

14º GERÊNCIA REGIONAL DE ENSINO EEEFM GETÚLIO VARGAS LAGOA DE DENTRO/PB

COMPONENTE CURRICULAR: Física TURMA: 3 ^a Série Ensino Médio	DATA:// PROFESSOR: Jailson Duarte
ALUNO(A):	
ALUNO(A):	

Processos de Eletrização

- **01.** Sabe-se que a carga do elétron vale $\tilde{\ }1,6\times 10^{-19}C$. Considere um bastão de vidro que foi atritado e perdeu elétrons, ficando positivamente carregado com a carga de $5,0\times 10^{-6}C$. Qual o número de elétrons que foi retirados do bastão?
- **02.** Duas pequenas esferas metálicas idênticas, A e B, localizadas no vácuo, estão carregadas com cargas $Q_A = -2Q$ e $Q_B = +2Q$. As esferas são postas em contato através de pinças isolantes ideais e, após atingirem o equilíbrio eletrostático, são separadas. Após a separação, quais são os valores de Q_A e Q_B após o contato?
- 03. Um corpo possui 5×10^19 prótons e 4×10^19 elétrons. Considerando que a carga elementar é igual a $1,6\mathring{\text{u}}10^{-19}$ C, qual a carga desse corpo?
- **04.** Duas pequenas esferas idênticas estão eletrizadas com cargas de $6,0\mu C$ e $-10\mu C$, respectivamente. Colocando-se as esferas em contato, qual o número de elétrons que passam de uma esfera para outra?
- **05.** Duas partículas de cargas elétricas $Q_1 = 4,0 \times 10^{-16} C$ e $q_2 = 6,0 \times 10^{-16} C$ estão separadas no vácuo por uma distância de $3,0 \times 10^{-9} m$. Sendo $k = 9,0 \times 10^{9} N.m^2/C^2$. Determine a intensidade da força de interação entre elas.
- **06.** Calcule a intensidade da força elétrica de repulsão entre duas cargas puntiformes $3 \times 10^{-5}C$ e $5 \times 10^{-6}C$ que se encontram no vácuo, separadas por uma distância de 15 cm.
- 07. Estando duas cargas elétricas Q idênticas separadas por uma distância de 4m, determine o valor destas cargas sabendo que a intensidade da força entre elas é de 200N.