Федеральное государственное бюджетное образовательное учреждение высшего образования

«Уфимский государственный авиационный технический университет»

Кафедра	Информатики	
	100 1 2 3 4 5 6 7 8 9 10 11	1
	90	
	80	
	70	
	60	
	50	
	40	
	30	
	20	
	10	
	0	
	ОТЧЕТ	

по дисциплине Методы и средства предотвращения нештатных ситуаций в OTC

по лабораторной работе №4

«Расчет деталей на

срез и смятие»

1306.558408.000 ПЗ

(обозначение документа)

Группа СТС-407	Фамилия И.О.	Подпись	Дата	Оценка
Студент	Гараев Д.Н.			
Консультант	Минасов Ш. М.			
Принял				

Содержание

ОТЧЕТ	7
Введение	3
1 Ход работы	5
1.1 Задача 1	5
1.1.1 Расчетная схема а	5
1.1.2 Расчетная схема б	5
1.2 Задача 2	6
Заключение	8
Список литературы	9

					1306.558408.000 ПЗ			
Изм	Лист	№ докум	Подп	Дата				
Раз	враб	Гараев Д. Н.			Decement we come No 4	Лит	Лист	Листов
Прс	овер.	Минасов Ш. М.			Лабораторная работа №4 «Расчет деталей на срез и		2	9
Н. к	контр				«гасчет оеталеи на срез и смятие»	УГАТУ СТС-407		C-407
Ут								3 401

Введение

Заклепка представляет собой сплошной или полый стержень круглого сечения с головками на концах, одну из которых, называемую закладкой, выполняют на заготовке заранее, а вторую, называемую замыкающей, формируют при клепке. Заклепочные соединения образуют постановкой заклепок в совмещенные отверстия соединяемых элементов и расклепкой с осаживанием стержня.

Расчет на прочность заклепочных соединений основан на следующих допущениях:

- силы трения на стыке деталей не учитывают, считая, что вся нагрузка передается только заклепками;
 - расчетный диаметр заклепки равен диаметру отверстия $d_{\text{отв}}$;
 - нагрузки между заклепками распределяются равномерно.

В лабораторной работе необходимо рассчитать заклепочное соединение в соответствии с расчетной схемой и условием задачи для варианта №8, в расчетах принять допускаемое напряжение среза $[\tau_{cp}] = 60$ МПа и допускаемое напряжение смятия $[\sigma_{cm}] = 80$ МПа.

Задача 1: определить минимальный диаметр заклепки d_o из расчета на срез и наименьшую толщину соединяемых пластин δ из расчета на смятие для соединении, показанных на Рисунок 1 и на Рисунок 2, если на них действует сила $F=5\kappa H$.

Задача 2: определить максимальную допускаемую силу F из расчета на срез и наименьшую толщину соединяемых пластин δ из расчета на смятие для соединения, показанного на Рисунок 3, если диаметр заклепки $d_0 = 8$ мм.

Изм	Лист	№ докум	Подп	Дата

Рисунок 1 - расчетная схема соединения а

Рисунок 2 - расчетная схема соединения б

Рисунок 3 - расчетная схема соединения в

Изм.	Лист	№ докум	Подп	Дата

1 Ход работы

1.1 Задача 1

1.1.1 Расчетная схема а

Для заклепочного соединения условие прочности на срез имеет вид:

$$au_{cp} = \frac{F}{A_{cp}} = \frac{4F}{\pi \cdot d_o^2 \cdot z \cdot i} \leq [\tau_{np}],$$

где: z – число заклепок;

і – число плоскостей среза.

В соответствии с расчетной схемой на Рисунок 1 соединение односрезное и количество заклепок, испытывающих нагрузку в направлении действия внешней нагрузки, z=2. Определяем из условия прочности минимальный диаметр заклепки:

$$d_o \geq \sqrt{\frac{4F}{\pi \cdot z \cdot i \cdot [\tau_{cp}]}} = \sqrt{\frac{4 \cdot 5000}{3,14 \cdot 2 \cdot 1 \cdot 60 \cdot 10^6}} = 0,00728 \text{M} = 7,28 \text{MM}.$$

Округляя до стандартного диаметра сверла, принимаем диаметр заклепки $d_0 = 7,5\,$ мм. Наименьшую толщину соединяемых пластин определим из расчета заклепочного соединения на смятие:

$$\delta = \frac{F}{d_o \cdot [\sigma_{cM}] \cdot z} = \frac{5000 \cdot 10^3}{7.5 \cdot 80 \cdot 10^6 \cdot 2} = 0,00417 M = 4,17 MM.$$

В соответствии со стандартным листовым прокатом примем толщину соединяемых пластин $\delta=5$ мм. Соответственно толщины накладок можно принять $\delta 1=2,5$ мм.

1.1.2 Расчетная схема б

Для заклепочного соединения условие прочности на срез имеет вид:

$$\tau_{cp} = \frac{F}{A_{cp}} = \frac{4F}{\pi \cdot d_o^2 \cdot z \cdot i} \leq [\tau_{np}],$$

где: z – число заклепок;

і – число плоскостей среза.

В соответствии с расчетной схемой на Рисунок 2 соединение двухсрезное и количество заклепок, испытывающих нагрузку в направлении действия

Изм.	Лист	№ докум	Подп	Дата

внешней нагрузки, z = 1. Определяем из условия прочности минимальный диаметр заклепки:

$$d_o \geq \sqrt{\frac{4F}{\pi \cdot z \cdot i \cdot [\tau_{cp}]}} = \sqrt{\frac{4 \cdot 5000}{3,14 \cdot 1 \cdot 2 \cdot 60 \cdot 10^6}} = 0,00728 \text{M} = 7,28 \text{MM}.$$

Округляя до стандартного диаметра сверла, принимаем диаметр заклепки $d_0 = 7,5\,$ мм. Наименьшую толщину соединяемых пластин определим из расчета заклепочного соединения на смятие:

$$\delta = \frac{F}{d_o \cdot [\sigma_{cM}] \cdot z} = \frac{5000 \cdot 10^3}{7.5 \cdot 80 \cdot 10^6 \cdot 1} = 0,00834 M = 8,34 MM.$$

В соответствии со стандартным листовым прокатом примем толщину соединяемых пластин $\delta=9$ мм. Соответственно толщины накладок можно принять $\delta 1=4,5$ мм.

1.2 Задача 2

Для заклепочного соединения условие прочности на срез имеет вид:

$$\tau_{cp} = \frac{F}{A_{cp}} = \frac{4F}{\pi \cdot d_o^2 \cdot z \cdot i} \leq [\tau_{np}],$$

где: z — число заклепок;

і – число плоскостей среза.

В соответствии с расчетной схемой на Рисунок 3 соединение односрезное и количество заклепок, испытывающих нагрузку в направлении действия внешней нагрузки, z=2. Определяем из условия прочности максимальную допускаемую силу F:

$$F \le \frac{\pi \cdot d_o^2 \cdot z \cdot i \cdot [\tau_{cp}]}{4} = \frac{3,14 \cdot 8^2 \cdot 2 \cdot 1 \cdot 60 \cdot 10^6}{10^6 \cdot 4} = 6028,8H.$$

Наименьшую толщину соединяемых пластин определим из расчета заклепочного соединения на смятие:

$$\delta = \frac{F}{d_o \cdot [\sigma_{cu}] \cdot z} = \frac{6028, 8 \cdot 10^3}{8 \cdot 80 \cdot 10^6 \cdot 2} = 0,00471 \text{M} = 4,71 \text{MM}.$$

Изм	Лист	№ докум	Подп	Дата

В соответствии со стандартным листовым прокатом примем толщину
соединяемых пластин $\delta = 5$ мм. Соответственно толщины накладок можно
принять $\delta 1 = 2,5$ мм.
1306.558408.000 ПЗ

Изм Лист № докум

Подп

Дата

Заключение

В ходе выполнения лабораторной работы были выполнены задачи по определению минимальных диаметров для заклепок, а также задача по определению максимально допускаемую силу F из расчета на срез. Также были выполнены расчеты по определению наименьшей толщины соединяемых пластин δ из расчета на смятие.

Были сделаны выводы о том, что чем больше числа заклепок, а также плоскостей среза (при прочих равных), тем меньший диаметр необходим для каждой из заклепок. Также стоит отметить, что чем больше диаметр заклепки, то тем большую нагрузку может испытывать вся конструкция в целом.

Изм	Лист	№ докум	Подп	Дата

Список литературы

- 1. Александров А.В., Потапов В.Д., Державин Б.П. Сопротивление материалов: Учеб. Для вузов. М.: Высш. шк., 2001 560 с.
- Дарков А.В., Шпиро Г.С. Сопротивление материалов: Учеб. для вузов.
 М.: Высш. шк., 1989 624 с.
- 3. Сопротивление материалов с основами теории упругости и пластичности: Учеб. для вузов/под ред. Г.С. Варданяна М.: Издв-во АСВ, 1995 568 с.
- 4. Сопротивление материалов: Учеб. для вузов/под ред. Г.С. Писаренко Киев: Высш. шк, 1986 736 с.
- 5. Писаренко Г.С., Яковлев А.П., Матвеев В.В. Справочник по сопротивлению материалов Киев: Наук. Думка, 1988. 736с.

Изм.	Лист	№ докум	Подп	Дата