Water desalination sys

using the reverse osmosis pro

Patent number:

EP0055981

Publication date:

1982-07-14

Application number: EP19820100010 19820104

Inventor:

RAMO MESPLE D JOSE LUIS

Applicant:

MESPLE JOSE L R

Classification:

- international:

B01D13/00; C02F1/44

- european:

B01D13/00D16; B01D13/00D18

Priority number(s): ES19810498326 19810105; ES19810501374 19810414

Also published as:

GR75052 (B)

Cited documents:

DE2830987 DE2812761

DE2924971

FR2385427

EP0028913

more >>

Report a data error here

Abstract of EP0055981

The expenditure of energy in this water desalination system is reduced by utilising the pressure in the brine solution discharged at the osmosis module [2] outlet in a pressure recovery device [3] for putting water to be treated in a predetermined amount under a predetermined pressure, this amount of water being delivered together with the water flow of a main pump [1] to the inlet of osmosis module [2]. This reduces the required output of the main pump [1].

Data supplied from the esp@cenet database - Worldwide

Veröffentlichungsnummer:

EUROPÄISCHE PATENTANMELDUNG

0 055 981

A1

12

(21) Anmeldenummer: 82100010.6

(22) Anmeldetag: 04.01.82

(51) Int. Cl.³: B 01 D 13/00 C 02 F 1/44

(30) Priorität: 05.01.81 ES 498326 14.04.81 ES 501374

(43) Veröffentlichungstag der Anmeldung: 14.07.82 Patentblatt 82/28

(84) Benannte Vertragsstaaten: BE DE FR GB IT NL SE

(71) Anmelder: Ramo Mesple, D. José Luis La Maso 87 Madrid(ES)

(72) Erfinder: Ramo Mesple, D. José Luis La Maso 87 Madrid(ES)

(74) Vertreter: Feldkamp, Rainer, Dipl.-Ing. et al, Patent Attorneys Dipl.-Ing. Curt Wallach Dipl.-Ing. Günther Koch, Dr. Tino Haibach Dipl.-Ing. Rainer Feldkamp Kaufinger Strasse 8 D-8000 München 2(DE)

Wasserentsalzungssystem nach dem Verfahren der umgekehrten Osmose.

(57) Bei einem Wasserentsalzungssystem nach dem Verfahren der umgekehrten Osmose wird zur Verringerung des Energieaufwandes der Druck in der am Ausgang des Osmosemoduls [2] austretenden Salzlauge in einer Druckrückgewinnungseinrichtung [3] dazu ausgenutzt, zu behandelndes Wasser mit vorgegebener Menge unter einen vorgegebenen Druck zu setzen, wobei diese Wassermenge zusammen mit der Wasserströmung einer Hauptpumpe [1] dem Eingang des Osmosemoduls [2] zugeführt wird. Auf diese Weise ist eine geringere Leistung der Hauptpumpe [1] erforderlich.

Wasserentsalzungssystem nach dem Verfahren der umgekehrten Osmose

Die Erfindung bezieht sich auf ein Wasserentsalzungssystem nach dem Verfahren der umgekehrten Osmose, mit einem Osmosemodul zur Durchführung des Verfahrens der umgekehrten Osmose und mit einer Hauptpumpe zur Speisung des Osmosemoduls mit unter Druck stehendem salzhaltigem Wasser.

Bekannte Wasserentsalzungssysteme zur Durchführung des Verfahrens der umgekehrten Osmose benötigen zwar 10 im Vergleich zu anderen bekannten Wasserentsalzungsverfahren relativ wenig Energie, doch wurde immer versucht, auch diesen Energieverbrauch weiter zu reduzieren. Hierbei wurde versucht, die in der aus dem Osmosemodul austretenden Salzlauge enthaltene Energie zurückzugewinnen.

Bei bekannten Wasserentsalzungssystemen wird das Osmosemodul mit einer Menge Q des salzhaltigen Wassers unter einem Druck Poi gespeist. Die Menge an entsalztem Wasser ist ein Teil hiervon, nämlich Q · Y, wobei Y kleiner als 1 ist. Die aus dem Osmose-

modul austretende Menge an Salzlauge ist dann Q·(1-Y). Diese Salzlauge wird unter einen Druck gegeben, der dem Speisedruck Poi abzüglich des Druckverlustes Joi beim Durchgang durch das Osmosemodul entspricht. Dieser Druckverlust Joi ist, verglichen mit dem Speisedruck Poi, relativ gering, so daß die in der Salzlauge enthaltene Energie Q·(1-Y)·(Poi-Joi) sehr groß ist, und sogar größer sein kann als die Energie, die für die Durchführung des Verfahrens an sich benötigt wird:

15

20

10

Abgesehen von Versuchen, die Leistungen der Pumpen und die Funktion und Leistung der Membranen des Osmosemoduls zu verbessern, wurde versucht, diese in der Salzlauge enthaltene Energie mit Hilfe von durch die Salzlauge angetriebenen Turbinen auszunutzen und zurückzugewinnen.

Der Erfindung liegt die Aufgabe zugrunde, ein Wasserentsalzungssystem der eingangs genannten Art zu schaffen, das bei einfachem Aufbau einen verringerten Energieverbrauch aufweist.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß das Osmosemodul zusätzlich zu der von der 30 Hauptpumpe gelieferten Wasserströmung von einer Wasserströmung aus einer Druckrückgewinnungsein-richtung gespeist ist, die von der aus dem Osmosemodul austretenden Salzlösung angetrieben ist.

Auf diese Weise wird ein Teil der dem Eingang des Osmosemoduls zuzuführenden und unter hohem Druck stehenden Wassermenge von der Druckrückgewinnungs-einrichtung geliefert, so daß die Leistung der Hauptpumpe wesentlich geringer sein kann. Der Druck am Ausgang des Osmosemoduls trägt dabei zur Erzeugung des Druckes am Eingang des Osmosemoduls bei und es ist nicht erforderlich, zunächst eine hohe Energie zur Erzeugung des Druckes aufzuwenden und dann zu versuchen, einen Teil dieser Energie aus dem Druck der Salzlauge am Ausgang des Osmosemoduls für andere Zwecke zurückzugewinnen.

Bei dem erfindungsgemäßen Wasserentsalzungssystem 15 wird das salzhaltige Wasser, das der Membran des Osmosemoduls in einer Menge Q und unter einem Druck Poi zugeführt wird, aus zwei Strömungen abgeleitet: Die Strömung Q.Y wird von der Hauptpumpe unter einem Druck Poi - (Joi + ε) geliefert, während der Rest der Strömung (1 - Y)·Q von der Druckrückgewin-20 nungseinrichtung geliefert wird, die einen Kolben oder eine Membran aufweist, der bzw. die mit dem Druck Poi - Joi durch die Salzlauge, die in gleichem Volumen und unter gleichem Druck aus dem Osmosemodul heraustritt beaufschlagt wird. Hierbei 25 ist & der Druckverlust zwischen den beiden durch den Kolben oder die Membran gebildeten Kammern eines Zylinders oder Behälters, welcher durch die Reibung des Kolbens oder die Verformungsenergie der Membran hervorgerufen wird. Die Hauptaufgabe des Kolbens 30 bzw. der Membran besteht darin, eine Mischung des salzhaltigen Wassers mit der Salzlauge zu verhindern. Die gesamte Wasserströmung Q·Y+(1-Y)·Q = Q wird, gegebenenfalls nach Durchlaufen einer

J 18

5

Hilfspumpe, die einen Druckanstieg hervorruft, der gleich Joi + ℓ (Druckverlust in dem Osmosemodul + ℓ) ist, dem Eingang des Osmosemoduls zugeführt, wobei der Druck am Eingang dieses Osmosemoduls wie folgt ist:

$$(Poi - Joi - \xi) + Joi + \xi = Poi$$
 (II)

Diese Pumpe zwischen der Druckrückgewinnungseinrichtung und dem Eingang des Osmosemoduls kann durch
eine Antriebsvorrichtung ersetzt werden, die den
Kolben oder die Membran der Druckrückgewinnungseinrichtung antreibt, oder es kann alternativ zwischen
dem Salzlaugeausgang des Osmosemoduls und dem Ein15 gang der Druckrückgewinnungseinrichtung eine Pumpe
angeordnet sein.

Die Druckrückgewinnungseinrichtung kann aus einem einzigen Zylinder bestehen, der durch einen Kolben in zwei Kammern unterteilt ist, oder es können zwei Zylinder mit über eine gemeinsame Achse verbundenen Kolben verwendet werden, wodurch ein kontinuierlicher Betrieb ermöglicht wird. Im letztgenannten Fall können die Zylinder unterschiedliche Durchmesser aufweisen, wobei der Durchmesser des mit dem Ausgang des Osmosemoduls verbundenen Zylinders größer ist -- als der Durchmesser des Zylinders, der mit dem Eingang des Osmosemoduls verbunden ist, so daß der Druckverlust in dem Osmosemodul sowie aufgrund der Reibung der Kolben ausgeglichen wird.

Gemäß einer anderen Ausgestaltung der Erfindung besteht die Druckrückgewinnungseinrichtung in der bereits angedeuteten Weise aus Behältern, die durch elastische Membranen jeweils in zwei Kammern unterteilt sind, von denen jeweils die erste mit dem Eingang des Osmosemoduls bzw. mit der Quelle des salzhaltigen Wassers verbunden ist, während die zweiten Kammern mit dem Ausgang des Osmosemoduls bzw. mit dem Abfluß für die Salzlauge verbunden sind.

In allen Fällen sind die jeweiligen Kammern über Ventile mit dem Eingang bzw. dem Ausgang des 10 Osmosemoduls verbunden.

Im folgenden wird die Erfindung anhand von lediglich Ausführungsbeispiele darstellenden Zeichnungen näher erläutert.

15

20

Es zeigen:

- Fig. 1 eine schematische Darstellung des hydraulischen Kreises einer ersten Ausführungsform des Wasserentsalzungssystems,
- Fig. 1' eine schematische Darstellung einer weiteren Ausführungsform des Wasserentsalzungssystems,

25

- Fig. 2 eine ausführlichere Ansicht der Ausführungsform des Wasserentsalzungssystems nach Fig. 1,
- orm eines kontinuierlich arbeitenden Wasserentsalzungssystems mit einer Druckrückgewinnungseinrichtung mit zwei Zylindern,

- Fig. 4 eine weitere Ausführungsform des Wasserentsalzungssystems unter Verwendung einer
 Druckrückgewinnungseinrichtung in Form von
 durch Membranen unterteilten Behältern,
- Fig. 5 eine weitere Ausführungsform des Wasserentsalzungssystems, die Höhenunterschiede im Gelände ausnutzt,
- 10 Fig. 6 eine Ausführungsform des Wasserentsalzungssystems mit zwei Zylindern mit unterschiedlichen Durchmessern entsprechend der Ausführungsform nach Fig. 1,
- 15 Fig. 6' eine der Fig. 6 ähnliche Ausführungsform, bei der jedoch die Pumpen gemäß Fig. 1 angeordnet sind.
- In Fig. 1 ist eine erste Ausführungsform des Wasser20 entsalzungssystems gezeigt, bei der die Hauptpumpe 1
 eine Wassermenge Q.Y unter einem Druck Poi Joi = {
 liefert.
- Eine weitere Wasserströmung wird dem Osmosemodul 2

 25 zur Durchführung des Verfahrens der umgekehrten
 Osmose von einer Druckrückgewinnungseinrichtung geliefert, die aus einem Zylinder 3 besteht, in dessen
 Innerem ein Kolben 4 frei beweglich angeordnet ist,
 der das zu behandelnde Salzwasser in der Kammer 5

 von der Salzlauge in der Kammer 6 trennt.

Die gesamte Wassermenge, d. h. die von der Hauptpumpe 1 gelieferte Menge und die von dem Zylinder 3 zugeführte Menge, wird mit Hilfe einer zweiten Pumpe 7 dem Osmosemodul 2 zugeführt.

Diese zweite Hilfs- bzw. Zusatzpumpe 7 kann in Serie mit der Hauptpumpe angeordnet sein, wie dies in Fig. 1 gezeigt ist, oder sie kann parallel zur Hauptpumpe angeordnet sein, wie dies in Fig. 1' gezeigt ist, wobei diese Zusatzpumpe direkt das Osmosemodul speist.

Diese Ausführungsformen des Wasserentsalzungssystems arbeiten wie folgt:

Zu Anfang befindet sich der frei bewegliche Kolben 4 (siehe Fig. 2) in der gestrichelt dargestellten Stellung a, wobei an den Kammern 5, 6 angeordnete

Ventile 8, 9 geschlossen und Ventile 10, 11 geöffnet sind.

Der Zylinder ist mit zu behandelndem Salzwasser gefüllt, und der gesamte Umlaufkreis ist ohne Luftblasen gefüllt. Bei der Inbetriebsetzung der Pumpen 20 ergibt sich am Eingang des Osmosemoduls 2 ein ausreichender Betriebsdruck. Erzeugtes Nutzwasser verläßt das Osmosemodul 2 über eine Leitung 12, während die Salzlauge das Osmosemodul 2 über eine Leitung 13 verläßt. Die Salzlauge kann jedoch nur dann aus dem Osmosemoduld 2 austreten, wenn eine Bewegung des Kolbens 4 erfolgt. Zu diesem Anfangszeitpunkt, zu dem noch kein Wasserstrom entstanden ist, ist der Lastverlust im inneren Kreis des Osmosemoduls 2 gleich Null, wobei der Druck in der Kammer 6 größer ist als in der Kammer 5, wodurch eine Bewegung des Kolbens in Pfeilrichtung gemäß Fig. 2 beginnt. Andererseits würde zu dem Zeitpunkt, zu dem die Wassermenge im Osmosemodul 2 größer werden würde als der

erforderliche Druckabfall Joi, der mit dem Ventil 14 reguliert ist, die Tendenz eines Druckabfalls auf einen oberhalb dieses Wertes liegenden Wert auftreten, wodurch der Druck in der Kammer 6 abfällt und ein stabilisiertes System hervorgerufen wird.

Wenn der Kolben seine Bewegung in der Position b gemäß Fig. 2 beendet hat, so schließen sich die Ventile 10 und 11, während sich die Ventile 8 und 9 öff10 nen. Zu diesem Zeitpunkt wird entweder mittels eines
direkten Antriebs des Kolbens oder mit Hilfe eines
leichten Überdruckes des zu behandelnden salzhaltigen Wassers, das über das Ventil 8 eintritt, der
Kolben 4 auf seine Ausgangsposition a gebracht, wo15 bei die Salzlauge über das Ventil 9 austritt, wobei
diese austretende Salzlauge keine Energie mehr enthält. Bei Erreichen der Ausgangsposition a werden
die Ventile 8 und 9 geschlossen, während die Ventile
10 und 11 geöffnet werden, so daß der Zyklus wieder
20 neu beginnt.

Bei diesen Ausführungsformen des Wasserentsalzungssystems nach den Fig. 1, 1' und 2, bei denen lediglich ein einziger Zylinder verwendet wird, ist die
Erzeugung von entsalztem Wasser lediglich diskontinuierlich möglich, da die Produktion während der
Zeit, während der der Kolben 4 in seine Ausgangsposition a zurückkehrt, unterbrochen wird.

Eine kontinuierliche Erzeugung von entsalztem Wasser ist jedoch mit Hilfe der Ausführungsformen nach den Fig. 3 bis 6' möglich.

Zylinder gleichachsig zueinander angeordnet und arbeiten gegenphasig. In jedem Zylinder ist ein Kolben 4, 4' angeordnet, und die beiden Kolben sind über eine gemeinsame Achse 15 verbunden. Durch diese Kopplung der beiden Kolben wird erreicht, daß der Kolben zu einem vorgegebenen Zeitpunkt mit Energie für seine Bewegung versorgt wird und sich in einer Betriebsphase befindet, in der Energie auf den anderen Kolben übertragen wird und gleichzeitig die Salzlauge entfernt wird, so daß dieses System gegebenenfalls selbstansaugend sein kann, wenn die Ansaughöhe niedrig ist.

Die Ventile 8, 10, 8' und 10' können Rückschlagventile sein, während die Ventile 9, 11, 9' und 11'
durch einen Servoantrieb gesteuert sein können, der
die Kolben antreibt und mit Hilfe von Endschaltern
gesteuert wird, die an der Trennwand 16 zwischen den
Zylindern angeordnet sind. Hierbei ist vorzugsweise
ein Druckausgleichsbehälter vorgesehen, um eine
augenblickliche Druckerhöhung zu verhindern, wenn
einige Ventile geschlossen werden, bevor die anderen
geöffnet werden.

Diese Ausführungsform des Wasserentsalzungssystems ist sehr einfach und der Druckunterschied zwischen den beiden Seiten des Kolbens ist immer minimal, so daß die Justierung nicht von allzu großer Genauigkeit sein muß. Es entstehen lediglich große Druckdifferenzen an den beweglichen Teilen der Achsabdichtung, wo diese den Zylinder verläßt. Diese Abdichtung oder der Sitz ist jedoch leicht herstellbar. Das beschriebene Wasserentsalzungssystem ist wenig aufwendig und ermöglicht die Einsparung von

aufwendigen Pumpen und Energierückgewinnungsturbinen, so daß eine maximale Energieeinsparung bei der
Durchführung des Entsalzungsverfahrens erreichbar
ist.

5

Die Gesamtleistung des Wasserentsalzungssystems ist weiterhin durch das zweistufige Pumpverfahren zu verbessern. Die Pumpe 8 arbeitet in mehreren Stufen in festem Betriebszustand, wobei sie eine hohe Leistung erreichen kann, während die Pumpe 7 als einfache Pumpe mit sich ändernder Betriebsweise arbeitet, die sich an den jeweiligen Bedarf des Osmosemoduls anpaßt.

Obwohl unterschiedliche Geschwindigkeiten des Kolbens innerhalb eines weiten Bereiches möglich sind, ist anzunehmen, daß seine Bewegung nicht so schnell sein wird, daß große Wasser- und Kolbengeschwindigkeiten auftreten, so daß sich ein Minimum an Verlusten ergibt.

Im Prinzip ist eine Geschwindigkeit des Kolbens und des im Zylinder enthaltenen Wassers von ca. 0,5 m/s bis 2,5 m/s in den Zuflußrohren und den Zylinder-ausgangsleitungen zu erwarten.

Als Beispiel ergibt die Behandlung einer Menge Q = 20 1/s von Meerwasser eine Nutzwasserproduktion von Q.0,3 = 6 1/s bzw. 518,4 m³/Tag.

30

25

Hierbei ergeben sich folgende Werte:

Meerwasser, das durch den Zylinder fließt:

$$Q_{m} = Q_{1-s'/S}^{1-Y} = 20_{0,99}^{0,7} = 14,14 1/s$$
 (s'/S = 0,01)

Zylinderquerschnitt:

$$S = \frac{14,14}{3,0} = 4,71 \text{ dm}^2$$

10 Zylinderdurchmesser = 245 mm

Achsendurchmesser = 24,5 mm

Hierbei ergibt sich für einen Halbzyklus von 2 Se-15 kunden eine Bewegungsstrecke:

$$L = 2 \times 300 \times 600 \text{ mm}$$
.

Eine derartige Vorrichtung kann eine Wassermenge von 518,4 m³/Tag erzeugen, d. h. sie kann 30 bis 35 Osmosemembranen vom Typ DUPONT B-10 oder dergleichen speisen.

Mit-doppelter Geschwindigkeit und dem gleichen

25 Durchmesser könnten bis zu 1037 m³/Tag erzeugt wer
den.

Hinsichtlich der mechanischen Leistung ist festzustellen, daß, wenn F_R der Widerstand ist, den der 30 Kolben der Bewegung aufgrund der Reibung zwischen dem Kolben und dem Zylinder und der Achse und der Dichtung entgegensetzt, der Leistungsverlust wie folgt ist:

$$F_R \cdot v = \xi(S - S') \cdot V.$$

Andererseits ist die Nutzleistung beim Pumpen des zu behandelnden Salzwassers wie folgt:

$$S \cdot (Poi-Joi)(1-\frac{S'}{S}) \cdot v$$

5

wobei der mechanische Wirkungsgrad wie folgt ist:

$$f_{\text{cil}} = 1 - \frac{F_{\text{R}}}{\text{S(Poi-Joi)}(1 - \frac{S'}{S}) + F_{\text{R}}}$$

10 Hierbei ist der Nenner in folgender Größenordnung:

$$471 \times 50 \times 0,99 = 23.300 \text{ kp},$$

während der Zähler höchstens in der Ordnung von we15 niger als 1/10 kp sein kann, d.h.:

$$\xi \leq \frac{10}{471} = 0.021 \text{ kg/cm}^2 \text{ und } \beta_{\text{cil}} > 0.9995,$$

- d. h. der Wirkungsgrad ist praktisch gleich Eins.
 Dies ist einer der größten Vorteile des beschriebenen Wasserentsalzungssystems.
- Aus diesem Grunde würde ein Wirkungsgrad von 1 bei allen vorstehenden Berechnungen für die Druckrückge25 winnungseinrichtung verwendet.

Für den Fall einer geringeren Produktion, beispielsweise von 3 l/s, oder einer Produktion von Q·Y =
= 0,9 l/s, entsprechend 77,76 m³/Tag, ergeben sich
unter Beibehaltung der gleichen Geschwindigkeitsparameter wie vorher folgende Werte:

$$Q_{\rm M} = 3 \frac{0.7}{0.99} = 2.12 \, 1/s$$

Zylinderquerschnitt $S = \frac{2.12}{3} \cdot 0.707 \text{ dm}^2$

Zylinderdurchmesser = 94 mm

10

5 Für einen gleichen Halbzyklus wie den vorstehend beschriebenen sind die Längen gleich.

In bezug auf den Wirkungsgrad ist festzustellen, daß dieser wie folgt ist:

 $f_{cil} < 1 - \frac{10}{70,7.50.0,99} = 0,997 \sim 1,0$

Das beschriebene Wasserbehandlungssystem ist für jede Art von Wasser anwendbar, für die das Verfahren der umgekehrten Osmose verwendet wird, d. h. sowohl für Salzwasser, Meerwasser als auch bei der Rückgewinnung von Abwässern.

Das Wasserentsalzungssystem kann in Anlagen beliebi-O ger Größe verwendet werden, d. h. selbst bei sehr kleinen und mittleren Systemen, die ohne Energierückgewinnung nicht verwendbar sind.

In großen Anlagen ist das beschriebene Wasserbehandlungssystem ebenfalls anwendbar, zur Vermeidung
sehr großer Zylinder sollten jedoch mehrere Zylinder verwendet werden, die gleichzeitig arbeiten, wobei auch gleichzeitig mehrere Pumpen verwendet werden, so daß die Zuverlässigkeit der Gesamtanlage erhöht wird. Bei sehr großen Anlagen kann gegebenenfalls auch die Ausführungsform gemäß Fig. 4 mit Vorteil verwendet werden, wie im folgenden beschrieben
wird.

Bei dieser Ausführungsform werden zwei kugelförmige Behälter 17, 17' verwendet, die einen entsprechend hohen Druck aushalten und in die Zwischenmembranen aus Gummi oder elastischem Kunststoffmaterial eingesetzt sind, die ein Mischen des zu behandelnden Wassers in der Kammer 5 mit der Salzlauge in der Kammer 6 verhindern.

Dieses System kann insbesondere bei größeren Anlagen mit größeren Füll- und Entleerungszeiten verwendet werden, doch ist eine Zusatzpumpe 19 erforderlich, um die Behälter mit zu behandelndem Salzwasser zu füllen und um die Salzlauge mit der erforderlichen Geschwindigkeit auszustoßen. Weiterhin ist auch die Synchronisierung der Zyklen in den beiden kugelförmigen Behältern und die Feststellung der richtigen Zeit zum Öffnen und Schließen der Ventile schwieriger zu ermitteln als bei der Ausführungsform mit beweglichen Kolben.

20

Diese Synchronisierung und Steuerung der Ventile kann mit Hilfe von Verschlüssen in jedem kugelförmigen Behälter erreicht werden, die an geeigneten Stellen der Membranen derart angeordnet sind, daß sie die Auslässe 10, 10' des zu behandelnden Wassers verschließen, sobald die kugelförmigen Behälter mit-Salzlauge gefüllt sind, so daß der im Ausgangsrohr auftretende momentane Druckabfall durch einen Meßfühler festgestellt wird, der die Ventile betätigt.

30

25

Weiterhin ist es für eine korrekte Betriebsweise erforderlich, daß die Pumpe 19 für das zu behandelnde Wasser in der Lage sein muß, den einen kugelförmigen Behälter eher zu füllen, bevor sich der andere mit Salzlauge füllt, d. h. es muß folgende Bedingung erfüllt sein: $Q_{\rm L} > Q$ (1-Y).

Die Behälter können genau so die Form eines Kugelsegmentes, eines Zylinders mit abgeschlossenen Kugelsegmenten oder eine sonstige Form aufweisen.

Eine weitere Möglichkeit besteht in einem rotierenden System.

10

Zusätzlich kann zu den beschriebenen Systemen ein Höhenunterschied im Gelände ausgenutzt werden, wie dies in Fig. 5 gezeigt ist.

- Bei dieser Ausführungsform pumpt die Hauptpumpe 1 das Wasser zu einem Zwischenbehälter 20, welcher höher liegt als die Anlage selbst. Die Osmosemoduln 2 werden in der gleichen Weise gespeist, wie dies weiter oben beschrieben wurde, wobei jedoch die von der
- Hauptpumpe 1 gelieferte Wassermenge durch eine gleichwertige Wassermenge ersetzt wird, die mit dem notwendigen Druck von dem Zwischenbehälter 20 aus zuläuft.
- 25 Ein derartiges System kann verschiedene Vorteile aufweisen.

Die Hauptpumpe 1 verbraucht den größten Teil der Energie, die für das Verfahren der Wasserentsalzung benötigt wird. Andererseits besteht der Grund für die Wassergewinnung durch Entsalzung darin, daß an derartigen Orten keine Wasserquellen zur Verfügung stehen. Entsprechend muß an diesen Stellen auch elektrische Energie mit Hilfe von Dampfkraftwerken

erzeugt werden, die normalerweise genug Energie zu Spitzenzeiten liefern, die jedoch zu Zeiten minimalen Verbrauchs überdimensioniert sind. Die Betreiber von Kraftwerken sind daher bemüht, Abnehmer für diese Energie zu Zeiten niedrigsten Verbrauchs zu finden.

Der Zwischenspeicher 20 der Ausführungsform nach Fig. 5 kann zu diesen Zeiten minimalen Energiever10 brauchs gefüllt werden, so daß sehr wenig kostspielige elektrische Energie nötig wird, was zusätzliche Kosteneinsparungen ergibt und gleichzeitig das Problem der überschüssigen Energie der Kraftwerke zu vorgegebenen Zeiten löst. Die Hauptpumpe 1 wird lediglich zu Zeiten eines Überflusses an elektrischer Energie betrieben, wobei zur Erzielung der nötigen Durchschnittsleistung die Leistung dieser Pumpe gegebenenfalls zu erhöhen ist.

Der Zwischenbehälter 20 dient damit gleichzeitig als Regulierbehälter, wodurch die Zuverlässigkeit des gesamten Systems vergrößert wird, da bei Verwendung einer Hauptpumpe 1 mit ausreichender Leistung diese aufgrund eines Ausfalls oder einer Wartung abge
25 schaltet werden kann, ohne daß die Erzeugung von Nutzwasser unterbrochen wird.

In der vorstehenden Beschreibung wurden Druckstufen für die Pumpen 1 und 7 derart festgelegt, daß die Druckrückgewinnungseinrichtung gerade den Druck der Salzlauge zurückgewinnt, die das Abwasser bildet.

Das beschriebene System kann jedoch gemäß dem Schema der Fig. 1 und 1' dahingehend verallgemeinert werden, daß die Energierückgewinnungseinrichtung 3 zur Leistungsübertragung der in dem Abwasser enthaltenen Leistung auf das zu behandelnde Wasser dient, so daß, wenn P' und Q' der Druck und die Strömung aus der Einrichtung 3 sind, sich folgendes ergibt:

$$P' \cdot Q' = (1-Y)Q \cdot (Poi-Joi-\varepsilon).$$

Hierbei ist & praktisch gleich Null.

10

Dieses System ist für alle Werte von P' und Q' gültig, die die vorstehende Gleichung erfüllen, vorausgesetzt, daß $P' \leq Poi$ und $Q' \leq Q$ ist.

Dies trifft selbst beim obersten Grenzwert der Wassermenge Q' = Q zu, wobei die Hauptpumpe 1 praktisch keine Wassermenge mehr liefert und einzig und allein eine Basis-Druckkraft von P' = (1-Y)(Poi-Joi-ε) in dem Kreis erzeugt, so daß die Pumpe 7 die Wassermenge Q und den veränderlichen Druck

Poi - P'
$$\leq$$
 Y'Poi + (1-Y)(Joi + ϵ)

liefert, wobei dieser Druck vom Zustand der Membran 25 und dergleichen abhängt, damit die richtige Strömungsmenge erzeugt wird.

Am unteren Grenzwert ist Q durch den Grenzwert des Speisedruckes von P' = Poi begrenzt, so daß sich 30 folgendes ergibt:

$$Q' = (1-Y) \cdot Q \cdot (1 - \frac{Joi + \xi}{Poi})$$

Die Hauptpumpe 1 arbeitet dann mit konstantem Druck,

der gleich dem Speisedruck Poi der Membranen ist. Theoretisch arbeitet hierbei die Pumpe 7 nicht. In der Praxis kann der Druck der Hauptpumpe 1 auf den minimalen Wert Poi für neue Membranen eingestellt werden. Wenn ein größerer Druck Poi aufgrund der Alterung der Membranen benötigt wird, so kann dieser Zusatzdruck von der Pumpe 7 geliefert werden.

Die Druckrückgewinnungseinrichtung kann vorzugsweise eine derartige Ausführungsform aufweisen, wie sie in den Fig. 6 und 6' gezeigt ist, wobei zur Erreichung der Strömungsmengen- und Druckdifferenzen unterschiedliche Durchmesser der beiden Zylinder verwendet werden, um eine Anpassung an die erforderlichen Durchflußmengen- und Druckbeziehungen zu ermöglichen.

Weiterhin kann gemäß Fig. 6' eine zusätzliche Antriebseinrichtung 21 an der die Kolben 4 und 4' verbindenden Achse 15 angeordnet werden, wobei in diesem Fall die Pumpe 7 gegebenenfalls entfallen kann. Alternativ kann die Pumpe 7 auch in der Zuführungsleitung für das zu behandelnde Wasser an die Druckrückgewinnungseinrichtung angeordnet werden.

20

Patentansprüche:

- 1. Wasserentsalzungssystem nach dem Verfahren der umgekehrten Osmose, mit einem Osmosemodul (2)

 5 zur Durchführung des Verfahrens der umgekehrten Osmose und mit einer Hauptpumpe (1) zur Speisung des Osmosemoduls (2) mit unter Druck stehendem salzhaltigem Wasser, dadurch ge-kennzeichnet daß das Osmosemodul (2) zusätzlich zu der von der Hauptpumpe (1) gelieferten Wasserströmung von einer Wasserströmung aus einer Druckrückgewinnungseinrichtung (3; 3'; 17, 17') gespeist ist, die von der aus dem Osmosemodul (2) austretenden Salzlösung angetrieben ist.
- Wasserentsalzungssystem nach Anspruch 1, da-durch gekennzeichnet, daß der Ausgang der Hauptpumpe (1) und/oder der Ausgang der Druckrückgewinnungseinrichtung (3, 3'; 17, 17') über eine Hilfspumpe (7) mit dem Eingang des Osmosemoduls (2) verbunden sind.
- 3. Wasserentsalzungssystem nach Anspruch 1 oder 2,
 d a d u r c h g e k e n n z e i c h n e t ,
 daß die Druckrückgewinnungseinrichtung (3) auseinem Zylinder besteht, der durch einen Kolben
 (4) in zwei Kammern (5, 6) unterteilt ist, von
 denen die erste über Ventile (8, 10) mit dem
 Eingang des Osmosemoduls (2) bzw. mit der Quelle
 des salzhaltigen Wassers verbunden ist, während
 die zweite (6) über Ventile (9, 11) mit dem
 Salzlaugeausgang des Osmosemoduls (2) bzw. mit
 einem Abfluß für die Salzlauge verbunden ist.

- 4. Wasserentsalzungssystem nach Anspruch 3, da-durch gekennzeichnet, daß die Ventile (8 bis 11) so gesteuert sind, daß das mit der Quelle des salzhaltigen Wassers verbundene Ventil (8) und das zum Abfluß der Salzlauge führende Ventil (9) geschlossen sind, während die anderen beiden Ventile (10, 11) offen sind, und umgekehrt.
- 5. Wasserentsalzungssystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Druckrückgewinnungseinrichtung (3') zwei gleichachsig angeordnete Zylinder(3, 3') aufweist, daß zwei über eine gemeinsame Achse (15) verbundene Kolben (4, 4') in den Zylindern (3, 15 3') verschiebbar angeordnet sind, wobei die gemeinsame Achse (15) abgedichtet durch eine Trennwand (16) zwischen den beiden Zylindern (3, 3') hindurchgeführt ist, daß die durch den Kolben (4) des ersten Zylinders (3) gebildeten Kam-20 mern (5, 5') jeweils über Ventile mit der Quelle des salzhaltigen Wassers bzw. dem Eingang des Osmosemoduls (2) verbunden sind und daß die durch den Kolben (4') in dem zweiten Zylinder (3') gebildeten Kammern jeweils über Ventile (9, 9') mit dem Abfluß der Salzlauge bzw. über Ventile (11, 11') mit dem Ausgang des Osmosemoduls (2) verbunden sind, wobei die Ventile so gesteuert sind, daß ein Einlaßventil (8, 8') der einen Kammer (5, 5', 6, 6') jedes Zylinders 30 und ein Auslaßventil (10, 10', 9, 9') der entgegengesetzten Kammer des jeweiligen Zylinders geöffnet sind, während die anderen Ventile geschlossen sind.

6. Wasserentsalzungssystem nach einem der Ansprüche 3 bis 5, d a d u r c h g e k e n n - z e i c h n e t , daß die Ventile (8, 8', 10, 10') der Kammern (3, 3') des ersten Zylinders Rückschlagventile sind, während die Ventile (9, 9', 11, 11') der Kammern (6, 6') des zweiten Zylinders (3') servogesteuerte Ventile sind, die durch die Bewegung der Kolben (4, 4') steuerbar sind.

10

.20

- 7. Wasserentsalzungssystem nach einem der vorhergehenden Ansprüche, dad urch gek ennzeichnet, daß der oder die
 Kolben (4, 4') mit einer Antriebsvorrichtung
 (21') verbunden sind.
- 8. Wasserentsalzungssystem nach einem der Ansprüche 1 bis 6, dad urch gekennz eichnet, daß zwischen dem Salzlaugeausgang des Osmosemoduls (2) und dem Eingang
 der Druckrückgewinnungseinrichtung (3; 3'; 17,
 17') eine Pumpe angeordnet ist.
- 9. Wasserentsalzungssystem nach einem der Ansprüche
 25 5 bis 8, dadurch gekennzeichnet, daß die beiden Zylinder (3,3') unterschiedliche Durchmesser aufweisen.
- 10. Wasserentsalzungssystem nach Anspruch 1 oder 2,
 30 dad urch gekennzeichnet,
 daß die Druckrückgewinnungseinrichtung (17, 17')
 durch zwei kugelförmige Behälter (17, 17') gebildet ist, die jeweils durch eine elastische
 Membran (18, 18') in zwei Kammern (5, 6, 5', 6')

unterteilt sind und daß die ersten Kammern (5, 5') über Rückschlagventile (8, 8') mit der Quelle des salzhaltigen Wassers und über weitere Rückschlagventile (10, 10') mit dem Eingang des Osmosemoduls (2) verbunden sind, während die zweiten Kammern (6, 6') über servogesteuerte Ventile (9, 9') mit dem Abfluß für die Salzlauge bzw. über Ventile (11, 11') mit dem Ausgang des Osmosemoduls (2) verbunden sind.

10

11. Wasserentsalzungssystem nach einem der vorhergehenden Ansprüche, dad urch gekennzeich heit, daß das System auf
einem Gelände mit Höhenunterschied aufgestellt
ist und daß zwischen der Hauptpumpe (1) und dem
Wasserentsalzungssystem ein hochgelegener Speicherbehälter (20) angeordnet ist.

Fig.1

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 82 10 0010

	EINSCHLÄGIGE DOKUMENTE	KLASSIFIKATION DER ANMELDUNG (Int CI 3)			
Categorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	betrifft Anspruch			
X	GB - A - 2 030 056 (L. & C. STEIN- MULLER GmbH)		B 01 D 13/00 C 02 F 1/44		
	* Figuren 2.1, 2.2; Anspruch 1: Seite 1, Zeilen 6-83; Seite 1 Zeile 118 - Seite 2, Zeile 30 *	1,2,10			
	& DE - A - 2 830 987		·		
	& DE - A - 2 924 971				
		· ·			
X	OFFICE OF SALINE WATER/ U.S. DE- PARTMENT OF THE INTERIOR RESEARCH AND DEVELOPMENT REPORT, Nr. 357, August 1968 CHEN-YEN CHENG et al.: "A flow work exchanger for desalination processes"		RECHERCHIERTE SACHGEBIETE (Int Ci.3) B 01 D C 02 F		
	* Seiten 1,2 ("Summary"); Seite 17, Zeile 1 - Seite 20, Zeile 10; Seite 23, Zeile 3 - Seite 31, Zeile 22; Seite 40, Zeile 8 - Seite 44, Zeile 6; Figuren 2,6,12,14c,19; Seiten 55-57; Seite 60, Zeile 1 - Seite 61, Zeile 12; Seite 63, Zeile 4-11 *				
P	FR - A - 2 385 427 (B.G. KEEFER) * Figuren 1,9; Ansprüche 1,2, 11,18,19; Seite 12, Zeile 9 - Seite 13, Zeile 36; Seite 29, Zeile 22 - Seite 32, Zeile 4 * & DE - A - 2 812 761 EP - A - 0 028 913 (SYKES OCEAN WATER LTD.) ./.		KATEGORIE DER GENANNTEN DOKUMENTE X: von besonderer Bedeutung in verbindung mit einer andere Veröffentlichung derselben Kategorie A: technologischer Hintergrund O: nichtschriftliche Offenbarung P: Zwischenliteratur T: der Erfindung zugrunde liegende Theorien oder Grundsätze E: älteres Patentdokument, das jedoch erst am oder nach der Anmeldedatum veröffentlicht worden ist D: in der Anmeldung angeführte Dokument L: aus andern Gründen angeführtes Dokument &: Mitglied der gleichen Patent-		
X	Der vorliegende Recherchenbericht wurde für alle Patentanspruche erstel		familie. übereinstimmendes Dokument		

EUROPÄISCHER RECHERCHENBERICHT

EP 82 10 0010

				-2-	
		EINSCHLÄGIGE DOKUMENTE		KLASSIFIKATION DER ANMELDUNG (Int. CI.3)	
·	Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der Maßgeblichen Teile	betrifft Anspruch		· .
•		* Figur 1; Ansprüche 1,2; Seite 6, Zeile 5 - Seite 13, Zeile 17 *	1,5,6, 11		
		445 FM			
	A	CHEMICAL ENGINEERING, Band 75, Nr. 25, 18. November 1968, Seiten 153-158 New York, U.S.A. E.F. MILLER: "Lowering the cost of			
		reverse-osmosis desalting" * Figur 5: Seite 156 Shalte 2.	11		
,		* Figur 5; Seite 156, Spalte 2, Zeile 12 - Seite 158, Spalte 1, Zeile 2 *		RECHERCHIERTE SACHGEBIETE (Int. CL3)	
· .	A	GB - A - 2 020 569 (COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RE- SEARCH ORG.)			·
		* Insgesamt *	1,3-7, 9		
	A	US - A - 3 825 122 (J.S. TAYLOR)			·
		* Insgesamt *	1,3-7, 9	·	
	·				
-					