

European Glider Data Management Workshop

Introduction to the Underwater Vision Profiler (UVP) for gliders

2022/07/07

Marc Picheral - Camille Catalano

The UVP6:

- A Particle **COUNTER** (> 100μm)
- An **IMAGING DEVICE** for Plankton and Particles ($> 650 \mu m$)

The UVP6:

- A Particle COUNTER (> 100μm)
- An IMAGING DEVICE for Plankton and Particles (> 650 μm)

LOW POWER: 0.02 - 0.8 W

DEPTH RATED: 6000m

• LIGHT: 1.6 Kg in water

Very versatile

EMBEDDED CLASSIFICATION

The UVP6:

- A Particle **COUNTER** (> 100μm)
- An IMAGING DEVICE for Plankton and Particles (> 650 μm)

LOW POWER: 0.02 - 0.8 W

DEPTH RATED : 6000m

• LIGHT: 1.6 Kg in water

Very versatile

EMBEDDED CLASSIFICATION

The UVP are utilized for:

- Plankton Ecology (EOVs)
- Carbon pump study

UVP6 (2018)

UVP profiles or time series since 2008

UVP6 profiles or time series since 2018

UVP6 (2018)

UVP profiles or time series since 2008

UVP6 profiles in 2021 on SeaExplorer

REMOTE Dataflow: data and piloting

RECOVER *Dataflow*: raw data, images and piloting

RECOVER: the UVP6 RAW data (internally recorded in SD card 400GB or 1TB):

- Instrument & Acquisition metadata
- Frame metadata (time, pressure, internal temperature) + Number of objects and grey level per pixel size and per frame
- Background noise
- ROI (images) of the objects $> 650 \mu m$

RECOVER: the UVP6 RAW data (internally recorded in SD card 400GB or 1TB):

- Instrument & Acquisition metadata
- Frame metadata (time, pressure, internal temperature) + Number of objects and grey level per pixel size and per frame
- Background noise
- ROI (images) of the objects > 650μm

https://ecopart.obs-vlfr.fr/

RECOVER: the UVP6 RAW data (internally recorded in SD card 400GB or 1TB):

- Instrument & Acquisition metadata
- Frame metadata (time, pressure, internal temperature) + Number of objects and grey level per pixel size and per frame
- Background noise
- ROI (images) of the objects $> 650 \mu m$

https://ecopart.obs-vlfr.fr/

https://ecotaxa.obs-vlfr.fr

Modele_UVP6 >= 79 pixels (13315, 0.0, 0/13315)

The RAW (RECOVERED) data can be downloaded from the EcoPART application using the EXPORT tools or the API.

EcoTaxa Project - Filtered -

https://ecopart.obs-vlfr.fr/

https://ecotaxa.obs-vlfr.fr

- Instrument & Acquisition metadata
- Frame metadata (time, pressure, internal temperature) + number of objects and grey level per size class (18) and per frame(s)
- Taxonomic classification of the objects > 650μm (optional)
- Background noise

The METADATA frames are sent to the host platform

- On demand
- Every time an acquisition starts

- Instrument & Acquisition metadata
- Frame metadata (time, pressure, internal temperature) + number of objects and grey level per size class (18) and per frame(s)
- Taxonomic classification of the objects > 650µm (optional)
- Background noise

The METADATA frames are sent to the host platform

- On demand
- Every time an acquisition starts

Hardware CONFIGURATION frame:

HW CONF,000176LP,1,ACQ CAL FULL,0,000178VE2,1,0,250,,0.600,393857,10000,2,193.49.112.100,0,64,6,20,2300.000,1.136,73,0.550,UNDEFINED,20220331 0831,alice.pierret@imev-mer.fr,50.8,64,80.6,102,128,161,203,256,323,406,512,645,813,1020,1290,1630,2050,2580,ver2022.01;

Acquisition CONFIGURATION frame:

ACQ_CONF_0 frame="ACQ_NKE_0,1,2.000,1,0,0,1,0,2,645,1.5,40,10,0,1000,60,marc.picheral@imev-mer.fr, TAXO_NKE_0,0

Taxo CONFIGURATION frame (option):

TAXO_NKE_0,Mglob_20220421,65535,20,93382,56693,85123,27642,45074,11514,13381,56317,11758,342,25942,85008,93973,84963,85076,85011,85024,93

- Instrument & Acquisition metadata
- Frame metadata (time, pressure, internal temperature) + number of objects and grey level per size class (18) and per frame(s)
- Background noise
- Taxonomic classification of the objects > 650µm (optional)

The DATA frames (sent to the host platform : glider)

- Instrument & Acquisition metadata
- Frame metadata (time, pressure, internal temperature) + number of objects and grey level per size class (18) and per frame(s)
- Background noise
- Taxonomic classification of the objects > 650µm (optional)

The DATA frames (sent to the host platform: glider)

LPM DATA frame:

LPM_DATA,1593.59,20220209,065348,1,23.25,103,0,6,1,2,1,2,2,0,1,1,0,0,0,0,1,0,6,20,0,20,19,18,22,22,21,0,28,33,0,0,0,0,45,0,155;

BLACK DATA frame:

BLACK_DATA, 1593.54, 20220209, 065343, 1, 23.25, 107, 0, 11, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3;

TAXO DATA frame (option):

TAXO_DATA,1,8,866,151,25,2588,160,1,1301,69,39,256,157;

SEAEXPLORER and **GLIMPSE** web application

SEAGLIDER:

Drivers from CSCS, utilized during 3 norvegian cruises in 2021 & 2002

- Only data files of selected LPM data frames and grouped size classes
- No visualization
- Working on it with CSCS (to be improved this year)

SLOCUM: task started with DT-INSU, not yet tested! To be done next fall.

BGC ARGO floats (NKE CTS5)

NO RECOVERY of the RAW data

=> optimisation of the DATA transmission

- NetCDF files in the **BGC ARGO sandbox**
 - All instrument and acquisition metadata
 - All black measurements
 - LPM data synthetized per depth slices
 - TAXO data synthetized per depth slices
- TEXT files for **EcoPART** data automatic importation
 - All instrument and acquisition metadata
 - All black measurements
 - LPM data synthetized per depth slices
 - TAXO data synthetized per depth slices

Instrument control

Mission optimisation

- The actual subsampling is usable for LPM data ONLY (small particles).
- The major interest would be to utilize the TAXONOMIC data using either the standard classification model or a model optimized for the purpose of the mission.

Instrument control

Mission optimisation

- The actual subsampling is usable for LPM data ONLY (small particles).
- The major interest would be to utilize the TAXONOMIC data using either the standard classification model or a model optimized for the purpose of the mission.

Proposed options for the UVP6 -> Glider -> shore data flow:

IMPROVE the GLIDER firmware to synthetise the data per depth bins, include the taxonomic identifications and manage the metadata

- Instrument control
- Mission optimisation
 - The actual subsampling is usable for LPM data ONLY (small particles).
 - The major interest would be to utilize the TAXONOMIC data using either the standard classification model or a model optimized for the purpose of the mission.

Proposed options for the UVP6 -> Glider -> shore data flow:

- IMPROVE the GLIDER firmware to synthetise the data per depth bins, include the taxonomic identifications and manage the metadata
- IMPROVE the GLIDER shore application to prepare the files to be imported in EcoPART (NetCDF or TEXT)

Instrument control

Mission optimisation

- The actual subsampling is usable for LPM data ONLY (small particles).
- The major interest would be to utilize the TAXONOMIC data using either the standard classification model or a model optimized for the purpose of the mission.

Proposed options for the UVP6 -> Glider -> shore data flow:

- IMPROVE the GLIDER firmware to synthetise the data per depth bins, include the taxonomic identifications and manage the metadata
- IMPROVE the GLIDER shore application to prepare the files to be imported in EcoPART (NetCDF or TEXT)
- ASPIRE the DATA from EcoPART (REMOTE data during the mission and RECOVERED data after instrument download)

THANKS

