Introduction

Baboo J. Cui

 $\mathrm{June}\ 20,\ 2019$

Contents

1	Basic Concept	2
	1.1 Types of Learning	2
2	Format of ML	2

Welcome!

1 Basic Concept

1.1 Types of Learning

- **supervised learning**: data in training set contain expected outcomes(known as **labels**)
- unsupervised learning: data in training set don't contain labels
- reinforcement learning: only have reward

1.2 Classification vs Regression

- regression: when target variable is continuous
- classification: when target variable is discrete

2 Format of ML

- Input(features): denoted by $x^{(i)}$, where i is index, not exponent
- Output(target): denoted by $y^{(i)}$, this is what we need to predict
- Training example: a pair of input and output $(x^{(i)}, y^{(i)})$, note that x, y and θ can all be vectors
- Training set: a list of training example, let's say it has length of m: $\{(x^{(i)},y^{(i)});i\in[1,m]\}$
- Space notation: use \mathcal{X} and \mathcal{Y} to represent space of input and output
- Hypothesis: a function $h: \mathcal{X} \mapsto \mathcal{Y}$, so that $h(\cdot)$ can predict y given x Function h can be obtained by putting training set into learning algorithm