Guest lecture

Summary of guest lecture

1. Applications

- 1. Application: adapative radiotherapy
- 2. Radiotherapy workflow
- 3. Image registration for contour propagation in adaptive radiotherapy

2. Challenges in image registration

- 1. Large deformations
- 2. Small datasets, no ground truth

Background – Applications

MONITOR CHANGES

Background – Applications

GOALS

- 1. Patient positioning
- 2. Contour propagation
- 3. Dose accumulation

REAL-TIME ADAPTIVE RADIOTHERAPY

Total latency < 500ms

- acquisition, e.g. undersampled MRI
 - deformable image registration

Deep learning-based joint rigid and deformable contour propagation for magnetic resonance imaging-guided prostate radiotherapy

Iris Kolenbrander, Matteo Maspero, Allard Hendriksen, Ryan Pollitt, Jochem van der Voort van Zyp, Nico van den Berg, Josien Pluim and Maureen van Eijnatten

Background

Prostate cancer

- Second most commonly diagnosed cancer
- Fifth leading cause of death in men worldwide

Standard treatment = External-beam radiotherapy (RT)

delivers radiation over multiple sessions/fractions (~35)

New trend = Hypofractionated RT

- Few irradiations (5-20)
- Higher irradiation dose
- Requires accurate target (prostate) localization

Radiotherapy workflow

Radiotherapy workflow

Radiotherapy workflow

Obtain accurate target localization

Obtain accurate target localization

Deep learning-based registration (unsupervised)

Typical framework

Typical framework

Typical framework

SLOW AND INEFFICIENT!!

Aim

We propose a framework using CNNs for unsupervised, joint rigid and deformable image registration to facilitate accurate contour propagation in prostate MRgRT

Aim

We propose a framework using CNNs for unsupervised, **joint rigid and deformable image registration** to facilitate accurate contour propagation in prostate MRgRT

Aim

We propose a framework using CNNs for unsupervised, joint rigid and deformable image registration to facilitate accurate contour propagation in prostate MRgRT

- 1. We compare three different CNN architectures
- 2. We evaluate their registration accuracy, speed, and robustness

Detailed network architectures ...

registration accuracy, speed, and robustness

LapIRN performs best among CNN architectures

registration accuracy, speed, and robustness

			Latency (s)	Trainable
			Latency (s)	parameters
	Rigid		0.002 (0.0005)	111,110
DL-based	Deformable	LapIRN	0.74(0.43)	615,076
		U-Net	0.34 (0.21)	301,411
		MS-D Net	0.22 (0.03)	13,494
Elastix	Rigid		14.8 (0.5)*	n.a.
	Deformable		51.5 (0.9)*	n.a.

registration accuracy, speed, and robustness

How do we investigate a model's robustness?

Using perturbations:

Original Perturbed

Rigid rotations

Nonlinear deformations

Synthetic bias field

registration accuracy, speed, and robustness

How do we investigate a model's robustness?

Using perturbations:

Original Perturbed

Rigid rotations

Nonlinear deformations

Synthetic bias field

registration accuracy, speed, and robustness

How do we investigate a model's robustness?

Using perturbations:

Original Perturbed

Rigid rotations

Nonlinear deformations

Synthetic bias field

registration accuracy, speed, and robustness

--- rigid

registration accuracy, speed, and robustness

registration accuracy, speed, and robustness

Discussion

We proposed an unsupervised, joint rigid and deformable image registration framework for contour propagation in prostate MRgRT

Accuracy:

- The LapIRN network performed best
- Benefits of coarse-to-fine, cascaded approach of LapIRN
- Accuracy was on par with iterative registration

Speed:

The framework achieves sub-second contour propagation (compared to ~10 minutes in current MRgRT workflow)

Robustness (to simulated perturbations):

The LapIRN network performed best

Discussion

We proposed an unsupervised, joint rigid and deformable image registration framework for contour propagation in prostate MRgRT

Accuracy:

- The LapIRN network performed best
- Benefits of coarse-to-fine, cascaded approach of LapIRN
- Accuracy was on par with iterative registration

Speed:

The framework achieves sub-second contour propagation (compared to ~10 minutes in current MRgRT workflow)

Robustness (to simulated perturbations):

The LapIRN network performed best

<u>Deep learning facilitates fast contour propagation in online adaptive MRgRT</u> to reduce daily treatment times and improve conformity to the daily anatomy

Applications

Contour propagation in adaptive radiotherapy

rigid & deformable, fast, accurate and robust registration

Challenges

Large and complex deformations

- e.g. bladder, rectum filling
 - e.g. respiratory motion

Small datasetsDeformation generation

Challenges: large and complex deformations

global → local

bladder, rectum filling and emptying

(left) (right) Learn2Reg Grand Challenge 2021 Maspero, M., Raaymakers, B. W. & Veta, M. (2020)

Existing solutionMulti-scale approaches

(brain image) Klein, S. et al. Elastix: A toolbox for intensity-based medical image registration. 2010 Jiang, Z. et al. (2020)

Existing solutionMulti-scale approaches

(brain image) Klein, S. et al. Elastix: A toolbox for intensity-based medical image registration. 2010 Jiang, Z. et al. (2020)

Challenge: small open-source datasets

BACKGROUND

- Deep learning requires large training datasets
- These are scarce
- Potential solution: synthetic data!

We propose a method that incorporates prior knowledge of the physiological motion to generate realistic deformations.

TRAINING PIPELINE

RESULTS

- 1. Blobs displacements smoothed with Gaussian kernel
- 2. Gryds fixed control point grid upsampled by B-spline interp.
- **3. Gryds* (proposed) -** enforcing caudal motion in the lower half of the lungs while constraining the upper half motion → to obtain more realistic deformations

RESULTS

- 1. Blobs displacements smoothed with Gaussian kernel
- 2. Gryds fixed control point grid upsampled by B-spline interp.
- **3. Gryds* (proposed) -** enforcing caudal motion in the lower half of the lungs while constraining the upper half motion → to obtain more realistic deformations

Applications

Contour propagation in adaptive radiotherapy

rigid & deformable, fast, accurate and robust registration

Challenges

Large and complex deformations

- · e.g. bladder, rectum filling
 - · e.g. respiratory motion

Small datasetsDeformation generation

Questions?

