ANSWER SHEET (DO NOT write in right hand column)

MODULE CODE:	ELEC6242		Student ID:		319	90401
Question number:	1a	This is page number	nber: 1		of my	answers

First, we need to count the length of the message, where L = 13 (without spaces)

Then we calculate how many times each letter occurs in the cipher text

- E = 2
- B = 2
- 0 = 4
- T = 3
- N = 1
- R = 1

Now we will apply the index of coincidence formula (Nx*Nx-1)/(L*L-1) + ... So, we have:

$$\frac{2(2.1)}{13.12} + \frac{(4.3)}{(3.12)} + \frac{(3.2)}{(3.12)} + \frac{2(1.0)}{(13.12)}$$

$$= 2(\frac{2}{156}) + \frac{12}{156} + \frac{6}{156} + \frac{2}{156}$$

$$= 4 + 12 + 6 - 22 \cdot 0, 141$$

$$= 156 + 156 + 156 + 156$$

Thus, the index of coincidence is 0,141.

MODULE CODE:	ELEC6242	Student ID:		nt ID:	31990401	
Question number:	1b	This is page number	:	2	of my answers	

We can use textual steganography and letters in a random text.	hide our secret message by ma	arking	
Let's assume that the random text "c" is	s the following:		
Bug on that transcript try warning othe			
Our secret message is: Go at two So, in order to hide this message in the the letter we want.	c we just need to mark in each	ı word	
Bu g on that transcript try warning othe	rs		
The c message will be transmitted and v just read the letters that make the secre		he will	

MODULE CODE:	ELEC6242	C6242		nt ID:	31990401	
Question number:	1c	This is page number	:	3	of my answers	

In order to find the possible key length, we will use the Kasisky Test technique.	
We need to find words that have been encrypted in the same way and then ensure that their difference is multiple of their length.	
NOL RYPPZDAMLWERLJEGRC NOL RYPZZIQMOQKBPLNHAGOWLSRJPOLREGE	
We can see NOL exist two times. NOL has a length of 3. The distance between the first NOL and the second one is 18 which is multiple of 3 ($3*6 = 18$). Thus, the possible key length is 3.	

MODULE CODE:	ELEC6242		Student ID:		31990401
Question number:	1d	This is page number	:	4	of my answers

x= 5/17

x = root(2)

```
r2 = x wod 23

r2 = 2 wod 23

r=18 as r2 = 18 wod 23 = 2

However -18 wod 23 = 5

Thus there are two solutions -> 18 anol5
```

 $x = 22^8$

22 in Z23 is -1 Thus, 22^8 = (-1) ^8 = 1

MODULE CODE:	ELEC6242		Student ID:		31990401
Question number:	2a	This is page number	:	5	of my answers

We will first need to find all the points of the curve where a = 1 and b = 3.

For each x (from 0 to 16 as we are in Z17) we calculate the y^2 . Then we convert this in Z17. If the result has a perfect square in Z17 then we take the point.

Thus, all the points of the elliptic curve are the following (they are calculated with the above formula):

(2,9) (2,8) (11,6) (7,8) (16,16) (8,9) (12,3) (3,13) (16,1) (6,2) (7,9) (12,14) (3,4) (11,11) (8,8) (6,15), O

As a result, the order of the curve is p - 1 = 17 - 1 = 16.

Due to the fact that the order is p-1 = 16 then the group is cyclic.

The generator was (12, 3) so if we calculate n * generator (n e (1, 16)) it will produce an all the distinct points of the curve.

MODULE CODE:	ELEC6242		Stude	nt ID:	31990401
Question number:	2b	This is page number	:	6	of my answers

We need to find an i that if we calculate i * (16, 16) will give 12,4

P = P = (XR, yR) $P = (X_1, y_1) = (16, 16)$	
$9 = 3x_1^2 + 9 = 3.16^2 + 1 = 769 = 29.16$	15
4 - 4.11 - 4.2 = 8 mod 17	0.48 5 3 X
$x_R = 3^2 - 2x_1 = 8^2 - 2 \cdot 16 = 32$ $y_R = -y_1 + 3(x_1 - x_R) = -16 + 8(16 - 32)$ 2P = (15.8)	2)= -144

If we use the same formula, we can calculate the 3P, 4P and by doing that we can find that 5P is the point which gives us (12, 14).

That means that i = 5 and 5*(16, 16) = (12, 14)

MODULE CODE:	ELEC6242		Stude	nt ID:	319904	01
Question number:	2c	This is page number	•	7	of my ans	wers

28 = 2(16,16)	
7=31/2+9-3-16+1 - 00 769 - 13	
2. 216	
2 y 2 · 16 · 32 8	
13 - 13. L = 13. 15 = 195 wed 17	
8 8	
$8 \qquad 8 \qquad \times R = 2^2 - 2 \times 1 = 195^3 - 2.16 = 13.7993$	
yr=-4, TA(X1+XR)=-16+195 (16+37993)=-	7400031
SO 2P = (8,2)	1-10-3371
18 18 18 18 18 18 18 18 18 18 18 18 18 1	
3P = 9 (8)2)	
$7 = 3X_1^2 + \alpha = 3.8^2 + 1 - 193$ (4.3)	
24. 22 4 13	
3 4 3 1 - 354 + 12 mod (7)	
[3] B	
XR=22-2x1=122-2.8 = 144-16=12P	
$xR = 2^{2} - 2x_{1} = 12^{2} - 2.8 = 144 - 16 = 13.8$ $yR = -y_{1} + \lambda(x_{1} - x_{R}) = -2 + 12(8 - 12.8) = -1442$	
\$ 3P=(2,6)	
4P = 2 (2,6)	
7=3.2 +1 = 13 - 4	
2.6 12 10	
4-4.1.4.12:48 mod 17	
$\frac{10}{x_{R}=48^{2}-2\cdot \lambda}=2304-4=2300$	
yr = -6 + 48 (9 - 2300) = -110310	
so 4P = (7,6)	

MODULE CODE:	ELEC6242	Stu		nt ID:	31990401
Question number:	2c	This is page number	:	8	of my answers

SP =	2(7,6)
3-3	$\frac{3.7^{2}+1}{2.6} - \frac{3.49+1}{12} - \frac{148}{10} - \frac{16}{10}$
10-	26 12 12 10
16	2.6 12 12 10 1 = 10.12 = 120 wod 17
10.	10
	1202-2.7 = 14400 - 14 = 14386
Xr=	120-1-1-19-19-19-19-19-19-19-19-19-19-19-19
yr:	-6+120 (7-14386) = -1723326
So	SP = (13, 8)
6P.	= 2(13,8) VI LAW 2) RESERVE SEE
2:	2.8 16 16 16
	2.8 00 16 31 16 16
(1)) (1) (1)	0 1 8 16 = 128 word 17
16	16
XR:	1282-913=16384-26=16358
SAR	= -8+128(13-16358) = -2092168
50	6P=(13,7)
	E PSI RE SI DE LA COLLEGA DE L
7/10	multiplicative inverse of 13 in 217 is 4
E	ally x-1. (2 = 4-8.13 = 13
50	(3) (3) (1) (1) (1) (1) (1) (1)
	(a) (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c
	() 212 912
	(A)
	1 1 1
	Of the Swedth Very
	2 10 00 00 10 10 10 10 10 10 10 10 10 10
	A CONTROL OF THE PARTY OF THE P

MODULE CODE:	ELEC6242		Stude	nt ID:	31990401
Question number:	2d	This is page number	:	9	of my answers

We	are going	to use	the	Hasse's	s theorem	where:
VVC	are going	to use	LIIC	Tidose .	3 1111111111111111111111111111111111111	WITCIC.

$$|\,|\,\mathsf{E}(\mathsf{F}(\mathsf{q})\,|\,\text{-}(\mathsf{q}+1)\,\,|\,\text{-}2\mathsf{root}(\mathsf{q})\,\,\boldsymbol{\rightarrow}\,\text{-}2\mathsf{sqrt}(\mathsf{q})\,+\,\mathsf{q}\,+\,1\,\,\text{<=}\,\,\mathsf{E}(\mathsf{f}\mathsf{q})\,\,\text{<=}\,\,2\mathsf{sqrt}(\mathsf{q})\,+\,\mathsf{q}\,+\,1$$

If we apply the numbers of our curve the minimum number of points, we can find on this curve is:

MODULE CODE:	ELEC6242		Stude	nt ID:	31990401
Question number:	3a	This is page number	:	10	of my answers

This is a columnar transposition cipher.

The cipher length is 20 so the key length could be a divisor of 20 (1, 2, 4, 5).

We will try to produce tables according to the possible key lengths. So, the first table will have 1 column and 20 rows the second one 2 columns and 10 rows, the third one 4 columns and 5 rows and so on.

If we use the key length 5, we can see that we have the following table (5 columns and 4 rows):

2 - 1		2	4	<
1	2	>		
A	Y	H	0	U
N	V	1	€	F
M	A	Y	L	L
7	A	l	D	F

If we rearrange the columns as 2, 4, 5, 3, 1

and read the table horizontally we can see that we can deduce the plaintext which is "YOU HAVE FINALLY MADE IT". Thus, the key length is 5 and the key is "BDECA"

MODULE CODE:	ELEC6242		Stude	nt ID:	31990401
Question number:	3b	This is page number	:	11	of my answers

The system that is described is the AES ECBC. This encryption technique is not semantically secure because ECB-encrypted ciphertext can leak information about the plaintext (even beyond its length, which all encryption schemes accepting arbitrarily long plaintexts will lead to some extent).

The problem with ECB mode is that encrypting the same block of 128 bytes of plaintext using ECB mode always yields the same block of ciphertext. This can allow an attacker to detect whether two ECB-encrypted messages are identical, or to detect whether two ECB-encrypted messages share a common prefix or to detect whether two ECB-encrypted messages share other common substrings, as long as those substrings are aligned at block boundaries or to detect whether a single ECB-encrypted message contains repetitive data

MODULE CODE:	ELEC6242		Stude	nt ID:	31990401
Question number:	3c	This is page number	:	12	of my answers

- 1. Correct
- 2. Wrong (AES128 will not be secure as 128bits will become 64, but AES256 will be as 256 bits will become 128)
- 3. Wrong (there are cbc attacks where we can find the cipher text and the key can be the same)
- 4. Wrong (Elgamal uses discrete logarithm, it is not a trap door function)
- 5. Correct (cpm perfect secrecy explains how good an algorithm is. However, if the cryptosystem is bad, we can perform timing attack)
- 6. Wrong (we can have more points in the curve)
- 7. Wrong (We can find all the bits. It's difficult but not impossible)
- 8. Correct (it is easier to find collisions)
- 9. Wrong (the probability must be >= 50...so it can be 70 or 65...not exactly 80. Could also be more than 80)