회귀분석과 데이터 모델링

데이터 모델링이란?

- 주어진 데이터에서 사용하고자 하는 x, 알고싶은 값 y이 있을때

y = f(x) 라는 함수를 통해서 x와 y의 관계를 설명할 수 있다면?

이때 x를 독립변수, y를 종속변수 라고 합니다 (혹은 x를 feature, y를 label이라고도 부릅니다)

- y와 x의 관계를 효과적으로 설명하는 f() 함수를 만드는 일을 모델링이라고 합니다
- y 값이 존재하는 경우 supervised learning,
 y 값이 존재하지 않는 경우 unsupervised learning
 - y 값이 continuous(연속형) 값인 경우 regression task, y 값이 categorical 값인 경우 classification task

데이터 모델링 - Bayes theorem의 관점

조건부 확률: 어떤 사건이 일어났다는 '전제 하에'
 다른 사건이 일어날 확률
 두 사건 A, B가 있을 때, 사건 A가 일어났을 때
 B가 일어날 확률은
 P(B|A) = P(A ∩ B) / P(A)

이 때 P(A|B) = P(A ∩ B) / P(B)이므로 P(B|A) = P(A|B)P(B) / P(A) 로 표현이 가능합니다

- 데이터 모델링의 관점에서는 $P(\theta|X) = P(X|\theta)P(\theta) / P(X)$ 로 표현이 가능합니다

X: 관측된 데이터
 θ: 데이터에 대한 가설, 즉 모델의 parameter값

P(X): Marginal probability, 데이터 X 자체의 분포 P(θ): Prior probability, 데이터 관측 이전의(사전) Parameter의 확률 분포 (보통은 모든 값에 대한 확률이 동일하다고 가정) P(X|θ): Likelihood, Parameter가 주어졌을 때 X 데이터가 관측될 확률 분포 P(θ|X): Posterior probability, Observation (dataset X)가 '주어졌을 때' parameter의 확률 분포

 궁극적으로 우리의 목적은 P(θ|X)를 최대화 하는 θ를 찾는 것인데,
 P(θ)가 일정하다는 가정 하에서는 P(X|θ),
 Likelihood를 최대화 하는 θ를 추정(MLE)
 그렇지 않을 때는 P(X|θ)P(θ)를 최대화 하는
 θ를 추정(MAP)하는 과정이 데이터 모델링이라고 할 수 있습니다

데이터 모델링 과정

- 데이터를 전처리 및 분석합니다
- 데이터를 training set, test set으로 나눕니다
- training set에 대해서 사용할 모델을 학습시킵니다 (model.fit(training_set))
- test set에 대해서 학습된 모델의 예측값을 통해 모델의 성능을 평가합니다
 (실제값과 예측값의 비교를 통해서)
- (모델의 성능이 충분히 쓸만하다고 판단될때) 새로운 데이터에 대해 학습된 모델을 이용해 y 값을 예측합니다 (inference 과정)

```
from sklearn.datasets import make_regression
X,y = make_regression(n_samples=100, n_features=5, noise=50,
random_state=42)

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y,
random_state=33)

lr = LinearRegression(normalize=True)
lr.fit(X_train, y_train)
y_pred = lr.predict(X_test)
print(mean_squared_error(y_test, y_pred))
y_infer = lr.predict(X_infer)
```

데이터 모델링 - Linear Regression

$$y_i = eta_0 + eta_1 x_{i1} + \ldots + eta_p x_{ip} + \epsilon_i = oldsymbol{x_i^T} oldsymbol{eta} + \epsilon_i$$

- x와 y 간에 '선형의' 관계(y = b + wx)
 가 있다고 가정할 때 주로 사용됩니다
- b + wx = y_{pred} 라는 값에 대해서
 y_{pred} 와 실제 y가 최대한 가까워지는
 w(weight), b(bias) 값을 찾도록 학습됩니다


```
# Linear Regression
from sklearn.linear model import LinearRegression
lr = LinearRegression(normalize=True)
# training
lr.fit(X train, y train)
# LInear regression evaluation
y pred = lr.predict(X test)
# Mean Absolute Error
from sklearn.metrics import mean absolute error
print(mean absolute error(y test, y pred))
# Mean Squared Error
from sklearn.metrics import mean squared error
print(mean squared error(y test, y pred))
# R<sup>2</sup> Score
from sklearn.metrics import r2 score
print(r2 score(y test, y pred))
30.190970764476468
1398.6018192888414
0.9170517679219927
```

데이터 모델링 - Linear Regression의 가정

$$y_i = eta_0 + eta_1 x_{i1} + \ldots + eta_p x_{ip} + \epsilon_i = oldsymbol{x_i^T} oldsymbol{eta} + \epsilon_i$$

Linear regression에서 오차항 ϵ 에 대해 가정하는 5가지 가능합니다

- 오차항의 기대치는 **0**이다 **E**(ε_i) = 0
- 오차항은 일정한 분산을 가진다 $Var(\epsilon_i) = \sigma^2$
- $i != j 일때 \epsilon_i 와 \epsilon_j$ 는 서로 독립이다 $Cov(\epsilon_i, \epsilon_j) = 0 \text{ if } i != j$
- 독립변수 X와 $ε_i$ 는 서로 독립이다 $Cov(X,ε_i) = 0$
- $ε_i$ 는 정규분포 $N(0, σ^2)$ 를 따른다 $ε_i \sim N(0, σ^2)$

오차항에 대한 가정을 통해 다음과 같은 가정이 가능합니다

- 회귀모형은 선형성을 가진다. 즉, E(Y_i) = E(b + wX_i + ε_i) = b + wX_i + E(ε_i) 이 때, E(ε_i)=0 이므로 E(Y_i) = b + wX_i
- 종속변수 Y의 분산은 일정한 값 σ^2 를 가진다 $Var(Y_i) = Var(b + wX_i + \epsilon_i) = Var(\epsilon_i) = \sigma^2$
- $ε_i$ 와 $ε_j$ 는 서로 독립이며, $ε_i$ 는 자기상관성이 없다 \rightarrow 시계열 데이터의 경우 자기상관성이 존재할 수 있습니다
- Y는 정규분포를 따른다 E(Y_i) = b + wX_i, Var(Y_i) = σ²이므로 Y~N(b + wX, σ²)

데이터 모델링 - Linear Regression의 cost function

비용함수(Cost function)

- 실제 Y와 Ypred의 오차를 계산하는 식을 세우고, 이 오차를 최소화하는 w, b를 찾아야 됩니다
- 이 때, 실제값과 예측값의 오차에 대한 식을 손실함수(loss function), 비용함수(cost function), 혹은 목적함수(objective function)이라고 합니다
- 선형회귀에서는기본적으로 Residual sum of squares(RSS), 혹은 Mean squared error(MSE)를 cost function으로 사용합니다 $rac{1}{n}\sum_{i=1}^n[y_i-\hat{y}_i]^2$

Cost function이 differentiable(미분가능)하고 convex(아래로 볼록)할 때, cost의 최저점은 cost function을 w, b로 각각 편미분 했을 때 0이 되는 지점입니다.

데이터 모델링 - Ordinary Least Squares

Ordinary Least Squares(OLS, 최소제곱법)

- 오차 ε를 최소화하는 w, b를 추정하는 방법
- ε의 제곱의 합이 최소가 되는 점을 찾기 위해서는 ε의 제곱의 합을 w, b로 표현한 뒤 w, b로 각각 편미분 했을 때 0이 되면서 2차 편미분(Jacobian) 값이 Positive definite $(\frac{\delta^2 S}{\delta b^2} > 0, |H| > 0)$ 이 되도록 해야됩니다(볼록 함수

$$H = \left[egin{array}{ccc} rac{\delta^2 S}{\delta b^2} & rac{\delta^2 S}{\delta b w} \ rac{\delta^2 S}{\delta w b} & rac{\delta^2 S}{\delta w^2} \end{array}
ight]$$

$$egin{aligned} MinS^2 &= Min\sum_{i=1}^n \epsilon_i^2 = Min\sum_{i=1}^n (y_i - b - wx_i)^2 \ rac{\delta S}{\delta b} &= -2\sum_{i=1}^n (y_i - b - wx_i) = 0 \end{aligned}$$

$$rac{\delta S}{\delta w}=-2\sum_{i=1}^n x_i(y_i-b-wx_i)=0$$
를 정리하면 $w=rac{\sum (x_i-ar{x})(y_i-ar{y})}{\sum (x_i-ar{x})^2}$

$$oldsymbol{b} = ar{oldsymbol{y}} - oldsymbol{w}ar{oldsymbol{x}}$$
이며 동시에

$$rac{\delta^2 S}{\delta b^2} = 2n > 0$$

$$|H|=\left[egin{array}{cc} 2n & 2\sum\limits_{i}x_{i}\ 2\sum\limits_{i}x_{i}^{2} \end{array}
ight]=4n\sum(x_{i}-ar{x})^{2}>0$$

를 만족하므로

오차가 최소화 되는 w, b를 바로 추정할 수 있습니다

데이터 모델링 - Gradient descent

Gradient descent(경사 하강법)

- 변수가 많아지거나 cost function이 복잡해지는 경우, 최소 제곱법을 통해서 한번에 loss가 최소인 parameter를 추정하기 어렵습니다
- 이러한 경우, 각 parameter에 대해서 cost function을 편미분한 값(gradient)을 learning rate α만큼 여러번 update 해주는 것을 gradient descent라고 합니다

- Gradient descent를 사용하는 경우에는 보통 데이터가 매우 많으므로, 모든 학습 데이터에 대해서 한번에 gradient descent step을 계산하는 batch gradient descent 보다는 매 스텝에서 mini-batch 만큼의 데이터를 샘플링 해서 학습하는 mini-batch stochastic gradient descent(SGD) 방식으로 학습합니다

데이터 모델링 - Overfitting

- Overfitting(과적합, high variance): 학습 데이터에 대해서 과하게 fitting되는 경우를 의미합니다
- Generalization(일반화): 학습할 때와 추론할 때의 성능 차이가 많이 나지 않는 경우. 즉, 모델이 여러 inference 상황에서 잘 쓰일 수 있음을 의미
- Overfitting이 발생하는 경우, test set에서의 loss가 증가할 수 있기 때문에 실제 inference 상황에서 모델이 generalization(일반화)되기 어렵게 됩니다
- Overfitting은 보통 데이터에 내재된 복잡도 (complexity)보다 모델의 복잡도가 더 과한 경우나, 데이터셋 사이즈가 작은 경우 자주 발생합니다
- Linear regression의 경우, 고려하는 변수가 많아질수록 overfitting이 발생할 가능성이 높아집니다

Figure 1.6 Plots of the solutions obtained by minimizing the sum-of-squares error function using the M=9 polynomial for N=15 data points (left plot) and N=100 data points (right plot). We see that increasing the size of the data set reduces the over-fitting problem

출처:Biship, Pattern recognition and machine learning

데이터 모델링 - regularization

- Overfitting을 해결하는 방법은 크게 두 가지 입니다
 - 모델의 복잡도 줄이기: 모델이 가질 수 있는 parameter를 줄이거나 (e.g. 딥러닝에서 모델의 사이즈) 모델이 고려하는 feature 중에서 상대적으로 중요한 feature 들만 모델의 input으로 사용해볼 수 있습니다
 - 정규화(Regularization): 모델이 가지는 복잡도를 제한하는 방법으로 보통 모델의 parameter가 가지는 값의 크기를 cost function에 추가해주는 방식으로 parameter 값의 크기를 제한합니다

Figure 1.6 Plots of the solutions obtained by minimizing the sum-of-squares error function using the M=9polynomial for N=15 data points (left plot) and N=100 data points (right plot). We see that increasing the

출처:Biship, Pattern recognition and machine learning

데이터 모델링 - Ridge

- Ridge regression: 선형 회귀 모델에 L2 loss를 추가해서 parameter를 정규화 해줍니다

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

- Ridge regression모델의 패널티항은 모델의 weight parameter들의 제곱합이며, lambda hyperparameter를 이용해서 모델에 주어지는 패널티를 조절합니다

146 3. LINEAR MODELS FOR REGRESSION

Figure 3.4 Plot of the contours of the unregularized error function (blue) along with the constraint region (3.30) for the quadratic regularizer q=2 on the left and the lasso regularizer q=1 on the right, in which the optimum value for the parameter vector w is denoted by w*. The lasso gives a sparse solution in which $w_1^*=0$.

- Parameter가 갖는 원형의 제약 조건 내에서 cost의 최적점에 가장 가까운 w*를 사용합니다

```
# Ridge regression
from sklearn.linear model import Ridge
rlr = Ridge(alpha=1.0)
# training
rlr.fit(X train, y train)
# Ridge regression evaluation
y pred = rlr.predict(X test)
# Mean Absolute Error
from sklearn.metrics import mean absolute error
print(mean absolute error(y test, y pred))
# Mean Squared Error
from sklearn.metrics import mean squared error
print(mean squared error(y test, y pred))
# R<sup>2</sup> Score
from sklearn.metrics import r2 score
print(r2 score(y test, y pred))
30.640326463335143
1425.0070000551837
0.9154857303035218
```

데이터 모델링 - Lasso

- Lasso regression: 선형 회귀 모델에 L1 loss를 추가해서 parameter를 정규화 해줍니다

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

- Lasso regression모델의 패널티항은 모델의 weight parameter들의 절대값의 합입니다

146 3. LINEAR MODELS FOR REGRESSION

Figure 3.4 Plot of the contours of the unregularized error function (blue) along with the constraint region (3.30) for the quadratic regularizer q=2 on the left and the lasso regularizer q=1 on the right, in which the optimum value for the parameter vector ${\bf w}$ is denoted by ${\bf w}^*$. The lasso gives a sparse solution in which ${\bf w}_1^*=0$.

Parameter가 갖는 사각형의 제약 조건 내에서 cost의 최적점에 가장 가까운 w*를 사용하며, 유의미하지 않은 변수들에 대한 계수를 0으로 주어 중요한 변수를 선택할 때 유용하게 사용 가능합니다

```
# Lasso regression
from sklearn.linear model import Lasso
llr = Lasso(alpha=1.0)
# training
llr.fit(X train, y train)
# Lasso regression evaluation
y pred = llr.predict(X test)
# Mean Absolute Error
from sklearn.metrics import mean absolute error
print(mean absolute error(y test, y pred))
# Mean Squared Error
from sklearn.metrics import mean squared error
print(mean squared error(y test, y pred))
# R<sup>2</sup> Score
from sklearn.metrics import r2 score
print(r2 score(y test, y pred))
```

데이터 모델링 - Logistic regression

$$p(x)=rac{1}{1+e^{-(eta_0+eta_1x)}}$$

Linear regression의 output y 값에
 'Sigmoid function'을 적용해서
 output y의 값이 0~1 사이 값이 되도록 만듭니다

때문에, Classification에 적합화된 Linear regression model이라고 생각하시면 됩니다

```
# Logistic Regression
from sklearn.linear model import LogisticRegression
lgr = LogisticRegression()
# training
lgr.fit(X, y)
# Logistic regression evaluation
y pred = lgr.predict(X test)
from sklearn.metrics import accuracy score
print('accuracy: ', accuracy score(y test, y pred))
from sklearn.metrics import precision score
print('precision: ', precision score(y test, y pred))
from sklearn.metrics import recall score
print('recall: ', recall score(y test, y pred))
from sklearn.metrics import f1 score
print('f1: ', f1 score(y test, y pred))
accuracy: 0.96
recall: 0.9230769230769231
f1: 0.9600000000000001
```

데이터 모델링 - Support Vecter Machine(SVM)

- Linear regression과 비슷하지만,
 "어느 정도의 허용오차(C) 안에 있는 오차값은 허용해준다" 라고 생각하시면 됩니다
- 허용 오차 C 값을 잘 설정해야 모델이 좋은 성능을 낼 수 있습니다
- kernel= 설정을 통해 모델이 가정하는 x와 y의 관계(선형, 2차 선형, ...) 등을 잘 잡아낼 수 있습니다

```
# Support Vector Machines (SVM)
from sklearn.svm import SVR
svr= SVR(kernel='linear', C=10.)
# training
svr.fit(X train, y train)
# SVR evaluation
y pred = svr.predict(X test)
# Mean Absolute Error
from sklearn.metrics import mean absolute error
print(mean absolute error(y test, y pred))
# Mean Squared Error
from sklearn.metrics import mean squared error
print(mean squared error(y test, y pred))
# R<sup>2</sup> Score
from sklearn.metrics import r2 score
print(r2 score(y test, y pred))
34.98650758106123
1799.2599725700743
0.8932895469496103
```

데이터 모델링 - Random Forest

- Decision Tree는 x를 기준삼아,
 "해당 기준을 만족/불만족시 y값이 ~값일것이다"
 라는 조건(x)-결과(y) 를 나무처럼 발전시킵니다
- Classification에서는 y값이 클래스, Regression에서는 y값이 평균값


```
# Random Forest
from sklearn.ensemble import RandomForestRegressor
rfr= RandomForestRegressor(n estimators=100, max depth=200)
# training
rfr.fit(X train, y train)
# Random forest evaluation
y pred = rfr.predict(X test)
# Mean Absolute Error
from sklearn.metrics import mean absolute error
print(mean absolute error(y test, y pred))
# Mean Squared Error
from sklearn.metrics import mean squared error
print(mean squared error(y test, y pred))
# R<sup>2</sup> Score
from sklearn.metrics import r2 score
print(r2 score(y test, y pred))
49.41516092197967
3399.6525321095874
0.798373516086659
```

데이터 모델링 - Random Forest

- RandomForest는 Decision Tree를 무작위로 여러개 만든 후, 각 tree마다 나온 decision들을 voting(ensemble)을 통해서 최종적인 y 값을 예측합니다
- n_estimators(트리의 개수),
 max_depth(각 트리의 길이) 등을 설정하여
 모델의 성능을 높일 수 있습니다.
 다만, 무조건 트리 개수나 길이값이 크다고
 성능이 좋아지진 않으며,
 학습 시간이나 차지하는 메모리가
 지나치게 커질 수 있습니다

```
# Random Forest
from sklearn.ensemble import RandomForestRegressor
rfr= RandomForestRegressor(n estimators=100, max depth=200)
# training
rfr.fit(X train, y train)
# Random forest evaluation
y pred = rfr.predict(X test)
# Mean Absolute Error
from sklearn.metrics import mean absolute error
print(mean absolute error(y test, y pred))
# Mean Squared Error
from sklearn.metrics import mean squared error
print(mean squared error(y test, y pred))
# R<sup>2</sup> Score
from sklearn.metrics import r2 score
print(r2 score(y test, y pred))
49.41516092197967
3399.6525321095874
```

0.798373516086659

데이터 모델링 - Naive Bayes

- y를 우리가 분류하고자 하는 class,
 X는 input feature라고 하면
 P(y|X) = P(X|y)P(y)/P(X)
- $X = [x_1, ..., x_n]$ 일 때 $P(x_1, ..., x_n|y)$ 는 $P(x_n|x_{n-1}, ..., x_1, y)$... $P(x_2|x_1, y)P(x_1|y)$ 이 때, 각 feature들이 conditional independent면

$$P(x_1,\dots,x_n|y) = \prod_{i=1}^n P(x_i|y)$$

- Naive Bayes는 X가 주어졌을 때 feature간의 conditional independent를 가정하고

$$\tilde{y} = h_{NB}(X) = \underset{y}{\operatorname{argmax}} p(y) \prod_{i=1}^{n} P(x_i|y)$$

```
# Naive Bayes Classifier
from sklearn.naive bayes import GaussianNB
gnb = GaussianNB()
# training
gnb.fit(X, y)
# Naive Bayes Classifier evaluation
y pred = gnb.predict(X test)
from sklearn.metrics import accuracy score
print('accuracy: ', accuracy score(y test, y pred))
from sklearn.metrics import precision score
print('precision: ', precision score(y test, y pred))
from sklearn.metrics import recall score
print('recall: ', recall score(y test, y pred))
from sklearn.metrics import f1 score
print('f1: ', f1 score(y test, y pred))
accuracy: 0.8
precision: 0.72222222222222
recall: 1.0
f1: 0.8387096774193548
```

데이터 모델링 - regression 평가 방법(evaluation)

- 모델을 제대로 평가하는 metric(지표)을 사용해야 주어진 데이터에 가장 효과적인 모델을 사용할 수 있습니다
- Mean Squared Error(MSE): 오차(틀린값)의 제곱을 평균으로 나눈 값입니다

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

0에 가까울수록 좋은 성능이라고 볼 수 있습니다

오차값이 큰 데이터점에 대해서 민감하게 반응합니다 (Outlier에 민감하게 반응)

```
# Mean Squared Error
from sklearn.metrics import mean_squared_error
print(mean_squared_error(y_test, y_pred))

# Mean Absolute Error
from sklearn.metrics import mean_absolute_error
print(mean_absolute_error(y_test, y_pred))

# R2 Score
from sklearn.metrics import r2_score
print(r2_score(y_test, y_pred))
```

데이터 모델링 - regression 평가 방법(evaluation)

- Mean Absolute Error(MAE): 오차의 절대값을 평균으로 나눈 값입니다

$$MAE = \frac{1}{n} \sum_{j=1}^{n} |y_j - \hat{y}_j|$$

0에 가까울수록 좋은 성능이라고 볼 수 있습니다

오차값이 큰 데이터점에 대해서 상대적으로 덜 민감하게 반응합니다

```
# Mean Squared Error
from sklearn.metrics import mean_squared_error
print(mean_squared_error(y_test, y_pred))

# Mean Absolute Error
from sklearn.metrics import mean_absolute_error
print(mean_absolute_error(y_test, y_pred))

# R2 Score
from sklearn.metrics import r2_score
print(r2_score(y_test, y_pred))
```

데이터 모델링 - regression 평가 방법(evaluation)

R-square(결정계수):
 독립변수 x 가 종속변수 y를 얼마나
 잘 설명하는 지를 나타냅니다

$$R^2 = 1 - \frac{SS_{Regression}}{SS_{Total}} = 1 - \frac{\sum_{i}(y_i - \hat{y}_i)^2}{\sum_{i}(y_i - \bar{y})^2}$$

- 전체 y의 평균으로부터 각 y값이 멀리 떨어질수록, 예측한 y값과 실제 y값이 가까울수록 1에 가까워집니다
- 0~1 사이 값을 가지며, 1에 가까울수록 좋은 성능이라고 볼 수 있습니다


```
# Mean Squared Error
from sklearn.metrics import mean_squared_error
print(mean_squared_error(y_test, y_pred))

# Mean Absolute Error
from sklearn.metrics import mean_absolute_error
print(mean_absolute_error(y_test, y_pred))

# R² Score
from sklearn.metrics import r2_score
print(r2_score(y_test, y_pred))
```

데이터 모델링 - Classification 평가 방법(evaluation)

- 모델을 제대로 평가하는 metric(지표)을 사용해야 주어진 데이터에 가장 효과적인 모델을 사용할 수 있습니다
- Precision / Recall

How many retrieved items are relevant?

How many relevant items are retrieved?

Recall =

Precision은
"실제로 positive인 샘플중 몇개를 positive라고 잡았는지" Recall은 "positive라고 잡은 샘플 중 몇개가 실제로 positive인지"

Precision/recall은 positive threshold에 따라 조절이 가능하며,

False positive가 늘어나는 것이 문제인 경우에는 precision를 높이는 것이 중요하지만, False positive가 늘어나도 어떻게든 positive들을 잡아내야 되는 경우 (e.g. 전염병, 암 진단) recall 을 높이는 것이 중요합니다

데이터 모델링 - Classification 평가 방법(evaluation)

- 모델을 제대로 평가하는 metric(지표)을 사용해야 주어진 데이터에 가장 효과적인 모델을 사용할 수 있습니다
- F1 score

$$F_1 = rac{2}{ ext{recall}^{-1} + ext{precision}^{-1}} = 2rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}} = rac{2 ext{tp}}{2 ext{tp} + ext{fp} + ext{fn}}$$

Precision과 recall을 둘다 고려한 metric이라고 볼 수 있습니다

```
from sklearn.metrics import accuracy_score
print('accuracy: ', accuracy_score(y_test, y_pred))

from sklearn.metrics import precision_score
print('precision: ', precision_score(y_test, y_pred))

from sklearn.metrics import recall_score
print('recall: ', recall_score(y_test, y_pred))

from sklearn.metrics import fl_score
print('fl: ', fl_score(y_test, y_pred))

accuracy: 0.96
precision: 1.0
recall: 0.9230769230769231
fl: 0.960000000000000001
```

데이터 모델링 - Principal component analysis (PCA)

- PCA는 고차원의(feature가 많은) x에 대해서 주어진 x 들의 분포를 가장 잘 설명하는 x축, y축을 찾아내는 기술입니다

이렇게 x축과 y축을 찾아낸 후, 우리가 가진 데이터를 새로운 x축과 y축에 나타낼 수 있습니다. (특히 feature가 너무 많은 경우)

주로 데이터의 전반적인 분포를 visualization 할때 매우 유용합니다. (Scatter plot 사용)

- 또한, n_components를 2이외의 값으로 주어 모델의 feature 개수를 줄여 효과적인 학습을 할 수도 있습니다

```
# Principal Component Analysis (PCA)
from sklearn.decomposition import PCA
pca = PCA(n components=2)
pca model = pca.fit transform(X train) #Fit to data, then
transform it
pca df = pd.DataFrame(columns=['x','y'])
pca_df['x'] = pca_model[:,0]
pca df['y'] = pca model[:,1]
pca df.plot.scatter(x='x', y='y',
c=['b' if z ==0 else 'r' for z in y train])
 -2
```

Feature analysis

- 데이터를 설명하는 feature x와 알아보고자 하는 label y가 있을 때, 어떠한 feature가 y를 설명하는데에 있어 중요한 feature 인지 아는 것 또한 매우 중요합니다
- Logistic regression이나 linear regression, Support vector machine, 그리고 random forest 모두 학습이 된 상태에서 어떠한 feature를 주로 보고있는지를 보여주는 값들을 가지고 있습니다
- 마지막으로, 각 feature들과 label 간의 상관관계 분석을 통해 어떤 feature가 중요한지를 안다면 의사결정 과정에서 큰도움이 될 수 있습니다 (e.g. 문제를 일으키는 주된 원인이 무엇인지 파악할 경우)

Feature analysis - Linear regression, Logistic regression

- Regression에서의 Linear regression, Classification에서의 Logistic regression 모두 학습이 된 상태에서 .coef_ 와 .intercept_ 를 조회할 수 있습니다
- .coef_는 각 feature들에 대해서 각각 곱해지는 값, .intercept_ 는 절편을 의미합니다
- .coef_의 절대값이 상대적으로 큰 feature가 있다면, label을 설명하는데 중요한 feature일 수 있습니다

```
# Logistic Regression
from sklearn.linear_model import LogisticRegression
lgr = LogisticRegression()

# training
lgr.fit(X_train, y_train)

lgr.coef_
array([[-1.74894748e+00, 2.05970508e+00, 6.90864943e-01, -1.13234564e+00, 5.70392800e-01, -1.52202120e-03, 3.35484430e-01, 2.87431155e-01, 1.24852192e-01, 6.05941756e-01]])

lgr.intercept_
array([-0.489761])
```

Feature analysis - Linear regression, Logistic regression

- 상대적으로.coef_ 값이 큰 첫 번째, 두 번째 feature에 대해서 label을 color로 주고 scatter plot을 그려보겠습니다
- 두 변수가 label을 설명하는데 중요한 feature일 수도 있다는 것을 알 수 있습니다

```
# Logistic Regression
from sklearn.linear_model import LogisticRegression
lgr = LogisticRegression()

# training
lgr.fit(X_train, y_train)

lgr.coef_
array([[-1.74894748e+00, 2.05970508e+00, 6.90864943e-01, -1.13234564e+00, 5.70392800e-01, -1.52202120e-03, 3.35484430e-01, 2.87431155e-01, 1.24852192e-01, 6.05941756e-01]])

plt.scatter(X_train[:, 0], X_train[:, 1], marker="o", c=y_train, s=25, edgecolor="k")
plt.show()
```


Feature analysis - Support vector machine

- Support vector machine 역시 학습이 된 상태에서 .coef_ 와 .intercept_ 를 조회할 수 있습니다

```
# Logistic Regression
from sklearn.linear model import LogisticRegression
lgr = LogisticRegression()
# training
lgr.fit(X train, y train)
lgr.coef
array([[-1.74894748e+00, 2.05970508e+00, 6.90864943e-01,
        -1.13234564e+00, 5.70392800e-01, -1.52202120e-03,
        3.35484430e-01, 2.87431155e-01, 1.24852192e-01,
         6.05941756e-01]])
# Support Vector Machines (SVM)
from sklearn.svm import SVC
svc = SVC(kernel='linear')
# training
svc.fit(X, y)
svc.coef
array([[-1.10086514, 0.96241273, 0.45270636, -0.46822568,
0.21103224,
         0.24624928, 0.21930329, -0.13029874, -0.22471887,
0.4335055611)
```

Feature analysis - Random forest

- Random forest 모델들에서는 자체적으로 feature importance score를 제공합니다
- .feature_importances_ 를 통해 각 feature의 importance score를 구할 수 있습니다

```
# Logistic Regression
from sklearn.linear model import LogisticRegression
lgr = LogisticRegression()
# training
lgr.fit(X train, y train)
lgr.coef
array([[-1.74894748e+00, 2.05970508e+00, 6.90864943e-01,
        -1.13234564e+00, 5.70392800e-01, -1.52202120e-03,
         3.35484430e-01, 2.87431155e-01, 1.24852192e-01,
         6.05941756e-01]])
# Random forest classifier
from sklearn.ensemble import RandomForestClassifier
rfc= RandomForestClassifier(n estimators=100, max depth=200)
# training
rfc.fit(X, y)
rfc.feature_importances_
array([0.25357745, 0.26571728, 0.09979086, 0.17900508,
0.02387162,
       0.02279699, 0.02225427, 0.04759967, 0.02854178, 0.056845
1)
```

Feature analysis - 상관관계 분석

- 각 feature들과 label간의 상관관계 분석을 통해 feature의 중요도를 알아볼 수 있습니다
- 상관관계: 통계적 변인과 다른 여러 통계적 변인들이 공변(共變)하는 함수관계
- pearsonr(): 피어슨 상관계수 두 변수간의 선형 상관관계의 정도를 나타내줍니다.
- spearmanr(): 스피어만 상관계수 두 변수간의 크기 순서상의 상관관계의 정도를 나타내줍니다
- 두 상관계수 모두 1/-1에 가까울 수록 양/음의 상관관계가 있다고 이야기 할 수 있고, 같이 나오는 p-value의 경우 H0: 두 변수는 상관관계가 없다 라고 하는 가설에 대한 p-value 입니다

```
import scipy.stats as stats

stats.pearsonr(X_train[:,0], y_train)
(-0.6388501021295765, 6.944360183441342e-10)

stats.spearmanr(X_train[:,0], y_train)
SpearmanrResult(correlation=-0.6689214712019207, pvalue=5.406591936684204e-11)
```

