APEC Math Review Part 2 Sets

Ling Yao

August, 2020

Vocabulary

- Set
 - $A = \{US, Columbia, Malawi, China\},$
 - $\mathbb{R}_+ \equiv \{x | x \geq 0\}$
 - I Integers
- Element
 - US ∈ A
 - $0 \in \mathbb{R}_+$, $0 \notin \mathbb{R}_{++}$
- Subset
 - $A \subset U = \{ all \ countries \ in \ the \ world \}$
 - $\mathbb{R}_+ \subset \mathbb{R}$
- Empty set
 - ∅ = {plant with black flowers}

Vocabulary

- Complement:
 A^c
- Set difference:A\B
- Intersection:A ∩ B
- Union: *A* ∪ *B*

Figure A1.1. Venn diagrams.

Source: Jehle & Reny (2011)

Vocabulary

Set product - a set of ordered pairs

$$S \times T \equiv \{(s, t) | s \in S, t \in T\}$$

N-dimensional Euclidean space

$$\mathbb{R}^n \equiv \mathbb{R} \times \mathbb{R} \times ... \times \mathbb{R} \equiv \{(x_1, ..., x_n) | x_i \in \mathbb{R}, \forall i = 1, ..., n\}$$

Cartesian Plane

$$\mathbb{R}^2 \equiv \mathbb{R} \times \mathbb{R} \equiv \{(x_1, x_2) | x_1 \in \mathbb{R}, x_2 \in \mathbb{R}\}$$

Budget set

Probability simplex

$$\{(p_1, p_2, p_3)|p_i \in [0, 1] \text{ for } i = 1, 2, 3; p_1 + p_2 + p_3 = 1\}$$

Source: Glewwe APEC 8001 lecture notes

Convex set

 $\mathcal{S} \subset \mathbb{R}^n$ is a convex set of for all $\mathbf{x}^1 \in \mathcal{S}$ and $\mathbf{x}^2 \in \mathcal{S}$, we have

$$t\mathbf{x}^1+(1-t)\mathbf{x}^2\in\mathcal{S}$$

for all *t* in the interval $0 \le t \le 1$.

Figure A1.4. Some convex combinations in \mathbb{R}^2 .

Source: Jehle & Reny (2011)

Convex set

Question: Are these sets convex?

- Ø
- ullet \mathbb{R}
- $S \cup T$ (S and T are convex)
- $S \cap T$ (S and T are convex)
- inputs combinations sufficient for producing a certain quantity of output

Input requirement set

• The open ε -ball with center \mathbf{x}^0 and radius $\varepsilon > 0$ is a subset of points in \mathbb{R}^n :

$$B_{\varepsilon}(\mathbf{x}^0) \equiv \{\mathbf{x} \in \mathbb{R}^n | d(\mathbf{x}^0, \mathbf{x}) < \varepsilon\}$$

• The closed ε -ball:

$$B_{\varepsilon}(\mathbf{x}^0) \equiv \{\mathbf{x} \in \mathbb{R}^n | d(\mathbf{x}^0, \mathbf{x}) \leq \varepsilon\}$$

Figure A1.10. Balls in $\mathbb R$ and $\mathbb R^2$. Source: Jehle & Reny (2011)

- $S \subset \mathbb{R}^n$ is an **open set** if for all $\mathbf{x} \in S$, there exists some $\varepsilon > 0$ such that $B_{\varepsilon}(\mathbf{x}) \subset S$.
- *S* is a **closed set** if its complement *S*^c is an open set.

Question: Are these sets open or closed?

- Ø
- ℝⁿ
- the union of open sets
- the intersection of any finite number of open sets
- · the union of any finite number of closed sets
- the intersection of closed set
- the intersection of a closed set and an open set

Bounded set

A set $S \subset \mathbb{R}^n$ is **bounded** if it is entirely contained with some ε -ball (either open or closed).

Compact set

A set $S \subset \mathbb{R}^n$ is **compact** if it is both closed and bounded.

Separating hyperplane theorem

Given $\mathbf{p} \in \mathbb{R}^n$ with $p \neq 0$ and $c \in \mathbb{R}$, the **hyperplane** generated is the set $H_{\mathbf{p},c} = \{z \in \mathbb{R}^n | \mathbf{p} \cdot \mathbf{z} = c\}$

Separating hyperplane theorem

Suppose the $B \subset \mathbb{R}^n$ is a convex and closed set and that $\mathbf{x} \notin B$. Then there is $\mathbf{p} \in \mathbb{R}^n$ and a value $c \in \mathbb{R}$ such that $\mathbf{p} \cdot \mathbf{x} > c$ and $\mathbf{p} \cdot \mathbf{y} < c$ for every $\mathbf{y} \in B$

It is used to prove the Second Welfare theorem, which implies for any initial endowment distribution, there is a price set that supports a redistribution of endowments toward a Pareto optimal in an exchange economy.

Separating hyperplane theorem

Proof:

- We can find a point $y \in B$ that is closest to the $x \notin B$.
- 2 Denote $\mathbf{p} = \mathbf{x} \mathbf{y}$ and $\mathbf{c}' = \mathbf{p} * \mathbf{y}$.
- **3** $px c' = px py = (x y)^2 > 0.$
- 4 For any $\mathbf{z} \in B$, $\mathbf{p} * (\mathbf{z} \mathbf{y}) = \mathbf{pz} c' \le 0$ because vector \mathbf{p} and $\mathbf{z} \mathbf{y}$ cannot make an acute angle.
- **5** $\mathbf{px} > c'$ and $\mathbf{pz} \le c' \implies \exists \varepsilon \to 0$ such that $\mathbf{p} * \mathbf{x} > c$ and $\mathbf{p} * \mathbf{y} < c$ for $c = c' + \varepsilon$.