1

SM5083 Assignment Number 02

Jaydeep singh chouhan SM21MTECH12005

- 1. Chapter III miscellaneous example IV Q.1
- 1.1. show that the equation of line joining $(r_1, \theta_1), (r_2, \theta_2)$ is

$$\frac{1}{r}\sin(\theta_1 - \theta_2) = \frac{1}{r_1}\sin(\theta - \theta_2) + \frac{1}{r_2}\sin(\theta - \theta_1)$$

Solution:

let

$$\begin{vmatrix} r\cos\theta & r_1\cos\theta_1 & r_2\cos\theta_2 \\ r\sin\theta & r_1\sin\theta_1 & r_2\sin\theta_2 \\ 1 & 1 & 1 \end{vmatrix} = 0 \quad (1.1.1)$$

$$r_1 r_2(\cos \theta_1 \sin \theta_2 - \sin \theta_1 \cos \theta_2) - r r_2(\cos \theta \sin \theta_2 - \sin \theta \cos \theta_2) + r r_1(\cos \theta \sin \theta_1 - \sin \theta \cos \theta_1 = 0)$$

$$(1.1.2)$$

$$-r_1 r_2 \sin(\theta_1 - \theta_2) + r r_2 \sin(\theta - \theta_2) - r r_1 \sin(\theta - \theta_1) = 0$$
(1.1.3)

now arranging the equation we get

$$\frac{1}{r}\sin(\theta_1 - \theta_2) = \frac{1}{r_1}\sin(\theta - \theta_2) + \frac{1}{r_2}\sin(\theta - \theta_1)$$
(1.1.4)