0.1 GeoGebra

0.1.1 Introduksjon

Når du åpner GeoGebra får du et bilde som dette:

Feltet hvor det står "Skriv inn" kalles *inntastingsfeltet*. Dette feltet og det blanke feltet under utgjør *algebrafeltet*. Koordinatsystemet til høyre kalles *grafikkfeltet*.

0.1.2 Å skrive inn punkt, funksjoner og linjer

Punkt

Si at vi ønsker å få punktene (1,3) og (4,5) til å vises i grafikkfeltet. I inntastingsfeltet skriver vi da

(1,3)

og

(4,5)

Geo Gebra kaller da punktene A og B, og tegner dem inn i grafikfeltet:

Ønsker vi å selv et punkts navn kan vi f. eks skrive

$$P=(2,4)$$

Funksjoner

Si vi har funksjonen

$$f(x) = \frac{3}{2}x^2 + 3x$$

For å bruke f(x) i GeoGebra, skriver vi:

$$3/2*x^2+3x$$

Når vi ikke gir funksjonen noen navn, vil Geo Gebra automatisk gi
 funksjonen navnet f. I algebrafeltet får vi derfor

$$f(x) = \frac{3}{2} x^2 + 3x$$

I grafikkfeltet får vi grafen til f.

Hvis vi isteden har funksjonen

$$P(x) = 0.15x^3 - 0.4x$$

er det to ting vi må passe på. Det første er at alle desimaltall må skrives med punktum istedenfor komma i GeoGebra . Det andre er at vi ønsker å gi funksjonen navnet P(x). Vi skriver da

$$P(x) = 0.15x^3 - 0.4x$$

og får

Obs!

Man kan aldri gi funksjoner navnet y(x) i GeoGebra. y kan bare brukes når man skriver inn uttrykk for en rett linje, altså y = ax + b, hvor a og b er to valgfrie tall.

Vannette og loddrette linjer

Ønser vi å lage ei linje som går vannrett gjennom verdien 3 på y-aksen og ei linje som går loddrett gjennom verdien 2 på x-aksen skriver vi:

$$v = 3$$

og

$$x = 2$$

Da får vi denne figuren:

0.1.3 Å finne verdien til funksjoner og linjer

Funksjoner

Si vi har funksjonen

$$H(x) = x^2 + 3x - 3$$

Hvis vi ønsker å vite hvaH(2)er, skriver vi

H(2)

som resulterer i dette

$$H(x) = x^2 + 3x - 3$$

$$a = H(2)$$

$$\rightarrow 7$$

Da vet vi at H(2) = 7.

Linjer

Det anbefales på det sterkeste at du bruker funksjonsuttrykk når du behandler linjer i GeoGebra, men i noen tilfeller kommer man ikke utenom linjer på former y = ax + b.

La oss se på de to linjene

$$y = x - 3$$
$$y = -2x + 1$$

Vi skriver disse inn i GeoGebra, og får

Ønsker vi nå å finne hva verdien til y = x - 3 er når x = 2, må vi legge merke til at GeoGebra har kalt denne linja for f. Svaret vi søker får vi da ved å skrive f(2). Ønsker vi samtidig å vite hva y = -2x + 1 er når x = 0, må vi skrive g(0):

$$a = f(2)$$

$$\rightarrow -1$$

$$b = g(0)$$

$$\rightarrow 1$$

0.1.4 Knapper og kommandoer

Grafikkfelt

Knappene velges fra rullemenyer på verktøylinjen. Nummereringen av menyene er fra venstre.

	• ^A	T a man	a+		punkt.	(Mare)		1)
ı	V	Lager	et	nytt	punkt.	(Meny	mr.	1)

Lager linje mellom to punkt. (Meny nr. 2)

Finner topp- og bunnpunkt til en funksjon. (Meny nr. 2)

Finner nullpunktene til en funksjon. (Meny nr. 2)

Finner skjæringspunkt mellom to objekt. (Meny nr. 3)

Lager vektoren mellom to punkt (Meny nr. 3)

Lager en tekstboks. (Meny nr. 10)

Flytter grafikkfeltet. Endrer verdiavstanden hvis man peker på aksene. (Meny nr. 10)

Hurtigtaster

	Beskrivelse	\mathbf{PC}	Mac
	kvadratrot	alt+r	alt+r
π	pi	alt+p	alt+p
$\overline{\infty}$	uendelig	alt+u	alt+,
\otimes	kryssprodukt	alt+shift+8	ctrl+shift+8
e	eulers tall	alt+e	alt+e
0	gradtegnet $(\frac{\pi}{180})$	alt+o	alt+o

Videoer

- Finne nullpunktene til en graf
- Finne lokale bunnpunkt (eller toppunkt) til en graf
- Finne skjæringspunktene til to funksjoner
- Justere akser
- Endre tykkelse, farge o.l på graf
- Tegne graf på gitt intervall I videoen tegner vi $f(x)=x^2-3x+2$ på intervallet $0\leq x\leq 5.$
- Lage linje mellom to punkt Legg merke til hva som gjøres mot slutten av videoen for å få det vante uttrykket y = ax + b.

• Utføre regresjon

I videoen har vi på forhånd skrevet inn tallene i tabellen under, som viser elbilsalget i Norge antall år etter 2010. Disse tallene ble også brukt i seksjon ??.

Det utføres regresjon med en linje, en kvadratisk funksjon og en 4. grads funksjon.

antall år	elbiler
0	3347
1	5381
2	9565
3	19678
4	42356
5	73312
6	101126
7	138477
8	194900
9	260688
10	337201
11	455271

Kommandoliste

Merk: Mange av kommandoene har egne knapper, som blant annet vist i videoene over.

- abs(<x>)
 Gir lengden til x (et tall, et linjestykke o.l.). Alternativt kan man skrive |x|.
- Linje(<Punkt>, <Punkt>)
 Gir linjen mellom to punkt.
- Ekstremalpunkt(<Funksjon>, <Start>, <Slutt>)
 Finner lokale topp- og bunnpunkt for en funksjon på et gitt intervall.
- Funksjon(<Funksjon>, <Start>, <Slutt>)
 Tegner en funksjon innenfor et gitt intervall.
- Mangekant(<Punkt>, ..., <Punkt>)
 Tegner mangekanten mellom gitte punkt.
- Nullpunkt(<Funksjon>, <Start>, <Slutt>)
 Gir nullpunktene til en funksjon innenfor et gitt intervall
- RegLin(<Liste>)
 Bruker regresjon med en rett linje for å tilpasse punkt gitt i en liste.
- RegEksp(<Liste>)
 Bruker regresjon med en eksponentialfunksjon for å tilpasse punkt gitt i en liste.
- RegPoly(<Liste>, <Grad>)
 Bruker regresjon med et polynom av gitt grad for å tilpasse punkt gitt i en liste.
- RegPot(<Liste>)
 Bruker regresjon med en potensfunksjon for å tilpasse punkt gitt i en liste.
- Skjæring(<Objekt>, <Objekt>)
 Finner skjæringspunktene til to objekt (funksjoner, linjer o.l.)