

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

What is claimed is:

1. (currently amended) A method for determining a displacement state of a clutch actuator for a vehicle, the clutch actuator being driven by an electric motor, wherein the armature resistance (R_A) of the electric motor is determined in a stationary state of the electric motor, at the determined armature resistance (R_A) and applied motor voltage (U) as well as measured motor current (I), a current (I_{Ind}) induced in the electric motor and/or an induced voltage (U_{Ind}) are calculated, and from at least one of the induced current (I_{Ind}) and/or and induced voltage (U_{Ind}), which are proportional to the motor speed (n), the displacement state of the clutch actuator is determined.

2. (original) The method as described in Claim 1, wherein the armature resistance (R_A) is determined by the following equation:

$$I = \frac{U}{R_A}$$

wherein

I = measured motor current;

U = applied motor voltage;

R_A = armature resistance.

3. (original) The method as described in Claim 1, wherein the motor speed (n), which is a function of the induced current (I_{Ind}) is determined by following equation:

$$n \propto I_{Ind} = \frac{U_{Ind}}{R_A} = \frac{U}{R_A} - I$$

wherein

n = motor speed;

I_{Ind} = induced current;

U_{Ind} = induced voltage;

R_A = armature resistance;

I = motor current on the electric motor;

U = motor voltage on the electric motor.

4. (original) The method as described in Claim 3, wherein the induced voltage (U_{Ind}) is calculated as a function of the motor speed (n) by the following equation:

$$U_{Ind} = k_e \cdot n$$

wherein

n = motor speed;

U_{Ind} = induced voltage;

k_e = proportionality factor.

5. (original) The method as described in Claim 4, wherein for a clutch actuator having incremental travel measurement, a recalibration is carried out by determining the armature resistance (R_A) at pre-determined time intervals.

6. (currently amended) The method as described in Claim 5, wherein when there is a failure of ~~the~~ an incremental position encoder encoding incremental position, the induced current (I_{Ind}) is used to carry out an emergency operation strategy.

7. (currently amended) The method as described in Claim 1, wherein a change of the motor speed n of the electric motor is detected with respect to the motor current (I) in order to determine the position of the clutch actuator at at least one of an abutment and/or and a detent.

8. (original) The method as described in Claim 1, wherein the motor temperature is determined at a known armature resistance (R_A).

Attorney Docket No.LUKP105US
U.S. Patent Application No. 10/762,929
Reply to Office Action of: May 23, 2005
Date: August 22, 2005

9. (original) The method as described in Claim 1, wherein the motor voltage (U) is selected at a determined armature resistance (R_A) in such a manner that a specific motor current (I) and a specific torque is produced at the motor.