FMInf AlkAlg 3. vizsga 23-01-24 Neptun: _

A vizsga feladatainak **eredményeit erre** az oldalra kell írni, a **mellékszámításokat a hátoldalra** és ha oda nem fér (egyébként bőven odafér), akkor külön lapra, melynek jobb felső sarkán legyen rajta a név és a Neptunkód! A feladatok megoldásához semmilyen segédeszköz nem használható! Sikeres a vizsga ha az elért pontok száma legalább 8.

- 1. Igaz–Hamis I|H (4 pont hibás válasz –0.5 pont)
- a) Ha **A** irreducibilis nemnegatív mátrix, akkor spetrálkörén egyetlen sajátérték van, maga a spektrálkör sugara.
- b) Ha **A** tetszőleges valós mátrix, akkor az **A**^T**A** mátrixnak egyetlen pozitív szemidefinit négyzetgyöke van.
- c) Egy pozitív szemidefinit mátrix minden sajátfelbontása egyben szinguláris érték szerinti felbontás is.
- d) A nilpotens mátrixok diagonalizálhatók, de ortogonálisan nem!
- **2.** (4 pont) Válaszoljunk az alábbi kérdésre, illetve egészítsük ki a mondatot valamely tétel vagy definíció alapján!
- $a)\,$ A lineáris algebra alaptétele szerint bármely valós ${\bf A}$ mátrixra

$$\mathcal{O}(\mathbf{A})^{\perp} = \mathcal{N}(\mathbf{A}^{\mathsf{T}})$$

- b) Mátrixok kongruenciája osztályozást ad meg a szimmetrikus mátrixok terén (két mátrix egy osztályba tartozik, ha kongruensek). Hány osztályba sorolódnak így a 2×2 -es valós szimmetrikus mátrixok?
 - 6: $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$.
- c) Mi az $n \times n$ -es egységmátrix minimálpolinomja?

$$\mu(x) = x - 1$$

- d) Kapcsoljuk össze az alábbi ítéletpárokat a legerősebb állítást adó módon a \Rightarrow , \Leftarrow , \Leftrightarrow jelek valamelyikével!
 - (a) A diagonalizálható
- **A** sajátértékei különbözőek
- (b) A ortogonálisan diagonalizálható
- A szimmetrikus
- (c) A unitéren diagonalizálható
- A normális
- 3. (4 pont) Számítsuk ki a következőket!
- a) Mi a diagonális alakja az \mathbb{R}^4 teret egy síkja mentén egy másik síkra vetítő leképezésnek (a két sík altér, és közös vektoruk csak a zérusvektor).

diag(1, 1, 0, 0)

- b) Írjuk fel a $\cos(\mathbf{J})$ mátrixot, ha $\mathbf{J} = \begin{bmatrix} \pi & 1 & 0 \\ 0 & \pi & 1 \\ 0 & 0 & \pi \end{bmatrix}$. $\begin{bmatrix} -1 & 0 & \frac{1}{2} \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \text{ ui. } \cos \pi = -1, \cos' \pi = 0, \cos'' \pi = 1$
- c) Egy nemnegatív 4×4 -es irreducibilis mátrix spektrálsugara 1, és az egyik sajátértéke -i. Mik a sajátértékei? 1, i, -1, -i, ui. a spektrálkörön lévő sajátértékek szabálvos sokszöget alkotnak
- d) Az $\mathbf{A} \in \mathbb{R}^{5 \times 9}$ mátrix nullitása 5. Mennyi az \mathbf{A}^T nullitása?

Név:

4. (2 pont) Határozzuk meg az $\mathbf{A}=\begin{bmatrix}4&0&0\\0&1&1\\0&1&-1\end{bmatrix}$ mátrix

Frobenius- és 2-normáját!

 $\|\mathbf{A}\|_F = \sqrt{20}$, $\|\mathbf{A}\|_2 = 4$ (2-norma a legnagyobb szinguláris érték, ami az $\mathbf{A}^\mathsf{T}\mathbf{A}$ legnagyobb sajátértékének négyzetgyöke, ami szimmetrikus mátrix esetén a legnagyobb absz.értékű sajátérték absz.értéke)

5. (2 pont) A 8×8 -as **A** mátrix sajátértékei 3 és 1. Az $\mathbf{A}-3\mathbf{I}$ hatványainak rangja rendre 6, 4, 3, míg $\mathbf{A}-\mathbf{I}$ hatványainak rangja rendre 7, 6, 5. Írjuk fel **A** Jordan-féle normálalakját!

[3	1	0	0	0	0	0	0
0	3	1	0	0	0	0	0
0	0	3	0	0	0	0	0
$\overline{0}$	0	0	3	1	0		0
0	0	0	0	3	0	0	0
$\overline{0}$	0	0	0		1	1	0
0	0	0	0		0	1	1
0	0	0	0	0	0	0	1

6. (2 pont) Adjuk meg az ${\bf A}$ mátrix Jordan-alakját és egy Jordan-bázisát, ahol

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 3 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

Az 1-hez tartozó sajátaltér 1-dimenziós, így egyetlen J-blokk tartozik hozzá. (Az ált.s.v-hoz: keresünk egy vektort, amit $(\mathbf{A}-\mathbf{I})^2$ a **0**-ba visz

$$\mathbf{J} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \text{ J-lánc: } \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix} \leftarrow \begin{bmatrix} 3 \\ 3 \\ 0 \end{bmatrix} \leftarrow \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$

7. (2 pont) Döntsük el, hogy primitív-e az alábbi mátrix, és tömören igazoljuk.

$$\begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Irreducibilis, de nem primitív, mert a négyzete reducibilis.