Organización y Arquitectura de Computadoras Práctica 9: Ensamblador

Sandra del Mar Soto Corderi Edgar Quiroz Castañeda

13 de junio del 2019

1. Ejercicios

- 1. Clasifica las instrucciones de la sección 4.2 según los tipos descritos en 4.3.
 - a) **lw** rs dir Es de tipo **I**
 - b) **lh** rs dir Es de tipo **I**
 - c) **lb** rs dir Es de tipo **I**
 - d) **sw** rs dir Es de tipo **I**
 - e) **sh** rs dir Es de tipo **I**
 - f) **sb** rs dir Es de tipo **I**
 - g) **add** rd rs rt Es de tipo \mathbf{R}
 - h) addi rd rs imm Es de tipo I
 - i) **sub** rd rs rt Es de tipo **R**
 - j) **subi** rd rs imm Es de tipo **I**
 - k) and rd rs rt Es de tipo \mathbf{R}
 - $\begin{array}{c} l) \ \ \mathbf{andi} \ \mathrm{rd} \ \mathrm{rs} \ \mathrm{imm} \\ \mathrm{Es} \ \mathrm{de} \ \mathrm{tipo} \ \mathbf{I} \end{array}$
 - m) **or** rd rs rt Es de tipo \mathbf{R}

- n) **ori** rd rs imm Es de tipo **I**
- \tilde{n}) **beq** rs rt label Es de tipo **I**
- o) bgt rs rt labelEs de tipo I
- p) **j** label Es de tipo **J**
- q) **jr** rd Es de tipo **J**
- 2. Asigna cuidadosamente los códigos de operación a cada una de las instrucciones.

Los siguientes códigos de operación son todos extraídos de la fuente [1]

- a) **lw** rs dir Su código de operación es 100011
- b) **lh** rs dir Su código de operación es 100001
- c) **lb** rs dir Su código de operación es 100000
- d) sw rs dir Su código de operación es 101011
- e) **sh** rs dir Su código de operación es 101001
- f) **sb** rs dir Su código de operación es 101000
- g) add rd rs rt Su código de operación es 100000
- $h)\,$ addi
rd rs imm Su código de operación es 001000
- i) sub rd rs rtSu código de operación es 100010
- j) subi rd rs immSu código de operación es 100011
- k) and ${\rm rd}$ r
s r
t Su código de operación es 100100
- l) andi rd rs imm Su código de operación es 001100

- m) **or** rd rs rt Su código de operación es 100101
- n) **ori** rd rs imm Su código de operación es 001101
- \tilde{n}) beq rs rt label Su código de operación es 000100
- o) **bgt** rs rt label Su código de operación es 000111
- p) **j** label Su código de operación es 000010
- q) **jr** rd Su código de operación es 001000
- 3. Define el tamaño de la memoria y las direcciones de inicio de las secciones de memoria para el área de texto y el área de datos.

De acuerdo a la documentación de MIPS, los procesadores modernos compatibles con x86 son capaces de direccionar hasta 2^{32} bytes de memoria: las direcciones de memoria son de 32 bits de ancho

2. Preguntas

1. Una pseudoinstrucción es una instrucción de lenguaje ensamblador sin implementación directa en el hardware, su función es simplificar la programación sin complicar el hardware, por ejemplo:

Propón 3 pseudoinstrucciones para el lenguaje ensamblador y su traducción.

- a)
- b)
- c)
- 2. Sólo se implementaron dos modos de direccionamiento, propón cómo podría simular el ensamblador los siguientes modos
 - label ± imm
 Se puede traducir como una instrucción tipo I, donde la fuente es \$00 y el inmediato es

 $(linea_actual - linea_label) \pm imm$

label ± imm(reg)
 Se puede traducir como una instrucción tipo I, donde la fuente es reg y el inmediato es

 $(linea_actual - linea_label) \pm imm$

Referencias

[1] MIPS® Architecture For Programmers Volume II-A: The MIPS64® Instruction Set Reference Manual [Online]. Disponible: https://s3-eu-west-1.amazonaws.com/downloads-mips/documents/MD00087-2B-MIPS64BIS-AFP-6. 06.pdf. [Consultado: 13-Junio-2019].