Introduction to fractional calculus and fractional differential equations

Alexey A. Kasatkin

Ufa State Aviation Technical University, Ufa, Russia (e-mail: alexei_kasatkin@mail.ru)

University of Cádiz, 2016

Contents

Fractional derivatives and integrals

Pactional differential equations and applications

Contents

Fractional derivatives and integrals

Factional differential equations and applicaltions

Main ideas and history

Many repeated operations in math can be generalized:

Power function:

$$x^n = x \cdot x \cdot x \cdot \dots \cdot x \longrightarrow x^\alpha = e^{\alpha \ln x}$$

• Factorial (Euler gamma function):

$$n! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot n \longrightarrow \Gamma(z) = \int_0^\infty e^{-x} x^{z-1} dx$$

 $\Gamma(x+1) = x\Gamma(x), \ \Gamma(1) = 1 \Longrightarrow n! = \Gamma(n+1)$

• What about derivatives and integrals?

$$D^n f(x) \equiv f^{(n)}(x) \equiv \frac{d^n f}{dx^n} \longrightarrow D^{\alpha} f = ?$$

- Question "What if order will be 1/2" was raised by Leibnitz in his letter to L'Hopital, 1695.
- Elements created by Lagrange, Euler, Laplace, Fourier.
- Modern theory started with works by Abel, Liouville and Riemann, \approx 1832.

Fractional integrals

Let us start from repeated integral

$$_{0}I_{x}^{n}f(x) \equiv \left(\int_{0}^{x} \cdot dx\right)^{n} f = \int_{0}^{x} dx_{1} \int_{0}^{x_{1}} dx_{2} \int_{0}^{x_{2}} dx_{3} \dots \int_{0}^{x_{n-1}} f(x_{n}) dx_{n}.$$

• There is a well known Cauchy formula for this n-fold integral:

$$_{0}I_{x}^{n}f(x) = \frac{1}{(n-1)!} \int_{a}^{x} (x-t)^{n-1}f(t)dt,$$

that can be easily generalized, $(n-1)! = \Gamma(n)$.

• Riemann-Liouville fractional integral:

$$_{0}I_{x}^{\alpha}f(x) = \frac{1}{\Gamma(\alpha)} \int_{0}^{x} (x-t)^{\alpha-1}f(t)dt = \frac{x_{+}^{\alpha-1}}{\Gamma(\alpha)} * f(x), \quad x > 0, \alpha > 0.$$

- For $0 < \alpha < 1$ there is an integrable singularity.
- Starting point can be arbitrary, not only 0: $_cI_x^{\alpha}f(x)=\int_c^x\dots$ Zeros are often omitted: $_0I_x^{\alpha}f(x)\equiv I_x^{\alpha}f(x)$.

Left and right integrals

• Left fractional integral depends on $f(t), t \in (a, x)$:

$$_{a}I_{x}^{\alpha}f(x) = \frac{1}{\Gamma(\alpha)} \int_{a}^{x} (x-t)^{\alpha-1}f(t)dt, \quad x > a, \alpha > 0.$$

• Right fractional integral depends on $f(t), t \in (x, b)$:

$$_{x}I_{b}^{\alpha}f(x) = \frac{1}{\Gamma(\alpha)} \int_{x}^{b} (t-x)^{\alpha-1}f(t)dt, \quad x < b, \alpha > 0.$$

• The negative order of derivative means fractional integral:

$$\label{eq:definition} \begin{split} {}_aD_x^{-\alpha}f(x) &\equiv {}_aI_x^\alpha f(x), \quad {}_xD_b^{-\alpha}f(x) \equiv {}_xI_b^\alpha f(x). \\ {}_aD_x^0f(x) &\equiv {}_aI_x^0f(x) \equiv f(x), \quad {}_xD_b^0f(x) \equiv {}_xI_b^0f(x) \equiv f(x). \end{split}$$

- There are generalizations to the complex order $\alpha \in \mathbb{C}$.
- Fractional integrals ${}_aI_x^\alpha$, ${}_xI_b^\alpha$ are linear bounded operators $L^p(a,b)\to L^p(a,b)$, $p\geq 1$ (and in other functional spaces).

Semi-group property

• For all "good" functions f(x) the family $\{aI_x^{\alpha}, \alpha \geq 0\}$ forms a semigroup:

$$_{a}I_{x}^{\alpha} {_{a}I_{x}^{\beta}}f(x) = {_{a}I_{x}^{\alpha+\beta}}f(x), \quad \alpha > 0, \beta > 0.$$

• Outline of the proof:

$$\Gamma(\alpha)\Gamma(\beta)_0 I_x^{\alpha} {}_0 I_x^{\beta} f(t) = \int_0^t (t-\tau)^{\alpha-1} d\tau \int_0^\tau (\tau-\xi)^{\beta-1} f(\xi) d\xi =$$

exchange the integrals, change $t \to w = \frac{\tau - \xi}{t - \xi}$:

$$\int_{0}^{t} f(\xi) d\xi \int_{\xi}^{t} (\tau - \xi)^{\beta - 1} (t - \tau)^{\alpha - 1} d\tau = \int_{0}^{t} \frac{f(\xi) d\xi}{(t - \xi)^{1 - \alpha - \beta}} \int_{0}^{1} w^{\beta - 1} (1 - w)^{\alpha - 1} dw =$$

$$= B(\beta, \alpha) \int_{0}^{t} f(\xi) d\xi (t - \xi)^{\alpha + \beta - 1} = \frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha + \beta)} \int_{0}^{t} = \Gamma(\alpha) \Gamma(\beta)_{0} I^{\alpha + \beta} f(t).$$

Riemann-Liouville fractional derivative

There are different way to define fractional derivative operators. Let us define D^{α} as a left inverse operator to I^{α} . Then

$$D^{\alpha}I^{\alpha}f = f \implies D^{\alpha}y = f: I^{\alpha}f = y.$$

Equation $I^{\alpha}f=y$ with unknown variable f(x) is Abel integral equation of the first kind. Let

$$m-1 < \alpha < m$$
.

Then applying $I^{m-\alpha}$ to the both sides and using semi-group property, one gets

$$I^{m-\alpha}I^{\alpha}f = I^{m-\alpha}y \implies I^mf = I^{m-\alpha}y.$$

Differentiating by x and using classical DIf = f, one obtains

$$f = D^m I^{m-\alpha} y.$$

So, the Riemann-Liouville fractional derivative operator is

$$D_x^{\alpha}y(x) \equiv \frac{d^m}{dx^m} I_x^{m-\alpha}y(x) = \frac{1}{\Gamma(m-\alpha)} \frac{d^m}{dx^m} \int_0^{\infty} \frac{y(t)}{(x-t)^{\alpha+1-m}} dt.$$

Left-sided and right-sided fractional derivative

Left-sided Riemann-Liouville derivative:

$${}_aD_x^{\alpha}y(x) = \frac{1}{\Gamma(m-\alpha)}\frac{d^m}{dx^m}\int\limits_a^x\frac{y(t)}{(x-t)^{\alpha+1-m}}dt, m-1 < \alpha < m, m \in \mathbb{N}.$$

• Right-sided Riemann-Liouville derivative:

$${}_xD_b^\alpha y(x) = \frac{(-1)^m}{\Gamma(m-\alpha)} \frac{d^m}{dx^m} \int\limits_x^0 \frac{y(t)}{(x-t)^{\alpha+1-m}} dt, m-1 < \alpha < m, m \in \mathbb{N}.$$

- ullet Same with infinite limits $_{-\infty}D_b^x$ and $_xD_{+\infty}^{lpha}$
- $_aD_x^{\alpha}y(x) \rightarrow y^{(n)}(x)$ when $\alpha \rightarrow n$. For $\alpha \rightarrow n+0$, $m=n+1, \alpha+1-m \rightarrow 0$ and $\Gamma(m-\alpha) \rightarrow 1$. For $\alpha \rightarrow n-0$, m=n, $\Gamma(m-\alpha) \rightarrow \infty$ and the proof is harder.
- $_xD_b^{\alpha}y(x) \to (-1)^ny^{(n)}(x)$ when $\alpha \to n$.
- Fractional derivative is always **nonlocal**. It needs values y(t) at all points of segment $t \in (a, x)$ to obtain ${}_aD_x^{\alpha}y(x)$.

Power law function

Fractional derivative of power function:

$$D_x^{\alpha} x^{\gamma} = \frac{\Gamma(\gamma + 1)}{\Gamma(\gamma + 1 - \alpha)} x^{\gamma - \alpha}, \quad \alpha > 0, \ \gamma > -1, \ x > 0$$

(beta-function is used to prove this).

Specifically, y(x) = 1 is not a "constant" here:

$$D_x^{\alpha} 1 = \frac{x^{-\alpha}}{\Gamma(1-\alpha)},$$
 $D_x^{\alpha} x^{\alpha-1} = \frac{\Gamma(\alpha)x^{-1}}{\Gamma(0)} = 0.$

Composition rule is not easy:

 $D^{\alpha}D^{\beta}f(x) \neq D^{\alpha+\beta}f(x)$ for arbitrary α, β, f , but = for certain classes

$$D^{\alpha}Df(x) \neq DD^{\alpha}f(x) \equiv D^{\alpha+1}f(x).$$

$$D_x^{\alpha} y'(x) = D_x^{\alpha+1} y(x) - \frac{x^{-\alpha-1}}{\Gamma(-\alpha)} y(+0)$$

 $D_x^\alpha y'(x) = D_x^{\alpha+1} y(x) - \frac{x^{-\alpha-1}}{\Gamma(-\alpha)} y(+0).$ Examples: $D^\alpha D^\alpha x^{\alpha-1} \neq D^{2\alpha} x^{\alpha-1}$, $D^\alpha D^\alpha x = D^{2\alpha} x$, $D^\alpha D x^2 = D^{\alpha+1} x^2$.

Other examples of derivatives

When α is included in the function, the derivatives formulas can be compact

•

$$D_x^{\alpha} \left(x^{\alpha - 1} e^{-1/x} \right) = x^{-\alpha - 1} e^{-1/x},$$

•

$$D_x^{\alpha}(x^{\alpha-1}\ln x) = \frac{\Gamma(\alpha)}{x}.$$

But usually a lot of special functions are involved:

• Generalized Mittag-Leffler function E helps to work with exponents

$$D_x^{\alpha} e^x = x^{-\alpha} E_{1,1-\alpha}(x),$$

$$E_{\alpha,\beta}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + \beta)}.$$

Hypergeometric functions are also used:

$$D_x^{\alpha}(x+p)^{\lambda} = \frac{p^{\lambda}}{\Gamma(1-\alpha)} x^{-\alpha} {}_2F_1(1,-\lambda,1-\alpha;-x/p).$$

etc. 12/27

Differentiating product and composite function

Generalized Leibnitz's rule:

$$D_x^{\alpha}(f(x)g(x)) = \sum_{n=0}^{\infty} {\alpha \choose n} D_x^{\alpha-n} f(x) \ D_x^n g(x), \quad \alpha > 0,$$

where
$$\binom{\alpha}{n}=rac{\Gamma(\alpha+1)}{\Gamma(\alpha-n+1)\Gamma(n+1)}, \quad \binom{k}{n}=C_k^n$$
 .

Differentiation of composite function (almost unusable):

$$\begin{split} D_{x}^{\alpha}\left[f\left(x,y(x)\right)\right] &= \sum_{n=0}^{\infty} \sum_{m=0}^{n} \sum_{k=0}^{m} \sum_{r=0}^{k} \binom{\alpha}{n} \binom{n}{m} \binom{k}{r} \frac{1}{k!} \frac{x^{n-\alpha}}{\Gamma(n+1-\alpha)} \left[-y\right]^{r} \times \\ &\times D_{x}^{m} \left[y^{k-r}\right] \frac{\partial^{n-m+k} f(x,y)}{\partial x^{n-m} \partial y^{k}}. \end{split}$$

 $D_x^{\alpha}(y(x)^2)$ is already huge enough.

Note: $D_x^5(y^2)$ is not compact too (Faa di Bruno formula etc.).

Literature

- Formulas and links to most common books on fractional calculus: Valério, D., Trujillo, J. J., Rivero, M., Machado, J. T., Baleanu, D. (2013).
 Fractional calculus: a survey of useful formulas. The European Physical Journal Special Topics, 222(8), 1827-1846.
- The fundamental book with theorems and functional spaces:
 S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional integrals and derivatives:
 theory and applications (Gordon and Breach Science Publishers,
 Amsterdam, 1993)
- A.A. Kilbas, H.M. Srivastava J.J. Trujillo, Theory and applications of fractional differential equations, Vol. 204 (North-Holland Mathematics Studies, Elsevier, Amsterdam, 2006)
- K.S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations (John Wiley and Sons, New York, 1993)
- Survey of applications: Uchaikin, Vladimir V. Fractional derivatives for physicists and engineers. Berlin: Springer, 2013.

Caputo-type fractional derivative

• Caputo-type fractional derivative (1967), used in earlier paper by Gerasimov:

$${}_a^C D_x^{\alpha} y(x) \equiv {}_a I_x^{m-\alpha} D_x^m y(x) = \frac{1}{\Gamma(m-\alpha)} \int\limits_a^x \frac{y^{(m)}(t)}{(x-t)^{\alpha+1-m}} dt.$$

As usual, $m-1 < \alpha < m, m \in \mathbb{N}$. The derivative is under the integral now, y(x) class is more restricted.

Caputo derivate

$${}_{a}^{C}D_{x}^{\alpha}y(x) \equiv {}_{a}I_{x}^{m-\alpha}y^{(m)}(x) = {}_{a}D_{x}^{\alpha}y(x) - \sum_{k=0}^{m-1} \frac{(x-a)^{k-\alpha}}{\Gamma(k-\alpha+1)}y^{(k)}(a+0).$$

- More popular in physics because $y(0), y'(0), \ldots$ exists.
- If $y(0) = 0, y'(0), \dots, y^{(m-1)}(0) = 0$, then the derivative is equal to Riemal-Liouville.

Grunwald-Letnikov derivative

Ordinary derivatives can be defined via backward differences

•
$$y' = \lim_{h \to 0} h^{-1}(y(x) - y(x - h))$$

•
$$y'' = \lim_{h \to 0} h^{-2}(y(x) - 2y(x - h) + y(h - 2h))$$

•
$$y''' = \lim_{h \to 0} h^{-3}(y(x) - 3y(x - h) + 3y(h - 2h) - y(h - 3h))$$

...

•
$$y^{(n)} = \lim_{h \to 0} h^{-k} \sum_{k=0}^{n} (-1)^k \binom{n}{k} y(x - kh)$$

By analogy, Grunwald-Letnikov fractional derivative is defined:

•
$$_{a}^{GL}D_{x}^{\alpha}y = \lim_{n \to \infty, h = (x-a)/n} h^{-\alpha} \sum_{k=0}^{n} (-1)^{k} {\alpha \choose k} y(x-kh)$$

- When $\alpha \in (0,1)$, $y \in C[a,x]$ and y(a)=0, Riemann-Liouville, Caputo and Grunwald-Letnikov's derivatives are equal.
- This can be a base for a numerical method.

Contents

Fractional derivatives and integrals

Pactional differential equations and applications

Where fractional derivatives are used?

Pure math:

- Functional spaces and operators
- Special functions
- Analytical solutions of some linear DEs.

Random processes and signals:

- Stochastic models with power-law distributions (Levy-stable distributions instead of normal/Gaussian)
- Continuous time random walks
- Signal processing
- Automatic control fractional elements (with power-law memory) sometimes have better characteristics than normal integrators/differentiators/PID-controllers.

Describe nonlocal material behavior or memory

- Anomalous diffusion processes in physics, biology etc.
- Viscoelasticity and complex rheology fluids
- Fractal media
- Flectrochemistry

Some examples of fractional differential equations

1. Oscillatory processes with fractional damping (Bagley&Torvik, 1984)

$$y''(t) + ({}_{0}D_{t}^{1+\alpha}y)(t) + by(t) = f(t), \quad t > 0, \quad \alpha \in (0,1).$$

2. Subdiffusion equations (Wyss, 1986; Hifer, 1995)

$${}_{0}^{C}D_{t}^{\alpha}u = (ku_{x})_{x}; \quad {}_{0}D_{t}^{\alpha}u = (ku_{x})_{x}; \quad \alpha \in (0,1).$$
(2)

3. Diffusion-wave equations (Nigmatullin, 1986; Mainardy, 1998)

$${}_{0}^{C}D_{t}^{1+\alpha}u = (ku_{x})_{x}; \quad {}_{0}D_{t}^{1+\alpha}u = (ku_{x})_{x}; \quad \alpha \in (0,1).$$
(3)

4. Superdiffusion equation (Benson, 1998)

$$u_t = \left[k \left(\gamma_a D_x^{\beta} u + (1 - \gamma)_x D_b^{\beta} u \right) \right]_x; \quad \beta, \gamma \in (0, 1).$$
(4)

5. Fractional-order biological population model (El-Sayed, Rida, Arafa, 2009)

$${}_{0}^{C}D_{t}^{\alpha}u = (u^{2})_{xx} + (u^{2})_{yy} + f(u), \quad \alpha \in (0,1).$$
 (5)

Illustrations

Subdifusion

Normal disffusion

Superdiffusion

$$v \sim t^{-(1-\alpha/2)}, \ 0 < \alpha < 1$$
 $v \sim t^{-1/2}$ $v \sim t^{-(1-1/\beta)}, \ 1 < \beta < 2$

$$v \sim t^{-1/2}$$

$$v \sim t^{-(1-1/\beta)}, \ 1 < \beta < 2$$

$$_{0}D_{t}^{\alpha}u=K_{\alpha}u_{xx};$$

$$\frac{\partial u}{\partial t} = K u_{xx}$$

$$\frac{\partial u}{\partial t} = K u_{xx} \qquad \frac{\partial u}{\partial t} = K_{\beta} (-\infty D_x^{\beta} u + {}_x D_{\infty}^{\beta} u)$$

Example: using fractional derivative for ODE (from Samko et al.)

Consider the linear equation

$$(a_2 + b_2x + c_2x^2)y''(x) + (a_1 + b_1x)y'(x) + a_0y = 0$$

The solution can be found in the form

$$y(x) = D_x^p z(x)$$

where

$$p: \quad a_0 - b_1(p+1) + c_2(p+1)(p+2) = 0,$$

$$z(x) = (a_2 + b_2 x + c_2 x^2)^{p+1} \exp\{-\int \frac{a_1 + b_1 x}{a_2 + b_2 x + c_2 x^2} dx\}.$$

Initial value problem

$$_{c}D_{x}^{\alpha}y(x) = f(x, y(x)), \quad n - 1 < \alpha < n.$$

$$\tag{6}$$

Standard initial value problem contains following condition at starting point c:

$$({}_{c}D_{x}^{\alpha-1}y(x))(c+) = b_{1}, ({}_{c}D_{x}^{\alpha-2}y(x))(c+) = b_{2}, \dots ({}_{c}D_{x}^{\alpha-n}y(x))(c+) = b_{n}.$$
 (7)

Here

$$f(c+) = \lim_{x \to c+0} f(x).$$

The last term always contains limit of fractional integral $I^{n-\alpha}y(x)$. For $0 < \alpha < 1$ there exists an equivalent formulation of Cauchy problem:

$$({}_{c}D_{x}^{\alpha-1}y(x))(c+) = b_{1} \quad \Leftrightarrow \quad \lim_{x \to c+0} \left[(x-c)^{1-\alpha}y(x) \right] = \frac{b_{1}}{\Gamma(\alpha)}.$$
 (8)

The solution has an integrable singularity at the point c in general case. There are conditions for f(x,y) where the solution exists and is unique (see multiple theorems in Kilbas&Trujillo book).

Simplest equations

Simplest equation with Riemann-Liouville derivative:

$$D_x^{\alpha} y(x) = 0, \quad \alpha \in (1, 2)$$

The general solution:

$$y = C_1 x^{\alpha - 1} + C_2 x^{\alpha - 2}.$$

Initial conditions:

$$(D^{\alpha-1}y)(0+) = c_1, \quad (D^{\alpha-2}y)(0+) = c_2.$$

Simplest equation with Caputo type derivative:

$$^{C}D_{x}^{\alpha}y(x) = 0, \quad \alpha \in (1,2)$$

The general solution:

$$y = C_1 x + C_2.$$

Initial conditions:

$$y'(0+) = c_1, \quad y(0+) = c_2.$$

For equations with Caputo fractional derivatives, natural initial conditions are used and the solution have no singularities.

Simple linear equation

Consider the initial value problem

$$D^{\alpha}y = y$$
, $(D^{\alpha-1}y)(0+) = b_1$, $0 < \alpha < 1, y = y(x), x > 0$.

It is equivalent to an integral equation

$$y(x)=y_0(x)+I_x^{\alpha}y(x), \qquad ext{where } y_0(x)=rac{b_1x^{\alpha-1}}{\Gamma(\alpha-k+1)}$$

Using this as an iterative process $y_m=y_0+I_x^{lpha}y_{m-1}$, one gets

$$y_m(x) = b_1 \sum_{n=1}^{m} \frac{x^{\alpha j - 1}}{\Gamma(\alpha j - k + 1)}$$

(each integration adds x^{α} multiplier and modifies gamma-function) The final solution is the specific Mittag-Leffler function (generalized exponent):

$$y(x) = b_1 \sum_{n=1}^{\infty} \frac{x^{\alpha j - 1}}{\Gamma(\alpha j - k + 1)} = b_1 x^{\alpha - 1} E_{\alpha, \alpha}(x^{\alpha}).$$

Using Laplace transform

• Remember the Laplace transorm $f(t) \rightarrow g(s) = (\mathcal{L}f)(s)$:

$$(\mathcal{L}f)(s) = \int_0^\infty f(t)e^{-st}dt,$$

Inverse Laplace transform:

$$(\mathcal{L}^{-1}g)(x) = \int_{\gamma - i\infty}^{\gamma + i\infty} g(s)e^{st}ds, \quad \gamma = Re(s).$$

Laplace transform of ordinary derivatives

$$\mathcal{L}\{y'\} = s\mathcal{L}\{y\} - y(0)$$

$$\mathcal{L}\{y^{(n)}\} = s^n \mathcal{L}\{y\} - \sum_{k=0}^{n-1} s^k y^{(n-k-1)}(0)$$

• Laplace transform of Riemann-Liouville derivative:

$$\mathcal{L}\{D_x^{\alpha}y\} = s^{\alpha}\mathcal{L}\{y\} - \sum_{k=0}^{n-1} s^k D_x^{\alpha-k-1} y(0+), \quad n-1 < \alpha \le n.$$

Simple linear equation

Consider the initial value problem

$$D^{\alpha}y = y$$
, $(D^{\alpha-1}y)(0+) = b_1$, $0 < \alpha < 1, y = y(x), x > 0$.

Applying Laplace transform, one gets

$$s^{\alpha} \mathcal{L}\{y\} - D_x^{\alpha - 1} y(0+) = \mathcal{L}\{y\},$$

SO

$$\mathcal{L}\{y\} = \frac{b_1}{s^\alpha - 1}.$$

Looking for inverse transform in the table, we obtain the same result as before:

$$y(x) = b_1 x^{\alpha - 1} E_{\alpha, \alpha}(x^{\alpha}).$$

The same methods works for all linear equations and systems with constant coefficients an one independent variable (Caputo derivatives too).

Thanks for your attention!

