Chapter 2, Section 4

James Lee

April 23, 2025

1. Show that a finite morphism is proper.

Lemma 1. If $\varphi: A \to B$ is an integral homomorphism of rings, then the corresponding morphism between affine schemes $\varphi^*: \operatorname{Spec} B \to \operatorname{Spec} A$ is a closed mapping.

Proof. We can decompose φ into $A \to A/\ker \varphi \hookrightarrow B$, and $\operatorname{Spec}(A/\ker \varphi)$ is homeomorphic to a closed subspace of $\operatorname{Spec} A$, so we reduce to the case when $\underline{\varphi}$ is injective. Let \mathfrak{b} be any ideal of B, then we want to show $\varphi^*(V(\mathfrak{b})) = V(\mathfrak{b} \cap A)$ (note that in general, we only have $\overline{\varphi}(V(\mathfrak{b})) = V(\varphi^{-1}(\mathfrak{b}))$). This follows from (A.M. 5.10), which states if $A \subseteq B$ are rings, B integral over A, and \mathfrak{p} prime ideal of A, then there exists a prime ideal \mathfrak{q} of B such that $\mathfrak{q} \cap A = \mathfrak{p}$.

Lemma 2. Let $f: B \to B'$ be a homomorphism of A-algebras, and let C be an A-algebra. If f is integral, prove that $f \otimes 1: B \otimes_A C \to B' \otimes_A C$ is integral.

Proof. It suffices to show all pure tensors $b' \otimes c$ in $B' \otimes_A C$ have an equation of integral dependence over $B \otimes_A C$. Since B' is an integral B-algebra, we have

$$b'^n + d_1b'^{n-1} + \dots + d_n = 0$$

for some $d_i \in B$, n > 0, then

$$(b'\otimes c)^n+(d_1\otimes 1)(b'\otimes c)^{n-1}+\cdots+d_n\otimes c=0.$$

Proof. It follows from these lemmas that if $f:A\to B$ is integral and C is any A-algebra, then the mapping $(f\otimes 1)^*:\operatorname{Spec}(B\otimes_A C)\to\operatorname{Spec} C$ is a closed map. Let $f:X\to Y$ be a finite morphism of schemes. A finite morphism is an affine morphism (Ex. 3.4), so by (4.6f) we reduce to the case when $X=\operatorname{Spec} B$ and $Y=\operatorname{Spec} A$, where B is a finite A-module (hence integral over A), and f is induced by a ring homomorphism $A\to B$. Morphisms between affine schemes are separated (4.1), and finite morphisms are of finite type, so it remains to show f is universally closed. If $Y'\to Y$ is any morphism, then we want to show $X\times_Y Y'\to Y'$ is a closed mapping. There is an open cover of Y' by spectra of A-algebras C_i so that the fiber product $X\times_Y Y'$ is covered by spectra of $B\otimes_A C_i$. By the above remarks, the morphisms $\operatorname{Spec}(B\otimes_A C_i)\to\operatorname{Spec} C_i$ are closed, hence $X\times_Y Y'\to Y'$ is closed.

2. Let S be a scheme, let X be a reduced scheme over S, and let Y be a separated scheme over S. Let f and g be two S-morphisms of X to Y which agree on an open dense subset of X. Show that f = g. Give examples to show that this result fails if either (a) X is nonreduced, or (b) Y is nonseparated.

Proof. Let U be an open dense subset of X such that f and g agree on U, let $h: X \to Y \times_S Y$ be the map obtained from f and g, and let $\Delta: Y \to Y \times_S Y$ be the diagonal morphism. By hypothesis, $h(U) \subseteq \Delta(Y)$. But U is dense in X, and $\Delta(Y)$ is closed since Y is separated over S, so $h(X) \subseteq \Delta(Y)$. This says that f and g agree topologically, so $f_*\mathscr{O}_X = g_*\mathscr{O}_X$. Set $\mathscr{O} = f_*\mathscr{O}_X = g_*\mathscr{O}_X$. Let V be open subset of Y, and let $t \in \Gamma(V, \mathscr{O}_Y)$. We want to show $f^\#(t) = g^\#(t) \in \mathscr{O}(V)$. By hypothesis, we have $W = (f^{-1}(V))_{f^\#(t) - g^\#(t)} \subseteq X - U$, but W is an open subset and U is dense, which implies $W = \emptyset$. This implies $f^\#(t) - g^\#(t)$ is nilpotent, but X is reduced, hence $f^\#(t) - g^\#(t) = 0$.

- (a) Let k be a field, let $X = \operatorname{Spec} k[\varepsilon]/(\varepsilon^2)$ (Ex. 2.8), and let Y be any scheme over k. Giving a k-morphism $X \to Y$ is equivalent to giving a point in $y \in Y$ rational over k, and an element of $\mathfrak{m}_y/\mathfrak{m}_y^2$.
- (b) Let X be the affine line, and let Y be the affine line with the origin doubled. We have two possible open immersions of X into Y with each one having either origin in its image, and the open immersions agree on the complement of the origin of X, which is an open dense subset of X.

6. Let $f: X \to Y$ be a proper morphism of affine varieties over k. Then f is a finite morphism.

Proof. Let $X = \operatorname{Spec} B$, $Y = \operatorname{Spec} A$, where A and B are finitely generated k-algebras that are integral domains. Let $\varphi : A \to B$ be a k-algebra homomorphism such that B is a finitely generated A-algebra, and f is induced by φ . Closed immersions are proper, so we reduce to the case when φ is injective. We want to show B is a finite A-module, which is equivalent to B being finitely generated and integral over A, so it suffices to show B is integral over A. Let K be the field of fractions of B so that A and B are subrings of K. By (4.11A), the integral closure of A in K is the intersection of all valuation rings of K which contains A, so it suffices to show B is contained in all such subrings. This is an easy consequence of the valuative criterion of properness: given any valuation ring R containing R, we have inclusions $R \to R$ and $R \to K$ forming a commutative diagram

and the valuation criterion of properness implies there exists a unique homomorphism $B \to R$ making the whole diagram commute. All homomorphisms are inclusions, so $B \to R$ is an inclusion, which is what we wanted to show. (See an alternative proof of this result that uses the universally closed property instead of the valuative criterion in (A.M. Ex. 5.35).)

8. Let \mathscr{P} be a property of morphisms of schemes such that:

- (a) a closed immersion has \mathscr{P} ;
- (b) a composition of two morphisms having \mathscr{P} has \mathscr{P} ;
- (c) \mathcal{P} is stable under base extension.

Then show that:

- (d) a product of morphisms having \mathscr{P} has \mathscr{P} ;
- (e) if $f: X \to Y$ and $g: Y \to Z$ are two morphisms, and if $g \circ f$ has \mathscr{P} and g is separated, then f has \mathscr{P} .
- (f) if $f: X \to Y$ has \mathscr{P} , then $f_{\text{red}}: X_{\text{red}} \to Y_{\text{red}}$ has \mathscr{P} .

Proof.

- (d) Let $X \to Y$ and $X' \to Y'$ be two morphisms having \mathscr{P} . By (c) $X \times_Y (Y \times Y') \to Y \times Y'$ and $X' \times_Y' (Y \times Y') \to Y \times Y'$ have \mathscr{P} . Hence, $X \times X' = (X \times_Y (Y \times Y')) \times_{Y \times Y'} (X' \times_{Y'} (Y \times Y')) \to Y \times Y'$ has \mathscr{P} .
- (e) We can base extend $g \circ f: X \to Z$ by $g: Y \to Z$ so that $h: X \times_Z Y \to Y$ has \mathscr{P} . Then f factors through h, so by (b) it suffices to show $\Gamma_f: X \to X \times_Z Y$ has \mathscr{P} . By hypothesis, the diagonal morphism $\Delta: Y \to Y \times_Z Y$ has \mathscr{P} . We can obtain Γ_f by base extension of Δ by $(f, 1_Y): X \times_Z Y \to Y \times_Z Y$ since $(X \times_Z Y) \times_{Y \times_Z Y} Y \cong X \times_{Y \times_Z Y} (Y \times_Z Y) \cong X$. Hence, by (b) Γ_f has \mathscr{P} .
- (f) By the universal property of the reduced scheme associated to Y, $f_{\rm red}$ is the unique morphism that makes the diagram

commute. The associated morphisms $X_{\rm red} \to X, Y_{\rm red} \to Y$ are closed immersions; in particular, $X_{\rm red} \to Y$ has \mathscr{P} and $Y_{\rm red} \to Y$ is separated. Hence, by (e) $f_{\rm red}$ has \mathscr{P} .

Remark. In the affine case, we can translate the above to statements about rings. Let \mathcal{Q} be a property of homomorphisms of rings such that

- (a') a surjective homomorphism has \mathcal{Q} ;
- (b') a composition of two homomorphisms having \mathcal{Q} has \mathcal{Q} ;
- (c') if $A \to B$ has \mathcal{Q} and C is any A-algebra, then $C \to B \otimes_A C$ has \mathcal{Q} .

Then

- (d') a product of homomorphisms having \mathcal{Q} has \mathcal{Q} ;
- (e') if $\varphi: A \to B$ and $\psi: B \to C$ are two homomorphisms, and if $\psi \circ \varphi$ has \mathcal{Q} , then ψ has \mathcal{Q} ;
- (f') if $\varphi: A \to B$ has \mathscr{Q} , then $\varphi_{\text{red}}: A_{\text{red}} \to B_{\text{red}}$ has \mathscr{Q} .

Note that we can ignore the condition of g separated in (e') since any morphism between affine schemes is separable. Indeed, (e') can be proved from the sequence

$$A \xrightarrow{f} B \xrightarrow{g} C$$

by tensoring with B and extending the sequence as follows

$$B \cong A \otimes_A B \xrightarrow{f \otimes 1_B} B \otimes_A B \xrightarrow{g \otimes 1_B} C \otimes_A B \longrightarrow C$$

where $C \otimes_A B \to C$ is defined by $c \otimes b \mapsto g(b)c$. By (c'), $B \to C \otimes_A B$ has \mathcal{Q} , and $C \otimes_A B \to C$ is surjective, so it has \mathcal{Q} by (a'). Notice that composing the homomorphisms give g, hence by (b') g has \mathcal{Q} .

9. Show that a composition of projective morphisms is projective. Conclude that projective morphisms have properties (a)-(f) of (Ex. 4.8) above.

Proof. By the results of (Ex. 3.13), (4.6), and (4.8), it suffices to show if $f: X \to \mathbb{P}^r$ is a projective morphism, then X is projective over Spec \mathbb{Z} . If f is projective, then there exists a closed embedding $i: X \to \mathbb{P}^r \times \mathbb{P}^s$ such that f factors through $\mathbb{P}^r \to \mathbb{P}^s$. The Segre embedding (§1, 2.14) $\psi: \mathbb{P}^r \times \mathbb{P}^s \to \mathbb{P}^{rs+r+s}$ is a closed embedding, so $\psi \circ i: X \to \mathbb{P}^{rs+r+s}$ is a closed embedding such that $X \to \operatorname{Spec} \mathbb{Z}$ factors through $\mathbb{P}^{rs+r+s} \to \operatorname{Spec} \mathbb{Z}$, which is what we wanted to show.