Structural approach to the deep learning method

Leonid A. Sevastianov^{1,3} \and Anton L. Sevastianov¹ \and Edik A. Ayrjan² \and Anna V. Korolkova¹ \and Dmitry S. Kulyabov^{1,2} \and Imrikh Pokorny⁴ NEC–2019, 30 September – 4 October, 2019 Budva, Montenegro

¹RUDN University, Moscow, Russian Federation \and ²LIT JINR, Dubna, Russian Federation \and ³BLTP JINR, Dubna, Russian Federation \and ⁴Technical University of Košice, Košice, Slovakia

Технологии

Проблемы машинного обучения

- Технологии машинного обучения и нейросетей переоценены.
- Методы машинного обучения уничтожают культуру аналитического мышления.
- Для достижения результата в проектах, подразумевающих анализ данных, важнее знание предмета, нежели глубокие знания ML.
- Профессия Data Scientist'а сильно переоценена, универсальных специалистов больше не будет.

Технологии переоценены

- Большинство задач, которые сейчас пытаются решать с помощью современных методов анализа данных и нейросетей – решаются уже давно.
- Задачи не новые. Их решают аналитики, которые разбираются в предметной области.
- Зачастую алгоритмы машинного обучения в таких системах уже заложены.
- Сделать тут что-то принципиально новое и реально применимое крайне сложно.
- Яблоки, упавшие с дерева, уже собраны.

Культура аналитического мышления

- Нужно глубоко разобраться в предметной области.
 - какие данные нужны;
 - нужны ли какие-либо предсказательные алгоритмы;
 - есть ли возможность верифицировать предсказание.
- Требуется аналитический подход.
- Требуется культура работы с данными.
- Требуется умение ставить гипотезы.

Уничтожение культуры аналитического мышления

Большинство современных Data Scientist'ов = дети на спорткаре

- считают себя уникальными;
- водить не умеют;
- едут быстро только потому, что сильное железо.

Важнее знание предмета

Data Scientists:

- почти не задают никаких вопросов;
- данные и так обо всем расскажут;
- забирают какие-то данные;
- говорят, что построили какую-то модель.

Результат не проверяем.

Универсальных специалистов больше не будет

Data Scientist

- не может быть универсалом;
- должен быть экспертом в предметной области.

Универсальных специалистов больше не будет

Хайп закончился.

Структура проекта

Как устроен проект анализа данных

- 1. Требования к проекту
- 2. Данные проекта
- 3. Разработка и внедрение проекта

Требования

- Мы ничего не знаем о том, какие у нас есть данные.
- Мы должны вникнуть в постановку задачи.
- Мы должны понять, какой результат требуется получить от проекта.
- Мы должны решить, каким методом задача будет решаться.
- Мы должны задать требования к данным.

Данные

- Поиск данных для решения задачи:
 - мы узнаем, какие источники нам доступны;
 - \cdot мы формируем выборку, с которой в дальнейшем будем работать.
- Исследование данных:
 - исследовать центральное положение и вариабельность;
 - выявить корреляции между признаками;
 - построить графики распределения.
- Подготовка данных.

Разработка и внедрение

- Разработка модели.
- Программная реализация модели.
- Прогонка обучающей выборки.
- Проверка на тестовой выборке.
- Верификация результата.
- Цикл (можно начинать все сначала).

Требования

Понимание задачи

- Фундамент всей работы.
- Необходимо четко определить цель исследования.
- Что является проблемой?
- По каким метрикам будет оцениваться успешность?

Выбор аналитического подхода

- Выбор подхода зависит от того, какой тип ответа нужно получить в итоге:
 - если нужен ответ вида да/нет, подойдёт байесовский классификатор;
 - если нужен ответ в виде численного признака, то подойдут регрессионные модели;
 - если нужно определить вероятности определённых исходов, необходимо использовать предиктивную модель;
 - если нужно выявить связи, используется дескриптивный подход.

Требования к данным

- Какие данные позволят дать искомый ответ?
- Требования к данным:
 - · контент;
 - форматы данных;
 - источники данных.

Данные

Сбор данных

- Мы выполняем сбор данных из имеющихся источников.
- Убеждаемся, что источники:
 - доступны;
 - надёжны;
 - могут быть использованы для получения искомых данных в требуемом качестве.
- Необходимо понять, получили ли мы те данные, какие хотели.
- Пересмотр требований к данным.
- Принятие решения о необходимости дополнительных данных.
- Нахождение замены недостающим данным.

Анализ данных

- Репрезентативны ли собранные данные относительно поставленной задачи?
- Описательная статистика применяется ко всем переменным, которые будут использоваться в выбранной модели:
 - исследуется центральное положение (среднее, медиана, мода);
 - ищутся выбросы и выполняется оценка вариабельности (дисперсия, стандартное отклонение);
 - строятся гистограммы распределения переменных;
 - применяются другие инструменты визуализации (например, ящики с усами).

Анализ данных

- Вычисляются корреляции между переменными.
- Если найдутся значительные корреляции между переменными, некоторые переменные могут быть отброшены, как избыточные.

Подготовка данных

Сбор и анализ данных + подготовка данных = 70%–90% времени проекта.

Подготовка данных

- Мы перерабатываем данные в такую форму, чтобы с ними было удобно работать:
 - удаляем дубликаты;
 - обрабатываем отсутствующие или неверные данные;
 - проверяем и исправляем ошибки форматирования.
- Мы конструируем набор факторов, с которым на следующих этапах будет работать машинное обучение:
 - извлечение признаков;
 - отбор признаков.
- Ошибки на этом этапе могут оказаться критическими.
 - Избыточное количество признаков = модель переобучена.
 - Недостаточное количество признаков = модель недообучена.

Разработка и внедрение ______

Построение модели

Когда тип модели определён и имеется обучающая выборка, мы разрабатываем модель и проверяем её на наборе признаков.

Применение модели

- Вычисления чередуются с настройкой модели.
- Отвечает ли построенная модель исходной задаче?
- Вычисление модели имеет две фазы:
 - проводятся диагностические измерения, которые помогают понять, работает ли модель, так как задумано;
 - проводится проверка статистической значимости гипотезы. Она необходима, чтобы убедиться, что данные в модели правильно используются и интерпретируются и полученный результат выходит за пределы статистической погрешности.

Внедрение

- Внедрение проводится поэтапно:
 - ограниченная группа пользователей;
 - тестовое окружение.
- Система обратной связи.