

Wybrane

wzory i stałe fizykochemiczne na egzamin maturalny z biologii, chemii i fizyki

Zespół redakcyjny:

dr Łukasz Banasiak (CKE) Jadwiga Filipska (CKE) Aleksandra Grabowska (CKE) dr Takao Ishikawa (CKE) Mariusz Mroczek (CKE)

Recenzenci:

dr Waldemar Berej (UMCS) dr Michał Bykowski (UW) dr hab. inż. Maciej Dranka, prof. PW

Spis treści

Potencjał wody w komórce roślinnej / Równanie Hardy'ego–Weinberga	4
Zasady azotowe / Wybrane kwasy organiczne / Hydroliza ATP	4
Podstawowe wzory ze statystyki / Kod genetyczny	5
Wybrane aminokwasy białkowe	6
Wybrane aminokwasy białkowe – cd	7
Wpływ kierujący podstawników w pierścieniu aromatycznym	7
Stałe dysocjacji dla grup funkcyjnych aminokwasów w temperaturze 25 °C	8
Wartości stałej dysocjacji wybranych kwasów i zasad w temperaturze 25 °C	9
Średnie długości wiązań w cząsteczkach w fazie gazowej	9
Wartości iloczynu rozpuszczalności wybranych substancji w temperaturze 25 °C	10
Tabela wartości logarytmów dziesiętnych	10
Wybrane wskaźniki kwasowo-zasadowe	11
Potencjał standardowy redukcji	12
Wartości standardowej molowej entalpii tworzenia	13
Wartości standardowej molowej entalpii spalania	13
Rozpuszczalność soli i wodorotlenków w wodzie w temperaturze 25 °C	14
Układ okresowy pierwiastków	15
Kinematyka / Dynamika / Siły tarcia i sprężystości	16
Grawitacja i elementy astronomii	16
Drgania, fale mechaniczne i świetlne / Optyka geometryczna	17
Hydrostatyka, aerostatyka / Termodynamika	17
Elektrostatyka / Prąd elektryczny / Magnetyzm	18
Elementy mechaniki relatywistycznej / Elementy fizyki atomowej i jądrowej	19
Wybrane zależności / Podstawowe jednostki układu SI / Przedrostki jednostek miar	19
Wartości wybranych stałych fizycznych / Wybrane stałe i parametry astrofizyczne	20
Wybrane wartości jednostek spoza układu SI	20

POTENCJAŁ WODY W KOMÓRCE ROŚLINNEJ

 $\Psi_W = \Psi_S + \Psi_P$

gdzie:

 Ψ_W – potencjał wody

 Ψ_S – potencjał osmotyczny

 Ψ_P – potencjał ciśnienia

RÓWNANIE HARDY'EGO-WEINBERGA

$$p + q = 1$$

$$(p + q)^2 = p^2 + 2pq + q^2 = 1$$

gdzie:

p – częstość allelu dominującego w populacji

q – częstość allelu recesywnego w populacji

ZASADY AZOTOWE					
NH ₂	H ₃ C NH O		NH NH		O NH O
cytozyna (C)	tymina (T)		uracyl (U)		
NH N	H ₂	N/ NH	NH NH ₂		
adenina (A)	!	guanina (G)		

Wybrane kwasy organiczne				
СН ₃ —СН—СООН ОН	СН ₃ —С—СООН О			
kwas mlekowy	kwas pirogronowy			
HO—CH—COOH	ÇH₂ COOH			
HO—CH—COOH CH ₂ —COOH	но—с—соон			
СН ₂ —СООН	CH ₂ COOH I HO—C—COOH I CH ₂ COOH			
kwas jabłkowy	kwas cytrynowy			

PODSTAWOWE WZORY ZE STATYSTYKI

Średnia arytmetyczna

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{x_1 + x_2 + \dots + x_n}{n}$$

gdzie:

n – liczba obserwacji

 $x_1, x_2, \dots, x_i, \dots, x_n$ – kolejne obserwacje

Średnia ważona

$$\bar{x} = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i} = \frac{w_1 x_1 + w_2 x_2 + \dots + w_n x_n}{w_1 + w_2 + \dots + w_n}$$

gdzie:

n – liczba obserwacji

 $x_1, x_2, \dots, x_i, \dots, x_n$ – kolejne obserwacje

 $w_1, w_2, \dots, w_i, \dots, w_n$ – wagi kolejnych obserwacji

Odchylenie standardowe

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n}} = \sqrt{\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \dots + (x_n - \bar{x})^2}{n}}$$

gdzie:

n – liczba obserwacji

 $x_1, x_2, \dots, x_i, \dots, x_n$ – kolejne obserwacje

 \bar{x} – średnia arytmetyczna

	KOD GENETYCZNY							
Pierwsza	Druga pozycja							
pozycja	U	С	Α	G	pozycja			
U	UUU fenyloalanina UUC fenyloalanina UUA leucyna UUG leucyna	UCU seryna UCC seryna UCA seryna UCG seryna	UAU tyrozyna UAC tyrozyna UAA <i>STOP</i> UAG <i>STOP</i>	UGU cysteina UGC cysteina UGA STOP UGG tryptofan	O > O C			
С	CUU leucyna CUC leucyna CUA leucyna CUG leucyna	CCU prolina CCC prolina CCA prolina CCG prolina	CAU histydyna CAC histydyna CAA glutamina CAG glutamina	CGU arginina CGC arginina CGA arginina CGG arginina	U C A G			
A	AUU izoleucyna AUC izoleucyna AUA izoleucyna AUG metionina, START	ACU treonina ACC treonina ACA treonina ACG treonina	AAU asparagina AAC asparagina AAA lizyna AAG lizyna	AGU seryna AGC seryna AGA arginina AGG arginina	U C A G			
G	GUU walina GUC walina GUA walina GUG walina	GCU alanina GCC alanina GCA alanina GCG alanina	GAU kw. asparaginowy GAC kw. asparaginowy GAA kw. glutaminowy GAG kw. glutaminowy	GGU glicyna GGC glicyna GGA glicyna GGG glicyna	U C A G			

Na podstawie: https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi

Uwaga: nie zachowano kolejności alfabetycznej.

WYBRANE AMINOKWASY BIAŁKOWE					
Nazwa aminokwasu	Wzór	Kod	pl		
alanina	H ₂ N—CH—COOH CH ₃	Ala	6,00		
arginina	H ₂ N—CH—COOH CH ₂ CH ₂ CH ₂ NH NH—C—NH ₂	Arg	10,76		
asparagina	H ₂ N—CH—COOH CH ₂ CONH ₂	Asn	5,41		
kwas asparaginowy	H ₂ N—CH—COOH CH ₂ COOH	Asp	2,77		
cysteina	H ₂ N—CH—COOH CH ₂ SH	Cys	5,07		
glicyna	H ₂ N—CH ₂ —COOH	Gly	5,97		

Nazwa aminokwasu	Wzór	Kod	pl
glutamina	H ₂ N—CH—COOH I CH ₂ I CH ₂ I CONH ₂	Gln	5,65
kwas glutaminowy	H ₂ N—CH—COOH CH ₂ CH ₂ COOH	Glu	3,22
histydyna	H ₂ N-CH-COOH CH ₂ NH NH	His	7,59
izoleucyna	H ₂ N—CH—COOH CH—CH ₃ CH ₂ —CH ₃	lle	6,02
leucyna	H ₂ N—CH—COOH CH ₂ CH CH CH ₃ CH ₃	Leu	5,98

WYBRANE AMINOKWASY BIAŁKOWE – CD.					
Nazwa aminokwasu	Wzór	Kod	pl		
lizyna	H ₂ N—CH—COOH CH ₂ CH ₂ CH ₂ CH ₂ NH ₂	Lys	9,74		
metionina	$\begin{array}{c} H_2N -\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!$	Met	5,74		
fenyloalanina	H ₂ N—CH—COOH CH ₂	Phe	5,48		
prolina	HN—COOH	Pro	6,30		
seryna	H ₂ N—CH—COOH CH ₂ OH	Ser	5,68		

Nazwa aminokwasu	Wzór	Kod	pl
treonina	H ₂ N—CH—COOH CH—OH CH ₃	Thr	5,60
tryptofan	H ₂ N—CH—COOH CH ₂	Trp	5,89
tyrozyna	H ₂ N—CH—COOH CH ₂ OH	Tyr	5,66
walina	H ₂ N—CH—COOH CH CH ₃ CH ₃	Val	5,96

WPŁYW KIERUJĄCY PODSTAWNIKÓW W PIERŚCIENIU AROMATYCZNYM						
X	Podstawniki X kierujące w położenie 2- lub 4-	Podstawniki X kierujące w położenie 3-				
2 3	-OH albo -O¯ albo -OR -NH2 albo -NHR albo -NR2 -NHCOR -R, -C6H5 -Cl, -Br, -I	-CHO, -COR -COOH albo -COOR -CN -NO ₂ -NH ₃ ⁺ albo -NR ₃ ⁺ -SO ₃ H				
R – grupa alkilowa						

		STAŁE DYS	SOCJACJI D	LA GRUP FUN	NKCYJNYC	H AMINOKWAS	ÓW W TEMPI	ERATURZE 25	°C			
		D	Dla grupy karboksylowej			Dla sprotonowanej grupy aminowej				Dla innych grup		
Kod	Nazwa aminokwasu	przy ator	nie Cα	dodatkowej		przy ato	przy atomie Cα dodatkowej		la inn	ycn grup		
		K _a	pK _a	K _a	pK _a	K _a	pK _a	K _a	pK _a	K _a	pK _a	
Ala	alanina	4,68 · 10 ⁻³	2,33	_	_	1,95 · 10 ⁻¹⁰	9,71	_	_	_	-	
Arg	arginina	9,33 · 10 ⁻³	2,03	_	_	1,00 · 10 ⁻⁹	9,00	7,94 · 10 ⁻¹³	12,10	_	-	
Asn	asparagina	6,92 · 10 ⁻³	2,16	_	_	1,86 · 10 ⁻⁹	8,73	_	_	_	-	
Asp	kwas asparaginowy	1,12 · 10-2	1,95	1,95 · 10 ⁻⁴	3,71	2,19 · 10 ⁻¹⁰	9,66	_	-	_	-	
Cys	cysteina	1,23 · 10 ⁻²	1,91	_	_	5,25 · 10 ⁻¹¹	10,28	-	_	7,24 · 10 ⁻⁹	8,14 (-SH)	
Gln	glutamina	6,61 · 10 ⁻³	2,18	_	_	1,00 · 10 ⁻⁹	9,00	-	_	_	_	
Glu	kwas glutaminowy	6,92 · 10 ⁻³	2,16	7,08 · 10 ⁻⁵	4,15	2,63 · 10 ⁻¹⁰	9,58	_	_	_	-	
Gly	glicyna	4,57 · 10 ⁻³	2,34	_	_	2,63 · 10 ⁻¹⁰	9,58	_	_	_	-	
His	histydyna	2,00 · 10 ⁻²	1,70	_	_	8,13 · 10 ⁻¹⁰	9,09	9,12 · 10 ⁻⁷	6,04	_	_	
lle	izoleucyna	5,50 · 10 ⁻³	2,26	_	_	2,51 · 10 ⁻¹⁰	9,60	_	_	_	-	
Leu	leucyna	4,79 · 10 ⁻³	2,32	_	_	2,63 · 10 ⁻¹⁰	9,58	_	_	_	-	
Lys	lizyna	7,08 · 10 ⁻³	2,15	_	_	6,92 · 10 ⁻¹⁰	9,16	2,14 · 10 ⁻¹¹	10,67	_	-	
Met	metionina	6,92 · 10 ⁻³	2,16	_	_	8,32 · 10 ⁻¹⁰	9,08	_	_	_	-	
Phe	fenyloalanina	6,61 · 10 ⁻³	2,18	_	_	8,13 · 10 ⁻¹⁰	9,09	_	_	_	-	
Pro	prolina	1,12 · 10-2	1,95	_	_	3,39 · 10 ⁻¹¹	10,47	_	_	_	_	
Ser	seryna	7,41 · 10 ⁻³	2,13	_	-	8,91 · 10 ⁻¹⁰	9,05	_	-	_	_	
Thr	treonina	6,31 · 10 ⁻³	2,20	_	-	1,10 · 10 ⁻⁹	8,96	_	-	_	_	
Trp	tryptofan	4,17 · 10 ⁻³	2,38	_	_	4,57 · 10 ⁻¹⁰	9,34	_	_	_	-	
Tyr	tyrozyna	5,75 · 10 ⁻³	2,24	_	-	9,12 · 10 ⁻¹⁰	9,04	-	1	7,94 · 10 ⁻¹¹	10,10 (–OH)	
Val	walina	5,37 · 10 ⁻³	2,27	_	_	3,02 · 10 ⁻¹⁰	9,52	_	_	_	_	

Wartości stałej dysocjacji wybranych kwasów i zasad w temperaturze 25°C							
Kwasy nieorganiczne							
Wzór kwasu	Nazwa	Etap	K _a	pK _a			
HF	kwas fluorowodorowy		6,31 · 10 ⁻⁴	3,20			
HCI	kwas chlorowodorowy		10 ⁷	-7,0			
HBr	kwas bromowodorowy		10 ⁹	-9,0			
HI	kwas jodowodorowy		10 ¹⁰	-10,0			
H ₂ S	kwas siarkowodorowy	1 2	8,91 · 10 ⁻⁸ 10 ⁻¹⁹	7,05 19,0			
H ₂ Se	kwas selenowodorowy	1 2	1,29 · 10 ⁻⁴ 10 ⁻¹¹	3,89 11,0			
H ₂ Te	kwas tellurowodorowy	1 ^(18 °C) 2	2,51 · 10 ⁻³ 10 ⁻¹¹	2,6 11,0			
HCIO	kwas chlorowy(I)		3,98 · 10 ⁻⁸	7,40			
HCIO ₂	kwas chlorowy(III)		1,15 · 10 ⁻²	1,94			
HNO ₂	kwas azotowy(III)		5,62 · 10 ⁻⁴	3,25			
H ₂ SO ₃	kwas siarkowy(IV)	1 2	1,41 · 10 ⁻² 6,31 · 10 ⁻⁸	1,85 7,2			
H ₂ SO ₄	kwas siarkowy(VI)	2	1,02 · 10 ⁻²	1,99			
H ₃ BO ₃	kwas borowy (20 °C)	1	5,37 · 10 ⁻¹⁰	9,27			
H ₃ AsO ₄	kwas ortoarsenowy(V)	1 2 3	5,50 · 10 ⁻³ 1,74 · 10 ⁻⁷ 5,13 · 10 ⁻¹²	2,26 6,76 11,29			
H ₃ PO ₄	kwas ortofosforowy(V)	1 2 3	6,92 · 10 ⁻³ 6,17 · 10 ⁻⁸ 4,79 · 10 ⁻¹³	2,16 7,21 12,32			
H ₄ SiO ₄	kwas ortokrzemowy (30 °C)	1 2 3 4	$1,26 \cdot 10^{-10}$ $1,58 \cdot 10^{-12}$ 10^{-12} 10^{-12}	9,9 11,8 12 12			
H ₂ CO ₃	kwas węglowy	1 2	4,47 · 10 ⁻⁷ 4,68 · 10 ⁻¹¹	6,35 10,33			
	Kwasy organiczne						
H ₂ C ₂ O ₄	kwas szczawiowy	1 2	5,62 · 10 ⁻² 1,55 · 10 ⁻⁴	1,25 3,81			

Kwasy organiczne – cd.						
Wzór kwasu	Nazwa K _a					
НСООН	kwas mrówkowy	1,78 · 10 ⁻⁴	3,75			
CH₃COOH	kwas octowy	1,75 · 10 ⁻⁵	4,756			
CH₃CH₂COOH	kwas propanowy	1,35 · 10 ^{−5}	4,87			
C ₆ H ₅ COOH	kwas benzoesowy	6,25 · 10 ⁻⁵	4,204			
C ₆ H ₅ OH	fenol	1,02 · 10 ⁻¹⁰	9,99			
	Zasady					
Wzór zasady	Nazwa	K _b	pK _b			
NH ₃	amoniak	1,78 · 10 ⁻⁵	4,75			
CH ₃ NH ₂	metanoamina	4,57 · 10 ⁻⁴	3,34			
CH ₃ CH ₂ NH ₂	etanoamina	4,47 · 10 ⁻⁴	3,35			
CH ₃ CH ₂ CH ₂ NH ₂	propano-1-amina	3,47 ⋅ 10 ⁻⁴	3,46			
(CH ₃) ₂ NH	N-metylometanoamina	5,37 · 10 ⁻⁴	3,27			
(CH ₃) ₃ N	N,N-dimetylometanoamina	6,31 · 10 ⁻⁵	4,20			
C ₆ H ₅ NH ₂	anilina	7,41 · 10 ⁻¹⁰	9,13			

ŚREDNIE DŁUG	ŚREDNIE DŁUGOŚCI WIĄZAŃ W CZĄSTECZKACH W FAZIE GAZOWEJ								
Wiązania _l	pojedyncze	Wiązania wielokrotne							
Wiązanie	Długość, pm	Wiązanie	Długość, pm						
Br–Br	228	C=C	134						
C–C	153	C=O	121						
CI–CI	199	N=O	118						
H–H	74	O=O	121						
I–I	267	S=O	148						
O–H	96	N≡N	113						
H–F	92	C≡C	120						
H–CI	128	C≡N	116						
H–Br	141								
H–I	161								
C–O	142								
N-O	143								

Wartości iloczynu rozpuszczalności wybranych substancji w temperaturze 25°C										
Wzór	Nazwa	K _s	pK_s							
AgBr	bromek srebra(I)	5,35 · 10 ⁻¹³	12,27							
AgCl	chlorek srebra(I)	1,77 · 10 ⁻¹⁰	9,75							
AgI	jodek srebra(I)	8,52 · 10 ⁻¹⁷	16,07							
Ag ₃ PO ₄	ortofosforan(V) srebra(I)	8,89 · 10 ⁻¹⁷	16,05							
Ag ₂ SO ₄	siarczan(VI) srebra(I)	1,20 · 10 ⁻⁵	4,92							
AIPO ₄	ortofosforan(V) glinu	9,84 · 10 ⁻²¹	20,01							
BaCO ₃	węglan baru	2,58 · 10 ⁻⁹	8,59							
BaCrO ₄	chromian(VI) baru	1,17 · 10 ⁻¹⁰	9,93							
BaF ₂	fluorek baru	1,84 · 10 ⁻⁷	6,74							
BaSO ₄	siarczan(VI) baru	1,08 · 10 ⁻¹⁰	9,97							
CaCO ₃	węglan wapnia	3,36 · 10 ⁻⁹	8,47							
CaF ₂	fluorek wapnia	3,45 · 10 ⁻¹¹	10,46							
Ca(OH) ₂	wodorotlenek wapnia	5,02 · 10 ⁻⁶	5,30							
Ca ₃ (PO ₄) ₂	ortofosforan(V) wapnia	2,07 · 10 ⁻³³	32,68							
CaSO ₄	siarczan(VI) wapnia	4,93 · 10 ⁻⁵	4,31							
Cu ₃ (PO ₄) ₂	ortofosforan(V) miedzi(II)	1,40 · 10 ⁻³⁷	36,85							
FeCO ₃	węglan żelaza(II)	3,13 · 10 ⁻¹¹	10,50							
Fe(OH) ₂	wodorotlenek żelaza(II)	4,87 · 10 ⁻¹⁷	16,31							
Fe(OH) ₃	wodorotlenek żelaza(III)	2,79 · 10 ⁻³⁹	38,55							
KCIO ₄	chloran(VII) potasu	1,05 · 10-2	1,98							
MgCO ₃	węglan magnezu	6,82 · 10 ⁻⁶	5,17							
MgF ₂	fluorek magnezu	5,16 · 10 ⁻¹¹	10,29							
Mg(OH) ₂	wodorotlenek magnezu	5,61 · 10 ⁻¹²	11,25							
Mg ₃ (PO ₄) ₂	ortofosforan(V) magnezu	1,04 · 10 ⁻²⁴	23,98							
PbCl ₂	chlorek ołowiu(II)	1,70 · 10 ⁻⁵	4,77							
Pbl ₂	jodek ołowiu(II)	9,8 · 10 ⁻⁹	8,01							
PbSO ₄	siarczan(VI) ołowiu(II)	2,53 · 10-8	7,60							
Zn(OH) ₂	wodorotlenek cynku	3 · 10 ⁻¹⁷	16,52							
ZnCO ₃	węglan cynku	1,46 · 10 ⁻¹⁰	9,84							

	TABELA WARTOŚCI LOGARYTMÓW DZIESIĘTNYCH									
x	$\log x$	x	$\log x$	x	$\log x$	x	$\log x$			
0,01	-2,000	0,26	-0,585	0,51	0,51 -0,292		-0,119			
0,02	-1,699	0,27	-0,569	0,52	-0,284	0,77	-0,114			
0,03	-1,523	0,28	-0,553	0,53	-0,276	0,78	-0,108			
0,04	-1,398	0,29	-0,538	0,54	-0,268	0,79	-0,102			
0,05	-1,301	0,30	-0,523	0,55	-0,260	0,80	-0,097			
0,06	-1,222	0,31	-0,509	0,56	-0,252	0,81	-0,092			
0,07	-1,155	0,32	-0,495	0,57	-0,244	0,82	-0,086			
0,08	-1,097	0,33	-0,481	0,58	-0,237	0,83	-0,081			
0,09	-1,046	0,34	-0,469	0,59	-0,229	0,84	-0,076			
0,10	-1,000	0,35	-0,456	0,60	-0,222	0,85	-0,071			
0,11	-0,959	0,36	-0,444	0,61	-0,215	0,86	-0,066			
0,12	-0,921	0,37	-0,432	0,62	-0,208	0,87	-0,060			
0,13	-0,886	0,38	-0,420	0,63	-0,201	0,88	-0,056			
0,14	-0,854	0,39	-0,409	0,64	-0,194	0,89	-0,051			
0,15	-0,824	0,40	-0,398	0,65	-0,187	0,90	-0,046			
0,16	-0,796	0,41	-0,387	0,66	-0,180	0,91	-0,041			
0,17	-0,770	0,42	-0,377	0,67	-0,174	0,92	-0,036			
0,18	-0,745	0,43	-0,367	0,68	-0,167	0,93	-0,032			
0,19	-0,721	0,44	-0,357	0,69	-0,161	0,94	-0,027			
0,20	-0,699	0,45	-0,347	0,70	-0,155	0,95	-0,022			
0,21	-0,678	0,46	-0,337	0,71	-0,149	0,96	-0,018			
0,22	-0,658	0,47	-0,328	0,72	-0,143	0,97	-0,013			
0,23	-0,638	0,48	-0,319	0,73	-0,137	0,98	-0,009			
0,24	-0,620	0,49	-0,310	0,74	-0,131	0,99	-0,004			
0,25	-0,602	0,50	-0,301	0,75	-0,125	1,00	0,000			

			SKAŹNIŁ	KI KW.	ASOW	O-ZA	SADO	WE									
Wskaźnik	Zakres pH zmiany barwy	Barwa w roztv forma kwasowa	vorze wodnym forma zasadowa	0	1	2	3	4	5	6	7	8	9	10	11	12	1
oranż metylowy	3,1–4,4	czerwona	żółta				ı										
czerwień Kongo	3,0-5,0	niebieskofioletowa	czerwona														
zieleń bromokrezolowa	4,0–5,6	żółta	niebieska														
błękit bromotymolowy	6,0–7,6	żółta	niebieska														
czerwień fenolowa	6,4–8,0	żółta	czerwona														
czerwień obojętna	6,8–8,0	czerwona	żółta														
czerwień krezolowa	7,2–8,8	żółta	czerwona														
fenoloftaleina	8,0–10,0	bezbarwna	różowoczerwona														
tymoloftaleina	9,4–10,6	bezbarwna	niebieska														
błękit Nilu	10,1–11,1	niebieska	czerwona														

POTENCJAŁ STANDARDOWY REDUKCJI	
Równanie reakcji	E°, ∨
$Ag^+ + e \rightleftharpoons Ag$	0,800
$AgBr + e \rightleftharpoons Ag + Br^{-}$	0,071
$AgCI + e \rightleftharpoons Ag + CI^-$	0,222
$AI^{3+} + 3e \rightleftharpoons AI$	-1,676
$AI(OH)_{4}^{-} + 3e \rightleftharpoons AI + 4OH^{-}$	-2,310
Au ³⁺ + 3e ⇌ Au	1,498
Ba ²⁺ + 2e ⇌ Ba	-2,912
Be ²⁺ + 2e ⇌ Be	-1,847
Bi ³⁺ + 3e ⇌ Bi	0,308
$Br_2 + 2e \rightleftharpoons 2 Br^-$	1,066
$BrO_3^- + 6H^+ + 6e \rightleftharpoons Br^- + 3H_2O$	1,423
$BrO_3^- + 3H_2O + 6e \rightleftharpoons Br^- + 6OH^-$	0,61
$CO_2 + 2H^+ + 2e \rightleftharpoons HCOOH$	-0,199
Ca ²⁺ + 2e ⇌ Ca	-2,868
Cd ²⁺ + 2e ⇌ Cd	-0,403
$Cd(OH)_{\Delta}^{2-} + 2e \rightleftharpoons Cd + 4OH^{-}$	-0,658
Cl ₂ + 2e ⇌ 2Cl ⁻	1,358
$CIO_3^- + 6H^+ + 6e \rightleftharpoons CI^- + 3H_2O$	1,451
$CIO_3^- + 3H_2O + 6e \rightleftharpoons CI^- + 6OH^-$	0,62
Co ²⁺ + 2e ⇌ Co	-0,28
$Co^{3+} + e \rightleftharpoons Co^{2+}$	1,92
$Cr^{2+} + 2e \rightleftharpoons Cr$	-0,913
$Cr^{3+} + e \rightleftharpoons Cr^{2+}$	-0,407
Cr³+ + 3e ⇌ Cr	-0,744
$Cr_2O_7^{2-} + 14H^+ + 6e \Rightarrow 2Cr^{3+} + 7H_2O$	1,36
$CrO_4^{2-} + 4H_2O + 3e \rightleftharpoons Cr(OH)_3 + 5OH^-$	-0,13
Cs ⁺ + e ⇌ Cs	-3,026
Cu ²⁺ + 2e ⇌ Cu	0,342
$Cu_2O + H_2O + 2e \rightleftharpoons 2Cu + 2OH^-$	-0,360
$2Cu(OH)_2 + 2e \rightleftharpoons Cu_2O + 2OH^- + H_2O$	-0,080
$F_2 + 2e \rightleftharpoons 2F^-$	2,866
Fe ²⁺ + 2e ⇌ Fe	-0,447
Fe ³⁺ + 3e ⇌ Fe	-0,037
$Fe^{3+} + e \rightleftharpoons Fe^{2+}$	0,771

Potencjał standardowy redukcji – cd.							
Równanie reakcji	E°, V						
2H ⁺ + 2e ⇌ H ₂	0,000						
$2H_2O + 2e \rightleftharpoons H_2 + 2OH^-$	-0,828						
$H_2O_2 + 2H^+ + 2e \rightleftharpoons 2H_2O$	1,776						
Hg ²⁺ + 2e ⇌ Hg	0,851						
$l_2 + 2e \rightleftharpoons 2l^-$	0,536						
$IO_3^- + 6H^+ + 6e \rightleftharpoons I^- + 3H_2O$	1,085						
K+ + e ⇌ K	-2,931						
Li ⁺ + e ⇌ Li	-3,040						
$Mg^{2+} + 2e \rightleftharpoons Mg$	-2,372						
$Mn^{2+} + 2e \rightleftharpoons Mn$	-1,185						
$MnO_2 + 4H^+ + 2e \rightleftharpoons Mn^{2+} + 2H_2O$	1,224						
$MnO_4^- + e \rightleftharpoons MnO_4^{2-}$	0,558						
$MnO_4^- + 8H^+ + 5e \rightleftharpoons Mn^{2+} + 4H_2O$	1,507						
$MnO_4^- + 2H_2O + 3e \Rightarrow MnO_2 + 4OH^-$	0,595						
$MnO_4^{2-} + 2H_2O + 2e \rightleftharpoons MnO_2 + 4OH^-$	0,60						
$NO_3^- + 4H^+ + 3e \Rightarrow NO + 2H_2O$	0,957						
$2NO_3^- + 4H^+ + 2e \rightleftharpoons N_2O_4 + 2H_2O$	0,803						
$Na^+ + e \rightleftharpoons Na$	-2,71						
$Ni^{2+} + 2e \rightleftharpoons Ni$	-0,257						
$O_2 + 2H^+ + 2e \rightleftharpoons H_2O_2$	0,695						
$O_2 + 4H^+ + 4e \rightleftharpoons 2H_2O$	1,229						
$O_2 + 2H_2O + 2e \rightleftharpoons H_2O_2 + 2OH^-$	-0,146						
$O_2 + 2H_2O + 4e \rightleftharpoons 4OH^-$	0,401						
$Pb^{2+} + 2e \rightleftharpoons Pb$	-0,126						
$PbO_2 + 4H^+ + 2e \rightleftharpoons Pb^{2+} + 2H_2O$	1,455						
$PbO_2 + SO_4^{2-} + 4H^+ + 2e \Rightarrow PbSO_4 + 2H_2O$	1,691						
$PbSO_4 + 2e \rightleftharpoons Pb + SO_4^{2-}$	-0,359						
$Pt^{2+} + 2e \rightleftharpoons Pt$	1,18						
$Rb^+ + e \rightleftharpoons Rb$	-2,98						
$S + 2e \rightleftharpoons S^{2-}$	-0,476						
$SO_4^{2-} + H_2O + 2e \rightleftharpoons SO_3^{2-} + 2OH^-$	-0,93						
$\operatorname{Sn}^{2+} + 2e \rightleftharpoons \operatorname{Sn}$	-0,138						
$Sn^{4+} + 2e \rightleftharpoons Sn^{2+}$	0,151						
$Sr^{2+} + 2e \rightleftharpoons Sr$	-2,899						
$Zn^{2+} + 2e \rightleftharpoons Zn$	-0,762						
$Zn(OH)_4^{2-} + 2e \rightleftharpoons Zn + 4OH^-$	-1,199						

WARTOŚCI STANDARDOWEJ MOLOWEJ ENTALPII TWORZENIA								
Wzór związku	ΔH_t^0 , kJ \cdot mol ⁻¹							
Al ₂ O ₃ (s)	-1675,7							
CO (g)	-110,5							
CO ₂ (g)	-393,5							
CaC ₂ (s)	-59,8							
CaO(s)	-634,9							
Ca(OH) ₂ (s)	-985,2							
Cr ₂ O ₃ (s)	-1139,7							
FeO (s)	-272,0							
Fe ₂ O ₃ (s)	-824,2							
FeS (s)	-100,0							
HBr (g)	-36,3							
HCI (g)	-92,3							
HF (g)	-273,3							
HI(g)	26,5							
H ₂ O (c)	-285,8							
H ₂ O (g)	-241,8							
H ₂ S (g)	-20,6							
MgO (s)	-601,6							
MnO ₂ (s)	-520,0							
NH ₃ (g)	-45,9							
NO (g)	91,3							
NO ₂ (g)	33,2							
NaCl (s)	-411,2							
SiO ₂ (s)	-910,7							

Objętość 1 mola gazu doskonałego w warunkach normalnych $t = 0$ °C oraz $p = 1013,25$ hPa	$V = 22,41 \text{ dm}^3 \cdot \text{mol}^{-1}$
Stała Faradaya	$F = N_A \cdot e F \approx 9,6485 \cdot 10^4 \mathrm{C} \cdot \mathrm{mol}^{-1}$

WARTOŚCI STANDARDOWEJ MOLOWEJ ENTALPII SPALANIA								
Nazwa związku	ΔH_s^0 , kJ \cdot mol ⁻¹							
benzen (c)	-3267							
butan (g)	-2878							
etan (g)	-1561							
etanol (c)	-1368							
eten (g)	-1411							
etyn (g)	-1300							
glicerol (c)	-1654							
glukoza (s)	-2802							
heksan (c)	-4163							
kwas benzoesowy (s)	-3228							
kwas etanowy (c)	-875							
kwas stearynowy (s)	-11280							
metan (g)	-891							
metanol (c)	-726							
pentan (c)	-3509							
propan (g)	-2219							
sacharoza (s)	-5643							
toluen (c)	-3920							

Na podstawie: https://webbook.nist.gov

Logarytmem $\log_a b$ liczby b>0 przy podstawie a (a>0 i $a\neq 1$) nazywamy wykładnik c potęgi, do której należy podnieść a, aby otrzymać b:

$$\log_a b = c$$
 wtedy i tylko wtedy, gdy $a^c = b$

Dla dowolnych liczb rzeczywistych x>0, y>0 oraz r prawdziwe są równości: $\log_a(x\cdot y)=\log_a x+\log_a y$ $\log_a\left(\frac{x}{y}\right)=\log_a x-\log_a y$ $\log_a x^r=r\cdot\log_a x$

Zapisy $\log x$ oraz $\lg x$ oznaczają $\log_{10} x$.

Równanie kwadratowe $ax^2 + bx + c = 0$, gdzie $a \neq 0$, ma rozwiązania rzeczywiste wtedy i tylko wtedy, gdy $\Delta = b^2 - 4ac \geq 0$. Rozwiązania te wyrażają się wzorami:

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 , $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$

	Rozpuszczalność soli i wodorotlenków w wodzie w temperaturze 25 °C, podane w g/100 g H₂O											
Jon	CI [−]	Br ⁻	I ⁻	NO_3^-	CH ₃ COO-	S ²⁻	SO ₃ ²⁻	SO ₄ ²⁻	CO ₃ ²⁻	CrO ₄ ²⁻	PO ₄ ³⁻	OH⁻
Ag⁺	Т	Т	Т	R (234)	S (1,0) ²⁰ °C	Т	Т	S (0,8)	Т	Т	Т	$T \rightarrow d$
Al³+	R (45,1)	$R \to d$	$R \rightarrow d$	R (68,9)	d	d	_	R (38,5)	_	Т	Т	Т
Ba ²⁺	R (37,0)	R (100)	R (221)	R (10,3)	R (79,2)	$R \rightarrow d$	Т	Т	Т	Т	Т	R (4,9)
Ca ²⁺	R (81,3)	R (156)	R (215)	R (144)	R (34,7)	$T \rightarrow d$	Т	S (0,2)	Т	S (2,0)	Т	S (0,2) ^{20 °C}
Cr³+	R	R	R	R (81,2)	R	$T \rightarrow d$		R (64)	_	Т	Т	Т
Cu ²⁺	R (75,7)	R (126)	_	R (145)	R (6,8)	Т	Т	R (22)	$T \rightarrow d$	Т	Т	Т
Fe ²⁺	R (65,0)	R (120)	R	R (87,5)	R	Т	Т	R (29,5)	Т	_	Т	Т
Fe ³⁺	R (91,2)	R (455)	d	R (87,2)	_	d	_	R (440) ^{20 °C}	_	Т	Т	Т
K⁺	R (35,5)	R (67,8)	R (148)	R (38,3)	R (269)	$R \rightarrow d$	R (106)	R (12,0)	R (111)	R (65,0)	R (106)	R (121)
Mg ²⁺	R (56,0)	R (102)	R (146)	R (71,2)	R (65,6)	d	S (0,5)	R (35,7)	Т	R (54,8)	Т	Т
Mn ²⁺	R (77,3)	R (151)	$R \rightarrow d$	R (161)	R (41)	Т	Т	R (63,7)	Т	Т	Т	Т
NH ₄ ⁺	R (39,5)	R (78,3)	R (178)	R (213)	R (148) ^{4 °C}	$R \rightarrow d$	R (64,2)	R (76,4)	$R \rightarrow d$	R (37,0)	R (18,3)	R (44,9)
Na⁺	R (36,0)	R (94,6)	R (184)	R (91,2)	R (50,4)	R (20,6)	R (30,7)	R (28,1)	R (30,7)	R (87,6)	R (14,4)	R (100)
Pb ²⁺	S (1,1)	S (1,0)	S (0,1)	R (59,7)	R (44,3) ^{20°C}	Т	Т	Т	Т	Т	Т	Т
Sn ²⁺	R (178) ¹⁰ °C	R (85) ^{0 °C}	S (0,98) ^{20 °C}	$R \rightarrow d$	_	Т		R (18,8) 19°C	_	_	Т	Т
Zn ²⁺	R (408)	R (488)	R (438)	R (120)	R (30,0) ^{20°C}	Т	S (0,2)	R (57,7)	Т	R (3,1)	Т	Т

R – substancja dobrze rozpuszczalna (>2 g/100 g H₂O)

S – substancja średnio rozpuszczalna (0,1 g–2 g/100 g H₂O)

T – substancja trudno rozpuszczalna (<0,1 g/100 g H₂O)

d – związek ulega rozkładowi w wodzie

⁻ związek jest nietrwały, nie został otrzymany lub brak jest danych

UKŁAD OKRESOWY PIERWIASTKÓW

1																	18
1 H Wodór 1,008 2,2	2						_					13	14	15	16	17	2 He Hel 4,00
3 Li Lit 6,94 1,0	4Be Beryl 9,01 1,6		(licz	zba atomo zba porzą	dkowa)	Wa	Ca — apń — .08 —		Symbol pie Nazwa Masa ator			5 B Bor 10,81 2,0	6 C Węgiel 12,01 2,6	7 N Azot 14,01 3,0	8O Tlen 16,00 3,4	9 F Fluor 19,00 4,0	10 Ne Neon 20,18
11 Na Sód 22,99 0,9	12 Mg Magnez 24,31 1,3	3		ktroujemn kali Paulir 5			,0 8	9	10	11	12	13 AI Glin 26,98 1,6	14 Si Krzem 28,09 1,9	15 P Fosfor 30,97 2,2	16 S Siarka 32,06 2,6	17 Cl Chlor 35,45 3,2	18 Ar Argon 39,95
19 K Potas 39,10 0,8	20 Ca Wapń 40,08 1,0	21 SC Skand 44,96 1,4	22 Ti Tytan 47,87 1,5	23 V Wanad 50,94 1,6	24 Cr Chrom 52,00 1,7	25 Mn Mangan 54,94 1,6	26 Fe Żelazo 55,85 1,8	27 Co Kobalt 58,93 1,9	28 Ni Nikiel 58,69 1,9	29 Cu Miedź 63,55 1,9	30 Zn Cynk 65,38 1,7	31 Ga Gal 69,72 1,8	32 Ge German 72,63 2,0	33 As Arsen 74,92 2,2	34 Se Selen 78,97 2,6	35 Br Brom 79,90 3,0	36 Kr Krypton 83,80
37 Rb Rubid 85,47 0,8	38 Sr Stront 87,62 1,0	39 Y Itr 88,91 1,2	40 Zr Cyrkon 91,22 1,3	41 Nb Niob 92,91 1,6	42 Mo Molibden 95,95 2,2	43 Tc Technet [97,91] 2,1	44 Ru Ruten 101,07 2,2	45 Rh Rod 102,91 2,3	46 Pd Pallad 106,42 2,2	47 Ag Srebro 107,87 1,9	48 Cd Kadm 112,41 1,7	49 ln Ind 114,82 1,8	50 Sn Cyna 118,71 2,0	51 Sb Antymon 121,76 2,1	52 Te Tellur 127,60 2,1	53 Jod 126,90 2,7	54Xe Ksenon 131,29
55 Cs Cez 132,91 0,8	56 Ba Bar 137,33 0,9	57 La * Lantan 138,91 1,1	72 Hf Hafn 178,49 1,3	73 Ta Tantal 180,95 1,5	74 W Wolfram 183,84 1,7	75 Re Ren 186,21 1,9	76 Os Osm 190,23 2,2	77 r Iryd 192,22 2,2	78 Pt Platyna 195,08 2,2	79 Au Złoto 196,97 2,4	80 Hg Rtęć 200,59 1,9	81 TI Tal 204,38 1,8	82 Pb Ołów 207,2 1,8	83 Bi Bizmut 208,98 1,9	84 Po Polon [208,98] 2,0	85 At Astat [209,99] 2,2	86 Rn Radon [222,02]
87 Fr Frans [223,02] 0,7	88 Ra Rad [226,03] 0,9	89 Ac ** Aktyn [227,03]	104 Rf Rutherford [267,12]	105 Db Dubn [268,13]	106 Sg Seaborg [271,13]	107 Bh Bohr [272,14]	108 HS Has [270,13]	109 Mt Meitner [276,15]	110 DS Darmsztadt [281,16]	111 Rg Roentgen [280,17]	112 Cn Kopernik [285,18]	113 Nh Nihon [284,18]	114 FI Flerow [289,19]	115 MC Moskow [288,19]	116 LV Liwermor [293,20]	117 TS Tenes [292,21]	118 Og Oganeson [294,21]
METAL PÓŁME			*	58 Ce Cer 140,12	59 Pr Prazeodym 140,91	60Nd Neodym 144,24	61 Pm Promet [144,91]	62 Sm Samar 150,36	63 Eu Europ 151,96	64 Gd Gadolin 157,25	65 Tb Terb 158,93	66 Dy Dysproz 162,50	67 Ho Holm 164,93	68 Er Erb 167,26	69 Tm Tul 168,93	70 Yb Iterb 173,05	71 LU Lutet 174,97
NIEME			**	90 Th Tor 232,04	91 Pa Protaktyn 231,04	92 U Uran 238,03	93 Np Neptun [237,05]	94 Pu Pluton [244,06]	95 Am Ameryk [243,06]	96 Cm Kiur [247,07]	97 Bk Berkel [247,07]	98 Cf Kaliforn [251,08]	99 Es Einstein [252,08]	100 Fm Ferm [257,10]	101 Md Mendelew [258,10]	102 NO Nobel [259,10]	103 Lr Lorens [262,11]
GAZY SZLACI	HETNE		I.														

Dla pierwiastków promieniotwórczych, które nie mają stabilnych izotopów, podano masę atomową najtrwalszego izotopu.

BRAK

PRZYPORZĄDKOWANIA

No modetavia CRO Handbook of Chamiety and Physics Oth Edition

Na podstawie: *CRC Handbook of Chemistry and Physics* 97th *Edition*, CRC Press 2017 oraz https://www.nist.gov/pml/atomic-weights-and-isotopic-compositions-relative-atomic-masses

Uwaga: W poniższym zestawie przedstawiono wybrane wzory oraz stałe fizyczne. Przy każdym wzorze zapisano nazwę wielkości lub prawa albo zjawiska, którego wzór dotyczy. Symboli wszystkich wielkości występujących we wzorach nie opisano – przyjęto dla nich powszechnie używane oznaczenia. Podobnie nie opisano warunków i zakresów stosowalności przedstawionych wzorów. Wartości wielkości wektorowych zapisano bez symbolu wektora.

KINEMATY	YKA
prędkość	$\vec{v} = \frac{\Delta \vec{r}}{\Delta t}$
przyśpieszenie	$\vec{a} = \frac{\Delta \vec{v}}{\Delta t}$
prędkość kątowa	$\omega = \frac{\Delta \alpha}{\Delta t}$
związek między wartościami prędkości kątowej i liniowej	$v = \omega r$
związki w ruchu jednostajnym po okręgu	$\omega = \frac{2\pi}{T} \; ; T = \frac{1}{f}$
przyśpieszenie dośrodkowe	$a_{do} = \frac{v^2}{r} = v\omega = \omega^2 r$
przyśpieszenie kątowe	$\epsilon = \frac{\Delta\omega}{\Delta t}$
przyśpieszenie styczne	$a_{st} = \epsilon r$
prędkość w ruchu jednostajnie zmiennym prostoliniowym	$\vec{v} = \vec{v}_0 + \vec{a}t$
droga w ruchu jednostajnie zmiennym prostoliniowym	$s = v_0 t + \frac{1}{2}at^2$

SIŁY TARCIA I SIŁA SPRĘŻYSTOŚCI				
siła tarcia kinetycznego	$T_k = \mu_k F_N$			
siła tarcia statycznego	$T_s \leq \mu_s F_N$			
siła sprężystości	$\vec{F}_{s} = -k\vec{x}$			
energia potencjalna sprężystości	$E_{pot} = \frac{1}{2}kx^2$			

DYNAMIKA						
pęd	$\vec{p}=m\vec{v}$					
II zasada dynamiki (w układzie inercjalnym)	$m\vec{a} = \vec{F}$; $\frac{\Delta \vec{p}}{\Delta t} = \vec{F}$					
wartość momentu pędu punktu materialnego	$L = rp \sin \sphericalangle(\vec{r}, \vec{p})$					
wartość momentu siły	$M = rF \sin \sphericalangle \left(\vec{r}, \vec{F} \right)$					
moment bezwładności	$I = \sum_{i=1}^{n} m_i r_i^2$					
związek między wartościami prędkości kątowej i momentu pędu bryły sztywnej	$L = I\omega$					
II zasada dynamiki ruchu obrotowego (zapis skalarny)	$I\epsilon=M$					
praca siły, praca momentu siły	$W_F = F\Delta r \cos \sphericalangle (\vec{F}, \Delta \vec{r})$ $W_M = M\Delta \alpha$					
moc	$P = \frac{W}{\Delta t}$					
energia kinetyczna ruchu postępowego	$E_{kin} = \frac{1}{2}mv^2$					
energia kinetyczna ruchu obrotowego	$E_{kin} = \frac{1}{2}I\omega^2$					

GRAWITACJA I ELEMEI	NTY ASTRONOMII
prawo powszechnego ciążenia	$F_g = \frac{Gm_1m_2}{r^2}$
natężenie pola grawitacyjnego, przyśpieszenie grawitacyjne	$\vec{\gamma} = \frac{\vec{F}_g}{m}$; $\vec{a}_g = \vec{\gamma}$ $E_{pot} = -\frac{Gm_1m_2}{r}$
energia potencjalna grawitacji	$E_{pot} = -\frac{Gm_1m_2}{r}$
zmiana energii potencjalnej przy powierzchni Ziemi	$\Delta E_p = mg\Delta h$
prędkość na orbicie kołowej	prędkość ucieczki
$v_{or} = \sqrt{\frac{GM}{r}}$	$v_u = \sqrt{\frac{2GM}{r}}$
orbita eliptyczna a – półoś wielka r_P – najmniejsza odległość do centrum r_A – największa odległość do centrum	r_A A A A A A A A A A
II prawo Keplera i zachowanie momentu pędu \vec{L} na orbicie (ΔS – pole zakreślone przez promień wodzący planety)	$\frac{\Delta S}{\Delta t} = \text{const};$ $\vec{L} = \overline{\text{const}}$
III prawo Keplera (a jest promieniem orbity kołowej lub półosią wielką elipsy)	$\frac{T_1^2}{a_1^3} = \frac{T_2^2}{a_2^3} = \text{const}$
prawo Hubble'a	v = Hd

DRGANIA, FALE MECHANICZNE I ŚWIETLNE

równania ruchu	$x(t) = A\sin(\omega t + \varphi_0)$			
harmonicznego	$v(t) = A \omega \cos(\omega t + \varphi_0)$			
	$a(t) = -A\omega^2 \sin(\omega t + \varphi_0)$			
$x_{max} = A$	$v_{max} = A\omega$ $a_{max} = A\omega^2$			

siła harmoniczna	$\vec{F}_h = -m\omega^2$
------------------	--------------------------

częstość kołowa małych drgań masy na sprężynie i wahadła matematycznego
$$\omega = \sqrt{\frac{k}{m}}\;; \quad \omega = \sqrt{\frac{g}{l}}$$
 całkowita energia mechaniczna oscylatora
$$E = E_k + E_p = \frac{1}{2} m A^2 \omega^2$$

mechaniczna oscylatora
$$E=E_k+E_p=\frac{1}{2}mA^-\omega^-$$
 związki między parametrami ruchu fali $v=\frac{\lambda}{T}=\lambda f$; $T=\frac{1}{f}$

faza fali w punkcie
$$x$$
 i chwili t $\varphi(t) = \frac{2\pi}{T}t - \frac{2\pi}{\lambda}x + \varphi_0$

$$\begin{array}{ll} \text{warunki maksymalnego} & \varphi_2-\varphi_1=2\pi n \\ \text{wzmocnienia i osłabienia fali} & \varphi_2-\varphi_1=2\pi \left(n+\frac{1}{2}\right) \end{array}$$

natężenie fali, jego związek z energią
$$E$$
 i amplitudą A fali $I=\frac{E}{S\Delta t}$; $I{\sim}A^2$

zależność natężenia fali kulistej od odległości
$$I \sim \frac{1}{r^2}$$

załamanie fali na granicy ośrodków 1 i 2
$$\frac{\sin \alpha_1}{\sin \alpha_2} = \frac{v_1}{v_2} = \frac{n_2}{n_1}$$

wzory przybliżone na efekt Dopplera dla fali dźwiękowej i świetlnej w kierunku prędkości źródła:

$$\begin{array}{c|c} \dot{z} \dot{r} \dot{o} \dot{d} \dot{l} o \ o \ d \ d \ a \ się \\ v_{\dot{z}r} \ll v_d \\ f_{ob} \approx f_{\dot{z}r} \left(1 - \frac{|v_{\dot{z}r} - v_{ob}|}{v_d} \right) \\ v_{\dot{z}r} \ll c \\ f_{ob} \approx f_{\dot{z}r} \left(1 - \frac{v_{\dot{z}r} - v_{ob}|}{v_d} \right) \\ v_{\dot{z}r} \ll c \\ f_{ob} \approx f_{\dot{z}r} \left(1 - \frac{v_{\dot{z}r}}{c} \right) \\ \end{array}$$

DRGANIA, FALE MECHANICZNE I ŚWIETLNE - CD.

wzory ścisłe na efekt Dopplera dla fali dźwiękowej i świetlnej w kierunku prędkości źródła

$$f_{ob} = f_{\acute{z}r} \frac{v_d \mp v_{ob}}{v_d \pm v_{\acute{z}r}}$$

$$f_{ob} = f_{\acute{z}r} \sqrt{\frac{c \mp v_{\acute{z}r}}{c \pm v_{\acute{z}r}}}$$

siatka dyfrakcyjna

 $d \sin \alpha_n = n\lambda$

światło po przejściu przez polaryzator o osi polaryzacji P

amplitudy pola elektrycznego: \vec{E}_0 – padającego na polaryzator \vec{E}_P – po przejściu przez polaryzator

OPTYKA GEOMETRYCZNA

kąt graniczny dla przejścia światła z ośrodka 2 do 1	$\sin \alpha_{2 \text{ gr}} = \frac{n_1}{n_2}$			
warunek polaryzacji światła przy odbiciu	$\alpha_{\text{pad1}} + \alpha_{\text{zał2}} = 90^{\circ}$			
równanie soczewki	1 1 1			

zwierciadła:	$\frac{-}{x}$	$+{y} =$	\overline{f}	;	x >	> 0
y > 0 , $y < 0$ – położenie obra	azu r	zecz	ywis	steg	0, [oozo

y>0, y<0 – położenie obrazu rzeczywistego, pozornego f>0 – ogniskowa soczewki/zwierciadła skupiającego f<0 – ogniskowa soczewki/zwierciadła rozpraszającego

wzór na ogniskową soczewki $\frac{1}{f} = \left(\frac{n_{socz}}{n_{otocz}} - 1\right) \left(\pm \frac{1}{R_1} \pm \frac{1}{R_2}\right)$

(+)/(-) - przy promieniu powierzchni wypukłej/wklęsłej

HYDROSTATYKA, AEROSTATYKA

siła parcia i ciśnienie	$F = p\Delta S, \vec{F} \perp \Delta S$
zmiana ciśnienia hydro- i aerostatycznego	$\Delta p = \rho g \Delta h$
siła wyporu	$F_{wyp} = \rho V_{zan} g$
17	fai aiala

 V_{zan} – objętość zanurzonej części ciała ρ – gęstość cieczy (lub gazu)

TERMODYNAMIKA

I zasada termodynamiki

 $\Delta U = Q + W$

praca siły parcia,

gdy p = const

 $|W| = p|\Delta V|$

związek pracy siły parcia z polem pod wykresem zależności p(V) – ciśnienia od objętości

 $|W_{AB}| = \text{Pole pod } AB$

ciepło właściwe

$$c_w = \frac{Q}{m\Delta T}$$

ciepło molowe

$$C = \frac{Q}{n\Delta T}$$

ciepło przemiany fazowej

$$L = \frac{Q}{m}$$

średnia energia ruchu cząsteczki aazu doskonałego

$$E_{\pm r} = \frac{s}{2} k_B T$$

 s – liczba współrzędnych opisujących położenie cząsteczki w przestrzeni

równanie stanu gazu doskonałego (Clapeyrona)

pV = nRT

związek między ciepłami molowymi gazu doskonałego

 $C_p = C_V + R$

praca i ciepło w cyklu silnika i pompy cieplnei

 $0 = Q_{calk} + W_{calk}$

 Q_{calk} – całkowite ciepło wymienione w cyklu z otoczeniem W_{calk} – całkowita praca mechaniczna wykonana w cyklu (nad i przez otoczenie)

sprawność silnika cieplnego $\eta = \frac{|W_{calk}|}{|Q_{pob}|} = \frac{|Q_{pob}| - |Q_{odd}|}{|Q_{pob}|}$

ELEKTROSTATYKA					
prawo Coulomba	$F_e = \frac{kq_1q_2}{r^2} \; ; \; \; k = \frac{1}{4\pi\varepsilon_0}$				
natężenie pola elektrycznego	$\vec{E} = \frac{\vec{F}_e}{q}$				
wartość natężenia pola na zewnątrz sferycznego rozkładu ładunku	$E = \frac{kQ}{r^2}$				
napięcie pomiędzy punktami A i B pola elektrycznego	$U_{AB} = rac{W_{AB}}{q}$ W_{AB} - praca przeciw sile elektrycznej				
związek napięcia z potencjałami elektrycznymi	$U_{AB} = V_B - V_A$				
energia potencjalna elektryczna układu ładunków	$E_{pot} = \frac{kq_1q_2}{r}$				
związek napięcia z natężeniem w polu jednorodnym	U = Ed				
natężenie pola między płytami naładowanymi różnoimiennie	$E = \frac{\sigma}{\varepsilon_0}$; $\sigma = \frac{Q}{\Delta S} = \text{const}$				
natężenie pola elektrycznego wewnątrz dielektryka	$ec{E} = rac{ec{E}_0}{arepsilon_r} \qquad rac{ec{E}_0}{\mathrm{zewnetrzne}}$ - nateżenie zewnętrzne				
pojemność kondensatora	$C = \frac{Q}{U}$				
pojemność kondensatora płaskiego z dielektrykiem	$C = \varepsilon_r \varepsilon_0 \frac{S}{d}$				
energia elektryczna kondensatora	$W = \frac{Q^2}{2C} = \frac{1}{2}QU = \frac{1}{2}U^2C$				
własności pola wewnątrz i na powierzchni bryły przewodnika	$\vec{E}_{wew} = 0$; $\vec{E}_{pow} \perp \Delta S$				

PRĄD ELEKTRYCZNY					
natężenie prądu	$I = \frac{\Delta Q}{\Delta t}$				
definicja oporu elektrycznego przewodnika	$R = \frac{U}{I}$				
prawo Ohma (dla stałej temperatury przewodnika)	$\frac{U}{I} = \text{const}$				
opór przewodnika z drutu	$R = ho rac{l}{S}$ $ ho$ - opór właściwy				
moc prądu stałego wydzielona na oporniku	$P = UI = I^2 R = \frac{U^2}{R}$				
zależność oporu metali od temperatury (w pewnym zakresie temperatur)	$R(T) = R(T_0)(1 + \alpha \Delta T);$ $\Delta T = T - T_0$				
dodawanie napięć pomiędzy punktami przewodnika	$U_{AC} = U_{AB} + U_{BC}$				
II prawo Kirchhoffa dla obwodu (lub oczka)	$\sum_{i=1}^{k} (\pm \mathcal{E}_i) - \sum_{j=1}^{n} (\pm U_j) = 0$				
związek siły elektromotorycznej z napięciem na baterii	$\mathcal{E} = U + IR_{w}$				
opór zastępczy oporników połączonych szeregowo	$R_z = \sum_{i=1}^n R_i$				
opór zastępczy oporników połączonych równolegle	$\frac{1}{R_Z} = \sum_{i=1}^n \frac{1}{R_i}$				

ELEMENTY MECHANIKI RELATYWISTYCZNEJ

energia całkowita ciała energia całkowita ciała poruszającego się w układzie $E=\frac{mc^2}{\sqrt{1-\frac{v^2}{c^2}}}$; $v=\frac{\Delta x}{\Delta t}$ inercjalnym (t,x)

$$E = \frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}} \quad ; \quad v = \frac{\Delta x}{\Delta t}$$

równoważność masy i energii spoczynkowej

$$E_0 = mc^2$$

związek między zmianą masy układu a energią pochłonieta / $\Delta E = \Delta mc^2$ emitowaną przez układ

pęd

$$p = \frac{mv}{\sqrt{1 - \frac{v^2}{c^2}}} \quad ; \quad v = \frac{\Delta x}{\Delta t}$$

niezmiennik relatywistyczny (dynamiczny)

$$E_0^2 = E^2 - (cp)^2$$

energia kinetyczna poruszającego się ciała

$$E_{kin} = E - E_0$$

ELEMENTY FIZYKI AT	OMOWEJ I JĄDROWEJ
prawo Wiena (b – stała Wiena)	$\lambda_{max}T = b$
prawo Stefana-Boltzmanna (moc wypromieniowana z jednostki powierzchni ciała)	$I = \sigma T^4 \; ; [I] = \frac{W}{m^2}$
energia i pęd fotonu	$E_f = hf = \frac{hc}{\lambda}$; $p_f = \frac{h}{\lambda}$
zjawisko fotoelektryczne	$E_f = W_{el} + E_{kin\;el\;max}$
emisja lub absorpcja fotonu przez atom (E_m,E_n – energie elektronu w atomie)	$E_m - E_n = h f_{mn} + E_{\text{odrzutu}}$ $m > n$
poziomy energetyczne atomu wodoru	$E_n = -\frac{13,606 \text{ eV}}{n^2}$
długość fali de Broglie'a cząstki swobodnej	$\lambda = \frac{h}{p}$
zasady zachowania (niektóre) w procesach na poziomie	 zachowanie ładunku układu zachowanie energii układu zachowanie pedu układu

fundamentalnym

• zachowanie pędu układu

 zachowanie liczby nukleonów w układzie

statystyczne prawo rozpadu promieniotwórczego

$$N(t) = N_0 \left(\frac{1}{2}\right)^{\frac{t}{T}}$$

WYBRANE ZALEŻNOŚCI środek masy układu n punktów materialnych związek drogi z polem pod wykresem zależności v(t) – prędkości od czasu $s_{AB} = \text{Pole pod } AB$ (0,0)związek pracy z polem pod wykresem zależności F(s) – $|W_{AB}|$ siły od drogi (0,0) $|W_{AB}| = \text{Pole pod } AB$ związek pracy z polem pod wykresem zależności P(t) – mocy od czasu (0,0) $|W_{AB}| = \text{Pole pod } AB$

dodawanie wektorów

odejmowanie wektorów

rozkład na składowe

Podstawowe jednostki układu SI							
nazwa metr kilogram sekunda amper kelwin mol kandel							
symbol	m	kg	S	Α	K	mol	cd
wielkość	długość	masa	czas	natężenie prądu	temperatura	liczność materii	światłość

	Przedrostki jednostek miar																				
mnożnik	10 ²⁴	10 ²¹	10 ¹⁸	10 ¹⁵	10 ¹²	10 ⁹	10 ⁶	10 ³	10 ²	10 ¹	10 ⁰	10 ⁻¹	10 ⁻²	10 ⁻³	10 ⁻⁶	10 ⁻⁹	10 ⁻¹²	10 ⁻¹⁵	10 ⁻¹⁸	10 ⁻²¹	10 ⁻²⁴
nazwa	jotta	zetta	eksa	peta	tera	giga	mega	kilo	hekto	deka		decy	centy	mili	mikro	nano	piko	femto	atto	zepto	jokto
oznaczenie	Υ	Z	Е	Р	T	G	М	k	h	da		d	С	m	μ	n	р	f	а	Z	у

Uwaga: Niektóre wartości stałych fizycznych oraz parametrów astronomicznych podano zaokrąglone z możliwie największą dokładnością – taką, aby ostatnia cyfra zaokrąglenia nie zmieniała się przy uwzględnieniu niepewności pomiaru. Wartości podano na podstawie: M. Tanabashi et al. (Particle Data Group), Physical Review D 98, 030001 (2018) and 2019 update.

Wartości wybranych stałych fizycznych					
prędkość światła w próżni	c = 299 792 458 m/s (wartość dokładna)				
stała Plancka	$h = 6,62607015\cdot10^{-34}\text{J}\cdot\text{s}$ (wartość dokładna)				
ładunek elementarny	$e = 1,602 \ 176 \ 634 \cdot 10^{-19} \ C \ (wartość dokładna)$				
stała Boltzmanna	$k_B = 1,380 \ 649 \cdot 10^{-23} \ \text{J/K (wartość dokładna)}$				
stała Avogadro	$N_A = 6,022 \ 140 \ 76 \cdot 10^{23} \ \text{mol}^{-1} \ \text{(wartość dokładna)}$				
uniwersalna stała gazowa	R = 8,314 462 618 2 J/(K·mol) (wartość dokładna)				
stała grawitacji	$G = 6,674 \cdot 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$				
przenikalność magnetyczna próżni	$\mu_0 = 4\pi \cdot 10^{-7} \text{ N/A}^2$				
przenikalność elektryczna próżni, stała elektryczna	$\varepsilon_0 = 8,854 \ 187 \ 81 \cdot 10^{-12} \ \text{C}^2/(\text{N} \cdot \text{m}^2)$ $k = \frac{1}{4\pi\varepsilon_0} = 8,987 \ 551 \ 8 \cdot 10^9 \ \text{N} \cdot \text{m}^2/\text{C}^2$				
związek między $c,\mu_0,arepsilon_0$	$c^2 = \frac{1}{\varepsilon_0 \mu_0}$				
masa elektronu	m_e = 9,109 383 7 ·10 ⁻³¹ kg				
masa protonu	m_p = 1,672 621 92 ·10 ⁻²⁷ kg				
masa neutronu	m_n = 1,674 927 49 ·10 ⁻²⁷ kg				
jednostka masy atomowej	1 u = 1,660 539 066 ·10 ⁻²⁷ kg				

Wartości wybranych stałych fizycznych – cd.						
przyśpieszenie ziemskie (standardowe)	g = 9,806 65 m/s 2 (wartość dokładna odpowiadająca przyśpieszeniu na szerokości geograficznej ok. 45 $^\circ$ na poziomie morza)					
stała Wiena	$b = 2,897 771 955 \cdot 10^{-3} \text{ m} \cdot \text{K} \text{ (wartość dokładna)}$					
stała Stefana-Boltzmanna	σ = 5,670 374 419·10 ⁻⁸ W/(m ² ·K ⁴) (wartość dokładna)					

WYBRANE STAŁE I PARAMETRY ASTROFIZYCZNE					
jednostka astronomiczna	1 au = 1,495 978 707·10 ¹¹ m (wartość dokładna)				
parsek	1 pc = 3,085 677 581 49 ·10 ¹⁶ m (wartość dokładna)				
rok świetlny	1 ly = 0,946 073·10 ¹⁶ m = 0,306 601 pc				
masa Słońca	$M_S = 1,988 \cdot 10^{30} \text{ kg}$				
odległość Słońca od centrum galaktyki	$R_0 \approx 27 \text{ kly}$				
masa Ziemi	$M_Z = 5,972 \cdot 10^{24} \text{ kg}$				
promień równikowy Ziemi	$R_Z = 6,378 \cdot 10^6 \text{ m}$				
stała Hubble'a	$H_0 \approx 70 \text{ (km/s)/Mpc}$				
temperatura promieniowania tła	T ₀ = 2,7 K				

Wartości wybranych jednostek spoza układu SI								
1 eV = 1,602 176 634·10 ⁻¹⁹ J (wartość	0 °C ≡ 273,15 K							
1 atmosfera ≡ 101 325 Pa	1 G ≡ 10 ⁻⁴ T	1 Å = 0,1 nm						

 π = 3,141 592 653 589 793... (liczba pi) e = 2,718 281 828 459 045... (liczba Eulera)

Centralna Komisja Egzaminacyjna

ul. Józefa Lewartowskiego 6, 00-190 Warszawa tel. 22 536 65 00 sekretariat@cke.gov.pl

Okręgowa Komisja Egzaminacyjna w Gdańsku

ul. Na Stoku 49, 80-874 Gdańsk tel. 58 320 55 90 komisja@oke.gda.pl

Okręgowa Komisja Egzaminacyjna w Jaworznie

ul. Adama Mickiewicza 4, 43-600 Jaworzno tel. 32 616 33 99 oke@oke.jaworzno.pl

Okręgowa Komisja Egzaminacyjna w Krakowie

os. Szkolne 37, 31-978 Kraków tel. 12 683 21 99 oke@oke.krakow.pl

Okręgowa Komisja Egzaminacyjna w Łomży

al. Legionów 9, 18-400 Łomża tel. 86 473 71 20 sekretariat@oke.lomza.pl

Okręgowa Komisja Egzaminacyjna w Łodzi

ul. Ksawerego Praussa 4, 94-203 Łódź tel. 42 634 91 33 sekretariat@lodz.oke.gov.pl

Okręgowa Komisja Egzaminacyjna w Poznaniu

ul. Gronowa 22, 61-655 Poznań tel. 61 854 01 60 sekretariat@oke.poznan.pl

Okregowa Komisja Egzaminacyjna w Warszawie

pl. Europejski 3, 00-844 Warszawa tel. 22 457 03 35 info@oke.waw.pl

Okręgowa Komisja Egzaminacyjna we Wrocławiu

ul. Tadeusza Zielińskiego 57, 53-533 Wrocław tel. 71 785 18 94 sekretariat@oke.wroc.pl

