Spectral Sequence Review

Roughly speaking, a spectral sequence is a system for keeping tracking of collections of exact sequences with maps between them.

Recall the Snake Lemma: given A,B,C chain complexes fitting into a short exact sequence

$$0 \to A \overset{i}{\to} B \overset{p}{\to} C \to 0$$

there is a canonical long exact sequence in homology

$$\cdots o H_n(A) \overset{i_*}{\longrightarrow} H_n(B) \overset{p_*}{\longrightarrow} H_n(C) \overset{\delta}{\rightarrow} H_{n-1}(A) o \cdots$$

where δ is the "connecting homomorphism".

Now specialize to the case where A_* is a chain complex, $B_* \subset A_*$ is a subcomplex, and consider the quotient A_*/B_* . We have a short exact sequence

$$0 o B_*\stackrel{i}{ o} A_*\stackrel{p}{ o} A_*/B_* o 0$$

Applying the snake lemma yields the long exact sequence in homology

$$\cdots o H_n(B_*) \stackrel{i_*}{\longrightarrow} H_n(A_*) \stackrel{p_*}{\longrightarrow} H_n(A_*/B_*) \stackrel{\delta}{\rightarrow} H_{n-1}(B_*) o \cdots$$

where δ is defined in the following way:

Given an arbitrary class $\alpha\in H_n(A_*/B_*)$, pick a representative $x\in A_*$ so that $\alpha=[x]$. Since $\partial x\in B_*$, we can define

$$\partial(\alpha) = \partial([x]) := [\partial x] \in H_{n-1}(B).$$

Supposing that the computation of the homologies for the subcomplex B_{\ast} and the quotient complex A_{\ast}/B_{\ast} are tractable, we can break this long exact sequence up into a collection of short exact sequences

$$0 o\operatorname{coker}\delta o H_i(A_*) o\ker\delta o 0$$

This yields the following procedure for computing $H_i(A_st)$:

- 1. Compute $H_i(B_st)$ and $H_i(A_st/B_st)$
- 2. Look at the two term chain complex $H_i(A_*/B_*) \stackrel{\delta}{ o} H_{i-1}(B_*)$
 - 1. Take its homology, yielding G_1H_i and G_2H_i

3. Solve the extension problem for the short exact sequence $0 o G_0H_i o H_i(A_*) o G_1H_i o 0$

Filtrations

A filtered R-module is an R-module A with a sequence of submodules $\{A_i\}_{i\in\mathbb{Z}}$ such that $A_i\subset A_{i+1}$ and $\bigcup_{\mathbb{Z}}A_i=A$. Due to onerous index juggling, we write $A_i=F_iA$.

A good example of this is a CW-complex X, where F_iX is the i-skeleton of X.

Given such a filtration, we can define an associated graded module B where $B_i=A_i/A_{i-1}$. This can yield a short exact sequence

$$0 \rightarrow A_{i-1} \rightarrow A_i \rightarrow B_i \rightarrow 0$$

A filtered chain complex is a chain complex (C_*,∂) along with a filtration on each n-chain, $\{F_iC_n\}_{i\in\mathbb{Z}}$, such that $\partial(F_iC_n)\subseteq F_iC_{n-1}$ (i.e. the differential preserves the filtration).

Possible example: Compute Serre spectral sequences with \mathbb{F}_p coefficients.

Example

The most basic example is a spectral sequence is $E_{p,q}^r$, where r denotes the page of the spectral sequence and the $E_{p,q}$ is a bigraded collection of abelian groups. Furthermore, we can take a "first quadrant" sequence, where only the p>0, q>0 terms are nontrivial. The differentials are then defined on any given page as a "shift map" that translates p+r horizontal indices and q-(r-1) vertical indices (direction depends on indexing vs. "coindexing"). Here is an example of an r=2 page:

$$E_{2}^{0,2} E_{2}^{1,2} E_{2}^{2,2} E_{2}^{3,2}$$

$$E_{2}^{0,1} E_{2}^{1,1} E_{2}^{1,1} E_{2}^{2,1} E_{2}^{3,1} \cdots$$

$$E_{2}^{0,0} E_{2}^{1,0} E_{2}^{1,0} E_{2}^{2,0} E_{2}^{3,0}$$

In this case, $\lim_{r o\infty}E^r_{p,q}$ stabilizes for any given (p,q) term, so we define it as $E^\infty_{p,q}$.

Common Types

Serre

- Cohomology groups of spaces in a fibration
- Leray-Serre
 - o "Cohomology" of complexes of sheaves
 - Special case of Grothendieck
- Grothendieck
 - The resulting derived functor from a composition of two known derived functors
- Adams
 - Higher homotopy groups of spheres