Bases du raisonnement Raisonnement par récurrence Suites récurrentes linéaires Ordre de grandeur Formulaire

Rappels mathématiques

Thomas Bellitto, Alix Munier-Kordon et Maryse Pelletier

LIP6 Sorbonne Université Paris

Algorithmique élémentaire

Plan du cours

- Bases du raisonnement
- Raisonnement par récurrence
- Suites récurrentes linéaires
- Ordre de grandeur
- 5 Formulaire

Le B-A BA du raisonnement

Trois parties:

- hypothèse
- démonstration
- conclusion

Un raisonnement doit être clair, rigoureux, construit. Toujours préférer la simplicité à d'inutiles complications.

Types de raisonnement

- Calculatoire
- Raisonnement logique
 - raisonnement direct
 - par l'absurde : pour montrer P on montre que (non(P)) donne une contradiction
 - par la contraposée : pour montrer que a ⇒ b on montre que non(b) ⇒ non(a)
- Par récurrence

Exemple 1

• Montrer que $(a + b)^2 + (a - b)^2 = 2(a + b)^2 - 4ab$ Enchaînement de calculs à bien présenter

Un peu de logique

Implication et contraposée

$$a \Rightarrow b \equiv non(a) \text{ ou } b$$

 $\equiv non[non(b)] \text{ ou } non(a)$
 $\equiv non(b) \Rightarrow non(a)$

Négation d'une implication

$$non(a \Rightarrow b) \equiv non[non(a) \text{ ou } b]$$

 $\equiv a \text{ et } non(b)$

Exemple 2

- Montrer que tout nombre premier supérieur à 2 est impair
 - raisonnement direct

$$P: \forall n \in \mathbb{N} [(n \text{ premier et } n > 2) \Rightarrow n \text{ impair }]$$

• par l'absurde

$$non(P)$$
: $\exists n \in \mathbb{N}$ [n premier, $n > 2$ et n pair]

par la contraposée

$$\forall n \in \mathbb{N} [n \text{ pair } \Rightarrow (n \text{ non premier ou } n \leq 2)]$$

Exemple 3

Montrer que

$$[(a \text{ et } b) \Rightarrow c] \Leftrightarrow [(a \text{ et (non } c)) \Rightarrow (\text{non } b)]$$

C'est encore un enchaînement de calculs à bien présenter

Exemple 3: preuve

$$[(a \text{ et } b) \Rightarrow c] \equiv \text{non}(a \text{ et } b) \text{ ou } c$$
$$\equiv \text{non}(a) \text{ ou non}(b) \text{ ou } c$$

$$[(a \text{ et (non } c)) \Rightarrow (\text{non } b)] \equiv \text{non}(a \text{ et non}(c)) \text{ ou non}(b)$$
$$\equiv \text{non}(a) \text{ ou } c \text{ ou non}(b)$$

Exemple 4 : implications équivalentes

Les implications suivantes sont équivalentes

- $(n \text{ premier et } n > 2) \Rightarrow n \text{ impair}$
- (*n* premier et *n* pair) \Rightarrow $n \le 2$
- $(n > 2 \text{ et } n \text{ pair }) \Rightarrow n \text{ non premier}$
- n pair \Rightarrow (n non premier ou $n \le 2$)
- n premier \Rightarrow (n impair ou $n \le 2$)
- $n > 2 \Rightarrow (n \text{ non premier ou } n \text{ impair})$

Récurrence faible

Soit $\Pi(n)$, $n \in \mathbb{N}$ une propriété à démontrer.

Récurrence faible :

Base : montrer que la propriété est vérifiée pour n = 0.

Induction: montrer que

$$\forall n \in \mathbb{N} \quad [\Pi(n) \Rightarrow \Pi(n+1)]$$

Exemple.
$$\Pi(n) : \sum_{i=0}^{n} i = \frac{n(n+1)}{2}$$

Récurrence forte

Soit $\Pi(n)$, $n \in \mathbb{N}$ une propriété à démontrer.

Récurrence forte :

Base : montrer que la propriété est vérifiée pour n = 0.

Induction: montrer que,

$$\forall n_0 \geq 0 \quad [(\forall n \leq n_0, \Pi(n)) \Rightarrow \Pi(n_0 + 1)]$$

Exemple. Tout entier supérieur ou égal à 2 admet au moins un diviseur premier.

Suites récurrentes linéaires homogènes

Definition

Une suite *récurrente linéaire homogène d'ordre 2* est une suite définie par une relation de récurrence :

$$u_n = au_{n-1} + bu_{n-2}$$
 si $n \ge 2$

et des conditions initiales :

$$u_0 = a_0$$
 $u_1 = a_1$

où a, b, a₀, a₁ sont des constantes réelles.

Un exemple

La suite de Fibonacci est définie par la relation de récurrence :

$$F_n = F_{n-1} + F_{n-2}$$
 si $n \ge 2$

et les conditions initiales :

$$F_0 = 0$$
 $F_1 = 1$

Polynôme caractéristique

Definition

Le polynôme caractéristique associé à la suite récurrente :

$$u_n = au_{n-1} + bu_{n-2}$$
 si $n \ge 2$

est le polynôme :

$$r^2 - ar - b$$

Par exemple, le polynôme caractéristique associé à la suite de Fibonacci est :

$$r^2 - r - 1$$

Solution d'une suite homogène : cas 1

Cas 1 : le polynôme caractéristique a deux racines r_1 et r_2 . Dans ce cas la solution générale de la récurrence :

$$u_n = au_{n-1} + bu_{n-2}$$
 si $n \ge 2$

est de la forme :

$$u_n = \alpha_1 r_1^n + \alpha_2 r_2^n$$

On détermine α_1 et α_2 en utilisant les conditions initiales :

$$\alpha_1 + \alpha_2 = a_0$$

$$\alpha_1 r_1 + \alpha_2 r_2 = a_1$$

Remarque : les racines peuvent être des nombres complexes

Solution d'une suite homogène : cas 2

Cas 2 : le polynôme caractéristique a une racine double r_1 . Dans ce cas la solution générale est de la forme :

$$u_n = \alpha_1 r_1^n + \alpha_2 n r_1^n$$

On détermine α_1 et α_2 en utilisant les conditions initiales, comme dans le cas 1.

Exemple : Fibonacci

- Le polynôme caractéristique est : $r^2 r 1$.
- Les racines sont : $\frac{1+\sqrt{5}}{2}$ et $\frac{1-\sqrt{5}}{2}$.
- La solution générale est de la forme :

$$\alpha_1(\frac{1+\sqrt{5}}{2})^n + \alpha_2(\frac{1-\sqrt{5}}{2})^n.$$

Les conditions initiales entraînent :

$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$$

Suites linéaires d'ordre quelconque

La méthode du polynôme caractéristique se généralise aux suites linéaires d'ordre quelconque, définies par une relation de récurrence :

$$u_n = \lambda_1 u_{n-1} + \lambda_2 u_{n-2} + \dots + \lambda_k u_{n-k}$$
 si $n \ge k$

et des conditions initiales :

$$u_0 = a_0$$
 $u_1 = a_1$... $u_{k-1} = a_{k-1}$

Remarque : si r est une racine d'ordre m du polynôme caractéristique alors les suites r^n , nr^n , ..., $n^{m-1}r^n$ sont solutions de la relation de récurrence.

Suites récurrentes linéaires non homogènes

Definition

Une suite *récurrente linéaire non homogène* est une suite définie par une relation de récurrence :

$$u_n = \lambda_1 u_{n-1} + \lambda_2 u_{n-2} + ... + \lambda_k u_{n-k} + f(n)$$
 si $n \ge k$

et des conditions initiales :

$$u_0 = a_0$$
 , $u_1 = a_1$, ... , $u_{k-1} = a_{k-1}$

où $\lambda_1, \ldots, \lambda_k$, a_0, \ldots, a_{k-1} sont des constantes réelles et f est une fonction de $\mathbb N$ dans $\mathbb R$.

- 4 ロ ト 4 団 ト 4 注 ト 4 注 - か 9 0 0

Suites récurrentes linéaires non homogènes

Pas de méthode générale de calcul d'une solution. Dans certains cas:

- par substitution (cf. TD),
- par une "astuce" de calcul (cf. TD),
- par polynôme caractéristique si f(n) est un polynôme,
- par calcul d'une solution particulière,
- par séries génératrices,
- ...

Notations de Landau : Θ , \mathcal{O} et Ω

Definition

Soient f et g deux fonctions de \mathbb{N} dans \mathbb{R}_+ :

• $f \in \mathcal{O}(g)$ si $\exists D > 0$ et $n_0 \ge 0$ tels que

$$\forall n > n_0 \quad f(n) \leq Dg(n).$$

② $f \in \Omega(g)$ si $\exists C > 0$ et $n_0 \ge 0$ tels que,

$$\forall n > n_0 \quad Cg(n) \leq f(n).$$

$$\forall n > n_0 \quad Cg(n) \leq f(n) \leq Dg(n).$$

Exemples

•
$$5n + 3 \in \mathcal{O}(n^2)$$

$$• 5n + 3 ∈ Θ(n)$$

•
$$5n + 3 \in \Omega(1)$$

•
$$5n^2 + 3n + 4 \in \mathcal{O}(n^3)$$

•
$$5n^2 + 3n + 4 \in \Theta(n^2)$$

•
$$5n^2 + 3n + 4 \in \Omega(n)$$

•
$$n^5 \in \mathcal{O}(2^n)$$

•
$$2^n \in \Omega(n^5)$$

Classement des ordres de grandeur

Inclusions entre ordres de grandeur courants :

$$\mathcal{O}(1) \subset \mathcal{O}(\log n) \subset \mathcal{O}(n) \subset \mathcal{O}(n\log n) \subset \mathcal{O}(n^2) \subset \mathcal{O}(n^3) \subset \mathcal{O}(2^n)$$

Un critère utile

Dans le cas où $\frac{f(n)}{g(n)}$ admet une limite quand $n \to +\infty$:

• si
$$\lim_{n \to +\infty} \frac{f(n)}{g(n)} = 0$$
 alors $f \in \mathcal{O}(g)$ et $f \notin \Omega(g)$

• si
$$\lim_{n \to +\infty} \frac{f(n)}{g(n)} = +\infty$$
 alors $f \in \Omega(g)$ et $f \not\in \mathcal{O}(g)$

•
$$\lim_{n \to +\infty} \frac{f(n)}{g(n)} = \ell \text{ avec } 0 < \ell < +\infty \text{ alors } f \in \Theta(g).$$

Exercice : donner un exemple de f et g telles que $f \in \Theta(g)$ et auxquelles on ne peut pas appliquer le dernier critère.

Sommes

• Somme des entiers de 1 à n :

$$\sum_{i=1}^n i = \frac{n(n+1)}{2}$$

Somme algébrique :

$$\sum_{i=0}^{n} x^{i} = \frac{x^{n+1} - 1}{x - 1}$$

