(முழுப் பதிப்புரிமையுடையது / All Rights Reserved]

MORA E-TAMILS 2018 | amil Stude ts. Faculty of Engineering, University of Moratuwa America (Microsoft Students) (Amil States) (Amil Students, Faculty of Engineering, University of Amoratuwa MORA E-TAMILS 2018 | Tamil Students, Faculty of Engineering, University of Amoratuwa MORA E-TAMILS 2018 | Tamil Students, Faculty of Engineering, University of Amoratuwa | MORA E-TAMILS 2018 | Tamil Students, Faculty of Engineering, University of Amoratuwa | MORA E-TAMILS 2018 | Tamil Students, Faculty of Engineering, University of Moratuwa MORA E-TAMILS 2018 | Tamil Students, Faculty of Engineering, University of Moratuwa MORA E-TAMILS 2018 | Tamil Students, Faculty of Engineering, University of MORA E-TAMILS 2018 | Tamil Students, Faculty of Engineering, University of MORA E-TAMILS 2018 | Tamil Students, Faculty of Engineering, University of MORA E-TAMILS 2018 | Tamil Students, Faculty of Engineering, University of MORA E-TAMILS 2018 | Tamil Students, Faculty of Engineering, University of MORA E-TAMILS 2018 | Tamil Students, Faculty of Engineering, University of MORA E-TAMILS 2018 | Tamil Students, Faculty of Engineering, University of MORA E-TAMILS 2018 | Tamil Students, Faculty of Engineering, University of MORA E-TAMILS 2018 | Tamil Students, Faculty of Engineering, University of MORA E-TAMILS 2018

கல்விப் பொதுத் தராதரப் பத்திர(உயர் தர) முன்னோடிப் பரீட்சை - 2016 General Certificate of Education (Adv.Level) Pilot Examination - 2016

இரசாயனவியல் I Chemistry I $egin{bmatrix} 02 & T & I \end{bmatrix}$

இரண்டு மணித்தியாலம் Two hours

கவனிக்க:

- 💠 இவ் வினாத்தாள் 11 பக்கங்களைக் கொண்டுள்ளது. (ஆவர்த்தன அட்டவணையும் தரப்பட்டுள்ளது)
- **் எல்லா** வினாக்களுக்கும் விடை எழுதுக.
- 💠 கணிப்பானைப் பயன்படுத்தக்கூடாது.
- ❖ விடைத்தாளில் தரப்பட்டுள்ள இடத்தில் உமது **சுட்டெண்ணை** எழுதுக.
- 💠 விடைத்தாளின் பிற்பக்கத்தில் வழங்கப்பட்டுள்ள அறிவுறுத்தல்களைக் கவனமாகப் பின்பற்றுக.
- 1 தொடக்கம் 50 வரையுள்ள வினாக்கள் ஒவ்வொன்றுக்கும் (1),(2),(3),(4),(5) என இலக்கமிடப்பட்ட விடைகளில் சரியான அல்லது மிகப்பொருத்தமான விடையைத் தெரிந்தெடுத்து ,அதனைக் குறித்து நிற்கும் இலக்கத்தில் தரப்பட்டுள்ள அறிவுறுத்தல்களுக்கு அமைய விடைத்தாளில் புள்ளடி (x) இடுக.

அகில வாயு மாறிலி $R = 8.314 \ J \ K^{-1} \ mol^{-1}$ அவகாதரோ மாறிலி $N_A = 6.022 \ x \ 10^{23} \ mol^{-1}$

- 1. பின்வரும் விஞ்ஞானிகளில் ஐதரசன் நிறமாலையுடன் தொடர்பு **அற்றவர்**.
 - (1) J.J. பாமர்

- (2) பீற்றர் சீமன்
- (3) லினஸ் பௌலிங்

- (4) தியோடோர் லைமன்
- (5) நீல்ஸ் போர்
- 2. Na⁺, F, Al, Cl⁻, C, N ஆகிய அணுக்கள் அல்லது அயன்களின் 1ம் அயனாக்கற் சக்தி அதிகரிக்கும் ஒழுங்கு முறையே,
 - (1) $Na^+ < Al < C < N < F < Cl^-$
- (2) Al < C < N < F < Na $^+$ < Cl $^-$
- (3) $C < N < F < Al < Na^+ < Cl^-$
- (4) $C1^- < A1 < C < N < F < Na^+$
- $(5) \ Cl^{\text{-}} < Al < Na^{\text{+}} < C < N < F$
- O NH $_2$ O O 3. $CH_3-CH_2-O-C-C=C-CH-C-CH_3$ எனும் சேர்வையின் IUPAC பெயர் யாது?
 - (1) 4-amino-1-ethoxy-5-oxohex-1-one
 - (2) ethyl 4-amino-5-oxohex-2-ynoate
 - (3) 3-amino-6-ethoxy-6-oxo-hex-4-yn-2-one
 - (4) ethyl 4-amine-5-formyl-2-hexyonate
 - (5) ethoxy 4-amino-5-oxohexanote.
- 4. மூன்றாம் ஆவர்த்தனத்தில் Na தொடக்கம் Cl வரையான மூலகங்கள் பற்றிய பின்வரும் கூற்றுக்களில் **தவறானது**?
 - (1) இம்மூலகங்களின் அதியுயர் வலுவளவு ஆவர்த்தனத்தின் வழியே சீராக அதிகரிக்கும்.
 - (2) இவற்றில் பெரும்பாலான மூலகங்கள் இரண்டாம் ஆவர்த்தனத்தைச் சேர்ந்த ஒத்த கூட்டமூலகங்களைவிட உயர் மறை இலத்திரன் நாட்டமுடையவை.
 - (3) இம்மூலகங்களின் பங்கீட்டுவலுப்பிணைப்பை உருவாக்கும் ஆற்றல் ஆவர்த்தனத்தின் வழியே அதிகரிக்கின்றது.
 - (4) இவற்றின் உறுதியான அயன்களைக் கருதுகையில் அலுமினியம், சிலிக்கன் என்பன முறையே அதிதாழ், அதியுயர் அயன்பருமனைக் கொண்டிருக்கின்றன.
 - (5) இம்முலக ஒட்சைட்டுக்களில் அதியுயர் உருகுநிலையையுடையது MgO ஆகும்.

5. பின்வரும் நைதரசன் சேர்வைகளைக் கருதுக.

மூலவலிமை குறைவடையும் சரியான ஒழுங்கு

(1) d > c > a > b

- (2) d > c > b > a
- (3) c > d > a > b

(4) c > d > b > a

(5) d > a > c > b

6. பின்வரும் எவ்விரு மூலக்கூறுகளின் கொதிநிலை மாற்றத்திற்கு லண்டன் ക്കരാഖ്യ ഖിടെ அதிக பங்களிப்பை செய்கின்றது.

(1) CH₃OH, H₂O

(2) NH₃, PH₃

(3) Br₂, ICl

(4) HCl, HBr

(5) HCHO, CO₂

7. கிறபைற்று (Graphite) மின்வாய்களைப் பயன்படுத்தி $AgNO_{3(aq)}$ கரைசலொன்றின் $125cm^3$ இனுள் 5A மாறா மின்னோட்டத்தை 9.65 நிமிடங்களிற்கு செலுத்துவதன் மூலம் கரைசலிலுள்ள முழு Ag^+ அயன்களும் Ag ஆக படிவிக்கப்பட்டன எனின் $\mathrm{AgNO}_{3(\mathrm{aq})}$ கரைசலின் செநிவு, (பரடே மாநிலி = 96500C mol⁻¹)

(1) 0.12 moldm⁻³

- (2) 0.03 moldm⁻³
- (3) 0.24 moldm⁻³

(4) 0.18 moldm⁻³

(5) 0.06 moldm⁻³

8. C_1 mold $\mathrm{m}^{\text{-}3}$ செறிவுடைய மிகையளவு $\mathrm{BaCl}_{2(\mathrm{aq})}$ கரைசலின் V கனவளவானது C_2 mold $\mathrm{m}^{\text{-}3}$ செநிவுடைய $H_2SO_{4(aq)}$ கரைசலின் V கனவளவுடன் விளைவு கரைசலின் கனவளவு 2V ஆகுமாறு கலக்கப்பட்ட போது $BaSO_4$ வீழ்படிவாகியது. $BaSO_4$ இன் கரைதிறன் பெருக்கம் கருதப்படும் ചെப்பநிலையில் k_{sp} எனில் இவ்வெப்பநிலையில் இதன் கரைதிறன் ($moldm^{-3}$ இல்)

$$(1)(k_{sp})^{\frac{1}{2}}$$

$$(2)\frac{\left(C_1+C_2\right)k_{s_1}}{2}$$

$$(3)\frac{2k_{sp}}{C_1 + C_2}$$

$$(4)\frac{2k_{sp}}{C_1 - C_2}$$

$$(1)(k_{sp})^{1/2} \qquad (2)\frac{(C_1 + C_2)k_{sp}}{2} \qquad (3)\frac{2k_{sp}}{C_1 + C_2} \qquad (4)\frac{2k_{sp}}{C_1 - C_2} \qquad (5)\left(\frac{2k_{sp}}{C_1 + C_2}\right)^{1/2}$$

சேதன இரசாயனத்தில் நடைபெறும் குறித்த தாக்கம் ஒன்றின் பொறிநுட்பப்படியொன்று கீழே 9. காட்டப்படுகின்றது.

$$CH_3 - \overset{C}{C} - CH_3 \longrightarrow CH_3 - \overset{C}{C} - CH_3$$

$$OH$$

- (A) 2-methylpropene இந்கு ஐதான H_2SO_4 ஐ சேர்க்கும் போது நடைபெறும் பொறிநுட்பப்படியொன்றைக் காட்டுகிறது.
- (B) 2-chloro-2-methylpropane NaOH_(aq) இந்குமிடையான தாக்கத்தின் பொறிநுட்பப்படியொன்றைக் காட்டுகிறது.
- (C) இங்கு காட்டப்பட்டுள்ள $(CH_3)_3$ C^+ இன் உறுதித்தன்மையானது CH_2 $=\!CH$ CH_2^+ இன் உறுதித்தன்மையை விட கூடியது.
- (D) இங்கு காட்டப்பட்டுள்ள $(CH_3)_3$ C^+ ஆனது 2-methylpropene இற்கும் ஐதான H_2SO_4 இந்குமிடையான தாக்கத்தில் உருவாகும் ஒர் இடைநிலை விளைவாகும்.

இவற்றில் சரியானது

- (1) A உம் C உம்
- (2) A உம் B உம் D உம்
- (3) A உம் C உம் D உம்

- (4) A உம் D உம்
- (5) B உம் D உம்

நீர்க்கரைசல் ஒன்று ${
m Mg^{2+}},~{
m Al^{3+}},~{
m Zn^{2+}}$ ஆகிய அயன்களைக் கொண்டுள்ளது. இவ்வயன்களை 10. தனித்தனியே வேறுபிரிப்பதற்கு பயன்படுத்தக்கூடிய தாக்குபொருட்களின் கூட்டம்.

- (1) H₂SO₄, NaOH
- (2) HCl, NH₄OH
- (3) H₂SO₄, NH₄OH

- (4) NH₄OH, NaOH
- (5) HCl, NaOH

11. பின்வரும் அட்டவணையில் எந்நிரை இருநைதரசன் இருபுளோரைட்டு (N_2F_2) மூலக்கூறில் N தொடர்பான சரியான தகவலைத் தருகிறது.

	ஒட்சியேற்ற	ஏந்நம்	கலப்பாக்கம்	இலத்திரன்சோடி	N-F பிணைப்பின் இயல்பு
	நிலை			கேத்திரகணிதம்	
(1)	+1	0	sp	கோணல்	N (sp க.ஓ) + F (2pஅ.ஓ)
(2)	+1	0	sp ²	கோணல்	N (sp²в.ஒ) + F (2pஅ.ஒ)
(3)	+1	0	sp ²	தளமுக்கோணி	N (sp²в.ஒ) + F (2рஅ.ஒ)
(4)	+2	0	sp ²	தளமுக்கோணி	N (sp²в.ஓ) + F (2рஅ.ஓ)
(5)	+1	+1	sp ²	தளமுக்கோணி	N (sp²в.ஓ) + F (2рஅ.ஓ)

12. X₂,Y₂ என்னும் இரு ஈரணு வாயு மூலக்கூறுகள் பின்வருமாறு தாக்கம் புரிகின்றன.

$$X_{2(g)}\!+Y_{2(g)}\!\rightleftharpoons 2XY_{(g)}$$

ஒரு மூடிய பாத்திரமொன்றினுள் A என்னும் வாயு கலவையானது ஒவ்வொன்றும் 0.5 mol அளவுகளையுடைய $X_{2(g)},Y_{2(g)}$ என்னும் வாயுக்களைக் கொண்டுள்ளது. இதனை வெப்பமேற்றுவதன் மூலம் தாக்கம் நிகழ அனுமதிக்கப்பட்டு குறித்த வெப்பநிலையில் சமநிலை எய்தவிடப்படுகிறது. இச்சமனிலையின் போது அவற்றின் மூலளவுகள் நேரத்துடன் மாறும் வரைபு கீழே தரப்படுகிறது.

சமநிலையின் போது குறித்த வெப்பநிலையில் இதன் K_{c} பெறுமானம்

- (1) 1.5
- (2) 3
- (3)6
- (4) 9
- (5) 18

- 13. Li பற்றிய பின்வரும் கூற்றுக்களில் உண்மையானது
 - (1) Li ஆனது கொதிநீராவியுடன் தாக்கும் எனினும் கொதிநீருடன் தாக்குவதில்லை.
 - (2) Li ஆனது மிகை வளியுடன் உயர் வெப்பநிலையில் தாக்கி Li_3N , Li_2O_2 , LiO_2 என்பவற்றை உருவாக்குகின்றது.
 - (3) Li₂CO₃ ஆனது வெப்பத்திற்கு உறுதியானது
 - (4) LiHCO₃ ஐ திண்ம உருவில் பெறமுடியாது.
 - (5) LiNO $_3$ இன் வெப்பபிரிகையில் LiNO $_2$, O_2 என்பன விளைபொருட்களாகின்றன.
- 14. $[Co(NH_3)_5(OH)]NO_2$ என்னும் சேர்வையின் IUPAC பெயரீடு
 - (1) Pentaamminehydroxidocobalt(II) nitrate
 - (2) Pentaaminehydroxidocobalt(III) nitrite
 - (3) Pentaamminehydroxidocobalt(II) nitrite
 - (4) penta amminehydroxidocobalt(I) nitrite
 - (5) penta amine hydroxide cobalt(II) nitrite

15. வெள்ளீயத்தின் பிறதிருப்ப வடிவமாகிய சாம்பல் Sn ஆனது 13^oC இந்கு குறைந்த வெப்பநிலையில் அதன் மற்றொரு பிறதிருப்ப வடிவமாகிய வெள்ளை Sn இலிருந்து உருவாக கூடியது.

	$\Delta H^{\theta}_{f}/ kJmol^{-1}$	$S^{\theta}/JK^{-1}mol^{-1}$
வெள்ளை	0	51.4
சாம்பல்	-2.09	44.1

 12° C வெப்பநிலையில் வெள்ளை Sn ஆனது சாம்பல் Sn ஆக மாறும் மாற்றத்தின் கிப்ஸின் சுயாதீன சக்தி மாற்றம் ΔG ஐ எது சரியாக காட்டுகின்றது?

- (1) $\Delta G = -2.09 285$ (-7.3)
- (2) $\Delta G = -2.09 12(+7.3)$
- (3) $\Delta G = -2090 12(+7.3)$
- (4) $\Delta G = -2090 285 (-7.3)$
- (5) $\Delta G = -2090 298 (+7.3)$

16. A என்னும் சேர்வையானது டீசலின் தகனத்தின் மூலம் உருவாகும் புகையின் அளவைக் குறைப்பதற்காக சேர்க்கப்படும் எரிபொருட் சேர்மானமாகும்.

சேர்வை A இன் 1 மூலினை முற்றாக தகனமடையச் செய்வதற்கு தேவையான ஒட்சிசன் வாயுவின் மூலளவு.

- (1) 8
- (2) 8.5
- (3)9
- (4) 9.5
- $(5)\ 10$

17. 0.15moldm^{-3} ஒரு மூல மென்னமிலம் HA கரைசலின் 100cm^3 ஆனது 100cm^3 CCl_4 படையுடன் சேர்த்து குலுக்கி சமநிலை எய்தவிடப்பட்டபோது நீர்ப்படையில் pH=3 எனின், கருதப்படும் வெப்பநிலையில் நீர், CCl_4 படைகளிடையேயான பங்கீட்டுக்குணகம், $(K_{a(HA)}=1x10^{-5}\text{moldm}^{-3})$

- (1) 2
- (2) 4
- (3) 3
- (4) 8
- (5) 5

18. $CH_2CH_2 - NH_2$ NH_2 NH_2 NH_2 NH_2 NH_3 NH_4 NH_2 NH_3 NH_4 NH_4 NH_4 NH_4 NH_4 NH_4 NH_4 NH_5 NH_6 NH_6 NH_7 NH_8 NH_8 NH_9 NH_9

மேற்தரப்பட்ட தாக்க ஒழுங்கின்படி B ஐ Br_2 நீர் உடன் தாக்கமடையச் செய்யும் போத பெறச்சாத்தியமான விளைவு (C) யாது?

19. வாயுநிலை தாக்கிமூலக்கூறுகள் X,Y என்பன தாக்கமடைந்து வாயு விளைவு Z ஐ உருவாக்குகின்றன.

$$X_{(g)} + Y_{(g)} \longrightarrow Z_{(g)}$$

செநிவுகளுடன் Z உருவாகும் வீதம் கீழே அட்டவணையில் காட்டப்பட்டுள்ளது. X. Y

பரிசோதனை	[X]/moldm ⁻³	[Y]/moldm ⁻³	$\mathbf{Z}_{(\mathrm{g})}$ உருவாகும் ஆரம்பதாக்க வீதம் / moldm $^{ ext{-}3}$ s $^{ ext{-}1}$
1	0.3	0.2	4 x 10 ⁻⁴
2	0.6	0.4	1.6 x 10 ⁻³
3	0.6	0.8	6.4 x 10 ⁻³

தாக்கிமூலக்கூறுகள் X,Y ஆகிய இரண்டினதும் செறிவுகள் $1.2~\mathrm{moldm^{-3}}$ ஆகவுள்ளபோது விளைவு Zஉருவாகும் வீதம் $moldm^{-3}s^{-1}$ இல் யாது?

(1) 1.44 x10⁻²

 $(2) 9.6 \times 10^{-2}$

 $(3) 1.24 \times 10^{-2}$

 $(4) 3.2 \times 10^{-3}$

 $(5)4.8 \times 10^{-3}$

வரையத்தக்க 20. N_2O_3 முலக்கூறிற்கு பரிவுக்கட்டமைப்புக்களின் எண்ணிக்கை மொத்த யாது? (மூலக்கூறின் அடிப்படைக் கட்டமைப்பு தரப்பட்டுள்ளது)

$$0 - N - N - 0$$

(1) 2

(2) 3

(3) 4

(4) 5

(5)6

 $Pt_{(s)}/Fe^{3+}_{(aq)},Fe^{2+}_{(aq)},\ Pt_{(s)}/Sn^{4+}_{(aq)},Sn^{2+}_{(aq)}$ ஆகிய இரு தாழ்த்தேற்றல் மின்வாய்களை (Redox electrodes) 21. ஒன்றாக இணைப்பதன் மூலம் ஒரு மின்னிரசாயனக்கலம் தயாரிக்கப்படுகிறது. இவற்றின் நியம மின்வாய் அழுத்தப்பெறுமதிகள் பின்வருமாறு,

$$\begin{split} E^{\theta}Sn^{4+}{}_{(aq)} \ /Sn^{2+}{}_{(aq)} &= +0.15V \\ E^{\theta} \ Fe^{3+}{}_{(aq)} \ /Fe^{2+}{}_{(aq)} &= +0.77V \end{split}$$

இக்கலம் பற்றிய பின்வரும் கூற்றுக்களில் எது தவறானது.

- $(1)\ Pt_{(s)}/Sn^{4+}{}_{(aq)},Sn^{2+}{}_{(aq)}$ மின்வாய் ஒரு எதிர் மின்வாயாக தொழிற்படுகிறது.
- (2) $Sn^{2+}_{(aq)}$ இன் செநிவைக்குறைத்தல் $Pt(s)/Sn_{aq}^{\ \ 4+}, Sn^{2+}_{(aq)}$ மின்வாயின் அழுத்தத்தை நேர்க்கணியமாக்குகின்றது.
- (3) $Fe^{3+}_{(aq)}$ இன் செறிவு அதிகரிப்பானது $Pt_{(s)}/Fe^{3+}_{(aq)}, Fe^{2+}_{(aq)}$ மின்வாயின் அழுத்ததை கூடியளவு நோர்க்கணியமாக்குகின்றது.
- (4) வெப்பநிலை அதிகரிப்பானது புறச்சுற்றில் பாயும் மின்னோட்ட வீதத்தை அதிகரிக்கிறது.
- (5) கலம் தொழிற்படும் போது கதோட்டு அறையை நோக்கி நேரயன்கள் அசைகின்றன.

22.

$$C \equiv C - H$$
 $Bg^{2+}/dil.H_2SO_4$ $P \xrightarrow{dil NaOH} Q$ $C = C - H_2O$ தாக்கம் $C = R$

மேற்படி தாக்க தொடரில் தாக்கம் 1, தாக்கம் 2 இன் தாக்கவகைகளையும் விளைவு R இன் கட்டமைப்பையும் சரியாக காட்டுவது.

(1) கருநாட்ட கூட்டல்

கருநாட்ட கூட்டல்

 $\bigcirc C = CH - CH - \bigcirc CH_3$ $\bigcirc CH_3$ $\bigcirc CH_3$ CH_3 CH_3 CH_3

(2)இலத்திரன் நாட்ட கூட்டல் கருநாட்ட கூட்டல்

(3) இலத்திரன் நாட்ட கூட்டல் இலத்திரன் நாட்ட கூட்டல்

○ C = CH - CH - CH - CH

(4) கருநாட்ட கூட்டல் கருநாட்ட கூட்டல்

OH-CH2-CH-(O)

(5) இலத்திரன் நாட்ட கூட்டல்

கருநாட்ட கூட்டல்

23. $[Ag(NH_3)_2]^+_{(aq)} \rightleftharpoons Ag^+_{(aq)} + 2NH_{3(aq)}$

 $1 mol \ [Ag(NH_3)_2]^+_{(aq)}$ சிக்கலும் $2 mol \ NH_{3(aq)}$ உம் காய்ச்சிவடித்த நீரில் கரைத்து $1 dm^3$ கரைசலாக்கப்பட்டது. மேற்படி சமநிலையின் சமநிலை மாநிலி $K_c = 5 x 10^{-8} \ mol^2 dm^{-6}$ எனின் சமநிலைக் கரைசலில் $Ag^+_{(aq)}$ இன் செறிவு

- (1) 1x10⁻⁸ moldm⁻³
- (2) 5x10⁻⁸ moldm⁻³
- (3) 1.25 x10⁻⁸ moldm⁻³

- (4) 2 x 10⁻⁸ moldm⁻³
- (5) 2.5 x10⁻⁸ moldm⁻³

24. P, Q ஆகிய இரு திரவங்கள் ஒன்றுடன் ஒன்று இலட்சிய கரைசலை உருவாக்கின்றன. மூடிய பாத்திரம் ஒன்றில் ஏற்படும் சமனிலைக்கலவையின் திரவ அவத்தையில் P, Q இன் மூல் எண்ணிக்கைகள் முறையே 2mol, 4mol ஆகவுள்ள போது கரைசலின் ஆவியமுக்கம் $200x10^3$ Pa. இக்கரைசலுக்கு மேலும் P ஐ சேர்ப்பதன் மூலம் உருவாகும் புதிய சமனிலையில் திரவ அவத்தையில் P, Q இன் மூல எண்ணிக்கைகள் முறையே 4mol, 4mol ஆகவுள்ள போது சமநிலை அமுக்கம் $180 \ x10^3$ Pa எனின் புதிய சமநிலைக் கலவையில் ஆவி அவத்தையில் P, Q இன் மூல்விகிதம் முறையே.

- (1) 1:2
- (2) 2:1
- (3) 1:3
- (4) 4:1
- (5) 1:4

25. CH = CH -COCl இனை மிகை LiAlH4 இனால் தாழ்த்தி நீர்ப்பகுக்கும்போது அதன் மூலக்கூற்றுத்திணிவில் ஏற்படும் மாற்றம் (Cl - 35.5, H-1, O-16)

- (1) 32.5 இனால் குறைவடையும்
- (2) 18.5 இனால் குறைவடையும்
- (3) 29.5 இனால் குறைவடையும்
- (4) 34.5 இனால் குறைவடையும்
- (5) 31.5 இனால் குறைவடையும்

26. 3d தாண்டல் மூலகம் x இன் துவித நேரயனைக் கொண்ட கரைசலுடன் பின்வரும் சோதனைகள் மேற்கொள்ளப்பட்டன.

- $1. \ \ \, NH_4OH$ உடன் மிகை தாக்குபொருளில் கரையும் வீழ்படிவுவொன்றைத் தந்தது.
- 2. மேற்படி 1 இல் மிகை தாக்குபொருளில் கரைந்து பெறப்படும் கரைசல் வளி தொடுகையுறும் நிலையில் தெளிவான நிறமாற்றம் ஏற்படுகிறது.
- 3. மிகையான செறிந்த HCl கரைசலுடன் நீலக்கரைசலைக் கொடுத்தது.

இவ்வவதானிப்புகளுக்கு பொருத்தமான மூலகம் ${f X}$

- (1) Cu
- (2) Ni
- (3) Ag
- (4) Co
- (5) Cr

27. $A_{(g)} + B_{(g)} o C_{(g)}$ என்பது ஒரு முதன்மைத்தாக்கமாகும். $n \ mol\ A$ யும் $n \ mol\ B$ யும் எடுக்கப்பட்டபோது t செக்கனில் $x \ mol\ A$ தாக்கத்தில் ஈடுபட்டது. இத்தாக்கம் தொடர்பான தாக்கவீதமாறிலி $k.\ t$ ஆவது செக்கனில் தொகுதியின் அமுக்கம், கனவளவு என்பன முறையே P,V எனில் t ஆவது செக்கனில் தாக்கவீதம்.

$$(1)k \left\lceil \frac{P}{RT} - \frac{n}{V} \right\rceil^2$$

 $(2)k\left[\frac{P}{RT}\right]^2$

$$(3)k\left[\frac{P}{RT}-\frac{x}{V}\right]^2$$

$$(4)k \left[\frac{PV}{RT} - n \right]^2$$

$$(5)k \left\lceil \frac{PV}{RT} - x \right\rceil^2$$

28. பின்வரும் கூற்றுகளில் **தவறானது** எதுவாகும்.

- (1) KCl திண்மத்திற்கு MnO_2 திண்மம் இட்டு செறி H_2SO_4 சேர்க்க Cl_2 வாயு பெறப்படும்.
- (2) Na₂S₂O₃ இற்கு Cl₂ வாயுவை செலுத்த Na₂S₄O₆ விளைவாக பெறப்படுகிறது.
- (3) பல உலோகங்கள் Cl_2 வாயுவுடன் அவற்றின் உறுதியான உயர் ஒட்சியேற்றநிலை குளோரைட்டுகளை தருகின்றன.
- (4) H_2S ஆனது H^+/MnO_4 -, H^+/Cr_2O_7 ²⁻, H^+/AsO_4 ³⁻, $FeCl_3$, SO_2 என்பவற்றுடன் தாழ்த்தியாக தொழிற்படும்.
- (5) H_2O_2 ஆனது H^+/MnO_4 , H^+/Cr_2O_7 2-, H^+/MnO_2 , Ag_2O , Cl_2 என்பவற்றுடன் தாழ்த்தியாக தொழிற்படும்.

- 29. சேதனசோவை X ஆனது CH_3MgCl உடன் தொழிற்பட செய்து நீர்ப்பகுத்து பெறப்பட்ட விளைவு ஒளியியல் தொழிற்பாட்டை காட்டியது. விளைவை செறி $m H_2SO_4$ ஊடகத்தில் நீரகற்றிய போது ஈர்வெளிமய சமபகுதிய தன்மையுடைய விளைவு பெறப்படுகிறது. சேர்வை X ஆக அமைவது.
 - - $CH_3 CH_2 \overset{\parallel}{C} CH_3$ (2) $CH_3 CH \overset{\parallel}{C} CH_2 CH_3$
 - (3) $CH_3 CH CH_2 CHO$ CH_3

- $[\mathrm{Cu}(\mathrm{NH}_3)_4]\mathrm{SO}_4$ நீர்க்கரைசலையும் $[\mathrm{Ni}(\mathrm{NH}_3)_6]\mathrm{SO}_4$ நீர்க்கரைசலையும் இனங்காண பின்வருவனவற்றுள் 30. எதனைப் பயன்படுத்தலாம்.
 - $(1)\ H_2S_{(g)}$ சேர்த்தல்
- (2) செறிந்த HCl சேர்த்தல்
- (3) BaCl₂ சேர்த்தல்

- (4) H₂O₍₁₎ சேர்த்தல்.
- (5) (CH₃COO₂)Pb சேர்த்தல்
- 31 தொடக்கம் 40 வரையுள்ள வினாக்கள் ஒவ்வொன்றுக்கும் (a), (b), (c), (d) என்னும் நான்கு தெரிவுகள் தரப்பட்டுள்ளன. அவற்றுள் ஒன்று திருத்தமானது அல்லது ஒன்றுக்கு மேற்ப்பட்டவை திருத்தமானவை. திருத்தமான தெரிவை / தெரிவுகளைத் தேர்ந்தெடுக்க.
 - (a), (b) ஆகியன மாத்திரம் திருத்தமானவையெனில் (1) இன் மீதும்
 - (b), (c) ஆகியன மாத்திரம் திருத்தமானவையெனில் (2) இன் மீதும்
 - (c), (d) ஆகியன மாத்திரம் திருத்தமானவையெனில் (3) இன் மீதும்
 - (a), (d) ஆகியன மாத்திரம் திருத்தமானவையெனில் (4) இன் மீதும்

வேறு தெரிவுகளின் எண்ணோ சேர்மானங்களோ திருத்தமானவையெனில் (5) இன் மீதும் உமது விடைத்தாளில் கொடுக்கப்பட்ட அறிவுறுத்தல்களுக்கமைய விடையைக் குறிப்பிடுக.

மேற்கூறிய அறிவுறுத்தற் சுருக்கம்.

	-		_	
(1)	(2)	(3)	(4)	(5)
(a), (b) ஆகியன	(b), (c) ஆகியன	(c), (d) ஆகியன	(a), (d) ஆகியன	வேறு தெரிவுகளின்
மாத்திரம்	மாத்திரம்	மாத்திரம்	மாத்திரம்	எண்ணோ சேர்மானங்களோ
திருத்தமானவை.	திருத்தமானவை.	திருத்தமானவை.	திருத்தமானவை.	திருத்தமானவை.

- 31. மின்பகுப்பு பற்றிய பின்வரும் கூற்றுகளில் எது/ எவை சரியானது/ சரியானவை.
 - (a) மின்பகுப்பில் அனோட்டில் மட்டும் நீர் ஒரு தாக்கியாக தொழிற்படின் மின்பகுபொருள் கரைசலின் pH ஆனது நேரத்துடன் வீழ்ச்சியடையும்.
 - (b) மின்பகுப்பின் போது நிகரமாக சக்தி சேமிக்கப்படுகிறது.
 - (c) CuSO_{4(aq)} நீர்க்கரைசலை காரிய மின்வாய்களைப்பயன்படுத்தி மின்பகுக்கும் போது கதோட்டின் மேற்பரப்பளவு அதிகரிக்கப்படுகையில் அதன் மீது அலகு படிவிக்கப்படும் நேரத்தில் அணுக்களின் எண்ணிக்கையும் அதிகரிக்கப்படும்.
 - (d) மின்பகுப்பின் போது கதோட்டு அல்லது அனோட்டில் விடுவிக்கப்படும் அல்லது படிவிக்கப்படும் மூலகத்தின் திணிவு அம்மின்வாய்களில் இறக்கமடையும் அயன்களின் செறிவு அதிகரிப்புடன் அதிகரிக்கும்.

32.

$$C = C$$
 $COOH$
 CH_2CH_3

என்னும் மூலக்கூறு தொடர்பான பின்வரும் கூற்றுகளில் எது/எவை உண்மையானது/ உண்மையானவை?

- (a) இம்முலக்கூறில் அதிகபட்சம் 6 அணுக்கள் ஒருதளத்தில் காணப்படும்.
- (b) LiAlH4 உடன் தாக்கமடையச் செய்து நீர்ப்பகுக்கும் போது பெறப்படும் விளைவு கேத்திரகணிதச் சமபகுதியத்தன்மையைக் காட்டுவதில்லை.
- (c) இலத்திரன் நாட்டக்கூட்டல், கருநாட்ட பிரதியீடு இரண்டிற்கும் உட்படக்கூடியது.
- (d) வாயுநிலை Br_2 மூலக்கூறுடன் தாக்கமுற்று உருவாகும் விளைவு நான்கு திண்ம சமபகுதிய வடிவங்களில் திகழ்கிறது.

- 33. சோல்வே முறை மூலம் $NaHCO_3$ உற்பத்தி தொடர்பான பின்வரும் கூற்றுக்களில் எது/எவை சரியானது/ சரியானவை?
 - இங்கு அரண்களின் வெப்பநிலை உயர்வாக பேணப்படுவதன் மூலம் தாக்கவீதம் அதிகரிக்கப்பட்டு உயர் விளைவு பெறப்படும்.
 - ஆரம்ப பக்கவிளைவை CaO உடன் தாக்கமடைய செய்வதன் மூலம் NH₃ மீள்சுழற்சி செய்யப்படுகிறது.
 - (c) இங்கு பெறப்படும் இறுதி பக்கவிளைவை கறியுப்பு பிரித்த பின் பெறப்படும் தாய்திரவத்திற்கு சேர்ப்பதன் மூலம் CaSO₄ பெறப்படும்.
 - (d) $NaHCO_3$ ஐ காட்டிலும் $KHCO_3$ உயர் அயன் சிறப்பியல்பு உடையதால் இம்முறையினால் $KHCO_3$ ஐ $NaHCO_3$ ஐ காட்டிலும் இலகுவாக தயாரிக்கலாம்.
- 34. 0.1moldm⁻³ CH₃COOH_(aq) கரைசலானது 0.1moldm⁻³ NaOH இனால் வலுப்பார்த்தலின் போது கரைசலில் ஏற்படும் pH மாற்றம் தொடர்பான வளைகோடு தரப்பட்டுள்ளது. பின்வரும் கூற்று/கூற்றுக்களில் சரியானது/சரியானவை?

- (a) விளைவுக் கரைசலில் A இலிருந்து C வரை நோக்குகையில் கரைசலில் சேர்க்கப்படும் NaOH இன் அளவு அதிகரிப்பதால் $CH_3COOH_{(aq)}$ இன் அயனாக்க அளவு விளைவுக்கரைசலில் அதிகரிக்கிறது.
- (b) சந்தர்ப்பம் B இலுள்ள விளைவுக்கரைசல் அமிலம், காரம் இரண்டிற்கும் சிறந்த தாங்கற் தொழிற்பாட்டை காண்பிக்கும்.
- (c) இந்நியமிப்பில் சமவலுநிலை pH இற்கு $CH_3COO^{\cdot}_{(aq)}$ அயனின் நீர்ப்பகுப்பே காரணமாகும்.
- (d) F இலுள்ள விளைவுக்கரைசலினுள் சில துளி $HCl_{(aq)}$ ஐ சேர்க்கும் போது CH_3COO அயனே கரைசலில் சேர்க்கப்படும் H⁺ அயனை அகற்றுகின்றது.

35.

மேற்படி சேதனமாற்றமானது A,B எனும் இரு வேறு விளைவுகளை உருவாக்குவதன் மூலம் நிகழ்த்தப்படுகிறது. இங்கு ஆரம்ப சேதன சேர்வையில் $X,\ Y,\ Z$ சட்டங்களாக முறையே இருக்க சாத்தியமானது / சாத்தியமானவை?

(a) - CH = CH – CHO, -COOH, -
$$\stackrel{\cdot}{C}$$
 = O
 $\stackrel{\cdot}{C}$ H₃ (b) - CH = CH – CHO, -CHO, - $\stackrel{\cdot}{C}$ = O
 $\stackrel{\cdot}{C}$ H₃

(c) -
$$CH = CH - COOH$$
, $-CONH_2$, $-CH - CHO$ (d) - $CH = CH - COOH$, $-COCI$, $-C = OCH_3$

(d) - CH = CH – COOH, – COCl, -
$$\stackrel{\frown}{C}$$
 = O CH₃

- 36. சக்திச்சொட்டெண் (n), திசைவிற்சக்திச்சொட்டெண் (ℓ) , காந்தசக்திச்சொட்டெண் கறங்கல் சக்திச்சொட்டெண் (m_s) ஆகியவற்றின் அடிப்படையில் அமைந்த பின்வரும் எக்கூற்று அல்லது கூற்றுகள் தவறானது / தவறானவை.
 - (a) ${f n}=3,\ {f m}_\ell=-1$ ஆகவுள்ள வலுவளவு இலத்திரன் ஒன்றைக் கொண்ட மூலகம் ${f p}$ தொகுதி மூலகமாக அமைதல் வேண்டும்.
 - (b) $n = 3, m_s = +\frac{1}{2}$ ஆகவுள்ள வலுவளவு இலத்திரனை சோடியம் கொண்டிருத்தல் வேண்டும்.
 - (c) $\mathbf{n}=3,\;\ell=0$ ஆகவுள்ள வலுவளவு இலத்திரனைக் கொண்டுள்ள மூலகம் ஒன்று \mathbf{s} தொகுதி முலகமாக அமைதல் வேண்டும்.
 - (d) $\mathbf{n} + \ell = 4$ ஆகவுள்ள உபசக்திமட்டம் ஒன்று $3\mathbf{p}$ ஆகவோ அல்லது $4\mathbf{s}$ ஆகவோ அமையும்.

37.
$$0 = C = 0 + 0^{2}$$
 $0 = C = 0 + 0^{2}$

எனும் மாற்றம் தொடர்பான பின்வரும் கூற்றுக்களில் எது / எவை சரியானது / சரியானவை.

- (a) C அணுவின் கலப்புநிலை sp^2 இலிருந்து sp^3 க்கு மாற்றமடைகின்றது.
- (b) C O பிணைப்பு நீளம் அதிகரிக்கின்றது.
- (c) உருவாகும் விளைவு CO_3^{2-} இல் 3 C-O பிணைப்புக்களும் ஒன்றுக்கொன்று சமனாக இருப்பதுடன் அவற்றிற்கு இடைப்பட்ட கோணம் 120^0 உமாகும்.
- (d) C அணுவின் ஒட்சியேற்றநிலை மாற்றமடைகிறது.
- 38. வாயுக்கள் தொடர்பாக பின்வரும் கூற்றுக்களில் எது/எவை சரியானது/ சரியானவையாகும்.
 - (a) ஒரே வெப்பநிலையில் ஒரே சராசரிக்கதியுடைய சமதிணிவுடைய இரு இலட்சிய வாயுக்களின் கனவளவு விகிதம் அவற்றின் அமுக்க விகிதத்திற்கு நேர்மாறுடையதாகும்.
 - (b) H_2 இலும் He உயர் பொயிலின் வெப்பநிலை பெறுமதி உடையது
 - (c) இலட்சிய வாயுச்சமன்பாட்டினை மெய்வாயுவொன்று எந்த நிபந்தனையிலும் திருப்தி செய்யாது.
 - (d) வாயு மூலக்கூறு ஒன்றின் கதி வெப்ப இயக்கவியல் வெப்பநிலைக்கு நேர்விகிதசமமாகும்.
- 39. X,Y எனும் கூறுகளைக் கலப்பதன் மூலம் இலட்சிய கரைசல் ஒன்று உருவாக்கப்பட்டது. கரைசல்கள் உருவாக்கத்திற்கு கலக்கப்பட்ட மூல் அளவுகள், கீழே தரப்பட்டுள்ளன. தூய X இன் ஆவியமுக்கம் தூய Y இன் ஆவி அமுக்கத்தை விட உயர்வானது.

கரைசல்	A	В	С	D	Е	F	G	Н	I
X இன் மூல் அளவு	1	2	3	4	5	6	7	8	9
Y இன் மூல் அளவு	9	8	7	6	5	4	3	2	1

மேற்படி கரைசல்கள், கரைசலாக்கங்கள் தொடர்பான பின்வரும் கூற்றுகளில் எது/ எவை சரியானது/சரியானவை?

- (a) கரைசலாக்கத்தின் போது கரைசல்களில் ஏற்படும் வெப்ப உள்ளுறைமாற்றம் A இலிருந்து E வரை அதிகரித்து பின் குறையும்.
- (b) கரைசலாக்கத்தின் போது கரைசலில் ஏற்படும் எந்திரோபி மாற்றம் A இலிருந்து E வரை அதிகரித்து பின் குறையும்.
- (c) மூடிய தொகுதியில் கரைசல்களை சமநிலைக்கு அனுமதிக்கும் போது ஆவியமுக்கம் A இலிருந்து E வரை அதிகரித்து பின் குறையும்.
- (d) கரைசலாக்கத்தின் போது கரைசலில் ஏற்படும் கிப்சின் சுயாதீன சக்தி மாற்றம் A இலிருந்து E வரை குறைந்து பின் அதிகரிக்கும்.
- 40. குறித்த வெப்பநிலையொன்றிலே ஒரே pH ஐ கொண்டிருக்கும் CH₃COOH நீர்க்கரைசலுக்கும் HCOOH நீர்க்கரைசலுக்கும் அவற்றின் மூல் எண்ணிக்கைகளுக்கு சமனான CH₃COONa திண்மம் HCOONa திண்மம் முறையே சேர்க்கப்படுவதன் மூலம் கரைசல்கள் A, B தயாரிக்கப்படுகிறன. இக்கரைசல்கள் தொடர்பான கூற்றுக்களில் எது/எவை உண்மையானது/ உண்மையானவை?
 - (a) கரைசல் A இன் தாங்கற்திறன் கரைசல் B இன் தாங்கற்திறனை விட உயர்வானது.
 - (b) கரைசல்களை நீர் சேர்த்து ஐதாக்கும் போது அமிலங்களின் செறிவு வீழ்ச்சியடைவதால் கரைசல்களின் pH கணிசமானளவு வீழ்ச்சியடைகிறது.
 - (c) கரைசல் A ஐக்காட்டிலும் கரைசல் B உயர்செறிவில் அயன்களைக் கொண்டிருக்கும்.
 - (d) கரைசல் A இனது pH கரைசல் B இன் pH ஐ விட உயர்வானது.

• 41 தொடக்கம் 50 வரையுள்ள வினாக்கள் ஒவ்வொன்றிலும் இரண்டு கூற்றுக்கள் தரப்பட்டுள்ளன. அட்டவணையில் உள்ள (1), (2), (3), (4), (5) ஆகிய தெரிவுகளிலிருந்து ஒவ்வொரு வினாவுக்கும் தரப்பட்டுள்ள இரு கூற்றுக்களுக்கும் மிகவும் சிறப்பாக பொருந்தும் தெரிவைத் தெரிந்து பொருத்தமாக விடைத்தாளிற் குறிப்பிடுக.

தெரிவுகள்	கூற்று I	கூற்று II
(1)	உண்மை	உண்மை, கூற்று I இன் விளக்கம்
(2)	உண்மை	உண்மை, கூற்று I இன் விளக்கமல்ல
(3)	உண்மை	பொய்
(4)	பொய்	உண்மை
(5)	பொய்	பொய்

	முதலாம் கூற்று	இரண்டாம் கூற்று			
41	நீர்க்கரைசல் நிலையில் Sn^{2+} இன் ஒட்சியேற்றும் திறனானது Ag^+ ஐ விட உயர்வானது	ஒர் அயனின் ஒட்சியேற்றும் திறனானது அது ஏற்கத்தக்க இலத்திரன்களின் எண்ணிக்கையிலேயே தங்கியுள்ளது.			
42.	இ காட்டிலும் $CH_2 = CH_2$ இலத்திரன்நாட்ட கூட்டல்களில் இலகுவில் ஈடுபடும்	இல் C அணுவின் மின்னெதிர்த்தன்மை உயர்வு			
43.	நீர்க்கரைசல் ஒன்றிற்கு ஐதான HCl ஐ சேர்க்கும் போது நிறமுள்ள வாயு வெளியேற்றம் ஏற்படும் எனில் NO_2 அயன்கள் கரைசலில் இருக்கின்றன என்பதே வரத்தக்க ஒரே முடிவாகும்.	NO2 ⁻ ஒரு மென்னமிலத்திற்குரிய அன்னயன் பகுதியாகும்.			
44.	Propynenitrile (HC≡C-CN) இலுள்ள அனைத்து அணுக்களும் ஒரே நேர்கோட்டில் காணப்படும்	Propynenitrile மூலக்கூறிலுள்ள காபன் அணுக்கள், நைதரசன் அணுக்கள் என்பன sp கலப்பு நிலையிலுள்ளன.			
45.	${ m O}$ அணுக்களிக்கிடையிலான பிணைப்புநீளம் ${ m O_2}^{\scriptscriptstyle -}$ ஐ காட்டிலும் ${ m O_2}^{\scriptscriptstyle 2^{\scriptscriptstyle -}}$ இல் உயர்வானது	${f O}$ அணுவின் ஒட்சியேற்ற நிலை ${f O_2}^-$ ஐ காட்டிலும் ${f O_2}^{2-}$ இல் உயர்வானது.			
46.	ஒரே கதி இடையைக் கொண்டிருக்கும் H_2 மூலக்கூறுகளின் வெப்பநிலையை விட D_2 மூலக்கூறுகளின் வெப்பநிலை உயர்வாக அமையவேண்டும்.	வாயு மூலக்கூறுகளின் கதியிடைப்பரம்பலானது அவற்றின் மூலக்கூற்றுதிணிவு, வெப்பநிலை என்பவற்றைச் சார்ந்தது.			
47.	வெப்பநிலை அதிகரிக்கும் போது புறவெப்பதாக்க சமநிலையொன்றின் முற்தாக்கவீதம் அதிகரிப்பு பிற்தாக்கவீத அதிகரிப்பை காட்டிலும் உயர்வாக அமைகிறது.	புறவெப்பசமநிலை தாக்கமொன்றின் முற்தாக்க ஏவற்சக்தி ஆனது பிற்தாக்க ஏவற்சக்தியை காட்டிலும் உயர்வாகும்.			
48.	NH2 ஓர் அரோமற்றிக் முதல் அமீன் எனினும்	NH2 தாழ்வெப்பநிலையில் நைத்திரஸ் அமிலத்துடன் ஈரசோனியம் உப்பொன்றை தரும். எனினும்			
	CH_2NH_2 அலிபாற்றிக் முதல் அமீன் ஆகும்.	CH2NH2 தாழ்வெப்பநிலையில் நைத்திரஸ் அமிலத்துடன் ஈரசோனியம் உப்பொன்றை தருவது இல்லை			
49.	2AB _{3(g)} \rightleftharpoons A _{2(g)} + 3B _{2(g)} எனும் சமநிலை தாக்கத்தின் கூட்டற்பிரிகையளவானது வெப்பநிலையில் மாத்திரம் சார்ந்துள்ளது.	2AB _{3(g)} ⇌ A _{2(g)} + 3B _{2(g)} எனும் சமநிலை தாக்கத்தின் K _p ஆனது வெப்பநிலையில் மாத்திரம் சார்ந்துள்ளது.			
50.	வாகனபுகைபோக்கியுடன் ஊக்கிமாற்றியொன்றை இணைப்பதன் மூலம் ஒளிஇரசாயன புகார் தோன்றுவதை கட்டுப்படுத்தமுடியும்.	வாகனபுகையில் வெளியேறும் NO ₂ , ஐதரோகாபன் என்பன ஒளிஇரசாயனபுகார் தோன்றுவதற்கான முதலான மாசாக்கிகள் ஆகும்.			

1 IA				DED	IOI	DIC'	ТАВ	RIF	OFT	THE	FII	ME	NT	2			18 VIIIA
1 H 1.008	2 IIA				101		IAL	LL	01		LLI	13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	2 He
3 Li 6.94	4 Be											5 B 10.81	6 C 12.01	7 N 14.1	8 O 16.00	9 F 19.00	10 Ne 20.18
11 Na 22.99	12 Mg 24.30	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8	9 VIIIB	10	11 (B	12 IIB	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.06	17 Cl 35.45	18 Ar 39.95
19 K 39.10	20 Ca	21 Sc 44.96	22 Ti 47.90	23 V 50.94	24 Cr 52.00	25 Mn 59.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.39	31 Ga 69.72	32 Ge 72.59	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91,22	41 Nb 92.91	42 Mo 95.94	43 Tc (98)	44 Ru 101.1	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118,71	51 Sb 121.75	52 Te 127.60	53 I 126.91	54 Xe 131.29
55 Cs 132.91	56 Ba 137,33	57 * La 138.91	72 Hf 178.49	73 Ta 180.95	74 W 183.85	75 Re 186.21	76 Os 190.2	77 Ir 192.2	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 Tl 204,38	82 Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr	88 Ra 226.02	89 †Ac 227,03	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg						73	

*Lanthanide Series

[†]Actinide Series

58 Ce	59 Pr	Nd	Pm	Sm	Eu	Gd	65 Tb	Dv	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
140.12	140.91	144.24	(145)	150.4	151.97	157.25	158.93	162.50	164.93	167.26	169.93	173.04	174.97
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	X	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

முழுப் பதிப்புரிமையுடையது / All Rights Reserved]

MORA E-TAMILS 2018 Tamil Stude ts, Faculty of Engineering, University of Moratuwa வெறுட்டுவை பல்கலைக்கியாடும். தமிழ் மாணவர்கள் கொடியாக கூறியாக கூறியா

கல்விப் பொதுத் தராதரப் பத்திர(உயர் தர) முன்னோடிப் பரீட்சை - 2016 General Certificate of Education (Adv.Level) Pilot Examination - 2016

இரசாயனவியல் II Chemistry II 02 T II

மூன்று மணித்தியாலம் Three hours

சுட்டெண் :

அறிவுறுத்தல்கள்

- * கணிப்பானைப் பயன்படுத்தக்கூடாது.
- st அகில வாயு மாறிலி $R=8.314\,J\,K^{-1}mot^{-1}$
- st அவகாதரோ மாறிலி $L=6.022 imes10^{23} mol^{-1}$
- ☀ இவ்வினாத்தாளுக்கு விடை எழுதும்போது அற்கைற் கூட்டங்களைச் சுருக்கமான விதத்தில் காட்டலாம்.

- பகுதி A அமைப்புக் கட்டுரை (பக்கங்கள் 2-8)
- 🔻 எல்லா வினாக்களுக்கும் இத்தாளிலேயே விடை எழுதுக.
- 🔻 ஒவ்வொரு வினாவுக்குக் கீழும் விடப்பட்டுள்ள இடத்தில் உமது விடைகளை எழுதுக.
- இவருக்கப்பட்டுள்ள இடம் விடைகளை எழுதுவதற்குப் போதுமானது என்பதையும் விரிவான விடைகள் அவசியமில்லை என்பதையும் கவனிக்க.
- பகுதி **B**யும் பகுதி **C**யும் கட்டுரை (பக்கங்கள் 9 13)
- * ஒவ்வொரு பகுதியிலிருந்தும் இரண்டு வினாக்களைத் தெரிவு செய்து எல்லாமாக நான்கு வினாக்களுக்கு விடை எழுதுக.
- * இவ்வினாத்தாளுக்கென வழங்கப்பட்ட நேர முடிவிலே பகுதி A மேலே இருக்கும்படியாக A,B,C ஆகிய மூன்று பகுதிகளின் விடைத்தாள்களையும் ஒன்றாகச் சேர்த்துக் கட்டியபின் பரீட்சை மேற்பார்வையாளரிடம் கையளிக்க.
- st வினாத்தாளின் B,C ஆகிய பகுதிகளை மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்ல அனுமதிக்கப்படும்.

பரீட்சகரின் உபயோகத்திற்கு மட்டும்

பகுதி	வினா இல.	புள்ளிகள்
	01	
	02	
A	03	
	04	
_	05	
В	06	
	07	
	08	
С	09	
	10	
மொத்தம்		
சதவீதம்		

	@ B	திப்	புள்ளிகள்	
இலக்கத்தில்				
சொந்களில்				

குறியீட்டெண்கள்

விடைத்தாள் பரீட்சகர்	
புள்ளிகளை 1	
பரிசீலித்தவர் 2	
மேற்பார்வை	

பகுதி \mathbf{A} — அமைப்புக்கட்டுரை அனைத்து வினாக்களிற்கும் விடை அளிக்குக.

	வருவனவந்றை ங்குபடுத்துக.	அடைப்புக்குள்	குறிப்பிடப்பட்டுள்ள	இயல்புகள்	அதிகரிக்கும்	வரிசைக்கேற்ப			
	i. H, Si, C, Br (மின்னெதிர்த்தன்மை)								
ii. I	Li, B, Cl, F (இலத்திரன் நாட்டசக்தி)								
iii. S	iii. SCl ₂ , SF ₂ , SF ₄ , SF ₆ (பிணைப்பு நீளம்)								
iv. I									
v. N	NO_2 , SO_2 , SO_3 , C	O_2 (பிணைப்புகே	ாணம்)						
vi. N	NH ₂ -, OH-, CH ₃ O-	, HCO ₃ - மூல இ	-						
		<	<		<				
ஆன பெற உரு இம்மூ தரப்	து P உடன் தாக் புகிறது. X இன் வாக்கும் பங்கீட்டு மலகங்களினால் பட்டுள்ளது.	க்கமடைந்து உரு அதியுயர் ஒட்சி வலுச்சேர்வைக உருவாக்கப்பட்ட	X என்பன நடுநிலை வாக்கும் சேர்வையில் பெற்ற நிலைக்குரிய ள் எதனிலும் Q தனி $_{-}$ மூலக்கூறு QX_2Y_1 Q Y Q	் மாத்திரமே `` ப ஒட்சைட்டு ச்சோடி இலத்த	Y நேர் ஒட்சியே வன்னமில இய நிரனைக் கொண	ந்ந நிலையைப் பல்புடையது. Q ர்டிருக்கவில்லை.			
	ம்மூலக்கூறுக்கு மீ	ிகவும் ஏற்றுக்கெ	ாள்ளக்கூடிய லூயிசின	ர் கட்டமைப்பை	ப வரைக.				
	ற்கூறிய மூலக்ச இலைகளை காரன		க் கட்டமைப்புகளை யிடுக.	வரைந்து, ச	கட்டமைப்புகளில்	 ள் சார் உறுதி			
•••									
•••									
•••									
iv.			ள்ள $\mathrm{X}_1,\mathrm{X}_2$ அணுக்க த்திரன் சோடிக் கேத்த						
	2. அணுவைச்	சூழவுள்ள வடி	வ ம்.						
		கலப்பாக்கம்							
	4. அணுவைச் குறிப்பிடுக.		றணப்புக்கோணத்தின்	<u> அ</u> ண்ணளவா <i>ல</i>	ர பெறுமானம்	் என்பவற்றைக்			

 X_1

இநநிரலில)
எதனையும்	
இந்நிரலில் எதனையும் எழுதுதல் ஆகாது.	
ஆகாது.	

 X_2

	இலத்திரன் சோடிக்கேத்திரகணிதம்
	வடிவம்
	கலப்பாக்கம்
	பிணைப்புக்கோணம்
v.	X_1,X_2 ஆகியவற்றின் மின்னெதிர்த்தன்மையை காரணத்துடன் ஒப்பிடுக.
பத (அ	ழ அடைப்பினுள் தரப்பட்டுள்ள சாலகவகை சொற்பதங்களை பயன்படுத்தி தரப்பட்டுள்ள ார்த்தங்களில் உள்ள சாலக வகையினை குறிப்பிடுக. யன்சாலகம், முனைவில் மூலக்கூற்று சாலகம், உலோகசாலகம், ஓரின அணுச்சாலகம், முனைவு லக்கூற்று சாலகம், பல்லின அணுச்சாலகம்)
1	$\operatorname{CsCl}_{(s)}$
2	2. சிலிக்கன் [Si _(s)]
3	8. உலர்பனிக்கட்டி
2	ł. Cu
5	5. சாய்சதுர கந்தகம்
	ழ தரப்பட்டள்ள காபன்சேர்வைகளை கருதுக. ாமல்டிகைட்டு ($ m H_2CO$), போமிக்கமிலம் ($ m H_2CO_2$), ஒட்சாலிக்கமிலம் ($ m H_2C_2O_4$)
1	. இவற்றினை கொதிநிலை, அமில இயல்பின் ஏறுவரிசை ஒழுங்கில் தருக.
	கொதிநிலை<
	அமில இயல்பு<
2	2. இச்சேர்வைகளில் காணப்படும் மூலக்கூற்றிடை கவர்ச்சிவிசை வகைகள் யாவற்றையும் குறிப்பிடுக.
	போமல்டிகைட்டு
	போமிக்கமிலம்
	ஓட்சாலிக்கமிலம்
என்ப வெப் சேர்	எனும் s தொகுப்பு மூலகம் ஒன்றை தனித்தனியே NaOH நீர்க்கரைசல், HCl நீர்க்கரைசல் பவற்றினுள் இடும்போது Y எனும் வாயு வெளியேறியது. X உம் Y உம் சற்று உயர் ப்பநிலையில் தாக்கமடைந்து Z எனும் காரத்தன்மை உடைய வெண்சேர்வையை விளைவாக்கியது. வை Z ஆனது நீருடன் தாக்கமடைந்து வாயு Y ஐ உருவாக்கியது. X இன் குரோமேற் உப்பு ந்றிக்கமிலத்தில் கரைவதில்லை. ஐதான HNO3 இல் கரைந்து கரைசல் W ஐ விளைவிக்ககூடியது.
i. ტ6	லகம் X ஐ இனங்காண்க.
ii. W,	${ m Y, Z}$ என்பவற்றின் இரசாயன சூத்திரங்களை தருக.
	ர்வை Z ஆனது நீருடன் காட்டும் தாக்கத்திற்கு சமப்படுத்திய இரசாயன சமன்பாட்டை தருக.
••••	

இந்நிரலில்
எதனையும்
எழுதுதல்
ஆகாது.

	உப்பிற்கு ஐதான HNO_3 சேர்க்கும் போது நடைபெற்ற தாக்கத்திற்கான சமப்படுத்திய டையும் அவதானத்தையும் குறிப்பிடுக.					
•••••						
		கரைசல், HCl நீர்க்கரைசல் இல் தனித்தனியே இடும் போது அக்கரைசல்களின் pH				
இல் ஏற்படும் மாற்றங்களை எதிர்வு கூறுக. NaOH _(aa)						
$HCl_{(aq)}$						
vi. மூலகம் குறிப்பி(ல்பேற்று உப்பு மருத்துவ பயன்பாட்டில் முக்கியத்துவமானது. அதன் பயன்பாட்டை				
இச்சேர்கை H ₂ SO ₄ , ச மேற்குறிப்	வகள் ஒழுங்ஞ AgNO₃, CuS பபிட்ட சேர்ை	ரை பெயரிடப்பட்ட சோதனை குழாய்களில் பின்வரும் சேர்வைகள் அடங்கியுள்ளன. தமுறையில் தரப்படவில்லை. SO ₄ , Al ₂ S ₃ , Ba(NO ₂) ₂ வகளை இனங்காண செய்யப்பட்ட சோதனைகள், அவதானங்கள் கீழே				
<u> அட</u> ்டவகை	ணயில் தரப்ட	<u>ப</u> ட்டுள்ளது.				
சேர்	നമ്മ	சோதனையும் அவதானமும்				
I	A	$\mathrm{KI}_{(\mathrm{aq})}$ சேர்க்கும் போது வெண்ணிற வீழ்படிவு பெறப்பட்டது				
I	В	$ m Na_2S_2O_{3(aq)}$ உடன் வெண்ணிற வீழ்படிவு உருவாகிறது. சிறிது நேரத்தில் கறுப்பு நிறமாக மாறியது.				
(С	PCl ₅ உடன் வெண்புகையை உருவாக்கியது				
J	D	ஐதான HCl உடன் கபிலவாயுவை வெளியேற்றுகிறது.				
]	Е	நீர் சேர்க்க ஜெலாற்றின் போன்ற வெண்வீழ்படிவையும் துர்நாற்ற மணமுள்ள வாயுவும் தோன்றும்.				
i. A தொ	டக்கம் E வ	ரையான சேர்வைகளை இனம் காண்க.				
A		B C				
D		Е				
சமன்பா	டுகளை தரு	ரையான ஒவ்வொரு சேர்வைகளினதும் சோதனைகளிற்கான தாக்கத்தின் சமன்செய்த க. வீழ்படிவுகள் உருவாக்கப்படின் 🗸 எனும் குறியீட்டை பாவிக்கவும்.				
D						
В						
В						
	•••••					
	•••••					
C	•••••					
C						
C						
C D						
C						

03. (a) நியம கலமல் மின்வாயையும் நியம குளோரின் மின்வாயையும் கொண்டுருவாக்கப்பட்ட மின் இரசாயனக் கலமொன்றின் அமைப்பு கீழே தரப்பட்டுள்ளது. (அம்புக்குறி காட்டும் திசையில் இலத்திரன் பாய்ச்சல் நடைபெறுகின்றது.)

கலத்தின் அடிப்படையில் கீழே தரப்பட்டுள்ள வினாக்களுக்கு விடை தருக. i. A - E ஐ இனங்காண்க. பொருத்தமான இடங்களில் பௌதீகநிலை, என்பவற்றைத் தருக. ii. இரு அரைக்கலங்களையும் இணைப்பதற்கு (மன்னர் மின்வாய்களில் நிலவிய மின்வாய் சமநிலைகளைத் தருக. 1. கலமல் மின்வாய் 2. குளோரின் மின்வாய் iii. கலத்தாக்கத்தைத் தருக. iv. கலத்தின் நியமக் கலக்குறியீட்டைத்தருக. v. கலத்தாக்கத்திற்குரிய கிப்ஸின் சக்திமாற்றம் $\Delta G^ heta$ ஆனது பின்வரும் சமன்பாடு மூலம் தரப்படலாம். $\Lambda G^{\theta} = -nFE^{\theta}$ இங்கு என்பது ஈடுசெய்த கலத்தாக்கத்தில் சம்பந்தப்படும் இலத்திரன்களின் மூல் எண்ணிக்கையாகும். (ஒட்சியேற்றி, தாழ்த்திகளிடையே பரிமாற்றப்பட்ட இலத்திரன்களின் மூல் எண்ணிக்கை) F- பரடே மாநிலி (F = 96500 Cmol⁻¹) E^{θ} கலத்தின் மின்னியக்க விசையாகும். இக்கலத்தாக்கத்துடன் சம்பந்தப்பட்ட சுயாதீன சக்திமாற்றம் -212.3kJmol⁻¹ எனின் கலத்தின் நியம மின்னியக்கவிசையைக் கணிக்க.

vi.	நியம குளோரின் மின்வாயின் மின்னியக்க விசை $E^{\theta}_{\text{Cl}_{2(g)}/\text{Cl}_{(aq)}} = +1.36 ext{V}$ எனின் நியம கலமல் மின்வாயின் மின்னியக்க விசையைக் கணிக்க.
(b)	நீரின் அவத்தை வரைபடம் கீழே தரப்பட்டுள்ளது.
	அமுக்கம் (atm)
	C A D
	மைப்பநிலை (K)
i.	நீரின் அவதிவெப்பநிலை என்பதனால் யாது விளங்குகிறீர்.
ii.	நீரின் திண்மநிலை, திரவநிலை, ஆவிநிலைகளுக்குரிய பிரதேசங்களை முறையே X, Y, Z என மேலே தரப்பட்ட அவத்தை வரைபடத்தில் குறித்துக்காட்டுக.
iii.	நீரின் மூன்று பௌதீக நிலைகளும் ஒருங்கே சமநிலையில் காணப்படுவதற்கான வெப்பநிலை, அமுக்கம் என்பவற்றைக் குறிப்பிடுக. வெப்பநிலை அமுக்கம்
iv.	மேலே நீர் குறிப்பிட்ட அமுக்கத்தை விட குறைந்த அமுக்கப்பெறுமதியில் பனிக்கட்டியின் வெப்பநிலை உயர்த்தப்படுமெனின் அதன் பௌதீகநிலையில் ஏற்படும் மாற்றத்தைக் குறிப்பிடுக.
v.	கோடுகள் BC, BA என்பன 1 atm அமுக்க நிலையை இடைவெட்டும் சந்தர்ப்பத்தின் போதான வெப்பநிலைகளை முறையே குறிப்பிடுக.
	BC
	BA

	A	В		C	
	D	E		F	
ii. C	3 ஆனது ஐதான 5ட்டமைப்பை வரைக	_கத்தில் தன்	H ஒடுங்கல் அன	டந்து உருவாகும்	ഖിതണ

. E இல் நீரகற்றலை மேற்கொண்டு உருவாகும் விளைவு,									
a. ©	a. கேத்திரகணித சமபகுதிய தன்மையை வெளிக்காட்டுகின்றதா?								
 b. 2	b. உமது விடைக்கான காரணத்தை தருக?								
கீ ழே [கரு	தொடக்கம் 5 வரையான த ழ உள்ள அட்டவணையில நநாட்டகூட்டல் (A _N), மின்நாட கல் (E)] மற்றும் பிரதான வி	ல் தரப்பட்டுள்ளன. ஒ \dot{c} ட்டகூட்டல் ($A_{ m E}$), கருநாட்	வ்வொரு தாக் ட பிரதியீடு (S	கத்திற்குரிய வகைகளைய $S_{ m N}$), மின்நாட்ட பிரதியீடு ($S_{ m I}$					
	தாக்கி	சோதனைப்பொருள்	தாக்க வகை	பிரதான விளைபொருள்					
1	CH ₂ I	$H - C \equiv C^{-} Na^{+}$							
2	O CH ₃ – C – CH ₃	HCN / KCN							
3	(CH ₃) ₂ CHCHBrCH ₃	C ₂ H ₅ OH / KOH							
4	O·Na ⁺	CH₃COCl							
5	ÇN	FeCl ₃ / Cl ₂							
6	\bigcirc	Br ₂ /CCl ₄							
ii. 6	வினா b(i) இல் தாக்கம் (6) இ		கீழே எழுதுக.						
••••									

முழுப் பதிப்புரிமையுடையது/ All Rights Reserved]

MORA E-TAMILS 2018 | Tamil Stude ts, Faculty of Engineering, University of Moratuwa வரையில் இரு ints. Faculty of Engineering University of Moratuwa வரையில் இரு ints. Faculty of Engineering University of Moratuwa வரையில் இரு பாணவர்கள் கொடும் இரு பாணவர்கள் கொடும் இரு பாணவர்கள் கொடும் இரு மாணவர்கள் கொடும் இரு மாணவர்கள் கொடும் இரு மாணவர்கள் கொறு நிடியாக இரு மாணவர்கள் கொறு நிடியாக இரு மாணவர்கள் கொறு முன்ற காணவர்கள் கொறு நிடியாக இரு மாணவர்கள் கொறியில் முக்க காணவர்கள் கொறியில் முக்க கொறியில் முக்க கொறியில் முக்க காணவர்கள் கொறியில் முக்க கொறியில் முக்க காணவர்கள் கொறியில் முக்க கொறியில் முக்க காணவர்கள் கொறியில் முக்க காணவர்கள் கொறியில் முக்க காணவர்கள் கொறியில் முக்க காணவர்கள் கொறியில் முக்க கொறியில் முக்க கொறியில் முக்க கொறியில் முக்க காணவர்கள் கொறியில் முக்க காணவர்கள் கொறியில் முக்க காணவர்கள் கொறியில் முக்க காணவர்கள் காணவர்கள்

கல்விப் பொதுத் தராதரப் பத்திர(உயர் தர) முன்னோடிப் பரீட்சை - 2016 General Certificate of Education (Adv.Level) Pilot Examination - 2016

இரசாயனவியல் II Chemistry II 02 T II

அகில வாயு மாறிலி $R=8.314~J~K^{-1}~mol^{-1}$ அவகாதரோ மாறிலி $L=6.022~\mathrm{x}~10^{23}mol^{-1}$

பகுதி - B கட்டுரை

05. (a) மெதேன் வாயுவை நீராவியுடன் கலந்து தாக்கமடையச் செய்வதன் மூலம் ஐதரசன் வாயுவை அதிகளவில் உற்பத்தி செய்யமுடியும்.

சில பதார்த்தங்களின் நியமத் தோன்றல் வெப்பவுள்ளுறை மாற்றப்பெறுமதிகள், நியம எந்திரோப்பிப் பெறுமதிகள் என்பன கீழே தரப்பட்டுள்ளன.

$$CH_{4(g)}+H_2O_{(g)} \rightarrow CO_{(g)}+3H_{2(g)}$$

பதார்த்தங்கள்	$\Delta H^{ heta}_{ ext{ f}}/ ext{kJmol}^{-1}$	$S^{\theta}/JK^{-1}mol^{-1}$
CH _{4(g)}	-75	186
$H_2O_{(g)}$	- 242	189
$CO_{(g)}$	-111	198
H _{2(g)}	0	131
CO _{2(g)}	-394	214

- i. தரப்பட்ட தரவுகளைப் பயன்படுத்தி மெதேனிற்கும் நீராவிக்குமிடையே தாக்கத்தின் வெப்பவுள்ளுறை மாற்றம் ΔH^{θ} கணிக்குக.
- ii. இத்தாக்கத்தில் ஏற்படும் எந்திரோப்பி மாற்றம் $\Delta S^{ heta}$ ஐ காண்க.
- iii. மேலே நீர் கணித்த ΔH^{θ} , ΔS^{θ} தரவுகளைப்பயன்படுத்தி இத்தாக்கம் நடைபெறச் சாத்தியமான ஆகக்குறைந்த வெப்பநிலையைக் கணிக்குக.
- iv. நீர் கணித்த பெறுமானம், உண்மைப்பெறுமதியில் இருந்து வேறுபடுவதற்கான காரணம் யாதாக அமையலாம்?
- (b) i. குறித்த திணிவுடைய NH_4Cl திண்மம் 27^0C வெப்பநிலையில் $4.157dm^3$ கனவளவுடைய விறைத்த குடுவையில் பின்வருமாறு பிரிகையடைந்து சமநிலையடையவிடப்பட்டது.

$$NH_4Cl_{(s)} \rightleftharpoons NH_{3(g)} + HCl_{(g)}$$

தொகுதியின் அமுக்கம் 8 x10⁴ Nm⁻² எனின்,

- $1. \hspace{1cm} 27^{0}{
 m C}$ வெப்பநிலையில் சமநிலைத்தொகுதியின் ${
 m K_{p}}$ ஐ கணிக்க.
- 2. மேற்படி சமநிலையை ஏற்படுத்த தேவையான $NH_4Cl_{(s)}$ இன் ஆகக்குறைந்த திணிவை கணிக்க. ($N-14,\,H-1,\,Cl-35.5$)
- ii. அதே கனவளவுடைய பிறிதொரு குடுவையில் அதே வெப்பநிலையில் NH_4HS திண்மமானது பின்வருமாறு பிரிகையடைந்து சமநிலையடைய விடப்பட்டது.

$$NH_4HS_{(s)} \rightleftharpoons NH_{3(g)} + H_2S_{(g)}$$

தொகுதியின் அமுக்கம் $6 \ x 10^4 \ Nm^{-2}$ எனின்

- $1. \ \ \ 27^{0}\mathrm{C}$ வெப்பநிலையில் சமநிலைத்தொகுதியின் $\mathrm{K_{p}}$ ஐ கணிக்க.
- 2. மேற்படி சமநிலையை ஏற்படுத்த தேவையான $NH_4HS_{(s)}$ இன் ஆகக்குறைந்த திணிவை கணிக்க. ($N-14,\,H-1,\,S-32$)

- ${\rm iii}$. அதே குடுவையினுள் ${\rm NH_4Cl_{(s)}}, {\rm NH_4HS_{(s)}}$ திண்மங்களின் பகுதி (i),2 பகுதி (ii),2 ஆகியவற்றில் பெறப்பட்ட அதே திணிவுகள் எடுக்கப்பட்டு $27^0{\rm C}$ வெப்பநிலையில் சமநிலையடையவிடப்பட்டன. சமநிலை தொகுதியிலுள்ள,
 - 1. NH_{3(g)} இன் பகுதி அமுக்கத்தை காண்க.
 - 2. சேர்க்கப்பட்ட திண்மங்களில் சமநிலையின் போது பிரிகையடையாது காணப்படும் $NH_4HS_{(s)}$ இன் திணிவை கணிக்க.
- 06. (a) ஐதரசீன் (N_2H_4) ஆனது நீர்க்கரைசலில் பின்வருமாறு அயனாக்கமடையக்கூடியது.

$$N_2H_{4(aq)} + H_2O_{(l)} \rightleftharpoons N_2H_5^+_{(aq)} + OH^-_{(aq)}$$

 $(25^{\circ}C$ இல் $K_b(N_2H_4) = 9 \times 10^{-7} \text{ moldm}^{-3}$)

- i. 0.1moldm^{-3} ஐதரசீன் கரைசலின் pH ஐ கணிக்க. $(\log 3 = 0.4771)$
- ii. நீர்க்கரைசலில் $N_2{H_5}^+{}_{(aq)}$ இன் சமநிலையைக் கருதுக.

$$N_2H_5^+_{(aq)} + H_2O_{(l)} \rightleftharpoons N_2H_{4(aq)} + H_3O^+_{(aq)}$$

pH=4.4 ஆகவுள்ள $100cm^3$ ஐதரசீனியம் குளோரைட்டு (N_2H_5Cl) நீர்க்கரைசலிற்கு $AgNO_{3(aq)}$ இனை சேர்ப்பதன் மூலம் வீழ்படிவாதலை ஆரம்பிப்பதற்கு சேர்க்க வேண்டிய $AgNO_{3(aq)}$ இன் இழிவுத் திணிவை mg இல் கணிக்குக.

 $(10^{0.6} = 4, K_{sp}(AgCl) = 1x10^{-10} \text{ mol}^2\text{dm}^{-6}, Ag=108, N=14, O=16)$

- (b) i. 100 cm³ NH₃ நீர்க்கரைசலானது 50 cm³ சேதன கரைப்பான் A உடன் சேர்த்து குலுக்கி 25°C இல் சமநிலை அடையவிடப்பட்டது. நீர்ப்படையின் 25cm³ ஐ வேறாக்கி 1 moldm⁻³ செநிவுடைய HCl கரைசலினால் வலுப்பார்த்த போது அதன் 6cm³ தேவைப்பட்டது. சேதனபடையின் 25cm³ ஐ வேறாக்கி 0.5moldm⁻³ HCl இனால் வலுப்பார்த்த போது அதன் 5cm³ தேவைப்பட்டது.
 - 1. நீருக்கும் சேதனப்படை A இற்கும் இடையே NH_3 இன் பங்கீட்டு குணகம் K_D இற்கான கோவையை தருக.
 - 2. நீருக்கும் சேதனப்படை A இற்குமிடையே NH_3 இன் பங்கீட்டு குணகத்தை கணிக்க.
 - மேற்படி நியமிப்புகளிற்கு பொருத்தமான காட்டியை தருக. இக்காட்டியை பயன்படுத்தும் போது முடிவுப்புள்ளியில் கரைசலில் ஏற்படும் நிறமாற்றத்தை குறிப்பிடுக.
 - ii. 3 moldm⁻³ NH₃ நீர்க்கரைசலின் 50cm³ ஆனது 0.2 moldm⁻³ CuSO₄ இன் 50cm³ உடனும் சேதன கரைப்பான் A இன் 200cm³ உடனும் கலந்து குலுக்கி சமநிலையடைய விடப்பட்டது. சமநிலையில் சேதன படையின் 25cm³ ஐ வேறாக்கி 0.5 moldm⁻³ HCl இனால் வலுப்பார்த்த போது அதன் 12.5 cm³ தேவைப்பட்டது.

 $K_c \left[Cu(NH_3)_4 \right]^{2+} = 1 \times 10^{12} \, mol^{-4} dm^{12}$

- 1. நீர்ப்படையில் சுயாதீனமாக காணப்படும் NH_3 இன் (சிக்கலினுள் காணப்படுவது தவிர்ந்த) செறிவை காண்க.
- 2. $[Cu(NH_3)_4]^{2+}$ சிக்கலின் செறிவை கணிக்க.
- 3. நீர்ப்படையில் உள்ள சுயாதீன Cu^{2+} இன் செறிவை கணிக்க.

07. (a) பட்டியலில் தரப்பட்டுள்ள சேதன சேர்வைகள், தாக்குபொருட்கள் என்பவற்றை மாத்திரம் பயன்படுத்தி சேர்வை A ஐ எங்கனம் தொகுக்கலாம் என்பதை செய்து காட்டுக.

PCC, Mg, CH₃OCH₃, K₂Cr₂O₇, dil.H₂SO₄, PCl₃, உலர் ஈதர், CH₂Cl₂, Fe, conc. H₂SO₄, CH₃OH, CH₃CH₂OH

$$egin{array}{c} O & CH_3 \\ CH_3CH_2-C-O-C-CH_3 \\ CH_3 \end{array}$$
 சேர்வை A

(b) சேர்வை P ஐ மாத்திரம் சேதன சேர்வையாக பயன்படுத்தி சேர்வை Q ஐ எங்கனம் தொகுப்பீர் எனக்காட்டுக.

$$CH_3CH_2C1$$
 — $CH_3 - C - NH - CH_2CH_2 - NH - C - CH_3$ Селімом P Селімом O

- (c) i. எதனோல், பீனோல் ஆகியவற்றின் அமில இயல்புகளை ஒப்பிடுக.
 - ii. (c) (i) இல் உமது விடைக்கான காரணத்தை தருக.
 - ii. எதனோல் PCl_5 உடன் தாக்கி எதையில் குளோரைட்டை தரும் எனினும் பீனோல் PCl_5 உடன் தாக்கமடைவதில்லை. விளக்குக.

08. (a) A, B என்பன நீரில் கரையத்தக்க 3d — தொகுப்பு தாண்டல் மூலக உப்புக்களாகும். A, B என்பவற்றை நீர் சேர்த்து ஐதாக்கி முறையே X, Y எனும் மென்சிவப்பு நிற கரைசல்கள் பெறப்பட்டன. A, B என்பவற்றை இனங்காண்பதற்கு மேற்கொள்ளப்பட்ட சில சோதனைகள் கீழே தரப்பட்டுள்ளன.

கரைசல் X இந்கு,

1.HCl, NaOH ஐ தனித்தனியே சேர்த்து	எவ்வித வாயு வெளியேற்றமும்	
வெப்பப்படுத்தல்	அவதானிக்கப்படவில்லை	
2. Al தூள், NaOH சேர்த்து	வெளிவந்த வாயு நெசுலரின்	
வெப்பப்படுத்தல்	சோதனைப்பொருளை கபிலமாக்கியது	
3. NH ₄ OH, NH ₄ Cl சேர்த்து H ₂ S வாயு செலுத்துதல்	கறுப்பு நிற வீழ்படிவு P தோன்றியது.	
4. வீழ்படிவு P ஐ conc.HNO ₃ இல் கரைத்து பின் conc.HCl ஐ மிகையாக சேர்த்தல்	நீல நிறக்கரைசல் பெறப்பட்டது.	

கரைசல் Y இந்கு,

5. conc. H ₂ SO ₄ , K ₂ Cr ₂ O ₇ சேர்த்தல்	செந்நிற வாயு Q தோன்றியது
6. வாயு Q ஐ NaOH கரைசலினுள்	மஞ்சள் நிற கரைசல் R பெறப்பட்டது.
செலுத்துதல்	
7. கரைசல் R இந்குள் (CH ₃ COO) ₂ Ba /	மஞ்சள் நிற வீழ்படிவு தோன்றியது.
conc.HNO3 சேர்க்கப்பட்டது.	
8. PbO ₂ , conc.HCl சேர்த்தல்	ஊதாநிற கரைசல் (S) பெறப்பட்டது

- i. உப்புக்கள் A, B என்பவற்றை இனங்காண்க.
- $ii.\ P,\,Q$ என்பவற்றையும் $R,\,S$ கரைசல்களின் நிறங்களிற்கு பொறுப்பான அயன்களையும் எழுதுக.
- iii. சோதனை 2, 5, 8 இற்கான சமப்படுத்திய இரசாயன சமன்பாடுகளை எழுதுக.

- (b) மூலகம் E ஆனது அறைவெப்பநிலையில் வாயு நிலையில் காணப்படும். இதன் இலத்திரன் நாட்டம் ஆனது ஏனைய மூலகங்களை விட உயர்வானது.
 - i. மூலகம் E ஐ இனங்காண்க.
 - ii. முலகம் E இன் உறுதி ஒட்சியேற்ற நிலைகளை குறிப்பிடுக.
 - iii. b(ii) இல் நீர் குறிப்பிட்ட ஒட்சியேற்ற நிலைகளுக்குரிய E இன் ஒட்சைட்டுகள் ஒவ்வொன்றினை தருக.
 - iv. E இன் ஒட்சைட்டுகளாகிய EO₂, EO₃ கொண்ட கலவையின் வெப்பநிலையை குறைக்கும் போது உருவாக சாத்தியமான விளைவுகள் யாவை?
 - v. EO_2 ஆனது $NaOH_{(aq)}$ உடன் காட்டும் தாக்கத்திற்கான சமப்படுத்திய இரசாயன சமன்பாட்டை தருக. இத்தாக்கத்தின் தாக்கவகையையும் குறிப்பிடுக.
- (c) Fe, Ni கொண்ட கலப்புலோகத்தகடு ஒன்று அரிப்பை தடுப்பதற்காக Sn பூச்சு பூசப்பட்டுள்ளது. அத்தகைய கலப்புலோகத்தகட்டின் 20.00g மாதிரி மிகை ஐதான H₂SO₄ இல் முழுமையாக கரைக்கப்பட்டுள்ளது. விளைவு கரைசல் காய்ச்சிய நீர் சேர்த்து 500cm³ ஆக்கப்பட்டது. இதன் 25cm³ வேறாக்கப்பட்டு 0.05 moldm³ செறிவுடைய K₂Cr₂O₇ உடன் முழுமையாக தாக்கம் அடைய செய்வதற்கு அதன் 40cm³ தேவைப்பட்டது. கரைசலின் பிறிதொரு 25cm³ வேறாக்கப்பட்டு மிகை NaOH உடன் வெப்பப்படுத்தி குளிர்வித்து பெறப்பட்ட வீழ்படிவு வடித்து அகற்றப்பட்டது. விளைவுக்கரைசலிற்கு மிகை HgCl₂ நீர்க்கரைசல் சேர்த்தபோது பெறப்பட்ட வீழ்படிவு வடித்து உலரவிடப்பட்டது. அதன் உலர்திணிவு 0.471g ஆகக்காணப்பட்டது.
 - மேற்படி பரிசோதனையில் சம்பந்தப்படும் அனைத்து தாக்கங்களுக்குமான சமப்படுத்திய சமன்பாடுகளை தருக.
 - ii. Fe இன் திணிவு சதவீதத்தை காண்க. (Fe- 56, Hg-200, Cl- 35.5)
- 09. (a) 1) மென்சவ்வு கலம் (Membrane cell) ஐ பயன்படுத்தி எரிசோடா உற்பத்தி தொடர்பான பின்வரும் வினாக்களுக்கு விடை தருக.
 - i. இக்கைத்தொழிலின் மூலப்பொருள், பக்கவிளைபொருட்கள் என்பவற்றை தருக.
 - அனோட், கதோட் இல் நடைபெறும் தாக்கங்களிற்கான சமப்படுத்திய இரசாயன சமன்பாடுகளை தருக.
 - iii. இக்கலத்தில் பயன்படுத்தப்படும் அனோட், கதோட்டை குறிப்பிடுக. அவற்றை தேர்ந்து எடுக்கும் போது என்ன காரணிகள் அவசியமானதாக எடுத்துகொள்ளப்படவேண்டும்?
 - iv. மென்சவ்வு பிரிசுவரின் தொழிற்பாடுகளை தருக.
 - v. சுண்ணாம்புக்கல், கற்கரி என்பவற்றையும் இக்கைத்தொழிலில் உருவாகும்
 பக்கவிளைபொருட்களையும் பயன்படுத்தி PVC தயாரிப்புக்கு எங்கனம் விரிவுப்படுத்தலாம்
 என்பதை சமப்படுத்திய தாக்கசமன்பாடுகளை மாத்திரம் பயன்படுத்தி காட்டுக.
 - 2) யூரியா உற்பத்தி தொடர்பான கைத்தொழிலை கருத்திற்கொண்டு பின்வரும் வினாக்களுக்கு விடை தருக.
 - இக்கைத்தொழிலிற்கான முலப்பொருட்கள் யாவை? அவை எங்கனம் பெருப்படுகின்றது.
 - இவ்வுற்பத்தியின் சம்பந்தப்படும் முக்கிய படிமுறைகள், தாக்கங்களை உரிய நிபந்தனைகளுடன் தருக.
 - iii. யூரியாவை வளமாக்கியாக பிரயோகிப்பதனால் ஏற்படும் நன்மைகள் 2 தருக.

- (b) மனித செயற்பாட்டினாலும் இயற்கை நிகழ்வுகளினாலும் வளிமண்டலத்தில் விடுவிக்கப்படும் சில வாயு மூலக்கூறுகள் அமில மழைக்கு காரணமாக அமைகின்றன.
 - і. அமில மழைக்கு காரணமாக அமையும் வாயு மூலக்கூறுகள் எவை?
 - ii. இவ்வாயுக்கூறுகள் வளிமண்டலத்தை அடையும் வழிமுறைகள் நான்கை குறிப்பிடுக.
 - iii. அமில மழைக்கு பிரதான பங்களிப்பு செய்யும் வாயுக்கூறுகள் நீரில் கரைந்து எவ்வாறு அமில மழையை தோற்றுவிக்கின்றன என்பதை தகுந்த சமன்பாடுகளின் உதவியுடன் காட்டுக.
 - iv. அமிலமழையின் குறைந்தளவு அமிலநிலையிலும், அதிகளவு அமில நிலையிலும், டொலமைற்று பாறை எவ்வாறு கரையும் என்பதை தாக்க சமன்பாடுகளின் மூலம் காட்டுக.
 - v. அமில மழை காரணமாக சூழலில் ஏற்படும் பாதிப்புக்கள் 3 தருக.
 - vi. மேலே (i) இல் குறிப்பிட்ட வாயுக்கூறொன்று ஒளிஇரசாயனத்தாக்கத்தின் மூலம் மூலிகத்தை உருவாக்கி ஓசோன் படை சிதைவை எங்கனம் ஏற்படுத்துகின்றது என்பதை விளக்குக.
- (c) பல்பகுதிய கைத்தொழிலுடன் சம்பந்தப்பட்ட சில இரசாயன பொருட்களின் பட்டியல் கீழே தரப்பட்டுள்ளது.

$$CF_2 = CF_2$$
, $HOOC$ — COOH, 2-methylbuta -1, 3-diene, $HCHO$, OH — OH —

- і. இவற்றில் வெப்பமிளக்கும் பல்பகுதியத்தை உருவாக்க கூடியவை யாவை?
- ii. இவற்றில் ஒடுங்கல் பல்பகுதியத்தை உருவாக்க கூடியவை யாவை?
- iii. மேலுள்ளவற்றில் ஒன்று ரெஜிபோம் உற்பத்தியில் பயன்படுத்தப்படுகிறது. அதனை குறிப்பிடுவதுடன் அதன் பல்பகுதியத்தின் மீள்வரும் அலகையும் குறிப்பிடுக.
- iv. இயற்கை இறப்பர் ஆனது அதிக மீள்சக்தி உடையதாகும். இதற்கான காரணம் யாது?
- v. மேற்குறிப்பிட்டவற்றில் இருந்து உருவாகும் பொலிஎசுத்தரின் மீள்வரும் அலகையும் பொலிஎசுத்தரின் பயன்பாடு ஒன்றையும் குறிப்பிடுக.
- 10. (a) 3d தாண்டல் மூலக உப்புக்கள் X_1, Y_1 என்பன ஒரே அன்னயன் பகுதியை கொண்ட இரு எளிய உப்புக்களாகும். இவை நீரில் கரைக்கப்பட்டு பெறப்பட்ட விளைவுக்கரைசலுடன் பின்வரும் சோதனைகள் மேற்கொள்ளப்பட்டன.

 X_1 ஐ கொண்ட நீர்க்கரைசலின் ஒருபகுதிக்கு KCN ஐ சேர்க்கும் போது மஞ்சள் சார் கபில வீழ்படிவு X_2 பெறப்பட்டது. இவ்வீழ்படிவுக்கு மிகை KCN ஐ சேர்த்த போது மஞ்சள் நிற கரைசல் X_3 பெறப்பட்டது. X_1 ஐ கொண்ட நீர்க்கரைசலின் பிறிதொருபகுதிக்கு H_2O_2 , ஐதான HCl சேர்த்து வெப்பப்படுத்தி பின் குளிர்வித்து கரைசல் X_4 பெறப்பட்டது. இவ்விளைவுக்கரைசலிற்கு X_3 ஐ சேர்த்த போது நீல வீழ்படிவு X_5 பெறப்பட்டது. Y_1 ஐ கொண்டுள்ள நீர்க்கரைசலின் ஒருபகுதிக்கு $BaCl_2/dil.HNO_3$ சேர்க்க வெண்வீழ்படிவு Z பெறப்பட்டது. Z_1 ஐ கொண்டுள்ள நீர்க்கரைசல் மாதிரிகளிற்கு கரைசல் Z_3 Z_4 மிகை செறிந்த Z_4 வன்பன தனித்தனியே சேர்த்த போது முறையே கபில வீழ்படிவு Z_4 வெண்வீழ்படிவு Z_4 வெண்கில் கரைசல் Z_4 வெண்வீழ்படிவு Z_4 வெண்வீழ்படிவு Z_4 வெண்வீழ்படிவு Z_4 வெண்கில் கரைசல் Z_4 வெண்கில் கரைசல் Z_4 வெண்வீழ்படிவு Z_4 வெண்கில் கரைசல் Z_4 வெண்கில் வீழ்படிவு Z_4 வெண்கில் கரைசல் Z_4 வெண்கில் கரைசல் Z_4 வெண்கில் கரைசல் Z_4 வெண்கில் வீழ்படிவு Z_4 வெண்கில் கரைசல் Z_4 வெண்கில் கருபடிகள் கரைசல் Z_4 வெண்கில் வீழ்படிவு Z_4 வெண்கில் விழ்படிவு Z_4 வெண்கில் கரைசல் Z_4 வெண்கில் விழ்படிவு Z_4 விறக்கில் கரில் கரில் கரில் கேண்டியில் கரில் கரில் கரில் கேண்டியில் கரியில் கரியில் கரில் கரில் விழ்படிவு Z_4 வெண்கில் விழ்படிவு Z_4 விலக்கில் விழ்படிவு Z_4 விலக்கில் விழ்படிவு Z_4 விலக்கில் கரில் கரி

- i. உப்புக்கள் $X_1,\,Y_1$ ஐ இனங்காண்க.
- ii. மேற்கூறிய சோதனையில் உருவாகிய இரசாயன இனங்கள் $X_2, X_3, X_4, X_5, Y_2, Y_3, Y_4, Z$ என்பவற்றை இனங்காண்க.
- $iii.\ X_3,\ Y_4$ என்பவற்றின் மஞ்சள் நிறத்திற்கு பொறுப்பான அயன் இனங்களின் IUPAC பெயர்களை தருக.
- iv. மேற்கூறிய பரிசோதனையில் பின்வரும் இனங்கள் உருவாவதற்கான சமப்படுத்திய இரசாயன சமன்பாடுகளை தருக.

(a) X_4 (b) Y_2 (c) Y_3

v. உப்புகள் X_1,Y_1 என்பவற்றை மாத்திரம் கொண்ட நீர்க்கரைசல் உம்மிடம் தரப்படுமிடத்து கூட்டப்பகுப்பாய்வில் உமக்குள்ள அறிவை பயன்படுத்தி இவ்வுப்புக்களின் செறிவை துணிவதற்கான திட்டமொன்றை தெளிவாக குறிப்பிடுக.

(b) A, B ஆகிய வாயுமூலக்கூறுகளிடையே நடைபெறும் தாக்கமொன்று கீழே தரப்பட்டுள்ளது.

$$3A_{(g)}+B_{(g)} \longrightarrow C_{(g)}+D_{(g)}$$

விளைவு C உருவாகும் வீதம், தாக்கிகளின் ஆரம்பச் செறிவுகள் என்பன கீழே அட்டவணையில் தரப்பட்டுள்ளன. இத்தாக்கம் தொடர்பாக அறியப்பட்ட பொறிநுட்பம் கீழே தரப்படுகிறது.

ыц
$$I$$
 A $+$ A $\xrightarrow{\text{визыптазы}}$ C $+$ E

шо II
$$\stackrel{}{}$$
 $\stackrel{}{}$ $\stackrel{}{}}$ $\stackrel{}{}$ $\stackrel{}{}$ $\stackrel{}{}$ $\stackrel{}{}}$ $\stackrel{}{}$ $\stackrel{}{}$ $\stackrel{}{}$ $\stackrel{}{}$ $\stackrel{}{}}$ $\stackrel{}{}$ $\stackrel{}{}$ $\stackrel{}{}$ $\stackrel{}{}$ $\stackrel{}{}$ $\stackrel{}{}$ $\stackrel{}{}}$ $\stackrel{}{}$ $\stackrel{}{}$ $\stackrel{}{}}$ $\stackrel{}{}$ $\stackrel{}{}$ $\stackrel{}{}$ $\stackrel{}{}}$ $\stackrel{}{}$ $\stackrel{}{}$ $\stackrel{}{}$ $\stackrel{}{}}$ $\stackrel{}{}}$ $\stackrel{}{}$ $\stackrel{}{}$ $\stackrel{}{}}$ $\stackrel{}{}$ $\stackrel{}{}$ $\stackrel{}{}}$ $\stackrel{}{}$ $\stackrel{}{}}$ $\stackrel{}{}$ $\stackrel{}{}$ $\stackrel{}{}$ $\stackrel{}{}$ $\stackrel{}{}}$ $\stackrel{}{}$ $\stackrel{}{}$ $\stackrel{}{}$ $\stackrel{}{}$ $\stackrel{}{}$ $\stackrel{}{}$ $\stackrel{}{}}$ $\stackrel{}{}$ $\stackrel{}{}$ $\stackrel{}{}$ $\stackrel{}{}}$ $\stackrel{}{}$ $\stackrel{}{}$ $\stackrel{}{}$ $\stackrel{}{}}$ $\stackrel{}{}$ $\stackrel{}{}$ $\stackrel{}{}$

இத்தாக்கத்திற்கான வீதக்கோவை $R=k[A_{(g)}]^x[B_{(g)}]^y$

 $25^{0}\mathrm{C}$ இல் நிகழ்த்தப்பட்ட இத்தாக்கத்தின் மூலம் பெறப்பட்ட சில அடிப்படைத் தரவுகள் கீழே தரப்பட்டுள்ளன.

பரிசோதனை	[A] இன் ஆரம்பச்	[B] இன் ஆரம்பச்	ஆரம்ப தாக்க
	செறிவு (moldm ⁻³)	செறிவு (moldm ⁻³)	வீதம் (moldm ⁻³ s ⁻¹)
1.	4.2 x10 ⁻⁴	2.8 x10 ⁻³	3.2 x10 ⁻⁴
2.	2.1 x10 ⁻⁴	2.8 x10 ⁻³	R
3.	С	5.6 x10 ⁻³	1.28 x10 ⁻³

- i. X, Y இன் பெறுமதிகளைத் தருக.
- ii. பரிசோதனை 2 இல் தாக்கவீதம் R இன் பெறுமதியைக் காண்க.
- iii. பரிசோதனை 3 இல் A இன் செறிவு C ஐக் காண்க.
- iv. தரப்பட்ட வெப்பநிலையில் தாக்கவீத மாநிலி k ஐயும் அதன் அலகையும் தருக.
- v. மேற்படி பரிசோதனையில் k இன் பெறுமதியை மாற்றுவதற்கு எந்நடவடிக்கைகளை மேற்கொள்ளலாம்.