Platelet

 $\begin{array}{cc} Team \ Reference \ Material \\ {}_{(unlimited \ version)} \end{array}$

凌皓煜 陈 彤

顾 逸

Contents

1	Gra	F	4
	1.1	2-SAT (ct)	4
	1.2	割点与桥 (ct)	5
	1.3	K 短路 (lhy)	6
	1.4	最大团	10
	1.5	一般图最大匹配	10
	1.6	带花树	10
	1.7	KM 算法	10
	1.8	支配树	10
		1.8.1 DAG (ct)	10
			11
	1.9		11
	1.10		13
		14	14
		14	14
		··· ·	14
			16
	1.11	100 - 4	16
	1 15		17
		-10-4 10-4	L 7
		· Per · Per	L 7
		21/14/2016 ()	18
		,	19
			19 19
			19 19
	1.41	图化和次	19
2	Mat	h	20
_	2.1		20
	2.2		-0 20
	2.3	V // V / V = == 1 V (GE /	- ° 21
	2.4		21
	2.5		21
	2.6		21
	2.7	1.4//1.114/	21
	2.8		23
	2.9		23
	2.3	V	23 23
			23 23
	2.10		23 23
		• ****	23 23
			23 23
	2.12	(730)	
			23
	0.10	4 / **	24
	2.13	直线下整点个数 (gv)	25

CONTENTS 3

	2.15	辛普森积分	25 25 25
3	Geo 3.1 3.2 3.3 3.4	点、直线、圆 (gy)	28 28 32 32 32
	3.5 3.6 3.7 3.8 3.9	半平面交	32 32 32 32 32 32
	3.11 3.12 3.13	$O(n^2 \log n)$ 圆交面积和重心	32 32 32 32 32 32
4	Stri	ng :	32 34
	4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8	exKMP (ct)	34 34 35 36 37 37 37 38
5	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	莫队 (ct)	39 39 40 41 41 42 46 47 50 51
6	Oth 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11	vimrc (gy) STL 释放内存 (Durandal) 开栈 (Durandal) O3 (gy) Java Template (gy) Big Fraction (gy) 模拟退火 (ct) 三分 (ct) Zeller Congruence (gy) 博弈论模型 (gy)	53 53 53 54 54 56 56 57 57 57

Chapter 1

Graph Theory

1.1 2-SAT (ct)

```
struct Edge {
       Edge *next;
       int to;
4 } *last[maxn << 1], e[maxn << 2], *ecnt = e;
5 inline void link(int a, int b)
       *++ecnt = (Edge) {last[a], b}; last[a] = ecnt;
  }
  int dfn[maxn], low[maxn], timer, st[maxn], top, id[maxn], colcnt, n;
   bool fail, used[maxn];
   void tarjan(int x, int fa)
11
12
       dfn[x] = low[x] = ++timer; st[++top] = x;
13
       for (R Edge *iter = last[x]; iter; iter = iter -> next)
14
            if (iter -> to != fa)
15
16
                if (!dfn[iter -> to])
17
18
                     tarjan(iter -> to, x);
19
                     cmin(low[x], low[iter -> to]);
20
21
                else if (!id[iter -> to]) cmin(low[x], dfn[iter -> to]);
22
23
       if (dfn[x] == low[x])
25
            ++colcnt; bool flag = 1;
            for (; ;)
27
28
                int now = st[top--];
29
                id[now] = colcnt;
30
                if (now \le 2 * n)
31
32
                     flag \&= !used[id[now <= n ? now + n : now - n]];
33
                    now \mathrel{<=} n \mathrel{?} fail \mathrel{|=} (id[now + n] \mathrel{==} id[now]) : fail \mathrel{|=} (id[now - n] \mathrel{==} id[now]);
34
                if (now == x) break;
            }
37
            used[colcnt] = flag;
38
39
40 }
41 int ans[maxn], tot;
42 int main()
```

1.2. 割点与桥 (CT) 5

```
43 {
44
            build your graph here.
45
46
       for (R int i = 1; !fail && i <= n; ++i) if (!dfn[i]) tarjan(i, 0);</pre>
47
       if (fail)
48
       {
49
           puts("Impossible");
50
           return 0;
51
       }
52
       for (R int i = 1; i <= n; ++i) if (used[id[i]]) ans[++tot] = i;</pre>
53
       printf("%d\n", tot);
54
       std::sort(ans + 1, ans + tot + 1);
55
       for (R int i = 1; i <= tot; ++i) printf("%d ", ans[i]);</pre>
56
       return 0;
57
58
```

1.2 割点与桥 (ct)

割点

```
int dfn[maxn], low[maxn], timer, ans, num;
  void tarjan(int x, int fa)
2
3
       dfn[x] = low[x] = ++timer;
4
       for (Edge *iter = last[x]; iter; iter = iter -> next)
5
           if (iter -> to != fa)
6
7
                if (!dfn[iter -> to])
9
10
                    tarjan(iter -> to, x);
                    cmin(low[x], low[iter -> to]);
11
                    if (dfn[x] <= low[iter -> to])
12
13
                         cut[x] = 1;
14
                         if (!fa && dfn[x] < low[iter \rightarrow to]) num = 233;
15
                         else if (!fa) ++num;
16
17
                }
18
                else cmin(low[x], dfn[iter -> to]);
19
           }
20
21
22
   int main()
23
       for (int i = 1; i <= n; ++i)</pre>
24
           if (!dfn[i])
25
           {
26
                num = 0;
27
                tarjan(i, 0);
28
                if (num == 1) cut[i] = 0;
29
           }
30
31
```

桥

```
int dfn[maxn], low[maxn], timer;
void tarjan(int x, int fa)
{
```

```
dfn[x] = low[x] = ++timer;
       for (R Edge *iter = last[x]; iter; iter = iter -> next)
           if (iter -> to != fa)
6
               if (!dfn[iter -> to])
8
9
                   dfs(iter -> to, x);
10
                   cmin(low[x], low[iter -> to]);
11
                   if (dfn[x] < low[iter -> to]) ans[x][iter -> to] = ans[iter -> to][x] = 1;
12
13
               else cmin(low[x], dfn[iter -> to]);
14
           }
15
16
```

1.3 K 短路 (lhy)

```
const int MAXNODE = MAXN + MAXM * 2;
bool used[MAXN];
int n, m, cnt, S, T, Kth, N, TT;
int rt[MAXN], seq[MAXN], adj[MAXN], from[MAXN], dep[MAXN];
5 LL dist[MAXN], w[MAXM], ans[MAXK];
   struct GivenEdge{
        int u, v, w;
        GivenEdge() {};
        \label{eq:continuity} \mbox{GivenEdge(int $\underline{\ }$u, int $\underline{\ }$v, int $\underline{\ }$w) : u($\underline{\ }$u($\underline{\ }$v($\underline{\ }$v), $v($\underline{\ }$v($\underline{\ }$w)$})};
   }edge[MAXM];
10
   struct Edge{
11
        int v, nxt, w;
12
        Edge() {};
13
        Edge(int _v, int _nxt, int _w) : v(_v), nxt(_nxt), w(_w) {};
14
  }e[MAXM];
inline void addedge(int u, int v, int w)
17
        e[++cnt] = Edge(v, adj[u], w); adj[u] = cnt;
18
19
20 void dij(int S)
21
        for(int i = 1; i <= N; i++)</pre>
22
23
             dist[i] = INF;
24
             dep[i] = 0x3f3f3f3f;
25
             used[i] = false;
26
             from[i] = 0;
27
28
        static priority_queue<pair<LL, int>, vector<pair<LL, int> >, greater<pair<LL, int> > hp;
29
        while(!hp.empty())hp.pop();
30
        hp.push(make_pair(dist[S] = 0, S));
        dep[S] = 1;
        while(!hp.empty())
33
34
             pair<LL, int> now = hp.top();
35
            hp.pop();
36
             int u = now.second;
37
             if(used[u])continue;
38
```

1.3. K 短路 (LHY) 7

```
else used[u] = true;
39
            for(int p = adj[u]; p; p = e[p].nxt)
40
            {
41
                int v = e[p].v;
42
                if(dist[u] + e[p].w < dist[v])</pre>
43
44
                    dist[v] = dist[u] + e[p].w;
45
                     dep[v] = dep[u] + 1;
46
47
                    from[v] = p;
                    hp.push(make_pair(dist[v], v));
48
                }
49
           }
50
51
       for(int i = 1; i <= m; i++)</pre>
                                          w[i] = 0;
52
       for(int i = 1; i <= N; i++)</pre>
53
            if(from[i])w[from[i]] = -1;
54
       for(int i = 1; i <= m; i++)</pre>
55
56
            if(~w[i] && dist[edge[i].u] < INF && dist[edge[i].v] < INF)
57
58
                w[i] = -dist[edge[i].u] + (dist[edge[i].v] + edge[i].w);
59
            }
60
            else
61
            {
62
                w[i] = -1;
63
            }
64
       }
65
66
67
   inline bool cmp_dep(int p, int q)
68
       return dep[p] < dep[q];</pre>
69
70
   struct Heap{
71
       LL key;
72
       int id, lc, rc, dist;
73
       Heap() {};
74
       Heap(LL k, int i, int l, int r, int d) : key(k), id(i), lc(1), rc(r), dist(d) {};
75
       inline void clear()
76
77
            key = 0;
78
79
            id = lc = rc = dist = 0;
80
   }hp[MAXNODE];
   inline int merge_simple(int u, int v)
82
83
       if(!u)return v;
84
       if(!v)return u;
85
       if(hp[u].key > hp[v].key)
86
87
            swap(u, v);
88
89
       hp[u].rc = merge_simple(hp[u].rc, v);
90
       if(hp[hp[u].lc].dist < hp[hp[u].rc].dist)</pre>
91
       {
92
            swap(hp[u].lc, hp[u].rc);
93
94
       hp[u].dist = hp[hp[u].rc].dist + 1;
95
       return u;
96
```

```
97 | }
   inline int merge_full(int u, int v)
99
        if(!u)return v;
100
        if(!v)return u;
101
        if(hp[u].key > hp[v].key)
102
103
            swap(u, v);
104
        }
105
        int nownode = ++cnt;
106
        hp[nownode] = hp[u];
107
        hp[nownode].rc = merge_full(hp[nownode].rc, v);
108
        if(hp[hp[nownode].lc].dist < hp[hp[nownode].rc].dist)</pre>
109
        {
110
            swap(hp[nownode].lc, hp[nownode].rc);
111
112
        hp[nownode].dist = hp[hp[nownode].rc].dist + 1;
113
        return nownode;
114
115
priority_queue<pair<LL, int>, vector<pair<LL, int> >, greater<pair<LL, int> > Q;
int main()
118
        while(scanf("%d%d", &n, &m) != EOF)
119
120
            scanf("%d%d%d", &S, &T, &Kth, &TT);
121
            for(int i = 1; i <= m; i++)</pre>
122
123
124
                 int u, v, w;
                 scanf("%d%d%d", &u, &v, &w);
125
                 edge[i] = \{u, v, w\};
126
            }
127
            N = n;
128
            memset(adj, 0, sizeof(*adj) * (N + 1));
129
            cnt = 0;
130
            for(int i = 1; i <= m; i++)</pre>
131
                 addedge(edge[i].v, edge[i].u, edge[i].w);
132
            dij(T);
133
            if(dist[S] > TT)
134
            {
135
                 puts("Whitesnake!");
136
137
                 continue;
            }
138
            for(int i = 1; i <= N; i++)</pre>
139
                 seq[i] = i;
140
            sort(seq + 1, seq + N + 1, cmp_dep);
141
            cnt = 0;
142
            memset(adj, 0, sizeof(*adj) * (N + 1));
143
            memset(rt, 0, sizeof(*rt) * (N + 1));
144
            for(int i = 1; i <= m; i++)</pre>
145
                 addedge(edge[i].u, edge[i].v, edge[i].w);
146
            rt[T] = cnt = 0;
147
            hp[0].dist = -1;
148
            for(int i = 1; i <= N; i++)</pre>
149
            {
150
                 int u = seq[i], v = edge[from[u]].v;
151
                 rt[u] = 0;
152
                 for(int p = adj[u]; p; p = e[p].nxt)
153
```

1.3. K 短路 (LHY) 9

```
{
154
                      if(~w[p])
155
                      {
156
                          hp[++cnt] = Heap(w[p], p, 0, 0, 0);
157
                          rt[u] = merge_simple(rt[u], cnt);
158
159
160
                 if(i == 1)continue;
161
                 rt[u] = merge_full(rt[u], rt[v]);
162
             }
163
             while(!Q.empty())Q.pop();
164
             Q.push(make_pair(dist[S], 0));
165
             edge[0].v = S;
166
             for(int kth = 1; kth <= Kth; kth++)</pre>
167
             {
168
                 if(Q.empty())
169
                 {
170
                      ans[kth] = -1;
171
                      continue;
172
173
                 pair<LL, int> now = Q.top(); Q.pop();
174
                 ans[kth] = now.first;
175
                 int p = now.second;
176
                 if(hp[p].lc)
177
178
                      Q.push(make_pair(+hp[hp[p].lc].key + now.first - hp[p].key, hp[p].lc));
179
                 }
180
                 if(hp[p].rc)
181
                 {
182
                      Q.push(make_pair(+hp[hp[p].rc].key + now.first - hp[p].key, hp[p].rc));
183
                 }
184
                 if(rt[edge[hp[p].id].v])
185
                 {
                      \label{lem:qpair} {\tt Q.push(make\_pair(hp[rt[edge[hp[p].id].v]].key + now.first, \; rt[edge[hp[p].id].v]));}
187
188
            }
189
             if(ans[Kth] == -1 \mid \mid ans[Kth] > TT)
190
             {
191
                 puts("Whitesnake!");
192
             }
193
             else
194
195
             {
                 puts("yareyaredawa");
196
             }
197
        }
198
199
```

- 1.4 最大团
- 1.5 一般图最大匹配
- 1.6 带花树
- 1.7 KM 算法
- 1.8 支配树
- 1.8.1 DAG (ct)

```
struct Edge {
       Edge *next;
       int to;
4 } ;
5 Edge *last[maxn], e[maxm], *ecnt = e; // original graph
6 Edge *rlast[maxn], re[maxm], *recnt = re; // reversed-edge graph
T Edge *tlast[maxn], te[maxn << 1], *tecnt = te; // dominate tree graph</pre>
s int deg[maxn], q[maxn], fa[maxn][20], all_fa[maxn], fa_cnt, size[maxn], dep[maxn];
9 inline void link(int a, int b)
10 {
       *++ecnt = (Edge) {last[a], b}; last[a] = ecnt; ++deg[b];
11
12 }
inline void link_rev(R int a, R int b)
14 {
       *++recnt = (Edge) {rlast[a], b}; rlast[a] = recnt;
15
16
   inline void link_tree(R int a, R int b)
17
18
       *++tecnt = (Edge) {tlast[a], b}; tlast[a] = tecnt;
19
20
21 inline int getlca(R int a, R int b)
22
       if (dep[a] < dep[b]) std::swap(a, b);</pre>
23
       R int temp = dep[a] - dep[b];
24
       for (R int i; temp; temp -= 1 << i)</pre>
25
           a = fa[a][i = __builtin_ctz(temp)];
26
       for (R int i = 16; ~~i; ~--i)
27
           if (fa[a][i] != fa[b][i])
               a = fa[a][i], b = fa[b][i];
       if (a == b) return a;
       return fa[a][0];
31
32
  void dfs(R int x)
33
   {
34
       size[x] = 1;
35
       for (R Edge *iter = tlast[x]; iter; iter = iter -> next)
36
           dfs(iter -> to), size[x] += size[iter -> to];
37
38
   int main()
39
40
       q[1] = 0;
41
       R int head = 0, tail = 1;
42
       while (head < tail)
43
44
           R int now = q[++head];
45
           fa_cnt = 0;
46
```

1.9. 虚树 (CT)

```
for (R Edge *iter = rlast[now]; iter; iter = iter -> next)
47
               all_fa[++fa_cnt] = iter -> to;
48
           for (; fa_cnt > 1; --fa_cnt)
49
               all_fa[fa_cnt - 1] = getlca(all_fa[fa_cnt], all_fa[fa_cnt - 1]);
50
           fa[now][0] = all_fa[fa_cnt];
51
           dep[now] = dep[all_fa[fa_cnt]] + 1;
52
           if (now) link_tree(fa[now][0], now);
53
           for (R int i = 1; i <= 16; ++i)
54
               fa[now][i] = fa[fa[now][i - 1]][i - 1];
55
           for (R Edge *iter = last[now]; iter; iter = iter -> next)
56
               if (--deg[iter -> to] == 0) q[++tail] = iter -> to;
57
       }
58
       dfs(0);
59
       for (R int i = 1; i <= n; ++i) printf("%d\n", size[i] - 1);
60
       return 0:
61
62
```

1.8.2 一般图

1.9 虚树 (ct)

```
struct Edge {
       Edge *next;
       int to;
3
  } *last[maxn], e[maxn << 1], *ecnt = e;</pre>
  inline void link(int a, int b)
5
6
       *++ecnt = (Edge) {last[a], b}; last[a] = ecnt;
       *++ecnt = (Edge) {last[b], a}; last[b] = ecnt;
9
   int a[maxn], n, dfn[maxn], pos[maxn], timer, inv[maxn], st[maxn];
10
   int fa[maxn], size[maxn], dep[maxn], son[maxn], top[maxn];
   bool vis[maxn];
   void dfs1(int x)
13
14
       vis[x] = 1; size[x] = 1; dep[x] = dep[fa[x]] + 1;
15
       for (R Edge *iter = last[x]; iter; iter = iter -> next)
16
           if (!vis[iter -> to])
17
18
               fa[iter -> to] = x;
19
               dfs1(iter -> to);
               size[x] += size[iter -> to];
21
               size[son[x]] < size[iter -> to] ? son[x] = iter -> to : 0;
22
23
24
   void dfs2(int x)
25
26
       vis[x] = 0; top[x] = x == son[fa[x]] ? top[fa[x]] : x;
27
       dfn[x] = ++timer; pos[timer] = x;
28
       if (son[x]) dfs2(son[x]);
29
       for (R Edge *iter = last[x]; iter; iter = iter -> next)
30
           if (vis[iter -> to]) dfs2(iter -> to);
31
       inv[x] = timer;
32
33
  inline int getlca(int a, int b)
34
  {
35
       while (top[a] != top[b])
36
           dep[top[a]] < dep[top[b]] ? b = fa[top[b]] : a = fa[top[a]];
37
```

```
return dep[a] < dep[b] ? a : b;</pre>
  ١}
39
40 inline bool cmp(int a, int b)
41 | {
       return dfn[a] < dfn[b];</pre>
42
43
  inline bool isson(int a, int b)
44
45
       return dfn[a] <= dfn[b] && dfn[b] <= inv[a];</pre>
46
47
   typedef long long 11;
48
   bool imp[maxn];
49
   struct sEdge {
50
       sEdge *next;
51
       int to, w;
52
  53
54 inline void slink(int a, int b, int w)
55 | {
       *++secnt = (sEdge) {slast[a], b, w}; slast[a] = secnt;
56
  |}
  int main()
59
   {
       scanf("%d", &n);
60
       for (int i = 1; i < n; ++i)
61
62
           int a, b; scanf("%d%d", &a, &b);
63
           link(a, b);
64
       }
65
       int m; scanf("%d", &m);
66
67
       dfs1(1); dfs2(1);
68
       memset(size, 0, (n + 1) << 2);
       for (; m; --m)
69
70
           int top = 0; scanf("%d", &k);
71
           for (int i = 1; i <= k; ++i) scanf("%d", &a[i]), vis[a[i]] = imp[a[i]] = 1;
72
           std::sort(a + 1, a + k + 1, cmp);
73
           int p = k;
74
           for (int i = 1; i < k; ++i)
75
           {
76
               int lca = getlca(a[i], a[i + 1]);
77
               if (!vis[lca]) vis[a[++p] = lca] = 1;
78
           }
79
           std::sort(a + 1, a + p + 1, cmp);
80
81
           st[++top] = a[1];
           for (int i = 2; i \le p; ++i)
82
83
               while (!isson(st[top], a[i])) --top;
84
               slink(st[top], a[i], dep[a[i]] - dep[st[top]]);
85
               st[++top] = a[i];
86
           }
87
           /*
88
               write your code here.
89
90
           for (int i = 1; i \le p; ++i) vis[a[i]] = imp[a[i]] = 0, slast[a[i]] = 0;
91
92
           secnt = se;
93
       return 0;
94
95
```

1.10. 树上点分治 (CT) 13

1.10 树上点分治 (ct)

```
int root, son[maxn], size[maxn], sum;
   bool vis[maxn];
  void dfs_root(int x, int fa)
3
4
       size[x] = 1; son[x] = 0;
5
       for (R Edge *iter = last[x]; iter; iter = iter -> next)
6
           if (iter -> to == fa || vis[iter -> to]) continue;
           dfs_root(iter -> to, x);
9
           size[x] += size[iter -> to];
10
           cmax(son[x], size[iter -> to]);
11
12
       cmax(son[x], sum - size[x]);
13
       if (!root || son[x] < son[root]) root = x;</pre>
14
15
   void dfs_chain(int x, int fa, int st1, int st2)
16
17
18
           write your code here.
19
20
       for (Edge *iter = last[x]; iter; iter = iter -> next)
21
22
           if (vis[iter -> to] || iter -> to == fa) continue;
23
24
           dfs_chain(iter -> to, x);
25
  }
26
  void calc(int x)
27
28
       for (Edge *iter = last[x]; iter; iter = iter -> next)
29
30
           if (vis[iter -> to]) continue;
31
           dfs_chain(iter -> to, x);
32
33
                write your code here.
34
35
36
       }
37
   }
   void work(int x)
38
39
       vis[x] = 1;
40
41
       for (R Edge *iter = last[x]; iter; iter = iter -> next)
42
43
           if (vis[iter -> to]) continue;
44
45
           root = 0;
           sum = size[iter -> to];
46
           dfs_root(iter -> to, 0);
47
           work(root);
48
49
50
   int main()
51
52
       root = 0; sum = n;
53
       dfs_root(1, 0);
54
       work(root);
       return 0;
```

1.11 树上倍增 (ct)

```
int fa[maxn][17], mn[maxn][17], dep[maxn];
bool vis[maxn];
3 void dfs(int x)
       vis[x] = 1;
       for (int i = 1; i <= 16; ++i)
           if (dep[x] < (1 << i)) break;
           fa[x][i] = fa[fa[x][i - 1]][i - 1];
           mn[x][i] = dmin(mn[x][i - 1], mn[fa[x][i - 1]][i - 1]);
10
11
       for (Edge *iter = last[x]; iter; iter = iter -> next)
12
           if (!vis[iter -> to])
13
14
15
                fa[iter \rightarrow to][0] = x;
16
                mn[iter -> to][0] = iter -> w;
                dep[iter \rightarrow to] = dep[x] + 1;
17
                dfs(iter -> to);
18
19
20
21 inline int getlca(int x, int y)
22 {
       if (dep[x] < dep[y]) std::swap(x, y);</pre>
23
       int t = dep[x] - dep[y];
24
       for (int i = 0; i \le 16 \&\& t; ++i)
25
           if ((1 << i) & t)
                x = fa[x][i], t ^= 1 << i;
27
       for (int i = 16; i >= 0; --i)
           if (fa[x][i] != fa[y][i])
29
30
                x = fa[x][i];
31
                y = fa[y][i];
32
33
       if (x == y) return x;
34
       return fa[x][0];
35
36
  inline int getans(int x, int f)
37
38
       int ans = inf, t = dep[x] - dep[f];
39
       for (int i = 0; i <= 16 && t; ++i)
40
           if (t & (1 << i))
41
42
                cmin(ans, mn[x][i]);
43
                x = fa[x][i];
44
                t ^= 1 << i;
45
           }
46
       return ans;
```

1.12 Prufer 编码

1.13 Link-Cut Tree (ct)

```
struct Node *null;
struct Node {
    Node *ch[2], *fa, *pos;
```

```
int val, mn, l, len; bool rev;
        // min_val in chain
5
        inline bool type()
6
7
        {
            return fa -> ch[1] == this;
8
        }
9
        inline bool check()
10
11
            return fa -> ch[type()] == this;
12
        }
13
14
        inline void pushup()
15
            pos = this; mn = val;
16
            ch[0] \rightarrow mn < mn ? mn = ch[0] \rightarrow mn, pos = ch[0] \rightarrow pos : 0;
17
            ch[1] \rightarrow mn < mn ? mn = ch[1] \rightarrow mn, pos = ch[1] \rightarrow pos : 0;
18
            len = ch[0] -> len + ch[1] -> len + 1;
19
20
        inline void pushdown()
21
22
            if (rev)
23
            {
24
                 ch[0] -> rev ^= 1;
25
                 ch[1] -> rev ^= 1;
26
                 std::swap(ch[0], ch[1]);
27
                 rev ^= 1;
28
            }
29
        }
30
        inline void pushdownall()
31
32
33
            if (check()) fa -> pushdownall();
34
            pushdown();
35
        inline void rotate()
36
37
            bool d = type(); Node *f = fa, *gf = f -> fa;
38
            (fa = gf, f \rightarrow check()) ? fa \rightarrow ch[f \rightarrow type()] = this : 0;
39
            (f \rightarrow ch[d] = ch[!d]) != null ? ch[!d] \rightarrow fa = f : 0;
40
            (ch[!d] = f) -> fa = this;
41
            f -> pushup();
42
        }
43
        inline void splay(bool need = 1)
44
45
46
            if (need) pushdownall();
            for (; check(); rotate())
47
48
                 if (fa -> check())
                      (type() == fa \rightarrow type() ? fa : this) \rightarrow rotate();
49
            pushup();
50
51
        inline Node *access()
52
53
            Node *i = this, *j = null;
54
            for (; i != null; i = (j = i) -> fa)
55
56
                 i -> splay();
57
                 i \rightarrow ch[1] = j;
58
                 i -> pushup();
59
60
            return j;
61
62
        inline void make_root()
63
```

```
access();
65
           splay();
66
           rev ^= 1;
67
       }
68
       inline void link(Node *that)
69
70
           make_root();
71
           fa = that;
72
           splay(0);
73
74
       inline void cut(Node *that)
75
76
           make_root();
77
           that -> access();
78
           that -> splay(0);
79
           that -> ch[0] = fa = null;
80
           that -> pushup();
81
82
83 | } mem[maxn];
84 inline Node *query(Node *a, Node *b)
       a -> make_root(); b -> access(); b -> splay(0);
       return b -> pos;
87
88
  inline int dist(Node *a, Node *b)
89
90
       a -> make_root(); b -> access(); b -> splay(0);
91
       return b -> len;
92
93
```

1.14 仙人掌

1.14.1 圆方树

```
int dfn[maxn], low[maxn], timer, st[maxn], top, id[maxn], scc;
void dfs(int x)
3 {
       dfn[x] = low[x] = ++timer; st[++top] = x;
       for (Edge *iter = last[x]; iter; iter = iter -> next)
           if (!dfn[iter -> to])
           {
               dfs(iter -> to);
               cmin(low[x], low[iter -> to]);
               if (dfn[x] == low[iter->to])
10
11
                   int now, elder = top, minn = c[x];
12
                   ++scc;
13
                   do
14
15
                       now = st[top--];
16
                        cmin(minn, c[now]);
17
18
                   while (iter -> to != now);
19
                   for (int i = top + 1; i <= elder; ++i)</pre>
20
                       add(scc, st[i], minn);
21
                   add(scc, x, minn);
22
               }
23
           }
24
           else if (!id[iter -> to]) cmin(low[x], dfn[iter -> to]);
25
```

1.15. 最小割 17

26 }

1.15 最小割

1.16 最大流 (ct)

```
struct Edge {
       Edge *next, *rev;
       int to, cap;
  } *last[maxn], *cur[maxn], e[maxm], *ecnt = e;
  inline void link(R int a, R int b, R int w)
       *++ecnt = (Edge) {last[a], ecnt + 1, b, w}; last[a] = ecnt;
       *++ecnt = (Edge) {last[b], ecnt - 1, a, 0}; last[b] = ecnt;
9
   int ans, s, t, q[maxn], dep[maxn];
10
   inline bool bfs()
11
12
       memset(dep, -1, (t + 1) << 2);
13
       dep[q[1] = t] = 0; int head = 0, tail = 1;
14
       while (head < tail)
15
16
           int now = q[++head];
17
           for (Edge *iter = last[now]; iter; iter = iter -> next)
18
                if (dep[iter -> to] == -1 && iter -> rev -> cap)
19
                    dep[q[++tail] = iter \rightarrow to] = dep[now] + 1;
20
21
       return dep[s] != -1;
22
23
   int dfs(int x, int f)
25
26
       if (x == t) return f;
27
       int used = 0;
       for (Edge* &iter = cur[x]; iter; iter = iter -> next)
28
           if (iter \rightarrow cap && dep[iter \rightarrow to] + 1 == dep[x])
29
30
                int v = dfs(iter -> to, dmin(f - used, iter -> cap));
31
                iter -> cap -= v;
32
                iter -> rev -> cap += v;
33
                used += v;
34
                if (used == f) return f;
35
36
       return used;
37
38
   inline void dinic()
39
40
       while (bfs())
41
42
           memcpy(cur, last, sizeof cur);
43
           ans += dfs(s, inf);
44
       }
45
```

1.17 费用流 (ct)

```
struct Edge {
    Edge *next, *rev;
```

```
int from, to, cap, cost;
  5 inline void link(int a, int b, int w, int c)
6 {
       *++ecnt = (Edge) {last[a], ecnt + 1, a, b, w, c}; last[a] = ecnt;
       *++ecnt = (Edge) {last[b], ecnt - 1, b, a, 0, -c}; last[b] = ecnt;
  }
9
  int s, t, q[maxn << 2], dis[maxn];</pre>
10
  ll ans;
11
  bool inq[maxn];
12
   #define inf Ox7fffffff
14 inline bool spfa()
15
       for (int i = 1; i <= t; ++i) dis[i] = inf;
16
       int head = 0, tail = 1; dis[q[1] = s] = 0;
17
       while (head < tail)</pre>
18
19
           int now = q[++head]; inq[now] = 0;
20
           for (Edge *iter = last[now]; iter; iter = iter -> next)
21
               if (iter -> cap && dis[iter -> to] > dis[now] + iter -> cost)
               {
                   dis[iter -> to] = dis[now] + iter -> cost;
24
                   prev[iter -> to] = iter;
25
                   !inq[iter \rightarrow to] ? inq[q[++tail] = iter \rightarrow to] = 1 : 0;
26
27
       }
28
       return dis[t] != inf;
29
30
   inline void mcmf()
31
32
33
       int x = inf;
       for (Edge *iter = prev[t]; iter; iter = prev[iter -> from]) cmin(x, iter -> cap);
34
       for (Edge *iter = prev[t]; iter; iter = prev[iter -> from])
35
36
           iter -> cap -= x;
37
           iter -> rev -> cap += x;
38
           ans += 111 * x * iter -> cost;
39
40
41
```

1.18 有上下界的网络流 (Durandal)

B(u,v) 表示边 (u,v) 流量的下界,C(u,v) 表示边 (u,v) 流量的上界,设 F(u,v) 表示边 (u,v) 的实际流量设 G(u,v)=F(u,v)-B(u,v),则 $0\leq G(u,v)\leq C(u,v)-B(u,v)$

- 无源汇的上下界可行流 建立超级源点 S^* 和超级汇点 T^* ,对于原图每一条边 (u,v) 在新网络中连如下三条边: $S^* \to v$,容量为 $B(u,v); u \to T^*$,容量为 $B(u,v); u \to v$,容量为 C(u,v) - B(u,v)。最后求新网络的最大流,判断从 超级源点 S^* 出发的边是否都满流即可,边 (u,v) 的最终解中的实际流量为 G(u,v) + B(u,v)。
- 有源汇的上下界可行流 从汇点 T 到源点 S 连一条上界为 ∞ ,下界为 0 的边。按照无源汇的上下界可行流一样做即可,流量即为 $T \to S$ 边上的流量。
- 有源汇的上下界最大流
 - 在有源汇的上下界可行流中,从汇点 T 到源点 S 的边改为连一条上界为 ∞,下界为 x 的边。x 满足二分性质,找到最大的 x 使得新网络存在有源汇的上下界可行流即为原图的最大流。

1.19. ZKW 费用流 19

- 从汇点 T 到源点 S 连一条上界为 ∞ ,下界为 0 的边,变成无源汇的网络。按照无源汇的上下界可行流的方法,建立超级源点 S^* 与超级汇点 T^* ,求一遍 S^* → T^* 的最大流,再将从汇点 T 到源点 S 的这条边拆掉,求一次 S → T 的最大流即可。

- 有源汇的上下界最小流
 - 在有源汇的上下界可行流中,从汇点 T 到源点 S 的边改为连一条上界为 x,下界为 0 的边。x 满足二分性质,找到最小的 x 使得新网络存在有源汇的上下界可行流即为原图的最大流。
 - 按照无源汇的上下界可行流的方法,建立超级源点 S^* 与超级汇点 T^* ,求一遍 $S^* \to T^*$ 的最大流,但是注意不加上汇点 T 到源点 S 的这条边,即不使之改为无源汇的网络去求解。求完后,再加上那条汇点 T 到源点 S 的边,上界为 ∞ 的边。因为这条边的下界为 0,所以 S^* , T^* 无影响,再求一次 $S^* \to T^*$ 的最大流。若超级源点 S^* 出发的边全部满流,则 $T \to S$ 边上的流量即为原图的最小流,否则无解。
- 1.19 zkw 费用流
- 1.20 差分约束
- 1.21 图论知识

弦图

树的计数

• 有根树计数

$$a_1 = 1$$

$$a_{n+1} = \frac{\sum_{j=1}^{n} j \cdot a_j \cdot S_{n,j}}{n}$$

$$S_{n,j} = \sum_{i=1}^{n/j} a_{n+1-ij} = S_{n-j,j} + a_{n+1-j}$$

• 无根树计数

$$\begin{cases} a_n - \sum_{i=1}^{n/2} a_i a_{n-i} & n \text{ is odd} \\ a_n - \sum_{i=1}^{n/2} a_i a_{n-i} + \frac{1}{2} a_{\frac{n}{2}} (a_{\frac{n}{2}} + 1) & n \text{ is even} \end{cases}$$

- 完全图生成树计数
- 矩阵-树定理

设 $\mathbf{A}[G]$ 为图 G 的邻接矩阵、 $\mathbf{D}[G]$ 为图 G 的度数矩阵,则图 G 的不同生成树的个数为 $\mathbf{C}[G] = \mathbf{D}[G] - \mathbf{A}[G]$ 的任意一个 n-1 阶主子式的行列式值。

Chapter 2

Math

2.1 int64 相乘取模 (Durandal)

```
int64_t mul(int64_t x, int64_t y, int64_t p) {
   int64_t t = (x * y - (int64_t) ((long double) x / p * y + 1e-3) * p) % p;
   return t < 0 ? t + p : t;
}</pre>
```

2.2 扩展欧几里得 (gy)

```
// return gcd(a, b)
   // ax+by=gcd(a,b)
  int extend_gcd(int a, int b, int &x, int &y) {
       if (b == 0) {
           x = 1, y = 0;
           return a;
       int res = extend_gcd(b, a % b, x, y);
      int t = y;
       y = x - a / b * y;
10
       x = t;
11
       return res;
12
13
14 // return minimal positive integer x so that ax+by=c
15 // or -1 if such x does not exist
int solve_equ(int a, int b, int c) {
       int x, y, d;
       d = extend_gcd(a, b, x, y);
       if (c % d)
19
           return -1;
20
       int t = c / d;
21
       x *= t;
22
       y *= t;
23
       int k = b / d;
24
       x = (x \% k + k) \% k;
25
       return x;
27
28 // return minimal positive integer x so that ax==b \pmod{p}
^{29} // or -1 if such x does not exist
30 int solve(int a, int b, int p) {
      a = (a \% p + p) \% p;
       b = (b \% p + p) \% p;
```

```
return solve_equ(a, p, b);

yellow return solve_equ(a, p, b);

yellow return solve_equ(a, p, b);
```

2.3 中国剩余定理 (Durandal)

返回是否可行,余数和模数结果为 r_1 , m_1

```
bool CRT(int &r1, int &m1, int r2, int m2) {
    int x, y, g = extend_gcd(m1, m2, x, y);
    if ((r2 - r1) % g != 0) return false;
    x = 111 * (r2 - r1) * x % m2;
    if (x < 0) x += m2;
    x /= g;
    r1 += m1 * x;
    m1 *= m2 / g;
    return true;
}</pre>
```

2.4 线性同余不等式 (Durandal)

必须满足 $0 \le d < m$, $0 \le l \le r < m$, 返回 $\min\{x \ge 0 \mid l \le x \cdot d \mod m \le r\}$, 无解返回 -1

```
int64_t calc(int64_t d, int64_t m, int64_t l, int64_t r) {
   if (1 == 0) return 0;
   if (d == 0) return -1;
   if (d * 2 > m) return calc(m - d, m, m - r, m - l);
   if ((1 - 1) / d < r / d) return (1 - 1) / d + 1;
   int64_t k = calc((-m % d + d) % d, d, l % d, r % d);
   if (k == -1) return -1;
   return (k * m + l - 1) / d + 1;
}</pre>
```

2.5 组合数

2.6 高斯消元

2.7 Miller Rabin & Pollard Rho (gy)

```
st In Java, use BigInteger.isProbablePrime(int certainty) to replace miller_rabin(BigInteger
    \rightarrow number)
    * Test Set / First Wrong Answer
   * 2 / 2,047
    * 2, 3 / 1,373,653
    * 31, 73 / 9,080,191
    * 2, 3, 5 / 25,326,001
    * 2, 3, 5, 7 / 3,215,031,751 (> Int.MAX_VALUE)
   * 2, 7, 61 / 4,759,123,141
   * 2, 13, 23, 1662803 / 1,122,004,669,633
10
   * 2, 3, 5, 7, 11 / 2,152,302,898,747
11
   * 2, 3, 5, 7, 11, 13 / 3,474,749,660,383
12
   * 2, 3, 5, 7, 11, 13, 17 / 341,550,071,728,321
13
   * 2, 3, 5, 7, 11, 13, 17, 19, 23 / 3,825,123,056,546,413,051
14
   * 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 / 318,665,857,834,031,151,167,461 (> Long.MAX_VALUE)
15
   * 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41 / 3,317,044,064,679,887,385,961,981
```

22 CHAPTER 2. MATH

```
17 */
  const int test_case_size = 12;
19 const int test_cases[test_case_size] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37};
   int64_t multiply_mod(int64_t x, int64_t y, int64_t p) {
20
       int64_t t = (x * y - (int64_t) ((long double) x / p * y + 1e-3) * p) % p;
21
       return t < 0? t + p: t;
22
23
   int64_t add_mod(int64_t x, int64_t y, int64_t p) {
       return (Oull + x + y) % p;
25
26
  int64_t power_mod(int64_t x, int64_t exp, int64_t p) {
27
       int64_t ans = 1;
28
       while (exp) {
29
           if (exp & 1)
30
               ans = multiply_mod(ans, x, p);
31
           x = multiply_mod(x, x, p);
32
           exp >>= 1;
33
       }
35
       return ans;
  | ጉ
36
   bool miller_rabin_check(int64_t prime, int64_t base) {
37
       int64_t number = prime - 1;
38
       for (; ~number & 1; number >>= 1)
39
           continue;
40
       int64_t result = power_mod(base, number, prime);
41
42
       for (; number != prime - 1 && result != 1 && result != prime - 1; number <<= 1)
43
           result = multiply_mod(result, result, prime);
44
       return result == prime - 1 || (number & 1) == 1;
  }
45
46 bool miller_rabin(int64_t number) {
       if (number < 2)
47
           return false;
48
       if (number < 4)
49
          return true;
50
       if (~number & 1)
52
       for (int i = 0; i < test_case_size && test_cases[i] < number; i++)</pre>
           if (!miller_rabin_check(number, test_cases[i]))
55
               return false;
56
       return true;
  ĺ٦
57
   int64_t gcd(int64_t x, int64_t y) {
58
       return y == 0 ? x : gcd(y, x % y);
59
60
   int64_t pollard_rho_test(int64_t number, int64_t seed) {
61
       int64_t x = rand() \% (number - 1) + 1, y = x;
62
       int head = 1, tail = 2;
63
       while (true) {
64
           x = multiply_mod(x, x, number);
65
           x = add_mod(x, seed, number);
66
           if (x == y)
67
               return number;
68
           int64_t answer = gcd(std::abs(x - y), number);
69
           if (answer > 1 && answer < number)</pre>
```

```
71
               return answer;
           if (++head == tail) {
72
73
               y = x;
               tail <<= 1;
74
           }
75
       }
76
77
   void factorize(int64_t number, std::vector<int64_t> &divisor) {
78
       if (number > 1) {
79
           if (miller_rabin(number)) {
80
               divisor.push_back(number);
81
           } else {
82
               int64_t factor = number;
83
               while (factor >= number)
84
                    factor = pollard_rho_test(number, rand() % (number - 1) + 1);
85
               factorize(number / factor, divisor);
86
               factorize(factor, divisor);
87
           }
88
       }
89
```

- 2.8 $O(m^2 \log n)$ 线性递推
- 2.9 Polynomial
- 2.9.1 FFT
- 2.9.2 NTT & 多项式求逆
- 2.10 拉格朗日插值
- 2.11 杜教筛
- 2.12 BSGS (ct,gy)
- 2.12.1 BSGS

p 是素数,返回 $\min\{x \ge 0 \mid y^x \equiv z \mod p\}$

```
const int mod = 19260817;
  struct Hash
2
   {
3
       Hash *next;
       int key, val;
  } *last[mod], mem[100000], *tot = mem;
   inline void insert(R int x, R int v)
       *++tot = (Hash) {last[x \% mod], x, v}; last[x \% mod] = tot;
9
10
11
   inline int query(R int x)
12
       for (R Hash *iter = last[x % mod]; iter; iter = iter -> next)
13
           if (iter -> key == x) return iter -> val;
14
       return -1;
15
  }
16
17 inline void del(R int x)
```

24 CHAPTER 2. MATH

```
last[x \% mod] = 0;
20 }
21 int main()
22
  {
       for (; T; --T)
23
24
           R int y, z, p; scanf("%d%d%d", &y, &z, &p);
25
           R int m = (int) sqrt(p * 1.0);
26
27
           y %= p; z %= p;
           if (!y && !z) {puts("0"); continue;}
28
           if (!y) {puts("Orz, I cannot find x!"); continue;}
29
           R int pw = 1;
30
           for (R int i = 0; i < m; ++i, pw = 111 * pw * y % p) insert(111 * z * pw % p, i);
31
           R int ans = -1;
32
           for (R int i = 1, t, pw2 = pw; i \leq p / m + 1; ++i, pw2 = 111 * pw2 * pw % p)
33
               if ((t = query(pw2)) != -1) {ans = i * m - t; break;}
34
           if (ans == -1) puts("Orz, I cannot find x!");
35
           else printf("%d\n", ans );
36
           tot = mem; pw = 1;
           for (R int i = 0; i < m; ++i, pw = 111 * pw * y % p) del(111 * z * pw % p);
39
       return 0;
40
41
```

2.12.2 扩展 BSGS

必须满足 $0 \le a < p$, $0 \le b < p$, 返回 $\min\{x \ge 0 \mid a^x \equiv b \mod p\}$

```
i int64_t ex_bsgs(int64_t a, int64_t b, int64_t p) {
       if (b == 1)
2
           return 0;
3
       int64_t t, d = 1, k = 0;
       while ((t = std::__gcd(a, p)) != 1) {
           if (b \% t) return -1;
           k++, b /= t, p /= t, d = d * (a / t) % p;
           if (b == d) return k;
       }
9
10
       map.clear();
       int64_t m = std::ceil(std::sqrt((long double) p));
11
       int64_t a_m = pow_mod(a, m, p);
12
       int64_t mul = b;
13
       for (int j = 1; j \le m; j++) {
14
           (mul *= a) %= p;
15
           map[mul] = j;
16
17
       for (int i = 1; i <= m; i++) {
18
           (d *= a_m) \%= p;
19
           if (map.count(d))
20
               return i * m - map[d] + k;
^{21}
       }
22
       return -1;
23
  ١}
24
25 | int main() {
       int64_t a, b, p;
26
       while (scanf("%lld%lld", &a, &b, &p) != EOF)
           printf("%lld\n", ex_bsgs(a, b, p));
       return 0;
29
30
```

2.13 直线下整点个数 (gy)

必须满足 $a \ge 0, b \ge 0, m > 0$,返回 $\sum_{i=0}^{n-1} \frac{a+bi}{m}$

```
int64_t count(int64_t n, int64_t a, int64_t b, int64_t m) {
   if (b == 0)
      return n * (a / m);
   if (a >= m)
      return n * (a / m) + count(n, a % m, b, m);
   if (b >= m)
      return (n - 1) * n / 2 * (b / m) + count(n, a, b % m, m);
   return count((a + b * n) / m, (a + b * n) % m, m, b);
}
```

2.14 单纯形

2.15 辛普森积分

2.16 数学知识

求和公式

•
$$\sum_{k=1}^{n} (2k-1)^2 = \frac{1}{3}n(4n^2-1)$$

•
$$\sum_{k=1}^{n} k^3 = \frac{1}{4}n^2(n+1)^2$$

•
$$\sum_{k=1}^{n} (2k-1)^3 = n^2(2n^2-1)$$

•
$$\sum_{k=1}^{n} k^4 = \frac{1}{30}n(n+1)(2n+1)(3n^2+3m-1)$$

•
$$\sum_{k=1}^{n} k^5 = \frac{1}{12}n^2(n+1)^2(2n^2+2n-1)$$

•
$$\sum_{k=1}^{n} k(k+1) = \frac{1}{3}n(n+1)(n+2)$$

•
$$\sum_{k=1}^{n} k(k+1)(k+2) = \frac{1}{4}n(n+1)(n+2)(n+3)$$

•
$$\sum_{k=1}^{n} k(k+1)(k+2)(k+3) = \frac{1}{5}n(n+1)(n+2)(n+3)(n+4)$$

错排公式

 D_n 表示 n 个元素错位排列的方案数 $D_1=0, D_2=1$ $D_n=(n-1)(D_{n-2}+D_{n-1}), n\geq 3$ $D_n=n!\cdot (1-\frac{1}{1!}+\frac{1}{2!}-\cdots +(-1)^n\frac{1}{n!})$

26 CHAPTER 2. MATH

Fibonacci sequence

$$\begin{split} F_0 &= 0, F_1 = 1 \\ F_n &= F_{n-1} + F_{n-2} \\ F_{n+1} \cdot F_{n-1} - F_n^2 &= (-1)^n \\ F_{-n} &= (-1)^n F_n \\ F_{n+k} &= F_k \cdot F_{n+1} + F_{k-1} \cdot F_n \\ \gcd(F_m, F_n) &= F_{\gcd(m,n)} \\ F_m \mid F_n^2 &\Leftrightarrow nF_n \mid m \\ F_n &= \frac{\varphi^n - \Psi^n}{\sqrt{5}}, \varphi = \frac{1 + \sqrt{5}}{2}, \Psi = \frac{1 - \sqrt{5}}{2} \\ F_n &= \lfloor \frac{\varphi^n}{\sqrt{5}} + \frac{1}{2} \rfloor, n \geq 0 \\ n(F) &= \lfloor \log_{\varphi}(F \cdot \sqrt{5} + \frac{1}{2}) \rfloor \end{split}$$

第一类 Stirling number

用
$$s(n,k)=(-1)^{n-k}{n\brack k}$$
 表示第一类 Stirling number
$${n+1\brack k}=n{n\brack k}+{n\brack k-1},k>0$$

$${0\brack 0}=1,{n\brack 0}={0\brack n}=0,n>0$$

$${n\brack k}$$
 为将 n 个元素分成 k 个环的方案数

第二类 Stirling number

用
$$S(n,k) = \binom{n}{k}$$
 表示第二类 Stirling number $\binom{n+1}{k} = k \binom{n}{k} + \binom{n}{k-1}, k > 0$ $\binom{0}{0} = 1, \binom{n}{0} = \binom{0}{n} = 0, n > 0$ $\binom{n}{k} = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} j^n$ $\binom{n}{k}$ 为将 n 个元素划分成 k 个非空集合的方案数

Catalan number

$$c_n$$
 表示长度为 $2n$ 的合法括号序的数量
$$c_1=1,\,c_{n+1}=\sum\limits_{i=1}^nc_i\times c_{n+1-i}$$

$$c_n=\frac{\binom{2n}n}{n+1}$$

Bell number

$$B_n$$
 表示基数为 n 的集合的划分方案数
$$B_i = \begin{cases} 1 & i = 0 \\ \sum\limits_{k=0}^{n} \binom{n}{k} B_k & i > 0 \end{cases}$$

$$B_n = \sum\limits_{k=0}^{n} \binom{n}{k}$$

五边形数定理

$$p(n)$$
 表示将 n 划分为若干个正整数之和的方案数
$$p(n) = \sum_{k \in \mathbb{N}^*} (-1)^{k-1} p(n - \frac{k(3k-1)}{2})$$

2.16. 数学知识 27

Bernoulli number

$$\sum_{j=0}^{m} {m+1 \choose j} B_j = 0, m > 0$$

$$B_i = \begin{cases} 1 & i = 0 \\ & \sum_{j=0}^{i-1} {i+1 \choose j} B_j \\ -\frac{j=0}{i+1} & i > 0 \end{cases}$$

$$\sum_{k=1}^{n} k^m = \frac{1}{m+1} \sum_{k=0}^{m} {m+1 \choose k} B_k n^{m+1-k}$$

Möbius function

$$\mu(n) = \begin{cases} 1 & n \text{ is a square-free positive integer with an even number of prime factors} \\ -1 & n \text{ is a square-free positive integer with an odd number of prime factors} \\ 0 & n \text{ has a squared prime factor} \end{cases}$$

$$\sum_{d|n} \mu(d) = \begin{cases} 1 & n = 1\\ 0 & n > 1 \end{cases}$$

$$g(n) = \sum_{d|n} f(d) \Leftrightarrow f(n) = \sum_{d|n} \mu(d)g(\frac{n}{d})$$

Lagrange polynomial

给定次数为
$$n$$
 的多项式函数 $L(x)$ 上的 $n+1$ 个点 $(x_0,y_0),(x_1,y_1),\dots,(x_n,y_n)$ 则 $L(x)=\sum\limits_{j=0}^ny_j\prod\limits_{0\leq m\leq n,m\neq j}\frac{x-x_m}{x_j-x_m}$

Chapter 3

Geometry

3.1 点、直线、圆 (gy)

```
using number = long double;
const number eps = 1e-8;
3 number _sqrt(number x) {
      return std::sqrt(std::max(x, (number) 0));
5 }
  number _asin(number x) {
      x = std::min(x, (number) 1), x = std::max(x, (number) -1);
      return std::asin(x);
9
  number _acos(number x) {
10
       x = std::min(x, (number) 1), x = std::max(x, (number) -1);
11
       return std::acos(x);
12
13
14 int sgn(number x) {
       return (x > eps) - (x < -eps);
15
16
  int cmp(number x, number y) {
17
       return sgn(x - y);
18
  }
19
  struct point {
20
      number x, y;
       point() {}
       point(number x, number y) : x(x), y(y) {}
       number len2() const {
24
          return x * x + y * y;
25
26
       number len() const {
27
           return _sqrt(len2());
28
29
       point unit() const {
30
           return point(x / len(), y / len());
       point rotate90() const {
33
           return point(-y, x);
34
35
       friend point operator+(const point &a, const point &b) {
36
           return point(a.x + b.x, a.y + b.y);
```

3.1. 点、直线、圆 (GY)

```
38
       friend point operator-(const point &a, const point &b) {
39
           return point(a.x - b.x, a.y - b.y);
40
41
       friend point operator*(const point &a, number b) {
42
           return point(a.x * b, a.y * b);
43
44
       friend point operator/(const point &a, number b) {
45
           return point(a.x / b, a.y / b);
46
47
       friend number dot(const point &a, const point &b) {
48
49
           return a.x * b.x + a.y * b.y;
50
       friend number det(const point &a, const point &b) {
51
           return a.x * b.y - a.y * b.x;
52
53
       friend number operator == (const point &a, const point &b) {
54
           return cmp(a.x, b.x) == 0 && cmp(a.y, b.y) == 0;
55
56
   };
57
   number dis2(const point &a, const point &b) {
       return (a - b).len2();
59
60
   number dis(const point \&a, const point \&b) {
61
       return (a - b).len();
62
   }
63
   struct line {
64
       point a, b;
65
66
       line() {}
67
       line(point a, point b) : a(a), b(b) {}
       point value() const {
           return b - a;
69
70
  };
71
   bool point_on_line(const point &p, const line &l) {
72
       return sgn(det(p - 1.a, p - 1.b)) == 0;
73
  }
74
   // including endpoint
75
  bool point_on_ray(const point &p, const line &l) {
77
       return sgn(det(p - 1.a, p - 1.b)) == 0 &&
78
           sgn(dot(p - 1.a, 1.b - 1.a)) >= 0;
79
   // including endpoints
80
   bool point_on_seg(const point &p, const line &1) {
81
       return sgn(det(p - 1.a, p - 1.b)) == 0 &&
82
           sgn(dot(p - 1.a, 1.b - 1.a)) >= 0 &&
83
           sgn(dot(p - 1.b, 1.a - 1.b)) >= 0;
84
85
   bool seg_has_intersection(const line &a, const line &b) {
86
       if (point_on_seg(a.a, b) || point_on_seg(a.b, b) ||
87
               point_on_seg(b.a, a) || point_on_seg(b.b, a))
88
           return /* including endpoints */ true;
89
       return sgn(det(a.a - b.a, b.b - b.a)) * sgn(det(a.b - b.a, b.b - b.a)) < 0
90
           && sgn(det(b.a - a.a, a.b - a.a)) * sgn(det(b.b - a.a, a.b - a.a)) < 0;
91
92
   point intersect(const line &a, const line &b) {
93
       number s1 = det(a.b - a.a, b.a - a.a);
94
       number s2 = det(a.b - a.a, b.b - a.a);
```

```
return (b.a * s2 - b.b * s1) / (s2 - s1);
   }
97
   point projection(const point &p, const line &1) {
        return 1.a + (1.b - 1.a) * dot(p - 1.a, 1.b - 1.a) / (1.b - 1.a).len2();
99
100
   number dis(const point &p, const line &l) {
101
        return std::abs(dot(p - 1.a, 1.b - 1.a)) / (1.b - 1.a).len();
102
103
   point symmetry_point(const point &a, const point &o) {
104
        return o + o - a;
105
106
   point reflection(const point &p, const line &l) {
107
        return symmetry_point(p, projection(p, 1));
108
   }
109
   struct circle {
110
       point o;
111
        number r;
112
        circle() {}
113
        circle(point o, number r) : o(o), r(r) {}
114
115 };
    bool intersect(const line &1, const circle &a, point &p1, point &p2) {
        number x = dot(1.a - a.o, 1.b - 1.a);
117
        number y = (1.b - 1.a).len2();
118
        number d = x * x - y * ((1.a - a.o).len2() - a.r * a.r);
119
        if (sgn(d) < 0) return false;</pre>
120
        point p = 1.a - (1.b - 1.a) * (x / y), delta = (1.b - 1.a) * (_sqrt(d) / y);
121
        p1 = p + delta, p2 = p - delta;
122
        return true;
125
    bool intersect(const circle &a, const circle &b, point &p1, point &p2) {
        if (a.o == b.o \&\& cmp(a.r, b.r) == 0)
           return /* value for coincident circles */ false;
127
        number s1 = (b.o - a.o).len();
128
        if (cmp(s1, a.r + b.r) > 0 \mid \mid cmp(s1, std::abs(a.r - b.r)) < 0)
129
            return false;
130
        number s2 = (a.r * a.r - b.r * b.r) / s1;
131
        number aa = (s1 + s2) / 2, bb = (s1 - s2) / 2;
132
        point p = (b.o - a.o) * (aa / (aa + bb)) + a.o;
133
        point delta = (b.o - a.o).unit().rotate90() * _sqrt(a.r * a.r - aa * aa);
134
        p1 = p + delta, p2 = p - delta;
135
        return true;
136
137
    bool tangent(const point &p0, const circle &c, point &p1, point &p2) {
138
        number x = (p0 - c.o).len2();
139
        number d = x - c.r * c.r;
140
        if (sgn(d) < 0) return false;</pre>
141
        if (sgn(d) == 0)
142
            return /* value for point_on_line */ false;
143
        point p = (p0 - c.o) * (c.r * c.r / x);
144
145
        point delta = ((p0 - c.o) * (-c.r * \_sqrt(d) / x)).rotate90();
        p1 = c.o + p + delta;
146
        p2 = c.o + p - delta;
147
        return true;
148
149
   bool ex_tangent(const circle &a, const circle &b, line &l1, line &l2) {
150
        if (cmp(std::abs(a.r - b.r), (b.o - a.o).len()) == 0) {
151
            point p1, p2;
152
            intersect(a, b, p1, p2);
153
            11 = 12 = line(p1, p1 + (a.o - p1).rotate90());
154
```

3.1. 点、直线、圆 (GY) 31

```
return true;
155
        } else if (cmp(a.r, b.r) == 0) {
156
            point dir = b.o - a.o;
157
            dir = (dir * (a.r / dir.len())).rotate90();
158
            11 = line(a.o + dir, b.o + dir);
159
            12 = line(a.o - dir, b.o - dir);
160
            return true;
161
        } else {
162
            point p = (b.o * a.r - a.o * b.r) / (a.r - b.r);
163
            point p1, p2, q1, q2;
164
            if (tangent(p, a, p1, p2) && tangent(p, b, q1, q2)) {
165
                11 = line(p1, q1);
166
                12 = line(p2, q2);
167
                return true;
168
            } else {
169
                return false;
170
            }
171
        }
172
173
   bool in_tangent(const circle &a, const circle &b, line &l1, line &l2) {
174
        if (cmp(a.r + b.r, (b.o - a.o).len()) == 0) {
175
176
            point p1, p2;
            intersect(a, b, p1, p2);
177
            11 = 12 = line(p1, p1 + (a.o - p1).rotate90());
178
            return true;
179
        } else {
180
            point p = (b.o * a.r + a.o * b.r) / (a.r + b.r);
181
            point p1, p2, q1, q2;
182
            if (tangent(p, a, p1, p2) && tangent(p, b, q1, q2)) {
183
                11 = line(p1, q1);
184
                12 = line(p2, q2);
185
186
                return true;
            } else {
187
                return false;
188
            }
189
        }
190
191 }
```

- 3.2 点到凸包切线
- 3.3 直线凸包交点
- 3.4 凸包游戏
- 3.5 半平面交
- 3.6 旋转卡壳
- 3.7 判断圆是否有交
- 3.8 最小圆覆盖
- 3.9 最小球覆盖
- $3.10 \quad O(n^2 \log n)$ 圆交面积和重心
- 3.11 圆与多边形交
- 3.12 $O(n \log n)$ 凸多边形内的最大圆
- 3.13 三维凸包
- 3.14 三维绕轴旋转
- 3.15 几何知识 (gy)

Pick theorem

顶点为整点的简单多边形,其面积 A,内部格点数 i,边上格点数 b 满足: $A=i+\frac{b}{2}-1$

欧拉示性数

- 三维凸包的顶点个数 V, 边数 E, 面数 F 满足:
 V-E+F=2
- 平面图的顶点个数 V , 边数 E , 平面被划分的区域数 F , 组成图形的连通部分的数目 C 满足 : V-E+F=C+1

几何公式

• 三角形

半周长
$$p = \frac{a+b+c}{2}$$
 面积 $S = \frac{1}{2}aH_a = \frac{1}{2}ab \cdot \sin C = \sqrt{p(p-a)(p-b)(p-c)} = pr = \frac{abc}{4R}$ 中线长 $M_a = \frac{1}{2}\sqrt{2(b^2+c^2)-a^2} = \frac{1}{2}\sqrt{b^2+c^2+2bc} \cdot \cos A$ 角平分线长 $T_a = \frac{\sqrt{bc((b+c)^2-a^2)}}{b+c} = \frac{2bc}{b+c} \cos \frac{A}{2}$ 高 $H_a = b \sin C = \sqrt{b^2-(\frac{a^2+b^2-c^2}{2a})^2}$ 内切圆半径 $r = \frac{S}{p} = 4R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} = \sqrt{\frac{(p-a)(p-b)(p-c)}{p}} = p \tan \frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2}$

3.15. 几何知识 (GY) 33

外接圆半径
$$R = \frac{abc}{4S} = \frac{a}{2\sin A}$$
 旁切圆半径 $r_A = \frac{2S}{-a+b+c}$ 重心 $\left(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3}\right)$ 3 $\left(\frac{x_1^2+y_1^2-y_1-1}{x_2^2+y_2^2-y_2-1}, \frac{x_1^2+y_1^2-1}{x_2^2+y_2^2-y_2-1}, \frac{x_1-y_1-1}{x_3+y_3-y_3-1}\right)$ 外心 $\left(\frac{x_1-y_1-1}{x_3+y_3-y_3-1}, \frac{x_1-y_1-1}{x_3-y_3-1}, \frac{x_1-y_1-1}{x_3-y_3-1}\right)$ 为心 $\left(\frac{ax_1+bx_2+cx_3}{a+b+c}, \frac{ay_1+by_2+cy_3}{a+b+c}\right)$ 4 $\left(\frac{x_1x_2+y_1y_2-1-y_3}{x_1-y_1-y_2-1}, \frac{x_1-y_1-1}{x_1-y_1-1}, \frac{x_1-y_1-1}{x_1-x_2+y_1y_2-x_3-1}\right)$ 5 $\left(\frac{x_1-y_1-1}{x_1-x_2+y_1y_2-1}, \frac{x_1-y_1-1}{x_1-x_2+y_1y_2-x_3-1}\right)$ 6 $\left(\frac{x_1-x_2+y_1y_2-1-y_3}{x_1-x_2+y_1y_2-1}, \frac{x_1-y_1-1}{x_1-x_2+y_1y_2-x_3-1}\right)$ 7 $\left(\frac{x_1-x_1-x_2+cx_3}{x_1-x_2+cx_3}, \frac{-ay_1+by_2+cy_3}{-a+b+c}\right)$

• 圆

弧长
$$l = rA$$

弦长 $a = 2\sqrt{2hr - h^2} = 2r \cdot \sin \frac{A}{2}$
弓形高 $h = r - \sqrt{r^2 - \frac{a^2}{4}} = r(1 - \cos \frac{A}{2})$
扇形面积 $S_1 = \frac{1}{2}lr = \frac{1}{2}Ar^2$
弓形面积 $S_2 = \frac{1}{2}r^2(A - \sin A)$

棱台

体积
$$V = \frac{1}{3}h(A_1 + A_2 + \sqrt{A_1A_2})$$

正棱台侧面积 $S = \frac{1}{2}(p_1 + p_2)l$, l 为侧高

球

体积
$$V = \frac{4}{3}\pi r^3$$

表面积 $S = 4\pi r^2$

• 球台

侧面积
$$S = 2\pi rh$$

体积 $V = \frac{1}{6}\pi h(3(r_1^2 + r_2^2) + h_h)$

• 球扇形

球面面积
$$S=2\pi rh$$

体积 $V=\frac{2}{3}\pi r^2h=\frac{2}{3}\pi r^3h(1-\cos\varphi)$

• 球面三角形

考虑单位球上的球面三角形,a,b,c 表示三边长(弧所对球心角),A,B,C 表示三角大小(切线夹角) 余弦定理 $\cos a = \cos b \cdot \cos c + \sin a \cdot \sin b \cdot \cos A$ 正弦定理 $\frac{\sin A}{\sin a} = \frac{\sin B}{\sin b} = \frac{\sin C}{\sin c}$ 球面面积 $S = A + B + C - \pi$

• 四面体

体积
$$V = \frac{1}{6} \left| \overrightarrow{AB} \cdot (\overrightarrow{AC} \times \overrightarrow{AD}) \right|$$

Chapter 4

String

$4.1 \quad KMP \ ({\rm ct})$

```
int main()
{
    for (int i = 2, j = 0; i <= n; ++i)
    {
        for (; j && s[j + 1] != s[i]; j = fail[j]);
        s[i] == s[j + 1] ? ++j : 0;
        fail[i] = j;
    }
    return 0;
}</pre>
```

4.2 exKMP (ct)

 $extend_i$ 表示 T 与 $S_{i,n}$ 的最长公共前缀

```
int next[maxn], extend[maxn], fail[maxn];
void getnext(R char *s, R int len)
3 | {
       fail[1] = 0;
       R int p = 0;
       memset(next, 0, (len + 2) << 2);
       for (R int i = 2; i <= len; ++i)
           while (p \&\& s[p + 1] != s[i]) p = fail[p];
           s[p + 1] == s[i] ? ++p : 0;
           fail[i] = p;
11
           p ? cmax(next[i - p + 1], p) : 0;
12
13
14 }
  void getextend(R char *s, R int lens, R char *t, R int lent)
15
16
       getnext(t, lent);
17
       R int a = 1, p = 0;
18
       for (R int i = 1; i <= lens; ++i)
19
20
           if (i + next[i - a + 1] - 1 >= p)
21
22
               cmax(p, i - 1);
23
               while (p < lens && p - i + 1 < lent && s[p + 1] == t[p - i + 2]) ++p;
24
```

4.3. AC 自动机 (CT) 35

4.3 AC 自动机 (ct)

```
struct SAM {
        SAM *next[26], *fa;
        int val;
   } mem[maxn], *last = mem, *tot = mem;
   void extend(int c)
        R SAM *p = last, *np;
        last = np = ++tot; np \rightarrow val = p \rightarrow val + 1;
        for (; p \&\& !p -> next[c]; p = p -> fa) p -> next[c] = np;
        if (!p) np -> fa = rt[id];
10
        else
11
12
              SAM *q = p \rightarrow next[c];
13
              if (q \rightarrow val == p \rightarrow val + 1) np \rightarrow fa = q;
14
15
              else
16
17
                   SAM *nq = ++tot;
                   memcpy(nq -> next, q -> next, sizeof nq -> next);
18
                   nq \rightarrow val = p \rightarrow val + 1;
19
                   nq \rightarrow fa = q \rightarrow fa;
20
                   q \rightarrow fa = np \rightarrow fa = nq;
21
                   for (; p \&\& p \rightarrow next[c] == q; p = p \rightarrow fa) p \rightarrow next[c] = nq;
22
              }
23
        }
24
```

```
struct sam {
        sam *next[26], *fa;
2
        int val;
   } mem[maxn << 1], *tot = mem;</pre>
   inline sam *extend(R sam *p, R int c)
6
        if (p -> next[c])
              R sam *q = p \rightarrow next[c];
              if (q \rightarrow val == p \rightarrow val + 1)
10
                   return q;
11
              else
12
              {
13
                   R sam *nq = ++tot;
14
                   memcpy(nq -> next, q -> next, sizeof nq -> next);
15
                   nq \rightarrow val = p \rightarrow val + 1;
16
                   nq \rightarrow fa = q \rightarrow fa;
17
                   q \rightarrow fa = nq;
18
                   for ( ; p \&\& p \rightarrow next[c] == q; p = p \rightarrow fa)
19
                        p -> next[c] = nq;
20
21
                   return nq;
             }
22
23
        R sam *np = ++tot;
24
        np \rightarrow val = p \rightarrow val + 1;
```

36 CHAPTER 4. STRING

```
for ( ; p \&\& !p \rightarrow next[c]; p = p \rightarrow fa) p \rightarrow next[c] = np;
         if (!p)
27
              np \rightarrow fa = mem;
28
         else
29
         {
30
               R \text{ sam } *q = p \rightarrow next[c];
31
               if (q \rightarrow val == p \rightarrow val + 1)
32
                    np \rightarrow fa = q;
33
               else
34
               {
35
                    R sam *nq = ++tot;
36
                    memcpy(nq -> next, q -> next, sizeof nq -> next);
37
                    nq \rightarrow val = p \rightarrow val + 1;
38
                    nq \rightarrow fa = q \rightarrow fa;
39
                    q \rightarrow fa = np \rightarrow fa = nq;
40
                    for (; p && p -> next[c] == q; p = p -> fa)
41
                          p -> next[c] = nq;
42
              }
43
         }
44
         return np;
45
```

4.4 后缀数组 (ct)

```
char s[maxn];
1 int sa[maxn], rank[maxn], wa[maxn], wb[maxn], cnt[maxn], height[maxn];
3 inline void build(int n, int m)
       int *x = wa, *y = wb, *t;
       for (int i = 1; i <= n; ++i) cnt[x[i] = s[i] - 'a' + 1]++;
       for (int i = 1; i <= m; ++i) cnt[i] += cnt[i - 1];
       for (int i = n; i; --i) sa[cnt[x[i]]--] = i;
       for (int j = 1; j < n \mid \mid (j == 1 \&\& m < n); j <<= 1, t = x, x = y, y = t)
9
10
           memset(cnt + 1, 0, m << 2);
11
           int p = 0;
12
           for (int i = n - j + 1; i \le n; ++i) y[++p] = i;
13
           for (int i = 1; i <= n; ++i)
14
15
               ++cnt[x[i]];
16
               sa[i] > j ? y[++p] = sa[i] - j : 0;
17
18
           for (int i = 1; i <= m; ++i) cnt[i] += cnt[i - 1];
19
           for (int i = n; i; --i) sa[cnt[x[y[i]]]--] = y[i];
20
                   m = 0;
21
           for (int i = 1; i <= n; ++i)
22
               y[sa[i]] = (i == 1 \mid | x[sa[i]] != x[sa[i-1]] \mid | x[sa[i-1] + j] != x[sa[i] + j])?
23
                 \hookrightarrow ++m : m;
24
       for (int i = 1; i <= n; ++i) rank[sa[i]] = i;
       for (int i = 1, j, k = 0; i <= n; height[rank[i++]] = k)
           for (k ? --k : 0, j = sa[rank[i] - 1]; s[i + k] == s[j + k]; ++k);
27
28
```

4.5. 后缀自动机 37

4.5 后缀自动机

4.6 Manacher (ct)

```
char str[maxn];
   int p1[maxn], p2[maxn], n;
   void manacher1()
       int mx = 0, id;
       for(int i = 1; i <= n; ++i)</pre>
           if (mx \ge i) p1[i] = dmin(mx - i, p1[(id << 1) - i]);
           else p1[i] = 1;
9
           for (; str[i + p1[i]] == str[i - p1[i]]; ++p1[i]);
10
           if (p1[i] + i - 1 > mx) id = i, mx = p1[i] + i - 1;
11
12
  }
13
  void manacher2()
14
16
       int mx = 0, id;
17
       for(int i = 1; i <= n; i++)</pre>
18
           if (mx \ge i) p2[i] = dmin(mx - i, p2[(id << 1) - i]);
19
           else p2[i] = 0;
20
           for (; str[i + p2[i] + 1] == str[i - p2[i]]; ++p2[i]);
21
           if (p2[i] + i > mx) id = i, mx = p2[i] + i;
22
23
24
25
   int main()
26
       scanf("%s", str + 1);
27
       n = strlen(str + 1);
28
       str[0] = '#';
29
       str[n + 1] = '$';
30
       manacher1();
31
       manacher2();
32
       return 0;
33
34
```

4.7 回文自动机 (ct)

```
char str[maxn];
  int next[maxn][26], fail[maxn], len[maxn], cnt[maxn], last, tot, n;
  inline int new_node(int 1)
       len[++tot] = 1;
       return tot;
6
   inline void init()
9
10
       tot = -1;
11
       new_node(0);
       new_node(-1);
12
       str[0] = -1;
13
       fail[0] = 1;
14
15 }
inline int get_fail(int x)
17 {
```

38 CHAPTER 4. STRING

```
while (str[n - len[x] - 1] != str[n]) x = fail[x];
       return x;
19
20 }
21 inline void extend(int c)
22 | {
       ++n;
23
       int cur = get_fail(last);
24
       if (!next[cur][c])
25
26
           int now = new_node(len[cur] + 2);
27
           fail[now] = next[get_fail(fail[cur])][c];
28
           next[cur][c] = now;
29
30
       last = next[cur][c];
31
       ++cnt[last];
^{32}
33 }
34 long long ans;
35 inline void count()
36
       for (int i = tot; i; --i)
37
           cnt[fail[i]] += cnt[i];
39
           cmax(ans, 111 * len[i] * cnt[i]);
40
41
42 | }
  int main()
43
   {
44
       scanf("%s", str + 1);
45
       init();
46
47
       for (int i = 1; str[i]; ++i)
48
           extend(str[i] - 'a');
49
       count();
       printf("%lld\n", ans );
50
       return 0;
51
52 | }
```

4.8 最小表示法 (ct)

```
1 int main()
2 | {
       int i = 0, j = 1, k = 0;
       while (i < n \&\& j < n \&\& k < n)
5
           int tmp = a[(i + k) \% n] - a[(j + k) \% n];
6
           if (!tmp) k++;
           else
                if (tmp > 0) i += k + 1;
10
                else j += k + 1;
11
                if (i == j) ++j;
12
                k = 0;
13
           }
14
15
       j = dmin(i, j);
16
       for (int i = j; i < n; ++i) printf("%d ", a[i]);</pre>
17
       for (int i = 0; i < j - 1; ++i) printf("%d ", a[i]);
18
       if (j > 0) printf("%d\n", a[j - 1]);
19
       return 0;
20
^{21}
```

Chapter 5

Data Structure

5.1 莫队 (ct)

```
int size;
   struct Query {
       int 1, r, id;
       inline bool operator < (const Queuy &that) const {return 1 / size != that.1 / size ? 1 < that.1
         \hookrightarrow: ((1 / size) & 1 ? r < that.r : r > that.r);}
  \} q[maxn];
  int main()
6
       size = (int) sqrt(n * 1.0);
       std::sort(q + 1, q + m + 1);
       int 1 = 1, r = 0;
10
       for (int i = 1; i <= m; ++i)
           for (; r < q[i].r; ) add(++r);
14
           for (; r > q[i].r; ) del(r--);
           for (; 1 < q[i].1; ) del(1++);
15
           for (; 1 > q[i].1; ) add(--1);
16
17
               write your code here.
18
19
20
       return 0;
21
```

5.2 ST 表 (ct)

```
int a[maxn], f[20][maxn], n;
int Log[maxn];

void build()
{
    for (int i = 1; i <= n; ++i) f[0][i] = a[i];

    int lim = Log[n];
    for (int j = 1; j <= lim; ++j)
    {
        int *fj = f[j], *fj1 = f[j - 1];
        for (int i = 1; i <= n - (1 << j) + 1; ++i)
        fj[i] = dmax(fj1[i], fj1[i + (1 << (j - 1))]);
}
</pre>
```

```
14 int Query(int 1, int r)
15 {
       int k = Log[r - 1 + 1];
16
       return dmax(f[k][1], f[k][r - (1 << k) + 1]);
17
  ١}
18
  int main()
19
   {
20
       scanf("%d", &n);
21
       Log[0] = -1;
22
       for (int i = 1; i <= n; ++i)
23
24
           scanf("%d", &a[i]);
25
           Log[i] = Log[i >> 1] + 1;
26
       }
27
       build();
28
       int q;
29
       scanf("%d", &q);
30
       for (; q; --q)
31
32
           int 1, r; scanf("%d%d", &1, &r);
33
           printf("%d\n", Query(1, r));
35
36
```

5.3 带权并查集 (ct)

```
struct edge
2
   {
       int a, b, w;
       inline bool operator < (const edge &that) const {return w > that.w;}
  int fa[maxn], f1[maxn], f2[maxn], f1cnt, f2cnt, val[maxn], size[maxn];
7 int main()
       int n, m; scanf("%d%d", &n, &m);
       for (int i = 1; i <= m; ++i)
10
           scanf("%d%d%d", &e[i].a, &e[i].b, &e[i].w);
11
       for (int i = 1; i <= n; ++i) size[i] = 1;
12
       std::sort(e + 1, e + m + 1);
13
       for (int i = 1; i <= m; ++i)
14
       {
           int x = e[i].a, y = e[i].b;
16
           for (; fa[x]; x = fa[x]);
17
           for (; fa[y]; y = fa[y]);
18
           if (x != y)
19
20
               if (size[x] < size[y]) std::swap(x, y);</pre>
21
               size[x] += size[y];
22
               val[y] = e[i].w;
23
               fa[y] = x;
24
           }
25
       }
26
       int q; scanf("%d", &q);
27
       for (; q; --q)
28
29
           int a, b; scanf("%d%d", &a, &b); f1cnt = f2cnt = 0;
30
           for (; fa[a]; a = fa[a]) f1[++f1cnt] = a;
31
           for (; fa[b]; b = fa[b]) f2[++f2cnt] = b;
32
```

5.4. 可并堆 (CT) 41

```
if (a != b) {puts("-1"); continue;}
33
           while (f1cnt && f2cnt && f1[f1cnt] == f2[f2cnt]) --f1cnt, --f2cnt;
34
           int ret = 0x7fffffff;
35
           for (; f1cnt; --f1cnt) cmin(ret, val[f1[f1cnt]]);
36
           for (; f2cnt; --f2cnt) cmin(ret, val[f2[f2cnt]]);
37
           printf("%d\n", ret);
38
39
       return 0;
40
41
```

5.4 可并堆 (ct)

```
struct Node {
       Node *ch[2];
       11 val; int size;
       inline void update()
5
            size = ch[0] \rightarrow size + ch[1] \rightarrow size + 1;
6
   } mem[maxn], *rt[maxn];
9
  Node *merge(Node *a, Node *b)
10
       if (a == mem) return b;
11
       if (b == mem) return a;
12
       if (a -> val < b -> val) std::swap(a, b);
13
       // a -> pushdown();
14
       std::swap(a -> ch[0], a -> ch[1]);
15
       a -> ch[1] = merge(a -> ch[1], b);
16
       a -> update();
17
       return a;
```

5.5 zkw 线段树 (ct)

```
// must be O-based !
  inline void build()
2
  {
3
      for (int i = M - 1; i; --i) tr[i] = dmax(tr[i << 1], tr[i << 1 | 1]);
  }
  inline void Change(int x, int v)
7
  {
      x += M; tr[x] = v; x >>= 1;
      for (; x; x >>= 1) tr[x] = dmax(tr[x << 1], tr[x << 1 | 1]);
9
10
  inline int Query(int s, int t)
11
12
      int ret = -0x7fffffff;
13
      for (s = s + M - 1, t = t + M + 1; s ^ t ^ 1; s >>= 1, t >>= 1)
14
15
          if (~s & 1) cmax(ret, tr[s ^ 1]);
16
          17
18
      return ret;
19
  1 }
20
  int main()
21
22 {
      int n; scanf("%d", &n);
23
      for (M = 1; M < n; M <<= 1);
```

```
for (int i = 0; i < n; ++i)
25
           scanf("%d", &tr[i + M]);
26
       for (int i = n; i < M; ++i) tr[i + M] = -0x7ffffffff;</pre>
27
       build();
28
       int q; scanf("d", &q);
29
       for (; q; --q)
30
31
           int 1, r; scanf("%d%d", &1, &r); --1, --r;
32
33
           printf("%d\n", Query(1, r));
34
35
       return 0;
36
```

5.6 Splay (ct)

指针版

```
struct Node *null;
   struct Node {
       Node *ch[2], *fa;
       int val; bool rev;
       inline bool type()
           return fa -> ch[1] == this;
       }
       inline void pushup()
       {
10
11
       inline void pushdown()
12
13
14
            if (rev)
15
                ch[0] -> rev ^= 1;
16
                ch[1] -> rev ^= 1;
17
                std::swap(ch[0], ch[1]);
18
                rev ^= 1;
19
            }
20
21
       inline void rotate()
22
23
            bool d = type(); Node *f = fa, *gf = f -> fa;
24
            (fa = gf, f \rightarrow fa != null) ? fa \rightarrow ch[f \rightarrow type()] = this : 0;
25
            (f \rightarrow ch[d] = ch[!d]) != null ? ch[!d] \rightarrow fa = f : 0;
26
            (ch[!d] = f) -> fa = this;
27
            f -> pushup();
28
29
       inline void splay()
30
31
            for (; fa != null; rotate())
32
                if (fa -> fa != null)
33
                     (type() == fa -> type() ? fa : this) -> rotate();
34
            pushup();
       }
   } mem[maxn];
```

5.6. SPLAY (CT) 43

数组版

```
// BZOJ - 1500 维修数列
int fa[maxn], ch[maxn][2], a[maxn], size[maxn], cnt;
  int sum[maxn], lmx[maxn], rmx[maxn], mx[maxn], v[maxn], id[maxn], root;
  bool rev[maxn], tag[maxn];
  inline void update(R int x)
6
       R \text{ int } ls = ch[x][0], rs = ch[x][1];
7
       size[x] = size[ls] + size[rs] + 1;
       sum[x] = sum[ls] + sum[rs] + v[x];
9
10
       mx[x] = gmax(mx[ls], mx[rs]);
11
       cmax(mx[x], lmx[rs] + rmx[ls] + v[x]);
       lmx[x] = gmax(lmx[ls], sum[ls] + v[x] + lmx[rs]);
12
       rmx[x] = gmax(rmx[rs], sum[rs] + v[x] + rmx[ls]);
13
14
  inline void pushdown(R int x)
15
16
       R \text{ int } ls = ch[x][0], rs = ch[x][1];
17
       if (tag[x])
18
19
           rev[x] = tag[x] = 0;
           if (ls) tag[ls] = 1, v[ls] = v[x], sum[ls] = size[ls] * v[x];
21
22
           if (rs) tag[rs] = 1, v[rs] = v[x], sum[rs] = size[rs] * v[x];
           if (v[x] >= 0)
23
24
           {
               if (ls) lmx[ls] = rmx[ls] = mx[ls] = sum[ls];
25
               if (rs) lmx[rs] = rmx[rs] = mx[rs] = sum[rs];
26
           }
27
           else
28
29
               if (ls) lmx[ls] = rmx[ls] = 0, mx[ls] = v[x];
30
               if (rs) lmx[rs] = rmx[rs] = 0, mx[rs] = v[x];
31
           }
32
33
       if (rev[x])
34
35
           rev[x] ^= 1; rev[ls] ^= 1; rev[rs] ^= 1;
36
           swap(lmx[ls], rmx[ls]);swap(lmx[rs], rmx[rs]);
37
           swap(ch[ls][0], ch[ls][1]); swap(ch[rs][0], ch[rs][1]);
38
39
40
   inline void rotate(R int x)
42
       R int f = fa[x], gf = fa[f], d = ch[f][1] == x;
43
       if (f == root) root = x;
44
       (ch[f][d] = ch[x][d ^ 1]) > 0 ? fa[ch[f][d]] = f : 0;
45
       (fa[x] = gf) > 0 ? ch[gf][ch[gf][1] == f] = x : 0;
46
       fa[ch[x][d ^1] = f] = x;
47
       update(f);
48
49
   inline void splay(R int x, R int rt)
50
51
       while (fa[x] != rt)
52
53
           R int f = fa[x], gf = fa[f];
54
           if (gf != rt) rotate((ch[gf][1] == f) ^ (ch[f][1] == x) ? x : f);
55
           rotate(x);
56
57
       update(x);
58
59 }
```

```
60 void build(R int 1, R int r, R int rt)
61 {
        if (1 > r) return;
62
        R int mid = 1 + r >> 1, now = id[mid], last = id[rt];
63
        if (1 == r)
64
65
            sum[now] = a[1];
66
            size[now] = 1;
67
            tag[now] = rev[now] = 0;
68
            if (a[1] >= 0) lmx[now] = rmx[now] = mx[now] = a[1];
 69
            else lmx[now] = rmx[now] = 0, mx[now] = a[1];
 70
        }
71
        else
72
        {
73
            build(1, mid - 1, mid);
74
            build(mid + 1, r, mid);
75
76
        v[now] = a[mid];
77
        fa[now] = last;
 78
        update(now);
        ch[last][mid >= rt] = now;
 81
   int find(R int x, R int rank)
82
 83
        if (tag[x] || rev[x]) pushdown(x);
 84
        R int ls = ch[x][0], rs = ch[x][1], lsize = size[ls];
 85
        if (lsize + 1 == rank) return x;
 86
        if (lsize >= rank)
 87
            return find(ls, rank);
 88
 89
        else
90
            return find(rs, rank - lsize - 1);
91
   inline int prepare(R int 1, R int tot)
 92
93
        R int x = find(root, 1 - 1), y = find(root, 1 + tot);
94
        splay(x, 0);
95
        splay(y, x);
96
        return ch[y][0];
97
98
   std::queue <int> q;
   inline void Insert(R int left, R int tot)
100
101 {
102
        for (R int i = 1; i <= tot; ++i ) a[i] = FastIn();</pre>
        for (R int i = 1; i <= tot; ++i )</pre>
103
            if (!q.empty()) id[i] = q.front(), q.pop();
104
            else id[i] = ++cnt;
105
        build(1, tot, 0);
106
        R int z = id[(1 + tot) >> 1];
107
        R int x = find(root, left), y = find(root, left + 1);
108
        splay(x, 0);
109
110
        splay(y, x);
        fa[z] = y;
111
        ch[y][0] = z;
112
113
        update(y);
        update(x);
114
115 }
void rec(R int x)
117 {
        if (!x) return;
118
        R \text{ int } ls = ch[x][0], rs = ch[x][1];
119
        rec(ls); rec(rs); q.push(x);
```

5.6. SPLAY (CT) 45

```
fa[x] = ch[x][0] = ch[x][1] = 0;
121
        tag[x] = rev[x] = 0;
^{122}
   ١}
123
   inline void Delete(R int 1, R int tot)
124
   ł
125
        R int x = prepare(1, tot), f = fa[x];
126
        rec(x); ch[f][0] = 0;
127
        update(f); update(fa[f]);
128
129
   inline void Makesame(R int 1, R int tot, R int val)
130
131
        R int x = prepare(1, tot), y = fa[x];
132
        v[x] = val; tag[x] = 1; sum[x] = size[x] * val;
133
        if (val >= 0) lmx[x] = rmx[x] = mx[x] = sum[x];
134
        else lmx[x] = rmx[x] = 0, mx[x] = val;
135
        update(y); update(fa[y]);
136
137
   inline void Reverse(R int 1, R int tot)
138
139
        R int x = prepare(1, tot), y = fa[x];
140
        if (!tag[x])
141
142
            rev[x] ^= 1;
143
            swap(ch[x][0], ch[x][1]);
144
            swap(lmx[x], rmx[x]);
145
            update(y); update(fa[y]);
146
147
148
   inline void Query(R int 1, R int tot)
149
150
151
        R int x = prepare(1, tot);
152
        printf("%d\n",sum[x]);
153
   #define inf ((1 << 30))
154
   int main()
155
156
        R int n = FastIn(), m = FastIn(), 1, tot, val;
157
        R char op, op2;
158
        mx[0] = a[1] = a[n + 2] = -inf;
159
        for (R int i = 2; i <= n + 1; i++ )
160
        {
161
            a[i] = FastIn();
162
163
        }
164
        for (R int i = 1; i \le n + 2; ++i) id[i] = i;
        n += 2; cnt = n; root = (n + 1) >> 1;
165
        build(1, n, 0);
166
        for (R int i = 1; i <= m; i++ )
167
        {
168
            op = getc();
169
            while (op < 'A' \mid \mid op > 'Z') op = getc();
170
            getc(); op2 = getc();getc();getc();getc();
171
            if (op == 'M' && op2 == 'X')
172
173
                printf("%d\n",mx[root] );
174
            }
175
            else
176
            {
177
                1 = FastIn() + 1; tot = FastIn();
178
                if (op == 'I') Insert(1, tot);
179
                if (op == 'D') Delete(1, tot);
180
                if (op == 'M') val = FastIn(), Makesame(1, tot, val);
181
```

5.7 Treap (ct)

```
struct Treap {
       Treap *ls, *rs;
2
       int size;
       bool rev;
       inline void update()
           size = ls -> size + rs -> size + 1;
       }
       inline void set_rev()
10
           rev ^= 1;
11
           std::swap(ls, rs);
12
       }
13
       inline void pushdown()
14
15
           if (rev)
16
17
               ls -> set_rev();
18
                rs -> set_rev();
19
20
                rev = 0;
           }
21
       }
22
  } mem[maxn], *root, *null = mem;
23
   struct Pair {
24
       Treap *fir, *sec;
25
26 };
27 Treap *build(R int 1, R int r)
28 {
       if (1 > r) return null;
29
       R int mid = 1 + r >> 1;
       R Treap *now = mem + mid;
       now \rightarrow rev = 0;
       now -> ls = build(1, mid - 1);
33
       now -> rs = build(mid + 1, r);
34
       now -> update();
35
       return now;
36
37
  inline Treap *Find_kth(R Treap *now, R int k)
38
39
40
       if (!k) return mem;
       if (now -> ls -> size >= k) return Find_kth(now -> ls, k);
41
       else if (now \rightarrow ls \rightarrow size + 1 == k) return now;
42
       else return Find_kth(now -> rs, k - now -> ls -> size - 1);
43
44 | }
45 Treap *merge(R Treap *a, R Treap *b)
46 {
       if (a == null) return b;
```

5.8. 可持久化平衡树 (CT)

```
if (b == null) return a;
48
       if (rand() % (a -> size + b -> size) < a -> size)
49
50
            a -> pushdown();
51
            a -> rs = merge(a -> rs, b);
52
            a -> update();
53
            return a;
54
       }
55
       else
56
57
            b -> pushdown();
58
            b -> ls = merge(a, b -> ls);
59
            b -> update();
60
            return b;
61
       }
62
63
  Pair split(R Treap *now, R int k)
64
65
       if (now == null) return (Pair) {null, null};
66
       R Pair t = (Pair) {null, null};
67
       now -> pushdown();
68
       if (k \le now \rightarrow ls \rightarrow size)
69
70
       {
            t = split(now -> ls, k);
71
            now -> ls = t.sec;
72
            now -> update();
73
            t.sec = now;
74
       }
75
       else
76
77
            t = split(now \rightarrow rs, k - now \rightarrow ls \rightarrow size - 1);
78
79
            now -> rs = t.fir;
            now -> update();
80
            t.fir = now;
81
82
       return t;
83
84
   inline void set_rev(int 1, int r)
85
86
       R Pair x = split(root, 1 - 1);
87
       R Pair y = split(x.sec, r - 1 + 1);
88
       y.fir -> set_rev();
89
90
       root = merge(x.fir, merge(y.fir, y.sec));
91
```

5.8 可持久化平衡树 (ct)

```
char str[maxn];
struct Treap
{
    Treap *ls, *rs;
    char data; int size;
    inline void update()
    {
        size = ls -> size + rs -> size + 1;
    }
} *root[maxn], mem[maxcnt], *tot = mem, *last = mem, *null = mem;
inline Treap* new_node(char ch)
{
```

```
*++tot = (Treap) {null, null, ch, 1};
       return tot;
15 }
16 struct Pair
17 | {
       Treap *fir, *sec;
18
19 };
20 inline Treap *copy(Treap *x)
21
       if (x == null) return null;
22
       if(x > last) return x;
23
       *++tot = *x;
24
       return tot;
25
26
Pair Split(Treap *x, int k)
28 | {
       if (x == null) return (Pair) {null, null};
29
30
       Pair y;
       Treap *nw = copy(x);
31
       if (nw \rightarrow ls \rightarrow size >= k)
           y = Split(nw -> ls, k);
34
           nw -> ls = y.sec;
35
           nw -> update();
36
           y.sec = nw;
37
       }
38
       else
39
       {
40
41
           y = Split(nw \rightarrow rs, k - nw \rightarrow ls \rightarrow size - 1);
42
           nw -> rs = y.fir;
           nw -> update();
43
44
           y.fir = nw;
45
       return y;
46
47 | }
Treap *Merge(Treap *a, Treap *b)
49
       if (a == null) return b;
50
       if (b == null) return a;
51
       Treap *nw;
52
       if (rand() \% (a -> size + b -> size) < a -> size)
53
55
           nw = copy(a);
           nw -> rs = Merge(nw -> rs, b);
56
       }
57
       else
58
       {
59
           nw = copy(b);
60
           nw -> ls = Merge(a, nw -> ls);
61
62
       nw -> update();
63
64
       return nw;
65
  Treap *Build(int 1, int r)
66
67
       if (1 > r) return null;
68
       R \text{ int } mid = 1 + r >> 1;
69
       Treap *nw = new_node(str[mid]);
70
       nw -> ls = Build(1, mid - 1);
71
       nw -> rs = Build(mid + 1, r);
72
       nw -> update();
```

```
74
        return nw;
<sub>75</sub> }
76 int now;
inline void Insert(int k, char ch)
78
        Pair x = Split(root[now], k);
79
        Treap *nw = new_node(ch);
80
        root[++now] = Merge(Merge(x.fir, nw), x.sec);
81
82
    inline void Del(int 1, int r)
83
84
        Pair x = Split(root[now], 1 - 1);
85
        Pair y = Split(x.sec, r - 1 + 1);
86
        root[++now] = Merge(x.fir, y.sec);
87
88
   inline void Copy(int 1, int r, int 11)
89
90
        Pair x = Split(root[now], 1 - 1);
91
        Pair y = Split(x.sec, r - 1 + 1);
92
        Pair z = Split(root[now], 11);
93
        Treap *ans = y.fir;
        root[++now] = Merge(Merge(z.fir, ans), z.sec);
95
   }
96
   void Print(Treap *x, int 1, int r)
97
98
        if (!x) return;
99
        if (1 > r) return;
100
        R int mid = x \rightarrow ls \rightarrow size + 1;
101
        if (r < mid)</pre>
102
103
            Print(x -> ls, l, r);
104
105
            return ;
        }
106
        if (1 > mid)
107
        {
108
            Print(x -> rs, 1 - mid, r - mid);
109
            return ;
110
111
        Print(x -> ls, l, mid - 1);
112
        printf("%c", x -> data );
113
        Print(x -> rs, 1, r - mid);
114
115 }
116
   void Printtree(Treap *x)
117 {
118
        if (!x) return;
        Printtree(x -> ls);
119
        printf("%c", x \rightarrow data);
120
        Printtree(x -> rs);
121
122
   int main()
123
124
        srand(time(0) + clock());
^{125}
        null -> ls = null -> rs = null; null -> size = 0; null -> data = 0;
126
        int n = F();
127
        gets(str + 1);
128
        int len = strlen(str + 1);
129
        root[0] = Build(1, len);
130
        while (1)
131
        {
132
            last = tot;
133
            R char opt = getc();
134
```

```
while (opt < 'A' \mid \mid opt > 'Z')
135
136
                  if (opt == EOF) return 0;
137
                 opt = getc();
138
             }
139
             if (opt == 'I')
140
141
                 R int x = F();
142
                 R char ch = getc();
143
                 Insert(x, ch);
144
             }
145
             else if (opt == 'D')
146
147
                 R int 1 = F(), r = F();
148
                 Del(1, r);
149
150
             else if (opt == 'C')
151
152
                 R \text{ int } x = F(), y = F(), z = F();
153
                 Copy(x, y, z);
154
             }
155
             else if (opt == 'P')
157
                 R int x = F(), y = F(), z = F();
158
                 Print(root[now - x], y, z);
159
                 puts("");
160
161
162
        return 0;
163
164
```

5.9 CDQ 分治 (ct)

```
struct event
2 {
      int x, y, id, opt, ans;
  } t[maxn], q[maxn];
5 void cdq(int left, int right)
  {
      if (left == right) return ;
      R int mid = left + right >> 1;
      cdq(left, mid);
10
      cdq(mid + 1, right);
      //分成若干个子问题
11
      ++now;
12
      for (int i = left, j = mid + 1; j <= right; ++j)
13
14
          for (; i <= mid && q[i].x <= q[j].x; ++i)
15
              if (!q[i].opt)
16
                  add(q[i].y, q[i].ans);
17
           //考虑前面的修改操作对后面的询问的影响
18
          if (q[j].opt)
19
20
              q[j].ans += query(q[j].y);
      }
21
      R int i, j, k = 0;
22
      //以下相当于归并排序
23
      for (i = left, j = mid + 1; i <= mid \&\& j <= right; )
24
25
          if (q[i].x \le q[j].x)
26
```

5.10. BITSET (CT) 51

```
t[k++] = q[i++];
27
            else
28
                 t[k++] = q[j++];
29
30
       for (; i <= mid; )</pre>
31
            t[k++] = q[i++];
32
       for (; j <= right; )</pre>
33
            t[k++] = q[j++];
34
       for (int i = 0; i < k; ++i)
35
            q[left + i] = t[i];
36
37
```

5.10 Bitset (ct)

```
namespace Game {
2 #define maxn 300010
3 #define maxs 30010
4 uint b1[32][maxs], b2[32][maxs];
5 int popcnt[256];
6 inline void set(R uint *s, R int pos)
       s[pos >> 5] = 1u << (pos & 31);
  }
9
  inline int popcount(R uint x)
10
11
       \texttt{return popcnt[x >> 24 \& 255]}
12
            + popcnt[x >> 16 & 255]
13
            + popcnt[x >> 8 & 255]
14
            + popcnt[x
                           & 255];
15
16
   void main() {
17
       int n, q;
18
       scanf("%d%d", &n, &q);
19
       char *s1 = new char[n + 1];
20
       char *s2 = new char[n + 1];
21
       scanf("%s%s", s1, s2);
22
       uint *anss = new uint[q];
23
       for (R int i = 1; i < 256; ++i) popcnt[i] = popcnt[i >> 1] + (i & 1);
       #define modify(x, _p)\
25
26
           for (R int j = 0; j < 32 & j <= p; ++j)
27
               set(b##x[j], p - j); \
28
29
       for (R int i = 0; i < n; ++i)
30
           if (s1[i] == '0') modify(1, 3 * i)
31
           else if (s1[i] == '1') modify(1, 3 * i + 1)
32
           else modify(1, 3 * i + 2)
33
       for (R int i = 0; i < n; ++i)
34
           if (s2[i] == '1') modify(2, 3 * i)
35
           else if (s2[i] == '2') modify(2, 3 * i + 1)
36
           else modify(2, 3 * i + 2)
37
       for (int Q = 0; Q < q; ++Q) {
38
           R int x, y, 1;
39
```

```
scanf("%d%d%d", &x, &y, &1); x *= 3; y *= 3; 1 *= 3;
           uint *f1 = b1[x \& 31], *f2 = b2[y \& 31], ans = 0;
41
           R int i = x >> 5, j = y >> 5, p, lim;
42
           for (p = 0, lim = 1 >> 5; p + 8 < lim; p += 8, i += 8, j += 8)
43
44
               ans += popcount(f1[i + 0] & f2[j + 0]);
45
               ans += popcount(f1[i + 1] & f2[j + 1]);
46
               ans += popcount(f1[i + 2] & f2[j + 2]);
47
               ans += popcount(f1[i + 3] & f2[j + 3]);
48
               ans += popcount(f1[i + 4] & f2[j + 4]);
49
               ans += popcount(f1[i + 5] & f2[j + 5]);
50
               ans += popcount(f1[i + 6] & f2[j + 6]);
51
               ans += popcount(f1[i + 7] & f2[j + 7]);
52
53
           for (; p < lim; ++p, ++i, ++j) ans += popcount(f1[i] & f2[j]);
54
           R uint S = (1u << (1 & 31)) - 1;
55
           ans += popcount(f1[i] & f2[j] & S);
56
           anss[Q] = ans;
57
       }
58
       output_arr(anss, q * sizeof(uint));
59
60
  }
61
```

Chapter 6

Others

6.1 vimrc (gy)

```
se et ts=4 sw=4 sts=4 nu sc sm lbr is hls mouse=a
  sy on
  ino <tab> <c-n>
  ino <s-tab> <tab>
  au bufwinenter * winc L
  nm <f6> ggVG"+y
  nm <f7> :w<cr>:make<cr>
  nm <f8> :!@<cr>
  nm <f9> :!@ < in<cr>
  nm <s-f9> :!(time @ < in &> out) &>> out<cr>:sp out<cr>
  au filetype cpp cm @ ./a.out | se cin fdm=syntax mp=g++\ %\ -std=c++11\ -Wall\ -Wextra\
    \hookrightarrow -Wconversion\ -02
12 map <c-p> :ha<cr>
  se pheader=%N@%F popt=number:y
  au filetype java cm @ java %< | se cin fdm=syntax mp=javac\ %
  au filetype python cm @ python % | se si fdm=indent
  au bufenter *.kt setf kotlin
  au filetype kotlin cm @ kotlin _%<Kt | se si mp=kotlinc\ %
```

6.2 STL 释放内存 (Durandal)

```
template <typename T>
   __inline void clear(T &container) {
     container.clear();
     T(container).swap(container);
}
```

6.3 开栈 (Durandal)

```
register char *_sp __asm__("rsp");
int main() {
    const int size = 400 << 20; // 400 MB
    static char *sys, *mine(new char[size] + size - 4096);
    sys = _sp; _sp = mine;
    _main(); // main method</pre>
```

54 CHAPTER 6. OTHERS

```
7    _sp = sys;
8    return 0;
9 }
```

6.4 O3 (gy)

```
__attribute__((optimize("-03"))) int main() { return 0; }
```

6.5 Java Template (gy)

```
import java.io.*;
  import java.math.*;
  import java.util.*;
  public class Template {
       // Input
5
       private static BufferedReader reader;
       private static StringTokenizer tokenizer;
       private static String next() {
           try {
10
               while (tokenizer == null || !tokenizer.hasMoreTokens())
                   tokenizer = new StringTokenizer(reader.readLine());
11
           } catch (IOException e) {
12
               // do nothing
13
14
           return tokenizer.nextToken();
15
16
       private static int nextInt() {
17
           return Integer.parseInt(next());
18
19
       private static double nextDouble() {
20
           return Double.parseDouble(next());
21
22
       private static BigInteger nextBigInteger() {
23
           return new BigInteger(next());
24
25
       public static void main(String[] args) {
26
           reader = new BufferedReader(new InputStreamReader(System.in));
27
           Scanner scanner = new Scanner(System.in);
           while (scanner.hasNext())
29
30
               scanner.next();
       }
31
       // BigInteger & BigDecimal
32
       private static void bigDecimal() {
33
           BigDecimal a = BigDecimal.valueOf(1.0);
34
           BigDecimal b = a.setScale(50, RoundingMode.HALF_EVEN);
35
           BigDecimal c = b.abs();
36
           // if scale omitted, b.scale is used
37
           BigDecimal d = c.divide(b, 50, RoundingMode.HALF_EVEN);
           // since Java 9
39
           BigDecimal e = d.sqrt(new MathContext(50, RoundingMode.HALF_EVEN));
40
           BigDecimal x = new BigDecimal(BigInteger.ZERO);
41
           BigInteger y = BigDecimal.ZERO.toBigInteger(); // RoundingMode.DOWN
42
           y = BigDecimal.ZERO.setScale(0, RoundingMode.HALF_EVEN).unscaledValue();
43
44
       // sqrt for Java 8
```

```
// can solve scale=100 for 10000 times in about 1 second
46
       private static BigDecimal sqrt(BigDecimal a, int scale) {
47
            if (a.compareTo(BigDecimal.ZERO) < 0)</pre>
48
                return BigDecimal.ZERO.setScale(scale, RoundingMode.HALF_EVEN);
49
            int length = a.precision() - a.scale();
50
            BigDecimal ret = new BigDecimal(BigInteger.ONE, -length / 2);
51
            for (int i = 1; i <= Integer.highestOneBit(scale) + 10; i++)</pre>
52
                ret = ret.add(a.divide(ret, scale,
53
                  → RoundingMode.HALF_EVEN)).divide(BigDecimal.valueOf(2), scale,
                  → RoundingMode.HALF_EVEN);
            return ret;
54
55
       // can solve a=2^10000 for 100000 times in about 1 second
56
       private static BigInteger sqrt(BigInteger a) {
57
            int length = a.bitLength() - 1;
58
            BigInteger 1 = BigInteger.ZERO.setBit(length / 2), r = BigInteger.ZERO.setBit(length / 2);
59
            while (!1.equals(r)) {
60
                BigInteger m = 1.add(r).shiftRight(1);
61
                if (m.multiply(m).compareTo(a) < 0)</pre>
62
                    1 = m.add(BigInteger.ONE);
63
                else
64
                    r = m;
65
66
67
            return 1;
       }
68
       // Collections
69
       private static void arrayList() {
70
           List<Integer> list = new ArrayList<>();
71
72
            // Generic array is banned
73
            List[] lists = new List[100];
74
            lists[0] = new ArrayList<Integer>();
            // for List<Integer>, remove(Integer) stands for element, while remove(int) stands for
75
              \rightarrow index
            list.remove(list.get(1));
76
            list.remove(list.size() - 1);
77
            list.clear():
78
            Queue<Integer> queue = new LinkedList<>();
79
            // return the value without popping
80
            queue.peek();
81
            // pop and return the value
82
            queue.poll();
83
            Queue<Integer> priorityQueue = new PriorityQueue<>();
85
            Deque<Integer> deque = new ArrayDeque<>();
86
            deque.peekFirst();
87
            deque.peekLast();
            deque.pollFirst();
88
            TreeSet<Integer> set = new TreeSet<>();
89
            TreeSet<Integer> anotherSet = new TreeSet<>(Comparator.reverseOrder());
90
            set.ceiling(1);
91
            set.floor(1);
92
            set.lower(1);
93
            set.higher(1);
94
            set.contains(1);
95
            HashSet<Integer> hashSet = new HashSet<>();
96
            HashMap<String, Integer> map = new HashMap<>();
97
            map.put("", 1);
98
            map.get("");
99
            map.forEach((string, integer) -> System.out.println(string + integer));
100
            TreeMap<String, Integer> treeMap = new TreeMap<>();
101
            Arrays.sort(new int[10]);
102
```

56 CHAPTER 6. OTHERS

```
Arrays.sort(new Integer[10], (a, b) -> {
103
                if (a.equals(b)) return 0;
104
                if (a > b) return -1;
105
                return 1;
106
            });
107
            Arrays.sort(new Integer[10], Comparator.comparingInt((a) -> (int) a).reversed());
108
            long a = 1_000_000_000_000_000_000L;
109
            int b = Integer.MAX_VALUE;
110
            int c = 'a';
111
112
113
```

6.6 Big Fraction (gy)

```
fun gcd(a: Long, b: Long): Long = if (b == OL) a else gcd(b, a % b)
   class Fraction(val a: BigInteger, val b: BigInteger) {
       constructor(a: Long, b: Long) : this(BigInteger.valueOf(a / gcd(a, b)), BigInteger.valueOf(b /
         \hookrightarrow \gcd(a, b)))
       operator fun plus(o: Fraction): Fraction {
           var gcd = b.gcd(o.b)
           val tempProduct = (b / gcd) * (o.b / gcd)
           var ansA = a * (o.b / gcd) + o.a * (b / gcd)
           val gcd2 = ansA.gcd(gcd)
           ansA /= gcd2
           gcd /= gcd2
10
           return Fraction(ansA, gcd * tempProduct)
11
12
       operator fun minus(o: Fraction): Fraction {
14
           var gcd = b.gcd(o.b)
15
           val tempProduct = (b / gcd) * (o.b / gcd)
           var ansA = a * (o.b / gcd) - o.a * (b / gcd)
16
           val gcd2 = ansA.gcd(gcd)
17
           ansA /= gcd2
18
           gcd /= gcd2
19
           return Fraction(ansA, gcd * tempProduct)
20
21
       operator fun times(o: Fraction): Fraction {
22
           val gcd1 = a.gcd(o.b)
23
           val gcd2 = b.gcd(o.a)
24
           return Fraction((a / gcd1) * (o.a / gcd2), (b / gcd2) * (o.b / gcd1))
25
26
  }
27
```

6.7 模拟退火 (ct)

6.8. 三分 (CT) 57

```
10
       return maxx;
11 }
12 int main()
   {
13
       srand(time(NULL) + clock());
14
       db x = 0, fnow = f(x);
15
       fans = 1e30;
16
       for (db T = 1e4; T > 1e-4; T *= 0.997)
17
18
           db nx = x + randp() * T, fnext = f(nx);
19
           db delta = fnext - fnow;
20
           if (delta < 1e-9 || exp(-delta / T) > rand01())
21
22
                x = nx;
23
                fnow = fnext;
24
           }
25
26
27
       return 0;
28
```

6.8 三分 (ct)

```
inline db cubic_search()
{
    double 1 = -1e4, r = 1e4;
    for (int i = 1; i <= 100; ++i)
    {
        double ll = (l + r) * 0.5;
        double rr = (ll + r) * 0.5;
        if (check(ll) < check(rr)) r = rr;
        else l = ll;
    }
    return (l + r) * 0.5;
}</pre>
```

6.9 Zeller Congruence (gy)

```
int day_in_week(int year, int month, int day) {
   if (month == 1 || month == 2)
        month += 12, year--;
   int c = year / 100, y = year % 100, m = month, d = day;
   int ret = (y + y / 4 + c / 4 + 5 * c + 13 * (m + 1) / 5 + d + 6) % 7;
   return ret >= 0 ? ret : ret + 7;
}
```

6.10 博弈论模型 (gy)

• Wythoff's game

给定两堆石子,每次可以从任意一堆中取至少一个石子,或从两堆中取相同的至少一个石子,取走最后 石子的胜

```
先手胜当且仅当石子数满足:
```

```
先于加马丘伐马右了妖柄足。 \lfloor (b-a) \times \phi \rfloor = a, (a \leq b, \phi = \frac{\sqrt{5}+1}{2}) 先手胜对应的石子数构成两个序列: Lower Wythoff sequence: a_n = \lfloor n \times \phi \rfloor Upper Wythoff sequence: b_n = \lfloor n \times \phi^2 \rfloor
```

58 CHAPTER 6. OTHERS

• Fibonacci nim

给定一堆石子,第一次可以取至少一个、少于石子总数数量的石子,之后每次可以取至少一个、不超过 上次取石子数量两倍的石子,取走最后石子的胜 先手胜当且仅当石子数为斐波那契数

6.11 积分表 (integral-table.com)

$$\int x^0 dx = \frac{1}{1+x}x^{n+1}, \ n \neq -1$$

$$\int \frac{1}{x} dx = \ln |x|$$

$$\int \frac{1}{x} dx = \ln |x|$$

$$\int u dy = uy - \int v du$$

$$\int \frac{1}{(x+y)^2} dx = \frac{1}{x} \ln |x + b|$$

$$\int \frac{1}{(x+y)^2} dx = \frac{1}{x+1}$$

$$\int (x+y)^{n} dx = \frac{(x+y)^{n+1}}{n+1}, \ n \neq -1$$

$$\int x(x+y)^{n} dx = \frac{(x+y)^{n+1}}{n+1}, \ n \neq -1$$

$$\int x(x+y)^{n} dx = \frac{(x+y)^{n+1}}{n+1}, \ n \neq -1$$

$$\int x(x+y)^{n} dx = \frac{(x+y)^{n+1}}{n+1}, \ n \neq -1$$

$$\int x(x+y)^{n} dx = \frac{(x+y)^{n+1}}{n+1}, \ n \neq -1$$

$$\int x(x+y)^{n} dx = \frac{(x+y)^{n+1}}{n+1}, \ n \neq -1$$

$$\int x(x+y)^{n} dx = \frac{1}{x} \tan^{n-1} x$$

$$\int \frac{1}{(x+y)^{n}} dx = \frac{1}{2} \ln |x|^{2} + 2^{2}|$$

$$\int \frac{1}{(x+y)^{n}} dx = \frac{1}{2} \ln |x|^{2} + 2^{2}|$$

$$\int \frac{1}{(x+y)^{n}} dx = \frac{1}{2} \ln |x|^{2} + 2^{2}|$$

$$\int \frac{1}{(x+y)^{n}} dx = \frac{1}{2} \ln |x|^{2} + 2^{2}|$$

$$\int \frac{1}{(x+y)^{n}} dx = \frac{1}{2} \ln |x|^{2} + 2^{2}|$$

$$\int \frac{1}{(x+y)^{n}} dx = \frac{1}{2} \ln |x|^{2} + 2^{2}|$$

$$\int \frac{1}{(x+y)^{n}} dx = \frac{1}{2} \ln |x|^{2} + 2^{2}|$$

$$\int \frac{1}{(x+y)^{n}} dx = \frac{1}{2} \ln |x|^{2} + 2^{2}|$$

$$\int \frac{1}{(x+y)^{n}} dx = \frac{1}{2} \ln |x|^{2} + 2^{2}|$$

$$\int \frac{1}{(x+y)^{n}} dx = \frac{1}{2} \ln |x|^{2} + 2^{2}|$$

$$\int \frac{1}{(x+y)^{n}} dx = \frac{1}{2} \ln |x|^{2} + 2^{2}|$$

$$\int \frac{1}{(x+y)^{n}} dx = \frac{1}{2} \ln |x|^{2} + 2^{2}|$$

$$\int \frac{1}{(x+y)^{n}} dx = \frac{1}{2} \ln |x|^{2} + 2^{2}|$$

$$\int \frac{1}{(x+y)^{n}} dx = \frac{1}{2} \ln |x|^{2} + 2^{2}|$$

$$\int \frac{1}{(x+y)^{n}} dx = \frac{1}{2} (x-y)^{n}/2 + \frac{1}{2} (x-y)^{n}/2 + 2^{n}|$$

$$\int \frac{1}{\sqrt{x+y}^{n}} dx = \frac{1}{2} (x-y)^{n}/2 + \frac{1}{2} (x-y)^{n}/2 + 2^{n}|$$

$$\int \frac{1}{\sqrt{x+y}^{n}} dx = \frac{1}{2} (x-y)^{n}/2 + \frac{1}{2} (x-y)^{n}/2 + 2^{n}|$$

$$\int \frac{1}{\sqrt{x+y}^{n}} dx = \frac{1}{2} (x-y)^{n}/2 + \frac{1}{2} (x-y)^{n}/2 + 2^{n}|$$

$$\int \frac{1}{\sqrt{x+y}^{n}} dx = \frac{1}{2} (x-y)^{n}/2 + \frac{1}{2} (x-y)^{n}/2 + 2^{n}|$$

$$\int \frac{1}{\sqrt{x+y}^{n}} dx = \frac{1}{2} (x-y)^{n}/2 + \frac{1}{2} (x-y)^{n}/2 + 2^{n}|$$

$$\int \frac{1}{\sqrt{x+y}^{n}} dx = \frac{1}{2} (x-y)^{n}/2 + \frac{1}{2} (x-y)^{n}/2 + 2^{n}|$$

$$\int \frac{1}{\sqrt{x+y}^{n}} dx = \frac{1}{2} (x-y)^{n}/2 + \frac{1}{2} (x-y)^{n}/2 + 2^{n}|$$

$$\int \frac{1}{\sqrt{x+y}^{n}} dx = \frac{1}{2} (x-y)^{n}/2 + \frac{1}{2$$

$$\int \sin^3 ax \, dx = -\frac{3\cos ax}{4a} + \frac{\cos 3ax}{12a}$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax$$

$$\int \cos^2 ax \, dx = \frac{x}{2} + \frac{\sin 2ax}{4a}$$

$$\int \cos^3 ax dx = \frac{3\sin ax}{4a} + \frac{\sin 3ax}{12a}$$

$$\int \cos x \sin x \, dx = \frac{1}{2} \sin^2 x + c_1 = -\frac{1}{2} \cos^2 x + c_2 = -\frac{1}{4} \cos 2x + c_3$$

$$\int \cos ax \sin bx \, dx = \frac{\cos[(a-b)x]}{2(a-b)} - \frac{\cos[(a+b)x]}{2(a+b)}, \, a \neq b$$

$$\int \sin^2 ax \cos bx \, dx = -\frac{\sin[(2a-b)x]}{4(2a-b)} + \frac{\sin bx}{2b} - \frac{\sin[(2a+b)x]}{4(2a+b)}$$

$$\int \sin^2 x \cos x \, dx = \frac{1}{3} \sin^3 x$$

$$\int \cos^2 ax \sin bx \, dx = \frac{\cos[(2a-b)x]}{4(2a-b)} - \frac{\cos bx}{2b} - \frac{\cos[(2a+b)x]}{4(2a+b)}$$

$$\int \cos^2 ax \sin ax \, dx = -\frac{1}{3a} \cos^3 ax$$

$$\int \sin^2 ax \cos^2 bx dx = \frac{x}{4} - \frac{\sin 2ax}{8a} - \frac{\sin[2(a-b)x]}{16(a-b)} + \frac{\sin 2bx}{8b} - \frac{\sin[2(a+b)x]}{16(a+b)}$$

$$\int \sin^2 ax \cos^2 ax \, dx = \frac{x}{8} - \frac{\sin 4ax}{32a}$$

$$\int \tan ax \, dx = -\frac{1}{a} \ln \cos ax$$

$$\int \tan^2 ax \, dx = -x + \frac{1}{a} \tan ax$$

 $\int \tan^3 ax dx = \frac{1}{2} \ln \cos ax + \frac{1}{2} \sec^2 ax$

 $\int \sec x \ dx = \ln|\sec x + \tan x| = 2 \tanh^{-1} \left(\tan \frac{x}{2}\right)$

$$\int \sec^2 ax \ dx = \frac{1}{a} \tan ax$$

$$\int \sec^3 x \ dx = \frac{1}{2} \sec x \tan x + \frac{1}{2} \ln|\sec x + \tan x|$$

$$\int \sec^2 x \tan x \ dx = \sec x$$

$$\int \sec^2 x \tan x \ dx = \frac{1}{a} \sec^2 x$$

$$\int \sec^n x \tan x \ dx = \frac{1}{n} \sec^n x, n \neq 0$$

$$\int \csc x \ dx = \ln|\tan \frac{x}{2}| = \ln|\csc x - \cot x| + C$$

$$\int \csc^2 ax \ dx = -\frac{1}{a} \cot ax$$

$$\int \csc^3 x \ dx = -\frac{1}{2} \cot x \csc x + \frac{1}{2} \ln|\csc x - \cot x|$$

$$\int \csc^n x \cot x \ dx = -\frac{1}{n} \csc^n x, n \neq 0$$

$$\int \sec x \csc x \ dx = \ln|\tan x|$$

$$\int x \cos x \ dx = \cos x + x \sin x$$

$$\int x \cos x \ dx = 2x \cos x + \frac{x}{a} \sin ax$$

$$\int x^2 \cos x \ dx = 2x \cos x + (x^2 - 2) \sin x$$

$$\int x^2 \cos x \ dx = \frac{2x \cos ax}{a^2} + \frac{a^2 x^2 - 2}{a^3} \sin ax$$

$$\int x \sin x \ dx = -x \cos x + \sin x$$

$$\int x \sin x \ dx = -\frac{x \cos ax}{a} + \frac{\sin ax}{a^2}$$

$$\int x^2 \sin x \ dx = \left(2 - x^2\right) \cos x + 2x \sin x$$

$$\int x^2 \sin x \ dx = \frac{2 - a^2 x^2}{a^3} \cos ax + \frac{2x \sin ax}{a^2}$$

$$\int x \cos^2 x \ dx = \frac{x^2}{4} + \frac{1}{8} \cos 2x + \frac{1}{4} x \sin 2x$$

$$\int x \sin^2 x \ dx = \frac{x^2}{4} - \frac{1}{8} \cos 2x - \frac{1}{4} x \sin 2x$$