FRM Part 1

Book 3 - Financial Markets and Products

COMMODITY FORWARDS AND FUTURES

Learning Objectives

After completing this reading you should be able to:

- Apply commodity concepts such as storage costs, carry markets, lease rate, and convenience yield.
- Explain the basic equilibrium formula for pricing commodity forwards.
- Describe an arbitrage transaction in commodity forwards, and compute the potential arbitrage profit.
- ✓ Define the lease rate and explain how it determines the no-arbitrage values for commodity forwards and futures.
- Define carry markets, and illustrate the impact of storage costs and convenience yields on commodity forward prices and no-arbitrage bounds.
- ✓ Compute the forward price of a commodity with storage costs.
- Compare the lease rate with the convenience yield.
- Identify factors that impact gold, corn, electricity, natural gas, and oil forward prices.
- Compute a commodity spread.
- Explain how basis risk can occur when hedging commodity price exposure.
- Evaluate the differences between a strip hedge and a stack hedge and explain how these differences impact risk management.
- Provide examples of cross-hedging, specifically the process of hedging jet fuel with crude oil and using weather derivatives.
- Explain how to create a synthetic commodity position, and use it to explain the relationship between the forward price and the expected future spot price.

Storage Costs, Carry Markets, Lease Rate, and Convenience Yield

Storage cost

- A forward contract to exchange 10,000 tons of corn six months from today would have warehouse costs.
- Others do not have such costs, e.g., a forward contract on goods that are used immediately, such as oil or goods that perish quickly, such as tomatoes
- A commodity for which the forward price compensates a commodity owner for costs of storage is called a **carry market**.

Lease rate

- A trader can also lend out a commodity in the short term if they do not plan to use it.
 - The rate of return demanded by the lender is referred to as the lease rate.

Convenience yield

- A good example of a consumption asset that has convenient yield is oil.
 - If you hold oil, you'll have the convenience of selling it at a higher price during a shortage.

Equilibrium Formula for Pricing Commodity Forwards

The prepaid forward price is by definition the present value of the commodity on the future date:

$$F_{0,T}^P = e^{-aT} E_0[S_T]$$

- Where:
 - o $F_{0,T}^P$ = prepaid forward price; and
 - \circ a =discount rate for the commodity.
- The forward price is the future value of the prepaid forward price computed using the risk-free rate:

$$F_{0,T} = F_{0,T}^P e^{rT}$$

We can combine these two equations to come up with the forward price:

$$\boldsymbol{F}_{0,T} = \boldsymbol{E}_0(\boldsymbol{S}_T) \boldsymbol{e}^{-(a-r)T}$$

Which implies that the commodity forward price is the discounted expected spot price.

Cash-and-carry arbitrage

- Cash-and-carry arbitrage involves buying a commodity in cash form, holding it, and delivering it into a futures contract. The steps involved are as follows:
- At initiation
 - Borrow money for the term of the contract at market interest rates
 - Buy the underlying commodity at the spot price
 - Sell a futures contract at the current futures price
- At expiration
 - Deliver the commodity, receiving the futures contract price in the process.
 - Repay the loan plus interest.

Reverse cash-and-carry arbitrage

- A reverse cash-and-carry arbitrage strategy involves combining a short position in a commodity and a long position in the futures for that commodity. The steps involved are as follows:
- At the initiation:
 - Sell commodity short
 - Lend short sale proceeds at market interest rates
 - Buy futures contract at market price
- At the expiration:
 - Collect proceeds of the loan
 - Take delivery of the commodity for the futures price and cover the short sale commitment

Example >>

Example

- The current spot price of a bushel of corn is \$10.
 - There exists an active lending market for corn, where the annual lease rate is equal to 8%, the effective annual risk-free rate is equal to 10%, and the 1-year forward price for corn is \$10.35 per bag.
- Does arbitrage exist? What is the risk-free profit?

Answer

- Yes, the risk-free profit is \$0.13.
- Expected spot price in 1 year = $S_0e^{(r-\delta)T}$ $\circ = 10e^{(10\%-8\%)1} = 10.20$
- Since 10.35 is greater than 10.20, arbitrage exists.

To take advantage of this opportunity, an arbitrageur can make the following moves:

- At initiation
 - Borrow \$10 at the rate of 10%
 - Buy a bushel of corn at \$10
 - Go short on a corn futures contract
 - Lend the bushel of corn at 8%
- At maturity
 - Take back the bushel of corn plus proceeds from the lease amounting to \$0.83 (= $\$10e^{8\%\times1}$ \$10)
 - Deliver the bushel of corn; receive \$10.35
 - Repay borrowed funds amounting to $$11.05 (= 10 e^{10\% \times 1})$
- \rightarrow Net profit = 10.35 + 0.83 11.05 = \$0.13

Factors that Impact Gold, Corn, Electricity, Natural Gas, and Oil Forward Prices

Gold

- Durable, non-perishable
- When the lease rate is positive, investors prefer to hold synthetic gold rather than physical gold

Corn

- Seasonality in production, plus storage costs
- The forward price curve of corn rises to reward storage between harvests, and it falls at harvest

Electricity

- Storage is often not possible
- Most highly volatile commodity on a daily basis because of day-to-day market forces (demand and supply)

Natural gas

- Seasonality, transportation costs, and storage costs are important.
- These factors influence the forward curve.

Oil

· Transportation costs are important

Commodity Spread

- Commodity spread refers to the price differential between a raw material commodity and the finished product created from that commodity.
 - For example, crude oil can be refined to produce heating oil, gasoline, and kerosene.
- To trade on the spread, an investor typically combines a long position in raw materials with a short position in a finished product.

Common commodity spreads include:

1. Crack spread

- Crack spread describes the price differential between crude oil and the various petroleum products extracted from it, particularly gasoline, heating oil, and kerosene.
- The refining process is called cracking and results in a ratio between the raw material and the final products made.

Example >>

Commodity Spread

1. Crack spread

Example

- A trader plans to buy crude oil in one month to produce heating oil and gasoline in two months.
 - The 1-month futures price for crude oil is currently \$30 / barrel .
 - The 2-month futures prices for heating oil and gasoline are \$43 / barrel and \$33.5 / barrel, respectively.
- Calculate the 7-4-3 crack (commodity) spread.

Solution

- The 7-4-3 spread implies that when refined, 7 barrels of crude oil produce 4 barrels of heating oil and 3 barrels of gasoline.
- By going long on crude oil and short in both heating oil and gasoline, the trader can lock in a profit:
 - o Profit for a 7-4-3 spread = $(4 \times \$43 + 3 \times \$33.5 7 \times \$30) = \62.5
 - \circ Thus, the profit per barrel of crude oil = \$62.5 / 7 = \$8.93

Commodity Spread

2. Crush spread

- A crush spread describes the price differential between soybeans and its two main products: soybean meal and soybean oil.
 - A trader takes a long position in soybeans and short positions in soybean meal and soybean oil.

3. Spark spread

- The spark spread uses natural gas as the raw material and electricity as the finished product.
 - The heat rate can be calculated in terms of Btu/kWh.

Basis Risk in Commodity Hedging

- Basis risk in commodity futures and forwards occurs when spot price and the futures price do not converge.
- Basis risk manifests in two situations:
 - When the risk attached to a commodity's price cannot be entirely hedged using the commodity futures contracts available in the market due to a quantity mismatch.
 - In cross-hedging, when futures contracts on a particular commodity are unavailable, hedgers turn to closely related commodities that exhibit similar price movement.
 - A good example would be the use of gasoline futures to hedge exposure to jet fuel if jet fuel futures do not exist in the market. Cross-hedging often results in imperfect hedges.
 - II. Another example would be an energy-related company hedging using weather derivatives.

Strip Hedging vs. Stack-and-roll hedging

Strip Hedging

 Happens when a series of futures contracts over many maturities ranges are purchased to hedge the underlying cash positions.

Example

- Suppose a farmer has entered into a contract to supply a fixed number of bushels of corn per month at a fixed price.
- The farmer could set up a strip hedge by buying futures contracts that match the maturity and quantity for every month of the obligation.
- A strip hedge strategy has no basis risk because the basis becomes locked.

Strip Hedging vs. Stack-and-roll hedging

Stack-and-roll hedging

- Involves purchasing futures contracts for a nearby delivery date and on that date rolling the position forward by purchasing a fewer number of contracts.
 - The process continues for future delivery dates until the exposure at each maturity date is hedged.

Example

- Using the example from the farmer, a stack hedge would involve entering into a one-month futures contract equaling the total value of the year's promised deliveries.
- At the end of the first month, the farmer rolls into the next one-month contract, and so forth.
- In normal circumstances, short-term contracts require fewer transaction costs. Thus, stack-and-roll hedges are cheaper than strip hedges.
- However, stack-and-roll hedging exposes the hedger to basis risk.

Book 3 - Financial Markets and Products

COMMODITY FORWARDS AND FUTURES

Learning Objectives Recap:

- ✓ Apply commodity concepts such as storage costs, carry markets, lease rate, and convenience yield.
- Explain the basic equilibrium formula for pricing commodity forwards.
- Describe an arbitrage transaction in commodity forwards, and compute the potential arbitrage profit.
- Define the lease rate and explain how it determines the no-arbitrage values for commodity forwards and futures.
- Define carry markets, and illustrate the impact of storage costs and convenience yields on commodity forward prices and no-arbitrage bounds.
- ✓ Compute the forward price of a commodity with storage costs.
- Compare the lease rate with the convenience yield.
- ✓ Identify factors that impact gold, corn, electricity, natural gas, and oil forward prices.
- Compute a commodity spread.
- Explain how basis risk can occur when hedging commodity price exposure.
- Evaluate the differences between a strip hedge and a stack hedge and explain how these differences impact risk management.
- Provide examples of cross-hedging, specifically the process of hedging jet fuel with crude oil and using weather derivatives.
- Explain how to create a synthetic commodity position, and use it to explain the relationship between the forward price and the expected future spot price.