

L'évacuation avant un tsunami grâce à pgrouting et postgis_topology

Christine Plumejeaud-Perreau

UMR 7266 Littoral Environnement et Sociétés, LIENSs 2 rue Olympe de Gouges, La Rochelle Christine.plumejeaud-perreau@univ-lr.fr

cnrs

Le risque de submersion par Tsunami

 Padang est une ville côtière d'Indonésie qui vit avec un fort aléa de submersion marine. Thèse Henky Mayaguezz

Henky Mayaguezz, Christine Plumejeaud-Perreau, Frédéric Pouget, Frédéric Leone. Evolution spatio-temporelle de l'exposition humaine face au tsunami à Padang: diagnostique de la vulnérabilité et des capacités d'évacuations à l'échelle infra-urbaine. *Revue Internationale de Géomatique*, Lavoisier, 2016, 26 (3), pp.273-306. hal-01432902)

cnrs

Objectif: les refuges verticaux

Utilisation

https://creativecommons.org/licenses/by-nc-sa/4

Christine.plumejeaud-perreau@univ-lr.fr

Cnrs

Données : une enquête de fréquentation

Analyse de la densité de population heure par heure

Calculer l'accessibilité des refuges

https://creativecommons.org/licenses/by-nc-sa/4.0

Postgis_topology : lignes -> graphes


```
select
                                                  1226
topology.CreateTopology('voies', 32747)
                                                          1227
                                                                     4230
                                                   1229
1228
create table voies line (id integer);
select
topology.addTopoGeometryColumn('voies',
'public', 'voies line', 'topogeom',
'MULTILINESTRING')
-- retourne 1
insert into voies line (id, topogeom)
                                                        676
select ogc fid,
topology.toTopoGeom(wkb geometry,
'voies', 1) from
raw data.voie access 32747;
                                                    1212
-- Ce qui a été créé est dans le schéma
voies
```

Cnrs

Pg_routing

- Projet pgRouting : http://pgrouting.org.
 - pgRouting est une extension de la base de données géospatiale
 <u>PostGIS/PostgreSQL</u> afin de proposer des fonctionnalités de routage géospatial et d'autres analyses de réseaux.
 - <u>http://docs.pgrouting.org/2.0/fr/doc/index.html</u> Le Manuel pgRouting est distribué sous <u>Creative Commons Attribution-Share Alike 3.0 License</u>.

Les algorithmes implémentés (Djikstra, etc.) reposent sur la **théorie des graphes** et de la recherche opérationnelle. Cette théorie formalise en effet le problème du commis voyageur (recherche de plus court chemin) comme un problème de minimisation du coût total de parcours d'un ensemble d'arcs.

Cnrs

Application à Padang

Créer la table graph_routier pour pgrouting

```
create table graph routier as
(SELECT v.edge id as id,
       v.start node as source,
       v.end node as target,
       st length(v.geom)/r.vit act cr as cost,
       st x(n1.geom) as x1, st y(n1.geom) as y1,
       st x(n2.geom) as x2, st y(n2.geom) as y2,
       st length(v.geom)/r.vit act pl as reverse cost,
       v.geom as the geom
FROM voies.edge v,
       voies.relation vr,
       raw data.voie access 32747 r,
       voies.node n1,
       voies.node n2
where vr.element id=v.edge id and vr.topogeo id=r.ogc fid
       and v.start node=n1.node id and v.end node=n2.node id
```


Recherche de plus court chemin : Dijkstra

L'algorithme A* (prononcé A étoile) est basé sur l'algorithme de Dijkstra avec une heuristique qui autorise de résoudre la plupart des problèmes de plus court chemin par l'évaluation de seulement un sous-ensemble du graphe général. Retourne un ensemble de ligne pgr_costResult(seq, id1, id2, cost) qui fabriquent un chemin.

Pgr_costResult[] pgr_astar(sql text, source integer, target
 integer, directed boolean, has rcost boolean)

Sur Padang

```
select seq, idl as node, id2 as edge, cost
from

pgr_astar('select id, source, target, cost, x1, y1,
x2, y2 from graph_routier', 677, 639, false, false)
```

seq	node	edge	cost
0	677	586	73.7932023144824
1	468	588	18.6512287677995
2	639	-1	0

https://creativecommons.org/licenses/by-nc-sa/4 Christine.plumejeaud-perreau@univ-lr.fr

Illustration

Algorithme simple

- Construire le graphe routier, avec deux paramètres supplémentaires : la vitesse de déplacement en heure creuse ou pleine sur chaque segment.
- Initialiser une relation chemin (identifiant, objet, nœud_depart, vide, refuge, nœud_destination, disponible, coût_réseau, coût_hors_réseau, coût_total, séquence de déplacement) avec les coûts et les séquences vides.
- A chaque pas de temps,
 - Mettre à jour les coûts de déplacement sur les arcs du graphe routier.
 - Calculer les chemins les plus courts entre les couples (nœuds départ, nœuds arrivée) pour chaque objet <u>non vide</u> vers chaque refuge <u>disponible</u>. Mettre à jour la relation chemin.
 - Pour chaque objet (bati, voie, zone de plein-air)
 - Sélectionner le refuge dont le cout de transport est minimum pour cet objet.
 - Enregistrer la relation évacuation (pas de temps, ce refuge, cet objet, part du population de l'objet évacuée, chemin).
 - Faire le bilan pour chaque refuge afin de détecter une saturation en population : si la somme des populations recueillies dans le refuge atteint 95% ou plus de la CAMC du refuge, alors le refuge est mis indisponible.
 - Faire le bilan pour chaque objet afin de détecter s'il est complètement vidé (la somme des parts des populations évacuées est égale à 100% de la population initiale de l'objet).

Paramètres

- Les paramètres d'entrée de l'algorithme sont donc :
 - 1. la classe de jour d'arrivée du tsunami
 - l'heure d'arrivée du tsunami
 - le temps d'évacuation maximum
 - 4. le pas de temps (la minute)
 - 5. la taille du buffer de sélection des nœuds proches des cibles (100m)
 - 6. le niveau maximal d'occupation toléré pour les refuges (95%)
 - 7. la part de personnes évacuées d'une zone à chaque pas de temps : 25% par exemple
 - 8. les vitesses de déplacement en heures creuses ou pleines sur les arcs
 - 9. la population présente dans chaque objet à l'heure de déclenchement de l'évacuation
 - 10. le maximum d'encombrement observé sur chaque arc habituellement. Lorsque l'arc sera encombré à hauteur de 50% de cet encombrement, on passe alors en heures pleines.
- Les paramètres 8, 9, 10 sont lus ou calculés dans le schéma de padang :
 - 8 dans les tables voie_access,
 - 9 dans occupation_bati_all, occupation_voie_all, occupation_plein_air
 - 10 dans occupation_voie_all

Résultats

Simulation d'une évacuation à Padang (Indonésie - 75 000 hab.), un jour de semaine à 10h.

Thèse Henky Mayaguezz

https://creativecommons.org/licenses/by-nc-sa/4

Christine.plumejeaud-perreau@univ-Ir.fr

https://creativecommons.org/licenses/by-nc-sa/4 Christine.plumejeaud-perreau@univ-lr.fr

Couverture spatiale des refuges

Vitesse de remplissage des refuges

Diagnostique des refuges en sous-capacité

Accessibilité des refuges

Temps moyen d'accès au refuges en secondes dans les différents scénarios

Average access time per refuge

Conclusion

- Postgis_topology : transformation en graphe des objets linéaires ou surfaciques
 - Economie de place
 - Vérification de cohérence
- PgRouting : analyse de réseaux
 - Recherche du plus court chemin
 - Et bien d'autres : lire la doc !!

http://www.postgis.fr/chrome/site/docs/workshop-routing-foss4g/docs/pgRoutingWorkshop.pdf