WORLD INTELLECTUAL PROPERTY ORGANIZATION International Burean

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: (11) International Publication Number: WO 95/06055 C07H 17/00, C12N 15/00, 5/00, C12Q A1 (43) International Publication Date: 1/70, A61K 38/00, 35/14 2 March 1995 (02.03.95)

(74) Agents: JERVIS, Herbert, H. et al.; SmithKline Beecham (21) International Application Number: PCT/US94/09303 Corporation, Corporate Intellectual Property, UW2220, 709 Swedeland Road, P.O. Box 1539, King of Prussia, PA (22) International Filing Date: 19 August 1994 (19.08.94) 19406-0939 (US).

(30) Priority Data: 08/110,522 20 August 1993 (20.08.93) US 08/264.537 23 June 1994 (23.06.94) US

HU, JP, KP, KR, KZ, LK, MG, MN, MW, NO, NZ, PL, RO, RU, SD, SI, SK, UA, US, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, (60) Parent Application or Grant PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, (63) Related by Continuation ML, MR, NE, SN, TD, TG). US 08/264,537 (CON)

(71) Applicant (for all designated States except US): SMITHKLINE BEECHAM CORPORATION [US/US]; Corporate Intellectual Property, UW2220, 709 Swedeland Road, P.O. Box

1539, King of Prussia, PA 19406-0939 (US).

(72) Inventors; and (75) Inventors/Applicants (for US only): DILELLA, Anthony, G. [US/US]; 130 Hawthorne Lane, Phoenixville, PA 19460 (US). DEBOUCK, Christine, Marie [BE/US]; 667 Pugh Road, Wayne, PA 19087 (US).

Published

With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(81) Designated States: AU, BB, BG, BR, BY, CA, CN, CZ, FI,

(54) Title: HSV-2 UL26 GENE, CAPSID PROTEINS, IMMUNOASSAYS AND PROTEASE INHIBITORS

23 June 1994 (23.06.94)

(57) Abstract

Filed on

Essentially pure HSV-2 UL26 gene products and fragments thereof including mature HSV-2 protease and active fragments thereof are disclosed. Essentially pure HSV-2 UL26.5 gene products and fragments thereof including mature HSV-2 capsid protein and functional fragments are disclosed. Isolated nucleic acid molecules comprising all or part of the HSV-2 UL26 gene and/or the HSV-2 UL26.5 gene are disclosed. Expression vectors and host cells comprising such nucleic acid molecules are disclosed. Methods of identifying compounds that inhibit HSV-2 protease activity and methods of identifying compounds that inhibit HSV-2 virion assembly are disclosed. Synthetic HSV-2 substrates are disclosed. Antibodies that selectively bind to HSV-2 protease processed substrates but not unprocessed substrates or unprocessed substrates but not processed substrates are disclosed. Methods of and kits for distinguishing between HSV-1 DNA or protein and HSV-2 DNA or protein and reagents useful in such methods and kits are disclosed.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
ΑŪ	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BK	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Paso	RU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	TT .	Italy	PL	Poland
BR	Brazil	. JP	Japan	PT	Portugal
BY	Belarus	KB	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ.	Kazakhstan	SK	Slovakia
CM	Cameroon	L	Liechtenstein	SN	Scnegal
CN	Chisa	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxenbourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	77	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
Fī	Pinland	ML	Mali	UZ	Uzbekistan
FR	Prance	MN	Mongolia	VN	Viet Nam
GA.	Gahon		•	***	7 000 0 mana

HSV-2 UL26 GENE, CAPSID PROTEINS, IMMUNOASSAYS AND PROTEASE INHIBITORS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of copending U. S. patent application serial number 08/110,522, filed August 20, 1993, the entire contents of which are incorporated herein by reference.

10

15

25

30

35

5

FIELD OF THE INVENTION

The present invention relates to HSV-2 UL26 and HSV-2 UL26.5 genes; to essentially pure HSV-2 UL26 and HSV-2 UL26.5 gene products; to compositions and methods of producing and using HSV-2 UL26 and HSV-2 UL26.5 DNA sequences and gene products.

BACKGROUND OF THE INVENTION

The herpes viruses consist of large icosahedral enveloped virions containing a linear double stranded genome. Currently, six human herpes viruses have been isolated and are known to be responsible for a variety of disease states from sub-clinical infections to fatal disease states in the immunocompromised. One human herpes virus, herpes simplex virus type 2, designated HSV-2, is usually acquired through sexual contact and gives rise to genital herpes. The frequency of recurrence of secondary genital herpes ranges between one and six times per year. It is estimated that genital HSV-2 infections occur in ten to sixty million individuals in the USA. Currently, there are no vaccines available to protect against HSV-2 infection.

Little is known regarding the genome composition of HSV-2. Nevertheless, HSV-2 presents a major public health problem. Individuals continue to become infected by the virus and no completely satisfactory anti-viral agents or vaccines are available. There is a need for a method of identifying anti-HSV-2 agents. There is a need for reagents useful in such methods. There is a need for a method of identifying compounds which modulate the activity of HSV-2 proteins and affect the ability of the virus to replicate and produce multiple infectious virions in an infected cell. There is a need for methods of and kits for distinguishing HSV-2 infections from other herpesvirus infections.

SUMMARY OF THE INVENTION

5

10

15

20

25

30

35

The present invention relates to essentially pure HSV-2 UL26 gene products and fragments thereof including HSV-2 protease precursor protein, mature HSV-2 protease and active fragments thereof, HSV capsid precursor protein and mature HSV-2 capsid protein.

The present invention relates to essentially pure HSV-2 UL26.5 gene products and fragments thereof including HSV-2 capsid precursor protein and mature HSV-2 capsid protein.

The present invention relates to isolated nucleic acid molecules comprising the HSV-2 UL26 gene or portions thereof including isolated nucleic acid molecules that encode mature HSV-2 protease and active fragments thereof and nucleic acid molecules that encode precursor or mature HSV-2 capsid protein, regulatory, e.g., promoter regions, or functional fragments thereof.

The present invention relates to expression vectors comprising the HSV-2 UL26 gene or portions thereof including nucleotide sequences that encode mature HSV-2 protease and active fragments thereof and nucleotide sequences that encode precursor or mature HSV-2 capsid protein or functional fragments thereof.

The present invention relates to host cells that contain expression vectors comprising the HSV-2 UL26 gene or portions thereof including nucleotide sequences that encode mature HSV-2 protease and active fragments thereof and nucleotide sequences that encode precursor or mature HSV-2 capsid protein or functional fragments thereof.

The present invention relates to isolated nucleic acid molecules comprising the HSV-2 UL26.5 gene or portions thereof including isolated nucleic acid molecules that encode mature HSV-2 capsid protein, regulatory, e.g., Promoter regions or fragments thereof and nucleotide sequences that encode precursor or mature HSV-2 capsid protein or functional fragments thereof.

The present invention relates to expression vectors comprising the HSV-2 UL.26.5 gene or portions thereof including nucleotide sequences that encode mature HSV-2 capsid protein or fragments thereof and nucleotide sequences that encode precursor or mature HSV-2 capsid protein or functional fragments thereof.

The present invention relates to host cells that contain expression vectors comprising the HSV-2 UL26.5 gene or portions thereof including nucleotide sequences that encode mature HSV-2 capsid protein or fragments thereof and nucleotide sequences that encode precursor or mature HSV-2 capsid protein or functional fragments thereof.

The present invention relates to methods of identifying compounds that inhibit HSV-2 protease activity comprising contacting HSV-2 protease or active fragments thereof with an HSV-2 protease substrate in the presence of a test compound, detecting the level of proteolytic cleavage of the substrate and comparing that level to the level that occurs in the absence of the test compound.

5

10

15

20

25

30

35

The present invention relates to methods of identifying compounds that inhibit HSV-2 virion assembly by contacting HSV-2 capsid proteins in the presence of a test compound, detecting the level of capsid-capsid association and comparing that level to the level that occurs in the absence of the test compound.

The present invention relates to HSV-2 protease substrates produced by means of chemical synthesis or recombinantly produced and predicated on fragments or all of the UL26 gene product.

The present invention relates to antibodies that selectively bind to HSV-2 protease processed substrates but not unprocessed substrates or that selectively bind to unprocessed substrates but not to processed substrates.

The present invention relates to methods of distinguishing between HSV-1 DNA and HSV-2 DNA comprising PCR amplification of DNA using primers which will amplify HSV-1 DNA but not HSV-2 DNA and/or PCR amplification of DNA using primers which will amplify HSV-2 DNA but not HSV-1 DNA.

The present invention relates to PCR primers which will amplify HSV-1 DNA but not HSV-2 DNA and PCR primers which will amplify HSV-2 DNA but not HSV-1 DNA.

The present invention relates to kits for distinguishing between HSV-1 DNA and HSV-2 DNA comprising a container comprising PCR primers which will amplify HSV-1 DNA but not HSV-2 DNA and a positive control and size marker to determine if HSV-1 DNA has been amplified by the primers and/or a container comprising PCR primers which will amplify HSV-2 DNA but not HSV-1 DNA and a positive control and size marker to determine if HSV-2 DNA has been amplified by the primers.

The present invention relates to methods of distinguishing between HSV-1 protein and HSV-2 protein comprising an immunoassay using antibodies that selectively bind to HSV-1 protein but not HSV-2 protein and/or an immunoassay using antibodies that selectively bind to HSV-2 protein but not HSV-1 protein.

The present invention relates to antibodies which selectively bind to HSV-1 protein but not HSV-2 protein or antibodies which selectively bind to HSV-2 protein but not HSV-1 protein.

The present invention relates to kits for distinguishing between HSV-1 protein and HSV-2 protein. Said kit comprising a carrier being compartmented to receive a series of containers in close confinement which comprises a first container comprising antibodies which selectively bind to HSV-1 protein but not HSV-2 protein and a means to detect whether the antibodies are bound to HSV-1 protein and/or a second container comprising antibodies which selectively bind to HSV-2 protein but not HSV-1 protein and a means to detect whether the antibodies are bound to HSV-2 protein.

The present inventional relateds to the HSV-2 protease promoter and/or enhancer elements and their uses.

The present invention relates to the HSV-2 capsid protein promoter and/or enhancer elements and their uses.

BRIEF DESCRIPTION OF THE FIGURES

10

30

35

- Figure 1 illustrates the HSV-2 UL26 gene. The symbol < > denotes the limits of the HSV-2 UL26 gene product. A putative termination codon is underlined. The symbol [[]] denotes the limits of the HSV-2 UL26.5 gene product. The symbol [] denotes the limits of two major proteolytic sites. The cissile bond is indicated by the *.
- The symbol | denotes the promoter region of the HSV-2 UL26.5 gene, a putative "TATA box" is underlined.

 Figure 2 illustrates the expression of chloramphenicol acetyltransferase (CAT) when regulated in the HSV-2 UL26.5 promoter.

25 DETAILED DESCRIPTION OF THE INVENTION

As used herein, the term UL26 gene refers to a DNA molecule comprising a nucleotide sequence that encodes the HSV-2 protease and a form of the HSV-2 capsid protein. The UL26 gene is disclosed in SEQ ID NO:1. The coding region of the UL26 gene consists of nucleotides 534-2447 of SEQ ID NO:1. When expressed, the UL26 gene encodes a 638 amino acid active protease precursor disclosed in SEQ ID NO:1 and SEQ ID NO:2.

As used herein, the term "active protease precursor" refers to the unprocessed UL26 translation product. The active protease precursor is an active HSV-2 protease. When produced, the active protease precursor autocleaves at an internal protease cleavage site between amino acid residues 247 and 248. The amino terminal 247 amino acid portion retains protease activity.

As used herein, the term "mature protease" refers to the amino terminal 247 amino acid protein that is produced by autocleavage of the active protease precursor. The amino acid sequence of the mature protease is disclosed as amino acids 1-247 of SEQ ID NO:1 and SEQ ID NO:2.

As used herein, the term "HSV-2 protease" is meant to refer to, interchangeably, active protease precursor, mature protease or active fragments thereof.

5

10

15

20

25

30

35

As used herein, the term "UL26.5" gene refers to a DNA molecule comprising a nucleotide sequence that encodes the HSV-2 capsid protein. The UL26.5 gene is an internal sequence within the UL26 gene which is separately transcribed. The UL26.5 gene is disclosed in SEQ ID NO:1 and includes the coding region from nucleotide 1461-2447. When expressed, the UL26.5 gene encodes a 329 amino acid capsid precursor disclosed in SEQ ID NO:1 and SEQ ID NO:2 as amino acids 310-638.

As used herein, the term "capsid precursor" refers to the unprocessed UL26.5 translation product. While not wishing to be bound by any particular mechanistic theory regarding the function of the gene products of this invention, but based in part on the literature concerning HSV-1, it is believed that after it is produced, the capsid precursor is cleaved by the HSV-2 protease at an internal protease cleavage site between amino acid residues 613 and 614 of SEQ ID NO:1 and SEQ ID NO:2. The 304 amino acid portion is the capsid protein used in viral assembly and viral DNA packaging. It is the C-terminal processing of UL26.5 that enables packaging of viral DNA into mature capsids. Inhibition of this processing event results in the inability to package DNA into mature capsids.

As used herein, the term "mature capsid protein" refers to the 304 amino acid protein that is produced by cleavage of the capsid precursor by the HSV-2 protease. The amino acid sequence of the mature capsid protein is disclosed as amino acids 310-613 of SEQ ID NO:1 and SEQ ID NO:2.

As used herein, the term "HSV-2 capsid protein" is meant to refer to, interchangeably, capsid precursor and mature capsid protein.

As used herein the term "functional fragments" when used to modify a specific gene or gene product means a less than full length portion of the gene or gene product which retains substantially all of the biological function associated with the full length gene or gene product to which it relates. To determine whether a fragment of a particular gene or gene product is a functional fragment one merely

generates the fragments by well-known nucleolytic or proteolytic techniques and tests the thus generated fragments for the described biological function.

5

10

15

20

25

30

35

The present invention relates to essentially pure HSV-2 protease, to compositions and methods for producing and using HSV-2 protease, to nucleic acid molecules that encode HSV-2 protease and to methods for producing and using nucleic acid molecules that encode HSV-2 protease. The present invention relates to essentially pure HSV-2 capsid protein, to compositions and methods for producing and using HSV-2 capsid protein, to nucleic acid molecules that encode HSV-2 capsid protein, to methods for producing and using nucleic acid molecules that encode HSV-2 capsid protein. The present invention relates to substrates which are cleaved by HSV-2 protease, to methods of identifying compounds that inhibit HSV-2 protease activity, to methods of identifying compounds which inhibit HSV-2 capsid assembly, to methods of distinguishing between samples containing HSV-1 DNA and samples containing HSV-2 DNA, to methods of distinguishing between samples containing HSV-1 protein and samples containing HSV-2 protein, and to reagents, including oligonucleotides and antibodies, for performing such methods.

Some embodiments of the present invention provide methods for identifying compounds which inhibit or otherwise modulate the activity of HSV-2 protease. Thus, the present invention provides methods for identifying compounds useful as anti-HSV-2 agents since the activity of the HSV-2 protease is essential for the viral life cycle. According to the present invention, HSV-2 protease is contacted with an HSV-2 protease substrate (substrate) in the presence of a test compound to determine whether or not the test compound affects proteolytic activity. The effect of the test compound on the HSV-2 protease may be determined by comparing the proteolytic activity in the presence of the test compound to the proteolytic activity that would be observed in the absence of the compound.

Proteolytic activity refers to the ability of the HSV-2 protease to enzymatically process the substrate into products, i.e. cleave a single substrate peptide molecule into two or more peptide molecules (proteolytic products). In the viral life cycle, protease precursor is processed into mature protease and capsid precursor is processed into mature capsid by such proteolytic cleavage. This conversion is necessary for virion assembly and viral DNA packaging. The level of proteolytic activity may be determined by a variety of means well known by those having ordinary skill in the art. Essentially, a means is provided to distinguish unprocessed substrate from proteolytic product. Thus, after the substrate, HSV-2 protease and test compound are contacted, the level of proteolytic activity can be

observed by detecting the amount of unprocessed substrate remaining, the amount of unprocessed substrate depleted, or the amount of proteolytic product generated.

5

10

15

20

25

30

35

The present invention provides essentially pure HSV-2 protease which is useful in an assay to identify compounds which modulate HSV-2 protease activity. The present invention provides methods of producing essentially pure HSV-2 protease. The amino acid sequence of HSV-2 protease is disclosed in SEQ ID NO:1 and SEQ ID NO:2. As described above, the 638 amino acid active protease precursor is disclosed in SEQ ID NO:1 and SEQ ID NO:2. The active protease precursor is an active HSV-2 protease which is processed by autocleavage at an internal protease cleavage site between amino acid residues 247 and 248 to produce a 247 amino acid protein referred to as mature protease. Purified active protease precursor, mature protease and active fragments thereof may be produced by routine peptide synthesis methods or by using recombinant DNA technology using the information provided in SEQ ID NO:1. Using standard procedures and readily available starting materials, one having ordinary skill in the art can produce HSV-2 protease. Furthermore, using standard procedures and readily available starting materials, one having ordinary skill in the art can determine whether a fragment and/or derivative of the active protease precursor or mature protease is an active fragment.

Assays for determining whether or not a protein or peptide is capable of cleaving a specific substrate is disclosed herein. To determine if an HSV-2 protease fragment has proteolytic activity, one having ordinary skill in the art can perform protease activity assays as described herein without test compounds and using the fragment or derivative of the protease instead of the protease identical to SEQ ID NO:2. If the fragment or derivative cleaves the substrate, it is active, i.e. the fragment or derivative possesses proteolytic activity. Thus, one having ordinary skill in the art can routinely determine if a fragment or derivative of the protease is an active fragment or derivative.

The present invention relates to nucleotide sequences that encode HSV-2 protease and to nucleotide sequences that encode HSV-2 capsid protein. The UL26 gene including a nucleotide sequence which encodes HSV-2 protease and a precursor form of HSV-2 capsid protein is disclosed in SEQ ID NO:1. The UL26.5 gene including a nucleotide sequence which encodes HSV-2 capsid protein is also disclosed in SEQ ID NO:1. One having ordinary skill in the art can, using standard techniques and readily available starting materials, use the information disclosed herein including SEQ ID NO:1 to obtain or synthesize a nucleic acid molecule that

encodes HSV-2 protease or a nucleic acid molecule that encodes HSV-2 capsid protein. Further, using standard techniques, readily available starting materials and the information disclosed herein including SEQ ID NO:1, one having ordinary skill in the art can produce essentially pure HSV-2 protease including, active precursor protease, mature protease or active HSV-2 protease fragments. Likewise, using standard techniques, readily available starting materials and the information disclosed herein including SEQ ID NO:1, one having ordinary skill in the art can produce essentially pure HSV-2 capsid protein including capsid precursor, mature capsid, or HSV-2 capsid fragments capable of assembly functional fragments. One having ordinary skill in the art can, using standard techniques and readily available starting materials, use the information disclosed herein including SEQ ID NO:1 to obtain or synthesize a nucleic acid molecule that encodes HSV-2 protease or HSV-2 capsid protein using codons which provide optimum protein production in a given host cell used in an expression system.

10

15 Nucleic acid molecules encoding HSV-2 protease or HSV-2 capsid protein may be generated by those having ordinary skill in the art without undue experimentation using a variety of techniques. Using, for example, Polymerase Chain Reaction (PCR) methodology, primers may be designed and used to produce multiple copies of the nucleotide sequences that encode the HSV-2 protease or 20 HSV-2 capsid protein. The entire nucleotide sequence encoding active protease precursor may be obtained routinely by amplifying the viral DNA. Similarly, the nucleotide sequence encoding mature protease may be obtained routinely by amplifying the viral DNA. Likewise, the nucleotide sequence encoding an active HSV-2 protease fragment may be obtained routinely by amplifying the viral DNA. 25 In a similar manner, the entire nucleotide sequence encoding capsid precursor. mature capsid or functional fragments thereof may be obtained routinely by amplifying the viral DNA. Alternatively, using restriction enzymes, DNA encoding HSV-2 protease, including the active protease precursor, the mature protease, or active fragments thereof or HSV-2 capsid protein including capsid precursor, mature 30 capsid or functional fragments thereof may be obtained from viral DNA cloned into vectors and identified by hybridization using probes designed from the disclosed nucleotide sequence. Moreover, nucleic acid molecules that encode the HSV-2 protease or the HSV-2 capsid protein may also be synthesized using techniques well known to those having ordinary skill in the art. Codons which encode HSV-2 35 protease or HSV-2 capsid protein may be selected to optimize protein production in a host cell selected for recombinant production of the HSV-2 protease or HSV-2

capsid protein. The HSV-2 genome is highly rich in G+C nucleotides. This is particularly true for the UL26 gene which encodes HSV-2 protease. Such high G+C character poses a problem in overexpressing genes in *E. coli* because of codon usage and an increased chance of frame-shift mutations. In an effort to improve expression of UL26 in *E. coli*, the UL26 gene and fragments thereof were changed to provide codons preferred in *E. coli* yet maintaining the authentic amino acid sequence of the protease. The reference for preferred codon usage is: Wada et al., (1992) "Codon Usage Tabulated from the GenBank Genetic Sequence Data", *Nucleic Acid Research*, Vol. 20 Supplement, pages 2111-2118, which is incorporated herein by reference. Optimization of codon usage is well known and can be employed to design nucleic acid molecules according to the present invention which can be expressed at an improved level of efficiency in a selected host.

5

10

15

20

25

30

35

One having ordinary skill in the art can, using well known techniques, insert such DNA molecules into vectors such as commercially available expression vectors for use in well known expression systems. For example, commercially available plasmids such as pSE420 (Invitrogen, San Diego, CA) or pET-16(b) (Novagen, Madison W.I.) may be used for production of HSV-2 protease in E. coli. The commercially available plasmid pYES2 (Invitrogen, San Diego, CA) may, for example, be used for production in S. cerevisiae strains of yeast. The commercially available MAXBAC™ complete baculovirus expression system (Invitrogen, San Diego, CA) may, for example, be used for production in insect cells. The commercially available plasmid pcDNA I (Invitrogen, San Diego, CA) may, for example, be used for production in mammalian cells such as Chinese Hamster Ovary cells. One having ordinary skill in the art can use these commercial expression vectors and systems or others to produce the HSV-2 protease or HSV-2 capsid protein using routine techniques and readily available starting materials. (See e.g., Sambrook et al., Molecular Cloning a Laboratory Manual, Second Ed. Cold Spring Harbor Press (1989) which is incorporated herein by reference.) Thus, the desired proteins can be prepared in both prokaryotic and eukaryotic systems, resulting in a spectrum of processed forms of the protein.

The particulars for the construction of expression systems suitable for desired hosts are known to those in the art. Briefly, for recombinant production of the protein, the DNA encoding the polypeptide is suitably ligated into the expression vector of choice. The DNA is operably linked to all regulatory elements which are necessary for expression of the DNA in the selected host. One having ordinary skill

PCT/US94/09303 WO 95/06055

in the art can, using well known techniques, prepare expression vectors for recombinant production of the polypeptide.

10

15

25

30

35

The expression vector including the DNA that encodes the HSV-2 protease or HSV-2 capsid protein is used to transform or transfect the compatible host which is then cultured and maintained under conditions wherein expression of the foreign DNA takes place. The protein of the present invention thus produced is recovered from the culture, either by lysing the cells or from the culture medium as appropriate and known to those in the art. One having ordinary skill in the art can, using well known techniques, isolate the protein that is produced using such expression systems.

According to one embodiment of the invention, protein may be produced and purified as follows. A DNA molecule that comprises a nucleotide sequence that encodes the HSV-2 protease or the HSV-2 capsid protein is produced which includes a nucleotide sequence that encodes multiple histidine residues at a terminal portion of the protein. This DNA molecule is incorporated into an expression vector which is introduced into suitable host cells. The DNA is expressed and the protein, including the terminal histidine residues, which are referred to herein as the histidine tag or His-tag, is produced. The cells are collected and maintained on ice in phosphate buffered saline at pH 8.5. The cells are then lysed by sonication. The 20 sonicated cellular material is centrifuged at 30,000 x g. The supernatant is then filtered through a .2 micron filter. The filtered supernatant is incubated with a metal chelating resin (e.g., a nitrilo triacetic acid nickel resin is one of many such resins useful for such a purpose) for 2 hours at room temperature, after which time the resin is separated from unbound material by centrifugation. The resin is then packed into a column and washed with 50 mM imidazole to eliminate non specifically bound proteins. The His-tagged protease is then eluted from the Ni. column with 150 mM imidazole buffer. The eluate from the column is further purified by column chromatography using Pharmacia Superdex 75 sizing column in phosphate buffered saline.

The DNA molecule may be engineered to include a specific cleavage site between the histidine tag and authentic HSV-2 protease to enable removal of the histidine tag from the expressed protein. Removal of the histidine tag may be accomplished as follows: The (asparte)4 lysine sequence can be engineered to follow the histidine tag and precede the HSV-2 sequence when the histine tag is placed at the amino-terminus of the HSV-2 protease. Enterokinase specifically

cleaves after the (aspartate)₄lysine sequence thereby generating authentic HSV-2 protease.

In addition to producing these proteins by recombinant techniques, automated peptide synthesizers may also be employed to produce the HSV-2 protease or the HSV-2 capsid protein. Such techniques are well known to those having ordinary skill in the art.

The present invention provides essentially pure substrates for HSV-2 protease cleavage activity including synthetic substrates. An HSV-2 protease substrate is a peptide which can be cleaved at least into two separate peptides by HSV-2 protease mediated proteolysis. In some embodiments, the size differential between cleaved and uncleaved substrates may be used to detect whether or not the protease is active. In some embodiments, the substrates of the present invention are labelled so that they may be detected. In some embodiments, the substrates are fixed to a solid phase. In some embodiments of the invention, either the substrate or a proteolytic product has a biologically or chemical activity not present in the other which can be used to distinguish one from the other. Examples of biological activities include enzyme activity and the ability to bind with specific antibodies.

Two amino acid sequences are contained in UL26 that have been identified as natural cleavage sites. The first is LQAS (SEQ ID NO:3) wherein the HSV-2 protease cleaves the peptide between the A and the S. The second is VNAS (SEQ ID NO:4) wherein the HSV-2 protease cleaves the peptide between the A and the S. Natural or synthetic substrates may be produced which contain either of these two cleavage sites. Accordingly, a substrate according to the present invention have either the formula

R₁ - SEQ ID NO:3 - R₂

or the formula

10

15

20

25

30

35

R₁ - SEQ ID NO:4 - R₂

wherein R_1 and R_2 are, independently, hydrogen or one or more amino acids. In some embodiments, the substrate is the UL26 gene product which contains two protease cleavage sites: one comprising SEQ ID NO:3 and one comprising SEQ ID NO:4. In some embodiments, the substrate is the UL26.5 gene product which contains a protease cleavage sites comprising SEQ ID NO:4. In some embodiments, R_1 is preferably 1-20 amino acids, more preferably 1-10, and most preferably 3, 4, 5, 6, 7, 8 or 9 amino acids. In some embodiments, R_2 is preferably 1-20 amino acids, more preferably 1-10, and most preferably 3, 4, 5, 6, 7, 8 or 9 amino acids.

One having ordinary skill in the art can readily design substrates according to the above formula. The following peptides have been designed as substrates.

Peptides including the internal cleavage site SEQ ID NO:3
 (LOA+S):

5	AHTYLQA*SEKFK	SEQ ID NO:5
	AGIAGHTYLQA*SEKFK	SEQ ID NO:6
	GIAGHTYLQA*SEKFK	SEQ ID NO:7
	IAGHTYLQA*SEKFK	SEQ ID NO:8
	GHTYLQA*SEKFK	SEQ ID NO:9
10	HTYLQA*SEKFKM	SEQ ID NO:10
	HTYLQA*SEKFKMW	SEQ ID NO:11
	HTYLQA*SEKFKMWG	SEQ ID NO:12
	HTYLQA*SEKFKMWGA	SEQ ID NO:13
	HTYLQA*SEKFKMWGAE	SEQ ID NO:14
		•

2. Peptides including the terminal cleavage site SEQ ID NO:4 (VNA*S):

ALVNA*SSAAHVDVD

15

20

25

30

35

SEQ ID NO:15

The asterisk (*) indicates the scissile bond where cleavage by HSV-2 protease occurs.

The substrates may be obtained from proteolytic cleavage of the UL26 or UL26.5 protein product. They may be produced recombinantly by expression of UL26 or UL26.5 gene or fragment thereof containing the cleavage site or may be made by means of synthetic organic chemical means using standard peptide synthetic procedures well known in the art such as Merrifield synthesis.

One having ordinary skill in the art can readily design assays using the HSV-2 protease and substrate to identify compounds that modulate HSV-2 protease activity. As used herein, the term "test assay" refers to assays that include a mixture of HSV-2 protease, substrate and test compound; and the term "control assay" refers to assays that include a mixture of HSV-2 protease and substrate without test compound. To determine whether or not a test compound modulates HSV-2 protease activity, the level of HSV-2 protease activity in a test assay may be compared to the level of HSV-2 protease activity in a control assay.

In some embodiments of the present invention, the size differential between cleaved and uncleaved substrate is used to determine whether or not substrates are cleaved when contacted with HSV-2 protease in the presence of a test compound. In some embodiments, an HPLC assay is performed. Sample containing protease is

incubated with a substrate, for example HTYLQASEKFKMWGAE (SEQ ID NO:14), for 4 hrs at 37° C in phosphate buffered saline after which the reaction is terminated with trifluoroacetic acid. The reaction is then run on an HPLC column, showing activity manifested by the peptide cleavage products.

5

10

15

20

25

30

In some embodiments of the present invention, immunoassays are used to detect whether or not substrates are cleaved when contacted with HSV-2 protease in the presence of a test compound. In some embodiments, antibodies are provided which specifically bind to uncleaved substrate but not HSV-2 protease cleavage products. Such antibodies are referred to herein as "substrate-specific antibodies". In some embodiments, antibodies are provided which specifically bind to HSV-2 protease cleavage products but not uncleaved substrate. Such antibodies are referred to herein as "product-specific antibodies". Antibodies which react to either a product or a substrate but not both (i.e. substrate-specific antibodies and product-specific antibodies collectively) are referred to herein as "non-crossreactive antibodies". In some embodiments, antibodies are fixed to a solid phase. In some embodiments, antibodies are labelled.

For example, a mixture containing HSV-2 protease, substrate and test compound is maintained under appropriate conditions and for a sufficient amount of time to allow the proteolytic reaction to occur unless the test compound affects the reaction. The mixture can be added to a container which has non-crossreactive antibodies attached to the inner surface. If the non-crossreactive are substrate-specific antibodies, any uncleaved substrate remaining in the mixture will bind to the antibodies. If the substrate is labelled, the contained may be rinsed and the amount of label present may be detected. The level of HSV-2 protease activity is determined accordingly. If the non-crossreactive are product-specific antibodies, any HSV-2 protease products in the mixture will bind to the antibodies. If the substrate is labelled at a portion which is liberated as the product, the contained may be rinsed and the amount of label present may be detected. The level of HSV-2 protease activity is determined accordingly.

ICP35 antibodies (Catalog No.: 13-118-100; Rivers Park, 9108 Gulford Rd. Columbia, Maryland) may be used to detect cleaved substrate. Such antibodies are product specific and only bind to capsid protein after it has been proteolytically processed by the HSV-2 protease.

Alternatively, instead of using labelled substrates, the exemplified immunoassays may be modified as sandwich assays in which antibodies specific for the bound antigen complex are detected. Such antibodies are referred to herein as

complex-specific antibodies. The container is again rinsed and sufficient time is allowed for the binding of the complex specific antibody to any complex present. The level of complex specific antibody is detected and indicative of the level of HSV-2 protease activity.

5

10

15

20

25·

30

35

In some embodiments of immunoassays, unlabelled substrate is used in the reaction mixture. After the reaction mixture is added to a container comprising a non-crossreactive antibody and maintained for a sufficient time for the non-crossreactive antibody to bind to either substrate or product, either labelled substrate or labelled product, respectively, is added and will bind to any non-crossreactive antibody not bound with substrate or product from the reaction mixture. Detecting the amount of labelled substrate or labelled product indicates the level of proteolytic cleavage.

In some embodiments, the substrate is labeled and the label is released when the substrate is converted to proteolytic products. Detecting the release of the label, which indicates the HSV-2 protease activity, may be accomplished by a variety of well known means. In some embodiments, labelled substrate is fixed to a solid phase. Upon cleavage by HSV-2 protease, the label attached to the portion of the substrate that becomes an unattached product, is released. Comparing the level of label present before and after the reaction mixture indicates how much label is released and thus the level of HSV-2 protease activity. Alternatively, detecting the amount of label freed from the solid phase indicates the level of HSV-2 protease activity.

In another embodiment, methods of detecting HSV-2 protease activity include fluorescence liberation assays in which substrate contains fluorescent label adjacent to the scissile bond. At such a location, the label is not detectable in uncleaved substrate. However, when the substrate is cleaved by HSV-2 protease at the cleavage site, the fluorescent group becomes exposed and the fluorescence becomes detectable. Thus, the level of proteolytic activity may be measured by measuring detectable fluorescence after contacting the substrate with HSV-2 protease in the presence of a test compound.

In another embodiment, methods of detecting HSV-2 protease activity include scintillation proximity assays in which radiolabelled substrate is conjugated to solid beads which, when in close proximity to the radiolabel, are excited and become detectable by scintillation. When the substrate is cleaved, the radiolabel is no longer in close proximity to the beads and the beads are not excited and not detectable by scintillation. Thus, the level of proteolytic activity may be measured

by measuring the excitation of the beads by scintillation after contacting the conjugated substrate with HSV-2 protease in the presence of a test compound.

In addition to these embodiments, one having ordinary skill in the art can apply well known techniques to devise other methods of identifying compounds that modulate HSV-2 protease activity using various means of detecting the HSV-2 protease cleavage or the lack thereof.

The present invention relates to kits for identifying compounds that modulate HSV-2 protease activity. Such kits include separate containers which comprise HSV-2 protease, substrate, and optionally, antibodies or other reagents for detecting HSV-2 protease activity or distinguishing between uncleaved substrate and products. The substrate or antibodies may be fixed to the inner surface of a container. The substrate or antibodies may be labelled.

10

15

20

25

30

35

Some embodiments of the present invention also provide methods of identifying compounds which inhibit or otherwise modulate HSV-2 capsid assembly using a multimerization assay. The present invention provides methods of identifying compounds useful as anti-HSV-2 agents since capsid assembly is essential for viral replication and infectivity. According to the present invention, chimeric genes are provided which comprise either a sequence including the HSV-2 UL26.5 gene or a portion thereof which encodes an HSV-2 capsid protein linked to a sequence encoding the yeast GALA DNA-binding protein or a sequence including the HSV-2 UL26.5 gene or a portion thereof which encodes an HSV-2 capsid protein linked to a sequence encoding the yeast GALA activation protein. While it is preferred that the portion of the chimeric gene that encodes the HSV-2 capsid protein encodes the mature capsid, the capsid precursor protein may also be usefully employed. Chimeric genes are inserted into Saccharomyces cerevisiae plasmids and the plasmids are introduced in S. cerevisiae which contains an integrated GALAresponsive *lacZ* indicator gene. When the chimeric genes on the plasmids are expressed, fusion proteins are produced. The portions of the fusion proteins comprising the HSV-2 capsid protein will, under selected condition bind to each other and thereby bring together the DNA-binding domain and activation domain of GALA. When the two GALA domains which are in close proximity interact with the GALA-responsive lacZ indicator gene, the indicator gene is expressed and, under the proper conditions a detectable blue color is observed. If the fusion proteins are prevented from binding, the two GALA domains will not be present in proximity to each other and the indicator gene will not be activated. Thus, no blue color will be present to observe.

Thus, this yeast system provides a rapid and specific assay for the interaction of HSV-2 capsid proteins that occur during virion assembly. In the presence of compounds which interrupt or inhibit HSV-2 capsid protein interaction, the GALA domains in the fusion proteins produced by expression of the chimeric genes will not associate and thereby will not activate the lacZ gene in the yeast system. Accordingly, compounds may be identified by the absence of activation of the lacZ gene in transformed yeast which inhibit HSV-2 capsid assembly and therefore possess anti-viral properties.

Some embodiments of the present invention provides methods of distinguishing between samples containing HSV-1 DNA and samples containing HSV-2 DNA or samples containing HSV-1 proteins and samples containing HSV-2 proteins. Accordingly, the present invention provides a method of diagnosing whether an individual is infected with HSV-1 and/or HSV-2. Methods are disclosed for identifying whether an individual is infected with HSV-1 and/or HSV-2 wherein HSV-1 infection can be distinguished from HSV-2 infection.

10

15

20

25

30

35

According to some embodiments of the invention, PCR technology is used to distinguish between samples containing HSV-1 DNA and samples containing HSV-2 DNA. Such methods provide a means for distinguishing between HSV-1 and HSV-2 infections and allow for the diagnosis of the type of HSV infection an individual has. Specific primers are designed that will provide for amplification of HSV-1 DNA but not HSV-2 DNA and/or HSV-2 DNA but not HSV-1 DNA. Accordingly, by performing amplification techniques using such primers with biological samples taken from individuals such as cell, serum or tissue samples, especially samples taken at sites where blisters or other manifestations of viral shedding are observed, one can determine whether or not the DNA in the sample is derived from HSV-1 or HSV-2 and therefore whether the individual from which the sample was taken is infected with HSV-1 or HSV-2.

The nucleotide sequence of the UL26 gene including the nucleotide sequence which encodes the HSV-2 protease and the HSV-2 capsid protein is disclosed in SEQ ID NO:1. The nucleotide sequence encoding HSV-1 protease and HSV-1 capsid protein are disclosed in SEQ ID NO:16. A set of PCR primers were designed which amplify HSV-2 sequences but not HSV-1 sequences. Thus, detection of amplified DNA indicates that HSV-2 is present. Similarly, a set of PCR primers were designed which amplify HSV-1 sequences but not HSV-2 sequences. Thus, detection of amplified DNA indicates that HSV-1 is present. It is preferred that both sets of primers are provided and used in separate amplification

protocols with material from the same sample in order to provide an additional control. Other optional controls include positive controls which contain DNA sequences that will be amplified and/or negative controls that cannot be amplified by the primers. Amplified DNA may be detected by running the material on an electrophoresis gel after the amplification protocol is complete. DNA molecules of the expected length of an amplification product may be provided as size markers.

Present invention also relates to kits for distinguishing whether a sample contains DNA from HSV-1 or HSV-2. The kits of the present invention are useful to diagnose whether an individual is infected with HSV-1 and/or HSV-2. The kits contain containers which comprise primers that will amplify HSV-1 DNA but not HSV-2 DNA or containers that will amplify HSV-2 DNA but not HSV-1 DNA. Kits may optionally contain both sets of primers in separate containers for running separate amplification procedures using different portions of the same sample. Kits may optionally contain positive and/or negative controls in separate containers. Kits may optionally contain DNA molecules in a separate container which can serve as a size marker. The DNA molecule may be of the expected length of a DNA molecule amplified using the primers.

10

15

35

According to some embodiments of the invention, immunoassays are used to distinguish between samples containing HSV-1 protein and samples containing 20 HSV-2 protein. The immunoassays are used to distinguish between HSV-1 and HSV-2 infections and diagnose the type of HSV infection an individual has. Such immunoassays are based upon differences between UL26 gene products of HSV-1 and HSV-2 or between UL26.5 gene products of HSV-1 and HSV-2. Immunoassays may be based upon differences in proteases and/or capsid proteins of 25 HSV-1 and HSV-2. Specific antibodies are provided which selectively bind to epitopes on HSV-1 antigens not present on HSV-2 antigens or which selectively bind to epitopes on HSV-2 antigens not present on HSV-1 antigens. For example, specific antibodies are provided which selectively bind to HSV-1 protease but not HSV-2 protease or which selectively bind to HSV-2 protease but not HSV-1 30 protease. Likewise, specific antibodies are provided which selectively bind to HSV-1 capsid but not HSV-2 capsid or which selectively bind to HSV-2 capsid but not HSV-1 capsid.

Accordingly, by performing antibody binding assays, using specific antibodies with biological samples taken from individuals such as cell, serum or tissue samples, especially samples taken from sites where blisters or other manifestations of viral shedding are observed, one can determine whether or not the

HSV-1-specific antibodies or the HSV-2-specific antibodies bind to proteins in the sample and therefore whether the individual from which the sample was taken is infected with HSV-1 and/or HSV-2. The amino acid sequence of HSV-2 active protease precursor spans amino acids 1-638 in SEQ ID NO:1 and SEQ ID NO:2. The amino acid sequence of HSV-2 mature protease spans amino acids 1-247 of SEQ ID NO:1 and SEQ ID NO:2. The amino acid sequence of HSV-2 capsid precursor spans amino acids 310-638 in SEQ ID NO:1 and SEQ ID NO:2. The amino acid sequence of HSV-2 mature capsid spans amino acids 310-613 of SEQ ID NO:1 and SEQ ID NO:2. The amino acid sequence of HSV-1 protease and capsid are disclosed in SEQ ID NO:17. The amino acid sequence of HSV-1 active 10 protease precursor spans amino acids 1-635 in SEQ ID NO:17. The amino acid sequence of HSV-1 mature protease spans amino acids 1-247 of SEQ ID NO:17. The amino acid sequence of HSV-1 capsid precursor spans amino acids 307-635 in SEQ ID NO:17. The amino acid sequence of HSV-1 mature capsid spans amino 15 acids 307-610 of SEQ ID NO:17.

Antibodies which specifically bind to HSV-2 protease but not HSV-1 protease may be produced by those having ordinary skill in the art using routine methods and widely available starting materials. Likewise, antibodies which specifically bind to HSV-2 capsid but not HSV-1 capsid may be produced by those having ordinary skill in the art using routine methods and widely available starting materials. Either of these HSV-2 specific antibodies are used to detect HSV-2 in an immunoassay which can distinguish HSV-1 from HSV-2. Similarly, antibodies which specifically bind to HSV-1 protease but not HSV-2 protease may be produced by those having ordinary skill in the art using routine methods and widely available starting materials. Likewise, antibodies which specifically bind to HSV-1 capsid but not HSV-2 capsid may be produced by those having ordinary skill in the art using routine methods and widely available starting materials. These HSV-1 specific antibodies are used to detect HSV-1 in an immunoassay which can distinguish HSV-1 from HSV-2. It is preferred that both immunoassays be performed using material from the same sample in order to provide an additional control. Other optional controls include positive controls which include peptides which will bind to the antibody used in the immunoassay and/or negative controls which include peptides which will not bind to the antibody used in the immunoassay. Antibodies may be labelled. Alternatively, an antibody that specifically binds to the HSV specific antibodies may be used. One having ordinary

20

25

30

35

skill in the art can readily produce immunoassays including all necessary reagents using the information provided herein.

HSV-1 protease antibody produced by Serotech as Antibody 45KD and commercially available from Bioproducts for Science Inc. as catalog number MCA406 (P.O. Box 29176, Indianapolis, IN) can be used in immunoassays to distinguish HSV-2 from HSV-1. The Serotech antibody binds to HSV-1 precursor or mature capsid protein but not HSV-2 precursor or mature capsid protein. Accordingly, an immunoassay using the Serotech antibodies may be performed to determine if a sample contains HSV-1 or HSV-2 and thus if the individual from whom the sample was taken is infected with HSV-1 or HSV-2.

10

15

20

25

30

35

Present invention also relates to kits for diagnosing whether an individual is infected with HSV-1 or HSV-2. The kits of the present invention may comprise a container comprising antibodies which bind to HSV-1 protease but not HSV-2 protease and/or a container comprising antibodies which bind to HSV-2 protease but not HSV-1 protease. It is preferred that the kit comprises both types of antibodies in separate containers. Antibodies used in the kits may be labelled. The kits contain all other reagents and materials for performing an immunoassay with the antibodies. Kits may optionally contain positive and/or negative controls in separate containers. Kits may optionally contain means to detect the antibody including, for example a second antibody which specifically binds to the anti-HSV protease antibody. The kits of the present invention may comprise a container comprising antibodies which bind to HSV-1 capsid but not HSV-2 capsid and/or a container comprising antibodies which bind to HSV-2 capsid but not HSV-1 capsid. It is preferred that the kit comprises both types of antibodies in separate containers. Antibodies used in the kits may be labelled. The kits contain all other reagents and materials for performing an immunoassay with the antibodies. Kits may optionally contain positive and/or negative controls in separate containers. Kits may optionally contain means to detect the antibody including, for example a second antibody which specifically binds to the anti-HSV capsid antibody. Kits may comprise the Serotech antibody.

Another aspect of the present invention relates to the HSV-2 protease promoter and/or enhancer elements and their uses. The HSV-2 protease promoter may be synthesized or isolated and linked to coding sequences which encode proteins other than HSV-2 protease. Accordingly, the present invention relates to recombinant DNA molecules which comprise at least a portion of the nucleotide sequence between nucleotides 1-534 of SEQ ID NO:1 operably linked to a

nucleotide sequence that encodes a protein other than HSV-2 protease. The present invention relates to cells which comprise DNA molecules which comprise at least a portion of the nucleotide sequence between 1 and 534 of SEQ ID NO:1 operably linked to a nucleotide sequence that encodes a protein other than HSV-2 protease.

Another aspect of the invention applies to bacteriophage lambda clones which harbor HSV-2 UL26 gene (SEQ. I.D. No.:1) and sequences upstream and downstream of the gene. Accordingly, the linked sequences can be used to screen for UL26 promoter regulatory and/or enhancer regions.

Another aspect of the present invention relates to the HSV-2 capsid protein promoter and its uses. The HSV-2 capsid protein promoter is located upstream of nucleotide 1461 of SEQ ID NO:1. It may be synthesized or isolated and linked to coding sequences which encode proteins other than HSV-2 capsid protein.

Accordingly, the present invention relates to recombinant DNA molecules which comprise at least a portion of the nucleotide sequence upstream of nucleotide 1461 of SEQ ID NO:1 operably linked to a nucleotide sequence that encodes a protein other than HSV-2 capsid protein. The present invention relates to cells which comprise DNA molecules which comprise at least a portion of the nucleotide sequence upstream of nucleotide 1461 of SEQ ID NO:1 operably linked to a nucleotide sequence that encodes a protein other than HSV-2 capsid protein.

Nucleotides 1191 to 1461 (SEQ ID NO:1), for example, were linked to the chloramphenicol acetyl transferase gene and shown to possess significant promoter activity when transfected into VERO cells

EXAMPLES

25 Example 1

5

10

15

20

30

35

A proteolytic activity essential to the virion maturation of herpes viruses has been characterized for HSV-2. The HSV-2 protease, also referred to as HSV-2 UL26, has a molecular weight (Apparent) of about 67,028 Da and a pI = 6.94. The HSV-2 protease can be employed using molecular and biochemical technology in *in vitro* assays identify inhibitors of this activity by rational design and screening and to test these inhibitors for antiviral activity in infected cells.

The HSV-2 UL26 gene was cloned as an NcoI-EcoRI fragment (1938 base pairs) which contained the start codon, the entire open reading frame, the stop codon, and 22 base pairs of 3'-untranslated sequence. Full-length HSV-2 UL26 was expressed in E. coli using the pOTS vector system in which the gene is inserted downstream of the strong and tightly regulated P_L promoter from bacteriophage

lambda of the p0TS-207 vector. Tight regulation of the promoter is essential when expressing genes that are likely to be toxic to the cells, such as proteases. The 27 KD protease domain corresponding to one of the autoproteolytic products derived from the HSV-2 UL26 primary translation product was produced in E. coli using the tightly regulated expression vector pET-16(b) (Novagen, Madison W.I.) which contains the T7 promoter.

Each construct was designed to include six histidine codons and the (aspartate) Alysine codons preceding the HSV-2 UL26 start codon so that the expressed protein will contain a cleavable histidine tag at the N-terminus for purification of the protein on Nickel columns. Other chelating columns may be used. The His-tagged protein is eluted from the column by addition of imidazole Alternatively, it can be eluted by other means such as pH change. Columns and technical protocols useful to purify protein may be obtained from commercially available sources such as Qiagen.

For the P_L promoter vectors, the recombinant constructs are then introduced into E. coli AR120 (nalidixic acid inducible strain) and E. coli AR58 (heat inducible strain) for expression and processing/ purification studies. For the T7 promoter vectors, the recombinant constructs are introduced into E. coli BL21, an IPTG inducible strain. The proteins can be readily purified by chromatography on nickel chelate column.

The p27 protease fragment is active as shown by its ability to remove the last 25 amino acids from a construct comprising most of the UL26.5 coding region.

Example 2

25

30

35

5

10

15

20

The p27 protease gene was synthesized to contain codons characteristic of highly expressed <u>E. coli</u> genes, yet maintaining the amino acid sequence of p27 protease. The synthesized gene was placed downstream of the tightly regulated T7 promoter in the expression vector pET-16(b). Following IPTG (1mM) induction the 27 k Da protein domain was highly expressed in <u>E. coli</u>.

Example 3

The above HSV-2 UL26 gene (*Ncol-EcoRI* fragment) and the p27 protease is cloned into the insect cell expression vector pVL1392. The recombinant construct is then introduced into insect cells derived from *Spodoptera frugiperda*.

High titer viral stocks are then prepared for protease activity analysis and subsequent scale up for protein production.

Example 4

5

10

Oligonucleotide PCR primers were designed to the DNA region of HSV-1 UL26 gene and HSV-2 UL26 gene that shared the least amount of identity to ensure the specificity of the assay. Such a region can easily be viewed by computer analysis comparing the two DNA sequences disclosed in SEQ ID NO:1 and SEQ ID NO:16, respectively. The region of least identity between the two homologs lies within the UL26.5 domain, i.e. the portion of the gene that encodes the capsid. The following provides the sequences of the primers used and the locations of the primers are given based on the nucleotide numbers given in the nucleotide sequence comparison provided in the enclosed computer analysis. As shown below it is helpful to design a system to generate HSV-1 and HSV-2 specific products of different sizes to improve the analysis.

5'-PCR primers (sense-strand sequence):

SEQ ID NO:18 HSV-1: 5'-CCGGTGCCCAATCGTCCGT-3' (#864-882)

SEQ ID NO:19 HSV-2: 5'-GTCCGTGCGCGTCAAGTCG-3' (#1397-1416)

20

15

3'-PCR primers (antisense-strand sequence):

SEQ ID NO:20 HSV-1: 5'-TTCCGGCTCCCCACCTGA-3' (#1560-1542)

SEQ ID NO:21 HSV-2: 5'-ATTCGGATCCTGGAGGCGA-3' (#2470-2452)

25 Expected PCR product sizes using these sets of primers:

HSV-1: 696 base pairs HSV-2: 1073 base pairs.

Separate PCR amplification protocols are performed on samples suspected of containing either HSV-1 or HSV-2 DNA using SEQ ID NO:18 and SEQ ID NO:20 in the HSV-1 assay or SEQ ID NO:19 and SEQ ID NO:21 in the HSV-2 assay. If a DNA fragment of 696 base pairs is generated in the HSV-1 assay, the presence of HSV-1 DNA in the sample is indicated. To detect the presence of a 696 base pair fragment, the amplification product is migrated through an electrophoresis matrix. A size marker of DNA of about 696 base pairs is run through the same matrix simultaneously. If a DNA fragment of 1073 base pairs is generated in the HSV-2 assay, the presence of HSV-2 DNA in the sample is indicated. To detect the

presence of a 1073 base pair fragment, the amplification product is migrated through an electrophoresis matrix. A size marker of DNA of about 1073 base pairs is run through the same matrix simultaneously.

A kit is provided which comprises a container comprising SEQ ID NO:18 and SEQ ID NO:20 in the HSV-1 assay. A kit is provided which comprises a container comprising SEQ ID NO:19 and SEQ ID NO:21 in the HSV-2 assay. A kit is provided which comprises both a container comprising SEQ ID NO:18 and SEQ ID NO:20 in the HSV-1 assay and a container comprising SEQ ID NO:19 and SEQ ID NO:21 in the HSV-2 assay. Size marker DNA may optionally be provided. In some kits, a size marker of 696 base pairs is provided. In some kits, a size marker of 1073 base pairs is provided. In some kits, a size marker of 696 base pairs are provided.

Example 5

15

20

30

35

10

5

A region of the putative HSV-2 UL26.5 promoter contained in the HSV-2 UL26 gene was cloned to test for promoter activity. The 256 base pair region that was analyzed spanned nucleotides #1191 to #1447 of SEQ ID NO:1. The DNA fragment was cloned by the polymerase chain reaction using the sense strand primer (5'-AACATGAGCTGCGTGACC-3') spanning nucleotide #1191 to #1209 of SEQ ID NO: 1 and the antisense strand primer (5'-AAAGAAGAAGAAGAAGAAGAC-3') spanning nucleotides #1447 to #1429 of SEQ ID NO: 1 Promoter activity is tested by cloning the 256 base pair PCR fragment upstream of the chloramphenicol acetyltransferase (CAT) reporter gene in the commercially available vector pCAT Basic (Promega). The resulting construct can then be introduced into a suitable mammalian cell line, e.g., Vero cells, to test for promoter activity by analyzing the levels of CAT activity. The cell line is devoid of endogenous CAT activity; hence, after introducing the promoter construct into such a cell line, the levels of CAT activity is a direct measure of HSV-2 UL26.5 promoter activity.

Vero cells were grown in DMEM+10% FCS containing Gentamicine (10ug/ml). 15 micograms of the HSV-2 UL26.5/pCAT construct was electroporated into 5 million Vero cells using standard protocols. 48 hrs after electroporation cells were harvested in 100 microliters of 0.25 M Tris buffer pH 8.0. Cells were lysed by repeated freeze-thaw, spun down at 15,000 rpm and the supernatants were transferred to fresh tubes. Total protein concentration was determined using Bio-Rad Protein Assay Dye Reagent Kit (Cat. # 500-0006). 5 Microliters of D-

Threo[dichloroacetyl-1-14-C] Chloramphenicol (Amersham, 56 mCi/mmol) and 5 microliters of n-Butyral CoA (5 mg/ml) was added to an aliquot of cell extract supernatant in a 100 microliter final volume to assay for CAT activity by ethyl acetate extraction followed by thin layer chromatography.

In addition to the above construct, the 256 base pair HSV-2 UL 26.5 fragment was also cloned upstream of the CAT reporter gene in the pCAT Enhancer vector, which contains an SV40 enhancer element. This construct was also tested for CAT activity in Vero cells by the same methods described above.

The control vector pCAT control (contains the SV40 promoter and enhancer) was used as a comparison of HSV-2 UL26.5 promoter strength.

5

10

15

20

25

Figure 2 summarizes the results of four experiments. Column 1 is a negative control and represents CAT expression in the absense of promoter and enhancer transcriptional control elements. Column 2, a positive control, employs SV40 promoter and SV40 enhancer elements to drive CAT gene expression. Column 3 represents CAT gene expression driven by UL26.5 promoter alone and Column 4 represents CAT gene expression when the UL26.5 promoter is used in combination with the SV40 enhancer element.

Having established a basal UL26.5 expression level (Column 3), additional fragments of the gene sequence within figure 1 can be used to identify the UL26.5 enhancer elements merely by isolating fragments of convenient length upstream from nucleotide 1191 back to nucleotide 1, introducing the fragments into the basal expression construct oriented operatively with respect to the promoter region and testing their ability to enhance CAT expression over the basal level.

The promoter described here are useful for regulating the expression of heterologous genes when operably linked thereto.

SEQUENCE LISTING

_	(1) GENE	RAL INFORMATION:
5	(i)	APPLICANT: DiLella, Anthony G. Debouck, Christine
10	(ii)	TITLE OF INVENTION: Novel Gene
10	(iii)	NUMBER OF SEQUENCES: 21
15	(iv)	CORRESPONDENCE ADDRESS: (A) ADDRESSEE: SmithKline Beecham Corporation Corporate Patents - US UW2220 (B) STREET: P.O. Box 1539 (C) CITY: King of Prussia (D) STATE: Pennsylvania
20		(E) COUNTRY: USA (F) ZIP: 19406-0939
25	(V)	COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.25, mmd
30	(vi)	CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: (B) FILING DATE: (C) CLASSIFICATION:
35	(viii)	ATTORNEY/AGENT INFORMATION: (A) NAME: Jervis, Herbert H. (B) REGISTRATION NUMBER: 31,171 (C) REFERENCE/DOCKET NUMBER: P50188
40	(xi)	TELECOMMUNICATION INFORMATION: (A) TELEPHONE: 215-270-5019 (B) TELEFAX: 215-270-5090
	(2) INFO	RMATION FOR SEQ ID NO:1:
45	(1)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 2472 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double
50		(D) TOPOLOGY: linear
	(ii)	MOLECULE TYPE: genomic DNA
55	(ix)	FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 5342447
60	(ix)	FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION: 14612447

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

	GTCG	ACG/	AGG (CGCG	TGGT	GG A	TATG	TCGT	c GG	GCGC	CCGC	CAG	GCGG	CGC	TCGT	GCGCC	r 60
5	CACC	GCG	CTG	GAGC'	TCAT	CA A	CCGC	ACCC	G CA	CAAA	CACC	ACC	CCTG	TGG	GGGA	GATTA'	T 120
	TAAC	GCC	CAC	GATG	CCTT(GG G	GATA	CAAT	A CG	AACA	GGGC	CTG	GGC	TGC	TCGC	CCAGC	A 180
10	GGCA	CGCI	ATC (GGCT'	TGGC	ST C	GAAC	GCCA	A GC	GATT	CGCC	ACG	TTCA	ACG	TGGG	CAGCG	A · 240
10	CTAC	GACO	CTG :	TTGT	ACTT:	rr r	GTGT	CTCG	G GT	TCAT	TCCC	CAG	TACC	TGT	CCGT	GGCCT	A 300
	GGGA	AGGG	TG (GGGG:	rgg t	GG T	GGTG	GGGT	3 TT	TTTC	TGTT	GTT	GTTG	TTT	CTGG	TCCGC	360
15	TGGT	CAC	AAA 2	AGGC	ACGG	CG C	CCCG	AAAC	G CG	GGCT	TTAG	TCC	CGGC	CCG	GACG	TCGGC	G 420
	GACA	CAC	AAC 2	AACG(GCGG(GC C	CCGT	GGT(G GG	TAAG	TTGG	TTC	GGGG	GCA	TCGC	TGTAT:	r 480
20	CCCT	TGCC	CCG (CTTC	CACC	CC C	CCTT(CCCG'	r TT(GGTT'	TGTT	TGT	GCGG	gtg		ATG Met 1	536
25	GCG :														Asp		584
30	GCG (632
,50	GAC (680
35	CCT (Pro I	CCG Pro	GAG Glu	AAC Asn	CCC Pro	CTG Leu 55	CCG Pro	ATC Ile	AAC Asn	GTA Val	GAC Asp 60	CAC His	CGC Arg	GCT Ala	CGG Arg	TGC Cys 65	728
40	GAG (776
45	TTT (Leu							824
50	GCC (872
	GAG (GAG Glu l15	CGT Arg	CTG Leu	CTG Leu	TAC Tyr	CTG Leu 120	ATC	ACC Thr	AAC Asn	TAC Tyr	CTG Leu 125	CCA Pro	TCG Ser	GTC Val	TCG Ser	920
55	CTG 1 Leu 5 130																968
60	TTT (1016

															Arg	CAC	1064
5	CTG Leu	GAC Asp	CCG Pro 180	GCG Ala	ACG Thr	CGC Arg	GAG Glu	GGG Gly 185	GTG Val	CGA Arg	CGC Arg	GAG Glu	GCC Ala 190	Ala	GAG Glu	GCC Ala	1112
10	GAG Glu	CTC Leu 195	GCG Ala	CTG Leu	GCC Ala	GGG Gly	CGC Arg 200	ACC Thr	TGG Trp	GCC Ala	CCC Pro	GGC Gly 205	GTG Val	GAG Glu	GCG Ala	CTC Leu	1160
15	ACA Thr 210	CAC His	ACG Thr	CTG Leu	CTC Leu	TCC Ser 215	ACC Thr	GCC Ala	GTC Val	AAC Asn	AAC Asn 220	ATG Met	ATG Met	CTG Leu	CGT Arg	GAC Asp 225	1208
20																GGA Gly	1256
	CAC His	ACG Thr	TAC Tyr	CTT Leu 245	CAG Gln	GCG Ala	AGC Ser	GAA Glu	AAA Lys 250	TTT Phe	AAA Lys	ATA Ile	TGG Trp	GGG Gly 255	GCG Ala	.GAG Glu	1304
25												GGC Gly					1352
30	ATG Met	GAC Asp 275	ACA Thr	TCC Ser	CCC Pro	GCC Ala	GCG Ala 280	AGC Ser	GTT Val	CCC Pro	GCG Ala	CCG Pro 285	CAG Gln	GTC Val	GCC Ala	GTC Val	1400
35	CGT Arg 290	GCG Ala	CGT Arg	CAA Gln	GTC Val	GCG Ala 295	TCG Ser	TCG Ser	TCG Ser	TCT Ser	TCT Ser 300	TCT Ser	TCT Ser	TCT Ser	TTT Phe	CCG Pro 305	1448
40	GCA Ala	CCG Pro	GCC Ala	GAT Asp	ATG Met 310	AAC Asn	CCC Pro	GTT Val	TCG Ser	GCA Ala 315	TCG Ser	GGC Gly	GCC Ala	CCG Pro	GCC Ala 320	CCT Pro	1496
	CCG Pro	CCG Pro	CCC Pro	GGC Gly 325	GAC Asp	GGG Gly	AGT Ser	TAT Tyr	TTG Leu 330	TGG Trp	ATC Ile	CCC Pro	GCC Ala	TCT Ser 335	CAT His	TAC Tyr	1544
45	AAT Asn	CAG Gln	CTC Leu 340	GTC Val	ACC Thr	GGG Gly	CAA Gln	TCC Ser 345	GCG Ala	CCC Pro	CGC Arg	CAC His	CCG Pro 350	CCG Pro	CTG Leu	ACC Thr	1592
50	GCG Ala	TGC Cys 355	Gly	CTG Leu	CCG Pro	GCC Ala	GCG Ala 360	GGG	ACG Thr	GTG Val	GCC Ala	TAC Tyr 365	GGA Gly	CAC His	CCC Pro	GGC Gly	. 1640
55	GCC Ala 370	GGC Gly	CCG Pro	TCC Ser	CCG Pro	CAC His 375	TAC Tyr	CCG Pro	CCT Pro	CCT Pro	CCC Pro 380	GCC Ala	CAC His	CCG Pro	TAC Tyr	CCG Pro 385	1688
60	GGT Gly	ATG Met	CTG Leu	TTC Phe	GCG Ala 390	GGC Gly	CCC Pro	AGT Ser	CCC Pro	CTG Leu 395	GAG Glu	GCC Ala	CAG Gln	ATC Ile	GCC Ala 400	GCG Ala	1736
												GGT Gly					1784

	GCC Ala	GCC Ala	GGA Gly 420	GAC Asp	CAC His	GGG Gly	ATC Ile	CGG Arg 425	GGG Gly	TCG Ser	GCG Ala	AAG Lys	CGC Arg 430	CGC	CGA Arg	CAC His	1832
5												GAC Asp 445					1880
10												GAG Glu					1928
15												CCC Pro					1976
20												CAG Gln					2024
20				-								TAT Tyr					2072
25												CCC Pro 525					2120
30												CCG Pro					2168
35												CCC Pro					2216
40												CAT His					2264
												CCC Pro					2312
45												GCG Ala 605					2360
50												GTG Val					2408
5 5												TCC Ser		TAAC	TCGC	CT	2457
	CCAC	GATO	CCG A	ATTO	:										•		2472

(2) INFORMATION FOR SEQ ID NO:2:

5

35

(i) SEQUENCE CHARACTERISTIC	11) SEQUENCE	CHARACTERISTICS
-----------------------------	----	------------	-----------------

(A) LENGTH: 638 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Ala Ser Ala Glu Met Arg Glu Arg Leu Glu Ala Pro Leu Pro Asp 1 5 10 15

15 Arg Ala Val Pro Ile Tyr Val Ala Gly Phe Leu Ala Leu Tyr Asp Ser 20 25 30

Gly Asp Pro Gly Glu Leu Ala Leu Asp Pro Asp Thr Val Arg Ala Ala 35 40 45

20
Leu Pro Pro Glu Asn Pro Leu Pro Ile Asn Val Asp His Arg Ala Arg
50
55
60

Cys Glu Val Gly Arg Val Leu Ala Val Val Asn Asp Pro Arg Gly Pro 25 65 70 75 80

Phe Phe Val Gly Leu Ile Ala Cys Val Gln Leu Glu Arg Val Leu Glu 85 90 95

30 Thr Ala Ala Ser Ala Ala Ile Phe Glu Arg Arg Gly Pro Ala Leu Ser 100 105 110

Arg Glu Glu Arg Leu Leu Tyr Leu Ile Thr Asn Tyr Leu Pro Ser Val 115 120 125

Ser Leu Ser Thr Lys Arg Arg Gly Asp Glu Val Pro Pro Asp Arg Thr 130 135 140

Leu Phe Ala His Val Ala Leu Cys Ala Ile Gly Arg Arg Leu Gly Thr 140 145 150 155 160

Ile Val Thr Tyr Asp Thr Ser Leu Asp Ala Ala Ile Ala Pro Phe Arg 165 170 175

45 His Leu Asp Pro Ala Thr Arg Glu Gly Val Arg Arg Glu Ala Ala Glu 180 185 190

Ala Glu Leu Ala Leu Ala Gly Arg Thr Trp Ala Pro Gly Val Glu Ala 195 200 205

50

Leu Thr His Thr Leu Leu Ser Thr Ala Val Asn Asn Met Met Leu Arg
210
215
220

Asp Arg Trp Ser Leu Val Ala Glu Arg Arg Gln Ala Gly Ile Ala 55 225 230 235 240

Gly His Thr Tyr Leu Gln Ala Ser Glu Lys Phe Lys Ile Trp Gly Ala 245 250 255

60 Glu Ser Ala Pro Ala Pro Glu Arg Gly Tyr Lys Thr Gly Ala Pro Gly 260 265 270

Ala Met Asp Thr Ser Pro Ala Ala Ser Val Pro Ala Pro Gln Val Ala 275 280 285

	Val	Arg 290	Ala	Arg	Gln	Val	Ala 295	Ser	Ser	Ser	Ser	Ser 300	Ser	Ser	Ser	Phe
5	Pro 305	Ala	Pro	Ala	Asp	Met 310	Asn	Pro	Val	Ser	Ala 315	Ser	Gly	Ala	Pro	Ala 320
10	Pro	Pro	Pro	Pro	Gly 325	Asp	Gly	Ser	Tyr	Leu 330	Trp	Ile	Pro	Ala	Ser 335	His
10	Tyr	Asn	Gln	Leu 340	Val	Thr	Gly	Gln	Ser 345	'Ala	Pro	Arg	His	Pro 350	Pro	Leu
15	Thr	Ala	Cys 355	Gly	Leu	Pro	Ala	Ala 360	Gly	Thr	Val	Ala	Tyr 365	Gly	His	Pro
	Gly	Ala 370	Gly	Pro	Ser	Pro	His 375	Tyr	Pro	Pro	Pro	Pro 380	Ala	His	Pro	Tyr
20	Pro 385	Gly	Met	Leu	Phe	Ala 390	Gly	Pro	Ser	Pro	Leu 395	Glu	Ala	Gln	Ile	Ala 400
25	Ala	Leu	Val	Gly	Ala 405	Ile	Ala	Ala	Asp	Arg 410	Gln	Ala	Gly	Gly	Leu 415	Pro
	Ala	Ala	Ala	Gly 420	Asp	His	Gly	Ile	Arg 425	Gly	Ser	Ala	Lys	Arg 430	Arg	Arg
30	His	Glu	Val 435	Glu	Gln	Pro	Glu	Tyr 440	Asp	Cys	Gly	Arg	Asp 445	Glu	Pro	Asp
	Arg	Asp 450	Phe	Pro	Tyr	Tyr	Pro 455	Gly	Glu	Ala	Arg	Pro 460	Glu	Pro	Arg	Pro
35	Val 465	Asp	Ser	Arg	Arg	Ala 470		Arg	Gln	Ala	Ser 475	Gly	Pro	His	Glu	Thr 480
40	Ile	Thr	Ala	Leu	Val 485	Gly	Ala	Val	Thr	Ser 490	Leu	Gln	Gln	Glu	Leu 495	Ala
	His	Met	Arg	Ala 500	Arg	Thr	His	Ala	Pro 505	Tyr	Gly	Pro	Tyr	Pro 510	Pro	Val
45	Gly	Pro	Tyr 515	His	His	Pro	His	Ala 520	Asp	Thr	Glu	Thr	Pro 525	Ala	Gln	Pro
	Pro	Arg 530	Tyr	Pro	Ala	Glu	Ala 535	Val	Tyr	Leu	Pro	Pro 540	Pro	His	Ile	Ala
50	Pro 545	Pro	Gly	Pro	Pro	Leu 550	Ser	Gly	Ala	Val	Pro 555	Pro	Pro	Ser	Tyr	Pro-
55	Pro	Val	Ala	Val	Thr 565	Pro	Gly	Pro	Ala	Pro 570	Pro	Leu	His	Gln	Pro 575	Ser
	Pro	Ala	His	Ala 580	His	Pro	Pro	Pro	Pro 585	Pro	Pro	Gly	Pro	Thr 590	Pro	Pro
60	Pro	Ala	Ala 595	Ser	Leu	Pro	Gln	Pro 600	Glu	Ala	Pro	Gly	Ala 605	Glu	Ala	Gly
	Ala	Leu 610	Val	Asn	Ala	Ser	Ser 615	Ala	Ala	His	Val	Asn 620	Val	Asp	Thr	Ala

Arg Ala Ala Asp Leu Phe Val Ser Gln Met Met Gly Ser Arg

```
630
 5
      (2) INFORMATION FOR SEQ ID NO:3:
           (i) SEQUENCE CHARACTERISTICS:
                 (A) LENGTH: 4 amino acids
                 (B) TYPE: amino acid
10
                 (D) TOPOLOGY: linear
          (ii) MOLECULE TYPE: peptide
15
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:
           Leu Gln Ala Ser
             1
20
      (2) INFORMATION FOR SEQ ID NO:4:
           (i) SEQUENCE CHARACTERISTICS:
25
                 (A) LENGTH: 4 amino acids
                 (B) TYPE: amino acid (D) TOPOLOGY: linear
          (ii) MOLECULE TYPE: peptide
30
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:
35
           Val Asn Ala Ser
      (2) INFORMATION FOR SEQ ID NO:5:
40
           (i) SEQUENCE CHARACTERISTICS:
                 (A) LENGTH: 12 amino acids
                 (B) TYPE: amino acid
                 (D) TOPOLOGY: linear
45
          (ii) MOLECULE TYPE: peptide
50
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:
           Ala His Thr Tyr Leu Gln Ala Ser Glu Lys Phe Lys
             1
                               5
55
      (2) INFORMATION FOR SEQ ID NO:6:
           (i) SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 16 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear
60
          (ii) MOLECULE TYPE: peptide
```

		(X1)	SEQU	JENCE	E DE	SCRI	PTIO	N: S	EQ I	D NO	:6:						
5		Ala 1	Gly	Ile	Ala	Gly 5	His	Thr	Tyr	Leu	Gln 10	Ala	Ser	Glu	Lys	Phe 15	Ly
10	(2)	INFO	RMATI	ON E	OR :	SEQ	ID N	0:7:									
15		(1)	(B)	LEN TYP	IGTH PE: 8	: 15 amin	TERI ami o ac line	no a id									
13		(ii)	MOLE	CULE	TY	PE:	pept	ide									
20		(xi)	SEQU	JENCE	DE	SCRI	PTIO	N: S	EQ I	NO:	:7:						
		Gly 1	Ile	Ala	Gly	His 5		Tyr	Leu	Gln	Ala 10	Ser	Glu	Lys	Phe	Lys 15	
25	(2)	INFO	RMATI	ON F	OR S	SEQ	ID N	0:8:									
30		(i)	(B)	LEN TYP	GTH E: a	: 14 amin	TERI ami o ac line	no a id		•							÷
		(11)	MOLE	CULE	TY	PE:	pept.	ide									
35		·	ODO!		. 57	00DT	507 50	vi. 0:			•			•			
			SEQU												•		
40		lle 1	Ala	Gly	His	Thr 5		Leu	Gln	Ala	Ser 10	Glu	Lys	Phe	Lys	,	
	(2)	INFO	RMATI	ON F	OR S	SEQ	ID N	0:9:									•
45		(i)	(B)	LEN TYP	GTH: E: 8	: 12 amin	TERI: ami: o ac: line:	nc ao id									
50		(ii)	MOLE	CULE	TY	PE:	pept:	ide									
55		(xi)	SEQU	ENCE	DES	SCRI	PŢIO	N: S1	EQ II	NO:	9:						
<i></i>		Gly 1	His	Thr	Tyr	Leu 5				Glu	·	Phe	Lys				

	(2) INFORMATION FOR DEG 1D NO.10.
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: peptide
10	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:
15	His Thr Tyr Leu Gln Ala Ser Glu Lys Phe Lys Met 1 5 10
	(2) INFORMATION FOR SEQ ID NO:11:
20	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 13 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear
25	(ii) MOLECULE TYPE: peptide
30	(x1) SEQUENCE DESCRIPTION: SEQ ID NO:11:
	His Thr Tyr Leu Gln Ala Ser Glu Lys Phe Lys Met Trp 1 5
35	(2) INFORMATION FOR SEQ ID NO:12:
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 14 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: peptide
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:
50	His Thr Tyr Leu Gln Ala Ser Glu Lys Phe Lys Met Trp Gly 1 5 10
	(2) INFORMATION FOR SEQ ID NO:13:
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
60	(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13: His Thr Tyr Leu Gln Ala Ser Glu Lys Phe Lys Met Trp Gly Ala 5 (2) INFORMATION FOR SEQ ID NO:14: 10 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 16 amino acids
(B) TYPE: amino acid (D) TOPOLOGY: linear 15 (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14: 20 His Thr Tyr Leu Gln Ala Ser Glu Lys Phe Lys Met Trp Gly Ala Glu 10 25 (2) INFORMATION FOR SEQ ID NO:15: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 14 amino acids (B) TYPE: amino acid 30 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:. Ala Leu Val Asn Ala Ser Ser Ala Ala His Val Asp Val Asp 40 (2) INFORMATION FOR SEQ ID NO:16: 45 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1908 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 50 (ii) MOLECULE TYPE: cDNA (ix) FEATURE: 55 (A) NAME/KEY: CDS (B) LOCATION: 1..1908 (ix) FEATURE: 60 (A) NAME/KEY: misc feature (B) LOCATION: 919..1908

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

5															CCC Pro 15		•	48
10															GAC Asp			96
10															GCG Ala			144
15	CTG Leu	CCT Pro 50	CCG Pro	GAT Asp	AAC Asn	CCA Pro	CTC Leu 55	CCG Pro	ATT Ile	AAC Asn	GTG Val	GAC Asp 60	CAC His	CGC Arg	GCT Ala	GGC Gly		192
20	TGC Cys 65	GAG Glu	GTG Val	GGG Gly	CGG Arg	GTG Val 70	CTG Leu	GCC Ala	GTG Val	GTC Val	GAC Asp 75	GAC Asp	CCC Pro	CGC Arg	GGG Gly	CCG Pro 80		240
25	TTT Phe	TTT Phe	GTG Val	GGG Gly	CTG Leu 85	ATC Ile	GCC Ala	TGC Cys	GTG Val	CAG Gln 90	CTG Leu	GAG Glu	CGC Arg	GTC Val	CTC Leu 95	GAG Glu		288
30															CTC Leu			336
	CGG Arg														TCG Ser			384
35															CGC Arg			432
40															GGC Gly			480
45															TTT Phe 175		·	528
50															GCC Ala			576
	GCC Ala	GAG Glu	CTC Leu 195	GCG Ala	CTG Leu	TCC Ser	GGG Gly	CGC Arg 200	ACC Thr	TGG Trp	GCG Ala	CCC Pro	GGC Gly 205	GTG Val	GAG Glu	GCG Ala		624
55															CTG Leu			672
60	GAC Asp 225	CGC Arg	TGG Trp	AGC Ser	CTG Leu	GTG Val 230	GCC Ala	GAG Glu	CGG Arg	CGG Arg	CGG Arg 235	CAG Gln	GCC Ala	GGG Gly	ATC Ile	GCC Ala 240		720

											Phe					GCG Ala	768
5															Pro	GAG Glu	816
10																GAC Asp	. 864
15	CGG Arg	TGC Cys 290	CCA Pro	ATC Ile	GTC Val	CGT Arg	CAG Gln 295	CGC Arg	GGG Gly	GTC Val	GCC Ala	TTG Leu 300	TCC Ser	CCG Pro	GTA Val	CTG Leu	912
20												CCG Pro					960
20												TCC Ser					1008
25												CCG Pro					1056
30	GGT Gly	TTC Phe	CCG Pro 355	GCT Ala	GCG Ala	GCG Ala	GGG Gly	TCC Ser 360	GTG Val	GCC Ala	TAT Tyr	GGG Gly	CCT Pro 365	CAC His	GGT Gly	GCG Ala	1104
35												CAT His 380					1152
40												CAG Gln					1200
	GTG Val	GGG Gly	GCC Ala	ATA Ile	GCC Ala 405	GCG Ala	GAC Asp	CGC Arg	CAG Gln	GCG Ala 410	GGC Gly	GGT Gly	CAG Gln	CCG Pro	GCC Ala 415	GCG Ala	1248
45	GGA Gly	GAC Asp	CCT Pro	GGG Gly 420	GTC Val	CGG Arg	GGG Gly	TCG Ser	GGA Gly 425	AAG Lys	CGT Arg	CGC Arg	CGG Arg	TAC Tyr 430	GAG Glu	GCG Ala	1296
50	GGG Gly	CCG Pro	TCG Ser 435	GAG Glu	TCC Ser	TAC Tyr	TGC Cys	GAC Asp 440	CAG Gln	GAC Asp	GAA Glu	CCG Pro	GAC Asp 445	GCG Ala	GAC Asp	TAC Tyr	1344
55	CCG Pro	TAC Tyr 450	TAC Tyr	CCC Pro	GGG Gly	GAG Glu	GCT Ala 455	CGA Arg	GGC Gly	GCG Ala	CCG [°]	CGC Arg 460	GGG Gly	GTC Val	GAC Asp	TCC Ser	1392
60	CGG Arg 465	CGC Arg	GCG Ala	GCC Ala	CGC Arg	CAT His 470	TCT Ser	CCC Pro	GGG Gly	ACC Thr	AAC Asn 475	GAG Glu	ACC Thr	ATC Ile	ACG Thr	GCG Ala 480	1440
•	CTG Leu	ATG Met	GGG Gly	GCG Ala	GTG Val 485	ACG Thr	TCT Ser	CTG Leu	CAG Gln	CAG Gln 490	GAA Glu	CTG Leu	GCG Ala	CAC His	ATG Met 495	CGG Arg	1488

											ACG Thr						1536
5											ACG Thr						1584
10	TGT Cys	CCC Pro 530	CCG Pro	GAG Glu	GCC Ala	GTG Val	TAT Tyr 535	CGC Arg	CCC Pro	CCA Pro	CCA Pro	CAC His 540	AGC Ser	GCC Ala	CCC Pro	TAC Tyr	1632
15											CCC Pro 555						1680
20											CCC Pro						1728
											GCG Ala						1776
25											GAG Glu						1824
30	AAC Asn	GCC Ala 610	AGC Ser	AGC Ser	GCA Ala	GCA Ala	CAC His 615	GTG Val	GAC Asp	GTT Val	GAC Asp	ACG Thr 620	GCC Ala	CGC Arg	GCC Ala	GCC Ala	1872
35	GAT Asp 625	TTG Leu	TTC Phe	GTC Val	TCT Ser	CAG Gln 630	ATG Met	ATG Met	GGG Gly	GCC Ala	CGC Arg 635	TGA					1908
40	(2)	INFO		EQUE	NCE	CHAF	ACTE	RIST	CS:	cids							

- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- 45 (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:
- Met Ala Ala Asp Ala Pro Gly Asp Arg Met Glu Glu Pro Leu Pro Asp 50
 - Arg Ala Val Pro Ile Tyr Val Ala Gly Phe Leu Ala Leu Tyr Asp Ser 20 25 30
- Gly Asp Ser Gly Glu Leu Ala Leu Asp Pro Asp Thr Val Arg Ala Ala 35 40 45 55
 - Leu Pro Pro Asp Asn Pro Leu Pro Ile Asn Val Asp His Arg Ala Gly
- 60 Cys Glu Val Gly Arg Val Leu Ala Val Val Asp Asp Pro Arg Gly Pro 65 70 75 80

	Phe	Phe	Val	Gly	Leu 85		Ala	Cys	Val	Gln 90		Glu	Arg	Val	. Leu 95	
5	Thr	Ala	Ala	Ser 100		Ala	Ile	Phe	Glu 105		Arg	Gly	Pro	Pro 110		Se
	Arg	Glu	Glu 115		Leu	Leu	Tyr	Leu 120	Ile	Thr	Asn	Tyr	Leu 125		Ser	Va:
10	Ser	Leu 130	Ala	Thr	Lys	Arg	Leu 135	Gly	Gly	Glu	Ala	His 140		Asp	Arg	Thi
15	Leu 145	Phe	Ala	His	Val	Ala 150	Leu	Cys	Ala	Ile	Gly 155		Arg	Leu	Gly	Th:
	Ile	Val	Thr	Tyr	Asp 165	Thr	Gly	Leu	Asp	Ala 170	Ala	Ile	Ala	Pro	Phe 175	Arg
20	His	Leu	Ser	Pro 180	Ala	Ser	Arg	Glu	Gly 185	Ala	Arg	Arg	Leu	Ala 190	Ala	Glu
	Ala	Glu	Leu 195		Leu	Ser	Gly	Arg 200	Thr	Trp	Ala	Pro	Gly 205	Val	Glu	Ala
25	Leu	Thr 210	His	Thr	Leu	Leu	Ser 215	Thr	Ala	Val	Asn	Asn 220	Met	Met	Leu	Arg
30	Asp 225	Arg	Trp	Ser	Leu	Val 230	Ala	Glu	Arg	Arg	Arg 235	Gln	Ala	Gly	Ile	Ala 240
	Gly	His	Thr	Tyr	Leu 245	Gln	Ala	Ser	Glu	Lys 250	Phe	Lys	Met	Trp	Gly 255	Ala
35				260				Arg	265		•			270		•
40			275					Ser 280					285			Ū
40		290					295	Arg				300		•		
45	305		*			310		Thr			315					320
	Pro	Gly	Asp	Gly	Ser 325	Tyr	Leu	Trp	Ile	Pro 330	Ala	Ser	His	Tyr	Asn 335	Gln
50	Leu	Val	Ala	Gly 340	His	Ala	Ala	Pro	Gln 345.	Pro	Gln	Pro	His	Ser 350	Ala	Phe
	Gly	Phe	Pro 355	Ala	Ala	Ala	Gly	Ser 360	Val	Ala	Tyr	Gly	Pro 365	His	Gly	Ala
5 5	Gly	Leu 370	Ser	Gln	His	Tyr	Pro 375	Pro	His	Val	Ala	His 380	Gln	Tyr	Pro	Gly
60	Val 385	Leu	Phe	Ser	Gly	Pro 390	Ser	Pro	Leu	Glu	Ala 395	Gln	Ile	Ala	Ala	Leu 400
-	Val	Gly	Ala	Ile	Ala 405	Ala	Asp	Arg	Gln	Ala 410	Gly	Gly	Gln	Pro	Ala	

	Gly	Asp	Pro	Gly 420	Val	Arg	Gly	Ser	Gly 425	Lys	Arg	Arg	Arg	Tyr 430	Glu	Ala
5	Gly	Pro	Ser 435	Glu	Ser	Tyr	Cys	Asp 440	Gln	Asp	Glu	Pro	Asp 445	Ala	Asp	Tyr
	Pro	Tyr 450	Tyr	Pro	Gly	Glu	Ala 455	Arg	Gly	Ala	Pro	Arg 460	Gly	Val	Asp	Ser
10	Arg 465	Arg	Ala	Ala	Arg	His 470	Ser	Pro	Gly	Thr	Asn 475	Glu	Thr	Ile	Thr	Ala 480
15	Leu	Met	Gly	Ala	Val 485	Thr	Ser	Leu	Gln	Gln 490	Glu	Leu	Ala	His	Met 495	Arg
15	Ala	Arg	Thr	Ser 500	Ala	Pro	Tyr	Gly	Met 505	Tyr	Thr	Pro	Val	Ala 510	His	Tyr
20	Arg	Pro	Gln 515	Val	Gly	Glu	Pro	Glu 520	Pro	Thr	Thr	Thr	His 525	Pro	Ala	Leu
	Cys	Pro 530	Pro	Glu	Ala	Val	Tyr 535	Arg	Pro	Pro	Pro	His 540	Ser	Ala	Pro	Tyr
25	Gly 545	Pro	Pro	Gln	Gly [.]	Pro 550	Ala	Ser	His	Ala	Pro 555	Thr	Pro	Pro	Tyr	Ala 560
20	Pro	Ala	Ala	Cys	Pro 565	Pro	Gly	Pro	Pro	Pro 570	Pro	Pro	Cys	Pro	Ser 575	Thr
30	Gln	Thr	Arg	Ala 580	Pro	Leu	Pro	Thr	Glu 585	Pro	Ala	Phe	Pro	Pro 590	Ala	Ala
35	Thr	Gly	Ser 595	Gln	Pro	Glu	Ala	Ser 600	Asn	Ala	Glu	Ala	Gly 605	Ala	Leu	Val
	Asn	Ala 610	Ser	Ser	Ala	Ala	His 615	Val	Asp	Val	Asp	Thr 620	Ala	Arg	Ala	Ala
40	Asp 625	Leu	Phe	Val	Ser	Gln 630	Met	Met	Ġly	Ala	Arg 635					
45					•											
43	(2)					_	ĬD N									
50		(1)	() (E) LE 3) TY	NGTI PE:	l: 19 nucl	TERI bas eic SS:	e pa acid	irs l			•				

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

60 CCGGTGCCCA ATCGTCCGT 19

•	(2) INFORMATION FOR SEQ ID NO:19:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:	
15	GTCCGTGCGC GTCAAGTGG	19
20	(2) INFORMATION FOR SEQ ID NO:20:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: CDNA	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:	
	TTCCGGCTCC CCCACCTGA	19
35 ·	·	
	(2) INFORMATION FOR SEQ ID NO:21:	
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
45	(ii) MOLECULE TYPE: cDNA	
<i>E</i> 0	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:	
50	ATTCGGATCC TGGAGGCGA	19

CLAIMS

20

35

1. An essentially pure protein encoded by an HSV-2 UL26 gene and functional fragments thereof.

- 5 2. The essentially pure protein of claim 1 wherein said protein is selected from the group consisting of HSV-2 protease precursor protein, mature HSV-2 protease and functional fragments of said mature HSV-2 protease.
 - 3. The essentially pure protein of claim 1 wherein said protein is mature HSV-2 protease.
- 4. An essentially pure protein encoded by HSV-2 UL26.5 gene or fragments thereof.
 - 5. The essentially pure protein of claim 4 wherein said protein is selected from the group consisting of HSV-2 capsid precursor protein, mature HSV-2 capsid protein and functional fragments thereof.
- 15 6. The essentially pure protein of claim 1 wherein said protein is mature HSV-2 capsid protein.
 - 7. An isolated nucleic acid molecules comprising an HSV-2 UL26 gene or functional fragments thereof.
 - 8. The isolated nucleic acid molecule of claim 7 comprising a nucleotide sequence of SEQ ID NO:1 or a functional fragment thereof.
 - 9. The isolated nucleic acid molecule of claim 7 comprising a nucleotide sequence that encodes mature HSV-2 protease.
 - 10. The isolated nucleic acid molecule of claim 7 comprising an HSV-2 UL26.5 gene or a functional fragment thereof.
- 25 11. The isolated nucleic acid molecule of claim 10 comprising a nucleotide sequence that encodes mature HSV-2 capsid protein.
 - 12. The isolated nucleic acid molecule of claim 10 comprising the HSV-2 UL26.5 promoter.
- 13. An expression vector comprising an HSV-2 UL26 gene or functional30 fragment thereof.
 - 14. The expression vector of claim 13 wherein said UL26 gene is disclosed in SEQ ID NO:1.
 - 15. The expression vector of claim 13 wherein said fragment of said UL26 gene is selected from the group consisting of: a nucleotide sequence that encodes mature HSV-2 protease, a nucleotide sequence that encodes mature HSV-2 capsid protein, a nucleotide sequence that encodes an HSV-2 UL26.5 gene, a

nucleotide sequence that encodes mature HSV-2 capsid protein and the HSV-2 UL26.5 promoter.

- 16. A host cell that has been transformed with an expression vector of claim 13, said host cell being capable of expressing said UL26 gene or functional fragment thereof.
- 17. A method of identifying compounds that inhibit HSV-2 protease activity comprising the steps of:
- a) contacting HSV-2 protease or functional fragment thereof with an HSV-2 protease substrate in the presence of a test compound;
- b) detecting the level of proteolytic cleavage of said substrate;
 and
 - c) comparing that level to the level of proteolytic activity that occurs when HSV-2 protease or functional fragment thereof is contacted with an HSV-2 protease substrate in the absence of a test compound.
- 15 18. A method of identifying compounds that inhibit HSV-2 virion assembly comprising
 - a) in the presence of a test compound, contacting two or more proteins that comprise at least portions of HSV-2 capsid protein in the presence of a test compound;
- b) detecting the level of capsid-capsid association; and
 - c) comparing said level of capsid-capsid association to the level of capsid-capsid association that occurs when two or more proteins that comprise at least portions of HSV-2 capsid protein are contacted in the absence of the test compound.
- 19. A synthetic HSV-2 protease substrate having the formula R₁ SEQ
 ID NO:3 R₂ or R₁ SEQ ID NO:4 R₂.

30

- 20. The synthetic HSV-2 protease substrate of claim 19 selected from the group consisting of: SEQ ID NO:3; SEQ ID NO:4; SEQ ID NO:5; SEQ ID NO:6; SEQ ID NO:7; SEQ ID NO:8; SEQ ID NO:9; SEQ ID NO:10; SEQ ID NO:11; SEQ ID NO:12; SEQ ID NO:13; SEQ ID NO:14; and SEQ ID NO:15.
- 21. An antibody that selectively binds to an unprocessed HSV-2 protease wherein said antibody is incapable of binding to a processed HSV-2 substrate.
- 22. A method of distinguishing between HSV-1 DNA and HSV-2 DNA comprising the steps of:
- a) amplifying DNA in a sample using primers which amplify HSV-1 DNA but which do not amplify HSV-2 DNA and/or amplifying DNA in a

sample using primers which amplify HSV-2 DNA but which do not amplify HSV-1 DNA;

- b) detecting the presence of amplified DNA.
- 23. A set of PCR primers comprising nucleotide sequences which can be used to amplify HSV-1 DNA but cannot be used to amplify HSV-2 DNA or comprising nucleotide sequences which can be used to amplify HSV-2 DNA but cannot be used to amplify HSV-1 DNA.
 - 24. A kit for distinguishing between HSV-1 DNA and HSV-2 DNA comprising a container comprising a set of PCR primers of claim 23 and a container comprising a DNA size marker molecule.
 - 25. A method of distinguishing between HSV-1 protein and HSV-2 protein comprising the steps of:
 - a) performing an immunoassay using antibodies capable of selectively binding to HSV-1 protein and incapable of binding to HSV-2 protein and/or performing an immunoassay using antibodies capable of selectively binding to HSV-2 protein incapable of binding to HSV-1 protein; and
 - b) detecting the presence of bound antibodies.
 - 26. An antibody capable of selectively binding to HSV-2 protein and incapable of binding to HSV-1 protein and an antibody capable of selectively binding to HSV-1 protein and incapable of binding to HSV-2 protein.
 - 27. A kit for distinguishing between HSV-1 protein and HSV-2 protein comprising a container comprising an antibody of claim 26 and/or a container comprising an antibody capable of selectively binding to HSV-1 protein and incapable of binding to HSV-2 protein and/or antibody capable of selectively binding to HSV-2 protein and incapable of binding to HSV-1 protein.
 - 28. HSV-2 protease inhibitor compounds identified by the method of claim 17.
 - 29. HSV-2 virion assembly inhibiting compounds identified by the method of claim 18.

10

15

20

25

		_
150	Gregrarerrer	51
i	E X X O X B B A A X X	_ ;
140	STGGCTATAAA	£1.
) 1	> J % & & Q	,
130	1201 TGCGTGACCGCTGGAGCCTCGTGGCCGAGCGGCGGCGGCAGGCCGGGATCGCCGGACACACGTACCTTCAGGCGAGCGA	12
	AAEAELAC	
120	1101 GCCGCCGAGGCCGAGCTCGCGCTGGCCGGGGCGCACCTGGGCGCGTGGAGGCGCTCACACACA	-
	R L G T I V T Y	
110	\sim	≓
100)] []	٠,
	Q L E R V L E T	3
	CAGCTGGAGCGCGTCCTCGAGACGGCCGCCAGCGCCGCTATTTTTAAGCGCCCGCGGAACCCGCGGCTCTCCCGGGAGGAGCGTCTGCTGTAACCTG	/ 801
9		1
0	701 GATCAACGTAGACCACCGCGTCGGTGCGAGGTGGGCCGGGTGCTCGCCGTGGTCAACGACCCTCGGGGGCCGTTTTTTGTGGGCTTGATCACGTG	
2	A G F L A L Y D S G D P G E L A L D P D T V R A A L P P R N P L P	٠
,	601 TGGCCGGGTTTTTGGCCCCTGTACGACAGCGGGGACCCGGGCGAGCTGGCCCTGGACCAGACACGGTGCGTGC	w
	501 CCCTTCCGTTTGTTTGTTGCGGGTGCCCATGGCGTCGGCGAAAHGCGCGAAGCGGTTGGAGGGCGCTTTGGAGGCGCTTTGGTTTGGAGGGGGGGG	۱ س
, (401 TCCCGGCCCGGACGTCGCGGACACACAACGGCCCCGTGGGTAAGTTGGTTCGGGGGCATCGTTCTTTTCCTTTGCTTTCTTT	4
7	301 GGGAAGGGTGGGGGTGGTGGTGGTGGTGTTTTTCTGTTGTTGTTTGTGGCCGCC	•-)
2 6	CGAACGCCAAGCGATTCGCCACG	. •
		_
00.	1 GTCGACGACGCGCGTGGATATGTCGTCGGCGCCCGCCAGGCGCGCTCGTGCGCCTCACGCGCTGGAGCTCATCAACGCGCACCGCACCGCACCGCAACACACA	

FIGURE 1(a

SUBSTITUTE SHEET (RULE 26)

1600		1700	000		1900		2000	2	2100	7	0000	0022		2300	.07.0	0047			
1501 CGCCGGCGACGACGATATTTGTGGATCCCCGCCTCTCATTACAATCAGCTCGTCACCGGGCAATCCGCGCCCCCCCC		160j cetteeegeegeggggggggggggggggggggggggggg	1701 GCGGGCCCCAGTCCCCTGGAGGCCCAGATCGCCGCGCTGGTGGGGGCCATCGCCGCCGACCGCCAGGCGGGTGGGCTTTCCGGCGGCGCCGAACACAA	A G P S P L E A Q I A A L V G A I A A D R Q A G G L B A A A C D L C A A C D L C A A C D L C A A A C D L C A C D L C D L C D	1801 GGATCCGGGGGAAGCGCCGCCGCCGACACGAGGTGGAGCAGCCGGAGTACGACTGCGGCCGTGACGAGCCGGACCGGGACTTCCCGTATTACCCGG		1901 CGAGGCCGCCCCGAGCCGCGCGCGCGCGGCGGCGCGCGC	EARPEPRO SRRAARO ASGPHEFILVO AST	2001 TCCCTGCAGCAGCAGCACGCGCACAATGCGCGCGCGCGCACCCCTACGCGCCGTATCCGCGCGGTGGGGCCCTACCACGACGACGCACGAAAAAAAA	S L O O E L A H A B A B Y G B Y P B A B B B B B B B B B B B B B B B B B	2101 AGACCCCGGCCAACCACCCGGCTACCCCGGCGAGGCCGTCTATCTGCCGCCGCCGCACATCGCCCCCCCGGGGGCTTCCTCTTATCTGGGCCGCCCCCACCACCACCACCACCACCACCACCACACACACACA	TOAOPRYPACTOPPRIA	2201 ACCCTGGTATCCCCCAGTTGCGGTTACCCCCGGTTCCCCCGCTACATCAGCCCTCCCCGGAAGGCCCAACGCCCAACAAGGCAAGGCAAGGCAAGGAAGGAAGAA	TO PAY PERIODS A PARA PERIOD OF STATE PERIOD O	2301 ACGCCTCCCCCCCCCGCAGCTTACCCCAACCCGAGGGCGCCCGGCGCGCGC	TO T	2401 CGGCCCGGGCCGCCGATCTGTTTGTCACAGATGATGAGGGTCCCGCTAACTCGCCTCCAGGATCCGAATTC 2472	A R A D L F C S O S A A C S A A C S A A C S A A C S A A C S A A C S A A C S A A C S A A C S A C	
•	•	.→			_	_		,	-		. 7		. 7		. "		. 7		

TGURE 1(b)

2/3 SUBSTITUTE SHEET (RULE 26)

HSV-2 UL26.5 PROMOTER ACTIVITY

FIGURE 2

3 / 3 SUBSTITUTE SHEET (RULE 26)

International application No.
PCT/US94/09303

A. CL	ASSIFICATION OF SUBJECT MATTER		
IPC(6)	:C07H 17/00; C12N 15/00, 5/00; C12Q 1/70; A6:		
According	: 435, 240.1, 320.1; 530/330, 387.1; 536/23.72, 2 to International Patent Classification (IPC) or to be	4.33; 930/220 th national classification and IPC	
	LDS SEARCHED	an indicate which the first in the first ind	
	documentation searched (classification system follow	ed by classification symbols)	
1	435, 240.1, 320.1; 530/330, 387.1; 536/23.72, 24		
		5.33; 930/220	•
Documenta	tion searched other than minimum documentation to t	he extent that such documents are included	in the fields searched
]			
Flectronic	data base consulted during the international search (-
ł	IN, FILE BIOSIS;	name of data base and, where practicable	, search terms used)
	TERMS: HSV-2, PROTEASE, UL26, UL26.5,	CAPSID	
C. DOC	CUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where	appropriate, of the relevant passages	Relevant to claim No.
A, T	US, A, 5,324,664 (NUNBERG ET	AL.) 28 June 1994, see	22, 23
	entire document.	•	
A	LIC A 4 904 O45 MAATOON ET		
^	US, A, 4,891,315 (WATSON ET /	AL.) 02 January 1990, see	
	entile document.	ŕ	21
x	us, a, 4,709,011 (COHEN ET AL	1 24 November 1987 see	25-27
i	columns 7 and 24.	1/ 24 NOVEMBER 1007, See	25-27
A	US, A, 4,618,578 (BURKE ET A	L.) 21 October 1986, see	1-16, 20, 21
	columns 1-6.		.,
.	110 4 7 100 110 110 110	ļ	
^	US, A, 5,122,449 (GILBERT ET	AL.) 16 June 1992, see	1-16, 20
	entire document.	•	
	•		
X Furth	er documents are listed in the continuation of Box (C. See patent family annex.	
	cial cutegories of cited documents:	• • •	
	ment defining the general state of the art which is not considered	T later document published after the inter date and not in conflict with the applica	tion but cited to understand the
to b	e of particular relevance	principle or theory underlying the inventor of particular relevance: the	·
	ier document published on or after the international filing data ument which may throw doubts on priority claim(s) or which is	"X" document of particular relevance; the considered novel or cannot be consider when the document is taken alone	ed to involve an inventive step
cite	d to establish the publication date of another citation or other cial reason (as specified)	"Y" document of particular relevance; the	claimed invention connect he
	sment referring to an oral disclosure, use, exhibition or other	considered to involve an inventive combined with one or more other such	step when the document is documents, such combination
°P° doc	ment published prior to the international filing date but later than priority date claimed	being obvious to a person skilled in the "&" document member of the same patent i	i
	ectual completion of the international search	Date of mailing of the international sear	rch report
07 NOVE	MBER 1994	31 JAN 1995	•
Name and m	ailing address of the ISA/US	Authorized Second	1 0
Commission Box PCT	er of Patents and Trademarks	Date of the second	1112R la
	D.C. 20231	Bradley L. Sisson	143e fa
Facsimile No Form PCT/IS	. (703) 305-3230 A/210 (second sheet)(July 1992)*	Telephone No. (703) 308-0196	<u>, </u>
1/10	・~~~ 、のくくしいし ひにてえおJUV Iソツノ 洋		

International application No. PCT/US94/09303

	Citation of dominant with indication and	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
Х, Р	JOURNAL OF GENERAL VIROLOGY, Volume 74, Part 10, issued October 1993, "Herpes simplex virus type 1 capsid protein, VP21, originates within the UL26 open reading frame", pages 2269-2273, see pages 2269-2272.	1-29
x	JOURNAL OF GENERAL VIROLOGY, Volume 73, Part 10, "Identification of genes encoding two capsid proteins (VP24 and VP26) of herpes simplex virus type 1", pages 2709-2713; see pages 2709-2712.	1-29
X	JOURNAL OF VIROLOGY, Volume 65, Number 1, issued January 1991, "The Promoter, Transcriptional Unit, and Coding Sequence of Herpes Simplex Virus 1 Family 35 Proteins Are Contained within and in Frame with the UL26 Open Reading Frame", pages 206-212; see the entire document.	1-16, 20, 21, 26
	JOURNAL OF VIROLOGY, Volume 65, Number 10, issued October 1991, "The Herpes Simplex Virus 1 Gene Encoding a Protease Also Contains within Its Coding Domain the Gene Encoding the More Abundant Substrate", pages 5149-5156; see entire document.	1-29
	JOURNAL OF GENERAL VIROLOGY, Volume 69, issued 1988, :The Products of Herpes Simplex Virus Type 1 Gene UL26 which Are Involved in DNA Packaging Are Strongly Associated with Empty but Not with Full Capsids", pages 2879-2891; see entire document.	1-29
]	IOURNAL OF VIROLOGY, Volume 68, Number 4, issued April 1994, "Assembly of Herpes Simplex Virus (HSV) Intermedite Capsids in Insect Cells Infected with Recombinant Baculoviruses Expressing HSV Capsid Proteins", pages 2442-2457; see entire document.	1-29
	OURNAL OF VIROLOGY, Volume 68, Number 6, issued June 1994, "The Protease of Herpes Simplex Virus Type 1 is Essential for Functional Capsid Formation and Viral Growth", pages 3702-3712; see entire document.	1-29
18	OURNAL OF VIROLOGY, Volume 68, Number 9, issued September 1994, "Phenotype of the Herpes Simplex Virus Type 1 Protease Substrate ICP35 Mutant Virus", pages 5384-5394; see entire document.	1-29

International application No. PCT/US94/09303

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
Please See Extra Sheet.
As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
temark on Protest X The additional search fees were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet(1))(July 1992)*

International application No. PCT/US94/09303

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

In the examination of international applications filed under the Patent Cooperation Treaty, PCT Rule 13.1 states that the international application shall relate to one invention only or to a group of inventions so linked as to form "a single general inventive concept." PCT Rule 13.2 indicates that this shall be construed as permitting, in particular, one of the following three possible combinations of the claimed invention:

- (1) a product, a process specifically adapted for the manufacture of said product and a use of said product, or
- (2) a process, and an apparatus or means specifically designed for carrying out said process, or
- (3) a product, a process specifically adapted for the manufacture of said product and an apparatus or means designed for carrying out the process.

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept. In order for all inventions to be examined, the appropriate additional examination fees must be paid. Grouping of the Claims:

- I. Claims 1-6, drawn to protein, claims 17-20, drawn to a method of identifying compounds that inhibit HSV-2 protease activity, and claims 28-29, drawn to HSV-2 protease inhibitor compounds.
- II. Claims 7-12, drawn to nucleic acid.
- III. Claims 13-15, drawn to an expression vector, and claim 16, drawn to transfected host cell. IV. Claim 21, drawn to an antibody that selectively binds to an unprocessed HSV-2 substrate.
- V. Claims 22 and 24, drawn to a method of distinguishing between HSV-1 DNA and HSV-2 DNA and related kit, and claim 23, drawn to PCR primers.
- VI. Claims 25 and 27, drawn to a method of distinguishing between HSV-1 DNA and HSV-2 protein and related kit and claim 26, drawn to an antibody capable of selectively binding HSV-2 protein and incapable of binding HSV-1 protein and an antibody capable of binding selectively HSV-1 protein and incapable of binding HSV-2 protein.

The inventions listed as Groups I-VI do not meet the requirements for Unity of invention for the following reasons:

The inventions of Group I-VI are all linked by the UL26 gene and the protein encoded thereby and expressed therefrom where said protein is a capsid protein of HSV. The publication of Liu and Roizman (JOURNAL OF VIROLOGY, January 1991) teach in detail of the UL26 open reading frame of HSV-1, the proteins encoded by sid gene and the development and use of antibodies which bind to same. Accordingly, the UL26 gene, the protein encoded thereby, and monoclonal antibodies which bind to same were all known prior to the priority date of the subject PCT application (20 August 1993) and thereby do not qualify as a special technical feature within the meaning of PCT Rule 13.2

Accordingly, the claims are not so linked by a special technical feature within the meaning of PCT Rule 13.2 so as to form a single inventive concept. Note that PCT Rule 13 does not provide for multiple products or methods of use within a single application.