Name: Mofazzal Hosssain

Student Number: R00225120

Class Group: COMP1D-X

Lab 5 – De Morgan's Theorem and Basic Circuits

1. Prove the following theorems of De Morgan by completing the following tables. Verify this theorem in Logisim using appropriate circuits:

(i)
$$\overline{A + B} = \overline{A} . \overline{B}$$

(ii)
$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

A	В	A+B	A	В	A+B	A. B
0	0	0	1	1	1	1
0	1	1	1	0	0	0
1	0	1	0	1	0	0
1	1	1	0	0	0	0

Circuits:

A	В	\overline{A}	B	A.B		${A} + {B}$
0	0	1	1	0	1	1
0	1	1	0	0	1	1
1	0	0	1	0	1	1
1	1	0	0	1	0	0

Circuits:

2. Draw circuits for the Boolean expressions outlined below. Complete the truth tables for these expressions and verify the truth tables using your circuits,

i.
$$x.\overline{y.z} + \overline{x}$$

ii.
$$\overline{x}y + xz$$

iii.
$$x + \overline{x}.\overline{z}$$

X	y	Z	х'	y'	z'	XZ	(yz)'	x'y	x'z'	x*(yz)'	$x.\overline{y.z} + \overline{x}$	$\overline{x}y + xz$	$x + \overline{x}.\overline{z}$
0	0	0	1	1	1	0	1	0	1	0	1	0	1
0	0	1	1	1	0	0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	1	1	1	0	1	1	1
0	1	1	1	0	0	0	0	1	0	0	1	1	0
1	0	0	0	1	1	0	1	0	0	1	1	0	1
1	0	1	0	1	0	1	1	0	0	1	1	1	1
1	1	0	0	0	1	0	1	0	0	1	1	0	1
1	1	1	0	0	0	1	0	0	0	0	0	1	1

3. Using the Sum of Products technique, design a circuit which implements the following truth table. The inputs are A, B, and C. The output is X

Truth Table:

A	В	C	X
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Circuit:

$$X = (ABC)' + ABC' + AB'C + A'BC$$

