Semantic Theory Lecture 2 – Predicate Logic

Noortje Venhuizen

Universität des Saarlandes

Summer 2016

Information about this course

Contact information:

- Course website: http://noortjejoost.github.io/teaching/ST16/index.html
- My email: <u>noortjev@coli.uni-saarland.de</u>

Recommended literature:

- · Gamut: Logic, Language, and Meaning, Vol. 2, University of Chicago Press, 1991
- Kamp and Reyle: From Discourse to Logic, Kluwer, 1993

Final exam:

Exam date to be confirmed

Part I: Sentence semantics

Sentence meaning

Truth-conditional semantics:

to know the meaning of a (declarative) sentence is to know what the world would have to be like for the sentence to be true:

Sentence meaning = truth-conditions

Indirect interpretation:

- Translate sentences into logical formulas:
 Every student works → ∀x(student'(x) → work'(x))
- Interpret these formulas in a logical model:
 [∀x(student'(x) → work'(x))]^{M,g} = 1 iff V_M(student') ⊆ V_M(work')

Step 1: Translation

Limits of propositional logic: propositions with internal structure

Every man is mortal.

Socrates is a man.

Therefore, Socrates is mortal.

Solution: first-order predicate logic

predicates are expressions that contain *arguments* (that can be quantified over)

predication & quantification over *individuals*

Gottlob Frege

Predicate Logic: Vocabulary

Non-logical expressions:

Individual constants: CON

n-place relation constants: PREDⁿ, for all $n \ge 0$

Infinite set of individual variables: VAR

Logical connectives: \land , \lor , \neg , \rightarrow , \leftrightarrow , \forall , \exists

Brackets: (,)

Predicate Logic: Syntax

Terms: TERM = VAR U CON

Atomic formulas:

- $R(t_1,...,t_n)$ for $R \in PRED^n$ and $t_1,...,t_n \in TERM$
- $t_1 = t_2$ for $t_1, t_2 \in TERM$

Well-formed formula (WFF):

- 1. All atomic formulas are WFFs;
- 2. If ϕ and ψ are WFFs, then $\neg \phi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \to \psi)$, $(\phi \leftrightarrow \psi)$ are WFFs;
- 3. If $x \in VAR$, and φ is a WFF, then $\forall x \varphi$ and $\exists x \varphi$ are WFFs;
- 4. Nothing else is a WFF.

Variable binding

- Given a quantified formula $\forall x \varphi$ (or $\exists x \varphi$), we say that φ (and every part of φ) is in the **scope** of the quantifier $\forall x$ (or $\exists x$);
- A variable x is **bound** in formula ψ if x occurs in the scope of $\forall x$ or $\exists x$ in ψ ;
- If a variable is not bound in formula ψ, it occurs free in ψ;
- A closed formula is a formula without free variables.

Formalizing Natural Language

- 1. Bill loves Mary.
- 2. Bill reads an interesting book.
- 3. Every student reads a book.
- 4. Bill passed every exam.
- 5. Not every student answered every question.
- 6. Only Mary answered every question.
- 7. Mary is annoyed when someone is noisy.
- 8. Although nobody makes noise, Mary is annoyed.

Step 2: Interpretation

Logical models are simplified representations of the state of affairs in the world

John is a student: for any M, [student'(john)]^M = 1 iff V_M(john) ∈ V_M(student')

 $V_{M1}(john) \in V_{M1}(student')$ therefore: $[student'(john)]^{M1} = 1$

 $V_{M2}(john) \not\in V_{M2}(student')$ therefore: [student'(john)] $^{M2} = 0$

A formal description of a model

Model M = $\langle U_M, V_M \rangle$, with:

- U_M is the universe of M and
- V_M is an interpretation function

$$U_M = \{e1, e2, e3, e4, e5\}$$
 universe

$$V_M(john) = e1$$

... constants
 $V_M(bill) = e5$

 V_M (student) = {e1, e2, e4} V_M (drink_coffee) = {e1, e2, e3, e4}

 $V_M(love) = \{\langle e1, e2 \rangle, \langle e2, e1 \rangle, \langle e4, e5 \rangle\}$

1-place predicates

2-place predicates

Interpretation in the model

 V_M is an interpretation function assigning individuals ($\in U_M$) to individual constants and n-ary relations over U_M to n-place predicate symbols:

- $V_M(c) \in U_M$ if c is an individual constant
- $V_M(P) \subseteq U_M^n$ if P is an n-place predicate symbol
- $V_M(P) \in \{0,1\}$ if P is an 0-place predicate symbol

Variables and quantifiers

How to interpret the following sentence in our model M:

• Someone is sad $\mapsto \exists x(sad'(x))$

Intuition:

- find an entity in the universe for which the statement holds: $V_M(sad') = e_4$
- replace x by e₄ in order to make ∃x(sad'(x)) true

More formally:

Interpret sentence relative to assignment function g: i.e., $[\exists x(sad'(x))]^{M,g}$, such that $g(x) = e_4$; this can be generalised to any g' as follows: $g'[x/e_4](x) = e_4$

Assignment functions

An assignment function g assigns values to all variables

- g :: VAR \rightarrow U_M
- We write g[x/d] for the assignment function g' that assigns d to x and assigns the same values as g to all other variables.

	Χ	У	Z	u	
g	e ₁	e ₂	e ₃	e 4	
g[y/e ₁]	e ₁	e ₁	e ₃	e ₄	
g[x/e ₁]	e ₁	e ₂	e ₃	e ₄	
g[y/g(z)]	e ₁	e ₃	e ₃	e ₄	
g[y/e ₁][u/e ₁]	e ₁	e 1	e ₃	e ₁	
g[y/e ₁][y/e ₂]	e ₁	e ₂	e ₃	e ₄	

Interpretation of terms

Interpretation of terms with respect to a model M and a variable assignment g:

```
[\![\alpha]\!]^{M,g} = V_M(\alpha) if \alpha is an individual constant
```

 $g(\alpha)$ if α is a variable

Interpretation of formulas

Interpretation of formulas with respect to a model M and variable assignment g:

$$\begin{split} & \cdot & \mathbb{E}R(t_1, \, ..., \, t_n) \mathbb{I}^{M,g} = 1 & \text{iff} & \langle \mathbb{E}t_1 \mathbb{I}^{M,g}, \, ..., \, \mathbb{E}t_n \mathbb{I}^{M,g} \rangle \in V_M(R) \\ & \cdot & \mathbb{E}t_1 = t_2 \mathbb{I}^{M,g} = 1 & \text{iff} & \mathbb{E}t_1 \mathbb{I}^{M,g} = \mathbb{E}t_2 \mathbb{I}^{M,g} \\ & \cdot & \mathbb{E}\tau \oplus \mathbb{I}^{M,g} = 1 & \text{iff} & \mathbb{E}\tau \oplus \mathbb{I}^{M,g} = 0 \\ & \cdot & \mathbb{E}\varphi \wedge \psi \mathbb{I}^{M,g} = 1 & \text{iff} & \mathbb{E}\varphi \mathbb{I}^{M,g} = 1 & \text{iff} & \mathbb{E}\varphi \mathbb{I}^{M,g} = 1 \\ & \cdot & \mathbb{E}\varphi \vee \psi \mathbb{I}^{M,g} = 1 & \text{iff} & \mathbb{E}\varphi \mathbb{I}^{M,g} = 1 & \text{iff} & \mathbb{E}\varphi \mathbb{I}^{M,g} = 1 \\ & \cdot & \mathbb{E}\varphi \vee \psi \mathbb{I}^{M,g} = 1 & \text{iff} & \mathbb{E}\varphi \mathbb{I}^{M,g} = \mathbb{E}\psi \mathbb{I}^{M,g} \\ & \cdot & \mathbb{E}\exists x \varphi \mathbb{I}^{M,g} = 1 & \text{iff} & \text{there is a } d \in U_M \text{ such that } \mathbb{E}\varphi \mathbb{I}^{M,g} = 1 \\ & \cdot & \mathbb{E}\varphi \vee \psi \mathbb{I}^{M,g} = 1 & \text{iff} & \text{for all } d \in U_M, \mathbb{E}\varphi \mathbb{I}^{M,g} = 1 \end{split}$$

Background reading material

- Gamut: Logic, Language, and Meaning Vol I/II Chapter 2
- For a more basic introduction, see:
 http://www.logicinaction.org Chapter 4