Detekcja oszustw z wykorzystaniem metod wrażliwych na koszt

Patryk Wielopolski

Promotor: dr inż. Andrzej Giniewicz

Oszustwa

Oszustwo, wyłudzenie – przestępstwo polegające na doprowadzeniu innej osoby do niekorzystnego rozporządzenia mieniem własnym lub cudzym za pomocą wprowadzenia jej w błąd albo wyzyskania jej błędu lub niezdolności do należytego pojmowania przedsiębranego działania, w celu osiągnięcia korzyści majątkowej.

Przykłady oszustw:

- Podrabianie czeków
- Wykorzystywanie kradzionych kart kredytowych
- Zawyżanie strat w roszczeniach
- Umyślne spowodowanie wypadku w celu uzyskania odszkodowania

Techniki wykrywania oszustw

Techniki wykrywania oszustw:

- Analiza parametrów statystycznych (ang. Calculating statistical parameters)
- Analiza regresji (ang. Regression analysis)
- Modele probabilistyczne (ang. Probability models)
- Detekcja anomalii (ang. Anomaly detection)
- Eksploracja danych (ang. Data mining)
- Systemy regul eksperckich (ang. Expert systems)
- Rozpoznawanie wzorców (ang. Pattern recognition)
- Uczenie maszynowe (ang. Machine learning)

Problemy

Problemy z modelowaniem detekcji oszustw:

- Brak skutecznej metryki oddającej charakter problemu
- Bardzo często występująca silnie niezbalansowana próba (proporcja klas od 1:100 do nawet 1:1000)
- Przekłamania w danych dot. klas

Metodologie klasyfikacji

Klasyczna metodologia

Klasyczna metodologia metod klasyfikacyjnych:

- Wykorzystanie standardowych modeli:
 - Regresja Logistyczna
 - Drzewo Decyzyjne
 - Las Losowy
- Wykorzystanie standardowych metryk:
 - Skuteczność
 - Precyzja
 - Czułość
 - F1-Score

Standardowa macierz pomyłek

		Predykcja			
		Oszustwo	Normalna		
Prawda	Oszustwo Normalna	TP	FN		
	Normalna	FP	TN		

$$\begin{aligned} \mathsf{Skutecznoś\acute{c}} &= \frac{\mathit{TP} + \mathit{TN}}{\mathit{TP} + \mathit{FP} + \mathit{FN} + \mathit{TN}} \\ \mathsf{Precyzja} &= \frac{\mathit{TP}}{\mathit{TP} + \mathit{FP}} \\ \mathsf{Czułoś\acute{c}} &= \frac{\mathit{TP}}{\mathit{TP} + \mathit{FN}} \\ \mathsf{F1 \ Score} &= 2 \cdot \frac{\mathsf{Precyzja} \cdot \mathsf{Czułoś\acute{c}}}{\mathsf{Precyzja} + \mathsf{Czułoś\acute{c}}} \end{aligned}$$

Metodologia wrażliwa na koszt

Metodologia klasyfikacji wrażliwa na koszt:

- Wykorzystanie modeli klasyfikacji wrażliwych na koszt:
 - Optymalizacja progu (Threshold optimization)
 - Minimalizacja ryzyka Bayesowskiego (Bayesian Minimum Risk)
- Wykorzystanie niestandardowych modeli predykcyjnych:
 - Regresja Logistyczna wrażliwa na koszt
 - Drzewo Decyzyjne wrażliwe na koszt
- Wykorzystanie niestandardowych metryk:
 - Koszt całkowity
 - Oszczędności (Savings)

Macierz kosztu pomyłek

		Predykcja				
		Oszustwo	Normalna			
Prawda	Oszustwo Normalna	C_{TP_i}	C_{FN_i}			
	Normalna	C_{FP_i}	C_{TN_i}			

$$Koszt(f(\mathbf{x}_{i}^{*})) = y_{i}(c_{i}C_{TP_{i}} + (1 - c_{i})C_{FN_{i}}) + (1 - y_{i})(c_{i}C_{FP_{i}} + (1 - c_{i})C_{TN_{i}})$$

- $\mathbf{x}_{i}^{*} = [\mathbf{x}_{i}, C_{TP_{i}}, C_{FP_{i}}, C_{FN_{i}}, C_{TN_{i}}]$ wektor atrybutów i-tej obserwacji rozszerzony o koszty pomyłek
- C_{x_i} koszt klasyfikacji i-tej obserwacji
- $f(\cdot)$ model predykcyjny
- y_i prawdziwe oznaczenie i-tej obserwacji
- c_i predykcja modelu dla i-tej obserwacji

Miary wrażliwe na koszt

Miary wrażliwe na koszt:

Koszt całkowity
$$(f(\mathbf{S})) = \sum_{i=1}^{N} \text{Koszt}(f(\mathbf{x}_{i}^{*}))$$

$$\mathsf{Oszcz} \\ \mathsf{edności} = \frac{\mathsf{Koszt}_I(\boldsymbol{S}) - \mathsf{Koszt}(f(\boldsymbol{S}))}{\mathsf{Koszt}_I(\boldsymbol{S})}$$

- **S** zbiór wszystkich obserwacji
- $Koszt_I = min\{Koszt(f_0(\mathbf{S}), Koszt(f_1(\mathbf{S}))\}$
- $f_a(S) = a$, gdzie $a \in \{0, 1\}$

Eksperyment

Opis eksperymentu

Zbiór danych:

- Credit Card Fraud Detection Dataset
- 284,807 transakcji w tym 492 oszustwa
- Dysproporcja klas ok. 1:600 (0.172% transakcji nielegalnych)

Podział danych na zbiory:

• Treningowy: 50%

• Walidacyjny: ok. 17%

• Testowy: ok. 33%

Macierz kosztu dla eksperymentu

		Predykcja			
		Oszustwo	Normalna		
wda	Oszustwo	$C_{TP_i} = C_a$	$C_{FN_i} = Amt_i$ $C_{TN_i} = 0$		
_ 7 P.	Normalna	$C_{FP_i} = C_a$	$C_{TN_i} = 0$		

- Amt_i Wartość transakcji
- ullet C_a koszt administracyjny obsługi sprawdzenia transakcji

Pierwsze wyniki

Name	Cost	F1	Precision	Recall	Savings
CI-LogisticRegression	6169.57	0.735	0.837	0.655	0.595
CI-DecisionTree	5708.01	0.751	0.762	0.739	0.625
CI-RandomForest	5017.6	0.827	0.938	0.739	0.671
CI-XGBoost	6621.24	0.809	0.903	0.733	0.565
CST-CostSensitiveLR	163631.29	0.003	0.002	0.6	-9.745
CST-CostSensitiveDT	4859.59	0.64	0.788	0.539	0.681
ECSDT-CostSensitiveRF	5535.61	0.61	0.84	0.479	0.636
ECSDT-CostSensitiveRP	5969.33	0.625	0.808	0.509	0.608
CI-LogisticRegression-TO	6077.9	0.739	0.779	0.703	0.601
CI-DecisionTree-TO	5708.01	0.751	0.762	0.739	0.625
CI-RandomForest-TO	4384.27	0.852	0.91	8.0	0.712
CI-XGBoost-TO	4419.05	0.809	0.811	0.806	0.71
CI-LogisticRegression-BMR	4345.56	0.367	0.32	0.43	0.715
CI-DecisionTree-BMR	5585.96	0.502	0.711	0.388	0.633
CI-RandomForest-BMR	4083.0	0.537	0.682	0.442	0.732
CI-XGBoost-BMR	4034.62	0.249	0.171	0.455	0.735

Dalsze prace

Planowany dalszy rozwój pracy inżynierskiej:

- Dokładna analiza wyników
- Sprawdzenie stabilności wyników
- Sprawdzenie zależności wyników od kosztów administracyjnych
- Rozszerzenie analizy modeli typu ensemble (Random Forest itp.)

Jeszcze dalsze plany pracy

Dalsze kroki w dłuższej perspektywie:

- Przeszukanie przestrzeni hiperparametrów modeli
- Przetestowanie metod under/over-samplingu w celu zbalansowania próby
- Wykorzystanie niestandardowej metryki optymalizacji oraz funkcji straty w XGBoost
- Przetestowanie innych algorytmów opartych na drzewach wykorzystujących boosting, np. LightGBM, CatBoost
- Znalezienie bądź stworzenie algorytmu wykorzystującego boosting bazującego na drzewach wrażliwych na koszt

References i

- A. C. Bahnsen, D. Aouada, and B. Ottersten.

 Ensemble of example-dependent cost-sensitive decision trees,
 2015.
- A. C. Bahnsen, A. Stojanovic, D. Aouada, and B. Ottersten. Improving Credit Card Fraud Detection with Calibrated Probabilities, pages 677–685.
- A. C. Bahnsen, A. Stojanovic, D. Aouada, and B. Ottersten.

 Cost sensitive credit card fraud detection using bayes
 minimum risk.

In 2013 12th International Conference on Machine Learning and Applications, volume 1, pages 333–338, Dec 2013.

Dziękuję za uwagę!

Pytania?