

3D CNN APPLICATIONS

Medical images

Fuente: L. Wang, C. Xie, and N. Zeng, "Rp-net: A 3d convolutional neural network for brain segmentation from magnetic resonance imaging,"

Video processing

Fuente: R. Hou, C. Chen, R. Sukthankar, and M. Shah, "An efficient 3d cnn for action/object segmentation in video,"

3D CONVOLUTION

3D Convolution

stride: (1, 1, 1), padding: (0, 0, 0)

Input Volume (5x5x5)

Output Volume (3x3x3)

MODEL ARCHITECTURE

MODEL VALIDATION

- Validation curves
- Confusion Matrix

DATASET DESCRIPTION

VALIDATION CURVES OF THE MODEL

	Validación	Entrenamiento
Accuracy	0.771	0.858
Loss	0.690	0.396

VALIDATION CURVES OF THE MODEL

CONFUSION MATRIX

Confusion Matrix												
0	160	0	0	0	0	2	2	0	6	0		
1	0	248	1	0	1	1	0	1	0	0		200
2	4	0	147	26	10	12	8	13	10	2		200
m	2	0	18	146	6	9	4	7	21	1		150
abel 4	1	1	9	1	170	3	6	13	0	16		150
True Label	5	1	9	25	5	105	4	6	12	2		100
9	10	0	3	11	3	3	120	4	9	11		100
7	2	3	6	2	11	2	4	153	3	12		50
œ	9	0	5	11	3	3	8	1	134	4		30
6	1	0	1	1	12	3	19	3	5	143		
	0	1	2	3	4 Predicte	5 ed Label	6	7	8	9		0

REFERENCES

- [1] D. de la Iglesia Castro, "3D MNIST," Oct. 2019.
- [2] A. I. Bootcamp, "Intro a las redes neuronales convolucionales bootcamp ai," *Medium*, Nov 2019. [Online].
- [3] H. Andrade, "Modelo para detectar el uso correcto de mascarillas en tiempo real utilizando redes neuronales convolucionales," 2021. [Online].
- [4] W. Alakwaa, M. Nassef, and A. Badr, "Lung cancer detection and classification with 3d convolutional neural network (3d-cnn)," [Accessed: 16-Jan-2024].
- [5] L. Wang, C. Xie, and N. Zeng, "Rp-net: A 3d convolutional neural network for brain segmentation from magnetic resonance imaging," *IEEE Access*, vol. 7, pp. 39670–39679, 2019.
- [6] R. Hou, C. Chen, R. Sukthankar, and M. Shah, "An efficient 3d cnn for action/object segmentation in video," 2019.
- [7] TensorFlow, "Video classification with a 3d convolutional neural network." https://www.tensorflow.org/tutorials/video/video_classification. [Online].
- [8] "When should i use 3d convolutions?." https://ai.stackexchange.com/questions/13692/when-should-i-use-3d-convolutions. [Online].
- [9] "Plotly." https://plotly.com/python/plotly-express/. [Online].
- [10] Mattop, "3d mnist digits tensorflow cnn." https://www.kaggle.com/code/mattop/3d-mnist-digits-0-9-tensorflow-cnn/log, 2022. [Online; accessed 16-Jan-2024].
- [11] "The sequential class." https://keras.io/api/models/sequential/. Accessed: 2024-1-16.
- [12] Keras, "Adam." https://keras.io/api/optimizers/adam/. [Online; accessed 19-Jan-2024]