# SIGNS WITH SMART CONNECTIVITY FOR BETTER ROAD SAFETY

# PROJECT REPORT

# **Submittted by**

| Team ID      | PNT2022TMID48891              |  |  |  |  |
|--------------|-------------------------------|--|--|--|--|
| Team Members | Team Leader : S.Uma Maheswari |  |  |  |  |
|              | Team Member 1: G.Ramya        |  |  |  |  |
|              | Team Member 2: S.Parveen      |  |  |  |  |
|              | Team Member 3: C.Gayathri     |  |  |  |  |
|              |                               |  |  |  |  |

# **CONTENTS**

#### 1. INTRODUCTION

**Project Overview** 

**Purpose** 

#### 2. LITERATURE

**SURVEY2.1Existing** 

problems

### **References**

**Problem Statement Definition** 

3. IDEATION & PROPOSED SOLUTION

**Empathy Map Canvas** 

**Ideation & Brainstorming** 

**Proposed Solution** 

#### **Problem Solution fit**

### 4. REQUIREMENT ANALYSIS

### **Functional requirement**

Non-Functional requirements 5

. PROJECT DESIGN

**Data Flow Diagrams** 

**Solution & Technical Architecture** 

**User Stories** 

6. PROJECT PLANNING & SCHEDULING

**Sprint Planning & Estimation** 

**Sprint Delivery Schedule** 

**Reports from JIRA** 

7 .CODING & SOLUTIONING

Feature 1

Feature 2

8.TESTING

**Test Cases** 

**User Acceptance Testing** 

9. RESULTS

**Performance Metrics** 

10. ADVANTAGES &DISADVANTAGES

11.CONCLUSION

12. FUTURE SCOPE

13. APPENDIX

# 1. Introduction

# **Project Overview**

This goal of this project is to replace the static signboards with smart connected

sign boards to get the speed limitations from a web app using weather API and update with automatically based on the weather conditions, set diversions through API and warn drivers for school zones and hospital zones.

### **Purpose**

To replace the static signboards, smart connected sign boards are used.

- These smart connected sign boards get the speed limitations from a web app using weather API and update automatically.
- Based on the weather changes the speed may increase or decrease.
- Traffic diversion signs are displayed.
- Messages indicating school, hospital, police station zones arealso displayed.

### 2. Literature Survey

### **Existing problem**

A phenomenon in transportation known as traffic congestion may involve large crowds ,slowed vehicle speeds ,and even longer vehicle lengths . when there is a high demand for traffic ,the interaction of the moving cars slows down the of traffic which eventually leads to the congestion. Smart traffic management systems can be implemented in the correct situation to address these issues ,and we are now researching ways to create cities with no traffic .this system aids in traffic monitoring.

#### References

| S.No | Paper Title | AUTHOR | PUBLICATION |  |
|------|-------------|--------|-------------|--|
|      |             | NAME   | YEAR        |  |

| 1. | European road<br>assement<br>program(Euro<br>Rap)   | European Road<br>safety Atlas | 2020 |
|----|-----------------------------------------------------|-------------------------------|------|
| 2. | Save LIVES-A<br>road<br>safety technical<br>package | World Health<br>Oraganization | 2017 |
| 3. | Global Status<br>report<br>on Road safety           | World Health<br>Oraganization | 2015 |

#### **Problem Statement Definition**

Many factors increase both the risk of road traffic crashes and the risk of death or injury they result in. Driving at speed significantly increases both the likelihood of a crash occurring, and the severity of it's consequences. For every 1% increase in mean speed there is a 4% increase in fatal crash risk.

# 3. Ideation and Proposed Solution

**Empathy Map Canvas** 



### **Ideation & Brainstorming**

Step-1: Team Gathering, Collaboration and Select the Problem Statement



# **Proposed Solution**

| SI.NO | Parameters                               | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.    | Problem Statement (problem to be solved) | Many factors increase both the risk of road traffic crashes and the risk of death or injury they result in. Driving at speed significantly increases both the likelihood of a crash occurring. People failure to understand signs and violation of rules. Traffic management is an essential part of modern mobility, and traffic signals help optimize the existing network in the best possible way. It monitors and controls various modes of traffic in order to avoid congestion and to improve traffic flow. |
| 2.    | Idea/Solution<br>description             | Smart traffic lights can also be synced to the movement of larger vehicles or conditioned to respond appropriately to situations like gridlock or blockage.  Simple programming modes of traffic in                                                                                                                                                                                                                                                                                                                |

|    |                    | order to avoid                           |
|----|--------------------|------------------------------------------|
|    |                    | congestion and to improve                |
|    |                    | traffic Smart programming and            |
|    |                    | digitization can be used to control      |
|    |                    | traffic light operations in both larger  |
|    |                    | and small urban areas When traffic       |
|    |                    | lights co-ordinate ideally and respond   |
|    |                    | to demand in real-time, Road capacity    |
|    |                    | can be maximized quickly. All of this    |
|    |                    | programming can be done with expert      |
|    |                    | knowledge.                               |
|    |                    |                                          |
|    |                    |                                          |
| 3. | Novelty/Uniqueness | A display via smart phone is             |
|    |                    | also possible. This improves             |
|    |                    | convenience for drivers and              |
|    |                    | leads to beter traffic flow and less air |
|    |                    | pollution.                               |
|    |                    | Dynamic of sign board.                   |
|    |                    | Gives more detailed                      |
|    |                    | information to the road drivers.         |
|    |                    |                                          |
| 4. | Social             | Reduced accident rates.                  |
|    | Impact/Customer    | Increase travel speeds.                  |
|    | Satisfaction       | Increase operational efficiency. Real    |
|    |                    | time information management.Create a     |
|    |                    | platform for sharing                     |
|    |                    | traffic to other systems.                |
|    |                    | Environment friendly.                    |
|    |                    |                                          |
|    |                    |                                          |
|    |                    |                                          |

| 5. | Business Model(Revenue Model) | the European standards EN12368 and IP65 grade with 5 years performance warranty. Selling project to the highway departments. It will provide service where the accidents avoid is play vital role in road.    |
|----|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6. | Scalability of the Solution   | Adaptive traffic control system (ATCS) considers developing countries traffic scenarios, vehicular movements and responds in real time. It uses downstream detection and provides user friendly interface to. |

# Problem

### Project design phase -1- solution fit template Project Title: Signs with Smart Connectivity for Better Road Safety Team ID: PNT2022TMID48891 1.CUSTOMER SEGMENT(S) 6. CUSTOMER CONSTRAINTS 5. AVAILABLE SOLUTIONS People say road kills one person every 24 seconds Identify accidents because over 50% tatal crashes onroadways with speed limit 55mph. Speed limit to be displayed automatically according to the weather condition. In fatal solutions the diversion signs are displayed automatically. 2. JOBS-TO-BE-DONE / PROBLE 1839 9. PROBLEM ROOT CAUSE 7. BEHAVIOUR The higher speed, the higher accident risk and the more severe the accident consequences. Protect the persons from Determine the speed limit for the accidents. road on the vehicles with auto break \_ 75 0 6 25 4



### 4. Requirement Analysis

#### **Functional Requirements**

| FR No. | Functional    | Sub Requirement                        |
|--------|---------------|----------------------------------------|
|        | Requirement   | (Story/Sub-Task)                       |
|        | (Epic)        |                                        |
|        |               |                                        |
| FR-1   | User tracking | Speed Limit To be displayed            |
|        |               | automatically according to the weather |

|      |                 | condition. In fatal situations the diversion signs are displayed automatically. |
|------|-----------------|---------------------------------------------------------------------------------|
| FR-2 | Weather         | Using open weather Map                                                          |
| FR-3 | User interface  | Open API (application programming interface) Keys                               |
| FR-4 | Data processing | The speed limitation & diversion sign must be updated in a web App.             |
| FR-5 | Sensor          | Stand -alone-safety sensor GPS Sensor                                           |

# Non-functional Requirements

| FR NO. | Non-Functional<br>Requirement | Description                                                                             |
|--------|-------------------------------|-----------------------------------------------------------------------------------------|
| NFR-1  | Usability                     | Indicates how framework should operate for the Customer or end-user                     |
| NFR-2  | Security                      | Focuses on how the framework is kept secure, store information and react to the attacks |
| NFR-3  | Reliability                   | Characterizes the frameworks accessibility                                              |

|       |              | and the tolerance for disappointment.                                                                                                           |
|-------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| NFR-4 | Performance  | Focuses on the system speed, efficiency and workload.                                                                                           |
| NFR-5 | Availability | It could be a metric that measures the probability that a framework is not failed or experiencing a repair activity when it should be utilized. |
| NFR-6 | Scalability  | Ensures the framework can react to changes in request.                                                                                          |

# 5. Project Design

# **Data-Flow Diagrams**

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.



# **Components & Technologies**



# **User Stories**

| <b>User Type</b> | Functional   | <b>User Story</b> | User           | Acceptance   | Priority |
|------------------|--------------|-------------------|----------------|--------------|----------|
|                  | Requireme    | Number            | Story/Task     | criteria     |          |
|                  | nt           |                   |                |              |          |
|                  | (Epic)       |                   |                |              |          |
|                  |              |                   |                |              |          |
| Customer         | Registration | USN-1             | I can get my   | I can get    | High     |
| (Mobile User)    |              |                   | speed          | speed        |          |
|                  |              |                   | imperative     | limitations. |          |
|                  |              |                   | using          |              |          |
|                  |              |                   | climate        |              |          |
|                  |              |                   | application    |              |          |
|                  |              |                   |                |              |          |
|                  |              | USN-2             | As a client, I | I can get to | Medium   |
|                  |              |                   | can            | my           |          |
|                  |              |                   | enlist for the | account/dash |          |
|                  |              |                   | application by | board        |          |
|                  |              |                   | entering my    |              |          |
|                  |              |                   | e-mail,        |              |          |

|     |       |        | mystery        |                |          |
|-----|-------|--------|----------------|----------------|----------|
|     |       |        | phrase and     |                |          |
|     |       |        | affirming my   |                |          |
|     |       |        | mystery        |                |          |
|     |       |        | phrase         |                |          |
|     |       |        |                |                |          |
|     |       | USN-3  | As a client, I | I can increase | High     |
|     |       |        | can            | or             |          |
|     |       |        | increment or   | decrease my    |          |
|     |       |        | lessening my   | speed          |          |
|     |       |        | speed          | •              |          |
|     |       |        | as             |                |          |
|     |       |        | demonstrat     |                |          |
|     |       |        | ed by          |                |          |
|     |       |        | the climate    |                |          |
|     |       |        | conditions     |                |          |
|     |       |        |                |                |          |
|     |       |        | change         |                |          |
|     |       | USN-4  | A = = = !! = ! | 1              | NA alt - |
|     |       | USIN-4 | As a client, I | I can get to   | Medium   |
|     |       |        | may I at       | my             |          |
|     |       |        | any point get  | traffic status |          |
|     |       |        | my             | ahead          |          |
|     |       |        | activity       | in my          |          |
|     |       |        | redirection    | development    |          |
|     |       |        | signs          |                |          |
|     |       |        | depending      |                |          |
|     |       |        | upon the       |                |          |
|     |       |        | activity       |                |          |
|     |       |        | and deadly     |                |          |
|     |       |        | circumstanc    |                |          |
|     |       |        | es             |                |          |
|     |       |        |                |                |          |
|     | Login | USN-5  | As a client, I | I can get to   |          |
|     |       |        | can sign       | the            | High     |
|     |       |        | out from the   | application    | -        |
|     |       |        | dim            | through        |          |
|     |       |        | climate        | my Gmail       |          |
| i . | 1     |        | Cilliate       | i iiiy Uillall |          |

|                        | Interface                                | USN-6 | outline by entering e- mail and mystery key  As a client                                                                     | login                                                                    | High   |
|------------------------|------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------|
|                        | menue                                    |       | the association point got to be straight forward and succeefully open                                                        | the point interaction without any issue                                  |        |
| Customer<br>(Web User) | Data<br>generation                       | USN-7 | As a client I use open climate application to get to the data in respects                                                    | I can get to<br>the data<br>concerning<br>through<br>the<br>application  | High   |
| Director               | Problem<br>solving<br>Fault<br>Clearance | USN-8 | As an in specialist charge for the authentic working of the sign sheets have to be keep up with it through periodic watching | Specialist can<br>screen<br>the sign<br>sheets for<br>genuine<br>working | Medium |

# 6. Project planning & scheduling

**Sprint planning & Estimation** 

| Sprint   | Functional                                             | User                                                                                  | Story  | priority |
|----------|--------------------------------------------------------|---------------------------------------------------------------------------------------|--------|----------|
|          | Requireme                                              | Story/Task                                                                            | Points |          |
| Sprint-1 | Initializing the resources                             | Create an account in Open Weather API                                                 | 5      | LOW      |
| Sprint-1 | Code in<br>Software is<br>written                      | Write a python<br>script using the<br>inputs given<br>from<br>Open Weather<br>API     | 5      | MEDIUM   |
| Sprint-2 | Sending the software to cloud                          | The python code from sprint 1 should be sent to cloud so that it is easily accessible | 5      | MEDIUM   |
| Sprint-3 | Initializing the connection between hardware and cloud | The hardware should be integrated for the easy access of the cloud functions          | 5      | HIGH     |
| Sprint-4 | User input output optimization and error               | Rectify all the shortcomings/ errors and initiate the                                 | 5      | HIGH     |

| identification | optimization |  |
|----------------|--------------|--|
| and            | for          |  |
| rectification  | better usage |  |
|                |              |  |

### **Sprint Delivery Schedule**

| Sprint   | Total story points | Duration | Story points completed |
|----------|--------------------|----------|------------------------|
| Sprint-1 | 20                 | 4 Days   | 20                     |
| Sprint-2 | 20                 | 4 Days   | 20                     |
| Sprint-3 | 20                 | 4 Days   | 20                     |
| Sprint-4 | 20                 | 4 Days   | 20                     |

# **Velocity:**

We have a 4 day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

AV= Sprint duration/Velocity = 20/4=5

### **Burndown Chart:**

A burndown chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burndown charts can be applied to any project containing measurable progress overtime.

# 7. Coding and Solutioning

**Feature 1**GET WEATHER DETAILS FOR GIVEN LOCATION



### 8. Testing

Test cases

TEST CASE 1

Temperature': 303.03, 'Humidity': 51, 'Pressure': 1010, 'Message': 'SLOW DOWN, SCHOOLIS NEAR', 'Sign': ", 'Speed': ", 'Visibility': 'Clear Weather'

• TEST CASE 2

Temperature': 303.03, 'Humidity': 51, 'Pressure': 1010, 'Message': ", 'Sign': 'Left Diversion <-', 'Speed': 'SLOW DOWN, Speed Limit Exceeded', 'Visibility': 'Clear Weather'

• TEST CASE 3

Temperature': 303.03, 'Humidity': 51, 'Pressure': 1010, 'Message': 'SLOW DOWN,

**HOSPITAL** 

NEARBY', 'Sign': 'Left Diversion <-', 'Speed': ", 'Visibility': 'Clear Weather'

• TEST CASE 4

Temperature': 303.03, 'Humidity': 51, 'Pressure': 1010, 'Message': 'NEED HELP, POLICE STATION NEARBY', 'Sign': 'U Turn', 'Speed': 'Moderate Speed', 'Visibility': 'Clear Weather'.

#### **User Acceptance Testing**

Dynamic speed & divertion variations based on the weather and traffic helps user to avoid traffic and have a safe journey home. The users would welcome this idea to be implemented everywhere.

### 9. Results

#### **Performance Metrics**

The performance of the website varies based on the software chosen for implementation .

Built upon NodeJS, a light and high performance engine, NodeRED is capable of handling upto 10,000 requests per second. Moreover, since the system is horizontally scalable, a even higher demand of customers can be served.

### 10. Advantages and Disadvantages

#### **Advantages**

- > Lower battery consumption since processing is done mostly by Node RED servers in he cloud
- > Cheaper and low requirement micro controllers can be used since processing requirements are reduced.
- ➤ Longer lasting systems.
- ➤ Dynamic Sign updation.
- ➤ School/Hospital Zone alerts

#### **Disadvantages**

- The size of the display determines the requirement of the micro controller.
- ➤ Dependent on OpenWeatherAPI and hence the speed reduction is same for a large areain the scale .

### 11. Conclusion

Our project is capable of serving as a replacement for static signs for comparatively lower cost and can be implemented in the very near future. This will helpreduce a lot of accidents, traffics and maintain a peaceful environment.

### 12. Future Scope

Introduction of intelligent road sign groups in real life scenarios could have great impact on increasing the driving safety by providing the end-user with the most accurate information regarding the current road and traffic conditions. Even displaying the information of a suggested driving speed and road surface condition (temperature, icy, wet or dry surface) could result in smoother traffic flows and, what is more important, inincreasing a driver's awareness of the road situation.

# 13. Appendix

**Github Link:** https://github.com/IBM-EPBL/IBM-Project-2366-1658470402

**Project Demonstration Link:** 

https://drive.google.com/file/d/1ZOKnA9yvLOqV4AP8BWEA-

2WjZv3UzNI7/view?usp=share\_link