Chapter 27 Even Answers

2. 3.64 h

4. (a) See solution

(b) 1.05 mA

6. $\frac{q\omega}{2\pi}$

8. 0.265 C

10. (a) 2.21×10^{-7} m

(b) No. Their electrostatic repulsion is measured by a potential of only 6.49 mV.

12. 0.130 mm/s

14. (a) $3.75 \text{ k}\Omega$

(b) 536 m

16. $0.0181 \ \Omega \cdot m$

18. (a) $\sim 10^{18} \Omega$

(b) $\sim 10^7 \,\Omega$

(c) $\sim 10^{-16} \text{ A}, \sim 10^9 \text{ A}$

20. R/9

22. $r_{AI} / r_{Cu} = 1.29$

24. 378 Ω

26. (a) unaffected

(b) doubles

(c) doubles

(d) unchanged

28. 1.98 A

30. $R_n = 5.56 \text{ k}\Omega, \ R_c = 4.44 \text{ k}\Omega$

32. 1.71Ω

34. 0.153Ω

36. $2.52 \times 10^3 \, ^{\circ}\text{C}$

38. 448 A

 $40. \qquad \frac{(\Delta V)^2 \Delta t}{mc(T_2 - T_1)}$

42. (a) 3.17 m

(b) 340 W

(a) 0.660 kWh 44.

- (b) 3.96 cents
- 295 metric ton/h **46**.
- **48**. 672 s
- **50**. \$2.88/day
- **52**. (a) 576 Ω , 144 Ω

- (b) 4.80 s, lower potential energy
- (c) 0.0400 s, changes to heat and light (d) \$1.26, energy at 1.94×10^{-8} \$ / J

- 50.0 MW **54**.
- **56**. 1.56 cm
- (a) 116 V **58**.

- (b) 12.8 kW
- (c) 436 W

(a) $\frac{V}{L}$ i **60**.

(b) $\frac{4\rho L}{\pi d^2}$

(d) $\frac{V}{\rho L}$ i

- 2.00Ω **62**.
- (a) $\frac{R_0 [1 + \alpha (T T_0)] [1 + \alpha' (T T_0)]}{[1 + 2\alpha' (T T_0)]}$ **64**.
- (b) 1.08 Ω changes to 1.420 $\Omega,~$ or more precisely 1.418 Ω

(a) $\frac{\rho L}{\pi \left(r_b^2 - r_a^2\right)}$

(b) $37.4 \text{ M}\Omega$

(c) $\frac{\rho}{2\pi L} \ln \left(\frac{r_b}{r_a} \right)$

(d) $1.22 \text{ M}\Omega$