Computational Astrophysics - Taller 6

Willinton Caicedo Tez Angel Daniel Martínez Cifuentes

Computational Astrophysics

Observatorio Astronómico Nacional - Universidad Nacional de Colombia

1. Newton-Cotes Integration

(a) Integration of $\sin x$ from 0 to π . Computing the integral, it yields

$$\int_0^\pi \sin x \, dx = 2 \tag{1}$$

The results using the midpoint rule, the trapezoidal rule and the Simpson's rule with decreasing step h (or increasing number of intervals N, considering that $h \approx (b-a)/N$), as well as the percenterror is shown in Table 1

N	Step	Midpoint		Trapezoidal		Simpson	
		Value	% error	Value	% error	Value	% error
1	π	3.14159	57.079	1.92367	99.999	2.09439	4.719
2	$\pi/2$	2.22144	11.072	1.57079	21.460	2.00455	0.227
5	0.628	2.03328	1.664	1.93375	3.312	2.00010	5.4×10^{-3}
10	0.314	2.00824	0.412	1.98352	0.823	2.00000	3.3×10^{-4}
20	0.157	2.00205	0.102	1.99588	0.205	2.00000	2.1×10^{-5}
50	0.062	2.00032	0.016	1.99934	0.032	2.00000	5.4×10^{-7}
100	0.031	2.00008	4.1×10^{-3}	1.99983	8.2×10^{-3}	2.00000	3.3×10^{-8}
1000	0.003	2.00000	4.1×10^{-5}	1.99999	8.2×10^{-5}	2.00000	3.3×10^{-12}

Table 1: Integral Methods

(b) Compute the integral of

$$I = \int_0^\pi x \sin x \, dx \tag{2}$$

The integral $I=\pi$. Similar to Table 1, the values are presented on Table 2

N	Step	Midpoint		Trapezoidal		Simpson	
		Value	% error	Value	% error	Value	% error
1	π	4.93480	57.079	6.04338	99.999	3.28986	4.719
2	$\pi/2$	3.48956	11.076	2.46715	21.468	3.14876	0.228
5	0.628	3.19390	1.665	3.03749	3.313	3.14176	5.4×10^{-3}
10	0.314	3.15455	0.412	3.11569	0.824	3.14160	3.3×10^{-4}
20	0.157	3.14482	0.102	3.13512	0.205	3.14159	2.1×10^{-5}
50	0.062	3.14210	0.016	3.14055	0.032	3.14159	5.4×10^{-7}
100	0.031	3.14172	4.1×10^{-3}	3.14133	8.2×10^{-3}	3.14159	3.3×10^{-8}
1000	0.003	3.14159	4.1×10^{-5}	3.14159	8.2×10^{-5}	3.14159	3.3×10^{-12}

Table 2: Integral Values

In both integrals, the three methods converge with a decreasing step size, and according to the decreasing error, they approach to the actual result of the integral. The method which converges faster is the Simpson's rule, with a percent error of 5.4×10^{-3} % with a step size of $\pi/5$ (N=5). The slower one is the Trapezoidal rule, reaching an approximate percent error of 10^{-3} % at h = 0.031 (N=100 intervals). The error of the Midpoint rule was almost the half of the Trapezoidal for $N \geq 5$.

2. Number Density of Electrons in an Astrophysical Environment

(a) The equation to solve is

$$n_{e^{\pm}} = \frac{8\pi}{(2\pi\hbar)^3} \int_0^\infty \frac{p^2 dp}{e^{\beta cp} + 1}$$
 (3)

with $\beta = 1/(k_B T)$. Making the substitution $x = \beta cp$, the integral becomes:

$$n_{e^{\pm}} = \frac{8\pi (k_B T)^3}{(2\pi\hbar c)^3} \int_0^\infty \frac{x^2 dx}{e^x + 1}$$
 (4)

The function before making the integration decays too fast, so the integral can be performed from 0 to 20. The result for $k_BT=20$ Mev is $n_{e^\pm}=1.902\times 10^{41}$ part m⁻³, and for $T=1\times 10^9$ K is $n_{e^\pm}=1.512\times 10^{34}$ part m⁻³

(b) Spectral distribution $\frac{dn_{e^{\pm}}}{dE}$: $n_{e^{\pm}} = \int \frac{dn_{e^{\pm}}}{dE} dE$. From equation (3), and since $E_{e^{\pm}} \approx pc$, the density is

$$n_{e^{\pm}} = \frac{8\pi}{(2\pi\hbar c)^3} \int_0^\infty \frac{E^2}{e^{\beta E} + 1} dE$$
 (5)

thus

$$\frac{dn_{e^{\pm}}}{dE} = \frac{8\pi}{(2\pi\hbar c)^3} \frac{E^2}{e^{\beta E} + 1} \tag{6}$$

SO

$$\sum_{i=0}^{\infty} \left[\frac{dn_{e^{\pm}}}{dE} \right]_i \times \Delta E = n_{e^{\pm}}$$
 (7)

With $\Delta E=5$ (and $k_BT=20$ MeV), the electronic/positronic density is 3.804×10^{40} part m⁻³, while for $\Delta E=1$, the result is 1.902×10^{41} part m⁻³