Model Predictive Control of a Sewer System

June 14, 2018

Group 1030

Jacob Naundrup Pedersen Thomas Holm Pilgaard

Department of Electronic Systems Aalborg University Denmark

Group 1030

Introduktion

Kloakker og rensningsanlæg generelt

Problem formulering

System beskrivelse

Løsninger og begrænsninger

Modellering

Simulering

Struktur

Preissmann

Implementation

Kontrol

Results

Discussion/Conclusion

Dept. of Electronic Systems Aalborg University Denmark

Typisk opbygning af kloak ledning

Agenda

Group 1030

Kloakker og

rensningsanlæg generelt

System beskrivels

Løsninger og

begrænsning

Modellering

Simulering

Preissman

Implementati

Kontrol

Results

Discussion/Conclusion

Tilstande i kloakken

Agenda

Group 1030

Kloakker og rensningsanlæg generelt

System beskrivelse

Modellering

Simulering

Kontrol

Results

▶ Aerob \rightarrow $O_2 \rightarrow H_2O$

Tilstande i kloakken

Agenda

Group 1030

Kloakker og rensningsanlæg generelt

System beskrivelse

Modellering

Simulering

Kontrol

Results

▶ Aerob
$$\rightarrow$$
 O_2 \rightarrow H_2O

▶ Anaerob $\rightarrow SO_4^{-2} \rightarrow H_2S$

Tilstande i kloakken

Agenda

Group 1030

ntroduktion

Kloakker og rensningsanlæg generelt

Problem formuler

System beskrivel

Cystem besitive

begrænsning

Degrænsmi

Modellering

Simulering

Struktur

Preissmann

Implementation

Kontrol

Results

Discussion/Conclusion

▶ Aerob \rightarrow O_2 \rightarrow H_2O

▶ Anaerob $\rightarrow SO_4^{-2} \rightarrow H_2S$

▶ Anoxisk $\rightarrow NO_3^- \rightarrow N_2$

Udfordringer ved spildevands rensning

Agenda

Group 1030

ntroduktior

Kloakker og

rensningsanlæg generelt

Problem formuler

System beskrivels

-,-----

Løsninger og

begrænsning

Modellering

Wodeliering

Simulerin

Projeeman

Preissmann

Implementation

Kontrol

Results

- ▶ Virksomheds besøg ved Fredericia Spildevand og Energi A/S.
 - Større udledninger uden varsel

Udfordringer ved spildevands rensning

Agenda

Group 1030

Introduktion

Kloakker og rensningsanlæg generelt

System beskrivel

Cyclom Docimire

Løsninger og

begrænsnin

Modellerin

Struktur

Preissmann

Implementation

impiementati

Kontrol

Results

- ► Virksomheds besøg ved Fredericia Spildevand og Energi A/S.
 - Større udledninger uden varsel
 - ► Problemer for aerobe bakterier

Udfordringer ved spildevands rensning

Agenda

Group 1030

ntroduktion

Kloakker og rensningsanlæg generelt

Droblem formule

System hoskrival

System beskriver

Løsninger og

Modellerin

Simulering

Struktur

Preissman

Implementation

.

KOHILIOI

Results

- ▶ Virksomheds besøg ved Fredericia Spildevand og Energi A/S.
 - Større udledninger uden varsel
 - Problemer for aerobe bakterier
 - Andre forstyrelser

Problem formulering

Agenda

Group 1030

Problem formulering

How can a simulation environment be constructed, which mimic the behavior of a real sewer system, where MPC is utilized as the control scheme to obtain stable sewage output such that optimal performance can be obtained from a WWTP.

Udgangspunkt i et virkeligt setup

Agenda

Group 1030

System beskrivelse

Modellering

Simulering

Kontrol

Results

Udgangspunkt i et virkeligt setup

Agenda

Group 1030

System beskrivelse

Modellerina

Kontrol

Data fra industri.

► Flow profiler af beboelse og mindre industri.

Group 1030

ntroduktion

Kloakker og

Problem formula

System beskrivelse

. . .

Løsninger og begrænsninger

Modellering

.

Simulering

Droinomon

Implementation

Kontrol

Results

Discussion/Conclusion

► Indsættelse af tank.

Group 1030

System beskrivelse

Løsninger og

begrænsninger

Modellering

Simulering

Kontrol

Results

- ► Indsættelse af tank.
- ► Afgrænse simulering til enkelt kemisk component.

Group 1030

System beskrivelse

Løsninger og begrænsninger

Modellering

Results

► Indsættelse af tank.

► Afgrænse simulering til enkelt kemisk component.

► Runde kloak rør.

4 modeller

Agenda

Group 1030

System beskrivelse

Modellering

Kontrol

- ► Kloak ledning.
- ► Transport af concentrat i kloak ledning.
- Sammenkobling af kloakledninger.
- Tank.

Group 1030

atroduktion

Kloakker og rensningsanlæg gen

Problem formulering

System beskrivelse

Løsninger og

bogranioningor

Modellering

Simulering

Ou untui

Inches and a second and

пприетиенца

Kontrol

Results

Discussion/Conclusion

Group 1030

Modellerina

Kontrol

Results

Group 1030

ntroduktion

Kloakker og rensningsanlæg gene

Problem formulering

System beskrivels

Løsninger og

begrænsninger

Modellering

Simulering

Designation

Preissmann

Implementat

Kontrol

Results

Discussion/Conclusion

 Approksimationer af momentum ligningen.

Transport af koncentrat

Agenda

Group 1030

ntroduktion

Kloakker og

Droblam formularing

System beskrivelse

Løsninger og

begrænsninger

Modellering 1

lodellering

Struktur

Struktur

Implementation

Kontrol

Results

$$A \cdot \frac{\partial C}{\partial t} + Q \cdot \frac{\partial C}{\partial x} = 0$$

Transport af koncentrat

Agenda

Group 1030

System beskrivelse

Modellering

Kontrol

Results

$$A \cdot \frac{\partial C}{\partial t} + Q \cdot \frac{\partial C}{\partial x} = 0$$

► Afhænger af kendt A og Q.

Sammenkobling af kloak ledninger

Agenda

Group 1030

ntroduktion

Kloakker og

Problem formularing

System beskrivelse

Løsninger og

begrænsninger

Modellering

mulering

Struktur

Preissmann

Implementation

Kontrol

Results

$$\blacktriangleright Q_3 = Q_1 + Q_2$$

Sammenkobling af kloak ledninger

Agenda

Group 1030

Modellerina

Kontrol

Results

►
$$Q_3 = Q_1 + Q_2$$

$$C_3 = \frac{C_1 \cdot Q_1 + C_2 \cdot Q_2}{Q_1 + Q_2}$$

Group 1030

System beskrivelse

Modellering

Implementation

Kontrol

Results

$$\blacktriangleright \ \frac{dh(t)}{dt} = \frac{1}{A} \left(Q_{in}(t) - u(t) \cdot \overline{Q} \right)$$

Group 1030

troduktion

rensningsanlæg gen

Problem formulering

System beskrivels

Løsninger og

begrænsninger

Modellering

Struktur

Preissmann

Implementa

Kontrol

Results

$$\blacktriangleright \ \frac{dC_{tank}(t)}{dt} = \frac{1}{A} \left(C_{in}(t) \cdot \frac{Q_{in}(t)}{h(t)} - C_{tank}(t) \cdot \frac{Q_{out}(t)}{h(t)} \right)$$

Group 1030

System beskrivelse

Modellering

Simulering

Struktur

Implementation

Kontrol

Results

► Intialisering

► Opsætning af komponenter.

Group 1030

ntroduktio

rensningsanlæg gene

Problem formulering

System beskrivelse

Løsninger og

.

Modellering

Simulering Struktur

- uktui

Implementatio

Kontrol

Results

Discussion/Conclusion

► Intialisering

- Opsætning af komponenter.
- ► System i steady state.

Group 1030

System beskrivelse

Modellering

Simulering

Struktur

► Intialisering

- Opsætning af komponenter.
- ► System i steady state.
- ► Simulering

Group 1030

System beskrivelse

Struktur

Kontrol

► Intialisering

- ► Opsætning af komponenter.
- ► System i steady state.
- ▶ Simulering
- ► Iterativ beregning af komponenterne

Group 1030

System beskrivelse

Struktur

Intialisering

- Opsætning af komponenter.
- System i steady state.
- ▶ Simulering
- Iterativ beregning af komponenterne
- Gennemgang af resultat

Group 1030

atroduktion

Kloakker og

rensningsanlæg gener

System beskrivelse

Løsninger og

--5.-----

Modellering

Struktur

ou aktai

Implementation

Kontrol

Results

Discussion/Conclusion

Preissmann basic

Agenda

Group 1030

ntroduktio

Kloakker og reneningsanlæg gene

Droblem formularing

System beskrivelse

Løsninger og

Modellering

Simulerin

Preissmann

Implementation

....

Kontrol

Results

- ► Kinematisk bølge aproksimering.
- ► Fyldningsgrad kurve for rør.

Preissmann basic

Agenda

Group 1030

System beskrivelse

Modellering

Preissmann

Implementation

Kontrol

Results

Preissmann iteration

Agenda

Group 1030

Modellering

Preissmann

Kontrol

Results

Preissmann stabilitet

Agenda

Group 1030

ntroduktion

Kloakker og rensningsanlæg gene

Problem formulering

System beskrivels

Løsninger og

Modellering

Simulerin

Preissmann

Implementation

Kontrol

Results

Discussion/Conclusion

Ubetinget stabilitet

Group 1030

System beskrivelse

Modellering

Preissmann

Implementation

Kontrol

Results

► Indikation af præcision

Courant's tal

Agenda

Group 1030

Introduktion

Kloakker og reneningeanlæg gene

Problem formularing

System beskrivelse

Løsninger og

Modellering

Simulering

Preissmann

Implementation

Kontrol

Results

Discussion/Conclusion

► Indikation af præcision

$$C_r = \frac{\sqrt{g \cdot \overline{\mathsf{H}}} \cdot \Delta t}{\Delta x}$$

Group 1030

Introduktio

Kloakker og

rensningsanlæg gene

System beskrivels

Løsninger og

Modellering

simulerir

Preissmann

Implementation

impiomoritant

Kontrol Results

Group 1030

Introduktion

Kloakker og

Problem formularing

System beskrivels

Løsninger og

.....

Modellering

Simulen

Preissmann

Implementatio

Kontrol

Results

Discussion/Conclusion

Group 1030

System beskrivelse

Modellering

Implementation

Kontrol

Results

► Implementation

- ► Kontrol
- ► Results
- Discussion
- Conclusion

Dept. of Electronic Systems Aalborg University Denmark

Group 1030

ntroduktior

Kloakker og

Problem formularing

System beskrivelse

Løsninger og

Modellering

modonomi

Simulering

Struktur

Preissman

Implementation

Kontrol

Results

Discussion/Conclusion

Figure: Chosen structure of simulation environment.

Group 1030

Implementation

1. Pipe

- Length [m]
- Sections (Number of sections the pipe should be split in to)
- ► S_b (Slope) [‰]
- ► ∆x = Length/Sections [m]
- Diameter [meter]
- ► Theta (parameter used in Preissmann scheme)
- ▶ Q_f[m³/s]
- Side/lateral inflow present
- Section location in data

2. Tank

- Size [m³]
- Height [m]
- ▶ Area = Size / Height [m²]
- ► Maximum outflow [m³/s]
- Section location in data

Table: List of parameters for pipe and tank.

Group 1030

ntroduktion Kloakker og

rensningsanlæg gener Problem formulering

System beskrivels Løsninger og

begrænsninger

Modellering

Struktur

Implementation

Kontrol

Results

Discussion/Conclusion

Fields	length	sections	■ Dx	⊞ Sb	⊞ d	H Theta	■ Qf	\coprod side_inflow	data_location
1	700	35	20	0.0030	0.9000	0.6500	0.9730	0	1
2	303	15	20.2000	0.0030	0.9000	0.6500	0.9730	0	3
3	27	2	13.5000	0.0030	1	0.6500	1.2843	1	4
4	155	8	19.3750	0.0041	1	0.6500	1.5014	0	5
5	295	14	21.0714	0.0122	0.8000	0.6500	1.4386	0	6
6	318	15	21.2000	0.0053	0.9000	0.6500	1.2932	1	7
7	110	5	22	0.0036	0.9000	0.6500	1.0658	1	8
8	38	2	19	0.0024	1	0.6500	1.1487	1	9
9	665	30	22.1667	0.0030	1	0.6500	1.2843	1	10
10	155	7	22.1429	8.0000e-04	1	0.6500	0.6632	0	11
11	955	47	20.3191	0.0029	1.2000	0.6500	2.0415	1	12
12	304	15	20.2667	0.0030	1.2000	0.6500	2.0764	0	13
13	116	5	23.2000	0.0021	1.2000	0.6500	1.7373	1	14
14	283	12	23.5833	0.0017	1.4000	0.6500	2.3463	1	15
15	31	2	15.5000	0.0019	1.4000	0.6500	2.4805	1	16
16	125	6	20.8333	0.0021	1.6000	0.6500	3.7075	0	17
17	94	4	23.5000	0.0013	1.5000	0.6500	2.4609	0	18
18	360	18	20	0.0046	1.6000	0.6500	5.4872	1	19
19	736	38	19.3684	0.0012	1.6000	0.6500	2.8026	0	20

Figure: Setup in MATLAB of pipe specification of the main line in Fredericia.

Group 1030

System beskrivelse

Modellering

Implementation

Results

Field 📤	Value
isize size	90
Height Height	10
 area	9
Q_out_max	0.9730
data_location	2

Figure: Setup in MATLAB of tank specifications.

Group 1030

ntroduktion

Kloakker og

Problem formuler

System beskrivelse

L----

begrænsninge

Modellering

. . .

Ottoridation

Preiseman

Implementation

Kontrol

Results

Discussion/Conclusion

Fields	type type	⊞ component	sections sections
1	'Pipe'	1	35
2	'Tank'	1	1
3	'Pipe'	18	245
4	'Total'	20	281

Figure: Display of structure showing system setup information in MATLAB.

Group 1030

Introduktion

Kloakker og

rensningsanlæg gen

Systom boskriyo

System beskriver

Løsninger og

begrænsninge

Modellering

Modelielini

Simulering

Struktur

Preissman

Implementation

...pioinonatio

Kontrol

Results

Discussion/Conclusion

Figure: Comparison between data obtained by equation ?? and the same data curve fitted to a ninth order polynomial.

Group 1030

ntradulation

Kloakker og

Problem formulering

System heskrivel

Løsninger og

Løsninger og

Modellering

Otendates

Preissman

Implementation

Kontrol

Results

Discussion/Conclusion

Figure: Comparison between data obtained by equation ?? and the same data curve fitted to a ninth order polynomial.

Agenda Group 1030

troduktion

Kloakker og rensningsanlæg gener

System beskrivel

Løsninger og

begrænsninger

Modellerin

Simulering

Implementation

Implementation

Kontrol

Discussion/Osselusia

Figure: Height and flow of pipe setup from part of Fredericia where boundary conditions is found by fitted polynomial. Various amount of iterations, with constant flow input of 0,25 m³/s, is performed. The dotted line indicates pipe intersections.

Dept. of Electronic Systems Aalborg University Denmark

Group 1030

ntroduktio

Kloakker og rensningsanlæg gener

System hoskriva

Løsninger og

begrænsninger

Modellerin

WOOGCHCIII

Struktur

Implementation

implementation

Kontrol

Discussion/Conclusio

Figure: Height and flow of pipe setup from part of Fredericia where boundary conditions is found by lookup table. Various amount of iterations, with constant flow input of 0,25 m³/s, is performed. The dotted line indicates pipe intersections.

Dept. of Electronic Systems Aalborg University Denmark

Group 1030

ntroduktio

Kloakker og

Doubles from the size

System beskrivelse

Løsninger og

begrænsninger

Modellering

Simulering

Struktur

Preissmann

Implementation

Kontrol

Results

Discussion/Conclusion

▶ Preissmann scheme

Group 1030

ntroduktion

Kloakker og rensningsanlæg gener

System beskrivels

Løsninger og

begrænsninger

Modellering

Simulerin

Preissmann

Implementation

Kontrol

Results

Discussion/Conclusion

Dept. of Electronic Systems Aalborg University Denmark

52

Figure

Group 1030

Modellerina

Kontrol

Linearisering af ulinear model

Opstilles på state space form

$$\frac{\partial A(x,t)}{\partial t} + \frac{\partial Q(x,t)}{\partial x} = 0$$

$$\frac{\partial t}{\partial t} + \frac{\partial x}{\partial x} = 0$$

$$\frac{\partial A(h)}{\partial h} \frac{\partial h(x,t)}{\partial t} + \frac{\partial Q(h)}{\partial h} \frac{\partial h(x,t)}{\partial x} = 0$$
 (2)

(1)

Group 1030

Kontrol

Priessmann scheme

$$\frac{\partial A(h)}{\partial h} \left(\frac{1}{2} \frac{h_{j+1}^{i+1} - h_{j+1}^i}{\Delta t} + \frac{1}{2} \frac{h_j^{i+1} - h_j^i}{\Delta t} \right) +$$

$$\frac{\partial Q(h)}{\partial h} \left(\theta \frac{h_{j+1}^{i+1} - h_j^{i+1}}{\Delta x} + (1 - \theta) \frac{h_{j+1}^{i} - h_j^{i}}{\Delta x} \right) = 0$$

(3)

Group 1030

ntroduktion

Kloakker og

Problem formulering

System beskrivel

Løsninger og

begrænsninger

Modellering

Cimularina

Struktur

Preissman

Implementati

Kontrol

Results

Discussion/Conclusion

$$\underbrace{\begin{bmatrix} 1 \\ -a_0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}}_{B} h_0^{i+1} + \underbrace{\begin{bmatrix} \frac{diQ}{dQ} \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}}_{B_q} d_0^{i+1}$$

(4)

Dept. of Electronic Systems Aalborg University Denmark

Group 1030

ntroduktion

Kloakker og rensningsanlæg gene

Problem formulering

System beskrivels

Løsninger og

begrænsninger

Modellering

Simulering

Preissmann

Implement

Kontrol Results

Results

Discussion/Conclusio

Dept. of Electronic Systems Aalborg University Denmark

52

ve(10)

(5)

Group 1030

System beskrivelse

Modellering

Implementation

Kontrol

Results

► Sinus input

Туре	Components	Sections
Pipe	1	35
Tank	1	1
Pipe	18	227
Total	20	263

Table: System setup.

Group 1030

Modellering

Kontrol

Figure: Comparison of the nonlinear and linear model at the last pipe in the setup.

Group 1030

ntroduktio

rensningsanlæg gene

Problem formuleri

System beskrivelse

Løsninger og

begrænsninge

Modellering

....

Simulering

Struktur

Preissman

Implementati

Kontrol

Results

Discussion/Conclusion

► Cost function

- ► Begrænset til minimiere af output
- ▶ Constraints
 - ► Højde
 - ► Kontrol input
- ► Linear model

Group 1030

System beskrivelse

Modellering

Kontrol

Results

▶ Bestemmelse af Prediction horizon

- ► Flow profiler
- ► Industri
- ► Begrænsning af Prediction horizon

Group 1030

Modellering

Kontrol

Results

Figure: Output of the last pipe.

Dept. of Electronic Systems Aalborg University Denmark

Group 1030

Modellering

Implementation

Kontrol

Results

Figure: Height in the tank.

Group 1030

Modellering

Kontrol

Results

Figure: Output of the last pipe in the second simulation run.

Group 1030

troduktio

rensningsanlæg gene

Problem formulering

System beskrivelse

Løsninger og

--5-----

Modellering

Simulerin

Droiceman

Implementation

Kontrol

Results

Discussion/Conclusion

► System setup

► Flow profiles

Туре	Component	Sections
Pipe	1	35
Tank	1	1
Pipe	17	207
Tank	1	1
Pipe	1	38
Total	21	282

Table: System setup.

Group 1030

System beskrivelse

Modellering

Kontrol

Results

Figure: Output of the last pipe into the WWTP.

Dept. of Electronic Systems Aalborg University Denmark

Group 1030

Modellering

Kontrol

Results

Figure: Simulation of COD output of the last pipe into the WWTP.

Dept. of Electronic Systems Aalborg University Denmark

Group 1030

System beskrivelse

Modellering

Simulering

Kontrol

Results

Dept. of Electronic Systems Aalborg University Denmark

52

▶ Over dimensioneret tank

► Konstant output af tank

Group 1030

ntroduktio

Kloakker og rensningsanlæg gener

System beskrivels

Laeninger og

begrænsninge

Modellering

Simulerin

Projecmany

Implementation

Kontrol

Results

Discussion/Conclusion

Figure: Output of the last pipe in to the WWTP, where a tank has been placed in front to reduce variation in flow into WWTP.

Dept. of Electronic Systems
Aalborg University
Denmark
52

Group 1030

ntroduktio

Kloakker og rensningsanlæg gen

Problem formularing

System beskrivelse

Løsninger og

Modellering

Simulering

Struktur

Preissmann

Implementation

Kontrol

Results

Discussion/Conclusion 51

► Courant's number

► Model reduction

Group 1030

troduktio

Kloakker og

Droblem formularing

System beskrivelse

Løsninger og

begrænsninger

Modellering

01----

Struktur

Preissmann

Implementation

Kontrol

Results

Discussion/Conclusion 52

► Simulation

► MPC