Order Analysis - Northwind

John Kline 12/13/19

Framework & Data Sources

GOALS

Evaluate several questions using statistical hypothesis testing

- Does discount size affect order size? If so, at what levels?
- Does discount size affect order revenue?
- Should we consolidate a distribution center to serve both German and American customers (i.e. if German and American customer purchase the same types of this will be an efficient consolidation)?
- Do certain employees drive larger order sizes than others? Or is order frequency the key driving factor behind total order volume?

METHODS

Various statistical packages in Python

DATA SOURCES

Northwind SQL database

Data Background

(1)

Data Detail:

~2,150 products ordered to fictional company Northwind

(2)

Statistical tests

- Regressions
- One-Way ANOVA
- Tukey's HSD
- Chi-Sq

(3)

Feature Construction

• Created values reflecting the difference in revenue and quantity of orders compared to the average revenue or quantity of orders for each product

Does discount level affect order size?

Findings and Recommendations

- Discount level is highly associated with larger order size – associated with up to a 25% increase in perorder quantities
 - All order quantities except 10% had a statistically significant effect on order amount
 - 5%, 15%, 20%, and 25% discount levels had statistically indistinguishable impacts on order quantity
- The optimal discount level is 5% this should have the lowest impact
 on revenue and a high impact on
 order quantity

Discount	Order Avg.	Discount Impact	Impact %	P-Value
0%	21.7	-	-	-
5%	28.0	+6.2	+23%	.001
10%	25.2	+4.0	+16%	.08
15%	28.4	+6.7	+24%	.001
20%	27.0	+5.8	+22%	.003
25%	28.2	+7.0	+25%	.001

P-values represent the results from a Tukey HSD test following positive one-way ANOVA

Do discounts affect order revenue?

Findings and Recommendations

- Discount level is NOT associated with a statistically significant increase in revenue per order
 - The 5% discount level was the closest to having a significant difference in mean order revenue
 - Unit price varied significantly within each discount level driving uncaptured price variation
- Discounts' potential impacts are drowned out by unit price variation not driven by discounts

Discount	Discount Impact	Impact %	P-Value
0%	-	-	-
5%	+ \$124	+22%	.19
10%	- \$3	-0%	.9
15%	+ \$65	+11%	.85
20%	+ \$43	+8%	.9
25%	+ \$46	+8%	.9

P-values represent the results from a Tukey HSD test following negative one-way

ANOVA

Discounted vs. Undiscounted Order Revenue

Should we combine US and GER distribution?

Findings and Recommendations

Key Question – are product purchasing patterns similar between US and German customers?

- Product category
- Individual products
- Potentially if Category is the driving factor in dist. center design
 - Half of categories are very similar
 - Half of categories differ materially
- No if Product is the driving factor in distribution center design
 - Products within every category vary significantly in order pattern between the two countries

Category	USA vol.	Ger. vol.	Significance
Beverage	1620	1690	0.45
Condiment	870	820	0.45
Confection	1600	1600	0.45
Grains / Cereal	800	730	0.45
Dairy	1800	1560	.001
Produce	490	320	.001
Meat	560	1160	.001
Seafood	1400	1520	.001

P-values represent the results from two chi-sq. tests of order quantity tables

Category	Products	Significance
Beverage	All	<.001
Condiment	All	<.001
Confection	All	<.001
Grains / Cereal	All	<.001
Dairy	All	<.001
Produce	All	<.001
Meat	All	<.001
Seafood	All	<.001

P-values represent the results from two chi-sq. tests of order quantity tables across products (

What metric should we tie salesperson comp to?

Findings and Recommendations

- High difference in total sales volume between employees
 - Range from 2,700 to 10,000 total order volume
 - Range form 250K to 80K total order revenue
- No statistically significant difference in per-order quantity or per-order revenue between any pair of sales employees
- Total sales volume variation between employees is explained by difference in the number of orders

Measure	Tukeys HSD
Revenue	Fail, all pairs
Quantity	Fail, all pairs

Number of Orders vs. Total Quantity Sold

Client Recommendation Summary

Recommendations

- Discounts drive order volume with high confidence however, pricing variation outside of discounts has a large enough effect on total revenue that discounts do not have a detectable impact on total order revenue
 - Improve price discipline outside of discounts
 - Re-evaluate discount impact on top of stable pricing structure
- 2. Ask distribution operations executives whether product category (e.g. facilities to store grain vs. meat) or product type is (e.g. inventory management of various product types) is a more important driver of dist. complexity
 - If the former half of product categories are similar in order patterns between the US and GER, and this could be a basis for consolidating
 - If the latter do not consolidate, extensive variation in product patterns
- 3. Salespeople do not differ significantly in per-order revenue or quantity the key varying factor seems to be order volume, therefore the employee comp structure should incentivize total order frequency vs. per-order metrics

Next Analytic Steps

1. Detailed review of pricing variation outside of discounts

- Is this driven by regional pricing differences?
- Are certain employees more associated with pricing variations (e.g. execs have more flexibility in base pricing?)
- How does price variability differ between products

Discussion & Questions

Thanks!

Appendix

Employee Sales Records

Employee	Total Quantity	Total Revenue
Peacock	10,000	250,000
Leverling	5,900	210,000
Davolio	7,800	200,000
Fuller	6,100	180,000
King	4,600	140,000
Callahan	5,900	130,000
Dodsworth	2,700	80,000
Suyama	3,500	80,000
Buchanan	3,000	80,000