ANN-to-SNN Conversion

Naman

July 1, 2025

Introduction

- Spiking Neural Networks (SNNs) mimic brain neurons by firing discrete spikes whenever a threshold is crossed, offering significant advantages like low power consumption and fast inference on neuromorphic hardware.
- Traditional Artificial Neural Networks (ANNs) achieve high accuracy and are simpler to train, but they consume more energy.
- Converting ANNs into SNNs combines the advantages of easy ANN training and efficient SNN deployment.
- A major challenge in ANN-to-SNN conversion is achieving high accuracy with fewer computational steps (time-steps); for example, using only T=4 steps drastically reduces performance, limiting real-world usage.

Neuron Models in ANN and SNN

ANN Neuron Model:

$$a^l = h(W^l a^{l-1}), \quad h(x) = \max(0, x)$$

- ullet a^l : activations of layer l
- ullet W^l : weight matrix
- $h(\cdot)$: ReLU activation

SNN Neuron Model (Integrate-and-Fire):

$$\begin{split} m^l(t) &= v^l(t-1) + W^l \, x^{l-1}(t), \\ s^l(t) &= H \big(m^l(t) - \theta^l \big), \quad v^l(t) = m^l(t) - \theta^l \, s^l(t) \end{split}$$

- $v^l(t)$: membrane potential
- $s^l(t)$: binary spike output
- θ^l : firing threshold
- $H(\cdot)$: Heaviside step function

Naman

Conversion Errors

There are three types of conversion errors:

- Clipping Error
- Quantization Error
- Unevenness Error

Clipping & Quantization Errors

1. Clipping Error

$$\phi_l(T) \in [0, \theta_l]$$
 but $a_l \in [0, a_{l,\max}],$

so any ANN activation $a_l > \theta_l$ is *clipped* to θ_l in the SNN.

2. Quantization Error

$$\phi_l(T) = \text{clip}\left(\frac{\theta_l}{T} \left\lfloor \frac{a_l T}{\lambda_l} \right\rfloor, 0, \theta_l\right),$$

where $\lfloor \cdot \rfloor$ forces continuous ANN outputs onto discrete spike counts, introducing rounding errors.

Unevenness Error

3. Unevenness Error

Even when the total number of spikes $\sum_t s^l(t)$ matches the ANN activation, their timing may be clustered:

$$s^l(t)$$
 concentrated early or late $\implies \phi_l(T)
eq W^l \phi_{l-1}(T)$

Non-uniform spike timing alters how downstream neurons integrate inputs, causing discrepancies from the expected rate-based value.

Quantization Clip-Floor-Shift (QCFS) Activation

Standard Quantized Activation

$$\bar{h}(z_l) = \lambda_l \operatorname{clip}\left(\frac{1}{L} \left\lfloor \frac{z_l L}{\lambda_l} \right\rfloor, 0, 1\right).$$

With Shift Term φ

$$\hat{h}(z_l) = \lambda_l \operatorname{clip}\left(\frac{1}{L} \left\lfloor \frac{z_l L}{\lambda_l} + \varphi \right\rfloor, 0, 1\right).$$

- L: quantization steps in ANN
- $\theta_l = \lambda_l$, T: SNN time-steps
- Adding $\varphi = \frac{1}{2}$ centers the quantization error distribution

Naman

Theorem 1: Zero Error When T = L

Theorem

If an ANN uses \bar{h} with L=T, $\varphi=0$, and we convert to an SNN with thresholds $\theta_l=\lambda_l$ and reset-by-subtraction, then

$$\widetilde{\mathrm{Err}}_l = \phi_l(T) - a_l = 0$$
 for every layer l .

Sketch.

Under these conditions both $\lfloor \cdot \rfloor$ and clipping match exactly between ANN and SNN rates.

Theorem 2: Zero Expected Error for Any T, L

Theorem

Using the shifted QCFS activation with $\varphi = \frac{1}{2}$, then for any T, L, if we set

$$\theta_l = \lambda_l, \quad v_l(0) = \theta_l \, \varphi,$$

the expected conversion error vanishes:

$$\mathbb{E}_z\big[\widetilde{\mathrm{Err}}_l\big] = 0.$$

Sketch.

By modeling z_l uniformly across each quantization bin, the half-step shift symmetrizes rounding so positive and negative errors cancel in expectation.

Results: VGG-16 on CIFAR-10

- Quantization steps $L \in \{4, 8, 16, 32\}$
- Time-steps $T \in \{4, 8, 16, 32, 64, 128\}$

$L \backslash T$	4	8	16	32	64	128
	93.58%					
	93.24%					
	92.00%					
32	90.28%	94.08%	95.49%	95.89%	95.93%	95.87%

Table: Accuracy (%) of converted SNN for varying L, T.

Results: ResNet-20 on CIFAR-10

- Quantization steps $L \in \{4, 8, 16, 32\}$
- Time-steps $T \in \{4, 8, 16, 32, 64, 128\}$

$L \backslash T$	4	8	16	32	64	128
	83.71%					
	76.75%					
16	61.06%	81.37%	91.02%	92.95%	93.49%	93.52%
32	35.62%	65.96%	88.00%	92.92%	93.34%	93.05%

Table: Accuracy (%) of converted SNN for varying L, T.

QCFS Activation and Regularizer

QCFS Activation

QCFS(z) =
$$\lambda \cdot \frac{\left\lfloor \frac{zL}{\lambda} + 0.5 \right\rfloor - 0.5}{L}$$

QCFS Regularization Loss

$$\mathcal{L}_{QCFS} = \frac{1}{N} \sum_{i=1}^{N} (z_i - q_i)^2, \quad q_i = QCFS(z_i)$$

Naman

Mechanism

- **1** Clip activations to $[0, \lambda]$.
- **2** Floor with shift +0.5 to achieve nearest-bin rounding.
- Shift back and scale, ensuring zero-mean rounding error.
- 4 Regularizer penalizes $(z-q)^2$, pulling z to bin centers.

Experimental Setup

- Model: VGG16 on CIFAR-10
- QCFS weights: $w_q = 0.1, 0.2, 0.3$
- Quantization levels: L=8
- Time-steps: T = 1, 2, 4, 8, 16, 32, 64, 128

Accuracy vs. Time-steps

Т	$w_q=0$	$w_q=0.1$	$w_q=0.2$	$w_q=0.3$
1	62.89%	69.95%	71.48%	71.05%
2	83.93%	86.27%	86.30%	87.32%
4	91.77%	93.34%	93.73%	93.30%
8	94.45%	94.93%	95.25%	95.17%
16	95.22%	95.69%	95.63%	95.66%
32	95.56%	95.81%	95.78%	95.86%
64	95.74%	95.87%	95.88%	_
128	95.79%	95.84%	95.85%	_

Key Observations

• Low-T boost: The QCFS regularizer yields over 8% absolute accuracy gain at T=1 compared to baseline.

Tiny ImageNet: VGG-16 QCFS Regularizer Effect

Т	$w_q=0$ (no reg)	$w_q = 0.05$ (with reg)
1	10.71%	11.43%
2	16.67%	17.41%
4	27.67%	28.70%
8	42.62%	43.39%
16	54.41%	55.52%
32	60.10%	60.49%

Table: VGG-16 accuracy on Tiny ImageNet across time-steps.

ANN-to-SNN Conversion

Per-Layer Spike Rates (T=1)

Without QCFS Regularizer

10.71 [layer1.2] spike rate=0.0622 [layer1.6] spike rate=0.0909 [layer2.2] spike_rate=0.0569 [layer2.6] spike rate=0.0600 [layer3.2] spike rate=0.0569 [layer3.6] spike rate=0.0547 [layer3.10] spike rate=0.0375 [layer4.2] spike rate=0.0287 [layer4.6] spike rate=0.0217 [layer4.10] spike rate=0.0149 [layer5.2] spike rate=0.0173 [layer5.6] spike rate=0.0225 [layer5.10] spike rate=0.2587 [classifier.2] spike_rate=0.1922 [classifier.5] spike_rate=0.1749

With QCFS Regularizer

```
11.43
[layer1.2] spike rate=0.0637
[layer1.6] spike rate=0.0907
[layer2.2] spike rate=0.0591
[layer2.6] spike rate=0.0635
[layer3.2] spike rate=0.0596
[layer3.6] spike rate=0.0536
[layer3.10] spike_rate=0.0340
[layer4.2] spike rate=0.0266
[layer4.6] spike rate=0.0221
[layer4.10] spike rate=0.0150
[layer5.2] spike rate=0.0167
[layer5.6] spike rate=0.0236
[layer5.10] spike rate=0.2800
[classifier.2] spike rate=0.2202
[classifier.5] spike rate=0.2017
```

18 / 19

• slightly shifts some layer rates (e.g. classifier layers increase from $19.2\% \rightarrow 20.2\%$).

Thank You

Thank You!