

Functional Dependencies

Last time

- Entity-Relationship diagrams as a modeling tool
- Translating ER diagrams to SQL

Today

- More theoretical material
 - Constraints
 - Redundancy
- Maier's online textbook Ch. 4-6
 - web.cecs.pdx.edu/~maier/TheoryBook/MAIER/

Entity-Relationship Diagram

Data Redundancy

S	N	L	R	W	Н
123-22-3666	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

- Application constraint: all sailors with the same rating have the same wage
- Problems due to data redundancy?

Problems due to Data Redundancy

* Problems:

- <u>Update anomaly</u>: Can change W in just the first tuple of the relation, without corresponding changes to others
- <u>Insertion anomaly</u>: What if we want to insert an employee and don't know the hourly wage for their rating?
- <u>Deletion anomaly</u>: If we delete all employees with rating 5, we lose the information about the wage for rating 5!

Solution?

Relation Decomposition

S	N	L	R	W	Н
123-22-3666	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

S	N	L	R	Н
123-22-3666	Attishoo	48	8	40
231-31-5368	Smiley	22	8	30
131-24-3650	Smethurst	35	5	30
434-26-3751	Guldu	35	5	32
612-67-4134	Madayan	35	8	40

Wages

R	W
8	10
5	7

Problem?

Modifying ER Diagram

Decomposition

- Decomposing removes redundancy
- But some queries now require a join
- Some questions:
 - How do we detect redundancy?
 - Can decompositions cause other problems beyond performance?
 - Is there always one correct way to decompose?

Functional Dependencies (FDs)

- Help us understand redundancy
- Common real-world constraint: value of attribute A uniquely determines the value of attribute B
- * Example:
 - Rating determines hourly wage
 - Beer name determines manufacturer name
- ❖ If two tuples agree on the A value, they also agree on the B value

Functional Dependencies (FDs)

- Suppose X and Y are sets of attributes,
- * Functional dependency $X \rightarrow Y$ holds over R if:

$$\forall t \in R, s \in R, \pi_X(t) = \pi_X(s) \Rightarrow \pi_Y(t) = \pi_Y(s)$$

- given two tuples in R, if their X values agree, then the Y values must also agree
- ❖ In our example: S.rating→ S.wage
- Relationship between keys and FDs?

Defining keys formally

❖ If X is a key for R, then R cannot contain two different tuples that have the same value of X

$$\neg \exists t, s \in R \ (t \neq s \land \pi_X(t) = \pi_X(s))$$

Or equivalently

$$\forall t, s \in R, \pi_X(t) = \pi_X(s) \Rightarrow t = s$$

In addition, no subset of X can have the above property (minimality of a key vs superkey)

FDs and Keys

❖ Letting U be the set of all attributes of R, we know that in the set relational model

$$\forall t, s \in R, \pi_U(t) = \pi_U(s) \iff t = s$$

FDs and Keys

Putting it all together: if X is a key then

$$\forall t, s \in R, \pi_X(t) = \pi_X(s) \Rightarrow t = s$$

But given that

$$\forall t, s \in R, \pi_U(t) = \pi_U(s) \iff t = s$$

It follows that

$$\forall t \in R, s \in R, \pi_X(t) = \pi_X(s) \Rightarrow \pi_U(t) = \pi_U(s)$$

* I.e. $X \to U$, so there is a FD from X to all the attributes of R

FDs and redundancy

* Intuitively, if $X \rightarrow Y$ and we are storing the value of Y twice for the same value of X, we have redundancy

<u>bid</u>	color	type	rental_rate
1	red	slow	\$100
2	blue	slow	\$100
3	red	fast	\$200
4	red	fast	\$200
5	blue	fast	\$200

Detecting redundancy

- Slightly more formally, need to:
- * Find all the FDs $X \rightarrow Y$ that hold
- For each one, check if X is a key
 - Remember many keys, not just primary key!
 - Netid/student id/ssn all keys for CU students...
- If it is not, we have found redundancy!

A few things we need

- * How do we find all the FDs that hold?
- Some we know from domain knowledge (the external world)
 - E.g. time, room \rightarrow coursenum
- Some we can infer using logic rules
 - If time,room→coursenum and coursenum→instructor, then time,room→instructor

Finding FDs - caution!

A	В	C
aaa	bbb	ccc
ZZZ	xxx	ddd
ZZZ	xxx	eee

- \bullet Can we be sure that this satisfies A \rightarrow B?
- No violations, sure...
- But maybe just got lucky
- \star E.g. address \rightarrow lastname
 - Could well have a table where this is true
 - But not true in general!

Reasoning about FDs

- * A set of FDs F **implies** an additional FD $X \to Y$ if on any relation where all FDs in F hold, $X \to Y$ also holds.
- We use the notation

$$F \vDash X \to Y$$

FD Implication

For example:

$$\{A \to B, B \to C\} \vDash A \to C$$

* But:

$$\{A \to B, C \to B\} \nvDash A \to C$$

We can construct a relation where the first two hold but the third one doesn't

FD Implication

- How to find all FDs that are implied by an initial set F?
- Want some algorithm to derive them all automatically, with a program
 - That way we can be sure we haven't missed any

Armstrong's Axioms

- Let X, Y, Z be attribute sets
- * Reflexivity: if $Y \subseteq X$ then $X \to Y$
- * **Augmentation**: if $X \to Y$ then $XZ \to YZ$ for any Z
- * Transitivity: if $X \to Y$ and $Y \to Z$ then $X \to Z$

Derivability

- * If we can start with a set F and apply Armstrong's Axioms to obtain a new FD $X \rightarrow Y$ then F **derives** $X \rightarrow Y$
- * Notation:

$$F \vdash X \to Y$$

Example:

$$\{A \to B, B \to C\} \vdash A \to C$$

An example

- Let's do an example derivation
- Example: Contracts(cid,sid,jid,did,pid,qty,value), and:
 - C is the key: $C \rightarrow CSJDPQV$
 - Project purchases each part using single contract: $JP \rightarrow C$
 - Dept purchases at most one part from a supplier: $SD \rightarrow P$
- ❖ Can you infer SDJ → CSJDPQV ?

Implication vs derivation

- Very important distinction:
- **❖ Implication** = true in reality
- Derivation = can be computed automatically using a program
- These two don't need to coincide!

Implication vs derivation

- ❖ Maybe the axioms are "insufficient" and the program won't derive all the FDs that are implied by F!
- ❖ Maybe the axioms are wrong, eg. "if A -> B then B -> A" and the program will derive FDs that are not implied by the starting set!

Armstrong's Axioms

- They are sound
- If

$$F \vdash X \to Y$$

* Then

$$F \vDash X \to Y$$

- ❖ If we can derive an FD from F (mechanically), then it is actually implied by F
 - No "garbage axioms"

Let's do a proof

- Let's prove soundness of the transitivity axiom!
- Axiom says:

$$\{X \to Y, Y \to Z\} \vdash X \to Z$$

❖ To show soundness we need to show that for arbitrary X, Y and Z,

$$\{X \to Y, Y \to Z\} \vDash X \to Z$$

Soundess of transitivity

- * Need to show that if a relation satisfies $X \to Y$ and $Y \to Z$, also satisfies $X \to Z$
- * Let's proceed by contradiction: suppose it satisfies the first two but not $X \to Z$
- ❖ Then it must contain two tuples that agree on X but not on Z (picture is simplified, X, Y and Z are sets of attributes in general)

X	Y	Z
x1	???	z1
x1	???	z2

Soundess of transitivity

- Now let's fill in the table given what we know about the relation
- \star Satisfies $X \to Y$ so tuples must agree on Y

X	Y	Z
x1	y1	z1
x1	y1	z2

- \star Satisfies $Y \to Z$ so tuples must agree on Z
 - But we assumed they didn't
 - So we have a contradiction as desired.

Armstrong's Axioms

- They are sound
- If

$$F \vdash X \to Y$$

* Then

$$F \vDash X \to Y$$

- ❖ If we can derive an FD from F (mechanically), then it is actually implied by F
 - Axioms don't add "garbage" FDs

Armstrong's Axioms

- They are complete
- # If

$$F \vDash X \to Y$$

* Then

$$F \vdash X \to Y$$

Applying the axioms to F allows us to find all the "extra" FDs implied by F

Closures

- \star Starting set of FDs $\,F\,$
- * The closure F^+ of F is the set of all FDs implied by FDs in F

$$F^+ = \{D \mid F \vDash D\}$$

- Can be computed using Armstrong's axioms
- Can be very large

Attribute closures

- ❖ Typically, we just want to check if a specific FD is in the closure of a set of FDs F.
- * E.g. suppose

$$F = \{A \to D, AB \to E, BI \to E, CD \to I, E \to C\}$$

* And I want to know: does F imply $AE \rightarrow D$?

Attribute closures

Want to see whether

$$F \vDash AE \rightarrow D$$

- * No need to compute entire closure F^+
- Will instead compute the attribute closure
- * Denote this as $(AE)^+$
- * This is the set of all attributes K such that $(AE \to K) \in F^+$
- * Then can just check if $D \in (AE)^+$

Computing attribute closure of X

- ❖ Closure = X
- Repeat until no change:
 - For every U o V such that $U \subset$ closure
 - ullet closure = closure $\bigcup V$
- * Let's try this on our example, compute $(AE)^+$

$$F = \{A \to D, AB \to E, BI \to E, CD \to I, E \to C\}$$

Complexity of attribute closure algo?

- ❖ a = number of attributes
- ❖ f = number of FDs in F
- * Each iteration of loop takes O(af) time
- Outer loop executed at most f times
- * Total: $O(af^2)$ time
- Can improve on this to a linear-time algorithm
 - See D. Maier's online textbook