Problemt Set 1

Global Poverty and Economic Development

Wenjie Tu

Fall Semester 2021

1 Education & Poverty

$$\ln(inc_i) = \theta_0 + \theta_1 e duc_i + \epsilon_i \tag{1}$$

1.1

In equation (1), the education in level terms while the dependent variable (income) in log terms.

Take the differential of both sides:

$$d\ln(inc_i) = \theta_1 d(educ_i)$$
$$\frac{d(inc_i)}{inc_i} = \theta_1 d(educ_i)$$

Multiply both sides by 100 and rearrange:

$$\frac{100 \times d(inc_i)}{inc_i} = 100 \times \theta_1 d(educ_i)$$

$$100 \times \theta_1 = \frac{\frac{100 \times d(inc_i)}{inc_i}}{d(educ_i)} = \frac{\% \Delta inc_i}{\text{unit} \Delta educ_i}$$

Therefore, $100 \times \theta_1$ can be interpreted as the percentage change in inc_i for a unit increase in $educ_i$. In other words, holding other independent variable constant (only one independent variable in equation (1)), an additional year of schooling is associated with a 5% increase in income per year.

Mechanism: since the relationship is positive, it suggests that more years of schooling imply a higher income level. This could be because people who spend more time in school are able to access jobs with higher payment.

1.2

Null and alternative hypotheses:

- $H_0: \theta_1 = 0$
- $H_1: \theta_1 \neq 0$

t-statistic:

$$t = \frac{\hat{\theta}_1 - \theta_1}{\text{SE}(\hat{\theta})} = \frac{0.07}{0.4} = 0.175$$

Construct confidence interval:

$$CI = \hat{\theta} \pm t_{\frac{\alpha}{2}} \times SE(\hat{\theta})$$

= 0.07 \pm 2.048 \times 0.4
= (-0.7492, 0.8892)

Note: we can use the command qt(1-alpha/2, df=30-2) in R console to get the corresponding $t_{\frac{\alpha}{2}}=2.048$.

[1] 2.048407

Clearly, 95% confidence interval covers 0. We cannot reject the null hypothesis at $\alpha = 0.05$ level.

1.3

In specification (1), there is only one independent variable - years of schooling. The estimate for θ_1 is more likely to be biased due to the following reasons:

- Measurement error: when asked in the survey, subjects might overstate their incomes out of vanity. There might be a measurement error in dependent variable.
- Omitted variables bias: some variables such as family, innate ability also have an impact on both income and education but they are not included in the model. The error term absorbs the omitted variables, which leads to a violation of mean-zero-error assumption (i.e., $\mathbb{E}[\epsilon_i|educ_i] \neq 0$).
- Reverse causality: individuals with higher income would also pursue higher further education.

1.4

There is a measurement error in income data. People tend to overstate their incomes out of vanity. The estimate would **NOT** be biased in expectations. But a possible concern is that the standard errors could be much larger. A measurement error in Y is not a big problem since we can still get unbiased estimates (with larger standard errors). It is only an issue if the error is correlated with education.

2 Data Analysis

2.1

2.2

Regression output is formatted in a table (see Table 4).

Table 1: Summary Statistics for Immunizations

Statistic	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
BCG	5,199	83.319	20.627	1.000	77.000	98.000	99.000
DPT	6,352	78.410	23.101	1.000	69.000	95.000	99.000
HepB3	3,070	83.718	19.660	1.000	79.000	96.000	99.000
Hib3	2,358	86.055	17.458	1.000	83.000	97.000	99.000
Pol3	6,358	79.138	22.983	1.000	71.000	96.000	99.000
measles	6,234	77.320	22.536	1.000	66.000	95.000	99.000

Table 2: Summary Statistics for Life Expectatncy

Statistic	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
female	10,723	66.093	12.142	22.394	57.183	75.500	87.300
male	10,723	61.426	10.974	16.286	53.878	69.561	81.600
total	10,723	63.703	11.502	19.266	55.585	72.412	84.278

Table 3: Summary Statistics for School Enrollment

Statistic	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
net primary	2,115 1,577	88.422	13.589	25.618	86.624 53.617	96.815	99.999
net secondary	1,577	69.451	25.008	2.684	55.017	89.037	100.000

Table 4: Regression output 2.2

	Life expectancy at birth (total)			
	(1)	(2)	(3)	
Private expenditure	-0.843***(0.094)			
Public expenditure	2.154***(0.067)			
Sanitation access	,	$0.184^{***} (0.004)$		
Water access		$0.164^{***} (0.007)$		
Log of primary		, ,	1.605(1.135)	
Log of secondary			12.118*** (0.364)	
Constant	$62.690^{***} (0.391)$	$41.400^{***} (0.383)$	14.262*** (4.069)	
Observations	3,528	4,574	1,377	
\mathbb{R}^2	0.258	0.753	0.670	

*p<0.1; **p<0.05; ***p<0.01

2.3

3 Fixed Effects

3.1

The mean of x_1 is 0.720 with a standard deviation of 0.299

3.2

From table 5, we see that the coefficient on x_1 is 0.415

Table 5: Regression table for 3.2

	Dependent variable:
	у
x1	0.415 (0.326)
Constant	$6.516^{***}(0.254)$
Observations	1,000
\mathbb{R}^2	0.002
Note:	*p<0.1: **p<0.05: ***p<

4

3.3

From table 6, we see that the coefficient on x_1 is 0.475 if we use household fixed effects.

Table 6: Regression table for 3.3

	Dependent variable:
	У
x1	$0.475^{***} (0.031)$
Observations	1,000
\mathbb{R}^2	0.212
Note:	*p<0.1; **p<0.05; ***p<

3.4

The mean of \hat{x}_1 is 40.720 with a standard deviation of 49.013

3.5

Table 7: OLS regressions comparison in 3.5

	$Dependent\ variable:$			
	У			
	(1)	(2)		
x1	0.415 (0.326)			
x1hat		$0.052^{***} (0.001)$		
Constant	$6.516^{***} (0.254)$	4.687*** (0.070)		
Observations	1,000	1,000		
\mathbb{R}^2	0.002	0.691		
Note:	*p<0.1; **;	p<0.05; ***p<0.01		

OLS:
$$y_{it} = \theta_0 + \theta_1 x_{it} + \eta_{it}$$
 (2)

FE:
$$y_{it} = \alpha_i + \beta x_{it} + \epsilon_{it}$$
 (3)

In table 7, we see the coefficients of interest are different in OLS regression.

Intuition: in OLS regression (2), θ_0 is the overall intercept and it is the same across all households. We cannot control for any household-specific characteristics in OLS specification. Hence, the coefficient of \hat{x}_1 differs from the coefficient of x_1 .

3.6

In table 7, we see the coefficients of interest are the same in fixed-effects model.

Table 8: Fixed effects regressions comparison in 3.6

	Dependen	t variable:	
	y		
	(1)	(2)	
x1	$0.475^{***} (0.031)$	0.455*** (0.091)	
x1hat		0.475*** (0.031)	
Observations	1,000	1,000	
\mathbb{R}^2	0.212	0.212	
Note:	*p<0.1; **	p<0.05; ***p<0.01	

Intuition: in fixed-effects model (3), α_i is the household-specific intercept. It allows for any household-specific effect. We can control for household-specific effect in an indirect way simply by demeaning the variables. β is also called within estimator. We can difference out the household-specific effect (e.g. intercept). Therefore, the coefficient of \hat{x}_1 does not differ from the coefficient of x_1 .

Within transformation:

$$y_{it} - \bar{y}_i = \underbrace{(\alpha_i - \bar{\alpha}_i)}_{0} + \beta(x_{it} - \bar{x}_{it}) + \epsilon_{it} - \bar{\epsilon}_i$$

4 Omitted Variable Bias

4.1

True model:

$$Y_i = \theta_0 + \theta_1 T_i + \theta_2 X_i + \epsilon_i$$

We estimate:

$$Y_i = \beta_0 + \beta_1 T_i + \eta_i$$

Take covariance w.r.t. T_i :

$$Cov(T_i, Y_i) = Cov(T_i, \beta_0 + \beta_1 T_i + \eta_i)$$

= $\beta_1 Var(T_i) + Cov(T_i, \eta_i)$

Rearrange:

$$\hat{\beta}_1 = \frac{Cov(T_i, Y_i)}{Var(T_i)}$$

Substitute Y_i with the true model:

$$\hat{\beta}_{1} = \frac{Cov(T_{i}, Y_{i})}{Var(T_{i})}$$

$$= \frac{Cov(T_{i}, \theta_{0} + \theta_{1}T_{i} + \theta_{2}X_{i} + \epsilon_{i})}{Var(T_{i})}$$

$$= \frac{\theta_{1}Var(T_{i}) + \theta_{2}Cov(T_{i}, X_{i}) + Cov(T_{i}, \epsilon_{i})}{Var(T_{i})}$$

$$= \theta_{1} + \theta_{2}\frac{Cov(T_{i}, X_{i})}{Var(T_{i})} + \frac{Cov(T_{i}, \epsilon_{i})}{Var(T_{i})}$$

$$\mathbb{E}[\hat{\beta}_{1}] = \theta_{1} + \theta_{2}\frac{Cov(T_{i}, X_{i})}{Var(T_{i})}$$
(4)

Given that:

$$\mathbb{E}[X_i|T_i] = \alpha_0 + \alpha_1 T_i$$

Rewrite the above equation:

$$X_i = \alpha_0 + \alpha_1 T_i + \nu_i$$

$$Cov(T_i, X_i) = Cov(T_i, \alpha_0 + \alpha_1 T_i + \nu_i)$$

= $\alpha_1 Var(T_i) + Cov(T_i, \nu_i)$

Rearrange:

$$\hat{\alpha}_1 = \frac{Cov(T_i, X_i)}{Var(T_i)}$$

Substitute above into equation (4):

$$\mathbb{E}[\hat{\beta}_1] = \theta_1 + \theta_2 \hat{\alpha}_1$$

4.2

Because people are randomized to treatment and control groups, on average there is no difference between these two groups on any characteristics other than their treatment.

This means that before the treatment is given, on average the two groups (T and C) are equivalent to one another on every observed and unobserved variable. For example, the two groups should be similar in all pre-treatment variables: age, gender, motivation levels, heart disease, math ability, etc. When the treatment is assigned and implemented, any differences between outcomes can be attributed to the treatment. Thus, OVB can be addressed through randomization.

4.3

4.3(a)

I would expect the sign of θ_1 to be negative. If there is a conflict in a geographical unit, the income for the geographical unit will decrease. Hence, $\theta_1 < 0$.

4.3(b)

I would expect the sign of θ_2 to be positive and the sign of α_1 to be positive.

- An increase in mineral prices would lead to a rise in people's income since they can sell minerals at higher prices. Therefore, $Cov(X_i, Y_i) > 0$ and $\theta_2 > 0$.
- More conflicts between groups or villages would increase the mineral prices. The reasoning is that higher selling prices must compensate for the losses in conflicts. Thus, $Cov(T_i, X_i) > 0$ and $\alpha_1 > 0$.

4.3(c)

$$\mathbb{E}[\hat{\beta}_1] = \theta_1 + \theta_2 \hat{\alpha}_1$$

It is argued in previous question that $\theta_1 > 0$ and $\hat{\alpha}_1 > 0$. Hence, the estimated effect of conflict on income would be biased upward (i.e., $\mathbb{E}[\hat{\beta}_1] > \theta_1$).

Regarding examples below, equation (4) is used for analysis.

Example 1:

- Y is the hourly wage in the first job.
- T is whether the individual receives higher education.
- X is unobserved innate ability.

In this setting, individuals with higher innate ability **on average** will earn higher wages (i.e., $\theta_2 > 0$), and individuals with higher innate ability **on average** will receive higher education (i.e., Cov(T, X) > 0). Therefore, there is a **upward bias** in the estimated effect.

Example 2:

- Y is the final score for a course.
- T is the time spent on the course per week.
- X is unobserved innate ability.

In this setting, individuals with higher innate ability **on average** will achieve higher score (i.e., $\theta_2 > 0$) while individuals with higher innate ability **on average** will spend a bit less time on the course (i.e., Cov(T, X) < 0). Hence, there is a **downward bias** in the estimated effect.