## ECE322L -Homework 7 (100 points) Assigned on Thursday, 03/12/2020-11 am Due on Thursday, 03/26/2020-11 am

The figure below shows a common emitter amplifier configuration.

- (a)Provide an expression for the maximum  $v_{ce}$ - $v_{be}$  gain of the amplifier with the BJT still remaining in the forward active region.
- (b) Discuss the possible trade-off strategies to select the Thevenin equivalent voltage seen looking from the base of the transistor into the  $R_1$ ,  $R_2$  voltage divider.
- (c) Specify the role of the capacitor C<sub>C</sub>.
- (d) Discuss the possible trade-off strategies to select the resistor R<sub>E</sub>.



(a) Assuming the BJT remains in forward-active region, therefore  $I_E = (1 + \beta) I_B$ 

$$A_{V} = \frac{V_{out}}{V_{s}} = \frac{-(\beta I_{b})R_{C}}{V_{s}} = -\beta R_{C} \left(\frac{V_{in}}{R_{ib}}\right) \times \left(\frac{1}{V_{s}}\right)$$

(b) The trade-offs of using  $V_{TH}$  are that these assumptions must be true:

$$R_{TH} \ll (1+\beta)R_E$$
,  $\beta \gg 1$ , and  $\frac{\beta}{\left(1+\beta\right)} \cong 1$ .

These assumptions allow us to say  $V_{TH} = \frac{R_2}{R_1 + R_2} \times V_{CC}$ .

- (c) The coupling capacitor  $C_C$  acts as an open circuit to dc, isolating the signal source from the dc base current. The dc transistor biasing is then established by  $R_1$  and  $R_2$ , and is not disturbed when the source signal is coupled.
- (d) Including an emitter resistor provides stability in the Q-point, but reduces the small-signal voltage gain significantly.