

LE MACHINE-LEARNING EN PRATIQUE

Vincent Guigue vincent.guigue@agroparistech.fr

Introduction

Dif

Supervisé

Différents cadres de machine learning

Supervised Learning Algorithms

Non-supervisé

Unsupervised Learning Algorithms

Semi-supervisé

Semi-supervised Learning Algorithms

Renforcement

... et différentes évaluations

- Différents algorithmes...
- Différentes données, différents coûts...

Et une nouvelle donne avec Amazon Mechanical Turk

$\lambda -$

Grande familles de problématiques supervisées

Régression

Classification

Ordonnancement

Chaine de traitement

Identifier les entrées / sorties + évaluation

... En version abstraite

Chaine de traitement

En plus concret :

- Sélection des bonnes colonnes
- Ajout de colonnes intéressantes (calculs, sources de données externes, ...)

Et éva

ntroduction 000 •

L'évaluation est aussi importante que le modèle lui-même!

- Modèle sans mesure de performances =
- Modèle + performance fausse=
- Modèle + performance basse =

danger

pas de sens

difficile à vendre

■ Analyse des performances \Rightarrow modèle v2

Classes de modèles

Mo

Modèles de ML : références historiques

■ Arbre de décision : entre lA symbolique & apprentissage statistique

- Ensemble de règles
- Interprétable (selon profondeur)
- Apprenable (critère entropique)
- Adapté données mixtes cat/num

■ Modélisation bayesienne

- Lois de probabilité
- Max. de vraisemblance
- Naive Bayes
- A priori des experts

DID3Y56789 DID3Y56789 DID3Y56789 DID3Y56789 DID3Y56789 DID3Y56789 DID3Y56789

Arbres

Modèles de ML : les bonnes affaires

Classes de modèles

- Modèles linéaires : Moindre carrés (MSE), régression logistique, ...
- Formulation simple & efficace
- Classif, régression
- Références très solides / modèle discriminant
- Descente de gradient

- SVM, noyaux et méthodes discriminantes
- Perceptron
- Régularisation
- SVM
- Projection non linéaire

Modèles de ML : approches non-supervisées

■ Estimation de densité

- Parzen
- Nadaraya-Watson
- Détour par les Knn
- EM

Clustering

- clustering hierarchique
- k-means / C-EM
- Clustering spectral
- A Priori

Conclusion

Modèles de ML : l'état de l'art

■ Approches ensemblistes

- Bagging
- Boosting
- Forêt, forêt aléatoire
- XGBoost

■ Réseaux de neurones (⇒ pytorch)

- Perceptron
- Réseaux de neurones
- Rétropropagation du gradient
- Différentes architecture

Arbres de décision

FOCUS SUR LES

Notations usuelles en classification

On dispose:

- **E**space de représentation \mathcal{X} Une caractéristique/variable/attribut X_i peut être continue, ordinale ou discrète Souvent $\mathcal{X} = \mathbb{R}^d$ d est la dimension de l'espace de représentation
- Ensemble d'exemples/instances

$$X = \{\mathbf{x}_1, \dots, \mathbf{x}_i, \dots, \mathbf{x}_n\}, \ \mathbf{x}_i \in \mathcal{X}$$

 $\mathbf{x}_i = (x_{i1}, \dots, x_{id})$

■ Supervision = étiquettes $Y = \{y_1, \dots, y_i, \dots, y_n\}$ dans le cas binaire, $y_i \in \{0,1\}$ ou $y_i \in \{-1,1\}$

On veut :

Trouver une fonction $f: \mathcal{X} \to Y$ telle que la prédiction sur de futurs exemples soit la plus précise possible.

Introduction Classes de modèles Arbres 0 • 0 0 0 0 0 SVM Conclusion

Principe de l'arbre de décision

- Présenter une instance x à la racine
- Nœud = test d'une variable
- Branche = résultat du test
- Feuilles = étiquette y de l'instance

7/ –

Algorithme général

classe ???

Algorithme glouton, top-down

Initialisation à la racine avec tous les exemples

- Si le nœud n'est pas pur, alors
 - \blacksquare Trouver X_i la meilleure variable pour ce nœud et le test associé
 - Pour chaque test, créer un fils au nœud courant
 - Faire tomber les exemples du nœud courant à leur fils correspondant
- sinon transformer le nœud en feuille.

Introduction Classes de modèles Arbres ○ ○ ● ○ ○ ○ ○ SVM Conclusion

Algorithme général

Algorithme glouton, top-down

Initialisation à la racine avec tous les exemples

- Si le nœud n'est pas pur, alors
 - Trouver X_i la **meilleure variable** pour ce nœud et le **test associé**
 - Pour chaque test, créer un fils au nœud courant
 - Faire tomber les exemples du nœud courant à leur fils correspondant
- sinon transformer le nœud en feuille.

Introduction Classes de modèles Arbres 0 0 0 0 0 0 0 SVM Conclusion

Algorithme général

Algorithme glouton, top-down

Initialisation à la racine avec tous les exemples

- Si le nœud n'est pas pur, alors
 - Trouver X_j la **meilleure variable** pour ce nœud et le **test associé**
 - Pour chaque test, créer un fils au nœud courant
 - Faire tomber les exemples du nœud courant à leur fils correspondant
- sinon transformer le nœud en feuille.

Conclusion

Sélectionner la meilleure variable

Entropie d'une variable aléatoire

0000000

Arbres

Soit X une variable aléatoire pouvant prendre n valeurs x_i :

$$H(X) = -\sum_{i=1}^{n} P(X = x_i) log(P(X = x_i))$$

Entropie
$$\nearrow = d\acute{e}sordre \nearrow$$

Entropie nulle \rightarrow pas d'aléa

 \rightarrow classification parfaite.

Entropie d'un échantillon : cas binaire

- \blacksquare X un ensemble de données, Y leurs étiquettes (positif/négatif)
- $lacktriangleq p_+$ la proportion d'exemples positifs
- lacksquare p_- la proportion d'exemples négatifs
- $H(Y) = -p_+log(p_+) p_-log(p_-)$

Entropie conditionnelle

- Entropie conditionnelle : $H(Y|X) = \sum_i P(X = x_i) H(Y|X = x_i)$
- Un test T sur une variable \Rightarrow deux partitions d'exemples de X: $X^{(1)}$ qui vérifie le test et $X^{(2)}$ qui ne vérifie pas le test (resp. $Y^{(1)}$ et $Y^{(2)}$). L'entropie conditionnelle au test T est :

$$H(Y|T) = \frac{|X^{(1)}|}{|X|}H(Y^{(1)}) + \frac{|X^{(2)}|}{|X|}H(Y^{(2)})$$

 \Rightarrow Gain d'info. : I(T, Y) = H(Y) - H(Y|T) à maximiser \Leftrightarrow minimiser H(Y|T)

SVM

Cas discret / Cas continu

 $X \qquad Y$

Cas discret

 $X_j \in \{A, B, C\} \Rightarrow$ Ensemble d'exemples divisé en $3 \Rightarrow$ Calcul aisé de l'entropie :

$$H(Y|X_j) = \frac{|A|}{|X|}H(Y^{(A)}) + \frac{|B|}{|X|}H(Y^{(B)}) + \frac{|C|}{|X|}H(Y^{(C)})$$

 $X \qquad Y$

Cas continu

0000000

 $X_j \in [0,2] \Rightarrow \text{il faut tester toutes les}$ valeurs de coupure!

- 1 Ordonnancement des valeurs de X_j
- 2 Calcul de la valeur de $H(Y|X_j)$ pour tous les tests
- 3 Conservation de la meilleure valeur

Cas discret / Cas continu

 $X \qquad Y$

Cas discret

 $X_j \in \{A, B, C\} \Rightarrow$ Ensemble d'exemples divisé en $3 \Rightarrow$ Calcul aisé de l'entropie :

$$H(Y|X_j) = \frac{|A|}{|X|}H(Y^{(A)}) + \frac{|B|}{|X|}H(Y^{(B)}) + \frac{|C|}{|X|}H(Y^{(C)})$$

Cas continu

Courbe type: Entropie vs coupure

Conclusions sur les arbres

- Approche ancienne
 - Systèmes experts
 - C4.5
 - **...**
- Mais toujours d'actualité!
 - Random Forest
 - XGBoost
 - cat Boost

Comment aborder des problèmes de régression avec des arbres?

FOCUS SUR LES SUPPORT VECTOR MACHINE

SVM

Focus sur les SVM

$$X = \{x_1, \dots, x_i, \dots, x_n\}, x_i \in \mathbb{R}^d, Y = \{y_1, \dots, y_i, \dots, y_n\}, y_i \in \{-1, 1\}$$

■ Coût (discriminant) :

$$\mathcal{L} = \sum_{i=1}^{n} (1 - y_i f(\mathbf{x}_i))_+, \qquad (a)_+ = \max(a, 0) = \text{ Partie positive}$$

- Quelle différence avec les moindes carrés?
- Forme de la décision (duale/par rapport aux points d'apprentissage) :

$$f(\mathbf{x}_i) = \sum_{j=1}^{N_{app}} w_j \cdot k(\mathbf{x}_i, \mathbf{x}_j)$$

- k: kernel/noyau [linéaire = produit scalaire, polynomial, gaussien, ...]
- Régularisation :

$$\mathcal{L} = \sum_{i=1}^{n} (1 - y_i f(\mathbf{x}_i))_{+} + C \|\mathbf{w}\|^{2}$$

- Hyper-paramètre *C*
- Réflexion sur les cas extrêmes

Notion de vecteur support de la décision

Cas linéaire :

La décision pour l'ensemble de l'espace ne repose que sur 2 vecteurs supports ⇒ 2 points d'apprentissage ont été sélectionnés

Notion de marge

Cas linéaire :

$$\mathcal{L} = \sum_{i=1}^{n} (1 - y_i f(\mathbf{x}_i))_+ + C \|\mathbf{w}\|^2$$

- Les vecteurs supports sont sur et dans la marge
 - = dans la zone de coût non nul
- Distinguer les cas séparable et non-séparable

Lien avec les mixtures de gaussiennes

En prenant :
$$f(\mathbf{x}_i) = \sum_{i=1}^{n_{app}} w_j \cdot k(\mathbf{x}_i, \mathbf{x}_j), \qquad k(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2}\right)$$

7

Lien avec les mixtures de gaussiennes

En prenant :
$$f(\mathbf{x}_i) = \sum_{j=1}^{n_{app}} w_j \cdot k(\mathbf{x}_i, \mathbf{x}_j), \qquad k(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2}\right)$$

Du cas binaire au multi-classes

Nombreux classifieurs binaires (dont les SVM)

Nombreux problèmes multi-classes Comment faire?

Un-contre-tous (one-against-all)

Multi-classe (2)

un contre tous (one against all) : K classes $\Rightarrow K$ classifieurs appris séparement sur toutes les données

 $\blacksquare f(\mathbf{x}) \Rightarrow f_k(\mathbf{x})$ et critère de décision :

$$k^* = \arg\max_k f_k(\mathbf{x})$$

Quelle classe veut le plus l'échantillon x?

- Critères de rejet :
 - pas de $f_k(\mathbf{x}) > 0.5$
 - plusieurs $f_k(\mathbf{x}) > 0.5$

SVM, quelques conclusions

- La méthode de référence des années 90+2000
- Plein de noyaux/kernel pour différents types de données
 - Graphes, images, ...
- Initialement une méthode de classification (SVM, SVC). Des extensions pour la régression (SVR).
- Problème majeur de passage à l'échelle
 - Complexité en $\mathcal{O}(n^2)$ au mieux... Souvent $\mathcal{O}(n^3)$ ou $\mathcal{O}(n^4)$

Approches ensemblistes

- Bagging
- Boosting
- Random Forest
- XGBoost

CONCLUSION

scikit-learn est un outil très puissant qui

- Propose des modèles sur l'étagère (supervisé, non-supervisé, estimation de densité, ...)
- Propose des métriques, des pré-traitements, des chaines...
- Parallélise les calculs (cf njob)
- Vous permet d'insérer vos outils dans ce cadre

Allons voir ça de plus près!