Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа Р3207	К работе допущен
Студент <u>Батманов Даниил Е.</u>	Работа выполнена
Преподаватель Коробков Максим П.	Отчет принят

Рабочий протокол и отчет по лабораторной работе №1.04

Изучение равноускоренного вращательного движения (маятник Обербека)

1. Цель работы.

Проверка основного закона динамики вращения. Проверка зависимости момента инерции от положения масс относительно оси вращения. Рассчитать доверительные интервалы, погрешности измерения свободного слагаемого в линейной зависимости $I(R^2)$ и четверти от углового коэффициента наклона этой зависимости.

2. Задачи, решаемые при выполнении работы.

- а. Ознакомление с техникой безопасности;
- b. Измерение времени падения груза при разной массе груза и разном положении утяжелителей на крестовине;
- с. Расчёт ускорения груза, углового ускорения крестовины и момента силы натяжения нити;
- d. Исследование зависимости момента силы натяжения нити от углового ускорения проверка основного закона динамики вращения;
- е. Исследование зависимости момента инерции от положения масс относительно оси вращения проверка теоремы Штейнера.

3. Объект исследования.

Крестовина, с перемещаемыми по спицам грузами-утяжелителями, груз на нити, которая перекинута через неподвижный блок и намотана на ступицу крестовины.

4. Метод экспериментального исследования.

Многократное прямое измерение времени падения груза при разной массе груза и разном положении утяжелителей на крестовине.

5. Рабочие формулы и исходные данные.

 $I_{\varepsilon}=M-M_{
m Tp}$ — основной закон динамики вращения; $M=I_{\varepsilon}-M_{
m Tp}$ — момент силы натяжения нити; ma=mg-T — второй закон Ньютона; $\varepsilon=\frac{2a}{d}$ — связь между угловым ускорением крестовины и линейным ускорением груза; $M=\frac{Td}{2}$ — осевой момент силы для силы натяжения нити; $I=I_0+4m_{
m VT}R^2$ — момент инерции крестовины с утяжелителями.

6. Измерительные приборы.

				1
Nº n/n	Наименование	Тип прибора	Используемый	Погрешность

			диапазон	прибора
1	Секундомер (IOS)	Цифровой	0 – 1,167682e9 c	0,005 с
2	Линейка	Аналоговый	0 – 1 м	0,0005 м

7. Схема установки (перечень схем, которые составляют Приложение 1).

Рисунок 1 – Схема установки

- 1. Каретка
- 2. Шайбы каретки
- 3. Трубчатая направляющая
- 4. Груз крестовины
- 5. Крестовина
- 6. Поперечина
- 7. Рукоятка сцепления крестовин
- 8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Таблица 1 (в работе используются значения для масс груза в 220 ± 0,5 г и 660 ± 0,5 г) – https://docs.google.com/spreadsheets/d/192Zmbsl0hS4xfleCQimqMIWODzbeWLXWuIpyiqKgCKE/edit?hl=ru#gid=0

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

Таблица 2 – ускорение раскручивающего груза, угловое ускорение крестовины, момент силы натяжения нити (при разных условиях) –

https://docs.google.com/spreadsheets/d/1kaHzqQSaDsbYmA9I2simWyZmI40uAZR1zZgqtBBJhQM/edit?hl=ru#gid=0

$$t_{\rm cp}$$
 = "=CP3HAЧ(B4:B6)" с a = "=(2*B\$3)/(B7*B7)" м / c^2 ε = "=(2*B\$13)/0,046" рад * c^(-1) M = "=(\$A\$19*0,046)*(9,82 - B13)/2" H * м

$$m_{\text{yt}} = \frac{\sum_{i=1}^{N} (R_i - \overline{R})(I_i - \overline{I})}{4\sum_{i=1}^{N} (R_i - \overline{R})^2} = \frac{0,001977}{0,003464} = 0,57 \text{ кг}$$

$$I_0 = \overline{I} - 4m_{\text{yt}}\overline{R}^2 = 0,05428 - 4 * 0,57 * 0,0004^2 = 0,0054 \text{ кг} * \text{м}^2$$

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

$$\begin{split} \Delta t_{\mathrm{cp}} &= \sqrt{\frac{t_{\alpha,n}^2}{N*(N-1)}} \sum_{i=1}^N (t_i - \overline{t})^2 + \left(\frac{2}{3}\Delta_{ux}\right)^2 \left(t_{\alpha,n} = 4,30265, \alpha = 0,95\right) : \Delta t_1 = 0,25396 \, c \\ \Delta a &= \sqrt{\left(\frac{\partial a}{\partial h}\Delta h\right)^2 + \left(\frac{\partial a}{\partial t}\Delta t\right)^2} = \sqrt{\left(\frac{2}{t^2}\Delta h\right)^2 + \left(\frac{4h}{t^3}\Delta t\right)^2} : \Delta a_1 = 0,0049 \, \frac{\mathrm{M}}{\mathrm{c}^2} \\ \Delta \varepsilon &= \sqrt{\left(\frac{\partial \varepsilon}{\partial h}\Delta h\right)^2 + \left(\frac{\partial a}{\partial t}\Delta t\right)^2 + \left(\frac{\partial a}{\partial d}\Delta d\right)^2} = \sqrt{\left(\frac{4}{t^2d}\Delta h\right)^2 + \left(\frac{8h}{t^3d}\Delta t\right)^2 + \left(\frac{4h}{t^2d^2}\Delta d\right)^2} : \Delta \varepsilon_1 = 0,03 \, \frac{\mathrm{pag}}{\mathrm{c}^2} \\ \Delta M &= \sqrt{\left(\frac{md}{t^2}\Delta h\right)^2 + \left(\frac{2mdh}{t^3}\Delta t\right)^2 + \left(\frac{m(gt^2 - 2h)}{2t^2}\Delta d\right)^2 + \left(\frac{d(gt^2 - 2h)}{2t^2}\Delta m\right)^2} : \Delta M_1 = 0,00066 \, \mathrm{H} * \mathrm{M} \end{split}$$

11. Графики (перечень графиков, которые составляют Приложение 2).

 $\Gamma pa \varphi u \kappa \ 1. \ 3 a в u c u м o c \tau ь \ M(\epsilon) - \underline{https://www.desmos.com/calculator/uyfcyppnk8?lang=ru}$

 $\Gamma pa \varphi u \kappa \ 2. \ 3 a в u c u мо c \tau ь \ I(R^2) - \underline{https://www.desmos.com/calculator/2 dg kr5aoax?lang=ru}$

12. Окончательные результаты.

Доверительные интервалы:

Для
$$\alpha=0,664$$
 $\frac{M}{c^2}$; $\varepsilon_{\alpha}=27\%$; $\alpha=0,95$ Для $\varepsilon=0,44$ $\frac{\mathrm{pag}}{c^{-1}}$; $\varepsilon_{\varepsilon}=0,7\%$; $\alpha=0,95$ Для $M=0,104$ H * м; $\varepsilon_{M}=11\%$; $\alpha=0,95$

13. Выводы и анализ результатов работы.

В результате выполненной работы был проверен основной закон динамики вращения, т.е. был проверен основной закон, связывающий угловое ускорение с моментами сил трения и натяжения нити. Были построены графики зависимости $M(\varepsilon)$ и $I(R^2)$. Также, была найдена масса утяжелителя, при помощи метода наименьших квадратов, из зависимости $M(\varepsilon)$.