# Recent Accelerometer Work

By Davey Seeman



Datalogger with the accelerometer 3D

Counterweight



## K-Means Clustering

**Method:** Divide data into distinct groups or "clusters" based on their accelerometer data (their acceleration along x,y, z, coordinates).

**Algorithm:** The algorithm works by initializing a number (K) of cluster centres (centroids) randomly, and then iteratively assigning each data point to the nearest centroid and recalculating the centroids as the average of all points in a cluster.

**Goal:** explore the data, and see if it's possible to predict whether the cows are playing or not just based on their accelerometer data

#### Silhouette Score



## Using Clustering to Predict Behavior: Two Spot 2643



### **Tabular Results**

|   | <sup>B</sup> <sub>C</sub> BehaviorType | 1 <sup>2</sup> <sub>3</sub> Cluster0 | 1 <sup>2</sup> <sub>3</sub> Cluster1 | 1 <sup>2</sup> <sub>3</sub> Cluster2 |
|---|----------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| 1 | other                                  | 69842                                | 59                                   | 587                                  |
| 2 | rest                                   | 191712                               | 33824                                | 225774                               |
| 3 | play                                   | 1250                                 | 1                                    | 2327                                 |

# Divided into all Behavior Types

|   | △B <sub>C</sub> Behavior         | 123 0  | 1 <sup>2</sup> 3 1 | 1 <sup>2</sup> <sub>3</sub> 2 |
|---|----------------------------------|--------|--------------------|-------------------------------|
| 1 | Management (someone in the stall | 3945   | null               | 41                            |
| 2 | Milk Feeding                     | 43520  | 37                 | 337                           |
| 3 | butting fixtures                 | null   | 1                  | 2129                          |
| 4 | frontal pushing                  | 408    | null               | 4                             |
| 5 | head-shake                       | 438    | null               | 194                           |
| 6 | leap                             | 404    | null               | null                          |
| 7 | out of view                      | 22377  | 22                 | 209                           |
| 8 | rest                             | 191712 | 33824              | 225774                        |

# Adding More Features to Improve Accuracy

Including Rolling Average of x, y, and z readings as features

|   | AB <sub>C</sub> BehaviorType | 1 <sup>2</sup> <sub>3</sub> Cluster0 | 1 <sup>2</sup> <sub>3</sub> Cluster1 | 1 <sup>2</sup> <sub>3</sub> Cluster2 |
|---|------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| 1 | other                        | 37                                   | 70251                                | 200                                  |
| 2 | rest                         | 33770                                | 181424                               | 236116                               |
| 3 | play                         | 1                                    | 1252                                 | 2325                                 |

Including Average Change in accelerometer x, y, and z as features

LSTM Model used in Kirk E. Turner et al. — My starting point

**Result:** Classified Sheep Behaviors with 88% accuracy using an LSTM. F1-Score of 0.84 (compared to 0.65 for random forest regression).

**Their Model:** First, two 1D convolutional layers with kernel size 6 and a filter size of 128. Then a dropout layer. Then maxpooling layer with pool size 2. Then dense layer selecting 115 features. Then those features are fed into an LSTM layer. Finally, dense layer with softmax activation

# Diagram of That Architecture (Created by Dall-E)



#### Future Ideas for LSTM

- 1. SMOTE (Synthetic Minority Oversampling Technique):
  - Goal: Address class imbalance present in behavior types.
  - Method: Generates new samples by interpolating between existing minority class samples.
- 2. BLSTM (Bidirectional Long Short Term Memory)
  - Goal: Improve accuracy by capturing context from both past and future sequences in the data.
  - Method: Similar to the LSTM model but it processes the data in both forward and backward directions and then combines the information from each of these passes.
- 3. More Literature Review
  - Further research to develop more ideas on how to build the LSTM

# Thank you