Incremental Cash Flow Analysis

Here is a common challenge...

You oversee the company's manufacturing operations.

You want to purchase a new, fully automated 5-axis CNC machining center.

Based on your analysis, you project that such a machine could reduce labor hours for setup and operation, and thereby reduce the costs of the finished component.

The new machine costs \$250,000.

Anticipated Annual O&M Costs: \$40,000.

Time of Use: 5 years

Salvage Value: \$50,000

Company Discount Rate: 16%

Is this a worthwhile project?

Here is a common challenge...

Your Spreadsheet with NPV and IRR

When proposing cost reduction projects...

Step 1: Determine the "As-Is" case: costs based on the current process, and project these into the future as though you "do nothing" different. (This is sometimes called the "Base Case").

Step 2: Determine the "To-Be" case: future costs based on the new project.

Step 3: Compare the "To-Be" costs relative to the "As-Is" costs:

Cash Flows (To-Be) - Cash Flows (As-Is)

Step 4: Conduct a discounted cash flow analysis on the "incremental cash flows".

Incremental Cash Flow Analysis

	A	В	С	D	Е	F	G	
1	Incremental Cash Flow Example							
2								
3	As-Is Case:			Set up a	a spreadsh	eet that sh	nows:	
4	Annual Operating Expenses:	\$150,000		·	•			
5				· ine	e "As-Is" Cas	SITFIOWS		
6	To Be-Case:			• The	e "To-Be" Ca	sh Flows		
7	Initial Investment:	\$250,000		• The	Increments	al Cach Floy	ws, (To-Be)-	-(Ae-le)
8	Annual Operating Expenses:	\$40,000					· · ·	
9	Time (years):	5		 Det 	ermine the I	NPV & IRR f	from the Inc	remental Cash Flows
10	Salvage Value:	\$50,000						
11	Discount Rate:	16%						
12								
13				End of Year	r Cash Flows			
14	Year	0	1	2	3	4	5	
15	As-Is Case	\$0	-\$150,000	-\$150,000	-\$150,000	-\$150,000	-\$150,000	
16	To Be Case	-\$250,000	-\$40,000	-\$40,000	-\$40,000	-\$40,000	\$10,000	
17	Incremental Cash Flow	-\$250,000	\$110,000	\$110,000	\$110,000	\$110,000	\$160,000	
18								
19	PV (Yr 1-5):	\$383,978	=NPV(B11, C17:G	17)				
20	Initial Investment:	\$250,000	=B7					
21	Net Present Value, NPV:	\$133,978	=B19-B20					
22								
23	Internal Rate of Return, IRR:	36%	=IRR(B17:G17)					

	А	В	С	D	E	F	G
1	Incremental Cash Flow Example						
2							
3	As-Is Case:						
4	Annual Operating Expenses:	\$150,000					
5				The As-Is Ca	sh Flows: th	nese would	occur
6	To Be-Case:			if you "do not	thing".		
7	Initial Investment:	\$250,000					
8	Annual Operating Expenses:	\$40,000		Note there is	no investm	ent required	d to
9	Time (years):	5		keep doing w		• • • • • • • • • • • • • • • • • • •	
10	Salvage Value:	\$50,000		keep doing w	That you're t	incady doin	ıg:
11	Discount Rate:	16%					
12							
13				End of Year	r Cash Flows		
14	Year	0	1	2	3	4	5
15	As-Is Case	\$0	-\$150,000	-\$150,000	-\$150,000	-\$150,000	-\$150,000
16	To Be Case	-\$250,000	-\$40,000	-\$40,000	-\$40,000	-\$40,000	\$10,000
17	Incremental Cash Flow	-\$250,000	\$110,000	\$110,000	\$110,000	\$110,000	\$160,000
18							
19	PV (Yr 1-5):	\$383,978	=NPV(B11, C1	7:G17)			
20	Initial Investment:	\$250,000	=B7				
21	Net Present Value, NPV:	\$133,978	=B19-B20				
22							
23	Internal Rate of Return, IRR:	36%	=IRR(B17:G17	")			

\mathbf{Z}	А	В	С	D	Е	F	G
1	Incremental Cash Flow Example						
2							
3	As-Is Case:						
4	Annual Operating Expenses:	\$150,000					
5				Then you lay	out the "To	-Be" cash fl	ows as
6	To Be-Case:		У	ou normally	would for a	a new projec	ct.
7	Initial Investment:	\$250,000					
8	Annual Operating Expenses:	\$40,000					
9	Time (years):	5					
10	Salvage Value:	\$50,000					
11	Discount Rate:	16%					
12							
13				End of Year	Cash Flows		
14	Year	0	1	2	3	4	5
15	As-Is Case	\$0	-\$150,000	-\$150,000	-\$150,000	-\$150,000	-\$150,000
16	To Be Case	-\$250,000	-\$40,000	-\$40,000	-\$40,000	-\$40,000	\$10,000
17	Incremental Cash Flow	-\$250,000	\$110,000	\$110,000	\$110,000	\$110,000	\$160,000
18							
19	PV (Yr 1-5):	\$383,978	=NPV(B11, C17	·G17)			
20	Initial Investment:	\$250,000	=B7				
21	Net Present Value, NPV:	\$133,978	=B19-B20				
22							
23	Internal Rate of Return, IRR:	36%	=IRR(B17:G17)				

	А	В	С	D	Е		F	G
1	Incremental Cash Flow Example							
2								
3	As-Is Case:							
4	Annual Operating Expenses:	\$150,000						
5								
6	To Be-Case:							
7	Initial Investment:	\$250,000						
8	Annual Operating Expenses:	\$40,000						
9	Time (years):	5						
10	Salvage Value:	\$50,000						
11	Discount Rate:	16%						
12								
13				End of Yea	r Cash Flow	ıs		
14	Year	0	1	2	3		4	5
15	As-Is Case	\$0	-\$150,000	-\$150,000	-\$150	,000	-\$150,000	-\$150,000
16	To Be Case	-\$250,000	-\$40,000	-\$40,000	-\$40,	,000	-\$40,000	\$10,000
17	Incremental Cash Flow	-\$250,000	\$110,000	\$110,000	\$110	,000	\$110,000	\$160,000
18								
19	PV (Yr 1-5):	\$383,978	=NPV(B11, C17:G	17)		T I		II NIDV
20	Initial Investment:	\$250,000	=B7					the NPV an
21	Net Present Value, NPV:	\$133,978	=B19-B20			Incre	emental Cas	h Flows: (T
22								
23	Internal Rate of Return, IRR:	36%	=IRR(B17:G17)					

	A	В	С	D	Е	F	G		
1	Incremental Cash Flow Example	_			_				
2									
3	As-Is Case:			With co	st reduction	on projects	, the "bene	fits" are the cost	
4	Annual Operating Expenses:	\$150,000		savings from doing the project.					
5				cavinge	, ,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ig the proje	, o		
6	To Be-Case:						,		
7	Initial Investment:	\$250,000		An incre	emental ca	ish flow an	ialysis allov	ws you to show the	
8	Annual Operating Expenses:	\$40,000		financia	al value of	the propos	sed project	in terms everyone	
9	Time (years):	5		_	tands, the I			•	
10	Salvage Value:	\$50,000		diració	arrao, tire r	v ana n	\		
11	Discount Rate:	16%							
12									
13			,	End of Year	Cash Flows				
14	Year	0	1	2	3	4	5		
15	As-Is Case	\$0	-\$150,000	-\$150,000	-\$150,000	-\$150,000	-\$150,000		
16	To Be Case	-\$250,000	-\$40,000	-\$40,000	-\$40,000	-\$40,000	\$10,000		
17	Incremental Cash Flow	-\$250,000	\$110,000	\$110,000	\$110,000	\$110,000	\$160,000		
18									
19	PV (Yr 1-5):	\$383,978	=NPV(B11, C17:G1	For the F	Project: NP\	/ = \$133.97	8 and the IRI	R = 36%	
20	Initial Investment:	\$250,000	=B7		,	, , , , , , ,			
21	Net Present Value, NPV:	\$133,978	=B19-B20	This is a very worthwhile project. The cost <u>savings</u> more than					
22									
23	Internal Rate of Return, IRR:	36%	=IRR(B17:G17)	offset the initial investment in the new machining center.					

Cost-Only Projects...

Sometimes projects are "cost-only" projects, where there are no defined financial benefits.

What happens in this case?

Example. You need to purchase a new pollution control system for your facility to comply with local emission regulations. The equipment has a life of 5 years. Your company has a discount rate of 14%.

You identified 3 products that will work, with the following costs:

	Pollution Control System #1	Pollution Control System #2	Pollution Control System #3
Initial Cost (\$)	\$575,000	\$500,000	\$600,000
Annual O&M (\$)	\$80,000	\$100,000	\$60,000

Cost-Only Projects...

There are two ways to select the lowest cost alternative...

1) Calculate the NPV for each alternative and select the one with the largest NPV (Note: as a cost-only project, the NPV's will all be negative. Yet we still select the project with the highest NPV, representing the lowest cost alternative.)

	Pollution Control System #1	Pollution Control System #2	Pollution Control System #3
Initial Cost (\$)	\$575,000	\$500,000	\$600,000
Annual O&M (\$)	\$80,000	\$100,000	\$60,000
NPV (\$)	-\$849,646	-\$843,308	-\$805,985

Recognizing this is an all-cost project, the lowest cost option is the one with the highest NPV (even though it is negative): Pollution Control System #3.

2) Use Incremental Cash Flow Method to identify the lowest cost alternative.

Example. You need to purchase a new pollution control system for your facility to comply with local emission regulations. The equipment has a life of 5 years. Your company has a discount rate of 14%.

You identified 3 products that will work, with the following costs:

Step 1: Rank Order the Projects by Initial Investment, from Lowest to Highest; The 1st project becomes the Base Case.

	Base Case	Next Alternative		
	Pollution Control System #2	Pollution Control System #1	Pollution Control System #3	
Initial Cost (\$)	\$500,000	\$575,000	\$600,000	
Annual O&M (\$)	\$100,000	\$80,000	\$60,000	

Step 2: Determine the incremental cash flows between the Next Alternative (PC1) and the Base Case (PC2): $CF_{PC1} - CF_{PC2}$.

		End of Year Cash Flows					
Project	0	1	2	3	4	5	
PC2	-\$500,000	-\$100,000	-\$100,000	-\$100,000	-\$100,000	-\$100,000	
PC1	-\$575,000	-\$80,000	-\$80,000	-\$80,000	-\$80,000	-\$80,000	
Incremental Cash Flow	-\$75,000	\$20,000	\$20,000	\$20,000	\$20,000	\$20,000	

Step 3: Evaluate the NPV and IRR based on the incremental cash flows.

PV (Yr 1-5):	\$68,662
Incremental Investment:	\$75,000
Net Present Value, NPV:	-\$6,338
Internal Rate of Return, IRR:	10%

The NPV is negative, and the IRR is less than the discount rate (14%).

=> The additional investment in PC1 is not worth the lower O&M costs, relative to PC2.

Reject PC1, PC2 remains as the Base Case.

Step 2: Determine the <u>new</u> incremental cash flows between the Next Alternative (PC3) and the new Base Case (PC2): $CF_{PC3} - CF_{PC2}$.

		End of Year Cash Flows					
Project	0	1	2	3	4	5	
PC2	-\$500,000	-\$100,000	-\$100,000	-\$100,000	-\$100,000	-\$100,000	
PC3	-\$600,000	-\$60,000	-\$60,000	-\$60,000	-\$60,000	-\$60,000	
Incremental Cash Flow	-\$100,000	\$40,000	\$40,000	\$40,000	\$40,000	\$40,000	

Step 3: Evaluate the NPV and IRR based on the <u>new</u> incremental cash flows.

PV (Yr 1-5):	\$200,000
Incremental Investment:	\$100,000
Net Present Value, NPV:	\$100,000
Internal Rate of Return, IRR:	29%

The NPV is now positive, and the IRR is more than the discount rate (14%).

=> The additional investment in PC3 <u>is</u> worth the lower O&M costs, relative to PC2.

Reject PC2, PC3 is selected as the project!

Main Takeaways...

The incremental cash flow method is very useful when looking at cost-only projects (no benefits), typical of many cost reduction initiatives.

To decide whether a cost reduction project is financially worthwhile, determine the incremental cash flows from the To-Be case and the As-Is case. Cost savings are now benefits, and the NPV and IRR can be readily determined.

When comparing several projects,

- ✓ Rank order the projects by initial investment; establish the Base Case
- ✓ Compare the incremental cash flows from the first two projects (2nd Base Case)
- ✓ If NPV > 0 & IRR > the Discount Rate, keep the 2nd project; if not, keep the Base Case
- ✓ Now compare the winner to the next project
- ✓ Repeat until you have the answer!

When comparing projects, the incremental cash flow method always selects the best project. It is ideal with cost-only projects - but works well with any type of project!

Next Time...

Depreciation, Taxes & Inflation

Credits & References

Slide 1: Incremental cash-flow written on the keyboard button by AliFuat, Adobe Stock (273075230.jpeg).

Slide 2: The abstract scene of 5-axis CNC machine and the NC code-data background by Pixel_B, Adobe Stock (277070887.jpeg).

Slide 17: Financial analyst analysis business financial report on digital tablet during discussion at meeting of corporate showing the results of their successful teamwork by crizzystudio, Adobe Stock (502970152.jpeg).