

UNIVERSIDADE ESTADUAL DO CEARÁ CENTRO DE CIÊNCIAS E TECNOLOGIA CURSO DE GRADUAÇÃO EM MATEMÁTICA

CÍCERO MOREIRA HITZSCHKY FILHO

UM ESTUDO SOBRE A TEORIA DA MEDIDA E INTEGRAÇÃO

CÍCERO MOREIRA HITZSCHKY FILHO

UM ESTUDO SOBRE A TEORIA DA MEDIDA E INTEGRAÇÃO

Trabalho de Conclusão de Curso apresentado ao Curso de Graduação em Matemática do Centro de Ciências e Tecnologia da Universidade Estadual do Ceará, como requisito parcial à obtenção do grau de Licenciatura em Matemática.

Orientador: Prof. Dr. Claudemir Silvino Leandro

Aos meus amados pais que foram a base sólida que sustentou e as asas que me impulsionaram. Com amor e gratidão, dedico este trabalho a vocês, cujo apoio incondicional e compreensão transcendem qualquer barreira acadêmica.

LISTA DE ILUSTRAÇÕES

Figura 1 — Representação do intervalo $(-\infty,b)$ na reta real $\ \ldots \ \ldots \ \ldots \ \ldots$	10
Figura 2 — Representação de uma decomposição do intervalo $(-\infty,b)$ na reta real .	10
Figura 3 – Gráfico da Função $f(x) = \frac{ x }{x}$	18
Figura 4 – representação do truncamento f_2 da função $f(x) = x^2 - 2$	25
Figura 5 – Gráfico da Função $f = \sum_{j=1}^{2} a_j \chi_{E_j}$	36
Figura 6 – Gráfico da Função $g = \sum_{j=1}^4 a_j \chi_{E_j}$	36
Figura 7 – Área delimitada pelo gráfico da função $f = \sum_{j=1}^{2} a_j \chi_{E_j} \dots \dots$	37
Figura 8 – Área delimitada pelo gráfico da função $g = \sum_{j=1}^4 a_j \chi_{E_j} \dots \dots \dots$	37
Figura 9 – Partição $\{E_n\}$ do conjunto X	38
Figura 10 – Partição $\{F_m\}$ do conjunto X	38
Figura 11 – Gráfico da função $f(x) = \operatorname{sen}(x) + 3$	43
Figura 12 – Integral da função ϕ_2	44
Figura 13 – Integral da função ϕ_4	44
Figura 14 – Integral da função ϕ_8	45
Figura 15 – Integral da função f	45
Figura 16 – Gráfico da função ϕ_1	46

SUMÁRIO

1	ESPAÇOS E FUNÇÕES MENSURÁVEIS
1.1	O Conceito de σ-álgebra 5
1.2	Funções Mensuráveis
2	A TEORIA DA MEDIDA 20
2.1	Os Espaços de Funções Mensuráveis
2.2	Espaços de Medida
3	TEORIA DA INTEGRAÇÃO 35
3.1	A Integral de Funções Simples
3.2	A Integral de Funções Não-Negativas
3.3	Funções Integráveis
	REFERÊNCIAS 55

1 ESPAÇOS E FUNÇÕES MENSURÁVEIS

Nesta seção é apresentado um preambulo para a teoria medida. Iniciaremos definindo σ -álgebra para que possamos construir espaços mensuráveis. Em seguida, abordaremos as funções mensurável. Todas as definições e resultados aqui explorados tiveram como principais fontes (LIMA, 2019), (BARTLE, 1995) e (MAGALHAES, 2011).

1.1 O Conceito de σ -álgebra

Saber o que é uma σ -álgebra e conseguir identificá-la em um espaço mensurável é fundamental para esta teoria. Com isso, esta seção é dedicada para explorar definição, exemplos e propriedades sobre essa. Vale ressaltar que é esperado que o leitor esteja familiarizado com a teoria elementar de conjuntos, bem como os conceitos principais de cálculo diferencial e integral. Mesmo assim, em alguns momentos alguns conceitos e propriedades particulares são retomadas.

Definição 1.1.1 Seja X um conjunto não vazio. Uma família $\mathscr C$ de subconjuntos de X é dita uma σ -álgebra se as seguintes condições são atendidas:

- (i) \varnothing e X são elementos de \mathscr{C} ;
- (ii) Se um elemento $A \in \mathcal{C}$, então $A^c \in \mathcal{C}^1$;
- (iii) Se (A_n) é uma sequência de elementos de \mathscr{C} , então $\bigcup_{j=1}^{\infty} A_j \in \mathscr{C}$.

Um par ordenado (X,\mathcal{C}) constituído de um conjunto X e uma σ -álgebra sobre X é chamado de **espaço mensurável**. Além disso, cada elemento deste espaço é chamado de conjunto \mathcal{C} —mensurável. Quando não houver confusão ou quando a σ -álgebra estiver fixada, dizemos simplesmente que cada elemento é um conjunto mensurável.

Observação 1.1.1 Em todo o texto, indicaremos por I_n o conjunto dos n primeiros números naturais. Assim, $I_n = \{k \in \mathbb{N}; 1 \le k \le n\}$.

Proposição 1.1.1 Seja $\mathscr C$ uma σ -álgebra de um conjunto X. Se $A_1,...,A_n$ são todos elementos quaisquer de $\mathscr C$, então $\bigcup_{j=1}^n A_j$ é um elemento de $\mathscr C$.

Demonstração.

Seja A_1, \ldots, A_n elementos de \mathscr{C} . Construa uma sequência (B_n) tal que $B_j = A_j$ para

Em todo o texto, X^c significa o *complementar do conjunto X*.

todo $j \in I_n$ e $A_{n+1} = A_{n+2} = \cdots = \emptyset$. Desta forma, pelo item (iii) da definição de σ -álgebra , temos que $\bigcup_{j=1}^{\infty} B_j = \bigcup_{j=1}^{n} A_j$. Como $\bigcup_{j=1}^{\infty} B_j \in \mathscr{C}$, segue que $\bigcup_{j=1}^{n} A_j \in \mathscr{C}$.

Exemplo 1.1.1 Seja $X = \{-1,0,-1\}$. Se considerarmos $\mathscr{C} = \{\varnothing,X,\{0\},\{-1,1\}\}$, temos que (X,\mathscr{C}) é um espaço mensurável.

Exemplo 1.1.2 Seja X um conjunto qualquer. O conjunto $\mathscr{C}_1 = \{\varnothing, X\}$ é uma σ -álgebra de X.

De fato, podemos observar que, nesse exemplo, todas as condições impostas na definição 1.1.1 são atendidas de maneira trivial, pois \varnothing e X são todos os elementos de \mathscr{C}_1 . Assim, (X,\mathscr{C}_1) é um espaço mensurável. Perceba que a definição 1.1.1 não nos diz que uma σ -álgebra de um conjunto é única. Realmente, não é. Assim, um conjunto pode gerar espaços mensuráveis diferentes a depender da σ -álgebra adotada. Para evidenciar essa percepção, observe o exemplo a seguir:

Exemplo 1.1.3 Seja X dado de maneira arbitrária conforme o exemplo anterior. Considere, agora, o conjunto $\mathcal{C}_2 = \{A; A \subset X\}$, ou seja, o conjunto formado por todos os subconjuntos do conjunto X. ²

Sabemos que $\varnothing\subset X$ e $X\subset X$. Assim, $\varnothing,X\in\mathscr{C}_2$. Se tomarmos um conjunto $A\subset\mathscr{C}_2$, então $A^c=X-A$ por definição. Ou seja, A^c é formado por elementos que estão todos em X caracterizando-o um elemento de \mathscr{C}_2 . Da mesma forma, se tomarmos uma sequência (A_j) de elementos de \mathscr{C}_2 , a reunião $\bigcup_{j=1}^\infty A_j$ é composta por elementos de X. Logo, $\bigcup_{j=1}^\infty A_j\in\mathscr{C}_2$. Com isso, \mathscr{C}_2 também é uma σ -álgebra de X e o par (X,\mathscr{C}_2) é um espaço mensurável que, por sua vez, é diferente do espaço (X,\mathscr{C}_1) .

Os exemplos apresentados acima são todos de conjuntos que são uma σ -álgebra de um conjunto X arbitrário. Por definição, o conjunto \mathscr{C} é composto de subconjuntos do conjunto X. Será que se construirmos Z um conjunto que contenha \varnothing e X e outros subconjuntos do conjunto X tomados aleatoriamente teremos (X,Z) um espaço mensurável? A resposta é negativa e para convencê-lo disso, mostraremos o seguinte contra-exemplo.

Contraexemplo 1.1.1 Seja $X = \{x, y, z\}$. O conjunto $\mathscr{C} = \{\varnothing, X, \{x\}, \{y\}, \{z\}\}$ não é uma σ -álgebra de X.

O conjunto \mathscr{C}_2 também é chamado de conjunto das partes de X e, as vezes, é representado por $\mathscr{P}(X)$.

Sem dúvida, $\emptyset, X \in \mathscr{C}$. Entretanto, perceba que $\{x\} \in \mathscr{C}$, mas $\{x\}^c \notin \mathscr{C}$. De fato,

$${x}^c = {x, y, z} - {x} = {y, z}.$$

Entretanto, $\{y,z\} \notin \mathcal{C}$. Assim, a segunda condição da definição 1.1.1 não é satisfeita impossibilitando que \mathcal{C} seja uma σ -álgebra de X. Com isso, podemos ver que uma σ -álgebra não é construída de maneira tão trivial. Entretanto, ás vezes, em matemática, é interessante conseguirmos induzir, em algum conjunto, uma propriedade que desejamos. A proposição adiante nos mostra como podemos induzir uma σ -álgebra com um conjunto fixado não vazio em um conjunto.

Proposição 1.1.2 Seja X e A dois conjuntos quaisquer com $A \neq \emptyset$. Se $A \subset X$, então o conjunto $\mathscr{C} = \{\emptyset, X, A, A^c\}$ é uma σ -álgebra de X.

Demonstração.

Perceba que as condições (i) e (ii) da definição 1.1.1 são satisfeitas pela forma que o conjunto $\mathscr C$ foi construído. Para verificar a última condição, basta perceber $A \cup A^c = X$. Assim, as sequências construídas terão comportamento análogo as do exemplo 1.1.3. Portanto, $\mathscr C$ é uma σ -álgebra de X para qualquer que seja $\varnothing \neq A \subset X$.

Exemplo 1.1.4 Considere $X = \mathbb{N}$. Sejam $P = \{2k; k \in \mathbb{N}\}$ e $I = \{2k-1; k \in \mathbb{N}\}$. Como $P^c = I$, então $\mathscr{C} = \{\varnothing, \mathbb{N}, P, I\}$ é uma σ -álgebra de \mathbb{N} pela proposição anterior.

Observe que o conjunto A que apresentamos na proposição 1.1.2 é um subconjunto não vazio do conjunto X que fora tomado arbitrariamente. 3 Uma pergunta intuitiva é: se tomarmos um conjunto A que não é subconjunto de X o espaço (X,\mathcal{C}) continua sendo mensurável? A resposta é não. Se o conjunto A não for subconjunto de X não temos como garantir a validade da condição (ii) da definição 1.1.1, pois A^c não é necessariamente um subconjunto de X o que não permitiria os argumentos usados anteriormente na proposição 1.1.2.

Dito isso, note que a definição 1.1.1 e a proposição 1.1.1 tratam apenas da união enumerável ou finita, respectivamente. Nosso interesse, agora, é investigar se conseguirmos propriedades análogas para a operação de interseção. Iniciaremos verificando o comportamento de interseção de elementos de uma σ -álgebra com a proposição adiante.

Observe que se $A = \emptyset$, a σ -álgebra é a mesma do exemplo 1.1.2.

Proposição 1.1.3 Seja X um conjunto e $\mathscr C$ uma σ -álgebra desse conjunto. Se (A_j) \acute{e} uma sequência de conjuntos $\mathscr C$ -mensuráveis, então $\bigcap_{j=1}^\infty A_j$ \acute{e} um elemento $\mathscr C$ -mensurável.

Demonstração.

Se $A_j \in \mathscr{C}$ para todo $j \in \mathbb{N}$, então cada complementar $A_j^c \in \mathscr{C}$, pois \mathscr{C} é σ -álgebra. Assim, (A_j^c) forma uma sequência de conjuntos \mathscr{C} -mensuráveis acarretando que $\bigcup_{j=1}^{\infty} A_j^c \in \mathscr{C}$. Segue, pelas Leis de Morgan⁴, que

$$\bigcup_{j=1}^{\infty} A_j^c = \left(\bigcap_{j=1}^{\infty} A_j\right)^c$$

 $\operatorname{Logo}, \left(\bigcap_{j=1}^{\infty} A_j\right)^c \in \mathscr{C} \text{ o que implica } \bigcap_{j=1}^{\infty} A_j \in \mathscr{C}. \text{ Portanto, } \bigcap_{j=1}^{\infty} A_j \text{ \'e um conjunto } \mathscr{C}\text{-mensur\'avel.}$

Considere a σ -álgebra apresentada na proposição 1.1.2. Qualquer outra σ -álgebra \mathscr{F} que tiver A como elemento, conterá \mathscr{C} . Assim, observamos que

$$\mathscr{C} = \bigcap_{\mathscr{F} \supset A} \mathscr{F}.$$

Esta σ -álgebra $\mathscr C$ definimos como a *menor* σ -álgebra gerada por A. ⁵ Sabendo que a menor σ -álgebra é gerada por meio de intersecções é natural questionarmos se a interseção entre σ -álgebras ainda é uma σ -álgebra de X.Para responderemos à esta pergunta com a proposição adiante.

Proposição 1.1.4 Se \mathscr{C}_1 e \mathscr{C}_2 são duas σ -álgebras de um conjunto X, então $\mathscr{C} = \mathscr{C}_1 \cap \mathscr{C}_2$ também é uma σ -álgebra do conjunto X.

Demonstração.

Se \mathscr{C}_1 e \mathscr{C}_2 são σ -álgebras de X, então ambos possuem \varnothing e X como elementos. Assim, \varnothing e X estão na intersecção \mathscr{C} . Além disso, se $A \in \mathscr{C}$, então $A \in \mathscr{C}_1$ e $A \in \mathscr{C}_2$. Por serem ambas σ -álgebras , $A^c \in \mathscr{C}$ e $A^c \in \mathscr{C}_2$. Ou seja, $A^c \in \mathscr{C}_1 \cap \mathscr{C}_2 = \mathscr{C}$. Por fim, se tomarmos uma sequência (A_n) de elementos de \mathscr{C} , observamos que $A_j \in \mathscr{C}_1$ e $A_j \in \mathscr{C}_2$ para cada $j \in \mathbb{N}$. Assim, $\bigcup_{j=1}^{\infty} A_j \in \mathscr{C}_1$ e $\bigcup_{j=1}^{\infty} A_j \in \mathscr{C}_2$ pela definição de σ -álgebra . Logo, $\bigcup_{j=1}^{\infty} A_j \in \mathscr{C}$. Com isso, \mathscr{C} satisfaz todas as condições da definição 1.1.1. Portanto, \mathscr{C} é uma σ -álgebra de X.

⁴ Vide (LIMA, 2019, p.26)

⁵ Lembre que a noção de "menor" aqui é trazida por meio da relação de ordem parcial gerada pela relação de inclusão entre conjuntos.

Proposição 1.1.5 Seja (\mathcal{C}_j) uma sequência finita de \mathcal{C}_j -álgebras de um conjunto X, então $\mathcal{C} = \bigcap_{j=1}^n \mathcal{C}_j$, com $n \geq 2$, também é uma σ -álgebra do conjunto X.

Demonstração.

Provaremos esse resultado utilizando o método da indução finita sobre n. Se n=2, o resultado é verificado imediatamente pela proposição 1.1.4. Suponha que se verifique para algum $k \in \mathbb{N}$, isto é, $\bigcap_{j=1}^k \mathscr{C}_j$ é uma σ -álgebra de X. Vamos checar para o sucessor de k. Ora, pela associatividade da interseção, vemos que

$$\bigcap_{j=1}^{k+1} \mathscr{C}_j = \left(\bigcap_{j=1}^k \mathscr{C}_j\right) \cap \mathscr{C}_{k+1}.$$

Denote $\bigcap_{j=1}^k \mathscr{C}_j = H$. Sabemos por hipótese de indução que H e \mathscr{C}_{k+1} são σ -álgebras de X. Segue,

j=1 pela base de indução, que $H\cap \mathscr{C}_{k+1}$ é uma σ -álgebra de X. Portanto, $\bigcap_{j=1}^{k+1}\mathscr{C}_j$ é uma σ -álgebra de X como queríamos.

Note que há uma diferença gritante entre as proposições 1.1.3 e 1.1.4. A primeira trata de conjuntos mensuráveis de uma σ -álgebra e a outra refere-se à σ -álgebras de um conjunto X. Além disso, perceba que até aqui trabalhamos o conceito de σ -álgebra de maneira abstrata sendo utilizada em um conjunto qualquer. Trataremos, agora, de uma σ -álgebra extremamente importante e específica para o conjunto \mathbb{R} dos números reais.

Definição 1.1.2 Seja $X = \mathbb{R}$. A Álgebra de Borel é a σ -álgebra \mathscr{B} gerada por todos os intervalos abertos $(-\infty, x)$ com $x \in \mathbb{R}$. Os elementos dessa σ -álgebra são chamados de Borelianos.

Esta σ -álgebra é extremamente relevante para os estudos de medida e integração e pode ser definida de várias formas diferentes, mas todas são equivalentes. Isso quer dizer que $(-\infty,x)$ não é a única forma dos elementos de \mathscr{B} . De fato, se $(-\infty,x) \in \mathscr{B}$, então $(-\infty,x)^c \in \mathscr{B}$ só que $(-\infty,x)^c = [x,+\infty)$. Assim, poderíamos definir \mathscr{B} por meio de intervalos do tipo $[x,+\infty)$. Em particular, poderíamos ter definido a \mathscr{B} por meio da σ -álgebra gerada por intervalos do tipo (a,b) com $a,b \in \mathbb{R}$.

Antes de provamos este fato, observe que podemos decompor intervalos reais como a união de outros intervalos reais. Por exemplo, utilizando a reta real, podemos representar intervalo $(-\infty,b)$ da seguinte maneira

Figura 1 – Representação do intervalo $(-\infty,b)$ na reta real

Fonte: Elaborado pelo autor

Se tomarmos um $a \in \mathbb{R}$ fixo, com a < b, então a decomposição do intervalo $(-\infty,b)$ pode ser expressa por meio da união dos intervalos $(-\infty,a]$ e (a,b), onde estão representados na figura a seguir pelas cores azul e vermelha respectivamente.

Figura 2 – Representação de uma decomposição do intervalo $(-\infty,b)$ na reta real

Fonte: Elaborado pelo autor

Embora a decomposição de intervalos reais pela união de outros é extremamente relevante para mostrar a seguinte equivalência sobre a σ -álgebra de Borel.

Teorema 1.1.1 *Uma* σ -álgebra é uma de Borel se, e somente se, é gerada por intervalos do tipo (a,b) com $a,b \in \mathbb{R}$.

Demonstração.

Suponha que (\mathbb{R},\mathscr{B}) é um espaço mensurável. Sejam a e b números reais, com a < b. Como $a - \frac{1}{n} \in \mathbb{R}$ para todo $n \in \mathbb{N}$, temos que o intervalo $\left(-\infty, a - \frac{1}{n} \right) \subset \mathbb{R}$ para todo $n \in \mathbb{N}$. Segue, pela proposição 1.1.3, que $\bigcap_{n=1}^n \left(-\infty, a - \frac{1}{n} \right) \in \mathscr{C}$. Com isso, afirmamos que a

interseção de todos os intervalos $\left(-\infty,a-\frac{1}{n}\right)$ é igual ao intervalo $\left(-\infty,a\right]$. De fato,

$$\begin{split} x \in \bigcap_{n \in \mathbb{N}} \left(-\infty, a - \frac{1}{n} \right) &\Leftrightarrow x \in \left(-\infty, a - \frac{1}{n} \right), \ \forall n \in \mathbb{N} \\ &\Leftrightarrow x < a - \frac{1}{n}, \ \forall n \in \mathbb{N} \\ &\Leftrightarrow \lim_{n \to \infty} x \leq \lim_{n \to \infty} \left(a - \frac{1}{n} \right) \\ &\Leftrightarrow x \leq a \\ &\Leftrightarrow x \in (-\infty, a]. \end{split}$$

Logo, $(-\infty, a] \in \mathcal{B}$ acarretando que $(a, +\infty) = (-\infty, a]^c \in \mathcal{B}$. Observe que podemos decompor $(-\infty, b) = (-\infty, a] \cup (a, b)$ enquanto que $(a, +\infty) = (a, b) \cup [b, +\infty)$. Desta forma, vemos que $(-\infty, b) \cap (a, +\infty) = (a, b)$. Como $(-\infty, b)$ e $(a, +\infty)$ são elementos de \mathcal{B} , segue pela proposição 1.1.3 que $(a, b) \in \mathcal{B}$. Com isso, \mathcal{B} pode ser gerada por intervalos do tipo (a, b) com $a, b \in \mathbb{R}$.

Suponha, reciprocamente, que $\mathscr C$ é uma σ -álgebra de $\mathbb R$. Se $\mathscr C$ é gerada por intervalos do tipo (a,b) onde $a,b\in\mathbb R$, então os conjuntos $A_n=(-n,b)$ são todos elementos de $\mathscr C$ para qualquer $n\in\mathbb N$. Segue, pela definição 1.1.1, que $\bigcup_{n=1}^\infty (-n,b)\in\mathscr C$. Só que $\bigcup_{n=1}^\infty (-n,b)=(-\infty,b)$. Com isso, os elementos de $\mathscr C$ são do tipo $(-\infty,b)$. Portanto, $\mathscr C=\mathscr B$.

1.2 Funções Mensuráveis

Agora que já estamos familiarizados com os conceitos de σ -álgebra e espaços mensuráveis, vamos aplicar, sobre este espaço uma função e estudar seu comportamento. 6 Iniciaremos tratando de funções à valores reais e estenderemos o conceito conforme haja necessidade. Além disso, a partir de agora, fixemos que quando não houver menção contrária, que X será um conjunto qualquer diferente de \varnothing e $\mathscr C$ será uma σ -álgebra desse conjunto.

Definição 1.2.1 *Uma função* $f: X \to \mathbb{R}$ é dita \mathscr{C} -mensurável se, para cada $\alpha \in \mathbb{R}$, o conjunto $\{x \in X; f(x) > \alpha\} \in \mathscr{C}$.

Exemplo 1.2.1 (Função Constante) Seja $K \in \mathbb{R}$ um número fixado. A função $f: X \to \mathbb{R}$ definida por f(x) = K, para todo $x \in \mathbb{R}$ é \mathscr{C} -mensurável.

⁶ Em todo o texto função, aplicação e mapa são sinônimos.

Para mostrarmos este fato, precisamos analisar os casos de α . Assim

- (I) Se $\alpha \ge K$, então o conjunto $\{x \in X; f(x) > \alpha\} = \emptyset$ uma vez que não existe $x \in X$ tal que $f(x) = K > \alpha$.
- (II) Se $\alpha < K$, então para todo $x \in X$, $f(x) > \alpha$. Logo, o conjunto $\{x \in X; f(x) > \alpha\} = X$. Em todo caso, para todo $\alpha \in \mathbb{R}$, o conjunto $\{x \in X; f(x) > \alpha\} \in \mathscr{C}$. Portanto, a função constante $f \notin \mathscr{C}$ -mensurável.

Exemplo 1.2.2 (Função Característica) Seja (X, \mathcal{C}) uma espaço mensurável e $A \in \mathcal{C}$. A função característica ⁷ de $A \chi_A : X \to \{0,1\}$ definida por

$$\chi_A(x) = \begin{cases} 1, & \text{se } x \in A \\ 0, & \text{se } x \notin A \end{cases}$$

É C-mensurável.

Para verificar se X_A é $\mathscr C$ -mensurável precisamos, novamente, analisar os casos de $\alpha \in \mathbb R$.

- (I) Se $\alpha \ge 1$, observamos que $\{x \in X; \chi_A(x) > \alpha\} = \emptyset$, pois não há $x \in X$ tal que $\chi_A(x) > 1$.
- (II) Se $0 < \alpha < 1$, então o conjunto $\{x \in X; \chi_A(x) > \alpha\} = A$, pois apenas valores $x \in A$ tem suas imagens $\chi_A(x) = 1$ e consequentemente $\chi_A(x) \ge \alpha$.
- (III) se $\alpha \le 0$, podemos notar que o conjunto $\{x \in X; \chi_A(x) > \alpha\} = X$, pois para qualquer que seja $x \in X$, os valores $\chi_A(x) \ge 0$.

Em todo o caso, vemos que o conjunto $\{x \in X; \chi_A(x) > \alpha\}$ é um elemento de \mathscr{C} , pois \varnothing, X e A são elementos de \mathscr{C} . Portanto, a função característica $\chi_A(x)$ é \mathscr{C} -mensurável.

Exemplo 1.2.3 Considere o espaço mensurável $(\mathbb{R}, \mathcal{B})$. Toda função $f : \mathbb{R} \to \mathbb{R}$ contínua é Borel mensurável.

Para mostrar a validade do exemplo acima, precisamos de resultados auxiliares que encontraremos em (LIMA, 2019). Um deles é a proposição abaixo.

Proposição 1.2.1 Suponha que $f: X \to \mathbb{R}$ seja contínua em todos os pontos de X. Se $X \subset \mathbb{R}$ é um aberto 8 , então o conjunto $A = \{a \in X; \ f(a) > k\}$ é um aberto (p.226).

Note que o conjunto $\{x \in \mathbb{R}; f(x) > \alpha\} = (\alpha, +\infty)$. Logo, trata-se de um conjunto aberto. ⁹ Além disso, em (LIMA, 2019, p.167), encontramos o seguinte teorema:

⁷ As vezes também é chamada função indicadora.

⁸ Em caso de dúvida sobre o que é um subconjunto X de \mathbb{R} aberto, consulte (LIMA, 2019, p.164).

⁹ Vide (LIMA, 2019, p.164).

Teorema 1.2.1 (Estrutura de abertos da reta) Todo subconjunto aberto $A \subset R$ se exprime, de modo único, como um reunião enumerável de intervalos abertos dois a dois disjuntos.

Segue disso que o $\{x \in \mathbb{R}; f(x) > \alpha\} = \bigcup_{j=1}^{\infty} A_n$ onde cada A_n é um intervalo aberto, ou seja $A_n \in \mathcal{B}$ para todo $n \in \mathbb{N}$. Com isso, pela definição 1.1.1, o conjunto $\{x \in \mathbb{R}; f(x) > \alpha\} \in \mathcal{B}$. Portanto, qualquer função contínua $f: \mathbb{R} \to \mathbb{R}$ é Borel mensurável.

Lembre que ao apresentarmos a Álgebra de Borel (definição 1.1.2), mostramos no teorema 1.1.1 que há mais de uma maneira de definir os borelianos. Para uma função $f: X \to \mathbb{R}$ \mathscr{C} -mensurável, também podemos definir uma função \mathscr{C} -mensurável por meio de conjuntos diferentes conforme o seguinte teorema.

Teorema 1.2.2 Sendo (X, \mathcal{C}) um espaço mensurável, para uma função $f: X \to \mathbb{R}$ \mathcal{C} -mensurável as seguintes afirmações são equivalentes:

$$(a) \ \forall \ \alpha \in \mathbb{R}, \ A_{\alpha} = \{x \in X; \ f(x) > \alpha\} \in \mathcal{C}; \quad (c) \ \forall \ \alpha \in \mathbb{R}, \ C_{\alpha} = \{x \in X; \ f(x) \geq \alpha\} \in \mathcal{C};$$

(b)
$$\forall \alpha \in \mathbb{R}, B_{\alpha} = \{x \in X; f(x) \leq \alpha\} \in \mathcal{C}; \quad (d) \ \forall \alpha \in \mathbb{R}, D_{\alpha} = \{x \in X; f(x) < \alpha\} \in \mathcal{C}.$$

Demonstração.

Dividiremos esta demonstração em três partes. A estratégia será mostrar que a afirmação (a) é equivalente à afirmação (b); depois que a afirmação (c) é equivalente à afirmação (d); e por fim que a firmação (a) ocorre se, e somente se, a afirmação (c) ocorre.

(I) Suponha a validade da afirmação (a). Se $A_{\alpha} \in \mathcal{C}$, então $A_{\alpha}^{c} \in \mathcal{C}$, pela definição de \mathcal{C} -álgebra. Perceba que

$$x \in A_{\alpha}^{c} \Leftrightarrow x \notin A_{\alpha} \Leftrightarrow x \in X e \ f(x) \le \alpha, \forall \ \alpha \in \mathbb{R} \Leftrightarrow x \in B_{\alpha}$$

Assim, um elemento está em A^c_{α} se, e somente se, está em B_{α} . Segue que $A^c_{\alpha} = B_{\alpha}$. Logo, B_{α} é elemento de \mathscr{C} .

- (II) Para mostrar a equivalência entre as afirmações (c) e (d) utilizamos um argumento totalmente análogo à parte (I), pois se $x \notin C_{\alpha}$, então $f(x) < \alpha$ acarretando que $x \in D_{\alpha}$ e vice-versa.
- (III) Suponha que $A_{\alpha} \in \mathscr{C}$. Tome a sequência $\left(A_{\alpha-\frac{1}{n}}\right)$. Claramente, cada $A_{\alpha-\frac{1}{n}}$ é um elemento de \mathscr{C} por definição. Logo, pela proposição 1.1.3, a interseção $\bigcap_{n=1}^{\infty} A_{\alpha-\frac{1}{n}} \in \mathscr{C}$. Além disso,

note que

$$\begin{split} x &\in \bigcap_{n=1}^{\infty} A_{\alpha - \frac{1}{n}} \Leftrightarrow x \in A_{\alpha - \frac{1}{n}}, \forall \ n \in \mathbb{N} \\ &\Leftrightarrow f(x) > \alpha - \frac{1}{n}, \ \forall \ n \in \mathbb{N} \\ &\Leftrightarrow \lim_{n \to \infty} f(x) \geq \lim_{n \to \infty} \left(\alpha - \frac{1}{n}\right) \\ &\Leftrightarrow f(x) \geq \alpha \\ &\Leftrightarrow x \in C_{\alpha} \end{split}$$

Desta forma, $C_{\alpha} = \bigcap_{n=1}^{\infty} A_{\alpha - \frac{1}{n}}$. Logo $C_{\alpha} \in \mathscr{C}$ como queríamos.

Reciprocamente, suponha que $C_{\alpha}\in\mathscr{C}$. Tomemos a sequência $\left(C_{\alpha+\frac{1}{n}}\right)$. Cada elemento $C_{\alpha+\frac{1}{n}}\in\mathscr{C}$ por definição. Assim, pela definição de σ -álgebra , $\bigcup_{n=1}^{\infty}C_{\alpha+\frac{1}{n}}\in\mathscr{C}$. Com isso, temos que

$$x \in \bigcup_{n=1}^{\infty} C_{\alpha + \frac{1}{n}} \Leftrightarrow x \in C_{\alpha + \frac{1}{n_0}}, \text{ para algum } n_0 \in \mathbb{N}$$

$$\Leftrightarrow f(x) \ge \alpha + \frac{1}{n_0}$$

$$\Leftrightarrow f(x) > \alpha$$

$$\Leftrightarrow x \in A_{\alpha}$$

Assim, $\bigcup_{n=1}^{\infty} C_{\alpha+\frac{1}{n}} = A_{\alpha}$. Logo, $A_{\alpha} \in \mathscr{C}$. Portanto, segue de (I), (II) e (III) que as afirmações (a), (b), (c) e (d) são todas equivalentes.

Perceba que mesmo na presença do teorema 1.2.2 acima, mostrar que uma função é mensurável é trabalhoso e repetitivo uma vez que, geralmente, é preciso verificar os casos de α . Com o intuito de otimizar a identificação de uma função mensurável, veremos o comportamento de operações aritméticas entre funções mensuráveis.

Proposição 1.2.2 Seja $f: X \to \mathbb{R}$ uma função real \mathscr{C} -mensurável e $c \in \mathbb{R}$. Então as funções cf, f^2 e |f| são \mathscr{C} -mensuráveis.

Demonstração.

(a) Mostraremos que cf é \mathscr{C} -mensurável para todos os casos possíveis do número real $c \in \mathbb{R}$.

- (i) Se c=0, então $c\cdot f(x)=0,\ \forall\ x\in X$, ou seja, cf se torna a função constante. Segue pelo exemplo 1.2.1 que cf é $\mathscr C$ -mensurável.
- (ii) Se c>0, então dado $\alpha\in\mathbb{R}$, temos $cf(x)>\alpha\Leftrightarrow f(x)>\frac{\alpha}{c}$. Logo,

$$\{x \in X; cf(x) > \alpha\} = \left\{x \in X; f(x) > \frac{\alpha}{c}\right\}$$

Isso ocorre para todo α e f é $\mathscr C$ -mensurável, isto é, $\left\{x\in X; f(x)>\frac{\alpha}{c}\right\}\in\mathscr C$. Logo, cf é $\mathscr C$ -mensurável.

(iii) Por fim, se c < 0, então existe um $z \in \mathbb{R}$ tal que c = -z. Assim,

$$cf(x) > \alpha \Leftrightarrow -zf(x) > \alpha \Leftrightarrow f(x) < -\frac{\alpha}{z}$$

Assim, o conjunto $\{x \in X; cf(x) > \alpha\} = \left\{x \in X; f(x) < -\frac{\alpha}{z}\right\}$. Desta forma, o conjunto $\left\{x \in X; f(x) < -\frac{\alpha}{z}\right\} \in \mathscr{C}$ pelo item (d) do teorema 1.2.2. Portanto, cf é \mathscr{C} -mensurável em todos os casos de $c \in \mathbb{R}$.

- (b) Para mostrar a mensurabilidade de f^2 é também necessário analisar os casos de α .
 - (i) Se $\alpha < 0$, então $\{x \in X; [f(x)]^2 > \alpha\} = X$, pois $[f(x)]^2 \ge 0$ para todo $x \in X$.
 - (ii) Se $\alpha \geq 0$, então para todo $x \in X$ $[f(x)]^2 > \alpha \Leftrightarrow f(x) > \pm \sqrt{\alpha}$. Assim, um elemento $x_0 \in \{x \in X; [f(x)]^2 > \alpha\}$ se, e somente se, $x_0 \in \{x \in X; f(x) > \sqrt{\alpha}\}$ ou $x_0 \in \{x \in X; f(x) > -\sqrt{\alpha}\}$. Com isso,

$$\left\{x \in X; [f(x)]^2 > \alpha\right\} = \left\{x \in X; f(x) > \sqrt{\alpha}\right\} \cup \left\{x \in X; f(x) > -\sqrt{\alpha}\right\}$$

Como f é $\mathscr C$ -mensurável por hipótese, temos que $\{x \in X; f(x) > \sqrt{\alpha}\} \in \mathscr C$ e $\{x \in X; f(x) > -\sqrt{\alpha}\} \in \mathscr C$. Desta forma, usando a definição de σ -álgebra , obtemos que $\{x \in X; f(x) > \sqrt{\alpha}\} \cup \{x \in X; f(x) > -\sqrt{\alpha}\} \in \mathscr C$. Consequentemente, $\{x \in X; [f(x)]^2 > \alpha\} \in \mathscr C$ acarretando a mensurabilidade de f^2 .

(c) Analogamente ao item anterior, se $\alpha < 0$, $\{x \in X; |f(x)| > \alpha\} = X$. Por outro lado, se $\alpha \ge 0$, vemos que $\{x \in X; |f(x)| > \alpha\} = \{x \in X; f(x) > \alpha\} \cup \{x \in X; f(x) > -\alpha\}$. Assim, a mensurabilidade de f acarreta na mensurabilidade de |f| como desejávamos.

Exemplo 1.2.4 (Função Afim) Seja a um número real diferente de zero. A função $f : \mathbb{R} \to \mathbb{R}$ tal que $f(x) = ax \in \mathcal{B}$ -mensurável.

De fato, pelo exemplo 1.2.3 a função x é \mathscr{B} -mensurável, pois é contínua em \mathbb{R} . Segue pela proposição 1.2.2 que a função ax também é \mathscr{B} -mensurável. Da maneira análoga, as funções $g,h:\mathbb{R}\to\mathbb{R}$ tais que $g(x)=x^2$ e h(x)=|x| são \mathscr{B} -mensuráveis. A seguir veremos a mensurabilidade de combinações de funções mensuráveis.

Proposição 1.2.3 Sejam $f,g:X\to\mathbb{R}$. Se f e g são ambas \mathscr{C} -mensuráveis, então as funções f+g e $f\cdot g$ são também \mathscr{C} -mensuráveis.

Demonstração.

Provaremos, primeiramente, que f+g é $\mathscr C$ -mensurável. Ora, por hipótese, f e g são $\mathscr C$ -mensuráveis. Assim, dado $r\in\mathbb Q$, os conjuntos $\{x\in X; f(x)>r\}$ e $\{x\in X; g(x)>\alpha-r\}$ são ambos elementos de $\mathscr C$. Considere o conjunto

$$H_r = \{x \in X; f(x) > r\} \cap \{x \in X; g(x) > \alpha - r\}$$

Isto é, o conjunto dos elementos $x \in X$ tal que f(x) > r e $g(x) > \alpha - r$ simultaneamente. Assim, afirmamos que $\{x \in X; (f+g)(x) > \alpha\} = \bigcup_{r \in \mathbb{Q}} H_r$. Com efeito, as seguintes equivalências ocorrem para um elemento $a \in X$ tomado arbitrariamente

$$a \in \{x \in X; (f+g)(x) > \alpha\} \Leftrightarrow (f+g)(a) > \alpha$$

$$\Leftrightarrow f(a) + g(a) > \alpha$$

$$\Leftrightarrow f(a) + g(a) > \alpha - r + r \text{ para } r \in \mathbb{Q}$$

$$\Leftrightarrow f(a) > r \text{ e } g(a) > \alpha - r \text{ para } r \in \mathbb{Q}$$

$$\Leftrightarrow a \in \{x \in X; f(x) > r\} \text{ e } a \in \{x \in X; f(x) > \alpha - r\} \text{ para } r \in \mathbb{Q}$$

$$\Leftrightarrow a \in \{x \in X; f(x) > r\} \cap \{x \in X; f(x) > \alpha - r\} \text{ para } r \in \mathbb{Q}$$

$$\Leftrightarrow a \in H_r, \text{ para } r \in \mathbb{Q}$$

$$\Leftrightarrow a \in \bigcup_{r \in \mathbb{Q}} H_r.$$

Concluindo que a afirmação é verdadeira. Além disso, para cada $r \in \mathbb{Q}$, o conjunto H_r é um elemento de \mathscr{C} , pois é a interseção de dois elementos de \mathscr{C} (proposição 1.1.3). Note também que, pela definição de \mathscr{C} , a coleção $\bigcup_{r \in \mathbb{Q}} H_r$ é um elemento de \mathscr{C} , pois \mathbb{Q} é enumerável 10 . Segue que f+g é \mathscr{C} -mensurável.

¹⁰ Em caso de dúvida, vide (LIMA, 2019, p.51).

Para mostrar que fg é mensurável basta notar que é a combinação de outras funções \mathscr{C} -mensuráveis. De fato, dado $x \in X$, temos

$$4(fg)(x) = 2(fg)(x) + 2(fg)(x)$$

$$= [f(x)]^2 - [f(x)]^2 + 2f(x)g(x) + [g(x)]^2 - [g(x)]^2 + 2f(x)g(x)$$

$$= ([f(x)]^2 + 2f(x)g(x) + [g(x)]^2) - ([g(x)]^2 - 2f(x)g(x) + [f(x)]^2)$$

$$= (f(x) + g(x))^2 - (f(x) - g(x))^2$$

$$= [(f + g)(x)]^2 - [(f - g)(x)]^2.$$

Desta maneira, $fg = \frac{1}{4} \left[(f+g)^2 - (f-g)^2 \right]$. Segue pela proposição 1.2.2 e a primeira parte desta demonstração que fg é $\mathscr C$ -mensurável.

Exemplo 1.2.5 (Função Polinomial) A função $f : \mathbb{R} \to \mathbb{R}$ definida por $f(x) = \sum_{j=0}^{n} a_j x^j$ com cada $a_j \in \mathbb{R}$ é \mathscr{B} -mensurável.

Com efeito, note que $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$. Pelo exemplo 1.2.4 cada função $f_j : \mathbb{R} \to \mathbb{R}$ definida por $f_j(x) = a_j x^j$ é \mathcal{B} -mensurável. Além disso, pela proposição 1.2.3 a soma de funções mensuráveis é mensurável. Segue que $f(x) = \sum_{j=0}^n a_j x^j$ é uma função \mathcal{B} -mensurável.

Definição 1.2.2 Seja $f: X \to \mathbb{R}$ uma função real. Dizemos que a **parte positiva** da função $f \notin a$ função $f^+: X \to \mathbb{R}$ definida por $f^+(x) = \sup\{f(x), 0\}$. Semelhantemente, chamamos de a **parte negativa** da função f, a função $f^-: X \to \mathbb{R}$ definida por $f^-(x) = \sup\{-f(x), 0\}$. 11

É possível que a definição de parte positiva e negativa de funções fique um pouco abstrata em um primeiro contato. Numa tentativa de esclarecer ao máximo, daremos o seguinte exemplo:

Exemplo 1.2.6 Seja
$$f: \mathbb{R}^* \to \mathbb{R}$$
 definida por $f(x) = \frac{|x|}{x}$. Então $f^+(x) = 1$ e $f^-(x) = -1$.

De fato, ao tomarmos um elemento real x < 0, vemos que sua imagem f(x) < 0 sendo $f(x) = \frac{-x}{x} = -1$. Se x > 0, então $f(x) = \frac{x}{x} = 1$. Assim, $f^+ = \sup\{f(x), 0\} = 1$ enquanto que $f^- = \sup\{-f(x), 0\} = -1$. Neste caso, podemos perceber, ao olhar para a imagem 3 a seguir que tanto a parte positiva quanto a parte negativa da função f acima apresentada são

Em caso de dúvidas sobre o supremo de um conjunto real, vide (LIMA, 2019, p.75).

ambas funções constantes.

Figura 3 – Gráfico da Função $f(x) = \frac{|x|}{x}$

Fonte: Elaborado pelo autor

Por serem constantes, já vimos que são mensuráveis. Mas e a função $f(x) = \frac{|x|}{x}$? Será que é mensurável? A resposta é sim e para mostrarmos isso precisaremos de alguns resultados auxiliares.

Lema 1.2.1 Seja $f: X \to \mathbb{R}$ uma função real. Então $f = f^+ - f^-$ e $|f| = f^+ + f^-$.

Demonstração.

Para provar que $f = f^+ - f^-$, devemos avaliar os casos de f(x). Logo, se $f(x) \ge 0$, então $f^+(x) = \sup\{f(x), 0\} = f(x)$ e $f^-(x) = \sup\{-f(x), 0\} = 0$, pois $f(x) \ge 0 \Rightarrow -f(x) \le 0$. Disso, $f^+(x) - f^-(x) = f(x) - 0 = f(x)$, ou seja, $(f^+ - f^-)(x) = f(x)$, $\forall x \in X$. Caso f(x) < 0, então -f(x) > 0. Com isso, $\sup\{f(x), 0\} = 0$ e $\sup\{-f(x), 0\} = -f(x)$. Desta forma vemos que $f^+(x) - f^-(x) = 0 - (-f(x)) = f(x)$. Em todo caso, $f = f^+ - f^-$.

Analogamente, se $f(x) \ge 0$, então $\sup\{f(x), 0\} = f(x)$ e $\sup\{-f(x), 0\} = 0$. Assim, $f^+(x) + f^-(x) = f(x)$. Caso, f(x) < 0, então -f(x) > 0. Com isso, obtemos $\sup\{f(x), 0\} = 0$ e $\sup\{-f(x), 0\} = -f(x)$. Logo, $f^+(x) + f^-(x) = -f(x)$. Desta forma,

$$(f^{+} + f^{-})(x) = \max\{f(x), -f(x)\} = |f(x)|.$$

Portanto, $f^{+} + f^{-} = |f|$.

Observe que o lema 1.2.1 nos dá a forma das funções f^+ e f^- de maneira implicita. De fato, somando as duas expressões membro a membro vemos que

$$f + |f| = (f^+ + f^+) - (f^- + f^-) = 2f^+$$

Assim, podemos expressar $f^+=\frac{|f|+f}{2}$. De modo semelhante, conseguimos subtrair membro a membro e obter a expressão $f^-=\frac{|f|-f}{2}$. Isso demonstra o lema adiante:

Lema 1.2.2 Se
$$f: X \to \mathbb{R}$$
 é uma função real, então $f^+ = \frac{|f| + f}{2}$ e $f^- = \frac{|f| - f}{2}$.

Teorema 1.2.3 Uma função $f: X \to \mathbb{R}$ é \mathscr{C} -mensurável se, e somente se, suas partes negativa e positiva são ambas \mathscr{C} -mensuráveis.

Demonstração.

Suponha que f seja $\mathscr C$ -mensurável. Pela proposição 1.2.2 vemos que a função |f| é $\mathscr C$ -mensurável e pelo lema 1.2.2 as funções $f^+=\frac{1}{2}(|f|+f)$ e $f^+=\frac{1}{2}(|f|-f)$ também são $\mathscr C$ -mensuráveis. Desta forma, as funções f^+ e f^- são combinações aritméticas de funções $\mathscr C$ -mensuráveis. Segue pela proposição 1.2.3 que f^+ e f^- são $\mathscr C$ -mensuráveis. Reciprocamente, supondo que f^+ e f^- são mensuráveis, temos pelo lema 1.2.1 que $f=f^+-f^-$. Segue, novamente pela proposição 1.2.3, que f é $\mathscr C$ -mensurável.

Uma vez que foram apresentadas as definições de σ -álgebra , espaços mensuráveis e funções mensuráveis; nosso alicerce está totalmente consolidado para que possamos entender o que é uma medida medida sem muita dificuldade. Isso faremos na seção seguinte.

2 A TEORIA DA MEDIDA

2.1 Os Espaços de Funções Mensuráveis

As vezes, teremos conjuntos "grandes" de tal forma que sua medida não poderá ser expressa por um número real. Por exemplo, o conjunto \mathbb{R} . Por ser infinito ¹, consideramos que seu tamanho é "infinito" e representamos pelo simbolo +∞. Entretanto, +∞ não é um número real e sim uma conceito de "tão grande quanto se queira". Para solucionar esta problemática, vamos considerar um novo sistema numérico.

Definição 2.1.1 A coleção $\overline{\mathbb{R}}$ que consiste de $\mathbb{R} \cup \{-\infty, +\infty\}$ é chamada de **Sistema Estendido** de Números Reais.

Ou seja, $\overline{\mathbb{R}}$ nada mais é que o conjunto dos números reais com a possibilidade de se ter $-\infty$ ou $+\infty$. Com isso, parece que nosso problema de medir conjuntos muito grandes se resolveu. Entretanto, alguns cuidados são necessários para operarmos em $\overline{\mathbb{R}}$. Um deles, por exemplo, é que $\overline{\mathbb{R}}$ não é fechado para operações de \mathbb{R} tais como $(+\infty)+(-\infty)$ que nem definido é. Dito isso, para $x \in \mathbb{R}$, as operações dos símbolos $+\infty$ e $-\infty$ são dadas da seguinte forma:

•
$$(+\infty) + (+\infty) = +\infty$$
;

•
$$(+\infty) \cdot (+\infty) = +\infty$$

•
$$(-\infty) \cdot (-\infty) = +\infty$$

•
$$(-\infty) + (-\infty) = -\infty$$
.

•
$$(+\infty) \cdot (-\infty) = -\infty$$

•
$$x + (-\infty) = (-\infty) + x = -\infty$$
:

•
$$(-\infty) \cdot (+\infty) = -\infty$$

Na multiplicação, dependendo do número real, a operação diferencia-se. Assim, podemos ter

$$x \cdot (+\infty) = (+\infty) \cdot x = \begin{cases} +\infty, & \text{se } x > 0 \\ 0, & \text{se } x = 0 \\ -\infty, & \text{se } x < 0 \end{cases} \qquad x \cdot (-\infty) = (-\infty) \cdot x = \begin{cases} -\infty, & \text{se } x > 0 \\ 0, & \text{se } x = 0 \\ +\infty, & \text{se } x < 0 \end{cases}$$

Neste novo contexto de números reais a σ-álgebra de Borel não é mais válida uma vez que a definição 1.1.2 não inclui $+\infty$ nem $-\infty$. Com isso, considere $\overline{\mathbb{R}}$. Tomando um conjunto arbitrário $E \in \mathcal{B}$, com $\emptyset \neq E$, defina $E_1 = E \cup \{-\infty\}, E_2 = E \cup \{+\infty\}$ e $E_3 = E \cup \{-\infty, +\infty\}$.

Vide (LIMA, 2019, p.86)

Desta forma, o conjunto $\overline{\mathcal{B}} = \bigcup_{E \in \mathcal{B}} \{E, E_1, E_2, E_3\}$ é uma σ -álgebra de $\overline{\mathbb{R}}$. Com efeito, se $E \in \mathcal{B}$, então é um intervalo aberto conforme o teorema 1.1.1. Assim, E_1, E_2, E_3 e E_4 serão intervalos do tipo $[-\infty, x)$ ou $(x, +\infty]$ que são elementos de \mathcal{B} acrescidos de $+\infty$ ou $-\infty$. Deste modo, é fácil verificar que se um elemento $A \in \overline{\mathcal{B}}$, então $A^c \in \overline{\mathcal{B}}$. Além disso, a união enumerável é, no máximo, o intervalo $[-\infty, +\infty]$ que é exatamente $\overline{\mathbb{R}}$. Desta forma, $\overline{\mathcal{B}}$ é uma σ -álgebra de $\overline{\mathbb{R}}$.

Definição 2.1.2 A σ -álgebra $\overline{\mathcal{B}} = \bigcup_{E \in \mathcal{B}} \{E, E_1, E_2, E_3\}$ do conjunto $\overline{\mathbb{R}}$ é chamada de Álgebra de Borel Estendida.

Uma vez que estamos familiarizados com os conceitos de funções de valores reais mensuráveis, estamos prontos para estender este conceito para o conjunto $\overline{\mathbb{R}}$.

Definição 2.1.3 Sendo (X,\mathcal{C}) um espaço mensurável, uma função de valores reais estendidos $f: X \to \overline{\mathbb{R}}$ é dita \mathcal{C} -mensurável caso o conjunto $\{x \in X; f(x) > \alpha\} \in \mathcal{C}$ para qualquer que seja $\alpha \in \mathbb{R}$.

Denotaremos a família de todas as funções de valores reais estendidos de X que são $\mathscr C$ -mensuráveis por $M(X,\mathscr C)$.

Proposição 2.1.1 Se
$$f \in M(X, \mathcal{C})$$
, então $\{x \in X; f(x) = +\infty\} = \bigcap_{n=1}^{\infty} \{x \in X; f(x) > n\}$.

Demonstração.

Tome, de modo arbitrário, um elemento $a \in X$. Assim,

$$a \in \bigcap_{n=1}^{\infty} \{x \in X; f(x) > n\} \Leftrightarrow a \in \{x \in X; f(x) > n\}, \ \forall n \in \mathbb{N}$$
$$\Leftrightarrow \forall n \in \mathbb{N}, \ f(a) > n$$
$$\Leftrightarrow \lim_{n \to \infty} f(a) \ge \lim_{n \to \infty} n$$
$$\Leftrightarrow f(a) \ge +\infty.$$

Como estamos trabalhando com $\overline{\mathbb{R}}$, não existe elemento $x > +\infty$. Logo, o único elemento possível para f(a) é $+\infty$. Assim, tudo isso ocorre se, e somente se, o elemento $a \in \{x \in X; f(x) = +\infty\}$ como queríamos. Além disso, note que cada $\{x \in X; f(x) > n\} \in \mathscr{C}$. Segue, pela proposição 1.1.3, que $\bigcap_{x \in X} \{x \in X; f(x) > n\} \in \mathscr{C}$ acarretando que $\{x \in X; f(x) = +\infty\} \in \mathscr{C}$.

Proposição 2.1.2 Se
$$f \in M(X, \mathcal{C})$$
, então $\{x \in X; f(x) = -\infty\} = \left(\bigcup_{n=1}^{\infty} \{x \in X; f(x) > -n\}\right)^{c}$.

Demonstração.

Analogamente à proposição 2.1.1 tomemos $a \in X$. Segue que

$$a \in \left(\bigcup_{n=1}^{\infty} \{x \in X; f(x) > -n\}\right)^{c} \Leftrightarrow a \in \bigcap_{n=1}^{\infty} \left(\{x \in X; f(x) > -n\}\right)^{c}$$

$$\Leftrightarrow \forall n \in \mathbb{N}, a \in \left(\{x \in X; f(x) > -n\}\right)^{c}$$

$$\Leftrightarrow \forall n \in \mathbb{N}, a \notin \{x \in X; f(x) > -n\}$$

$$\Leftrightarrow \forall n \in \mathbb{N}, a \in \{x \in X; f(x) \leq -n\}$$

$$\Leftrightarrow \forall n \in \mathbb{N}, f(a) \leq -n$$

$$\Leftrightarrow \lim_{n \to \infty} f(a) \leq \lim_{n \to \infty} (-n)$$

$$\Leftrightarrow f(a) \leq -\infty$$

$$\Leftrightarrow a \in \{x \in X; f(x) = -\infty\}$$

Ora, cada $\{x\in X; f(x)>-n\}\in\mathscr{C}$. Assim, por definição de σ -álgebra , temos que $\bigcup_{n=1}^{\infty}\{x\in X; f(x)>-n\}\in\mathscr{C}$ e também $\left(\bigcup_{n=1}^{\infty}\{x\in X; f(x)>-n\}\right)^c\in\mathscr{C}$. Concluímos disso que $\{x\in X; f(x)=-\infty\}\in\mathscr{C}$ como queríamos provar.

Teorema 2.1.1 Uma função de valores reais estendidos $f: X \to \mathbb{R}$ é \mathscr{C} -mensurável se, e somente se, os conjuntos $A = \{x \in X; f(x) = +\infty\}$ e $B = \{x \in X; f(x) = -\infty\}$ são elementos de \mathscr{C} e a função $h: X \to \mathbb{R}$ definida por

$$h(x) = \begin{cases} f(x), & se \ x \notin A \cup B \\ 0, & se \ x \in A \cup B \end{cases}$$

é C-mensurável.

Demonstração.

Suponha que $f \in M(X, \mathcal{C})$. Logo, pelas proposições 2.1.1 e 2.1.2, os conjuntos A e B são elementos de \mathcal{C} . Assim, tome $\alpha \in \mathbb{R}$ com $\alpha \geq 0$, então os elementos de $\{x \in X; h(x) > \alpha\}$

são os elementos de $\{x \in X; f(x) > \alpha\}$ que não estão em A, pois h tem contradomínio \mathbb{R} . Como \mathscr{C} é uma σ -álgebra , $A \in \mathscr{C} \Rightarrow A^c \in \mathscr{C}$. Com isso,

$$\{x \in X; h(x) > \alpha\} = A^c \cap \{x \in X; f(x) > \alpha\} \in \mathscr{C}$$

Segue, pela proposição 1.1.3 que $\{x \in X; h(x) > \alpha\} \in \mathcal{C}$, ou seja, $h \notin \mathcal{C}$ -mensurável. Caso, $\alpha < 0$, então $\{x \in X; h(x) > \alpha\} = \{x \in X; f(x) > \alpha\} \cup B$, pois h(x) = 0 para $x \in A \cup B$. Desta forma $h \notin \mathcal{C}$ -mensurável.

Por outro lado, se supormos que A e B são elementos de $\mathscr C$ e h é $\mathscr C$ -mensurável, então

$$\{x \in X; f(x) > \alpha\} = \{x \in X; h(x) > \alpha\} \cup A$$

quando $\alpha \ge 0$, e

$$\{x \in X; f(x) > \alpha\} = \{x \in X; h(x) > \alpha\} - B$$

quando $\alpha < 0$ por motivos análogos à primeira parte da demonstração. Portanto, f é uma função $\mathscr C$ -mensurável como desejávamos.

Como consequência do teorema 1.2.2 e o teorema 2.1.1 obtemos, imediatamente, que se $f \in M(X, \mathscr{C})$, então as funções $cf, f^2, |f|, f^+$ e f^- também são elementos de $M(X, \mathscr{C})$. Entretanto, um resultado análogo à proposição 1.2.3 não possível em $\overline{\mathbb{R}}$. Isso acontece porquê em $\overline{\mathbb{R}}$ a operação de adição não é bem definida. Então caso $f(x) = +\infty$ e $g(x) = -\infty$ para algum $x \in \mathbb{R}$ a adição f(x) + g(x) não é realizada. Por outro lado, a função fg é \mathscr{C} -mensurável se f e g forem ambas \mathscr{C} -mensuráveis. Para mostrar isso, precisamos do seguinte teorema

Teorema 2.1.2 Seja (f_n) uma sequência de elementos de $M(X, \mathcal{C})$ e defina as funções

$$f(x) = \inf f_n(x), F(x) = \sup f_n(x), f^*(x) = \liminf f_n(x), F^*(x) = \limsup f_n(x).$$

Então as funções f, f^*, F e F^* são elementos de $M(X, \mathscr{C})$.

Demonstração.

Como (f_n) é uma sequência de funções \mathscr{C} -mensuráveis e $f = \inf f_n$, afirmamos que

$$\{x \in f(x) \ge \alpha\} = \bigcap_{n=1}^{\infty} \{x \in X; f_n(x) \ge \alpha\}$$
. De fato, tomemos um elemento $h \in X$. Assim,

$$h \in \bigcap_{n=1}^{\infty} \{x \in X; f_n(x) \ge \alpha\} \Leftrightarrow h \in \{x \in X; f_n(x) \ge \alpha\} \ \forall n \in \mathbb{N}$$
$$\Leftrightarrow f_n(h) \ge \alpha \ \forall n \in \mathbb{N}$$
$$\Leftrightarrow \inf_{n \in \mathbb{N}} f_n(h) \ge \inf_{n \in \mathbb{N}} \alpha \ \forall n \in \mathbb{N}$$
$$\Leftrightarrow f(h) \ge \alpha \ \forall n \in \mathbb{N}$$
$$\Leftrightarrow h \in \{x \in X; f(x) \ge \alpha\}$$

Como cada $\{x \in X; f_n(x) \ge \alpha\}$ é $\mathscr C$ -mensurável, segue pela proposição 1.1.3 que o conjunto $\{x \in X; f(x) \ge \alpha\} \in \mathscr C$ para todo $\alpha \in \mathbb R$. Desta forma, f é $\mathscr C$ -mensurável.

Observe, também, que $\{x\in X; F(x)>\alpha\}=\bigcup_{n=1}\{x\in X; f_(x)>\alpha\}$. Com efeito, para $h\in X$

$$h \in \bigcup_{n=1}^{\infty} \{x \in X; f_n(x) > \alpha\} \Leftrightarrow \exists k \in \mathbb{N} \text{ tal que } h \in \{x \in X; f_k(x) > \alpha\}$$
 $\Leftrightarrow f_k(h) > \alpha, \ \forall \alpha \in \mathbb{R}$
 $\Leftrightarrow F(x) \geq f_k(h) > \alpha, \ \forall \alpha \in \mathbb{R}$
 $\Leftrightarrow F(x) > \alpha, \ \forall \alpha \in \mathbb{R}$
 $\Leftrightarrow h \in \{x \in X; F(x) > \alpha\}$

Assim, concluímos que f e F são $\mathscr C$ -mensuráveis. Note que a mensurabilidade de f^* e F^* vem de f e F uma vez que

$$f^*(x) = \sup_{n \ge 1} \left\{ \inf_{m \ge n} f_m(x) \right\} e F^*(x) = \inf_{n \ge 1} \left\{ \sup_{m \ge n} f_m(x) \right\}$$

Corolário 2.1.1 Se (f_n) é uma sequência em $M(X,\mathcal{C})$ que converge para f em X, então f também está em $M(X,\mathcal{C})$.

Demonstração.

Ora, por hipótese $f(x) = \lim_{n \to +\infty} f_n(x)$. Só que $\lim_{n \to +\infty} f_n(x) = \liminf_{n \in \mathbb{N}} f_n(x)$. Segue que $f(x) = \liminf_{n \in \mathbb{N}} f_n(x)$ que, por sua vez, é \mathscr{C} -mensurável pelo teorema anterior.

Definição 2.1.4 (Truncamento de uma função mensurável) Seja f uma função em $M(X, \mathcal{E})$ e A > 0. Definimos o truncamento f_A da função f por

$$f_A(x) = \begin{cases} f(x), & se |f(x)| \le A \\ A, & se |f(x)| \le A \\ -A, & se |f(x)| < A \end{cases}$$

Exemplo 2.1.1 Seja $f \in M(X, \mathcal{C})$ tal que $f(x) = x^2 - 2$. Então o truncamento f_2 é representado, graficamente, como

Figura 4 – representação do truncamento f_2 da função $f(x) = x^2 - 2$

Fonte: Elaborado pelo autor

Observe que a figura 4 mostra que o truncamento f_2 efetua uma espécie de "limitação" da função f pela constante 2.

Proposição 2.1.3 Seja A um número real maior que zero. Se f é uma função em $M(X, \mathcal{C})$, então f_A é uma função \mathcal{C} -mensurável.

Demonstração.

De fato, se os elementos $x \in X$ são tais que $-A \le f(x) \le A$, então $f_A(x) = f(x)$. Logo f_A é $\mathscr C$ -mensurável, pois f o é. Caso esses elementos sejam tais que f(x) > A ou f(x) < A a função f_A é constante. Segue pela proposição 1.2.1 que f_A é um elemento de $M(X,\mathscr C)$.

Retornemos para a mensurabilidade do produto de duas funções com valores reais estendidos. Sejam $f,g \in M(X,\mathcal{C})$. Tomemos duas sequências (f_n) e (g_m) tais que para cada

 $k \in \mathbb{N}$, f_k e g_k são truncamentos de f e g, respectivamente. Ou seja,

$$g_m(x) = \begin{cases} g(x), & \text{se } |g(x)| \le m \\ n, & \text{se } g(x) > m \\ -n, & \text{se } g(x) < m \end{cases}$$

e f_n é definida de modo similar. Pela proposição 2.1.3, f_n e g_m são $\mathscr C$ -mensuráveis para cada n e m números naturais. Assim, pela proposição 1.2.3 f_ng_m também é $\mathscr C$ -mensurável para quaisquer $n,m\in\mathbb N$. Como o truncamento de uma função f causa uma "limitação" na função f se tomarmos n grande suficiente o truncamento f_n tende a se aproximar da função f. Assim, para $x\in X$

$$\lim_{n\to+\infty}(f_n(x)g_m(x))=f(x)g_m(x)$$

Segue pelo corolário 2.1.1 que $fg_m \in M(X, \mathcal{C})$. Com isso, temos que para $x \in X$

$$\lim_{m \to +\infty} (f(x)g_m(x)) = f(x)g(x) = (fg)(x)$$

Segue, pelo mesmo corolário, que $fg \in M(X, \mathcal{C})$.

Nos definimos a mensurabilidade de funções de maneira bem peculiar aos números reais uma vez que será o enfoque de nosso trabalho. Entretanto, em alguns casos, é necessário trabalhar com mensurabilidade de uma forma mais abstrata. Dito isso, encerraremos esta seção apresentando a definição generalizada de mensurabilidade de uma função.

Definição 2.1.5 Sejam (X, \mathcal{C}) e (Y, \mathcal{F}) dois espaços mensuráveis. Dizemos que uma função $\phi: (X, \mathcal{C}) \to (Y, \mathcal{F})$ é dita mensurável se o conjunto $f^{-1}(E) = \{x \in X; f(x) \in E\} \in \mathcal{C}$ para todo conjunto $E \in \mathcal{F}$.

Embora essa definição pareça ser totalmente distinta da definição 1.2.1, as duas são equivalentes no caso particular de $Y = \mathbb{R}$ e $\mathscr{F} = \mathscr{B}$ conforme demonstrado a seguir.

Proposição 2.1.4 Seja (X, \mathcal{C}) um espaço mensurável e f uma função. Então f é \mathcal{C} -mensurável se, e somente se. $f^{-1}(E) \in \mathcal{C}$ para todo boreliano E.

Demonstração.

Suponha f uma função $\mathscr C$ -mensurável. Sabemos pela definição 1.1.2 que os elementos da álgebra de Borel são do tipo $(-\infty,x)$ com $x\in\mathbb R$. Assim, dado arbitrariamente $\alpha\in\mathbb R$ temos que

$$f^{-1}(-\infty, \alpha) = \{x \in X; f(x) \in (-\infty, \alpha)\} = \{x \in X; f(x) \le \alpha\}$$

Como $f \in \mathcal{C}$ -mensurável segue pelo teorema 1.2.2 que $f^{-1}(-\infty, \alpha) \in \mathcal{C}$. Reciprocamente se $f^{-1}(-\infty,\alpha) \in \mathscr{C}$ para qualquer α concluímos, imediatamente, que $\{x \in X; f(x) < \alpha\} \in \mathscr{C}$ para todo $\alpha \in \mathbb{R}$. Portanto, $f \notin \mathscr{C}$ -mensurável.

Espaços de Medida 2.2

Nas subseções anteriores, nós trabalhos com conjuntos e com funções mensuráveis, isto é, que podem ser medidas de alguma forma. Nesta subseção, nos preocuparemos em definir e trabalhar com funções de um espaço mensurável (X, \mathcal{C}) que daremos o nome de "medida". Tais funções são induzidas pela nossa concepção de comprimento, área, volume, etc. Dito isso, para trabalhamos com medidas primeiro retomaremos alguns resutlados sobre sequência de conjuntos.

Definição 2.2.1 *Uma sequência de conjuntos* (A_n) *é dita crescente se* $A_n \subseteq A_{n+1}$ *para todo* $n \in \mathbb{N}$. Caso tenhamos $A_n \supseteq A_{n+1}$ para todo $n \in \mathbb{N}$, dizemos que a sequência de conjuntos é decrescente.

Proposição 2.2.1 Seja (E_n) uma sequência crescente de conjuntos. Se (A_n) é tal que $A_1 = E_1$ e $A_n = E_n - E_{n-1}$ para todo n > 1, então:

- (i) A_n é uma sequência disjunta; ²

(ii)
$$E_n = \bigcup_{j=1}^n A_n;$$

(iii) $\bigcup_{j=1}^{\infty} E_n = \bigcup_{j=1}^{\infty} A_n;$

Demonstração.

Para provar (a) precisamos mostrar que para todo $n, m \in \mathbb{N}$ se $m \neq n$, então $A_n \cap A_m =$ \varnothing . Lembre que $A - B = A \cap B^c$ para quaisquer conjuntos A e B. Desta forma, como a interseção Lembre que uma sequência disjunta significa que $A_i \cap A_j = \varnothing$ para todo $i \neq j$

entre conjuntos é associativa e comutativa temos que

$$A_{m} \cap A_{n} = (E_{m} - E_{m-1}) \cap (E_{n} - E_{n-1})$$

$$= (E_{m} \cap E_{m-1}^{c}) \cap (E_{n} \cap E_{n-1}^{c})$$

$$= (E_{m} \cap E_{n}) \cap (E_{m-1}^{c} \cap E_{n-1}^{c})$$

$$= (E_{m} \cap E_{n}) \cap (E_{m-1} \cup E_{n-1})^{c}$$

Com isso, se m > n, então $E_n \subseteq E_m$ e $E_{m-1} \subseteq E_{m-1}$, pois (E_n) é uma sequência crescente. Além disso, $E_m^c \subseteq E_{m-1}^c$ e $E_m \cap E_m^c = \emptyset$. Segue que

$$(E_m \cap E_n) \cap (E_{m-1} \cup E_{n-1})^c = (E_m) \cap E_{m-1}^c = \emptyset$$

Caso tenhamos m < n então $E_m \subseteq E_n$ e $E_{m-1} \subseteq E_{n-1}$. Segue analogamente que

$$(E_m \cap E_n) \cap (E_{m-1} \cup E_{n-1})^c = (E_n) \cap E_{n-1}^c = \varnothing$$

Em todo caso, $A_m \cap A_n = \emptyset$ para todo $m \neq n$.

Provaremos o item (b) por indução sobre n. Como (E_n) é crescente, temos que $E_1 \subseteq E_2$. Com isso, temos que

$$\bigcup_{j=1}^{2} A_{j} = A_{1} \cup A_{2} = E_{1} \cup (E_{2} - E_{1})$$

$$= E_{1} \cup (E_{2} \cap E_{1}^{c})$$

$$= (E_{1} \cup E_{2}) \cap (E_{1} \cup E_{1}^{c})$$

$$= (E_{1} \cup E_{2}) \cap \mathscr{C}$$

$$= (E_{1} \cap E_{2}) = E_{2}$$

Suponha que exista um $k \in \mathbb{N}$ tal que $\bigcup_{j=1}^k A_j = E_k$. Mostraremos que $\bigcup_{j=1}^{k+1} A_j = E_{k+1}$ também é verdadeira. Com efeito,

$$\bigcup_{j=1}^{k+1} A_j = \left(\bigcup_{j=1}^k A_j\right) \cup A_{k+1}$$

$$= E_k \cup A_{k+1}$$

$$= E_k \cup (E_k - E_{k+1})$$

$$= E_k \cap E_{k+1}$$

$$= E_{k+1}$$

Segue, pelo método da indução finita, que $\bigcup_{j=1}^n A_j = E_n \ \forall n \in \mathbb{N}$.

Por fim, (c) é um resultado imediato, pois $x \in \bigcup_{j=1}^{\infty} E_j$ se, e somente se, existe um $n_0 \in \mathbb{N}$ tal que $x \in E_{n_0}$. Pelo item (b), isso só ocorre se $x \in \bigcup_{j=1}^{\infty} A_j$. Mas isso é equivalente à dizer que existe um k com $1 \le k \le n_0$ tal que $x \in A_k$. Como $k \in \mathbb{N}$ isso acontece se, e somente se, $x \in A_k$ para algum $k \in \mathbb{N}$. Portanto $x \in \bigcup_{j=1}^{\infty} A_j$.

Proposição 2.2.2 Seja (F_n) uma sequência decrescente de conjuntos. Se (E_n) é tal que $E_n = F_1 - F_n$ para todo $n \in \mathbb{N}$, então (E_n) é crescente e $\bigcup_{j=1}^{\infty} E_n = F_1 - \bigcup_{j=1}^{\infty} F_n$.

Demonstração.

Queremos mostrar que (E_n) é crescente, isto é, $E_n \subseteq E_{n+1}$ para todo $n \in \mathbb{N}$. Tome $x \in E_n$. Logo, $x \in F_1$ e $x \notin F_n$, por construção. Como (F_n) é decrescente, $F_n \supseteq F_{n+1}$. Assim, $x \notin F_n \Rightarrow x \notin F_{n+1}$. Com isso, $x \in F_1$ e $x \notin F_{n+1}$. Segue que $x \in E_{n+1}$ e que $E_n \subseteq E_{n+1}$ para qualquer $n \in \mathbb{N}$ como queríamos. Além disso, um elemento $a \in \bigcup_{n \in \mathbb{N}} E_n$ se, e somente se, $a \in \bigcup_{n \in \mathbb{N}} (F_1 - F_n)$. Isso é equivalente a dizer que existe um $n_0 \in \mathbb{N}$ tal que $a \in F_1 - F_{n_0}$. Correspondentemente, $a \in F_1$ e existe um $n_0 \in \mathbb{N}$ tal que $x \notin F_{n_0}$. Isso só ocorre se $x \in F_1$, mas $x \notin \bigcup_{n \in \mathbb{N}} F_n$. Portanto, $\bigcup_{i=1}^{\infty} E_i = F_1 - \bigcup_{i=1}^{\infty} F_n$.

Definição 2.2.2 *Uma medida é uma função* $\mu:(X,\mathscr{C})\to\overline{\mathbb{R}}$ *tal que satisfaz as seguintes condições:*

- (i) $\mu(\varnothing) = 0$;
- (ii) $\mu(E) \geq 0, \forall A \in \mathscr{C}$;
- (iii) Se (A_n) é uma sequência disjunta de elementos de \mathscr{C} , então $\mu\left(\bigcup_{n=1}^{\infty}A_n\right)=\sum_{n=1}^{\infty}\mu(A_n)$.

Ou seja, uma medida é uma função não negativa que é contavelmente aditiva. Além disso, o valor de μ pode ser igual à $+\infty$ para algum conjunto $A \in \mathscr{C}$. Quando temos que $\mu(E) < +\infty$ para qualquer que seja o conjunto $E \in \mathscr{C}$, dizemos que temos uma medida finita.

Definição 2.2.3 Dizemos que uma tripla ordenada (X,\mathcal{C},μ) constituída por um conjunto X, uma σ -álgebra \mathcal{C} desse conjunto e uma medida μ sobre o espaço mensurável (X,\mathcal{C}) é um espaço de medida.

Exemplo 2.2.1 Seja X um conjunto e \mathscr{C} a σ -álgebra formada por todos os subconjunto de X. Defina $\mu_1, \mu_2 : \mathscr{C} \to \overline{\mathbb{R}}$ pondo $\mu_1(A) = 0$ para qualquer $A \in \mathscr{C}$ e μ_2 é pondo

$$\mu_2(A) = \begin{cases}
0, & \text{se } A = \emptyset \\
+\infty, & \text{se } A \neq \emptyset
\end{cases}$$

Sendo definidas dessa forma, as funções μ_1 e μ_2 são medidas.

De fato, em ambas as condições (i) e (ii) são trivialmente satisfeitas. Para a condição (iii), temos que qualquer sequência disjunta (A_n) acarretará que

$$\mu_1 \left(\bigcup_{n=1}^{\infty} A_n \right) = 0 = \sum_{n=1}^{\infty} 0 = \sum_{n=1}^{\infty} \mu_1(A_n)$$

Para μ_2 temos dois casos possíveis. Se $\bigcup_{n=1}^{\infty} A_n = \emptyset$, então $\mu_2 \left(\bigcup_{n=1}^{\infty} A_n \right) = 0$. Entretanto isso ocorre somente se $A_j = \emptyset$ para todo $j \in \mathbb{N}$. Logo,

$$\sum_{n=1}^{\infty} \mu_2(A_n) = \sum_{n=1}^{\infty} \mu_2(\emptyset) = \sum_{n=1}^{\infty} 0 = 0$$

Caso $\bigcup_{n=1}^{\infty} A_n \neq \emptyset$, conseguimos observar que os termos da sequência (A_n) só podem ser de dois

tipos ou
$$A_j = 0$$
 ou $A_j = +\infty$ para algum $j \in \mathbb{N}$. Com isso, $\mu_2 \left(\bigcup_{n=1}^{\infty} A_n \right) = +\infty$.

Ademais, na soma $\sum_{n=1}^{\infty} \mu_2(A_n)$ só teremos soma dos termos $0+(+\infty)$ ou $(+\infty)+(+\infty)$. Desta forma, $\sum_{n=1}^{\infty} \mu_2(A_n) = \sum_{n=1}^{\infty} \mu_2(A_n) = +\infty$. Portanto μ_1 e μ_2 são medidas.

Exemplo 2.2.2 (Probabilidade) Seja (Ω, \mathcal{C}) um espaço mensurável. A função $\mathcal{P}: \mathcal{C} \to [0, 1]$ é dita uma probabilidade se satisfaz as propriedades:

$$(K1) \mathscr{P}(\Omega) = 1;$$

(*K*2)
$$\mathscr{P}(A) > 0, \forall A \in \mathscr{C}$$
;

(K3) Se
$$(A_n)$$
 é uma sequência disjunta de elementos de \mathscr{C} , então $\mathscr{P}\left(\bigcup_{n=1}^{\infty}A_n\right)=\sum_{n=1}^{\infty}\mathscr{P}(A_n)$.

Observe que as condições da (ii) e (iii) da definição 2.2.2 são satisfeitas por definição da função de probabilidade. Resta provar que $\mathscr{P}(\varnothing) = 0$. Assim, com o auxilio das propriedades (K1) e (K3), segue que

$$\mathscr{P}(\Omega) = \mathscr{P}(\Omega \cup \varnothing) = \mathscr{P}(\Omega) + \mathscr{P}(\varnothing) \Rightarrow \mathscr{P}(\Omega) = \mathscr{P}(\Omega) + \mathscr{P}(\varnothing)$$

Logo, $\mathscr{P}(\varnothing)=0$. Portanto a função probabilidade é uma medida. Neste caso, o espaço de medida $(\Omega,\mathscr{C},\mathscr{P})$ é chamado de espaço de probabilidades. Além disso, uma função \mathscr{C} -mensurável pela definição 2.1.5 em um espaço de probabilidades é chamada de variável aleatória.

Exemplo 2.2.3 (Unidade de Medida Concentrada em p) Seja (X, \mathcal{C}) um espaço mensurável onde $\mathcal{C} = \mathcal{P}(X)$ e p um elemento de X. Defina $\mu : \mathcal{C} \to \overline{\mathbb{R}}$ como sendo

$$\mu(A) = \begin{cases} 0, & \text{se } p \notin A \\ 1, & \text{se } p \in A \end{cases}$$

Então μ é uma medida. Verdadeiramente, observe que $p \notin \emptyset$, ou seja, $\mu(\emptyset) = 0$. Trivialmente, tem-se $\mu(A) \ge 0$, $\forall A \in \mathscr{C}$, pela construção de μ .

Exemplo 2.2.4 Seja $X = \mathbb{N}$ e \mathscr{C} sendo o conjunto das partes de \mathbb{N} . para $A \in \mathscr{C}$, definimos $\mu(A)$ por meio da sua cardinalidade, isto é, se A é finito, então $\mu(A)$ é quantidade de elementos de A. Caso contrário, $\mu(A) = +\infty$.

Teorema 2.2.1 Seja μ uma medida definida sobre uma σ -álgebra \mathscr{C} . Se A e B são elementos de \mathscr{C} e $A \subset B$, então $\mu(A) \leq \mu(B)$. Se $\mu(A) < +\infty$, então $\mu(A-B) = \mu(A) - \mu(B)$.

Demonstração.

Suponha que $A\subset B$, então $A=B\cup (B-A)$ e $A\cap (B-A)=\varnothing$. Segue pela propriedade (ii) da definição 2.2.2 que

$$\mu(B) = \mu(A) + \mu(B - A)$$

Lembre que $B-A=B\cap A^c$ e $A\in\mathscr{C}\Rightarrow A^c\in\mathscr{C}$. Além disso, como $B\in\mathscr{C}$ temos que $B\cap A^c$ consequentemente $B-A\in\mathscr{C}$. Assim, como μ é uma medida e $B-A\in\mathscr{C}$, temos que $\mu(B-A)\geq 0$. Segue que $\mu(B)\geq \mu(A)$. Observe que se $\mu(A)<\infty$, temos que

³ As propriedades K1, K2 e K3 são chamadas de Axiomas de Kolmogorov

$$\mu(B) = \mu(A) + \mu(B-A) \Leftrightarrow \mu(B) - \mu(A) = \mu(B-A)$$

Como desejávamos.

Proposição 2.2.3 Seja μ uma medida definida sobre uma σ -álgebra \mathscr{C} . Se (E_n) é uma sequência crescente de \mathscr{C} , então $\mu\left(\bigcup_{n=1}^{\infty}E_n\right)=\lim_{n\to\infty}\mu(E_n)$.

Demonstração.

Ora, se $\mu(E_n)=+\infty$ para algum $n\in\mathbb{N}$ ambos os lados da equação acima são $+\infty$. Desta forma, vamos supor que $\mu(E_n)<+\infty$ para todo $n\in\mathbb{N}$. Com isso, vamos construir uma sequência (A_n) pondo $A_1=E_1$ e $A_n=E_n-E_{n-1}$ para qualquer n>1. Então pela proposição 2.2.1, (A_n) é uma sequência disjunta, temos $E_n=\bigcup_{j=1}^n A_j$ e $\bigcup_{j=1}^\infty E_j=\bigcup_{j=1}^\infty A_j$. Como μ contavelmente aditiva,

$$\mu\left(\bigcup_{n=1}^{\infty} E_n\right) = \mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu(A_n) = \lim_{m \to +\infty} \sum_{n=1}^{m} \mu(A_n)$$

Pelo teorema ?? vemos que $\mu(A_n) = \mu(E_n) - \mu(E_{n-1})$ para n > 1. Assim,

$$\lim_{m \to +\infty} \sum_{n=1}^{m} \mu(A_n) = \lim_{m \to +\infty} (\mu(A_1) + \mu(A_2) + \dots + \mu(A_m))$$

$$= \lim_{m \to +\infty} (\mu(E_1) + \mu(E_2 - E_1) + \dots + \mu(E_m - E_{m-1}))$$

$$= \lim_{m \to +\infty} (\mu(E_1) + \mu(E_2) - \mu(E_1) + \dots + \mu(E_m) - \mu(E_{m-1}))$$

$$= \lim_{m \to +\infty} (\mu(E_1) - \mu(E_1) + \mu(E_2) + \dots - \mu(E_{m-1}) + \mu(E_m))$$

$$= \lim_{m \to +\infty} \mu(E_m)$$

Segue que $\mu\left(\bigcup_{n=1}^{\infty} E_n\right) = \lim_{n \to \infty} \mu(E_n)$.

Proposição 2.2.4 Seja μ uma medida definida sobre uma σ -álgebra \mathscr{C} . Se (B_n) é uma sequência decrescente de \mathscr{C} e $\mu(B_1) < +\infty$, então $\mu\left(\bigcap_{n=1}^{\infty} B_n\right) = \lim_{n \to \infty} \mu(B_n)$.

Demonstração.

Defina uma sequência (T_n) de elementos de $\mathscr C$ pondo $T_n = B_1 - B_n$ para qualquer que seja $n \in \mathbb N$. Pela proposição 2.2.2, (T_n) é crescente. Assim, aplicando o a proposição 2.2.3 temos que

$$\mu\left(\bigcap_{n\in\mathbb{N}}T_n\right)=\lim_{n\to+\infty}\mu(T_n)$$

Usando o teorema ??, obtemos

$$\lim_{n\to+\infty}\mu(T_n)=\lim_{n\to+\infty}[\mu(B_1)-\mu(B_n)]=\mu(B_1)-\lim_{n\to+\infty}\mu(B_n)$$

Segue pela proposição 2.2.2 que

$$\lim_{n\to+\infty}\mu(T_n)=\mu(B_1)-\mu\left(\bigcap_{n\in\mathbb{N}}B_n\right)$$

Combinando as duas equações obtemos que

$$\mu(B_1) - \lim_{n \to +\infty} \mu(B_n) = \mu(B_1) - \mu\left(\bigcap_{n \in \mathbb{N}} B_n\right)$$

Portanto,
$$\lim_{n\to+\infty}\mu(B_n)=\mu\left(\bigcap_{n\in\mathbb{N}}B_n\right)$$

Vimos quando tratamos de σ -álgebras a σ -álgebra de Borel que é muito relevante para o estudo da reta real. Da mesma forma, existe uma medida que é indispensável para o mesmo contexto. Essa, por sua vez, não será demonstrada, mas adotada como axioma à titulo de simplificação do trabalho. Assim,

Axioma 1 Sendo $(\mathbb{R}, \mathcal{B})$ um espaço mensurável, existe uma única medida λ definida sobre \mathcal{B} que coincide com o comprimento dos intervalos abertos.

Em termos práticos, se E é um intervalo real não vazio (a,b), então $\lambda(E)=b-a$. Esta medida recebe o nome de Medida de Lebesgue. Embora tenha tido a necessidade de utilizar o sistema da reta estendida para definirmos uma medida, existem conjuntos tão pequenos que sua medida é desprezível. À esses damos o nome de conjunto de medida nula. Formalmente,

Definição 2.2.4 Seja (X, \mathcal{C}, μ) um espaço de medida. Dizemos que um conjunto $E \subset \mathcal{C}$ tem medida nula em relação à medida μ se $\mu(E) = 0$.

Proposição 2.2.5 Seja (X, \mathcal{C}, μ) um espaço de medida. Se $\mu(X) = 0$ e $Y \subset X$, então $\mu(Y) = 0$.

Demonstração.

Note que $(Y \cap X) \subset X$, pois $Y \cap X = Y$. Assim, pelo teorema 2.2.1, temos que

$$\mu(Y) = \mu(X \cap Y) \le \mu(X) = 0$$

Logo, $\mu(Y) \le 0$. Segue que $\mu(Y) = 0$, pois a medida é uma função não negativa.

Proposição 2.2.6 Seja (X, \mathcal{C}, μ) um espaço de medida e $\{E_n\}$ uma sequência disjunta de elementos de \mathcal{C} . Se $Y = \bigcup_{n \in \mathbb{N}} E_n$ e $\mu(E_n) = 0$ para todo $n \in \mathbb{N}$, então $\mu(Y) = 0$.

Demonstração.

Analogamente à proposição anterior segue, imediatamente, que

$$\mu(Y) = \mu\left(\bigcup_{n\in\mathbb{N}} E_n\right) \leq \sum_{n=1}^{\infty} \mu(E_n) = 0.$$

Assim, $\mu(Y) \leq 0$. Portanto, $\mu(Y) = 0$.

Como exemplo, temos por definição, que \varnothing tem medida nula, pois para qualquer medida μ , $\mu(\varnothing) = 0$. Mostraremos a seguir um exemplo menos trivial:

Exemplo 2.2.5 (Medida de Conjuntos Discretos) *Se X* \subset \mathbb{R} *é um conjunto discreto, então tem medida nula com respeito à medida \lambda de Lebesgue.*

De fato, se X é discreto, então é formado por pontos. Assim, se $a \in X$, então pode ser representado degeneradamente, por $\{a\} = [a,a]$. Logo, $\lambda(\{a\}) = a - a = 0$. Assim, o conjunto X é dado pela reunião enumerável de seus pontos e todos têm medida nula. Segue pela proposição 2.2.6 que X tem medida nula.

3 TEORIA DA INTEGRAÇÃO

Uma vez que já foram bem explorados os espaços mensuráveis e os espaços de medida, vamos medir funções mensuráveis de fato. Iniciaremos por funções não negativas e iremos estendendo os conceitos aos poucos. Quando não houver menção contrária, (X, \mathcal{C}, μ) será um espaço de medida. O conjunto de todas as funções $f: X \to \overline{\mathbb{R}}$ mensuráveis será simplesmente denotado por $M = M(X, \mathcal{C})$ e o conjunto das funções não negativas, que também são \mathcal{C} -mensuráveis será denotado por $M^+ = M^+(X, \mathcal{C})$.

3.1 A Integral de Funções Simples

Iniciaremos tratando de casos particulares de integral e depois vamos expandindo. Com isso, iniciaremos entendo a integral para funções simples.

Definição 3.1.1 (Função Simples) *Uma função real é dita simples quando possui apenas uma quantidade finita de valores.*

Observação 3.1.1 Representaremos esse tipo de função, de forma padronizada em todo o texto, por meio da seguinte forma

$$\varphi = \sum_{j=1}^{n} a_j \chi_{E_j}$$

onde $a_j \in \mathbb{R}$ e χ_{E_j} é a função característica do conjunto $E_j \in \mathscr{C}$. Nessa representação estamos supondo que cada $a_j \in \mathbb{R}$ é diferente para todo $j \in \mathbb{N}$ e que $\bigcup_{j=1}^n E_j = X$.

Exemplo 3.1.1 Seja $f: [0,4] \to \mathbb{R}$ pondo f(x) = 1 se $x \in [0,2)$ e f(x) = 2 caso $x \in [2,4]$. Denotando $E_1 = [0,2), E_2 = [2,4], a_1 = 1$ e $a_2 = 2$ temos que

$$f(x) = 1 \cdot \chi_{[0,2)}(x) + 2 \cdot \chi_{[2,4]}(x) = \sum_{i=1}^{2} a_i \chi_{E_i}(x)$$

Além disso, $E_1 \cup E_2 = [0,2) \cup [2,4] = [0,4]$ e $a_1 = 1 \neq 2 = a_2$. Logo, f é uma função simples.

Exemplo 3.1.2 *Seja* $g:[0,4] \rightarrow \mathbb{R}$ *pondo*

$$g(x) = \begin{cases} 1, & se \ x \in [0, 1] \\ 2, & se \ x \in [1, 2) \\ 3, & se \ x \in [2, 3) \\ 4, & se \ x \in [3, 4] \end{cases}$$

Claramente, g também é uma função simples. Basta denotar $E_1 = [0,1), E_2 = [1,2), E_3 = [2,3), E_4 = [3,4]$ e $a_i = i$ para $1 \le i \le 4$. Com isso, vemos que para $x \in [0,4]$

$$g(x) = 1 \cdot \chi_{[0,1]}(x) + 2 \cdot \chi_{(1,2]}(x) + 3 \cdot \chi_{(2,3]}(x) + 4 \cdot \chi_{(3,4]}(x)$$

Concluindo que
$$g = \sum_{j=1}^{4} a_j \chi_{E_j}$$
.

Note que os gráficos das funções f e g são, respectivamente.

Figura 5 – Gráfico da Função $f = \sum_{i=1}^{2} a_{i} \chi_{E_{i}}$

Fonte: Elaborado pelo autor

Figura 6 – Gráfico da Função $g = \sum_{j=1}^4 a_j \chi_{E_j}$

Fonte: Elaborado pelo autor

Agora pensemos na ideia de integral apresentada na disciplina de Cálculo Diferencial e Integral. Se quiséssemos calcular a integral das funções acima somaríamos as áreas dos retângulos conforme ilustram as figuras a seguir.

Figura 7 – Área delimitada pelo gráfico da função $f = \sum_{i=1}^2 a_i \chi_{E_i}$

Figura 8 – Área delimitada pelo gráfico da função $g = \sum_{i=1}^4 a_j \chi_{E_j}$

Fonte: Elaborado pelo autor

Note que em ambos os casos estamos, basicamente, aplicando o valor a_j na medida do conjunto E_j correspondente para j igual ao número de partições do domínio. Com isso, temos a definição a seguir:

Definição 3.1.2 Se φ é uma função simples de $M^+(X,\mathcal{C})$ com a representação apresentada anteriormente, então a integral da função φ com respeito à medida μ é o valor real estendido

$$\int \varphi d\mu = \sum_{j=1}^n a_j \mu(E_j).$$

Para a definição 3.1.2 empregamos a convenção que $0 \cdot (+\infty) = 0$. Isto é feito para garantir que a função identicamente nula tenha integral nula independentemente da medida ser finita ou não. A seguir veremos propriedades elementares sobre a integral de funções simples. Antes disso, considere um espaço de medida (X, \mathcal{C}, μ) . Seja $\{E_n\}$ uma partição de X com $n \in I_5$ conforme a representação a seguir.

Figura 9 – Partição $\{E_n\}$ do conjunto X

Tome também uma outra partição $\{F_m\}$ onde $m \in I_6$.

Figura 10 – Partição $\{F_m\}$ do conjunto X

Fonte: Elaborado pelo autor

Claramente, ao observar as figuras acima, podemos ver que E_3 possui interseção com F_j para todo $j \in I_6$. Assim, $E_5 = \bigcup_{j=1}^6 (F_j \cap E_5)$ com $(F_j \cap E_5) = \varnothing$, $\forall j \in I_6$. Logo,

$$\mu(E_5) = \mu\left(\bigcup_{i=1}^{6} (F_i \cap E_5)\right) = \sum_{j=1}^{6} \mu(F_j \cap E_5)$$

A igualdade acima é valida mesmo se o conjunto em questão não tiver interseção com todos os outros da partição. Neste caso, a interseção com os demais será vazia e soma associada à eles é 0. Basta observar, por exemplo, o conjunto E_1 que tem interseção com F_1 , F_6 e F_3 , mas não se

intersecta com F_2 , F_4 e F_5 . Deste modo,

$$\sum_{j=1}^{6} \mu(F_j \cap E_3) = \mu(F_1 \cap E_3) + \mu(F_6 \cap E_3) + \mu(F_3 \cap E_3) = \mu(E_3)$$

Pois, $\mu(F_2 \cap E_3) = \mu(F_4 \cap E_3) = \mu(F_5 \cap E_3) = 0.$

Teorema 3.1.1 Se φ e ψ são funções simples do espaço $M^+(X,\mathscr{C})$ e $c \geq 0$ é uma constante real, então

$$\int c\varphi d\mu = c\int \varphi d\mu,$$

$$\int (\varphi + \psi) d\mu = \int \varphi d\mu + \int \psi d\mu.$$

Demonstração.

Vamos representar as funções simples não negativas por $\varphi = \sum_{j=1}^{n} a_j \chi_{E_j}$ e $\psi =$

 $\sum_{k=1}^{m} a_k \chi_{F_k}$. Caso c=0, o resultado é verdadeiro trivialmente. Supondo c>0, temos que

$$\int c\varphi \ d\mu = \sum_{j=1}^n ca_j \mu(E_j) = c \sum_{j=1}^n a_j \mu(E_j) = c \int \varphi \ d\mu.$$

Dadas as representações padrão de φ e ψ , vemos que $\varphi + \psi$ tem a representação

$$\varphi + \psi = \sum_{i=1}^n \sum_{k=1}^m (a_j + b_k) \chi_{E_j \cap F_k}.$$

Entretanto, essa representação não é, necessariamente, a representação padrão apresentada na definição 3.1.2, pois nada garante, previamente, que $a_j + b_k$ sejam distintos para $j \in I_n$ e $k \in I_m$. Com isso, sejam c_h , com $h \in I_p$, números distintos do conjunto $\{a_j + b_k; \ (j,k) \in I_n \times I_m\}$ e G_h a união de todos os conjuntos $E_j \cap F_k \neq \emptyset$ tal que $a_j + b_k = c_h$. Assim,

$$G_h = \bigcup_{\substack{j,k \ a_j + b_k = c_h}} E_j \cap F_k$$

A notação utilizada acima indica que a soma é realizada sobre todos os índices j e k tais que $a_j + b_k = c_h$. Como $E_j \cap F_k = \emptyset$, temos que

$$\mu(G_h) = \mu\left(igcup_{\substack{j,k \ a_j+b_k=c_h}} E_j \cap F_k
ight) = \sum_{\substack{j,k \ a_j+b_k=c_h}} \mu(E_j \cap F_k)$$

Desta forma, conseguimos encontrar uma representação padrão que é dada por $\varphi + \psi = \sum_{h=1}^{p} c_h \chi_{G_h}$. Logo, temos que

$$\int (\varphi + \psi) d\mu = \sum_{h=1}^{p} c_h \mu(G_h) = \sum_{h=1}^{p} \sum_{\substack{j,k \\ a_j + b_k = c_h}} c_h \mu(E_j \cap F_k)$$

$$= \sum_{h=1}^{p} \sum_{\substack{j,k \\ a_j + b_k = c_h}} (a_j + b_k) \mu(E_j \cap F_k)$$

$$= \sum_{j=1}^{n} \sum_{k=1}^{m} (a_j + b_k) \mu(E_j \cap F_k)$$

$$= \sum_{j=1}^{n} \sum_{k=1}^{m} a_j \mu(E_j \cap F_k) + \sum_{j=1}^{n} \sum_{k=1}^{m} b_k \mu(E_j \cap F_k)$$

Ora, uma vez que X é a união de ambas as famílias disjuntas $\{E_j\}$ e $\{F_k\}$, ou seja,

$$\bigcup_{j=1}^{n} E_j = X = \bigcup_{k=1}^{m} F_k$$

Se um elemento x pertence à um conjunto E_{j_0} para algum $j_0 \in I_n$, então deve existir um $k_0 \in I_m$ tal que $x \in F_{k_0}$. Assim, se fixamos um $j \in I_n$, então $\bigcup_{k \in I_m} F_k$ forma uma cobertura de E_j , isto é, $E_j \subset \bigcup_{k \in I_m} F_k$. Assim, $E_j \cap \left(\bigcup_{k \in I_m} F_k\right) = E_j$. Como F_k é uma família disjunta segue que, para este j fixado, temos

$$\mu(E_j) = \mu\left(E_j \cap \bigcup_{k \in I_m} F_k\right) = \mu\left(\bigcup_{k \in I_m} (E_j \cap F_k)\right) = \sum_{k=1}^m \mu(E_j \cap F_k).$$

Analogamente, ao fixarmos um $k \in I_m$, vemos que $\mu(F_k) = \sum_{j=1}^n \mu(E_j \cap F_k)$. Empregando estes resultados ao que foi desenvolvido anteriormente obtemos

$$\sum_{j=1}^{n} \sum_{k=1}^{m} a_{j} \mu(E_{j} \cap F_{k}) + \sum_{j=1}^{n} \sum_{k=1}^{m} b_{k} \mu(E_{j} \cap F_{k}) = \sum_{j=1}^{n} a_{j} \mu(E_{j}) + \sum_{k=1}^{m} b_{k} \mu(F_{k}) = \int \varphi d\mu + \int \psi d\mu$$

Segue que $\int (\varphi + \psi)d\mu = \int \varphi d\mu + \int \psi d\mu$ como queríamos.

Lema 3.1.1 Se μ é uma medida sobre X e fixemos um elemento A de \mathscr{C} , então a função λ definida por $\lambda(E) = \mu(A \cap E)$, $\forall E \in \mathscr{C}$ também é uma medida sobre X.

Demonstração.

Basta mostrar que λ satisfaz as condições impostas na definição 2.2.2. Com isso, se $E=\varnothing$, então

$$\lambda(\varnothing) = \mu(A \cap \varnothing) = \mu(\varnothing) = 0$$

Como A e E são elementos de \mathscr{C} , então $A\cap H$ também está em \mathscr{C} . Assim, por μ ser uma medida, temos que $\mu(A\cap E)\geq 0$ acarretando que $\lambda(E)\geq 0$. Por fim, tomemos uma sequência de elementos disjuntos (E_n) em \mathscr{C} . Se $A=E_j$ para algum $j\in\mathbb{N}$, não há o que fazer. Caso $A\cap E_j=\varnothing$ para qualquer que seja $j\in\mathbb{N}$, então $\left(\bigcup_{n\in\mathbb{N}}E_n\right)\cap A=\varnothing$. Com isso,

$$\left(\bigcup_{n\in\mathbb{N}} E_n\right) \cap A = (E_1 \cup E_2 \cup \dots \cup E_n \cup \dots) \cap A$$

$$= (E_1 \cap A) \cup (E_2 \cap A) \cup \dots \cup (E_n \cap A) \cup \dots$$

$$= \bigcup_{n\in\mathbb{N}} (E_n \cap A)$$

Segue então que

$$\lambda\left(\bigcup_{n\in\mathbb{N}}E_n\right)=\mu\left(\left(\bigcup_{n\in\mathbb{N}}E_n\right)\cap A\right)=\mu\left(\bigcup_{n\in\mathbb{N}}(E_n\cap A)\right)=\sum_{j=1}^\infty\mu(E_j\cap A)=\sum_{j=1}^\infty\lambda(E_j)$$

Desta forma, concluímos que a função λ acima definida é uma medida.

Lema 3.1.2 Se $\mu_1,...,\mu_n$ são medidas sobre X e $a_1,...,a_n$ são números reais não negativos, então a função λ definida por $\lambda(E) = \sum_{j=1}^n a_j \mu_j(E), \forall E \in \mathscr{C}$ também é uma medida sobre X.

Demonstração.

Como μ_j é uma medida para todo $j \in I_n$ e cada a_j é maior ou igual à zero, temos que cada $a_j\mu_j(E) \geq 0$. Desta maneira, $\lambda(E) = \sum_{j=1}^n a_j\mu_j(E) \geq 0$. Além disso, podemos observar que $\lambda(\varnothing) = \sum_{j=1}^n a_j\mu_j(\varnothing) = 0$. Tomemos uma sequência disjunta (E_p) de elementos de $\mathscr C$. Logo,

$$\lambda\left(\bigcup_{p\in\mathbb{N}}E_p\right) = \sum_{j=1}^n a_j \mu_j\left(\bigcup_{p\in\mathbb{N}}E_p\right) = \sum_{j=1}^n a_j\left(\sum_{p=1}^\infty \mu_j(E_p)\right)$$

Afirmamos que
$$\sum_{j=1}^n a_j \left(\sum_{p=1}^\infty \mu_j(E_p) \right) = \sum_{p=1}^\infty \left(\sum_{j=1}^n a_j \mu_j(E_p) \right)$$
. Com efeito,

$$\begin{split} \sum_{j=1}^{n} a_{j} \left(\sum_{p=1}^{\infty} \mu_{j}(E_{p}) \right) &= \sum_{j=1}^{n} a_{j} \left(\lim_{m \to +\infty} \sum_{p=1}^{m} \mu_{j}(E_{p}) \right) \\ &= \lim_{m \to +\infty} \left[\sum_{j=1}^{n} a_{j} \left(\sum_{p=1}^{m} \mu_{j}(E_{p}) \right) \right] \\ &= \lim_{m \to +\infty} \left[a_{1} \left(\sum_{p=1}^{m} \mu_{1}(E_{p}) \right) + \dots + a_{n} \left(\sum_{p=1}^{m} \mu_{n}(E_{p}) \right) \right] \\ &= \lim_{m \to +\infty} \left(\sum_{p=1}^{m} a_{1} \mu_{1}(E_{p}) + \dots + \sum_{p=1}^{m} a_{n} \mu_{n}(E_{p}) \right) \\ &= \lim_{m \to +\infty} \sum_{p=1}^{m} \left(a_{1} \mu_{1}(E_{p}) + \dots + a_{n} \mu_{n}(E_{p}) \right) \\ &= \lim_{m \to +\infty} \sum_{p=1}^{m} \left(\sum_{j=1}^{n} a_{j} \mu_{j}(E_{p}) \right) \\ &= \sum_{p=1}^{\infty} \left(\sum_{j=1}^{n} a_{j} \mu_{j}(E_{p}) \right) \end{split}$$

Disso tudo, obtemos que

$$\lambda\left(\bigcup_{p\in\mathbb{N}}E_p\right) = \sum_{j=1}^n a_j\left(\sum_{p=1}^\infty \mu_j(E_p)\right) = \sum_{p=1}^\infty \left(\sum_{j=1}^n a_j\mu_j(E_p)\right) = \sum_{p=1}^\infty \lambda(E_p)$$

Como λ satisfaz todas as condições impostas na definição 2.2.2 concluímos que λ é uma medida.

Teorema 3.1.2 A função $\lambda : \mathscr{C} \to \overline{\mathbb{R}}$ definida por $\lambda(E) = \int \varphi \chi_E \ d\mu$ para todo $E \in \mathscr{C}$ é uma medida sobre \mathscr{C} .

Demonstração.

De maneira análoga ao teorema 3.1.1 podemos verificar que

$$\varphi \chi_E = \sum_{j=1}^n a_j \chi_{E_j \cap E}$$

Assim, temos que

$$\lambda(E) = \int \varphi \chi_E d\mu = \int \left(\sum_{j=1}^n a_j \chi_{E_j \cap E}\right) d\mu = \sum_{j=1}^n \left(a_j \int \chi_{E_j \cap E} d\mu\right) = \sum_{j=1}^n a_j \mu(E_j \cap E)$$

Pelo lema 3.1.1 a aplicação que leva $E \to \mu(E_j \cap E)$ é uma medida para cada $j \in I_n$. Disso, concluímos que λ pode ser expressada por uma combinação linear de medidas sobre \mathscr{C} . Segue, pelo lema 3.1.2, que λ também é uma medida sobre \mathscr{C} .

3.2 A Integral de Funções Não-Negativas

Até aqui trabalhos apenas com integrais de funções simples apenas. Nesta seção, desejamos expandir o conceito de integral para uma função qualquer não negativa. Vale ressaltar que a perspectiva que traremos aqui é a de Lebesgue. Com o intuito de enfatizar a diferença da construção, vamos lembrar da construção feita por Riemann. Considere a função $f: \mathbb{R} \to \mathbb{R}$ tal que f(x) = seno(x) + 3. Claramente não é uma função simples, pois não possui uma quantidade finita de valores. Nosso objetivo, agora, é tentar calcular a integral dessa função com o que construímos até aqui. Para facilitar, analisaremos o gráfico dessa função no intervalo [0,4].

 $f(x) = \operatorname{sen} x + 3$ 1 1 1 2 3 4 4 3 4 1 1 2 3 4

Figura 11 – Gráfico da função f(x) = sen(x) + 3

Fonte: Elaborado pelo autor

Tomemos a função simples

$$\phi_2(x) = \sum_{j=1}^2 a_j \chi_{E_j}$$

onde $a_1 = f(0), a_2 = f(4); E_1 = [0,2)$ e $E_2 = [2,4]$. Assim, ao calcularmos sua integral, vemos não há preenchimento total da área delimitada pelo gráfico da função f, mas se aproxima com um erro conforme a seguinte figura.

Figura 12 – Integral da função ϕ_2

Vamos escolher outra função simples ϕ_4 tal que $\phi_4 = \sum_{j=1}^4 a_j \chi_{E_j}$ onde $E_1 = [0,1), E_2 = [1,2), E_3 = [2,3), E_1 = [3,4], a_1 = f(0), a_2 = f(1), a_3 = f(3)$ e $a_4 = f(4)$. Desta forma, com o dobro de valores da função ϕ_2 escolhida anteriormente podemos observar que a integral de ϕ_4 mais se aproxima da integral da função f.

Figura 13 – Integral da função ϕ_4

Fonte: Elaborado pelo autor

Para finalizarmos esta ideia, dobremos a quantidade de valores e escolhamos outra função $\phi_8 = \sum_{j=1}^8 a_j \chi_{E_j}$ onde $E_1 = [0,0.5), E_2 = [0.5,1), E_3 = [1,1.5), E_4 = [1.5,2), E_5 = [2,2.5), E_6 = [2.5,3), E_7 = [3,2.5), E_8 = [3.5,4]$ e $a_1 = f(0), a_2 = f(0.5), a_3 = f(1), a_4 = f(1.5), a_5 = f(2.5), a_6 = f(3), a_7 = f(3.5)$ e $a_8 = f(4)$.

 $f(x) = \sin x + 3$ 1 1 2 3 4 3 2 1 1 2 3 4

Figura 14 – Integral da função ϕ_8

Com isso, observamos que quanto mais valores a função simples possui, mais ela se aproxima da função f desde que nenhum valor ultrapasse o gráfico da função. Assim, a área da função simples será próxima o suficiente da área delimitada pelo gráfico da função f. Assim, se tomarmos o supremo dessas funções obteremos

Figura 15 – Integral da função f

Fonte: Elaborado pelo autor

Agora, tomemos como exemplo a função $f(x)=x^2$, mas não invés de particionarmos o domínio da função, a função simples é construída conforme uma partição feita na imagem.

Assim, tomemos uma função ϕ_1 pondo

$$\phi_1(x) = \begin{cases} 0, & \text{se } 0 \le f(x) < 2^{-1} \\ 2^{-1}, & \text{se } 2^{-1} \le f(x) < 2 \cdot 2^{-1} \\ 1, & \text{se } f(x) \ge 1 \end{cases}$$

Note que a função ϕ_1 é simples, mas seus valores são escolhidos por meio da partição da imagem conforme explicitado na imagem a seguir:

Figura 16 – Gráfico da função ϕ_1

Fonte: Elaborado pelo autor

Na figura acima, o gráfico da função ϕ_1 está representado pela cor verde.

Dito isto, adiante formalizaremos que dada uma função $f \in M(X, \mathcal{C})$, então ela pode ser aproximada por uma sequência de funções simples conforme o teorema

Teorema 3.2.1 (Aproximação Via Funções Simples) Se f é uma função não negativa em $M(X,\mathcal{C})$, então existe uma sequência de funções $(\varphi_n) \subset M(X,\mathcal{C})$ tal que

- (i) Cada φ_n é uma função simples, isto é, possui apenas uma quantidade finita de valores reais;
- (ii) $0 \le \varphi_n(x) \le f(x)$ para todo $x \in X$ e $n \in \mathbb{N}$;
- (iii) $\lim_{n\to\infty} \varphi_n(x) = f(x)$ para todo $x \in X$.

Demonstração.

Vamos mostrar a existência das sequência por construção. Essa construção será realizada por meio de partições da imagem da seguinte maneira:

$$\varphi_n(x) = \begin{cases}
0, & \text{se } 0 \le f(x) < 2^{-n} \\
2^{-n}, & \text{se } 2^{-n} \le f(x) < 2 \cdot 2^{-n} \\
2 \cdot 2^{-n}, & \text{se } 2 \cdot 2^{-n} \le f(x) < 3 \cdot 2^{-n} \\
\vdots & \vdots \\
k \cdot 2^{-n}, & \text{se } k \cdot 2^{-n} \le f(x) < (k+1) \cdot 2^{-n} \\
\vdots & \vdots \\
n, & \text{se } f(x) \ge n
\end{cases}$$

Simplificadamente podemos escrever

$$\varphi_n(x) = \begin{cases} k \cdot 2^{-n}, & \text{se } k \cdot 2^{-n} \le f(x) < (k+1) \cdot 2^{-n}, \text{para } k = 0, 1, 2, \dots, n2^n - 1 \\ n, & \text{se } f(x) \ge n \end{cases}$$

Com isso, podemos ver que φ_n é uma função simples e que $0 \le \varphi_n(x) \le f(x)$. Além disso, φ_n é uma mensurável para todo $n \in \mathbb{N}$, pois trata-se de uma sequência de um funções simples.

Observe que dado $n \in \mathbb{N}$ pelo que já provamos temos que

$$0 \le \varphi_n(x) \le f(x) \Leftrightarrow 0 \le \varphi_n(x) - f(x) \le 0$$

Pois, φ_n e f são funções não negativas. Assim, $0 \le \lim_{n \to \infty} \varphi_n(x) - f(x) \le 0$. Segue pelo teorema do confronto que $\lim_{n \to \infty} \varphi_n = f(x)$.

Esse teorema nos mostra que dada qualquer função não negativa mensurável, podemos aproximar seus valores por funções simples de maneira que o limite dessa sequência de funções simples convergem para a função que tomamos inicialmente. Diante disso, nada mais natural que definir a integral de Lebesgue para funções não negativas quaisquer da maneira que segue

Definição 3.2.1 Se $f \in M^+(X, \mathcal{C})$, nós definimos a integral de f com respeito à medida μ sendo o valor real estendido

$$\int f d\mu = \sup \int \varphi d\mu$$

Onde o supremo é sobre todas as funções simples $\varphi \in M(X, \mathscr{C})$ tal que a condição $0 \le \varphi \le f(x)$ para todo $x \in X$.

Definição 3.2.2 Se $f \in M(X, \mathcal{C})$ e $E \in \mathcal{C}$, então $f \chi_E \in M(X, \mathcal{C})$ e nós definimos a integral de f sobre o conjunto E com respeito à medida μ como sendo o número real estendido

$$\int_{E} f d\mu = \int f \chi_{E} d\mu$$

Agora desejamos realizar operações aritméticas com essa expansão da definição conforme fizemos para a integral de funções simples. Para tal, precisamos mostrar a monoticidade da integral de funções não negativas tanto à respeito de uma outra função integral quanto à um conjunto. Isso faremos por meio dos lemas a seguir

Lema 3.2.1 Se f e g são elementos de $M^+(X, \mathcal{C})$ com $f \leq g$, então

$$\int f d\mu \leq \int g d\mu.$$

Demonstração.

Se φ é uma função simples em $M^+(X,\mathscr{C})$ tal que $0 \le \varphi \le f$, então $0 \le \varphi \le g$, uma vez que $f \le g$. Assim, $\sup_{\varphi leqf} \int \varphi d\mu \le \int f d\mu$ e $\sup_{\varphi leqf} \int \varphi d\mu \le \int g d\mu$. Subtraindo membro à membro temos

$$0 \le \int f d\mu - \int g d\mu \Leftrightarrow \int f d\mu \le \int g d\mu.$$

Lema 3.2.2 Se f é um elemento de $M^+(X,\mathscr{C})$ e $E,F\in\mathscr{C}$ com $E\subseteq F$, então

$$\int_{E} f d\mu \leq \int_{F} f d\mu.$$

Demonstração.

Como $E\subseteq F$, então $chi_E\leq \chi_F$. Assim, $fchi_E\leq f\chi_F$. Segue, pelo lema anterior que,

$$\int_{E} f d\mu = \int f \chi_{E} d\mu \leq \int f \chi_{F} d\mu = \int_{F} f d\mu.$$

Portanto, $\int_E f d\mu = \int_F f d\mu$.

Teorema 3.2.2 (**Teorema da Convergência Monótona**) Se (f_n) é uma sequência monótona crescente de funções não negativas mensuráveis que converge para a f, então

$$\int f d\mu = \lim_{n \to \infty} \int f_n d\mu$$

Demonstração.

Pelo corolário 2.1.1, se temos uma sequência de funções mensuráveis que converge para uma função f, então f também é mensurável. Além disso, como (f_n) é crescente, então $f_n \le f \ \forall n \in \mathbb{N}$. Seque, pelo lema 3.2.1 que

$$\int f_n d\mu \leq \int f d\mu$$

Para todo $n \in \mathbb{N}$. Desta maneira,

$$\lim_{n\to+\infty}\int f_n d\mu \leq \int f d\mu.$$

Por outro lado, sejam $\alpha \in \mathbb{R}$ tal que $0 < \alpha < 1$ e φ uma função simples mensurável tal que $0 \le \varphi \le f$. Tomando $n \in \mathbb{N}$ tais que $f_n(x) \ge \alpha \varphi(x)$, construa os conjuntos

$$A_n = \{x \in ; f_n(x) \ge \alpha \varphi(x)\}.$$

Com isso, podemos observar que cada $A_n \in X$, $A_n \subseteq A_{n+1}$ e que $X = \bigcup_{n \in \mathbb{N}} A_n$. Desta maneira, usando o lema 3.2.2 e 3.2.1 temos que

$$\int_{A_n} \alpha \varphi d\mu \le \int_{A_n} f_n d\mu \le \int f_n d\mu. \tag{1}$$

Como (A_n) é uma sequência monótona crescente que a união é igual ao conjunto X, observamos que, pela proposição 2.2.3 que para uma medida μ vale

$$\mu(X) = \mu\left(\bigcup_{n \in \mathbb{N}} A_n\right) = \lim_{n \to +\infty} \mu(A_n)$$

Só que pelo teorema $3.1.2 \int \varphi \chi_E d\mu$ é uma medida. Desta forma,

$$\lim_{n\to+\infty}\int_{A_n}\varphi d\mu=\lim_{n\to+\infty}\int\varphi\chi_{A_n}d\mu=\int\varphi\chi_Xd\mu=\int\varphi d\mu.$$

Substituindo isso na equação 1 obtemos

$$\alpha \int \varphi d\mu \leq \lim_{n \to +\infty} \int f_n d\mu.$$

Como $\alpha \in (0,1)$ segue que

$$\int \varphi d\mu \leq \lim_{n \to +\infty} \int f_n d\mu.$$

Finalmente, por φ ser uma função não negativa simples arbitrária que satisfaz $0 \le \varphi \le f$, obtemos

$$\int f d\mu = \sup_{\varphi} \int \varphi d\mu \leq \lim_{n \to +\infty} \int f_n d\mu.$$

Disso tudo,

$$\int f d\mu \leq \lim_{n \to +\infty} \int f_n d\mu \leq \int f d\mu.$$

Portanto, $\lim_{n\to+\infty}\int f_n d\mu = \int f d\mu$ como desejávamos.

O teorema anterior nos permite mostrar as operações aritméticas para integral de Lebesgue para funções não negativas quaisquer como apresentaremos adiante.

Corolário 3.2.1 Se $f \in M^+$ e $c \ge 0$, então $cf \in M^+$ e vale

$$\int cfd\mu = c\int fd\mu.$$

Demonstração.

Se o número real for zero, então o resultado sai de forma imediata. Suponha que c > 0. Assim, pelo teorema 3.2.1, existe uma sequência de funções simples $(\varphi_n) \subset M^+$ que converge para a função f. Logo, a sequência $(c\varphi_n)$ converge para cf. Desta forma, ao aplicarmos os teoremas 3.1.1 e 3.2.2, obtemos

$$\int cf d\mu = \lim_{n \to +\infty} \int c \varphi_n d\mu = \lim_{n \to +\infty} \left(c \cdot \int \varphi_n d\mu \right) = c \cdot \left(\lim_{n \to +\infty} \int \varphi_n d\mu \right) = c \int f d\mu.$$

Como queríamos demonstrar.

Corolário 3.2.2 *Se* $f, g \in M^+$, *então* $f + g \in M^+$ *e vale*

$$\int (f+g)d\mu = \int fd\mu + \int gd\mu.$$

Demonstração.

Analogamente ao corolário anterior, tomemos duas sequências de funções simples (φ_n) e (ψ_n) ambas monótonas e crescentes tal que convergem, respectivamente, para f e g. Segue, pelos teoremas 3.1.1 e 3.2.2 que

$$\int (f+g)d\mu = \lim_{n \to +\infty} \int (\varphi_n + \psi_n)d\mu = \lim_{n \to +\infty} \int \varphi_n d\mu + \lim_{n \to +\infty} \int \psi_n d\mu = \int f d\mu + \int g d\mu.$$

Note que os resultados tratam apenas de funções monótonas e nem sempre teremos essa condição "perfeita" para nossas sequências. Assim, o próximo resultado nos apresenta uma maneira de trabalhar com sequências que não são monótonas.

Teorema 3.2.3 (Lema de Fatou) $Se(f_n) \subset M^+(X, \mathcal{C})$, $ent\tilde{ao} \int (\liminf f_n) d\mu \leq \liminf \int f_n d\mu$.

Demonstração.

Tome a sequência $g_m = \inf_{n \in \mathbb{N}} \{f_m, f_{m+1}, ...\}$. Assim, enquanto $m \le n$ nós temos $g_m \le f_n$. Neste caso,

$$\int g_m d\mu \leq \int f_n d\mu.$$

Como (g_m) é crescente e converge para $\liminf f_n$ nós temos que

$$\int g_m d\mu \leq \liminf \int f_n d\mu.$$

Logo, pelo Teorema da Convergência Uniforme,

$$\int (\liminf f_n)d\mu = \lim \int g_m d\mu \leq \liminf \int f_n d\mu.$$

Corolário 3.2.3 Se $f \in M^+$ e λ é definida sobre $\mathscr C$ pondo $\lambda(E) = \int_E f d\mu$, então λ é uma medida.

Demonstração.

Uma vez que $f \geq 0$, obtemos que $\lambda(E) \geq 0$, por definição. Caso $E = \emptyset$, então $f\chi_E \equiv 0$ acarretando que $\lambda(\emptyset) = 0$. Por fim, tome (E_n) uma sequência disjunta do conjunto $\mathscr C$ e defina f_n pondo

$$f_n = \sum_{k=1}^n f \chi_{E_k}$$

Segue do corolário 3.2.2 que

$$\int f_n d\mu = \int \left(\sum_{k=1}^n f \chi_{E_k}\right) d\mu = \sum_{k=1}^n \left(\int f \chi_{E_k}\right) d\mu = \sum_{k=1}^n \left(\int_{E_k} f\right) d\mu = \sum_{k=1}^n \lambda(E_k) d\mu$$

Definição 3.2.3 Diremos que alguma propriedade ocorre em quase todo ponto de um conjunto X com respeito à medida μ , se ela não é valida somente em um subconjunto E de X que tem medida nula. Denotaremos esse acontecimento por μ -q.t.p.

Corolário 3.2.4 Suponha que $f \in M^+$. Então f(x) = 0 em quase todo ponto de X se, e somente se $\int f d\mu = 0$.

Demonstração.

Suponha f(x)=0 μ -q.t.p. Assim, se $E=\{x\in X: f(x)>0\}$, então $\mu(E)=0$. Tome a sequência $f_n=n\chi_E$. Dessa forma $f\leq \liminf_{n\in\mathbb{N}}f_n$. Segue, pelo Lema de Fatou que

$$0 \le \int f d\mu \le \int (\liminf f_n) d\mu \le \liminf \int f_n d\mu = 0.$$

Ou seja, $\int f d\mu = 0$. Reciprocamente, suponha que $\int f d\mu = 0$. Tome uma sequência de conjuntos $E_n = \left\{ x \in X . f(x) > \frac{1}{n} \right\}$ tal que $f \geq \left(\frac{1}{n}\right) \chi_{E_n}$. Assim, $\int f d\mu \geq \int \left(\frac{1}{n}\right) \chi_{E_n} d\mu$. Só que $\int \left(\frac{1}{n}\right) \chi_{E_n} d\mu = \frac{1}{n} \mu(E_n) \geq 0$. Segue que

$$0 = \inf f d\mu \ge \frac{1}{n} \mu(E_n) \ge 0$$

Ou seja $\mu(E_n) = 0$ para todo $n \in \mathbb{N}$. Assim, todo E_n tem medida nula. Segue, pela proposição 2.2.6 que o conjunto $\{x \in X; f(x) > 0\}$ tem medida nula, pois $\{x \in X; f(x) > 0\} = \bigcup_{n \in \mathbb{N}} E_n$.

Finalizaremos esta subseção apresentando um corolário do Teorema da Convergência Monótona que enfatiza claramente a diferença entre a Integral de Riemann e a Integral de Lebesgue.

Corolário 3.2.5 Se (g_n) é uma sequência de funções em M^+ , então

$$\int \left(\sum_{n=1}^{\infty} g_n\right) d\mu = \sum_{n=1}^{\infty} \left(\int g_n d\mu\right).$$

Demonstração.

O resultado sai imediatamente da aplicação do Teorema da Convergência Monótona considerando a sequência de funções $(f_n) \subset M^+$ tais que $f_n = g_1 + \cdots + g_n$.

3.3 Funções Integráveis

Definimos anteriormente apenas integrais de funções não negativas com respeito à uma medida μ . Nesta estenderemos, finalmente, este conceito para uma função qualquer de valores reais estendidos. Com isso,

Definição 3.3.1 Seja $L = (X, \mathcal{C}, \mu)$ a coleção de funções integráveis que consiste de todas as funções reais \mathcal{C} -mensuráveis $f: X \to \mathbb{R}$ tais que as funções f^+ e f^- são ambas integrais finitas

com respeito à medida μ . Neste caso, nós definimos a integral de f com respeito à medida μ como

$$\int f d\mu = \int f^+ d\mu - \int f^- d\mu$$

Se, por ventura, E for um elemento da σ -álgebra \mathscr{C} , então definimos

$$\int_{E} f d\mu = \int_{E} f^{+} d\mu - \int_{E} f^{-} d\mu$$

Teorema 3.3.1 Uma função mensurável f é um elemento de L se, e somente se, |f| é um elemento de L.

Demonstração.

Suponha que $f \in L$. Por definição, isso ocorre se, e somente se, as artes positiva e negativa de f são ambas elementos de M^+ e suas, respectivas integrais, são finitas. Devemos mostrar que

$$\int |f|d\mu = \int |f|^+ d\mu - \int |f|^- d\mu$$

Pela definição 1.2.2, $|f|^-=0$, logo $\int |f|^-d\mu=0$. Pelo lema 1.2.1 temos que $|f|^+=|f|=f^++f^-$. Assim, $\int |f|^+d\mu=\int (f^++f^-)d\mu$. Como $f^++f^-\in M^+$, segue pelo corolário 3.2.2 que $\int (f^++f^-)d\mu=\int f^+d\mu+\int f^-d\mu$, ou seja $\int |f|^+d\mu$ é finita. Desta forma,

$$\int |f| d\mu = \int (f^+ + f^-) d\mu - 0 = \int |f|^+ d\mu - \int |f|^- d\mu$$

Logo, $|f| \in L$. A recíproca é totalmente análoga.

Corolário 3.3.1 Se $|f| \in L$, então $\left| \int f d\mu \right| \le \int |f| d\mu$.

Demonstração.

Se $|f| \in L$, pelo teorema anterior, $f \in L$. Logo $\int f^+ d\mu$ e $\int f^- d\mu$ são finitas e não

negativas. Desta forma

$$\left| \int f d\mu \right| = \left| \int f^+ d\mu - \int f^- d\mu \right| = \left| \int f^+ d\mu + \left(- \int f^- d\mu \right) \right|$$

$$\leq \left| \int f^+ d\mu \right| + \left| \left(- \int f^- d\mu \right) \right|$$

$$= \int f^+ d\mu + \int f^- d\mu$$

$$= \int (f^+ f^-) d\mu$$

$$= \int |f| d\mu.$$

Portanto,
$$\left| \int f d\mu \right| \leq \int |f| d\mu$$
.

REFERÊNCIAS

BARTLE, R. G. **The Elements of Integration and Lebesgue Measure**. 1. ed. New York: Wiley-Interscience, 1995.

LIMA, E. L. Um Curso de Análise. 15. ed. Rio de Janeiro: IMPA, 2019. v. 1.

MAGALHAES, M. N. Probabilidade e Variáveis Aleatórias. 3. ed. São Paulo: EdUsp, 2011.