RELEVANT S IS UNDECIDABLE

Søren Brinck Knudstorp

ILLC, University of Amsterdam

July 8, 2024

LICS '24

Plan for the talk

- Relevant S: What is it and why is it(s decision problem) interesting?
- Proof technique: undecidability through tiling
- A simpler, yet illustrative proof: no FMP

Definition (language and semantics)

The language is given by

$$\varphi ::= p \mid \varphi \wedge \varphi \mid \varphi \vee \varphi \mid \varphi \rightarrow \varphi.$$

and the semantics of ' \rightarrow ' is:

$$x \Vdash \varphi \to \psi \quad \text{ iff } \quad \forall y \hbox{:} \ y \Vdash \varphi \Rightarrow x \sqcup y \Vdash \psi$$

Definition (frames and validity)

A frame $\mathfrak{F}=(S,\sqcup,\mathbf{0})$ is a semilattice (S,\sqcup) with least element $\mathbf{0}\in S$; i.e.,

- Commutative: $x \sqcup y = y \sqcup x$,
- Associative: $(x \sqcup y) \sqcup z = x \sqcup (y \sqcup z)$,
- Idempotent: $x \sqcup x = x$
- Identity (least element): $x \sqcup \mathbf{0} = x$

Definition (language and semantics)

The language is given by

$$\varphi ::= p \mid \varphi \wedge \varphi \mid \varphi \vee \varphi \mid \varphi \rightarrow \varphi.$$

and the semantics of ' \rightarrow ' is:

$$x \Vdash \varphi \to \psi \quad \text{ iff } \quad \forall y \hbox{:} \ y \Vdash \varphi \Rightarrow x \sqcup y \Vdash \psi$$

Definition (frames and validity)

A frame $\mathfrak{F}=(S,\sqcup,\mathbf{0})$ is a semilattice (S,\sqcup) with least element $\mathbf{0}\in S$; i.e.,

- Commutative: $x \sqcup y = y \sqcup x$,
- Associative: $(x \sqcup y) \sqcup z = x \sqcup (y \sqcup z)$,
- · Idempotent: $x \sqcup x = x$.
- Identity (least element): $x \sqcup 0 = x$

Definition (language and semantics)

The language is given by

$$\varphi ::= p \mid \varphi \wedge \varphi \mid \varphi \vee \varphi \mid \varphi \rightarrow \varphi.$$

and the semantics of $'\rightarrow '$ is:

$$x \Vdash \varphi \to \psi \quad \text{ iff } \quad \forall y \hbox{:} \ y \Vdash \varphi \Rightarrow x \sqcup y \Vdash \psi$$

Definition (frames and validity)

A frame $\mathfrak{F}=(S,\sqcup,\mathbf{0})$ is a semilattice (S,\sqcup) with least element $\mathbf{0}\in S$; i.e.,

- Commutative: $x \sqcup y = y \sqcup x$,
- Associative: $(x \sqcup y) \sqcup z = x \sqcup (y \sqcup z)$,
- · Idempotent: $x \sqcup x = x$.
- Identity (least element): $x \sqcup \mathbf{0} = x$.

Definition (language and semantics)

The language is given by

$$\varphi ::= p \mid \varphi \wedge \varphi \mid \varphi \vee \varphi \mid \varphi \rightarrow \varphi.$$

and the semantics of $'\rightarrow '$ is:

$$x \Vdash \varphi \to \psi \quad \text{ iff } \quad \forall y \hbox{:} \ y \Vdash \varphi \Rightarrow x \sqcup y \Vdash \psi$$

Definition (frames and validity)

A frame $\mathfrak{F}=(S,\sqcup,\mathbf{0})$ is a semilattice (S,\sqcup) with least element $\mathbf{0}\in S$; i.e.,

- Commutative: $x \sqcup y = y \sqcup x$,
- Associative: $(x \sqcup y) \sqcup z = x \sqcup (y \sqcup z)$,
- Idempotent: $x \sqcup x = x$.
- Identity (least element): $x \sqcup \mathbf{0} = x$.

Equivalently, it is a partial order with all binary joins and a least element.

Finally, a formula φ is valid iff $\mathfrak{M}, \mathbf{0} \Vdash \varphi$ for all models \mathfrak{M}

Definition (language and semantics)

The language is given by

$$\varphi ::= p \mid \varphi \wedge \varphi \mid \varphi \vee \varphi \mid \varphi \rightarrow \varphi.$$

and the semantics of ' \rightarrow ' is:

$$x \Vdash \varphi \to \psi \quad \text{ iff } \quad \forall y \hbox{:} \ y \Vdash \varphi \Rightarrow x \sqcup y \Vdash \psi$$

Definition (frames and validity)

A frame $\mathfrak{F}=(S,\sqcup,\mathbf{0})$ is a semilattice (S,\sqcup) with least element $\mathbf{0}\in S$; i.e.,

- Commutative: $x \sqcup y = y \sqcup x$,
- Associative: $(x \sqcup y) \sqcup z = x \sqcup (y \sqcup z)$,
- · Idempotent: $x \sqcup x = x$.
- Identity (least element): $x \sqcup \mathbf{0} = x$.

Problem of concern: Is S's validity problem decidable?

But first: why is this interesting?

Setting

- S was introduced by Urquhart (1972, 1973).
- It's a close relative of **R** and its positive reduct $\mathbf{R}^+ = \mathbf{R}_{\{\wedge,\vee,\to\}}$.
 - In fact, $\mathbf{S}_{\{\wedge, \to\}} = \mathbf{R}_{\{\wedge, \to\}}$.
- Relevant logics are substructural logics, thus sharing close affinities with, e.g., linear logic.
 - For instance, R⁺ is positive linear logic + distribution of additive connectives + contraction.
 - As a rule of thumb: linear logics + contraction = relevant logics

- If we restrict to hereditary valuations, we obtain positive intuitionistic logic, which is decidable.
- Omitting disjunction, the logic $\mathbf{S}_{\{\wedge,\to\}}$ is decidable.
- \cdot **S** is closely connected to positive relevant \mathbf{R}^+ , which is undecidable.
 - This, among more, was shown by Urquhart (1984), but S eluded these techniques.
 - Eventually, this led Urquhart (2016) to conjecture that ${f S}$ is decidable

Setting

- S was introduced by Urquhart (1972, 1973).
- It's a close relative of \mathbf{R} and its positive reduct $\mathbf{R}^+ = \mathbf{R}_{\{\wedge,\vee,\to\}}$.
 - In fact, $\mathbf{S}_{\{\wedge, \to\}} = \mathbf{R}_{\{\wedge, \to\}}$.
- Relevant logics are substructural logics, thus sharing close affinities with, e.g., linear logic.
 - For instance, R⁺ is positive linear logic + distribution of additive connectives + contraction
 - As a rule of thumb: linear logics + contraction = relevant logics

- If we restrict to hereditary valuations, we obtain positive intuitionistic logic, which is decidable.
- Omitting disjunction, the logic $\mathbf{S}_{\{\wedge, \to\}}$ is decidable
- \cdot ${f S}$ is closely connected to positive relevant ${f R}^+$, which is undecidable.
 - This, among more, was shown by Urquhart (1984), but **S** eluded these techniques.
 - Eventually, this led Urquhart (2016) to conjecture that ${f S}$ is

Setting

- S was introduced by Urquhart (1972, 1973).
- It's a close relative of \mathbf{R} and its positive reduct $\mathbf{R}^+ = \mathbf{R}_{\{\wedge,\vee,\to\}}$.
 - In fact, $\mathbf{S}_{\{\wedge, \to\}} = \mathbf{R}_{\{\wedge, \to\}}.$
- Relevant logics are substructural logics, thus sharing close affinities with, e.g., linear logic.
 - For instance, R⁺ is positive linear logic + distribution of additive connectives + contraction.
 - As a rule of thumb: linear logics + contraction = relevant logics

- If we restrict to hereditary valuations, we obtain positive intuitionistic logic, which is decidable.
- Omitting disjunction, the logic $\mathbf{S}_{\{\wedge,\to\}}$ is decidable.
- \cdot ${f S}$ is closely connected to positive relevant ${f R}^+$, which is undecidable.
 - This, among more, was shown by Urquhart (1984), but **S** eluded these techniques.
 - Eventually, this led Urquhart (2016) to conjecture that ${f S}$ is decidable

Setting

- S was introduced by Urquhart (1972, 1973).
- It's a close relative of \mathbf{R} and its positive reduct $\mathbf{R}^+ = \mathbf{R}_{\{\wedge,\vee,\to\}}$.
 - In fact, $\mathbf{S}_{\{\wedge, \to\}} = \mathbf{R}_{\{\wedge, \to\}}.$
- Relevant logics are substructural logics, thus sharing close affinities with, e.g., linear logic.
 - For instance, R⁺ is positive linear logic + distribution of additive connectives + contraction.
 - As a rule of thumb: linear logics + contraction = relevant logics.

- If we restrict to hereditary valuations, we obtain positive intuitionistic logic, which is decidable.
- Omitting disjunction, the logic $\mathbf{S}_{\{\wedge,\to\}}$ is decidable.
- \cdot $\, {f S}$ is closely connected to positive relevant ${f R}^+$, which is undecidable.
 - This, among more, was shown by Urquhart (1984), but **S** eluded these techniques.
 - Eventually, this led Urquhart (2016) to conjecture that ${f S}$ is decidable

Setting

- S was introduced by Urquhart (1972, 1973).
- It's a close relative of \mathbf{R} and its positive reduct $\mathbf{R}^+ = \mathbf{R}_{\{\wedge,\vee,\to\}}$.
 - In fact, $\mathbf{S}_{\{\wedge, \to\}} = \mathbf{R}_{\{\wedge, \to\}}$.
- Relevant logics are substructural logics, thus sharing close affinities with, e.g., linear logic.
 - For instance, R⁺ is positive linear logic + distribution of additive connectives + contraction.
 - As a rule of thumb: linear logics + contraction = relevant logics.

- If we restrict to hereditary valuations, we obtain positive intuitionistic logic, which is decidable.
- Omitting disjunction, the logic $\mathbf{S}_{\{\wedge,\to\}}$ is decidable.
- \cdot **S** is closely connected to positive relevant \mathbf{R}^+ , which is undecidable.
 - This, among more, was shown by Urquhart (1984), but **S** eluded these techniques.
 - Eventually, this led Urquhart (2016) to conjecture that **S** is decidable

Setting

- S was introduced by Urquhart (1972, 1973).
- It's a close relative of \mathbf{R} and its positive reduct $\mathbf{R}^+ = \mathbf{R}_{\{\wedge,\vee,\to\}}$.
 - In fact, $\mathbf{S}_{\{\wedge, \to\}} = \mathbf{R}_{\{\wedge, \to\}}$.
- Relevant logics are substructural logics, thus sharing close affinities with, e.g., linear logic.
 - For instance, R⁺ is positive linear logic + distribution of additive connectives + contraction.
 - As a rule of thumb: linear logics + contraction = relevant logics.

- If we restrict to hereditary valuations, we obtain positive intuitionistic logic, which is decidable.
- Omitting disjunction, the logic $\mathbf{S}_{\{\wedge,\to\}}$ is decidable.
- \cdot $\, {f S}$ is closely connected to positive relevant ${f R}^+$, which is undecidable.
 - This, among more, was shown by Urquhart (1984), but **S** eluded these techniques.
 - Eventually, this led Urquhart (2016) to conjecture that ${f S}$ is decidable

Setting

- S was introduced by Urquhart (1972, 1973).
- It's a close relative of \mathbf{R} and its positive reduct $\mathbf{R}^+ = \mathbf{R}_{\{\wedge,\vee,\to\}}$.
 - In fact, $\mathbf{S}_{\{\wedge, \to\}} = \mathbf{R}_{\{\wedge, \to\}}$.
- Relevant logics are substructural logics, thus sharing close affinities with, e.g., linear logic.
 - For instance, R⁺ is positive linear logic + distribution of additive connectives + contraction.
 - As a rule of thumb: linear logics + contraction = relevant logics.

- If we restrict to hereditary valuations, we obtain positive intuitionistic logic, which is decidable.
- Omitting disjunction, the logic $\mathbf{S}_{\{\wedge, \to\}}$ is decidable.
- \cdot ${f S}$ is closely connected to positive relevant ${f R}^+$, which is undecidable.
 - This, among more, was shown by Urquhart (1984), but **S** eluded these techniques.
 - Eventually, this led Urquhart (2016) to conjecture that ${f S}$ is decidable

Setting

- S was introduced by Urquhart (1972, 1973).
- It's a close relative of \mathbf{R} and its positive reduct $\mathbf{R}^+ = \mathbf{R}_{\{\wedge,\vee,\to\}}$.
 - In fact, $\mathbf{S}_{\{\wedge, \to\}} = \mathbf{R}_{\{\wedge, \to\}}.$
- Relevant logics are substructural logics, thus sharing close affinities with, e.g., linear logic.
 - For instance, R⁺ is positive linear logic + distribution of additive connectives + contraction.
 - As a rule of thumb: linear logics + contraction = relevant logics.

- If we restrict to hereditary valuations, we obtain positive intuitionistic logic, which is decidable.
- Omitting disjunction, the logic $\mathbf{S}_{\{\wedge,\to\}}$ is decidable.
- \cdot **S** is closely connected to positive relevant \mathbf{R}^+ , which is undecidable.
 - This, among more, was shown by Urquhart (1984), but **S** eluded these techniques.
 - Eventually, this led Urquhart (2016) to conjecture that ${f S}$ is decidable

Setting

- S was introduced by Urquhart (1972, 1973).
- · It's a close relative of \mathbf{R} and its positive reduct $\mathbf{R}^+ = \mathbf{R}_{\{\wedge,\vee,\to\}}$.
 - In fact, $\mathbf{S}_{\{\wedge, \to\}} = \mathbf{R}_{\{\wedge, \to\}}.$
- Relevant logics are substructural logics, thus sharing close affinities with, e.g., linear logic.
 - For instance, R⁺ is positive linear logic + distribution of additive connectives + contraction.
 - As a rule of thumb: linear logics + contraction = relevant logics.

- If we restrict to hereditary valuations, we obtain positive intuitionistic logic, which is decidable.
- Omitting disjunction, the logic $\mathbf{S}_{\{\wedge, \to\}}$ is decidable.
- \cdot **S** is closely connected to positive relevant \mathbf{R}^+ , which is undecidable.
 - This, among more, was shown by Urquhart (1984), but ${f S}$ eluded these techniques.
 - Eventually, this led Urquhart (2016) to conjecture that ${f S}$ is decidable

Overarching theme: Understanding the decidability/undecidability boundary in the

realm of substructural logics.

- A (Wang) tile is a square with colors on each side
- The tiling problem: given any finite set of tiles \mathcal{W} , determine whether each point in the quadrant \mathbb{N}^2 can be assigned a tile from \mathcal{W} such that neighboring tiles share matching colors on connecting sides.

• The tiling problem was introduced by Wang (1963) and proven

undecidable by Berger (1966).

Figure 1: Wang tiles

Figure 2: A tiling of the plane

- A (Wang) tile is a square with colors on each side.
- The tiling problem: given any finite set of tiles \mathcal{W} , determine whether each point in the quadrant \mathbb{N}^2 can be assigned a tile from \mathcal{W} such that neighboring tiles share matching colors on connecting sides.
- The tiling problem was introduced by Wang (1963) and proven

Figure 1: Wang tiles

Figure 2: A tiling of the plane

- A (Wang) tile is a square with colors on each side.
- The tiling problem: given any finite set of tiles \mathcal{W} , determine whether each point in the quadrant \mathbb{N}^2 can be assigned a tile from \mathcal{W} such that neighboring tiles share matching colors on connecting sides.
- The tiling problem was introduced by Wang (1963) and proven undecidable by Berger (1966).

Figure 1: Wang tiles

Figure 2: A tiling of the plane

- A (Wang) tile is a square with colors on each side.
- The tiling problem: given any finite set of tiles \mathcal{W} , determine whether each point in the quadrant \mathbb{N}^2 can be assigned a tile from \mathcal{W} such that neighboring tiles share matching colors on connecting sides.
- The tiling problem was introduced by Wang (1963) and proven undecidable by Berger (1966).

Figure 1: Wang tiles

Figure 2: A tiling of the plane

Main theorem

Theorem

S is undecidable.

Proof idea.

For each finite set of tiles \mathcal{W} , we construct a formula $\psi_{\mathcal{W}}$ such that \mathcal{W} tiles the quadrant if and only if $\psi_{\mathcal{W}}$ is refutable.

9

Guide to paper: The conference paper also contains a proof that **S** lacks the FMP. If interested, I recommend reading this first, as it is considerably simpler than the undecidability proof, yet effectively illustrates some of the same key ideas.

- S is undecidable.
 - · Proven via tiling
 - Themes of undecidability proof echoed in the simpler no-FMP proof
- Similar ideas recently applied to solve open problems in the area of modal and temporal logics.¹
- Future work includes decision problems in the vicinity of linear logic, separation logic, and relevant logic.
 - For instance, is 'contraction-free' S decidable?

¹including the longstanding open problem of the decidability of hyperboolean modal logic, as posed by Goranko and Vakarelov (1999).

Guide to paper: The conference paper also contains a proof that **S** lacks the FMP. If interested, I recommend reading this first, as it is considerably simpler than the undecidability proof, yet effectively illustrates some of the same key ideas.

- S is undecidable
 - · Proven via tiling
 - Themes of undecidability proof echoed in the simpler no-FMP proof
- Similar ideas recently applied to solve open problems in the area of modal and temporal logics.¹
- Future work includes decision problems in the vicinity of linear logic, separation logic, and relevant logic.
 - For instance, is 'contraction-free' S decidable?

¹including the longstanding open problem of the decidability of hyperboolean modal logic, as posed by Goranko and Vakarelov (1999).

Guide to paper: The conference paper also contains a proof that \mathbf{S} lacks the FMP. If interested, I recommend reading this first, as it is considerably simpler than the undecidability proof, yet effectively illustrates some of the same key ideas.

- S is undecidable.
 - · Proven via tiling
 - Themes of undecidability proof echoed in the simpler no-FMP proof
- Similar ideas recently applied to solve open problems in the area of modal and temporal logics.¹
- Future work includes decision problems in the vicinity of linear logic, separation logic, and relevant logic.
 - For instance, is 'contraction-free' S decidable?

¹including the longstanding open problem of the decidability of hyperboolean modal logic, as posed by Goranko and Vakarelov (1999).

Guide to paper: The conference paper also contains a proof that **S** lacks the FMP. If interested, I recommend reading this first, as it is considerably simpler than the undecidability proof, yet effectively illustrates some of the same key ideas.

- S is undecidable.
 - · Proven via tiling
 - Themes of undecidability proof echoed in the simpler no-FMP proof
- Similar ideas recently applied to solve open problems in the area of modal and temporal logics.¹
- Future work includes decision problems in the vicinity of linear logic, separation logic, and relevant logic.
 - For instance, is 'contraction-free' S decidable?

¹including the longstanding open problem of the decidability of hyperboolean modal logic, as posed by Goranko and Vakarelov (1999).

Guide to paper: The conference paper also contains a proof that **S** lacks the FMP. If interested, I recommend reading this first, as it is considerably simpler than the undecidability proof, yet effectively illustrates some of the same key ideas.

- S is undecidable.
 - · Proven via tiling
 - Themes of undecidability proof echoed in the simpler no-FMP proof
- Similar ideas recently applied to solve open problems in the area of modal and temporal logics.¹
- Future work includes decision problems in the vicinity of linear logic, separation logic, and relevant logic.
 - For instance, is 'contraction-free' S decidable?

¹including the longstanding open problem of the decidability of hyperboolean modal logic, as posed by Goranko and Vakarelov (1999).

Guide to paper: The conference paper also contains a proof that **S** lacks the FMP. If interested, I recommend reading this first, as it is considerably simpler than the undecidability proof, yet effectively illustrates some of the same key ideas.

- · S is undecidable.
 - · Proven via tiling
 - Themes of undecidability proof echoed in the simpler no-FMP proof
- Similar ideas recently applied to solve open problems in the area of modal and temporal logics.¹
- Future work includes decision problems in the vicinity of linear logic, separation logic, and relevant logic.
 - For instance, is 'contraction-free' S decidable?

¹including the longstanding open problem of the decidability of hyperboolean modal logic, as posed by Goranko and Vakarelov (1999).

References I

- Berger, R. (1966). *The undecidability of the domino problem*. English. Vol. 66. Mem. Am. Math. Soc. Providence, RI: American Mathematical Society (AMS). DOI: 10.1090/memo/0066 (cit. on pp. 20–23).
- Goranko, V. and D. Vakarelov (1999). "Hyperboolean Algebras and Hyperboolean Modal Logic". In: Journal of Applied Non-Classical Logics 9.2-3, pp. 345–368. DOI: 10.1080/11663081.1999.10510971 (cit. on pp. 25–30).
- Urquhart, A. (1972). "Semantics for relevant logics". In: Journal of Symbolic Logic 37, pp. 159 –169 (cit. on pp. 10–18).
- (1973). "The Semantics of Entailment". PhD thesis. University of Pittsburgh (cit. on pp. 10–18).

References II

- Urquhart, A. (1984). "The undecidability of entailment and relevant implication". In: Journal of Symbolic Logic 49, pp. 1059 –1073 (cit. on pp. 10–18).
- (2016). "Relevance Logic: Problems Open and Closed". In: The Australasian Journal of Logic 13 (cit. on pp. 10–18).
- Wang, H. (1963). **"Dominoes and the** ∀∃∀ **case of the decision problem".** In: *Mathematical Theory of Automata*, pp. 23–55 (cit. on pp. 20–23).
- Weiss, Y. (2021). "A Conservative Negation Extension of Positive Semilattice Logic Without the Finite Model Property". In: Studia Logica 109, pp. 125–136 (cit. on p. 35).

Theorem

Given any logic whose language contains $\{\land,\lor,\to\}$, if its $\{\land,\lor,\to\}$ -reduct extends $\mathbf S$ and is valid on $(\mathcal P(\mathbb N),\cup,\varnothing)$, then it is undecidable. In particular, $\mathbf S$ is undecidable.

Proof idea.

For each finite set of tiles \mathcal{W} , we construct a formula $\psi_{\mathcal{W}}$ such that \mathcal{W} tiles the quadrant if and only if $\psi_{\mathcal{W}}$ is refutable.

Lemma

If $\psi_{\mathcal{W}}$ is refutable (in a semilattice), then \mathcal{W} tiles \mathbb{N}^2 .

Lemma

If W tiles \mathbb{N}^2 , then $\psi_{\mathcal{W}}$ is refutable (in $(\mathcal{P}(\mathbb{N}), \cup, \varnothing)$).

Relevant S is undecidable: Proof idea

Theorem: S is undecidable.

We cover the no-FMP proof instead, since it is considerably simpler than the undecidability proof, yet effectively illustrates some of the same key ideas.²

Theorem: S lacks the FMP.

Proof. We show that the formula ψ_{∞} from the paper only is refuted by infinite models.

Refuting model $x_0 \sqcup x_1 \sqcup x_2 \sqcup x_3 \Vdash e$ $x_0 \sqcup x_1 \sqcup x_2 \Vdash o x_3 \Vdash o$ $x_0 \sqcup x_1 \Vdash e \quad x_2 \Vdash e$ $x_0 \Vdash o$ $x_1 \Vdash o$

¹ Additionally, it addresses an open problem (as recently raised in Weiss 2021)