Parameters parameters

For K means we need K and result depends on initialization

For mean shift we need the window size and a lot of computation

Hierarchical Clustering keeps a history of all possible cluster assignments

- Produces complete structure
- No predefined number of clusters
- Similarity between clusters:
 - single-linkage: $\min\{d(x,y): x \in \mathcal{A}, y \in \mathcal{B}\}$
 - complete-linkage: $\max\{d(x,y):x\in\mathcal{A},y\in\mathcal{B}\}$
 - average linkage: $\frac{1}{|\mathcal{A}|\cdot|\mathcal{B}|}\sum_{x\in\mathcal{A}}\sum_{y\in\mathcal{B}}d(x,y)$

Single Linkage

$$\min\{d(x,y): x \in \mathcal{A}, y \in \mathcal{B}\}\$$

Complete Linkage

$$\max\{d(x,y):x\in\mathcal{A},y\in\mathcal{B}\}$$

Linkage Matters

- Single linkage: tendency to form long chains
- Complete linkage: Sensitive to outliers
- Average-link: Trying to compromise between the two

Outlier Sensitivity

DBSCAN

Density-based spatial clustering of applications with noise (DBSCAN)

- groups together points that are closely packed together
- marking as outliers points that lie alone in low-density regions

Red: Core Points

Yellow: Border points. Still part of the cluster because it's within epsilon of a core point, but not does not meet the min_points criteria

Blue: Noise point. Not assigned to a cluster

DBSCAN

- A point p is a core point if at least minPts points are within distance ε of it (including p).
- A point q is directly reachable from p if point q is within distance ε from core point p.
- A point q is reachable from p if there is a path $p_1,...,p_n$ with $p_1=p$ and $p_n=q$, where each p_{i+1} is directly reachable from p_i .
- All points not reachable from any other point are outliers or noise points.

Semi-supervised Learning (SSL)

Semi-supervised Learning

Some SSL Algorithms

- Self-Training
- Generative methods, mixture models
- Graph-based methods
- Co-Training
- Semi-supervised SVM
- Many others

Self-training

Repeat:

- Train the model f on the labeled data L (using supervised learning)
- Apply f to the unlabeled instances U
- Remove a subset S from U; add $\{(x, f(x)) \mid x \in S\}$ to L

- The choice of f is open
- Works well for many real world tasks
- But mistakes by f can reinforce itself

Self-training

Self-training

Propagating a 1-Nearest Neighbor: now it works

Propagating a 1-Nearest Neighbor: now it does not work

But with a single outlier...

Summary

Regularization of NN Optimization Challenges Unsupervised Learning

- K-means
- Mean Shift
- Hierarchical Clustering
- DBSCAN

Semi-supervised Learning

Self Training