Nonparametric dobuly robust estimation of continuous treatment

This work is to verify the proof of theorems introduced in the paper (Kennedy et al, 2016).

Guide to notation

Z = (L, A, Y) =observed data arising from distribution P with density $p(z) = p(y \mid l, a)p(a \mid l)p(l)$ and support supp $(Z) = Z = \mathcal{L} \times A \times \mathcal{Y}$

$$\mathbb{P}_n = \frac{1}{n} \sum_i \delta_{z_i} = \text{empirical measure so that } \mathbb{P}_n f(Z) = \frac{1}{n} \sum_i f(z_i)$$

 $\mathbb{P}(\mho) = \mathbb{P}\{\mho(\mathbb{Z})\} = \int_{\mathcal{Z}} f(z) dP(z) = \text{expectation for new } Z \text{ treating } f \text{ as fixed (so } \mathbb{P}(\mathring{\mho}) \text{ is random if } \mathring{f} \text{ depends on sample, in which case } \mathbb{P}(\mathring{\mho}) \neq E(\mathring{f}))$

$$\pi(a \mid l) = p(a \mid l) = \frac{\partial}{\partial a} P(A \leq a \mid l) = \text{conditional density of treatment A}$$

 $\hat{\pi}(a \mid l)$ = user-specified estimator of $\pi(a \mid l)$, which converges to limit $\overline{\pi}(a \mid l)$ that may not equal true π

$$\omega(a) = p(a) = \frac{\partial}{\partial a} P(A \le a) = E[\pi(a \mid L)] = \int_{\mathcal{L}} \pi(a \mid l) dP(l) = \text{density of A}$$

 $\hat{\omega(a)} = \mathbb{P}_{\kappa}\{\hat{\pi}(a \mid l)\} = \int_{\mathcal{L}} \pi(a \mid l) dP(l) = \text{estimator of } \omega, \text{ which converges to limit } \overline{\omega}(a) \text{ that may not equal true } \omega$

$$\mu(l\mid a) = E(Y\mid L=l, A=a) = \int_{\mathcal{V}} y dP(y\mid l, a) = \text{conditional mean outcome}$$

 $\hat{\mu}(l \mid a) = \text{user-specified estimator of } \mu(l \mid a), \text{ which converges to limit } \overline{\mu}(l, a) \text{ that may not equal true } \mu$

$$\hat{m}(a) = \mathbb{P}_{\kappa} \{ \hat{\mu}(L, a) \} = \int_{\mathcal{L}} \hat{\mu}(l, a) d\mathbb{P}_{\kappa}(l) = \frac{1}{n} \sum_{i} \hat{\mu}(l_{i}, a)$$

$$\psi = \int_{A} \int_{C} \mu(l, a) \omega(a) dP(l) da$$

Theorem 1.

Under a nonparametric model, the efficient influence function for ψ is $\xi(Z; \pi, u) - \psi + \int_{\mathcal{A}} \{\mu(L, a) - \int_{\mathcal{L}} \mu(l, a) dP(l)\} \omega(a) da$ where

$$\xi(Z;\pi,u) = \frac{Y - \mu(L,A)}{\pi(A \mid L)} \int_{\mathcal{L}} \pi(A \mid l) dP(l) + \int_{\mathcal{L}} \mu(l,a) dP(l)$$

Importantly, the function $\xi(Z; \pi, u)$ satisfies its desired double robustness property, i.e., that $E[\xi(Z; \pi, u) \mid A = a] = \theta(a)$ if either $\overline{\pi} = \pi$ or $\overline{\mu} = \mu$ where $\theta(a) = E(Y^a)$

This motivates estimating the effect curve $\theta(a)$ by estimating the nuisance functions (π, μ) , and then regressing the estimated psuedo-outcome

$$\hat{\xi}(Z;\hat{\pi},\hat{\mu}) = \tfrac{Y - \hat{\mu}(L,A)}{\hat{\pi}(A,L)} \int_{\mathcal{L}} \hat{\pi}(A,L) d\mathbb{P}_{\bowtie}(l) + \int_{\mathcal{L}} \hat{\mu}(l,a) d\mathbb{P}_{\bowtie}(l)$$

on treatment A using off-the-shelf nonparametric regression or machine learning methods.

Proof of Theorem 1

By definition the efficient influence function for ψ is the unique function $\phi(Z)$ that satisfies $\psi'_{\epsilon}(0) = E[\phi(Z)\ell'_{\epsilon}(Z;0)]$, where $\psi(\epsilon)$ represents the parameter of interest as a functional on the parametric submodel and $\ell(w \mid \overline{w}; \epsilon) = \log p(w \mid \overline{w}; \epsilon)$ for any partition $(W, \overline{W}) \subseteq Z$. Therefore

$$\ell'_{\epsilon}(z;\epsilon) = \ell'_{\epsilon}(y \mid l, a; \epsilon) + \ell'_{\epsilon}(a \mid l; \epsilon) + \ell'_{\epsilon}(l; \epsilon)$$

The authors give two important properties of such score functions of such score functions $\ell'_{\epsilon}(w \mid \overline{w}; \epsilon)$ that will be used throughout this proof. First note that since $\ell_{\epsilon}(w \mid \overline{w}; \epsilon)$ is a log transformation of $p(w \mid \overline{w}; \epsilon)$, it follows that $\ell'_{\epsilon}(w \mid \overline{w}; \epsilon) = p'(w \mid \overline{w}; \epsilon)/p(w \mid \overline{w}; \epsilon)/$. Similarly, as with any score function, note that $E[\ell'_{\epsilon}(W \mid \overline{W}; \epsilon) \mid \overline{W}] = 0$ since

$$\int_{\mathcal{W}} \ell'_{\epsilon}(w \mid \overline{w}; 0) dP(w \mid \overline{w}) = \int_{\mathcal{W}} dP'(w \mid \overline{w}) = \frac{\partial}{\partial \epsilon} \int_{\mathcal{W}} P(w \mid \overline{w}) = 0$$

The goal in this proof is to show that $\psi'_{\epsilon}(0) = E[\phi(Z)]\ell'_{\epsilon}(Z;0)$ for the proposed influence function $\phi(Z) = \xi(Z;\pi,u) - \psi + \int_{\mathcal{A}} \{\mu(L,a) - \int_{\mathcal{L}} \{\mu(l,a)dP(l)\}\omega(a)da$. First we will give an expression for $\psi'_{\epsilon}(0)$. By definition $\psi(\epsilon) = \int_{\mathcal{A}} \theta(a;\epsilon)\omega(a;\epsilon)da$ because

$$\int_{\mathcal{L}} \mu(l, a) dP(l) = E[\mu(l, a)] = E[E(Y \mid L = l, A = a)] = E[Y^a].$$

Hence,
$$\psi'_{\epsilon}(0) = \int_{\mathcal{A}} \{\theta'(a;0)\omega(a) + \theta(a)\omega'(a;0)\}da = E[\theta'_{\epsilon}(A;0) + \theta(A)\ell'_{\epsilon}(A;0)]$$
 because $\omega(a) = p(a)$ and $\ell'_{\epsilon}(A;0) = \frac{P'_{\epsilon}(A;0)}{P(A;0)} \iff \omega'_{\epsilon}(A;0) = \ell'_{\epsilon}(A;0)P(A;0)$

Also since $\theta(a; \epsilon) = \int_{\mathcal{L}} \int_{\mathcal{V}} y \ p(y \mid l, a; \epsilon) p(l; \epsilon) \ d\eta(y) \ d\upsilon(l)$, we have

$$\begin{split} \theta'(a;0) &= \int_{\mathcal{L}} \int_{\mathcal{Y}} y \ \{ p'_{\epsilon}(y \mid l,a;0) p(l) + p(y \mid l,a) p'(l;0) \} \ d\eta(y) \ d\upsilon(l) \\ &= \theta'(a;0) = \int_{\mathcal{L}} \int_{\mathcal{Y}} y \ \{ \ell'_{\epsilon}(y \mid l,a;0) p(y \mid l,a) p(l) + p(y \mid l,a) \ell'_{\epsilon}(l;0) p(l) \} \ d\eta(y) \ d\upsilon(l) \\ &= E \big[E \{ Y \ell'_{\epsilon}(Y \mid L,A;0) \mid L,A=a \} \big] + E \big[\mu(L,a) \ell'_{\epsilon}(L;0) \big] \end{split}$$

Therefore

$$\psi_\epsilon'(0) = \int_{\mathcal{A}} \Big(E\big[E\{Y\ell_\epsilon'(Y\mid L,A;0)\mid L,A=a\} \big] + E\big[\mu(L,a)\ell_\epsilon'(L;0) \big] + \theta(a)\ell_\epsilon'(a;0) \Big) \omega(a) da = 0$$

Now we will consider the covariance

$$E[\phi(Z)\ell'_{\epsilon}(Z;0)] = E[\phi(Z)\{\ell'_{\epsilon}(Y \mid L, A; 0) + \ell'_{\epsilon}(A, L; 0)\}] \text{ because}$$

$$\ell'_{\epsilon}(z; \epsilon) = \ell'_{\epsilon}(y \mid l, a; \epsilon) + \ell'_{\epsilon}(a \mid l; \epsilon) + \ell'_{\epsilon}(l; \epsilon) = \ell'_{\epsilon}(y \mid l, a; 0) + \ell'_{\epsilon}(a, l; 0)$$

which we need to show equals the earlier expression for $\psi'_{\epsilon}(0)$.

The proposed efficient influence function given in the theorem 1 is

$$\xi(Z;\pi,u) = \tfrac{Y - \mu(L,A)}{\pi(A|L)} \int_{\mathcal{L}} \pi(A\mid l) dP(l) + \int_{\mathcal{L}} \mu(l,a) dP(l)$$

where we define $m(a) = \int_{\mathcal{L}} \mu(l, a) dP(l)$ as the marginalized version of the regression function μ , so that $m(a) = \theta(a)$ if μ is the true regression function.

$$m(a) = \int_{\mathcal{L}} \mu(l,a) dP(l) = \int_{\mathcal{L}} \int_{\mathcal{Y}} y \ dP(y \mid l,a) dP(l) = \int_{\mathcal{L}} \int_{\mathcal{Y}} y \ p(y \mid l,a) p(l) \ d\eta(y) \ d\upsilon(l) = \theta(a)$$

Thus,
$$E[\phi(Z)\ell'_{\epsilon}(Y \mid L, A; 0)]$$

$$= E\Big(\Big[\tfrac{Y-\mu(L,A)}{\pi(A\mid L)/\omega(A)} + \int_{\mathcal{A}} \{\mu(L,a-\theta(a)\}\omega(a) \ da + \theta(A) - \psi\Big] \ell_\epsilon'(Y\mid L,A;0)\Big)$$

$$= E\Big[\frac{Y\ell_\epsilon'(Y|L,A;0)}{\pi(A|L)/\omega(A)}\Big]$$

$$= E \left[\frac{E[Y\ell_\epsilon'(Y|L,A;0)|L,A]}{\pi(A|L)/\omega(A)} \right]$$

$$= \int_{\mathcal{A}} E\big[E\{Y\ell'_{\epsilon}(Y\mid L,A;0)\mid L,A=a\}\big]\omega(a)\ da$$

where the first equality follows since

$$\phi(Z) = \frac{Y - \mu(L, A)}{\pi(A|L)} \int_{\mathcal{L}} \pi(A|l) dP(l) + \int_{\mathcal{L}} \mu(l, a) dP(l) - \psi + \int_{\mathcal{A}} \{\mu(L, a) - \int_{\mathcal{L}} \mu(l, a) dP(l)\} \omega(a) dA + \int_{\mathcal{L}} \mu(l, a) dP(l) + \int_{\mathcal{L}$$

$$= \frac{Y - \mu(L,A)}{\pi(A|L)/\omega(A)} + \theta(A) - \psi + \int_{\mathcal{A}} \{\mu(L,a) - \theta(A)\}\omega(a)da \text{, the second since } E[\ell'_{\epsilon}(Y)]$$

 $=\frac{Y-\mu(L,A)}{\pi(A|L)/\omega(A)}+\theta(A)-\psi+\int_{\mathcal{A}}\{\mu(L,a)-\theta(A)\}\omega(a)da \text{ , the second since } E\big[\ell_\epsilon'(Y\mid L,A;0)\mid L,A\big]=0, \text{ the third by iterated expectation conditioning on L and A, the last by iterated expectation}$ tation conditioning on L gives:

$$E\Big(E\Big[\frac{E[Y\ell_{\epsilon}'(Y|L,A;0)|L,A]}{\pi(A|L)/\omega(A)}\mid L\Big]\Big)$$

$$= \ E\Big(E\Big[\tfrac{E[Y\ell_\epsilon'(Y|L,A;0)|L,A]}{\pi(A|L)/E[\pi(A|L)]} \mid L\Big]\Big)$$

$$= E\left[\frac{E[Y\ell'_{\epsilon}(Y|L,A;0)|L,A]}{\pi(A|L)}E[\pi(A\mid L)]\right]$$