LPMS Note

1 General Linear Programming Problem

General LP Problem: Decision Variables: x_i parameters: a_{ij} , b_{ij} , c_i Objective Function: f Constraints: subject to 后边的部分

LP problem can be written as:

$$\begin{array}{ll} \text{maximize} & f = c_1 x_1 + c_2 x_2 + \dots + c_n x_n \\ \\ \text{subject to} & a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n \leq b_1 \\ & a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n \leq b_2 \\ \\ \vdots & \\ & a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n \leq b_m \\ & x_1 \geq 0, x_2 \geq 0, \dots, x_n \geq 0 \end{array}$$

We can also write the LP problem in matrix form:

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}, \mathbf{b} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}, \mathbf{c} = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}, \mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
maximize $f = \mathbf{c}^T \mathbf{x}$
subject to $A\mathbf{x} \le \mathbf{b}$ $\mathbf{x} \ge 0$

Feasible Solution: If x satisfies all constraints (i.e. $Ax \le b$), then x is a feasible solution. (可行解) Optimal Sol: (最优解) (可多个) Find Optimal Solution: Graphical Method: 略. Vertex Enumeration: 所有顶点检查, 找出最优解. Simplex Method: 后面详述. Slack Variables: For each inequality constraint, we introduce a slack variable x_i (i > n) to convert it to an equation. (松弛变量)

LP problem can be written as: $ps: x_i \ge 0 \ (i > n)$. maximize $f = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$ subject to $a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n + x_{n+1} = b_1$ $a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n + x_{n+2} = b_2$ \vdots $a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n + x_{n+m} = b_m$ $x_1 \ge 0, x_2 \ge 0, \dots, x_{n+m} \ge 0$

We can also write the LP problem in matrix form:

$$\overline{A} = [A \ I_m], \mathbf{b} = \mathbf{b}, \overline{\mathbf{c}} = \begin{pmatrix} \mathbf{c} \\ \mathbf{0}_{m \times 1} \end{pmatrix}, \mathbf{x} = \begin{pmatrix} \mathbf{x} \\ \vdots \\ \mathbf{x}_{n+m} \end{pmatrix}$$

maximize $f = \overline{\mathbf{c}}^T \mathbf{x}$

subject to $\overline{A}\mathbf{x} = \mathbf{b}$ $\mathbf{x} \ge 0$

Solving: $\mathbf{x} = \mathbf{x}_b + \mathbf{v}$ where $\overline{A}\mathbf{v} = 0$ and $\mathbf{x}_b = [\mathbf{0} \ \mathbf{b}]^T$

Feasible Region: It's the set K of the solutions to $\overline{A}\mathbf{x} = \mathbf{b}$ **Convex Set**: The set K is convex if $\forall \mathbf{x}, \mathbf{x}' \in K$, $\forall \theta \in [0, 1]$, $\mathbf{x}_{\theta} = (1 - \theta)\mathbf{x} + \theta \mathbf{x}' \in K$.

Vertex on Convex Set: A vertex of the convex set K is a point $\mathbf{x} \in K$ which doesn't lie strictly inside any line segment connecting two points in K.

- **Theorem**: If LP has a unique optimal solution is a vertex. **Theorem**: If LP has a non-unique solution, \exists optimal solution at vertex **Solve LP Problem**: Assume $f = \overline{\mathbf{c}}^T \mathbf{x}$ with $\overline{A}\mathbf{x} = \mathbf{b}$ and $\mathbf{x} \ge 0$.
- 1. 修改 $x_i/$ 列顺序,A 中换顺序后得到可逆的 $B_{m\times m}$ \Rightarrow $\overline{A}\mathbf{x} = \mathbf{b}$ \Leftrightarrow $B\mathbf{x}_B + N\mathbf{x}_N = \mathbf{b}$ \mathbf{c} \rightarrow $[\mathbf{c}_B \ \mathbf{c}_N]^T$ \overline{A} \rightarrow $[B\ N]$ \mathbf{x} \rightarrow $[\mathbf{x}_B \ \mathbf{x}_N]^T$ Let $\hat{\mathbf{b}} = B^{-1}\mathbf{b}$ $\hat{N} = B^{-1}N$
- 2. **Basic Solution**: $\mathbf{x}_B = \hat{\mathbf{b}}, \mathbf{x}_N = \mathbf{0} \implies \text{If } \hat{\mathbf{b}} \ge 0$. Corresponding \mathbf{x} is: ¹ vertex of K; ² **Basic Feasible Solution (BFS)**
- 3. Basic Costs: \mathbf{c}_{B}^{T} Nonbasic Costs: \mathbf{c}_{N}^{T} Reduced Costs: $\hat{\mathbf{c}}_{N} = \mathbf{c}_{N} \widehat{N}^{T}\mathbf{c}_{B} = \mathbf{c}_{N} N^{T}B^{-T}\mathbf{c}_{B}$ $\widehat{f} = \mathbf{c}_{B}^{T}\widehat{\mathbf{b}}$ $\mathbf{x}_{B}, \mathbf{x}_{N} \geq 0$
- 4. **Objective Value**: $f = \overline{\mathbf{c}}^T \mathbf{x} = \mathbf{c}_N^T \mathbf{x}_N + \mathbf{c}_N^T \mathbf{x}_N = \hat{f} + \hat{\mathbf{c}}_N^T \mathbf{x}_N$ If $\hat{\mathbf{c}}_N \leq 0$, then $f \leq \hat{f} \Rightarrow$ Corresponding \mathbf{x} is optimal.
- 5. If $\hat{\mathbf{c}}_N \leq 0$ doesn't hold, we using **Simplex Algorithm**.