

Sheet 2 Mathematical Modeling

1/ For the circuit shown, obtain the transfer function Vo(s)/Vi(s).

Vo = I/ (SC2) I = I2 + I3 vin = IR1 + I2/ (SC1) vin = IR1 + I3 (R2 + 1/SC2) solve 3 equations simult kirshoff law get TF

For the Ideal Op-amp circuit shown, obtain the transfer function Vo(s)/Vi(s)

3. The figure shows a process plant containing of two tanks of areas A_1 and A_2 . Derive the transfer function that relates q_2 to q.

4. Derive the differential equations that represent the mechanical system shown, where U is a force that affects the mass M_1 and hence derive the transfer functions $X_1(s)/U(s)$ and $X_2(s)/U(s)$. If the force U has a value of 1 N find the steady state values of X_1 and X_2 .

it is all about math fa to be solved tommorow