Vector and Matrix Differential Calculus Practice

Converting from Rectangular Coordinate to Polar Coordinate

- 1) Change $\vec{p}(3,\sqrt{3})$ from rectangular coordinate to cylindrical to coordinates
- 2) Change $\vec{p}(1,\sqrt{3})$ from rectangular coordinate to cylindrical to coordinates
- 3) Change $\vec{p}(-1,-1)$ from rectangular coordinate to cylindrical to coordinates

Converting from Polar Coordinate to Rectangular Coordinate

- 4) Change $\vec{p} = \left(\frac{7\pi}{4}, 3\sqrt{2}\right)$ from polar coordinate to rectangular coordinates
- 5) Change $\vec{p} = \left(\frac{\pi}{4}, 4\right)$ from polar coordinate to rectangular coordinates
- 6) Change $\vec{p} = \left(\frac{\pi}{3}, 1\right)$ from polar coordinate to rectangular coordinates

Converting from Cylindrical Coordinate to rectangular Coordinate

- 7) Change \vec{p} (3, π /2,1) from cylindrical to rectangular coordinates.
- 8) Change \vec{p} (4, π /6,2) from cylindrical to rectangular coordinates
- 9) Change \vec{p} (1, π /4,5) from cylindrical to rectangular coordinates

Converting from rectangular Coordinate to Cylindrical Coordinate

- 10) Change \vec{p} (1,1,1) from rectangular to cylindrical coordinates.
- 11) Change $\vec{p}\left(\frac{1}{2}, \frac{\sqrt{3}}{2}, 5\right)$ from rectangular to cylindrical coordinates.
- 12) Change $\vec{p}\left(\sqrt{2},\sqrt{2},3\right)$ from rectangular to cylindrical coordinates.

Converting from Spherical Coordinate to rectangular Coordinate

- 13) Change \vec{p} (1, $\pi/4$, π) from spherical to rectangular coordinates.
- 14) Change \vec{p} (3, π /3, π /4) from spherical to rectangular coordinates.
- 15) Change $\; \vec{p} \; ($ 5, $\; \pi \, / 2$, $\; \pi \;) \;$ from spherical to rectangular coordinates.

Converting from rectangular Coordinate to Spherical Coordinate

16) Change \vec{p} (1, 1, $\sqrt{2}$) from rectangular to spherical coordinates.

17) Change
$$\vec{p}\left(\frac{\sqrt{3}}{4}, \frac{1}{2}, \frac{\sqrt{3}}{2}\right)$$
 from rectangular to spherical coordinates.

18) Change $\vec{p}(1,1,0)$ from rectangular to spherical coordinates

Converting from Spherical Coordinate to Cylindrical Coordinate

- 19) Change \vec{p} (4, π /4 , π /3) from spherical to cylindrical coordinates.
- 20) Change $\vec{p} = \left(2\sqrt{2}, \frac{\pi}{4}, \frac{\pi}{3}\right)$ from spherical to cylindrical coordinates.
- 21) Change $\vec{p}\left(\sqrt{2},\frac{\pi}{2},\frac{\pi}{4}\right)$ from spherical to cylindrical coordinates.

Converting from Cylindrical Coordinate to Spherical Coordinate

22) Change \vec{p} (1, π /2 ,1) from cylindrical to spherical coordinates.

23) Change
$$\vec{p}\left(\sqrt{6}, \frac{\pi}{4}, \sqrt{2}\right)$$
 from cylindrical to spherical coordinates.

24) Change $\,\vec{p}$ (1, π /4 ,5) from cylindrical to spherical coordinates

Computing the Gradient of Scalar field

25) Given the scalar field
$$f(x, y, z) = x^2y + xz + y^2$$
 Calculate $\overrightarrow{grad}(f) = \overrightarrow{\nabla} f$.

26) Given the scalar field
$$f(x, y, z) = x^2 + y^2 + z^2 + 2$$
 Calculate $\overrightarrow{grad}(f) = \overrightarrow{\nabla} f$

27) Given the scalar field
$$f(x, y, z) = x + 3y + 5z + 2$$
 Calculate $\overrightarrow{grad}(f) = \overrightarrow{\nabla} f$

Computing Curl of a Vector Field

28) Given the vector field
$$\vec{u}(u_x, u_y, u_z) = x^2 y \cdot \vec{i} + (zy)\vec{j} - z^2 \vec{k}$$
 calculate $curl \vec{u} = \vec{\nabla} \times \vec{u}$.

29) Given the vector field
$$\vec{u}(u_x, u_y, u_z) = x^2 \cdot \vec{i} + z^2 \vec{j} - xy^3 \vec{k}$$
 calculate $curl \vec{u} = \vec{\nabla} \times \vec{u}$

30) Given the scalar field
$$\vec{u}(u_x, u_y, u_z) = x \cdot \vec{i} + z \vec{j} - x \vec{k}$$
 calculate $curl \vec{u} = \vec{\nabla} \times \vec{u}$

Computing the Divergence of a Vector Field

31) Given the vector field
$$\vec{u}(u_x, u_y, u_z) = x^2 y \cdot \vec{i} + (zy) \vec{j} - z^2 \vec{k}$$
 calculate $div \vec{u} = \vec{\nabla} \cdot \vec{u}$

32) Given the vector field
$$\vec{u}(u_x, u_y, u_z) = x^2 \cdot \vec{i} + z^2 \vec{j} - xy^3 \vec{k}$$
 calculate $div \vec{u} = \vec{\nabla} \cdot \vec{u}$

33) Given the scalar field
$$\vec{u}(u_x, u_y, u_z) = x \cdot \vec{i} + z \vec{j} - x \vec{k}$$
 calculate $div \vec{u} = \vec{\nabla} \cdot \vec{u}$

Computing the Laplacian of a Scalar Field

34) Given the scalar field
$$f(x, y, z) = x^2y + xz + y^2$$
 compute the Laplacian $\vec{\nabla}^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$

35) Given the scalar field
$$f(x, y, z) = x^2 + y^2 + z^2 + 2$$
 compute the Laplacian $\vec{\nabla}^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$

36) Given the scalar field
$$f(x,y,z) = zx + 3x^3y^2 + 2xz^2$$
 compute the Laplacian $\vec{\nabla}^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$

Computing the Laplacian of a Vector Field

37) Given the vector field
$$\vec{u}(u_x,u_y,u_z)=(3x^2y\,,\,zy^2\,,3z^2)$$
 find Laplacian of \vec{u} , $\vec{\nabla}^2\vec{u}$.

38) Given the vector field
$$\vec{u}(u_x, u_y, u_z) = (x^2 + y, x + zy^2, z^2)$$
 find Laplacian of \vec{u} , $\vec{\nabla}^2 \vec{u}$.

39) Given the vector field
$$\vec{u}(u_x, u_y, u_z) = (3x^2y, zy^2, 3z^2)$$
 find Laplacian of \vec{u} , $\vec{\nabla}^2 \vec{u}$.

Derivative of a vector with respect to a vector.

40) Calculate
$$\frac{\partial \vec{w}}{\partial \vec{u}}$$
, if $\vec{w} = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$ where $\begin{cases} w_1 = 2x + 3y \\ w_2 = 7x + 5y \end{cases}$ with $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$

41) Calculate
$$\frac{\partial \vec{w}}{\partial \vec{u}}$$
, if $\vec{w} = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$ where $\begin{cases} w_1 = x - y + z \\ w_2 = x + 2y - z \end{cases}$ with $\vec{u} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$

42) Calculate
$$\frac{\partial \vec{w}}{\partial \vec{u}}$$
 , if $\vec{w} = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}$ where $\begin{cases} w_1 = xy + z \\ w_2 = x - y^2 + z \\ w_3 = 2x + y + xz \end{cases}$ with $\vec{u} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$

Derivative of a scalar s with respect to a vector (Jacobian)

43) if
$$s = s(\vec{x}) = (x_1 + 1)^2 + x_2^2 + (x_3 + 2)^2$$
 where $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$, calculate $\frac{\partial s}{\partial \vec{x}}$.

44)
$$f = f(\vec{x}) = x + y + z$$
 where $\vec{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, calculate $\frac{\partial f}{\partial \vec{x}}$.

45) $g = (\vec{x}) = x + xy + z^2$ where $\vec{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, calculate $\frac{\partial g}{\partial \vec{x}}$.

45)
$$g = (\vec{x}) = x + xy + z^2$$
 where $\vec{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, calculate $\frac{\partial g}{\partial \vec{x}}$

Quadric Forms

- 46) Express the quadric form $f(x,y) = x^2 + 6xy + 2y^2$ in matrix form, $f(\vec{x}) = \vec{x}^T \cdot A \cdot \vec{x}$, and calculate $\frac{\partial f(\vec{x})}{\partial \vec{x}} = \frac{\partial}{\partial \vec{x}} (\vec{x}^T A \vec{x})$
- 47) Express the quadric form $f(x,y) = 5x^2 + 2xy + 2y^2$ in matrix form , $f(\vec{x}) = \vec{x}^T \cdot A \cdot \vec{x}$, And calculate $\frac{\partial f(\vec{x})}{\partial \vec{r}} = \frac{\partial}{\partial \vec{r}} (\vec{x}^T A \vec{x})$
- 48) Express the quadric form $f(x, y, z) = 3x^2 + 8xy + 6xz + y^2 + 6yz + 3z^2$ in matrix form , $f(\vec{x}) = \vec{x}^T \cdot A \cdot \vec{x}$, And calculate $\frac{\partial f(\vec{x})}{\partial \vec{x}} = \frac{\partial}{\partial \vec{x}} (\vec{x}^T A \vec{x})$.
- 49) 🙂