ASSIGNMENT 1

Neeraj Pandey

Discrete Mathematics

Q1. Show that $2^n > n^5 + 1$ for all $n \ge 23$

Solution: Let's take the base case as n=23

Base Case: $2^{23} - (23^5 + 1) = 1952264 > 0 \implies P(23)$ Inductive Step: Assume P(n = k). So, $2^k > k^5 + 1$, $\forall k \ge 23$ (1)

Let's take the inequality to check if it's true or not,

$$2k^5 > (k+1)^5$$

$$\implies 2 > (1+\frac{1}{k})^5$$

Put k = 23 in the above inequality we have,

$$(1 + \frac{1}{23})^5 \approx 1.2371 < 2$$

 $\implies (1 + \frac{1}{k})^5 < 2$
 $\implies (k+1)^5 < 2k^5, \quad \forall \ k \ge 23$

(2)

Now take 2^{k+1} ,

$$2^{k+1} = 2(2^k)$$
 > $2(k^5 + 1), from$ (1)
 > $2(k^5) + 1$
 > $(k+1)^5 + 1, from$ (2)
 $\Longrightarrow P(n = k+1)$

Therefore, by Induction method P(n) is true for all $n \geq 23$

Q2. A Fibonacci sequence F_n satisfies the recurrence relation $F_n = F_n - 1 + F_n - 2$ for $n \ge 3$, where $F_1 = 1$ and $F_2 = 1$. Prove by mathematical induction that for all $n \ge 1$,

$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right]$$

Solution:

Base Case:

$$F_1 = \frac{1}{\sqrt{5}} \left\{ \left(\frac{1 + \sqrt{5}}{2} \right) - \left(\frac{1 - \sqrt{5}}{2} \right) \right\}$$
$$= \left(\frac{2\sqrt{5}}{2} \right) \frac{1}{\sqrt{5}} = 1 \implies P(1)$$

Inductive Step:

Assume P(n = 1), P(n = 2), P(n = k - 1), P(n = k)

Now,
$$F_{k+1} = F_k + Fk - 1$$
or,
$$F_{k+1} = \frac{1}{\sqrt{5}} \left\{ \left(\frac{1 + \sqrt{5}}{2} \right)^k - \left(\frac{1 - \sqrt{5}}{2} \right)^k \right\} + \frac{1}{\sqrt{5}} \left\{ \left(\frac{1 + \sqrt{5}}{2} \right)^{k-1} - \left(\frac{1 - \sqrt{5}}{2} \right)^{k-1} \right\}$$

$$= \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{k-1} \left\{ 1 + \frac{1 + \sqrt{5}}{2} \right\} - \left(\frac{1 - \sqrt{5}}{2} \right)^{k-1} \left\{ 1 + \frac{1 - \sqrt{5}}{2} \right\} \right]$$

$$= \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{k-1} \left\{ \frac{1}{2} \left(\frac{6 + 2\sqrt{5}}{2} \right) \right\} - \left(\frac{1 - \sqrt{5}}{2} \right)^{k-1} \left\{ \frac{1}{2} \left(\frac{6 - 2\sqrt{5}}{2} \right) \right\} \right]$$

$$= \frac{1}{\sqrt{5}} \left\{ \left(\left(\frac{1 + \sqrt{5}}{2} \right)^{k-1} \left(\frac{1 + \sqrt{5}}{2} \right)^2 \right) - \left(\left(\frac{1 - \sqrt{5}}{2} \right)^{k-1} \left(\frac{1 - \sqrt{5}}{2} \right)^2 \right) \right\}$$

$$= \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{k-1} \left(\frac{1 + \sqrt{5}}{2} \right)^{k-1} - \left(\frac{1 - \sqrt{5}}{2} \right)^{k+1} \right]$$

Hence, proved.

 $\implies P(K = n + 1)$