50%	99.5%	99%	87%	<1%
Binary	No	No	Yes	No (almost)	No
#feat / #patt	100	67	125	0.83	0.25
#probe / #feat	0.43	0.99	1	1	24
Cluster / class	>3	?	?	1-2?	16

Part II

SCORING METHOD

Scoring steps

- Use test set results only (not training and validation set results).
- Make pairwise comparisons between classifiers for each dataset.
- Use McNemar test to determine whether A better than B according to BER with 5% risk. Score 1, 0 or -1.
- If score is 0, break tie with feature number if relative difference > 5%.
- If score still 0, break tie with fraction of probes.
- Overall score = sum of pairwise comparison scores.

Observations

- Positive and negative scores are obtained.
- Maximum score = num. submissions-1
- \Rightarrow we normalize the score, then take the dataset average.
- Even a 0 score is good because we ranked only the 20 final participants / 75 total.
- Scoring/ranking is dependent on the set of submissions scored.
- The 5 top ranking people are consistently at the top and in the same order under changes of the set of submission.

ANALYSIS OF RESULTS

Test/Valid Correl

R²%: Arcene 81.28, Dexter 94.37, Dorothea 93.11, Gisette 99.71, Madelon 98.62

BER/AUC Correl

R²%: Arcene 65.45, Dexter 53.5, Dorothea 29.57, Gisette 98.84, Madelon 89

BER distribution

Fraction of probes

Global ranking

December 1st

Method	People	Score	BER	AUC	Frac feat	Frac prob	McNemar
BayesNN-DFT-combo	Neal & Zhang	88	6.84 (1)	97.22 (1)	80.3	47.77	0
BayesNN-DFT-combo	Neal & Zhang	86.18	6.87 (2)	97.21 (2)	80.3	47.77	0
BayesNN-small	Neal	68.73	8.20 (3)	96.12 (3)	4.74	2.91	0.8
BayesNN-large	Neal	59.64	8.21 (4)	96.36 (4)	60.3	28.51	0.4
RF+RLSC	Torkkola & Tuv	59.27	9.07 (7)	90.93 (7)	22.54	17.53	0.6
final 2	Chen	52	9.31 (9)	90.69 (9)	24.91	11.98	0.4
SVMbased3	Zhili & Li	41.82	9.21 (8)	93.60 (8)	29.51	21.72	0.8
SVMBased4	Zhili & Li	41.09	9.40 (10)	93.41 (10)	29.51	21.72	0.8
final 1	Chen	40.36	10.38 (23)	89.62 (23)	6.23	6.1	0.6
transSVMbased2	Zhili	36	9.60 (13)	93.21 (13)	29.51	21.72	0.8
myBestValidResult	Zhili	36	9.60 (14)	93.21 (14)	29.51	21.72	0.8
TransSVMbased	Zhili	36	9.60 (15)	93.21 (15)	29.51	21.72	0.8
BayesNN-E	Neal	29.45	8.43 (5)	96.30 (5)	96.75	56.67	0.8
Collection2	Saffari	28	10.03 (20)	89.97 (20)	7.71	10.6	1
Collection1	Saffari	20.73	10.06 (21)	89.94 (21)	32.26	25.5	1

Neal and Zhang win in several respects: (1) best score, (2) best BER, (3) best AUC, (4) smallest feature set.

For BER and AUC, ranks are shown in parentheses. Score, BER, AUC, frac feat & prob are in %. McNemar tests the significance of the diff. in BER with the smallest BER.

Global ranking

December 8th

Method	People	Score	BER	AUC	Frac feat	Frac prob	McNemar
BayesNN-DFT-combo+v	Neal & Zhang	71.43	6.48 (1)	97.20 (1)	80.3	47.77	0.2
BayesNN-large+v	Neal	66.29	7.27 (3)	96.98 (3)	60.3	28.51	0.4
BayesNN-small+v	Neal	61.14	7.13 (2)	97.08 (2)	4.74	2.91	0.6
final_2-3	Chen	49.14	7.91 (8)	91.45 (8)	24.91	9.91	0.4
BayesNN-large+v	Neal	49.14	7.83 (5)	96.78 (5)	60.3	28.51	0.6
final2-2	Chen	40	8.80 (17)	89.84 (17)	24.62	6.68	0.6
GhostMiner Pack 1	GhostMiner Team	37.14	7.89 (7)	92.11 (7)	80.6	36.05	0.8
RF+RLSC	Torkkola & Tuv	35.43	8.04 (9)	91.96 (9)	22.38	17.52	0.8
GhostMiner Pack 2	GhostMiner Team	35.43	7.86 (6)	92.14 (6)	80.6	36.05	0.8
RF+RLSC	Torkkola & Tuv	34.29	8.23 (12)	91.77 (12)	22.38	17.52	0.6
FS+SVM	Lal	31.43	8.99 (19)	91.01 (19)	20.91	17.28	0.6
GhostMiner Pack 3	GhostMiner Team	26.29	8.24 (13)	91.76 (13)	80.6	36.05	0.6
CBAMethod3E	CBAGroup	21.14	8.14 (10)	96.62 (10)	12.78	0.06	0.6
CBAMethod3E	CBAGroup	21.14	8.14 (11)	96.62 (11)	12.78	0.06	0.6
Nameless	Navot & Bachrach	12	7.78 (4)	96.43 (4)	32.28	16.22	1

Neal and Zhang win again: (1) best score, (2) best BER, (3) best AUC, (4) smallest feature set.

ARCENE

Dec. 1st

Method	People	Score	BER	AUC	Frac feat	Frac prob	McNemar
BayesNN-DFT-combo	Neal & Zhang	98.18	13.30 (1)	93.48 (1)	100	30	0
BayesNN-DFT-combo	Neal & Zhang	98.18	13.30 (2)	93.48 (2)	100	30	0
inf5	Saffari	85.45	17.30 (17)	82.70 (17)	5	0	1
RF RLSC	Torkkola & Tuv	81.82	15.14 (3)	84.86 (3)	100	30	0
KPLS	Embrechts	81.82	16.71 (12)	83.67 (12)	5.14	8.56	1
BayesNN-small	Neal	78.18	16.59 (10)	91.15 (10)	10.7	1.03	1
Bayesian+SVM	Wei	78.18	15.17 (4)	91.52 (4)	100	30	0
final 2	Chen	74.55	15.27 (5)	84.73 (5)	100	30	0
Bayesian+SVM	Wei	70.91	15.55 (6)	91.25 (6)	100	30	0

Dec. 8th

Method	People	Score	BER	AUC	Frac feat	Frac prob	McNemar
BayesNN-small+v	Neal	94.29	11.86 (7)	95.47 (7)	10.7	1.03	0
RF w. feature select	Ng & Breiman	88.57	12.63 (10)	93.79 (10)	3.8	0.79	1
CBAMethod3E	CBAGroup	85.71	11.12 (4)	94.89 (4)	28.25	0.28	0
CBAMethod3E	CBAGroup	85.71	11.12 (5)	94.89 (5)	28.25	0.28	0
RF+RLSC	Torkkola & Tuv	71.43	11.12 (3)	88.88 (3)	99.2	29.96	0
final 2-2	Chen	68.57	10.73 (1)	90.63 (1)	100	30	0
final 2-3	Chen	68.57	10.73 (2)	90.63 (2)	100	30	0
FS+SVM	Lal	65.71	12.76 (12)	87.24 (12)	47	5.89	1
RF+RLSC	Torkkola & Tuv	65.71	11.60 (6)	88.40 (6)	99.2	29.96	0
BayesNN-DFT-combo+v	Neal & Zhang	48.57	12.25 (8)	93.01 (8)	100	30	0

Mothod

DEXTER

Erac foat Erac prob McNomar

Dec. 1st

Method	People	Score	REK	AUC	Frac teat	Frac prob	wicnemar
BayesNN-DFT-combo	Neal & Zhang	96.36	3.90 (1)	99.01 (1)	1.52	12.87	0
BayesNN-large	Neal	96.36	3.90 (2)	99.01 (2)	1.52	12.87	0
BayesNN-DFT-combo	Neal & Zhang	96.36	3.90 (3)	99.01 (3)	1.52	12.87	0
BayesNN-small	Neal	89.09	4.00 (4)	99.03 (4)	1.52	12.87	0
FS+SVM	Lal	85.45	4.20 (5)	95.80 (5)	18.57	49.78	0
transSVMbased2	Zhili	70.91	4.40 (6)	97.92 (6)	29.47	59.71	0
SVMbased3	Zhili & Li	70.91	4.40 (7)	97.92 (7)	29.47	59.71	0
myBestValidResult	Zhili	70.91	4.40 (8)	97.92 (8)	29.47	59.71	0
TransSVMbased	Zhili	70.91	4.40 (9)	97.92 (9)	29.47	59.71	0
svmBased4	Zhili & Li	70.91	4.40 (10)	97.92 (10)	29.47	59.71	0

	wethod	People	Score	BEK	AUC	Frac reat	Frac prob	wichemar
	FS+SVM	Lal	100	3.30 (1)	96.70 (1)	18.57	42.14	0
•	BayesNN-DFT-combo+v	Neal & Zhang	85.71	4.05 (5)	99.09 (5)	1.52	12.87	1
	BayesNN-large+v	Neal	85.71	4.05 (6)	99.09 (6)	1.52	12.87	1
	BayesNN-small+v	Neal	85.71	4.05 (7)	99.09 (7)	1.52	12.87	1
h	BayesNN-large+v	Neal	85.71	4.05 (8)	99.09 (8)	1.52	12.87	1
	GhostMiner Pack 3	GhostMiner	71.43	3.50 (2)	96.50 (2)	100	50.27	0
	GhostMiner Pack 1	GhostMiner	65.71	3.60 (3)	96.40 (3)	100	50.27	1
-	GhostMiner Pack 2	GhostMiner	54.29	3.80 (4)	96.20 (4)	100	50.27	1
	Sparse Bayes Logistic	DIMACS	54.29	5.05 (14)	94.37 (14)	0.93	6.49	1
	RF+RLSC	Torkkola & Tuv	48.57	4.65 (10)	95.35 (10)	2.5	28.4	1

ALIC

Dec. 8th

DOROTHEA

Dec. 1st

Method	People	Score	BER	AUC	Frac feat	Frac prob	McNemar
BayesNN-DFT-combo	Neal & Zhang	98.18	8.54 (1)	95.92 (1)	100	50	0
BayesNN-large	Neal	98.18	8.54 (2)	95.92 (2)	100	50	0
BayesNN-E	Neal	92.73	8.61 (3)	95.98 (3)	100	50	0
BayesNN-DFT-combo	Neal & Zhang	89.09	8.68 (4)	95.86 (4)	100	50	0
greatest_hits_one	Navot & Bachrach	85.45	10.86 (6)	92.19 (6)	0.3	0	1
BayesNN-small	Neal	81.82	10.63 (5)	93.50 (5)	0.5	0.4	1
SVMbased3	Zhili & Li	78.18	11.52 (11)	88.48 (11)	0.5	18.88	1
svmBased4	Zhili & Li	74.55	12.45 (12)	87.55 (12)	0.5	18.88	1

Dec. 8th

	Method	People	Score	BER	AUC	Frac feat	Frac prob	McNemar
,	BayesNN-DFT-combo+v	Neal & Zhang	97.14	8.61 (1)	95.92 (1)	100	50	0
	BayesNN-large+v	Neal	97.14	8.61 (2)	95.92 (2)	100	50	0
	IDEAL	BorisovEruhimovTu	85.71	8.92 (3)	94.80 (3)	100	50	0
	IDEAL	BorisovEruhimovTu	85.71	8.92 (4)	94.80 (4)	100	50	0
h	BayesNN-large+v	Neal	77.14	9.11 (5)	95.98 (5)	100	50	0
		Navot & Bachrach	68.57	11.40 (7)	93.10 (7)	0.4	0	1
	Nameless	Navot & Bachrach	68.57	11.40 (8)	93.10 (8)	0.4	0	1
	BayesNN-small+v	Neal	60	11.07 (6)	93.42 (6)	0.5	0.4	1
	ESNB+NN	Boulle & Lemaire	54.29	14.59 (17)	91.50 (17)	0.07	0	1

Neural Information Processing Systems

GISETTE

CLOPINET

Dec	1	st
1 100		50

n Method	People	Score	BER	AUC	Frac feat	Frac prob	McNemar
final 2	Chen	98.18	1.37 (8)	98.63 (8)	18.26	0	0
final 1	Chen	98.18	1.37 (9)	98.63 (9)	18.26	0	0
Depends II	Rosset & Zhu	87.27	1.34 (4)	98.26 (4)	30	0	0
Depends I	Rosset & Zhu	87.27	1.34 (5)	98.26 (5)	30	0	0
Depends III	Rosset & Zhu	87.27	1.34 (6)	98.26 (6)	30	0	0
Depends V	Rosset & Zhu	87.27	1.34 (7)	98.26 (7)	30	0	0
BayesNN-DFT-combo	Neal & Zhang	70.91	1.29 (1)	99.90 (1)	100	50	0
BayesNN-large	Neal	70.91	1.29 (2)	99.90 (2)	100	50	0
BayesNN-DFT-combo	Neal & Zhang	70.91	1.29 (3)	99.90 (3)	100	50	0
transSVMbased2	Zhili	56.36	1.58 (11)	99.84 (11)	15	0	1
SVMbased3	Zhili & Li	56.36	1.58 (12)	99.84 (12)	15	0	1
myBestValidResult	Zhili	56.36	1.58 (13)	99.84 (13)	15	0	1
Depends IV	Rosset & Zhu	56.36	1.48 (10)	98.26 (10)	30	0	0
TransSVMbased	Zhili	56.36	1.58 (14)	99.84 (14)	15	0	1
svmBased4	Zhili & Li	56.36	1.58 (15)	99.84 (15)	15	0	1
Method	People	Score	BER	AUC	Frac feat	Frac prob	McNemar
final2 2	Chen	97.14	1.35 (7)	98.71 (7)	18.32	0	0
final 2-3	Chen	97.14	1.35 (8)	98.71 (8)	18.32	0	0
test	Chen	88.57	1.37 (9)	98.63 (9)	18.26	0	0
FS+SVM	Lal	82.86	1.31 (6)	98.69 (6)	34	0.18	0
BayesNN-DFT-combo+v	Neal & Zhang	71.43	1.26 (1)	99.92 (1)	100	50	0

Dec. 8th

final2 2	Chen	97.14	1.35 (7)	98.71 (7)	18.32	0	C
final 2-3	Chen	97.14	1.35 (8)	98.71 (8)	18.32	0	C
test	Chen	88.57	1.37 (9)	98.63 (9)	18.26	0	C
FS+SVM	Lal	82.86	1.31 (6)	98.69 (6)	34	0.18	C
BayesNN-DFT-combo+v	Neal & Zhang	71.43	1.26 (1)	99.92 (1)	100	50	C
BayesNN-large+v	Neal	71.43	1.26 (2)	99.92 (2)	100	50	C
BayesNN-large+v	Neal	71.43	1.26 (3)	99.92 (3)	100	50	C
GhostMiner Pack 1	GhostMiner	57.14	1.31 (4)	98.69 (4)	100	50	C
GhostMiner Pack 3	GhostMiner	57.14	1.31 (5)	98.69 (5)	100	50	(
P-SVM / nu-SVM 2	Hochreiter	37.14	1.82 (19)	99.79 (19)	4	0.5	1
P-SVM / nu-SVM 1	Hochreiter	37.14	1.82 (20)	99.79 (20)	4	0.5	1
P-SVM / nu-SVM too many	Hochreiter	37.14	1.82 (21)	99.79 (21)	4	0.5	1
GhostMiner Pack 2	GhostMiner	25.71	1.42 (10)	98.58 (10)	100	50	C

Neural Information Processing Systems Conference

MADELON

Dec. 1st

Method	People	Score	BER	AUC	Frac feat	Frac prob	McNemar
Bayesian+SVM	Wei	100	7.17 (5)	96.95 (5)	1.6	0	0
RF+RLSC	Torkkola & Tuv	96.36	6.67 (3)	93.33 (3)	3.8	0	0
final 2	Chen	90.91	6.61 (1)	93.39 (1)	4.8	16.67	0
final 1	Chen	90.91	6.61 (2)	93.39 (2)	4.8	16.67	0
BayesNN-DFT-combo	Neal & Zhang	76.36	7.17 (4)	97.82 (4)	100	96	0
P-SVM/nu-SVM	Hochreiter	76.36	8.67 (20)	96.46 (20)	1.4	0	1
BayesNN-DFT-combo	Neal & Zhang	76.36	7.17 (6)	97.82 (6)	100	96	0
P-SVM/nu-SVM	Hochreiter	76.36	8.67 (21)	96.46 (21)	1.4	0	1

Method	People	Score	BER	AUC	Frac feat	Frac prob	McNemar
Bayesian + SVMs	Wei	94.29	7.11 (13)	96.95 (13)	1.6	0	1
BayesNN-large+v	Neal	85.71	6.56 (3)	97.62 (3)	3.4	0	0
BayesNN-small+v	Neal	85.71	6.56 (4)	97.62 (4)	3.4	0	0
final 2-2	Chen	71.43	7.11 (12)	92.89 (12)	3.2	0	1
RF+RLSC	Torkkola & Tuv	71.43	6.67 (6)	93.33 (6)	3.8	0	0
GhostMiner Pack 2	GhostMiner	65.71	7.44 (14)	92.56 (14)	3	0	1
BayesNN-large+v	Neal	60	6.78 (9)	97.46 (9)	3.4	0	1
BayesNN-DFT-combo+	Neal & Zhang	54.29	6.22 (1)	98.07 (1)	100	96	0
CBAMethod3E	CBAGroup	51.43	6.72 (7)	97.57 (7)	4	0	0
CBAMethod3E	CBAGroup	51.43	6.72 (8)	97.57 (8)	4	0	0
final_23	Chen	48.57	6.50 (2)	93.50 (2)	4.8	16.67	0
RF+RLSC	Torkkola & Tuv	48.57	7.00 (11)	93.00 (11)	3.8	0	1
METHOD2	CBAGroup	42.86	6.83 (10)	97.23 (10)	4	0	0
GhostMiner Pack 1	GhostMiner	37.14	7.67 (17)	92.33 (17)	3	0	1
test	Chen	31.43	6.61 (5)	93.39 (5)	4.8	16.67	0

Dec. 8th

Part IV

CONCLUSIONS AND FURTHER WORK

Conclusions

- Excellent results with no feature selection.
- In most cases, feature selection either helps or does not hurt.
- Wide variety of methods used.

Future work

- Final check of feature set validity.
- Compute (more) statistics and write report.
- Publish the proceedings as a book.
- Use the challenge results as a benchmark: no release of test labels, leave the web site life.
- Organize another benchmark: Model selection? Feature selection for multi-class and regression? Feature construction?