In the Claims

1-112. (Canceled)

113. (Previously Presented) A general mimetic of the structure

$$Z = \begin{bmatrix} R^2 \\ M^6 \\ M^5 \end{bmatrix}$$

$$R^1 \\ N \\ N \\ N \\ R$$

$$Z^1 = \begin{bmatrix} N \\ M' \\ M'' \\ M^3M^4 \\ R^c \end{bmatrix}$$

wherein:

indicates a bond at a chiral centre of the structure which centre may be in the R or S configuration or a mixture thereof;

R, R¹ and R² are amino acid side chain groups which may be the same or different;

M' and M" may be the same or different and are selected from the group consisting of hydrogen, C₁-C₄ alkyl, chloro and C₁-C₄ alkoxy;

 M^3 , M^4 , M^5 and M^6 define a lactam as follows:

- (i) M^3 , M^4 when taken together with the ring carbon to which they are attached form a carbonyl group, M^5 and $M^6 = H$, or
- (ii) M^3 is H and $M^4 = M'$, M^5 and M^6 when taken together with the carbon atom to which they are attached form a carbonyl group;

Z' is selected from the group consisting of hydrogen or methyl or part of a cyclic amino acid sidechain joined to R¹;

Pg^N is a protecting group for amine;

R^C is selected from the group consisting of a carboxy terminal part of the mimetic, hydrogen, R, and CH₂R; and

Z is selected from the group consisting of hydrogen, methyl, ethyl, formyl, acetyl, - CH_2R , and C(O)R.

- 114. (Withdrawn) A peptide mimetic as claimed in claim 113 wherein when Q^1 and Q^2 form a cyclic group Q^1Q^2 which is selected from the group consisting of CH(R)C(O)-,
- $-CH_{2}CH(R)C(O)-, -CH_{2}CH_{2}CH(R)C(O)-, -CH(R)CH_{2}-, -CH_{2}CH(R)CH_{2}-, -CH_{2}CH_{2}CH(R)CH_{2}-, -CH_{2}CH_{2}CH(R)CH_{2}-, -CH_{2}C$
- $-CH_2CH(R)-, -CH_2CH_2CH(R)-, -CH(R)CH_2CH_2-, -CH_2CH(R)CH_2CH_2-, -CH(R)CH_2CH_2-, -CH(R)CH_2-, -CH(R)CH_2-$
- 115. (Withdrawn) A peptide mimetic as claimed in Claim 113 wherein Q^1 is R, Q^2 is Z, Q^3 is C(O) or CH_2 .
- 116. (Withdrawn) A peptide mimetic as claimed in Claim 113 wherein Q^1 is R, Q^2 is Z, Q^3 is $-C(O)N(Q^5)CH(R)C(O)$ or $-C(O)N(Q^5)CH(R)CH_2$ -.
- 117. (Withdrawn) A peptide mimetic as claimed in Claim 113 wherein Q^1 is $CH(R)C(O)Q^2$, Q^1Q^2 forms a cyclic group –CH(R)C(O)- Q^2 , Q^3 is C(O) or CH_2 .
- 118. (Withdrawn) A peptide mimetic as claimed in Claim 113 wherein Q^1 is $CH_2CH(R)C(O)Q^2$, Q^1Q^2 forms a cyclic group $-CH_2CH(R)C(O)$ -, Q^3 is C(O) or CH_2 .

- Title: PEPTIDE TURN MIMETICS
- 119. (Previously Presented) A peptide mimetic as claimed in Claim 113 wherein R^C is $C(O)Pg^C$ where Pg^C is a protecting group for carboxylic acid.
- 120. (Previously Presented) A peptide mimetic as claimed in Claim 119 wherein Pg^C is selected from the group consisting of alkoxy, benzyloxy, allyloxy, fluorenylmethyloxy, amines forming easily removable amides, a cleavable linker to a solid support, the solid support, hydroxy, NHR, OR, R or the remaining C-terminal portion of the mimetic.
- 121. (Previously Presented) A peptide mimetic as claimed in Claim 113 wherein Pg^N is selected from a group consisting of Boc, Cbz, Alloc, trityl, a cleavable linker to a solid support, the solid support, hydrogen, R, C(O)R or part of the remaining N-terminal portion of the mimetic.
- 122. (Withdrawn) A peptide mimetic as claimed in Claim 113 wherein M' or M" is methoxy.
- 123. (Withdrawn) A peptide mimetic is claimed in Claim 113 wherein M' or M" is methyl.
- 124. (Previously Presented)A peptide mimetic as claimed in Claim 113 wherein Z is H, Z^1 is H and R^C is $C(O)Pg^C$.
- 125. (Withdrawn) A peptide mimetic as claimed in Claim 124 wherein R^1 and $R^2 \neq H$
- 126. (Currently Amended) A peptide mimetic as claimed in claim 113 wherein Z is hydrogen, \underline{M}^5 and \underline{M}^6 when taken together with the carbon atom to which they are attached form a carbonyl group \underline{M}^5 and \underline{M}^6 —H, Z^1 = H, and R^C is $C(O)Pg^C$.
- 127. (Withdrawn) A peptide mimetic as claimed in Claim 126 wherein R^1 and $R^2 \neq H$
- 128. (Withdrawn) A peptide mimetic as claimed in Claim 113 wherein Q^1 is R^1 , Q^2 is hydrogen, Q^3 is $-C(O)N(Q^5)CH(R)C(O)$ -, Z^1 =H and R^C is $C(O)Pg^C$.

AMENDMENT AND RESPONSE UNDER 37 CFR § 1.111

Serial Number: 09/647,054 Filing Date: March 24, 1998 Title: PEPTIDE TURN MIMETICS

,

129. (Withdrawn) A peptide mimetic as claimed in Claim 113 wherein Q^1 is R^1 , Q^2 is hydrogen, Q^3 is $-C(Q)N(Q^5)CH(R)CH_2$ -, Z^1 =H and R^C is $C(Q)Pg^C$.

- 130. (Withdrawn) A peptide mimetic as claimed in Claim 114 wherein Q^1Q^2 is $-CH(R^2)C(O)$, Q^3 is C(O), $Z^1=R^1$ and R^C is $C(O)Pg^C$.
- 131. (Withdrawn) A peptide mimetic as claimed in Claim 114 wherein Q^1Q^2 is $-CH(R^2)C(O)$, Q^3 is CH_2 , $Z^1=R^1$ and R^C is $C(O)Pg^C$.
- 132. (Withdrawn) A peptide mimetic as claimed in Claim 114 wherein Q^1Q^2 is $CH_2CH(R^2)C(O)$ -, Q^3 is C(O), $Z^1=R^1$ and R^C is $C(O)Pg^C$.
- 133. (Withdrawn) A peptide mimetic as claimed in Claim 114 wherein Q^1Q^2 is $CH_2CH(R^2)C(O)$ -, Q^3 is CH_2 , $Z^1=R^1$ and R^C is $C(O)Pg^C$.
- 134. (Previously Presented) A peptide mimetic according to claim 113 wherein R, R¹ and R² are each independently selected from the group consisting of
 - (i) -CH₃,

$$\begin{array}{ccc}
& & & O \\
& & | & | \\
\text{(ii)} & -\text{CH}_2 - \text{C-NH}_2
\end{array}$$

- (iii) -CH₂SH,
- (iv) $-CH_2CH_2-C(O)NH_2$,
- (v) -H,
- (vi) $-CH(CH_3)CH_2CH_3$,
- (vii) -CH₂-CH(CH₃)₂,
- (viii) -CH₂CH₂S-CH₃,
- (ix) -CH₂Ph,
- (x) $-CH_2OH$,
- (xi) -CH(OH)CH₃,

- (xii) -CH₂-(3-indolyl)
- (xiii) -CH₂-Ph-OH,
- (xiv) $-CH(CH_3)_2$,
- (xv) -CH₂CO₂H,
- (xvi) -CH₂-CH₂-CH₂-NH-C-NH₂, || |NH

(xvii
$$-CH_2$$

N

A and

- (xix) $-CH_2-CH_2-CH_2-NH_2$.
- (xx) -CH₂CH₂CO₂H.
- 135. (Previously Presented) A mimetic according to claim 113 having the structure:

136. (Withdrawn) A mimetic according to claim 113 having the structure:

AMENDMENT AND RESPONSE UNDER 37 CFR § 1.111

Serial Number: 09/647,054 Filing Date: March 24, 1998

Title: PEPTIDE TURN MIMETICS

$$Z = \begin{bmatrix} Z & R^2 &$$

- 137. (Previously Presented) A peptide mimetic as claimed in claim 135 wherein M', M" are H.
- 138. (Previously Presented) A peptide mimetic as claimed in claim 135 wherein Z, Z¹ are H.
- 139. (Withdrawn) A peptide mimetic as claimed in claim 135 wherein R^1 and $R^2 \neq H$.
- 140. (Previously Presented) A peptide mimetic as claimed in claim 135 wherein R^C is $C(O)Pg^C$ where Pg^C is a protecting group for carboxylic acid.
- 141. (Withdrawn) A peptide mimetic as claimed in claim 136 wherein M', M" are H.
- 142. (Withdrawn) A peptide mimetic as claimed in claim 136 wherein Z, Z¹ are H.
- 143. (Withdrawn) A peptide mimetic as claimed in claim 136 wherein R^1 and $R^2 \neq H$.
- 144. (Withdrawn) A peptide mimetic as claimed in claim 136 wherein R^C is $C(O)Pg^C$ where Pg^C is a protecting group for carboxylic acid.