

User Manual

SIS GmbH Harksheider Str. 102A 22399 Hamburg Germany

Phone: ++49 (0) 40 60 87 305 0 Fax: ++49 (0) 40 60 87 305 20

email: info@struck.de http://www.struck.de

Version: sis3302-M-1408-1-V132-gamma.doc as of 04.12.2009

Revision Table:

Revision	Date	Modification
0.01	27.11.07	Generation from SIS9300 Gamma
1.00	21.01.08	First official release
1.01	12.02.08	Add VME Addressing
1.02	29.07.08	Design Version: 1203
		New Clock source: Second internal 100 MHz
1.03	07.11.08	Extend 0x410 key explanation
1.04	12.11.08	Change in Gamma logic block diagram, bug fixes
1.05	16.03.09	Design Version: 1205
		- add Next Neighbor Trigger feature
		- add external Veto/Gate
		- add internal Trigger or Gate mode
		- Acquisition control register: add new bits
1.10	18.05.09	Design Version: 1405
		- Add MCA Mode
		- Fir Filter maximum Peaking time and Gap time values
		expanded from 16 x clock to 64 x clock
1.11	29.05.09	Change in documentation
1.12	10.07.09	Bug fix in broadcast setup
1.20	02.09.09	Design Version: 1406
		- Fir Filter maximum Peaking time and Gap time values
		expanded from 64 x clock to 1023 x clock and add
		Decimation of 2, 4 or 8
		- Energy Filter maximum Peaking time value expanded
		from 255 x clock to 1023 x clock
		- maximum Raw Data sample length expanded from 1024
		samples to 65532 samples
		- maximum Pretrigger Delay expanded from 511 clocks to
		1023 clocks
		- maximum Trigger Gate length expanded from
		1024 clocks to 65536 clocks
		- maximum Energy Gate length expanded from
		1024 clocks to 131072 clocks
		- maximum Energy Sample Start Index X values expanded
		from 1023 to 65535
		- maximum Trigger Output Pulse length expanded from
		63 clocks to 255 clocks
		- changed Trigger/Gate logic
		add Event Extended Configuration registers
		add Trigger Extended Setup registers

1.30	11.09.09	 Design Version: F407 add adc value histogramming in MCA Mode add ADCx Trigger-50KHz Enable bits in Event Extended configuration registers add MCA ADCx histogramming Enable bits in MCA Histogram Parameter registers
1.31	28.09.09	Design Version: 1407 - Timestamp-freeze logic modified
1.32	04.12.09	 Design Version: 1408 - change Fir Trigger Filter • reduced maximum Peaking time and Gap time values to 511 clocks • expanded decimation: 1/2/4/8/16 • add Trigger Extended Threshold registers

1 Table of contents

1	TABLE	OF CONTENTS	4
2	INTRO	DUCTION	7
_		ICTIONALITY	
		MMA LOGIC IMPLEMENTATION	
	2.2.1	General block diagram of one ADC channel and the full module	
	2.2.2	Trapezoidal Trigger Filter (Fast FIR Filter)	
	2.2.2.1 2.2.2.2	66	
	2.2.2.2	Signal diagram of the Trigger MAW unit	
	2.2.3		
	2.2.3.1		
	2.2.3.3	<u> </u>	
	2.2.3.4		
	2.2.3.5		
	2.2.4	Gamma Logic Parameter illustration	15
	2.2.5	Trigger/Gate logic	17
	2.2.6	Next Neighbor Trigger/Gate logic	19
	2.2.7	Sample Logic (with MCA Mode = 0)	21
	2.2.7.1	= +	
	2.2.8	MCA Mode	
	2.2.8.1		
	2.2.8.2		
	2.2.8.3		
	2.2.8.4		
	2.2.9	CVI plots	
	2.2.9.1 2.2.9.2	r 6,	
	2.2.9.2		
	2.2.9.4		
	2.2.9.5		
3	VME A	DDRESSING	
3			
	3.1 AD	DRESS MAP	29
4	REGIST	TER/RESOURCE DESCRIPTION	32
	4.1 Coi	NTROL/STATUS REGISTER	32
		DULE ID. AND FIRMWARE REVISION REGISTER	
	4.2.1	Major revision numbers	
		ERRUPT CONFIGURATION REGISTER	
	4.3.1	IRQ mode	
		ERRUPT CONTROL REGISTER	
		QUISITION CONTROL REGISTER	
		DADCAST SETUP REGISTER	
		C Memory Page register	
		C CONTROL REGISTERS	
	4.8.1	DAC Control/Status register (read/write)	
	4.8.2	DAC Data register	
	4.8.3	DAC load sequence	
		'A SCAN NOF HISTOGRAMS PRESET REGISTER	
		'A SCAN HISTOGRAM COUNTER REGISTER	
		'A SCAN THISTOGRAM COUNTER REGISTER	
		'A SCAN CONTROL REGISTER	
		'A Multiscan Nof Scans preset register	
		'A MULTISCAN NOF SCANS PRESET REGISTER	
		'A MULTISCAN SCAN COUNTER REGISTER'A MULTISCAN LAST SCAN HISTOGRAM COUNTER REGISTER	
		Y ADDRESS GENERAL RESET (0x400)	
	4.16 KEY	ADDKESS GENERAL RESET (UX400)	49

	4.17	KEY ADDRESS SAMPLE LOGIC RESET (0x404)	49
	4.18	KEY ADDRESSES WITH MCA MODE = 0	
	4.18	J	
	4.18	1 3 \ /	
	4.18		
	4.18		
	4.18	J	
	4.18	J 1	
	4.19	TEST TEST TEST TOTAL TOTAL TOTAL TOTAL TEST TEST TEST TEST TEST TEST TEST TES	
	4.19	· · · · · · · · · · · · · · · · · · ·	
	4.19	1 ' '	
	4.19		
	4.19		
	4.19		51
	4.19	· · · · · · · · · · · · · · · · · · ·	
	4.19		51
	4.19		
	4.20	EVENT CONFIGURATION REGISTERS	
	4.21 4.22	EVENT EXTENDED CONFIGURATION REGISTERS	
	4.22	END ADDRESS THRESHOLD REGISTERS	
	4.23	RAW DATA BUFFER CONFIGURATION REGISTERS	
	4.24	ADC1-8 NEXT SAMPLE ADDRESS REGISTER	
	4.25	ADC1-8 PREVIOUS BANK SAMPLE ADDRESS REGISTER	
	4.27	ACTUAL SAMPLE REGISTERS	
	4.27	TRIGGER SETUP REGISTERS	
	4.29	TRIGGER EXTENDED SETUP REGISTERS	
	4.30	TRIGGER THRESHOLD REGISTERS	
	4.30		
	4.30		
	4.30		
	4.31	TRIGGER EXTENDED THRESHOLD REGISTERS	
	4.32	ENERGY SETUP GP REGISTERS	
	4.33	ENERGY GATE LENGTH REGISTERS	
	4.34	ENERGY SAMPLE REGISTERS	68
	4.3	34.1 Energy Sample Length registers	69
	4.3	34.2 Energy Sample Start Index1 registers	69
	4.3	34.3 Energy Sample Start Index2 registers	
	4.3	34.4 Energy Sample Start Index3 registers	
	4.35	ENERGY TAU FACTOR REGISTERS	
	4.36	MCA ENERGY_TO_HISTOGRAM CALCULATION PARAMETER REGISTER	72
	4.37	MCA HISTOGRAM PARAMETER REGISTER	
	4.38	MCA TRIGGER START COUNTER REGISTER	75
	4.39	MCA PILEUP COUNTER REGISTER	
	4.40	MCA ENERGY_TO_HIGH COUNTER REGISTER	76
	4.41	MCA ENERGY_TO_LOW COUNTER REGISTER	76
	4.42	ADC MEMORY	
	4.42	2.1 Event Buffer Data Format (with MCA Mode = 0)	<i>77</i>
5	MO	DDES OF ACQUISITION OF CURRENT SOFTWARE	80
	5.1	SINGLE EVENT ACQUISITION	80
	5.2	MULTI EVENT DOUBLE BUFFER ACQUISITION	
6	ВО	ARD LAYOUT	81
7	FRO	ONT PANEL	82
	7.1	CONTROL IN/OUTPUTS	83
	7.1	LED's	
	7.3	CHANNEL LED'S	
	,		

7.4	PCB LEDs	84
8 JU	UMPERS/CONFIGURATION	85
8.1	CON100 JTAG	
8.2	JP80 VME ADDRESSING MODE/RESET BEHAVIOUR	
8.3	JP101 JTAG chain	
8.4	JP102 JTAG SOURCE	
8.5	JP120A-JP120D CONTROL INPUT TERMINATION	
8.6	SW1 AND SW2, VME BASE ADDRESS	88
9 S	SOFTWARE/GETTING STARTED	89
9.1	HEADER FILES	89
9.2		
10	APPENDIX	91
10.1	1 Power consumption	91
10.2		
10	0.2.1 Cooling	
10	0.2.2 Hot swap/live insertion	
10.3	3 CONNECTOR TYPES	92
10.4	4 P2 ROW A/C PIN ASSIGNMENTS	92
10.5	110 () 2 11 (2 21 11 (1 1 2 2 2 2 1 1 (1 1 2 2 2 2	
10.6		
10	0.6.1 Upgrade over CON100	
10	0.6.2 Upgrade over VME	94
11	INDEX	95

2 Introduction

This firmware manual/addendum describes the functionality and implementation of the SIS3302 firmware major revision 0x14. Besides finite response filter (FIR) based triggering this version supports asynchronous readout of a programmable set of features of raw (i.e. digitized wave form) and/or computed (like signal height/energy e.g.) digitizer information. No hardware modification to the SIS3302 is required for installation of this firmware. This firmware implementation should be of particular interest for detector studies with Gamma ray tracking and strip detectors.

2.1 Functionality

The main functions of the firmware are listed below and illustrated in the Gamma logic block diagram.

- 8 channel asynchronous and synchronous operation
- Decimation
- Trapezoidal Energy filter
- Trigger FIR filter
- Trigger or output
- 48-bit Timestamp
- Flexible event storage
- MCA Histogramming in the ADC Memory

2.2 Gamma Logic Implementation

2.2.1 General block diagram of one ADC channel and the full module

SIS3302-Gamma V_1406

2.2.2 Trapezoidal Trigger Filter (Fast FIR Filter)

A trapezoidal FIR filter is implemented for each ADC Channel to generate a trigger signal. This Trigger Signal can be used to trigger the sample logic immediately or it can be routed to SIS3302 Lemo Output.

This Trigger Signal will be also used to store the "Fast Filter trigger" information.

Features for each ADC channel:

- Programmable decimation (1/2/4/8/16 Clocks)
- Programmable Peaking Time (max. 511 Clocks)
- Programmable SumGap Time (max. 511 Clocks)
- Programmable Trigger pulse out length (max. 255 Clocks)
- Programmable Trigger Threshold
- Programmable Trigger Extended Threshold (finer granularity)
- Programmable Trigger Mode (GT,Disable)
- Programmable Trigger OUT (Enable, Disable)

see Trigger Setup ADCx registers, Trigger Extended Setup ADCx registers, Trigger Threshold ADCx registers and Trigger Extended Threshold ADCx registers.

2.2.2.1 Block diagram of the Trigger MAW unit

Explanation:

MAW: moving average window

• MA: moving average

• Decimation: decreasing the clock rate

• Peaking Time: the length of the MA for moving average unit

• SumGap Time: the differentiation time of the mowing window average unit

2.2.2.2 Signal diagram of the Trigger MAW unit

2.2.3 Trapezoidal Energy Filter (Slow FIR Filter)

A trapezoidal FIR filter is implemented for each ADC Channel to generate a "moving window average" stream (MWA) .

A decimation logic (average, integration) is also implemented.

Features of the Slow FIR Filter:

- Programmable decimation (1/2/4/8 Clocks)
- Programmable Peaking Time (max. 1023 Clocks)
- Programmable Gap Time (max. 255 Clocks)

2.2.3.1 Slow FIR Filter Energy sample logic

Five registers are implemented to control the sampling of the MWD.

- Energy Gate Length
- Energy Sample Length register
- Energy Sample Start Index1 register
- Energy Sample Start Index2 register
- Energy Sample Start Index3 register

The "Slow FIR Filter Energy sample" logic starts with the Energy Gate and executes following steps:

- 1. Clears an internal Energy Index counter and starts this Index counter.

 The logic is busy until the Index counter reaches the value of the Energy Gate Length register (busy with the Energy Gate).
- 2. Compares the Index counter with the Energy Sample Start Index x registers. If the result is equal the logic writes N (Energy Sample Length register) values into the Energy Buffer.
- 3. The logic saves the Energy at the beginning of the Energy Gate.
- 4. The logic saves the maximum Energy inside the Energy Gate.

2.2.3.2 Block diagram of the MAWD unit

Explanation:

• MAWD: moving average window deconvolution (Tau correction)

• MAW: moving average window

• MA: moving average

• Decimation: decreasing the clock rate

• Peaking Time: the length of the MA for moving average unit

• Gap Time: the differentiation time of the mowing window average unit plus the

Peaking time (Flat)

2.2.3.3 Signal diagram of the MAWD unit

2.2.3.4 Block diagram of the moving average (MA) unit

2.2.3.5 Block diagram of the Deconvolution (Tau correction) unit

2.2.4 Gamma Logic Parameter illustration

The Gamma Logic parameters are:

•	*P1:	Fast FIR Filter (Trigger) parameters: see Trigger Setup ADCx registers
•	*P2:	Fast FIR Filter (Trigger) Threshold: see Trigger Threshold ADCx registers
	*P3:	Trigger Gate Length: see Pretrigger Delay and Trigger Gate Length registers
•	*P4:	Pretrigger Delay: see Pretrigger Delay and Trigger Gate Length registers
•	*P5:	Raw Data Sample Length: see Raw Data Buffer Configuration registers
•	*P6:	Raw Data Sample Start Index: see Raw Data Buffer Configuration registers
•	*P7:	Energy Gate Length: see Energy Gate Length registers
•	*P8:	Energy Sample Length: see Energy Sample Length registers
•	*P9:	Energy Sample Start Index1: see Energy Sample Start Index1 registers
•	*P10:	Energy Sample Start Index2: see Energy Sample Start Index2 registers
•	*P11:	Energy Sample Start Index3: see Energy Sample Start Index3 registers
•	*P12:	Energy Tau correction Factor: see Tau Factor registers
	*P13:	Energy Filter Peaking Time: see Energy Setup GP registers
•	*P14:	Energy Filter GapTime: see Energy Setup GP registers

2.2.5 Trigger/Gate logic

Trigger / Gate logic illustration:

SIS3302-Gamma V_1406 Trigger/Gate Logic

Example 1: Internal Trigger / External Gate

- "Lemo Input Mode" = 1 and "Lemo Output Mode" = 0
- Lemo In 1 connected with Lemo Out 1 and "Enable front panel Lemo In 1"= 1
- "ADCx internal trigger enable" = 1 and "ADCx external gate enable" = 1
- "Internal Trigger Pulse Length" = 30
- "Internal Trigger Delay/ Internal Gate Length" = 20

Example 2: External Trigger / Internal Gate

- "Lemo Input Mode" = 0 and "Lemo Output Mode" = 0
- Lemo In 3 connected with Lemo Out 1 and "Enable front panel Lemo In 3"= 1 or "Enable ored Internal Trigger to External Trigger In" = 1 (Feedback)
- "ADCx external trigger enable" = 1 and "ADCx internal gate enable" = 1
- "Internal Trigger Pulse Length" = 6
- "Internal Trigger Delay/ Internal Gate Length" = 20

Legend

fir_trigger_out_pulse: generated from the internal Fast Fir Filter (internal Trigger) with

the programmed Trigger Pulse Length.

Internal Delay: 4 clocks

External Delay: 8 clocks + external Logic (Cable, external user logic)

2.2.6 Next Neighbor Trigger/Gate logic

Next Neighbor Trigger logic illustration:

SIS3302-Gamma V_1406: Next Neighbor Trigger

Attention: Next Neighbor Trigger logic is not implemented on the SIS3302 4-channel version.

Next Neighbor Gate logic illustration:

SIS3302-Gamma V_1406: Next Neighbor Gate Logic

Attention: Next Neighbor Gate logic is not implemented on the SIS3302 4-channel version.

2.2.7 Sample Logic (with MCA Mode = 0)

The sample logic starts with a trigger signal (Start Pulse for Trigger and Energy Gate) and executes following steps:

- 1. starts the Trigger and Energy Gate and stores the 48-bit timestamp.
- 2. writes the 16-bit programmable ADC Header and the stored 48-bit Timestamp into the Event Memory.
- 3. writes a programmable number of ADC Raw Values into the Event Memory.
- 4. writes at the end of the Energy Gate a programmable number of Slow FIR Values (MAWD) into the Event Memory.
- 5. writes the maximum and minimum (first value of Energy Gate) MAWD value into the Event Memory.
- 6. writes the Fast Filter Information register into the Event Memory.
- 7. writes a Trailer into the Event Memory.

16	15	0			
estamp [47:32]	Event Header	r and ADC_ID			
estamp [31:16]	Timestar	mp [15:0]			
4.0.0				sample 2	sample '
		ples)		sample 4	sample 3
	`	. ,			
			***************************************	sample N	sample N
Energy data buffer (MAWD) (signed int) programable length (0 to 510)					
Energy r	nax value				
nergy value from firs	t value of Energ	y Gate			
Pileup Flag, Retrigger Flag and Trigger counter					
Trailer (0x1	DEADBEEF)				
	estamp [47:32] estamp [31:16] ADC raw programable length of the control of the c	estamp [47:32] Event Header estamp [31:16] Timestar ADC raw data buffer programable length (0 to 65532 sam Energy data buffer (MAWD) (signed int) programable length (0 to 510) Energy max value Energy value from first value of Energe	estamp [47:32] Event Header and ADC_ID estamp [31:16] Timestamp [15:0] ADC raw data buffer programable length (0 to 65532 samples) Energy data buffer (MAWD)	Estamp [47:32] Event Header and ADC_ID estamp [31:16] Timestamp [15:0] ADC raw data buffer programable length (0 to 65532 samples) Energy data buffer (MAWD)	estamp [47:32] Event Header and ADC_ID estamp [31:16] Timestamp [15:0] ADC raw data buffer programable length (0 to 65532 samples) Energy data buffer (MAWD)

2.2.7.1 Deadtime

Event storage induces Deadtime.

Deadtime table

Raw Data Sample Energy Sample Length Length		Deadtime (approximate)
0 0 1		150 ns
100	0	560 ns
500	0	2 us
1000	0	3.9 us
0	12	1 us
100	12	1.2 us
500	12	3 us
1000	12	7 us
0	256	5.4 us
100	256	5.6 us
500	256	8.0 us
1000	256	10.6 us
0	512	9.6 ns
100	512	9.8 us
500	512	10.8 us
1000	512	14 us

2.2.8 MCA Mode

• 1/2/4/8K Histogram Bins (histogram page size)

Page Clear Time table

Page Size	Page Clear Time (approximate)
1K	11 us
2K	22 us
4K	44 us
8K	88 us

2.2.8.1 MCA Scan Enable

2.2.8.2 MCA Scan Arm

2.2.8.3 MCA Multiscan Arm Scan Enable

2.2.8.4 MCA Multiscan Arm Scan Arm

2.2.9 CVI plots

2.2.9.1 Sampling and Energy Filter Parameter screenshot

2.2.9.2 Raw signal screenshot

2.2.9.3 Raw signal with Pileup screenshot

2.2.9.4 Energy Filter data without Tau correction (MAW) screenshot

2.2.9.5 Energy Filter data with Tau correction (MAWD) screenshot

3 VME Addressing

As the SIS3302 VME FADC features memory options with up to 8 times 32 MSamples, A32 addressing was implemented as the only option. The module occupies an address space of 0x7FFFFFF Bytes, i.e. 128 MBytes are used by the module.

The base address is defined by the selected addressing mode, which is selected by jumper array JP80 and SW1 and SW2 (in non geographical mode).

The table below summarises the possible base address settings.

J1 Setting						B	its	
A32	GEO	VIPA	31	30	29	28	27	
X			SW1		SW2=07			
					Bit 27=0			
X			SW1		S	W2=8F		
								Bit 27=1
X	X		Not implemented in this design			this design		
		X	Not implemented			ed in	this design	

Shorthand	Explanation
SW1/SW2	Setting of rotary switch SW1 or SW2 respective

Notes:

- This concept allows the use of the SIS3302 in standard VME as well as in VME64x environments, i.e. the user does not need to use a VME64x backplane.
- The factory default setting is EN_A32 closed, SW1=3, SW2=0 (i.e. the module will react to A32 addressing under address 0x30000000). With more than one unit shipped in one batch a set of addresses (like 0x10000000, 0x20000000, 0x300000000,...) may be used also.

3.1 Address Map

The 0x120x firmware specific SIS3302 resources and their locations are listed with function in the table below. The header file (sis3302_v1405.h or equivalent) provides the define statements.

Offset	Size in Bytes	BLT	Access	Function	
0x00000000	4	-	W/R	Control/Status Register (J-K register)	
0x0000004	4	-	R	Module Id. and Firmware Revision register	
0x00000008	4	-	R/W	Interrupt configuration register	
0x000000C	4	-	R/W	Interrupt control register	
0x0000010	4	-	R/W	Acquisition control/status register (J-K register)	
0x00000030	4	_	R/W	Broadcast Setup register	
0x00000034	4	-	R/W	ADC Memory Page register	
				, , ,	
0x0000050	4	-	R/W	DAC Control Status register	
0x00000054	4	-	R/W	DAC Data register	
0x00000060			R/W	XILINX JTAG_TEST/JTAG_DATA_IN	
0x00000000			W	XILINX JTAG_CONTROL	
				_	
0x00000080			R/W	MCA Scan Nof Histograms preset register	
0x00000084			R	MCA Scan Histogram counter register	
0×000000088			R/W	MCA Scan LNE Setup and Prescaler Factor register	
0x0000008C			R/W	MCA Scan Control register	
0x00000090			R/W	MCA Multiscan Nof Scans preset register	
0x00000094			R	MCA Multiscan Scan counter register	
0x00000098			R	MCA Multiscan last Scan Histogram count register	
0x00000400	4	-	KA W	Key address Reset	
0x00000400	4	_	KA W	Key address Sample Logic Reset	
01100000101	7		1071 11	Ney address Sumple Logic Reset	
MCA mode = 0					
0x00000410	4	-	KA W	Key address Sample Logic Reset	
0x00000414	4	-	KA W	Key address Disarm Sample Logic	
0x00000418	4	-	KA W	Key address Trigger	
0x0000041C	4	-	KA W	Key address Timestamp Clear	
0x00000420	4		KA W	Key address Disarm Sample Logic and Arm sampling on Bank 1	
0x00000424	4		KA W	Key address Disarm Sample Logic and Arm sampling on Bank 2	
0x00000428	4	-	KA W	Key address Reset DDR2 Memory Logic	
MCA mode = 1					
0x00000410	4	-	KA W	Key MCA Scan LNE Pulse	
0x00000414	4	-	KA W	Key MCA Scan operation Arm (start with next LNE)	
0x00000418	4	-	KA W	Key MCA Scan Enable (start immediately)	
0x0000041C	4	-	KA W	Key MCA Scan Disable	
0x00000420	4		KA W	Key MCA Multiscan Start/Reset pulse	
0x00000420	4		KA W	Key MCA Multiscan Arm with Scan operation Arm (start scan with	
51100000121			13/13 44	next LNE)	
0x00000428	4	-	KA W	Key MCA Multiscan Arm with Scan operation Enable	
0x0000042C	4	-	KA W	Key MCA Multiscan disable	

Event information	Event information all ADC groups					
0x01000000	4	-	W only	Event configuration (all ADCs)		
0x01000004	4		W only	End Address Threshold (all ADCs)		
0x01000008	4	-	W only	Pretrigger Delay and Trigger Gate Length (all ADCs)		
0x0100000C	4	ı	W only	Raw Data Buffer Configuration (all ADCs)		
0x01000040	4		W only	Energy Setup GP (all ADCs)		
0x01000044	4		W only	Energy Gate Length (all ADCs)		
0x01000048	4		W only	Energy Sample Length (all ADCs)		
0x0100004C	4		W only	Energy Sample Start Index1 (all ADCs)		
0x01000050	4		W only	Energy Sample Start Index2 (all ADCs)		
0x01000054	4		W only	Energy Sample Start Index3 (all ADCs)		
0x01000058	4		W only	Energy Tau Factor ADC1/3/5/7		
0x0100005C	4		W only	Energy Tau Factor ADC2/4/6/8		
0x01000060	4		W only	MCA Energy to Histogram Calculation Parameter ADC1357		
0x01000064	4		W only	MCA Energy to Histogram Calculation Parameter ADC2468		
0x01000068	4		W only	MCA Histogram Parameters (all ADCs)		
0x01000070	4	-	W only	Event Extended configuration (all ADCs)		

Event information	ADC gro	up 1		
0x02000000	4	_	R/W	Event configuration (ADC1, ADC2)
0x02000004	4		R/W	End Address Threshold (ADC1, ADC2)
0x02000008	4	-	R/W	Pretrigger Delay and Trigger Gate Length (ADC1, ADC2)
0x0200000C	4	-	R/W	Raw Data Buffer Configuration (ADC1, ADC2)
0x02000010	4	-	R	Actual Sample address ADC1
0x02000014	4	-	R	Actual Next Sample address ADC2
0x02000018	4		R	Previous Bank Sample address ADC1
0x0200001C	4		R	Previous Bank Sample address ADC2
0x02000020	4	-	R	Actual Sample Value (ADC1, ADC2)
0x02000024	4	-	R	internal Test
0x02000028	4	-	R	DDR2 Memory Logic Verification (ADC1, ADC2)
0x02000030	4		R/W	Trigger Setup ADC1
0x02000034	4		R/W	Trigger Threshold ADC1
0x02000038	4		R/W	Trigger Setup ADC2
0x0200003C	4		R/W	Trigger Threshold ADC2
0x02000040	4		R/W	Energy Setup GP (ADC1, ADC2)
0x02000044	4		R/W	Energy Gate Length (ADC1, ADC2)
0x02000048	4		R/W	Energy Sample Length (ADC1, ADC2)
0x0200004C	4		R/W	Energy Sample Start Index1 (ADC1, ADC2)
0x02000050	4		R/W	Energy Sample Start Index2 (ADC1, ADC2)
0x02000054	4		R/W	Energy Sample Start Index3 (ADC1, ADC2)
0x02000058	4		R/W	Energy Tau Factor ADC1
0x0200005C	4		R/W	Energy Tau Factor ADC2
0x02000060	4		R/W	MCA Energy to Histogram Calculation Parameter ADC1
0x02000064	4		R/W	MCA Energy to Histogram Calculation Parameter ADC2
0x02000068	4		R/W	MCA Histogram Parameters (ADC1, ADC2)

0x02000070	4	R/W	Event Extended configuration (ADC1, ADC2)
0x02000078	4	R/W	Trigger Extended Setup ADC1
0x0200007C	4	R/W	Trigger Extended Setup ADC2
0x02000080	4	R	MCA Trigger Start Counter ADC1
0x02000084	4	R	MCA Pileup Counter ADC1
0x02000088	4	R	MCA "Energy to high" counter ADC1
0x0200008C	4	R	MCA "Energy to low" counter ADC1
0x02000090	4	R	MCA Trigger Start Counter ADC2
0x02000094	4	R	MCA Pileup Counter ADC2
0x02000098	4	R	MCA "Energy to high" counter ADC2
0x0200009C	4	R	MCA "Energy to low" counter ADC2
0x020000A0	4	R/W	Trigger Extended Threshold ADC1
0x020000A4	4	R/W	Trigger Extended Threshold ADC2

Event information ADC group 2						
0x02800000	4	-	R/W	Event configuration (ADC3, ADC4)		
And so on (as for ADC group 1)						

Event information ADC group 3						
0x03000000	4	-	R/W	Event configuration (ADC5, ADC6)		
And so on (as for ADC group 1)						

Event information ADC group 4						
0x03800000	4	-	R/W	Event configuration (ADC7, ADC8)		
And so on (as for ADC group 1)						

ADC memory pag	ADC memory pages						
0x04000000	8 MByte	X	R	ADC 1 memory page			
0x04800000	8 MByte	X	R	ADC 2 memory page			
0x05000000	8 MByte	X	R	ADC 3 memory page			
0x05800000	8 MByte	X	R	ADC 4 memory page			
0x06000000	8 MByte	X	R	ADC 5 memory page			
0x06800000	8 MByte	X	R	ADC 6 memory page			
0x07000000	8 MByte	X	R	ADC 7 memory page			
0x07800000	8 MByte	X	R	ADC 8 memory page			

4 Register/Resource Description

The 0x12xx firmware related registers are described in this section. The define statements were taken from the sis3302_v1201.h header file. Examples refer to the C code which is underlying the sis3150_3302_gamma CVI project.

4.1 Control/Status register

The control register is implemented as a selective J/K register, a specific function is enabled by writing a 1 into the set/enable bit, the function is disabled by writing a 1 into the clear/disable bit (which location is 16-bit higher in the register). An undefined toggle status will result from setting both the enable and disable bits for a specific function at the same time. The only function at this point in time is user LED on/off.

On read access the same register represents the status register.

Bit	write Function	read Function
31	Clear reserved 15 (*)	0
30	Clear reserved 14 (*)	0
29	Clear reserved 13 (*)	0
28	Clear reserved 12 (*)	0
27	Clear reserved 11 (*)	0
26	Clear reserved 10 (*)	0
25	Clear reserved 9 (*)	0
24	Clear reserved 8 (*)	0
23	Clear reserved 7 (*)	0
22	Clear reserved 6 (*)	0
21	Clear reserved 5 (*)	0
20	Clear reserved 4 (*)	0
19	Clear reserved 3 (*)	0
18	Clear reserved 2 (*)	0
17	Clear reserved 1 (*)	0
16	Switch off user LED (*)	0
15	Set reserved 15	Status reserved 15
14	Set reserved 14	Status reserved 14
13	Set reserved 13	Status reserved 13
12	Set reserved 12	Status reserved 12
11	Set reserved 11	Status reserved 11
10	Set reserved 10	Status reserved 10
9	Set reserved 9	Status reserved 9
8	Set reserved 8	Status reserved 8
7	Set reserved 7	Status reserved 7
6	Set reserved 7	Status reserved 6
5	Set reserved 7	Status reserved 4
4	Set reserved 7	Status reserved 4
3	Set reserved 3	Status reserved 3
2	Set reserved 2	Status reserved 2
1	Set reserved 1	Status reserved 1
0	Switch on user LED	Status User LED (1=LED on, 0=LED off)

^(*) denotes power up default setting

4.2 Module Id. and Firmware Revision register

This register reflects the module identification of the SIS3302 and its minor and major firmware revision levels. The major revision level will be used to distinguish between substantial design differences and experiment specific designs, while the minor revision level will be used to mark user specific adaptations.

Bit	Function	Reading
31	Module Id. Bit 15	
30	Module Id. Bit 14] 2
29	Module Id. Bit 13	\mathcal{I}
28	Module Id. Bit 12	
27	Module Id. Bit 11	
26	Module Id. Bit 10] 2
25	Module Id. Bit 9	\mathbf{J}
24	Module Id. Bit 8	
23	Module Id. Bit 7	
22	Module Id. Bit 6	\cap
21	Module Id. Bit 5	
20	Module Id. Bit 4	
19	Module Id. Bit 3	
18	Module Id. Bit 2	\mathbf{j}
17	Module Id. Bit 1	
16	Module Id. Bit 0	
15	Major Revision Bit 7	
14	Major Revision Bit 6	
13	Major Revision Bit 5	
12	Major Revision Bit 4	
11	Major Revision Bit 3	
10	Major Revision Bit 2	
9	Major Revision Bit 1	
8	Major Revision Bit 0	
7	Minor Revision Bit 7	
6	Minor Revision Bit 6	
5	Minor Revision Bit 5	
4	Minor Revision Bit 4	
3	Minor Revision Bit 3	
2	Minor Revision Bit 2	
1	Minor Revision Bit 1	
0	Minor Revision Bit 0	

4.2.1 Major revision numbers

Find below a table with major revision numbers used to date

Major revision number	Application/user
0x01	Generic designs
0x12	Gamma
0x14	Gamma (add MCA Mode)

4.3 Interrupt configuration register

This read/write register controls the VME interrupt behaviour of the SIS3302 ADC. Four interrupt sources are foreseen, for the time being two of them are associated with an interrupt condition, two condition are reserved for future use.

The interrupter type is DO8.

4.3.1 IRQ mode

In RORA (release on register access) mode the interrupt will be pending until the IRQ source is cleared by specific access to the corresponding disable VME IRQ source bit. After the interrupt is serviced the source has to be activated with the enable VME IRQ source bit again.

In ROAK (release on acknowledge) mode, the interrupt condition will be cleared (and the IRQ source disabled) as soon as the interrupt is acknowledged by the CPU. After the interrupt is serviced the source has to be activated with the enable VME IRQ source bit again.

Bit	Function	Default
31		0
		0
16		0
15		0
14		0
13		0
12	RORA/ROAK Mode (0: RORA; 1: ROAK)	0
11	VME IRQ Enable (0=IRQ disabled, 1=IRQ enabled)	0
10	VME IRQ Level Bit 2	0
9	VME IRQ Level Bit 1	0
8	VME IRQ Level Bit 0 (0 always)	0
7	IRQ Vector Bit 7; placed on D7 during VME IRQ ACK cycle	0
6	IRQ Vector Bit 6; placed on D6 during VME IRQ ACK cycle	0
5	IRQ Vector Bit 5; placed on D5 during VME IRQ ACK cycle	0
4	IRQ Vector Bit 4; placed on D4 during VME IRQ ACK cycle	0
3	IRQ Vector Bit 3; placed on D3 during VME IRQ ACK cycle	0
2	IRQ Vector Bit 2; placed on D2 during VME IRQ ACK cycle	0
1	IRQ Vector Bit 1; placed on D1 during VME IRQ ACK cycle	0
0	IRQ Vector Bit 0; placed on D0 during VME IRQ ACK cycle	0

The power up default value reads 0x 00000000

4.4 Interrupt control register

This register controls the VME interrupt behaviour of the SIS3302 ADC. Four interrupt sources are foreseen, for the time being two of them are associated with an interrupt condition, two condition are reserved for future use.

Bit	Function (w)	(r)	Default
31	Update IRQ Pulse	Status IRQ source 7 (reserved)	0
30	Unused	Status IRQ source 6 (reserved)	0
29	Unused	Status IRQ source 5 (reserved)	0
28	Unused	Status IRQ source 4 (reserved)	0
27	Unused	Status IRQ source 3 (reserved)	0
26	Unused	Status IRQ source 2 (reserved)	0
25	Unused	Status IRQ source 1 (End Address Threshold Flag; level sensitive)	0
24	Unused	Status IRQ source 0 (End Address Threshold Flag; edge sensitive)	0
23	Disable/Clear IRQ source 7	Status flag source 7	0
22	Disable/Clear IRQ source 6	Status flag source 6	0
21	Disable/Clear IRQ source 5	Status flag source 5	0
20	Disable/Clear IRQ source 4	Status flag source 4	0
19	Disable/Clear IRQ source 3	Status flag source 3	0
18	Disable/Clear IRQ source 2	Status flag source 2	0
17	Disable/Clear IRQ source 1	Status flag source 1	0
16	Disable/Clear IRQ source 0	Status flag source 0	0
15	Unused	Status VME IRQ	0
14	Unused	Status internal IRQ	0
13	Unused	0	0
12	Unused	0	0
11	Unused	0	0
10	Unused	0	0
9	Unused	0	0
8	Unused	0	0
7	Enable IRQ source 7	Status enable source 7 (read as 1 if enabled, 0 if disabled)	0
6	Enable IRQ source 6	Status enable source 6 (read as 1 if enabled, 0 if disabled)	0
5	Enable IRQ source 5	Status enable source 5 (read as 1 if enabled, 0 if disabled)	0
4	Enable IRQ source 4	Status enable source 4 (read as 1 if enabled, 0 if disabled)	0
3	Enable IRQ source 3	Status enable source 3 (read as 1 if enabled, 0 if disabled)	0
2	Enable IRQ source 2	Status enable source 2 (read as 1 if enabled, 0 if disabled)	0
1	Enable IRQ source 1	Status enable source 1 (read as 1 if enabled, 0 if disabled)	0
0	Enable IRQ source 0	Status enable source 0 (read as 1 if enabled, 0 if disabled)	0

The power up default value reads 0x 00000000

IRQ source 3: reserved IRQ source 2: reserved

IRQ source 1: reached Address Threshold (level sensitive) IRQ source 0: reached Address Threshold (edge sensitive)

4.5 Acquisition control register

Note: missing I in ACQUISITION in older header files

The acquisition control register is in charge of most of the settings related to the actual configuration of the digitization process.

Like the control register it is implemented in a J/K fashion.

Bit	Write Function	Read
31	Clear reserved 15 (*)	0
30	Clear Clock Source bit2 (*)	0
29	Clear Clock Source bit1 (*)	0
28	Clear Clock Source bit0 (*)	0
27	Clear reserved 11 (*)	0
26	Disable front panel LEMO In 1 (*)	0
25	Disable front panel LEMO In 2 (*)	0
24	Disable front panel LEMO In 3 (*)	0
23	Clear reserved 7 (*)	0
22	Disable ored Internal Trigger to External Trigger In (*)	0
21	Clear LEMO OUT Mode bit 1 (*)	Status of MCA Multiscan Busy
20	Clear LEMO OUT Mode bit 0 (*)	Status of MCA Scan Busy
19	Clear MCA Mode bit (*)	Status of End Address Threshold Flag
18	Clear LEMO IN Mode bit 2 (*)	Status of ADC-Sample-Logic Busy (Armed)
17	Clear LEMO IN Mode bit 1 (*)	Status of ADC-Sample-Logic Armed Bank2
16	Clear LEMO IN Mode bit 0 (*)	Status of ADC-Sample-Logic Armed Bank1
15	Set reserved 15	Status reserved 15
14	Set clock source bit 2	Status clock source bit 2
13	Set clock source bit 1	Status clock source bit 1
12	Set clock source bit 0	Status clock source bit 0
11	Set reserved 11	Status reserved 11
10	Enable front panel LEMO In 1	Status front panel LEMO In 1 Enable bit
9	Enable front panel LEMO In 2	Status front panel LEMO In 2 Enable bit
8	Enable front panel LEMO In 3	Status front panel LEMO In 3 Enable bit
7	Set reserved 7	Status reserved 7
6	Enable ored Internal Trigger to External Trigger In	Status ored Internal Trigger to External Trigger In
	(Feedback)	(Feedback)
5	Set LEMO OUT Mode bit 1	Status LEMO OUT Mode bit 1
4	Set LEMO OUT Mode bit 0	Status LEMO OUT Mode bit 0
3	Set MCA Mode bit	Status MCA Mode bit
2	Set LEMO IN Mode bit 2	Status LEMO IN Mode bit 2
1	Set LEMO IN Mode bit 1	Status LEMO IN Mode bit 1
0	Set LEMO IN Mode bit 0	Status LEMO IN Mode bit 0

(*) The power up default value reads 0x0

Clock source bit setting table:

Clock Source	Clock Source	Clock Source	Clock Source
Bit2	Bit1	Bit0	
0	0	0	internal 100 MHz
0	0	1	internal 50 MHz
0	1	0	internal 25 MHz
0	1	1	internal 10 MHz
1	0	0	internal 1 MHz
1	0	1	internal 100 MHz
1	1	0	external clock (LEMO front panel); min. 1 MHz
1	1	1	Second internal 100 MHz

Note:

The internal 100 MHz is generated with a DLL in the FPGA from the internal 50 MHz. To get a better resolution use the "Second internal 100 MHz" instead of "internal 100 MHz". (U212 must be assembled with a 100 MHz 3.3 V oscillator)

LEMO OUT Mode bit setting table:

with MCA Mode = 0	Lemo Output assignment
Mode 0 (bit1=0, bit0=0)	output 3 -> ADC sample logic armed output 2 -> ADCx event sampling busy output 1 -> Trigger output
Mode 1 (bit1=0, bit0=1)	output 3 -> ADC sample logic armed output 2 -> ADCx event sampling busy or ADC sample logic not armed (Veto) output 1 -> Trigger output
Mode 2 (bit1=1, bit0=0)	output 3 -> ADC N+1 Neighbor Trigger/Gate Out output 2 -> Trigger output output 1 -> ADC N-1 Neighbor Trigger/Gate Out
Mode 3 (bit1=1, bit0=1)	output 3 -> ADC N+1 Neighbor Trigger/Gate Out output 2 -> ADC sampling busy or ADC sample logic not armed (Veto) output 1 -> ADC N-1 Neighbor Trigger/Gate Out

Lemo Output Mode with MCA Mode = 1	Lemo Output assignment
Mode 0 (bit1=0, bit0=0)	output 3 -> ADC sample logic armed output 2 -> ADCx event sampling busy output 1 -> Trigger output
Mode 1 (bit1=0, bit0=1)	output 3 -> Multiscan first scan signal output 2 -> LNE output 1 -> Scan enable
Mode 2 (bit1=1, bit0=0)	output 3 -> Scan enable output 2 -> LNE output 1 -> Trigger output
Mode 3 (bit1=1, bit0=1)	output 3 -> reserved output 2 -> reserved output 1 -> reserved

MCA Mode bit= 0: MCA Mode is disabled

MCA Mode bit= 1: MCA Mode is enabled

The Energy Histograms are build in the ADCx memories.

LEMO IN Mode bit setting table:

Lemo Input Mode with MCA Mode = 0	Lemo Input assignment
Mode 0 (bit2=0, bit1=0, bit0=0)	input 3 -> Trigger input 2 -> Timestamp Clear input 1 -> Veto
Mode 1 (bit2=0, bit1=0, bit0=1)	input 3 -> Trigger input 2 -> Timestamp Clear input 1 -> Gate
Mode 2 (bit2=0, bit1=1, bit0=0)	input 3 -> reserved input 2 -> reserved input 1 -> reserved
Mode 3 (bit2=0, bit1=1, bit0=1)	input 3 -> reserved input 2 -> reserved input 1 -> reserved
Mode 4 (bit2=0, bit1=1, bit0=0)	input 3 -> ADC N+1 Neighbor Trigger/Gate In input 2 -> Trigger input 1 -> ADC N-1 Neighbor Trigger/Gate In
Mode 5 (bit2=1, bit1=0, bit0=1)	input 3 -> ADC N+1 Neighbor Trigger/Gate In input 2 -> Timestamp Clear input 1 -> ADC N-1 Neighbor Trigger/Gate In
Mode 6 (bit2=1, bit1=1, bit0=0)	input 3 -> ADC N+1 Neighbor Trigger/Gate In input 2 -> Veto input 1 -> ADC N-1 Neighbor Trigger/Gate In
Mode 7 (bit2=1, bit1=1, bit0=1)	input 3 -> ADC N+1 Neighbor Trigger/Gate In input 2 -> Gate input 1 -> ADC N-1 Neighbor Trigger/Gate In
Lemo Input Mode with MCA Mode = 1	Lemo Input assignment
Mode 0 (bit2=0, bit1=0, bit0=0)	input 3 -> reserved input 2 -> external MCA_Start (histogram ptr reset/start pulse) input 1 -> external next pulse (LNE)
Mode 1 (bit2=0, bit1=0, bit0=1)	input 3 -> Trigger input 2 -> external MCA_Start (histogram ptr reset/start pulse) input 1 -> external next pulse (LNE)
Mode 2 (bit2=0, bit1=1, bit0=0)	input 3 -> Veto input 2 -> external MCA_Start (histogram ptr reset/start pulse) input 1 -> external next pulse (LNE)
Mode 3 (bit2=0, bit1=1, bit0=1)	input 3 -> Gate input 2 -> external MCA_Start (histogram ptr reset/start pulse) input 1 -> external next pulse (LNE)
Mode 4 to 7	reserved

4.6 Broadcast setup register

This read/write register defines, whether the SIS3302 will participate in a Broadcast. The configuration of this register and the registers of other participating modules is essential for proper Broadcast behaviour.

Bit	Function
31	Broadcast address bit 31
30	Broadcast address bit 30
29	Broadcast address bit 29
28	Broadcast address bit 28
27	Broadcast address bit 27
26	reserved
25	reserved
24	reserved
23	reserved
22	reserved
21	reserved
20	reserved
19	reserved
18	reserved
17	reserved
16	reserved
15	reserved
14	reserved
13	reserved
12	reserved
11	reserved
10	0
9	0
8	0
7	0
6	0
5	Enable Broadcast Master
4	Enable Broadcast
3	0
2	reserved
1	reserved
0	reserved

Broadcast functionality is implemented for all Key address cycles.

Modules which are supposed to participate in a broadcast have to get the same broadcast address. The broadcast address is defined by the upper 5 bits of the broadcast setup register. One module has to be configured as broadcast master, the enable broadcast bit has to be set for all modules as illustrated below.

Broadcast setup example (broadcast address 0x38000000):

Module	Broadcast Setup Register	Comment
1	0x38000030	Broadcast Master
2	0x38000010	Broadcast enable
3	0x38000010	Broadcast enable
4	0x38000010	Broadcast enable

All 4 modules will participate in a key reset (A32/D32 write) to address 0x38000400.

Note: Do not use a broadcast address that is an existing VME address of a VME card in the crate.

4.7 ADC Memory Page register

```
#define SIS3302_ADC_MEMORY_PAGE_REGISTER 0x34 /* read/write; D32 */
```

The SIS3302 default memory size per channel is 64 MByte (i.e. 32 MSample).

The VME address space window per ADC is limited to 8 MByte (4 MSample) however. The read/write ADC memory page register is used to select one of the 8 memory subdivisions (pages).

Bit	Function
31	reserved
4	reserved
3	Page register bit 3 (reserved)
2	Page register bit 2
1	Page register bit 1
0	Page register bit 0

Example: dual 1/2 memory buffer acquisition scheme (see sis3150_gamma_running.c)

4.8 DAC Control Registers

This set of registers is used to program the 16-bit offset DACs for the 8 ADC channels. Refer to the documentation of the AD5570 DAC chip for details also and have a look to the configuration example in sis3302_adc_test1.c (CVI directory)

Example routine:

4.8.1 DAC Control/Status register (read/write)

#define SIS3302_DAC_CONTROL_STATUS 0x50 /* read/write; D32 */

Bit	Write Function	Read Function
31	None	0
16	None	0
15	None	DAC Read/Write/Clear Cycle BUSY
14	None	0
8	None	0
7	None	0
6	DAC selection Bit 2	status of DAC selection Bit 2
5	DAC selection Bit 1	status of DAC selection Bit 1
4	DAC selection Bit 0	status of DAC selection Bit 0
3		
2	none	0
1	DAC Command Bit 1	DAC Command Bit 1 Status
0	DAC Command Bit 0	DAC Command Bit 0 Status

DAC Command Bit

Bit 1	Bit 0	Function
0	0	No function
0	1	Load shift register of selected DAC
1	0	Load selected DAC
1	1	Clear all DACs

A "Clear DAC" command sets the value of all DACs to analog ground

4.8.2 DAC Data register

Bit	Write Function	Read Function
31	none	DAC Input Register Bit 15 (from DAC)
16	none	DAC Input Register Bit 0
15	DAC Output Register Bit 15	DAC Output Register Bit 15
		0
		0
0	DAC Output Register Bit 0	DAC Output Register Bit 0

4.8.3 DAC load sequence

The sequence to load the DAC of a single channel is shown below.

The example routine sis3302_write_dac_offset loads the 8 DACs of a SIS3302 module at base address module_ offset in a loop.

Sequence to load offset of channel N, N=[0,...,7]

Find below a DAC scan that was acquired with the DAC test function of the SIS3302 ADC Labwindows application. The SIS3302 under test was configured for an input span of some 2 V_{pkpk} . It can be seen, that a DAC offset of some 37000 counts is required to accomplish an input range of -1...+1V on this particular channel.

Note: The actual sample value registers can be used to monitor the influence of the DAC settings on the ADC values.

4.9 MCA Scan Nof Histograms preset register

#define SIS3302_MCA_SCAN_NOF_HISTOGRAMS_PRESET

0x80

The number of histograms in a MCA Scan operation can be preset/limited with this 32-bit deep register.

The entry of 0x0 (power up default) results in disabling the preset/limited function.

Histogram filling wraps at the 64 MByte Page Boundary while the Histogram counter continues incrementing.

4.10 MCA Scan Histogram counter register

#define SIS3302_MCA_SCAN_HISTOGRAM_COUNTER

0x84

This 32-bit deep register holds the actual number of histograms in MCA Scan operation. Histogram numbering starts with 0.

4.11 MCA Scan LNE Setup and Prescaler Factor register

#define SIS3302 MCA SCAN SETUP PRESCALE FACTOR

0x88

D31:29	D28	D27:0
Reserved	LNE source bit	LNE prescale factor

LNE source bit	LNE source
0	external next pulse (LNE); see Lemo Input Mode
1	internal 10 MHz

The LNE prescale factor register allows you to prescale the LNE pulse (external next pulse or internal 10MHz). The prescale factor is a 28-bit value. in MCA Scan operation.

LNE prescale factor	LNE pulse
0	(internal 10 MHz or external LNE)
1	(internal 10 MHz or external LNE) / 2
2	(internal 10 MHz or external LNE) / 3
3	(internal 10 MHz or external LNE) / 4

4.12 MCA Scan Control register

#define SIS3302_MCA_SCAN_CONTROL

0x8C

Bit	Function
31	None
16	None
15	None
8	None
7	None
6	None
5	None
4	Start Scan on Bank 2 bit
3	None
2	None
1	None
0	Scan Histogram Autoclear disable bit

Scan Histogram Autoclear disable bit = 0:

Scan Mode: Autoclear is enabled

Multiscan Mode: Autoclear is enabled for 1. Scan and disabled

for the following Scans.

Scan Histogram Autoclear disable bit = 1:

Scan Mode: Autoclear is disabled Multiscan Mode: Autoclear is disabled

Start Scan on Bank 2 bit = 0: start address of 1. histogram is 0x0 (first page)

Start Scan on Bank 2 bit = 1: start address of 1. histogram is 0x0040 0000 (4 Mbyte offset)

Write to this register only if MCA Multiscan or Scan is not Busy.

4.13 MCA Multiscan Nof Scans preset register

#define SIS3302_MCA_MULTISCAN_NOF_SCANS_PRESET

0x90

The number of scans in a MCA Multiscan operation can be preset/limited with this 32-bit deep register.

The entry of 0x0 (power up default) results in disabling the preset/limited function.

4.14 MCA Multiscan Scan counter register

#define SIS3302_MCA_MULTISCAN_SCAN_COUNTER

0x94

This 32-bit deep register holds the actual number of scans in MCA Multiscan operation. The register content is updated with the start signal/pulse.

4.15 MCA Multiscan Last Scan Histogram counter register

#define SIS3302_MCA_MULTISCAN_LAST_SCAN_HISTOGRAM_COUNTER

0x98

This 32-bit deep register holds the number of histograms of the last (earlier) scan in MCA Multiscan operation. It is updated with the start in MCA Multiscan operation.

4.16 Key address general reset (0x400)

A write with arbitrary data to this register (key address) resets the SIS3302 to it's power up state.

4.17 Key address Sample Logic reset (0x404)

```
#define SIS3302_KEY_0x404_SAMPLE_LOGIC_RESET 0x404 /* write only; D32 */
```

A write with arbitrary data to this register (key address) resets the sampling logic. The moving average sums are cleared at the same time.

This key write has to be used after the P and G parameters are updated and before a key arm is issued. Undefined behavior (negative sign e.g.) may result otherwise.

4.18 Key addresses with MCA mode = 0

4.18.1 Key address Sample Logic reset (0x410)

A write with arbitrary data to this register (key address) resets the sampling logic. The moving average sums are cleared at the same time.

This key write has to be used after the P and G parameters are updated and before a key arm is issued. Undefined behavior (negative sign e.g.) may result otherwise.

4.18.2 Key address VME Disarm Sample logic (0x414)

A write with arbitrary data to this register (key address) will disarm the sampling logic.

4.18.3 Key address VME Trigger (0x418)

```
#define SIS3302 KEY Trigger 0x418 /* write only; D32 */
```

A write with arbitrary data to this register (key address) will trigger the sampling logic if "external trigger" is enabled (see Event configuration registers).

4.18.4 Key address Timestamp Clear (0x41C)

```
#define SIS3302_KEY_TIMESTAMP_CLEAR 0x41C /* write only; D32 */
A write with arbitrary data to this register (key address) clears the 48-bit Timestamp counter.
```


4.18.5 Key address Disarm Sample Logic and Arm sampling on Bank 1 (0x420)

```
#define SIS3302 KEY DISARM AND ARM BANK1 0x420 /* write only; D32 */
```

Disarms sampling on current bank and arms bank 1.

4.18.6 Key address Disarm Sample Logic and Arm sampling on Bank 2 (0x424)

```
#define SIS3302 KEY DISARM AND ARM BANK2 0x424 /* write only; D32 */
```

Disarms sampling on current bank and arms bank 2. Used in dual bank acquisition as illustrated in the example below.

Example (from sis3150 gamma running.c):

```
if (bank1_armed_flag == 1) {
    addr = gl_uint_ModAddrRun[0] + SIS3302_KEY_DISARM_AND_ARM_BANK2;
    bank1_armed_flag = 0; // bank 2 is armed
}
else {
    addr = gl_uint_ModAddrRun[0] + SIS3302_KEY_DISARM_AND_ARM_BANK1;
    bank1_armed_flag = 1; // bank 2 is armed
}
if ((error = sub_vme_A32D32_write(addr,0x0)) != 0) {
    sisVME_ErrorHandling (error, addr, "sub_vme_A32D32_write");
}
```

4.19 Key addresses with MCA mode = 1

4.19.1 Key address MCA Scan LNE pulse (0x410)

```
#define SIS3302_KEY_MCA_SCAN_LNE_PULSE 0x410 /* write only; D32 */
```

A write with arbitrary data to this address issues a LNE (load next event, advance to next histogram) in MCA mode.

4.19.2 Key address MCA Scan Operation Arm (0x414)

A write with arbitrary data to this address arms the module in MCA mode. The MCA Scan operation will start with next LNE signal or Key MCA Scan LNE pulse the MCA Scan operation..

4.19.3 Key address MCA Scan Enable (0x418)

```
#define SIS3302_KEY_MCA_SCAN_START 0x418 /* write only; D32 */
```

A write with arbitrary data to this address enables (starts) the MCA Scan operation.

4.19.4 Key address MCA Scan Disable (0x41C)

```
#define SIS3302 KEY MCA SCAN DISABLE 0x41C /* write only; D32 */
```

A write with arbitrary data to this address disables the MCA Scan operation.

4.19.5 Key address MCA Multiscan Start/Reset pulse (0x420)

```
#define SIS3302_KEY_MCA_MULTISCAN_START_RESET_PULSE 0x420 /* wr; D32 */
```

A write with arbitrary data to this address issues a start pulse in MCA Multiscan mode.

4.19.6 Key address MCA Multiscan Arm with Scan operation Arm (0x424)

A write with arbitrary data to this address arms the MCA Muliscan operation (it starts with Start/Reset pulse). After the MCA Multiscan operation is started the logic arms the MCA Scan operation (the Scan operation starts with next LNE).

4.19.7 Key address MCA Multiscan Arm with Scan operation Enable (0x428)

```
#define SIS3302_KEY_MCA_MULTISCAN_ARM_SCAN_ENABLE 0x428 /* wr; D32 */
```

A write with arbitrary data to this address arms the MCA Muliscan operation (it starts with Start/Reset pulse). After the MCA Multiscan operation is started the logic enables (starts) the MCA Scan operation.

4.19.8 Key address MCA Multiscan Disable (0x42C)

A write with arbitrary data to this address disables MCA Multiscan operation.

4.20 Event configuration registers

This register is implemented for each channel group. The SIS3302_EVENT_CONFIG_ALL_ADC register can be used to write the same setting to the registers of all channel groups simultaneously.

Bit	Function
31	HEADER_ADC_ID bit 15
30	
21	
20	HEADER_ADC_ID bit 4
19	HEADER_ADC_ID bit 3
18	Channel Group ID Bit 1 (read only), used as HEADER_ADC_ID bit 2
17	Channel Group ID Bit 0 (read only), used as HEADER_ADC_ID bit 1
16	Unused
15	ADC 2 ADC N+1 Next Neighbor gate enable
14	ADC 2 ADC N-1 Next Neighbor gate enable
13	ADC 2 external gate enable
12	ADC 2 internal gate enable
11	ADC 2 external trigger enable
10	ADC 2 internal trigger enable
9	reserved
8	ADC 2 input invert bit
7	ADC 1 ADC N+1 Next Neighbor gate enable
6	ADC 1 ADC N-1 Next Neighbor gate enable
5	ADC 1 external gate enable
4	ADC 1 internal gate enable
3	ADC 1 external trigger enable (synchronous mode)
2	ADC 1 internal trigger enable (asynchronous mode)
1	Reserved
0	ADC 1 input invert bit

ADCx input invert bit = 0: use for positive signals ADCx input invert bit = 1: use for negative signals

4.21 Event Extended configuration registers

```
#define SIS3302_EVENT_EXTENDED_CONFIG_ALL_ADC 0x01000070  /* write; D32 */
#define SIS3302_EVENT_EXTENDED_CONFIG_ADC12 0x02000070  /* read/write */
#define SIS3302_EVENT_EXTENDED_CONFIG_ADC34 0x02800070  /* read/write */
#define SIS3302_EVENT_EXTENDED_CONFIG_ADC56 0x03000070  /* read/write */
#define SIS3302_EVENT_EXTENDED_CONFIG_ADC78 0x03800070  /* read/write */
```

This register is implemented for each channel group. The SIS3302_EVENT_EXTENDED_CONFIG_ALL_ADC register can be used to write the same setting to the registers of all channel groups simultaneously.

Bit	Function
31	Reserved
30	
21	
20	Reserved
19	Reserved
18	Reserved
17	Reserved
16	Reserved
15	ADC 2 ADC N+1 Next Neighbor trigger enable
14	ADC 2 ADC N-1 Next Neighbor trigger enable
13	Reserved
12	Reserved
11	Reserved
10	Reserved
9	reserved
8	ADC2 Trigger-50KHz Enable bit
7	ADC 1 ADC N+1 Next Neighbor trigger enable
6	ADC 1 ADC N-1 Next Neighbor trigger enable
5	Reserved
4	Reserved
3	Reserved
2	Reserved
1	Reserved
0	ADC1 Trigger-50KHz Enable bit

ADCx Trigger-50KHz Enable bit:

if set then triggers are generated with 50KHz (with ADC clock = 100MHz).

This feature is useful for ADC value histogramming in MCA mode.

4.22 End Address Threshold registers

<pre>#define SIS3302_END_ADDRESS_THRESHOLD_ALL_ADC</pre>	0×01000004
<pre>#define SIS3302_END_ADDRESS_THRESHOLD_ADC12</pre>	0×02000004
<pre>#define SIS3302_END_ADDRESS_THRESHOLD_ADC34</pre>	0×02800004
<pre>#define SIS3302_END_ADDRESS_THRESHOLD_ADC56</pre>	0x03000004
<pre>#define SIS3302_END_ADDRESS_THRESHOLD_ADC78</pre>	0x03800004

These registers define the "End Address Threshold" values for the ADC channel groups.

The value of the Actual Next Sample address counter will be compared with value of the End Address Threshold register.

The value is given in samples (i.e. number of 16-bit words)

Bit	
31	unused, read as 0
•••	
24	unused, read as 0
23	End Address Threshold Bit 23
••	
2	End Address Threshold Bit 2
1	unused, read as 0
0	unused, read as 0

The power up default value is 0

4.23 Pretrigger Delay and Trigger Gate Length registers

#define SIS3302_PRETRIGGER_DELAY_TRIGGERGATE_LENGTH_ALL_ADC	0x01000008
#define SIS3302_PRETRIGGER_DELAY_TRIGGERGATE_LENGTH_ADC12	0×02000008
#define SIS3302_PRETRIGGER_DELAY_TRIGGERGATE_LENGTH_ADC34	0x02800008
#define SIS3302_PRETRIGGER_DELAY_TRIGGERGATE_LENGTH_ADC56	0x03000008
#define SIS3302_PRETRIGGER_DELAY_TRIGGERGATE_LENGTH_ADC78	0x03800008

This register defines the length of the Trigger Gate (1 to 65536) and the Pretrigger Delay (0 to 1023). The used value for the Pretrigger Delay is the set value -2 (with a wrap behaviour as illustrated in the table below.

Written value	Trigger Gate Length
0	1
1	2
2	3
3	4
4	2
65535	65536

Written value	Pretrigger Delay
0	1022
1	1023
2	0
3	1
4	2
510	508
511	509
1022	1020
1023	1021

Register bit assignments:

D31:25	D24:16	D15:0
0	Pretrigger Delay (-2)	Trigger Gate Length (+1)

The power up default value is 0

Example:

Desired Trigger Gate Length of 1024 clocks and a Pretrigger Delay of 256 clocks (samples) - set the register to 0x 0102 03FF

Note: The Trigger Gate Length is independent from the Trigger Decimation Mode!

4.24 Raw Data Buffer Configuration registers

```
#define SIS3302_RAW_DATA_BUFFER_CONFIG_ALL_ADC 0x0100000C

#define SIS3302_RAW_DATA_BUFFER_CONFIG_ADC12 0x0200000C

#define SIS3302_RAW_DATA_BUFFER_CONFIG_ADC34 0x0280000C

#define SIS3302_RAW_DATA_BUFFER_CONFIG_ADC56 0x0300000C

#define SIS3302_RAW_DATA_BUFFER_CONFIG_ADC78 0x0380000C
```

This register is used to configure the number of samples of raw data to be acquired and to define the number of pre trigger samples (combination of "Raw Data Sample Start Index" and "Pretrigger Delay").

While the Trigger Gate is active the logic compares the value of the Trigger Gate Index (an internal counter, which is cleared at the beginning of the event and incremented by each clock)

with the value of the "Raw Data Sample Start Index" register. If the result of the compare is equal then the logic writes N values ("Raw Data Sample Length") into the Raw Data Buffer.

Both values are 16-bit deep. The number of samples has to be quad sample aligned and the number of pre trigger samples has to be even.

The number of "Raw Data Sample Length" is limited to 65532 samples!

Note: The register is implemented on the FPGA group level also.

Bit	Function
31	Bit 15 of Raw Data Sample Length
18	Bit 2 of Raw Data Sample Length
17	0 (quad sample aligned values only)
16	0 (quad sample aligned values only)
15	Bit 15 of Raw Data Sample Start Index
1	Bit 1 of Raw Data Sample Start Index
0	0 (even values only)

Example:

4.25 ADC1-8 Next Sample address register

<pre>#define SIS3302_ACTUAL_NEXT_SAMPLE_ADDRESS_ADC1</pre>	0×02000010
<pre>#define SIS3302_ACTUAL_NEXT_SAMPLE_ADDRESS_ADC2</pre>	0×02000014
<pre>#define SIS3302_ACTUAL_NEXT_SAMPLE_ADDRESS_ADC3</pre>	0×02800010
<pre>#define SIS3302_ACTUAL_NEXT_SAMPLE_ADDRESS_ADC4</pre>	0×02800014
<pre>#define SIS3302_ACTUAL_NEXT_SAMPLE_ADDRESS_ADC5</pre>	0x03000010
<pre>#define SIS3302_ACTUAL_NEXT_SAMPLE_ADDRESS_ADC6</pre>	0x03000014
<pre>#define SIS3302_ACTUAL_NEXT_SAMPLE_ADDRESS_ADC7</pre>	0x03800010
<pre>#define SIS3302_ACTUAL_NEXT_SAMPLE_ADDRESS_ADC8</pre>	0x03800014

These 8 read only registers hold the current next sampling address for the given channel. **Note:** the Next Sample Address points to 16-bit words (samples).

Bit	Function			
31	unused, read as 0			
25	unused, read as 0			
24	Next Sample Address Bit 24 (Bank flag)			
2	Next Sample Address Bit 2			
1	Next Sample Address Bit 1*			
0	Next Sample Address Bit 0*			

^{*} Sample address bits 1 and 0 are always "0".

Data are stored to memory in packets of 4 consecutive samples by the sample logic.

4.26 ADC1-8 Previous Bank Sample address register

#define	SIS3302_PREVIOUS_BANK_SAMPLE_ADDRESS_ADC1	0x02000018
#define	SIS3302_PREVIOUS_BANK_SAMPLE_ADDRESS_ADC2	0x0200001C
#define	SIS3302_PREVIOUS_BANK_SAMPLE_ADDRESS_ADC3	0x02800018
#define	SIS3302_PREVIOUS_BANK_SAMPLE_ADDRESS_ADC4	0x0280001C
#define	SIS3302_PREVIOUS_BANK_SAMPLE_ADDRESS_ADC5	0x03000018
#define	SIS3302_PREVIOUS_BANK_SAMPLE_ADDRESS_ADC6	0x0300001C
#define	SIS3302_PREVIOUS_BANK_SAMPLE_ADDRESS_ADC7	0x03800018
#define	SIS3302 PREVIOUS BANK SAMPLE ADDRESS ADC8	0x0380001C

These 8 read only registers hold the stored next sampling address of the previous bank. It is the stop address + 1;

Note: the Next Sample Address points to 16-bit words (samples).

Bit	Function			
31	unused, read as 0			
25	unused, read as 0			
24	Next Sample Address Bit 24 (Bank flag)			
2	Next Sample Address Bit 2			
1	Next Sample Address Bit 1*			
0	Next Sample Address Bit 0*			

4.27 Actual Sample registers

#0	define	SIS3302_ACTUAL_SAMPLE_VALUE_ADC12	0×02000020
#0	define	SIS3302_ACTUAL_SAMPLE_VALUE_ADC34	0×02800020
#0	define	SIS3302_ACTUAL_SAMPLE_VALUE_ADC56	0×03000020
#0	define	SIS3302_ACTUAL_SAMPLE_VALUE_ADC56	0x03000020

Read "on the fly" of the actual converted ADC values.

The read only registers are updated with every ADC clock, unless a concurrent VME read access is pending.

The register contents is refreshed and can be read any time (i.e. they are updated independent of the unarmed, armed, sampling state) as long as a sampling clock is distributed on the ADC board (internal clock or active/clocking external clock)

ADC 1/3/5/7	ADC 2 / 4 / 6 / 8
D31:16	D15:0
16-bit data	16-bit data

4.28 Trigger Setup registers

#define	SIS3302_TRIGGER_SETUP_ADC1	0×02000030
#define	SIS3302_TRIGGER_SETUP_ADC2	0×02000038
#define	SIS3302_TRIGGER_SETUP_ADC3	0×02800030
#define	SIS3302_TRIGGER_SETUP_ADC4	0×02800038
#define	SIS3302_TRIGGER_SETUP_ADC5	0x03000030
#define	SIS3302_TRIGGER_SETUP_ADC6	0x03000038
#define	SIS3302_TRIGGER_SETUP_ADC7	0×03800030
#define	SIS3302_TRIGGER_SETUP_ADC8	0x03800038

These read/write registers hold the (lower) Peaking and Gap Time values of the trapezoidal FIR filter, Trigger Pulse Length value and Internal Gate Length value. (Flat Time = SumG time – Peaking Time)

Bit	Function	
31	Reserved	
30	Reserved	
29	Internal Gate Length bit 5	Internal Gate Length
28	Internal Gate Length bit 4	(max. 63 clocks)
27	Internal Gate Length bit 3	(max. os ciocks)
26	Internal Gate Length bit 2	
25	Internal Gate Length bit 1	
24	Internal Gate Length bit 0	
23	Pulse Length bit 7	
22	Pulse Length bit 6	
21	Pulse Length bit 5	Internal Trigger Pulse Length
20	Pulse Length bit 4	(max. 255 clocks)
19	Pulse Length bit 3	
18	Pulse Length bit 2	
17	Pulse Length bit 1	
16	Pulse Length bit 0	
15	SumG bit 7	
14	SumG bit 6	SumG time
13	SumG bit 5	(time between both sums)
12	SumG bit 4	, ,
11	SumG bit 3	Note:
10	SumG bit 2	definition of SumG bit 8 can be found in
9	SumG bit 1	"Trigger Extended Setup registers".
8	SumG bit 0	
7	P bit 7	P : Peaking time
6	P bit 6	x+P
5	P bit 5	
4	P bit 4	Σ Si
3	P bit 3	_ ~-
2	P bit 2	i = x
1	P bit 1	Note:
0	P bit 0	definition of P bit 8 can be found in "Trigger Extended Setup registers".

The power up default value reads 0x0

Si: Sum of ADC input sample stream from x to x+P

P: Peaking time (number of values to sum)

SumG: SumGap time (distance in clock ticks of the two running sums)

4.29 Trigger Extended Setup registers

#define	SIS3302_TRIGGER_EXTENTED_SETUP_ADC1	0×02000078
#define	SIS3302_TRIGGER_EXTENTED_SETUP_ADC2	0x0200007C
#define	SIS3302_TRIGGER_EXTENTED_SETUP_ADC3	0×02800078
#define	SIS3302_TRIGGER_EXTENTED_SETUP_ADC4	0x0280007C
#define	SIS3302_TRIGGER_EXTENTED_SETUP_ADC5	0x03000078
#define	SIS3302_TRIGGER_EXTENTED_SETUP_ADC6	0x0300007C
#define	SIS3302_TRIGGER_EXTENTED_SETUP_ADC7	0x03800078
#define	SIS3302_TRIGGER_EXTENTED_SETUP_ADC8	0x0380007C

These read/write registers hold the (upper) Peaking and Gap Time values of the trapezoidal FIR filter, the decimation value and Internal Trigger Delay value.

31	D 1			
	Reserved			
30	Reserved			
29	Reserved	Internal Trigger Delay		
28	Internal Trigger Delay	(max. 31 clocks)		
27	Internal Trigger Delay	(max. 31 clocks)		
26	Internal Trigger Delay			
25	Internal Trigger Delay			
24	Internal Trigger Delay			
23	Reserved			
22	Reserved			
21	Reserved			
20	Reserved			
19	Reserved			
18	Trigger Decimation Mode bit 2			
17	Trigger Decimation Mode bit 1			
16	Trigger Decimation Mode bit 0			
15	Reserved			
14	Reserved			
13	Reserved	SumG time		
12	Reserved	(time between both sums)		
11	Reserved	(time between both sums)		
10	Reserved			
9	Reserved			
8	SumG bit 8			
7	Reserved			
6	Reserved			
5	Reserved	P : Peaking time		
4	Reserved	1 . I caking time		
3	Reserved			
2	Reserved			
1	Reserved			
0	P bit 8			

The power up default value reads 0x0

Note:

The maximum SumG time: 511 (clocks)
The minimun SumG time: 1 (clocks)

Value = 0 will be set to 1

The maximum Peaking time: 511 (clocks) The minimun Peaking time: 1 (clocks)

Value = 0 will be set to 1

Trigger Decimation Mode bit setting table:

Bit2	Bit1	Bit0	Trigger Decimation (in clocks)
0	0	0	1 (no decimation)
0	0	1	2 clocks
0	1	0	4 clocks
0	1	1	8 clocks
1	0	0	16 clocks
1	0	1	reserved
1	1	0	reserved
1	1	1	reserved

Only the Peaking and Gap Time dependent on the Trigger Decimation Mode!

4.30 Trigger Threshold registers

#define	SIS3302_TRIGGER_THRESHOLD_ADC1	0×02000034
#define	SIS3302_TRIGGER_THRESHOLD_ADC2	0x0200003C
#define	SIS3302_TRIGGER_THRESHOLD_ADC3	0×02800034
#define	SIS3302_TRIGGER_THRESHOLD_ADC4	0x0280003C
#define	SIS3302_TRIGGER_THRESHOLD_ADC5	0x03000034
#define	SIS3302_TRIGGER_THRESHOLD_ADC6	0x0300003C
#define	SIS3302_TRIGGER_THRESHOLD_ADC7	0x03800034
#define	SIS3302_TRIGGER_THRESHOLD_ADC8	0x0380003C

These read/write registers hold the threshold values for the ADC channels.

Bit	31-27	26	25	24	23	22-17	16-0
Function	none	Disable Trigger	Trigger Mode	none	Extended	none	Trapezoidal
		Out	GT		Threshold		threshold value
					Mode		

default after Reset: 0x0

The value of the Sum (trapezoidal value) depends on the peaking time P. Therefore the selection of the value of the Trapezoidal threshold depends on P also. The running sum is build with full accuracy.

- Trigger Extended Mode is cleared: a shifted 16-bit running sum + 0x1 0000 is compared with the threshold value of the Trigger Threshold register.
- Trigger Extended Mode is set: the full 25-bit running sum + 0x200 0000 is compared with the value of the Trigger Extended Threshold register to generate the Trigger.
- GT is set: the Trigger Out Pulse will be issued if the actual trapezoidal value **goes** above the programmable trapezoidal threshold value

Note 1: The trigger is disabled if GT is cleared

Note 2: use "ADCx input invert bit" for negative signals (see Event configuration registers)

4.30.1 Extended Threshold Mode = 0

The running sum is build with full accuracy before the result is shifted to a 16-bit wide sum value (SUM1). SUM2 is SUM1 delayed by G clocks.

if $P = 1$ to 15:	25 bit running sum is shifted to the right by 4 (N)
if $P = 16$ to 31:	25 bit running sum is shifted to the right by 5
if $P = 32$ to 63:	25 bit running sum is shifted to the right by 6
if $P = 64$ to 127:	25 bit running sum is shifted to the right by 7
if $P = 128$ to 255:	25 bit running sum is shifted to the right by 8
if $P = 256$ to 511:	25 bit running sum is shifted to the right by 9

See "int calculateFirTriggerAdcCounts (void)" in sis3302_configuration.c and Trigger Example.

Trapezoidal value calculation:

Trapezoidal value = (SUM2 - SUM1) + 0x10000

Where

$$SUM1 = \text{ shift right by N } \left(\sum_{i=x}^{x+P} Si \right)$$

$$SUM2 = \text{ shift right by N } \left(\sum_{j=x+sumG}^{x+P+sumG} Sj \right)$$

The FIR Filter logic adds 0x10000 to the result of the subtraction of the two running sums. This implies, that the internal value of the trapezoid is on average 0x10000.

A Trigger Output pulse is generated if the Trapezoidal value exceeds the trigger threshold value.

4.30.2 Extended Threshold Mode = 1

The FIR Filter logic adds $0x200\ 0000$ to the result of the subtraction of the two running 25-bit sums. This implies, that the internal value of the trapezoid is on average $0x200\ 0000$.

Trapezoidal value = (SUM2 - SUM1) + 0x2000000

A Trigger Output pulse is generated if the 26-bit Trapezoidal value exceeds the trigger extended threshold value.

4.30.3 Trigger example

Screen shot 1 below shows a triggered signal on ADC channel 1 and the resulting FIR. The Peaking Time P is set to 10 and sumG Time is set to 16 (Flat Time = 6).

The trigger condition is set to GT, the trapezoidal trigger threshold is set to 100 (trigger threshold reg = 0x10000 + 100), what results in a decimal threshold of 160 ADC counts.

Trigger Threshold = 100 - ((100 * 16) / 10) = 160 adc counts (corresponds to approx. 5mV)

- * 16: because data are shifted right by 4
- / 10: because P = 10 (sum over 10 counts)

ADC Raw data: (36481 - 34936 = 1545 corresponds to 50mV).

Screen shot 1

Peaking Time = 10 SumG Time = 16 Gap Time = 6

Screen shot 2

4.31 Trigger Extended Threshold registers

#define	SIS3302_TRIGGER_THRESHOLD_ADC1	$0 \times 020000 A0$
#define	SIS3302_TRIGGER_THRESHOLD_ADC2	0x020000A4
#define	SIS3302_TRIGGER_THRESHOLD_ADC3	0x028000A0
#define	SIS3302_TRIGGER_THRESHOLD_ADC4	0x028000A4
#define	SIS3302_TRIGGER_THRESHOLD_ADC5	0x030000A0
#define	SIS3302_TRIGGER_THRESHOLD_ADC6	0x030000A4
#define	SIS3302_TRIGGER_THRESHOLD_ADC7	0x038000A0
#define	SIS3302_TRIGGER_THRESHOLD_ADC8	0x038000A4

These read/write registers hold the extended threshold values for the ADC channels.

Bit	31-26	25-0
Function	none	Trapezoidal
		Extended threshold value

default after Reset: 0x0

4.32 Energy Setup GP registers

#define SIS3302_ENERGY_SETUP_GP_ALL_ADC	0x01000040
#define SIS3302 ENERGY SETUP GP ADC12	0x02000040
#define SIS3302_ENERGY_SETUP_GP_ADC34	0x02800040
<pre>#define SIS3302_ENERGY_SETUP_GP_ADC56</pre>	0×03000040
<pre>#define SIS3302_ENERGY_SETUP_GP_ADC78</pre>	0x03800040

This read/write register holds the Decimation, Peaking (max. 1023) and Gap (max. 255) Time values of the trapezoidal FIR Energy filter.

Bit		
31	reserved	
30	Extra Filter	
29	Decimation mode bit 1	
28	Decimation mode bit 0	
27	reserved	
26	reserved	
25	reserved	
24	reserved	
23	reserved	
		Peaking time P bits 9 to 8
17	P eaking Time bit 9	
16	Peaking Time bit 8	
15	Gap Time bit 7	
		Gap time
		(time between both sums)
		(time between both sums)
••	"	
8	Gap Time bit 0	
	1	
7	P eaking Time bit 7	Peaking time P bits 7 to 0
		x+P
••		Σ Si
0	Peaking Time bit 0	i = x
	war un default value reade Ov 000000	

The power up default value reads 0x 00000000

Decimation Mode bit setting table:

Bit1	Bit0	Decimation (in clocks)
0	0	1 (no decimation)
0	1	2 clocks
1	0	4 clocks
1	1	8 clocks

4.33 Energy Gate Length registers

<pre>#define SIS3302_ENERGY_GATE_LENGTH_ALL_ADC</pre>	0x01000044
#define SIS3302_ENERGY_GATE_LENGTH_ADC12	0×02000044
#define SIS3302_ENERGY_GATE_LENGTH_ADC34	0×02800044
#define SIS3302_ENERGY_GATE_LENGTH_ADC56	0×03000044
<pre>#define SIS3302_ENERGY_GATE_LENGTH_ADC78</pre>	0×03800044

This 17-bit register (bits 16:0) defines the length of the energy gate and defines test modes (bits 29:28) of the Energy Data. The Energy Gate starts with begin of sampling and stops after ("value" * decimation factor) clocks.

Bits	31-30	29-28	27-17	16:0
Function	0	Test Mode bits[1:0]	0	Energy Gate Length

Test Mode bit setting table:

Bit1	Bit0	meaning of ADC Energy Data
0	0	Energy MWD-MA, Trapez
0	1	Energy MW-MA, Trapez (test mode)
1	0	Trigger Trapez (test mode)
1	1	reserved

Test Mode: Trigger Trapez

The Trigger Trapez is delayed by 32 clocks and it is stored with the Energy Decimation factor !!!

4.34 Energy Sample registers

This register set (ENERGY_SAMPLE_LENGTH, ENERGY_SAMPLE_START_INDEX1, ENERGY_SAMPLE_START_INDEX2 and ENERGY_SAMPLE_START_INDEX3) controls the storage of the energy filter values.

While the Energy Gate is active the logic compares the value of the Energy Gate Index (an internal counter, which is cleared at the beginning of the event and incremented by each decimated clock) with the values of the "ENERGY_SAMPLE_START_INDEX" registers. If the result of the compare is equal then the logic writes N values ("ENERGY_SAMPLE_LENGTH") into the Energy Buffer.

The number of values is limited to 510 values in total!

4.34.1 Energy Sample Length registers

#define SIS3302_ENERGY_SAMPLE_LENGTH_ALL_ADC	0×01000048
<pre>#define SIS3302_ENERGY_SAMPLE_LENGTH_ADC12</pre>	0×02000048
<pre>#define SIS3302_ENERGY_SAMPLE_LENGTH_ADC34</pre>	0×02800048
<pre>#define SIS3302_ENERGY_SAMPLE_LENGTH_ADC56</pre>	0×03000048
<pre>#define SIS3302_ENERGY_SAMPLE_LENGTH_ADC78</pre>	0×03800048

Bits	31-11	10:0
Function	0	Energy Sample Length
		valid values : 0,2,4,508, 510

4.34.2 Energy Sample Start Index1 registers

<pre>#define SIS3302_ENERGY_SAMPLE_START_INDEX1_ALL_ADC</pre>	0x0100004C
<pre>#define SIS3302_ENERGY_SAMPLE_START_INDEX1_ADC12</pre>	0x0200004C
<pre>#define SIS3302_ENERGY_SAMPLE_START_INDEX1_ADC34</pre>	0x0280004C
<pre>#define SIS3302_ENERGY_SAMPLE_START_INDEX1_ADC56</pre>	0x0300004C
<pre>#define SIS3302_ENERGY_SAMPLE_START_INDEX1_ADC78</pre>	0x0380004C

Bits	31-16	15 :0
Function	0	Energy Sample Start Index1

Energy Sample Start Index1 = 0: disable Start

4.34.3 Energy Sample Start Index2 registers

<pre>#define SIS3302_ENERGY_SAMPLE_START_INDEX2_ALL_ADC</pre>	0×01000050
<pre>#define SIS3302_ENERGY_SAMPLE_START_INDEX2_ADC12</pre>	0×02000050
<pre>#define SIS3302_ENERGY_SAMPLE_START_INDEX2_ADC34</pre>	0×02800050
<pre>#define SIS3302_ENERGY_SAMPLE_START_INDEX2_ADC56</pre>	0x03000050
<pre>#define SIS3302_ENERGY_SAMPLE_START_INDEX2_ADC78</pre>	0x03800050

Bits	31-16	15 :0
Function	0	Energy Sample Start Index2

Energy Sample Start Index2 = 0 : disable Start

4.34.4 Energy Sample Start Index3 registers

<pre>#define SIS3302_ENERGY_SAMPLE_START_INDEX3_ALL_ADC</pre>	0×01000054
<pre>#define SIS3302_ENERGY_SAMPLE_START_INDEX3_ADC12</pre>	0×02000054
<pre>#define SIS3302_ENERGY_SAMPLE_START_INDEX3_ADC34</pre>	0×02800054
<pre>#define SIS3302_ENERGY_SAMPLE_START_INDEX3_ADC56</pre>	0×03000054
<pre>#define SIS3302_ENERGY_SAMPLE_START_INDEX3_ADC78</pre>	0x03800054

Bits	31-16	15 :0
Function	0	Energy Sample Start Index3

Energy Sample Start Index3 = 0: disable Start

4.35 Energy Tau Factor registers

```
#define SIS3302 ENERGY TAU FACTOR ADC1357
                                                0x01000058
#define SIS3302_ENERGY_TAU_FACTOR_ADC2468
                                                0x0100005C
#define SIS3302_ENERGY_TAU_FACTOR_ADC1
                                                0 \times 02000058
#define SIS3302_ENERGY_TAU_FACTOR_ADC2
                                                0x0200005C
#define SIS3302_ENERGY_TAU_FACTOR_ADC3
                                                0x02800058
#define SIS3302_ENERGY_TAU_FACTOR_ADC4
                                                0x0280005C
#define SIS3302_ENERGY_TAU_FACTOR_ADC5
                                                0x03000058
#define SIS3302_ENERGY_TAU_FACTOR_ADC6
                                               0x0300005C
#define SIS3302_ENERGY_TAU_FACTOR_ADC7
                                                0x03800058
#define SIS3302_ENERGY_TAU_FACTOR_ADC8
                                                0x0380005C
```

Those registers hold the 6-bit wide Tau factor for the corresponding ADC.

They are implemented on the FPGA group level also what allows you to run all 8 channels on the board with individual Tau settings.

Bit	Function
31	unused
6	unused
5	Bit 5 of Tau factor
0	Bit 0 of Tau factor

The decay time depends on the Tau factor, on the decimation mode and on the sample clock:

```
switch (gl_uint_SIS3302ClockModeConf) {
     case 0: // intern 100 MHz
           *sample_clock = 100000 ;
                                            //
           break;
     case 1: // intern 50 MHz
           *sample_clock = 50000 ;
           break;
} // end switch (gl_uint_SIS3302ClockModeConf)
switch (gl_uint_FirDecimationMode) {
     case 0: // no decimation
           float_sampling_time_us = 1000.0/sample_clock ;
           break;
     case
           1: //
           float_sampling_time_us = 2000.0/sample_clock ;
           break;
      case
           2: //
           float_sampling_time_us = 4000.0/sample_clock ;
           break;
     case
           3: //
           float_sampling_time_us = 8000.0/sample_clock ;
           break;
} // end switch (gl_uint_FirDecimationMode)
float_decay_factor = (Tau factor / 32768.0 );
float_decay_time_us = -(float_sampling_time_us / (log(1.0-float_decay_factor)));
```


Example: 100 MHz; Decimation = 4

```
Tau Factor = 1
                   decay_time_us = 1310.69999990 us
Tau Factor = 2
                   decay_time_us = 655.33999980 us
Tau Factor = 3
                   decay_time_us =
                                    436.88666636 us
Tau Factor = 4
                   decay_time_us = 327.65999959 us
Tau Factor = 5
                   decay_time_us =
                                    262.12399949 us
Tau Factor = 6
                   decay_time_us =
                                    218.43333272 us
                   decay_time_us =
Tau Factor = 7
                                    187.22571357 us
Tau Factor = 8
                   decay_time_us = 163.81999919 us
                   decay_time_us = 145.61555464 us
Tau Factor = 9
                   decay_time_us = 131.05199898 us
Tau Factor = 10
Tau Factor = 11
                   decay_time_us =
                                    119.13636252 us
Tau Factor = 12
                   decay_time_us =
                                    109.20666545 us
Tau Factor = 13
                   decay_time_us =
                                    100.80461406 us
Tau Factor = 14
                   decay_time_us =
                                     93.60285572 us
Tau Factor = 15
                   decay_time_us =
                                     87.36133181 us
Tau Factor = 16
                   decay_time_us =
                                     81.89999837 us
Tau Factor = 17
                   decay_time_us =
                                     77.08117474 us
Tau Factor = 18
                   decay_time_us =
                                     72.79777595 us
Tau Factor = 19
                   decay_time_us =
                                     68.96526122 us
Tau Factor = 20
                   decay_time_us =
                                     65.51599796 us
Tau Factor = 21
                   decay_time_us =
                                     62.39523596 us
Tau Factor = 22
                   decay_time_us =
                                     59.55817958 us
Tau Factor = 23
                   decay_time_us =
                                     56.96782375 us
Tau Factor = 24
                   decay_time_us =
                                     54.59333089 us
Tau Factor = 25
                  decay_time_us =
                                     52.40879746 us
Tau Factor = 26
                   decay_time_us =
                                     50.39230505 us
Tau Factor = 27
                   decay_time_us =
                                     48.52518244 us
Tau Factor = 28
                   decay_time_us =
                                     46.79142572 us
Tau Factor = 29
                   decay_time_us =
                                     45.17723843 us
Tau Factor = 30
                   decay_time_us =
                                     43.67066361 us
Tau Factor = 31
                   decay_time_us =
                                     42.26128717 us
Tau Factor = 32
                   decay_time_us =
                                     40.93999674 us
Tau Factor = 33
                   decay_time_us =
                                     39.69878452 us
Tau Factor = 34
                   decay_time_us =
                                     38.53058477 us
Tau Factor = 35
                   decay_time_us =
                                     37.42913929 us
Tau Factor = 36
                   decay_time_us =
                                     36.38888522 us
Tau Factor = 37
                   decay_time_us =
                                     35.40486110 us
Tau Factor = 38
                   decay_time_us =
                                     34.47262771 us
Tau Factor = 39
                   decay_time_us =
                                     33.58820116 us
Tau Factor = 40
                   decay_time_us =
                                     32.74799593 us
Tau Factor = 41
                   decay_time_us =
                                     31.94877631 us
Tau Factor = 42
                   decay_time_us =
                                     31.18761477 us
Tau Factor = 43
                   decay_time_us =
                                     30.46185609 us
Tau Factor = 44
                   decay_time_us =
                                     29.76908643 us
Tau Factor = 45
                   decay_time_us =
                                     29.10710653 us
                   decay_time_us =
Tau Factor = 46
                                     28.47390836 us
Tau Factor = 47
                   decay_time_us =
                                     27.86765479 us
Tau Factor = 48
                   decay_time_us =
                                     27.28666178 us
Tau Factor = 49
                   decay_time_us =
                                     26.72938277 us
Tau Factor = 50
                   decay_time_us =
                                     26.19439491 us
Tau Factor = 51
                   decay_time_us =
                                     25.68038696 us
Tau Factor = 52
                   decay_time_us =
                                     25.18614855 us
Tau Factor = 53
                   decay_time_us =
                                     24.71056064 us
Tau Factor = 54
                   decay_time_us =
                                     24.25258709 us
Tau Factor = 55
                   decay_time_us =
                                     23.81126713 us
Tau Factor = 56
                   decay_time_us =
                                     23.38570858 us
Tau Factor = 57
                   decay_time_us =
                                     22.97508192 us
Tau Factor = 58
                   decay_time_us =
                                     22.57861478 us
Tau Factor = 59
                   decay_time_us =
                                     22.19558721 us
                   decay_time_us =
                                     21.82532722 us
Tau Factor = 60
Tau Factor = 61
                   decay_time_us =
                                     21.46720690 us
                   decay_time_us =
Tau Factor = 62
                                     21.12063885 us
Tau Factor = 63
                   decay_time_us =
                                     20.78507295 us
```


4.36 MCA ENERGY_to_Histogram Calculation Parameter register

#define	SIS3302_MCA_ENERGY2HISTOGRAM_PARAM_ADC1357	0×01000060
#define	SIS3302 MCA ENERGY2HISTOGRAM PARAM ADC2468	0x01000064
#define	SIS3302_MCA_ENERGY2HISTOGRAM_PARAM_ADC1	0x02000060
#define	SIS3302_MCA_ENERGY2HISTOGRAM_PARAM_ADC3	0x02800060
#define	SIS3302_MCA_ENERGY2HISTOGRAM_PARAM_ADC5	0x02000060
#define	SIS3302_MCA_ENERGY2HISTOGRAM_PARAM_ADC7	0x03800060
#define	SIS3302_MCA_ENERGY2HISTOGRAM_PARAM_ADC2	0×02000064
#define	SIS3302_MCA_ENERGY2HISTOGRAM_PARAM_ADC4	0×02800064
#define	SIS3302_MCA_ENERGY2HISTOGRAM_PARAM_ADC6	0×02000064
#define	SIS3302_MCA_ENERGY2HISTOGRAM_PARAM_ADC8	0x03800064

D31:28	D27:20	D19:0
N	Energy Multiplier Enable bits	Energy Subract Offset
(Energy 2 ^N Divider)		

Calculation of the Histogram Index:

Example:

Signal $100 \text{mV} \rightarrow 3000 \text{ counts with Peaktime} = 100 \rightarrow \text{Energy Value} = 300.000 (0x493e0)$

MCA_ENERGY2HISTOGRAM_PARAM = 0x 9 A4 00100

```
Multiplied_Energy = bit 27 * (Energy>>1)
+ bit 25 * (Energy>>3)
+ bit 22 * (Energy>>6)

= 0x249F0 + 0x927C + 0x124F
= 0x2EEBB

Histogram_index = (0x2EEBB >> 8) - 0x100
= 0x2EE - 0x100
= 0x1EE
= 494
```

Calculation of the Energy to Histogram Index Factor:


```
int MCA_Energy_to_Histogram_factor_calculation (void)
unsigned int i;
int temp;
unsigned int value, div, multi, subtract;
double multiplier_factor1, multiplier_factor2 ;
// Energy to Histogram calculation parameters
             = (gl_uint_McaEnergy2HistogramParameter >> 28) & 0xf ;
      multi
               = (gl_uint_McaEnergy2HistogramParameter >> 20) & 0xff ;
      subtract = (gl_uint_McaEnergy2HistogramParameter ) & 0xfffff ;
      multiplier_factor1 = 1.0 ;
      if (div != 0) {
             //multiplier_factor1 = multiplier_factor / pow(2,div) ;
             multiplier_factor1 = 0.0 ;
             for (i=0;i<8;i++) {
                   temp = ((multi >> (8-i)) \& 0x1);
                   if (temp == 1) {
                  multiplier_factor2 = 1.0 / pow(2,i) ;
                          multiplier_factor1 = multiplier_factor1
                                                + multiplier_factor2 ;
                   }
             multiplier_factor1 = multiplier_factor1 / pow(2,(div-1)) ; ;
      }
   SetCtrlVal (Panels[RUN_MCA_MENUE], RUN_MCA_RUN_MCA_FACTOR, multiplier_factor1);
  return 0;
```


4.37 MCA Histogram Parameter register

#define SIS3302_MCA_HISTOGRAM_PARAM_ALL_ADC	0x01000068
#define SIS3302_MCA_HISTOGRAM_PARAM_ADC12	0x02000068
#define SIS3302_MCA_HISTOGRAM_PARAM_ADC34	0x02800068
#define SIS3302_MCA_HISTOGRAM_PARAM_AD56	0x03000068
#define SIS3302_MCA_HISTOGRAM_PARAM_ADC78	0x03800068

Bit	Write Function	Read Function
31	None	0
8	None	0
7	Memory Write Test Mode	Memory Write Test Mode
6	None	0
5	MCA ADC2,4,6,8 histogramming	MCA ADC2,4,6,8 histogramming
	Enable bit	Enable bit
4	MCA ADC1,3,5,7 histogramming	MCA ADC1,3,5,7 histogramming
	Enable bit	Enable bit
3	Pileup Enable bit	Pileup Enable bit
2	None	0
1	Histogam Size bit 1	Histogam Size bit 1
0	Histogam Size bit 0	Histogam Size bit 0

The power up default value is 0

Histogam Size bit:

bit 1	bit 0	Histogram Size
0	0	1K (1024)
0	1	2K
1	0	4K
1	1	8K

Pileup Enable bit = 0: don't increment histogram in case of pileup Pileup Enable bit = 1: increment histogram in case of pileup

Memory Write Test Mode = 1: Test Write to the Memory with BLT32 is possible.

(start must on 8-byte boundary address and the length

must be Nx8 byte)

MCA ADCx histogramming Enable bit:

If this bit is set then the ADC value will be histogramed in MCA mode.

To map the full 16-bit ADC range to the histogram page you will want to use the value listed in the table below.

Histogram Size	MCA ENERGY_to_Histogram Calculation Parameter
1K (1024)	0x68000000
2K	0x58000000
4K	0x48000000
8K	0x38000000

4.38 MCA Trigger Start counter register

#define SIS3302_MCA_TRIGGER_START_COUNTER_ADC1	0×02000080
#define SIS3302_MCA_TRIGGER_START_COUNTER_ADC2	0×02000090
#define SIS3302_MCA_TRIGGER_START_COUNTER_ADC3	0×02800080
#define SIS3302_MCA_TRIGGER_START_COUNTER_ADC4	0×02800090
#define SIS3302_MCA_TRIGGER_START_COUNTER_ADC5	0×03000080
#define SIS3302_MCA_TRIGGER_START_COUNTER_ADC6	0x03000090
#define SIS3302_MCA_TRIGGER_START_COUNTER_ADC7	0×03800080
#define SIS3302_MCA_TRIGGER_START_COUNTER_ADC8	0x03800090

This 32-bit counter is cleared with a Multiscan or Scan operation start command. During the Multiscan or Scan operation is active each Trigger Start (Start of the Energy Window) increments this counter.

4.39 MCA Pileup counter register

#define SIS3302_MCA_PILEUP_COUNTER_ADC1	0×02000084
#define SIS3302_MCA_PILEUP_COUNTER_ADC2	0×02000094
<pre>#define SIS3302_MCA_PILEUP_COUNTER_ADC3</pre>	0×02800084
#define SIS3302_MCA_PILEUP_COUNTER_ADC4	0×02800094
#define SIS3302_MCA_PILEUP_COUNTER_ADC5	0×03000084
#define SIS3302_MCA_PILEUP_COUNTER_ADC6	0×03000094
#define SIS3302_MCA_PILEUP_COUNTER_ADC7	0×03800084
#define SIS3302_MCA_PILEUP_COUNTER_ADC8	0×03800094

This 32-bit counter is cleared with a Multiscan or Scan operation start command. During the Multiscan or Scan operation is active a detected Pileup (Pileup or Retrigger Pileup) increments this counter.

4.40 MCA ENERGY_to_High counter register

#define SIS3302_MCA_ENERGY2HIGH_COUNTER_ADC1	0×02000088
#define SIS3302_MCA_ENERGY2HIGH_COUNTER_ADC2	0×02000098
<pre>#define SIS3302_MCA_ENERGY2HIGH_COUNTER_ADC3</pre>	0×02800088
#define SIS3302_MCA_ENERGY2HIGH_COUNTER_ADC4	0×02800098
#define SIS3302_MCA_ENERGY2HIGH_COUNTER_ADC5	0×03000088
<pre>#define SIS3302_MCA_ENERGY2HIGH_COUNTER_ADC6</pre>	0×03000098
#define SIS3302_MCA_ENERGY2HIGH_COUNTER_ADC7	0×03800088
<pre>#define SIS3302_MCA_ENERGY2HIGH_COUNTER_ADC8</pre>	0×03800098
#define SIS3302_MCA_ENERGY2LOW_COUNTER_ADC1	0x0200008C

This 32-bit counter is cleared with a Multiscan or Scan operation start command. During the Multiscan or Scan operation is active this counter will be incremented if the calculated Histogram Index is higher than the histogram size.

4.41 MCA ENERGY_to_Low counter register

<pre>#define SIS3302_MCA_ENERGY2LOW_COUNTER_ADC1</pre>	0x0200008C
<pre>#define SIS3302_MCA_ENERGY2LOW_COUNTER_ADC2</pre>	0x0200009C
<pre>#define SIS3302_MCA_ENERGY2LOW_COUNTER_ADC3</pre>	0x0280008C
<pre>#define SIS3302_MCA_ENERGY2LOW_COUNTER_ADC4</pre>	0x0280009C
<pre>#define SIS3302_MCA_ENERGY2LOW_COUNTER_ADC5</pre>	0x0300008C
<pre>#define SIS3302_MCA_ENERGY2LOW_COUNTER_ADC6</pre>	0x0300009C
#define SIS3302_MCA_ENERGY2LOW_COUNTER_ADC7	0x0380008C
<pre>#define SIS3302_MCA_ENERGY2LOW_COUNTER_ADC8</pre>	0x0380009C

This 32-bit counter is cleared with a Multiscan or Scan operation start command. During the Multiscan or Scan operation is active this counter will be incremented if the calculated Histogram Index is negative.

4.42 ADC memory

#define SIS330	2_ADC1_OFFSET	0×04000000
#define SIS330	2_ADC2_OFFSET	0×04800000
#define SIS330	2_ADC3_OFFSET	0×05000000
#define SIS330	2_ADC4_OFFSET	0×05800000
#define SIS330	2_ADC5_OFFSET	0×06000000
#define SIS330	2_ADC6_OFFSET	0×06800000
#define SIS330	2_ADC7_OFFSET	0×07000000
#define SIS330	2_ADC8_OFFSET	0×07800000

The 64 MByte ADC memory per channel can be address in pages of 8 MByte. The page is selected with the ADC Memory page register. One 32-bit word holds 2 ADC samples as shown in the table below.

4.42.1 Event Buffer Data Format (with MCA Mode = 0)

31 16	15	0			
Timestamp [47:32]	Event Header and ADC	_ID			
Timestamp [31:16]	Timestamp [15:0]				
100				sample 2	sample 1
	data buffer 0 to 65532 samples)			sample 4	sample 3
programative renight (5 to 50002 campion)				
				sample N	sample N-1
Energy data b					
	(signed int) programable length (0 to 510)				
Energy n	nax value				
Energy value from firs	Energy value from first value of Energy Gate				
Pileup Flag, Retrigger F					
Trailer (0xE	PEADBEEF)				

Event Header: see Event configuration registers

Pileup Flag and Trigger Counter:

Bits	31	30	29	28	27 :24	23:1	0
function	Pileup	Retrigger ADC N+1 ADC N		ADC N-1	Fast	0	Trigger
	Flag	Flag	Neighbor	Neighbor	Trigger		Flag
			Trigger	Trigger	Counter		
			Flag	Flag			

While the Trigger Gate is active the Trigger Counter is incremented with each delayed Trigger (up to 0xf).

- Pileup Flag is set if Fast Trigger Counter > 1
- Retrigger Flag is set if an earlier Fast Trigger was ((P+G)*Decimation) Clocks before the actual Fast Trigger. In this case the Energy Filter contains also the "Energy" of the earlier Fast Trigger.

Example:

- Raw Data Sample Length = 64
- Energy Sample Length = 280 (Start Index1 = 1; Start Index2 = 0; Start Index3 = 0)
- Energy: Peaking Time = 100, Gap = 40, Decimation = 0

ADC_ID = 4000 upper Timestamp = 0 lower Timestamp = 2b1b45ca												
i =	0	869c 8	2651	86a2	8623	869f	869e	8620	86a7			
i =	8		36a6		8e75	91f1	9254	9247				
i =	16		9267		9267	926b	9269	9270				
i =	24		9267 926a		9267	926b 926e	9269	9270 926d				
i =	32		926a 926c		926b	926b		926a				
i =	40		9269		9269	9265	926f 926b	926a				
i =	48		926b		9264		9263	9268				
i =	56	9263 9	9262	9262	9264	9264	9263	9260	9261			
i =	0		11	19		18		23	20	1f	25	29
i =	8		28	34		34		3d	45	4c	52	4c
i =	16		4d	44		44		44	3e	3f	46	47
i =	24		17	217		9eb		53b	20ec	2c90	3842	4409
i =	32	4fc	28	5b8b		6752	7	31a	7ee9	8ab8	9680	a24a
i =	40	ae1	18	b9ec		c5b9	d	182	dd60	e929	f4f6	100c6
i =	48	10c9	98	1185d		12428	12	ff8	13bc9	14791	15359	15f1e
i =	56	16ae	≥4	176b5		18271	18	e2b	199fa	1a5bd	1b180	1bd4e
i =	64	1c91	la	1d4db		1e09f	1e	c60	1f82a	203ed	20fa3	21b64
i =	72	2272	28	232ed		23ea0	24	a5f	2561e	261de	26d9d	2795f
i =	80	2851	15	290d5		29c8e	2a	852	2b409	2bfc6	2cb82	2d740
i =	88	2e2f	E 3	2eeb6		2fa78	30	631	311f1	31db0	32966	3351c
i =	96	3400	13	34c92		35851	36	408	36fc1	37b7b	38733	392e5
i =	104	39ea	a 2	3aa65		3b61e	3с	1d9	3cd94	3d951	3e509	3f0c0
i =	112	3fc7	78	40832		413ea	41	fa8	42b66	43721	442d8	44e93
i =	120	45a5	55	4660e		471bc	47	d6d	4891a	49302	496ea	49752
i =	128	4975	58	49768		4976e	49	768	49761	49751	49742	4972e
i =	136	4971	le	49704		49700	49	6f0	496e3	496ce	496bd	496a8
i =	144	4968	33	4966f		49660	49	647	4962d	4961a	49602	495ef
i =	152	4950	1 7	495c8		495b0	49	599	4958f	49578	49567	4955f
i =	160	4955	54	49547		4953e	49	524	49519	4950d	49338	48b59
i =	168	47ff	Ed	4743c		4688b	45	ccd	450fa	4452e	4395f	42d94
i =	176	421k	of	415eb		40a10	3f	e3d	3f26c	3e698	3dac1	3cef1
i =	184	3c31	lf	3b74e		3ab73	39	fa3	393d4	387fc	37c29	37060
i =	192	3649	93	358c1		34cf6	34	124	33555	32991	31dc8	31207
i =	200	3063	3f	2fa70		2eeaa	2e	2ea	2d723	2cb52	2bf8a	2b3c6
i =	208	2a7f	£9	29c2e		29065	28	4a6	278e2	26d20	2615a	25595
i =	216	2490	0£	23e0a		2324a	22	687	21abf	20f01	20343	1f78c
i =	224	1ebc	13	1e016		1d459	1c	8a0	1bce8	1b12e	1a56b	199a2
i =	232	18de	≥8	1822f		1766f	16	ab0	15ef4	1533f	1477f	13bc2
i =	240	1300)e	1244f		11896	10	cdd	1012b	£575	e9ba	de06
i =	248	d24	4£	c693		bad8	a	£26	a362	97ac	8bf6	8037
i =	256	747		68bd		5d0f		154	4594	39d3	2e14	2269
i =	264	16a		afd		116	fffff			fffffcce		fffffcbb
i =	272	fffffcc	c5 f	ffffcce			fffff		fffffcfa	fffffd04	fffffdld	fffffd2c
	nergy =	4976€		min Ene			11					
Flags	=	1000001	L	trailer	=	e deadb	eef					

5 Modes of acquisition of current software

The current software illustrates two data acquisition modes. Single event and multi event double buffer acquisition. They can be found in sis3150_gamma_running.c as routines:

```
RunPC_SingleEventAquisition();
RunPC_SIS3302Gamma_MultiEvent_DoubleBuffer_Aquisition();
```

5.1 Single event acquisition

Events are read out one by one in single event acquisition. This mode is most straightforward to implement but not suited for throughput.

5.2 Multi Event Double Buffer acquisition

Dual bank acquisition with two memory sections of 8 MBytes each is implemented as illustrated below.

Typically events are acquired into one buffer until the end address threshold is reached. At this point in time acquisition is passed to the alternate bank/buffer with the key disarm and arm bank N command and data are readout from the inactive bank.

The key disarm and arm bank N registers position the memory pointer to the beginning of the corresponding buffer.

6 Board layout

A printout of the silk screen of the component side of the PCB is shown below.

7 Front panel

The SIS3302 is a single width (4TE) 6U VME module. A sketch of the SIS3302 front panel (single ended LEMO00 version without handles) is shown below. The IN/OUT breakouts hold 4 LEMO connectors each.

7.1 Control In/Outputs

The control I/O section features 8 LEMO00 connectors with NIM levels.

The assignment of the functions of the LEMO Inputs 1-3 and of the LEMO Outputs 1-3 depends on the programmed LEMO IN Mode and LEMO OUT Mode.

Example for LEMO IN Mode = 0 and LEMO OUT Mode = 0:

Designation	Inputs	Outputs	Designation
4	Clock In	Clock Out	4
3	Trigger In	ADC sample logic armed	3
2	Timestamp Clear	ADC event sampling busy	2
1	Veto	Trigger out	1

The external clock must be a symmetric.

The width of Trigger In /Timestamp Clear pulse must be greater or equal two sampling clock periods.

7.2 LED's

The SIS3302 has 8 front panel LEDs to visualise part of the modules status. The user (and access) LED are a good way to check first time communication/addressing with the module.

Color	Designator	Function
Red	A	Access to SIS3302 VME slave port
Yellow	P	Power
Green	R	Ready, on board logic configured
Green	U	User, to be set/cleared under program control
Red	SAM	Sampling busy on Bank 1
Yellow	SRT	Sampling busy on Bank 2
Green	STP	Lit if the lower Timestamp counter bits 27 to 0 are equal 0x0FFFFFFF (or of all four timestamp counters). (100MHz -> lit every 2.6 sec)
Green	TRG	Trigger, lit if one or more channels are triggered

The on duration of the access, sampling, start, stop and trigger LEDs is stretched to guarantee visibility even under low rate conditions.

7.3 Channel LED's

The 8 card edge surface mounted LEDs L1, ..., L8 can be seen through the corresponding holes in the front panel. They visualize the trigger status of the corresponding channel. The on duration is stretched for better visibility of short pulses.

7.4 PCB LEDs

The 8 surface mounted red LEDs D141A to D141G on the top left corner of the component side of the SIS3302 are routed to the control FPGA, their use may depend on the firmware design.

8 Jumpers/Configuration

8.1 CON100 JTAG

The SIS3302 on board logic can load its firmware from a serial PROMs , via the JTAG port on connector CON100 or over VME. A list of firmware designs can be found under http://www.struck.de/sis3302firm.htm.

Hardware like the XILINX HW-JTAG-PC in connection with the appropriate software will be required for in field JTAG firmware upgrades. The JTAG chain configuration is selected with jumper JP101, jumper JP102 is used to chose VME or CON100 as JTAG source.

The JTAG connector is a 9 pin single row 1/10 inch header, the pin assignment on the connector can be found in the table below.

Pin	Short hand	Description
1	VCC	Supply voltage
2	GND	Ground
3	nc	not connected, cut to avoid polarity mismatch
4	TCK	test clock
5	nc	not connected
6	TDO	test data out
7	TDI	test data in
8	nc	not connected
9	TMS	test modus

8.2 JP80 VME addressing mode/reset behaviour

This 8 position jumper array is used to select the addressing mode and the reset behaviour of the SIS3302.

_		
JP80		

Pos	Function	Factory default
1	A32	closed
2	A16 (not supported)	open
3	GEO (not supported)	open
4	VIPA (not supported)	open
5	connect VME SYSRESET IN to FPGA reset	closed
6	connect watchdog to VME SYSRESET OUT	open
7	connect FPGA reset VME SYSRESET OUT	open
8	connect VME SYSRESET to board reset	closed

The enable watchdog jumper has to be removed during (initial) JTAG firmware load.

NOTE: avoid a power up deadlock situation by not setting Pos. 5 and 7 at the same time

8.3 JP101 JTAG chain

The JTAG chain on the SIS3302 can be configured to comprise the serial PROM only (short JTAG chain) or to comprise the serial PROM and the 5 Spartan III FPGAs (long chain). The configuration is selected with the 6-pin array JP101 as sketched below:

Long Chain (1-3 and 2-4 closed):

Short Chain (3-5 and 4-6 closed, factory default):

JP101

8.4 JP102 JTAG source

The JTAG chain can be connected to VME or to the JTAG connector CON...via the 4 pin jumper array JP102 as sketched below:

JTAG connected to VME (1-2 closed)

JTAG connected to connector CON100 (3-4 closed, factory default)

JP102

8.5 JP120A-JP120D control input termination

The contact pair 1-2 of these 4 jumper arrays is used to connect the termination resistor to the 4 control inputs as illustrated with the schematic for JP120A below.

Jumper	Control Input	Factory Default
JP120A	Clock In	Closed
JP120B	Start In	Closed
JP120C	Stop In	Closed
JP120D	User In	Closed

8.6 SW1 and SW2, VME base address

These 2 rotary switches are used to define 2 nibbles of the VME base address in non geographical addressing (refer to section base address also).

Switch	Function
SW1	ADR_UP
SW2	ADR_LO

9 Software/getting started

The original Gamma implementation was developed for a setup consisting of several SIS3150 CMC carrier boards with SIS9300 digitizer CMCs, a SIS3820 clock distributor and a SIS PCI or USB to VME interface. It was adopted for SIS3302 boards in combination with a SIS1100/3100 PCI to VME or SIS3150 USB to VME interface later on. The graphical user interface (GUI) is based on National Instruments CVI. As CVI applications are based on underlying C code you can use the code as basis or examples for adaptations to your environment and application.

The required files are kept in three directories as shown below.

9.1 Header files

The registers of the SIS3302 gamma firmware can be found in: sis3302 v1201.h

If you want to use the routines unchanged you may have to include header files for the SIS3820 clock distributor, for the sis3150 card and for the SIS9300 ADC board. An overview of all header files of the project can be seen in the screen dump below.

9.2 C code

Following C files are part of the software:

Following files are most important to get started with your own project: sis3302_configuration.c holds the configuration for the digitizer. sis3150_gamma_running.c holds the readout code

10 Appendix

10.1 Power consumption

The SIS3302 uses standard VME voltages only.

Voltage	Current
+ 5V	8A
+12 V	115 mA
- 12 V	340 mA

10.2 Operating conditions

10.2.1 Cooling

Although the SIS3302 is mainly a 2.5 and 3.3 V design, substantial power is consumed by the Analog to Digital converter chips and linear regulators however. Hence forced air flow is required for the operation of the board. An air capacity in excess of $160 \text{ m}^3/_h$ is required. Unoccupied adjacent slots of the VME crate have to be equipped with filler modules to ensure proper air flow. The board may be operated in a non condensing environment at an ambient temperature between 10° and 25° Celsius. A power up warm up time of some 10 minutes is recommended to ensure equilibrium on board temperature conditions.

10.2.2 Hot swap/live insertion

Please note, that the VME standard does not support hot swap by default. The SIS3302 is configured for hot swap in conjunction with a VME64x backplane. In non VME64x backplane environments the crate has to be powered down for module insertion and removal.

10.3 Connector types

The VME connectors and the different types of front panel connectors used on the SIS3302 are:

Connector	Purpose	Part Number
160 pin zabcd	VME P1/P2	Harting 02 01 160 2101
LEMO PCB	Coax. control connector	LEMO EPB.00.250.NTN
90° PCB LEMO	Analog input connector	LEMO EPL.00.250.NTN
90° PCB	Analog input connector (SMA option)	SMA
90° PCB LEMO	Analog input connector	LEMO EPL.0S.302.HLN
) TOD ELIMO	(3302 differential input version)	EDIVIO DI D.05.302.IIDIV

10.4 P2 row A/C pin assignments

The P2 connector of the SIS3302 has several connections on rows A and C for the F1002 compatible use at the DESY H1 FNC subdetector. This implies, that the module can not be operated in a VME slot with a special A/C backplane, like VSB e.g.. The pin assignments of P2 rows A/C of the SIS3302 is shown below:

P2A	Function	P2C	Function
1	-5.2 V	1	-5.2 V
2	-5.2 V	2	-5.2 V
3	-5.2 V	3	-5.2 V
4	not connected	4	not connected
5	not connected	5	not connected
6	DGND	6	DGND
7	P2_CLOCK_H	7	P2_CLOCK_L
8	DGND	8	DGND
9	P2_START_H	9	P2_START_L
10	P2_STOP_H	10	P2_STOP_L
11	P2_TEST_H	11	P2_TEST_L
12	DGND	12	DGND
13	DGND	13	DGND
14	DGND	14	DGND
15	DGND	15	DGND
16	not connected	16	not connected
•••		17	
31	not connected	18	not connected

Note: The P2 ECL signals are bussed and terminated on the backplane of F1002 crates. The user has to insure proper termination if a cable backplane or add on backplane is used.

10.5 Row d and z Pin Assignments

The SIS3302 is prepared for the use with VME64x and VME64xP backplanes. Foreseen features include geographical addressing (PCB revisions V2 and higher) and live insertion (hot swap). The prepared pins on the d and z rows of the P1 and P2 connectors are listed below.

	,
Position	
1	-
2	-
3	-
1	-
5	-
2 3 4 5 6 7 8	-
7	-
8	-
9	ĺ
10	ĺ
11	
12	-
13	-
13 14	
15	-
16	-
17	-
18	
19	
20 21	
21	
22 23 24	
23	
24	
25	
26	
26 27	
28	
29	
30	
31	
32	

D1	/11
	/J1
Row z	Row d
	VPC (1)
GND	GND (1)
GND	
GND	
GND	
	GAP*
GND	GA0*
RESP*	GA1*
GND	
	GA2*
GND	
	GA3*
GND	
	GA4*
GND	
- '	
GND	
GND	
01,2	
GND	
0112	
GND	
GIID	
GND	
GND	
GND	
OND	GND (1)
GND	VPC (1)
עווט	VPC (1)

P2/J2		
Row z	Row d	
GND		
GND		
GND		
CND		
GND		
GND		
OND		
GND		
-		
GND		
GND		
GND		
CND		
GND		
GND		
GND		
GND	GMD (1)	
CND	GND (1)	
GND	VPC (1)	

Note: Pins designated with (1) are so called MFBL (mate first-break last) pins on the installed 160 pin connectors, VPC(1) pins are connected via inductors.

10.6 Firmware upgrade

The firmware of the SIS3302 can be upgraded over JTAG. The upgrade options are VME (on units that have intact firmware) and the JTAG connector CON100. The VME upgrade option is not tested for the current 01 02 firmware release yet.

10.6.1 Upgrade over CON100

The firmware can be upgraded with the Xilinx Impact software, which is part of the Webpack that can be downloaded from the Xilinx web page for free. A version of the Webpack software (which may not be up to date and not compatible with your JTAG hardware) can be found in the xilinx_webpack directory of the Struck Innovative Systeme CDROM also. A Xilinx JTAG parallel cable or USB (Xilinx part number HW-USB) cable can be used to roll in the firmware.

Configure the SIS3302 for short JTAG chain (refer to section 8.3 JP101) and set the unit to JTAG over CON100 (refer to section 8.4 JP102 JTAG source).

With your hard- and software properly set up you should see a screen as illustrated below after executing the initialize chain command.

Load the mcs file to the serial PROM (shown as xcf16p).

10.6.2 Upgrade over VME

not tested with SIS3302 firmware 12 02 yet

11 Index

00	92	gate	
0S	92	external	52
0x140x	29	internal	.52
4TE	82	geographical addressing	93
6U	82	getting started	89
A32	28	GND	85
AD5570	43	H1	92
Address Map	29	Harting	92
address space	28	header files	89
air capacity		hot swap	93
arm		HPGe	
backplane		HW-USB	94
board layout	81	input	
broadcast		clock 83,	88
address	41	control	83
enable	40	start	88
master	40	stop	88
C code	90	user in	
CBLT	40	internal 100MHz	37
clock		interrupter mode	
doubling	37	interrupter type	
exernal		introduction	
external	37	invert	
clock source	37	IRQ	
CMC		bank full	35
CON10085,		end of event	35
configuration		user input	
connector types		IRQ mode	
control	-	ROAK	
output	83	RORA	34
control input		J/K	
control register		J1P20B	
cooling		JP10185, 86,	
CVI		JP102	
CVI plots		JP120A	
D141A		JP120C	88
DAC		JP120D	
DAC load sequence		JP80	85
deadtime		JTAG85,	
table		JTAG chain	
deconvolution	14	JTAG source	
DESY	92	jumper	
disarm and arm bank 1		reset	85
DO8		KA	
double buffer acquisition		disarm sample logic	49
Energy filter		general reset	
FAST FIR Filter		MCA Multiscan Arm with Scan operation Arm	
FIR7,			
firmware		MCA Multiscan Arm with Scan operation	
firmware upgrade		Enable	51
FNC		MCA Multiscan Disable	
FPGA		MCA Multiscan Start/Reset pulse	
control	84	MCA Scan Disable	
front panel		MCA Scan Enable	-
G 49		MCA Scan LNE pulse	
GA	28	MCA Scan Operation Arm	
gamma logic implementation		sample logic reset	
<u> </u>	-	D 05 0	

timestamp clear 49	parameter illustration	
<i>VME trigger</i> 49	parameters	
KEY	PCB	
disarm and arm bank 150, 80	power consumption	
disarm and arm bank 250, 80	PROM 85,	
general reset49	raw pre sample length	. 56
key address41	raw sample length	. 56
L1 84	raw signal	. 26
Labwindows45	register	
LED	acquisition control	. 36
A 84	actual sample	
access	actual sample value	
P 84	ADC memory page	
R 84	broadcast setup	
SAM 84	control	
SRT	DAC control.	
STP	dac data	
TRG 84	DAC status	
U 84	description	
	end address threshold	
user		
LEDs	energy gate length	
channel	energy sample	
front panel	energy sample length	
LEMO	energy sample start index 1	
LEMO IN Mode	energy sample start index 2	
LEMO IN Mode	energy sample start index 3	
LEMO OUT Mode	energy setup GP	
LEMO OUT Mode	energy tau factor	
live insertion	event configuration	
M 59, 60, 67	event extended configuration	. 53
MA14, 25	firmware revision	. 33
MAW	interrupt configuration	. 34
MAWD13, 27	interrupt control	. 35
MCA ENERGY_to_Histogram Calculation	MCA ENERGY_to_High counter	.76
Parameter72	MCA ENERGY_to_Low counter	
MCA Histogram Parameter74	MCA histogram counter	
MCA Mode	MCA LNE Setup and Prescaler Factor	
MCA Mode	MCA Multiscan Last Scan Histogram counter	
MCA Multiscan Arm Scan Arm	MCA Multiscan Nof Scans preset	
MCA Multiscan Arm Scan Enable	MCA Multiscan Scan counter	
MCA Scan Arm	MCA Pileup counter	
MCA Scan Enable	MCA Scan Control	
memory	MCA Scan nof histograms preset	
modes of acquisition	MCA Trigger Start counter	
	module Id	
moving average		
Next Neigbor gate enable	next sample address	
Next Neighbor trigger enable	pretrigger delay and trigger gate length	
Next Neighbor Trigger/Gate logic	previous bank sample address	
operating conditions91	raw data buffer config all ADC	
output	trigger extended setup	
bank full	trigger setup	
clock	trigger threshold	
trigger 83	reset	
user	ROAK	
P 49, 59, 60, 67	RORA	
P193	sample logic	. 21
P293	Second internal 100MHz	. 37
pin assignments92	single event acquisition	. 80
termination	SIS1100/3100	
Page Clear Time table	SIS3150	

SIS Documentation

SIS3302 14xx Firmware Gamma

2
2
9
9
2
9
2
8
8
7
5
5
5
2
5
2
0

urigger	
disabled	62
external	
internal	52
trigger example	64
trigger generation	10
Trigger MAW	11
Trigger/Gate logic	17
user	
LED	32
VCC	85
VME	91
connector	92
VME addressing	28
VME64x	91, 93
VME64xP	93
VSB	92