

Thyristor Modules

\mathbf{V}_{RSM}	\mathbf{V}_{RRM}	Туре
$\mathbf{V}_{\mathtt{DSM}}$	$\mathbf{V}_{\mathtt{DRM}}$	
V	V	
900	800	MCC 21-08io8 B
1300	4000	MOO O4 40' O D
1300	1200	MCC 21-12io8 B
1500	1200 1400	MCC 21-12108 B MCC 21-14108 B

Symbol	Conditions	Conditions		
I _{TRMS}	$T_{VJ} = T_{VJM}$ $T_C = 85^{\circ}C$; 180° sine)	33 21	A A
I _{TSM}	$T_{VJ} = 45^{\circ}C;$ $V_{R} = 0$	t = 10 ms (50 Hz), sine t = 8.3 ms (60 Hz), sine	320 350	A A
	$ \overline{T_{VJ} = T_{VJM}} $ $ V_R = 0 $	t = 10 ms (50 Hz), sine t = 8.3 ms (60 Hz), sine	280 310	A A
l ² dt	$T_{VJ} = 45$ °C $V_R = 0$	t = 10 ms (50 Hz), sine t = 8.3 ms (60 Hz), sine	500 520	A ² s A ² s
	$ \overline{T_{VJ} = T_{VJM}} $ $ V_R = 0 $	t = 10 ms (50 Hz), sine t = 8.3 ms (60 Hz), sine	390 400	A ² s A ² s
(di/dt) _{cr}	$T_{VJ} = T_{VJM}$ f = 50Hz, t _P = 200 μ s	repetitive, $I_T = 45 \text{ A}$	150	A/µs
	$V_D = {}^2/_3 V_{DRM}$ $I_G = 0.45 A$ $di_G/dt = 0.45 A/\mu s$	non repetitive, $I_T = I_{TAVM}$	500	A/µs
(dv/dt) _{cr}	$T_{VJ} = T_{VJM}$; $V_{DR} = {}^2/_3$ $R_{GK} = \infty$; method 1 (I		1000	V/µs
P _{GM}	$T_{VJ} = T_{VJM}$ $I_{T} = I_{TAVM}$	$t_{P} = 30 \ \mu s$ $t_{P} = 300 \ \mu s$	10 5	W W
P _{GAV}			0.5	W
V _{RGM}			10	V
T _{VJ} T _{VJM} T _{stg}			-40+125 125 -40+125	ာ င
V _{ISOL}	50/60 Hz, RMS I _{ISOL} ≤ 1 mA	t = 1 min t = 1 s	3000 3600	V~ V~
M _d	Mounting torque (M Terminal connection		2.5-4.0/22-35 2.5-4.0/22-35	
Weight	Typical including scr	rews	90	g

Data according to DIN/IEC 747 and refer to a single thyristor unless otherwise stated.

Features

- International standard package, JEDEC TO-240 AA
- Direct copper bonded Al₂O₃ -ceramic base plate
- Planar passivated chips
- Isolation voltage 3600 V~
- UL registered, E 72873
- Gate-cathode twin pins for version 1B

Applications

- DC motor control
- Softstart AC motor controller
- Light, heat and temperature control

Advantages

- Space and weight savings
- Simple mounting with two screws
- Improved temperature and power cycling
- Reduced protection circuits

Symbol	Conditions Characteristic Va		/alues
I _{RRM} , I _{DRM}	$T_{VJ} = T_{VJM}$; $V_R = V_{RRM}$; $V_D = V_{DRM}$	5	mA
V _T	I _T = 45 A; T _{VJ} = 25°C	1.6	V
V _{T0}	For power-loss calculations only (T _{VJ} = 125°C)	0.85 15	V mΩ
\mathbf{V}_{GT}	$V_D = 6 \text{ V};$ $T_{VJ} = 25^{\circ}\text{C}$ $T_{VJ} = -40^{\circ}\text{C}$	1.0 1.2	V V
I _{GT}	$V_D = 6 \text{ V};$ $T_{VJ} = 25^{\circ}\text{C}$ $T_{VJ} = -40^{\circ}\text{C}$	65 80	mA mA
V _{GD}	$T_{VJ} = T_{VJM}$; $V_D = \frac{2}{3} V_{DRM}$	0.2 5	V mA
I _L	$T_{VJ} = 25^{\circ}\text{C}; t_p = 10 \ \mu\text{s}; V_D = 6 \ V$ $I_G = 0.3 \ A; di_G/dt = 0.3 \ A/\mu\text{s}$	150	mA
I _H	$T_{VJ} = 25^{\circ}C; V_{D} = 6 V; R_{GK} = \infty$	100	mA
t _{gd}	$T_{VJ} = 25^{\circ}\text{C}; \ V_{D} = \frac{1}{2} \ V_{DRM}$ $I_{G} = 0.3 \ A; \ di_{G}/dt = 0.3 \ A/\mu s$	2	μs
t _q	$T_{VJ} = T_{VJM}$; $I_T = 15 \text{ A}$, $t_P = 300 \mu\text{s}$; $-\text{di}/\text{dt} = 10 \text{ A}/\mu\text{s}$ typ $V_R = 100 \text{ V}$; $dv/dt = 20 \text{ V}/\mu\text{s}$; $V_D = \frac{2}{3} V_{DRM}$. 150	μs
I _{RM}	$T_{_{VJ}} = T_{_{VJM}}$; $I_{_T} = 30 \text{ A}$, $-\text{di/dt} = 0.3 \text{ A/}\mu\text{s}$	4	Α
R _{thJC}	per thyristor; DC current per module per thyristor; DC current per module other values see Fig. 8/9	1.1 0.55 1.3 0.65	K/W K/W K/W
d _s d _A a	Creepage distance on surface Strike distance through air Maximum allowable acceleration	12.7 9.6 50	mm mm m/s²

Keyed gate/cathode twin plugs with wire length = 350 mm, gate = yellow, cathode = red Type **ZY 200L** (L = Left for pin pair 4/5) UL 758, style 1385, Type **ZY 200R** (R = right for pin pair 6/7) CSA class 5851, guide 460-1-1

Fig. 1 Gate trigger characteristics

Fig. 2 Gate trigger delay time

Dimensions in mm (1 mm = 0.0394")

