Höhere Technische Bundeslehranstalt Salzburg

Abteilung für Elektronik

Übungen im Laboratorium für Elektronik

Protokoll für die Übung Nr. 16

Gegenstand der Übung

FM-Modulation 2

Name: Leon Ablinger

Jahrgang: 4AHEL

Gruppe Nr.: A1

Übung am: 24.03.2021

Anwesend: Leon Ablinger

Inhalt

1	Invent	arliste	3
2	Einleit	ung	3
3	Übung	sdurchführung	4
3	5.1 Eı	zeugung frequenzmodulierter Signale	4
	3.1.1	Beschreibung des Messvorgangs	4
	3.1.2	Schaltung	4
	3.1.3	Tabelle	4
	3.1.4	Berechnung	4
	3.1.5	Kennlinie	4
	3.1.6	Erkenntnis / Schlussfolgerung	4
3	5.2 Eı	zeugung frequenzmodulierter Signale mit Wechselspannung	5
	3.2.1	Beschreibung des Messvorgangs	5
	3.2.2	Schaltung	5
	3.2.3	Erkenntnis / Schlussfolgerung	5
3	.3 M	essung des Frequenzhubs	6
	3.3.1	Beschreibung des Messvorgangs	6
	3.3.2	Schaltung	6
	3.3.3	Oszillogramm	6
	3.3.4	Messergebnisse	7
	3.3.5	Berechnung	7
	3.3.6	Erkenntnis / Schlussfolgerung	7
3	.4 Eı	mittlung des Modulationsindexes	8
	3.4.1	Beschreibung des Messvorgangs	8
	3.4.2	Schaltung	8
	3.4.3	Messergebnisse	8
	3.4.4	Berechnung	8
	3.4.5	Erkenntnis / Schlussfolgerung	8
3	.5 D	emodulation frequenzmodulierter Signale mit einem C-Diskriminator	9
	3.5.1	Beschreibung des Messvorgangs	9
	3.5.2	Schaltung	9
	3.5.3	Oszillogramm	9
	3.5.4	Messergebnisse	10
	3.5.5	Kennlinie	10
3	6.6 D	emodulation frequenzmodulierter Signale mit einem Zähldiskriminator	11
	3.6.1	Beschreibung des Messvorgangs	11

FM-Modulation 2

3.6.2	Schaltung	11
3.6.3	Messergebnisse	11
3.6.4	Berechnung	11
3.6.5	Oszillogramm	12

1 Inventarliste

Gerätebezeichnung	Inventarnummer	Verwendung
Modulation Board	512/1998/1	Modulation
Demodulation Board	512/1998/2	Demodulation
Oszilloskop		Spannungsverlauf

2 Einleitung

Das in dieser Übung gelernte Wissen dient dazu, Winkelmodulationen, welche in der Theorie bereits durchgearbeitet wurden, praktisch kennen zu lernen und bewerten zu können.

3 Übungsdurchführung

3.1 Erzeugung frequenzmodulierter Signale

3.1.1 Beschreibung des Messvorgangs

In dieser Aufgabe soll die Kennlinie des VCOs, welcher auf dem Modulation Board sitzt, und die dazugehörige Konstante ermittelt werden.

3.1.2 Schaltung

Abbildung 1: Schaltung, Erzeugung frequenzmodulierter Signale

3.1.3 Tabelle

UE V	-2.29	-1.97	-1.01	0.00	0.96	2.01	3.02	3.10
fvco kHz	1.29	3.84	11.60	19.90	27.50	35.80	43.65	44.30

3.1.4 Berechnung

$$K_{VCO} = \frac{\Delta f}{\Delta U_E}$$

3.1.5 Kennlinie

3.1.6 Erkenntnis / Schlussfolgerung

Die VCO-Kennlinie zeigt eine starke Linearität des Generators bei Eingangsspannungsänderungen auf.

Leon Ablinger 24.03.2021

3.2 Erzeugung frequenzmodulierter Signale mit Wechselspannung

3.2.1 Beschreibung des Messvorgangs

Nun soll die VCO-Schaltung mit sinusförmiger Wechselspannung betrachtet und bewertet werden.

3.2.2 Schaltung

Abbildung 2: Schaltung, Erzeugung frequenzmodulierter Signale mit Wechselspannung

3.2.3 Erkenntnis / Schlussfolgerung

- 1. Wie unterscheidet sich die Ausgangsspannung bei:
 - a) kleiner und großer Signalamplitude (Eingangsspannung)?

Antwort: Desto höher die Eingangsamplitude, desto höher ist der Frequenzhub des FM-Signals.

- b) niedriger und hoher Signalfrequenz?
- Antwort: Bei unterschiedlicher Signalfrequenz ändert sich lediglich die Periodendauer der Signale.
- 2. Wie erkennt man am FM-Signal die Frequenz des Eingangssignals?
 Antwort: Die Frequenz des Eingangssignals kann man durch Messen der Periodendauer von fmax oder fmin.

3.3 Messung des Frequenzhubs

3.3.1 Beschreibung des Messvorgangs

Hier soll der Frequenzhub der folgenden Schaltung durch Messung von fmin und fmax ermittelt werden.

3.3.2 Schaltung

Abbildung 3: Schaltung, Messung des Frequenzhubs

3.3.3 Oszillogramm

Abbildung 4: Messung der Maximalfrequenz

Abbildung 5: Messung der Minimalfrequenz

3.3.4 Messergebnisse

Usp =	0.500	V		
fmax =	23.920	kHz		
fmin =	15.970	kHz		
df =	3.975	kHz		

Usp =	1.000	V
fmax =	27.620	kHz
fmin =	11.990	kHz
df =	7.815	kHz

3.3.5 Berechnung

$$f_{max} = \frac{1}{T_{min}}$$

$$f_{min} = \frac{1}{T_{max}}$$

$$f_{min} = \frac{1}{T_{max}}$$
 $\Delta f = \frac{1}{2} \cdot (f_{max} - f_{min})$

3.3.6 Erkenntnis / Schlussfolgerung

1. Zu welcher Eingangsgröße des VCOs ist der Frequenzhub proportional?

Antwort: Zur Amplitude.

2. Ist der Frequenzhub abhängig von der Frequenz des Informationssignals?

Antwort: Nein.

3.4 Ermittlung des Modulationsindexes

3.4.1 Beschreibung des Messvorgangs

Ermittelt soll nun der Modulationsindex, welcher das Äquivalent zum Modulationsgrad bei der Amplitudenmodulation angibt.

3.4.2 Schaltung

Abbildung 6: Schaltung, Ermittlung des Modulationsindexes

3.4.3 Messergebnisse

Usp =	1	V
df =	7.92	kHz
finf =	2	kHz
n =	3.96	

Usp =	1	V
df =	7.92	kHz
finf =	1	kHz
n =	7.92	

Usp =	1
df =	7.92
finf =	0.5
n =	15.84

Usp =	2	V
df =	15.84	kHz
finf =	2	kHz
n =	7.92	

Usp =	2	V
df =	15.84	kHz
finf =	1	kHz
n =	15.84	

3.4.4 Berechnung

$$\eta = \frac{\Delta f}{f_{t-1}}$$

 $\eta = Modulations index$

Δf = Frequenzhub

fint = Informationsfrequenz, Modulationsfrequenz

3.4.5 Erkenntnis / Schlussfolgerung

- 1. Von welchem Parameter des Eingangssignals ist der Frequenzhub abhängig? Antwort: Von der Amplitude des Eingangssignals.
- 2. Wie verändert sich der Modulationsindex, wenn man unterschiedliche Modulationsfrequenzen bei gleicher Signalamplitude verwendet?

 Antwort: Je höher die Modulationsfrequenz, deste niedriger wurde der Modulationsindex. Das

Antwort: Je höher die Modulationsfrequenz, desto niedriger wurde der Modulationsindex. Das Verhältnis ist indirekt proportional.

3.5 Demodulation frequenzmodulierter Signale mit einem C-Diskriminator

3.5.1 Beschreibung des Messvorgangs

In dieser Übung soll ein moduliertes Signal demoduliert und in ihrer Originalform gezeigt werden. Dazu wird das Demodulation Board verwendet.

3.5.2 Schaltung

Abbildung 7: Schaltung, C-Diskriminator

3.5.3 Oszillogramm

Abbildung 8: Signale des C-Diskriminators

3.5.4 Messergebnisse

f	Ua,sp
kHz	V
2.32	0.19
12.48	1.00
18.54	1.50
24.99	2.00
31.45	2.51
38.43	2.95
47.87	3.60

3.5.5 Kennlinie

Kennlinie des C-Diskriminators

3.6 Demodulation frequenzmodulierter Signale mit einem Zähldiskriminator

3.6.1 Beschreibung des Messvorgangs

Hier soll der arithmetische Mittelwert der Ausgangsspannung dargestellt werden.

3.6.2 Schaltung

DEMODULATION BOARD

Abbildung 9: Schaltung, C-Diskriminator

3.6.3 Messergebnisse

f	Uar	ti	Т
kHz	V	us	us
2.75	0.18	4.6	363
5.00	0.33	4.58	200
10.00	0.66	4.58	100
20.00	1.33	4.58	50
30.00	1.99	4.58	33.3
40.00	2.66	4.58	25
47.80	3.18	4.58	20.9

3.6.4 Berechnung

$$U_{ar} = \frac{U \cdot t_i}{T}$$

3.6.5 Oszillogramm

Abbildung 10: Oszillogramm des Zähldiskriminators

Unterschrift:	Leon Ablinger
Oniciscinii.	Leon Abilitaei

<u>Datum:</u>	Note:	Punkte:	<u>Unterschrift:</u>	

Leon Ablinger 24.03.2021