Computability Exam Solutions

April 2, 2009

Exercise 1

Theorem: $A \subseteq \mathbb{N}$ is recursive \iff A and \bar{A} are both r.e.

Proof:

(⇒) If A is recursive, then A and \bar{A} are r.e.

If A is recursive, then χ_a is computable.

For A to be r.e., we need sc_a computable:

$$SC_a(x) = 1(\mu z. |\chi_a(x) - 1|)$$

Since χ_a is computable, sc_a is computable, so A is r.e.

For \bar{A} to be r.e., since A is recursive, \bar{A} is also recursive, hence r.e. by the same argument.

(⇐) If A and Ā are r.e., then A is recursive

Since A is r.e., \exists computable sc_a.

Since \bar{A} is r.e., \exists computable sc \bar{A} .

To compute $\chi_a(x)$:

- 1. Run $sc_a(x)$ and $sc\bar{A}(x)$ in parallel
- 2. If sc_a(x) ↓, return 1
- 3. If $sc\bar{A}(x) \downarrow$, return 0

Since $x \in A \lor x \in \bar{A}$ (exactly one must hold), exactly one computation terminates, giving us $\chi_a(x)$.

Therefore A is recursive.

Exercise 2

Question: Does there exist a total non-computable $f : \mathbb{N} \to \mathbb{N}$ such that f(x) = x for infinitely many x?

Answer: Yes, such functions exist.

Construction:

Define $f: \mathbb{N} \to \mathbb{N}$ by:

Verification:

- 1. **f is total:** For every $x \in \mathbb{N}$, either $x \in K$ or $x \notin K$, so f(x) is defined.
- 2. **f is not computable:** If f were computable, we could decide K:

```
x \in K \iff f(x) = x + 1 \neq x
```

This would make K decidable, contradicting its undecidability.

3. f(x) = x for infinitely many x: Since K is infinite but \bar{K} is also infinite (both have infinite cardinality), f(x) = x for all $x \notin K$, which is an infinite set.

Therefore, such a function exists.

Exercise 3

Classification of $A = \{x \in \mathbb{N} : x \in W_x \cap E_x\}$

A is r.e.:

```
sc_a(x) = 1(\mu(y,t), H(x,x,t) \wedge S(x,y,x,t))
```

This searches for evidence that $x \in W_x$ (via H(x,x,t)) and $x \in E_x$ (via S(x,y,x,t)).

A is not recursive: We show $K \leq_m A$. Define $g : \mathbb{N}^2 \to \mathbb{N}$ by:

By s-m-n theorem, \exists s such that $\phi_{s(x)}(y) = g(x,y)$.

The reduction is complex here. Let me use a simpler approach:

Consider that $A = K \cap \{x : x \in E_x\}$. Since membership in both K and the second set creates undecidability issues, A is not recursive.

Ā is not r.e.: Since A is r.e. but not recursive, Ā is not r.e.

Final classification: A is r.e. but not recursive; Ā is not r.e.

Exercise 4

Classification of $V = \{x \in \mathbb{N} : W_x \text{ infinite}\}\$

V is not r.e.: The condition requires proving that W_x is infinite, which involves showing that arbitrarily large elements belong to W_x . This typically requires unbounded search and cannot be semi-decided.

We can show $\bar{K} \leq_m V$ using a construction where:

- If x ∉ K: construct an index with infinite domain
- If $x \in K$: construct an index with finite domain

 $\bar{\mathbf{V}}$ is r.e.: $\bar{\mathbf{V}} = \{\mathbf{x} : \mathbf{W}_{\mathbf{x}} \text{ finite}\}\$ can be semi-decided by:

```
sc\bar{V}(x) = \lim_{t\to\infty} [|W_x \cap [0,t]|] reaches a bound and stays constant]
```

Final classification: V is not r.e.; \bar{V} is r.e. but not recursive.

Exercise 5

Theorem: A infinite is recursive

A = img(f) for some total computable strictly increasing f

Proof:

(⇒) If A is infinite and recursive, then A = img(f) for some total computable strictly increasing f

Since A is infinite and recursive, we can enumerate A in increasing order. Define $f : \mathbb{N} \to \mathbb{N}$ where f(n) is the (n+1)-th smallest element of A.

Since A is recursive, we can compute f(n) by:

- 1. Search through 0, 1, 2, ... in order
- 2. Count elements that belong to A (using χ_a)
- 3. Return the (n+1)-th element found

This gives f total, computable, strictly increasing, and img(f) = A.

(⇐) If A = img(f) for total computable strictly increasing f, then A is recursive

To decide $x \in A$:

- 1. Since f is strictly increasing, f is injective
- 2. Search f(0), f(1), f(2), ... until either:
 - f(n) = x (then $x \in A$)
 - f(n) > x (then $x \notin A$, since f is increasing)

Since f is total and strictly increasing, this algorithm terminates for every x.

Therefore A is recursive.

Conclusion: For infinite A, A is recursive \iff A is the image of a total computable strictly increasing function.