Результаты

После выполнения пунктов 4.1-4.4, определим необходимые расчетные параметры. Добавим в список суммарное перемещение, для этого выберем Solution – Insert – Deformation – Total. Далее выбираем Solution – Insert – Stress – Normal.

Когда установлены расчетные параметры, можем запустить вычисления Solution – Solve. Для заданной таблицы нагрузок, получим следующие результаты:

Рисунок 4.24 – Total Deformation

Рисунок 4.25 –Normal Stress

Результаты расчета для каждой силы представлены в таблицах 4.1 и 4.2.

Таблица 4.1 – Total Deformation

	Force [N]	Minimum [mm]	Maximum [mm]
1	-300	0	7,8224e-003
2	-1400	0	3,6505e-002
3	-4800	0	0,12516
4	-5100	0	0,13298
5	-7100	0	0,18513
6	-8700	0	0,22685
7	-11100	0	0,28943

Таблица 4.2 – Normal Stress

	Force [N]	Minimum [MPa]	Maximum [MPa]
1	-300	-15,862	15,868
2	-1400	-74,022	74,052
3	-4800	-253,79	253,89
4	-5100	-269,65	269,76
5	-7100	-375,4	375,55
6	-8700	-459,99	460,18
7	-11100	-586,89	587,13

До этого в главе 4 рассматривался шаровой шарнир, не имеющий повреждений. Для расчета шарового шарнира с эксплуатационными повреждениями (равномерный износ шаровой головки на 0,5 мм), необходимо, на этапе моделирования, задать радиус шаровой головки на 0,25 мм меньше. Дальше для полученной модели повторим все процедуры, описанные в пунктах 4.1 – 4.5. Полученные результаты приведем на рисунках.

Рисунок 4.26 – Total Deformation (шарнир с эксплуатационными повреждениями)

Рисунок 4.27 — Normal Stress (шарнир с эксплуатационными повреждениями)

Результаты расчета для каждой силы представлены в таблицах 4.3 и 4.4.

Таблица 4.3 – Total Deformation (шарнир с эксплуатационными повреждениями)

	Force [N]	Minimum [mm]	Maximum [mm]
1	-300	0	9,0046e-003
2	-1400	0	4,2021e-002
3	-4800	0	0,14407
4	-5100	0	0,15308
5	-7100	0	0,21311
6	-8700	0	0,26113
7	-11100	0	0,33317

Таблица 4.4 — Normal Stress (шарнир с эксплуатационными повреждениями)

	Force [N]	Minimum [MPa]	Maximum [MPa]
1	-300	-17,185	17,267
2	-1400	-80,198	80,579
3	-4800	-274,96	276,27
4	-5100	-292,15	293,54
5	-7100	-406,72	408,65
6	-8700	-498,37	500,74
7	-11100	-635,86	638,87

ЗАКЛЮЧЕНИЕ

Расчет на статическую и усталостную прочность показал, что статическая прочность шарового шарнира и сопротивление усталости, обеспечивается по всем критериям как для целого шарнира, так и для шарниров с эксплуатационными повреждениями. Напряжения изгиба в опасном сечении, напряжения смятия и среза имеют запас по сравнению с допускаемыми значениями, а коэффициент запаса по пределу выносливости получился больше единицы.

Проанализировав литературу по теме износостойкости, были сделаны выводы о том, что при всех видах смазки, кроме сухого трения, обеспечивается износостойкость вкладыша. Также был выполнен расчет работоспособности шарнира с повреждениями и без повреждений по контактному давлению, из которого следует, что полимерный вкладыш не рассчитан на полученное давление. Однако можно выбрать другой материал, например, фенопласт или спрелафлон.