Departamento de Ingeniería Matemática MA3402-1 Estadística 07 de agosto de 2019

Auxiliar 1: Modelos paramétricos, ECM y Recuerdos

Profesor: Felipe Tobar

Auxiliares: Diego Marchant, Francisco Vásquez

- **P1.** Estudios relacionados con el comportamiento de ciertos bichos indican que estos tienden a organizarse al azar, linealmente, en un intervalo de longitud $\theta > 0$, a la derecha de un punto donde se ubica una feromona. Nos gustaría estimar el valor del parámetro θ . Sea $X = (X_1, ..., X_n)$ una muestra aleatoria simple (MAS) de la distancia de n bichos con respecto a la feromona.
 - (a) Defina el modelo paramétrico correspondiente.
 - (b) Considere el estimador $\hat{\theta} = 2\bar{X}_n$. ¿Será insesgado? Si no lo es, modifíquelo para que lo sea.
 - (c) Ahora, considere el estimador $\hat{\theta} = \max\{X_1, ..., X_n\}$. ¿Será insesgado? Si no lo es, modifíquelo para que lo sea.
 - (d) Calcule el ECM para cada uno de los estimadores y compárelos.
- **P2.** Sea una muestra aleatoria simple (MAS) $X = (X_1, ..., X_n)$ dada por $X_i \sim \mathcal{N}(\mu, \sigma^2), \forall i = 1, ..., n$. Con μ y σ parámetros desconocidos.

Considere

$$S^{2} := \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X}_{n})^{2}$$

Donde \bar{X}_n es el promedio de X. Muestre que S^2 es insesgado como estimador de σ^2 y calcule su varianza.

Considere

$$\hat{\sigma}^2 := \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$

Muestre que $\hat{\sigma}^2$ es sesgado como estimador de σ^2 , pero es asintoticamente insesgado.

Calcule su error cuadrático medio v concluva que:

$$ECM(\hat{\sigma}^2) = \mathbb{E}((\hat{\sigma}^2 - \sigma^2)^2) < \mathbb{E}((S^2 - \sigma^2)^2) = Var(S^2) = ECM(S^2)$$

Considere

$$\hat{\sigma}^2_{\rho} := \rho S^2$$

con $0 < \rho \in \mathbb{R}$ fijo

Calcule su error cuadrático medio y encuentre ρ^* tal que:

$$ECM(\hat{\sigma}_{\rho^{\star}}^{2}) = \inf_{\rho>0} ECM(\hat{\sigma}_{\rho}^{2})$$

Muestre que $\hat{\sigma}_{\rho^*}^2$ es sesgado como estimador de σ^2 , pero es asintoticamente insesgado.