Lecture 4: 2/7/18 Superniced Learning D, H, A

How to get predict or fits? i=1.,m. D = { \ X;, Y,> } ŷ-g(xi) ir called sample fits g = A(D, H) { Ya, ..., Yn} or cample fito/pre 2 {Y₁,..., Yn 3 How to predict for new data / observat: X*1 Y*=g(x*) J & {0,13 is brang. let's use only X₁ (salary) con H-3

let's graph. $I_{A} = \begin{cases} 1 & \text{if } A \\ 0 & \text{if } A^{c} \end{cases}$ THE AXX *XTER I This is called parameter 15 every possible functions that look like H ={1,..,xn} Some enor function. Err (7, 9)>0 $SAEz \sum_{i=1}^{n} |y_i - \hat{y_i}|$ sum of absolute error: MAEZI D'yi- gil: called mixcharacterization Som of Square error: SSE = [Yi-Yi)2=SA Mean of Square error: $\Pi SE = -\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y_i})^2$

SSE =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = SAE$$

MSE = $\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = SAE$

MHE = $\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$

MHE = $\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$
 $= \sum_{i=1}^{n} (y_i + \hat{y}_i)^2$
 $= \underset{i=1}{argment} \{SS = \{n\}\} \iff X_T = av_g min \{ (y_i - 1)_{x_i} \}$

Awould be a "great research" \pm avery forrible.

Now we have $X_i \neq X_2$ both continuous.

 $\mathcal{H} = \left\{ 1_{X_{2} \times X_{7}} 1_{X_{2} \times X_{7}} : \begin{bmatrix} X_{2} \\ X_{2} \end{bmatrix} \in \mathbb{R}^{2} \right\}$ $\times_{72} = \left\{ 1_{X_{2} \times X_{7}} 1_{X_{2} \times X_{7}} : \begin{bmatrix} X_{2} \\ X_{2} \end{bmatrix} \in \mathbb{R}^{2} \right\}$

let say your data looks like this! oolli oolli oolooxxx arbitainy bad. 000000 Best to do, atbx-line. Now $H = \left\{ 1_{X_2} \right\} = \mathbb{R}^2$ ={1 a+bx - x2 < 0 : [3] < R3} = {1-a-bx +x2>0; [9] eR} Vinear Classfof = {1/w₀ +w₁x₁+w₂x₂>0 '[w₁] e R}

={1 wo+w'x'>0 "woeR, we eR?}

let $\vec{x} = \begin{bmatrix} 1, x_1, x_2 \end{bmatrix}$ organia & which a 1 = { 1 w.x > 0: we R3} Use same error function, SSE g = argm { SSE(h)} $\overrightarrow{w} = \operatorname{argm} \left\{ \sum_{i=1}^{n} \left(1 \overrightarrow{w} \cdot \overrightarrow{x}_{i} \right) \right\}$ This is Heard Problem.