

What is there to be learned?

- Classically Energy flow: Producer → Consumer
 - Easy to maintain balance between demand and supply
 - o General: Single direction of power flow
- With decentralised power generation
 - o Power flow in Middespannings (MS) net becomes muddled
 - Hard to keep up with supply, demand, and capacity
 - → Big bottleneck in the energy transition

- Current measurements insufficient to understand
 - Most MS substations only record absolute current (I) and voltages (U)
 - Look for a machine learning solution to learn the active power (P)

What is there to be learned?

Quick recap

Alternating current grid:

- $S = U \times I \times \sqrt{3}$
 - Apparent power (S)
 - Theoretical maximum
- $S = \sqrt{(P^2 + Q^2)}$
 - Apparent power (S)
 - Hypotenuse of the active power (P) and the reactive power (Q).
 - P is the actually used/consumed power
 - Q is the non-used power → wasted
- $P/S = Cos(\phi)$
 - P/S is the power factor [-1,1]
 - P and Q are determined by the phase angle (φ)
- If we can learn P from available data we are able to calculate the power factor at MS substations

Quick overview of bayesian machine learning

Why Bayesian machine learning?

- It allows for statistical models that can be updated with prior knowledge expressed as distributions
 - Observational data is combined with the prior and normalised to give a posterior prediction
- Great! Perhaps we can encode common constraints of the grid in the prior to help in predicting power flow:
 - E.g. Kirchhoff's current law ($\Sigma(P) = 0$)
 - \circ P ≤ S (realistically always P < S)

Quick overview of bayesian machine learning

Gaussian Processes

- I decided to try apply Gaussian Processes (GP) as the Bayesian machine learning method
 - o Specifically GP regression
- GP Regression (GPR)
 - Nonparametric: Not limited by a function form
 - GPR → distribution over all admissible functions fitting the data
 - Can be described as an infinite-dimensional multivariate gaussian distribution

$$f(x) \sim GP(m(x), k(x, x'))$$

- Gaussian prior
 - Mean function: m(x)
 - Covariance function: k(x,x')

$$\begin{bmatrix} y \\ f_* \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \mu \\ \mu_* \end{bmatrix}, \begin{bmatrix} K(X,X) + \sigma_n^2 I & K(X,X_*) \\ K(X_*,X) & K(X_*,X_*) \end{bmatrix} \right)$$

- Training data
 - Gets applied to the covariance matrix to create the kernel matrix
 - o Does not require a lot of data to train
- GPs allow for:
 - Interpolation of observations (useful for holes in the data)
 - Probabilistic predictions (confidence intervals)
- GP weaknesses
 - Computationally costly for high dimension feature spaces

What I ended up doing

Three uneven topics

alliander

- Main focus on Bayesian machine learning / Gaussian processes
- However two (sort of) separate ideas

- 1 Look at the possible use of flow networks for energy grids
 - One master thesis seemed promising
 - "Network flow models for power grids", Francesca Wegner, 2014
 - Required knowledge of wider energy flow in the grid (Outside of the scope of my internship/topic)

- 2 Look at the construction of custom loss functions for general machine learning models (XGBoost)
 - Some physical laws can be encoded in the loss function
 - co Loss: MSE + Σ (P) = 0?
 - Prevents 0 predictions, still accounts for some part of the physics
- 3 Before learning the actual power factor, first check if we can accurately predict P
 - How should we present the data?
 - How do we ensure the model understands physical limits (E.g. Kirchhoff's current law)?
 - Which features do we add?
 - Geographical data?
 - o Weather data?
 - Actual meat of the internship!

A tale of two datasets

Original MSE data:

- 1 year, 10 stations
- .Time series data (measurement / 5 min)
 - o per station, per installation, per field
- Contains absolute current, voltage, active and reactive power
 - Unfortunately Kirchhoff's current law rarely held up (At worst 12 MW deviation, total ~35MW → ~30% deviation)

Decided to focus on Kirchhoff's current law as my primary physical law to incorporate

- How to combine spatial and temporal features?
- No good method found

Main features would be:

- Train: Current (I), voltage (U)
- Test: Active power (P), reactive power (Q)

A tale of two datasets

Decided to use two datasets

- Time series data
 - Time relation through lagging data:
 - P at t, t-1, t-2, etc
- Spatial data
 - No (real) time relation between data points
 - Single data point = entire station
 - Amount of features: F x N
 - F = amount of fields per station
 - N = amount of measurements per field
- Big problem!
 - Variable size of stations results in different amount of features
 - \circ \rightarrow Do we train per station or in general?
 - Resulting in idea for other experiment

Spatial data

V2	DATUM_TIJD	STATION	1_0	U_0	l_1	U_1	1_2	U_2	1_3	U_3		1_20	U_20	I_21	U_21	I_22	U_22
0	0.0	Tex	0.000000	0.0105	76.790000	0.0105	44.380000	0.0105	52.980000	0.0105		0.0	0.0000	0.00	0.0000	0.00	0.0000
1	0.0	Hby	2.080332	0.0105	25.878577	0.0105	2.743656	0.0105	9.843535	0.0105		0.0	0.0000	0.00	0.0000	0.00	0.0000
2	0.0	Dtn	65.649983	0.0105	45.709995	0.0105	6.767125	0.0105	0.000000	0.0000		0.0	0.0000	0.00	0.0000	0.00	0.0000
3	0.0	HFDP	0.000000	0.0210	0.000000	0.0210	127.780000	0.0210	126.570000	0.0210		0.0	0.0000	0.00	0.0000	0.00	0.0000
4	0.0	Grd	0.000000	0.0105	56.730000	0.0105	57.390000	0.0105	0.000000	0.0105	***	0.0	0.0105	22.19	0.0105	56.78	0.0105

Internship became more and more about data exploration than machine learning.

- What data to use (temporal vs spatial)?
- How to train (stations vs general)?
- Influence of different time of year?
- What/how to add knowledge about fields?

Experiments

Machine learning models straight out of the box (scikit-learn)

- Gaussian process
- XGBoost

Experiment variables:

- Temporal or spatial data
- GP or XGBoost
- Train per station or on periods of 2 weeks
- Additional feature (Thanks to Jacco)
 - Treat all fields equal or differentiate between incoming and outgoing fields

Metrics used:

- MSE
- Accuracy on sign prediction

Difficult to determine when a prediction was good without visual inspection

Results from experiments

Metric wise:

- Mixed results:
 - ~ 60-90% accuracy predicting sign (Promising)
 - Some outliers (50% or 95% accuracy)
 - ~ 5-10 MSE (painful)
 - Meaning an average error of $\sim \sqrt{5}$ $\sqrt{10}$ MW

Notice a slight improvement in performance on training on individual stations.

However with visual inspection we soon see the results

GP acc: 0.82, mse: 6.48XGB acc: 0.63, mse: 12.17

Conclusion

Disclaimers

- My code is still quite buggy/messy
 - Order of stations/fields does not match between spatial and temporal data
 - Splitting for cross validation between weeks and stations has inconsistencies
- Training for GPs had to be done on small sets due to intensive memory requirements
 - Therefore the training for XGBoost was limited to the same data size, to keep the comparison fair
- Error below obtained training GP on 2 weeks of data

MemoryError: Unable to allocate 75.7 GiB

Take-away messages

- Further research required for data sanity
 - Does the data match the expected values?
 - o Often I found myself in situations where it did not
- GPs are powerful, but perhaps unwieldy for a grid wide scope
 - Perhaps look in to (GP) models for individual stations?
- Further research in to developing a loss function
 - XGBoost seems widely used in Alliander
 - Incorporating simple constraints such as Kirchhoff's current law in to a loss function and implementing it
- Further research on the best way to represent the temporal and spatial information of the grid
 - Graph Neural Networks?
- Incorporating concrete constraints (Such as sum of predictions = 0) in to GPs is very complex
 - "Incorporating Sum Constraints into Multitask Gaussian Processes" Philipp Pilar