Matematyka dyskretna (L)

Katarzyna Paluch

Instytut Informatyki, Uniwersytet Wrocławski

2020

Najkrótsze ścieżki

Niech G = (V, E) będzie grafem spójnym.

Jak znaleźć najkrótszą ścieżkę z s do t? Jak znaleźć najkrótszą ścieżkę z s do v dla każdego wierzchołka $v \in V$?

Najkrótsze ścieżki

Niech G=(V,E) będzie grafem spójnym o nieujemnych wagach na krawędziach $c:E\to R\geq 0$.

Waga ścieżki P to suma wag krawędzi leżących na P.

Najlżejsza / najkrótsza (względem c) ścieżka z s do t to ta ze ścieżek z s do t, która ma najmniejszą wagę.

Jak znaleźć najkrótszą (wzgl. c) ścieżkę z s do t? Jak znaleźć najkrótszą (wzgl. c) ścieżkę z s do v dla każdego wierzchołka $v \in V$?

Najkrótsze ścieżki

Niech G=(V,E) będzie grafem spójnym o nieujemnych wagach na krawędziach $c:E\to R\geq 0$, a s ustalonym wierzchołkiem z V.

Niech $S\subseteq V$. Ścieżka P z s do v jest prawie S-owa / osiągalna bezpośrednio z S jeśli wszystkie wierzchołki na P oprócz v są w S. d(v) - waga najkrótszej ścieżki z s do v t(v) - waga najkrótszej prawie S-owej ścieżki z s do v; jeśli takiej scieżki nie ma, to $t(v)=\infty$

Algorytm Dijkstry

```
G = (V, E) - graf spójny; c : E \to R > 0, s \in V
d(v) - waga najkrótszej ścieżki z s do v
t(v) - waga najkrótszej prawie S-owej ścieżki z s do v; jeśli takiej scieżki
nie ma, to t(v) = \infty
S \leftarrow \{s\}, d(s) \leftarrow 0
dla każdego sąsiada v wierzchołka s: t(v) \leftarrow c(s, v)
dla pozostałych wierzchołków: t(v) \leftarrow \infty
dopóki S \neq V wykonaj:
        u \leftarrow argmin\{t(u) : u \notin S\}
        dodai u do S
        zaktualizuj wartości t(v):
        dla każdego sąsiada v \notin S wierzchołka u:
        t(v) \leftarrow \min\{t(v), d(u) + c(u, v)\}\
```

Algorytm Dijkstry

Jak zmodyfikować algorytm Dijkstry, by znajdować najkrótsze ścieżki a nie tylko wagi najkrótszych ścieżek?

Czy algorytm ten działa również:

- w grafach skierowanych?
- gdy wagi krawędzi mogą być ujemne?

Warunek Halla

Niech G = (V, E) będzie grafem a $W \subseteq V$ podzbiorem wierzchołków. Sąsiedztwo W oznaczane jako N(W) definujemy jako zbiór $\{v \in V : \exists_{w \in W} \{v, w\} \in E\}.$

Niech $G = (A \cup B, E)$ będzie grafem dwudzielnym.

Warunek Halla

Dla każdego $A' \subseteq A$ zachodzi $|N(A')| \ge |A'|$ oraz dla każdego $B' \subseteq B$ zachodzi $|N(B')| \ge |B'|$.

Skojarzenie doskonałe w grafie dwudzielnym

Niech $G = (A \cup B, E)$ będzie grafem dwudzielnym.

Warunek Halla

Dla każdego $A' \subseteq A$ zachodzi $|N(A')| \ge |A'|$ oraz dla każdego $B' \subseteq B$ zachodzi $|N(B')| \ge |B'|$.

Skojarzenie doskonałe w grafie dwudzielnym

Graf dwudzielny G zawiera skojarzenie doskonałe wtw, gdy spełniony jest w nim warunek Halla.

Pokrycie wierzchołkowe

Niech G = (V, E) bedzie grafem. Pokrycie wierzchołkowe grafu G to dowolny podzbiór $V' \subseteq V$ taki, że kaażda krawędź z E ma przynajmniej jeden z końców w V'.

Najmniejsze pokrycie wierzchołkowe grafu G to to spośród pokryć wierzchołkowych G, które zawiera najmniej wierzchołków.

Pokrycie wierzchołkowe a skojarzenie

Niech G = (V, E) bedzie grafem.

Pokrycie wierzchołkowe grafu G to dowolny podzbiór $V' \subseteq V$ taki, że kaażda krawędź z E ma przynajmniej jeden z końców w V'.

Niech M będzie jakimś skojarzeniem G a W jakimś pokryciem wierzchołkowym.

Czy możemy jakoś porównać |M| i |W|? $|M| \leq |W|$? $|M| \geq |W|$

Pokrycie wierzchołkowe a skojarzenie

Niech G=(V,E) bedzie grafem. Niech M będzie jakimś skojarzeniem G a W jakimś pokryciem wierzchołkowym.

Wtedy $|M| \leq |W|$.

Pokrycie wierzchołkowe a skojarzenie

Niech G = (V, E) bedzie grafem.

Niech M_{max} będzie największym skojarzeniem G a W_{min} najmniejszym pokryciem wierzchołkowym.

Wtedy $|M_{max}| \leq |W_{min}|$.

A może zachodzi równość?

Twierdzenie Koeniga

Niech G=(V,E) bedzie grafem dwudzielnym, M_{max} największym skojarzeniem G a W_{min} najmniejszym pokryciem wierzchołkowym. Wtedy $|M_{max}|=|W_{min}|$.