Eine Woche, ein Beispiel 5.19. Weierstrass point

references:

https://en.wikipedia.org/wiki/Weierstrass_point

https://en.wikipedia.org/wiki/Inflection_point

Klein quartic has 24 inflection points:

https://www.uio.no/studier/emner/matnat/math/MAT2000/v24/projects/2023_the_klein_quartic_and_its_n_weierstrass_points.pdf

curve of genus >0 don't have single simple pole:

https://math.stackexchange.com/questions/2841459/finding-a-meromorphic-function-on-a-compact-riemann-surface-with-prescribed-zero

Setting: C: proj sm curve /x = x = x, chav x = 0

	$\frac{h^{\circ}(\mathcal{O}(nP))}{g(C)}$	0	ı	2	3	4	5	6	7	8	g(g²-1)
	0	1	2	3	4	5	6	7	8	9	O
	1	1	1	2	3	4	5	6	7	8	0
g = 3;	2	1	1	?	2	3	4	5	6	7	6
	3	1	1	?	?	?	3	4	5	6	24
	4	1	1	?	?	?	7	?	4	5	60
	:	:	:	:	:	:	:	:	:	:	:
	non-Weierstrass	1	1	1	1	2	3	4	5	6	Ø
	non-Weierstrass general quartic W: e.g. Klein quartic	1	1	1	2	2	3	4	5	6	1×24
	W. Fermat quartic	1	1	1	2	3	3	4	5	6	2×12
	W. hypevelliptic case	1	1	2	2	3	3	4	5	6	3 × 8

by Clifford's thm, $h^{\circ}(\mathcal{O}(nP)) \leq \frac{h}{2} + 1$, so the hyperelliptic case reaches the limit.

Finiteness of Weierestrass point:

https://math.stackexchange.com/questions/4719889/is-this-proof-that-the-number-of-weierstrass-points-on-a-compact-riemann-surface

$$q=3$$
 case $\Rightarrow h^{\circ}(\mathcal{O}(qP))=1$

PEC Weierstrass

$$\Leftrightarrow$$
 \exists $f \in K(C)$, f has a single pole at P , with $ord_{p}(f) \ge -g$

$$\Leftrightarrow h^{\circ}(K-gP) \geqslant 1$$

e.p.

g=2. P∈C Weierstrass

 \Leftrightarrow \exists fek(C). f has a single double pole at P

g=3. PEC Weierstrass

 $\Leftarrow \exists f \in K(C)$, f has a single triple pole at P

Figure 1. Possibilities for the degree and rank of a divisor.

A tropical version for analog. I could draw it also for the classical AG cases, but I'm lazy. Photo comes from [MA 764: Chip Firing, Lec 9]: https://www.ms.uky.edu/~dhje223/MA%20764%20Spring%202019.html

A case in tropical algebraic curve where the "Weierstrass points are not finite":

"Weierstrass pts": rk(zp)=1

comparison between tropical & classical.

See this article for more examples of Weierestrass points on tropical alg curves: https://arxiv.org/pdf/2303.07729 See [Theorem 1.7] which computes the total weight of the Weierstrass locus: d-r+rg. When D=K, d=2g-2, r=g-1, the total weight is g^2-1 .

Notice that the definition of weight is slightly changed.

The Dhar's burning algorithm is mainly used for eliminating negative divisors.

Step 1: blow (burn negative divisors) Step 2: suck (attract positive divisors)

This process looks like the process when I suck the river snail, therefore, I call it as "嗉田螺算法". It's an effective algorithm in determining if a

Some differences between classical algebraic curves and tropical algebraic curves:

We have Dhar's burning algorithm for tropical algebraic curves, which is not so explicit in classical case. (Maybe I'm wrong: the hyperelliptic curves can be seen in [Theorem 4.1.6]: https://algant.eu/documents/theses/dipiazza.pdf)
We can also divide K into two canonical parts.

In classical algebraic curves, the Weierstrass point is finite, which is not true in tropical algebraic curves.

g=3 case

$$r(kP) = r(K-kP) + k-g+1$$

$$\frac{g=3}{r(k-2P)} \begin{cases} r(K-2P) & k=2\\ r(k-3P)+1 & k=3\\ r(k-4P)+2 & k=4 \end{cases}$$

