

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет»

Кафедра прикладной математики

Курсовой проект по дисциплине «Уравнения математической физики»

Группа ПМ-92 ИВАНОВ ВЛАДИСЛАВ Вариант 7

Руководитель СОЛОВЕЙЧИК ЮРИЙ ГРИГОРЬЕВИЧ

Новосибирск, 2022

Содержание

1	Фор	мулиро	овка	зад	ачи																					2
2	Ана	лиз и д	искр	ети	заці	ИЯ																			,	2
3	Исс	ледова	ния																						1	4
	3.1	Сходи	мост	ь на	раз	лич	ιны	х ф	унн	ΚЦИ	ΙЯХ													 		5
		3.1.1	Равн	номе	ерно	еп	po	стр	ан	ств	0,	oae	ЗНС	OM	epi	НО	e e	pe	МЯ					 		5
		3.1.2	Равн	номе	ерно	е п	po	стр	ан	СТВ	O, I	чер	oae	ЗНС	OM	ер	НО	е в	ре	МЯ	١.			 		5
		3.1.3	Hepa	авно	омер	ОНО	еп	pod	стр	ан	СТВ	Ο,	pai	вн	ОМ	ер	НО	e E	вре	M	1.			 		5
		3.1.4	Hepa	авно	омер	ОНО	еп	pod	стр	ан	СТВ	Ο, Ι	не	pa	вн	ОМ	ер	НО	e E	ре	2MS	7		 		5
	3.2	Точнос																								5
		3.2.1	u = 1	1																				 	1	6
		3.2.2	u = 3	<i>r</i>																				 	1	6
		3.2.3	u = s	x^2 .																				 	1	6
		3.2.4	u = x	x^3 .																				 		7
		3.2.5	u = 3	r^4 .																				 		7
		3.2.6	u = x	x^5 .																				 	1	8
		3.2.7	$u = \epsilon$	∂ x .																				 	1	8
		3.2.8	u = a	cos(x)	c)																			 		8
4	Код	програ	аммь	ı																						9
	4.1	main.c	pp .																					 	(9
	12	comm	on h																						10	a

1 Формулировка задачи

Реализовать МКЭ для гиперболического уравнения в декартовой системе координат. Схема Кранка-Николсона для аппроксимации по времени, базисные функции билинейные на прямоугольниках.

2 Анализ и дискретизация

Требуется решить гиперболическое уравнение:

$$-\operatorname{div}(\lambda \operatorname{grad} u) + \gamma u + \sigma \frac{\partial u}{\partial t} + \chi \frac{\partial^2 u}{\partial t^2} = f$$

В двумерной декартовой системе координат оно имеет вид:

$$-\frac{\partial}{\partial x} \left(\lambda \frac{\partial u}{\partial x} \right) - \frac{\partial}{\partial y} \left(\lambda \frac{\partial u}{\partial y} \right) + \gamma u + \sigma \frac{\partial u}{\partial t} + \chi \frac{\partial^2 u}{\partial t^2} = f$$

$$u|_S = u_s$$

Конечноэлементная аппроксимация достигается путем разложения функции по базису. В качестве базисных функций используются билинейные на прямоугольных элементах:

$$\psi_{1}(x,y) = X_{1}(x)Y_{1}(y) \quad \psi_{2}(x,y) = X_{1}(x)Y_{2}(y)$$

$$\psi_{3}(x,y) = X_{2}(x)Y_{1}(y) \quad \psi_{4}(x,y) = X_{2}(x)Y_{2}(y)$$

$$X_{1}(x) = \frac{x_{p+1} - x}{h_{x}} \qquad h_{x} = x_{p+1} - x_{p}$$

$$X_{2}(x) = \frac{x - x_{p}}{h_{x}} \qquad h_{y} = y_{s+1} - x_{s}$$

$$Y_{1}(y) = \frac{y_{s+1} - y}{h_{y}} \qquad x \in [x_{p}, x_{p+1}], \ y \in [y_{s}, y_{s+1}]$$

$$Y_{2}(y) = \frac{y - y_{s}}{h_{y}} \qquad \Omega_{ps} = [x_{p}, x_{p+1}] \times [y_{s}, y_{s+1}]$$

$$u^{*}(x, y) = \sum_{i=1}^{4} q_{i}\psi_{i}(x, y)$$

Элементы локальных матриц будем вычислять аналитически, используя следующие формулы:

$$G_{ij} = \int_{x_p}^{x_{p+1}} \int_{y_s}^{y_{s+1}} \lambda \left(\frac{\partial \psi_i}{\partial x} \frac{\partial \psi_j}{\partial x} + \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial y} \right) dx dy$$
$$M_{ij}^{\gamma} = \int_{x_p}^{x_{p+1}} \int_{y_s}^{y_{s+1}} \gamma \psi_i \psi_j dx dy$$
$$b_i = \int_{x_p}^{x_{p+1}} \int_{y_s}^{y_{s+1}} f \psi_i dx dy$$

В случае с билинейными базисными функциями формулы можно представить в более простом виде:

$$\mathbf{G} = \frac{\bar{\lambda}}{6} \frac{h_y}{h_x} \begin{pmatrix} 2 & -2 & 1 & -1 \\ -2 & 2 & -1 & 1 \\ 1 & -1 & 2 & -2 \\ -1 & 1 & -2 & 2 \end{pmatrix} + \frac{\bar{\lambda}}{6} \frac{h_x}{h_y} \begin{pmatrix} 2 & 1 & -2 & -1 \\ 1 & 2 & -1 & -2 \\ -2 & -1 & 2 & 1 \\ -1 & -2 & 1 & 2 \end{pmatrix}$$

$$\mathbf{C} = \frac{h_x h_y}{36} \begin{pmatrix} 4 & 2 & 2 & 1 \\ 2 & 4 & 1 & 2 \\ 2 & 1 & 4 & 2 \\ 1 & 2 & 2 & 4 \end{pmatrix}$$

$$\mathbf{M}^{\gamma} = \bar{\gamma} \mathbf{C}$$

$$\mathbf{b} = \mathbf{C} \cdot \mathbf{f}$$

$$\mathbf{f} = (f_1, f_2, f_3, f_4)^t$$

Схема Кранка-Николсона для аппроксимации по времени:

$$\frac{\partial u}{\partial t} = \frac{u^j - u^{j-2}}{2\Delta t}, \quad \frac{\partial^2 u}{\partial t^2} = \frac{u^j - 2u^{j-1} + u^{j-2}}{\Delta t^2}$$
$$u = \frac{u^j + u^{j-2}}{2}, \quad f = \frac{f^j + f^{j-2}}{2}$$

$$-\operatorname{div}\left(\lambda \operatorname{grad} \frac{u^{j} + u^{j-2}}{2}\right) + \gamma \frac{u^{j} + u^{j-2}}{2} + \sigma \frac{u^{j} - u^{j-2}}{2\Delta t} + \chi \frac{u^{j} - 2u^{j-1} + u^{j-2}}{\Delta t^{2}} = \frac{f^{j} + f^{j-2}}{2}$$

Подставляя это в уравнение Галеркина и учитывая, что параметры γ , σ и χ являются константами, получаем глобальную систему уравнений:

$$\left(\frac{\mathbf{G}}{2} + \mathbf{C}\left(\frac{\gamma}{2} + \frac{\sigma}{2\Delta t} + \frac{\chi}{\Delta t^2}\right)\right)\mathbf{q}^j = \frac{(\mathbf{b}^j + \mathbf{b}^{j-2})}{2} - \frac{\mathbf{G}\mathbf{q}^{j-2}}{2} + \mathbf{C}\left(\mathbf{q}^{j-1}\frac{2\chi}{\Delta t^2} + \mathbf{q}^{j-2}\left(-\frac{\gamma}{2} + \frac{\sigma}{2\Delta t} - \frac{\chi}{\Delta t^2}\right)\right)$$

Для неравномерной сетки производятся следующие замены:

$$t_2 = t^{j-2}, \quad t_1 = t^{j-1}, \quad t_0 = t^j$$

$$\frac{\partial u}{\partial t} = \frac{u^j - u^{j-2}}{t_2 - t_1} = \frac{u^j - u^{j-2}}{d_1}$$

$$\frac{\partial^2 u}{\partial t^2} = 2 \frac{u^j - u^{j-1} \frac{t_0 - t_2}{t_1 - t_2} + u^{j-2} \frac{t_0 - t_1}{t_1 - t_2}}{t_0 (t_0 - t_1 - t_2) + t_1 t_2} = \frac{u^j - u^{j-1} m_1 + u^{j-2} m_2}{d_2}$$

$$d_1 = t_0 - t_2, \quad d_2 = \frac{t_0 (t_0 - t_1 - t_2) + t_1 t_2}{2}, \quad m_1 = \frac{t_0 - t_2}{t_1 - t_2}, \quad m_2 = \frac{t_0 - t_1}{t_1 - t_2}$$

$$\left(\frac{\mathbf{G}}{2} + \mathbf{C}\left(\frac{\gamma}{2} + \frac{\sigma}{d_1} + \frac{\chi}{d_2}\right)\right)\mathbf{q}^j = \frac{(\mathbf{b}^j + \mathbf{b}^{j-2})}{2} - \frac{\mathbf{G}\mathbf{q}^{j-2}}{2} + \mathbf{C}\left(\mathbf{q}^{j-1}\frac{m_1\chi}{d_2} + \mathbf{q}^{j-2}\left(-\frac{\gamma}{2} + \frac{\sigma}{d_1} - \frac{m_2\chi}{d_2}\right)\right)$$

Полученный в результате решения данной системы вектор q будет являться решением поставленной задачи.

3 Исследования

Параметры, используемые во всех исследованиях:

- $\sigma : 1$
- λ : 1
- $\gamma : 1$
- $\chi : 1$
- Область : [0,1]*[0,1]
- Отрезок времени : [0, 1]
- Количество узлов: 36

3.1 Сходимость на различных функциях

3.1.1 Равномерное пространство, равномерное время

	1	t	t^2	t^3	t^4	t^5	e^t	cos(t)
1	5.59e-17	4.28e-13	2.48e-12	3.85e-03	2.70e-02	5.97e-02	2.44e-03	9.89e-04
x+y	2.72e-12	2.09e-12	2.76e-12	3.85e-03	2.70e-02	5.97e-02	2.44e-03	9.89e-04
$x^2 + y^2$	1.74e-12	8.28e-13	4.75e-13	3.85e-03	2.70e-02	5.97e-02	2.44e-03	9.89e-04
$x^3 + y^3$	1.42e-12	3.97e-13	8.11e-13	3.85e-03	2.70e-02	5.97e-02	2.44e-03	9.89e-04
$x^4 + y^4$	1.23e-03	1.23e-03	1.23e-03	2.62e-03	2.58e-02	5.85e-02	1.21e-03	2.45e-04
$x^5 + y^5$	3.14e-03	3.14e-03	3.14e-03	9.59e-04	2.39e-02	5.67e-02	8.59e-04	2.17e-03
$e^x + e^y$	8.74e-05	8.74e-05	8.74e-05	3.77e-03	2.69e-02	5.97e-02	2.35e-03	9.02e-04

3.1.2 Равномерное пространство, неравномерное время

	1	t	t^2	t^3	t^4	t^5	e^t	cos(t)
1	3.20e-17	4.33e-13	2.51e-12	4.27e-03	2.80e-02	6.14e-02	2.57e-03	1.03e-03
x + y	2.74e-12	2.11e-12	2.79e-12	4.27e-03	2.80e-02	6.14e-02	2.57e-03	1.03e-03
$x^2 + y^2$	1.76e-12	8.35e-13	4.79e-13	4.27e-03	2.80e-02	6.14e-02	2.57e-03	1.03e-03
$x^3 + y^3$	1.43e-12	3.99e-13	8.18e-13	4.27e-03	2.80e-02	6.14e-02	2.57e-03	1.03e-03
$x^4 + y^4$	1.25e-03	1.25e-03	1.25e-03	3.02e-03	2.68e-02	6.02e-02	1.32e-03	2.19e-04
$x^5 + y^5$	3.17e-03	3.17e-03	3.17e-03	1.29e-03	2.49e-02	5.83e-02	7.92e-04	2.17e-03
$e^x + e^y$	8.84e-05	8.84e-05	8.84e-05	4.18e-03	2.79e-02	6.14e-02	2.48e-03	9.41e-04

3.1.3 Неравномерное пространство, равномерное время

	1	t	t^2	t^3	t^4	t^5	e^t	cos(t)
1	4.14e-17	4.25e-13	2.46e-12	3.82e-03	2.68e-02	5.92e-02	2.42e-03	9.80e-04
x+y	2.84e-12	6.24e-13	1.65e-12	3.82e-03	2.68e-02	5.92e-02	2.42e-03	9.80e-04
$x^2 + y^2$	3.31e-12	7.45e-13	6.54e-13	3.82e-03	2.68e-02	5.92e-02	2.42e-03	9.80e-04
$x^3 + y^3$	7.37e-13	3.52e-13	1.29e-12	3.82e-03	2.68e-02	5.92e-02	2.42e-03	9.80e-04
$x^4 + y^4$	1.28e-03	1.28e-03	1.28e-03	2.55e-03	2.55e-02	5.80e-02	1.15e-03	3.12e-04
$x^5 + y^5$	3.54e-03	3.54e-03	3.54e-03	9.52e-04	2.33e-02	5.58e-02	1.33e-03	2.60e-03
$e^x + e^y$	9.47e-05	9.47e-05	9.47e-05	3.73e-03	2.67e-02	5.91e-02	2.33e-03	8.87e-04

3.1.4 Неравномерное пространство, неравномерное время

		1	t	t^2	t^3	t^4	t^5	e^t	cos(t)
1		6.70e-17	4.30e-13	2.49e-12	4.23e-03	2.78e-02	6.09e-02	2.55e-03	1.02e-03
x +	y	2.87e-12	6.28e-13	1.66e-12	4.23e-03	2.78e-02	6.09e-02	2.55e-03	1.02e-03
$x^{2} +$	y^2	3.35e-12	7.52e-13	6.60e-13	4.23e-03	2.78e-02	6.09e-02	2.55e-03	1.02e-03
$x^{3} +$	y^3	7.43e-13	3.55e-13	1.30e-12	4.23e-03	2.78e-02	6.09e-02	2.55e-03	1.02e-03
$x^4 +$	y^4	3.49e-17	1.29e-03	1.29e-03	2.95e-03	2.65e-02	5.96e-02	1.27e-03	2.89e-04
$x^{5} +$	y^5	3.58e-03	3.58e-03	3.58e-03	1.16e-03	2.43e-02	5.74e-02	1.27e-03	2.60e-03
$e^x +$	e^y	9.58e-05	9.58e-05	9.58e-05	4.14e-03	2.77e-02	6.08e-02	2.46e-03	9.26e-04

3.2 Точность решения при дроблении сетки

Параметры, используемые в данном исследовании:

- Шаг для неравномерных сеток (k):1.1
- Функция u(t):1

3.2.1 u = 1

i	nodes	norm
0	36	5.59e-17
1	121	4.61e-17
2	441	1.17e-16
\overline{i}	nodes	norm
0	36	3.20e-17
1	121	3.75e-17
2	441	3.12e-16
	77+	5.120 10
i	nodes	norm
	• •	
i	nodes	norm
<i>i</i>	nodes 36	norm 4.14e-17
<i>i</i> 0	nodes 36 121	norm 4.14e-17 9.80e-17
<i>i</i> 0 1 2	nodes 36 121 441	norm 4.14e-17 9.80e-17 1.19e-16
<i>i</i> 0 1 2	nodes 36 121 441 nodes	norm 4.14e-17 9.80e-17 1.19e-16 norm

равномерное пространство, равномерное время

равномерное пространство, неравномерное время

неравномерное пространство, равномерное время

неравномерное пространство, неравномерное время

3.2.2 u = x

i	nodes	norm
·		
0	36	5.64e-13
1	121	2.50e-13
2	441	1.64e-13
i	nodes	norm
0	36	5.69e-13
1	121	2.51e-13
2	441	1.63e-13
i	nodes	norm
0	36	5.91e-13
1	121	1.77e-13
2	441	1.10e-13
\overline{i}	nodes	norm
0	36	5.96e-13
1	121	1.76e-13
2	441	1.10e-13

равномерное пространство, равномерное время

равномерное пространство, неравномерное время

неравномерное пространство, равномерное время

неравномерное пространство, неравномерное время

3.2.3 $u = x^2$

i	nodes	norm
0	36	1.34e-12
1	121	7.76e-13
2	441	3.74e-13
$\mid i \mid$	nodes	norm
<i>i</i>	nodes 36	<i>norm</i> 1.36e-12
-		

равномерное пространство, равномерное время

равномерное пространство, неравномерное время

i	nodes	norm
0	36	3.09e-13
1	121	8.38e-14
2	441	1.01e-13
i	nodes	norm
0	36	3.11e-13
1	121	8.36e-14

неравномерное пространство, равномерное время

неравномерное пространство, неравномерное время

3.2.4 $u = x^3$

nodes	norm
36	5.47e-13
121	1.75e-13
441	9.29e-14
nodes	norm
36	5.51e-13
121	1.75e-13
441	9.24e-14
nodes	norm
36	4.96e-13
121	3.14e-13
441	7.44e-14
nodes	norm
36	5.00e-13
121	3.15e-13
	36 121 441 nodes 36 121 441 nodes 36 121 441 nodes 36

равномерное пространство, равномерное время

равномерное пространство, неравномерное время

неравномерное пространство, равномерное время

неравномерное пространство, неравномерное время

3.2.5 $u = x^4$

i	nodes	norm
0	36	3.41e-04
1	121	7.59e-05
2	441	1.15e-05
i	nodes	norm
0	36	3.44e-04
1	121	7.63e-05
2	441	1.14e-05
i	nodes	norm
<i>i</i>	nodes 36	<i>norm</i> 3.54e-04
_		
0	36	3.54e-04
0	36 121	3.54e-04 1.16e-04
0 1 2	36 121 441	3.54e-04 1.16e-04 2.34e-05
0 1 2	36 121 441 nodes	3.54e-04 1.16e-04 2.34e-05 norm

равномерное пространство, равномерное время

равномерное пространство, неравномерное время

неравномерное пространство, равномерное время

неравномерное пространство, неравномерное время

3.2.6 $u = x^5$

i nodes norm 0 36 8.77e-04 1 121 1.94e-04 2 441 2.91e-05 i nodes norm 0 36 8.85e-04 1 121 1.95e-04 2 441 2.89e-05 i nodes norm 0 36 1.00e-03 1 121 3.70e-04 2 441 7.60e-05 i nodes norm 0 36 1.01e-03 1 121 3.71e-04 2 441 7.54e-05			
1 121 1.94e-04 2 441 2.91e-05 i nodes norm 0 36 8.85e-04 1 121 1.95e-04 2 441 2.89e-05 i nodes norm 0 36 1.00e-03 1 121 3.70e-04 2 441 7.60e-05 i nodes norm 0 36 1.01e-03 1 121 3.71e-04	i	nodes	norm
2 441 2.91e-05 i nodes norm 0 36 8.85e-04 1 121 1.95e-04 2 441 2.89e-05 i nodes norm 0 36 1.00e-03 1 121 3.70e-04 2 441 7.60e-05 i nodes norm 0 36 1.01e-03 1 121 3.71e-04	0	36	8.77e-04
i nodes norm 0 36 8.85e-04 1 121 1.95e-04 2 441 2.89e-05 i nodes norm 0 36 1.00e-03 1 121 3.70e-04 2 441 7.60e-05 i nodes norm 0 36 1.01e-03 1 121 3.71e-04	1	121	1.94e-04
0 36 8.85e-04 1 121 1.95e-04 2 441 2.89e-05 i nodes norm 0 36 1.00e-03 1 121 3.70e-04 2 441 7.60e-05 i nodes norm 0 36 1.01e-03 1 121 3.71e-04	2	441	2.91e-05
1 121 1.95e-04 2 441 2.89e-05 i nodes norm 0 36 1.00e-03 1 121 3.70e-04 2 441 7.60e-05 i nodes norm 0 36 1.01e-03 1 121 3.71e-04	\overline{i}	nodes	norm
2 441 2.89e-05 i nodes norm 0 36 1.00e-03 1 121 3.70e-04 2 441 7.60e-05 i nodes norm 0 36 1.01e-03 1 121 3.71e-04	0	36	8.85e-04
i nodes norm 0 36 1.00e-03 1 121 3.70e-04 2 441 7.60e-05 i nodes norm 0 36 1.01e-03 1 121 3.71e-04	1	121	1.95e-04
0 36 1.00e-03 1 121 3.70e-04 2 441 7.60e-05 i nodes norm 0 36 1.01e-03 1 121 3.71e-04	2	441	2.89e-05
1 121 3.70e-04 2 441 7.60e-05 i nodes norm 0 36 1.01e-03 1 121 3.71e-04	i	nodes	norm
2 441 7.60e-05 <i>i</i> nodes norm 0 36 1.01e-03 1 121 3.71e-04	0	36	1.00e-03
i nodes norm 0 36 1.01e-03 1 121 3.71e-04	1	121	3.70e-04
0 36 1.01e-03 1 121 3.71e-04	2	441	7.60e-05
1 121 3.71e-04	\overline{i}	nodes	norm
	0	36	1.01e-03
2 441 7.54e-05	1	121	3.71e-04
	_	1 11	7540 05

равномерное пространство, равномерное время

равномерное пространство, неравномерное время

неравномерное пространство, равномерное время

неравномерное пространство, неравномерное время

3.2.7 $u = e^x$

i	nodes	norm
0	36	2.42e-05
1	121	5.37e-06
2	441	8.12e-07
i	nodes	norm
0	36	2.44e-05
1	121	5.40e-06
2	441	8.06e-07
i	nodes	norm
$\overline{}$	36	2.65e-05
0	30	2.050 05
1	121	9.29e-06
1	121	9.29e-06
1 2	121 441	9.29e-06 1.90e-06
1 2	121 441 nodes	9.29e-06 1.90e-06 norm

равномерное пространство, равномерное время

равномерное пространство, неравномерное время

неравномерное пространство, равномерное время

неравномерное пространство, неравномерное время

3.2.8 u = cos(x)

i	nodes	norm
0	36	1.22e-05
1	121	2.71e-06
2	441	4.11e-07
i	nodes	norm
0	36	1.23e-05
1	121	2.73e-06
2	441	4.08e-07

равномерное пространство, равномерное время

равномерное пространство, неравномерное время

i	nodes	norm
0	36	1.23e-05
1	121	3.80e-06
2	441	7.65e-07
\overline{i}	nodes	norm
i	nodes 36	<i>norm</i> 1.24e-05

неравномерное пространство, равномерное время

неравномерное пространство, неравномерное время

4 Код программы

4.1 main.cpp

```
#include "common.h"
   void main() {
2
        lambda = 1;
3
        gamma = 1;
        sigma = 1;
        chi = 1;
6
        u_x = \{ [](double x, double y, double t) \rightarrow double \{ \}
             return 1;
        }};
        vector \langle func3D \rangle u_t(8);
10
        u_t[0] = \{[](double x, double y, double t) \rightarrow double \{ return 1; \}
11
         → } };
        u_t[1] = \{[](double x, double y, double t) \rightarrow double \{ return t; \}
12
         → }};
        u_t[2] = \{[](double x, double y, double t) \rightarrow double \{ return \}
13
         \rightarrow pow(t, 2); }};
        u_t[3] = {[](double x, double y, double t) -> double { return
14
         \rightarrow pow(t, 3); \};
        u_t[4] = \{[](double x, double y, double t) \rightarrow double \{ return \}
         \rightarrow pow(t, 4); }};
        u_t[5] = \{[](double x, double y, double t) \rightarrow double \{ return \}
         \rightarrow pow(t, 5); }};
        u_t[6] = \{[](double x, double y, double t) \rightarrow double \{ return \}
17
         \rightarrow exp(t); }};
        u_t[7] = \{[](double x, double y, double t) \rightarrow double \{ return \}
18
         \rightarrow cos(t); }};
        u = u_sum(u_x, u_t[0], lambda, gamma, sigma, chi);
        f = rightPart(u, lambda, gamma, sigma, chi);
20
        cout << "Is the grid uniform? (1/0)\n";
21
        cin >> answer;
22
```

```
if (answer == 1)
23
            gridUniformFlag = true;
24
        else
25
            gridUniformFlag = false;
26
        cout << "Is the time uniform? (1/0)\n";</pre>
27
        cin >> answer;
        if (answer == 1)
29
            timeUniformFlag = true;
30
        else
31
            timeUniformFlag = false;
32
        cout << "\n";
        cout << "i nodes norm\n";</pre>
34
        cout << scientific << setprecision(2);</pre>
35
        for (coef = 0; coef < 3; coef++) {
36
            gridDivCoef = timeDivCoef = coef;
37
            readGrid();
38
            makeGridSpace(gridUniformFlag);
            readTime();
            makeGridTime(timeUniformFlag);
            cout << coef << " " << nodesCount << "\t" << solve() << endl;</pre>
42
43
       cout << "\n";
44
        gridDivCoef = timeDivCoef = 0;
        for (size_t i = 0; i < u_t.size(); i++) {</pre>
            u = u_sum(u_x, u_t[i], lambda, gamma, sigma, chi);
47
            f = rightPart(u, lambda, gamma, sigma, chi);
48
            readGrid();
49
            makeGridSpace(gridUniformFlag);
            readTime();
51
            makeGridTime(timeUniformFlag);
            cout << "u(t)_" << i + 1 << ": " << solve() << "\n";
53
        }
54
   }
55
   void crankNicolson(int layer) {
56
        A.clear();
57
        A.resize(nodesCount);
58
        for (size_t i = 0; i < nodesCount; i++)
59
            A[i].resize(nodesCount, ∅);
60
        makeGlobalG();
61
        makeGlobalM();
62
        b = makeGlobalb(layer);
63
        t0 = times[layer];
64
        t1 = times[layer - 1];
65
        t2 = times[layer - 2];
66
```

```
d1 = t0 - t2;
67
        d2 = (t0 * (t0 - t1 - t2) + t1 * t2) / 2.0;
68
        m1 = (t0 - t2) / (t1 - t2);
69
        m2 = (t0 - t1) / (t1 - t2);
        double tmp = (gamma / 2.0) + (sigma / d1) + (chi / d2);
71
        for (size_t i = 0; i < nodesCount; i++)</pre>
72
             for (size_t j = 0; j < nodesCount; j++)</pre>
73
                 A[i][j] += (G[i][j] / 2.0) + M[i][j] * tmp;
74
        b = ((b + b2) / 2.0) - (G * q2 / 2.0) +
75
            M * (q1 * (m1 * chi / d2) + q2 * (-(gamma / 2.0) + (sigma / d1))
             \rightarrow - (m2 * chi / d2)));
        for (size_t i = 0; i < nodesCount; i++)</pre>
77
             if (nodes[i].type == 1) {
78
                 A[i].clear();
79
                 A[i].resize(nodesCount, ∅);
80
                 A[i][i] = 1;
                 b[i] = u(nodes[i].x, nodes[i].y, t0);
82
             }
83
    }
84
    double solve() {
85
        n = nodesCount;
86
        q1.resize(nodesCount);
87
        q2.resize(nodesCount);
        for (size_t i = 0; i < gridHeight; i++)</pre>
89
             for (size_t j = 0; j < gridWidth; j++) {</pre>
90
                 k = i * gridWidth + j;
                 q2[k] = u(nodes[k].x, nodes[k].y, times[0]);
                 q1[k] = u(nodes[k].x, nodes[k].y, times[1]);
93
             }
94
        b2 = makeGlobalb(∅);
95
        b1 = makeGlobalb(1);
96
        for (size_t layer = 2; layer < times.size(); layer++) {</pre>
            crankNicolson(layer);
             for (int j = 0; j < A.size(); ++j)</pre>
99
                 for (int i = j + 1; i < A.size(); ++i) {</pre>
100
                      tmp = A[i][j] / A[j][j];
101
                      for (int k = 0; k < A.size(); ++k)</pre>
102
                          A[i][k] = tmp * A[j][k];
                      b[i] = tmp * b[j];
                 }
105
             vector <double> x;
106
```

```
x.resize(A.size(), 0);
107
             for (int i = n - 1; i >= 0; --i) {
108
                 tmp = 0.0;
                 for (int j = i + 1; j < A.size(); ++j)</pre>
                      tmp += A[i][j] * x[j];
111
                 x[i] = (b[i] - tmp) / A[i][i];
112
             }
113
            b2 = b1;
114
            b1 = b;
            q = x;
             q2 = q1;
117
             q1 = q;
118
119
        return normInNodes(q, t0);
120
    }
121
    void makeLocalG(int elemNum) {
        hx = nodes[elemNum + 1].x - nodes[elemNum].x;
123
        hy = nodes[elemNum + gridWidth].y - nodes[elemNum].y;
124
        \mathsf{GLocal} \ = \ \{\{\emptyset,\ \emptyset,\ \emptyset,\ \emptyset\},\ \{\emptyset,\ \emptyset,\ \emptyset\},\ \{\emptyset,\ \emptyset,\ \emptyset\},\ \{\emptyset,\ \emptyset,\ \emptyset,\ \emptyset\}\};
125
        126
         \rightarrow -2, 2}};
        for (size_t i = 0; i < 4; i++)
             for (size_t j = 0; j < 4; j++)
128
                 GLocal[i][j] += matTmp[i][j] * lambda * hy / (6 * hx);
129
        130
         \rightarrow 1, 2}};
        for (size_t i = \emptyset; i < 4; i++)
131
             for (size_t j = 0; j < 4; j++)
132
                 GLocal[i][j] += matTmp[i][j] * lambda * hx / (6 * hy);
133
    }
134
    void makeLocalM(int elemNum) {
135
        hx = nodes[elemNum + 1].x - nodes[elemNum].x;
136
        hy = nodes[elemNum + gridWidth].y - nodes[elemNum].y;
137
        MLocal = \{\{4, 2, 2, 1\}, \{2, 4, 1, 2\}, \{2, 1, 4, 2\}, \{1, 2, 2, 4\}\};
138
        for (size_t i = 0; i < 4; i++)
139
             for (size_t j = 0; j < 4; j++)
140
                 MLocal[i][j] *= hx * hy / 36;
141
    }
142
    void makeLocalb(int elemNum) {
        hx = nodes[elemNum + 1].x - nodes[elemNum].x;
144
        hy = nodes[elemNum + gridWidth].y - nodes[elemNum].y;
145
        bLocal = \{0, 0, 0, 0\};
146
```

```
f1 = f(nodes[elemNum].x, nodes[elemNum].y, t);
147
        f2 = f(nodes[elemNum + 1].x, nodes[elemNum + 1].y, t);
148
        f3 = f(nodes[elemNum + gridWidth].x, nodes[elemNum + gridWidth].y,

→ t);

        f4 = f(nodes[elemNum + gridWidth + 1].x, nodes[elemNum + gridWidth]
150
         \rightarrow + 1].y, t);
        bLocal[0] = (hx * hy / 36) * (4 * f1 + 2 * f2 + 2 * f3 + 1 * f4);
151
        bLocal[1] = (hx * hy / 36) * (2 * f1 + 4 * f2 + 1 * f3 + 2 * f4);
152
        bLocal[2] = (hx * hy / 36) * (2 * f1 + 1 * f2 + 4 * f3 + 2 * f4);
153
        bLocal[3] = (hx * hy / 36) * (1 * f1 + 2 * f2 + 2 * f3 + 4 * f4);
154
    }
155
    void makeGlobalG() {
156
        G.clear();
157
        G.resize(nodesCount);
158
        for (size_t i = 0; i < nodesCount; i++)</pre>
159
            G[i].resize(nodesCount, ∅);
        for (size_t i = 0; i < gridHeight - 1; i++)
161
            for (size_t j = 0; j < gridWidth - 1; j++)
162
            {
163
                 k = i * gridWidth + j;
                 makeLocalG(k);
                 vector <int> nearestNodes = {k, k + 1, k + gridWidth, k +
                     gridWidth + 1};
                 for (size_t i1 = 0; i1 < 4; i1++)
167
                     for (size_t j1 = 0; j1 < 4; j1++)
168
                         G[nearestNodes[i1]][nearestNodes[j1]] +=
169

    GLocal[i1][j1];

            }
170
171
    void makeGlobalM() {
172
        M.clear();
173
        M.resize(nodesCount);
174
        for (size_t i = 0; i < nodesCount; i++)</pre>
175
            M[i].resize(nodesCount, ∅);
176
        for (size_t i = 0; i < gridHeight - 1; i++)
177
            for (size_t j = 0; j < gridWidth - 1; j++)
178
            {
179
                 k = i * gridWidth + j;
180
                 makeLocalM(k);
181
                 vector <int> nearestNodes = {k, k + 1, k + gridWidth, k +

    gridWidth + 1);
                 for (size_t i1 = 0; i1 < 4; i1++)
183
                     for (size_t j1 = 0; j1 < 4; j1++)
184
```

```
M[nearestNodes[i1]][nearestNodes[i1]] +=
185
                               MLocal[i1][j1];
             }
186
    }
187
    vect makeGlobalb(int layer) {
188
        t = times[layer];
189
         vectTmp.clear();
190
         vectTmp.resize(nodesCount, ∅);
191
         for (size_t i = 0; i < gridHeight - 1; i++)
             for (size_t j = 0; j < gridWidth - 1; j++)
193
194
                  int k = i * gridWidth + j;
195
                 makeLocalb(k);
196
                 vector <int> nearestNodes = { k, k + 1, k + gridWidth, k +
197
                      gridWidth + 1 };
                  for (size_t i1 = 0; i1 < 4; i1++)
198
                      vectTmp[nearestNodes[i1]] += bLocal[i1];
199
             }
        return vectTmp;
201
202
    void readGrid() {
203
        string filepath;
         if (gridUniformFlag)
205
             filepath = "uniGrid.txt";
         else
207
             filepath = "irrGrid.txt";
208
         ifstream fin(filepath);
209
         fin >> xLeft >> xRight >> yUp >> yDown >> gridWidth >> gridHeight;
210
         if (!gridUniformFlag) {
             fin \gg kx \gg ky;
212
             nx = gridWidth - 1;
213
             ny = gridHeight - 1;
214
215
         fin.close();
216
    }
217
    void readTime() {
218
         string filepath;
219
         if (timeUniformFlag)
220
             filepath = "uniTime.txt";
221
        else
222
             filepath = "irrTime.txt";
223
         ifstream fin(filepath);
         fin >> tFirst >> tLast >> tNum;
225
         if (!timeUniformFlag) {
226
             fin \rightarrow kt;
227
```

```
nt = tNum - 1;
228
220
        fin.close();
230
    }
231
    void makeGridSpace(bool gridUniformFlag) {
232
        if (gridUniformFlag) {
233
            hx = ((xRight - xLeft) / double(gridWidth - 1)) / pow(2,
234
               gridDivCoef);
            hy = ((yDown - yUp) / double(gridHeight - 1)) / pow(2,
235

    gridDivCoef);
            if (gridDivCoef != 0) {
236
                 gridWidth = (gridWidth - 1) * pow(2, gridDivCoef) + 1;
237
                 gridHeight = (gridHeight - 1) * pow(2, gridDivCoef) + 1;
238
             }
239
        }
240
        else {
241
            if (gridDivCoef != 0) {
                 gridWidth = (gridWidth - 1) * pow(2, gridDivCoef) + 1;
243
                 gridHeight = (gridHeight - 1) * pow(2, gridDivCoef) + 1;
244
                 nx \neq pow(2, gridDivCoef);
245
                 ny *= pow(2, gridDivCoef);
246
                 kx *= pow(kx, 1.0 / gridDivCoef);
247
                 ky *= pow(ky, 1.0 / gridDivCoef);
248
            hx = (xRight - xLeft) * (1 - kx) / (1 - pow(kx, nx));
250
            hy = (yDown - yUp) * (1 - ky) / (1 - pow(ky, ny));
251
        }
252
        nodesCount = gridWidth * gridHeight;
253
        nodes.resize(nodesCount);
254
        if (gridUniformFlag) {
255
            size_t i, j, elem;
256
            double x, y;
257
            for (size_t j = 1; j < gridHeight - 1; j++)
258
             {
                 i = 1;
                 for (size_t = j * gridWidth + 1; elem < (j + 1) *
261
                     gridWidth - 1; elem++, i++)
262
                     x = xLeft + hx * i;
263
                     y = yUp + hy * j;
264
                     nodes[elem].setNodes(x, y, i, j, ∅, gridDivCoef);
265
                     nodes[elem].borderNum = 0; // inner nodes
266
                 }
267
             }
268
             i = j = 0;
269
```

```
y = yUp;
270
             for (size_t elem = 0; elem < gridWidth; elem++, i++)</pre>
271
272
                 x = xLeft + hx * i;
                 nodes[elem].setNodes(x, y, i, j, 1, gridDivCoef);
                 nodes[elem].borderNum = 1; // lower border
275
             }
276
             i = gridWidth - 1;
277
             j = 1;
278
             x = xRight;
279
             for (size_t elem = 2 * gridWidth - 1; elem < gridWidth *</pre>
280
                 gridHeight; elem += gridWidth, j++)
             {
281
                 y = yUp + hy * j;
282
                 nodes[elem].setNodes(x, y, i, j, 1, gridDivCoef);
283
                 nodes[elem].borderNum = 2; // right border
284
             }
285
             i = 0;
286
             j = gridHeight - 1;
             y = yDown;
             for (size_t elem = gridWidth * j; elem < (j + 1) * gridWidth -</pre>
289
                1; elem++, i++)
             {
290
                 x = xLeft + hx * i;
                 nodes[elem].setNodes(x, y, i, j, 1, gridDivCoef);
292
                 nodes[elem].borderNum = 3; // upper border
293
             }
294
             i = \emptyset;
295
             j = 1;
296
             x = xLeft;
297
             for (size_t elem = gridWidth; elem < (gridHeight - 1) *</pre>
298
                 gridWidth; elem += gridWidth, j++)
299
                 y = yUp + hy * j;
300
                 nodes[elem].setNodes(x, y, i, j, 1, gridDivCoef);
301
                 nodes[elem].borderNum = 4; // left border
302
             }
         }
        else {
305
             size_t i, j, elem;
306
             double x, y;
307
             dy = hy * ky;
308
             y = yUp + hy;
             for (size_t j = 1; j < gridHeight - 1; j++, dy *= ky)
             {
311
                 i = 1;
312
                 dx = hx * kx;
313
                 x = xLeft + hx;
314
```

```
for (size_t = j * gridWidth + 1; elem < (j + 1) *
315
                      gridWidth -1; elem++, i++, dx *= kx)
316
                      nodes[elem].setNodes(x, y, i, j, ∅, gridDivCoef);
                      nodes[elem].borderNum = ∅;
                      x += dx;
319
320
                  y += dy;
321
             }
322
             i = j = 0;
323
             dx = hx;
             x = xLeft;
325
             y = yUp;
326
             for (size_t elem = 0; elem < gridWidth; elem++, i++, dx *= kx)</pre>
327
328
                  nodes[elem].setNodes(x, y, i, j, 1, gridDivCoef);
329
                  nodes[elem].borderNum = 1;
                  x += dx;
331
332
             i = gridWidth - 1;
333
             x = xRight;
334
             j = 1;
335
             dy = hy * ky;
336
             y = yUp + hy;
337
             for (size_t elem = 2 * gridWidth - 1; elem < gridWidth *</pre>
338
                  gridHeight; elem += gridWidth, j++, dy *= ky)
             {
339
                  nodes[elem].setNodes(x, y, i, j, 1, gridDivCoef);
340
                  nodes[elem].borderNum = 2;
341
                  y += dy;
             }
             i = 0;
344
             dx = hx;
345
             x = xLeft;
346
             j = gridHeight - 1;
347
             y = yDown;
348
             for (size_t elem = gridWidth * j; elem < (j + 1) * gridWidth -</pre>
              \rightarrow 1; elem++, i++, dx *= kx)
350
                  nodes[elem].setNodes(x, y, i, j, 1, gridDivCoef);
351
                  nodes[elem].borderNum = 3;
352
                  x += dx;
353
             }
354
             i = 0;
             x = xLeft;
             j = 1;
357
             dy = hy * ky;
358
             y = yUp + hy;
359
             for (size_t elem = gridWidth; elem < (gridHeight - 1) *</pre>
360
                 gridWidth; elem += gridWidth, j++, dy *= ky)
```

```
{
361
                 nodes[elem].setNodes(x, y, i, j, 1, gridDivCoef);
362
                 nodes[elem].borderNum = 4;
363
                 y += dy;
364
             }
365
         }
366
    }
367
    void makeGridTime(bool timeUniformFlag) {
368
         if (timeUniformFlag) {
369
             ht = ((tLast - tFirst) / double(tNum - 1)) / pow(2,
370

→ timeDivCoef);

             if (timeDivCoef != 0)
371
                 tNum = (tNum - 1) * pow(2, timeDivCoef) + 1;
372
             times.resize(tNum);
373
             size_t i, elem;
374
             double t;
             times[0] = tFirst;
376
             i = 1;
377
             for (elem = 1; elem < tNum; elem++, i++)
378
                 times[elem] = tFirst + ht * i;
379
             times[tNum - 1] = tLast;
380
         }
381
        else {
382
             if (timeDivCoef != 0) {
383
                 tNum = (tNum - 1) * pow(2, timeDivCoef) + 1;
384
                 nt *= pow(2, timeDivCoef);
385
                 kt *= pow(kt, 1.0 / timeDivCoef);
386
             }
387
             times.resize(tNum);
388
             ht = (tLast - tFirst) * (1 - kt) / (1 - pow(kt, nt));
389
             double t;
390
             size_t i, elem;
391
             i = 1;
392
             dt = ht * kt;
393
             t = tFirst + ht;
             times[0] = tFirst;
395
             for (elem = 1; elem < tNum; elem++, i++, dt *= kt)
396
             {
397
                 times[elem] = t;
398
                 t += dt;
399
400
             times[tNum - 1] = tLast;
401
402
403
```

4.2 common.h

```
#pragma once
   #define _CRT_SECURE_NO_WARNINGS
   #include <fstream>
   #include <vector>
5
   #include <functional>
   #include <cmath>
   #include <string>
   #include <iostream>
9
   #include <iomanip>
10
11
   using namespace std;
12
13
   typedef function <double(double)> func1D;
14
   typedef function <double(double, double, double)> func3D;
15
   typedef vector <double> vect;
16
   typedef vector <vector <double>> mat;
17
18
   const double h = 0.001;
19
   bool gridUniformFlag, timeUniformFlag;
20
   int i, k, n, gridWidth, gridHeight, gridDivCoef, timeDivCoef, coef,
21
    → nodesCount, tNum, answer;
   double sum, tmp, xLeft, xRight, yUp, yDown, tFirst, tLast, hx, nx, hy,
22
    \rightarrow ny, kx, ky, ht, nt, kt, dx, dy, dt, f1, f2, f3, f4, sigma, lambda,

→ gamma, chi, t, t0, t1, t2, d1, d2, m1, m2;

   vect x, b, b1, b2, bLocal, vectTmp, q, q1, q2, makeGlobalb(int layer);
   mat A, G, M, GLocal, MLocal, matTmp;
24
   func1D u_t, u_xx, u_yy, u_tt;
25
   func3D u, u_x, f;
26
   string fp;
27
28
   void readGrid();
29
   void readTime();
30
   void makeGridSpace(bool);
31
   void makeGridTime(bool);
32
   void makeLocalG(int elemNum);
33
   void makeLocalM(int elemNum);
34
   void makeLocalb(int elemNum);
35
   void makeGlobalG();
36
   void makeGlobalM();
37
   void crankNicolson(int layer);
38
   double solve();
39
40
   vect operator + (const vect& a, const vect& b) {
41
       vect result = a;
42
       for (int i = 0; i < b.size(); i++)
43
            result[i] += b[i];
```

```
return result;
45
46
   vect operator - (const vect& a, const vect& b) {
47
        vect result = a;
48
        for (int i = 0; i < b.size(); i++)</pre>
            result[i] -= b[i];
50
        return result;
51
52
   vect operator * (const mat& a, const vect& b) {
53
        vect result;
54
        result.resize(b.size(), 0);
55
        for (int i = 0; i < a.size(); i++)</pre>
             for (int j = 0; j < a.size(); j++)</pre>
57
                 result[i] += a[i][j] * b[j];
58
        return result;
59
60
   vect operator * (const vect& a, double b) {
61
        vect result = a;
62
        for (int i = 0; i < result.size(); i++)</pre>
63
            result[i] *= b;
64
        return result;
65
66
   double operator * (const vect& a, const vect& b) {
67
        sum = 0;
68
        for (int i = 0; i < a.size(); i++)
            sum += a[i] * b[i];
        return sum;
71
72
   mat operator * (const mat& a, double b) {
73
        mat result = a;
74
        for (int i = 0; i < a.size(); i++)</pre>
75
             for (int j = 0; j < a.size(); j++)</pre>
                 result[i][j] *= b;
77
        return result;
78
79
   mat operator * (double b, const mat& a) {
80
        return operator*(a, b);
81
82
   vect operator / (const vect& a, double b) {
83
        vect result = a;
84
        for (int i = 0; i < result.size(); i++)</pre>
85
            result[i] /= b;
86
        return result;
87
   }
88
89
   struct node {
90
        int i, j;
91
        int borderNum;
92
        int type = -99;
93
```

```
double x, y;
94
        bool firstNodeFlag = false;
95
96
        void setNodes(double _x, double _y, int _i, int _j, int _type,
            double _coef) {
             x = x, y = y, i = i, j = j, type = _type;
98
             if (i % int(pow(2, _coef)) == 0 && j % int(pow(2.0, _coef)) ==
99
                 firstNodeFlag = true;
100
        }
101
    };
102
103
    vector <node> nodes;
104
    vect times;
105
106
    double normInNodes(const vect& x, int time) {
107
        tmp = 0;
108
        for (size_t i = 0; i < x.size(); i++)</pre>
             tmp += pow((x[i] - u(nodes[i].x, nodes[i].y, time)), 2);
        return sqrt(tmp) / nodes.size();
111
    }
112
113
    func1D firstDerivative(const func1D% f) {
114
        return [f](double x) -> double {
115
             return (-f(x + 2 * h) + 8 * f(x + h) - 8 * f(x - h) + f(x - 2 * h))
116
             \rightarrow h)) / (12 * h);
        };
117
    }
118
119
    func1D secondDerivative(const func1D& f) {
120
        return [f](double x) -> double {
121
             return (-f(x + 2 * h) + 16 * f(x + h) - 30 * f(x) + 16 * f(x - h))
             \rightarrow h) - f(x - 2 * h)) / (12 * h * h);
        };
123
    }
124
125
    func3D rightPart(const func3D& u, double lambda, double gamma, double
126

    sigma, double chi) {
        return [=](double x, double y, double t) -> double {
127
             using namespace placeholders;
128
             u_t = firstDerivative(bind(u, x, y, _1));
129
             u_xx = secondDerivative(bind(u, _1, y, t));
130
             u_yy = secondDerivative(bind(u, x, _1, t));
131
             u_tt = secondDerivative(bind(u, x, y, _1));
132
             return -1ambda * (u_xx(x) + u_yy(y)) + gamma <math>* u(x, y, t) +
             \rightarrow sigma * u_t(t) + chi * u_tt(t);
        };
134
    }
135
136
```

```
func3D u_sum(const func3D& u_x, const func3D& u_t, double lambda, double gamma, double sigma, double chi) {

return [=](double x, double y, double t) \rightarrow double {

return (u_x(x, y, t) + u_t(x, y, t));

};

};
```