Crypto III

Kuruwa

ToC

- Digital Signature
- Hash
- Lattices

Motivation

- Bob orders an RTX-3090 from Alice
- After seeing the RTX-3090, Bob states that he has never ordered it
- How can Alice prove towards a judge that Bob has ordered an RTX-3090? (And that she did not fabricate the order herself)
 - Symmetric cryptography fails because both Alice and Bob can be malicious
 - Can be achieved with public-key cryptography

Digital Siganture

Main Idea

- For a given message x, a digital signature is appended to the message (just like a conventional signature)
- Only the person with the private key should be able to generate the signature
- The signature must change for every document
 - The signature is realized as a function with the message x and the private key as input
 - The public key and the message x are the inputs to the verification function

Objectives

- Integrity
 - O Ensures that a message has not been modified in transit.
- Message Authentication
 - Ensures that the sender of a message is authentic. An alternative term is data origin authentication.
- Non-repudiation
 - Ensures that the sender of a message can not deny the creation of the message. (e.x. order of a GPU)

RSA Signature

- To generate the signature
 - O Sign (encrypt) the message x with the private key

$$s = sig_{Kpr}(x) = x^d \mod n$$

- O Append s to message x
- To verify the signature
 - O Verify (decrypt) the signature with the public key

$$x' = ver_{Koub}(s) = s^e mod n$$

 \circ If x = x', the signature is valid

RSA Signature Protocol

 $x' = s^e \mod n$

if $x' = x \rightarrow valid$

if $x' \neq x \rightarrow invalid$

$$k_{pub} = (n, e)$$

 $k_{pr} = d$

$$s = x^d \mod n$$

Existential Forgery

(x, s)

Choose signature $s \in \mathbb{Z}_n$ \rightleftharpoons Compute message $x = s^e \mod n$

(n, e)

k_{pub} = (n, e) k_{pr} = d

Verification:

$$x' = s^e = x \mod n$$

 \rightarrow Signature is valid

Existential Forgery

- An attacker can generate valid message-signature pairs (x, s)
- But an attack can only choose the signature s and NOT the message x
- Formatting the message x according to a **padding scheme** can be used to make sure that an attacker cannot generate valid (x, s) pairs

Digital Signature Algorithm (DSA)

- Key generation of DSA:
 - O Generate a prime p with 2^{1023} 2^{1024}
 - \circ Find a prime divisor q of p 1 with 2 159 < q < 2^{160}
 - \circ Find an integer α with $or (\pi \alpha) = q$
 - \blacksquare $\alpha = q^{(p-1)/q} \neq 1 \mod p$
 - Choose a random integer d with 0 < d < q
 - \circ Compute $\beta = \alpha^d \mod p$
- The keys are: $k_{pub} = (p, q, \alpha, \beta)$ and $k_{pr} = (d)$

Digital Signature Algorithm (DSA)

- Signature (message: H < q)
 - \circ Choose an integer $k_{_{\rm E}}$ as a random ephemeral key with $0 < k_{_{\rm E}} < q$
 - O Compute $r = (\alpha^{k_E} \mod p) \mod q$

- \circ Compute $s = k_{\pi}^{-1}(H + d \times r) \mod q$
 - In practice, H is hash of the message
- Verification
 - \circ Compute auxiliary value $u_1 = s^{-1} \times H \mod q$
 - \circ Compute auxiliary value u $_{\circ}$ = s $^{-1}$ imes r mod q
 - \circ Compute $v = (\alpha^{u_1} \times \beta^{u_2} \mod p) \mod q$
 - \blacksquare if $v = r \rightarrow siganature$ is valid
 - \blacksquare if $v \neq r \rightarrow signature is invalid$

Correctness

$$s = (H + d \times r) k_{E}^{-1} \mod q$$

$$\Leftrightarrow k_{E} = s^{-1} \times H + d(s^{-1} \times r) \mod q$$

$$\Leftrightarrow k_{E} = u_{1} + du_{2} \mod q$$

$$\Leftrightarrow \alpha^{k_{E}} \mod p = \alpha^{u_{1} + du_{2}} \mod p$$

$$\Leftrightarrow (\alpha^{k_{E}} \mod p) \mod q = (\alpha^{u_{1}} \times \beta^{u_{2}} \mod p) \mod q$$

$$\Leftrightarrow r = s$$

Security

 DSA can achieve same security level as RSA scheme with less siganture length

р	q	length	security
1024	160	320	80
2048	224	448	112
3072	256	512	128

ECDSA

- Key generation of ECDSA:
 - O Find a generator G on an elliptic curve E with prime order n
 - Choose a random integer d with 0 < d < n</p>
 - Compute P = dG
- The keys are: $k_{pub} = (E, G, n, P)$ and $k_{pr} = (d)$
 - O Shorter private key and higher speed than DSA

ECDSA

- Signature (message: H < n)
 - \circ Choose an integer $k_{_{
 m E}}$ as a random ephemeral key with 0 < $k_{_{
 m E}}$ < n
 - \circ Calculate the curve point $(x_1, y_1) = k_F \times G$
 - \circ Compute $r = x_1 \mod n$
 - \circ Compute $s = k_F^{-1}(H + d \times r) \mod n$
- Verification
 - \circ Compute auxiliary value $u_1 = s^{-1} \times H \mod n$
 - \circ Compute auxiliary value $u_2 = s^{-1} \times r \mod n$
 - \circ Compute $(x_1, y_1) = u_1G + u_2P$
 - if $x_1 = r \mod n \rightarrow signature is valid$
 - if $x_1 \neq r \mod n \rightarrow signature is invalid$

Sensitivity

- The entropy of the random value k_{E} are critical
- Example: sign two different messages, $k_1 = k_2$

```
\circ k_1 = s_1^{-1}H_1 + d(s_1^{-1}r_1) \mod q
```

$$\circ$$
 $k_2 = s_2^{-1}H_2 + d(s_2^{-1}r_2) \mod q$

$$\circ d = (s_1^{-1}H_1 - s_2^{-1}H_2) / (s_2^{-1}r_2 - s_1^{-1}r_1)$$

Hash

Hash - Motivation

• Naive signing of long messages generates a signature of same length.

- Solution
 - Instead of signing the whole message, sign only a digest (hash)

Digital Signature with Hash Function

Avalanche Effect

Security Properties

- Pre-image resistance
 - For a given output z, it is computationally infeasible to find any input x such that h(x) = z
- Second pre-image resistance
 - O Given x_1 , and thus $h(x_1)$, it is computationally infeasible to find any x_2 such that $h(x_1) = h(x_2)$
- Collision resistance
 - It is computationally infeasible to find any pairs $x_1 \neq x_2$ such that $h(x_1) = h(x_2)$

Birthday Paradox

- How hard is it to find a collision with a probability of 0.5?
- Related problem: How many people are needed such that two of them have the same birthday with a probability of 0.5?
- Far fewer than 365/2 = 182.5! This is called the birthday paradox (Search takes $\approx \sqrt{n}$ steps)
- To deal with this paradox, hash functions need a output size of at least 160 bits

SHA-1 Collision

- In 2017 Google presented 2 PDF files that display different content, yet have the same SHA-1 digest.
 - o Took about 2⁶³ SHA1 computations

Merkle-Damgård construction

• Used in the design of many popular hash algorithms such as MD5, SHA-1 and SHA-2

Length Extension Attack

 When a Merkle-Damgård based hash is misused as a message authentication code with construction

H(salt | message)

• If message and the length of salt is known, we can include extra information and forge a valid hash

Length Extension Attack

- Continue calculating hash after appending extra message
- New plaintext is message | padding | append

HashPump

new hash

messsage

new

CRC32, MD5, SHA1, SHA256 and SHA512 support

Lattices

Lattices

- Let \mathbf{v}_1 , \mathbf{v}_2 , ..., $\mathbf{v}_n \in \mathbb{R}^m$ be a set of linearly independent vectors
- The **lattice** L generated by \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_n is the set of linear combinations with coefficients in \mathbb{Z} ,

$$L = \{a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + ... + a_n \mathbf{v}_n \mid a_1, a_2, ..., a_n \in \mathbb{Z}\}$$

Shortest Vector Problem (SVP)

- The basis of lattice is not unique
- Given a basis of L, find the shortest vector in L
 SVP is NP-hard

A Congruential PKC

- A toy model of a real public key cryptosystem is described
- It turns out to have an unexpected connection with lattices of dimension 2
- An example of how lattices may appear in cryptanalysis even when the underlying hard problem appears to have nothing to do with lattices

Key Creation

- Alice chooses a large positive integer q as public parameter, and two other secret positive integers f and g, satisfying
 - \circ f $< \sqrt{{
 m q}/{
 m 2}}$, $\sqrt{{
 m q}/{
 m 4}}$ < g $< \sqrt{{
 m q}/{
 m 2}}$, and gcd(f , qg) = 1
- Then Alice compute $h \equiv f^{-1}g \pmod{q}$, with 0 < h < q
- Public key: (q, h)
- Secret key: (f, g)

Encryption

- To send a message m, Bob chooses a random integer r, with
 - \circ 0 < m < $\sqrt{{
 m q}/4}$
 - \circ 0 < r < $\sqrt{q/2}$
- The ciphertext is $e \equiv rh + m \pmod{q}$, with 0 < e < q

Decryption

• Alice decrypts ciphertext e by computing

```
o a \equiv fe (mod q)
o b \equiv f<sup>-1</sup>a (mod g)
```

• Then b is the plaintext m

Correctness

- $a \equiv fe \equiv f(rh + m) \equiv frf^{-1}g + fm \equiv rg + fm \pmod{q}$
- The size restrictions on f, g, r, m imply that

$$rg + fm < \sqrt{\frac{q}{2}}\sqrt{\frac{q}{2}} + \sqrt{\frac{q}{2}}\sqrt{\frac{q}{4}} < q$$

- So Alice can get the exact value a = rg + fm
- Then Alice computes

$$b \equiv f^{-1}a \equiv f^{-1}(rg + fm) \equiv f^{-1}fm \equiv m \pmod{g}$$

• Since m < $\sqrt{q/4}$ < g, it follows that b = m

Overall Process

Choose m < $\sqrt{q/4}$ Choose r < $\sqrt{q/2}$ Compute e \equiv rh + m(modq)

(q, h) e Choose a modulus q Choose f, g with restrictions Compute $h \equiv f^{-1}g \pmod{q}$

Compute $a \equiv fe \pmod{q}$ Compute $b \equiv f^{-1}a \pmod{g}$ Then b is the plaintext m

Example

```
• Alice chooses
    \circ q = 122430513841
    o f = 231231 ≈ 0.66\sqrt{q}
    o q = 195698 \approx 0.56 \sqrt{q}

    Alice computes

    \circ f<sup>-1</sup> = 49194372303 (mod q)
    \circ h = f<sup>-1</sup>q = 39245579300 (mod q)
• Public key: (q, h) = (122430513841, 39245579300)
  Bob chooses
      message m = 123456
      random value r = 101010
• Bob computes ciphertext e = rh + m = 18357558717 \pmod{q}
   To decrypt, Alice computes
    \circ a = fe = 48314309316 (mod q)
```

o $b = f^{-1}a = 193495 \times 48314309316 = 123456 = m \pmod{g}$

Cryptanalysis

- Brute-force search: O(q) operations
- If attacker can find any pair of positive integers F and G s.t.
 - \circ Fh \equiv G (mod q)
 - \circ F, G = $O(\sqrt{q})$

then (F, G) is likely to serve as a decryption key

 Rewriting Fh = G + qR, we reformulate Eve's task as that of finding a pair of comparatively small integers (F, G) with

unknown integers F(1,h) - R(0,q) = (F,G) f(1,h) - R(0,q) = (F,G)

Cryptanalysis (cont.)

- Thus attacker knows two vectors $\mathbf{v}_1 = (1, h)$ and $\mathbf{v}_2 = (0, q)$, both of length O(q)
- Attacker wants to find a linear combination $w = av_1 + a_2v_2$ such that w has length $O(\sqrt{q_1^2})$
- This corresponds to find a short nonzero vector in the set

$$L = \{a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 : a_1, a_2 \in \mathbb{Z}\}$$

- This set L is an example of a two-dimensional lattice
- Unfortunately for Bob and Alice, there is an extremely rapid method for finding short vectors in two-dimensional lattices

Gaussian Lattice Reduction

- Suppose that L \subset \mathbb{R}^2 is a 2-dimensional lattice with basis vectors \mathbf{v}_1 , \mathbf{v}_2 May assume $\|\mathbf{v}_1\| < \|\mathbf{v}_2\|$
- ullet If allowed to subtract any multiple of ${f v}_{_1}$, then replace ${f v}_{_2}$ with the vector

$$v_2^* = v_2 - \frac{v_1 \cdot v_2}{\|v_1\|^2} v_1$$

- \circ \mathbf{v}_{2}^{*} is orthogonal to \mathbf{v}_{1}
- \circ But \mathbf{v}_{2}^{*} is unlikely to be in L
- ullet So the best is to replace ${f v}_2$ with the vector ${f v}_2$ m ${f v}_1$ with

$$m = \left| \frac{v_1 \cdot v_2}{\|v_1\|^2} \right| =$$

Gaussian Lattice Reduction (cont.)

- If $\|\mathbf{v}_1\| < \|\mathbf{v}_2\|$, then stop
- ullet Otherwise, swap ${f v}_{_1}$ and ${f v}_{_2}$ and repeat the process

- When the algorithm terminates
 - \circ The vector $\mathbf{v}_{_1}$ is a shortest nonzero vector in L
 - The algorithm solves SVP

Lenstra-Lenstra-Lovász Algorithm (LLL)

- Given a lattice L, LLL solves approximated SVP in polynomial time
- The shortest vector \mathbf{v} it found satisfies $\|\mathbf{v}\| \le 2^{(n-1)/4} |\det L|^{1/n}$
- On average, LLL achieves $\|\mathbf{v}\| \le 1.02^{n} |\det L|^{1/n}$

```
INPUT
        a lattice basis \mathbf{b}_0, \mathbf{b}_1, \dots, \mathbf{b}_n \in \mathbb{Z}^m
        a parameter \delta with \frac{1}{4} < \delta < 1, most commonly \delta = \frac{3}{4}
        \mathbf{B}^* \leftarrow \operatorname{GramSchmidt}(\{\mathbf{b}_0, \dots, \mathbf{b}_n\}) = \{\mathbf{b}_0^*, \dots, \mathbf{b}_n^*\}; and do not normalize
        \mu_{i,j} \leftarrow \frac{\langle \mathbf{b}_i, \mathbf{b}_j^* \rangle}{\langle \mathbf{b}_j^*, \mathbf{b}_j^* \rangle}; using the most current values of \mathbf{b}_i and \mathbf{b}_j^*
        k \leftarrow 1:
        while k \le n do
                for j from k-1 to 0 do
                      if |\mu_{k,j}| > \frac{1}{2} then
                               \mathbf{b}_k \leftarrow \mathbf{b}_k - |\mu_{k,i}| \mathbf{b}_i;
                             Update \mathbf{B}^* and the related \mu_{i,i}'s as needed.
                             (The naive method is to recompute \mathbf{B}^* whenever \mathbf{b}_i changes:
                              \mathbf{B}^* \leftarrow \operatorname{GramSchmidt}(\{\mathbf{b}_0, \dots, \mathbf{b}_n\}) = \{\mathbf{b}_0^*, \dots, \mathbf{b}_n^*\};
                       end if
                end for
               if \langle \mathbf{b}_k^*, \mathbf{b}_k^* \rangle \geq \left(\delta - \mu_{k,k-1}^2\right) \langle \mathbf{b}_{k-1}^*, \mathbf{b}_{k-1}^* 
angle then
                       k \leftarrow k + 1:
               else
                       Swap by and by 1:
                      Update \mathbf{B}^* and the related \mu_{i,j}'s as needed.
                       k \leftarrow \max(k-1,1);
                end if
        end while
       return B the LLL reduced basis of \{b_0, \ldots, b_n\}
OUTPUT
       the reduced basis \mathbf{b}_0, \mathbf{b}_1, \dots, \mathbf{b}_n \in \mathbb{Z}^m
```

Coppersmith's Method

- Input: $f(x) \in \mathbb{Z}[x]$, $N \in \mathbb{Z}$
- Output: r s.t. $f(r) \equiv 0 \mod N$
- Intermediate output: Q(x) such that Q(r) = 0 over \mathbb{Z}
 - $\bigcirc Q(x) = s(x) f(x) + t(x) N$
 - $O Q(r) \equiv 0 \mod N$ by construction
 - \circ If $|r| \le R$, then we can bound

$$|Q(r)| = |Q_3^2 r^3 + Q_2^2 r^2 + Q_1^2 r + Q_0^2|$$

$$\leq |Q_3|R^3 + |Q_2|R^2 + |Q_1|R + |Q_0|$$

- o If |Q(r)| < N and $Q(r) \equiv 0 \mod N$, then Q(r) = 0
- We want a Q in our lattice with short coefficient vector!

Coppersmith's Method

- 1. Construct a matrix of coefficient vectors of elements of $\langle f(x), N \rangle$
- 2. Run LLL algorithm on this matrix
- 3. Construct a polynomial Q from the shortest vector output
- 4. Factor Q to find its roots

Theorem (Coppersmith)

Given a polynomial f of degree d and N, we can efficiently find all roots r satisfying $f(r) \equiv 0 \mod N$ when $|r| < N^{1/d}$.

RSA - Stereotyped Messages

- Known most of the message, ex: padding
 - $\circ \quad \mathbf{m} = \mathbf{a}' + \mathbf{x}_0, \quad \mathbf{x}_0 \le \mathbf{R}$
 - o $c^{7} = m^{3} = (a + x_{0})^{3} \mod n$
- x_0 is a small root of $f(x) = (a + x)^3 c$ (mod n)
- Let the biggest digree of Q be 3
 - \circ Q(x) = $c_3(x^3 + 3ax^2 + 3a^2x + (a^3 c)) + <math>c_2Nx^2 + c_1Nx + c_0N$
 - \circ Q(x₀) \leq c₃(R³ + 3aR² + 3a²R + (a³ c)) + c₂NR² + c₁NR + c₀N

RSA - Stereotyped Messages (cont.)

• Construct lattice basis

$$\begin{bmatrix} R^3 & 3aR^2 & 3a^2R & a^3 - c \\ NR^2 & & & \\ & NR & & \\ & & N \end{bmatrix}$$

- o dim L = 4, det L = N^3R^6
- Ignoring approximation factor, we can solve when
 - \circ $|Q(x_0)| \le |\mathbf{v}| \le |\det L|^{1/4} < N$
 - $o \Rightarrow (N^3 R^6)^{1/4} < N$
 - $o \Rightarrow R < N^{1/6}$

Achieving the Coppersmith Bound

- Generate lattice from subset of $\langle f(x), N \rangle^k$
- Allow higher degree polynomials

$$(R^{21}N^9)^{1/7} < N^2 \implies R < N^{5/21}$$

RSA - Known High Bits of p

- Known large portion of MSBs of one factor
 - \circ n = pq, p = a + x₀, known a, x₀ \leq R
- x_0 is a small roots of $f(x) = a + x \pmod{p}$
- Construct $Q(x) = 0 \pmod{p}$ $Q(x) = c_1x(a + x) + c_2(a + x) + \frac{1}{N}$
 - \circ Q(x₀) \leq c₁(R² + aR) + c₂(R + a) + N

Theorem (Howgrave-Graham)

Given degree d polynomial f, integer N, we can find roots r modulo diviso \equiv B of N satisfying f(r) \equiv 0 mod B for $|B| > N^{\beta}$, when $|r| < N^{\beta 2/d}$

RSA - Known High Bits of p

• Construct lattice basis

$$\begin{bmatrix} R^2 & Ra & \\ & R & a \\ & & N \end{bmatrix}$$

- o dim L = 3, det L = NR 3
- Can find the root when
 - \circ (NR³) ^{1/3} 1/2</sup>
 - o \Rightarrow R < N^{1/6}

RSA - Partial Key Recovery

- Can factor given 1/2 bits of p [Coppersmith 96]
- Can factor given 1/4 bits of d [Boneh Durfee Frankel 98]
- Can factor given 1/2 bits of d mod (p-1) [Blömer May 03]

(EC)DSA - Known High Bits of k

- Two singature (r_1, s_1) , (r_2, s_2) , both use small nonces k
 - $\circ \quad s_1 \equiv k_1^{-1}(h_1 + dr_1) \mod n$
 - $\circ s_2 \equiv k_2^{-1}(h_2 + dr_2) \mod n$
- Eliminate the variable d
- Let $t = -s_1^{-1}s_2r_1r_2^{-1}$, $u = s_1^{-1}r_1h_2r_2^{-1} s_1^{-1}h_1$
 - $\circ \quad \mathbf{k}_1 + \mathbf{t} \mathbf{k}_2 + \mathbf{u} \equiv 0 \mod \mathbf{n}$
- We wish to solve k_1 and k_2 , both small.
 - \circ Let $|k_1|$, $|k_2| < K$

(EC)DSA - Known High Bits of k

• Construct lattice basis

$$B = \begin{bmatrix} n & 0 & 0 \\ t & 1 & 0 \\ u & 0 & K \end{bmatrix}$$

- The vector $\mathbf{v} = (-k_1 + k_2)$, K) is in this lattice of $(-q, k_2, 1)$ B = $(-k_1, k_2, K)$
- Can find **v** when
 - \circ K < (nK) $^{1/3}$
 - $o \Rightarrow K < n^{1/2}$