Гамильтоновы циклы и пути

Простой путь или цикл в графе называется гамильтоновым, если он проходит через каждую вершину (ровно) один раз.

В отличие от эйлерового пути, простых критериев существования гамильтонова пути или цикла в графе не известно (NP-полная задача — позже в курсе — 1000000 долларов за решение от института Клэя).

Достаточное условие существования гамильтонова пути или цикла в терминах степеней вершин:

Теорема (Дирак, 1952)

Если в графе G с $n \geq 3$ вершинами сумма степеней любых двух вершин не меньше n-1 (соответственно, не меньше n), в нем существует гамильтонов путь (соответственно, цикл).

Лемма

Если в графе с $k \ge 3$ вершинами имеется гамильтонов путь, и сумма степеней концов этого пути не меньше, чем k, то в нем имеется и гамильтонов цикл.

Доказательство леммы. Пусть $p = A_1 A_2 \dots A_k$ гамильтонов путь, и вершина A_1 имеет степень I.

Назовем зелеными вершины, предшествующие (в смысле порядка от A_1 до A_k) в пути p тем l вершинам, с которыми смежна A_1 . Очевидно, зеленых вершин ровно l.

Предположим, что вершина A_k не соединена с зелеными вершинами. Тогда степень вершины A_k не больше k-1-l, то есть сумма степеней вершин A_1 и A_k не больше k-1 — противоречие.

Значит, вершина A_k соединена с какой-то зеленой вершиной A_i . В этом случае в графе существует гамильтонов цикл $A_1A_2\ldots A_iA_kA_{k-1}\ldots A_{i+1}A_1$. Лемма доказана.

Доказательство теоремы. Лемма \Rightarrow если теорема верна для пути, то верна и для цикла. Докажем для пути.

Рассмотрим самый длинный простой путь p. Предположим, что он не гамильтонов и содержит k < n вершин.

Граф, образованный вершинами пути p, назовем H.

Концы самого длинного пути p соединены только с другими вершинами p, так что к H применима лемма: сумма степеней концов пути p, являющегося в H гамильтоновым, не меньше чем $n-1 \geq k$ (легко видеть, что $k \geq 3$, так что лемму применять можно).

 \Rightarrow в G есть цикл длины k.

Если из него ведет хотя бы одно ребро вне цикла, то имеем путь длины k+1. Противоречие с максимальностью p. Иначе степени всех вершин цикла $\leq k-1$, а степени не входящих в цикл вершин $\leq n-k-1$, что в сумме дает $\leq n-2$. Противоречие.