UNIVERSITY OF WASHINGTON DEPARTMENT OF LINGUISTICS

# HACKABLE UNIFIED TEXT PROCESSING PLATFORM

TEV'N POWERS

COMPUTATIONAL LINGUISTIC MASTER'S THESIS

## WHAT MAKES AN NLP PRACTITIONER?



## WHO CAN BE AN NLP PRACTITIONER?



## WHO ARE THE BUILDERS AND USERS OF NLP TOOLS?



### **ACADEMIA**

Students and researchers usually write code for their peers in the academic community, with a goal to make advancements in the fields of linguistics, natural language processing, and/or machine learning.



## **INDUSTRY**

Software engineers and/or data scientists in industry usually build language features specific to the needs of a product to be marketed or sold to customers.



## **OPEN SOURCE**

Open source project contributors and maintainers may share some of the same interests as those in academia or industry, as well as building systems or tools for other developers.





# WHO COULD BE BUILDERS AND USERS OF NLP TOOLS?



### **ACADEMIA**

Students and researchers usually write code for their peers in the academic community, with a goal to make advancements in the fields of linguistics, natural language processing, and/or machine learning.



## **INDUSTRY**

Software engineers and/or data scientists in industry usually build language features specific to the needs of a product to be marketed or sold to customers.



## **OPEN SOURCE**

Open source project contributors and maintainers may share some of the same interests as those in academia or industry, as well as building systems or tools for other developers.



## **EVERYONE ELSE**

Anyone who works with or has access to text data should be able to leverage NLP techniques to gather valuable insights from their data.

## DATA PROCESSING PIPELINE



- File System
- Database
- Local machine (on computer)
- Cloud server
- Various file formats



#### **Text Featurization**

- Tokenization
- POS-Tagging
- Dependency Parsing
- Stemming
- Lemmatization



Modeling

- Clustering
- NearestNeighbors
- Classification
- Sentiment Analysis
- Text Generation



- Predictions
- Visualizations

## TEXT PROCESSING PLATFORM

A desktop application that provides the framework for executing NLP, ML, and statistical techniques on text data provided by a user.

## **HACKABLE**

Every user has access to create "plugins" which support their own text processing needs or the needs of others in the community.

### UNIFIED

A common data schema across all plugins will enable users to import and export data to/from arbitrary formats. Users can sequence text processing modules together to form text processing pipelines.



Data

Users can import data from files or a database on their computer or cloud storage provider.



#### **Text Featurization**

Text features are created via text transformation modules that augment input data.





#### Modeling

Modeling plugins are fit to learn patterns in data and make predictions on unseen data.



#### **Data Labeling**

Text can be annotated via a simple data set interface in the application.



Insights

System output can take the form of annotated data, salient insights, or visualizations.



#### Data

Users can import data from files or a database on their computer or cloud storage provider.



#### **Text Featurization**

Text features are created via text transformation modules that augment input data.





#### Modeling

Modeling plugins are fit to learn patterns in data and make predictions on unseen data.





Insights

System output can take the form of annotated data, salient insights, or visualizations.



## A FANFICTION EXAMPLE



### SAM

- Fanfiction writer
- Interested in understanding differences in writers and fandoms in the fanfiction dataset



## **ALEX**

- Beginner Software Engineer
- Wants to become more proficient with NLP techniques



## RYAN

- Computational Linguist
- Works as an NLP engineer and contributes to various OSS projects

## A FANFICTION EXAMPLE



### **ALEX**

- Writes a plugin that tokenizes and pos-tags each document in a dataset (e.g. a fanfict story)
- Generates basic exploratory data analysis (EDA) statistics for each document



### RYAN

- Writes a plugin that extracts the highest tf-idf features from each document in a dataset & visualizes via word cloud
- Her plugin can treat each document separately, or group by an arbitrary key (e.g. author or fandom)



### SAM

- Sees graphs and plots about the statistics of each story in the Fanfiction data set
- Produces a word cloud of the most meaningfully different tokens in each story, author, or fandom.

SOURCE CODE
https://github.com/tevnpowers/thesis