

Blink:阿里新一代实时计算引擎

马国维

2017.4

促进软件开发领域知识与创新的传播

关注InfoQ官方信息

及时获取QCon软件开发者 大会演讲视频信息

扫码,获取限时优惠

「深圳站]

2017年7月7-8日 深圳·华侨城洲际酒店

咨询热线: 010-89880682

全球软件开发大会 [上海站]

2017年10月19-21日

咨询热线: 010-64738142

Who am I?

- ✓ 2010 2017 Alibaba Search
 - iStream
 - Blink
- ✓ 2007 2010 Baidu Web Search

Outline

- The Streaming Architecture
- What is Flink
- What is Blink
- Future Plans

The streaming architecture

Part I

What is streaming?

- √ What is streaming?
 - Unbounded data
- ✓ What is streaming process engine?
 - The data process engine that is designed with infinite data set in mind

What is stateful streaming

- ✓ Computation and state
 - E.g., counters, windows of past events, state machines, trained ML models
- ✓ Result depends on history of stream
- ✓ Stateful stream processor gives the tools to manage state
 - Recover, roll back, version, upgrade, etc

What is event-time streaming

✓ Data records associated with timestamps (time series data)

✓ Processing depends on timestamps

- ✓ Event-time stream processor gives you the tools to reason about time
 - E.g., handle streams that are out of order
 - Core feature is watermarks a clock to measure event time

Streaming Subsumes Batch

Stream (low latency)

What is Flink?

Part 2

Flink - Streaming Compute Engine

Latency down to the milliseconds

10s of millions evts/sec for stateful applications

Exactly-once semantics
Event time processing

http://flink.apache.org

Flink – Unified Compute Engine

Long batch pipelines

Machine Learning at scale

Streaming topologies

→ resource utilization

→ iterative algorithms

Graph Analysis

→ Mutable state

Flink Ecosystem

Checkpoint/Recovery

- Chandy-Lamport algorithm
- Periodic asynchronous consistent snapshots of application state
- Provide exactly-once state guarantees under failures

Stateful Steam Processing

What is Blink?

Part 3

Blink – Alibaba's version of Flink

✓ Looked into Flink two years ago

- best choice of unified computing engine
- a few of issues in flink that can be problems for large scale applications

✓ Started Blink project

aimed to make Flink work reliably and efficiently at the very large scale at Alibaba

✓ Made various improvements in Flink runtime

- native run on yarn cluster
- failover optimizations for fast recovery
- incremental checkpoint for super large state
- async operator for high throughputs

✓ Working with Flink community to contribute back since last August

- several key designs
- hundreds of patches

Blink in Alibaba Production

- ✓ In production for almost one year
- ✓ More than 3000 nodes are running Blink
- √ The largest Blink cluster is more than 1000 nodes
- √ There are hundreds of production jobs supported by Blink
- ✓ Supported key online Service on last Nov 11th
 - The largest Blink job has 5000 concurrent, 10TB state, billions of QPS
 - Based on the Blink machine learning platform to significantly increase the transaction conversion

Blink Ecosystem in Alibaba

Use Case — Search Index Build & Update

Use Case — Realtime A/B Test

Use Case — Online Machine Learning

Blink Architecture

Improvements to Flink Runtime

- ✓ Native integration with Resource Managment for dynamic resource allacation and more larger scale
- ✓ Performance Improvements
 - Incremental Checkpoint
 - Asynchronous Operator
- √ Failover Optimization
 - Fine-grained Recovery for Task Failures
 - Allocation Reuse for Task Recovery
 - Non-disruptive JobManager Failures via Reconciliation

Future Plans

Section 4

Future Plans

- ✓ Blink is already popular in the streaming scenarios
 - more and more streaming applications will run on blink
- ✓ Make batch applications run on production
 - increase the resource utilization of the clusters
- ✓ Blink as Service
 - Alibaba Group Wide
- ✓ Cluster is growing very fast
 - cluster size will double
 - thousands of jobs run on production

THANKS

----- Q&A Section -----

