Solution	Marks	Remarks
(a) Mean = 59.4 Mode = 74 Interquartile range = median of upper half - median of lower half	IA IA	
= 72 - 50 = 22	IA	
(b) If 74 is replaced by 11, the mean and interquartile range will be changed. New mean = 57.4 New interquartile range = median of upper half - median of lower half	IA IA	
= 72 - 49 = 23	1A	
Alternate methods for finding interquartile ranges: Interquartile range Old value New value		
Interquartile range Old value New value 1 $\frac{3}{4} \times 30$ -th term $\frac{1}{4} \times 30$ -th term $\frac{72}{4} \times 30$ -th term $\frac{72}{4} \times 30$ -th term $\frac{22.5}{22.5}$ $\frac{23.5}{22.45}$ $\frac{72}{4} \times 30$ -th term $\frac{1}{4} \times 30$ -th term $$	IA+IA	
iii $\frac{1}{4}(30 \times 3 + 2)$ -th term $-\frac{1}{4}(30 + 2)$ -th term $\frac{72 - 50}{22} = \frac{72 - 49}{23}$ iv $\frac{1}{4}(30 \times 3 + 2)$ -th term $\frac{1}{4}(30 + 2)$ -th term $\frac{71.75 - 50.25}{71 - 49.25}$		
$\left \frac{1}{4}(29\times3+4)^{-1}\ln \left \ln \left \frac{1}{4}(29+4)^{-1}\ln \left \ln$	(6)	
$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1 - \ln x}{x^2}$	IM+IA	1M for quotient rule
$\int \left(\frac{1}{x^2} - \frac{\ln x}{x^2}\right) dx = \frac{\ln x}{x} \qquad (+c_1)$	1M	For applying anti-differentiation
$\int \frac{\ln x}{x^2} dx = \int \frac{1}{x^2} dx - \frac{\ln x}{x} \qquad (+c_1)$	1A	pp-1 for mussing dx more than
$= -\frac{1+\ln x}{x} + c \qquad \text{(or } -\frac{1}{x} - \frac{\ln x}{x} + c\text{)}$	1A	No marks for missing c
	(5)	
		!
AS-M&S-3	1	I

Solution	Marks	Remarks
3. $v = \frac{x-1}{x-3} = 1 + \frac{2}{x-3}$ $\therefore \dot{x} = 3 \text{ is the vertical asymptote and } y = 1 \text{ is the horizontal asymptote.}$ When $x = 0$, $y = \frac{1}{3}$. When $y = 0$, $x = 1$.	IA+IA IA+IA IA+IA	For the asymptotes For the intercepts For the two parts of the curve
	<u>(6)</u>	
4. (a) Area of regions I & III = $\int_0^1 \sqrt{x} dx = \left[\frac{2}{3} x^{\frac{3}{2}} \right]_0^1 = \left(-\frac{2}{3} \right)$	1A	Or 0 6667
Area of region III = $\int_0^1 x^3 dx = \left[\frac{1}{4} x^4 \right]_0^1 = \frac{1}{4}$	1A	Or 0 25
Area of region II = $1 - \frac{2}{3} = \frac{1}{3}$ Area of region I = $\frac{2}{3} - \frac{1}{4} = \frac{5}{12}$	1A 1A	Or 0 4167
(b) Probability of scoring 40 points = $2 \times \frac{5}{12} \times \frac{1}{4} + (\frac{1}{3})^2$	IM+1M	1M for $2 < \frac{5}{12} < \frac{1}{4} + p$ 1M for $p = (\frac{1}{3})^2$
$=\frac{23}{72}$ (or 0.3194)	1A	, , , , , ,
	(7)	
96-AS-M&S-4		•

FOR TEACHERS' USE ONLY 只限教師參閱

FOR TEACHERS' USE ONLY 只限教師參閱

Solution	Marks	Remarks
5. (a) $\frac{d.V}{d\theta} = -[\ln(\theta + 49)]^2 - \frac{2(\theta + 440)\ln(\theta + 49)}{\theta + 49}$	1M+1A+IA	LM for product rule
$= -\ln(\theta + 49) \left[\ln(\theta + 49) + \frac{2(\theta + 440)}{\theta + 49} \right]$ $\therefore \frac{dN}{dt} = \frac{dN}{d\theta} \cdot \frac{d\theta}{dt}$ $= -\ln(\theta + 49) \left[\ln(\theta + 49) + \frac{2(\theta + 440)}{\theta + 49} \right] \frac{d\theta}{dt}$	IA	
(b) $\theta = -40$. $\frac{d\theta}{dt} = -0.5$ $\frac{dN}{dt} = -\ln(-40 + 49) \left[\ln(-40 + 49) + \frac{2(-40 + 440)}{-40 + 49} \right] (-0.5)$ ≈ 100 \therefore The rate of increase of the number of tourists is 100 per hour.	1M 1A (6)	
 (a) The probability that a lot will be accepted = (0.5)[(0.99)² + (0.96)²] = 0.9509 (or 0.95085) 	IM+IM	1M for (0.99) ² +(0.96) ² 1M for 0.5p
(b) The probability that a lot came from supplier A $= \frac{(0.5)(0.96)^2}{0.95085}$ $= 0.4846$	1A+1M 1A (6)	1A for the numerator 1M for the denominator
Her conclusion is not justified because (i) families with no children were not counted. (ii) families with more than one child might be counted more than once; (iii) there might be children in the village that were not in the school such as (1) being absent from school, (2) studying elsewhere, and (3) being not in the age of receiving primary education; (iv) there might be pupils in the school who came from elsewhere.		
Marking scheme Saying that the conclusion is not justified with one correct reason. Any second correct reason. Any third correct reason.	2A 1A 1A	
	(4)	

Solution	Marks	Remarks
8. (a) (i) Coefficient of x^3 in the expansion of $(1+x+x^2+x^3+x^4+x^5)^2=6$	1A	
(ii) $P(sum = 5) = \frac{6}{6^2}$	1M+1A	1A for 6 ²
$=\frac{1}{6}$ (or 0.1667)	1A	
(b) (i) $(1-x^6)^4 = 1-4x^6+6x^{12}-4x^{18}+x^{24}$	IM+1A	1M for the coefficients
(ii) Coefficient of x' in the expansion of $(1-x)^{-4}$	lA.	
$= \frac{(-4)(-5)(-4-r+1)}{r!}(-1)^r$ $= \frac{(r+1)(r+2)(r+3)}{6}$	IA IA	
(iii) Coefficient of x^8 in the expansion of $\left(\frac{1-x^6}{1-x}\right)^4$ = Coefficient of x^8 in the expansion of $(1-x^6)^4(1-x)^{-4}$		
$= \frac{9 \times 10 \times 11}{6} + (-4) \frac{3 \times 4 \times 5}{6}$	1M+IM	
$= \frac{6}{6} + (3) = 125$	1A	
	"'	
(c) $\therefore \frac{1-x^5}{1-x} = 1+x+x^2+x^3+x^4+x^5$	1A	
$\therefore \text{Coefficient of } x^6 \text{ in the expansion of } (1+x+x^2+x^3+x^4+x^5)^4$		
= Coefficient of x^{2} in the expansion of $\left(\frac{1-x^{6}}{1-x}\right)^{4}$		
= 125		
$P(Sum = 8) = \frac{125}{6^4}$	IM+1A	1A for 6 ⁴
$= \frac{125}{1296} \qquad \text{(or } 0.0965)$	1A	
DE ACMES E		
96-AS-M&S-6		

96-AS-M&S--5

只限教師參閱 FOR TEACHERS' USE ONLY

只限教師參閱 FOR

FOR TEACHERS' USE ONLY

Solution	Marks	Remarks
9. (a) $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1A	
$\int_0^6 e^{\frac{1}{10}} dt \approx \frac{1}{2} (1 + 36.59823) + (1.10517 + 1.49182 + 2.45960 + 4.95303 + 12.18249)$ ≈ 40.9912	IM IA	
$P_{t=6} - P_{t=0} = \int_0^6 (5e^{\frac{t^2}{10}} - 2t) dt$		
$P_{t=6} = \int_0^6 (5e^{\frac{t^2}{10}} - 2t) dt + 10$	2A	
$=5\int_0^6 e^{\frac{r^2}{10}} dt - \left[r^2\right]_0^6 + 10$	IA .	
≈ 5×40.9912 − 36 + 10 ≈ 179	1A	
(b) (i) Put $t = 6$ and $P = 179$ into $P = kre^{-0.04t} - 50$. $179 = 6ke^{-0.24} - 50$ k = 48.5	IM IA	
(ii) $P = 48.5te^{-0.04t} - 50$ $P' = 48.5(-0.04te^{-0.04t} + e^{-0.04t})$ $= 48.5(1 - 0.04t)e^{-0.04t}$	1M	
P = 0 only when t = 25	1A	
and $F' \begin{cases} > 0 & \text{for } t < 25 \\ < 0 & \text{for } t > 25 \end{cases}$	ім	
Hence the population size will attain its max. when $t = 25$. The maximum population size = $485 \cdot 25 \cdot e^{-0.0425} = 50$ = 396	lA	
(iii) Substitute $y = e^{0.04t}$ into $48.5te^{-0.04t} - 50 = 0$, we have $y = 0.97t$. The graphs $y = e^{0.04t}$ and $y = 0.97t$ intersect at $t \approx 1$ or 119	iM	
 t≥6. The species of reptiles becomes extinct (485te^{-0.04t} - 50 = 0) when t≈ 119. 	1A	Accept 118 - 120
	:	
96-AS-M&S-7	1	

Solution	Marks	Remarks
10. (a) (i) $\ln[C(t) + 1] = \ln a e^{ht}$ = $\ln a + \ln e^{ht}$ = $\ln a + bt$	1M IA	
(ii) $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1A	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	IA+IA	For the points & line
From the graph,	IA	
$\ln a \approx 0.69 , a \approx 2.0$ $b \approx \frac{109 - 0.79}{4 - 1} = 0.1$	IA IA	
(iii) $C(t) = 2.0e^{9.0t} - 1$ $C(36) \approx 72.1965$ When $t = 36$, the monthly cost is 72.1965 thousand dollars.	JA.	
96-AS-M&S-8		

只限教師參閱 FOR TEACHERS' USE ONLY

只限教師參閱 FOR TEACHERS' USE ONLY

Solution	Marks	Remarks
(b) (i) Solve $2.0e^{0.1t} - 1 = 439 - e^{0.2t}$	ıM	.,
$e^{0.1t} + 2.0e^{0.1t} - 440 = 0$		
$(e^{0.1t})^2 + 2.0(e^{0.1t}) - 440 = 0$	1M	
$e^{0.1t} = 20$ or -22 (rej.)	1A	
t = 30	1A	
C ³⁰ (100 07t) (20 0kt 107d)	ım	
(ii) $\int_0^{30} \left[(439 - e^{0.2t}) - (2.0e^{0.1t} - 1) \right] dt$	Tio.	
$= \int_0^{30} (440 - e^{0.2t} - 2.0e^{0.1t}) dt$		
$= \left[440t - 5e^{0.2t} - 20e^{0.1t}\right]_0^{30}$	1A	
= 10806		
The total profit is 10806 thousand dollars.	IA	
	1	
		1
		1
		[
	1	
		1
•		
		1

Solution	Marks	Remarks
11. Let X mi be the amount of soda water in each discharge, $X \sim N(210, 15^2)$.		
(a) $P(200 < X < 220)$		
	IM	
$= P(\frac{200 - 210}{15} < Z < \frac{220 - 210}{15})$		
$\approx P(-0.6667 < Z < 0.6667)$	1A	Accept value in [0.494, 0.4972
≈ 0.4972	I IA	Attack value in (0.494, 0.4972)
(b) (i) $P(X > 240)$		
$= P(Z > \frac{240 - 210}{13})$	1M	
= P(Z > 2)		
⇒ 0.0228	1A	ļ
(ii) The probability that there is exactly 1 overflow out of 30 discharges is		
$C_1^{30}(0.0228)(0.9772)^{29}$	iM	
≈ 0.3504	IA	
(iii) The probability that Sam will get the second overflow on 31st July is		
0.3504 × 0.0228		
≈ 0.0080	1M	
(c) (i) $:: P(X > 205) = 0.8$		
$P(Z > \frac{205 - \mu}{\sigma}) = 0.8$		
·	IM+1A	Accept value in [-0.845,-0.84]
$\frac{205-\mu}{\sigma} = -0.84 \qquad \dots $	101-15	ALEED VALUE II (0.045. 0.04)
P(X > 220) = 0.01		
$\therefore P(Z > \frac{220 - \mu}{\sigma}) = 0.01$		
$\frac{220-\mu}{\sigma} = 2.33$ (2)	1A	Accept value in [2 32, 2,33]
<u>-</u>	1	
Solving (1) & (2):		
$\begin{cases} \sigma = 4.7 \\ \mu = 209.0 \end{cases}$	1A+1A	
(μ - 2070		
(ii) $P(X > 225)$	1	
$= P(Z > \frac{225 - 209}{47})$		
= P(Z > 3.4042)		
≈ 0 0003	1A	
Probability required	1	
$= \frac{00003}{001}$	1M	
	1A	
= 0.03	'	
		Ì
		1

96-AS-M&S-9

只限教師參閱

FOR TEACHERS' USE ONLY

		Sotu	rion -			Marks	Remarks
12. (a)	& (b) (ii)						
	Number of	Observed		requency *			
ļ	Defective Chips 0	Frequency 33	Binomial 42.5	Poisson 32.5	1		
-		 		-	-		
	1	29	28.3	29.3] ,		
	2	13	7.9	13.2			
	3	4	1.2	4.0			
	4	1	0.1	0.9] [
	5	0	0.0	0.2		IM+IA	For the freq. under Binomial distribution
į	6	0	0.0	0.0		IM+1A	For the freq. under Poisson distribution
(b)	(i) $P(X = 0) = e^{-\lambda}$ $\lambda = 0.9$	$\lambda = \frac{32.5}{80}$				IA	
(c)	The Possion distribu	tion Po(0.9) in (b) is adopted sinc	e it fits the data	better.	1A	
	(i) Let p be the pr $p = P(X = 0)$ $= e^{-0.9} \text{ or }$		eatch is good.				
	≈ 0.40 6 3	80				lA	Accept 0.4066
	The probabili $= p^4 + C_3^4 p^3 (1$	ty that at least 3 (l – p)	out of the 4 batcl	hes are good		IM+1A	IM for applying the
	⇒ 0.1865					1 A	binomial distribution Accept 0 1869
	(ii) No. of good	The origin	s bate		:	lM	
	batches	3			l	1101	
	The required 1 $= \frac{p^4 \cdot C_4^6 p^4 (1 - \frac{1}{2})^4}{-0.0547}$	probability $ \frac{(p-p)^2 + C_3^4 p^3 (1-p)^2 + C_3^4 p^3}{0.1865}$	$p) \cdot C_1^6 p^5 (1-p)$:		IM+IM+IA IA	Accept 0.0549
					- 1		
						j	
96-AS-M	&S-11					l	

	Solution	Marks	Remarks
13. (a)	Let X be the number of rainstorms in a year. $X \sim Po(2)$		
	e^{-2}		
	$\hat{P}(X=x) = \frac{e^{-2} 2^x}{x!}, x=0,1,2,$		
	$P(X \ge 3) = 1 - \{P(X = 0) + P(X = 1) + P(X = 2)\}$	1M	
	$=1-e^{-2}\left[1+2+\frac{4}{2}\right]$	1A	
	$=1-5e^{-2}$		
	≈ 0.3233	1A	
(b)	Let Y be the number of years which will clapse before the next occurence		
(4)	of more than two rainstorms in a year. Y - Geometric (ρ =0.3233).	1M	
	Number of years which will elapse $=\frac{1}{2}-1$	1M	For $\frac{1}{n}$
	p = 2 0929		<i>P</i>
	* 2	1A	
(c)	Let A be the event of having at least one serious landslide in city A.		
(4)	$P(A \mid X = 0) = 0.2$		
	P(1 X=1,2)=0.3		
	$P(A \mid X \ge 3) = 0.5$		
	(i) $P(\overline{A})$		
	$= P(\overline{A} X=0) P(X=0) + P(\overline{A} X=12) P(X=12) + P(\overline{A} X \ge 3) P(X \ge 3)$		
	$= 0.8(e^{-2}) + 0.7(4e^{-2}) + 0.5(1 - 5e^{-2})$	IM+IA	
	≈ 0.6489 Alternatively,	IA	
	$P(\overline{A}) = 1 - P(A)$	lM+lA	
	$= 1 - [0.2(e^{-2}) + 0.3(4e^{-2}) + 0.5(1 - 5e^{-2})]$		
	≈ 0.6489	IA	
	(ii) $P(X = 0 \overline{A}) = \frac{P(\overline{A} X = 0) P(X = 0)}{P(\overline{A})}$		
	(ii) $P(X = 0 A) = \frac{P(\overline{A})}{P(\overline{A})}$		
	$= \frac{08(e^{-2})}{06489}$	1M+1M	1A for the numerator
	0.6489		1M for the denominato
	≈ 0.1669	IA	101 tor the denominato
	(iii) The probability that there is no serious landstide		Ì
	for at most 2 out of 5 years		
	$= C_0^4 (1 - 0.6489)^5 + C_1^5 (0.6489)(1 - 0.6489)^4 + C_2^5 (0.6489)^2 (1 - 0.6489)^3$ = 0.2369	IM+IM	
	Alternatively,	IA	
	$1 - \left[C_3^5(0.6489)^3(1 - 0.6489)^2 + C_4^5(0.6489)^4(1 - 0.6489) + C_5^5(0.6489)^5\right]$	IM+IM	
	= 0.2369	IA.	

FOR TEACHERS' USE ONLY

FOR TEACHERS' USE ONLY 只限教師參閱