Grafo Bipartido (Cont.) Caminhos e Circuitos

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria de Grafos Bacharelado em Ciência da Computação

30 de maio de 2017

Plano de Aula

- Revisão
 - Grafos Bipartidos
- ② Grafo Bipartido (Cont.)
- Caminhos e Circuitos

Pensamento

Frase

O plano que não pode ser mudado não presta.

Quem?

Públio Siro (??? - 43 d.C.) Escritor latino da Roma antiga.

Sumário

- Revisão
 - Grafos Bipartidos
- 2 Grafo Bipartido (Cont.)
- Caminhos e Circuitos

Definição

Um grafo G é **bipartido** se existe uma bipartição $\{U, W\}$ de V_G tal que toda aresta de G tem uma ponta em U e outra em W.

Lembrando... Bipartição!

Uma bipartição de um conjunto V é um par $\{U, W\}$ de conjuntos não vazios tal que $U \cup W = V$ e $U \cap W = \emptyset$.

Notação

- Para explicitar a partição, podemos dizer que o grafo é {U, W}-bipartido.
- Se G é um grafo {U, W}-bipartido, podemos dizer, informalmente, que os elementos de U são os vértices brancos e os de W são os vértices pretos do grafo.

Grafo $\{U, W\}$ -bipartido completo

Um grafo $\{U, W\}$ -bipartido é **completo** se todo vértice branco é adjacente a todos os vértices pretos.

Sumário

- Revisão
 - Grafos Bipartidos
- 2 Grafo Bipartido (Cont.)
- Caminhos e Circuitos

$K_{p,q}$

Um $K_{p,q}$ é um grafo bipartido completo com p vértices brancos e q pretos.

$K_{p,q}$

Um $K_{p,q}$ é um grafo bipartido completo com p vértices brancos e q pretos.

Estrela

• Uma estrela é um grafo $K_{1,a}$;

$K_{p,q}$

Um $K_{p,q}$ é um grafo bipartido completo com p vértices brancos e q pretos.

Estrela

- Uma estrela é um grafo $K_{1,q}$;
- Se q ≥ 2, o centro da estrela é o único vértice que incide em duas ou mais arestas;

$K_{p,q}$

Um $K_{p,q}$ é um grafo bipartido completo com p vértices brancos e q pretos.

Estrela

- Uma estrela é um grafo $K_{1,q}$;
- Se q ≥ 2, o centro da estrela é o único vértice que incide em duas ou mais arestas;
- Se q < 2, a estrela não tem centro.

Sumário

- Revisão
 - Grafos Bipartidos
- 2 Grafo Bipartido (Cont.)
- Caminhos e Circuitos

Caminho

Um grafo G é um **caminho** se V_G admite uma permutação (v_1, v_2, \ldots, v_n) tal que

$$E_G = \{v_i v_{i+1} : 1 \le i < n\}$$

Caminho

Um grafo G é um caminho se V_G admite uma permutação (v_1, v_2, \ldots, v_n) tal que

$$E_G = \{v_i v_{i+1} : 1 \le i < n\}$$

• os vértices v_1 e v_n são os **extremos** do caminho;

Caminho

Um grafo G é um **caminho** se V_G admite uma permutação (v_1, v_2, \ldots, v_n) tal que

$$E_G = \{ v_i v_{i+1} : 1 \le i < n \}$$

- os vértices v_1 e v_n são os **extremos** do caminho;
- os demais vértices são internos;

Caminho

Um grafo G é um **caminho** se V_G admite uma permutação (v_1, v_2, \ldots, v_n) tal que

$$E_G = \{ v_i v_{i+1} : 1 \le i < n \}$$

- os vértices v₁ e v_n são os extremos do caminho;
- os demais vértices são internos;
- diremos que esse caminho liga v_1 a v_n .

Caminho

Um grafo G é um **caminho** se V_G admite uma permutação (v_1, v_2, \ldots, v_n) tal que

$$E_G = \{v_i v_{i+1} : 1 \le i < n\}$$

- os vértices v_1 e v_n são os **extremos** do caminho;
- os demais vértices são internos;
- diremos que esse caminho liga v_1 a v_n .

Notação

Podemos denotar um caminho pela sequência representada pelos seus vértices:

Caminho

Um grafo G é um **caminho** se V_G admite uma permutação (v_1, v_2, \ldots, v_n) tal que

$$E_G = \{v_i v_{i+1} : 1 \le i < n\}$$

- os vértices v_1 e v_n são os **extremos** do caminho;
- os demais vértices são internos;
- diremos que esse caminho liga v_1 a v_n .

Notação

Podemos denotar um caminho pela sequência representada pelos seus vértices:

Circuito

Um grafo G é um **circuito** se V_G tem 3 ou mais elementos e admite uma permutação (v_1, v_2, \ldots, v_n) tal que

$$E_G = \{v_i v_{i+1} : 1 \le i < n\} \cup \{v_1 v_n\}$$

Circuito

Um grafo G é um circuito se V_G tem 3 ou mais elementos e admite uma permutação (v_1, v_2, \ldots, v_n) tal que

$$E_G = \{v_i v_{i+1} : 1 \le i < n\} \cup \{v_1 v_n\}$$

Notação

• Podemos denotar um circuito simplesmente por:

Circuito

Um grafo G é um circuito se V_G tem 3 ou mais elementos e admite uma permutação (v_1, v_2, \dots, v_n) tal que

$$E_G = \{v_i v_{i+1} : 1 \le i < n\} \cup \{v_1 v_n\}$$

Notação

Podemos denotar um circuito simplesmente por:

$$v_1 v_2 \dots v_n v_1$$

• O comprimento de um caminho ou circuito G é o número m(G);

Circuito

Um grafo G é um circuito se V_G tem 3 ou mais elementos e admite uma permutação (v_1, v_2, \dots, v_n) tal que

$$E_G = \{v_i v_{i+1} : 1 \le i < n\} \cup \{v_1 v_n\}$$

Notação

Podemos denotar um circuito simplesmente por:

$$v_1 v_2 \dots v_n v_1$$

- O comprimento de um caminho ou circuito G é o número m(G):
- Um triângulo, quadrado, pentágono e hexágono é o mesmo que um circuito de comprimento 3, 4, 5 e 6 respectivamente.

Grafo Bipartido (Cont.) Caminhos e Circuitos

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria de Grafos Bacharelado em Ciência da Computação

30 de maio de 2017

