

Кафедра геодезії та картографії

Спеціальність 193 "Геодезія та землеустрій"

Дисципліна МАТЕМАТИЧНА ОБРОБКА ГЕОДЕЗИЧНИХ ВИМІРІВ Модуль 2 ЕЛЕМЕНТИ ТЕОРІЇ ПОХИБОК ВИМІРІВ

Лектор О.А.Тадєєв

Тема 3

МАТЕМАТИЧНА ОБРОБКА НЕРІВНОТОЧНИХ ВИМІРІВ ВЕЛИЧИНИ

- 1. Зміст і мета розв'язування завдання
- 2. Загальна арифметична середина
- 3. Ваги вимірів та функцій виміряних величин
- 4. Середня квадратична похибка одиниці ваги. Похибки вимірів і загальної арифметичної середини
- 5. Формули обчислення середньої квадратичної похибки одиниці ваги

1. Зміст і мета розв'язування завдання

Нерівноточними вимірами окремої фізичної величини називають виміри, які проведено в різних умовах. З точки зору числових оцінок точності нерівноточні виміри характеризуються різними як істинними, так і середніми квадратичними похибками.

Постановка завдання

Проведено n нерівноточних вимірів величини.

 $x_1, x_2, ..., x_n$ - результати вимірів.

 $m_1 \neq m_2 \neq ... \neq m_n$ - середні квадратичні похибки результатів вимірів.

Істинне значення X та істинні похибки $\theta_i = x_i - X$ результатів вимірів невідомі.

За результатами математичної обробки результатів вимірів величини необхідно визначити:

- 1) найбільш надійне значення величини \widetilde{x} , яке має замінити і бути найбільш близьким до істинного;
- 2) середню квадратичну похибку найбільш надійного значення $m_{\widetilde{\chi}}$;
- 3) середні квадратичні похибки вимірів $m_1, m_2, ..., m_n$.

2. Загальна арифметична середина

За умови відсутності в результатах вимірів x_i систематичних похибок $\delta = M[x] - X$ їх точність визначається лише випадковими похибками $\zeta_i = x_i - M[x]$, які підпорядковуються нормальному законові розподілу. За такої умови істинне значення X вимірюваної величини замінюють найбільш надійним значенням \tilde{x} , яке за ймовірністю є найбільш близьким до істинного і ототожнюється з математичним сподіванням M[X] . M[X] відповідає найбільшому значенню ймовірності сукупності результатів вимірів цієї величини. Це слідує з функції щільності нормального закону розподілу

$$f(x_i) = \frac{1}{\sigma_i \sqrt{2\pi}} e^{-\frac{(x_i - M[X])^2}{2\sigma_i^2}}$$

$$f(x)$$

Максимум $\frac{1}{\sigma_i\sqrt{2\pi}}$ функції $f(x_i)$ досягається при найменшому значенні показника степені $\frac{f(x)}{\sigma_i\sqrt{2\pi}}$

$$F = \sum_{i=1}^{n} \frac{(x_i - M[X])^2}{2\sigma_i^2} = \min$$

Максимум функції $f(x_i)$ відповідає центру розподілу, яким є математичне сподівання $\mathit{M}[X]$.

2. Загальна арифметична середина

Таким чином, найбільшу ймовірність сукупності результатів вимірів x_i і найбільш надійне значення \widetilde{x} цих результатів можна отримати лише за умови мінімуму функції виду

$$F=\sum_{i=1}^n rac{(x_i-M[X])^2}{2\sigma_i^2}=\min$$
 або $F=\sum_{i=1}^n rac{(x_i-\widetilde{x})^2}{2m_i^2}=\min$, враховуючи, що $\sigma_i=m_i$, а $M[X]$ ототожнюється з \widetilde{x} . Розв'язок поставленої задачі можливий, якщо

враховуючи, що $\sigma_i = m_i$, а M[X] ототожнюється з \tilde{x} . Розв'язок поставленої задачі можливий, якщо частинні похідні функції дорівнюють нулю: $\frac{dF}{dx_i} = 0$

Після диференціювання отримаємо:

$$\frac{d}{dx_i} \left\{ \frac{(x_1 - \tilde{x})^2}{2m_1^2} + \dots + \frac{(x_n - \tilde{x})^2}{2m_n^2} \right\} = 2\frac{x_1 - \tilde{x}}{2m_1^2} + \dots + 2\frac{x_n - \tilde{x}}{2m_n^2} = 0 \qquad x_1 \frac{c}{m_1^2} - \tilde{x} \frac{c}{m_1^2} + \dots + x_n \frac{c}{m_n^2} - \tilde{x} \frac{c}{m_n^2} = [x \frac{c}{m^2}] - \tilde{x} [\frac{c}{m^2}] = 0$$

де c - довільний сталий додатній коефіцієнт пропорційності. Звідси найбільш надійне значення

$$\widetilde{x} = \frac{\left[x - \frac{c}{m^2}\right]}{\left[\frac{c}{m^2}\right]}$$
 afo $\widetilde{x} = \frac{\left[xp\right]}{\left[p\right]}$

Відношення $\frac{c}{m_i^2} = p_i$ називають **ваги нерівноточних результатів вимірів величини**.

Величина \tilde{x} - це найбільш надійне значення нерівноточних вимірів величини і називається середнє вагове або загальна арифметична середина. В деяких практичних задачах \tilde{x} зручно обчислювати за формулою $\tilde{x} = x_{\min} + \frac{[p\varepsilon]}{[p]}$

де x_{\min} - найменший результат вимірів ; $\varepsilon_i = x_i - x_{\min}$.

3. Ваги вимірів та функцій виміряних величин Ваги вимірів

Вагами вимірів називають безрозмірні показники ступеню довіри до результатів нерівноточних вимірів величини. З такого визначення слідує, що більшим за числовим значенням вагам вимірів відповідає вища точність вимірів (або менша середня квадратична похибка). Тому ваги і середні квадратичні похибки мають обернену пропорційну залежність: $p_i = \frac{c}{m_i^2}$

На практиці часто середні квадратичні похибки вимірів невідомі, але аналіз умов вимірів дає підстави вважати отримані результати нерівноточними. Тоді ваги вимірів встановлюють за існуючими підставами і в кожному конкретному випадку при обчисленні ваг враховують як саме зміна тих чи інших умов впливає на точність результатів вимірів. Деякі типові приклади обчислення ваг:

• кут вимірювали різним числом прийомів k_i . Збільшення числа прийомів зумовлює підвищення точності отриманих результатів вимірів і вага має розраховуватись із прямої залежності від числа прийомів:

$$p_i = \frac{k_i}{c}$$

- перевищення визначали різним числом станцій K_i . Збільшення числа станцій зумовлює зниження точності результатів вимірів перевищення і вага повинна обчислюватись із оберненої співвідносної залежності з числом станцій: $p_i = \frac{c}{K_i}$
- перевищення визначали за ходами різної довжини S_i . Збільшення довжини ходу зумовлює зниження точності результатів вимірів перевищення і вага повинна обчислюватись із оберненої співвідносної залежності з довжиною ходу: $p_i = \frac{c}{c}$

Вибір коефіцієнта *с* не змінює кінцевих результатів обробки вимірів. Він відіграє роль коефіцієнта пропорційності. Принципово важливим є не порядок ваг, а їх взаємні співвідношення між собою. Коефіцієнт *с* встановлюють з такого розрахунку, щоб ваги були близькими до одиниці - це спрощує виконання подальших розрахунків.

3. Ваги вимірів та функцій виміряних величин Ваги функцій виміряних величин

Дане завдання розв'язується аналогічно завданню визначення середньої квадратичної похибки m_F функції $F = f(x_1,...,x_n)$ виміряних величин $x_1,x_2,...,x_n$:

$$m_F^2 = \sum_{i=1}^n \left(\frac{\partial f}{\partial x_i}\right)_0^2 \cdot m_i^2 + 2\sum_{i < j} \left(\frac{\partial f}{\partial x_i}\right)_0 \cdot \left(\frac{\partial f}{\partial x_j}\right)_0 \cdot r_{i,j} \cdot m_i \cdot m_j$$

Коефіцієнт кореляції r_{ij} виражає ймовірну залежність результатів вимірів $x_1, x_2, ..., x_n$. Беручи до уваги співвідношення ваг та середніх квадратичних похибок результатів вимірів

$$p_i = \frac{1}{m_i^2}$$

для оберненої ваги $\frac{1}{P_F}$ функції залежних аргументів отримаємо:

$$\frac{1}{P_F} = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_i}\right)_0^2 \frac{1}{p_i} + 2\sum_{i < j} \left(\frac{\partial f}{\partial x_i}\right)_0 \left(\frac{\partial f}{\partial x_j}\right)_0 \frac{r_{ij}}{\sqrt{p_i p_j}}$$

Для оберненої ваги функції незалежних аргументів

$$\frac{1}{P_F} = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_i}\right)_0^2 \frac{1}{p_i}$$

3. Ваги вимірів та функцій виміряних величин Вага загальної арифметичної середини

Загальна арифметична середина \widetilde{x} ε функцією $F=f(x_1,...,x_n)$ результатів нерівноточних вимірів $x_1,x_2,...,x_n$: $\widetilde{x}=\frac{[xp]}{[p]}=\frac{x_1p_1+...+x_np_n}{[p]}=F$

Застосовуючи до неї формулу обчислення оберненої ваги функції незалежних результатів вимірів

$$\frac{1}{P_F} = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_i}\right)_0^2 \frac{1}{p_i}$$

отримаємо:

$$\frac{1}{P_F} = \frac{1}{P_{\widetilde{x}}} = \frac{p_1^2}{[p]^2} \cdot \frac{1}{p_1} + \dots + \frac{p_n^2}{[p]^2} \cdot \frac{1}{p_n} = \frac{1}{[p]^2} (p_1 + \dots + p_n) = \frac{1}{[p]}$$

Остаточно

$$P_{\widetilde{X}} = [p]$$

4. Середня квадратична похибка одиниці ваги Похибки вимірів і загальної арифметичної середини

Виділимо з результатів x_i нерівноточних вимірів величини значення x_k , в якого вага дорівнює одиниці, тобто $p_k=1$. Середню квадратичну похибку m_k такого результату позначують μ . Тоді

$$p_k = \frac{\mu^2}{m_k^2} = 1 \qquad i \qquad \mu = m_k = \sqrt{c}$$

Величину μ називають середня квадратична похибка одиниці ваги. Середня квадратична похибка одиниці ваги - це похибка результатів нерівноточних вимірів, в яких вага дорівнює одиниці.

Беручи до уваги, що вага будь-якого результату $p_i = \frac{c}{m_i^2}$, отримаємо $\mu = m_i \sqrt{p_i}$. З цього слідує:

тобто середні квадратичні похибки результатів нерівноточних вимірів величини виражаються через середню квадратичну похибку одиниці ваги і ваги відповідних результатів. Для середньої квадратичної похибки загальної арифметичної середини

$$m_{\widetilde{x}} = M = \frac{\mu}{\sqrt{P_{\widetilde{x}}}} = \frac{\mu}{\sqrt{[p]}}$$

Таким чином, **середню квадратичну похибку одиниці ваги при оцінці точності нерівноточних вимірів потрібно обчислювати завжди** незалежно від того, чи є серед вимірів результати з вагою, яка дорівнює одиниці, чи такі результати відсутні.

5. Формули обчислення середньої квадратичної похибки одиниці ваги Середня квадратична похибка одиниці ваги, обчислена за істинними похибками вимірів

За умови відомого істинного значення Х вимірюваної величини можна оцінити:

1. Істинні похибки нерівноточних результатів вимірів

$$\theta_i = x_i - X$$

2. Середню квадратичну похибку одиниці ваги

$$\mu = \sqrt{\frac{[p\theta^2]}{n}}$$

Дана формула називається формула Гаусса для обчислення похибки одиниці ваги. Вона є узагальненням формули Гаусса для оцінювання похибок результатів рівноточних вимірів і еквівалентна формулі характеристики середнього квадратичного відхилення (стандарту) σ розподілу випадкової величини, якою оперують у теорії ймовірностей і математичній статистиці.

За умови невідомого істинного значення X вимірюваної величини здійснити оцінювання точності результатів вимірів з використанням зазначених формул неможливо.

5. Формули обчислення середньої квадратичної похибки одиниці ваги Відхилення результатів вимірів від загальної арифметичної середини

За умови невідомого істинного значення X вимірюваної величини його замінюють найбільш надійним значенням \widetilde{x} , яке обчислюють за принципом загальної арифметичної середини. Тоді в основу оцінки точності покладають відхилення $v_i = x_i - \widetilde{x}$

Властивості відхилень v_i .

Обґрунтування властивостей здійснюється на такій же основі, як і для рівноточних вимірів.

1. Алгебраїчна сума добутків відхилень v_i на відповідні їм ваги p_i завжди дорівнює нулю: [vp] = 0

Якщо значення \widetilde{x} заокруглюють і має місце похибка заокруглення $\Delta = \widetilde{x} - \widetilde{x}_{o\kappa p}$, то $[vp] = \Delta[p]$.

2. Сума добутків квадратів відхилень v_i на відповідні їм ваги p_i мінімальна і завжди менша від суми добутків квадратів відхилень тих же результатів вимірів від будь-якої іншої величини $x' \neq \widetilde{x}$, на відповідні їм ваги:

$$[pv^2] = \min < [p\varepsilon^2]$$
 де $\varepsilon_i = x_i - x'$

3 цієї властивості слідує рівняння, яке використовують для контролю проміжних обчислень:

$$[pv^2] = [p\varepsilon^2] - \frac{[p\varepsilon]^2}{[p]}$$

5. Формули обчислення середньої квадратичної похибки одиниці ваги

Середня квадратична похибка одиниці ваги, обчислена за відхиленнями v_i .

Виразимо різницю $\theta_i - v_i$, беручи до уваги, що $\theta_i = x_i - X$ і $v_i = x_i - \widetilde{x}$:

$$\theta_i - v_i = x_i - X - x_i + \widetilde{x} = \widetilde{x} - X = \eta$$

Величина $\eta = \theta_F$ - це істинна похибка загальної арифметичної середини.

Здійснимо арифметичні перетворення рівняння
$$\theta_i = v_i + \eta$$
: $\theta_i^2 = v_i^2 + \eta^2 + 2v_i\eta$ $\theta_i^2 p_i = v_i^2 p_i + \eta^2 p_i + 2v_i\eta p_i$ $\theta_i^2 p_i = v_i^2 p_i + \eta^2 p_i + 2v_i\eta p_i$ $\theta_i^2 p_i = [v^2 p] + \eta^2 [p] + 2\eta [vp] = [v^2 p] + \eta^2 [p]$ $\frac{[\theta^2 p]}{n} = \frac{[v^2 p]}{n} + \frac{\eta^2 [p]}{n} = \mu^2$, що слідує з формули Гаусса $\mu = \sqrt{\frac{[p\theta^2]}{n}}$ Беручи до уваги граничну умову $\lim_{n \to \infty} M = \eta$, маємо $\eta^2 = M^2 = \frac{\mu^2}{[p]}$, де $M = \frac{\mu}{\sqrt{[p]}}$. На цій основі: $n \to \infty$ $\frac{[v^2 p]}{n} = \mu^2 - \frac{\mu^2}{n} = \frac{\mu^2 (n-1)}{n}$ $\frac{[v^2 p] = \mu^2 (n-1)}{n}$ $\frac{[v^2 p] = \mu^2 (n-1)}{n}$

Отримана формула називається формула Бесселя для обчислення середньої квадратичної похибки одиниці ваги за відхиленнями результатів вимірів від загальної арифметичної середини.

Черговість дій

при математичній обробці результатів нерівноточних вимірів величини

- 1. Обчислення ваг вимірів за аналізом умов проведення вимірів і підставами вважати отримані результати нерівноточними.
- 2. Обчислення найбільш надійного значення (загальної арифметичної середини) за формулами

$$\widetilde{x}=rac{[xp]}{[p]}$$
 або $\widetilde{x}=x_{\min}+rac{[parepsilon]}{[p]}$ 3. Обчислення відхилень $v_i=x_i-\widetilde{x}$ та $arepsilon_i=x_i-x_{\min}$.

Контролі обчислень: 1) $[vp] = \Delta[p]$, де $\Delta = \tilde{x} - \tilde{x}_{o\kappa p}$ 2) $[pv^2] = [p\varepsilon^2] - \frac{[p\varepsilon]^2}{[p]}$

4. Обчислення середньої квадратичної похибки одиниці ваги за формулою Бесселя

$$\mu = \sqrt{\frac{[pv^2]}{n-1}}$$

5. Обчислення середніх квадратичних похибок вимірів

$$m_i = \frac{\mu}{\sqrt{p_i}}$$

6. Обчислення середньої квадратичної похибки загальної арифметичної середини

$$m_{\widetilde{X}} = M = \frac{\mu}{\sqrt{[p]}}$$

Довірчий інтервал для істинного значення величини

Загальна арифметична середина \widetilde{x} приблизно виражає істинне значення величини X. Похибку заміни невідомого істинного значення простою арифметичною серединою можна визначити шляхом побудови довірчого інтервалу I_{β} при заданій довірчій імовірності β , використовуючи \widetilde{x} та її середню квадратичну похибку M :

$$I_{\beta} = \left(\widetilde{x} - t_{\beta}M; \widetilde{x} + t_{\beta}M\right)$$

При кількості вимірів n < 20 коефіцієнт t_{β} визначають з таблиць розподілу Стьюдента.

При кількості вимірів $n \ge 20$ розподіл Стьюдента мало відрізняється від нормального, тому коефіцієнт t_{β} визначають як параметр нормального закону розподілу на основі формули

$$t_{\beta} = \arg \Phi^*(\frac{1+\beta}{2})$$

Довірчий інтервал I_{eta} вказує границі, в яких з ймовірністю eta буде знаходитись невідоме істинне значення вимірюваної величини X :

$$\widetilde{x} - t_{\beta} M \le X \le \widetilde{x} + t_{\beta} M$$

Оцінка точності значень середніх квадратичних похибок

При великій кількості вимірів середні квадратичні похибки одиниці ваги μ , вимірів m_i та найбільш надійного значення M обчислюються достатньо надійно.

На практиці часто кількість вимірів обмежена порядком 10-20. В таких випадках похибки μ , m_i та M є сумнівними і в достатній мірі неточними. Тому при математичній обробці результатів за кількістю вимірів n < 20 рекомендується виконувати оцінку точності середніх квадратичних похибок μ , m_i та M . Для цього обчислюють середні квадратичні похибки m_μ , m_{m_i} та m_M значень відповідних середніх квадратичних похибок :

$$m_{\mu} \approx \frac{\mu}{\sqrt{2(n-1)}}$$
 $m_{m_i} \approx \frac{m_i}{\sqrt{2(n-1)}}$ $m_M \approx \frac{M}{\sqrt{2(n-1)}}$