MTL122 - Real and complex analysis Assignment-3

Department of Mathematics Indian Institute of Technology Delhi

Question 1

Let A and B be disjoint closed subsets of a metric spaces (X, d). Prove that there are disjoint open subsets U and V of X such that $A \subseteq U$ and $B \subseteq V$.

Question 1

Let A and B be disjoint closed subsets of a metric spaces (X, d). Prove that there are disjoint open subsets U and V of X such that $A \subseteq U$ and $B \subseteq V$.

Proof

• Here $A \cap B = \emptyset$ and A, B are closed sets of (X, d).

Question 1

Let A and B be disjoint closed subsets of a metric spaces (X, d). Prove that there are disjoint open subsets U and V of X such that $A \subseteq U$ and $B \subseteq V$.

- Here $A \cap B = \emptyset$ and A, B are closed sets of (X, d).
- Then X-A and X-B are open sets in (X,d) and $B\subset X-A$, $A\subset X-B$.

Question 1

Let A and B be disjoint closed subsets of a metric spaces (X, d). Prove that there are disjoint open subsets U and V of X such that $A \subseteq U$ and $B \subseteq V$.

- Here $A \cap B = \emptyset$ and A, B are closed sets of (X, d).
- Then X-A and X-B are open sets in (X,d) and $B\subset X-A$, $A\subset X-B$.
- If $A = \emptyset$, take $U = \emptyset$ and V = X.

Question 1

Let A and B be disjoint closed subsets of a metric spaces (X, d). Prove that there are disjoint open subsets U and V of X such that $A \subseteq U$ and $B \subseteq V$.

- Here $A \cap B = \emptyset$ and A, B are closed sets of (X, d).
- Then X-A and X-B are open sets in (X,d) and $B\subset X-A$, $A\subset X-B$.
- If $A = \emptyset$, take $U = \emptyset$ and V = X.
- If $B = \emptyset$, take $V = \emptyset$ and U = X.

Question 1

Let A and B be disjoint closed subsets of a metric spaces (X, d). Prove that there are disjoint open subsets U and V of X such that $A \subseteq U$ and $B \subseteq V$.

- Here $A \cap B = \emptyset$ and A, B are closed sets of (X, d).
- Then X-A and X-B are open sets in (X,d) and $B\subset X-A$, $A\subset X-B$.
- If $A = \emptyset$, take $U = \emptyset$ and V = X.
- If $B = \emptyset$, take $V = \emptyset$ and U = X.
- Now assume A and B both are non-empty disjoint closed subsets of X, consider $U = \{x \in X : d(x,A) < d(x,B)\}$ and $V = \{x \in X : d(x,B) < d(x,A)\}.$

Question 1

Let A and B be disjoint closed subsets of a metric spaces (X, d). Prove that there are disjoint open subsets U and V of X such that $A \subseteq U$ and $B \subseteq V$.

Proof

- Here $A \cap B = \emptyset$ and A, B are closed sets of (X, d).
- Then X-A and X-B are open sets in (X,d) and $B\subset X-A$, $A\subset X-B$.
- If $A = \emptyset$, take $U = \emptyset$ and V = X.
- If $B = \emptyset$, take $V = \emptyset$ and U = X.
- Now assume A and B both are non-empty disjoint closed subsets of X, consider $U = \{x \in X : d(x,A) < d(x,B)\}$ and $V = \{x \in X : d(x,B) < d(x,A)\}.$

<u>Claim:</u> We need to show $A \subseteq U, B \subseteq V$ and $U \cap V = \emptyset$.

• Let $x \in A$. Then d(x,A) = 0 < d(x,B), thus $x \in U$. Hence $A \subseteq U$.

- Let $x \in A$. Then d(x, A) = 0 < d(x, B), thus $x \in U$. Hence $A \subseteq U$.
- Let $x \in B$. Then d(x, B) = 0 < d(x, A), thus $x \in V$. Hence $B \subseteq V$.

- Let $x \in A$. Then d(x, A) = 0 < d(x, B), thus $x \in U$. Hence $A \subseteq U$.
- Let $x \in B$. Then d(x, B) = 0 < d(x, A), thus $x \in V$. Hence $B \subseteq V$.
- Let us assume $U \cap V \neq \emptyset$,

- Let $x \in A$. Then d(x, A) = 0 < d(x, B), thus $x \in U$. Hence $A \subseteq U$.
- Let $x \in B$. Then d(x, B) = 0 < d(x, A), thus $x \in V$. Hence $B \subseteq V$.
- Let us assume $U \cap V \neq \emptyset$, then there exist $y \in U \cap V$. Thus

$$d(y,A) < d(y,B)$$
 and $d(y,B) < d(y,A)$,

which is impossible. Hence $U \cap V = \emptyset$.

- Let $x \in A$. Then d(x, A) = 0 < d(x, B), thus $x \in U$. Hence $A \subseteq U$.
- Let $x \in B$. Then d(x, B) = 0 < d(x, A), thus $x \in V$. Hence $B \subseteq V$.
- Let us assume $U \cap V \neq \emptyset$, then there exist $y \in U \cap V$. Thus

$$d(y,A) < d(y,B)$$
 and $d(y,B) < d(y,A)$,

which is impossible. Hence $U \cap V = \emptyset$.

- Let $x \in A$. Then d(x, A) = 0 < d(x, B), thus $x \in U$. Hence $A \subseteq U$.
- Let $x \in B$. Then d(x, B) = 0 < d(x, A), thus $x \in V$. Hence $B \subseteq V$.
- Let us assume $U \cap V \neq \emptyset$, then there exist $y \in U \cap V$. Thus

$$d(y, A) < d(y, B) \text{ and } d(y, B) < d(y, A),$$

which is impossible. Hence $U \cap V = \emptyset$.

$$U = \{x \in X : d(x,A) < d(x,B)\}$$

- Let $x \in A$. Then d(x,A) = 0 < d(x,B), thus $x \in U$. Hence $A \subseteq U$.
- Let $x \in B$. Then d(x, B) = 0 < d(x, A), thus $x \in V$. Hence $B \subseteq V$.
- Let us assume $U \cap V \neq \emptyset$, then there exist $y \in U \cap V$. Thus

$$d(y, A) < d(y, B) \text{ and } d(y, B) < d(y, A),$$

which is impossible. Hence $U \cap V = \emptyset$.

$$U = \{x \in X : d(x,A) < d(x,B)\}$$

=
$$\bigcup_{r>0} \{x \in X : d(x,A) < r < d(x,B)\}$$

- Let $x \in A$. Then d(x,A) = 0 < d(x,B), thus $x \in U$. Hence $A \subseteq U$.
- Let $x \in B$. Then d(x, B) = 0 < d(x, A), thus $x \in V$. Hence $B \subseteq V$.
- Let us assume $U \cap V \neq \emptyset$, then there exist $y \in U \cap V$. Thus

$$d(y,A) < d(y,B)$$
 and $d(y,B) < d(y,A)$,

which is impossible. Hence $U \cap V = \emptyset$.

$$U = \{x \in X : d(x,A) < d(x,B)\}$$

$$= \bigcup_{r>0} \{x \in X : d(x,A) < r < d(x,B)\}$$

$$= \bigcup_{r>0} \Big(\{x \in X : d(x,A) < r\} \bigcap \{x \in X : d(x,B) > r\} \Big).$$

- Let $x \in A$. Then d(x,A) = 0 < d(x,B), thus $x \in U$. Hence $A \subseteq U$.
- Let $x \in B$. Then d(x, B) = 0 < d(x, A), thus $x \in V$. Hence $B \subseteq V$.
- Let us assume $U \cap V \neq \emptyset$, then there exist $y \in U \cap V$. Thus

$$d(y,A) < d(y,B)$$
 and $d(y,B) < d(y,A)$,

which is impossible. Hence $U \cap V = \emptyset$.

$$U = \{x \in X : d(x,A) < d(x,B)\}$$

$$= \bigcup_{r>0} \{x \in X : d(x,A) < r < d(x,B)\}$$

$$= \bigcup_{r>0} \Big(\{x \in X : d(x,A) < r\} \bigcap \{x \in X : d(x,B) > r\} \Big).$$

To show U is open, we need show $\{x \in X : d(x,A) < r\}$ is open.

• Since A is closed, thus $\exists y \in A$ such that d(x,A) = d(x,y).

To show U is open, we need show $\{x \in X : d(x,A) < r\}$ is open.

• Since A is closed, thus $\exists y \in A$ such that d(x,A) = d(x,y).(Check!)

- Since A is closed, thus $\exists y \in A$ such that d(x,A) = d(x,y).(Check!)
- Let $z \in \{x \in X : d(x, A) < r\}$.

- Since A is closed, thus $\exists y \in A$ such that d(x,A) = d(x,y).(Check!)
- Let $z \in \{x \in X : d(x, A) < r\}$. Then d(z, A) < r.

- Since A is closed, thus $\exists y \in A$ such that d(x,A) = d(x,y).(Check!)
- Let $z \in \{x \in X : d(x, A) < r\}$. Then d(z, A) < r. Assume d(z, A) = s < r.

- Since A is closed, thus $\exists y \in A$ such that d(x,A) = d(x,y).(Check!)
- Let $z \in \{x \in X : d(x, A) < r\}$. Then d(z, A) < r. Assume d(z, A) = s < r.
- Now the proof reduces to show, $B(z, r s) \subset \{x \in X : d(x, A) < r\}$.

- Since A is closed, thus $\exists y \in A$ such that d(x,A) = d(x,y).(Check!)
- Let $z \in \{x \in X : d(x, A) < r\}$. Then d(z, A) < r. Assume d(z, A) = s < r.
- Now the proof reduces to show, $B(z, r s) \subset \{x \in X : d(x, A) < r\}$.
- Let $p \in B(z, r s)$, then d(p, z) < r s.

- Since A is closed, thus $\exists y \in A$ such that d(x,A) = d(x,y).(Check!)
- Let $z \in \{x \in X : d(x, A) < r\}$. Then d(z, A) < r. Assume d(z, A) = s < r.
- Now the proof reduces to show, $B(z, r s) \subset \{x \in X : d(x, A) < r\}$.
- Let $p \in B(z, r s)$, then d(p, z) < r s.
- We know $d(p, A) \le d(p, z) + d(z, A) < r s + s = r$.

- Since A is closed, thus $\exists y \in A$ such that d(x,A) = d(x,y).(Check!)
- Let $z \in \{x \in X : d(x, A) < r\}$. Then d(z, A) < r. Assume d(z, A) = s < r.
- Now the proof reduces to show, $B(z, r s) \subset \{x \in X : d(x, A) < r\}$.
- Let $p \in B(z, r s)$, then d(p, z) < r s.
- We know $d(p, A) \le d(p, z) + d(z, A) < r s + s = r$.
- Now we have $B(z, r s) \subset \{x \in X : d(x, A) < r\}$.

- Since A is closed, thus $\exists y \in A$ such that d(x,A) = d(x,y).(Check!)
- Let $z \in \{x \in X : d(x, A) < r\}$. Then d(z, A) < r. Assume d(z, A) = s < r.
- Now the proof reduces to show, $B(z, r s) \subset \{x \in X : d(x, A) < r\}$.
- Let $p \in B(z, r s)$, then d(p, z) < r s.
- We know $d(p, A) \le d(p, z) + d(z, A) < r s + s = r$.
- Now we have $B(z, r s) \subset \{x \in X : d(x, A) < r\}$.
- Hence $\{x \in X : d(x, A) < r\}$ is open in X.

- Since A is closed, thus $\exists y \in A$ such that d(x,A) = d(x,y).(Check!)
- Let $z \in \{x \in X : d(x, A) < r\}$. Then d(z, A) < r. Assume d(z, A) = s < r.
- Now the proof reduces to show, $B(z, r s) \subset \{x \in X : d(x, A) < r\}$.
- Let $p \in B(z, r s)$, then d(p, z) < r s.
- We know $d(p, A) \le d(p, z) + d(z, A) < r s + s = r$.
- Now we have $B(z, r s) \subset \{x \in X : d(x, A) < r\}$.
- Hence $\{x \in X : d(x, A) < r\}$ is open in X.
- Simillarly, we can show $\{x \in X : d(x, B) > r\}$ is open in X.

- Since A is closed, thus $\exists y \in A$ such that d(x,A) = d(x,y).(Check!)
- Let $z \in \{x \in X : d(x, A) < r\}$. Then d(z, A) < r. Assume d(z, A) = s < r.
- Now the proof reduces to show, $B(z, r s) \subset \{x \in X : d(x, A) < r\}$.
- Let $p \in B(z, r s)$, then d(p, z) < r s.
- We know $d(p, A) \le d(p, z) + d(z, A) < r s + s = r$.
- Now we have $B(z, r s) \subset \{x \in X : d(x, A) < r\}$.
- Hence $\{x \in X : d(x, A) < r\}$ is open in X.
- Simillarly, we can show $\{x \in X : d(x, B) > r\}$ is open in X. Hence U is open in X.

- Since A is closed, thus $\exists y \in A$ such that d(x,A) = d(x,y).(Check!)
- Let $z \in \{x \in X : d(x, A) < r\}$. Then d(z, A) < r. Assume d(z, A) = s < r.
- Now the proof reduces to show, $B(z, r s) \subset \{x \in X : d(x, A) < r\}$.
- Let $p \in B(z, r s)$, then d(p, z) < r s.
- We know $d(p, A) \le d(p, z) + d(z, A) < r s + s = r$.
- Now we have $B(z, r s) \subset \{x \in X : d(x, A) < r\}$.
- Hence $\{x \in X : d(x, A) < r\}$ is open in X.
- Simillarly, we can show $\{x \in X : d(x, B) > r\}$ is open in X. Hence U is open in X.
- Simillarly V can be open in X.

Question 2

Let (X, d) be a metric space with $E \subset X$. Prove that $(E^{\circ})^c = \overline{(E^c)}$.

Question 2

Let (X, d) be a metric space with $E \subset X$. Prove that $(E^{\circ})^c = \overline{(E^c)}$.

Proof

• We know $E^{\circ} \subset E$, then $E^{c} \subset (E^{\circ})^{c}$.

Question 2

Let (X, d) be a metric space with $E \subset X$. Prove that $(E^{\circ})^c = \overline{(E^c)}$.

- We know $E^{\circ} \subset E$, then $E^{c} \subset (E^{\circ})^{c}$.
- Since $(E^{\circ})^c$ is closed set

Question 2

Let (X, d) be a metric space with $E \subset X$. Prove that $(E^{\circ})^c = \overline{(E^c)}$.

- We know $E^{\circ} \subset E$, then $E^{c} \subset (E^{\circ})^{c}$.
- Since $(E^{\circ})^c$ is closed set and $\overline{(E^c)}$ is the smallest closed set containing E^c .

Question 2

Let (X, d) be a metric space with $E \subset X$. Prove that $(E^{\circ})^c = \overline{(E^c)}$.

- We know $E^{\circ} \subset E$, then $E^{c} \subset (E^{\circ})^{c}$.
- Since $(E^{\circ})^c$ is closed set and $\overline{(E^c)}$ is the smallest closed set containing E^c . Thus $\overline{(E^c)} \subset (E^{\circ})^c$.

Question 2

Let (X, d) be a metric space with $E \subset X$. Prove that $(E^{\circ})^c = \overline{(E^c)}$.

- We know $E^{\circ} \subset E$, then $E^{c} \subset (E^{\circ})^{c}$.
- Since $(E^{\circ})^c$ is closed set and $\overline{(E^c)}$ is the smallest closed set containing E^c . Thus $\overline{(E^c)} \subset (E^{\circ})^c$.
- Let $x \in (E^{\circ})^c$. Since $E^c \subset (E^{\circ})^c$,

Question 2

Let (X, d) be a metric space with $E \subset X$. Prove that $(E^{\circ})^c = \overline{(E^c)}$.

- We know $E^{\circ} \subset E$, then $E^{c} \subset (E^{\circ})^{c}$.
- Since $(E^{\circ})^c$ is closed set and $\overline{(E^c)}$ is the smallest closed set containing E^c . Thus $\overline{(E^c)} \subset (E^{\circ})^c$.
- Let $x \in (E^{\circ})^c$. Since $E^c \subset (E^{\circ})^c$, then $x \in E^c$ or $x \notin E^c$.

Question 2

Let (X, d) be a metric space with $E \subset X$. Prove that $(E^{\circ})^c = \overline{(E^c)}$.

- We know $E^{\circ} \subset E$, then $E^{c} \subset (E^{\circ})^{c}$.
- Since $(E^{\circ})^c$ is closed set and $\overline{(E^c)}$ is the smallest closed set containing E^c . Thus $\overline{(E^c)} \subset (E^{\circ})^c$.
- Let $x \in (E^{\circ})^{c}$. Since $E^{c} \subset (E^{\circ})^{c}$, then $x \in E^{c}$ or $x \notin E^{c}$.
- If $x \in E^c$, then $x \in \overline{(E^c)}$. We are done.

Question 2

Let (X, d) be a metric space with $E \subset X$. Prove that $(E^{\circ})^c = \overline{(E^c)}$.

- We know $E^{\circ} \subset E$, then $E^{c} \subset (E^{\circ})^{c}$.
- Since $(E^{\circ})^c$ is closed set and $\overline{(E^c)}$ is the smallest closed set containing E^c . Thus $\overline{(E^c)} \subset (E^{\circ})^c$.
- Let $x \in (E^{\circ})^{c}$. Since $E^{c} \subset (E^{\circ})^{c}$, then $x \in E^{c}$ or $x \notin E^{c}$.
- If $x \in E^c$, then $x \in \overline{(E^c)}$. We are done.
- If $x \notin E^c$ and $x \in (E^c)^c$, we need to show $x \in (E^c)'$.

Question 2

Let (X, d) be a metric space with $E \subset X$. Prove that $(E^{\circ})^c = \overline{(E^c)}$.

- We know $E^{\circ} \subset E$, then $E^{c} \subset (E^{\circ})^{c}$.
- Since $(E^{\circ})^c$ is closed set and $\overline{(E^c)}$ is the smallest closed set containing E^c . Thus $\overline{(E^c)} \subset (E^{\circ})^c$.
- Let $x \in (E^{\circ})^{c}$. Since $E^{c} \subset (E^{\circ})^{c}$, then $x \in E^{c}$ or $x \notin E^{c}$.
- If $x \in E^c$, then $x \in \overline{(E^c)}$. We are done.
- If $x \notin E^c$ and $x \in (E^c)^c$, we need to show $x \in (E^c)'$.
- To the contrary suppose that $x \notin (E^c)'$,

Question 2

Let (X, d) be a metric space with $E \subset X$. Prove that $(E^{\circ})^c = \overline{(E^c)}$.

- We know $E^{\circ} \subset E$, then $E^{c} \subset (E^{\circ})^{c}$.
- Since $(E^{\circ})^c$ is closed set and $\overline{(E^c)}$ is the smallest closed set containing E^c . Thus $\overline{(E^c)} \subset (E^{\circ})^c$.
- Let $x \in (E^{\circ})^c$. Since $E^c \subset (E^{\circ})^c$, then $x \in E^c$ or $x \notin E^c$.
- If $x \in E^c$, then $x \in \overline{(E^c)}$. We are done.
- If $x \notin E^c$ and $x \in (E^c)^c$, we need to show $x \in (E^c)'$.
- To the contrary suppose that $x \notin (E^c)'$, then there exist $\epsilon > 0$ such that $B(x, \epsilon) \cap E^c = \emptyset$.

Question 2

Let (X, d) be a metric space with $E \subset X$. Prove that $(E^{\circ})^c = \overline{(E^c)}$.

- We know $E^{\circ} \subset E$, then $E^{c} \subset (E^{\circ})^{c}$.
- Since $(E^{\circ})^c$ is closed set and $\overline{(E^c)}$ is the smallest closed set containing E^c . Thus $\overline{(E^c)} \subset (E^{\circ})^c$.
- Let $x \in (E^{\circ})^{c}$. Since $E^{c} \subset (E^{\circ})^{c}$, then $x \in E^{c}$ or $x \notin E^{c}$.
- If $x \in E^c$, then $x \in \overline{(E^c)}$. We are done.
- If $x \notin E^c$ and $x \in (E^c)^c$, we need to show $x \in (E^c)'$.
- To the contrary suppose that x ∉ (E^c)', then there exist ε > 0 such that B(x, ε) ∩ E^c = ∅. So B(x, ε) ⊂ E, hence x ∈ E^o. Which contradict the fact x ∈ (E^o)^c.

Question 2

Let (X, d) be a metric space with $E \subset X$. Prove that $(E^{\circ})^c = \overline{(E^c)}$.

- We know $E^{\circ} \subset E$, then $E^{c} \subset (E^{\circ})^{c}$.
- Since $(E^{\circ})^c$ is closed set and $\overline{(E^c)}$ is the smallest closed set containing E^c . Thus $\overline{(E^c)} \subset (E^{\circ})^c$.
- Let $x \in (E^{\circ})^{c}$. Since $E^{c} \subset (E^{\circ})^{c}$, then $x \in E^{c}$ or $x \notin E^{c}$.
- If $x \in E^c$, then $x \in \overline{(E^c)}$. We are done.
- If $x \notin E^c$ and $x \in (E^c)^c$, we need to show $x \in (E^c)'$.
- To the contrary suppose that x ∉ (E^c)', then there exist ε > 0 such that B(x, ε) ∩ E^c = ∅. So B(x, ε) ⊂ E, hence x ∈ E^o. Which contradict the fact x ∈ (E^o)^c.
- So $x \in (E^c)' \subset \overline{(E^c)}$.

Question 2

Let (X, d) be a metric space with $E \subset X$. Prove that $(E^{\circ})^c = \overline{(E^c)}$.

- We know $E^{\circ} \subset E$, then $E^{c} \subset (E^{\circ})^{c}$.
- Since $(E^{\circ})^c$ is closed set and $\overline{(E^c)}$ is the smallest closed set containing E^c . Thus $\overline{(E^c)} \subset (E^{\circ})^c$.
- Let $x \in (E^{\circ})^{c}$. Since $E^{c} \subset (E^{\circ})^{c}$, then $x \in E^{c}$ or $x \notin E^{c}$.
- If $x \in E^c$, then $x \in \overline{(E^c)}$. We are done.
- If $x \notin E^c$ and $x \in (E^c)^c$, we need to show $x \in (E^c)'$.
- To the contrary suppose that x ∉ (E^c)', then there exist ε > 0 such that B(x, ε) ∩ E^c = ∅. So B(x, ε) ⊂ E, hence x ∈ E^o. Which contradict the fact x ∈ (E^o)^c.
- So $x \in (E^c)' \subset \overline{(E^c)}$. Thus $(E^\circ)^c \subset \overline{(E^c)}$.

Question 3

A point x not belonging to a closed set $M \subset (X, d)$ always has a nonzero distance from M. (Hint: To prove this, show that $x \in \overline{A}$ if and only if $D(x, A) = \operatorname{dist}(x, A) = \inf_{y \in A} d(x, y) = 0$; here A is any nonempty subset of X).

Question 3

A point x not belonging to a closed set $M \subset (X, d)$ always has a nonzero distance from M. (Hint: To prove this, show that $x \in \overline{A}$ if and only if $D(x, A) = \operatorname{dist}(x, A) = \inf_{y \in A} d(x, y) = 0$; here A is any nonempty subset of X).

Proof

• We need to show $x \in \overline{A} \Leftrightarrow d(x, A) = 0$.

Question 3

A point x not belonging to a closed set $M \subset (X, d)$ always has a nonzero distance from M. (Hint: To prove this, show that $x \in \overline{A}$ if and only if $D(x, A) = \operatorname{dist}(x, A) = \inf_{y \in A} d(x, y) = 0$; here A is any nonempty subset of X).

- We need to show $x \in \overline{A} \Leftrightarrow d(x, A) = 0$.
- Let $x \in \overline{A}$. Then $x \in A \bigcup A'$.

Question 3

A point x not belonging to a closed set $M \subset (X, d)$ always has a nonzero distance from M. (Hint: To prove this, show that $x \in \overline{A}$ if and only if $D(x, A) = \operatorname{dist}(x, A) = \inf_{y \in A} d(x, y) = 0$; here A is any nonempty subset of X).

- We need to show $x \in \overline{A} \Leftrightarrow d(x, A) = 0$.
- Let $x \in \overline{A}$. Then $x \in A \bigcup A'$. If $x \in A$, then d(x, A) = 0.

Question 3

A point x not belonging to a closed set $M \subset (X, d)$ always has a nonzero distance from M. (Hint: To prove this, show that $x \in \overline{A}$ if and only if $D(x, A) = \operatorname{dist}(x, A) = \inf_{y \in A} d(x, y) = 0$; here A is any nonempty subset of X).

- We need to show $x \in \overline{A} \Leftrightarrow d(x, A) = 0$.
- Let $x \in \overline{A}$. Then $x \in A \bigcup A'$. If $x \in A$, then d(x, A) = 0.
- If $x \in A'$, then for each $n \in \mathbb{N}$, $B(x, \frac{1}{n}) \cap A \neq \emptyset$.

Question 3

A point x not belonging to a closed set $M \subset (X, d)$ always has a nonzero distance from M. (Hint: To prove this, show that $x \in \overline{A}$ if and only if $D(x, A) = \operatorname{dist}(x, A) = \inf_{y \in A} d(x, y) = 0$; here A is any nonempty subset of X).

- We need to show $x \in \overline{A} \Leftrightarrow d(x, A) = 0$.
- Let $x \in \overline{A}$. Then $x \in A \bigcup A'$. If $x \in A$, then d(x,A) = 0.
- If $x \in A'$, then for each $n \in \mathbb{N}$, $B(x, \frac{1}{n}) \cap A \neq \emptyset$.
- Choose $y_n \in B(x, \frac{1}{n}) \cap A$, for each $n \in \mathbb{N}$.

Question 3

A point x not belonging to a closed set $M \subset (X, d)$ always has a nonzero distance from M. (Hint: To prove this, show that $x \in \overline{A}$ if and only if $D(x, A) = \operatorname{dist}(x, A) = \inf_{y \in A} d(x, y) = 0$; here A is any nonempty subset of X).

- We need to show $x \in \overline{A} \Leftrightarrow d(x, A) = 0$.
- Let $x \in \overline{A}$. Then $x \in A \bigcup A'$. If $x \in A$, then d(x,A) = 0.
- If $x \in A'$, then for each $n \in \mathbb{N}$, $B(x, \frac{1}{n}) \cap A \neq \emptyset$.
- Choose $y_n \in B(x, \frac{1}{n}) \cap A$, for each $n \in \mathbb{N}$. Then $y_n \in A$ and $y_n \to x$.

Question 3

A point x not belonging to a closed set $M \subset (X, d)$ always has a nonzero distance from M. (Hint: To prove this, show that $x \in \overline{A}$ if and only if $D(x, A) = \operatorname{dist}(x, A) = \inf_{y \in A} d(x, y) = 0$; here A is any nonempty subset of X).

- We need to show $x \in \overline{A} \Leftrightarrow d(x, A) = 0$.
- Let $x \in \overline{A}$. Then $x \in A \bigcup A'$. If $x \in A$, then d(x, A) = 0.
- If $x \in A'$, then for each $n \in \mathbb{N}$, $B(x, \frac{1}{n}) \cap A \neq \emptyset$.
- Choose $y_n \in B(x, \frac{1}{n}) \cap A$, for each $n \in \mathbb{N}$. Then $y_n \in A$ and $y_n \to x$.
- We know $d(x, A) = \inf\{d(x, y) : y \in A\}$, but $\inf\{d(x, y_n) : y_n \in A\} = 0$.

Question 3

A point x not belonging to a closed set $M \subset (X, d)$ always has a nonzero distance from M. (Hint: To prove this, show that $x \in \overline{A}$ if and only if $D(x, A) = \operatorname{dist}(x, A) = \inf_{y \in A} d(x, y) = 0$; here A is any nonempty subset of X).

- We need to show $x \in \overline{A} \Leftrightarrow d(x, A) = 0$.
- Let $x \in \overline{A}$. Then $x \in A \bigcup A'$. If $x \in A$, then d(x, A) = 0.
- If $x \in A'$, then for each $n \in \mathbb{N}$, $B(x, \frac{1}{n}) \cap A \neq \emptyset$.
- Choose $y_n \in B(x, \frac{1}{n}) \cap A$, for each $n \in \mathbb{N}$. Then $y_n \in A$ and $y_n \to x$.
- We know $d(x, A) = \inf\{d(x, y) : y \in A\}$, but $\inf\{d(x, y_n) : y_n \in A\} = 0$. Hence d(x, A) = 0.

Question 3

A point x not belonging to a closed set $M \subset (X, d)$ always has a nonzero distance from M. (Hint: To prove this, show that $x \in \overline{A}$ if and only if $D(x, A) = \operatorname{dist}(x, A) = \inf_{y \in A} d(x, y) = 0$; here A is any nonempty subset of X).

- We need to show $x \in \overline{A} \Leftrightarrow d(x, A) = 0$.
- Let $x \in \overline{A}$. Then $x \in A \bigcup A'$. If $x \in A$, then d(x, A) = 0.
- If $x \in A'$, then for each $n \in \mathbb{N}$, $B(x, \frac{1}{n}) \cap A \neq \emptyset$.
- Choose $y_n \in B(x, \frac{1}{n}) \cap A$, for each $n \in \mathbb{N}$. Then $y_n \in A$ and $y_n \to x$.
- We know $d(x, A) = \inf\{d(x, y) : y \in A\}$, but $\inf\{d(x, y_n) : y_n \in A\} = 0$. Hence d(x, A) = 0.

Question 4

Let A and B be non-empty subsets of a metric space (X; d). Prove that:

- (i) $A \subset B \implies \operatorname{diam}(A) \leq \operatorname{diam}(B)$
- (ii) diam(A) = 0 if and only if for some $x \in X$, $A = \{x\}$.
- (iii) If $a \in A$ and $b \in B$, then $diam(A \cup B) \le diam(A) + diam(B) + d(a, b)$.

Proof(i)

Question 4

Let A and B be non-empty subsets of a metric space (X; d). Prove that:

- (i) $A \subset B \implies \operatorname{diam}(A) \leq \operatorname{diam}(B)$
- (ii) diam(A) = 0 if and only if for some $x \in X$, $A = \{x\}$.
- (iii) If $a \in A$ and $b \in B$, then $diam(A \cup B) \le diam(A) + diam(B) + d(a, b)$.

Proof(i)

$$\{d(x,y): x,y \in A\} \subset \{d(x,y): x,y \in B\}$$

Question 4

Let A and B be non-empty subsets of a metric space (X; d). Prove that:

- (i) $A \subset B \implies \operatorname{diam}(A) \leq \operatorname{diam}(B)$
- (ii) diam(A) = 0 if and only if for some $x \in X$, $A = \{x\}$.
- (iii) If $a \in A$ and $b \in B$, then $diam(A \cup B) \le diam(A) + diam(B) + d(a, b)$.

Proof(i)

$$\{d(x,y): x,y \in A\} \subset \{d(x,y): x,y \in B\}$$

 $\sup\{d(x,y): x,y \in A\} \leq \sup\{d(x,y): x,y \in B\}$

Question 4

Let A and B be non-empty subsets of a metric space (X; d). Prove that:

- (i) $A \subset B \implies \operatorname{diam}(A) \leq \operatorname{diam}(B)$
- (ii) diam(A) = 0 if and only if for some $x \in X$, $A = \{x\}$.
- (iii) If $a \in A$ and $b \in B$, then $diam(A \cup B) \le diam(A) + diam(B) + d(a, b)$.

Proof(i)

$$\{d(x,y): x,y \in A\} \subset \{d(x,y): x,y \in B\}$$

$$\sup\{d(x,y): x,y \in A\} \leq \sup\{d(x,y): x,y \in B\}$$

$$\operatorname{diam}(A) \leq \operatorname{diam}(B)$$

Question 4

Let A and B be non-empty subsets of a metric space (X; d). Prove that:

- (i) $A \subset B \implies \operatorname{diam}(A) \leq \operatorname{diam}(B)$
- (ii) diam(A) = 0 if and only if for some $x \in X$, $A = \{x\}$.
- (iii) If $a \in A$ and $b \in B$, then $\operatorname{diam}(A \cup B) \leq \operatorname{diam}(A) + \operatorname{diam}(B) + d(a, b)$.

Proof(i)

• Since $A \subseteq B$, this implies

$$\{d(x,y): x,y \in A\} \subset \{d(x,y): x,y \in B\}$$

$$\sup\{d(x,y): x,y \in A\} \leq \sup\{d(x,y): x,y \in B\}$$

$$\operatorname{diam}(A) \leq \operatorname{diam}(B)$$

Question 4

Let A and B be non-empty subsets of a metric space (X; d). Prove that:

- (i) $A \subset B \implies \operatorname{diam}(A) \leq \operatorname{diam}(B)$
- (ii) diam(A) = 0 if and only if for some $x \in X$, $A = \{x\}$.
- (iii) If $a \in A$ and $b \in B$, then $\operatorname{diam}(A \cup B) \leq \operatorname{diam}(A) + \operatorname{diam}(B) + d(a, b)$.

Proof(i)

• Since $A \subseteq B$, this implies

$$\{d(x,y): x,y \in A\} \subset \{d(x,y): x,y \in B\}$$

$$\sup\{d(x,y): x,y \in A\} \leq \sup\{d(x,y): x,y \in B\}$$

$$\operatorname{diam}(A) \leq \operatorname{diam}(B)$$

Proof(ii)Its proof is obvious. Do yourself.

Proof(iii)

• We know diam $(A \cup B) = \sup\{d(x, y) : x, y \in A \cup B\}.$

- We know diam $(A \cup B) = \sup\{d(x, y) : x, y \in A \cup B\}.$
- Consider two points x, y in $A \cup B$.

- We know diam $(A \cup B) = \sup\{d(x, y) : x, y \in A \cup B\}.$
- Consider two points x, y in $A \cup B$.
- If they are both in A, then $d(x, y) \leq diam(A)$.

- We know diam $(A \cup B) = \sup\{d(x, y) : x, y \in A \cup B\}.$
- Consider two points x, y in $A \cup B$.
- If they are both in A, then $d(x, y) \leq diam(A)$.
- If they are both in B, then $d(x,y) \leq \text{diam}(B)$.

- We know diam $(A \cup B) = \sup\{d(x, y) : x, y \in A \cup B\}.$
- Consider two points x, y in $A \cup B$.
- If they are both in A, then $d(x, y) \leq \text{diam}(A)$.
- If they are both in B, then $d(x,y) \leq \text{diam}(B)$.
- Now suppose $x \in A$ and $y \in B$, then we have

- We know diam $(A \cup B) = \sup\{d(x, y) : x, y \in A \cup B\}.$
- Consider two points x, y in $A \cup B$.
- If they are both in A, then $d(x, y) \leq diam(A)$.
- If they are both in B, then $d(x,y) \leq \text{diam}(B)$.
- Now suppose $x \in A$ and $y \in B$, then we have

$$d(x,y) \le d(x,a) + d(a,b) + d(b,y) \le \operatorname{diam}(A) + d(a,b) + \operatorname{diam}(B)$$

Proof(iii)

- We know diam $(A \cup B) = \sup\{d(x, y) : x, y \in A \cup B\}.$
- Consider two points x, y in $A \cup B$.
- If they are both in A, then $d(x, y) \leq \text{diam}(A)$.
- If they are both in B, then $d(x, y) \leq \text{diam}(B)$.
- Now suppose $x \in A$ and $y \in B$, then we have

$$d(x,y) \le d(x,a) + d(a,b) + d(b,y) \le \operatorname{diam}(A) + d(a,b) + \operatorname{diam}(B)$$

• By taking supremum bothside over $x, y \in A \cup B$, we have

$$diam(A \cup B) \leq diam(A) + diam(B) + d(a, b).$$

Question 5

Let (X,d) be a metric space with the property that every bounded sequence has a convergent subsequence. Prove that X is complete. Does Bolzano-Weierstrass theorem holds holds for any metric space? Give reasons/counterexamples.

Question 5

Let (X,d) be a metric space with the property that every bounded sequence has a convergent subsequence. Prove that X is complete. Does Bolzano-Weierstrass theorem holds holds for any metric space? Give reasons/counterexamples.

Solution: To prove if Bolzano-Weierstrass theorem holds in a metric space then the metric space is complete .

Question 5

Let (X,d) be a metric space with the property that every bounded sequence has a convergent subsequence. Prove that X is complete. Does Bolzano-Weierstrass theorem holds holds for any metric space? Give reasons/counterexamples.

Solution: To prove if Bolzano-Weierstrass theorem holds in a metric space then the metric space is complete .

• Let $\{x_n\}_{n>0}$ be a cauchy sequence in X.

Question 5

Let (X,d) be a metric space with the property that every bounded sequence has a convergent subsequence. Prove that X is complete. Does Bolzano-Weierstrass theorem holds holds for any metric space? Give reasons/counterexamples.

Solution: To prove if Bolzano-Weierstrass theorem holds in a metric space then the metric space is complete .

- Let $\{x_n\}_{n>0}$ be a cauchy sequence in X.
- For $\epsilon > 0$, there exists $N_{\epsilon} > 0$ such that $d(x_n, x_m) < \epsilon$ for all $n, m > N_{\epsilon}$.
- Since cauchy sequences are bounded. Hence $\{x_n\}_{n>0}$ is a bounded sequence.

Question 5

Let (X,d) be a metric space with the property that every bounded sequence has a convergent subsequence. Prove that X is complete. Does Bolzano-Weierstrass theorem holds holds for any metric space? Give reasons/counterexamples.

Solution: To prove if Bolzano-Weierstrass theorem holds in a metric space then the metric space is complete .

- Let $\{x_n\}_{n>0}$ be a cauchy sequence in X.
- For $\epsilon > 0$, there exists $N_{\epsilon} > 0$ such that $d(x_n, x_m) < \epsilon$ for all $n, m > N_{\epsilon}$.
- Since cauchy sequences are bounded. Hence $\{x_n\}_{n>0}$ is a bounded sequence.
- Let $\{x_{n_k}\}_{k>0} \to a$, be a convergent subsequence of x_n where $a \in X$.

Question 5

Let (X,d) be a metric space with the property that every bounded sequence has a convergent subsequence. Prove that X is complete. Does Bolzano-Weierstrass theorem holds holds for any metric space? Give reasons/counterexamples.

Solution: To prove if Bolzano-Weierstrass theorem holds in a metric space then the metric space is complete .

- Let $\{x_n\}_{n>0}$ be a cauchy sequence in X.
- For $\epsilon > 0$, there exists $N_{\epsilon} > 0$ such that $d(x_n, x_m) < \epsilon$ for all $n, m > N_{\epsilon}$.
- Since cauchy sequences are bounded. Hence $\{x_n\}_{n>0}$ is a bounded sequence.
- Let $\{x_{n_k}\}_{k>0} \to a$, be a convergent subsequence of x_n where $a \in X$.

Claim: $x_n \rightarrow a$

• $\forall \ \epsilon > 0, \exists \ M_{\epsilon} \in \mathbb{N}$ such that $d(x_{n_k}, a) < \epsilon/2$ for all $n_k > M_{\epsilon}$.

- $\forall \ \epsilon > 0, \exists \ M_{\epsilon} \in \mathbb{N}$ such that $d(x_{n_k}, a) < \epsilon/2$ for all $n_k > M_{\epsilon}$.
- Choose $N = \max\{N_{\epsilon}, M_{\epsilon}\}.(Why?)$

- $\forall \ \epsilon > 0, \exists \ M_{\epsilon} \in \mathbb{N}$ such that $d(x_{n_k}, a) < \epsilon/2$ for all $n_k > M_{\epsilon}$.
- Choose $N = \max\{N_{\epsilon}, M_{\epsilon}\}.(Why?)$
- Now, $d(x_n, a) \le d(x_n, x_{n_k}) + d(x_{n_k}, a) < \epsilon$ for all n > N.

- $\forall \ \epsilon > 0, \exists \ M_{\epsilon} \in \mathbb{N}$ such that $d(x_{n_k}, a) < \epsilon/2$ for all $n_k > M_{\epsilon}$.
- Choose $N = \max\{N_{\epsilon}, M_{\epsilon}\}.(Why?)$
- Now, $d(x_n, a) \le d(x_n, x_{n_k}) + d(x_{n_k}, a) < \epsilon$ for all n > N.
- Hence every cauchy sequence converges and the metric space is complete.

- $\forall \ \epsilon > 0, \exists \ M_{\epsilon} \in \mathbb{N}$ such that $d(x_{n_k}, a) < \epsilon/2$ for all $n_k > M_{\epsilon}$.
- Choose $N = \max\{N_{\epsilon}, M_{\epsilon}\}.(Why?)$
- Now, $d(x_n, a) \le d(x_n, x_{n_k}) + d(x_{n_k}, a) < \epsilon$ for all n > N.
- Hence every cauchy sequence converges and the metric space is complete.
- Let $M = \mathbb{Q}$ and d(x, y) = |x y|

- $\forall \ \epsilon > 0, \exists \ M_{\epsilon} \in \mathbb{N}$ such that $d(x_{n_k}, a) < \epsilon/2$ for all $n_k > M_{\epsilon}$.
- Choose $N = \max\{N_{\epsilon}, M_{\epsilon}\}.(Why?)$
- Now, $d(x_n, a) \le d(x_n, x_{n_k}) + d(x_{n_k}, a) < \epsilon$ for all n > N.
- Hence every cauchy sequence converges and the metric space is complete.
- Let $M = \mathbb{Q}$ and d(x, y) = |x y|
- Consider the sequence $x_{n+1} = 2\frac{1+x_n}{2+x_n}$ with $x_1 = 1$

- $\forall \epsilon > 0, \exists M_{\epsilon} \in \mathbb{N}$ such that $d(x_{n_k}, a) < \epsilon/2$ for all $n_k > M_{\epsilon}$.
- Choose $N = \max\{N_{\epsilon}, M_{\epsilon}\}.(Why?)$
- Now, $d(x_n, a) \le d(x_n, x_{n_k}) + d(x_{n_k}, a) < \epsilon$ for all n > N.
- Hence every cauchy sequence converges and the metric space is complete.
- Let $M = \mathbb{Q}$ and d(x, y) = |x y|
- Consider the sequence $x_{n+1} = 2\frac{1+x_n}{2+x_n}$ with $x_1 = 1$
- This counterexample is enough. (Why?)

Question 6

If (x_n) and (y_n) are Cauchy sequences in a metric space (X, d), show that (a_n) , where $a_n = d(x_n, y_n)$, converges.

Question 6

If (x_n) and (y_n) are Cauchy sequences in a metric space (X, d), show that (a_n) , where $a_n = d(x_n, y_n)$, converges.

Solution:

• First we try to prove that (a_n) is Cauchy in $\mathbb R$ and that essentially proves what we want. (Why?)

Question 6

If (x_n) and (y_n) are Cauchy sequences in a metric space (X, d), show that (a_n) , where $a_n = d(x_n, y_n)$, converges.

- First we try to prove that (a_n) is Cauchy in \mathbb{R} and that essentially proves what we want. (Why?)
- $\forall \ \epsilon > 0, \exists \ N_{\epsilon} \in \mathbb{N}$ such that $\forall m, n > N_{\epsilon}$ we have $d(x_m, x_n) < \epsilon/2$

Question 6

If (x_n) and (y_n) are Cauchy sequences in a metric space (X,d), show that (a_n) , where $a_n = d(x_n, y_n)$, converges.

- First we try to prove that (a_n) is Cauchy in \mathbb{R} and that essentially proves what we want. (Why?)
- $\forall \ \epsilon > 0, \exists \ N_{\epsilon} \in \mathbb{N}$ such that $\forall m, n > N_{\epsilon}$ we have $d(x_m, x_n) < \epsilon/2$
- $\forall \ \epsilon > 0, \exists \ M_{\epsilon} \in \mathbb{N} \text{ such that } \forall m, n > M_{\epsilon} \text{ we have } d(y_m, y_n) < \epsilon/2.$

Question 6

If (x_n) and (y_n) are Cauchy sequences in a metric space (X, d), show that (a_n) , where $a_n = d(x_n, y_n)$, converges.

- First we try to prove that (a_n) is Cauchy in \mathbb{R} and that essentially proves what we want. (Why?)
- $\forall \ \epsilon > 0, \exists \ N_{\epsilon} \in \mathbb{N}$ such that $\forall m, n > N_{\epsilon}$ we have $d(x_m, x_n) < \epsilon/2$
- $\forall \ \epsilon > 0, \exists \ M_{\epsilon} \in \mathbb{N} \ \text{such that} \ \forall m, n > M_{\epsilon} \ \text{we have} \ d(y_m, y_n) < \epsilon/2.$
- Now, $\forall m, n > max\{N_{\epsilon}, M_{\epsilon}\}$, we have,

Question 6

If (x_n) and (y_n) are Cauchy sequences in a metric space (X,d), show that (a_n) , where $a_n = d(x_n, y_n)$, converges.

- First we try to prove that (a_n) is Cauchy in \mathbb{R} and that essentially proves what we want. (Why?)
- $\forall \ \epsilon > 0, \exists \ N_{\epsilon} \in \mathbb{N}$ such that $\forall m, n > N_{\epsilon}$ we have $d(x_m, x_n) < \epsilon/2$
- $\forall \ \epsilon > 0, \exists \ M_{\epsilon} \in \mathbb{N} \ \text{such that} \ \forall m, n > M_{\epsilon} \ \text{we have} \ d(y_m, y_n) < \epsilon/2.$
- Now, $\forall m, n > max\{N_{\epsilon}, M_{\epsilon}\}$, we have, $|a_m a_n| = |d(x_m, y_m) d(x_n, y_n)|$

Question 6

If (x_n) and (y_n) are Cauchy sequences in a metric space (X,d), show that (a_n) , where $a_n = d(x_n, y_n)$, converges.

- First we try to prove that (a_n) is Cauchy in \mathbb{R} and that essentially proves what we want. (Why?)
- $\forall \ \epsilon > 0, \exists \ N_{\epsilon} \in \mathbb{N}$ such that $\forall m, n > N_{\epsilon}$ we have $d(x_m, x_n) < \epsilon/2$
- $\forall \ \epsilon > 0, \exists \ M_{\epsilon} \in \mathbb{N} \ \text{such that} \ \forall m, n > M_{\epsilon} \ \text{we have} \ d(y_m, y_n) < \epsilon/2.$
- Now, $\forall m, n > max\{N_{\epsilon}, M_{\epsilon}\}$, we have, $|a_m - a_n| = |d(x_m, y_m) - d(x_n, y_n)|$ $= |\{d(x_m, y_m) - d(y_m, x_n)\} - \{d(x_n, y_n) - d(y_m, x_n)\}|$

Question 6

If (x_n) and (y_n) are Cauchy sequences in a metric space (X, d), show that (a_n) , where $a_n = d(x_n, y_n)$, converges.

- First we try to prove that (a_n) is Cauchy in \mathbb{R} and that essentially proves what we want. (Why?)
- $\forall \ \epsilon > 0, \exists \ N_{\epsilon} \in \mathbb{N}$ such that $\forall m, n > N_{\epsilon}$ we have $d(x_m, x_n) < \epsilon/2$
- $\forall \ \epsilon > 0, \exists \ M_{\epsilon} \in \mathbb{N} \ \text{such that} \ \forall m, n > M_{\epsilon} \ \text{we have} \ d(y_m, y_n) < \epsilon/2.$
- Now, $\forall m, n > max\{N_{\epsilon}, M_{\epsilon}\}$, we have, $|a_m - a_n| = |d(x_m, y_m) - d(x_n, y_n)|$ $= |\{d(x_m, y_m) - d(y_m, x_n)\} - \{d(x_n, y_n) - d(y_m, x_n)\}|$ $\leq |d(x_m, y_m) - d(y_m, x_n)| + |d(x_n, y_n) - d(y_m, x_n)|$

Question 6

If (x_n) and (y_n) are Cauchy sequences in a metric space (X, d), show that (a_n) , where $a_n = d(x_n, y_n)$, converges.

- First we try to prove that (a_n) is Cauchy in \mathbb{R} and that essentially proves what we want. (Why?)
- $\forall \ \epsilon > 0, \exists \ N_{\epsilon} \in \mathbb{N}$ such that $\forall m, n > N_{\epsilon}$ we have $d(x_m, x_n) < \epsilon/2$
- $\forall \ \epsilon > 0, \exists \ M_{\epsilon} \in \mathbb{N} \ \text{such that} \ \forall m, n > M_{\epsilon} \ \text{we have} \ d(y_m, y_n) < \epsilon/2.$
- Now, $\forall m, n > max\{N_{\epsilon}, M_{\epsilon}\}$, we have, $|a_m - a_n| = |d(x_m, y_m) - d(x_n, y_n)|$ $= |\{d(x_m, y_m) - d(y_m, x_n)\} - \{d(x_n, y_n) - d(y_m, x_n)\}|$ $\leq |d(x_m, y_m) - d(y_m, x_n)| + |d(x_n, y_n) - d(y_m, x_n)|$ $\leq d(x_m, x_n) + d(y_m, y_n)$

Question 6

If (x_n) and (y_n) are Cauchy sequences in a metric space (X,d), show that (a_n) , where $a_n = d(x_n, y_n)$, converges.

- First we try to prove that (a_n) is Cauchy in \mathbb{R} and that essentially proves what we want. (Why?)
- $\forall \ \epsilon > 0, \exists \ N_{\epsilon} \in \mathbb{N}$ such that $\forall m, n > N_{\epsilon}$ we have $d(x_m, x_n) < \epsilon/2$
- $\forall \ \epsilon > 0, \exists \ M_{\epsilon} \in \mathbb{N} \text{ such that } \forall m, n > M_{\epsilon} \text{ we have } d(y_m, y_n) < \epsilon/2.$
- Now, $\forall m, n > max\{N_{\epsilon}, M_{\epsilon}\}$, we have, $|a_m - a_n| = |d(x_m, y_m) - d(x_n, y_n)|$ $= |\{d(x_m, y_m) - d(y_m, x_n)\} - \{d(x_n, y_n) - d(y_m, x_n)\}|$ $\leq |d(x_m, y_m) - d(y_m, x_n)| + |d(x_n, y_n) - d(y_m, x_n)|$ $\leq d(x_m, x_n) + d(y_m, y_n) < \epsilon$

Question 6

If (x_n) and (y_n) are Cauchy sequences in a metric space (X, d), show that (a_n) , where $a_n = d(x_n, y_n)$, converges.

- First we try to prove that (a_n) is Cauchy in \mathbb{R} and that essentially proves what we want. (Why?)
- $\forall \ \epsilon > 0, \exists \ N_{\epsilon} \in \mathbb{N}$ such that $\forall m, n > N_{\epsilon}$ we have $d(x_m, x_n) < \epsilon/2$
- $\forall \ \epsilon > 0, \exists \ M_{\epsilon} \in \mathbb{N} \ \text{such that} \ \forall m, n > M_{\epsilon} \ \text{we have} \ d(y_m, y_n) < \epsilon/2.$
- Now, $\forall m, n > max\{N_{\epsilon}, M_{\epsilon}\}$, we have, $|a_m - a_n| = |d(x_m, y_m) - d(x_n, y_n)|$ $= |\{d(x_m, y_m) - d(y_m, x_n)\} - \{d(x_n, y_n) - d(y_m, x_n)\}|$ $\leq |d(x_m, y_m) - d(y_m, x_n)| + |d(x_n, y_n) - d(y_m, x_n)|$ $\leq d(x_m, x_n) + d(y_m, y_n) < \epsilon$
- Hence proved

Question 7

Let X=(X,d) be a metric space and CS(X) the collection of all Cauchy sequences in X. For (x_n) and (y_n) in CS(X), define $(x_n) \sim (y_n)$ if and only if $\lim_{n \to \infty} d(x_n, y_n) = 0$ Prove that \sim is an equivalence relation

Question 7

Let X=(X,d) be a metric space and CS(X) the collection of all Cauchy sequences in X. For (x_n) and (y_n) in CS(X), define $(x_n)\sim (y_n)$ if and only if $\lim_{n\to\infty} d(x_n,y_n)=0$ Prove that \sim is an equivalence relation

Solution: As usual we try to prove the three properties .

Question 7

Let X=(X,d) be a metric space and CS(X) the collection of all Cauchy sequences in X. For (x_n) and (y_n) in CS(X), define $(x_n)\sim (y_n)$ if and only if $\lim_{n\to\infty}d(x_n,y_n)=0$ Prove that \sim is an equivalence relation

Solution: As usual we try to prove the three properties .

• Reflexive: $d(x_n, x_n) = 0 \ \forall n > 0$. Hence $(x_n) \sim (y_n)$

Question 7

Let X=(X,d) be a metric space and CS(X) the collection of all Cauchy sequences in X. For (x_n) and (y_n) in CS(X), define $(x_n) \sim (y_n)$ if and only if $\lim_{n \to \infty} d(x_n, y_n) = 0$ Prove that \sim is an equivalence relation

Solution: As usual we try to prove the three properties .

- Reflexive: $d(x_n, x_n) = 0 \ \forall n > 0$. Hence $(x_n) \sim (y_n)$
- Symmetric: Since d is symmetric we have $\lim_{n\to\infty} d(x_n,y_n) = \lim_{n\to\infty} d(y_n,x_n) = 0$.

Question 7

Let X=(X,d) be a metric space and CS(X) the collection of all Cauchy sequences in X. For (x_n) and (y_n) in CS(X), define $(x_n) \sim (y_n)$ if and only if $\lim_{n \to \infty} d(x_n, y_n) = 0$ Prove that \sim is an equivalence relation

Solution: As usual we try to prove the three properties .

- Reflexive: $d(x_n, x_n) = 0 \ \forall n > 0$. Hence $(x_n) \sim (y_n)$
- Symmetric: Since d is symmetric we have $\lim_{n\to\infty} d(x_n,y_n) = \lim_{n\to\infty} d(y_n,x_n) = 0$.
- Transitive: Let $(x_n) \sim (y_n)$ and $(y_n) \sim (z_n)$. Now $0 \le d(x_n, z_n) \le d(x_n, y_n) + d(y_n, z_n)$ which using sandwich theorem gives that $(x_n) \sim (z_n)$

Question 8

Show that the set X of all integers, with metric d defined by d(m, n) = |m - n|, is a complete metric space.

Question 8

Show that the set X of all integers, with metric d defined by d(m, n) = |m - n|, is a complete metric space.

Solution:

• Let $(x_n)_{n>0}$ be a Cauchy Sequence in X.

Question 8

Show that the set X of all integers, with metric d defined by d(m, n) = |m - n|, is a complete metric space.

- Let $(x_n)_{n>0}$ be a Cauchy Sequence in X.
- $\therefore \forall \epsilon > 0, \exists N_{\epsilon} \in \mathbb{N} \text{ such that } \forall m, n > N_{\epsilon} \text{ we have } |(x_m x_n)| < \epsilon.$

Question 8

Show that the set X of all integers, with metric d defined by d(m, n) = |m - n|, is a complete metric space.

- Let $(x_n)_{n>0}$ be a Cauchy Sequence in X.
- $... \forall \epsilon > 0, \exists N_{\epsilon} \in \mathbb{N} \text{ such that } \forall m, n > N_{\epsilon} \text{ we have } |(x_m x_n)| < \epsilon.$
- For $\epsilon = 1$, we have N_1 such that $\forall n, m > N_1, |(x_m x_n)| < 1$.

Question 8

Show that the set X of all integers, with metric d defined by d(m, n) = |m - n|, is a complete metric space.

- Let $(x_n)_{n>0}$ be a Cauchy Sequence in X.
- $\therefore \forall \ \epsilon > 0, \exists \ N_{\epsilon} \in \mathbb{N} \text{ such that } \forall m, n > N_{\epsilon} \text{ we have } |(x_m x_n)| < \epsilon.$
- For $\epsilon = 1$, we have N_1 such that $\forall n, m > N_1, |(x_m x_n)| < 1$.
- Since our space is set of integers and $|(x_m x_n)| < 1$, this implies $|(x_m x_n)| = 0$ for all $n, m > N_1$.

Question 8

Show that the set X of all integers, with metric d defined by d(m, n) = |m - n|, is a complete metric space.

- Let $(x_n)_{n>0}$ be a Cauchy Sequence in X.
- $\therefore \forall \ \epsilon > 0, \exists \ N_{\epsilon} \in \mathbb{N} \text{ such that } \forall m, n > N_{\epsilon} \text{ we have } |(x_m x_n)| < \epsilon.$
- For $\epsilon=1$, we have N_1 such that $\forall n,m>\mathit{N}_1, |(x_m-x_n)|<1$.
- Since our space is set of integers and $|(x_m x_n)| < 1$, this implies $|(x_m x_n)| = 0$ for all $n, m > N_1$.
- That means (x_n) is eventually constant sequence, which is convergent.

Question 8

Show that the set X of all integers, with metric d defined by d(m, n) = |m - n|, is a complete metric space.

- Let $(x_n)_{n>0}$ be a Cauchy Sequence in X.
- $\therefore \forall \ \epsilon > 0, \exists \ N_{\epsilon} \in \mathbb{N} \text{ such that } \forall m, n > N_{\epsilon} \text{ we have } |(x_m x_n)| < \epsilon.$
- For $\epsilon=1$, we have N_1 such that $\forall n,m>\mathit{N}_1, |(x_m-x_n)|<1$.
- Since our space is set of integers and $|(x_m x_n)| < 1$, this implies $|(x_m x_n)| = 0$ for all $n, m > N_1$.
- That means (x_n) is eventually constant sequence, which is convergent.
- Hence (X, d) is a complete metric space.

Question 8

Show that the set X of all integers, with metric d defined by d(m, n) = |m - n|, is a complete metric space.

- Let $(x_n)_{n>0}$ be a Cauchy Sequence in X.
- $\therefore \forall \ \epsilon > 0, \exists \ N_{\epsilon} \in \mathbb{N} \text{ such that } \forall m, n > N_{\epsilon} \text{ we have } |(x_m x_n)| < \epsilon.$
- For $\epsilon=1$, we have N_1 such that $\forall n,m>\mathit{N}_1, |(x_m-x_n)|<1$.
- Since our space is set of integers and $|(x_m x_n)| < 1$, this implies $|(x_m x_n)| = 0$ for all $n, m > N_1$.
- That means (x_n) is eventually constant sequence, which is convergent.
- Hence (X, d) is a complete metric space.

Question 9

Show that $(\ell^{\infty}, d_{\infty})$ is a complete metric space.

Question 9

Show that $(\ell^{\infty}, d_{\infty})$ is a complete metric space.

Solution:

• Let $\{x_n\}$ be the cauchy sequence in ℓ^{∞} , where $x_n=(x_1^{(n)},x_2^{(n)},\dots)$.

Question 9

Show that $(\ell^{\infty}, d_{\infty})$ is a complete metric space.

- Let $\{x_n\}$ be the cauchy sequence in ℓ^{∞} , where $x_n = (x_1^{(n)}, x_2^{(n)}, \dots)$.
- Since $\{x_n\}$ is cauchy, this implies for $\epsilon > 0$, there exists an $N_0 \in \mathbb{N}$ such that

Question 9

Show that $(\ell^{\infty}, d_{\infty})$ is a complete metric space.

- Let $\{x_n\}$ be the cauchy sequence in ℓ^{∞} , where $x_n = (x_1^{(n)}, x_2^{(n)}, \dots)$.
- Since $\{x_n\}$ is cauchy, this implies for $\epsilon > 0$, there exists an $N_0 \in \mathbb{N}$ such that

$$d_{\infty}(x_n,x_m)=\sup_{i\in\mathbb{N}}|x_i^{(n)}-x_i^{(m)}|<\epsilon \ \ ext{for all} \ \ n,m>N_0.$$

Question 9

Show that $(\ell^{\infty}, d_{\infty})$ is a complete metric space.

Solution:

- Let $\{x_n\}$ be the cauchy sequence in ℓ^{∞} , where $x_n = (x_1^{(n)}, x_2^{(n)}, \dots)$.
- Since $\{x_n\}$ is cauchy, this implies for $\epsilon > 0$, there exists an $N_0 \in \mathbb{N}$ such that

$$d_{\infty}(x_n,x_m)=\sup_{i\in\mathbb{N}}|x_i^{(n)}-x_i^{(m)}|<\epsilon \ \text{ for all } \ n,m>N_0.$$

Thus

Question 9

Show that $(\ell^{\infty}, d_{\infty})$ is a complete metric space.

Solution:

- Let $\{x_n\}$ be the cauchy sequence in ℓ^{∞} , where $x_n = (x_1^{(n)}, x_2^{(n)}, \dots)$.
- Since $\{x_n\}$ is cauchy, this implies for $\epsilon > 0$, there exists an $N_0 \in \mathbb{N}$ such that

$$d_{\infty}(x_n,x_m)=\sup_{i\in\mathbb{N}}|x_i^{(n)}-x_i^{(m)}|<\epsilon \ \text{ for all } \ n,m>N_0.$$

Thus

$$|x_i^{(n)} - x_i^{(m)}| < \epsilon$$
 for all $n, m > N_0$ and for all $i \in \mathbb{N}$ (1)

• This implies for all $i \in \mathbb{N}$, $\{x_i^{(n)}\}$ is a cauchy sequence in \mathbb{R} .

Question 9

Show that $(\ell^{\infty}, d_{\infty})$ is a complete metric space.

Solution:

- Let $\{x_n\}$ be the cauchy sequence in ℓ^{∞} , where $x_n = (x_1^{(n)}, x_2^{(n)}, \dots)$.
- Since $\{x_n\}$ is cauchy, this implies for $\epsilon > 0$, there exists an $N_0 \in \mathbb{N}$ such that

$$d_{\infty}(x_n,x_m)=\sup_{i\in\mathbb{N}}|x_i^{(n)}-x_i^{(m)}|<\epsilon \ \text{ for all } \ n,m>N_0.$$

Thus

$$|x_i^{(n)} - x_i^{(m)}| < \epsilon$$
 for all $n, m > N_0$ and for all $i \in \mathbb{N}$ (1)

• This implies for all $i \in \mathbb{N}$, $\{x_i^{(n)}\}$ is a cauchy sequence in \mathbb{R} .

• Since \mathbb{R} with euclidean metric is complete. Thus for all $i \in \mathbb{N}$ the sequence $\{x_i^{(n)}\}$ converges in \mathbb{R} .

- Since \mathbb{R} with euclidean metric is complete. Thus for all $i \in \mathbb{N}$ the sequence $\{x_i^{(n)}\}$ converges in \mathbb{R} .
- Suppose that $x_i^{(n)} \to l_i$ for all $i \in \mathbb{N}$.

- Since \mathbb{R} with euclidean metric is complete. Thus for all $i \in \mathbb{N}$ the sequence $\{x_i^{(n)}\}$ converges in \mathbb{R} .
- Suppose that $x_i^{(n)} \to I_i$ for all $i \in \mathbb{N}$.
- Now we will prove that $x_n \to L$ where $L = (I_1, I_2, ...)$ and $L \in \ell^{\infty}$.

- Since \mathbb{R} with euclidean metric is complete. Thus for all $i \in \mathbb{N}$ the sequence $\{x_i^{(n)}\}$ converges in \mathbb{R} .
- Suppose that $x_i^{(n)} \to l_i$ for all $i \in \mathbb{N}$.
- Now we will prove that $x_n \to L$ where $L = (I_1, I_2, \dots)$ and $L \in \ell^{\infty}$.
- By taking $m \to \infty$ in (1), we obtain

- Since \mathbb{R} with euclidean metric is complete. Thus for all $i \in \mathbb{N}$ the sequence $\{x_i^{(n)}\}$ converges in \mathbb{R} .
- Suppose that $x_i^{(n)} \to I_i$ for all $i \in \mathbb{N}$.
- Now we will prove that $x_n \to L$ where $L = (I_1, I_2, \dots)$ and $L \in \ell^{\infty}$.
- By taking $m \to \infty$ in (1), we obtain

$$\left|x_i^{(n)} - I_i\right| < \epsilon \text{ for all } n > N_0 \text{ and } i \in \mathbb{N}$$

- Since \mathbb{R} with euclidean metric is complete. Thus for all $i \in \mathbb{N}$ the sequence $\{x_i^{(n)}\}$ converges in \mathbb{R} .
- Suppose that $x_i^{(n)} \to I_i$ for all $i \in \mathbb{N}$.
- Now we will prove that $x_n \to L$ where $L = (I_1, I_2, ...)$ and $L \in \ell^{\infty}$.
- By taking $m \to \infty$ in (1), we obtain

$$\left|x_i^{(n)} - I_i\right| < \epsilon \text{ for all } n > N_0 \text{ and } i \in N$$

• Thus $x_n \to L$ as $n \to \infty$.

- Since \mathbb{R} with euclidean metric is complete. Thus for all $i \in \mathbb{N}$ the sequence $\{x_i^{(n)}\}$ converges in \mathbb{R} .
- Suppose that $x_i^{(n)} \to I_i$ for all $i \in \mathbb{N}$.
- Now we will prove that $x_n \to L$ where $L = (I_1, I_2, \dots)$ and $L \in \ell^{\infty}$.
- By taking $m \to \infty$ in (1), we obtain

$$\left|x_i^{(n)} - I_i\right| < \epsilon \text{ for all } n > N_0 \text{ and } i \in \mathbb{N}$$

- Thus $x_n \to L$ as $n \to \infty$.
- Hence for some $m > N_0$,

- Since \mathbb{R} with euclidean metric is complete. Thus for all $i \in \mathbb{N}$ the sequence $\{x_i^{(n)}\}$ converges in \mathbb{R} .
- Suppose that $x_i^{(n)} \to I_i$ for all $i \in \mathbb{N}$.
- Now we will prove that $x_n \to L$ where $L = (I_1, I_2, ...)$ and $L \in \ell^{\infty}$.
- By taking $m \to \infty$ in (1), we obtain

$$\left|x_i^{(n)} - I_i\right| < \epsilon \text{ for all } n > N_0 \text{ and } i \in N$$

- Thus $x_n \to L$ as $n \to \infty$.
- Hence for some $m > N_0$,

$$|I_i| = \left| x_i^{(m)} + \left(I_i - x_i^{(m)} \right) \right| \le \left| x_i^{(m)} \right| + \varepsilon \quad \text{ for all } i \in \mathbb{N}$$

- Since \mathbb{R} with euclidean metric is complete. Thus for all $i \in \mathbb{N}$ the sequence $\{x_i^{(n)}\}$ converges in \mathbb{R} .
- Suppose that $x_i^{(n)} \to l_i$ for all $i \in \mathbb{N}$.
- Now we will prove that $x_n \to L$ where $L = (I_1, I_2, ...)$ and $L \in \ell^{\infty}$.
- By taking $m \to \infty$ in (1), we obtain

$$\left|x_i^{(n)} - I_i\right| < \epsilon \text{ for all } n > N_0 \text{ and } i \in N$$

- Thus $x_n \to L$ as $n \to \infty$.
- Hence for some $m > N_0$,

$$|I_i| = \left| x_i^{(m)} + \left(I_i - x_i^{(m)} \right) \right| \le \left| x_i^{(m)} \right| + \varepsilon \quad \text{for all } i \in \mathbb{N}$$

Since the sequence $x^{(m)}$ is bounded, so is the sequence L.

- Since \mathbb{R} with euclidean metric is complete. Thus for all $i \in \mathbb{N}$ the sequence $\{x_i^{(n)}\}$ converges in \mathbb{R} .
- Suppose that $x_i^{(n)} \to l_i$ for all $i \in \mathbb{N}$.
- Now we will prove that $x_n \to L$ where $L = (I_1, I_2, ...)$ and $L \in \ell^{\infty}$.
- By taking $m \to \infty$ in (1), we obtain

$$\left|x_i^{(n)} - I_i\right| < \epsilon$$
 for all $n > N_0$ and $i \in N$

- Thus $x_n \to L$ as $n \to \infty$.
- Hence for some $m > N_0$,

$$|I_i| = \left| x_i^{(m)} + \left(I_i - x_i^{(m)} \right) \right| \le \left| x_i^{(m)} \right| + \varepsilon \quad \text{ for all } i \in \mathbb{N}$$

Since the sequence $x^{(m)}$ is bounded, so is the sequence L.

• Therefore, $L \in \ell_{\infty}$.

- Since \mathbb{R} with euclidean metric is complete. Thus for all $i \in \mathbb{N}$ the sequence $\{x_i^{(n)}\}$ converges in \mathbb{R} .
- Suppose that $x_i^{(n)} \to I_i$ for all $i \in \mathbb{N}$.
- Now we will prove that $x_n \to L$ where $L = (I_1, I_2, ...)$ and $L \in \ell^{\infty}$.
- By taking $m \to \infty$ in (1), we obtain

$$\left|x_i^{(n)} - I_i\right| < \epsilon \text{ for all } n > N_0 \text{ and } i \in N$$

- Thus $x_n \to L$ as $n \to \infty$.
- Hence for some $m > N_0$,

$$|I_i| = \left| x_i^{(m)} + \left(I_i - x_i^{(m)} \right) \right| \le \left| x_i^{(m)} \right| + \varepsilon \quad \text{ for all } i \in \mathbb{N}$$

Since the sequence $x^{(m)}$ is bounded, so is the sequence L.

- Therefore, $L \in \ell_{\infty}$.
- Hence $(\ell_{\infty}, d_{\infty})$ is complete.

- Since \mathbb{R} with euclidean metric is complete. Thus for all $i \in \mathbb{N}$ the sequence $\{x_i^{(n)}\}$ converges in \mathbb{R} .
- Suppose that $x_i^{(n)} \to I_i$ for all $i \in \mathbb{N}$.
- Now we will prove that $x_n \to L$ where $L = (I_1, I_2, ...)$ and $L \in \ell^{\infty}$.
- By taking $m \to \infty$ in (1), we obtain

$$\left|x_i^{(n)} - I_i\right| < \epsilon$$
 for all $n > N_0$ and $i \in N$

- Thus $x_n \to L$ as $n \to \infty$.
- Hence for some $m > N_0$,

$$|I_i| = \left| x_i^{(m)} + \left(I_i - x_i^{(m)} \right) \right| \le \left| x_i^{(m)} \right| + \varepsilon \quad \text{ for all } i \in \mathbb{N}$$

Since the sequence $x^{(m)}$ is bounded, so is the sequence L.

- Therefore, $L \in \ell_{\infty}$.
- Hence $(\ell_{\infty}, d_{\infty})$ is complete.

Question 10

Show that the set of all real numbers constitutes an incomplete metric space if we choose $d(x, y) = |\arctan x - \arctan y|$.

Solution:

• Take $\{x_n\} = n$.

Question 10

Show that the set of all real numbers constitutes an incomplete metric space if we choose $d(x, y) = |\arctan x - \arctan y|$.

- Take $\{x_n\} = n$.
- We will prove that $\{x_n\}$ is cauchy.

Question 10

Show that the set of all real numbers constitutes an incomplete metric space if we choose $d(x, y) = |\arctan x - \arctan y|$.

- Take $\{x_n\} = n$.
- We will prove that $\{x_n\}$ is cauchy.
- Since $\lim_{n\to\infty} \arctan(n) = \frac{\pi}{2}$.

Question 10

Show that the set of all real numbers constitutes an incomplete metric space if we choose $d(x, y) = |\arctan x - \arctan y|$.

- Take $\{x_n\} = n$.
- We will prove that $\{x_n\}$ is cauchy.
- Since $\lim_{n\to\infty}\arctan(n)=\frac{\pi}{2}$. Thus for $\epsilon>0$, there exists a natural number $n_0\in\mathbb{N}$ such that $|\arctan(n)-\frac{\pi}{2}|<\frac{\epsilon}{2}$ for all $n>n_0$.

Question 10

Show that the set of all real numbers constitutes an incomplete metric space if we choose $d(x, y) = |\arctan x - \arctan y|$.

- Take $\{x_n\} = n$.
- We will prove that $\{x_n\}$ is cauchy.
- Since $\lim_{n\to\infty}\arctan(n)=\frac{\pi}{2}$. Thus for $\epsilon>0$, there exists a natural number $n_0\in\mathbb{N}$ such that $|\arctan(n)-\frac{\pi}{2}|<\frac{\epsilon}{2}$ for all $n>n_0$.
- Now consider $m, n > n_0$

$$d(x_m, x_n) = |\arctan m - \arctan n|$$

Question 10

Show that the set of all real numbers constitutes an incomplete metric space if we choose $d(x, y) = |\arctan x - \arctan y|$.

- Take $\{x_n\} = n$.
- We will prove that $\{x_n\}$ is cauchy.
- Since $\lim_{n\to\infty}\arctan(n)=\frac{\pi}{2}$. Thus for $\epsilon>0$, there exists a natural number $n_0\in\mathbb{N}$ such that $|\arctan(n)-\frac{\pi}{2}|<\frac{\epsilon}{2}$ for all $n>n_0$.
- Now consider $m, n > n_0$

$$d(x_m, x_n) = |\arctan m - \arctan n|$$

 $\leq |\arctan(m) - \frac{\pi}{2}| + |\arctan(n) - \frac{\pi}{2}|$

Question 10

Show that the set of all real numbers constitutes an incomplete metric space if we choose $d(x, y) = |\arctan x - \arctan y|$.

- Take $\{x_n\} = n$.
- We will prove that $\{x_n\}$ is cauchy.
- Since $\lim_{n\to\infty}\arctan(n)=\frac{\pi}{2}$. Thus for $\epsilon>0$, there exists a natural number $n_0\in\mathbb{N}$ such that $|\arctan(n)-\frac{\pi}{2}|<\frac{\epsilon}{2}$ for all $n>n_0$.
- Now consider $m, n > n_0$

$$d(x_m, x_n) = |\arctan m - \arctan n|$$

 $\leq |\arctan(m) - \frac{\pi}{2}| + |\arctan(n) - \frac{\pi}{2}|$
 $\leq \epsilon$

• Hence it is cauchy.

- Hence it is cauchy.
- Suppose that $\{x_n\} \to x$ i.e $d(x_n, x) \to 0$ as $n \to \infty$.

- Hence it is cauchy.
- Suppose that $\{x_n\} \to x$ i.e $d(x_n, x) \to 0$ as $n \to \infty$.
- Let $\epsilon > 0$ and $N > n_0$,

$$d(x_n,x) < \frac{\epsilon}{2}$$
 for all $n > n_0$,

- Hence it is cauchy.
- Suppose that $\{x_n\} \to x$ i.e $d(x_n, x) \to 0$ as $n \to \infty$.
- Let $\epsilon > 0$ and $N > n_0$,

$$d(x_n,x) < \frac{\epsilon}{2}$$
 for all $n > n_0$,

$$\left|\frac{\pi}{2} - \arctan(x)\right|$$

- Hence it is cauchy.
- Suppose that $\{x_n\} \to x$ i.e $d(x_n, x) \to 0$ as $n \to \infty$.
- Let $\epsilon > 0$ and $N > n_0$,

$$d(x_n,x) < \frac{\epsilon}{2}$$
 for all $n > n_0$,

$$\left|\frac{\pi}{2} - \arctan(x)\right| \le \left|\frac{\pi}{2} - \arctan(n)\right| + \left|\arctan(n) - \arctan(x)\right|$$

- Hence it is cauchy.
- Suppose that $\{x_n\} \to x$ i.e $d(x_n, x) \to 0$ as $n \to \infty$.
- Let $\epsilon > 0$ and $N > n_0$,

$$d(x_n,x) < \frac{\epsilon}{2}$$
 for all $n > n_0$,

$$\left| \frac{\pi}{2} - \arctan(x) \right| \leq \left| \frac{\pi}{2} - \arctan(n) \right| + \left| \arctan(n) - \arctan(x) \right|$$
$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

- Hence it is cauchy.
- Suppose that $\{x_n\} \to x$ i.e $d(x_n, x) \to 0$ as $n \to \infty$.
- Let $\epsilon > 0$ and $N > n_0$,

$$d(x_n,x) < \frac{\epsilon}{2}$$
 for all $n > n_0$,

Consider

$$\left| \frac{\pi}{2} - \arctan(x) \right| \leq \left| \frac{\pi}{2} - \arctan(n) \right| + \left| \arctan(n) - \arctan(x) \right|$$
$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

• Thus $\left|\frac{\pi}{2} - \arctan(x)\right| < \epsilon$ and $\epsilon > 0$ is arbitrary.

- Hence it is cauchy.
- Suppose that $\{x_n\} \to x$ i.e $d(x_n, x) \to 0$ as $n \to \infty$.
- Let $\epsilon > 0$ and $N > n_0$,

$$d(x_n,x) < \frac{\epsilon}{2}$$
 for all $n > n_0$,

$$\left| \frac{\pi}{2} - \arctan(x) \right| \leq \left| \frac{\pi}{2} - \arctan(n) \right| + \left| \arctan(n) - \arctan(x) \right|$$
$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

- Thus $\left|\frac{\pi}{2} \arctan(x)\right| < \epsilon$ and $\epsilon > 0$ is arbitrary.
- This gives $\arctan(x) = \frac{\pi}{2}$,

- Hence it is cauchy.
- Suppose that $\{x_n\} \to x$ i.e $d(x_n, x) \to 0$ as $n \to \infty$.
- Let $\epsilon > 0$ and $N > n_0$,

$$d(x_n,x) < \frac{\epsilon}{2}$$
 for all $n > n_0$,

$$\left| \frac{\pi}{2} - \arctan(x) \right| \le \left| \frac{\pi}{2} - \arctan(n) \right| + \left| \arctan(n) - \arctan(x) \right|$$
 $< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$

- Thus $\left|\frac{\pi}{2} \arctan(x)\right| < \epsilon$ and $\epsilon > 0$ is arbitrary.
- This gives $\arctan(x) = \frac{\pi}{2}$, but there doesn't exist any real number such that $\arctan(x) = \frac{\pi}{2}$.

- Hence it is cauchy.
- Suppose that $\{x_n\} \to x$ i.e $d(x_n, x) \to 0$ as $n \to \infty$.
- Let $\epsilon > 0$ and $N > n_0$,

$$d(x_n,x) < \frac{\epsilon}{2}$$
 for all $n > n_0$,

$$\left| \frac{\pi}{2} - \arctan(x) \right| \leq \left| \frac{\pi}{2} - \arctan(n) \right| + \left| \arctan(n) - \arctan(x) \right|$$
$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

- Thus $\left|\frac{\pi}{2} \arctan(x)\right| < \epsilon$ and $\epsilon > 0$ is arbitrary.
- This gives $\arctan(x) = \frac{\pi}{2}$, but there doesn't exist any real number such that $\arctan(x) = \frac{\pi}{2}$. contradiction.
- Hence it is not complete.

