Simon King, FSU Jena Fakultät für Mathematik und Informatik Daniel Max

Numerische Mathematik

Sommersemester 2022

Übungsblatt 7

Hausaufgaben (paarweise Abgabe bis 31.05.2022 10⁰⁰ Uhr)

Hausaufgabe 7.1: Induzierte Matrixnorm

(3 P.) Zeigen Sie, dass die von Normen auf \mathbb{R}^m und \mathbb{R}^n induzierte Matrixnorm auf $\mathbb{R}^{m \times n}$ tatsächlich eine Norm im Sinne von Definition 4.20 auf dem Vektorraum $\mathbb{R}^{m \times n}$ ist.

Hausaufgabe 7.2: Eindeutigkeit einer Variante der QR-Zerlegung Sei $A \in GL_n(\mathbb{R})$ mit $n \in \mathbb{N}$.

- a) (1 P.) Zeigen Sie, dass es ein $Q \in O_n$ und eine obere Dreiecksmatrix $R \in GL_n(\mathbb{R})$ gibt, so dass A = QR und $\forall i \in \{1, ..., n\}: R_{i,i} > 0$.
- b) (2 P.) Zeigen Sie, dass Q und R wie in der vorigen Teilaufgabe eindeutig sind. **Hinweis:** PA 6.1.a)

Hausaufgabe 7.3: Konditionszahl von Matrizen

Diese Aufgabe bezieht sich auf Definition 4.25, die Sie bitte im Skript nachlesen. Sei $A \in GL_n(\mathbb{R})$ und sei $f \colon \mathbb{R}^n \to \mathbb{R}^n$ mit $f(b) := A^{-1}b$.

(2 P.) Zeigen Sie: Die **Konditionszahl** cond $(A) = ||A|| ||A^{-1}||$ von A ist eine obere Schranke für die relative normweise Kondition des Problems (f, b) für alle $b \in \mathbb{R}^n$.

Hausaufgabe 7.4: QR-Zerlegung exakt

(3 P.) Berechnen Sie eine QR-Zerlegung von $A := \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} \in GL_3(\mathbb{R})$. Rechnen Sie exakt und geben Sie Q und R explizit an.

Bitte wenden

Programmieraufgabe 7.5: QR-Zerlegung numerisch

- a) (3 P.) Implementieren Sie jeweils die Funktion,
 - i) die H_vX zu gegebenen $v \in \mathbb{R}^m$ und $X \in \mathbb{R}^{m \times k}$ zurück gibt.
 - ii) die eine mit Householder-Transformationen berechnete QR-Zerlegung zu gegebenem $A \in \mathbb{R}^{m \times n}$ zurück gibt. **Anmerkung:** Es empfiehlt sich laut Bemerkung 4.18, Q nicht explizit auszurechnen, sondern durch eine Liste von Householder-Transformationen (die jeweils durch einen Vektor bestimmt sind) zu codieren.
 - iii) die die Lösung $x \in \mathbb{R}^n$ von $Rx \stackrel{!}{=} b$ zur gegebenen oberen Dreiecksmatrix $R \in GL_n(\mathbb{R})$ und $b \in \mathbb{R}^n$ zurück gibt.
- b) Für $n \in \mathbb{N}$ sei $M \in M_n(\mathbb{R})$ gegeben durch $\forall i, j \in \{1, ..., n\} \colon M_{i,j} := \frac{1}{i+j-1}$ und $c \in \mathbb{R}^n$ gegeben durch $\forall i \in \{1, ..., n\} \colon c_i := \sum_{j=1}^n \frac{1}{i+j-1}$. Dann hat offenbar $Mx \stackrel{!}{=} c$ die Lösung $x = (1, 1, 1, ..., 1)^{\top} \in \mathbb{R}^n$.

 (2 P.) Lösen Sie $Mx \stackrel{!}{=} c$ für n = 12 numerisch in double precision unter

Verwendung der QR-Zerlegung mit Ihren Implementierungen aus a). **Zusatzaufgabe (1 Bonus-P.):** Verbessern Sie die Lösung durch geeignete Nachiterationen.

Erreichbare Punktzahl: 16