

Learning the right layers: a data-driven layer-aggregation strategy for semi-supervised learning on multilayer graphs

Sara Venturini ¹ Andrea Cristofari² Francesco Rinaldi¹ Francesco Tudisco³

¹University of Padova, Italy ²University of Rome "Tor Vergata", Italy ³Gran Sasso Science Institute, Italy

Graph Semi-supervised Learning Problem

- G = (V, E) graph
- $C = \{C_1, \dots, C_m\}$ set of classes of G
- set of input known labels for class : $Y_{ij} = 1$ if $i \in C_j$, and $Y_{ij} = 0$ otherwise

Aim: label the remaining vertices.

Optimization problem

$$\min_{x} \varphi(X) := \|X - Y\|_F^2 + \frac{\lambda}{2} \sum_{i,j} A_{ij}^G \|X_{:i} - X_{:j}\|^2$$

- Y columns one-hot encoder vectors each class
- ullet A^G adjacency matrix of the graph
- $\lambda \ge 0$ regularization parameter

Extension to Multilayer Networks

$$A = \{A^{G^1}, \dots, A^{G^K}\}$$
 with A^{G^k} adjacency matrix layer G^k

Generalized mean adjacency model

The generalized mean adjacency matrix

$$A(\alpha, \boldsymbol{\beta})_{ij} = \left(\sum_{k=1}^{K} \boldsymbol{\beta}_k (A_{ij}^{(k)})^{\alpha}\right)^{1/\alpha} \quad \text{with } \alpha \in \mathbb{R}, \boldsymbol{\beta} \ge 0, e^T \boldsymbol{\beta} = 1$$

$$\alpha \to -\infty \quad |\alpha = -1, \, \boldsymbol{\beta}_k = 1/K \, |\alpha \to 0, \, \boldsymbol{\beta}_k = 1/K \, |\alpha = 1, \, \boldsymbol{\beta}_k = 1/K \, |\alpha \to +\infty$$

$$\frac{1}{\alpha} \sum_{k=1}^{K} \frac{1}{\alpha^{(k)}} \left(\frac{1}{\alpha} \sum_{k=1}^{K} \frac{1}{\alpha^{(k)}}\right)^{-1} \left|\left(\prod_{k=1}^{K} A_{ik}^{(k)}\right)^{1/K}\right| = \frac{1}{\alpha} \sum_{k=1}^{K} A_{ik}^{(k)} \left|\max_{k=1}^{K} A_{ik}^{(k)}\right| = \frac{1}{\alpha} \sum_{k=1}^{K} A_{ik}^{(k)} \left|\min_{k=1}^{K} A_{ik}^{$$

	' I K /	, , , , , , , , , , , , , , , , , , ,	, 1 K	·
$\min_{k=1,\dots,K} A_{ij}^{(k)}$	$\left(\frac{1}{K}\sum_{k=1}^{K}\frac{1}{A_{i,i}^{(k)}}\right)^{-1}$	$\left(\prod_{k=1}^K A_{ij}^{(k)}\right)^{1/K}$	$\frac{1}{K} \sum_{k=1}^{K} A_{ij}^{(k)}$	$\max_{k=1,\dots,K} A_{ij}^{(k)}$
Minimum	Harmonic	Geometric	Arithmetic	Maximum

Bilevel optimization model

In order to learn the parameters $\theta := (\alpha, \beta, \lambda)$, we split the available input labels into training and test sets: Y^{tr} and Y^{te} , and consider the bilevel optimization model

$$\begin{aligned} & \min_{\boldsymbol{\theta}} \quad H(Y^{te}, X_{Y^{tr}, \boldsymbol{\theta}}) \\ & \text{s.t.} \quad X_{Y^{tr}, \boldsymbol{\theta}} = \operatorname{argmin}_{X} \varphi(X, Y^{tr}, \boldsymbol{\theta}) \\ & \boldsymbol{\theta} = (\alpha, \boldsymbol{\beta}, \lambda), \ \alpha \in \mathbb{R}, \ \boldsymbol{\beta} \geq 0, \ \sum_{k} \boldsymbol{\beta}_{k} = 1 \ \lambda \in \mathbb{R} \end{aligned}$$

with

- H cross-entropy loss function
- $\varphi(X, Y, \theta) = \|X Y\|_F^2 + \frac{\lambda}{2} \sum_{i,j} A(\alpha, \beta)_{ij} \|X_{:i} X_{:j}\|^2$

BINOM: binomial cross-entropy loss for each community

$$h(y,x) = -\frac{1}{N} \sum_{i=1}^{N} (y_i \log(x_i) + (1 - y_i) \log(1 - x_i)).$$

MULTI: multiclass cross-entropy loss

$$H(Y,X) = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} Y_{ij} \log \left(\frac{X_{ij}}{\sum_{j=1}^{N} X_{ij}} \right).$$

Lower level problem

The lower level problem

 $min_{X} arphi(X,Y^{tr},oldsymbol{ heta})$

is solved explicitly using Label Propagation,

over the graph induced by the generalized mean adjacency matrix $A(\alpha, \beta)$.

Upper level problem

Feasible region: $S = \begin{cases} \alpha \in [-a, a] \\ \beta \ge 0, e^T \beta = \\ \lambda \in [l_0, l_1] \end{cases}$

We solve it using the Frank Wolfe algorithm with inexact gradient. In each iteration we solve the linearized problem:

$$\hat{\theta} = \min_{\theta \in S} \widetilde{\nabla} H(\theta_n)^T (\theta - \theta_n)$$

which can be solved separately in the the variables $\theta = (\alpha, \beta, \lambda)$.

For variable $\alpha \in [-a, a]$, we need to solve

$$\min_{\alpha} \quad \widetilde{\nabla}_{\alpha} H(\alpha_{n}, \boldsymbol{\beta}_{n}, \lambda_{n})(\alpha - \alpha_{n})$$
s.t. $\alpha \in [-a, a]$

$$\hat{\alpha}_{n} = \begin{cases} -a & \text{if } \widetilde{\nabla}_{\alpha} H(\alpha_{n}, \boldsymbol{\beta}_{n}, \lambda_{n}) > 0 \\ a & \text{otherwise} \end{cases}$$

Same for $\lambda \in [l_0, l_1]$.

For the set of variables $\beta \in \mathbb{R}^K$, we need to solve

$$\min_{\boldsymbol{\beta}} \quad \widetilde{\nabla}_{\boldsymbol{\beta}} H(\alpha_n, \boldsymbol{\beta}_n, \lambda_n)^T (\boldsymbol{\beta} - \boldsymbol{\beta}_n)$$
s.t. $\boldsymbol{\beta} \ge 0$

$$e^T \boldsymbol{\beta} = 1$$

$$\hat{\boldsymbol{\beta}}_n = e_{\hat{\boldsymbol{\jmath}}}$$

where $\hat{\jmath} = \operatorname{argmin}_{j=1,...,K} [\widetilde{\nabla}_{\beta} H(\alpha_n, \beta_n, \lambda_n)]_j$ and $e_{\hat{\jmath}}$ vector of the canonical basis of \mathbb{R}^K .

Convergence Analysis

Theorem (Informal)

 ∇H Lipschitz continuous, S compact with finite diameter.

Let $\{\theta_n\}$ a sequence generated by the Algorithm, where ∇H and the step size satisfy some assumptions.

Then, we have a sublinear convergence rate of the duality gap:

 $g_n^* \le \max(c_1 n^{-\frac{1}{2}}, c_2 n^{-1})$

with appropriate constants c_1 and c_2 ,

 $g_n^* = \min_{0 \le i \le n-1} - \nabla H(\boldsymbol{\theta}_i)^{\top} d_i^{FW}$, d_i^{FW} direction obtained by the Frank-Wolfe algorithm with exact gradient.

Synthetic Datasets

AGGR UNION BINOM MULTI SGMI AGML SMACD GMM

APR 0.87 0.89 **0.98** 0.97 0.78 0.61 0.50 0.86

(b) Noisy

(c) Complementary

Real World Datasets

		3sources	BBC	BBCSport	Wikipedia	UCI	cora	citeseer	dkpol	aucs	Α
		0.79	0.91	0.92	0.51	0.95	0.69	0.65	0.73	0.85	
	(+1)	0.74	0.89	0.86	0.42	0.96	0.57	0.53	0.62	0.81	0.90
	(+2)	0.07	0.88	0.80	0.39	0.96	0.49	0.47	0.58	0.77	
UNION		0.75	0.90	0.92	0.51	0.92	0.69	0.65	0.69	0.85	
	(+1)	0.66	0.87	0.85	0.42	0.92	0.57	0.53	0.60	0.65	0
	(+2)	0.60	0.84	0.77	0.38	0.92	0.48	0.46	0.55	0.52	
,		0.75	0.88	0.92	0.62	0.97	0.74	0.66	0.62	0.85	
	(+1)	0.76	0.87	0.91	0.57	0.97	0.63	0.59	0.54	0.81	0
	(+2)	0.72	0.87	0.90	0.56	0.97	0.64	0.61	0.45	0.77	
,		0.74	0.86	0.88	0.64	0.96	0.76	0.65	0.76	0.85	
	(+1)	0.73	0.87	0.87	0.62	0.96	0.76	0.63	0.72	0.81	0
	(+2)	0.75	0.83	0.87	0.59	0.96	0.74	0.63	0.69	0.77	
SGMI		0.75	0.76	0.84	0.61	0.94	0.72	0.51	0.31	0.75	
	(+1)	0.58	0.76	0.83	0.59	0.94	0.72	0.52	0.31	0.76	0
	(+2)	0.57	0.76	0.64	0.59	0.94	0.72	0.52	0.31	0.76	
SMACD		0.62	0.69	0.73	0.24	0.33	0.34	0.36	0.26	0.58	
	(+1)	0.60	0.66	0.60	0.25	0.30	0.28	0.32	0.24	0.56	0.56
	(+2)	0.61	0.65	0.78	0.23	0.33	0.37	0.26	0.20	0.60	
GMM		0.80	0.87	0.88	0.57	0.93	0.69	0.58	0.63	0.81	
	(+1)	0.76	0.84	0.77	0.47	0.93	0.58	0.49	0.34	0.77	0
	(+2)	0.71	0.81	0.73	0.43	0.93	0.55	0.45	0.27	0.76	

Time-execution (Synthetic Datasets)

References

BINOM-MULTI: Venturini, S., Cristofari, A., Rinaldi, F., and Tudisco, F. (2023). Learning the Right Layers: a Data-Driven Layer-Aggregation Strategy for Semi-Supervised Learning on Multilayer Graphs. Accepted to International Conference on Machine Learning (ICML).

SGMI: Karasuyama, M. and Mamitsuka, H. (2013). Multiple graph label propagation by sparse integration. IEEE transactions on neural networks and learning systems, 24(12):1999–2012.

AGML: Nie, F., Li, J., Li, X. (2016). Parameter-free auto-weighted multiple graph learning: a framework for multiview clustering and semisupervised classification. In IJCAI, pages 1881–1887.

SMACD: Gujral, E. and Papalexakis, E. E. (2018). SMACD: Semi-supervised multi-aspect community detection. In Proceedings of the 2018 SIAM International Conference on Data Mining, pages 702–710. SIAM.

GMM: Mercado, P., Tudisco, F., and Hein, M. (2019). Generalized matrix means for semi-supervised learning with multilayer graphs. Advances in neural information processing systems, 32.