COMP/PHYS 447 Midterm Formulas

Single Qubits

$$|v\rangle = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \langle v| = (\overline{a_1} \dots \overline{a_n}) v \text{ and } v^{\dagger} \text{ are also}$$

very similar to these two on top as well.

Probability of passing through filter

 $(\hat{p} * \hat{P})^2$ Where \hat{p} is the polarization of **photon** and \hat{P} is the orientation of **polaroid**

Linear independence

- No linear combination of one another

Spherical Coordinates

 $x = r \sin \theta \cos \phi \ y = r \sin \theta \sin \phi \ z = r \cos \theta$

Inner Product

1.
$$|A\rangle = c_1 |v_1\rangle + c_2 |v_2\rangle \implies \langle B|A\rangle = c_1 \langle B|v_1\rangle + |-|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) - |--\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

2. $\langle A|B\rangle = \langle B|A\rangle^*$
3. $\langle A|A\rangle \ge 0$ unless $|A\rangle = 0$ then $\langle A|A\rangle = 0$ $-|i\rangle = \frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$

2.
$$\langle A|B\rangle = \langle B|A\rangle$$

3.
$$\langle A|A\rangle \geq 0$$
 unless $|A\rangle = 0$ then $\langle A|A\rangle = 0$

Normalization

Any basis has two orthogonal UNIT vector:

Given $|v\rangle = \alpha |u\rangle + \beta |u^{\perp}\rangle$, the normalized Vector MUST: $\langle v|v\rangle = |\alpha|^2 + |\beta|^2 = 1$

Given some orthonormal $|v\rangle$ then, $\langle e_i|v\rangle = 0+0+\cdots+$ $c_i + \dots + 0 = c_i$

Given some sort of projection, say $Proj_{|\Psi\rangle} = a|0\rangle \otimes$ $|0\rangle + c|1\rangle \otimes |0\rangle$ then we can get the following normalized version of it:

$$\frac{1}{\sqrt{|a|^2+|c|^2}}(a|0\rangle\otimes|0\rangle+c|1\rangle\otimes|0\rangle)$$

Giving us the probability of: $|a|^2 + |b|^2$

Euler's Identity

 $e^{i\theta} = \cos\theta + i\sin\theta$

Bloch Sphere

– X-axis
$$\rightarrow |-\rangle \& |+\rangle$$

$$- |+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$
$$- |-\rangle - \frac{1}{2}(|0\rangle - |1\rangle)$$

- Y-axis
$$\rightarrow |-i\rangle \& |i\rangle$$

$$-|i\rangle = \frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$$

$$- |-i\rangle = \frac{1}{\sqrt{2}}(|0\rangle - i|1\rangle)$$

- Z-axis
$$\rightarrow |0\rangle \& |1\rangle$$

Quantum Gates & Multi-qubit systems

X Gate:
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 Y Gate: $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

Z Gate:
$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 CNOT: $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$

 $CNOT \rightarrow Similar to XOR gate, if x is 0 then y will$ remain the same, if x is 1 then y will flip

Toffoli \rightarrow A CNOT that has two control qubits and one target, where the third qubits output is: $|q_3 \oplus q_1 q_2\rangle$ $A \oplus (A \oplus B) = B$

Tensor Product

$$(|u\rangle + |v\rangle) \otimes (|w\rangle + |x\rangle) = \text{normal distribution}$$

 $(\langle u| + \langle v|) \otimes (|w\rangle + |x\rangle) = \langle u|w\rangle + \langle v|x\rangle$

Bell State

$$|\phi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$