一般选择问题的算法设计

一般性选择问题

问题:选第 k 小.

输入:数组S,S的长度n,正整数k,

 $1 \le k \le n$.

输出: 第 k 小的数

实例 1

 $S=\{3,4,8,2,5,9,18\}, k=4, \text{ } \text{\mathbb{R}: 5}$

实例 2

统计数据的集合S,|S|=n, 选中位数, $k=\lceil n/2 \rceil$

一个应用: 管道位置

问题:某区域有n口油井,需要修建输油管道.根据设计要求,水平方向有一条主管道,每口油井修一条垂直方向的支管道通向主管道.如何选择主管道的位置,以使得支管道长度的总和最小?

最优解:Y坐标的中位数

下移后支管线总长度增加

简单的算法

算法一:

调用k次选最小算法 时间复杂度为O(kn)

算法二:

先排序,然后输出第k小的数时间复杂度为 $O(n \log n)$

分治算法

假设元素彼此不等,设计思想:

- 1. 用某个元素 m^* 作为标准将 S 划分成 S_1 与 S_2 ,其中 S_1 的元素小于 m^* , S_2 的元素大于等于 m^* .
- 2. 如果 $k \le |S_1|$,则在 S_1 中找第 k 小. 如果 $k = |S_1|+1$,则 m^* 是第 k 小如果 $k > |S_1|+1$,则在 S_2 中找第 $k-|S_1|-1$ 小

算法效率取决于子问题规模, 如何通过m*控制子问题规模?

m*的选择与划分过程

A: 数需要与m*比大小,B: 数大于m*

C: 数小于 m^* , D:数需要与 m^* 比大小

实例: n=15, k=6

8, 7, 10, 4 需要与9比较

归约为子问题

子问题

8 7 5 3 2 6 1 4

子问题规模 = 8, k=6

算法 Select (S, k)

伪码

输入:数组S,正整数k,

输出: S 中的第 k 小元素

- 1. 将S分5个一组,共 $n_M = \lceil n/5 \rceil$ 组
- 2. 每组排序,中位数放到集合 M
- 3. $m^* \leftarrow \text{Select}(M, \lceil |M|/2 \rceil) //S / A, B, C, D$
- 4. A,D元素小于m*放 S_1 ,大于m*放 S_2
- 5. $S_1 \leftarrow S_1 \cup C$; $S_2 \leftarrow S_2 \cup B$ 划分
- 6. if $k = |S_1| + 1$ then 输出 m^*
- 7. else if $k \leq |S_1| \leftarrow$ 递归计算子问题
- 8. then Select (S_1, k)
- 9. else Select $(S_2, k |S_1| 1)$

小结

选第k小的算法:

- 分治策略
- 确定*m**
- 用m*划分数组归约为子问题
- 递归实现