MATH 102, Spring 2023 Review for Exam III

Name:	
Row and Seat:	

Exam III has questions 1 through 9 with a total of 18 points.

- 1. **Show all of your work.** Do not expect to earn full credit for a correct answer without the needed work.
- 2. Divine intervention is *not* a substitute for showing your work.
- 3. If your answer is wrong, but your work shows me that you know the major steps in solving a problem, you will likely earn some partial credit.
- 4. Your work should convince me that not only could you correctly solve the given problem, but you could also solve any related problem.
- 5. If a question asks for a sentence, write your answer as an English sentence.
- 6. No talking, no sharing calculators, and no scratch paper.
- 7. Turn your phone off and put it out of sight.
- 8. Clear your desk of everything, except a pencil, eraser, and a calculator.
- 9. If you never make a mistake, you may use ink; otherwise use a pencil.
- 10. Do not unstaple the pages of your exam.
- 11. We'll all start at the same time–it's the polite thing to do.
- 12. Write your answers in the space provided.
- 13. If you do not want something graded, erase it or clearly cross it out.
- 14. You may stare at your feet, your paper, or the ceiling, but nowhere else.
- 15. If you wear a baseball cap, wear it backwards so I can see your eyes.
- 16. Work each problem correctly.
- 17. When you are finished, collect your things, place your exam paper in the folder on the front desk, and quietly leave the room.
- 18. After you turn in your paper, I will not answer questions about the test until after it is graded.
- 19. Not knowing the rules is not a valid excuse for not following them.
- 20. Read all directions and problems carefully.

1. Find the inverse of the function $f(x) = \frac{2x+1}{x-1}$, $x \ne 1$.

2. Sketch a pretty good graph of the equation $y = 2 + \left(\frac{1}{2}\right)^x$.

3. Given that f(x) = 2x + 3 and g(x) = 1 - x, find the *numerical value* of each of the following

[2] (a)
$$f \circ g(2)$$

[2] (b)
$$g \circ f(2)$$

2 (c)
$$g \circ g(1)$$

- 2 4. Given that f(x) = 2x 3 and g(x) = 1 + x, find a formula for $f \circ g$.
 - 5. A table of values for functions f and g are

x	f(x)	x	g(x)
0	3	0	1
1	2	1	3
2	1	2	0
3	0	3	2

Find the *numerical values* of

$$\boxed{2} \qquad \text{(a)} \ f \circ g(1)$$

(b)
$$g \circ f(1)$$

When Larry retires at age 98, what is the account value?

Creek, Nevada. After *T* years, he expects the account value *V* to be $V = 1000 \times 1.082^{T}$.

9. Find each solution set.

(a)
$$2^x = 2^{1-x}$$

(b)
$$\log(x+1) = \log(2x-4)$$

(c)
$$2^x = -5$$

Greek characters

Name	Symbol	Typical use(s)
alpha	α	angle, constant
beta	β	angle, constant
gamma	γ	angle, constant
delta	δ	limit definition
epsilon	ϵ or ϵ	limit definition
theta	θ or ϑ	angle
pi	π or π	circular constant
phi	ϕ or φ	angle, constant

Named sets

ſ	empty set	Ø
ı	real numbers	R
1	ordered pairs	\mathbf{R}^2

integers	\mathbf{z}
positive integers	$\mathbf{Z}_{>0}$
positive reals	$\mathbf{R}_{>0}$

Set symbols

Meaning	Symbol	
is a member	€	
subset	C	
intersection		

Meaning	Symbol
union	U
complement	superscript ^C
set minus	\

Logic symbols

Meaning	Symbol
negation	_
and	^
or	V
implies	\Longrightarrow

Meaning	Symbol
equivalent	=
iff	\iff
for all	\forall
there exists	∃

Arithmetic properties of R

$$\begin{array}{ll} (\forall a,b \in \mathbf{R})(a+b=b+a) & \text{commutivity} \\ (\forall a,b,c \in \mathbf{R})(a+(b+c)=(a+b)+c) & \text{associative} \\ (\forall a,b \in \mathbf{R})(ab=ba) & \text{commutivity} \\ (\forall a,b,c \in \mathbf{R})(a(bc)=(ab)c) & \text{associative} \\ (\forall a,b,c \in \mathbf{R})(a(b+c)=ab+ac) & \text{distributive} \end{array}$$

Intervals

For numbers a and b, we define the intervals

$$(a,b) = \{x \in \mathbf{R} \mid a < x < b\}$$

$$[a,b) = \{x \in \mathbf{R} \mid a \le x < b\}$$

$$(a,b] = \{x \in \mathbf{R} \mid a < x \le b\}$$

$$[a,b] = \{x \in \mathbf{R} \mid a \le x \le b\}$$

Distance & Midpoint

The distance between the points (x_1,y_1) and (x_2,y_2) is $\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}.$

$$\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right).$$

Exponents

For a, b > 0 and m, n real:

$$a^{0} = 1,$$
 $0^{a} = 0$
 $1^{a} = 1,$ $a^{n}a^{m} = a^{n+m}$
 $a^{n}/a^{m} = a^{n-m},$ $(a^{n})^{m} = a^{n+m}$
 $a^{-m} = 1/a^{m},$ $(a/b)^{m} = a^{m}/b^{m}$

Radicals

$$\begin{split} \sqrt[n]{a} &= a^{1/n} \\ \sqrt[n]{ab} &= \sqrt[n]{a} \sqrt[n]{b} \quad \text{(provided } a,b \geq 0) \\ \sqrt[m]{\sqrt[n]{a}} &= \sqrt[m]{a} \\ \sqrt[n]{\frac{a}{b}} &= \frac{\sqrt[n]{a}}{\sqrt[n]{b}} \\ \sqrt[n]{a^n} &= \begin{cases} a & n \text{ odd} \\ |a| & n \text{ even} \end{cases} \end{split}$$

Identities

$$\begin{split} a(b+c) &= ab + ac \\ &((a+b)(c+d)) = ac + ad + bc + bd \\ &\frac{ab+ac}{a} = b+c \quad \text{(provided } a \neq 0) \\ &\frac{\frac{a}{b}}{\frac{c}{a}} = \frac{ad}{bc} \quad \text{(provided } b, d \neq 0) \\ &\sqrt{ab} = \sqrt{a}\sqrt{b} \quad \text{(provided } a \geq 0, b \geq 0) \\ &\ln(ab) = \ln(a) + \ln(b) \quad \text{(provided } a \geq 0, b \geq 0) \end{split}$$

Solution of Equations

Algebraic

$$\begin{split} & [ab=0] \equiv [a=0 \text{ or } b=0] \\ & [a^2=b^2] \equiv [a=b \text{ or } a=-b] \\ & \left[\frac{a}{b}=0\right] \equiv [a=0 \text{ and } b\neq 0] \\ & \left[\frac{a}{b}=\frac{c}{d}\right] \equiv [ad=bc \text{ and } b\neq 0 \text{ and } d\neq 0] \\ & [|a|=|b|] \equiv [a=b \text{ or } a=-b] \\ & [\sqrt{a}=b] \equiv [a=b^2 \text{ and } b\geq 0] \end{split}$$

For $a \neq 0$,

$$\left[ax^{2} + bx + c = 0\right] \equiv \left[x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}\right]$$

Exponential

$$\begin{bmatrix} \ln(a) = 0 \end{bmatrix} \equiv \begin{bmatrix} a = 1 \end{bmatrix}$$
$$\begin{bmatrix} e^a = 1 \end{bmatrix} \equiv \begin{bmatrix} a = 0 \end{bmatrix}$$
$$\begin{bmatrix} \ln(a) = b \end{bmatrix} \equiv \begin{bmatrix} a = e^b \end{bmatrix}$$

Logarithms

$$\log_a(x) = \frac{\ln(x)}{\ln(a)}$$

Graph Translations

For the graph of F(x,y) = 0

- The graph of F(x-h,y)=0 is the graph of F(x,y)=0translated h units to the right.
- The graph of F(x, y k) = 0 is the graph of F(x, y) = 0translated k units up.
- The graph of F(x/c, y) = 0 is the graph of F(x, y) = 0stretched a factor of c horizontally.
- The graph of F(x,y/c)=0 is the graph of F(x,y)=0 Compound Interest stretched a factor of c vertically.

Circles

Equation of circle centered at (h,k) with radius r is

$$(x-h)^2 + (y-k)^2 = r^2$$
.

Expanded the equation is

$$x^2 - 2hx + y^2 - 2ky = r^2 - h^2 - k^2.$$

Parabolas & Lines

The vertex of the parabola $ax^2 + bx + c = y$ is

$$\left(x = -\frac{b}{2a}, y = c - \frac{b^2}{4a}\right).$$

An equation of the line that contains the points (x_1, y_1) and Graph of natural logarithm

$$y - y_1 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)(x - x_1).$$

The number $\frac{y_2 - y_1}{x_2 - x_1}$ is the slope.

Function notation

dom(F)	domain of function F
range(F)	range of function F

Domains, Ranges, and Zeros

Function	Domain	Range	Zeros
ln, log	$(0,\infty)$	$(-\infty, \infty)$	1
exp	$(-\infty, \infty)$	$(0, \infty)$	Ø
abs	$(-\infty, \infty)$	$(0,\infty)$	0
\checkmark	$(0,\infty)$	$(0,\infty)$	0
3/	$(-\infty, \infty)$	$(-\infty, \infty)$	0
floor	$(-\infty, \infty)$	\mathbf{z}	[0,1)
ceiling	$(-\infty, \infty)$	\mathbf{z}	[-1,0]

Interest rate r compounded n times per year

$$A = P(1 + r/n)^{nt}$$

Continuous compounding:

$$A=P\mathrm{e}^{rt}$$

Exponential Growth

The exponential function that contains the points $(t = t_o, y = y_o)$ and $(t = t_1, y = y_1)$ is

$$y = y_o \left(\frac{y_1}{y_o}\right)^{\frac{t-t_o}{t_1-t_o}}.$$

Graphs

Graph of natural exponential

Common Errors

Error	Correct or Example
x/0 = 0 or x	^x / ₀ is undefined
$-x^2 = x^2$	$-x^2 = -(x^2)$
a/(b+c) = a/b + a/c	$\frac{1}{(1+1)} \neq \frac{1}{1} + \frac{1}{1}$
a+bx/a = 1 + bx	a + bx/a = 1 + bx/a
$(a+b)^2 = a^2 + b^2$	$(a+b)^2 = a^2 + 2ab + b^2$
$\sqrt{a+b} = \sqrt{a} + \sqrt{b}$	$\sqrt{1+1} \neq \sqrt{1} + \sqrt{1}$

Revised February 24, 2023by Barton Willis. This work is licensed under Attribution 4.0 International (CC BY 4.0)

