TABLE OF CONTENTS

REVIEW

Let
$$S_N = \sum_{n=1}^N a_n$$
.

Simplify: $S_N - S_{N-1}$.

(This will come in handy soon.)

REVIEW

Let
$$S_N = \sum_{n=1}^N a_n$$
.

Simplify: $S_N - S_{N-1}$.

(This will come in handy soon.)

$$S_N = a_1 + a_2 + a_3 + \dots + a_{N-1} + a_N$$

 $S_{N-1} = a_1 + a_2 + a_3 + \dots + a_{N-1}$

REVIEW

Let
$$S_N = \sum_{n=1}^N a_n$$
.

Simplify: $S_N - S_{N-1}$.

(This will come in handy soon.)

$$S_N = a_1 + a_2 + a_3 + \dots + a_{N-1} + a_N$$

 $S_{N-1} = a_1 + a_2 + a_3 + \dots + a_{N-1}$
 $S_N - S_{N-1} = a_N$

ALTERNATING SERIES

Alternating Series

The series

$$A_1 - A_2 + A_3 - A_4 + \dots = \sum_{n=1}^{\infty} (-1)^{n-1} A_n$$

is alternating if every $A_n \ge 0$.

Alternating series:

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \cdots$$

Not alternating:

$$\blacktriangleright \cos(1) + \cos(2) + \cos(3) + \cdots$$

$$\blacktriangleright 1 - \left(-\frac{1}{2}\right) + \frac{1}{3} - \left(-\frac{1}{4}\right) + \cdots$$

Note: these terms alternate signs, and their magnitudes are decreasing: |6| > |-5| > |4| > |-3| > |2| > |-1|

$$S_1 = 6.0000$$

$$S_2 = 1.0000$$

$$S_1 = 6.0000$$

$$S_2 = 1.0000$$

$$S_3 = 5.0000$$

$$S_1 = 6.0000$$

$$S_2 = 1.0000$$

$$S_3 = 5.0000$$

$$S_4 = 2.0000$$

$$S_1 = 6.0000$$

$$S_2 = 1.0000$$

$$S_3 = 5.0000$$

$$S_4 = 2.0000$$

$$S_5=4.0000$$

$$S_1 = 6.0000$$

$$S_2=1.0000$$

$$S_3 = 5.0000$$

$$S_4=2.0000$$

$$S_5=4.0000$$

$$S_6 = 3.0000$$

$$S_1=6.0000$$

$$S_2=1.0000$$

$$S_3 = 5.0000$$

$$S_4 = 2.0000$$

$$S_5 = 4.0000$$

$$S_6 = 3.0000$$

$$S_1=6.0000$$

$$S_2=1.0000$$

$$S_3 = 5.0000$$

$$S_4 = 2.0000$$

$$S_5 = 4.0000$$

$$S_6 = 3.0000$$

Since $a_2 > a_3$, we have $a_1 - (a_2 - a_3) < a_1$, so $S_3 < S_1$.

Since $a_2 > a_3$, we have $a_1 - (a_2 - a_3) < a_1$, so $S_3 < S_1$.

Since $a_2 > a_3$, we have $a_1 - (a_2 - a_3) < a_1$, so $S_3 < S_1$.

Since $a_2 > a_3$, we have $a_1 - (a_2 - a_3) < a_1$, so $S_3 < S_1$. Odd-indexed partial sums are decreasing.

Since $a_2 > a_3$, we have $a_1 - (a_2 - a_3) < a_1$, so $S_3 < S_1$. Odd-indexed partial sums are decreasing.

Since $a_2 > a_3$, we have $a_1 - (a_2 - a_3) < a_1$, so $S_3 < S_1$. Odd-indexed partial sums are decreasing.

Since $a_3 > a_4$, we have $a_1 - a_2 + (a_3 - a_4) > a_1 - a_2$, so $S_4 > S_2$. Even-indexed partial sums are increasing.

▶ For all $n \ge 2$, S_n lies between S_1 and S_2 .

- ▶ For all $n \ge 2$, S_n lies between S_1 and S_2 .
- ► For all $n \ge 3$, S_n lies between S_2 and S_3 .

32/1

- ▶ For all n > 2, S_n lies between S_1 and S_2 .
- ▶ For all $n \ge 3$, S_n lies between S_2 and S_3 .
- ▶ For all $n \ge 4$, S_n lies between S_3 and S_4 .

- ▶ For all $n \ge 2$, S_n lies between S_1 and S_2 .
- ▶ For all $n \ge 3$, S_n lies between S_2 and S_3 .
- ▶ For all $n \ge 4$, S_n lies between S_3 and S_4 .
- ▶ For all $n \ge 5$, S_n lies between S_4 and S_5 .

- ▶ For all $n \ge 2$, S_n lies between S_1 and S_2 .
- ▶ For all $n \ge 3$, S_n lies between S_2 and S_3 .
- ▶ For all $n \ge 4$, S_n lies between S_3 and S_4 .
- ▶ For all $n \ge 5$, S_n lies between S_4 and S_5 .

The difference between consecutive sums S_n and S_{n-1} is:

35/1

- ▶ For all $n \ge 2$, S_n lies between S_1 and S_2 .
- ▶ For all $n \ge 3$, S_n lies between S_2 and S_3 .
- ▶ For all $n \ge 4$, S_n lies between S_3 and S_4 .
- ▶ For all $n \ge 5$, S_n lies between S_4 and S_5 .

The difference between consecutive sums S_n and S_{n-1} is: $|a_n|$, which approaches 0.

- ▶ For all $n \ge 2$, S_n lies between S_1 and S_2 .
- ► For all $n \ge 3$, S_n lies between S_2 and S_3 .
- ▶ For all $n \ge 4$, S_n lies between S_3 and S_4 .
- ▶ For all $n \ge 5$, S_n lies between S_4 and S_5 .

The difference between consecutive sums S_n and S_{n-1} is: $|a_n|$, which approaches 0.

Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of real numbers that obeys

- (i) $a_n \ge 0$ for all $n \ge 1$;
- (ii) $a_{n+1} \le a_n$ for all $n \ge 1$ (i.e. the sequence is monotone decreasing);
- (iii) and $\lim_{n\to\infty} a_n = 0$.

Then

$$a_1 - a_2 + a_3 - a_4 + \dots = \sum_{n=1}^{\infty} (-1)^{n-1} a_n = S$$

converges and, for each natural number N, $S - S_N$ is between 0 and (the first dropped term) $(-1)^N a_{N+1}$. Here S_N is, as previously, the N^{th}

partial sum
$$\sum_{n=1}^{N} (-1)^{n-1} a_n$$
.

Alternating Series Test (abridged)

Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of real numbers that obeys

- (i) $a_n \ge 0$ for all $n \ge 1$;
- (ii) $a_{n+1} \le a_n$ for all $n \ge 1$ (i.e. the sequence is monotone decreasing);
- (iii) and $\lim_{n\to\infty} a_n = 0$.

Then

$$a_1 - a_2 + a_3 - a_4 + \dots = \sum_{n=1}^{\infty} (-1)^{n-1} a_n$$

converges.

- ► True or false: the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ converges.
- ► True or false: the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ converges.

Let $a_n = \frac{1}{n}$.

ans

Let $a_n = \frac{1}{n}$.

- (i) $a_n \geq 0$
- (ii) $a_{n+1} \leq a_n$
- (iii) $\lim_{n\to\infty} a_n = 0$

ans

Let $a_n = \frac{1}{n}$.

- (i) $a_n \geq 0$
- (ii) $a_{n+1} \leq a_n$
- (iii) $\lim_{n\to\infty} a_n = 0$
 - We've already seen that the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.
 - ▶ By the Alternating Series Test, $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ converges. That is,

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

converges.

 $\overline{}$

Warning 3.3.3

45/1 Warning 3.3.3

46/1 Warning 3.3.3

47/1 Warning 3.3.3

Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of real numbers that obeys $a_n \geq 0$ for all $n \geq 1$; $a_{n+1} \leq a_n$ for all $n \geq 1$; and $\lim_{n \to \infty} a_n = 0$. Then $\sum_{n=1}^{\infty} (-1)^{n-1} a_n = S$ converges and $S - S_N$ is between 0 and $(-1)^N a_{N+1}$.

Using a computer, you find $\sum_{n=1}^{99} \frac{(-1)^{n-1}}{n} \approx 0.698.$

How close is that to the value $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$?

Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of real numbers that obeys $a_n \geq 0$ for all $n \geq 1$; $a_{n+1} \leq a_n$ for all $n \geq 1$; and $\lim_{n \to \infty} a_n = 0$. Then $\sum_{n=1}^{\infty} (-1)^{n-1} a_n = S$ converges and $S - S_N$ is between 0 and $(-1)^N a_{N+1}$.

Using a computer, you find $\sum_{n=1}^{99} \frac{(-1)^{n-1}}{n} \approx 0.698.$

How close is that to the value $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$?

$$\frac{-1}{100} = \frac{(-1)^{100-1}}{100} \le \sum_{n=1}^{\infty} \frac{(-1)^n}{n} - \sum_{n=1}^{99} \frac{(-1)^n}{n} \le 0.$$

That is, the actual series has a sum in the interval [0.688, 0.698].

Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of real numbers that obeys $a_n \geq 0$ for all $n \geq 1$; $a_{n+1} \leq a_n$ for all $n \geq 1$; and $\lim_{n \to \infty} a_n = 0$. Then $\sum_{n=1}^{\infty} (-1)^{n-1} a_n = S$ converges and $S - S_N$ is between 0 and $(-1)^N a_{N+1}$.

Using a computer, you find $\sum_{n=1}^{19} (-1)^{n-1} \frac{n^2}{n^2 + 1} \approx 0.6347$.

How close is that to the value $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n^2}{n^2 + 1}$?

Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of real numbers that obeys $a_n \ge 0$ for all $n \ge 1$; $a_{n+1} \le a_n$ for all $n \ge 1$; and $\lim_{n \to \infty} a_n = 0$. Then $\sum_{n=0}^{\infty} (-1)^{n-1} a_n = S$ converges and $S - S_N$ is between 0 and $(-1)^N a_{N+1}$.

Using a computer, you find
$$\sum_{n=1}^{19} (-1)^{n-1} \frac{n^2}{n^2 + 1} \approx 0.6347.$$
 How close is that to the value
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n^2}{n^2 + 1}?$$

How close is that to the value
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n^2}{n^2 + 1}$$
?

Not close at all: the series is divergent (which we can see by the divergence test).

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n^2}{n^2+1}$$
 DIVERGES

 $S_1 = 0.5000$

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n^2}{n^2+1}$$
 DIVERGES

 $S_1 = 0.5000$

 $S_2 = -0.3000$

$$S_2 = -0.3000$$

 $S_1 = 0.5000$

$$S_1 = 0.5000$$

$$S_2 = -0.3000$$

$$S_3 = 0.5999$$

$$S_4 = -0.3411$$

$$S_2 = -0.3000$$

$$S_3 = 0.5999$$

$$S_4 = -0.3411$$

$$S_5 = 0.6203$$

-0.3526

$$S_1 = 0.5000$$

$$S_2 = -0.3000$$

$$S_3 = 0.5999$$

$$S_4 = -0.3411$$

$$S_5 = 0.6203$$

$$S_6 = -0.3526$$

$$S_1 = 0.5000$$

$$S_2 = -0.3000$$

$$S_3 = 0.5999$$

$$S_4 = -0.3411$$

$$S_5 = 0.6203$$

$$S_6 = -0.3526$$

$$S_7 = 0.6273$$

$$S_1=0.5000$$

$$S_2 = -0.3000$$

$$S_3 = 0.5999$$

$$S_4 = -0.3411$$

$$S_5 = 0.6203$$

$$S_6 = -0.3526$$

$$S_7 = 0.6273$$

$$S_8 = -0.3572$$

$$S_1=0.5000$$

$$S_2 = -0.3000$$

$$S_3 = 0.5999$$

$$S_4 = -0.3411$$

$$S_5 = 0.6203$$

$$S_6 = -0.3526$$

$$S_7 = 0.6273$$

$$S_8 = -0.3572$$

$$S_9 = 0.6305$$

$$S_1 = 0.5000$$

$$S_2 = -0.3000$$

$$S_3 = 0.5999$$

$$S_4 = -0.3411$$

$$S_5 = 0.6203$$

$$S_6 = -0.3526$$

$$S_7 = 0.6273$$

$$S_8 = -0.3572$$

$$S_9 = 0.6305$$

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} \cdots$$

$$\frac{\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} \cdots}{\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} \cdots}$$

$$\frac{\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} \cdots}{\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} \cdots}$$

$$\frac{\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} \cdots}{\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} \cdots}$$

$$\frac{\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} \cdots}{\frac{\frac{1}{4}}{\frac{1}{2}} =}$$

$$\frac{\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} \cdots}{\frac{\frac{1}{4}}{\frac{1}{2}} = \frac{\frac{1}{8}}{\frac{1}{4}} = \frac{1}{16}$$

$$\frac{\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} \cdots}{\frac{\frac{1}{4}}{\frac{1}{2}} = \frac{\frac{1}{8}}{\frac{1}{4}} = \frac{\frac{1}{16}}{\frac{1}{8}} =$$

$$\frac{\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} \cdots}{\frac{\frac{1/4}{1/2} = \frac{1/8}{1/4} = \frac{1/16}{1/8} = \frac{1/32}{1/16} = \frac{1}{2}}$$

For series convergence, we are concerned with what happens to terms a_n when n is sufficiently large.

Suppose for a sequence a_n , $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = L$ for some constant L.

$$\underbrace{a_{n} + a_{n+1}}_{a_{n+1}} + a_{n+2} + a_{n+3} + a_{n+4} + \cdots$$

Like in a geometric series:

For series convergence, we are concerned with what happens to terms a_n when n is sufficiently large.

Suppose for a sequence a_n , $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = L$ for some constant L.

$$a_{n} + a_{n+1} + a_{n+2} + a_{n+3} + a_{n+4} + \cdots$$

$$a_{n+1} \approx a_{n+2} \approx a_{n+1} \approx a_{n+2}$$

Like in a geometric series:

Suppose for a sequence a_n , $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = L$ for some constant L.

$$a_{n} + a_{n+1} + a_{n+2} + a_{n+3} + a_{n+4} + \cdots$$

$$a_{n+1} \approx a_{n+2} \approx a_{n+3} \approx a_{n+3} \approx a_{n+2}$$

Like in a geometric series:

Suppose for a sequence a_n , $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = L$ for some constant L.

$$a_{n} + a_{n+1} + a_{n+2} + a_{n+3} + a_{n+4} + \cdots$$

$$a_{n+1} \approx a_{n+2} \approx a_{n+3} \approx a_{n+4} \approx a_$$

Like in a geometric series:

Suppose for a sequence a_n , $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = L$ for some constant L.

$$\underbrace{\frac{a_{n+1}}{a_n}}_{} \approx \underbrace{\frac{a_{n+2}}{a_{n+1}}}_{} \approx \underbrace{\frac{a_{n+3}}{a_{n+2}}}_{} \approx \underbrace{\frac{a_{n+3}}{a_{n+3}}}_{} \approx \underbrace{\frac{a_{n+4}}{a_{n+3}}}_{} \approx \underbrace{\frac{a_{n+5}}{a_{n+4}}}_{} \approx$$

Like in a geometric series:

Suppose for a sequence a_n , $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = L$ for some constant L.

$$\underbrace{\frac{a_{n+1}}{a_n}}_{} \approx \underbrace{\frac{a_{n+2}}{a_{n+1}}}_{} \approx \underbrace{\frac{a_{n+3}}{a_{n+2}}}_{} \approx \underbrace{\frac{a_{n+3}}{a_{n+2}}}_{} \approx \underbrace{\frac{a_{n+4}}{a_{n+3}}}_{} \approx \underbrace{\frac{a_{n+5}}{a_{n+4}}}_{} \approx \underbrace{L}$$

Like in a geometric series:

Ratio Test

(a) If
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$$
, then $\sum_{n=1}^{\infty} a_n$ converges.

(b) If
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$$
, or $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$, then $\sum_{n=1}^{\infty} a_n$ diverges.

Ratio Test

Let *N* be any positive integer and assume that $a_n \neq 0$ for all $n \geq N$.

- (a) If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$, then $\sum_{n=1}^{\infty} a_n$ converges.
- (b) If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$, or $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$, then $\sum_{n=1}^{\infty} a_n$ diverges.

Use the ratio test to determine whether the series

$$\sum_{n=1}^{\infty} \frac{n}{3^n}$$

converges or diverges.

Use the ratio test to determine whether the series

$$\sum_{n=1}^{\infty} \frac{n}{3^n}$$

converges or diverges.

Use the ratio test to determine whether the series

$$\sum_{n=1}^{\infty} \frac{n}{3^n}$$

converges or diverges.

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{\frac{n+1}{3^{n+1}}}{\frac{n}{3^n}} = \frac{n+1}{n} \cdot \frac{3^n}{3^{n+1}} = \left(1 + \frac{1}{n}\right) \cdot \frac{1}{3}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{1}{3}$$

Since $\frac{1}{3} < 1$, by the ratio test, $\sum_{n=1}^{\infty} \frac{n}{3^n}$ coverges.

The series we just considered, $\sum_{n=1}^{\infty} \frac{n}{3^n}$, looks similar to a geometric series, but it is not exactly a geometric series. That's a good indicator that the ratio test will be helpful!

The series we just considered, $\sum_{n=1}^{\infty} \frac{n}{3^n}$, looks similar to a geometric series, but it is not exactly a geometric series. That's a good indicator that the ratio test will be helpful!

We could have used other tests, but ratio was probably the easiest.

► Integral test:

The series we just considered, $\sum_{n=1}^{\infty} \frac{n}{3^n}$, looks similar to a geometric series, but it is not exactly a geometric series. That's a good indicator that the ratio test will be helpful!

We could have used other tests, but ratio was probably the easiest.

► Integral test: $\int \frac{x}{3^x} dx$ can be evaluated using integration by parts.

The series we just considered, $\sum_{n=1}^{\infty} \frac{n}{3^n}$, looks similar to a geometric series, but it is not exactly a geometric series. That's a good indicator that the ratio test will be helpful!

- ► Integral test: $\int \frac{x}{3^x} dx$ can be evaluated using integration by parts.
- ► Comparison test:

The series we just considered, $\sum_{n=1}^{\infty} \frac{n}{3^n}$, looks similar to a geometric series, but it is not exactly a geometric series. That's a good indicator that the ratio test will be helpful!

- ► Integral test: $\int \frac{x}{3^x} dx$ can be evaluated using integration by parts.
- ► Comparison test:
 - $ightharpoonup \sum \frac{1}{3^n}$ is not a valid comparison series, nor is $\sum n$.

The series we just considered, $\sum_{n=1}^{\infty} \frac{n}{3^n}$, looks similar to a geometric series, but it is not exactly a geometric series. That's a good indicator that the ratio test will be helpful!

- ► Integral test: $\int \frac{x}{3^x} dx$ can be evaluated using integration by parts.
- ► Comparison test:
 - $ightharpoonup \sum \frac{1}{3^n}$ is not a valid comparison series, nor is $\sum n$.
 - ▶ Because $n < 2^n$ for all $n \ge 1$, the series $\sum \left(\frac{2}{3}\right)^n$ will work.

The series we just considered, $\sum_{n=1}^{\infty} \frac{n}{3^n}$, looks similar to a geometric series, but it is not exactly a geometric series. That's a good indicator that the ratio test will be helpful!

- ► Integral test: $\int \frac{x}{3^x} dx$ can be evaluated using integration by parts.
- ► Comparison test:
 - $ightharpoonup \sum \frac{1}{3^n}$ is not a valid comparison series, nor is $\sum n$.
 - ▶ Because $n < 2^n$ for all $n \ge 1$, the series $\sum \left(\frac{2}{3}\right)^n$ will work.
- ► The divergence test is inconclusive, and the alternating series test does not apply. Our series is not geometric, and not obviously telescoping.

$$\sum_{n=1}^{\infty} \frac{n}{3^n}$$
 CONVERGES

 $S_1 = 0.3333$

 $S_1=0.3333$

 $S_2 = 0.5555$

$$S_1 = 0.3333$$

$$S_2=0.5555$$

$$S_3 = 0.6666$$

$$S_1=0.3333$$

$$S_2 = 0.5555$$

$$S_3 = 0.6666$$

$$S_4 = 0.7160$$

$$S_1=0.3333$$

$$S_2 = 0.5555$$

$$S_3 = 0.6666$$

$$S_4 = 0.7160$$

$$S_1 = 0.3333$$

$$S_2 = 0.5555$$

$$S_3 = 0.6666$$

$$S_4 = 0.7160$$

$$S_5 = 0.7366$$

$$S_6 = 0.7448$$

$$S_1 = 0.3333$$

$$S_2 = 0.5555$$

$$S_3 = 0.6666$$

$$S_4 = 0.7160$$

$$S_5 = 0.7366$$

$$S_6 = 0.7448$$

$$S_7 = 0.7480$$

$$S_1=0.3333$$

$$S_2 = 0.5555$$

$$S_3 = 0.6666$$

$$S_4 = 0.7160$$

$$S_5 = 0.7366$$

$$S_6 = 0.7448$$

$$S_7 = 0.7480$$

$$S_8 = 0.7492$$

Ratio Test

Let *N* be any positive integer and assume that $a_n \neq 0$ for all $n \geq N$.

- (a) If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$, then $\sum_{n=1}^{\infty} a_n$ converges.
- (b) If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$, or $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$, then $\sum_{n=1}^{\infty} a_n$ diverges.

Let *a* and *x* be nonzero constants. Use the ratio test to determine whether

$$\sum_{n=1}^{\infty} anx^{n-1}$$

converges or diverges. (This may depend on the values of a and x.)

$$\sum_{n=1}^{\infty} anx^{n-1}$$

$$\sum_{n=1}^{\infty} anx^{n-1}$$

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{a(n+1)x^n}{anx^{n-1}} \right| = \left| \left(\frac{n+1}{n} \right) x \right| = \left(1 + \frac{1}{n} \right) |x|$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = |x|$$

So the series converges when |x| < 1 and diverges when |x| > 1. For the cases $x = \pm 1$, the ratio test is inconclusive, so we'll need another test. Fortunately, the divergence test makes things quick.

For
$$x = 1$$
:
$$\lim_{n \to \infty} an(1)^{n-1} = \lim_{n \to \infty} an \neq 0$$
For $x = -1$:
$$\lim_{n \to \infty} an(-1)^{n-1} \neq 0$$

All together, for any nonzero a, the series diverges when $|x| \ge 1$ and converges when |x| < 1.

Let x be a constant. Use the ratio test to determine whether

$$\sum_{n=1}^{\infty} \frac{(-3)^n \sqrt{n+1}}{2n+3} x^n$$

converges or diverges. (This may depend on the value of x.)

Let *x* be a constant. Use the ratio test to determine whether

$$\sum_{n=1}^{\infty} \frac{(-3)^n \sqrt{n+1}}{2n+3} x^n$$

converges or diverges. (This may depend on the value of x.)

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{\frac{(-3)^{n+1}\sqrt{n+2}}{2(n+1)+3}x^{n+1}}{\frac{(-3)^n\sqrt{n+1}}{2n+3}x^n} \right| = \left| \frac{(-3)^{n+1}}{(-3)^n} \cdot \frac{\sqrt{n+2}}{\sqrt{n+1}} \cdot \frac{2n+3}{2n+5} \cdot \frac{x^{n+1}}{x^n} \right|$$

$$= 3 \cdot \sqrt{\frac{n+2}{n+1}} \cdot \left(\frac{2n+3}{2n+5} \right) \cdot |x| = 3\sqrt{\frac{1+2/n}{1+1/n}} \cdot \left(\frac{2+3/n}{2+5/n} \right) \cdot |x|$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 3\sqrt{\frac{1}{1}} \left(\frac{2}{2} \right) |x| = 3|x|$$

So the series converges when 3|x| < 1 and diverges when 3|x| > 1. So for $|x| < \frac{1}{3}$, the series converges, and for $|x| > \frac{1}{3}$, it diverges.

Consider $x = \frac{1}{3}$.

$$\sum_{n=1}^{\infty} \frac{(-3)^n \sqrt{n+1}}{2n+3} x^n = \sum_{n=1}^{\infty} \frac{\sqrt{n+1}}{2n+3} \frac{(-3)^n}{3^n} = \sum_{n=1}^{\infty} (-1)^n \frac{\sqrt{n+1}}{2n+3}$$

This is an alternating series. Let's use the alternating series test.

- (i) $a_n = \frac{\sqrt{n+1}}{2n+3} \ge 0$ for all $n \ge 1$,
- (ii) To show that a_n is monotonically decreasing, consider the derivative of $f(t) = \frac{\sqrt{t+1}}{2t+3}$:

$$f'(t) = \frac{(2t+3)\frac{1}{2\sqrt{t+1}} - \sqrt{t+1}(2)}{(2t+3)^2} \left(\frac{\sqrt{t+1}}{\sqrt{t+1}}\right)$$
$$= \frac{\left(t+\frac{3}{2}\right) - (t+1)(2)}{(2t+3)^2\sqrt{t+1}} = \frac{-t-\frac{1}{2}}{(2t+3)^2\sqrt{t+1}}$$

Since f'(t) < 0 for all t > 0, we see it is a decreasing function on that domain, so $a_{n+1} < a_n$ for all $n \ge 1$.

(iii)
$$\lim_{n\to\infty} a_n = 0$$

So, our series converges by the alternating series test when $x = \frac{1}{3}$.

Finally, consider $x = -\frac{1}{3}$.

$$\sum_{n=1}^{\infty} \frac{(-3)^n \sqrt{n+1}}{2n+3} x^n = \sum_{n=1}^{\infty} \frac{\sqrt{n+1}}{2n+3} \frac{(-3)^n}{(-3)^n} = \sum_{n=1}^{\infty} \frac{\sqrt{n+1}}{2n+3}$$

We will use the limit comparison test, with comparison series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$.

$$\lim_{n \to \infty} \frac{\frac{\sqrt{n+1}}{2n+3}}{\frac{1}{\sqrt{n}}} = \lim_{n \to \infty} \frac{\sqrt{n+1}\sqrt{n}}{2n+3} = \lim_{n \to \infty} \frac{\sqrt{n^2+n}}{2n+3} \left(\frac{1/n}{1/n}\right)$$
$$= \lim_{n \to \infty} \frac{\sqrt{1+1/n}}{2+3/n} = \frac{\sqrt{1+0}}{2+0} = \frac{1}{2}$$

Since $\frac{1}{2}$ is a nonzero constant, and since $\sum \frac{1}{\sqrt{n}}$ diverges (by the *p*-test), our series diverges as well.

All together, the original series converges when $-\frac{1}{3} < x \le \frac{1}{3}$, and diverges otherwise.

n=c

Divergence Test

If the sequence $\{a_n\}_{n=c}^{\infty}$ then the series $\sum_{n=0}^{\infty} a_n$ diverges.

Ratio Test

- (a) If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|$ then $\sum_{n=1}^{\infty} a_n$ converges.
- (b) If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|$, or $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$, then $\sum_{n=1}^{\infty} a_n$ diverges.

Divergence Test

If the sequence $\{a_n\}_{n=c}^{\infty}$ fails to converge to zero as $n \to \infty$, then the series $\sum_{n=c}^{\infty} a_n$ diverges.

Ratio Test

- (a) If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|$ then $\sum_{n=1}^{\infty} a_n$ converges.
- (b) If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|$, or $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$, then $\sum_{n=1}^{\infty} a_n$ diverges.

Divergence Test

If the sequence $\{a_n\}_{n=c}^{\infty}$ fails to converge to zero as $n \to \infty$, then the series $\sum_{n=0}^{\infty} a_n$ diverges.

Ratio Test

(a) If
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$$
, then $\sum_{n=1}^{\infty} a_n$ converges.

(b) If
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|$$
 , or $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$, then $\sum_{n=1}^{\infty} a_n$ diverges.

Divergence Test

If the sequence $\{a_n\}_{n=c}^{\infty}$ fails to converge to zero as $n \to \infty$, then the series $\sum_{n=c}^{\infty} a_n$ diverges.

Ratio Test

(a) If
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$$
, then $\sum_{n=1}^{\infty} a_n$ converges.

(b) If
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$$
, or $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$, then $\sum_{n=1}^{\infty} a_n$ diverges.

Integral Test

Let N_0 be any natural number. If f(x) is a function which is defined and continuous for all $x \ge N_0$ and which obeys

- (i) and
- (ii) and
- (iii) $f(n) = a_n$ for all $n \ge N_0$.

Then

$$\sum_{n=1}^{\infty} a_n \text{ converges } \iff \int_{N_0}^{\infty} f(x) \, dx \text{ converges}$$

Furthermore, when the series converges, the truncation error satisfies

$$0 \le \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{N} a_n \le \int_{N}^{\infty} f(x) \, dx \qquad \text{for all } N \ge N_0$$

Integral Test

Let N_0 be any natural number. If f(x) is a function which is defined and continuous for all $x \ge N_0$ and which obeys

- (i) $f(x) \ge 0$ for all $x \ge N_0$ and
- (ii) and
- (iii) $f(n) = a_n$ for all $n \ge N_0$.

Then

$$\sum_{n=1}^{\infty} a_n \text{ converges } \iff \int_{N_0}^{\infty} f(x) \, dx \text{ converges}$$

Furthermore, when the series converges, the truncation error satisfies

$$0 \le \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{N} a_n \le \int_{N}^{\infty} f(x) \, dx \quad \text{for all } N \ge N_0$$

Integral Test

Let N_0 be any natural number. If f(x) is a function which is defined and continuous for all $x \ge N_0$ and which obeys

- (i) $f(x) \ge 0$ for all $x \ge N_0$ and
- (ii) f(x) decreases as x increases and
- (iii) $f(n) = a_n$ for all $n \ge N_0$.

Then

$$\sum_{n=1}^{\infty} a_n \text{ converges } \iff \int_{N_0}^{\infty} f(x) \, dx \text{ converges}$$

Furthermore, when the series converges, the truncation error satisfies

$$0 \le \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{N} a_n \le \int_{N}^{\infty} f(x) \, dx \qquad \text{for all } N \ge N_0$$

The Comparison Test

Let N_0 be a natural number and let K > 0.

- (a) If $|a_n| \prod Kc_n$ for all $n \ge N_0$ and $\sum_{n=0}^{\infty} c_n$ converges, then $\sum_{n=0}^{\infty} a_n$ converges.
- (b) If $a_n \bigsqcup Kd_n \ge 0$ for all $n \ge N_0$ and $\sum_{n=0}^{\infty} d_n$ diverges, then $\sum_{n=0}^{\infty} a_n$ diverges.

The Comparison Test

Let N_0 be a natural number and let K > 0.

- (a) If $|a_n| \le Kc_n$ for all $n \ge N_0$ and $\sum_{n=0}^{\infty} c_n$ converges, then $\sum_{n=0}^{\infty} a_n$ converges.
- (b) If $a_n \bigsqcup Kd_n \ge 0$ for all $n \ge N_0$ and $\sum_{n=0}^{\infty} d_n$ diverges, then $\sum_{n=0}^{\infty} a_n$ diverges.

The Comparison Test

Let N_0 be a natural number and let K > 0.

- (a) If $|a_n| \le Kc_n$ for all $n \ge N_0$ and $\sum_{n=0}^{\infty} c_n$ converges, then $\sum_{n=0}^{\infty} a_n$ converges.
- (b) If $a_n \ge Kd_n \ge 0$ for all $n \ge N_0$ and $\sum_{n=0}^{\infty} d_n$ diverges, then $\sum_{n=0}^{\infty} a_n$ diverges.

Limit Comparison Theorem

Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be two series with $b_n > 0$ for all n. Assume that

$$\lim_{n\to\infty}\frac{a_n}{b_n}=L$$

exists.

- (a) If $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges too.
- (b) If $L \neq 0$ and $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges too.

In particular, if _____, then $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=1}^{\infty} b_n$ converges.

Limit Comparison Theorem

Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be two series with $b_n > 0$ for all n. Assume that

$$\lim_{n\to\infty}\frac{a_n}{b_n}=L$$

exists.

- (a) If $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges too.
- (b) If $L \neq 0$ and $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges too.

In particular, if $L \neq 0$, then $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=1}^{\infty} b_n$ converges.

Alternating Series Test

Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of real numbers that obeys

- (i)
- (ii) $a_{n+1} \le a_n$ for all $n \ge 1$ (i.e. the sequence is monotone decreasing);
- (iii) and

Then

$$a_1 - a_2 + a_3 - a_4 + \dots = \sum_{n=1}^{\infty} (-1)^{n-1} a_n = S$$

converges and, for each natural number N, $S - S_N$ is between 0 and (the first dropped term) $(-1)^N a_{N+1}$. Here S_N is, as previously, the N^{th}

partial sum
$$\sum_{n=1}^{N} (-1)^{n-1} a_n$$
.

Alternating Series Test

Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of real numbers that obeys

- (i) $a_n \ge 0$ for all $n \ge 1$;
- (ii) $a_{n+1} \le a_n$ for all $n \ge 1$ (i.e. the sequence is monotone decreasing);
- (iii) and

Then

$$a_1 - a_2 + a_3 - a_4 + \dots = \sum_{n=1}^{\infty} (-1)^{n-1} a_n = S$$

converges and, for each natural number N, $S - S_N$ is between 0 and (the first dropped term) $(-1)^N a_{N+1}$. Here S_N is, as previously, the N^{th}

partial sum
$$\sum_{n=1}^{N} (-1)^{n-1} a_n$$
.

Alternating Series Test

Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of real numbers that obeys

- (i) $a_n \ge 0$ for all $n \ge 1$;
- (ii) $a_{n+1} \le a_n$ for all $n \ge 1$ (i.e. the sequence is monotone decreasing);
- (iii) and $\lim_{n\to\infty} a_n = 0$.

Then

$$a_1 - a_2 + a_3 - a_4 + \dots = \sum_{n=1}^{\infty} (-1)^{n-1} a_n = S$$

converges and, for each natural number N, $S - S_N$ is between 0 and (the first dropped term) $(-1)^N a_{N+1}$. Here S_N is, as previously, the N^{th}

partial sum
$$\sum_{n=1}^{N} (-1)^{n-1} a_n$$
.

Divergence Test

When the n^{th} term in the series *fails* to converge to zero as n tends to infinity.

This is a good first thing to check: if it works, it's quick, but it doesn't always work.

Divergence Test

When the n^{th} term in the series *fails* to converge to zero as n tends to infinity.

This is a good first thing to check: if it works, it's quick, but it doesn't always work.

Alternating Series Test

Divergence Test

When the n^{th} term in the series *fails* to converge to zero as n tends to infinity.

This is a good first thing to check: if it works, it's quick, but it doesn't always work.

Alternating Series Test

- successive terms in the series alternate in sign
- ▶ don't forget to check that successive terms decrease in magnitude and tend to zero as *n* tends to infinity

Divergence Test

When the n^{th} term in the series *fails* to converge to zero as n tends to infinity.

This is a good first thing to check: if it works, it's quick, but it doesn't always work.

Alternating Series Test

- successive terms in the series alternate in sign
- ▶ don't forget to check that successive terms decrease in magnitude and tend to zero as *n* tends to infinity

Integral Test

Divergence Test

When the n^{th} term in the series *fails* to converge to zero as n tends to infinity.

This is a good first thing to check: if it works, it's quick, but it doesn't always work.

Alternating Series Test

- successive terms in the series alternate in sign
- don't forget to check that successive terms decrease in magnitude and tend to zero as n tends to infinity

Integral Test

- works well when, if you substitute x for n in the nth term you get a function, f(x), that you can easily integrate
- ▶ don't forget to check that $f(x) \ge 0$ and that f(x) decreases as x increases

Ratio Test

Ratio Test

- works well when $\frac{a_{n+1}}{a_n}$ simplifies enough that you can easily compute $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=L$
- ▶ this often happens when a_n contains powers, like 7^n , or factorials, like n!
- ▶ don't forget that L = 1 tells you nothing about the convergence/divergence of the series

Ratio Test

- ▶ works well when $\frac{a_{n+1}}{a_n}$ simplifies enough that you can easily compute $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = L$
- ▶ this often happens when a_n contains powers, like 7^n , or factorials, like n!
- ▶ don't forget that L = 1 tells you nothing about the convergence/divergence of the series

Comparison Test and Limit Comparison Test

Ratio Test

- ▶ works well when $\frac{a_{n+1}}{a_n}$ simplifies enough that you can easily compute $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = L$
- ▶ this often happens when a_n contains powers, like 7^n , or factorials, like n!
- ▶ don't forget that L = 1 tells you nothing about the convergence/divergence of the series

Comparison Test and Limit Comparison Test

- ▶ Comparison test lets you ignore pieces of a function that feel extraneous (like replacing $n^2 + 1$ with n^2) but there is a test to make sure the comparison is still valid. Either the limit of a ratio is the right thing, or an inequality goes the right way.
- Limit comparison works well when, for very large n, the nth term a_n is approximately the same as a simpler, nonnegative term b_n

► The integral test gave us the *p*-test. When you're looking for comparison series, *p*-series $\sum \frac{1}{n^p}$ are often good choices, because their convergence or divergence is so easy to ascertain.

► The integral test gave us the *p*-test. When you're looking for comparison series, *p*-series $\sum \frac{1}{n^p}$ are often good choices, because their convergence or divergence is so easy to ascertain.

▶ Geometric series have the form $\sum a \cdot r^n$ for some nonzero constants a and r. The magnitude of r is all you need to know to deicide whether they converge or diverge, so these are also common comparison series.

► The integral test gave us the *p*-test. When you're looking for comparison series, *p*-series $\sum \frac{1}{n^p}$ are often good choices, because their convergence or divergence is so easy to ascertain.

▶ Geometric series have the form $\sum a \cdot r^n$ for some nonzero constants a and r. The magnitude of r is all you need to know to deicide whether they converge or diverge, so these are also common comparison series.

► Telescoping series have partial sums that are easy to find because successive terms cancel out. These are less obvious, and are less common choices for comparison series.

Test List

- ▶ divergence
- ► integral
- alternating series

- ► ratio
- comparison
- ▶ limit comparison

Determine whether the series $\sum_{n=1}^{\infty} \frac{\cos n}{2^n}$ converges or diverges.

Determine whether the series $\sum_{n=1}^{\infty} \frac{\cos n}{2^n}$ converges or diverges.

The **divergence test** is inconclusive, because $\lim_{n\to\infty} \frac{\cos n}{2^n} = 0$ (which you can show with the squeeze theorem).

The **integral test** doesn't apply, because $f(x) = \frac{\cos x}{2^x}$ is not always positive (and not decreasing).

The **alternating series test** doesn't apply because the signs of the series do not strictly alternate every term.

The **ratio test** does not apply, because $\lim_{n\to\infty} \frac{a_{n+1}}{a_n}$ does not exist.

Determine whether the series $\sum_{n=1}^{\infty} \frac{\cos n}{2^n}$ converges or diverges.

Comparison test: Let $a_n = \frac{\cos n}{2^n}$. Note $|a_n| \le \frac{1}{2^n}$, and $\sum_{n=1}^{\infty} \frac{1}{2^n}$ converges (it is a geometric sum with ratio of consecutive terms $\frac{1}{2}$).

So by the comparison test, $\sum_{n=1}^{\infty} \frac{\cos n}{2^n}$ converges.

Limit comparison: Set $a_n = \frac{\cos n}{2^n}$ and $b_n = \left(\frac{2}{3}\right)^n$. Then

$$\begin{split} \frac{a_n}{b_n} &= \frac{\frac{\cos n}{2^n}}{\frac{2^n}{3^n}} = \left(\frac{3}{4}\right)^n \cos n \\ &- \left(\frac{3}{4}\right)^n \leq \left(\frac{3}{4}\right)^n \cos n \leq \left(\frac{3}{4}\right)^n, \text{ and } \lim_{n \to \infty} - \left(\frac{3}{4}\right)^n = \lim_{n \to \infty} \left(\frac{3}{4}\right)^n = 0 \end{split}$$

So, by the Squeeze Theorem,

$$\lim_{n\to\infty}\frac{a_n}{b_n}=0$$

Since $\sum_{n=1}^{\infty} b_n$ converges, by the limit comparison theorem, $\sum_{n=1}^{\infty} \frac{\cos n}{2^n}$ converges as well.

 $\stackrel{A}{\sqsubseteq}$

Test List

- ▶ divergence
- ► integral
- alternating series

- ► ratio
- comparison
- ▶ limit comparison

Determine whether the series $\sum_{n=1}^{\infty} \frac{2^n \cdot n^2}{(n+5)^5}$ converges or diverges.

Determine whether the series $\sum_{n=1}^{\infty} \frac{2^n \cdot n^2}{(n+5)^5}$ converges or diverges.

The **alternating series test** doesn't apply because the signs of the series do not alternate.

The **integral test** doesn't apply $f(x) = \frac{2^x \cdot x^2}{(x+5)^5}$ is not a decreasing function.

Divergence test: $\lim_{n\to\infty}\frac{2^n\cdot n^2}{(n+5)^5}=\infty$ (which you can see because the numerator is larger than a power function; the denominator is a polynomial; and power functions grow faster than polynomials), so the series diverges by the divergence test.

This is the fastest option, but not the only one.

Determine whether the series $\sum_{n=0}^{\infty} \frac{2^n \cdot n^2}{(n+5)^5}$ converges or diverges.

Ratio test:

$$\frac{a_n}{b_n} = \frac{\frac{2^{n+1} \cdot (n+1)^2}{(n+1+5)^5}}{\frac{2^n \cdot n^2}{(n+5)^5}} = \frac{2^{n+1}}{2^n} \cdot \frac{(n+1)^2}{n^2} \cdot \frac{(n+5)^5}{(n+6)^5}$$
$$= 2\left(1 + \frac{1}{n}\right)^2 \left(1 - \frac{1}{n+6}\right)^5$$
$$\lim_{n \to \infty} \frac{a_n}{b_n} = 2(1)^2 (1)^5 = 2$$

So, the limit of the ratio of consecutive terms is greater than 1.

Therefore $\sum_{n=1}^{\infty} \frac{2^n \cdot n^2}{(n+5)^5}$ diverges by the ratio test.

Determine whether the series $\sum_{n=1}^{\infty} \frac{2^n \cdot n^2}{(n+5)^5}$ converges or diverges.

Comparison test: Since power functions grow faster than polynomials, for large values of n, $2^n > (n+5)^5$, so $\frac{2^n}{(n+5)^5} > 1$. Then, for large enough n,

$$\frac{2^n \cdot n^2}{(n+5)^5} > n^2 \ .$$

By the divergence test, $\sum_{n=1}^{\infty} n^2$ diverges. So by the comparison test, $\sum_{n=1}^{\infty} \frac{2^n \cdot n^2}{(n+5)^5}$ diverges as well.

Determine whether the series $\sum_{n=1}^{\infty} \frac{2^n \cdot n^2}{(n+5)^5}$ converges or diverges.

Limit comparison: Set $a_n = \frac{2^n \cdot n^2}{(n+5)^5}$ and $b_n = \frac{2^n}{n^3}$. Then

$$\frac{a_n}{b_n} = \frac{\frac{2^n \cdot n^2}{(n+5)^5}}{\frac{2^n}{n^3}} = \frac{n^5}{(n+5)^5} = \left(1 - \frac{5}{n+5}\right)^5$$
So, $\lim_{n \to \infty} \frac{a_n}{b_n} = 1^5 = 1$

Note that $\sum_{n=1}^{\infty} \frac{2^n}{n^3}$ diverges. (You can show this using the tests we've already used on the original series, so this method isn't really an improvement.) Since $\lim_{n\to\infty} \frac{a_n}{b_n}$ exists and is nonzero, by the limit

comparison theorem, $\sum_{n=1}^{\infty} \frac{2^n \cdot n^2}{(n+5)^5}$ diverges.

Test List

- ▶ divergence
- ► integral
- alternating series

- ► ratio
- comparison
- ▶ limit comparison

Determine whether the series $\sum_{n=1}^{\infty} \frac{1}{n} \sin\left(\frac{1}{n}\right)$ converges or diverges.

Hint: If $\theta \geq 0$ then $\sin \theta \leq \theta$.

Hint: If $\theta \ge 0$ then $\sin \theta \le \theta$.

The **divergence test** is inconclusive because $\lim_{n\to\infty} \frac{\sin(\frac{1}{n})}{n} = 0$.

The **alternating series test** does not apply because we are not considering an alternating series.

The **integral test** won't work for us because $\int_1^\infty \frac{1}{x} \sin\left(\frac{1}{x}\right) dx$ cannot be evaluated with techniques we've learned in class so far.

Hint: If $\theta \ge 0$ then $\sin \theta \le \theta$.

The **ratio test** is inconclusive because $\lim_{n\to\infty} \frac{\frac{1}{n+1}\sin(\frac{1}{n+1})}{\frac{1}{2}\sin(\frac{1}{2})} = 1$:

Set $x = \frac{1}{n+1}$. Then $\frac{1}{n} = \frac{x}{1-x}$:

$$\lim_{n \to \infty} \frac{\sin\left(\frac{1}{n+1}\right)}{\frac{1}{n}} = \lim_{x \to 0^+} \frac{\sin x}{\frac{x}{1-x}} = \lim_{x \to 0^+} (1-x) \frac{\sin x}{x} = 1 \cdot 1 = 1$$

Set $y = \frac{1}{n}$. Then $\frac{1}{n+1} = \frac{y}{1+y}$:

$$\lim_{n \to \infty} \frac{\sin\left(\frac{1}{n}\right)}{\frac{1}{n+1}} = \lim_{y \to 0^+} \frac{\sin y}{\frac{y}{1+y}} = \lim_{y \to 0^+} (1+y) \frac{\sin y}{y} = 1 \cdot 1 = 1$$

Therefore,

$$\lim_{n \to \infty} \frac{\frac{1}{n+1} \sin\left(\frac{1}{n+1}\right)}{\frac{1}{n} \sin\left(\frac{1}{n}\right)} = 1$$

Hint: If $\theta \ge 0$ then $\sin \theta \le \theta$.

Comparison test: For $n \ge 1$, $\frac{1}{n} > 0$. Then setting $\theta = \frac{1}{n}$ in the hint, $\sin\left(\frac{1}{n}\right) \le \frac{1}{n}$. Furthermore, $0 < \frac{1}{n} < \pi$, so $\sin\left(\frac{1}{n}\right) > 0$.

$$0 < \frac{1}{n}\sin\left(\frac{1}{n}\right) \le \frac{1}{n}\left(\frac{1}{n}\right) = \frac{1}{n^2}$$

The *p*-series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges, so by the comparison test, $\sum_{n=1}^{\infty} \frac{1}{n} \sin\left(\frac{1}{n}\right)$ converges as well.

Hint: If $\theta \ge 0$ then $\sin \theta \le \theta$.

Limit comparison: Set $a_n = \frac{1}{n} \sin(\frac{1}{n})$ and $b_n = \frac{1}{n^2}$.

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{1}{n} \sin\left(\frac{1}{n}\right)}{\frac{1}{n^2}} = \lim_{n \to \infty} \frac{\sin\left(\frac{1}{n}\right)}{\frac{1}{n}}$$

Setting $x = \frac{1}{n}$,

$$= \lim_{x \to 0^+} \frac{\sin x}{x} = 1$$

The *p*-series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges, so by the limit comparison test, $\sum_{n=1}^{\infty} \frac{1}{n} \sin(\frac{1}{n})$ converges as well.

Included Work

- ¶ 'Balloon' by Simon Farkas is licensed under CC-BY (accessed November 2022, edited), 6–23, 52–62
- Waage/Libra' by B. Lachner is in the public domain (accessed April 2021, edited), 6–23, 52–62, 88–96
- Weight' by Kris Brauer is licensed under CC-BY(accessed May 2021), 6–23, 52–62, 88–96
- 'Notebook' by Iconic is licensed under CC BY 3.0 (accessed 9 June 2021, modified), 48.50
- Notebook' by Iconic is licensed under CC BY 3.0 (accessed 9 June 2021), 39, 78, 97