Dipendenze Funzionali

Progettazione

- Abbiamo ipotizzato che gli attributi vengano raggruppati per formare uno schema di relazione usando il buon senso del progettista di basi di dati o traducendo uno schema di base di dati da un modello dei dati concettuale (E-R), presumibilmente ben fatto
- Ma abbiamo bisogno di misurare formalmente perché un raggruppamento di attributi in uno schema di relazione possa essere migliore di un altro
- Obiettivo: valutare la qualità della progettazione degli schemi relazionali

Approccio seguito

• Top-down:

- abbiamo iniziato individuando un certo numero di raggruppamenti di attributi per formare relazioni che sussistono come tali nel mondo reale, ad esempio una fattura, un form o un report.
- Queste relazioni sono poi state analizzate portando eventualmente a **decomposizioni successive**.

Obiettivi impliciti del progetto logico

- La conservazione dell'informazione, cioè il mantenimento di tutti i concetti espressi precedentemente mediante il modello concettuale, inclusi tipi di attributi, tipi di entità e tipi di associazioni.
- La minimizzazione della ridondanza, cioè l'evitare la memorizzazione ripetuta della stessa informazione, e quindi la necessità di effettuare molteplici aggiornamenti al fine di mantenere la consistenza tra le diverse copie della medesima informazione.
- Possiamo derivare da questi obiettivi alcune linee guida per il progetto

Linea Guida 1: semplice è bello

- Uno schema di relazione deve essere progettato in modo che sia semplice spiegarne il significato.
- Non si devono raggruppare attributi provenienti da più tipi di entità e tipi di relazione in un'unica relazione.
- Intuitivamente, se uno schema di relazione corrisponde a un solo tipo di entità o a un solo tipo di relationship, risulta semplice spiegarne il significato.
- In caso contrario, nascerà un'ambiguità semantica e quindi lo schema non potrà essere spiegato con facilità.

Linea Guida 2: no alle anomalie

- Gli schemi vanno progettati in modo che non possano presentarsi anomalie di inserimento, cancellazione o modifica.
- La mancanza di anomalie va certificata usando una descrizione formale della semantica dei fatti descritti in uno schema relazionale
- Se possono presentarsi anomalie, vanno chiaramente **rilevate** e si deve assicurare che i programmi che aggiornano la base di dati operino **correttamente**.

- Fattura (CodFatt, CodProd, TotDaPagare, CostoNettoProd, IVA)
- Semantica attributi:
 - CodFatt determina CodProd e TotDaPagare
 - CodProd determina CostoNettoProd e IVA
 - CostoNettoProd e IVA determinano TotDaPagare

- Ovviamente TotDaPagare deve essere consistente con la regola che lo lega al CostoNettoProd e all'IVA
- Inoltre a CodProd deve essere attribuita la giusta percentuale di IVA
- Questo secondo legame è esterno al DB, se cambia per legge l'IVA di un certo prodotto, questo attributo deve essere modificato; però la sua modifica si porta dietro un'altra modifica dell'attributo TotDaPagare il cui significato è interno al DB ma è legato ad IVA.
- Per evitare anomalie di inserimento o modifica conviene che TotDaPagare non ci sia nella tabella Fattura

- Anagrafe(CF, NomePersona, ViaRes, NomeCittaRes, NumAb)
- Semantica attributi:
 - CF determina NomePersona, ViaRes e NomeCittaRes
 - NomeCittaRes determina NumAb

- NumAb è ripetuto per lo stesso NomeCittaRes per quanti sono i residenti
- Il valore deve essere mantenuto consistente (uguale) per ogni persona di una stessa città
- Come si può evitare il problema?
 - Trasformando Anagrafe in due schemi separati
 - Persona(CF, NomePersona, ViaRes, NomeCittaRes)
 - ListaComuni(NomeCitta, NumAb)
 - Con vincolo di integrità referenziale su NomeCittaRes verso NomeCitta e un vincolo aggiuntivo su NumAb...

Linea Guida 3: evitare frequenti valori nulli

- Si eviti di porre in una relazione attributi i cui valori possono essere frequentemente nulli.
- Se i valori nulli sono inevitabili, ci si assicuri che si presentino solo in casi eccezionali rispetto al numero di *n*-uple di una relazione.

Dipendenza Funzionale

- Una dipendenza funzionale (functional dependency,
 FD) esprime un legame semantico tra due gruppi di attributi di uno schema di relazione R
- ullet Una FD è una proprietà di R, non di un particolare stato valido r di R
- ullet Una FD non può essere dedotta a partire da uno stato valido r, ma deve essere definita esplicitamente da qualcuno che conosce la semantica degli attributi di R

Forme Normali

- Una forma normale è una proprietà di una base di dati relazionale che ne garantisce la "qualità", cioè l'assenza di determinati difetti
- Quando una relazione non è normalizzata:
 - presenta ridondanze
 - si presta a comportamenti poco desiderabili durante gli aggiornamenti
- Le forme normali sono di solito definite sul modello relazionale, ma hanno senso in altri contesti, ad esempio il modello E-R

Normalizzazione

- Procedura che permette di trasformare schemi non normalizzati in schemi che soddisfano una forma normale
- La normalizzazione va utilizzata come tecnica di verifica dei risultati della progettazione di una base di dati
- Non costituisce una metodologia di progettazione

Relazione con anomalie

<u>Impiegato</u>	Stipendio	Progetto	Bilancio	Funzione
Rossi	20	Marte	2	tecnico
Verdi	35	Giove	15	progettista
Verdi	35	Venere	15	progettista
Neri	55	Venere	15	direttore
Neri	55	Giove	15	consulente
Neri	55	Marte	2	consulente
Mori	48	Marte	2	direttore
Mori	48	Venere	15	progettista
Bianchi	48	Venere	15	progettista
Bianchi	48	Giove	15	direttore

Anomalie

- Lo stipendio di ciascun impiegato è ripetuto in tutte le n-uple relative
 - ridondanza
- Se lo stipendio di un impiegato varia, è necessario andarne a modificare il valore in diverse n-uple
 - anomalia di aggiornamento
- Se un impiegato interrompe la partecipazione a tutti i progetti, dobbiamo cancellarlo
 - anomalia di cancellazione
- Un nuovo impiegato senza progetto non può essere inserito
 - anomalia di inserimento

Causa dei problemi

- Abbiamo usato un'unica relazione per rappresentare informazioni eterogenee
 - gli impiegati con i relativi stipendi
 - i progetti con i relativi bilanci
 - le partecipazioni degli impiegati ai progetti con le relative funzioni
- Ora useremo il concetto di dipendenza funzionale per studiare meglio questi problemi

Definizione di dipendenza funzionale

- Dati:
 - una relazione r su R(X),
 - due sottoinsiemi **non vuoti** Y e Z di X,
- esiste in r una **dipendenza funzionale** da Y a Z se, per ogni coppia di n-uple t_1 e t_2 di r con gli stessi valori su Y, risulta che t_1 e t_2 hanno gli stessi valori anche su Z
- Notazione: $Y \rightarrow Z$
 - Nota: Se $Y \to Z$, non è detto che esista $Z \to Y$

Dipendenze funzionali particolari

- Una dipendenza funzionale è **completa** quando $Y \to Z$ e, per ogni $W \subset Y$, non vale $W \to Z$
- Se Y è una **superchiave** di R(X), allora Y determina ogni altro attributo della relazione, i.e., $Y \to X$
- ullet Se Y è una **chiave**, allora $Y \to X$ è una dipendenza funzionale completa
- Una dipendenza funzionale è banale se è sempre soddisfatta
 - $Y \rightarrow Y$ è banale
 - $Y \to A$ è non banale se $A \notin Y$
 - ullet Y o Z è non banale se nessun attributo di Z appartiene a Y

- Caratterizziamo in termini di dipendenze le informazioni semantiche che abbiamo
 - Ogni impiegato ha un solo stipendio
 - Impiegato → Stipendio
 - Ogni progetto ha un solo bilancio
 - Progetto → Bilancio
 - Ogni impiegato ha una sola funzione per progetto
 - Impiegato, Progetto → Funzione

<u>Impiegato</u>	Stipendio	Progetto	Bilancio	Funzione
Rossi	20	Marte	2	tecnico
Verdi	35	Giove	15	progettista
Verdi	35	Venere	15	progettista
Neri	55	Venere	15	direttore
Neri	55	Giove	15	consulente
Neri	55	Marte	2	consulente
Mori	48	Marte	2	direttore
Mori	48	Venere	15	progettista
Bianchi	48	Venere	15	progettista
Bianchi	48	Giove	15	direttore

- Impiegato → Stipendio
- Progetto → Bilancio
- Impiegato, Progetto → Funzione

Legami tra dipendenze funzionali e anomalie

ImpiegatoStipendioProgettoBilancioFunzione

- Impiegato → Stipendio
 - Ci sono ripetizioni
- Progetto → Bilancio
 - Ci sono ripetizioni
- Impiegato, Progetto → Funzione
 - Non ci sono ripetizioni
- Impiegato non è una chiave
- Progetto non è una chiave
- Impiegato, Progetto è una chiave

Legami tra dipendenze funzionali e anomalie

- Le dipendenze funzionali sono usate per verificare l'eventuale presenza di anomalie in un progetto
 - Vedremo che sono usate anche per "normalizzare" uno schema
- Data la loro importanza, quando necessario indicheremo con R(X, F) uno schema di relazione R(X) che verifica un insieme di dipendenze funzionali F

Implicazione

- Sia F un insieme di dipendenze funzionali definite su R(Z) e sia $X \to Y$
 - Si dice che F implica (logicamente) $X \to Y$, in simboli $F \models X \to Y$, se, **per ogni possibile istanza** r di R che verifica tutte le dipendenze funzionali in F, risulta verificata **anche** la dipendenza funzionale $X \to Y$
 - Si dice anche che $X \to Y$ è implicata (logicamente) da F
- Esempio:
 - R(Impiegato, Categoria, Stipendio)
 - Le dipendenze funzionali
 - Impiegato → Categoria e
 - Categoria → Stipendio
 - implicano la dipendenza funzionale
 - Impiegato → Stipendio

Problema

- La definizione di implicazione non è direttamente utilizzabile nella pratica
 - Essa prevede una quantificazione universale sulle istanze della base di dati ("per ogni istanza ...")
 - ullet Non abbiamo un algoritmo per calcolare tutte le dipendenze funzionali implicate da un insieme F
- Armstrong (1974) ha fornito delle regole di inferenza che permettono di derivare costruttivamente tutte le dipendenze funzionali che sono implicate da un dato insieme iniziale

Regole di inferenza di Armstrong

1. Riflessività:

Se
$$Y \subseteq X$$
 allora $X \to Y$

2. Additività (o arricchimento):

Se $X \to Y$ allora $XZ \to YZ$ per qualunque Z

3. Transitività:

Se
$$X \to Y$$
 e $Y \to Z$ allora $X \to Z$

Derivazione

- Dati:
 - un insieme di regole di inferenza RI,
 - ullet un insieme di dipendenze funzionali F e
 - una dipendenza funzionale f,
- una derivazione di f da F secondo RI è una sequenza finita $f_1, ..., f_m$ dove
 - $\bullet f_m = f$
 - ogni f_i è un elemento di F oppure è ottenuta dalle precedenti dipendenze f_1, \ldots, f_{i-1} della derivazione usando una regola di inferenza RI
- Indichiamo con $F \vdash X \to Y$ il fatto che la **dipendenza funzionale** $X \to Y$ sia **derivabile** da F **usando** RI

Regole di derivazione comuni

• Unione:

$${X \rightarrow Y, X \rightarrow Z} \vdash X \rightarrow YZ$$

Decomposizione:

$${X \rightarrow YZ} \vdash X \rightarrow Y$$

• Indebolimento:

$${X \rightarrow Y} \vdash XZ \rightarrow Y$$

• Identità:

$$\{\} \vdash X \to X$$

Unione: dimostrazione

Unione:

$${X \rightarrow Y, X \rightarrow Z} \vdash X \rightarrow YZ$$

- Dimostrazione:
 - 1. $X \rightarrow Y$ per ipotesi
 - 2. $X \rightarrow XY$ per additività da 1
 - 3. $X \rightarrow Z$ per ipotesi
 - 4. $XY \rightarrow YZ$ per additività da 3
 - 5. $X \rightarrow YZ$ per transitività da 2 e 4

Decomposizione: dimostrazione

Decomposizione:

$${X \rightarrow YZ} \vdash X \rightarrow Y$$

- Dimostrazione:
 - 1. $X \rightarrow YZ$ per ipotesi
 - 2. $YZ \rightarrow Y$ per riflessività
 - 3. $X \rightarrow Y$ per transitività da 1 e 2

Indebolimento: dimostrazione

Indebolimento:

$${X \rightarrow Y} \vdash XZ \rightarrow Y$$

- Dimostrazione:
 - 1. $XZ \rightarrow X$ per riflessività
 - 2. $X \rightarrow Y$ per ipotesi
 - 3. $XZ \rightarrow Y$ per transitività da 1 e 2

Chiusura di un insieme di attributi

• Dato uno schema R(T,F) con $X \subseteq T$, la chiusura di X rispetto a F, indicata col simbolo X_F^+ , è definita come

$$X_F^+ = \{ A \in T | F \vdash X \to A \}$$

- Se non vi sono ambiguità scriveremo semplicemente X^+
- Ritorneremo avanti su questa definizione, con qualche esempio

Teorema della chiusura degli attributi

• Teorema:

$$F \vdash X \to Y \Leftrightarrow Y \subseteq X^+$$

Teorema della chiusura degli attributi

• Teorema:

$$F \vdash X \to Y \Leftrightarrow Y \subseteq X^+$$

Dimostrazione

Sia $Y = A_1 \cdots A_k$.

(⇒) Per la **regola di decomposizione** abbiamo $F \vdash X \to A_i$; per definizione di X^+ , $A_i \in X^+$ e quindi anche $Y \subset X^+$.

(⇐) Per definizione di X^+ , $F \vdash X \to A_i$. Per la **regola dell'unione**, $F \vdash X \to A_1 \cdots A_k$, cioè $F \vdash X \to Y$.

Correttezza e Completezza

- ullet Dato un qualche insieme di regole di inferenza RI e un insieme di dipendenze funzionali F
 - RI è corretto se

$$F \vdash X \rightarrow Y \Rightarrow F \models X \rightarrow Y$$

- ullet Applicando RI a un insieme F di dipendenze funzionali, si ottengono solo dipendenze logicamente implicate da F
- Rl è completo se

$$F \models X \rightarrow Y \Rightarrow F \vdash X \rightarrow Y$$

ullet Applicando RI a un insieme F di dipendenze funzionali, si ottengono tutte le dipendenze logicamente implicate da F

Teorema

• Le regole di inferenza di Armstrong sono corrette e complete

 Le regole di inferenza di Armstrong sono corrette e complete

• Dimostrazione:

Supponiamo di avere un insieme di dipendenze funzionali F su T, e una dipendenza funzionale $X \to Y$

Per prima cosa dimostriamo la correttezza:

Se
$$F \vdash X \rightarrow Y$$
 allora $F \models X \rightarrow Y$

Per seconda cosa dimostriamo la completezza

Se
$$F \models X \rightarrow Y$$
 allora $F \vdash X \rightarrow Y$

 Le regole di inferenza di Armstrong sono corrette e complete

Dimostrazione: se F ⊢ X → Y allora F ⊨ X → Y
 Si procede per induzione sulla lunghezza della derivazione.

Sia $f_1, ..., f_m$ la derivazione di $X \to Y$ da F e supponiamo che il teorema valga per tutte le derivazioni di lunghezza pari a 1, ..., m-1.

• Le regole di inferenza di Armstrong sono corrette e complete

Dimostrazione: se F ⊢ X → Y allora F ⊨ X → Y
 La dipendenza f_m = X → Y è un elemento di F oppure è stata derivata usando una regola di inferenza di Armstrong.

Se è un elemento di F allora è implicata logicamente in maniera banale.

 Le regole di inferenza di Armstrong sono corrette e complete

• Dimostrazione: se $F \vdash X \to Y$ allora $F \models X \to Y$ Se f_m è stata inferita con la regola di riflessività allora $Y \subseteq X$ e l'implicazione logica è banale.

 Le regole di inferenza di Armstrong sono corrette e complete

• Dimostrazione: se $F \vdash X \to Y$ allora $F \models X \to Y$ Se f_m è stata inferita con la regola di additività da una $f_i = X' \to Y'$, allora per qualche Z si deve avere X = X'Z e Y = Y'Z. Per ipotesi induttiva $F \models f_i$.

Siano t_1 e t_2 due n-uple con $t_1[X'Z] = t_2[X'Z]$. Per definizione $t_1[X'] = t_2[X']$; per f_i , $t_1[Y'] = t_2[Y']$; per arricchimento $t_1[Y'Z] = t_2[Y'Z]$. Quindi $F \models X \rightarrow Y$.

 Le regole di inferenza di Armstrong sono corrette e complete

• Dimostrazione: se $F \vdash X \to Y$ allora $F \models X \to Y$ Se f_m è stata inferita con la regola di transitività da $f_i = X \to W$ e $f_j = W \to Y$ per un qualche W. Per ipotesi induttiva $F \models f_i$ e $F \models f_i$.

Siano t_1 e t_2 due n-uple con $t_1[X] = t_2[X]$. Per f_i , $t_1[W] = t_2[W]$ e per f_i , $t_1[Y] = t_2[Y]$. Quindi $F \models X \rightarrow Y$.

 Le regole di inferenza di Armstrong sono corrette e complete

• Dimostrazione: se $F \models X \rightarrow Y$ allora $F \vdash X \rightarrow Y$ Consideriamo una relazione di due n-uple $r = \{t_1, t_2\}$ su Tcon $t_1[X^+] = t_2[X^+]$ e $t_1[A] \neq t_2[A]$ per ogni $A \in T - X^+$.

 Le regole di inferenza di Armstrong sono corrette e complete

• Dimostrazione: se $F \models X \rightarrow Y$ allora $F \vdash X \rightarrow Y$

Dimostriamo che la relazione r soddisfa F.

Sia $V \to W \in F$.

Se $V \not\subseteq X^+$ allora $t_1[V] \neq t_2[V]$ e r soddisfa la dipendenza.

Se $V \subseteq X^+$ allora $F \vdash X \to V$ e per transitività

 $F \vdash X \to W$, da cui $W \subseteq X^+$ e quindi $t_1[W] = t_2[W]$ e r

soddisfa la dipendenza

 Le regole di inferenza di Armstrong sono corrette e complete

• Dimostrazione: se $F \models X \to Y$ allora $F \vdash X \to Y$ Siccome $F \models X \to Y$, la relazione r soddisfa $X \to Y$. Poiché $X \subseteq X^+$ e $t_1[X^+] = t_2[X^+]$, allora $t_1[Y] = t_2[Y]$. Quindi $Y \subseteq X^+$ e $F \vdash X \to Y$ per il teorema di chiusura degli attributi.

- Le regole di inferenza di Armstrong sono corrette e complete
- Questo teorema ci permette di scambiare ⊨ con ⊢ ovunque.
 In particolare nella definizione di chiusura degli attributi,
 cioè

$$X_F^+ = \{ A \in T \mid F \models X \to A \}$$

- Si può dimostrare che le regole di inferenza di Armstrong sono **minimali**, cioè **ignorando** anche una sola di esse, l'insieme di regole che rimangono **non è più completo.**
- Le regole di inferenza di Armstrong non sono l'unico insieme di regole corretto e completo!

Chiusura di un insieme di dipendenze funzionali

- Sia F un insieme di dipendenze funzionali definite su R(Z)
 - La chiusura di F è l'insieme F^+ di tutte le dipendenze funzionali implicate da F:

$$F^{+} = \{X \to Y | F \Rightarrow X \to Y\}$$

• Dato un insieme di dipendenze funzionali F definite su R(Z), un'istanza r di R che soddisfa F soddisfa anche le dipendenze funzionali di F^+

Calcolo di F^+

ullet Possiamo usare le regole di Armstrong per calcolare F^+

Input: R(T, F)

Output: F^+

$$F^+ \leftarrow F$$

while $(F^+ \text{ non cambia})$ do

for each $f \in F^+$ do

applicare riflessività e additività a f e aggiungere a F^+ le dipendenze ottenute

for each $f_1, f_2 \in F^+$ do

se possibile, applicare transitività a f_1 e f_2 e aggiungere a F^+ la dipendenza ottenuta

return F^+

- Dati
 - \bullet R(ABCGHI)
 - $\bullet \ F = \{A \to B, A \to C, CG \to H, CG \to I, B \to H\}$
- Alcuni membri di F^+ sono:
 - $\bullet A \to H$
 - per transitività da $A \rightarrow B$ e $B \rightarrow H$
 - \bullet $AG \rightarrow I$
 - arricchendo $A \to C$ con G e per transitività con $CG \to I$
 - $CG \rightarrow HI$
 - arricchendo $CG \rightarrow I$ con CG, arricchendo $CG \rightarrow H$ con I e per transitività

$$F^+$$
 e X^+

- Il calcolo di F^+ è molto costoso
 - complessità esponenziale nel numero di attributi dello schema nel caso peggiore
- Spesso però quello che ci interessa è **verificare** se F^+ contiene una certa dipendenza e **non generare** l'intera chiusura
- Per fare ciò basta calcolare X^+ per il teorema di chiusura degli attributi

$$F \vdash X \to Y \Leftrightarrow Y \subseteq X^+$$
$$(F \models X \to Y \Leftrightarrow Y \subseteq X^+)$$

Calcolo di X^+

Input: R(T,F), $X \subseteq T$

Output: X^+

return X^+

$$X^+ \leftarrow X$$
 while $(X^+ \text{ non cambia})$ do for each $W \rightarrow V \in F$ do if $W \subseteq X^+$ and $V \not\subseteq X^+$ then $X^+ \leftarrow X^+ \cup V$

- Dati
 - \bullet R(ABCDE)
 - $\bullet \ F = \{A \to B, BC \to D, B \to E, E \to C\}$
- Calcoliamo A⁺:
 - $\bullet A^+ \leftarrow A$
 - $A^+ \leftarrow AB$ perché $A \rightarrow B$ e $A \subseteq A^+$
 - $A^+ \leftarrow ABE$ perché $B \rightarrow E$ e $B \subseteq A^+$
 - $A^+ \leftarrow ABEC$ perché $E \rightarrow C$ e $E \subseteq A^+$
 - $A^+ \leftarrow ABECD$ perché $BC \rightarrow D$ e $BC \subseteq A^+$
- ullet Possiamo concludere che A è superchiave (e anche chiave)

Chiavi

- Dato uno schema R(T, F)
 - Un insieme di attributi $K \subseteq T$ si dice **superchiave** di R se la dipendenza funzionale $K \to T$ è implicata da F, ovvero se $K \to T \in F^+$
 - Un insieme di attributi $K \subseteq T$ si dice **chiave** di R se W è una superchiave di R e se non esiste alcum sottoinsieme proprio di K che sia superchiave di R
- Dato che in uno schema ci possono essere più chiavi, di solito ne viene scelta una, detta chiave primaria, come identificatore delle n-uple delle istanze dello schema

Trovare tutte le chiavi

- Il problema di **trovare tutte le chiavi** di una relazione R(Z) richiede un algoritmo di **complessità esponenziale** nel caso pessimo
- Cosa si deve fare:
 - ullet Gli attributi che stanno solo a sinistra stanno in tutte le chiavi, chiamiamo N questo insieme
 - Gli attributi che stanno solo a destra non stanno in nessuna chiave
 - Si aggiunge a N un attributo alla volta tra quelli che non stanno solo a destra, poi una coppia di attributi e così via, chiamiamo X_i questo sottoinsieme di attributi, ogni volta si controlla se la dipendenza $N \cup X_i \rightarrow Z$ esiste

Verificare una chiave

- L'algoritmo per il calcolo della chiusura di un insieme di attributi può essere usato per verificare se un insieme di attributi è chiave o superchiave
- $X \subseteq T$ è superchiave di R(T, F)
 - se e solo se $X \to T \in F^+$, ovvero
 - se e solo se $T \subseteq X^+$
- $X \subseteq T$ è chiave di R(T, F)
 - se e solo se $T \subseteq X^+$, e non esiste $Y \subset X$ tale che $T \subseteq Y^+$

Equivalenza

- Due insiemi di dipendenze funzionali F e G sugli attributi T di una relazione R(T) sono **equivalenti**, in simboli $F \equiv G$, se e solo se $F^+ = G^+$
 - Se $F \equiv G$ allora F è una **copertura** di G e viceversa
- La relazione di equivalenza permette di stabilire se due schemi di relazione rappresentano gli stessi fatti
 - Basta che abbiano gli stessi attributi e dipendenze funzionali equivalenti
- Per verificare l'equivalenza è sufficiente che
 - ullet tutte le dipendenze di F appartengano a G^+
 - ullet tutte le dipendenze di G appartengano a F^+

- Verificare se F e G sono equivalenti:
 - $\bullet \ F = \{A \to C, AC \to D, E \to AD, E \to H\}$
 - $G = \{A \rightarrow CD, E \rightarrow AH\}$
- ullet Verificare che tutte le dipendenze di F appartengano a G^+
 - $\bullet A \rightarrow CD \Rightarrow A \rightarrow C$
 - $A \rightarrow CD \Rightarrow AC \rightarrow CD \Rightarrow AC \rightarrow D$
 - $\bullet E \rightarrow AH \Rightarrow E \rightarrow H$
 - \bullet $E \to AH \Rightarrow E \to A \Rightarrow E \to AE$
 - \bullet $A \to CD \Rightarrow A \to D \Rightarrow A \to AD \Rightarrow AE \to ADE$
 - $E \rightarrow ADE \Rightarrow E \rightarrow AD$

- Verificare se F e G sono equivalenti:
 - $F = \{A \rightarrow C, AC \rightarrow D, E \rightarrow AD, E \rightarrow H\}$
 - $G = \{A \rightarrow CD, E \rightarrow AH\}$
- Verificare che tutte le dipendenze di G appartengano a F^+
 - $\bullet A \rightarrow C \Rightarrow A \rightarrow AC, AC \rightarrow D \Rightarrow A \rightarrow D \Rightarrow A \rightarrow CD$
 - $E \to AD \Rightarrow E \to A, E \to H \Rightarrow E \to AH$

- Verificare se F e G sono equivalenti:
 - $F = \{A \rightarrow C, AC \rightarrow D, E \rightarrow AD, E \rightarrow H\}$
 - $G = \{A \rightarrow CD, E \rightarrow AH\}$
- Invece di verificare se $X \to Y \in F$ è anche in G^+ e viceversa, possiamo verificare se $Y \subseteq X_G^+$ e, viceversa, per ogni dipendenza funzionale
- Per esempio (verifichiamo F su X_G^+):
 - $A \to C$: $A_G^+ = ACD$, quindi $C \in A_G^+$
 - $AC \rightarrow D$: $AC_G^+ = ACD$, quindi $D \in AC_G^+$
 - $E \to AD$: $E_G^+ = EADCH$, quindi $AD \in E_G^+$
 - $E \to H$: $E_G^+ = EADCH$, quindi $H \in E_G^+$

- Verificare se F e G sono equivalenti:
 - $F = \{A \rightarrow C, AC \rightarrow D, E \rightarrow AD, E \rightarrow H\}$
 - $G = \{A \rightarrow CD, E \rightarrow AH\}$
- Invece di verificare se $X \to Y \in F$ è anche in G^+ e viceversa, possiamo verificare se $Y \subseteq X_G^+$ e, viceversa, per ogni dipendenza funzionale
- Per esempio (verifichiamo G su X_F^+):
 - $A \to CD$: $A_F^+ = ACD$, quindi $CD \in A_F^+$
 - $E \to AH$: $E_F^+ = EADHC$, quindi $AH \in E_F^+$

Ridondanza

- ullet Sia F un insieme di dipendenze funzionali
- Data $X \to Y \in F$, X contiene un **attributo estraneo** se e solo se $(F \{X \to Y\}) \cup (X \{A\} \to Y) \equiv F$, o, in altre parole, se e solo se $X \{A\} \to Y \in F^+$.
- $X \to Y$ è una **dipendenza ridondante** se e solo se $(F \{X \to Y\}) \equiv F$, o, in altre parole, se e solo se $X \to Y \in (F \{X \to Y\})^+$
- Le dipendenze che non contengono attributi
 estranei e la cui parte destra è un unico attributo
 sono dette dipendenze elementari

- Sia $F = \{AB \rightarrow C, B \rightarrow A, C \rightarrow A\}$
 - L'unica dipendenza che può avere un attributo estraneo è $AB \to C$
 - $A^+ = \{A\}$ e $B^+ = \{B, A, C\}$, quindi A è un **attributo** estraneo in $AB \to C$
- Quindi $F \equiv G_1 = \{B \rightarrow C, B \rightarrow A, C \rightarrow A\}$
 - $\{B \to C, C \to A\}^+ = G$, quindi $B \to A$ è una **dipendenza** ridondante
- Quindi $F \equiv G_1 \equiv G_2 = \{B \rightarrow C, C \rightarrow A\}$
 - Se tentiamo di eliminare la dipendenza ridondante prima di eliminare l'attributo estraneo, non ci riusciamo, quindi l'ordine delle due attività è importante

Copertura minimale

- Sia F un insieme di dipendenze funzionali
- F è una **copertura minimale** se e solo se:
 - ogni parte destra di una dipendenza ha un unico attributo;
 - le dipendenze non contengono attributi estranei;
 - non esistono dipendenze ridondanti.
- In alcuni testi una copertura minimale è chiamata:
 - insieme minimale
 - copertura canonica
- Nell'esempio precedente, G_2 è una copertura minimale.

Calcolo della copertura minimale

Input: insieme di dipendenze funzionali F

Output: copertura minimale G di F

$$G \leftarrow F$$

for each $X \rightarrow Y \in G$ do

$$Z \leftarrow X$$

for each $A \in X$ do

if
$$Y \in (Z - (A))_F^+$$
 then

$$Z \leftarrow Z - \{A\}$$

$$G \leftarrow (G - \{X \rightarrow Y\}) \cup \{Z \rightarrow Y\}$$

for each $f \in G$ do

if
$$f \in (G - \{f\})^+$$
 then $G \leftarrow G - \{f\}$

return G

Eliminiamo le dipendenze

ridondanti

Calcoliamo gli attributi estranei delle dipendenze

Eliminiamo gli attributi estranei delle dipendenze

Copertura minimale

• Il precedente algoritmo dimostra il seguente teorema.

• Teorema:

- ullet Per ogni insieme di dipendenze funzionali F esiste una copertura minimale
- Si noti che il teorema nulla dice sull'unicità della copertura minimale
- Infatti, per $F = \{AB \rightarrow C, A \rightarrow B, B \rightarrow A\}$,
 - $\{A \to C, A \to B, B \to A\}$ è una copertura minimale
 - $\{B \to C, A \to B, B \to A\}$ è una copertura minimale