Projet Data Warehouse Avancé **Credit Card Approval Prediction**

Lien GitHub:

https://github.com/chokrihamza/credit-card-data-warehouse.git

Réalisés par :

```
Hamza Chokri ( mailto:chokrihamza.ia@gmail.com ).
Malek Ghanem ( mailto:malek.ghanem1920@gmail.com).
```

1. Introduction:

Le credit scoring est un outil largement utilisé par les prestataires de crédit pour évaluer la solvabilité et la fiabilité des emprunteurs potentiels. Il est basé sur des données financières et de crédit collectées auprès de différentes sources, comme les agences de crédit et les banques. Ces données sont utilisées pour calculer un score de crédit, qui est ensuite utilisé par les prestataires de crédit pour déterminer la probabilité qu'un emprunteur rembourse ses dettes de manière fiable.

Le crédit scoring est souvent utilisé par les banques et les organismes de crédit pour évaluer la solvabilité des personnes qui demandent un prêt, mais il est également utilisé dans d'autres contextes, tels que l'évaluation de la fiabilité des locataires potentiels par les propriétaires d'immeubles ou l'évaluation de la solvabilité des entreprises par les investisseurs potentiels.

Le crédit scoring peut être utilisé de manière positive, en aidant les prestataires de crédit à identifier les emprunteurs les plus fiables et en leur permettant de leur offrir des taux d'intérêt plus avantageux. Cependant, il peut également avoir des effets négatifs, en limitant l'accès au crédit pour certaines personnes ou entreprises qui ont un score de crédit faible mais qui pourraient être en mesure de rembourser leurs dettes de manière fiable.

2. Les facteurs pris en compte dans le calcul d'un crédit score aux États-Unis :

Plusieurs facteurs qui peuvent être pris en compte dans le calcul d'un crédit score aux États-Unis.

Voici quelques informations supplémentaires sur chacun de ces facteurs :

 L'utilisation de la réserve de crédit attachée à une carte de crédit est généralement exprimée en pourcentage de la limite de crédit accordée. Si vous utilisez une grande partie de votre limite de crédit, cela peut être interprété comme un signe de surendettement et votre crédit score peut en souffrir. Cela peut être particulièrement vrai si vous utilisez une grande partie de la limite de crédit de plusieurs cartes de crédit. Il est recommandé de ne pas utiliser plus de 30 % de la limite de crédit accordée par chaque émetteur de carte de crédit pour minimiser l'impact sur votre credit score.

- L'historique de crédit est un facteur important dans le calcul de votre crédit score. Il comprend les prêts et les cartes de crédit que vous avez utilisés dans le passé, ainsi que la façon dont vous avez remboursé ces dettes. Si vous avez des antécédents de paiements réguliers et de remboursement complet de vos dettes, cela peut améliorer votre crédit score. En revanche, si vous avez eu des difficultés à rembourser vos dettes ou si vous avez eu des retards de paiement, cela peut nuire à votre crédit score.
- La régularité des paiements effectués est également prise en compte dans le calcul de votre crédit score. Si vous payez vos factures et vos loyers à temps, cela peut améliorer votre crédit score. En revanche, si vous avez des retards de paiement réguliers, cela peut nuire à votre crédit score.
- Le type de crédit demandé peut également avoir un impact sur votre crédit score. Si vous demandez un prêt à haut risque, comme un prêt à taux variable ou un prêt à court terme, cela peut nuire à votre crédit score. En revanche, si vous demandez un prêt à faible risque, comme un prêt à taux fixe ou un prêt à long terme, cela peut améliorer votre crédit score.
- Le nombre de recherches effectuées pour obtenir un prêt, également appelé "credit inquiry", peut également avoir un impact sur votre crédit score. Si vous effectuez de nombreuses demandes de crédit en peu de temps, cela peut être interprété comme un signe de besoin de crédit urgent.

3. Description des données utilisées pour l'analyse :

Dans notre étude on va utiliser :

3.1. Les données des emprunteurs :

Feature name	Explanation	Remarks
ID	Client number	
CODE_GENDER	Gender	
FLAG_OWN_CAR	Is there a car	
FLAG_OWN_REALTY	Is there a property	
CNT_CHILDREN	Number of children	
AMT_INCOME_TOTAL	Annual income	
NAME_INCOME_TYPE	Income category	
NAME_EDUCATION_TYPE	Education level	
NAME_FAMILY_STATUS	Marital status	
NAME_HOUSING_TYPE	Way of living	
DAYS_BIRTH	Birthday	Count backwards from current day (0), -1 means yesterday
DAYS_EMPLOYED	Start date of employment	Count backwards from current day (0). If positive, it means the person currently unemployed.
FLAG_MOBIL	Is there a mobile phone	
FLAG_WORK_PHONE	Is there a work phone	
FLAG_PHONE	Is there a phone	
FLAG_EMAIL	Is there an email	

OCCUPATION_TYPE	Occupation	
CNT_FAM_MEMBERS	Family size	

3.2. Credit record:

Feature name	Explanation	Remarks
ID	Client number	
MONTHS_BALANCE	Record month	The month of the extracted data is the starting point, backwards, 0 is the current month, -1 is the previous month, and so on
STATUS	Status	0: 1-29 days past due 1: 30-59 days past due 2: 60-89 days overdue 3: 90-119 days overdue 4: 120-149 days overdue 5: Overdue or bad debts, write-offs for more than 150 days C: paid off that month X: No loan for the month

Lien des données utilisées : https://www.kaggle.com/datasets/rikdifos/credit-card-approval-prediction

4. La modélisation des données:

Fig. 1 : Schéma en étoile

Les mesures, qu'on va utiliser pour notre analyse sont :

• Le nombre des bons et mouvais clients.

5. L'alimentation des données :

Prétraitement des données (Dimension emprunteur) :

Les étapes qu'on a suivi pour alimenter notre data Warehouse sont comme suit :

- Extraire la base de données des emprunteurs de Kaggle.
- Trier les données par ID.
- Filtrer les ID dupliqués.
- Remplacer les valeurs.
- Ajouter la date actuelle.
- Calculer la date.

- Filtrer les enregistrements nuls.
- Ajouter un index pour l'emprunteur.
- Sélectionner des valeurs.
- Charger les données dans la dimension de l'emprunteurs (Applicant Dimension)

Fig.2: ETL Applicant dimension

6. Le détail des étapes de l'ETL :

7. La creation de Data warehouse:

7.1. Le code du chaque table :

```
CREATE TABLE `Time_Dimension`

(
    `Time_ID` BIGINT
, `Day` INT
, `Month` INT
, `Year` INT
, `Date` DATETIME
)ENGINE=MyISAM DEFAULT CHARSET=latin1;
-- SQLINES DEMO *** tion_Dimension
-- SQLINES LICENSE FOR EVALUATION USE ONLY
CREATE TABLE `Application_Dimension`

(
Index_Applicant BIGINT
, `Applicant_ID` VARCHAR(10)
, `Applicant_Gender` VARCHAR(7)
, `Total_Children` INT
```

```
, `Total_Family_Members` INT
, `Applicant_Age` INT
, `Birth_Date` DATETIME
, `Employed_Date` DATETIME
, `Education_Type` VARCHAR(50)
, `Family_Status` VARCHAR(50)
, `Housing_Type` VARCHAR(50)
, `Income_Type` VARCHAR(50)
, `Job_Title` VARCHAR(50)
, `Total_Income` BIGINT
, `Owned_Email` VARCHAR(10)
, `Owned_Mobile_Phone` VARCHAR(10)
, `Owned_Car` VARCHAR(10)
, `Owned_Realty` VARCHAR(10)
, 'Owned_Phone' VARCHAR(10)
, `Owned_Work_Phone` VARCHAR(10)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;
CREATE TABLE `CreditRecord_Dimension`
CreditRecord_ID BIGINT
, `Record_Date` DATETIME
, `Applicant_ID` VARCHAR(10)
, `Status` VARCHAR(5)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;
-- SQLINES DEMO *** ard_Fact
-- SQLINES LICENSE FOR EVALUATION USE ONLY
CREATE TABLE `CreditCard_Fact`
(
 CreditRecord_ID VARCHAR(15)
, `Applicant_ID` VARCHAR(10)
, `Time_ID` BIGINT
, 'Good_Debt' INT
, `Bad_Debt` INT
, `Last_ETL` DATETIME
) ENGINE=MyISAM DEFAULT CHARSET=latin1;
```

COMMIT;

7.2. Le résultat:

8. Structure de notre application_dimension :

Index_Applicant	Applicant_ID	Applicant_Gender	Total_Children	Total_Family_Members	Applicant_Age	Birth_Date	Employed_Date	Education_Type	Family_S	Status
1	5008806	Male	0	2	58	1964-02-09 23:05:19	2019-10-18 23:05:19	Secondary / secondary special	Married	
2	5008808	Female	0	1	52	1970-07-31 23:05:19	2014-07-19 23:05:19	Secondary / secondary special	Single / no married	ot
3	5008809	Female	0	1	52	1970-07-31 23:05:19	2014-07-19 23:05:19	Secondary / secondary special	Single / no married	ot
4	5008810	Female	0	1	52	1970-07-31 23:05:19	2014-07-19 23:05:19	Secondary / secondary special	Single / no married	ot
5	5008811	Female	0	1	52	1970-07-31 23:05:19	2014-07-19 23:05:19	Secondary / secondary special	Single / no married	ot
6	5008815	Male	0	2	46	1976-09-15 23:05:19	2020-10-17 23:05:19	Higher education	Married	
7	5008819	Male	0	2	48	1974-03-24 23:05:19	2019-08-19 23:05:19	Secondary / secondary special	Married	
8	5008820	Male	0	2	48	1974-03-24 23:05:19	2019-08-19 23:05:19	Secondary / secondary special	Married	
9	5008821	Male	0	2	48	1974-03-24 23:05:19	2019-08-19 23:05:19	Secondary / secondary special	Married	
10	5008822	Male	0	2	48	1974-03-24 23:05:19	2019-08-19 23:05:19	Secondary / secondary special	Married	
11	5008823	Male	0	2	48	1974-03-24 23:05:19	2019-08-19 23:05:19	Secondary / secondary special	Married	
12	5008824	Male	0	2	48	1974-03-24 23:05:19	2019-08-19 23:05:19	Secondary / secondary special	Married	
13	5008825	Female	0	2	29	1993-09-09 23:05:19	2019-11-18 23:05:19	Incomplete higher	Married	
14	5008826	Female	0	2	29	1993-09-09 23:05:19	2019-11-18 23:05:19	Incomplete higher	Married	
15	5008830	Female	0	2	27	1995-06-09 23:05:19	2018-11-17 23:05:19	Secondary / secondary special	Married	
								Sacandani I		

Housing_Type	Income_Type	Job_Title	Total_Income	Owned_Email	Owned_Mobile_Phone	Owned_Car	Owned_Realty	Owned_Phone	Owned_Work_Phone
House / apartment	Working	Security staff	112500	haven't	have	have	have	haven't	haven't
House / apartment	Commercial associate	Sales staff	270000	have	have	haven't	have	have	haven't
House / apartment	Commercial associate	Sales staff	270000	have	have	haven't	have	have	haven't
House / apartment	Commercial associate	Sales staff	270000	have	have	naven't	have	have	haven't
House / apartment	Commercial associate	Sales staff	270000	have	have	haven't	have	have	haven't
House / apartment	Working	Accountants	270000	have	have	have	have	have	have
House / apartment	Commercial associate	Laborers	135000	haven't	have	have	have	haven't	haven't
House / apartment	Commercial associate	Laborers	135000	haven't	have	have	have	haven't	haven't
House / apartment	Commercial associate	Laborers	135000	haven't	have	have	have	haven't	haven't
House / apartment	Commercial associate	Laborers	135000	haven't	have	have	have	haven't	haven't
House / apartment	Commercial associate	Laborers	135000	haven't	have	have	have	haven't	haven't
House / apartment	Commercial associate	Laborers	135000	haven't	have	have	have	haven't	haven't
House / apartment	Working	Accountants	130500	haven't	have	have	haven't	haven't	haven't
House / apartment	Working	Accountants	130500	haven't	have	have	haven't	haven't	haven't
House / apartment	Working	Laborers	157500	haven't	have	haven't	have	have	haven't

9. ETL du record dimension :

10. Détail de l'ETL pour l'alimentation de record dimension :

11. Structure de record_dimension :

CreditRecord_ID	Record_Date	Applicant_ID	Status
1	2022-11-25	5001711	X
2	2022-10-25	5001711	0
3	2022-09-25	5001711	0
4	2022-08-25	5001711	0
5	2022-11-25	5001712	С
6	2022-10-25	5001712	С
7	2022-09-25	5001712	С
8	2022-08-25	5001712	С
9	2022-07-25	5001712	С
10	2022-06-25	5001712	С
11	2022-05-25	5001712	С
12	2022-04-25	5001712	С
13	2022-03-25	5001712	С
14	2022-02-25	5001712	0
15	2022-01-25	5001712	0
16	2021-12-25	5001712	0
17	2021-11-25	5001712	0
18	2021-10-25	5001712	0
19	2021-09-25	5001712	0
20	2021-08-25	5001712	0
21	2021-07-25	5001712	0
22	2021-06-25	5001712	0
23	2021-05-25	5001712	0
24	2022-11-25	5001713	X
25	2022-10-25	5001713	X

12. ETL pour le Time Dimension :

13. Détails ETL pour l'alimentation du Time dimension :

14. Structure de notre Time_dimension :

Time_ID	Day	Month	Year	Date
1	25	11	2022	2022-11-25
2	25	10	2022	2022-10-25
3	25	9	2022	2022-09-25
4	25	8	2022	2022-08-25
5	25	11	2022	2022-11-25
6	25	10	2022	2022-10-25
7	25	9	2022	2022-09-25
8	25	8	2022	2022-08-25
9	25	7	2022	2022-07-25
10	25	6	2022	2022-06-25
11	25	5	2022	2022-05-25
12	25	4	2022	2022-04-25
13	25	3	2022	2022-03-25
14	25	2	2022	2022-02-25
15	25	1	2022	2022-01-25
16	25	12	2021	2021-12-25
17	25	11	2021	2021-11-25
18	25	10	2021	2021-10-25
19	25	9	2021	2021-09-25
20	25	8	2021	2021-08-25
21	25	7	2021	2021-07-25
22	25	6	2021	2021-06-25
23	25	5	2021	2021-05-25
24	25	11	2022	2022-11-25
25	25	10	2022	2022-10-25

15. ETL pour le credit card fact dimension :

16. Détail de l'ETL pour alimentation du credit card fact dimension :

17. Structure de notre credit card fact dimension :

+ Options

CreditRecord_ID	Applicant_ID	Time_ID	Debt_TEST	GoodClient	BadClient	Last_ETL
32	5008806	189	DadDebt	0	1	2022-12-19 16:13:16
33	5008806	190	DadDebt	0	1	2022-12-19 16:13:16
34	5008806	191	DadDebt	0	1	2022-12-19 16:13:16
35	5008806	192	DadDebt	0	1	2022-12-19 16:13:16
36	5008806	193	DadDebt	0	1	2022-12-19 16:13:16
37	5008806	194	DadDebt	0	1	2022-12-19 16:13:16
38	5008806	177	DadDebt	0	1	2022-12-19 16:13:16
39	5008806	178	GoodDebt	1	0	2022-12-19 16:13:16
40	5008806	179	GoodDebt	1	0	2022-12-19 16:13:16
41	5008806	180	GoodDebt	1	0	2022-12-19 16:13:16
42	5008806	181	GoodDebt	1	0	2022-12-19 16:13:16
43	5008806	182	GoodDebt	1	0	2022-12-19 16:13:16
44	5008806	183	GoodDebt	1	0	2022-12-19 16:13:16
45	5008806	184	GoodDebt	1	0	2022-12-19 16:13:16
46	5008806	185	GoodDebt	1	0	2022-12-19 16:13:16
47	5008806	186	GoodDebt	1	0	2022-12-19 16:13:16
48	5008806	187	GoodDebt	1	0	2022-12-19 16:13:16
49	5008806	188	GoodDebt	1	0	2022-12-19 16:13:16
50	5008806	152	GoodDebt	1	0	2022-12-19 16:13:16
51	5008806	153	GoodDebt	1	0	2022-12-19 16:13:16
52	5008806	154	GoodDebt	1	0	2022-12-19 16:13:16
53	5008806	120	GoodDebt	1	0	2022-12-19 16:13:16
54	5008806	121	GoodDebt	1	0	2022-12-19 16:13:16
55	5008806	122	GoodDebt	1	0	2022-12-19 16:13:16
56	5008806	123	GoodDebt	1	0	2022-12-19 16:13:16

18. La construction des cubes OLAP :

On a utilisé l'outil " Schema workbench " pour faire la création de notre cube OLAP.

19. Exporter le schéma sous forme d'un fichier .XML :

20. Le code source:

```
<Schema name="Credit Card Approval">
 <Cube name="Crdit_card_approval_analysis" visible="true" cache="true" enabled="true">
  <Table name="creditcard_fact">
  </Table>
  <Dimension type="StandardDimension" visible="true" foreignKey="Applicant_ID"</p>
highCardinality="false" name="Applicant_dim">
   <Hierarchy name="Applicant" visible="true" hasAll="true" >
    <Table name="application_dimension">
    </Table>
<Level name="Gender" visible="true" table="application_dimension" column="Applicant_Gender"</pre>
nameColumn="Applicant_Gender" type="String" uniqueMembers="false" levelType="Regular"
hideMemberIf="Never">
    </Level>
<Level name="Eduction" visible="true" table="application_dimension" column="Education_Type"</p>
nameColumn="Education_Type" type="String" uniqueMembers="false" levelType="Regular"
hideMemberIf="Never">
    </Level>
    <Level name="Age" visible="true" table="application_dimension" column="Applicant_Age"</p>
nameColumn="Applicant_Age" type="String" uniqueMembers="false" levelType="Regular"
hideMemberIf="Never">
    </Level>
    <Level name="BirthDay" visible="true" table="application_dimension" column="Birth_Date"</pre>
nameColumn="Birth_Date" type="String" uniqueMembers="false" levelType="Regular"
hideMemberIf="Never">
    </le>
    <Level name="Employed Date" visible="true" table="application_dimension"</pre>
column="Employed_Date" nameColumn="Employed_Date" type="String" uniqueMembers="false"
levelType="Regular" hideMemberIf="Never">
    </Level>
    <Level name="Family Status" visible="true" table="application_dimension"</p>
column="Family_Status" nameColumn="Family_Status" type="String" uniqueMembers="false"
levelType="Regular" hideMemberIf="Never">
```

```
</Level>
    <Level name="Type of house" visible="true" table="application_dimension"</pre>
column="Housing_Type" nameColumn="Housing_Type" type="String" uniqueMembers="false"
levelType="Regular" hideMemberIf="Never">
    </Level>
    <Level name="Income Type" visible="true" table="application_dimension"</pre>
column="Income_Type" nameColumn="Income_Type" type="String" uniqueMembers="false"
levelType="Regular" hideMemberIf="Never">
    </Level>
    <Level name="Job" visible="true" table="application_dimension" column="Job_Title"</p>
nameColumn="Job Title" type="String" uniqueMembers="false" levelType="Regular"
hideMemberIf="Never">
    </Level>
 <Level name="Total Income" visible="true" table="application dimension"</p>
column="Total_Income" nameColumn="Total_Income" type="String" uniqueMembers="false"
levelType="Regular" hideMemberIf="Never">
    </Level>
    <Level name="Owned Car" visible="true" table="application dimension"</pre>
column="Owned_Car" nameColumn="Owned_Car" type="String" uniqueMembers="false"
levelType="Regular" hideMemberIf="Never">
    </Level>
    <Level name="owned Reality" visible="true" table="application_dimension"</p>
column="Owned_Realty" nameColumn="Owned_Realty" type="String" uniqueMembers="false"
levelType="Regular" hideMemberIf="Never">
    </Level>
    <Level name="Total children" visible="true" table="application_dimension"</pre>
column="Total Children" nameColumn="Total Children" type="String" uniqueMembers="false"
levelType="Regular" hideMemberIf="Never">
    </Level>
    <Level name="Family members" visible="true" table="application_dimension"</pre>
column="Total_Family_Members" nameColumn="Total_Family_Members" type="String"
uniqueMembers="false" levelType="Regular" hideMemberIf="Never">
    </Level>
```

```
</Hierarchy>
  </Dimension>
  <Dimension type="StandardDimension" visible="true" foreignKey="CreditRecord_ID"</p>
highCardinality="false" name="Credit Records_dim">
   <Hierarchy name="Credit_records" visible="true" hasAll="true"</p>
primaryKey="CreditRecord_ID">
<Table name="creditrecord dimension">
    </Table>
     <Level name="Status" visible="true" table="creditrecord_dimension" column="Status"</p>
nameColumn="Status" type="String" uniqueMembers="false" levelType="Regular"
hideMemberIf="Never">
    </Level>
    <Level name="Credit_ID" visible="true" table="creditrecord_dimension"</pre>
column="CreditRecord ID" nameColumn="CreditRecord ID" type="String"
uniqueMembers="false" levelType="Regular" hideMemberIf="Never">
    </Level>
   </Hierarchy>
  </Dimension>
  <Dimension type="StandardDimension" visible="true" foreignKey="Time_ID"
highCardinality="false" name="Time_dim">
   <Hierarchy name="Time" visible="true" hasAll="true" primaryKey="Time_ID">
    <Table name="time dimension">
    </Table>
    <Level name="Year" visible="true" table="time dimension" column="Year"</pre>
nameColumn="Year" type="String" uniqueMembers="false" levelType="Regular"
hideMemberIf="Never">
    </le>
    <Level name="Month" visible="true" table="time dimension" column="Month"
nameColumn="Month" type="String" uniqueMembers="false" levelType="Regular"
hideMemberIf="Never">
    </Level>
    <Level name="Day" visible="true" table="time_dimension" column="Day"</pre>
nameColumn="Day" type="String" uniqueMembers="false" levelType="Regular"
hideMemberIf="Never">
    </Level>
```

21. L'utilisation de l'outil « JRubik » pour faire les différentes analyses et visualisation :

21.1. Faire la connexion avec notre data Warehouse :

22. Les différentes analyses et visualisation :

22.1. Les requêtes MDX appliquées :

22.1.1. Requête pour visualiser le nombre du « Bad Client » et « Good Client »

select {[Measures]. [number good client], [Measures]. [number bad client]} ON COLUMNS,

Hierarchize({[Applicant_dim.Applicant].[All Applicant_dim.Applicants]})
ON ROWS

from [Crdit_card_approval_analysis]

22.1.2. Résultat :

22.1.3. Requête pour visualiser le nombre de « Good Client » « Bad Client » par Statut :

select {[Measures]. [number good client], [Measures]. [number bad client]}}

ON COLUMNS,

Hierarchize ([Credit Records_dim.Credit_records].[All Credit

Records_dim.Credit_recordss].Children)

ON ROWS

from [Crdit_card_approval_analysis]

22.1.4. Résultat:

number good client 🤊	number bad client
27	0
0	49
36	0
	27

22.1.5. Requête pour visualiser le nombre du « Good Client » « Bad Client » par Client pour le statut X :

 $select \ \{[Measures]. \ [number good client],$

[Measures]. [number bad client]}

ON COLUMNS,

Hierarchize(Union({[Credit Records_dim.Credit_records].[All Credit Records_dim.Credit_recordss].[0],

[Credit Records_dim.Credit_records].[All Credit Records_dim.Credit_recordss].[1],
[Credit Records_dim.Credit_records].[All Credit Records_dim.Credit_recordss].[C],
[Credit Records_dim.Credit_records].[All Credit Records_dim.Credit_recordss].[X]},
[Credit Records_dim.Credit_records].[All Credit Records_dim.Credit_recordss].[X].Children))
ON ROWS
from [Crdit_card_approval_analysis]

22.1.6. Résultat :

22.1.7. Requête pour visualiser le nombre du « Good Client » « Bad Client » par Client pour chaque année :

select {[Measures].[number good client],

[Measures].[number bad client]}

ON COLUMNS,

Hierarchize(Union(Union(Crossjoin({[Applicant_dim.Applicant].[All Applicant_dim.Applicants]}, {[Time_dim.Time].[All Time_dim.Times]}),

Crossjoin({[Applicant_dim.Applicant].[All Applicant_dim.Applicants]},

[Time_dim.Time].[All Time_dim.Times].Children)),

Crossjoin([Applicant_dim.Applicant].[All Applicant_dim.Applicants].Children, {[Time_dim.Time].[All Time_dim.Times]})))

ON ROWS

22.1.8. Résultat:

Applicant_dim •	Time_dim 🦸	number good client 🤊	number bad client
	-All Time_dim.Times	63	49
	4 2019	3	0
-All Applicant_dim.Applicants	4 2020	21	3
	4 2021	23	15
	+ 2022	16	31
4Female	+All Time_dim.Times		
+Male	+All Time_dim.Times		

22.1.9. Requête pour visualiser le nombre du « Good Client » « Bad Client » par Client et par mois :

select {[Measures]. [number good client],

[Measures]. [number bad client]}

ON COLUMNS,

Hierarchize (Union (Union (Union (Union (Crossjoin({[Applicant_dim.Applicant].[All Applicant_dim.Applicants]},

{[Time_dim.Time].[All Time_dim.Times],

[Time_dim.Time].[All Time_dim.Times].[2019],

```
[Time_dim.Time].[All Time_dim.Times].[2020],
[Time_dim.Time].[All Time_dim.Times].[2021],
[Time_dim.Time].[All Time_dim.Times].[2022]}),
Crossjoin({[Applicant_dim.Applicant].[All Applicant_dim.Applicants]},
[Time_dim.Time].[All Time_dim.Times].[2019].Children)),
Crossjoin({[Applicant_dim.Applicant].[All Applicant_dim.Applicants]},
[Time_dim.Time].[All Time_dim.Times].[2020].Children)),
Crossjoin({[Applicant_dim.Applicant].[All Applicant_dim.Applicants]},
[Time_dim.Time].[All Time_dim.Times].[2021].Children)),
Crossjoin({[Applicant_dim.Applicant].[All Applicant_dim.Applicants]},
[Time dim.Time].[All Time dim.Times].[2022].Children)),
{([Applicant_dim.Applicant].[All Applicant_dim.Applicants].[Female],
[Time_dim.Time].[All Time_dim.Times]),
([Applicant_dim.Applicant].[All Applicant_dim.Applicants].[Male],
[Time_dim.Time].[All Time_dim.Times])}))
ON ROWS
from [Crdit_card_approval_analysis]
```

Applicant_dim •		number good client ?	number bad client
	—All Time_dim.Times	63	49
	-2019	3	0
	+10	1	0
	+11	1	0
	+12	1	0
	-2020	21	3
	+1	1	0
	+10	3	1
	+11	3	1
	+12	3	1
	+ 2	1	0
	4 3	1	0
	+4	1	0
	4 5	1	0
	+6	1	0
	+ 7	2	0
	+ 8	2	0
	49	2	0
	-2021	23	15
	+1	3	1
	+10	1	2
-All Applicant_dim.Applicants	+11	1	2
-All Applicant_dim.Applicants	+12	1	2
	+2	3	1
	+3	2	1
	44	2	1
	+5	2	1
	4 6	2	1
	+ 7	2	1
	48	2	1
	+ 9	2	1
	-2022	16	31
	+1	1	2
	+ 10	2	3
	+11	2	3
	+ 12	2	3
	+2	1	2
	+ 3	1	2
	4 4	1	2
	4 5	1	2
	+ 6	0	3
	+ 7	1	3
	+8	2	3
	4 9	2	3
- Esmala	I All Time dim Times		

22.1.10. Requête pour visualiser le nombre de « Good Client » « Bad Client » par mois :

select {[Measures]. [number good client],

[Measures]. [number bad client]}

ON COLUMNS,

Hierarchize (Union (Union (Union (Union (Union({[Time_dim.Time].[All Time_dim.Times]},

[Time_dim.Time].[All Time_dim.Times].Children),

[Time_dim.Time].[All Time_dim.Times].[2020].Children),

[Time_dim.Time].[All Time_dim.Times].[2019].Children),

[Time_dim.Time].[All Time_dim.Times].[2021].Children),

[Time_dim.Time].[All Time_dim.Times].[2022].Children))

ON ROWS

from [Crdit_card_approval_analysis]

Time_dim 9	number good client ?	number had dient
-All Time_dim.Times	63	49
-2019	3	0
+10	1	0
+11	1	0
+12	1	0
-2020	21	3
+1	1	0
→10	3	1
+11	3	1
+12	3	1
+2	1	0
4 3	1	0
4 4	1	0
4 -5	1	0
- ∔-6	1	0
47	2	0
+ 8	2	0
4 9	2	0
-2021	23	15
→1	3	1
+10	1	2
+11	1	2
+12	1	2
+2	3	1
+3	2	1
+4	2	1
+5	2	1
+ 6	2	1
+7	2	1
+8	2	1
+9	2	
-2022	16 1	31
+1	1	2

22.1.11. Requête pour visualiser le nombre de « Good Client » « Bad Client » pour chaque année :

```
select Union (Crossjoin({[Measures]. [number good client]},
{[Time_dim.Time].[All Time_dim.Times],
[Time_dim.Time].[All Time_dim.Times].[2019],
[Time_dim.Time].[All Time_dim.Times].[2020],
[Time_dim.Time].[All Time_dim.Times].[2021],
[Time_dim.Time].[All Time_dim.Times].[2022]}),
{([Measures].[number bad client],
[Time_dim.Time].[All Time_dim.Times])})
ON COLUMNS,
Hierarchize({[Applicant_dim.Applicant].[All Applicant_dim.Applicants]}))
ON ROWS
```

from [Crdit_card_approval_analysis]

number good client Time_dim Applicant_dim							
Applicant_dim		number good dient					
		Time_dim					
All Andiensk dies Andiensk	Applicant_dim •	 All Time_dim.Times 	9	4 2019 •	4 2020 °	4 2021 °	4 2022 ⁹
+All Applicant_dim.Applicants 63 3 21 23 16	+All Applicant_dim.Applicants		63	3	21	23	16

22.1.12. Requête pour visualiser le nombre du « Bad Client » pour chaque mois :

select Hierarchize (Union (Union (Union (Union (Union (Crossjoin({[Measures]. [number bad

```
client]},
{[Time_dim.Time].[All Time_dim.Times],
[Time_dim.Time].[All Time_dim.Times].[2019],
[Time_dim.Time].[All Time_dim.Times].[2020],
[Time_dim.Time].[All Time_dim.Times].[2021],
[Time_dim.Time].[All Time_dim.Times].[2022]}),
Crossjoin({[Measures].[number good client]},
[Time_dim.Time].[All Time_dim.Times].[2019].Children)),
Crossjoin({[Measures].[number good client]},
[Time_dim.Time].[All Time_dim.Times].[2020].Children)),
Crossjoin({[Measures].[number good client]},
[Time_dim.Time].[All Time_dim.Times].[2021].Children)),
Crossjoin({[Measures].[number good client]},
[Time_dim.Time].[All Time_dim.Times].[2022].Children)),
{([Measures].[number bad client],
[Time_dim.Time].[All Time_dim.Times])}))
ON COLUMNS,
 Hierarchize({[Applicant_dim.Applicant].[All Applicant_dim.Applicants]})
ON ROWS
```

from [Crdit card approval analysis]

22.1.13.Requête pour visualiser le nombre du « Good Client » « Bad Client » par statut pour chaque année :

select {[Measures]. [number bad client],

[Measures]. [number good client]}

ON COLUMNS,

Hierarchize (Union (Union (Union (Union (Union (Crossjoin({[Credit

Records_dim.Credit_records].[All Credit Records_dim.Credit_recordss]},

{[Time_dim.Time].[All Time_dim.Times]}),

Crossjoin({[Credit Records_dim.Credit_records].[All Credit Records_dim.Credit_recordss]},

[Time_dim.Time].[All Time_dim.Times].Children)),

Crossjoin([Credit Records_dim.Credit_records].[All Credit Records_dim.Credit_recordss].Children, {[Time_dim.Time].[All Time_dim.Times]})),

Crossjoin({[Credit Records_dim.Credit_records].[All Credit Records_dim.Credit_recordss].[0]},

[Time_dim.Time].[All Time_dim.Times].Children)),

Crossjoin({[Credit Records dim.Credit records].[All Credit Records dim.Credit recordss].[1]},

[Time_dim.Time].[All Time_dim.Times].Children)),

Crossjoin({[Credit Records_dim.Credit_records].[All Credit Records_dim.Credit_recordss].[C]},

[Time_dim.Time].[All Time_dim.Times].Children)),

Crossjoin({[Credit Records dim.Credit records].[All Credit Records dim.Credit recordss].[X]},

[Time_dim.Time].[All Time_dim.Times].Children)))

ON ROWS

from [Crdit_card_approval_analysis]

Credit Records_dim	Time_dim 🦻	number bad client 🤊	number good client 🤊
	-All Time_dim.Times	49	63 (
	4 2019	0	31
-All Credit Records_dim.Credit_recordss	+ 2020	3	21 .
	+ 2021	15	23 (
	+ 2022	31	16 i
	-All Time_dim.Times	0	27 '
	+ 2019	0	1.
+0	+ 2020	0	8 :
	+2021	0	7 '
	+ 2022	0	11.
	-All Time_dim.Times		
	4 2019		
+1	+ 2020		
	4 2021		
	+ 2022		
	-All Time_dim.Times	49	0 (
	+ 2019		
+C	4 2020	3	0 (
	+ 2021	15	0 (
	+ 2022	31	0 (
	-All Time_dim.Times	0	36 i
	4 2019	0	2 !
+ X	+ 2020	0	13 (
	4 2021	0	16 i
	+ 2022	0	5 i

