1

2019-PH

2019-PH

Assignment-8

AI24BTECH11036- Shreedhanvi Yadlapally

	I. Questions with one mark each
1)	The electric field of an electromagnetic wave is given by $\mathbf{E} = 3\sin(kz - \omega t)\hat{x} + 4\cos(kz - wt)\hat{y}$. The

d) eliptically polarized in counter-clockwise direction when seen travelling towards the observer

a) linearly polarized at an angle $\tan^{-1}\frac{4}{3}$ from the *x*-axis b) linearly polarized at an angle $\tan^{-1}\frac{3}{4}$ from the *x*-axis c) eliptically polarized in clockwise direction when seen travelling towards the observer

2) The nuclear spin and parity of ${}^{40}_{20}Ca$ in its ground state is

wave is

2019-PH		
a) 0 ⁺ b) 0 ⁻ c) 1 ⁺ d) 1 ⁻		
3) An infinitely long cylindrical shell has its axis coinciding with the z-axis. It carries a surface of density $\sigma_0 \cos \phi$, where ϕ is the polar angle and σ_0 is a constant. The magnitude of electric inside the cylinder is		
2019-PH		
a) 0 b) $\frac{\sigma_0}{2\epsilon}$ c) $\frac{\sigma_0}{3\epsilon}$ d) $\frac{\sigma_0}{4\epsilon}$		
 4) Consider a three-dimensional crystal of N inert gas atoms. The total energy is given by U(R) = 2Nε [pπ/R] - qπ/R], where p=12.13, q=14.45 and R is the nearest neighbour distance between two atoms. The two constants ε and R, have the dimensions of energy and length, respectively. The equilibrium separation between two nearest neighbour atoms in units of (rounded off to two decima places) is 2019-PH 5) The energy-wavevector (E - k) dispersion relation for a particle in two dimensions is E = Ck, where C is a constant. If its density of states D(E) is proportional to E^p then the value of p is		
6) A circular loop made of a thin wire has radius 2 cm and resistance 2 Ω . It is placed perpendicular to a uniform magnetic field of magnitude $ B = 0.01$ Tesla. At time $t = 0$ the field starts decaying as $\mathbf{B} = \mathbf{B}_0 e^{t/t_0}$, where $t_0 = 1 s$. The total charge that passes through a cross section of the wire during the decay is Q . The value of Q in μC (rounded off to two decimal places) is		
7) The electric field of an electromagnetic wave in vacuum is given by		
$\mathbf{E} = E_0 \cos\left(3y + 4z - 1.5 \times 10^9 l\right)\hat{x}$		
The wave is reflected from $z = 0$ surface. If the pressure exerted on the surface is $\alpha \epsilon_0 E_0^2$, the value of α (rounded off to one decimal place) is		

2019-PH

d) NAND

8)	The Hamiltonian for a quantum harmonic oscillator of mass m in three dimensions is
	$H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 r^2$
	where ω is the angular frequency. the expectation of r^2 in the first excited state of the oscillator in units of $\frac{\hbar}{m\omega}$ (rounded off to one decimal place)
9)	The Hamiltonian for a particle of mass m is $H = \frac{p^2}{2m} + kqt$ where q and p are the generalized coordinate and momentum, respectively, t is time and k is a constant. For the initial condition, $q = 0$ and $p = 0$ at $t = 0$, $q(t) \propto t^{\alpha}$. The value of α is
	2019-PH
10)	At temperature T Kelvin (K), the value of the Fermi function at an energy 0.5 eV above the Fermi energy is 0.01. Then T, to the nearest integer, is ($k_B = 8.62 \times 10^{-5} \text{ eV/K}$)
	2019-PH
11)	Let $ \psi_1\rangle = \binom{1}{0}$, $ \psi_2\rangle = \binom{0}{1}$ represent two possible states of a two-level quantum system. The state obtained by the incoherent superposition $ \psi_1\rangle$ and $ \psi_2\rangle$ is given by a density matrix that is defined as $\rho \equiv c_1 \psi_1\rangle\langle\psi_1+c_2 \psi_2\rangle\langle\psi_2 $. If $c_1=0.4$ and $c_2=0.6$, the matrix element ρ_{22} (rounded off to one decimal place) is
	2019-PH
12)	A conventional type-I superconductor has a critical temperature of 4.7 K at zero magnetic field and a critical magnetic field of 0.3 Tesla at 0 K. The critical field in Tesla at 2 K (rounded off to three decimal places) is
	2019-PH
	II. QUESTIONS WITH TWO MARKS EACH
1)	Consider the following Boolean expression:
	$\left(\overline{A} + \overline{B}\right) \left[\overline{A\left(B+C\right)}\right] + A\left(\overline{B} + \overline{C}\right)$
	It can be represented by a single three-input logic gate. Identify the gate.

c) XOR

a) AND

b) OR