8.1	Introduction. Radius of Convergence
	Power Series: $\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n + \cdots$
	Theorem: Radius of Convergence
	- For each power series $\sum a_n x^n$, there is a unique $R \ge 0$ such that $\sum a_n x^n$ converges absolutely for $ x < R$, diverges for $ x > R$
	the number R is called the radius of convergence. By convention, we say $R = \infty$ if the series is absolutely convergent for all \times
	$R = \sup A$
8,2	Convergence at the Endpoints. Abel Summation
	- One must replace the real variable X by the complex variable Z ; the function on the right is not defined when $Z=\pm i$,
	so the complex series can only converge for IZI <i, can="" converge<="" in="" means="" only="" real="" series="" th="" that="" the="" turn="" which=""></i,>
	when x <
	Abel Summation :
	- Suppose $\sum a_n x^n = f(x)$, for $ x < 1$, where $f(x)$ is defined and continuous at $x = 1$, but the series diverges at 1. Then
	we say the series Σa_n is Abel-summable to $f(1)$, and write $\Sigma a_n = f(1)$
8.3	Operations on Power Series: addition
	- Power series can be formally manipulated by the operations of algebra or calculus - added, multiplied, differentiated, or integrated
	Theorem: Linearity Theorem for Power Series
	- If $\sum q_n x^n = f(x)$ and $\sum b_n x^n = g(x)$, for $ x < K$, then for any constants p and q ,
	$\sum (pa_n + qb_n) x^n = pf(x) + qg(x), for x < K$
8.4	Multiplication of Power Series
	Theorem: Multiplication of Power Series
	$\sum a_n x^n = f(x)$ and $\sum b_n x^n = g(x)$ \Rightarrow $\sum c_n x^n = f(x)g(x)$, where $c_n = a_0b_n + a_1b_{n-1} + \cdots + a_nb_0 = \sum a_1b_3$
	Theorem: Multiplication Theorem for Series
	- Suppose $\sum a_n$ and $\sum b_n$ converge absolutely, to the sums A and B respectively. Then if we put
	$C_n = a_0 b_n + a_1 b_{n-1} + \cdots + a_n b_0 = \sum_{i \neq j = n} a_i b_j$, the series $\sum C_n$ converges absolutely to the sum $A \cdot B$