1. The system shown consists of three components, the arms A and B and the end-effector E. The orientation of E relative to a fixed frame is described by the three angles shown. Note that the sequence of rotations θ_1 , θ_2 , and θ_3 is a 2-3-1 body-fixed rotation sequence. Complete the following: a) Derive the transformation matrix [R] that relates the unit vectors $(\underline{e}_1,\underline{e}_2,\underline{e}_3)$ (fixed in E) to the unit vectors $(\underline{N}_1,\underline{N}_2,\underline{N}_3)$ of the fixed frame. b) Find the \underline{e}_i components of \underline{R}_{i} the angular velocity of E in R. c) Invert the equations from part (b) to solve for $\dot{\theta}_1$, $\dot{\theta}_2$, and $\dot{\theta}_3$ in terms of the angular velocity components. d) Find \underline{R}_{i} the angular acceleration of E relative to the fixed frame.

Note: In all parts of this problem, assume the angles θ_1 , θ_2 , and θ_3 and their derivatives are all **nonzero**.

2. For the yoke-and-spider *universal joint*, the unit vectors fixed in the shaft $B: (\varrho_1, \varrho_2, \varrho_3)$ are oriented relative to the fixed frame $R: (N_1, N_2, N_3)$ using a 1-2-3 body-fixed rotation sequence. The figure shows the configuration where all the angles are *zero*. In its final configuration, the shaft B is aligned with the unit vector n so that $e_1 = C_\phi N_1 + S_\phi N_3$. Using the results presented in class for a 1-2-3 body-fixed rotation sequence, complete the following: a) Show that $C_2C_3 = C_\phi$ and $C_3 = C_\phi N_1 + C_\phi N_2 + C_\phi N_3$. b) Show that $C_3 = C_\phi N_1 + C_\phi N_2 + C_\phi N_3 + C_\phi$

