Priority continued and Preemptive scheduling

Dr. Naser Al Madi

Learning objectives

- Priority scheduling (non-preemptive)
- Preemptive scheduling:
 - o Round Robin
 - Shortest Remaining Time
 - Preemptive Priority

Late project policy

- You get 1 week after the due date to submit your project without extensions (26 points max).
- Once in the semester, you get to submit a project by the following Monday WITH extensions (30 points max). An email by the project due date is necessary to use this option.
- That said, getting behind is not a good idea.

- Associate a priority with each process
- Run the process with the highest priority
- Externally defined:
 - ex: based on importance
 - employee's processes given higher preference than visitor's
- **Internally** defined, based on memory requirements, file requirements, CPU requirements vs. I/O requirements, etc.

 SJF is priority scheduling, where priority is inversely proportional to length of next CPU burst

- Priority can be represented in two ways:
- Correlating:
 - o For example, on a scale from 1 to 500 with 1 is lowest priority and 500 is highest priority

- Inverse:
 - o For example, on a scale from 1 to 500 with 1 is highest priority and 500 is lowest priority

Process	CPU time	Priority
P0	5	8
P1	3	10
P2	1	15
P3	2	15

Process	CPU time	Priority
P0	5	8
P1	3	10
P2	1	15
P3	2	15

P2 1

Process	CPU time	Priority
P0	5	8
P1	3	10
P2	1	15
P3	2	15

	P2	P3	
0		1	3

Process	CPU time	Priority
P0	5	8
P1	3	10
P2	1	15
P3	2	15

	P2	P3	P1	
0)	1	3	6

Process	CPU time	Priority
P0	5	8
P1	3	10
P2	1	15
P3	2	15

	P2	P3	P1	P0	
0		1	3	6	11

Process	CPU time	Priority
P0	5	8
P1	3	10
P2	1	15
P3	2	15

	Wait-time	Turnaround-time
P0	start-arrival	
P1		
P2		
P3		

Process	CPU time	Priority
P0	5	8
P1	3	10
P2	1	15
P3	2	15

	Wait-time	Turnaround-time
P0	6 - 0 = 6	
P1		
P2		
P3		

0

1

[*

j.

Process	CPU time	Priority
P0	5	8
P1	3	10
P2	1	15
P3	2	15

	Wait-time	Turnaround-time
P0	6 - 0 = 6	
P1	3 - 0 = 3	
P2		
P3		

j

Process	CPU time	Priority
P0	5	8
P1	3	10
P2	1	15
P3	2	15

	Wait-time	Turnaround-time
P0	6 - 0 = 6	
P1	3 - 0 = 3	
P2	0 - 0 = 0	
P3		

0

1

Ċ

j.

Process	CPU time	Priority
P0	5	8
P1	3	10
P2	1	15
P3	2	15

	Wait-time	Turnaround-time
P0	6 - 0 = 6	
P1	3 - 0 = 3	
P2	0 - 0 = 0	
P3	1 - 0 = 1	

0

1

[*

j.

Process	CPU time	Priority
P0	5	8
P1	3	10
P2	1	15
P3	2	15

	Wait-time	Turnaround-time
P0	6 - 0 = 6	Wait + CPU_time
P1	3 - 0 = 3	
P2	0 - 0 = 0	
P3	1 - 0 = 1	

0

1

-

j

Process	CPU time	Priority
P0	5	8
P1	3	10
P2	1	15
P3	2	15

	Wait-time	Turnaround-time
P0	6 - 0 = 6	6 + 5 =11
P1	3 - 0 = 3	
P2	0 - 0 = 0	
P3	1 - 0 = 1	

0

1

[

j.

Process	CPU time	Priority
P0	5	8
P1	3	10
P2	1	15
P3	2	15

	Wait-time	Turnaround-time
P0	6 - 0 = 6	6 + 5 =11
P1	3 - 0 = 3	3 + 3 = 6
P2	0 - 0 = 0	
P3	1 - 0 = 1	

0

1

ť

j.

Process	CPU time	Priority	
P0	5	8	
P1	3	10	
P2	1	15	
P3	2	15	

	Wait-time	Turnaround-time	
P0	6 - 0 = 6	6 + 5 =11	
P1	3 - 0 = 3	3 + 3 = 6	
P2	0 - 0 = 0	0 + 1 = 1	
P3	1 - 0 = 1		

j

Process	CPU time	Priority
P0	5	8
P1	3	10
P2	1	15
P3	2	15

	Wait-time	Turnaround-time	
P0	6 - 0 = 6	6 + 5 =11	
P1	3 - 0 = 3	3 + 3 = 6	
P2	0 - 0 = 0	0 + 1 = 1	
P3	1 - 0 = 1	1 + 2 = 3	

0

1

[*

j

Non-preemptive

	Wait-time	Turnaround-time	
P0	6 - 0 = 6	6 + 5 =11	
P1	3 - 0 = 3	3 + 3 = 6	
P2	0 - 0 = 0	0 + 1 = 1	
P3	1 - 0 = 1	1 + 2 = 3	
AVG	2.5	5.25	

	Wait-time	Turnaround-time	
P0	6 - 0 = 6	6 + 5 =11	
P1	3 - 0 = 3	3 + 3 = 6	
P2	0 - 0 = 0	0 + 1 = 1	
P3	1 - 0 = 1	1 + 2 = 3	
AVG	2.5	5.25	

- Non-preemptive
- convoy effect?

	Wait-time	Turnaround-time	
P0	6 - 0 = 6	6 + 5 =11	
P1	3 - 0 = 3	3 + 3 = 6	
P2	0 - 0 = 0	0 + 1 = 1	
P3	1 - 0 = 1	1 + 2 = 3	
AVG	2.5	5.25	

- Non-preemptive
- convoy effect one long-burst process is followed by many short-burst processes, short processes have to wait a long time
- fairness?

	Wait-time	Turnaround-time	
P0	6 - 0 = 6	6 + 5 =11	
P1	3 - 0 = 3	3 + 3 = 6	
P2	0 - 0 = 0	0 + 1 = 1	
P3	1 - 0 = 1	1 + 2 = 3	
AVG	2.5	5.25	

- Non-preemptive
- convoy effect one long-burst process is followed by many short-burst processes, short processes have to wait a long time
- fairness penalizes low-priority processes
- starvation?

	Wait-time	Turnaround-time	
P0	6 - 0 = 6	6 + 5 =11	
P1	3 - 0 = 3	3 + 3 = 6	
P2	0 - 0 = 0	0 + 1 = 1	
P3	1 - 0 = 1	1 + 2 = 3	
AVG	2.5	5.25	

- Non-preemptive
- convoy effect one long-burst process is followed by many short-burst processes, short processes have to wait a long time
- fairness penalizes low-priority processes
- starvation possible
- overhead?

	Wait-time	Turnaround-time	
P0	6 - 0 = 6	6 + 5 =11	
P1	3 - 0 = 3	3 + 3 = 6	
P2	0 - 0 = 0	0 + 1 = 1	
P3	1 - 0 = 1	1 + 2 = 3	
AVG	2.5	5.25	

- Non-preemptive
- convoy effect one long-burst process is followed by many short-burst processes, short processes have to wait a long time
- fairness penalizes low-priority processes
- starvation possible
- overhead minimal

- the previous example is simple.
- a more realistic situation would include arrival time.

PID	CPU time	Arrival time	Priority
P0	5	1	8
P1	3	0	10
P2	1	2	15
P3	2	3	15

Can you calculate avg. WT & TT?

PID	CPU time	Arrival time	Priority
P0	5	1	8
P1	3	0	10
P2	1	2	15
P3	2	3	15

PID	CPU time	Arrival time	Priority
P0	5	1	8
P1	3	0	10
P2	1	2	15
P3	2	3	15

PID	CPU time	Arrival time	Priority
P0	5	1	8
P1	3	0	10
P2	1	2	15
P3	2	3	15

P1 P2
0 3 4
P P P P 3

PID	CPU time	Arrival time	Priority
P0	5	1	8
P1	3	0	10
P2	1	2	15
P3	2	3	15

PID	CPU time	Arrival time	Priority
P0	5	1	8
P1	3	0	10
P2	1	2	15
P3	2	3	15

PID	CPU time	Arrival time	Priority
P0	5	1	8
P1	3	0	10
P2	1	2	15
P3	2	3	15

	Wait-time	Turnaround-time
P0	start-arrival	
P1		
P2		
P3		

0

3

Ċ

PID	CPU time	Arrival time	Priority
P0	5	1	8
P1	3	0	10
P2	1	2	15
P3	2	3	15

	Wait-time	Turnaround-time
P0	6 - 1 = 5	
P1		
P2		
P3		

0

3

ŀ

j.

PID	CPU time	Arrival time	Priority
P0	5	1	8
P1	3	0	10
P2	1	2	15
P3	2	3	15

	Wait-time	Turnaround-time
P0	6 - 1 = 5	
P1	0 - 0 = 0	
P2		
P3		

PID	CPU time	Arrival time	Priority
P0	5	1	8
P1	3	0	10
P2	1	2	15
P3	2	3	15

	Wait-time	Turnaround-time
P0	6 - 1 = 5	
P1	0 - 0 = 0	
P2	3 - 2 = 1	
P3		

j

PID	CPU time	Arrival time	Priority
P0	5	1	8
P1	3	0	10
P2	1	2	15
P3	2	3	15

	Wait-time	Turnaround-time
P0	6 - 1 = 5	
P1	0 - 0 = 0	
P2	3 - 2 = 1	
P3	4 - 3 = 1	

PID	CPU time	Arrival time	Priority
P0	5	1	8
P1	3	0	10
P2	1	2	15
P3	2	3	15

	Wait-time	Turnaround-time
P0	6 - 1 = 5	Wait + CPU_time
P1	0 - 0 = 0	
P2	3 - 2 = 1	
P3	4 - 3 = 1	

PID	CPU time	Arrival time	Priority
P0	5	1	8
P1	3	0	10
P2	1	2	15
P3	2	3	15

	Wait-time	Turnaround-time
P0	6 - 1 = 5	5 + 5 = 10
P1	0 - 0 = 0	
P2	3 - 2 = 1	
P3	4 - 3 = 1	

j.

PID	CPU time	Arrival time	Priority
P0	5	1	8
P1	3	0	10
P2	1	2	15
P3	2	3	15

	Wait-time	Turnaround-time
P0	6 - 1 = 5	5 + 5 = 10
P1	0 - 0 = 0	0 + 3 = 3
P2	3 - 2 = 1	
P3	4 - 3 = 1	

j

PID	CPU time	Arrival time	Priority
P0	5	1	8
P1	3	0	10
P2	1	2	15
P3	2	3	15

	Wait-time	Turnaround-time
P0	6 - 1 = 5	5 + 5 = 10
P1	0 - 0 = 0	0 + 3 = 3
P2	3 - 2 = 1	1 + 1 = 2
P3	4 - 3 = 1	

0

3

ŀ

Ċ

PID	CPU time	Arrival time	Priority
P0	5	1	8
P1	3	0	10
P2	1	2	15
P3	2	3	15

	Wait-time	Turnaround-time
P0	6 - 1 = 5	5 + 5 = 10
P1	0 - 0 = 0	0 + 3 = 3
P2	3 - 2 = 1	1 + 1 = 2
P3	4 - 3 = 1	1 + 2 = 3

 $\hat{\mathbf{S}}$

Priority Scheduling (with arrival time) Evaluation

	Wait-time	Turnaround-time
P0	6 - 1 = 5	5 + 5 = 10
P1	0 - 0 = 0	0 + 3 = 3
P2	3 - 2 = 1	2 + 1 = 3
P3	4 - 3 = 1	1 + 2 = 3
AVG	1.75	4.75

 The most crucial point is giving each process the right priority.

Starvation

- When a process is perpetually (continuing forever) denied necessary resources to process its work.
- Let's take a look at a starvation situation.

PID	CPU time	Arrival time	Priority
P0	5	0	12
P1	1	0	5

PID	CPU time	Arrival time	Priority
P0	5	0	12
P1	1	0	5

PID	CPU time	Arrival time	Priority
P0	5	0	12
P1	1	0	5
P2	1	4	15

PID	CPU time	Arrival time	Priority
P0	5	0	12
P1	1	0	5
P2	1	4	15
P3	2	6	18

PID	CPU time	Arrival time	Priority
P0	5	0	12
P1	1	0	5
P2	1	4	15
P3	2	6	18

PID	CPU time	Arrival time	Priority
P0	5	0	12
P1	1	0	5
P2	1	4	15
P3	2	6	18
Pn			

PID	CPU time	Arrival time	Priority
P0	5	0	12
P1	1	0	5
P2	1	4	15
P3	2	6	18
Pn			

	P0	P2	P3	Pn
0		5	6	8

PID	CPU time	Arrival time	Priority
P0	5	0	12
P1	1	0	5
P2	1	4	15
P3	2	6	18
Pn			

	P0	P2	P3	Pn	
0		5	6	8	

Priority Scheduling Problem

- Starvation possible for low-priority processes:
 - A process with higher priority keeps arriving for an extended period of time, keeping a low priority process in the ready stage without a chance of getting execution time.

Priority Scheduling Problem

- Starvation possible for low-priority processes:
 - A process with higher priority keeps arriving for an extended period of time, keeping a low priority process in the ready stage without a chance of getting execution time.
- How can we fix it?

Priority Scheduling Problem

- Starvation possible for low-priority processes:
 - A process with higher priority keeps arriving for an extended period of time, keeping a low priority process in the ready stage without a chance of getting execution time.
- Solution is <u>Aging</u> as time progresses, increase the priority of the process

PID	CPU time	Arrival time	Priority
P0	5	0	12
P1	1	0	6

PID	CPU time	Arrival time	Priority
P0	5	0	12
P1	1	0	6

P0 1

PID	CPU time	Arrival time	Priority
P0	5	0	12
P1	1	0	8

P0 1

PID	CPU time	Arrival time	Priority
P0	5	0	12
P1	1	0	10

PID	CPU time	Arrival time	Priority
P0	5	0	12
P1	1	0	12

PID	CPU time	Arrival time	Priority
P0	5	0	12
P1	1	0	14

PID	CPU time	Arrival time	Priority
P0	5	0	12
P1	1	0	16
P2	1	5	15

PID	CPU time	Arrival time	Priority
P0	5	0	12
P1	1	0	16
P2	1	5	17

P()				P1	
0	1	2	3	4	5	6

Preemptive scheduling

CPU Scheduling Algorithms

Preemptive:

- Round Robin (RR)
- Shortest Job First (SJF)
- Priority (PP)

Non-Preemptive:

- Shortest Job First (SJF)
- First Come First Serve (FCFS)
- Priority (P)

Round-Robin (RR)

preemptive version of FCFS

• define a fixed time slice (also called a time quantum) – e.g. 10-100ms

implement using hardware timer that interrupts at periodic intervals

Round-Robin (RR) algorithm

Ready P3 P5 P2 P1 P4

Round-Robin (RR) algorithm

Ready P3 P5 P2 P1 P4

choose process from head of ready queue

1 time slice.

1 time slice.

 run that process for at most one time slice, and if it hasn't completed or blocked, add it to the tail of the ready queue

1 time slice. done!

 run that process for at most one time slice, and if it hasn't completed or blocked, add it to the tail of the ready queue

 choose another process from the head of the ready queue, and run that process for at most one time slice ...

Quantum = 2

Process	CPU time
P0	5
P1	1
P2	3
P3	2

P0 2

Quantum = 2

Process	CPU time
P0	<i>5</i> ⁄ 3
P1	1
P2	3
P3	2

P0 2

Process	CPU time
P0	<i>5</i> ⁄ 3
P1	1
P2	3
P3	2

P0	P1	
0	2	3

Process	CPU time
P0	<i>5</i> ⁄ 3
P1	1
P2	<i>3</i> ⁄ 1
P3	2

P0	P1	P2	
0	2	3	5

Process	CPU time
P0	<i>5</i> ⁄ 3
P1	1
P2	<i>3</i> ⁄ 1
P3	2

	P0	P1		P2		P3	
C		2	3	}	5)	7

Process	CPU time
P0	<i>5</i> ⁄ <i>3</i> ⁄ 1
P1	1
P2	<i>3</i> ⁄ 1
P3	2

	P0	P1	P2	P3	P0	
0)	2	3	5	7	9

Process	CPU time
P0	<i>5</i> / <i>3</i> / 1
P1	1
P2	3/1/
P3	2

Process	CPU time
P0	5/3/1/
P1	1
P2	3/1/
P3	2

Process	CPU time
P0	5
P1	1
P2	3
P3	2

	Wait-time	Turnaround-time
P0	start-arrival	
P1		
P2		
P3		

Process	CPU time
P0	5
P1	1
P2	3
P3	2

	Wait-time	Turnaround-time
P0	start-arrival	
P1		
P2		
P3		

Process	CPU time
P0	5
P1	1
P2	3
P3	2

	Wait-time	Turnaround-time
P0	start-arrival	
P1		
P2		
P3		

Process	CPU time
P0	5
P1	1
P2	3
P3	2

	Wait-time	Turnaround-time
P0	start-arrival	
P1		
P2		
P3		

Process	CPU time
P0	5
P1	1
P2	3
P3	2

	Wait-time	Turnaround-time
P0	start-arrival	
P1		
P2		
P3		

Process	CPU time
P0	5
P1	1
P2	3
P3	2

	Wait-time	Turnaround-time
P0	0 + 5 + 1= 6	
P1		
P2		
P3		

Process	CPU time
P0	5
P1	1
P2	3
P3	2

	Wait-time	Turnaround-time
P0	0 + 5 + 1= 6	
P1		
P2		
P3		

Process	CPU time
P0	5
P1	1
P2	3
P3	2

	Wait-time	Turnaround-time
P0	0 + 5 + 1= 6	
P1	2 - 0 = 2	
P2		
P3		

Process	CPU time
P0	5
P1	1
P2	3
P3	2

	Wait-time	Turnaround-time
P0	0 + 5 + 1= 6	
P1	2 - 0 = 2	
P2		
P3		

Process	CPU time
P0	5
P1	1
P2	3
P3	2

	Wait-time	Turnaround-time
P0	0 + 5 + 1= 6	
P1	(2 - 0) = 2	
P2	(3-0)+(9-5)=7	
P3		

Process	CPU time
P0	5
P1	1
P2	3
P3	2

	Wait-time	Turnaround-time
P0	0 + 5 + 1= 6	
P1	(2 - 0) = 2	
P2	(3-0)+(9-5)=7	
P3		

Process	CPU time
P0	5
P1	1
P2	3
P3	2

	Wait-time	Turnaround-time
P0	0 + 5 + 1= 6	
P1	(2 - 0) = 2	
P2	(3-0)+(9-5)=7	
P3	(5-0)=5	

Process	CPU time
P0	5
P1	1
P2	3
P3	2

	Wait-time	Turnaround-time
P0	0 + 5 + 1= 6	Wait + CPU_time
P1	(2 - 0) = 2	
P2	(3-0)+(9-5)=7	
P3	(5-0)=5	

Process	CPU time
P0	5
P1	1
P2	3
P3	2

	Wait-time	Turnaround-time
P0	0 + 5 + 1= 6	6 + 5 = 11
P1	(2 - 0) = 2	2 + 1 = 3
P2	(3-0)+(9-5)=7	7 + 3 = 10
P3	(5-0)=5	5 + 2 = 7

- preemptive (at end of time slice)
- Long processes may have to wait n*q time units for another time slice
 - o n = number of other processes
 - o q = length of time slice

	Wait-time	Turnaround-time
P0	0 + 5 + 1= 6	6 + 5 = 11
P1	(2 - 0) = 2	2 + 1 = 3
P2	(3-0)+(9-5)=7	7 + 3 = 10
P3	(5-0)=5	5 + 2 = 7
AVG	5	7.75

- preemptive (at end of time slice)
- Long processes may have to wait n*q time units for another time slice
 - o n = number of other processes
 - q = length of time slice
- Throughput depends on time slice
 - too small too many context switches
 - too large approximates FCFS

	Wait-time	Turnaround-time
P0	0 + 5 + 1= 6	6 + 5 = 11
P1	(2 - 0) = 2	2 + 1 = 3
P2	(3-0)+(9-5)=7	7 + 3 = 10
P3	(5-0)=5	5 + 2 = 7
AVG	5	7.75

- preemptive (at end of time slice)
- Long processes may have to wait n*q time units for another time slice
 - o n = number of other processes
 - q = length of time slice
- Throughput depends on time slice
 - too small too many context switches
 - o too large approximates FCFS
- fairness penalizes I/O-bound processes (may not use full time slice)

	Wait-time	Turnaround-time
P0	0 + 5 + 1= 6	6 + 5 = 11
P1	(2 - 0) = 2	2 + 1 = 3
P2	(3-0)+(9-5)=7	7 + 3 = 10
P3	(5-0)=5	5 + 2 = 7
AVG	5	7.75

- preemptive (at end of time slice)
- Long processes may have to wait n*q time units for another time slice
 - o n = number of other processes
 - q = length of time slice
- Throughput depends on time slice
 - too small too many context switches
 - too large approximates FCFS
- fairness penalizes I/O-bound processes (may not use full time slice)
- starvation not possible
- overhead somewhat low

	Wait-time	Turnaround-time
P0	0 + 5 + 1= 6	6 + 5 = 11
P1	(2 - 0) = 2	2 + 1 = 3
P2	(3-0)+(9-5)=7	7 + 3 = 10
P3	(5-0)=5	5 + 2 = 7
AVG	5	7.75

RR with arrival time

Round-Robin (RR) (with arrival time)

Quantum = 2

Process	CPU time	Arrival
P0	6	0
P1	4	3
P2	3	5
P3	2	7

Can you calculate avg. WT & TT?

Round-Robin (RR) (with arrival time)

Quantum = 2

Process	CPU time	Arrival
P0	6	0
P1	4	3
P2	3	5
P3	2	7

L

 \mathbb{C}

Quantum = 2

Process	CPU time	Arrival
P0	6	0
P1	4	3
P2	3	5
P3	2	7

P0

0 1 2

Quantum = 2

Process	CPU time	Arrival
P0	6	0
P1	4	3
P2	3	5
P3	2	7

ready P1

P0

0 12 3

Quantum = 2

Process	CPU time	Arrival
P0	6	0
P1	4	3
P2	3	5
P3	2	7

P0

0 1 2 3

Quantum = 2

Process	CPU time	Arrival
P0	6	0
P1	4	3
P2	3	5
P3	2	7

ready P1

P0 4

Quantum = 2

Process	CPU time	Arrival
P0	6	0
P1	4	3
P2	3	5
P3	2	7

P0

0 4

At the end of the time slice the process returns to the ready Queue

Quantum = 2

Process	CPU time	Arrival
P0	6 2	Ø 4
P1	4	3
P2	3	5
P3	2	7

Р0

0 4

At the end of the time slice the process returns to the ready Queue. Therefore, we should update arrival time.

Process	CPU time	Arrival	
P0	6 2	Ø 4	
P1	<u>/</u> 2	3 6	
P2	3	5	
P3	2	7	

	P0		P1	
C)	4		6

	ready	P0	P2	P1	
--	-------	----	----	----	--

Process	CPU time	Arrival	
P0	6 2	Ø 4	
P1	<u>/</u> 2	3 6	
P2	3	5	
P3	2	7	

P0	P1	
0	4	6

ready	P0	P2	P1	
ready	FU	F Z	FI	

Process	CPU time	Arrival
P0	8 2	Ø 4
P1	<u>/</u> 2	3 6
P2	3	5
P3	2	7

ready P2 P1 P3

	P0	P1	PC)
C) 2	4	6	8

Process	CPU time	Arrival
P0	ø <u>2</u>	Ø 4
P1	<u>/</u> 2	3 6
P2	3 1	5 10
P3	2	7

ready P1 P3	
-------------	--

	P0	P1	P0	P2	I
C)	4	6	8	10

Process	CPU time	Arrival
P0	ø <u>2</u>	Ø 4
P1	A 2	3 6
P2	<i>3</i> 1	5 10
P3	2	7

Process	CPU time	Arrival
P0	<i>6</i> 2	Ø 4
P1	A 2	3 6
P2	<i>3</i> 1	5 10
P3	2	7

ready	P3	P2		
-------	----	----	--	--

Process	CPU time	Arrival
P0	ø <u>2</u>	Ø 4
P1	A 2	3 6
P2	3 1	5 10
P3	Ź	7

Quantum = 2

Process	CPU time	Arrival
P0	8 2	Ø 4
P1	A 2	3 6
P2	3 1	5 10
P3	2	7

ready

	P0	P1	P0	P2	P1	P3	P2	
0		4	6	8	10	12	14	15

Process	CPU time	Arrival
P0	6	0
P1	4	3
P2	3	5
P3	2	7

	Wait-time	Turnaround-time
P0	start-arrival	
P1		
P2		
P3		

Quantum = 2

Process	CPU time	Arrival
P0	6	0
P1	4	3
P2	3	5
P3	2	7

	Wait-time	Turnaround-time
P0	(0-0)+	
P1		
P2		
P3		

0-0=0

6-4=2

Quantum = 2

0-0=0

Process	CPU time	Arrival
P0	6	0
P1	4	3
P2	3	5
P3	2	7

	Wait-time	Turnaround-time
P0	(0-0)+(6-4)=2	
P1		
P2		
P3		

Process	CPU time	Arrival
P0	6	0
P1	4	3
P2	3	5
P3	2	7

	Wait-time	Turnaround-time
P0	(0-0)+(6-4)=2	
P1	(4-3)+(10-6)=5	
P2		
P3		

Process	CPU time	Arrival
P0	6	0
P1	4	3
P2	3	5
P3	2	7

	Wait-time	Turnaround-time
P0	(0-0)+(6-4)=2	
P1	(4-3)+(10-6)=5	
P2	(8-5)+(14-10)=7	
P3		

Process	CPU time	Arrival
P0	6	0
P1	4	3
P2	3	5
P3	2	7

	Wait-time	Turnaround-time
P0	(0-0)+(6-4)=2	
P1	(4-3)+(10-6)=5	
P2	(8-5)+(14-10)=7	
P3	12-7=5	

Process	CPU time	Arrival
P0	6	0
P1	4	3
P2	3	5
P3	2	7

	Wait-time	Turnaround-time
P0	(0-0)+(6-4)=2	2 + 6 = 8
P1	(4-3)+(10-6)=5	5 + 4 = 9
P2	(8-5)+(14-10)=7	7 + 3 = 10
P3	12-7=5	5 + 2 = 7

CPU Scheduling Algorithms

Preemptive:

- Round Robin (RR)
- Shortest Remaining Time (SRT)
- Priority (PP)

Non-Preemptive:

- Shortest Job First (SJF)
- First Come First Serve (FCFS)
- Priority (P)

Shortest Remaining Time (SRT)

- Also Known As Shortest-Job-First (SJF) with preemption
- Associate with each process the length of its next CPU burst
- Use these lengths to schedule the process with the shortest time

- SRT is optimal gives minimum average <u>waiting time</u> for a given set of processes
- The difficulty is knowing the length of the next CPU request
- preemptive (<u>at arrival of process into ready queue</u>)

Flashback: Shortest Job First (non-preemptive)

Process	CPU time	Arrival time
P0	5	0
P1	3	1
P2	1	3
P3	2	4

	Wait-time	Turnaround-time
P0	0	0 + 5 = 5
P1	8 - 1 = 7	7 + 3 = 10
P2	5 - 3 = 2	2 + 1 = 3
P3	6 - 4 = 2	2 + 2 = 4

P2 arrived at time 3 with a burst-time of 1, yet it had to wait for 2 time slots to run.

Process	CPU time	Arrival
P1	7	0
P2	4	2
P3	1	4
P4	4	5

Process	CPU time	Arrival
P1	7 5	0
P2	4	2
P3	1	4
P4	4	5

Process	CPU time	Arrival
P1	7 5	0
P2	A 2	2
P3	1	4
P4	4	5

Process	CPU time	Arrival
P1	7 5	0
P2	A 2	2
P3	X	4
P4	4	5

Process	CPU time	Arrival
P1	7 5	0
P2	A 2	2
P3	X	4
P4	4	5

Process	CPU time	Arrival
P1	7 5	0
P2	42	2
P3	1	4
P4	A	5

Process	CPU time	Arrival
P1	7 5	0
P2	A 2	2
P3	X	4
P4	A	5

Process	CPU time	Arrival
P1	7	0
P2	4	2
P3	1	4
P4	4	5

	Wait-time	Turnaround-time
P1	0 + 9 = 9	9 + 7 = 16
P2	1	1 + 4 = 5
P3	0	0 + 1 = 1
P4	2	2 + 4 = 6

- preemptive (at arrival of process into ready queue)
- provably optimal waiting time
- fairness?

	Wait-time	Turnaround-time
P1	0 + 9 = 9	9 + 7 = 16
P2	1	1 + 4 = 5
P3	0	0 + 1 = 1
P4	2	2 + 4 = 6
AVG	3	7

- preemptive (at arrival of process into ready queue)
- provably optimal waiting time
- fairness penalizes long processes
- note: long processes eventually become short processes
- starvation?

	Wait-time	Turnaround-time
P1	0 + 9 = 9	9 + 7 = 16
P2	1	1 + 4 = 5
P3	0	0 + 1 = 1
P4	2	2 + 4 = 6
AVG	3	7

- preemptive (at arrival of process into ready queue)
- provably optimal waiting time
- fairness penalizes long processes
- note: long processes eventually become short processes
- starvation possible
- overhead?

	Wait-time	Turnaround-time
P1	0 + 9 = 9	9 + 7 = 16
P2	1	1 + 4 = 5
P3	0	0 + 1 = 1
P4	2	2 + 4 = 6
AVG	3	7

- preemptive (at arrival of process into ready queue)
- provably optimal waiting time
- fairness penalizes long processes
- note: long processes eventually become short processes
- starvation possible
- overhead can be high
 - (requires recording and estimating CPU burst times)

	Wait-time	Turnaround-time
P1	0 + 9 = 9	9 + 7 = 16
P2	1	1 + 4 = 5
P3	0	0 + 1 = 1
P4	2	2 + 4 = 6
AVG	3	7

Process	CPU time	Arrival
P0	5	0
P1	3	1
P2	1	9
P3	3	10

Can you calculate avg. WT & TT?

Process	CPU time	Arrival
P0	5 4	0
P1	3	1
P2	1	9
P3	3	10

P0 1

Process	CPU time	Arrival
P0	<i>5</i> 4	0
P1	3	1
P2	1	9
P3	3	10

Process	CPU time	Arrival
P0	5 4	0
P1	3	1
P2	1	9
P3	3	10

	P0	P'	1	
C)	1	2	3

Process	CPU time	Arrival
P0	<i>5</i> 4	0
P1	,3′	1
P2	1	9
P3	3	10

Process	CPU time	Arrival
P0	5 4	0
P1	3	1
P2	1	9
P3	3	10

	P0	P.	1		PC)
C)	1	2	3	4	5

Process	CPU time	Arrival
P0	5 4	0
P1	3	1
P2	1	9
P3	3	10

	P0	P	1		PC)	
C)	1	2	3	4	5	6

Process	CPU time	Arrival
P0	5 4	0
P1	3	1
P2	1	9
P3	3	10

	P0	P.	1		PC)		
C)	1	2	3	4	5	6	7

Process	CPU time	Arrival
P0	<i>5</i> 4	0
P1	3	1
P2	1	9
P3	3	10

Process	CPU time	Arrival
P0	<i>5</i> /4	0
P1	,3′	1
P2	1	9
P3	3	10

Process	CPU time	Arrival
P0	5	0
P1	3	1
P2	1	9
P3	3	10

Process	CPU time	Arrival
P0	5	0
P1	,3′	1
P2	1	9
P3	3	10

Process	CPU time	Arrival
P0	5	0
P1	3	1
P2	1	9
P3	3	10

	Wait-time	Turnaround-time
P0	0 + 3 = 3	
P1	0	
P2	0	
P3	0	

Process	CPU time	Arrival
P0	5	0
P1	3	1
P2	1	9
P3	3	10

	Wait-time	Turnaround-time
P0	0 + 3 = 3	3 + 5 = 8
P1	0	0 + 3 = 3
P2	0	0 + 1 = 1
P3	0	3 + 0 = 3

- SRT gives optimal performance
- Really difficult to predict burst time in a real-time system
- Used to assess the performance of other algorithms

	Wait-time	Turnaround-time	
P0	0 + 3 = 3	3 + 5 = 8	
P1	0	0 + 3 = 3	
P2	0	0 + 1 = 1	
P3	0	3 + 0 = 3	
AVG	0.75	3.75	

Preemptive Priority

CPU Scheduling Algorithms

Preemptive:

- Round Robin (RR)
- Shortest Remaining Time (SRT)
- Preemptive Priority (PP)

Non-Preemptive:

- Shortest Job First (SJF)
- First Come First Serve (FCFS)
- Priority (P)

- Associate a priority with each process
- Run the process with the highest priority
- Preemptive at process <u>arrival</u>

Process	CPU time	Arrival	Priority
P0	5	0	30
P1	4	2	35
P2	1	5	36
P3	6	6	20

 \mathbf{C}

Process	CPU time	Arrival	Priority
P0	<i>5</i> 3	0	30
P1	4	2	35
P2	1	5	36
P3	6	6	20

Process	CPU time	Arrival	Priority
P0	5 3	0	30
P1	<i>4</i> 1	2	35
P2	1	5	36
P3	6	6	20

P0	P1	
0	2	5

Process	CPU time	Arrival	Priority
P0	<i>5</i> 3	0	30
P1	<i>4</i> 1	2	35
P2	1	5	36
P3	6	6	20

	P0	P1	P2
C		2	5 6

Process	CPU time	Arrival	Priority
P0	<i>5</i> 3	0	30
P1	4 1	2	35
P2	1	5	36
P3	6	6	20

	P0	P1		P2	P1	
C)	2	5	5	6	7

Process	CPU time	Arrival	Priority
P0	5 3	0	30
P1	4 1	2	35
P2	1	5	36
P3	6	6	20

	P0	P1	P2	P1	P0	
0	2	2	5	6	7	10

Process	CPU time	Arrival	Priority
P0	5 3	0	30
P1	4 1	2	35
P2	1	5	36
P3	6	6	20

Process	CPU time	Arrival	Priority
P0	5	0	30
P1	4	2	35
P2	1	5	36
P3	6	6	20

	Wait-time	Turnaround-time
P0	(0-0)+(7-2)=5	
P1		
P2		
P3		

Process	CPU time	Arrival	Priority
P0	5	0	30
P1	4	2	35
P2	1	5	36
P3	6	6	20

	Wait-time	Turnaround-time
P0	(0-0)+(7-2)=5	
P1	(2-2)+(6-5)=1	
P2		
P3		

Process	CPU time	Arrival	Priority
P0	5	0	30
P1	4	2	35
P2	1	5	36
P3	6	6	20

	Wait-time	Turnaround-time
P0	(0-0)+(7-2)=5	
P1	(2-2)+(6-5)=1	
P2	(5-5)=0	
P3		

Process	CPU time	Arrival	Priority
P0	5	0	30
P1	4	2	35
P2	1	5	36
P3	6	6	20

	Wait-time	Turnaround-time
P0	(0-0)+(7-2)=5	
P1	(2-2)+(6-5)=1	
P2	(5-5)=0	
P3	(10-6)=4	

Process	CPU time	Arrival	Priority
P0	5	0	30
P1	4	2	35
P2	1	5	36
P3	6	6	20

	Wait-time	Turnaround-time
P0	(0-0)+(7-2)=5	5 + 5 = 10
P1	(2-2)+(6-5)=1	
P2	(5-5)=0	
P3	(10-6)=4	

Process	CPU time	Arrival	Priority
P0	5	0	30
P1	4	2	35
P2	1	5	36
P3	6	6	20

	Wait-time	Turnaround-time
P0	(0-0)+(7-2)=5	5 + 5 = 10
P1	(2-2)+(6-5)=1	1 + 4 = 5
P2	(5-5)=0	
P3	(10-6)=4	

Process	CPU time	Arrival	Priority
P0	5	0	30
P1	4	2	35
P2	1	5	36
P3	6	6	20

	Wait-time	Turnaround-time
P0	(0-0)+(7-2)=5	5 + 5 = 10
P1	(2-2)+(6-5)=1	1 + 4 = 5
P2	(5-5)=0	0 + 1 = 1
P3	(10-6)=4	

Process	CPU time	Arrival	Priority
P0	5	0	30
P1	4	2	35
P2	1	5	36
P3	6	6	20

	Wait-time	Turnaround-time
P0	(0-0)+(7-2)=5	5 + 5 = 10
P1	(2-2)+(6-5)=1	1 + 4 = 5
P2	(5-5)=0	0 + 1 = 1
P3	(10-6)=4	4 + 6 = 10

Preemptive Priority (PP) Evaluation

- preemptive (at arrival of process into ready queue)
- fairness penalizes low priority processes
- starvation possible
- overhead minimal

	Wait-time	Turnaround-time
P0	(0-0)+(7-2)=5	5 + 5 = 10
P1	(2-2)+(6-5)=1	1 + 4 = 5
P2	(5-5)=0	0 + 1 = 1
P3	(10-6)=4	4 + 6 = 10
AVG	2.25	6.5

Multilevel Queues

Multilevel Queue

- use several ready queues, and associate a different priority with each queue
- schedule either
 - the highest priority occupied queue. problem: processes at low-level queues may starve
 - o each queue gets a certain amount of CPU time.
- assign new processes permanently to a particular queue
 - o foreground, background system, interactive, editing, computing.
- each queue has its own scheduling discipline
 - example: two queues:
 - foreground using RR
 - background using FCFS

Multilevel Queue

- use several ready queues, and associate a different priority with each queue
- schedule either
 - the highest priority occupied queue. problem: processes at low-level queues may starve
 - o each queue gets a certain amount of CPU time.
- assign new processes permanently to a particular queue
 - foreground, background system, interactive, editing, computing.
- each queue has its own scheduling discipline
 - o example: two queues:
 - foreground using RR
 - background using FCFS

What would be a possible problem?

Multilevel Queue

- use several ready queues, and associate a different priority with each queue
- schedule either
 - the highest priority occupied queue. problem: processes at low-level queues may starve
 - o each queue gets a certain amount of CPU time.
- assign new processes permanently to a particular queue
 - o foreground, background system, interactive, editing, computing.
- each queue has its own scheduling discipline
 - o example: two queues:
 - foreground using RR
 - background using FCFS

What would be a possible problem? Fairness

Multilevel Feedback Queue

- Feedback allow scheduler to move processes between queues to ensure fairness
 - aging moving older processes to higher-priority queue
 - decay moving older processes to lower-priority queue

- Example: three queues, feedback with process decay
 - Q0 RR with time slice of 8 milliseconds
 - Q1 RR with time slice of 16 milliseconds
 - Q2 FCFS

Multilevel Feedback Queue Example

- new job enters queue Q0
- job receives 8 milliseconds.
- if it does not finish in 8 milliseconds, job is moved to queue Q1.
- Q1 job is again served RR and receives
 16 additional milliseconds.
- if it still does not complete, it is preempted and moved to queue Q2.

- Q0 RR with time slice of 8 milliseconds
- Q1 RR with time slice of 16 milliseconds
- o Q2 FCFS

Process	CPU,I/O,CPU	Arrival	Queue
P1	5, 6, 7	0	1
P2	4, 2, 3	3	1
P3	2, 3, 4	4	1
P4	5, 2, 7	7	1

Process	CPU,I/O,CPU	Arrival	Queue
P1	5, 6, 7	0	1
P2	4, 2, 3	3	1
P3	2, 3, 4	4	1
P4	5, 2, 7	7	1

Process	CPU,I/O,CPU	Arrival	Queue
P1	5, 6, 7	0	1
P2	4, 2, 3	3	1
P3	2, 3, 4	4	1
P4	5, 2, 7	7	1

P1 0 4

Process	CPU,I/O,CPU	Arrival	Queue
P1	5 1, 6, 7	9 4	1⁄2
P2	4, 2, 3	3	1
P3	2, 3, 4	4	1
P4	5, 2, 7	7	1

P1 0 4

Process	CPU,I/O,CPU	Arrival	Queue
P1	5 1, 6, 7	9 4	1⁄2
P2	<i>4</i> , 2, 3	3	1
P3	2, 3, 4	4	1
P4	5, 2, 7	7	1

Process	CPU,I/O,CPU	Arrival	Queue
P1	5 1, 6, 7	9 4	1⁄2
P2	4 , 2, 3	3	1
P3	2, 3, 4	4	1
P4	5, 2, 7	7	1

Process	CPU,I/O,CPU	Arrival	Queue
P1	5 1, 6, 7	9 4	1⁄2
P2	4 , 2 , 3	3 ′ 10	1
P3	2 , 3, 4	4	1
P4	5, 2, 7	7	1

Waiting

P2

Process	CPU,I/O,CPU	Arrival	Queue
P1	<i>5</i> ⁄ 1, 6, 7	9 4	1⁄2
P2	4 , 2 , 3	3 ′ 10	1
P3	2 ∕, 3, 4	4	1
P4	5, 2, 7	7	1

Process	CPU,I/O,CPU	Arrival	Queue
P1	<i>5</i> ⁄ 1, 6, 7	9 4	1⁄2
P2	4 , 2 , 3	3 ′ 10	1
P3	2,3,4	4	1
P4	5, 2, 7	7	1

P	Process	CPU,I/O,CPU	Arrival	Queue
P	21	<i>5</i> ′ 1 , 6, 7	9 4	1⁄2
P	2	4,2,3	3 ′ 10	1
P	23	2,3,4	4 ⁄ 13	1
P	24	5, 2, 7	7	1

Process	CPU,I/O,CPU	Arrival	Queue
P1	<i>5</i> ⁄ 1, 6, 7	9 4	1⁄2
P2	4 , 2 , 3	3 ′ 10	1
P3	2,3,4	4 13	1
P4	5, 2, 7	7	1

Process	CPU,I/O,CPU	Arrival	Queue
P1	<i>5</i> ⁄ 1, 6, 7	9 4	1⁄2
P2	4 , 2 , 3	3 ′ 10	1
P3	<i>2</i> , <i>3</i> , 4	4 13	1
P4	5, 2, 7	7	1

P3

8

P4

10

P1

P2

Process	CPU,I/O,CPU	Arrival	Queue
P1	<i>5</i> ⁄ 1, 6, 7	9 4	1⁄2
P2	4 , 2 , 3	3 ′ 10	1
P3	2,3,4	4 13	1
P4	<i>5</i> ⁄ 1 , 2, 7	7 ⁄ 14	1/2

Process	CPU,I/O,CPU	Arrival	Queue
P1	<i>5</i> ⁄ 1, 6, 7	9 4	1⁄2
P2	4 , 2 , 3	3 ′ 10	1
P3	2,3,4	4 13	1
P4	<i>5</i> ∕ 1 , 2, 7	7 ′ 14	1/2

RR4

Process	CPU,I/O,CPU	Arrival	Queue
P1	5 1, 6, 7	9 ′ 4	1⁄2
P2	4 , 2 , 3	3 ′ 10	1
P3	2,3,4	<u>4</u> 13	1
P4	<i>5</i> ∕ 1 , 2, 7	7 ⁄ 14	1/2

Process	CPU,I/O,CPU	Arrival	Queue
P1	5 1, 6, 7	9 4	1⁄2
P2	4,2,3	3 ′ 10	1
P3	2,3,4	<u>4</u> 13	1
P4	5 1, 2, 7	7 ′ 14	1/2

Process	CPU,I/O,CPU	Arrival	Queue
P1	5 1, 6, 7	9 4	1⁄2
P2	4,2,3	3 ′ 10	1
P3	2,3,4	<u>4</u> 13	1
P4	<i>5</i> ⁄ 1 , 2, 7	7 ′ 14	1/2

	Process	CPU,I/O,CPU	Arrival	Queue
	P1	5 1, 6, 7	9 4	1⁄2
	P2	4,2,3	3 ⁄ 10	1
\Rightarrow	P3	2,3,4	<u>4</u> 13	1
	P4	<i>5</i> 1 , 2, 7	7 ′ 14	1/2

	Process	CPU,I/O,CPU	Arrival	Queue
\Rightarrow	P1	5 1, 6, 7	9 4	1⁄2
	P2	4,2,3	3 ⁄ 10	1
	P3	2,3,4	4 13	1
	P4	5 1, 2, 7	7⁄ 14	1/2

	Process	CPU,I/O,CPU	Arrival	Queue
\Rightarrow	P1	5 1, 6, 7	9 4	1⁄2
	P2	4,2,3	3∕ 10	1
	P3	2,3,4	4 ⁄ 13	1
	P4	5 1, 2, 7	7 ′ 14	1/2

	Process	CPU,I/O,CPU	Arrival	Queue
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	P1	5 1, 6, 7	9 4	1⁄2
	P2	4,2,3	3 ⁄ 10	1
	P3	2,3,4	4 13	1
\	P4	5 1, 2, 7	7 ⁄ 14	1/2

	Process	CPU,I/O,CPU	Arrival	Queue
\Rightarrow	P1	5 1 , 6, 7	9 4	1⁄2
	P2	4,2,3	3 ⁄ 10	1
	P3	2, 3, 4	<u>4</u> 13	1
\	P4	5 1, 2, 7	7 ⁄ 14	1/2

	Process	CPU,I/O,CPU	Arrival	Queue
\rightarrow	P1	5 1 , 6, 7	9 4	1⁄2
	P2	4,2,3	3 ⁄ 10	1
	P3	2,3,4	<u>4</u> 13	1
	P4	<i>5</i> ∕ 1 , 2, 7	7 14	1/2

	Process	CPU,I/O,CPU	Arrival	Queue
\	P1	5 1 , 6, 7	9 4	1⁄2
	P2	4,2,3	3 ⁄ 10	1
	P3	2, 3, 4	4 13	1
	P4	5 1, 2, 7	7⁄ 14	1⁄2

Process	CPU,I/O,CPU	Arrival	Queue
P1	5 1 , 6, 7	9 4	1⁄2
P2	4,2,3	3∕ 10	1
P3	2,3,4	<u>4</u> 13	1
P4	<i>5</i> 1 , 2, 7	7 14	1/2

	Process	CPU,I/O,CPU	Arrival	Queue
\	P1	5 1 , 6, 7	9 4	1⁄2
	P2	4,2,3	3 ′ 10	1
	P3	2,3,4	4 13	1
\Rightarrow	P4	<i>5</i> 1, 2, 7	7⁄ 14	1/2

Waiting P4 P1

Process	CPU,I/O,CPU	Arrival	Queue
P1	5 1 , 6, 7	9 4	1⁄2
P2	4,2,3	3 ⁄ 10	1
P3	2, 3, 4	4 13	1
P4	<i>5</i> 1, 2, 7	7 ′ 14	1/2

	Process	CPU,I/O,CPU	Arrival	Queue
\	P1	5 1 , 6, 7	9 4	1⁄2
	P2	4,2,3	3 ⁄ 10	1
	P3	2,3,4	4 13	1
	P4	<i>5</i> 1, 2, 7	7 ′ 14	1/2

Waiting P4 P1

	Process	CPU,I/O,CPU	Arrival	Queue
\	P1	5 1 , 6, 7	9 4	1⁄2
	P2	4,2,3	3 ⁄ 10	1
	P3	2, 3, 4	4 13	1
>	P4	<i>5</i> 1, 2, 7	1,4 25	1/2

	Process	CPU,I/O,CPU	Arrival	Queue
→	P1	5 1 , 6, 7	9 4	1⁄2
	P2	4,2,3	3 ′ 10	1
	P3	2,3,4	4 13	1
\Rightarrow	P4	<i>5</i> 1, 2, 7	1,4 25	1/2

	Process	CPU,I/O,CPU	Arrival	Queue
\	P1	5 1 , 6, 7	9 4	1⁄2
	P2	4,2,3	3 ⁄ 10	1
	P3	2, 3, 4	4 13	1
	P4	51,2,7	1,4 25	1/2

	Process	CPU,I/O,CPU	Arrival	Queue
\	P1	5 1 , 6, 7	9 4	1⁄2
	P2	4,2,3	3 ⁄ 10	1
	P3	2, 3, 4	4 13	1
	P4	51,2,7	1,4 25	1/2

	Process	CPU,I/O,CPU	Arrival	Queue
\	P1	<i>5</i> 1, 8, 7	4 ⁄ 28	1⁄2
	P2	4,2,3	3 ′ 10	1
	P3	2,3,4	4 13	1
	P4	51,2,7	1,4 25	1/2

	Process	CPU,I/O,CPU	Arrival	Queue
\Rightarrow	P1	<i>5</i> 1, 8, 7	4 ⁄ 28	1⁄2
	P2	4,2,3	3 ⁄ 10	1
	P3	2,3,4	4 13	1
\rightarrow	P4	51,2,7	1,4 25	1/2

	Process	CPU,I/O,CPU	Arrival	Queue
\	P1	<i>5</i> 1, 8, 7	4 ⁄ 28	1⁄2
	P2	4,2,3	3 ′ 10	1
	P3	2,3,4	4 13	1
\	P4	5 1, 2,7	1 <u># 25</u>	1/2

Process	CPU,I/O,CPU	Arrival	Queue
P1	<i>5</i> 1, 8, 7	4 ⁄ 28	1⁄2
P2	4,2,3	3 ⁄ 10	1
P3	2,3,4	4 ⁄ 13	1
P4	51,2,7	1,4 25	1/2

Process	CPU,I/O,CPU	Arrival	Queue
P1	<i>5</i> 1, 8, 7	4 ⁄ 28	1⁄2
P2	4,2,3	3 ⁄ 10	1
P3	2,3,4	<u>4</u> 13	1
P4	51,2,7	14 25	1/2

Process	CPU,I/O,CPU	Arrival	Queue
P1	51,8,7	<u>4∕</u> 28	1/2
P2	4,2,3	3 ⁄ 10	1
P3	2,3,4	<u>4</u> 13	1
P4	51,2,7	14 25	1/2

Process	CPU,I/O,CPU	Arrival	Queue
P1	<u>51,6,7</u>	<u>4∕</u> 28	1/2
P2	4,2,3	3 ⁄ 10	1
P3	2,3,4	4 ⁄ 13	1
P4	51,2,7	14 25	1/2

