Rules Handout (Final Edition)

Symbolization Rules for LSL

English Expression

LSL Connective

not, it is not the case that, it is false that

and, yet, but, however, moreover, nevertheless, still, also, although, both, additionally, furthermore

&

or, unless, either ... or ...

V

if ... then ..., only if, given that, in case, provided that, on condition that, sufficient condition, necessary condition, unless (Note: don't confuse antecedents/consequents!)

if and only if (iff), is equivalent to, sufficient and necessary condition for, necessary and sufficient condition for

Detailed Symbolization Rules for →

- 'if p then $q^{"} \mapsto "p \rightarrow q"$
- $\lceil p \text{ implies } q \rceil \mapsto \lceil p \rightarrow q \rceil$
- $\lceil p \text{ only if } q \rceil \mapsto \lceil p \rightarrow q \rceil$
- $\lceil q \text{ if } p \rceil \mapsto \lceil p \rightarrow q \rceil$
- $\lceil p \rceil$ is a sufficient condition for $q^{\rceil} \mapsto \lceil p \rightarrow q^{\rceil}$
- $\lceil q \text{ is a necessary condition for } p \rceil \mapsto \lceil p \rightarrow q \rceil$
- $\lceil q \text{ provided } p \rceil \mapsto \lceil p \rightarrow q \rceil$
- $\lceil q \text{ whenever } p \rceil \mapsto \lceil p \rightarrow q \rceil$
- $\lceil p \mid$ is contingent upon $q \mid p \mid p \rightarrow q \mid$
- $\lceil p \text{ unless } q \rceil \mapsto \lceil \sim q \rightarrow p \rceil$

Truth-Table Definitions of LSL Connectives

_ <i>p</i>	~p
Т	1
\perp	Т

p	q	p & q
Т	Т	Т
Т	Т	
	Т	
	Т	

p	q	$p \vee q$
Т	Т	Т
Т		Т
	Т	Т
	Т	1

p	q	$p \rightarrow q$
Т	Т	Т
Т		Т
	Т	Т
		Т

p	q	$p \leftrightarrow q$
Т	Т	Т
Т	1	
	Т	
	1	Т

Rules for Calculating Probabilities

Unconditional Probability Rule. The unconditional probability of a claim p is the sum of the probabilities of the states in which p is true.

$$\Pr(p) \stackrel{\text{def}}{=} \sum_{s_i \models p} \Pr(s_i)$$

Conditional Probability Rule. The conditional probability p, $given\ q$ is the $ratio\ \frac{\Pr(p\&q)}{\Pr(q)}$, $if\ \Pr(q)>0$.

$$\Pr(p \mid q) \stackrel{\text{def}}{=} \frac{\Pr(p \& q)}{\Pr(q)}, if \Pr(q) > 0.$$

- **2 Constraints on the state probabilities** $Pr(s_i) = a_i$.
- (i) Each of the a_i is on the unit interval [0,1].
- (ii) The $\{a_i\}$ sum to one. [i.e., $\sum_i a_i = 1$]