

Faculty of Mechanical and Manufacturing Engineering MECH4880 Refrigeration and air conditioning

DA09 calculation method for cooling and heating loads

Semester 1 2017

Introduction

Brief overview of calculation method **comprehensively** outlined in DA09

Overview:

- Components of thermal loads
- Thermal load calculations
 - U-value
 - Combined conduction and radiation
 - Glass radiation

Orientation

Cooling load components

External	Heat transfer mechanism
Exposed walls	Combined conduction /radiation
Internal walls	Conduction
Glass conduction	Conduction
Glass radiation	Radiation
Infiltration	Convection

Internal	Sensible or latent
People	Sensible + latent
Lights	Sensible
Appliances	Sensible + latent

Equations summary

Conduction heat transfer $Q[W] = U.A.\Delta T$

 $Q[W] = 0.5.(U.A.\Delta T)$ (if the zone is adjacent to the unconditioned space)

Combined conduction/radiation

$$Q[W] = U.A.\Delta t_e$$

Glass radiation $Q[W] = Peaksolar \ heat \ gain \ \left[\frac{W}{m^2}\right] (table 5,14). A \ [m^2]. SF \ (tables 6)$

- 10). k1. k2. k3. k4. k5 (chapter 4)

Infiltration

$$Q_{infiltration} \ [W] = Q_{latent} + Q_{sensible}$$

$$Q_{sensible} = 1.2 \forall_{zone} AC_{hour} \Delta T$$

$$Q_{latent} = 2.9 \forall_{zone} AC_{hour} \Delta \omega$$

Internal loads

 $Q_{people\ or\ lights} = Heat\ gain\ [W](chapter\ 7).$ Storage factor (Table 11). Divrsity factor(Table 13)

Load calculation summary

External	Heat transfer mechanism	Sensible or latent	DA09 Table	DA09 Chapter
Exposed walls	Combined conduction /radiation	Sensible	Table 21 to 23 Table 24 to 37	5
Internal walls	Conduction	Sensible	Table 24 to 37	5
Glass conduction	Conduction	Sensible	Table 37	5
Glass radiation	Radiation	Sensible	Table 5 to 19	3, 4
Infiltration	Convection	Sensible + latent	Table 44	6

External	Sensible or latent	Reference			
People	Sensible + latent				
Light	Sensible	DA09 Chapter 7 ASHRAE Handbook			
Appliances	Sensible + latent	- ACTIONE HARIABOOK			

NOTE: References, chapters and tables are non-exhaustive. You may need to find additional sources.

U-value calculation: Layout

U-value: Measures a material thermal insulating properties. High values are insulating and low values are conducting.

It is the inverse of the R-value or thermal resistance where low values are conducting and high vales are insulating.

Building section	Construction material	Area (m²)	Density (kg/m^3)	Thickness (m)	Surface density (kg/m^2)	U-value (W/m^2K)	Reference
Roof							
External wall							
Window							
Floor							
Ceiling							
Floor							

U-value calculation: Direct method

- Example of the direct method
- Table 24-36
- Read thickness, mass per unit area and Uvalue from table.
- Careful to consider assumptions

It is assumed that the temperature of the unconditioned space adjacent to the partition is midway between the outside temperature and the temperature inside the conditioned space

and the temperature inside the conditioned space.

When construction material NOT directly available

$$R_{total} = R_{outside \ air} + \left[\frac{1}{R_1 + R_2 + R_3} + \frac{1}{R_4} \right] + R_{inside \ air}$$

TABLE 37—THERMAL RESISTANCE R—BUILDING AND INSULATING MATERIALS (Cont.)

Note: An asterisk appearing in the density column signifies that the specimens have been conditioned in an atmopshere at 18°C and 65% relative humidity. Where two values are given in the temperature column, separated by a comma, the first refers to the hot face and the second to the cold face temperature.

Moisture Content %	Density kg/m³	Temp. °C	Thickness mm	Resistivity (1/k) m.°C/W	Resistance for listed thickness m ² .°C/W	Source of Info.
			_	1.28	Water	24
0	1762		90	1.24	0.111	4
6 9 12 16	1874 1922 1970 2034		90 90 90 90	0.83 0.70 0.68 0.60	0.074 0.063 0.061 0.054	4 4 4
	0 6 9	Content kg/m³ 0 1762 6 1874 9 1922 12 1970	Content kg/m³ °C % 0 1762 6 1874 9 1922 12 1970 16 2034	Content kg/m³ °C mm 0 1762 90 6 1874 90 9 1922 90 12 1970 90 16 2034 90	Content % kg/m³ °C mm (1/k) — 1.28 0 1762 90 1.24 6 1874 90 0.83 9 1922 90 0.70 12 1970 90 0.68 16 2034 90 0.60	Content % kg/m³ °C mm (1/k) m.°C/W for listed thickness m².°C/W — 1.28 — 0 1762 90 1.24 0.111 6 1874 90 0.83 0.074 9 1922 90 0.70 0.063 12 1970 90 0.68 0.061 16 2034 90 0.60 0.054

- Ceiling
 example of U value data
 presentation
- Make sure to include reference for each value
- Show calculations once to demonstrate method

Component	Summer / Winter	R-Value (m^2C/W)	Reference
Air film	Summer	0.044	
	Winter	0.030	
Carpet		0.1	
Carpet underlay		0.4	
Concrete slab 150mm		0.25	
Air space 400mmm	Summer	0.6	
	Winter	0.868	
Air film	Summer	0.044	
	Winter	0.03	
Suspended grid ceiling tiles		2.84×10^{-5}	
Total R-value	Summer	1.44	
	Winter	1.68	
Total U-value	Summer	0.7	
	Winter	0.6	

Conduction / radiation: External walls

$$Q = U \times A \times \Delta t_e$$

where:

 Δt_e = equivalent temperature difference for latitude, month and time of day desired.

Tables 21-22 for dark coloured walls based on 35°C outdoor design temperature in January and 40° South latitude.

Corrections to these values on page 62 of DA09. Shaded walls, different latitudes, lighter wall colours etc.

Conduction / radiation: External walls

TABLE 21-EQUIVALENT TEMPERATURE DIFFERENCE (°C)

FOR DARK COLOURED†, SUNLIT AND SHADED WALLS*
Based on Dark Coloured Walls, 35°C DB Outdoor Design Temp.; Constant 25°C DB Room Temp.; 10°C, Daily Range; 24-Hour Operation; January and 40° South Latitude†

- Exposure: North, South etc
- Mass of wall per unit area
- Sun Time

	Mass of wall													SU	N T	IME														
Exposure	per unit area ‡					M												M										AM		
	kg/m²	6	1 7	'!	8	9	10	11	12		1 j	2	3		1	5	6	7		8	9	10		11	12	1	2	3	4	
	100	1.					4.4	10.0	14.	4 1	7.2	18.9	17.8	3 16	- 7	13.3	11.	1 8	. 9	7.8	6.	5.		3.9				2.2		
	300	1.				0.6	1.1	6.	1 8.	9 13	3.3	15.6	16.1	116	. 7[15.0	13.	3 10	. 6	8.9	7.8	6.	/	5.6	4.4	3.3			2.2 5.6	
North	500	4.4		. 4	3.3		3.3	3.	9 4.	4 (6.7	8.9	10.6	3 1 1	.1	12.2	12.	2 10	.6	10.0	8.	7.	8	7.2	6.7	6.7	6.1		6.7	
	700	6.	1 5	. 6	5.6	5.0	4.4	4.	4.	4 4	4.4	4.4	6.	1 /	.8	9.4	10.	0110	. 6	<u> </u>	11.	110.	.0	8.9	7.8	7.8	7.2	7.2	0.7	0
	100	7.	8 5	. 6	9.4	12.8	16.	17.	2 17.	8 1	6.7	15.6	12.8	3 11	.1	10.6	10.	8 0	. 9	7.8	6.7	7 5.		4.4						
	300	2.	8 2	8.1	2.2	9.4	13.3	15.	617.	8 1	6.7	16.1	13.9	9 12	. 2	10.6	10.	0 9	. 4	8.9	8.3				5.6					
Northeast	500	6.		5.1	5.6	5.6	5.6	8.	3 11 .	1 1	1.7	12.2	12.	3 12	. 2	11.1	10.	0 9	. 4	8.9	8.3	3 7.	8	7.8	7.8	7.2	7.2	6.7	6.7	
	700	7.	2 6	.7	6.7	6.7	6.	6.	1 5.	6	8.3	10.0	10.	6 11	.1	12.2	11.	1 10	.6	10.0	9.4	4 8.	.9	8.9	8.9	8.3	8.3	7.8	7.8	
	100	2.	811	.7	18.9	20.6	22.	2 21 .	7 20.	0 1	3.3	8.9	9.4	4 10	.0	10.0	10.	0 8	. 9	7.8	6.	7 5.		4.4			1.7			
	300	1.	7 1	.7	2.2	13.9	18.	19.	4 19.	4 1:	2.8	10.0	9.4	4 8	. 9	9.4	10.	이 9	. 4	8.9	8.3	3 7.	8	6.7	5.0	4.4	3.9			
East	500	5.	0 5	5.0	5.6	6.7	10.6	13.	3 15.	6 1	6.1	15.6	13.3	3 12	. 2	11.1	10.	0 10	.0	10.0	9.4	4 8.	9	8.3	7.8	7.2	6.7			
	700	8.	3 7	.8	7.8	7.2	6.	7 7.	2 7.	8 1	0.6	12.2	12.	3 12	. 2	11.7	11.	1 10	.0	8.9	9.4	110.	0 1	0.0	10.0	9.4	9.4	8.9	8.9	8
	100	5.	010	0.6	14.4	15.0	15.	12.	810.	0	9.4	8.9	9.4	4 10	.0	10.0	10.	0 8	. 9	7.8	6.7	7 5.		4.4						
	300	1.	7 1	.1	1.1	5.0	15.	14.	4 13.	3 1	0.6	7.8	8.3	3 8	. 9	9.4	10.	0 9			8.3				5.6					
Southeast	500	4.		3.9		4.4	4.4	1 7.	8 11.	1 1	0.6	10.0	8.	9 7	. 8	8.3	8.	9 8			8.3				6.7					
	700	5.	0 5	5.0	5.6	5.6	5.0	5.	6 5.	6	7.8	10.0	11.	1 10	.0	8.9	7.	B 7	. 8	7.8	7.8	3 7.	8	7.8	7.8	7.2	7.2	6.7	6.1	-6
	100	0.	6 0	0.0	0.0	1.1	2.:	2 3.	9 5.		7.8		12.	8 15	. 6	20.6	24.	4 22	.82	21.1	12.2			4.4						
	300	1.		0.6								6.7	7.8	8 8	. 9	13.9	18.	9 19	. 4	20.0	13.9	8.	9	6.7	5.6	4.4	3.9			
Southwest	500	5.		1.4							4.4	4.4	5.0	0 5	. 6	7.2	8.	9 11	.7/	13.3	13.5	914.	4 1	0.0	6.7	6.1	6.1	5.6 8.3		
	700	6.	7 6	3.1	5.6	5.6	5.	6 5.	6 5.	6	5.6	5.6	5.	6 5	. 6	6.1	6.	7 7	. 2	7.8	10.0	12.	. 2 1	2.8	13.3	11.1	9.4	8.3	7.8	
	100	1.	1 (0.6	0.0	1.1	2.	2 3.	9 5.	6 1	0.0	13.3	20.	0 24	.4	27.2	28.	9 21	.1	14.4	10.0	6.	.7	5.0	3.3	2.8			1.7	
	300	3.	3 2	2.8						4	6.1	7.8	12.	8 16	. 7	21 . 1	24.	4 25	.0	22.2	17.1	3 11.	.1	7.8	5.6	5.0	4.4	3.9		
West	500	6.		5.1	5.6		5.		6 5.	6	6.1	6.7	7.8	8 8	. 9	11.7	13.	3 16	-1	17.8	17.	2 16.	7 1	2.8	10.0	8.9	8.3	7.8	7.2	6
	700	8.	9 8	3.3	7.8	7.2	6.	7 6.	7 6.	.7	7.2	7.8	7.	B 7	. 8	8.3	8.	9 10	.0	11.1	13.	914.	. 4 1	5.0	14.4	13.3	12.2	11.1	10.6	9
	100	1.	1 0	0.0	0.0	1.1	2.			61	2.8	16.7	21.	1 24	. 4	25.0	25.	6 18	.9	15.6	8.	5.	6	4.4	3.3	2.8			1.7	
	300	3.	3 2	2.8			2.		8 3.	3	6.7	8.8	15.	6 20	0.0	21.7	22.	2 21	. 7	21.1	13.:	3 7.	8	6.1	5.6	5.0	4.4	4.4	3.9	3
Northwest	500	6.		5.0	5.6	5.0	4.	4 5.	0 5.	6	6.1	6.7	8.	9 10	0.0	12.8	14.	4 15	.0	15.6	15.0	14.	4 1	0.6	7.8	7.8	7.2	7.2	6.7	6
	700	6.	7 6	3.7	6.7	6.7	6.	7 6.	1 5.	6	5.6	5.6	6.	1 6	. 7	7.2	7.	8 10	. 6	12.2	12.1	313.	. 3	9.4	6.7	6.7	6.7	0./	6.7	ь
	100	0.	6 0	0.6	0.0	0.6	1.		8 4.		6.7					9.4	8.	9 7	. 8	6.7				3.3			1.7		1.1	
	300				0.0		1.		7 2.				6.												4.4	3.3	2.8		1.7	
South (Shade)	500					2.2		2 2.	2 2.	2	2.8	3.3	3.	9 4	.4	5.0					6.				4.4		3.9			
	700	2.	8 2	2.8	2.2	2.2	2.	2 2.	2 2.	.2	2.2	2.2	2.	8∣3	.3	3.9	4.	4 5	.0	5.6	1 6.	ijij.	. /	0.1	5.6	4.4	3.9	3.3	3.3	: 2

Equation: Heat Gain through Walls, $W = (\text{Area, m}^2) \times (\text{Equivalent temperature difference}) \times (\text{Transmission coefficient } U, Tables 24 and 25).$ *All values are for both insulated and uninsulated walls.

The values are to upon insidered and distributed with a state of the result of the conditions refer to confections listed after 73ble 23.
This sper unit area" values for common types of construction are listed in Tables 24 and 25.
For wall constructions less than 100 kg/m², use listed values of 100 kg/m², for wall constructions more than 700 kg/m², use listed values of 700 kg/m².

Glass radiation

$$Q[W] = Peaksolar \ heat \ gain \ \left[\frac{W}{m^2}\right] (table 5,14). A \ [m^2]. SF \ (tables 6 - 10). k1. k2. k3. k4. k5 \ (chapter 4)$$

```
SF = storage \ load \ factor \ (tables6 - 10)
k1 = sash \ correction \ factor, table \ 5,14
k2 = haze \ correction \ factor, table \ 5,14
k3 = Altitude \ correction \ factor, table \ 5,14
k4 = dewpoint \ correction \ factor, table \ 5,14
k5 = glass \ factor, table \ 15
k6 = SOLAR \ factor, table \ 16-18
k5, k6 = OVERALL \ FACOTRS = T15 - T18
```

Glass radiation: Peak solar heat gain

TABLE 14-SOLAR HEAT GAIN THROUGH REFERENCE GLASS

Watts per square metre sash area (W/m²)

O° South		AM					Sun Time				PM '			
Time of Year	Exposure	6	. 7	8	9	10	П	Noon		2	3	4	5	6
	North Northeast East	000	20 155 410	37 175 510	44 120 470	47 60 320	47 47 145	47 47 47	47 47 47	47 47 47	44 44 44	37 37 37	20 20 20	0
Jan 21	Southeast South Southwest	0	400 125 20	520 180 37	510 210 44	420 220 47	290 220 55	145 230 145	55 220 290	47 220 420	210 510	37 180 520	20 125 400	0 0 0
	West Northwest Horizontal	0	20 20 100	37 37 310	44 44 510	47 47 660	47 47 750	47 47 790	145 47 750	320 60 660	470 120 510	510 175 310	410 155 100	0
	North Northeast East	0	19 210 410	38 250 510	40 210 470	45 110 320	45 47 145	45 45 45	45 45 45	45 45 45	40 40 40	38 38 38	19 19 19	0
Feb 20 & Oct 23	Southeast South Southwest	0	350 54 19	440 90 38	420 100 40	320 105 45	190 105 45	75 105 75	45 105 190	45 105 320	40 100 420	38 90 440	19 54 350	0
	West Northwest Horizontal	0 0	19 19 100	38 38 310	40 40 470	45 45 650	45 45 740	45 45 770	145 47 740	320 110 650	470 210 470	510 250 310	410 210 100	0

Glass radiation: Storage load factor

TABLE 6-STORAGE LOAD FACTORS, SOLAR HEAT GAIN THROUGH GLASS

WITH INTERNAL SHADE*

24 Hour Operation, Constant Space Temperature†

	Mass per	SUN TIME											
Exposure	unit area of floor	AM	PM	AM									
	kg/m² ‡	6 7 8 9 10 11 12	1 2 3 4 5 6 7 8 9 10 11 12	1 2 3 4 5									
North	700 & Over 500 150	0.040.040.220.380.520.630.7	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.08 0.07 0.06 0.06 0.0									
Northeast	700 & Over 500 150	lo 03l0 28l0 47l0 61l0 67l0 65l0 5	3 0 . 41 0 . 27 0 . 24 0 . 21 0 . 19 0 . 16 0 . 14 0 . 12 0 . 11 0 . 10 0 . 09 0 . 08 0 0 . 0 0 . 0 0	0.07 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04									

Equation: Cooling Load, W = [Peak solar heat gain, W/m², (Table 5)]

× [Window area, m²]

× [Overall solar factor, Haze factor, etc. (Chapter 4)] × [Storage factor, (above Table at desired time)]

*Internal shading device is any type of shade located on the inside of the glass.

†These factors apply when maintaining a CONSTANT TEMPERATURE in the space during the operating period. Where the temperature is allowed to swing, additional storage will result during peak load periods. Refer to Table 12 for applicable storage factors.

** Mass per unit area of floor-

(Mass of outside walls, kg) +0.5 (Mass of partitions, floor and ceiling, kg) Room on Building Exterior (one or more outside walls) =

Floor area in room, m2

Room in Building Interior (no outside walls) = 0.5 (Mass of Partitions, Floor and ceiling, kg)

(Mass of outside walls, kg) + (Mass of floor, kg) + 0.5 (Mass of partitions and ceilings, kg)

Basement Room (floor on ground) = Floor area in room, m2

(Mass of outside wall, partitions, floors, ceilings, structural members and supports, kg)

Air conditioned floor area m2

With rug on floor-Mass of floor should be multiplied by 0.50 to compensate for insulating effect of rug.

Mass per unit area of common types of construction are contained in Tables 24 to 36.

Summary of loads

Description	Total sensible load (W)	Total Latent load (W)	
Infiltration			
Internals			
Conductions			
Radiations			
	Total:	Total:	

$$SHF = rac{Q_{S,total}}{Q_{S,total} + Q_{L,total}}$$