3

CLAIMS

1. A proton exchange membrane for a fuel cell wherein the
2 proton exchange membrane comprises:

a polyimidazole polymer of the type:

$$R_1$$
 R_2
 R_3
 N
 N -H
 X_1
 X_2

- wherein R_1 - R_3 are independently H, a halogen, alkyl, or substituted alkyl; and wherein X_1 and X_2 are independently H or an electron withdrawing group.
- 1 2. The membrane of claim 1, wherein R_1 – R_3 are independently H or a C_1 - C_5 alkyl.
- 1 3. The membrane of claim 1, wherein at least one of X₁ and X₂ is 2 an electron donating group.
- 4. The membrane of claim 1, wherein X₁ and X₂ are independently: NR₃⁺, SR₂⁺, NO₂, SO₂R, CN, SO₂Ar, COOR, NRCOR, OR,
 SR, C≡CR, Ar, CR=CR₂; wherein R is: H, alkyl, or substituted alkyl, and wherein Ar is an aromatic group.

1	5. The membrane of claim 1 further including a polar solvent
2	dissolved therein.
1	6. The membrane of claim 5 wherein said polar solvent is selected
2	from the group consisting of N-methylpyrrolidone, dimethylformamide,
3	dimethylsulfoxide, and combinations thereof.
1	7. The membrane of claim 1, further including a dopant.
1	8. The membrane of claim 7, wherein said dopant comprises a
2	strong acid.
1	9. The membrane of claim 8, wherein said strong acid is selected
2	from the group consisting of nitric acid, phosphoric acid, polyphosphoric acid,
3	sulfuric acid, and combinations thereof.
1	10. The membrane of claim 8, wherein said strong acid is an
2	organic acid.
1	11. The membrane of claim 1, wherein said polymer has a
2	molecular weight in the range of 5×10^3 - 10^7 daltons.

1	12. The membrane of claim 1, wherein said membrane has a
2	thickness in the range of 25-200 microns.
1	13. The membrane of claim 1, wherein said membrane has an
2	electrical conductivity greater than 0.01 S/cm.
1	14. The membrane of claim 1, wherein said polyimidazole polymer
2	is copolymerized with an acidic monomer.
1	15. The membrane of claim 14, wherein said acidic monomer is an
2	acidic vinyl monomer.
1	16. The membrane of claim 15, wherein said acidic vinyl monomer
2	is selected from the group consisting of: vinyl phosphonic acid, vinyl sulfonic
3	acid, styrene sulfonic acid, and combinations thereof.
1	17. The membrane of claim 1, wherein R_1-R_3 are fluorine.
1	18. The membrane of claim 1, further including a heteropolyacid.
1	19. The membrane of claim 18, wherein said heteropolyacid is
2	selected from the group consisting of: monododecylphosphate, phosphotungstic
3	acid, silicotungstic acid, phosphomolybdic acid, and combinations thereof.

- 1 20. The membrane of claim 18, wherein said heteropolyacid is 2 adsorbed on a carrier which is dispersed in said polymer.
- 1 21. The membrane of claim 20, wherein said carrier comprises 2 silica.
- 1 22. The membrane of claim 1 further including a silicon compound therein.
- 1 23. The membrane of claim 22, wherein said silicon compound 2 comprises SiO₂.
- 1 24. The membrane of claim 22, wherein said silicon compound 2 comprises a network of -Si-O-Si- which extends through at least a portion of 3 said membrane.
- 1 25. A fuel cell having a proton exchange membrane, said membrane comprising a polyimidazole polymer of the type:

$$R_1$$
 R_2
 R_3
 R_3
 R_4
 R_3
 R_4
 R_4
 R_4
 R_5
 R_4
 R_4
 R_5
 R_4
 R_5
 R_5
 R_5
 R_5
 R_7
 R_7
 R_7
 R_8

3	wherein R ₁ -R ₃ are independently H, a halogen, alkyl, or a substituted
4	alkyl; and wherein X_1 and X_2 are independently H or an electron withdrawing
5	group.
1	26. The fuel cell of claim 25, wherein X_1 and X_2 are each CN.
1	27. The fuel cell of claim 25, wherein said membrane further
2	includes a polar solvent dissolved therein.
1	28. The fuel cell of claim 25, wherein said membrane further
2	includes a dopant therein.
1	29. The fuel cell of claim 25, wherein said dopant comprises a
2	strong acid.
1	30. The fuel cell of claim 29, wherein said strong acid is selected
2	from the group consisting of nitric acid, phosphoric acid, polyphosphoric acid,
3	sulfuric acid, and combinations thereof.
1	31. The fuel cell of claim 25, wherein said membrane comprises a
2	copolymer of said polyimidazole polymer and another material.