

Listing of the Claims:

1. (currently amended) A method implemented in a computer system, for clustering a string, the string including a plurality of characters, the method including:

- identifying R unique n-grams $T_{1\dots R}$ in the string;
- for every unique n-gram T_S :

 - if [the] a frequency of T_S in a set of n-gram statistics is not greater than a first threshold:

 - clustering the string with a cluster associated with T_S ;

otherwise:

- for every other n-gram T_V in the string $T_{1\dots R}$, except S:

 - if the frequency of n-gram T_V is greater than the first threshold:

 - if the frequency of an n-gram pair T_S-T_V is not greater than a second threshold:

 - clustering the string with a cluster associated with the n-gram pair T_S-T_V ;

otherwise:

- for every other n-gram T_X in the string $T_{1\dots R}$, except S and V:

 - clustering the string with a cluster associated with [the] an n-gram triple $T_S-T_V-T_X$;

otherwise:

- do nothing.[[.]]

where $T_{1\dots R}$ is a set of n-grams, R is the number of elements in $T_{1\dots R}$, and T_S , T_V , and T_X are members of $T_{1\dots R}$.

2. (original) The method of claim 1 further including compiling n-gram statistics.

3. (original) The method of claim 1 further including compiling n-gram pair statistics.

4. (previously presented) A method implemented in a computer system, for clustering a plurality of strings, each string including a plurality of characters, the method including:

identifying unique n-grams in each string;

clustering each string with zero or more clusters associated with low frequency n-grams from that string; and

clustering each string with zero or more clusters associated with low-frequency pairs of high frequency n-grams from that string.

5. (original) The method of claim 4 further including:

where a string does not include any low-frequency pairs of high frequency n-grams, associating that string with clusters associated with triples of n-grams including the pair.

6. (currently amended) A method implemented in a computer system, for clustering a string, the string including a plurality of characters, the method including:

- identifying R unique n-grams $T_{1...R}$ in the string;
- for every unique n-gram T_S :
- if [the] a frequency of T_S in a set of n-gram statistics is not greater than a first threshold:
- clustering the string with a cluster associated with T_S ;
- otherwise:
- for $i = 1$ to Y :
- for every unique set of i n-grams T_U in the string $T_{1...R}$, except S :
- if the frequency of the n-gram set T_S-T_U is not greater than a second threshold:
- clustering the string with a cluster associated with the n-gram set T_S-T_U ;
- if the string has not been associated with a cluster with this value of T_S :
- for every unique set of $Y+1$ n-grams T_{UY} in the string $T_{1...R}$, except S :
- clustering the string with a cluster associated with the $Y+2$ n-gram group $T_S-T_{UY_2}[[.]]$

where $T_{1...R}$ is a set of n-grams, R is the number of elements in $T_{1...R}$, T_S and T_U are members of $T_{1...R}$, T_{UY} is a subset of $T_{1...R}$, and i and Y are integers.

7. (original) The method of claim 6 where $Y = 1$.

8. (original) The method of claim 6 further including compiling n-gram statistics.

9. (original) The method of claim 6 further including compiling n-gram group statistics.

10. (currently amended) A computer program, stored on a tangible storage medium, for use in clustering a string, the program including executable instructions that cause a computer to:

identify R unique n-grams $T_{1\dots R}$ in the string;

for every unique n-gram T_S :

if [the] a frequency of T_S in a set of n-gram statistics is not greater than a first threshold:

cluster the string with a cluster associated with T_S ;

otherwise:

for every other n-gram T_V in the string $T_{1\dots R}$, except S:

if the frequency of n-gram T_V is greater than the first threshold:

if the frequency of an n-gram pair T_S-T_V is not greater than a second threshold:

cluster the string with a cluster associated with the n-gram pair T_S-T_V ;

otherwise

for every other n-gram T_X in the string $T_{1\dots R}$, except S and V:

cluster the string with a cluster associated with [the] an n-gram triple $T_S-T_V-T_X$;

otherwise:

do nothing, [[.]]

where $T_{1\dots R}$ is a set of n-grams, R is the number of elements in $T_{1\dots R}$, and

T_S , T_V , and T_X are members of $T_{1\dots R}$.

11. (original) The computer program of claim 10 further including executable instructions that cause a computer to compile n-gram statistics.

12. (original) The computer program of claim 10 further including executable instructions that cause a computer to compile n-gram pair statistics.