「ベクトル解析」小テスト No.7

2019年6月20日(木)

学籍番号							学科	氏名
1	1					 		
1						l		

問 空間内の 2 つの曲線 $C_1: r_1(t) = \frac{t}{\sqrt{3}} \mathbf{i} + \frac{t}{\sqrt{3}} \mathbf{j} + \frac{t}{\sqrt{3}} \mathbf{k}, \ 0 \le t \le \sqrt{3}, \ C_2: r_2(t) = t^2 \mathbf{i} + t^2 \mathbf{j} + t^2 \mathbf{k}, \ 0 \le t \le 1$, およびスカラー場 $\varphi(x,y,z) = x + 2yz$ について、次の間に答えなさい。

(1) 曲線 $C: \mathbf{r}(t) = x(t) \mathbf{i} + y(t) \mathbf{j} + z(t) \mathbf{k}, \ a \leq t \leq b$ の長さ $\ell(C)$ は

$$\ell(C) = \int_{a}^{b} \sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2} dt$$

で与えられる. C_1 と C_2 の長さを求めなさい.

(2) C_1 のパラメータを $0 \le t \le s$ の範囲に変えた曲線を C_3 とする. $\ell(C_3) = s$ であることを示しなさい.

(3) $\varphi(x,y,z)$ に曲線 C_1 の成分を代入すると, $\varphi(\boldsymbol{r}_1(t)) = \frac{t}{\sqrt{3}} + \frac{2t^2}{3}$ となり, パラメータ t の関数となる. これを C_1 のパラメータの範囲 $0 \le t \le \sqrt{3}$ で定積分しなさい.

(4) (3) と同様にして, C_2 と φ から定まる定積分を計算しなさい.