Figuras y Tablas para Informe de Estatus y CBA de sardina común Centro sur

Índice

1.	ANTECEDENTES	3
	1.1. Pesquería	3
2.	METODOLOGÍA	7
	2.1. Descripción de los datos	7
3.	RESULTADOS	17
	3.1. Ajuste del modelo a los datos	17
	3.2. Comparación con asesorías previas	25
	3.3. Análisis retrospectivo	26
	3.4. Perfil de verosimilitud	27
	3.5. Variables poblacionales	28 31
	3.6. Puntos biológicos de referencia3.7. Estatus	33
	3.8. CBA Inicial (Asesoría de septiembre)	41
	3.9. Proyección del stock (Asesoría de septiembre)	42
	3.10. Primera revisión CBA (Asesoría de marzo)	48
4.	Figuras de proyección (Asesoría de marzo)	48
5.	Proyeccion de Estatus de proyección (Asesoría de marzo)	49
6.	PRIMERA REVISIÓN DE CBA (Asesoría de marzo)	50
7.	CBA - desembarque (Asesoría de marzo)	50
8.	CBA - desembarque - Remanente (Asesoría de marzo)	50
9.	Figuras de CBA_RMS	50
	9.1. SEGUNDA REVISION CBA (Asesoría de JULIO)	51
10	Figuras de proyección (Asesoría de julio)	51
11	Proyeccion de Estatus de proyección (Asesoría de julio)	52
12	.CBA (Asesoría de julio)	53
	12.1.CBA julio	53
	12.2.CBA julio menos descarte	53

1

13. Figuras de CBA RMS	54
12.5. Diferencia entre CBAs asesoría de marzo y julio	53
12.4. Diferencia entre CBAs asesoría de septiembre y julio	53
12.3.Resguardo CBA julio	53

1. ANTECEDENTES

1.1. Pesquería

Figura 1. Desembarques (t) oficiales y corregidos de sardina común centro-sur

Figura 2. Relación de desembarques y cuotas anuales de sardina común por tipo de flota

Figura 3. Capturas mensuales de sardina común realizadas entre 1995-2021, registradas por SER-NAPESCA en la zona centro-sur

Figura 4. Razón BD/BD_{RMS} de sardina común y anchoveta de las regiones de Valparaíso a Los Lagos.

2. METODOLOGÍA

El modelo de evaluación de stock de sardina común se basa en el análisis estadístico de la dinámica de estructuras de edad anual y pesos medios a la edad estimados del muestreo de tallas de los desembarques (período 1990 - junio 2022) y de los cruceros acústicos de verano (RECLAS, desde 2001 - 2022) y otoño (PELACES, período desde 2007 hasta 2022), de los índices de biomasa de los cruceros acústicos (biomasa de reclutas en verano, período desde 2000 hasta 2022 y biomasa vulnerable en otoño, desde 2003 al 2022 y los desembarques totales (período 1990 - junio 2022), estos últimos convertidos a temporada de pesca considerando la estacionalidad de la pesquería. Las fuentes de información utilizados en la evaluación de sardina común se resumen en la **Figura 5**.

Figura 5. Datos de entrada al modelo de evaluación de stock de sardina común

2.1. Descripción de los datos

Una de las principales características del stock de sardina común es el comportamiento estacional de las capturas, donde cerca del 70 % de la captura total anual se obtiene al primer semestre de cada año, con máximos entre marzo y abril. Esta estacionalidad es altamente influenciada por el pulso de reclutamiento de enero, observándose una fuerte relación entre la biomasa estimada por el crucero de enero y los desembarques. Al respecto, se observa que durante los años 2015 al 2019, las biomasas acústicas de verano se mantuvieron en niveles en torno a los 2 millones de toneladas, lo cual se ve reflejado también en una estabilidad en las capturas totales en torno a las 360 mil toneladas. Por otro lado, las biomasas acústicas estimadas por el crucero de otoño reflejan el efecto de la remoción ejercidas por la pesca y causas naturales, con biomasas en general menores a las estimadas en el crucero de verano, en torno a 1,2 millones de toneladas promedio entre el 2015 al 2019 (**Tabla 1** y **Figura 6**). No obstante, para el año 2020 la biomasa estimada por el crucero acústico de verano se redujo a un millón de toneladas (54 % menor al 2019), la biomasa del crucero de otoño disminuye un 39 % respecto al 2019 y las capturas totales del año 2019/20

se redujeron un 10 % respecto al año previo. El desembarque 2020 estuvo en torno a las 258 mil toneladas, equivalente a un 80 % de la CBA 2020 recomendada por el CCT-PP (321.307 toneladas). La biomasa total estimada por el crucero de enero 2021 retorno a los niveles observados entre el 2015 al 2019 (2,36 millones de t), incrementando un 125 % respecto a lo estimado para el año 2020 (**Tabla 1** y **Figura 6**). En el crucero de otoño, se estimó una biomasa de 1,1 millón de t, lo que equivale a un incremento del 26,8 % respecto del año anterior. En relación con la captura total 2020/21 se registró un aumento del 38 % respecto del año biológico 2019/20 (**Tabla 1**). Para el año 2022, el crucero de enero registró un aumento del 35 % de la biomasa respecto al año previo, el crucero de otoño se mantuvo en torno al millón de toneladas y los niveles de capturas se redujeron un 44 % respecto al año previo.

Tabla 1. Estimaciones de biomasas utilizadas en la evaluación de stock de sardina común provenientes de los cruceros de Verano (RECLAS), Otoño (PELACES), crucero de huevos (MPDH) y desembarques

años	crucero verano	crucero otoño	crucero huevos	desembarques
1.991	0	0	0	494.567
1.992	0	0	0	514.787
1.993	0	0	0	250.237
1.994	0	0	0	358.949
1.995	0	0	0	120.608
1.996	0	0	0	361.735
1.997	0	0	0	552.515
1.998	0	0	0	73.892
1.999	0	0	0	212.993
2.000	252.601	0	0	205.616
2.001	567.819	0	0	52.469
2.002	844.713	0	498.337	317.467
2.003	477.998	0	0	293.654
2.004	351.125	0	5.186	387.597
2.005	339.783	0	125.008	252.695
2.006	2.178.397	552.880	0	516.296
2.007	2.134.043	188.675	168.611	358.380
2.008	4.813.144	0	109.162	742.168
2.009	1.555.625	991.730	213.762	942.051
2.010	2.623.565	2.467.720	579.715	627.588
2.011	3.216.857	1.416.034	649.985	828.172
2.012	3.843.000	1.217.169	157.893	859.565
2.013	1.133.477	2.296.489	87.575	418.607
2.014	3.079.434	1.805.815	83.554	520.667
2.015	1.972.148	0	0	417.249
2.016	2.032.684	1.482.799	0	300.574
2.017	2.025.002	1.565.315	0	415.391
2.018	2.424.330	1.577.507	0	372.974
2.019	2.275.425	1.421.176	0	316.634
2.020	1.050.175	867.257	0	284.311
2.021	2.363.380	1.100.020	0	391.294
2.022	3.189.821	1.062.045	0	218.835

Tabla 2. Desembarques en toneladas, porcentaje de descarte supuesto, captura descartada (toneladas) y captura total (toneladas) estimadas en año biológico para sardina común de las Regiones de Valparaíso a Los Lagos.

Año.biológico	Desembarques.t.	Porcentaje.descarte	Captura.descartada.t.	Captura.total.t.
1990-91	494.567	0%	0	494.567
1991-92	514.787	0%	0	514.787
1992-93	250.237	0 %	0	250.237
1993-94	358.949	0%	0	358.949
1994-95	120.608	0%	0	120.608
1995-96	361.735	0%	0	361.735
1996-97	552.515	0%	0	552.515
1997-98	73.892	0%	0	73.892
1998-99	212.993	0 %	0	212.993
1999-00	205.616	0 %	0	205.616
2000-01	50.451	4 %	2.018	52.469
2001-02	305.257	4%	12.210	317.467
2002-03	282.360	4 %	11.294	293.654
2003-04	372.689	4 %	14.908	387.597
2004-05	242.976	4 %	9.719	252.695
2005-06	496.438	4 %	19.858	516.296
2006-07	344.596	4%	13.784	358.380
2007-08	713.623	4 %	28.545	742.168
2008-09	905.818	4 %	36.233	942.051
2009-10	603.450	4 %	24.138	627.588
2010-11	796.319	4 %	31.853	828.172
2011-12	826.505	4%	33.060	859.565
2012,13	402.507	4 %	16.100	418.607
2013-14	500.641	4 %	20.026	520.667
2014-15	401.201	4%	16.048	417.249
2015-16	289.013	4 %	11.561	300.574
2016-17	399.415	4%	15.977	415.391
2017-18	348.574	7%	24.400	372.974
2018-19	301.557	5%	15.078	316.634
2019-20	273.376	4 %	10.935	284.311
2020-21	376.245	4 %	15.050	391.294
2021-22	210.418	4 %	8.417	218.835

Figura 6. Serie de desembarques y biomasas estimadas por la evaluación hidroacústica de verano y otoño utilizadas como datos de entrada al modelo de evaluación de stock de sardina común de las Regiones de Valparaíso a Los Lagos. Los datos de desembarques se agrupan en año biológico. Los datos de cruceros representa al año calendario.

La pesquería de sardina común está sustentada principalmente por la abundancia del grupo de edad 0, con una proporción en torno al 60-70 % de la captura en número de la flota. La captura en número a la edad se caracteriza por presentar una alta variabilidad interanual, siendo los años 2007, 2013, 2016, 2019 y 2020 los años con menor proporción de reclutas. Los pesos medios del grupo de edad 0 se encuentra en torno a los 8 grs. Se observa una estabilización de los pesos medios a partir del 2013 para todos los grupos de edad (**Figuras 7**). En relación de la composición de edad de los cruceros de verano se observa que el grupo de edad 0 representa el 77 % de la captura en número. Por otro lado, en el caso del crucero de otoño, el grupo de edad 0 representa el 67 % de la captura en número (**Figuras 8**).

Los resultados del crucero de verano 2019 y 2020 presentan una disminución en los niveles de abundancia de la fracción recluta, el estimado de biomasa total del crucero de verano 2019 estuvo sostenido por la fracción adulta (edad 1+) principalmente. Esta disminución se observó al actualizar la composición de edad de la flota 2018/19 y 2019/20 y del crucero de otoño 2019 y 2020. Por lo tanto, la disminución de la biomasa total 2020 estaría fuertemente relacionada a la reducción del número de individuos de los grupos de edad 0 y 1 principalmente.

Los resultados del crucero de verano 2021 mostraron un incremento significativo en los niveles de abundancia de la fracción recluta (94 % individuos de edad 0), a diferencia de los dos años previos, la biomasa total del crucero de verano 2021 estuvo sostenido principalmente por la fracción recluta (edad 0), observandose una baja presencia de individuos adultos (edad 1+). Esta importante participación de la fracción recluta continúa en el crucero de otoño, con un 83 % de individuos de edad 0 y una baja presencia de ejemplares adultos (edad 1+). Para el año 2022, el crucero de verano registró una disminución en la abundancia de la fracción recluta (46 % individuos de edad 0), a diferencia de lo observado el año 2021. La biomasa total estimada por el crucero es sostenida por la fracción recluta y adulta (edad 1, principalmente). El crucero de otoño 2022 y flota 2021/2022 también evidencian una reducción del grupo de edad 0 (70 % crucero de otoño y 16 % flota de individuos de edad 0).

Figura 7. Variabilidad interanual de la proporción de la captura de la flota (panel izquierdo superior) y pesos medios (panel derecho superior) de cada grupo de edad (edad 0 a 4). Composición de edad de la captura de la flota (panel izquierdo inferior) y pesos medios (panel derecho inferior) utilizados en la evaluación de stock de sardina común de las Regiones de Valparaíso a Los Lagos.

Figura 8. Variabilidad interanual de la proporción de la captura del crucero de verano (panel izquierdo superior) y crucero de otoño (panel derecho superior) de cada grupo de edad (edad 0 a 4). Composición de edad de la captura de los cruceros de verano (panel izquierdo inferior) y otoño (panel derecho inferior) utilizados en la evaluación de stock.

3. RESULTADOS

3.1. Ajuste del modelo a los datos

CRUCEROS DE VERANO

3.2. Comparación con asesorías previas

3.3. Análisis retrospectivo

3.4. Perfil de verosimilitud

3.5. Variables poblacionales

Año	\$BD_{sept}\$	\$BT_{sept}\$	\$R_{sept}\$	\$F_{sept}\$
1990/91	2288100	3182000	173290	0.187
1991/92	1521800	2165300	96205	0.344
1992/93	735220	1069100	99170	0.338
1993/94	407530	978770	148010	0.527
1994/95	437240	829500	120760	0.177
1995/96	512830	1565700	211590	0.337
1996/97	675310	1117500	85615	0.771
1997/98	369670	796270	38004	0.13
1998/99	339270	694070	36417	0.513
1999/00	219040	505070	48346	0.709
2000/01	137350	486890	91891	0.159
2001/02	271650	752990	129080	0.646
2002/03	289480	789770	106610	0.611
2003/04	233670	801960	75850	1.06
2004/05	145090	671270	71566	0.755
2005/06	189000	1401300	385970	0.592
2006/07	690680	1177500	77610	0.373
2007/08	621580	3342200	626820	0.36
2008/09	1409100	3047200	339910	0.504
2009/10	990470	1980900	269970	0.47
2010/11	1034100	3129600	376060	0.371
2011/12	1261000	2903600	524360	0.467
2012/13	1213400	2020400	104700	0.273
2013/14	979100	3370100	302100	0.247
2014/15	1390300	2421900	259460	0.244
2015/16	1145200	2085500	116610	0.195
2016/17	942600	2915700	255860	0.247
2017/18	1009000	2811200	299650	0.206
2018/19	1479800	2073200	95507	0.181
2019/20	1003700	1691100	87954	0.246
2020/21	661540	1986600	244710	0.283
2021/22	1180400	2032800	103250	0.128

Rlast_1991_2007 0.1206092 -0.8202619 -1.12056942 117410.8 1116762 556642.9
Rlast_2008_2012 0.7584366 0.2943382 -0.11018105 427424.0 2880700 1063250.0
Rlast_2013_2022 0.4478022 0.1315975 -0.07259946 186980.1 2340850 1100504.0
Rlast_2013_2021 0.4739750 0.1441122 -0.08132206 196283.4 2375078 1091626.7
Rlast_historico 0.4495998 -0.1453007 -0.46495802 187590.8 1774905 805756.9

3.6. Puntos biológicos de referencia

	Septiembre2022
BDpromedio	806.00
Fmh	0.34
%BDPR_Fmh	56.60
%BDPR_F~RMS~	60.00
%BD_Fmh	51.60
%BD_F~RMS~	55.00
BDo	1562.00
BD55 %	859.00
BD27.5 %	430.00

[1] 0.3411435

3.7. Estatus

```
normal_area <- function(mean = 0, sd = 1, lb, ub, acolor = "lightgray", ...) {</pre>
    x \leftarrow seq(mean - 3 * sd, mean + 3 * sd, length = 100)
    if (missing(lb)) {
       lb <- min(x)</pre>
    if (missing(ub)) {
        ub <- max(x)
    }
    x2 \leftarrow seq(lb, ub, length = 100)
    plot(x, dnorm(x, mean, sd), type = "n", ylab = "")
    y <- dnorm(x2, mean, sd)
    polygon(c(1b, x2, ub), c(0, y, 0), col = acolor)
    lines(x, dnorm(x, mean, sd), type = "1", ...)
par(mfrow=c(1,2), mar=c(4,4,1,1)+0.5)
#Probabilidad de sobreexplotación
normal_area(mean = rprMARZO, sd = rprMARZOstd, lb = 0.9, ub = 0.5,
            acolor = rgb(0, 0, 1, alpha = 0.5))
text(0.7, 0.15, round(pc_mar,2), srt = 90)
#Probabilidad de colapso
normal_area(mean = rprMARZO, sd = rprMARZOstd, ub = 0.5,
            acolor = rgb(0, 0, 1, alpha = 0.5))
text(0.5, 0.15, round(pd_mar, 2), srt = 90)
```


Años	\$F/F_{RMS_{sept}}\$	\$BD/BD_{RMS_{sept}}}\$	
1990/91	0.617	2.663	
1991/92	1.138	1.771	
1992/93	1.118	0.856	
1993/94	1.743	0.474	
1994/95	0.584	0.509	
1995/96	1.114	0.597	
1996/97	2.55	0.786	
1997/98	0.429	0.43	
1998/99	1.697	0.395	
1999/00	2.344	0.255	
2000/01	0.525	0.16	
2001/02	2.137	0.316	
2002/03	2.019	0.337	
2003/04	3.505	0.272	
2004/05	2.498	0.169	
2005/06	1.958	0.22	
2006/07	1.234	0.804	
2007/08	1.19	0.723	
2008/09	1.665	1.64	
2009/10	1.555	1.153	
2010/11	1.228	1.203	
2011/12	1.544	1.467	
2012/13	0.901	1.412	
2013/14	0.817	1.139	
2014/15	0.807	1.618	
2015/16	0.644	1.333	
2016/17	0.815	1.097	
2017/18	0.68	1.174	
2018/19	0.598	1.722	
2019/20	0.814	1.168	
2020/21	0.935	0.77	
2021/22	0.424	1.374	

Años	\$Y/BT_{sept}\$	\$C/N_{sept}\$
1990/91	0.155	0.091
1991/92	0.237	0.162
1992/93	0.234	0.151
1993/94	0.367	0.213
1994/95	0.145	0.081
1995/96	0.231	0.143
1996/97	0.494	0.311
1997/98	0.093	0.064
1998/99	0.307	0.219
1999/00	0.407	0.272
2000/01	0.108	0.069
2001/02	0.422	0.251
2002/03	0.372	0.243
2003/04	0.483	0.376
2004/05	0.376	0.283
2005/06	0.368	0.221
2006/07	0.304	0.175
2007/08	0.222	0.145
2008/09	0.309	0.214
2009/10	0.317	0.2
2010/11	0.265	0.157
2011/12	0.296	0.19
2012/13	0.207	0.135
2013/14	0.155	0.108
2014/15	0.172	0.111
2015/16	0.144	0.096
2016/17	0.142	0.108
2017/18	0.133	0.092
2018/19	0.153	0.091
2019/20	0.168	0.117
2020/21	0.197	0.12
2021/22	0.108	0.064

	Septiembre 2022
Año biológico	2021/22
\$F_{RMS}\$	0.3
\$BD_{RMS}\$	859
\$BD_{LIM}\$	430
\$p(BD_{last} <bd_{rms})\$< td=""><td>0.02</td></bd_{rms})\$<>	0.02
\$p(F_{last}>F_{RMS})\$	0
\$p(sobre-explotación)\$	0.02
\$p(agotado/colapsado)\$	0
\$p(sobrepesca)\$	0

3.8. CBA Inicial (Asesoría de septiembre)

		-	
	R1	R2	R3
BD~RMS~ (mil t)	859.35	859.35	859.35
BD~2022~ (mil t)	754.00	754.00	754.00
C~2022~ (mil t)	307.00	588.00	368.00
C~1erS2022~ (mil t)	215.00	412.00	258.00
C~2022~ (-descarte mil t)	295.00	564.00	353.00
C~1erS2022~ (-descarte mil t)	206.00	395.00	247.00
BD~2022~/BD~RMS~	0.88	0.88	0.88
p(BD~2022~ <bd~rms~)< td=""><td>0.55</td><td>0.55</td><td>0.55</td></bd~rms~)*<>	0.55	0.55	0.55
p(sobreexplotación)	0.54	0.54	0.54
p(agotado/colapsado)	0.01	0.01	0.01
	R1	R2	R3
BD~RMS~ (mil t)	859.35	859.35	859.35
BD~2023~ (mil t)	560.00	1370.00	736.00
C~2023~ (mil t)	252.00	801.00	372.00
C~2doS2022~ (mil t)	76.00	240.00	112.00
C~2023~ (-descarte mil t)	242.00	769.00	357.00
C~2doS2022~ (-descarte mil t)	73.00	231.00	107.00
BD~2023~/BD~RMS~	0.65	1.59	0.86
p(BD~2023~ <bd~rms~)< td=""><td>1.00</td><td>0.00</td><td>0.65</td></bd~rms~)*<>	1.00	0.00	0.65
p(sobreexplotación)	0.95	0.00	0.64
p(agotado/colapsado)	0.04	0.00	0.00

3.9. Proyección del stock (Asesoría de septiembre)

1991-2007[F~RMS~*1]	[F~RMS~*0.9]	[F~RMS~*0.7]
0.85	0.85	0.85
0.02	0.02	0.02
0.02	0.02	0.02
0.00	0.00	0.00
0.55	0.54	0.56
0.01	0.01	0.01
1.00	0.99	1.00
0.04	0.03	0.06
2008-2012[F~RMS~*1]	[F~RMS~*0.9]	[F~RMS~*0.7]
0.00	0.00	0.05
0.85	0.85	0.85
0.85	0.85	0.85
0.02	0.02	0.02
0.02 0.02	0.02 0.02	0.02 0.02
0.02 0.02 0.00	0.02 0.02 0.00	0.02 0.02 0.00
0.02 0.02 0.00 0.55	0.02 0.02 0.00 0.54	0.02 0.02 0.00 0.56
	0.85 0.02 0.02 0.00 0.55 0.01 1.00 0.04 2008-2012[F~RMS~*1]	0.85 0.85 0.02 0.02 0.02 0.02 0.00 0.00 0.55 0.54 0.01 0.01 1.00 0.99 0.04 0.03

	2013-2021[F~RMS~*1]	[F~RMS~*0.9]	[F~RMS~*0.7]
p(sobre-explotación)_2019/20	0.85	0.85	0.85
p(colapso)_2019/20	0.02	0.02	0.02
p(sobre-explotación)_2020/21	0.02	0.02	0.02
p(colapso)_2020/21	0.00	0.00	0.00
p(sobre-explotación)_2021/22	0.55	0.54	0.56
p(colapso)_2021/22	0.01	0.01	0.01
p(sobre-explotación)_2022/23	0.65	0.56	0.73
p(colapso)_2022/23	0.00	0.00	0.00

##		[,1]	[,2]	[,3]	[,4]	[,5]	[,6]	[,7]
##	q	0.3	0.305	0.31	0.315	0.32	0.325	0.33
##		288497.2	289408.925	290314.08 2	91212.903	292105.65	292992.574	293873.93
##		651131.3	652692.396	654242.15 6	55781.042	657309.54	658828.072	660337.06
##		362340.8	363531.674	364713.93 3	65887.901	367053.94	368212.379	369363.54
##		[,8]	[,9]	[,10]	[,11]	[,12] [,13]	[,14]
##	q	0.33	5 0.34	0.345	0.35	0.35	5 0.36	0.365
##		294749.94	1 295620.85	296486.864	297348.21	298205.07	8 299057.68	299906.211
##		661836.91	3 663328.02	664810.752	666285.48	667752.56	1 669212.33	670665.122
##		370507.72	5 371645.24	372776.369	373901.39	375020.57	8 376134.19	377242.476
##		[,15]	[,16]	[,17]	[,18]		[,20]	[,21]
##	q	0.37	0.375	0.38	0.385	0.39	0.395	0.4
##			301591.791					
##			673551.055					
##			379444.059					
##		[,22]	-	[,24]		-	-	-
##	q	0.40		0.415				
##								311454.774
##								690437.771
##								392326.379
##		[,29]	[,30]	[,31]	[,32]	-	[,34]	-
##	q	0.44	0.445	0.45	0.455			
##			313068.320					
##			693200.374					
##			394433.878					
##	_	[,36]	-	[,38]				[,42]
	q	0.47		0.485				0.505
##			1 318678.23 9 702805.27					
##			7 401761.13					
##		[,43]	, 401701.13 [,44]	[,45]	[,46]		,48]	
##	a	0.51	0.515	0.52	0.525		-	-
##	ч		324263.391					
##			712367.799					
##			409056.076					
##		[,50]		[,52]				
##	а	0.54	-	0.555	-	•		
##	1							333905.497
##								728876.344
##								421649.902
##		[,57]	[,58]	[,59]	[,60]	[,61]	[,62]	[,63]
##	q	0.58	0.585	0.59	0.595		0.605	0.61
##	-	334718.50	335533.608	336350.96	337170.713	337993.0	338818.007	339645.86
##		730268.31	731663.883	733063.30	734466.820	735874.7	737287.204	738704.60
##		422711.79	423776.424	424843.99	425914.693	426988.7	428066.271	429147.56
##		[,64]	[,65]	[,66]	[,67]	[,68] [,69]	[,70]
##	q	0.61	5 0.62	0.625	0.63	0.63	5 0.64	0.645
##		340476.73	8 341310.80	342148.209	342989.15	343833.78	9 344682.32	345534.922
##		740127.16	9 741555.19	742988.945	744428.74	745874.87	8 747327.67	748787.439
##		430232.78	6 431322.17	432415.941	433514.31	434617.52	4 435725.81	436839.422
##		[,71]	[,72]	[,73]	[,74]	[,75]	[,76]	[,77]
##	q	0.65	0.655	0.66	0.665	0.67	0.675	0.68
##		346391.79	347253.136	348119.15	348990.059	349866.07	350747.426	351634.35
##		750254.52	751729.248	753211.98	754703.087	756202.94	757711.928	759230.46
##		437958.61	439083.631	440214.76	441352.275	442496.46	443647.621	444806.06
##		[,78]	[,79]	[,80]	[,81]			
##	q	0.68	5 0.69	0.695	0.7			

- **##** 352527.097 353425.92 354331.075 355242.8
- ## 760758.958 762297.85 763847.604 765408.7
- **##** 445972.099 447146.07 448328.326 449519.2

	1991-2007	2008-2012	2013-2021
mean	335280	737790	422850
std	66292	113500	86585
10%	250323	592334	311887
20%	279487	642266	349978
30 %	300516	678271	377445
40%	318485	709035	400914
50%	335280	737790	422850

	1991-2007	2008-2012	2013-2021
10%	0.25	0.20	0.26
20%	0.17	0.13	0.17
30%	0.10	0.08	0.11
40 %	0.05	0.04	0.05
50%	0.00	0.00	0.00

	1991-2007	2008-2012	2013-2021
mean	321870	708270	405930
std	63640	108960	83122
10%	240312	568632	299405
20%	268309	616567	335973
30%	288497	651131	362341
40%	305747	680665	384871
50%	321870	708270	405930

	V1	V2	V3	V4	V5
C1eryearR1	89057	100494	97871	13076	6357
C1eryearR2	370191	100494	97871	13076	6357
C1eryearR3	150218	100494	97871	13076	6357
C2doyearR1	89057	84850	38724	34673	5089
C2doyearR2	370191	352702	38724	34673	5089
C2doyearR3	150218	143122	38724	34673	5089

- 3.10. Primera revisión CBA (Asesoría de marzo)
- 4. Figuras de proyección (Asesoría de marzo)

5. Proyección de Estatus de proyección (Asesoría de marzo)

- 6. PRIMERA REVISIÓN DE CBA (Asesoría de marzo)
- 7. CBA desembarque (Asesoría de marzo)
- 8. CBA desembarque Remanente (Asesoría de marzo)
- 9. Figuras de CBA_RMS

- 9.1. SEGUNDA REVISION CBA (Asesoría de JULIO)
- 10. Figuras de proyección (Asesoría de julio)

11. Proyeccion de Estatus de proyección (Asesoría de julio)

12. CBA (Asesoría de julio)

- 12.1. CBA julio
- 12.2. CBA julio menos descarte
- 12.3. Resguardo CBA julio
- 12.4. Diferencia entre CBAs asesoría de septiembre y julio
- 12.5. Diferencia entre CBAs asesoría de marzo y julio

13. Figuras de CBA_RMS