

Interesting Combinatorics In Higher Auslander Theory

Adam Klepáč 10th Day of Doctoral Students of the School of Mathematics

Charles University in Prague

Outline

Fundamentals

Algebras, Modules, Quivers

Auslander-Reiten Theory

Path Algebras, Representations, AR Quivers

Elements

Fundamentals

Algebras, Modules, Quivers

k-algebra

An algebra over a field k is a k-vector space equipped with a bilinear product.

- Complex numbers as the vector space R² with the typical product of complex numbers.
- · Ring of polynomials (over k) with polynomial multiplication.
- Ring of square matrices with matrix multiplication

k-algebra

An algebra over a field k is a k-vector space equipped with a bilinear product.

- Complex numbers as the vector space \mathbb{R}^2 with the typical product of complex numbers.
- Ring of polynomials (over k) with polynomial multiplication.
- Ring of square matrices with matrix multiplication

k-algebra

An algebra over a field k is a k-vector space equipped with a bilinear product.

- Complex numbers as the vector space \mathbb{R}^2 with the typical product of complex numbers.
- Ring of polynomials (over *k*) with polynomial multiplication.
- Ring of square matrices with matrix multiplication

k-algebra

An algebra over a field k is a k-vector space equipped with a bilinear product.

- Complex numbers as the vector space \mathbb{R}^2 with the typical product of complex numbers.
- Ring of polynomials (over *k*) with polynomial multiplication.
- Ring of square matrices with matrix multiplication.

Λ -module

Let Λ be a k-algebra. A right Λ -module is a pair (M,\cdot) where M is a k-vector space and $\cdot: M \times A \to M$ is a binary operation satisfying natural commutativity and associativity rules.

Examples

- Each algebra is a module (left or right) over itself.
- k[x, y] = (k[x])[y] is a module (left or right) over k[x].

Indecomposability ('prime' modules)

A (right) Λ -module M is indecomposable if $M \neq 0$ and $M = M_1 \oplus M_2$ implies that $M_1 = 0$ or $M_2 = 0$.

Λ -module

Let Λ be a k-algebra. A right Λ -module is a pair (M,\cdot) where M is a k-vector space and $\cdot: M \times A \to M$ is a binary operation satisfying natural commutativity and associativity rules.

Examples

- · Each algebra is a module (left or right) over itself.
- k[x, y] = (k[x])[y] is a module (left or right) over k[x].

Indecomposability ('prime' modules)

A (right) Λ -module M is indecomposable if $M \neq 0$ and $M = M_1 \oplus M_2$ implies that $M_1 = 0$ or $M_2 = 0$.

Λ -module

Let Λ be a k-algebra. A right Λ -module is a pair (M,\cdot) where M is a k-vector space and $\cdot: M \times A \to M$ is a binary operation satisfying natural commutativity and associativity rules.

Examples

- Each algebra is a module (left or right) over itself.
- k[x, y] = (k[x])[y] is a module (left or right) over k[x].

Indecomposability ('prime' modules)

A (right) Λ -module M is indecomposable if $M \neq 0$ and $M = M_1 \oplus M_2$ implies that $M_1 = 0$ or $M_2 = 0$.

Λ -module

Let Λ be a k-algebra. A right Λ -module is a pair (M,\cdot) where M is a k-vector space and $\cdot: M \times A \to M$ is a binary operation satisfying natural commutativity and associativity rules.

Examples

- Each algebra is a module (left or right) over itself.
- k[x, y] = (k[x])[y] is a module (left or right) over k[x].

Indecomposability ('prime' modules)

A (right) Λ -module M is indecomposable if $M \neq 0$ and $M = M_1 \oplus M_2$ implies that $M_1 = 0$ or $M_2 = 0$.

Λ -module homomorphism

A map $f:M\to N$ between two (right) Λ -modules M and N is a Λ -module homomorphism if it's k-linear and respects \cdot , that is

$$f(m \cdot \lambda) = f(m) \cdot \lambda \text{ for } \lambda \in \Lambda, m \in M.$$

Section/retraction

A Λ -module homomorphism $f: M \to N$ is

- a section if $\exists g: N \to M$ such that $g \circ f = 1_N$.
- a retraction if $\exists h : N \to M$ such that $f \circ h = 1_M$.

A-module homomorphism

A map $f:M\to N$ between two (right) Λ -modules M and N is a Λ -module homomorphism if it's k-linear and respects \cdot , that is

$$f(m \cdot \lambda) = f(m) \cdot \lambda \text{ for } \lambda \in \Lambda, m \in M.$$

Section/retraction

A Λ -module homomorphism $f:M\to N$ is

- a section if $\exists g: N \to M$ such that $g \circ f = 1_N$.
- a retraction if $\exists h : N \to M$ such that $f \circ h = 1_M$.

Irreducibility ('prime' homomorphisms)

A Λ -module homomorphism $f: M \to N$ is irreducible if

- f is neither a **section** nor a **retraction**;
- whenever $f = f_2 \circ f_1$, then f_2 is a retraction or f_1 is a section.

We denote the k-vector space of irreducible homomorphisms $M \to N$ as Irr(M, N).

Irreducibility ('prime' homomorphisms)

A Λ -module homomorphism $f: M \to N$ is irreducible if

- f is neither a **section** nor a **retraction**;
- whenever $f = f_2 \circ f_1$, then f_2 is a retraction or f_1 is a section.

We denote the k-vector space of irreducible homomorphisms $M \to N$ as Irr(M, N).

Quivers

Quiver

A quiver is an oriented graph with multiple edges and loops.

Examples

Quivers

Quiver

A quiver is an oriented graph with multiple edges and loops.

Examples

Quivers

Quiver

A quiver is an oriented graph with multiple edges and loops.

Examples

Auslander-Reiten Theory

Path Algebras, Representations, AR Quivers

Path algebras

The path algebra of a quiver

Let Q be a quiver. The path algebra kQ of Q is the k-algebra whose k-vector space has as its basis all paths of length ≥ 0 in Q and the product of two basis elements is the concatenation of paths.

Path algebras – Example

Consider the quiver

The basis of the path algebra kQ is the triple (e_1, e_2, a) (where e_i means 'stay at i') and its multiplication table is

$$\begin{array}{c|cccc} & e_1 & e_2 & a \\ e_1 & e_1 & 0 & 0 \\ e_2 & 0 & e_2 & a \\ a & a & 0 & 0 \end{array}$$

It's actually isomorphic to the k-algebra of lower triangular 2×2 matrices over k.

Path algebras – Example

Consider the quiver

$$\begin{array}{cccc}
\bullet & \longleftarrow & \bullet \\
1 & & 2
\end{array}$$

The basis of the path algebra kQ is the triple (e_1, e_2, a) (where e_i means 'stay at i') and its multiplication table is

$$\begin{array}{c|cccc} & e_1 & e_2 & a \\ \hline e_1 & e_1 & 0 & 0 \\ e_2 & 0 & e_2 & a \\ a & a & 0 & 0 \\ \hline \end{array}$$

t's actually isomorphic to the k-algebra of lower triangular 2×2 matrices over k.

Path algebras – Example

Consider the quiver

$$\begin{array}{ccc}
\bullet & \longleftarrow & \bullet \\
1 & & 2
\end{array}$$

The basis of the path algebra kQ is the triple (e_1, e_2, a) (where e_i means 'stay at i') and its multiplication table is

$$\begin{array}{c|cccc} & e_1 & e_2 & a \\ \hline e_1 & e_1 & 0 & 0 \\ e_2 & 0 & e_2 & a \\ a & a & 0 & 0 \\ \hline \end{array}$$

It's actually isomorphic to the k-algebra of lower triangular 2×2 matrices over k.

Every algebra is a path algebra

Theorem

Let k be an algebraically closed field and Λ a basic, connected and finite-dimensional algebra over k. Then there exists a finite connected quiver Q such that $\Lambda=kQ/I$ for some admissible ideal I of kQ.

Integrals and Other Expressions

$$\iint_{\partial\Omega} f(x) \mathrm{d}x \in \mathbb{C} \tag{1}$$

$$E = mc^2 \tag{2}$$

$$F = ma (3)$$

m Mass

c Speed of light

Theorems, Lemmas, ...

Theorem

The following statement is correct

$$\frac{\partial f(\vec{x})}{\partial x_i} = \sum_{l=1}^{L} \cos\left(l\frac{2\pi}{L} + 0\right) \tag{4}$$

Elements

Typography

The theme provides sensible defaults to \emph{emphasize} text, \alert{accent} parts or show \textbf{bold} results.

becomes

The theme provides sensible defaults to *emphasize* text, accent parts or show **bold** results.

Font feature test

- Regular
- Italic
- · SMALL CAPS
- · Bold
- · Bold Italic
- · BOLD SMALL CAPS
- Monospace
- · Monospace Italic
- · Monospace Bold
- · Monospace Bold Italic

Lists

Items

- Milk
- Eggs
- Potatoes

Enumerations

- 1. First,
- 2. Second and
- 3. Last.

Descriptions

PowerPoint Meeh.

Beamer Yeeeha.

Tables

Table 1: Largest cities in the world (source: Wikipedia)

City	Population
Mexico City	20,116,842
Shanghai	19,210,000
Peking	15,796,450
Istanbul	14,160,467

Blocks

Three different block environments are pre-defined and may be styled with an optional background color.

Default

Block content.

Alert

Block content.

Example

Block content.

Default

Block content.

Alert

Block content.

Example

Block content.

Line plots

Backup slides

Sometimes, it is useful to add slides at the end of your presentation to refer to during audience questions.

The best way to do this is to include the **appendixnumberbeamer** package in your preamble and call **\appendix** before your backup slides.

The theme will automatically turn off slide numbering and progress bars for slides in the appendix.