

Отчёт по практическому заданию по БММО «Байесовские рассуждения»

Вариант 1

Аят Оспанов

617 гр., ММП, ВМК МГУ, Москва 20 сентября 2017 г.

Содержание

1	Математические ожидания и дисперсии априорных распределений	2					
	1.1 $p(a), p(b)$	2					
	1.2 $p(c), p(d)$	2					
	1.3 Численные значения	3					
2	Уточнение прогноза для величины c по мере прихода новой косвенной						
	информации	3					
	2.1 Распределение $p(c)$	3					
	2.2 Распределение $p(c a)$	3					
	2.3 Распределение $p(c b)$	4					
	2.4 Распределение $p(c d)$	4					
	2.5 Распределение $p(c a,b,d)$	4					
	2.6 Наблюдение	4					
3	Наибольший вклад в уточнение прогноза для величины $\it c$	6					
4	Временные замеры						
5	Сравнение результатов для двух моделей						

1 Математические ожидания и дисперсии априорных распределений

1.1 p(a), p(b)

По условию $a \sim \text{Unif}[a_{min}, a_{max}], b \sim \text{Unif}[b_{min}, b_{max}].$ Тогда матожидания и дисперсии считаются по определению:

$$\mathbb{E}a = \frac{a_{min} + a_{max}}{2} \tag{1}$$

$$\mathbb{E}b = \frac{b_{min} + b_{max}}{2} \tag{2}$$

$$\mathbb{D}a = \frac{(a_{max} - a_{min} + 1)^2 + 1}{12} \tag{3}$$

$$\mathbb{D}b = \frac{(b_{max} - b_{min} + 1)^2 + 1}{12} \tag{4}$$

1.2 p(c), p(d)

Воспользуемся следующими свойствами условных матожидания и дисперсии:

$$\mathbb{E}X = \mathbb{E}\mathbb{E}[X|Y]$$

$$\mathbb{D}X = \mathbb{ED}[X|Y] + \mathbb{DE}[X|Y]$$

По условию, для модели 1, $c|a,b \sim \text{Bin}(a,p_1) + \text{Bin}(b,p_2); d|c \sim c + \text{Bin}(c,p_3).$ Тогда:

$$\mathbb{E}c = \mathbb{E}_{a,b}\mathbb{E}_c[c|a,b] = \mathbb{E}_{a,b}[ap_1 + bp_2] = p_1\mathbb{E}a + p_2\mathbb{E}b$$
 (5)

$$\mathbb{E}d = \mathbb{E}_c \mathbb{E}_d[d|c] = \mathbb{E}_c[c + cp_3] = \mathbb{E}[c] + \mathbb{E}[cp_3] = (1+p_3)\mathbb{E}c$$
(6)

$$\mathbb{D}c = \mathbb{E}_{a,b}\mathbb{D}_{c}[c|a,b] + \mathbb{D}_{a,b}\mathbb{E}_{c}[c|a,b] = \mathbb{E}_{a,b}[ap_{1}(1-p_{1}) + bp_{2}(1-p_{2})] + \mathbb{D}_{a,b}[ap_{1} + bp_{2}] =
= p_{1}(1-p_{1})\mathbb{E}a + p_{2}(1-p_{2})\mathbb{E}b + p_{1}^{2}\mathbb{D}a + p_{2}^{2}\mathbb{D}b$$

$$\mathbb{D}d = \mathbb{E}_{c}\mathbb{D}_{d}[d|c] + \mathbb{D}_{c}\mathbb{E}_{d}[d|c] = \mathbb{E}_{c}[0 + cp_{3}(1-p_{3})] + \mathbb{D}_{c}[c + cp_{3}] =
= p_{3}(1-p_{3})\mathbb{E}c + (1+p_{3})^{2}\mathbb{D}c$$
(8)

Для модели 2 $c|a,b \sim \text{Poiss}(ap_1 + bp_2)$. При этих условиях меняется только дисперсия:

$$\mathbb{D}c = \mathbb{E}_{a,b}\mathbb{D}_c[c|a,b] + \mathbb{D}_{a,b}\mathbb{E}_c[c|a,b] = \mathbb{E}_{a,b}[ap_1 + bp_2] + \mathbb{D}_{a,b}[ap_1 + bp_2] =$$

$$= p_1\mathbb{E}a + p_2\mathbb{E}b + p_1^2\mathbb{D}a + p_2^2\mathbb{D}b$$
(9)

1.3 Численные значения

	Модель 1	Модель 2
$\mathbb{E}a$	82.5	82.5
$\mathbb{E}b$	550.0	550.0
$\mathbb{E}c$	13.75	13.75
$\mathbb{E}d$	17.875	17.875
$\mathbb{D}a$	21.25	21.25
$\mathbb{D}b$	850.0	850.0
$\mathbb{D}c$	13.1675	14.0475
$\mathbb{D}d$	25.1405	26.6277

2 Уточнение прогноза для величины c по мере прихода новой косвенной информации

2.1 Распределение p(c)

$$p(c) = \sum_{a=a_{min}}^{a_{max}} \sum_{b=b_{min}}^{b_{max}} p(a,b,c) = \sum_{a=a_{min}}^{a_{max}} \sum_{b=b_{min}}^{b_{max}} p(c|a,b)p(a,b) = \sum_{a=a_{min}}^{a_{max}} \sum_{b=b_{min}}^{b_{max}} p(c|a,b)p(a)p(b) =$$

$$= p(a)p(b) \sum_{a=a_{min}}^{a_{max}} \sum_{b=b_{min}}^{b_{max}} p(c|a,b) = \{\text{формула свертки} + \text{смена порядка суммирования}\} =$$

$$= p(a)p(b) \sum_{k=0}^{a_{max}} \sum_{a=a_{min}}^{a_{max}} \sum_{b=b_{min}}^{a_{max}} p_A(k) \sum_{b=b_{min}}^{b_{max}} p_B(a_{max} + b_{max} - k). \tag{10}$$

Где:

$$A \sim \mathrm{Bin}(a,p_1), B \sim \mathrm{Bin}(b,p_2)$$
 (для 1 модели) $A \sim \mathrm{Poiss}(ap_1), B \sim \mathrm{Poiss}(bp_2)$ (для 2 модели)

2.2 Распределение p(c|a)

$$p(c|a) = \sum_{b=b_{min}}^{b_{max}} p(c|a,b)p(b) = p(b) \sum_{b=b_{min}}^{b_{max}} p(c|a,b) =$$
{аналогично с $p(c)$ } = $p(b) \sum_{k=0}^{a_{max}+b_{max}} p_A(k) \sum_{b=b_{min}}^{b_{max}} p_B(a_{max}+b_{max}-k).$ (11)

2.3 Распределение p(c|b)

Аналогично с p(c|a)

$$p(c|b) = p(b) \sum_{k=0}^{a_{max} + b_{max}} p_B(a_{max} + b_{max} - k) \sum_{a=a_{min}}^{a_{max}} p_A(k).$$
 (12)

2.4 Распределение p(c|d)

$$p(c|d) = \frac{p(d|c)p(c)}{p(d)} \propto p(d|c)p(c)$$
(13)

2.5 Распределение p(c|a,b,d)

$$p(c|a,b,d) = \frac{p(a,b,c,d)}{p(a,b,d)} = \frac{p(d|c)p(c|a,b)p(a)p(b)}{p(a,b,d)} \propto p(d|c)p(c|a,b)$$
(14)

2.6 Наблюдение

Из Рис. 1 видно, что добавление информации о количестве студентов (a, b) не уточняет прогноз для величины c. Но добавление информации о записавшихся на лекцию (d) существенно уточняет прогноз. Также видна похожесть графиков p(c|d) и p(c|a,b,d), что подтверждает, что a и b не влияют на прогноз.

Из Таблиц 1 и 2 можно понять насколько идет уточнение. В случае добавления a и b дисперсия уменьшается по сравнению с p(c), но меняется незначительно. А при добавлении d дисперсия значительно снижается, что показывает хорошое уточнение прогноза.

	Таблица 1: Модель 1							
	p(c)	p(c a)	p(c b)	p(c d)	p(c a,b)	p(c a,b,d)		
Матожидание	13.7500	13.8	13.7500	13.895971	13.800	13.902756		
Дисперсия	13.1675	13.0	13.0825	1.533582	12.915	1.530140		

	Таблица 2: Модель 2						
$\mid \mathrm{p}(\mathrm{c}) \mid \mathrm{p}(\mathrm{c} \mathrm{a}) \mid \mathrm{p}(\mathrm{c} \mathrm{b}) \mid \mathrm{p}(\mathrm{c} \mathrm{d})$					p(c a,b)	p(c a,b,d)	
Матожидание	13.7500	13.8	13.7500	13.893834	13.8	13.900175	
Дисперсия	14.0475	13.885	13.9625	1.543943	13.8	1.540884	

Также по таблицам видно, что 2 модель показывает примерно те же матожидания, что и 1 модель, но дисперсии чуть больше, т.к. 2 модель является приближением 1 модели, что приводит к потере точности.

Рис. 1: Распределения вероятностей

3 Наибольший вклад в уточнение прогноза для величины c

Программным путем было выяснено, что для допустимых значений a,b,d верны выражения $\mathbb{D}[c|d] < \mathbb{D}[c|d] < \mathbb{D}[c|d] < \mathbb{D}[c|b]$:

Модель	$\max \mathbb{D}[c d]$	$\min \mathbb{D}[c a]$	$\min \mathbb{D}[c b]$
1	10.2986909051	12.28	12.5875
2	12.8941557054	13.085	13.4625

Далее вычислим множество точек (a,b) таких, что $\mathbb{D}[c|b] < \mathbb{D}[c|a]$:

$$\mathbb{D}_{c}[c|a] = \mathbb{E}_{b}\mathbb{D}_{c}[c|a,b] + \mathbb{D}_{b}\mathbb{E}_{c}[c|a,b] = \mathbb{E}_{b}[ap_{1}(1-p_{1}) + bp_{2}(1-p_{2})] + \mathbb{D}_{b}[ap_{1} + bp_{2}] =
= ap_{1}(1-p_{1}) + p_{2}(1-p_{2})\mathbb{E}b + p_{2}^{2}\mathbb{D}b.$$
(15)

Аналогично:

$$\mathbb{D}_c[c|b] = p_1(1-p_1)\mathbb{E}a + bp_2(1-p_2) + p_1^2\mathbb{D}a. \tag{16}$$

Далее решим $\mathbb{D}[c|b] < \mathbb{D}[c|a]$:

$$p_1(1-p_1)\mathbb{E}a + bp_2(1-p_2) + p_1^2\mathbb{D}a < ap_1(1-p_1) + p_2(1-p_2)\mathbb{E}b + p_2^2\mathbb{D}b$$

$$bp_2(1-p_2) - ap_1(1-p_1) < p_2(1-p_2)\mathbb{E}b + p_2^2\mathbb{D}b - p_1(1-p_1)\mathbb{E}a - p_1^2\mathbb{D}a$$
 Пусть $A = p_1(1-p_1); B = p_2(1-p_2);$
$$C = p_2(1-p_2)\mathbb{E}b + p_2^2\mathbb{D}b - p_1(1-p_1)\mathbb{E}a - p_1^2\mathbb{D}a$$

Тогда видно, что неравенство линейное относительно (a, b):

$$Bb - Aa < C \tag{17}$$

Следовательно для $\mathbb{D}[c|b] \geq \mathbb{D}[c|a]$: $Bb - Aa \geq C$. Это и означает линейную разделимость множеств $\{(a,b)|\mathbb{D}[c|b] < \mathbb{D}[c|a]\}$ и $\{(a,b)|\mathbb{D}[c|b] \geq \mathbb{D}[c|a]\}$ прямой Bb - Aa = C.

Для модели 2 линейность сохраняется и меняются лишь константы.

4 Временные замеры

Таблица 3: Время вычислений распределений, в сек

Модель	p(c)	p(c a)	p(c b)	p(c d)	p(c a,b)	p(c a,b,d)	p(d)
1	0.012417	0.011621	0.000789	0.011432	0.000493	0.000585	0.072148
2	0.005038	0.004840	0.000393	0.005094	0.000146	0.000253	0.068229

5 Сравнение результатов для двух моделей

При апроксимации биномиального распределения пуассоновским распределением, мы отметили, что можем с высокой точностью приблизить при большом количестве испытаний и маленькой вероятности успеха. Следовательно, максимальная разница проявляется при высоких вероятностях успеха. Например, возьмем $p_1 = p_2 = 0.99$ (a = 100, b = 200). Тогда:

 $\mathbb{D}c = 2.0746983826247742$ для модели 1

 $\mathbb{D}c = 296.99999999816646$ для модели 1

Но, как показывает таблица из пункта 4, такая аппроксимация дает прирост в среднем на 2 раза. Если выполнены условия аппроксимации и важно время выполнения, то можно использовать модель 2, но в целом лучше использовать модель 1.