Introducción al Procesamiento de Señales Curso 2013

Clase 12

Javier G. García

5 de noviembre de 2013

Muestreo de señales continuas

Dada x(t) real o compleja,

- Para procesarla digitalmente necesito convertirla al dominio discreto → Muestreo.
- Muestreo uniforme (tomo muestras equiespaciadas de la señal continua) x[n] = x(nT)
- ▶ Intervalo de muestreo: T [seg.].
- Frec. de muestreo: $f_s = \frac{1}{T} [Hz]$.
- ¿Bajo qué condiciones?

Muestreo uniforme

Dada x(t) real o compleja, (sin deltas!)

- $ightharpoonup x[n] \triangleq x(nT), n \in \mathbb{Z}$
- ► Intervalo de muestreo: T.
- Frec. de muestreo: $f_s = \frac{1}{\tau}$.
- Descripción alternativa:

$$x_{p}(t) = x(t)p_{T}(t) = \sum_{n=-\infty}^{\infty} x(t)\delta(t-nT) = \sum_{n=-\infty}^{\infty} x(nT)\delta(t-nT)$$

Muestreo de señales senoidales

- Si $x(t) = cos(2\pi f_0 t + \phi) \Rightarrow x[n] = cos(2\pi s_0 n + \phi), \quad s_0 = f_0 T.$
- ▶ Los valores $s_k = f_0 T + k$ producen la misma secuencia!
- ▶ ¿Cómo elijo *T*?

¿Qué sucede en el espectro?

Tenemos tres transformadas:
$$X(f) = \mathcal{F}\{x(t)\},$$

 $X_P(f) = \mathcal{F}\{x_P(t)\}$, y $X(e^{j2\pi s}) = TFTD\{x[n]\}.$
 $X_P(f) = \int_{-\infty}^{\infty} x_P(t)e^{-j2\pi ft}dt = \sum_{n=-\infty}^{\infty} x(nT)e^{-j2\pi fnT} = X(e^{j2\pi fT})$
 $X(e^{j2\pi fT}) = \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} X(\lambda)e^{j2\pi\lambda nT}d\lambda e^{-j2\pi fnT}$
 $= \int_{-\infty}^{\infty} X(\lambda) \sum_{n=-\infty}^{\infty} e^{j2\pi(\lambda-f)nT}d\lambda$
 $= \int_{-\infty}^{\infty} X(\lambda)\frac{1}{T}\sum_{k=-\infty}^{\infty} \delta\left((\lambda-f)-\frac{k}{T}\right)d\lambda$
 $= \frac{1}{T}\sum_{k=-\infty}^{\infty} X\left(f+\frac{k}{T}\right)$

Teorema del Muestreo

Sea x(t) una señal de banda limitada (X(t) = 0 si $|t| < t_M$). Entonces, x(t) se determina unívocamente mediante sus muestras x[n] = x(nT) $n = \dots, -1, 0, 1, \dots$ si

$$f_s > 2f_M$$

donde

$$f_s=\frac{1}{T}$$

Teorema del Muestreo

Nyquist-Shannon-Whittaker

$$X(e^{j2\pi fT}) = X_P(f) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X\left(f + \frac{k}{T}\right)$$

Consecuencias:

- ► Muestreo en tiempo ⇔ periodicidad en frecuencia.
- Replicado del espectro original cada f_s
- Relación de frecuencias: s = fT
- ▶ $|s| \leq \frac{1}{2} \Leftrightarrow |f| \leq f_s/2$

Señales de Banda Limitada

- (a) Señal de banda limitada: $\exists f_M / X(f) = 0$ si $|f| \ge f_M$
- (b) Señal de banda no limitada: $\# f_M$

Caso 1

Muestreo x(t) de banda limitada con $f_s \ge 2f_M$.

Caso 1

Muestreo x(t) de banda limitada con $f_s \ge 2f_M$.

- No se solapan las réplicas.
- $X(e^{j2\pi s}) = \frac{1}{T}X\left(\frac{s}{T}\right), |s| \le \frac{1}{2}$
- $f_s = 2f_M$ es la Frecuencia de Nyquist.
- No hay distorsión del espectro.
- Posibilidad de reconstrucción.

Caso 2

Muestreo x(t) de banda limitada con $f_s < 2f_M$.

Caso 2

Muestreo x(t) de banda limitada con $f_s < 2f_M$.

- ► Se solapan las réplicas: Aliasing
- ▶ Distorsión del espectro ⇒ Imposibilidad de reconstrucción.

Caso 3

Muestreo x(t) de banda no limitada.

Caso 3

Muestreo x(t) de banda no limitada.

- Siempre hay solapamiento.
- ► Toda señal de duración finita es de banda no limitada.
- Señales reales son de banda no limitada.
- ► El ancho de banda *práctico* es siempre finito.
- Filtro *Antialiasing*: Pasa Bajos hasta $f_s/2$.

Reconstrucción ideal

Tenemos x[n], muestras de x(t) de banda limitada con $f_s \ge 2f_M$

ldea: Filtrar $x_p(t)$ con un filtro pasa bajos ideal.

$$H(f) = T \sqcap (fT) \Leftrightarrow h(t) = \operatorname{sinc}\left(\frac{t}{T}\right)$$

Reconstrucción ideal

Tenemos x[n], muestras de x(t) de banda limitada con $f_s \ge 2f_M$

$$x(t) = \{x_p * h\}(t) = \int_{-\infty}^{\infty} \operatorname{sinc}\left(\frac{\tau}{T}\right) \left[\sum_{n=-\infty}^{\infty} x(nT)\delta(t-\tau - nT)\right] d\tau$$

$$x(t) = \sum_{n=-\infty}^{\infty} x(nT) \operatorname{sinc}\left(\frac{t-nT}{T}\right)$$
 (Teorema de Shannon)

▶ Para
$$t = n_0 T$$
, sinc $\left(\frac{n_0 T - nT}{T}\right) = \delta[n - n_0]$

- ▶ Para $t \neq n_0 T$ todas las muestras contribuyen.
- ▶ h(t) es no causal \Rightarrow No es práctico (off-line).

► Reconstructor causal:
$$\hat{x}(t) = \sum_{n=-\infty}^{\lfloor t/T \rfloor} x(nT)h(t-nT)$$

Reconstructor de orden cero

$$\hat{x}(t) = x[n], nt \le t < nT + T, \forall n \in \mathbb{Z}$$

$$h_{zoh}(t) = \sqcap \left(rac{t - T/2}{T}
ight) \Leftrightarrow H_{zoh}(t) = T \mathrm{sinc}\left(fT
ight) e^{-j\pi fT}$$

Reconstructor de orden cero

Respuesta en frecuencia:

Filtro Sinc Inverso

Corrige la salida del reconstructor ZOH. $|G(f)| = [\operatorname{sinc}(fT)]^{-1} \sqcap (fT)$

$$|G(f)| = [\operatorname{sinc}(fT)]^{-1} \sqcap (fT)$$

En la práctica se usan aproximaciones.

Esquema típico de PDS

