Problem 1:

Problem 2:

Problem 3:

To linouse system (+ 1c2/62/)~ So the voolables are differentiable of 1' \(\) \(\ lim f(2) - d2 Similarly eim $\frac{\partial f(z)}{\xi_1} = -d$

7 A = (-a, -a) Char egn 13 80 (80 + 22) 4 21 =0. of + dr x + d1 = 0. =1 soots are + - 1 1 Var - 4x1 books will be wither ore or. real part of roots will always be we as (9½ > 0) System & = A & & and the even 1184001 So the origin is exponentially stable (clorally) Morthe origin

b)
$$V(\xi) = \alpha_1 \int_{\xi_1}^{\xi_1} \frac{\alpha_1}{1 + k_1 |\alpha_1|} d\alpha_1 + \frac{\xi_1}{2} \frac{\alpha_2}{2}$$
 $= \alpha_1 \xi_1 \xi_2 + \xi_2 \left(-\alpha_1 \xi_1 - \alpha_2 \xi_2 - \alpha_2 \xi_2 \right) + k_2 |\xi_2|$
 $= -\alpha_2 \xi_2 - \alpha_2 \xi_2 - \alpha$

-4, &, =0 =>> &, =0

Only pt in invariant set is £ 20

So. Origin is globally Asymptotically Hable.

c)9) we know that Sup | on &, + on &n | 5 Sup | on &1 + trup | on &, 0 | 1+14/6/ Sup | \(\frac{\dark_1}{\lambda_1} \) + \(\frac{\dark_1}{\lambda_2} \) | \(\frac{\dark_1}{\lambda_2} \) AI) + QL (5/2) Sup | « 61 + « 62 | 1+ 162 | 62 |

u) let 2 = y - g

let dy - g (t,y)

-) 3= g(t,y) - \frac{\dagger}{y}(t,y)

 $= g(t, z+\bar{y}) - g(t, \bar{y})$

if \$ 30 the problem will be Rement analysed linesty

72 - (A+BIC)Z & eig(A+BIC) ZO

& Zis Exponentially Stable