Na figura, dois fios condutores retilíneos e muito longos estão colocados perpendicularmente de 19.5 A no sentido para dentro da página (eixo z negativo). O ponto P (à esquerda dos dois fios) dista d₂=2d₁ do fio **1**. O plano da página é o plano xy.

Calcule a grandeza (em ampère e arredonde às unidades) e sentido (use: z negativo ou z positivo) da corrente no fio 1, sabendo que o campo magnético total devido às correntes é nulo no ponto P.

| [x]

Sentido [y]

Respostas Corretas para x		
Método de avaliação	Resposta Correta	Diferenciação de maiúsculas e minúsculas
	13	
Respostas Corretas para y		
Método de avaliação	Resposta Correta	Diferenciação de maiúsculas e minúsculas
♂ Correspondência Exata	z positivo	

No circuito da figura as resistências têm os seguintes valores: $R_1 = R_2 = R_3 = 2 \Omega$. Sendo $V_1 = 10 \text{ V}_1$ o valor da intensidade da corrente que atravessa a resistência R_3 é $I_3 = 2 \Omega$. Calcule o valor absoluto da intensidade da corrente (em ampère) que passa nas resistências R_1 e R_2 , a f.e.m. da fonte V_2 (em volt) e a diferença de potencial entre os pontos a e b (em volt).

Apresente o resultado arredondado às unidades.

/₁ [x]

/₂[y]

∨2 [z]

V_{ab} [w]

Respostas Corretas para x		
Método de avaliação	Resposta Correta	Diferenciação de maiúsculas e minúsculas
	3	
Respostas Corretas para y		
Método de avaliação	Resposta Correta	Diferenciação de maiúsculas e minúsculas
	1	
Respostas Corretas para z		
Método de avaliação	Resposta Correta	Diferenciação de maiúsculas e minúsculas
	2	
Respostas Corretas para w		
Método de avaliação	Resposta Correta	Diferenciação de maiúsculas e minúsculas
♂ Correspondência Exata	4	

A figura mostra dois condutores retilíneos muito longos, paralelos, percorridos por correntes elétricas, com o mesmo sentido, $I_1 = 2$ A e $I_2 = 2$ I_1 . A distância entre os dois condutores é de 16 cm.

Se FAB/L e FBA/L forem as forças de interação magnética, por unidade de comprimento, que o fio A exerce sobre o fio B exerce sobre o fio A, respetivamente, pode dizer-se que a interação é...

Fig8 O Grande Colisor de Hadrões (LHC), do CERN, é constituído por um túnel, com forma circular e com um raio de 4300 m (ver figura). Numa determinada experiência, um protão foi acelerado até atingir 2,3 × 10⁸ m/s, mantendo este valor de velocidade na trajetória circular no interior do túnel. Para que o protão mantenha a trajetória circular, este fica sujeito a um campo magnético com o sentido indicado na figura.

Dados: massa do protão: 1,67 x 10⁻²⁷ kg; carga do protão: 1,60 x 10⁻¹⁹ C.

Não considerando efeitos relativísticos, indique as afirmações verdadeiras (com V) e as falsas (com F).

- A A força magnética aplicada ao protão tem sentido centrífugo. [A]
- B A trajetória circular do protão tem sentido anti-horário. [B]
- C O valor da força magnética necessária para manter o protão naquela trajetória é 2×10^{-14} N [C]
- D O valor do campo magnético necessário para manter a trajetória circular do protão é $5,6 \times 10^{-4}$ T. **[D]**

Respostas Corretas para A		
Método de avaliação	Resposta Correta	Diferenciação de maiúsculas e minúsculas
Correspondência Exata	F	
Respostas Corretas para B		
Método de avaliação	Resposta Correta	Diferenciação de maiúsculas e minúsculas
Correspondência Exata	F	
Respostas Corretas para C		
Método de avaliação	Resposta Correta	Diferenciação de maiúsculas e minúsculas
Correspondência Exata	V	
Respostas Corretas para D		
Método de avaliação	Resposta Correta	Diferenciação de maiúsculas e minúsculas
Correspondência Exata	V	

Uma espira metálica retangular (dimensões 20 cm x 50 cm) é puxada (num dos lados de menor dimensão) com velocidade constante v = 10 m/s entrando numa região onde existe um campo magnético uniforme B = 0,20 T com o sentido para "fora da folha" (ver figura).

Quando a espira se desloca (enquanto entra na região do campo), calcule:

Apresente o resultado arredondado às centésimas. Use virgula como separador decimal.

- o módulo da força eletromotriz induzida (em volt) [x]
- o sentido (horário ou anti-horário) da corrente elétrica induzida na espira [y]
- o valor da corrente elétrica na espira (em A), sabendo que a resistência da espira se mantém constante e é igual 0.8 Ω. [z]

Respostas Corretas para x		
Método de avaliação	Resposta Correta	Diferenciação de maiúsculas e minúsculas
	0,40	
Respostas Corretas para y		
Método de avaliação	Resposta Correta	Diferenciação de maiúsculas e minúsculas
	horário	
Respostas Corretas para z		
Método de avaliação	Resposta Correta	Diferenciação de maiúsculas e minúsculas
	0,50	

O esquema abaixo, representa uma partícula eletrizada positivamente, com carga elétrica de módulo q, que foi lançada com velocidade v no sentido negativo do eixo dos zz.

A força magnética que atua na partícula, na posição representada é:

Pergunta 7

Na figura estão representados dois fios retilíneos e longos, percorridos pelas correntes elétricas I₁ = 4 A e I₂ = 3 A (I₁ com o sentido "para fora" da página e I₂ com o sentido "para dentro" da página), separados de 6 cm. O plano da página é o plano xy. O ponto P situa-se no eixo dos xx entre os dois fios e dista 2 cm do fio 1 e 4 cm do fio 2.

Considerando o meio, o vácuo, das seguintes afirmações diga se são verdadeiras (com V) ou falsas (com F).

A-No ponto P o campo magnético criado pela corrente I1 tem o sentido positivo do eixo dos YY [x]

B-No ponto P o campo magnético resultante tem o sentido negativo do eixo dos YY [y]

C-No ponto P o campo magnético criado pela corrente l1 tem o sentido do campo magnético criado pela corrente l2 à esquerda dos dois fios [z]

D-No ponto P o módulo do campo magnético criado pela corrente l2 é maior que o módulo do campo criado pela corrente l1 [w]

Respostas Corretas para x		
Método de avaliação	Resposta Correta	Diferenciação de maiúsculas e minúsculas
	V	
Respostas Corretas para y		
Método de avaliação	Resposta Correta	Diferenciação de maiúsculas e minúsculas
	F	
Respostas Corretas para z		
Método de avaliação	Resposta Correta	Diferenciação de maiúsculas e minúsculas
	V	
Respostas Corretas para w		
Método de avaliação	Resposta Correta	Diferenciação de maiúsculas e minúsculas
	F	

Foi montado um circuito RC em **SÉRIE** com 1 pilhas de 9V, 10 resistências de 2kΩ e um condensador de capacidade C=25 mF.

Ligou-se o circuito e começou o processo de carga, que foi subitamente interrompido ao fim do tempo, T (constante de tempo do circuito), passando-se imediatamente à descarga.

Calcule a tensão, V_C, aos terminais do condensador no instante t=0,88x τ (s), após o início do processo de descarga.

Nota: Apresente o resultado arredondado às DÉCIMAS e use a VÍGULA como separador entre as unidades e as décimas.

Resposta Correta: 👩 2,4 ± 5%

Pergunta 9

Uma partícula com carga $q = -1.0 \mu C$, de massa $m = 5.0 \times 10^{-7} \, kg$ penetra, com uma velocidade $v = 10 \, m/s$, num campo magnético uniforme de módulo igual a 10.0 T através de um orifício existente no ponto O de um anteparo.

A que distância relativa ao ponto O a partícula depois de entrar na região de campo incide no anteparo.

Resposta Correta

1.0 m à direita de O

Pergunta 10

A figura mostra uma seção transversal de três fios condutores percorridos pelas correntes I₁= 4 A, I₂= 6 A e I₃ = 2 A com os sentidos indicados. Os fios de corrente são perpendiculares ao plano da página (ou do seu ecrã). A figura mostra também quatro trajetórias fechadas (amperianas): a, b, c, d. Para cada uma das trajetórias a circulação do campo magnético (\$\overline{\beta}.\overline{d|}\$) quando a circulação é feita no **sentido anti-horário** tem o valor:

Resposta Correta: Un. trajetoria **a:** 0; trajetoria **b:** -5.03x 10⁻⁶ Tm; trajetoria **c:** 2.51x 10⁻⁶ Tm; trajetoria **d:** +5.03x 10⁻⁶ Tm Sexta-feira, 10 de Julho de 2020 13H33m BST