### IC152 Lec 17

Feb 2021

These slides are partly made with LATEX

## **Statistics**

- Develop measures to summarize a dataset
- Statistics are quantities whose values are determined by the data
- Eg: sample mean, sample median, sample mode measure the centre of a dataset
- Sample standard deviation: measures variation
- Sample correlation: to meausre pairwise relationships

# sample mean

Data points  $x_1, x_2, \dots x_n$ Sample mean is defined as

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

$$y_i = x_i + c \Rightarrow \bar{y} = \bar{x} + c$$

Shifting by a constant

#### Motorbike accidents 1976

| Classification of accident  No head injury  Minor head injury  Moderate head injury  Severe, not life-threatening  Severe and life-threatening  Critical, survival uncertain at time of a |                                                  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--|
| 0                                                                                                                                                                                         | No head injury                                   |  |
| 1                                                                                                                                                                                         | Minor head injury                                |  |
| 2                                                                                                                                                                                         | Moderate head injury                             |  |
| 3                                                                                                                                                                                         | Severe, not life-threatening                     |  |
| 4                                                                                                                                                                                         | Severe and life-threatening                      |  |
| 5                                                                                                                                                                                         | Critical, survival uncertain at time of accident |  |
| 6                                                                                                                                                                                         | Fatal                                            |  |

| Classification | Frequency of driver with helmet | Frequency of driver without helmet |  |  |  |
|----------------|---------------------------------|------------------------------------|--|--|--|
| 0              | 248                             | 227                                |  |  |  |
| 1              | 58                              | 135                                |  |  |  |
| 2              | 11                              | 33                                 |  |  |  |
| 3              | 3                               | 14                                 |  |  |  |
| 4              | 2                               | 3                                  |  |  |  |
| 5              | 8                               | 21                                 |  |  |  |
| 6              | 1                               | 6                                  |  |  |  |
|                | 331                             | 439                                |  |  |  |

Sample mean of head injury severity for helmeted riders:

$$\frac{0 \times 248 + 1 \times 58 + 2 \times 11 + 3 \times 3 + 4 \times 2 + 5 \times 8 + 6 \times 1}{331} = 0.432$$

For non-helmeted riders:

$$\frac{0 \times 227 + 1 \times 135 + 2 \times 33 + 3 \times 14 + 4 \times 3 + 5 \times 21 + 6 \times 6}{331} = 0.902$$

Data indicates that riders with helmets suffered lesser than riders without

**Expected value** 

### **Deviations**

**Deviations** from the mean:  $x_i - \bar{x}$ 

HW: Show that: 
$$\sum_{i=1}^{n} (x_i - \bar{x}) = 0$$

# Sample median

- Order the values from smallest to the largest.
   For odd n, sample median = middle value. For even n, sample median = average of the two middle values.
- Sample mean is affected by extreme values.
   Sample median is not.

# Example use

- Flat-rate income tax for city. How much income to expect?
- Middle-class housing project. How many citizens can afford this?
- Both sample mean and sample median are useful statistics.

# Sample mode

- Most frequently occuring value
- 8, 10, 6, 4, 10, 12, 14, 10
  sample mode is 10

# Sample variance and sample std

- A: 1,2,5,6,6 B: -40,0,5,20,35
- A and B have same sample mean, but B has more spread than A

Data points  $x_1, x_2, \dots x_n$ Sample variance  $s^2$  is defined as

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}$$

Sample standard deviation = positive square root of sample variance

## Normal datasets



## A dataset is *normal* if its histogram:

- Is highest at the middle interval
- Is bell-shaped
- Is symmetric about its middle interval



#### Approximately normal



Skewed

# Empirical rule for normal data

1. Approximately 68% of the data lie within

$$\bar{x} \pm s$$

2. Approximately 95% of the data lie within

$$\bar{x} \pm 2s$$

3. Approximately 99.7% of the data lie within

$$\bar{x} \pm 3s$$

## Bimodal data



Superposition of two normal histograms Eg. weights of men and women

# Sample correlation coefficient

- Paired data (xi,yi)
- How does increase in x affect the y?

| Person | Number of cigarettes smoked | Free radicals |  |  |  |
|--------|-----------------------------|---------------|--|--|--|
| 1      | 18                          | 202           |  |  |  |
| 2      | 32                          | 644           |  |  |  |
| 3      | 25                          | 411           |  |  |  |
| 4      | 60                          | 755           |  |  |  |
| 5      | 12                          | 144           |  |  |  |
| 6      | 25                          | 302           |  |  |  |
| 7      | 50                          | 512           |  |  |  |
| 8      | 15                          | 223           |  |  |  |
| 9      | 22                          | 183           |  |  |  |
| 10     | 30                          | 375           |  |  |  |



|                                      |    | Person |    |    |    |    |    |    |    |    |
|--------------------------------------|----|--------|----|----|----|----|----|----|----|----|
|                                      | 1  | 2      | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
| Years of school                      | 12 | 16     | 13 | 18 | 19 | 12 | 18 | 19 | 12 | 14 |
| Pulse rate                           | 73 | 67     | 74 | 63 | 73 | 84 | 60 | 62 | 76 | 71 |
| 85 7                                 | +  |        |    |    |    |    |    |    |    |    |
| 80 -                                 |    |        |    |    |    |    |    |    |    |    |
| 75 -<br>9                            | ++ | +      |    |    |    |    |    | +  |    |    |
| Pulse rate                           |    |        | +  |    |    |    |    |    |    |    |
| 65 -                                 |    |        |    |    | +  |    | +  |    |    |    |
| 60 -                                 |    |        |    |    |    |    | +  | +  |    |    |
| 55                                   |    |        |    |    |    |    |    |    | _  |    |
| 10 12 14 16 18 20<br>Years of school |    |        |    |    |    |    |    |    |    |    |

will be positive. Thus when large  $x_i$  values are associated with large  $y_i$ values, and small  $x_i$  values with small  $y_i$  values, then  $\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$ will be a large positive number.

If  $x_i - \bar{x}$  and  $y_i - \bar{y}$  have the same sign, then their product  $(x_i - \bar{x})(y_i - \bar{y})$ 

Standarize the sum  $\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$  by dividing with n-1, and then dividing by the product of the two sample deviations. Let  $s_x$  and  $s_y$  be the sample standard deviations of  $x_i$  and  $y_i$ . The sample

correlation coefficient  $r_{xy}$  for the data pairs  $(x_i, y_i)$  is:  $r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{(n-1)s_x s_y}$ 

$$\frac{(\bar{x})(y_i - \bar{y})}{1)s_x s_y}$$

Suppose, instead of 2 variables x and y, we had a vector of variables

$$\lceil x_1 
ceil$$

 $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_2 \end{bmatrix}$ 

Now there are correlations between pairwise components of **x**:  $r_{x_1x_2}$ ,  $r_{x_1x_3}$ ,  $r_{x_2x_3}, r_{x_1x_1}, r_{x_2x_2}, r_{x_3x_3}$ .

#### Correlation measures association, not causation

- Strong negative correlation between number of years in school and resting pulse rate
- Does this that imply more years in school reduces the pulse rate?
- Association is not causation
- Eg. more time in school, more aware of healthy lifestyle, or has a job which gives time for exercise False causality examples (from Wikipedia):
- The faster a windmill rotaes, more wind is observed. Therefore, windmills cause winds.
- Children that watch a lot of TV are violent. Therefore, TV makes children more violent.
- Sleeping with one's shoes on is strongly correlated with waking up with a headache. Therefore, sleeping with one's shoes on causes headache. Missing factor: going to bed drunk.
- As ice cream sales increase, the rate of drowning deaths increases sharply. Therefore, ice cream consumption causes drowning. Missing factor: summer weather.