Section 1.3: Number-Base Conversion

Key Concepts

- Two number representations are **equivalent** if they have the same decimal value (e.g., $(0011)_8$ and $(1001)_2$ both represent 9).
- \bullet Conversion from base r to decimal involves expanding the number into a power series and summing the terms.
- \bullet Conversion from decimal to base r requires separating the number into its integer and fractional parts, as each part is converted differently.

Decimal to Base-r Conversion

- Integer Part: Divide the number by r repeatedly, accumulating remainders. The remainders (in reverse order) form the base-r representation.
- \bullet Fractional Part: Multiply the fraction by r repeatedly, accumulating integers. The integers form the base-r representation.

Examples

- Decimal to Binary:
 - Convert $(41)_{10}$ to binary:

 $41 \div 2 = 20$ remainder 1 $20 \div 2 = 10$ remainder 0 $10 \div 2 = 5$ remainder 0 $5 \div 2 = 2$ remainder 1 $2 \div 2 = 1$ remainder 0 $1 \div 2 = 0$ remainder 1

Result: $(41)_{10} = (101001)_2$.

• Decimal to Octal:

- Convert $(153)_{10}$ to octal:

$$153 \div 8 = 19$$
 remainder 1
 $19 \div 8 = 2$ remainder 3
 $2 \div 8 = 0$ remainder 2

Result: $(153)_{10} = (231)_8$.

• Decimal Fraction to Binary:

- Convert $(0.6875)_{10}$ to binary:

$$0.6875 \times 2 = 1.375$$
 integer 1
 $0.375 \times 2 = 0.75$ integer 0
 $0.75 \times 2 = 1.5$ integer 1
 $0.5 \times 2 = 1.0$ integer 1

Result: $(0.6875)_{10} = (0.1011)_2$.

• Decimal Fraction to Octal:

- Convert $(0.513)_{10}$ to octal:

$$0.513 \times 8 = 4.104$$
 integer 4
 $0.104 \times 8 = 0.832$ integer 0
 $0.832 \times 8 = 6.656$ integer 6
 $0.656 \times 8 = 5.248$ integer 5
 $0.248 \times 8 = 1.984$ integer 1
 $0.984 \times 8 = 7.872$ integer 7

Result: $(0.513)_{10} = (0.406517)_8$.

Combining Integer and Fractional Parts

- For numbers with both integer and fractional parts, convert each part separately and combine the results.
- Example: $(41.6875)_{10} = (101001.1011)_2$.
- Example: $(153.513)_{10} = (231.406517)_8$.

Table of Powers of Two

\overline{n}	2^n	n	2^n	n	2^n
0	1	8	256	16	65,536
1	2	9	512	17	131,072
2	4	10	1,024 (1K)	18	262,144
3	8	11	2,048	19	$524,\!288$
4	16	12	4,096 (4K)	20	1,048,576 (1M)
5	32	13	8,192	21	2,097,152
6	64	14	16,384	22	4,194,304
7	128	15	32,768	23	8,388,608

Table 1: Powers of Two