THREE BIT ODD PARITY BIT GENERATOR

STATE DIAGRAM

Our state machine has 2 states :

- EVEN (1)
- ODD (0)

TRUTH TABLE

	3-bit message		Odd parity bit generator (P)
A	В	С	Y
0	0	0	1
0	0	1	0
0	1	0	o
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

EXCITATION TABLE

INPUT BIT (at time t)	PRESENT STATE(PS)	NEXT STATE (NS)	OUTPUT (O/P)
0	0 (ODD)	0 (ODD)	1
0	1 (EVEN)	1 (EVEN)	0
1	0 (ODD)	1 (EVEN)	0
1	1 (EVEN)	0 (ODD)	1

STATE TABLE

PRESENT STATE (P)	(NEXT STATE, OUTPUT)		
	INPUT BIT		
	0	1	
0 (ODD)	(0,0)	(1,1)	
1 (EVEN)	(1,1)	(0,0)	

TRANSITION TABLE

PRESENT STATE	NEXT STATE		
	INPUT BIT		
	0	1	
0 (ODD)	0	1	
1 (EVEN)	1	0	

OUTPUT TABLE

PRESENT STATE	OUTPUT		
	INPUT BIT		
	0	1	
0 (ODD)	0	1	
1 (EVEN)	1	0	

K-MAP

• FOR NEXT STATE (Y(t+1))

INDUT DIT (V)	PRESENT STATE(Y(t))		
INPUT BIT (X)	0	1	
0	0	1	
1	1	0	

$$Y(t+1) = (X \cdot \overline{Y(t)}) + (\overline{X} \cdot Y(t))$$
$$Y(t+1) = X \oplus Y(t)$$

• FOR OUTPUT LOGIC (Z)

INDUT DIT (V)	PRESENT STATE(Y(t))	
INPUT BIT (X)	0	1
0	0	1
1	1	0

$$Z = (X . \overline{Y(t)}) + (\overline{X} . Y(t))$$
$$Z = X \oplus Y(t)$$

LOGIC DIAGRAM

