ДИСЦИПЛИНА Полное название дисциплины без аббревиатуры ИНСТИТУТ КАФЕДРА ТОЛНОЕ НАЗВАНИЕ КАФЕДРА ПОЛНОЕ НАЗВАНИЕ КАФЕДРЫ ПОЛНОЕ НАЗВАНИЕ НА ПОЛНОЕ НАЗВАНИЕ НА ПОЛНОЕ НА ПО

CEMECTP

указать номер семестра обучения

4. Спектральный анализ дискретных сигналов

4.1. Дискретизация спектра сигнала. Теорема Котельникова в частотной области

Теорема (*Котельникова в частотной области*): Спектр $S(\omega)$ сигнала s(t) ограниченной длительности τ_u полностью определяется своими дискретными значениями $\{S(n\Omega)\}_{n=-\infty}^{+\infty}$, взятыми с интервалом $\Omega \leq \frac{2\pi}{\tau_u}$ и может быть представлен рядом Котельникова в частотной области:

$$S(\omega) = \sum_{n = -\infty}^{+\infty} S(n\Omega) \operatorname{sinc}\left[\frac{\pi}{\Omega}(\omega - n\Omega)\right]$$
 (4.1)

Доказательство

Рассмотрим сигнал ограниченной длительности s(t) (рис.5.1) и соответствующий сигнал $s_{\Pi}(t)$, полученный его периодическим повторением с периодом $T_{\Pi} = \frac{2\pi}{O}$ (рис.4.2-4).

Периодический сигнал $s_{\Pi}(t)$ представим рядом Фурье в комплексной форме:

$$s_{\Pi}(t) = \sum_{n = -\infty}^{+\infty} C_n e^{jn\Omega t} , \qquad (4.2)$$

где $C_n = \frac{1}{T}S(n\Omega)$.

При выполнении условия теоремы $\Omega \leq \frac{2\pi}{\tau_u}$ периодизация сигнала происходит без наложения повторяющихся копий исходного сигнала и соответствует рис.4.2 и 4.3. так как $T_{\Pi} \geq \tau_u$, при этом на интервале $\left[-\frac{T_{\Pi}}{2}, \frac{T_{\Pi}}{2}\right]$ имеет место равенство $s(t) = s_{\Pi}(t)$. С учётом этого для спектральной плотности сигнала запишем:

$$S(\omega) = \int_{-\infty}^{+\infty} s(t)e^{-j\omega t}dt = \int_{-T_{\Pi}/2}^{T_{\Pi}/2} s_{\Pi}(t)e^{-j\omega t}dt.$$

Рис.4.1. Сигнал с ограниченной длительностью

Рис.4.2. Периодический сигнал при $T_{\Pi} > \tau_u$

Рис.4.3. Периодический сигнал при $T_{\Pi} = \tau_u$

Рис.4.4. Периодический сигнал при $T_{\Pi} < \tau_u$

В.Н. Исаков Радиотехнические цепи и сигналы часть 2 (курс лекций 2021) https://online-edu.mirea.ru

Подставим в последнее выражение $s_{\Pi}(t)$ в виде (4.2) и преобразуем:

$$S(\omega) = \int_{-\frac{T_{\Pi}}{2}}^{\frac{T_{\Pi}}{2}} \sum_{n=-\infty}^{+\infty} C_{n} e^{jn\Omega t} e^{-j\omega t} dt = \sum_{n=-\infty}^{+\infty} C_{n} \int_{-\frac{T_{\Pi}}{2}}^{\frac{T_{\Pi}}{2}} e^{-j(\omega - n\Omega)t} dt =$$

$$= -\sum_{n=-\infty}^{+\infty} C_{n} \frac{e^{-j(\omega - n\Omega)t}}{j(\omega - n\Omega)} \Big|_{-\frac{T_{\Pi}}{2}}^{\frac{T_{\Pi}}{2}} = \sum_{n=-\infty}^{+\infty} C_{n} T_{\Pi} \operatorname{sinc} \left[\frac{T_{\Pi}}{2} (\omega - n\Omega) \right] =$$

$$= \sum_{n=-\infty}^{+\infty} S(n\Omega) \operatorname{sinc}\left[\frac{\pi}{\Omega}(\omega - n\Omega)\right].$$

Полученный результат совпадает с (4.1). Сделаем несколько замечаний к доказанной теореме.

Переход от сплошного спектра к дискретному соответствует периодизации сигнала. Если условие $\Omega \leq \frac{2\pi}{\tau_u}$ не выполняется, то

происходит наложение периодически повторяющихся копий исходного сигнала — так называемый эффект наложения во временной области. В условиях наложения невозможно однозначно установить спектру какого сигнала принадлежит заданная совокупность отчётов, а, следовательно, и восстановить спектр: результат восстановления спектра зависит от того, какой из сигналов мы выберем в качестве образующего периодическую последовательность.

Теорема Котельникова в частотной области может рассматриваться как следствие из теоремы Котельникова и свойства симметрии преобразования Фурье.

Доказанная теорема относится в равной мере как к спектрам аналоговых сигналов, так и к спектрам дискретных сигналов, то есть речь идёт о дискретизации сплошных спектров вообще. Переход к дискретному спектру является основой методов цифровой обработки сигналов в частотной области.

4.2. Спектральное представление дискретных сигналов

Будем рассматривать дискретные сигналы в виде числовых последовательностей $s = \left\{ s[n] \right\}_{n=0}^{N-1}$ длины N. Определим для них операцию сложения и умножения на число поэлементно:

$$\begin{aligned} \left\{ s_{1}[n] \right\}_{n=0}^{N-1} + \left\{ s_{2}[n] \right\}_{n=0}^{N-1} &= \left\{ s_{1}[n] + s_{2}[n] \right\}_{n=0}^{N-1}, \\ \lambda \left\{ s[n] \right\}_{n=0}^{N-1} &= \left\{ \lambda s[n] \right\}_{n=0}^{N-1}. \end{aligned} \tag{4.3}$$

Нулевой элемент

$$0 = \left\{ s[n] = 0 \right\}_{n=0}^{N-1}.$$
 (4.4)

Нетрудно убедиться, что рассматриваемая совокупность дискретных сигналов образует линейное пространство размерности N, поскольку для представления любого сигнала достаточно N базисных элементов вида: $\{1,0,...,0\}$; $\{0,1,...,0\}$;... $\{0,0,...,1\}$.

Введём скалярное произведение:

$$(s_1, s_2) = \sum_{n=0}^{N-1} s_1[n] s_2^*[n].$$
 (4.5)

Убедимся, что введённая операция обладает свойствами скалярного произведения:

1.
$$(s_1, s_2)^* = \left(\sum_{n=0}^{N-1} s_1[n] s_2^*[n]\right)^* = (s_2, s_1);$$

2.
$$(\alpha s_1 + \beta s_2, s_3) = \sum_{n=0}^{N-1} (\alpha s_1[n] + \beta s_2[n]) s_3^*[n] = \alpha(s_1, s_3) + \beta(s_2, s_3);$$

3.
$$(s,s) = \sum_{n=0}^{N-1} s[n]s^*(n) = \sum_{n=0}^{N-1} |s[n]|^2 \ge 0$$
.

Норма, порождённая скалярным произведением:

$$||s|| = \sqrt{(s,s)} = \sum_{n=0}^{N-1} |s[n]|^2$$
 (4.6)

Рассмотрим в линейном пространстве дискретных сигналов конечной длины N систему решетчатых функций вида:

$$\varphi_k = \left\{ \varphi_k[n] \right\}_{n=0}^{N-1} = \left\{ e^{j\frac{2\pi}{N}kn} \right\}_{n=0}^{N-1}, \quad k = 0, ..., N-1.$$
(4.7)

Данная система функций ортогональна, действительно:

$$(\varphi_{k}, \varphi_{m}) = \sum_{n=0}^{N-1} \varphi_{k}[n] \varphi_{m}^{*}[n] = \sum_{n=0}^{N-1} e^{j\frac{2\pi}{N}kn} e^{-j\frac{2\pi}{N}mn} = \sum_{n=0}^{N-1} e^{j\frac{2\pi}{N}(k-m)n} =$$

$$= \sum_{n=0}^{N-1} e^{j\frac{2\pi}{N}(k-m)n} = \begin{cases} N, k = m \\ j\frac{2\pi}{N}(k-m) + \dots + e^{j\frac{2\pi}{N}(k-m)(N-1)}, k \neq m \end{cases}.$$

Рассматривая сумму в последнем выражении, как сумму первых N членов геометрической прогрессии с начальным членом 1 и

знаменателем $e^{j\frac{2\pi}{N}(k-m)}$, получим:

$$(\varphi_k, \varphi_m) = \begin{cases} N, k = m \\ \frac{1 - e^{j2\pi(k - m)}}{1 - e^{j\frac{2\pi}{N}(k - m)}}, k \neq m \end{cases} = \begin{cases} N, k = m \\ 0, k \neq m \end{cases}.$$

Квадрат нормы рассматриваемых функций

$$\|\varphi_k\|^2 = N, \quad k = 0, ..., N-1.$$
 (4.8)

Система функций (5.7) не только ортогональна, но и полна, так как количество функций в системе совпадает с размерностью пространства N, поэтому образует ортогональный базис, то есть любой сигнал в рассматриваемом пространстве может быть представлен в виде:

$$s = \sum_{k=0}^{N-1} C_k \varphi_k ,$$

где $C_k = \frac{1}{\||\phi_k||^2} (s, \phi_k)$. Обозначив $S_{\pi}[k] = NC_k$, подставив базис-

ные функции и развернув скалярное произведение, последние выражения перепишем как:

$$S_{\mathbf{I}}[k] = \sum_{n=0}^{N-1} s[n]e^{-j\frac{2\pi}{N}nk}, \quad k = 0, ..., N-1.$$
 (4.9a)

$$s[n] = \frac{1}{N} \sum_{k=0}^{N-1} S_{\mathbf{I}}[k] e^{j\frac{2\pi}{N}nk}, n = 0, ..., N-1$$
 (4.96)

Пара выражений (4.9) определяет взаимно-однозначное преобразование последовательностей $\left\{s[n]\right\}_{n=0}^{N-1}$ и $\left\{S_{\mathbf{Z}}[k]\right\}_{n=0}^{N-1}$. Преобразование (4.9a) называется прямым дискретным преобразованием Фурье (ДПФ). Преобразование (4.9б) называется обратным дискретным преобразованием Фурье (ОДПФ).

Сокращённо соответствие в смысле (4.9) обозначается как $s[n] \leftrightarrow S_{\pi}[k]$, прямое ДПФ $S_{\pi}[k] = DFT\{s[n]\}$, обратное $s[n] = DFT^{-1}\{S_{\pi}[k]\}$ от английского «Discrete Fourier Transform».

Как видно из (5.96) при ДПФ дискретный сигнал представляется в виде совокупности комплексных гармонических дискретных сигналов с частотами $\Omega_k = \frac{2\pi}{NT} k$ с амплитудами $\frac{1}{N} |S_{\rm L}[k]|$ и начальными фазами $\phi_{S_{\rm L}}[k] = \arg S_{\rm L}[k]$. Сами значения $\frac{1}{N} S_{\rm L}[k]$ при этом имеют смысл комплексных амплитуд комплексных гармоник сигнала. В случае, когда рассматриваются действительные сигналы возможна и тригонометрическая, более наглядная, форма ОДПФ:

$$s[n] = \operatorname{Re} s[n] = \operatorname{Re} \frac{1}{N} \sum_{k=0}^{N-1} S_{\pi}[k] e^{j\frac{2\pi}{N}nk} = \frac{1}{N} \sum_{k=0}^{N-1} |S_{\pi}[k]| \cos\left(\frac{2\pi}{N}nk + \varphi_{S_{\pi}}[k]\right).$$

Последовательность $\left\{S_{\mathtt{A}}[k]\right\}_{k=0}^{N-1}$ называется комплексным дискретным спектром дискретного сигнала. Последовательность $\left\{\left|S_{\mathtt{A}}[k]\right|\right\}_{k=0}^{N-1}$ называется амплитудным дискретным спектром дискретного сигнала. Последовательность $\left\{\phi_{S\mathtt{A}}[k]\right\}_{k=0}^{N-1}$ называется фазовым дискретным спектром дискретного сигнала.

ДПФ связано с Z-преобразованием дискретного сигнала:

$$S_{\mathbf{I}}[k] = S(z)|_{z=e^{j\frac{2\pi}{N}k}} = \sum_{n=0}^{N-1} s[n]z^{-n}|_{z=e^{j\frac{2\pi}{N}k}}$$
(4.10)

Рис. 4.5. z-плоскость

В соответствии с (4.10) ДПФ можно рассматривать как Z — преобразование сигнала, взятое в N точках, равномерно распределённых на единичной окружности комплексной z - плоскости (рис.4.5).

Если снять ограничения на изменение дискретных переменных n,k в (4.9), то нетрудно убедиться, что дискретное преобразование

Фурье связывает две периодические последовательности периода N. В дальнейшем, если не оговорено особо будем считать n и k целыми числами.

4.3. Основные свойства ДПФ

Рассмотрим некоторые основные свойства ДПФ. Особое внимание следует обратить на то, что свойства ДПФ формулируются именно для неограниченных n и k, а последовательности $\left\{s[n]\right\}_{n=-\infty}^{+\infty}$, $\left\{s_{1,2,3}[n]\right\}_{n=-\infty}^{+\infty}$ и $\left\{S_{\mathbf{Z}}[k]\right\}_{k=-\infty}^{+\infty}$, $\left\{S_{\mathbf{Z},2,3}[k]\right\}_{k=-\infty}^{+\infty}$ рассматриваются периодическими с периодом N.

4.3.1. Линейность

$$DFT\{k_1s_1[n] + k_2s_2[n]\} = k_1DFT\{s_1[n]\} + k_2DFT\{s_2[n]\}.$$
 (4.11)

Доказательство свойства линейности может быть осуществлено непосредственной подстановкой в (4.9). Выполнение свойства линейности означает, что линейной комбинации сигналов соответствует такая же линейная комбинация их дискретных комплексных спектров.

5.3.2. Циклический сдвиг

$$DFT\{s[n-m]\} = DFT\{s[n]\}e^{-j\frac{2\pi}{N}km}, m = 0, \pm 1, \pm 2, \dots$$
 (4.12)

Для доказательства рассмотрим ОДПФ сигнала со сдвигом

$$s[n-m] = \frac{1}{N} \sum_{k=0}^{N-1} S_{\mathcal{A}}[k] e^{j\frac{2\pi}{N}(n-m)k} = \frac{1}{N} \sum_{k=0}^{N-1} \left(S_{\mathcal{A}}[k] e^{-j\frac{2\pi}{N}mk} \right) e^{j\frac{2\pi}{N}nk} =$$

В.Н. Исаков Радиотехнические цепи и сигналы часть 2 (курс лекций 2021) https://online-edu.mirea.ru

$$= DFT^{-1} \left\{ S_{\mathbf{I}}[k] e^{-j\frac{2\pi}{N}mk} \right\},\,$$

откуда в виду взаимной однозначности ДПФ следует (4.12).

4.3.3. Циклическая свёртка

Циклическая свёртка определяется для двух дискретных сигналов периода N выражением

$$s_1 * s_2[n] = \sum_{n'=0}^{N-1} s_1[n'] s_2[n-n'] = \sum_{n'=0}^{N-1} s_1[n-n'] s_2[n'].$$
 (4.13)

В результате выполнения циклической свёртки получается дискретный сигнал с периодом N.

Циклической свёртке сигналов соответствует произведение их ДПФ:

$$DFT\{s_1 * s_2[n]\} = DFT\{s_1[n]\}DFT\{s_2[n]\}.$$
 (4.14)

Действительно, учетом свойств линейности и циклического сдвига имеем:

$$\begin{split} DFT\{s_1*s_2[n]\} &= DFT\left\{\sum_{n'=0}^{N-1} s_1[n']s_2[n-n']\right\} = \\ &= \sum_{n'=0}^{N-1} s_1[n']DFT\{s_2[n-n']\} = DFT\{s_2[n]\}\sum_{n'=0}^{N-1} s_1[n']e^{-j\frac{2\pi}{N}kn'} = \\ &= DFT\{s_1[n]\}DFT\{s_2[n]\}. \end{split}$$

4.4. Спектральная плотность дискретного сигнала и дискретное преобразование Фурье

Для определения спектра дискретного сигнала рассмотрим его преобразование Фурье:

$$S_{\mathcal{A}}(\omega) = F\left\{s_{\mathcal{A}}(t)\right\} = F\left\{\sum_{n=-\infty}^{+\infty} s(nT)\delta(t-nT)\right\} =$$

$$= \sum_{n=-\infty}^{+\infty} s(nT)F\left\{\delta(t-nT)\right\} = \sum_{n=-\infty}^{+\infty} s(nT)e^{-j\omega nT} =$$

$$= \sum_{n=-\infty}^{+\infty} s[n]e^{-j\omega nT}.$$

$$= \sum_{n=-\infty}^{+\infty} s[n]e^{-j\omega nT}.$$

$$(4.15)$$

Полученное выражение позволяет определить спектральную плотность дискретного сигнала, когда известна последовательность $\{s[n]\}_{n=-\infty}^{+\infty}$.

Спектральная плотность дискретного сигнала, к которому применимо Z — преобразование может быть выражена через последнее. Сравнивая выражения для спектра и Z — преобразования такого сигнала

$$S_{\mathrm{A}}(\omega) = \sum_{n=0}^{+\infty} s[n]e^{-j\omega nT}$$
 и $S(z) = \sum_{n=0}^{+\infty} s[n]z^{-n}$,

установим, что

$$S_{\mathcal{A}}(\omega) = S(z)\big|_{z=e^{j\omega T}} = S(e^{j\omega T}). \tag{4.16}$$

Запись $S(e^{j\omega T})$ часто также используется как обозначение спектральной плотности дискретного сигнала. Спектральная плотность дискретного сигнала, таким образом, является его Z – преобразованием, рассматриваемым на единичной окружности комплексной плоскости параметра z.

Структура (4.15) такова, что $S_{_{\rm I}}(\omega)$ можно рассматривать и как функцию нормированной частоты ωT . Один период спектра дискретного сигнала занимает интервал $[0,\omega_{_{\rm I}}]$ при этом ωT изменяется от нуля до 2π .

Рассмотрим теперь сигналы ограниченной длительности τ_u так, что ненулевые отсчёты имеют номера n=0,...,N-1 и N>>1, при этом $\tau_u=(N-1)T\approx NT$. Дискретизируем спектр такого сиг-

нала с максимальным шагом дискретизации $\Omega = \frac{2\pi}{\tau_u} = \frac{2\pi}{NT}$, при

ЭТОМ

$$\Omega T = \frac{2\pi}{N}.\tag{4.17}$$

Из (4.15) получим отсчёты спектра:

$$S_{\mathcal{A}}(k\Omega) = \sum_{n=0}^{N-1} s[n]e^{-jk\Omega nT} = \sum_{n=0}^{N-1} s[n]e^{-j\frac{2\pi}{N}kn} = DFT\{s[n]\} = S_{\mathcal{A}}[k].$$

Последняя запись показывает, что ДПФ последовательности

 $\{s[n]\}_{n=0}^{N-1}$ даёт дискретные значения спектра $S_{\rm A}(\omega)$, взятые с максимальным шагом.

4.5. Быстрое преобразование Фурье

Быстрое преобразование Фурье (БПФ) — это алгоритм, позволяющий сократить количество операций умножения при вычислении ДПФ. Как видно из (4.9a), для расчёта значений $\left\{S_{\rm д}[k]\right\}_{k=0}^{N-1}$ требуется N^2 операций комплексного умножения (N умножений при однократном расчёте суммы, и эту сумму требуется посчитать N раз). Существует большое количество различных алгоритмов БПФ, в данном разделе будет рассмотрен только один пример БПФ по основанию 2, то есть предполагается, что N является натуральной степенью числа 2.

Введём обозначение $W_N = e^{-j\frac{2\pi}{N}}$ и отметим некоторые свойства этой величины:

$$W_N^2 = \left(e^{-j\frac{2\pi}{N}}\right)^2 = e^{-j\frac{2\pi}{N/2}} = W_{N/2};$$
 (4.18a)

$$W_N^{N/2} = \left(e^{-j\frac{2\pi}{N}}\right)^{N/2} = e^{-j\pi} = -1; \tag{4.186}$$

$$W_N^{(N/2+m)} = W_N^{N/2} W_N^m = -W_N^m. (4.18B)$$

В последовательности $\{s[n]\}_{n=0}^{N-1}$ выделим две подпоследовательности так, чтобы одна $\{s_{\mathbf{q}}[n]\}_{n=0}^{N/2-1}$ содержала только члены исходной последовательности с чётными номерами, а другая $\{s_{\mathbf{h}}[n]\}_{n=0}^{N/2-1}$ – только с нечётными:

$$s_{\text{H}}[n] = s[2n];$$

 $s_{\text{H}}[n] = s[2n+1], \quad n = 0,..., N / 2 - 1.$

С учётом введённых обозначений преобразуем (4.9а):

$$\begin{split} S_{\mathbf{I}}[k] &= \sum_{n=0}^{N-1} s[n] W_N^{nk} = \sum_{n=0}^{N-1} s[n] W_N^{nk} + \sum_{n=0}^{N-1} s[n] W_N^{nk} = \\ &= \sum_{n=0}^{N/2-1} s[2n] W_N^{2nk} + \sum_{n=0}^{N/2-1} s[2n+1] W_N^{(2n+1)k} = \\ &= \sum_{n=0}^{N/2-1} s_{\mathbf{q}}[n] \Big(W_N^2\Big)^{nk} + \sum_{n=0}^{N/2-1} s_{\mathbf{H}}[n] \Big(W_N^2\Big)^{nk} W_N^k = \\ &= \sum_{n=0}^{N/2-1} s_{\mathbf{q}}[n] W_{N/2}^{nk} + \sum_{n=0}^{N/2-1} s_{\mathbf{H}}[n] W_{N/2}^{nk} W_N^k = \\ &= \sum_{n=0}^{N/2-1} s_{\mathbf{q}}[n] W_{N/2}^{nk} + \sum_{n=0}^{N/2-1} s_{\mathbf{H}}[n] W_{N/2}^{nk} W_N^k = \\ &= S_{\mathbf{q}}[k] + W_N^k S_{\mathbf{H}}[k], \quad k = 0, \dots, N-1, \end{split}$$

где $S_{\rm q}[k] = DFT \left\{ s_{\rm q}[n] \right\}$ и $S_{\rm H}[k] = DFT \left\{ s_{\rm H}[n] \right\}$ - N/2 - точечные ДПФ подпоследовательностей. Рассмотрим подробнее процедуру вычисления ДПФ с помощью полученной формулы, представленную в табл. 4.1. Номерам k=0,...,N/2-1 соответствует один период N/2-точечного ДПФ подпоследовательностей. Дальнейшие вычисления при k=N/2,...,N-1 соответствуют уже второму периоду N/2-точечного ДПФ подпоследовательностей.

Puc.4.6. Базовая операция $npu\ Б\Pi\Phi$

При этом значения $S_{\rm q}[k]$ и $S_{\rm H}[k]$ заново вычислять нет никакой необходимости, поскольку они были вычислены на первом периоде. Таким образом значения $S_{\rm q}[k]$ и $S_{\rm q}[N/2+k]$ могут быть получены в единой вычислительной процедуре вида:

$$S_{\mathcal{A}}[k] = S_{\mathcal{A}}[k] + W_{N}^{k} S_{\mathcal{A}}[k]$$

$$S_{\mathcal{A}}[N/2 + k] = S_{\mathcal{A}}[k] - W_{N}^{k} S_{\mathcal{A}}[k]$$

$$k = 0, ..., N/2 - 1, \quad (4.19)$$

сразу же, как только вычислены $S_{\rm q}[k]$ и $S_{\rm H}[k]$, с выполнением только одного комплексного умножения для получения $W_N^k S_{\rm H}[k]$, что схематично изображают как показано на рис.4.6. Ввиду внешнего сходства рассматриваемую процедуру иногда называют «бабочка».

Таблица 4.1.

Процедура вычисления ДПФ

	1	
k = 0	$S_{\mathbf{I}}[0] = S_{\mathbf{q}}[0] + W_N^0 S_{\mathbf{H}}[0]$	Д
k = 1	$S_{_{ m I\!I}}[1] = S_{_{ m I\!I}}[1] + W_N^1 S_{_{ m I\!I}}[1]$	[ервый периол √/2-точечного пптф
k=2	$S_{_{\rm I\! I}}[2] = S_{_{\rm I\! I}}[2] + W_N^2 S_{_{\rm I\! I}}[2]$	й пе чеч ПФ
• • •	•••)ВЫ ?-тс П
$k = \frac{N}{2} - 1$	$S_{\mathbf{J}} \left[\frac{N}{2} - 1 \right] = S_{\mathbf{q}} \left[\frac{N}{2} - 1 \right] + W_{N}^{N/2 - 1} S_{\mathbf{H}} \left[\frac{N}{2} - 1 \right]$	Пер N/2
$k = \frac{N}{2}$	$S_{\mathrm{J}} \left[\frac{N}{2} \right] = S_{\mathrm{q}} \left[\frac{N}{2} \right] + W_N^{N/2} S_{\mathrm{H}} \left[\frac{N}{2} \right] =$	ЦПФ
2	$= S_{\rm H}[0] - W_N^0 S_{\rm H}[0]$	_
$k = \frac{N}{2} + 1$	$S_{\mathrm{J}}\left[\frac{N}{2}+1\right] = S_{\mathrm{H}}\left[\frac{N}{2}+1\right] + W_{N}^{N/2+1}S_{\mathrm{H}}\left[\frac{N}{2}+1\right] =$	Второй период $N\!/2$ -точечного
2	$= S_{\mathbf{q}}[1] - W_N^1 S_{\mathbf{H}}[1]$	iOL:
$k = \frac{N}{2} + 2$	$S_{\mathrm{J}}\left[\frac{N}{2}+2\right] = S_{\mathrm{H}}\left[\frac{N}{2}+2\right] + W_{N}^{N/2+1}S_{\mathrm{H}}\left[\frac{N}{2}+2\right] =$	од <i>N/2</i> -
2	$= S_{\rm q}[2] - W_N^2 S_{\rm H}[2]$	ери
• • •	•••	йп
	$S_{\mathrm{H}}\left[N-1\right] = S_{\mathrm{H}}\left[N-1\right] + W_{N}^{N-1}S_{\mathrm{H}}\left[N-1\right] =$	odoı
k = N-1	$= S_{\rm q} \left[\frac{N}{2} - 1 \right] - W_N^{N/2 - 1} S_{\rm H} \left[\frac{N}{2} - 1 \right]$	Bı

При расчёте N/2 - точечных ДПФ объём алгоритмов также оказывается степенью двойки и снова может быть использован рассмотренный подход, который будет предполагать расчёт N/4 - точечных ДПФ и так до тех пор, пока длина подпоследовательностей не окажется равной 2.

Полные наглядные схемы алгоритма БПФ, отражающие изложенный подход, при произвольном объёме достаточно громоздки. Рассмотрим пример при $N=8=2^3$ на рис.4.7-4.9. Блок двухточечного ДПФ, показанный на рис. 4.9 формально содержит

одно умножение $M_2 = 1$.

Рис.4.7. Схема алгоритма 8-ми точечного БПФ

Рис.4.8. Схема алгоритма 4-х точечного БПФ

Далее 4-х точечное ДПФ на рис.4.8 содержит два блока 2-х точечных ДПФ (по M_2 умножений в каждом) и два собственных умножения $M_4 = 2M_2 + 2$.

Затем 8-ми точечное ДПФ на рис.4.7 содержит два блока 4-х точечных ДПФ (по M_4 умножений в каждом) и четыре собственных умножения $M_8 = 2M_4 + 4$.

Рис.4.9. Схема двухточечного БПФ

Продолжая рассуждения для количества умножений в общем случае N-точечного ДПФ сможем записать

$$M_N = 2M_{N/2} + N/2$$
.

Непосредственной подстановкой нетрудно убедиться, что решением этого разностного уравнения является

$$M_N = \frac{N}{2} \log_2 N$$
. (4.20)

На рис.4.10 показана разность количества операций умножения, требуемых при прямом расчёте ДПФ и при использовании БПФ. Уже при N = 1024 разница в количестве умножений достигает миллиона.

Рис.4.10. Разность количества умножений ДПФ и БПФ

4.6. Детализация спектра при ДПФ

При цифровом спектральном анализе непосредственное сочетание скорости расчёта спектра на основе БПФ и детальности его представления оказывается затруднительным ввиду того, что ДПФ даёт отсчёты спектра сигнала, взятые с максимальным шагом. Например, ДПФ прямоугольного импульса (рис.4.11) практически не позволяет установить структуру спектра, так как содержит всего один ненулевой отсчёт.

Если имеется возможность изменить количество отсчётов в сигнале, например, увеличить их количество в два раза, то легко обнаружить, что этот приём не даст улучшение детализации спектра (рис.4.12). Действительно, в случае, когда сигнал представлен N отсчётами и дискретизирован с периодом T, ДПФ даёт отсчёты

его спектра с частотным интервалом

$$\Omega = 2\pi / NT$$
.

После увеличения числа отсчётов в два раза, период дискретизации соответственно уменьшиться в два раза, и для интервала дискретизации получим

$$\Omega_2 = 2\pi / 2N(T/2) = 2\pi / NT = \Omega$$
.

Изменение числа отсчётов не приводит к изменению шага дискретизации спектра при ДП Φ , то есть не даёт возможности более детально исследовать его структуру.

Рассмотрим ситуацию, когда к исследуемому сигналу добавляются нулевые отсчёты (рис.4.13), то есть ДПФ выполняется над последовательностью

$$\{\tilde{s}(nT)\}_{n=0}^{\tilde{N}-1} = \{s(nT)\}_{n=0}^{N-1} \cup \{0\}_{n=N}^{\tilde{N}-1}.$$

При этом

$$\widetilde{\Omega} = \frac{2\pi}{\widetilde{N}T} = \frac{N}{\widetilde{N}}\Omega.$$

Поскольку $\widetilde{N} > N$, добавление нулевых отсчётов способствует уменьшению шага дискретизации спектра.

Puc.4.11. Дискретный прямоугольный импульс и его ДП Φ

Рис.4.12. Дискретный прямоугольный импульс и его ДПФ при увеличении количества отсчётов в импульсе.

Рис.4.13. Дискретный прямоугольный импульс и его ДПФ при добавлении нулевых отсчётов

При использовании БПФ количество отсчётов в сигнале

должно быть степенью двойки. Поэтому добавление нулевых отсчётов должно выполняться так чтобы общее увеличение их числа тоже было степенью двойки. Например, исходное число отсчётов в сигнале, являющееся степенью числа 2, можно увеличивать в 2^d раза

$$\widetilde{N} = 2^d N$$
.

Натуральный параметр d называют степенью детализации спектра. При этом

$$\widetilde{\Omega} = \frac{N}{2^d N} \Omega = \frac{\Omega}{2^d}, \tag{4.21}$$

и увеличению детализации на единицу соответствует уменьшение шага дискретизации спектра в два раза.

Требуемое количество добавляемых нулевых отсчётов:

$$N_0 = \widetilde{N} - N = (2^d - 1)N,$$
 (4.22)

4.7. Примеры и задачи

4.7.1. Спектральная плотность дискретного экспоненциального импульса

Дискретный экспоненциальный импульс описывается выражением $s(nT) = \sigma(nT)e^{-\alpha nT}$. Временная диаграмма дискретного экспоненциального импульса показана на рис.4.14.

Рис.4.14. Временная диаграмма дискретного экспоненциального импульса

Выражение для Z – преобразования заданного сигнала имеет вид:

$$S(z) = \frac{1}{1 - e^{-\alpha T} z^{-1}}.$$

Учитывая взаимосвязь между спектральной плотностью и Z – преобразованием сигнала получим

$$S_{\text{A}}(\omega) = S(e^{j\omega T}) = \frac{1}{1 - e^{-\alpha T} e^{-j\omega T}} = \frac{1}{1 - e^{-(\alpha + j\omega)T}}.$$

Амплитудный спектр сигнала

$$|S_{\pi}(\omega)| = \sqrt{S_{\pi}(\omega)} S_{\pi}^{*}(\omega) = \sqrt{\frac{1}{1 - e^{-\alpha T} e^{-j\omega T}}} \frac{1}{1 - e^{-\alpha T} e^{j\omega T}} = \frac{1}{1 - e^{-\alpha T} e^{j\omega T} - e^{-\alpha T} e^{-j\omega T} + e^{-2\alpha T}} = \frac{1}{\sqrt{1 - 2e^{-\alpha T} \cos(\omega T) + e^{-2\alpha T}}}.$$

Фазовый спектр сигнала

$$\phi_{\mathcal{A}}(\omega) = \arg(S_{\mathcal{A}}(\omega)) = -\arctan\left(\frac{e^{-\alpha T}\sin(\omega T)}{1 - e^{-\alpha T}\cos(\omega T)}\right).$$

Пример графиков амплитудного и фазового спектров показан на рис.4.15.

Рис.4.15. Амплитудный и фазовый спектры дискретного экспоненциального импульса

4.7.2. Спектральная плотность дискретного прямоугольного импульса

Дискретный прямоугольный импульс описывается выражением $s(nT) = 1, \ 0 \le n \le N-1$.

Выражение для Z – преобразования дискретного прямоугольного импульса имеет вид:

$$S(z) = \frac{1 - z^{-N}}{1 - z^{-1}}.$$

Учитывая связь между спектральной плотностью и Z - преобразованием дискретного сигнала, получим

$$S_{I\!I}(\omega) = S(e^{j\omega T}) = \frac{1 - e^{-jN\omega T}}{1 - e^{-j\omega T}} = \frac{1 - e^{-jN\omega T}}{1 - e^{-j\omega T}} \frac{e^{-jN\omega T/2}e^{jN\omega T/2}}{e^{-j\omega T/2}e^{j\omega T/2}} = \frac{2j}{2j} \frac{e^{jN\omega T/2} - e^{-jN\omega T/2}}{e^{j\omega T/2} - e^{-j\omega T/2}} \frac{e^{-jN\omega T/2}}{e^{-j\omega T/2}} = \frac{\sin(N\omega T/2)}{\sin(\omega T/2)} e^{-j(N-1)\omega T/2} = \frac{\sin(N\omega T/2)}{\sin(\omega T/2)} e^{-j(N-1)\omega T/2}$$

Рис.4.16. Дискретный прямоугольный импульс и его амплитудный спектр

Амплитудный спектр сигнала:

$$|S_{\mathrm{II}}(\omega)| = \left| \frac{\sin(N\omega T/2)}{\sin(\omega T/2)} \right|.$$

Фазовый спектр сигнала:

В.Н. Исаков Радиотехнические цепи и сигналы часть 2 (курс лекций 2021) https://online-edu.mirea.ru

$$\varphi_{\pi}(\omega) = \frac{\pi}{2} \left(1 - \operatorname{sign}\left(\frac{\sin(N\omega T/2)}{\sin(\omega T/2)}\right) \right) \operatorname{sign}(\omega T) - \frac{(N-1)\omega T}{2}.$$

Пример дискретного прямоугольного импульса и его амплитудного спектра при N = 5 показан на рис.4.16.

4.7.3. ДПФ усечённого экспоненциального импульса

Усечённый экспоненциальный импульс описывается выражением

$$s[n] = \sigma[n]e^{-\alpha nT}, \quad 0 \le n \le N - 1.$$

Выражение для Z – преобразования данного сигнала имеет вид:

$$S(z) = \frac{1 - e^{-\alpha NT} z^{-N}}{1 - e^{-\alpha T} z^{-1}}.$$

Используя взаимосвязь между ДПФ и Z – преобразованием, получим:

$$S_{\pi}[k] = S\left(e^{j\frac{2\pi}{N}k}\right) = \frac{1 - e^{-\alpha NT}e^{-j\frac{2\pi}{N}Nk}}{1 - e^{-\alpha T}e^{-j\frac{2\pi}{N}k}} = \frac{1 - e^{-\alpha NT}}{1 - e^{-\alpha T}e^{-j\frac{2\pi}{N}k}}.$$

Дискретный амплитудный спектр сигнала:

$$\left|S_{\mathbf{A}}[k]\right| = \frac{1 - e^{-\alpha NT}}{\sqrt{1 - 2e^{-\alpha T}\cos\left(\frac{2\pi}{N}k\right) + e^{-2\alpha T}}}.$$

Пример графика дискретного амплитудного спектра показан на рис.4.17.

Рис.4.17. Пример дискретного амплитудного спектра усечённого экспоненциального импульса

4.7.4. ДПФ дискретного прямоугольного импульса

Дискретный прямоугольный импульс описывается выражением

$${s(nT)}_{n=0}^{N-1} = {1}_{n=0}^{N-1}.$$

Выражение для спектральной плотности заданного сигнала имеет вид:

$$S_{\mathrm{J}}(\omega) = \frac{\sin(N\omega T/2)}{\sin(\omega T/2)} e^{-j(N-1)\omega T/2}.$$

ДПФ представляет собой результат дискретизации спектра дискретного сигнала с шагом $\Omega = \frac{2\pi}{NT}$. С учётом этого получим

$$\begin{split} S_{\pi}[k] &= S_{\pi}(k\Omega) = \frac{\sin(Nk\Omega T/2)}{\sin(k\Omega T/2)} e^{-j(N-1)k\Omega T/2} = \\ &= \frac{\sin(Nk2\pi/2N)}{\sin(k2\pi/2N)} e^{-j(N-1)k2\pi/2N} = \frac{\sin(k\pi)}{\sin(k\pi/N)} e^{-j(N-1)k\pi/N} = \\ &= N \sum_{i=-\infty}^{+\infty} \delta[k-iN]. \end{split}$$

Пример дискретного амплитудного спектра для N = 11 показан на рис.4.18.

Рис.4.18. Пример дискретного амплитудного спектра прямоугольного импульса

Литература

Основная литература

- 1. Радиотехнические цепи и сигналы: Учеб. для вузов / О. А. Стеценко. М.: Высш. шк., 2007. 432 с. https://library.mirea.ru/books/39991
- 2. Радиотехнические цепи и сигналы: Учебник для студентов радиотехн. спец. вузов / И. С. Гоноровский. М.: Радио и связь, 1986. 512 с. https://library.mirea.ru/books/6969
- 3. Радиотехнические цепи и сигналы: учеб. для вузов / С. И. Баскаков. М.: Высш. шк., 2005. 462 с. https://library.mirea.ru/books/875
- 4. Радиотехнические цепи и сигналы: Учеб. пособие / Д. В. Васильев, М. Р. Витоль, Ю. Н. Горшенков, и др.; К. А. Самойло. М.: Радио и связь, 1982. 528 с. https://library.mirea.ru/books/19694

Дополнительная литература

- 5. Карташев В.Г. Основы теории дискретных сигналов и цифровых фильтров: учебное пособие для вузов. М.: Высшая школа, 1982.
- 6. Основы цифровой обработки сигналов: Учеб. пособие для вузов / А. И. Солонина, Д. А. Улахович, С. М. Арбузов, Е. Б. Соловьева. СПб.: БХВ-Петербург, 2005. 753 с. https://library.mirea.ru/books/831
- 7. Сигналы. Теоретическая радиотехника: Справ. пособие / А. Н. Денисенко. М.: Горячая линия Телеком, 2005. 704 с. https://library.mirea.ru/books/45
- 8. Теория радиотехнических цепей / Н. В. Зернов, В. Г. Карпов. Л.: Энергия, 1972. 816 с.: ил. Библиогр.: с. 804 (15 назв.) https://library.mirea.ru/books/9447
- 9. Справочник по математике для инженеров и учащихся вузов / И. Н. Бронштейн, К. А. Семендяев. М.: Наука, 1998. 608 с. https://library.mirea.ru/books/4829

Пособия и методические указания

10. Радиотехнические цепи и сигналы. Ч. 2 [Электронный ресурс]: метод. указания по выполнению лаб. работ / В. Н. Исаков, Д. Р. Барский. — М.: РТУ МИРЭА, 2019. — Электрон. опт. диск (ISO) https://library.mirea.ru/share/3274