Normalizzazione di Schemi Relazionali Prof. Alfredo Pulvirenti Prof. Salvatore Alaimo (Atzeni-Ceri Capitolo 9)

PROBLEMA GENERALE

- La progettazione concettuale e logica produce uno schema relazionale che rappresenta la realtà dei dati nella nostra applicazione.
- E' importante che questo schema abbia alcune proprietà.
- Studieremo queste proprietà e daremo degli algoritmi per produrre schemi buoni. Anche se spesso accade che la progettazione logica da noi descritta produce schemi già normalizzati.
- In ogni caso potremo usare queste tecniche per verificare le proprietà.

Ridondanze

Il telefono è ripetuto per ogni esame (ridondanza)

Matricola	Nome	Telefono	Corso	Voto

Il Nome ed il Telefono sono funzione solo della Matricola e non dipendono dagli esami. Quindi non vanno associati ad ogni esame

Viceversa gli esami hanno bisogno solo della matricola.

Anomalie

 Se il telefono dello studente cambia allora questo deve essere aggiornato in tutti i record dello studente (anomalia di aggiornamento)

- Se vengono annullati gli esami dati non rimane traccia dello studente (anomalia di cancellazione)
- Similmente se uno studente non ha ancora dato esami non puo' essere inserito (anomalia di inserimento)
- Soluzione:decomporre in due relazioni!!

Dipendenze Funzionali

Definizione:

Una **Dipendenza Funzionale** è un particolare vincolo di integrità che esprime legami funzionali tra gli attributi di una relazione.

Esempio:

il valore di Matricola implica quelli di Nome e Telefono. Inoltre Matricola e Corso implicano il Voto.

Matricola → Nome, Telefono Matricola, Corso → Voto

Definizione di Dipendenza Funzionale

• Sia $R(A_1,A_2,...,A_n)$ uno schema di relazione, X ed Y sottoinsiemi di $\{A_1,A_2,...,A_n\}$. Diciamo che X **implica funzionalmente** Y, in simboli $X \to Y$, per ogni relazione r dello schema R, se due tuple t_1 e t_2 di r coincidono su tutti gli attributi di X allora devono anche coincidere su tutti gli attributi di Y.

Esempio :

Matricola, Corso ---> Voto

Notazione

- A,B,... attributi;
- U,V,W,X,Y,Z insiemi di attributi;
- R schema di relazione, r relazione;
- ABC sta per $\{A,B,C\}$, XY sta per $X \cup Y$, XA e AX stanno per $X \cup \{A\}$;

Soddisfazione di Dipendenze Funzionali

• Diciamo che una relazione r soddisfa la dipendenza funzionale $X \to Y$ se per ogni coppia di tuple t_1 e t_2 in r $t_1[X] = t_2[X]$ implica $t_1[Y] = t_2[Y]$.

Logica delle Dipendenze Funzionali : Semantica

Sia F un insieme di dipendenze funzionali per uno schema di relazione R e sia X → Y una dipendenza funzionale. Diciamo che F logicamente implica X → Y, e si scrive F ⊨ X → Y , se per ogni relazione r di R che soddisfa tutte le dipendenze di F, r soddisfa anche X → Y.

• Esempio: $\{A \rightarrow B, B \rightarrow C\} \models A \rightarrow C$.

Chiusura di un insieme di dipendenze funzionali

 Dato un insieme F di dipendenze funzionali la sua chiusura F⁺ è l'insieme delle dipendenze funzionali che sono implicate logicamente da F, in simboli

•
$$F^+ = \{X \rightarrow Y | F \models X \rightarrow Y\}.$$

Chiavi per uno schema con insieme di dipendenze funzionali

• Sia R(A₁,A₂,...,A_n) uno schema, F un insieme di dipendenze funzionali su R ed X un sottoinsieme di $\{A_1,A_2,...,A_n\}$. Si dice che X è una **chiave** di (R, F) se:

- $-X \to A_1 A_2 \dots A_n \in F^+;$
- Per ogni sottoinsieme proprio Y di X la dipendenza $Y \rightarrow A_1 A_2 \dots A_n \notin F^+$

Commenti

- Una dipendenza funzionale è dettata dalla semantica degli attributi di una relazione e non può essere inferita da una particolare istanza dello schema
- Una istanza di uno schema che rispetti una data dipendenza funzionale viene detta istanza legale dello schema rispetto alla data dipendenza funzionale
- Se X è una chiave in uno schema R allora ogni altro attributo di R dipende funzionalmente da X
- Dire che X → Y significa asserire che i valori della componente Y dipendono da (sono determinati da) i valori della componente X
- Se $X \rightarrow Y$ non necessariamente risulta anche $Y \rightarrow X$
- Il concetto di superchiave si esprime facendo uso delle Dipendenze Funzionali:

 $K \subseteq T$ è superchiave di R(T) se e solo se $K \to T$

Necessità di un Calcolo Logico

- Quindi il problema è quello di calcolare la chiusura di un insieme F di dipendenze funzionali. Per far ciò definiamo un calcolo logico tale che $F \models X \rightarrow Y$ se e soltanto se $X \rightarrow Y$ si può sintatticamente dedurre da F nel calcolo logico.
- I punti di partenza e le regole del calcolo sono i seguenti:

Assiomi di Armstrong

- Sia $U=\{A_1,A_2,...,A_n\}$ un universo di attributi
- Riflessività
 - Se $Y \subset X \subset U$ allora $F \vdash X \to Y$
- Aumento
 - Se $F \vdash X \rightarrow Y$ allora $F \vdash XZ \rightarrow YZ$
- Transitività
 - Se $F \vdash X \to Y$ e $F \vdash Y \to Z$ allora $F \vdash X \to Z$
- Notazione $X \to Y$ si deduce da F applicando gli assiomi di Armstrong si indica con $F \vdash X \to Y$

Deducibilità di dipendenze funzionali

- Diciamo che $F \vdash X \to Y$ se $X \to Y$ si può dedurre da F applicando un numero finito di volte gli assiomi di Armstrong. Cioè esiste una catena $D_1D_2 \dots D_k = X \to Y$ tale che D_i è in F oppure si ottiene da precedenti mediante gli assiomi di Armstrong.
- Esempio $\{A \rightarrow B, B \rightarrow C, C \rightarrow D\} \vdash A \rightarrow D$ (applicando 2 volte la transitività)

Correttezza e Completezza

Correttezza:

Se
$$F \vdash X \rightarrow Y$$
 allora $F \models X \rightarrow Y$

Completezza:

Se
$$F \models X \rightarrow Y$$
allora $F \vdash X \rightarrow Y$

Dimostrazione della Correttezza

Basta dimostrare che gli assiomi di Armstrong sono corretti

Riflessività

Se $Y \subset X \subset U$ allora $F \vdash X \to Y$

Dimostrazione:

se $t_1[X]=t_2[X]$ allora ovviamente anche $t_1[Y]=t_2[Y]$ perché ogni attributo di Y sta anche in X.

Correttezza dell'Aumento

Aumento

Se
$$F \vdash X \rightarrow Y$$
 allora $F \vdash XZ \rightarrow YZ$

Dimostrazione:

Supponiamo che $r \models F$ allora, per ipotesi, $r \models X \rightarrow Y$. Supponiamo che $t_1[XZ]=t_2[XZ]$ allora $t_1[X]=t_2[X]$ da cui segue, per ipotesi, $t_1[Y]=t_2[Y]$ e quindi $t_1[YZ]=t_2[YZ]$.

Correttezza della TRANSITIVITA'

Transitività

Se
$$F \vdash X \rightarrow Y$$
 e $F \vdash Y \rightarrow Z$ allora $F \vdash X \rightarrow Z$

Dimostrazione:

Supponiamo che $r \models F$ allora, per ipotesi, $r \models X \rightarrow Y$ e $r \models Y \rightarrow Z$. Supponiamo che $t_1[X]=t_2[X]$ allora per la prima $t_1[Y]=t_2[Y]$ da cui per la seconda $t_1[Z]=t_2[Z]$.

Correttezza

• Supponiamo che $F \vdash X \rightarrow Y$ e sia $D_1D_2 \dots D_n = X \to Y$ la relativa catena. Procedendo per induzione, se D_i è in F allora ovviamente $F \models D_i$. Se D_i si ottiene da precedenti D_i mediante gli assiomi di Armstrong allora per l'ipotesi induttiva $F \models D_i$ e per la correttezza dei singoli assiomi si ha $F \vDash D_i$. Segue $F \vDash D_n$ cioè $F \vDash X \to Y$

 Prima di verificare la completezza degli assiomi di amstrong introduciamo altre regole per derivare dipendenze funzionali

Primo lemma preliminare: La regola di Decomposizione

• Se $F \vdash X \rightarrow Y$ e $Z \subset Y$ allora $F \vdash X \rightarrow Z$

Dimostrazione:

Se $F \vdash X \to Y$ e $Z \subset Y$ allora per riflessività $F \vdash Y \to Z$ da cui per transitività si ottiene $F \vdash X \to Z$.

Secondo lemma preliminare: La Regola dell'Unione

• Se $F \vdash X \rightarrow Y$ e $F \vdash X \rightarrow Z$ allora $F \vdash X \rightarrow YZ$

Dimostrazione:

Se $F \vdash X \to Y$ e $F \vdash X \to Z$ aumentando la prima di X e la seconda di Y si ha $F \vdash X \to XY$ e $F \vdash XY \to ZY$ che per transitività implicano $F \vdash X \to YZ$.

Terzo lemma preliminare: La Regola di pseudotransitivita'

• Se $F \vdash X \to Y$ e $F \vdash WY \to Z$ allora $F \vdash WX \to Z$

Dimostrazione:

Se $F \vdash X \rightarrow Y$ e $F \vdash WY \rightarrow Z$ aumentando la prima di W si ha $F \vdash WX \rightarrow WY$ e $F \vdash WY \rightarrow Z$ che per transitività implicano $F \vdash WX \rightarrow Z$.

Chiusura di un insieme funzionale

 La chiusura di un insieme funzionale F⁺ è un lavoro che consuma molto tempo perché F⁺ può essere molto grande anche se F è piccolo.

Lemma Fondamentale

Definiamo X_F⁺ = {A|F ⊢ X → A}.
 Ometteremo l'indice F quando non c'è ambiguità e scriveremo semplicemente X⁺.

LEMMA

$$F \vdash X \rightarrow Y$$
 se e solo se $Y \subseteq X^+$.

Dimostrazione:

(⇐)Sia $Y = A_1A_2 ... A_n$ e supponiamo che $Y \subseteq X^+$. Allora per definizione $F \vdash X \to A_i$ per ogni i = 1, 2, ..., n. Da questa per la regola dell'unione si ha $F \vdash X \to Y$.

(⇒) Viceversa se $F \vdash X \to Y$ allora per la regola di decomposizione si ha $F \vdash X \to A_i$ per ogni i = 1,2,...,n, e quindi $Y \subseteq X^+$.

Dimostrazione di Completezza degli Assiomi di Armstrong

- Dobbiamo dimostrare che $F \models X \rightarrow Y$ allora $F \vdash X \rightarrow Y$.
- Basta far vedere che se $not F \vdash X \rightarrow Y$ allora $not F \models X \rightarrow Y$.
- Infatti supponiamo che not $F \vdash X \to Y$ allora per il Lemma $Y \not\subset X^+$ e $Y \neq X^+$. Allora è possibile considerare la relazione r dello stesso schema fatta dalle due tuple t_1 e t_2

$$t_1$$
= 11...1 11...1 t_2 = 11...1 00...0 X^+ Not X^+

- Facciamo vedere che r soddisfa tutte le dipendenze di F.
 - Infatti, supponiamo che esista una $V \rightarrow W \in F$ tale che r non la soddisfa.
 - Questo vuol dire che t_1 e t_2 coincidono su V ma non su W. Questo vuol dire che $V \subseteq X^+$ e $W \nsubseteq X^+$.
 - Per il lemma segue che $F \vdash X \to V$ che assieme a $F \vdash V \to W$ per transitività da $F \vdash X \to W$ che contraddice $W \nsubseteq X^+$.
 - Quindi r soddisfa tutte le dipendenze di F.
- Tuttavia **r** non soddisfa $X \to Y$. Infatti $t_1[X] = t_2[X]$ ma $t_1[Y] \neq t_2[Y]$ poiché $Y \nsubseteq X^+$ in quanto, per ipotesi, **not** $F \vdash X \to Y$.
- Quindi **not** $F \models X \rightarrow Y$, che conclude la dimostrazione di completezza.

Chiusure, Equivalenze e Ricoprimenti Minimi

> Prof. Alfredo Pulvirenti Prof. Salvatore Alaimo

Calcolo delle Chiusure

- Ricordiamo che
 - $F^+ = \{X \rightarrow Y | F \models X \rightarrow Y\}.$
- Il calcolo può essere molto costoso in quanto ad esempio se
- $F = \{A \rightarrow B_1, A \rightarrow B_2, ..., A \rightarrow B_n\}$ allora F⁺ include $A \rightarrow Y$ per ogni Y sottoinsieme di $\{B_1, B_2, ..., B_n\}$. Quindi ha cardinalità almeno 2^n .

Chiusura di un insieme di attributi

- Facciamo vedere invece come è possibile un calcolo efficace di $X_F^+ = \{A | F \vdash X \rightarrow A\}$.
- Il calcolo avviene attraverso il seguente Algoritmo

Algoritmo per X⁺

- 1. $X^{(0)} := X, j = 0$
- 2. REPEAT
- 3. $X^{(j+1)} := X^{(j)} \cup \{A | \exists Y \to Z \in F | A \in Z \land Y \subseteq X^{(j)} \}$
- 4. UNTIL $(X^{(j+1)} = X^{(j)})$
- 5. SET X^+ : = $X^{(j)}$

Equivalenze di dipendenze funzionali

 Siano F,G insiemi di dipendenze funzionali allora diciamo che sono equivalenti se

$$F^{+} = G^{+}$$
.

 La relazione di equivalenza tra insiemi di dipendenze ci permette di capire quando due schemi di relazione rappresentano gli stessi fatti: basta controllare che gli attributi siano uguali e abbiano le stesse dipendenze.

• L'algoritmo è il seguente:

Algoritmo di equivalenza

• Per ogni $Y \to Z$ in F controlliamo se essa è in G^+ calcolando Y_G^+ e controllando se $Z \subseteq Y_G^+$. Questo implica $F^+ \subseteq G^+$.

• Viceversa in maniera analoga si può controllare se $G^+ \subseteq F^+$.

Insiemi di Dipendenze Minimali

Un insieme di dipendenze funzionali F è minimale se:

- 1. Ogni lato destro di una dipendenza è un singolo attributo.
- 2. Per ogni dipendenza $X \to A$ in F , $F \setminus \{X \to A\}$ non è equivalente a F
- 3. Per ogni X \rightarrow A in F e Z \subset X, F \ $\{X \rightarrow A\} \cup \{Z \rightarrow A\}$ non è equivalente a F

La regola 2 garantisce che nessuna dipendenza in F è ridondante. La regola 3 garantisce che nessun attributo in qualunque primo membro sia ridondante.

Ricoprimenti Minimali

 Dato F si dice che G è un suo ricoprimento minimale se G è minimale ed è equivalente a F.

• TEOREMA: Ogni insieme di dipendenze funzionali ha un ricoprimento minimale

Dimostrazione del teorema del ricoprimento minimale

- Dato l'insieme F costruiamo un insieme F' ad esso equivalente con la proprietà 1.
- Per garantire la proprietà 2. Basta cancellare ogni dipendenza $X \rightarrow A$ che non soddisfa 2.
- Analogamente se esiste una regola che non soddisfa la 3 si accorcia e si continua il processo che avrà termine ottenendo il ricoprimento minimale.

Si può dimostrare che basta applicare la regola 3. E solo alla fine la 2. Ma non viceversa!

Decomposizioni di uno schema, Decomposizioni che preservano i dati (loss-less join)

Prof. Alfredo Pulvirenti Prof. Salvatore Alaimo

Decomposizione di uno schema

 Dato uno schema R={A₁,A₂,...A_n} una sua decomposizione è un insieme d = {R₁,R₂,...R_k} di sottoinsiemi di R tali che:

$$R = R_1 \cup R_2 \cup \cdots \cup R_k$$

ESEMPIO

Consideriamo lo schema

StudentiEsamiCorsi={Matricola, Nome, Indirizzo, Telefono, Corso, Professore, Voto}

L'insieme d={Studenti,Esami,Corsi} con

Studenti={Matricola,Nome,Indirizzo,Telefono} Esami={Matricola,Corso,Voto} Corsi={Corso,Professore}

è una sua decomposizione.

Preservazione dei dati

Ovviamente decomporre lo schema iniziale comporta il vantaggio di evitare ridondanze nella rappresentazione. Inoltre nell'esempio considerato per ritrovare i dati dello schema iniziale basta considerare la giunzione naturale degli elementi della decomposizione. Questa proprietà della decomposizione si chiama preservazione dei dati(loss-less joins)

Decomposizioni che preservano i dati (loss-less joins)

 Dato uno schema R con un insieme F di dipendenze funzionali, una sua decomposizione d={R₁,R₂,...,R_k} si dice che preserva i dati (o che ha loss-less joins) se per ogni relazione r di R che soddisfa tutte le dipendenze di F si ha:

$$r = \pi_{R_1}(r) \bowtie \pi_{R_2}(r) \bowtie \cdots \bowtie \pi_{R_k}(r)$$

Nota sulla decomposizione

Siano R,F e d come sopra.

E sia
$$m_d(r) = \pi_{R_1}(r) \bowtie \pi_{R_2}(r) \bowtie \cdots \bowtie \pi_{R_k}(r)$$

allora

$$r \subseteq m_d(r)$$

ma $m_d(r) \subseteq r$ non è sempre vero.

Decomposizione che non preserva i dati

Sia R={A,B,C}, R₁={A,B}, R₂={B,C}, e sia
$$r={a_1b_1c_1,a_2b_1c_2}$$
.

Allora

$$\pi_{R_1}(r) = \{a_1b_1, a_2b_1\},\$$

 $\pi_{R_2}(r) = \{b_1c_1, b_1c_2\}$

e $a_1b_1c_2$ appartiene a $m_d(r)$ ma non appartiene ad r.

Quindi la decomposizione non preserva i dati

Algoritmo per controllare se una decomposizione preserva i dati

Input:

$$R = \{A_1, A_2, ..., A_n\}, F, d = \{R_1, R_2, ..., R_k\}$$

Output:

Yes/No se d preserva i dati.

INIZIALIZZAZIONE:

Consideriamo una matrice

$$M = \{R_1, R_2, ..., R_k\} X \{A_1, A_2, ..., A_n\}$$

dove nell'elemento R_iA_j mettiamo a_j se A_j è in R_i altrimenti mettiamo b_{ii} .

Passo Iterativo

ITERAZIONE:

Applichiamo finché è possibile ogni dipendenza $X \rightarrow Y$ in F nel seguente modo: se esistono due righe di M che coincidono su X allora facciamole coincidere anche in Y:

- se ho uno dei due a_j allora cambiamo l'altro (b_{ij}) in a_j ;
- Altrimenti prendiamo uno dei due e lo facciamo uguale all'altro.

Test Finale

 Se durante il passo precedente si produce la riga a₁a₂...a_n allora rispondi YES (La decomposizione preserva i dati)

Altrimenti rispondi NO
 (La decomposizione non preserva i dati)

Esempio

R={A,B,C,D}, F={A--->B}

$$R_1$$
={A,B}, R_2 ={A,C,D}
La matrice M è

Applicando $A \rightarrow B$ si ottiene

continua

Quindi la decomposizione conserva i dati

Esempio negativo

R={A,B,C,D}, F={A--->C}, R₁={A,B}, R₂={A,C,D}
 La matrice M è

• Applicando $A \rightarrow C$ si ottiene

continua

- Non si può applicare nessun'altra dipendenza: quindi NON preserva i dati
- Infatti la relazione $r=\{a_1a_2a_3b_{14}, a_1b_{22}a_3a_4\}$ soddisfa F $\pi_{R_1}(r)=\{a_1a_2,a_1b_{22}\}, \ \pi_{R_2}(r)=\{a_1a_3b_{14},a_1a_3a_4\}, \ l'elemento a_1a_2a_3a_4$ sta in $m_d(r)$ ma non sta in r.

Un caso particolare

Teorema

Se d={R₁,R₂} è una decomposizione di R con dipendenze F.
 Allora d preserva i dati se e solo se soddisfa una delle due:

$$F \vdash R_1 \cap R_2 \to R_1 - R_2$$
$$F \vdash R_1 \cap R_2 \to R_2 - R_1$$

Dimostrazione:

La tabella iniziale è

	R1 ∩ R2	R1-R2	R2-R1
R1	aaa	aaa	bbb
R2	aaa	bbb	aaa

Dimostrazione

- Osserviamo che si forma la riga tutta a...a se e solo se
 - $F \vdash R_1 \cap R_2 \rightarrow R_1 R_2$ (si forma la seconda riga di a...a) oppure
 - $F \vdash R_1 \cap R_2 \rightarrow R_2 R_1$ (si forma la prima riga di a...a).

Esempio positivo

- R={A,B,C,D}, F={A--->B}
- $R_1 = \{A, B\}, R_2 = \{A, C, D\}$
- $R_1 \cap R_2 = \{A\}$; $R_1 R_2 = \{B\}$
- Ovviamente $F \vdash A \rightarrow B$ quindi la decomposizione preserva i dati

Esempio negativo

- R={A,B,C,D}, F={A--->C}
- $R_1 = \{A, B\}, R_2 = \{A, C, D\}$
- $R_1 \cap R_2 = \{A\}$; $R_1 R_2 = \{B\}$; $R_2 R_1 = \{C, D\}$
- Poiché ne B ne D appartengono a A⁺ allora non è soddisfatta ne $F \vdash R_1 \cap R_2 \to R_1 R_2$

ne $F \vdash R_1 \cap R_2 \rightarrow R_2 - R_1$ quindi la decomposizione non preserva i dati.

Decomposizioni che conservano le dipendenze funzionali

Prof. Alfredo Pulvirenti Prof. Salvatore Alaimo

Conservazione delle Dipendenze

- La proiezione $\pi_Z(F)$ di F su un insieme Z di attributi è l'insieme delle dipendenze $X \to Y$ appartenenti a F^+ tali che $XY \subseteq Z$
- Dato uno schema relazionale (R, F) ed una sua decomposizione d = $\{R_1,R_2,...R_k\}$ si dice che essa **conserva le dipendenze funzionali** se F è implicata logicamente dall'unione delle proiezioni $\pi_{R_i}(F)$ di F sugli $R_{i.}$

Decomposizione che preserva i dati ma non le dipendenze funzionali

- Consideriamo lo schema R(C,S,Z) che ci dice che nella città C c'è un palazzo all'indirizzo S con codice postale Z.
- Valgono le dipendenze $F = \{CS \rightarrow Z, Z \rightarrow C\}$.
- La decomposizione di R (SZ,CZ) preserva i dati perché $F \vdash SZ \cap CZ = Z \rightarrow (CZ SZ) = C$
- Tuttavia non preserva la dipendenze funzionali infatti: $\pi_{SZ}(F)$ è vuoto e $\pi_{CZ}(F) = \{Z \to C\}$ ed essi non implicano $CS \to Z$.

Algoritmo per controllare se una decomposizione preserva le dipendenze funzionali

- Input: $R = \{A_1, A_2, ..., A_n\}$, F, $d = \{R_1, R_2, ..., R_k\}$
- Output: Yes/No se d preserva F.
- IDEA DELL'ALGORITMO:
 - Sia $G = \bigcup_{i=1,...,k} \pi_{R_i}(F)$.
 - Dobbiamo provare che G è equivalente ad F (senza calcolare G).
 - Basta provare che per ogni X → Y in F, Y è contenuto in X⁺
 calcolato rispetto a G. Per questo calcolo basta fare la
 chiusura di X rispetto alle varie proiezioni di F sulle R_i.

FORME NORMALI

- Uno schema relazionale R con dipendenze F si dice in Forma Normale di Boyce-Codd (BCNF) se per ogni X → A di F⁺, se A non appartiene ad X allora
 - X è una *superchiave* di R, cioè è o contiene una chiave.
- Si può dimostrare che se tutte le dipendenze di F sono del tipo X → A (F sia minimale), allora basta verificare la suddetta proprietà solo per gli elementi di F e non di F⁺.

Esempio

- Consideriamo lo schema R(C,S,Z) con dipendenze $CS \rightarrow Z \ e \ Z \rightarrow C$.
- Le chiavi sono CS e ZS.
- Tuttavia $Z \to C$ non soddisfa la proprietà perché Z non è una superchiave, quindi **non è in BCNF**.

TERZA FORMA NORMALE

- Uno schema relazionale R con dipendenze F si dice in **Terza Forma Normale** (3NF) se per ogni $X \to A$ di F⁺, se A non appartiene ad X allora
 - X è una superchiave di R oppure A è primo, cioè appartiene a qualche chiave.
- Si può dimostrare che se tutte le dipendenze di F sono del tipo $X \to A$, allora basta verificare la suddetta proprietà solo per gli elementi di F e non di F⁺.

Esempio

- Consideriamo lo schema R(C,S,Z) con dipendenze $CS \rightarrow Z \ e \ Z \rightarrow C$. Le chiavi sono CS e ZS.
- Abbiamo già osservato che non è in BCNF.
- Tuttavia essa è in 3NF infatti, nella dipendenza Z → C, Z non è una superchiave, tuttavia C è primo perché è elemento della chiave CS.

Perché la BCNF?

- Lo scopo delle BCNF e' eliminare ridondanze causate dalle dipendenze.
- Infatti supponiamo che R sia in BCNF e supponiamo per assurdo che possiamo predire il valore di un attributo da qualche dipendenza (QUINDI CHE CI SIA RIDONDANZA). Quindi avremmo una situazione del tipo:

Χ	Υ	Α
X	У	a
X	Z	?

- Con y diversa da z
- Dove possiamo dedurre che ?=a . Questo implica che per qualche $Z \subseteq X$ vale la dipendenza Z--->A. Tuttavia poiché R è in BCNF allora Z è una superchiave così come X . Ma questo implicherebbe y=z che contraddice l'assunzione che le due tuple sono distinte. Assurdo!

E la 3NF?

Consideriamo lo schema CSZ con le dipendenze $CS \rightarrow Z \ e \ Z \rightarrow C$ Che e' in 3NF ma non in BCNF. Allora da

con s **diversa** da t. Si può dedurre che ?=c perché $Z \rightarrow C$. Quindi ci possono essere ridondanze dovute a dipendenze

E' possibile avere tutto?

- E' possibile avere decomposizioni che preservano i dati o le dipendenze ed in cui tutte le componenti sono in forma normale?
 - SI per conservazione dei dati e BCNF
 - SI per conservazione dei dati e delle dipendenze e 3NF.
 - NO per la conservazione delle dipendenze e BCNF

Algoritmo per BCNF:alcuni lemmi preliminari

Lemma 1

Sia R uno schema con dipendenze F e sia $d=\{R_1,R_2,...R_k\}$ una decomposizione che preserva i dati rispetto a F, e sia d' $=\{S_1,S_2\}$ una decomposizione di R_1 che preserva i dati rispetto a $\pi_{R_1}(F)$. Allora la decomposizione di R, d'' $=\{S_1,S_2,R_2,...,R_k\}$ preserva i dati rispetto a F.

Algoritmo per BCNF:alcuni lemmi preliminari

Lemma 2

- a) Ogni schema R con due attributi è in BCNF
- b) Se R non è in BCNF allora esistono due attributi A,B tali che: $(R AB) \rightarrow A$.

Algoritmo per BCNF:alcuni lemmi preliminari

Lemma 3

Dati (R,F), se proiettiamo su $R_1 \subseteq R$ ottenendo F_1 , e successivamente proiettiamo su $R_2 \subseteq R_1$ ottenendo F_2 , allora si ha che $F_2 = \pi_{R_2}(F)$.

Decomposizioni che preservano i dati con componenti in BCNF

INPUT: Schema R e dipendenze F

OUTPUT: Decomposizione che preserva i dati tale che ogni componente sia in

BCNF rispetto alla proiezione di F su quella componente.

L'idea dell'algoritmo è quella di decomporre R in due schemi:

- XA in BCNF, dove vale X → A e R-A, tali che (R-A,XA) preserva i dati.
- Si riparte da R-A, si calcola la proiezione di F (tale step ha un costo esponenziale) su tale schema e si continua come sopra fino a quando ci si riduce a due soli attributi quando, per il Lemma 2, è senz'altro in BCNF.
- La decomposizione trovata non è l'unica, dipende dall'ordine con cui vengono analizzate le dipendenze

 Sfortunatamente non è possibile prevedere pregi e difetti delle scomposizioni che si ottengono.

Preservazione delle dipendenze e 3NF

- **Input**: R,F con F ricoprimento minimale
- Output: Una decomposizione di R che conserva le dipendenze e tale che ogni suo elemento e' in 3NF.

ALGORITMO

- Se ci sono attributi non presenti in F essi possono essere raggruppati in un solo schema ed eliminati.
- Se una dipendenza di F coinvolge tutti gli attributi di R, allora ritorna (R).
- Altrimenti ritorna la decomposizione fatta da tutti gli XA tali che X → A appartiene ad F.

Osservazione e raffinamento

- In effetti se ho le dipendenze
- $X \rightarrow A_1, ..., X \rightarrow A_n$, invece delle componenti $XA_1,...,XA_n$ basta mettere la sola componente $XA_1...A_n$. Essa infatti non solo conserva le dipendenze ma è anche in 3NF perché X è una chiave

Preservare dati+dipendenze+3NF

- Partiamo da una decomposizione R =
 (R₁,R₂,...R_k) che preserva le dipendenze e tale
 che ogni R_i e' in 3NF rispetto alla proiezione di
 F su R_i. E sia X una chiave per R
- Allora (R₁,R₂,...R_k,X) preserva i dati e le dipendenze ed ogni suo elemento è in 3NF

Correttezza

- Infatti che X sia in 3NF è ovvio, una chiave ogni elemento è primo.
- Ovviamente $(R_1,...,R_n,X)$ conserva le dipendenze perché questo è già vero per $(R_1,...,R_n)$
- Infine per vedere che preserva i dati basta applicare l'algoritmo della matrice e vedere che la riga di X diviene $a_1, a_2, ..., a_n$.
- Infatti poiché X è una chiave $F \vdash X \to A_m$ come conseguenza delle proiezioni di F sulle componenti per ogni A_m non in X per cui b_m prima o poi diventa a_m .

Esercitazione Normalizzazione

Considerare la relazione:

Docente	Dipartimento	Facoltà	Preside	Corso
Verdi	Matematica	Ingegneria	Neri	Analisi
Verdi	Matematica	Ingegneria	Neri	Geometria
Rossi	Fisica	Ingegneria	Neri	Analisi
Rossi	Fisica	Scienze	Bruni	Analisi
Bruni	Fisica	Scienze	Bruni	Fisica

individuare le proprietà della corrispondente applicazione.

Individuare inoltre eventuali ridondanze e anomalie nella relazione.

Individuare la chiave e le dipendenze funzionali della relazione

Individuare poi una decomposizione in forma normale di Boyce-Codd.

Si consideri la relazione:

Prodotto	Componente	Tipo	Q	PC	Fornitore	PT
Libreria	Legno	Noce	50	10.000	Forrest	400.000
Libreria	Bulloni	B212	200	100	Bolt	400.000
Libreria	Vetro	Cristal	3	5.000	Clean	400.000
Scaffale	Legno	Mogano	5	15.000	Forrest	300.000
Scaffale	Bulloni	B212	250	100	Bolt	300.000
Scaffale	Bulloni	B412	150	300	Bolt	300.000
Scrivania	Legno	Noce	10	8.000	Wood	250.000
Scrivania	Maniglie	H621	10	20.000	Bolt	250.000
Tavolo	Legno	Noce	4	10.000	Forrest	200.000

e i relativi componenti. Vengono indicati: il tipo del componente di un prodotto (attributo **Tipo**), la quantità del componente necessaria per un certo prodotto (attributo **Q**), il prezzo unitario del componente di un certo prodotto (attributo **PC**), il fornitore del componente (attributo **Fornitore**) e il prezzo totale del singolo prodotto (attributo **PT**).

Individuare le dipendenze funzionali e la chiave di questa relazione.

Con riferimento alla relazione:

Prodotto	Componente	Tipo	Q	PC	Fornitore	PT
Libreria	Legno	Noce	50	10.000	Forrest	400.000
Libreria	Bulloni	B212	200	100	Bolt	400.000
Libreria	Vetro	Cristal	3	5.000	Clean	400.000
Scaffale	Legno	Mogano	5	15.000	Forrest	300.000
Scaffale	Bulloni	B212	250	100	Bolt	300.000
Scaffale	Bulloni	B412	150	300	Bolt	300.000
Scrivania	Legno	Noce	10	8.000	Wood	250.000
Scrivania	Maniglie	H621	10	20.000	Bolt	250.000
Tavolo	Legno	Noce	4	10.000	Forrest	200.000

si considerino le seguenti operazioni di aggiornamento:

Inserimento di un nuovo prodotto;

Cancellazione di un prodotto;

Aggiunta di una componente a un prodotto;

Modifica del prezzo di un prodotto.

Discutere i tipi di anomalia che possono essere causati da tali operazioni

Descrivere le ridondanze presenti e individuare una decomposizione della relazione che non presenti tali ridondanze. Fornire infine l'istanza dello schema così ottenuto, corrispondente all'istanza originale. Verificare poi che sia possibile ricostruire l'istanza originale a partire da tale istanza.

Considerare uno schema di relazione R (E, N, L, C, S, D, M, P, A), con le dipendenze

```
E \rightarrow NS,

NL \rightarrow EMD,

EN \rightarrow LCD,

C \rightarrow S,

D \rightarrow M,

M \rightarrow D

EPD \rightarrow AE

NLCP \rightarrow A.
```

Calcolare una copertura minima per tale insieme e decomporre la relazione in terza forma normale.

Si consideri la relazione:

СМ	Materia	cs	Sem.	CD	NomeDoc	Dipartimento
I01	Analisi I	Inf	I	NR1	Neri	Matematica
I01	Analisi I	El	I	NR2	Neri	Matematica
102	Analisi II	El-Inf	I	NR1	Neri	Matematica
I04	Fisica I	E1	II	BN1	Bianchi	Fisica
I04	Fisica I	Mec	I	BR1	Bruni	Meccanica
I04	Fisica I	Inf	I	BR1	Bruni	Meccanica
I05	Fisica II	El	II	BR1	Bruni	Meccanica
I06	Chimica	Tutti	I	RS1	Rossi	Fisica

in cui CM e CD sono, rispettivamente, abbreviazioni di CodiceMateria e CodiceDocente e l'attributo CS assume valori di tipo stringa che indicano in qualche modo il corso di studio o i corsi di studio cui un corso e destinato. Individuare la chiave (o le chiavi) e le dipendenze funzionali definite su di essa (ignorando quelle che si ritiene siano eventualmente "occasionali") e spiegare perche essa non soddisfa la BCNF.

Decomporla in BCNF nel modo che si ritiene più opportuno

Si consideri lo schema Entità-Relazione:

Sui dati descritti da questo schema valgono le seguenti proprietà:

Un giocatore può giocare per una sola squadra (o per nessuna);

Un allenatore può allenare una sola squadra (o nessuna);

Una squadra ha un solo allenatore, diversi giocatori e appartiene a un'unica città.

Verificare se lo schema soddisfa la forma normale di Boyce-Codd e, in caso negativo, ristrutturarlo in un nuovo schema in maniera che soddisfi tale forma normale.

Consideriamo la relazione:

Reparto	Cognome	Nome	Indirizzo
Vendite	Rossi	Mario	Via Po 20
Acquisti	Rossi	Mario	Via Po 20
Bilancio	Neri	Luca	Via Taro 12
Personale	Rossi	Luigi	Via Taro 12

e le sue seguenti possibili decomposizioni:

Reparto, Cognome in una relazione e Cognome, Nome, Indirizzo nell'altra;

Reparto, Cognome, Nome in una relazione e Nome, Indirizzo nell'altra;

Reparto, Cognome, Nome in una relazione e Cognome, Nome, Indirizzo nell'altra;

Individuare, con riferimento sia all'istanza specifica sia all'insieme delle istanze sullo stesso schema (con le proprietà naturalmente associate), quali di tali decomposizioni sono senza perdita.

Materiale aggiuntivo lo trovate a questo link:

http://fondamentidibasididati.it/