Теория автоматов и формальных языков Синтаксически управляемая трансляция

Автор: Екатерина Вербицкая

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ»

22 ноября 2016г.

В предыдущей серии

- Что такое язык, когда предложение принадлежит языку
- Классы языков
 - Регулярные
 - ▶ Контекстно-свободные
 - ★ LL(k)
 - ★ LR(k), LALR(k)
 - ▶ Задаваемые PEG
- Как задать язык
 - Конечный автомат
 - Магазинный автомат
 - PEG
- Синтаксический анализ
 - ▶ Определение, принадлежит ли цепочка языку
 - ▶ Построение дерева разбора

Дерево разбора — лишь цепочка в некотором языке

Дерево разбора — лишь цепочка в некотором языке

[.E[.E[.T[.P[.n]]]][.+][.T[.T[.P[.n]]][.*][.P[.n]]]]

Трансляция (перевод)

- **Трансляция** преобразование некоторой входной строки в некоторую выходную
 - $ightharpoonup \Sigma$ входной алфавит, Π выходной алфавит. Трансляцией с языка $L_i \subseteq \Sigma^*$ на язык $L_o \subseteq \Pi^*$ называется отображение $au: L_i \to L_o$
- Построение дерева разбора простейший пример трансляции
- Другие примеры трансляции
 - Вычисление значения арифметического выражения
 - Преобразование арифметического выражения из инфиксной записи в постфиксную
 - ▶ Преобразование программы на языке Java в байт-код
 - Компиляция программ
- Фактически синтаксический анализ нужен для трансляции

Схемы синтаксически управляемой трансляции

Схема синтаксически управляемой трансляции — пятерка (N, Σ, Π, P, S)

- N конечное множество нетерминальных символов
- Σ конечный входной алфавит
- П конечный выходной алфавит
- ullet $S\in \mathcal{N}$ стартовый нетерминал
- P конечное множество правил трансляции вида $A \to \alpha, \beta$, где $\alpha \in (N \cup \Sigma)^*, \beta \in (N \cup \Pi)^*$
 - \blacktriangleright Вхождения нетерминалов в цепочку β образуют перестановку нетерминалов из цепочки α
 - Если нетерминалы повторяются больше одного раза, то их различают по индексам: $E \to E^I + E^r, E^r + E^I$

Выводимая пара в СУ-схеме

- Если $A \to (\alpha, \beta) \in P$, то $(\gamma A_i \delta, \gamma' A_i \delta') \Rightarrow (\gamma \alpha \delta, \gamma' \beta \delta')$
- Рефлексивно-транзитивное замыкание отношения \Rightarrow называется отношением выводимости в СУ-схеме, обозначается $\stackrel{*}{\Rightarrow}$
- Трансляцией назовем множество пар $\{(\alpha,\beta) \mid (S,S) \stackrel{*}{\Rightarrow} (\alpha,\beta), \alpha \in \Sigma, \beta \in \Pi\}$
- СУ-схема называется простой, если во всех правилах $A \to (\alpha, \beta)$, нетерминалы в α и β встречаются в одном и том же порядке

Пример СУ-схемы

Пример СУ-схемы

$$(E,E) \Rightarrow (T,T) \Rightarrow (T*F,TF*) \Rightarrow (F*F,FF*) \Rightarrow (id*F,idF*) \Rightarrow$$

 $(id*(E),idE*) \Rightarrow (id*(E+T),idET+*) \Rightarrow (id*(T+T),idTT+*) \Rightarrow$
 $(id*(F+T),idFT+*) \Rightarrow (id*(id+T),ididT+*) \Rightarrow$
 $(id*(id+F),ididF+*) \Rightarrow (id*(id+id),ididid+*)$

Обобщенные схемы синтаксически управляемой трансляции

Обобщенная схема синтаксически управляемой трансляции — шестерка $(N, \Sigma, \Pi, \Gamma, P, S)$

- ullet Γ конечное множество символов перевода вида $A_i, A \in N; i \in \mathbb{Z}$
- P конечное множество правил трансляции вида $A o lpha, A_1 = eta_1, \dots, A_n = eta_n$, где $lpha \in (N \cup \Sigma)^*$
 - ▶ $A_i \in \Gamma, 1 \leq i \leq n$
 - ▶ Каждый символ x, входящий в β_i , либо $x\in\Pi$, либо $x=B_k$ $in\Gamma$, где $B\in\alpha$
 - ▶ Если α имеет более одного вхождения символа B, то каждый символ B_k во всех β соотнесен (верхним индексом) с конкретным вхождением B

Входной грамматикой назовем четверку (N, Σ, P', S), где $P = \{A \to \alpha \, | \, A \to \alpha, A_1 = \beta_1, \dots, A_n = \beta_n \in P\}$

Выход обобщенной СУ-схемы

- Для каждой внутренней вершины дерева, соответствующей нетерминалу A, с каждым A_i связывается одна цепочка
 - ightharpoonup Такую цепочку назовем значением (трансляцией) символа A_i
- Каждое значение определяется подстановкой значений символов трансляции данного элемента $A_i = \beta_i$, определенных в прямых потомках вершины
- **Трансляцией**, определяемой данной схемой, назовем множество $\{(\alpha,\beta)\}$
 - ightharpoonup имеет дерево разбора в данной входной грамматике
 - ightharpoonup eta значение выделенного символа S_k

Пример обобщенной СУ-схемы: дифференцирование

Транслирующие грамматики

- КС-грамматика, терминальный алфавит которой разбит на два множество: входных и выходных символов
- Транслирующая грамматика пятерка $(N, \Sigma_i, \Sigma_o, P, S)$
 - № N алфавит нетерминалов
 - $ightharpoonup \Sigma_i$ алфавит входных терминалов
 - ▶ ∑_o алфавит выходных терминалов
 - $ightharpoonup S \in \mathcal{N}$ стартовый нетерминал
 - ▶ $P = \{A \to \alpha\}, \alpha \in (\Sigma_i \cup \Sigma_o \cup N)^*$ множество правил вывода

Пример транслирующей грамматики

$$E \rightarrow E + T \{+\}$$

$$\mid T$$

$$T \rightarrow T * F \{*\}$$

$$\mid F$$

$$F \rightarrow n \{n\}$$

$$\mid (E)$$

Пример транслирующей грамматики

$$\begin{array}{cccc} E & \to & E + T \{+\} \\ & | & T \\ T & \to & T * F \{*\} \\ & | & F \\ F & \to & n \{n\} \\ & | & (E) \end{array}$$

Пример транслирующей грамматики

$$\begin{array}{cccc} E & \to & E + T \{+\} \\ & | & T \\ T & \to & T * F \{*\} \\ & | & F \\ F & \to & n \{n\} \\ & | & (E) \end{array}$$

$$E \Rightarrow E + T\{+\} \Rightarrow T + T\{+\} \Rightarrow P + T\{+\} \Rightarrow n\{n\} + T\{+\} \Rightarrow n\{n\} + T*P\{*\}\{+\} \Rightarrow n\{n\} + P*P\{*\}\{+\} \Rightarrow n\{n\} + n\{n\} * P\{*\}\{+\} \Rightarrow n\{n\} + n\{n\} * n\{n\} * P\{*\}\{+\} \Rightarrow n\{n\} * P\{*\}\{+\} P\{*\}\{+\} \Rightarrow n\{n\} * P\{*\}\{+\} P\{*\}\{+\}$$

- ullet Если вычеркнуть все выходные символы, получим n+n*n
- Если вычеркнуть все входные символы, получим $n \, n \, n + *$ постфиксная запись выражения

Постфиксная транслирующая грамматика

- Если выходные символы встречаются только в конце правил, транслирующая грамматика называется постфиксной
- Это требование формально не выдвигается: транслирующие грамматики могут быть не постфиксными
- На практике постфиксные транслирующие грамматики удобнее

Атрибутная транслирующая грамматика

- Входной алфавит алфавит лексем
 - Лексема характеризуется типом и значением
- Транслирующая грамматика описывает перевод только типа лексемы
 - Это существенно снижает выразительность формализма
- Для борьбы с этим недостатком предложены атрибутные грамматики
 - Модификация транслирующих грамматик, снабженная атрибутами
 - Выходные символы транслирующих грамматик транслирующие символы
 - \star Нетерминалы, которые раскрываются в ε , и в момент раскрытия выполняют связанные с ними действие

Атрибут

Атрибут — дополнительные данные, ассоциированные с грамматическими символами

- Если X символ, а a его атрибут, то значение a в узле дерева, помеченном X, записывается как X.a
- Узлы дерева могут реализовываться как записи или объекты, а атрибуты — как поля
- Атрибуты могут быть любого типа
- Если в каждом узле дерева атрибуты уже вычислены, оно называется **аннотированным**
- Процесс вычисления этих атрибутов называется аннотированием дерева разбора.

Вычисление атрибутов не всегда возможно

$$A \rightarrow B$$
 $A_s = B_i$
 $B_i = A_s + 1$

Синтезируемый атрибут, S-атрибутная грамматика

- Атрибут, значение которого зависит от значений атрибутов детей данного узла или от других атрибутов этого узла, называется синтезируемым
- Если в транслирующей грамматике используются только синтезируемые атрибуты, она называется **S-атрибутной** грамматикой
- Аннотирование дерева разбора S-атрибутной грамматики возможно путем выполнения семантических правил снизу вверх (от листьев к корню)

Пример S-атрибутной грамматики

 $F \rightarrow (E)$

$$S \rightarrow E$$
 $S.val = E.val$ $E_0 \rightarrow E_1 + T$ { $ADD res = op_1 + op_2$ } $ADD.op_1 = E_1.val$ $ADD.op_2 = T.val$ $E_0.val = ADD.res$ $E \rightarrow T$ $E.val = T.val$ $E_0.val = T.val$

F.val = F.val

Наследуемый атрибут, L-атрибутная грамматика

- Атрибут, значение которого зависит только от атрибутов братьев узла или атрибутов родителей, называется наследуемым
- Если в транслирующей грамматике атрибуты узла зависят только от атрибутов родителей или братьев слева, она называется **L-атрибутной грамматикой**

Пример L-атрибутной грамматики