

Beharangozás

- Erdekes (nem triviálisan megoldható) feladatok következnek a
 - kombinatorika,
 - > mohó módon megoldható feladatok,
 - visszalépéses keresés témaköréből
- Szokatlan módon nemcsak struktogrammal, hanem az ún. pszeudokóddal fogunk egy-egy algoritmust megadni.

Algoritmikus szerkezetek

struktogram ↔ pszeudokód

Szekvencia:

Utasítás1 Utasítás2

Elágazások:

Ha Feltétel akkor Igaz-ág utasításai különben Hamis-ág utasításai Elágazás vége

Elágazás

Feltétell esetén Utasításokl Feltétel2 esetén Utasítások2

egyéb esetekben Utasítások Elágazás vége

Algoritmikus szerkezetek struktogram – pszeudokód

Ciklusok:

Elöltesztelő ciklus

Bennmaradás feltétele

ciklusmag utasításai

Hátultesztelő ciklus

ciklusmag utasításai

Bennmaradás feltétele

Számlálós ciklus

cv=tól...ig

ciklusmag utasításai

Ciklus amíg Feltétel
 ciklusmag utasításai
Ciklus vége

Ciklus

ciklusmag utasításai

amíg Feltétel

Ciklus vége

Ciklus cv=tól-tól ig-ig
 ciklusmag utasításai
Ciklus vége

Feladat:

- > Az iskola bejáratánál N lépcsőfok van. Egyszerre maximum K fokot tudunk lépni, ugrani fölfele. Minden nap egyszer megyünk be az iskolába.
- > Készíts programot, amely megadja, hogy hány napig tudunk más és más módon feljutni a lépcsőkön!

 \triangleright Bemenet: N,K∈N

 \triangleright Kimenet: $Db \in \mathbf{N}$

➤ Előfeltétel: –

➤ Utófeltétel: ???

A probléma az, hogy nem látszik közvetlen összefüggés a bemenet és a kimenet között.

Próbáljuk megfogalmazni minden egyes lépcsőfokra, hogy hányféleképpen érhetünk el oda!

 \triangleright Bemenet: N,K∈N

 \triangleright Kimenet: $Db_0 \in \mathbb{N}^{N+1}$

≻Előfeltétel: –

►Utófeltétel: Db₀=1 és ???

A "0. lépcsőfokhoz" egyféleképpen juthatunk, de továbbra sem látszik közvetlen összefüggés a bemenet és a Db_{1..N} között.

Próbáljunk meg összefüggést felírni a kimenetre önmagában!

Észrevétel: Az N-edik lépcsőfokra vagy az N-1-edikről lépünk, vagy az N-2-edikről, ... vagy pedig az N-K-adikról!

>Utófeltétel:
$$Db_0=1$$
 és $\forall j (1 \le j \le N)$: $Db_j=\sum_{\substack{i=1\\i \le j}} Db_{j-i}$

Tehát eljutottunk a sorozatszámítás (feltételes összegzés) programozási tételhez.

Érdekességek – Kombinatorika Keverés

Feladat:

- ➤ Van N elemünk (1, 2,..., N), keverjük össze őket véletlenszerűen!
- > Mit jelent a keverés? Az N elem összes lehetséges sorrendje egyenlő eséllyel álljon elő a keverésnél!

$$(1, 2, ..., N) \rightarrow (X_1, X_2, ..., X_N)$$

(A hamiskártyások egyik trükkje, hogy nem így keverik a kártyákat!)

Érdekességek – Keverés

Stratégia:

- Válasszunk az N elem közül egyet véletlenszerűen, és cseréljük meg az elsővel!
- ➤ A maradék N–1-ből újra válasszunk véletlenszerűen egyet, s cseréljük meg a másodikkal!

> ...

Érdekességek – Keverés

Be kellene látnunk, hogy így jó megoldást kapunk!

(nem bizonyítás, csak gondolatok)

- > Nézzük meg, hogy mi annak az esélye, hogy
 - az I kerül az 1. helyre; mivel az (összes) N elem közül véletlenszerűen választunk egyet, amelyet megcseréljük az elsővel, ezért az első helyre egyenlő, 1/N eséllyel kerül bármely elem.

Érdekességek – Keverés

i=1..N-1 $j:=V\acute{e}letlen(i..N)$ Csere(X[i],X[j]) $V\acute{a}ltoz\acute{o}$ $i,j:Eg\acute{e}sz$

Vegyük észre, hogy ez olyan, mint a rendezés, csak nagyság szerinti hely helyett véletlenszerű helyre cserélünk.

Érdekességek – Kombinatorika Összes, i-edik permutáció

Feladat:

Állítsuk elő egy N elemű sorozat (1,...,N) összes permutációját!

Másik feladat:

Állítsuk elő egy N elemű sorozat i-edik permutációját (0≤i<n!)!

Azaz, ha az i-edik permutációt elő tudjuk állítani, akkor abból az összes permutáció egy egyszerű ciklussal kapható meg.

Érdekességek – Összes (i-edik) permutáció

Vegyünk egy rendező módszert!

Tároljuk azt, hogy az egyes lépésekben milyen messzire kellett

cserélni!

	Változó
i=1N-1	i,j :E §
Min:=i]
j=i+1N	1
X[min]>X[j]	7
Min:=j —	
Csere(X[i],X[Min])]
Táv[i]:=Min-i	

Érdekességek – Összes (i-edik) permutáció

,....,

A Táv vektor alapján a rendezés hatása visszaalakítható!

	Változó
i=N-11, -1-esével	i:Egész
Csere(X[i],X[i+Táv[i]])	

Belátható, hogy minden permutációhoz más és más Táv vektor tartozik.

Kérdés: hogyan lehet egy i értékhez (értsd a permutáció sorszámához) Táv vektort rendelni?

Érdekességek – Összes (i-edik) permutáció

- ➤ Táv[N-1] értéke 0 vagy 1.
- ➤ Táv[N-2] értéke 0, vagy 1, vagy 2.
- > ...

2021.12.08. 17:50

- ➤ Táv[1] értéke 0, vagy 1, ..., vagy N-1.
- ➤ Azaz Táv egy N–1 jegyű egész szám egy olyan számrendszerben, aminek helyiértékenként más és más az alapszáma!
- > Megoldás: Az i egész szám átírása ebbe a számrendszerbe.

Érdekességek – Összes (i-edik) permutáció

> A fenti programrészt összeépítve a rendezés visszaalakításánál készítettel megadtuk az i-edik permutáció előállításának algoritmusát.

> j:Egész j=1..N-1Táv[N-j]:=i Mod (j+1)i:=i Div (j+1)

Változó

Feladat:

Jól ismert fejtörő, amelyben egy aritmetikai művelet kapcsol egybe szavakat. A feladat az, hogy a szavak egyes betűinek feleltessünk meg egy számjegyet úgy, hogy a művelet helyes eredményt szolgáltasson a szavakon.

Pl. SEND + MORE = MONEY.

Megoldás:

A szavakban előforduló jelekhez (SENDMORY) keressük a 0..9 számjegyek egyértelmű hozzárendelését.

Megoldási ötlet:

- > Az összes permutáció algoritmusára építünk.
- A Jó eljárás ellenőrzi a permutáció a feladat szempontjából való – helyességét, és gondoskodik az esetleges megoldás gyűjtéséről vagy kiírásáról.

A megfelelőség a $\frac{(*)}{}$ -SEND + MORE – MONEY = 0 egyenletre. Ha

- 'S' X[1] értékű, akkor a (*)-ban X[1] *1000-rel van jelen;
- 'E' X[2] értékű, akkor X[2]*(100+1−10)=X[2]*91-gyel;
- 'N' X[3] értékű, akkor X[3]*(10−100)= X[3]*(-90)-nel;
- 'D' X[4] értékű, akkor X[4]*(1)-gyel;
- 'M' X[5] értékű, akkor X[5]*(1000−10000)=X[5]*(-9000)-rel;
- 'O' X[6] értékű, akkor X[6]*(100−1000)= X[6]*(-900)-zal;
- ► 'R' X[7] értékű, akkor X[7]*10-zel;
- ➤ 'Y' X[8] értékű, akkor X[8]*(-1)-gyel van jelen.
- > továbbá az S és az M betűhöz nem rendelhetünk nullát, azaz $X[1]\neq 0$ és $X[5]\neq 0!$


```
jó(X):Logikai jó:= (X[1]*1000+X[2]*91+X[3]*(-90)+X[4]*1+X[5]*(-9000)+X[6]*(-900)+X[7]*10+X[8]*(-1)=0 és X[1]<math>\neq 0 és X[5]\neq 0) Függvény vége.
```

Ha a konstansokat egy Z vektorban tárolnánk, akkor a Jó függvényben X és Z skaláris szorzatát kellene kiszámolnunk.

```
jó(X):Logikai jó:=(skalárszorzat(X,Z)=0 és X[1]\neq0 és X[5]\neq0) Függvény vége.
```


Feladat:

- ➤ A Budapest-Párizs útvonalon N benzinkút van, az i-edik B_i távolságra Budapesttől (az első Budapesten, az utolsó Párizsban). Egy tankolás az autónak K kilométerre elég.
- Készíts programot, amely megadja a lehető legkevesebb benzinkutat, ahol tankolni kell, úgy, hogy eljuthassunk Budapestről Párizsba!

 \triangleright Bemenet: N,K∈N

$$B_{1..N} \in \mathbf{N}^N$$

➤ Kimenet: Db∈N

$$T_{1 N-1} \in \mathbf{N}^{N-1}$$

- \gt Előfeltétel: $\forall i(1 \le i < N)$: $B_{i+1} B_i \le K$
- \triangleright Utófeltétel: Db=??? és T_1 =1 és

$$\forall i (1 \le i < Db): B_{T_{i+1}} - B_{T_i} \le K \text{ \'es}$$

$$B_N - B_{TDb} \le K \text{ és } T \subseteq (1, ..., N-1)$$

- A megfogalmazásból látható, hogy a tankolási helyek halmaza az összes benzinkút halmazának egy részhalmaza lesz.
- Állítsuk elő az összes részhalmazt, majd válogassuk ki közülük a jókat (amivel el lehet jutni Párizsba), s végül adjuk meg ezek közül a legkisebb elemszámút!
- > Probléma: 2^N részhalmaz van!

Megoldás (tegyük fel, hogy van megoldás):

- > Budapesten mindenképpen kell tankolni!
- Menjünk, ameddig csak lehet, s a lehető legutolsó benzinkútnál tankoljunk!
- > Mindezt addig, amíg Párizsba el nem jutunk.
- > Belátható, hogy ezzel egy optimális megoldást kapunk.

→ Kiválogatás!

Változó

	Validzo
Db:=1; T[1]:=1	i,j:Egész
i=2N-1	
B[i+1]-B[T[Db]]>K	N
Db:=Db+1; T[Db]:=i —	

Feladat:

- Helyezzünk el egy N×N-es sakktáblán N vezért úgy, hogy ne üssék egymást!
- A vezérek a sorukban, az oszlopukban és az átlójukban álló bábukat üthetik. Tehát úgy kell elhelyezni a vezéreket, hogy minden sorban és minden oszlopban is pontosan 1 vezér legyen, és minden átlóban legfeljebb 1 vezér legyen!

N vezér elhelyezése egy N×N-es sakktáblán:

- Helyezzünk el egy N×N-es sakktáblán N vezért úgy, hogy ne üssék egymást!
- > Egy lehetséges megoldás N=5-re és N=4-re:

		V		
				V
	V			
			V	
V				

	V		
			V
V			
		V	

Stratégia:

- Először megpróbáljuk az első vezért elhelyezni az első oszlopban, ezután a következőt ...
- Ha nem tudjuk elhelyezni, akkor visszalépünk az előző oszlophoz, s megpróbálunk abból egy másik helyet választani. Visszalépésnél törölni kell a választást abból az oszlopból, amelyikből visszaléptünk.
- Az eljárás akkor ér véget, ha minden vezért sikerült elhelyezni, vagy pedig a visszalépések sokasága után már az első vezért sem lehet elhelyezni (ekkor a feladatnak nincs megoldása).

Visszalépéses keresés algoritmus:

```
Keresés (N, Van, S):
  i:=1; Y[1..N]:=(0,...,0) [Y[i]: i. választás]

Ciklus amíg i≥1 és i≤N [lehet még és nincs még kész]
  Jóesetkeresés (i, Van, j)

Ha Van akkor Y[i]:=j; i:=i+1 [előrelépés]
  különben Y[i]:=0; i:=i-1 [visszalépés]
```

Ciklus vége

Van := (i>N)

Eljárás vége.

A megoldás legfelső szintjén keressünk az i. oszlopban megfelelő elemet! Ha ez sikerült, akkor lépjünk tovább az i+1. oszlopra, különben lépjünk vissza az i–1.-re, s keressünk abban újabb helyet!

Visszalépéses keresés algoritmus:

```
Jóesetkeresés(i, van, j):
j:=Y[i]+1
Ciklus amíg j≤N és Rossz(i,j)
j:=j+1
Ciklus vége
van:=(j≤N)
```

Eljárás vége.

Megjegyzés: az i-edik lépésben a j-edik hely nem választható, ha az előző vezérek miatt rossz.

Visszalépéses keresés algoritmus:

Rossz(i,j):Logikai

k := 1

Ciklus amíg k<i és nem üti(i,j,k,Y[k])

k := k+1

Ciklus vége

Rossz:=(k < i)

Függvény vége.

Megjegyzés: Rossz egy választás, ha valamelyik korábbi választás miatt nem szabad (eldöntés tétel).

üti(i,j,k,l):Logikai
üti:=(l=j) vagy (i-k=abs(j-l))

Függvény vége.

Feladat: Munkásfelvétel (N állás – N jelentkező)

Egy vállalkozás N különböző állásra keres munkásokat.

Pontosan N jelentkező érkezett, ahol minden jelentkező megmondta, hogy mely munkákhoz ért. A vállalkozás vezetője azt szeretné, ha az összes jelentkezőt fel tudná venni és minden

munkát el tudna végeztetni.

M[i] — az i. munkás ennyi munkához ért E[i,j] — az i. munkás által elvégezhető j. munka

	Darab	Állások:	1.	2.	3.
1. jelentkező:	2		1	4	
2. jelentkező:	1		2		
3. jelentkező:	2		1	2	
4. jelentkező:	1		3		
5. jelentkező:	3		1	3	5

N munka – N jelentkező:

```
Keresés (N, Van, Y):
    i:=1; Y[1..N]:=(0,...,0) [Y[i]: i. választás]
    Ciklus amíg i≥1 és i≤N [lehet még és nincs még kész]
        Jóesetkeresés (i, Van, j)
        Ha Van akkor Y[i]:=j; i:=i+1 [előrelépés]
            különben Y[i]:=0; i:=i-1 [visszalépés]
        Ciklus vége
        Van:=(i>N)
Eljárás vége.
```


N munka – N jelentkező:

```
Jóesetkeresés(i, van, j):
    j:=Y[i]+1
    Ciklus amíg j≤M[i] és Rossz(i,j)
    j:=j+1
    Ciklus vége
    van:=(j≤M[i])
Eljárás vége.
```


N munka – N jelentkező:

Rossz(i,j):Logikai

k := 1

Ciklus amíg $k < i \in E[k, Y[k]] \neq E[i, j]$

k := k+1

Ciklus vége

Rossz:=(k < i)

Függvény vége.

E[i,j] – az i. munkás által elvégezhető j. munka

2021.12.08. 17:50

- > Feladat: Számítsuk ki a gyök(2) értékét!
- Probléma: Irracionális számot biztosan nem tudunk ábrázolni a számítógépen!
- ➤ Új feladat: Számítsuk ki azt a P,Q egész számpárt, amire P/Q "elég közel" van gyök(2)-höz!
- > Probléma: Mi az, hogy "elég közel"?
- > Ötlet: $|P^2/Q^2-2|$ < E, ahol E egy kicsi pozitív valós szám.

- \triangleright Bemenet: $E \in \mathbb{R}$
- \triangleright Kimenet: $P,Q \in \mathbb{N}$
- > Előfeltétel: E>0
- \rightarrow Utófeltétel: $|P^2/Q^2-2| < E$
- > Probléma: nem látszik egyszerű összefüggés P, Q és E között.
- > Ötlet: Állítsunk elő (P;,Q;) számpárok sorozatát úgy, hogy $|P_{i+1}|^2/Q_{i+1}^2-2| < |P_i|^2/Q_i^2-2|$ legyen! (konvergencia)
- > Ha felülről közelítünk, az abszolút érték jel elhagyható!

2021.12.08. 17:50

- ➤ Állítás: a P²-M*Q²=4 egyenletnek végtelen sok megoldása van, ha M nem négyzetszám. (Most nem bizonyítjuk.)
- ➤ Állítás: az alábbi sorozat értéke gyök(2)-höz tart, ha n tart végtelenhez:

$$x_{n+1} := \frac{1}{2} * \left(x_n + \frac{2}{x_n} \right)$$

(Most ezt sem bizonyítjuk.)

 \triangleright Legyen $x_n = P_n/Q_n!$

40/42

➤ Legyen (P_n,Q_n) a fenti egyenlet megoldása. Ekkor:

$$x_{n+1} := \frac{1}{2} * \left(x_n + \frac{2}{x_n} \right) = \frac{1}{2} * \left(\frac{P_n}{Q_n} + \frac{2 * Q_n}{P_n} \right) =$$

$$= \frac{1}{2} * \left(\frac{P_n^2 + 2 * Q_n^2}{P_n * Q_n} \right) = \frac{P_n^2 - 2}{P_n * Q_n} = \frac{P_{n+1}}{Q_{n+1}}$$

- ➤ Belátható, hogy (P_{n+1},Q_{n+1}) is megoldása az egyenletnek.
- \triangleright Legyen P_0 =6, Q_0 =4, ami megoldása az egyenletnek!

Most nem foglalkozunk a megoldás lépésszámának vizsgálatával. (Négyzetesen gyors.)

P:=6; Q:=4
P*P-2*Q*Q≥E*Q*Q
Q:=P*Q; P:=P*P-2

Programozás

13. előadás vége