第2节 椭圆的焦点三角形相关问题(★★★)

强化训练

1. (2023・全国甲卷・★★)设 F_1 , F_2 为椭圆C: $\frac{x^2}{5}$ + y^2 = 1的两个焦点,点P 在 C 上,若 $\overrightarrow{PF_1}$ · $\overrightarrow{PF_2}$ = 0,

则 $|PF_1| \cdot |PF_2| = ($)

- (A) 1 (B) 2 (C) 4 (D) 5

答案: B

解析: 涉及 PF_1 和 PF_2 ,想到椭圆定义,由题意, $a=\sqrt{5}$,b=1, $c=\sqrt{a^2-b^2}=2$, $\left|F_1F_2\right|=2c=4$,

设 $|PF_1|=m$, $|PF_2|=n$,因为 $\overrightarrow{PF_1}\cdot\overrightarrow{PF_2}=0$,所以 $|PF_1|\perp PF_2$,结合椭圆定义可得 $\begin{cases} m+n=2a=2\sqrt{5} & \text{①} \\ m^2+n^2=|F_1F_2|^2=16 & \text{②} \end{cases}$,

怎样由①②求 mn? 我们发现配方即可,

由②可得 $(m+n)^2-2mn=16$,将①代入可求得mn=2.

2. (2023・全国模拟・★★)设 F_1 , F_2 分别为椭圆 $\frac{x^2}{0} + \frac{y^2}{4} = 1$ 的左、右焦点,点P在椭圆上,若线段 PF_1 的中点M在y轴上,则 $\frac{|PF_2|}{|PF_1|}$ 的值为()

- (A) $\frac{5}{13}$ (B) $\frac{4}{5}$ (C) $\frac{2}{7}$ (D) $\frac{4}{9}$

答案: C

解析:条件涉及中点,先看看有没有中位线,如图, PF_1 的中点M在y轴上,O为 F_1F_2 的中点, 所以 $OM//PF_2$, 因为 $OM \perp x$ 轴,所以 $PF_2 \perp x$ 轴,

我们发现 $|PF_2|$ 是半通径长,可代公式计算, $|PF_1|$ 可由椭圆定义来算,

$$|PF_2| = \frac{b^2}{a} = \frac{4}{3}$$
, $\mathbb{Z}|PF_1| + |PF_2| = 2a = 6$, $\mathbb{M} |PF_1| = 6 - |PF_2| = \frac{14}{3}$, $\mathbb{E} \frac{|PF_2|}{|PF_1|} = \frac{2}{7}$.

3. (2022・江西模拟・★★★) 设椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的左、右焦点分别为 F_1 、 F_2 ,点M、N在C上,且 $M \setminus N$ 关于原点 O 对称,若 $|MN| = |F_1F_2|$, $|NF_2| = 3|MF_2|$, 则椭圆 C 的离心率为_____.

答案: √10

解析: 先由已知条件分析四边形 MF_1NF_2 的形状,如图,因为 M、N 关于原点对称,且 $|MN| = |F_1F_2|$, 所以四边形 MF_1NF_2 是矩形,故 $MF_1 \perp MF_2$,且 $|MF_1| = |NF_2|$,

要求离心率,可把条件转换到 ΔMF_1F_2 ,中来,结合椭圆定义处理,

又 $|NF_2|=3|MF_2|$,所以 $|MF_1|=3|MF_2|$,可设 $|MF_2|=m$,则 $|MF_1|=3m$,

所以
$$|F_1F_2| = \sqrt{|MF_2|^2 + |MF_1|^2} = \sqrt{10}m$$
,故椭圆 C 的离心率 $e = \frac{c}{a} = \frac{2c}{2a} = \frac{|F_1F_2|}{|MF_1| + |MF_2|} = \frac{\sqrt{10}m}{m+3m} = \frac{\sqrt{10}}{4}$.

4. (2022•福建质检•★★★) 已知点 F_1 、 F_2 是椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的左、右焦点,过 F_2 的直线交椭 圆于 $A \setminus B$ 两点,且 $AF_1 \perp AB$, $\frac{|AF_1|}{|AB|} = \frac{4}{3}$,则该椭圆的离心率是()

(A)
$$\frac{2}{3}$$

(B)
$$\frac{\sqrt{5}}{3}$$

(C)
$$\frac{\sqrt{3}}{3}$$

(A)
$$\frac{2}{3}$$
 (B) $\frac{\sqrt{5}}{3}$ (C) $\frac{\sqrt{3}}{3}$ (D) $\frac{\sqrt{6}}{3}$

答案: B

解析:如图, ΔAF_1F_2 和 ΔBF_1F_3 都是焦点三角形,可结合椭圆定义处理,先由已知条件设一下边长,

因为 $\frac{|AF_1|}{|AB|} = \frac{4}{3}$,所以可设 $|AF_1| = 4m$,|AB| = 3m,

因为 $AF_1 \perp AB$,所以 $|BF_1| = \sqrt{|AF_1|^2 + |AB|^2} = 5m$,故 ΔABF_1 的周长 $L = |AF_1| + |BF_1| + |AB| = 12m$,

又 $L = |AF_1| + |AF_2| + |BF_1| + |BF_2| = 4a$,所以 12m = 4a,从而 $m = \frac{a}{3}$,故 $|AF_1| = \frac{4a}{3}$, $|AF_2| = 2a - |AF_1| = \frac{2a}{3}$,

要求离心率,可到 ΔAF_1F_2 ,中用勾股定理来建立方程,

在 ΔAF_1F_2 中, $\left|AF_1\right|^2 + \left|AF_2\right|^2 = \left|F_1F_2\right|^2$, 所以 $\frac{16a^2}{9} + \frac{4a^2}{9} = 4c^2$, 整理得: $\frac{c^2}{a^2} = \frac{5}{9}$, 故离心率 $e = \frac{c}{a} = \frac{\sqrt{5}}{3}$.

5. $(2014 \cdot 安徽卷 \cdot ★★★)$ 若 F_1 , F_2 分别是椭圆 $E: x^2 + \frac{y^2}{b^2} = 1(0 < b < 1)$ 的左、右焦点,过点 F_1 的直线 交椭圆 E 于 A, B 两点,若 $|AF_1| = 3|F_1B|$, $AF_2 \perp x$ 轴,则椭圆 E 的方程为_____.

答案:
$$x^2 + \frac{3y^2}{2} = 1$$

解析:如图,条件中有 $|AF_1|=3|F_1B|$,可用它构造相似三角形,通过相似比求点B的坐标,

由题意,长半轴长a=1,作 $BM \perp x$ 轴于点M,则 $\Delta BMF_1 \hookrightarrow \Delta AF_2F_1$,所以 $\frac{|MF_1|}{|F_1F_2|} = \frac{|BM|}{|AF_2|} = \frac{|BF_1|}{|AF_1|} = \frac{1}{3}$ ①,

所以
$$|MF_1| = \frac{1}{3}|F_1F_2| = \frac{2c}{3}$$
, $|OM| = |MF_1| + |OF_1| = \frac{5c}{3}$,故 $x_B = -\frac{5c}{3}$,

再通过求|BM| 算 y_B ,由①知 $|BM| = \frac{1}{3}|AF_2|$,可联立直线 AF_2 和椭圆的方程来求 A 的纵坐标,得到 $|AF_2|$,

联立
$$\begin{cases} x = c \\ x^2 + \frac{y^2}{b^2} = 1 \end{cases}$$
 解得: $y = \pm b\sqrt{1 - c^2}$, 所以 $y_A = b\sqrt{1 - c^2}$, 又 $a = 1$, 所以 $1 - c^2 = a^2 - c^2 = b^2$, 故 $y_A = b^2$,

所以 $|AF_2| = b^2$,结合①可得 $|BM| = \frac{b^2}{3}$,故 $B(-\frac{5c}{3}, -\frac{b^2}{3})$,

代入椭圆方程得: $\frac{25c^2}{9} + \frac{b^2}{9} = 1$, 结合 $b^2 + c^2 = 1$ 解得: $b^2 = \frac{2}{3}$, 所以椭圆 E 的方程为 $x^2 + \frac{3y^2}{2} = 1$.

6. $(2022 \cdot 长沙模拟 \cdot \star \star \star \star)$ 已知 F_1 , F_2 是椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的左、右焦点,点A(0,b),点B 在椭圆C上,且 $\overline{AF_1} = 2\overline{F_1B}$,D、E 分别是 AF_2 、 BF_2 ,的中点,且 ΔDEF_2 ,的周长为 4,则椭圆C 的方程为()

(A)
$$\frac{x^2}{4} + \frac{y^2}{3} = 1$$
 (B) $\frac{x^2}{4} + \frac{3y^2}{8} = 1$ (C) $\frac{x^2}{4} + \frac{3y^2}{4} = 1$ (D) $x^2 + \frac{3y^2}{2} = 1$

答案: B

解析: 由 $\overrightarrow{AF_1} = 2\overrightarrow{F_1B}$ 可求得点B的坐标,代入椭圆建立一个方程;

如图,作 $BG \perp x$ 轴于点 G,则 $\Delta AOF_1 \hookrightarrow \Delta BGF_1$,所以 $\frac{|BG|}{|OA|} = \frac{|GF_1|}{|OF_1|} = \frac{|BF_1|}{|AF_1|} = \frac{1}{2}$,

故 $|BG| = \frac{1}{2}|OA| = \frac{b}{2}$, $|GF_1| = \frac{1}{2}|OF_1| = \frac{c}{2}$,所以 $B(-\frac{3c}{2}, -\frac{b}{2})$,代入椭圆方程整理得: $a^2 = 3c^2$ ①,

再来看 ΔDEF , 的周长,可利用中点转化成 ΔABF , 的周长,结合定义计算,

因为D、E分别是 AF_2 、 BF_2 的中点,所以|AB|=2|DE|, $|AF_2|=2|DF_2|$, $|BF_2|=2|EF_2|$,

故 $|AB|+|AF_2|+|BF_2|=2(|DE|+|DF_2|+|EF_2|)=8$,又由椭圆定义, $|AB|+|AF_2|+|BF_2|=4a$,

所以 4a=8,故 a=2,代入①可求得 $c^2=\frac{4}{3}$,所以 $b^2=a^2-c^2=\frac{8}{3}$,故椭圆 C 的方程为 $\frac{x^2}{4}+\frac{3y^2}{8}=1$.

7. $(2019 \cdot 浙江卷 \cdot ★★★★)$ 已知椭圆 $\frac{x^2}{9} + \frac{y^2}{5} = 1$ 的左焦点为F,点P 在椭圆上且在x 轴的上方,若线段 PF 的中点在以原点O为圆心,|OF|为半径的圆上,则直线PF 的斜率是_____.

答案: √15

解析:如图,涉及中点,可尝试构造中位线,由题意,a=3,c=2,

记右焦点为 F_1 ,PF中点为Q,因为O是 FF_1 的中点,所以 $|PF_1|=2|OQ|=4$,

有了 $|PF_1|$,就能求|PF|,于是 ΔPFF_1 已知三边,可用余弦定理推论求 $\cos \angle PFF_1$,再求 $\tan \angle PFF_1$,

$$|PF| + |PF_1| = 2a \Rightarrow |PF| = 2a - |PF_1| = 6 - 4 = 2$$
,

又
$$|FF_1| = 2c = 4$$
,所以 $\cos \angle PFF_1 = \frac{|PF|^2 + |FF_1|^2 - |PF_1|^2}{2|PF| \cdot |FF_1|} = \frac{4 + 16 - 16}{2 \times 2 \times 4} = \frac{1}{4}$

故 $\tan \angle PFF_1 = \frac{\sin \angle PFF_1}{\cos \angle PFF_1} = \sqrt{15}$,即直线 PF 的斜率为 $\sqrt{15}$.

8. $(2022 \cdot 萍乡三模 \cdot ★★★)设 <math>F_1$, F_2 是椭圆 $C: y^2 + \frac{x^2}{t} = 1(0 < t < 1)$ 的焦点,若椭圆 C 上存在点 P,满 是 $\angle F_1 P F_2 = 120^\circ$,则 t 的取值范围是()

(A)
$$(0,\frac{1}{4}]$$

(B)
$$[\frac{1}{4},1)$$

(C)
$$(0, \frac{\sqrt{2}}{2})$$

(A)
$$(0,\frac{1}{4}]$$
 (B) $[\frac{1}{4},1)$ (C) $(0,\frac{\sqrt{2}}{2}]$ (D) $[\frac{\sqrt{2}}{2},1)$

答案: A

解法 1: 先把 $\angle F_1 PF_2 = 120^\circ$ 的情形画出来,如图 1,在焦点三角形中,首先考虑椭圆定义,

设 $|PF_1|=m$, $|PF_2|=n$,由题意,椭圆的长半轴长a=1,半焦距 $c=\sqrt{1-t}$,所以m+n=2a=2 ①,

还有角度的条件,可在 ΔPF_1F_2 中用余弦定理, $|F_1F_2|^2 = |PF_1|^2 + |PF_2|^2 - 2|PF_1| \cdot |PF_2| \cdot \cos \angle F_1PF_2$,

所以 $4(1-t) = m^2 + n^2 - 2mn\cos 120^\circ$,故 $4(1-t) = m^2 + n^2 + mn$ ②,

要求t的范围,应建立关于t的不等式,结合式①知可对式②配方,用不等式 $mn \leq (\frac{m+n}{2})^2$ 来实现,

所以 $4(1-t) = (m+n)^2 - mn \ge (m+n)^2 - (\frac{m+n}{2})^2 = \frac{3(m+n)^2}{4}$,将式①代入可得 $4(1-t) \ge 3$,故 $t \le \frac{1}{4}$,

当且仅当m=n=1时取等号,又0 < t < 1,所以 $t \in (0,\frac{1}{2}]$.

解法 2: 也可直接用最大张角结论,当 P 在椭圆上运动时, $\angle F_1 PF_2$ 的最大值在短轴端点处取得,

要使椭圆上存在点P,满足 $\angle F_1PF_2=120^\circ$,只需图 2 所示的 $\angle F_1PF_2\geq 120^\circ$ 即可,即图中 $\alpha\geq 60^\circ$,

所以
$$\cos \alpha = \frac{|OP|}{|PF_1|} = \frac{\sqrt{t}}{1} \le \frac{1}{2}$$
, 结合 $0 < t < 1$ 可解得: $0 < t \le \frac{1}{4}$.

《一数•高考数学核心方法》

9. (2022•南宁模拟•★★★) 已知 F 是椭圆 $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的左焦点,过原点的直线 l 与椭圆 E相交于P、Q 两点,若|PF|=5|QF|,且 $\angle PFQ=120^{\circ}$,则椭圆的离心率为(

$$(A) \frac{\sqrt{7}}{6}$$

$$(\mathbf{B}) \ \frac{1}{3}$$

(A)
$$\frac{\sqrt{7}}{6}$$
 (B) $\frac{1}{3}$ (C) $\frac{\sqrt{21}}{6}$ (D) $\frac{\sqrt{21}}{5}$

(D)
$$\frac{\sqrt{21}}{5}$$

答案: C

解析:看到过原点的直线与椭圆交于P、Q两点,想到与焦点构成平行四边形,

如图,设右焦点为F',则四边形PFQF'为平行四边形,

为了运用椭圆的定义,将条件转移到 $\Delta PFF'$ 中来,|PF'|=|QF|,又|PF|=5|QF|,所以|PF|=5|PF'|①,

由椭圆定义,|PF|+|PF'|=2a,结合①可得 $|PF|=\frac{5a}{3}$, $|PF'|=\frac{a}{3}$,

还剩 $\angle PFQ = 120^{\circ}$ 这个条件没用,可据此求出 $\angle FPF'$,在 $\Delta PFF'$ 中由余弦定理建立方程求离心率,

∠ $FPF' = 180^{\circ} - ∠PFQ = 60^{\circ}$, |FF'| = 2c, 由余弦定理, $|FF'|^2 = |PF|^2 + |PF'|^2 - 2|PF| \cdot |PF'| \cdot \cos ∠FPF'$,

所以
$$4c^2 = \frac{25a^2}{9} + \frac{a^2}{9} - 2 \times \frac{5a}{3} \times \frac{a}{3} \times \cos 60^\circ$$
,整理得: $\frac{c^2}{a^2} = \frac{7}{12}$,故离心率 $e = \frac{c}{a} = \frac{\sqrt{21}}{6}$.

10. (2022・全国二模・★★★★) 椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的左焦点为 F,过原点 O 的直线与椭圆交

于 $P \setminus Q$ 两点,若 $\angle PFQ = 120^{\circ}$, $|OF| = \sqrt{3}$, $|OP| = \sqrt{7}$,则椭圆 C 的离心率为(

(A)
$$\frac{\sqrt{3}}{2}$$
 (B) $\frac{\sqrt{3}}{3}$ (C) $\frac{2\sqrt{3}}{3}$ (D) $\frac{\sqrt{6}}{3}$

答案: B

解析:由对称性有O平分PQ,想到结合O平分两焦点F,F,可构造平行四边形,

如图,设椭圆 C 的右焦点为 F_1 ,则四边形 $PFQF_1$ 是平行四边形,设 |PF|=m, |FQ|=n,则 $|PF_1|=n$,

由椭圆定义, $|PF|+|PF_1|=m+n=2a$ ①,

知道|OP|和 $\angle PFQ$,可在 $\triangle PFQ$ 中用余弦定理建立关于m和n的方程,

 $|OP| = \sqrt{7} \Rightarrow |PQ| = 2\sqrt{7}$, 由余弦定理, $|PQ|^2 = |PF|^2 + |FQ|^2 - 2|PF| \cdot |FQ| \cdot \cos \angle PFQ$,

所以 $28 = m^2 + n^2 - 2mn\cos 120^\circ = m^2 + n^2 + mn = (m+n)^2 - mn$ ②,

将式①代入式②可得 $28 = 4a^2 - mn$, 所以 $mn = 4a^2 - 28$ ③,

同理,知道|OF|, $\angle FPF_1$ 也能求出,于是又到 ΔPFF_1 中用余弦定理,再建立关于m和n的方程,

在 ΔPFF_1 中, $\angle FPF_1 = 180^{\circ} - \angle PFQ = 60^{\circ}$, $|FF_1| = 2|OF| = 2\sqrt{3}$,

由余弦定理, $|FF_1|^2 = |PF|^2 + |PF_1|^2 - 2|PF| \cdot |PF_1| \cdot \cos \angle FPF_1$,

所以 $12 = m^2 + n^2 - 2mn\cos 60^\circ = m^2 + n^2 - mn = (m+n)^2 - 3mn$,将式①代入可得 $12 = 4a^2 - 3mn$,

所以 $mn = \frac{4a^2}{3} - 4$,结合式③可得 $4a^2 - 28 = \frac{4a^2}{3} - 4$,解得: a = 3,

又由 $|OF| = \sqrt{3}$ 知 $c = \sqrt{3}$,所以椭圆C的离心率 $e = \frac{c}{a} = \frac{\sqrt{3}}{3}$.

11. $(2022 \cdot 湖北模拟 \cdot \star \star \star \star \star)$ 已知 F_1 , F_2 是椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的左、右焦点,点 P 在椭圆 C 的第一象限上,过 F_2 作 $\angle F_1 P F_2$ 的外角平分线的垂线,垂足为 A,O 为原点,若 $|OA| = \sqrt{3}b$,则椭圆 C 的 离心率为_____.

答案: $\frac{\sqrt{6}}{3}$

解析:看到向外角平分线作垂线,涉及角平分线+垂直,想到三线合一,可构造等腰三角形,

如图,设直线 F_2A 和 F_1P 交于点Q,由题意,PA是 $\angle F_3PQ$ 的平分线,且 $PA \perp F_3Q$,

所以 $|PF_2| = |PQ|$,且 $A \neq F_2Q$ 的中点,又 $O \neq F_1F_2$ 的中点,所以 $|F_1Q| = 2|OA| = 2\sqrt{3}b$,

另一方面, $|F_1Q|=|PF_1|+|PQ|=|PF_1|+|PF_2|=2a$,所以 $2a=2\sqrt{3}b$,故 $a=\sqrt{3}b$,

所以 $a^2 = 3b^2 = 3(a^2 - c^2)$,整理得: $\frac{c^2}{a^2} = \frac{2}{3}$,故椭圆 C 的离心率 $e = \frac{c}{a} = \frac{\sqrt{6}}{3}$.

12. $(2022 \cdot 新高考 I 卷 \cdot \star \star \star \star \star)$ 已知椭圆 $C : \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$,C 的上顶点为A,两个焦点为 F_1 ,

 F_2 ,离心率为 $\frac{1}{2}$,过 F_1 且垂直于 AF_2 的直线交C + D、E两点,|DE| = 6,则 ΔADE 的周长是_____.

答案: 13

解析: 先由离心率分析 a、b、c 的关系,将变量归一化,

椭圆的离心率为 $\frac{1}{2}$ $\Rightarrow \frac{c}{a} = \frac{1}{2}$ $\Rightarrow a = 2c$,所以 $b = \sqrt{a^2 - c^2} = \sqrt{3}c$,

从而椭圆方程可化为 $\frac{x^2}{4c^2}$ + $\frac{y^2}{3c^2}$ =1,且 $|AF_1|$ = $|AF_2|$ =a=2c= $|F_1F_2|$,故 ΔAF_1F_2 为正三角形,

如图,可由此求得直线 DE 的斜率,写出其方程,可与椭圆联立计算弦长|DE|,建立方程解 c,

由题意, $DE \perp AF_2$,所以 $\angle EF_1F_2 = 30^\circ$,从而直线DE的斜率为 $\frac{\sqrt{3}}{3}$,

故其方程为
$$y = \frac{\sqrt{3}}{3}(x+c)$$
,即 $x = \sqrt{3}y-c$,联立
$$\begin{cases} x = \sqrt{3}y-c \\ \frac{x^2}{4c^2} + \frac{y^2}{3c^2} = 1 \end{cases}$$
 消去 x 整理得: $13y^2 - 6\sqrt{3}cy - 9c^2 = 0$,

判别式
$$\Delta = (-6\sqrt{3}c)^2 - 4 \times 13 \times (-9c^2) = (24c)^2$$
,所以 $|DE| = \sqrt{1 + (\sqrt{3})^2} \cdot \frac{\sqrt{(24c)^2}}{13} = \frac{48c}{13}$,

由题意,
$$|DE|=6$$
,所以 $\frac{48c}{13}=6$,故 $c=\frac{13}{8}$,

最后算 ΔADE 的周长,若通过求D、E的坐标来算|AD|和|AE|,则比较麻烦,结合图形的对称性会发现可

转化为ΔDEF₂来算周长,只需用椭圆的定义即可快速求出,

由 ΔAF_1F_2 是正三角形,DE 过 F_1 且与 AF_2 垂直可知 DE 是 AF_2 的中垂线,所以 $|AE| = |EF_2|$, $|AD| = |DF_2|$,故 ΔADE 的周长 $L = |AD| + |AE| + |DE| = |DF_2| + |EF_2| + |DE| = |DF_2| + |EF_2| + |DF_1| + |EF_1| = 4a = 8c = 8 \times \frac{13}{8} = 13$.

《一数•高考数学核心方法》