

NEW YORK UNIVERSITY
COURANT INSTITUTE LIBRARY
4 Washington Place, New York 3, N.Y.

IMM-NYU 319
FEBRUARY 1964

NEW YORK UNIVERSITY
COURANT INSTITUTE OF
MATHEMATICAL SCIENCES

Asymptotic Solution of a Class of Second Order Differential Equations Containing a Parameter

GILBERT STENGL

PREPARED UNDER
GRANT NO. NSF-GP-1669
WITH THE
NATIONAL SCIENCE FOUNDATION

TMW-319
c.1

IMM-NYU 319
February 1964

New York University
Courant Institute of Mathematical Sciences

ASYMPTOTIC SOLUTION OF A CLASS OF SECOND ORDER
DIFFERENTIAL EQUATIONS CONTAINING A PARAMETER

Gilbert Stengle

This paper was written while the author was a member of the Courant Institute of Mathematical Sciences, New York University. This visiting membership is sponsored by the National Science Foundation under Grant No. NSF-GP-1669.
Reproduction in whole or in part is permitted for any purpose of the United States Government.

4 1 5

THE JOURNAL OF

1. *U. S. A.* 2. *U. S. A.* 3. *U. S. A.*

Journal of Health Politics, Policy and Law, Vol. 35, No. 3, June 2010
DOI 10.1215/03616878-35-3 © 2010 by The University of Chicago

19. *W. E. B. DuBois*, *The Negro Problem*, 1903.

Digitized by srujanika@gmail.com

200 500 1000 2000 3000 4000 5000 6000

Tradicionalmente se considera que el desarrollo de la cultura es una actividad que se realiza dentro de la familia y la escuela, pero en la actualidad se ha visto que el desarrollo cultural es una actividad que se realiza en la familia, la escuela y el medio social.

1. Introduction

The purpose of this article is to exhibit a technique for solving certain problems in the asymptotic theory of differential equations. We consider here, modulo inessential transformations, the most general second order equation susceptible to this technique. We have elected to give a detailed account of such a problem because the methods involved seem appropriate to a wide class of problems (see Stengle [5] for some results about n -th order equations).

We consider the equation

$$(1.1) \quad \rho^{2n} \frac{d^2y}{dt^2} = a(t, \rho)y$$

where t and ρ are real variables ranging over $|t| \leq t_0$, $0 < \rho < \rho_0$ and $a(t, \rho)$ is C^∞ on the closure of this domain. In the case that $a(t, 0)$ does not vanish, (1.1) falls within the scope of a systematic theory (see Turrittin [2]). However if $a(t, 0)$ has isolated zeros, individual representatives of (1.1) become highly idiosyncratic and there exists a considerable literature devoted to the investigation of special cases (see Erdelyi [1]). Such problems are called "turning point" or "transition point" problems and the zeros of $a(t, 0)$ are called "turning" or "transition" points. We describe a class of such problems which can be treated by adjoining a root $\lambda(t, \rho)$ of

$$(1.2) \quad \lambda^2 - a = 0$$

to the resources of non-turning point theory. This class forms a

Thus, simple linear relationships between ΔE_{ex} and ΔE_{int} were found in some systems, such as the $\text{C}_6\text{H}_6-\text{C}_6\text{H}_5\text{Cl}$ system,¹⁰ while in others, such as the $\text{C}_6\text{H}_6-\text{C}_6\text{H}_5\text{Br}$ system,¹¹ no correlation was observed. In the case of the $\text{C}_6\text{H}_6-\text{C}_6\text{H}_5\text{I}$ system,¹² the ΔE_{ex} values were found to increase with increasing ΔE_{int} , but the correlation was not very strong. The lack of a clear correlation between ΔE_{ex} and ΔE_{int} has been attributed to the fact that the interaction energy is not a unique function of the interaction potential, but depends also on the molecular size and shape.¹³

3.2.2. Correlation with ΔE_{int}

$$\Delta E_{\text{ex}} = \frac{S}{2} \Delta E_{\text{int}} \quad (2.1)$$

The first attempt to correlate the interaction energy with the interaction potential was made by Hirschfelder et al.,¹⁴ who used the $\text{C}_6\text{H}_6-\text{C}_6\text{H}_5\text{Cl}$ system as a model system. They found that the interaction energy was proportional to the square of the interaction potential, i.e., $\Delta E_{\text{int}} \propto V^2$. This result was later confirmed by the same authors¹⁵ and by other researchers.¹⁶ The interaction potential was calculated by the method of molecular dynamics, and the interaction energy was calculated by the method of molecular mechanics. The results showed that the interaction energy was proportional to the square of the interaction potential, i.e., $\Delta E_{\text{int}} \propto V^2$. The interaction potential was calculated by the method of molecular dynamics, and the interaction energy was calculated by the method of molecular mechanics. The results showed that the interaction energy was proportional to the square of the interaction potential, i.e., $\Delta E_{\text{int}} \propto V^2$.

natural generalization of the class of problems which do not have turning points. Our results shed light on the difficult problem of classifying turning points, for which, we believe, no satisfactory definition has yet been given. We will meet a significant part of the difficulties below in classifying the singular behavior near $(0,0)$ of $\lambda(t,\rho)$ and certain classes of functions arising from λ by the operations of differential algebra.

2. The Newton Polygon

In this section we state restrictive hypotheses which $a(t,\rho)$ must satisfy. We suppose H0. $a(t,0)$ has a zero of order m_0 at $t = 0$ and $a(0,\rho)$ has a zero of order γ at $\rho = 0$.

Given a C^∞ function $\phi(t,\rho)$ let $\hat{\phi}$ denote the formal power series of ϕ at $t = \rho = 0$. Since every formal power series is the power series of some C^∞ function we also use circumflexed symbols to denote abstract formal power series or the formal product of such a series and a C^∞ function. Since $a_{m_0} \neq 0$, by the Weierstrass preparation theorem for formal power series

$$(2.1) \quad \hat{a} = (t^{m_0} + \sum_{m=0}^{m_0-1} t^m \rho^{km} \hat{P}_m(\rho)) \hat{U}_0(t,\rho) = \hat{P}_0 \hat{U}_0$$

where $\hat{P}_m(\rho)$ is either a unit or identically 0 and \hat{U}_0 is a unit in the ring of formal power series.

We obtain the Newton polygon of (1-1) by plotting the points (k_m, m) for which $p_m \neq 0$ and forming the convex hull of these points and the set

$$S_0 = \left\{ (0, m) \mid m \geq m_0 \right\} .$$

the next few years. In addition, the following year, the first major
international conference on climate change was held in Kyoto, Japan.
The Kyoto Conference was convened by the United Nations Framework
Convention on Climate Change (UNFCCC) to discuss the issue of
global warming and its impact on the environment. The conference
resulted in the Kyoto Protocol, which is an international agreement
to reduce greenhouse gas emissions.

Since the Kyoto Conference, there has been a significant increase
in awareness of climate change and its impact on the environment.
This has led to a number of international agreements and
initiatives to combat climate change. One of the most significant
of these is the Paris Agreement, which was adopted in 2015 by
nearly all countries in the world. The Paris Agreement aims to
limit global warming to well below 2 degrees Celsius above pre-industrial
levels, and to pursue efforts to limit it even further to 1.5 degrees Celsius.
The agreement also aims to enhance climate resilience and
adaptation, and to promote sustainable development.

The Paris Agreement has been widely ratified and
is now in effect. It is considered to be a major step forward
in the fight against climate change. However, there is still
a long way to go. The effects of climate change are already
being felt around the world, and the situation is likely to
worsen in the future if action is not taken. Therefore,
it is important for all countries and individuals to
work together to combat climate change and protect
the environment for future generations.

Overall, the history of climate change is a complex and
ongoing process that requires continued research and
action to address the challenges it poses to our planet.

The boundary of this set is the Newton polygon \underline{N} . The point $(\gamma, 0)$ is an extreme point of this set and hence is a vertex of the boundary. We number the sides between S_0 and $(\gamma, 0)$ $S_1 \dots S_p$. Let (k_j, μ_j) be the coordinates of the lower vertex of S_j . Let S_j be described by the equation

$$k + \delta_j m = \gamma_j$$

where δ_j, γ_j are positive rationals with least common denominator η_j .

It can be seen that the change of variables

$$t = \rho^{\frac{\delta_j}{\eta_j}} s$$

(2.2)_j

$$y(t, \rho) = w(s, \rho)$$

transforms (1-1) into

$$(2.3)_j \quad \rho^{2n-2\delta_j - \gamma_j} \frac{d^2 w}{ds^2} = [s^{\mu_j} a_j(s) + \rho^{\frac{1}{\eta_j}} \beta_j(s, \rho^{\frac{1}{\eta_j}})] w$$

where $a_j(s)$ is the polynomial $U(0, 0) \sum_{(k, m) \in S_j} \hat{p}_k(0) s^{m-\mu_j}$ for $j=1, 2, \dots, p$, $a_0(s) = s^{-\mu_0} a(s, 0)$, and $\beta_j(s, \sigma)$ is C^∞ .

We assume:

H1.	$a_0(s) > 0$	$0 \leq s \leq t_0$
	$a_j(s) > 0$	$0 \leq s < \infty$
		$1 \leq j \leq p$.

$$H2. \quad n - \delta_p - \frac{\gamma_p}{2^p} \equiv \Delta > 0.$$

We remark that if $p > 0$, $(2.3)_j$ is a turning point problem for $0 \leq j < p$ but $(2.3)_p$ is not. Hypothesis H2. implies however, that $(2.3)_p$ has a singular dependence on ρ . The case that (1.1) is not a turning point problem corresponds to the special case in which the Newton polygon consists of a single vertical ray.

3. The Connection Problem

Hypotheses H1. and H2. bring $(2.3)_j$ $0 < j \leq p$ within the scope of the standard theory if s is restricted to a domain of the form $0 < s_0 \leq s_1$ for $0 < j < p$ or to $0 = s_0 \leq s \leq s_1$ for $j = p$. The main result is that there exist solutions $w_j^{(1)}(t, \rho)$, $w_j^{(2)}(t, \rho)$ having asymptotic representations $\hat{w}_j^{(1)}$, $\hat{w}_j^{(2)}$ which are fundamental in the sense that solutions of $(2.3)_j$ on the same domain have asymptotic representations of the form $c_1(\rho)w_j^{(1)} + c_2(\rho)\hat{w}_j^{(2)}$. Moreover the $\hat{w}_j^{(i)}$ have the form

$$(3.1)_j \quad \hat{w}_j^{(1)} = q_j^{(i)} \exp q_j^{(i)} \quad i=1,2$$

where $q_j^{(i)}$ is an asymptotic power series in $\rho^{\frac{1}{\sigma_j}}$ with coefficients which are C^∞ functions of s , and $q_j^{(i)}$ is a polynomial in $\rho^{-\frac{1}{\sigma_j}}$ with similar coefficients.

Such results do not reveal to what extent the formal expressions obtained from $(3.1)_j$ by reversing the transformation $(2.2)_j$, namely $\hat{w}_j^{(i)}(t\rho^{-\delta_j}, \rho)$, will describe the limiting behavior of the solutions $w_j^{(i)}(t\rho^{-\delta_j}, \rho)$ in the case that t does not have the special form $t = s\rho^{\delta_j}$. Our hypotheses insure that for each ρ , the solution $w_j^{(i)}(t\rho^{-\delta_j}, \rho)$ is the restriction to the domain $s_0\rho^{\delta_j} \leq t \leq s_1\rho^{\delta_j}$ of a "global" solution $y_j^{(i)}(t, \rho)$ on the domain

Consequently, the first step in the analysis of the data is to determine the number of clusters.

$0 \leq t \leq t_0$. However in general the pairs $y_j^{(1)}(t, \rho)$, $y_j^{(2)}(t, \rho)$ $j=0, 1, \dots, p$, will be different. Among them must persist linear relations (depending on ρ). It is the case that the expressions $(3.1)_j$ provide only fragmentary knowledge of the asymptotic behavior of solutions unless we have an asymptotic description of these linear relations. We therefore ask:

- 1) To what extent do formal expressions $(3.1)_j$ provide asymptotic information if s depends on ρ ?
- 2) What are the asymptotic linear relations among the pairs $y_j^{(1)}, y_j^{(2)}$?

We call this interrelated pair of questions the connection problem for the asymptotic solutions (3.1) .

4. Formal Considerations

We begin with some definitions of a general nature:

Definition: Given a (t, ρ) set Ω , let $M(\Omega)$ be the ring of bounded functions on Ω .

Definition: Let Ω be a (t, ρ) set on which ρ^{-1} is unbounded. We say that a sequence f_k of functions on Ω is formally convergent to 0 if given any positive integer N there is a $k_0(N)$ such that

$$f^{(k)} \in \rho^N M(\Omega)$$

for all $k \geq k_0(N)$, and $\rho^N f_k \in M(\Omega)$ for some N_0 and all k .

This notion of convergence leads directly to the ring $M^*(\Omega)$ of formally convergent series of functions on Ω . We use the symbol " \triangleq " to denote equality in $M^*(\Omega)$. The archetype of a formally convergent series is a series of the form .

$$\sum_{-N}^{\infty} f_k(t) \rho^k$$

where all but a finite number of the $f_k(t)$ are bounded on Ω .

Definition: We call a series of the above form a formal power series. If it is important to distinguish the special case $N = 0$, we use the term "proper formal power series".

Definition: Let $f, f_k, k=1, 2, \dots$, belong to $\int^0_M \Omega$. We say that $\sum_{k=1}^{\infty} f_k$ is an asymptotic expansion of f on Ω if $\lim_{N \rightarrow \infty} (f - \sum_{k=1}^N f_k) \stackrel{\wedge}{\rightarrow} 0$. We indicate this relationship by writing

$$f \sim \sum_{k=1}^{\infty} f_k.$$

Remarks. Evidently an asymptotic expansion is a formally convergent series. This notion of asymptotic expansion arises from the sequence of ideals $\rho^k M$ in M . It is possible to define more general kinds of expansions by introducing more general nested sequences of ideals but the preceding notion seems to include very many cases of interest in the theory of differential equations. Indeed our most delicate results involve other sequences of ideals, but since these depend so strongly on the individual characteristics of our problem it is most natural to let these ideals appear explicitly in the statement of our results.

We note that the preceding definitions do not exclude the possibility that t is a vector variable.

We now make definitions which are dictated by the particular exigencies of our problem.

Definition: Let $\Omega(t', s', p')$ be the (t, p) set $s' p^p \leq t \leq t'$, $0 < p < p'$. Let t_o, p_o be positive, and $0 < s_o < 1$. Let $\Omega_o \equiv \Omega(t_o, s_o, p_o)$.

Definition: Let $z(t, p) = t + p^s$. Let $D = \frac{d}{dt}$. Let $M(\Omega_o)$ be the set of functions f such that $z^k D^k f \in M(\Omega_o)$ $k=0, 1, 2, \dots$. Let $M^*(\Omega_o)$ be the set of formally convergent series of elements of $M(\Omega_o)$.

Remarks: $M(\Omega_o)$ ($M^*(\Omega_o)$) is a differential subring of $M(\Omega_o)$ ($M^*(\Omega_o)$) with deviation zD (zD understood as termwise differentiation).

Definition: Let $P(t, p)$ be the polynomial (see (2.1))

$$t^{m_o} + \sum_{(m, k) \in S_1 \cup S_2 \dots \cup S_p} \hat{P}_m(0) t^m p^k .$$

Remark: $P(t, p)$ is uniquely determined by a (t, p) .

Lemma 4a. For p_o , s_o sufficiently small, $a(t, p)$ can be represented in the following two ways:

$$1. \quad a = P_1 U_1 + A_1$$

where P_1 is a monic polynomial in t of degree m_o , P_1 and U_1 are C^∞ on $|t| \leq t_o$, $0 \leq p \leq p_o$, $U_1 \neq 0$ on this domain, and

$$\hat{a} = \hat{P}_1 \hat{U}_1 .$$

$$2. \quad a = PU$$

where P is defined above and U is a unit in $M(\Omega_o)$.

Proof: We choose P_1 in the following way. We consider the equation $\hat{P}_o = 0$ as an algebraic equation for t with coefficients in the ring of formal p -power series. This has solutions

the first time in the history of the world, the people of the United States have been compelled to make a choice between two political parties, each of which has a distinct and well-defined program, and each of which has a definite and well-defined object in view. The one party, the Democratic party, is in favor of the maintenance of the Union, and of the preservation of the Constitution, and of the protection of the rights of the people. The other party, the Republican party, is in favor of the dissolution of the Union, and of the overthrow of the Constitution, and of the destruction of the rights of the people. The people of the United States have been compelled to make a choice between these two parties, because they have been compelled to choose between two different systems of government. The one system of government, the Democratic system, is based upon the principles of freedom, equality, and justice. The other system of government, the Republican system, is based upon the principles of despotism, inequality, and injustice. The people of the United States have been compelled to choose between these two systems of government, because they have been compelled to choose between two different ways of life. The one way of life, the Democratic way of life, is based upon the principles of freedom, equality, and justice. The other way of life, the Republican way of life, is based upon the principles of despotism, inequality, and injustice. The people of the United States have been compelled to choose between these two ways of life, because they have been compelled to choose between two different systems of government.

$\hat{t}_k^{(1)}(\rho^{\frac{1}{N}})$ $k = 1, 2 \dots$ in the ring of formal power series in some

root $\rho^{\frac{1}{N}}$ of ρ . Let $t_k^{(1)}(s)$ be a C^∞ function having $\hat{t}_k(s)$ as its formal power series.

Let

$$P_1(t, \rho) = \prod_{k=1}^{m_0} (t - t_k^{(1)}(\rho^{\frac{1}{N}})).$$

P_1 is easily seen to be a C^∞ function of ρ with formal power series \hat{P}_1 . Let U_1 be any C^∞ function having \hat{U}_1 as its formal power series. Then $a_1 \equiv U - P_1 U_1$ has formal power series 0.

2. We now examine the linear factors of P_1 and P . Under the transformation $t = s\rho^{\frac{1}{\sigma_j}}$ P_1 and P assume the form

$$\rho^{\gamma_j} u_1^{-1}(0,0) \left\{ s^{\mu_j} a_j(s) + \dots \right\}$$

Where the dots indicate higher order terms in $\rho^{\frac{1}{\sigma_j}}$. These higher terms are in general different for \hat{P}_1 and P , but the leading parts agree since \hat{P}_1 and P agree in all terms which correspond to index pairs on sides $S_0 - S_p$ of the Newton polygon. It follows (Semple and Kneebone [3]) that the roots of \hat{P} and P as formal series are of the form

$$\rho^{\delta_j} \zeta_k (\zeta_k + \dots) \quad k=1, \dots, m_0$$

where ζ_k is a root of a_j and the dots indicate higher order terms in some fractional power of ρ . Since the series for the roots of \hat{P} are convergent for small ρ , and since the series for the roots of P_1 and formal power series of the roots of P_1 by construction

200

1960-1961

200

1960-1961

200

1960-1961

200

1960-1961

200

1960-1961

200

1960-1961

200

1960-1961

200

1960-1961

200

1960-1961

200

1960-1961

200

1960-1961

200

1960-1961

200

1960-1961

200

1960-1961

200

1960-1961

200

1960-1961

we conclude that the roots $t_k^{(1)}(\rho)$ of P_1 and the roots $t_k(\rho)$ of P have the form

$$\left. \begin{array}{l} t_k \\ t_k^{(1)} \end{array} \right\} = \rho^{\delta_j K} [\zeta_k + o(1)] \quad k=1, 2, \dots, m_o$$

By H2. each of the ζ_k are complex or negative real. For ρ_o, s_o , sufficiently small we can suppose that the distance in the complex plane of each $\zeta_k + o(1)$ from the subset $[-s_o, \infty]$ of the real axis is greater than some positive constant. This readily implies that the expressions

$$\left\{ \frac{t-t_k}{t-t_k^{(1)}} \right\}^{\pm 1}, z(t-t_k)^{-1}, z(t-t_k^{(1)})^{-1}$$

are bounded on Ω_o and therefore generate a subring $\mathcal{M}(\Omega_o)$ of $\mathcal{M}(\Omega_o)$. Since (zD) applied to any of these generators is again an element of $N(\Omega_o)$, this subring is also a subring of $\mathcal{M}(\Omega_o)$. In

particular $\frac{z^{m_o}}{P}, \frac{P_1}{P}$ and $\frac{P}{P_1}$ are elements of $\mathcal{M}(\Omega_o)$.

We write the representation of $l.$ in the form

$$a = P \left(\frac{P_1}{P} U_1 + \frac{A_1}{P} \right).$$

By $l.$ A_1 is a C^∞ function such that $\hat{A}_1 \equiv 0$. This implies

$\left(D^{N_1} A_1 \right) (|t| + \rho)^{-N_2}$ is bounded for all N_1, N_2 for all N_1, N_2 for $0 < \rho < \rho_o$, $|t| \leq t_o$, which implies that $A_1 \in z^N M$ for all N . Thus

$\frac{P_1}{P} U_1$ is a unit in \mathbb{H} and $\frac{A_1}{P_0} = z \left(\frac{z^{m_0}}{P_0} z^{-m_0 - 1} A_1 \right) = za_1$ where $a_1 \in \mathcal{M}$.

For t' and P_0 sufficiently small, $U \equiv \frac{P_1 U_1}{P} + 2a_1$ is also a unit.

Thus on

$$\mathcal{Q}(t', s_0, P_0)$$

$$a = UP$$

But for P_0 sufficiently small, or $\mathcal{Q}(t_0, s_0, P_0) = \mathcal{Q}(t', s_0, P_0)$, i.e. for $0 < t' \leq t \leq t_0$, our hypotheses imply that a and P are units in C^∞ . Hence s_0 is U , and the conclusion of 2. follows.

Remark: The preceding result is a peculiar analogue of the Weierstrass preparation theorem for holomorphic functions. It cannot, of course be used to draw conclusions about the zeros of a since the result depends upon the fact that a has no zeros on \mathcal{Q}_0 . Its significance lies in the fact that P characterizes the way in which a^{-1} is unbounded on \mathcal{Q}_0 .

Lemma 4b. On \mathcal{Q}_0 , $P > K_p^{\gamma_p}$ where K is a constant.

Proof: The factorization

$$P = \prod_{k=1}^{m_0} \left[t - \rho^{\delta_j k} \xi_k + o(1) \right]$$

and the fact that $a(0, \rho)$ has a zero of order $\gamma = \gamma_p$ at $\rho = 0$ implies

$$\sum_{k=1}^{m_0} \xi_j_k = \gamma_p = \gamma.$$

$$\text{Thus } P = \rho^{\gamma_p} \prod_{k=1}^{m_0} \left[t \rho^{\delta_j k} - t_k^{(1)}(\rho) \rho^{-\delta_j k} \right].$$

卷之三

— 1 —

For $(t, \rho) \in \mathbb{Q}_0$, $t\rho^{-s_j k}$ ranges over a subset of $[-s_0, \infty]$. In the proof of Lemma 4a, \mathbb{Q}_0 was determined so that

$t_k^{(1)}(\rho)\rho^{-s_j k}$ had distance from this set greater than some constant K_1 . Hence

$$P = |P| \geq \rho^{\gamma_{P_{K_1}} m_0} = K\rho^\gamma$$

Lemma 4c. Let $I \equiv \rho^{n_P - 1/2} z^{-1}$. Then $P^{1/2}$, I , $zP^{-1}P$, $zI^{-1}I$ are all elements of $M(\mathbb{Q}_0)$ and $\lim_{k \rightarrow \infty} I^K \rightarrow 0$.

Proof: Evidently $P^{1/2} \in M(\mathbb{Q}_0)$. Also $zP^{-1}P$ is an element of the subring $M(\mathbb{Q}_0) \subset M(\mathbb{Q})$ used in the proof of the previous lemma.
The identity

$$(zD)^{N+1} P^{1/2} = (zD)^N \left(\frac{1}{2} P^{1/2} [zP^{-1}P] \right)$$

and an induction argument shows that

$$(zD)^k P^{1/2} \in M \quad \forall k \geq 0$$

i.e.

$$P^{1/2} \in M.$$

By Lemma 4b

$$|P| > K_\lambda^\gamma$$

where K is a positive constant. We can therefore estimate I :

$$|I| \leq K^{-1/2} \rho^{-\gamma} + n^{-\varepsilon} \rho^{(1-s_0)-1} .$$

Since by Hypothesis H2

$$n \frac{\gamma_0}{2} - \delta p = \Delta > 0, , \quad I \in P \Delta_N .$$

This implies $\lim_{k \rightarrow \infty} I^k \searrow 0$. Finally

$$zI^{-1}\dot{I} = -\frac{z}{2} \dot{P}^{-1} - 1 \in \mathcal{M}$$

and as above induction shows $I \in \mathcal{M}$.

Lemma 4d. The ideals in \mathcal{M} , $P^{1/2}I^k$, $k = 0, 1, \dots$, are closed under zD .

Proof: $zD(P^{1/2}I^k\mathcal{M}) \in (zDP^{1/2})I^k\mathcal{M}$

$$+ P^{1/2}(zDI^k)\mathcal{M} + P^{1/2}I^k(zD)$$

$$\in P^{1/2}(zPP^{-1})I^k\mathcal{M} + P^{1/2}(I^kzII^{-1})\mathcal{M}$$

$$+ P^{1/2}I^k\mathcal{M}$$

$$\in P^{1/2}I^k\mathcal{M}.$$

5. Formal Solutions

We consider the Riccati equation

$$(5.1) \quad \rho^n r' + r^2 - a$$

related to (1.1) by the transformation

$$\rho^n \frac{r'}{y} = r .$$

The equation

$$\eta r' + r^2 - a = 0$$

has formal η -power series solutions

$$\sum_{k=0}^{\infty} \eta^k R_k$$

where R_0 is a root, call it λ , of

$$R_0^2 - a = 0 ,$$

and

$$(5.2) \quad R_{k+1} = -\frac{1}{2\lambda} (R_k + \sum_{\substack{i+j=k+1 \\ i,j \geq 0}} R_i R_j).$$

It follows from (5.2) and from the relation $\lambda = a(2)^{-1}$ that R_k can be written in the form $R_k(\lambda, t, \rho)$ where R_k is a rational function of λ with coefficients in the ring generated by $a(t, \rho)$ and its t -derivatives.

We introduce the sequence ϕ_k according to the scheme

$$(5.3) \quad \phi_0 = 0$$

$$\rho^n \dot{\phi}_k + 2\lambda \dot{\phi}_{k+1} = -\rho^n \dot{\lambda} - \dot{\phi}_k^2.$$

This sequence can be described as "solution by formal successive approximation." We could use it to construct asymptotic solutions, but we give precedence to the sums $\sum_{j=0}^k R_j \rho^j$ which are, roughly speaking, the simplest expressions which approximate r to within the order of $\rho^{k+1} R_{k+1}$. However, we will use sequence (5.3) as a convenient intermediate basis of comparison in section 7.

Theorem 1.

i) $\rho^{nk} R_k \in P^{1/2} I^k \mathcal{M}(\Omega_0)$

ii) $\phi_k - \sum_{j=1}^k \rho^{nj} R_j \in P^{1/2} I^{k+1} \mathcal{M}(\Omega_0)$

iii) The series $\hat{r} \vee \sum_{j=0}^{\infty} \rho^{nj} R_j$

is a formal solution of (5.1).

iv) $\lim_{k \rightarrow \infty} (\lambda + \phi_k) \hat{v} = \hat{r}$.

Proof:

i) By Lemma 4a

$$R_0 = \pm P^{1/2} U^{1/2} \in P^{1/2} M$$

since the square root of the unit U is in M_1 . Hence i) is true for $k = 0$. Suppose it is true for $k \leq k_0$. By (5.2)

$$\hat{r}^{(k_0+1)} = -\frac{\rho^n}{2\lambda z} (zD) P^{nk_0} R_{k_0}$$

$$- \frac{1}{2\lambda} \sum_{i+j=k_0+1} (\rho^{in} R_i \rho^{jn} R_j) \\ i, j > 0$$

$$\in I(zD) P^{1/2} I^{k_0} M$$

$$+ P^{-1/2} \sum_{i+j=k_0+1} P^{1/2} I^i P^{1/2} I^j M \\ i, j > 0$$

$$\in P^{1/2} I^{k_0+1} M$$

ii) The statement is true for $k = 1$ since $\phi_1 = \rho^n R_1$. Suppose it is true for $k \leq k_0$. Then by (5.3)

$$\begin{aligned}
\dot{\phi}_{k+1} &= -P^n \frac{\lambda}{2\lambda} - \frac{1}{2\lambda} \dot{\phi}_k - \frac{1}{2\lambda} \phi_k^2 \\
&\in P^{nR_1} - \frac{P^n}{2\lambda} \sum_{j=1}^{k_o} \rho^{nj} R_j + \frac{\epsilon^n}{2\lambda z} (zD) P^{1/2} I^{k_o+1} M \\
&\quad - \frac{1}{2\lambda} \left(\sum_{i,j=1}^{k_o} \rho^{in} P^{jn} R_i R_j \right. \\
&\quad \left. + \left[\sum_i^{k_o} \rho^{in} R_i \right] P^{1/2} I^{k_o+1} M + P I^{2k_o+2} M \right) \\
&\in P^{nR_1} + \sum_{k=1}^{k_o+1} - \frac{\rho^{n(k+1)}}{2\lambda} [R_k + \sum_{i+j=k+1}^{i,j > 0} R_i R_j] \\
&\quad + P^{-1/2} \sum_{\substack{i+j>k_o+1 \\ i,j < 2k_o}} P^{1/2} I^{i} P^{1/2} I^{j} \\
&\quad + P^{1/2} I^{k_o+2} M + P^{1/2} I^{2k_o+2} M \\
&\in P^{nR_1} + \sum_{k=1}^{k_o+1} \rho^{n(k+1)} R_{k+1} + P^{1/2} I^{k_o+2} M \\
&\quad + \sum_{k=1}^{k_o+2} \rho^{kn} R_k + P^{1/2} I^{k_o+2} M .
\end{aligned}$$

- iii) Since $\lim_{k \rightarrow \infty} I^k \searrow 0$, i) implies that $\sum_{j=1}^k \rho^{nj} R_j$ and $P^{nD} \sum_{j=1}^k \rho^{j} R_j$, $k=1, 2, \dots$, are formally convergent sequences substitution of which into (5.1) leads to a sequence formally convergent to 0.
- iv) By ii) $\lim_{k \rightarrow \infty} \phi_k - \sum_{j=1}^k \rho^{nj} R_j \searrow 0$.

Since $\hat{r} - \lambda$ is the limit of the sum, iv) follows.

6. Construction of Solutions

We now solve (5.1) by successive approximations. Let
(6.1) $r = \lambda + \psi.$

Then ψ must satisfy

$$\psi = \frac{1}{c} \int_c^t \exp \left\{ -2\rho^{-n} \int_s^t \lambda ds \right\} (+\lambda + \rho^{-n} \psi^2) ds.$$

We choose c to be $-s_0 \rho^{\delta_p}$ if $\lambda = +a^{1/2}$ and t_0 if $\lambda = -a^{1/2}$.

We distinguish those two cases by the subscripts " \pm " and indicate the integral equation by

$$(6.2) \quad \psi = \psi_{\pm}^{(1)} + \rho^{-n} L_{\pm} (\psi^2)$$

We define the sequences

$$(6.3) \quad \begin{aligned} \psi_{\pm}^{(0)} &= 0 \\ \psi_{\pm}^{(k+1)} &= \psi_{\pm}^{(1)} + \rho^{-n} L_{\pm} \left([\psi_{\pm}^{(k)}]^2 \right) \quad k=0,1,2,\dots \end{aligned}$$

Definition: For $u \in M(\Omega_0)$ let

$$\|u\| \equiv \sup_{-s_0 \cap \rho \leq t \leq t_0} |u|$$

Lemma 6a: For $u \in M(\Omega_0)$, the image of the ideal $uM(\Omega_0)$ under L_{\pm} satisfies

$$L_{\pm}(u^{\eta}(\zeta_0)) \subset ||zuI||_M(\zeta_0) + L_{\pm}([u+zu]I^{\eta}(\zeta_0)).$$

Proof: Integration by parts.

Lemma 6b: If $u \in M(\zeta_0)$ and $z \frac{u}{u} \in \mathcal{H}(\zeta_0)$, then

$$L_{\pm}(u^{\eta}(\zeta_0)) \subset ||zuI||_M(\zeta_0).$$

Proof: If $z \frac{u}{u} \in \mathcal{H}$ then $[u+zu]I^{\eta} \subset uI^{\eta}$

Also $z \frac{(uI)}{uI} \in \mathcal{H}$. Hence by repeated application of Lemma 6a

$$L_{\pm}(uM) \subset ||zuI||_M + L_{\pm}(uI^{\eta})$$

$$\subset ||zuI||_M + ||zuI^2||_M + L_{\pm}(uI^2\eta)$$

$$\subset \left\{ ||zuI|| + ||zuI^2|| + ||zuI^k|| \right\}_M + L_{\pm}(uI^k\eta)$$

$$\subset ||zuI||_M + L_{\pm}(uI^k\eta).$$

But for k sufficiently large $I^k\eta \subset zIM$.

Hence $L_{\pm}(u^{\eta}) \subset ||zuI||_M + L_{\pm}(zuIM)$

$$\subset ||zuI||_M.$$

Lemma 6c: $||L_{\pm}(u)|| < c \rho^{n-\gamma/2} ||u||$, where c is a constant.

Proof: Since $||L_{\pm}(u)|| \leq ||u|| ||L_{\pm}(1)||$ it suffices to show

$L_{\pm}(\rho^{\gamma/2-n}) \in M$. By Lemma 6b

$$\begin{aligned} L_{\pm}(\rho^{\gamma/2-n}) &\in ||^{\gamma/2-n} zI||_H \\ &\in ||\frac{\rho^{\gamma/2}}{P^{1/2}}||_H \end{aligned}$$

Lemma 4b then implies:

$$L_{\pm}(\rho^{\gamma/2-n}) \in H.$$

Lemma 6d: $\psi_{\pm}^{(1)} \in P^{\Delta + \gamma/2}_H(\Omega_0).$

Proof: $\psi_{\pm}^{(1)} = L_{\pm}(\lambda).$ Integrating by parts

$$L_{\pm}(\lambda) \in ||z\lambda I||_H + L([z\lambda + z^2]I_H).$$

But $z\lambda I \in \frac{n}{z}M$ and $(\lambda + z^2)I \in \frac{n}{z^2}M.$

Hence

$$\psi_{\pm}^{(1)} \in ||\frac{n}{z}I||_H + L_{\pm}\left(\frac{n}{z^2}I\right)$$

By Lemma 6b

$$\begin{aligned} \psi_{\pm}^{(1)} &\in ||\frac{n}{z}I||_H + ||\frac{n}{z^2}I||_H \\ &\in P^{n-\delta}H = P^{\Delta + \gamma/2}_H. \end{aligned}$$

Theorem 2. For ρ_0 sufficiently small the limits

$\psi_{\pm} = \lim_{k \rightarrow \infty} \psi_{\pm}^{(k)}$ exist and are solutions of (6.2). Moreover

$$(6.4) \quad ||\psi_{\pm}^{(k+1)} - \psi_{\pm}^{(k)}|| < \left(\frac{\rho}{2\rho_0}\right)^{\Delta + \gamma/2 + k\delta}.$$

Proof: By Lemmas 6c, 6d and (6.3) the sequences $||\psi_{\pm}^{(k)}||$ are dominated, for some constant C by $\Psi_0 = 0$

$$\Psi_{k+1} = \frac{c}{2} \left(\rho^{\Delta + \gamma/2} + \rho^{-\gamma/2} \Psi_k^2 \right) .$$

The last equation can be written

$$\begin{aligned} & \frac{\Psi_{k+1}}{c(2\rho_0)^{\Delta+\gamma/2} \left(\frac{\rho}{2\rho_0}\right)^{\Delta+\gamma/2}} \\ &= \frac{1}{2} + \frac{1}{2} \left(\frac{\rho}{2\rho_0}\right) \Delta_{(2\rho_0)} \Delta_c^2 \left[\frac{\Psi_k}{c(2\rho_0)^{\Delta+\gamma/2} \left(\frac{\rho}{2\rho_0}\right)^{\Delta+\gamma/2}} \right]^2 . \end{aligned}$$

Choosing ρ_0 so small that $c(2\rho_0)^{\Delta+\gamma/2} < 1$, $c^2(2\rho_0)\Delta < 1$, we have,

$$\frac{\Psi_{k+1}}{\left(\frac{\rho}{2\rho_0}\right)^{\Delta+\gamma/2}} < \frac{1}{2} + \frac{1}{2} \left(\frac{\rho}{2\rho_0}\right) \Delta \left[\frac{\Psi_k}{\left(\frac{\rho}{2\rho_0}\right)^{\Delta+\gamma/2}} \right]^2 .$$

It follows by induction that

$$\Psi_k < \left(\frac{\rho}{2\rho_0}\right)^{\Delta+\gamma/2} .$$

which implies

$$(6.5) \quad \|\Psi_{\pm}^k\| < \left(\frac{\rho}{2\rho_0}\right)^{\Delta+\gamma/2} .$$

Again by (6.3) and Lemma 6c, for some C

$$\begin{aligned} \|\psi_{\pm}^{(k+1)} - \psi_{\pm}^{(k)}\| &\leq c \rho^{-\gamma/2} \left\{ \|\psi_{\pm}^{(k)}\| + \|\psi_{\pm}^{(k-1)}\| \right\} \left\{ \|\psi_{\pm}^{(k)} - \psi_{\pm}^{(k-1)}\| \right\} \\ &\leq 2c \left(2\rho_0\right)^{\Delta} \left(\frac{\rho}{2\rho_0}\right)^{\Delta} \|\psi_{\pm}^{(k-1)}\| . \end{aligned}$$

Choosing ρ_0 so that $2c(2\rho_0)^{\Delta} < 1$ we have

$$(6.6) \quad ||\psi_{\pm}^{(k+1)} - \psi_{\pm}^{(k)}|| \leq \left(\frac{\rho}{2\zeta_0}\right)^{\Delta} ||\psi_{\pm}^{(k)} - \psi_{\pm}^{(k-1)}|| .$$

This insures the uniform convergence of $\psi_{\pm}^{(k)}$ to solutions ψ_{\pm} of (6.2). Inequalities (6.6) and (5.6) imply (6.4).

7. Formal Solutions are Asymptotic Solutions

We first establish some estimates involving L_{\pm} which do not involve the uniform norm $||\cdot||$.

Definition: Let \mathcal{E}_{\pm} denote the ring generated by $M(\Omega_0)$ and $\rho^{-k} \exp -2\rho^{-n} \int_{C_{\pm}}^t \lambda(s) ds \quad k = 1, 2, \dots$

Lemma 7a: If $u \in z^{-1} P^{1/2} I^j \mathcal{M}(\Omega_0)$, then for each

$$L_{\pm}(u) \in P^{1/2} I^{j+1} \mathcal{M}(\Omega_0) + \mathcal{E}_{\pm} + \rho^{\delta} M(\Omega_0).$$

Proof: Repeated integration by parts shows

$$L_{\pm}(u) = (u^{(1)} \dots + u^{(N)}) \exp -2\rho^{-n} \left[\int_s^t \lambda(\sigma) d\sigma \right]_{C_{\pm}}^t + L_{\pm}(v^{(N)})$$

where $u^{(k)} \in P^{1/2} I^{j+k} \mathcal{M} \quad k = 1, \dots, N$

$$v^{(N)} \in z^{-1} P^{1/2} I^{j+N} \mathcal{M} .$$

This implies

$$L_{\pm}(u) \in P^{1/2} I^{j+1} \mathcal{M} + \mathcal{E}_{\pm} + L_{\pm}(z^{-1} P^{1/2} I^{j+N} \mathcal{M})$$

But for N sufficiently large $z^{-1} P^{1/2} I^{j+N} \mathcal{M} \subset \mathcal{E}_{\pm}$. Since

$L_{\pm}(\rho^{\mathcal{E}_M} \subset \rho^{\mathcal{E}_N})$ the conclusion follows.

Lemma 7b. $\rho^{-n} L_{\pm}(\mathcal{E}_{\pm}) \subset \mathcal{E}_{\pm}$.

Proof: Direct verification.

Theorem 3: Let the sequence $\phi^{(k)}$ be defined by (5.3). Let the sequence $\psi^{(k)}$ be defined by (6.3). Then for each $\epsilon > 0$

$$\psi_{\pm}^{(k)} - \phi^{(k)} \in P^{1/2} I^{k+1} \mathcal{W}(\Omega_0) + \mathcal{E}_{\pm} + \rho^{\mathcal{E}_M}(\Omega_0).$$

Proof: Since $\psi^{(0)} = \phi^{(0)} = 0$ the statement is true for $k = 0$.

Suppose it is true for $k = N$. The recursion formula of (5.3) can be written

$$\rho^n \dot{\phi}_{N+1} + 2\lambda \dot{\phi}_{N+1} = \rho^n (\dot{\phi}_{N+1} - \dot{\phi}_N) - \dot{\phi}_N^2 + \rho^n \lambda .$$

This implies

$$\dot{\phi}_{N+1} = \psi_{\pm}^{(1)} + L_{\pm}(\dot{\phi}_{N+1} - \dot{\phi}_N - \rho^n \dot{\phi}_N^2) + \dot{\phi}_{N+1}(c_{\pm}) \exp - 2\rho^{-n} \int_{c_{\pm}}^t \lambda(s) ds .$$

Subtracting the last equation from (6.3) we obtain

$$\begin{aligned} \psi_{N+1} - \phi_{N+1} &= L_{\pm} \left[\dot{\phi}_{N+1} - \dot{\phi}_N + \rho^{-n} (\psi_N - \phi_N)(\psi_N + \phi_N) \right] \\ &\quad + \dot{\phi}_{N+1}(c_{\pm}) \exp - 2\rho^{-n} \int_{c_{\pm}}^t \lambda(s) ds . \end{aligned}$$

By Theorem 1 $\phi_{N+1} - \phi_N \in P^{1/2} I^{N+1} \eta$ and $\phi_N \in P^{1/2} I^N \eta$. Using the estimate of the induction hypothesis, for each g

$$\begin{aligned} \psi_{N+1} - \phi_{N+1} &\in L_{\pm}(z^{-1} P^{1/2} I^{N+1} \eta) \\ &+ L_{\pm}\left(\rho^{-n}\left(\left[P^{1/2} I^{N+1} \eta + \mathcal{E}_{\pm} + \rho^{\mathcal{E}_M}\right]\right.\right. \\ &\left.\left.[P^{1/2} I \eta + \mathcal{E}_{\pm} + \rho^{\mathcal{E}_M}]\right)\right) + \mathcal{E}_{\pm} \\ &\in L_{\pm}(z^{-1} P^{1/2} I^{N+1} \eta) + L_{\pm}(\rho^{\mathcal{E}-n}) + L_{\pm}(\mathcal{E}_{\pm}) + \mathcal{E}_{\pm}. \end{aligned}$$

By Lemmas 7a and 7b, this implies for any g'

$$\psi_{N+1} - \phi_{N+1} \in P^{1/2} I^{N+2} \eta + \rho^{\mathcal{E}' M} + \rho^{\mathcal{E}-n} \eta + \mathcal{E}_{\pm}.$$

Since g' and $g-n$ are arbitrary the conclusion follows.

Corollary: $\psi_k - \phi_k \in P^{1/2} I^{k+1} M(\Omega_0) + \mathcal{E}_{\pm}$.

Proof: For $g(k)$ sufficiently large $\rho^{\mathcal{E}(k) M} \in P^{1/2} I^{k+1} M$.

Definition: Let $\Omega_1 = \Omega(t_1, 0, \rho_1)$ where $0 < t_1 < t_0$ and $\rho_1 \leq \rho_0$.

Lemma 7c. The restriction of \mathcal{E}_{\pm} to Ω_1 is contained in $\rho^{\mathcal{E}_M(\Omega_1)}$ for each g .

Proof: By Lemma 4b

$$\left| \int_{c_{\pm}}^t P^{1/2} ds \right| > k^{1/2} \rho^{\gamma/2} |t - c_{\pm}|,$$

For $t \in \Omega_1$ this implies

$$\exp + \rho^{-n} \int_{c_+}^t P^{1/2} ds < \exp - \kappa' \rho^{-n+\gamma/2} + \delta \rho \\ < \exp - \kappa' \rho^{-\Delta} .$$

By H2., $\Delta > 0$. Since $\rho^{-\epsilon} \exp - \kappa' \rho^{-\Delta} \in M(\Omega_1)$ for each ϵ the conclusion follows.

Corollary: On Ω_1

$$\psi_{\pm}^{(k)} - \phi_k \in P^{1/2} I^{k+1} H(\Omega_1).$$

Theorem 4. Let r_{\pm} be the solutions of (5.1) given by

$$r_{\pm} = \pm \lambda + \psi_{\pm} .$$

Then for $(t, \rho) \in \Omega_1$.

$$(7.1) \quad r_{\pm} - \sum_{j=0}^k j n_{R_j} (\pm \lambda, t, \rho) \in P^{1/2} I^{k+1} M(\Omega_1).$$

Proof: The above difference can be written

$$(\psi_{\pm} - \psi_{\pm}^{(N)}) + (\psi_{\pm}^{(N)} - \phi_N) + \phi_N - \sum_{j=1}^N j n_{R_j} + \sum_{j=k+1}^N j n_{R_j}.$$

By Theorem 2 $\psi_{\pm} - \psi_{\pm}^{(N)} \in P^{\Delta + \gamma/2 + N} \Delta H(\Omega_1)$.

By Theorem 3 $\psi_{\pm}^{(N)} - \phi_N \in P^{1/2} I^{N+1} H(\Omega_1)$.

By Theorem 1 $\phi_N - \sum_{j=1}^N j n_{R_j} \in P^{1/2} I^{N+1} H(\Omega_1)$ and

$$\sum_{j=k+1}^N j n_{R_j} \in P^{1/2} I^{k+1} H(\Omega_1).$$

Supposing without loss of generality that $N \geq K$ we have

$$r_{\pm} = \sum_{j=0}^k \rho^{jn} R_j \in \rho^{\Delta+\gamma/2+N} I_{M_1} + \rho^{1/2} I^{k+1} M_1.$$

Choosing N so large that $\rho^{\Delta+\gamma/2+N} \Delta \in \rho^{1/2} I^{k+1} M_1$ the conclusion follows.

Corollary: Relation (7.1) implies the weaker statement that on $H(\Omega_1)$ $r_{\pm} \sim \sum_{j=0}^{\infty} \rho^{nj} R_j (+\lambda, t, \rho)$.

Lemma 7d. If $u \in \rho^{1/2} I^{k+1} M_1$, $k > 1$ then $\rho^{-n} \int_t^{t_0} u ds \in I^k M_1$.

Proof: $\rho^{-n} \int_t^{t_0} u ds \in \int_t^{t_0} \rho^{-nk} \rho^{-k/2} z^{-k-1} M ds$
 $\in \rho^{nk} P(t)^{-k/2} \int_t^{t_0} \left(\frac{P(t)}{P(s)} \right)^{k/2} z^{-k-1} M ds$
 $\in \rho^{nk} P^{-k/2} \int_t^{t_0} z^{-k-1} M ds.$

Since z is positive this implies

$$\rho^{-n} \int_t^{t_0} u ds \in \rho^{nk} P^{-1/2} \left(\int_t^{t_0} z^{-k-1} ds \right) H \subset I^k M_1.$$

Corollary: For $k > 1$.

$$(7.2) \quad \rho^{-n} \int_t^{t_0} r_{\pm} ds - \sum_{j=0}^{k+1} \rho^{(k+1)} \int_t^{t_0} R_k (+\lambda, s, \rho) ds \in I^{k+1} M_1.$$

We have also determined solutions of (1-1) which we take to be those described by the fundamental matrix

$$(7.3) \quad \tilde{W} \equiv \begin{bmatrix} y_+ & y_- \\ \cdot & \cdot \\ y_+ & y_- \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ r_+ & r_- \end{bmatrix} \exp -\rho^{-n} \int_t^t q \begin{pmatrix} r_+ & 0 \\ 0 & r_- \end{pmatrix} ds.$$

Since it is asymptotic formulas for solutions which are of greatest interest, we refer to these solutions only indirectly in the following Theorem, merely asserting that such solutions exist.

Theorem 5. (Asymptotic Solution of Equation (1.1))

Let the equation (1.1) satisfy conditions H0 through H2.

Let the sequence $R_k(\lambda, t, \rho)$ be given by (5.2). Then for $0 \leq t \leq t_0$ and for ρ_1 sufficiently small, on the domain

$\Omega_1 = \{(t, \rho): 0 \leq t \leq t_1 < t_0, 0 < \rho < \rho_1\}$, there exists a fundamental pair of solutions \tilde{Y}_+ for which the matrix

$$\tilde{Y} \equiv \begin{bmatrix} y_+ & y_- \\ \cdot & \cdot \\ y_+ & y_- \end{bmatrix}$$

satisfies

$$(7.4) \quad \tilde{Y} \exp \rho^{-n} \int_t^{t_1} \begin{bmatrix} R_0(+\lambda) + \rho^n R_1(+\lambda) \\ R_0(-\lambda) + \rho^n R_1(-\lambda) \end{bmatrix} ds$$

$$- \sum_{j=0}^k \rho^{jn} \begin{bmatrix} R_j(+\lambda) \\ R_j(-\lambda) \end{bmatrix} \exp \rho^{-n} \sum_{j=2}^{k+1} \int_t^{t_1} \begin{bmatrix} R_j(+\lambda) \\ R_j(-\lambda) \end{bmatrix} ds$$

$$\in I^{k+1} \begin{bmatrix} 1 & 0 \\ 0 & \rho^{1/2} \end{bmatrix} M_k.$$

where M_K has elements in $M(\mathbb{Q}_1)$ for each k .

Proof: We show that for ρ_1 sufficiently small the matrix \underline{U} of (6.2) is non-singular. Theorem 2 implies $\psi_{\pm} \in \Delta^{+\gamma/2} M$ which in turn implies $\lambda^{-1} \psi_{\pm} \in \Delta_H$. Thus

$$\begin{pmatrix} 1 & 1 \\ r_+ & r_- \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ \lambda & -\lambda \end{pmatrix} \left[\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \rho \Delta_H \right]$$

where H has elements in $M(\mathbb{Q}_0)$. It follows that for ρ_1 small

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \rho^s H \text{ is non-singular and hence } \underline{U} \text{ is non-singular.}$$

Equation (7.4) is a direct consequence of (7.1) and (7.3).

Remark: Since t_1 is any number less than the original t_0 this result is global in t .

8. Solution of the Connection Problem

We observe that Theorem 5 gives an asymptotic description of $\underline{\Psi}_{\pm}(t, \rho)$ uniformly on the t -domain $0 \leq t \leq t_1$. The form of the remainder in (7.4) shows that our asymptotic series behave, roughly speaking, like asymptotic power series in $I(t, \rho)$. For example if t is restricted to the domain $0 \leq t_2 \leq t \leq t_1$, then $I(t, \rho) = O(\rho^n)$, while at the other extreme if $t = 0$, $I(t, \rho) = O(\rho \Delta)$. Our object is now to make more specific assumptions about t and by inserting asymptotic expansions for individual terms in (7.4) to obtain expansions of the form given in Section 3.

We will show that we have to a large extent reduced the problem of determining the asymptotic behavior of the solutions of (1.1) to the elementary problem of determining the asymptotic behavior of the roots of $\lambda^2 - a = 0$. We attack the latter problem in the following definition and Theorem.

Definition: Let $\gamma_1, \gamma_2, \dots, \gamma_p$ be real numbers such that

$$0 = \sigma_0 < \gamma_1 < \sigma_1 < \gamma_2 < \dots < \gamma_p < \sigma_p.$$

Let $\tau_{p+1} = \sigma_p = 0 < \tau_p < \sigma_{p-1} < \tau_{p-1} < \sigma_{p-1} \dots < \sigma_0 = \tau_0 = \gamma_1$

be a subdivision of $[0, t_1]$, where for $1 \leq k \leq p$

$$\tau_j = s_j \rho^{r_j}, \quad \sigma_j = s'_j \rho^{s'_j}$$

and s_j, s'_j are positive variables. For ρ_1 sufficiently small we can suppose that s_j, s'_j range over a closed interval J of positive numbers containing 1.

Let I_j be the domain $\tau_{j+1} \leq t \leq \tau_j$, $0 < \rho \leq \rho_1$, $s_j, s_{j+1} \in J$

for $0 \leq j \leq p$. Let I'_j, I''_j be the domains $\tau_{j+1} \leq t \leq \sigma_j$,

$0 < \rho \leq \rho_1, s'_j, s_{j+1} \in J$ and $\sigma_j \leq t \leq \tau_j$, $0 < \rho \leq \rho_1$,

$s_j, s'_j \in J$ respectively. Let J^* be the domain $0 < \rho \leq \rho_1$,

$s_j, s'_j \in J$, $j = 1, 2, \dots, p$.

Theorem 6. For ρ_1 sufficiently small, on I_j

$$(8.1) \quad \omega_k \equiv a(t, \rho) \left\{ \rho^{\gamma_j} (t\rho^{-\sigma_j})^{\mu_j} a_j (t\rho^{-s'_j}) \right\}^{-1} - 1 \in \rho \Delta_{j_M(I_j)}$$

where

$$\Delta_j = \begin{cases} \min(1, \delta_1 - \gamma_1, \gamma_1) & j = 0 \\ \min(1, \delta_{j+1} - \gamma_{j+1}, \gamma_j - \delta_{j-1}, \gamma_j) & 0 < j < p \\ \min(1, \gamma_p - \delta_{p-1}, \gamma_p) & j = p. \end{cases}$$

Proof: Suppose $0 < j < p$. By Lemma 4a

$$a_1 = P_1 U_1 + A_1$$

where $A_j \in z^N H(\mathbb{C}_1)$ for each N . The polynomial $s^{\mu_j} a_j(s)$ has a pole of order μ_{j-1} at ∞ and a zero of order μ_j at 0 and has no zeros for $s > 0$. It follows that

$$s^{-\mu_j} a_j^{-1}(s) < \begin{cases} K s^{-\mu_j} & 0 < s \leq s_j! \\ K s^{-\mu_{j-1}} & s_j! < s < \infty \end{cases}$$

where K is a constant. This implies

$$(8.2) \quad \left\{ \rho^{\delta_j} (t\rho^{-\delta_j})^{\mu_j} a_j(t\rho^{-\delta_j}) \right\}^{-1}$$

is contained in the sets

$$\begin{aligned} \left\{ \rho^{-\gamma_j} (t\rho^{-\delta_j})^{\mu_j} j_M(I_j!) \right\} &= \rho^{-k_j} t^{\mu_j} j_M(I_j!) \\ \left\{ \rho^{-\gamma_j} (t\rho^{-\delta_j})^{-\mu_{j-1}} j_M(I_j'!) \right\} &= \rho^{-k_{j-1}} t^{-\mu_{j-1}} j_M(I_j'!). \end{aligned}$$

On I_j , $z \in \rho^{\gamma_j} j_M(I_j!)$ and (8.2) implies the weaker estimate

$$\begin{aligned} (t\rho^{-\delta_j})^{-\mu_j} a_j^{-1}(t\rho^{-\delta_j}) &\in (t\rho^{-\delta_j})^{\mu_j} j_M(I_j!) \\ &\in \rho^{-(\delta_{j+1} - \delta_j)\mu_j} j_M(I_j!). \end{aligned}$$

Hence

$$\rho^{-\gamma_j} (t\rho^{-\delta_j})^{-\mu_j a_j} (t\rho^{-\delta_j})_{A_1} \in \rho^{-\gamma_j - (\delta_{j+1} - \delta_j) \mu_j + N \delta_{j-1}} M(I_j).$$

Since $\gamma_j > 0$ and N is arbitrary, the above expression is ~ 0 on I_j and it suffices to consider

$$(8.3) \quad Q'_j = P_1 U_1 \left\{ \rho^{\gamma_j} (t\rho^{-\delta_j})^{\mu_j a_j} (t\rho^{-\delta_j}) \right\}^{-1}.$$

It is easily seen that

$$\rho^{\gamma_j} (t\rho^{-\delta_j})^{\mu_j a_j} (t\rho^{-\delta_j}) = U_1(0,0) \sum_{(k,m) \in S_j} p_m(0) t^m \rho^k.$$

The functions $p_m(\rho)$, $U_1(t, \rho)$ can be represented in the form

$$\sqrt{p_m(\rho)} = p_m(0) + \rho \bar{p}_m, \quad \bar{p}_m \in C^\infty$$

$$U_1(t, \rho) = U_1(0,0) + tU_2 + \rho U_3, \quad U_2, U_3 \in C^\infty.$$

Inserting these representations in (8.3)

$$Q'_j = \frac{\sum_{(k,m) \in S_j} \left\{ (U_1(0,0) + tU_2 + \rho U_3) \rho^k t^m (p_m(0) + \rho \bar{p}_m) - U(0,0) p_m(0) \rho^k t^m \right\}}{U_1(0,0) \sum_{(k,m) \in S_j} p_m(0) \rho^k t^m}$$

$$+ \frac{U_1(t, \rho) \sum_{(k,m) \in N - S_j} p_m \rho^k t^m}{U_1(0,0) \sum_{(k,m) \in S_j} p_m(0) \rho^k t^m}$$

This representation implies

$$(8.3) \quad Q'_j \in \frac{\sum_{(k,m) \in N - S_j} \rho^k t^m M(I_j) + \sum_{(k,m) \in S_j} \left\{ \rho^{k+m+1} M(I_j) + \rho^{k+1} t^m M(I_j) \right\}}{U_1(0,0) \sum_{(k,m) \in S_j} p_m(0) \rho^k t^m}.$$

This representation implies

$$(8.3) \quad Q_j^i \in \frac{\sum_{(k,m) \in N-S_j} \rho^{k t^m} \mathbb{M}(I_j) + \sum_{(k,m) \in S_j} \{\rho^{k t^{m+1}} \mathbb{L}(I_j) + \rho^{k+1} t^m \mathbb{M}(I_j)\}}{U_1(0,0) \sum_{(k,m) \in S_j} p_m(0) \rho^{k t^m}}.$$

We consider the sum $\sum_{(k,m) \in N-S_j} \rho^{k t^m} \mathbb{M}(I_j)$. Suppose (k,m) is on a side of \mathbb{N} to the left of S_j . Then $\rho^{k t^m} (\rho^{k_{j-1} + \delta_{j-1}} t^{m-\mu_{j-1}-1})$ has as a factor the non-negative power $t^{m-\mu_{j-1}-1}$ and is therefore an element of

$$\begin{aligned} & \rho^{k-k_{j-1}+\delta_{j-1}} \rho^{\delta_{j-1}} t^{m-\mu_{j-1}-1} \mathbb{M}(I_j) \\ &= \rho^{k+m\delta_{j-1}-k_{j-1}-\delta_{j-1}} t^{\mu_{j-1}} \mathbb{M}(I_j) \\ &= \rho^{l+m\delta_{j-1}-\gamma_{j-1}} \mathbb{M}(I_j). \end{aligned}$$

But the point (k,m) is not below the line describing S_{j-1} .

Hence $k + \delta_{j-1} - \gamma_{j-1} \geq 0$ and $\rho^{k+m\delta_{j-1}-\gamma_{j-1}} \mathbb{M}(I_j) \subset \mathbb{M}(I_j)$.

Thus for $(k,m) \in S_0 \cup S_1 \cup \dots \cup S_{j-1}$,

$$(8.4) \quad t^m \rho^k \in \rho^{k_{j-1}-\delta_{j-1}} t^{\mu_{j-1}+1} \mathbb{M}(I_j).$$

Similarly for (k,m) on a side to the right of S_j

$$(8.5) \quad t^m \rho^k \in \rho^{k_j+\delta_{j+1}} t^{\mu_j-1} \mathbb{M}(I_j).$$

Relations (8.3), (8.4), (8.5) imply

$$(8.6) \quad \begin{aligned} Q_j^i \in & \frac{\sum_{(k,m) \in S_j} \{\rho^{k+1} t^m \mathbb{M}(I_j) + \rho^k t^{m+1} \mathbb{L}(I_j)\}}{U_1(0,0) \sum_{(k,m) \in S_j} p_m(0) \rho^{k t^m}} \\ & + \frac{\rho^{k_{j-1}-\delta_{j-1}} t^{\mu_{j-1}+1} \mathbb{M}(I_j) + \rho^{k_j+\delta_{j+1}} t^{\mu_j-1} \mathbb{M}(I_j)}{U_1(0,0) \sum_{(k,m) \in S_j} p_m(0) \rho^{k t^m}} \end{aligned}$$

On I_j^t (8.3) and (8.6) imply

$$\begin{aligned} Q_j^t \in \overline{\sum_{(k,m) \in S_j}} & \left\{ p^{k-k_j+1} t^{m-n_j} \delta_{j^t(I_j^t)} + p^{k-k_j} t^{m-n_j+1} \delta_{j^t(I_j^t)} \right\} \\ & + p^{k_{j-1}-\delta_{j-1}-k_j} t^{n_{j-1}-n_j+1} \delta_{j^t(I_j^t)} + p^{\delta_{j+1}-1} t^{-1} \delta_{j^t(I_j^t)}. \end{aligned}$$

On I_j^t , $t \in p^{\delta_{j^t(I_j^t)}}$ and $t^{-1} \in p^{-r_{j+1}} \delta_{j^t(I_j^t)}$. Hence

$$\begin{aligned} j^t \in \overline{\sum_{(k,m) \in S_j}} & p^{k-k_j+1 + (m-n_j)} \delta_{j^t(I_j^t)} \\ & + \overline{\sum_{(k,m) \in S_j}} p^{k-k_j + (m-n_j+1)} \delta_{j^t(I_j^t)} \\ & + p^{k_{j-1}-\delta_{j-1}-k_j + (n_{j-1}-n_j+1)} \delta_{j^t(I_j^t)} \\ & + p^{\delta_{j+1}-r_{j+1}} \delta_{j^t(I_j^t)}. \end{aligned}$$

Using the fact that for $(k,n) \in S_j$, $k + \delta_j m = r_j$ we can reduce the preceding estimate to

$$Q_j^t \in p^{\delta_{j^t(I_j^t)}} + p^{\delta_{j^t(I_j^t)}} + p^{\delta_j - \delta_{j-1}} + p^{\delta_j - r_{j+1}}.$$

Hence

$$j^t \in p^{\min(1, \delta_j, \delta_j - \delta_{j-1}, \delta_{j+1} - r_{j+1})} \delta_{j^t(I_j^t)}.$$

Similar reasoning shows that

$$j^t \in p^{\min(1, \gamma_j, \gamma_j - \delta_{j-1}, \delta_{j+1} - \gamma_j)} \delta_{j^t(I_j^t)}.$$

we combine these two estimates, observing that

$$\begin{aligned} & \min(1, \delta_j, \delta_j - \delta_{j-1}, \delta_{j+1} - r_{j+1}, \gamma_j, \gamma_j - \delta_{j-1}, \delta_{j+1} - \gamma_j) \\ & = \min(1, \gamma_j - \delta_{j-1}, \delta_{j+1} - r_{j+1}, \gamma_j) = \Delta_j, \end{aligned}$$

and thereby obtain the conclusion of the Theorem in the special case that $0 < j < p$. The two remaining cases follow by slight variants of the above argument which we omit.

Corollary: On I_j , any power of $a(t, \rho)$ has the asymptotic expansion

$$a^k \sim \left[\rho^{Y_j} (t\rho^{-\delta_j})^{\mu_j} j_{a_j} (t\rho^{-\delta_j}) \right]^k \sum_{n=0}^{\infty} \binom{k}{n} z_j^n.$$

Proof: Since $\Delta_j > 0$, for ρ sufficiently small $|z_j| < \frac{1}{2}$,

which implies the stronger result that the above series is uniformly convergent, in addition to being formally convergent.

The proof of our final result, Theorem 7 below, consists of a constructive procedure for explicitly solving the connection problem. In this construction we require the following notion of a negligible formal series (see van der Corput [4]).

Definition: For fixed j , we say that a formal series $F(\rho, s, s_1, \dots, s_p, s'_1 \dots s_{j-1}, s'_{j+1}, \dots, s'_p)$ on J^* is negligible if some positive N

$$\rho^N F \sim \sum_{k=1}^p \left\{ F_k(s_k) \rho^{k-\sigma_k} + F_k^*(s_k^{-1}) \rho^{\sigma_{k+1}-\gamma_k} + f_k \log s_k \right\} \\ + \sum_{k=1, k \neq j}^p \left\{ F_k^*(s_k') + f_k^* \log s_k \right\}$$

where $F_k(s)$, $F_k^*(s)$ are formal power series in $s^{1/2}$ without constant form, the F_k^{**} are formal power series in $s^{1/2}$ with only negative exponents, and f_k , f_k^* and the coefficients of F_k, F_k^*, F_k^{**} are proper

formal power series in a fractional power of ρ . The term "negligible" is justified by the following:

Lemma 8A. If F is a function on $J^{\frac{1}{2}}$ which depends on (ρ, s_j) alone and

$$F(\rho, s_j) \sim F^{(1)}(\rho, s_j) + F^{(2)}$$

where $F^{(1)}$ is a formally convergent series whose terms are functions of (ρ, s_j) alone and $F^{(2)}$ is negligible, then

$$F^{(2)} \underset{\rho \rightarrow 0}{\sim} 0.$$

Proof: $F^{(2)}$ can be written in the form

$$F^{(2)} \underset{\rho \rightarrow 0}{\sim} \sum_{N=1}^{\infty} \xi_N \sum_{k=1}^P \left\{ f_{Nk}(s_k) + f_{Nk}^*(s_k) \right. \\ \left. + b_{Nk} \log s_k + b_{Nk}^* \log s_k^* \right\}$$

where f_j , f_j^* are finite formal power (Laurent) series without constant terms, b_n, b_n^* are constants, $f_j^*(s) \equiv b_n^* = 0$, and the sequence ξ_N is strictly increasing to ∞ . It follows easily that $F \sim F^{(1)} + F^{(2)}$ and $F^{(2)} \underset{\rho \rightarrow 0}{\sim} 0 \iff F^{(3)} \underset{\rho \rightarrow 0}{\sim} 0$. The relation $F \sim F^{(1)} + F^{(3)}$ implies

$$\rho^{-\xi_1} (F - F_1^{(1)}) \in \sum_{k=1}^P \left\{ f_{1k} + f_{1k}^* + b_{1k} \log s_k + b_{1k}^* \log s_k^* \right\} \\ + \rho^{\xi_2 - \xi_1} l_{11}(J^{\frac{1}{2}})$$

where $F_1^{(1)}$ is a suitable partial sum of the formal series $F^{(1)}$.

Since the left hand side depends only on (ρ, s_j) , this inclusion implies

$$\sum_{k=1}^p \left\{ \Gamma_{lk}(u_1, u_p) + \dots + b_{lk}^* \log u_k^* \right. \\ \left. - \Gamma_{lk}(v_1, v_p) - b_{lk}^* \log v_k^* \right\} \in \rho^{\frac{\xi_2 - \xi_1}{2}} M(J^* \times J^*)$$

which clearly implies $\Gamma_{lk} \equiv \Gamma_{lk}^* \equiv b_{lk} = b_{lk}^* = 0$. Finally, induction shows that $\Gamma_{Nk} \equiv \Gamma_{Nk}^* \equiv b_{Nk} = b_{Nk}^* = 0$ for all N , establishing the desired result.

Theorem 7. Let $t = s\rho^{\frac{1}{2\sigma_j}}$. On I_j the matrix \underline{Y} of (7.4) has an asymptotic representation of the form

$$(8.7) \quad \underline{Y}(t, p) \exp - \rho^{-n} \begin{pmatrix} c_+^{(j)}(p) & 0 \\ 0 & c_-^{(j)}(p) \end{pmatrix} \exp - \rho^n \begin{pmatrix} q_+^{(j)}(s, p) \\ q_-^{(j)}(s, p) \end{pmatrix} \\ \sim \underline{Q}^{(j)}(s, p)$$

where

1. $\underline{Q}^{(j)}$ is a formal matrix power series in $\rho^{\frac{1}{2\sigma_j}}$ with coefficients which are C^∞ in s for $0 < s < \infty$ if $j > 0$ and for $0 < s \leq t_1$ if $j = 0$ and $q_+^{(j)}(s, p)$ is a polynomial in $\rho^{-\frac{1}{2\sigma_j}}$ with similar coefficients.

2. $c_{\pm}^{(j)}$ is a function of p alone. Let $\sigma = \text{lcm}(\sigma_1, \dots, \sigma_p)$. $c_{\pm}^{(j)}$ has an asymptotic expansion of the form

$$(8.8) \quad c_{\pm}^{(j)} \sim f_{\pm}^{(j)}(\rho^{\frac{1}{2c}}) = \log \rho g_{\pm}^{(j)}(\rho^{\frac{1}{2c}})$$

where $f_{\pm}^{(j)}$, $g_{\pm}^{(j)}$ are formal power series with coefficients which can be expressed explicitly in terms of integrals of the form (independent of ρ)

$$\int_0^1 a_k^{h/2}(s)s^{i/2}ds, \quad \int_1^\infty a_k^{h/2}(s)s^{i/2}ds$$

$$(8.9) \quad \int_0^{t_1} \left[s^{\alpha_0} a_0(s) \right]^{h/2} F(s) ds, \quad F(s) \in C^{\infty}[0, t_1],$$

or suitably defined finite parts of these integrals in cases where the indicated integral diverges. Here $0 \leq k \leq p$ and h and i are signed integers.

Proof: Let

$$(8.10) \quad c_{\pm}^{(j)} = - \int_{\sigma_j}^{t_1} r_{\pm}(\theta, \rho) d\theta$$

Then (7.3) can be written in the form

$$(8.11) \quad \sim \exp - \rho^{-n} \begin{bmatrix} c_{+}^{(j)} & 0 \\ 0 & c_{-}^{(j)} \end{bmatrix} \exp - \rho^{-n} \int_{\sigma_j}^t \begin{bmatrix} r_{+} & 0 \\ 0 & r_{-} \end{bmatrix} d\theta = \begin{bmatrix} 1 & 1 \\ r_{+} & r_{-} \end{bmatrix}.$$

1. We show that r_{\pm} , $\int_{\sigma_j}^t r_{\pm} d\theta$ possess asymptotic series of the

kind specified in 1. To show this it is sufficient to show that

$R_k(\pm \lambda, t, \rho)$, $\int_0^t R_k(\pm \lambda, \theta, \rho) d\theta$ possess asymptotic series of the same kind. The recursion formula (5.2) for R_k shows that R_k can

be written as a finite sum of terms of the form $a^{k/2} h(t, \rho)$ where k is a signed integer and $h(t, \rho)$ is C^∞ for $0 \leq t \leq t_1$, $0 \leq \rho \leq \rho_1$. Moreover each such h possesses an asymptotic power series in ρ with coefficients in $C^\infty[0, t]$. Hence it is sufficient to show that

$$a^{k/2}(s\rho^{\delta_j}, \rho)h(s\rho^{\delta_j}), \int_{s_j!}^t a^{k/2}(\theta\rho^{\delta_j}, \rho)h(\theta)d\theta, \quad h \in C^\infty[0, t_1]$$

possess series of the same kind. The integral can be written

$$\rho^{\delta_j} \int_{s_j!}^s a^{k/2}(\rho^{\delta_j}, \rho)h(\rho^{\delta_j})d\rho.$$

By the corollary to Theorem 6

$$a^{k/2}(t, \rho) \sim \rho^{k/2\gamma_j} \sum_{N=0}^{\infty} \binom{\frac{k}{2}}{N} \left[s^{\mu_j} j_{\alpha_j}(s) \right]^{k/2-N}$$

$$\left[a(s\rho^{\delta_j}, \rho) - \rho^{\gamma_j} s^{\mu_j} j_{\alpha_j}(s) \right]^N.$$

But $\left[a(s\rho^{\delta_j}, \rho) - \rho^{\gamma_j} s^{\mu_j} j_{\alpha_j}(s) \right]^N h(\rho^{\delta_j})$ is a C^∞ function of s and $\rho^{\frac{1}{\sigma_j}}$: Since it possesses an asymptotic power series expansion in $\rho^{\frac{1}{\sigma_j}}$ it is sufficient to consider expressions of the form

$$\left[s^{\mu_j} j_{\alpha_j}(s) \right]^{k/2} h(s), \int_{s_j!}^s \left[s^{\mu_j} j_{\alpha_j}(s) \right]^{k/2} h(s)ds \quad h(s) \in \begin{cases} C^\infty(0, t_1] & j=0 \\ C^\infty(0, \infty) & j \neq 0. \end{cases}$$

But $s_j!$ does not depend on ρ . Hence the above expressions are functions of s alone belonging to

$C^\infty(0, \infty)$ (or $C^\infty(0, t_1]$ if $j = 0$).

These are trivial instances of the kind of asymptotic expansion appearing in our conclusion whereby we conclude that

$r_\pm, \int_{\sigma_j}^t r_\pm d\theta$ possess asymptotic expansions of the asserted form.

We let $q_\pm^{(j)}(s, p)$ be the partial sum of the expansion of $\int_{\sigma_j}^t r_\pm d\theta$

including all terms of order $\leq 2n \sigma_j$ in $p^{-\frac{1}{2c}}$. We let $\tilde{Q}(s, p)$ be

the formal series which is the asymptotic expansion of

$$\begin{bmatrix} 1 & 1 \\ r_+ & r_- \end{bmatrix} \exp p^{-n} \begin{bmatrix} \int_{\sigma_j}^t r_+ d\theta - q_+^{(j)} & 0 \\ 0 & \int_{\sigma_j}^t r_- d\theta - q_-^{(j)} \end{bmatrix}.$$

This establishes 1, which asserts that the solutions of (2.3)_j obtained by means of transformation (2.2)_j from the solutions of (1.1) given by

$$\begin{bmatrix} 1 & 1 \\ r_+ & r_- \end{bmatrix} \exp p^{-n} \int_{\sigma_j}^t \begin{bmatrix} r_+ & 0 \\ 0 & r_- \end{bmatrix} d\theta$$

have asymptotic representations of the form given in (3.1)_j. However these expressions are more easily obtained by purely formal procedures.

2. As in the proof of 1, it suffices to show that

$$F(p, c_j) = \int_{\sigma_j}^{t_1} a^{1/2}(t, p) h(t) dt, \quad h(t) \in C^\infty [0, t_1]$$

has an expansion of the asserted form for any signed integer N .

We write $F(p, \sigma_j)$ in the form

$$(8.12) \quad F = f^{+} \int_{s_j}^{-\delta_j} a^N/2(\theta_p \delta_j) h(\theta_p \delta_j) d\theta$$

$$\sum_{k=1}^{j-1} \left\{ \int_{r_{k-1} p^{-\delta_k}}^{\sigma_{k-1}} a^N/2(\theta_p \delta_k) h(\theta_p \delta_k) d\theta + p^{\delta_k} \int_{\sigma_{k-1}}^{\sigma_{k-1} p^{-\delta_k}} a^N/2(\theta_p \delta_k) h(\theta_p \delta_k) d\theta \right\}$$

We note the behavior of the limits of integration as

$p \rightarrow 0$, namely $r_{k-1} p^{-\delta_k} \rightarrow \infty$, $\sigma_{k-1} p^{-\delta_k} \rightarrow 0$. The representation

(8.12) makes F appear to depend upon the variables s_{j+1}, \dots, s_p , etc. In fact we could eliminate this formal dependence by making definite numerical choices for s_k, s'_k and r_k . However such a choice would be most unwise since it would force us to compute a great many qualities which have no bearing on the final result. Lemma 8A insures that we may neglect all negligible formal series which appear in asymptotic expansions of the individual terms on the right hand side of (8.12). Thus to establish the conclusion of 2. it suffices to show that each term on the right hand side of (8.12) has an asymptotic expansion which is the sum of a series of the form given in our conclusion and a negligible series.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
999
1000

We again apply the Corollary to Theorem 6 and arguments used in the proof of 1. to conclude that we need only consider integrals of the form

$$\int_{s_k}^{\tau_k} e_k^{-\zeta_k} \frac{N_1}{2} (s) s^{\frac{N_2}{2}} ds, \quad \int_{\tau_{k-1}}^{s_k} e_k^{-\zeta_k} a_k^{\frac{N_1}{2}} ds \quad K > 0$$

$$\int_{-1}^{t_1} \left[s^{\mu_0 a_0(s)} \right]^{N/2} f(s) ds \quad f(s) \in C^\infty [0, t_1].$$

We consider the special case

$$(8.13) \quad \int_{\tau_{k-1}}^{s_k} e_k^{-\zeta_k} a_k^{\frac{N_1}{2}} (s) s^{\frac{N_2}{2}} ds$$

where we suppose that the integral

$$(8.14) \quad \int_0^{s_k} a_k^{\frac{N_1}{2}} (s) s^{\frac{N_2}{2}} ds$$

exists. An asymptotic expansion for (8.13) is readily computed by writing the integral in the form

$$\int_{\tau_{k-1}}^{s_k} e_k^{-\zeta_j} = \int_0^{s_k} - \int_0^{\tau_k} e_k^{-\zeta_k}$$

Inserting the formal power series expansion for the integrand in the second integral shows that its asymptotic expansion is negligible. Hence in this special case it suffices to compute

the integral (8.14). If the integral (8.14) is not convergent we define a finite part of the integral by subtracting a finite power series in $s^{-1/2}$ containing only terms of exponent less than -1 . This permits duplication of the same argument except that we must now add to (8.14) the integral from $\tau_k \rho^k$ to s_j^* of the finite power series. Since this integral is of the form $C \log \rho$ plus a negligible series we can again draw the conclusion that the integral has an expansion of the desired form which can be expressed in terms of (8.14). Similar arguments apply to integrals of the two remaining forms. Finally making the particular choice $s_k^* = 1$ for all k , the last conclusion of the Theorem follows,

Remark: All of our asymptotic statements thus far have been defined by sequences of ideals or the relation \sim . We fall back on a vaguer notion of "asymptotic description" in our final statement, which can be easily explicated by making suitable assumptions about the initial values which appear in the following:

Corollary (Asymptotic Solution of the Initial Value Problem).

The solution $y(t, \rho)$ and its derivative $\dot{y}(t, \rho)$ specified by the functions (initial values) $y(0, \rho)$, $\dot{y}(0, \rho)$ are described asymptotically on I_j by

$$Q^{(j)}(s, \rho) \exp \left\{ \begin{aligned} & \rho^{-n} \begin{bmatrix} c_+^{(p)} - c_+^{(j)} + q_+^{(j)}(s, \rho), 0 \\ 0, c_-^{(p)} - c_-^{(j)} + q_-^{(j)}(s, \rho) \end{bmatrix} \\ & \cdot \begin{bmatrix} 1 & 1 \\ r_+(0, \rho) & r_-(0, \rho) \end{bmatrix}^{-1} \begin{bmatrix} y(0, \rho) \\ \dot{y}(0, \rho) \end{bmatrix} \end{aligned} \right\}.$$

Proof: The unique solution specified by initial values is described by the vector (see (7.3))

$$U(t, \rho) U^{-1}(0, \rho) \begin{bmatrix} y(0, \cdot) \\ y'(0, \cdot) \end{bmatrix}$$

which can be written in the form

$$\left\{ \begin{bmatrix} 1 & 1 \\ r_+(t, \rho) & r_-(t, \rho) \end{bmatrix} \exp \rho^{-n} \int_{\sigma_j}^t \begin{bmatrix} r_+ & 0 \\ 0 & r_- \end{bmatrix} d\theta \right\} \cdot \exp -\rho^{-n} \begin{bmatrix} c_+^{(p)} - c_+^{(j)} \\ c_+^p - c_-^{(j)} \end{bmatrix} \\ \cdot \begin{bmatrix} 1 & 1 \\ r_+(0, \rho) & r_-(0, \rho) \end{bmatrix}^{-1} \begin{bmatrix} y(0, \cdot) \\ y'(0, \rho) \end{bmatrix}.$$

Since the asymptotic behavior on I_j of the expression in brackets is described by

$$Q^{(j)} \exp \rho^{-n} \begin{bmatrix} r_+^{(j)} \\ r_-^{(j)} \end{bmatrix}$$

the conclusion follows.

9. What is a Turning Point?

It is easily seen that if any c_j has a real zero ρ_j , then the condition $t = \rho_j$ forces our formal procedure to break down, or granting our hypotheses, if $a(t, \rho)$ is holomorphic, this breakdown occurs when t is a complex root of a_j . It seems natural to say that this condition describes a turning point phenomenon. A turning point

problem can be regarded, not as an anomaly in the solutions of a differential equation, which are usually well behaved at the turning point, but as a failure of the means which we use to get hold of the asymptotic behavior of solutions. Evidently the possibility of such a failure is conditioned by the means which we have at our disposal. Since the preceding results are obtained by a simple extension of the resources of non-turning point methods (essentially the adjunction of the roots of $\lambda^2 - a(t, \rho)$) and since we have strong evidence that such problems can be treated with satisfactory generality (at least in their formal aspects) we prefer to consider the problem treated above as a non-turning point problem.

However there are some interesting points of contact with turning point theory. We draw a resemblance to comparison methods (see Irdeleyi [1]) which exploit the resemblance of a differential equation to a simpler problem for which asymptotic solutions are known. We can well describe the problem treated above as a differential equation having solutions which can be successfully compared to the algebroid function of two variables $\lambda(t, \rho)$. Moreover in the case in which $a(t, \rho)$ is holomorphic, the determination of suitable solutions on complex (t, ρ) domains presents a great wealth of geometric phenomena which do not seem susceptible to general treatment. Indeed investigations of single examples in this respect appear to share the magnitude and flavor of turning point investigations, as a forthcoming study of a specific problem with holomorphic coefficients will show.

References

- [1] Erdelyi, A. Asymptotic Solutions of Ordinary Differential Equations. Lecture Notes, California Institute of Technology.
- [2] Turrrittin, H. L. (1952) Asymptotic Expansions of Solutions of Ordinary Linear Differential Equations Containing a Parameter. Contributions to the Theory of Non-Linear Oscillations, v. II, pp. 81-116.
- [3] Semple and Kneebone. Algebraic Curves. Oxford, 1959, pp. 340-46
- [4] van der Corput, J. G. Neutrix Calculus. I. Neutrices and Distributions. Nederl. Akad. Wetensch. Proc., Ser. A63 = Indag. Math. 22.
- [5] Stengle, G. Solutions of an n-th Order Linear Differential Equation Containing a Parameter in the Neighborhood of a Turning Point. (to appear)

106

DATE DUE

