Assignment 6

1. Here is our original structured equation model:

After estimating the parameters, we got the following result regarding the model fit:

Computation of degrees of freedom (Default model)

Number of distinct sample moments: 21 Number of distinct parameters to be estimated: 15 Degrees of freedom (21 - 15): 6

Result (Default model)

Minimum was achieved Chi-square = 12.775 Degrees of freedom = 6 Probability level = .047

Other evaluation metrics:

- CFI: 0.992 - SRMR: 0.0198 - RMSEA: 0.048 We can see that although the above metrics suggest that the model is reasonably accurate, the **probability level**, which we want to be non-significant, turned out to be significant (less than 0.05). So we might want to modify the measurement model.

Here are the generated modification indices:

	M.I. Par Change				
ex1 <> ey3	4.484	.062			
ey2 <> ex2	4.109	054			

So, we try to change our measurement model accordingly:

We got the following results after changing our measurement model:

Notes for Model (Default model)

Computation of degrees of freedom (Default model)

Number of distinct sample moments: 21 Number of distinct parameters to be estimated: 17 Degrees of freedom (21 - 17): 4

Result (Default model)

Minimum was achieved Chi-square = 1.072 Degrees of freedom = 4 Probability level = .899 Now, we can see that **probability level became non-significant and much higher than 0.05**, so we can say that the goodness of fit of the modified measurement model is very accurate; this is also suggested by all other evaluation metrics (RMSEA: 0.000, GFI: 0.999, CFI: 1.000).

2. The table below shows the estimated parameters (non-standardized) in our structured equation model and other important information:

			Estimate	S.E.	C.R.	PLabel
Intention	<	Attitude	.731	.084	8.715	***
Behavior	<	Intention	.520	.084	6.157	***
Behavior	<	Attitude	.034	.096	.356	.722
y2	<	Intention	1.000			
y1 ·	<	Intention	.968	.070	13.769	***
x2	<	Attitude	1.000			
x1	<	Attitude	.924	.103	9.007	***
y4	<	Behavior	1.000			
у3	<	Behavior	.757	.096	7.900	***

We can see that the path from "Attitude" to "Behavior" is nonsignificant. In other words, attitude does not have a direct effect on behavior. Thus, we can drop that relationship and modify the structed equation model.

3. After modifying our structured equation model, we got the following estimates (non-standardized):

4. In **answer 2**, we saw that **attitude** does not have a direct effect on **behavior**. Now, let's see whether it has an indirect effect through **intention** on **behavior**.

Parameter	Estimate	Lower	Upper	P
indirect_effect	.399	.299	.524	.001

The indirect effect of **attitude** on **behavior** was estimated to be 0.399, and it was statistically significant. Its 95% confidence interval was determined to be (.299, 0.524). So, although **attitude** does not have a direct effect on **behavior**, it has an indirect effect on it through **intention**.