SHAM implementations

My SHAM model has 3 parameters:

- 1. σ , controls the Vpeak-M* scatter (**Vpeak scattering**)
- Vceil, prevent the most massive halos from having a galaxy (Vpeak_scat truncation)
- 3. Vsmear, smear the peculiar velocity for the z uncertainty

SHAM implementations

Vpeak scattering:

1. Gaussian scatter:

$$Vpeak_scat = Vpeak*(1+N(0,\sigma_2))$$

2. positive scatter:

if $N(0,\sigma_2)>0$:

 $Vpeak_scat = Vpeak*(1+N(0,\sigma_2))$

else:

 $Vpeak_scat = Vpeak*exp{N(0,\sigma_2)}$

Vpeak_scat truncation:

a. direct cut:

remove Vpeak_scat >Vceil

b. dsigma cut:

remove Vpeak_scat/σ >Vceil

SHAM for eBOSS LRG in SGC

- 1. despite the large difference between optimal parameters, the
 - best-fit chi2 have no big difference
- 2. the narrow posterior of Vceil is at the cost of sigma constraints

SHAM posteriors for LRG in SGC

SHAM for eBOSS LRG in SGC

1. despite the large difference between optimal parameters, the

best-fit chi2 & 2PCF have no big difference

2. the narrow posterior of Vceil is at the cost of sigma constraints

Optimal Multipoles for LRG in SGC

Gaussian scatter & dsigma cut

Optimal Multipoles for LRG in SGC

positive scatter & dsigma cut

Optimal Multipoles for LRG in SGC

positive scatter & direct cut

Optimal Vpeak distr. for LRG in SGC

frequency = no. of SHAM halos in each bin/total no. of UNIT halos

Optimal Vpeak distr. for LRG in SGC

frequency = no. of SHAM halos in each bin/total no. of UNIT halos

Optimal Vpeak distr. for LRG in SGC

frequency = no. of SHAM halos in each bin/total no. of UNIT halos

Optimal halo PDF for LRG in SGC

prob = no. of SHAM halos in each bin/no. of UNIT halos in each bin

Optimal halo PDF for LRG in SGC

prob = no. of SHAM halos in each bin/no. of UNIT halos in each bin

Optimal halo PDF for LRG in SGC

prob = no. of SHAM halos in each bin/no. of UNIT halos in each bin

SHAM for eBOSS LRG in SGC

- 1. despite the large difference between optimal parameters, the

 best-fit catalogues have no big difference (hint: close-chi2
 tests), so we'd better choose one that produces a better
 posterior
- 2. the narrow posterior of Vceil is at the cost of sigma constraints

2PCF multipoles correlation function monopole: LRG in SGC

s (Mpc h-1)

bispectrum

void 2PCF multipoles: Rv = [0,15] Mpc/h

void 2PCF multipoles: Rv = [15,30] Mpc/h

void 2PCF multipoles: Rv = [30,1000] Mpc/h

