Algorithms: Dynamic Programming

0-1 Knapsack Problem

The Knapsack Problem (Review)

There are two versions of the problem:

(1) "0-1 knapsack problem"

Items are indivisible: you either take an item or not. Solved with *dynamic programming*.

(2) "Fractional knapsack problem"

Items are divisible: you can take any fraction of an item. Solved with a *greedy algorithm*.

Optimal Substructure Property

- Both problems exhibit the optimal substructure property.
- To show this for both the problems, consider the most valuable load weighing at most W pounds
 - Q: If we remove item *j* from the load, what do we know about the remaining load?
 - A: The remaining load must be the most valuable load weighing at most W w_j that the thief could take from the n-1 original items excluding item j.

0-1 Knapsack Problem

- Thief has a knapsack with maximum capacity W, and a set S consisting of n items
- Each item i has some weight w_i and benefit value v_i (all w_i , v_i and W are integer values)
- <u>Problem</u>: How to pack the knapsack to achieve maximum total value of packed items?
- Goal:

find x_i such that for all $x_i \in \{0, 1\}$, i = 1, 2, ..., n

 $\sum w_i x_i \leq W$ and

 $\sum x_i v_i$ is maximum

0-1 Knapsack - Greedy Strategy Fails

0-1 Knapsack: Brute-Force Approach

- Since there are n items, there are 2^n possible combinations of items.
- We go through all combinations and find the one with the most total value and with total weight less or equal to W.
- Running time will be $O(2^n)$.

0-1 Knapsack - Dynamic Programming

- P(i, w) the maximum profit that can be obtained from items 1 to i, if the knapsack has size w
- Case 1: thief takes item i

$$P(i, w) = v_i + P(i - 1, w - w_i)$$

Case 2: thief does not take item i

$$P(i, w) = P(i - 1, w)$$

Recursive Formula

$$P[i, w] = \begin{cases} P[i-1, w] & \text{if } w < w_i \\ \max\{v_i + P[i-1, w - w_i], P[i-1, w]\} & \text{else} \end{cases}$$

- The best subset that has the total weight w, either contains item i or not.
- First case: $w < w_i$. Item i can't be part of the solution, since if it was, the total weight would be > w, which is unacceptable.
- Second case: $w >= w_i$. Then the item i can be in the solution, and we choose the case with greater value.

Dependencies among Subproblems

Overlapping Subproblems

E.g.: All the subproblems shown in grey may depend on P(i-1, w)

Example:		

P(i.	w)	=	max	{v;	+	P(i	_	1.	$w-w_i$),	P(i	_	1.	w)	}
. (.,	•••		111001	6.1		. (.		-,	" " " " " " " " " " " " " " " " " " " "	. (.		-,	•••	J

Ī	0	1	2	3	4	5
0	0	0/	0 🗸	\ O /	0	0
1	0	/ 	_12 <u>_</u>	12 _x	12 🔻	/12
2	0	_10+	12 +	22	22	22
3	0 🕇	_10√	12	22	/30	⁻ 32

$$P(1, 2) = max\{12+0, 0\} = 12$$

W = 5

$$P(1, 3) = max\{12+0, 0\} = 12$$

$$P(1, 4) = max\{12+0, 0\} = 12$$

$$P(1, 5) = max\{12+0, 0\} = 12$$

$$P(2, 1) = max\{10+0, 0\} = 10$$

$$P(2, 2) = max\{10+0, 12\} = 12 | P(3, 2) = P(2,2) = 12$$

$$P(2, 4) = max\{10+12, 12\} = 22 P(3, 4) = max\{20+10,22\} = 30 P(4, 4) = max\{15+12, 30\} = 30$$

$$P(2, 5) = max\{10+12, 12\} = 22 P(4, 5) = max\{20+12,22\} = 32 P(4, 5) = max\{15+22, 32\} = 37$$

$$P(3, 1)=P(2,1)=10$$

$$P(3, 2)=P(2,2)=12$$

$$P(3, 3) = max\{20+0, 22\} = 22$$

$$P(4, 1) = P(3,1) = 10$$

$$P(4, 2) = max\{15+0, 12\} = 15$$

Weight

Value

Item

$$P(2, 3) = max\{10+12, 12\} = 22 P(3, 3) = max\{20+0, 22\} = 22 P(4, 3) = max\{15+10, 22\} = 25$$

$$P(4, 4) = max\{15+12, 30\}=30$$

Reconstructing the Optimal Solution

- Item 4
- Item 2
- Item 1

- Start at P(n, W)
- When you go left-up ⇒ item i has been taken
- When you go straight up ⇒ item i has not been taken

0-1 Knapsack Algorithm (DP)

```
for w = 0 to W
  P[0, w] = 0
                         Running time: O(n*W)
for i = 0 to n
  P[i, 0] = 0
  for w = 0 to W
       if w_i \le w // item i can be part of the solution
              if (v_i + P[i-1, w-w_i] > P[i-1, w])
                     P[i, w] = v_i + P[i-1, w-w_i]
              else
                     P[i, w] = P[i-1, w]
       else P[i, w] = P[i-1, w] // w_i > w
```

0	0	0	0	0	0
0					
0					
0					
0					