МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа радиотехники и компьютерных технологий

Лабораторная работа № 3.6.1 СПЕКТРАЛЬНЫЙ АНАЛИЗ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ

Авторы: Голенских Никита Вологин Вадим гр. Б01-205

Содержание

1	Аннотация										
2	Теоретическая Часть 2.1 Основные Сведения										
3	Практическая Часть 3.1 Спектры Прямоугольных Импульсов 3.2 Спектры Периодической Последовательности Цугов 3.3 Спектры Амплитудно-Модулированных Сигналов 3.4 Изучение фильтрации сигналов	3 7									
4	Вывод	9									

1 Аннотация

Цель работы: изучить спектры сигналов различной формы и влияние параметров сиг-нала на вид соответствующих спектров; проверить справедливость соотношений неопределённостей; познакомиться с работой спектральных фильтров на примере RC-цепочки.

В работе используются: персональный компьютер, USB-осциллограф (АКИП-3409/4), генератор сигналов произвольной формы, соединительные кабели.

2 Теоретическая Часть

2.1 Основные Сведения

В работе изучаются спектры периодических электрических сигналов различной формы (последовательности прямоугольных импульсов и цугов, а также амплитудно- и фазо-модулированных гармонических колебаний). Спектры этих сигналов наблюдаются с помощью спектроанализатора, входящего в состав USB-осциллографа и сравниваются с рассчитанными теоретически.

2.2 Экспериментальная Установка

Схема установки приведена на рис. 1.

Рис. 1: Схема экспериментальной установки

3 Практическая Часть

3.1 Спектры Прямоугольных Импульсов

Рис. 2: Спектрограмма прямоугольного импульса при $T_{\text{повт}} = 1$ мс, $\tau = 50$ мкс

На рис. 3 показана спектрограмма прямоугольного импульса. Этот сигнал в дальнейшем является первым в каждой серии измерений. На его примере показана хорошая точность (таблица 1) следующих соотношений:

$$\nu_n = \frac{2\pi n}{T} \qquad |a_n| = \frac{|\sin\frac{\pi n\tau}{T}|}{\pi n}$$

Перейдём к проверке справедливости соотношений неопределённости. Для этого в начале рассмотрим поведения спектрограммы при изменяющемся $T_{\text{повт}}$ (см. **рис. 4**), а затем при изменяющемся τ (см. **рис. 5**). Полученные значения ширины спектра, а также расстояния между соседними гармониками представлены в **таблица 2** и **3**.

Стоит отметить следующие закономерности изменения спектрограммы: при увеличении $T_{\text{повт}}$ и неизменном au амплитуда сигнала уменьшается; при увеличении au и неизменном $T_{\text{повт}}$ уменьшается $\Delta \nu$.

На основании этой схожести спектров покажем справедливость теоремы смещения. Будем сравнивать

Оценим погрешности угловых коэффициентов, полученных из данных графиков, основываясь на том факте, что мы использовали метод наименьших коэффициентов:

$$\sigma_{k1} = \sqrt{\frac{1}{n-1} \left(\frac{\langle \Delta \nu \rangle}{\langle 1/\tau \rangle} - k_1 \right)} \qquad \sigma_{k2} = \sqrt{\frac{1}{n-1} \left(\frac{\langle \delta \nu \rangle}{\langle 1/T_{\text{\tiny HOBT}} \rangle} - k_2 \right)}.$$

Соответственно, полученные значения угловых коэффициентов:

$$k_1 = 1.012 \pm 0.064 \ (\varepsilon_{k1} \approx 6.3\%)$$
 $k_2 = 1.000 \pm 0.016 \ (\varepsilon_{k1} \approx 1.6\%).$

Таким образом, можно с уверенностью сказать, что coomhowehue neonpeden"ehnocmu выполняется в нашем случае.

3.2 Спектры Периодической Последовательности Цугов

На **рис. 8** показана спектрограмма синусоидального импульса (цуга). Этот сигнал в дальнейшем является первым в каждой серии измерений.

Обратим внимание ряд особенностей изменения вида спектра при варьировании его параметров. При уменьшении ν_0 амплитуда сигнала увеличивается, при увеличении T амплитуда уменьшается, при уменьшении N амплитуда также уменьшается (см. **рис. 9**, **10**, **11**). Также стоит отметить сходство спектров прямоугольного импульса и цуга: спектры идентичны за вычетом смещения на величину ν_0 .

Вновь продемонстрируем точность выполнения соотношения неопределённостей (см. таблица 5):

$$\Delta \nu \cdot T = 0.998 \pm 0.030.$$

Рис. 3: Спектрограмма прямоугольного импульса при разных $T_{\text{повт}}$: 1, 2, 3, 4 мс

Таблица 1: Параметры спектров прямоугольных импульсов

n	1	2	3	4	5	6	7	8
$\nu_n^{\scriptscriptstyle ЭКСП},\ K\Gamma$ Ц	1.049	1.981	2.993	3.924	4.977	5.908	7.002	7.973
$ u_n^{\mathrm{reop}}, \mathrm{к}\Gamma$ ц	1	2	3	4	5	6	7	8
$ a_n ^{\mathfrak{s}_{\mathrm{KCH}}}$, усл. ед.	627.2	615.0	589.0	579.5	542.3	513.7	471.2	425.3
$ a_n/a_1 ^{\mathfrak{I}_{KC\Pi}}$	1	0.9805	0.9391	0.9239	0.8646	0.8190	0.7513	0.6781
$ a_n/a_1 ^{\text{Teop}}$	1	0.9877	0.9674	0.9393	0.9040	0.8619	0.8137	0.7599

Таблица 2: $T=1 \ {
m mc}$

	n	1	2	3	4	5	6	7	8	9	10
ĺ	τ , MKC	20	40	60	80	100	120	140	160	180	200
Ì	$\Delta \nu$, к Γ ц	50.0	25.0	17.0	12.5	10.0	8.0	7.0	5.5	5.0	4.5

Таблица 3: $\tau = 100$ мкс

n	1	2	3	4	5	6	7	8	9
T, MKC	200	800	1400	2000	2600	3200	3800	4400	5000
$\delta \nu$, к Γ ц	5.00	1.f25	0.71	0.50	0.38	0.31	0.26	0.23	0.20

Таблица 4: ν_0 - варьируется, $T={\rm const},\,N={\rm const}$

n	1	2	3	4	5
ν_n , к Γ ц	50	40	30	20	10
$\Delta \nu$, к Γ ц	10.0	8.2	5.8	2.7	1.8
$\delta \nu$, к Γ ц	1.00	1.00	1.00	1.00	0.5

Рис. 4: Спектрограмма прямоугольного импульса при разных τ : 20, 30, 40, 50 мкс

Рис. 5: Зависимость ширины спектра сигнала от обратного периода повторения

Рис. 6: Зависимость расстояния между соседними гармониками спектра от длительности импульса

Таблица 5: $\nu_0={
m const},\,T$ - варьируется, $N={
m const}$

n	1	2	3	4	5
Т, мс	1	2	3	4	5
ν_0 , к Γ ц	50	50	50	50	50
$\Delta \nu$, к Γ ц	10.0	10.0	10.0	10.0	10.0
$\delta \nu$, к Γ ц	1.00	0.50	0.33	0.25	0.2

Таблица 6: $\nu_0=\mathrm{const},\,T=\mathrm{const},\,N$ - варьируется

n	1	2	3	4	5
N	5	4	3	2	1
$ u_0$, к Γ ц	50	50	50	50	50
$\Delta \nu$, к Γ ц	10.0	13.0	16.0	19.0	34.0
$\delta \nu$, к Γ ц	1.00	1.00	1.00	1.00	1.00

Рис. 7: Спектрограмма синусоидального импульса при $\nu_0=50$ к Γ ц, $T_{\text{повт}}=1$ мс, N=5

3.3 Спектры Амплитудно-Модулированных Сигналов

Последним классом сигналов, который будет рассмотрен в данном отчёте является амплитудно-модулированный сигнал. Сигнал, являющейся первым для каждой серии измерений представлен на **рис. 12**.

Начнём рассмотрение с того, что убедимся в существовании связи между глубиной модуляции m и амплитудой сигнала A_{max} и A_{min} . Из **рис. 12**:

$$A_{min} = 1.0 \pm 0.1 \ \mathrm{yc}$$
л. ед., $A_{max} = 3.0 \pm 0.1 \ \mathrm{yc}$ л. ед. $m_{\mathrm{эксп}} = \frac{A_{max} - A_{min}}{A_{max} + A_{min}} = 0.5 \pm 0.075 \ (arepsilon_m = 15\%)$

Отметим следующие особенности изменения спектрограмм сигнала в зависимости от изменения его параметров: в случае увеличения несущей частоты ν_0 спектрограмма смещается вправо, её иные параметры не изменяются; в свою очередь, изменение частоты модуляции $\nu_{\text{мод}}$ расстояние между боковой и основной спектральной линиями увеличивается (см. **рис. 13** и **14**).

На **рис.** 15 показаны спектрограммы сигналов при разных значениях глубины модуляции. На основании данных, полученных из данных спектрограмм, построим график $a_{\text{бок}}/a_{\text{осн}}(m)$. По наклону прямой определим отношение из формулы:

$$k = \frac{a_{\rm 60K}}{a_{\rm och}} \cdot \frac{1}{m} = 0.511 \pm 0.009 \ (\varepsilon = 1.8\%),$$

согласно теории, получено должно было быть значение 0.5, что попадает в $2\sigma_k$ интервал.

Рис. 8: Спектрограмма цугов при разных ν_0 : 10, 20, 30, 40, 50 к Гц

Рис. 9: Спектрограмма цугов при разных T: 1, 2, 3, 4, 5 мс

3.4 Изучение фильтрации сигналов

4 Вывод

В данной работе мы изучили понятие спектра и спектрального анализа, а также исследовали спектральный состав периодических электрических сигналов.

А именно, мы рассмотрели прямоугольные импульсы, цуги гармонических колебаний, а также амплитудномодулированные сигналы. Кроме того, нами был экспериментально проверен частные случаи выполнения соотношения неопределённости.

Рис. 10: Спектрограмма цугов при разных N: 1, 2, 3, 4, 5

Рис. 11: Спектрограмма синусоидального импульса при $\nu_0=50$ к Γ ц, $\nu_{\text{мод}}=2$ к Γ ц, m=0.5%

Рис. 12: Спектрограмма АМ сигналов при разных ν_0 : 30, 40, 50 к Гц

Рис. 13: Спектрограмма АМ сигналов при разных $\nu_{\mbox{\tiny MOJ}}\!\!: 2,\,3,\,4$ к Гц

Рис. 14: Спектрограмма АМ сигналов при разных m: 10%, 25%, 40%, 55%, 70%, 100%

Рис. 15: Зависимость амплитуд боковых гармоник от модуляции в зависимости от амплитуды основной гармоники

Рис. 16: $K(\nu)$