Engineering Midterm Notesheet Chapters 3-5

ENGR 305

Key Constants & Values

- Elementary Charge (q): 1.602×10^{-19} C
- Thermal Voltage (V_T) at 300K (Room Temp): $V_T = kT/q = 25.9 \text{ mV}$
- Intrinsic Silicon (n_i) at 300K: $\approx 1.5 \times 10^{10}$ carriers/cm³
- Permittivity of Silicon (ϵ_s): 1.04×10^{-12} F/cm
- Constant Voltage Drop (CVD) Model: Assume $V_D \approx 0.7 \text{ V}$ for a conducting silicon diode unless specified otherwise.

Chapter 3: Semiconductors

- Intrinsic Semiconductors: Pure silicon (Si). Covalent bonds. At 0K, it's an insulator. At room temp, thermal generation creates free electrons and holes.
 - $-n = p = n_i$ (electron and hole concentrations are equal)
 - Mass Action Law: $np = n_i^2$ (holds for intrinsic and doped silicon in thermal equilibrium)
- Doped Semiconductors:
 - **n-type:** Doped with a pentavalent element (e.g., Phosphorus). These are **donors** (N_D) .
 - * Majority carriers: electrons $(n_n \approx N_D)$
 - * Minority carriers: holes $(p_n = n_i^2/N_D)$
 - **p-type:** Doped with a trivalent element (e.g., Boron). These are **acceptors** (N_A) .
 - * Majority carriers: holes $(p_p \approx N_A)$
 - * Minority carriers: electrons $(n_p = n_i^2/N_A)$

- Current Flow Mechanisms:
 - **Drift Current:** Movement of carriers due to an electric field (E).
 - * Electron drift velocity: $v_{n-drift} = -\mu_n E$
 - * Hole drift velocity: $v_{p-drift} = \mu_p E$
 - * Total Drift Current Density (J_{drift}) : $J_{drift} = q(n\mu_n + p\mu_p)E$
 - * $(\mu_n \text{ and } \mu_p \text{ are electron and hole mobilities})$
 - Diffusion Current: Movement of carriers from a high-concentration area to a low-concentration area (due to a concentration gradient).
 - * Hole Diffusion: $J_p = -qD_p \frac{dp}{dx}$
 - * Electron Diffusion: $J_n = qD_n \frac{dn}{dx}$
 - * $(D_n \text{ and } D_p \text{ are the diffusion constants})$
- Einstein Relation: Relates mobility (μ) and diffusion constant (D).
 - $-D_n = V_T \mu_n$
 - $-D_p = V_T \mu_p$

Chapter 4: Diodes

- The pn Junction (Open Circuit):
 - A depletion region (or space-charge region) forms at the junction, clear of free carriers.
 - Contains uncovered bound charges: positive donors (N_D) on the n-side, negative acceptors (N_A) on the p-side.
 - This charge creates a built-in voltage (V_0) : $V_0 = V_T \ln \left(\frac{N_A N_D}{n_i^2} \right)$.
 - Two currents balance at equilibrium: diffusion current (I_D) and drift current (I_S) . I_S is the saturation current.
- Diode I-V Models:
 - 1. Exponential Model (Shockley Equation): Most accurate.
 - $-i_D = I_S(e^{v_D/(nV_T)} 1)$
 - I_S is the saturation current (typically 10^{-15} A).
 - -n is the ideality factor (usually 1 to 2).
 - At room temp, $V_T \approx 25 \text{ mV}.$
 - For $v_D \gg V_T$, $i_D \approx I_S e^{v_D/(nV_T)}$.
 - A 60mV increase in v_D (for n = 1) increases i_D by $\approx 10 \times$.

- 2. Constant-Voltage-Drop (CVD) Model: Most common for hand analysis.
 - If conducting: $v_D = 0.7 \text{ V}$ (acts as a 0.7V battery).
 - $-% \frac{1}{2}\left(i_{D}=0\right) =0$ (acts as an open circuit).
 - Turn-on threshold is $v_D \approx 0.5 \text{ V}$ (cut-in voltage).
- 3. Ideal Diode Model: A simple switch.
 - If conducting (forward-biased): $v_D = 0$ V (short circuit).
 - If off (reverse-biased): $i_D = 0$ (open circuit).
- Small-Signal Model (for DC bias point Q):
 - First, solve for DC values (I_D, V_D) using the CVD or exponential model.
 - Then, for small ac signals, replace the diode with its **small-signal resistance** (r_d) :
 - $r_d = \frac{nV_T}{I_D}$
- Zener Diode (Breakdown Region):
 - Used for voltage regulation. Operates in reverse breakdown.
 - Model: $V_Z = V_{Z0} + r_z I_Z$
 - * V_{Z0} : Zener voltage at $I_Z \approx 0$.
 - * r_z : Zener incremental resistance.
- Diode Capacitance:
 - Junction/Depletion Capacitance (C_i) : Dominant in reverse bias.
 - * $C_j = \frac{C_{j0}}{(1+V_R/V_0)^m}$ (where $m \approx 0.5$ for abrupt junction)
 - Diffusion Capacitance (C_d) : Dominant in forward bias. Proportional to current.
 - * $C_d = \left(\frac{\tau_T}{V_T}\right) I_D$ (where τ_T is transit time)
- Rectifier Circuits:
 - Half-Wave (HW): One diode. PIV = $V_s(\text{peak})$. $V_O(\text{peak}) = V_s(\text{peak}) V_D$.
 - Full-Wave (FW) Center-Tapped: Two diodes. PIV = $2V_s(\text{config}) V_D$. $V_O(\text{peak}) = V_s(\text{peak}) V_D$.
 - Full-Wave (FW) Bridge: Four diodes. PIV = $V_s(\text{peak}) V_D$. $V_O(\text{peak}) = V_s(\text{peak}) 2V_D$.
- Peak Rectifier (HW with Filter Capacitor C):
 - Output V_O is approximately the peak input, V_p , minus a small **ripple voltage** (V_r) .
 - Capacitor discharges through R_L when diode is off.

- For $CR_L \gg T$ (period of input): $V_r \approx \frac{V_p}{fCR_L} = \frac{I_L}{fC}$
- For FW Rectifier: $V_r \approx \frac{V_p}{2fCR_L} = \frac{I_L}{2fC}$
- Diode conducts for a short interval (Δt) near the peak to replenish capacitor charge.
- Diode current is large and pulsed: $i_{D,avg} \approx I_L(1 + \pi \sqrt{2V_p/V_r})$.

Chapter 5: MOSFETs

- Structure: n-channel (NMOS) and p-channel (PMOS). Terminals are Gate (G), Drain (D), Source (S), Body (B).
- Parameters:
 - Threshold Voltage (V_t) : V_{tn} for NMOS (positive), V_{tp} for PMOS (negative).
 - Oxide Capacitance (C_{ox}): $C_{ox} = \epsilon_{ox}/t_{ox}$.
 - Process Transconductance (k'): $k'_n = \mu_n C_{ox}, k'_p = \mu_p C_{ox}$.
 - Transistor Transconductance (k): $k_n = k'_n(W/L), k_p = k'_p(W/L).$
- Overdrive Voltage (V_{OV}) : The key control voltage.
 - NMOS: $V_{OV} = V_{GS} V_{tn}$
 - PMOS: $|V_{OV}| = V_{SG} |V_{tp}|$
- Channel-Length Modulation (λ):
 - Models the slight increase in i_D with v_{DS} in saturation.
 - $-i'_D = i_D(1 + \lambda v_{DS})$
 - Output Resistance (r_o) : $r_o = \frac{V_A}{I_D} \approx \frac{1}{\lambda I_D}$ (where $V_A = 1/\lambda$ is the Early Voltage).

Regions of Operation (Tables 5.1 & 5.2 are provided on exam)

NMOS Transistor

- 1. Cutoff:
 - Condition: $V_{GS} < V_{tn}$
 - Current: $i_D = 0$
- 2. Triode (Linear) Region:
 - Conditions: $V_{GS} \ge V_{tn}$ AND $V_{DS} < V_{OV}$ (or $V_{GD} > V_{tn}$)
 - Current: $i_D = k_n \left[(V_{GS} V_{tn}) V_{DS} \frac{1}{2} V_{DS}^2 \right]$

• Acts like a voltage-controlled resistor. For small V_{DS} : $r_{DS} = \frac{1}{k_n V_{OV}}$.

3. Saturation Region: (Used for amplifiers)

• Conditions: $V_{GS} \ge V_{tn}$ AND $V_{DS} \ge V_{OV}$ (or $V_{GD} \le V_{tn}$)

• Current: $i_D = \frac{1}{2}k_n(V_{GS} - V_{tn})^2 = \frac{1}{2}k_nV_{OV}^2$

• Acts like a voltage-controlled current source.

PMOS Transistor

(Use V_{SG} , V_{SD} , $|V_{tp}|$, k_p)

1. Cutoff:

• Condition: $V_{SG} < |V_{tp}|$

• Current: $i_D = 0$

2. Triode (Linear) Region:

• Conditions: $V_{SG} \ge |V_{tp}|$ AND $V_{SD} < |V_{OV}|$

• Current: $i_D = k_p \left[(V_{SG} - |V_{tp}|) V_{SD} - \frac{1}{2} V_{SD}^2 \right]$

3. Saturation Region:

• Conditions: $V_{SG} \ge |V_{tp}|$ AND $V_{SD} \ge |V_{OV}|$

• Current: $i_D = \frac{1}{2}k_p(V_{SG} - |V_{tp}|)^2 = \frac{1}{2}k_p|V_{OV}|^2$

Homeworks 1-4: Problem-Solving Steps

• DC Analysis of Diode Circuits:

1. Assume a state for each diode (ON or OFF) based on inspection.

2. Model ON diodes as 0.7V sources (CVD model) and OFF diodes as open circuits.

 $3. \,$ Solve the resulting linear circuit for all currents and voltages.

4. Check assumptions:

– If a diode was assumed ON, check if $i_D > 0$.

- If a diode was assumed OFF, check if $v_D < 0.7~\mathrm{V}.$

5. If any assumption is wrong, change the state of that diode and re-solve.

5

• DC Analysis of MOSFET Circuits (from Slides, e.g., Ex. 5.3, 5.6):

1. **Assume** a region of operation for the MOSFET (usually **Saturation** for amplifiers).

- 2. Write the i_D equation for that region (e.g., $i_D = \frac{1}{2}k_nV_{OV}^2$).
- 3. Write KVL/KCL equations for the rest of the circuit (e.g., $V_G = ..., V_S = ..., V_D = ...$).
- 4. Substitute known relationships (e.g., $V_{OV} = V_{GS} V_{tn}$, $V_{GS} = V_G V_S$, $i_D = i_S$).
- 5. Solve the system of equations for the unknown currents and node voltages (e.g., i_D , V_S , V_D).

6. Check assumptions:

- If Saturation was assumed: Verify that $V_{DS} \geq V_{OV}$ (for NMOS) or $V_{SD} \geq |V_{OV}|$ (for PMOS).
- If Triode was assumed: Verify that $V_{DS} < V_{OV}$ (for NMOS) or $V_{SD} < |V_{OV}|$ (for PMOS).
- 7. If the assumption is wrong, re-assume the correct region and re-solve from Step 2.

• Small-Signal Diode Problems:

- 1. First, solve the DC circuit (using CVD model) to find the DC bias current I_D .
- 2. Calculate the small-signal resistance: $r_d = nV_T/I_D$.
- 3. Create the small-signal equivalent circuit: Replace the diode with r_d , turn off DC voltage sources (short to ground), and turn off DC current sources (open circuit).
- 4. Solve the small-signal circuit for the required ac quantity (e.g., v_o/v_i).