Аналоговая электроника и техника измерений.

Операционный усилитель.

Применение операционных усилителей. Импульсные преобразователи.

Генератор тока на транзисторе

$$I_{\rm H} = \beta I_{\rm G} \approx \beta \frac{U_{\rm G} - 0.7}{R_{\rm G} + R_{\rm B}(\beta + 1)}$$

$$R_6 \approx \frac{R_1 R_2}{R_1 + R_2}$$
, $U_6 \approx \frac{U_{\Pi} R_2}{R_1 + R_2}$

Токовое зеркало

$$I_{61} = I_{62} = I_{6},$$
 $I_{R} = \beta I_{6} + 2I_{6},$
$$I_{H} = \beta I_{6} = \frac{\beta}{\beta + 2} I_{R} \approx I_{R}$$

$$R_{\rm H} = \frac{U_K - U_{\rm Hac}}{I_{\rm H}}$$
 , $U_{\rm Hac} = 0.2 \div 0.3V$

$$\frac{I_{\rm H}}{I_R} = \frac{\beta m}{\beta + m + 1}$$

Дифференциальный каскад

$$U_0 = K_U(U_1 - U_2) = \frac{R1}{R_{\vartheta}}(U_1 - U_2)$$

Для синфазного сигнала: $K_U = \frac{R1}{2R3 + r_3}$

Для противофазного сигнала: $K_U = \frac{R1}{r_3}$

$$R_{\rm BX} = (\beta + 1)(R3 + r_{\rm B})$$

Операционные усилители

$$U_0 = G_{openloop}(U_+ - U_-)$$

- Коэффициент усиления с разомкнутой петлёй обратной связи нормируется в очень широких пределах (зависит от частоты сигнала, температуры и т.д.).
- Коэффициент усиления велик и не регулируется.
- Точка отсчёта входного и выходного напряжений не поддаётся регулировке.

Внутренняя структура ОУ иА741

Идеальная модель операционного усилителя

- Бесконечно большой коэффициент усиления с разомкнутой петлей обратной связи. (Внутренние параметры не влияют на коэффициент передачи)
- Бесконечно большое входное сопротивление входов V- и V+. (Ток, протекающий между входами, равен нулю).
- Нулевое выходное сопротивление выхода ОУ. (Идеальный источник ЭДС)
- Способность выставить на выходе любое значение напряжения.
- Бесконечно большая скорость нарастания напряжения на выходе ОУ.
- Бесконечная полоса пропускания сигнала.

Отрицательная обратная связь поддерживает одинаковое напряжение на входах идеального ОУ (это не является свойством операционного усилителя!):

$$U_+ = U_-$$

Отличия реальных ОУ от идеального

Параметры по постоянному току

- *Ограниченное усиление:* коэффициент усиления не бесконечен (**10**⁵ ÷ **10**⁶ на постоянном токе).
- *Ненулевой входной ток* (ограниченное входное сопротивление): типичные значения входного тока составляют $10^{-9} \div 10^{-12}$ А.
- Ненулевое выходное сопротивление.
- *Ненулевое напряжение смещения*: Типичные значения $U_{\rm CM}$ составляют ${f 10^{-3}}$ ÷ ${f 10^{-6}}$ В.
- Ненулевое усиление синфазного сигнала. Данный эффект определяется параметром коэффициент ослабления синфазного сигнала. Типичные значения: 10⁴ ÷ 10⁶.

Отличия реальных ОУ от идеального

Параметры по переменному току

- Ограниченная полоса пропускания.
- *Ненулевая входная ёмкость.* Образует паразитный фильтр нижних частот.
- *Ненулевая задержка сигнала.* Данный параметр, косвенно связанный с ограничением полосы пропускания, может ухудшить действие ООС при повышении рабочих частот.
- *Насыщение* ограничение диапазона возможных значений выходного напряжения. Обычно выходное напряжение не может выйти за пределы напряжения питания.
- Ненулевое время восстановления после насыщения .
- *Ограниченная скорость нарастания*. Скорость изменения выходного напряжения измеряется в вольтах за микросекунду, типичные значения 1÷100 В/мкс.

Отличия реальных ОУ от идеального

- Ограниченное выходное напряжение. У любого ОУ потенциал на выходе не может быть выше, чем потенциал положительной шины питания и не может быть ниже, чем потенциал отрицательной шины питания (в случае, если нагрузка отсутствует, или является резистивной и не содержит источник тока).
- *Ограниченный выходной ток.* Большинство ОУ широкого применения имеют встроенную защиту от превышения выходного тока. Защита предотвращает перегрев и выход ОУ из строя.
- *Ограниченная выходная мощность*. Большинство ОУ предназначено для применений, не требовательных к мощности: сопротивление нагрузки не должно быть менее 1 2 кОм.

Расчет цепи с использованием идеальной модели ОУ

Неинвертирующий усилитель

Задачи с операционными усилителями рассматриваются с использованием (если не сказано иное) следующих допущений — выходное сопротивление источника сигнала равно нулю, сопротивление нагрузки бесконечно, ОУ представлен идеальной моделью.

Согласно свойствам идеальной модели, наличию отрицательной обратной связи и первому правилу Кирхгофа:

$$U_{-} = U_{+} = U_{1}$$

$$i_{2} - i_{1} = 0 , \qquad \frac{U_{1}}{R_{1}} = \frac{U_{0} - U_{1}}{R_{2}}$$

$$U_{0} = U_{1} \left(1 + \frac{R_{2}}{R_{1}} \right)$$

Расчет цепи с использованием идеальной модели ОУ

Интегратор

$$U_- = U_+ = 0$$

$$i_2 - i_1 = 0$$
, $\frac{0 - U_1}{R} = C \frac{dU_c}{dt} = C \frac{dU_0}{dt}$

$$U_0 = -\frac{1}{RC} \int U_1 dt$$

Логарифмический усилитель

$$U_- = U_+ = 0$$

$$i_1 - i_D = 0$$
,
$$\frac{U_1}{R} = I_0 \left[\exp \frac{-U_0}{\varphi_T} - 1 \right]$$
 $U_1 \not\stackrel{i_R}{\nearrow}$

$$U_0 = -\varphi_T \ln(1 + \frac{U_1}{I_0 R})$$

Схемы с использованием ОУ

Инвертирующий усилитель

$$U_0 = -U_1 \frac{R2}{R1}$$

Дифференциальный усилитель

$$U_0 = -U_1 \frac{R2}{R1} + U_2 \frac{R4}{R3 + R4} \left(1 + \frac{R2}{R1} \right)$$

Дифференциатор

$$U_0 = -RC \frac{dU_1}{dt}$$

Схемы с использованием ОУ

Экспоненциальный усилитель

$$U_0 = -RI_0 \left(e^{\frac{U_1}{\varphi_T}} - 1 \right)$$

Аналоговый умножитель напряжений

$$U_0 = U_1 \cdot U_2 = e^{(lnU_1 + lnU_2)}$$

Компараторы

$$U_0 = +U_S$$
 , $U_1 < U_2$

$$U_0 = -U_S$$
 , $U_1 > U_2$

Инвертирующий и не инвертирующий триггер Шмидта

$$U_{\Pi} = \pm U_S \frac{R1}{R1 + R2} \; ,$$

$$U_{\Pi} = \pm U_{S} \frac{R1}{R2}$$

Управляемые источники напряжения и тока на ОУ

Источник напряжения управляемый током:

$$U_0 = iR$$

Источник тока управляемый напряжением:

$$i_{\rm H} = \frac{U_1}{R_1}$$

Эталонный источник тока:

$$i_{\rm H} = \frac{U_1}{R_1} \frac{\beta}{\beta + 1}$$

Токовое зеркало:

$$i_{\rm H} = \frac{R_1}{R_2} i_1$$

Преобразователи энергии

Типы преобразователей входным и выходным параметрам:

- 1. Преобразователи переменный ток переменный ток (АС-АС).
- 2. Преобразователи переменный ток постоянный ток (AC-DC).
- 3. Преобразователи постоянный ток переменный ток (DC-AC).
- 4. Преобразователи постоянный ток постоянный ток (DC-DC).

По принципу работы:

- 1. Выпрямители.
- 2. Линейные преобразователи.
- 3. Импульсные преобразователи.

Линейные стабилизаторы для положительного напряжения

$$U_{\rm H} \approx U_{ref}$$

$$U_{ ext{H}}=U_{ref}-0$$
,7 $ext{B}$ Пульсации $\Delta U_{ ext{H}}pprox rac{r_{ ext{ди} \Phi}}{R_1} U_1$

$$U_{\rm H} = \left(1 + \frac{R2}{R1}\right) \cdot U_{ref}$$

Ключевой режим работы транзистора (IGBT, MOSFET)

На интервале t_0 - t_1 напряжение затвора (U_G), плавно нарастая, достигает величины отсечки (U_{th}) . С момента отсечки через транзистор начинает протекать ток, величина которого определяется напряжением затвора – это линейная область работы. К моменту t₂ ток транзистора достигает максимальной величины, определяемой нагрузкой. До этого момента происходила зарядка входной емкости транзистора C_{GF} . В этот момент напряжение на затворе практически перестает расти до момента t₃, это явление называется эффектом Миллера. Во время «плато Миллера» происходит перезарядка емкостей C_{GC} и C_{CF} , при этом напряжение на коллекторе уменьшается до значений, близких к напряжению насыщения. Эффективная величина емкости Миллера примерно в 3-5 раз больше входной. По завершении плато Миллера напряжение на затворе еще немного растет – снова заряжается входная емкость и напряжение коллектора достигает минимальных значений, определяемых величиной тока коллектора.

Энергетические потери определяются площадью под кривыми тока коллектора и напряжения коллектор-эмиттер.

Реальные формы напряжений драйвера, затвора и тока затвора IGBT

Горчаков К.М. Аналолговая электроника

Импульсные преобразователи энергии

Если период функции равен T и длительность положительной части импульса равна au

Коэффициент заполнения

$$S = \frac{1}{D} = \frac{T}{\tau}$$

D - коэффициент заполнения (Duty cycle)

S - скважность.

Схемы импульсных преобразователей будем рассматривать в идеализированном виде — падение напряжения на открытом транзисторе, время переключения и токи утечки будем считать нулевыми, поэтому изображение транзистора в схемах заменим на изображение ключа.

DC-DC - преобразователи

Основные типы преобразователей.

1. Понижающий преобразователь. (BUCK)

Принцип работы:

В замкнутом состоянии ключа ток от источника протекает через индуктивность, питая нагрузку. При этом также происходит зарядка конденсатора. При размыкании ключа ток индуктивности не может стать нулевым по правилам коммутации - открывается диод замыкая этот ток. Напряжение нагрузки определяется током индуктивности и разрядом конденсатора. Далее процесс повторяется сначала.

DC-DC - преобразователи

Метод **усреднения в пространстве состояний:**

метод составления усредненной системы уравнений с весовыми коэффициентами, определяемыми величиной коэффициента заполнения (D и (1-D) соответственно), т.е. относительной длительностью существования каждой конфигурации за период рабочего цикла устройства.

Область использования метода:

если каждая из постоянных времени в существующих в цепи RC, L/R, $2\pi\sqrt{LC}$ на порядок и более превосходит длительность рабочего цикла устройства, т.е. период коммутации силового ключа.

Недостатки:

Полная потеря информации о пульсациях выходного значения величины.

Понижающий преобразователь

При замкнутом состоянии ключа, по правилам Кирхгофа:

$$L\frac{di_L}{dt} = E - U_C$$

$$C\frac{dU_C}{dt} = i_L - \frac{U_C}{R}$$

Для разомкнутого состояния ключа:

$$L\frac{di_L}{dt} = -U_C$$

$$C\frac{dU_C}{dt} = i_L - \frac{U_C}{R}$$

Понижающий преобразователь

Умножим обе части уравнений на соответствующие весовые коэффициенты и просуммируем:

$$L\frac{di_L}{dt}(D+1-D) = (E-U_C)D + (-U_C)(1-D) = ED - U_C$$

$$C\frac{dU_C}{dt}(D+1-D) = \left(i_L - \frac{U_C}{R}\right)D + \left(i_L - \frac{U_C}{R}\right)(1-D) = i_L - \frac{U_C}{R}$$

Средние значения напряжения на емкости (нагрузке) и тока в индуктивности (при равенстве производных нулю – ток и напряжение не меняются):

$$U_C = ED$$
 , $i_L = \frac{U_C}{R}$

DC-DC - преобразователи

2. Повышающий преобразователь. (BOOST)

DC-DC - преобразователи

3. Инвертирующий преобразователь. (BUCK-BOOST)

Преобразователи с трансформаторной развязкой

Двухтактные преобразователи (передача энергии два раза за период). Слева преобразователь по топологии «тяни-толкай» (Push-Pull), справа полумост (Half Bridge). На следующем слайде полный мост (Full Bridge).

Амплитуда напряжения на первичных обмотках трансформатора для Push-Pull и Full Bridge равна E, а для полумоста $^E/_2$. Это легко увидеть при анализе работы.

Преобразователи с трансформаторной развязкой

Выходное напряжение (зеленым) показано с условием присутствия фильтра, который на схеме не показан. Из графиков видно что анализ соответствует работе понижающего преобразователя, при условии $D=\frac{2\tau}{T}$, что эквивалентно удвоению частоты при сохранении длительности или удвоению длительности импульса при сохранении частоты.

Горчаков К.М. Аналолговая электроника