Министерство образования и науки Российской Федерации

Московский физико-технический институт (государственный университет)

Физтех-школа прикладной математики и информатики Кафедра дискретной математики

Направление подготовки / **специальность**: 01.03.02 Прикладная математика и информатика

Направленность (профиль) подготовки: Прикладная математика, компьютерные науки и инженерия

Вариации теоремы Барань и Гринберга о суммах векторов

бакалаврская работа

Студент: Арутюнян Саро Артурович

Научный руководитель: кандидат ф.м. наук Полянский Александр Андреевич

Содержание

1	Вспомогательные утверждения	7
2	Извлечение одной трансверсали с короткой суммой	9
3	Разбиение на трансверсалей с короткими суммами	11
4	Извлечение трансверсали с короткими частичными суммами	15

Введение

Сначала введем некоторые определения. Несимметричной полунормой называется отображение $h: \mathbb{R}^d \to \mathbb{R}$, удовлетворяющее

- (i) $h(x+y) \le h(x) + h(y)$ для всех $x, y \in \mathbb{R}^d$;
- (ii) $h(\alpha x) = \alpha h(x)$ для всех $x \in \mathbb{R}^d, \alpha \geq 0$.

Симметричная полунорма удовлетворяет (і) и

(iii) $h(\alpha x) = |\alpha| h(x)$ для всех $x \in \mathbb{R}^d, \alpha \in \mathbb{R}$.

 $E\partial u h u u h u m a p o m n o n y h o p m b \|\cdot\|: \mathbb{R}^d \to \mathbb{R}$ назовем

$$B_{\|\cdot\|}^d = \{ x \in \mathbb{R}^d : \|x\| \le 1 \}.$$

Евклидову норму обозначим через $\|\cdot\|_2$, а d-мерный евклидов шар – через B_2^d .

Определим $[n] := \{1, \ldots, n\}$ для $n \in \mathbb{N}$. Назовем *трансверсалью* семейства множеств V_1, \ldots, V_n любое множество T вида $\{v_1, \ldots, v_n\}$, где $v_i \in V_i$ для всех $i \in [n]$. Для подмножества $I \subseteq [n]$ положим $T_I = \{v_i \in T : i \in I\}$. Если множества V_i конечны, причем их мощности равны $|V_1| = \cdots = |V_n| = m$, то будем говорить, что *семейство* $\{V_1, \ldots, V_n\}$ разбита на m трансверсалей, если указаны непересекающиеся m трансверсали, объединение которых совпадает с $V_1 \cup \cdots \cup V_n$. Для конечного подмножества V некоторого линейного пространства определим $s(V) := \sum_{v \in V} v$.

Пусть дана полунорма $\|\cdot\|:\mathbb{R}^d\to\mathbb{R}$. Семейство множеств $V_i\subset B^d_{\|\cdot\|}, i\in[n]$ назовем *сбалансированной*, если $0\in\operatorname{conv} V_i$ для всех $i\in[n]$.

Для числа $d \in \mathbb{N}$ и (полу)нормы $\|\cdot\|: \mathbb{R}^d \to \mathbb{R}$ рассмотрим наименьшую константу $TC(B^d_{\|\cdot\|})$ со следующим свойством: для любого сбалансированного семейства множеств в $B^d_{\|\cdot\|}$ существует трансверсаль T, для которой $\|s(T)\| \leq TC(B^d_{\|\cdot\|})$.

В 1981 году Барань и Гринберг [1] рассматривали сбалансированные семейства и число TC. В частности они доказали следующую теорему:

Теорема 1. Для всякой несимметричной полунормы $\|\cdot\|:\mathbb{R}^d\to\mathbb{R}$ имеет место неравенство

$$TC\left(B_{\|\cdot\|}^d\right) \le d.$$

Эта оценка неулучшаема в общем случае, но ее можно уточнить для определенных норм и множеств V_i с дополнительными условиями. В этой статье мы будем исследовать такие сбалансированные семейства в евклидовых пространствах, а также посмотрим на некоторые связанные сюжеты.

На самом деле сбалансированные множества были исследованы еще раньше. В 1963 году Дворецкий [6] интересовался чему может равняться величина

$$\max_{\|x_i\|=1} \min_{\pm} \| \pm x_1 \pm x_2 \pm \dots \pm x_n \|,$$

где максимум берется по всем точкам x_i единичной сферы пространства Минковсково, а минимум – по всевозможным 2^n знакам \pm . Пологая $V_i = \{x_i, -x_i\}$ для $i \in [n]$ получим частный случай сбалансированного семейства. В 1980 эту задачу решил Спенсер [5] — вероятностным методом, а в 2008 и Барань [2] — геометрическим и линейно-алгебраическим подходом:

Теорема 2. Пусть даны векторы $v_1, \ldots, v_n \in B_2^d$. Тогда существуют знаки $\varepsilon_i = \pm 1, i \in [n]$ со свойством

$$\|\varepsilon_1 v_1 + \dots + \varepsilon_n v_n\|_2 \le \sqrt{d}$$
.

Эта оценка достигается, когда n=d и $v_i=e_i, i\in [n]$, где $\{e_1,\ldots,e_d\}=\Delta^d-d$ -мерный базис. Нетрудно заметить, что тогда сумма элементов любой трансверсали семейства $V_i=\{v_i,-v_i\}, i\in [n]$ есть вершина прямоугольного параллелепипеда с нормой \sqrt{d} .

Более того, верен свежий результат Амбруш и Боззаи [3] 2023 года, обобщающий теорему 2:

Теорема 3.
$$TC(B_2^d) \leq \sqrt{d}$$
.

Этот результат также был получен независимо, в процессе написания этой работы, поэтому приведем его доказательство и здесь, в разделе 2.

Амбруш и Боззаи, как и мы, основываются на лемму 11 о том, что для точки внутри политопа, являющейся суммой k политопов из евклидова единичного шара, существует вершина, на расстоянии не более \sqrt{k} . Для этого утверждения они приводят два доказательства, одно линейно алгебраического характера, а другое — вероятностное. В разделе 1 мы сформулируем эту лемму без доказательства.

Также, Амбруш и Боззаи предоставляют оценку в тах-норме (с единичным шаром B_{∞}^d), используя свойства гауссовского случайного блужлания:

Tеорема 4. $TC(B_{\infty}^d) \leq 40\sqrt{d}$.

Кроме задачи выделения трансверсали с короткой суммой мы также изучим вопрос разбиения системы множеств V_i на трансверсали с короткими суммами, если, конечно, мощности множеств V_i равны между собой. Уместно ввести еще один термин: семейство множеств V_i , $i \in [n]$ назовем m-семейством, если $|V_i| = m$ для всех $i \in [n]$.

Определим число $TTC(B^d_{\|\cdot\|},m)$ для данных чисел $m,d\in\mathbb{N}$ и данной (полу)нормы $\|\cdot\|:\mathbb{R}^d\to\mathbb{R}$ как наименьшее число с тем свойством, что любое сбалансированное m-семейство множеств в $B^d_{\|\cdot\|}$ можно разбить на m трансверсалей T_1,\ldots,T_m , длины сумм которых не превосходят его: $\|s(T_i)\|\leq TTC(B^d_{\|\cdot\|},m)$ для всех $i\in[n]$. Очевидно, что $TC(B^d_{\|\cdot\|})\leq TTC(B^d_{\|\cdot\|},m)$.

В разделе 3 мы докажем, что на самом деле для всех $m \geq 2$ и евклидова шара константа TTC существует и имеет порядок $O(\sqrt{d})$:

Теорема 5.
$$TTC(B_2^d, m) \leq m\sqrt{d}$$
.

Как видно, теорема 5 обобщает теорему 2 за счет ухудшения константы, ограничивающей длины сумм трансверсалей разбиения.

Помимо TC и TTC определим также величину $PTC(B_{\|\cdot\|}^d)$, как наименьшее число с тем свойством, что для любого сбалансированного семейства n множеств $V_i \subset B^d$ существует трансверсаль $\{v_i \in V_i : i \in [n]\}$, все частичные суммы которой не превосходят его по длине: для всех $j \in [n]$

$$||s(T_{[j]})|| \leq PTC(B_{\|\cdot\|}^d).$$

Очевидно, $TC(B^d_{\|\cdot\|}) \leq PTC(B^d_{\|\cdot\|}).$

Барань [2] дает следующую оценку:

Теорема 6. Для симметричной полунормы $\|\cdot\|:\mathbb{R}^d\to\mathbb{R}$ имеет место неравенство

$$PTC\left(B_{\|\cdot\|}^d\right) \le 2d - 1.$$

Эта оценка улучшает предыдущий результат Барань и Гринберга [1] с константой 2d.

На евклидовой плоскости для двухэлементных множеств V_i вида $\{v_i, -v_i\}$ есть точный результат Лунда и Магазинова [4]:

Теорема 7. Пусть даны векторы $v_1, \ldots, v_n \in B_2^2$. Тогда существуют знаки $\varepsilon_i = \pm 1, i \in [n]$ со свойством

$$\|\varepsilon_1 v_1 + \dots + \varepsilon_j v_j\|_2 \le \sqrt{3}$$
 dan becar $j \in [n]$,

 $npuчем \sqrt{3}$ – наименьшее число, которое может стоять справа.

В разделе 4 мы дальше улучшим оценку Барань в теореме 6 в евклидовых пространствах:

Теорема 8.
$$PTC\left(B_2^d\right) \leq d$$
.

Стоит подчеркнуть, что числа TC и PTC зависят исключительно от размерности d и нормы пространства, а TTC еще от мощности множеств m, но не зависят от количества множеств n.

1 Вспомогательные утверждения

Написав M_i для $i \in [n]$ далее везде будем иметь в виду матрицу $d \times |V_i|$, столбцами которой являются векторы множества V_i . Обозначим через Δ^m множество m-мерных базисных векторов e_1, \ldots, e_m .

Нам пригодится *скалярное произведение Фробениуса* для матриц $A = \{a_{ij}\}, B = \{b_{ij}\} \in \mathbb{R}^{p \times q}$, определенная как

$$\langle A, B \rangle_F = \sum_{i \in [p]} \sum_{j \in [q]} a_{ij} b_{ij},$$

а также норма Фробениуса

$$||A||_F = \sqrt{\langle A, A \rangle} = \sqrt{\sum_{i \in [p]} \sum_{j \in [q]} a_{ij}^2}.$$

Сначала докажем леммы, которые нам еще не раз понадобятся.

Лемма 9. Пусть даны натуральные числа k, p, r. Пусть для каждого $i \in [k]$ даны числа q_i, l_i и матрица $M_i \in \mathbb{R}^{p \times q_i}$, а также l_i матриц $B_i^j \in \mathbb{R}^{q_i \times r}, \ j \in [l_i]$. Тогда, если Qr > pr + L, где $Q = q_1 + \cdots + q_k$ и $L = l_1 + \cdots + l_k$, то существуют матрицы $A_i \in \mathbb{R}^{q_i \times r}, \ i \in [k]$, среди которых есть ненулевая, удовлетворящие линейным однородным ограничениям

$$\langle A_i, B_i^j \rangle_F = 0 \tag{1}$$

для всех $i \in [k]$ и $j \in [l_i]$, а также линейной системе

$$\sum_{i \in [k]} M_i A_i = O \in \mathbb{R}^{p \times r}, \tag{2}$$

где О – нулевая матрица.

Доказательство. Посчитаем и сравним количество переменных и уравнений. А именно, каждая матрица A_i дает $q_i r$ переменных, всего Qr штук. С другой стороны, возникает L уравнений, задаваемых (1), и pq уравнений, задаваемых (2). Значит система имеет решение, если Qr > pr + L.

Лемма 10. Пусть $V \subseteq B_2^d$ и $u \in \text{conv} V$. Тогда существует $v \in V$ со свойством

$$||u-v||_2 \le 1.$$

Доказательство. Проведем плоскость через точку u, перпендикулярную вектору u. Эта плоскость отрезает от шара B_2^d шапку, любая точка которой находится от точки u на расстоянии не более 1. Достаточно выбрать $v \in V$ из этой шапки (если все точки множества V лежали строго по одной стороне плоскости, проходящей через u, то точка u не мог быть из $\mathrm{conv} V$).

Как обещалось во введении, приведем лемму, лежавшей в ядре доказательства грядущих теорем. Ее доказательство можно найти в [3, Proposition 3.1].

Лемма 11. Пусть дано сбалансированное семейство множеств $V_i \subset B_2^d, i \in [k]$. Пусть для каждого $i \in [k]$ дана точка $u_i \in \text{conv}V_i$. Положим $u = u_1 + \dots + u_k$. Тогда существует трансверсаль T семейства $\{V_i : i \in [k]\}$ со следующим свойством:

$$||s(T) - u||_2 \le \sqrt{k}.$$

2 Извлечение одной трансверсали с короткой суммой

Теорема 12. Пусть дано сбалансированное семейство множеств $V_i \subset B_2^d, i \in [n]$. Тогда существует трансверсаль T семейства V_1, \ldots, V_n со свойством

$$||s(T)||_2 \le \sqrt{d}.$$

Доказательство. Обозначим $m_i:=|V_i|$ для $i\in[n]$. Рассмотрим линейные зависимости

$$\sum_{i \in [n]} M_i a_i = 0 \in \mathbb{R}^d,$$

где $a_i \in \text{conv}\Delta^{m_i}$ для всех $i \in [n]$. Множество этих линейных зависимостей непусто, поскольку $0 \in \text{conv}V_i$ для $i \in [n]$. Среди всех таких линейных зависимостей рассмотрим ту, в которой максимальное суммарное количество нулей среди всех элементов векторов a_1, \ldots, a_n .

Без ограничения общности можно считать, что только первые k векторы a_i содержат хотя бы два ненулевых элемента. Докажем тогда, что k не очень велико, а именно, не превосходит d. Пусть это не так и k>d. Заметим, что тогда система

$$\sum_{i \in [k]} M_i a_i' = 0 \tag{3}$$

совместна относительно $a_i' \in \mathbb{R}^{m_i}$, где

- 1. сумма элементов вектора a_i' равна нулю;
- 2. если j-я координата вектора a_i ноль, то j-я координата a_i' тоже ноль;
- 3. не все векторы a_i' равны нулевому вектору.

Действительно, $k>d,\ M_i\in\mathbb{R}^{d\times m_i},\ a_i'\in\mathbb{R}^{m_i\times 1},\$ а количество условий $l_i,$ ограничивающих $a_i',$ не превосходит $m_i-1,$ следовательно

$$\sum_{i \in [k]} m_i > \sum_{i \in [k]} m_i - k + d \ge \sum_{i \in [k]} l_i + d,$$

и по лемме 9 система (3) и условия 1-3 совместимы.

При малых t все векторы $a_i + ta_i'$ все еще из симплекса $\operatorname{conv} \Delta^{m_i}$. Значит, при некотором t все еще эти векторы будут в $\operatorname{conv} \Delta^{m_i}$, но какой-то из них приобретет лишний ноль, увеличив таким образом суммарное количество нулевых элементов среди векторов a_1, \ldots, a_n . Значит, вопреки нашему предположению, $k \leq d$.

Очевидно, для каждого $i \in [n] \setminus [k]$ вектор $a_i \in \text{conv}\Delta^{m_i}$ является базисным, т.е. $a_i \in \Delta^{m_i}$, поскольку у него уже заданы $m_i - 1$ нулей.

Определим теперь точки $u_i := M_i a_i \in \text{conv} V_i$ для $i \in [k]$. Тогда по лемме 11 существует трансверсаль T_k семейства $V_i, i \in [k]$, для которой

$$\left\| u_{[k]} - s(T_k) \right\|_2 \le \sqrt{k}.$$

Для дополненной трансверсали $T=T_k\cup\{M_ia_i\in V_i:i\in[n]\backslash[k]\}$ получим

$$\|s(T_{[n]})\|_{2} = \|s(T_{[n]}) - \sum_{i \in [n]} M_{i}a_{i}\|_{2} = \|s(T_{k}) - u_{[k]}\|_{2} \le \sqrt{k} \le \sqrt{d},$$

как и требовалось.

Из доказанного следует, что $TC(B_2^d) \leq \sqrt{d}$.

Чтобы видеть точность оценки рассмотрим (мульти)множества $V_i \subseteq B_2^d, i \in [d]$, каждое из которых содержит один вектор v_i и m_i-1 векторов $-v_i$, где $\{v_1,\ldots,v_d\}=\Delta^d$. Тогда, для любой трансверсали T этого семейства s(T) есть вершина единичного куба и $\|s(T)\|_2=\sqrt{d}$. Таким образом $TC(B_2^d)=\sqrt{d}$.

3 Разбиение на трансверсалей с короткими суммами

Теорема 13. Пусть дано сбалансированное т-семейство множеств $V_i \subset B_2^d, i \in [n]$. Тогда это семейство V_1, \ldots, V_n можно разбить на т трансверсалей T_1, \ldots, T_m так, чтобы для всех $i \in [m]$

$$||s(T_i)||_2 \le m\sqrt{d}.$$

Чтобы пойти дальше к доказательству теоремы, нам нужно озаботиться кое о чем. Вспомним, что *перестановочной* называется матрица, которая получается перемешиванием строк единичной матрицы тех же размеров. Обозначим через $\mathcal P$ множество всех m! перестановочных матриц размеров $m \times m$. Также вспомним, что бистохастической называется квадратная матрица, все элементы которой неотрицательны, причем строки и столбцы суммируются в единицу. Биркгов доказал, что множество бистохастических матриц размеров $m \times m$ совпадает с выпуклой оболочкой всех $m \times m$ перестановочных матриц, т.е. с conv $\mathcal P$.

Доказательство. Рассмотрим множество линейных зависимостей

$$\sum_{i \in [n]} M_i A_i = O,$$

где $A_i \in \text{conv}\mathcal{P}$ для всех $i \in [n]$, а $O \in \mathbb{R}^{d \times m}$ — нулевая матрица. Это множество непусто, поскольку $0 \in \text{conv}V_i, i \in [n]$.

j-й столбец матрицы A_i соответствует набору коэффициентов выпуклой комбинации векторов множества V_i , который мы хотим отогнать в какой-то базисный вектор, и полученный вектор класть в j-ю трансверсаль. Условие, что столбцы A_i суммируются в единицу является релаксацией того, что в разные трансверсали мы кладем разные векторы из V_i . Наша цель — найти линейную зависимость, в которой как можно больше коэффициентов-матриц A_i являются перестановочными матрицами.

Из всех таких линейных зависимостей рассмотрим ту, в которой присутствует максимальное суммарное количество нулевых элементов среди матриц A_1, \ldots, A_n . Без ограничения общности можно считать, что $m^2 - m - 1$ нулей не содержат только первые k матрицы A_i . Докажем тогда, что k не очень велико, а именно, не превосходит dm. Пусть это не

так и k > dm. Заметим, что тогда система

$$\sum_{i \in [k]} M_i A_i' = O \tag{4}$$

совместна, где матрицы $A_i' \in \mathbb{R}^{m \times m}$ удовлетворяют следующим условиям для всех $i \in [k]$:

- 4. сумма элементов каждой строки и каждого столбца матрицы A_i' равна нулю;
- 5. если элемент (j,l) матрицы A_i ноль, то элемент (j,l) матрицы A'_i тоже ноль;
- 6. не все матрицы A'_{i} равны нулевой матрице.

Чтобы это понять сначала заметим, что количество условий l_i для задания матрицы A_i' не превисходит m^2-1 для всех $i \in [k]$. Действительно, если требовать, чтобы какой-то дополнительный элемент матрицы A_i' был нулевым, то количество задающих матрицу A_i' линейных условий не уменьшится. Знаем, что среди заданных не более, чем $m^2 - m - 2$ нулей матрицы A'_i никакие m не лежат в одной строке или в одном столбце, так как иначе в одной строке или в одоном столбце лежали бы m соответствующие нули в A_i , что невозможно. Дополнительно потребуем, чтобы некоторые элементы A_i' (не из числа заданных нулей) тоже были нулями так, чтобы в итоге оказались заданы m^2-m нулей, причем никакие m из них не лежали в одной строке или в одном столбце. Тогда для сохранения свойства матрицы достаточно будет требовать еще равенство нулю суммы элементов каждой строки, ведь из этих условий будет следовать, что и оставшийся элемент каждой строки тоже ноль, а значит и суммы столбцов тоже нули. Учитывая то, что не все элементы A_i' нули, можем на единицу улучшить оценку: $l_i \leq (m^2 - m) + m - 1 = m^2 - 1$. Поскольку $k > dm, M_i \in \mathbb{R}^{d \times m}, A_i' \in \mathbb{R}^{m \times m}$ и

$$\sum_{i \in [k]} m^2 = km^2 > dm + k(m^2 - 1) \ge dm + \sum_{i \in [k]} l_i,$$

то по лемме 9 система (4) и условия 4-6 совместимы.

Умножим линейную комбинацию из (4) на действительное число t и добавим к $\sum_{i\in[n]}M_iA_i=O.$ Получим, что для всех $t\in\mathbb{R}$

$$\sum_{i \in [k]} M_i (A_i + tA_i') + \sum_{i \notin [k]} M_i A_i = O.$$

При достаточно маленьких t матрицы $A_i + tA_i'$, как легко видеть, все еще бистохастические. Следовательно при некотором t все матрицы $A_i + tA_i'$ будут бистохастичаскими, но некоторая из них приобретет лишний ноль, увеличив таким образом суммарное количество нулевых элементов среди матриц A_1, \ldots, A_n . Значит, вопреки нашему предположению, $k \leq dm$.

Нетрудно видеть, что все остальные матрицы $A_i, i \in [n] \setminus [k]$ являются перестановочными. Действительно, если у бистохастической матрицы размеров $m \times m$ хотя бы $m^2 - m - 1$ нулей, то в m - 1 строках ровно m - 1 нулей. Значит в этих строках все числа определены, а следовательно определена и оставшаяся строка. Очевидно, тогда все элементы матрицы либо нули, либо единицы, т.е. она перестановочная.

Определим для всех $i \in [n]$ и $I \subseteq [n]$

$$u_i = M_i A_i, \qquad u_I = \sum_{j \in I} u_j$$

$$\mathcal{V}_i = \{ M_i P : P \in \mathcal{P} \}.$$

Тогда, как доказал Биркгоф,

$$\operatorname{conv} \mathcal{V}_i = \{ M_i A : A \in \operatorname{conv} \mathcal{P} \}.$$

Теперь вспомним матричную норму $\|\cdot\|_F$ – норму Фробениуса. Ясно, что норма Фробениуса матрицы $A \in \mathbb{R}^{p \times q}$ есть ни что иное, как евклидова норма вектора размера pq, полученной стягиванием матрицы A.

норма вектора размера pq, полученной стягиванием матрицы A. Заметим, что $\frac{1}{\sqrt{m}}\mathcal{V}_i\subseteq B_2^{d\times m}$, т.е. для любых $i\in[n]$ и $A\in\mathrm{conv}\mathcal{P}$ имеет место неравенство

$$||M_i A||_F \le \sqrt{m}.$$

Действительно, каждый столбец матрицы M_iA есть вектор вида $\alpha_1b_1 + \cdots + \alpha_mb_m$, где b_1, \ldots, b_m – столбцы M_i , а $(\alpha_1 \ldots \alpha_m)^T$ – столбец A.

Значит, длина каждого столбца матрицы $M_i A$ не превосходит 1:

$$\left\| \sum_{i \in [m]} \alpha_i b_i \right\|_2 \le \sum_{i \in [m]} \alpha_i \|b_i\|_2 \le \sum_{i \in [m]} \alpha_i = 1.$$

Следовательно, квадрат нормы Фробениуса $||M_iA||_F^2$ – сумма квадратов длин столбцов M_iA , не превосходит m, как и хотелось.

Пространство матриц $\mathbb{R}^{d \times m}$, снабженное нормой Фробениуса, можно рассматривать как пространство векторов \mathbb{R}^{dm} с евклидовой нормой. Значит, применив лемму 11 для множеств $\frac{1}{\sqrt{m}}\mathcal{V}_i\subseteq B_2^{dm},\ i\in[k]$ найдем трансверсаль $T_k=\{v_i\in\mathcal{V}_i:i\in[k]\}$ со свойством

$$\frac{1}{\sqrt{m}} \left\| u_{[k]} - s(T_k) \right\|_F \le \sqrt{k}$$

Для дополненной трансверсали $T=T_k\cup\{v_i:=M_iA_i\in\mathcal{V}_i:i\in[n]\setminus[k]\}$ получим

$$||s(T)||_F = ||s(T) - u_{[n]}||_F = ||s(T_k) - u_{[k]}||_F \le \sqrt{mk} \le m\sqrt{d}.$$

Это означает, что если определить трансверсаль $T_j, j \in [m]$ как набор j-х столбцов матриц $v_i = M_i P_i, \ P_i \in \mathcal{P}, \ i \in [n],$ то

$$||s(T_i)||_2 \le ||s(T)||_F \le m\sqrt{d}$$

что и требовалось доказать.

4 Извлечение трансверсали с короткими частичными суммами

Теорема 14. Пусть дано сбалансированное семейство множеств $V_i \subset \mathbb{R}^d, i \in [n]$. Тогда существует ее трансверсаль $T = \{v_i \in V_i : i \in [n]\}$, суммы всех частичных трансверсалей $T_{[j]}$ которой коротки, а именно, для всех $j \in [n]$

$$||s\left(T_{[j]}\right)||_{2} \leq d.$$

 \mathcal{A} оказательство. Положим $m_i := |V_i|$ для $i \in [n]$ и

$$\Delta := \operatorname{conv} \Delta^{m_1} \cup \cdots \cup \operatorname{conv} \Delta^{m_n}.$$

Для $k \in \{0, 1, \dots, n-d\}$ определим множества

$$\mathcal{M}_k = \{M_1, M_2, \dots, M_{k+d}\}.$$

Для $k \in \{0,1,\ldots,n-d\}$ индуктивно (по k) построим отображения

$$lpha_k: \mathcal{M}_k o \Delta$$
 $M_i \mapsto lpha_k(M_i) \in \mathrm{conv}\Delta^{m_i}$ для всех $i \in [k+d]$

и подмножества $\mathcal{M}_k'\subset\mathcal{M}_k$, удовлетворяющие следующим условиям:

- $\sum_{M \in \mathcal{M}_k} M \alpha_k(M) = 0;$
- $\alpha_k(M_i) \in \Delta^{m_i}$, если $M_i \in \mathcal{M}'_k$;
- $|\mathcal{M}_k'|=k$ и $\mathcal{M}_k'\subset\mathcal{M}_{k+1}'$ и $\alpha_{k+1}(M)=\alpha_k(M),$ если $M\in\mathcal{M}_k'.$

Для базы k=0 достаточно положить $\mathcal{M}_k'=\emptyset$ и

$$\alpha_k(M_i) = \frac{1}{m_i} \underbrace{\left(1 \dots 1\right)^T}_{m_i \text{ единиц}}$$
 для всех $i \in [k+d].$

Совершим переход $k \to (k+1)$. Пусть α_k и \mathcal{M}'_k определены. Рассмотрим множество линейных зависимостей

$$lpha:\mathcal{M}_{k+1} o\Delta$$
 $M_i\mapstolpha(M_i)\in\mathrm{conv}\Delta^{m_i}$ для всех $i\in[k+d+1],$ $\sum_{i\in[k+d+1]}M_ilpha(M_i)=0,$

для которых из $M\in\mathcal{M}_k'$ вытекает $\alpha(M)=\alpha_k(M)$. Это множество непусто, так как оно содержит по крайней мере α_k , доопределенная при M_{k+d+1} значением

$$\alpha_k(M_{k+d+1}) = \frac{1}{m_{k+d+1}} \underbrace{\begin{pmatrix} 1 & \dots & 1 \end{pmatrix}^T}_{m_{k+d+1}}.$$

Из всех таких линейных зависимостей α рассмотрим ту, для которой среди векторов множества $\alpha(\mathcal{M}_{k+1})$ присутствует максимальное суммарное количество нулевых элементов.

Обозначим

$$I := \{ i \in [k+d+1] : M_i \in \mathcal{M}_{k+1} \setminus \mathcal{M}'_k \}.$$

Заметим, что тогда существует отображение $\alpha': \mathcal{M}_{k+1} \setminus \mathcal{M}_k' \to \Delta$, для которого совместна система

$$\sum_{i \in I} M_i \alpha'(M_i) = 0, \tag{5}$$

где для каждого $i \in I$

- 7. сумма элементов вектора $\alpha'(M_i)$ равна нулю;
- 8. j-я координата $\alpha'(M_i)$ ноль, если j-я координата $\alpha(M_i)$ ноль;
- 9. не все векторы $\alpha'(M_i)$ равны нулевому вектору.

Действительно, $|I|=d+1,\ M_i\in\mathbb{R}^{d\times m_i},\ \alpha'(M_i)\in\mathbb{R}^{m_i\times 1},$ количество условий l_i , ограничивающих $\alpha'(M_i)$, не превосходит m_i-1 и

$$\sum_{i \in I} m_i > \sum_{i \in I} m_i - |I| + d \ge \sum_{i \in I} l_i + d,$$

следовательно, по лемме 9 получим, что система (5) и условия 7-9 совместимы.

Умножая линейную комбинацию из (5) на действительное t и просуммировав с нулевой линейной комбинацией для α получим, что для любого $t \in \mathbb{R}$

$$\sum_{i \in I} M(\alpha(M_i) + t\alpha'(M_i)) + \sum_{i \notin I} M_i \alpha(M_i) = 0.$$

Если $\alpha(M_i) \notin \Delta^{m_i}$ для всех $i \in I$, то при некотором значении t все векторы $\alpha(M_i) + t\alpha'(M_i)$ все еще будут из $\mathrm{conv}\Delta^{m_i}$, но некоторый из них приобретет лишний ноль, нарушая таким образом условие максимальности количества нулевых элементов среди векторов $\alpha(M_i), i \in [k+d+1]$. Значит, $\alpha(M_i) \in \Delta^{m_i}$ для некоторого $i \in I$, и можно взять $\alpha_{k+1} = \alpha$.

Далее, пусть $\mathcal{M}_{n-d} \setminus \mathcal{M}'_{n-d} = \{M_{i_1}, \dots, M_{i_d}\}, i_1 < i_2 < \dots < i_d$. Обозначим $u_i := M_i \alpha_{n-d}(M_i)$ для $i \in [n]$.

Применяя лемму 10 для каждой $u_{i_j}\in {\rm conv}V_{i_j}, j\in [d]$ найдем точки $v_{i_j}\in V_{i_j}, j\in [d]$ со свойством

$$||u_{i_j} - v_{i_j}||_2 \le 1$$
 для всех $j \in [d]$.

Положим $T^0 = \{v_{i_1}, \dots, v_{i_d}\}$ и

$$T = T^0 \cup \{u_i \in V_i : i \in [n] \setminus \{i_1, \dots, i_d\}\}.$$

Тогда для всех $k \in [n] \setminus [d]$

$$||s(T_{[k]})||_{2} = ||s(T_{[k]}) - \sum_{i \in [k]} u_{i}||_{2} = ||s(T_{\{i_{j} \le k\}}) - \sum_{i_{j} \le k} u_{i_{j}}||_{2}$$

$$\leq \sum_{i_{j} \le k} ||v_{i_{j}} - u_{i_{j}}||_{2} \leq d,$$

а для всех $k \in [d]$

$$||s(T_{[k]})||_2 \le k \le d.$$

Список литературы

- [1] Imre Bárány, Victor S. Grinberg, On Some Combinatorial Questions in Finite-Dimesnional Spaces, *Linear Alg. Appl.*, 41 (1981), 1-9.
- [2] Imre Bárány, On the Power of Linear Dependencies, *Building Bridges*, 19 (2008), 31-45.
- [3] Gergely Ambrus, Rainie Bozzai, Colorful Vector Balancing, arXiv:2302.10865 (2023).
- [4] Ben Lund, Alexander Magazinov, The sign-sequence constant of the plane, *Acta Math. Hungar.*, 151 (1) (2017), 117–123.
- [5] Joel Spencer, Balancing unit vectors, Journal of Combinatorial Theory, 30 (1981), 349–350.
- [6] Aryeh Dvoretzky, Problem, Proceedings of Symposia in Pure Mathematics, Vol. 7, Convexity, (1963), 496