Ecuaciones No Lineales

Coordinación de Ecuaciones Diferenciales y Métodos Numéricos, DMCC

- Ecuaciones no Lineales. Métodos de Convergencia
 Garantizada: Método de Bisección
- Métodos de Convergencia Veloz: Método de Newton-Raphson.

DMCC, Facultad de Ciencia, USACH

Ecuaciones y Sistemas de Ecuaciones no Lineales

Estudiaremos algunos métodos básicos de resolución de ecuaciones o sistemas de ecuaciones no lineales.

El problema consiste en:

- dada $f: \mathbb{R} \longrightarrow \mathbb{R}$ (no lineal), encontrar $x \in \mathbb{R}$ tal que f(x) = 0, para el caso de una sola ecuación, o bien
- dada $f: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ (no lineal), encontrar $\mathbf{x} = (x_1, \dots, x_n)^{\mathrm{t}} \in \mathbb{R}^n$ tal que $f(\mathbf{x}) = \mathbf{0}$, para el caso de un sistema de ecuaciones.

Para el caso escalar (una sola ecuación), la solución x se denomina raíz de la función f.

Métodos de convergencia garantizada

Existencia de raíces

Teorema de Bolzano. Sea $f:[a,b] \longrightarrow \mathbb{R}$ una función continua en el intervalo [a,b]. Si f(a)f(b) < 0 (o sea f(a) y f(b) tienen signos distintos) entonces existe por lo menos una raíz α de f en el intervalo (a,b).

Método de Bisección. Algoritmo.

- ① Dados a y b tales que a < b y $f \in \mathcal{C}([a, b])$ tal que f(a)f(b) < 0, sean $x_a := a$ y $x_b := b$. Por lo tanto f tiene una raíz en el intervalo (x_a, x_b) .
- Service de la proposition de los siguientes casos:
 - ① $f(x_a)f(x_m) = 0$: en este caso se tiene que $f(x_m) = 0$; por lo tanto ya localizamos una raíz, x_m , y se finaliza el proceso;
 - ② $f(x_a)f(x_m) < 0$: por lo tanto f tiene una raíz en el intervalo (x_a, x_m) y redefinimos entonces x_b como x_m ;
 - 3 $f(x_a)f(x_m) > 0$: por lo tanto f tiene una raíz en el intervalo (x_m, x_b) y redefinimos entonces x_a como x_m .
- **③** En los casos (b) y (c) anteriores f tiene una raíz en el nuevo intervalo (x_a, x_b) . Por lo tanto, el proceso se vuelve a repetir desde (2) con el nuevo intervalo (x_a, x_b) , hasta que se satisfaga algún criterio de detención.

Es fácil comprobar a partir del algoritmo que, si α es la raíz de la ecuación, entonces los valores $x_k = x_m$ calculados en cada paso (donde k denota el número de paso) satisfacen

$$|\alpha - x_k| \le \left(\frac{1}{2}\right)^k (b-a)$$
 y, por lo tanto, $\alpha = \lim_{k \to \infty} x_k$.

Observaciones.

- left La cota del error $\left(\frac{1}{2}\right)^k(b-a)$ en el método de bisección se reduce a la mitad en cada paso.
- 2 El método puede ser demasiado lento, pero al menos es un método en el que la convergencia está garantizada.
- 3 El método es sólo aplicable al caso escalar (de una sola ecuación), y no se generaliza al caso de sistemas de ecuaciones.

Métodos de convergencia veloz

Orden de Convergencia de un Método

Definición. Una sucesión $\{x_k\}_{k\in\mathbb{N}}$ que converge a α se dice convergente con orden $p \geq 1$, si

$$|\alpha - x_{k+1}| \le C|\alpha - x_k|^p \quad \forall k \in \mathbb{N},$$

para alguna constante C > 0.

Si p=1 se dice que la sucesión converge linealmente a α ; si p=2, que converge cuadráticamente; etc.

Cuanto mayor es p, más velozmente se reduce el error.

El método de Newton-Raphson.

Se basa en usar una **recta tangente** a la gráfica de *f* para aproximar esta gráfica, cerca del punto donde la función se anula.

Supongamos que tenemos la aproximación x_k a la raíz α de f(x). Trazamos la recta tangente a la curva en el punto $(x_k, f(x_k))$:

$$y = f(x_k) + f'(x_k)(x - x_k).$$

Esta recta cruza al eje de abscisas en un punto x_{k+1} que será nuestra siguiente aproximación a la raíz α .

El punto x_{k+1} donde la recta tangente

$$y = f(x_k) + f'(x_k)(x - x_k)$$

corta al eje de abscisas queda determinado por

$$f(x_k) + f'(x_k)(x_{k+1} - x_k) = 0.$$

El método de la tangente define entonces la sucesión de aproximaciones a α de la manera siguiente:

$$x_{k+1} := x_k - \frac{f(x_k)}{f'(x_k)}, \qquad k = 0, 1, 2, \dots$$

a partir de una aproximación inicial x_0 dada y siempre que $f'(x_k) \neq 0$.

Teorema 1. Sea $f \in C^2([a,b])$ con una raíz $\alpha \in (a,b)$ y sean m_1 y M_2 tales que

$$m_1 \leq \min_{x \in [a,b]} |f'(x)|$$
 $y \qquad \max_{x \in [a,b]} |f''(x)| \leq M_2.$

Supongamos que $m_1 > 0$.

Dado $x_0 \in [a,b]$, sea $\{x_k\}_{k \in \mathbb{N}}$ la sucesión obtenida por el método de Newton-Raphson. Supongamos que $x_k \in [a,b]$ $\forall k \in \mathbb{N}$. Entonces

$$|\alpha - x_{k+1}| \le \frac{M_2}{2m_1} |\alpha - x_k|^2.$$

Por lo tanto, si x_0 se escoge suficientemente cercano a α , se tiene la convergencia

$$\lim_{k \to \infty} x_k = \alpha,$$

con orden p = 2.

Notar que la convergencia cuadrática se tiene si α es un cero simple, es decir, $f(\alpha)=0$ y $f'(\alpha)\neq 0$.

Observaciones.

- ① De acuerdo al Teorema 1, si el método de Newton-Raphson converge, lo hace cuadráticamente (es decir, con orden p = 2).
- ② La convergencia está asegurada por el Teorema 1, bajo la hipótesis de que x_0 esté suficientemente cerca de la solución α . Sin embargo, no hay una forma práctica de verificar esto.

Ejemplo: Cálculo de $\sqrt{2}$. Resolver la ecuación

$$x^2 - 2 = 0$$

con error menor que 10^{-5} , usando los métodos de *Bisección* y *Newton-Raphson*.

Algoritmo M. Bisección:

$$\begin{vmatrix} x_a = 1, x_b = 2 \text{: datos iniciales.} \\ \text{Para } k = 0, 1, 2, \dots \\ \text{calcular } x_0 = x_m = \frac{x_a + x_b}{2} \\ \text{caso: Si } f(x_a) f(x_m) < 0, \text{ entonces } x_b = x_m \\ \text{caso: Si } f(x_a) f(x_m) > 0, \text{ entonces } x_a = x_m \\ \text{caso: Si } f(x_a) f(x_m) = 0, \text{ entonces } f(x_m) = 0 \\ x_{k+1} = x_m \\ \text{hasta que } |x_{k+1} - x_k| < \text{tol.}$$

Iteraciones donde $f(x) = x^2 - 2$ y f'(x) = 2x:

- $x_0 = 1.5 \text{ en } (x_a, x_b) = (1, 2)$
- $x_1 = 1.25 \text{ en } (x_a, x_b) = (1, 1.5)$
- $x_2 = 1.375$ en $(x_a, x_b) = (1.25, 1.5)$
- $x_3 = 1.4375$ en $(x_a, x_b) = (1.375, 1.5)$...

Algoritmo de Newton-Raphson:

$$\begin{vmatrix} x_0 = 2\text{: dato inicial.} \\ \mathsf{Para}\ k = 0, 1, 2, \dots \\ \mathsf{calcular}\ x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} \\ \mathsf{hasta}\ \mathsf{que}\ |x_{k+1} - x_k| < \mathsf{tol.} \end{vmatrix}$$

Iteraciones, donde $f(x) = x^2 - 2$ y f'(x) = 2x:

- $x_0 = 2$.
- $x_1 = x_0 f(x_0)/f'(x_0) = 2 + (4-2)/4 = 1.5$
- $x_2 = x_1 f(x_1)/f'(x_1) = 1.5 (1.5^2 2)/(2 \cdot 1.5) = 1.416667$
- $x_3 = x_2 f(x_2)/f'(x_2) = 1.41667 (1.41667^2 2)/(2 \cdot 1.41667) = 1.414215$
- $x_4 = x_3 f(x_3)/f'(x_3) = 1.414213$

Ejemplo: Cálculo de $\sqrt{2}$.

Resolución de la ecuación

$$x^2 - 2 = 0$$

con error menor que 10^{-5} .

Resultados obtenidos por los métodos de *Bisección* y *Newton–Raphson*.

	Bisección	Newton–Raphson
1	1.50000000000000	2.00000000000000
2	1.250000000000000	1.500000000000000
3	1.37500000000000	1.41666666666667
4	1.43750000000000	1.41421568627451
5	1.40625000000000	1.41421356237469
6	1.42187500000000	
7	1.41406250000000	
:	:	
	•	
15	1.41421508789063	
16	1.41419982910156	
17	1.41420745849609	

Valor exacto $\sqrt{2} = 1.414213562373095...$

Ejemplo

Aproximar la solución de la ecuación x = cos(x).

Solución: Sea $f(x) = \cos(x) - x$. Notar que

$$f(\frac{\pi}{2}) = -\frac{\pi}{2} < 0, \qquad f(0) = 1 > 0,$$

luego usando el Teorema de Bolzano, existe un cero de f en el intervalo de $[0,\frac{\pi}{2}]$. Sea $x_0\in[0,\frac{\pi}{2}]$. Apliquemos el método de Newton-Raphson

$$x_{n+1} = x_n - \frac{\cos(x_n) - x_n}{-\sin(x_n) - 1}, \quad n \ge 0.$$

Si tomamos $x_0 = \pi/4$, se obtiene los siguiente resultados:

n	×n	
0	0.7853981635	
1	0.7395361337	
2	0.7390851781	
3	0.7390851332	
4	0.7390851332	